CS6375: Machine Learning Gautam Kunapuli

Final Exam Review

THE UNIVERSITY OF TEXAS AT DALLAS

Erik Jonsson School of Engineering and Computer Science

Final Exam

Date: December 13, 2018

Time: 5:00pm-7:45pm

Location: JO 3.516

Topics:

- Ensemble methods
 - Bagging
 - Boosting
- Clustering
 - K-Means
 - Hierarchical clustering
 - Soft clustering & Gaussian Mixture Models
- **Dimensionality Reduction**: Principal Component Analysis
- Neural Networks
- Reinforcement Learning

Ensemble Methods

- Error = Variance + Bias² + Noise²
 - **Intuition**: When combining multiple independent decisions, random errors cancel each other out
- Two main methods Bagging and Boosting
- Bagging: Combines several learned models that are learned *independently* from **bootstrap** replicates of the same data set.
 - What does bagging remove? Bias or variance?
 - Reduce variance without increasing bias by averaging
 - What are the best ones to bag? Trees? Linear regression? Nearest neighbors?
- Boosting: Learns a weighted combination of classifiers. Focuses on the incorrectly classified part of the data set
 - What does boosting address? Bias or variance?
 - Reduce bias and variance
 - What is AdaBoost?
 - How does AdaBoost weight examples?
 - What are good weak learners?
 - How does boosting avoid overfitting?
 - Margins!
 - Remember, boosting is <u>not</u> immune to overfitting
- How do ensemble methods work with stable algorithms? Outliers?

Clustering: K-Means

- Euclidean distance is used as a metric and variance is used as a measure of cluster scatter
 - What are other distance measures?
- *k* is an input parameter: inappropriate choice of *k* may yield poor results.
- Convergence to local minimum
 - may produce counterintuitive results

k-means Clustering

Given: Unlabeled data, x_i , i = 1, ..., n

Initialize: Pick k random points as cluster centers

 μ_j , j = 1, ..., k

while not converged do

- **Assign** data points x_i to **closest** cluster center μ_i
- **Update** the cluster centers μ_j to the mean (average) of the points assigned to that cluster
- if the assignments no longer change, converged = true

 What are responsibilities? What is the loss function of k-means clustering?

What is the computational complexity of k-means?

• What type of clusters does k-means generate?

Hierarchical Clustering

• Bottom-up (agglomerative): Recursively merge two groups with the smallest between-cluster similarity

• Top-down (divisive): Recursively split a least-coherent (e.g. largest diameter) cluster

Differences between different types of linkages:

Closest pair (single-link clustering) tends to yield elongated clusters

Farthest pair (complete-link clustering) tends to yield rounder, more spherical clusters

Average of all pairs trades-off between single and complete link

Closest pair (single-link clustering)

Farthest pair (complete-link clustering)

Gaussian Mixture Models

Probabilistic clustering (generative model):

Each cluster is associated with a Gaussian distribution. To generate data,

- randomly choose a cluster j with probability P(y = j)
 - distribution over the clusters is modeled as a multinomial distribution
- generate from the distribution of the *j*-th cluster:
 - distribution over each cluster is modeled as a multivariate Gaussian distribution

Solved using Expectation Maximization

- soft assignment of points to clusters
- maximize log likelihood.
- Can be used for non-spherical clusters with different probabilities

Principal Component Analysis

- Can be used to reduce the dimensionality of the data while still maintaining a good approximation of the sample mean and variance
- Can also be used for **selecting good features** that are combinations of the input features
- **Unsupervised** just finds a good representation of the data in terms of combinations of the input features

Principal Component Analysis identifies the principal compone in the **sample covariance matrix** of the data, X^TX (note that since our data is #examples (n) x features (d), the covariance matrix will be $d \times d$)

- PCA finds a set of orthogonal vectors that best explain the variance of the sample covariance matrix
- These are exactly the **eigenvectors** of the covariance matrix X^TX
- We can **discard the eigenvectors** corresponding to small magnitude eigenvalues to yield an approximation
- **Simple algorithm** to describe, MATLAB and other programming languages have built in **support** for eigenvector/eigenvalue computations

- How to geometrically identify principal components, projections and effectiveness for classification?
- How do we select an ideal number of principal components?
- What are the properties of eigenvalues and eigenvectors?

Neural Networks

Universal approximators

- Representing Boolean functions and logical formulas
- Representing general mathematical functions
- Various propagation aspects of neural networks
 - functional representation of outputs and inputs
 - gradient expressions
 - activation functions and properties (sigmoid, tanh, ReIU)

Trained using backpropagation

- forward propagation
- backward propagation
- Overfitting in neural networks
 - regularization, dropout, other strategies
 - bias-variance tradeoff

Reinforcement Learning

Modeling RL as a Markov Decision Process

- set of states S, set of actions A, initial state S_0
 - for grid world, can be cell coordinates
- transition model P(s, a, s')
 - • $P([1,1], \uparrow, [1,2]) = 0.8$
- reward function r(s)
 - r([3,4]) = +1
- discount factor
- learn a policy: mapping from S to A
 - $\pi(s)$ or $\pi(s, a)$ (deterministic vs. stochastic)
- Value functions
 - Which states and actions are better?
- Bellman equations, **Bellman optimality conditions**
- What is the difference between value iteration and policy iteration?
 - What is the value iteration update equation?
- What is the exploration vs. exploitation tradeoff?
- What is the **Q-learning**?
 - Why is Q-learning called model-free learning?

			G
[0,4]	[1,4]	[2,4]	[3,4]

[0,3]	[1,3]	<i>[</i>]	[3,3]
[0,2]	[1,2]	[2,2]	[3,2]
ro 43	F4 43	50 41	FO 47
[0,1]	[1,1]	[2,1]	[3,1]
S_0			
1[0,0]	[1,0]	[2,0]	[3,0]

Actions	Transition Probabilities	
→(right)	→ (60%), \ (40%)	
↑ (up)	↑ (100%)	
← (left)	← (100%)	
 ↓ (down)	↓ (70%), ← (30%)	