Cognome		
Nome		

Informatica teledidattica 2019/2020 Scritto di ALGEBRA del 03/09/2020

L'esame ha la durata di due ore. Rispondere negli spazi predisposti e giustificare le risposte in modo chiaro ed esauriente. Risposte non giustificate non saranno accreditate.

Esercizio 1.

(a) Si determinino gli elementi invertibili in \mathbb{Z}_{10} e si spieghi perché in \mathbb{Z}_{10} non esistono elementi nilpotenti¹.

(b) Risolvere il seguente sistema di congruenze:

$$\begin{cases} X \equiv 3 \pmod{9} \\ X \equiv 5 \pmod{8} \\ X \equiv 7779^{673} \pmod{7} \end{cases}.$$

(c) Sia $n = a_1 10 + a_0$ un numero intero, a_0 ed a_1 essendone le cifre decimali. Si dimostri che $5n \equiv 5a_0 - 2a_1 \pmod{13}$ e se ne deduca un criterio di divisibilità per 13 di un numero n con due cifre decimali.

¹Un elemento a di \mathbb{Z}_{10} è nilpotente se esiste un intero non negativo n tale che $a^n=0$ in \mathbb{Z}_{10}

Esercizio 2.

(a) Sia $\{u, v, w, u+v+w\}$ un insieme di generatori per uno spazio vettoriale di dimensione 3. Dimostrare che u+v non può essere il vettore nullo.

(b) Sia 1 il vettore di \mathbb{R}^3 le cui entrate sono tutte pari a 1. Sia f l'endomorfismo di \mathbb{R}^3 tale che f(x,y,z)=2(x+y+z)1. Scrivere la matrice associata ad f rispetto alla base canonica di \mathbb{R}^3 e determinare basi del nucleo e dell'immagine di f.

 $(\mathbf{c})~$ Discutere la diagonalizzabilità dell'endomorfismo f del punto precedente e determinare un'eventuale base diagonalizzante.

Esercizio 3.

(a) Si consideri il gruppo simmetrico su 4 elementi. Siano t, i ed s_2 il numero delle trasposizioni, il numero degli elementi di periodo 2 ed il numero dei sottogruppi di ordine 2, rispettivamente. Si calcolino t, i ed s_2 e si stabilisca quali relazioni intercorrono tra essi.

(b) Si consideri il gruppo simmetrico su 4 elementi. Siano c, ed s_3 il numero dei 3-cicli ed il numero dei sottogruppi di ordine 3, rispettivamente. Si calcolino c ed s_3 e si stabilisca quali relazioni intercorrono tra essi.