Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

Домашнее задание по дисциплине «Методы машинного обучения»

Выполнил: студент группы ИУ5и-24М Аунг Пьио Нанда

Задание

Домашнее задание по дисциплине направлено на анализ современных методов машинного обучения и их применение для решения практических задач. Домашнее задание включает три основных этапа:

- 1. выбор задачи;
- 2. теоретический этап;
- 3. практический этап.

Этап выбора задачи предполагает анализ ресурса <u>paperswithcode</u>. Данный ресурс включает описание нескольких тысяч современных задач в области машинного обучения. Каждое описание задачи содержит ссылки на наиболее современные и актуальные научные статьи, предназначенные для решения задачи (список статей регулярно обновляется авторами ресурса). Каждое описание статьи содержит ссылку на репозиторий с открытым исходным кодом, реализующим представленные в статье эксперименты. На этапе выбора задачи обучающийся выбирает одну из задач машинного обучения, описание которой содержит ссылки на статьи и репозитории с исходным кодом.

Теоретический этап включает проработку как минимум двух статей, относящихся к выбранной задаче. Результаты проработки обучающийся излагает в теоретической части отчета по домашнему заданию, которая может включать:

- описание общих подходов к решению задачи;
- конкретные топологии нейронных сетей, нейросетевых ансамблей или других моделей машинного обучения, предназначенных для решения задачи;
- математическое описание, алгоритмы функционирования, особенности обучения используемых для решения задачи нейронных сетей, нейросетевых ансамблей или других моделей машинного обучения;
- описание наборов данных, используемых для обучения моделей;
- оценка качества решения задачи, описание метрик качества и их значений;
- предложения обучающегося по улучшению качества решения задачи.

Практический этап включает повторение экспериментов авторов статей на основе представленных авторами репозиториев с исходным кодом и возможное улучшение обучающимися полученных результатов. Результаты

проработки обучающийся излагает в практической части отчета по домашнему заданию, которая может включать:

- исходные коды программ, представленные авторами статей, результаты документирования программ обучающимися с использованием диаграмм UML, путем визуализации топологий нейронных сетей и другими способами;
- результаты выполнения программ, вычисление значений для описанных в статьях метрик качества, выводы обучающегося о воспроизводимости экспериментов авторов статей и соответствии практических экспериментов теоретическим материалам статей;
- предложения обучающегося по возможным улучшениям решения задачи, результаты практических экспериментов (исходные коды, документация) по возможному улучшению решения задачи.

1. Постановку выбранной задачи машинного обучения, соответствующую этапу выбора задачи.

Для выполнения домашнего задания выбраны две задачи машинного обучения в области классификации изображений на наборах данных CIFAR-100 и ImageNet. Обе задачи являются стандартными и широко изучаемыми в сообществе машинного обучения.

1) Постановка задачи машинного обучения: CIFAR-100 Image Classification

Разработать и обучить модель машинного обучения для классификации изображений на наборе данных CIFAR-100 с высокой точностью и обобщающей способностью.

Набор данных CIFAR-100 содержит 60 000 цветных изображений размером 32х32 пикселя, разделенных на 100 классов, по 600 изображений на класс. Эти классы включают 20 широких категорий (например, рыбы, птицы, инсектоеды) и по 5 подкатегорий в каждой.

Методы:

Использование сверточных нейронных сетей (CNN) является стандартным подходом для классификации изображений на CIFAR-100. Другие возможные методы включают в себя передаточное обучение, аугментацию данных и оптимизацию гиперпараметров.

Ожидаемые результаты:

Высокая точность классификации на тестовом наборе данных. Эффективное обобщение на новые изображения из реального мира. Воспроизводимость результатов, достигнутых в существующих исследованиях по CIFAR-100.

Метрики качества:

Основные метрики, используемые для оценки качества модели, включают в себя Accuracy, Precision, Recall и F1-score. Также может быть полезно изучить кривые обучения и валидации, чтобы оценить процесс обучения.

Этапы решения задачи:

- 1) Подготовка данных: Загрузка, предварительная обработка и разделение данных на обучающий, валидационный и тестовый наборы.
- 2) Разработка модели: Выбор архитектуры нейронной сети, определение слоев и гиперпараметров модели.
- 3) Обучение модели: Обучение модели на обучающем наборе данных с использованием выбранного алгоритма оптимизации.
- 4) Оценка модели: Оценка производительности модели на валидационном и тестовом наборах данных.
- 5) Улучшение модели: Тюнинг гиперпараметров, аугментация данных и другие методы для улучшения качества модели.

2) Постановка задачи машинного обучения для классификации изображений на наборе данных CIFAR-10

Разработать модель машинного обучения, способную автоматически классифицировать изображения на десять различных категорий.

CIFAR-10 - это набор данных, состоящий из 60 000 цветных изображений размером 32х32 пикселя, разделенных на 10 классов: самолеты, автомобили, птицы, кошки, олени, собаки, лягушки, лошади, корабли и грузовики.

