Esercitazione 9

Metodi Analitici per la Soluzione dell'Equazione di Laplace

Problema di Laplace nel rettangolo con condizioni di Dirichlet

Si consideri il seguente problema di Laplace nel rettangolo con condizioni al contorno di Dirichlet:

$$\begin{cases}
-\Delta u = 0 & \text{in } \Omega = (0, L) \times (0, H), \\
u = g_1 & \text{su } \Gamma_1 := (0, L) \times \{0\}, \\
u = g_2 & \text{su } \Gamma_2 := (0, L) \times \{H\}, \\
u = g_3 & \text{su } \Gamma_3 := \{0\} \times (0, H), \\
u = g_4 & \text{su } \Gamma_4 := \{L\} \times (0, H),
\end{cases}$$
(1)

dove il bordo è $\partial\Omega$ è partizionato in quattro segmenti Γ_i tali che $\partial\Omega = \bigcup_{i=1}^4 \overline{\Gamma}_i$; le funzioni $g_i:L^2(\Gamma_i)\to\mathbb{R}$, per i=1,2,3,4, rappresentano i dati di Dirichlet sui tratti di bordo corrispondenti. Dato che il problema (1) è lineare e omogeneo, la soluzione u(x,y) può essere scritta come sovrapposizione delle soluzioni $u_i(x,y)$ dei problemi seguenti:

dei problemi seguenti:
$$\begin{cases}
-\Delta u_i = 0 & \text{in } \Omega = (0, L) \times (0, H), \\
u_i = g_i & \text{su } \Gamma_i, & \text{per } i = 1, 2, 3, 4, \\
u_i = 0 & \text{su } \partial \Omega \backslash \Gamma_i,
\end{cases}$$

$$(2)$$

$$(3) = \sum_{i=1}^{4} u_i(x, y).$$

ovvero come $u(x,y) = \sum_{i=1}^{4} u_i(x,y)$.

Cercare la soluzione tramite metodo della separazione delle variabili per il problema (1) significa dunque trovare le soluzioni tramite separazione delle variabili per i problemi di Eq. (2) e poi sommarle. Ricordiamo che le soluzioni ottenute tramite metodo della separazione delle variabili per i problemi in Eq. (2) sono rispettivamente:

$$U_1(x,y) = \sum_{n=1}^{+\infty} \frac{A_{1,n}}{\sinh(n\pi H/L)} \sin\left(\frac{n\pi}{L}x\right) \sinh\left(\frac{n\pi}{L}(H-y)\right),$$

con $A_{1,n} = \frac{2}{L} \int_0^L g_1(x) \sin\left(\frac{n\pi}{L}x\right) dx$ per n = 1, 2, ...;

$$U_2(x,y) = \sum_{n=1}^{+\infty} \frac{A_{2,n}}{\sinh(n\pi H/L)} \sin\left(\frac{n\pi}{L}x\right) \sinh\left(\frac{n\pi}{L}y\right),\,$$

con
$$A_{2,n} = \frac{2}{L} \int_0^L g_2(x) \sin(\frac{n\pi}{L}x) dx$$
 per $n = 1, 2, ...;$

$$U_3(x,y) = \sum_{n=1}^{+\infty} \frac{A_{3,n}}{\sinh(n\pi L/H)} \sinh\left(\frac{n\pi}{H}(L-x)\right) \sin\left(\frac{n\pi}{H}y\right),$$

con
$$A_{3,n} = \frac{2}{H} \int_0^H g_3(y) \sin\left(\frac{n\pi}{H}y\right) dy \text{ per } n = 1, 2, ...;$$

$$U_4(x,y) = \sum_{n=1}^{+\infty} \frac{A_{4,n}}{\sinh(n\pi L/H)} \sinh\left(\frac{n\pi}{H}x\right) \sin\left(\frac{n\pi}{H}y\right),$$

con $A_{4,n} = \frac{2}{H} \int_0^H g_4(y) \sin\left(\frac{n\pi}{H}y\right) dy$ per $n = 1, 2, \dots$ Infine, otteniamo la soluzione di Eq. (1) come:

$$U(x,y) = \sum_{i=1}^{4} U_i(x,y),$$

che, sotto opportune ipotesi sui dati g_i , coincide con u(x, y).

