Лабораторная работа 10. ПЕРЕДАЧА МОЩНОСТИ В ЦЕПИ ПОСТОЯННОГО ТОКА

Цель работы: экспериментальное исследование зависимости полезной мощности, полной мощности и коэффициента полезного действия (КПД) источника от отношения сопротивлений нагрузки и источника.

Приборы и принадлежности: стенд для сборки измерительной цепи; два источника с различными ЭДС; миллиамперметр и вольтметр; переменный резистор.

Методика измерений

Источник ЭДС E с внутренним сопротивлением R_i , нагруженный на внешнее сопротивление R_1 , создает в цепи (рис. 10.1) ток

$$I = E/(R_1 + R_i)$$
.

Полная мощность P = EI, развиваемая источником, делится между нагрузкой и источником следующим образом:

$$P_e/P = U_e/U = R_1/(R_1 + R_i) = \eta$$

$$P_i/P = U_i/U = R_i/(R_1 + R_i) = 1 - \eta,$$

где $P_e = IU_e$ — мощность, выделяющаяся в нагрузке (полезная); $P_i = IU_i$ — мощность, выделяющаяся на внутреннем сопротивлении источника; U_e и U_i — падения напряжения на нагрузке и на внутреннем сопротивлении источника соответственно; η — КПД источника.

С увеличением внутреннего сопротивления от нуля (короткое замыкание) до бесконечности (разомкнутая цепь) напряжение U_e возрастает от нуля до значения, равного ЭДС, а ток в цепи уменьшается от $I_{K3} = E/R_i$ при коротком замыкании до нуля при разомкнутой цепи.

Мощность P_e равна нулю как при коротком замыкании, так и при разомкнутой цепи. Максимальная полезная мощность $P_{e\, {\rm max}}$ достигается, когда $R_1=R_i$, при так называемом согласовании сопротивлений источника и нагрузки. В этом случае

$$P_{e \text{ max}} = E^2/(4R_i)$$
.

Полная мощность P с увеличением сопротивления нагрузки

уменьшается и в режиме согласования составляет

$$P = E^2/(2R_i)$$
,

т. е. половину мощности, развиваемой источником в режиме короткого замыкания:

$$P_{K3} = E^2/R_i.$$

Напряжение U_e в режиме согласования равно половине ЭДС E. КПД источника равен нулю при коротком замыкании и единице при разомкнутой цепи; в согласованном режиме $\eta = 0.5$.

Схема установки для исследования цепи постоянного тока представлена на рис. 10.2.

Переключателем SB_1 источники G_1 и G_2 с различными ЭДС и внутренними сопротивлениями могут быть поочередно подключены к нагрузке R_1 . Ток I и напряжение U_e на резисторе R_1 измеряют миллиамперметром PA_1 и вольтметром PV_1 . Режим разомкнутой цепи осуществляется отключением нагрузки кнопкой SB_2 ; показание вольтметра при этом равно ЭДС источника.

Указания по выполнению работы и обработке результатов

- 1. Собрать схему, включить установку.
- 2. Измерить ЭДС E_1 источника G_1 .
- 3. Подключить к источнику G_1 внешнюю цепь. Меняя сопротивление нагрузки R_1 , измерить зависимость $I(U_e)$. Изменение режима схемы производить равномерно от наименьшего до наибольшего показаний миллиамперметра, выполнив таким образом 10–12 совместных наблюдений силы тока и напряжения.
 - 4. Повторить измерения пп. 2 и 3 с источником G_2 .

- 5. Вычислить для каждой пары значений тока I и напряжения U_e значения $P, P_e, \eta, R_1/R_i = U_e/(E-U_e)$ для обоих источников.
- 6. Построить на одном рисунке для каждого источника зависимости P, P_e , η от отношения R_1/R_i .
- 7. По полученным данным определить для каждого источника $P_{e \max}$, P_{K3} и внутреннее сопротивление R_i .

Контрольные вопросы и задания

- 1. Докажите, что максимум полезной мощности достигается при равенстве внутреннего сопротивления и сопротивления нагрузки.
- 2. Каковы основные источники погрешностей при измерении ЭДС источников по методу, предложенному в работе?
- 3. Назовите режимы работы исследуемой цепи. Каковы КПД при каждом режиме?
- 4. Рассчитайте полезную мощность, полную мощность и КПД цепи с параметрами, указанными преподавателем.