

DDS Security concepts for SROS

Gerardo Pardo, Ph.D., CTO, RTI, gerardo __at__ rti.com Ruffin White, UC San Diego, rwhitema __at__ eng.ucsd.edu

About RTI

Real-Time Innovations (RTI) is the Industrial Internet of Things (IIoT) connectivity company

To enable and realize the potential of smart machines to serve mankind

Outline

- Intro to DDS
- Intro to DDS Security
- Security at the Wire Protocol level
- Performance Impact
- Takeaways

Data Distribution Service (DDS)

DDS Specification family

Ethernet

Timeline

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

DDS and the Industrial Internet of Things

Your systems. Working as one. Deployed in 1000s of Systems

Industrial IoT Systems

- Reliability: Severe consequences if offline for 5ms (or 5 min)
- Real-time: measure in ms or µs
- Interface scale: 10+ applications/teams
- Dataflow complexity: data has many destinations
- Architecture: Next generation IIoT

Industries: Energy, Industrial Control, Transportation, Healthcare, Defense

Shared Global Dataspace

Persistence Service Topic D

QoS

Recording Service

Data-Centric Communications Model

- DomainParticipant connects to the global data space (domain)
- Topics define the data-objects (collections of subjects)
- DataWriters publish data on Topics. Publishers are used to group DataWriters.
- DataReaders subscribe to data on Topics. Subscribers are used to group DataReaders
- QoS Policies are used configure the system
- Listeners are used to notify the application of events

DDS Partitions

- Provide a "scope" or "namespace" to data published/subscribed
- DataWriters & DataReaders belong to one or More Partitions
- DataWriters/Readers on the same Topic match only if they have a common Partition

Quality of Service (QoS) Policies

	QoS Policy
ക	DURABILITY
Cache	HISTORY
ပိ	LIFESPAN
Sè	WRITER DATA LIFECYCLE
arce	READER DATA LIFECYCLE
Resources	ENTITY FACTORY
R	RESOURCE LIMITS
>	RELIABILITY
Delivery	TIME BASED FILTER
Deli	DEADLINE
_	CONTENT FILTERS

QoS Policy				
USE	ER DATA			
TOP	PIC DATA			
GRO	DUP DATA			
PAR	RTITION			
PRE	PRESENTATION			
DESTINATION ORDER				
OWI	NERSHIP			
OWI	OWNERSHIP STRENGTH			
LIVE	LIVELINESS			
LAT	ENCY BUDGET			
TRA	NSPORT PRIORITY			

User QoS

Presentation

Availability

ROS2 on DDS

ROS Concept	DDS Concept
Node	Participant
Node Namespace	<none></none>
Topic	Topic
Publisher	Publisher + DataWriter
Subscriber	Subscriber + DataReader
Service	Service(*) or Request/Reply Topic pair
Qos Profile	Qos Profile (Subset of DDS Qos available in ROS2)
Action	Not implemented yet
Parameter	ROS-defined DDS Services to read/write/list parameters

Shapes Demo

Shapes Demo uses 3 Topics

DDS Security

Threats

- Unauthorized Subscription
- Unauthorized Publication
- Tampering & Replay
- Insider Attack

Local machine is assumed to be trusted

Security Must Protect Dataflow, Too

- 1. System Boundary
- 2. Host
- 3. Network Transport
 - Media access (layer 2)
 - Network (layer 3) security
 - Session/Endpoint (layer 4/5) security
- 4. Data & Information flows

Secure the Data, Not the Connection **DDS** Domain Topic UA

Fine-Grained, DDS Security

Data Flow Security, by Topic

Service Plugin	Purpose	Interactions
Authentication	Authenticate the principal that is joining a DDS Domain. Handshake and establish shared secret between participants	Principal may be an application/process or the user associated with that application or process. Can do mutual authentication and establish shared secret
Access Control	Decide whether a principal is allowed to perform a protected operation.	Protected operations include joining a specific DDS domain, creating a Topic, reading a Topic, writing a Topic, etc.
Cryptography	Perform the encryption and decryption operations. Create & Exchange Keys. Compute digests, compute and verify Message Authentication Codes. Sign and verify signatures of messages.	Invoked by DDS middleware to encrypt data compute and verify MAC, compute & verify Digital Signatures
Logging	Log all security relevant events	Invoked by middleware to log
Data Tagging	Enforce meta-data associated with each DataWriter and DataReader	Distributed via Discovery Enforced by Permissions plugin

