Multistate models

Bendix Carstensen

Steno Diabetes Center Copenhagen

Gentofte, Denmark

http://BendixCarstensen.com

SPE, Tartu, Estonia,

August 2019

http://BendixCarstensen.com/SPE

Multistate models

Bendix Carstensen, Martyn Plummer

Multistate models

SPE, Tartu, Estonia,

August 2019

http://BendixCarstensen.com/SPE

Common assumptions in survival analysis

- 1. Subjects are **either** "healthy" **or** "diseased", with no intermediate state.
- 2. The disease is **irreversible**, or requires intervention to be cured.
- 3. The time of disease incidence is known **exactly**.
- 4. The disease is **accurately** diagnosed.

These assumptions are true for death and many chronic diseases.

A model for cervical cancer

Invasive squamous cell cancer of the cervix is preceded by cervical intraepithelial neoplasia (CIN)

- Aim of the modeling the transition rates between states, is to be able predict how population moves between states:
- state occupancy probabilities
- visit probability
- length of stay (sojourn time)

Multistate models (ms-Markov)

Markov models for multistate diseases

Generalization of Poisson regression to multiple disease states:

- Transition rates between states depends only on current state (and possibly time since start) — the Markov property
- (time-fixed) covariates may influence transition rates
- the formal Markov property is very restrictive
- semi-Markov: rates depend on time since entry to current state
- ▶ In the clinical literature, the term "Markov model" is often used about any type of multistate model
- ...and the Markov property is handy in probability theory

Multistate models (ms-Markov) 4/39

Components of a multistate (Markov) model

- Define the (disease) states
- Define which transitions between states that occur
- Select covariates influencing transition rates (may be different between transitions)
- Constrain some covariate effects to be the same, or zero.
- Not a trivial task do we want e.g.
 - cause of death
 - disease status at death

Components of multistate data

Times should be recorded as dates

- birth date
- entry date
- entry state
- exit date
- death date
- state entry dates for all states
- ...some states may be revisited

From this each person's trajectory through states can be constructed

Multistate models (ms-Markov)

Likelihood for multistate model

- ► The likelihood of the observed data (sojourn times and transitions) depend on the (models for) the transition rates.
- Assume transition rates are constant in small time intervals
- ▶ ⇒ each interval contributes terms to the log-likelihood:
 - ightharpoonup one for each person (p) at risk in state s in the interval
 - ... for each possible transition (s o v)
 - each term is a Poisson log-likelihood contribution:

$$d_{psv}\log(\lambda_{psv}) - \lambda_{psv}y_{ps},$$
 where:

- ullet λ_{psv} rate for person p in state s going to state v
- d_{psv} did person p in state s go to state v at end of interval
- y_{ps} how long did person p spend in state s (how long is the interval)
- Total log-lik is sum of terms over persons and transitions

Multistate models (ms-Markov) 7/39

Practical multistate modeling

- ▶ Total log-lik is sum of terms over persons (p) and transitions $(s \rightarrow v)$
- components **not** independent, but the total likelihood is a product; hence of the same form as the likelihood of independent Poisson variates
- practical analysis is just analysis of each transition rate separately
- as long as no two rates out of the same state are modeled we can use subsets of Lexis objects

Multistate models (ms-Markov)

Multistate models with Lexis

Bendix Carstensen

Multistate models

SPE, Tartu, Estonia,

August 2019

http://BendixCarstensen.com/SPE

Example: Renal failure data from Steno

Hovind P, Tarnow L, Rossing P, Carstensen B, and Parving H-H: Improved survival in patients obtaining remission of nephrotic range albuminuria in diabetic nephropathy. *Kidney Int.*, 66(3):1180–1186, 2004.

- ▶ 96 patients entering at nephrotic range albuminuria (NRA), i.e. U-alb> 300mg/day.
- ► Is remission from this condition (i.e return to U-alb< 300mg/day) predictive of the prognosis?
- Endpoint of interest: Death or end stage renal disease (ESRD), i.e. dialysis or kidney transplant.

