Seminarul 2 de Algebră II

Grupele 103 și 104 - 2020-2021

1 Inele. Recapitulare

Exercițiul 1.1: Fie R un inel (nu neapărat unitar). Demonstrați că inelul de matrice $\mathcal{M}_n(R)$ este comutativ \iff fie n=1 și R comutativ, fie ab=0, $\forall a,b \in R$.

Exercițiul 1.2: Fie R un inel comutativ. Demonstrați că

$$Z(\mathcal{M}_n(R)) = \{aI_n \mid a \in R\} \simeq R.$$

Exercițiul 1.3: Fie K, L corpuri comutative. Demonstrați că $\mathcal{M}_m(K) \simeq \mathcal{M}_n(L) \iff K \simeq L$ și m = n.

De acum, toate inelele se consideră comutative și unitare, dacă nu este precizat altfel.

Exercițiul 1.4: Fie $C = \{f : [0,1] \to \mathbb{R} \mid f \text{ continuă}\}$. Arătați că:

- a) \mathcal{C} este un inel cu adunarea și înmulțirea (punctuală) a funcțiilor.
- b) Dacă $t \in [0, 1]$, atunci aplicația

$$\varphi_t: \mathcal{C} \to \mathbb{R}, \ \varphi_t(f) = f(t), \ \forall t \in [0,1]$$

este morfism de inele.

c) **Orice** morfism de inele $\varphi : \mathcal{C} \to \mathbb{R}$ este de forma φ_t pentru un $t \in [0, 1]$.

Exercițiul 1.5: Fie R inel și $I_1, I_2 \subseteq R$. Demonstrați că

$$I_1 \cdot I_2 \subset I_1 \cap I_2 \subset I_1 + I_2$$
.

Arătați că dacă $I_1+I_2=R$ (spunem că I_1 și I_2 sunt comaximale), atunci $I_1\cdot I_2=I_1\cap I_2$.

Exercițiul 1.6: Calculați $18\mathbb{Z} + (2\mathbb{Z} \cap 3\mathbb{Z})$, $15\mathbb{Z} \cap (12\mathbb{Z} + 16\mathbb{Z})$ și $(2\mathbb{Z} + 5\mathbb{Z}) \cdot (5\mathbb{Z} \cap 7\mathbb{Z})$.

2 Inelul factor. Recapitulare

Exercițiul 2.1: Demonstrați următoarea Teoremă de corespondență a idealelor:

Fie R, S inele și $f: R \to S$ un morfism surjectiv de inele.

Atunci există o corespondență bijectivă între idealele lui S și idealele lui R care conțin Ker f i.e. funcțiile

$$\varphi: \{I \leq R \mid I \supset \operatorname{Ker} f\} \to \{J \leq S\}, \ \varphi(I) = f(I),$$

$$\psi: \{J \leq S\} \to \{I \leq R \mid I \supset \operatorname{Ker} f\}, \ \psi(J) = f^{-1}(J).$$

sunt mutual inverse: $\varphi \circ \psi = id$, $\psi \circ \varphi = id$.

Exercițiul 2.2: Pentru un inel R și $I \subseteq R$, descrieți idealele lui R/I. În particular, descrieți idealele lui \mathbb{Z}_n .