Проверка гипотезы условной независимости для оценивания качества тематической кластеризации

Рогозина Анна

Московский Физико-технический институт

Физтех-Школа Прикладной математики и Информатики

Кафедра интеллектуальных систем

Научный руководитель:

д. ф.-м. н.

Воронцов Константин Вячеславович

13 июня 2019

Вероятностное тематическое моделирование

Дано:

- Множество токенов W, коллекция текстовых документов D, множество тем T
- n_{wd} частоты токенов в документах
- $D \times W \times T$ дискретное вероятностное пространство

Предположение:

• Гипотеза условной независимости: $p(w \mid d, t) = p(w \mid t)$

Найти параметры модели: $p(w \mid d) = \frac{n_{wd}}{n_d} = \sum_{t \in T} \varphi_{wt} \theta_{td}$

- $\varphi_{wt} = p(w \mid t)$ вероятность токенов w в теме t
- $\theta_{td} = p(t \mid d)$ вероятность тем t в документе d

Постановка задачи

Проблема

Оценивание качества отдельных тем

Существующее решение

Korepeнтность тем (Newman D. et all, (2011), Optimizing Semantic Coherence in Topic Models)

Цель работы

Построить критерий, характеризующий выполнимость гипотезы условной независимости для каждой темы

- Без экспертных оценок
- Эффективно вычислимый
- Имеющий итерпретируемое значение

Кластерная структура распределений слов

Иллюстрация кластерной структуры распределений

- Точки—распределения слов в документах p(w | t, d)
- ullet Центры кластеров—распределение слов в теме $p(w \mid t)$

Формирование кластеров

Для каждой темы t и документа d проверяем гипотезу:

$$H_0: p(w \mid d, t) = p(w \mid t)$$

$$H_1: p(w \mid d, t) \neq p(w \mid t)$$

Дивергенция Кресси-Рида между двумя распределениями:

$$\operatorname{CR}_{\lambda}(\hat{p}(w \mid d, t) : \hat{p}(w \mid t)) =$$

$$= \frac{2n_{td}}{\lambda(\lambda+1)} \sum_{w \in W} \hat{p}(w \mid d, t) \left(\left(\frac{\hat{p}(w \mid d, t)}{\hat{p}(w \mid t)} \right)^{\lambda} - 1 \right) = (1)$$

$$= \frac{2}{\lambda(\lambda+1)} \sum_{w \in W} \frac{n_{dw} \varphi_{wt} \theta_{td}}{\sum_{s \in T} \varphi_{ws} \theta_{sd}} \left(\left(\frac{n_{wd}}{n_d \sum_{s \in T} \varphi_{ws} \theta_{sd}} \right)^{\lambda} - 1 \right)$$
(2)

Обозначения

- ullet S_{dt} значение CR_{λ} для документа d и темы t
- Радиус семантической однородности $R_t^{\alpha}(n_{td})$ темы $t-(1-\alpha)$ квантиль распределения S_{dt} .

Степень семантической неоднородости

$$SemH(t) = \sum_{d \in D} p(d|t) \left[S_{dt} > R_t^{\alpha}(n_{td}) \right]$$
(3)

Степень семантической загрязненности

$$SemI(t) = \sum_{d \in D} p(d|t) \left[S_{dt} < R_t^{\alpha}(n_{td}) \right] \left[S_{dtt'} < R_{t'}^{\alpha}(n_{td}) \right]$$
(4)

$$S_{dtt'} = \min_{t' \in T \setminus t} \operatorname{CR}_{\lambda} \left(\hat{p}(u \mid d, t) : \hat{p}(u \mid t') \right).$$

```
Input: \Phi, \Theta, \lambda
Result: SemI. SemH
for me Ma \ t \in T \ do
     Сгенерировать коллекцию документов D из p(w \mid t)
      c различными n_{td}, получить \{(n_{tdw}, n_{td})\}_{d \in D}
     (n_{tdw}, p(w \mid t)) \rightarrow (n_{tdu}, p(u \mid t)), \ \epsilon \ которых
      \forall u \in U: p(u | t \ge \frac{1}{W}, n_{tdu} \ge 0);
     \Pi o (n_{tdu}, n_{td}, p(u \mid t)) построить непараметрическую
      квантильную регрессию R_t^{\alpha}(n_{td});
end
for me_{Ma} \ t \in T do
    for \partial o \kappa u M e H m d \in D do
          (n_{tdw}, p(w \mid t)) \rightarrow (n_{tdu}, p(u \mid t));
          Вычислить S_{dt} = CR_{\lambda}(\hat{p}(u \mid d, t) : \hat{p}(u \mid t)));
          Сравнить S_{dt} и R_t^{\alpha}(n_{td});
          if S_{dt} \leq R_t^{\alpha}(n_{td}) then
              for t' \in T do
                    Вычислить S_{dt} = CR_{\lambda}(\hat{p}(u \mid d, t) : \hat{p}(u \mid t'));
                   \label{eq:haimu} \textit{Haimu } t_{min} = \mathop{\arg\min}_{t' \neq t} S_{dt'};
                    Сравнить S_{dt_{min}} и R_{t_{min}}^{\alpha}(n_{td});
              end
           end
      end
      Вычислить SemH, SemI по формулам (3), (4)
    end
```


Пример непараметрической квантильной регрессии $R_t^{\alpha}(n_{td})$

ависимость от параметра λ

Зависимость от количества итераций при обучении Зависимость от количества тем в молели

Влияние регуляризатора декоррелирования Результаты

Эксперименты

Данные

- Коллекция «Постнаука»
- ~ 3500 документов
- Документы на научно-популярную тематику

Зависимость от параметра λ

- Зависимость от количества итераций при обучении Зависимость от количества тем в модели
- Влияние регуляризатора декоррелирования Результаты

Зависимость от параметра λ

Зависимость SemH и SemI от параметра λ

Вывод: рекомендуемый диапазон : $-0.8 \le \lambda \le -0.2$

Зависимость от параметра λ Зависимость от количества итераций при обучении Зависимость от количества тем в модели Влияние регуляризатора декоррелирования

Зависимость от количества итераций при обучении

Зависимость SemH и SemI от количества итераций, PLSA на 80 тем

Зависимость от параметра λ Зависимость от количества итераций при обучении

Зависимость от количества тем в модели Влияние регуляризатора декоррелирования

Зависимость от количества тем в модели

Зависимость SemH и SemI от числа тем в модели PLSA

Влияние регуляризатора декоррелирования

Влияние регуляризатора декоррелирования

Зависимость SemH и SemI параметра регуляризатора декоррелирования τ , модель 60 тем

ависимость от параметра λ

Зависимость от количества итерации при обуче
Зависимость от количества тем в модели
Влияние регуляризатора декоррелирования
Результаты

Результаты, выносимые на защиту

- Разработан алгоритм вычисления SemH и SemI на основе проверки гипотезы условной независимости
- Исследована зависимость SemH и SemI от количества тем в модели
- Установлены рекомендации по выбору параметра λ в статистике Кресси-Рида
- Исследовано влияние регуляризатора декоррелирования на SemH и SemI, установлены рекомендации по выбору параметра в регуляризаторе декоррелирования.