```
In [2]: #IMPORTING REQUIRED LIBRARY
          import os
          import pandas as pd
          import numpy as np
          import matplotlib as plt
          import datetime as dt
          import seaborn as sns
 In [3]: import import_ipynb
          import matplotlib.pyplot as plt1
          %matplotlib inline
 In [4]:
          import sklearn
 In [5]: from sklearn.model_selection import train_test_split
          from sklearn.tree import DecisionTreeRegressor
 In [6]: from sklearn.ensemble import RandomForestRegressor
 In [7]: import statsmodels.api as sm
In [472]: | from sklearn.neighbors import KNeighborsClassifier
          from sklearn.neighbors import KNeighborsRegressor
In [10]: #setting working directory
          os.chdir("E:/data science and machine learning/BIKE RENTAL PREDICTIONS/Python"
 In [11]: os.getcwd()
 Out[11]: 'E:\\data science and machine learning\\BIKE RENTAL PREDICTIONS\\Python'
 In [12]: #GETTING THE FILE FROM HDD
          bdf=pd.read csv("day.csv",sep=',')
 In [13]: bdf.shape
 Out[13]: (731, 16)
 In [14]: type(bdf)
 Out[14]: pandas.core.frame.DataFrame
```

In [146]: bdf.dtypes bdf

Out[146]:

	instant	dteday	season	yr	mnth	holiday	weekday	workingday	weathersit	temp	
0	1	2011- 01-01	1	0	1	0	6	0	2	0.344167	0.
1	2	2011- 01-02	1	0	1	0	0	0	2	0.363478	0.
2	3	2011- 01-03	1	0	1	0	1	1	1	0.196364	0.
3	4	2011- 01-04	1	0	1	0	2	1	1	0.200000	0.
4	5	2011- 01-05	1	0	1	0	3	1	1	0.226957	0.
5	6	2011- 01-06	1	0	1	0	4	1	1	0.204348	0.
6	7	2011- 01-07	1	0	1	0	5	1	2	0.196522	0.
7	8	2011- 01-08	1	0	1	0	6	0	2	0.165000	0.
8	9	2011- 01-09	1	0	1	0	0	0	1	0.138333	0.
9	10	2011- 01-10	1	0	1	0	1	1	1	0.150833	0.
10	11	2011- 01-11	1	0	1	0	2	1	2	0.169091	0.
11	12	2011- 01-12	1	0	1	0	3	1	1	0.172727	0.
12	13	2011- 01-13	1	0	1	0	4	1	1	0.165000	0.
13	14	2011- 01-14	1	0	1	0	5	1	1	0.160870	0.
14	15	2011- 01-15	1	0	1	0	6	0	2	0.233333	0.
15	16	2011- 01-16	1	0	1	0	0	0	1	0.231667	0.
16	17	2011- 01-17	1	0	1	1	1	0	2	0.175833	0.
17	18	2011- 01-18	1	0	1	0	2	1	2	0.216667	0.
18	19	2011- 01-19	1	0	1	0	3	1	2	0.292174	0.
19	20	2011- 01-20	1	0	1	0	4	1	2	0.261667	0.
20	21	2011- 01-21	1	0	1	0	5	1	1	0.177500	0.
21	22	2011- 01-22	1	0	1	0	6	0	1	0.059130	0.
22	23	2011- 01-23	1	0	1	0	0	0	1	0.096522	0.

	instant	dteday	season	yr	mnth	holiday	weekday	workingday	weathersit	temp	
23	24	2011- 01-24	1	0	1	0	1	1	1	0.097391	0.
24	25	2011- 01-25	1	0	1	0	2	1	2	0.223478	0.
25	26	2011- 01-26	1	0	1	0	3	1	3	0.217500	0.
26	27	2011- 01-27	1	0	1	0	4	1	1	0.195000	0.
27	28	2011- 01-28	1	0	1	0	5	1	2	0.203478	0.
28	29	2011- 01-29	1	0	1	0	6	0	1	0.196522	0.
29	30	2011- 01-30	1	0	1	0	0	0	1	0.216522	0.
701	702	2012- 12-02	4	1	12	0	0	0	2	0.347500	0.
702	703	2012- 12-03	4	1	12	0	1	1	1	0.452500	0.
703	704	2012- 12-04	4	1	12	0	2	1	1	0.475833	0.
704	705	2012- 12-05	4	1	12	0	3	1	1	0.438333	0.
705	706	2012- 12-06	4	1	12	0	4	1	1	0.255833	0.
706	707	2012- 12-07	4	1	12	0	5	1	2	0.320833	0.
707	708	2012- 12-08	4	1	12	0	6	0	2	0.381667	0.
708	709	2012- 12-09	4	1	12	0	0	0	2	0.384167	0.
709	710	2012- 12-10	4	1	12	0	1	1	2	0.435833	0.
710	711	2012- 12-11	4	1	12	0	2	1	2	0.353333	0.
711	712	2012- 12-12	4	1	12	0	3	1	2	0.297500	0.
712	713	2012- 12-13	4	1	12	0	4	1	1	0.295833	0.
713	714	2012- 12-14	4	1	12	0	5	1	1	0.281667	0.
714	715	2012- 12-15	4	1	12	0	6	0	1	0.324167	0.
715	716	2012- 12-16	4	1	12	0	0	0	2	0.362500	0.
716	717	2012- 12-17	4	1	12	0	1	1	2	0.393333	0.

	instant	dteday	season	yr	mnth	holiday	weekday	workingday	weathersit	temp	
717	718	2012- 12-18	4	1	12	0	2	1	1	0.410833	0.
718	719	2012- 12-19	4	1	12	0	3	1	1	0.332500	0.
719	720	2012- 12-20	4	1	12	0	4	1	2	0.330000	0.
720	721	2012- 12-21	1	1	12	0	5	1	2	0.326667	0.
721	722	2012- 12-22	1	1	12	0	6	0	1	0.265833	0.
722	723	2012- 12-23	1	1	12	0	0	0	1	0.245833	0.
723	724	2012- 12-24	1	1	12	0	1	1	2	0.231304	0.
724	725	2012- 12-25	1	1	12	1	2	0	2	0.291304	0.
725	726	2012- 12-26	1	1	12	0	3	1	3	0.243333	0.
726	727	2012- 12-27	1	1	12	0	4	1	2	0.254167	0.
727	728	2012- 12-28	1	1	12	0	5	1	2	0.253333	0.
728	729	2012- 12-29	1	1	12	0	6	0	2	0.253333	0.
729	730	2012- 12-30	1	1	12	0	0	0	1	0.255833	0.
730	731	2012- 12-31	1	1	12	0	1	1	2	0.215833	0.

