Lecture 6: CNN Architectures

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP
Director Semillero TRIAC
Ingenieria Electronica
Universidad Popular del Cesar

Recap: Convolutional Neural Networks

Components of CNNs

Convolution Layers

Pooling Layers

Fully-Connected Layers

Activation Function

Normalization

$$\widehat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Batch Normalization

Consider a single layer y = Wx

The following could lead to tough optimization:

- Inputs x are not centered around zero (need large bias)
- Inputs x have different scaling per-element (entries in W will need to vary a lot)

Idea: force inputs to be "nicely scaled" at each layer!

Batch Normalization

"you want zero-mean unit-variance activations? just make them so."

consider a batch of activations at some layer. To make each dimension zero-mean unit-variance, apply:

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

this is a vanilla differentiable function...

Input: $x: N \times D$

$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j} \quad \text{Per-channel mean,} \\ \text{shape is D}$$

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^N (x_{i,j} - \mu_j)^2 \quad \text{Per-channel var,} \\ \text{shape is D}$$

$$\hat{x}_{i,j} = rac{x_{i,j} - \mu_j}{\sqrt{\sigma_i^2 + \varepsilon}}$$
 Normalized x, Shape is N x D

Input: $x: N \times D$

$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j} \quad \text{Per-channel mean,} \\ \text{shape is D}$$

$$\sigma_j^2 = rac{1}{N} \sum_{i=1}^N (x_{i,j} - \mu_j)^2$$
 Per-channel var, shape is D

$$\hat{x}_{i,j} = rac{x_{i,j} - \mu_j}{\sqrt{\sigma_i^2 + arepsilon}}$$
 Normalized x, Shape is N x D

Problem: What if zero-mean, unit variance is too hard of a constraint?

Input: $x: N \times D$

shift parameters:

 $\gamma, \beta: D$

 $\beta = \mu$ will recover the

CNN Architectures

Learning $\gamma = \sigma$,

identity function!

Learnable scale and

Normalized x,

Output,

Shape is $N \times D$

Shape is N x D

 $\sigma_j^2 = \frac{1}{N} \sum_{i=1}^N (x_{i,j} - \mu_j)^2 \quad \mbox{Per-channel var,} \\ \mbox{shape is D}$

[loffe and Szegedy, 2015]

 $\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$

 $y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$ 8

Batch Normalization: Test-Time

Estimates depend on minibatch; can't do this at test-time!

Input: $x: N \times D$

Learnable scale and shift parameters:

$$\gamma, \beta: D$$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function!

$$\mu_j = rac{1}{N} \sum_{i=1}^N x_{i,j}$$
 Per-channel mean, shape is D

$$\sigma_j^2 = rac{1}{N} \sum_{i=1}^N (x_{i,j} - \mu_j)^2$$
 Per-channel var, shape is D

$$\frac{x_{i,j}-\mu_j}{\sqrt{\sigma_i^2+arepsilon}}$$
 Normalized x, Shape is N x D

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$
 Output, Shape is N x D

Batch Normalization: Test-Time

Input: $x: N \times D$

$$\mu_j = {}^{\text{(I)}}_{\text{v}}$$

$$\mu_j=rac{ ext{(Running) average of}}{ ext{values seen during training}}$$

Per-channel mean, shape is D

Per-channel var,

Learnable scale and shift parameters:

$$\gamma, \beta: D$$

During testing batchnorm becomes a linear operator! Can be fused with the previous fully-connected or conv layer

 $\sigma_j^2 = \frac{\text{(Running) average of values seen during training}}{\text{(Running)}}$

 $\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$

 $y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$

shape is D Normalized x,

Output, Shape is N x D

Shape is N x D

Batch Normalization

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

$$\widehat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{\text{Var}[x^{(k)}]}}$$

Batch Normalization

- Makes deep networks **much** easier to train!
- Improves gradient flow
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!
- Behaves differently during training and testing: this
 is a very common source of bugs!

