



逻辑代数描述了二值变量的运算规律,它是英国数学家布尔(George Boole)于1849年提出的,也称布尔代数。逻辑代数是按逻辑规律进行运算的代数,是分析和设计数字逻辑电路不可缺少的基础数学工具。

电路中的信号变量都为二值变量,只能有0、1 两种取值。

逻辑代数与算术不同。

# § 3.1 逻辑代数运算法则

## **Operations of Logic Algebra**

A 的反向 运算为 $\overline{A}$ 

$$\bar{0} = 1$$

$$\bar{1} = 0$$

或运算 逻辑加

$$0+0=0$$

$$0 + 1 = 1$$

$$1 + 0 = 1$$

$$1 + 1 = 1$$

与运算逻辑乘

$$0 \cdot 0 = 0$$

$$0 \cdot 1 = 0$$

$$1 \cdot 0 = 0$$

$$1 \cdot 1 = 1$$

# 1. 基本定律

每一个定律都有两种形式:逻辑加和逻辑乘。这两种形式互为"对偶式"Dual。

#### 逻辑加 Addition 逻辑乘 Multiplication

4) 定律 4 
$$A+0=A$$
,  $A+1=1$ ;  $A\cdot 0=0$ ,  $A\cdot 1=A$ 

5) 定律 5 
$$A+\overline{A}=1;$$
  $A \cdot \overline{A}=0$  (互补律)

8) DeMorgan's 定理 
$$\overline{A+B} = \overline{A} \cdot \overline{B}$$
;  $\overline{AB} = \overline{A} + \overline{B}$  (摩根定理)

推论 
$$\overline{A+B+C} = \overline{A} \cdot \overline{B} \cdot \overline{C}$$
  $\overline{ABC} = \overline{A} + \overline{B} + \overline{C}$ 

#### 2. 基本规则

## 1) 代入规则

等式两侧某一变量都用一个逻辑函数代入,等式仍成立。

例:

若 
$$\overline{AX} = \overline{A} + \overline{X}$$

$$X = BC$$

左侧: 
$$\overline{AX} = \overline{ABC}$$

右侧: 
$$\overline{A} + \overline{BC} = \overline{A} + \overline{B} + \overline{C}$$

有 
$$\overline{ABC} = \overline{A} + \overline{B} + \overline{C}$$

摩根定理

# 2) 反演规则 Complementary

将一个函数表达式 F 中所有的"与"()换成"或"(+),"或"(+)换成"与"();"0"换成"1","1"换成"0",原变量换成反变量,反变量换成原变量,则所得到的逻辑函数即F的反函数,表达式为  $\overline{F}$ 。

 $\overline{F}$  称为函数 F 的反函数。如果 F 成立, $\overline{F}$  也成立。

- 注意: 1. 运算顺序不变
  - 2. 不是一个变量上的反号保持不变

例 已知 
$$F = A(B + \overline{C}) + CD$$
,求  $\overline{F}$ 

解: 
$$\overline{F} = (\overline{A} + \overline{B}C)(\overline{C} + \overline{D})$$

# 3) 对偶规则 Duality

若 F 为一逻辑函数,如果将该函数表达式中所有"与"()换成"或"(+),"或"(+)换成"与"();"0"换成"1","1"换成"0",则所得到的逻辑函数即F的对偶式,表达式为F"。

## 如果 F 成立, F' 也成立

例: 已知 
$$F = A(B + \overline{C}) + CD$$
 分别求  $F'$  和  $\overline{F}$ 

解: 
$$\mathbf{F'} = (\mathbf{A} + \mathbf{B}\overline{\mathbf{C}})(\mathbf{C} + \mathbf{D})$$

$$\overline{\mathbf{F}} = (\overline{\mathbf{A}} + \overline{\mathbf{B}}\mathbf{C})(\overline{\mathbf{C}} + \overline{\mathbf{D}})$$

