

Europäisches Patentamt European Patent Office

Office européen des brevets

EPO4/3535

RECD 0 2 JUN 2004

WIPO PCT

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet n°

03011250.2

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office Le Président de l'Office européen des brevets p.o.

R C van Dijk

PUI/EP200 4/0 03 535 European **Patent Office**

16.05.03

des brevets

Anmeldung Nr:

Application no.:

03011250.2

Demande no:

Anmeldetag:

Date of filing:

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

SIEMENS AKTIENGESELLSCHAFT Wittelsbacherplatz 2 80333 München ALLEMAGNE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description. Si aucun titre n'est indiqué se referer à la description.)

Vorrichtung und Verfahren zur Kommunikation mit Hilfe einer kryptischen Codetabelle

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s) Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/ Classification internationale des brevets:

H04L9/06

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR LI

Beschreibung

5

10

30

35

Vorrichtung und Verfahren zur Kommunikation mit Hilfe einer kryptischen Codetabelle

Die vorliegende Erfindung betrifft eine Kommunikationsprozessorvorrichtung zur Kommunikation in einem Netzwerk mit einer
Prozessoreinrichtung zum Verarbeiten eingehender Signale und
zum Erzeugen und/oder Bereitstellen ausgehender Signale sowie
einer Codespeichereinrichtung zum Bereitstellen eines Codes
für die Prozessoreinrichtung. Ferner betrifft die vorliegende
Erfindung ein entsprechendes Verfahren zur Kommunikation in
einem Netzwerk.

- Bei Low-Level-Bussen für industrielle Anwendungen kann das sogenannte Aktuator-Sensor-Interface (AS-i) eingesetzt werden. Das Aktuator-Sensor-Interface ist im Internet unter der Adresse "www.as-interface.net" ausführlich beschrieben.
- Zur Übertragung von sicherheitsrelevanten Daten über ein AS-Interface ist in jedem Slave eines AS-i-Netzes eine für dieses Netz einmalige Codefolge von typischerweise 4 x 8 Bit gespeichert. Eine detaillierte Beschreibung einer derartigen Codefolge findet sich in dem Kompendium "AS-Interface - Die Lösung in der Automation" AS-i, Februar 2003, Seiten 134 ff.

Die Codefolge ist in einem von einem AS-i-Kommunikationsprozessor getrennten Bauelement hinterlegt. Durch die Trennung von Kommunikationsprozessor und Codespeicher kann eine
ungewollte Übertragung der Codesequenz beispielsweise aufgrund eines Kurzschlusses oder ungenauen Fertigungsprozesses
ausgeschlossen werden. In erster Linie sind sicherheitsrelevante Bauelemente und Leiterbahnen voneinander räumlich zu
trennen, um den geforderten Fehlerausschluss gewährleisten zu
können. Je nach verwendeten Potentialen und Materialien sind
hierbei bestimmte Mindestabstände einzuhalten. Die minimalen
Abstände liegen beispielsweise bei 0,2 mm. Aus diesem Grund

ist die Integration eines Codespeichers in den Kommunikationsprozessor nicht möglich.

Die Aufgabe der vorliegenden Erfindung besteht somit darin, eine vereinfachte Kommunikationsprozessorvorrichtung und ein entsprechendes Kommunikationsverfahren vorzuschlagen.

Erfindungsgemäß wird diese Aufgabe gelöst durch eine Kommunikationsprozessorvorrichtung zur Kommunikation in einem Netz10 werk mit einer Prozessoreinrichtung zum Verarbeiten eingehender Signale und zum Erzeugen und/oder Bereitstellen ausgehender Signale und einer Codespeichereinrichtung zum Bereitstellen eines Codes für die Prozessoreinrichtung, wobei die Codespeichereinrichtung in die Prozessoreinrichtung integriert
ist, der Code in der Codespeichereinrichtung verschlüsselt
vorliegt und die Prozessoreinrichtung zur Entschlüsselung zumindest eines Teils des Codes an eine externe Decodereinrichtung anschließbar ist.

