Nice to Know

M. Gisler

7. August 2016

Zusammenstellung von Sachen, welche immer wieder gebraucht werden

Inhaltsverzeichnis

1	31 E	innerten & Si vorsatze & Konstanten	
2	Grie	echisches Alphabet	4
3	Rec	chengesetze	4
	3.1	Potenzregeln	4
	3.2	Wurzelregeln	4
	3.3	Logarithmusregeln	4
	3.4	Binom	2
	3.5	Quadratische Gleichung	2
	3.6	Partialbruchzerlegung	Ę
	3.7	Hornerschema	Ę
	3.8	Winkelmasse	Ę
4	Geo	ometrische Gesetze	6
	4.1	Dreieck	6
		4.1.1 Pythagoras	6
		4.1.2 Sätze für nichtrechtwinklige Dreiecke	6
	4.2	Funktionstransformation	6
_			
5		nplexe Zahlen	6
	5.1	Euler-Formeln	6
6	Tria	onometrie	7
	6.1	Winkelargumente	7
	6.2	Additionstheoreme	7
	6.3	Doppel- und Halbwinkel	7
	6.4	Produkte	7
	6.5	Summe und Differenz	7
	6.6	Potenzen	7
	6.7	Quadrantenbeziehungen	7
	6.8	Plots	7
	-	6.8.1 Sinus-Funktion	7
		6.8.2 Cosinus-Funktion	7
		6.8.3 Tangens-Funktion	7

7	Matrizen	8
	7.1 Gaussverfahren	8
	7.2 Determinante	8
	7.2.1 Grössere Matrizen	8
	7.3 Inverse Matrix	8
	7.4 Transponierte Matrix	9
	7.5 Einheitsmatrix	9
	7.5.1 Grössere Matrizen	9
	7.6 Diagonalisierung	9
	7.7 Eigenwerte	9
_		40
8	Differentialrechnung	10
	8.1 Differentation von Funktionen einer Variablen	10
	8.2 Ableitungsregeln	10 11
	8.3 Ableitungen elementarer Funktionen	11
9	Integralrechung	12
	9.1 Integrationsregeln	12
	9.2 Wichtige Integrale	13
		. •
10	Fourierreihen	14
	10.1 Symmetrie	14
	10.2 Wichtige Fouriereihen	14
11	Fouriertransformation	15
	11.1 Eigenschaften der Fouriertransformierten	15
12	Laplacetransformation	23
-	12.1 Eigenschaften der Laplacetransformation	23
	12.2 Rücktransformation	24
	12.2.1 Vorgehen	24
	12.2.2 Laplacetabelle	24
	12.3 Lösen von Differentialgleichungen mit Laplace	24
	12.3.1 Lineare DGL mit Anfangswerten	25
13	Logische Operationen	28
	13.1 Zahlenformate	28
	13.2 2er-Potenzen	28
4.4	Nacai Ohuaidawaana	-00
14	Nassi Shneidermann	29
15	Signale	30
	15.1 Harmonische Schwingungen	30
	15.2 Logarithmische Darstellungen	31
	15.3 Signalarten	32
	15.4 Eigenschaften unterschiedlicher Schwingungsformen	33
16	Linux-Tipps	34

1 SI Einheiten & SI Vorsätze & Konstanten

$\text{SI} \rightarrow \text{Syst\`eme}$ international d'unités, Internationales Einheitensystem

Einheit	Zeichen	Beziehung	Für
Ampere	Α	Basiseinheit	Stromstärke
Becquerel	Bq	1/s	Aktivität
Candela	cd	Basiseinheit	Lichtstärke
Coulomb	С	$A \cdot s$	Ladung
Celsius	° C	T - 273.15K	Temperatur
Farad	F	C/V	Kapazität
Gray	Gy	J/kg	Energiedosis
Henry	Н	$V \cdot s/A$	Induktivität
Hertz	Hz	10^{-1}	Frequenz
Joule	J	$N \cdot m$	Energie
Kelvin	K	Basisieinheit	Temperatur
Kilogramm	Kilo	Basiseinheit	Gewicht
Lumen	lm	cd · sr	Lichtstrom
Lux	lx	lm/m^2	Beleuchtungsstärke
Meter	m	Basiseinheit	Länge
Mol	Peta	Basiseinheit	Stoffmenge
Newton	N	$kg \cdot m/s^2$	Kraft
Ohm	Ω	V/A	Widerstand
Pascal	Pa	N/m^2	Druck
Radiant	rad	1	Winkel
Sekunde	S	Basiseinheit	Zeit
Siemens	S	A/V	Leitwert
Sievert	Sv	J/kg	Äquivalentdosis
Steradiant	sr	1	Raumwinkel
Tesla	Т	wb/m^2	magn. Flussdichte
Volt	V	W/A	Spannung
Watt	W	J/s	Leistung
Weber	wb	$V \cdot s$	magn. Fluss

Symbol	Name	Wert	Binär
у	Yokto	10^{-24}	
Z	Zepto	10^{-21}	
а	Atto	10^{-18}	
f	Femto	10^{-15}	
р	Pico	10^{-12}	
n	Nano	10^{-9}	
y , μ	Mikro	10^{-6}	
m	Milli	10^{-3}	
С	Centi	10^{-2}	
d	Dezi	10^{-1}	
da	Deka	10^{1}	
h	Hekto	10^{2}	
k	Kilo	10^{3}	$2^{10} = 1024$
М	Mega	10^{6}	2^{20}
G	Giga	10^{9}	2^{30}
Т	Tera	10^{12}	2^{40}
Р	Peta	10^{15}	2^{50}
Е	Exa	10^{18}	
Z	Zetta	10^{21}	
Υ	Yotta	10^{24}	

Name	Zeichen	Wert
Atomare Massenkonstante	и	$1.660 \cdot 10^{-27} kg$
Avogadro Konstante	N_A	$6.022 \cdot 10^{23} \frac{1}{mol}$
Elektrische Feldkonstante (Permittivität)	ϵ_0	$8.854 \cdot 10^{-12} \frac{As}{Vm}$
Elementarladung	e	$1.602 \cdot 10^{-19}C$
Lichtgeschwindigkeit	c_0	$2.997 \cdot 10^8 \frac{m}{s}$
Magentische Feldkonstante (Permeabilität)	μ_0	$4\pi \cdot 10^{-7} \frac{H}{m}$
Normtemperatur	T	273.15K = 0°C
Fallbeschleunigung (Erde)	8	$9.81 \frac{m}{s^2}$
Wellenwiderstand	Z_0	376.730Ω

2 Griechisches Alphabet

Name	gross	klein
Alpha	A	α
Beta	В	β
Gamma	Γ	γ
Delta	Δ	δ
Epsilon	E	ε
Zeta	Z	ζ
Eta	Н	η
Theta	Θ	θ

Name	gross	klein
lota	I	L
Kappa	K	κ
Lambda	Λ	λ
Mü	М	μ
Nü	N	ν
Xi	X	ξ
Omikron	0	0
Pi	П	π, φ

Name	gross	klein
Rho	P	ρ, و
Sigma	Σ	σ, ς
Tau	T	τ
Ypsilon	Υ	υ
Phi	Φ	φ, φ
Chi	X	χ
Psi	Ψ	ψ
Omega	Ω	ω

3 Rechengesetze

3.1 Potenzregeln

$a^0 = 1$	$a^-n = \frac{1}{a^n}$
$a^m \cdot a^n = a^m + n$	$\frac{a^n}{a^m} = a^n - m$
$(a^n)^m = a^n * m$	$(\frac{a}{b})^n = \frac{a^n}{b^n}$
$a^n * b^n = (ab)^n$	$a^{\frac{b}{n}} = \sqrt[n]{a^b}$

3.2 Wurzelregeln

$\sqrt[n]{a^n} = (\sqrt[n]{a})^n$	$\sqrt[n]{rac{a}{b}} = rac{\sqrt[n]{a}}{\sqrt[n]{b}}$
$\sqrt[n]{a^x} = (\sqrt[n]{a})^x$	$a\sqrt[n]{x} + b\sqrt[n]{x} = (a+b)\sqrt[n]{x}$
$\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$	$a\sqrt[n]{x} - b\sqrt[n]{x} = (a - b)\sqrt[n]{x}$
$\sqrt[n]{\sqrt[m]{a}} = \sqrt[n-m]{a}$	$\sqrt[n]{a^x} = a^{\frac{x}{n}}$

3.3 Logarithmusregeln

$$lg(x) = \log_{10} x$$
 $ln(x) = \log_e x$ $lb(x) = \log_2 x$

$\log xy = \log x + \log y$	$\log \sqrt[n]{x} = \log x^{\frac{1}{n}}$
$\log \frac{x}{y} = \log x + \log y$	$\log x^y = y \log x$
$\log \sqrt[n]{x} = \frac{\log x}{n}$	$\log 1 = 0$

