Sistemi Biometrici basati su Impronte Digitali

Parte III

Indice

1	Introduzione		2
	1.1	Sistema di classificazione attuale	2
	1.2	Alcune applicazioni basate sulle impronte	2
		1.2.1 Sistemi AFIS	4
	1.3	Punti di forza e di debolezza	4
	1.4	I tre livelli di analisi delle impronte	5
		1.4.1 Livello I (globale)	5
		1.4.2 Livello II (locale)	5
		1.4.3 Livello III (ultra-fine)	5
	1.5	Quanto diverse?	6
	1.6	Attuali criticità dei sistemi AFIS	6
2	Imp	pronte digitali e sensori: caratteristiche	7
	2.1	Modalità di acquisizione	7
	2.2	Proprietà del sensore	8
	2.3	Sensori ottici	8
	2.4	Sensori a stato solido	9
	2.5	Sensori 3D (ultrasuoni)	9
	2.6	Problemi di acquisizione: pressione	9
3	Rap	ppresentazione, compressione, e non unicità	10
	3.1		10
		3.1.1 Immagini delle impronte	10
		3.1.2 Compressione	10
		3.1.3 Formati di interscambio	11
	3 2	Unicità delle impronte	11

Capitolo 1

Introduzione

Le impronte digitali sono **creste e valli della pelle** sui palmi delle dita; sono tratti biometrici **stabili** (dall'ottavo mese di gestazione) a meno di abrasioni o malattie.

Durante la crescita, il dito cresce: la distanze si allargano ma le *minutiae* rimangono le stesse.

1.1 Sistema di classificazione attuale

Le impronte si dividono, attraverso lo studio degli **orientamenti dei ridge** e **l'individuazione di eventuali** *delta* o *core*, in:

- Arch: entro da sinistra ed esco da destra; si divide in plain e tented
- Loop: faccio un loop; si divide in left/right loop
- Whorl: ci sono due delta attorno al cerchio

Questa divisione torna utile per ottimizzare la ricerca di un'impronta; le denominazioni nascono in base a come si muovono i ridge.

Le classi **non** sono distribuite uniformemente.

1.2 Alcune applicazioni basate sulle impronte

Esistono diversi tipo di sistemi:

- sistemi integrati (smartphone, integrato = non c'è un unico server)
- smartcard
- per PC
- stand alone

Figura 1.1: Classificazione delle impronte; in verde sono indicati i delta, in rosso i core

• distribuiti (AFIS)

Alcune tipologie di applicazioni sono:

• Forensi:

- identificazione di corpi/persone/terroristi
- bambini scomparsi
- attività investigativa

• Governative:

- carte d'identità/passaporti/patenti
- controllo degli accessi
- controllo delle frontieri
- controllo documenti

• Commerciali:

- ATM
- ecommerce
- accesso a servizi online

1.2.1 Sistemi AFIS

AFIS ($Automated\ Fingerprint\ Identification\ System$) è un sistema hardware e software per:

- acquisizione e classificazione
- ricerca di una impronta sconosciuta in una banca dati consultabile dai terminali distribuiti

Tipicamente si usa per identificare un'impronta ignota.

1.3 Punti di forza e di debolezza

Punti di forza

- è una tecnologia matura, controllata e funzionante in molti ambienti
- l'acquisizione è facile
- offre la possibilità di usare più dita

Debolezze

- alcune impronte non possono essere acquisite (circa il 4%)
- l'accuratezza tende a degradare nel tempo
- essendo associata ad applicazioni forensi, alcune persone provano disagio a fornire il tratto biometrico

1.4 I tre livelli di analisi delle impronte

1.4.1 Livello I (globale)

A livello globale si osservano:

- il flusso delle linee (arch, whorl, loop, ...)
- i punti singolari (delta, core): questi punti descrivono ciò che c'è intorno
- la forma dell'impronta
- l'orientamento
- la frequenza delle righe

1.4.2 Livello II (locale)

A livello locale è possibile identificare fino a 150 diverse **caratteristiche locali delle minutiae**; *zoomiamo* su ciò che accade intorno ad un ridge. Le due principali caratteristiche sono le **biforcazioni** e **terminazioni**.

1.4.3 Livello III (ultra-fine)

A livello ultra-fine è possibile individuare i seguenti dettagli:

- intra-creste (pori per la sudorazione)
- inter-creste ()

I dettagli del livello III sono considerati altamente distintivi, ma si rilevano solo ad altissima risoluzione (almeno 1000 dpi ed in condizioni ideali). Bastano pochi mm^2 per catturare molti dettagli di tutti e 3 i livelli.

1.5 Quanto diverse?

Le impronte possono avere una struttura simile ma hanno sempre tanti punti di diversità.

Di solito si ha la seguente scala di diversità:

- Razze diverse
- Stessa razza (senza nessuna parentela)
- Padre figlio, Fratelli sorelle (una parte dei geni sono uguali)
- Gemelli omozigoti (stessi identici geni)

I gemelli?

Anche i gemelli omozigoti (con lo stesso DNA) hanno impronte diverse. Le impronte sono una manifestazione del *fenotipo* (dipendente anche da fattori casuali ed ambientali) anche partendo dallo stesso *genotipo*.

