Thought of Search: Planning with Language Models

Through the Lens of Efficiency

By Michael Katz, Harsha Kokel, Kavitha Srinivas, Shirin Sohrabi (2024)

Problem Statement

Current LLM-based planning methods lack soundness, completeness, and efficiency.

How can we improve these aspects while maintaining high accuracy?

Methodology: "Thought of Search" Approach

- 1. Use LLMs to generate search components (successor functions, goal tests)
- 2. Implement standard search algorithms (e.g., BFS, DFS) with generated components
- 3. Ensure soundness and completeness through component validation
- 4. Minimize LLM calls to improve efficiency and reduce environmental impact

Key Takeaways

- 1. "Thought of Search" outperforms existing methods in efficiency and accuracy
- 2. Maintaining soundness and completeness is crucial for reliable AI planning
- 3. Reducing LLM calls significantly lowers computational costs and environmental impact
- 4. The approach is versatile, applicable to various search problems
- 5. There's a need for more responsible use of computational resources in AI research

Results and Findings

- Achieved 100% accuracy on tasks like 24 Game, Mini Crosswords, and BlocksWorld
- Significantly reduced number of LLM calls compared to existing methods
- Maintained soundness and completeness in search algorithms
- Improved computational efficiency and reduced environmental impact

Method	LLM Calls	Accuracy	Soundness/C
Thought of Search	Few (≈2-3)	100%	Maintained
Existing Methods (e.g., ToT)	Many (≈100+)	75-95%	Not guaranteed

Limitations and Future Work

Limitations:

- · Assumes rule conditions involve single facts, limiting real-world applicability
- May face challenges in scaling to more complex, large-scale problems

Future Work:

- Automate component validation to reduce human intervention
- Extend the approach to handle multimodal inputs and complex interdependencies
- Investigate integration with heuristic functions for improved scalability