Batch Normalization for ConvNets

Batch Normalization for **fully-connected** networks

$$x: N \times D$$

Normalize

$$\mu,\sigma$$
: 1 × D

$$\gamma, \beta: 1 \times D$$

$$y = \sqrt{(x-\mu)/\sigma+\beta}$$

Batch Normalization for **convolutional** networks (Spatial Batchnorm, BatchNorm2D)

$$x: N \times C \times H \times W$$

Normalize

$$\mu, \sigma: 1 \times C \times 1 \times 1$$

$$\gamma, \beta: 1 \times C \times 1 \times 1$$

$$y = \frac{y(x-\mu)}{\sigma+\beta}$$

Layer Normalization

Batch Normalization for fully-connected networks

Normalize
$$\mu, \sigma: 1 \times D$$

$$\gamma, \beta: 1 \times D$$

$$y = \gamma(x-\mu)/\sigma + \beta$$

Layer Normalization for fully-connected networks
Same behavior at train and test!
Can be used in recurrent networks

$$\mathbf{x}: \mathbf{N} \times \mathbf{D}$$

Normalize
$$\boldsymbol{\mu}, \boldsymbol{\sigma}: \mathbf{N} \times \mathbf{1}$$

$$\mathbf{y}, \boldsymbol{\beta}: \mathbf{1} \times \mathbf{D}$$

$$\mathbf{y} = \mathbf{y}(\mathbf{x} - \boldsymbol{\mu}) / \boldsymbol{\sigma} + \boldsymbol{\beta}$$

Ba, Kiros, and Hinton, "Layer Normalization", arXiv 2016

CNN Architectures

Instance Normalization

Batch Normalization for convolutional networks

Instance Normalization for convolutional networks
Same behavior at train / test!

Normalize

$$\mu, \sigma: N \times C \times H \times W$$

 $\mu, \sigma: N \times C \times 1 \times 1$
 $\forall, \beta: 1 \times C \times 1 \times 1$
 $y = \forall (x-\mu)/\sigma + \beta$

Ulyanov et al, Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis, CVPR 2017

Comparison of Normalization Layers

Wu and He, "Group Normalization", ECCV 2018

Group Normalization

Wu and He, "Group Normalization", ECCV 2018

Components of CNNs

Convolution Layers

Pooling Layers

Fully-Connected Layers

Activation Function

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Question: How should we put them together?

Universidad Popular del Cesar

CNN Architectures

Today: CNN Architectures

Review: LeNet-5

[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

Review: Convolution

Stride:

Downsample output activations

Padding:

Preserve input spatial dimensions in output activations

Review: Convolution

Each conv filter outputs a "slice" in the activation

CNN Architectures

Review: Pooling

X

Single depth slice

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

6	8
3	4

Today: CNN Architectures

Case Studies

- AlexNet
- VGG
- GoogLeNet
- ResNet

Also....

- SENet
- Wide ResNet
- ResNeXT

- DenseNet
- MobileNets
- NASNet
- EfficientNet

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

[Krizhevsky et al. 2012]

Architecture:

CONV1

MAX POOL1

NORM1

CONV2

MAX POOL2

NORM2

CONV3

CONV4

CONV5

Max POOL3

FC6

FC7

FC8

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

W' = (W - F + 2P) / S + 1

=>

Q: what is the output volume size? Hint: (227-11)/4+1 = 55

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

W' = (W - F + 2P) / S + 1

=>

Output volume [55x55x96]

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Q: What is the total number of parameters in this layer?

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Parameters: (11*11*3 + 1)*96 = 35K

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96

$$W' = (W - F + 2P) / S + 1$$

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: (55-3)/2+1 = 27

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96

$$W' = (W - F + 2P) / S + 1$$

Second layer (POOL1): 3x3 filters applied at stride 2

Output volume: 27x27x96

Q: what is the number of parameters in this layer?

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Output volume: 27x27x96

Parameters: 0!

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96 After POOL1: 27x27x96

. . .

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons [4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:

- first use of ReLU
- used LRN layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- -Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

[55x55x48] x 2

Historical note: Trained on GTX 580 GPU with only 3 GB of memory. Network spread across 2 GPUs, half the neurons (feature maps) on each GPU.

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

CONV1, CONV2, CONV4, CONV5: Connections only with feature maps on same GPU

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons [4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

CONV3, FC6, FC7, FC8: Connections with all feature maps in preceding layer, communication across GPUs

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

ZFNet

[Zeiler and Fergus, 2013]

AlexNet but:

CONV1: change from (11x11 stride 4) to (7x7 stride 2)

CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet top 5 error: 16.4% -> 11.7%

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

[Simonyan and Zisserman, 2014]

Small filters, Deeper networks

8 layers (AlexNet)
-> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC'13 (ZFNet) -> 7.3% top 5 error in ILSVRC'14