Анализ существующих методов:

Методы глубокого обучения, такие как сверточные нейронные сети (CNN), являются стандартом для решения задачи классификации изображений на CIFAR-10. Мы сосредоточимся на изучении таких архитектур как ResNet и Wide Residual Networks (WRN), известных своей эффективностью на этом наборе данных.

Метрики качества:

Для оценки качества модели будем использовать точность классификации (ассигасу), которая измеряет процент изображений, верно классифицированных моделью.

Предложения по улучшению:

После анализа существующих методов и экспериментов с ними мы можем предложить улучшения, такие как изменение архитектуры сети, оптимизацию гиперпараметров, аугментацию данных или использование передовых методов, таких как ансамблирование или обучение с подкреплением.

Таким образом, основной задачей нашего исследования является разработка и сравнение различных архитектур нейронных сетей для классификации изображений на наборе данных CIFAR-10 с целью достижения наивысшей возможной точности классификации.

2. Теоретическую часть

Общие подходы к классификации изображений:

1. Сверточные нейронные сети (CNN)

CNN являются наиболее распространенным и эффективным методом для классификации изображений. Они способны извлекать признаки изображений на разных уровнях абстракции благодаря своей архитектуре, которая включает сверточные слои, слои пулинга и полносвязные слои. Примеры популярных архитектур CNN включают в себя AlexNet, VGG, ResNet, Inception и EfficientNet.

2. Передаточное обучение (Transfer Learning)

Передаточное обучение позволяет использовать заранее обученные модели на больших наборах данных (например, ImageNet) для решения новых задач. Это особенно полезно, когда у нас есть ограниченное количество размеченных данных для новой задачи. Стандартным подходом является

замораживание весов предварительно обученных слоев и дообучение только последних слоев на новых данных.

3. Аугментация данных (Data Augmentation)

Аугментация данных позволяет увеличить разнообразие обучающего набора данных путем применения различных преобразований к изображениям, таких как повороты, отражения, изменения размера и изменения яркости. Это помогает улучшить обобщающую способность модели и справиться с проблемой переобучения.

Конкретные топологии нейронных сетей

ResNet (Residual Networks):

Введение блоков-остатков позволяет эффективно обучать глубокие нейронные сети, минимизируя проблему затухающих градиентов.

Inception:

Использование нескольких параллельных операций свертки с разными размерами ядер позволяет эффективно извлекать признаки изображений на разных уровнях.

EfficientNet:

Эффективная масштабируемость архитектуры путем коэффициентного масштабирования параметров сети, ширины и глубины, что позволяет добиться лучшей производительности при заданных ограничениях ресурсов.

Математическое описание и алгоритмы функционирования

Сверточные слои:

Применение операции свертки к входным изображениям с использованием ядра свертки для выделения локальных признаков.

Пулинг слои:

Уменьшение размерности признаковых карт путем выбора значений с определенными интервалами.

Полносвязные слои:

Соединение признаков, извлеченных из предыдущих слоев, с последующими классификационными слоями.

Описание набора данных Cifar100 и Cifar 10

Несколько базовых формул, которые могут быть полезны при описании теоретической части отчета по задаче классификации изображений на наборе данных Cifar 100 и Cifar 10:

1. Функция активации (Activation Function)

Сигмоидная функция:

$$\sigma(z) = rac{1}{1+e^{-z}}$$

Гиперболический тангенс (tanh):

$$anh(z) = rac{e^z - e^{-z}}{e^z + e^{-z}}$$

ReLU (Rectified Linear Unit):

$$ReLU(z) = max(0, z)$$

2. Функция потерь (Loss Function)

Кросс-энтропия (Cross-Entropy):

$$H(y, \hat{y}) = -\sum_{i} y_{i} \log(\hat{y}_{i})$$

3. Оптимизатор (Optimizer)

Градиентный спуск (Gradient Descent):

$$\theta = \theta - \alpha \nabla J(\theta)$$

где heta - параметры модели, lpha - скорость обучения, J(heta) - функция потерь.

4. Метрики оценки (Evaluation Metrics)

Ассuracy (Точность):

Precision (Точность):

$$Precision = \frac{TP}{TP+FP}$$

Recall (Полнота):

$$Recall = \frac{TP}{TP + FN}$$

F1-score (F1-мера):

$$F1\text{-score} = 2 \times \tfrac{Precision \times Recall}{Precision + Recall}$$

3. Практическую часть

В данной практической части отчета проводится экспериментальное исследование задач классификации изображений на наборах данных CIFAR-100 и ImageNet, используя описанные в теоретической части архитектуры нейронных сетей: Wide Residual Networks (WRN) и DenseNet для CIFAR-100 и Cifar-10. Включены результаты запуска исходных кодов, документирование программ, анализ полученных результатов, а также предложения по улучшению моделей и их реализация.

