Teaching Undergrad Econometrics with R

Bill Sundstrom

Dept. of Economics, Santa Clara U.

wsundstrom@scu.edu

BARUG February 9, 2016

Context

- Large undergrad economics major
- Intro stats no longer sufficient
 - Modern economics is highly empirical
 - Data analysis skills are highly valued

What are we trying to do?

- New required econometrics course:
 - Regression and causal explanation
 - Hands-on data analysis using R
- Why R?

Challenges

- Many students find stats hard
 - They have taken just one intro stats course
- Thinking about causal identification is hard
- Digital natives are also digital naifs

Hi Professor,

Something terrible happened just now. I normally dont save often in Rstudio because it seems to have no problems staying open, so I hadnt saved the code for my final essay and now it suddenly crashed. Theres just that rainbow wheel and it says application not responding. Do you know of anything I should/could do? I'm totally fucked

Thanks!

Making it work

- Standard 10-week lecture course (two meetings per week)
- Accompanying weekly R lab course

In the lab

- We do not try to teach coding from scratch
- We do insist that students run R from scripts, from soup to nuts: replicability
- We provide sample scripts and tutorials
- Trouble-shooting for the first two weeks, then running regressions and interpreting results
- Culminates in data analysis project

A tutorial script in action

- Effect of class size on student performance
- Plot the data
- Run the regression
- Nice regression tables with stargazer

β^ is a random variable

Multiple regression

- Control variables as partial solution to omitted variable bias
- Specification
 - Using interactions to facilitate comparisons
 - Nonlinear specifications
- Thinking about effect size, not just statistical significance

Test scores and class size

Data analysis project

- Replicate and reevaluate a classic economics article using up-to-date data
 - Barry Chiswick, "The Effect of Americanization on the Earnings of Foreign-Born Men" (JPE, 1978)

TABLE 2

Regression Analysis of Earnings for Native- and Foreign-born Adult White Men, 1970

	Native Born	Native and Foreign Born			Foreign Born
	(1)	(2)	(3)	(4)	(5)
EDUC	.07154	.07058	.07004	.07164	.05740
T	(53.78) .0 31 67	(55.68) .0 3 050	(55.18) .03071	(54.11) .0 3 097	(12.93) .02028
T2	(22.99) 00052	(22.86) 00049	(22.99) 00050	(23.10) 00051	(3.47) 00031
LN WW	(-20.77) 1.10335 (81.75)	(-20.45) 1.10326	(-20.78) 1.10169	(-20.93) 1.10111	(-3.18) 1.07151
RURALEQ1	17222	(84.78) 16970	(84.70) 17080	(84.67) 16915	(21.97) 05821
SOUTHEQ1	(-20.28) 12090 (-14.17)	(-20.25) 12620	(-20.39) 12530	(-20.18) 12389	(-1.13) 21587
NOTMSP	30647	(-15.01) 31078	(-14.91) 30947	(-14.74) 30874	(-4.38) 34498
FOR	(-27.76) *	(-28.97) .02951	(-28.86) -16359	(-28.79)	(-7.66) *
(FOR) (YSM)	*	(1.75) *	.01461	(0.18)	.01500
(FOR) (YSM2)	*	*	(3.98) 00016	(4.23) 00018	(3.87) 00019
(FOR) (EDUC)	*	*	(-2.47)	(-2.79) 01619	(−2.82) *
CONSTANT Observations	-1.03646	-1.01537	-1.00016	(-4.23) -1.02156	 78891
$R \dots R$	34,321 .55423	36,245 .55455	36,245 .55533	3 6,245 .55564	1,924 .58194
R ²	.30717 .70900	.30753 .71008	.30839 .70966	.30873 .70949	.33866 .71676

Source.-U.S. Bureau of the Census 1972.

Note.—t-ratios in parentheses; dependent variable: natural logarithm of earnings in hundreds of dollars. * Variable not entered.

Chiswick Table 2 Dependent variable: lnearn US-born All All All For-born (1) (2) (3) (4) (5) 0.0895*** 0.1216*** 0.1130*** 0.1128*** 0.1222*** educ_years (0.0032)(0.0027)(0.0028)(0.0032)(0.0057)0.0476*** 0.0433*** 0.0434*** 0.0440*** 0.0153* exper (0.0030)(0.0027)(0.0027)(0.0027)(0.0079)I(exper2) -0.0008*** -0.0007*** -0.0007*** -0.0007*** -0.0002 (0.0001)(0.0001)(0.0001)(0.0001)(0.0001)ftfy 1.2034*** 1.1942*** 1.1936*** 1.1903*** 1.0651*** (0.0249)(0.0233)(0.0233)(0.0233)(0.0649)-0.0416*** -0.0364*** -0.0412*** -0.0409*** -0.0820** south (0.0141)(0.0134)(0.0134)(0.0133)(0.0403)-0.3064*** -0.3036*** -0.2168*** -0.3124*** -0.3063*** notmsp (0.0154)(0.0145)(0.0145)(0.0145)(0.0442)0.3923*** -0.0339 -0.0891 forborn (0.0219)(0.0638)(0.1020)-0.0004 0.0043 forysm 0.0031 (0.0052)(0.0052)(0.0054)I(forysm2) -0.00002 0.00005 -0.00002 (0.0001)(0.0001)(0.0001)educ_years:forborn -0.0352*** (0.0058)7.5147*** 7.6839*** 7.6877*** 7.5521*** 8.2743*** Constant

(0.0554)

(0.0556)

(0.0612)

(0.1460)

(0.0629)

A work in progress

- Many students don't run the tutorials
- Need more emphasis on data visualization
- Teaching with simulations?
- We give them data that is way too tidy

Questions for you...

- What are the most important things for an informed econ/ business major to learn about data analysis?
- We could use good examples/ projects from business, data analytics
- How can good students interested in data analytics start networking, build a reputation?
- Can you use our students? Internships, jobs

Thank you

- Co-conspiratoR: Michael Kevane, Economics, Santa Clara University
- My email: wsundstrom@scu.edu
- Guide to R online version (under revision): http://rpubs.com/wsundstrom/home