Ene	ergy is stored in a metal wire that is extended elastically.	
(a)	Explain what is meant by extended elastically.	
(b)	Show that the SI units of energy per unit volume are kg m ⁻¹ s ⁻² .	[2]
		[0]
		[2]
(c)	a wire extended elastically, the elastic energy per unit volume X is given by	
	$X = C\varepsilon^2 E$	
	where C is a constant, ε is the strain of the wire, and E is the Young modulus of the wire.	
	Show that <i>C</i> has no units.	

1

_		D:		,	
2	(a)	Distinguish	between	mass and	weiant.

mass:	 	 	
weight:	 	 	
			[2]

(b) An object O of mass 4.9 kg is suspended by a rope A that is fixed at point P. The object is pulled to one side and held in equilibrium by a second rope B, as shown in Fig. 2.1.

Fig. 2.1

Rope A is at an angle θ to the horizontal and rope B is horizontal. The tension in rope A is 69 N and the tension in rope B is T.

(i) On Fig. 2.1, draw arrows to represent the directions of all the forces acting on object O. [2]

(ii)	Calculate	
	1. the angle θ ,	
		<i>θ</i> =° [3]
	2. the tension <i>T</i> .	
		T-
		$T = \dots N [2]$
		$T = \dots N [2]$
		<i>T</i> =

3	(a)		object falls vertically from rest through air. State and explain the energy conversions toccur as the object falls.
			[3]
((b)	A b	all of mass $150\mathrm{g}$ is thrown vertically upwards with an initial speed of $25\mathrm{ms^{-1}}$.
		(i)	Calculate the initial kinetic energy of the ball.
			kinetic energy = J [3]
		(ii)	The ball reaches a height of 21 m above the point of release.
			the ball rising to this height, calculate
			1. the loss of energy of the ball to air resistance,
			energy loss =
			2. the average force due to the air resistance.
			force = N [2]

4	(a)	Define <i>pressure</i> .
		[1]
	(b)	the kinetic model to explain the pressure exerted by a gas.
		[4]
	(c)	Explain whether the collisions between the molecules of an ideal gas are elastic or inelastic.
		[2]

5	(a)	State three conditions required for maxima to be formed in an interference pattern produced by two sources of microwaves.
		1
		2
		3
		[3]
	(b)	A microwave source M emits microwaves of frequency 12 GHz. Show that the wavelength

(b) A microwave source M emits microwaves of frequency 12 GHz. Show that the wavelength of the microwaves is 0.025 m.

[3]

(c) Two slits $\rm S_1$ and $\rm S_2$ are placed in front of the microwave source M described in (b), as shown in Fig 5.1.

Fig. 5.1 (not to scale)

The distances $\rm S_1O$ and $\rm S_2O$ are equal. A microwave detector is moved from O to P. The distance $\rm S_1P$ is 0.75 m and the distance $\rm S_2P$ is 0.90 m.

	The microwave detector gives a maximum reading at O.
	State the variation in the readings on the microwave detector as it is moved slowly along the line from O to P.
	[3]
(d)	The microwave source M is replaced by a source of coherent light.
	State two changes that must be made to the slits in Fig. 5.1 in order to observe an interference pattern.
	1
	2[2]

Two resistors A and B have resistances R_1 and R_2 respectively. The resistors are connected in series with a battery, as shown in Fig. 6.1. 6 Fig. 6.1 The battery has electromotive force (e.m.f.) *E* and zero internal resistance. (a) State the energy transformation that occurs in (i) the battery, (ii) the resistors.[1] **(b)** The current in the circuit is I. State the rate of energy transformation in (i) the battery, (ii) the resistor A.[1]

(c) The resistors are made from metal wires. Data for the resistors are given in Fig. 6.2.

resistor	Α	В
resistivity of metal	ρ	ho/2
length of wire	1	1
diameter of wire	d	2 <i>d</i>

Fig. 6.2

information	from Fig.	6.2 to	determine	the ratio
miomiation	noming.	0.2 10	actorrinic	tile ratio

 $\frac{\text{power dissipated in A}}{\text{power dissipated in B}}.$

ratio –	[3]
1au0 =	 JO!

(d) The resistors A and B are connected in parallel across the same battery of e.m.f. E. Determine the ratio

power dissipated in A power dissipated in B

ratio =	[2]
(a)(0) =	1/1

7 ((a)	Describe the two main results of the α -particle scattering experiment. result 1:
		result 2:
((b)	[3] Relate each of the results in (a) with the conclusions that were made about the nature of
		atoms. result 1:
		result 2:
		[3]