MA2287: Complex Analysis Exam Notes

Robert Davidson

${\bf Contents}$

1	Question 1:	3
	1.1 Sketch the region in the complex plane determined by the inequality	3
	1.2 Determine all solutions to roots of unity	
	1.3 Determine and sketch the image under the mapping	3
	1.4 Find z where the function is 0	
	1.5 Calculate principal value Log(z)	3
	1.6 Prove the following	3
2	Question 2:	4
	2.1 Determine image of the line	4
	2.2 State and Use Cauchy-Riemann Equations	
	2.3 Show that	
	2.4 Find Mobius Transformation	4
3	Worked Examples - Q1	5
4	Worked Examples - Q2	10

1 Question 1:

1.1 Sketch the region in the complex plane determined by the inequality

• |z-4| > 3|z+4| 2023 Q1(a)

 $\bullet \ \ \{z \in \mathbb{C}: |2z-1| < 2|2z-i|\} \\ \underline{2022 \ \mathrm{Q1(a)}, \ 2021 \ \mathrm{Q1(d)}, \ 2017 \ \mathrm{Q1(a)}, \ 2016 \ \mathrm{Q1(a)}}$

1.2 Determine all solutions to roots of unity

• $z^6 - 1 = 0$ and factorize $x^6 - 1$ as a product of linear and quadratic factors 2023 Q1(b), 2021 Q1(c)

• $z^4 = -81i$ and find a polynomial p(z) with complex coefficients with root w and $p(\overline{w}) \neq 0$ 2022 Q1(b),2018 Q1(b)

1.3 Determine and sketch the image under the mapping

• $w = e^z$, $\{z \in \mathbb{C} : \pi/4 \le \text{Im}(z) \le \pi/2\}$ 2023 Q1(c), 2021 Q1(a), 2017 Q1(d)

• $w = \text{Log}(z), \{z : |z| > 1, 0 \le \text{Arg}(z) \le \pi/2\}$ 2022 Q1(d), 2018 Q1(d), 2016 Q1(d)

1.4 Find z where the function is 0

• $\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$

1.5 Calculate principal value Log(z)

• $z = -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$ and prove e^z is the inverse function of Log(z) $\frac{2022 \text{ Q1(c)}, 2018 \text{ Q1(c)}, 2017 \text{ Q1(c)}}{2022 \text{ Q1(c)}, 2018 \text{ Q1(c)}, 2017 \text{ Q1(c)}}$

1.6 Prove the following

• Define the complex conjugate (\overline{w}) and prove if w is a zero of a polynomial $p(z) = a_0 + a_1 z + \ldots + a_n z^n$ then \overline{w} is also a zero of p(z) 2021 Q1(b), 2018 Q1(a), 2016 Q1(b)

• Define the complex exponential function e^z and prove Eulers Formula $e^{i\theta} = \cos(\theta) + i\sin(\theta)$ 2017 Q1(b)

2 Question 2:

2.1 Determine image of the line

- $f(z) = \frac{1}{z}$ { $z \in \mathbb{C} : \text{Re}(z) = 2$ } 2023 Q2(a), 2021 Q2(b)
- $f(z) = \frac{1}{z}$ $\{z \in \mathbb{C} : \text{Re}(z) = 1\}$ 2022 Q2(a), 2018 Q2(a), 2017 Q2(a)

2.2 State and Use Cauchy-Riemann Equations

- State CRE, and use to prove $f(z) = \frac{1}{z}$ is holomorphic on $\mathbb{C} \setminus \{0\}$ 2023 Q2(a)
- State CRE, and use to prove $f(z)=z^2$ is holomoprhic on $\mathbb C$ 2022 Q2(b)
- State CRE. Let f = u + iv be holomoprhic on $\Omega \subset \mathbb{C}$. Prove ∇u and ∇v are perpendicular of equal length 2016 Q2(b)

