Graph Contrastive Learning Automated

Yuning You¹, Tianlong Chen², Yang Shen¹, Zhangyang Wang²

¹Texas A&M University, ²University of Texas at Austin

The Learning on Graphs and Geometry Reading Group (LoGaG) Presentation August 17, 2021

Data-structure of graphs

Graph networks

> Self-supervised learning: Warming-up models with unlabeled data

- > Self-supervision on graphs
 - Predictive task

E.g. Graph completion, ICML'20 AutoSSL, arXiv'21

- Contrastive learning
 - GraphCL, NeurIPS'20
 - Augmentations + perturbation invariance

Self-Supervised Learning of Graph Neural Networks: A Unified Review

Yaochen Xie, Zhao Xu, Jingtun Zhang, Zhengyang Wang, Shuiwang Ji, Senior Member, IEEE

> Augmentation is crucial in GraphCL

Data augmentation	Type	Underlying Prior
Node dropping	Nodes, edges	Vertex missing does not alter semantics.
Edge perturbation	Edges	Semantic robustness against connectivity variations.
Attribute masking	Nodes	Semantic robustness against losing partial attributes.
Subgraph	Nodes, edges	Local structure can hint the full semantics.

> Reason: challenge of heterogeneous nature of graph data

Fig 2. Polymers

Fig 3. Power grids

Data heterogeneity

> Ad-hoc choices of augmentations in GraphCL

	Data augmentation	Type	Underlying Prior					
	Node dropping Nodes, edges		Vertex missing does not alter semantics.					
1	Edge perturbation	Edges	Semantic robustness against connectivity variations.					
1	Attribute masking	Nodes	Semantic robustness against losing partial attributes.					
Ĭ.	Subgraph	Nodes, edges	Local structure can hint the full semantics.					

> Rules derived from tedious tuning

			NCI1					PF	ROTEIN	IS				(COLLAE	3					RDT-B				ligh
Identical	0.42	1.25	-2.42	-0.17	-1.44		2.47	2.27	1.01	1.07	-0.74		4.85	6.17	3.10	5.12	-2.64		1.66	1.39	0.85	0.17	-0.26		igii
AttrMask	0.03	1.20	-0.62	-1.05	-1.14		2.43	1.89	0.85	1.15	1.51		6.02	6.54	4.05	5.26	4.61		1.37	1.53	0.47	-0.36	0.25		
EdgePert	-1.26	1.95	-3.07	-1.18	-2.44		1.28	2.97	0.71	1.37	0.96		6.62	6.43	0.61	5.28	3.53		1.74	1.52	0.97	0.34	0.71		
Subgraph	1.63	1.17	2.10	1.90	1.62		2.54	2.30	2.20	2.67	3.15		6.16	6.56	7.11	7.03	6.27		1.13	1.50	1.25	1.06	1.39		
NodeDrop	0.85	1.57	-0.86	-0.59	-0.17		2.00	2.27	1.62	1.31	1.30		6.49	6.10	5.71	4.37	5.64		1.85	1.45	1.66	1.53	1.31	L.,	
406	seDrop Sub	diable Eq.	gePerk Att	SMask Ide	intical	Mode	EDrop Subf	alaby Equ	ePerk Att	Mast	ntical	Mog.	eDrop Sub	graph Edi	gePerk Att	Mask	ntical	Hode	EDrop Sub	alaby Equ	gePerk Att	Mast	ntical	-10	ow

Question: Can we be more principled and automated?

Contributions

➤ Given a new and unseen graph dataset, can GraphCL automatically select augmentations, avoiding ad-hoc choices or tedious tuning?

- > Joint augmentation optimization (JOAO)
 - * A principled bi-level optimization framework
 - * Automatic, free of human labor of trial-and-error
 - * Adaptive, generalizing smoothly to handling diverse graph data
 - Dynamic, allowing for augmentation types varying at different steps

