(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 1. September 2005 (01.09.2005)

PCT

(10) Internationale Veröffentlichungsnummer $WO\ 2005/081390\ A1$

- (51) Internationale Patentklassifikation⁷: H02P 6/00, H02H 7/08, F04B 49/06, A47L 15/42
- (21) Internationales Aktenzeichen: PCT/EP2005/001872
- (22) Internationales Anmeldedatum:

23. Februar 2005 (23.02.2005)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 10 2004 009 046.7

23. Februar 2004 (23.02.2004) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): HANNING ELEKTRO-WERKE GMBH & CO. KG [DE/DE]; Holter Strasse 90, 33813 Oerlinghausen (DE).

- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): TEIPEN, Bernd [DE/DE]; Pontanusstrasse 76, 33102 Paderborn (DE).
- (74) Anwalt: STEINMEISTER, Helmut; Artur-Ladebeck-Str. 51, 33617 Bielefeld (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

[Fortsetzung auf der nächsten Seite]

- (54) Title: METHOD FOR DIAGNOSING OPERATING STATES OF A SYNCHRONOUS PUMP, AND DEVICE FOR CARRYING OUT SAID METHOD
- (54) Bezeichnung: VERFAHREN ZUR DIAGNOSE VON BETRIEBSZUSTÄNDEN EINER SYNCHRONPUMPE SOWIE VORRICHTUNG ZUR DURCHFÜHRUNG DIESES VERFAHRENS

(57) Abstract: The invention relates to a method for diagnosing operating states (36, 38, 40, 42) of a synchronous pump in a liquid circuit, particularly in a washing machine or similar. According to the inventive method, the alternating voltage (U) applied to the pump motor and the alternating current (I) of the motor are measured in at least one measurement step (30), the extent of a phase shift $(\Delta \phi)$ between the alternating voltage (U) and the alternating current (I) is measured at least at one point in time in a determination step (32), the phase shift $(\Delta \phi)$ or the progress thereof is determined from the recorded measured values and a characteristic of the phase shift $(\Delta \phi)$ or the progress thereof is determined, and the determined characteristic is assigned to a predetermined pump operating state (36, 38, 40, 42) in an assignment step (34).

WO 2005/081390 A1

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Erklärung gemäß Regel 4.17:

— Erfindererklärung (Regel 4.17 Ziffer iv) nur für US

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(57) Zusammenfassung: Die Erfindung betrifft ein Verfahren zur Diagnose von Betriebszuständen (36, 38, 40, 42) einer Synchronpumpe in einem Flüssigkeitskreislauf, insbesonderen in einer Spülmaschine oder dergleichen. In wenigstens einem Mess-Schritt
(30) werden die am Pumpenmotor anliegende Wechselspannung (U) und der Motor-Wechselstrom (I) gemessen, in einem Bestimmungs-Schritt (32) wird zu wenigstens einem Zeitpunkt die Größe einer Phasenverschiebung ($\Delta \phi$) zwischen der Wechselspannung
(U) und dem Wechselstrom (I) gemessen, aus den aufgenommenen Meßwerten wird die Phasenverschiebung ($\Delta \phi$) oder deren zeitlicher Verlauf ermittelt und ein Merkmal der Phasenverschiebung ($\Delta \phi$) oder deren zeitlicher Verlauf bestimmt, und in einem Zuordnungs-Schritt (34) wird das bestimmte Merkmal einem vorbestimmten Pumpen-Betriebszustand (36, 38, 40, 42) zugeordnet.

Verfahren zur Diagnose von Betriebszuständen einer Synchronpumpe sowie Vorrichtung zur Durchführung dieses Verfahrens

Die vorliegende Erfindung betrifft ein Verfahren zur Diagnose von Betriebszuständen einer Synchronpumpe in einem Flüssigkeitskreislauf, insbesondere in einer Spülmaschine oder dergleichen.

In Spülmaschinen werden häufig Synchronpumpen, das heißt durch Synchronmotor angetriebene Pumpen, dazu verwendet, das zur Reinigung verwendete Spülwasser vom Boden des Innenraums des Gerätes abzupumpen und wieder zu den Sprüharmen zu fördern, so daß ein geschlossener Flüssigkeitskreislauf geschaffen wird. Dieser Aufbau ist sehr verbreitet, da auf diese Weise Frischwasser gespart werden kann.

15

20

25

30

35

10

1

Im Idealfall bleibt die zirkulierende Wassermenge konstant, und die Synchronpumpe zum Umwälzen des Wassers arbeitet mit konstanter Leistung. Ein Problem tritt jedoch dann auf, wenn sich Wasser im Maschinen-Innenraum an Stellen speichert, von denen es nicht abfließen oder abgepumpt werden kann, so daß es nicht mehr zur Rückführung zu den Sprühdüsen zur Verfügung steht. Solche Flüssigkeits-Reservoirs werden insbesondere durch Töpfe oder ähnliche Behälter gebildet, die während des Spülvorgangs umkippen, so daß ihre Öffnungen nach oben weisen und das von oben auf das zu reinigende Geschirr verteilte Spülwasser gesammelt wird. Ein weiteres Problem besteht in einer Behinderung der Wasserzirkulation durch eine Verschmutzung des Filters, der im Boden des Innenraums des Gerätes am Einlaß der Vorlaufleitung der Synchronpumpe angeordnet ist. Unterschreitet jedoch die zirkulierende Wassermenge ein bestimmtes Mindestvolumen, kann ein störungsfreier Betrieb des Gerätes nicht gewährleistet werden. Abgesehen davon, daß das Geschirr nicht mehr vollständig gereinigt wird, besteht in diesem Fall die Gefahr einer Beschädigung der Synchronpumpe.

Es ist daher erwünscht, den augenblicklichen Betriebszustand des Wasserkreislaufs zu bestimmen und insbesondere zu ermitteln, ob die Pumpe ordnungsgemäß fördert. Bekannt sind Meßverfahren zur Messung der vor dem Spülvorgang in den Kreislauf eingeleiteten Wassermenge. Eine Möglichkeit besteht beispielsweise darin, das Wasser über ein Laufrad zu leiten, dessen

Umdrehungszahl proportional zum über das Laufrad geleiteten Wasservolumen ist. Diese Anordnung bietet den Vorteil, daß sie preiswert zu realisieren ist, liefert jedoch relativ ungenaue Meßergebnisse.. Eine ständige Kontrolle des zirkulierenden Wasservolumens während des Betriebs der Maschine wird hierdurch nicht gewährleistet.