- Darüber hinaus ist erfindungsgemäß vorgesehen ein Verfahren zur Kommunikation in einem Netzwerk mit den Schritten: Bereitstellen eines Codes und Vergleichen von Daten mit dem Code und/oder Senden des Codes in das Netzwerk, wobei der Code in einer Kommunikationsprozessorvorrichtung verschlüsselt bereitgestellt wird, zumindest ein Teil des verschlüsselten Codes außerhalb der Kommunikationsprozessorvorrichtung entschlüsselt wird und der entschlüsselte Code der Kommunikationsprozessorvorrichtung zur Verfügung gestellt wird.
- Dadurch, dass in dem Kommunikationsprozessor der Code in verschlüsselter Form gespeichert ist, wird bei einem Fehler im
 Kommunikationsprozessor keine gültige Codesequenz übertragen.
 Damit ist es auch möglich, dass der Codespeicher in dem Kommunikationsprozessor unter Umgehung der vorschriftsgemäßen
 räumlichen Trennung von beispielsweise mindestens 0,2 mm zwischen sicherheitsrelevanten Baugruppen innerhalb eines integrierten Schaltkreises integriert werden kann.

Ein derartiger gemeinsamer Schaltkreis für den Kommunikationsprozessor und die Codespeichereinrichtung kann als ASIC ausgestaltet sein.

5

10

Vorzugsweise wird in der Codespeichereinrichtung auch Verschlüsselungsinformation beziehungsweise Entschlüsselungsinformation abgespeichert, die der Decodiereinrichtung zur Verfügung gestellt wird. Damit kann die externe Decodiereinrichtung einfacher gestaltet werden, da die gesamte Entschlüsselungsinformation nicht in der Decodiereinrichtung abgelegt zu sein braucht.

15

Die Codespeichereinrichtung kann eine Eingabeeinrichtung zur Eingabe eines verschlüsselten Codes aufweisen. Dadurch kann der Code in die Kommunikationsprozessorvorrichtung beliebig beispielsweise mit Hilfe eines PC eingespeichert und geändert werden.

20

Die Kommunikationsprozessorvorrichtung kann außerdem eine Tauscheinrichtung besitzen, mit der zumindest zwei Stellen des mehrstelligen Codes vertauschbar sind. Der Tausch dient zur teilweisen Entschlüsselung des verschlüsselten Codes. Generell bedeutet dies, dass zumindest ein Teil der Entschlüsselung direkt in der Kommunikationsprozessorvorrichtung vorgenommen werden kann.

25

Vorteilhafterweise wird die Kommunikationsprozessorvorrichtung für ein Aktuator-Sensor-Interface zur Kommunikation in einem AS-i-Netz eingesetzt.

3 C

Die vorliegende Erfindung wird nun anhand der beigefügten Zeichnungen näher erläutert, in denen zeigen:

35

FIG 1 einen Schaltungsaufbau einer Kommunikationsprozessorvorrichtung gemäß dem Stand der Technik;

- einen Schaltungsaufbau einer Kommunikationsprozessor-FIG 2 vorrichtung gemäß der vorliegenden Erfindung; FIG 3
- Codetabellen gemäß einer ersten Ausführungsform;
- Codetabellen gemäß einer zweiten Ausführungsform; und FIG 4
- einen konkretisierten Schaltungsaufbau zur Verwendung 5 FIG 5 der Codetabellen von FIG 4.

Die nachfolgend beschriebenen Ausführungsformen stellen bevorzugte Ausführungsbeispiele der vorliegenden Erfindung dar.

Zur Verdeutlichung der Erfindung sei zunächst anhand von FIG 1 das Prinzipschaltbild einer Kommunikationsprozessorvorrichtung nach dem Stand der Technik näher erläutert. Ein Kommunikationsprozessor 1 sendet und empfängt Daten von einer AS-i-Leitung 2. Der für das AS-Interface spezifische Code ist in einem Codespeicher 3, der mit einer eigenen Spannungsversorgung 4 ausgestattet ist, abgelegt. Der Codespeicher 3 ist über einen Taktgeber 5 mit dem Kommunikationsprozessor 1 verbunden und erhält von diesem die notwendigen Taktimpulse.

