Chapitre 5

SYSTEMES CENTRES DANS L'APPROXIMATION DE GAUSS

- I. Matrice de transfert d'un système centré
- II. Matrice de conjugaison
- III. Eléments cardinaux
- IV. Relation de conjugaison avec origine aux points principaux
- V. Relation de conjugaison avec origine aux foyers
- VI. Association de deux systèmes centrés : formule de Gullstrand
- VII. Constructions géométriques

I. Matrice de transfert d'un système centré

Définition : Un système centré est constitué de surfaces réfringentes et/ou réfléchissantes telles que l'ensemble présente un axe de révolution, comme l'illustre schématiquement la figure ci-après :

Ici, n_e et n_s désignent respectivement les indices des milieux d'entrée et sortie du système.

Le problème est alors le suivant : Etant donné un rayon incident de vecteur directeur $\overrightarrow{u_1}$, quelles seront les caractéristiques de ce rayon à la sortie du système ?

Les caractéristiques des rayons incident et émergent, aux *point d'entrée* P_e et *point de sortie* P_s du système, sont respectivement définies par

$$P_e = \begin{pmatrix} x_e \\ n_e \alpha_e \end{pmatrix} \text{ et } P_s = \begin{pmatrix} x_s \\ n_s \alpha_s \end{pmatrix}.$$

La matrice T telle que $P_s = T P_e$, avec

$$T = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix}$$
 (1)

est la matrice de transfert du système. Par définition :

$$T_{21} = -V \tag{2}$$

Pour être plus explicite, considérons un rayon lumineux subissant une succession de réfractions lors de la traversée d'un système optique, comme illustré dans la figure ci-après:

La traversée du système par le rayon lumineux est décrite symboliquement par les transformations successives qui suivent :

$$E_{-} \xrightarrow{R(E)} E_{+} \xrightarrow{T(\overline{EM})} M_{-} \xrightarrow{R(M)} M_{+} \xrightarrow{T(\overline{MN})} N_{-} \xrightarrow{R(N)} N_{+} \xrightarrow{T(\overline{NS})} S_{-} \xrightarrow{R(S)} S_{+}$$

$$\Rightarrow P_{s} = R(S)T(\overline{NS})R(N)T(\overline{MN})R(M)T(\overline{EM})R(E) P_{e} = TP_{e}$$

II. Matrice de conjugaison

Soient deux points conjugués A_1 et A_2 , pour un système centré. Les rayons incidents et émergents se propagent respectivement dans des milieux d'indice n_1 et n_2 .

$$A_{1} \xrightarrow{T(\overline{A_{1}E})} E \xrightarrow{T(ES)} S \xrightarrow{T(\overline{SA_{2}})} A_{2}$$

La marche d'un rayon lumineux et la matrice de transfert reliant les points A_1 et A_2 s'écrivent:

$$M(\overline{A_1}\overline{A_2}) = \overline{T(\overline{S}\overline{A_2})}T(ES) \overline{T(\overline{A_1}E)}$$

$$M(A_1A_2) = \begin{bmatrix} 1 & \frac{\overline{S}\overline{A_2}}{n_2} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} T_{11} & T_{12} \\ -V & T_{22} \end{bmatrix} \begin{bmatrix} 1 & \frac{\overline{A_1}E}{n_1} \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{\overline{S}\overline{A_2}}{n_2} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} T_{11} & T_{11}\frac{\overline{A_1}E}{n_1} + T_{12} \\ -V & -V\frac{\overline{A_1}E}{n_1} + T_{22} \end{bmatrix} \Rightarrow$$

$$M(A_{1}A_{2}) = \begin{bmatrix} T_{11} - \frac{V\overline{SA_{2}}}{n_{2}} & T_{12} + T_{11} \frac{\overline{A_{1}E}}{n_{1}} + \left(T_{22} - V \frac{\overline{A_{1}E}}{n_{1}}\right) \frac{\overline{SA_{2}}}{n_{2}} \\ -V & -V \frac{\overline{A_{1}E}}{n_{1}} + T_{22} \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} \\ -V & m_{22} \end{bmatrix}$$
(3)

