Science Textbook

A Latex Template for a Science Textbook

First Edition

Science Textbook

A Latex Template for a Science Textbook

First Edition

Author Name City, Country

Self Publishers Worldwide Seattle San Francisco New York London Paris Rome Beijing Barcelona

Preface

$$\sqrt{dX_1^2 + dX_2^2 + dX_3^2} = \left(1 + \frac{\kappa}{8\pi} \int \frac{\sigma \, dV_0}{r}\right) \sqrt{dx_1^2 + dx_2^2 + dx_3^2},$$

$$dT = \left(1 - \frac{\kappa}{8\pi} \int \frac{\sigma \, dV_0}{r}\right) dl.$$

Table of Contents

1	Prerequisites 1							
	1.1	First	Principles	. 1				
		1.1.1	Examples	. 1				
		1.1.2	Excessive Elaborations	. 2				
		1.1.3	Long Winded Conclusion	. 2				
		1.1.4	Exercises	. 2				
	1.2	Theo	bry vs Practice	. 2				
		1.2.1	Examples	. 2				
		1.2.2	Excessive Elaborations	. 3				
		1.2.3	Long Winded Conclusion	. 3				
		1.2.4	Exercises	. 3				
2	Tensors							
3	Metric Tensor							
4	Derivatives of Tensors							
5	Curvature							
6	Bibliography							

Prerequisites

The theory of relativity is intimately connected with the theory of space and time. I shall therefore begin with a brief investigation of the origin of our ideas of space and time, although in doing so I know that I introduce a controversial subject. The object of all science, whether natural science or psychology, is to co-ordinate our experiences and to bring them into a logical system. How are our customary ideas of space and time related to the character of our experiences?

1.1 First Principles

The theory of relativity is intimately connected with the theory of space and time. I shall therefore begin with a brief investigation of the origin of our ideas of space and time, although in doing so I know that I introduce a controversial subject. The object of all science, whether natural science or psychology, is to co-ordinate our experiences and to bring them into a logical system. How are our customary ideas of space and time related to the character of our experiences?

1.1.1 Examples

The theory of relativity is intimately connected with the theory of space and time. I shall therefore begin with a brief investigation of the origin of our ideas of space and time, although in doing so I know that I introduce a controversial subject. The object of all science, whether natural science or psychology, is to co-ordinate our experiences and to bring them into a logical system. How are our customary ideas of space and time related to the character of our experiences?

1.1.2 Excessive Elaborations

The theory of relativity is intimately connected with the theory of space and time. I shall therefore begin with a brief investigation of the origin of our ideas of space and time, although in doing so I know that I introduce a controversial subject. The object of all science, whether natural science or psychology, is to co-ordinate our experiences and to bring them into a logical system. How are our customary ideas of space and time related to the character of our experiences?

1.1.3 Long Winded Conclusion

The theory of relativity is intimately connected with the theory of space and time. I shall therefore begin with a brief investigation of the origin of our ideas of space and time, although in doing so I know that I introduce a controversial subject. The object of all science, whether natural science or psychology, is to co-ordinate our experiences and to bring them into a logical system. How are our customary ideas of space and time related to the character of our experiences?

1.1.4 Exercises

The theory of relativity is intimately connected with the theory of space and time. I shall therefore begin with a brief investigation of the origin of our ideas of space and time, although in doing so I know that I introduce a controversial subject. The object of all science, whether natural science or psychology, is to co-ordinate our experiences and to bring them into a logical system. How are our customary ideas of space and time related to the character of our experiences?

1.2 Theory vs Practice

The theory of relativity is intimately connected with the theory of space and time. I shall therefore begin with a brief investigation of the origin of our ideas of space and time, although in doing so I know that I introduce a controversial subject. The object of all science, whether natural science or psychology, is to co-ordinate our experiences and to bring them into a logical system. How are our customary ideas of space and time related to the character of our experiences?

1.2.1 Examples

The theory of relativity is intimately connected with the theory of space and time. I shall therefore begin with a brief investigation of the origin of our ideas of space and time, although in doing so I know that I introduce a controversial

subject. The object of all science, whether natural science or psychology, is to co-ordinate our experiences and to bring them into a logical system. How are our customary ideas of space and time related to the character of our experiences?

1.2.2 Excessive Elaborations

The theory of relativity is intimately connected with the theory of space and time. I shall therefore begin with a brief investigation of the origin of our ideas of space and time, although in doing so I know that I introduce a controversial subject. The object of all science, whether natural science or psychology, is to co-ordinate our experiences and to bring them into a logical system. How are our customary ideas of space and time related to the character of our experiences?

1.2.3 Long Winded Conclusion

The theory of relativity is intimately connected with the theory of space and time. I shall therefore begin with a brief investigation of the origin of our ideas of space and time, although in doing so I know that I introduce a controversial subject. The object of all science, whether natural science or psychology, is to co-ordinate our experiences and to bring them into a logical system. How are our customary ideas of space and time related to the character of our experiences?

1.2.4 Exercises

The theory of relativity is intimately connected with the theory of space and time. I shall therefore begin with a brief investigation of the origin of our ideas of space and time, although in doing so I know that I introduce a controversial subject. The object of all science, whether natural science or psychology, is to co-ordinate our experiences and to bring them into a logical system. How are our customary ideas of space and time related to the character of our experiences?

