

INTÉGRALES IMPROPRES ET INTÉGRALE DÉPENDANT D'UN PARAMÈTRE

Exercice 4

Exercice 4

Pour $x \in [0, +\infty[$ et $t \in [0, +\infty[$, on pose:

$$f(x,t) = \frac{e^{-xt^2}}{1+t^2}$$

(1) a) Montrer que, pour $x \in [0, +\infty[$ et $t \in [0, +\infty[$, on a

$$0 \le f(x,t) \le \frac{1}{1+t^2}$$

- b) Montrer que l'intégrale $\int_0^{+\infty} \frac{1}{1+t^2} dt$ est convergente.
- ② a) Montrer que, pour $t \in [0, +\infty[$, la fonction $x \mapsto f(x,t)$ est dérivale sur $[0, +\infty[$ et calculer $\frac{\partial f}{\partial x}(x,t)$.
 - b) Soit a > 0, montrer que, pour tout $x \in [a, +\infty[$ et $t \in [0, +\infty[$,

$$\left|\frac{\partial f}{\partial x}(x,t)\right| \le e^{-at^2}$$

Exercice 4

3 Pour $x \in [0, +\infty[$, on considère la fonction

$$F(x) = \int_0^{+\infty} f(x,t) \, \mathrm{d}t$$

- a) Montrer que F est bien définie et continue sur $[0, +\infty[$.
- b) Montrer que F est de classe C^1 sur $]0, +\infty[$ et donner l'expression de sa dérivée F'(x) sous forme d'une intégrale.
- c) Montrer que, pour tout $x \in]0, +\infty[$,

$$F(x) - F'(x) = \int_0^{+\infty} e^{-xt^2} dt$$

d) Par un changement de variable, en déduire que, pour tout $x \in]0, +\infty[$,

$$F(x) - F'(x) = \frac{1}{\sqrt{x}} \int_0^{+\infty} e^{-u^2} du$$

(4) a) Monter que, pour tout $x \in]0, +\infty[$, on a:

$$0 \le F(x) \le \frac{1}{\sqrt{x}} \int_0^{+\infty} e^{-u^2} du$$

b) Déduire $\lim_{x\to +\infty} F(x)$

$$0 \le f(x,t) \le \frac{1}{1+t^2}$$

$$0 \le f(x,t) \le \frac{1}{1+t^2}$$

$$-xt^2 \le 0$$

$$0 \le f(x,t) \le \frac{1}{1+t^2}$$

$$-xt^2 \le 0 \implies 0 \le e^{-xt^2} \le 1$$

$$0 \le f(x,t) \le \frac{1}{1+t^2}$$

$$-xt^{2} \le 0 \implies 0 \le e^{-xt^{2}} \le 1 \implies 0 \le f(x,t) \le \frac{1}{1+t^{2}}$$

$$0 \le f(x,t) \le \frac{1}{1+t^2}$$

• Pour tout $x \in [0, +\infty[$ et $t \in [0, +\infty[$, on a:

$$-xt^2 \le 0 \implies 0 \le e^{-xt^2} \le 1 \implies 0 \le f(x,t) \le \frac{1}{1+t^2}$$

(1) b) Montrer que l'intégrale $\int_0^{+\infty} \frac{1}{1+t^2} dt$ est convergente.

$$0 \le f(x,t) \le \frac{1}{1+t^2}$$

$$-xt^2 \le 0 \implies 0 \le e^{-xt^2} \le 1 \implies 0 \le f(x,t) \le \frac{1}{1+t^2}$$

- ① b) Montrer que l'intégrale $\int_0^{+\infty} \frac{1}{1+t^2} dt$ est convergente.
 - La fonction $t \mapsto \frac{1}{1+t^2}$ est positive et continue sur $[0, +\infty[$, avec:

$$\lim_{t \to +\infty} \frac{\frac{1}{1+t^2}}{\frac{1}{t^2}} = \lim_{t \to +\infty} \frac{t^2}{1+t^2} = 1$$

$$0 \le f(x,t) \le \frac{1}{1+t^2}$$

• Pour tout $x \in [0, +\infty[$ et $t \in [0, +\infty[$, on a:

$$-xt^2 \le 0 \implies 0 \le e^{-xt^2} \le 1 \implies 0 \le f(x,t) \le \frac{1}{1+t^2}$$