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

5x5 conv, 256

11x11 conv, 96

Input

AlexNet

3x3 conv, 64

3x3 conv, 64

Input

VGG16

	Softmax
	FC 1000
	FC 4096
	FC 4096
	Pool
	3x3 conv, 512
	Pool
	3x3 conv, 512
Į	Pool
ı	3x3 conv, 256
	3x3 conv, 256
Į	Pool
١	3x3 conv, 128
Į	3x3 conv, 128
	Pool
	3x3 conv, 64
	3x3 conv, 64
I	Input

VGG16 VGG19

Softmax

FC 4096 FC 4096 Pool

Pool

Pool

Pool

Pool

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv)

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

FC 4096 FC 4096 Pool Pool 3x3 conv, 512 Pool Pool 3x3 conv, 128 Pool 3x3 conv, 64 3x3 conv, 64 Input

Softmax

FC 1000

	Softmax
	FC 1000
Γ	FC 4096
Г	FC 4096
	Pool
	3x3 conv, 512
	Pool
	3x3 conv, 512
	Pool
	3x3 conv, 256
	3x3 conv, 256
	Pool
	3x3 conv, 128
	3x3 conv, 128
	Pool
	3x3 conv, 64
	3x3 conv, 64
	Input

AlexNet

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers has same **effective receptive field** as one 7x7 conv layer

Q: What is the effective receptive field of three 3x3 conv (stride 1) layers?

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

AlexNet

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
P001
3x3 conv, 64

Softmax FC 1000 FC 4096 FC 4096 Pool Pool Pool Pool Pool 3x3 conv, 64 Input

VGG16 VGG19

Universidad Popular del Cesar

[Simonyan and Zisserman, 2014]

Q: What is the effective receptive field of three 3x3 conv (stride 1) layers?

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128 3x3 conv, 128
3x3 conv, 128
3x3 conv, 128 Pool

Sorumax	
FC 1000	
FC 4096	
FC 4096	
Pool	
3x3 conv, 512	
Pool	
3x3 conv, 512	
Pool	
3x3 conv, 256	
3x3 conv, 256	
Pool	
3x3 conv, 128	
3x3 conv, 128	
Pool	
3x3 conv, 64	
3x3 conv, 64	
Input	

VGG16

VGG19

[Simonyan and Zisserman, 2014]

Q: What is the effective receptive field of three 3x3 conv (stride 1) layers?

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
Pool
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

[Simonyan and Zisserman, 2014]

Q: What is the effective receptive field of three 3x3 conv (stride 1) layers?

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
Pool
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

[Simonyan and Zisserman, 2014]

Q: What is the effective receptive field of three 3x3 conv (stride 1) layers?

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

Solullax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
Pool
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

[Simonyan and Zisserman, 2014]

Q: What is the effective receptive field of three 3x3 conv (stride 1) layers?

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

Sorumax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
Pool
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers has same **effective receptive field** as one 7x7 conv layer

[7x7]

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

AlexNet

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

Softmax FC 1000 FC 4096 FC 4096 Pool Pool Pool Pool 3x3 conv, 128 3x3 conv, 128 Pool 3x3 conv, 64 3x3 conv, 64 Input

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers has same **effective receptive field** as one 7x7 conv layer

But deeper, more non-linearities

And fewer parameters: 3 * (3²C²) vs. 7²C² for C channels per layer

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

FC 4096 FC 4096 Pool Pool Pool Pool Pool 3x3 conv, 64 3x3 conv, 64 Input

Softmax

FC 1000

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
Pool
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input

AlexNet

VGG16

VGG19


```
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
                                                                                                FC 4096
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
                                                                                                FC 4096
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
                                                                                                 Pool
CONV3-128: [112x112x128] memory: 112*112*128=1.6M
                                                     params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
                                                                                                 Pool
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
                                                                                              3x3 conv, 512
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
                                                                                                 Pool
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
                                                                                              3x3 conv, 256
CONV3-512: [28x28x512] memory: 28*28*512=400K
                                                 params: (3*3*512)*512 = 2,359,296
                                                                                                 Pool
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
                                                                                              3x3 conv, 128
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
                                                                                              3x3 conv, 128
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
                                                                                                 Pool
CONV3-512: [14x14x512] memory: 14*14*512=100K
                                                 params: (3*3*512)*512 = 2,359,296
                                                                                               3x3 conv, 64
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
                                                                                              3x3 conv, 64
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
                                                                                                 Input
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
                                                                                              VGG16
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000
                                                                                              Universidad
```

Softmax

FC 1000

INPUT: [224x224x3] memory: 224*224*3=150K params: 0 (not counting biases)

CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728

CNN Architectures

```
INPUT: [224x224x3] memory: 224*224*3=150K params: 0 (not counting biases)
                                                                                                Softmax
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
                                                                                                FC 1000
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
                                                                                                FC 4096
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
                                                                                                FC 4096
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
                                                                                                 Pool
CONV3-128: [112x112x128] memory: 112*112*128=1.6M
                                                     params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
                                                                                                 Pool
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K
                                                 params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
                                                                                              3x3 conv, 512
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
                                                                                                 Pool
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
                                                                                              3x3 conv, 256
CONV3-512: [28x28x512] memory: 28*28*512=400K
                                                 params: (3*3*512)*512 = 2,359,296
                                                                                                 Pool
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
                                                                                              3x3 conv, 128
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
                                                                                              3x3 conv, 128
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
                                                                                                 Pool
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296
                                                                                              3x3 conv, 64
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
                                                                                              3x3 conv, 64
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
                                                                                                 Input
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
                                                                                              VGG16
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000
TOTAL memory: 24M * 4 bytes ~= 96MB / image (for a forward pass)
```

TOTAL parameters 138M parameters

TOTAL params: 138M parameters


```
Most memory is in
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
                                                                                         early CONV
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K
                                               params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
                                                                                        Most params are
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
                                                                                        in late FC
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000
TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters
                                                                                          Universidad
               CNN Architectures
```

INPUT: [224x224x3] memory: 224*224*3=150K params: 0

POOL2: [112x112x64] memory: 112*112*64=800K params: 0

CONV3-64: [224x224x64] memory: **224*224*64=3.2M** params: (3*3*3)*64 = 1,728

CONV3-64: [224x224x64] memory: **224*224*64=3.2M** arams: (3*3*64)*64 = 36,864

(not counting biases)

Note:

```
(not counting biases)
INPUT: [224x224x3]
                    memory: 224*224*3=150K params: 0
                                                                                                  Softmax
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
                                                                                                  FC 1000
                                                                                                             fc8
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
                                                                                                  FC 4096
                                                                                                             fc7
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
                                                                                                  FC 4096
                                                                                                             fc6
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
                                                                                                   Pool
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
                                                                                                            conv5-3
                                                                                                            conv5-2
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
                                                                                                            conv5-1
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
                                                                                                   Pool
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
                                                                                                            conv4-3
CONV3-256: [56x56x256] memory: 56*56*256=800K
                                                   params: (3*3*256)*256 = 589,824
                                                                                                            conv4-2
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
                                                                                                3x3 conv, 512
                                                                                                            conv4-1
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
                                                                                                   Pool
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
                                                                                                3x3 conv, 256
                                                                                                            conv3-2
                                                                                                3x3 conv, 256
                                                                                                            conv3-1
CONV3-512: [28x28x512] memory: 28*28*512=400K
                                                   params: (3*3*512)*512 = 2,359,296
                                                                                                   Pool
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
                                                                                                3x3 conv, 128
                                                                                                            conv2-2
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
                                                                                                3x3 conv. 128
                                                                                                            conv2-1
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
                                                                                                   Pool
CONV3-512: [14x14x512] memory: 14*14*512=100K
                                                  params: (3*3*512)*512 = 2,359,296
                                                                                                3x3 conv, 64
                                                                                                            conv1-2
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
                                                                                                            conv1-1
                                                                                                3x3 conv, 64
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
                                                                                                   Input
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
                                                                                                VGG16
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000
TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
                                                                                               Common names
TOTAL params: 138M parameters
```

CNN Architectures

Universidad Popular del Cesar

[Simonyan and Zisserman, 2014]

Details:

- ILSVRC'14 2nd in classification, 1st in localization
- Similar training procedure as Krizhevsky 2012
- No Local Response Normalisation (LRN)
- Use VGG16 or VGG19 (VGG19 only slightly better, more memory)
- Use ensembles for best results
- FC7 features generalize well to other tasks

	Softmax
	FC 1000
fc7	FC 4096
fc6	FC 4096
	Pool
conv5	3x3 conv, 256
conv4	3x3 conv, 384
	Pool
conv3	3x3 conv, 384
	Pool
conv2	5x5 conv, 256
conv1	11x11 conv, 96
	Input