731 rows × 18 columns

```
In [28]: #extracting day from datetime
    from datetime import date
    bdf['date']=pd.to_datetime(bdf['dteday'],errors='coerce')
    bdf['day']=bdf['date'].apply(lambda x:x.day)
In [173]: bdf1=bdf
```

```
In [174]: #MISSING VALUE ANALYSIS
missing_val=pd.DataFrame(bdf.isnull().sum())
```

```
In [175]:
          missing_val
Out[175]:
                       0
               instant 0
               dteday 0
               season 0
                   yr 0
                 mnth 0
               holiday 0
              weekday 0
            workingday 0
             weathersit 0
                 temp 0
                atemp 0
                 hum 0
            windspeed 0
                casual 0
             registered 0
                  cnt 0
                 date 0
                  day 0
In [176]:
           cnames=['season','yr','mnth','holiday','weekday','workingday','weathersit','te
           mp','atemp','hum','windspeed','casual','registered','cnt','day']
           for i in cnames:
               q75,q25=np.percentile(bdf1.loc[:,i],[75,25])
               iqr=q75-q25
               min=q25-(iqr*1.5)
               \max = q75 + (iqr*1.5)
```

```
In [177]:
          plt1.boxplot(bdf1['season'])
Out[177]: {'whiskers': [<matplotlib.lines.Line2D at 0x1e4fc5014a8>,
            <matplotlib.lines.Line2D at 0x1e4fc5017f0>],
            'caps': [<matplotlib.lines.Line2D at 0x1e4fc501b38>,
            <matplotlib.lines.Line2D at 0x1e4fc501e80>],
            'boxes': [<matplotlib.lines.Line2D at 0x1e4fc5010b8>],
            'medians': [<matplotlib.lines.Line2D at 0x1e4fc501f60>],
            'fliers': [<matplotlib.lines.Line2D at 0x1e4fc52e550>],
            'means': []}
            4.0
           3.5
           3.0
           2.5
           2.0
           1.5
           1.0
          plt1.boxplot(bdf1['yr'])
In [178]:
Out[178]: {'whiskers': [<matplotlib.lines.Line2D at 0x1e4fda3fe80>,
            <matplotlib.lines.Line2D at 0x1e4fda484a8>],
            'caps': [<matplotlib.lines.Line2D at 0x1e4fda487f0>,
            <matplotlib.lines.Line2D at 0x1e4fda48b38>],
            'boxes': [<matplotlib.lines.Line2D at 0x1e4fda3fd30>],
            'medians': [<matplotlib.lines.Line2D at 0x1e4fda48e80>],
            'fliers': [<matplotlib.lines.Line2D at 0x1e4fda48f60>],
            'means': []}
           1.0
           0.8
           0.6
           0.4
           0.2
            0.0
```

```
In [179]:
          plt1.boxplot(bdf1['mnth'])
Out[179]: {'whiskers': [<matplotlib.lines.Line2D at 0x1e4fda9a8d0>,
            <matplotlib.lines.Line2D at 0x1e4fda9ac18>],
            'caps': [<matplotlib.lines.Line2D at 0x1e4fda9af60>,
            <matplotlib.lines.Line2D at 0x1e4fdaa52e8>],
            'boxes': [<matplotlib.lines.Line2D at 0x1e4fda9a4e0>],
            'medians': [<matplotlib.lines.Line2D at 0x1e4fdaa5630>],
            'fliers': [<matplotlib.lines.Line2D at 0x1e4fdaa5978>],
            'means': []}
           12
           10
            8
            6
            4
            2
          plt1.boxplot(bdf1['holiday'])
In [180]:
Out[180]: {'whiskers': [<matplotlib.lines.Line2D at 0x1e4fdaebf98>,
            <matplotlib.lines.Line2D at 0x1e4fdaf6320>],
            'caps': [<matplotlib.lines.Line2D at 0x1e4fdaf6668>,
            <matplotlib.lines.Line2D at 0x1e4fdaf69b0>],
            'boxes': [<matplotlib.lines.Line2D at 0x1e4fdaebba8>],
            'medians': [<matplotlib.lines.Line2D at 0x1e4fdaf6cf8>],
            'fliers': [<matplotlib.lines.Line2D at 0x1e4fdaf6dd8>],
            'means': []}
           1.0
                                    0
           0.8
           0.6
           0.4
           0.2
           0.0
```

```
In [181]:
          plt1.boxplot(bdf1['weekday'])
Out[181]: {'whiskers': [<matplotlib.lines.Line2D at 0x1e4fdb486d8>,
            <matplotlib.lines.Line2D at 0x1e4fdb48a20>],
            'caps': [<matplotlib.lines.Line2D at 0x1e4fdb48d68>,
            <matplotlib.lines.Line2D at 0x1e4fdb48e48>],
            'boxes': [<matplotlib.lines.Line2D at 0x1e4fdb482e8>],
            'medians': [<matplotlib.lines.Line2D at 0x1e4fdb52438>],
            'fliers': [<matplotlib.lines.Line2D at 0x1e4fdb52780>],
            'means': []}
           6
           5
           4
           3
           2
           1
           0
          plt1.boxplot(bdf1['workingday'])
In [187]:
Out[187]: {'whiskers': [<matplotlib.lines.Line2D at 0x1e4fdd63e10>,
            <matplotlib.lines.Line2D at 0x1e4fdd6e438>],
            'caps': [<matplotlib.lines.Line2D at 0x1e4fdd6e780>,
            <matplotlib.lines.Line2D at 0x1e4fdd6eac8>],
            'boxes': [<matplotlib.lines.Line2D at 0x1e4fdd63cc0>],
            'medians': [<matplotlib.lines.Line2D at 0x1e4fdd6ee10>],
            'fliers': [<matplotlib.lines.Line2D at 0x1e4fdd6eef0>],
            'means': []}
           1.0
           0.8
           0.6
           0.4
           0.2
           0.0
```

```
In [188]:
          plt1.boxplot(bdf1['weathersit'])
Out[188]: {'whiskers': [<matplotlib.lines.Line2D at 0x1e4fddbe940>,
            <matplotlib.lines.Line2D at 0x1e4fddbec88>],
            'caps': [<matplotlib.lines.Line2D at 0x1e4fddbefd0>,
            <matplotlib.lines.Line2D at 0x1e4fddc8358>],
            'boxes': [<matplotlib.lines.Line2D at 0x1e4fddbe550>],
            'medians': [<matplotlib.lines.Line2D at 0x1e4fddc86a0>],
            'fliers': [<matplotlib.lines.Line2D at 0x1e4fddc89e8>],
            'means': []}
            3.00
            2.75
            2.50
            2.25
            2.00
           1.75
           1.50
           1.25
            1.00
           plt1.boxplot(bdf1['temp'])
In [189]:
Out[189]: {'whiskers': [<matplotlib.lines.Line2D at 0x1e4fde18f98>,
             <matplotlib.lines.Line2D at 0x1e4fde24320>],
            'caps': [<matplotlib.lines.Line2D at 0x1e4fde24668>,
             <matplotlib.lines.Line2D at 0x1e4fde249b0>],
            'boxes': [<matplotlib.lines.Line2D at 0x1e4fde18ba8>],
            'medians': [<matplotlib.lines.Line2D at 0x1e4fde24cf8>],
            'fliers': [<matplotlib.lines.Line2D at 0x1e4fde24dd8>],
            'means': []}
            0.9
            0.8
            0.7
            0.6
            0.5
            0.4
            0.3
            0.2
            0.1
```

```
In [190]:
          plt1.boxplot(bdf1['atemp'])
Out[190]: {'whiskers': [<matplotlib.lines.Line2D at 0x1e4fde805f8>,
            <matplotlib.lines.Line2D at 0x1e4fde80940>],
            'caps': [<matplotlib.lines.Line2D at 0x1e4fde80c88>,
            <matplotlib.lines.Line2D at 0x1e4fde80fd0>],
            'boxes': [<matplotlib.lines.Line2D at 0x1e4fde80208>],
            'medians': [<matplotlib.lines.Line2D at 0x1e4fde86358>],
            'fliers': [<matplotlib.lines.Line2D at 0x1e4fde866a0>],
            'means': []}
            0.8
           0.7
            0.6
           0.5
            0.4
            0.3
            0.2
            0.1
In [191]:
          plt1.boxplot(bdf1['hum'])
Out[191]: {'whiskers': [<matplotlib.lines.Line2D at 0x1e4fded8748>,
             <matplotlib.lines.Line2D at 0x1e4fded8a90>],
            'caps': [<matplotlib.lines.Line2D at 0x1e4fded8dd8>,
             <matplotlib.lines.Line2D at 0x1e4fded8eb8>],
            'boxes': [<matplotlib.lines.Line2D at 0x1e4fded8358>],
            'medians': [<matplotlib.lines.Line2D at 0x1e4fdee34a8>],
            'fliers': [<matplotlib.lines.Line2D at 0x1e4fdee37f0>],
            'means': []}
           1.0
           0.8
            0.6
           0.4
           0.2
            0.0
```

```
In [192]:
          plt1.boxplot(bdf1['windspeed'])
Out[192]: {'whiskers': [<matplotlib.lines.Line2D at 0x1e4fdf2bf28>,
            <matplotlib.lines.Line2D at 0x1e4fdf342b0>],
            'caps': [<matplotlib.lines.Line2D at 0x1e4fdf345f8>,
            <matplotlib.lines.Line2D at 0x1e4fdf34940>],
            'boxes': [<matplotlib.lines.Line2D at 0x1e4fdf2bb38>],
            'medians': [<matplotlib.lines.Line2D at 0x1e4fdf34c88>],
            'fliers': [<matplotlib.lines.Line2D at 0x1e4fdf34fd0>],
            'means': []}
            0.5
           0.4
           0.3
           0.2
           0.1
            0.0
In [193]:
          plt1.boxplot(bdf1['casual'])
Out[193]: {'whiskers': [<matplotlib.lines.Line2D at 0x1e4fdf866d8>,
            <matplotlib.lines.Line2D at 0x1e4fdf86a20>],
            'caps': [<matplotlib.lines.Line2D at 0x1e4fdf86d68>,
            <matplotlib.lines.Line2D at 0x1e4fdf86e48>],
            'boxes': [<matplotlib.lines.Line2D at 0x1e4fdf862e8>],
            'medians': [<matplotlib.lines.Line2D at 0x1e4fdf92438>],
            'fliers': [<matplotlib.lines.Line2D at 0x1e4fdf92780>],
            'means': []}
            3500
            3000
            2500
            2000
           1500
           1000
            500
              0
```

```
In [194]:
          plt1.boxplot(bdf1['registered'])
Out[194]: {'whiskers': [<matplotlib.lines.Line2D at 0x1e4fdfe27b8>,
            <matplotlib.lines.Line2D at 0x1e4fdfe2b00>],
            'caps': [<matplotlib.lines.Line2D at 0x1e4fdfe2e48>,
            <matplotlib.lines.Line2D at 0x1e4fdfe2f28>],
            'boxes': [<matplotlib.lines.Line2D at 0x1e4fdfe23c8>],
            'medians': [<matplotlib.lines.Line2D at 0x1e4fdfee518>],
            'fliers': [<matplotlib.lines.Line2D at 0x1e4fdfee860>],
            'means': []}
            7000
            6000
            5000
            4000
            3000
            2000
           1000
              0
          plt1.boxplot(bdf1['cnt'])
In [195]:
Out[195]: {'whiskers': [<matplotlib.lines.Line2D at 0x1e4fe03a940>,
            <matplotlib.lines.Line2D at 0x1e4fe03ac88>],
            'caps': [<matplotlib.lines.Line2D at 0x1e4fe03afd0>,
            <matplotlib.lines.Line2D at 0x1e4fe044358>],
            'boxes': [<matplotlib.lines.Line2D at 0x1e4fe03a550>],
            'medians': [<matplotlib.lines.Line2D at 0x1e4fe0446a0>],
            'fliers': [<matplotlib.lines.Line2D at 0x1e4fe0449e8>],
            'means': []}
            8000
            6000
            4000
            2000
```

```
plt1.boxplot(bdf1['windspeed'])
In [488]:
Out[488]: {'whiskers': [<matplotlib.lines.Line2D at 0x1e48b605908>,
            <matplotlib.lines.Line2D at 0x1e48b605c50>],
            'caps': [<matplotlib.lines.Line2D at 0x1e48b605f98>,
            <matplotlib.lines.Line2D at 0x1e48b61f320>],
            'boxes': [<matplotlib.lines.Line2D at 0x1e48b605518>],
            'medians': [<matplotlib.lines.Line2D at 0x1e48b61f668>],
            'fliers': [<matplotlib.lines.Line2D at 0x1e48b61f9b0>],
            'means': []}
           35
           30
           25
           20
           15
           10
            5
```

```
In [ ]: bdf1 = bdf1.drop(["dteday"],axis=1)
bdf1 = bdf1.drop(["date"],axis=1)
```

