





# Algorithmen und Datenstrukturen

Wintersemester 2018/19
12. Vorlesung

Hashing

# Übungen

- Begründen Sie grundsätzlich alle Behauptungen außer die Aufgabe verlangt explizit keine Begründung.
- Pseudocode allein genügt nie!
   Algorithmen immer (auch) mit Worten erklären.
   Verweisen Sie dabei auf Zeilen Ihres Pseudocodes.
- Bitte geben Sie auf Ihren Lösungen immer die Nummer Ihrer Übungsgruppe an!
- Kommentieren Sie Ihren Java-Code beim Programmieren! Das hilft Fehler zu vermeiden. Außerdem verstehen Sie Ihren Code auch noch beim nächsten Mal, wenn Sie draufschauen.

### What's the problem?

#### Wörterbuch

Spezialfall einer dynamischen Menge

Anwendung: im Compiler Symboltabelle für Schlüsselwörter

### **Abstrakter Datentyp**

stellt folgende Operationen bereit:

Insert, Delete, Search

### **Implementierung**

heute: Hashing (engl. to hash = zerhacken, kleinschneiden)

Suchzeit: – im schlechtesten Fall  $\Theta(n)$ ,

- erwartet O(1) unter akzeptablen Annahmen

### Direkte Adressierung

**Annahmen:** – Schlüssel aus kleinem *Universum*  $U = \{0, ..., m-1\}$ 

- Schlüssel paarweise verschieden (dyn. Menge!)



### Direkte Adressierung

**Annahmen:** – Schlüssel aus kleinem *Universum*  $U = \{0, ..., m-1\}$ 

Schlüssel paarweise verschieden (dyn. Menge!)

#### **Abs. Datentyp**

 $\mathsf{HashDA}(\mathsf{int}\ m)$ 

ptr Insert(key *k*, info *i*)

Delete(key k)

ptr Search(key k)

### **Implementierung**

- // lege neuen Datensatz an // und initialisiere ihn mit i T[k] = new info(i)
- ullet Speicher freigeben, auf den T[k] zeigt
- $\bullet$  T[k] = nil

return T[k]

#### Laufzeiten?

Ins, Del, Search O(1)im schlechtesten Fall

## Hashing mit Verkettung

**Annahme:** großes Universum U, d.h.  $|U| \gg |K|$ 



### Hashing mit Verkettung

Voraussetzungen:  $|U| \gg |K|$ , Zugriff auf Hashfunktion h

### Abs. Datentyp

HashChaining( int *m*)

ptr Insert(key k)

Delete(ptr x)

ptr Search(key k)

### **Implementierung**

### **Aufgabe:**

Schreiben Sie Insert, Delete & Search. Verwenden Sie Methoden der DS List!

### Hashing mit Verkettung

Voraussetzungen:  $|U| \gg |K|$ , Zugriff auf Hashfunktion h

### Abs. Datentyp

HashChaining( int *m*)

ptr Insert(key k)

Delete(ptr x)

ptr Search(key k)

### **Implementierung**

**return** T[h(k)].Insert(k)

T[h(x.key)]. Delete(x)

**return** T[h(k)].Search(k)

### Analyse

**Definition:** 

Die Auslastung  $\alpha$  einer Hashtabelle sei n/m, also der Quotient der Anzahl der gespeicherten Elemente und der Tabellengröße.

Bemerkung:  $\alpha$  ist die durchschnittliche Länge einer *Kette*.



Laufzeit:

 $\Theta(n)$  im schlimmsten Fall: z.B.  $h(k) = 0 \ \forall k \in K$ .

**Annahme:** 

Einfaches uniformes Hashing:

jedes Element von U wird mit gleicher WK in jeden der m Einträge der Tabelle gehasht – unabhängig von anderen Elementen.

D.h. 
$$\Pr[h(k) = i] = 1/m$$

### Suche

- Fälle: 1) erfolglose Suche
  - 2) erfolgreiche Suche

Notation: 
$$n_j = T[j].length$$
 für  $j = 0, 1, ..., m-1$ .

Dann gilt:  $n = n_0 + n_1 + \cdots + n_{m-1}$ .

 $\textbf{E}[n_j] = n/m = \alpha$ 

- Satz. Unter der Annahme des einfachen uniformen Hashings durchsucht eine *erfolglose* Suche erwartet  $\alpha$  Elemente.
- Beweis. Wenn die Suche nach einem Schlüssel k erfolglos ist, muss T[h(k)] komplett durchsucht werden.

$$\mathbf{E}[T[h(k)].length] = \mathbf{E}[n_{h(k)}] = \alpha.$$

### Erfolgreiche Suche

Satz. Unter der Annahme des einfachen uniformen Hashings durchsucht eine *erfolgreiche* Suche erwartet höchstens  $1+\alpha/2$  Elemente.

