Week I

Welcome to Applied Linear Modeling!

Jenine Harris

August 27, 2019

All the things for today

- The requisite icebreaker activity
- Get-to-know-the-syllabus discussion
- What is Applied Linear Modeling anyway?
- Intro to R, RStudio, R Markdown
- Data management workshop

Icebreaker: An ode to your classmate

- Find one or two people to talk to...try someone you don't already know
- Spend 10 minutes learning about each other (take notes!)
 - Be sure to ask them if they prefer to be named or not named in the ode
- Spend 5 minutes to use what you learned to write an ode to one of the people you talked with
 - If you talked with more than one person, make sure everyone in the group has an ode!
- Share the ode with the person it is about
- Make revisions if needed and tape to the front board

Ode structure

(from poet Danielle Pafunda)

Ode	- 4-	

one word describing the subject one word describing the subject fact about the subject wild card line (imagine your subject speaking or acting or speak to your subject)

Example:

Ode to Nancy

mom brilliant autism researcher how far did you run today?

A typical week in ALM

- Discussion of exercises from prior week
- New topic workshop

Ode instructions

- Find one or two people to talk to...try someone you don't already know
- Spend 10 minutes learning about each other (take notes!)
- Spend 5 minutes to use what you learned to write an ode to one of the people you talked with
- Share the ode with the person it is about
- Make revisions if needed and tape to the front board
- Ode template:

Ode to_____

one word describing the subject one word describing the subject fact about the subject wild card line (imagine your subject speaking or acting or speak to your subject)

Get-to-know-the-syllabus discussion activity

- Most weeks we will start the day by going over the exercises from the prior week together
 - Participating in this is the majority of your participation/professionalism points
- Let's practice the process using the syllabus
 - Work on your own or with classmate(s) to complete the questions about the syllabus
 - Pick a number from the **to-do** jar and write the answer on the board
 - If you want to work with someone, pick two numbers from the to-do jar and work together to write both answers on the board
 - Write your name(s) on the number(s) you picked and drop in the done jar

New topic workshop

- Most weeks materials for the workshop will be saved on GitHub by Monday at noon
 - https://github.com/jenineharris/applied-linear-modeling
- Recommended strategy for organizing weekly files:
 - Make an overall class folder on your laptop called alm-2019 or something similar
 - Within this folder, keep a folder for each week of class (e.g., week-1-aug27)
 - o Download all the files for the week into the weekly folder before class
- Go ahead and set up your folders and download today's files and save them both in the same folder
 - week-1-workshop.Rmd
 - legal_weed_age_GSS2016_ch1.csv

General linear models

- General linear models have an assumption of normality, which requires a continuous outcome variable
- General linear models we will cover
 - t-test (in review only)
 - ANOVA
 - linear regression

What is Applied Linear Modeling anyway?

- Applied linear models are approaches to understanding relationships among variables
 - Explaining or predicting something
 - Exploratory or confirmatory
- Two kinds of applied linear models
 - · General linear models
 - Generalized linear models

Generalized linear models

- Generalized linear models do not assume normality, so the outcome variable can be categorical
 - These models transform the outcome variable to use principles from general linear models
- Generalized linear models we will cover
 - binary logistic regression

Intro to R, RStudio, RMarkdown

- R Studio is an IDE or Interactive Development Environment
- Open RStudio to see this screen

RStudio is a pane

- The RStudio window has 3 panes as a default
 - Top right pane has the Environment and History tabs
 - Bottom right pane has the Help and Plots tabs (and others)
 - Left pane is the Console where you can write code and see output

Customizing your RStudio window

Options for changing your work space

- Usually you will have a fourth pane in the top left that is a code editor
 - File -> Open File -> [week-1-workshop.Rmd]
- Customize how you see your R code
 - Tools -> Global Options... -> Appearance
- Customize the layout of the panes
 - Tools -> Global Options... -> Pane Layout

Modified work space

Data cleaning and management workshop (with a little graphing!)

- Importing data into R
- Checking and correcting data types
- Making sure missing values are handled correctly
- Recoding variables
- Graphing

The goal!

