Standard Complexity Classes

The most common complexity classes used in analysis of algorithms are, in increasing order of growth rate:

$$O(1)$$
, $O(\log n)$, $O(n^{1/k})$, $O(n)$, $O(n\log n)$, $O(n^k)$ $(k > 1)$,

$$O(2^n), O(n!), O(n^n)$$

- Functions that belong to classes in the first row are known as polynomial time bounded.
- Verification of the relationships between these classes can be done most easily using limits, sometimes with L' Hopital's Rule

L'Hopital's Rule. Suppose f and g have derivates (at least when x is large) and their limits as $x \to \infty$ are either both 0 or both infinite. Then

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

as long as these limits exist.

Big-Oh Rules

- If is f(n) a polynomial of degree d, say, $f(n) = a_0 + a_1 n + ... + a_d n^d$, then f(n) is $O(n^d)$
 - Drop lower-order terms (those of degree less than d)
 - 2. Drop constant factors (in this case, a_d)
 - 3. See first example on previous slide

Guidelines:

- Use the smallest possible class of functions
- E.g. Say "2n is O(n)" instead of "2n is $O(n^2)$ "
- Use the simplest expression of the class
- E.g. Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

Basic Rules For Computing Asymptotic Running Times

Rule-1: For Loops

The running time of a for loop is at most the running time of the statements inside the loop (including tests) times the number of iterations (see *arrayMax*)

Rule-2: Nested Loops

Analyze from inside out. The total running time of a statement inside a group of nested loops is the running time of the statement times the sizes of all the loops

```
\begin{array}{c} \textbf{for} \ i \leftarrow \ 0 \ to \ n-1 \ \textbf{do} \\ \textbf{for} \ j \leftarrow \ 0 \ to \ n-1 \ \textbf{do} \\ k \leftarrow \ i + j \\ (\text{Runs in } O(n^2) \ ) \end{array}
```

Rule-3: Consecutive Statements

Running times of consecutive statements should be added in order to compute running time of the whole

```
for i ← 0 to n-1 do

a[i] \leftarrow 0

for i ← 0 to n-1 do

for j ← 0 to i do

a[i] \leftarrow a[i] + i + j
```

(Running time is $O(n) + O(n^2)$. By an exercise, this is $O(n^2)$)

Rule-4: If/Else

For the fragment

if condition then

S1

else

S2

the running time is never more than the running time of the *condition* plus the larger of the running times of S1 and S2.

Relatives of Big-Oh

- big-Omega
 - f(n) is $\Omega(g(n))$ if g(n) is O(f(n)).
- big-Theta
 - f(n) is $\Theta(g(n))$ if f(n) is both O(g(n)) and $\Omega(g(n))$.
- little-oh
 - f(n) is o(g(n)) if, for any constant c > 0, there is an integer constant $n_0 \ge 0$ such that $f(n) \le cg(n)$ for all $n \ge n_0$
 - In case lim_n(f(n)/g(n)) exists,
 - f(n) is o(g(n)) if and only if the limit = 0.
 - f(n) is $\omega(g(n))$ if and only if the limit $= \infty$.
 - f(n) is $\Theta(g(n))$ if and only if the limit = c, a non-zero constant

Intuition for Asymptotic Notation

big-Oh

f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)

big-Omega

• f(n) is $\Omega(g(n))$ if f(n) is asymptotically greater than or equal to g(n)

big-Theta

• f(n) is $\Theta(g(n))$ if f(n) is **asymptotically equal** to g(n)

little-oh

f(n) is o(g(n)) if f(n) is asymptotically strictly less than g(n)

little-omega

• f(n) is $\omega(g(n))$ if f(n) is **asymptotically strictly greater** than g(n)

Running Time of Recursive Algorithms

Problem: Given an array of integers in sorted order, is it possible to perform a search for an element in such a way that no more than half the elements of the array are examined? (Assume the array has 8 or more elements.)