	Softmax	
fc8	FC 1000	
fc7	FC 4096	
fc6	FC 4096	
	Pool	
conv5-3	3x3 conv, 512	
conv5-2	3x3 conv, 512	
conv5-1	3x3 conv, 512	
	Pool	
conv4-3	3x3 conv, 512	
conv4-2	3x3 conv, 512	
conv4-1	3x3 conv, 512	
	Pool	
conv3-2	3x3 conv, 256	
conv3-1	3x3 conv, 256	
	Pool	
conv2-2	3x3 conv, 128	
conv2-1	3x3 conv, 128	
	Pool	
conv1-2	3x3 conv, 64	
conv1-1	3x3 conv, 64	
	Input	
	1/00/10	

Softmax	Softmax		
FC 1000			
FC 4096			
FC 4096			
Pool			
3x3 conv, 5	12		
3x3 conv, 5	12		
3x3 conv, 5	12		
3x3 conv, 5	12		
Pool			
3x3 conv, 5	12		
3x3 conv, 5	12		
3x3 conv, 5	12		
3x3 conv, 5	12		
Pool			
3x3 conv, 2	56		
3x3 conv, 2	56		
Pool			
3x3 conv, 1	28		
3x3 conv, 1	28		
Pool			
3x3 conv, (54		
3x3 conv,	54		
Input			

AlexNet

VGG16

VGG19

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

[Szegedy et al., 2014]

Deeper networks, with computational efficiency

- ILSVRC'14 classification winner (6.7% top 5 error)
- 22 layers
- Only 5 million parameters!
 12x less than AlexNet
 27x less than VGG-16
- Efficient "Inception" module
- No FC layers

[Szegedy et al., 2014]

"Inception module": design a good local network topology (network within a network) and then stack these modules on top of each other

[Szegedy et al., 2014]

Naive Inception module

Apply parallel filter operations on the input from previous layer:

- Multiple receptive field sizes for convolution (1x1, 3x3, 5x5)
- Pooling operation (3x3)

Concatenate all filter outputs together channel-wise

[Szegedy et al., 2014]

Naive Inception module

Apply parallel filter operations on the input from previous layer:

- Multiple receptive field sizes for convolution (1x1, 3x3, 5x5)
- Pooling operation (3x3)

Concatenate all filter outputs together channel-wise

[Szegedy et al., 2014]

Q: What is the problem with this? [Hint: Computational complexity]

Example:

Naive Inception module

[Szegedy et al., 2014]

Example:

Q1: What are the output sizes of all different filter operations?

1x1 conv, 1y2 5x5 conv, 3x3 pool

Module input: 28x28x256

Naive Inception module

[Szegedy et al., 2014]

Example:

Q1: What are the output sizes of all different filter operations?

Filter concatenation 28x28x128 28x28x192 28x28x96 28x28x256 3x3 conv, 5x5 conv, 1x1 conv, 3x3 pool 192 96 128 Module input: Input 28x28x256

Naive Inception module

[Szegedy et al., 2014]

Example: Q2:What is output size after

filter concatenation?

Filter concatenation 28x28x128 28x28x192 28x28x96 28x28x256 3x3 conv, 5x5 conv, 1x1 conv, 3x3 pool 192 96 **128** Module input: Input 28x28x256

Naive Inception module

[Szegedy et al., 2014]

Example: Q2:What is output size after

filter concatenation?

28x28x(128+192+96+256) = 28x28x672**Filter** concatenation 28x28x128 28x28x192 28x28x96 28x28x256 3x3 conv, 5x5 conv, 1x1 conv, 3x3 pool 192 96 Module input: Input 28x28x256

Naive Inception module

[Szegedy et al., 2014]

Example:

Q2:What is output size after

filter concatenation?

28x28x(128+192+96+256) = 28x28x672**Filter** concatenation 28x28x96 28x28x128 28x28x192 28x28x256 5x5 conv, 3x3 conv, 1x1 conv, 3x3 pool 192 96 Module input: Input 28x28x256

Naive Inception module

Q: What is the problem with this? [Hint: Computational complexity]

Conv Ops:

[1x1 conv, 128] 28x28x128x1x1x256

[3x3 conv, 192] 28x28x192x3x3x256

[5x5 conv, 96] 28x28x**96x5x5x256**

Total: 854M ops

[Szegedy et al., 2014]

Example:

Q2:What is output size after

filter concatenation?

Naive Inception module

Q: What is the problem with this? [Hint: Computational complexity]

Conv Ops:

[1x1 conv, 128] 28x28x128x1x1x256 [3x3 conv, 192] 28x28x**192x3x3x256** [5x5 conv, 96] 28x28x**96x5x5x256**

Total: 854M ops

Very expensive compute

Pooling layer also preserves feature depth, which means total depth after concatenation can only grow at every layer!

