Álgebra lineal II, Grado en Matemáticas

Junio 2018, 2^a. Semana

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora.

Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

Importante: utilice una única cara para las cuatro definiciones. Si utiliza más espacio no se tendrá en cuenta.

- (a) Autovalor y autovector.
- (b) Signatura.
- (c) Matriz de un producto escalar.
- (d) Subespacio máximo asociado a un autovalor.

Ejercicio 1: (2 puntos)

Sea f un endomorfismo de un espacio vectorial euclídeo (V, <, >). Demuestre que si f transforma una base ortonormal $\{v_1, \ldots, v_n\}$ de V en otra base ortonormal $\{f(v_1), \ldots, f(v_n)\}$ de V, entonces f es una isometría.

Ejercicio 2: (2 puntos)

Sean V un espacio vectorial real, $\mathcal{B} = \{v_1, v_2, v_3, v_4\}$ una base de V y f un endomorfismo de V que cumple las siguientes condiciones:

- (a) Tiene dos autovalores distintos λ_1 y λ_2 con multiplicidades algebraicas $a_1 + a_2 = 4$.
- (b) $Ker(f) \equiv \{x_1 x_2 = 0, x_4 = 0\}$
- (c) $f(v_3) = 2v_3$ y $v_1 v_2$ es un autovector.

Determine si f es diagonalizable.

Ejercicio 3: (2 puntos)

Determine las ecuaciones de los planos invariantes irreducibles del endomorfismo f cuya matriz respecto de una base $\mathcal{B} = \{v_1, v_2, v_3\}$ es

$$\left(\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

Ejercicio 4: (2 puntos)

Sean $P_1 \equiv \{x + 2y - z = 0\}$ y $P_2 \equiv \{x + 2y + z = 0\}$ dos planos del espacio vectorial euclídeo \mathbb{R}^3 . Considerando el producto escalar estándar, halle una base ortonormal $\mathcal{B} = \{u_1, u_2, u_3\}$ tal que el subespacio generado por los vectores u_1 y u_2 esté contenido en el plano P_1 y el subespacio generado por los vectores u_1 y u_3 no esté contenido en el plano P_2 .

Soluciones

Ejercicio 1: Proposición 9.5, pág. 328.

Ejercicio 2: Sean V un espacio vectorial real, $\mathcal{B} = \{v_1, v_2, v_3, v_4\}$ una base de V y f un endomorfismo de V que cumple las siguientes condiciones:

- (a) Tiene dos autovalores distintos λ_1 y λ_2 con multiplicidades algebraicas $a_1 + a_2 = 4$.
- (b) $Ker(f) \equiv \{x_1 x_2 = 0, x_4 = 0\}$
- (c) $f(v_3) = 2v_3$ y $v_1 v_2$ es un autovector.

Determine si f es diagonalizable.

Solución: Del apartado (a) se deduce que f admite una forma canónica de Jordan (Teorema de existencia, pág. 307).

Por otro lado, dado que $\operatorname{Ker}(f) = V_0$ es el subespacio propio asociado al autovalor 0, de (b) se deduce que $\lambda_1 = 0$ es un autovalor con multiplicidad geométrica $g_1 = \dim V_0 = 2$. Su multiplicidad algebraica cumple $4 \ge a_1 \ge g_1 = 2$.

De la condición (c) sabemos que v_3 es un autovector asociado al autovalor $\lambda_2 = 2$, luego sus multiplicidades algebraica y geométrica son $2 \ge a_2 \ge g_2 \ge 1$; y también que $v_1 - v_2$ es otro autovector. Para deducir a cuál de los dos autovalores está asociado dicho autovector primero comprobamos que $v_1 - v_2 \notin \text{Ker}(f)$, es decir, no es autovector asociado a $\lambda_1 = 0$; luego será autovector asociado a $\lambda_2 = 2$. Como v_3 y $v_1 - v_2$ son linealmente independientes, entonces forman una base del subespacio propio v_2 cuya dimensión v_2 no pude ser mayor que 2. En resumen, se tiene

$$\lambda_1 = 0, a_1 = g_1 = 2 \text{ y } \lambda_2 = 2, a_2 = g_2 = 2$$

Como multiplicidades algebraicas y geométricas coinciden, entonces f es diagonalizable. Su forma canónica de Jordan es

$$\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right)$$

Ejercicio 3: Determine las ecuaciones de los planos invariantes irreducibles del endomorfismo f cuya matriz respecto de una base $\mathcal{B} = \{v_1, v_2, v_3\}$ es

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)$$

Solución: Se corresponde con el caso 3.5 de la página 231. Y con otro enfoque aplicando la Proposición 6.11, está resulelto en el ejemplo 6.13, pág. 238. Reproducimos este segundo razonamiento.