2.3 Show that

- If $\overline{f(z)} = f(\overline{z})$ for all $z \in \mathbb{C}$ then f(x) is real for all $x \in \mathbb{R}$. And if in addition f is holomorphic at $x \in \mathbb{R}$ then f'(x) is real.
- Define that is meant for a function g to be harmonic. If f = u + iv is holomorphic on $\Omega \subset \mathbb{C}$, prove that v(x, y) is a harmonic function, and that ∇u and ∇v are perpendicular of equal length. 2022 Q2(c), 2018 Q2(b)
- If $\overline{f(z)} = f(\overline{z})$ for all $z \in \mathbb{C}$ then f(x) is real for all $x \in \mathbb{R}$. And if in addition f is holomorphic at 0 then the function f'(0) is real.
- Let f(z) = u + iv be holomorphic on an open subset Ω of the complex plane and let h(u, v) be a harmonic function of u and v on $f(\Omega)$. Prove that g(x, y) = h(u(x, y), v(x, y)) is harmonic on Ω (You may assume $\nabla u, \nabla v$ are equal length and perpendicular)
- Define what is meant for a function f(z) to be holomorphic at a point $z_0 \in \mathbb{C}$ and prove that $f(z) = z^2$ is holomorphic and find its derivative there. Hence prove that the product uv is harmonic where f = u + iv 2018 Q2(c)
- Define what is meant for a function f(z) to be holomorphic at a point $z_0 \in \mathbb{C}$ and prove that $f(z) = \frac{1}{z}$ is holomorphic on $\mathbb{C}\setminus 0$ and find its derivative there (State any theorems used)
- Let h(u,v) be a harmonic function of u,v on $f(\Omega)$ (See 2016 Q2(b)). Prove that g(x,y)=h(u(x,y),v(x,y)) is harmonic on Ω

2.4 Find Mobius Transformation

- $T(z): (-1,1,\infty) \mapsto (-1,-i,1)$ 2023 Q2(d)
- $T(z):(2,1,-1)\mapsto (1,0,\infty)$ 2022 Q2(d)
- $T(z): (-i, -1, 1) \mapsto (1, 0, \infty)$ and find the inverse Mobius Transformation 2021 Q2(d)
- $T(z): (-i, -1, i) \mapsto (1, 0, \infty)$ and find the inverse Mobius Transformation 2018 Q2(d), 2017 Q2(d)
- $T(z): (-1, \frac{1}{2}, 2) \mapsto (1, 0, \infty)$ and find the inverse Mobius Transformation 2016 Q2(d)

3 Worked Examples - Q1

Example 2023 Q1(a)

 $\begin{array}{l} \text{Given } |z-4| > 3|z+4| \\ \text{Write } z = x+iy \end{array}$

$$\begin{aligned} |x+iy-4| &> 3|x+iy+4| \\ |(x-4)+iy| &> 3|(x+4)+iy| \\ \sqrt{(x-4)^2+y^2} &> 3\sqrt{(x+4)^2+y^2} \end{aligned}$$

Square both sides

$$(x-4)^2 + y^2 > 9((x+4)^2 + y^2)$$

$$(x^2 - 8x + 16 + y^2) > 9x^2 + 72x + 144 + 9y^2$$

$$x^2 - 8x + 16 + y^2 - 9x^2 - 72x - 144 - 9y^2 > 0$$

$$-8x^2 - 80x - 8y^2 - 128 > 0$$

$$x^2 + 10x + y^2 - 16 < 0$$

Moving all terms to one side

Simplify

Dividing by -8 and reversing inequality

Focus on x and complete the square

$$x + bx = \left(x + \frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 \Rightarrow x^2 + 10x = (x+5)^2 - 25$$
$$(x+5)^2 - 25 + y^2 + 16 < 0$$
$$(x+5)^2 + y^2 + 9 < 0$$
$$(x+5)^2 + y^2 < -9$$

