

Tel: 02-2875-7449

Date: 16 Jul 2020 1 of 14

Sample Information

Patient Name: 葉春峯 Gender: Male ID No.: A122658403 History No.: 34876783

Age: 58

Ordering Doctor: DOC3109L 邱昭華

Ordering REQ.: C2183CN Signing in Date: 2020/07/15

Path No.: \$109-99690 **MP No.:** F20044

Assay: Oncomine Focus Assay

Sample Type: FFPE Block No.: \$105-42476F Percentage of tumor cells: 50%

Note:

Sample Cancer Type: Non-Small Cell Lung Cancer

Table of Contents	Page
Variant Details	2
Biomarker Descriptions	2
Relevant Therapy Summary	3
Relevant Therapy Details	6

Report Highlights 2 Relevant Biomarker

2 Relevant Biomarkers2 Therapies Available46 Clinical Trials

Relevant Non-Small Cell Lung Cancer Findings

Gene	Finding	Gene	Finding	
ALK	Not detected	NTRK1	Not detected	
BRAF	Not detected	NTRK2	Not detected	
EGFR	Not detected	NTRK3	Not detected	
ERBB2	Not detected	RET	Not detected	
KRAS	KRAS p.(G12V) c.35G>T	ROS1	Not detected	
MET	Not detected			

Tel: 02-2875-7449

Date: 16 Jul 2020 2 of 14

Indicated Contraindicated

Relevant Biomarkers

Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trial		
PIK3CA p.(E545K) c.1633G>A phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha	None	alpelisib + fulvestrant ¹	10		
Tier: IIC					
Allele Frequency: 10.01%					
KRAS p.(G12V) c.35G>T	None	cabozantinib	37		
KRAS proto-oncogene, GTPase		cetuximab ^{1, 2}			
Tier: IA		panitumumab ¹			
Allele Frequency: 26.14%		cetuximab + chemotherapy ²			
		• • • • • • • • • • • • • • • • • • • •			
		panitumumab + chemotherapy ²			

Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Variant Details

DNA Sequence Variants								
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect	Coverage
PIK3CA	p.(E545K)	c.1633G>A	COSM763	chr3:178936091	10.01%	NM_006218.3	missense	1998
KRAS	p.(G12V)	c.35G>T	COSM520	chr12:25398284	26.14%	NM_033360.3	missense	1989
JAK1	p.(=)	c.2199A>G		chr1:65310489	99.34%	NM_002227.3	synonymous	1975
ALK	p.(I1461V)	c.4381A>G		chr2:29416572	99.75%	NM_004304.4	missense	1997
FGFR3	p.(=)	c.1953G>A		chr4:1807894	99.45%	NM_000142.4	synonymous	1997
PDGFRA	p.(=)	c.1701A>G		chr4:55141055	99.30%	NM_006206.5	synonymous	1994
FGFR4	p.(P136L)	c.407C>T		chr5:176517797	98.80%	NM_213647.2	missense	2000
RET	p.(=)	c.2307G>T		chr10:43613843	49.72%	NM_020975.4	synonymous	1993

Biomarker Descriptions

KRAS (KRAS proto-oncogene, GTPase)

Background: The KRAS proto-oncogene encodes a GTPase that functions in signal transduction and is a member of the RAS superfamily which also includes NRAS and HRAS. RAS proteins mediate the transmission of growth signals from the cell surface to the nucleus via the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways, which regulate cell division, differentiation, and survival^{1,2,3}.

Alterations and prevalence: Recurrent mutations in RAS oncogenes cause constitutive activation and are found in 20-30% of cancers. KRAS mutations are observed in up to 10-20% of uterine cancer, 30-35% of lung adenocarcinoma and colorectal cancer, and about 60%

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

A Both for use and

contraindicated

No evidence

Tel: 02-2875-7449

Date: 16 Jul 2020 3 of 14

Biomarker Descriptions (continued)

of pancreatic cancer⁴. The majority of KRAS mutations consist of point mutations occurring at G12, G13, and Q61^{4,5,6}. Mutations at A59, K117, and A146 have also been observed but are less frequent^{7,8}.

