## Visibile

## A. Bordin, G. Cappelli

#### 4-5 Dicembre 2017

#### Sommario

#### 1 Teoria

## 2 Apparato sperimentale

#### 3 Presa dati

#### 3.1 Taratura attenuatore

Per prima cosa eseguiamo la taratura dell'attenuatore variabile. in modo tale da avere la curva di conversione fra angolo e potenza. Sull'attenuatore è montato un goniometro così da permetterci di registrare, attraverso il power meter, la potenza del fascio laser di pom-

paggio una volta attraversato l'attenuatore. Abbiamo registrato le misure variando l'angolo ogni volta di 2° coprendo i 360° dell'attenuatore.

I valori misurati sono riportati in Tabella 1 in Appendice.

Così facendo abbiamo ottenuto una curva di conversione (Figura 1) che ci permette, misurando l'angolo a cui 'e posizionato il goniometro, di conoscere la potenza incidente sul cristallo.

Dato che il laser a nostra disposizione è nell'infrarosso,  $\lambda{=}975.9(2.9)$  nm, utilizziamo una cartina che rivela l'IR per allineare il laser nel power meter che abbiamo posto ad una distanza di  ${\sim}1$  cm dall'attenuatore.



Figura 1: Taratura dell'attenuatore variabile

#### 3.2 Acquisizione segnale

Una volta effettuata la taratura abbiamo misurato la tensione relativa alla luce emessa dal cristallo in funzione della potenza incidente.

Per farlo abbiamo utilizzato un oscilloscopio leggendo, attraverso i cursori, l'ampiezza picco picco dell'onda quadra ottenuta utilizzando il chopper impostato ad una frequenza di  $\sim 75~{\rm Hz}$ .

Prima di registrare le misure ci siamo preoccupati di spegnere la luce ambientale in quanto si vedevano i battimenti con la 50 Hz. Abbiamo quindi utilizzato una pila per illuminare il goniometro presente sull'attenuatore; la luce proveniente dalla pila era irrilevante in quando produceva solamente un offset costante al segnale.

Durante la prima presa dati abbiamo notato che,

mentre il massimo restava costante, il minimo del segnale proveniente dal chopper si spostava a causa di effetti 1/f non trascurabili che portavano a variazioni anche del 10%.

I valori ottenuti sono riportati nella Tabella 2 in Appendice e in Figura 2.

Abbiamo quindi cambiato l'alimentatore del laser per risolvere questo problema e ripetuto le misure senza ottenere però miglioramenti visibili.

I dati relativi a questa seconda presa dati sono riportati nella Tabella 3 in Appendice e in Figura 3.



Figura 2: Prima acquisizione. Come errore sulla tensione è riportata la digitalizzazione dell'oscilloscopio, mentre sulla potenza è indicato il 3% della calibrazione.



Figura 3: Seconda acquisizione; eseguita dopo la sostituzione dell'alimentatore del laser di pompa. Per gli errori sono stati usati gli stessi criteri precedenti.

In entrambe le figure si hanno degli andamenti non regolari soprattuto nella zona di medio-alta potenza ed è evidente come la sostituzione dell'alimentatore non abbia portato alcun miglioramento; per questo abbiamo svolto l'analisi esclusivamente sulla prima presa dati.

## 3.2.1 Discussione degli errori

#### 3.3 Acquisizione spettro

Infine, tramite una fibra ottica, abbiamo portato la luce emessa dal cristallo all'analizzatore di spettro e acquisito lo spettro della radiazione.

Per evitare la saturazione e quindi l'impossibilità di

visualizzare il picco abbiamo attenuato il laser di pompa. Le misure sono state effettuate con un'integrazione

sullo spettrometro di 500 ms e sono riportate in Figura  $^{4}$ 



Figura 4: Spettro di emissione del cristallo

#### 4 Analisi dati

Facendo riferimento alla Figura 2, possiamo identificare due regimi corrispondenti a quello di basso e alto pompaggio. Analizziamo separatamente questi due regimi cercando di identificarne gli intervalli di validità.