Das Dokument DE 196 30 357.5 Al offenbart eine Vorrichtung zur Regelung der Wassermenge in einer Geschirrspülmaschine, bei welcher zur Bestimmung des Betriebszustandes der Synchronpumpe das Drehmoment des die Pumpe antreibenden Synchronmotors überwacht wird. Zu diesem Zweck wird die Stromaufnahme der Ständerwicklung gemessen und in Abhängigkeit davon ein Dosierventil für die Zuführung des Spülwassers gesteuert, so daß eine ständige Kontrolle des zirkulierenden Wasservolumens gewährleistet wird.

Ferner offenbart das Dokument DE 24 15 171.1 A1 eine Messung des Betriebszustandes eines Synchronmotors anhand der Phasenverschiebung zwischen der am Motor anliegenden Wechselspannung und dem Wechselstrom. Eine aktuell auftretende Phasenverschiebung läßt sich dann einem bestimmten Betriebszustand zuordnen. Die bekannte Lösung ist darauf gerichtet, eine Betriebszustand-Überwachung für Synchronmaschinen mit asynchronem Anlauf zu schaffen und einen asynchronen Lauf anzuzeigen. Es sollen die im allgemeinen verwendeten aufwendigen Drehzahlmessungen eingespart und durch eine weniger kostspielige Überwachung ersetzt werden. Für den Anwendungsfall, der der vorliegenden Erfindung zugrundeliegt, ist dieses Verfahren jedoch nur in sehr eingeschränktem Maße geeignet, da sich nicht alle Betriebszustände einer Geschirrspülmaschine durch dieses vorbekannte Verfahren zweifelsfrei identifizieren lassen. Insbesondere gilt dies für die oben beschriebenen Störungen im Flüssigkeitskreislauf.

Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren zur Diagnose von Betriebszuständen einer Synchronpumpe der eingangs genannten Art zu schaffen, das es auf möglichst einfache, zuverlässige und kostensparende Weise ermöglicht, unterschiedliche Betriebszustände der Synchronpumpe zu detektieren und zu identifizieren, die Fehlfunktionen im Flüssigkeitskreislauf entsprechen, insbesondere einem Absinken des zirkulierenden Wasservolumens unter ein Mindestniveau und einer Filterverschmutzung.

1 Diese Aufgabe wird erfindungsgemäß durch ein Verfahren gemäß Anspruch 1 gelöst.

Bei dem erfindungsgemäßen Verfahren werden zunächst in einem Meß-Schritt wenigstens in einer Messung die Wechselspannung und der Wechselstrom am bzw. durch den Motor gemessen. In einem anschließenden Bestimmungs-Schritt wird die Größe einer Phasenverschiebung bestimmt, die zwischen der Wechselspannung und dem Wechselstrom auftritt. Die bestimmte Phasenverschiebung wird in einem nachfolgenden Zuordnungs-Schritt dazu benutzt, einen Pumpen-Betriebszustand zu identifizieren.

10

Dieses Diagnoseverfahren beruht auf der Erkenntnis, daß die Phasenverschiebung zwischen Spannung und Strom der Synchronpumpe als Indikator für eine Pumpen-Fehlfunktion dienen kann. Wird beispielsweise dem Wasserkreislauf in der Spülmaschine eine bestimmte Wassermenge entzogen, etwa durch einen umgekippten Topf, so tritt eine Änderung der Phasenverschiebung auf, die darauf zurückzuführen ist, daß im Pumpengehäuse ein Luft-Wasser-Gemisch vorliegt. In diesem Fall können Gegenmaßnahmen eingeleitet werden, die der Fehlfunktion entgegenwirken. Beispielsweise kann das Wasservolumen innerhalb des Kreislaufs durch Frischwasser ergänzt werden. Ferner kann ein Warnsignal erzeugt werden, das durch eine Bedienungsperson wahrzunehmen ist. Sämtliche Verfahrensschritte sind relativ einfach und preiswert zu realisieren, und die Phasenverschiebungs-Messung kann gegenüber den herkömmlichen Verfahren vergleichsweise genau durchgeführt werden. Durch die ständige Wasserstandskontrolle kann die Frischwasserzuführung genau am Bedarf orientiert werden, so daß ein ressourcensparender Wasserkreislauf realisiert werden kann. Außerdem wird hierdurch ein Energiespareffekt erreicht, da nur das im Kreislauf befindliche Wasser für die einzelnen Spülgänge aufgeheizt werden muß.

30

5

15

20

25

In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird die Größe der Phasenverschiebung im Zuordnungs-Schritt einem vorbestimmten Phasenverschiebungs-Wertebereich zugeordnet, der mit einem bestimmten Pumpen-Betriebszustand verknüpft ist.

35

Ferner kann vorzugsweise im Bestimmungs-Schritt die Differenz zwischen der gemessenen Größe der Phasenverschiebung und einer gespeicherten vorgege-

benen Phasenverschiebung bestimmt werden, und im nachfolgenden Zuordnungs-Schritt wird diese Phasenverschiebungs-Differenz einem Pumpen-Betriebszustand zugeordnet. In diesem Fall wird also nicht die gemessene Größe der Phasenverschiebung, sondern deren Abweichung von einem vorbestimmten Soll-Wert zur Identifikation des Zustands der Pumpe herangezogen.

In einer bevorzugten Ausführungsform des Verfahrens wird im Bestimmungs-Schritt die Größe der Phasenverschiebung zu verschiedenen Zeitpunkten gemessen, so daß aus den aufgenommenen Meßwerten der zeitliche Verlauf der Phasenverschiebung ermittelt werden kann. Es wird ein Merkmal des zeitlichen Verlaufs der Phasenverschiebung bestimmt, das im Zuordnungs-Schritt einem vorbestimmten Pumpen-Betriebszustand zugeordnet wird.