- ① b) Montrer que l'intégrale $\int_0^{+\infty} \frac{1}{1+t^2} dt$ est convergente.
 - La fonction $t \mapsto \frac{1}{1+t^2}$ est positive et continue sur $[0, +\infty[$, avec:

$$\lim_{t \to +\infty} \frac{\frac{1}{1+t^2}}{\frac{1}{t^2}} = \lim_{t \to +\infty} \frac{t^2}{1+t^2} = 1$$

Et $\int_{1}^{+\infty} \frac{1}{t^2} dt$ est une intégrale de Riemann ($\alpha = 2 > 1$) convergente

Donc, d'après le critère d'équivalence,

$$\int_{1}^{+\infty} \frac{1}{1+t^2} dt \text{ est convergente}$$

Donc, d'après le critère d'équivalence,

$$\int_{1}^{+\infty} \frac{1}{1+t^2} dt \text{ est convergente}$$

Et comme

$$\int_0^{+\infty} \frac{1}{1+t^2} dt = \int_0^1 \frac{1}{1+t^2} dt + \int_1^{+\infty} \frac{1}{1+t^2} dt$$

Et $\int_0^1 \frac{1}{1+t^2}$ est une intégrale finie.

Donc, d'après le critère d'équivalence,

$$\int_{1}^{+\infty} \frac{1}{1+t^2} dt \text{ est convergente}$$

Et comme

$$\int_0^{+\infty} \frac{1}{1+t^2} dt = \int_0^1 \frac{1}{1+t^2} dt + \int_1^{+\infty} \frac{1}{1+t^2} dt$$

Et $\int_0^1 \frac{1}{1+t^2}$ est une intégrale finie.

Alors

$$\int_0^{+\infty} \frac{1}{1+t^2} dt \text{ est convergente}$$

② a) Montrer que, pour $t \in [0, +\infty[$, la fonction $x \mapsto f(x, t)$ est dérivale sur $[0, +\infty[$ et calculer $\frac{\partial f}{\partial x}(x, t)$.

- ② a) Montrer que, pour $t \in [0, +\infty[$, la fonction $x \mapsto f(x, t)$ est dérivale sur $[0, +\infty[$ et calculer $\frac{\partial f}{\partial x}(x, t)$.
 - Pour $t \in [0, +\infty[$, la fonction $x \mapsto \frac{e^{-xt^2}}{1+t^2}$ est dérivable sur $[0, +\infty[$, car la fonction $x \mapsto e^{-xt^2}$ l'est aussi et pour $x \in [0, +\infty[$, on a

$$\frac{\partial f}{\partial x}(x,t) = \frac{-t^2 e^{-xt^2}}{1+t^2}$$

- ② a) Montrer que, pour $t \in [0, +\infty[$, la fonction $x \mapsto f(x, t)$ est dérivale sur $[0, +\infty[$ et calculer $\frac{\partial f}{\partial x}(x, t)$.
 - Pour $t \in [0, +\infty[$, la fonction $x \mapsto \frac{e^{-xt^2}}{1+t^2}$ est dérivable sur $[0, +\infty[$, car la fonction $x \mapsto e^{-xt^2}$ l'est aussi et pour $x \in [0, +\infty[$, on a

$$\frac{\partial f}{\partial x}(x,t) = \frac{-t^2 e^{-xt^2}}{1+t^2}$$

② b) Soit a > 0, montrer que, pour tout $x \in [a, +\infty[$ et $t \in [0, +\infty[$,

$$\left|\frac{\partial f}{\partial x}(x,t)\right| \le e^{-at^2}$$

- ② a) Montrer que, pour $t \in [0, +\infty[$, la fonction $x \mapsto f(x, t)$ est dérivale sur $[0, +\infty[$ et calculer $\frac{\partial f}{\partial x}(x, t)$.
 - Pour $t \in [0, +\infty[$, la fonction $x \mapsto \frac{e^{-xt^2}}{1+t^2}$ est dérivable sur $[0, +\infty[$, car la fonction $x \mapsto e^{-xt^2}$ l'est aussi et pour $x \in [0, +\infty[$, on a