#### 3. 常用公式

$$\mathbf{\tilde{U}}: \quad \mathbf{A} + \mathbf{A}\mathbf{B} = \mathbf{A} (\mathbf{1} + \mathbf{B}) = \mathbf{A}$$

2) 
$$AB + A\overline{B} = A;$$
  $(A+B)(A+\overline{B}) = A$ 

证: 
$$AB+A\overline{B}=A(B+\overline{B})=A$$

3) 
$$A+\overline{AB} = A+B$$
;  $A(\overline{A}+B)=AB$ 

证: 分配律 
$$A+BC=(A+B)(A+C)$$

$$A+\overline{A}B = (A+\overline{A})(A+B) = A+B$$

4) 
$$AB+\overline{A}C+BC = AB+\overline{A}C$$
;

$$(A+B)(A+C)(B+C) = (A+B)(A+C)$$

#### 冗余定理

证:

$$AB+\overline{A}C+BC = AB+\overline{A}C+(A+\overline{A})BC = AB+\overline{A}C+ABC+\overline{A}BC$$

$$=AB+\overline{A}C$$

推论: 
$$AB + \overline{AC} + BCDE = AB + \overline{AC}$$

5) 异或公式 (XOR)  $A \oplus B = A \sqcap B$ 

$$A \oplus B = A \square B$$

证: 
$$AB + \overline{AB} = \overline{AB} + \overline{AB}$$

$$A \oplus A = 0$$
,  $A \oplus A = 1$ ,  $A \oplus 0 = A$ ,  $A \oplus 1 = \overline{A}$ 

#### **6**) 如果 A⊕B⊕C=D

$$\begin{cases} A \oplus B \oplus D = C; \\ A \oplus C \oplus D = B; \\ B \oplus C \oplus D = A; \end{cases}$$

## 因果关系 Causality

多变量异或,变量为1的个数为奇数,异或结果为1;1的个数为偶数,结果为0;与变量为0的个数无关。

# § 3.2 逻辑函数的标准形式 Standard Forms of Logic Function

# 3.2.1 最小项及标准与或式

1. 最小项(标准与项) Minterms (Standard Product Form)

与项定义为字母(原变量或其反变量)的逻辑乘项.

 $\overline{AB}$   $\overline{BCD}$   $\overline{AE}$ 

最小项(标准与项): n 变量函数, n 变量组成的与项中, 每个变量都以原变量或反变量形式出现一次, 且只出现一次。

n 个变量 □ 2<sup>n</sup> 个最小项

例如: 3 变量 A, B, C, 有  $2^3 = 8$  个最小项:

 $\overline{A} \cdot \overline{B} \cdot \overline{C}$   $\overline{A} \cdot \overline{B}C$   $\overline{ABC}$   $\overline{ABC}$   $\overline{ABC}$   $\overline{ABC}$   $\overline{ABC}$   $\overline{ABC}$   $\overline{ABC}$   $\overline{ABC}$ 

#### 2. 最小项真值表

| योऽ- |               | 最        | 小项 | 编号 | $m_0$ | $m_1$ | $m_2$ | $m_3$ | $m_4$ | $m_5$ | $m_6$ | $m_7$ |
|------|---------------|----------|----|----|-------|-------|-------|-------|-------|-------|-------|-------|
| A    | 里<br><u>B</u> | <u>C</u> | 最  | 小项 | ĀBC   | ĀBC   | ĀBĒ   | ABC   | ABC   | ABC   | ABC   | C ABC |
| 0    | 0             | 0        |    |    | 1     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| 0    | 0             | 1        |    |    | 0     | 1     | 0     | 0     | 0     | 0     | 0     | 0     |
| 0    | 1             | 0        |    |    | 0     | 0     | 1     | 0     | 0     | 0     | 0     | 0     |
| 0    | 1             | 1        |    |    | 0     | 0     | 0     | 1     | 0     | 0     | 0     | 0     |
| 1    | 0             | 0        |    |    | 0     | 0     | 0     | 0     | 1     | 0     | 0     | 0     |
| 1    | 0             | 1        |    |    | 0     | 0     | 0     | 0     | 0     | 1     | 0     | 0     |
| 1    | 1             | 0        |    |    | 0     | 0     | 0     | 0     | 0     | 0     | 1     | 0     |
| 1    | 1             | 1        |    |    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 1     |