10

15

20

25

30

35

Bevorzugt wird hierbei das bestimmte Merkmal einem vorbestimmten Merkmals-Wertebereich zugeordnet, der mit einem Pumpen-Betriebszustand verknüpft ist.

Vorzugsweise wird im Bestimmungs-Schritt die Größe der Steigung des zeitlichen Verlaufs der Phasenverschiebung bestimmt und im Zuordnungs-Schritt einem vorbestimmten Steigungs-Wertebereich zugeordnet, der mit einem Pumpen-Betriebszustand verknüpft ist. Hier wird also die Größe der Steigung des zeitlichen Verlaufs der Phasenverschiebung zur Erkennung des Pumpen-Betriebszustands, z.B einer Filterverschmutzung genutzt.

In einer weiteren bevorzugten Ausführungsform umfaßt der Bestimmungs-Schritt einen Transformations-Schritt, in welchem der zeitliche Verlauf der Phasenverschiebung einer Fourier-Transformation unterzogen wird und die Amplitude der Fourier-Transformierten in einem vorbestimmten Frequenzbereich bestimmt wird. Der Zuordnungs-Schritt dient in diesem Fall dazu, die zuvor bestimmte Amplitude einem vorbestimmten Amplituden-Wertebereich zuzuordnen, der wiederum mit einem Pumpen-Betriebszustand verknüpft ist.

Die Analyse findet in diesem Fall also im Frequenzbereich statt. Weist der zeitliche Verlauf der Phasenverschiebung beispielsweise hochfrequente Signalanteile auf, so kann dies darauf hindeuten, daß im Pumpengehäuse ein Luft-Wasser-Gemisch vorliegt und die Pumpe nicht mit voller Leistung arbeiten kann.

- Vorzugsweise kann es sich bei der Fourier-Transformation um eine diskrete Fourier-Transformation (DFT) oder um die spezielle Form der DFT, die sogenannte Fast-Fourier-Transformation (FFT) handeln.
- Die Ermittlung des zeitlichen Verlaufs der Phasenverschiebung im Bestimmungs-Schritt kann vorzugsweise eine gleitende Mittelung beinhalten.

10

15

20

25

30

35

Der Meß-Schritt kann vorzugsweise eine Umwandlung des gemessenen Wechselspannungs-Signals und des gemessenen Wechselstrom-Signals in Rechtecksignale beinhalten.

Eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens umfaßt einen Microcontroller mit einem Timer, der einen Spannungs-Eingang zur Aufnahme eines Start-Signals und einen Strom-Eingang zur Aufnahme eines Stopp-Signals umfaßt. Diese Spannungs- bzw. Stromeingänge sind dazu ausgebildet, das Überschreiten eines vorbestimmten Spannungs- bzw. Stromsignal-Pegels als Start- bzw. Stop-Signal zu interpretieren. Der Inhalt des Timers ist zum zeitlichen Abstand zwischen dem Start- und dem Stop-Signal proportional. Der Microcontroller umfaßt ferner einen Speicher zur Aufnahme des Timer-Inhalts.

Durch den Timer des vorstehend beschriebenen Microcontrollers läßt sich die Größe der Phasenverschiebung messen. Der durch weitere Analyseeinrichtungen abzurufende Inhalt des Speichers ist proportional zur Phasenverschiebung, so daß durch die erfindungsgemäße Vorrichtung eine einfache Möglichkeit zur Betriebszustandsanalyse geboten wird.

In einer bevorzugten Ausführungsform umfaßt der Speicher eine Anzahl von Speicherplätzen zur Speicherung einer Abfolge von Speicherinhalten.

Weiter vorzugsweise umfaßt der Microcontroller eine Auswertungseinheit zur Mittelung der Speicherinhalte.

Vorzugsweise dient eine Schnittstelle zur Übermittlung betriebszustandsbezogener Daten vom Microcontroller an eine Steuereinheit zur Steuerung des Flüssigkeitskreislaufs.

Die Erfindung ist auch auf Waschmaschinen geeigneter Bauart oder andere im Umwälzbetrieb laufende Maschinen anwendbar.

Im folgenden wird ein bevorzugtes Ausführungsbeispiel der Erfindung anhand der Zeichnung näher erläutert.

- Fig. 1 zeigt schematisch die zu messenden Spannungs- und Strom-Signale sowie deren Umformung;
- 10 Fig. 2 ist eine schematische Darstellung des Verlaufs der Phasenverschiebung;

15

25

30

35

- Fig. 3 ist ein Diagramm, das die Funktionseinheiten einer Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens darstellt;
- Fig. 4 bis 7 zeigen den zeitlichen Verlauf der Phasenverschiebung entsprechend verschiedenen Pumpen-Betriebszuständen; und
- Fig. 8 ist ein Flußdiagramm, das die erfindungsgemäßen Verfahrensschritte erläutert.

Fig. 1 zeigt vier Diagramme, in denen jeweils der Verlauf eines Spannungsund eines Strom-Signals gegen die Zeit t aufgetragen ist. Das linke obere Diagramm zeigt den sinusförmigen Verlauf der Spannung U, die an einer Synchronpumpe eines Flüssigkeitskreislaufs anliegt, während das linke untere Diagramm den ebenfalls sinusförmigen Verlauf des Stroms I zeigt. Die beiden Sinuskurven des Spannungs-Signals U und des Stromsignals I sind um eine Phasenverschiebung $\Delta \phi$ gegeneinander verschoben, d.h. $\Delta \phi$ entspricht einer zeitlichen Verschiebung des Nulldurchgangs des Stromsignals I gegenüber dem Spannungs-Signal U. Die Größe dieser Phasenverschiebung $\Delta \phi$ kann erfindungsgemäß zur Diagnose eines Pumpen-Betriebszustands verwendet werden, wie nachfolgend noch erläutert werden soll. Zu diesem Zweck werden Spannung U und Strom I am Motor in einem Meß-Schritt gemessen, und nachfolgend wird in einem Bestimmungs-Schritt die Größe der Phasenverschiebung $\Delta \phi$ bestimmt.

