DEEP LEARNING

FOR COMPUTER VISION

Instructors

Organized by

telecom BCN

+ info: http://bit.ly/dlcv2018

#DLUPC

Day 2 Lecture 1

Object Detection

Míriam Bellver miriam.bellver@bsc.edu

http://bit.ly/dlcv2018

Object Detection

CAT, DOG, DUCK

The task of assigning a **label** and a **bounding box** to all objects in the image

Classes = [cat, dog, duck]

Cat? NO

Dog?NO

Classes = [cat, dog, duck]

Cat? NO

Dog?NO

Classes = [cat, dog, duck]

Cat?YES

Dog?NO

Classes = [cat, dog, duck]

Cat? NO

Dog?NO

Problem:

Too many positions & scales to test

Solution: If your classifier is fast enough, go for it

Object Detection with ConvNets?

Convnets are computationally demanding. We can't test all positions & scales!

Solution: Look at a tiny subset of positions. Choose them wisely:)

Object Detection: Datasets

20 categories
6k training images
6k validation images
10k test images

80 categories 200k training images 60k val + test images 200 categories 456k training images 60k validation + test images

Outline

Proposal-based methods Proposal-free methods

Region Proposals

- Find "blobby" image regions that are likely to contain objects
- "Class-agnostic" object detector

Slide Credit: CS231n

Region Proposals

Selective Search (SS)

Multiscale Combinatorial Grouping (MCG)

[SS] Uijlings et al. Selective search for object recognition. IJCV 2013

[MCG] Arbeláez, Pont-Tuset et al. Multiscale combinatorial grouping. CVPR 2014

Object Detection with Convnets: R-CNN

1. Input image

2. Extract region proposals (~2k)

warped region

tvmonitor? no.

aeroplane? no.

person? yes.

R-CNN

We expect:

We get:

R-CNN

Girshick et al. Rich feature hierarchies for accurate object detection and semantic segmentation. CVPR 2014

R-CNN: Problems

- Slow at test-time: need to run full forward pass of CNN for each region proposal
- 2. SVMs and regressors are post-hoc: CNN features not updated in response to SVMs and regressors

Slide Credit: CS231n

Fast R-CNN

R-CNN Problem #1: Slow at test-time: need to run full forward pass of CNN for each region proposal

Solution: Share computation of convolutional layers between region proposals for an image

Fast R-CNN: Sharing features

Hi-res input image: 3 x 800 x 600 with region proposal

Hi-res conv features: C x H x W with region proposal

Rol conv features: C x h x w for region proposal

Fully-connected layers expect low-res conv features:

C x h x w

Fast R-CNN

R-CNN Problem #2&3: SVMs and regressors are post-hoc. Complex training.

Solution: Train it all together end to end

Fast R-CNN

		R-CNN	Fast R-CNN
Footorl	Training Time:	84 hours	9.5 hours
Faster!	(Speedup)	1x	8.8x
FASTER!	Test time per image	47 seconds	0.32 seconds
I AOTLIN:	(Speedup)	1x	146x
Better!	mAP (VOC 2007)	66.0	66.9

Using VGG-16 CNN on Pascal VOC 2007 dataset

Fast R-CNN: Problem

Test-time speeds don't include region proposals

	R-CNN	Fast R-CNN
Test time per image	47 seconds	0.32 seconds
(Speedup)	1x	146x
Test time per image with Selective Search	50 seconds	2 seconds
(Speedup)	1x	25x

Slide Credit: CS231n

Faster R-CNN

Learn proposals end-to-end sharing parameters with the classification network

Faster R-CNN

Learn proposals end-to-end sharing parameters with the classification network

Region Proposal Network

Bounding Box Regression Objectness scores k anchor boxes 2k scores 4k coordinates (object/no object) cls layer reg layer 256-d intermediate layer sliding window

conv feature map

In practice, k = 9 (3 different scales and 3 aspect ratios)

Faster R-CNN

	R-CNN	Fast R-CNN	Faster R-CNN		
Test time per image (with proposals)	50 seconds	2 seconds	0.2 seconds		
(Speedup)	1x	25x	250x		
mAP (VOC 2007)	66.0	66.9	66.9		

Slide Credit: CS231n

Mask R-CNN

He et al. Mask R-CNN. ICCV 2017

Outline

Proposal-based methods
Proposal-free methods

One-stage methods

Previously...:

Problem:

Too many positions & scales to test

Solution: If your classifier is fast enough, go for it

One-stage methods

Previously...:

Problem:

Too many positions & scales to test

Modern detectors parallelize feature extraction across all locations. Region classification is not slow anymore!

YOLO: You Only Look Once

Proposal-free object detection pipeline

YOLO: You Only Look Once

YOLO: You Only Look Once

Each cell predicts:

- For each bounding box:
 - 4 coordinates (x, y, w, h)
 - 1 confidence value
- Some number of class probabilities

For Pascal VOC:

- 7x7 grid
- 2 bounding boxes / cell
- 20 classes

 $7 \times 7 \times (2 \times 5 + 20) = 7 \times 7 \times 30$ tensor = **1470 outputs**

SSD: Single Shot MultiBox Detector

Same idea as YOLO, + several predictors at different stages in the network

YOLOv2

	YOLO								YOLOv2
batch norm?		√							
hi-res classifier?		1711	1	√	√	\	\	V	√
convolutional?				✓	\	\	1	\	✓
anchor boxes?				1	\				
new network?					\	√	1	\	√
dimension priors?						√	V	\	✓
location prediction?						V	1	\	√
passthrough?							1	1	√
multi-scale?								V	√
hi-res detector?									✓
VOC2007 mAP	63.4	65.8	69.5	69.2	69.6	74.4	75.4	76.8	78.6

Redmon & Farhadi. <u>YOLO900: Better, Faster, Stronger</u>. CVPR 2017

YOLOv3

RetinaNet

Matching proposal-based performance with a one-stage approach

Problem of one-stage detectors? They evaluate many candidate locations but only a few have objects ---> **IMBALANCE**, making learning inefficient

Key idea is to lower loss weight for well classified samples, increase it for difficult ones.

Lin et al. Focal Loss for Dense Object Detection. ICCV 2017

Overview

Summary

Proposal-based methods

- R-CNN
- Fast R-CNN
- Faster R-CNN
- Mask R-CNN

Proposal-free methods

- YOLO
- SSD
- RetinaNet

Questions?