Method. JOAO

TEXAS
The University of Texas at Austin

- > GraphCL
 - Enforcing perturbation invariance

$$\begin{split} & \min_{\theta} \, \mathcal{L}(\mathsf{G}, \mathsf{A}_{1}, \mathsf{A}_{2}, \theta) \\ &= \min_{\theta} \, \Big\{ (-\mathbb{E}_{\mathbb{P}_{\mathsf{G}} \times \mathbb{P}_{(\mathsf{A}_{1}, \mathsf{A}_{2})}} \mathrm{sim}(\overleftarrow{\mathsf{T}_{\theta, 1}(\mathsf{G})}, \mathsf{T}_{\theta, 2}(\mathsf{G})) \\ &+ \mathbb{E}_{\mathbb{P}_{\mathsf{G}} \times \mathbb{P}_{\mathsf{A}_{1}}} \mathrm{log}(\mathbb{E}_{\mathbb{P}_{\mathsf{G}'} \times \mathbb{P}_{\mathsf{A}_{2}}} \mathrm{exp}(\mathrm{sim}(\underbrace{\mathsf{T}_{\theta, 1}(\mathsf{G})}, \mathsf{T}_{\theta, 2}(\mathsf{G}')))) \Big\}, \end{split}$$

➤ The unified framework, joint augmentation optimization (JOAO) as a bi-level optimization

$$\begin{aligned} & \min_{\theta} \ \mathcal{L}(\mathsf{G}, \mathsf{A}_1, \mathsf{A}_2, \theta), \\ & \text{s.t.} \ \boxed{\mathbb{P}_{(\mathsf{A}_1, \mathsf{A}_2)}} \in & \arg\min_{\mathbb{P}_{(\mathsf{A}_1', \mathsf{A}_2')}} \mathcal{D}(\mathsf{G}, \mathsf{A}_1', \mathsf{A}_2', \theta), \end{aligned} \tag{2}$$

Method. Instantiation of JOAO

> A min-max optimization instantiation

$$\min_{\theta} \quad \mathcal{L}(\mathsf{G}, \mathsf{A}_{1}, \mathsf{A}_{2}, \theta),$$
s.t.
$$\mathbb{P}_{(\mathsf{A}_{1}, \mathsf{A}_{2})} \in \arg\max_{\mathbb{P}_{(\mathsf{A}'_{1}, \mathsf{A}'_{2})}} \left\{ \mathcal{L}(\mathsf{G}, \mathsf{A}'_{1}, \mathsf{A}'_{2}, \theta) \right\}$$

$$-\frac{\gamma}{2} \operatorname{dist}(\mathbb{P}_{(\mathsf{A}'_{1}, \mathsf{A}'_{2})}, \mathbb{P}_{\operatorname{prior}}) ,$$
(3)

> Principles

MBRDL, arXiv'i20

- Exploiting challenging augmentations: model-based adversarial training
- * Regularization with prior
 - Uniform distribution avoiding collapse
 - Squared Euclidean distance
 Ref 5. Wang et al., arXiv'19
- \clubsuit Trade-off by γ

$$\operatorname{dist}(\mathbb{P}_{(\mathsf{A}_1,\mathsf{A}_2)},\mathbb{P}_{\operatorname{prior}}) = \sum_{i=1}^{|\mathcal{A}|} \sum_{j=1}^{|\mathcal{A}|} (p_{ij} - \frac{1}{|\mathcal{A}|^2})^2,$$
$$p_{ij} = \operatorname{Prob}(\mathsf{A}_1 = A^i, \mathsf{A}_2 = A^j)$$

- > Alternating gradient descent (AGD) Wang et al., arXiv'19
 - Upper-level minimization
 - Lower-lever maximization

$$\begin{aligned} \min_{\theta} \quad \mathcal{L}(\mathsf{G},\mathsf{A}_{1},\mathsf{A}_{2},\theta), \\ \text{s.t.} \quad & \mathbb{P}_{(\mathsf{A}_{1},\mathsf{A}_{2})} \in \arg\max_{\mathbb{P}_{(\mathsf{A}_{1}',\mathsf{A}_{2}')}} \Big\{ \mathcal{L}(\mathsf{G},\mathsf{A}_{1}',\mathsf{A}_{2}',\theta) \\ & \qquad \qquad - \frac{\gamma}{2} \operatorname{dist}(\mathbb{P}_{(\mathsf{A}_{1}',\mathsf{A}_{2}')},\mathbb{P}_{\operatorname{prior}}) \Big\}, \end{aligned} \tag{3}$$

- Upper-level minimization
 - GraphCL optimization given sampling distribution

$$\theta^{(n)} = \theta^{(n-1)} - \alpha' \nabla_{\theta} \mathcal{L}(\mathsf{G}, \mathsf{A}_1, \mathsf{A}_2, \theta), \tag{4}$$

where $\alpha' \in \mathcal{R}_{>0}$ is the learning rate.