Principio del Massimo e Teorema della Media

Si consideri il seguente problema di Poisson:

$$\begin{cases}
-\Delta u = f & \text{in } \Omega, \\
\text{condizioni al contorno} & \text{su } \partial \Omega,
\end{cases}$$
(3)

dove $f: \Omega \to \mathbb{R}$ e $u: \Omega \to \mathbb{R}$; consideriamo in generale condizioni al contorno di Dirichlet, Neumann, Robin, o miste, omogenee o non omogenee.

Se i dati del problema sono tali che $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$, valgono i seguenti principi del massimo.

- Se f < 0 ($\Delta u > 0$), allora $u(\mathbf{x}) \le \max_{\partial \Omega} u$ per ogni $\mathbf{x} \in \Omega$.
- Se f > 0 ($\Delta u < 0$), allora $u(\mathbf{x}) \ge \min_{\partial \Omega} u$ per ogni $\mathbf{x} \in \Omega$.
- Se f = 0 ($\Delta u = 0$), allora $\min_{\partial \Omega} u \le u(\mathbf{x}) \le \max_{\partial \Omega} u$ per ogni $\mathbf{x} \in \Omega$.

Consideriamo ora due problemi di Laplace-Dirichlet, ovvero per Eq. (3) f=0 e condizioni al contorno di Dirichlet su $\partial\Omega$, con soluzioni u_1 e $u_2 \in C^2(\Omega) \cap C^0(\overline{\Omega})$ corrispondenti a $u_1=g_1$ e $u_2=g_2$ su $\partial\Omega$. Allora valgono le seguenti:

- (confronto) se $g_1 \geq g_2$ su $\partial\Omega$, ma $g_1 \neq g_2$, allora $u_1 > u_2$ in Ω ;
- (stima di stabilità) $|u_1(\mathbf{x}) u_2(\mathbf{x})| \le \max_{\partial \Omega} |g_1 g_2|$ per ogni $\mathbf{x} \in \Omega$;
- (dipendenza continua delle soluzione dai dati) dalla precedente, se $g_2 = g_1 + \epsilon$, con $\epsilon > 0$, allora $|u_1(\mathbf{x}) u_2(\mathbf{x})| \le \epsilon$ per ogni $\mathbf{x} \in \Omega$.

Ricordiamo infine che per una funzione armonica, per esempio soluzione di Eq. (3) con f=0 e $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$, vale il teorema della media:

$$u(\mathbf{x}) = \frac{1}{|B_R(\mathbf{x})|} \int_{B_R(\mathbf{x})} u(\mathbf{y}) d\mathbf{y} \qquad e \qquad u(\mathbf{x}) = \frac{1}{|\partial B_R(\mathbf{x})|} \oint_{\partial B_R(\mathbf{x})} u(\boldsymbol{\sigma}) d\boldsymbol{\sigma},$$

dove $B_R(\mathbf{x}) \subseteq \Omega \subset \mathbb{R}^d$ è una qualsiasi bolla di raggio R centrata in $\mathbf{x} \in \Omega$ e contenuta in Ω , per d = 1, 2, 3.

Equazione di Poisson – Condizioni di compatibilità

Si consideri il seguente problema di Neumann per l'equazione di Poisson:

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ \nabla u \cdot \mathbf{n} = g & \text{su } \partial \Omega, \end{cases}$$

dove $\Omega \subset \mathbb{R}^2$ è un dominio (aperto e connesso) limitato e regolare (cioè che verifichi le ipotesi del teorema della divergenza) e i dati f e g sono funzioni continue, su $\overline{\Omega}$ e $\partial\Omega$ rispettivamente. Allora, integrando su Ω i due membri dell'equazione differenziale e usando il teorema della divergenza si ottiene che se esiste una soluzione deve valere la condizione di compatibilità:

$$-\int_{\Omega} f \, dx dy = \int_{\partial \Omega} g \, dS.$$

In realtà si può dimostrare che tale condizione è necessaria e sufficiente per l'esistenza delle soluzioni; inoltre, in caso la condizione sia soddisfatta, esistono infinite soluzioni, che differiscono per una costante arbitraria.

