Exploring the Resolution of Delegations in Liquid Democracy with Fractional Delegation

David Holzwarth
Advisor: Prof. Dr. Bryan Ford
Chair of Computer Systems
https://dse.in.tum.de/

Structure

- Introduction
- Problem Statement
- Design
- Implementations
- Evaluation

Liquid Democracy: Introduction & Motivation

Liquid Democracy – Fractional Delegation

- Currently: one person, one delegation
- Fractional delegation: one person, many delegations
- Motivation:
 - Less concentration of voting power
 - Less loss of voting power
 - Empowers voters
- Drawbacks:*
 - Less intuitive
 - Not computationally trivial

Problem statement

- Given:
 - Voters who vote directly
 - Voters who delegate their vote
- Find:
 - Each voter's final voting power according to the delegations
 - Power must be conserved*
- Challenge: cyclic delegations & efficient computation

Design

- Definition: Well-formed delegation graph:
 - 1. Delegation graph with 2. no closed delegation cycles

- 1. $V = S \dot{\cup} D$, meaning that V is the union of the two *disjoint* sets of sinks and delegators.
- 2. Each edge $e \in E$ is a triple (u, v, w) denoting a delegation from node u to node v of weight w.
- 3. Each sink $s \in S$ has no outgoing edges.
- 4. Each delegator $d \in D$ has $n \in \mathbb{N}$ outgoing edges, each with a positive weight, such that the sum of all of its outgoing edge weights equals 1.

We define a **closed delegation cycle** $C \subseteq V$ in a delegation graph $G = (S \dot{\cup} D, E)$ as a cycle in G such that for every node $v \in C$, there exists no path from v to any sink node in S.

Design: Resolving Delegations

For all nodes v:

$$p_v' = 1 + \sum_{(u,v,w) \in E} w p_u'$$

$$p_v = egin{cases} p_v' & ext{if } v \in S \ 0 & ext{if } v \in D \end{cases}$$

- System of linear equations
- A well-formed delegation graph:
 - Has exactly one solution,
 - which conserves power

Implementations

- Linear Systems Solver
- Linear Programming Solver
- Iterative Solver
 - Provably similar to the other approaches

Implementations: Robustness

	Invalid Delegations	Closed Delegation Cycles
Linear Systems Solver	Invalid solution	Error
Linear Programming Solver	Invalid solution	Error
Iterative Solver	Depends	Won't terminate

Evaluation: Method

Preprocessing

- The "Add sinks" step is only for experimental purposes, to have the option to avoid graphs with no sinks for benchmarks

- Measurement

of solving time only

Evaluation: Overview

Synthetic graphs

- Small graphs
- Large graphs
- Dense graphs
- Cycles which retain a lot of their power
- No delegations

Synthetic Social graphs

- Small world graphs
- R-Mat graphs

Real-World Datasets

- Bitcoin OTC trust network, Epinions, Slashdot Zoo

Evaluation: Key Insights

- Small graphs:

Linear Systems Solver

- Very sparse, very large graphs:

- Iterative Solver (not perfectly precise!)
- Linear Programming Solver's runtime grows slower, but it is slower

For the Future

- Does fractional delegation actually reduce vote power concentration?
- Benchmarking on real world data
- User study:
 - How easy is it to understand Liquid Democracy with fractional delegation?
 - Do / How do people delegate?

Thank you!

(a) Linear scale

Thank you!

