

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К КУРСОВОМУ ПРОЕКТУ

HA TEMY:

«Мультисерверный видеостриминг с множественными источниками»

Студент <u>ИУ7-31М</u> (Группа)	(Подпись, дата)	<u> Е. В. Брянская</u> (И.О.Фамилия)
Студент <u>ИУ7-31М</u> (Группа)	(Подпись, дата)	В. А. Иванов (И.О.Фамилия)
Руководитель	(Подпись, дата)	A.M. Никульшин (И.О.Фамилия)

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

		УТВЕРЖДАЮ
	Заведун	ощий кафедройИУ7
		(Индекс) И.В.Рудаков
		(И.О.Фамилия)
		«»20г.
ЗАЛ	АНИЕ	
на выполнение		екта
по дисциплине Протоколы вычисли	тельных сетей	
Студенты группы ИУ7-31М		
Студенты группы		
-	катерина Вадимовна	
	имя, отчество)	
	волод Алексеевич имя, отчество)	
· · · ·	,	
Тема курсового проекта <u>Мультисерверный видеостри</u>	минг с множественным	и источниками
Направленность КП (учебный, исследовательский, пра	актический, производст	венный, др.)
учебный		
Источник тематики (кафедра, предприятие, НИР) <u>Каф</u>	<u> редра</u>	
График выполнения проекта: 25% к <u>4</u> нед., 50% к <u>7</u>	нед., 75% к <u>11</u> нед., 100	% к <u>14</u> нед.
Задание Разработать протокол для мультлисерверного	стриминго Просполног	PODOTE HASHMOTHNIO OF HOCTE
выделить целевую аудиторию и сценарии его прим		
видеорядов, обосновать выбор используемого фор		
участников видеостриминга и их функции. Определи		
соответствующих сообщений протокола и их содер		
целостности данных, повторный запрос потерянных	_	
механизм перераспределения трафика между источн	иками и управления с	коростью передачи данных.
Реализовать и протестировать клиент-серверное прило	ожение, использующее	данный протокол.
Оформление курсового проекта:		
Расчетно-пояснительная записка на 20-30 листах форм	иата A4.	
Расчетно-пояснительная записка должна содержат		введение, аналитическую,
конструкторскую, технологическую части, заключени		,
Дата выдачи задания «11» <u>октября</u> 2023 г.		
Руководитель курсового проекта		А.М.Никульшин
т уководитель курсового проекта	(Подпись, дата)	А.М.Никульшин (И.О.Фамилия)
Студент	(110Amiles), Aura)	В.А.Иванов
•	(Подпись, дата)	(И.О.Фамилия)
Студент		Е.В.Брянская
	(Подпись, дата)	(И.О.Фамилия)

СОДЕРЖАНИЕ

Bl	ВЕДЕ	СНИЕ		4
1	Ана	литич	еская часть	5
	1.1	Основ	вные понятия	5
	1.2	Возмо	ожные сферы применения и целевая аудитория	7
	1.3	Форм	аты видеорядов	8
	1.4	Основ	вные этапы протокола мультисерверного стриминга с множественными ис-	
		точни	ками	9
2	Кон	структ	горская часть	12
	2.1	Взаим	иодействие клиента и мастер-сервера	12
		2.1.1	Общая схема	12
		2.1.2	Авторизация	12
		2.1.3	Получение списка хостов	14
		2.1.4	Получение видеофрагментов	17
3	Tex	нологи	ческая часть	20
	3.1	Выбо	р средств программной реализации	20
		3.1.1	Основные средства	20
		3.1.2	Вспомогательные средства	20
	3.2	Испол	пьзуемые библиотеки	21
3 A	КЛН	ОЧЕНІ	ИЕ	23
Cl	пис	ок ис	ПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	24
П	ри па	ОЖЕН	ие а	25

ВВЕДЕНИЕ

По данным журнала Market Research Report [1] рынок видеостриминга сейчас оценивается более, чем 500 миллиардов долларов, и, предполагается, что к 2030 году эта сумма достигнет 1.9 триллионов долларов. Согласно статистике по всему миру насчитывается около 1.8 миллиарда подписок на сервисы потоковой передачи видео, примерно 26% пользователей которых признаются, что пользуются подпиской на постоянной основе не реже одного раза в неделю.

