Optikai alapmérések

Kalló Bernát – Mérés: 2012.05.09. – Leadás: 2012.06.08.

1. Törésmutató meghatározása

Két közeg határán áthaladó fénysugár megtörik, úgy, hogy a beesési és törési szögek szinuszának aránya

$$\frac{\sin \alpha}{\sin \beta} = n_{2,1}$$

állandó, a két közeg relatív törésmutatója.

Megmértük egy félkör alakú lencse egyenes oldalán belépő fénysugár törési szögét. Valójában a kilépő fénysugár szögét mértük, de mivel a görbe oldalon való kilépéskor a sugár merőleges a határfelületre, az iránya ott nem változik meg. A mért adatok az alábbi táblázatban láthatók:

α (°)	β (°)
0	0
10	7
20	13
30	20
40	26
50	31
60	36
70	39
80	42

1. táblázat. Beesési és törési szögek belépéskor

Ezt grafikonon ábrázolva:

1. ábra. Beesési (α) és törési (β) szögek belépéskor

Az illesztett egyenes meredeksége $n_{2,1}=1,481$, tehát ez a műanyagnak a levegőre vonatkoztatott törésmutatója.

Ezután elvégeztük a kísérletet fordítva is, a kilépéskor történő törést mérve.

α (°)	β (°)
0	0
10	14
15	21
20	29
25	37
30	46
35	56
40	69

2. táblázat. Beesési és törési szögek kilépéskor

Grafikonon ábrázolva:

2. ábra. Beesési (α) és törési (β) szögek kilépéskor

Az illesztett egyenes meredeksége $n_{1,2}=0,686$. A kapott két törésmutató jó közelítéssel egymás reciproka, $n_{2,1}\cdot n_{1,2}=1,48\cdot 0,69=1,02$.

2. Törésmutató meghatározása teljes visszaverődés esetén

Egy prizmán áthaladó fénysugarat vizsgálunk, hogy milyen α beesési szögnél van a teljes visszaverődés határa, vagyik mikor lesz a kilépési szög 90°. Megmutatható, hogy α alapján a törésmutató a

$$n = \sqrt{\frac{1 + 2\cos\phi\sin\alpha + \sin^2\alpha}{\sin^2\phi}}$$

képlettel meghatározható, ahol ϕ a prizma szöge.

A mérés alapján $\alpha = 5^{\circ}$, ebből n = 1,504.

A teljes visszaverődéshez tartozó határszög

$$n\sin\gamma_h=1$$

képletből

$$\gamma_h = \sin^{-1} \frac{1}{n} = 0,665 = 38,1^{\circ}$$