当ABC取某一组值时,只有一个最小项值为1, 其他都等于0

最小项编号  $m_i$ : 使某一最小项为 1 时,变量取值的二进制数对应的十进制数为此最小项的编号

#### 例:

**ABC:** 010  $\overline{ABC} = 1$  010 = 2

所以 $\overline{ABC}$  的编号为 $m_2$ 

#### 例:

2 变量 A,B: 
$$m_1 = \overline{AB}$$
,  $m_3 = AB$ 

4 变量 A, B, C, D: 
$$m_1 = \overline{A} \overline{B} \overline{C}D$$
 $m_5 = \overline{ABCD}$ 

$$m_{13} = AB\overline{C}D$$

1: 变量 变量取 1 对应于原变量

0: 反变量 变量取 0 对应于反变量

注意:字母的排列顺序

## 3. 标准与或式 Standard sum of products form

$$F = \overline{AB} + A\overline{C} + A\overline{BC}$$
 与或式

如果一个与或式函数的每个与项都是最小项,这个函数称为标准与或式

#### 例:

## 与或式说明,变量取何值时,函数F=1

例 1: 将下列函数写成标准与或式:

$$F_{1}(A,B,C) = AB + BC + AC$$

$$= AB(C+\overline{C}) + BC(A+\overline{A}) + AC(B+\overline{B})$$

$$= ABC + AB\overline{C} + \overline{A}BC + A\overline{B}C$$

$$= m_{7} + m_{6} + m_{3} + m_{5}$$

$$= \sum m(3,5,6,7)$$
标准与或式

注: F(A,B,C) 必须写全, 涉及字母顺序即最小项编号

# 3.2.2 最大项及标准或与式

和项(或项)定义为字母(原变量或反变量)的逻辑加项.

$$A+B$$
  $\overline{A}+B+\overline{C}$   $\overline{D}+E+F$ 

#### 1. 最大项 Maxterms

n 变量组成的或项中,每个变量都以原变量或反变量的形式出现一次,且只出现一次,此或项为最大项,也称为标准或项(Standard Sum Terms)。

n 个变量 ⇒ 2n 个最大项

# 三变量最大项真值表

|                  |   |                  | $\mathbf{M}_{0}$ | $\mathbf{M}_{\!\scriptscriptstyle 1}$ | $\mathbf{M}_2$ | $\mathbf{M}_3$ | $\mathbf{M}_4$ | $\mathbf{M}_{5}$ | $\mathbf{M}_6$ | $\mathbf{M}_7$ |
|------------------|---|------------------|------------------|---------------------------------------|----------------|----------------|----------------|------------------|----------------|----------------|
| 变                | 量 |                  |                  |                                       |                |                |                |                  |                |                |
| $\boldsymbol{A}$ | B | $\boldsymbol{C}$ | A+B+C,           | A+B+C,                                | A+B+C,         | A+B+C          | A+B+C          | A+B+C,           | A+B+C,         | A+B+C          |
| 0                | 0 | 0                | 0                | 1                                     | 1              | 1              | 1              | 1                | 1              | 1              |
| 0                | 0 | 1                | 1                | 0                                     | 1              | 1              | 1              | 1                | 1              | 1              |
| 0                | 1 | 0                | 1                | 1                                     | 0              | 1              | 1              | 1                | 1              | 1              |
| 0                | 1 | 1                | 1                | 1                                     | 1              | 0              | 1              | 1                | 1              | 1              |
| 1                | 0 | 0                | 1                | 1                                     | 1              | 1              | O              | 1                | 1              | 1              |
| 1                | 0 | 1                | 1                | 1                                     | 1              | 1              | 1              | 0                | 1              | 1              |
| 1                | 1 | 0                | 1                | 1                                     | 1              | 1              | 1              | 1                | 0              | 1              |
| 1                | 1 | 1                | 1                | 1                                     | 1              | 1              | 1              | 1                | 1              | 0              |

