Mobile Computing

Dr. T. Samanta

Agenda

- Cellular network
- Cell structure
- Frequency reuse
- Radio propagation effect
- Mobile wireless arrangement
- Principal components
- Functionality

Communication modes

- Simplex mode
 - radio network transmits in one direction only
- Half duplex mode
 - it is capable of two way, or bi-directional, communications
- Full duplex
 - simultaneous bi-directional communications

Cellular network design

- Cellular network
 - To achieve more users
 - To have smaller transivers
- Network organization
 - Multiple low-power transmitter
 - Area divided into small structure -> cell
 - Each cell is served by its own antenna

Cellular Geometries

$$d_1 = 1.414 d$$

$$d = \sqrt{3} R$$

Frequency reuse

- Each cell has a base transceiver
- Same frequency used in nearby cells
- Generally 10 to 50 frequencies are assigned to each cell
- Essential issue is to determine intervening cells between two cells using the same frequency so that the two cells do not interfere with each other
- In a hexagonal cell pattern,

$$N = I^2 + J^2 + (I \times J)$$
 I, J = 0, 1, 2, 3 ...

- D = minimum distance between centers of cells that use the same band of frequencies (called cochannels)
- R = radius of a cell
- d = distance between centers of adjacent cells
- N = number of cells in a repetitious pattern called reuse factor
- Possible values of N are 1, 3, 4, 7, 9, etc and $D/R = \sqrt{(3N)}$

Frequency reuse pattern for N = 4

Frequency reuse pattern for N = 7

Increasing Capacity

- Add new channel
- Cell splitting
 - Original cell size 6.5 km to 13 km.
 - Smaller cells (1.5 km); less power level, more frequent handoff
- Cell sectoring
 - 3 to 6 sectors per cell
 - Each sector is assigned separate subset of the cell's channel
 - Directional antennas are used at the base station
- Microcell

An early International Mobile Telecommunication (IMT-2000) concept diagram from the ITU

Typical parameters for Macrocell and Microcell

	Macrocell	Microcell
Cell radius	1 to 20 km	0.1 to 1 km
Transmission power	1 to 10 W	0.1 to 1 W
Average delay spread	0.1 to 10 μs	10 to 100 ns
Maximum bit rate	0.3 Mbps	1 Mbps

Carrier to Interference ratio

- A mobile handset which is moving in a cell will record a signal strength that varies.
- Signal strength is subject to slow fading, fast fading and interference from other signals, resulting in degradation of the carrier-to-interference (C/I) ratio.
- A high C/I ratio yields quality communication.
- A good C/I ratio is achieved in cellular systems by using optimum power levels through the power control of most links.
- When carrier power is too high, excessive interference is created, degrading the C/I ratio for other traffic and reducing the traffic capacity of the radio subsystem.
- When carrier power is too low, C/I is too low and QoS targets are not met.

Multipath Interference

Multipath Propagation

Reflection

- Reflection from a flat surface that is large relative to the wavelength of the signal
- Reflected wave is 180 degree out of phase with LOS signal tending to cancel LOS signal
- Ex: ground reflected wave

Diffraction

- Occurs from an edge of impenetrable body
- Waves propagate in different direction with the edge as the source

Scattering

- For obstacles of the order of wavelength of the signal
- Lamp post, traffic sign

Types of Fading

Fast Fading:

- Signal change occurs over one-half a wavelength
- At a frequency of 900 MHz.(0.33m), rapid change in amplitude (as much as 20 or 30 dB).

Slow fading

- Over long distance slow changes in amplitude occurs as user passes through buildings, heights, vacant places etc.
- Flat fading
 - All frequency components fluctuate in same proportion

Types of Fading

For urban environment, predicted path loss is,

$$L_{dB} = 69.55 + 26.16f_c - 13.82\log h_r - A(h_r) + (44.9 - 6.55h_t)\log d$$

- f_c→ carrier frequency in MHz.
- A(h_r)→ correctional factor for mobile antenna height
- h_t→ height of transmitter antenna
- h_r→ height of receiving antenna

Fading Channels

AWGN

- Signal degrades by thermal noise associated with the physical channel
- Also for end users electronic equipment.

Rayleigh

- Multiple indirect paths between transmitter and receiver
- Suited for outdoor environment

Rician

- A direct LOS path with number of indirect multipath between transmitter and receiver
- Bets suited for smaller cells in more open environment

Mobile Wireless Arrangement

Principle components

- Base transceiver station (BTS) or Base station (BS)
 - Base station controller (BSC), a mobile unit
 - It manages air interface between MS and BS
 - Helps in power control (radio resource management)
- Mobile switching center (MSC)
 - Responsible for switching calls from cell to cell, providing backup interfacing with telephone network
 - Call management/connection management function (CM)
- BSC, introduced in second generation mobile systems
 - Mainly offload functions from MSCs
 - Controls BSs
 - Handover operation management
 - Frequency administration between BSs and MSs

Principle components

- Mobile station (MS):
 - A mobile unit, transceiver installed in track, car, portable telephone etc
 - Subscriber identity module (SIM)
 - Identified using International mobile equipment identity (IMEI)
- SIM contains personal identity number (PIN), PIN unblocking number (PUK), authentication key K_i and the international mobile subscriber identity (IMSE), temporary MSE (TMSE)

Principle components

- Databases used in all mobile stations
 - Home location register (HLR)
 - Keeps track of a subscriber location
 - Keeps track of subscriber's accounting information
 - Subscribed service provider
 - Visitor location register (VLR)
 - Keeps track of a visiting subscriber location
 - Helps subscriber log on to new location
- Authentication control/access control (AC)
 - Contains authentication and encryption information of each subscriber
 - Interacts with HLR, VLR
- Equipment identity register (EIR)
 - Contains information of MS equipment

Connection Management (CM) operation

Connection Management (CM) operation

Mobility Management (MM) operation

Thank You!