Potential relevance: Currently, no therapies are approved for KRAS aberrations. However, the KRAS G12C inhibitor, AMG 5109, was granted fast track designation (2019) for previously treated non-small cell lung cancer (NSCLC) patients with KRAS G12C mutations. The EGFR antagonists, cetuximab¹⁰ and panitumumab¹¹, are contraindicated for treatment of colorectal cancer patients with KRAS mutations in exon 2 (codons 12 and 13), exon 3 (codons 59 and 61), and exon 4 (codons 117 and 146)⁸. Additionally, KRAS mutations are associated with poor prognosis in NSCLC¹².

PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha)

Background: The PIK3CA gene encodes the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha of the class I phosphatidylinositol 3-kinase (PI3K) enzyme¹³. PI3K is a heterodimer that contains a p85 regulatory subunit, which couples the p110α subunit (PI3K) to activated tyrosine protein kinases. PI3K catalyzes the conversion of phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2) into phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) while the phosphatase and tensin homolog (PTEN) catalyzes the reverse reaction^{14,15}. The reversible phosphorylation of inositol lipids regulates diverse aspects of cell growth and metabolism^{14,15,16,17}. Recurrent somatic alterations in PIK3CA are frequent in cancer and result in activation of the PI3K/AKT/MTOR pathway, which can influence several hallmarks of cancer including cell proliferation, apoptosis, cancer cell metabolism and invasion, and genetic instability^{18,19,20}.

Alterations and prevalence: Recurrent somatic activating mutations in PIK3CA are common in diverse cancers and are observed in 20-30% of breast, cervical, and uterine cancers and 10-20% of bladder, gastric, head and neck, and colorectal cancers^{4,7}. Activating mutations in PIK3CA commonly cluster in two regions corresponding to the exon 9 helical (codons E542/E545) and exon 20 kinase (codon H1047) domains, each having distinct mechanisms of activation^{21,22,23}. PIK3CA resides in the 3q26 cytoband, a region frequently amplified (10-30%) in diverse cancers including squamous carcinomas of the lung, cervix, head and neck, and esophagus, and in serous ovarian and uterine cancers^{4,7}.

Potential relevance: The PI3K inhibitor, alpelisib 24 , is FDA approved (2019) in combination with fulvestrant for the treatment of patients with PIK3CA-mutated, hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative, advanced or metastatic breast cancer. Additionally, a phase lb study of alpelisib with letrozole in patients with metastatic estrogen receptor (ER)-positive breast cancer, the clinical benefit rate, defined as lack of disease progression \geq 6 months, was 44% (7/16) in PIK3CA-mutated tumors and 20% (2/20) in PIK3CA wild-type tumors 25 . Specifically, exon 20 H1047R mutations were associated with more durable clinical responses in comparison to exon 9 E545K mutations 25 . However, alpelisib did not improve response when administered with letrozole in patients with ER+ early breast cancer with PIK3CA mutations 26 . Case studies with MTOR inhibitors sirolimus and temsirolimus report isolated cases of clinical response in PIK3CA mutated refractory cancers 27,28 .

Relevant Therapy Summary

In this cancer type O In other cancer

	туре	other cancer types		Contra	illuicateu	
PIK3CA	p.(E545K) c.1633	G>A				
Relevant The	rony	FDA	NCCN	EMA	ESMO	Clinical Trials*
alpelisib + fo		O	O	EIVIA X	ESIVIO	X
paxalisib		×	×	×	×	(II)
samotolisib		×	×	×	×	(II)

In this cancer type and O Contraindicated

other cancer types

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Tel: 02-2875-7449

Date: 16 Jul 2020 4 of 14

Relevant Therapy Summary (continued)

