EPITA / S₃		Octobre 2016
NOM:	PRENOM:	GDOUPE .

Contrôle 1 de Physique

Les calculatrices et les documents ne sont pas autorisés. Réponses exclusivement sur le sujet

Exercice 1 (4 points)

On considère deux charges ponctuelles identiques et positives, placées respectivement aux points A et B. Le point C appartient à la médiatrice de AB, tel que CA = CB = a. On pose OC = d.

- 1- Représenter sur le schéma ci-dessus les vecteurs champs électrostatiques créés par chacune des charges au point C. Représenter le champ résultant au même point C.
- 2- Exprimer les intensités : $E_A(C)$ et $E_B(C)$, en fonction de k, q et a, ainsi que celle du vecteur champ résultant: E(C), en fonction de k, q, a et d.

3- On place maintenant au point C, une charge négative (-q). Représenter sur le même schéma, l force électrostatique résultante qui s'exerce sur la charge (-q).				
En déduire l'expression de la norme de la force exercée sur (-q), en fonction de k, q, a et d.				

Exercice 2 (6 points)

On considère quatre charges ponctuelles placées respectivement aux sommets A, C, et D d'un carré ABCD de côté a.

- 1- Représenter sur le schéma ci-dessus, les vecteurs champs électrostatiques, créés par chacune des charges, au point B.
- 2- Exprimer les intensités de chacun de ces vecteurs vecteurs, en déduire l'intensité du vecteur champ résultant : E(B). (Donner les expressions en fonction de k, q et a).

Exercice 4 (6 points)

A l'intérieur d'un électroscope, deux sphères identiques, de charges égales à Q et de masses égales m se repoussent du fait de leurs charges positives. Après répulsion les fils de longueur L qui les retiennent font un angle θ avec la verticale et les 2 sphères sont en équilibre.

1- Faire le bilan des forces appliquées sur l'une des 2 sphères. Représenter ces forces.
2- Ecrire la condition d'équilibre d'une sphère de masse m. (Penser à projeter dans un repère $(M\bar{x}, M\bar{y})$ où M est le centre de la sphère.
B- a) En déduire la charge Q d'une sphère donnée par : $Q = 2L \cdot \sin(\theta) \sqrt{\frac{m.g. \tan(\theta)}{k}}$
Dù k est la constante de Coulomb, g est le champ de pesanteur, L la longueur du fil, θ est l'angle entre le fil et la verticale et m est la masse de la sphère.

b) Faire le calcul avec : $g = 10ms^{-2}$, $m = 10\sqrt{3}$ g, $\theta = 30^{\circ}$, $L = 70cm$, $k = 9.10^{9} SI$.			
Exercice 4	(4 points)		
Une distribution de c	charges sphérique crée un potentiel électrique V(M) donnée par l'expression :		
	$V(r,\theta,\varphi) = \frac{C_1}{r}\sin(\theta)\exp(-C_2.\varphi)$		
	posante E_r , E_{θ} et E_{φ} du vecteur champ électrique, qui dérive de ce potentiel. Les radient en coordonnées sphériques sont : $grad \left(\frac{\partial}{\partial r}; \frac{1}{r} \frac{\partial}{\partial \theta}; \frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi} \right)$		
2- Calculer ces comp que la norme du ve	posantes au point M (r = 10^{-2} m, $\theta = \pi/2$, $\varphi = 0$, $C_1 = 10^{-3}$ V.m et $C_2 = 1$ rad ⁻¹), ainsi ecteur champ \vec{E} .		