MAT 337 HW3 Rui Qiy #999292509 44/60	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
P179.	
Gr.	
(a). Suppose X, is an open set in metric space (X, p) (WLOG)	
Since Xi is open, then \$ 4x ∈ X, ∃ r>0, s.t. B*(x) ⊆ Xi	
we know $\forall x \in X$ and $r>0$, $\exists s = s(r, x)>0$,	
(we can say for our Xi, I si=sicr.x>0) such that	
BS, (X) CBF(X)	
Since Br(x) \(\times X_1	
so $B_{s,(x)} \subset X_{l}$	
so Y x ∈ X1 under the metric o, ∃ S=S,cx,r)>0 S.t. B, (a) ⊆ X	Î.
ie if a set X1 is open in (X,p), it's also open in (X, ax).	
Now we can suppose X_2 as an open set in metric space (X,O	シ
Simply, Since X2 is open, TXE X2, I T>0 S.T. 13 (20 \(\sigma_2 \)	
OC(X,7)2=8 E,och bno X 3x)	
(he define it our & X2, 3 sz= Szcr,x)>0) s.t.	
of the state of th	
$B_{5}(X) \subset B_{r}(x)$	
Since $B_r(x) \subseteq X_2$	
So $g_{52}(x) \subseteq X_2$ So $\forall x \in X_2$ under φ , $\exists g = g(x,r) > 0$ s.t. $g_{52}(x) \subseteq X_1$	
So $\forall x \in X_2 \text{ under } \varphi$, $\exists S = S(x,r) > 0 \text{ s.t. } B_{S_2}(x) \subseteq X_1$ i.e. if a set X_2 under method is open in (X, σ) , its	
also open in (X, p) .	
So far, we proved that topologically equivalent metrics had	'M
the same open a sets.	
The sous.	
Now suppose X1 is an open set in(X, p), we know it's also open in (X	6
X/Xi is closed in (X, p), then X/Xi is closed in (X, O)	
as well.	
Now suppose $X X_1$ is an a closed set in (X, p)	
\Rightarrow X ₁ Is an open set in (X, φ)	
\Rightarrow , X, is an open set in (X,0)	
$=X X$, is a closed set in (X, σ)	
1	

```
Similarly, suppose X/X2 is a closed set in (X, 0)
            > X2 is a note open set in (X,0)
            => X2 is an open set in (X, Ø)
            \Rightarrow X \mid X_2 \text{ is a closed set in } (X, \varphi).
      Hence (X, p) and (X, o) have the same closed sets.
(b). Suppose a sequence (Xn) is convergent in (X, Y),
        ie x_n \rightarrow x, \lim_{n \rightarrow \infty} \exp(x, x_n) = 0
        N<n revered 3>(xx,xx) < E Wenever n>N
         We can rountle \varphi(x, \chi_n) < \varepsilon to \chi_n \in B_{\varepsilon}^{\varepsilon}(x)
          We assume E = S = S(D, x) > 0, you hoven't introduced
                                                 r yet so nonsante
          3 1 5 -
          Since p, o are topologically equivalent on X,
           then B_s(x) = B_{\varepsilon}(x) \subseteq B_r(x)
            So x_n \in B_{\epsilon}^{\rho}(x) \Rightarrow x_n \in B_{r}^{\sigma}(x)
             \Rightarrow \sigma(\chi,\chi_n) < \sigma \Gamma
             >> Yr>0, IN S.t. (Xn, x)<r whenever n>1V
             \Rightarrow (Xn) correges to x in (X,0) as well.
       Similarly, suppose (Tn) is convergent in (X, 70)
             i.e. y_n \rightarrow \chi, \lim_{n \rightarrow \infty} \sigma(y_n, \chi) = 0

\Rightarrow \forall 2 > 0, \exists N \text{ s.t. } \sigma(\chi, y_n) < 2 \text{ whenever } n > N
              rewrite ocy, and < & to yn \ B & (x)
              assume &= s=s(r,x)>0
               Since \varphi, or are topologically equivalent on \chi
               then BS(X)=BE(X) & BL(X)
                so yn∈BECX) > ♥ yn ∈BFCX
                → of(x, yn)<r
                => xr>0, IN s.t. p (yn, x)<r whenever n>N
                 => (yn) converges to x in (X,p) as well.
          Hence they have the same convergent sequences.
```