Complete the square

 $Substitute\ back\ into\ inequality$

Simplify

 $Subtract\ 9$

Recall the eqation of a circle

$$(x-a)^2 + (y-b)^2 = r^2 \Rightarrow (x+5)^2 + y^2 < -9$$

Therefore the region is all the points inside circle with radius 3 and center at $(-5,\,0)$

Example 2022 Q1(a), 2021 Q1(d), 2017 Q1(a), 2016 Q1(a)

Given $\{z\in\mathbb{C}: |2z-1|<2|2z-i|\}$ Write z=x+iy

$$\begin{aligned} |2x+i2y-1| &< 2|2x+i2y-i| \\ |(2x-1)+i2y| &< 2|2x+i(2y-1)| \\ \sqrt{(2x-1)^2+4y^2} &< 2\sqrt{4x^2+(2y-1)^2} \\ (2x-1)^2+4y^2 &< 2\sqrt{4x^2+(2y-1)^2} \\ 4x^2-4x+1+4y^2 &< 16x^2+16y^2-16y+4 \\ -12x^2-4x-12y^2+16y-3 &< 0 \\ 12x^2+4x+12y^2-16y+3 > 0 \\ x^2+\frac{1}{2}x+y^2-\frac{4}{2}y+\frac{1}{4} &> 0 \end{aligned}$$

Square both sides

Expand

Move all terms to one side

Multiply by -1 and reverse inequality

Divide by 12

Complete square for x

$$x^{2} + bx = \left(x + \frac{b}{2}\right)^{2} - \left(\frac{b}{2}\right)^{2} \Rightarrow x^{2} + \frac{1}{3}x = \left(x + \frac{1}{6}\right)^{2} - \left(\frac{1}{36}\right)^{2}$$

Complete square for y

$$y^2 + by = \left(y - \frac{2}{3}\right)^2 - \left(\frac{4}{9}\right)$$

Substitute back into inequality

$$\left(x + \frac{1}{6}\right)^2 - \left(\frac{1}{36}\right) + \left(y - \frac{2}{3}\right)^2 - \left(\frac{4}{9}\right) + \frac{1}{4} > 0$$
$$\left(x + \frac{1}{6}\right)^2 + \left(y - \frac{2}{3}\right)^2 > \frac{2}{9}$$

Substitute back into inequality

Simplify and move constant across

Recall the eqation of a circle

$$(x-a)^2 + (y-b)^2 = r^2 \Rightarrow \left(x + \frac{1}{6}\right)^2 + \left(y - \frac{2}{3}\right)^2 < \frac{2}{9}$$

Therefore the region is all the points OUTSIDE the circle with radius $\frac{\sqrt{2}}{3}$ and center at $(-\frac{1}{6},\frac{2}{3})$

Example Determine all solutions to $z^6 - 1 = 0$ and factor $x^6 - 1$ as a product of linear and quadratic factors

Given
$$z^6-1=0$$

Write $z=e^{i\theta}$ and $1=e^{i2\pi k}$ for $k\in\mathbb{Z}$

$$z^{6} - 1 = 0$$

$$e^{i6\theta} - e^{i2\pi k} = 0$$

$$e^{i6\theta} = e^{i2\pi}$$

$$6\theta = 2\pi k$$

$$\theta = \frac{\pi k}{3}$$

Therefore the solutions are

$$z=e^{i\theta}=e^{i\frac{\pi k}{3}}=\cos\left(\frac{\pi k}{3}\right)+i\sin\left(\frac{\pi k}{3}\right)\quad\text{for}\quad k=0,1,2,3,4,5$$

$$k = 0 : w_0 = \cos(0) + i\sin(0) = 1 + i0$$

$$k = 1: w_1 = \cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right) = \frac{1}{2} + i\frac{\sqrt{3}}{2}$$
$$k = 2: w_2 = \cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right) = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$$

$$k = 3 : w_3 = \cos(\pi) + i\sin(\pi) = -1$$

$$k=4:w_4=\cos\left(\frac{4\pi}{3}\right)+i\sin\left(\frac{4\pi}{3}\right)=-\frac{1}{2}-i\frac{\sqrt{3}}{2}$$

$$k = 5: w_5 = \cos\left(\frac{5\pi}{3}\right) + i\sin\left(\frac{5\pi}{3}\right) = \frac{1}{2} - i\frac{\sqrt{3}}{2}$$