Tensors

Metric Tensor

Consider a vector that is represented in the Cartesian coordinate system and ***

You can use the Pythagoras' Theorem $a^2 + b^2 = c^2$ to find its length

$$||\vec{v}||^2 = (v^1)^2 + (v^2)^2$$
$$= (3)^2 + (4)^2$$
$$= 25$$

$$|\vec{v}| = \sqrt{25} = 5$$

But what if the vector is measured in this coordinate system? How would you measure its length? Let's try using Pythagoras' theorem and see if we get the same answer.

$$||\vec{v}||^2 = (\tilde{v}^1)^2 + (\tilde{v}^2)^2$$

$$= \left(\frac{7}{5}\right)^2 + \left(\frac{13}{5}\right)^2$$

$$= \frac{218}{25}$$

$$\therefore ||\vec{v}|| = \sqrt{\frac{218}{25}} \approx 2.95?$$

We got a different answer this time because Pythagoras' theorem only holds for the Cartesian coordinate system. In order to find the length of a vector in another coordinate system, recall that:

$$||\vec{v}||^2 = \vec{v} \cdot \vec{v}$$

If we represent the vector in terms of the Cartesian coordinate system, we get the Pythagoras' Theorem back.

$$\vec{v} \cdot \vec{v} = (v^1 \vec{e}_1 + v^2 \vec{e}_2) \cdot (v^1 \vec{e}_1 + v^2 \vec{e}_2)$$

$$= v^1 v^1 (\vec{e}_1 \cdot \vec{e}_1) + v^1 v^2 (\vec{e}_1 \cdot \vec{e}_2) + v^2 v^1 (\vec{e}_2 \cdot \vec{e}_1) + v^2 v^2 (\vec{e}_2 \cdot \vec{e}_2)$$

$$= (v^1)^2 (\vec{e}_1 \cdot \vec{e}_1) + 2v^1 v^2 (\vec{e}_1 \cdot \vec{e}_2) + (v^2)^2 (\vec{e}_2 \cdot \vec{e}_2)$$

$$= (v^1)^2 + (v^2)^2 \qquad (\text{Because } \vec{e}_i \cdot \vec{e}_j = \delta_{ij})$$

But if we represent the vector in terms of the basis vectors $\tilde{e_1}$ and $\tilde{e_2}$ we get:

$$\vec{v} \cdot \vec{v} = (\tilde{v}^1 \tilde{e}_1 + \tilde{v}^2 \tilde{e}_2) \cdot (\tilde{v}^1 \tilde{e}_1 + \tilde{v}^2 \tilde{e}_2)$$

$$= \tilde{v}^1 \tilde{v}^1 (\tilde{e}_1 \cdot \tilde{e}_1) + \tilde{v}^1 \tilde{v}^2 (\tilde{e}_1 \cdot \tilde{e}_2) + \tilde{v}^2 \tilde{v}^1 (\tilde{e}_2 \cdot \tilde{e}_1) + \tilde{v}^2 \tilde{v}^2 (\tilde{e}_2 \cdot \tilde{e}_2)$$

$$= (\tilde{v}^1)^2 (\tilde{e}_1 \cdot \tilde{e}_1) + 2\tilde{v}^1 \tilde{v}^2 (\tilde{e}_1 \cdot \tilde{e}_2) + (\tilde{v}^2)^2 (\tilde{e}_2 \cdot \tilde{e}_2)$$
(3.1)

To find $(\tilde{e}_1 \cdot \tilde{e}_1)$, $(\tilde{e}_1 \cdot \tilde{e}_2)$, $(\tilde{e}_2 \cdot \tilde{e}_2)$ we represent them in Cartesian coordinates first

$$\tilde{e}_1 \cdot \tilde{e}_1 = (2\vec{e}_1 + 1\vec{e}_2) \cdot (2\vec{e}_1 + 1\vec{e}_2)
= 2^2(\vec{e}_1 \cdot \vec{e}_1) + 2(2)(1)(\vec{e}_1 \cdot \vec{e}_2) + 1^2(\vec{e}_2 \cdot \vec{e}_2)
= 2^2 + 1 = 5$$

$$\tilde{e}_1 \cdot \tilde{e}_1 = (2\vec{e}_1 + 1\vec{e}_2) \cdot (2\vec{e}_1 + 1\vec{e}_2)
= 2^2(\vec{e}_1 \cdot \vec{e}_1) + 2(2)(1)(\vec{e}_1 \cdot \vec{e}_2) + 1^2(\vec{e}_2 \cdot \vec{e}_2)
= 2^2 + 1 = 5$$

$$\tilde{e}_1 \cdot \tilde{e}_1 = (2\vec{e}_1 + 1\vec{e}_2) \cdot (2\vec{e}_1 + 1\vec{e}_2)
= 2^2(\vec{e}_1 \cdot \vec{e}_1) + 2(2)(1)(\vec{e}_1 \cdot \vec{e}_2) + 1^2(\vec{e}_2 \cdot \vec{e}_2)
= 2^2 + 1 = 5$$

The metric or fundamental tensor allows you to define fundamental properties like lengths and angles in a coordinate space

Derivatives of Tensors

Curvature

Bibliography