Vor der weiteren Auswertung werden die gemessenen Spannungs- und Strom-1 signale U.I zunächst bearbeitet, und zwar durch Umwandlung in Rechtecksignale U' bzw. I'. Diese Signale sind in der rechten Hälfte von Fig. 1 in einem oberen und unteren Diagramm dargestellt. Im einzelnen geschieht die Umwandlung des Spannungs-Signals U in das Rechtecksignal U' durch einen 5 Optokoppler, der das analoge Sinus-Spannungs-Signal U in ein digitales Rechtecksignal wandelt. Gleichzeitig wird hierdurch eine Potentialtrennung zwischen der Motorspannung und einem nachgeschalteten Microcontroller hergestellt, der zur Auswertung dient. Zur Umwandlung des Sinus-Stromsignals I in das Rechtecksignal I' wird der Motorstrom über einen Shunt als 10 Meßwiderstand geleitet, und die Meßspannung wird durch einen Operationsverstärker in ein Rechtecksignal gewandelt. Die Potentialtrennung wird auch in diesem Fall durch einen nachgeschalteten Optokoppler gewährleistet.

15

20

25

30

35

In Fig. 2 sind diese bearbeiteten Signale U',I' gemeinsam dargestellt. Die Abszisse entspricht auch in diesem Fall der Zeit t, während die Ordinate der Amplitude der Signale entspricht. Im Normalbetrieb der Pumpe, in dem diese vollständig mit Wasser gefüllt ist, tritt eine bestimmte Phasenverschiebung Δφ1 auf. Wird dem Wasserkreislauf in einer Spülmaschine Wasser entzogen, so daß das durch die Synchronpumpe geförderte Wasservolumen abnimmt, wächst die Phasenverschiebung $\Delta\phi 2$ zwischen Spannungs- und Stromsignal U',I' deutlich an, sobald ein bestimmter Wasserstand unterschritten wird. Diese Vergrößerung der Phasenverschiebung kann in einem Bestimmungs-Schritt, der dem zuvor beschriebenen Meß-Schritt nachfolgt, bestimmt und dazu verwendet werden, den Betriebszustand der Pumpe zu ermitteln. Zu diesem Zweck kann die gemessene Größe der Phasenverschiebung in einem nachfolgenden Zuordnungs-Schritt einem Wertebereich zugeordnet werden, der wiederum einem vorbestimmten Betriebszustand entspricht. Wahlweise kann zunächst die Differenz zwischen der gemessenen Größe und einem vorbestimmten Wert der Phasenverschiebung bestimmt werden, entsprechend beispielsweise einer aktuell gemessenen Größe Δφ2 der Phasenverschiebung gemäß Fig. 2 und einem Wert Δφ1 im störungsfreien Normalbetrieb, und diese Phasenverschiebungs-Differenz wird einem zu diagnostizierenden Betriebszustand zugeordnet.

In einer bevorzugten Ausführungsform des Verfahrens, die im folgenden näher betrachtet werden soll, wird durch Messung an verschiedenen Zeitpunk-

ten der zeitliche Verlauf der Phasenverschiebung Δφ ermittelt. Dies bietet umfangreiche Möglichkeiten, den Verlauf der Phasenverschiebung zu analysieren und auf charakteristische Merkmale hin zu untersuchen. Ein bestimmtes Merkmal, also z.B. die Größe eines bestimmten Parameters des zeitlichen Verlaufs der Phasenverschiebung Δφ läßt sich in einem Zuordnungs-Schritt, der dem Bestimmungs-Schritt folgt, einem vorbestimmten Pumpen-Betriebszustand zuordnen. Diese Zuordnung kann auch beinhalten, daß das Merkmal einem vorbestimmten Merkmals-Wertebereich zugeordnet, d.h. klassifiziert wird, der mit einem Pumpen-Betriebszustand verknüpft ist.

Das Blockdiagramm in Fig. 3 zeigt funktionelle Bestandteile einer Vorrichtung zur Durchführung dieses Verfahrens. Ein Microcontroller 10 umfaßt einen Timer 12 mit einem Spannungs-Eingang 14 und einem Strom-Eingang 16. Der Spannungs-Eingang 14 dient zur Aufnahme des Rechteck-Spannungs-Signals U', während der Strom-Eingang 16 zur Aufnahme des Strom-Rechtecksignals I' dient. Die Rechtecksignale sind zu diesem Zweck an den Pegel des Microcontrollers 10 angepaßt. Die steigende Flanke des Spannungs-Signals U' dient als Start-Signal für den Timer 12, während die steigende Flanke des Strom-Signals I' als Stop-Signal dient. Der Inhalt des Timers 12, der in einem Speicher 18 des Microcontrollers 10 gespeichert wird, ist proportional zum zeitlichen Abstand zwischen Start-Signal und Stop-Signal und damit proportional zur Phasenverschiebung $\Delta \phi$ zwischen diesen Signalen.

Der Speicher 18 kann eine Anzahl von Speicherplätzen umfassen, die zur Speicherung einer Abfolge von Speicherinhalten dienen. Auf diese Weise läßt sich ein zeitlicher Verlauf der Phasenverschiebung $\Delta \phi$ über die Zeit t hinweg bestimmen. Es ist also möglich, innerhalb eines bestimmten Zeitfensters Δt eine Anzahl von Phasenverschiebungs-Messungen durchzuführen, wobei jede Messung einem Speicherinhalt an einer Speicherstelle des Speichers 18 entspricht. Anschließend werden diese Meßwerte mit Hilfe eines Software-Moduls 20 des Microcontrollers 10 einer gleitenden Mittelung unterzogen. Das Resultat ist ein geglätteter zeitlicher Verlauf der Phasenverschiebung $\Delta \phi$, der auf bestimmte Merkmale bzw. Parameter hin untersucht werden kann. Die gleitende Mittelung bietet den Vorteil, daß die Auswirkungen von Meßfehlern gedämpft werden. Außerdem kann auf diese Weise die Analyse der charakteristischen Merkmale des Phasenverschiebungsverlaufs nach jedem neuen Meßvorgang durchgeführt werden.

Die Vorrichtung kann ferner eine Schnittstelle zur Übermittlung betriebszustandsbezogener Daten an eine Steuer- oder Regeleinheit des Wasserkreislaufs umfassen, wie beispielsweise eine Hardware-Schnittstelle des Microcontrollers 10 zur Kommunikation mit einem externen Steuermodul. Dient der Microcontroller 10 selbst zur Regelung des Wasserkreislaufs, so wird die Kommunikation intern durch eine Software-Schnittstelle zum Datenaustausch zwischen den jeweils zuständigen Software-Modulen realisiert.

