Eliciting Moral Preferences: Theory and Experiment

Roland Bénabou, Armin Falk, Luca Henkel and Jean Tirole

Paper available via web page

ESA World Meeting - September 2020

Introduction

- What can be learned about a person's or a population's moral preferences from observing their choices, including in experiments?
 - ▶ How should this be used to inform policy, or to maximize prosocial actions?
 - How to interpret behaviors that seem deontologically rather than consequentially motivated: refusing tradeoffs that involve harm to others, assigning infinite price to "sacred values" such as life, freedom, dignity?
- Show how, whenever image concerns are present, the answers depend crucially on how choices are elicited / contributions sollicited:
 - Single (or, separate) decisions, vs. multiple simultaneous decisions;
 e.g., yes/no to an offer, versus stating a willingness to pay
 - Ex-ante commitments under uncertainty, vs. known, ex-post choices; e.g., random realized situation, random implementation

Concrete Setting and Application

- Use model & experiment to study and compare properties of two most commonly used revealed-preference methods:
 - Direct elicitation (DE)
 - Multiple-price list (MPL)
- Compared to DE, MPL features multiple decisions, of which only one is implemented for real, at random
- In standard situations (e.g., for non-moral decisions), we know both schemes give the same, and correct, answer. For instance:
 - Ask people in a population to make a DE choice, each one at different price
 - Ask each person the same MPL choice question
- ⇒ Get same distribution of outcomes, estimate same distribution of preferences

Key Results

- As soon as image concerns are present, DE and MPL give different answers
 - ▶ Unrelated to risk aversion: tradeoffs now differ in expected value
- ② Gap between results varies with the importance of image concerns (interaction), not just in magnitude, but even in sign! At any given price:
 - DE will generate more prosocial behavior than MPL when image concerns are weak (but positive)
 - MPL will generate more prosocial behavior than DE when image concerns are strong
- Image-minded consequentialists will display Kantian-like price insensitivity much more readily under MPL than under DE
- Results due interplay of three general effects, also at work in public-goods contributions mechanisms sharing key features with DE / MPL.
 - ▶ Discouragement effect, cheap-talk effect, and cheap-act effect
- Model's most distinctive prediction: "crossing pattern" between DE and MPL contributions, as image concern go from weak to strong
- Test it in an experiment: taking money or "Saving a Life"

Model

- ullet Choice: engage in moral behavior (a=1) or act selfishly (a=0)
 - lacktriangleright a=1 involves personal cost c but generates positive externality e
- Agents differ in their motivation to act morally:
 - ▶ High type $v_H e$, with prob ρ , Low type $v_L e$, with prob 1ρ ; $v_H > v_L \ge 0$
- Final utility for type $\tau = L, H$:

$$U_{\tau}(a) = (v_{\tau}e - c)a + \mu E[v|a, \text{ choice conditions}]$$

- $\mu \geq 0$: strength of self or/and social image concerns. Image / esteem based on agent's expected type, conditional on action a and choice conditions
- Situation, even experiment, is now a signaling game ⇒ behavior reflects not just individual preferences, but equilbrium
 - ▶ Pareto dominance as selection criteria in case of multiple equilibria

Behavior under Direct Elicitation

• Agents face choice $a \in \{0, 1\}$, for given value $c \in [0, c_{max}]$

• P_0 : pooling at $a_H=a_L=0$; S: separation, $a_H=1$, $a_L=0$; SS: semi-separation: $a_H=1$, $a_L\in(0,1)$; P_1 : pooling at $a_H=a_L=1$.

Behavior under Multiple-Price List

- Agents state maximum level of c to take a = 1 (WTP)
- Actual $ilde{c}$ drawn from $G(ilde{c})$ on $[0,c_{\mathsf{max}})$, implement a=1 at cost $ilde{c}$ iff $ilde{c} \leq c$

• P_0 : pooling at $a_H = a_L = 0$; S: separation, $a_H = 1$, $a_L = 0$; SS: semi-separation: $a_H = 1$, $a_L \in (0,1)$; iP_1 : pooling at $a_H = a_L = 1$.

Intuition: Three Key Effects from DE to MPL

- Discouragement effect: because it reveals multiple decisions at the same time, MPL raises the cost to the Low type of mimicking the High type:
 - ▶ Say, $v_L e = 50$, $v_H e = 75$. Low type might be willing to pool at DE price of c = 60, but under MPL would have to be willing to pool up to 75.
 - If μ is positive but not very large, not worth it \Rightarrow will simply state WTP of 50, and thus does not contribute when $\tilde{c}=60$ is drawn
 - This effect dominates at low $\mu>0 \Rightarrow DE$ induces more prosocial decisions than MPL
- **Output** Cheap-talk effect: under DE, if say yes to c, then (e, -c) occurs for sure. Under MPL, if state WTP of c there is a probability 1 G(c) that won't be "called on it", and neither e nor -c occurs.
 - This effect tends to induces more prosocial decisions (especially by the low type) under MPL, relative to DE
 - However, as μ rises it weakens and ultimately vanishes, as the cutoff c_{τ}^{MPL} rises toward c_{max} , driving the probability of implementation toward 1.