1. Классификация изображений на наборе данных CIFAR-100

Wide Residual Networks (WRN)

```
[1] import torch
    import torchvision
    import torchvision.transforms as transforms
    import torch.nn as nn
     import torch.optim as optim
    import math
class BasicBlock(nn.Module):
        def __init__(self, in_planes, out_planes, stride, dropRate=0.0):
            super(BasicBlock, self).__init__()
            self.bn1 = nn.BatchNorm2d(in_planes)
            self.relu = nn.ReLU(inplace=True)
            self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                                  padding=1, bias=False)
            self.bn2 = nn.BatchNorm2d(out_planes)
            self.conv2 = nn.Conv2d(out_planes, out_planes, kernel_size=3, stride=1,
                                   padding=1, bias=False)
            self.droprate = dropRate
            self.equalInOut = (in_planes == out_planes)
            self.convShortcut = (not self.equalInOut) and nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride,
                                                                    padding=0, bias=False) or None
        def forward(self, x):
            out = self.conv1(self.relu(self.bn1(x)))
            out = self.conv2(self.relu(self.bn2(out)))
            if self.equalInOut:
                return torch.add(x, out)
                return \ torch.add(self.convShortcut(x), \ out)
class NetworkBlock(nn.Module):
           def __init__(self, nb_layers, in_planes, out_planes, block, stride, dropRate=0.0):
              super(NetworkBlock, self).__init__()
              self.layer = self._make_layer(block, in_planes, out_planes, nb_layers, stride, dropRate)
           def _make_layer(self, block, in_planes, out_planes, nb_layers, stride, dropRate):
              lavers = []
               for i in range(nb_layers):
                  layers.append(block(i == 0 and in_planes or out_planes, out_planes, i == 0 and stride or 1, dropRate))
              return nn.Sequential(*layers)
          def forward(self, x):
              return self.layer(x)
(4] class NetworkBlock(nn.Module):
          def __init__(self, nb_layers, in_planes, out_planes, block, stride, dropRate=0.0):
              super(NetworkBlock, self).__init__()
              self.layer = self._make_layer(block, in_planes, out_planes, nb_layers, stride, dropRate)
[5] def _make_layer(self, block, in_planes, out_planes, nb_layers, stride, dropRate):
              layers = []
               for i in range(nb_layers):
                  layers.append(block(i == 0 and in_planes or out_planes, out_planes, i == 0 and stride or 1, dropRate))
              return nn.Sequential(*layers)
(self, x):
```

return self.layer(x)

```
class WideResNet(nn.Module):
          def __init__(self, depth, num_classes, widen_factor=1, dropRate=0.0):
               super(WideResNet, self).__init__()
               nChannels = [16, 16*widen_factor, 32*widen_factor, 64*widen_factor] assert ((depth - 4) % 6 == 0)
               n = (depth - 4) // 6
               block = BasicBlock
               self.conv1 = nn.Conv2d(3, nChannels[0], kernel_size=3, stride=1, padding=1, bias=False)
               self.block1 = NetworkBlock(n, nChannels[0], nChannels[1], block, 1, dropRate)
               self.block2 = NetworkBlock(n, nChannels[1], nChannels[2], block, 2, dropRate)
               self.block3 = NetworkBlock(n, nChannels[2], nChannels[3], block, 2, dropRate)
               self.bn1 = nn.BatchNorm2d(nChannels[3])
               self.relu = nn.ReLU(inplace=True)
               self.fc = nn.Linear(nChannels[3], num_classes)
               self.nChannels = nChannels[3]
              for m in self.modules():
                   if isinstance(m, nn.Conv2d):
                        nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                   elif isinstance(m, nn.BatchNorm2d):
                       nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
                   elif isinstance(m, nn.Linear):
                        nn.init.constant (m.bias, 0)
          def forward(self, x):
               out = self.conv1(x)
               out = self.block1(out)
               out = self.block2(out)
               out = self.block3(out)
               out = self.relu(self.bn1(out))
               out = nn.functional.avg_pool2d(out, 8)
               out = out.view(-1, self.nChannels)
               return self.fc(out)
🛫 🕟 # Преобразования для набора данных
       transform = transforms.Compose([
           transforms.RandomCrop(32, padding=4),
           transforms.RandomHorizontalFlip(),
           transforms.ToTensor(),
           transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)),
/
[9] # Загрузка данных
        trainset = torchvision.datasets.CIFAR100(root='.<mark>/data</mark>', train=True, download=Tru<mark>e</mark>, transform=transform)
       trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
   Files already downloaded and verified
y [11] # Устройство для вычислений
      device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class NetworkBlock(nn.Module):
           def __init__(self, nb_layers, in_planes, out_planes, block, stride, dropRate=0.0):
              super(NetworkBlock, self).__init__()
              self.layer = self._make_layer(block, in_planes, out_planes, nb_layers, stride, dropRate)
           def _make_layer(self, block, in_planes, out_planes, nb_layers, stride, dropRate):
              layers = []
              for i in range(nb_layers):
                  layers.append(block(i == 0 and in_planes or out_planes, out_planes, i == 0 and stride or 1, dropRate))
              return nn.Sequential(*layers)
          def forward(self, x):
              return self.layer(x)
(13] # Создание модели
       net = WideResNet(depth=28, num_classes=100, widen_factor=10, dropRate=0.3).to(device)
🙀 [14] # Определение функции потерь и оптимизатора
       criterion = nn.CrossEntropyLoss()
       optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
       scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=60, gamma=0.2)
```

```
for epoch in range(10):
           net.train()
           running_loss = 0.0
            for inputs, labels in trainloader:
               inputs, labels = inputs.to(device), labels.to(device)
               optimizer.zero_grad()
               outputs = net(inputs)
               loss = criterion(outputs, labels)
               loss.backward()
               optimizer.step()
               running_loss += loss.item()
            scheduler.step()
           print(f"Epoch {epoch+1}, Loss: {running_loss/len(trainloader)}")

→ Epoch 1, Loss: 3.9565042229869483

       Epoch 2, Loss: 3.40515643495428
        Epoch 3, Loss: 3.0147732389552515
        Epoch 4, Loss: 2.695617649561304
       Epoch 5, Loss: 2.433935480959275
        Epoch 6, Loss: 2.2085251091691234
        Epoch 7, Loss: 2.0194114940550625
        Epoch 8, Loss: 1.860038174387744
        Epoch 9, Loss: 1.7203145255822965
        Epoch 10, Loss: 1.5871508475154867
```

```
# Evaluation of the model
net.eval()
correct = 0
total = 0
with torch.no_grad():
    for inputs, labels in testloader:
        inputs, labels = inputs.to(device), labels.to(device)
        outputs = net(inputs)
        __, predicted = outputs.max(1)
        total += labels.size(0)
        correct += predicted.eq(labels).sum().item()
print(f"Test Accuracy: {100 * correct / total}%")
```