Beweis. Noch 'ne Annahme:

Jedes der n Elemente in T ist mit gleicher WK das gesuchte Element x.

# durchsuchte Elem. = # Elem. vor x in T[h(x)] + 1

X = # Elem., die  $nach \times in T[h(x)]$  eingefügt wurden + 1

Sei  $x_1, x_2, \ldots, x_n$  die Folge der Schlüssel in der Reihenfolge des Einfügens.

Definiere Indikator-ZV:  $X_{ij} = 1$  falls  $h(x_i) = h(x_i)$ .

Klar:  $\mathbf{E}[X_{ij}] = \mathbf{Pr}[X_{ij} = 1] = 1/m$  [einf. unif. Hashing!]

## Erfolgreiche Suche

$$X = \#$$
 Elem., die nach x in  $T[h(x)]$  eingefügt wurden  $+1$ 

$$\mathbf{E}[X] = \frac{1}{n} \sum_{i=1}^{n} \mathbf{E}[1 + \# \text{ Elem., die nach } x_i \text{ in } T[h(x_i)] \text{ eingefügt wurden}]$$

$$= \frac{1}{n} \sum_{i=1}^{n} 1 + \frac{1}{n} \sum_{i=1}^{n} \mathbf{E} \left[ \# \text{ Elem. } x_{j} \text{ mit } j > i \text{ und } h(x_{i}) = h(x_{j}) \right]$$

$$\sum_{j=i+1}^{n} X_{i_j}$$

Definiere Indikator-ZV:  $X_{ij} = 1$  falls  $h(x_i) = h(x_j)$ .

## Erfolgreiche Suche

X = # Elem., die nach x in T[h(x)] eingefügt wurden +1

$$\mathbf{E}[X] = \frac{1}{n} \sum_{i=1}^{n} \mathbf{E}[1 + \# \text{ Elem., die nach } x_i \text{ in } T[h(x_i)] \text{ eingefügt wurden}]$$

$$= \frac{1}{n} \sum_{i=1}^{n} 1 + \frac{1}{n} \sum_{i=1}^{n} \mathbf{E} \left[ \# \text{ Elem. } x_j \text{ mit } j > i \text{ und } h(x_i) = h(x_j) \right]$$

$$= 1 + \frac{1}{n} \sum_{i=1}^{n} \qquad \qquad \mathsf{E} \left[ \sum_{j=i+1}^{n} X_{ij} \right]$$

$$=1+\frac{1}{n}\sum_{i=1}^{n}\sum_{j=i+1}^{n}E[X_{ij}] = 1+\frac{1}{nm}\sum_{i=1}^{n}\sum_{j=i+1}^{n}1$$

$$=1+\frac{1}{nm}\left(n^2-\frac{n^2+n}{2}\right)=1+\frac{n^2-n}{2nm}=1+\frac{n-1}{2m}<1+\frac{\alpha}{2}$$

## Zusammenfassung Ergebnisse

- Satz. Unter der Annahme des einfachen uniformen Hashings durchsucht beim Hashing mit Verkettung eine
  - erfolgreiche Suche erwartet höch.  $1+\alpha/2$  Elemente
  - erfolglose Suche erwartet  $\alpha$  Elemente.

Und Einfügen? Und Löschen?

Satz. Unter der Annahme des einfachen uniformen Hashings laufen alle Wörterbuch-Operationen in (erwartet) konstanter Zeit, falls n = O(m).

### Was ist eine gute Hashfunktion?

- 1. so "zufällig" wie möglich um der Annahme des einfachen uniformen Hashings möglichst nahe zu kommen.
  - Hashfunktion sollte die Schlüssel aus dem Universum U möglichst gleichmäßig über die m Plätze der Hashtabelle verteilen.
  - Hashfunktion sollte Muster in der Schlüsselmenge K gut auflösen.

Beispiel: U = Zeichenketten, K = Wörter der dt. Sprache h: nimm die ersten drei Buchstaben  $\longrightarrow$  Zahl

schlecht: – viele Wörter fangen mit "sch" an

 $\Rightarrow$  selber Hashwert

andere Buchst. haben keinen Einfluss

2. einfach zu berechnen!

Annahme: Alle Schlüssel sind (natürliche) Zahlen.

