Grafos

Algoritmo de Dijkstra

Prof. Edson Alves

Faculdade UnB Gama

Proponente

Proponente

Edsger Wybe Dijkstra (1956)

 \star Computa o caminho mínimo de todos os vértices de G(V,E) a um dado nó s

 \star Computa o caminho mínimo de todos os vértices de G(V,E) a um dado nó s

* Processa corretamente apenas grafos com arestas não-negativas

- \star Computa o caminho mínimo de todos os vértices de G(V,E) a um dado nó s
- * Processa corretamente apenas grafos com arestas não-negativas
- * Eficiência: cada aresta é processada uma única vez

- \star Computa o caminho mínimo de todos os vértices de G(V,E) a um dado nó s
- * Processa corretamente apenas grafos com arestas não-negativas
- * Eficiência: cada aresta é processada uma única vez
- \star Complexidade: $O(E + V \log V)$

Entrada: um grafo ponderado G(V,E) e um vértice $s \in V$

Saída: um vetor d tal que d[u] é a distância mínima em G entre s e u

Entrada: um grafo ponderado G(V,E) e um vértice $s\in V$ Saída: um vetor d tal que d[u] é a distância mínima em G entre s e u

1. Faça d[s]=0, $d[u]=\infty$ se $u\neq s$ e seja U=V

Entrada: um grafo ponderado G(V,E) e um vértice $s\in V$ Saída: um vetor d tal que d[u] é a distância mínima em G entre s e u

- 1. Faça d[s]=0, $d[u]=\infty$ se $u \neq s$ e seja U=V
- 2. Enquanto $U \neq \emptyset$:
 - (a) Seja $u \in U$ o vértice mais próximo de s em U
 - (b) Relaxe as distâncias usando as arestas que partem de u
 - (c) Remova u de U

Entrada: um grafo ponderado G(V,E) e um vértice $s\in V$ Saída: um vetor d tal que d[u] é a distância mínima em G entre s e u

- 1. Faça d[s]=0, $d[u]=\infty$ se $u \neq s$ e seja U=V
- 2. Enquanto $U \neq \emptyset$:
 - (a) Seja $u \in U$ o vértice mais próximo de s em U
 - (b) Relaxe as distâncias usando as arestas que partem de u
 - (c) Remova u de U
- 3. Retorne d

Relaxamento

Relaxamento c r_4 r_3 r_4 r_4 r_4 r_4 r_4 r_4 r_5 r_6 r_8 r_8

 s_3

Relaxamento

$$\operatorname{dist}(s,u) = \sum_{i=1}^4 r_i \qquad \qquad \operatorname{dist}(s,v) = \sum_{j=1}^3 s_i$$

Relaxamento c r_4 w s s_2

 s_3

Relaxamento

Se
$$\operatorname{dist}(s,u)+w<\operatorname{dist}(s,v)$$
, faça $\operatorname{dist}(s,v)=\operatorname{dist}(s,u)+w$