p(x,y)=1x-y] (C). Choose of to be normal standard example (aka. Euclidean space) define $\sigma(x,y) = |\chi - y|, \forall x,y \in X$, X is positive roal number. Offirst need to show o is a metric. Hence BSCX) = BFCX) (a) positive definite if x=y, o(x,y)= | \frac{1}{2} = 0 if * o (x, y)=0, then == +=> x=y. So far, we proved that p and o b. symmety: σ(x,y)=(x-y)=[y-x]=σ(y-x) (c) triangle inequality: $\sigma(x,y)=|\frac{1}{7}-\frac{1}{7}|=|\frac{1}{7}|=|\frac{1}{7}-\frac{1}{7}|=|\frac{1}{7}|=|\frac{1}{7}|=|\frac{1}{7}|=|\frac{1}{7}|=|\frac{1}{7}|=|\frac{1}{7}|=|\frac{1}{7}|=|\frac{1}{7}|=|\frac{1}{7}|=|\frac{1}{7}|=|\frac{1}{7}|=|\frac{1}{7}|=|\frac{1}{7}|=|\frac{1}{7}|=|\frac{1}{7}|=|\frac{1}{7}|=|\frac{1}{$ are topologically equivalent. Botive a counter example (auchy sequences. (where n is a natural Hence o-cxy) is a metric on X. Dsecondly need to show pand o are topologically equivalent. Say, Xn=1, So (Xn) is such a sequence we are booking for. ∀x∈X, r>0, let S= min | x x²r [] It's Cauchy in p(X,p) y ∈ B° (π), γ(π, y)<3 particularly, p(x,y) < \frac{3}{2}, | The selection ₩ € >0, 3 N S.t. | Xm - Xn | < € => lxyl<= of s is important whenever m, n>N b/c lim xn = lim n = 0 (corregant) Since X>0 then 3 < xy < 3x For ocxy= 1/2-4= 1/24 < \$ < \frac{2}{xy} But for OCX, U), pick &= == $O(X_m, X_n) = \left| \frac{1}{m} - \frac{1}{m} \right|$ So ye Brcx) Therefore BSCX) SBFCX) = |m-n|Similary, Yye BSCX), O(xy)<S ≥1禮> 8=1 particularly (7-4/<=> Hence (Xn) is not to Cauchy in ⇒ 元 < 寸< 孟 Since x >0, y >0 Hen 3x < y < 2x (X10). We're done 1 = - 4 = | -xy | < S $\Rightarrow |y-x| < s|xy| < s|2x^2| < \frac{r}{2x^2} \cdot 2x^2$ $= y \in B_r(x)$ 1/20 8 6 1X 1

H. Sohotion:

(a). Suppose P, o are topologically equivalent by definition, for O<C<C, we have Yx,y∈X, cp(x,y) < o(x,y) < Cp(x,y) YXEX, r>o, let S=min frc, El D=> +y &B\$(x)=> P(x,y) <S In particular p(x,y)<-C: P(xin) < r Since o'cxy) < Cpcxy) So O(Xy) < r , y & Br (x) > hence Brox) = Brox) 2)=>Yy ∈Bscx) => Ocx,y><s in particular ocxy) < rc since cotxy) < ocxiv) SO CP(X,y) < rC so gaxiy)<r, yeBra

hence BS(x) SBF(x) Therefore, by D&D, p&O are topologically equivalent. (b) Suppose (Xn) is Cauchy in (X.P) => Y & >0, = N S.t. p(XnXn) < &

wherever m, n>N $=> O(X_m, X_n) < C \cdot P(X_m, X_n) < C \cdot \frac{\varepsilon}{C} = \varepsilon$ 3>(nX,mX)O.+2NE,OC2V

whenever m, n >N

=>(Xn) is Cauchy in (X, \$50).

Similarly suppose (yn) is Cauchy is in

=> Vc. E>0, INS+.000, yh) < C-E whenever m, n XV

c.p(ym,yn) < o (ymyn) < c. E => (ym, yn) < E

=> YE>O, IN S.t. PCYm, Yn) < E Charama Man'>

therefore (Mn) is also cauchy in (x, φ) . So it's the same for both metrics when we refer to cauchy sequences.

C). Recall the sequence we used in problem G(c) for p(x,i)- 1x-y1, o(x,y)=//3-1/9/ tx,y = R+, and p and of are topologically equialent. But they do not have the same Couchy sequences. Then we can use the fact that equivalent metrics have the same Cauchy sequences. Take its contrapositive which is if they don't have the same (auchy sequences) then they are on not two Equivalent metrics. So we are done here, such p and o althought are topologically equilabent, still not equivalent.

I Solution	
(A) prove $\varphi(A,B) = \operatorname{rank}(A)$	-B) is a metric.
O positive definite:	
A=B=> P(A,B)=ra	nk (A-A)=0
P(A,B)=0= ronk(A	-B)=0
i u u	of linearly independent rows or columns in a _
natrix.	J () 1
So $rank(A-B)=0=$	> A-B=0=>A=B (the only option is that
	$A-B=0 \Rightarrow A=B$ (the only option is that $A-B$ is some motive)
D Symmetry:	~ ~ ~
p(A,B)=rank(A-B)	
Q(BA)= rank (B-A)	
sincle (-1)(A-B)=(1	3-A).
this eloes not aff	iest the linear independence between
tows & columns c	f matrix A-B.
So $rank(A-B) = rank(A-B)$	ok(B-A) -> ABP(A,B)-P(B,A)
	L
Otriangle inequality:	
	a≤n, rankB=b≤n, A,B∈Mn
	< min fatb. n)
	nk (A+B) = rankA+rankB_
50 P(A,B) = ran	k(A-B) = rank(A-C+C-B)
	≤rork(A-c)+rank(C-B)
	= p(A,C) + p(C,B)
Hence p is a metr	ic.
(B) Now we want to see &	o and discrete metric space d(x,y)={1, x≠y} - ne are about to show 10, x=y
are topologically equivalent	ne are about to show 10, x=4
YXEX, r>0 3 S s.t	$S=S(D,X) \rightleftharpoons$
Bd(X) EBf(X) and E	BECX) SBECX)
DSharpdown coop (a)	
Lot s=0. then Bs	$l(x) = x$. $\forall r = p(A.B) = rank(A-B)$ $(x) = x$. $\forall r = p(A.B) = rank(A-B)$ $(x) = x$. $\forall r = p(A.B) = rank(A-B)$
Le all have, Br	$(x) \supseteq \chi \forall \chi = B_{c}(x) \subseteq B_{c}(x) \forall r > 0$
(2) Shan BECO SBACX)	CSCN _ CY