3.4 Binom

$$a^{2} + 2ab + b^{2} = (a+b)(a+b)$$

$$a^{2} - 2ab + b^{2} = (a-b)(a-b)$$

$$a^{2} - b^{2} = (a+b)(a-b)$$

$$(a \pm b)^{3} = a^{3} \pm 3a^{2}b + 3ab^{2} \pm b^{3}$$

$$(a \pm b)^{4} = a^{4} \pm 4a^{3}b + 6a^{2}b^{2} \pm 4ab^{3} + b^{4}$$

3.5 Quadratische Gleichung

$$ax^{2} + bx + c = 0$$
 $x_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$

3.6 Partialbruchzerlegung

$$f(x) = \frac{x^2 + 20x + 149}{x^3 + 4x^2 - 11x - 30} \Rightarrow \text{ Nenner faktorisieren } \Rightarrow x^3 + 4x^2 - 11x - 30 = (x+2)(x^2 + 2x - 15) = (x+2)(x+5)(x-3)$$

Ansatz:

$$f(x) = \frac{x^2 + 20x + 149}{x^3 + 4x^2 - 11x - 30} = \frac{A}{x - 3} + \frac{B}{x + 2} + \frac{C}{x + 5} = \frac{A(x + 2)(x + 5) + B(x - 3)(x + 5) + C(x - 3)(x + 2)}{(x - 3)(x + 2)(x + 5)}$$

Gleichungssystem aufstellen mit beliebigen x_i -Werten (am Besten Polstellen oder 0,1,-1 wählen):

$$x_1 = 3: -9 + 60 + 149 = A \cdot 5 \cdot 8 \implies A = 5$$

 $x_2 = -2: -4 - 40 + 149 = B(-5) \cdot 3 \implies B = -7 \implies f(x) = \frac{5}{x - 3} - \frac{7}{x + 2} + \frac{1}{x + 5}$
 $x_3 = -5: -25 - 100 + 149 = C(-8)(-3) \implies C = 1$

weitere Ansätze für andere Typen von Termen:

$$f(x) = \frac{5x^2 - 37x + 54}{x^3 - 6x^2 + 9x} = \frac{A}{x} + \frac{B}{x - 3} + \frac{C}{(x - 3)^2} = \frac{A(x - 3)^2 + Bx(x - 3) + Cx}{x(x - 3)^2}$$

$$f(x) = \frac{1,5x}{x^3 - 6x^2 + 12x - 8} = \frac{A}{x - 2} + \frac{B}{(x - 2)^2} + \frac{C}{(x - 2)^3} = \frac{A(x - 2)^2 + B(x - 2) + C}{(x - 2)^3}$$

$$f(x) = \frac{x^2 - 1}{x^3 + 2x^2 - 2x - 12} = \frac{A}{x - 2} + \frac{Bx + C}{x^2 + 4x + 6} = \frac{A(x^2 + 4x + 6) + (Bx + C)(x - 2)}{(x - 2)(x^2 + 4x + 6)}$$

Variante mit Koeffizientenvergleich:

$$F(s) = \frac{1}{s(s^2 + 6s + 13)} = \frac{A}{s} + \frac{Bs + C}{s^2 + 6s + 13}$$

$$1 = A(s^2 + 6s + 13) + s(Bs + C)$$

$$1 = s^2(A + B) + s(C + 6A) + 13A$$

$$\Rightarrow 1 = 13A; (A + B) = 0; (C + 6A) = 0$$

$$\Rightarrow A = \frac{1}{13}; B = -\frac{1}{13}; C = -\frac{6}{13}$$

$$s^2 : A + B = 0$$

$$s^1 : 6A + C = 0$$

$$s^0 : 13A = 1$$

3.7 Hornerschema

- Pfeile ⇒ Multiplikation
- Zahlen pro Spalte werden addiert

 $x_1 \Rightarrow$ Nullstelle (muss erraten werden!!) oberste Zeile = zu zerlegendes Polynom

Beispiel:

$$f(x) = x^{3} - 67x - 126$$

$$x_{1} = -2$$

$$\begin{vmatrix}
1 & 0 & -67 & -126 \\
-2 & 4 & +126
\end{vmatrix}$$

$$\begin{vmatrix}
1 & -2 & -63 & 0 = f(-2) \\
 & \uparrow & \uparrow & \uparrow \\
 & b_{2} & b_{1} & b_{0}
\end{vmatrix}$$

$$\Rightarrow f(x) = (x - x_{1})(b_{2}x^{2} + b_{1}x + b_{0}) = (x + 2)(x^{2} - 2x - 63)$$

3.8 Winkelmasse

	Gradmass	Bogenmass
Einheit	Grad, °	Radiant, rad
Vollwinkel	360°	2π rad
Umrechnung	$\circ = \frac{360}{2\pi} \cdot rad$	$rad = \frac{2\pi}{360} \cdot \circ$

4 Geometrische Gesetze

Fläche Kr	eis	Umfang Kreis	Fläche Kugel	Volumen Kugel	Fläche Trapez
$A = r^2 \pi$:	$U=2r\pi$	$A = 4r^2\pi$	$V = \frac{4}{3}\pi r^3$	$A = \frac{a+c}{2} \cdot h$

4.1 Dreieck

4.1.1 Pythagoras

$$\sin(\alpha) = \frac{a}{c} = \frac{Gegenkathete}{Hypotenuse}$$
 $\cos(\alpha) = \frac{b}{c} = \frac{Ankathete}{Hypotenuse}$ $\tan(\alpha) = \frac{a}{b} = \frac{Gegenkathete}{Ankathete}$

4.1.2 Sätze für nichtrechtwinklige Dreiecke

Sinussatz	Cosinussatz
$\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)} = 2r$	$a^2 = b^2 + c^2 - 2bc \cdot \cos(\alpha)$
	$b^2 = a^2 + c^2 - 2ac \cdot \cos(\beta)$
	$c^2 = a^2 + b^2 - 2ab \cdot \cos(\gamma)$

4.2 Funktionstransformation

	Spiegeln	Strecken	Stauchen	Verschieben	Verschieben
				nach rechts/unten	nach links/oben
x-Achse (Abszisse)	-f(x)	$f(\frac{1}{a} \cdot x)$	$f(a \cdot x)$	f(x-c)	f(x+c)
y-Achse (Ordinate)	f(-x)	$a \cdot f(x)$	$\frac{1}{a} \cdot f(x)$	f(x)-c	f(x) + c

$$f(x) = y = \underbrace{3}_{Amplitude} \cdot \sin \left(\underbrace{\frac{2}{Frequenz}} \left(x - \underbrace{\frac{\pi}{a}}_{Phasenverschiebung} \right) \right) + \underbrace{1}_{DC-Anteil}$$

5 Komplexe Zahlen

$$z = \overbrace{a}_{Realteil} + \underbrace{j}_{ImaginaereEinheit} b_{Imaginaerteil} \quad j = \sqrt{-1}$$

$$j^{4m} = 1 \qquad j^0 = 1$$

$$j^{4m+1} = j \qquad j^1 = j$$

$$j^{4m+2} = -1 \qquad j^2 = -1$$

$$j^{4m+3} = -j \qquad j^3 = -j$$

$$j^{4000} = 1 \qquad j^4 = 1$$

$$4000: 4 = 1$$

5.1 Euler-Formeln

$$\cos \alpha + \mathbf{j} \sin \alpha = c \mathbf{j} s(\alpha) = \mathbf{e}^{\mathbf{j} \alpha}$$

$$\cos \alpha - \mathbf{j} \sin \alpha = -c \mathbf{j} s(\alpha) = \mathbf{e}^{-\mathbf{j} \alpha}$$

$$\sin \alpha = \frac{\mathbf{e}^{\mathbf{j} \alpha} - \mathbf{e}^{-\mathbf{j} \alpha}}{2\mathbf{j}} \qquad \cos \alpha = \frac{\mathbf{e}^{\mathbf{j} \alpha} + \mathbf{e}^{-\mathbf{j} \alpha}}{2} \qquad \tan \alpha = \frac{\sin \alpha}{\cos \alpha} \qquad \cot \alpha = \frac{\cos \alpha}{\sin \alpha}$$

6 Trigonometrie

6.1 Winkelargumente

deg °	0	30	45	60	90	120	135	150	180	210	225	240	270	300	315	330
rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$

6.2 Additionstheoreme

$$\begin{aligned} \sin(a \pm b) &= \sin(a) \cdot \cos(b) \pm \cos(a) \cdot \sin(b) \\ \cos(a \pm b) &= \cos(a) \cdot \cos(b) \mp \sin(a) \cdot \sin(b) \\ \tan(a \pm b) &= \frac{\tan(a) \pm \tan(b)}{1 \mp \tan(a) \cdot \tan(b)} \end{aligned}$$