			_		_		
$dist(u, \mathbf{A})$	0	∞	∞	∞	∞	8	

 $U=\{ ext{ A, B, C, D, E, F }\}$

$dist(u, \mathbf{A})$	0	∞	∞	∞	∞	8

						•
$dist(u, \mathbf{A})$	0	9	∞	∞	∞	∞

						•
$dist(u, \mathbf{A})$	0	9	7	∞	∞	∞

					_	•	
$dist(u, \mathbf{A})$	0	9	7	4	∞	∞	

			C	U		
$dist(u, \mathbf{A})$	0	9	7	4	2	∞

					_	•	
$dist(u, \mathbf{A})$	0	9	7	4	2	∞	

					_	•	
$dist(u, \mathbf{A})$	0	9	7	4	2	∞	

	A	D	L	ט		<u> </u>
$dist(u, \mathbf{A})$	0	9	7	3	2	8

	A	В	С	D	E	F	
$dist(u, \mathbf{A})$	0	9	7	3	2	13	

 $U=\{\;\textbf{B, C, D, F}\;\}$

		_	_	_	E	-	
$dist(u, \mathbf{A})$	0	9	7	3	2	13	$U=\{$ B, C, F

				D			
$dist(u, \mathbf{A})$	0	9	5	3	2	13	$U=\{\;$ B, C, F

		_	С	_		-	
$dist(u, \mathbf{A})$	0	9	5	3	2	13	$U=\{$ B, I

	• •	В	_	_	_	•	
$dist(u, \mathbf{A})$	0	6	5	3	2	13	$U=\{\; {\sf B,F}\; \}$

	Α	В	C	D	E	F
$dist(u, \mathbf{A})$	0	6	5	3	2	13

 $U = \{ \mathbf{F} \}$

 $U = \{ \mathbf{F} \}$

	Α	В	С	D	E	F
$dist(u, \mathbf{A})$	0	6	5	3	2	9

	A	В	C	D	E	F	
$dist(u, \mathbf{A})$	0	6	5	3	2	9	U = 0

min heap
(priority_queue)


```
vector<int> dijkstra(int s, int N)
    const int oo { 1000000010 };
    vector<int> dist(N + 1, oo);
    dist[s] = 0;
    set<ii>> U;
    U.emplace(0, s);
    while (not U.empty())
        auto [d, u] = *U.begin();
        U.erase(U.begin());
```

```
for (auto [v, w] : adj[u])
        if (dist[v] > d + w)
            if (U.count(ii(dist[v], v)))
                U.erase(ii(dist[v], v));
            dist[v] = d + w;
            U.emplace(dist[v], v);
return dist;
```

caminhos mínimos

* O algoritmo de Dijkstra computa as distâncias mínimas, mas não os

 \star O algoritmo de Dijkstra computa as distâncias mínimas, mas não os caminhos mínimos

 \star Para determinar um caminho mínimo, é preciso definir o vetor auxiliar pred, onde ${\rm pred}[u]=$ antecessor de u no caminho mínimo de s a u

 \star O algoritmo de Dijkstra computa as distâncias mínimas, mas não os caminhos mínimos

 \star Para determinar um caminho mínimo, é preciso definir o vetor auxiliar pred, onde $\operatorname{pred}[u]=$ antecessor de u no caminho mínimo de s a u

 \star No início do algoritmo, pred[s] = s e pred[u] =undef, se $u \neq s$

 \star Se (u,v) atualizar d[v], faça pred[v]=u

$$\star$$
 Se (u,v) atualizar $d[v]$, faça $pred[v]=u$

* A sequência

```
p = \{(s, \mathsf{pred}^{k-1}[u]), \ldots, (\mathsf{pred}[\mathsf{pred}[u]], \mathsf{pred}[u]), (\mathsf{pred}[u], u)\}
```

$$\star$$
 Se (u,v) atualizar $d[v]$, faça $pred[v]=u$

* A sequência

$$p = \{(s, \mathsf{pred}^{k-1}[u]), \ldots, (\mathsf{pred}[\mathsf{pred}[u]], \mathsf{pred}[u]), (\mathsf{pred}[u], u)\}$$

é um caminho mínimo de s a u composto de k arestas e tamanho d[u]


```
pair<vector<int>, vector<int>> dijkstra(int s, int N)
    vector<int> dist(N + 1, oo), pred(N + 1, oo);
    dist[s] = 0:
    pred[s] = s;
    processed.reset();
    priority_queue<ii, vector<ii>, greater<ii>>> pq;
    pq.emplace(0, s);
    while (not pq.empty())
        auto [d, u] = pq.top();
        pq.pop();
```

```
if (processed[u])
        continue;
    processed[u] = true;
   for (auto [v, w] : adj[u])
        if (dist[v] > d + w) {
            dist[v] = d + w;
            pred[v] = u;
            pq.emplace(dist[v], v);
return { dist, pred };
```

```
vector<ii> path(int s, int u, const vector<int>& pred)
{
    vector<ii> p;
    int v = u;
    do {
        p.push_back(ii(pred[v], v));
        v = pred[v];
    } while (v != s);
    reverse(p.begin(), p.end());
    return p;
```

Problemas sugeridos

- 1. AtCoder Beginner Contest 143 Problem E: Travel by Car
- 2. Codeforces Alpha Round #20 Problem C: Dijkstra?
- 3. **OJ 1112 Mice and Maze**
- 4. OJ 10986 Sending email

Referências

- 1. HALIM, Felix; HALIM, Steve. Competitive Programming 3, 2010.
- 2. LAAKSONEN, Antti. Competitive Programmer's Handbook, 2018.
- 3. SKIENA, Steven; REVILLA, Miguel. Programming Challenges, 2003.
- 4. Wikipédia, Dijkstra's algorithm. Acesso em 13/07/2021.
- 5. Wikipédia, Edsger W. Dijkstra. Acesso em 13/07/2021.