ARTIFICIAI INTELLIGENCF

SC430

School of Computer Engineering Nanyang Technological University

Part III - Knowledge and Reasoning

9 Inference in First-Order Logic

- Inference Rules. Generalised Modus Ponens.
- Forward and Backward Chaining. Resolution.

10 Logical Reasoning Systems

- Indexing, Retrieval and Unification. Logic
 Programming / Prolog. Production Systems.
- Frames and Semantic / Conceptual Networks.
- Managing Retractions, Assumptions, and Explanations.

Forward-Chaining Production Systems

Forward-chaining system

- Assertions instead of queries
 - Inference generates new knowledge until a criterion is met
- Appropriate for condition-action rules
 - i.e. add percepts to the KB ,then infer actions to perform
- Theorem provers too generic
 - First-order logic w/ resolution ⇒ huge branching factor

Typical features

- Rule memory (KB): sentences $p_1 \wedge ... \wedge p_m \Rightarrow act_1 \wedge ... \wedge act_n$
- Working memory (WM): positive literals with no variables
- 3-step inference: matching, conflict resolution, acting

Production Rules and Inference

Rule memory:

 $A(x) \wedge B(x) \wedge C(y) \Rightarrow add D(x)$

 $A(x) \wedge B(y) \wedge D(x) \Rightarrow add E(x)$

 $A(x) \wedge B(x) \wedge E(x) \Rightarrow delete A(x)$

Working memory:

[1]

A(1), A(2), B(2), B(3), B(4), C(5)

Inference:

A(2) Λ B(2) Λ C(5) \Rightarrow add D(2)

Working memory:

A(1), A(2), B(2), B(3), B(4), C(5),

D(2)

[2]

Inference:

 $A(2) \wedge B(2) \wedge C(5) \Rightarrow add D(2)$

 $A(2) \wedge B(2) \wedge D(2) \Rightarrow add E(2)$

 $A(2) \Lambda B(3) \Lambda \dots$

Working memory:

[3]

A(1), A(2), B(2), B(3), B(4), C(5),

D(2), E(2)

Inference:

A(2) Λ B(2) Λ C(5) \Rightarrow add D(2)

A(2) Λ B(2) Λ D(2) \Rightarrow add E(2)

 $A(2) \wedge B(2) \wedge E(2) \Rightarrow delete A(2)$

Example of Production System

Sorting a character string

- e.g. "cbaca"
$$\rightarrow$$
 "aabcc" ba \Rightarrow ab (1) ca \Rightarrow ac (2) cb \Rightarrow bc (3)

#	Working memory	Conflict set	Rule fired
0	c <u>ba</u> ca	{ 3, 1, 2 }	1
1	<u>ca</u> bca	{2}	2
2	acb <u>ca</u>	{ 3, 2 }	2
3	ac <u>ba</u> c	{ 3, 1 }	1
4	a <u>ca</u> bc	{2}	2
5	aa <u>cb</u> c	{3}	3
6	aabcc	{}	HALT

Conflict Resolution

Control strategy

Which of the matching rules should be fired?

- None: execute systematically all rules.
- No duplication: do not execute the same rule on the same arguments twice.
- Recency: favour rules that refer to elements recently created in WM
- Specificity:

favour rules that are more specific (have more constraints).

- e.g. $Mammal(x) \Rightarrow add Legs(x,4)$ $Mammal(x) \wedge Human(x) \Rightarrow add Legs(x,2)$
- Operation priority: favour rules that yield high-priority actions.
 - e.g. $Dusty(x) \Rightarrow Action(Dust(x))$ $Dangerous(x) \Rightarrow Action(Leave(x))$

Using Production Systems

Forward-chaining production systems

- Modular systems
 - Inference engines (matching, conflict resolution, firing); OPS-5
 - Domain specific knowledge bases
- Expert systems
 - Hundreds of commercial systems, from XCON (1982) onwards
 - Varied domains, such as accounting, biology, chemistry, computer eng., farming, finance, mathematics, medical diagnosis, etc.
- Cognitive architectures
 - Models of human reasoning:

productions working memory new productions

long-term memory short-term memory learned knowledge

A Simple Resolution

From propositional logic

Unit Resolution

$$\frac{\alpha \vee \beta, \ \neg \beta}{\alpha}$$

$$(P \Rightarrow Q) \Leftrightarrow (\neg P \lor Q)$$

Disjunctive Resolution

$$\frac{\alpha \vee \beta, \ \neg \beta \vee \gamma}{\alpha \vee \gamma}$$

- Implicative Resolution

Interpretations

- Reasoning by case, i.e. given β , either α or γ is true
- Transitivity of implication