If $r \ge 1$, $B_r(x)$ is metric space X, then we can choose S as we like \Rightarrow (S is possitive)

If $O \subset I$, then $B_r(x)$ is point X.

Let $B_s(x) \subseteq X$ Final or we can let $B_s(x) = X$ $V \subset X$ $V \subset X \subset X$ $V \subset X \subset X$ $V \subset X \subset X \subset X$

So for we have proved that φ is a metric, and φ and d are topologically equivalent on X. Then we are done.

PA.M. ON. Solution:

 $A = [a_{ij}], i \le i \le 4, i \le j \le 4.$ $Ax = (\sum_{j=1}^{4} a_{4j} \chi_{j}, ..., \sum_{j=1}^{4} a_{4j} \chi_{j})$

 $||Ax-Ay||=||A(x-y)||=(\sum_{i=1}^{4}(\sum_{j=1}^{4}(a_{ij}(x_{j}-y_{j})))^{\frac{1}{2}}$ Apply Cauchy-schnartz inequality.

 $\|A(x-y)\| < \||\Sigma_{i=1}^{+} \Sigma_{j=1}^{+} (a_{ij})^{2}| \cdot |\Sigma_{j=1}^{+} (x_{i}-y_{i})|^{2}$

Since $\sum_{j=1}^{+} |\chi_j - y_j|^2 = ||\chi - y||^2$ then

 $||A(x-y)||^2 \le |\sum_{i=1}^{4} \sum_{j=1}^{4} (a_{ij})^2 |\cdot||x-y||^2$

 $\|A(x-y)\| \leq |z_{i+1}^{4} z_{j+1}^{4} (a_{ij})^{2}|^{\frac{1}{2}} \cdot \|x-y\|$

So the Lipshitz constant defined by Cor S.1.7 is $C = \left(\sum_{i=1}^{4} \sum_{j=1}^{4} |(\lambda_{ij})|^{2}\right)^{\frac{1}{2}}$ $= (\pm \times 16)^{\frac{1}{2}}$ = 2


```
2) For be int (A), and we know int (A) SA°
   similarly, say x, b ∈ int (A)
           4.20<3 F,0<3 Y
           1/2/xxx-1/2/b) = 10-01 = 0< & whenever 1/2-41<
        So it's continuous on int (A)
3Force DA=ANA
   DA=ANAC=> CEA and CEAC
```

>C & int A and C & int A ⇒ Yr>o, Br(c) NA° ≠ Ø, Br(c) () A ≠ Ø × |1x-c||<r <=> x ∈ B(c) Choose XI & BrOAC

X2 EBROOMA

Then

 $1 = \| \chi_{A}(x_{2}) - \chi_{A}(x_{1}) \| = \| \chi_{A}(x_{2}) - \chi_{A}(c) + \chi_{A}(c) - \chi_{A}(x_{1}) \|$ $\leq |\chi_{A}(x_{2}) - \chi_{A}(c)| + |\chi_{A}(c) - \chi_{A}(x_{1})|$

= 11- Xa(c)1+1 Xa(c)-01

Therefore max 11-XICCXI, 11XICI) > = =

Let 'E= 5

 $\forall r>0$, $\|x-c\|< r \Rightarrow \|\chi_{\bullet}(x)-\chi_{\bullet}(c)\| \geq \frac{1}{2}$ So χ_{\bullet} is that discontinuous on ∂A by the

definition of discontinuity.

Solution:

 $f(x) = x \log x^2 = 2x \log x \times \times \sqrt{0}$?

 $\lim_{x\to 0^{-}} 2x \log x = \lim_{x\to 0^{-}} \frac{2\log x}{x} = \lim_{x\to 0^{-}} \frac{2}{x} = \lim_{x\to 0^{-}} (-2x) = 0 \quad \text{(by bL'Hopital)}$ $\lim_{x\to 0^{-}} 2x \log x = \lim_{x\to 0^{-}} \frac{2\log x}{x} = \lim_{x\to 0^{-}} (-2x) = 0 \quad \text{(by bL'Hopital)}$

lim 2×logx = 0 as well.

But f(x) is undefined when x=0, thus it's a removable singularity.

3