We can write:

$$x^{6} - 1 = (x - w_{0})(x - w_{1})(x - w_{2})(x - w_{3})(x - w_{4})(x - w_{5})$$

Rewriting to group complex conjugates

$$x^{6} - 1 = (z - w_{0})(z - w_{3}) \cdot (z - w_{1})(z - w_{5}) \cdot (z - w_{2})(z - w_{4})$$

Note that

$$(w-z)(w-\overline{z}) = w^2 - w\overline{z} - zw + z\overline{z}$$
$$= w^2 - 2(\overline{z}+z) + 1$$

We recall that

$$z = x + iy = e^{i\theta} = \cos(\theta) + i\sin(\theta)$$
$$\overline{z} = x - iy = e^{-i\theta} = \cos(\theta) - i\sin(\theta)$$

Then

$$\overline{z} + z = \cos(\theta) + i\sin(\theta) + \cos(\theta) - i\sin(\theta)$$
$$= 2\cos(\theta)$$

$$(w-z)(w-\overline{z}) = w^2 - 2\cos(\theta) + 1$$

We see that $-\frac{5\pi}{3} = \frac{\pi}{3} - 2\pi$, thus:

We see that
$$-\frac{4\pi}{3} = \frac{\pi}{3} - \pi$$
, thus:

$$(z - w_1)(z - w_5) = (z - e^{i\frac{\pi}{3}})(z - e^{i\frac{5\pi}{3}})$$

$$(z - w_2)(z - w_4) = (z - e^{i\frac{2\pi}{3}})(z - e^{i\frac{4\pi}{3}})$$

$$(z - w_1)(z - w_5) = z^2 - 2\cos\left(\frac{\pi}{3}\right) + 1$$

$$(z - w_2)(z - w_4) = (z - e^{i\frac{2\pi}{3}})(z - e^{i\frac{4\pi}{3}})$$
$$(z - w_2)(z - w_4) = z^2 - 2\cos\left(\frac{2\pi}{3}\right) + 1$$
$$(z - w_2)(z - w_4) = z^2 - z + 1$$

$$(z-w_1)(z-w_5)=z^2+z+1$$
 Therefore

$$(z - w_2)(z - w_4) = z^2 - z + 1$$

$$x^{6} - 1 = (x+1)(x-1)(x^{2} + x + 1)(x^{2} - x + 1)$$

Example: Determine all solutions to $z^4 = -81i$ and find a polynomial p(z) with complex coefficients with root w and $p(\overline{w}) \neq 0$

Given
$$z^4 = -81i$$
, we want to find $z^{4\left(\frac{1}{4}\right)} = w$

$$z^{1/n}=R^{1/n}[\cos\phi+i\sin\phi]\quad\text{with }\phi=\frac{\theta+2k\pi}{n},\ k\in(0,1,2,\dots,n-1)\quad\text{and }R=|z|$$

Thus

$$R = |81i| = \sqrt{0^2 + 81^2} = 81$$

$$\theta = -\frac{\pi}{2}$$

$$\phi = \frac{\theta + 2k\pi}{n} = \frac{-\frac{\pi}{2} + 2k\pi}{4} = \frac{-\pi}{8} + \frac{k\pi}{2}$$