Потоковая передача видео в настоящее время более популярна и составляет более, чем 38.1% от общего объёма использования, чем кабельное или широковещательное телевидение, на долю которых приходится 30.9% и 24.7%.

Соответственно, ввиду непрекращающегося спроса на видеоплатформы, необходимо обеспечить эффективный способ взаимодействия многочисленных пользователей с этими сервисами для обеспечения наиболее качественной передачи информации.

Цель работы – разработать протокол для мультисерверного стриминга, обеспечивающий высокую производительность и масштабируемость.

Для достижения цели необходимо решить следующие задачи:

- проанализировать предметную область и выделить целевую аудиторию;
- определить сценарии взаимодействия участников передачи данных, составить набор соответствующих сообщений и их содержание;
- провести обзор существующих форматов видеорядов и обосновать выбор используемого формата в разрабатываемом протоколе;
- идентифицировать и сформулировать основные требования для мультисерверного стриминга;
- разработать протокол в соответствии с выделенным и требованиями;
- реализовать и протестировать прототип, позволяющий проверить правильность работы и эффективность протокола.

1 Аналитическая часть

1.1 Основные понятия

Потоковый трафик — тип трафика, для которого характерен просмотр и/или прослушивание информации по мере её поступления на конечное оборудование (мобильный телефон, компьютер, телевизор с доступом в Интернет и т.д.). [2] Основную часть потокового трафика составляет потоковое видео (или видеопоток).

Видеостриминг (или стриминг видео) — технология передачи видеоконтента через Интернет в режиме реального времени, при этом пользователь не должен ждать полной загрузки файла для просмотра. [3] Видео транслируется непрерывным потоком в виде последовательных кадров в специальном формате. Просмотр начинается в момент достаточной буферизации, обеспечивая при этом равномерное отображение данных.

Основой для передачи мультимедийной информации в настоящее время становятся мультисерверные платформы. Они способны отправлять данные разных типов и поддерживать трафик с различными характеристиками. Наибольшее распространение получили два варианта передачи потокового видео по сети.

- Видео реального времени (real-time streaming), запись которого осуществляется одновременно с его просмотром, например, видеоконференции, прямые эфиры.
- *Budeo no запросу* (progressive streaming). Предварительно записанные видеоряды хранятся на сервере, запрашиваются приложениями конечного пользователя и воспроизводятся при получении.

Привлечение мультипоточной загрузки, при которой данные загружаются сразу с нескольких серверов или источников, имеет следующие преимущества по сравнению с загрузкой только с одного сервера.

• Увеличение скорости загрузки. Мультипоточная загрузка позволяет ис-

пользовать полную пропускную способность нескольких серверов одновременно, ускоряя процесс передачи видеоконтента. Это особенно полезно при работе с большими файлами, например, с видео высокого разрешения.

- Улучшение стабильности и отказоустойчивости. Если один из источников недоступен или работает медленно по какой-то причине, то другие могут продолжать предоставлять необходимые данные. Это минимизирует возможные проблемы с недоступностью серверов.
- Оптимизация использования сетевых ресурсов. Разделение загрузки данных между несколькими серверами помогает избежать перегрузки одного сервера и эффективно использовать сетевые ресурсы.
- Адаптация к сетевым ограничениям. При привлечении нескольких серверов можно адаптировать процесс загрузки к изменениям сетевых условий (например, изменение скорости интернет-соединения), что помогает поддерживать стабильное и качественное воспроизведение.

Все эти преимущества делают мультисерверную загрузку более предпочтительной, особенно в случаях, если важна скорость передачи данных, стабильности и отказоустойчивость системы.

Как правило, система трансляции потоковых видео состоит из четырёх подсистем:

- 1) **Устройство кодирования** для сжатия видеопотока и загрузки его на медиасервер.
- 2) **Медиасервер**, отвечающий за хранение видеорядов и передачу пользователям. Он является ключевой единицей во всём процессе передачи. Основная его задача взаимодействие с транспортной сетью при отправке пакетов в нужное время. Как правило, состоит из трёх компонентов механизма трансляции: *транспортный протокол*, *операционная система и система хранения*.
- 3) Транспортная сеть, которая транслирует пакеты от медиасервера до кли-

ентского устройства с помощью специально разработанных и стандартизированных протоколов. Последние обеспечивают такие услуги связи, как сетевая адресация, транспортировка и контроль за сеансом связи.