Si on désigne par x_1 et x_2 les écarts respectifs des points A_1 et A_2 par rapport à l'axe optique, alors on peut écrire que

$$\begin{cases} x_2 = m_{11} x_1 + m_{12} n_1 \alpha_1 & (4a) \\ n_2 \alpha_2 = -V x_1 + m_{22} n_1 \alpha_1 & (4b) \end{cases}$$

* Etudions les éléments de la matrice $M(A_1A_2)$

 A_1 et A_2 étant conjugués, tous les rayons issus de A_1 doivent repasser par A_2 . Cela veut dire que

$$x_2$$
 doit être indépendant de $\alpha_1 \implies m_{12} = 0$ (5)

L'équation (5) donne la relation de conjugaison du système :

$$T_{12} - T_{11} \frac{\overline{EA_1}}{n_1} + \left(T_{22} + V \frac{\overline{EA_1}}{n_1}\right) \frac{\overline{SA_2}}{n_2} = 0 \implies$$

$$T_{11} \frac{n_2}{\overline{SA_2}} - T_{22} \frac{n_1}{\overline{EA_1}} - T_{12} \frac{n_1}{\overline{EA_1}} \frac{n_2}{\overline{SA_2}} = V .$$
 (6)

En invoquant l'équation (5), l'équation (4a) se réduit à $x_2 = m_{11}x_1$, soit :

$$m_{11} = x_2 / x_1 = G_t . (7)$$

Par ailleurs, comme les coefficients m_{ij} ne dépendent pas de x_1 , α_1 , x_2 , et α_2 , ces coefficients sont aussi valables pour un point A_1 situé sur l'axe optique ($x_1 = 0$). Dans ce cas l'équation (4b) conduit à :

$$n_2\alpha_2 = m_{22} n_1\alpha_1 \implies$$

$$m_{22} = \frac{\alpha_2}{\alpha_1} \frac{n_2}{n_1} = G_a \frac{n_2}{n_1}$$
 (8)

La forme générale de la matrice de conjugaison est la suivante :

$$M = \begin{bmatrix} G_t & 0 \\ -V & G_a \frac{n_2}{n_1} \end{bmatrix}. \tag{9}$$

Son déterminant doit être égal 1 :

III. Eléments cardinaux

On définit par *éléments cardinaux* les éléments caractéristiques du système et de son environnement, permettant de définir la position de l'image d'un objet à travers le système.

III.1. Vergence

Elle est symbolisée par V et s'exprime en **dioptries**, notées δ (ou metre⁻¹).

- (i) Pour V>0, le système est convergent.
- (ii) Pour V < 0 le système est divergent.
- (iii) V=0 le système est afocal.

III.2. Distances focales

La distance focale image du système est définie par

$$f' = \frac{n_2}{V} . \tag{10}$$

La distance focale objet du système est définie par

$$f = -\frac{n_1}{V} \,. \tag{11}$$

III.3. Plans principaux

Ce sont des plans de front conjugués tels que le grandissement transversal

$$G_t = 1. (12)$$

Soient H_1 et H_2 les intersections de ces plans avec l'axe optique. Recherchons la position de ces points par rapport aux points d'entrée et sortie du système.

$$M(H_1H_2) = \begin{bmatrix} G_t & 0 \\ -V & G_a \frac{n_2}{n_1} \end{bmatrix} = \begin{bmatrix} G_t & 0 \\ -V & \frac{1}{G_a} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -V & 1 \end{bmatrix}.$$

En effet, H_1 et H_2 étant des points conjugués, la relation entre ces deux points est une relation de conjugaison.