SPI	Builtin Plungin	Notes
Authentication	DDS:Auth:PKI-DH	PKI with a pre-configured Identity CA RSA or ECDSA for authentication DH or ECDH to establish a shared secret
AccessControl	DDS:Access:Permissions	Governance Document and Permissions Document Each signed by pre-configured Permissions CA
Cryptography	DDS:Crypto:AES-GCM-GMAC	Key Generation, Distribution, Encryption and Message Authentication AES-GCM for authenticated encryption AES-GMAC for only message authentication Can use 128 or 256 bit keys
DataTagging	Discovered_EndpointTags	Force association of meta-data with Tags with DataWriters and DataReaders
Logging	DedicatedDDS_LogTopic	Log security-relevant events

DDS Security Configuration Shared By All Participants Identity **Permissions** Certificate Certificate Authority (CA) Authority (CA) Secure Secure Domain Participant1 Participant Permissions1 Identity1 Identity1 Permissions1 Line UA AA Governance

Builtin DDS:PKI-DSA-DH

- Uses shared Certificate Authority (CA)
 - All Participants pre-configured with Shared-CA
 - Each participant has Signed CERT from Shared-CA
 - Can use RSA or EC keys
- Mutual authentication between discovered participants using a challenge-response
- Establishes a shared secret using Diffie-Hellman (DH) or Elliptic Curve DH (ECDH) (Ephemeral Mode)

PKI-Based Mutual Authentication Protocol

```
C1 := Cert1, Perm1, pdata 1, ds algo1, ss algo1
C2 := Cert2, Perm2, pdata_2, ds_algo2, ss_algo2
1. P1 <- P2: ParticipantDiscovery (pdata)
2. P1 -> P2: C1, Challenge1, DH1
3. P1 <- P2: C2, Challenge1, Challenge2,
               DH2, DH1,
           SignP2(Hash(C2) | Challenge2 | DH2 | Challenge1 | DH1 | Hash(C1))
4. P1 -> P2: DH1, DH2, Challenge1, Challenge2,
          SignP1(Hash(C1) | Challenge1 | DH1 | Challenge2 | DH2 | Hash(C2))
```

Governance

- What Topics are Secure?
- Which Topics use Secure Discovery?
- What Kind of protection is used?
 - Data Encrypt or MAC

</dds>

 Protocol Encrypt or MAC

```
<?xml version="1.0" encoding="UTF-8"?>
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"</pre>
    xsi:noNamespaceSchemaLocation="../schema/dds_security_governance.xsd">
    <domain access rules>
        <domain_rule>
            <domains>
                <id range>
                    <min>0</min>
                </id_range>
            </domains>
            <allow_unauthenticated_participants>false</allow_unauthenticated_participants>
            <enable_join_access_control>true</enable_join_access_control>
            <discovery protection kind>ENCRYPT</discovery protection kind>
            <liveliness protection kind>ENCRYPT</liveliness protection kind>
            <rtps_protection_kind>SIGN</rtps_protection_kind>
            <topic_access_rules>
                <topic rule>
                    <topic_expression>*</topic_expression>
                    <enable discovery protection>true</enable discovery protection>
                    <enable_read_access_control>true</enable_read_access_control>
                    <enable_write_access_control>true</enable_write_access_control>
                    <metadata protection kind>ENCRYPT</metadata protection kind>
                    <data protection kind>ENCRYPT</data protection kind>
                </topic_rule>
            </topic access rules>
        </domain_rule>
    </domain access rules>
```