4) **Клиентское приложение**, декодирующее и воспроизводящее мультимедиапоток. Также опционально может присутствовать механизм синхронизации аудио и видео.

Действующий протокол между клиентом и сервером определяет:

- 1) синтаксис и формат данных
 - Фиксируется чёткая структура сообщений или пакетов данных, которые передаются между устройствами. Как правило, это описание формата заголовков и тела сообщения.
- способ установления соединения
 Протокол может определять процедуру процессов установления, поддержания и завершения соединения между устройствами.
- основные операции и команды
 Описывается множество доступных операций, команд или запросов, которые могут быть выполнены в рамках существующего протокола.
- 4) обработку ошибок и контроль целостности данных Определяются методы и сценарии обработки некорректных ситуаций, способы контроля целостности данных.
- 5) управление потоком данных

Может также описываться алгоритм регулирования скорости передачи потока информации.

В текущей работе будет рассматриваться протокол мультисерверного видеостриминга для передачи данных по запросу.

1.2 Возможные сферы применения и целевая аудитория

Подобный протокол может быть применён в рамках высоконагруженных систем, позволяя увеличивать скорость загрузки данных путём одновременно-

го запроса и получения разных частей контента с нескольких серверов. Такой подход позволяет не только ускорить загрузку видео, но и обеспечивает более плавное воспроизведение, поскольку некоторые части запрашиваются заранее и в случае потери, могут быть получены повторно.

Его привлечение в сервисах видеохостинга особенно полезно в случае нестабильного Интернет-соединения и большого объёма файла. Например, разрабатываемый протокол может быть привлечён в рамках обязательного внеурочного занятия в России, введённого в программы образовательных организаций начального, основного, среднего и профессионального образования. Каждый понедельник на первом уроке учащимся показывают видеофайлы, повествующие о наиболее актуальных событиях в стране, на основе которых строится дальнейшее обсуждение поднятых в них тем.

Таким образом, каждое утро понедельника классные руководители по всей стране скачивают подготовленные ролики с сайта «Разговоры о важном», создавая колоссальную нагрузку на серверы, из-за чего постоянно возникают сбои и сложности с загрузкой. Рассматриваемый в рамках текущей курсовой работы протокол может помочь решить некоторые возникающие проблемы, путём распределения процесса загрузки видеофрагментов по нескольким серверам.

Также его можно привлечь в процессе обмена видеофайлами между платформами для ускорения процесса переноса данных. Это может быть актуально для сервисов, размещающих видео сразу на нескольких платформах, например, YouTube, Rubube, VK Видео.

1.3 Форматы видеорядов

Наиболее часто встречающиеся форматы видео:

- MP4 (по-другому MPEG-4 Part 14) формат, совместимый с большинством браузеров и поддерживаемый сайтами потокового видео, в частности, YouTube.
- AVI (Audio Video Interleave) старый формат, разработанный Microsoft.

Поддерживается большинством популярных браузеров, работающих в системах Windows, Linux.

- MPG, MPEG, MP2, MPV форматы, в которых обычно записывают видео, которые впоследствии не нужно будет редактировать.
- MOV формат, разработанный Apple. Видео сохраняется в хорошем качестве, но файл занимает много места.
- **WebM** формат, позволяющий получать видео небольшого размера среднего качества. Видео в таком формате подходят для YouTube и других сайтов потокового видео на платформе HTML5.

УКАЗАТЬ КАКОЙ ФОРМАТ МЫ ИСПОЛЬЗУЕМ

1.4 Основные этапы протокола мультисерверного стриминга с множественными источниками

На рисунке 1.1 схематично представлен общий алгоритм работы протокола. Ключевые моменты отмечены цифрами.

Рисунок 1.1 – Основные этапы протокола.

Весь видеофайл разбивается на несколько фрагментов (на рисунке метка 3), каждый из которых может быть получен от любого медиа-сервера.

Сначала клиент должен пройти процесс авторизации, обозначен цифрой 1, после успешного завершения которого он может запросить у мастер-сервера распределение интервалов видео по хостам (отмечен 2).