₹ Test Accuracy: 45.34%

DenseNet Ha CIFAR-100

```
import torch
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.optim as optim
from torchvision import models

[22]
# Onpegenenue Mogenu DenseNet
class Bottleneck(nn.Module):
    def __init__(self, nChannels, growthRate):
        super(Bottleneck, self).__init__()
        interchannels = 4 * growthRate
        self.bn1 = nn.BatchNorm2d(nChannels)
        self.conv1 = nn.Conv2d(nChannels, interChannels, kernel_size=1, bias=False)
        self.conv2 = nn.Conv2d(interChannels)
        self.conv2 = nn.Conv2d(interChannels, growthRate, kernel_size=3, padding=1, bias=False)

[23] def forward(self, x):
    out = self.conv1(self.bn1(x))
    out = self.conv2(self.bn2(out))
    out = self.conv2(self.bn2(out))
    out = self.conv2(self.bn2(out))
    out = torch.cat([x, out], 1)
        return out
```

```
[24] class Transition(nn.Module):
    def __init__(self, nChannels, nOutChannels):
        super(Transition, self).__init__()
        self.bn1 = nn.BatchNorm2d(nChannels)
        self.conv1 = nn.Conv2d(nChannels, nOutChannels, kernel_size=1, bias=False)
        self.pool = nn.AvgPool2d(2)

def forward(self, x):
    out = self.conv1(self.bn1(x))
    out = self.pool(out)
    return out
```

```
class DenseNet(nn.Module):
        def init (self, growthRate, depth, reduction, nClasses):
            super(DenseNet, self).__init__()
            nDenseBlocks = (depth - 4) // 3
            nChannels = 2 * growthRate
            self.conv1 = nn.Conv2d(3, nChannels, kernel_size=3, padding=1, bias=False)
            self.dense1 = self._make_dense(nChannels, growthRate, nDenseBlocks)
            nChannels += nDenseBlocks * growthRate
            nOutChannels = int(math.floor(nChannels * reduction))
            self.trans1 = Transition(nChannels, nOutChannels)
            nChannels = nOutChannels
            self.dense2 = self. make dense(nChannels, growthRate, nDenseBlocks)
            nChannels += nDenseBlocks * growthRate
            nOutChannels = int(math.floor(nChannels * reduction))
            self.trans2 = Transition(nChannels, nOutChannels)
            nChannels = nOutChannels
            self.dense3 = self._make_dense(nChannels, growthRate, nDenseBlocks)
            nChannels += nDenseBlocks * growthRate
            self.bn1 = nn.BatchNorm2d(nChannels)
            self.fc = nn.Linear(nChannels, nClasses)
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    nn.init.kaiming_normal_(m.weight)
                elif isinstance(m, nn.BatchNorm2d):
                   nn.init.constant_(m.weight, 1)
                    nn.init.constant_(m.bias, 0)
                elif isinstance(m, nn.Linear):
                    nn.init.constant_(m.bias, 0)
```

```
os def _make_dense(self, nChannels, growthRate, nDenseBlocks):
               layers = []
               for i in range(nDenseBlocks):
                   layers.append(Bottleneck(nChannels, growthRate))
                   nChannels += growthRate
               return nn.Sequential(*layers)
(27] def forward(self, x):
               out = self.conv1(x)
               out = self.trans1(self.dense1(out))
               out = self.trans2(self.dense2(out))
               out = self.bn1(self.dense3(out))
               out = nn.functional.avg_pool2d(out, 8)
               out = out.view(out.size(0), -1)
               return self.fc(out)
([28] transform = transforms.Compose
           transforms.RandomCrop(32, padding=4),
           transforms.RandomHorizontalFlip(),
           transforms.ToTensor(),
           transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)),
       1)
```

```
os [29] trainset = torchvision.datasets.CIFAR100(root='./data', train=True, download=True, transform=transform)
        trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
   Files already downloaded and verified
testset = torchvision.datasets.CIFAR100(root='./data', train=False, download=True, transform=transform)
       testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
   Files already downloaded and verified
√ [32] # Set device
       device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        # Define the DenseNet model
       net = models.densenet121(pretrained=False, num_classes=100).to(device)
       # Define the loss function and optimizer
       criterion = nn.CrossEntropyLoss()
       optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
       scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=60, gamma=0.2)
for epoch in range(10):
           net.train()
           running_loss = 0.0
            for inputs, labels in trainloader:
               inputs, labels = inputs.to(device), labels.to(device)
                optimizer.zero_grad()
                outputs = net(inputs)
               loss = criterion(outputs, labels)
               loss.backward()
               optimizer.step()
               running_loss += loss.item()
           scheduler.step()
           print(f"Epoch {epoch+1}, Loss: {running_loss/len(trainloader)}")
  Fpoch 1, Loss: 3.8885617207383256
       Epoch 2, Loss: 3.298895679776321
Epoch 3, Loss: 2.9824776862893265
       Epoch 4, Loss: 2.7500028482178593
       Epoch 5, Loss: 2.569366424589816
       Epoch 6, Loss: 2.42239154238835
       Epoch 7, Loss: 2.2773823860051383
       Epoch 8, Loss: 2.166843742055966
       Epoch 9, Loss: 2.05681072689993
       Epoch 10, Loss: 1.9590622744596828
net.eval()
      correct = 0
      total = 0
      with torch.no_grad():
         for inputs, labels in testloader:
             inputs, labels = inputs.to(device), labels.to(device)
             outputs = net(inputs)
              _, predicted = outputs.max(1)
             total += labels.size(0)
             correct += predicted.eq(labels).sum().item()
      print(f"Test Accuracy: {100 * correct / total}%")
  ₹ Test Accuracy: 42.04%
```

Результаты выполнения программ

WRN Ha CIFAR-100

Точность на тестовой выборке: 45.34%

Ошибка классификации: 1.59%

DenseNet Ha CIFAR-100

Точность на тестовой выборке: 42.04%

Ошибка классификации: 1.96%

Анализ результатов

Модели WRN и DenseNet показали результаты на наборе данных CIFAR-100, что подтверждает их эффективность. DenseNet немного превосходит WRN по точности, что может быть связано с более плотными соединениями, улучшающими распространение информации и градиентов.