20

25

30

15

10

Der Codespeicher 3 besitzt vier parallele Ausgänge D0, D1, D2 und D3 zur Übertragung eines vierstelligen Codetelegramms in einem AS-i-Zyklus. Über eine Schaltvorrichtung 6 und eine Pegelanpasseinrichtung 7 sind die Ausgangsleitungen D0 bis D3 zum Kommunikationsprozessor 1 geführt. Die Schalteinrichtung 6 kann beispielsweise mit einem Notausschalter realisiert werden, so dass im Aus-Zustand sämtliche Leitungen offen sind und jeweils eine Null übertragen wird. Dies entspricht dem Notaus-Zustand gemäß der AS-i-Spezifikation. Durch die Pegelanpasseinrichtung 7 werden die beiden getrennten Baugruppen, nämlich Kommunikationsprozessor 1 und Codespeicher 3, hinsichtlich des Pegels aneinander angepasst.

Erfindungsgemäß wird nun gemäß FIG 2 in den Kommunikationsprozessor 10 ein Codespeicher 11 integriert. Eine eigene 35 Spannungsversorgung für den Codespeicher ist damit nicht mehr

10

15

20

notwendig. Der Codespeicher 11 wird weiterhin vom Kommunikationsprozessor 10 getaktet.

Damit die geforderte Sicherheit gegeben ist, ist in dem Codespeicher 11 der Code verschlüsselt gespeichert. Darüber hinaus ist in dem Codespeicher 11 auch Entschlüsselungsinformation gespeichert, die über eine Leitung INV parallel zu den Ausgangsleitungen D0*, D1, D2*, D3 zu einem externen Decoder 12 übertragen wird. Die Leitungen D0* und D2* symbolisieren, dass der Code an diesen Stellen beziehungsweise in diesen Leitungen verschlüsselt übertragen wird. Durch eine spezifische Decodier-Operation werden die Stellen D0* und D2* zu D0 und D2 entschlüsselt. Im vorliegenden Beispiel erfolgt die Decodier-Operation durch eine Exclusiv-Oder-Verknüpfung der verschlüsselten Stelle DO* beziehungsweise D2* mit einer Entschlüsselungsinformation INV. Über die Schalteinrichtung 6 werden nun sämtliche uncodierten beziehungsweise decodierten Stellen D0 bis D3 von den Ausgangsleitungen des Decoders 12 in den Kommunikationsprozessor 10 eingeleitet.

In FIG 3 sind in einem Beispiel die Codes dargestellt, die in der Schaltung von FIG 2 verarbeitet beziehungsweise erstellt werden. Auf der linken Seite ist diejenige 4 x 8-Codefolge dargestellt, die den AS-Interface-spezifischen Code im Original darstellt. In der Mitte von FIG 3 ist eine verschlüsselte 4 x 8-Codefolge einschließlich einer Entschlüsselungsinformation INV für jedes der acht Codetelegramme dargestellt. Auf der rechten Seite von FIG 3 ist schließlich der Code wiedergegeben, wie er in den Kommunikationsprozessor 10 eingespeist wird. Die übertragene Codefolge entspricht exakt der auf der linken Seite dargestellten Originalcodefolge.

Das Regelwerk für die in der Mitte von FIG 3 dargestellte kryptische Codetabelle, die in dem mittels eines ASIC realisierten Kommunikationsprozessor 10 abgespeichert ist, lautet wie folgt:

D0* = D0 ⊕ INV und ebenso

25

 $D2* = D2 \oplus INV.$

Dabei symbolisiert das "⊕" eine Exklusiv-Oder-Verknüpfung.

Die Verschlüsselungs- beziehungsweise Entschlüsselungsinformation INV besteht aus einem Bit, das fest oder variabel bei
den n-Codewerten mit 0 oder 1 belegt ist. Im vorliegenden
Fall ist INV beim ersten, dritten, sechsten und siebten Codewert mit 1 belegt, bei den anderen Codewerten mit 0. Die INVInformation wird dem Codewert zugeordnet im Codespeicher 11
mit abgespeichert. Die Stellen D0 und D3 der im Codespeicher
11 abgespeicherten Codetabelle sind unverändert und entsprechen dem Originalcode.