当 ABC 取某一组值时,只有一个最大项值为0, 其他都等于1

使某一最大项为0时,A、B、C 取值的二进制数对应的十进制数为此最大项的编号: $M_i$ 

例: 3 变量 A, B, C

$$M_2 = A + \overline{B} + C$$
 (010)  $\notin A + \overline{B} + C = 0$   
 $M_4 = \overline{A} + B + C$ 

4 变量 A,B,C,D  $M_2 = A+B+C+D$   $M_{10} = \overline{A}+B+\overline{C}+D$ 

注意: 最大项  $\begin{cases} 0 & \Longrightarrow \text{ 原变量} \\ 1 & \Longrightarrow \text{ 反变量} \end{cases}$ 

## 2. 标准或与式 Standard Product of Sums

$$F = (A + \overline{B})(B + C)$$
 或与式

每个或项都是最大项称为标准或与式

或与式说明,变量取何值时,函数F=0

例: 任何一个括号等于0,  $F_2$ 等于0

$$F_2(A, B, C) = (A + B + C)(A + B + \overline{C})(\overline{A} + B + C)(\overline{A} + B + \overline{C})$$
 $\mathbf{0} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{1} \quad \mathbf{1} \quad \mathbf{0} \quad \mathbf{0} \quad \mathbf{1}$ 
 $= \mathbf{M}_0 \cdot \mathbf{M}_1 \cdot \mathbf{M}_4 \cdot \mathbf{M}_5$ 
 $= \prod \mathbf{M}(0, 1, 4, 5)$ 
 $\mathbf{M}$  可以忽略

# 3.2.3 两种标准式间的关系

1) 最小项和最大项互为反函数

$$\overline{m_i} = M_i$$
  $F(A,B,C)$ :  $\overline{m_1} = \overline{A} \overline{B} C = A + B + \overline{C} = M_1$   $\overline{M_j} = m_j$  最小项编号 最大项编号

2) 不在最小项中出现的编号,一定出现在最大项的编号中

$$F(A,B,C) = \Sigma \text{ m } (2,3,5,6,7)$$
 F<sub>1</sub> 与或式 =  $\Pi \text{ M } (0,1,4)$  F<sub>2</sub> 或与式

| ABC   | $\boldsymbol{F} \cdot \boldsymbol{F}_1$ | $\boldsymbol{F_2}$ | $F = F_1 = F_2$                            |
|-------|-----------------------------------------|--------------------|--------------------------------------------|
| 0 0 0 | 0                                       | $\mathbf{M}_0$     | $\mathbf{r} - \mathbf{r}_1 - \mathbf{r}_2$ |
| 0 0 1 | 0                                       | $\mathbf{M}_1$     | $F_1$ 说明函数何时为 $1$                          |
| 0 1 0 | 1 m <sub>2</sub>                        |                    | $F_2$ 说明函数何时为 $0$                          |
| 0 1 1 | 1 m <sub>3</sub>                        |                    |                                            |
| 1 0 0 | 0                                       | $M_4$              | 标准与或式和标准或                                  |
| 1 0 1 | 1 m <sub>5</sub>                        |                    | 与式是一个逻辑关系的                                 |
| 1 1 0 | 1 m <sub>6</sub>                        |                    | 两种表达方式                                     |
| 1 1 1 | 1 m <sub>7</sub>                        |                    |                                            |

