# Ringen en Lichamen

Luc Veldhuis

4 December 2017

### **Uitbreiding**

F een lichaam.

Priemlichaam in F:

- $\operatorname{char}(F) = p > 0$ :  $\mathbb{F}_p$
- char(F) = 0:  $\mathbb{Q}$

Als E/F is uitbreiding, dan is E een vectorruimte van F.

 $E \times E \rightarrow E$  optelling (van vectoren)

$$(e, f) \mapsto e + f$$

 $F \times E \rightarrow E$  scalaire vermenigvuldiging

$$(c,e)\mapsto ce$$
.

Noem  $\dim_F E$  de **graad** van de uitbreiding. Notatie: [E:F].

Noem E/F eindig als  $[E:F] < \infty$  en anders oneindig.



### Voorbeeld

- $[\mathbb{C} : \mathbb{C}] = 1$   $[\mathbb{C} : \mathbb{R}] = 2 (\{1, i\} \text{ is een } \mathbb{R} \text{ basis van } \mathbb{C})$  $[\mathbb{C} : \mathbb{Q}] = \infty$
- Als F een eindig lichaam is met  $\operatorname{char}(F) = p$  en  $[F : \mathbb{F}_p] = d < \infty$  dan is  $F \cong \mathbb{F}_p^d$  als  $\mathbb{F}_p$  een vector ruimte. Dus  $|F| = p^d$ .

## Opgave

Als E/F/k een **toren** van lichaams uitbreidingen dan geldt [E:k] = [E:F][F:k].

Zelfs als  $\{a_i\}_{i\in I}$  een F basis is van E, en  $\{b_i\}_{j\in J}$  een k basis is van F, dan is  $\{a_ib_j\}_{i\in I,j\in J}$  een k basis van E.



#### Definitie

We hebben een notatie nodig voor uitbreiding.

Als E/F een uitbreiding is:

- Als A ⊆ E een deelverzameling, dan is k(A) het kleinste deellichaam van E dat k en A bevat. Als A = {a<sub>1</sub>,...,a<sub>n</sub>} (eindig) dan schrijf je k(a<sub>1</sub>,...,a<sub>n</sub>).
  Als F = k(a<sub>1</sub>,...,a<sub>n</sub>) dan is F eindig voorgebracht over k en de a<sub>1</sub>,...,a<sub>n</sub> zijn geadjungeerd aan k.
- Als F = k(a) voor  $a \in E$  dan heet F/k enkelvoudig. (Engels: simple)

## Opgave

$$k(a_1, a_2) = k(a_1)(a_2).$$



#### Voorbeeld

In  $\mathbb{C}$ :  $\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}(\sqrt{2})/\mathbb{Q}$  geldt:  $\mathbb{Q}(\sqrt{2},\sqrt{3})$  graad 2.  $\mathbb{Q}(\sqrt{2})$ ,  $\mathbb{Q}(\sqrt{2}) = \{a+b\sqrt{2},a,b\in\mathbb{Q}\}$  dus  $[\mathbb{Q}[\sqrt{2}:\mathbb{Q}]=2$ . Basis:  $\{1,\sqrt{2}\}$ . Dus  $[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}]=[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=2\cdot 2=4$ .

### Voorbeeld

$$\mathbb{Q}(\sqrt[4]{10}, -\sqrt[4]{10}, i\sqrt[4]{10}, -i\sqrt[4]{10}) = \mathbb{Q}(\sqrt[4]{10}, i)$$
 wortels van  $x^4 - 10$  in  $\mathbb{C}$ .

Bewijs '⊇':

 $\mathbb{Q} \subseteq \mathsf{LHS}.\ \sqrt[4]{10} \in \mathsf{LHS}.$ 

 $i = i\sqrt[4]{10}(\sqrt[4]{10})^{-1} \in LHS.$ 

 $\subseteq$  Opgave.



### Opgave

In  $\mathbb{C}$ , als  $n \geq 2$  zij  $\zeta = e^{2\pi i/n}$  dus  $\zeta^n = 1$ .

Dan is  $\mathbb{Q}(1,\zeta,\zeta^2,\ldots,\zeta^{n-1}) = \mathbb{Q}(\zeta)$ .

#### Idee

 $\sqrt{2}$  in  $\mathbb R$  is een vortel van  $x^2-2$  in  $\mathbb Q[x]$ .

Maar  $\pi$  (of e) is nooit een nulpunt van een  $f(x) \in \mathbb{Q}[x]$ ,  $f(x) \neq 0$ .

#### **Definitie**

E/F een uitbreiding,  $a \in E$ .

a heet **algebraïsch** over F als a een nulpunt is van een  $f(x) \neq 0$  in F[x].

Als dat niet zo is, dan heet a transcendent over F.

### Uitleg definitie

Voor E/F en  $a \in E$  definieer  $s_a : F[x] \to E$  met  $f(x) \to f(a)$ .  $s_a$  een ringhomomorfisme. Dus is  $Im(s_a) = F[a] = \{b_0 + b_1 a + \cdots + b_n a^n \text{ met } n \ge 0, \text{ alle } b_i \in F\}$  is een deelring van E, zelfs van F(a).

We zien ook  $F[a] \subseteq F(a)$ .

 $Im(s_a)$  is commutatief,  $1 \in Im(s_a)$ ,  $Im(s_a)$  heeft geen nuldelers.  $Im(s_a)$  is een integritieits gebied.

 $Ker(s_a)$  is een priemideaal van F[x]. De idealen zijn: (0), (f(x)), f(x) monisch  $\neq 0$ .

