Netzwerkalgorithmen

April 25, 2016

1 Zusätzliches blabla

Makros in C/C++: #define alias replace, wobei replace auch Code sein kann.

2 Datentypen für Graphen und Netzwerke (LEDA)

Definition eines Datentyps

```
Definition der Objekte des Typs: stack < T > Konstruktion: stack < int > S(100) (max Größe) Operationen: s.push(Tx), Ts.pop() Bemerkung zu Implementierung
```

Graph-Datentyp in LEDA

```
Der Typ graph repräsentiert gerichtete Graphen. Ein Graph g<br/> besteht aus zwei Typen von Objekten: node und edge Mit jedem Knoten v<br/> sind zwei Listen von Kanten (list < edge >) verbunden (eingehend und ausgehend) Mit jeder Kante e werden 2 Knoten source und target gespeichert.
```

Operationen auf G

```
\label{lem:pode} \begin{tabular}{ll} Update: & node $G.$new_node(), erzeugt einen neuen Knoten in $G$ und gibt ihn zurück. & edge $G.$new_edge(node $v$, node $w$) & void $G.$del_edge(edge) & \\ Access: & list < edge > G.out_edges(node $v$); & int $G.outdeg(node $v$); & node $G.$source(edge); & node $G.$source(edge); & node $G.$target(edge); & \\ Iteration: & forall_nodes(v,G) & forall_edges(e,G) & forall_out_edges(e,v) & forall_in_edges(e,v) & \\ \end{tabular}
```

1. Problem

Gegeben: Graph G=(V,E) Frage: Ist G azyklisch? Algorithmus siehe Topologisches Sortieren: Entferne jeweils einen Knoten v mit indeg(v)=0 bis der Graph leer ist. Falls wir keinen solchen Knoten finden dann ist der Graph zyklisch, falls G am Ende leer, ist er azyklisch. C++:

```
bool ACYCLIC(graph G) {
                                  //Call by value damit G nicht zerstört
        list <node> zero;
        node v;
        for all_nodes (v,G){
                 if (G.indeg(v)==0) zero.append(v);
        while (!zero.empty()){
                 node u = zero.pop();
                 edge e;
                 forall_out_edges(e,u){
                         node w=G. target(e);
                         G. del_edge(e);
                         if (G.indeg(w) = 0){
                                  zero.append(w);
                         }
                 }
        return G. empty();
}
```

Daten für Knoten und Kanten

- 1. Parametrisierte Graphen: GRAPH<node_type,edge_type> G
- 2. Temporäre Daten: besucht $[v] \leftarrow true$

Datentypen in LEDA

node_array
< T>A(G,x): Feld über die Knoten des Graphen G edge_array
< T>B(G,y) analog Verwendet für: Temporäre Daten, Eingabedaten, Resultate

Anwendung im topologischen Sortieren

```
injektive Abbildung: topnum: V \to \{1, ..., n\} mit \forall (v, w) \in E: topnum[v]<topnum[w]
```

```
bool TOPSORT(const graph& G, node_array<int>& topnum){
    int count = 0;
    list <node> zero!
    node_array<int> indeg(G);
    node v;
    forall_nodes(v,G){
        indeg[v] = G.indeg(v);
        if(indev[v] == 0) zero.append(v);
}
while(!zero.empty()){
        node v = zero.pop();
        topnum[v] = ++count;
        edge e;
        forall_out_edges(e,v){
            node w = G.target(e)
            if (--indeg[w] == 0) zero.append(w)
```

```
}
        }
        return count == G. number_of_nodes();
}
Tiefensuche
Hauptprogramm:
void DFS(const graph& G, node_array<int>& dfsnum, node_array<int>& compnum){
        int count1 = 0;
        int count2 = 0;
        node_array < bool > visited (G, false);
        node v;
        forall_nodes(v,G){
                 if (!visited[v]) dfs(G,v,count1,count2,dfsnum,compnum)
        }
Rekursive Funktion dfs:
void dfs(const graph& g, node v, int& count1, int& count2, node_array<int>& dfsnum, _
                 node_array<int>& compnum){
        dfsnum[v] = ++count1;
        visited[v] = true;
        edge e;
        forall_out_edges(e,v){
                 edge w = G.target(e),
                 if (! visited [w]) dfs (G, w, count1, count2, dfsnum, compnum)
```

Berechnung starker Zusammenhangskomponenten

compnum[v] = ++count2

Definition: Ein gerichteter Graph ist stark zusammenhängend, wenn $\forall v, w \ inV : v \to^* w$ (es existiert ein Pfad von v nach w)

Die starken Zusammenhangskomponenten (SZK) von G sind die maximalen SZK Teilgraphen von G. Idee für Algorithmus:

- 1. führe DFS mit G' = (V', E') dem Teilgraphen aufgespannt von bereits besuchten Knoten
- 2. Verwalte SZK von G' während DFS ausgeführt wird.

Ablauf:

}

Sei (v,w) die nächste in dfs betrachtete Kante

- 1. Fall: $(v, w) \in T$ (Baumkante), w noch nicht besucht. $V' = V' \cup \{w\}, E' = E' \cup \{(v, w)\}, SZK = SZK \cup \{\{w\}\}\}$
- 2. Fall: $(v, w) \notin T$,d.h. w wurde schon besucht, ist also in V' enthalten. $E' = E' \cup \{(v, w)\}$. Nun kann (v, w) meherere bereits bekannte SZK vereinigen (Rückwärtskante oder Cross-Kante). Bemerkung: Vorwärtskanten generieren keine neuen Pfade in G', deswegen dabei keine änderung der SZK. Bezeichnungen:
 - 1. Eine SKZ K heißt abgeschlossen, falls die Aufrufe von dfs für alle Knoten v in K beendet sind.
 - 2. Die Wurzel einer SZK K ist der Knoten mit der kleinsten dfsnum in K.
 - 3. "Unfertig" ist die Folge aller Knoten für die dfs aufgerufen wurde, aber deren SZK in der sie sich befinden noch nicht abgeschlossen ist.

4. "Wurzeln" ist die Folge aller Wurzeln der nicht abgeschlossenen SZK nach dfsnum sortiert.

Situation, wenn DFS beim Knoten g angekommen ist:

Unfertig: a,b,c,e,f,g Wurzeln: 1,b,e,g

Der Algorithmus betrachtet danach dei Kanten aus g $(g,d) \in C$: es passiert nichts, da d in einer abgeschlossenen SZK ist; $(q,c) \in C$ Vereinigt die 3 SZK mit den Wurzeln b,e,g durch entfernen von e,g aus der Wurzelfolge.

Beobachtung: Hinzufügen und Streichen nur am Ende \rightarrow Stack eignet sich als Datenstruktur.

Allgemeine Situation für $(v, w) \in T$:

$$\begin{array}{c|c} K' = K_2 \cup K_3 \cup K_4. \\ K_1 & K_2 & K_3 \\ r_1 & r_2 & r_3 \\ \end{array} \quad \begin{array}{c|c} K_4 \\ r_4 & \end{array}$$
 Ergänzungen von DFS für SZK:

- 1. Aktion: while dfsum[wurzel.top()] > dfsnum[w] do wurzeln.pop() od
- 2. Falls $(v, w) \in T$: Wurzeln.push(w); Unfertig.push(v)
- 3. Abschluss eine SZK: SZK von v wird endgültig verlassen, sie ist nun abgeschlossen.

Am Ende von dfs(v): if v == Wurzel.top() then Wurzeln.pop(); repeat w = unfertig.pop() until w==v fi

Übung 2: Algo zu SZK.