Par ailleurs, d'après la relation (3), on peut écrire que

$$M(H_1H_2) = \begin{bmatrix} T_{11} - \frac{V\overline{SH_2}}{n_2} & T_{12} - T_{11} \frac{\overline{EH_1}}{n_1} + \left(T_{22} + V\frac{\overline{EH_1}}{n_1}\right) \frac{\overline{SH_2}}{n_2} \\ -V & V\frac{\overline{EH_1}}{n_1} + T_{22} \end{bmatrix}.$$

En identifiant ces deux expressions de $M(H_1H_2)$ on obtient

$$\begin{cases}
T_{11} - \frac{V\overline{SH_2}}{n_2} = 1 \\
V\overline{\frac{EH_1}{n_1}} + T_{22} = 1
\end{cases}
\Rightarrow
\begin{cases}
\overline{SH_2} = \frac{n_2}{V}(T_{11} - 1) = f'(T_{11} - 1) \\
\overline{EH_1} = \frac{-n_1}{V}(T_{22} - 1) = f(T_{22} - 1)
\end{cases}$$
(13a)

III.4. Points nodaux

Ce sont deux *points conjugués* sur l'axe, N_1 et N_2 , tels que tout rayon incident passant par N_1 , émerge parallèlement à la direction incidente en passant par N_2 . Par conséquent

$$G_a = 1. (14)$$

En invoquant les relations (3), (9), et (14), on peut écrire que

$$M(N_{1}N_{2}) = \begin{bmatrix} T_{11} - \frac{V\overline{SN_{2}}}{n_{2}} & 0 \\ -V & V\frac{\overline{EN_{1}}}{n_{1}} + T_{22} \end{bmatrix} = \begin{bmatrix} G_{t} & 0 \\ -V & G_{a}\frac{n_{2}}{n_{1}} \end{bmatrix} = \begin{bmatrix} G_{t} & 0 \\ -V & \frac{n_{2}}{n_{1}} \end{bmatrix} = \begin{bmatrix} \frac{n_{1}}{n_{2}} & 0 \\ -V & \frac{n_{2}}{n_{1}} \end{bmatrix} = \begin{bmatrix} \frac{n_{1}}{n_{2}} & 0 \\ -V & \frac{n_{2}}{n_{1}} \end{bmatrix}$$

$$\Rightarrow \begin{cases} T_{11} - \frac{V\overline{SN_{2}}}{n_{2}} = \frac{n_{1}}{n_{2}} \\ V\frac{\overline{EN_{1}}}{n_{1}} + T_{22} = \frac{n_{2}}{n_{1}} \end{cases} \Rightarrow$$

$$\begin{cases}
\overline{SN_2} = \frac{n_2}{V} \left(T_{11} - \frac{n_1}{n_2} \right) = f' \left(T_{11} - \frac{n_1}{n_2} \right) \\
\overline{EN_1} = \frac{-n_1}{V} \left(T_{22} - \frac{n_2}{n_1} \right) = f \left(T_{22} - \frac{n_2}{n_1} \right)
\end{cases}$$
(15a)

Remarque: Evaluons les longueurs algébriques $\overline{H_1N_1}$ et $\overline{H_2N_2}$:

$$\begin{cases} \overline{H_1N_1} = \overline{H_1E} + \overline{EN_1} = \overline{EN_1} - \overline{EH_1} = f\left(T_{22} - \frac{n_2}{n_1}\right) - f\left(T_{22} - 1\right) = -\frac{n_2}{n_1}f + f = -\frac{n_2}{n_1}\left(-\frac{n_1}{V}\right) + f = \frac{n_2}{V} + f = f + f' \\ \overline{H_2N_2} = \overline{H_2S} + \overline{SN_2} = \overline{SN_2} - \overline{SH_2} = f'\left(T_{11} - \frac{n_1}{n_2}\right) - f'(T_{11} - 1) = -\frac{n_1}{n_2}f' + f' = -\frac{n_1}{n_2}\left(\frac{n_2}{V}\right) + f' = -\frac{n_1}{V} + f' = f + f' \end{cases}$$

On a donc:

$$\overline{H_1 N_1} = \overline{H_2 N_2} = f + f'$$
 . (16)

Remarque: Si les milieux extrêmes sont identiques, $n_1 = n_2$, alors $f + f' = 0 \Rightarrow \overline{H_1 N_1} = \overline{H_2 N_2} = 0$: autrement dit, **les points nodaux et points principaux sont confondus.**

III.5. Plans focaux

Ce sont deux plans de front notés (Fxy) et (F'xy), où F et F' désignent les intersections de ces plans avec l'axe optique, tels que :

- Tout rayon incident issu du point F émerge parallèlement à l'axe optique.
- Tout rayon incident parallèle à l'axe, émerge en passant par F'.

Les plans de front passant par F et F' sont respectivement appelés **plan focal objet** et **plan focal image**.

F est le foyer objet; F' est le foyer image

Cherchons la position des foyers.

Les points d'entrée et sortie du système sont reliés par la relation suivante :

$$P_{s} = T P_{e} \Rightarrow \begin{pmatrix} x_{2} \\ n_{2}\alpha_{2} \end{pmatrix} = \begin{bmatrix} T_{11} & T_{12} \\ -V & T_{22} \end{bmatrix} \begin{pmatrix} x_{1} \\ n_{1}\alpha_{1} \end{pmatrix}$$

$$\Rightarrow \begin{cases} x_{2} = T_{11}x_{1} + T_{12}n_{1}\alpha_{1} & (17a) \\ n_{2}\alpha_{2} = -Vx_{1} + T_{22}n_{1}\alpha_{1} & (17b) \end{cases}$$

Position du foyer objet F

D'après l'équation (17),

$$\alpha_2 = 0 \rightarrow \frac{x_1}{\alpha_1} = \frac{T_{22}n_1}{V}$$

$$\alpha_1 \approx \tan \alpha_1 = x_1 / \overline{FE}$$

$$\Rightarrow \overline{FE} = \frac{x_1}{\alpha_1} = \frac{T_{22}n_1}{V} = -fT_{22}$$

$$\overline{EF} = f T_{22}$$
 (18) Position de F par rapport à l'entrée du système.

Remarque:
$$\overline{H_1F} = \overline{H_1E} + \overline{EF} = -f(T_{22} - 1) + fT_{22} = f$$

$$\overline{H_1F} = f \tag{19}$$

Position de *F* par rapport au plan principal objet.

Position du foyer imager F'

D'après l'équation (17)

$$\alpha_1 = 0 \to \frac{x_2}{\alpha_2} = -\frac{T_{11}n_2}{V}$$

$$\alpha_2 \approx \tan \alpha_2 = -x_2 / \overline{SF}'$$

$$\Rightarrow \overline{SF'} = -\frac{x_2}{\alpha_2} = \frac{T_{11}n_2}{V} = f'T_{11}$$

Position de F' par rapport à la sortie du système.

Remarque:
$$\overline{H_2F'} = \overline{H_2S} + \overline{SF'} = -f'(T_{11} - 1) + f'T_{11} = f'$$

$$\overline{H_2F'} = f' \qquad (21)$$

Position de F' par rapport au plan principal image.

III.6. Centre optique

Le centre optique correspond au point d'intersection de l'axe et d'un rayon fictif joignant les points d'incidence et émergence des rayons incident et émergent parallèles.

IV. Relation de conjugaison avec origine aux points principaux

$$A_{1} \xrightarrow{T(\overline{A_{1}H_{1}})} H_{1} \xrightarrow{T(H_{1}H_{2})} H_{2} \xrightarrow{T(\overline{H_{2}A_{2}})} A_{2}$$

$$\Rightarrow A_{2} = T(\overline{H_{2}A_{2}})T(H_{1}H_{2}) T(\overline{A_{1}H_{1}})A_{1}$$

D'après les relations (9) et (12), on peut écrire

$$T(H_1H_2) = \begin{bmatrix} 1 & 0 \\ -V & 1 \end{bmatrix} \Rightarrow$$

$$M(A_1A_2) = \begin{bmatrix} 1 - V \frac{\overline{H_2A_2}}{n_2} & \frac{\overline{A_1H_1}}{n_1} + \left(1 - V \frac{\overline{A_1H_1}}{n_1}\right) \frac{\overline{H_2A_2}}{n_2} \\ -V & 1 + V \frac{\overline{H_1A_1}}{n_1} \end{bmatrix}$$

$$\text{Remarque: On peut déduire cette matrice de l'expression (3), en remplaçant dans (3) E par H_1 et S par H_2 .$$

La relation cherchée s'obtient en annulant le terme m_{12} de la matrice M :

$$\begin{split} & \overline{\frac{A_{1}H_{1}}{n_{1}}} + \left(1 - V\frac{\overline{A_{1}H_{1}}}{n_{1}}\right) \frac{\overline{H_{2}A_{2}}}{n_{2}} = 0 \\ & \rightarrow \frac{-p_{1}}{n_{1}} + \frac{p_{2}}{n_{2}} + \frac{Vp_{1}p_{2}}{n_{1}n_{2}} = 0 \quad avec \quad \boxed{p_{1} = \overline{H_{1}A_{1}} \ et \ p_{2} = \overline{H_{2}A_{2}}} \end{split}$$

Il en résulte la relation de conjugaison suivante :

$$\frac{n_2}{p_2} - \frac{n_1}{p_1} = V \tag{22}$$

Grandissement

$$G_{t} = 1 - V \frac{\overline{H_{2}A_{2}}}{n_{2}} = 1 - V \frac{p_{2}}{n_{2}} = 1 - \left(\frac{n_{2}}{p_{2}} - \frac{n_{1}}{p_{1}}\right) \frac{p_{2}}{n_{2}} = \frac{n_{1}}{n_{2}} \frac{p_{2}}{p_{1}} \Rightarrow$$

$$G_{t} = \frac{n_{1}}{n_{2}} \frac{p_{2}}{p_{1}} \qquad (23)$$

Cas particulier: $n_1 = n_2 = 1$ (milieux extrêmes identiques)

Dans ce cas $V = 1/f' = 1/\overline{H_2F'} \implies$

$$\frac{1}{\overline{H_2 A_2}} - \frac{1}{\overline{H_1 A_1}} = \frac{1}{\overline{H_2 F'}}$$
 (24)

V. Relation de conjugaison avec origine aux foyers

Cherchons la matrice de transfert entre F et F'.

$$F \xrightarrow{T(\overline{FH_1})} H_1 \xrightarrow{T(H_1H_2)} H_2 \xrightarrow{T(\overline{H_2F'})} F'$$

$$\Rightarrow F' = T(\overline{H_2F'})T(H_1H_2) T(\overline{FH_1})F$$

$$T(FF') = T(\overline{H_2F'})T(H_1H_2) T(\overline{FH_1}) = \begin{bmatrix} 1 & f'/n_2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -V & 1 \end{bmatrix} \begin{bmatrix} 1 & -f/n_1 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 - V \frac{f'}{n_2} & \frac{f'}{n_2} \\ -V & 1 \end{bmatrix} \begin{bmatrix} 1 & -\frac{f}{n_1} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 - V \frac{f'}{n_2} & -\frac{f}{n_1} \left(1 - V \frac{f'}{n_2} \right) + \frac{f'}{n_2} \\ -V & 1 + V \frac{f}{n_1} \end{bmatrix} = \begin{bmatrix} 0 & 1/V \\ -V & 0 \end{bmatrix}$$

$$T(FF') = \begin{bmatrix} 0 & 1/V \\ -V & 0 \end{bmatrix} \tag{25}$$

Cherchons la matrice de conjugaison entre A_1 et A_2 , et qui passe par F et F':

$$\begin{split} A_{\mathbf{l}} & \xrightarrow{T(\overline{A_{\mathbf{l}}F})} F \xrightarrow{T(FF)} F' \xrightarrow{T(\overline{F'A_2})} A_2 \\ \Rightarrow & T(A_{\mathbf{l}}A_2) = T(\overline{F'A_2})T(FF') \ T(\overline{A_{\mathbf{l}}F}) \\ & = \begin{bmatrix} 1 & \sigma_2/n_2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1/V \\ -V & 0 \end{bmatrix} \begin{bmatrix} 1 & -\sigma_1/n_1 \\ 0 & 1 \end{bmatrix} \quad avec \quad \sigma_1 = \overline{FA_{\mathbf{l}}} \quad et \quad \sigma_2 = \overline{F'A_2} \\ & = \begin{bmatrix} -V\frac{\sigma_2}{n_2} & \frac{1}{V} + V\frac{\sigma_1}{n_1}\frac{\sigma_2}{n_2} \\ -V & V\frac{\sigma_1}{n_1} \end{bmatrix}. \end{split}$$

Pour obtenir la relation de conjugaison, on annule le terme de la 1^{ère} ligne et 2^{ième} colonne :

$$\frac{1}{V} + V \frac{\sigma_1}{n_1} \frac{\sigma_2}{n_2} = 0 \implies \sigma_1 \sigma_2 = -\frac{n_1}{V} \frac{n_2}{V} = f f', \text{ soit}$$

$$\overline{E_A} \overline{E'_A} - f f' \qquad (26)$$
Relation de

$$\overline{FA_1} \ \overline{F'A_2} = f \ f' \qquad (26)$$
Relation de conjugaison

Grandissement:

$$G_t = -V \frac{\sigma_2}{n_2} = \frac{n_1}{V \sigma_1} \rightarrow G_t = -\frac{\overline{F' A_2}}{f'} = -\frac{f}{\overline{F A_1}}$$
 (27) Grandissement

VI. Association de deux systèmes centrés : formule de Gullstrand

Soit un système centré constitué de deux sous-systèmes, comme illustré ci-après

La matrice de transfert s'écrit :

$$T(H_{1}^{1}H_{2}^{2}) = T(H_{1}^{2}H_{2}^{2})T(\overline{H_{2}^{1}H_{1}^{2}})T(H_{1}^{1}H_{2}^{1})$$

$$= \begin{bmatrix} 1 & 0 \\ -V_{2} & 1 \end{bmatrix} \begin{bmatrix} 1 & \frac{e}{n} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -V_{1} & 1 \end{bmatrix} \quad avec \quad e = \overline{H_{2}^{1}H_{1}^{2}}$$

$$= \begin{bmatrix} 1 & e/n \\ -V_{2} & 1 - V_{2}e/n \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -V_{1} & 1 \end{bmatrix}$$

$$\Rightarrow T(H_{1}^{1}H_{2}^{2}) = \begin{bmatrix} 1 - V_{1}\frac{e}{n} & \frac{e}{n} \\ -V & 1 - V_{2}\frac{e}{n} \end{bmatrix}, \quad avec$$

Relation de Gullstrand

 $V = V_1 + V_2 - V_1 V_2 \frac{e}{r}$ (28)

VIII. Constructions géométriques

VII. 1. Construction géométrique à partir des plans principaux et foyers

On considère un système dont on connaît la position des foyers et plans principaux

VII. 2. Construction géométrique à partir des points nodaux et foyers

Le rayon B_1N_1 ressort en N_2 parallèlement à la direction incidente. Des rayons parallèles émergent du système en passant par un même point situé dans le plan focal image du système.

VII.3. Construction de la marche d'un rayon quelconque