6.3 Doppel- und Halbwinkel

$$\begin{array}{l} \sin(2a) = 2\sin(a)\cos(a)\\ \cos(2a) = \cos^2(a) - \sin^2(a)\\ \cos^2\left(\frac{a}{2}\right) = \frac{1+\cos(a)}{2} & \sin^2\left(\frac{a}{2}\right) = \frac{1-\cos(a)}{2} \end{array}$$

6.4 Produkte

$$\begin{array}{l} \sin(a)\sin(b) = \frac{1}{2}(\cos(a-b) - \cos(a+b)) \\ \cos(a)\cos(b) = \frac{1}{2}(\cos(a-b) + \cos(a+b)) \\ \sin(a)\cos(b) = \frac{1}{2}(\sin(a-b) + \sin(a+b)) \end{array}$$

6.5 Summe und Differenz

$$\begin{split} &\sin(a) + \sin(b) = 2 \cdot \sin\left(\frac{a+b}{2}\right) \cdot \cos\left(\frac{a-b}{2}\right) \\ &\sin(a) - \sin(b) = 2 \cdot \sin\left(\frac{a-b}{2}\right) \cdot \cos\left(\frac{a+b}{2}\right) \\ &\cos(a) + \cos(b) = 2 \cdot \cos\left(\frac{a+b}{2}\right) \cdot \cos\left(\frac{a-b}{2}\right) \\ &\cos(a) - \cos(b) = -2 \cdot \sin\left(\frac{a+b}{2}\right) \cdot \sin\left(\frac{a-b}{2}\right) \\ &\tan(a) \pm \tan(b) = \frac{\sin(a \pm b)}{\cos(a)\cos(b)} \end{split}$$

6.6 Potenzen

$$\begin{split} &\sin^2(a) + \cos^2(a) = 1 \\ &\sin^2(a) - \cos^2(a) = 1 - 2\sin^2(a) \\ &\sin^2(a) = \frac{1}{2}(1 - \cos(2a)) \\ &\cos^2(a) = \frac{1}{2}(1 + \cos(2a)) \\ &\sin^3(a) = \frac{1}{4}(3\sin(a) - \sin(3a)) \\ &\cos^3(a) = \frac{1}{4}(3\cos(a) - \cos(3a)) \end{split}$$

6.7 Quadrantenbeziehungen

$$\begin{array}{ll} \sin(-a) = -\sin(a) & \cos(-a) = \cos(a) \\ \sin(\pi - a) = \sin(a) & \cos(\pi - a) = -\cos(a) \\ \sin(\pi + a) = -\sin(a) & \cos(\pi + a) = -\cos(a) \\ \sin\left(\frac{\pi}{2} - a\right) = \sin\left(\frac{\pi}{2} + a\right) = \cos(a) & \cos\left(\frac{\pi}{2} - a\right) = -\cos\left(\frac{\pi}{2} + a\right) = \sin(a) \end{array}$$

6.8 Plots

6.8.1 Sinus-Funktion

6.8.2 Cosinus-Funktion

6.8.3 Tangens-Funktion

Matrizen

Gaussverfahren

Durch Addition und Subtraktion einzelner Zeilen (auch von Vielfachen einer Zeile) werden einzelne Stellen auf Null gebracht.

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & & \dots & \\ \vdots & & & \vdots \\ a_{n1} & & \dots & a_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ ka_{21} - na_{11} & ka_{22} - na_{12} & \dots & ka_{2n} - na_{1n} \\ \vdots & & & \vdots \\ a_{n1} & & \dots & a_{nn} \end{bmatrix}$$

$$\vdots \text{ Die n * erste Zeile wurde von der k * zweiten Zeile abgezogen (a...)}$$

7.2 Determinante

2x2 Matrix

3x3 Matrix

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = aei + bfg + cdh - ceg - afh - bdi$$

7.2.1 Grössere Matrizen

$$A \epsilon M_n : \det A = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & & \dots & \\ \dots & & & \\ a_{n1} & & \dots & a_{nn} \end{vmatrix} = (-1)^{1+1} a_{11} D_{11} + (-1)^{1+2} a_{12} D_{12} + \dots + (-1)^{1+n} a_{1n} D_{1n}$$

Unterdeterminante

$$D_{11} = \begin{vmatrix} a_{22} & \dots & a_{2n} \\ \dots & & & \\ a_{n2} & \dots & a_{nn} \end{vmatrix} \qquad D_{12} = \begin{vmatrix} a_{21} & a_{23} & \dots & a_{2n} \\ \dots & & & \\ a_{n1} & a_{n3} & \dots & a_{nn} \end{vmatrix}$$

 D_{ij} die (n-1)×(n-1)-Untermatrix von D ist, die durch Streichen der i-ten Zeile und j-ten Spalte entsteht. Diese Methode ist zu empfehlen, wenn die Matrix in einer Zeile oder Spalte bis auf eine Stelle nur Nullen aufweisst. Dies lässt sich meist mit dem Gausverfahren bewerkstelligen.

7.3 Inverse Matrix

Existiert nur wenn Matrix regulär: $\det A \neq 0$

2x2 Matrix:

$$A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \qquad A^{-1} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}^{-1} = \frac{1}{\det(A)} \begin{bmatrix} ei - fh & ch - bi & bf - ce \\ fg - di & ai - cg & cd - af \\ dh - eg & bg - ah & ae - bd \end{bmatrix}$$

7.4 Transponierte Matrix

7.5 Einheitsmatrix

Transponierte Matrix: $A^T = [a_{ik}^T] = [a_{ki}]$ vertauschen der Zeilen mit Spalten

Einheitsmatrix:
$$I = E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

7.5.1 Grössere Matrizen

Alle Elemete elementweise invertieren - Kehrwert. \Rightarrow *Gilt nur wenn alle Elemente auf der Haupt-diagonale* $\neq 0$ *sind.*

$$A^{-1} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & & \dots & & \\ \vdots & & & & \vdots \\ a_{n1} & & \dots & a_{nn} \end{bmatrix}^{-1}$$

- 1. A^T bestimmen (Zeilen und Spalten vertauschen) $A^T = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & & \dots & & \\ & \ddots & & & \\ & a_{1n} & & \dots & a_{nn} \end{bmatrix}$
- 2. Bei A^T jedes Element durch Unterdeterminante ersetzen $A^* = \begin{bmatrix} (-1)^{1+1}D_{11} & \dots & (-1)^{1+n}D_{1n} \\ & \dots & \\ (-1)^{n+1}D_{n1} & \dots & (-1)^{n+n}D_{nn} \end{bmatrix}$
- 3. $A^{-1} = \frac{A^*}{\det A}$

7.6 Diagonalisierung

- 1. Eigenwerte λ ausrechnen: $\det(A I_n \lambda) = 0$
- 2. Eigenvektoren \vec{v} bilden: $(A \lambda I_n)\vec{v} = 0$
- 3. Transformationsmatrix: $T = [\vec{v_1} \dots \vec{v_n}]$
- 4. T^{-1} berechnen (Achtung ist A symmetrisch, dh. $A^T=A$ und oder alle EV senktrecht zueinander, dann $T^{-1}=T^T$)

5.
$$D = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} = A_{diag} = T^{-1}AT$$

7.7 Eigenwerte

Die Eigenwerte λ erhält man folgendermassen (I ist die Einheitsmatrix):

$$|\lambda I - A| = 0$$
 nach λ auflösen

8 Differentialrechnung

8.1 Differentation von Funktionen einer Variablen

Der Differentialquotient oder Ableitung einer Funktion beschriebt die Steigung einer Tangente an die Funktion.

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Die Ableitung einer Funktion y=f(x) ist eine Funktion von x welche mit den Symbolen: y', \dot{y}, Dy dargestellt wird.