$$\begin{split} w_k &= 81^{1/4} \left[\cos \left(\frac{-\pi}{8} + \frac{k\pi}{2} \right) + i \sin \left(\frac{-\pi}{8} + \frac{k\pi}{2} \right) \right] \quad k \in (0, 1, 2, 3) \\ w_0 &= 3 \left[\cos \left(\frac{-\pi}{8} \right) + i \sin \left(\frac{-\pi}{8} \right) \right] \approx 2.77 - 1.155i \\ w_1 &= 3 \left[\cos \left(-\frac{\pi}{8} + \frac{\pi}{2} \right) + i \sin \left(-\frac{\pi}{8} + \frac{\pi}{2} \right) \right] \approx 1.155 + 2.77i \\ w_2 &= 3 \left[\cos \left(-\frac{\pi}{8} + \pi \right) + i \sin \left(-\frac{\pi}{8} + \pi \right) \right] \approx -1.55 + 2.77i \\ w_3 &= 3 \left[\cos \left(-\frac{\pi}{8} + \frac{3\pi}{2} \right) + i \sin \left(-\frac{\pi}{8} + \frac{3\pi}{2} \right) \right] \approx -2.77 - 1.55i \end{split}$$

Given p(z) with complex coefficients has root w and $p(\overline{w}) \neq 0$ In other words, we want p(w) = 0 and $p(\overline{w}) \neq 0$

Using the most simple polynomial, p(z) = z - w and letting $w = 3e^{i\frac{-\pi}{8}}$ we have

$$p(z) = z - 3e^{i\frac{-\pi}{8}}$$

$$p(w) = w - w$$

$$= 3e^{i\frac{-\pi}{8}} - 3e^{i\frac{-\pi}{8}}$$

$$= 0$$

$$\begin{split} p(\overline{w}) &= \overline{w} - 3e^{i\frac{-\pi}{8}} \\ &= 3e^{-i\frac{\pi}{8}} - 3e^{i\frac{-\pi}{8}} \\ &= 3\left[\cos\left(\frac{\pi}{8}\right) - i\sin\left(\frac{\pi}{8}\right) - \left(\cos\left(\frac{\pi}{8}\right) + i\sin\left(\frac{\pi}{8}\right)\right)\right] \\ &= 3\left[\cos\left(\frac{\pi}{8}\right) - i\sin\left(\frac{\pi}{8}\right) - \cos\left(\frac{\pi}{8}\right) - i\sin\left(\frac{\pi}{8}\right)\right] \\ &= 3\left[-2i\sin\left(\frac{\pi}{8}\right)\right] \\ &= -6i\sin\left(\frac{\pi}{8}\right) \\ &\approx -2.3i \neq 0 \end{split}$$

Example Determine and sketch the image under the map $w=e^z, \{z\in\mathbb{C}:\pi/4\leq \mathrm{Im}(z)\leq \pi/2\}$

$$w = e^z = e^{x+iy}$$
$$= e^x e^{iy}$$
$$= e^x [\cos(y) + i\sin(y)]$$

Recall the polar form of a complex number $z=|z|[\cos(\theta)+i\sin(\theta)]$ We see, e^x acts as the radius, and is always positive, and $[\cos(y)+i\sin(y)]$ acts draws out a section of the unit circle, thus the mapping $w=e^z$ sends the set to:

$$\left\{w\in\mathbb{C}:|w|>0,\frac{\pi}{4}\leq \arg(w)\leq\frac{\pi}{2}\right\}$$

Example Determine and sketch the region $w = \text{Log}(z), \, \{z : |z| > 1, 0 \le \text{Arg}(z) \le \pi/2 \}$

$$w = \text{Log}(z) = \ln|z| + i\text{Arg}(z) = u + iv$$

Note that |z| > 1 implies $\ln |z| > 0$ Thus:

$$\left\{ w = u + iv \in \mathbb{C} : u > 0, 0 \le v \le \frac{\pi}{2} \right\}$$

