CRYPTOGRAPHY

МЕТОДИ ТА ЗАСОБИ КРИПТОГРАФІЧНОГО ЗАХИСТУ ІНФОРМАЦІЇ

СТАНДАРТ DES

Data Encryption Standard

СИММЕТРИЧНЫЙ АЛГОРИТМ → ОДИН КЛЮЧ

как для шифрования, так и дешифрования

!!!
$$D_{K}(*) = E_{K}^{-1}(*)$$
 $M = D_{K}(E_{K}(M))$

Двоичные коды и операции над ними

Двоичный блок

Представление:

- Набор (последовательность) нулей и

единиц, например, 0110101010, n=10- Полином $0*2^9 + 1*2^8 + 1*2^7 + 0*2^6 + 1*2^5 +$ $0*2^4 + 1*2^3 + 0*2^2 + 1*2^1 + 0*2^0$

- Целое без знака 426

$$- \frac{1 * 2^{1}}{1 * 2^{2}} + \frac{0 * 2^{0}}{1 * 2^{1}} = 2$$

$$- \frac{1 * 2^{1}}{1 * 2^{1}} + \frac{0 * 2^{0}}{1 * 2^{1}} = 0 * 2^{0}$$
MAX = 2^{n} - 1

Двоичные коды и операции над ними

Операция:

Исключающее ИЛИ, Сумма по модулю 2, Ф

$$0+0=0 \mod 2 = 0$$

 $1+0=1 \mod 2 = 1$
 $0+1=1 \mod 2 = 1$
 $1+1=2 \mod 2 = 0$

Двоичные коды и операции над ними Свойства операции «Исключающее ИЛИ» Замкнутость: два *n*-бит операнда дают *n*-бит результат.

Коммутативность:

$$x \oplus y = y \oplus x$$

Ассоциативность:

$$x \oplus (y \oplus z) = (x \oplus y) \oplus z$$

Существует нулевой (нейтральный) элемент: $0 = 000000 \dots 0$. $x \oplus 0 = x$

Существует аддитивная инверсия — само слово $x \oplus x = 0$.

Двоичные коды и операции над ними Операция циклического сдвига

Циклический сдвиг влево на k-разрядов

Циклический сдвиг вправо на k-разрядов

Двоичные коды и операции над ними Операция замены = циклический сдвиг на k = n/2 разрядов. n — четное.

Двоичные коды и операции над ними Операция разбиения

Операция объединения

Блочные шифры

Блочный шифр → оперирует группами бит фиксированной длины — блоками, характерный размер которых меняется в пределах 64–256 бит.

На входе: блок *n* разрядов и ключ *k* разрядов. На выходе: шифрованный блок *n* разрядов.

Data Encryption Standard

Алгоритм симметричного блочного шифрования. Разработан фирмой IBM Стандарт США, 1977 год (FIPS 46-3)

DES – блоки 64 разряда S-DES – блоки 8 разрядов !!! студенческий

FIPS: Federal Information Processing Standards – открытые стандарты правительства США.

Для использования всеми гражданскими правительственными учреждениями США. ¹¹

Базовые модули DES

- 1. Модуль перестановки (транспозиции) Р-блок.
- 2. Модуль подстановки S-блок.
- 3. Сеть (функция, смеситель) Фейстеля.
- 4. Генератор ключей

Базовые преобразования DES

Р-блок: перемещает биты.

Прямой Р-блок: n входов $\rightarrow n$ выходов. Задается таблицей $n \times x$

Р-блок расширения: n входов $\rightarrow m$ выходов, m > n. Задается таблицей $m \times X$ n

Р-блок сжатия: n входов $\rightarrow m$ выходов, m < n. Задается таблицей $n \times m$.

Базовые преобразования DES

1. Модуль перестановки (транспозиции) - Р-блок.

Р-блок: перемещает биты.

Прямой Р-блок

Р-блок расширения

Р-блок сжатия

Базовые модули DES / S-DES

Р-блоки S-DES

Блок начальной перестановки

Таблица перестановок

Блок конечной перестановки

Таблица перестановок

Базовые модули DES / S-DES

Р-блоки S-DES

Блок прямой перестановки

Таблица перестановок

2 4 3 1

Блок расширения

Таблица перестановок

4 1 2 3 2 3 4 1

Базовые преобразования DES

2. S-блок: шифр подстановки.

Линейный S-блок: в общем виде:

$$y_0 = a_{0,0}x_0 \oplus a_{0,1}x_1 \oplus \dots \oplus a_{0,n-1}x_{n-1}$$

 $y_1 = a_{1,0}x_0 \oplus a_{1,1}x_1 \oplus \dots \oplus a_{1,n-1}x_{n-1}$

$$y_{m-1} = a_{m-1,0} x_0 \oplus a_{m-1,1} x_1 \oplus \dots \oplus a_{m-1,n-1} x_{n-1}$$

