

|       | 0.25% - 0.25% - 0.5% - 0.75% - 0.75% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5% - 1.5%  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -     | How does the premium discount of two ETFs with similar components move?  The first graph is the price and iNAV of JNK.  As we see below in the second graph, as the HYG/JNK both track US High Yield Coroporate Bond Indices, their premium/discount pervery similarly and comove with each other very closely. This pattern may be used to discover some trading strategies.  hy_discounts = jnk_intraday[['JNK Price - iNAV']].join(hyg_intraday[['HYG Price - iNAV']]) hy_discounts = hy_discounts * -1 # fix misslabeling hy_discounts['2020-03-02'].plot(title = 'iNAV Discount/Premium on March 2, 2020', figsize=(15,5)) plt.xlabel('Time') plt.ylabel('Price-iNav') plt.axhline(y=0, color='black', linestyle='', linewidth=1) # add dashed line at 0 plt.show()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | iNAV Discount/Premium on March 2, 2020  INK Price - iNAV HYG Price - iNAV  0.4  0.4  0.0  -0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | Model  Exponential Weighted Regression with daily update  After consideration, we moved on to exponential weighted regression or discounted least square regression that has substantial benefit. No train test split - Update model each day with new information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | In some sense, splitting the data to a train period to train the model and predict the model in a separate testing period is ignoring lot of information.  First of all, it assumes a constant model within the entire 6 months test period. However, new information arrived every day and assuming the same model for 6 months does not allow us to deal with extreme market events in 2020.  We <b>update</b> the model <b>each day after the market closes</b> with today's new trade data. Applying the Sherman-Morrison inversion formula  On each day after market close, we update P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | $P_{new} = \frac{1}{\lambda} (P - Px(\lambda + x^*Px)^{-1}x^*P$ Our new coefficients are then $\beta_{new} = \beta + Px(\lambda + x^*Px)^{-1}(y - x^*\beta)$ $= \beta + Pxf\lambda^{-1}h$ 2. <b>Give more weight to recent data</b> Second, it assumes the data on recent and past have similar information. But clearly more recent data carries much more information is why we moved onto exponential weighted regression, also called discounted least-squares regression.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| I     | 1. Avoid look ahead bias as we find the best coefficients We use the model to predict and output strategy signal in the next day. This way as we are doing a daily update model, we are no choosing the best coefficient over the whole period and act on previous dates. Model Parameter Tuning In discounted least square regression, although we do not define a BoxCox window, there is the λ discount factor with which we discounted past data. So first, we should choose a best discount factor for the model.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1     | Parameter Tuning on HYG  Here we did a grid search of discount factor from 0.2-0.9 and calculate the corresponding MSE for the prediction.  We can see that with different decay factors, MSE do not vary much. But the performance drops as we choose extremely fast decay rational control of 0.2. Since there is no material difference, we assume a factor of 0.7 in the following analysis.  model = ExponentialWeightedReg ("HYG") ks = [.2, .3, .4, .5, .6, .7, .8, .9] MSE = pd.DataFrame(index=ks, columns=["MSE"]) for k in ks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5]:   | <pre>model.train(['flow_lmin','dollar_flow_lmin','ewm_vol_3600s','size_imbalance_5min','nav_discount_bid'     pred = model.estimate     actual = model.data["2020-01-01":]['fwd_rtn_5min']     MSE.loc[k, "MSE"] = mean_squared_error(actual, pred)  MSE.sort_values(by="MSE", ascending = True)  MSE  0.9 0.000001  0.8 0.000001  0.6 0.000001</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | 0.5 0.000001  0.4 0.000001  0.3 0.000002  0.2 0.000002  Signal Transformation  After defining the models, we need to transform our estimate or prediction into signals. We define                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | $Position_t = \begin{cases} 1 & \text{go long if predicted return is higher than threshhold j} \\ -1 & \text{go short if predicted return is lower than threshhold -j} \\ 0 & \text{do not take position otherwise} \end{cases}$ $\textbf{Risk Control}$ We employ a quite simple risk control to each ETF intraday trading strategy} $\textbf{1. Stop loss at 2\% per day at a strategy level which will close positions and no more trading intraday}$ $\textbf{2. Maximum strategy drawdown limited to 5\%}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ,     | Strategy Backtesting with Different Thresholds (j)  Long only buy one share  We start from a simple strategy which is long only, ignoring transaction costs and buying one share for every buy signal to test the performance for different signal cutoff j.  