In this cancer type In other cancer type

In this cancer type and other cancer types

Ontraindicated

A Both for use and contraindicated

× No evidence

PIK3CA p.(E545K) c.1633G>A (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
sirolimus	×	×	×	×	(II)
temsirolimus	×	×	×	×	(II)
atezolizumab + ipatasertib	×	×	×	×	(1/11)
ARQ-751, fulvestrant, chemotherapy	×	×	×	×	(I)
copanlisib, olaparib, durvalumab	×	×	×	×	(I)
GDC-0077	×	×	×	×	(I)
gedatolisib + palbociclib	×	×	×	×	(I)

KRAS p.(G12V) c.35G>T

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
cetuximab	0	0	0	0	×
panitumumab	0	0	×	0	×
cetuximab + oxaliplatin	×	×	0	×	×
panitumumab + oxaliplatin	×	×	0	×	×
cabozantinib	×	×	×	0	×
cetuximab + chemotherapy	×	×	×	0	×
panitumumab + chemotherapy	×	×	×	0	×
bevacizumab, chemotherapy	×	×	×	×	(III)
lenvatinib, pembrolizumab, chemotherapy	×	×	×	×	(III)
atezolizumab, cobimetinib	×	×	×	×	(II)
regorafenib, chemotherapy	×	×	×	×	(II)
spartalizumab	×	×	×	×	(II)
targeted therapy, chemotherapy	×	×	×	×	(II)
TVB-2640	×	×	×	×	(II)
ulixertinib, selumetinib	×	×	×	×	(II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Tel: 02-2875-7449

Date: 16 Jul 2020 5 of 14

Relevant Therapy Summary (continued)

In this cancer type O In other cancer

type

In this cancer type and other cancer types

Contraindicated

A Both for use and contraindicated

X No evidence

KRAS p.(G12V) c.35G>T (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
anti-KRAS G12V mTCR	×	×	×	×	(I/II)
ASTX029	×	×	×	×	(I/II)
avelumab, binimetinib, talazoparib	×	×	×	×	(/)
binimetinib + palbociclib, binimetinib, palbociclib	×	×	×	×	(I/II)
cobimetinib	×	×	×	×	(/)
mirdametinib, lifirafenib	×	×	×	×	(1/11)
navitoclax, trametinib	×	×	×	×	(/)
neratinib, valproic acid	×	×	×	×	(/)
RMC-4630, cobimetinib	×	×	×	×	(/)
selinexor + chemotherapy	×	×	×	×	(1/11)
selumetinib, durvalumab, tremelimumab	×	×	×	×	(/)
telaglenastat, palbociclib	×	×	×	×	(I/II)
belvarafenib + cobimetinib	×	×	×	×	● (I)
BI-1701963, trametinib	×	×	×	×	(I)
JAB-3312	×	×	×	×	(I)
KO-947	×	×	×	×	(I)
LXH254 , LTT-462, trametinib, ribociclib	×	×	×	×	(l)
LXH254 , spartalizumab	×	×	×	×	(I)
LY3214996, midazolam, abemaciclib, chemotherapy, encorafenib, cetuximab	×	×	×	×	(l)
mRNA-5671, pembrolizumab	×	×	×	×	(I)
NBF-006	×	×	×	×	(I)
neratinib + trametinib	×	×	×	×	(I)
pembrolizumab + trametinib	×	×	×	×	(I)
ponatinib, trametinib	×	×	×	×	● (I)
RMC-4630	×	×	×	×	(I)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Tel: 02-2875-7449

Date: 16 Jul 2020 6 of 14

Relevant Therapy Summary (continued)

In this cancer type \(\cap \) In other cancer tvpe

In this cancer type and other cancer types

Contraindicated

Both for use and contraindicated

X No evidence

KRAS p.(G12V) c.35G>T (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
RO-5126766	×	×	×	×	(I)
RO-5126766, defactinib	×	×	×	×	(I)
RO-5126766, everolimus + RO-5126766	×	×	×	×	(I)
TAK 659, chemotherapy	×	×	×	×	(I)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Details

Current FDA Information

In this cancer type O In other cancer type

In this cancer type and other cancer types

Contraindicated

Not recommended Resistance

FDA information is current as of 2020-02-28. For the most up-to-date information, search www.fda.gov.