# § 3.3 逻辑函数的公式化简

#### Simplification Using Logic Algebra

## 一个逻辑函数有多种表达形式

例如: F = XY + YZ

$$= (X + \overline{Y})(Y + Z)$$

或与式

$$=\overline{\overline{XY \bullet YZ}}$$

与非-与非式

$$=\overline{X+Y+Y+Z}$$

或非-或非式

$$=\overline{\overline{XY+\overline{Y}}\overline{Z}}$$

与或非式

上面五种都是最简表达式

## 化简目的:少用元件完成同样目的,降低成本。

例:用门电路实现下列函数



# 公式法化简 (Laws, Theorems, Formula)

#### 例1: 用公式法化简下式

$$F = A\overline{B} + \overline{AC} + \overline{BC}$$

$$= A\overline{B} + \overline{AC} + \overline{BC}$$

$$= A\overline{B} + (A + \overline{C})(B + \overline{C})$$

$$= A\overline{B} + AB + A\overline{C} + B\overline{C} + \overline{C}$$

$$= A + \overline{C}$$

#### 方法二

$$= \overline{AB} + \overline{\overline{A} + \overline{B}} \overline{\overline{C}}$$

$$= \overline{AB} + \overline{\overline{A} + \overline{B}} + \overline{\overline{C}}$$

$$= \overline{AB} + \overline{\overline{AB}} + \overline{\overline{C}}$$

$$= \overline{AB} + \overline{\overline{AB}} + \overline{\overline{C}}$$

$$= \overline{AB} + \overline{\overline{AB}} + \overline{\overline{C}}$$

$$= \overline{AB} + \overline{\overline{C}}$$

$$= \overline{AB} + \overline{\overline{C}}$$

#### 例 2: 用公式法化简下式

F = 
$$\overrightarrow{ABC} + \overrightarrow{ABC} + \overrightarrow{DE}(B+G) + \overrightarrow{D} + (\overrightarrow{A}+B)D + \overrightarrow{ABCDE} + \overrightarrow{ABDEG}$$
 $= \overrightarrow{AB} + \overrightarrow{D} + \overrightarrow{ABD}$ 
 $= \overrightarrow{AB} + \overrightarrow{D} + \overrightarrow{ABD}$ 
 $= \overrightarrow{AB} + \overrightarrow{D} + \overrightarrow{AD} + BD$ 
 $= \overrightarrow{AB} + \overrightarrow{D} + \overrightarrow{AD} + B$ 
 $= \overrightarrow{AB} + \overrightarrow{D} + \overrightarrow{AD} + B$ 

## 例 3: 将下列函数化简成最简或与式。

$$G = (A + B + \overline{C})(A + B)(A + \overline{C})(B + \overline{C})$$

解: 对偶关系

$$G' = AB\overline{C} + AB + A\overline{C} + B\overline{C}$$
$$= AB + A\overline{C} + B\overline{C}$$

$$G = (A + B)(A + \overline{C})(B + \overline{C})$$

# § 3.4 卡诺图化简逻辑函数

## **Simplification Using K-Maps**

用公式法化简逻辑函数时,有时很难看出是否达到最简式。用卡诺图(Karnaugh Map)化简逻辑函数具有简单、直观、方便的特点,较容易判断出函数是否得到最简结果。

# 3.4.1 卡诺图 Karnaugh Map

卡诺图 (K-map)与真值表相似,可以给出输入所有可能组合所对应的输出值。与真值表不同的是卡诺图是由小格构成。每个小格代表一个二进制输入的组合。

n 个变量的卡诺图中有2n个小格,每个小格表示一个最小项。

#### 2 变量卡诺图: F(A,B)



变量取值: 0→1

$$\left. \begin{array}{ccc} 0 & \text{for} & \overline{A}, \overline{B} \\ 1 & \text{for} & A, B \end{array} \right\}$$
最小项