Note Per share price of HYG is around \$86  PL_df = pd.DataFrame() model = ExponentialWeightedReg("HYG") model.train(['flow_lmin', 'dollar_flow_lmin', 'ewm_vol_3600s', 'size_imbalance_5min', 'nav_discount_bid'], 'f for threshold in [.000001*pow(10, i) for i in range(5)] + [0]: model.get signal(threshold)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ;     | pl,, = model.backtest()     PL_df["{:.1e}".format(threshold)] = pl.cumsum()     longOnly = PL_df['1.0e-05']  From the graph below, we see that for high cutoffs, there are only a few trades happening and not high pnl, but for really low cutoffs, strategy suffered from the noise resulting in high volatility.  PL_df.plot(figsize=(12,8))     plt.title("HYG Cumulative Return, Long Only Strategy, Different Thresholds");     plt.ylabel("profit (USD)");  HYG Cumulative Return, Long Only Strategy, Different Thresholds  - 10e-06 - 10e-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | 14 10e-04 10e-03 10e-02 10 0.0e+00 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | Out sample testing for choosing the best meta parameter  From the preliminary analysis of premium discount and price analysis, we know that ETF HYG and JNK are very similar in movement or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | <pre>model = ExponentialWeightedReg("JNK") model.train(['flow_lmin','dollar_flow_lmin','ewm_vol_3600s','size_imbalance_5min','nav_discount_bid'],'f for threshold in [0.0001,0.00001,0.000001]:     model.get_signal(threshold)     pl,,_ = model.backtest()     PL_df["{:.le}".format(threshold)] = pl.cumsum()  PL_df.plot(figsize=(12,8)) plt.title("JNK Cumulative Return outsample, Long Only Strategy, Different Thresholds");</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | JNK Cumulative Return outsample, Long Only Strategy, Different Thresholds  20 10e-06 1 |
|       | 5 - 2020 2 2020 2020 2020 2020 2020 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ]:[   | <pre>cong Only buy with all capital  model = ExponentialWeightedReg("HYG") model.train(['flow_lmin','dollar_flow_lmin','ewm_vol_3600s','size_imbalance_5min','nav_discount_bid'],'f model.get_signal(1e-5) pl,,_ = model.backtest(long_only=True, all_in_capital=True) longOnly = pl pl.plot(figsize=(12,8),label='Long Short Strategy') plt.title("HYG Cumulative Return, Long Only All capital Strategy, Threshold = 1e-5, captail = 1M"); plt.ylabel("profit (USD)");  HYG Cumulative Return, Long Only All capital Strategy, Threshold = 1e-5, captail = 1M</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | 1200000 - 1150000 - (05) 1100000 - (100000 - 1100000 - 11000000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 11000000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 11000000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 11000000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 11000000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 11000000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 11000000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 11000000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 11000000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 11000000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 11000000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 1100000 - 110000000 - 11000000 - 11000000 - 11000000 - 11000000 - 11000000 - 110000000 - 110000000 - 110000000 - 11000000 - 1100000000                                                                             |
|       | Long short with all capital                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <br>  | Next we try a long short strategy with buying or shorting with all capital(leverage ratio = 1). We use the best threshold found above w is 1e-5. Below we plot the cumulative PnL of long short strategy. What is more insteresting is that we compare it to the price of the ET It seemed that although our strategy suffered from an intial loss around end February and early March. When ETF price continue to fa March during the pandemic. The model seemed to have learned from the period and have positive PnL.  On the other hand, when ETF price started to rally in April. Our model is still using the information from March and did not recover from the shift until end of June.  model = ExponentialWeightedReg("HYG") model.train(['flow_lmin','dollar_flow_lmin','ewm_vol_3600s','size_imbalance_5min','nav_discount_bid'],'fmodel.get_signal(le-5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ]:    | <pre>pl,, = model.backtest(long_only=False, all_in_capital=True) longShort = pl ax=longShort.plot(figsize=(12,8),label='Long Short Strategy') plt.title("HYG Cumulative Return, Long Short Strategy, Threshold = le-5, capital=1M"); plt.ylabel("Total Capital (USD)");  ax2=ax.twinx() model.data['2020':]['PRICE'].plot(ax=ax2,C='R',label='ETF Price') ax.legend(loc=2, prop={'size': 12}) plt.legend(loc=1, prop={'size': 12})  </pre> <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       | 1250000 - 85<br>1200000 - 85<br>1150000 - 80<br>100000 - 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | 1050000 - 1000000 - 1000000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 10000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 1000000 - 10000000 - 10000000 - 1000000 - 1000000 - 1000000 - 10000000 - 1000000 - 1000000 - 1000000 - 10000000 - 10000000 - 10000000 - 10000000 - 10000000 - 10000000 - 10000000 - 10000000 - 10000000 - 10000000 - 10000000 - 10000000 - 100000000                                                                                                                                                                                                                                                                                                                                               |