Los planos irreducibles son subespacios 2-cíclicos de la forma

$$L(v, (f - \operatorname{Id})(v))$$
 con $v \in \operatorname{Ker}(f - \operatorname{Id})^2 - \operatorname{Ker}(f - \operatorname{Id})$

 2

Determinamos los subespacios generalizados: $K^1(1) = \text{Ker}(f - \text{Id}) = \{v : (f - \text{Id})(v) = 0\}$ y sus ecuaciones son

$$\left[\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right] \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow x = 0$$

El subespacio generalizado segundo $K^2(1) = \text{Ker}(f - \text{Id})^2 = \{v : (f - \text{Id})^2(v) = 0\}$ y sus ecuaciones son

$$\left[\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right]^2 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow K^2(1) = V$$

Así, los vectores v que pertenecen a $K^2(1) - K^1(1)$ tienen coordenadas en $\mathcal{B}(a,b,c)$ con $a \neq 0$ y su imagen por f – Id es f(v) = (0,a,0) pues

$$\left(\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right) \left(\begin{array}{c} a \\ b \\ c \end{array}\right) = \left(\begin{array}{c} 0 \\ a \\ 0 \end{array}\right)$$

Entonces, los planos pedidos son de la forma L((a, b, c)(0, a, 0)) con $a \neq 0$. Para simplificar las ecuaciones de estos planos determinamos un sistema generador de vectores equivalente:

$$\left(\begin{array}{ccc} a & b & c \\ 0 & a & 0 \end{array}\right) \sim \left(\begin{array}{ccc} 1 & d & e \\ 0 & 1 & 0 \end{array}\right) \sim \left(\begin{array}{ccc} 1 & 0 & e \\ 0 & 1 & 0 \end{array}\right)$$

Los planos son de la form $P_e = L((1,0,e),(0,1,0))$ con $e \in \mathbb{K}$ y unas ecuaciones implícitas son

$$P_e \equiv \{ex - z = 0\}, e \in \mathbb{K}$$

Ejercicio 4: Sean $P_1 \equiv \{x + 2y - z = 0\}$ y $P_2 \equiv \{x + 2y + z = 0\}$ dos planos del espacio vectorial euclídeo \mathbb{R}^3 . Considerando el producto escalar estándar, halle una base ortonormal $\mathcal{B} = \{u_1, u_2, u_3\}$ tal que el subespacio generado por los vectores u_1 y u_2 esté contenido en el plano P_1 y el subespacio generado por los vectores u_1 y u_3 no esté contenido en el plano P_2 .

Solución:

Método 1: Basta tomar $\{e_1, e_2, e_3\}$ una base de \mathbb{R}^3 tal que e_1, e_2 sean base de P_1 y $e_1 \notin P_2$, aplicarle el método de Gram-Schmidt, y después normalizarla. Por ejemplo:

$$e_1 = (1,0,1), e_2 = (0,1,2), e_3 = (0,0,1)$$

Método 2: Construir la base paso a paso:

- 1°) Tomamos $v_1 \in P_1$ ta que $v_1 \notin P_2$. Nos sirve $v_1 = (1,0,1)$
- 2°) Calculamos $v_2 \in P_1$ y ortogonal a v_1 . Nos sirve $v_2 = (1, -1, -1)$
- 3°) Calculamos v_3 ortogonal a v_1 y v_2 .: $v_1^{\perp} \cap v_2^{\perp} \equiv \{x+z=0, x-y-z=0\}$ por ejemplo $v_3=(1,2,-1)$.

Después normalizar los vectores:

$$\{u_1 = \frac{v_1}{||v_1||}, \ u_2 = \frac{v_2}{||v_2||}, \ u_3 = \frac{v_3}{||v_3||}\} = \{(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}), \ (\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}), \ (\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{-1}{\sqrt{6}})\}$$