$$\frac{\partial f}{\partial x}(x,t) = \frac{-t^2 e^{-xt^2}}{1+t^2}$$

② b) Soit a > 0, montrer que, pour tout $x \in [a, +\infty[$ et $t \in [0, +\infty[$,

$$\left|\frac{\partial f}{\partial x}(x,t)\right| \le e^{-at^2}$$

$$\left| \frac{\partial f}{\partial x}(x,t) \right| = \left| \frac{-t^2 e^{-xt^2}}{1+t^2} \right| \le e^{-xt^2} \le e^{-at^2}$$

$$F(x) = \int_0^{+\infty} f(x,t) \, \mathrm{d}t$$

a) Montrer que F est bien définie et continue sur $[0, +\infty[$.

$$F(x) = \int_0^{+\infty} f(x,t) \, \mathrm{d}t$$

- a) Montrer que F est bien définie et continue sur $[0, +\infty[$.
- Pour tout $x \in [0, +\infty[$, la fonction $t \mapsto \frac{e^{-xt^2}}{1+t^2}$ est positive et continue sur $[0, +\infty[$. De plus, on a montré que:

$$\forall t \in [0, +\infty[\quad , \quad |f(x,t)| \le \frac{1}{1+t^2}$$

$$F(x) = \int_0^{+\infty} f(x,t) \, \mathrm{d}t$$

- a) Montrer que F est bien définie et continue sur $[0, +\infty[$.
- Pour tout $x \in [0, +\infty[$, la fonction $t \mapsto \frac{e^{-xt^2}}{1+t^2}$ est positive et continue sur $[0, +\infty[$. De plus, on a montré que:

$$\forall t \in [0, +\infty[\quad , \quad |f(x,t)| \le \frac{1}{1+t^2}$$

Pour tout $x \in [0, +\infty[$, l'intégrale $\int_0^{+\infty} f(x, t) dt$ est convergente.

$$F(x) = \int_0^{+\infty} f(x,t) \, \mathrm{d}t$$

- a) Montrer que F est bien définie et continue sur $[0, +\infty[$.
- Pour tout $x \in [0, +\infty[$, la fonction $t \mapsto \frac{e^{-xt^2}}{1+t^2}$ est positive et continue sur $[0, +\infty[$. De plus, on a montré que:

$$\forall t \in [0, +\infty[\quad , \quad |f(x,t)| \le \frac{1}{1+t^2}$$

Pour tout $x \in [0, +\infty[$, l'intégrale $\int_0^{+\infty} f(x, t) dt$ est convergente.

$$\Rightarrow F$$
 est bien définie sur $[0, +\infty[$

• D'une part, pour tout $x \in [0, +\infty[$, la fonction $t \mapsto \frac{e^{-xt^2}}{1+t^2}$ est continue sur $[0, +\infty[$ comme étant une fraction dont le dénominateur ne s'annule pas.

- D'une part, pour tout $x \in [0, +\infty[$, la fonction $t \mapsto \frac{e^{-xt^2}}{1+t^2}$ est continue sur $[0, +\infty[$ comme étant une fraction dont le dénominateur ne s'annule pas.
- De plus, pour tout $t \in [0, +\infty[$, la fonction $x \mapsto \frac{e^{-xt^2}}{1+t^2}$ est continue sur $[0, +\infty[$, car la fonction $x \mapsto e^{-xt^2}$ l'est aussi.

- D'une part, pour tout $x \in [0, +\infty[$, la fonction $t \mapsto \frac{e^{-xt^2}}{1+t^2}$ est continue sur $[0, +\infty[$ comme étant une fraction dont le dénominateur ne s'annule pas.
- De plus, pour tout $t \in [0, +\infty[$, la fonction $x \mapsto \frac{e^{-xt^2}}{1+t^2}$ est continue sur $[0, +\infty[$, car la fonction $x \mapsto e^{-xt^2}$ l'est aussi.
- D'autre part, pour tout $x, t \in [0, +\infty[$, on a:

$$|f(x,t)| \le \frac{1}{1+t^2}$$
 et $\int_0^{+\infty} \frac{1}{1+t^2} dt$ converge