Permissions

For each Participant

- Allowed Domains (domain ID)
- Topics it can read and/or write
- Partitions it can Join
- DataTags it can use

```
<dds xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"</pre>
    xsi:noNamespaceSchemaLocation="../schema/dds_security_permissions.xsd">
    <permissions>
        <grant name="ParticipantA">
            <subject name>C=US, ST=CA, O=Real Time Innovations, CN=dtlsexample/emailAddress=
            <validity>
                <!-- Format is CCYY-MM-DDThh:mm:ss[Z|(+|-)hh:mm] in GMT -->
                <not before>2013-06-01T13:00:00</not before>
                <not_after>2023-06-01T13:00:00</not_after>
            </validity>
            <allow_rule>
                <domains>
                    <id>0</id>
                </domains>
                <publish>
                    <topics>
                        <topic>Cir*</topic>
                    </topics>
                    <partitions>
                        <partition>P1*</partition>
                    </partitions>
                </publish>
                <subscribe>
                    <topics>
                        <topic>Sq*</topic>
                    </topics>
                    <partitions>
                        <partition>P2*</partition>
                    </partitions>
                </subscribe>
                <subscribe>
                    <topics>
                        <topic>Triangle</topic>
                    </topics>
                    <partitions>
                        <partition>P*</partition>
                    </partitions>
                </subscribe>
            </allow_rule>
            <default>ALLOW</default>
        </grant>
    </permissions>
</dds>
```

Understanding DataTags

- Immutable name-value pairs that can be associated with a DDS DataWriter or DataReader
- Matadata propagated by DDS Discovery
- Enforced by Access-Control
- Per-sample remote tags accessible using DDS API

```
Identity: IB-A320-123456
<allow rule>
 <publish>
   <topics>
     <topic>FlightData</topic>
   </topics>
    <data tags>
     <tag>
       <name>CarrierName
       <value>IB
    </tag>
    <taq>
       <name>AircraftModel</name>
       <value>A320</value>
    </tag>
  </data tags>
  </publish>
</allow rule>
(anything else, denied)
```

Security: Data Tagging


```
Identity: IB-A320-123456
<allow rule>
  <publish>
    <topics>
      <topic>FlightData</topic>
    </topics>
    <data tags>
      <taq>
        <name>CarrierName</name>
        <value>IB</value>
     </tag>
     <tag>
        <name>AircraftModel</name>
        <value>A320</value>
     </tag>
   </data tags>
 </publish>
</allow rule>
(anything else, denied)
```


Configuration possibilities

- Are "legacy" or un-identified applications allowed in the Domain? Yes or No.
 - If yes an Unauthenticated applications will:
 - See the "unsecured" discovery Topics
 - Be allowed to read/write the "unsecured" Topics
- Is a particular Topic discovered over protected discovery?
 - If so it can only be seen by "authenticated applications"
- Is a access particular Topic protected?
 - If so only authenticated applications with the correct permissions can read/write
- Is data on a particular Topic protected? How?
 - If so data will be sent signed or encrypted+signed
- Are all protocol messages signed? Encrypted?
 - If so only authenticated applications with right permissions will see anything

DDS Secure Shapes Demo

Setup: Governance & Permissions

Participant1

AllowAll

Permissions:
Publish: *
Subscribe: *

Square -> Encrypt

Triangle -> Encrypt

Participant2

DenySubSquares

Permissions:
Publish: *

Subscribe: Square, Circle

DDS Wire Protocol: Real-Time Publish Subscribe (RTPS)

RTPS & Payload Protection Kinds

Origin Authentication Protection Kinds

- Enforce Permission to Read vs Write
- Prevent Insider Attacks

Transport Security (e.g. TLS) vs DDS Security

DDS Security Performance

Benchmarking Performance is really hard...

Benchmarking Performance is really hard... ...and multi-dimensional

DDS: How the data is cryptographically protected

Performance Impact of enabling Security in DDS

DDS Relative Performance only (without RCL/RWM layers)

Using rtiperftest: https://github.com/rticommunity/rtiperftest

Testing platform:

- CPU: Intel i7 6-core CPU
 3.33GHz, 12 GB RAM
- NIC: Intel I350, 1 Gb/s
- CentOS Linux 7.1
- C++ API