0

```
In [201]:
            #FEATURE SELECTION
            bdf1 corr=bdf1.loc[:,cnames]
            f,ax=plt1.subplots(figsize=(7,5))
            corr=bdf1 corr.corr()
            ax = sns.heatmap(corr)
                season
                                                                           - 0.9
                  mnth
                holiday
                                                                           - 0.6
               weekday
             workingday
             weathersit
                                                                           - 0.3
                  temp
                 atemp
                  hum
                                                                           -0.0
             windspeed
                casual
              registered
                                                                            -0.3
                   ant
                   day
                                                atemp
                                                         casual
                                                                Ħ
                                holiday
                                   weekday
                                                             egistered
                                                                   day
                                                      windspeed
                                          weathersit
                                       workingday
In [202]:
            #converting season
            bdf1["season"] = bdf1.season.map({1: "Spring", 2 : "Summer", 3 : "Fall", 4 :"W
            inter" })
In [203]:
           #converting weather situation
            bdf1["weathersit"] = bdf1.weathersit.map({1: "clear", 2 : "Cloudy", 3 : "Light
            Rain", 4 :"Heavy Rain" })
In [204]:
            #converting working day
            bdf1["workingday"] = bdf1.workingday.map({0: "Holiday", 1 : "working" })
  In [ ]:
In [205]:
            def cnvert(x):
                ct=x*(39-(-8))+(-8)
                return ct
In [206]:
            bdf1["temp"]=bdf1.temp.apply(cnvert)
In [207]:
            def cnvert1(x):
                ct=x*(50-(-16))+(-16)
```