[Szegedy et al., 2014]

Example: Q2:What is output size after

filter concatenation?

Naive Inception module

Q: What is the problem with this? [Hint: Computational complexity]

Solution: "bottleneck" layers that use 1x1 convolutions to reduce feature channel size

Review: 1x1 convolutions

Review: 1x1 convolutions

Alternatively, interpret it as applying the same FC layer on each input pixel

Review: 1x1 convolutions

Alternatively, interpret it as applying the same FC layer on each input pixel

[Szegedy et al., 2014]

Naive Inception module

Inception module with dimension reduction

[Szegedy et al., 2014]

Naive Inception module

1x1 conv "bottleneck" layers

Inception module with dimension reduction

[Szegedy et al., 2014]

Inception module with dimension reduction

Using same parallel layers as naive example, and adding "1x1 conv, 64 filter" bottlenecks:

Conv Ops:

[1x1 conv, 64] 28x28x64x1x1x256 [1x1 conv, 64] 28x28x64x1x1x256 [1x1 conv, 128] 28x28x128x1x1x256 [3x3 conv, 192] 28x28x192x3x3x64 [5x5 conv, 96] 28x28x96x5x5x64 [1x1 conv, 64] 28x28x64x1x1x256 Total: 358M ops

Compared to 854M ops for naive version Bottleneck can also reduce depth after pooling layer

[Szegedy et al., 2014]

Stack Inception modules with dimension reduction on top of each other

[Szegedy et al., 2014]

[Szegedy et al., 2014]

[Szegedy et al., 2014]

[Szegedy et al., 2014]

across each feature map, before final FC layer. No longer multiple expensive FC layers!

Universidad Popular del Cesar

[Szegedy et al., 2014]

Auxiliary classification outputs to inject additional gradient at lower layers (AvgPool-1x1Conv-FC-FC-Softmax)

[Szegedy et al., 2014]

22 total layers with weights

(parallel layers count as 1 layer => 2 layers per Inception module. Don't count auxiliary output layers)

[Szegedy et al., 2014]

Deeper networks, with computational efficiency

- 22 layers
- Efficient "Inception" module
- Avoids expensive FC layers
- 12x less params than AlexNet
- 27x less params than VGG-16
- ILSVRC'14 classification winner (6.7% top 5 error)

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

[He et al., 2015]

Very deep networks using residual connections

- 152-layer model for ImageNet
- ILSVRC'15 classification winner (3.57% top 5 error)
- Swept all classification and detection competitions in ILSVRC'15 and COCO'15!

[He et al., 2015]

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

[He et al., 2015]

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

[He et al., 2015]

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?

56-layer model performs worse on both test and training error

-> The deeper model performs worse, but it's not caused by overfitting!

[He et al., 2015]

Fact: Deep models have more representation power (more parameters) than shallower models.

Hypothesis: the problem is an *optimization* problem, **deeper models are harder to optimize**

[He et al., 2015]

Fact: Deep models have more representation power (more parameters) than shallower models.

Hypothesis: the problem is an *optimization* problem, deeper models are harder to optimize

What should the deeper model learn to be at least as good as the shallower model?

A solution by construction is copying the learned layers from the shallower model and setting additional layers to identity mapping.

[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

[He et al., 2015]

Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3x3 conv layers

FC 1000 Pool

3x3 conv, 512

[He et al., 2015]

Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3x3 conv layers
- Periodically, double # of filters and downsample spatially using stride 2 (/2 in each dimension) Reduce the activation volume by half.

FC 1000

[He et al., 2015]

Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3x3 conv layers
- Periodically, double # of filters and downsample spatially using stride 2 (/2 in each dimension)
- Additional conv layer at the beginning (stem)

FC 1000

Beginning conv layer

[He et al., 2015]

Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3x3 conv layers
- Periodically, double # of filters and downsample spatially using stride 2 (/2 in each dimension)
- Additional conv layer at the beginning (stem)
- No FC layers at the end (only FC 1000 to output classes)
- (In theory, you can train a ResNet with input image of variable sizes)

No FC layers

besides FC

Popular del Cesar

FC 1000

CNN Architectures

[He et al., 2015]

Total depths of 18, 34, 50, 101, or 152 layers for ImageNet

Universidad

Popular del Cesar

[He et al., 2015]

For deeper networks (ResNet-50+), use "bottleneck" layer to improve efficiency (similar to GoogLeNet)

[He et al., 2015]

For deeper networks (ResNet-50+), use "bottleneck" layer to improve efficiency (similar to GoogLeNet)