8.2 Ableitungsregeln

Konstantenregeln	c'=0'
Faktorenregeln	(cu)' = cu'
Summenregel	$(u \pm v)' = u' \pm v'$
Produktregel	(uv)' = u'v + uv'
Quotientenregel	$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{u^2}$
Kettenregel	$y = u(v(x)); y' = \frac{du}{dv} \frac{dv}{dx}$
Potenzregel	$(u^a)'=au^{a-1}$
	$\left(\frac{1}{u}\right)' = \frac{u'}{u^2}$
Wurzelregel	$f(x) = \sqrt{x}; f'(x) = \frac{1}{2\sqrt{x}}$
Logarithmusregel	$\ln u' = \frac{u'}{u}$
Differentation der Umkehrfunktion	$(f^{-1})'(y) = \frac{1}{f'(x)}$

8.3 Ableitungen elementarer Funktionen

Funktion	Ableitung	Funktion	Ableitung
C (Konstante)	0	sec x	$\frac{\sin x}{\cos^2 x}$
x	1	$\sec^{-1} x$	$\frac{-\cos x}{\sin^2 x}$
$x^n (n \in \mathbb{R})$	nx^{n-1}	arcsin x (x < 1)	$\frac{1}{\sqrt{1-x^2}}$
$\frac{1}{x}$	$-\frac{1}{x^2}$	arccos x (x < 1)	1
$\frac{1}{x^n}$	$-\frac{n}{x^{n+1}}$	arctan x	$\frac{1}{1+x^2}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	arccot x	$-\frac{1}{1+x^2}$
$\sqrt[n]{x} (n \in \mathbb{R}, n \neq 0, x > 0)$	$\frac{1}{n\sqrt[n]{x^{n-1}}}$	arcsec x	$\frac{1}{x\sqrt{x^2-1}}$
e^x	e^x	arcossec x	$-\frac{1}{x\sqrt{x^2-1}}$
\mathbf{e}^{bx} $(b \in \mathbb{R})$	be ^{bx}	sinh x	cosh x
$a^x (a > 0)$	$a^x \ln a$	cosh x	sinh x
$a^{bx} (b \in \mathbb{R}, a > 0)$	$ba^{bx} \ln a$	tanh x	$\frac{1}{\cosh^2 x}$
$\ln x$	$\frac{1}{x}$	$\coth x (x \neq 0)$	$-\frac{1}{\sinh^2 x}$
$\log_a x (a > 0, a \neq 1, x > 0)$	$\frac{1}{x}\log_a \mathbf{e} = \frac{1}{x\ln a}$	arsinh x	$\frac{1}{\sqrt{1+x^2}}$
$ \lg x (x > 0) $	$\frac{1}{x}\lg \mathbf{e} \approx \frac{0.4343}{x}$	arscosh $x (x > 1)$	$\frac{1}{\sqrt{x^2 - 1}}$
$\sin x$	cos x		$\frac{1}{1-x^2}$
cosx	- sin x	$ \operatorname{arcoth} x (x > 1)$	$-\frac{1}{x^2-1}$
$\tan x (x \neq (2k+1)\frac{\pi}{2}, k \in \mathbb{Z})$	$\frac{1}{\cos^2 x} = \sec^2 x$	$[f(x)]^n (n \in \mathbb{R})$	$n[f(x)]^{n-1}f'(x)$
$\cot x (x \neq k\pi, k \in \mathbb{Z})$	$\frac{-1}{\sin^2 x} = -\csc^2 x$		$\frac{f'(x)}{f(x)}$

9 Integralrechung

Die Integralrechnung ist die Umkehrung der Differentialrechnung. Bei der Differentialrechnung wird zu einer gegebenen Funktion f(x) die Ableitung f'(x) bestimmt. Bei der Integralrechung wird zu eine Ableitung f'(x) eine Funktion f(x) gesucht welche mit der Ableitung übereinstimmt.

$$F'(x) = \frac{dF}{dx} = f(x)$$

Bestimmtes Integral	Unbestimmtes Integral
$\int_a^b f(x)dx$	$\int f(x)dx = F(x) + C$
Flächeninhalt $A(x)$ $a \qquad x \qquad b \qquad x$	a Δx b

9.1 Integrationsregeln

Integrationskonstane	$\int f(x)dx = F(x) + C$	
Faktorregel	$\int a f(x) dx = a \int f(x) dx$	
Summenregel	$\int [u(x) \pm v(x)] dx = \int u(x) dx \pm \int v(x) dx$	
Potenzregel	$\int f'(x) \cdot f(x)^a = \frac{f(x)^{a+1}}{a+1} + C$	$\int \sin^3(x) \cdot \cos(x) = \frac{\sin^4(x)}{4} + C$
Logarithmusregel	$\int \frac{f'(x)}{f(x)} dx = \ln(x) + C$	$\int \frac{x^2}{1+x^3} = \ln(1+x^3) + C$
Linearität	$\int f(ax \pm b)dx = \frac{1}{a} \int f(x)dx \pm \int bdx$	
Partielle Integration	$\int u(x)v'(x)dx = u(x)v(x) - \int u'(x)v(x)dx$	$\int \underbrace{x^2}_{x'} \cdot \underbrace{\ln x}_{x} = \frac{x^3}{3} \cdot \ln x - \int \frac{x^3}{3} \cdot \frac{1}{x}$
(Produktregel)		υ
Substitution	$\int_a^b f(x)dx = \int_{g(a)}^{g(b)} f(g(t)) \cdot g'(t)dt$	$\int (x^2 + 2)^3 \cdot 2x dx // u = x^2 + 2$
		$\int u^3 \cdot 2x dx // du = 2x dx$
		$\int u^3 \cdot du = \frac{u^4}{4} = \frac{(x^2 + 2)^4}{4}$

9.2 Wichtige Integrale

$\int \sin(x)dx = -\cos(x)$	$\int \sin(a+bx)dx = -\frac{1}{b}\cos(a+bx)$
$\int \sin^2(x)dx = -\frac{1}{4}\sin(2x) + \frac{x}{2}$	$\int e^{ax+c}\sin(bx+d)dx = \frac{e^{ax+c}}{a^2+b^2}(a\sin(bx+d) - b\cos(bx+d))$
$\int \cos(x)dx = \sin(x)$	$\int \cos(a+bx)dx = \frac{1}{b}\sin(a+bx)$
$\int \cos^2(x) dx = \frac{1}{4} \sin(2x) + \frac{x}{2}$	$\int e^{ax+c}\cos(bx+d)dx = \frac{e^{ax+c}}{a^2+b^2}(a\cos(bx+d)+b\sin(bx+d))$
$\int e^x dx = e^x$	$\int e^{ax} dx = \frac{1}{a} e^{ax}$
$\int xe^{ax}dx = \frac{1}{a^2}e^{ax}(ax - 1)$	$\int x^2 e^{ax} dx = e^{ax} \left(\frac{x^2}{a} - \frac{2x}{a^2} + \frac{2}{a^3} \right)$
$\int x^n e^{ax} dx = \frac{1}{a} x^n e^{ax} - \frac{n}{a} \int x^{n-1} e^{ax} dx$	

10 Fourierreihen

Mithilfe der Fourierreihe kann ein beliebiges periodisches Signal in seine Grundschwingungen (Harmonische) aufgeteilt werden.

Fourierreihe	$f(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos(k\omega t) + b_k \sin(k\omega t) \right] \to FR[f(t)] \ \omega = \frac{2\pi}{T} = 2\pi$
Berechnung Reell	$a_0 = \frac{2}{T} \int_0^T f(t) dt, a_k = \frac{2}{T} \int_0^T f(t) \cos(k\omega_1 t) dt, b_k = \frac{2}{T} \int_0^T f(t) \sin(k\omega_1 t) dt$
Berechnung komplex	$c_k = rac{1}{T} \int_0^T f(t) \cdot e^{-jk\omega t}, f(t) = \sum_{k=-\infty}^\infty c_k \cdot e^{jk\omega t dt}$

10.1 Symmetrie

gerade Funktion	ungerade Funktion	Halbperiode 1	Halbperiode 2
$ \begin{array}{c c} f(x) & \pi \\ \hline -\pi & \pi \\ \hline T_0/2 & T_0/2 \\ \hline x \end{array} $	$ \begin{array}{c c} f(x) & \\ \hline -\pi & T_0/2 \\ \hline 0 & T_0/2 \\ \hline x \end{array} $	$f(x) = \begin{bmatrix} T_0/2 & T_0/2 \\ T_0/2 & T_0/2 \end{bmatrix} = \begin{bmatrix} T_0/2 & T_0/2 \\ T_0/2 & T_0/2 \end{bmatrix}$	$f(x) = \begin{bmatrix} T_0/2 & T_0/2 & T_0/2 \\ T_0/2 & T_0/2 & T_0/2 \end{bmatrix}$
f(-t) = f(t)	f(-t) = -f(t)	$f(t) = f(t + \pi)$	$f(t) = -f(t+\pi)$
$b_k = 0$	$a_k = 0$	$a_{2k+1} = 0$	$a_{2k} = 0$
$a_k = \frac{4}{T} \int_0^{\frac{T}{2}} f(t) \cdot \cos(k\omega_1 t) dt$	$b_k = rac{4}{T} \int\limits_0^{rac{T}{2}} f(t) \cdot \sin(k\omega_1 t) dt$	$b_{2k+1}=0$	$b_{2k}=0$
$\mathfrak{I}(c_n)=0$	$\Re(c_n)$		

10.2 Wichtige Fouriereihen

Dreieckfunktion	Rechteckfunktion	Impulsfunktion
22 22 22 24 7 10 05 05 -4 -2 0 4 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} t_1 \\ \hline \\ $
$a_0 = A$	$a_0 = 0$	$a_0 = \frac{2At_1}{T}$
$a_k = -\frac{4A}{\pi^2 k^2}$	$a_k = 0$	$a_k = \frac{A}{\pi k}(\sin(\frac{2\pi t_1}{T}k))$
$b_k = 0$	$b_k = rac{4A}{\pi k}$	$b_k = -\frac{A}{\pi k} (1 - \cos(\frac{2\pi t_1}{T}k))$

11 Fouriertransformation

Mithilfe der Fouriertransformierten kann ein endliches nicht periodisches Signal analysiert werden. Dazu wechselt man vom Zeitbereich in den Frequenzbereich.

