Spectral Clustering Survey

HU, Pili*

May 14, 2012^\dagger

Abstract

Abstract.

^{*}hupili [at] ie [dot] cuhk [dot] edu [dot] hk $^\dagger {\rm Last}$ compile:May 14, 2012

Contents

1	Intr	roduction	3
	1.1	A Sample Spectral Clustering Algorithm	3
	1.2	Linear Algebraic Properties	3
2	Spectral Clustering Framework		
	2.1	Metric Formulation	3
	2.2	Spectral Embeding	3
	2.3	Clustering	3
3	Spectral Clustering Justification		
	3.1	Random Walk	3
	3.2	Normalized Cut	3
	3.3	Ratio Cut	3
	3.4	Conductance	4
	3.5	Matrix Perturbation	4
	3.6	Low Rank Approximation	4
	3.7	Density Estimation View	4
	3.8	Commute Time	4
4	Other Spectral Like Embedding		4
	4.1	MDS	4
	4.2	isomap	4
	4.3	Laplacian Eigenmap	4
	4.4	Hessian Eigenmap	4
	4.5	PCA	4
	4.6	LLE	4
	4.7	Kernel PCA	4
	4.8	Kernel Framework	4
	4.9	Graph Framework	4
5	5 Conclusion		4
A	Acknowledgements		
Re	References		
Appendix			5

1 Introduction

Spectral Clustering(SC) was used in several disciplines long ago. For example, computer vision[11], load balancing [4], electronics design [3], etc. Spectral Embeding(SE) was also widely discussed in the community[2]. Outside spectral community, the machine learning community also developed many linear or non-linear Dimensionality Reduction(DR) methods, like Principal Component Anslysis (PCA), Kernel PCA (KPCA)[10], Locally Linear Embedding (LLE)[7], etc. Other technique like Multi-Dimensional Scaling(MDS) was successfully used in computational psychology for a very long time[1], which can be viewed as both "embedding" or "dimensionality reduction".

According to our survey, although those methods target at different problem and are derived from different assumptions, they do share a lot in common. The most significant sign is that, the core procedure involves eigenvalue decomposition or singular value decomposition, aka "spectral". They all involve an intermidiate step of embedding high-dimensional / non-Euclidean / non-metric points into a low-dimensional Euclidean space (although some do not embed explicitly). In this case, we categorize all these algorithms as Spectral Embedding Technique(SET).

- 1.1 A Sample Spectral Clustering Algorithm
- 1.2 Linear Algebraic Properties
- 2 Spectral Clustering Framework
- 2.1 Metric Formulation
- 2.2 Spectral Embeding
- 2.3 Clustering
- 3 Spectral Clustering Justification
- 3.1 Random Walk

[von]

3.2 Normalized Cut

[shi]

3.3 Ratio Cut

[von]

3.4 Conductance

[von]

3.5 Matrix Perturbation

[andrew ng]

3.6 Low Rank Approximation

[matthew brand]

3.7 Density Estimation View

[mo chen, 2010]

3.8 Commute Time

[jihun ham, kernel]. view pseudo inverse of graph Laplacian by commute times on graphs.

4 Other Spectral Like Embedding

- 4.1 MDS
- 4.2 isomap
- 4.3 Laplacian Eigenmap
- 4.4 Hessian Eigenmap
- 4.5 PCA
- 4.6 LLE
- 4.7 Kernel PCA
- 4.8 Kernel Framework
- 4.9 Graph Framework
- 5 Conclusion

${\bf Acknowledgements}$

References

[1] I. Borg and P.J.F. Groenen. Modern multidimensional scaling: Theory and applications. Springer Verlag, 2005.

- [2] M. Brand and K. Huang. A unifying theorem for spectral embedding and clustering. In *Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics*, 2003.
- [3] S.W. Hadley, B.L. Mark, and A. Vannelli. An efficient eigenvector approach for finding netlist partitions. *Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on*, 11(7):885–892, 1992.
- [4] B. Hendrickson and R. Leland. Multidimensional spectral load balancing. Report SAND93-0074, Sandia National Laboratories, Albuquerque, NM, ¡¡missing¿¿:¡¡missing¿¿, 1993.
- [5] Pili Hu. Matrix calculus. GitHub, https://github.com/hupili/tutorial/tree/master/matrix-calculus, 3 2012. HU, Pili's tutorial collection.
- [6] Pili Hu. Tutorial collection. GitHub, https://github.com/hupili/tutorial, 3 2012. HU, Pili's tutorial collection.
- [7] S.T. Roweis and L.K. Saul. Nonlinear dimensionality reduction by locally linear embedding. *Science*, 290(5500):2323–2326, 2000.
- [8] L.K. Saul and S.T. Roweis. An introduction to locally linear embedding. Technical report, NYU, 2000.
- [9] L.K. Saul and S.T. Roweis. Think globally, fit locally: unsupervised learning of low dimensional manifolds. The Journal of Machine Learning Research, 4:119–155, 2003.
- [10] B. Schölkopf, A. Smola, and K.R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. *Neural computation*, 10(5):1299–1319, 1998.
- [11] J. Shi and J. Malik. Normalized cuts and image segmentation. *Pattern Analysis and Machine Intelligence*, *IEEE Transactions on*, 22(8):888–905, 2000.

Appendix