变量(A,B) 位置确定,每小格代表的最小项就确定。

# 3 变量卡诺图: F(A,B,C)



排列方式要求: 保证相邻格之间只有 -个变量变化

#### AB顺序的排列方法

几何相邻: 位置相邻 逻辑相邻: 只有一个变量变化

## 卡诺图其它排列方式:



每个小格有n个相邻格相邻格与排列方式无关



# 4 变量卡诺图: F(A,B,C,D)

| $F_{\setminus} A$ | $\boldsymbol{B}$ |    |    |    | $F_{\setminus}$ C | TD |    |    |    |
|-------------------|------------------|----|----|----|-------------------|----|----|----|----|
| CD                | 00               | 01 | 11 | 10 | AB                | 00 | 01 | 11 | 10 |
| 00                | 0                | 4  | 12 | 8  | 00                | 0  | 1  | 3  | 2  |
| 01                | 1                | 5  | 13 | 9  | 01                | 4  | 5  | 7  | 6  |
| 11                | 3                | 7  | 15 | 11 | 11                | 12 | 13 | 15 | 14 |
| 10                | 2                | 6  | 14 | 10 | 10                | 8  | 9  | 11 | 10 |

每个小格: 4 个相邻格

## **5**变量卡诺图: *F* (*A*,*B*,*C*,*D*,*E*)

$$2^5 = 32$$
 cells

| F AB | $\boldsymbol{C}$ |            |     |     |            |            |            |           |
|------|------------------|------------|-----|-----|------------|------------|------------|-----------|
| DE   | 000              | <b>001</b> | 011 | 010 | <b>110</b> | <b>111</b> | <b>101</b> | 100       |
| 00   | 0                | 4          | 12  | 8   | 24         | 28         | 20         | 16        |
| 01   | 1                | 5          | 13  | 9   | <b>25</b>  | <b>29</b>  | 21         | <b>17</b> |
| 11   | 3                | 7          | 15  | 11  | <b>27</b>  | 31         | 23         | 19        |
| 10   | 2                | 6          | 14  | 10  | <b>26</b>  | 30         | 22         | 18        |

相邻格包括对称位置

**14:** 6, 15, 10, 12, 30

**8**: 12, 9, 24, 0, 10

# 3.4.2 用卡诺图表示逻辑函数

#### **Mapping a Logic Function**

## 例 1: 将真值表转换成卡诺图

| A | $\boldsymbol{B}$ | C | $oldsymbol{F}$ |
|---|------------------|---|----------------|
| 0 | 0                | 0 | 0              |
| 0 | 0                | 1 | 0              |
| 0 | 1                | 0 | 0              |
| 0 | 1                | 1 | 1              |
| 1 | 0                | 0 | 0              |
| 1 | 0                | 1 | 1              |
| 1 | 1                | 0 | 1              |
| 1 | 1                | 1 | 1              |

| F A   | $\boldsymbol{B}$ |    |    |    |
|-------|------------------|----|----|----|
|       | 00               | 01 | 11 | 10 |
| $C_0$ | 0                | 0  | 1  | 0  |
| 1     | 0                | 1  | 1  | 1  |

#### 例 2: 用卡诺图表示标准与或式和标准或与式

$$F(X, Y, Z) = \sum m(0,4,6)$$

$$F(X, Y, Z) = \sum m(0,4,6)$$
  $F(X, Y, Z) = \prod M(1,2,3,5,7)$ 

#### F 何时为1 (最小项)

|       | <i>YY</i> 00 | 01 | 11 | 10 |
|-------|--------------|----|----|----|
| $Z_0$ | 1            | 0  | 1  | 1  |
| 1     | 0            | 0  | 0  | 0  |

| FX    | XY<br>00 | 01 | 11 | 10 |
|-------|----------|----|----|----|
| $Z_0$ | 1        | 0  | 1  | 1  |
| 1     | 0        | 0  | 0  | 0  |

等价

#### 例3: 将与或式填入卡诺图

$$F(X,Y,Z) = XY + \overline{Y}Z + \overline{X}\overline{Z}$$

$$= XY(Z + \overline{Z}) + \overline{Y}Z(X + \overline{X}) + \overline{X}\overline{Z}(Y + \overline{Y})$$

$$= XYZ + XY\overline{Z} + X\overline{Y}Z + \overline{X}\overline{Y}Z + \overline{X}Y\overline{Z} + \overline{X}Y\overline{Z}$$

$$= \sum m(0,1,2,5,6,7)$$

#### 

#### 直接填 XY: 在 XY = 11 的两个格中填1

| FX                                     | <b>Y</b> 00 | 01 | 11 | 10 |
|----------------------------------------|-------------|----|----|----|
| $\begin{bmatrix} Z \\ 0 \end{bmatrix}$ | 1           | 1  | 1  |    |
| 1                                      | 1           |    | 1  | 1  |