Suche also Hashfunktionen:  $\mathbb{N} \to \{0, \ldots, m-1\}$ 

#### **Rechtfertigung:**

| 33 | !  | 49 | 1 | 65 | A | 81 | Q | 97   | a | 113 | q  |
|----|----|----|---|----|---|----|---|------|---|-----|----|
| 34 |    | 50 | 2 | 66 | В | 82 | R | 98   | b | 114 | r  |
| 35 | #  | 51 | 3 | 67 | C | 83 | S | 99   | С | 115 | S  |
| 36 | \$ | 52 | 4 | 68 | D | 84 | T | 100  | d | 116 | t  |
| 37 | %  | 53 | 5 | 69 | E | 85 | U | 101  | е | 117 | u  |
| 38 | &  | 54 | 6 | 70 | F | 86 | V | 102  | f | 118 | V  |
| 39 | ,  | 55 | 7 | 71 | G | 87 | W | 103  | g | 119 | W  |
| 40 | (  | 56 | 8 | 72 | Н | 88 | X | 104  | h | 120 | x  |
| 41 | )  | 57 | 9 | 73 | Ι | 89 | Y | 105  | i | 121 | У  |
| 42 | *  | 58 | : | 74 | J | 90 | Z | 106  | j | 122 | Z  |
| 43 | +  | 59 | ; | 75 | K | 91 |   | 107  | k | 123 | {  |
| 44 | ,  | 60 | < | 76 | L | 92 | \ | 108  | 1 | 124 | -1 |
| 45 | _  | 61 | = | 77 | M | 93 | ] | 109  | m | 125 | }  |
| 46 | •  | 62 | > | 78 | N | 94 | ^ | 110  | n | 126 | ~  |
| 47 | /  | 63 | ? | 79 | 0 | 95 |   | _111 | 0 | 127 | _  |
| 48 | 0  | 64 | 0 | 80 | P | 96 | ( | 112  | p |     |    |

American
Standard
Code of
Information
Interchange

Zum Beispiel:

AW 
$$\rightarrow$$
 (65, 87)<sub>10</sub> = (1000001, 1010111)<sub>2</sub>  $\rightarrow$  1000001 1010111<sub>2</sub>   
=  $65 \cdot 128 + 87 = 8407_{10}$ 

### Divisionsmethode

Hashfunktion 
$$h\colon\mathbb{N}\to\{0,\ldots,m-1\}$$
  $k\mapsto k \bmod m$  Beispiel:  $h(k)=k \bmod 1024$  
$$h(1026)=2 \qquad 1026_{10}=01000000010_2$$
 
$$h(2050)=2 \qquad 2050_{10}=10000000010_2$$

D.h. die 2 höherwertigsten Stellen werden von h ignoriert

Moral: vermeide m = Zweierpotenz

**Strategie:** wähle für *m* eine Primzahl, entfernt von Zweierpotenz

**|** 

löst Muster gut auf

### Multiplikationsmethode

Hashfunktion 
$$h \colon \mathbb{N} \to \{0, \dots, m-1\}$$
  $k \mapsto \lfloor m \cdot (\underbrace{kA \bmod 1}) \rfloor$ , wobei  $0 < A < 1$ . gebrochener Anteil von  $kA$  d.h.  $kA - \lfloor kA \rfloor$ 

- Verschiedene Werte von A "funktionieren" verschieden gut.
  - gut: z.B.  $A \approx \frac{\sqrt{5}-1}{2}$  [Knuth: The Art of Computer Programming III, '73]
- Vorteil ggü. Divisionsmethode: Wahl von m relativ beliebig. Insbesondere m = Zweierpotenz möglich.
  - ⇒ schnell berechenbar (in Java verschiebt a << s die Dualzahlendarstellung von a um s Stellen nach links)

## Hashing mit offener Adressierung

Alle Elemente werden direkt in der Hashtabelle gespeichert.

 $\Rightarrow$  Tabelle kann volllaufen  $\Rightarrow \alpha \leq 1$ 



# Hashing mit offener Adressierung

### Abs. Datentyp

HashOA(int *m*)

int Insert(key k)

int Search(key k)

### **Implementierung**

$$T = \text{new key}[0..m-1]$$

for  $j = 0$  to  $m-1$  do  $T[j] = -1$ 
 $i = 0$ 

repeat

 $\begin{vmatrix} j = h(k, i) \\ \text{if } T[j] = -1 \end{vmatrix}$  then

 $\begin{vmatrix} T[j] = k \\ \text{return } j \end{vmatrix}$ 

else  $i = i + 1$ 

until  $i == m$ 

error "table overflow"

Schreiben Sie Search mit repeat-Schleife!

**Aufgabe:** 

# Hashing mit offener Adressierung

### Abs. Datentyp

 $\mathsf{HashOA}(\mathsf{int}\ m)$ 

int Insert(key k)
Search

...und Delete()?

Umständlich!
Dann lieber
Hashing mit
Verkettung!

int Search(key k)

### **Implementierung**

```
T = \text{new key}[0..m - 1]
for j = 0 to m - 1 do T[j] = -1
i = 0
repeat
   j = \frac{h(k, i)}{\text{if } T[j]} = \frac{k}{2} \text{ then}
      T[i] = k
        return j
    else i = i + 1
until i == m or T[j] == -1
error "table overfloweturn Aufgabe:
Schreiben Sie Search mit repeat-Schleife!
```

### Berechnung von Sondierfolgen

Hashfkt. für offene Adr.  $h: U \times \{0, ..., m-1\} \rightarrow \{0, ..., m-1\}$  $\langle h(k, 0), h(k, 1), ..., h(k, m-1) \rangle$  heißt *Sondierfolge* (für k).

