Expressiveness issues in Interval Temporal Logics

Mattia Guiotto University of Udine, Italy

joint work with Dario Della Monica

Logic Colloquium 2024 Gothenburg, June 24-28

Outline

Interval Temporal Logics

Halpern-Shoham's modal logic HS

Expressiveness of HS fragments over discrete/finite linear orders

Conclusions

Outline

Interval Temporal Logics

Halpern-Shoham's modal logic HS

Expressiveness of HS fragments over discrete/finite linear orders

Conclusions

Temporal logics: origins and application fields

- ► Temporal logics play a major role in computer science
 - Specification and verification of reactive systems
- Temporal logics are (special case of) modal logics

primitive temporal entity time points/instants

A different approach: from points to intervals

worlds are intervals (time period — pairs of points)

set of worlds primitive temporal entity time intervals/periods

accessibility relations
all binary relations between pairs of
intervals

 $\mathbb{D} = \langle D, < \rangle$: strict partial order with

- $\mathbb{D} = \langle D, < \rangle$: strict partial order with
 - ▶ D set of time points

 $\mathbb{D} = \langle D, < \rangle$: strict partial order with

- ▶ D set of time points
- < the earlier-later relation on D</p>

 $\mathbb{D} = \langle D, < \rangle$: strict partial order with

- ▶ *D* set of *time points*
- < the earlier-later relation on D</p>

An interval in \mathbb{D} : ordered pair [a.b] where $a, b \in D$ and a < b.

 $\mathbb{D} = \langle D, < \rangle$: strict partial order with

- ▶ D set of time points
- < the earlier-later relation on D</p>

An interval in \mathbb{D} : ordered pair [a.b] where $a, b \in D$ and a < b.

 $\mathbb{I}(\mathbb{D})$: the interval structure over \mathbb{D} , consisting of the set of all intervals over \mathbb{D} .

 $\mathbb{D} = \langle D, < \rangle$: strict partial order with

- ► D set of time points
- < the earlier-later relation on D</p>

An interval in \mathbb{D} : ordered pair [a.b] where $a, b \in D$ and a < b.

 $\mathbb{I}(\mathbb{D})$: the interval structure over \mathbb{D} , consisting of the set of all intervals over \mathbb{D} .

In this talk I will restrict attention to linear interval structures, i.e., interval structures over linear orders.

J. F. Allen

Maintaining knowledge about temporal intervals

J. F. Allen

Maintaining knowledge about temporal intervals

J. F. Allen

Maintaining knowledge about temporal intervals

6 relations + their inverses = 12 Allen's relations

J. F. Allen

Maintaining knowledge about temporal intervals

Outline

Interval Temporal Logics

Halpern-Shoham's modal logic HS

Expressiveness of HS fragments over discrete/finite linear orders

Conclusions

interval relations give rise to modal operators

interval relations give rise to modal operators

HS is undecidable over all significant classes of linear orders

J. Halpern and Y. Shoham

A propositional modal logic of time intervals

Journal of the ACM, volume 38(4), pages 935-962, 1991

interval relations give rise to modal operators

HS is undecidable over all significant classes of linear orders

J. Halpern and Y. Shoham

A propositional modal logic of time intervals

Journal of the ACM, volume 38(4), pages 935-962, 1991

 $\varphi ::= p \mid \neg \varphi \mid \varphi \wedge \varphi \mid \langle X \rangle \varphi$ Syntax:

 $\{\langle A \rangle, \langle L \rangle, \langle B \rangle, \langle E \rangle, \langle D \rangle, \langle O \rangle, \langle \overline{A} \rangle, \langle \overline{L} \rangle, \langle \overline{B} \rangle, \langle \overline{E} \rangle, \langle \overline{D} \rangle, \langle \overline{O} \rangle\}$

interval relations give rise to modal operators

HS logic

HS is undecidable over all significant classes of linear orders

J. Halpern and Y. Shoham

A propositional modal logic of time intervals

Journal of the ACM, volume 38(4), pages 935-962, 1991

 $\varphi ::= p \mid \neg \varphi \mid \varphi \wedge \varphi \mid \langle X \rangle \varphi$ Syntax:

 $\{\langle A \rangle, \langle L \rangle, \langle B \rangle, \langle E \rangle, \langle D \rangle, \langle O \rangle, \langle \overline{A} \rangle, \langle \overline{L} \rangle, \langle \overline{B} \rangle, \langle \overline{E} \rangle, \langle \overline{D} \rangle, \langle \overline{O} \rangle\}$

 \mathcal{AP} set of atomic propositions

Models:

Formal semantics of HS

- $\langle O \rangle$: M, $[d_0, d_1] \Vdash \langle O \rangle \phi$ iff there exists d_2, d_3 such that $d_0 < d_2 < d_1 < d_3$ and M, $[d_2, d_3] \Vdash \phi$.
- $\langle \overline{O} \rangle$: M, $[d_0, d_1] \Vdash \langle \overline{O} \rangle \phi$ iff there exists d_2, d_3 such that $d_2 < d_0 < d_3 < d_1$ and M, $[d_2, d_3] \Vdash \phi$.

