MATH 494 Jakob Loedding

LINEAR PROGRAMMING, ZERO-FORCING, AND MAXIMALLY DIVERSE OPTIMA

(Progress Documentation)

1 Integer Program for Zero Forcing Diameter

Denote the zero forcing diameter model as ZFD (G, s^*) , where $G \in \mathbb{G}$ and s^* is an optimal solution to ZIP (G).

subject to
$$s_v + \sum_{e \in \delta^-(v)} y_e = 1, \quad \forall \ v \in V,$$
 (1b)

$$s_{v}^{'} + \sum_{e \in \delta^{-}(v)} y_{e}^{'} = 1, \quad \forall \ v \in V,$$
 (1c)

$$x_u - x_v + (T+1)y_e \le T, \quad \forall \ e = (u,v) \in E, \tag{1d}$$

$$x_{u}^{'} - x_{v}^{'} + (T+1)y_{e}^{'} \le T, \quad \forall e = (u,v) \in E,$$
 (1e)

$$x_w - x_v + (T+1)y_e \le T, \quad \forall \ e = (u,v) \in E, \ \forall \ w \in N(u) \setminus \{v\}, \tag{1f}$$

$$x_{w}^{'} - x_{v}^{'} + (T+1)y_{e}^{'} \le T, \quad \forall \ e = (u,v) \in E, \ \forall \ w \in N(u) \setminus \{v\},$$
 (1g)

$$\sum_{v \in V} s_v = s^*,\tag{1h}$$

$$\sum_{v \in V} s_v^{'} = s^*,\tag{1i}$$

$$s_v + s_v' - z_v \le 1 \quad \forall \ v \in V, \tag{1j}$$

$$s, s', z \in \{0, 1\}^n, \ x, x' \in \{0, \dots, T\}^n, \ y, y' \in \{0, 1\}^m$$
 (1k)

The triples (s, x, y) and (s', x', y'), where $s, s' \in \{0, 1\}^n$; $x, x' \in \{0, ..., T\}^n$, and $y, y' \in \{0, 1\}^m$, make a feasible solution of ZFD (G, s^*) provided that (s, x, y) and (s', x', y') satisfy (1b)-(1k). Additionally, if s and s' are minimal with respect to the objective function (1a), then we say that (s, x, y) and (s', x', y') is an optimal solution of ZFD (G, s^*) . The corresponding minimal value of the objective function (1a) is the optimal value of ZFD (G, s^*) .

Proposition 1.1. Given an optimal solution to ZFD (G, s^*) , $z_v = 1$ for some $v \in V$ if and only if $s_v = s_v = 1$.

Proof. Suppose $z_v = 1$ for some $v \in V$. By way of contradiction, also suppose either $s_v = 0$ or $s_v' = 0$. Then constraint (1j) will be true if $z_v = 0$. This contradicts the fact that we have an optimal solution to ZFD (G, s^*) , i.e., the objective function (1a) would not be minimized. Thus, our assumption that $s_v = 0$ or $s_v' = 0$ must be false. Hence, $s_v = s_v' = 1$.

Conversely, let $s_v = s_v' = 1$ for some $v \in V$. Then constraint (1j) holds only when $z_v = 1$. Therefore, given an optimal solution to ZFD (G, s^*) , $z_v = 1$ for some $v \in V$ if and only if $s_v = s_v' = 1$.

2 Graphical Interpretation of Integer Program

Given a feasible solution of ZFD (G, s^*) , the value of the objective function (1a) can be defined as $|B \cap B'|$, where B and B' are zero forcing sets of G. Furthermore, the optimal value of ZFD (G, s^*) is equal to $\min |B \cap B'|$, where $B, B' \in S$ and S is the set of all minimal zero forcing sets of G. Considering the model ZFD (G, s^*) , denote the zero forcing diameter of G as $d(G) = s^* - \min |B \cap B'|$ where $B, B' \in S$. Note that s^* is an optimal solution to ZIP (G), which is equivalent to the zero forcing number of G.