[He et al., 2015]

Training ResNet in practice:

- Batch Normalization after every CONV layer
- Xavier initialization from He et al.
- SGD + Momentum (0.9)
- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used

[He et al., 2015]

Experimental Results

- Able to train very deep networks without degrading (152 layers on ImageNet, 1202 on Cifar)
- Deeper networks now achieve lower training error as expected
- Swept 1st place in all ILSVRC and COCO 2015 competitions

MSRA @ ILSVRC & COCO 2015 Competitions

- 1st places in all five main tracks
 - ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

[He et al., 2015]

Experimental Results

- Able to train very deep networks without degrading (152 layers on ImageNet, 1202 on Cifar)
- Deeper networks now achieve lower training error as expected
- Swept 1st place in all ILSVRC and COCO 2015 competitions

MSRA @ ILSVRC & COCO 2015 Competitions

- 1st places in all five main tracks
 - ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

ILSVRC 2015 classification winner (3.6% top 5 error) -- better than "human performance"! (Russakovsky 2014)

Comparing complexity...

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Comparing complexity...

Inception-v4: Resnet + Inception!

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Universidad Popular del Cesar

VGG: most parameters, most operations

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

GoogLeNet: most efficient

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

AlexNet: Smaller compute, still memory heavy, lower accuracy

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

ResNet: Moderate efficiency depending on model, highest accuracy

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

"Good Practices for Deep Feature Fusion"

[Shao et al. 2016]

- Multi-scale ensembling of Inception, Inception-Resnet, Resnet,
 Wide Resnet models
- ILSVRC'16 classification winner

	Inception- v3	Inception- v4	Inception- Resnet-v2		Wrn-68-3	Fusion (Val.)	Fusion (Test)
Err. (%)	4.20	4.01	3.52	4.26	4.65	2.92 (-0.6)	2.99

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Squeeze-and-Excitation Networks (SENet)

[Hu et al. 2017]

 Add a "feature recalibration" module that learns to adaptively reweight feature maps

- Global information (global avg. pooling layer) + 2 FC layers used to determine feature map weights
- ILSVRC'17 classification winner (using ResNeXt-152 as a base architecture)

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

But research into CNN architectures is still flourishing

Identity Mappings in Deep Residual Networks

[He et al. 2016]

- Improved ResNet block design from creators of ResNet
- Creates a more direct path for propagating information throughout network
- Gives better performance

Wide Residual Networks

[Zagoruyko et al. 2016]

 Argues that residuals are the important factor, not depth

 User wider residual blocks (F x k filters instead of F filters in each layer)

50-layer wide ResNet outperforms
 152-layer original ResNet

 Increasing width instead of depth more computationally efficient (parallelizable)

Aggregated Residual Transformations for Deep Neural Networks (ResNeXt)

[Xie et al. 2016]

 Also from creators of ResNet

 Increases width of residual block through multiple parallel pathways ("cardinality")

 Parallel pathways similar in spirit to Inception module

Other ideas...

Densely Connected Convolutional Networks (DenseNet)

Efficient networks...

MobileNets: Efficient Convolutional Neural Networks for [Howard et al. 2017] Mobile Applications

- Depthwise separable convolutions replace standard convolutions by factorizing them into a depthwise convolution and a 1x1 convolution Much more efficient, with little loss in accuracy
- Follow-up MobileNetV2 work in 2018 (Sandler et al.) ShuffleNet: Zhang et al.
- **CVPR 2018**

CNN Architectures

BatchNorm 9C²HW | Conv (3x3, C->C)

C²HW

Standard network Total compute:9C2HW

Pool

Pool 9CHW aroups=C **MobileNets** Total compute:9CHW + C²HW Universidad

Conv (1x1, C->C) BatchNorm Conv (3x3, C->C,

BatchNorm

Pool

Pointwise

Depthwise

convolutions

convolutions

Learning to search for network architectures...

Neural Architecture Search with Reinforcement Learning (NAS)

[Zoph et al. 2016]

- "Controller" network that learns to design a good network architecture (output a string corresponding to network design)
- Iterate:
 - 1) Sample an architecture from search space
 - Train the architecture to get a "reward" R
 corresponding to accuracy
 - 3) Compute gradient of sample probability, and scale by R to perform controller parameter update (i.e. increase likelihood of good architecture being sampled, decrease likelihood of bad architecture)

Learning to search for network architectures...