We will work to import and clean a data set and then graph the data so that we can answer the research question:

What is the level of support for marijuana legalization in the US? How might it change in the next 20 years?

The pot policy problem

- Marijuana use remains illegal under federal law
- By 2017, 29 states and the District of Columbia had legalized marijuana at the state level for medical or recreational use or both
- With new ballot measures at the state level being introduced and passed by voters on a regular basis, there appears to be momentum for a nationwide shift toward legalization

Support for legalization

 The 2016 General Social Survey (GSS) included a question about legalization:

Do you think the use of marijuana should be made legal or not?

- It also included a question about age, which might be useful in determining how support might change as people age
- Use the GSS Data Explorer at https://gssdataexplorer.norc.org/variables/vfilter to learn about the variables
- Let's import and clean up the data to try and answer the question

Examine the contents of the data file

What do you think is going on here?

Importing a data set into R

Import a data file from the GSS that contains the grass variable and the age variable:

```
# read the GSS 2016 data
gss.2016 <- read.csv(file = "legal_weed_age_GSS2016_ch1.csv")</pre>
```

Another way to import csv data

- We can try using a different function to open the file
- The fread() function in the data.table package is useful for opening csv (comma separated values) files
- To use a function from the data.table package, install the package first
- Once the package is installed, open it using the library() function

```
# open the data.table package
library(package = "data.table")
```

Using fread to import data

• Use the fread() function from data.table to open the file again:

open the GSS data with fread
gss.2016 <- fread(input = "legal_weed_age_GSS2016_ch1.csv")</pre>

Try the summary function again to see if it looks better

examine the contents of the file
summary(object = gss.2016)

grass age
Length:2867 Length:2867
Class :character Class :character
Mode :character Mode :character

Checking and correcting the data types of variables

- R has many different data types, the three most useful for this course are:
 - Numeric: continuous variables (sometimes called "double" in R)
 - Factor: categorical variables
 - Character/string: text variables
- Many R functions can only use data that are the right type, so checking and correcting data types is an important data cleaning step

Check data types using the class function

- The class function is useful for determining what data type a variable is
- Use the class function with the two variables in the gss.2016 data set

Fixing the data types

- Based on the codebook, grass looks categorical so it should be a factor in R
- Based on the codebook, age looks closer to continuous so it should be numeric in R
- We will be using the tidyverse package for data cleaning and management, so install it through the Tools menu and open it with the library function

```
# open the tidyverse
library(package = "tidyverse")
```

Checking our work

```
## [1] "factor"

class(x = gss.2016.clean$grass)

## [1] "factor"

class(x = gss.2016.clean$age)

## [1] "numeric"

# use summary to check the new data summary(object = gss.2016.clean)

## grass age
## DK : 110 Min. :18.00
## IAP : 911 1st Qu.:34.00
## LEGAL :1126 Median: 49.00
## WI LEGAL :1126 Median: 49.00
## NOT LEGAL: 717 Mean :48.85
## NA's : 3 3rd Qu.:62.00
## NA's :32
```

Our first data cleaning task!

- mutate() is used to make changes to variables
- as.factor() changes the data type to factor
- as.numeric() changes the data type to numeric

```
# change the data types for grass and age
gss.2016.clean <- gss.2016 %%
mutate(grass = as.factor(grass)) %>%
mutate(age = as.numeric(age))
```

Coding missing values

- R recognizes NA as a missing value
- The grass variable has NA but also DK for **Don't Know** and IAP for **Inapplicable**
- Don't know and Inapplicable might be considered missing depending on the research question you are asking
- Use the data management code you started and add to it!
- Use na_if() function

```
# recode don't know and inapplicable to NA
gss.2016.clean <- gss.2016 %%
mutate(grass = as.factor(grass)) %>%
mutate(age = as.numeric(age)) %>%
mutate(age = as.numeric(age)) %>%
mutate(grass = na_if(x = grass, y = "UAP")) %>%
mutate(grass = na_if(x = grass, y = "UAP"))
```