		Remission	
	Total	Yes	No
No. patients No. events Follow-up time (years)	125 77 1084.7	32 8 259.9	93 69 824.8
Cox-model: Timescale: Time since nephrotic range albuminuria (NRA) Entry: 2.5 years of GFR-measurements after NRA Outcome: ESRD or Death			
Estimates:	RR	95% c.i.	p
Fixed covariates: Sex (F vs. M): Age at NRA (per 10 years):	0.92 1.42	(0.53,1.57) (1.08,1.87)	0.740 0.011
Time-dependent covariate: Obtained remission:	0.28	(0.13,0.59)	0.001

Features of the analysis

- Remission is included as a time-dependent variable.
- Age at entry is included as a fixed variable.

```
renal[1:5,]
id dob doe dor dox event
17 1967.944 1996.013 NA 1997.094 2
26 1959.306 1989.535 1989.814 1996.136 1
27 1962.014 1987.846 NA 1993.239 3
33 1950.747 1995.243 1995.717 2003.993 0
42 1961.296 1987.884 1996.650 2003.955 0
```

Note patient 26, 33 and 42 obtain remission.

```
> Lr <- Lexis( entry = list( per=doe,
                             age=doe-dob,
+
                              tfi=0),
                exit = list( per=dox ),
         exit.status = event>0,
              states = c("NRA", "ESRD"),
                data = renal )
> summary( Lr )
Transitions:
     То
From
      NRA ESRD
               Records: Events: Risk time:
                                               Persons:
  NRA 48
            77
                     125
                                77
                                      1084.67
                                                    125
```


Cutting follow-up at remission: cutLexis

```
> Lc <- cutLexis( Lr, cut=Lr$dor,
+
                timescale="per",
                new.state="Rem",
         precursor.states="NRA" )
> summary( Lc )
Transitions:
     To
From
      NRA Rem ESRD
                    Records:
                              Events: Risk time:
                                                    Persons:
  NR.A
       24
           29
                69
                          122
                                    98
                                           824.77
                                                         122
           24
                           32
                                           259.90
                                                          32
  R.em
           53
                77
  Sum
       24
                          154
                                   106
                                          1084.67
                                                         125
```

Showing states and FU: boxes.Lexis

Splitting states: cutLexis

```
> Lc <- cutLexis( Lr, cut=Lr$dor,
                 timescale="per",
+
                 new.state="Rem",
         precursor.states="NRA",
              split.states=TRUE )
> summary( Lc )
Transitions:
     Tο
From
      NRA Rem ESRD ESRD(Rem)
                                Records: Events: Risk time:
                                                                Persons:
  NR.A
       24
           29
                                     122
                                                98
                                                                      122
                 69
                                                       824.77
                                      32
                                                                      32
  R.em
           24
                                                 8
                                                       259.90
                                     154
       24
                 69
                                               106
                                                      1084.67
                                                                     125
  Sum
```

Showing states and FU: boxes.Lexis

Likelihood for a general MS-model

- Product of likelihoods for each transition
 - each one as for a survival model
- ▶ **Risk time** is the risk time in the "From" state
- **Events** are transitions to the "To" state
- All other transitions out of "From" are treated as censorings
- Possible to fit models separately for each transition

Prediction in multistate models: simLexis and renal failure

Bendix Carstensen

Multistate models

SPE, Tartu, Estonia,

August 2019

A more complicated multistate model

A more complicated multistate model

Modeling in a multistate model

Each transition modeled by a model for rates (Cox-model, Poisson-model for split data, glm or gam):

...using the Lexis properties

```
> # Rem-rate
> mr <- gam.Lexis( sLc, from="NRA", to="Rem",
                        formula = ~s(tfi. k=10) + sex)
mgcv::gam Poisson analysis of Lexis object sLc with log link:
Rates for the transition: NRA->Rem
> # ESRD-rates
> mx <- gam.Lexis( sLc. formula = ~ s(tfi,k=10) + sex +
                        I((doe-dob-40)/10) + I(lex.Cst=="Rem"))
+
mgcv::gam Poisson analysis of Lexis object sLc with log link:
Rates for transitions: NRA->ESRD, Rem->ESRD(Rem)
```

Default is to model all transitions

State probabilities

How do we get from rates (Poisson-models) to probabilities:

- 1 Analytic calculations:
 - immensely complicated formulae
 - computationally fast (once implemented)
 - difficult to generalize
- 2 Simulation of persons' histories
 - conceptually simple
 - computationally not quite simple
 - easy to generalize
 - hard to get confidence intervals (bootstrap)

Simulation of a survival time

▶ For a rate function $\lambda(t)$, $\Lambda(t) = \int_0^t \lambda(s) \, ds$:

$$S(t) = \exp(-\Lambda(t))$$

▶ Simulate a survival probability $u \in [0, 1]$:

$$u = S(t) \Leftrightarrow \Lambda(t) = -\log(u)$$

- \blacktriangleright Knowledge of $\Lambda(t)$ makes it easy to find a survival time
 - essentially just linear interpolation.

Simulation in a multistate model

- ▶ Simulate a "survival time" for each transition **out** of a state.
- ▶ The smallest of these is the transition time.
- Choose the corresponding transition type as transition.