### Voraussetzungen:

- eine Sondierfolge ist eine Permutation von  $\langle 0,1,\ldots,m-1\rangle$  (Sonst durchläuft die Folge nicht alle Tabelleneinträge genau  $1\times !$ )
- Existenz von "gewöhnlicher" Hashfkt  $h_0\colon U o\{0,\ldots,m-1\}$

### Verschiedene Typen von Sondierfolgen:

- Lineares Sondieren:  $h(k, i) = (h_0(k) + i) \mod m$
- Quadratisches Sondieren:  $h(k, i) = (h_0(k) + c_1i + c_2i^2) \mod m$
- Doppeltes Hashing:  $h(k, i) = (h_0(k) + i \cdot h_1(k)) \mod m$

### Lineares Sondieren

Hashfunktion  $h(k, i) = (h_0(k) + i) \mod m$ 

**Beispiel:** 

**Problem:** 

primäres

Clustering

$$h_0(k) = k \mod 9$$
 und  $m = 9$ 

Füge Schlüssel 4, 5, 12 ein! 5 Es bilden sich schnell große Blöcke von besetzten Einträgen. ⇒ hohe durchschnittliche Suchzeit!

### Quadratisches Sondieren

Hashfunktion  $h(k, i) = (h_0(k) + c_1i + c_2i^2) \mod m$ 

**Beispiel:** 

$$h_0(k) = k \mod 9$$
 und  $m = 9$  und  $c_1 = c_2 = 1$ 

Füge Schlüssel 4, 5, 12 ein!

**Problem:** 

Die Größen m,  $c_1$  und  $c_2$  müssen zu einander passen, sonst besucht nicht jede Sondierfolge alle Tabelleneinträge.

**Problem:** 

Falls  $h_0(k) = h_0(k')$ , so haben k und k' dieselbe Sondierfolge!

sekundäres Clustering

 $\Rightarrow$  hohe Suchzeit bei schlechter Hilfshashfkt.  $h_0!$ 

### Doppeltes Hashing

Hashfunktion  $h(k, i) = (h_0(k) + i \cdot h_1(k)) \mod m$ 

**Vorteile:** 

- Sondierfolge hängt zweifach vom Schlüssel k ab!
- potentiell  $m^2$  verschiedene Sondierfolgen möglich (bei linearem & quadratischem Sondieren nur m.)

Frage:

Was muss gelten, damit eine Sondierfolge alle Tabelleneinträge durchläuft?

**Antwort:**  $k' = h_1(k)$  und m müssen teilerfremd sein,

d.h. ggT(k', m) = 1.  $[ggT(a, b) =_{Def} max\{t: t|a und t|b\}]$ 

Also:

z.B. m = Zweierpotenz und  $h_1$  immer ungerade. oder  $m = \text{prim und } 0 < h_1(k) < m \text{ für alle } k$ .

### Uniformes Hashing

[kein neues Hashverfahren, sondern eine (idealisierte) Annahme...]

**Annahme:** 

Die Sondierfolge jedes Schlüssels ist gleich wahrscheinlich eine der m! Permutationen von  $\langle 0, 1, \ldots, m-1 \rangle$ .

Satz:

Unter der Annahme von uniformem Hashing ist die erwartete Anz. der versuchten Tabellenzugriffe bei offener Adressierung und

- erfolgloser Suche 
$$\leq \frac{1}{1-\alpha}$$

- erfolgreicher Suche 
$$\leq \frac{1}{\alpha} \ln \frac{1}{1-\alpha}$$

d.h. Suche dauert erwartet O(1) Zeit, falls  $\alpha$  konst.

## Zusammenfassung Hashing

### mit Verkettung

- + funktioniert für  $n \in O(m)$
- + gute erwartete Suchzeit: erfolglos:  $|\alpha| = n/m$ erfolgreich:  $1+\frac{\alpha}{2}$

[Modell: einfaches uniformes Hashing]

Listenoperationen langsam



### mit offener Adressierung

- − funktioniert nur für n < m</li>
- langsam, wenn  $n \approx m$

#### Sondiermethoden:

- lineares Sondieren
- quadratisches Sondieren
- doppeltes Hashing
- + gute erwartete Suchzeit:

erfolglos:

$$\frac{1}{1-lpha}$$

erfolgreich: 
$$\frac{1}{\alpha} \ln \frac{1}{1-\alpha}$$

[Modell: uniformes Hashing]