PIK3CA p.(E545K) c.1633G>A

alpelisib + fulvestrant

Cancer type: Breast Cancer Label as of: 2019-05-24 Variant class: PIK3CA E545K mutation

Other criteria: ERBB2 negative, Hormone receptor positive

Indications and usage:

PIQRAY® is a kinase inhibitor indicated in combination with fulvestrant for the treatment of postmenopausal women, and men, with hormone receptor (HR)- positive, human epidermal growth factor receptor 2 (HER2)-negative, PIK3CA-mutated, advanced or metastatic breast cancer as detected by an FDA-approved test following progression on or after an endocrine-based regimen.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/212526s000lbl.pdf

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C. Tel: 02-2875-7449

Date: 16 Jul 2020 7 of 14

KRAS p.(G12V) c.35G>T

cetuximab

Cancer type: Colorectal Cancer Label as of: 2019-04-23 Variant class: KRAS G12 mutation

Indications and usage:

Erbitux® is an epidermal growth factor receptor (EGFR) antagonist indicated for treatment of:

Head and Neck Cancer

- Locally or regionally advanced squamous cell carcinoma of the head and neck in combination with radiation therapy.
- Recurrent locoregional disease or metastatic squamous cell carcinoma of the head and neck in combination with platinumbased therapy with fluorouracil.
- Recurrent or metastatic squamous cell carcinoma of the head and neck progressing after platinum-based therapy.

Colorectal Cancer

K-Ras wild-type, EGFR-expressing, metastatic colorectal cancer as determined by FDA-approved test

- in combination with FOLFIRI for first-line treatment,
- in combination with irinotecan in patients who are refractory to irinotecan-based chemotherapy,
- as a single agent in patients who have failed oxaliplatin- and irinotecan-based chemotherapy or who are intolerant to irinotecan.

Limitations of Use: Erbitux® is not indicated for treatment of Ras-mutant colorectal cancer or when the results of the Ras mutation tests are unknown.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/125084s273lbl.pdf

panitumumab

Cancer type: Colorectal Cancer Label as of: 2017-06-29 Variant class: KRAS G12 mutation

Indications and usage:

VECTIBIX® is an epidermal growth factor receptor (EGFR) antagonist indicated for the treatment of wild-type RAS (defined as wild-type in both KRAS and NRAS as determined by an FDA-approved test for this use) metastatic colorectal cancer (mCRC):

- In combination with FOLFOX for first-line treatment.
- As monotherapy following disease progression after prior treatment with fluoropyrimidine, oxaliplatin, and irinotecancontaining chemotherapy.
- Limitation of Use: VECTIBIX® is not indicated for the treatment of patients with RAS-mutant mCRC or for whom RAS
 mutation status is unknown.

Reference:

https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125147s207lbl.pdf

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 16 Jul 2020 8 of 14

Current NCCN Information

In this cancer type O In other cancer type

In this cancer type and other cancer types

Contraindicated

Not recommended Resistance

NCCN information is current as of 2019-11-01. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

PIK3CA p.(E545K) c.1633G>A

O alpelisib + fulvestrant

Cancer type: Breast Cancer Variant class: PIK3CA mutation

Other criteria: ERBB2 negative, ER positive, PR positive

NCCN Recommendation category: 1

Population segment (Line of therapy):

Recurrent or Stage IV Invasive Breast Cancer; Postmenopausal or Premenopausal receiving ovarian ablation or suppression (Second-line or subsequent therapy) (Preferred)

Reference: NCCN Guidelines® - NCCN-Breast Cancer [Version 1.2020]

KRAS p.(G12V) c.35G>T

cetuximab

Variant class: KRAS exon 2 mutation Cancer type: Colon Cancer

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab."