Formal semantics of HS

- $\langle O \rangle$: M, $[d_0, d_1] \Vdash \langle O \rangle \phi$ iff there exists d_2, d_3 such that $d_0 < d_2 < d_1 < d_3$ and M, $[d_2, d_3] \Vdash \phi$.
- $\langle \overline{O} \rangle$: M, $[d_0, d_1] \Vdash \langle \overline{O} \rangle \phi$ iff there exists d_2, d_3 such that $d_2 < d_0 < d_3 < d_1$ and M, $[d_2, d_3] \Vdash \phi$.
- $\langle \mathsf{E} \rangle$: $\mathsf{M}, [d_0, d_1] \Vdash \langle \mathsf{E} \rangle \phi$ iff there exists d_2 such that $d_0 < d_2 \le d_1$ and $\mathsf{M}, [d_2, d_1] \Vdash \phi$.
- $\langle \overline{\mathsf{E}} \rangle$: M, $[d_0, d_1] \Vdash \langle \overline{\mathsf{E}} \rangle \phi$ iff there exists d_2 such that $d_2 < d_0$ and M, $[d_2, d_1] \Vdash \phi$.

Formal semantics of HS

- $\langle O \rangle$: M, $[d_0, d_1] \Vdash \langle O \rangle \phi$ iff there exists d_2, d_3 such that $d_0 < d_2 < d_1 < d_3$ and M, $[d_2, d_3] \Vdash \phi$.
- $\langle \overline{O} \rangle$: M, $[d_0, d_1] \Vdash \langle \overline{O} \rangle \phi$ iff there exists d_2, d_3 such that $d_2 < d_0 < d_3 < d_1$ and M, $[d_2, d_3] \Vdash \phi$.
- $\langle \mathsf{E} \rangle$: $\mathsf{M}, [d_0, d_1] \Vdash \langle \mathsf{E} \rangle \phi$ iff there exists d_2 such that $d_0 < d_2 \le d_1$ and $\mathsf{M}, [d_2, d_1] \Vdash \phi$.
- $\langle \overline{\mathsf{E}} \rangle$: M, $[d_0, d_1] \Vdash \langle \overline{\mathsf{E}} \rangle \phi$ iff there exists d_2 such that $d_2 < d_0$ and M, $[d_2, d_1] \Vdash \phi$.
- $\langle \mathsf{B} \rangle$: $\mathsf{M}, [d_0, d_1] \Vdash \langle \mathsf{B} \rangle \phi$ iff there exists d_2 such that $d_0 \leq d_2 < d_1$ and $\mathsf{M}, [d_0, d_2] \Vdash \phi$.
- $\langle \overline{\mathsf{B}} \rangle$: $\mathsf{M}, [d_0, d_1] \Vdash \langle \overline{\mathsf{B}} \rangle \phi$ iff there exists d_2 such that $d_1 < d_2$ and $\mathsf{M}, [d_0, d_2] \Vdash \phi$.

 $\langle B \rangle \phi$:

 $\langle \overline{\mathsf{B}} \rangle \phi$:

Formal semantics of HS - contd'

- $\langle L \rangle$: M, $[d_0, d_1] \Vdash \langle L \rangle \phi$ iff there exists d_2, d_3 such that $d_1 < d_2 < d_3$ and M, $[d_2, d_3] \Vdash \phi$.
- $\langle \overline{\mathsf{L}} \rangle$: $\mathsf{M}, [d_0, d_1] \Vdash \langle \overline{\mathsf{L}} \rangle \phi$ iff there exists d_2, d_3 such that $d_2 < d_3 < d_0$ and $\mathsf{M}, [d_2, d_3] \Vdash \phi$.

Formal semantics of HS - contd'

- $\langle L \rangle$: M, $[d_0, d_1] \Vdash \langle L \rangle \phi$ iff there exists d_2, d_3 such that $d_1 < d_2 < d_3$ and M, $[d_2, d_3] \Vdash \phi$.
- $\langle \overline{\mathbb{L}} \rangle$: M, $[d_0, d_1] \Vdash \langle \overline{\mathbb{L}} \rangle \phi$ iff there exists d_2, d_3 such that $d_2 < d_3 < d_0$ and M, $[d_2, d_3] \Vdash \phi$.
- $\langle A \rangle$: M, $[d_0, d_1] \Vdash \langle A \rangle \phi$ iff there exists d_2 such that $d_1 < d_2$ and M, $[d_1, d_2] \Vdash \phi$.
- $\langle \overline{\mathsf{A}} \rangle$: M, $[d_0, d_1] \Vdash \langle \overline{\mathsf{A}} \rangle \phi$ iff there exists d_2 such that $d_2 < d_0$ and M, $[d_2, d_0] \Vdash \phi$.

