Changing basis

5/5 points (100%)

Practice Quiz, 5 questions

Congratulations! You passed!

Next Item

1/1 points

In this quiz, you will practice changing from the standard basis to a basis consisting of orthogonal vectors.

Given vectors $\mathbf{v}=egin{bmatrix}5\\-1\end{bmatrix}$, $\mathbf{b_1}=egin{bmatrix}1\\1\end{bmatrix}$ and $\mathbf{b_2}=egin{bmatrix}1\\-1\end{bmatrix}$ all written in the standard basis, what is ${f v}$ in the basis defined by ${f b_1}$ and ${f b_2}$? You are given that $\mathbf{b_1}$ and $\mathbf{b_2}$ are orthogonal to each other.

$$\mathbf{v_b} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

The vector ${f v}$ is projected onto the two vectors ${f b_1}$ and ${f b_2}.$

$$\mathbf{v_b} = egin{bmatrix} 3 \ 2 \end{bmatrix}$$

$$egin{array}{ccc} \mathbf{v_b} = egin{bmatrix} -3 \ 2 \end{bmatrix}$$

$$oldsymbol{\mathbf{v_b}} = egin{bmatrix} 3 \ -2 \end{bmatrix}$$

1/1 points

2.

Given vectors
$${f v}=egin{bmatrix}10\\-5\end{bmatrix}$$
 , ${f b_1}=egin{bmatrix}3\\4\end{bmatrix}$ and ${f b_2}=egin{bmatrix}4\\-3\end{bmatrix}$ all written in the

Changing basis dard basis, what is \mathbf{v} in the basis defined by $\mathbf{b_1}$ and $\mathbf{b_2}$? You are given 5/5 points (100%) Practice Quiz, 5 questions $\mathbf{b_1}$ and $\mathbf{b_2}$ are orthogonal to each other.

$$\mathbf{v_b} = \begin{bmatrix} 11/5 \\ 2/5 \end{bmatrix}$$

$$\mathbf{v_b} = \begin{bmatrix} 2/5 \\ 11/5 \end{bmatrix}$$

Correct

The vector \mathbf{v} is projected onto the two vectors $\mathbf{b_1}$ and $\mathbf{b_2}$.

$$\bigcirc \quad \mathbf{v_b} = \begin{bmatrix} -2/5 \\ 11/5 \end{bmatrix}$$

1/1 points

3.

Given vectors $\mathbf{v} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$, $\mathbf{b_1} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ and $\mathbf{b_2} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ all written in the standard basis, what is \mathbf{v} in the basis defined by $\mathbf{b_1}$ and $\mathbf{b_2}$? You are given that $\mathbf{b_1}$ and $\mathbf{b_2}$ are orthogonal to each other.

$$\bigcirc \quad \mathbf{v_b} = \begin{bmatrix} 5/4 \\ -5/2 \end{bmatrix}$$

Correct

The vector ${\boldsymbol v}$ is projected onto the two vectors ${\boldsymbol b}_1$ and ${\boldsymbol b}_2$.

$$\mathbf{v_b} = egin{bmatrix} -2/5 \ 5/4 \end{bmatrix}$$

$$\mathbf{v_b} = egin{bmatrix} 2/5 \ -4/5 \end{bmatrix}$$

points

Changing basis

5/5 points (100%)

Practice Quiz, 5 questions Given vectors
$$\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $\mathbf{b_1} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{b_2} = \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix}$ and $\mathbf{b_3} = \begin{bmatrix} -1 \\ 2 \\ -5 \end{bmatrix}$ all

written in the standard basis, what is v in the basis defined by b_1 , b_2 and b_3 ? You are given that b_1 , b_2 and b_3 are all pairwise orthogonal to each other.

$$\mathbf{V_b} = \begin{bmatrix} 3/5 \\ -1/3 \\ -2/15 \end{bmatrix}$$

Correct

The vector \mathbf{v} is projected onto the vectors $\mathbf{b_1}$, $\mathbf{b_2}$ and $\mathbf{b_3}$.

$$\mathbf{v_b} = \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix}$$

$$\mathbf{v_b} = \begin{bmatrix} -3/5 \\ -1/3 \\ -2/15 \end{bmatrix}$$

$$\mathbf{v_b} = \begin{bmatrix} -3/5 \\ -1/3 \\ 2/15 \end{bmatrix}$$

1/1 points

5.

Given vectors
$$\mathbf{v}=\begin{bmatrix}1\\1\\2\\3\end{bmatrix}$$
 , $\mathbf{b_1}=\begin{bmatrix}1\\0\\0\\0\end{bmatrix}$, $\mathbf{b_2}=\begin{bmatrix}0\\2\\-1\\0\end{bmatrix}$, $\mathbf{b_3}=\begin{bmatrix}0\\1\\2\\0\end{bmatrix}$ and

$$\mathbf{b_4} = egin{bmatrix} 0 \\ 0 \\ 0 \\ 3 \end{bmatrix}$$
 all written in the standard basis, what is \mathbf{v} in the basis defined by

 $\mathbf{b_1}$, $\mathbf{b_2}$, $\mathbf{b_3}$ and $\mathbf{b_4}$? You are given that $\mathbf{b_1}$, $\mathbf{b_2}$, $\mathbf{b_3}$ and $\mathbf{b_4}$ are all pairwise orthogonal to each other.

$$\mathbf{v_b} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

5/5 points (100%)

Correct

The vector v is projected onto the vectors b_1,b_2,b_3 and $b_4. \\$

$$\mathbf{v_b} = \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix}$$

$$\mathbf{v_b} = \begin{bmatrix} 1\\1\\1\\1\\0 \end{bmatrix}$$

$$\mathbf{v_b} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

