

T S2/5/1

2/5/1

DIALOG(R) File 351:Derwent WPI
 (c) 2005 Thomson Derwent. All rts. reserv.

011515754 **Image available**

WPI Acc No: 1997-492240/199746

XRPX Acc No: N97-409730

Ultra-compact stepping motor e.g for lens advancement device - has two coils and magnet with sections alternately magnetised into different poles

Patent Assignee: CANON KK (CANO); CANON KASEI KK (CANO-N)

Inventor: AOSHIMA C

Number of Countries: 009 Number of Patents: 014

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week	
EP 801459	A1	19971015	EP 97105567	A	19970403	199746	B
JP 9331666	A	19971222	JP 9748501	A	19970217	199810	
JP 10075558	A	19980317	JP 9769183	A	19970306	199821	
US 5831356	A	19981103	US 97831863	A	19970402	199851	
SG 52948	A1	19980928	SG 971072	A	19970408	199904	
TW 355238	A	19990401	TW 97104318	A	19970403	199933	
KR 98076197	A	19981116	KR 9712787	A	19970408	200002	
JP 3133270	B2	20010205	JP 9748501	A	19970217	200110	
KR 225767	B1	19991015	KR 9712787	A	19970408	200110	
CN 1166719	A	19971203	CN 97110341	A	19970408	200154	
EP 801459	B1	20011010	EP 97105567	A	19970403	200167	
DE 69707186	E	20011115	DE 97607186	A	19970403	200176	
			EP 97105567	A	19970403		
JP 3530705	B2	20040524	JP 9769183	A	19970306	200434	
CN 1109398	C	20030521	CN 97110341	A	19970408	200541	

Priority Applications (No Type Date): JP 9769183 A 19970306; JP 96111201 A 19960408; JP 96186672 A 19960627; JP 9748501 A 19970217

Cited Patents: 5.Jnl.Ref; AT 273289; JP 61128762; JP 61128763; JP 61254061; JP 62141955; JP 7015939; US 3479539

Patent Details:

Patent No	Kind	Lan Pg	Main IPC	Filing Notes
EP 801459	A1	E	32 H02K-037/12	
Designated States (Regional): DE FR GB				
JP 9331666	A	12	H02K-037/14	
JP 10075558	A	11	H02K-037/14	
US 5831356	A		H02K-037/10	
SG 52948	A1		H02K-037/14	
TW 355238	A		H02K-037/00	
KR 98076197	A		H02K-037/00	
JP 3133270	B2	10	H02K-037/14	Previous Publ. patent JP 9331666
KR 225767	B1		H02K-037/00	
CN 1166719	A		H02K-037/10	
EP 801459	B1	E	H02K-037/12	
Designated States (Regional): DE FR GB				
DE 69707186	E		H02K-037/12	Based on patent EP 801459
JP 3530705	B2	10	H02K-037/14	Previous Publ. patent JP 10075558
CN 1109398	C		H02K-037/10	

Abstract (Basic): EP 801459 A

The motor comprises hollow cylindrical magnet (1), output shaft (7), coils (2,3), stators (18,19) with a 45 degree offset, coil (2) between the outer and inner tubes of stator (18), inner poles

BEST AVAILABLE COPY

(18c,18d) displaced by 180 degrees to assume the same phase and coil (3) which magnetises stator (19). The magnetic flux generated by coil (2) crosses magnet (1) between outer magnetic poles (18a,18b) and inner poles (18c,18d), and the flux generated by coil (3) crosses magnet (10) between the outer and inner magnetic poles (19) to increase the output of the motor. Cylindrical non-magnetic coupling ring (20) has grooves (20c,20d) displaced at 45 degrees from grooves (20a,20b).

The coils (2,3) magnetise poles (18a,18b) as N poles, poles (18c,18d) as S poles, (19a,19b) as S poles and poles (19c,19d) as N poles. The rotor turns anticlockwise by 45 degrees, when the current supply to coil (2) is inverted and the magnet turns a further 45 degrees. The current supply is then inverted again and the current to coils (2,3) is switched so that magnet (1) rotates to positions corresponding to the supply phases.

ADVANTAGE - Has high compact force despite compact configuration.

Dwg.1/32

Title Terms: ULTRA; COMPACT; STEP; MOTOR; LENS; ADVANCE; DEVICE; TWO; COIL; MAGNET; SECTION; ALTERNATE; MAGNETISE; POLE

Derwent Class: P81; S06; V06

International Patent Class (Main): H02K-037/00; H02K-037/10; H02K-037/12; H02K-037/14

International Patent Class (Additional): G02B-007/04; H02K-001/12; H02K-001/27; H02K-007/06; H02K-037/24

File Segment: EPI; EngPI

?

(10)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-331666

(13)公開日 平成9年(1997)12月22日

(51)Int.CI*	識別記号	序文登録番号	F.I	技術表示箇所
H02K 37/14	636	H02K 37/14	636B 636M	
G02B 7/04			37/24	Q
H02K 37/24		G02B 7/04	B D	

審査請求 未請求 請求項の数17 FD (全:12頁)

(21)出願番号	特開平9-48501
(22)出願日	平成9年(1997)2月17日
(31)優先権主張番号	特開平8-111201
(32)優先日	平8(1996)4月8日
(33)優先権主張国	日本 (JP)

(71)出願人	000001007 キヤノン株式会社 東京都大田区下丸子3丁目80番2号
(72)発明者	青島 力 東京都大田区下丸子3丁目80番2号 キヤ ノン株式会社内
(74)代理人	弁護士 田中 増廣 (3人名)

(54)【発明の名称】 モータ及びレンズの締出し装置

(57)【要約】

【目的】 新規な構成の超小型のモータを提供し、また、その超小型のモータを用いたレンズの締出し装置を提供する。

【構成】 円筒形状に形成されるとともにその少なくとも外周面を周方向に分割して異なる極に交互に着磁されたマグネットを備え、該ロータの軸方向に第1のコイルとロータと第2のコイルを順に配置し、第1のコイルにより励磁される第1の外側磁極及び第1の内側磁極を前記マグネットの外周面及び内周面に対向させて該マグネットの一端側を挿み込むとともに、第2のコイルにより励磁される第2の外側磁極及び第2の内側磁極をマグネットの外周面及び内周面に対向させてマグネットの他端を挿み込むようにしてモータを構成したものであり、このように構成されたモータをレンズの締出し装置に用い、そのモータの出力軸の回転運動を変換手段により直進運動に変換して直進手段を駆動し、レンズを締り出す

ようにする。

【特許請求の範囲】

【請求項 1】 円筒形状に形成されるとともに少なくともその外周面を周方向に n 分割して異なる極に交互に着磁されたマグネットを備え、該マグネットの軸方向に第 1 のコイルと前記マグネットと第 2 のコイルを順に配置し、前記第 1 のコイルにより励磁される第 1 の外側磁極及び第 1 の内側磁極を前記マグネットの一端の外周面及び内周面に対向させるとともに、前記第 2 のコイルにより励磁される第 2 の外側磁極及び第 2 の内側磁極を前記マグネットの他端側の外周面及び内周面に対向させることを特徴とするモータ。

【請求項 2】 前記マグネットの内周面は周方向に n 分割して異なる極に交互に着磁され、且つ隣接する外周面とも異なる極に着磁されていることを特徴とする請求項 1 に記載のモータ。

【請求項 3】 前記第 1 の外側磁極と前記第 1 の内側磁極は第 1 のステータを形成するとともに、前記第 2 の外側磁極と第 2 の内側磁極は第 2 のステータを形成することを特徴とする請求項 1 または 2 に記載のモータ。

【請求項 4】 前記第 1 のステータの第 1 の外側磁極と前記第 2 のステータの第 2 の外側磁極とは円筒形状の接続部材で接続されていることを特徴とする請求項 3 に記載のモータ。

【請求項 5】 互いに対向する前記第 1 の外側磁極と前記第 1 の内側磁極は互いに対向する前記第 2 の外側磁極と前記第 2 の内側磁極に対し $180^\circ / n$ 度ずれて配置されることを特徴とする請求項 1 に記載のモータ。

【請求項 6】 前記第 1 のコイルと前記第 2 のコイルは前記マグネットと同時に形成されていることを特徴とする請求項 1 に記載のモータ。

【請求項 7】 前記第 1 の内側磁極は第 1 のヨークで形成されるとともに前記第 2 の内側磁極は第 2 のヨークで形成され、前記第 1 の外側磁極は第 3 のヨークで形成されるとともに前記第 2 の外側磁極は第 4 のヨークで形成され、第 1 の外側磁極と前記第 2 の外側磁極は円筒形状の接続部材で接続されていることを特徴とする請求項 1 に記載のモータ。

【請求項 8】 円周方向に等分割され半径方向に異なる極が交互に着磁された円筒形状の永久磁石から成るマグネットリングと、該マグネットリングと同心上でマグネットリングの両端に配置された第 1 コイル及び第 2 コイルと、前記第 1 コイルの内径部に插入されかつ前記マグネットリングの内径部に対してすきまを持って対向するように配置された軟磁性材料から成る筒状の第 1 ヨークと、前記第 2 コイルの内径部に插入されかつ前記マグネットリングの内径部に対してすきまを持って対向するように配置された軟磁性材料から成る筒状の第 2 ヨークと、前記第 1 ヨーク、前記第 2 ヨーク及び前記マグネットリングの外径部を覆い、軟磁性材料から成りかつ前記マグネットリングと前記第 1 ヨークとが軸線方向に重なる位置において円周方向の所定の範囲の内径が小さい第 1 の磁極部と前記マグネットリングと前記第 2 ヨークとが軸線方向に重なる位置において円周方向の所定の範囲の内径が大きい第 2 の磁極部を持つ第 3 ヨークとを備え、前記第 3 ヨークの第 1 磁極部と第 2 磁極部とは円周方向に $90^\circ / n$ 度ずれていることを特徴とするモータ。

【請求項 9】 円周方向に等分に $2n$ 分割され半径方向に異なる極が交互に着磁された円筒形状の永久磁石から成るマグネットリングと、該マグネットリングと同心上でマグネットリングの両端に配置された第 1 コイル及び第 2 コイルと、前記第 1 コイルの内径部に插入されかつ前記マグネットリングの内径部に対してすきまを持って対向するように配置された軟磁性材料から成る筒状の第 1 ヨークと、前記第 2 コイルの内径部に插入されかつ前記マグネットリングの内径部に対してすきまを持って対向するように配置された軟磁性材料から成る筒状の第 2 ヨークと、前記第 1 ヨーク、前記第 2 ヨーク及び前記マグネットリングの外径部を覆い、軟磁性材料から成りかつ前記マグネットリングと前記第 1 ヨークとが軸線方向に重なる位置において円周方向の所定の範囲の内径が小さい第 1 の磁極部と前記マグネットリングと前記第 2 ヨークとが軸線方向に重なる位置において円周方向の所定の範囲の内径が大きい第 2 の磁極部を持つ第 3 ヨークとを備え、前記第 3 ヨークの第 1 磁極部と第 2 磁極部とは円周方向に $90^\circ / n$ 度ずれていることを特徴とするモータ。

【請求項 10】 請求項目記載のモータにおいて、前記第 3 ヨークの第 1 磁極部及び第 2 磁極部は、第 3 ヨークの他の部分よりも内方に厚く形成することによって構成されていることを特徴とするモータ。

【請求項 11】 請求項目記載のモータにおいて、前記第 3 ヨークの第 1 磁極部及び第 2 磁極部は、第 3 ヨークの他の部分よりも内方に突出するように形成することによって構成されていることを特徴とするモータ。

【請求項 12】 円周方向に等分に $2n$ 分割され半径方向に異なる極が交互に着磁された円筒形状の永久磁石から成るマグネットリングと、該マグネットリングと同心上でマグネットリングの両端に配置された第 1 コイル及び第 2 コイルと、前記第 1 コイルの内径部に插入されかつ前記マグネットリングの内径部に対してすきまを持って対向するように配置された軟磁性材料から成る筒状の第 1 ヨークと、前記第 2 コイルの内径部に插入されかつ前記マグネットリングの内径部に対してすきまを持って対向するように配置された軟磁性材料から成る筒状の第 2 ヨークと、前記第 1 ヨーク、前記第 2 ヨーク及び前記マグネットリングの外径部を覆い、軟磁性材料から成りかつ前記マグネットリングと前記第 1 ヨークとが軸線方向に重なる位置において円周方向の所定の範囲の第 1 の切り欠き穴と前記マグネットリングと前記第 2 ヨークとが軸線方向に重なる位置において円周方向の所定の範囲の第 2 の切り欠き穴を持つ第 3 ヨークとを備え、前記第 3 ヨークの第 1 の切り欠き穴と第 2 の切り欠き穴とは円周方向に $90^\circ / n$ 度ずれていることを特徴とするモータ。

【請求項 13】 円筒形状に形成されるとともに少なくともその外周面を周方向に n 分割して異なる極に交互に

導かれたマグネットを備え、該マグネットの軸方向に第1のコイルと前記マグネットと第2のコイルを順に配置し、前記第1のコイルにより励磁される第1の外側磁極及び第1の内側磁極を前記マグネットの一端の外周面及び内周面に對向させるとともに、前記第2のコイルにより励磁される第2の外側磁極及び第2の内側磁極を前記マグネットの他端側の外周面及び内周面に對向させてモータを得成し、該モータのマグネットの出力軸の回転運動を変換手段により直進運動に変換して直進手段とする特徴とする輸出し装置。

【請求項1-4】 前記直進手段はレンズを保持するレンズホルダを固定していることを特徴とする請求項1-3に記載のモータ。

【請求項1-5】 円周方向に等分割され半径方向に異なる極が交互に巻かれた円筒形状の永久磁石から成るマグネットリングと、該マグネットリングと同心上でマグネットリングの両端に配設された第1コイル及び第2コイルと、前記第1コイルの内径部に插入されかつ前記マグネットリングの内径部に対してすきまを持って対向するよう配設された軟磁性材料から成る筒状の第1ヨークと、前記第2コイルの内径部に插入されかつ前記マグネットリングの内径部に対してすきまを持って対向するよう配設された軟磁性材料から成る筒状の第2ヨークと、前記第1ヨーク、前記第2ヨーク及び前記マグネットリングの外径部を覆い、软磁性材料から成る第3ヨークと、前記マグネットリングと固定されて前記マグネットリングと一体に回転する出力軸と、該出力軸の回転運動を直進運動に変換する変換手段と、該変換手段を介して前記出力軸に連結されて直進運動するように配設された直進手段と、を有することを特徴とする輸出し装置。

【請求項1-6】 請求項1-5記載の輸出し装置において、前記変換手段は、前記出力軸に設けられた第1蝶合手段と、前記直進手段に設けられ前記第1蝶合手段と蝶合する第2の蝶合手段と、前記直進手段の直進移動を可能にすると共に回転を規制するように前記直進手段と前記第1ヨークまたは第2ヨークとの間に設けられた規制手段とから成ることを特徴とする輸出し装置。

【請求項1-7】 請求項1-5または1-6のいずれか1つに記載の輸出し装置において、前記直進手段には、レンズを保持するレンズホルダを直進手段と共に直進させるためにレンズホルダが固定されていることを特徴とする輸出し装置。

【発明の詳細な説明】

【0.0.0.1】

【産業上の利用分野】 本発明は、超小型に構成した円筒形状のモータ及びその超小型のモータを例えカメラのレンズを駆動する輸出し装置に適用したモータ及び輸出し装置に関する。

【0.0.0.2】

【従来の技術】 従来例の小型円筒形のステップモータと

しでは、図1-6に示すものがある。ボビン1-0-1にステータコイル1-0-5が同心状に巻回され、ボビン1-0-1は2個のステータヨーク1-0-6で軸方向から保持固定されおり、かつステータヨーク1-0-6にはボビン1-0-1の内径面円周方向にステータ歯1-0-6-aと1-0-6-bが交互に配置され、ケース1-0-3には、ステータ歯1-0-6-aまたは1-0-6-bと一体のステータヨーク1-0-6が固定されてステータ1-0-2が構成されている。

【0.0.0.3】 2組のケース1-0-3の一方にはフランジ1-1-5と軸受1-0-8が固定され、他方のケース1-0-3には、他の軸受1-0-8が固定されている。ロータ1-0-9はロータ軸1-1-0に固定されたロータ磁石1-1-1から成り、ロータ磁石1-1-1はステータ1-0-2のステータヨーク1-0-6-aと放射状の空階部を形成している。そして、ロータ軸1-1-0は2個の軸受1-0-8の間に回転可能に支持されている。このように小型に構成されたステップモータによってカメラのレンズを駆動するようにしたものは特開平3-11B0823号公報で公知のものになっている。これは円筒状のステップモータを撮影レンズの周囲に配置し、ステップモータの出力軸によりメネジを駆動させ、レンズを保持するレンズホルダに固定されたオネジを光軸と平行方向に前後させるものである。

【0.0.0.4】

【発明が解決しようとする課題】 しかしながら、上記従来の小型のステップモータはロータの外周にケース1-0-3、ボビン1-0-1、ステータコイル1-0-5、ステータヨーク1-0-6等が同心状に配置されているためにモータの外形寸法が大きくなってしまう欠点があった。また、ステータコイル1-0-5への通電により発生する磁束は図1-7に示すように主としてステータ歯1-0-6-aの端面1-0-6-a-1とステータ歯1-0-6-bの端面1-0-6-b-1とを通過するためロータ磁石1-1-1に効果的に作用しないのでモータの出力は高くならない欠点がある。

【0.0.0.5】 また、従来のレンズ輸出し装置では、円筒状のステップモータをレンズの周囲に配置したため、円周方向での占有面積が大きく、その他の機構、例えばシャッタを駆動するためのアクチュエータ等を同一面内に配置することが困難な場合がある。

【0.0.0.6】 したがって、本発明の第1の目的は、新規な構成の超小型のモータを提供することにある。本発明の第2の目的は、モータの製造を容易なものとすることである。本発明の第3の目的は、コンパクトでしかも駆動力の高いモータを提供することにある。本発明の第4の目的は、コンパクトな輸出し装置を提供することにある。本発明の第5の目的は、コンパクトなレンズ輸出し装置を提供することにある。

【0.0.0.7】

【課題を解決するための手段】 上記目的を達成するために、本発明は、円筒形状に形成されるとともに少なくともその外周面を周方向にn分割して異なる極に交互に巻

曲されたマグネットを備え、該マグネットの軸方向に第1のコイルと前記マグネットと第2のコイルを順に配置し、前記第1のコイルにより励磁される第1の外側磁極及び第1の内側磁極を前記マグネットの一端の外周面及び内周面に對向させるとともに、前記第2のコイルにより励磁される第2の外側磁極及び第2の内側磁極を前記マグネットの他端側の外周面及び内周面に對向させることを特徴とするモータを用するものである。

【0008】上記構成において、モータの径はマグネットの外周面に第1、第2の外側磁極を對向させることで決め、モータの軸方向の長さは第1のコイルとマグネットと第2のコイルを順に配置することで決められ、モータを非常に小型化する事ができるものである。また、第1のコイルにより発生する磁束は第1の外側磁極と第1の内側磁極との間のロータであるマグネットを横切るので、効果的にロータであるマグネットに作用し、第2のコイルにより発生する磁束も第2の外側磁極と第2の内側磁極との間のロータであるマグネットを横切るので、効果的にロータであるマグネットに作用し、モータの出力を高める。

【0009】本発明は、また、円周方向に等分割され半径方向に異なる極が交互に巻かれた円筒形状の永久磁石から成るマグネットリングと、該マグネットリングと同心上でマグネットリングの両端に配置された第1コイル及び第2コイルと、前記第1コイルの内径部に插入されかつ前記マグネットリングの内径部に対してもすきまを持って対向するように配置された軟磁性材料から成る筒状の第1ヨークと、前記第2コイルの内径部に插入されかつ前記マグネットリングの内径部に対してもすきまを持って対向するように配置された軟磁性材料から成る筒状の第2ヨークと、前記第1ヨーク、前記第2ヨーク及び前記マグネットリングの外径部を覆い軟磁性材料から成る第3ヨークとを備えたことを特徴とするモータを用するものである。

【0010】本発明は、さらに、円周方向に等分に2n分割され半径方向に異なる極が交互に巻かれた円筒形状の永久磁石から成るマグネットリングと、該マグネットリングと同心上でマグネットリングの両端に配置された第1コイル及び第2コイルと、前記第1コイルの内径部に插入されかつ前記マグネットリングの内径部に対してもすきまを持って対向するように配置された軟磁性材料から成る筒状の第1ヨークと、前記第2コイルの内径部に插入されかつ前記マグネットリングの内径部に対してもすきまを持って対向するように配置された軟磁性材料から成る筒状の第2ヨークと、前記第1ヨーク、前記第2ヨーク及び前記マグネットリングの外径部を覆い軟磁性材料から成りかつ前記マグネットリングと前記第1ヨークとが軸線方向に重なる位置において円周方向の所定の範囲の内径が小さい第1の磁極部と前記マグネットリングと前記第2ヨークとが軸線方向に重なる位置において

円周方向の所定の範囲の内径が小さい第2の磁極部を持つ第3ヨークとを備え、前記第3ヨークの第1磁極部と第2磁極部とは円周方向に90°ずれていることを特徴とするモータを用するものである。

【0011】本発明は、また、円周方向に等分に2n分割され半径方向に異なる極が交互に巻かれた円筒形状の永久磁石から成るマグネットリングと、該マグネットリングと同心上でマグネットリングの両端に配置された第1コイル及び第2コイルと、前記第1コイルの内径部に插入されかつ前記マグネットリングの内径部に対してもすきまを持って対向するように配置された軟磁性材料から成る筒状の第1ヨークと、前記第2コイルの内径部に插入されかつ前記マグネットリングの内径部に対してもすきまを持って対向するように配置された軟磁性材料から成る筒状の第2ヨークと、前記第1ヨーク、前記第2ヨーク及び前記マグネットリングの外径部を覆い、軟磁性材料から成りかつ前記マグネットリングと前記第1ヨークとが軸線方向に重なる位置において円周方向の所定の範囲の第1の切り欠き穴と前記マグネットリングと前記第2ヨークとが軸線方向に重なる位置において円周方向の所定の範囲の第2の切り欠き穴とを持つ第3ヨークとを備え、前記第3ヨークの第1の切り欠き穴と第2の切り欠き穴とは円周方向に90°ずれていることを特徴とするモータを用するものある。

【0012】本発明は、また、円筒形状に形成されるとともに少なくともその外周面を周方向にn分割して異なる極に交互に巻かれたマグネットを備え、該マグネットの軸方向に第1のコイルと前記マグネットと第2のコイルを順に配置し、前記第1のコイルにより励磁される第1の外側磁極及び第1の内側磁極を前記マグネットの一端の外周面及び内周面に對向させるとともに、前記第2のコイルにより励磁される第2の外側磁極及び第2の内側磁極を前記マグネットの他端側の外周面及び内周面に對向させてモータを構成し、該モータのマグネットの出力軸の回転運動を変換手段により直進運動に変換して直進手段とすることを特徴とする換出し装置を用するものである。

【0013】本発明は、また、円周方向に等分割され半径方向に異なる極が交互に巻かれた円筒形状の永久磁石から成るマグネットリングと、該マグネットリングと同心上でマグネットリングの両端に配置された第1コイル及び第2コイルと、前記第1コイルの内径部に插入されかつ前記マグネットリングの内径部に対してもすきまを持って対向するように配置された軟磁性材料から成る筒状の第1ヨークと、前記第2コイルの内径部に插入されかつ前記マグネットリングの内径部に対してもすきまを持って対向するように配置された軟磁性材料から成る筒状の第2ヨークと、前記第1ヨーク、前記第2ヨーク及び前記マグネットリングの外径部を覆い、軟磁性材料から成る第3ヨークと、前記第1ヨーク、前記第2ヨーク及び前記マグネットリングの外径部を覆い、軟磁性材料から成る第4ヨークと、前記マグネットリングと固定されて

前記マグネットリングと一体に回転する出力軸と、該出力軸の回転運動を直進運動に変換する変換手段と、該変換手段を介して前記出力軸に連結されて直進運動するように配置された直進手段と、を有することを特徴とする抽出装置を採用するものである。

【0014】本発明では、前述の形式の抽出装置において、前記直進手段には、レンズを保持するレンズホルダを直進手段と共に直進させたのにレンズホルダが固定され、レンズが抽出せる抽出装置を採用するものである。

【0015】

【実施例】次に、図面を参照して本発明の実施例を詳細に説明する。

【0016】(実施例1) 図1～図3は、本発明の実施例1のステップモータを示す図であり、そのうち、図1はステップモータの分解斜視図であり、図2はステップモータの組み立て後の軸方向の断面図であり、図3は図2のA-A線での断面図およびB-B線での断面図である。

【0017】図1～図3において、1はロータを構成する円筒形状のマグネットであり、このロータであるマグネット1は、その外周表面を円周方向にn分割して(本実施例では4分割して)S極、N極が交互に巻き込まれた巻部1a、1b、1c、1dとし、この巻部1a、1bがS極に巻きされ、巻部1b、1dがN極に巻きされている。7はロータ軸となる出力軸で、この出力軸7はロータであるマグネット1に固定されている。これら出力軸7とマグネット1でロータを構成している。2及び3は円筒形状のコイルであり、コイル2及び3は前記マグネット1と同心でかつ、マグネット1を軸方向に挟む位置に配置され、コイル2及び3はその外径が前記マグネット1の外径とほぼ同じ寸法である。

【0018】1.8および1.9は軟磁性材料からなる第1のステータ及び第2のステータで、第1のステータ1.8及び第2のステータ1.9の位相は $180^\circ/n$ 度、即ち 45° ずれて配置され、これらの第1のステータ1.8及び第2のステータ1.9は外筒及び内筒からなっている。第1のステータ1.8の外筒及び内筒の間にコイル2が設けられ、このコイル2が通電されることにより第1のステータ1.8が励磁される。第1のステータ1.8の外筒及び内筒はその先端部が外側磁極1.8a、1.8b及び内側磁極1.8c、1.8dを形成しており、この内側磁極1.8cと内側磁極1.8dの位相は互いに同位相となるように $360^\circ/(n/2)$ 度、即ち 180 度ずれて形成され、内側磁極1.8cに対して外側磁極1.8aが対向配置しており、また内側磁極1.8dに対し外側磁極1.8bが対向配置している。

【0019】第1のステータ1.8の外側磁極1.8a、1.8b及び内側磁極1.8c、1.8dはマグネット1の一端側の外周面及び内周面に對向してマグネット1の一端側

を挟み込むように設けられる。また第1のステータ1.8の穴1.8eには回転軸7の一端部が回転可能に嵌合する。

【0020】第2のステータ1.9の外筒及び内筒の間にコイル3が設けられ、このコイル3が通電されることにより第2のステータ1.9が励磁される。第2のステータ1.9の外筒及び内筒はその先端部が外側磁極1.9a、1.9b及び内側磁極1.9c、1.9dを形成しており、この内側磁極1.9cと内側磁極1.9dの位相は互いに同位相となるように $360^\circ/(n/2)$ 度、即ち 180 度ずれて形成され、内側磁極1.9cに対し外側磁極1.9aが対向配置しており、内側磁極1.9dに対し外側磁極1.9bが対向配置している。第2のステータ1.9の外側磁極1.9a、1.9b及び内側磁極1.9c、1.9dは永久磁石1の他端側の外周面及び内周面に對向して永久磁石1の他端側を挟み込むように設けられる。また第2のステータ1.9の穴1.9eには回転軸7の他端部が回転可能に嵌合する。

【0021】したがって、コイル2により発生する磁束は外側磁極1.8a、1.8bと内側1.8c、1.8dとの間のロータであるマグネット1を横切るので、効果的にロータであるマグネット1に作用し、コイル3により発生する磁束は外側磁極1.9a、1.9bと内側磁極1.9c、1.9dとの間のロータであるマグネット1を横切るので、効果的にロータであるマグネット1に作用し、モータの出力を高める。

【0022】2.0は非磁性材料からなる円筒形状部材としての連結リングであり、この連結リング2.0の内側の一端側には溝2.0a、2.0bが設けられ、他端側には溝2.0a、2.0bに対し位相を 45 度ずらした溝2.0c、2.0dが設けられ、溝2.0a、2.0bに第1のステータ1.8の外側磁極1.8a、1.8bを嵌合し、溝2.0c、2.0dに第2のステータ1.9の外側磁極1.9a、1.9bを嵌合し、これら嵌合部分を接着剤により固定して、連結リング2.0に第1のステータ1.8及び第2のステータ1.9が取り付けられるものである。これら第1のステータ1.8と第2のステータ1.9は互いに外側磁極1.8a、1.8b及び内側磁極1.8c、1.8dの先端と外側磁極1.9a、1.9b及び内側磁極1.9c、1.9dの先端とを対向させ、外側磁極1.8a、1.8bと外側磁極1.9a、1.9bとの間を連結リング2.0の内面側の突出部2.0e、2.0fの幅だけ離して連結リング2.0に固定されている。

【0023】図2はステップモータの断面図であり、図3(a)、(b)、(c)、(d)は図2のA-A線での断面図を示し、図3(e)、(f)、(g)、(h)は図2のB-B線での断面図を示している。図3の(a)と(e)とが同時点での断面図であり、図3の(b)と(f)とが同時点での断面図であり、図3の(c)と(g)とが同時点での断面図であり、図3の(d)と(h)とが同時点での断面図である。

【0024】次に、本発明のステップモータの動作を説明する。図3の(a)、(e)の状態からコイル2及び3に通電して、第1のステータ18の外側磁極18a、18bをN極とし、内側磁極18c、18dをS極とし、第2のステータ19の外側磁極19a、19bをS極とし、内側磁極19c、19dをN極に励磁すると、ロータであるマグネット1は反時計方向に45度回転し、図3の(b)と(d)に示す状態になる。

【0025】次にコイル2への通電を反転させ、第1のステータ18の外側磁極18a、18bをS極とし、内側磁極18c、18dをN極とし、第2のステータ19の外側磁極19a、19bをS極とし、内側磁極19c、19dをN極に励磁すると、ロータであるマグネット1は更に反時計方向に45度回転し、図3の(c)と(e)に示す状態になる。

【0026】次に、コイル3への通電を反転させ、第2のステータ19の外側磁極19a、19bをN極とし、内側磁極19c、19dをS極とし、第1ステータ18の外側磁極18a、18bをS極とし、内側磁極18c、18dをN極に励磁すると、ロータであるマグネット1はさらに反時計方向45度回転し、図3の(d)と(e)に示す状態になる。以後、このようにコイル2及びコイル3への通電方向を順次切り換えていくことによりロータであるマグネット1は通電位相に応じた位置へと回転していくものである。

【0027】ここで、このような構成のステップモータがモータを超小型化する上で最適な構成であることについて述べる。ステップモータの基本構成の特徴について述べると、第1に、マグネットを中空の円筒形状に形成していること、第2に、マグネットの外周面を周方向にn分割して異なる極に交互に巻き戻していること、第3に、マグネットの軸方向に第1のコイルとマグネットと第2のコイルを順に配置していること、第4に第1、第2のコイルにより励磁される第1、第2のステータの外側磁極及び内側磁極をマグネットの外周面及び内周面に対向させていること、である。

【0028】したがって、このステップモータの径はマグネットの径にステータの磁極を対向して設けるだけの大きさがあればよく、また、ステップモータの軸方向の長さマグネットの長さに第1のコイルと第2のコイルの長さを加えただけの長さがあればよいことになる。このため、ステップモータの大きさは、マグネット及びコイルの径と長さによって決まるもので、マグネット及びコイルの径と長さをそれぞれ非常に小さくすればステップモータを超小型化する事ができるものである。

【0029】この時、マグネット及びコイルの径と長さをそれぞれ非常に小さくすると、ステップモータとしての出力特性を維持することが難しくなるが、これはマグネットを中空の円筒形状に形成し、この中空の円筒形状に形成されたマグネットの外周面及び内周面に第1、第

2のステータの外側磁極及び内側磁極を対向させる単純な構造によりステップモータとしての出力特徴の問題を解決している。この時、後述する実施例2の如く、マグネットの外周面だけでなく、マグネットの内周面も円周方向に巻き戻されば、モータの出力を更に効果的にすることができる。

【0030】(実施例2) 図4は本発明の実施例2を示すものである。前述した本発明の実施例1において、ロータであるマグネット1は、その外周表面を円周方向にn分割してS極、N極に交互に巻き戻しているが、本発明の実施例2においては、ロータであるマグネット1の外周表面だけではなく、図4に示す如くロータであるマグネット1の内周表面も円周方向にn分割して(本実施例では4分割して) S極、N極を交互に巻き戻しており、モータの出力を更に効果的にしているものである。この時、マグネット1の内周表面は隣接する外周表面と異なる極に巻き戻されており、巻き戻部1a、1cの内周表面がN極に巻き戻され、巻き戻部1b、1dの内周表面がS極に巻き戻されている。この実施例2では、ロータであるマグネット1の外周表面だけでなく、ロータであるマグネット1の内周表面も円周方向にn分割してS極、N極に交互に巻き戻していることから、マグネット1の内周表面と第1のステータ18の内側磁極18c、18d及び第2のステータ19の内側磁極19c、19dとの関係でモータの出力が増大するものである。

【0031】(実施例3) 図5は本発明の実施例3を示すものである。前述した本発明の実施例1において、第1のステータ18及び第2のステータ19は外筒及び内筒を一体的に形成しているが、本発明の実施例3においては、第1のステータ18及び第2のステータ19は図5に示す如く、外筒及び内筒を別々に形成しているものである。即ち、第1のステータ18の内筒はその先端の内側磁極18c、18dとともに第1のヨーク181を形成し、第1のステータ18の外筒はその先端の外側磁極18a、18bとともに第3のヨーク182を形成する。また、第2のステータ19の内筒はその先端の内側磁極19c、19dとともに第2のヨーク191を形成し、第2のステータ19の外筒はその先端の外側磁極19a、19bとともに第4のヨーク192を形成するものである。実施例3においても、ロータであるマグネット1の外周表面だけでなく、実施例2に示す如くロータであるマグネット1の内周表面も円周方向にn分割してS極、N極を交互に巻き戻すると、モータの出力を更に効果的に増大させることができるものである。

【0032】(実施例4) 図6～図8は、本発明の実施例4のステップモータを示す図であり、図6は、ステップモータの縦断面図であり、図7は、図6の線2-2における横断面図であり、図8は、図6の線3-3における横断面図である。

【0033】図6～図8において、1はリング状の永久

磁石からなるマグネットリングであり、図7、図8に示すように、内周方向を4等分されて交互にS極とN極とが半径方向に着目されている。

【0034】2、3は、それぞれ、コイルである。コイル2、コイル3は、マグネットリング1に対して同軸位置にあり、マグネットリング1の両端に配置されている。

【0035】4は軟磁性材料から成る第1ヨークであり、コイル2の内径に挿入されかつマグネットリング1の内径面に対向している筒状の磁極部4aを持つ。

【0036】5は軟磁性材料から成る第2ヨークであり、コイル3の内径に挿入されかつマグネットリング1の内径面に対向している筒状の磁極部5aを持つ。

【0037】6は軟磁性材料から成る第3ヨークであり、第3ヨークは筒形状であり、図6に示すように、コイル2、コイル3、マグネットリング1の外周を覆うように構成されている。また、第3ヨークは第1ヨーク4、第2ヨーク5と固着されている。

【0038】7は出力軸であり、出力軸7の外径部7cによってマグネットリング1と一緒に回転するよう構成されている。出力軸7は、また、大径部7aの両側の部分である7a、7bにおいて、第1ヨーク4の開口部4b、第2ヨーク5の開口部5bと回転可能に支持されている。

【0039】8は直進筒であり、直進筒8は、その外周部8aが第1ヨーク4の内径部4cに滑動可能に嵌合しており、また、メニジ部8bが形成されていて、出力軸7に形成されたオネジ部7dと螺合している。また、直進筒8には、軸線方向の溝8cが形成されており、第1ヨーク4のダボ4dは円周方向の動きが規制されて軸線方向の移動のみが可能なようにこの溝8cに滑動可能に嵌合している。この構成により、出力軸7の回転によって直進筒8は軸線方向に移動させられる。

【0040】第3ヨーク6には、マグネットリング1の外周面に対向し、ほぼマグネットリング1と第1ヨーク4の磁極部4aの軸線方向で重複する範囲で、かつ円周方向の所定の範囲内で、内径が小さい部分6e、6f(図8参照)が形成されている。また、マグネットリング1の外周面に対向し、ほぼマグネットリング1と第2ヨーク5の磁極部5aの軸線方向で重複する範囲で、かつ円周方向の所定の範囲内で、内径が小さい部分6a、6b(図7参照)が形成されている。なお、上記の所定範囲は、この実施例では、マグネットリング1の分極のピッチ角度の 90° である。

【0041】図7、図8に示すように、第3ヨーク6の部分6e、6fと部分6a、6bとは 45° 位相がずれて形成されている。この位相のずれの角度はマグネットリング1の極数を $2n$ とすると、 $90^\circ/n$ であることが望ましい。この実施例では、 $n=2$ であるから、 45° 位相がずれている。

【0042】コイル2に通電を行うことにより、第1ヨーク4の磁極部4aと第3ヨーク6の部分6e、6fとの間で磁束が発生するが、内径寸法が大きい部分6e、6f(図8参照)と第1ヨーク4の磁極部4aとの間では磁束はほとんど発生しない。

【0043】同様に、コイル3に通電を行うことにより、第2ヨーク5の磁極部5aと第3ヨーク6の部分6a、6bとの間で磁束が発生するが、内径寸法の大きい部分6a、6b(図7参照)と第2ヨーク5の磁極部5aとの間では磁束はほとんど発生しない。

【0044】コイル2、コイル3への通電方向を交互に切り換えていくことにより、部分6e、6bと部分6a、6fはS極、あるいはN極に通電方向に応じて切り換わり、マグネットリング1は回転していく。マグネットリング1の回転により、出力軸7のオネジに螺合している直進筒8は軸線方向に繰り出されていく。

【0045】この実施例によれば、コイル11により磁束が発生する位置とコイル2により磁束が発生する位置との回転方向に関する相対的な位置関係は、同一部材、即ち第3ヨーク6の部分6a、6bと6e、6fとの相対的な位置によって決定されるので、精度が良く、各個体差による性能のバラツキは少なくとも一定の性能を確保して製造することは容易である。

【0046】また、この実施例では、コイルは出力軸と同軸(同心上)に構成しており、全体としては、小径の筒形になっているので、カメラの鏡筒内に配置した場合、前述の特開平3-180823号公報等で公知となっている円筒状のステップモータに比べて鏡筒内の円周方向に占める割合は小さくても、同一平面内で他の構造部材やシャッタ等の駆動源を容易に配置することが可能になる。

【0047】図9は、本発明の各実施例のステップモータを撮影レンズの移動に用いた総出し装置の分解斜視図である。総出し装置では、ステップモータを鏡筒内に配置し、その出力軸を介して直進筒8によって撮影レンズを光軸方向に移動させるものである。

【0048】図9において、9は撮影レンズである。10はレンズホルダであり、その内径部10aに撮影レンズ9を保持する。直進筒8は、レンズホルダ10と光軸方向に一体に移動するように、レンズホルダ10の耳部10bに取付けられている。

【0049】11は、ガイド軸であり、レンズホルダ10の突出部10cに固定されている。12は鏡筒(図示せず)に固定されたガイド管である。ガイド軸11はガイド管12の内径部12aに滑動可能に嵌合し、レンズホルダ10を光軸方向に移動するように案内する。

【0050】13はコイルスプリングであり、レンズホルダ10と鏡筒地板(図示せず)との間に作用し、レンズホルダ10と鏡筒地板(図示せず)とを互いに離す方向に付勢している。これにより、前述の出力軸7と第1

ヨーク4、第2ヨーク5との間のガタ及び出力軸7のオネジ部7cと直進筒8のメネジ部との間のガタ等が無くされる。また、レンズホルダ10のガイド軸11を回転中心とした回転方向の規制は地板(図示せず)からのダボ1.4がレンズホルダ10のロ字溝10dに摺動可能に嵌合することで行われる。

【0051】前述の構成によれば、出力軸7の回転により直進筒8は光軸方向で前後に動かされ、出力軸7の回転量に応じて撮影レンズ9は光軸方向に駆動される。撮影レンズ9の駆動源としてのステップモータの鏡筒円周方向(矢印D方向)に占めるわりあい小さいものとなり、同一平面内には他のシャッタを駆動する駆動源を配置することが可能になる。

【0052】出力軸7のオネジ部7cと直進筒8のメネジ部8bとから成る突出し機構は第3ヨーク6内に収容されているので、駆動源を含む突出し装置はコンパクトなものになる。この実施例では、直進筒8によりレンズホルダを駆動したが被駆動部材としてはこれに限らず、ファインダのレンズやアーチャサイズ切替用マスク等を駆動してもよい。

【0053】本発明の実施例4においては、ロータであるマグネット1の外周表面だけではなく、内周表面も円周方向にn分割して(本実施例では4分割して)S極、N極を交互に巻きしているが、この実施例4においても実施例1のように、ロータであるマグネット1の外周表面だけを円周方向にn分割して(本実施例では4分割して)S極、N極が交互に巻きされるようにしてもよいものである。

【0054】(実施例5) 図10～図12は、本発明の実施例5のステップモータを示す図であり、図10は、ステップモータの第3ヨークのみを示す縦断面図であり、図11は、図10の線5における横断面図であり、図12は第3ヨークのみを示す斜視図である。

【0055】この実施例では、第3ヨーク6の内径が小さい部分6a、6b、6f、6e(内方に突出する部分)を外周面からの半抜きによって形成している。この構造は、実施例4の構造と比べて、製造が容易となる利点がある。

【0056】(実施例6) 図13～図15は、本発明の実施例6のステップモータを示す図であり、図13は、本発明の実施例6のステップモータの縦断面図であり、図14は、図13の線9～9における横断面図であり、図15は、ステップモータの第3ヨークのみを示す斜視図である。

【0057】実施例6では、実施例4の第3ヨーク6の代わりに、第3ヨーク16が設けられている。第3ヨーク16には、実施例4における第3ヨーク6の軸線方向の範囲内において部分6a、6bと対応する範囲の内径が大きな部分6c、6dの代わりに、切り欠き穴16c、16dが形成され、同様に、軸線方向の範囲内にお

いて、部分6e、6fに対応する範囲の6e、6fの代わりに、切り欠き穴16e、16fが形成されている。そして、切り欠き穴16c、16dと切り欠き穴16e、16fとは円周方向に45°ずれている。これにより、コイル3への通電により発生する磁束は第2ヨーク5と部分16a、16bとの間を通る。これは、実施例4における第3ヨーク6の6a、6bと第2ヨーク5との関係と同じである。

【0058】同様に、コイル2への通電により発生する磁束は前述の切り欠き穴16c、16f以外のところと第2ヨーク5との間、即ち、実施例4の第1ヨーク4と第3ヨーク6の6e、6fの間と同じ位置を通る。

【0059】これにより、実施例4、実施例5と同様に、コイル2、コイル3に通電する通電方向を順次変化させていくことにより、マグネットリミング1を回転させていくことができる。

【0060】実施例5の第3ヨーク16は実施例4、実施例5の第3ヨーク6に比べて凸部6a、6b、6e、6fがないため、その分マグネットリング1の外径寸法を大きくすることができ、モータの出力を高めることができる。なお、切り欠きを第3ヨークに形成する代わりに、第1ヨーク、第2ヨークに形成してもよい。

【0061】以上の各実施例ではステップモータを例にして、説明しているが、本発明は、これに限定されるものではなく、ホール素子等を用いてロータ位置に応じて通電切り換えを行えば、ブラシレスモータとしても使用することは勿論である。

【0062】

【発明の効果】以上詳記したように、本発明によれば、円筒形状に形成されるとともに少なくともその外周面を周方向にn分割して異なる極に巻きされたマグネットを備え、外マグネットの軸方向に第1のコイルと前記マグネットと第2のコイルを順に配置し、前記第1のコイルにより励磁される第1の外側磁極及び第1の内側磁極を前記マグネットの一端側の外周面及び内周面に対向させるとともに、前記第2のコイルにより励磁される第2の外側磁極及び第2の内側磁極を前記マグネットの他端側の外周面及び内周面に対向させてモータを構成したものであるから、従来とは異なる全く新規な構成のモータとすることができる、モータを超小型化する上で最適な構成である。

【0063】また、マグネットを中空の円筒形状に形成し、この中空の円筒形状に形成されたマグネットの外周面及び内周面に第1、第2の外側磁極及び内側磁極を対向させることによりモータとして効果的な出力を得ることができるものである。

【0064】また、位相のずれた第1、第2のステータを同一部品で構成できるので、モータの組み立てを容易にでき、且つ、性能のばらつきが少ないモータが得られる。このようなモータをカメラのレンズを駆動する繰出

し装置に適用することにより、コンパクトな検出し装置が得られるものである。

【図面の簡単な説明】

【図1】図1は、本発明の実施例1に係るステップモータの分解斜視図である。

【図2】図2は、図1に示すステップモータの組立て完成状態の断面図である。

【図3】図3は、図2に示すステップモータのロータの回転動作説明図である。

【図4】図4は、本発明の実施例2に係るステップモータのロータの回転動作説明図である。

【図5】図5は、本発明の実施例3に係るステップモータの分解斜視図である。

【図6】図6は、本発明の実施例4に係るステップモータの断面図である。

【図7】図7は、図6に示すステップモータの線2-2における断面図である。

【図8】図8は、図6に示すステップモータの線3-3における断面図である。

【図9】図9は、各実施例のステップモータを撮影レンズの移動に用いた検出し装置の分解斜視図である。

【図10】図10は、本発明の実施例5に係るステップモータの第3ヨークを示す断面図である。

【図11】図11は、図10に示すステップモータの線5-6における断面図である。

【図12】図12は、図10に示すステップモータの第3ヨークの斜視図である。

【図13】図13は、本発明の実施例6に係るステップモータの断面図である。

【図14】図14は、図13に示すステップモータの線

9-9における断面図である。

【図15】図15は、図13に示すステップモータの第3ヨークの斜視図である。

【図16】図16は、従来のステップモータを示す断面図である。

【図17】図17は、図16に示す従来のステップモータの磁束の説明図である。

【符号の説明】

1	マグネット
2	第1のコイル
3	第2のコイル
4	第1のヨーク
5	第2のヨーク
6	第3のヨーク
7	出力軸
8	直進筒
9	レジス
10	レシスホルダ
16	第3ヨーク
18	第3のステータ
18a, 18b	外側磁極
18c, 18d	内側磁極
181	第1のヨーク
182	第3のヨーク
19	第2のステータ
19a, 19b	外側磁極
19c, 19d	内側磁極
191	第2のヨーク
192	第4のヨーク
20	接続部材としての連結リング

【図1】

【図7】

[図2]

[図8]

[図9]

[図3]

[図4]

[図10]

〔图1-4〕

[图6]

【 1-2】

[图 1-3]

〔图 15〕

[図17]

【図16】

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.