Redes neurais convolucionais para deteción de obxectos en entornos subterráneos

Pablo Santana González Enrique Paz Domonte* George Nikolakopoulos† Christoforos Kanellakis†

Traballo de fin de Mestrado Mestrado en Enxeñaría Industrial Universidade de Vigo *, Luleå Tekniska Universitet †

Contidos

- Introdución e obxectivos
- Deteción de obxectos e redes neurales
- Localización en robótica
- Demostración
- Conclusións

- Exploración de zonas de risco con veículo non tripulado
- Entornos subterráneos: cerrados, sen luz natural e de aceso ou espazo restrinxido
- Minas, cavernas, estacións de metro, sótanos, etc.

- Exploración SubT autónoma é fronte de investigación no mundo da robótica
- DARPA SubT Challenge:
 - Busca, deteción e localización dun set de artefactos representativos de actividade humana
 - Tunnel Systems, Urban Underground, and Cave Networks

• Robot: Máquina capaz de percibir, planear e actuar de forma autónoma

- Típica tarefa de exploración
 - Mapeado
 - Localización do axente (robot)
 - Deteción de artefactos (obxectos)
- Multiple sensórica
- Realizable só con cámara e visión artificial

Obxectivos

- Plantear a deteción dos obxectos do DARPA SubT Challenge con visión artificial
 - Construír un set de datos para entrenar redes neurais
 - Entrenar e comparar formalmente un set de modelos de deteción de obxecto estado do arte nos artefactos deste reto
- Construír unha capa de percepción monocular para busca de obxectos
 - Acadar a localización do axente baseado nun sistema fiducial
 - Acadar a localización de obxectos e implementar unha capa de percepción en tempo real

DARPA SubT con deteción de obxectos

- Deteción de obxectos
- Recollida de datos
- Selección de modelos
- Entrenando redes neurais
- Resultados

Deteción de obxectos

- Técnica que busca atopar obxectos (clases) en imaxes debuxando unha caixa arredor deles (bounding box)
- Baséase en redes neurais convolucionais:
 - Constituída por capas convolucionais
 - Modelo estadístico de regresión que infire reglas a partir de datos exemplo

Deteción de obxectos

Deteción de obxectos

- Benchmarking: comparación de distintos modelos sobre os mesmos datos
- Métricas de interese:
 - Precisión: AP / mAP
 - Velocidade de inferencia: FPS, ms
- Interesa realizalo para o noso caso

Regular detectors

Tiny detectors

Model	Size	${\bf FPS}_{1080ti}$	FPS_{TX2}	AP
YOLOv4-tiny	416	371	42	21.7%
YOLOv4-tiny (31)	320	252	41	28.7%
ThunderS146 [21]	320	248	-	23.6%
CSPPeleeRef [33]	320	205	41	23.5%
YOLOv3-tiny [26]	416	368	37	16.6%

- Datos representativos ao caso de estudo:
 - Datos sintéticos xenerados
 - Datos reais importados
 - Datos reais xenerados
- Overfitting: división en tres splits
 - Entrenamento: train + valid
 - Evaluación e comparación: test

• PPU-6:

- Set de entrenamento mixto real-sintético
- Set de validación real
- Set de test real
- Unity-1000
 - 1000 imaxes sintéticas

Entrenando redes neurais

- Selección de modelos:
 - A partir de bechmarking MS COCO
 - Compromiso AP-FPS
 - Tiny & estándar
- Estratexia de entrenamento:
 - 3 etapas
 - 13 configuracións diferentes

Network	Platform	Resolution
yolov4-tiny	darknet	416x416
yolov4-tiny-3l	darknet	416x416
yolov4	darknet	416x416
yolov4-csp	darknet	512x512
yolov4x-mish	darknet	640x640
efficientdet-d0	google-automl	512x512
efficientdet-d1	google-automl	640x640

Resultados

- Resultados variados, pero AP@50 estable
- Modelos portables (tiny) competitivos cos estándar
- Familia YOLO notablemente mellor que EfficientDet

Resultados

- Resultados variados, pero AP@50 estable
- Modelos portables (tiny) competitivos cos estándar
- Familia YOLO notablemente mellor que EfficientDet

Resultados adicionais

Deteccións sobre imaxe escura

Mesma imaxe, filtrada

Resultados adicionais

Deteccións dun YOLOv4 entrenada exclusivamente en imaxes sintéticas

Localización e capa de percepción

- Calibración de cámara
- Localización (autolocalización)
- Localización de obxectos
- Mapas de verosimilitude
- Capa de percepción

Localización e capa de percepción

Calibración de cámara

- Cámaras reales producen imaxes con distorsións:
 - Radial
 - Tanxencial
- Calibración permite:
 - Compensación de distorsións
 - Obter a matriz intrínseca da cámara

Calibración de cámara

- Cámaras reales producen imaxes con distorsións:
 - Radial
 - Tanxencial
- Calibración permite:
 - Compensación de distorsións
 - Obter a matriz intrínseca da cámara

Localización

- Sistema fiducial:
 - Información de indentificación
 - Referencia posicional
- Pose 3D facilmente detectable desde imaxes libres de distorsión
- Mundo mapeado cun layout de marcadores ArUco coñecido

Localización

Localización

Localización. Filtro de Kalman

- Filtro de ruído blanco da pose:
 - Posición dentro de tolerancia (30mm)
 - Yaw propaga demasiado erro (2°)
- Número variable de ArUcos:
 - Fusión sensorial
 - Modelo de estado e filtro de Kalman de tamaño variable

Localización. Filtro de Kalman

Localización de artefactos

Localización de artefactos

 Modelo + matriz intrínseca de cámara permite calcular posición 2D relativa obxecto-cámara

• Parte de:

- Ancho estimado de obxecto coñecido
- Imaxe libre de distorsións
- Imaxe pasada por detector de obxectos

Localización de artefactos

Mapas de verosimilitude

- Conceptos fundamentais:
 - Campo de visión
 - Memoria
- Ecuación matricial en diferencias que representa a posición dos items:
 - + Kernel gaussiano no punto de deteción
 - — Distribución uniforme sobre FoV

Capa de percepción

Demostración

- Setup experimental
- Vídeo-demostración
- Comentarios

Setup experimental

- Obxectos DARPA "de mentira"
- Detector YOLOv4-CSP
- Coche teledirixido cunha cámara
- Mapa de 30x6m
- 9 marcadores ArUco

Vídeo-demostración

Observacións

- Dúbida de clase co survivor
- Inestabilidade caixas de deteción
- Xenérase ruído que se limpa
- Intermitencia deteción taladro

Conclusións

- Estúdase o problema de deteción de obxectos para os obxectos DARPA:
 - Obtéñense datos para este caso específico
 - Benchmarking de modelos e.d.a. obtendo conclusións relevantes
- Constrúese unha capa de percepción monocular en tempo real baseada en detección de obxectos:
 - Robusta a erros de medida
 - Agnóstica ao modelo de deteción de obxectos
 - Simple incorporación a dispositivos autónomos

github.com/pabsan-0/sub-t

Universidade de Vigo *, Luleå Tekniska Universitet † Mestrado en Enxeñaría Industrial Traballo de fin de Mestrado

Pablo Santana González

Enrique Paz Domonte*

George Nikolakopoulos+

Christoforos Kanellakis+