10

15

20

25

30

35

Zeitliche Verläufe der Phasenverschiebung $\Delta \varphi$ über die Zeit t entsprechend verschiedenen Betriebszuständen der Synchronpumpe sind in den Fig. 4 bis 7 dargestellt. Die gezeigten Kurven werden aus einer großen Anzahl von Meßwerten gewonnen, die Speicherstellen des Speichers 18 entsprechen und durch das Softwaremodul 20 in der oben beschriebenen Weise bearbeitet worden sind. Fig. 4 zeigt die Anlaufphase der Synchronpumpe. In einem ersten Zeitbereich t1 kommt es zu einem kurzzeitigen Anstieg der Phasenverschiebung. Der zeitliche Verlauf in diesem Bereich t1 zeigt ferner hochfrequente Signalanteile. In dem darauf folgenden Zeitbereich t2 stellt sich eine relativ kleine, konstante Phasenverschiebung ohne hochfrequente Signalanteile ein. Dies entspricht einem ordnungsgemäßen Betrieb der Pumpe bei einem ausreichenden Wasservolumen im Kreislauf, entsprechend beispielsweise einem ausreichend hohen Wasserstand in einer Spülmaschine.

Hingegen zeigt Fig. 5 den zeitlichen Verlauf der Phasenverschiebung $\Delta \phi$ beim Abpumpen des Wassers, wobei Luft in das Pumpengehäuse gelangt. Ein erster Zeitbereich der Kurve t2 entspricht dem bereits in Fig. 4 dargestellten ordnungsgemäßen Betrieb der Pumpe bei ausreichend hohem Wasserstand. Die Phasenverschiebung $\Delta \phi$ ist in diesem Zeitbereich t2 relativ klein. Gelangt jedoch zusätzlich Luft in das Pumpengehäuse, so daß ein Luft-Wasser-Gemisch vorliegt, steigt die Phasenverschiebung $\Delta \phi$ in diesem Zeitbereich t3 sehr schnell an und es stellen sich hochfrequente Signalanteile ein. Dieser Verlauf im Zeitbereich t3 zeigt sich auch dann, wenn dem Wasserkreislauf eine kleinere Menge Wasser (z.B. durch einen umgekippten Topf) entzogen wird.

Entleert sich das Pumpengehäuse im Zeitbereich t4 allmählich, so steigt die Phasenverschiebung von dem in t3 gehaltenen annähernd konstanten Wert allmählich an, bis schließlich im Zeitbereich t5 ein konstanter hoher Phasenverschiebungs-Wert erreicht wird, der einer vollständigen Entleerung des

Pumpengehäuses entspricht. Dieser Fall tritt ein, wenn dem Kreislauf das Wasser vollständig entzogen worden ist.

5

10

15

20

25

30

35

Wie Fig. 5 zu entnehmen ist, entsprechen verschiedene Betriebszustände der Pumpe verschiedenen zeitlichen Verläufen der Phasenverschiebung $\Delta \phi$. Dies bietet die Möglichkeit, aus der Untersuchung der Phasenverschiebung auf den jeweiligen Betriebszustand zu schließen. Insbesondere ist es möglich, bestimmte Parameter des zeitlichen Verlaufs der Phasenverschiebung $\Delta \phi$ und deren Größe an bestimmten Punkten zu untersuchen, wie etwa die Steigung der ermittelten Kurve. Betrachtet man beispielsweise den Zeitbereich t4 in Fig. 5, so zeigt sich hier ein näherungsweise linearer Anstieg der Phasenverschiebung $\Delta \phi$ mit der Zeit t. Bestimmt man die Steigung S1 an einem bestimmten Zeitpunkt, so läßt sich diese Steigung S1 einem bestimmten Betriebszustand der Pumpe zuordnen, wie etwa im vorliegenden Fall einer allmählichen Entleerung des Pumpengehäuses. Im Zuordnungs-Schritt wird dann die Größe der Steigung S1 einem vorbestimmten Steigungs-Wertebereich zugeordnet, d.h. klassifiziert, der mit einem Pumpen-Betriebszustand verknüpft ist.

Eine weitere Möglichkeit besteht darin, auf die Ermittlung des zeitlichen Verlaufs der Phasenverschiebung einen Transformations-Schritt folgen zu lassen, in dem der zeitliche Verlauf der Phasenverschiebung einer Fourier-Transformation unterzogen wird. Dies dient dazu, die im Signalverlauf enthaltenen Frequenzen zu untersuchen, da diese Aufschluß auf ein bestimmtes Betriebsverhalten geben. Beispielsweise sind im Zeitbereich t3 bei einem Vorliegen eines Luft-Wasser-Gemischs im Pumpengehäuse hochfrequente Signalanteile enthalten, die im Normalbetrieb nicht auftreten, so daß das Auftreten solcher Frequenzanteile ein klares Indiz für eine Fehlfunktion des Systems ist. Es wird daher die Amplitude der Fourier-Transformierten in einem vorbestimmten Frequenzbereich bestimmt, und in dem Zuordnungsschritt wird die bestimmte Amplitude einem vorbestimmten Amplituden-Wertebereich zugeordnet, der mit einem Pumpen-Betriebszustand verknüpft ist. Beispielsweise werden im vorliegenden Fall die hohen Frequenzanteile beim Vorliegen eines Luft-Wasser-Gemischs im Pumpengehäuse in einen vorbestimmten Amplituden-Wertebereich fallen, so daß eine eindeutige Klassifizierung der zuvor bestimmten Amplitude der Fourier-Transformierten möglich ist. Bei der Fourier-Transformation kann es sich um eine diskrete Fourier-Transformati-

on (DFT) oder um die spezielle Form der DFT, die sogenannte Fast-Fourier-Transformation (FFT) handeln, die vom Softwaremodul 20 des Microcontrollers 10 rechnerisch durchgeführt werden kann.