Quante minuzie?

Non c'è una regola mondiale accettata per stabilire se due impronte appartengono allo stesso individuo.

Un esperto procede nel seguente modo, controllando:

- 1. la concordanza del pattern globale
- 2. la concordanza **qualitativa**, ovvero controlla che le minutiae siano identiche
- 3. il fattore **quantitativo** che specifica il numero minimo di dettagli minuti che devono corrispondere tra le due impronte (ad esempio 12)
- 4. la corrispondenza dei **dettagli di livello III**, che devono risultare identicamente correlati

1.6 Attuali criticità dei sistemi AFIS

- qualità acquisizione dell'impronta
- correttezza nella fase di estrazione delle minutiae e di matching; è necessario un supervisore

Capitolo 2

Impronte digitali e sensori: caratteristiche

I sensori devono cercare di catturare la distrbuzione di creste e valli sulla pelle; maggiori sono i dettagli catturati, migliore sarà la capacità del sistema di identificare/verificare le persone.

2.1 Modalità di acquisizione

Esistono due principali modalità di acquisizione:

• off-line: i polpastrelli vengono prima passati su un tampone inchiostrato e poi vengono rotolati sulla carta; la scheda viene poi acquisita con uno scanner ottico.

Un esempio sono le **impronte digitali latenti**, come quelle trovate su una scena del crimine

• live-scan: l'immagine dell'impronta digitale è acquisita in tempo reale direttamente tramite il contatto con un apposito sensore

Tipi di sensori live-scan

• ottici: scanner tradizionali

• stato solido: pixel sensibili alle variazioni di pressione e temperatura

• altro tipo: ultrasuoni

2.2 Proprietà del sensore

Nello scegliere un sensore bisogna controllare:

- risoluzione
- area d'acquisizione
- numero di pixel e bit per pixel
- contrasto
- distorsione geometrica

Può essere utile controllare caratteristiche aggiuntive, come la presenza di componenti hw/sw per il rilevamento automatico della presenza del dito e delle condizioni (posizione, pressione).

2.3 Sensori ottici

Rifrazione Interna air ridges and valleys glass prism ridges and valleys CCD/CMOS Con fibre ottiche A foglio di prismi air ridges and valleys contact ridges and valleys ridges and valleys ridges and valleys Fiber-optic CCD/CMOS Con fibre ottiche Rifficazione Interna ridges and valleys ridges and valleys ridges and valleys Fiber-optic CCD/CMOS Elettro-ottico

Con la riflessione ottica si ottiene una risoluzione migliore.

2.4 Sensori a stato solido

Il contatto fra il ridge e la superficie del sensore cambia la capacità del circuito del singolo pixel.

Ci sono due laminette metalliche che misurano una tensione diversa a seconda della pressione; sotto ogni pixel c'è un circuito. hanno forma simile ma circuiti dedicati diversi per il singolo pixel

2.5 Sensori 3D (ultrasuoni)

Sono dei sensori che riescono a rilevare la tridimensionalità dell'impronta digitale. I sensori a stato solido che rilevano la temperatura o la pressione. I sensori 3D sono utili nel fornire intrensicamente una funzione di anti-spoofing: sanno riconoscere se l'onda attraversa un *medium* diverso da quello atteso (la pelle).

2.6 Problemi di acquisizione: pressione

All'aumentare della pressione, i ridge da discontinui iniziano a diventare continui e a vedersi meglio; quando diventa troppa, i ridge iniziano ad unirsi.

Capitolo 3

Rappresentazione, compressione, e non unicità

3.1 Rappresentazione delle impronte

La rappresentazione delle impronte in un sistema biometrico dipende da:

- sensore impiegato (ottico, stato solido, ...)
- livello di analisi (I, II, III)
- caratteristiche estratte (ridge, minuzie, ...)

3.1.1 Immagini delle impronte

Il sample della impronta è una immagine in toni di grigio, che richiede il controllo:

- delle risoluzione
- dei bit per pixel

Un esempio

Un esempio: l' FBI digitalizza le impronte del DB nazionale a 500 Dpi con 8 bit per pixel; una cartella con 10 impronte occupa circa 10 MB!

3.1.2 Compressione

Esistono dei formati di compressione appositi per le immagini di impronte digitali, che utilizzano degli algoritmi appositi.

3.1.3 Formati di interscambio

Oltre al formato di rappresentazione interna del template nel sistema biometrico (che può essere privato o segreto essendo del produttore), esistono dei formati di interscambio dei dati fra istituzioni/aziende (regolato da ISO).

3.2 Unicità delle impronte

È possibile stimare la probabilità che due persone abbiano la stessa impronta. Data un'impronta con n minutiae, è possibile calcolare la probabilità di condividere q minutiae con un altro template contenente m minutiae

p(M, m, n, q), con M = Areadioverlap/Areaditolleranza = A/C

Esempio con parametri comuni

 $p(M,m,n,q) = p(70,12,12,12) = 1,22*10^-20$

M=70 indica una stuazione tipica forense fra un intera ed una latent paziale con almeno 12 minutiae "buone".