Osservando invece la Figura 4 si notato molti picchi a diverse lunghezze d'onda. Cerchiamo quindi di identificare quali di essi corrispondono alle transizioni aspettate.

## 4.1 Bassa potenza

Come discusso nella sezione di teoria in regime di bassa potenza di pompaggio ci aspettiamo, al limite  $P \to 0$ , un'andamento quadratico.

Abbiamo quindi cercato di verificare in che intervallo quest'approssimazione è giustificata eseguendo un fit con la funzione  $y=ax^b$  aumentando di 1 mW l'intervallo di dati considerato partendo da  $P_{max}$ =5 mW fino a  $P_{max}$ =30 mW.

I risultati ottenuti sono riportati in Figura 5:



Figura 5

#### 4.1.1 Discussione errori

#### 4.1.2 Analisi del cut

Come mostrato in Figura 5 il valore di b ottenuto dal fit è in accordo con quello atteso finché  $P_{max} < 25mW$ .

É possibile comprendere in modo migliore l'intervallo in cui è valido il regime di basso pompaggio se si osservano i grafici in Figura 6 e in Figura 7.



In Figura 6 è mostrato l'andamento dei risultati ottenuti dal fit per b in funzione della potenza massima fino a cui è stato eseguito il rispettivo fit.

### 4.2 Alta potenza

1 fit lineare

#### 4.3 Spettro di emissione

plot spettro

# Appendice

| $\theta$ [deg] | P [mW] |
|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|
| 240            | 462    | 166            | 941    | 92             | 4.72   | 20             | 21.77  | 308            | 116.1  |
| 238            | 462    | 164            | 980    | 90             | 4.94   | 18             | 22.76  | 306            | 123.4  |
| 236            | 463    | 162            | 1.021  | 88             | 5.16   | 16             | 23.70  | 304            | 131.1  |
| 234            | 467    | 160            | 1.062  | 86             | 5.39   | 14             | 24.67  | 302            | 139.7  |
| 232            | 470    | 158            | 1.111  | 84             | 5.63   | 12             | 25.87  | 300            | 148.2  |
| 230            | 469    | 156            | 1.154  | 82             | 5.85   | 10             | 26.67  | 298            | 158.0  |
| 228            | 470    | 154            | 1.216  | 80             | 6.13   | 8              | 27.87  | 296            | 171.1  |
| 226            | 466    | 152            | 1.271  | 78             | 6.38   | 6              | 29.05  | 294            | 184.1  |
| 224            | 467    | 150            | 1.320  | 76             | 6.62   | 4              | 30.3   | 292            | 196.0  |
| 222            | 468    | 148            | 1.391  | 74             | 6.93   | 2              | 31.5   | 290            | 209.8  |
| 220            | 469    | 146            | 1.440  | 72             | 7.23   | 0              | 32.8   | 288            | 223.8  |
| 218            | 470    | 144            | 1.510  | 70             | 7.54   | 358            | 34.1   | 286            | 238.8  |
| 216            | 469    | 142            | 1.586  | 68             | 7.86   | 356            | 35.6   | 284            | 257.8  |
| 214            | 458    | 140            | 1.668  | 66             | 8.27   | 354            | 37.1   | 282            | 275.8  |