Generalised Resolution (CNF)

Generalised Disjunctive Resolution

•
$$\frac{\alpha_{1} \vee ... \alpha_{j} ... \vee \alpha_{M}, \ \gamma_{1} \vee ... \gamma_{k} ... \vee \gamma_{N}}{\text{SUBST}(\theta, \alpha_{1} \vee ... \alpha_{j-1} \vee \alpha_{j+1} ... \vee \alpha_{M}} \quad \text{UNIFY}(\alpha_{j}, \neg \gamma_{k}) = \theta$$
$$\vee \gamma_{1} \vee ... \gamma_{k-1} \vee \gamma_{k+1} ... \vee \gamma_{N})$$

Examples

- $A \lor B$, $\neg B \lor C$ $\mid A \lor C$
- $A \lor B \lor \neg D$, $\neg B \lor C \mid A \lor C \lor \neg D$
- $A \lor B \lor \neg D \lor E$, $C \lor D \lor \neg F$ | $A \lor B \lor C \lor E \lor \neg F$
- A \vee B(K), \neg B(x) \vee C(x) |— A \vee C(K) under $\{x/K\}$
- ¬A ∨ ¬B(x) ∨ E(x), B(y) ∨ C(y) | ¬A ∨ C(x) ∨ E(x) under {x/y}

Generalised Resolution (INF)

Generalised Implicative Resolution

•
$$\alpha_1 \wedge \ldots \wedge \alpha_j \ldots \wedge \alpha_{M1} \Rightarrow \rho_1 \vee \ldots \vee \rho_{M2}$$
, $\alpha_1 \wedge \ldots \wedge \alpha_{N1} \Rightarrow \gamma_1 \vee \ldots \vee \gamma_{N2}$ UNIFY(α_j, γ_k)= θ

$$\mathsf{SUBST}(\theta, \, \alpha_1 \, \Lambda \, \dots \, \alpha_{j-1} \, \Lambda \, \alpha_{j+1} \, \dots \, \Lambda \, \alpha_{M1} \, \Lambda \, \sigma_1 \, \Lambda \, \dots \, \Lambda \, \sigma_{N1} \\ \Rightarrow \rho_1 \vee \dots \vee \rho_{M2} \vee \gamma_1 \vee \dots \, \gamma_{k-1} \vee \gamma_{k+1} \, \dots \vee \gamma_{N2})$$

Examples

- $A \Rightarrow B$, $B \Rightarrow C$ $-A \Rightarrow C$
- $A \land E \Rightarrow B, B \Rightarrow C \vdash A \land E \Rightarrow C$
- $A \Rightarrow B$, $B \land F \Rightarrow C$ \vdash $A \land F \Rightarrow C$
- $A \Rightarrow B$, $B \Rightarrow C \lor G$ \vdash $A \Rightarrow C \lor G$
- $A \Rightarrow B \lor H$, $B \Rightarrow C \vdash A \Rightarrow C \lor H$
- $A \Rightarrow B(K)$, $B(x) \land F \Rightarrow C(x) \mid A \land F \Rightarrow C(K)$ under $\{x/K\}$

Canonical Forms of Resolution

Conjunctive Normal Form (CNF)

- All sentences are a disjunction of literals, *negated or not:*

$$\alpha_1 \vee \ldots \vee \alpha_N$$

- Implicative Normal Form (INF) or Kowalski form
 - All sentences are implications of *non-negated literals*, with a conjunction of premises and a disjunction of consequents: $\alpha_1 \wedge \ldots \wedge \alpha_M \Rightarrow \beta_1 \vee \ldots \vee \beta_N$

Conjunctive knowledge base

- All sentences joined in one big, implicit conjunction
 - e.g. P, Q \Rightarrow R, $\alpha \wedge \beta$, $\gamma_1 \vee ... \vee \gamma_N$ is equivalent to (P) \wedge (Q \Rightarrow R) \wedge ($\alpha \wedge \beta$) \wedge ($\gamma_1 \vee ... \vee \gamma_N$)