Получив его, клиент делает несколько параллельных запросов (отмечено как 5) на загрузку n кадров.

В случае m неуспешных запросов к какому-либо медиа-серверу (отмечено 6) клиент должен сообщить мастер-серверу о проблеме, инициировав перераспределение фрагментов между хостами.

Таким образом, клиент получает новый список медиа-серверов с перерас-

пределёнными видео-интервалами загружаемого файла (отмечено на рисунке цифрой 7) и начинает выгрузку ещё не полученных кадров.

Клиент загружает такой объём информации, который помещается в буфер (отмечен на рисунке цифрой 4).

Как только окно загрузки будет передвинуто на некоторую величину кадров, клиент должен отправить запрос на получение списка медиа-серверов для новых видео-фрагментов (цифра 8).

Выводы

Таким образом, в данной работе будет разрабатываться протокол для мультисерверного видеостриминга с множественными источниками. В качестве формата видео был выбран — вставить формат.

2 Конструкторская часть

2.1 Взаимодействие клиента и мастер-сервера

2.1.1 Общая схема

Основными компонентами в разрабатываемом протоколе являются клиент, мастер-сервер и медиасерверы. Сначала клиент устанавливает соединение с мастер-сервером, запрашивает у него список доступных для дальнейшего вза-имодействия хостов.

В рассматриваемом протоколе взаимодействие между клиентом и мастерсервером осуществляется по gRPC, между клиентом и медиа-серверами по UDP.

Общая схема обмена сообщениями между клиентом и мастер-серверов представлена на рисунке 2.1.

Рисунок 2.1 – Общая схема.

2.1.2 Авторизация

Первый шаг в установке соединения между клиентом и мастер-сервером – авторизация (рисунок 2.2).

Клиент отправляет авторизационный запрос в формате, представленном в таблице 1.

Рисунок 2.2 – Этап авторизации.

Таблица 1 – Атрибутивный состав запроса на авторизацию

Параметр	Тип	Описание
username	string	Имя пользователя доменной учетной записи
password	string	Пароль пользователя доменной учетной за-
		писи
grant_type	string	Тип запроса на получение токена
client_id	string	Имя приложения

В зависимости от полученных данных сервер либо передаёт токен доступа в ответном сообщении (таблица 2), либо возвращает сообщение об ошибке авторизации в формате из таблицы 3.

Таблица 2 – Атрибутивный состав ответа на успешный запрос авторизации

Параметр	Тип	Описание
access_token	string	Токен доступа
expires_in_sec	integer	Число секунд, после которых токен переста-
		нет быть валидным
token_type	string	Тип токена

Таблица 3 — Атрибутивный состав ответа о непройденной авторизации на соответствующий запрос

Параметр	Тип	Описание
error	string	Общее описание ошибки
error_description	string	Детальное описание ошибки

2.1.3 Получение списка хостов

Далее в случае успешной авторизации клиент отправляет запрос на получение списка хостов (рисунок 2.3), к которым в последствии будут отправляться запросы на получение фрагментов видео.

Рисунок 2.3 – Этап получения списка хостов.

Формат такого запроса представлен в таблице 4, на рисунке 2.3 обозначен как «Запрос типа 1».

Таблица 4 – Атрибутивный состав «Запроса типа 1»

Параметр	Тип	Описание
access_token	string	Токен авторизации, указывается в заголовке
		запроса

Продолжение на следующей странице

Параметр	Тип	Описание
video_filename	string	Название видео-файла
start_time	timestamp	Временная метка начала временного окна
end_time	timestamp	Временная метка окончания временного ок-
		на

В ответ мастер-сервер отправляет список хостов с указанием диапазона кадров («Ответ типа 1» на рисунке 2.3), которые можно с них загрузить, также дополнительно прилагается метаинформация о видеофайле (разрешение, длительность и т.д.). Атрибутивный состав этого сообщения приведён в таблице 5.