| 212            | 413    | 138            | 1.744  | 64             | 8.66   | 352            | 38.8   | 280            | 296.0  |
| 210            | 298    | 136            | 1.839  | 62             | 9.06   | 350            | 40.4   | 278            | 316    |
| 208            | 145.0  | 134            | 1.913  | 60             | 9.53   | 348            | 42.0   | 276            | 338    |
| 206            | 45.2   | 132            | 1.988  | 58             | 9.93   | 346            | 43.9   | 274            | 361    |
| 204            | 8.42   | 130            | 2.078  | 56             | 10.27  | 344            | 46.0   | 272            | 382    |
| 202            | 1.763  | 128            | 2.171  | 54             | 10.83  | 342            | 47.9   | 270            | 402    |
| 200            | 897    | 126            | 2.270  | 52             | 11.36  | 340            | 50.1   | 268            | 433    |
| 198            | 724    | 124            | 2.383  | 50             | 11.80  | 338            | 52.2   | 266            | 454    |
| 196            | 624    | 122            | 2.497  | 48             | 12.12  | 336            | 54.3   | 264            | 464    |
| 194            | 589    | 120            | 2.614  | 46             | 12.66  | 334            | 56.5   | 262            | 465    |
| 192            | 586    | 118            | 2.733  | 44             | 13.18  | 332            | 58.9   | 260            | 466    |
| 190            | 598    | 116            | 2.858  | 42             | 13.81  | 330            | 61.6   | 258            | 468    |
| 188            | 614    | 114            | 3.01   | 40             | 14.44  | 328            | 64.4   | 256            | 467    |
| 186            | 629    | 112            | 3.14   | 38             | 15.08  | 326            | 67.4   | 254            | 467    |
| 184            | 650    | 110            | 3.29   | 36             | 15.67  | 324            | 70.0   | 252            | 467    |
| 182            | 672    | 108            | 3.46   | 34             | 16.51  | 322            | 74.4   | 250            | 466    |
| 180            | 696    | 106            | 3.60   | 32             | 17.22  | 320            | 79.0   | 248            | 469    |
| 178            | 725    | 104            | 3.78   | 30             | 17.83  | 318            | 83.2   | 246            | 471    |
| 176            | 755    | 102            | 3.95   | 28             | 18.60  | 316            | 87.2   | 244            | 471    |
| 174            | 787    | 100            | 4.13   | 26             | 19.29  | 314            | 92.1   | 242            | 468    |
| 172            | 821    | 98             | 4.34   | 24             | 20.05  | 312            | 97.5   | 240            | 464    |
| 170            | 856    | 96             | 4.52   | 22             | 20.83  | 310            | 103.3  | 238            | 463    |
| 168            | 898    | 94             | 4.72   |                |        |                |        |                |        |

