

UNIVERSIDAD DEL BÍO-BÍO FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMATICA

Guía Formativa Algebra y Trigonometría M2

- 1.- Halle el décimo término de una progresión geométrica cuyos quinto y sexto término son 2 y 3 respectivamente
- $2.\text{-}\,$ Si se invierten US\$1000 $\,$ a 7% de interés compuesto anual , halle la cantidad en la cuenta después de 20 años
- 3.- Escriba los decimales periódicos dados como un cociente de enteros
- a) 0.444... b) 2.484848...
- 4.- Una pareja decide ahorrar US\$5 cada mes durante su primer año de matrimonio, US\$ 15 cada mes durante el segundo año, US\$ 25 cada mes durante el tercer año , y así sucesivamente aumentando la cantidad mensual US\$10 cada año . Halle la cantidad que habrá ahorrado cada mes del decimoquinto año
- 5.- En el problema anterior , encuentre una fórmula para la cantidad que la pareja habrá ahorrado cada mes del año n-ésimo
- 6.- Dado que $\tan\theta$ = -2 y $\sin\theta$ > 0, encuentre los valores exactos de las cinco funciones trigonométricas restantes de θ .
- 7.- Si $\cot \theta = m$ y $\theta \in \text{IIIC}$, hallar las restantes funciones trigonométricas
- 8.- Encuentre el valor exacto de Tan(105⁰)
- 9.- Si α es un ángulo del IIC, β es un ángulo del IIIC, sen α = 8/17, tan β = 3/4, halle i) sen $(\alpha + \beta)$, ii) sen $(\alpha \beta)$, iii) cos $(\alpha + \beta)$, iv) cos $(\alpha \beta)$ ¿En qué cuadrante se sitúa el lado terminal de $\alpha + \beta$, $\alpha \beta$?
- 11.- La base de un triángulo isósceles mide 8 metros y el ángulo opuesto a la base $30^{\rm 0}$. Determinar las longitudes de las tres alturas del triángulo
- 10.- Desde un punto de observación en un edificio frente al océano , los ángulos de depresión de dos botes alineados son $45 \text{ y } 60^{\circ}$, : Determinar la distancia entre los botes si el punto de observación está a una altura de 60 metros
- 11.- Una persona se encuentra en la ventana de su apartamento que está situado a 8 metros del suelo y observa el edificio de enfrente de la siguiente manera : La parte superior , con un ángulo de elevación de 30º y la parte inferior con un ángulo de depresión de 45º. Determinar la altura del edificio de enfrente
- 12.- Demuestre las siguientes identidades trigonométricas:

a)
$$\frac{1-sen\theta}{cos\theta} = \frac{cos\theta}{1+sen\theta}$$

b)
$$\frac{\tan^2\alpha}{1+\tan^2\alpha} = \operatorname{sen}^2\alpha$$

c) $sen^3\alpha + cos^3\alpha = (sen\alpha + cos\alpha)(1 - sen\alpha cos\alpha)$