2. Классификация изображений на наборе данных Cifar-10

Wide Residual Networks (WRN)

```
[6] import torch
    import torchvision
    import torchvision.transforms as transforms
    import torch.nn as nn
   import torch.optim as optim
   import math
class BasicBlock(nn.Module):
        def __init__(self, in_planes, out_planes, stride, dropRate=0.0):
            super(BasicBlock, self).__init__()
           self.bn1 = nn.BatchNorm2d(in planes)
           self.relu = nn.ReLU(inplace=True)
            self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                                 padding=1, bias=False)
            self.bn2 = nn.BatchNorm2d(out_planes)
            self.conv2 = nn.Conv2d(out_planes, out_planes, kernel_size=3, stride=1,
                                padding=1, bias=False)
            self.droprate = dropRate
            self.equalInOut = (in_planes == out_planes)
            self.convShortcut = (not self.equalInOut) and nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride,
                                                                   padding=0, bias=False) or None
        def forward(self, x):
            out = self.conv1(self.relu(self.bn1(x)))
            out = self.conv2(self.relu(self.bn2(out)))
            if self.equalInOut:
               return torch.add(x, out)
                return torch.add(self.convShortcut(x), out)
```

```
[8] class NetworkBlock(nn.Module):
                def __init__(self, nb_layers, in_planes, out_planes, block, stride, dropRate=0.0):
                      super(NetworkBlock, self).__init__()
                      self.layer = self._make_layer(block, in_planes, out_planes, nb_layers, stride, dropRate)
                def _make_layer(self, block, in_planes, out_planes, nb_layers, stride, dropRate):
                     layers = []
                     for i in range(nb_layers):
                         layers.append(block(i == 0 and in_planes or out planes, out planes, i == 0 and stride or 1, dropRate))
                     return nn.Sequential(*layers)
                def forward(self, x):
                     return self.layer(x)
class NetworkBlock(nn.Module):
                def __init__(self, nb_layers, in_planes, out_planes, block, stride, dropRate=0.0):
                     super(NetworkBlock, self).__init__()
                     self.layer = self._make_layer(block, in_planes, out_planes, nb_layers, stride, dropRate)
[10] def _make_layer(self, block, in_planes, out_planes, nb_layers, stride, dropRate):
                      for i in range(nb_layers):
                          layers.append(block(i == 0 \ and \ in\_planes \ or \ out\_planes, \ out\_planes, \ i == 0 \ and \ stride \ or \ 1, \ dropRate))
                     return nn.Sequential(*layers)
[11] def forward(self, x):
                   return self.layer(x)
  class WideResNet(nn.Module):
                      init_(self, depth, num_classes, widen_factor=1, dropRate=0.0):
super(WideResNet, self).__init__()
nChannels = [16, 16*widen_factor, 32*widen_factor, 64*widen_factor]
assert ((depth - 4) % 6 == 0)
                       n = (depth - 4) // 6
block = BasicBlock
                      block = BasicBlock
self.conv1 = nn.Conv2d(3, nChannels[0], kernel_size=3, stride=1, padding=1, bias=False)
self.block1 = NetworkBlock(n, nChannels[0], nChannels[1], block, 1, dropRate)
self.block2 = NetworkBlock(n, nChannels[1], nChannels[2], block, 2, dropRate)
self.block3 = NetworkBlock(n, nChannels[2], nChannels[3], block, 2, dropRate)
self.bn1 = nn.BatchNorm2d(nChannels[3])
self.relu = nn.RetU(inplace=True)
self.fc = nn.Linear(nChannels[3], num_classes)
self.nChannels = nChannels[3]
                      for m in self.modules():
                             m in seir.modules():
   if isinstance(m, nn.Conv2d):
        nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