Esercizio 1

Si determini la soluzione U(x,y) del problema (1) usando il metodo della separazione delle variabili e considerando i seguenti dati.

1.
$$L = \pi$$
, $H = 2\pi$, $g_1(x) = \sin(2x)$, $g_2 = 0$, $g_3(y) = \frac{1}{3}\sin(y)$, $g_4 = 0$.

2.
$$L = \pi$$
, $H = \pi$, $g_1 = 0$, $g_2 = 0$, $g_3(y) = \sin(y)$, $g_4 = -\sin(y)$.

3.
$$L = 1$$
, $H = 1$, $g_1(x) = \begin{cases} 0 & \text{per } x \in (0, 1/3] \cup (2/3, 1), \\ 1 & \text{per } x \in (1/3, 2/3]. \end{cases}$, $g_2 = 0$, $g_3 = 0$, $g_4 = 0$.

4.
$$L = 1, H = 1, q_i = x + y \text{ per } (x, y) \in \Gamma_i \text{ e } i = 1, 2, 3, 4.$$

Esercizio 2

- 1. Si consideri il problema (1) con i dati dell'Esercizio 1.1. Si discutano i valori minimo e massimo di u in Ω , riportandone quando possibile i valori e le coordinate corrispondenti.
- 2. (tratto dall'ESAME del 02/09/2024) Senza calcolare esplicitamente la soluzione del problema

$$\begin{cases}
-\Delta u = 5 & \text{in } \Omega = (0, 1) \times (0, 1) \\
u = -xe^{2x} & \text{su } (0, 1) \times \{0\} \\
u = (y - 1)e^{2} & \text{su } \{1\} \times (0, 1) \\
u = (1 - x)e & \text{su } (0, 1) \times \{1\} \\
u = ye^{y} & \text{su } \{0\} \times (0, 1)
\end{cases}$$

si determinino, qualora possibile, i valori di minimo e/o massimo di u(x,y) e i punti in cui tali valori vengono assunti.

Esercizio 3

1. Si consideri il seguente problema di Neumann per l'equazione di Poisson, per la funzione u = u(x, y) sul disco $B = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 4\}$:

$$\begin{cases} -\Delta u(x,y) = x+1 & \text{in } B \\ \nabla u \cdot \mathbf{n} = a & \text{su } \partial B, \end{cases}$$

Determinare per quali valori della costante $a \in \mathbb{R}$ ammette soluzione.

2. Si consideri il seguente problema di Neumann per l'equazione di Poisson, per la funzione u = u(x, y) sul rettangolo $\Omega = (0, 2) \times (0, 1)$:

$$\begin{cases}
-\Delta u(x,y) = a, & (x,y) \in \Omega, \\
-u_x(0,y) = 0, & u_x(2,y) = 0, & y \in (0,1), \\
-u_y(x,0) = 0, & u_y(x,1) = x^2, & x \in (0,2).
\end{cases}$$

Determinare per quali valori della costante $a \in \mathbb{R}$ ammette soluzione.

3. (tratto dall'ESAME del 09/02/2024) Si consideri il seguente problema di Poisson sul disco $B = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 9\}$, completato con condizioni di Neumann:

$$\begin{cases} -\Delta u = 5a + 3 & \text{in } B \\ \nabla u \cdot \mathbf{n} = 0 & \text{su } \partial B, \end{cases}$$

con $a \in \mathbb{R}$. Si commentino l'esistenza e unicità della soluzione u e si determini il valore di a per cuiil problema ammette soluzione.