Lecture 10: Hypothesis Testing for One Mean STAT 310, Spring 2023

Hypothesis Test for One Mean

Key components:

► Null hypothesis:

$$H_0: \mu = \mu_0$$

Alternative hypothesis (use one of these):

 $H_A: \mu > \mu_0$ (one-sided, upper-tail)

 $H_A: \mu < \mu_0$ (one-sided, lower-tail)

 $H_A: \mu \neq \mu_0$ (two-sided)

Test statistic:

$$t = rac{ ext{observed value} - ext{null value}}{ ext{SE}} = rac{ar{x} - \mu_0}{s/\sqrt{n}}$$

ightharpoonup A rule to either reject or not reject H_0 (based on p-value)

p-value (review)

Decision rule using the p-value:

- ▶ If *p*-value $< \alpha$, then reject H_0 .
- ▶ If p-value > α , then do not reject H_0 .

 α is called the **signficance level**. The most common value for $\alpha=0.05$, but other values are also sometimes used such as $\alpha=0.01$.

p-value (review)

- ▶ When the *p*-value $< \alpha$ (we reject H_0) the result is said to be statistically significant.
- ▶ In other words, a result is statistically significant when it is unlikely to of occurred by random chance (i.e., natural sampling variability), assuming that the null hypothesis is true.
- ▶ The smaller the *p*-value, the stronger the data favor H_A over H_0 .

Computing *p*-values

One-sided test (upper-tail):

 $H_0: \mu = \mu_0$ $H_A: \mu > \mu_0$

Test statistic:

$$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$

$$p$$
-value = 1 - pt(t, df = n-1)

Reject H_0 if p-value $< \alpha$

Computing *p*-values

One-sided test (lower-tail):

 $H_0: \mu = \mu_0$ $H_A: \mu < \mu_0$

Test statistic:

$$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$

$$p$$
-value = pt(t, df = n-1)

Reject H_0 if p-value $< \alpha$

Computing *p*-values

Two-sided test:

 $H_0: \mu = \mu_0$ $H_A: \mu \neq \mu_0$

Test statistic:

$$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$

p-value = 2*pt(-abs(t), df = n-1)

Reject H_0 if p-value $< \alpha$

Conditions

A hypothesis test for a mean is valid if the following conditions are satisfied:

- ► The data come from a random sample. (This is called the **independence condition** in the textbook.)
- ▶ The sample size n is large ($n \ge 30$). Otherwise, if the sample size is small (n < 30), the data should have an approximate normal distribution. (This is called the **normality condition** in the textbook.)

Note that these are the same conditions we check for a confidence interval. For small sample sizes (n < 30), look at a histogram of the data to check normality.

Example

As part of a survey conducted by the US National Center for Health Statistics, a random sample of n=40 Americans were asked how many hours of sleep they get on a typical weekday. Some summary statistics and a histogram are shown below. Do these data provide evidence that the average amount of sleep Americans get on a typical weekday is significantly less than 8 hours?

		n	X	S	mın	max	
	_	40	6.8	1.4	4	10	
Frequency	6 8 10 12						
	4 -						
	٥ -	-					
	0 -						
		4	5	6	7 8	9	10
	Number of Hours of Sleep						

(a) Write the null and alternative hypothesis for a one-sided test.

 $H_0: \mu = 8$ $H_A: \mu < 8$

- (b) Check the conditions for the hypothesis test.
 - ▶ Data come from a random sample.
 - ► Large sample size: $n = 40 \ge 30$

The conditions are satisfied.

(c) Calculate the test statistic.

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = \frac{6.8 - 8}{1.4/\sqrt{40}} = \frac{-1.2}{1.4/\sqrt{40}} = -5.42$$

R command:

(d) Calculate the *p*-value and make a decision using $\alpha = 0.05$ significance level.

p-value = pt(-5.42, df = 39) = 0.0000017 Since p-value < 0.05, we reject H_0 .¹

(e) What is the conclusion of the test in the context of the data?

The data provide evidence that on average Americans get significantly less than 8 hours of sleep on a typical weekday.