Wind Power

- Power in the wind, Pw= 12 PAV3
 - -> PN QV3 => Theight, TV
 - => 1 tower obstruction, 14
 - => I frictional surface, 1v
 - > Pw aA => for HAWT: A= \(\frac{1}{4}\)D^2 => Pw aD2
 - => for VAWT: A= = TDH => PW aD

- At 15°(& latm: P= 1.225 kg/m3 (P= m/V)

5 PWap => & attitude, 19

-/	MIN	ш,	11	
=>	P=	1.22	sK.	,K

= 1.225KTKA	Temperature (°C)	Temperature (°F)	Density (kg/m³)	Density I
	-15	5.0	1.368	1.12
	-10	14.0	1.342	1.10
	-5	23.0	1.317	1.07
	0	32.0	1.293	1.05
	5	41.0	1.269	1.04
	10	50.0	1.247	1.02
	15	59.0	1.225	1.00

TABLE 6.1 Density of Dry Air at a Pressure of 1 Atmosphere ^e			TABLE 6.2 Air Pressure at 15°C as a Function of Altitude				
Temperature (°C)	Temperature (°F)	Density (kg/m³)	Density Ratio (K_T)	Altitude (meters)	Altitude (feet)	Pressure (atm)	Pressure Ratio
-15	5.0	1.368	1.12	0	0	- 1	1
-10	14.0	1.342	1.10	200	656	0.977	0.977
-5	23.0	1.317	1.07	400	1312	0.954	0.954
0	32.0	1.293	1.05	600	1968	0.931	0.931
5	41.0	1.269	1.04	800	2625	0.910	0.910
10	50.0	1.247	1.02	1000	3281	0.888	0.888
15	59.0	1.225	1.00	1200	3937	0.868	0.868
20	68.0	1.204	0.98	1400	4593	0.847	0.847
25	77.0	1.184	0.97	1600	5249	0.827	0.827
30	86.0	1.165	0.95	1800	5905	0.808	0.808
35	95.0	1.146	0.94	2000	6562	0.789	0.789
40	104.0	1.127	0.92	2200	7218	0.771	0.771

2 Friction Coefficients:

$$L_{\frac{1}{2}}\left(\frac{P}{P_{0}}\right) = \left(\frac{V}{V_{0}}\right)^{3} = \left(\frac{H}{H_{0}}\right)^{3\alpha}$$

b open terrain: ベニ字

Terrain Characteristics	Friction Coefficient α		
Smooth hard ground, calm water	0.10		
Tall grass on level ground	0.15		
High crops, hedges and shrubs	0.20		
Wooded countryside, many trees	0.25		
Small town with trees and shrubs	0.30		
Large city with tall buildings	0.40		

Extracted

3 Power delivered by notor, Pb= 1PAV3. Cp So Rotor efficiency, $(\rho = \frac{1}{2}(1+\lambda)(1-\lambda^2)$, where $\lambda = \frac{v_3}{v}$

> max. blade efficiency: $7 = \frac{\sqrt{3}}{3}$

=> max. (p = 59.3% (BRTZ efficiency)

4) TSR = Roter tip speed = rpm × TID 60 V

- notor too slow: too much wind pass => IN - rotor too fast: turbulence

gear natio = generator rom
notor rom

5 overall n= Pout

(S) Average wind speed, (V2) ang :

1> average of v3

9 And v3, then average

(6) Rayleigh Distribution: $f(v) = \frac{2v}{c^2} \exp\left[-\left(\frac{v}{c}\right)^2\right]$, (k=2)

19 1c, 1v

 $f(v) = \frac{\pi V}{2 \sqrt{2}} \exp \left(-\frac{\pi}{4} \left(\frac{V}{V}\right)^{2}\right), \text{ where } \bar{v} = \text{average } v$

(7) Average Power by Rayleigh, P= = = 1 2 PAV3

4 P=1.91. Par

5 (v3) ang = 6 V3 = 1.91 V3

1 Finding Annual Enorgy using Rayleigh:

Step 1: Find the probability of each wind speed, How?

Step 2: Find the energy produced at each wind speed.

Step 3: Annual energy generated = summation of

$$f(v) = \frac{\pi v}{2 \bar{v}^2} \exp \left[-\frac{\pi}{4} \left(\frac{v}{\bar{v}} \right)^2 \right] \quad \text{where } \bar{v} = \text{average } v$$

(9) Capacity Factor, CF = Actual energy delivered Rated power × 8760

> Annual energy (kWh/year)=PR (kW) x 8760 (h/yr) x (F

4 (F= 0.087 V - PR

1 year = 8760 h

Hydro Energy

> Power & (Head x Flow)

> Net head = Gross head - Head loss due to pipe losses

2 E=Pxt

18 = 1000 m3

3 Efficiency of Hydropower Plants: N = Elect. power delivered to "busbar"

Potential energy of head water

4 ~75% to 95%

<u>VERY</u> efficient! ⇒ most efficient renewable energy

Figure 4.19 Friction head loss, in feet of head per 100 ft of pipe, for 160 psi PVC piping and for polyethylene, SDR pressure-rated pipe.

Ocean Energy

1) Power Output of Tidal Turbines:

4 P= ZPAV3

 \Rightarrow $\rho_{sea} = 1025 \text{ kg/m}^3 \text{ (for underwater)}$

similar to mind turbines

can produce more power than wind turbines

> needs strong foundation in presence of corrosion etc.

Biofuel Energy

(1) Biomass = Organic molecules of H_2 + Atoms of O_2 + N_2 + Alkali, Alkaline earth + Heavy metals