Lecture #19

MA 511, Introduction to Analysis

June 23, 2021

Sequences of Partitions

Theorem (Sequential Criterion for Integrability)

If f is a bounded function, then f is integrable if and only if there is a sequence of partitions P_n such that

$$\lim_{n\to\infty} \left(U(f,P_n) - L(f,P_n) \right) = 0$$

In this case

$$\int_{a}^{b} f = \lim_{n \to \infty} U(f, P_n) = \lim_{n \to \infty} L(f, P_n)$$

We saw the idea of this proof in yesterday's examples and you are asked to provide the details for homework

Content Zero Sets and Integration

Definition (Content Zero Sets)

A set $A \subset [a,b]$ is said to have content zero if for all $\varepsilon > 0$, there is a family of open intervals $\{(c_1,d_1),...,(c_n,d_n)\}$ which cover A and satisfy $\sum_{k=1}^n d_k - c_k \le \varepsilon$

Theorem (Exercise 7.3.9)

If f is bounded and the set of discontinuities of f is content zero, then f is integrable.

The idea behind this proof is similar to the approach for integrating the function $f(x) = \begin{cases} 1 & \text{if } x = \frac{1}{n} \\ 0 & \text{otherwise} \end{cases}$ that we ended yesterday with

Properties of Integration

Theorem

Assume $f:[a,b] \to \mathbb{R}$ is bounded and let $c \in (a,b)$. f is integrable on [a,b] if and only if f is integrable on [a,c] and [c,b]. If this is the case, then

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

Theorem

Assume that f and g are integrable on [a, b]

- **1** The function f + g is integrable and $\int_a^b (f + g) = \int_a^b f + \int_a^b g$
- **2** For $k \in \mathbb{R}$, the function kf is integrable and $\int_a^b (kf) = k \int_a^b f$
- 3 If $m \le f \le M$, then $m(b-a) \le \int_a^b f \le M(b-a)$
- 4 If $f(x) \leq g(x)$, then $\int_a^b f \leq \int_a^b g$
- **5** The function |f| is integrable and $|\int_a^b f| \le \int_a^b |f|$

Some Convenient Notation

Definition

Let f be integrable on [a, b] and $c \in [a, b]$. We define the following notation

$$\int_{b}^{a} f = -\int_{a}^{b} f$$

$$\int_{c}^{c} f = 0$$

■ This definition makes our theorem about breaking [a, b] into [a, c] and [c, b] makes sense for any a, b, and c in a domain where f is integrable

Integration and Limits

Theorem (Integrable Limit Theorem)

Assume that $f_n \to f$ uniformly on [a,b] and each f_n is integrable. Then f is integrable and

$$\lim_{n\to\infty}\int_a^b f_n = \int_a^b f$$

■ If $f_n \to f$ pointwise, then the result does not hold. We can make the limit not exist or make the equation false

The Fundamental Theorem of Calculus

Theorem (The Fundamental Theorem of Calculus)

1 If $f:[a,b] \to \mathbb{R}$ is integrable and $F:[a,b] \to \mathbb{R}$ is differentiable with F'(x) = f(x) for all $x \in [a,b]$, then

$$\int_a^b f = F(b) - F(a)$$

2 Let $g:[a,b] \to \mathbb{R}$ be integrable, and for $x \in [a,b]$, define the function $G:[a,b] \to \mathbb{R}$ by

$$G(x) = \int_{a}^{x} g$$

G is continuous on [a,b]. If g is continuous at $c \in [a,b]$, then G is differentiable at c and G'(c) = g(c)