

R. KUCHARSKI

- 1. Omówienie problemu
- 2. Podejście nr 1
- 3. Podejście nr 2
- 4. Wnioski

Problem

 Cel – maksymalne automatyzacja procesu(lub znaczącej części) decyzyjnego związanego z dopuszczeniem do eksploatacji uszkodzonego elementu.

Proces:

Podejście 1

- Model vgg16 (Keras) + wagi modelu
- Dane treningowe i walidacyjne gc10det

Warstwami uczonymi modelu była nowa góra "top" modelu (regresja 4 warstwy z pojedynczymi

neuronami i 1 z 10 (liczba klas) do klasyfikacji)

```
inputs = keras.Input(shape=(224,224,3))
x = conv(inputs)
x1 = keras.layers.Dense(1024,activation='relu')(x)
x1 = keras.layers.Dense(512,activation='relu')(x1)

out1 = keras.layers.Dense(1,name='out1')(x1)
out2 = keras.layers.Dense(1,name='out2')(x1)
out3 = keras.layers.Dense(1,name='out3')(x1)
out4 = keras.layers.Dense(1,name='out4')(x1)

x2 = keras.layers.Dense(1024,activation='relu')(x)
x2 = keras.layers.Dense(1024,activation='relu')(x2)
x2 = keras.layers.Dense(512,activation='relu')(x2)
out_class = keras.layers.Dense(10,activation='softmax',name='out_class')(x2)
out = [out1,out2,out3,out4,out_class]
model = keras.models.Model(inputs=inputs,outputs=out)
model.summary()
```


Przykładowe dane z lokalizacjami wady – GC10DET

Wyniki

Tak zaawansowane podejście nie sprawdziło się, pomimo znacznego wysiłku obliczeniowego – dla danych walidacyjnych z GC10DET wartość accuracy nie przekroczyła 30 %. Również dla danych rzeczywistych wyniki były nieakceptowalne...

[-6.9813857] [96.47233] [72.77871] [118.1076]

Wniosek

Analiza liczby zdjęć używanych w "poważnych" projektach CV doprowadziła do wniosku że danych wejściowych jest zbyt mało...

Podejście 2_1

- Model vgg16 (Keras) + wagi modelu użyto do inżynierii cech (na wyjściu z sieci neuronowej otrzymujemy zbiór wartości który zmieniamy na wektor kolumnowy utrzymując nasze X
- Klasyfikacja na bazie modelu LightGBM

Podejście 2_2 ewaluacja na zbiorze testowym

20XX-09-03 Analiza defektów powierzchni metalu 8

Podejście 2_3 ewaluacja zbiór rzeczywisty

Refleksy światła powodują zafałszowanie klasyfikacji

Poprawna klasyfikacja porowatości

Podejście 2_4 szacowanie wielkości wady

Na bazie biblioteki scikit – image opracowano krótką funkcję która generuje własności obrazu

Różne kolory oznaczają zidentyfikowane obszary. Biblioteka pozwala wyliczyć ich względne pola i współrzędne prostokąta obwiedni. Poniżej wydruk działania – posortowanych 5 największych obszarów

	label	area	equivalent_diameter	mean_intensity	solidity	bbox-0	bbox-1	bbox-2	bbox-3
76	77	13194089	4098.687091	104.276200	0.868529	0	0	3456	4608
37	38	7716	99.117689	153.413556	0.413305	0	831	346	921
2344	2345	3100	62.825493	150.934516	0.313733	297	811	515	891
8943	8944	2188	52.781134	170.962066	0.435510	1327	0	1449	63
8808	8809	2186	52.757006	116.578683	0.280508	1185	201	1259	331

Wnioski

- Model działa lecz wyniki pozostawiają wiele do życzenia
- Możliwości poprawy ujednolicenie sposobu wykonywania zdjęć i unikanie refleksów
- Szacowanie wielkości wad jest mocna zależne od jakości zdjęcia wielkość zamkniętych obszarów wad może być szacowana z dokładnością do 15%

Dziękuję za uwagę

"Tylko dlatego, że coś nie działa tak jak zamierzałeś, nie znaczy że jest bezużyteczne."

Thomas Edison