Graph Hamiltonicity and Gröbner Bases

Max Comstock

Summer 2014

Gröbner bases

Definition

The **initial term** of a polynomial $f \in R$ with respect to \prec , denoted $in_{\prec}(f)$, is the largest monomial in f with respect to \prec .

Definition

Given an ideal I of R and a term order \prec , a finite subset $\mathcal G$ of I is a **Gröbner basis** with respect to \prec if the ideal

$$in_{\prec}(I) = \langle in_{\prec}(f) : f \in I \rangle,$$

is generated by the initial terms of G.

Proposition

Let G = (V, A) be a simple directed graph on vertices $V = \{1, ..., n\}$. Assume that the characteristic of \mathbb{K} is relatively prime to n and that $z \in \mathbb{K}$ is a primitive n-th root of unity. Consider the following system in $\mathbb{K}[x_1, ..., x_n]$:

$$H_G = \{x_i^n - 1 = 0, \prod_{j \in \delta^+(i)} (zx_i - x_j) = 0 : i \in V\}$$

Here, $\delta^+(i)$ denotes those vertices j which are connected to i by the arc going from i to j in G. The system H has a solution over \mathbb{K} if and only if G has a Hamiltonian cycle.

Proposition

Let G = (V, A) be a simple directed graph on vertices $V = \{1, ..., n\}$. Assume that the characteristic of \mathbb{K} is relatively prime to n and that $z \in \mathbb{K}$ is a primitive n-th root of unity. Consider the following system in $\mathbb{K}[x_1, ..., x_n]$:

$$H_G = \{x_i^n - 1 = 0, \prod_{j \in \delta^+(i)} (zx_i - x_j) = 0 : i \in V\}$$

Here, $\delta^+(i)$ denotes those vertices j which are connected to i by the arc going from i to j in G. The system H has a solution over \mathbb{K} if and only if G has a Hamiltonian cycle.

Proposition

Let G = (V, A) be a simple directed graph on vertices $V = \{1, ..., n\}$. Assume that the characteristic of \mathbb{K} is relatively prime to n and that $z \in \mathbb{K}$ is a primitive n-th root of unity. Consider the following system in $\mathbb{K}[x_1, ..., x_n]$:

$$H_G = \{x_i^n - 1 = 0, \prod_{j \in \delta^+(i)} (zx_i - x_j) = 0 : i \in V\}$$

Here, $\delta^+(i)$ denotes those vertices j which are connected to i by the arc going from i to j in G. The system H has a solution over \mathbb{K} if and only if G has a Hamiltonian cycle.

Proposition

Let G = (V, A) be a simple directed graph on vertices $V = \{1, ..., n\}$. Assume that the characteristic of \mathbb{K} is relatively prime to n and that $z \in \mathbb{K}$ is a primitive n-th root of unity. Consider the following system in $\mathbb{K}[x_1, ..., x_n]$:

$$H_G = \{x_i^n - 1 = 0, \prod_{j \in \delta^+(i)} (zx_i - x_j) = 0 : i \in V\}$$

Here, $\delta^+(i)$ denotes those vertices j which are connected to i by the arc going from i to j in G. The system H has a solution over \mathbb{K} if and only if G has a Hamiltonian cycle.

Simple case: directed graphs

Definition

Let z be a fixed primitive k-th root of unity. If C is a directed cycle of length k in a directed graph, with vertex set $\{v_1, \ldots, v_k\}$, the **cycle encoding** of C is the following set of k polynomials:

$$g_i = \begin{cases} x_{v_{k-i}} - z^{k-i} x_{v_k} & i = 1, \dots, k-1 \\ x_{v_k}^k - 1 & i = k \end{cases}.$$

Note: define $H_{G,C} = \langle g_1, \dots, g_i \rangle$. The g_i 's form a reduced Gröbner basis (which must be unique) for $H_{G,C}$.

