

photon

PREDICTING AGE AND GENDER IN REAL-TIME FOR SMART ADVERTISING

Anıl Öztürk 504181504

THE GOAL

The aim of the **Project Photon** is to develop a concept software that provides the most relevant advertisement according to the population distribution in front of the billboard for that exact time.

THE MOTIVATION

- 1. So much money gets wasted in the advertisement field
- 2. You rent a lot of billboards and don't even know how much potential customer have seen your ad
- 3. The companies would select the advertisement method that brings the most profit
- 4. Photon targets the audience in a smart way
- 5. It feeds back the results to company to give a observation for making better targeting

STEPS OF EXECUTION

- 1. Get raw video-feed
- 2. Process and find faces in it
- 3. Process faces and extract age & gender estimations
- 4. Select the best-fit ad for the estimated distribution

GETTING THE DATA

I wrote a little script to convert each of these datasets into a format that I can use easily. After converting each dataset, I merged them into one file to use them easily in the training phase.

Adience

around 19300 images

IMDB-Faces

around 460000 images

Wiki-Faces

around 63000 images

SETTING THE LABELS

I used **genders** and **ages** as **labels**. While I was **binarizing** gender values, I splitted the ages into **groups**. I decided to set the group count as **7**. These age groups are;

- O-5
- 5-15
- 15-25
- 25-35
- 35-45
- 45-60
- 60+

I have splitted my data into training, validation, test splits; respectively.

I one-hot encoded each type of output (gender, age)

I have applied **normalization** on the images. But in my model, I implemented it as a **lambda layer**.

I have used the MobileNet architecture as backbone for my model.

Table 1. MobileNet Body Architecture

Tuble 1: Modifier (et Body 1 fremiteeture		
Type / Stride	Filter Shape	Input Size
Conv / s2	$3 \times 3 \times 3 \times 32$	$224 \times 224 \times 3$
Conv dw / s1	$3 \times 3 \times 32$ dw	$112 \times 112 \times 32$
Conv / s1	$1 \times 1 \times 32 \times 64$	$112 \times 112 \times 32$
Conv dw / s2	$3 \times 3 \times 64 \text{ dw}$	$112 \times 112 \times 64$
Conv / s1	$1 \times 1 \times 64 \times 128$	$56 \times 56 \times 64$
Conv dw / s1	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$
Conv / s1	$1 \times 1 \times 128 \times 128$	$56 \times 56 \times 128$
Conv dw / s2	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$
Conv / s1	$1 \times 1 \times 128 \times 256$	$28 \times 28 \times 128$
Conv dw / s1	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$
Conv / s1	$1 \times 1 \times 256 \times 256$	$28 \times 28 \times 256$
Conv dw / s2	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$
Conv / s1	$1 \times 1 \times 256 \times 512$	$14 \times 14 \times 256$
5× Conv dw / s1	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$
Conv / s1	$1 \times 1 \times 512 \times 512$	$14 \times 14 \times 512$
Conv dw / s2	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$
Conv / s1	$1 \times 1 \times 512 \times 1024$	$7 \times 7 \times 512$
Conv dw / s2	$3 \times 3 \times 1024 \text{ dw}$	$7 \times 7 \times 1024$
Conv / s1	$1\times1\times1024\times1024$	$7 \times 7 \times 1024$
Avg Pool / s1	Pool 7 × 7	$7 \times 7 \times 1024$
FC/s1	1024×1000	$1 \times 1 \times 1024$
Softmax / s1	Classifier	$1 \times 1 \times 1000$

MODEL ARCHITECTURE

I have placed several **Fully Connected**, **Batch Normalization** and **Leaky ReLU Activation** layers after the backbone structure.

With Adam optimizer and categorical-crossentropy, I trained my model over 15 epochs.

TRAINING RESULTS

TRAINING RESULTS

VALIDATION RESULTS

- Gender Accuracy: 74.62% (Over 2 groups)
- Age Accuracy: 48.94% (Over 7 groups)

USING READY-TO-USE FACE DETECTOR

I have used **Ultra-Light-Fast-Generic-Face-Detector** as the face detector for my project. It's specs are below:

• Inference Time: 29ms

• Model Size: 1.04MB

INFERENCE PHASE IMAGE TRICK

Training data have been made up by images of faces with a **specific margin**. The detection model train easier when the cropping has been done like this, because they also learn to **adapt orientation changes of faces** and the **noise pattern around the face**.

But my ready-to-use face detector was giving me the bounding-box of the face. So I had to do some basic calculations and get that area to be wider.

SELECTING THE BEST-FIT ADVERTISEMENT

I set up an **advertisement desirability function** to select best-fit one for given crowd. It contains these variables:

- A_1^t : Age ratio of men in the whole crowd
- A_2^t : Age ratio of women in the whole crowd
- S_A : Age index selection of an advertisement
- S_G : Gender index selection of an advertisement
- C: Total display count of the advertisement
- T: Total age-gender combination of target selections of the advertisement
- E: Total advertisement count

THE BEST-FIT ADVERTISEMENT VER-1

The algorithm selects the best-fit ad at a certain frequency.

Watsons dominates female-dominant distributions, Altınyıldız dominates male-dominant distributions

THE BEST-FIT ADVERTISEMENT VER-2

The algorithm selects the best-fit ad **at a certain frequency**. Ad desirability **will decrease** as shown by the billboard.

THE BEST-FIT ADVERTISEMENT VER-2

The algorithm selects the best-fit ad **at a certain frequency**. Ad desirability **will decrease** as shown by the billboard.

$$sc(x) = \frac{\sum_{i=S_G} \sum_{j=S_A} A_i^j}{\ln(CE+e) T}$$

```
for adv_it in range(len(self.advertisements)):
    score = 0
    itt = 0
    for gender in self.advertisements[adv_it]["gender_target"]:
        for age in self.advertisements[adv_it]["age_target"]:
            score += self.running_stats[gender*7+age]
            itt += 1

score /= np.log(np.e + len(self.advertisements)*self.advertisements[adv_it]["showed"])
self.advertisements[adv_it]["score"] = score/itt
```


THE CRITIC

- The model runs at realtime on a CUDA based GPU but it would lack on performance on compact device like Raspberry Pi. It should be compressed or pruned into a smaller network.
- The model basically trained on 128x128 images. It lacks of performance on small face detections since they are scaled up to 128x128 and it causes a blurry image. The model should be trained on a special small face dataset and it would increase the accuracy of the model.

WRAP-UP

- We created a model to estimate age and gender of given face
 - We ran a pre-trained face detector on a frame
 - We ran our model on detected faces
- We statistically scored each advertisement w.r.t. our model's output
 - We selected the ad with the highest score
 - We displayed all the operations on our GUI live.

THANKS

Do you have any questions?

