

Spatio-Temporal Graph Neural Networks for Multiple Object Tracking

Final Presentation, Master's Thesis

Maximilian Listl

June 24, 2022

Supervisor: Emeç Ercelik, M.Sc.

Examiner: Prof. Dr.-Ing. habil. Alois C. Knoll

Table of Content

- 1. Motivation
- 2. Method
- 3. Results
- 4. Conclusion and Outlook

What is Multiple Object Tracking?

Tracking-by-Detections paradigm:

- Given: Object detections $\mathcal{O} = \{o_1, ..., o_n\}$ are given by object detection method
- Goal:
 - Associated detections to determine the trajectory of objects over time.
 - $\circ \text{ Tracklet } T_i = \{o_{i_1}, ..., o_{i_{n_i}}\}$
 - \circ Find a set of tracklets $\mathcal{T}_* = \{T_1, \dots, T_m\}$ which explains the detections in a coherent way.

What is Multiple Object Tracking?

Figure: Visualization of multiple object tracking. Images from [BL20].

Common Approaches

Kalman Filters and Association Metrics:

Figure: Visualization of multiple object tracking with Kalman Filters

Multiple Object Tracking - Graph representation

Direct Matching over Edge Classification: 2D MOT [BL20], 3D MOT [Zae+22]

Node = Object Detection

Inactive Edge: y = 0

Active Edge: y = 1

7

Motivation

Our Idea: Spatio-Temporal Approach for 3D MOT

Take spatial relationships between object detections into account to leverage tracking performance (include spatial information)

Allow matching between object detections across multiple time frames (multi-frame approach)

Node = Object Detection

Temporal Edge

Pipeline

Initial Graph

- Initial node features $h_i^{(0)}$ for node i
- Initial edge features $h_{(i,j)}^{(0)}$ for edge i,j

Initial Node Feature: $h_i^{(0)}$

Initial Edge Feature: $h_{(i,j)}^{(0)}$

Edge Update:

$$h_{(i,j)}^{(l)} = \mathcal{N}_e\left(\left[h_i^{(l-1)}, h_j^{(l-1)}, h_{(i,j)}^{(l-1)}\right]\right) \tag{1}$$

Node Update:

Computing Neural Messages:

$$m_{(i,j)}^{(l)} = \mathcal{N}_{\nu}\left(\left[h_i^{(l-1)}, h_{(i,j)}^{(l-1)}\right]\right)$$
 (2)

Aggregating Messages:

$$h_i^{(l)} = \Phi\left(\left\{m_{(i,j)}^{(l)}\right\}_{j \in \mathbb{N}_i}\right)$$
 (3)

Greedy Rounding

Why?:

GNN can assign more than one incoming or outgoing active edges for each node i. Adopt method from [BL20].

Figure: Example of inconsistent assignment of active edges

Greedy Rounding

Set all edges with $\hat{y}_{(i,j)}^{(l)} < 0.5$ inactive

Figure: Example of first rounding step

Greedy Rounding

Figure: Example of second rounding step

Greedy Rounding

Figure: Resulting prediction after greedy rounding

Tracker Routine

• Given: Local tracking IDs for each node in one graph

• Goal: Global tracking IDs to for each node within a whole scene

Tracker Routine

Solution: Window shifting

Figure: Visualization of window shifting of tracker.

Experiments - Implementation Details

Nuscenes Dataset [Cae+20]:

- LIDAR measurements, 20Hz capture frequency, 32 channels
- 1,000 scenes, each scenes is 20 s long
- 23 object classes with accurate 3D bounding boxes at 2Hz
- Tracking Challenge:
 - o cars, pedestrians, buses, motorcycles, trailers, trucks, bicycles

Experiments - Implementation Details

Initial Features

$$h_i^{(0)} = [x_i', t_i] \in \mathbb{R}^4$$
 (4)

$$h_{(i,j)}^{(0)} = [q_{i,j}, q_{i,j}] \in \mathbb{R}^2 \quad \text{with}$$
 (5)

$$q_{(i,j)} = \begin{cases} 0, & \text{if } (i,j) \in E_{spatial} \\ 1, & \text{if } (i,j) \in E_{temp} \end{cases}$$
 (6)

Experiments - MOT Metrics

MOT metrics introduced by [Wen+20]:

Average multiple object tracking accuracy (AMOTA)

$$MOTA_r = max(0, 1 - \frac{FN_r + FP_r + IDS_r - (1 - r) \cdot P}{r \cdot P})$$
 (7)

$$AMOTA = \frac{1}{n-1} \sum_{r \in \{\frac{1}{n-1}, \frac{2}{n-1}, \dots, 1\}} MOTA_r$$
 (8)

Average multiple object tracking precision (AMOTP)

$$MOTP = \frac{\sum_{i,t} d_{i,t}}{\sum_{t} TP_{t}} \tag{9}$$

$$AMOTP = \frac{1}{n-1} \sum_{r \in \{\frac{1}{n-1}, \frac{2}{n-1}, \dots, 1\}} MOTP$$
 (10)