Simple case: directed graphs

Definition

Let z be a fixed primitive k-th root of unity. If C is a directed cycle of length k in a directed graph, with vertex set $\{v_1, \ldots, v_k\}$, the **cycle encoding** of C is the following set of k polynomials:

$$g_{i} = \begin{cases} x_{V_{k-i}} - z^{k-i} x_{V_{k}} & i = 1, \dots, k-1 \\ x_{V_{k}}^{k} - 1 & i = k \end{cases}.$$

Note: define $H_{G,C} = \langle g_1, \dots, g_i \rangle$. The g_i 's form a reduced Gröbner basis (which must be unique) for $H_{G,C}$.

Simple case: directed graphs

Definition

Let z be a fixed primitive k-th root of unity. If C is a directed cycle of length k in a directed graph, with vertex set $\{v_1, \ldots, v_k\}$, the **cycle encoding** of C is the following set of k polynomials:

$$g_{i} = \begin{cases} x_{v_{k-i}} - z^{k-i} x_{v_{k}} & i = 1, \dots, k-1 \\ x_{v_{k}}^{k} - 1 & i = k \end{cases}.$$

Note: define $H_{G,C} = \langle g_1, \dots, g_i \rangle$. The g_i 's form a reduced Gröbner basis (which must be unique) for $H_{G,C}$.

Simple example

Let z be a primitive 5^{th} root of unity. We are looking for solutions to the system H:

$$x_i^5 - 1 = 0 \quad 1 \le i \le 5$$

$$(zx_1 - x_2)(zx_1 - x_3)(zx_1 - x_4) = 0$$

$$zx_2 - x_3 = 0$$

$$zx_3 - x_4 = 0$$

$$zx_4 - x_5 = 0$$

Simple example (continued)

Process for a single Hamiltonian cycle:

- Let H_G be the ideal generated by the polynomials in the system H.
- ▶ If we find a Gröbner basis for H_G with respect to the ordering $x_5 < x_4 < x_3 < x_2 < x_1$, we find it is a generating set for $H_{G,C}$.

In our example, the reduced Gröbner basis is

$$\{x_5^5 - 1, x_4 - x_5z^4, x_3 - x_5z^3, x_2 - x_5z^2, x_1 - x_5z\}.$$

How to represent a primitive *n*th root of unity

Definition

An nth root of unity is **primitive** if it is not a kth root of unity for some smaller k:

$$z^k \neq 1$$
 $(k = 1, 2, ..., n - 1).$

Cyclotomic poynomial Φ_n

Definition

The n**th cyclotomic polynomial** is the unique irreducible polynomial with integer coefficients whose roots are the nth primitive roots of unity.

Examples:

$$\Phi_3(z) = z^2 + z + 1$$

$$\Phi_4(z) = z^2 + 1$$

$$\Phi_5(z) = z^4 + z^3 + z^2 + z + 1$$

$$\Phi_6(z) = z^2 - z + 1$$

Using Φ_n to create a field with *n*th roots of unity

We will begin with the ring Our goal is to create the ring

$$\mathbb{K}[x_1,\ldots,x_n]$$

where \mathbb{K} is a field containing the primitive *n*th roots of unity. We can create such a field as follows:

$$\mathbb{K} = \frac{\mathbb{Q}[z]}{\Phi_n(z)}.$$

Using the relationship

$$\left(\frac{\mathbb{Q}[z]}{\Phi_n(z)}\right)[x_1,\ldots,x_n]\cong\frac{\mathbb{Q}[x_1,\ldots,x_n,z]}{\Phi_n},$$