Example Find where the function is $0: \cos(z) = \frac{e^{iz} + e^{-iz}}{2}$

We want $cos(z) = \frac{e^{iz} + e^{-iz}}{2} = 0$, some basic algebra gives us:

$$\cos(z) = \frac{e^{iz} + e^{-iz}}{2} = 0$$

$$e^{iz} + e^{-iz} = 0$$

$$e^{iz} = -e^{-iz}$$

$$e^{iz} \cdot e^{iz} = -e^{-iz} \cdot e^{iz}$$

$$e^{2iz} = -e^{0}$$

$$e^{2iz} = -1$$

$$multiply both sides by e^{iz}

$$e^{a} \cdot e^{b} = e^{a+b}$$$$

Recall:

$$-1 = \cos(\pi + 2\pi k) + i\sin(\pi + 2\pi k) = e^{i(\pi + 2\pi k)}$$

Thus

$$\begin{array}{ll} e^{2iz}=e^{i(\pi+2\pi k)} \\ 2iz=i(\pi+2\pi k) & \textit{Taking the natrual log of both sides} \\ 2z=\pi+2\pi k & \textit{Divide by 2} \\ z=\frac{\pi}{2}+\pi k & \textit{Divide by i} \end{array}$$

Therefore, the zeros of cos(z) are:

$$z = \frac{\pi}{2} + \pi k, \quad k \in \mathbb{Z}$$

Example Calculate the principal value Log(z) of $z=-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}i$ and prove e^z is the inverse function of Log(z)

Part 1. Given
$$z = -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$$
:

$$\ln|z| = \sqrt{\left(1/\sqrt{2}\right)^2 + \left(1/\sqrt{2}\right)^2} = 1$$

 $\quad \text{and} \quad$

$$Arg(z) = \tan^{-1}(-1)$$
$$= -\tan^{-1}(1)$$
$$= -\frac{\pi}{4} \Rightarrow \frac{3\pi}{4}$$

Therefore

$$Log(z) = \ln|z| + iArg(z) = i\frac{3\pi}{4}$$

Part 2: We need to show that (a) $e^{\mathbf{Log}(\mathbf{z})}=z$ and (b) $\mathbf{Log}(e^z)=z$ (a) Let $z=|z|e^{i\theta},|z|>0$ and $\theta=\mathrm{Arg}(z)$

(a) Let
$$z = |z|e^{i\theta}, |z| > 0$$
 and $\theta = \text{Arg}(z)$

$$\begin{aligned} \operatorname{Log}(z) &= \ln |z| + i\theta \\ e^{\operatorname{Log}(z)} &= e^{\ln |z| + i\theta} \\ &= e^{\ln |z|} \cdot e^{i\theta} \\ &= |z| \cdot e^{i\theta} \end{aligned}$$

 $Exponentiate\ both\ sides$

Exponentiation rules

 $e^{\text{Log}(z)} = z$

$$e^{\operatorname{Log}(z)} = z$$

(b) Let $z = x + iy, y \in [-\pi, \pi]$

$$e^{z} = e^{x + iy}$$

$$= e^{x} \cdot e^{iy}$$

$$\operatorname{Log}(e^{z}) = \ln |e^{x} \cdot e^{iy}|$$

$$= \ln |e^{x}| + \ln |e^{iy}|$$

Take log of both sides

$$\log(a \cdot b) = \log(a) + \log(b)$$

$$= x + iy$$

$$Log(e^z) = z$$

Example Define the complex conjugate (\overline{w}) and prove if w is a zero of a polynomial $p(z) = a_0 + a_1 z + \dots + a_n z^n$ then \overline{w} is also a zero of p(z)

Definition: For a complex number w=a+bi the complex conjugate of w is defined as $\overline{w}=a-bi$ (with $a,b\in\mathbb{R}$ and $i=\sqrt{-1}$) This has several properties:

$$\overline{z+w} = \overline{z} + \overline{w}$$
$$\overline{zw} = \overline{z} \cdot \overline{w}$$

 $\overline{(w^n)} = (\overline{w})^n$

Proof: If w is zero of a polynomial $p(z) = a_0 + a_1 z + \ldots + a_n z^n$ then $p(\overline{w}) = 0$

Assume
$$p(w) = a_0 + a_1 w + ... + a_n w^n = 0$$

Take the conjugate of both sides $\overline{p(w)} = \overline{0} = 0$

Evalute
$$p(\overline{w}) = a_0 + a_1 \overline{w} + \dots + a_n \overline{w}^n$$