5 Im folgenden sollen weitere charakteristische Signalverläufe beschrieben werden.

10

15

20

25

30

35

Fig. 6 zeigt den zeitlichen Verlauf der Phasenverschiebung $\Delta \phi$ im Fall von Filterverschmutzungen, die einen ausreichenden Zustrom im Pumpen-Vorlauf behindern. Ausgehend vom normalen Pumpenbetrieb im Zeitbereich t2 kommt es hier zu einer kontinuierlichen Filterverschmutzung, die zu einem allmählichen Anstieg der Phasenverschiebung $\Delta \phi$ führt, bis der Filter vollständig verstopft ist (Zeitbereich t7) und die Phasenverschiebung einen sehr hohen, konstanten Wert erreicht. Die Steigung S2 im Zeitbereich t6 bietet somit einen Anhaltspunkt für das Vorliegen einer kontinuierlichen Filterverschmutzung. Zur Diagnose dieses Betriebszustands wird also in der zuvor beschriebenen Weise im Bestimmungs-Schritt die Größe der Steigung S2 des ermittelten zeitlichen Verlaufs der Phasenverschiebung $\Delta \phi$ bestimmt, und im Zuordnungs-Schritt wird die bestimmte Größe der Steigung S2 einem vorbestimmten Steigungs-Wertebereich zugeordnet, der im vorliegenden Fall dem Betriebszustand einer kontinuierlichen Filterverschmutzung entspricht.

Die vollständige Verschmutzung des Filters (Zeitbereich t7) kann auch schlagartig auftreten, wenn ein Fremdkörper in den Filter gelangt. Dieser Fall ist in den Zeitbereichen t8 und t9 dargestellt. Während zur Zeit t8 ein normaler, ordnungsgemäßer Pumpenbetrieb mit kleiner Phasenverschiebung $\Delta \phi$ vorliegt, steigt in dem Fall, in dem der Fremdkörper in den Filter gelangt, die Phasenverschiebung schlagartig an, so daß eine sehr hohe konstante Phasenverschiebung im Zeitbereich t9 erreicht wird. Beide Betriebszustände lassen sich mit Hilfe eines der oben beschriebenen Diagnose-Verfahren feststellen.

Schließlich ist in Fig. 7 ein Fall dargestellt, in dem sich der Synchronmotor der Pumpe in einem seiner beiden Totpunkte befindet und nicht anläuft. Auch dieser Betriebszustand ist diagnostizierbar, da das Phasenverschiebungs-Signal in diesem Fall einen sehr hohen konstanten Wert erreicht, ohne daß hochfrequente Signalanteile vorhanden sind. Beispielsweise bietet hier das Fehlen hochfrequenter Signalanteile eine Möglichkeit zur Diagnose, in.

dem die oben beschriebene Fourier-Transformation durchgeführt wird und der Verlauf der Amplitude der Fourier-Transformierten untersucht wird.

Das Flußdiagramm in Fig. 8 zeigt zusammenfassend einzelne Schritte des Verfahrensablaufs. In dem Meß-Schritt 30 werden zunächst die am Motor anliegende Wechselspannung U und der Motor-Wechselstrom I gemessen und in Rechteck-Signale U',I' umgewandelt. Im anschließenden Bestimmungs-Schritt 32 wird die Größe der Phasenverschiebung Δφ zwischen der Wechselspannung U' und dem Wechselstrom I' bestimmt, und es wird eine Ermittlung des zeitlichen Verlaufs sowie eine gleitende Mittelung durchgeführt. Außerdem kann in diesem Bestimmungs-Schritt 32 ein Parameter der ermittelten Kurve untersucht werden, also z.B. die Größe der Steigung. Der nachfolgende Zuordnungs-Schritt 34 dient dann dazu, das bestimmte Merkmal, also z.B. die Steigung der Kurve zu klassifizieren, d.h. einem vorbestimmten Wertebereich zuzuordnen, der mit einem Pumpen-Betriebszustand verknüpft ist, der einer Fehlfunktion der Synchronpumpe entsprechen kann. Wahlweise ist es möglich, daß der Bestimmungs-Schritt 32 den oben erwähnten Transformations-Schritt zur Frequenzanalyse mittels Fouriertransformation umfaßt und im Zuordnungs-Schritt 34 die Amplitude der Fouriertransformierten klassifiziert wird. Vier solcher zuzuordnender Betriebszustände 36,38,40,42 sind auf der rechten Seite in Fig. 8 dargestellt, nämlich das erfolgreiche Anlaufen der Synchronpumpe, das Ansaugen von Luft bei einem Wasserniedrigstand, das Nicht-Fördern der Pumpe bei einer Filterverstopfung und das Nicht-Anlaufen der Pumpe.

25

30

35

5

10

15

20

Das erfindungsgemäße Diagnoseverfahren sowie die entsprechende Vorrichtung eignen sich insbesondere zum Einsatz in Spülmaschinen, sind jedoch nicht hierauf beschränkt. Die Erfindung ist ohne weiteres auch im Zusammenhang mit Flüssigkeitskreisläufen anderer Art verwendbar, bei deren Betrieb bestimmte Betriebszustände der Synchronpumpe festgestellt und Fehlfunktionen diagnostiziert werden sollen.

Bereits die Ermittlung der Phasenverschiebung zwischen Spannung und Strom in einem einzelnen Meßpunkt liefert Auskünfte über den Betriebszustand des Motors im Hinblick auf einen bestimmten Parameter, beispielsweise das Lastmoment. Weitere Ermittlungen werden ermöglicht, wenn der zeitliche Verlauf der Phasenverschiebung zwischen Spannung und Strom durch meh-

rere, zeitlich aufeinander folgende Messungen festgestellt wird. Die Erfindung schließt beide Varianten des Meßverfahrens ein. Es ist jedoch auch möglich, das Verfahren so durchzuführen, daß nur eine der beiden Meßmethoden eingesetzt wird. Beide Verfahrensvarianten haben daher auch selbständige Bedeutung.

