Optimization Problems and Antiderivatives

Section 4.7, 4.9

Outline

- ▶ 1. Optimization Problems
 - Strategies of solving optimization problems
 - Examples
- 2. Antiderivatives

- Strategies of solving the problems:
- ▶ 1. Understand the problem.
- 2. Draw a diagram.
- ▶ 3. Introduce notations.
- lacktriangle 4. Express the concerning quantity, Q, in terms of other quantities.

- ▶ 5. Eliminate quantities if necessary so that Q is a function, of one variable, say f(x). Determine the domain of this function.
- ▶ 6. Find the absolute extreme values of f(x).

- Example:
- A cylindrical can is to be made to hold Vm^3 of liquid. Find the dimensions that will minimize the area of the surface of the can.

Which shape is more economical?

sol:

First Derivative Test for Absolute Extreme Values Suppose that c is a critical number of a continuous function f defined on an interval.

- (a) If f'(x) > 0 for all x < c and f'(x) < 0 for all x > c, then f(c) is the absolute maximum value of f.
- (b) If f'(x) < 0 for all x < c and f'(x) > 0 for all x > c, then f(c) is the absolute minimum value of f.

(12 pts) A fence 2 m tall is parallel to a tall building at a distance of 2 m from the building. What is the length of the shortest ladder that will reach from the ground over the fence to the wall of the building? Building Ladder $2 \mathrm{m}$ $2 \mathrm{m}$ Fence sol:

Consider an isosceles triangle whose legs (the equal sides) have length ℓ and whose vertex angle is θ . As ℓ and θ vary, the area of the triangle stays the same. At which θ does ℓ attain its extreme value? Is this extreme value the maximum length or minimum length?

- Example:
- lacktriangle There is a circular pool and A,B are two points on the edge of the pool so that \overline{AB} is the diameter. A man runs twice faster then he swims. He wants to run along the pool from A to a point C and then swim from C to B in the shortest time. How should he choose the point C?

Antiderivatives

Definition A function F is called an **antiderivative** of f on an interval I if F'(x) = f(x) for all x in I.

Theorem If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is

$$F(x) + C$$

where C is an arbitrary constant.

Antiderivatives

Function	Particular antiderivative	Function	Particular antiderivative
cf(x)	cF(x)	sec^2x	tan x
f(x) + g(x)	F(x) + G(x)	$\sec x \tan x$	sec x
$x^n \ (n \neq -1)$	$\frac{x^{n+1}}{n+1}$	$\frac{1}{\sqrt{1-x^2}}$	$\sin^{-1}x$
$\frac{1}{x}$	ln x	$\frac{1}{1+x^2}$	tan ⁻¹ x
e^x	e^x	$\cosh x$	sinh x
$\cos x$	sin x	sinh x	$\cosh x$
sin x	$-\cos x$		

Ex: Find
$$f(x)$$
 such that $f'(x) = \sin x + x^{\frac{4}{3}} + 2^x$
and $f'(0) = \frac{1}{2n^2} - \frac{1}{7}$, $f(0) = \frac{1}{(2n^2)^2}$.

Review

- What is an optimization problem? What is your strategy for solving such problems?
- What is the antiderivative of a function?
- Review the table of antiderivatives of special functions.