

ESCUELA DE CIENCIAS FÍSICAS Y MATEMÁTICA CIENCIA DE DATOS / BIOINGENIERÍA • ÁLGEBRA LINEAL

CONTROL DE LECTURA: COORDENADAS Y CAMBIO DE BASE Andrés Merino • Semestre 2024-1

ÍNDICE

1	Indicaciones	1
2	Banco de preguntas	1
	2.1 Control - Coordenadas y cambio de base	1
	1. INDICACIONES	—

Se plantean bancos de preguntas orientados a realizar el control de lectura de la sección 4.7 del libro de Larson.

2. BANCO DE PREGUNTAS

2.1 Control - Coordenadas y cambio de base

1. Q1

¿Qué afirmación es verdadera respecto a la representación de coordenadas en \mathbb{R}^n ?

- a) Todo vector x en un espacio vectorial V puede expresarse de manera única como una combinación lineal de vectores en una base B. (100%)
- b) Todo vector en \mathbb{R}^n tiene la misma representación de coordenadas en cualquier base.
- c) Las coordenadas de un vector en \mathbb{R}^n siempre corresponden a sus componentes en la base estándar.
- d) La representación de coordenadas no depende del orden de los vectores en la base.

2. Q2

¿Cuál es la matriz de coordenadas del vector $\mathbf{x}=(-2,1,3)$ en \mathbb{R}^3 con respecto a la base estándar?

$$a) \begin{pmatrix} -2\\1\\3 \end{pmatrix} (100\%)$$

b)
$$\begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$

$$c) \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$$

$$d) \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$$

3. Q3

En el proceso de cambio de base, ¿qué representa la matriz P en la ecuación matricial $x_B = Px_{B'}$?

- a) La matriz de transición de B' a B. (100 %)
- b) La matriz de coordenadas de x relativa a B.
- c) La matriz de coordenadas de x relativa a B'.
- d) La inversa de la matriz de transición de B a B'.

4. Q4

¿Qué propiedad tiene la matriz de transición P?

- a) P es invertible y P^{-1} es la matriz de transición de B a B'. (100 %)
- b) P no es invertible en la mayoría de los casos.
- c) P y P^{-1} representan la misma transición de bases.
- d) P siempre es igual a la matriz identidad independientemente de las bases.

5. Q5

¿Qué método se utiliza para encontrar la matriz de transición P^{-1} ?

- a) Eliminación de Gauss-Jordan en la matriz [B' B]. (100%)
- b) Multiplicación directa de las matrices B y B'.
- c) Suma de las matrices de las bases B y B'.
- d) Inversión de la matriz de coordenadas de x.

6. Q7

¿Cuál es el propósito del cambio de base en espacios vectoriales?

- a) Encontrar las coordenadas de un vector relativas a otra base. (100 %)
- b) Cambiar las dimensiones del espacio vectorial.
- c) Simplificar las operaciones de vectores para cálculos básicos.
- d) Identificar las bases que no son estándar.

7. Q8

¿Cuál es la representación de coordenadas de $p = 3x^3 - 2x^2 + 4$ en P_3 con respecto a la base estándar $S = \{1, x, x^2, x^3\}$?

a)
$$\begin{pmatrix} 4 \\ 0 \\ -2 \\ 3 \end{pmatrix}$$
 (100%)

b)
$$\begin{pmatrix} 3 \\ -2 \\ 4 \\ 0 \end{pmatrix}$$

c) $\begin{pmatrix} 0 \\ 4 \\ -2 \\ 3 \end{pmatrix}$
d) $\begin{pmatrix} -2 \\ 3 \\ 4 \\ 0 \end{pmatrix}$

8. Q9

¿Cómo se generaliza el concepto de coordenadas para representar vectores en espacios \mathfrak{n} -dimensionales?

- a) Permite representar vectores de cualquier espacio n-dimensional usando la notación de \mathbb{R}^n . (100%)
- b) Restringe el uso de coordenadas a los espacios vectoriales que son isomorfos a \mathbb{R}^n .
- c) Elimina la necesidad de bases para definir las coordenadas de un vector.
- d) Solo permite representar vectores en espacios de dimensiones superiores a \mathbb{R}^3 .

9. Q10

De acuerdo con el teorema 4.21, ¿cómo se determina la matriz de transición P^{-1} de una base B a otra base B'?

- a) Mediante la eliminación de Gauss-Jordan aplicada a la matriz [B' B]. (100 %)
- b) Utilizando la multiplicación matricial entre las matrices de las bases B y B'.
- c) Sumando las matrices de las bases B y B'.
- d) Calculando la inversa de la matriz de coordenadas del vector x.

10. Q11

¿Qué afirmación describe correctamente el proceso de cambio de base de una base no estándar a una base estándar en \mathbb{R}^n ?

- a) La matriz de transición puede ser más sencilla de determinar debido a la estructura de la base estándar. (100 %)
- b) Siempre se requiere la inversión de la matriz de coordenadas del vector para completar el cambio de base.
- c) No es necesario conocer las coordenadas del vector en la base original.
- d) El cambio de base de una base no estándar a una estándar es matemáticamente imposible.

11. Q13

¿Cómo se representa la matriz de coordenadas de un vector en el espacio de polinomios de grado menor o igual a 3?

- a) Como un vector en \mathbb{R}^4 . (100%)
- b) Como un vector en \mathbb{R}^3 .
- c) Como una matriz 3x3 en \mathbb{R}^3 .
- d) Como un polinomio de grado 3.

12. Q14

En el contexto de las coordenadas y el cambio de base, ¿qué importancia tiene el orden de los vectores en una base?

- a) El orden es crucial porque afecta la representación de las coordenadas del vector. (100%)
- b) El orden de los vectores en una base es irrelevante y no afecta las coordenadas.
- c) Solo es importante en bases estándar y no en bases no estándar.
- d) Afecta únicamente la visualización gráfica, pero no las operaciones matemáticas.

13. Q15

¿Qué método se utiliza para determinar la matriz de transición P^{-1} de una base B a otra base B', según el Teorema 4.21?

- a) Eliminación de Gauss-Jordan en la matriz aumentada [B'|B]. (100 %)
- b) Factorización LU de la matriz [B'|B].
- c) Descomposición en valores singulares de la matriz [B'|B].
- d) Multiplicación directa de las matrices B y B'.

14. Q16

¿Cuál es la principal ventaja de representar coordenadas en espacios $\mathfrak n$ -dimensionales generales, según el texto?

- a) Permite la representación de vectores de un espacio \mathfrak{n} -dimensional arbitrario con la misma notación usada en \mathbb{R}^n . (100%)
- b) Facilita el cálculo de dimensiones adicionales en espacios n-dimensionales.
- c) Reduce la complejidad computacional de las operaciones vectoriales en dimensiones altas.
- d) Elimina la necesidad de bases para definir coordenadas en espacios vectoriales.