Formal semantics of HS - contd'

- $\langle L \rangle$: M, $[d_0, d_1] \Vdash \langle L \rangle \phi$ iff there exists d_2, d_3 such that $d_1 < d_2 < d_3$ and M, $[d_2, d_3] \Vdash \phi$.
- $\langle \overline{\mathbb{L}} \rangle$: M, $[d_0, d_1] \Vdash \langle \overline{\mathbb{L}} \rangle \phi$ iff there exists d_2, d_3 such that $d_2 < d_3 < d_0$ and M, $[d_2, d_3] \Vdash \phi$.
- $\langle A \rangle$: M, $[d_0, d_1] \Vdash \langle A \rangle \phi$ iff there exists d_2 such that $d_1 < d_2$ and M, $[d_1, d_2] \Vdash \phi$.
- $\langle \overline{\mathsf{A}} \rangle$: $\mathsf{M}, [d_0, d_1] \Vdash \langle \overline{\mathsf{A}} \rangle \phi$ iff there exists d_2 such that $d_2 < d_0$ and $\mathsf{M}, [d_2, d_0] \Vdash \phi$.
- $\langle \mathsf{D} \rangle$: $\mathsf{M}, [d_0, d_1] \Vdash \langle \mathsf{D} \rangle \phi$ iff there exists d_2, d_3 such that $d_0 < d_2 < d_3 < d_1$ and $\mathsf{M}, [d_2, d_3] \Vdash \phi$.
- $\langle \overline{\mathbb{D}} \rangle$: M, $[d_0, d_1] \Vdash \langle \overline{\mathbb{D}} \rangle \phi$ iff there exists d_2, d_3 such that $d_2 < d_0 < d_1 < d_3$ and M, $[d_2, d_3] \Vdash \phi$.

Definabilities among modalities

All modalities are definable in terms of $\langle B \rangle$, $\langle \overline{B} \rangle$, $\langle E \rangle$, $\langle \overline{E} \rangle$

Definabilities among modalities

All modalities are definable in terms of $\langle B \rangle$, $\langle \overline{B} \rangle$, $\langle E \rangle$, $\langle \overline{E} \rangle$

In general, it is possible defining HS modalities in terms of others

The zoo of fragments of HS

- $ightharpoonup 2^{12} = 4096$ fragments of HS (syntactic)
- Not all these fragments are expressively different
- expressiveness classification wrt. several classes of interval structures
 - ▶ all, dense, discrete, finite, ???

The zoo of fragments of HS

- ▶ $2^{12} = 4096$ fragments of HS (syntactic)
- Not all these fragments are expressively different
- expressiveness classification wrt. several classes of interval structures
 - ▶ all, dense, discrete, finite, ???

Classification over all linear orders

L. Aceto, D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco

Expressiveness of the Interval Logics of Allen's Relations on the Class of all Linear Orders: Complete Classification

IJCAI, 2011

Classification over all dense linear orders

L. Aceto, D. Della Monica, V. Goranko, A. Ingólfsdóttir, A. Montanari, and G. Sciavicco

A Complete Classification of the Expressiveness of Interval Logics of Allen's Relations: The General and the dense cases

ACTA Informatica, 2014

The zoo of fragments of HS

- $ightharpoonup 2^{12} = 4096$ fragments of HS (syntactic)
- ▶ Not all these fragments are expressively different
- expressiveness classification wrt. several classes of interval structures
 - ▶ all, dense, discrete, finite, ???

Classification over all linear orders

L. Aceto, D. Della Monica, V. Goranko, A. Montanari, and G. Sciavicco

Expressiveness of the Interval Logics of Allen's Relations on the Class of all Linear Orders: Complete Classification

IJCAI, 2011

Classification over all dense linear orders

L. Aceto, D. Della Monica, V. Goranko, A. Ingólfsdóttir, A. Montanari, and G. Sciavicco

A Complete Classification of the Expressiveness of Interval Logics of Allen's Relations: The General and the dense cases

ACTA Informatica, 2014

We focus here on:

- finite
- discrete

Outline

Interval Temporal Logics

Halpern-Shoham's modal logic HS

Expressiveness of HS fragments over discrete/finite linear orders

Conclusions

The expressiveness classification programme

Expressiveness classification problem: classify the fragments of HS with respect to their expressiveness, relative to classes of finite/discrete interval models.

Comparing expressive power of HS fragments

 L_1, L_2 HS-fragments

 L_1

 L_2

Comparing expressive power of HS fragments

 L_1, L_2 HS-fragments

$$L_1\ \{\prec,\equiv,\succ,\not\approx\}\ L_2$$

Comparing expressive power of HS fragments

 L_1, L_2 HS-fragments

$$L_1 \{ \prec, \equiv, \succ, \not\approx \} L_2$$

How do we decide the relation between fragments L_1 and L_2 ?