We can choose

$$\mathbb{K}[x_1,\ldots,x_n]=\frac{\mathbb{Q}[x_1,\ldots,x_n,z]}{\Phi_n(z)}.$$

Implementation using Macaulay2

```
R = QQ[x 1, x 2, x 3, x 4, x 5, x 6, z];
CYCLOTOMIC POLY = z^2 - z + 1;
R = R/CYCLOTOMIC POLY;
IDEAL GEN = \{x \ 1^6 - 1, \ x \ 2^6 - 1, \ x \ 3^6 - 1, \ x \ 3^
                                                         x 4^6 - 1, x 5^6 - 1, x 6^6 - 1,
      z*x 1 - x 2,
      z*x 2 - x 3.
      z*x 3 - x 4.
     z*x 4 - x 5.
      z*x 5 - x 6,
      z*x 6 - x 1:
idealOfGraph = ideal IDEAL_GEN;
graphBasis = flatten entries gens gb idealOfGraph;
print toString graphBasis;
                                                                                                                                                                                                                 4 D > 4 B > 4 B > 4 B > B
```

Using these results to prove a conjecture

We want to prove the following conjecture:

Conjecture

For a graph G with n vertices and one or more Hamiltonian cycles, $x_n^n - 1$ is in the reduced Gröbner basis of H_G .

This is true for graphs with a single cycle, from a previous theorem.

Extending to Graphs with multiple Hamiltonian cycles

We will use the following theorem to relate the encoding of a single cycle to multiple cycles:

Theorem

Let G be a connected directed graph with n vertices. Then,

$$H_G = \bigcap_C H_{G,C},$$

where C ranges over all Hamiltonian cycles of the graph G.

More work to do

While this theorem reveals a potential strategy for proving the conjecture, computing the Gröbner basis of intersecting ideals is still very complicated.

Can we reduce the problem further?

Elimination Theory

One way to reduce the scope of this problem is to examine an *elimination ideal*, defined as follows:

Definition

Given $I = \langle f_1, \dots, f_s \rangle \subseteq k[x_1, \dots, x_n]$ the ℓ -th elimination ideal I_ℓ is the ideal of $k[x_{\ell+1}, \dots, x_n]$ defined by

$$I_{\ell} = I \cap k[x_{\ell+1}, \ldots, x_n].$$

We would like to show that $H_G \cap k[x_n] = \langle x_n^n - 1 \rangle$ for any graph G with one or more Hamiltonian cycles.

Can Gröbner bases help us do this?

Elimination Theory

Fortunately, they can. We can use the Elimination Theorem:

Theorem

Let $I \subseteq k[x_1, ..., x_n]$ be an ideal and let G be a Gröbner basis of I with respect to lex order where $x_1 > x_2 > \cdots > x_n$. Then, for every $0 < \ell < n$, the set

$$G_{\ell} = G \cap k[x_{\ell+1}, \ldots, x_n]$$

is a Gröbner basis of the ℓ -th elimination ideal I_{ℓ} .

Source: Cox, Little, O'Shea

Example with two Hamiltonian cycles

Let G be a graph with n vertices and two Hamiltonian cycles, represented by the cycle ideals H_{G,C_1} and H_{G,C_2} . Then we find

$$H_{G} \cap k[x_{n}] = (H_{G,C_{1}} \cap H_{G,C_{2}}) \cap k[x_{n}]$$

$$= (H_{G,C_{1}} \cap k[x_{n}]) \cap (H_{G,C_{2}} \cap k[x_{n}])$$

$$= \langle x_{n}^{n} - 1 \rangle \cap \langle x_{n}^{n} - 1 \rangle$$

$$= \langle x_{n}^{n} - 1 \rangle.$$

Therefore, the polynomial $x_n^n - 1$ is the sole generator of the polynomials in H_G that contain x_n alone.

Future work

A number of conjectures from this summer still remain. For instance, we present the following conjecture:

Conjecture

Let G be a graph with n vertices, and $k \ge 2$. There exists g in the reduced Gröbner basis of H_G such that $\mathrm{LT}(g) = x_i^k$ for some i such that $1 \le i < n$ if and only if G has more than one Hamiltonian cycle.

Potential applications

Hopefully, by proving facts about the structure of graph ideals, we can learn more about graphs themselves. One such application would be to prove or disprove Sheehan's Conjecture:

Conjecture

Every 4-regular graph has at least two Hamiltonian cycles.