Tabella 1: Dati relativi alla taratura dell'attenuatore variabile. Gli errori di calibrazione sulle potenze sono del 3%. L'errore sull'angolo è inferiore a 0.5 gradi centesimali, quindi è trascurabile.

| $\theta$ [deg] | $V_{pp}$ [mV] | $\Delta V_{pp}$ | $\theta$ [deg] | $V_{pp}$ [mV] | $\Delta V_{pp}$ | $\theta$ [deg] | $V_{pp}$ [mV] | $\Delta V_{pp}$ | $\theta$ [deg] | $V_{pp}$ [mV] | $\Delta V_{pp}$ |
|----------------|---------------|-----------------|----------------|---------------|-----------------|----------------|---------------|-----------------|----------------|---------------|-----------------|
| 240            | 500           | 20              | 322            | 66            | 2               | 12             | 14.8          | 0.8             | 60             | 2.3           | 0.2             |
| 250            | 480           | 20              | 324            | 62            | 2               | 14             | 14.8          | 0.8             | 62             | 2.1           | 0.2             |
| 254            | 480           | 20              | 326            | 60            | 2               | 16             | 14.0          | 0.8             | 64             | 1.9           | 0.2             |
| 258            | 460           | 20              | 328            | 58            | 2               | 18             | 12.8          | 0.8             | 66             | 1.7           | 0.2             |
| 262            | 460           | 20              | 330            | 50            | 2               | 20             | 12.4          | 0.8             | 68             | 1.8           | 0.2             |
| 266            | 460           | 20              | 332            | 50            | 2               | 22             | 12.0          | 0.8             | 70             | 1.6           | 0.2             |
| 270            | 420           | 20              | 334            | 48            | 2               | 24             | 11.2          | 0.8             | 72             | 1.5           | 0.2             |
| 274            | 390           | 10              | 336            | 44            | 2               | 26             | 10.0          | 0.8             | 74             | 1.4           | 0.2             |
| 278            | 350           | 10              | 338            | 42            | 2               | 28             | 9.2           | 0.8             | 76             | 1.3           | 0.2             |
| 282            | 310           | 10              | 340            | 40            | 1               | 30             | 8.8           | 0.8             | 78             | 1.3           | 0.2             |
| 286            | 270           | 10              | 342            | 38            | 1               | 32             | 8.0           | 0.8             | 80             | 1.1           | 0.2             |
| 290            | 230           | 10              | 344            | 34            | 1               | 34             | 7.2           | 0.8             | 82             | 1.0           | 0.2             |
| 294            | 200           | 10              | 346            | 32            | 1               | 36             | 6.4           | 0.4             | 84             | 0.9           | 0.2             |
| 298            | 180           | 10              | 348            | 32            | 1               | 38             | 6.2           | 0.4             | 86             | 0.9           | 0.2             |
| 300            | 170           | 10              | 350            | 31            | 1               | 40             | 5.8           | 0.4             | 88             | 0.8           | 0.2             |
| 302            | 152           | 4               | 352            | 28            | 1               | 42             | 5.4           | 0.4             | 90             | 0.7           | 0.2             |
| 304            | 128           | 4               | 354            | 25            | 1               | 44             | 4.8           | 0.4             | 92             | 0.6           | 0.2             |
| 306            | 120           | 4               | 356            | 24            | 1               | 46             | 4.6           | 0.4             | 94             | 0.6           | 0.2             |
| 308            | 116           | 4               | 358            | 22            | 1               | 48             | 4.4           | 0.4             | 96             | 0.5           | 0.2             |
| 310            | 116           | 4               | 360            | 22            | 1               | 50             | 4.0           | 0.4             | 98             | 0.5           | 0.2             |
| 312            | 104           | 4               | 2              | 20            | 1               | 52             | 3.6           | 0.2             | 100            | 0.5           | 0.2             |
| 314            | 92            | 4               | 4              | 19            | 1               | 54             | 3.3           | 0.2             | 102            | 0.4           | 0.2             |
| 316            | 80            | 2               | 6              | 19            | 1               | 56             | 2.9           | 0.2             | 104            | 0.4           | 0.2             |
| 318            | 76            | 2               | 8              | 17            | 1               | 58             | 2.7           | 0.2             | 106            | 0.3           | 0.2             |
| 320            | 72            | 2               | 10             | 14.8          | 0.8             |                |               |                 |                |               |                 |

Tabella 2: Dati relativi alla prima presa dati. Gli errori  $\Delta V_{pp}$  sono relativi alle tacche dell'oscilloscopio. L'errore sull'angolo è inferiore a 0.5 gradi centesimali, quindi è trascurabile.

