Part the problem, we know that

B = [0 + 1]

a) Pure horizontal translation.
$$t = [tx, 0.0]^T$$
, $R = [$
 $E = [0 0 - tx] = [tx] R$

If from the lecture, we know that $S = eR = 0$
 \Rightarrow , we get $eA = eB = [0]$
 \Rightarrow , we get $eA = eB = [0]$

So, $eB = [0] = [0] = [0]$

So, $eB = [0] = [0] = [0]$

So, $eB = [0] = [0] = [0]$
 $eA = [0] = [0] = [0]$
 $eA = [0] = [0] = [0]$
 $eA = [0] = [0] = [0]$
 $eA = [0] = [0] = [0]$

Thus, opipolar rectification is possible

b) Gilen $eA = [0] = [0]$

Thus, opipolar rectification is possible

b) Gilen $eA = [0] = [0]$

 $E = \begin{bmatrix} 0 & 0 & ty \\ 0 & 0 & -tx \end{bmatrix} \quad A \text{ coording to } \begin{cases} EeB = 0 \\ E^{7}eA = 0 \end{cases}$ $\Rightarrow eA = eB = \begin{bmatrix} tx \\ \sqrt{tx^{2} + ty^{2}}, \sqrt{tx^{2} + ty^{2}}, 0 \end{bmatrix}^{T}$