

Description

The VSM55P03 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge .This device is well suited for high current load applications.

General Features

- V_{DS} =-30V, I_{D} =-55A $R_{DS(ON)}$ <8.5m Ω @ V_{GS} =-10V $R_{DS(ON)}$ <13m Ω @ V_{GS} =-4.5V
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Excellent package for good heat dissipation
- Pb free terminal plating
- RoHS compliant
- Halogen free

Application

- High side switch for full bridge converter
- DC/DC converter for LCD display

TO-252

Schematic Diagram

Package Marking and Ordering Information

	Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
	VSM55P03-T2	VSM55P03	TO-252	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	-30	V
Gate-Source Voltage	V _G s	±20	V
Drain Current-Continuous	I _D	-55	А
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	-38.9	Α
Drain Current-Pulsed (Note 1)	I _{DM}	-200	Α
Maximum Power Dissipation	P _D	110	W
Single pulse avalanche energy (Note 5)	E _{AS}	450	mJ
Derating factor		0.73	W/℃
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	°C

Thermal Characteristic

Thermal Resistance, Junction-to- Case (Note 2)	R _{0JC}	1.34	°C/W
--	------------------	------	------

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250μA	-30	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-30V,V _{GS} =0V	-	-	-1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			•			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=-250\mu A$		-1. 5	-2.0	V
Drain Cauras On State Desistance	R _{DS(ON)}	V _{GS} =-10V, I _D =-20A	-	6.8	8.5	mΩ
Drain-Source On-State Resistance		V _{GS} =-4.5V, I _D =-20A	-	10	13	mΩ
Forward Transconductance	G FS	V _{DS} =-5V,I _D =-20A	-	30	-	S
Dynamic Characteristics (Note4)			•		•	
Input Capacitance	C _{lss}	V _{DS} =-15V,V _{GS} =0V, F=1.0MHz		3736	-	PF
Output Capacitance	C _{oss}			485	-	PF
Reverse Transfer Capacitance	C _{rss}			439	-	PF
Switching Characteristics (Note 4)			•			
Turn-on Delay Time	t _{d(on)}			16	-	nS
Turn-on Rise Time	t _r	V _{DD} =-15V, I _D =-20A,	-	12	-	nS
Turn-Off Delay Time t _{d(off)}		V_{GS} =-10V, R_{GEN} =3 Ω	-	46	-	nS
Turn-Off Fall Time	t _f	1		22	-	nS
Total Gate Charge	Qg		-	70.7	-	nC
Gate-Source Charge	Q _{gs}	V _{DS} =-15V,I _D =-20A,V _{GS} =-10V	-	8	-	nC
Gate-Drain Charge	Q_{gd}]	-	17.4	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-55A	-	-	-1.2	V

Notes

- $\textbf{1.} \ \ \textbf{Repetitive Rating: Pulse width limited by maximum junction temperature.}$
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production
- 5. E_{AS} condition: Tj=25 $^{\circ}$ C,V_{DD}=-15V,V_G=-10V,L=0.5mH,Rg=25 Ω

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Rdson On-Resistance(m 2)

Figure 3 Rdson-Drain Current

Figure 4 Rdson-Junction Temperature

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 9 Power De-rating

T_J-Junction Temperature(℃)

Figure 10 ID Current Derating

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance