MSO202- INTRODUCTION TO COMPLEX ANALYSIS

1. Assignment 5

- (1) Let f(z) be an entire function such that $f(\mathbb{R}) \subset \mathbb{R}$. Show that $g(z) = \overline{f(\overline{z})}$ is also entire and $\overline{f(z)} = f(\overline{z})$.
- (2) Suppose that Ω is simply connected domain with $1 \in \Omega$, and $0 \notin \Omega$. Then there is a branch of the logarithm $F(z) = \log_{\Omega} z$ so that
 - (i) F is holomorphic in Ω .
 - (ii) $e^{F(z)} = z$ for all in Ω .
 - (iii) $F(r) = \log r$ whenever r is a real number and near 1.

(Hint: Page 98, Theorem 6.1 of Stein and Shakarchi)

(3) Calculate

(i)
$$\int_{C_2} \frac{z^{2009}}{z^{2010} + z^2 + 1} dz$$
 (i) $\int_{C_2} \frac{z^{2023}}{z^{2023} + z^{2022} + z^{2000} + 1} dz$.

- (4) Let f be a complex valued function in the unit disk $D := \{z : |z| < 1\}$ such that f^2 and f^3 are both analytic. Prove that f is analytic.
- (5) Let $f, g : \Omega \to \mathbb{C}$ be analytic functions. If $fg \equiv 0$, then either $f \equiv 0$ or $g \equiv 0$. Also, if $\overline{f}g$ is analytic. Show that f is constant function or g is identically zero.
- (6) Fibonacci number are given by the recurrence relation $F_0 = 0$, $F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for all $n \geq 2$. Let F_n be the *n*-th Fibonacci number. Show that (informally)

$$F(z) := \sum_{n=0}^{\infty} F_n z^n = \frac{1}{1 - z - z^2}.$$

Find radius of convergence of F(z).

- (7) Let f(z) be an entire function such that $|f(z)| \leq C|z|^{1/2}$ for all z, then show that f is a constant function.
- (8) Expand each of the following functions in Laurent series in the neighbourhood of the indicated points z_0 and, in each case, determine the largest domain where the resulting Laurent series converges:

(i)

(9) Find the Laurent series of the function

$$f(z) = \frac{z+4}{z^2(z^2+3z+2)} \qquad in$$

$$(i) \ 0 < |z| < 1. \ (ii) \ 1 < |z| < 2 \ (iii) \ 0 < |z+1| < 1 \ (iv) \ |z| > 2.$$

(10) T Find the Laurent series of the function

$$f(z) = \frac{z^2}{z^2 - 3z + 2} \qquad in$$

(i)
$$1 < |z| < 2$$
 (ii) $1 < |z - 3| < 2$

(11) Find the order of the zero at z = 0 for the following functions:

$$(i)z^3 \left(\exp(\exp z^3) - 1\right) \quad (ii) \quad 6\sin(z^3) + z^3(z^6 - 6) \quad (iii) \quad \exp(\sin z) - \exp(\tan z).$$

(12) Find all the holomorphic functions $f: B_1(0) \to \mathbb{C}$ satisfying:

$$(i) \quad f\left(\frac{1}{n}\right) = \frac{1}{n^2} \ (ii) \quad f\left(\frac{1}{n}\right) = \frac{1}{n+1} \ \ (iii) \quad f\left(\frac{1}{n^2}\right) = \frac{1}{n}.$$

(13) Find the order of all the zeros of the following functions

(i)
$$z \sin z$$
 (ii) $(1 - \exp z)(z^2 - 9)^4$ (iii) $\frac{\sin^3 z}{z}$