Patentansprüche

1. Verfahren zur Diagnose von Betriebszuständen (36,38,40,42) einer Synchronpumpe in einem Flüssigkeitskreislauf, insbesondere in einer Spülmaschine oder dergleichen, dadurch **gekennzeichnet**, daß in wenigstens einem Meß-Schritt (30) die am Pumpenmotor anliegende Wechselspannung (U) und der Motor-Wechselstrom (I) gemessen werden, daß in einem Bestimmungs-Schritt (32) zu wenigstens einem Zeitpunkt die Größe einer Phasenverschiebung ($\Delta \phi$) zwischen der Wechselspannung (U) und dem Wechselstrom (I) gemessen wird, aus den aufgenommenen Meßwerten die Phasenverschiebung ($\Delta \phi$) oder deren zeitlicher Verlauf ermittelt wird und ein Merkmal der Phasenverschiebung ($\Delta \phi$) oder deren zeitlicher Verlauf bestimmt wird, und daß in einem Zuordnungs-Schritt (34) das bestimmte Merkmal einem vorbestimmten Pumpen-Betriebszustand (36,38,40,42) zugeordnet wird.

15

20

25

10

1

- 2. Verfahren gemäß Anspruch 1, dadurch **gekennzeichnet**, daß die Größe der Phasenverschiebung ($\Delta \phi$) im Zuordnungs-Schritt (34) einem vorbestimmten Phasenverschiebungs-Wertebereich zugeordnet wird, der mit einem Pumpen-Betriebszustand (36,38,40,42), insbesondere dem Zustand "Wasserniedrigstand" verknüpft ist.
- 3. Verfahren gemäß Anspruch 1, dadurch **gekennzeichnet**, daß im Bestimmungs-Schritt (32) die Differenz zwischen der gemessenen Größe der Phasenverschiebung ($\Delta\phi 2$) und einer gespeicherten vorgegebenen Phasenverschiebung ($\Delta\phi 1$) bestimmt wird, und daß im Zuordnungs-Schritt (34) die so bestimmte Phasenverschiebungs-Differenz einem vorbestimmten Pumpen-Betriebszustand (36,38,40,42) zugeordnet wird.
- Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß im Bestimmungs-Schritt (32) die Größe der Phasenverschiebung (Δφ) zwischen der Wechselspannung (U) und dem Wechselstrom (I) zu verschiedenen Zeitpunkten bestimmt wird, aus den aufgenommenen Meßwerten der zeitliche Verlauf der Phasenverschiebung (Δφ) ermittelt wird und ein Merkmal des zeitlichen Verlaufs der Phasenverschiebung (Δφ) bestimmt wird, und daß im Zuordnungs-Schritt (34) das bestimmte Merkmal einem vorbestimmten Pumpen-Betriebszustand (36,38,40,42) zugeordnet wird.

5. Verfahren gemäß Anspruch 4, dadurch **gekennzeichnet**, daß im Zuordnungs-Schritt (34) das bestimmte Merkmal einem vorbestimmten Merkmals-Wertebereich zugeordnet wird, der mit einem Pumpen-Betriebszustand (36,38,40,42) verknüpft ist.

5

10

- 6. Verfahren gemäß Anspruch 5, dadurch **gekennzeichnet**, daß im Bestimmungs-Schritt (32) die Größe der Steigung (S1,S2) des zeitlichen Verlaufs der Phasenverschiebung ($\Delta \phi$) bestimmt wird, und daß in dem Zuordnungs-Schritt (34) die bestimmte Größe der Steigung (S1,S2) einem vorbestimmten Steigungs-Wertebereich zugeordnet wird, der mit einem Pumpen-Betriebszustand (36,38,40,42) verknüpft ist.
- 7. Verfahren gemäß Anspruch 4, dadurch **gekennzeichnet**, daß der Bestimmungs-Schritt (32) einen Transformations-Schritt umfaßt, in welchem der zeitliche Verlauf der Phasenverschiebung einer Fouriertransformation unterzogen wird und die Amplitude des Fouriertransformierten in einem vorbestimmten Frequenzbereich bestimmt wird, und daß in dem nachfolgenden Zuordnungs-Schritt (34) die bestimmte Amplitude einem vorbestimmten Amplituden-Wertebereich zugeordnet wird, der mit einem Pumpen-Betriebszustand (36,38,40,42) verknüpft ist.
 - 8. Verfahren gemäß Anspruch 7, dadurch **gekennzeichnet**, daß es sich bei der Fouriertransformation um eine diskrete Fouriertransformation (DFT) oder um eine Fast Fourier Transformation (FFT) handelt.

- 9. Verfahren gemäß einem der Ansprüche 4 bis 8, dadurch **gekennzeichnet**, daß die Ermittlung des zeitlichen Verlaufs der Phasenverschiebung im Bestimmung-Schritt (32) eine gleitende Mittelung beinhaltet.
- 10. Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Meß-Schritt (30) eine Umwandlung des gemessenen Wechselspannungs-Signals (U) und des gemessenen Wechselstrom-Signals (I) in Rechtecksignale (U',I') beinhaltet.
- 35 11. Vorrichtung zur Durchführung des Verfahrens gemäß einem der vorhergehenden Ansprüche, **gekennzeichnet** durch einen Microcontroller (10) mit einem Timer (12), der einen Spannungs-Eingang (14) zur Aufnahme eines

- Start-Signals und einen Strom-Eingang (16) zur Aufnahme eines Stop-Signals umfaßt, welche Spannungs- bzw. Strom-Eingänge (14,16) dazu ausgebildet sind, das Überschreiten eines vorbestimmten Spannungs- bzw. Stromsignalpegels als Start- bzw. Stop-Signal zu interpretieren, wobei der Timer-Inhalt zum zeitlichen Abstand zwischen Start-Signal und Stop-Signal proportional ist, und welcher Microcontroller (10) einen Speicher (18) zur Speicherung des Timer-Inhalts umfaßt.
- 12. Vorrichtung gemäß Anspruch 11, dadurch gekennzeichnet, daß der
 Speicher (18) eine Anzahl von Speicherplätzen zur Speicherung einer Abfolge von Speicherinhalten umfaßt.
- 13. Vorrichtung gemäß Anspruch 12, dadurch **gekennzeichnet**, daß der Microcontroller (10) eine Auswertungseinheit (20) zur Mittelung der Speicherinhalte umfaßt.
 - 14. Vorrichtung gemäß einem der vorhergehenden Ansprüche 11 bis 13, **gekennzeichnet** durch eine Schnittstelle zur Übermittlung betriebszustandsbezogener Daten an eine Steuereinheit zur Steuerung des Flüssigkeitskreislaufs.