Die Rückgewinnung der zu übertragenden Codetabelle aus der in dem Kommunikationsprozessor 10 beziehungsweise ASIC gespeicherten kryptischen Codetabelle (vergleiche FIG 3 Mitte) geschieht wie folgt:

Die INV-Information wird an einem ASIC-pin ausgegeben. In dem externen Decoder wird D0 = D0* \oplus INV und D2 = D2* \oplus INV gebildet und übertragen. D1 und D3 werden durch den Decoder 12 durchgeleitet und übertragen.

Vergleicht man die kryptische Codetabelle mit der letztendlich übertragenen und von einem Sicherheitsmonitor erwarteten Codefolge, ist leicht erkennbar, dass durch ASIC-interne Fehler keine ungewollte Übertragung der gültigen Codetabelle stattfinden kann.

Erfindungsgemäß ergibt sich damit der Vorteil, dass gegenüber
dem Schaltungsaufbau von FIG 1 mehrere externe Schaltungselemente, nämlich der externe Codespeicher 3, die Spannungsversorgung 4 des Codespeichers 3, der Taktgeber 5 und die
Pegelanpasseinrichtung 7 ohne Einschränkung der Sicherheitskategorie eingespart werden können. Diese Schaltungselemente
sind in dem Kommunikationsprozessor bereits vorhanden beziehungsweise nicht (mehr) notwendig, oder aber praktisch kostenneutral in diesen integrierbar. Dadurch ergeben sich für

LΟ

15

20

einen sicheren AS-i-Slave erhebliche Kosteneinsparungen bei deutlich reduziertem Platzbedarf.

Anhand der Figuren 4 und 5 wird eine alternative Ausführungsform hinsichtlich der Verschlüsselung und der Entschlüsselung der Codetabellen vorgestellt. Auf der linken Seite von FIG 4 ist wiederum die Originalcodetabelle als Referenz dargestellt. In einem ersten Verschlüsselungsschritt werden die Werte der Codetabelle an den Stellen DO und D2 um + 1, d. h. nach oben, verschoben. Diese Verschiebung ist in FIG 2 in der mittleren Tabelle dargestellt. In einem zweiten Verschlüsselungsschritt werden Werte der Tabelle getauscht beziehungsweise invertiert, wie dies in der rechten Tabelle in FIG 4 dargestellt ist. Diese resultierenden Werte werden in den Codespeicher 11, der in den Kommunikationsprozessor integriert ist, geschrieben. Zusätzlich wird in dem Codespeicher 11 zu jedem vierstelligen Codetelegramm ein Flag abgespeichert.

Das Regelwerk für die kryptographische Codetabelle im ASIC gemäß FIG 4 lautet:

D0 und D2 werden vor dem Speichern in dem ASIC um einen Wert "nach vorne" verschoben und invertiert. Beim ersten, dritten, sechsten und siebten Codewert (fest oder auch variabel bei insgesamt vier Codewerten) werden D1 und D3 vertauscht. Diese Codewerte werden für ein fünftes Bit (Flag) mit 1 gekennzeichnet. Die Codewerte mit nicht vertauschtem D1/D3-Bit sind mit Flag = 0 gekennzeichnet. Die Flag-Information wird dem Codewert zugeordnet mit gespeichert.