return ct

In [213]: bdf1

Out[213]:

	instant	season	yr	mnth	holiday	weekday	workingday	weathersit	temp	atem
0	1	Spring	0	1	0	6	Holiday	Cloudy	8.175849	7.99925
1	2	Spring	0	1	0	0	Holiday	Cloudy	9.083466	7.34677
2	3	Spring	0	1	0	1	working	clear	1.229108	-3.49927
3	4	Spring	0	1	0	2	working	clear	1.400000	-1.99994
4	5	Spring	0	1	0	3	working	clear	2.666979	-0.86818
5	6	Spring	0	1	0	4	working	clear	1.604356	-0.60820
6	7	Spring	0	1	0	5	working	Cloudy	1.236534	-2.21662
7	8	Spring	0	1	0	6	Holiday	Cloudy	-0.245000	-5.29123
8	9	Spring	0	1	0	0	Holiday	clear	-1.498349	-8.33245
9	10	Spring	0	1	0	1	working	clear	-0.910849	-6.04139
10	11	Spring	0	1	0	2	working	Cloudy	-0.052723	-3.363370
11	12	Spring	0	1	0	3	working	clear	0.118169	-5.40878
12	13	Spring	0	1	0	4	working	clear	-0.245000	-6.04172
13	14	Spring	0	1	0	5	working	clear	-0.439110	-3.56474
14	15	Spring	0	1	0	6	Holiday	Cloudy	2.966651	0.37539
15	16	Spring	0	1	0	0	Holiday	clear	2.888349	-0.54167
16	17	Spring	0	1	1	1	Holiday	Cloudy	0.264151	-4.33311 ₄
17	18	Spring	0	1	0	2	working	Cloudy	2.183349	-0.66602
18	19	Spring	0	1	0	3	working	Cloudy	5.732178	3.69585
19	20	Spring	0	1	0	4	working	Cloudy	4.298349	0.83330
20	21	Spring	0	1	0	5	working	clear	0.342500	-5.58302
21	22	Spring	0	1	0	6	Holiday	clear	-5.220871	-10.78140
22	23	Spring	0	1	0	0	Holiday	clear	-3.463480	-9.47661
23	24	Spring	0	1	0	1	working	clear	-3.422609	-8.21662
24	25	Spring	0	1	0	2	working	Cloudy	2.503466	-0.52128
25	26	Spring	0	1	0	3	working	Light Rain	2.222500	-2.56240
26	27	Spring	0	1	0	4	working	clear	1.165000	-1.49980
27	28	Spring	0	1	0	5	working	Cloudy	1.563466	-1.26107
28	29	Spring	0	1	0	6	Holiday	clear	1.236534	-1.99968
29	30	Spring	0	1	0	0	Holiday	clear	2.176534	0.52125
701	702	Winter	1	12	0	0	Holiday	Cloudy	8.332500	7.70772
702	703	Winter	1	12	0	1	working	clear	13.267500	14.08253
703	704	Winter	1	12	0	2	working	clear	14.364151	14.95756
704	705	Winter	1	12	0	3	working	clear	12.601651	12.24879

	instant	season	yr	mnth	holiday	weekday	workingday	weathersit	temp	atem
705	706	Winter	1	12	0	4	working	clear	4.024151	1.04146
706	707	Winter	1	12	0	5	working	Cloudy	7.079151	5.24922
707	708	Winter	1	12	0	6	Holiday	Cloudy	9.938349	9.70752
708	709	Winter	1	12	0	0	Holiday	Cloudy	10.055849	9.74963
709	710	Winter	1	12	0	1	working	Cloudy	12.484151	12.74795
710	711	Winter	1	12	0	2	working	Cloudy	8.606651	6.33195
711	712	Winter	1	12	0	3	working	Cloudy	5.982500	3.62430
712	713	Winter	1	12	0	4	working	clear	5.904151	3.41640
713	714	Winter	1	12	0	5	working	clear	5.238349	3.41667
714	715	Winter	1	12	0	6	Holiday	clear	7.235849	6.33327
715	716	Winter	1	12	0	0	Holiday	Cloudy	9.037500	8.41590
716	717	Winter	1	12	0	1	working	Cloudy	10.486651	10.49900
717	718	Winter	1	12	0	2	working	clear	11.309151	11.04072
718	719	Winter	1	12	0	3	working	clear	7.627500	6.58269
719	720	Winter	1	12	0	4	working	Cloudy	7.510000	6.12432
720	721	Spring	1	12	0	5	working	Cloudy	7.353349	3.91662
721	722	Spring	1	12	0	6	Holiday	clear	4.494151	-0.41654:
722	723	Spring	1	12	0	0	Holiday	clear	3.554151	1.12508
723	724	Spring	1	12	0	1	working	Cloudy	2.871288	1.08740
724	725	Spring	1	12	1	2	Holiday	Cloudy	5.691288	3.43469
725	726	Spring	1	12	0	3	working	Light Rain	3.436651	-1.45802
726	727	Spring	1	12	0	4	working	Cloudy	3.945849	-1.04162
727	728	Spring	1	12	0	5	working	Cloudy	3.906651	0.83303
728	729	Spring	1	12	0	6	Holiday	Cloudy	3.906651	-0.00160
729	730	Spring	1	12	0	0	Holiday	clear	4.024151	-0.70780
730	731	Spring	1	12	0	1	working	Cloudy	2.144151	-1.24985