1 to 1 latency (50 percentile) in milli seconds

Data Size	No Security	Sign Message	Sign Message + Encrypt Data	Sign Message + Encrypt Data + Origin Auth
32 B	0.037	0.046	0.050	0.052
256 B	0.041	0.051	0.055	0.057
2 KB	0.068	0.079	0.086	0.088
16 KB	0.195	0.221	0.250	0.253
128 KB	1.12	1.27	1.51	1.52
1 MB	8.76	8.82	10.92	10.94
Ove	erhead	1% - 24%	25% - 35%	25% - 41%

Performance Impact of enabling Security in DDS

DDS Performance only (without RCL/RWM layers)

Using rtiperftest: https://github.com/rticommunity/rtiperftest

Testing platform:

- CPU: Intel i7 6-core CPU
 3.33GHz, 12 GB RAM
- NIC: Intel I350, 1 Gb/s
- CentOS Linux 7.1
- C++ API

1 to 1 throughput (Mbps)

Data Size	No Security	Sign Message	Sign Message + Encrypt Data	Sign Message + Encrypt Data + Origin Auth
32 B	22	18	16	15.5
256 B	177	132	122	120
2 KB	939	895	803	779
16 KB	988	984	981	980
128 KB	991	990	953	957
1 MB	980	985	887	888
Ove	erhead	0% - 25%	1% - 31%	1% - 32 %

Impact of Security on Scalability

1:N Latency (micro seconds)
For 32 Bytes, Multicast

1:N Latency (micro seconds)
For 2 KB, Multicast

1:N Latency (micro seconds) For 128 KB, Multicast

Num Subscribers	No Security		+ Encrypt Data	Sign Message + Encrypt Data + Origin Auth
1	38	47	51	54
2	35	44	48	50
4	37	48	51	55

Num Subscribers	No Security		+ Encrypt Data	Sign Message + Encrypt Data + Origin Auth
1	69	80	87	89
2	67	79	86	88
4	69	80	87	90

Num Subscribers	No Security		+ Encrypt Data	Sign Message + Encrypt Data + Origin Auth
	1 1209	1279	1522	1525
	2 120!	1286	1526	1525
	4 1203	1282	1530	1534

Impact of Security on Scalability

1:N Throughput (Mbps) For 32 Bytes, Multicast

1:N Throughput (Mbps) For 2 KB, Multicast

1:N Throughput (Mbps) For 128 KB, Multicast

Num Subscribers	No Security		+ Encrypt Data	Sign Message + Encrypt Data + Origin Auth
1	22.5	17.2	15.5	14.8
2	20.1	15.8	14.5	13.3
4	18.4	11.9	11.9	9.6

Num Subscribers	No Security		+ Encrypt Data	Sign Message + Encrypt Data + Origin Auth
1	939.0	893.4	796.3	761.7
2	938.9	877.7	747.3	660.0
4	938.9	742.6	655.1	531.1

Num Subscribers	No Security		+ Encrypt Data	Sign Message + Encrypt Data + Origin Auth
1	991.5	990.4	954.7	955.8
2	991.5	990.4	970.7	964.6
4	991.5	990.3	984.3	982.0

Takeaways

DDS Security provides excellent support to secure ROS

- DDS is Standard & Interoperable and widely deployed in IIoT
- Performant and Scalable
 - Best-of-class cryptography (Elliptic Curve, Diffie Hellman, AES)
 - Single payload encryption multiple destinations, multicast support
- Fine-grained:
 - Access Control at the Node/Topic/Service level
- Flexible:
 - Choice of Encryption vs Authentication vs Origin Authentication
 - Build your own plugins
- Infrastructure-independent:
 - Works over any Transport with any Qos
 - Does not depend on IPSEC, Trusted Routers, Pre-Shared Keys,...
- Transparent: No changes to Application Code!
- Tools being developed to facilitate config and deployment

References

- http://portals.omg.org/dds
- https://www.omg.org/spec/category/data-distribution-service
- https://www.omg.org/spec/DDS-SECURITY
- http://community.rti.com
- http://www.rti.com
- https://github.com/rticommunity
- https://www.slideshare.net/GerardoPardo/presentations
- https://ruffsl.github.io/IROS2018 SROS2 Tutorial

Thank you!

Questions?