Truth-preserving translation

There exists a truth-preserving translation of L_1 into L_2 iff L_2 is at least as expressive as L_1 $(L_1 \leq L_2)$

Truth-preserving translation

There exists a truth-preserving translation of L_1 into L_2 iff

 L_2 is at least as expressive as L_1 $(L_1 \leq L_2)$

Each modality $\langle X \rangle$ of L_1 is definable in L_2 ($\langle X \rangle \triangleleft L_2$) (i.e., \exists a L_2 -formula φ s.t. $\langle X \rangle p \equiv \varphi$)

Example: $\langle L \rangle p \equiv \langle A \rangle \langle A \rangle p$

Truth-preserving translation

There exists a truth-preserving translation of L_1 into L_2 iff

 L_2 is at least as expressive as L_1 $(L_1 \prec L_2)$

Each modality $\langle X \rangle$ of L_1 is definable in L_2 ($\langle X \rangle \triangleleft L_2$) (i.e., \exists a L_2 -formula φ s.t. $\langle X \rangle p \equiv \varphi$)

Example: $\langle \mathsf{L} \rangle p \equiv \langle A \rangle \langle A \rangle p$

 2^{12} fragments... $\frac{2^{12} \cdot (2^{12}-1)}{2}$ comparisons

4 日 ト 4 間 ト 4 ヨ ト 4 ヨ ト

Notation:

$$\mathsf{X}_1\mathsf{X}_2\dots\mathsf{X}_n$$

HS-fragment with modalities $\langle X_1 \rangle, \langle X_2 \rangle, \ldots, \langle X_n \rangle$

Solution:
To find a complete set of definabilities among modalities

Notation:

$$X_1X_2\dots X_n\\-$$

HS-fragment with modalities $\langle X_1 \rangle, \langle X_2 \rangle, \dots, \langle X_n \rangle$

Solution:
To find a complete set of definabilities among modalities

$$X_1X_2...X_n$$

Notation:

$$X_1X_2 \dots X_n =$$

 $\begin{array}{c} \mathsf{HS}\text{-fragment with modalities} \\ \langle X_{\mathbf{1}} \rangle, \, \langle X_{\mathbf{2}} \rangle, \, \dots, \, \langle X_{n} \rangle \end{array}$

$$Y$$
 $Y_1Y_2...Y_m$

Solution: To find a complete set of definabilities among modalities

Notation:

 $X_1X_2\dots X_n\\$

HS-fragment with modalities $\langle X_1 \rangle, \langle X_2 \rangle, \ldots, \langle X_n \rangle$

$$X_1 X_2 \dots X_n$$

$$\overbrace{X_1 X_2 \dots X_n}^{\mathcal{X}} \quad \begin{array}{c} \{ \prec, \equiv, \succ, \not\approx \} \\ \hline \end{array} \quad \overbrace{Y_1 Y_2 \dots Y_m}^{\mathcal{Y}}$$

Solution:

To find a complete set of definabilities among modalities

Notation:

$$\mathsf{X}_1\mathsf{X}_2\dots\mathsf{X}_n$$

 $= \\ \mathsf{HS-fragment} \text{ with modalities} \\ \langle X_1 \rangle, \langle X_2 \rangle, \dots, \langle X_n \rangle$

$$\begin{array}{ccc} \mathcal{X} & \{ \prec, \equiv, \succ, \not\approx \} & \mathcal{Y} \\ \overbrace{X_1 X_2 \dots X_n} & ?? & \overbrace{Y_1 Y_2 \dots Y_m} \end{array}$$

$$\langle X_1 \rangle \lhd Y_1 \dots Y_m$$
 ??

$$\langle X_n \rangle \lhd Y_1 \dots Y_m$$
 ??

Solution:

To find a complete set of definabilities among modalities

Notation:

$$X_1X_2\dots X_n\\$$

HS-fragment with modalities $\langle X_1 \rangle, \langle X_2 \rangle, \dots, \langle X_n \rangle$

$$\begin{array}{ccc} \mathcal{X} & \{ \prec, \equiv, \succ, \not\approx \} & \mathcal{Y} \\ \overbrace{X_1 X_2 \dots X_n} & ?? & \overbrace{Y_1 Y_2 \dots Y_m} \end{array}$$

$$\langle X_{1} \rangle \triangleleft Y_{1} \dots Y_{m} \quad ??$$

$$\dots \qquad ??$$

$$\langle X_{n} \rangle \triangleleft Y_{1} \dots Y_{m} \quad ??$$

$$\overline{X \leq \mathcal{Y}} \qquad \overline{?}?$$

4 D F 4 D F 4 D F 4 D F

Solution: To find a complete set of definabilities among

modalities

Notation:

 $X_1X_2 \dots X_n$

 $\begin{array}{c} \mathsf{HS}\text{-fragment with modalities} \\ \langle X_{\mathbf{1}} \rangle, \langle X_{\mathbf{2}} \rangle, \dots, \langle X_{n} \rangle \end{array}$

$$\begin{array}{ccc} \mathcal{X} & \{ \prec, \equiv, \succ, \not\approx \} & \mathcal{Y} \\ \hline \chi_1 \chi_2 \dots \chi_n & \ref{eq:constraints} & \ref{eq:constraints} \end{array}$$

$$\langle X_1 \rangle \lhd Y_1 \dots Y_m \quad ?? \quad \mathsf{true} \\ & \wedge & \wedge \\ & \dots & ?? \quad \mathsf{true} \\ & \wedge & \wedge \\ & \langle X_n \rangle \lhd Y_1 \dots Y_m \quad ?? \quad \mathsf{true} \\ & & & \\ \hline & & \mathcal{X} \preceq \mathcal{Y} \qquad ?? \quad \mathsf{true} \\ \\ \hline & & & ?? \quad \mathsf{true} \\ \hline \\ & & & ?? \quad \mathsf{true} \\ \\ \hline \end{pmatrix}$$

Solution:

To find a complete set of definabilities among modalities

Notation:

$$X_1X_2 \dots X_n$$

HS-fragment with modalities $\langle X_1 \rangle, \langle X_2 \rangle, \dots, \langle X_n \rangle$

$$\overbrace{X_1 X_2 \dots X_n}^{\mathcal{X}} \quad \{ \prec, \equiv, \succ, \not\approx \} \quad \underbrace{\mathcal{Y}}_{Y_1 Y_2 \dots Y_m}$$

Complete sets of definabilities among modalities

$$\begin{array}{lll} \langle \mathsf{L} \rangle & \triangleleft & \mathsf{A} & \langle \mathsf{L} \rangle p \equiv \langle \mathsf{A} \rangle \langle \mathsf{A} \rangle p \\ \langle \mathsf{D} \rangle & \triangleleft & \mathsf{BE} & \langle \mathsf{D} \rangle p \equiv \langle \mathsf{B} \rangle \langle \mathsf{E} \rangle p \\ \langle \mathsf{O} \rangle & \triangleleft & \overline{\mathsf{B}} \mathsf{E} & \langle \mathsf{O} \rangle p \equiv \langle \mathsf{E} \rangle \langle \overline{\mathsf{B}} \rangle p \\ \langle \mathsf{L} \rangle & \triangleleft & \overline{\mathsf{B}} \mathsf{E} & \langle \mathsf{L} \rangle p \equiv \langle \overline{\mathsf{B}} \rangle [\mathsf{E}] \langle \overline{\mathsf{B}} \rangle \langle \mathsf{E} \rangle p \\ \langle \mathsf{A} \rangle & \triangleleft & \overline{\mathsf{B}} \mathsf{E} & \langle \mathsf{A} \rangle p \equiv \varphi(p) \vee \langle \mathsf{E} \rangle \varphi(p)^{\dagger} \\ \langle \mathsf{O} \rangle & \triangleleft & ??? & \langle \mathsf{O} \rangle p \equiv ??? \\ \end{array} \right\} \begin{array}{l} \mathsf{complete \ set \ of \ definabilities \ for \ the \ class \ of \ all \ linear \ orders} \\ \mathsf{linear \ orders} \end{array}$$

$${}^{\dagger}\varphi(p) := [\mathsf{E}] \bot \wedge \langle \overline{\mathsf{B}} \rangle ([\mathsf{E}][\mathsf{E}] \bot \wedge \langle E \rangle (p \vee \langle \overline{\mathsf{B}} \rangle p))$$

Complete sets of definabilities among modalities

$$\begin{array}{c|ccccc} \langle L \rangle & \lhd A & \langle L \rangle p \equiv \langle A \rangle \langle A \rangle p \\ \langle D \rangle & \lhd BE & \langle D \rangle p \equiv \langle B \rangle \langle E \rangle p \\ \langle O \rangle & \lhd \overline{B}E & \langle O \rangle p \equiv \langle E \rangle \langle \overline{B} \rangle p \\ \langle L \rangle & \lhd \overline{B}E & \langle L \rangle p \equiv \langle \overline{B} \rangle [E] \langle \overline{B} \rangle \langle E \rangle p \\ \\ \langle A \rangle & \lhd \overline{B}E & \langle A \rangle p \equiv \varphi(p) \vee \langle E \rangle \varphi(p)^{\dagger} \\ \langle O \rangle & \lhd ???? & \langle O \rangle p \equiv ??? \\ \end{array} \right\} \begin{array}{c} \text{complete set of definabilities for the class of all linear orders} \\ \text{discrete/finite linear orders} \\ \end{array}$$

Remark:

Completeness of the set of definabilities does not necessary hold any longer if the semantics is restricted to a specific class of linear orders

$$^{\dagger}\varphi(p) := [\mathsf{E}] \bot \wedge \langle \overline{\mathsf{B}} \rangle ([\mathsf{E}][\mathsf{E}] \bot \wedge \langle E \rangle (p \vee \langle \overline{\mathsf{B}} \rangle p))$$

investigated in my bachelor thesis

The missing piece of the puzzle: the cases $\langle O \rangle$

Semantics:

$$M, [a, b] \Vdash \langle \mathsf{O} \rangle \varphi \overset{def}{\Leftrightarrow} \exists c, d \text{ such that } a < c < b < d \text{ and } M, [c, d] \Vdash \varphi$$

$$\vdash \varphi \vdash \varphi$$

The missing piece of the puzzle: the cases $\langle O \rangle$

Semantics:

$$M, [a, b] \Vdash \langle O \rangle \varphi \overset{def}{\Leftrightarrow} \exists c, d \text{ such that } a < c < b < d \text{ and } M, [c, d] \Vdash \varphi$$

$$\begin{array}{c|c} \langle \mathsf{O} \rangle \varphi \\ \hline & \varphi \end{array}$$

We conjecture that there are no more inter-definability equations for $\langle O \rangle$ in the class of all discrete/finite linear orders

The missing piece of the puzzle: the cases $\langle O \rangle$

Semantics:

$$M, [a, b] \Vdash \langle O \rangle \varphi \overset{def}{\Leftrightarrow} \exists c, d \text{ such that } a < c < b < d \text{ and } M, [c, d] \Vdash \varphi$$

$$\varphi$$

We conjecture that there are no more inter-definability equations for $\langle O \rangle$ in the class of all discrete/finite linear orders

 $\langle O \rangle$ is not definable in terms of any other fragment besides $\overline{B}E$

Operator
$$\langle O \rangle$$
 is definable in terms of $\overline{\mathsf{B}}\mathsf{E} \qquad \langle O \rangle \varphi \equiv \langle E \rangle \langle \overline{\mathsf{B}} \rangle \varphi$

To prove that $\langle O \rangle$ is not definable in terms of any other fragment, we must prove that:

Operator
$$\langle O \rangle$$
 is definable in terms of $\overline{\mathsf{B}}\mathsf{E} \qquad \langle O \rangle \varphi \equiv \langle E \rangle \langle \overline{\mathsf{B}} \rangle \varphi$

To prove that $\langle O \rangle$ is not definable in terms of any other fragment, we must prove that:

1) $\langle O \rangle$ is not definable in terms of ABD $\overline{ABE} \equiv ALBD\overline{ALBEDO}$

Operator
$$\langle O \rangle$$
 is definable in terms of $\overline{\mathsf{B}}\mathsf{E} \qquad \langle O \rangle \varphi \equiv \langle E \rangle \langle \overline{\mathsf{B}} \rangle \varphi$

To prove that $\langle O \rangle$ is not definable in terms of any other fragment, we must prove that:

- 1) $\langle O \rangle$ is not definable in terms of ABD $\overline{ABE} \equiv ALBD\overline{ALBEDO}$
- 2) $\langle O \rangle$ is not definable in terms of ABE $\overline{AED} \equiv ALBED\overline{ALEDO}$

Operator
$$\langle O \rangle$$
 is definable in terms of $\overline{\mathsf{B}}\mathsf{E} \qquad \langle O \rangle \varphi \equiv \langle E \rangle \langle \overline{\mathsf{B}} \rangle \varphi$

To prove that $\langle O \rangle$ is not definable in terms of any other fragment, we must prove that:

- 1) $\langle O \rangle$ is not definable in terms of ABDABE \equiv ALBDALBEDO
- 2) $\langle O \rangle$ is not definable in terms of ABE $\overline{AED} \equiv ALBED\overline{ALEDO}$

They are the two maximal fragments not defining it

Existence is easy...

Existence is easy...

a new land

Existence is easy...

a new land

an Italian who is celebreting his degree

Existence is easy...

a new land

an Italian who is celebreting his degree

...non-existence is hard

aliens

Existence is easy...

a new land

an Italian who is celebreting his degree

Existence is easy...

Existence is easy...

 $Z \subseteq M_1 \times M_2$ is a bisimulation wrt the fragment $X_1 X_2 \dots X_n$ iff

- $Z \subseteq M_1 \times M_2$ is a bisimulation wrt the fragment $X_1 X_2 \dots X_n$ iff
 - 1. Z-related intervals satisfy the same propositions , i.e.:

$$(i_1, i_2) \in Z \Rightarrow (p \text{ is true over } i_1 \Leftrightarrow p \text{ is true over } i_2)$$

2. bisimulation relation "preserved" by modal operators, i.e., for every modal operator $\langle X \rangle$:

- $Z \subseteq M_1 \times M_2$ is a bisimulation wrt the fragment $X_1 X_2 \dots X_n$ iff
 - 1. Z-related intervals satisfy the same propositions, i.e.:

$$(i_1, i_2) \in Z \Rightarrow (p \text{ is true over } i_1 \Leftrightarrow p \text{ is true over } i_2)$$