Our Cheap-act effect: under DE, if say yes to c, then I pay c for e. Under MPL, if state WTP of c and am "called on it", will pay some random $\tilde{c} \leq c$.

Because $c - E_G[\tilde{c}|c \leq \tilde{c}] > 0$, this effect also tends to induces more prosocial decisions under *MPL*, relative to *DE*.

- Moreover, for the experimentally standard uniform distribution, and more generally for any distribution $G(\tilde{c})$ satisfying MLRP, the previous difference increases with c.
- ightharpoonup Therefore, as μ rises , pushing up all cutoffs, this effect strengthens. It is thus the one that dominates at high μ .
- Intermediate $\mu's$: all three effects operate, not much can be said in general
 - ▶ Paper derives a sufficient condition for single crossing of aggregate contributions under *DE* vs. *MPL* in the case of uniform *G*.

Main Result: Comparing DE and MPL

Proposition (interactions and reversal)

For each type (hence also on average):

- For any $c \in [0, c_{\max}]$, $a_{\tau}^{MPL}(c, \mu)$ and $a_{\tau}^{DE}(c, \mu)$ coincide at $\mu = 0$, then both increase (weakly) as μ rises, reaching 1 for μ large enough.

$$a_{\tau}^{DE}(c,\mu) \geq a_{\tau}^{MPL}(c,\mu),$$

with strict inequality for $c \in (v_L e, \underline{c}_L^{DE}(\mu))$ and $c \in (v_H e, c_H^{DE}(\mu))$, both nonempty.

• For all $\mu \geq \bar{\mu}$,

$$a_{\tau}^{\mathsf{DE}}(\mathsf{c},\mu) \leq a_{\tau}^{\mathsf{MPL}}(\mathsf{c},\mu),$$

with strict inequality for $c \in (\underline{c}_L^{DE}(\mu), c_{\text{max}})$, which is nonempty whenever $\mu \in (\bar{\mu}, \mu^{**})$.

Empirical Tests

- Hypothesis 1: For both DE and MPL, total contributions increase in μ
- Hypothesis 2: For low $\mu_L > 0$, total contributions are higher under DE than under MPL
- Hypothesis 3: For high μ_H , total contributions are higher under MPL than under DE

Corrollaries:

- ▶ Differential image sensitivity: as μ changes from μ_L to μ_H , contributions rise by more under MPL than under DE
- Observationally deontological behavior: at \(\mu_H \), more people will choose the moral action "whatever it costs", i.e. up to the highest price \(c_{\text{max}} \) under \(MPL \), than under \(DE \). Different estimated fractions of "Kantians".

Experiment: Saving a Life

Choices:

- ▶ Moral action (a = 1): induce a 350€ donation that, in expectation / on average, will save one patient from death by tuberculosis. Major e >> 0
- ► Selfish action (a = 0): take money for oneself. Amount c, can range from 10 to 200€

• High stakes:

- Subjects provided with detailed, verifiable (on site) evidence of death risk for tuberculosis patients in India, effectiveness of treatment, track record of NGO doing it (Operation ASHA), expected value calculation
- **Treatments:** 2 x 2 between-subjects design, varying both:
 - ► Elicitation method: Direct elicitation (*DE*) vs. Multiple-price list (*MPL*)
 - Level of image concerns, μ : choices kept private (Low Image), or made publicly visible & morally salient (High Image)

Decision Screens

Your Decisions

Please click here to be reminded of the precise meaning of 'saving a life

Option A				Option B
	Α		В	
I save a human life		1		I choose 0 € as payment for myself
I save a human life		2		I choose 10 € as payment for myself
I save a human life		3		I choose 20 € as payment for myself
I save a human life		4	0	I choose 30 € as payment for myself
I save a human life		5		I choose 40 € as payment for myself
I save a human life		6	•	I choose 50 € as payment for myself
I save a human life		7	•	I choose 60 € as payment for myself
I save a human life		8	•	I choose 70 € as payment for myself
I save a human life		9	•	I choose 80 € as payment for myself
I save a human life		10	•	I choose 90 € as payment for myself
I save a human life		11	•	I choose 100 € as payment for myself
I save a human life		12	•	I choose 110 € as payment for myself
I save a human life		13	•	I choose 120 € as payment for myself
I save a human life		14	•	I choose 130 € as payment for myself
I save a human life		15		I choose 140 € as payment for myself
I save a human life		16		I choose 150 € as payment for myself
I save a human life		17		I choose 160 € as payment for myself
I save a human life		18		I choose 170 € as payment for myself
I save a human life		19		I choose 180 € as payment for myself
I save a human life		20		I choose 190 € as payment for myself
I save a human life		21		I choose 200 € as payment for myself

Confirm decisions

Manipulating Moral-Image Concerns

• To ensure some minimal social and self-image $\mu>0$, subjects are anonymously paired, will learn partner's choices (benchmarking). Then:

▶ Low Image (μ_L) :

 Experiment is double blind. Use procedure of Barmettler, Fehr, and Zehnder (2012): one subject carries out final payment, without participating in experiment. Self-image still presumably operating.