731 rows × 16 columns

```
In [215]: sub_spring=bdf1[bdf1.season=="Spring"]
In [217]: mean_spring=sub_spring["temp"].mean()
In [218]: mean_spring
Out[218]: 5.994134811049725
In [219]: median_spring=sub_spring["temp"].median()
```

```
In [220]: median spring
Out[220]: 5.434151
In [223]:
          import statistics as st
          sd spring=st.pstdev(sub spring["temp"])
In [225]:
In [226]:
          sd_spring
Out[226]: 4.81518884088463
In [227]:
          sub winter=bdf1[bdf1.season=="Winter"]
          mean_winter=sub_winter["temp"].mean()
          median winter=sub winter["temp"].median()
          sd_winter=st.pstdev(sub_winter["temp"])
In [232]: mean_winter
Out[232]: 11.876583848314608
In [233]: | median_winter
Out[233]: 11.2308255
In [234]: | sd winter
Out[234]: 5.0539245784284175
          sub summer=bdf1[bdf1.season=="Summer"]
In [235]:
          mean_summer=sub_summer["temp"].mean()
          median summer=sub summer["temp"].median()
          sd summer=st.pstdev(sub summer["temp"])
In [236]: mean_summer
Out[236]: 17.587042407608696
In [237]:
          median_summer
Out[237]: 18.417924499999998
In [238]:
          sd summer
Out[238]: 5.748862573816254
          sub fall=bdf1[bdf1.season=="Fall"]
In [239]:
          mean_fall=sub_fall["temp"].mean()
          median fall=sub fall["temp"].median()
          sd fall=st.pstdev(sub fall["temp"])
```

```
In [240]: mean_fall
Out[240]: 25.196537499999994
In [241]: median_fall
Out[241]: 25.585400999999997
In [242]:
          sd_fall
Out[242]: 3.3209664525970823
          his_spring=plt1.hist(sub_spring["temp"],bins=20,color='c',edgecolor='k',alpha=
In [257]:
          0.65)
          plt1.xlabel('Temp in spring')
          plt1.axvline(sub_spring["temp"].mean(),color='k',linestyle='dashed',linewidth=
          1)
          plt1.text(0,5,r'median=5.43',color='red')
          plt1.text(7,10,r'mean=5.99',color='black')
          plt1.axvline(sub_spring["temp"].median(),color='red',linestyle='dashed',linewi
          dth=1)
```

Out[257]: <matplotlib.lines.Line2D at 0x1e4ff8e1208>

Out[260]: <matplotlib.lines.Line2D at 0x1e4fc5aa080>

In [261]: his_winter=plt1.hist(sub_winter["temp"],bins=20,color='c',edgecolor='k',alpha=
0.65)
 plt1.xlabel('Temp in winter')
 plt1.axvline(sub_winter["temp"].mean(),color='k',linestyle='dashed',linewidth=
1)
 plt1.text(10,12,r'median=11.23',color='red')
 plt1.text(12,13,r'mean=11.87',color='black')
 plt1.axvline(sub_winter["temp"].median(),color='red',linestyle='dashed',linewidth=1)

Out[261]: <matplotlib.lines.Line2D at 0x1e4fe174eb8>


```
In [262]: his_fall=plt1.hist(sub_fall["temp"],bins=20,color='c',edgecolor='k',alpha=0.65
)
    plt1.xlabel('Temp in fall')
    plt1.axvline(sub_fall["temp"].mean(),color='k',linestyle='dashed',linewidth=1)
    plt1.text(25,28,r'median=25.58',color='red')
    plt1.text(23,25,r'mean=25.19',color='black')
    plt1.axvline(sub_fall["temp"].median(),color='red',linestyle='dashed',linewidth=1)
```

Out[262]: <matplotlib.lines.Line2D at 0x1e4ffa10e48>

Out[266]: 2209.0

In [269]: sd_sprcnt

Out[269]: 1396.0695197464488

In [270]: mean_sumcnt=sub_summer["cnt"].mean()
 median_sumcnt=sub_summer["cnt"].median()
 sd_sumcnt=st.pstdev(sub_summer["cnt"])

In [271]: mean_sumcnt

Out[271]: 4992.33152173913

In [272]: median_sumcnt

Out[272]: 4941.5

```
In [273]: | sd_sumcnt
Out[273]: 1691.3623219830135
In [275]:
          mean_wincnt=sub_winter["cnt"].mean()
          median_wincnt=sub_winter["cnt"].median()
          sd_wincnt=st.pstdev(sub_winter["cnt"])
In [276]: mean_wincnt
Out[276]: 4728.162921348315
In [277]: median_wincnt
Out[277]: 4634.5
In [278]: sd_wincnt
Out[278]: 1694.8343365983633
In [279]:
          mean_falcnt=sub_fall["cnt"].mean()
          median_falcnt=sub_fall["cnt"].median()
          sd_falcnt=st.pstdev(sub_fall["cnt"])
In [280]: mean_falcnt
Out[280]: 5644.303191489362
In [281]: median_falcnt
Out[281]: 5353.5
In [282]: sd falcnt
Out[282]: 1455.9127569834882
```

```
In [302]: # plot of temperature
    plt1.scatter(bdf1["temp"],bdf1["casual"],color="orange")
    plt1.scatter(bdf1["temp"],bdf1["registered"],color="blue")
    plt1.xlabel('Casual & registered bike')
    plt1.ylabel('Temperature')
    #plt1.text(6,7,"Blue=Registered")
    #plt1.text(-5,0,"Red=Casual")
```

Out[302]: Text(0, 0.5, 'Temperature')


```
In [328]: #Bar Graph for working day
    p=bdf1.groupby('workingday')['cnt'].sum()
    p=pd.DataFrame(p)
    p.plot.bar(rot=0,color='blue')
```

Out[328]: <matplotlib.axes._subplots.AxesSubplot at 0x1e489f0eb00>


```
In [327]: #Bar Graph for weather situation
    p1=bdf1.groupby('weathersit')['cnt'].sum()
    p1=pd.DataFrame(p1)
    p1.plot.bar(rot=0,color='blue')
```

Out[327]: <matplotlib.axes._subplots.AxesSubplot at 0x1e489ee6e48>


```
In [326]: #Bar Graph for month
    p2=bdf1.groupby('mnth')['cnt'].sum()
    p2=pd.DataFrame(p2)
    p2.plot.bar(rot=0,color='blue')
```

Out[326]: <matplotlib.axes._subplots.AxesSubplot at 0x1e488cb3cf8>


```
In [330]: #scatter plot of humidity
    plt1.scatter(bdf1["hum"],bdf1["cnt"],color="purple")
    plt1.ylabel('Count')
    plt1.xlabel('Humidity')
```

Out[330]: Text(0.5, 0, 'Humidity')


```
In [333]: #scatter plot of windspeed
plt1.scatter(bdf1["windspeed"],bdf1["cnt"],color="yellow")
plt1.ylabel('Count')
plt1.xlabel('Windspeed')
```

Out[333]: Text(0.5, 0, 'Windspeed')


```
In [343]: #scatter plot of tempature
   plt1.scatter(bdf1["temp"],bdf1["cnt"],color="blue")
   plt1.ylabel('Count')
   plt1.xlabel('temperature')
   plt1.axvline(bdf1["temp"].mean(),color='red',linestyle="dashed",linewidth=1)
   mean_temp=bdf1["temp"].mean()
   plt1.text(16,20,r'mean=15.28',color='black')
```

Out[343]: Text(16, 20, 'mean=15.28')


```
In [344]: #scatter plot of feeled tempature
    plt1.scatter(bdf1["atemp"],bdf1["cnt"],color="Green")
    plt1.ylabel('Count')
    plt1.xlabel(' feeled temperature')
    plt1.axvline(bdf1["atemp"].mean(),color='red',linestyle="dashed",linewidth=1)
    mean_atemp=bdf1["atemp"].mean()
    plt1.text(16,20,r'mean=15.30',color='black')
```