Learning Transferable Architectures for Scalable Image

Recognition

[Zoph et al. 2017]

- Applying neural architecture search (NAS) to a large dataset like ImageNet is expensive
- Design a search space of building blocks ("cells") that can be flexibly stacked
- NASNet: Use NAS to find best cell structure on smaller CIFAR-10 dataset, then transfer architecture to ImageNet
- Many follow-up works in this space e.g. AmoebaNet (Real et al. 2019) and ENAS (Pham, Guan et al. 2018)

But sometimes smart heuristic is better than NAS ...

EfficientNet: Smart Compound Scaling

[Tan and Le. 2019]

- Increase network capacity by scaling width, depth, and resolution, while balancing accuracy and efficiency.
- Search for optimal set of compound scaling factors given a compute budget (target memory & flops).
- Scale up using smart heuristic rules

```
depth: d=\alpha^{\phi} width: w=\beta^{\phi} resolution: r=\gamma^{\phi} s.t. \alpha\cdot\beta^2\cdot\gamma^2\approx 2 \alpha\geq 1, \beta\geq 1, \gamma\geq 1
```


Efficient networks...

Summary: CNN Architectures

Case Studies

- AlexNet
- VGG
- GoogLeNet
- ResNet

Also....

- SENet
- Wide ResNet
- ResNeXT

- DenseNet
- MobileNets
- NASNet

Main takeaways

AlexNet showed that you can use CNNs to train Computer Vision models. **ZFNet**, **VGG** shows that bigger networks work better **GoogLeNet** is one of the first to focus on efficiency using 1x1 bottleneck convolutions and global avg pool instead of FC layers **ResNet** showed us how to train extremely deep networks

- Limited only by GPU & memory!
- Showed diminishing returns as networks got bigger

After ResNet: CNNs were better than the human metric and focus shifted to Efficient networks:

- Lots of tiny networks aimed at mobile devices: **MobileNet**, **ShuffleNet Neural Architecture Search** can now automate architecture design

Summary: CNN Architectures

- Many popular architectures are available in model zoos.
- ResNets are currently good defaults to use.
- Networks have gotten increasingly deep over time.
- Many other aspects of network architectures are also continuously being investigated and improved.

Transfer learning

You need a lot of a data if you want to train/use CNNs?

AlexNet: 64 x 3 x 11 x 11

Test image L2 Nearest neighbors in <u>feature</u> space

1. Train on Imagenet

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64

Image

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

1. Train on Imagenet

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64 **Image**

2. Small Dataset (C classes)

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

1. Train on Imagenet

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64 **Image**

2. Small Dataset (C classes)

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

Universidad Popular del Cesar

1. Train on Imagenet

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64

Image

2. Small Dataset (C classes)

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

3. Bigger dataset

Universidad

Popular del Cesar

CNN Architectures

	very similar dataset	very different dataset
very little data	?	?
quite a lot of data	?	?

	very similar dataset	very different dataset
very little data	Use Linear Classifier on top layer	?
quite a lot of data	Finetune a few layers	?

	very similar dataset	very different dataset	
very little data	Use Linear Classifier on top layer	You're in trouble Try linear classifier from different stages	
quite a lot of data	Finetune a few layers	Finetune a larger number of layers	

Transfer learning with CNNs is pervasive... (it's the norm, not an exception)

Image Captioning: CNN + RNN

Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2015

Transfer learning with CNNs is pervasive... (it's the norm, not an exception)

Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes.

Universidad
Popular del Cesar

Transfer learning with CNNs is pervasive... (it's the norm, not an exception)

Transfer learning with CNNs - Architecture matters

Object detection on MSCOCO

Girshick, "The Generalized R-CNN Framework for Object Detection", ICCV 2017 Tutorial on Instance-Level Visual Recognition

Transfer learning with CNNs is pervasive... But recent results show it might not always be necessary!

Training from scratch can work just as well as training from a pretrained ImageNet model for object detection

But it takes 2-3x as long to train.

They also find that collecting more data is better than finetuning on a related task

He et al, "Rethinking ImageNet Pre-training", ICCV 2019 Figure copyright Kaiming He, 2019. Reproduced with permission.

Takeaway for your projects and beyond:

Have some dataset of interest but it has < ~1M images?

- 1. Find a very large dataset that has similar data, train a big ConvNet there
- 2. Transfer learn to your dataset

Deep learning frameworks provide a "Model Zoo" of pretrained models so you don't need to train your own

TensorFlow: https://github.com/tensorflow/models

PyTorch: https://github.com/pytorch/vision

Next time: Training Neural Networks