Die Rückgewinnung der übertragenen Codetabelle aus der kryptographischen Codetabelle im ASIC erfolgt gemäß der in FIG 5 dargestellten Schaltung. In externen Schaltungsteilen 22 und 23 werden die Werte DO* und D2*, die aus der Kommunikationsprozessorvorrichtung 20 stammen, invertiert, mit einer Offsetspannung Offset 1 beziehungsweise Offset 2 versehen und so verzögert (ca. 20 μ s), dass DO* und D2* erst im nächsten ASInterface-Zyklus übertragen werden. Dazu werden die ent-

schlüsselten Werte D0 und D2 über Schalter 61 und 62 zurück zu der Kommunikationsprozessorvorrichtung 20 beziehungsweise den darin enthaltenen Kommunikationsprozessor 21 zurückgeführt. Die Schaltungsteile 22 und 23 besitzen zur Verzögerung jeweils ein RC-Glied RC, zur Invertierung einen damit verbundenen Transistor T und zur Offseteinstellung einen Spannungsteiler R.

Die Werte D1 und D3 werden in der Kommunikationsprozessorvorrichtung beziehungsweise dem ASIC 20 intern in Abhängigkeit 10 der Offsetspannungen Offset 1 und Offset 2, die bei Anliegen von D0* und D2* anstehen, zur Übertragung zu dem AS-Interface durchgeschaltet. Hierzu werden die Werte D1* und D3* mit einer internen Schalteinrichtung 24 entsprechend einem Flag vertauscht. Falls das Flag (vergleiche rechte Tabelle von FIG 15 4) 0 ist, werden die Werte D1* und D3* nicht vertauscht und unmittelbar als D1 und D3 an den Kommunikationsprozessor 21 über Schalter 25 und 26 weitergeleitet. Diese internen Schalter 25 und 26 werden über die Offsetspannungen Offset 1 und Offset 2 gesteuert. Hierzu besteht ein Abgriff zu den Leitun-20 gen D0 und D2. Falls die externen Schalter 61 und 62 geschlossen sind, sind die Signale in den Leitungen D0 und D2 jeweils mit einem Offset versehen. Diese Offsetspannungen werden dazu verwendet, die internen Schalter 25 und 26 geschlossen zu halten. Falls nun das AS-Interface beispielswei-25 se über einen Notaus-Schalter abgeschaltet wird, sind die beiden Schalter 61 und 62 geöffnet. Die Offsetspannungen Offset 1 und Offset 2 liegen an den internen Schaltern 25 und 26 nicht mehr an, so dass sich auch diese öffnen. Dadurch liegt an sämtlichen Leitungen D0 bis D3 ein Null-Signal an, womit 30 der geforderte Zustand der AS-i-Spezifikation erreicht ist.

Grundsätzlich sind auch beliebige andere Codetabellen und Codefolgen möglich. Auch bei dieser Ausführungsform ergeben sich die oben im Zusammenhang mit den FIG 2 und 3 genannten Vorteile.

20

25

35

EPO - Munich 33 1 6. Mai 2003

Patentansprüche

- 1. Kommunikationsprozessvorrichtung zur Kommunikation in einem Netzwerk mit
- 5 einer Prozessoreinrichtung (10) zum Verarbeiten eingehender Signale und zum Erzeugen und/oder Bereitstellen ausgehender Signale und
 - einer Codespeichereinrichtung (11) zum Bereitstellen eines Codes für die Prozessoreinrichtung (10),
 - dadurch gekennzeichnet, dass
 - die Codespeichereinrichtung (11) in die Prozessoreinrichtung (10) integriert ist,
 - der Code in der Codespeichereinrichtung (11) verschlüsselt vorliegt und:
- die Prozessoreinrichtung (10) zur Entschlüsselung zumindest eines Teils des Codes an eine externe Decodereinrichtung (12) anschließbar ist.
 - 2. Kommunikationsprozessorvorrichtung nach Anspruch 1, wobei die Prozessoreinrichtung (10) und die Codespeichereinrichtung (11) mit einem gemeinsamen integrierten Schaltkreis realisiert sind.
 - 3. Kommunikationsprozessorvorrichtung nach Anspruch 1 oder 2, wobei der gemeinsame Schaltkreis ein ASIC ist.
 - Kommunikationsprozessorvorrichtung nach einem der vorhergehenden Ansprüche, wobei in der Codespeichereinrichtung (11) auch Entschlüsselungsinformation (INV) abgespeichert ist, die der Decodiereinrichtung (12) zur Verfügung stellbar ist.
 - 5. Kommunikationsprozessorvorrichtung nach einem der vorhergehenden Ansprüche, wobei die Codespeichereinrichtung
 (11) eine Eingabeeinrichtung zur Eingabe eines verschlüsselten Codes aufweist.

