DISCRETE SEMICONDUCTORS

DATA SHEET

BFR92NPN 5 GHz wideband transistor

Product specification
File under Discrete Semiconductors, SC14

September 1995

BFR92

DESCRIPTION

NPN transistor in a plastic SOT23 envelope primarily intended for use in RF wideband amplifiers and oscillators. The transistor features low intermodulation distortion and high power gain; due to its very high transition frequency, it also has excellent wideband properties and low noise up to high frequencies.

PNP complement is BFT92.

PINNING

PIN DESCRIPTION					
Code: P1p					
1 base					
2 emitter					
3	collector				

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	TYP.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter	_	20	V
V _{CEO}	collector-emitter voltage	open base	_	15	V
I _C	DC collector current		_	25	mA
P _{tot}	total power dissipation	up to T _s = 95 °C; note 1	_	300	mW
f _T	transition frequency	I_C = 14 mA; V_{CE} = 10 V; f = 500 MHz; T_j = 25 °C	5	_	GHz
C _{re}	feedback capacitance	I _C = 2 mA; V _{CE} = 10 V; f = 1 MHz	0.4	_	pF
G _{UM}	maximum unilateral power gain	I_C = 14 mA; V_{CE} = 10 V; f = 500 MHz; T_{amb} = 25 °C	18	_	dB
F	noise figure	$I_C = 2 \text{ mA}; V_{CE} = 10 \text{ V}; f = 500 \text{ MHz}; $ $T_{amb} = 25 \text{ °C}; Z_s = \text{opt}.$	2.4	_	dB
Vo	output voltage	$\begin{aligned} &d_{im} = -60 \text{ dB; } I_C = 14 \text{ mA; } V_{CE} = 10 \text{ V;} \\ &R_L = 75 \Omega; T_{amb} = 25 ^{\circ}\text{C;} \\ &f_{(p+q-r)} = 493.25 \text{ MHz} \end{aligned}$	150	_	mV

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter	_	20	V
V _{CEO}	collector-emitter voltage	open base	_	15	V
V _{EBO}	emitter-base voltage	open collector	_	2	V
I _C	DC collector current		_	25	mA
P _{tot}	total power dissipation	up to T _s = 95 °C; note 1	_	300	mW
T _{stg}	storage temperature		-65	150	°C
T _j	junction temperature		_	175	°C

Note

1. T_s is the temperature at the soldering point of the collector tab.

Philips Semiconductors Product specification

NPN 5 GHz wideband transistor

BFR92

THERMAL RESISTANCE

SYMBOL	PARAMETER CONDITIONS		THERMAL RESISTANCE	
R _{th j-s}	thermal resistance from junction to soldering point	up to T _s = 95 °C; note 1	260 K/W	

Note

1. T_s is the temperature at the soldering point of the collector tab.

CHARACTERISTICS

 T_j = 25 °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _{CBO}	collector cut-off current	I _E = 0; V _{CB} = 10 V	_	_	50	nA
h _{FE}	DC current gain	I _C = 14 mA; V _{CE} = 10 V	40	90	_	
f _T	transition frequency	$I_C = 14 \text{ mA}; V_{CE} = 10 \text{ V}; f = 500 \text{ MHz}$	_	5	_	GHz
C _c	collector capacitance	$I_E = i_e = 0$; $V_{CB} = 10 \text{ V}$; $f = 1 \text{ MHz}$	_	0.75	_	pF
C _e	emitter capacitance	$I_C = i_c = 0$; $V_{EB} = 0.5 \text{ V}$; $f = 1 \text{ MHz}$	_	0.8	_	pF
C _{re}	feedback capacitance	$I_C = 2 \text{ mA}; V_{CE} = 10 \text{ V}; f = 1 \text{ MHz};$ $T_{amb} = 25 ^{\circ}\text{C}$	_	0.4	_	pF
G _{UM}	maximum unilateral power gain (note 1)	I _C = 14 mA; V _{CE} = 10 V; f = 500 MHz; T _{amb} = 25 °C	_	18	_	dB
F	noise figure (see Fig.2 and note 2)	$I_C = 2 \text{ mA}; V_{CE} = 10 \text{ V}; f = 500 \text{ MHz};$ $T_{amb} = 25 ^{\circ}\text{C}; Z_s = \text{opt}.$	_	2.4	_	dB
V _o	output voltage	note 3	_	150	_	mV

Notes

- 1. G_{UM} is the maximum unilateral power gain, assuming S_{12} is zero and $G_{UM} = 10 \log \frac{\left|S_{21}\right|^2}{\left(1 \left|S_{11}\right|^2\right)\left(1 \left|S_{22}\right|^2\right)} d\vec{B}$ 2. Crystal mounted in a SOT37 envelope (BFR90).
- 3. $d_{im} = -60 \text{ dB (DIN 45004B)}$; $I_C = 14 \text{ mA}$; $V_{CE} = 10 \text{ V}$; $R_L = 75 \Omega$; $T_{amb} = 25 \,^{\circ}\text{C}$; $V_p = V_o$ at $d_{im} = -60$ dB; $f_p = 495.25$ MHz;

 $V_q = V_o - 6 \text{ dB}; f_q = 503.25 \text{ MHz};$

 $V_r = V_o -6 \text{ dB}; f_r = 505.25 \text{ MHz};$

measured at $f_{(p+q-r)} = 493.25 \text{ MHz}.$

Fig.6 Transition frequency as a function of collector current.

BFR92

PACKAGE OUTLINE

Plastic surface mounted package; 3 leads

SOT23

DIMENS	IONS (m	ım are tl	ne origir	nal dime	nsions)	

UNIT	Α	A ₁ max.	bp	С	D	E	е	e ₁	HE	Lp	Q	v	w
mm	1.1 0.9	0.1	0.48 0.38	0.15 0.09	3.0 2.8	1.4 1.2	1.9	0.95	2.5 2.1	0.45 0.15	0.55 0.45	0.2	0.1

OUTLINE	REFERENCES				EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ		PROJECTION	1330E DATE
SOT23						97-02-28

Philips Semiconductors Product specification

NPN 5 GHz wideband transistor

BFR92

DEFINITIONS

Data Sheet Status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.