# 3.4.3 卡诺图化简逻辑函数

#### **K-Map Simplification**

1. 求最简与或式

方法: 圈相邻格中的1, 合并最小项

圈 1: 根据下面规则将含有 1 的相邻格圈在一起

尽可能多地把相邻的矩形的 2<sup>n</sup> 个 1 圈在一起,消去变化了的 n 个变量,留下不变的变量是 1 写原变量,是 0 写反变量,组成 "与"项;每个圈中至少有一个别的圈没圈过的 1,所有的 1 都要圈;1 可以重复圈;圈之间为"或"的关系。

圈 1个1, 2个1, 4个1, 8个1, 16个1

## 例 1: 用卡诺图化简下列函数

$$F(A,B) = \sum (0,1,3)$$

解:

- ①填卡诺图
- ② 圏 1
- ③ 将与项相加





# 例 2: 化简函数



$$F = \overline{B} + AC$$

# 例 3:



$$F(A, B, C, D) = \overline{D} + AB$$

#### 2. 求最简或与式

尽可能多的把相邻矩形中 2<sup>n</sup>个0 圈在一起,消去变化了的n 个变量,留下不变的变量,(是0 写原变量,是1 写反变量)组成或项;每个圈中至少有一个别的圈没圈过的0,所有0 都要圈,0 可重复圈,圈之间为与的关系.



## 与或式和或与式可以互相转换

总结: 与或式圈 1

A + D

或与式圈 0

## 例 4: 将下图化简成最简与或表达式



#### 例 5: 将下图化简成最简与或式



## 最简式不是唯一的

#### 例 6: 分别将下式化简成最简与或式和最简或与式

$$F(A,B,C,D) = (\overline{A} + \overline{C})(\overline{A} + B + \overline{D})(\overline{B} + D)(\overline{A} + B + \overline{C} + D)$$

$$1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0$$

解: 在卡诺图中直接填 $\theta$ 



#### 最简或与式: 圈 $\theta$

$$F(A,B,C,D) = (\overline{B} + D)(\overline{A} + \overline{C})(\overline{A} + B + \overline{D})$$

#### 最简与或式:圈1

$$F(A, B, C, D) = \overline{A} \cdot \overline{B} + \overline{A}D + B\overline{C}D + \overline{B} \cdot \overline{C} \cdot \overline{D}$$

#### 例 7: 化简

$$F(W,X,Y,Z) = \overline{WX} + \overline{YZ} + (\overline{W} + Y)X\overline{Z} + (\overline{W} + Z)(\overline{W} + \overline{Y})$$

$$\overline{W} + \overline{Z} + \overline{W} + \overline{Y}$$

$$F = WX + YZ + WXZ + XYZ + WZ + WY$$



# 直接在FK-map 中填1,圈0

$$\overline{F} = (\overline{W} + Y + Z)(W + \overline{X} + \overline{Y} + \overline{Z})$$

$$F = \overline{\overline{F}} = \overline{\overline{W} + Y + Z} + \overline{W + \overline{X} + \overline{Y} + \overline{Z}}$$

$$= \overline{W}\overline{Y}\overline{Z} + \overline{W}XYZ$$

#### 解: 填卡诺图



#### 1) 用与非门实现



$$F = \overline{\overline{A}\overline{D} + B}\overline{D} + A\overline{B}C$$

$$= \overline{\overline{A}\overline{D} \cdot B}\overline{D} \cdot A\overline{B}C$$

与或 ==> 与非 - 与非

$$F = \overline{\overline{A}\overline{D}} \cdot \overline{\overline{B}\overline{D}} \cdot \overline{\overline{A}\overline{B}C}$$