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 1.2020]

cetuximab

Variant class: KRAS exon 2 mutation Cancer type: Rectal Cancer

Summary:

NCCN Guidelines® include the following supporting statement(s):

"Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 1.2020]

Tel: 02-2875-7449

Date: 16 Jul 2020 9 of 14

KRAS p.(G12V) c.35G>T (continued)

panitumumab

Cancer type: Colon Cancer Variant class: KRAS exon 2 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab."

Reference: NCCN Guidelines® - NCCN-Colon Cancer [Version 1.2020]

panitumumab

Cancer type: Rectal Cancer Variant class: KRAS exon 2 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

■ "Patients with any known KRAS mutation (exon 2, 3, 4) or NRAS mutation (exon 2, 3, 4) should not be treated with either cetuximab or panitumumab."

Reference: NCCN Guidelines® - NCCN-Rectal Cancer [Version 1.2020]

EGFR tyrosine kinase inhibitor

Cancer type: Non-Small Cell Lung Cancer Variant class: KRAS mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

- "EGFR TKI therapy is not effective in patients with KRAS mutations, BRAF V600E mutations, ALK gene rearrangements, or ROS1 rearrangements."
- "KRAS mutational status is also predictive of lack of therapeutic efficacy with EGFR TKIs."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 2.2020]

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 16 Jul 2020 10 of 14

Current EMA Information

In this cancer type In other cancer type

In this cancer type and O Contraindicated other cancer types

Not recommended Resistance

EMA information is current as of 2020-02-28. For the most up-to-date information, search www.ema.europa.eu/ema.

KRAS p.(G12V) c.35G>T

cetuximab, cetuximab + oxaliplatin

Cancer type: Colorectal Cancer Label as of: 2020-01-30 Variant class: KRAS exon 2 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/erbitux-epar-product-information_en.pdf

panitumumab + oxaliplatin

Cancer type: Colorectal Cancer Label as of: 2020-01-24 Variant class: KRAS exon 2 mutation

Reference:

https://www.ema.europa.eu/en/documents/product-information/vectibix-epar-product-information_en.pdf

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 16 Jul 2020 11 of 14

Current ESMO Information

In this cancer type O In other cancer type

In this cancer type and other cancer types

Contraindicated

Not recommended Resistance

ESMO information is current as of 2019-11-01. For the most up-to-date information, search www.esmo.org.

KRAS p.(G12V) c.35G>T

O cabozantinib

Cancer type: Thyroid Gland Medullary Carcinoma Variant class: RAS mutation

ESMO Level of Evidence/Grade of Recommendation: II / C

Population segment (Line of therapy):

Metastatic Thyroid Gland Medullary Carcinoma (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Thyroid Cancer [Annals of Oncology (2019): mdz400, https://

doi.org/10.1093/annonc/mdz400]

cetuximab

Cancer type: Colorectal Cancer Variant class: KRAS exon 2 mutation

Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

"It has been demonstrated that the (potential) benefit of anti-EGFR antibodies in all treatment lines and either as a single agent or in combination with any chemotherapy regimen is limited to patients in whom a RAS mutation is excluded. It was shown that the 'expanded RAS' analysis (also including the detection of mutations in exons 3 and 4 of the KRAS gene as well as mutations in the NRAS [exons 2-4] gene) is superior to the KRAS (exon 2) analysis in predicting both more efficacy in the expanded RAS wild-type (WT) patients and a potential detrimental effect in patients harbouring any RAS mutation in their tumour genome [II/A].'