        nn.init.constant_(m.weight, 1)
                              nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
                                    nn.init.constant (m.bias, 0)
                def forward(self, x):
                       out = self.conv1(x)
out = self.block1(out)
                       out = self.block2(out)
                       out = self.block3(out
                       out = self.relu(self.bn1(out))
                      out = nn.functional.avg_pool2d(out, 8)
out = out.view(-1, self.nChannels)
                       return self.fc(out)
  [13] # Предобработка дан
           transform = transforms.Compose([
transforms.ToTensor(),
               transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
[14] trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=trainfloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True, num_workers=2)
   Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./data/cifar-10-python.tar.gz 100%| 170498071/170498071 [00:02<00:00, 79621774.83it/s] Extracting ./data/cifar-10-python.tar.gz to ./data
[15] testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False, num_workers=2)
   Files already downloaded and verified
# Устройство для вычислений
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
```

```
[16] # Устройство для вычислений
      device = torch.device('cuda' if torch.cuda.is available() else 'cpu')
[17] class NetworkBlock(nn.Module):
          def __init__(self, nb_layers, in_planes, out_planes, block, stride, dropRate=0.0):
    super(NetworkBlock, self).__init__()
              self.layer = self._make_layer(block, in_planes, out_planes, nb_layers, stride, dropRate)
          def _make_layer(self, block, in_planes, out_planes, nb_layers, stride, dropRate):
              layers = []
              for i in range(nb_layers):
                layers.append(block(i == 0 \ and \ in\_planes \ or \ out\_planes, \ out\_planes, \ i == 0 \ and \ stride \ or \ 1, \ dropRate))
             return nn.Sequential(*layers)
          def forward(self, x):
             return self.layer(x)
√
0s [18] # Создание модели
      net = WideResNet(depth=28, num_classes=100, widen_factor=10, dropRate=0.3).to(device)
v [19] # Определение функции потерь и оптимизатора
      criterion = nn.CrossEntropyLoss()
       optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
      scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=60, gamma=0.2)
 # Обучение модели
     for epoch in range(10):
         net.train()
          running_loss = 0.0
          for inputs, labels in trainloader:
             inputs, labels = inputs.to(device), labels.to(device)
             optimizer.zero_grad()
             outputs = net(inputs)
             loss = criterion(outputs, labels)
             loss.backward()
             optimizer.step()
             running_loss += loss.item()
          scheduler.step()
         print(f"Epoch {epoch+1}, Loss: {running_loss/len(trainloader)}")
 Epoch 1, Loss: 1.3994203514760108
     Epoch 2, Loss: 0.9079497391000733
     Epoch 3, Loss: 0.6933529624701156
     Epoch 4, Loss: 0.5416872582929518
     Epoch 5, Loss: 0.4311249174768358
     Epoch 6, Loss: 0.3437807446207537
     Epoch 7, Loss: 0.2725122553746566
     Epoch 8, Loss: 0.21877645567783613
     Epoch 9, Loss: 0.16838963350990926
     Epoch 10, Loss: 0.13453845871979242
[15] # Evaluation of the model
        net.eval()
        correct = 0
        total = 0
        with torch.no_grad():
             for inputs, labels in testloader:
                   inputs, labels = inputs.to(device), labels.to(device)
                   outputs = net(inputs)
                   _, predicted = outputs.max(1)
                  total += labels.size(0)
                   correct += predicted.eq(labels).sum().item()
        print(f"Test Accuracy: {100 * correct / total}%")
```

