(BM-310) - Control Systems for Biomedical Engineers

Course Outline:

Theory:

1. Introduction

- 1. Introduction to control systems
- 2. Open loop and close loop control systems.
- 3. Examples of control systems in Biomedical Engineering.

2. Modeling in the Frequency Domain

- 1. Electrical/Electronic/Mechanical systems transfer function
- 2. Electric circuits analog

3. Modeling in the Time Domain

- 1. General State-Space Representation and Analysis
- 2. Converting a Transfer Function to State Space & vice versa.

4. Time Response

- 1. Poles, Zeros, and System Response
- 2. Transient and steady state response of first and second order systems

5. Reduction of Multiple Subsystems

- 1. Block Diagrams and reduction techniques
- 2. Signal-Flow Graphs and Mason's Rule.

6. Control System Stability

1. Routh-Hurwitz Criterion and Special Cases

7. Root Locus Techniques

- 1. Root Locus and its Properties
- 2. Sketching the Root Locus plots.

8. Frequency Response Techniques

- 1. Bode and Polar Plots
- 2. Stability via the Nyquist Diagram
- 3. Gain Margin and Phase Margin

List of Practicals:

- 1. To be familiar with the Matlab programming and control system toolbox.
- 2. Find the closed-loop transfer function of the system.
- 3. To find the impulse and step responses of the control system.
- 4. To compute the transient response parameters of control systems.
- 5. To find the partial fraction residues and poles of the system.
- 6. To find the Eigen values of the system.
- 7. Transfer function to state space conversion.
- 8. To find the closed-loop pole locations to check the stability of the system.
- 9. To obtain the root locus of the system.
- 10. To obtain the Bode plot of the system.
- 11. To plot the Nyquist diagram of the system.
- 12. To find the gain and phase margins of the system
- 13. Open ended lab 1
- 14. Open ended lab 2
- 15. Open ended lab 3
- 16. Open ended lab 4

Suggested Teaching Methodology:

- Lecturing
- Written Assignments Report Writing

Suggested Assessment:

Theory (100%)

- Sessional (20%)
- Quiz (12%)
- Assignment (8%)
- Midterm (30%)
- Final Term (50%)

Laboratory (100%)

- Labs
- Open-Ended Labs

Recommended Text and Reference Books:

- 1. Control Systems Engineering, by: Norman S. Nise, 7th Edition.
- 2. Modern Control Engineering, by: Katsuhiko Ogata, 5th Edition.
- $3.\,$ Biomedical Applications of Control Engineering, by Selim S. Hacısalihzade

2