

Gradient-free Policy Architecture Search and Adaptation

Sayna Ebrahimi, Anna Rohrbach, Trevor Darrell UC Berkeley

Overview

Bojarski, et. al. 2016

Xu et. al. (2016)

Our contributions:

Using **gradient-free optimization** for:

- Architecture search on demonstration to mimic expert policy
- Adapting the learnt policy to the target domain by giving rewards resulting in a safe learning method

Architecture Search using GF-optimization

Optimizing the reward function by: Perturbing the parameters in random directions RNN (Parent)¹ Evaluate the reward due to the applied noise Use finite difference to estimate the gradients and update! Predicts properties of a layer Train with **GF-optimization** Train the Child network¹ Reward function: Optimizes both cost and performance by reaching a certain performance first and growing the architecture Obtain an evaluation metric as the if performance improves reward

Architecture Search for Behavioral Cloning on GTA-V

Demonstrations:

~2.2M images collected by expert policy, Labeled with steering angle, brake, throttle

Driving with Behaviorally Cloned Models

Baseline (Bojarski *et. al.*) BC on demo. in source (S), Testing on target (T) domain

Our large network BC on demo. in source (S), Testing on target (T) domain

Comparison of total loss between cloned models

Adapting to Target Domain with Rewards

Binary rewards received from the game environment based on:

- Lane keeping
- No crash of any kind

Our large network Demo on S, Rewards on S, Testing on T

Our large network Demo on S, Rewards on T, Testing on T

Our large network Demo on S, Rewards on S+T, Testing on T

Safe Learning

- Learning with no demonstrations is a hassle!
- Our large network reaches to 100% of averaged reward after 53 hours training (90 minutes with no mistake in its last episode) while baseline reaches 97.3% of averaged reward after 74 hours

This is how it looks like to learn with no demonstrations!

Final Remarks

- We performed architecture search to mimic expert policy, optimizing both performance and computational cost and outperformed the baseline (Bojarski et. al.)
- We successfully adapted the learned policy to a new domain by using rewards received from the environment.
- We showed that combining imitation learning with a reward-based approach can achieve remarkably better results, faster convergence, as well as starting with less number of crashes (safe learning).

Thank you!

https://saynaebrahimi.github.io/corl.html

