

GRADE 100%

TO PASS 80% or higher

Neural Networks: Learning

LATEST SUBMISSION GRADE

100%

You are training a three layer neural network and would like to use backpropagation to compute
the gradient of the cost function. In the backpropagation algorithm, one of the steps is to update

1/1 point

$$\Delta_{ij}^{(2)} := \Delta_{ij}^{(2)} + \delta_i^{(3)} * (a^{(2)})_i$$

for every i,j. Which of the following is a correct vectorization of this step?

- $\triangle^{(2)} := \triangle^{(2)} + (a^{(2)})^T * \delta^{(2)}$
- $\bigcirc \Delta^{(2)} := \Delta^{(2)} + (a^{(2)})^T * \delta^{(3)}$
- \bullet $\Delta^{(2)} := \Delta^{(2)} + \delta^{(3)} * (a^{(2)})^T$
- $\bigcirc \Delta^{(2)} := \Delta^{(2)} + \delta^{(2)} * (a^{(3)})^T$

✓ Correct

This version is correct, as it takes the "outer product" of the two vectors $\delta^{(3)}$ and $a^{(2)}$ which is a matrix such that the (i,j)-th entry is $\delta^{(3)}_i * (a^{(2)})_j$ as desired.

2. Suppose \$\$\tt{Theta1}\$\$ is a 5x3 matrix, and \$\$\tt{Theta2}\$\$ is a 4x6 matrix. You set \$\$\tt{thetaVec} = [Theta1(:); Theta2(:)]}\$\$. Which of the following correctly recovers \$\$\tt{Theta2}\$\$?

1 / 1 point

- \$\$\tt{reshape(thetaVec(16:39), 4, 6)}\$\$
- \$\$\tt{reshape(thetaVec(15:38), 4, 6)}\$\$
- \$\$\tt{reshape(thetaVec(16:24), 4, 6)}\$\$
- \$\$\tt{reshape(thetaVec(15:39), 4, 6)}\$\$
- \tt{reshape(thetaVec(16:39), 6, 4)}

/ Corre

This choice is correct, since $\frac{1}{4}$ has 15 elements, so $\frac{1}{4}$ begins at index 16 and ends at index 16 + 24 - 1 = 39.

3. Let $J(\theta)=2\theta^4+2$. Let $\theta=1$, and $\epsilon=0.01$. Use the formula $\frac{J(\theta+\epsilon)-J(\theta-\epsilon)}{2\epsilon}$ to numerically compute an approximation to the derivative at $\theta=1$. What value do you get? (When $\theta=1$, the true/exact derivative is $\frac{dJ(\theta)}{d\theta}=8$.)

1/1 point

- 7.9992
- O 10
- 8.0008
- 0 8

✓ Correc

We compute $\frac{(2(1.01)^4+2)-(2(0.99)^4+2)}{2(0.01)}=8.0008.$

4. Which of the following statements are true? Check all that apply.

1/1 point

Using gradient checking can help verify if one's implementation of backpropagation is bug-free.

✓ Corre

If the gradient computed by backpropagation is the same as one computed numerically with gradient checking, this is very strong evidence that you have a correct implementation of backpropagation.

- Using a large value of λ cannot hurt the performance of your neural network; the only reason we do not set λ to be too large is to avoid numerical problems.
- If our neural network overfits the training set, one reasonable step to take is to increase the regularization parameter.

✓ Correct

Since gradient descent uses the gradient to take a step toward parameters with lower cost (ie, lower \$\$J(\Theta)\\$\$), the value of \$\\$j(\Theta)\\$\$ should be equal or less at each iteration if the gradient computation is correct and the learning rate is set properly.

- \square Suppose that the parameter $\Theta^{(1)}$ is a square matrix (meaning the number of rows equals the number of columns). If we replace $\Theta^{(1)}$ with its transpose $(\Theta^{(1)})^T$, then we have not changed the function that the network is computing.
- Suppose we have a correct implementation of backpropagation, and are training a neural network using gradient descent. Suppose we plot $J(\Theta)$ as a function of the number of iterations, and find that it is **increasing** rather than decreasing. One possible cause of this is that the learning rate α is too large.

✓ Correct

If the learning rate is too large, the cost function can diverge during gradient descent. Thus, you should select a smaller value of α .