

CHANDIGARH UNIVERSITY
UNIVERSITY INSTITUTE OF ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Submitted By: Lipakshi	Submitted To: Navneet Kaur
Subject Name	Machine Learning Lab
Subject Code	20CSP-317
Branch	Computer Science
Semester	5th

UNIVERSITY INSTITUTE OF ENGINEERING

Department of Computer Science & Engineering

Discover. Learn. Empower.

Subject Name: Machine Learning Lab

Subject Code: 20CSP-317

Submitted to: Submitted by:

Faculty name: Navneet Kaur Name: Lipakshi

UID: 20BCS5082

Section: 607

Group: B

Ex. No	List of Experiments	Date	Condu c t (MM: 12)	Viva (MM : 10)	Record (MM: 8)	Total (MM: 30)	Remarks/Signature
1.1	Implement Exploratory Data Analysis on any data set.						
1.2	Implement Data Visualization.	23-08-2 022					
1.3	Data analysis of any data set via graphs using linear regression.						
1.4	Implement support Vector machine on any data set and analyse the accuracy with logistic regression.	10-10-2 022					
2.2	Implement Naive Bayes on any Data Set.	10-10-2 022					
2.3							

CHANDIGARH UNIVERSITY Discover. Learn. Empower.

2.4					
3.1	Implement K-Means	07-11-2 022			
3.2	Implement PCA	07-11-2 022			
3.3	Implement Association Rules Minning	07-11-2 022			

Experiment 10

Q1. Task to be done/ Which logistics used: Implement Association Rules Minning.

Code: import pandas as pd import numpy as np from
mlxtend.frequent_patterns import apriori, association_rules
df = pd.read_csv('GroceryStoreDataSet.csv', names = ['products'], sep = ',') df.head()

In [6]: df.shape
Out[6]: (20, 1)

UNIVERSITY

df.shape
data = list(df["products"].apply(lambda x:x.split(",")))
data

#Let's transform the list, with one-hot encoding from mlxtend.preprocessing import TransactionEncoder a = TransactionEncoder() a_data = a.fit(data).transform(data) df = pd.DataFrame(a_data,columns=a.columns_) df = df.replace(False,0) df

COMPUTER SCIENCE & ENGINEERING

Discover. Learn. Empower.

	<pre>#Let's transform the list, with one-hot encoding from mlxtend.preprocessing import TransactionEncoder a = TransactionEncoder() a_data = a.fit(data).transform(data) df = pd.DataFrame(a_data,columns=a.columns_) df = df.replace(False,0) df</pre>												
Out[8]:		BISCUIT	BOURNVITA	BREAD	соск	COFFEE	CORNFLAKES	JAM	MAGGI	MILK	SUGER	TEA	
	0	True	0	True	0	0	0	0	0	True	0	0	
	1	True	0	True	0	0	True	0	0	True	0	0	
	2	0	True	True	0	0	0	0	0	0	0	True	
	3	0	0	True	0	0	0	True	True	True	0	0	
	4	True	0	0	0	0	0	0	True	0	0	True	
	5	0	True	True	0	0	0	0	0	0	0	True	
	6	0	0	0	0	0	True	0	True	0	0	True	
	7	True	0	True	0	0	0	0	True	0	0	True	
	8	0	0	True	0	0	0	True	True	0	0	True	
	9	0	0	True	0	0	0	0	0	True	0	0	
	10	True	0	0	True	True	True	0	0	0	0	0	
	11	True	0	0	True	True	True	0	0	0	0	0	
	12	0	True	0	0	True	0	0	0	0	True	0	
	13	0	0	True	True	True	0	0	0	0	0	0	

#set a threshold value for the support value and calculate the support value. df = apriori(df, min_support = 0.2, use_colnames = True, verbose = 1) df

#Let's view our interpretation values using the Associan rule function. df_ar = association_rules(df, metric = "confidence", min_threshold = 0.6) df_ar

		_ar = associ _ar	lation_rule	s(ar, metric =	"confidence", n	iin_thre	esnota = (0.6)			
Out[10]:		antacadante	consequents	antecedent support	consequent support	support	confidence	li ft	leverage	conviction	
		antecedents	consequents	antecedent support	consequent support	Support	connuence	·inc	leverage	CONVICTION	
	0	(MILK)	(BREAD)	0.25	0.65	0.2	0.800000	1.230769	0.0375	1.75	
	1	(SUGER)	(BREAD)	0.30	0.65	0.2	0.666667	1.025641	0.0050	1.05	
	2	(CORNFLAKES)	(COFFEE)	0.30	0.40	0.2	0.666667	1.666667	0.0800	1.80	
	3	(SUGER)	(COFFEE)	0.30	0.40	0.2	0.666667	1.666667	0.0800	1.80	
	4	(MAGGI)	(TEA)	0.25	0.35	0.2	0.800000	2 285714	0.1125	3.25	

Evaluation Grid (To be created as per the SOP and Assessment guidelines by the faculty):

Sr. No. Parameters Marks Obtained Maximum Marks

1

2

3

4