- Lower-level maximization
 - Gradient is not intuitive
 - Analytical rewrite

$$\mathcal{L}(\mathsf{G}, \mathsf{A}_{1}, \mathsf{A}_{2}, \theta) = \sum_{i=1}^{|\mathcal{A}|} \sum_{j=1}^{|\mathcal{A}|} \underbrace{p_{ij}}^{\text{Targeted}} \left\{ -\mathbb{E}_{\mathbb{P}_{\mathsf{G}}} \mathrm{sim}(T_{\theta}^{i}(\mathsf{G}), T_{\theta}^{j}(\mathsf{G})) + \mathbb{E}_{\mathbb{P}_{\mathsf{G}}} \log(\sum_{j'=1}^{|\mathcal{A}|} \underbrace{p_{j'}}_{\text{Undesired}} \mathbb{E}_{\mathbb{P}_{\mathsf{G}'}} \exp(\mathrm{sim}(T_{\theta}^{i}(\mathsf{G}), T_{\theta}^{j'}(\mathsf{G}')))) \right\},$$
(5)

$$\begin{split} \min_{\theta} \quad & \mathcal{L}(\mathsf{G},\mathsf{A}_1,\mathsf{A}_2,\theta), \\ \text{s.t.} \quad & \mathbb{P}_{(\mathsf{A}_1,\mathsf{A}_2)} \in \arg\max_{\mathbb{P}_{(\mathsf{A}_1',\mathsf{A}_2')}} \Big\{ \mathcal{L}(\mathsf{G},\mathsf{A}_1',\mathsf{A}_2',\theta) \\ & \qquad \qquad - \frac{\gamma}{2} \operatorname{dist}(\mathbb{P}_{(\mathsf{A}_1',\mathsf{A}_2')},\mathbb{P}_{\operatorname{prior}}) \Big\}, \end{split} \tag{3}$$

Undesired marginal probability $p_{j'}$ entangled in negative term

A lower-bound approximation to decouple $p_{j'}$

$$\begin{split} &\mathbb{E}_{\mathbb{P}_{\mathsf{G}} \times \mathbb{P}_{\mathsf{A}_{1}}} \log(\mathbb{E}_{\mathbb{P}_{\mathsf{G}'} \times \mathbb{P}_{\mathsf{A}_{2}}} \exp(\sin(\mathsf{T}_{\theta,1}(\mathsf{G}),\mathsf{T}_{\theta,2}(\mathsf{G}')))) \\ & \geq \mathbb{E}_{\mathbb{P}_{\mathsf{G}} \times \mathbb{P}_{\mathsf{A}_{1}} \times \mathbb{P}_{\mathsf{A}_{2}}} \log(\mathbb{E}_{\mathbb{P}_{\mathsf{G}'}} \exp(\sin(\mathsf{T}_{\theta,1}(\mathsf{G}),\mathsf{T}_{\theta,2}(\mathsf{G}')))) \\ & \approx \mathbb{E}_{\mathbb{P}_{\mathsf{G}} \times \mathbb{P}_{(\mathsf{A}_{1},\mathsf{A}_{1})}} \log(\mathbb{E}_{\mathbb{P}_{\mathsf{G}'}} \exp(\sin(\mathsf{T}_{\theta,1}(\mathsf{G}),\mathsf{T}_{\theta,2}(\mathsf{G}')))), \end{split} \tag{6}$$

$$\begin{split} \min_{\theta} \quad \mathcal{L}(\mathsf{G},\mathsf{A}_{1},\mathsf{A}_{2},\theta), \\ \text{s.t.} \quad \mathbb{P}_{(\mathsf{A}_{1},\mathsf{A}_{2})} \in \arg\max_{\mathbb{P}_{(\mathsf{A}_{1}',\mathsf{A}_{2}')}} \Big\{ \mathcal{L}(\mathsf{G},\mathsf{A}_{1}',\mathsf{A}_{2}',\theta) \\ &\quad - \frac{\gamma}{2} \operatorname{dist}(\mathbb{P}_{(\mathsf{A}_{1}',\mathsf{A}_{2}')},\mathbb{P}_{\operatorname{prior}}) \Big\}, \end{split} \tag{3}$$