Fourierintegral	$F(j\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$
Rücktransformierte	$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(j\omega)e^{j\omega t}d\omega$

11.1 Eigenschaften der Fouriertransformierten

Linearität	$\alpha \cdot f(t) + \beta \cdot g(t) \circ - \bullet \alpha \cdot F(j\omega) + \beta \cdot G(j\omega)$
Zeitumkehrung (Spiegelung an der Y-Achse)	$f(-t) \circ - F(-j\omega) = F^*(jw)$
Streckung im Zeitbereich	$f(\alpha t) \circ - \frac{1}{ \alpha } F\left(j\frac{\omega}{\alpha}\right) \alpha \in \mathbb{R} \setminus \{0\}$
Verschiebung im Zeitbereich	$f(t\pm t_0) \circ - \bullet F(j\omega)e^{\pm j\omega t_0}$
Verschiebung im Frequenzbereich	$f(t)e^{\pm j\omega_0t} \circ F(j(\omega \mp \omega_0))$
Ableitung im Zeitbereich	$\frac{\partial^n f(t)}{\partial t^n} \circ - \bullet (j\omega)^n F(j\omega)$
Integration im Zeitbereich	$\int_{-\infty}^{t} f(\tau)d\tau \circ - \Phi \frac{F(j\omega)}{j\omega} + F(0)\pi\delta(\omega)$
Ableitung im Frequenzbereich	$t^n f(t) \circ - j^n \frac{\partial F(j\omega)}{\partial \omega^n}$
Faltung im Zeitbereich	$f(t) * g(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau \bigcirc - \bullet F(j\omega) \cdot G(j\omega)$
Faltung im Frequenzbereich	$f(t) \cdot g(t) \circ - \bullet \frac{1}{2\pi} F(j\omega) * G(j\omega)$
Vertauschungssatz (Dualität)	$f(t) \circ - \bullet F(j\omega)$
	$F(t) \bullet - 2\pi \cdot f(-j\omega)$
Modulation	$\cos(\alpha t) \cdot f(t) \circ - \frac{1}{2} \cdot \left[F(j(\omega - \alpha)) + F(j(\omega + \alpha)) \right]$
	$\sin(\alpha t) \cdot f(t) \circ \underbrace{\frac{1}{2j}}_{\alpha} \cdot \left[F(j(\omega - \alpha)) - F(j(\omega + \alpha)) \right]$
Parseval's Theorem	$\int_{-\infty}^{\infty} f(t)g^*(t)dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega)G^*(j\omega)d\omega$
Bessel's Theorem	$\int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) ^2 d\omega$ $f(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) d\omega \qquad F(0) = \int_{-\infty}^{\infty} f(t) dt$
Anfangswerte	$f(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) d\omega \qquad F(0) = \int_{-\infty}^{\infty} f(t) dt$
∞ lange Folge von δ -Impulsen	$\sum_{n=-\infty}^{\infty} \delta(t-n \cdot t_0) \circ - \sum_{n=-\infty}^{\infty} \frac{2\pi}{t_0} \delta(\omega-n \cdot \frac{2\pi}{t_0})$

Anhang zum Kapitel 2

2.A Tabelle von Fourier-Transformationspaaren

Die Fourier-Transformationspaare sind zum Teil von [6, 47, 69] entnommen. Es gilt jeweils: $0 < (\alpha, \beta, t_0, \omega_0, A) \in \mathbb{R}, n \in \mathbb{N}$.

Tabelle 2.3: Fourier-Transformationspaare

100 Frequenzanalyse

Tabelle 2.4: Fourier-Transformationspaare

Tabelle 2.5: Fourier-Transformationspaare

102 Frequenzanalyse

Tabelle 2.6: Fourier-Transformationspaare

 ${\bf Tabelle~2.7:}~ {\bf Fourier\text{-}Transformations paare}$

104 Frequenzanalyse

 ${\bf Tabelle~2.8:}~ {\bf Fourier\text{-}Transformations paare}$

Tabelle 2.9: Fourier-Transformationspaare

12 Laplacetransformation

Mittels der Laplacetransforamtion können kausale Signale analysiert werden. Sollte das Signal nicht kausal sein wird es mit der Einschaltfunktion multipliziert.

$$F(s) = \int_{0}^{\infty} f(t)e^{-st}dt$$
 $s = \sigma + j\omega$

Originalbereich ○ *─ Bildbereich*

12.1 Eigenschaften der Laplacetransformation

Linearität	$\alpha \cdot f(t) + \beta \cdot g(t) \circ - \bullet \alpha \cdot F(s) + \beta \cdot G(s)$
Zeitskalierung	$f(\alpha t) \circ - \frac{1}{\alpha} F\left(\frac{s}{\alpha}\right) 0 < \alpha \in \mathbb{R}$
Faltung im Zeitbereich	$f(t) * g(t) = \int_{0}^{\infty} f(\tau)g(t-\tau)d\tau \circ - F(s) \cdot G(s)$
Faltung im Frequenzbereich	$f(t) * g(t) = \int_{0}^{\infty} f(\tau)g(t-\tau)d\tau \circ - F(s) \cdot G(s)$ $f(t) \cdot g(t) \circ - \frac{1}{2\pi i} \int_{c-j\infty}^{c+j\infty} F(\xi)G(s-\xi)d\xi$
Ableitung im Zeitbereich	$\frac{\partial f(t)}{\partial t} \circ - \bullet sF(s) - f(0+)$
Ableitungen im Zeitbereich	$\frac{\partial^n f(t)}{\partial t^n} \circ - \bullet s^n F(s) - s^{n-1} f(0+) - s^{n-2} \frac{\partial f(0+)}{\partial t} - \dots - s^0 \frac{\partial^{n-1} f(0+)}{\partial t^{n-1}}$
Multiplikation mit t	$t \cdot f(t) \circ - \bullet \frac{-\partial F(s)}{\partial s}$
Ableitung im Frequenzbereich	$(-t)^n f(t) \circ - \bullet \frac{\partial^n F(s)}{\partial s^n}$
Verschiebung im Zeitbereich	$f(t \pm t_0) \circ - \bullet F(s)e^{\pm t_0 s}$
Verschiebung im Frequenzbereich	$f(t)e^{\mp\alpha t} \circ \bullet F(s \pm \alpha)$
Integration	$\int_{0}^{t} f(\tau)d\tau \circ - \bullet \frac{F(s)}{s}$
Anfangswert	$\lim_{t\to 0} f(t) = \lim_{s\to \infty} sF(s)$, wenn $\lim_{t\to 0} f(t)$ existiert.
Endwert	$\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$, wenn $\lim_{t\to\infty} f(t)$ existiert.

12.2 Rücktransformation

12.2.1 Vorgehen

- 1. Benutzung einer Tabelle zugehöriger Original-, und Bildfunktionen (Korrespondenzen)
- Umformen (Kürzen, Erweitern, etc.) um auf Korrespondenz zu schliessen
- 3. Mittels Partialbruchzerlegung auf Korrespondenz schliessen

12.2.2 Laplacetabelle

12.3 Lösen von Differentialgleichungen mit Laplace

Übertragungsfunktion	$G(s) = \frac{1}{p(s)} g(t) \circ - \bullet G(s)$
Charakteristisches Polynom	p(s)
Frequenzgang	$G(j\omega) = H(\omega)$
Impulsantwort	$y_{\delta}(t) = g(t) = y'_{\sigma}(t) \circ - G(s) = \frac{1}{p(s)} = Y_{\delta}(s)$
Sprungwantwort	$y_{\sigma}(t) = \int_{0}^{t} g(u) du \circ - \bullet \frac{G(s)}{s} = \frac{1}{s \cdot p(s)} = Y_{\sigma}(s)$
Eigenschwingung	$\frac{h(s)}{p(s)}$
äussere Erregung	$\frac{F(s)}{p(s)}$
stationärer Zustand	= ungedämpfte Eigenschwingung

12.3.1 Lineare DGL mit Anfangswerten

Gegeben sei eine Differentialgleichung mit Anfangsbedingungen. Sind keine Anfangsbedingungen vorhanden können die daraus entstehenden Terme vernachlässigt werden.

$$\begin{array}{ll} \mathsf{DGL} & a_n y^n(t) + a_n - 1 y^{n-1} + ... a_1 y'(t) + a_0 y(t) = f(t) \\ \\ \mathsf{Endterm} & a_0 \cdot [Y(s)] + a_1 \cdot [sY(s) - f(0)] + a_n - 1 y^n - 1 \cdot [s^n Y(s) - s^{n-1} \cdot f(0) - s^{n-2} f'(0) ... - f^{n-1}(0)] = F(s) \\ \\ y(t) & \longleftarrow \mathsf{Y}(s) \\ y''(t) & \longleftarrow \mathsf{S}^2 Y(s) - f(0) \\ y'''(t) & \longleftarrow \mathsf{S}^2 Y(s) - s \cdot f(0) - f'(0) \\ y'''(t) & \longleftarrow \mathsf{S}^3 Y(s) - s^2 \cdot f(0) - s \cdot f'(0) - f''(0) \\ y^n(t) & \longleftarrow \mathsf{S}^n Y(s) - s^{n-1} \cdot f(0) - s^{n-2} \cdot f'(0) ... - f^{n-1}(0) \\ y^{(n)} & \longleftarrow \mathsf{S}^n Y(s) \underbrace{-s^{n-1} y_0 - \cdots - y^{(n-1)}}_{h(s)} \\ \end{array}$$

2.B Tabelle von Laplace-Transformationspaaren

Die Transformationspaare sind mehrheitlich [6, 7, 21, 47, 69] entnommen. Es gilt: $0 < \alpha \in \mathbb{R}, n \in \mathbb{N}, a, \nu \in \mathbb{C}, s = \sigma + j\omega$ und somit $\Re\{s\} = \sigma$ und $\Im\{s\} = \omega$.

#	f(t), wobei $f(t) = 0$ für $t < 0$	F(s) mit Konvergenzbereich
1	$\frac{d^n f(t)}{dt^n}$	$s^n F(s) - s^{n-1} f(0) - s^{n-2} \frac{df(0)}{dt} - \dots - \frac{d^{n-1} f(0)}{d^{n-1} t}$
2	$\int_{0}^{t} f(x)dx$	$\frac{F(s)}{s}$
3	$\frac{f(t)}{t}$	$\int_{0}^{\infty} F(s)ds$
4	$f(t-\alpha)u(t-\alpha)$	$e^{-s\alpha}F(s)$
5	$f(t+\alpha)u(t+\alpha)$	$e^{+s\alpha}\left(F(s) - \int_{0}^{a} e^{-st} f(t)dt\right)$
6	$f_1(t) * f_2(t) * f_3(t)$	$F_1(s) \cdot F_2(s) \cdot F_3(s)$
7	$f_1(t) \cdot f_2(t)$	$\frac{1}{2\pi j}(F_1(s)*F_2(s))$
8	$\lim_{t \to 0^+} f(t)$	$\lim_{s \to \infty} sF(s)$
9	$\lim_{t \to \infty} f(t)$	$\lim_{s \to \infty} sF(s)$ $\lim_{s \to 0} sF(s)$
10	u(t)	$\frac{1}{s}$ mit $\sigma > 0$
11	$\delta(t)$	$1 \text{ mit } \sigma \in \mathbb{R}$
12	$\frac{d\delta(t)}{dt}$	s
13	$\frac{t^{n-1}}{(n-1)!}$	$\frac{1}{s^n}$
14	$\frac{d\delta(t)}{dt}$ $\frac{t^{n-1}}{(n-1)!}$ $\frac{t^{n-1}e^{-at}}{(n-1)!}$ $\frac{1}{\sqrt{\pi t}}$	$\frac{1}{(s-a)^n}$
15	$\frac{1}{\sqrt{\pi t}}$	$\frac{\frac{1}{(s-a)^n}}{\frac{1}{\sqrt{s}}}$
16	$\frac{n!4^nt^{n-\frac{1}{2}}}{(2n)!\sqrt{\pi}}$	$\frac{1}{s^n\sqrt{s}}$
17	$J_{\nu}(at) \text{ mit } \Re\{\nu\} > -1$	$\frac{\frac{1}{s^n \sqrt{s}}}{\frac{(\sqrt{s^2 + a^2} - s)^{\nu}}{a^{\nu} \sqrt{s^2 + a^2}}} \text{ mit } \sigma > \Im\{a\} $ $\frac{(s - \sqrt{s^2 - a^2})^{\nu}}{a^{\nu} \sqrt{s^2 - a^2}} \text{ mit } \sigma > \Re\{a\} $
18	$I_{\nu}(at) \text{ mit } \Re\{\nu\} > -1$	$\frac{\left(s - \sqrt{s^2 - a^2}\right)}{a^{\nu} \sqrt{s^2 - a^2}} \text{ mit } \sigma > \Re\{a\} $
19	$\frac{\sin(\alpha t)}{t}$	$\arctan\left(\frac{\alpha}{s}\right) \text{ mit } \sigma > 0$
		\tan^{-1}

Tabelle 2.10: Laplace-Transformationspaare

 $J_{\nu}(at)$ ist die Bessel- oder Zylinderfunktion ν . Ordnung 1. Gattung und $I_{\nu}(at)$ ist die modifizierte Bessel-Funktion ν . Ordnung [7].

Die folgende Tabelle ist nach dem Grad des Nenners geordnet. Die Tabelle ist bis zum Nennergrad 3 vollständig und stammt von [6, 21].

