Fakultät für Physik

WINTERSEMESTER 2014/15

Physikalisches Praktikum 1

PROTOKOLL

Experiment (Nr., Titel):

5. Gasthermometer, Adiabatenexponent (Rüchardt), Dampfdichte nach Viktor Meyer

Datum: 14.11.2014

Namen: Veronika Bachleitner, Erik Grafendorfer

Kurstag/Gruppe: Fr/1

Betreuer: SETMAN

Allgemeine Grundlagen 1

Das Ideale Gas ist ein Modell, bei dem nur Wechselwirkungen durch Stöße der Teilchen untereinander und mit den Wänden angenommen werden. Gleichung des Idealen Gases:

$$pV = nRT \tag{1}$$

Experimentell sind Ideale Gase solche, für die in guter Näherung das Boyle-Mariotte'sche Gesetz:

$$pV = const$$
 (2)

und das Gay-Lussac'sche Gesetz:

$$p(t_C) = p(0)(1 + \gamma_p t_C)$$
 (3)

erfüllt sind. (Aus Wagner, Reischl, Steiner: Einführung in die Physik)

Hier ist n die Anzahl der Mole der vorliegenden Substanzmenge und weiters

Druck	[p] = Pa
Volumen	$[V] = m^3$
Gaskonstante	$R = 8.3143JK^{-1}mol^{-1}, R = k_B N_A$
Boltzmannkonstante	$k_B = 1.3806488 * 10^{23} J/K$
Avogadro'sche oder	
Loschmidt'sche Zahl	$N_A = 6.02214179 * 10^{23}$
Absolute Temperatur	$[T] = ^{\circ} C$

Definitionen¹:

1 Mol = Anzahl von Partikeln, die gleich groß ist wie die Anzahl der Atome in 12g des Isotops ^{12}C , entspricht N_A .

Molare Masse = Masse eines Mols in g

Molekularmasse = Masse eines Moleküls, ausgedrückt in atomaren Massen-

1 atomare Masseneinheit = $\frac{1}{12}$ eines ^{12}C -Atoms. 1 amu = $\frac{1}{N_A}$ =1.660510 ^{-27}kg Molekülmasse = Masse eines Moleküls in g

 $^{^{1}}$ übernommen aus dem Anleitungstext

2 Gasthermometer

2.1 Aufgabenstellung

Wir zeigen die Gültigkeit des Boyle-Mariotte'schen Gesetzes (2) und bestimmen den Spannungskoeffizienten der Luft β und die absolute Temperatur T_0 bei $0^{\circ}C$.

- 2.2 Grundlagen
- 2.3 Versuchsaufbau und Methoden
- 2.4 Durchführung
- 2.5 Ergebnisse
- 2.6 Diskussion

3 Bestimmung des Adiabatenexponenten der Luft nach Rüchardt

3.1 Aufgabenstellung

Wir bestimmen den Adiabatenexponenten der Luft mit der Methode von Rüchardt.

- 3.2 Grundlagen
- 3.3 Versuchsaufbau und Methoden
- 3.4 Durchführung
- 3.5 Ergebnisse
- 3.6 Diskussion

4 Dampfdichtebestimmung nach Viktor Meyer

4.1 Aufgabenstellung

Wir bestimmen die Dampfdichte α und die Molekularmasse M einer Probesubstanz.

4.2 Grundlagen

Dampfdichte:

$$\alpha = \frac{\rho_{Gas}}{\rho_{L,N}} \tag{4}$$

bei Normalbedingungen (0°C, 1.01325 bar), wobei ρ_{Gas} die Dichte des Gases, $\rho_{L,N}$ die Dichte der Luft bei Normalbedingungen.

Umrechnung für ideale Gase, falls $T \neq 0$:

$$\frac{V_D p}{T} = \frac{V_N p_N}{T_N} \tag{5}$$

wobei $V_D,\,p,\,T$ bei Messbedingungen, $V_N,\,p_N,\,T_N$ bei Normalbedingungen.

Relative Dampfdichte:

$$\alpha = \frac{\rho_N}{\rho_{L,N}} = \frac{\rho_D}{\rho_{L,N}} \frac{p_N T}{p T_N} \tag{6}$$

4.3 Versuchsaufbau und Methoden

4.4 Durchführung

4.5 Ergebnisse

Dichte der Luft bei Normalbedingungen (0°C, 1.01325 bar): $\rho_{L,N}=1.2931kg/m^3$

4.6 Diskussion