Out[344]: Text(16, 20, 'mean=15.30')


```
In [489]: bdf2=bdf
```

```
In [490]: dropFeatures = ['casual',"dteday","date","registered","holiday","instant","ate
    mp"]
    bdf2 = bdf2.drop(dropFeatures,axis=1)
```

```
In [491]: bdf2=bdf2[['day','season','yr','mnth','weekday','workingday','weathersit','tem
p','hum','windspeed','cnt']]
bdf2
```

Out[491]:

	day	season	yr	mnth	weekday	workingday	weathersit	temp	hum	windspeed
0	1	1	0	1	6	0	2	0.344167	0.805833	0.160446
1	2	1	0	1	0	0	2	0.363478	0.696087	0.248539
2	3	1	0	1	1	1	1	0.196364	0.437273	0.248309
3	4	1	0	1	2	1	1	0.200000	0.590435	0.160296
4	5	1	0	1	3	1	1	0.226957	0.436957	0.186900
5	6	1	0	1	4	1	1	0.204348	0.518261	0.089565
6	7	1	0	1	5	1	2	0.196522	0.498696	0.168726
7	8	1	0	1	6	0	2	0.165000	0.535833	0.266804
8	9	1	0	1	0	0	1	0.138333	0.434167	0.361950
9	10	1	0	1	1	1	1	0.150833	0.482917	0.223267
10	11	1	0	1	2	1	2	0.169091	0.686364	0.122132
11	12	1	0	1	3	1	1	0.172727	0.599545	0.304627
12	13	1	0	1	4	1	1	0.165000	0.470417	0.301000
13	14	1	0	1	5	1	1	0.160870	0.537826	0.126548
14	15	1	0	1	6	0	2	0.233333	0.498750	0.157963
15	16	1	0	1	0	0	1	0.231667	0.483750	0.188433
16	17	1	0	1	1	0	2	0.175833	0.537500	0.194017
17	18	1	0	1	2	1	2	0.216667	0.861667	0.146775
18	19	1	0	1	3	1	2	0.292174	0.741739	0.208317
19	20	1	0	1	4	1	2	0.261667	0.538333	0.195904
20	21	1	0	1	5	1	1	0.177500	0.457083	0.353242
21	22	1	0	1	6	0	1	0.059130	0.400000	0.171970
22	23	1	0	1	0	0	1	0.096522	0.436522	0.246600
23	24	1	0	1	1	1	1	0.097391	0.491739	0.158330
24	25	1	0	1	2	1	2	0.223478	0.616957	0.129796
25	26	1	0	1	3	1	3	0.217500	0.862500	0.293850
26	27	1	0	1	4	1	1	0.195000	0.687500	0.113837
27	28	1	0	1	5	1	2	0.203478	0.793043	0.123300
28	29	1	0	1	6	0	1	0.196522	0.651739	0.145365
29	30	1	0	1	0	0	1	0.216522	0.722174	0.073983
701	2	4	1	12	0	0	2	0.347500	0.823333	0.124379
702	3	4	1	12	1	1	1	0.452500	0.767500	0.082721
703	4	4	1	12	2	1	1	0.475833	0.733750	0.174129
704	5	4	1	12	3	1	1	0.438333	0.485000	0.324021

	day	season	yr	mnth	weekday	workingday	weathersit	temp	hum	windspeed
705	6	4	1	12	4	1	1	0.255833	0.508750	0.174754
706	7	4	1	12	5	1	2	0.320833	0.764167	0.130600
707	8	4	1	12	6	0	2	0.381667	0.911250	0.101379
708	9	4	1	12	0	0	2	0.384167	0.905417	0.157975
709	10	4	1	12	1	1	2	0.435833	0.925000	0.190308
710	11	4	1	12	2	1	2	0.353333	0.596667	0.296037
711	12	4	1	12	3	1	2	0.297500	0.538333	0.162937
712	13	4	1	12	4	1	1	0.295833	0.485833	0.174129
713	14	4	1	12	5	1	1	0.281667	0.642917	0.131229
714	15	4	1	12	6	0	1	0.324167	0.650417	0.106350
715	16	4	1	12	0	0	2	0.362500	0.838750	0.100742
716	17	4	1	12	1	1	2	0.393333	0.907083	0.098258
717	18	4	1	12	2	1	1	0.410833	0.666250	0.221404
718	19	4	1	12	3	1	1	0.332500	0.625417	0.184092
719	20	4	1	12	4	1	2	0.330000	0.667917	0.132463
720	21	1	1	12	5	1	2	0.326667	0.556667	0.374383
721	22	1	1	12	6	0	1	0.265833	0.441250	0.407346
722	23	1	1	12	0	0	1	0.245833	0.515417	0.133083
723	24	1	1	12	1	1	2	0.231304	0.791304	0.077230
724	25	1	1	12	2	0	2	0.291304	0.734783	0.168726
725	26	1	1	12	3	1	3	0.243333	0.823333	0.316546
726	27	1	1	12	4	1	2	0.254167	0.652917	0.350133
727	28	1	1	12	5	1	2	0.253333	0.590000	0.155471
728	29	1	1	12	6	0	2	0.253333	0.752917	0.124383
729	30	1	1	12	0	0	1	0.255833	0.483333	0.350754
730	31	1	1	12	1	1	2	0.215833	0.577500	0.154846

731 rows × 11 columns

```
In [492]: #Sampling
train, test = train_test_split(bdf2, test_size=0.2)
```

In [493]: test

Out[493]:

	day	season	yr	mnth	weekday	workingday	weathersit	temp	hum	windspeed
325	22	4	0	11	2	1	3	0.416667	0.962500	0.118792
474	19	2	1	4	4	1	1	0.498333	0.612500	0.065929
502	17	2	1	5	4	1	1	0.593333	0.520000	0.229475
487	2	2	1	5	3	1	1	0.564167	0.797083	0.138058
141	22	2	0	5	0	0	1	0.604167	0.749583	0.148008
443	19	1	1	3	1	1	1	0.545000	0.728750	0.162317
482	27	2	1	4	5	1	1	0.457500	0.400833	0.347633
125	6	2	0	5	5	1	1	0.479167	0.590000	0.228246
490	5	2	1	5	6	0	2	0.621667	0.756667	0.152992
294	22	4	0	10	6	0	1	0.422500	0.629167	0.092667
26	27	1	0	1	4	1	1	0.195000	0.687500	0.113837
78	20	1	0	3	0	0	1	0.332500	0.473750	0.207721
100	11	2	0	4	1	1	2	0.595652	0.716956	0.324474
274	2	4	0	10	0	0	2	0.356667	0.791667	0.222013
639	1	4	1	10	1	1	2	0.520833	0.649167	0.090804
300	28	4	0	10	5	1	2	0.330833	0.585833	0.229479
101	12	2	0	4	2	1	2	0.502500	0.739167	0.274879
329	26	4	0	11	6	0	1	0.375833	0.681667	0.068421
241	30	3	0	8	2	1	1	0.639167	0.548333	0.125008
415	20	1	1	2	1	0	1	0.280000	0.507826	0.229083
522	6	2	1	6	3	1	1	0.554167	0.611250	0.077125
269	27	4	0	9	2	1	2	0.636667	0.885417	0.118171
149	30	2	0	5	1	0	1	0.733333	0.685000	0.131225
130	11	2	0	5	3	1	1	0.542500	0.632917	0.120642
117	28	2	0	4	4	1	2	0.617500	0.700833	0.320908
427	3	1	1	3	6	0	2	0.414167	0.621250	0.161079
425	1	1	1	3	4	1	1	0.485833	0.615417	0.226987
723	24	1	1	12	1	1	2	0.231304	0.791304	0.077230
478	23	2	1	4	1	1	2	0.321667	0.766667	0.303496
6	7	1	0	1	5	1	2	0.196522	0.498696	0.168726
528	12	2	1	6	2	1	2	0.653333	0.833333	0.214546
605	28	3	1	8	2	1	1	0.728333	0.620000	0.190925
264	22	3	0	9	4	1	2	0.628333	0.902083	0.128125
40	10	1	0	2	4	1	1	0.144348	0.437391	0.221935