| $\theta$ [deg] | $V_{pp}$ [mV] | $\Delta V_{pp}$ | $\theta$ [deg] | $V_{pp}$ [mV] | $\Delta V_{pp}$ | $\theta$ [deg] | $V_{pp}$ [mV] | $\Delta V_{pp}$ | $\theta$ [deg] | $V_{pp}$ [mV] | $\Delta V_{pp}$ |
|----------------|---------------|-----------------|----------------|---------------|-----------------|----------------|---------------|-----------------|----------------|---------------|-----------------|
| 270            | 2400          | 100             | 316            | 520           | 20              | 24             | 62            | 2               | 80             | 6.2           | 0.4             |
| 280            | 1800          | 100             | 318            | 500           | 20              | 26             | 58            | 2               | 82             | 6.6           | 0.2             |
| 284            | 1600          | 40              | 320            | 480           | 20              | 28             | 52            | 2               | 84             | 5.6           | 0.2             |
| 288            | 1440          | 40              | 322            | 440           | 20              | 30             | 48            | 2               | 86             | 5.4           | 0.2             |
| 292            | 1200          | 40              | 324            | 420           | 20              | 32             | 46            | 2               | 88             | 5.0           | 0.2             |
| 296            | 1120          | 40              | 326            | 390           | 10              | 34             | 40            | 2               | 90             | 4.8           | 0.2             |
| 300            | 960           | 40              | 328            | 370           | 10              | 36             | 38            | 2               | 92             | 4.6           | 0.2             |
| 302            | 880           | 40              | 330            | 330           | 10              | 38             | 38            | 1               | 94             | 4.2           | 0.2             |
| 240            | 2900          | 100             | 332            | 320           | 10              | 40             | 36            | 1               | 96             | 3.8           | 0.2             |
| 250            | 2700          | 100             | 334            | 300           | 10              | 42             | 34            | 1               | 98             | 3.4           | 0.2             |
| 256            | 2600          | 100             | 336            | 270           | 10              | 44             | 33            | 1               | 100            | 3.0           | 0.1             |
| 260            | 2700          | 100             | 338            | 250           | 10              | 46             | 31            | 1               | 102            | 2.8           | 0.1             |
| 264            | 2600          | 100             | 340            | 240           | 10              | 48             | 27            | 1               | 104            | 2.5           | 0.1             |
| 268            | 2500          | 100             | 342            | 230           | 10              | 50             | 24            | 1               | 106            | 2.5           | 0.1             |
| 272            | 2400          | 100             | 344            | 220           | 10              | 52             | 23            | 1               | 108            | 2.2           | 0.1             |
| 276            | 2100          | 100             | 346            | 200           | 10              | 54             | 21            | 1               | 110            | 2.1           | 0.1             |
| 282            | 1700          | 100             | 348            | 180           | 10              | 56             | 19            | 1               | 112            | 1.9           | 0.1             |
| 286            | 1600          | 40              | 350            | 170           | 10              | 58             | 16            | 0.4             | 114            | 1.7           | 0.1             |
| 290            | 1360          | 40              | 354            | 160           | 4               | 60             | 16            | 0.4             | 116            | 1.5           | 0.1             |
| 294            | 1200          | 40              | 358            | 140           | 4               | 62             | 15.2          | 0.4             | 118            | 1.3           | 0.1             |
| 298            | 1040          | 40              | 2              | 120           | 4               | 64             | 14            | 0.4             | 120            | 1.2           | 0.1             |
| 302            | 920           | 40              | 6              | 116           | 4               | 66             | 13.2          | 0.4             | 122            | 1.1           | 0.1             |
| 304            | 840           | 40              | 10             | 100           | 4               | 68             | 12.4          | 0.4             | 124            | 1.0           | 0.1             |
| 306            | 760           | 40              | 12             | 92            | 4               | 70             | 10            | 0.4             | 126            | 0.9           | 0.1             |
| 308            | 720           | 40              | 16             | 80            | 4               | 72             | 8.8           | 0.4             | 128            | 0.8           | 0.1             |
| 310            | 680           | 40              | 18             | 74            | 2               | 74             | 8.2           | 0.4             | 130            | 0.7           | 0.1             |
| 312            | 640           | 40              | 20             | 68            | 2               | 76             | 8.0           | 0.4             | 132            | 0.7           | 0.1             |
| 314            | 600           | 40              | 22             | 64            | 2               | 78             | 7.8           | 0.4             | 136            | 0.6           | 0.1             |

Tabella 3: Dati relativi alla seconda presa dati. Gli errori  $\Delta V_{pp}$  sono relativi alle tacche dell'oscilloscopio. L'errore sull'angolo è inferiore a 0.5 gradi centesimali, quindi è trascurabile.