Equivalence of CNF and INF

Conversion

•
$$\beta_1 \vee \beta_2 \vee \neg \alpha_1 \vee ... \vee \beta_j \vee ... \vee \neg \alpha_k \vee ... \vee \beta_M \vee ... \vee \neg \alpha_N$$
 CNF
$$\neg \alpha_1 \vee ... \vee \neg \alpha_N \vee \beta_1 \vee ... \vee \beta_M$$

$$\neg (\alpha_1 \wedge ... \wedge \alpha_N) \vee (\beta_1 \vee ... \vee \beta_M)$$

$$\alpha_1 \wedge ... \wedge \alpha_N \Rightarrow \beta_1 \vee ... \vee \beta_M$$
 INF

Examples

- $A \lor B \Leftrightarrow True \Rightarrow A \lor B$
- $\neg A \lor B \Leftrightarrow A \Rightarrow B$
- $\neg A \lor \neg B \Leftrightarrow A \land B \Rightarrow False$
- $A \lor \neg B \lor \neg C \lor D \lor \neg E \Leftrightarrow B \land C \land E \Rightarrow A \land D$

09-13

Example of Resolution Proof (CNF)

Conversion to Normal Form

- From first order logic to NF:
 - Eliminate implications
 - i.e. $P \Rightarrow Q$ becomes $\neg P \lor Q$
 - Reduce scope of negations, using De Morgan's laws
 - i.e. ¬(P ∨ Q) becomes ¬P Λ ¬Q,
 ¬(P Λ Q) becomes ¬P ∨ ¬Q, ¬¬P becomes P
 ¬∀x P becomes ∃x ¬P, and ¬∃x ¬P becomes ∀x P
 - Standardise sentences apart, renaming variables
 - e.g. $(\forall x P(x)) \lor (\exists x Q(x))$ becomes $(\forall x P(x)) \lor (\exists y Q(y))$
 - Move quantifiers left
 - e.g. $P(x) \Lambda (\forall y Q(y))$ becomes $\forall y P(x) \Lambda Q(y) \dots$

Conversion to Normal Form (2)

- Remove existential quantifiers (Skolemization)
 - Replacing by a constant, e.g.: ∃x P(x) becomes P(C21)
 - Replacing by a function, e.g.:
 - $\forall x \text{ Person}(x) \Rightarrow \exists y \text{ Mother}(y, x), \text{ "Everyone has a mother"}$
 - w/ a constant: $\forall x \, \text{Person}(x) \Rightarrow \text{Mother}(\text{Mum}, x) \rightarrow \text{wrong!}$
 - w/ a Skolem function: $\forall x \text{ Person}(x) \Rightarrow \text{Mother}(\text{Mum}(x), x)$
- Drop the universal quantifiers
- Distribute conjunctions (∧) over disjunctions (∨)
 - e.g. $(P \land Q) \lor R$ becomes $(P \lor R) \land (Q \lor R)$
- Flatten nested conjunctions and disjunctions → CNF
 - e.g. $(P \lor Q) \lor R$ becomes $P \lor Q \lor R$
- Convert disjunctions back to implications → INF

Summary

Inference rules for first-order logic ...

- Are simply extended from propositional logic.
- Are complex to use, because of a huge branching factor.

Unification ...

 Improves efficiency by identifying appropriate variable substitutions.

The Generalised Modus Ponens ...

- Uses unification to provide a powerful inference rule.
- Can be either data-driven, using forward-chaining, or goal-oriented, using backward-chaining.

. . .

Summary

- Uses sentences in Horn form, i.e. $\alpha_1 \wedge ... \wedge \alpha_n \Rightarrow \beta$.
- Is not complete.

The Generalised Resolution ...

- Provides a complete system for proof by refutation.
- Requires sentences in either Conjunctive Normal Form or Implicative Normal Form, i.e. $\alpha_1 \wedge ... \wedge \alpha_m \Rightarrow \beta_1 \vee ... \vee \beta_n$ (which are equivalent).
- Can use several strategies (heuristics) to improve efficiency and reduce the size of the search space.

References

- Boolos, G. S. and Jeffrey, R. C. (1989). Computability and Logic.
 Cambridge University Press, Cambridge, third edition.
- Genesereth, M. R. and Nilsson, N. J. (1987). Logical Foundations of Artificial Intelligence. Morgan Kaufmann, San Mateo, California.
- Hunter, G. (1971). Metalogic: An Introduction to the Metatheory of Standard First-Order Logic. University of California Press, Berkeley and Los Angeles.
- Siekmann, J. and Wrightson, G., editors (1983). Automation of Reasoning. Springer-Verlag, Berlin. Two volumes.
- Wos, L., Overbeek, R., Lusk, E., and Boyle, J. (1992). Automated Reasoning: Introduction and Applications. McGraw-Hill, New York, second edition.