	day	season	yr	mnth	weekday	workingday	weathersit	temp	hum	windspeed
54	24	1	0	2	4	1	2	0.295652	0.697391	0.250496
289	17	4	0	10	1	1	1	0.534167	0.579583	0.175379
28	29	1	0	1	6	0	1	0.196522	0.651739	0.145365
588	11	3	1	8	6	0	2	0.692500	0.732917	0.206479
557	11	3	1	7	3	1	1	0.716667	0.633333	0.151733
305	2	4	0	11	3	1	1	0.377500	0.718750	0.082092
447	23	2	1	3	5	1	2	0.601667	0.694167	0.116300
373	9	1	1	1	1	1	2	0.224167	0.701667	0.098900
653	15	4	1	10	1	1	2	0.561667	0.707500	0.296037
61	3	1	0	3	4	1	1	0.198333	0.318333	0.225754
509	24	2	1	5	4	1	1	0.655000	0.716667	0.172896
225	14	3	0	8	0	0	2	0.676667	0.817500	0.222633
472	17	2	1	4	2	1	1	0.608333	0.390417	0.273629
355	22	1	0	12	4	1	2	0.423333	0.757500	0.047275
98	9	2	0	4	6	0	2	0.342500	0.877500	0.133083
92	3	2	0	4	0	0	1	0.378333	0.480000	0.182213
675	6	4	1	11	2	1	1	0.280833	0.567083	0.173513
44	14	1	0	2	1	1	1	0.415000	0.375833	0.417908
215	4	3	0	8	4	1	2	0.710000	0.757500	0.197150
372	8	1	1	1	0	0	1	0.337500	0.465000	0.191542
292	20	4	0	10	4	1	1	0.475833	0.636250	0.422275
657	19	4	1	10	5	1	2	0.563333	0.815000	0.134954
235	24	3	0	8	3	1	1	0.673333	0.605000	0.253108
680	11	4	1	11	0	0	1	0.420833	0.659167	0.127500
483	28	2	1	4	6	0	2	0.376667	0.489583	0.129975
259	17	3	0	9	6	0	2	0.491667	0.718333	0.189675

147 rows × 11 columns

```
In [495]: #LINEAR REGRESSION
    model = sm.OLS(train.iloc[:,10], train.iloc[:,0:9]).fit()
In [496]: predictions_LR = model.predict(test.iloc[:,0:9])
```

In [497]: predictions_LR

Out[497]:	325 474 502 487 141 443 482 125 490 294 26 78 100 274 639 300 101 329 241 415 522 269 149 130 117 427 425	2603.676931 5744.737667 6187.111501 6102.085667 3567.825312 5214.418517 5514.316319 3654.835614 5668.781131 4068.301814 1568.899696 1555.954239 3266.834589 2632.803715 5917.140938 3019.878605 2864.699428 3775.024870 4563.281794 3512.900080 5931.510737 4507.219094 4279.940169 3800.069364 3558.360161 4038.011407 5223.958898
	723 478 6	2465.607383 3866.660172 1005.237920
	528 605 264 40 54 289 28 588 557 305 447 373 653 61 509 225 472 355 98 92 675 44 215 372 292 657	5699.099248 7159.447509 4082.559302 1269.419973 1372.530016 4497.500417 1461.608329 6467.351769 7317.779584 3921.085557 5722.015517 2940.702651 6080.290932 1512.096735 6536.727727 3768.492005 6092.633499 1653.198167 2157.894022 2430.955735 5349.549223 2395.743942 4603.484940 3817.732863 4457.007144 6455.790189

```
235
                 4879.509382
          680
                 5642.759496
          483
                 4221.002654
          259
                 3235.676387
          Length: 147, dtype: float64
          from sklearn.metrics import mean squared log error
In [498]:
          from math import sqrt
          Rmsle LR=sqrt(mean squared log error(test['cnt'],predictions LR))
In [499]:
          Rmsle_LR
Out[499]: 0.265612846391153
In [500]:
          from sklearn.metrics import mean squared error
          from math import sqrt
          rms LR = sqrt(mean squared error(test['cnt'],predictions LR))
          rms_LR
Out[500]: 831.7785571438695
In [501]:
          #DECISIONS TREE
          fit DT = DecisionTreeRegressor(max depth=2).fit(train.iloc[:,0:9], train.iloc
          [:,10]
In [502]: predictions DT = fit DT.predict(test.iloc[:,0:9])
In [503]:
          Rmsle DT=sqrt(mean squared log error(test['cnt'],predictions DT))
          Rmsle DT
Out[503]: 0.32019966436458364
          rms DT = sqrt(mean squared error(test['cnt'],predictions DT))
In [504]:
          rms DT
Out[504]: 1000.0559446049203
In [506]:
          #RANDOM FOREST
          RF model = RandomForestRegressor(n estimators = 100).fit(train.iloc[:,0:9], tr
          ain.iloc[:,10])
In [508]: predictions RF = RF model.predict(test.iloc[:,0:9])
          Rmsle RF=sqrt(mean squared log error(test['cnt'],predictions RF))
In [509]:
          Rmsle RF
Out[509]: 0.22436479244688715
```

```
In [510]: rms RF = sqrt(mean squared error(test['cnt'], predictions RF))
          rms RF
Out[510]: 690.2795730800418
In [511]: #Random fOrest with 300
          RF_model = RandomForestRegressor(n_estimators = 300).fit(train.iloc[:,0:9], tr
          ain.iloc[:,10])
          predictions RF = RF model.predict(test.iloc[:,0:9])
          Rmsle_RF=sqrt(mean_squared_log_error(test['cnt'],predictions_RF))
          rms_RF = sqrt(mean_squared_error(test['cnt'],predictions_RF))
In [512]: rms_RF
Out[512]: 671.8935463572394
In [513]: Rmsle_RF
Out[513]: 0.22018108122078306
In [514]:
          #Random fOrest with 500
          RF_model = RandomForestRegressor(n_estimators = 500).fit(train.iloc[:,0:9], tr
          ain.iloc[:,10])
          predictions_RF = RF_model.predict(test.iloc[:,0:9])
          Rmsle_RF=sqrt(mean_squared_log_error(test['cnt'],predictions_RF))
          rms_RF = sqrt(mean_squared_error(test['cnt'],predictions_RF))
In [515]: rms RF
Out[515]: 667.8353528588938
In [534]: Rmsle RF
Out[534]: 0.21813592693400397
  In [ ]: #Random fOrest with 700
          RF_model = RandomForestRegressor(n_estimators = 700).fit(train.iloc[:,0:10], t
          rain.iloc[:,11])
          predictions RF = RF model.predict(test.iloc[:,0:10])
          Rmsle_RF=sqrt(mean_squared_log_error(test['cnt'],predictions_RF))
          rms RF = sqrt(mean squared error(test['cnt'],predictions RF))
In [469]: rms_RF
Out[469]: 667.4561329775676
In [535]: Rmsle RF
Out[535]: 0.21813592693400397
```

