GRAPHIC ERA DEEMED TO BE UNIVERSITY DEHRADUN

SEMESTER I and II

Name of Department : Electronics and Communication Engineering

2 Contact Hours : L 3 T 0 P 0

3 Exam Duration : Theory 3 Practical 0

4 Relative Weight : CWA 25 PRS 0 MSE 25 ESE 50 PRE 0

5 Credits : 3

6 Semester : Autumn/Spring

7 Subject Area : Fundamental Course (FC)

8 Pre-requisite : Basic Physics

9 Course : • Identifying various semiconductor materials used for electronic components.

components.

• Comprehensive understanding of Basic diode concepts and applications.

Understanding of Transistor (BJT) basics and biasing circuits.

• Understanding of basic concepts and circuits of Field effect transistor.

• Understanding the working of various measuring instruments.

• Understanding of Number system and Boolean algebra.

10 Details of the Course

UNI T	Contents		
1	SEMICONDUCTORS, DIODES AND DIODE CIRCUITS		
	Insulators, Semiconductors and Metals, Mobility and Conductivity, Intrinsic and extrinsic semiconductors and charge densities in semiconductors, current components in semiconductors, PN Junction diode characteristic and analysis	6	
II	REGULATED POWER SUPPLY		
	Rectifiers and filter circuit: Half wave, full wave and Bridge rectifier circuits and their analysis, L, C and Pi filters, Zener Diode, Basic regulator supply using zener diode, Design of Regulator circuits.		
III	TRANSISTORS Construction and characteristics of bipolar junction, transistors (BJT's)-Comm. Base, Comm. emitter, Comm. Collector configuration, Transistor biasing and bias stabilization: - the operating point, stability factor, analysis of fixed base bias, collector to base bias, Emitter resistance bias circuit and self bias circuit.		
IV	INTRODUCTION TO OPERATIONAL AMPLIFIERS	٦	
	Ideal op-amp, Inverting and Non-inverting op-amp circuits, Op-amp applications; Voltage follower, Addition, Subtraction, Integration,	5	

	Differentiation.	
V	NUMBER SYSTEMS & BOOLEAN ALGEBRA Number systems and their conversion, Addition & Subtraction of binary, octal and hexadecimal numbers, multiplication & division of binary numbers, fractional numbers, Boolean algebra, logic gates, De-Morgan's theorem, implementation of basic gates using universal gates, implementation of logic functions using basic gates & universal gates, SOP & POS form of logic expression, canonical form, conversion from SOP & POS form to canonical form, simplification of Boolean function: Algebraic method, Karnaugh map method(two, three & four variable K-map with don't care condition.	8
	TOTAL	33

11 Suggested Books

S.N.	Name of Authors/Books/Publishers	Year of Publication/Reprint
Text Books		
1	Jacob Millmann & Halkias, Integrated Electronics, TMH, 2 nd Edition	2010
2	Mano M. Morris and Ciletti M. D., Digital Design, Pearson Education 5 th Edition.	2013
Reference Books		
1	Kalsi H. S., 'Electronics Instrumentation', TMH	2004
2	Boylestad and L. Robert and Nashelsky Louis, 'Electronics Devices and Circuits Theory', PHI/Pearson Education, 9th Edition.	2010

12 Mode of Evaluation : Test / Quiz / Assignment / Mid Term Exam / End Term Exam / Lab Exam