- D'une part, pour tout $x \in [0, +\infty[$, la fonction $t \mapsto \frac{e^{-xt^2}}{1+t^2}$ est continue sur $[0, +\infty[$ comme étant une fraction dont le dénominateur ne s'annule pas.
- De plus, pour tout $t \in [0, +\infty[$, la fonction $x \mapsto \frac{e^{-xt^2}}{1+t^2}$ est continue sur $[0, +\infty[$, car la fonction $x \mapsto e^{-xt^2}$ l'est aussi.
- D'autre part, pour tout $x, t \in [0, +\infty[$, on a:

$$|f(x,t)| \le \frac{1}{1+t^2}$$
 et $\int_0^{+\infty} \frac{1}{1+t^2} dt$ converge

$$\Rightarrow F \text{ est continue sur } [0, +\infty[$$

b) Montrer que F est de classe \mathcal{C}^1 sur $]0,+\infty[$ et donner l'expression de sa dérivée F'(x) sous forme d'une intégrale..

- b) Montrer que F est de classe C^1 sur $]0,+\infty[$ et donner l'expression de sa dérivée F'(x) sous forme d'une intégrale..
 - Vérification de l'hypothèse H1.

On a bien montré que, pour tout $x \in \mathbb{R}$, la fonction $t \mapsto \frac{e^{-xt^2}}{1+t^2}$ est continue sur

$$[0,+\infty[$$
, ainsi que l'intégrale $\int_0^{+\infty} \frac{e^{-xt^2}}{1+t^2} \mathrm{d}t$ converge.

- b) Montrer que F est de classe C^1 sur $]0,+\infty[$ et donner l'expression de sa dérivée F'(x) sous forme d'une intégrale..
 - \bullet Vérification de l'hypothèse H1.

On a bien montré que, pour tout $x \in \mathbb{R}$, la fonction $t \mapsto \frac{e^{-xt^2}}{1+t^2}$ est continue sur $[0,+\infty[$, ainsi que l'intégrale $\int_0^{+\infty} \frac{e^{-xt^2}}{1+t^2} dt$ converge.

• Vérification de l'hypothèse H2.

Pour tout $t \in [0, +\infty[$, pour tout a > 0, la fonction $x \mapsto \frac{e^{-xt^2}}{1+t^2}$ est de classe \mathcal{C}^1 sur $[a, +\infty[$, car la fonction $x \mapsto e^{-xt^2}$ l'est aussi.

- b) Montrer que F est de classe C^1 sur $]0,+\infty[$ et donner l'expression de sa dérivée F'(x) sous forme d'une intégrale..
 - \bullet Vérification de l'hypothèse H1.

On a bien montré que, pour tout $x \in \mathbb{R}$, la fonction $t \mapsto \frac{e^{-xt^2}}{1+t^2}$ est continue sur $[0,+\infty[$, ainsi que l'intégrale $\int_0^{+\infty} \frac{e^{-xt^2}}{1+t^2} \, \mathrm{d}t$ converge.

• Vérification de l'hypothèse H2.

Pour tout $t \in [0, +\infty[$, pour tout a > 0, la fonction $x \mapsto \frac{e^{-xt^2}}{1+t^2}$ est de classe \mathcal{C}^1 sur $[a, +\infty[$, car la fonction $x \mapsto e^{-xt^2}$ l'est aussi.

• Vérification de l'hypothèse H3.

Pour tout $x \in [a, +\infty[$, la fonction $t \mapsto -\frac{t^2 e^{-xt^2}}{1+t^2}$ est continue sur $[0, +\infty[$ comme étant une fraction dont le dénominateur ne s'annule pas.

• Vérification de l'hypothèse H4.

Pour tout $x \in [a, +\infty[$ et $t \in [0, +\infty[$, on a:

$$\left| -\frac{t^2 e^{-xt^2}}{1+t^2} \right| \le e^{-at^2}$$

De plus, on a:

$$\lim_{t \to +\infty} \frac{e^{-at^2}}{\frac{1}{t^2}} = \lim_{t \to +\infty} t^2 e^{-at^2} = 0$$

Donc, d'après le critère de quotient,

$$\int_0^{+\infty} e^{-at^2} dt$$
 est convergente

• Vérification de l'hypothèse H4.