F(s),	Konvergenzbereich	$f(t)$, wobei $f(t) = 0$ für $t < 0$ mit $(\alpha, \beta, \gamma) \in \mathbb{C}$.
1,	$\sigma\in\mathbb{R}$	$\delta(t)$
$\frac{1}{s}$,	$\sigma > 0$	$1 (\equiv u(t))$
$\frac{\frac{1}{s}}{\frac{1}{s+\alpha}}$,	$\sigma > -\Re\{\alpha\}$	$e^{-\alpha t}$
$\frac{1}{s^2}$,	$\sigma > 0$	t
$\frac{1}{s(s+\alpha)}$,	$\sigma > -\min\{\Re\{\alpha\},0\}$	$\frac{1-e^{-\alpha t}}{\alpha}$
$\frac{1}{(s+\alpha)(s+\beta)}$,	$\sigma > -\min\{\Re\{\alpha\},\Re\{\beta\}\}$	$\frac{e^{-\alpha t} - e^{-\beta t}}{\beta - \alpha}$
$\frac{s}{(s+\alpha)(s+\beta)}$,	$\sigma > -\min\{\Re\{\alpha\},\Re\{\beta\}\}$	$\frac{\alpha e^{-\alpha t} - \beta e^{-\beta t}}{\alpha - \beta}$
$\frac{1}{(s+\alpha)^2}$,	$\sigma > -\Re\{\alpha\}$	$te^{-\alpha t}$
$\frac{s}{(s+\alpha)^2}$,	$\sigma > -\Re\{\alpha\}$	$e^{-\alpha t}(1-\alpha t)$
$\frac{1}{s^2-\alpha^2}$,	$\sigma > \Re\{\alpha\} $	$\frac{\sinh(\alpha t)}{\alpha}$
$\frac{s}{s^2-\alpha^2}$,	$\sigma > \Re\{\alpha\} $	$\cosh(\alpha t)$
$\frac{1}{s^2+\alpha^2}$,	$\sigma > \Im\{\alpha\} $	$\frac{\sin(\alpha t)}{\alpha}$
$\frac{s}{s^2+\alpha^2}$,	$\sigma > \Im{\{\alpha\}} $	$\cos(\alpha t)$
$\frac{1}{(s+\beta)^2+\alpha^2}$,	$\sigma > \Im\{\alpha\} - \Re\{\beta\}$	$\frac{e^{-\beta t}\sin(\alpha t)}{\alpha}$
$\frac{s}{(s+\beta)^2+\alpha^2}$,	$\sigma > \Im\{\alpha\} - \Re\{\beta\}$	$\frac{e^{-\beta t}(\alpha\cos(\alpha t) - \beta\sin(\alpha t))}{\alpha}$
$\frac{1}{s^3}$,	$\sigma > 0$	$\frac{t^2}{2}$
$\frac{1}{s^2(s+\alpha)}$,	$\sigma > -\min\{\Re\{\alpha\},0\}$	$\frac{e^{-\alpha t} + \alpha t - 1}{\alpha^2}$
$\frac{1}{s(s+\alpha)(s+\beta)}$,	$\sigma > -\min\{\Re\{\alpha\},\Re\{\beta\},0\}$	$\frac{(\alpha - \beta) + \beta e^{-\alpha t} - \alpha e^{-\beta t}}{\alpha \beta (\alpha - \beta)}$ $\frac{1 - e^{-\alpha t} - \alpha t e^{-\alpha t}}{1 - \alpha t}$
$\frac{1}{s(s+\alpha)^2}$,	$\sigma > -\min\{\Re\{\alpha\},0\}$	α^2
$\frac{1}{(s+\alpha)(s+\beta)(s+\gamma)}$,	$\sigma > -\min\{\Re\{\alpha\},\Re\{\beta\},\Re\{\gamma\}\}$	$\frac{(\gamma - \beta)e^{-\alpha t} + (\alpha - \gamma)e^{-\beta t} + (\beta - \alpha)e^{-\gamma t}}{(\alpha - \beta)(\beta - \gamma)(\gamma - \alpha)}$ $\alpha(\beta - \gamma)e^{-\alpha t} + \beta(\gamma - \alpha)e^{-\beta t} + \gamma(\alpha - \beta)e^{-\gamma t}$
$\frac{s}{(s+\alpha)(s+\beta)(s+\gamma)}$,	$\sigma > -\min\{\Re\{\alpha\},\Re\{\beta\},\Re\{\gamma\}\}$	$(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)$
$\frac{s^2}{(s+\alpha)(s+\beta)(s+\gamma)}$,	$\sigma > -\min\{\Re\{\alpha\},\Re\{\beta\},\Re\{\gamma\}\}$	$\frac{-\alpha^2(\beta - \gamma)e^{-\alpha t} - \beta^2(\gamma - \alpha)e^{-\beta t} - \gamma^2(\alpha - \beta)e^{-\gamma t}}{(\alpha - \beta)(\beta - \gamma)(\gamma - \alpha)}$
$\frac{1}{(s+\alpha)(s+\beta)^2}$,	$\sigma > -\min\{\Re\{\alpha\},\Re\{\beta\}\}$	$\frac{e^{-\alpha t} - [1 + (\beta - \alpha)t]e^{-\beta t}}{(\beta - \alpha)^2}$
$\frac{s}{(s+\alpha)(s+\beta)^2}$,	$\sigma > -\min\{\Re\{\alpha\},\Re\{\beta\}\}$	$\frac{-\alpha e^{-\alpha t} + [\alpha + t\beta(\beta - \alpha)]e^{-\beta t}}{(\beta - \alpha)^2}$
$\frac{s^2}{(s+\alpha)(s+\beta)^2},$	$\sigma > -\min\{\Re\{\alpha\},\Re\{\beta\}\}$	$\frac{\alpha^2 e^{-\alpha t} + \beta(\beta - 2\alpha - t\beta^2 + \alpha\beta t)e^{-\beta t}}{(\beta - \alpha)^2}$
$\frac{1}{(s+\alpha)^3}$,	$\sigma > -\Re\{\alpha\}$	$\frac{t^2e^{-\alpha t}}{2}$
$\frac{s}{(s+\alpha)^3}$,	$\sigma > -\Re\{\alpha\}$	$\frac{(2-\alpha t)te^{-\alpha t}}{2}$
$\frac{s^2}{(s+\alpha)^3}$,	$\sigma > -\Re\{\alpha\}$	$\frac{(2-4\alpha t + \alpha^2 t^2)e^{-\alpha t}}{2}$
$\frac{1}{s[(s+\beta)^2+\alpha^2]},$	$\sigma > -\min\{\Re\{\beta\} - \Im\{\alpha\} , 0\}$	$\frac{\alpha - e^{-\beta t} [\alpha \cos(\alpha t) + \beta \sin(\alpha t)]}{\alpha (\alpha^2 + \beta^2)}$
$\frac{1}{s(s^2+\alpha^2)}$,	$\sigma > \Im\{\alpha\} $	$\frac{1-\cos(\alpha t)}{\alpha^2}$
$\frac{1}{(s+\alpha)(s^2+\beta^2)}$,	$\sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\}$	$\frac{\beta e^{-\alpha t} + \alpha \sin(\beta t) - \beta \cos(\beta t)}{\beta(\alpha^2 + \beta^2)}$
$\frac{s}{(s+\alpha)(s^2+\beta^2)},$	$\sigma > -\min\{- \Im\{\beta\} ,\Re\{\alpha\}\}$	$-\alpha e^{-\alpha t} + \alpha \cos(\beta t) + \beta \sin(\beta t)$
$\frac{s^2}{(s+\alpha)(s^2+\beta^2)},$	$\sigma > -\min\{- \Im\{\beta\} ,\Re\{\alpha\}\}$	$\frac{\alpha^2 + \beta^2}{\alpha^2 e^{-\alpha t} - \alpha \beta \sin(\beta t) + \beta^2 \cos(\beta t)}$ $\frac{\alpha^2 + \beta^2}{\alpha^2 + \beta^2}$
	$> -\min\{\Re\{\alpha\}, \Re\{\beta\} - \Im\{\gamma\} \}$	$\frac{e^{-\alpha t} - e^{-\beta t}\cos(\gamma t) + \frac{\alpha - \beta}{\gamma}e^{-\beta t}\sin(\gamma t)}{(\beta - \alpha)^2 + \gamma^2}$
	$> -\min\{\Re\{\alpha\}, \Re\{\beta\} - \Im\{\gamma\} \}$	$-\alpha e^{-\alpha t} + \alpha e^{-\beta t} \cos(\gamma t) - \frac{\alpha \beta - \beta - \gamma}{\gamma} e^{-\beta t} \sin(\gamma t)$
0	$> -\min\{\Re\{\alpha\}, \Re\{\beta\} - \Im\{\gamma\} \}$	$\frac{(\beta-\alpha)^2+\gamma^2}{\alpha^2e^{-\alpha t}+[(\alpha-\beta)^2+\gamma^2-\alpha^2]e^{-\beta t}\cos(\gamma t)-\left(\alpha\gamma+\beta\left(\gamma-\frac{\beta(\alpha-\beta)}{\gamma}\right)\right)e^{-\beta t}\sin(\gamma t)}{(\beta-\alpha)^2+\gamma^2}$
$\frac{1}{s^4}$	$\sigma > 0$	$\frac{t^3}{6}$
o ·		· ·

 ${\bf Tabelle~2.11:}~ {\bf Laplace\text{-}Transformations paare}$

13 Logische Operationen

Funktion	Buffer	NOT Nicht Inverter	AND UND Konjunktion	NAND NICHT UND	OR ODER Disjunktion	NOR NICHT ODER	EXOR EXKLUSIV ODER Antivalenz	XNOR NICHT EX. ODER Äquivalenz
Formel	а а а	ā ¬a ! a	a · b a ∧ b a&b	$\frac{\overline{a \cdot b}}{a \wedge b}$!(a&b)	a + b a ∨ b a#b	$\frac{\overline{a+b}}{\overline{a\vee b}}$! $(a\#b)$	$a \oplus b$ $a \underline{\lor} b$ $a\$b$	$ \frac{\overline{a \oplus b}}{\overline{a \vee b}} $! (a\$b)
Symbol IEEE Std 91-1984 (distinctive-shape)	>-	->>-		□ -	⊅	⇒0-	$\Rightarrow \triangleright$	⇒>>-
IEEE Std 91-1984 (rectangular-shape)	_1_	_1	&	&		≥1	=1	=1 0-
CMOS-Realisierung		y a-ffy	NAND + NOT	»—————————————————————————————————————	NOR + NOT	**************************************	la de la	EXOR + NOT
Wahrheitstabelle [a,b] = [0,0] [a,b] = [0,1] [a,b] = [1,0] [a,b] = [1,1]	0	0	0 0 0	1 1 0	0 1 1	1 0 0	0 1 1 0	1 0 0
Kurzschreibweise KDNF Kurzschreibweise KKNF	#(1) &(0)	#(0) &(1)	#(3) &(0,1,2)	#(1,2,3) &(3)	#(1,2,3) &(0)	#(0) &(1,2,3)	#(1,2) &(0,3)	#(0,3) &(1,2)
CHDL-Ausdruck Anz. Transistoren	a 4	NOT a	a AND b	a NAND b	a OR b	a NOR b	a XOR b	a XNOR b

13.1 Zahlenformate

Dezimal	Binär	Hexadezimal	Oktal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	8	0
9	1001	9	0
10	1010	Α	0
11	1011	В	0
12	1100	С	0
13	1101	D	0
14	1110	E	0
15	1111	F	0

13.2 2er-Potenzen

2^0	1
2^1	2
2^2	4
2^3	8
2^4	16
2^{5}	32
2^{6}	64
2^7	128
2^{8}	256
2^{9}	512
2^{10}	1024
2^{20}	1 <i>M</i>
2^{30}	1 <i>G</i>
2^{24}	$2^{20} + 2^4 = 1M \cdot 16 = 16M$

14 Nassi Shneidermann

15 Signale

15.1 Harmonische Schwingungen

Als harmonische Schwingung bezeichnet man eine sinusförmige Schwingung.

$$x(t) \underbrace{A}_{Amplitude} \cdot \sin(\underbrace{\omega}_{Kreisfrequenz} t + \underbrace{\phi}_{Phasenverschiebung}) + \underbrace{c}_{DC-Anteil}$$

