CS M51A Logic Design of Digital Systems Winter 2021

Some slides borrowed and modified from:

M.D. Ercegovac, T. Lang and J. Moreno, Introduction to Digital Systems.

Standard Combinational Modules

- Decoder
- Encoder
- Multiplexer
- Demultiplexer
- Adder

TWO'S COMPLEMENT ARITHMETIC UNIT

INPUTS:
$$\underline{x} = (x_{n-1}, \dots, x_0), \quad x_j \in \{0, 1\}$$

$$\underline{y} = (y_{n-1}, \dots, y_0), \quad y_j \in \{0, 1\}$$

$$c_{\text{in}} \in \{0, 1\}$$

$$F = (f_2, f_1, f_0)$$

OUTPUTS:
$$\underline{z} = (z_{n-1}, \dots, z_0), \quad z_j \in \{0, 1\}$$

 $c_{\text{out}}, sgn, zero, ovf \in \{0, 1\}$

FUNCTIONS:

\overline{F}	Operation				
001	ADD	add	z = x + y		
011	SUB	subtract	z = x - y		
101	ADDC	add with carry	$z = x + y + c_{in}$		
110	CS	change sign	z = -x		
010	INC	increment	z = x + 1		

$$sgn = 1$$
 if $z < 0$, 0 otherwise (the sign)
 $zero = 1$ if $z = 0$, 0 otherwise
 $ovf = 1$ if z overflows, 0 otherwise

TWO'S COMPLEMENT ARITHMETIC UNIT

CONTROL OF TWO'S-COMPLEMENT ARITHMETIC OPERATIONS

ullet OPERATION IDENTIFIED BY BIT-VECTOR $F=(f_2,f_1,f_0)$

Operation	Op-code		Control Signals		
	$f_2f_1f_0$	<u>z</u>	K_x	K_y	K_{MX}
ADD	001	$ADD(\underline{x}, \underline{y}, 0)$	0	0	1
SUB	011	$ADD(\underline{x}, \underline{y'}, 1)$	0	1	1
ADDC	101	$ADD(\underline{x}, \underline{y}, c_{in})$	0	0	1
CS	110	$ADD(\underline{x'}, \underline{0}, 1)$	1	d.c.	0
INC	010	$ADD(\underline{x}, \underline{0}, 1)$	0	d.c.	0

CONTROL SIGNALS:

$$K_x = f_2 f_1$$

$$K_y = f_1$$

$$K_{MX} = f_0$$

ALU MODULES AND NETWORKS

ullet $ARITHMETIC\text{-}LOGIC\ UNIT$ module realizing set of arithmetic and logic functions

TYPICAL EXAMPLE OF ALU

Control (S)	Function
ZERO	z = 0
ADD	$z = (x + y + c_{\rm in})$
SUB	$z = (x + y' + c_{\rm in})$
EXSUB	$z = (x' + y + c_{\rm in})$
AND	$\underline{z} = \underline{x} \cdot \underline{y}$
OR	$\underline{z} = \underline{x} + \underline{y}$
XOR	$\underline{z} = \underline{x} \oplus \underline{y}$
ONE	$\underline{z} = 1111$

Clicker Question

ALU

For a = 0, b = 0, CarryIn=1, Operation=01, Binvert=1,

- a CarryOut=0,Result=0
- b CarryOut=0,Result=1
- c CarryOut=1,Result=0
- d CarryOut=1,Result=1
- e None of the above

COMPARATOR MODULES

HIGH-LEVEL DESCRIPTION OF AN n-BIT COMPARATOR:

INPUTS:
$$\underline{x} = (x_{n-1}, \dots, x_0), \quad x_j \in \{0, 1\}$$
 $\underline{y} = (y_{n-1}, \dots, y_0), \quad y_j \in \{0, 1\}$
 $c_{\text{in}} \in \{\mathsf{G}, \mathsf{E}, \mathsf{S}\}$
OUTPUT: $z \in \{\mathsf{G}, \mathsf{E}, \mathsf{S}\}$

$$\begin{aligned} \mathsf{FUNCTION:} \ \ z = \begin{cases} \mathbf{G} \ \ \mathbf{if} \ \ (x > y) \ \ \mathbf{or} \ \ (x = y \ \ \mathbf{and} \ \ c_{\mathrm{in}} = \mathbf{G}) \\ \mathbf{E} \ \ \mathbf{if} \ \ (x = y) \ \ \mathbf{and} \ \ (c_{\mathrm{in}} = \mathbf{E}) \\ \mathbf{S} \ \ \mathbf{if} \ \ (x < y) \ \ \mathbf{or} \ \ (x = y \ \ \mathbf{and} \ \ c_{\mathrm{in}} = \mathbf{S}) \\ \end{aligned}$$

Implementation

ITERATIVE COMPARATOR NETWORK

TREE COMPARATOR NETWORK

Standard Sequential Modules

IMPLEMENTATION OF 4-BIT REGISTER

SHIFT REGISTERS

$$\underline{s}(t+1) = \begin{cases} \underline{s}(t) & \text{if} \quad CTRL = NONE \\ \underline{x}(t) & \text{if} \quad CTRL = LOAD \\ (s_{n-2}, \dots, s_0, x_l) & \text{if} \quad CTRL = LEFT \\ (x_r, s_{n-1}, \dots, s_1) & \text{if} \quad CTRL = RIGHT \end{cases}$$

4-BIT BIDIRECTIONAL SHIFT-REGISTER

SERIAL-IN/SERIAL-OUT UNIDIRECTIONAL SHIFT REGISTER

$$z(t) = x(t - n)$$

PARALLEL-IN/SERIAL-OUT UNIDIRECTIONAL SHIFT REGISTER

SERIAL-IN/PARALLEL-OUT UNIDIRECTIONAL SHIFT REGISTER

Example: Serial Adder

Example

$$z(t) = \begin{cases} 1 & \text{if } \underline{s}(t) = 01101110 \text{ and } x(t) = 1 \\ 0 & \text{otherwise} \end{cases}$$