Pour tout $x \in [a, +\infty[$ et $t \in [0, +\infty[$, on a:

$$\left| -\frac{t^2 e^{-xt^2}}{1+t^2} \right| \le e^{-at^2}$$

De plus, on a:

$$\lim_{t \to +\infty} \frac{e^{-at^2}}{\frac{1}{t^2}} = \lim_{t \to +\infty} t^2 e^{-at^2} = 0$$

Donc, d'après le critère de quotient,

$$\int_0^{+\infty} e^{-at^2} dt$$
 est convergente

Finalement, on en conclut que pour tout a > 0, la fonction F est de classe C^1 sur $[a, +\infty[$. Autrement dit elle est de classe C^1 sur $]0, +\infty[$ et on a:

$$F'(x) = -\int_0^{+\infty} \frac{t^2 e^{-xt^2}}{1+t^2} dt, \quad \forall x > 0$$

c) Montrer que, pour tout $x \in]0, +\infty[$,

$$F(x) - F'(x) = \int_0^{+\infty} e^{-xt^2} dt$$

c) Montrer que, pour tout $x \in]0, +\infty[$,

$$F(x) - F'(x) = \int_0^{+\infty} e^{-xt^2} dt$$

$$F(x) - F'(x) = \int_0^{+\infty} \frac{e^{-xt^2}}{1+t^2} dt - \int_0^{+\infty} \frac{-t^2 e^{-xt^2}}{1+t^2} dt$$
$$= \int_0^{+\infty} \frac{(1+t^2) e^{-xt^2}}{1+t^2} dt = \int_0^{+\infty} e^{-xt^2} dt$$

c) Montrer que, pour tout $x \in]0, +\infty[$,

$$F(x) - F'(x) = \int_0^{+\infty} e^{-xt^2} dt$$

$$F(x) - F'(x) = \int_0^{+\infty} \frac{e^{-xt^2}}{1+t^2} dt - \int_0^{+\infty} \frac{-t^2 e^{-xt^2}}{1+t^2} dt$$
$$= \int_0^{+\infty} \frac{(1+t^2) e^{-xt^2}}{1+t^2} dt = \int_0^{+\infty} e^{-xt^2} dt$$

d) Par un changement de variable, en déduire que, pour tout $x \in]0, +\infty[$,

$$F(x) - F'(x) = \frac{1}{\sqrt{x}} \int_0^{+\infty} e^{-u^2} du$$

d) Par un changement de variable, en déduire que, pour tout $x \in]0, +\infty[$,

$$F(x) - F'(x) = \frac{1}{\sqrt{x}} \int_0^{+\infty} e^{-u^2} du$$

$$F(x) - F'(x) = \int_0^{+\infty} e^{-xt^2} dt$$

$$= \int_0^{+\infty} e^{-u^2} \frac{du}{\sqrt{x}} \quad \text{(changement de variable } u = \sqrt{xt}\text{)}$$

$$= \frac{1}{\sqrt{x}} \int_0^{+\infty} e^{-u^2} du$$

QUP-MathsIntégrales impropres

Mathématiques de base 4

$$0 \le F(x) \le \frac{1}{\sqrt{x}} \int_0^{+\infty} e^{-u^2} du$$

$$0 \le F(x) \le \frac{1}{\sqrt{x}} \int_0^{+\infty} e^{-u^2} du$$

On a:

$$\forall x, t \in [0, +\infty[, f(x, t) \ge 0]$$

4 a) Montrer que pour tout $x \in]0, +\infty[$, on a:

$$0 \le F(x) \le \frac{1}{\sqrt{x}} \int_0^{+\infty} e^{-u^2} du$$

On a:

$$\forall x, t \in [0, +\infty[, f(x, t) \ge 0$$

Ceci implique que pour tout $x \in [0, +\infty[$, $F(x) \ge 0$ (intégrale d'une fonction positive).

$$0 \le F(x) \le \frac{1}{\sqrt{x}} \int_0^{+\infty} e^{-u^2} du$$

On a:

$$\forall x, t \in [0, +\infty[, f(x, t) \ge 0]$$

Ceci implique que pour tout $x \in [0, +\infty[$, $F(x) \ge 0$ (intégrale d'une fonction positive).