DenseNet на CIFAR-10

```
√ [59] import torch
       import torchvision
       import torchvision.transforms as transforms
       import torch.nn as nn
       import torch.optim as optim
       from torchvision import models
       # Определение модели DenseNet
       class Bottleneck(nn.Module):
           def __init__(self, nChannels, growthRate):
              super(Bottleneck, self).__init__()
              interChannels = 4 * growthRate
              self.bn1 = nn.BatchNorm2d(nChannels)
              self.conv1 = nn.Conv2d(nChannels, interChannels, kernel_size=1, bias=False)
               self.bn2 = nn.BatchNorm2d(interChannels)
               self.conv2 = nn.Conv2d(interChannels, growthRate, kernel_size=3, padding=1, bias=False)
_{0s}^{\checkmark} [61] def forward(self, x):
                 out = self.conv1(self.bn1(x))
                 out = self.conv2(self.bn2(out))
                 out = torch.cat([x, out], 1)
                 return out
class Transition(nn.Module):
             def __init__(self, nChannels, nOutChannels):
                 super(Transition, self).__init__()
                 self.bn1 = nn.BatchNorm2d(nChannels)
                 self.conv1 = nn.Conv2d(nChannels, nOutChannels, kernel size=1, bias=False)
                 self.pool = nn.AvgPool2d(2)
             def forward(self, x):
                 out = self.conv1(self.bn1(x))
                 out = self.pool(out)
                 return out
```

```
(nn.Module):
           def __init__(self, growthRate, depth, reduction, nClasses):
                super(DenseNet, self).__init__()
                nDenseBlocks = (depth - 4) // 3
                nChannels = 2 * growthRate
                self.conv1 = nn.Conv2d(3, nChannels, kernel_size=3, padding=1, bias=False)
                self.dense1 = self._make_dense(nChannels, growthRate, nDenseBlocks)
                nChannels += nDenseBlocks * growthRate
                nOutChannels = int(math.floor(nChannels * reduction))
                self.trans1 = Transition(nChannels, nOutChannels)
                nChannels = nOutChannels
                self.dense2 = self._make_dense(nChannels, growthRate, nDenseBlocks)
                nChannels += nDenseBlocks * growthRate
                nOutChannels = int(math.floor(nChannels * reduction))
                self.trans2 = Transition(nChannels, nOutChannels)
                nChannels = nOutChannels
                self.dense3 = self._make_dense(nChannels, growthRate, nDenseBlocks)
                nChannels += nDenseBlocks * growthRate
                self.bn1 = nn.BatchNorm2d(nChannels)
                self.fc = nn.Linear(nChannels, nClasses)
                for m in self.modules():
                    if isinstance(m, nn.Conv2d):
                        nn.init.kaiming_normal_(m.weight)
                    elif isinstance(m, nn.BatchNorm2d):
                        nn.init.constant_(m.weight, 1)
                        nn.init.constant_(m.bias, 0)
                    elif isinstance(m, nn.Linear):
                        nn.init.constant_(m.bias, 0)
os [64] def _make_dense(self, nChannels, growthRate, nDenseBlocks):
              layers = []
               for i in range(nDenseBlocks):
                  layers.append(Bottleneck(nChannels, growthRate))
                  nChannels += growthRate
              return nn.Sequential(*layers)
def forward(self, x):
```

```
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
      testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False, hum_workers=2)
 Files already downloaded and verified
 [71] # Set device
      device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
      # Define the DenseNet model
      net = models.densenet121(pretrained=False, num_classes=100).to(device)
      # Define the loss function and optimizer
      criterion = nn.CrossEntropyLoss()
      optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9, weight decay=5e-4)
      scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=60, gamma=0.2)
[72] for epoch in range(10):
          net.train()
          running_loss = 0.0
          for inputs, labels in trainloader:
              inputs, labels = inputs.to(device), labels.to(device)
              optimizer.zero_grad()
              outputs = net(inputs)
              loss = criterion(outputs, labels)
              loss.backward()
              optimizer.step()
              running_loss += loss.item()
          scheduler.step()
          print(f"Epoch {epoch+1}, Loss: {running_loss/len(trainloader)}")
 ₹ Epoch 1, Loss: 1.5637220420953257
      Epoch 2, Loss: 1.1302182935083005
      Epoch 3, Loss: 0.9065015601837422
      Epoch 4, Loss: 0.7574080247098528
Epoch 5, Loss: 0.6389941974445377
      Epoch 6, Loss: 0.5422828198241456
      Epoch 7, Loss: 0.4687292457503431
Epoch 8, Loss: 0.4141872313321399
      Epoch 9, Loss: 0.3595283222587212
      Epoch 10, Loss: 0.30874331353608603
// [73] net.eval()
        correct = 0
         total = 0
         with torch.no_grad():
             for inputs, labels in testloader:
                 inputs, labels = inputs.to(device), labels.to(device)
                  outputs = net(inputs)
                  _, predicted = outputs.max(1)
                  total += labels.size(0)
                 correct += predicted.eq(labels).sum().item()
         print(f"Test Accuracy: {100 * correct / total}%")
    ₹ Test Accuracy: 74.62%
```

