Programme n°8

ELECTROCINETIQUE

EL1 Les grandeurs électriques

Cours uniquement

EL2 Les circuits linéaires

Cours et exercices

EL3 Les circuits linéaires du premier ordre (Cours uniquement)

- Equations de fonctionnement
- Régime libre d'un circuit RC
 - Observation
 - Mise en équation
 - Portrait de phase
 - $\rightarrow \text{D\'efinitions}$
 - → Représentation dans un plan de phase
 - Résolution
 - Bilan énergétique
- Réponse à un échelon de tension d'un circuit RC
 - Observation
 - Mise en équation
 - Portrait de phase
 - Résolution
 - Bilan énergétique

6. Circuit linéaire du premier ordre	
Régime libre, réponse à un échelon.	Réaliser pour un circuit l'acquisition d'un régime transitoire du premier ordre et analyser ses caractéristiques. Confronter les résultats expérimentaux aux expressions théoriques.
	Distinguer, sur un relevé expérimental, régime transitoire et régime permanent au cours de l'évolution d'un système du premier ordre soumis à un échelon.
	Interpréter et utiliser les continuités de la tension aux bornes d'un condensateur ou de l'intensité dans une bobine.
	Établir l'équation différentielle du premier ordre vérifiée par une grandeur électrique dans un circuit comportant une ou deux mailles.
	Prévoir l'évolution du système, avant toute résolution de l'équation différentielle, à partir d'une analyse s'appuyant sur une représentation graphique de la dérivée temporelle de la grandeur en fonction de cette grandeur.
	Déterminer analytiquement la réponse temporelle dans le cas d'un régime libre ou d'un échelon. Déterminer un ordre de grandeur de la durée du régime transitoire.
Stockage et dissipation d'énergie.	Réaliser des bilans énergétiques.

CINETIQUE CHIMIQUE

CX1. Généralité sur la cinétique chimique

Cours uniquement

CX2 Cinétique formelle, réaction et ordre (Cours uniquement)

- Ordre d'une réaction
 - Ordre au cours du temps
 - Exemples
 - Aspect expérimental \rightarrow Ordre initial

→ Ordre global, ordre partiel

- · Les réactions d'ordre simple
 - L'ordre 0
 - L'ordre 1
 - L'ordre 2
- Etude expérimentale de l'ordre d'une réaction
 - Aspect expérimental
 - La méthode intégrale
 - La méthode différentielle
 - La méthode du temps de demi-réaction
 - Méthode d'Oswald
- Influence de la température

En réacteur fermé de composition uniforme

Vitesses de disparition d'un réactif et de formation d'un produit.

Vitesse de réaction pour une transformation modélisée par une réaction chimique unique. Lois de vitesse : réactions sans ordre, réactions avec ordre simple (0, 1, 2), ordre global, ordre apparent.

Temps de demi-réaction.

Temps de demi-vie d'un nucléide radioactif.

Loi empirique d'Arrhenius ; énergie d'activation.

Déterminer l'influence d'un paramètre sur la vitesse d'une réaction chimique.

Relier la vitesse de réaction à la vitesse de disparition d'un réactif ou de formation d'un produit, quand cela est possible.

Établir une loi de vitesse à partir du suivi temporel d'une grandeur physique.

Exprimer la loi de vitesse si la réaction chimique admet un ordre et déterminer la valeur de la constante cinétique à une température donnée.

Déterminer la vitesse de réaction à différentes dates en utilisant une méthode numérique ou graphique.

Déterminer un ordre de réaction à l'aide de la méthode différentielle ou à l'aide des temps de demi-réaction.

Confirmer la valeur d'un ordre par la méthode intégrale, en se limitant strictement à une décomposition d'ordre 0, 1 ou 2 d'un unique réactif, ou se ramenant à un tel cas par dégénérescence de l'ordre ou conditions initiales stœchiométriques.

Déterminer l'énergie d'activation d'une réaction chimique.

Déterminer la valeur de l'énergie d'activation d'une réaction chimique à partir de valeurs de la constante cinétique à différentes températures.

Approche documentaire : à partir de documents, découvrir la notion de mécanismes réactionnels

TP

Focométrie des lentilles minces