Binary Search

Algorithm search(A,x)

Input: An already sorted array A with n elements and search value x

Output: true or false

return binSearch(A, x, 0, A.length-1)

Algorithm binSearch(A, x, lower, upper)

Input: Already sorted array A of size n, value x to be searched for in array section A[lower]..A[upper]

Output: true or false

```
if lower > upper then return false
mid ← (upper + lower)/2
if x = A[mid] then return true
if x < A[mid] then
    return binSearch(A, x, lower, mid - 1)
else
    return binSearch(A, x, mid + 1, upper)</pre>
```

For the worst case (x is above all elements of A and n a power of 2), running time is given by the *Recurrence Relation:* (In this case, right half is always half the size of the original.)

$$T(1) = d;$$
 $T(n) = c + T(n/2)$

The Divide and Conquer Algorithm Strategy

The binary search algorithm is an example of a "Divide And Conquer" algorithm, which is typical strategy when recursion is used.

The method:

- <u>Divide</u> the problem into subproblems (divide input array into left and right halves)
- <u>Conquer</u> the subproblems by solving them recursively (search recursively in whichever half could potentially contain target element)
- <u>Combine</u> the solutions to the subproblems into a solution to the problem (return value found or indicate not found)

Analysis of Algorithms

Another Technique To Solve Recurrences: Counting Self-Calls

- To determine the running time of a recursive algorithm, another often-used technique is *counting self-calls*.
- Often, processing time in a recursion, apart from self-calls, is constant. In such cases, running time is proportional to the number of self-calls.

Example of Counting Self-Calls: The Fib Algorithm

- The Fibonacci numbers are defined recursively by: F(0) = 0, F(1) = 1, F(n) = F(n-1) + F(n-2)
 - This is a recursive algorithm for computing the nth Fibonacci number:

Algorithm fib(n)

Input: a natural number n

Output: F(n)

if (n = 0 || n = 1) then return n

return fib(n-1) + fib(n-2)

Lemma. For n>1, the number S(n) of self-calls in fib(n) is $\geq F(n)$ **Proof**. By (strong) induction on n.

Base Cases:

n=2. In this case $S(2) = 2 \ge 1 = F(2)$. Thus $S(n) \ge F(n)$.

n=3. In this case $S(3) = 4 \ge 2 = F(3)$. Thus $S(n) \ge F(n)$.

Induction Hypothesis:

Assume the result for all values of n in the interval [2, m].

Thus $S(n) \ge F(n)$ for $2 \le n \le m$.

In particular, $S(m) \ge F(m)$ and $S(m-1) \ge F(m-1)$.

Induction Step:

S(m+1)= 2 + S(m) + S(m-1) $\geq 2 + F(m) + F(m-1)$ (by Induction Hypothesis) $\geq F(m+1)$

Lemma. For all n > 4, $F(n) > (4/3)^n$ **Proof**. Exercise!

Therefore, the running time of the fib algorithm is $O(r^n)$ for so

Therefore, the running time of the fib algorithm is $\Omega(r^n)$ for some r > 1. In other words, fib is an *exponentially slow* algorithm!

The Master Formula

For recurrences that arise from Divide-And-Conquer algorithms (like Binary Search), there is a general formula that can be used.

Theorem. Suppose T(n) satisfies

$$T(n) = \begin{cases} d & \text{if } n = 1\\ aT(\lceil \frac{n}{b} \rceil) + cn^k & \text{otherwise} \end{cases}$$

where k is a nonnegative integer and a, b, c, d are constants with $a > 0, b > 1, c > 0, d \ge 0$. Then

$$T(n) = \begin{cases} \Theta(n^k) & \text{if } a < b^k \\ \Theta(n^k \log n) & \text{if } a = b^k \\ \Theta(n^{\log_b a}) & \text{if } a > b^k \end{cases}$$

Master Formula (continued)

Notes.

- (1) The result holds if $\lceil \frac{n}{b} \rceil$ is replaced by $\lfloor \frac{n}{b} \rfloor$.
- (2) Whenever T satisfies this "divide-and-conquer" recurrence, it can be shown that the conclusion of the theorem holds for all natural number inputs, not just to powers of b.

Master Formula (continued)

Example. A particular divide and conquer algorithm has running time T that satisfies:

$$T(1) = d \quad (d > 0)$$
$$T(n) = 2T(n/3) + 2n$$

Find the asymptotic running time for T.

Master Formula (continued)

Solution. The recurrence has the required form for the Master Formula to be applied. Here,

$$a=2$$

$$b = 3$$

$$c = 2$$

$$k = 1$$

$$b^{k} = 3$$

Therefore, since $a < b^k$, we conclude by the Master Formula that

$$T(n) = \Theta(n)$$
.