Базовые преобразования DES Линейный S-блок

$$X = A \oplus X$$

$$\mathbf{A} = \begin{bmatrix} a_{0,0} & a_{0,1} & a_{0,m-1} \\ a_{1,0} & a_{1,1} & a_{1,m-1} \\ a_{n-1,0} & a_{n-1,1} & a_{n-1,m-1} \end{bmatrix}$$

$$a_{i,j} = \{0,1\}$$

Базовые преобразования DES

Линейный S-блок (пример)

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

$$y_0 = x_0 \oplus x_3$$

$$y_1 = x_0 \oplus x_1 \oplus x_2 \oplus x_3$$

$$y_2 = x_1 \oplus x_2$$

$$y_3 = x_0 \oplus x_2 \oplus x_3$$

Линейный S-блок может быть обратимым (n=m) и необратимым. Существует A⁻¹.

Базовые преобразования DES

+ Свойства операции исключающее ИЛИ

Операция обратима, только если один из операндов известен.

КЛЮЧ

То есть, если известен результат $z = x \oplus k$ и известен y , то $x = z \oplus k$.

Базовые модули DES / S-DES

$$S$$
 блок = S блок 1 || S блок 2

Базовые модули DES / S-DES

Базовые преобразования DES Простой смеситель (сеть функция) Фейстеля.

Шифрование: ключ поступает на вход необратимой функции F(K). Далее \oplus с входным кодом.

F(K) – необратимо.

Дешифрование: повторение операций. На вход — шифрокод. На выходе — исходный код

Базовые преобразования DES

Шифрование.

$$CipherCode = CODE \oplus F(K)$$

Дешифрование.

$$CODEout = CipherCode \oplus F(K)$$

 $CODEout = CODE \oplus F(K) \oplus F(K)$
 $CODEout = CODE \oplus [F(K) \oplus F(K)]$

$$[F(K) \oplus F(K)] = 0$$

$$CODEout = CODE \oplus 0 = CODE$$

Смеситель Фейстеля имеет необратимый элемент, но сам является обратимым.

Базовые модули DES / S-DES Смеситель Фейстеля.

Базовые модули DES / S-DES Смеситель Фейстеля. Функция F

4 bit Блок расширения 8 bit K 8 bit 8 bit S block 2 S block 1 4 bit F (K,L) Прямой Р блок

Структура S-DES

Структура S-DES

Генератор раундовых ключей

Структура S-DES

Генератор раундовых ключей

S-DES → DES

Структура DES

Вопросы:

- Поясните общность представления информации в виде множества двоичных кодов. Определите двоичный код и его численное представление.
- Укажите определение и свойства операции XOR над двоичными кодами.
- Определите функцию Р-блока, его разновидности и свойства.
- Определите функцию S-блока, его свойства.
- Поясните организацию смесителя Фейстеля.
- Поясните функционирование вычислителя функции Фейстеля.

Вопросы:

- Поясните организацию и функционирование генератора раундовых ключей.
- Определите различие между стандартами DES и S-DES.
- Укажите основные характеристики стандарта DES.

ЛИТЕРАТУРА

Нечаев В.И. Элементы криптографии (Основы теории защиты информации).- Учеб. пособие. — М.:, ВШ., 1999.- 109 с.

Введение в криптографию. **Под общ. ред. В.В.Ященко.** — 4-е изд., доп. М.: МЦНМО, 2012 — 348 с. ISBN 978-5-4439-0026-1

ЛИТЕРАТУРА

Венбо Мао. Современная криптография: теория и практика.—М.: Издательский дом «Вильямс», 2005.—768 с.: ил. ISSN 5-8459-0847-7 (рус.)

Шнайер Б. Прикладная криптография. Протоколы, алгоритмы и исходный код на Си. – Москва: Вильямс, 2016. 1024 с.

ЛИТЕРАТУРА

Francisco Rodriguez-Henriquez, N.A. Saqib, A. Diaz-Perez, Cetin Kaya Koc.

Cryptographic Algorithms on Reconfigurable Hardware. - Springer, 2006.

A. Menezes, P. van Oorschot, S. Vanstone.

Handbook of Applied Cryptography.- CRC Press, 1996.

END #8