Mezzi Fisici

I bits si propagano tra ogni coppia trasmettitore/ricevitore.

Un link fisico è il mezzo che collega trasmettitore e ricevitore, i mezzi trasmissivi si dividono

1. mezzi trasmissivi non guidati ossia i segnali si propagano liberamente (microonde terrestri, satellitari, infrarossi, radio)

2. mezzi trasmissivi guidati attraverso un mezzo solido(doppino in rame, cavo coassiale, fibra ottica)

Mezzi trasmissivi non guidati

Le mezzi trasmissivi non guidati trasportano segnali nello spettro elettromagnetico, è hanno le seguenti caratteristiche principali:

- · non c'è un cavo "fisico"
- sono bidirezionale
- effetti dell'ambiente sulla propagazione:
 - 。 riflessione
 - 。 ostacolo dagli oggetti
 - 。 interferenza con altri segnali

La gamma di utilizzo va dall'udibile (20Hz-20KHz) alle frequenze radio (3Kz a 300 GHz) fino all'infrarosso (10⁴GHz) la luce (10¹⁴GHz) e ai raggi X (10¹⁶GHz)

Descrizione	Gamma	Lunghezza	Utilizzi
della Banda	frequenza	d'onda	
Udibile	20 Hz - 20 KHz	> 100 Km	
Radio ELF/ULF	3 KHz - 30 KHz	100Km -10 Km	Comm. Sottomarine
Radio LF	30 KHz - 300 KHz	10Km -1 Km	Comm. Marittime
Radio MF	300 KHz - 3 MHz	1Km -100 m	Radio AM
Radio HF	3 MHz - 30 MHz	100 m - 10 m	Radio Banda Cittadina
Radio VHF	30 MHz - 300 MHz	10 m - 1 m	Radio FM TV
Radio UHF	300 MHz - 3 GHz	1 m - 10 cm	Satellite, TV, telefonia
Radio SHF	3 GHz - 30 GHz	10 cm - 1 cm	Satellite, wireless lan
Radio EHF	30 GHz - 300 GHz	1 cm	Satellite
Infrarosso	$10^3 - 10^5$ GHz	300 μ –3μ	Ponti e wriless Lan
Luce visibile	10 ¹³ -10 ¹⁵ GHz	1 μ –0,3μ	Fibre ottiche
Raggi X	10 ¹⁵ -10 ¹⁸ GHz	0,3μ	
Raggi Cosmici	>10 ¹⁸ GHz	<0,3µ	

I sistemi a microonde terrestri comunicano attraverso l'etere con frequenze dell'ordine dei Gigahertz e la loro lunghezza d'onda è dell'ordine dei millimetri.

A queste frequenze l'attenuazione del segnale è molto alta e quindi si ha bisogno di amplificare o ripetere il segnale piuttosto spesso. Per combattere il fenomeno dell'attenuazione il fascio di onde viene focalizzato, e per trasmetterlo si usano le antenne paraboliche che concentrano il fascio.

Allo stesso modo le antenne riceventi sono posto nel fuoco di una parabola. I sistemi a microonde quindi costituiscono un sistema di trasmissione punto a punto, e le due antenne si devono "vedere", quindi per effetto della curvatura terreste la massima distanza tra due antenne e di circa 80 Km.

In realtà, i raggi elettromagnetici che partono dal TX non si propagano normalmente in linea retta, ma seguono delle traiettorie curvilinee, la cui curvatura dipende da come varia l'**indice di rifrazione** dell'atmosfera lungo il cammino che percorrono. Questa curvatura è un grosso vantaggio in quanto, sotto certe condizioni, essa consente di coprire distanze maggiori rispetto all'orizzonte geometrico. In particolare, il limite a tali distanze è il cosiddetto **orizzonte radio**:

La banda è spesso oltre i 6 Gbps, ma la suscettibilità agli errori può essere molto alta essendo suscettibili di attenuazione anche in presenza di fumo pulviscolo e della pioggia soprattutto a frequenze superiori agli 8Ghtz.

I Sistemi satellitari sono trasmissioni basate sulle microonde (dai Mhertz ai Ghertz).

L'attenuazione del segnale con frequenze così alte è notevole ma si ha solo per i pochi chilometri di atmosfera, nei tragitti verso l'alto (uplink) e verso il basso (downlink).

La banda è molto alta è varia in funzione delle bande di frequenza utilizzate.

Esse che si suddividono in

Banda	Uplink	Downlink
C	6Ghz	4Ghz
Ku	14Ghz	11-12Ghz
ka	30Ghz	20Ghz

I Sistemi a raggi infrarossi utilizzano la gamma delle onde luminose nel campo degli infrarossi (TeraHezt). Si utilizza un sistemi di lenti, di focalizzazione per i trasmettitori e col lettrici per i ricevitori. In genere si usano per trasmissioni a corta distanza limitata massimo circa 3km.

Mezzi trasmissivi guidati

Le mezzi trasmissivi guidati trasportano segnali elettrici o luce, in questa categoria appartengono:

- 1. Doppino
- 2. Cavi coassiali
- 3. Fibra Ottica

Il doppino in rame (twisted pair) e un cavo unidirezionale utilizzato nelle PSTN, ADSL, ISDN.

Composto da due fili di rame (Ø 1 mm) isolati singolarmente e avvolti tra loro.

Si suddividono in:

Classe 1 (CAT 1): doppino telefonico standard, <=9600bps per distanze di pochi Km

Classe 3 (CAT 3): per reti locali, da 10Mbps fino a 100m (poi rigenerati con ripetitori)

Classe 5 (CAT 5): da 100Mbps fino a 100m (poi rigenerati con ripetitori)

I cavi coassiali sono cavi con due conduttori di rame concentrici la cui parte superiore determina la schermatura del cavo, ha ampio intervallo di frequenze ed è bidirezionale.

Ha due modalità di trasmissione

- banda base : Cavo sottile (4mm) trssmette un solo canale utilizzato nella rete Ethernet a 10 Mbps
- banda larga: Cavo spesso (6-10mm) più canali sul cavo utilizzato nella TV via cavo

La Fibra ottica un sottile tubo di vetro attraversato da un impulso luminoso unidirezionale con velocità elevate da 10 Gbps a 100 Gbps fino a 9000Km.

Inoltre alcuni cavi vengono trattati con una sostanza come l'erbio, che viene eccitato dal passaggio del segnale laser producendo una amplificazione del segnale luminoso.

In tale modo si è dimostrato che i segnali possono viaggiare fino a 13.000 km. Tali amplificatori vengono chiamati EDFA(Erbium Doped Fiber Amplifiers).