On a:

$$\forall x, t \in [0, +\infty[, \frac{-t^2 e^{-xt^2}}{1+t^2} \le 0]$$

$$0 \le F(x) \le \frac{1}{\sqrt{x}} \int_0^{+\infty} e^{-u^2} du$$

On a:

$$\forall x, t \in [0, +\infty[, f(x, t) \ge 0]$$

Ceci implique que pour tout $x \in [0, +\infty[$, $F(x) \ge 0$ (intégrale d'une fonction positive).

On a:

$$\forall x, t \in [0, +\infty[, \frac{-t^2 e^{-xt^2}}{1+t^2} \le 0]$$

Ceci implique que pour tout $x \in]0, +\infty[, F'(x) \le 0$ (intégrale d'une fonction négative).

$$0 \le F(x) \le \frac{1}{\sqrt{x}} \int_0^{+\infty} e^{-u^2} du$$

On a:

$$\forall x, t \in [0, +\infty[, f(x, t) \ge 0]$$

Ceci implique que pour tout $x \in [0, +\infty[$, $F(x) \ge 0$ (intégrale d'une fonction positive).

On a:

$$\forall x, t \in [0, +\infty[, \frac{-t^2 e^{-xt^2}}{1+t^2} \le 0]$$

Ceci implique que pour tout $x \in]0, +\infty[, F'(x) \le 0$ (intégrale d'une fonction négative).

$$\forall x \in]0, +\infty[, 0 \le F(x) \le \frac{1}{\sqrt{x}} \int_0^{+\infty} e^{-u^2} du$$

d) Déduire $\lim_{x\to +\infty} F(x)$.

- d) Déduire $\lim_{x\to +\infty} F(x)$.
 - La fonction $u \mapsto e^{-u^2}$ est positive et continue sur $[0, +\infty[$, avec:

$$\lim_{u \to +\infty} \frac{e^{-u^2}}{\frac{1}{u^2}} = \lim_{u \to +\infty} u^2 e^{-u^2} = 0$$

- d) Déduire $\lim_{x\to +\infty} F(x)$.
- La fonction $u \mapsto e^{-u^2}$ est positive et continue sur $[0, +\infty[$, avec:

$$\lim_{u \to +\infty} \frac{e^{-u^2}}{\frac{1}{u^2}} = \lim_{u \to +\infty} u^2 e^{-u^2} = 0$$

Donc et d'après le critère de quotient,

$$\int_0^{+\infty} e^{-u^2} du \text{ est convergente.}$$

- d) Déduire $\lim_{x\to +\infty} F(x)$.
 - La fonction $u \mapsto e^{-u^2}$ est positive et continue sur $[0, +\infty[$, avec:

$$\lim_{u \to +\infty} \frac{e^{-u^2}}{\frac{1}{u^2}} = \lim_{u \to +\infty} u^2 e^{-u^2} = 0$$

Donc et d'après le critère de quotient,

$$\int_0^{+\infty} e^{-u^2} du$$
 est convergente.

Ceci implique que:

$$\lim_{x \to +\infty} \frac{1}{\sqrt{x}} \int_0^{+\infty} e^{-u^2} du = 0$$

- d) Déduire $\lim_{x\to +\infty} F(x)$.
- La fonction $u \mapsto e^{-u^2}$ est positive et continue sur $[0, +\infty[$, avec:

$$\lim_{u \to +\infty} \frac{e^{-u^2}}{\frac{1}{u^2}} = \lim_{u \to +\infty} u^2 e^{-u^2} = 0$$

Donc et d'après le critère de quotient,

$$\int_0^{+\infty} e^{-u^2} du$$
 est convergente.

Ceci implique que:

$$\lim_{x \to +\infty} \frac{1}{\sqrt{x}} \int_0^{+\infty} e^{-u^2} du = 0$$

$$\Rightarrow \lim_{x \to +\infty} F(x) = 0$$