Transition objects are glm/gam


```
> Tr <- list( "NRA" = list( "ESRD" = mx,
+ "Rem" = mr),
+ "Rem" = list( "ESRD(Rem)" = mx))
```

simLexis

Input required:

- ► A Lexis object representing the initial state of the persons to be simulated.
 - (lex.dur and lex.Xst will be ignored.)
- A transition object with the estimated Poisson models collected in a list of lists.

Output produced:

- A Lexis object with simulated event histories for may persons
- Use nState to count how many persons in each state at different times

Using simLexis I

Put one record a new Lexis object (init, say). representing a person with the desired covariates.

Must have same structure as the one used for estimation — time scales must be initiated even if not used in models

```
> init <- sLc[NULL,c(timeScales(sLc),"lex.Cst")]
> init[1,"per"] <- 1994
> init[1,"age"] <- 40
> init[1,"tfi"] <- 0
> init[1,"lex.Cst"] <- "NRA"
> init[1,"sex"] <- "M"
> init[1,"dob"] <- 1954
> init[1,"doe"] <- 1994
> init
```

Using simLexis II

```
per age tfi lex.Cst sex dob doe
1 1994 40
                   NR.A
           0
                         M 1954 1994
> system.time(
+ sim1 <- simLexis( Tr, init, N=10000 ) )
        system elapsed
  user
 49.608
        52.279 36.550
> summary(sim1)
Transitions:
     To
From
          Rem ESRD ESRD(Rem) Records:
                                         Events: Risk time:
                                                             Persons:
  NRA 314 1870 7816
                                  10000
                                            9686
                                                   74864.10
                                                                10000
                                   1870
          940
                          930
                                             930
                                                   20593.77
                                                                 1870
  R.em
  Sum 314 2810 7816
                                  11870
                                           10616 95457.87
                                                                10000
                          930
```

Using a simulated Lexis object — pState I

```
> NN < - nState(sim1, at = seq(0,15,0.1),
                  from = 0,
            time.scale = "tfi" )
> head( NN )
    State
when
       NR.A
            Rem
                ESRD ESRD(Rem)
     10000
 \cap
 0.1 9940 39 21
 0.2 9891 60 49
 0.3 9834 83 83
 0.4 9793 100 107
 0.5 9731 134
                  135
> nw1 <- pState(NN, perm = c(1,2,4,3))
> head( nw1. 3 )
```

Using a simulated Lexis object — pState II

```
State
when
        NRA Rem ESRD(Rem) ESRD
     1.0000 1.0000
                  1.0000
                 0.9979 1
 0.1 0.9940 0.9979
 0.2 0.9891 0.9951 0.9951
> tail( nw1, 3 )
     State
when
         NR.A
             Rem ESRD(Rem) ESRD
 14.8 0.0996 0.2200 0.2802
 14.9 0.0971 0.2171 0.2779
 15 0.0953 0.2151 0.2763
> par(mar=c(3,3,0.1,0.1), mgp=c(3,1,0)/1.6, las=1)
> plot(nw1, col=clr[c(2.1.4.3)])
> lines( as.numeric(rownames(nw1)), nw1[,2] )
```

Using a simulated Lexis object — pState III

```
> nw2 < - pState(NN, perm = c(4,2,1,3))
> head( nw2, 3 )
    State
when ESRD(Rem) Rem NRA ESRD
            0 0.0000 1.0000
         0 0.0039 0.9979
 0.2
           0 0.0060 0.9951
> tail( nw2, 3 )
     State
when
      ESRD(Rem) Rem NRA ESRD
 14.8 0.0602 0.1806 0.2802
 14.9 0.0608 0.1808 0.2779
 15 0.0612 0.1810 0.2763
> par(mar=c(3,3,0.1,0.1), mgp=c(3,1,0)/1.6, las=1)
> plot(nw2, col=clr[c(4,1.2.3)])
```

Simulated probabilities

Simulated probabilities

How many persons should you simulate?

- ▶ All probabilities have the same denominator the initial number of persons in the simulation, N, say.
- lacktriangle Thus, any probability will be of the form p=x/N
- For small probabilities we have that:

s.e.
$$(\log(\hat{p})) = (1-p)/\sqrt{Np(1-p)}$$

▶ So c.i. of the form $p \stackrel{\times}{\div} \operatorname{erf}$ where:

$$erf = \exp(1.96 \times (1-p)/\sqrt{Np(1-p)})$$

Precision of simulated probabilities

Multistate model overview

- Clarify what the relevant states are
- Allows proper estimation of transition rates
- and relationships between them
- Separate model for each transition (arrow)
- ► The usual survival methodology to compute probabilities breaks down
- Simulation allows estimation of cumulative probabilities:
 - Estimate transition rates (as usual)
 - Simulate probabilities (not as usual)