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2014) 25 (suppl 3): iii1-iii9. (eUpdate: 20 September 2016; Corrigendum: 21 July 2015)]

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 16 Jul 2020 12 of 14

KRAS p.(G12V) c.35G>T (continued)

cetuximab + chemotherapy

Cancer type: Colorectal Cancer Variant class: KRAS exon 2 mutation

Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

- "It has been demonstrated that the (potential) benefit of anti-EGFR antibodies in all treatment lines and either as a single agent or in combination with any chemotherapy regimen is limited to patients in whom a RAS mutation is excluded. It was shown that the 'expanded RAS' analysis (also including the detection of mutations in exons 3 and 4 of the KRAS gene as well as mutations in the NRAS [exons 2-4] gene) is superior to the KRAS (exon 2) analysis in predicting both more efficacy in the expanded RAS wild-type (WT) patients and a potential detrimental effect in patients harbouring any RAS mutation in their tumour genome [II/A]."
- "Thus, the activity of the anti-EGFR antibodies is confined to RAS WT tumours (and not only KRAS WT tumours). This is true for the combinations of cetuximab or panitumumab alone or with irinotecan- and oxaliplatin-based regimens. Treatment with anti-EGFR antibodies may even harm patients with a RAS mutation, especially when combined with oxaliplatin [I/A]."

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2014) 25 (suppl 3): iii1-iii9. (eUpdate: 20 September 2016; Corrigendum: 21 July 2015)]

panitumumab

Cancer type: Colorectal Cancer Variant class: KRAS exon 2 mutation

Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

■ "It has been demonstrated that the (potential) benefit of anti-EGFR antibodies in all treatment lines and either as a single agent or in combination with any chemotherapy regimen is limited to patients in whom a RAS mutation is excluded. It was shown that the 'expanded RAS' analysis (also including the detection of mutations in exons 3 and 4 of the KRAS gene as well as mutations in the NRAS [exons 2-4] gene) is superior to the KRAS (exon 2) analysis in predicting both more efficacy in the expanded RAS wild-type (WT) patients and a potential detrimental effect in patients harbouring any RAS mutation in their tumour genome [II/A]."

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2014) 25 (suppl 3): iii1-iii9. (eUpdate: 20 September 2016; Corrigendum: 21 July 2015)]

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C. Tel: 02-2875-7449

Tel. 02-28/5-/449

Date: 16 Jul 2020 13 of 14

KRAS p.(G12V) c.35G>T (continued)

panitumumab + chemotherapy

Cancer type: Colorectal Cancer Variant class: KRAS exon 2 mutation

Summary:

ESMO Clinical Practice Guidelines include the following supporting statement:

- "It has been demonstrated that the (potential) benefit of anti-EGFR antibodies in all treatment lines and either as a single agent or in combination with any chemotherapy regimen is limited to patients in whom a RAS mutation is excluded. It was shown that the 'expanded RAS' analysis (also including the detection of mutations in exons 3 and 4 of the KRAS gene as well as mutations in the NRAS [exons 2-4] gene) is superior to the KRAS (exon 2) analysis in predicting both more efficacy in the expanded RAS wild-type (WT) patients and a potential detrimental effect in patients harbouring any RAS mutation in their tumour genome [II/A]."
- "Thus, the activity of the anti-EGFR antibodies is confined to RAS WT tumours (and not only KRAS WT tumours). This is true for the combinations of cetuximab or panitumumab alone or with irinotecan- and oxaliplatin-based regimens. Treatment with anti-EGFR antibodies may even harm patients with a RAS mutation, especially when combined with oxaliplatin [I/A]."

Reference: ESMO Clinical Practice Guidelines - ESMO-Metastatic Colorectal Cancer [Ann Oncol (2014) 25 (suppl 3): iii1-iii9. (eUpdate: 20 September 2016; Corrigendum: 21 July 2015)]

Signatures	
Testing Personnel:	
Laboratory Supervisor:	
Pathologist:	