Check our work

```
# check for NA
summary(object = gss.2016.clean)

## grass age
## DK : 0 Min. :18.00
## IAP : 0 1st Qu.:34.00
## LEGAL :1126 Median :49.00
## NOT LEGAL: 717 Mean :48.85
## NA's :1024 3rd Qu.:62.00
## NA's :332
```

Get rid of unused categories of a factor

- There are no observations where grass is DK or IAP, so these categories can be dropped
- Use droplevels() to drop unused levels
- Add to your existing data cleaning code

```
# recode don't know and inapplicable to NA
gss.2016.clean <- gss.2016 %>%
    mutate(grass = as.*factor(grass)) %>%
    mutate(age = as.numeric(age)) %>%
    mutate(grass = na_if(x = grass, y = "DK")) %>%
    mutate(grass = na_if(x = grass, y = "TAP")) %>%
    mutate(grass = na_if(x = grass, y = "TAP")) %>%
    mutate(grass = afroplevels(x = grass))
```

Check our work

```
## check for dropped levels
summary(object = gss.2016.clean)

## grass age
## LEGAL :1126 Min. :18.00
## NOT LEGAL: 717 1st Qu.:34.00
## NA's :1024 Median :49.00
## Mean :48.85
## 3rd Qu.:62.00
## Max. :88.00
## NA's :32
```

Let's recode age to be categorical!

- Often continuous variables are recoded to categorical
- This is sometimes necessary to use certain types of statistical models
- There are good things and bad things about categorizing a continuous variable
- Bring your data cleaning code and let's add an age.cat variable with 5 categories of age

```
# recode don't know and inapplicable to NA
gss.2016.Clean <- gss.2016 % %
mutate(grass = a.factor(grass)) % %
mutate(age = as.numeric(age)) % %
mutate(grass = na_if(x = grass, y = "DK")) % %
mutate(grass = na_if(x = grass, y = "TAP")) % %
mutate(grass = a_if(x = grass, y = "TAP")) % %
mutate(grass = droplevels(x = grass)) % %
mutate(age.cat = cut(x = age,
breaks = c(18, 29, 59, 74, 88),
labels = c("18 - 29", "30 - 59", "60 - 74", "75+")))
```

Let's rename the legalization categories

- The two categories of grass are coded LEGAL and NOT LEGAL
- Let's change to Yes and No

Check our work

```
## grass age age.cat
## yes:1126 Min. :18.00 18 - 29: 474
## No : 717 1st Qu.:34.00 30 - 59:1517
## NA's:1024 Median:49.00 60 - 74: 598
## ard Qu.:62.00 NA's : 39
## Max.:88.00
## NA's :32
```

Let's make a graph!

Let's get rid of the NA in the graph

Let's add some color

How about green instead? ...and we do not need the legend

```
# graph support for legalization
gss.2016.clean %%
drop.na(grass) %%
ggplot(acs(x = grass, fill = grass)) +
geom_bar() +
scale_fill_manual(values = c("#78A678", "#7463AC"),
guide = FALSE)

9000-
0-
Yes
grass
```

Let's add better labels to the axes

Get rid of the gray background

graph support for legalization
gss.2016.clean %>%

```
gss.2816.clean %%
drop.na(grass) %%
ggplot(aes(x = grass, fill = grass)) +
geom_bar() +
scale_fall_manual(values = c('#78A678", "#7463AC"),
guide = FALSE) +
labs(x = "Should marijuana be legal?",
y = "Number of responses") +
theme_minimal()

900

Yes
Should marijuana be legal?
```

Add age to the graph

Can we answer our research question now?

What is the level of support for marijuana legalization in the US? How might it change in the next 20 years?

Hey that was A LOT!

• If you are feeling a little lost in the ggplot...everyone does! This tweet is from the creator of ggplot:

It's also worth bearing in mind that even I don't understand the entirety of ggplot2 or dplyr

- The great thing about ggplot is that it is extremely flexible; you can do almost anything
- This makes it complex to use, though

The End