| ]:    | <pre>df = pd.concat([longOnly, longShort], axis=1) df.rename(columns={"fwd_rtn_5min":"long only", 0:"long short"}, inplace=True) ax=df.plot(figsize=(12,8)); plt.title("Long Only vs Long Short, Threshold = le-5, Capital=1M") plt.ylabel("profit (USD)") plt.legend(loc=0, prop={'size': 12})  </pre> <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | 1150000 -<br>1050000 -<br>1050000 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1     | We compare the long-short with the long-only  For the best threshold of 1e-5, the long short strategy performs better than long only. However it also have a larger drawdown as mo recovers from the pandemic. Especially during March when everyone wants to short, it is highly likely that makes shorting unaccess. Therefore below in the sections, we only consider long only.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1     | Previously we assumed we can only buy or sell one share, but this is far from reality. We are able to trade multiple shares as long as we within the capacity of the market.  Here we limit <b>capacity</b> is defined as the best bid(if sell) or best ask(if buy) quantity of the most recent trade. We assume we can invest 10% of the capacity at any given time and can take on fractional shares. Performing this on the long only position strategy produces to following results.  model.get_signal(1e-5) pl,, = model.backtest(sizing_method='vwap_volume_0.1') longonly(apacity = pl_cumsum() +1e6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | <pre>longOnlyCapacity = pl.cumsum()+1e6 longOnlyCapacity.plot(figsize=(12,8)); plt.title("Capacity Considered 10% of Vwap Volume, Threshold = 1e-5"); plt.ylabel("profit (USD)");  +le6</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| \<br> | We can see that after trading in 10% capacity, it still have similar pnL withn the same scale as just invest one share.  df = pd.concat([longOnly, longOnlyCapacity], axis=1) df.rename(columns={"1.0e-05":"long only", 0:"long only capacity 10%"}, inplace=True) df.plot(figsize=(12,8)); plt.title("Long Only vs Long Only 10%Capaity, Threshold = 1e-5"); plt.ylabel("profit (USD)");  +1e6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 12 - (GSD) Jijou 6 - 4 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | Transaction Cost  For ETF trading, there are three kind of transaction costs:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -     | <ol> <li>crossing bid ask spread</li> <li>exchange commission(neglect)</li> <li>management fee: already deducted from iNAV.</li> </ol> Therefore, the primary cost we need to pay attention to is the bid ask spread. <ul> <li>transaction costs are assumed using the NBB and NBO</li> <li>long positions are assumed to be opened at the ask and closed at the bid.</li> <li>short position are assumed to be opened at the bid and closed at the ask.(long_rtn, short_rtn)</li> </ul> We can see that including transaction cost does hurt performance a lot. As showed below, transaction cost takes away half of the professional cost and cost are assumed to be professional cost and closed at the ask.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5]:   | <pre>k= .0005 #model.train(['flow_1min','dollar_flow_1min','ewm_vol_3600s','size_imbalance_5min','nav_discount_bid'],' model.get_signal(k) pl,,_ = model.backtest(sizing_method='Fixed', trading_cost=True) longOnly_2 = (pl.cumsum()+le6) df = pd.concat([longOnly_2, longOnly], axis=1) df.rename(columns={"1.0e-05":"long only no transaction costs", 0:"long only transaction costs"}, inplace df.plot(figsize=(12,8)); plt.title("Long Only with an without Transaction Costs"); plt.ylabel("profit (USD)");</pre> Long Only with an without Transaction Costs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | 12 - 10 - (GSD) tiloud 6 - 4 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1: [  | long only transaction costs long only no transaction costs long only no transaction costs date  Return distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | Overall our best strategy is long short excluding transaction cost  model.train(['flow_1min','dollar_flow_1min','ewm_vol_3600s','size_imbalance_5min','nav_discount_bid'],'f model.get_signal(1e-5) pl, tradeNum, trades, posSig = model.backtest(long_only=False, all_in_capital=True) (pl).plot(figsize=(12,8)); plt.title("Long Short, k=.7, threshold=1e-5, capital=1M"); plt.ylabel("Total Capital (USD)");  Long Short, k=.7, threshold=1e-5, capital=1M  1300000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | 1250000 - 1200000 - 1150000 - 1050000 - 1050000 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ]:    | Below are the return metrics of the strategy. HYG long short strategy has sharpe ratio of 1.36. With max drawdown of 0.1.  name = "HYG" pl.name = name trades=pl.pct_change() trades.name = name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -     | trades name = name trades = trades.to_frame() display(perfMetrics(trades, annualization=6.5*60/5*252)) display(tailMetrics(trades))    Sharpe   Vol   Min   Lower Quartile   Median   Mean   Upper Quartile   Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| :     | pl.name = "HYG" plotCumPL("HYG", pl.diff(), pl.pct_change()) getReturnStatsGraphs("HYG", pl, pl.pct_change().to_frame(), posSig)  HYG Total Cumulative P/L  250000 - 200000 - 150000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - 50000 - |
|       | 0 2020-01 2020-03 2020-05 2020-07 2020-09 2020-11 2021-01 date  HYG Return per Trade  0.06 μ=0.0011 median = nan σ=0.1112  0.02 μ=0.001 σ=0.1112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | -0.040.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| !     | Model Performance On Each ETF Individually  Here we look at the performance of each ETF long only on a standalone basis. We can see that the strategy with the highest Sharpe ra SRLN. The strategy with the lowest drawdown is HYG.  All strategies have more than 1 sharpe ratio some close  etfs = ["BKLN", "HYG", "HYGH", "JNK", "PFF", "PGX", "SPHY", "SRLN"] etfModelInfo = getEtfModelInfo(etfs, 100) # returns a dict  return_table=pd.DataFrame()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | return_table=pd.DataFrame() pnl_table=pd.DataFrame() for name, etfData in etfModelInfo.items():     pl, tradeNum, trades, posSig = etfData     trades.name = name     trades = trades.to_frame()     return_table=return_table.append(perfMetrics(trades, annualization=6.5*60/5*252))     pnl_table=pnl_table.append(tailMetrics(trades))  HYGH AND SRLN have the highest sharpe ratio  return_table  Sharpe Vol Min Lower Quartile Median Mean Upper Quartile Max  BKLN 1.339026 0.208856 -0.055025 -0.000230 0.0 0.279664 0.000229 0.040385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ].    | BKLN         1.339026         0.208856         -0.055025         -0.000230         0.0         0.279664         0.000229         0.040385           HYG         0.959402         0.157857         -0.059153         -0.000232         0.0         0.151449         0.000234         0.058709           HYGH         4.732068         0.201305         -0.007903         0.000000         0.0         0.952591         0.000000         0.050144           JNK         1.318730         0.137080         -0.034324         -0.000195         0.0         0.180771         0.000202         0.032100           PFF         1.447666         0.238075         -0.084548         -0.000262         0.0         0.344653         0.000265         0.084793           PGX         1.573833         0.266957         -0.089172         -0.000334         0.0         0.420145         0.00034         0.099401           SPHY         2.442244         0.330594         -0.030854         -0.000226         0.0         0.594267         0.000227         0.034664           pnl_table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | Max Drawdown         Peak         Bottom         Recover         Skew         Kurtosis         VaR (.05)         CVaR (.05)           BKLN         -0.108337         2020-04-07 10:00:00         2020-12-31 09:40:00         NaT         2.918170         345.881314         -0.000961         -0.002513           HYG         -0.078816         2020-04-02 10:35:00         2020-04-09 14:00:00         NaT         -1.577152         928.423759         -0.001010         -0.002064           HYGH         -0.128880         2020-03-30 14:05:00         2020-04-23 14:10:00         2020-08-14 12:00:00         18.452622         623.733765         -0.000954         -0.002371           JNK         -0.086614         2020-04-09 09:55:00         2020-09-24 09:35:00         NaT         3.313559         236.150070         -0.001004         -0.002004           PFF         -0.191663         2020-03-16 10:45:00         2020-03-18 13:30:00         2020-03-30 12:50:00         3.147320         734.886145         -0.001121         -0.002911           PGX         -0.169414         2020-05-26 15:20:00         2020-12-29 12:30:00         NaT         4.811287         783.041318         -0.001232         -0.003051           SPHY         -0.249394         2020-03-27 14:55:00         2020-12-22 12:55:00         NaT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ]: [  | SRLN  -0.159958  2020-04-09 10:10:00  2020-12-29 13:00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       | Below we plotted the cumulative PnL, return per trade for each ETF, position holdings over the entire period and the box plot of pnl p month. All ETFs have positive PnL.  for name, etfData in etfModelInfo.items():     pl, tradeNum, trades, posSig = etfData     pl.name = name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



Conclusion

We think is an vey interesting idea that we can combine high frequency supply and demand to the ETF premium discount. As we all know excess demand for ETF will drive up premium, it is an interesting perspective to link the phonomon to micromarket structure. From our analysis, our assumption that flow volatility, illiquidity, viz. embalance are related to ETF return are all proved correct as we perform backtesting on all ETFs and yield positive poll with sharpe ratio and relatively low drawdown ratios. The strategy works both under long-short and long-only.

We do need to be custions of the transaction costs that may be imposed during illiqued limes; The results in section shows that including transaction cost significantly hurs strategy performance.