Bike 21/09/2019

```
In [518]:
          #KNN IMPUTATION
          KNN model=KNeighborsRegressor(n neighbors=3).fit(train.iloc[:,0:9], train.iloc
          [:,10]
In [519]:
          KNN Predictions=KNN model.predict(test.iloc[:,0:9])
In [520]: KNN Predictions
Out[520]: array([3983.33333333, 5269.66666667, 4155.33333333, 5826.66666667,
                 4274.66666667, 5138.
                                            , 4794.
                                                          , 5202.33333333,
                 6032.66666667, 5434.66666667, 2899.33333333, 1957.66666667,
                 4538.66666667, 4676.33333333, 4092.33333333, 5975.33333333,
                 5335.66666667, 6029.33333333, 7339.33333333, 2524.33333333,
                 6442.66666667, 5423.33333333, 5873.
                                                          , 4843.
                 4382.
                             , 2759.33333333, 3844.66666667, 1184.66666667,
                 5326.66666667, 2221. , 2221. , 5861.66666667,
                 4687.33333333, 6255.33333333, 6798.33333333, 6725.66666667,
                                          , 2064.
                 4792.66666667, 2431.
                                                        , 1759.66666667,
                                            , 5238.66666667, 5374.66666667,
                 4913.33333333, 5895.
                 5427.33333333, 4301.33333333, 2320.
                                                     , 2781.33333333,
                             , 5746.66666667, 5526.66666667, 1930.66666667,
                 5536.33333333, 5253.33333333, 5516.33333333, 3950.
                 5401.33333333, 6348.33333333, 5378.33333333, 6347.66666667,
                             , 5117.33333333, 4307.66666667, 3606.
                 6012.
                 6085.66666667, 3996.
                                            , 1927.
                                                           , 5043.66666667,
                                            , 4883.66666667, 2691.
                 4949.66666667, 3878.
                             , 4069.
                                           , 1957.66666667, 4508.
                 2822.
                 6645.33333333, 6702.66666667, 6088.66666667, 4747.
                 4944.66666667, 6242. , 5738.3333333, 5117.
                 5006.33333333, 5687.33333333, 4212.33333333, 4532.33333333,
                                                        , 5287.333333333,
                 4652.66666667, 5884. , 2374.
                 5250.66666667, 3893.33333333, 2073.666666667, 4712.666666667,
                             , 7542. , 5074.66666667, 4353.
                                           , 5278.66666667, 4312.66666667,
                 5680.66666667, 6030.
                                           , 6489.
                 1894.33333333, 5669.
                                                    , 4283.333333333,
                             , 6137.33333333, 3579.66666667, 4901.66666667,
                 4568.
                                          , 4611.
                 2805.33333333, 3956.
                                                       , 4514.
                 5065.33333333, 6114.33333333, 6423.3333333, 4707.33333333,
                             , 2356.33333333, 6481.33333333, 2882.
                 5093.66666667, 5998.
                                     , 4593.66666667, 4576.66666667,
                 1983.33333333, 6219.66666667, 2611.66666667, 5478.
                 5750.66666667, 3836.66666667, 2830.66666667, 3386.
                             , 4776.33333333, 2275.33333333, 6094.
                 4158.
                 1385.66666667, 5723.33333333, 6400.66666667, 7084.
                 4709.66666667, 4888.33333333, 6978.66666667])
          rms KNN = sqrt(mean squared error(test['cnt'],KNN Predictions))
In [521]:
          rms KNN
```

Out[521]: 1519.6985685421384

```
In [522]:
          Rmsle_KNN=sqrt(mean_squared_log_error(test['cnt'],KNN_Predictions))
          Rmsle KNN
Out[522]: 0.4043876169424441
In [523]: | #KNN with 5 neighbour
          KNN_model=KNeighborsRegressor(n_neighbors=5).fit(train.iloc[:,0:9], train.iloc
          [:,10]
          KNN Predictions=KNN model.predict(test.iloc[:,0:9])
          rms_KNN = sqrt(mean_squared_error(test['cnt'],KNN_Predictions))
          Rmsle_KNN=sqrt(mean_squared_log_error(test['cnt'],KNN_Predictions))
In [524]:
          rms KNN
Out[524]: 1662.1508252822289
In [525]: Rmsle_KNN
Out[525]: 0.43275639640883745
In [526]:
          #KNN with 7 neighbour
          KNN_model=KNeighborsRegressor(n_neighbors=7).fit(train.iloc[:,0:9], train.iloc
          [:,10]
          KNN Predictions=KNN model.predict(test.iloc[:,0:9])
          rms_KNN = sqrt(mean_squared_error(test['cnt'],KNN_Predictions))
          Rmsle_KNN=sqrt(mean_squared_log_error(test['cnt'],KNN_Predictions))
In [527]:
          rms KNN
Out[527]: 1729.6704805430352
In [528]:
          Rmsle_KNN
Out[528]: 0.45175974165637767
In [529]:
          #KNN with 9 neighbour
          KNN_model=KNeighborsRegressor(n_neighbors=9).fit(train.iloc[:,0:9], train.iloc
          [:,10]
          KNN Predictions=KNN model.predict(test.iloc[:,0:9])
          rms_KNN = sqrt(mean_squared_error(test['cnt'],KNN_Predictions))
          Rmsle KNN=sqrt(mean squared log error(test['cnt'],KNN Predictions))
In [530]:
          rms_KNN
Out[530]: 1708.9750265792075
In [531]: | Rmsle KNN
Out[531]: 0.4539029050198128
 In [ ]:
```