

Description

The VSM160N10 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 100V, I_D = 160A$ $R_{DS(ON)} < 5.0 m\Omega @ V_{GS} = 10V$ (Typ:3.8 m Ω)
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Load switching
- Uninterruptible power supply

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM160N10-TC	VSM160N10	TO-220C	-	-	-

Absolute Maximum Ratings (T_C=25 ℃ unless otherwise noted)

0 \ •	,			
Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	100	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	160	А	
Drain Current-Continuous(T _C =100℃)	I _D (100℃)	113	А	
Pulsed Drain Current	I _{DM}	550	А	
Maximum Power Dissipation	P _D	370	W	
Derating factor		2.5	W/°C	
Single pulse avalanche energy (Note 5)	E _{AS}	1400	mJ	

Parameter	Symbol	Limit	Unit	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$	
Thermal Characteristic				
Thermal Resistance,Junction-to-Case ^(Note 2)	R _{0JC}	0.4	°C/W	

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	·					
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	100	110	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =100V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)		•				
Gate Threshold Voltage	Threshold Voltage V _{GS(th)} V _{DS} =V _{GS} ,I _D =250μA		2	3.2	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =20A	-	3.8	5.0	mΩ
Forward Transconductance	g Fs	V _{DS} =5V,I _D =20A	70	-	-	S
Dynamic Characteristics (Note4)			•			
Input Capacitance	C _{lss}	V _{DS} =50V,V _{GS} =0V,	-	8500	-	PF
Output Capacitance	C _{oss}		-	770	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	300	-	PF
Switching Characteristics (Note 4)		•				
Turn-on Delay Time	t _{d(on)}		-	28	-	nS
Turn-on Rise Time	t _r	V_{DD} =50V, R_L =2.5 Ω V_{GS} =10V, R_{GEN} =3 Ω	-	22	-	nS
Turn-Off Delay Time	t _{d(off)}		-	43.5	-	nS
Turn-Off Fall Time	t _f		-	14.5	-	nS
Total Gate Charge	Qg	V 50VI 00A	-	139	-	nC
Gate-Source Charge	Q _{gs}	V_{DS} =50V, I_{D} =20A, V_{GS} =10V	-	34	-	nC
Gate-Drain Charge	Q _{gd}	VGS-10V	-	56	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =20A	-	0.85	1.2	V
Diode Forward Current (Note 2)	Is		-	-	160	Α
Reverse Recovery Time	verse Recovery Time t _{rr}		-	60	90	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	177	200	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition:Tj=25 $^{\circ}\text{C}$,VDD=50V,VG=10V,L=1mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

200 160 120 80 40 0 25 50 75 100 125 150 175 T_J-Junction Temperature(°C)

Figure 7 Capacitance vs Vds

Figure 9 ID Current- Junction Temperature

Figure 8 Safe Operation Area

Figure 10 Power De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance