THE COPPERBELT UNIVERSITY SCHOOL OF MATHEMATICS AND NATURAL SCIENCES DEPARTMENT OF MATHEMATICS

TUTORIAL SHEET 3:

MA110-Mathematical Methods

2022

BINARY OPERATIONS

- 1. Define an operation *on the set of real numbers by $a * b = b^a$
 - i). Is * a binary operation on the set of real numbers? Give reason for your Answer.
 - ii). Is the operation commutative?
 - iii). Evaluate (3 * 2) * -2
- 2. Consider the binary operation a*b=a+b-2ab, where a and b are real numbers.
 - 1*(2*3) and (1*2)*3 i). Compute
 - ii). Is * commutative? Justify your answer
- 3. Let '*' be a binary operation on the set of real numbers defined by $a*b=-2^{b-a},$ Where a and b are real numbers.
 - i). Is * commutative on real number? Justify your answer.
 - ii). Find -1*(4*9)
- 4. Determine whether the following operations are binary on the set of Irrational numbers.
 - a). Addition [+]
- (b). Multiplication [x] (c). Subtraction [-]

Justify your answers.

- 5 a) Determine whether the binary operation * defined is commutative and whether * is associative
 - i) * defined on *Z* by letting a * b = a - b
 - * defined on Q by letting a * b = ab + 1
 - * defined on Z^+ by letting $a * b = 2^{ab}$
 - iv) . * defined on Z^+ by letting $a * b = a^b$

- b) Determine whether the definition of * does give a binary operation on the set and give a reason why.
 - i) On Z^+ define * by letting a * b = a b
 - ii) On Z^+ define * by letting $a * b = a^b$
 - iii) On *R* define * by letting a * b = a b
 - iv) On Q, define * by letting a * b = a/b
 - v) On Z^+ define * by letting a * b = a/b
- 6. a) A binary operation * is defined on the set of real numbers as follows:

$$a*b=2^{-a}+b$$
, $a,b\in \mathbb{R}$

- (i) Is the operation * commutative? If not give a counter example.
- (ii) Find the value of -1*(0*1) and (-1*0)*1, and state whether * is associative.
- b) State whether each of the following operation is a binary operation on **Z**, the set of integers, where *a* and *b* are integers:
 - (i) a * b = 3a b (ii) $a * b = (ab)^2$ (iii) $a * b = \sqrt{a b}$
- c) Each of the following operations in I, II, III, IV, V is a binary operation on R
 - I: a*b = (a+b)(a-b) II: a*b = ab
 - III: $a*b = 2^{a-b}$ IV: a*b = a+2b V: a*b = a+b-ab
 - a) Determine which ones are commutative and / or associative.
 - b) For each of the operations I, II, III, IV and V, evaluate 3*(7*4)
- d) Given the sets $X = \{0, 1\}$ and $Y = \{0, 1, 2\}$,
 - (i) Determine whether each of the following operations $+, -, \times, \div$ is a binary operation on X and on Y.
 - (ii) Also check whether each of the operations is commutative or associative.
- 7. Let $A=\{1,2\}$ and $B=\{3,4,5\}$ be two set. List the element of $A\times B$ and $\times A$. State if

$$A \times B \neq B \times A$$
?

SKETCHING

- 1 a) Sketch the following curves and indicate clearly the points of intersection with the axes:
 - i) y = (x-3)(x-2)(x+1) ii) y = (x+1)(1-x)(x+3)
 - iii) y = x(x+1)(x-1) iv) y = x(2x-1)(x+3)
 - b) Sketch the curves with the following equations:
 - i) $y = (x+1)^2(x-1)$ ii) $y = (x+2)(x-1)^2$
 - iii) $y = (x 1)^2 x$ iv) $y = x^2 (x 2)$
 - c) Factories the following equations and then sketch the curves i) $y = x^3 + x^2 2x$ ii) $y = x^3 + 5x^2 + 4x$

iii) $y = x - x^3$

iv) $y = 12x^3 - 3x$

d). Sketch the following curves and show their positions relative to the curve $y = x^3$ i) $y = (x-2)^3$ ii) $y = (2-x)^3$ (iii) $y = -(x+2)^3$

iv) $y = (x+2)^3$

e). Sketch the following and indicate the coordinates of the points where the curves cross the axes:

i) $y = (x+3)^3$ ii) $y = (1-x)^3$ iii) $y = -\left(x-\frac{1}{2}\right)^3$ iv) $y = (-x+2)^3$

f). Apply the following transformation to the curves with equations y = f(x) where:

(i) $f(x) = x^2$ (ii) $f(x) = x^3$ (iii) $f(x) = \frac{1}{x}$

In each case state the coordinates of points where the curves cross the axes and in (iii)state the

equations of any asymptotes.

a) f(x+2) b) f(x)+2 c) f(x-1) d) f(x)-1

g). Apply the following transformation to the curves with equations y = f(x) where:

i) $f(x) = x^2$ ii) $f(x) = x^3$ iii) $f(x) = \frac{1}{3}$

In each case show both f(x) and the transformation on the same diagram.

(a) f(2x) (b) f(-x) (c) 2f(x) (d) 4f(x) (e) $\frac{1}{4}f(x)$

2. Sketch the following rational functions:

i) $y = \frac{3}{x+1}$ ii) $f(x) = \frac{x^2+2}{x-1}$ iii) $f(x) = \frac{x^2}{x^2+x-3}$ iv) $f(x) = \frac{x+2}{x-2}$ v) $f(x) = \frac{x^2-5x+6}{x-2}$

vi) $f(x) = \frac{2x^4}{x^4+1}$ vii) $f(x) = \frac{2x^2}{x^2+4}$

3. A) Sketch the following and find the domains:

i) $f(x) = 1 - \sqrt{2 - 3x}$ ii) $f(x) = \sqrt{x + 3}$ iii) $f(x) = 1 + \sqrt{\frac{x}{2}}$ iv) $f(x) = -\sqrt{-x + 3}$

v) $f(x) = 2 + \sqrt{-3x + 2}$ vi) $f(x) = -\sqrt{x}$ vii) $f(x) = 2 + 3\sqrt{-x + 1}$ ix) $f(x) = 2\sqrt{-x + 1}$

B) Graph each of the following:

i) $f(x) = \begin{cases} -x^2 & for \ x \ge 0 \\ 2x^2 & for \ x < 0 \end{cases}$ ii) $f(x) = \begin{cases} 2x + 3 & if \ x < 0 \\ x^2 & if \ 0 \le x < 2 \\ 1 & if \ x \ge 2 \end{cases}$

iii)
$$f(x) = \begin{cases} 2 & \text{if } x > 2 \\ 1 & \text{if } 0 < x \le 2 \\ -1 & \text{if } x \le 0 \end{cases}$$
 iv) $f(x) = \begin{cases} 2x + 1 & \text{if } x \ge 0 \\ x^2 & \text{if } x < 0 \end{cases}$

iv)
$$f(x) = \begin{cases} 2x + 1 & \text{if } x \ge 0 \\ x^2 & \text{if } x < 0 \end{cases}$$

Functions

1. Determine whether each of the given relation below is a function or not .

(i)
$$y = x^2$$
 (ii) $y = \begin{cases} 2x + 3, & x \le 1 \\ 6 - x^2, & x \ge 1 \end{cases}$ (iii) $y = \begin{cases} x^3, & x < 2 \\ \frac{1}{x}, & x \ge 2 \end{cases}$ (iv) $y = 3x - 1$

2. For each of the following functions, find the image of -2, $-\frac{1}{3}$, 0, 4,7

(i)
$$f(x) = 1 - 6x$$
 (ii) $g(x) = (x - 1)^2$ (iii) $h(x) = \frac{x - 1}{x + 1}$

3. Find the values of the constants in each of the following:

(i)
$$f(x) = ax + b$$
, a and b are constants, $f(-2) = 7$, $f(1) = -1$

(ii)
$$f(x) = ax^2 + bx + c$$
, a, b and c are constants, $f(0) = 7$, $f(1) = 6$ and $f(-1) = 12$

4. Determine the domain of the following functions:

i)
$$f(x) = 2x + \sqrt{x^2 + 4x - 12}$$
 ii) $h(x) = x + \sqrt{3x - 4}$

iii)
$$k(x) = \sqrt{x} + \sqrt{x-1}$$
 iv) $L(x) = -x^2 + 2x - 7$ v) $f(x) = x^2 - 2x + 2$

vi)
$$f(x) = \sqrt{x^2 - 2x - 24} + 2$$
 vii) $f(x) = \sqrt[3]{x^2 - 4}$ viii) $f(x) = \sqrt[5]{x + 3}$

ix) $k(x) = \sqrt[4]{2x+1}$ x) $h(x) = \sqrt[8]{x^3-2}$ xi) $f(x) = x^2 + 4x - 1$

xii)
$$f(x) = x^2 + \sqrt{x^2 + 4x - 12}$$
 xiii) $h(x) = x^2 + \sqrt{x - 1}$

NOT that for Questions 4 and 5, determine the domain and the range of the function

5. The function *f* is defined by

$$f(x) = \begin{cases} x^2 - 6, & x < 0 \\ 10 - x & x \ge 0 \end{cases}$$

- a) Sketch f(x).
- b) Find the value(s) of a such that f(a) = 43.
- c) Find the values of the domain that get mapped to themselves in the range.

- 6. a) The domain of the function $g(x) = \frac{2x-1}{x^2-1}$ is {1,2,3,4}. Find the range of the function
 - b) The range of the function $g(x) = 1 \frac{3}{x}$ is $\{-2,4,5\}$, Find the domain of the function.
- 7. For each of the given functions find $\frac{f(a+h)-f(a)}{h}$.

(i)
$$f(x) = 4x + 5$$
 (ii) $f(x) = x^2 - 3x$ (iii) $f(x) = -x^2 + 4x - 2$

8. Determine whether the function *f* is even, odd or neither.

(i)
$$f(x) = x^2 + x$$
 (ii) $f(x) = \sqrt{2 - x^2}$ (iii) $f(x) = x^2$ (iv) $f(x) = \frac{1}{x}$

(v)
$$f(x) = 3x - 1$$
 (vi) $f(x) = x^5 + x^3 + x$ vii) $f(x) = x^4 + x^2 + 1$

(viii)
$$f(x) = x^3 + 1$$
 ix) $f(x) = x^2 + 1$ $f(x) = -x^3$

9. Find $(f \circ g)(x)$ and $(g \circ f)(x)$ for the following and their domains

(i)
$$f(x) = 2x$$
, $g(x) = 3x - 1$. (ii) $f(x) = \frac{1}{x}$, $g(x) = 3x - 1$

(iii)
$$f(x) = \sqrt{x-2}$$
, $g(x) = 3x-1$ (iv) $f(x) = \frac{4}{x+2}$, $g(x) = \frac{3}{2x}$

10. Solve each of the following problems

(i) If
$$f(x) = x^2 - 2$$
 and $g(x) = x + 4$, find $(f \circ g)(2)$ and $(g \circ f)(-4)$

(ii) If
$$f(x) = \frac{1}{x}$$
 and $g(x) = 2x + 1$, find $(f \circ g)(1)$ and $(g \circ f)(2)$

(iii) If
$$f(x) = \sqrt{x+1}$$
 and $g(x) = 3x - 1$, find $(f \circ g)(4)$ and $(g \circ f)(4)$

(iv) If
$$f(x) = x + 5$$
 and $g(x) = |x|$, find $(f \circ g)(-4)$ and $(g \circ f)(-4)$

11. Show that $(f \circ g)(x) = x$ and $(g \circ f)(x) = x$

(i)
$$f(x) = 2x$$
, $g(x) = \frac{1}{2}x$ (ii) $f(x) = 3x + 4$, $g(x) = \frac{x-4}{3}$

(iii)
$$f(x) = 4x - 3$$
, $g(x) = \frac{x+3}{4}$

12. If f(x) = 3x - 4 and g(x) = ax + b, find the conditions on a and b that guarantee that

$$(f \circ g)(x) = (g \circ f)(x)$$

13. Let $f(x) = \frac{x}{x+2}$ and g(x) = 2x - 1.

- (i) Find $(f \circ g)(x)$
- (ii) Evaluate $(g \circ f) \left(\frac{3}{4}\right)$
- (iii) Verify that $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$

14. Verify that the two given functions are inverses of each other

(i)
$$f(x) = -\frac{1}{2}x + \frac{5}{6}$$
 and $g(x) = -2x + \frac{5}{3}$
(ii) $f(x) = x^3 + 1$ and $g(x) = \sqrt[3]{x - 1}$

(ii)
$$f(x) = x^3 + 1$$
 and $g(x) = \sqrt[3]{x - 1}$

(iii)
$$f(x) = \sqrt{2x - 4} \text{ for } x \ge 0 \text{ and } g(x) = \frac{x^2 + 4}{2}$$

(iv)
$$f(x) = x^2 - 4 \text{ for } x \ge 0 \text{ and } g(x) = \sqrt{x+4} \text{ for } x \ge -4$$

15. Find f^{-1} and verify that $(f \circ f^{-1})(x) = x$ and $(f^{-1} \circ f)(x) = (x)$

(i)
$$f(x) = \sqrt{x}$$
 for $x \ge 0$ (ii) $f(x) = \frac{1}{x}$ for $x \ne 0$ (iii) $f(x) = \frac{3}{4}x - \frac{5}{6}$

16. The function f(x) is defined by $f(x) = x^2 - 3 \{x \in R, x > 0\}$

- ii) Sketch $f^{-1}(x)$ iii) Find values of x such that $f(x) = f^{-1}(x)$ i) Find $f^{-1}(x)$
- 17. State whether or not the following graphs represent functions. Give reasons for your answers and describe the type of the function.

18. The following mappings f and g are defined on all the real numbers by

$$f(x) = \begin{cases} 4 - x, & x < 4 \\ x^2 + 9, & x \ge 4 \end{cases} \qquad g(x) = \begin{cases} 4 - x, & x < 4 \\ x^2 + 9, & x > 4 \end{cases}$$

Explain why f(x) is a function and g(x) is not.

19. State if the following functions is one to one or many to one

- i) f(x) = 3x + 2 for the domain $\{x > 0\}$
- ii) $f(x) = x^2 + 5$ for the domain $\{x \ge 2\}$
- iii) $f(x) = +\sqrt{x+2}$ for the domain $\{x \ge -2\}$

Find f + g, f - g, $f \cdot g$, and $\frac{f}{g}$ and determine their domain 21.

i)
$$f(x) = \sqrt{x-1}$$
, $g(x) = \sqrt{x}$

$$f(x) = \sqrt{x-1}$$
, $g(x) = \sqrt{x}$ ii) $f(x) = \sqrt{x+2}$, $g(x) = \sqrt{3x-1}$

iii)
$$f(x) = x^2 - 2x - 24$$
, $g(x) = \sqrt{x}$ iv) $f(x) = -6x - 1$, $g(x) = -x - 1$

$$f(x) = -6x - 1, \quad g(x) = -x - 1$$

22) Find $(f \circ g)(x)$ and $(g \circ f)(x)$. Also specify the domain for each.

i)
$$f(x) = \frac{1}{x}$$
, $g(x) = 2x + 7$ ii) $f(x) = \sqrt{x-2}$, $g(x) = 3x - 1$

ii)
$$f(x) = \sqrt{x-2}$$
, $g(x) = 3x - 1$

iii)
$$f(x) = \frac{1}{x-1}$$
, $g(x) = \frac{1}{x-1}$

iii)
$$f(x) = \frac{1}{x-1}$$
, $g(x) = \frac{2}{x}$ iv) $f(x) = \frac{4}{x+2}$, $g(x) = \frac{3}{2x}$

23). Determine whether the function is one-to-one . If it is, find the inverse and graph both the

function and its inverse.

(i)
$$f(x) = x^3 - 2$$
 ii) $f(x) = \frac{x}{\sqrt{x^2 + 4}}$ iii) $f(x) = \sqrt{x^2 + 1}$ iv) $f(x) = \frac{x}{x + 4}$

v)
$$f(x) = x^2 + 3$$
 vi) $f(x) = x^3$

vi)
$$f(x) = x^3$$

24). Determine the domain of the following fuctions

a).
$$f(x) = \frac{6}{\sqrt{6x-2}}$$

a).
$$f(x) = \frac{6}{\sqrt{6x-2}}$$
 (b). $g(y) = \sqrt{\frac{y}{y-8}}$

(c).
$$h(x) = \sqrt{x-7} + \sqrt{9-x}$$

d).
$$f(x) = \sqrt{\frac{x+1}{x-1}}$$
 (e). $f(x) = \sqrt[3]{x}$

(e).
$$f(x) = \sqrt[3]{x}$$

25). Graph the function

W.SAKALA MA110 TŲTORIALS SMNS CBU 2022/2023

$$f(x) = 4 - x^2 , \text{ if } x \le 1$$

$$x-3$$
, if $x>1$

- 26). Given $f(x) = \frac{x}{|1-x|}$
 - (i). Find the domain of f(x).
 - (ii). Sketch the graph of f(x).
 - (iii). Find the range of f(x)
- 27). Suppose $f(x) = \frac{1+x}{x^2-2x+1}$
 - (i). Find the domain of f(x)
 - (ii). Find the vertical asymptotes if any
 - (iii). Find the horizontal asymptotes if any
 - (iv). Sketch the graph of f(x).
- 28.) Sketch the graph of f(x) = |2x + 1|. On the same diagram sketch also the graph of $g(x) = \sqrt{1 2x}$ and hence, find the values such that $\sqrt{1 2x} > |2x + 1|$
- 29). In each of the following determine whether f is even, odd or neither
 - i). $f(x) = x^4$ (ii). $f(x) = x + x^3$ (iii). $f(x) = x^3 x$ (iv). f(x) = 2 x 30. Given the functions f(x) = 3x + 1, $h(x) = \frac{1}{x+1}$, $g(x) = x^3$ and $k(x) = \sqrt{x}$; Find (i). $(f \circ g)(x)$ (ii). $(g \circ f)(x)$ (iii). $(k \circ k)(x)$ (iv). f[g(k(x))]
 - 31). (i) If f(x) = 3x 4 and g(x) = ax + b, find the conditions of a and b such that $(f \circ g)(x) = (g \circ f)(x)$.
 - (ii) If $f(x) = x^2 + 1$ and $g(x) = \sqrt{x 1}$. Find the domain and inverse of $(f \circ g)(x)$ and $(g \circ f)(x)$.
- 32). If f(x) = 3 x and $g(x) = \frac{3x}{x-3}$, $x \ne 3$. Show that this function is its own inverse. Is $(f \circ g)(x)$ even, odd or neither.
- 33). If $f(x) = 1 x^2$ and $f(x) = \sqrt{x}$. Find $f(x) = \sqrt{x}$ and $f(x) = \sqrt{x}$ and $f(x) = \sqrt{x}$ and $f(x) = \sqrt{x}$.

- 34). Show that the function f defined by $f(x) = \frac{x}{\sqrt{x^2 + 1}}$, $x \in R$, is a bijection on R on to ${y: -1 < y < 1}$
- 35) Let $A = B = \{x \in R: -1 \le x \le 1\}$ and consider the subset $C = \{(x, y): x^2 + y^2 = 1\}$ of $A \times B$. Is this set a function? Explain
- 36). a) If $f(x) = x^2$ and g(x) = 3x 4, find $(g \circ f)(x)$ and $(f \circ g)(x)$ and determine its domain b) If $f(x) = \sqrt{x}$ and g(x) = 3x - 1, find $(f \circ g)(x)$ and determine its domain. c) If $f(x) = \frac{2}{x-1}$ and $f(x) = \frac{1}{x}$, find $f(x) = \frac{1}{x}$, find