Ordnung n	Frequenz	Name der Komponente
0	0	Gleichstromanteil
1	f_0	Grundwelle / 1.Harmonische
2	$2f_0$	1.Oberwelle / 2.Harmonische
3	$3f_0$	2.Oberwelle/ 3.Harmonische
п	nf_0	n-1.Oberwelle / n-te .Harmonische

Logarithmische Darstellungen

Lrel. (dB)	Lrel. (NP)	P2/P1	A2/A1
100.000	11.513	10^{10}	10^{5}
90.000	10.362	10^{9}	31622.777
80.000	9.210	10 ⁸	10^{4}
70.000	8.059	10^{7}	3162.278
60.000	6.908	10^{6}	10^{3}
50.000	5.756	10^{5}	316.228
40.000	4.605	10^{4}	10^{2}
30.000	3.454	10^{3}	31.623
20.000	2.303	10^{2}	10.000
19.085	2.197	81.000	9.000
19.000	2.187	79.433	8.913
18.062	2.079	64.000	8.000
18.000	2.072	63.096	7.943
17.000	1.957	50.119	7.079
16.902	1.946	49.000	7.000
16.000	1.842	39.811	6.310
15.563	1.792	36.000	6.000
15.000	1.727	31.623	5.623
14.000	1.612	25.119	5.012
13.979	1.609	25.000	5.000
13.000	1.497	19.953	4.467
12.041	1.386	16.000	4.000
12.000	1.382	15.849	3.981
11.000	1.266	12.589	3.548
10.000	1.151	10.000	3.162
9.542	1.099	9.000	3.000
9.000	1.036	7.943	2.818
8.000	0.921	6.310	2.512
7.000	0.806	5.012	2.239
6.021	0.693	4.000	2.000
6.000	0.691	3.981	1.995
5.000	0.576	3.162	1.778
4.000	0.461	2.512	1.585
3.010	0.347	2.000	1.414
3.000	0.345	1.995	1.413
2.000	0.230	1.585	1.259
1.000	0.115	1.259	1.122
0.000	0.000	1.000	1.000
-1.000	-0.115	0.794	0.891
-2.000	-0.230	0.631	0.794
-3.000	-0.345	0.501	0.708
-4.000	-0.461	0.398	0.631
-5.000	-0.576	0.316	0.562
-6.000	-0.691	0.251	0.501
-7.000	-0.806	0.200	0.447
-8.000	-0.921	0.158	0.398
-9.000	-1.036	0.126	0.355
-10.000	-1.151	0.100	0.316
-15.000	-1.727	0.032	0.178
-20.000	-2.303	10^{-2}	0.100
-30.000	-3.454	10 ⁻³	0.032
-40.000	-4.605	10-4	0.010
-50.000	-5.756	10^-5	0.003
-60.000	-6.908	10 ⁻⁶	0.001
-70.000	-8.059	10-7	0.000
-80.000	- 9.210	10 ⁻⁸	10-4
-90.000	-10.362	10-9	$3.162 \cdot 10^{-5}$
-100.000	-11.513	10^{-10}	10 ⁻⁵
	1	-	-

Verstärkungsmass L in Dezibel (dB):

$$L_P = 10 \cdot \log\left(\frac{P_2}{P_1}\right)$$
 Index P: Leistung $L_A = 20 \cdot \log\left(\frac{A_2}{A_1}\right)$ Index A: Amplitude

Dezibel L zu linear: $P_2 = P_1 \cdot 10^{\frac{L_p}{10}}$

$$P_2 = P_1 \cdot 10^{\frac{1}{10}}$$

$$A_2 = A_1 \cdot 10^{\frac{L_A}{20}}$$

Verstärkungsmass L in Neper (Np):

$$L_P = rac{1}{2} \cdot \ln\left(rac{P_2}{P_1}
ight)$$
 $L_A = \ln\left(rac{A_2}{A_1}
ight)$

Neper zu linear:

$$P_2 = P_1 \cdot e^{2L_P}$$

$$A_2 = A_1 \cdot e^{L_A}$$

Die Umrechnung zwischen dB und Np ist linear:

$$\begin{array}{l} 1 \text{ dB} = \frac{\ln(10)}{20} \text{ Np} = 0.1151 \text{ Np} \\ 1 \text{ Np} = 20 \cdot \log(\text{e}) \text{ dB} = 8.686 \text{ dB} \end{array}$$

Anstatt $\frac{X_2}{X_1}$ für Verstärkungsmasse (L) können auch $\frac{X_1}{X_2}$ für **Dämpfungsmasse** (a) verwendet werden!

(P für Leistungen, A für Amplituden)

Hilfen zur Berechnung

xdB	$T_P = P_2/P_1$	$T_A = A_2/A_1$
-xdB	$1/T_P = D_P$	$1/T_A = D_A$
x + 3dB	$T_P \cdot 2$	$T_A \sqrt{2} \approx T_A 1.414$
x + 6dB	$T_P \cdot 4$	$T_A \cdot 2$
x + 10dB	$T_P \cdot 10$	$T_A \cdot \sqrt{10} \approx T_A \cdot 3.162$

T: Verstärkungsfaktor Dämpfungsfaktor D:

Relative Pegel

dBu	Spannungspegel bezogen auf 774.6 mV (1 mW an 600Ω)
dBV	Spannungspegel bezogen auf 1 V
dΒμV	Spannungspegel bezogen auf 1 μ V
dBW	Leistungspegel bezogen auf 1 W
dBm	Leistungspegel bezogen auf 1 mW

15.3 Signalarten

Energiesignal Leistungsignal **Aperiodisch Periodisch** Zeitlich begrenzt Zeitlich unbegrenzt $P = \lim_{T \to \infty} \frac{1}{T} \cdot \int_{-\frac{T}{L}}^{+\frac{T}{2}} |x(t)|^2 dt = \infty$ $E = \int_{-\infty}^{+\infty} |x(t)|^2 dt < \infty$ $x(t) \neq x(t + n \cdot T)$ $x(t) = x(t + n \cdot T)$ **Deterministisch Stochastisch** Zeitkontinuierlich Zeitdiskret x(t) = f(t)x(t) ist für Verlauf definiert x(t) = ?x(t) ist nur an Abtastpunkten definiert **Analog** Amplitudenkontinuierlich Quantisiert **Digital** x(t) = y $x(t) = y_k$

15.4 Eigenschaften unterschiedlicher Schwingungsformen

Schwingungsform	Funktion	Gleichrichtwert	Formfaktor	Effektivwert	Scheitelfaktor	X_0	X^2	var(X)
Formel		$\overline{ x } = \frac{1}{T} \int_0^T x(t) dt$	XIIX	$X = \sqrt{X^2} = \sqrt{\frac{1}{T}} \int_{t_0}^{t_0 + T} x^2(t) dt$	$k_{ m s}=rac{ m X_{max}}{ m X_{eff}}$			
	$A \cdot sin(t)$	$\frac{2}{\pi} \approx 0.637$	$\frac{\pi}{2\sqrt{2}} \approx 1.11$	$\frac{1}{\sqrt{2}} \approx 0.707$	$\sqrt{2} \approx 1.414$	0	$\frac{A^2}{2}$	$\frac{A^2}{2}$
	$A\cdot \sin(t) $	$\frac{2}{\pi} \approx 0.637$	$\frac{\pi}{2\sqrt{2}} \approx 1.11$	$\frac{1}{\sqrt{2}} \approx 0.707$	$\sqrt{2} \approx 1.414$	$\frac{2A}{\pi}$	$\frac{A^2}{2}$	$\frac{A^2}{2} - \frac{4A^2}{\pi^2}$
	$egin{cases} A \cdot \sin(t) & 0 < t < \pi \ 0 & ext{True} \end{cases}$	$\frac{1}{\pi} \approx 0.318$	$\frac{\pi}{2} \approx 1.571$	$\frac{1}{2} = 0.5$	2	Aπ	$\frac{A^2}{4}$	$\frac{A^2}{4} - \frac{A^2}{\pi^2}$
	$A\cdot \Lambda(t)$	$\frac{1}{2} = 0.5$	$\frac{2}{\sqrt{3}} \approx 1.155$	$\frac{1}{\sqrt{3}} \approx 0.557$	$\sqrt{3} \approx 1.732$	0	$\frac{A^2}{3}$	$\frac{A^2}{3}$
	$\begin{cases} A & 0 < x < t \\ 0 & True \end{cases}$	П	1		П	0	A^2	A^2
DC		1		1	1	ı		
1		$rac{t_1}{T}$	$\sqrt{rac{T}{t_1}}$	$\sqrt{rac{t_1}{T}}$	$\sqrt{rac{T}{t_1}}$	$A\frac{t}{T}$	$A^2 \frac{t}{T}$	$\frac{A^2t}{T} - \frac{A^2t^2}{T^2}$

16 Linux-Tipps