Результаты выполнения программ

WRN Ha CIFAR-10

Точность на тестовой выборке: 80.45%

Ошибка классификации: 0.13%

DenseNet на CIFAR-10

Точность на тестовой выборке: 74.62%

Ошибка классификации: 0.3%

Анализ результатов

Модели WRN и DenseNet показали результаты на наборе данных CIFAR-100, что подтверждает их эффективность. DenseNet немного превосходит WRN по точности, что может быть связано с более плотными соединениями, улучшающими распространение информации и градиентов.

Выводы

Wide Residual Networks (WRN) продемонстрировали лучшую производительность по сравнению с DenseNet на наборе данных CIFAR-100. Точность WRN составила 45.34%, что на 3.3% выше, чем у DenseNet. Ошибка классификации у WRN также ниже (1.59 против 1.96 у DenseNet), что свидетельствует о более высокой способности WRN различать классы в этом более сложном наборе данных.

На более простом наборе данных CIFAR-10 WRN снова показали лучшие результаты с точностью 80.45%, что на 5.83% выше, чем у DenseNet. Ошибка классификации у WRN (0.13) заметно ниже, чем у DenseNet (0.3), что подчеркивает лучшую производительность WRN для задач классификации на CIFAR-10.

Wide Residual Networks (WRN) демонстрируют более высокую точность и меньшую ошибку классификации как на CIFAR-100, так и на CIFAR-10 по сравнению с DenseNet. Это может быть связано с архитектурными особенностями WRN, такими как более широкие слои и остаточные соединения, которые позволяют модели лучше обучаться и избегать затухания градиентов. DenseNet также показывает хорошую производительность, но немного уступает WRN.

Можно попробовать различные настройки гиперпараметров, такие как обучения, скорость размер батча и число эпох, чтобы улучшить моделей. Применение более производительность сложных техник аугментации данных может помочь улучшить способность моделей обобщать и, соответственно, повысить точность. Применение методов регуляризации, Dropout или L2-регуляризация, может помочь избежать переобучения и улучшить общую производительность моделей.

Список литературы

- [1] Гапанюк Ю. Е. Домашнее задание по дисциплине «Методы машинного обучения»[Электронный ресурс] // GitHub. 2019. Режим доступа: https://github.com/ugapanyuk/courses_current/wiki/DZ_MMO.
- [2] You are my Sunshine [Electronic resource] // Space Apps Challenge. 2017. Access mode: https://2017.spaceappschallenge.org/challenges/earth-and-us/you-are-my-sunshine/details (online; accessed: 22.02.2019).
- [3] dronio. Solar Radiation Prediction [Electronic resource] // Kaggle. 2017. Access mode: https://www.kaggle.com/dronio/SolarEnergy (online; accessed: 18.02.2019).
- [4] Team The IPython Development. IPython 7.3.0 Documentation [Electronic resource] //Read the Docs. 2019. Access mode: https://ipython.readthedocs.io/en/stable/ (online; accessed: 20.02.2019).
- [5] Waskom M. seaborn 0.9.0 documentation [Electronic resource] // PyData. 2018. Access mode: https://seaborn.pydata.org/ (online; accessed: 20.02.2019).
- [6] pandas 0.24.1 documentation [Electronic resource] // PyData. 2019. Access mode:http://pandas.pydata.org/pandas-docs/stable/ (online; accessed: 20.02.2019).
- [7] Chrétien M. Convert datetime.time to seconds [Electronic resource] // Stack Overflow. 2017. Access mode: https://stackoverflow.com/a/44823381 (online; accessed:20.02.2019).