25

20

Fig. 1

Fig. 2

Fig. 3

Fig. 5

INTERNATIONAL SEARCH REPORT

International Application No PCT/EP2005/001872

a. classification of subject matter IPC 7 H02P6/00 H02H A47L15/42 H02H7/08 F04B49/06 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) H02H F04B A47L H02P IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category ' US 2002/093306 A1 (JOHNSON STEVEN A ET AL) 1-3,11,χ 14 18 July 2002 (2002-07-18) 4,5,12 Υ abstract page 1, paragraph 1 - paragraph 7; figures 1,6-9page 2, paragraph 19 - page 3, paragraph 1-3,11,US 5 577 890 A (NIELSEN ET AL) Χ 14 26 November 1996 (1996-11-26) 4,5,12 Υ abstract column 2, line 4 - line 25; figures 1,2 column 3, line 3 - column 4, line 60 -/--Patent family members are listed in annex. Further documents are listed in the continuation of box C. χ Special categories of cited documents : "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docucitation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 16/06/2005 8 June 2005 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016

2

Hascher, T

INTERNATIONAL SEARCH REPORT

	Ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Tolevant to dam No.
Υ	US 4 896 101 A (COBB ET AL) 23 January 1990 (1990-01-23) abstract column 5, line 14 - line 57 column 8, line 16 - column 9, line 2; figures 1,4	4,5,12
A	US 5 362 206 A (WESTERMAN ET AL) 8 November 1994 (1994-11-08) abstract; figures 1,2	1-3,11, 14
A	EP 0 246 769 A (FRANKLIN ELECTRIC CO., INC) 25 November 1987 (1987-11-25) abstract; figures 1,2 page 2, line 4 - line 30	1-3,11, 14
Α	EP 0 326 893 A (HANNING ELEKTRO-WERKE GMBH & CO) 9 August 1989 (1989-08-09) abstract; figure 1	1
		
		-

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2005/001872

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 2002093306	A1	18-07-2002	CA	2367584 A1	12-07-2002
US 5577890	Α	26-11-1996	NONE		
US 4896101	Α	23-01-1990	NONE		
US 5362206	Α	08-11-1994	NONE		
EP 0246769	A	25-11-1987	US AU CA DE DE EP US ZA	4703387 A 597062 B2 7318387 A 1285313 C 3781457 D1 3781457 T2 0246769 A2 RE33874 E 8703546 A	27-10-1987 24-05-1990 26-11-1987 25-06-1991 08-10-1992 21-01-1993 25-11-1987 07-04-1992 27-01-1988
EP 0326893	Α	09-08-1989	DE EP	3803006 A1 0326893 A2	03-08-1989 09-08-1989

INTERNATIONALER RECHERCHENBERICHT

a. klassifizierung des anmeldungsgegenstandes IPK 7 H02P6/00 H02H7/08 A47L15/42 F04B49/06

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) $IPK\ 7 \quad H02P \quad H02H \quad F04B \quad A47L$

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X Y	US 2002/093306 A1 (JOHNSON STEVEN A ET AL) 18. Juli 2002 (2002-07-18) Zusammenfassung Seite 1, Absatz 1 - Absatz 7; Abbildungen 1,6-9 Seite 2, Absatz 19 - Seite 3, Absatz 33	1-3,11, 14 4,5,12
Κ Υ	US 5 577 890 A (NIELSEN ET AL) 26. November 1996 (1996-11-26) Zusammenfassung Spalte 2, Zeile 4 - Zeile 25; Abbildungen 1,2 Spalte 3, Zeile 3 - Spalte 4, Zeile 60 -/	1-3,11, 14 4,5,12

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	X Siehe Anhang Patentfamilie
 Besondere Kategorien von angegebenen Veröffentlichungen : "A" Veröffentlichung, die den aligemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach 	 "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeilegenden Prinzips oder der ihr zugrundeilegenden Theorie angegeben ist "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist
dem beanspruchten Prioritätsdatum veröffentlicht worden ist Datum des Abschlusses der internationalen Recherche	"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist Absendedatum des internationalen Recherchenberichts
8. Juni 2005	16/06/2005
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk	Bevollmächtigter Bediensteter
Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Hascher, T

INTERNATIONALER RECHERCHENBERICHT

C.(Fortsetz Kategorie°	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Kategorie	Dezelchinding der Verbriehlichding, soweit errordenich anter Angabe der im Bendort Kenning.	
Y	US 4 896 101 A (COBB ET AL) 23. Januar 1990 (1990-01-23) Zusammenfassung Spalte 5, Zeile 14 - Zeile 57 Spalte 8, Zeile 16 - Spalte 9, Zeile 2; Abbildungen 1,4	4,5,12
Α	US 5 362 206 A (WESTERMAN ET AL) 8. November 1994 (1994-11-08) Zusammenfassung; Abbildungen 1,2	1-3,11, 14
Α	EP 0 246 769 A (FRANKLIN ELECTRIC CO., INC) 25. November 1987 (1987-11-25) Zusammenfassung; Abbildungen 1,2 Seite 2, Zeile 4 - Zeile 30	1-3,11, 14
A	EP 0 326 893 A (HANNING ELEKTRO-WERKE GMBH & CO) 9. August 1989 (1989-08-09) Zusammenfassung; Abbildung 1	1
		·

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen
PCT/EP2005/001872

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
US 2002093306 A	18-07-2002	CA 2367584 A1	12-07-2002
US 5577890 A	26-11-1996	KEINE	
US 4896101 A	23-01-1990	KEINE	
US 5362206 A	08-11-1994	KEINE	
EP 0246769 A	25-11-1987	US 4703387 A AU 597062 B2 AU 7318387 A CA 1285313 C DE 3781457 D1 DE 3781457 T2 EP 0246769 A2 US RE33874 E ZA 8703546 A	27-10-1987 24-05-1990 26-11-1987 25-06-1991 08-10-1992 21-01-1993 25-11-1987 07-04-1992 27-01-1988
EP 0326893 A	09-08-1989	DE 3803006 A1 EP 0326893 A2	03-08-1989 09-08-1989