# 与非-与非门





$$\mathbf{F} = \overline{(\mathbf{A} + \mathbf{D})(\mathbf{B} + \mathbf{D})(\mathbf{A} + \mathbf{B} + \mathbf{C})}$$

$$F = \overline{\overline{A} + \overline{D} + \overline{B} + \overline{D} + \overline{A} + B + C}$$

化简:每个圈需一个门实现,各圈之间加一个门

$$F = \overline{A + D} + \overline{B} + \overline{D} + \overline{A} + B + C$$

# 或非-或非门



# 3.4.4 具有随意项的逻辑函数的化简

Simplification of Logic Function with "Don't Care" Terms

实际逻辑电路中,有些变量(输入)组合不会出现或不允许出现,如 BCD 码中 1010~1111;这些组合对输出不产生任何影响(是 1 是 0 不影响输出),这种组合称"随意项"(Don't care).

#### 例:

用 A, B, C 分别表示电机的正转、反转和停止三种状态:

A=1 正转

B=1 反转

C=1 停

任何时刻只存在一个状态

 $\mathbf{ABC} \quad \left\{ \begin{array}{l} 100 \text{ or} \\ 010 \text{ or} \\ 001 \end{array} \right.$ 

 000
 没有意义

 011
 "随意项"

 101
 111

#### 随意项

卡诺图  
真值表
$$X$$
或 $\varphi$ 逻辑函数 $\sum d($  )  
  $= 0$ 

d() 括号中为最小项编号

化简时,根据化简需要, $\varphi$ 可作1或作0;但不能既当1同时又当0

## 例 1: 用卡诺图化简函数

$$F(A,B,C,D) = \sum m(1,3,7,11,15) + d(0,2,5)$$

解:卡诺图

标脚标:  $\Phi_1,\Phi_2,\Phi_3$ 



采用 
$$\Phi_3 = 1$$
, 
$$\Phi_1 = \Phi_2 = 0$$

#### 圈 1:

$$F = CD + \overline{AD}$$

圈 0:

$$F = D(\overline{A} + C)$$

若采用 
$$\Phi_1 = \Phi_2 = 1$$
,

$$\Phi_3 = 0$$



$$F = \overline{A} \cdot \overline{B} + CD$$

#### 例 2: Simplify the logic function with don't care terms:

$$G = \overline{A}\overline{C} + \overline{A}B$$
,  $AB + AC = 0$   
 $AB = \Phi$   $AC = \Phi$ 



物理意义:这两项 在函数中不起作用, 不是数学上的等于0

$$G = B + \overline{A} \cdot \overline{C}$$

# 3.4.5 引入变量卡诺图 (VEM) Variable Entered Map

一般,变量超过5个时,采用引入变量卡诺图方法化简逻辑函数。将n变量函数中一个变量作为引入变量,填入(n-1)变量卡诺图中。

#### 例 1: 用VEM方法化简下列逻辑函数

$$F(A,B,C) = \overline{A} \cdot \overline{B} \cdot \overline{C} + AB\overline{C} + A\overline{B} \cdot \overline{C} + ABC$$
39\frac{3}{2}

将变量 C 拿出作为引入变量,将函数填入2变量卡诺图中



当A=0, B=0 时, $F=\overline{C}$ , 在 $m_0$  格填 $\overline{C}$ 

圈的原则与圈1相同,合并 相同变量

$$F = \overline{B} \cdot \overline{C} + AB$$

例 2: 
$$F(C,D,E) = \overline{CD} + \overline{CE} + \overline{CE} + \overline{DE} + \overline{CDE}$$

将 E 分出作为引入变量 (一般最后一个变量作为引入变量)



## 例 3: 化简下面引入变量卡诺图 (VEM):



$$F = D + AB + \overline{A} \cdot \overline{C}$$

# 作业:

3.8 3.20 3.11(1,3) 3.21(1,3)3.12(1,3)3.22(1,3)3.15(1,3) 3.23(2) 3.18(1,3)3.24(2) 3.19(1,3)