▶ High Image (μ_H) :

- Subject's choices are publicly observed and compared to those of their partners by a committee, upon receiving payment
 - Own and partner's choices projected on a wall with subject present, must read them aloud.
 - ► Committee of three, sitting in the room, evaluates morality of each choice
 - ★ Morality scores not disclosed, but really given, and subjects know that

Procedure

- Bonn Lab: 697 subjects, mostly students, 58% female, mean age = 24.01
- 12 \in show-up fee. Receive extensive background information on donation, decisions must pass comprehension test. For each session (\approx 20 subjects) the decisions of one pair are implemented for real.
- Implement, under High and Low Image:
 - ▶ DE at (preset) price of c = 100€
 - ▶ MPL with \tilde{c} uniform over 0, 10, ... $c_{\text{max}} = 200$ €, in increments of 10€
- When comparing the two schemes, do so at same price level:
 - ▶ $\bar{a}^{DE}(100, \mu)$: fraction who save a life rather than take c=100€, under DE (would then have done so under DE at any $c' \leq 100$)
 - ▶ $\bar{a}^{MPL}(100,\mu)$: fraction who state WTP $\geq 100 \in$ under MPL, and thus commit to saving a life at any $\tilde{c} \leq 100$ that may be drawn

Hypothesis 1: direct effect of image

• **DE:** 58.8% of subjects choose to save a life (vs. 100€) in *Low Image*, and 62.5% in *High Image*. But difference not significant

MPL:

- ▶ CDF from Low Image lies above that from MPL-High Image, for all monetary payments (p < 0.001, Kolmogorov–Smirnov test). Difference > 15% for almost all payments; largest at $60 \in$, of 26%.
- Obs. deontological: 26.4% under μ_L , nearly doubles to 48.4% under μ_H !

Hypotheses 2 and 3: interaction and reversal

Hypotheses 2 + 3: differential image sensitivity

Dependent variable:	Choice to Save a Life (vs. 100€)						
	Low Image	e Concerns	High Image Concerns				
	(1)	(2)	(3)	(4)			
MPL	-0.105* (0.054)	-0.103* (0.053)	0.094* (0.050)	0.091* (0.050)			
Constant (<i>DE</i>)	0.588*** (0.038)	0.626*** (0.049)	0.625*** (0.037)	0.622*** (0.046)			
Controls		X		Х			
Observations	343	343	354	354			
R ²	0.011	0.077	0.010	0.062			

Robust standard errors in parentheses. Controls include age, gender, income, religiousness, educational level, and high school grade. Significance levels: *p<0.1, **p<0.05 and ***p<0.01.

Heterogeneity among subjects

- Use independent measure of altruism (validated in Falk et al. 2018):
 - "How willing are you to give to good causes without expecting anything in return?"
 - "Today you unexpectedly received 1,000€. How much of the money would you donate to a good cause?"

⇒ Median split

 Measure is correlated with "saving a life" decision, but independent of treatment

Heterogeneity among subjects

Dependent varia	able:	Choice to Save a Life (vs. 100€)										
		Below-media	n Altruism		Above-median Altruism							
	Low I	Low Image		Image	Low Image		High Image					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)				
MPL	-0.187** (0.075)	-0.187** (0.078)	0.040 (0.075)	0.030 (0.079)	-0.032 (0.073)	-0.007 (0.072)	0.118* (0.068)	0.138** (0.066)				
Constant (DE)	0.512*** (0.056)	0.611*** (0.084)	0.592*** (0.050)	0.586 ^{***} (0.072)	0.663*** (0.052)	0.591*** (0.070)	0.667*** (0.054)	0.647*** (0.062)				
Controls		Х		Х		Х		X				
Observations R ²	342 0.036	342 0.133	342 0.002	342 0.035	355 0.001	355 0.101	355 0.017	355 0.109				

Robust standard errors in parentheses. Controls include age, gender, income, religiousness, educational level, and high school grade. Significance levels: *p<0.1, **p<0.05 and ***p<0.01.

Conclusion

- Image concerns interact differently with different elicitations methods, solicitation schemes. The introduction of multiple decisions and random implementation give rise to three key effects:
 - Discouragement effect: multiple decisions (WTP) decrease contributions. Dominates at low μ
 - ightharpoonup Cheap-act effect: random cost increases contributions. Dominates at high μ
 - Cheap-talk effect: operates in middle range.
- Experimental evidence: DE and MPL "crossing" in high-stakes experiment
- Implications:
 - Caveat for measurement of moral preferences (and other reputation-bearing behaviors), whether one is interested in descriptive / predictive questions (how people behave, including from reputation-seeking), or normative ones (how much they truly value public goods, behaviors)
 - Caveat about / upper bound on / estimating the proportion of "Kantians"
 - Ossible applications / extensions to other types of preference elicitation schemes, charitable-contributions solicitations, etc.