The DATA Step

Tyler Cole

SECTIONS

Datasets

The DATA Step

SAS Techniques

Summary Points

Datasets

DATASETS

Describes and physically stores data

- Descriptor portion
 - Metadata about the contents of the dataset
 - Supplies dataset attributes and variable attributes

- Data portion
 - Physical values organized into observations and variables

DATASETS

descriptor component

descriptor information

data component

	PI	WGI
1	001	176
2	002	187

DATASETS

The CONTENTS Procedure

Data Set Name	WORK.ONE	Observations	2
Member Type	DATA	Variables	2
Engine	V9	Indexes	0
Created	03/27/2017 21:54:04	Observation Length	16
Last Modified	03/27/2017 21:54:04	Deleted Observations	0
Protection		Compressed	NO
Data Set Type		Sorted	NO
Label			
Data Representation	SOLARIS_X86_64, LINUX_X86_64, ALPHA_TRU64, LINUX_IA64		
Encoding	utf-8 Unicode (UTF-8)		

Engine/Host Dependent Information			
Data Set Page Size	65536		
Number of Data Set Pages	1		
First Data Page	1		
Max Obs per Page	4061		
Obs in First Data Page	2		
Number of Data Set Repairs	0		
Filename	$/tmp/SAS_workDC7700000B99_localhost.localdomain/SAS_workC9D500000B99_localhost.localdomain/one.sas7bdat$		
Release Created	9.0401M4		
Host Created	Linux		
Inode Number	147848		
Access Permission	TW-TW-T		
Owner Name	sasdemo		
File Size	128KB		
File Size (bytes)	131072		

	Variables in Creation Order				
#	Variable	Туре	Len	Label	
1	pt	Char	5	Subject Identifier	
2	wgt	Num	8	Weight in Lbs	

The DATA Step

- Compilation
 - Build descriptor portion of the new dataset
 - Create the Program Data Vector

- Execution
 - Load values into the Program Data Vector
 - Output observations to the new dataset

SET Statement

one.sas7bdat

PT	WGT
001	176
002	187

```
data final;
set one;
study='Z999';
run;
```

Program Data Vector

N

 PT^R

WGTR

STUDY

```
• data final;
set one;
study='Z999';
run;
```

Program Data Vector

N PT^R WGT^R STUDY

```
data final;
```

set one;
study='Z999';
run;

N	PT^R	WGTR	STUDY
1	001	176	

```
data final;
set one;
```

study='Z999';
run;

N	PTR	WGTR	STUDY
1	001	176	Z999

```
data final;
set one;
study='Z999';
```

Program Data Vector

N_	PT^R	WGTR	STUDY
1	001	176	Z999

PT	WGT	STUDY
001	176	Z999

R = retained

run;

```
• data final;
set one;
study='Z999';
run;
```

N	PT^R	WGTR	STUDY
2	001	176	

PT	WGT	STUDY
001	176	Z999

```
data final;
```

set one; study='Z999'; run;

Program Data Vector

N	PT^R	WGTR	STUDY
2	002	187	

PT	WGT	STUDY
001	176	Z999

R = retained

```
data final;
set one;
```

study='Z999'; run;

Program Data Vector

N	PT^R	WGTR	STUDY
2	002	187	Z999

PT	WGT	STUDY
001	176	Z999

R = retained

```
data final;
set one;
study='Z999';
```

Program Data Vector

N_	PTR	WGT ^R	STUDY
2	002	187	Z999

PT	WGT	STUDY
001	176	Z999
002	187	Z999

R = retained

run;

• data final;
set one;
study='Z999';
run;

Program Data Vector

N	PT^R	WGTR	STUDY
3	002	187	

PT	WGT	STUDY
001	176	Z999
002	187	Z999

R = retained

```
data final;
```

• set one;

```
study='Z999';
run;
```

Program Data Vector

N	PT^R	WGTR	STUDY
3	002	187	

PT	WGT	STUDY
001	176	Z999
002	187	Z999

R = retained

MERGE Statement

one.sas7bdat

PT	WGT	
001	176	
002	187	

many.sas7bdat

PT	VAL	
001	11	
002	21	
002	22	

```
data final;
merge one many;
by pt;
wgt=wgt/2.2;
run;
```

Program Data Vector

N

 PT^R

WGTR

 VAL^{R}

```
• data final;
  merge one many;
  by pt;
  wgt=wgt/2.2;
  run;
```

Program Data Vector

N PT^R WGT^R VAL^R

```
data final;
```

- merge one many;
- by pt;
 wgt=wgt/2.2;
 run;

N	PT^R	WGT ^R	VAL ^R
1	001	176	11

```
data final;
merge one many;
by pt;
• wgt=wgt/2.2;
```

run;

N	PT^R	WGTR	VAL ^R
1	001	80	11

```
data final;
merge one many;
by pt;
wgt=wgt/2.2;
```

Program Data Vector

N_	PTR	WGT ^R	VAL ^R
1	001	80	11

• run;

PT	WGT	VAL
001	80	11

```
• data final;
  merge one many;
  by pt;
  wgt=wgt/2.2;
  run;
```

N_	PT^R	WGT ^R	VAL ^R
2	001	80	11

PT	WGT	VAL
001	80	11

```
data final;
```

- merge one many;
- by pt;
 wgt=wgt/2.2;
 run;

N	PT^R	WGT ^R	VAL ^R
2	002	187	21

PT	WGT	VAL
001	80	11

```
data final;
merge one many;
by pt;
```

.

N_	PTR	WGT ^R	VAL ^R
2	002	85	21

wgt=wgt/2.2;
run;

PT	WGT	VAL
001	80	11

```
data final;
merge one many;
by pt;
wgt=wgt/2.2;
```

Program Data Vector

N	PT^R	WGTR	VAL ^R
2	002	85	21

• run;

PT	WGT	VAL
001	80	11
002	85	21

```
• data final;
  merge one many;
  by pt;
  wgt=wgt/2.2;
  run;
```

N	PT^R	WGT ^R	VAL ^R
3	002	85	21

PT	WGT	VAL
001	80	11
002	85	21

```
data final;
```

- merge one many;
- by pt;
 wgt=wgt/2.2;
 run;

N	PT^R	WGT ^R	VAL ^R
3	002	85	22

PT	WGT	VAL
001	80	11
002	85	21

```
data final;
merge one many;
by pt;
```

N	PT^R	WGT ^R	VAL ^R
3	002	38.6	22

wgt=wgt/2.2;
run;

PT	WGT	VAL
001	80	11
002	85	21

```
data final;
merge one many;
by pt;
wgt=wgt/2.2;
```

Program Data Vector

N_	PT^R	WGT ^R	VAL ^R
3	002	38.6	22

• run;

PT	WGT	VAL
001	80	11
002	85	21
002	38.6	22

```
• data final;
  merge one many;
  by pt;
  wgt=wgt/2.2;
  run;
```

N	PT^R	WGT ^R	VAL ^R
4	002	38.6	22

PT	WGT	VAL
001	80	11
002	85	21
002	38.6	22

```
data final;
```

- merge one many;
- by pt;
 wgt=wgt/2.2;
 run;

N	PT^R	WGT ^R	VAL ^R
4	002	38.6	22

PT	WGT	VAL
001	80	11
002	85	21
002	38.6	22

Alternative approach

```
data final;
merge one many;
by pt;
wgt=wgt/2.2;
run;
```


Alternative approach

```
data final;
merge one many;
by pt;
wgt_kg=wgt/2.2;
run;
```


Alternative approach

```
data final;
merge one many;
by pt;
run;
data final;
   set final;
   wgt=wgt/2.2;
run;
```


SAS Techniques

Zero records

```
data final;
if nobs=0 then put 'No observations';
else set one nobs=nobs;
run;
```

Count of observations

```
data final;
if 0 then do;
   set one nobs=nobs1;
   set many nobs=nobs2;
end;
run;
```

Copy descriptor information

```
data base;
if 0 then set final;
[...]
run;
proc append base=base data=final;
run;
```

Compute previous value

```
data final;
if last.pt=0 then prev_val=val;
set many;
by pt;
run;
```

Summary Points

SUMMARY POINTS

- SET [...] NOBS= value can be used immediately after compilation
- Variables entering via SET or MERGE are always retained
- Values may or may not be updated on variables entering via onemany MERGE