For all BJTs, assume: 
$$|V_{BE,on}|=0.7V$$
,  $\beta=100$ , and  $|V_{CE,sat}|=0.1V$  (use  $V_T=25mV$ ).  
For all MOSFETs, assume:  $|V_{TH}|=1V$  and  $\mu$   $C_{ox}=10\frac{\mu A}{V^2}$ .

Q1: Calculate the bias points of the transistors shown in the circuit to the right.

Assume 
$$V_{CC}=+10V$$
,  $I_{bias}=1mA$ ,  $\left(\frac{w}{L}\right)_1=500$ ,  $R_{G1}=70k\Omega$ ,  $R_{G2}=30k\Omega$ ,  $R_E=1k\Omega$ , and  $R_C=3k\Omega$ .

Verify the operating region of the transistors and report values for  $I_{D1}$ ,  $I_{C2}$ ,  $V_{DS1}$ , and  $V_{CE2}$ .



**Q2:** For the circuit shown to the right, assume  $R_E = 1k\Omega$ ,  $V_{BB} = +1V$ , and  $V_{CC} = +3V$ .  $v_{in}$  is a small-signal source. Calculate:

- a) Calculate the bias point parameters ( $I_C$  and  $V_{CE}$ ) for the transistor.
- b) Calculate the small-signal parameters and draw the small-signal equivalent circuit.
- c) Calculate the voltage gain of the circuit,  $A_v = \frac{v_{out}}{v_{in}}$ , using your small-signal model.
- d) Calculate the input resistance,  $R_{in}$ , of the circuit as marked on the circuit.
- e) Calculate the output resistance,  $R_{out}$ , of the circuit as marked on the circuit.



**Q3:** Consider the circuit shown to the right where  $\frac{W}{L} = 100$ . Resistor values are:  $R_{G1} = 1M\Omega$ ,  $R_{D1} = 10k\Omega$ ,  $R_{S1} = 500\Omega$ ,  $R_{L} = 20k\Omega$ , and  $R_{S} = 100k\Omega$ . The capacitors should be assumed short-circuits at the operating frequency of the circuit and  $V_{DD} = -V_{SS} = +3V$ .



- a) Calculate the bias point parameters ( $I_D$  and  $V_{DS}$ ) for the transistor and verify your assumed operating region.
- b) Calculate the small-signal parameters and draw the small-signal equivalent circuit.
- c) Calculate the voltage gain of the circuit,  $A_v = \frac{v_{out}}{v_s}$ , using your small-signal model.
- d) Calculate the input resistance,  $R_{in}$ , of the circuit as marked on the circuit.
- e) Calculate the output resistance,  $R_{out}$ , of the circuit as marked on the circuit.