

CSE408 Matrix Chain Multiplication

Lecture # 24

- Suppose we have a sequence or chain A₁, A₂,
 ..., A_n of n matrices to be multiplied
 - That is, we want to compute the product A_1A_2 ... A_n

 There are many possible ways (parenthesizations) to compute the product

- Example: consider the chain A₁, A₂, A₃, A₄ of
 4 matrices
 - Let us compute the product A₁A₂A₃A₄
- There are 5 possible ways:
 - 1. $(A_1(A_2(A_3A_4)))$
 - 2. $(A_1((A_2A_3)A_4))$
 - 3. $((A_1A_2)(A_3A_4))$
 - 4. $((A_1(A_2A_3))A_4)$
 - 5. $(((A_1A_2)A_3)A_4)$

- To compute the number of scalar multiplications necessary, we must know:
 - Algorithm to multiply two matrices
 - Matrix dimensions

 Can you write the algorithm to multiply two matrices?

Algorithm to Multiply 2 Matrice

Input: Matrices $A_{p \times q}$ and $B_{q \times r}$ (with dimensions $p \times q$ and $q \times r$)

Result: Matrix $C_{p \times r}$ resulting from the product $A \cdot B$

MATRIX-MULTIPLY $(A_{p \times q}, B_{q \times r})$

```
1. for i \leftarrow 1 to p
2. for j \leftarrow 1 to r
3. C[i,j] \leftarrow 0
4. for k \leftarrow 1 to q
5. C[i,j] \leftarrow C[i,j] + A[i,k] \cdot B[k,j]
6. return C
```

Scalar multiplication in line 5 dominates time to compute CNumber of scalar multiplications = pqr

- Example: Consider three matrices $A_{10\times100}$, $B_{100\times5}$, and $C_{5\times50}$
- There are 2 ways to parenthesize

$$- ((AB)C) = D_{10\times5} \cdot C_{5\times50}$$

- AB \Rightarrow 10·100·5=5,000 scalar multiplications
- DC \Rightarrow 10·5·50 = 2,500 scalar multiplications

-
$$(A(BC)) = A_{10 \times 100} \cdot E_{100 \times 50}$$

- BC \Rightarrow 100·5·50=25,000 scalar multiplications
- AE \Rightarrow 10·100·50 =50,000 scalar multiplications

multiplications
Total:

75,000

Total: 7,500

- Matrix-chain multiplication problem
 - Given a chain A_1 , A_2 , ..., A_n of n matrices, where for i=1, 2, ..., n, matrix A_i has dimension $p_{i-1} \times p_i$
 - Parenthesize the product A₁A₂...A_n such that the total number of scalar multiplications is minimized
- Brute force method of exhaustive search takes time exponential in n

Dynamic Programming Approach

- The structure of an optimal solution
 - Let us use the notation $A_{i..j}$ for the matrix that results from the product $A_i A_{i+1} ... A_j$
 - An optimal parenthesization of the product $A_1A_2...A_n$ splits the product between A_k and A_{k+1} for some integer k where $1 \le k < n$
 - First compute matrices $A_{1..k}$ and $A_{k+1..n}$; then multiply them to get the final matrix $A_{1..n}$

Dynamic Programming Approach

- **Key observation**: parenthesizations of the subchains $A_1A_2...A_k$ and $A_{k+1}A_{k+2}...A_n$ must also be optimal if the parenthesization of the chain $A_1A_2...A_n$ is optimal (why?)

 That is, the optimal solution to the problem contains within it the optimal solution to subproblems

Dynamic Programming Approach ..

- Recursive definition of the value of an optimal solution
 - Let m[i, j] be the minimum number of scalar multiplications necessary to compute $A_{i,j}$
 - Minimum cost to compute $A_{1..n}$ is m[1, n]
 - Suppose the optimal parenthesization of $A_{i..j}$ splits the product between A_k and A_{k+1} for some integer k where $i \le k < j$

Dynamic Programming Approach ...

$$- A_{i..j} = (A_i A_{i+1}...A_k) \cdot (A_{k+1} A_{k+2}...A_j) = A_{i..k} \cdot A_{k+1..j}$$

- Cost of computing $A_{i...j}$ = cost of computing $A_{i...k}$ + cost of computing $A_{k+1...j}$ + cost of multiplying $A_{i...k}$ and $A_{k+1...j}$
- Cost of multiplying $A_{i...k}$ and $A_{k+1...j}$ is $p_{i-1}p_kp_j$

- $m[i, j] = m[i, k] + m[k+1, j] + p_{i-1}p_kp_j$ for $i \le k < j$
- -m[i, i] = 0 for i=1,2,...,n

Dynamic Programming Approach ..

- But... optimal parenthesization occurs at one value of k among all possible $i \le k < j$
- Check all these and select the best one

$$m[i, j] = \begin{cases} 0 & \text{if } i=j \\ m[i, j] = \\ min\{m[i, k] + m[k+1, j] + p_{i-1}p_k p_j\} & \text{if } i < j \\ i \le k < j \end{cases}$$

Dynamic Programming Approach ..

- To keep track of how to construct an optimal solution, we use a table s
- s[i, j] = value of k at which $A_i A_{i+1} ... A_j$ is split for optimal parenthesization
- Algorithm: next slide
 - First computes costs for chains of length l=1
 - Then for chains of length l=2,3,... and so on
 - Computes the optimal cost bottom-up

Algorithm to Compute Optimal Cos

Input: Array p[0...n] containing matrix dimensions and n

Result: Minimum-cost table *m* and split table *s*

MATRIX-CHAIN-ORDER(p[], n)

```
for i \leftarrow 1 to n
                                                          Takes O(n^3) time
      m[i, i] \leftarrow 0
                                                          Requires O(n^2) space
for l \leftarrow 2 to n
      for i \leftarrow 1 to n-l+1
            j \leftarrow i+l-1
            m[i,j] \leftarrow \infty
            for k \leftarrow i to j-1
                   q \leftarrow m[i, k] + m[k+1, j] + p[i-1] p[k] p[j]
                  if q < m[i, j]
                         m[i,j] \leftarrow q
                         s[i, j] \leftarrow k
```

return *m* and *s*

Constructing Optimal Solution

- Our algorithm computes the minimum-cost table m and the split table s
- The optimal solution can be constructed from the split table s
 - Each entry s[i, j] = k shows where to split the product $A_i A_{i+1} \dots A_i$ for the minimum cost

Example

- Show how to multiply this matrix chain optimally
- Solution on the board
 - Minimum cost 15,125
 - Optimal parenthesization $((A_1(A_2A_3))((A_4A_5)A_6))$

Matrix	Dimension
A ₁	30×35
A_2	35×15
A_3	15×5
A_4	5×10
A_5	10×20
A_6	20×25

Thank You!!!