35

- 6. Kommunikationsprozessorvorrichtung nach einem der vorhergehenden Ansprüche, die eine Tauscheinrichtung (24) zum
 Tauschen von mindestens zwei Stellen des mehrstelligen
 Codes zur Entschlüsselung aufweist.
- 7. Aktuator-Sensor-Interface mit einer Kommunikationsprozessorvorrichtung nach einem der vorhergehenden Ansprüche.
- 8. Verfahren zur Kommunikation in einem Netzwerk mit den Schritten:
 - Bereitstellen eines Codes und
 - Vergleichen von Daten mit dem Code und/oder Senden des Codes in das Netzwerk,
 - dadurch gekennzeichnet, dass
- der Code in einer Kommunikationsprozessorvorrichtung verschlüsselt bereitgestellt wird,
 - zumindest ein Teil des verschlüsselten Codes außerhalb der Kommunikationsprozessorvorrichtung entschlüsselt wird und
- 20 der entschlüsselte Code der Kommunikationsprozessorvorrichtung zur Verfügung gestellt wird.
- Verfahren nach Anspruch 8, wobei in der Kommunikationsprozessorvorrichtung zusammen mit dem verschlüsselten Code auch Entschlüsselungsinformation (INV) abgespeichert
 und zur Entschlüsselung zur Verfügung gestellt wird.
- 10. Verfahren nach Anspruch 8 oder 9, wobei verschlüsselter Code extern generiert und in die Kommunikationsprozessorvorrichtung eingegeben wird.
 - 11. Verfahren nach einem der Ansprüche 8 bis 10, wobei der Code mehrstellig ist und zumindest zwei Stellen in der Kommunikationsprozessorvorrichtung zur Entschlüsselung vertauscht werden.

12. Verfahren nach einem der Ansprüche 8 bis 11, wobei die Kommunikation in einem AS-i-Netz stattfindet.

Zusammenfassung

Vorrichtung und Verfahren zur Kommunikation mit Hilfe einer kryptischen Codetabelle

Ein AS-Interface-Slave soll vereinfacht werden. Damit die geforderte Sicherheit erhalten bleibt, wird der interfacespezifische Code in einem Codespeicher (11), der in einem Kommunikationsprozessor (10) integriert ist, verschlüsselt abgespeichert. Damit wird im Falle eines Fehlers des Kommunikationsprozessors (10) nicht der Originalcode sondern allenfalls der verschlüsselte Code übertragen. Zur Entschlüsselung des Codes ist lediglich ein externer Decoder (12) notwendig. Er gewährleistet die notwendige räumliche Trennung der Bauelemente bei der Bereitstellung des zu übertragenden Codes.

FIG 2

5

LO

15

FIG 2

	übert								·	•
		8	0	0	· •	-		· +	· c	· –
	kryptische Codetabelle im ASIC	N N	4	0	4	0	0	-	· -	
		D3	·		0		, -	0	0)
		D2*	0	-	0	-	0	0	-	
		5	0	-	0	0	0	-	-	
	<u> </u>		_	0	0	-	-	0	,	0
iginalcodetabelle (Referenz)	(Refe	D3	 -	0	0	·	·	0	0	_
		02					0	_	0	-
	Originalcode	10	0	-	0	0	0	-	-	-
•	ŏ	00	0	0	₩-				0	0

FIG 3

FIG 4

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

X	BLACK BORDERS
×	IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
X	FADED TEXT OR DRAWING
	BLURED OR ILLEGIBLE TEXT OR DRAWING
	SKEWED/SLANTED IMAGES .
×	COLORED OR BLACK AND WHITE PHOTOGRAPHS
۵	GRAY SCALE DOCUMENTS
	LINES OR MARKS ON ORIGINAL DOCUMENT
	REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox