LITERATURE SURVEY

S.NO	TITLE	AUTHORS	JOURNALS	TECHNIQUES	PROBLEM
		AND YEARS			DESCRIPTION
1	Fashion Recommender Systems	Nima Dokoohaki (2020)	SPINGER	machine learning, social network mining and recommendation systems addressing open problems in fashion domain	In this context, recommender systems, such as social fashion-based recommendations (outfits influenced by influencers), product recommendations, or size and fit suggestions, are frequently utilised to handle a variety of complicated challenges. Limitations: Cold start
2	Learning fashion compatibility across categories with deep multimodal neural networks	Guang-Lu Sun, Jun-Yan He, Xiao Wu, Bo Zhao, Qiang Peng (2021)	ELSEVIER	multilayered Long Short-Term Memory (LSTM) is employed for discriminative semantic representation learning, while a deep Convolutional Neural Network (CNN) is used for visual embeddings.	Here, we offer a unique multimodal framework for fashion compatibility learning that concurrently incorporates semantic and visual embeddings into a single deep learning model. Limitations: Synonym, Scalability
3	Modeling Instant User Intent and Content-Level Transition for Sequential Fashion Recommendati on	Yujuan Ding, Yunshan Ma, Wai Keung Wong, Tat- Seng Chua (2021)	IEEE	Attentional Content- level Translation- based Recommender (ACTR) framework	It aims to capture additional short-term fashion interest of users by modeling the item-to-item transitions. Limitation: Sparsity
4	Personalized fashion recommender system with image based neural networks	Sridevi, M., ManikyaAru n, N., Sheshikala, M., & Sudarshan, E (2020)	CONFERENCE PROCEEDING	It processes the DeepFashion dataset's photos using neural networks, and then creates final suggestions using a closest neighborbacked recommender.	It processes the DeepFashion dataset's photos using neural networks, and then creates final suggestions using a closest neighborbacked recommender. Limitation: cold start

5	Dress like an Internet Celebrity: Fashion Retrieval in Videos	Hongrui Zhao, Jin Yu, Yanan Li, Donghui Wang, Jie Liu, Hongxia Yang, Fei Wu (2020)	IJCAI-PRICAI	They propose a novel deep neural network, called Detect, Pick, and Retrieval Network (DPRNet)	To improve the effectiveness of the video-to-shop work, they updated the conventional object detector, which automatically selects the best object offers for each commodity in films without duplication. Limitation: Scalability
6	Deep convolutional features for image retrieval	Gkelios, S., Sophokleous, A., Plakias, S., Boutalis, Y., & Chatzichristo fis, S. (2021)	ELSEVIER	CNN-based image retrieval method.	This study describes a method for shaping image retrieval features using the most recent pre-trained CNN architectures, which were initially suggested for image classification. Limitations: cold start, Scalability
7	A Survey on Accuracy- oriented Neural Recommendati on: From Collaborative Filtering to Information- rich Recommendati on	Le Wu, Xiangna n He, Xiang Wang, Kun Zhang, Meng Wang (2021)	IEEE	They propose a novel deep neural network, called Detect, Pick, and Retrieval Network (DPRNet)	To improve the effectiveness of the video-to-shop work, they updated the conventional object detector, which automatically selects the best object offers for each commodity in films without duplication. Limitation: Scalability
8	Incorporating Customer Reviews in Size and Fit Recommendati on systems for Fashion E- Commerce	Oishik Chatterjee, Jaidam Ram Tej, Narendra Varma Dasaraju (2022)	CONFERENCE PROCEEDING	Collaborative filtering and information-rich recommendation	It is used to predict the correct sizes for the customers will not only reduce size related returns and refunds but also improve customer experience. Limitations: Latency, Sparsity

9	A Literature Survey of Recent Advances in	Guendalina Caldarini, Sar dar Jaf, Kenneth	MDPI	Natural Language Processing and Machine Learning.	Intelligent conversational computer programmes known as chatbots are
	Chatbots	McGarry (2022)			created to mimic human speech in order to provide automated online assistance and support. Limitations: Privacy, Synonymy
10	Understanding User Satisfaction with Task- oriented Dialogue Systems	Clemencia Siro, Moham mad Aliannejadi, Maarten de Rijke (2022)	CONFERENCE PROCEEDING	conversational recommendation System	They gather information by adding an extra annotation layer to conversations taken from the ReDial dataset, a popular conversational recommendation dataset. along with annotations at the turn and dialogue levels for the sampled dialogues. We can investigate how various conversation elements affect user satisfaction thanks to the annotations. Limitation: cold start
11	UNITER: UNiversal Image-TExt Representation Learning	Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, Jingji ng Liu (2020)	SPINGER	Masked Language Modeling (MLM), Masked Region Modeling (MRM, with three versions), Image-Text Matching (ITM), and Word-Region Alignment are the four pre-training tasks that we develop (WRA). Unlike earlier research that uses simultaneous	They introduce UNITER, a UNiversal Image-TExt Representation, which can power diverse downstream V+L tasks with joint multimodal embeddings. UNITER was learned by large-scale pre-training using four image-text datasets (COCO, Visual Genome,

		random masking for	Conceptual Captions,
		both modalities	and SBU Captions).
			Limitations:
			Synonymy,
			Sparsity, cold start