Таблица 5 – Атрибутивный состав ответа на «Запрос типа 1»

Параметр	Тип	Описание
hosts	array[object]	Список хостов с указанием адреса и
		диапазона кадров
address	string	Адрес хоста
frame_start	integer	Номер первого фрагмента из диапазона
frame_end	integer	Номер последнего фрагмента из диапа-
		зона
metadata	object	Блок метаданных
resolution	string	Разрешение
codec	string	Кодек
duration	timestamp	Длительность

Поскольку клиент запрашивает кадры видео только в пределах окна, то в случае его заполнения оно должно быть сдвинуто, и к мастер-серверу должен осуществляться повторный запрос на получение списка хостов («Запрос типа 1») для загрузки очередных фрагментов. Эта операция должна повторяться до

тех пор, пока не будет получен весь видеофайл.

В случае, если клиенту не удаётся загрузить n частей видеофрагмента от одного и тоже же медиа-сервера в пределах текущего окна, то он должен отправить на мастер-сервер «Запрос типа 2», в котором указывается проблемный хост и временная метка последней успешно загруженной части видеофрагмента, загружаемого с данного медиа-сервера. Атрибутивный состав сообщения приведён в таблице 6.

Таблица 6 – Атрибутивный состав «Запроса типа 2»

Параметр	Тип	Описание
access_token	string	Токен авторизации, указывается в заголовке
		запроса
video_filename	string	Название видео-файла
start_time	timestamp	Временная метка последней успешно загру-
		женной части видеофрагмента
end_time	timestamp	Временная метка окончания временного ок-
		на

Отправляя «Запрос типа 2» клиент инициирует повторную операцию определения подходящих для взаимодействия хостов. В ответ мастер-сервер отправляет новое перераспределение фрагментов видео между медиа-серверами, состав ответа приведён в таблице 7.

Таблица 7 – Атрибутивный состав ответа на «Запрос типа 2»

Параметр	Тип	Описание
hosts	array[object]	Список хостов с указанием адреса и
		диапазона кадров
address	string	Адрес хоста

Продолжение на следующей странице

Параметр	Тип	Описание
frame_start	integer	Номер первого фрагмента из диапазона
frame_end	integer	Номер последнего фрагмента из диапа-
		зона
metadata	object	Блок метаданных
resolution	string	Разрешение
codec	string	Кодек
duration	timestamp	Длительность

2.1.4 Получение видеофрагментов

Общая схема загрузки видеофрагмента показана на рисунке 2.4. После получения списка доступных хостов от мастер-сервера клиент отправляет сразу несколько запросов на загрузку частей фрагмента параллельно. Таким образом, осуществляется одновременное скачивание сразу нескольких частей видео-файла в рамках текущего окна загрузки.

Рисунок 2.4 – Общая схема получения видеофрагментов.

На рисунке 2.5 представлена более детальная схема этого этапа. Параллельные запросы («Запрос типа 3» таблица 8) к медиа-серверам будут осуществляться до тех пор, пока не будет получена большая часть окна загрузки, после

чего оно динамически сдвигается, и клиент запрашивает у мастер-сервера список новых хостов.

Рисунок 2.5 – Установка соединения.

Таблица 8 – Атрибутивный состав «Запроса типа 3»

Параметр	Тип	Описание	
access_token	string	Токен авторизации, указывается в заголовке	
		запроса	
video_filename	string	Название видео-файла	
frame_start	integer	Номер первого фрагмента из диапазона	
frame_end	integer	Номер последнего фрагмента из диапазона	

В ответ на поступивший запрос медиа-сервер формирует ответ, атрибутивный состав которого представлен в таблице 9.

Таблица 9 – Атрибутивный состав «Запроса типа 3»

Параметр	Тип	Описание
num_frames	integer	Число передаваемых кадров
frames	array[object]	Список кадров
size	integer	Размер в байтах
frame	array[byte]	Кадр

3 Технологическая часть

3.1 Выбор средств программной реализации

3.1.1 Основные средства

В качестве языка программирования был выбран Python 3 [4], ввиду нескольких причин.

- Также язык поддерживает объектно-ориентированный подход, что важно, поскольку в процессе реализации подразумевается использование этой методологии, позволяющей разрабатывать хорошо организованную и просто модифицируемую структуру приложения.
- Кроме того, предоставляются библиотеки для создания графического интерфейса, которые планируется использовать для отладки и наглядной демонстрации работы приложения.
- В дополнение, в процессе обучения был накоплен существенный опыт в использовании этого языка программирования.

В качестве среды разработки был выбран VSCode [5] в силу следующих факторов.