Approximated contrastive loss:

$$\mathcal{L}(\mathsf{G}, \mathsf{A}_{1}, \mathsf{A}_{2}, \theta) \approx \sum_{i=1}^{|\mathcal{A}|} \sum_{j=1}^{|\mathcal{A}|} \underbrace{p_{ij}}^{\text{Targeted}} \ell(\mathsf{G}, A^{i}, A^{j}, \theta)$$

$$= \sum_{i=1}^{|\mathcal{A}|} \sum_{j=1}^{|\mathcal{A}|} p_{ij} \Big\{ - \mathbb{E}_{\mathbb{P}_{\mathsf{G}}} \mathrm{sim}(T_{\theta}^{i}(\mathsf{G}), T_{\theta}^{j}(\mathsf{G}))$$

$$+ \mathbb{E}_{\mathbb{P}_{\mathsf{G}}} \log(\mathbb{E}_{\mathbb{P}_{\mathsf{G}'}} \exp(\mathrm{sim}(T_{\theta}^{i}(\mathsf{G}), T_{\theta}^{j}(\mathsf{G}')))) \Big\}. \tag{7}$$

Rewrote lower-level optimization

$$\mathbb{P}_{(\mathsf{A}_{1},\mathsf{A}_{2})} \in \arg\max_{\boldsymbol{p}\in\mathcal{P},\boldsymbol{p}=[p_{ij}],i,j=1,...,|\mathcal{A}|} \{\psi(\boldsymbol{p})\},$$

$$\psi(\boldsymbol{p}) = \sum_{i=1}^{|\mathcal{A}|} \sum_{j=1}^{|\mathcal{A}|} p_{ij} \ell(\mathsf{G}, A^{i}, A^{j}, \theta) - \frac{\gamma}{2} \sum_{i=1}^{|\mathcal{A}|} \sum_{j=1}^{|\mathcal{A}|} (p_{ij} - \frac{1}{|\mathcal{A}|^{2}})^{2},$$
(8)

$$\begin{aligned} \min_{\theta} \quad \mathcal{L}(\mathsf{G}, \mathsf{A}_{1}, \mathsf{A}_{2}, \theta), \\ \text{s.t.} \quad \mathbb{P}_{(\mathsf{A}_{1}, \mathsf{A}_{2})} \in \arg \max_{\mathbb{P}_{(\mathsf{A}_{1}', \mathsf{A}_{2}')}} \Big\{ \mathcal{L}(\mathsf{G}, \mathsf{A}_{1}', \mathsf{A}_{2}', \theta) \\ &\quad - \frac{\gamma}{2} \operatorname{dist}(\mathbb{P}_{(\mathsf{A}_{1}', \mathsf{A}_{2}')}, \mathbb{P}_{\operatorname{prior}}) \Big\}, \end{aligned} \tag{3}$$

Projected gradient descent Boyd et al., 2004

$$b = p^{(n-1)} + \alpha'' \nabla_p \psi(p^{(n-1)}), p^{(n)} = (b - \mu \mathbf{1})_+, (9)$$

where $\alpha'' \in \mathcal{R}_{>0}$ is the learning rate, μ is the root of the equation $\mathbf{1}^{\mathsf{T}}(\boldsymbol{b} - \mu \mathbf{1}) = 1$, and $(\cdot)_+$ is the element-wise non-negative operator. μ can be efficiently found via the bi-jection method.

Empirical convergence

Method. JOAO Sanity Check

> Are JOAO selected augmentation reasonable?

Selections align with "best practices"

Method. JOAOv2 Addressing Distortion

- > JOAO selects automatic, adaptive and dynamic augmentations
- > However, more diverse, aggressive and challenging
- ➤ Potentially distorting training distribution SLA+AG, ICML'20 DistAug, ICML'20

Datasets	A.S.	JOAO	JOAOv2
NCI1	0.2	61.77±1.61	62.52 ± 1.16
NCII	0.25	60.95 ± 0.55	61.67 ± 0.72
PROTEINS	0.2	71.45±0.89	71.66±1.10
FROTEINS	0.25	71.61 ± 1.65	73.01 ± 1.02

> JOAOv2 = JOAO + augmentation-aware multi-projection heads

$$\min_{\theta} \quad \mathcal{L}_{v2}(\mathsf{G}, \mathsf{A}_{1}, \mathsf{A}_{2}, \theta', \Theta_{1}'', \Theta_{2}''),$$
s.t.
$$\mathbb{P}_{(\mathsf{A}_{1}, \mathsf{A}_{2})} \in \arg\max_{\mathbb{P}_{(\mathsf{A}_{1}', \mathsf{A}_{2}')}} \left\{ \mathcal{L}_{v2}(\mathsf{G}, \mathsf{A}_{1}, \mathsf{A}_{2}, \theta', \Theta_{1}'', \Theta_{2}'') - \frac{\gamma}{2} \operatorname{dist}(\mathbb{P}_{(\mathsf{A}_{1}', \mathsf{A}_{2}')}, \mathbb{P}_{\operatorname{prior}}) \right\},$$

$$\mathbb{P}_{(g_{\Theta_{1}''}, g_{\Theta_{2}''})} = \mathbb{P}_{(\mathsf{A}_{1}, \mathsf{A}_{2})}. \tag{10}$$

Experiments & Discussions

- Settings
 - Semi-supervised
 - Unsupervised
 - Transfer

- Datasets
 - Across diverse fields
 - On bioinformatics domains

- Competitors
 - Heuristic designed pretexts
 - GraphCL with rules

Summary of JOAO performance

	v.s. GraphCL	v.s. Heuristic methods
Across diverse fields	Comparable	Better
On specific domains	Better	Worse

Experiments & Discussions. Across Diverse Datasets

JOAO performs on par with ad-hoc rules

Augmentation-aware projection heads strengths JOAO

Semi-supervised learning

L.R.	Methods	NCI1	PROTEINS	DD	COLLAB	RDT-B	RDT-M5K	GITHUB	A.R.↓
1%	No pre-train.	60.72±0.45	-	-	57.46±0.25	-	-	54.25±0.22	7.6
	Augmentations	60.49±0.46	-	-	58.40±0.97	-	-	56.36 ± 0.42	6.6
	GAE	61.63±0.84			$63.\overline{20}\pm0.67$			59.44 ± 0.44	4.0
	Infomax	62.72 ±0.65	-	-	61.70±0.77	-	-	58.99 ± 0.50	3.3
	ContextPred	61.21±0.77			57.60±2.07			56.20 ± 0.49	6.6
	GraphCL	62.55 ±0.86		-	64.57 ±1.15	-	<u>-</u>	58.56 ± 0.59	2.6
[]	JOAO	61.97±0.72	-		63.71 ±0.84		-	60.35 ± 0.24	3.0
	JOAOv2	62.52 ±1.16	-		64.51 ±2.21	-	-	61.05 ±0.31	2.0
10%	No pre-train.	73.72 ± 0.24	70.40 ± 1.54	73.56 ± 0.41	73.71±0.27	86.63±0.27	51.33±0.44	60.87±0.17	7.0
	Augmentations	73.59 ± 0.32	70.29 ± 0.64	74.30 ± 0.81	74.19 ± 0.13	87.74 ± 0.39	52.01 ± 0.20	60.91 ± 0.32	6.2
	GĀĒ	74.36±0.24	$70.\overline{5}1\pm0.\overline{17}$	74.54 ± 0.68	75.09 ± 0.19	87.69 ± 0.40	53.58 ±0.13	$6\bar{3}.89\pm0.52$	4.5
	Infomax	74.86 ±0.26	72.27 ± 0.40	75.78 ± 0.34	73.76±0.29	88.66 ± 0.95	53.61 ± 0.31	65.21 ± 0.88	3.0
	ContextPred	73.00 ± 0.30	70.23 ± 0.63	74.66 ± 0.51	73.69 ± 0.37	84.76 ± 0.52	51.23 ± 0.84	62.35 ± 0.73	7.2
	GraphCL	74.63 ±0.25	74.17 ± 0.34	76.17 ± 1.37	74.23 ± 0.21	89.11 ±0.19	52.55 ± 0.45	65.81 ± 0.79	2.4
	JOAO	74.48 ± 0.27	$7\overline{2}.\overline{13}\pm\overline{0}.\overline{92}$	75.69 ±0.67	75.30 ± 0.32	88.14±0.25	52.83 ± 0.54	65.00 ± 0.30	3.5
	JOAOv2	74.86 ±0.39	73.31 ± 0.48	75.81 ± 0.73	75.53 ±0.18	88.79 ± 0.65	52.71 ± 0.28	66.66 ±0.60	1.8

Unsupervised learning

Methods	NCI1	PROTEINS	DD	MUTAG	COLLAB	RDT-B	RDT-M5K	IMDB-B	A.R.↓
GL	-	-	-	81.66±2.11	-	77.34 ± 0.18	41.01 ± 0.17	65.87 ± 0.98	7.4
WL	80.01 ±0.50	72.92 ± 0.56	-	80.72 ± 3.00	-	68.82 ± 0.41	46.06 ± 0.21	72.30 ± 3.44	5.7
DGK	80.31 ±0.46	73.30 ± 0.82	-	87.44 ± 2.72	-	78.04 ± 0.39	41.27 ± 0.18	66.96 ± 0.56	4.9
node2vec	54.89±1.61	57.49±3.57	-	72.63 ± 10.20	-	-	-	-	8.6
sub2vec	52.84 ± 1.47	53.03 ± 5.55	-	61.05 ± 15.80	-	71.48 ± 0.41	36.68 ± 0.42	55.26 ± 1.54	9.5
graph2vec	73.22 ± 1.81	73.30 ± 2.05	-	83.15 ± 9.25	-	75.78 ± 1.03	47.86 ± 0.26	71.10 ± 0.54	5.7
MVGRL	-	-	-	75.40 ± 7.80	-	82.00 ± 1.10	-	63.60 ± 4.20	7.2
InfoGraph	76.20 ± 1.06	74.44 ±0.31	72.85 ± 1.78	89.01 ±1.13	70.65±1.13	82.50 ± 1.42	53.46 ± 1.03	73.03 ±0.87	3.0
GraphCL	77.87 ± 0.41	74.39 ± 0.45	78.62 ±0.40	86.80 ± 1.34	71.36±1.15	89.53 ±0.84	55.99±0.28	71.14 ±0.44	2.6
JOAO	78.07 ±0.47	74.55 ±0.41	77.32 ±0.54	87.35 ±1.02	69.50 ±0.36	85.29 ±1.35	55.74 ±0.63	70.21±3.08	3.3
JOAOv2	78.36 ± 0.53	74.07 ± 1.10	77.40 ±1.15	87.67 ±0.79	69.33±0.34	86.42±1.45	56.03 ±0.27	70.83 ± 0.25	2.8

Experiments & Discussions. Across Diverse Datasets

Semi-supervised learning

L.R.	Methods	NCI1	PROTEINS	DD	COLLAB	RDT-B	RDT-M5K	GITHUB	A.R.↓
1%	No pre-train.	60.72±0.45	-	-	57.46±0.25	-	-	54.25 ± 0.22	7.6
	Augmentations	60.49±0.46	-	-	58.40±0.97	-	-	56.36 ± 0.42	6.6
	GAE	61.63 ± 0.84	-	-	63.20±0.67	-	-	59.44 ± 0.44	4.0
1	Infomax	62.72 ±0.65	-	-	61.70±0.77	-	-	58.99 ± 0.50	3.3
L	ContextPred	61.21 ± 0.77			57.60±2.07			56.20 ± 0.49	6.6
	GraphCL	62.55 ± 0.86	-		64.57 ±1.15		-	58.56 ± 0.59	2.6
	JOAO	61.97 ± 0.72			63.71 ±0.84	-	-	60.35 ± 0.24	3.0
	JOAOv2	62.52 ±1.16	-	-	64.51 ±2.21	-	-	61.05 ± 0.31	2.0
10%	No pre-train.	73.72 ± 0.24	70.40 ± 1.54	73.56 ± 0.41	73.71 ± 0.27	86.63 ± 0.27	51.33 ± 0.44	60.87 ± 0.17	7.0
_	Augmentations	73.59 ± 0.32	70.29 ± 0.64	74.30 ± 0.81	74.19 ± 0.13	87.74 ± 0.39	52.01 ± 0.20	60.91 ± 0.32	6.2
	GAE	74.36 ± 0.24	70.51 ± 0.17	74.54 ± 0.68	75.09±0.19	87.69 ± 0.40	53.58 ± 0.13	63.89 ± 0.52	4.5
1	Infomax	74.86 ±0.26	72.27 ± 0.40	75.78 ± 0.34	73.76±0.29	88.66 ± 0.95	53.61 ± 0.31	65.21 ± 0.88	3.0
L.	ContextPred	73.00 ± 0.30	70.23 ± 0.63	74.66 ± 0.51	73.69 ± 0.37	84.76 ± 0.52	51.23 ± 0.84	62.35 ± 0.73	7.2
	GraphCL	74.63 ± 0.25	74.17 ± 0.34	76.17 ± 1.37	74.23 ± 0.21	89.11 ±0.19	52.55 ± 0.45	65.81 ± 0.79	2.4
	JOAO	74.48 ± 0.27	$72.\overline{13}\pm 0.92$	75.69 ±0.67	75.30 ± 0.32	88.14 ± 0.25	52.83 ± 0.54	65.00 ± 0.30	3.5
	JOAOv2	74.86 ±0.39	73.31 ± 0.48	75.81 ±0.73	75.53 ±0.18	88.79±0.65	52.71 ± 0.28	66.66 ±0.60	1.8

Unsupervised learning

Methods	NCI1	PROTEINS	DD	MUTAG	COLLAB	RDT-B	RDT-M5K	IMDB-B	A.R.↓
GL	-	-	-	81.66±2.11	-	77.34 ± 0.18	41.01 ± 0.17	65.87 ± 0.98	7.4
WL	80.01 ±0.50	72.92 ± 0.56	-	80.72 ± 3.00	-	68.82 ± 0.41	46.06 ± 0.21	72.30 ± 3.44	5.7
DGK	80.31 ±0.46	73.30 ± 0.82	-	87.44 ± 2.72	-	78.04 ± 0.39	41.27 ± 0.18	66.96 ± 0.56	4.9
node2vec	54.89±1.61	57.49±3.57	-	72.63 ± 10.20	-			-	8.6
sub2vec	52.84±1.47	53.03 ± 5.55	-	61.05 ± 15.80	-	71.48 ± 0.41	36.68 ± 0.42	55.26 ± 1.54	9.5
graph2vec	73.22±1.81	73.30 ± 2.05	-	83.15 ± 9.25	-	75.78 ± 1.03	47.86 ± 0.26	71.10 ± 0.54	5.7
MVGRL	-	-	-	75.40 ± 7.80	-	82.00 ± 1.10	-	63.60 ± 4.20	7.2
InfoGraph_	76.20±1.06	74.44 ±0.31	72.85 ± 1.78	89.01±1.13	70.65±1.13	82.50 ± 1.42	53.46 ± 1.03	73.03 ±0.87	3.0
GraphCL	77.87 ± 0.41	74.39 ±0.45	78.62 ±0.40	86.80 ± 1.34	71.36 ±1.15	89.53 ±0.84	55.99 ±0.28	71.14 ±0.44	2.6
JOAO	78.07 ±0.47	74.55 ±0.41	77.32 ±0.54	87.35 ±1.02	69.50 ±0.36	85.29 ±1.35	55.74 ±0.63	70.21 ± 3.08	3.3
JOAOv2	78.36±0.53	74.07 ± 1.10	77.40 ±1.15	87.67 ±0.79	69.33±0.34	86.42 ±1.45	56.03 ±0.27	$70.83 {\pm} 0.25$	2.8

JOAOv2 generally outperforms heuristic self-supervised pretext tasks

Experiments & Discussions. On Bioinformatics Datasets

- ➤ JOAOv2 underperforms heuristic self-supervised pretext tasks, without incorporating domain expertise
- ➤ JOAOv2 generalizes better than GraphCL on unseen / domain specific datasets

Transfer learning

Methods	BBBP	Tox21	ToxCast	SIDER	ClinTox	MUV	HIV	BACE	PPI	A.R.↓
No pre-train.	65.8±4.5	74.0 ± 0.8	63.4±0.6	57.3±1.6	58.0±4.4	71.8 ± 2.5	75.3±1.9	70.1 ± 5.4	64.8±1.0	6.6
Infomax	68.8 ± 0.8	75.3 ± 0.5	62.7 ± 0.4	58.4 ± 0.8	69.9±3.0	75.3±2.5	76.0 ± 0.7	75.9 ± 1.6	64.1±1.5	5.3
EdgePred	67.3 ± 2.4	76.0 ± 0.6	64.1 ± 0.6	60.4 ± 0.7	64.1 ± 3.7	74.1 ± 2.1	76.3 ± 1.0	79.9 ±0.9	65.7 ±1.3	3.8
AttrMasking	64.3 ± 2.8	76.7 ± 0.4	64.2 ± 0.5	61.0 ± 0.7	71.8 ± 4.1	74.7 ± 1.4	77.2 ± 1.1	79.3 ±1.6	65.2 ±1.6	3.1
ContextPred	68.0 ± 2.0	75.7 ± 0.7	63.9 ± 0.6	60.9 ± 0.6	65.9 ± 3.8	75.8 \pm 1.7	77.3 ± 1.0	79.6 ±1.2	64.4±1.3	3.4
GraphCL	69.68 ±0.67	73.87 ± 0.66	62.40 ± 0.57	60.53 ± 0.88	75.99 ±2.65	69.80 ± 2.66	78.47 ± 1.22	75.38 ± 1.44	67.88 ±0.85	4.6
JOAO	70.22 ±0.98	74.98 ± 0.29	62.94 ± 0.48	59.97±0.79	81.32±2.49	71.66 ± 1.43	76.73 ± 1.23	77.34 ± 0.48	64.43±1.38	4.5
JOAOv2	71.39 ±0.92	74.27 ± 0.62	63.16 ± 0.45	60.49 ± 0.74	80.97 ±1.64	73.67 ± 1.00	77.51 ±1.17	75.49 ± 1.27	63.94±1.59	4.3

Experiments & Discussions. On Large-Scale Datasets

JOAOv2 achieves a better generalizability and scalability, outperforms on large-scale datasets

Semi-supervised learning on large-scale datasets

L.R.	Methods	ogbg-ppa	ogbg-code
1%	No pre-train.	16.04 ± 0.74	6.06 ± 0.01
	GraphCL	40.81±1.33	7.66 ± 0.25
	JŌĀŌ -	47.19 ±1.30	6.84±0.31
	JOAOv2	44.30 ±1.67	7.74 ± 0.24
10%	No pre-train.	56.01±1.05	17.85 ± 0.60
	GraphCL	57.77±1.25	22.45 ± 0.17
	JŌĀŌ -	60.91 ±0.83	$\bar{2}2.06\pm0.30$
	JOAOv2	59.32 ±1.11	22.65 ± 0.22

Conclusions

> Problem: Handling heterogenous graph data with less manual efforts

- > Contributions:
 - ❖ JOAO, a unified automatic framework
 - An instantiation as min-max optimization, with AGD for solution
 - JOAOv2, addressing distortion with multi-projection heads
 - Thorough experiments verifying the rationale and performance advantage

Further Discussions

> Limitation:

Automating augmentation selection, while requiring human to construct & config augmentation pool: "full" automation is still desired

> Potential:

In parallel to the principled formulation of bi-level optimization, a metalearning formulation can also be pursued

References & Figures

References

- ➤ GCN: Semi-Supervised Classification with Graph Convolutional Networks
- GAT: Graph Attention Networks
- Graph completion: When Does Self-Supervision Help Graph Convolutional Networks?
- AutoSSL: Automated Self-Supervised Learning for Graphs
- GraphCL: Graph Contrastive Learning with Augmentation
- MBRDL: Model Based Robust Deep Learning
- > Wang et al: Towards A Unified Min-Max Framework for Adversarial Exploration and Robustness
- Boyd et al: Convex Optimization
- ➤ DLA+AG: Self-Supervised Label Augmentation via Input Transformations
- DistAug: Distribution Augmentation for Generative Modeling

> Figures

- ➤ 1. https://www.euroscientist.com/imagine-a-social-network-like-facebook-with-no-facebook/
- ➤ 2. https://www.thoughtco.com/what-is-a-polymer-820536
- > 3. https://www.e-education.psu.edu/ebf483/node/643

Thank you for listening!

Paper: https://arxiv.org/abs/2106.07594

Code: https://github.com/Shen-Lab/GraphCL_Automated