 $= a_0 + a_1 \overline{w} + \dots + a_n \overline{w}^n$
 $= \overline{a_0} + \overline{a_1 w} + \dots + \overline{a_n w^n}$
 $= \overline{a_0} + a_1 w + \dots + a_n w^n$
 $= \overline{p(w)} = 0$

Thus, since we assumed p(w) = 0:

$$p(\overline{w}) = \overline{p(w)} = 0$$

Example Define the complex exponential function e^z and prove Eulers Foruma $e^{i\theta} = \cos(\theta) + i\sin\theta$

Defition: For any $z \in mathbb{C}$, e^z is defined by its power series:

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

The series converges for all $z\in\mathbb{C}$ and has the following properties:

$$e^{z_1+z_2}=e^{z_1}\cdot e^{z_2}$$

$$e^z \cdot e^{-z} = 1$$

Proof of Eulers Formula

Eulers Formula $e^{i\theta} = \cos(\theta) + i\sin(\theta)$

$$\begin{split} e^{i\theta} &= \sum\nolimits_{n=0}^{\infty} \frac{(i\theta)^n}{n!} \\ &= \sum\nolimits_{n=0}^{\infty} \frac{(i\theta)^{2n}}{(2n)!} + \sum\nolimits_{n=0}^{\infty} \frac{(i\theta)^{2n+1}}{(2n+1)!} \\ &= \sum\nolimits_{n=0}^{\infty} \frac{(i)^{2n}(\theta)^{2n}}{(2n)!} + \sum\nolimits_{n=0}^{\infty} \frac{(i)^{2n+1}(\theta)^{2n+1}}{(2n+1)!} \end{split}$$

Substitute $z = i\theta$

Split into even and odd powers

Seperate powers

We note that:

$$i^{2n} = (i^2)^n = (-1)^n$$

 $i^{2n+1} = i \cdot i^{2n} = i(-1)^n$

Thus:

$$\begin{split} e^{i\theta} &= \sum_{n=0}^{\infty} \frac{(-1)^n (\theta)^{2n}}{(2n)!} + \sum_{n=0}^{\infty} \frac{i (-1)^n (\theta)^{2n+1}}{(2n+1)!} \\ &= \sum_{n=0}^{\infty} \frac{(-1)^n (\theta)^{2n}}{(2n)!} + i \sum_{n=0}^{\infty} \frac{(-1)^n (\theta)^{2n+1}}{(2n+1)!} \\ &:= \cos(\theta) + i \sin(\theta) \end{split}$$

4 Worked Examples - Q2

Example Determine the image of the line $f(z) = \frac{1}{z} \quad \{z \in \mathbb{C} : \operatorname{Re}(z) = 2\}$

Let:

$$w = f(z) = \frac{1}{z}$$

Then we have:
$$w = \frac{1}{z}, \quad \text{so that } zw = 1 \quad \Rightarrow \quad z = \frac{1}{w},$$

$$z = \frac{1}{u+iv} = \frac{u-iv}{(u+iv)(u-iv)} = \frac{u-iv}{u^2+v^2} = \frac{u}{u^2+v^2} - i\frac{v}{u^2+v^2}$$
 We note that: $\operatorname{Re}(z) = \frac{u}{u^2+v^2} = a$

$$u = a(u^2 + v^2)$$
 \Rightarrow $u = au^2 + av^2$ \Rightarrow $au^2 - u + av^2 = 0 \Rightarrow u^2 - \frac{1}{a} + v^2 = 0$

$$\left(u^2 - \frac{1}{2a}\right)^2 - \frac{1}{4a^2} + av^2 = 0$$

Letting a = 2:

$$\left(u^2 - \frac{1}{4}\right)^2 - \frac{1}{16} + 4v^2 = 0$$

Example Determine the image of the line $f(z)=\frac{1}{z} \quad \{z\in \mathbb{C}: \mathrm{Re}(z)=1\}$