- Она бесплатна для студентов.
- Предоставляются удобные инструменты для написания, редактирования кода, а также графический отладчик.
- Помимо этого, является хорошо знакомой средой разработки, и какиелибо проблемы с взаимодействием сведены к минимуму, что позволяет сэкономить время.

3.1.2 Вспомогательные средства

Для сбора датасета использовалась кроссплатформенная система мгновенного обмена сообщениями Discord [?]. Это было сделано по следующим причинам.

• Она бесплатна для всех пользователей.

- Поскольку необходимо было опросить большое количество людей, встречаться лично было затруднительно, поэтому гораздо удобнее и проще организовать весь процесс дистанционно, что и позволяет сделать это приложение.
- Платформа очень популярна среди молодых людей, что доказывает недавнее исследование от апреля 2022 года [?]. Это упрощает поиск удобной большинству среды.
- Для этой системы возможно написание дополнительного API в виде discord-бота, который может выполнять различные задачи. Так, для ускорения процесса фиксации слов опрашиваемых было создано дополнительное приложение, которое в реальном времени переводит речь участников в текст, заносит всю информацию в файлы и по каждому человеку создаёт базу знаний.

3.2 Используемые библиотеки

Для разработки графического пользовательского интерфейса привлекалась библиотека PyQt5 [?]. Qt — один из самых популярных кроссплатформенных графических фреймворков [?], поэтому кроме документации, описано множество примеров его использования. Для наглядной разработки GUI привлекалась среда Qt Designer [?].

Для упрощения контроля над тем, правильно ли формируются графы и сети, используется библиотека NetworkX [?], позволяющая визуализировать подобные структуры.

В приложении и discord-боте для перевода речи пользователя в текст используется библиотека Speech Recognition [?]. Это инструмент от таких компаний, как Google, Microsoft, IBM и др. Для работы используется стандартный Google Speech API.

К другой библиотеке, Natasha [?], происходит обращение с целью выделения словосочетаний в предложениях. Natasha позволяет с помощью готовых правил решать базовые задачи NLP для русского языка такие, как:

- токенизация;
- сегментация;
- определение морфологических признаков;
- лемматизация/нормализация;
- выделение словосочетаний и т.д.

Кроме того, привлекается библиотека SciPy [?], которая ориентирована на работу с большим количеством данных, содержит много функций линейной алгебры, интерполяции, масштабирования данных.

Выводы

В данном разделе для реализации разрабатываемого метода выбран Python в качестве основного языка программирования, Javascript – как вспомогательный инструмент для реализации сопутствующего приложения для сбора датасета. В качестве среды разработки был выбран PyCharm.

Определены основные используемые библиотеки. Также изложен способ получения данных для статистического метода.

Кроме того, приведён и подробно описан интерфейс программы и продемонстрирована её работа. А также изложены основные пункты, по которым производилось тестирование ПО.

ЗАКЛЮЧЕНИЕ

Таким образом, в рамках текущей

•

•

•

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Video Streaming Market Size, Market Research Report [Электронный ресурс].
 - Режим доступа: https://www.fortunebusinessinsights.com/video-streaming-market-103057 (Дата обращения: 02.12.2023)
- 2. Пакулова Екатерина Анатольевна Алгоритм распределения потокового трафика и трафика реального времени в гетерогенной беспроводной сети // Известия ЮФУ. Технические науки. 2014. №2 (151). URL: https://cyberleninka.ru/article/n/algoritm-raspredeleniya-potokovogo-trafika-i-trafika-realnogo-vremeni-v-geterogennoy-besprovodnoy-seti (дата обращения: 04.12.2023).
- 3. Apostolopoulos J. G., Tan W., Wee S. J. Video streaming: Concepts, algorithms, and systems //HP Laboratories, report HPL-2002-260. 2002. C. 2641-8770.
- 4. Документация по Python 3 [Электронный ресурс]. Режим доступа: https://docs.python.org/3/ (Дата обращения 01.12.2023)
- 5. Документация по Visual Studio Code [Электронный ресурс]. Режим доступа: https://code.visualstudio.com/docs (Дата обращения 01.12.2023)

ПРИЛОЖЕНИЕ А

Структуры ядра, содержащие информацию о сокетах