CONCOURS CENTRALE CURÉLES

Mathématiques 2

MP

CONCOURS CENTRALE•SUPÉLEC

Un pion se trouve à l'instant 0 sur la case 0 d'un parcours linéaire dont les cases sont numérotées par les entiers consécutifs. À chaque étape, il avance d'un nombre strictement positif aléatoire de cases. Pour $n \in \mathbb{N}^*$, on note Y_n le nombre de cases dont il avance à la n-ième étape. Ainsi, $S_n = Y_1 + \dots + Y_n$ est sa position à l'instant n avec $S_0 = 0$ par convention. On suppose que les variables $(Y_n)_{n \in \mathbb{N}^*}$ suivent toutes la même loi de probabilité et sont indépendantes. On note par conséquent

$$\forall i \in \mathbb{N}, \quad f_i = P(Y_n = i) \qquad \text{ et } \qquad f: t \mapsto \sum_{k=0}^{+\infty} f_k t^k$$

respectivement la loi et la fonction génératrice de Y_n . Par hypothèse, f_i ne dépend pas de n, et $f_0=0$.

- 1. Dans cette question, on suppose que Y_1-1 suit une loi de Bernoulli de paramètre p et on choisit un entier $k \in \mathbb{N}^*$.
 - a. Écrire une fonction en python prenant en argument les paramètres p et k et simulant l'expérience jusqu'à ce que le pion dépasse (au sens large) la position k. La fonction renverra 1 si le point a atterri sur la case k et 0 s'il l'a dépassée sans s'y arrêter.

Pour simuler une loi de Bernoulli, on pourra utiliser le volet probabilité de l'aide documentaire.

b. Pour un entier k assez grand et des valeurs de p de votre choix, calculer sur une centaine d'essais la proportion de tentatives pour lesquelles le pion atteint la position k exactement. Comparer avec $1/E(Y_1)$.

Pour tout entier k, on note $E_k = \bigcup_{n=0}^{+\infty} (S_n = k)$ et $u_k = P(E_k)$.

Ainsi, u_k est la probabilité que le pion passe par la case k lors de son parcours.

Oral

- 2. Soient $1\leqslant j\leqslant k.$ Démontrer que $P(E_k\cap (Y_1=j))=f_ju_{k-j}.$
- 3. En déduire que $u_k = f_k u_0 + f_{k-1} u_1 + \dots + f_1 u_{k-1}$.

On note u la fonction génératrice de la suite $(u_k)_{k\in\mathbb{N}}$,

$$u: t \mapsto \sum_{k=0}^{+\infty} u_k t^k$$

4. Justifier que u est bien définie sur]-1,1[et que

$$\forall t \in]-1,1[, \qquad u(t) = \frac{1}{1 - f(t)}$$

- 5. En déduire l'expression de u, celle de u_k en fonction de k et enfin la limite de cette suite lorsque k tend vers $+\infty$ dans les deux cas suivants :
 - a. Y_1 suit une loi géométrique de paramètre p ;
 - b. $Y_1 1$ suit la loi de Bernoulli de paramètre p, comme à la question 1.

Déterminer par ailleurs $E(Y_1)$ dans les deux cas. Que remarque-t-on ?