### Twee gevallen

- $Ker(s_a) = \{0\}$ . Hier is a transcendent over F
- $Ker(s_a) = (m_a(x))$  met  $m_a(x)$  monisch irreducibel in F[x]. Hier is a algebra sch over F,  $m_a(x)$  heet het minimum polynoom van a over F. Voor f(x) in F[x] geldt:  $f(a) = 0 \Leftrightarrow m_a(x)|f(x)$  in F[x].

#### Voorbeeld

$$E=\mathbb{C},\ F=\mathbb{Q},\ a=\sqrt{3}.$$
  $s_a:\mathbb{Q}[x]\to\mathbb{C}.$  Wat is de  $Ker(s_a)$ ?  $x^2-3\in Ker(s_a)$  want  $(\sqrt{3})^2-3=0.$   $(x^2-3)\subseteq Ker(s_a)\subsetneq \mathbb{Q}.\ x^2-3$  is monisch en irreducibel in  $\mathbb{Q}[x].$  (Eisenstein met  $p=3$ ) Hieruit volgt dat  $(x^2-3)$  een maximaal ideaal is van  $\mathbb{Q}[x].$  Dus  $Ker(s_a)=(x^2-3)$  en  $m_a(x)=x^2-3.$  Dus  $\mathbb{Q}[x]/(x^2-3)\cong \mathbb{Q}[a]=Im(s_a)\mathbb{Q}[x]/(x^2-3)$  is een lichaam, want  $(x^2-3)$  is een priemideaal, dus  $Im(s_a)$  is een lichaam.

### Voorbeeld (vervolg)

 $\mathbb{Q}[a] \subseteq \mathbb{Q}(a)$  per definitie.

 $\mathbb{Q}(a) \subseteq \mathbb{Q}[a]$  omdat  $\mathbb{Q}[a]$  hier een lichaam is dat  $\mathbb{Q}$  en a bevat.

Dus  $\mathbb{Q}(a) = \mathbb{Q}[a]$  geldt altijd als  $Ker(s_a) \neq (0)$ .

Ook  $\mathbb{Q}[x]/(x^2-3)=\{\overline{b_0+b_1x}|b_0,b_1\in\mathbb{Q}\}$  (elke klasse 1 keer).

Dus nu geldt ook  $\mathbb{Q}(a)=\{\overline{b_0+b_1a}|b_0,b_1\in\mathbb{Q}\}$ 

 $\mathbb{Q}[x]/(x^2-3)$  heeft  $\mathbb{Q}$  basis  $\overline{1},\overline{x}$ .

Dit isomorfisme is nu een ringisomorfisme en van  $\mathbb Q$  vectorruimtes.

Conclusie:  $\{1, a\}$  is een  $\mathbb{Q}$  basis van  $\mathbb{Q}(a) = \mathbb{Q}[a]$ .

### Propositie

Stel E/F is een uitbreiding,  $a \in E$  algebraïsch over F met minimum polynoom  $m_a(x)$  over F van graad  $d \ge 1$ .

- $F[x]/(m_a(x)) \cong F[a]$  is een lichaams isomorfisme.
- $F(a) = F[a] = \{b_0 + b_1 a + \dots + b_{d-1} a^{d-1} | b_i \in F\}$  (alles uniek)
- [F(a):F] = d en  $\{1, a, ..., a^{d-1}\}$  is een F basis van F(a).

#### Voorbeeld

$$E = \mathbb{C}$$
,  $F = \mathbb{Q}$ ,  $a = \sqrt[3]{2}$ .

 $x^3 - 2 \in Ker(s_a)$  ook irreducibel in  $\mathbb{Q}[x]$  (Eisenstein p = 2).

Er geldt  $m_a(x)|x^3-2$  met  $x \in F[x]$ , want  $x^3-2$  is irreducibel en monisch in dus  $m_a(x)=x^3-2$ .

Dus  $\mathbb{Q}(\sqrt[3]{2}) = \mathbb{Q}[\sqrt[3]{2}] = \{b_0 + b_1 a + b_2 a^2 | b_i \in \mathbb{Q}\}$  is een lichaam met d = 3 en  $a^3 - 2 = 0$ .

Wat te doen met een term in de vorm:  $a^4 - 2a = 0$ 

Rekenen in  $\mathbb{Q}(a)$ :

$$(1+a^2)(1-3a^2) = 1-2a^2-3a^4 = 1-2a^2-3(2a) = 1-6a-2a^2.$$

## Voorbeeld (vervolg)

Voor inverse:

Als m(x) irreducibel is in F[x] met graad  $d \ge 1$  en g(x) in F[x] heeft  $\deg(g(x)) < d$  en  $g(x) \ne 0$  dan is ggd(m(x), g(x)) = 1 want m(x) is monisch, dus delers zijn 1, m(x), m(x)|g(x) dus g(x) = p(x)m(x) kan niet met graad.

Dus Bézout: A(x)m(x) + B(x)g(x) = 1 voor zekere A(x), B(x) in F[x] (met het uitgebreide Euclidische algoritme). Als  $m(a) = 0 \Rightarrow B(a)g(a) = 1$ , dus  $B(a) = g^{-1}(a)$ .

Merk op: A(x) speelt geen rol, hoef je niet te berekenen.

### Voorbeeld

Met 
$$a=\sqrt[3]{2}$$
 in  $\mathbb{Q}(a)=\{b_0+b_1a+b_2a^2|b_i\in\mathbb{Q}\}$  is de inverse van  $2+a$  gelijk aan  $\frac{2}{5}-\frac{1}{5}a+\frac{1}{10}a^2$   $ggd(x^3-2,2+x)=1$ .