2. bisimulation relation "preserved" by modal operators, i.e., for every modal operator $\langle X \rangle$:

$$(i_1,i_2)\in Z$$

- $Z \subseteq M_1 \times M_2$ is a bisimulation wrt the fragment $X_1 X_2 \dots X_n$ iff
 - 1. Z-related intervals satisfy the same propositions , i.e.:

$$(i_1, i_2) \in Z \Rightarrow (p \text{ is true over } i_1 \Leftrightarrow p \text{ is true over } i_2)$$

2. bisimulation relation "preserved" by modal operators, i.e., for every modal operator $\langle X \rangle$:

$$(i_1,i_2)\in Z$$
$$(i_1,i_1')\in X$$

- $Z \subseteq M_1 \times M_2$ is a bisimulation wrt the fragment $X_1 X_2 \dots X_n$ iff
 - 1. Z-related intervals satisfy the same propositions , i.e.:

$$(i_1, i_2) \in Z \Rightarrow (p \text{ is true over } i_1 \Leftrightarrow p \text{ is true over } i_2)$$

2. bisimulation relation "preserved" by modal operators, i.e., for every modal operator $\langle X \rangle$:

$$(i_1, i_2) \in Z$$

 $(i_1, i'_1) \in X$ $\Rightarrow \exists i'_2 \text{ s.t.}$

Bisimulation between interval models

- $Z \subseteq M_1 \times M_2$ is a bisimulation wrt the fragment $X_1 X_2 \dots X_n$ iff
 - 1. Z-related intervals satisfy the same propositions , i.e.:

$$(i_1, i_2) \in Z \Rightarrow (p \text{ is true over } i_1 \Leftrightarrow p \text{ is true over } i_2)$$

2. bisimulation relation "preserved" by modal operators, i.e., for every modal operator $\langle X \rangle$:

$$\begin{array}{c} (i_1, i_2) \in Z \\ (i_1, i'_1) \in X \end{array} \} \Rightarrow \exists i'_2 \text{ s.t. } \left\{ \begin{array}{c} (i'_1, i'_2) \in Z \\ (i_2, i'_2) \in X \end{array} \right.$$

Invariance of modal formulae wrt bisimulations

Theorem A bisimulation for \mathcal{L} preserves the truth of \mathcal{L} -formulae

 M_1 , [a, b] and $M_2[c, d]$ are bisimilar φ is a \mathcal{L} -formula

 φ is true in M_1 , [a, b] iff φ is true in M_2 , [c, d]

Goranko Valentin and Otto Martin

Handbook of modal logic

Model Theory of Modal Logic, pages 255-325, 2006

Mattia Guiotto, University of Udine

Suppose that we want to prove:

 $\langle X \rangle$ is not definable in terms of \mathcal{L}

Suppose that we want to prove:

 $\langle X \rangle$ is not definable in terms of ${\cal L}$

We must provide:

1. two models M_1 and M_2

Suppose that we want to prove:

 $\langle X \rangle$ is not definable in terms of \mathcal{L}

We must provide:

- 1. two models M_1 and M_2
- 2. a bisimulation $Z\subseteq M_1 imes M_2$ wrt fragment $\mathcal L$

Suppose that we want to prove:

 $\langle X \rangle$ is not definable in terms of ${\cal L}$

We must provide:

- 1. two models M_1 and M_2
- 2. a bisimulation $Z \subseteq M_1 \times M_2$ wrt fragment \mathcal{L}
- 3. two interval $i_1 \in M_1$ and $i_2 \in M_2$ such that
 - a. i_1 and i_2 are Z-related
 - b. $M_1, i_1 \Vdash \langle X \rangle p$ and $M_2, i_2 \Vdash \neg \langle X \rangle p$

Suppose that we want to prove:

 $\langle X \rangle$ is not definable in terms of \mathcal{L}

We must provide:

- 1. two models M_1 and M_2
- 2. a bisimulation $Z \subseteq M_1 \times M_2$ wrt fragment \mathcal{L}
- 3. two interval $i_1 \in M_1$ and $i_2 \in M_2$ such that
 - a. i_1 and i_2 are Z-related
 - b. $M_1, i_1 \Vdash \langle X \rangle p$ and $M_2, i_2 \Vdash \neg \langle X \rangle p$

We say that Z violates $\langle X \rangle$

Suppose that we want to prove:

 $\langle X \rangle$ is not definable in terms of $\mathcal L$

We must provide:

- 1. two models M_1 and M_2
- 2. a bisimulation $Z \subseteq M_1 \times M_2$ wrt fragment \mathcal{L}
- 3. two interval $i_1 \in M_1$ and $i_2 \in M_2$ such that
 - a. i_1 and i_2 are Z-related
 - b. $M_1, i_1 \Vdash \langle X \rangle p$ and $M_2, i_2 \Vdash \neg \langle X \rangle p$

We say that Z violates $\langle X \rangle$

By contradiction

If $\langle X \rangle$ is definable in terms of $\mathcal L$ then,

Suppose that we want to prove:

 $\langle X \rangle$ is not definable in terms of $\mathcal L$

We must provide:

- 1. two models M_1 and M_2
- 2. a bisimulation $Z \subseteq M_1 \times M_2$ wrt fragment \mathcal{L}
- 3. two interval $i_1 \in M_1$ and $i_2 \in M_2$ such that
 - a. i_1 and i_2 are Z-related
 - b. $M_1, i_1 \Vdash \langle X \rangle p$ and $M_2, i_2 \Vdash \neg \langle X \rangle p$

We say that Z violates $\langle X \rangle$

By contradiction

If $\langle X \rangle$ is definable in terms of \mathcal{L} then, the truth of $\langle X \rangle p$ should have been preserved by Z,

Suppose that we want to prove:

 $\langle X \rangle$ is not definable in terms of \mathcal{L}

We must provide:

- 1. two models M_1 and M_2
- 2. a bisimulation $Z \subseteq M_1 \times M_2$ wrt fragment \mathcal{L}
- 3. two interval $i_1 \in M_1$ and $i_2 \in M_2$ such that
 - a. i_1 and i_2 are Z-related
 - b. $M_1, i_1 \Vdash \langle X \rangle p$ and $M_2, i_2 \Vdash \neg \langle X \rangle p$

We say that Z violates $\langle X \rangle$

By contradiction

If $\langle X \rangle$ is definable in terms of $\mathcal L$ then, the truth of $\langle X \rangle p$ should have been preserved by Z, but $\langle X \rangle p$ is true in i_1 (in M_1) and false in i_2 (in M_2)

Suppose that we want to prove:

 $\langle X \rangle$ is not definable in terms of \mathcal{L}

We must provide:

- 1. two models M_1 and M_2
- 2. a bisimulation $Z \subseteq M_1 \times M_2$ wrt fragment \mathcal{L}
- 3. two interval $i_1 \in M_1$ and $i_2 \in M_2$ such that
 - a. i_1 and i_2 are Z-related
 - b. $M_1, i_1 \Vdash \langle X \rangle p$ and $M_2, i_2 \Vdash \neg \langle X \rangle p$

We say that Z violates $\langle X \rangle$

By contradiction

If $\langle X \rangle$ is definable in terms of $\mathcal L$ then, the truth of $\langle X \rangle p$ should have been preserved by Z, but $\langle X \rangle p$ is true in i_1 (in M_1) and false in i_2 (in M_2)

N-bisimulation

- ► IMPORTANT!!! ⟨O⟩ is definable in terms of fragment ABDABE using infinitary formulas (i.e., infinite disjunction)
- but we want to prove that it is not definable using finitary formulas

N-bisimulation

- ► IMPORTANT!!! ⟨O⟩ is definable in terms of fragment ABDABE using infinitary formulas (i.e., infinite disjunction)
- but we want to prove that it is not definable using finitary formulas

It must be used the *N*-bisimulation

N-bisimulation

- ► IMPORTANT!!! ⟨O⟩ is definable in terms of fragment ABDABE using infinitary formulas (i.e., infinite disjunction)
- but we want to prove that it is not definable using finitary formulas

It must be used the N-bisimulation

In my thesis we presented a proposal for an N-bisimulation wrt ABD $\overline{\mathsf{ABE}}$ that violates $\langle O \rangle$

My contribution

Definition (ABD \overline{ABE}_N -bisimulation that violates $\langle O \rangle$)

- $\mathcal{AP} = \{p\}$, models: $M_1 = M_2 = \langle \mathbb{I}(\mathbb{N}), V \rangle$ where
 - ▶ $V(p) = \{[x, f(x)] \mid x \in \mathbb{Z}^-\}$ is defined with the help of the following $f : \mathbb{Z}^- \to \mathbb{N} \setminus \{0\}$

For each $N \in \mathbb{N} \setminus \{0\}$ we define a sequence of N relations Z_N, \ldots, Z_1 as follows. For every $h \in \{1, \ldots, N\}$, we have that $[x, y]Z_h[w, z]$ if and only if all of the following conditions hold:

- 1. $x \simeq_h w$ and $y \simeq_h z$;
- 2. either y-x=z-w or they are both h-long, that is y-x>long(h) and z-w>long(h);
- 3. if x < 0 and y > 0, then one of the following holds:
 - (a) $|f(x) y| \le long(h)$ and f(x) y = f(w) z;
 - (b) f(x) y > long(h) and f(w) z > long(h);
 - (c) f(x) y < -long(h) and f(w) z < -long(h).

Outline

Interval Temporal Logics

Halpern-Shoham's modal logic HS

Expressiveness of HS fragments over discrete/finite linear orders

Conclusions

Conclusions

My contribution

- ► A proposal for an *N*-bisimulation wrt ABDABE that violates
- strong and convincing evidence to support its correctness

Conclusions

My contribution

- ► A proposal for an *N*-bisimulation wrt ABDABE that violates $\langle {\it O}
 angle$
- strong and convincing evidence to support its correctness

Future work

- to complete the formal proof
- ▶ finding an analogous N-bisimulation wrt ABEAED that violates (O)

Thank you Any questions?