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 16 Jul 2020 14 of 14

References

- 1. Pylayeva-Gupta et al. RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer. 2011 Oct 13;11(11):761-74. PMID: 21993244
- 2. Karnoub et al. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol. 2008 Jul;9(7):517-31. PMID: 18568040
- Scott et al. Therapeutic Approaches to RAS Mutation. Cancer J. 2016 May-Jun;22(3):165-74. doi: 10.1097/ PP0.0000000000187. PMID: 27341593
- 4. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 5. Román et al. KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target. Mol Cancer. 2018 Feb 19;17(1):33. doi: 10.1186/s12943-018-0789-x. PMID: 29455666
- 6. Dinu et al. Prognostic significance of KRAS gene mutations in colorectal cancer–preliminary study. J Med Life. 2014 Oct-Dec;7(4):581-7. PMID: 25713627
- 7. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- Allegra et al. Extended RAS Gene Mutation Testing in Metastatic Colorectal Carcinoma to Predict Response to Anti-Epidermal Growth Factor Receptor Monoclonal Antibody Therapy: American Society of Clinical Oncology Provisional Clinical Opinion Update 2015. J. Clin. Oncol. 2016 Jan 10;34(2):179-85. PMID: 26438111
- 9. http://investors.amgen.com/news-releases/news-release-details/amgen-announces-new-clinical-data-evaluating-novel
- 10. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/125084s273lbl.pdf
- 11. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125147s207lbl.pdf
- 12. Slebos et al. K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N. Engl. J. Med. 1990 Aug 30;323(9):561-5. PMID: 2199829
- 13. Volinia et al. Molecular cloning, cDNA sequence, and chromosomal localization of the human phosphatidylinositol 3-kinase p110 alpha (PIK3CA) gene. Genomics. 1994 Dec;24(3):472-7. PMID: 7713498
- 14. Cantley. The phosphoinositide 3-kinase pathway. Science. 2002 May 31;296(5573):1655-7. PMID: 12040186
- 15. Fruman et al. The PI3K Pathway in Human Disease. Cell. 2017 Aug 10;170(4):605-635. PMID: 28802037
- 16. Engelman et al. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 2006 Aug;7(8):606-19. PMID: 16847462
- 17. Vanhaesebroeck et al. PI3K signalling: the path to discovery and understanding. Nat. Rev. Mol. Cell Biol. 2012 Feb 23;13(3):195-203. PMID: 22358332
- 18. Yuan et al. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008 Sep 18;27(41):5497-510. PMID: 18794884
- 19. Liu et al. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009 Aug;8(8):627-44. PMID: 19644473
- 20. Hanahan et al. Hallmarks of cancer: the next generation. Cell. 2011 Mar 4;144(5):646-74. PMID: 21376230
- 21. Miled et al. Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science. 2007 Jul 13;317(5835):239-42. PMID: 17626883
- 22. Burke et al. Synergy in activating class I PI3Ks. Trends Biochem. Sci. 2015 Feb;40(2):88-100. PMID: 25573003
- 23. Burke et al. Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110α (PIK3CA). Proc. Natl. Acad. Sci. U.S.A. 2012 Sep 18;109(38):15259-64. PMID: 22949682
- 24. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/212526s000lbl.pdf
- 25. Mayer et al. A Phase Ib Study of Alpelisib (BYL719), a PI3Kα-Specific Inhibitor, with Letrozole in ER+/HER2- Metastatic Breast Cancer. Clin. Cancer Res. 2017 Jan 1;23(1):26-34. PMID: 27126994
- 26. Mayer et al. A Phase II Randomized Study of Neoadjuvant Letrozole Plus Alpelisib for Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer (NEO-ORB). Clin. Cancer Res. 2019 Feb 5. PMID: 30723140
- 27. Jung et al. Pilot study of sirolimus in patients with PIK3CA mutant/amplified refractory solid cancer. Mol Clin Oncol. 2017 Jul;7(1):27-31. PMID: 28685070
- 28. Janku et al. PIK3CA mutations in patients with advanced cancers treated with PI3K/AKT/mTOR axis inhibitors. Mol. Cancer Ther. 2011 Mar;10(3):558-65. PMID: 21216929