Karta projektu zaliczeniowego

Systemy mikroprocesorowe - 2018

Temat projektu: Nieskończone Lustro sterowane aplikacją na Androida

Imię i nazwisko: **Eryk Kruk**

Politechnika Poznańska

kierunek: AiR, grupa: A3, nr albumu: 127068

1. Opis projektu

Nieskończone Lustro to kombinacja ustawienia luster i taśmy LED, przez którą wydaje się że patrzymy w nieskończoną dziurę, głębie lub tunel. Jest ozdobą do domu, może służyć jako lustro lub ozdobna lampka. Może być również zamontowane w stole (SUPER EFEKT), ramce, bądź w szafie. W mojej wersji jest to przenośne lustro lub lampka zamontowana w drewnianej ramce 30x20cm. Sterowana przez aplikację ze smartphone, w której przełączamy w różne tryby, sterujemy jasnością, czasem przełączania/efektów, kolorami jak i możemy włączać różne tryby świecenia. Wszystko jest zasilane wewnętrznym akumulatorkiem który jest ładowany przez wejście micro-usb, z tyłu obudowy lustra. Może być ładowany zwykłą ładowarką do telefonu.

2. Budowa układu

Zastosowane elementy:

Nazwa Elementu	Liczba sztuk	Oznaczenie/Wartość
Mikrokontroler	1	Arduino Nano
Moduł Bluetooth	1	HM-10 BLE Bluetooth 4.0
Ładowarka z przetwornicą DC-DC i ochroną przed rozładowaniem	1	ATB DIGI-LION 3w1
przycisk	1	typu switch/ 2 przewody
Rezystor	1	330 Ohm
NeoPixel Taśma LED ws2812b	2	1x80cm, 1x20cm
Goldpiny	3	
Akumulator Li-ON	4	LG LGEBMJ11865 3,6V
Lustro białe	1	30x20cm
Lustro weneckie	1	30x20cm
Ramka Drewniana	1	34x24cm
Podstawka drewniana	1	5x6cm

Poniżej przedstawiono schemat połaczeń, schemat został stworzony w programie fritzing.

3. Elementy oprogramowania

Są 2 programy, jeden napisy w C w arduino IDE obsługujący ArduinoNano, drugi natomiast w AndroidStudio obsługujący smartphonea z Androidem. Sterowanie arduino zostało oparte przez poniższy uproszczony schemat blokowy:

Program arduino podzieliłem na 4 zakładki, odpowiedzialne za "główne człony programu – setup, loop", "Komunikacje – dekodowanie wiadomości z BLE, ustawianie stałych zgodnie z informacjami", "Funkcje – do pomocy przy sterowaniu trybami, jak i do wykonywania trybów", "Tryby – tu są wszystkie tryby które można zapalać w programie."

KOMUNIKACJA:

Android wysyła następujący ciąg znaków do HM-10 BLE(Bluetooth Low Energy)

########***@@@\$\$\$! Gdzie: wszystkie znaki odpowiadają cyfrom od 0-9

######## -> pierwsze 9 cyfr odpowiada za kolory odpowiednio R, G, B. w wartościach od 000-255

*** -> tryb, przewidziane są 3 znaki, aktualnie jest 11 trybów + 1 przy starcie programu. 100-111 @@@ -> jasność, 000-255

\$\$\$ -> czas opóźnienia efektów, wysyłane wartości od 0-500, odpowiada od 0-5000 ms.

! -> cyfra decydująca który kolor ustawiamy, 1-> pierwszy, 2 ->drugi

Stworzyłem również aplikację na androida do sterowania Bluetoothem, składającą się z 2 aktywności z dialogami.

Akywność po lewej wyszukuje i łączy się z lustrem, przechodzi do prawej aktywności. Prawa odpowiada za sterowanie LEDami, za pomocą przycisków trybów oraz palet z kolorami jak poniżej:

Systemy Mikroprocesorowe – kierunek AiR na Wydziale Informatyki - Politechnika Poznańska 2018

Całe oprogramowanie, instalator w .apk oraz pliki .ino można znaleźć na moim githubie:

https://github.com/Raven1701/InfinityMirror

4. Wykorzystane narzędzia projektowe

Aplikację na Androida robiłem w AndroidStudio w języku JAVA.

Natomiast Arduino programowałem w ArduinoIDE. S

chemat układu robiłem w programie Fritzing

schemat blokowy na stronie https://www.draw.io/

5. Weryfikacja poprawności działania układu

Po zamontowaniu ledów w ramce przetestowałem poprawność lutowanych połączeń. Lustro zostało zamontowane pod lekkim kątem by uzyskać efekt zakrzywiana przestrzeni w dali.

Wszystko działało prawidłowo, wtedy przystąpiłem do lutowania układu razem z zasilaniem. Gdy sprawdziłem działanie i wszystko działało poprawnie, wtedy zacząłem montować wszystko w obudowę.

Zmontowany układ działał poprawnie, komunikacja również sprawdzona:

Komunikacja sprawdzona, kolor i tryb zmieniony wszystko działa poprawnie.

6. Obsługa układu

Przyciski na dole odpowiednio sterują trybami LEDów, kółka pod napisami First i Second Color sterują pierwszym i drugim kolorem, po ich naciśnięciu otwiera się paleta kolorów jak na zdjęciach we wcześniejszych punktach, następnie wybierając kolor gdy tryb go używa automatycznie zmienia je też w lustrze, po zaakceptowaniu, wybiera kolor jeszcze raz. Do niektórych trybów jest wymagany większy czas delay by działały "zjawiskowo". W menu u góry po prawej można wybrać opcję "ShowLogs" wtedy na dole ekranu pojawią się informacje zwrotne od Arduino, o trybie, co zostało wysłane i co teraz dzieję się w programie, jak i adres MAC HM-10 BLE czy aktualny status połączenia

7. Literatura

- 1. https://developer.android.com/guide/topics/connectivity/bluetooth-le.html
- 2. https://developer.android.com/index.html
- 3. http://damianchodorek.com/kurs-android-lista-siatka-recyclerview-viewholder-cardview-karty-cien-adapter-wzorzec-16/
- ${\it 4.} \quad https://learn.ada fruit.com/ada fruit-neopixel-uberguide/arduino-library-use$