Experiments - Feasibility Study

- Does our tracking approach work theoretically?
- Perform a sanity check:
 - Ground truth (GT) annotations as detections (Validation Set)
 - \circ GT edge labels $y = \hat{y}$ as edge predictions (Do not use GNN for edge classification)

Experiments - Feasibility Study

Analyze tracking performance under influence of:

- number of frames per graph N
- ullet the temporal KNN parameter k_{temp}
- maximum temporal edge length β

Experiments - Feasibility Study

Influence of Temporal Edges

k_{temp}	AMOTA†	AMOTP↓	RECALL [↑]	TP†	FP↓	FN↓	IDS↓
3	0.9201	0.1268	0.9954	96,347	2,729	738	4,812
6	0.9487	0.0699	0.9954	99,766	2,717	738	1,393
12	0.9558	0.0558	0.9954	100,780	2,714	737	380

Table: MOT-results after varying k_{temp} . Using GT annotations from Nuscenes validation split and GT edge labels as predictions.

- increased k_{temp} leads to higher connectivity.
- higher likelihood to connect nodes from same trajectory.

- Perform MOT on GNN
 - Ground truth (GT) annotations as detections (Validation Set)

Influence of Spatial Edges

$k_{spatial}$	AMOTA†	AMOTP↓	RECALL [↑]	TP↑	FP↓	FN↓	IDS↓
3	0.8581	0.2244	0.9933	16.702	92,278	5,024	8,752
6	0.8657	0.2149	0.9933	14.803	92,392	4,484	8,646
12	0.8617	0.2239	0.9933	13.711	91,622	4,194	9,423

Table: MOT-results after varying $k_{spatial}$. Using GT annotations from Nuscenes validation split but GNN edge predictions.

- ullet Increase in $k_{spatial}$ improves AMOTA and AMOTP
- However, effect is small, probably due to small feature space of edge embeddings
- Shows that spatial information help to leverage MOT performance

Influence of Temporal Edges and Spatial Edges

k_{temp}	$k_{spatial}$	AMOTA†	AMOTP↓	RECALL†	TP↑	FP↓	FN↓	IDS↓
3	3	0.8581	0.2244	0.9933	92,278	5,024	867	8,752
6	3	0.8972	0.1609	0.9933	94,814	4,074	848	6,235
12	3	0.9060	0.1489	0.9934	96,454	3,456	820	4,623
6	6	0.9090	0.1418	0.9952	96,157	3,673	811	4,929
12	6	0.9195	0.1244	0.9950	96,464	3,222	845	4,588

Table: MOT-results after varying jointly k_{temp} and $k_{spatial}$. Using GT annotations from Nuscenes validation split but GNN edge predictions.

- ullet Combined increase of $k_{spatial}$ and k_{temp} leads to best performing configuration.
- Higher temporal connectivity increases likelihood of connecting nodes which belong to the same trajectory.
- Higher spatial connectivity increases awareness of spatial context for each node

Benchmark

How well performs our method against other methods?

- Perform Benchmark
- Use Centerpoint Detections [YZK21] (Nuscenes validation set)
- Comparison with CBMOT [BSZ21] and EagerMot [KOL21]

Benchmark

Method	k_{temp}	$k_{spatial}$	AMOTA↑	AMOTP↓	RECALL↑
CBMOT* [BSZ21]	-	-	0.7219	0.5337	0.73784300
CBMOT [^] [BSZ21]	-	-	0.7196	0.4869	0.73473442
ours	3	3	0.2101	1.1948	0.42755481
ours	12	6	0.2021	1.3185	0.43722993

Table: MOT-results comparing our method with CBMOT[BSZ21] (Part 1). Using CenterPoint detections (centerpoint_voxel_1440) [YZK21] from Nuscenes validation split. CBMOT* uses 2D and 3D tracklets and uses a multiplication for its score update. CBMOT^ also uses 2D and 3D tracklets. However, it uses a neural network for its score update.

- Our method performs worse than CBMOT, given the Centerpoint detections.
- Probably caused by our methods inability to filter out false positive detections

Comparison with CBMOT

Benchmark

Methods	k_{temp}	$k_{spatial}$	AMOTA↑	AMOTP↓	RECALL↑
EagerMot*	-	-	0.7145	0.5664	0.76163287
EagerMot [^]	-	-	0.7120	0.5690	0.75200000
Ours	3	3	0.2328	1.1631	0.45707547
Ours	12	6	0.2145	1.2831	0.44252695

Table: MOT-results comparing our method with EagerMOT[KOL21] (Part 1). Using CenterPoint detections (centerpoint_voxel_1440_dcn(flip)) [YZK21] from Nuscenes validation split. EagerMOT* represents the results evaluated by our own computation. EagerMOT^ represents the results from the paper.

Conclusion

- 1. Our approach work well for detection inputs without any false positive object detections (ground truth annotations)
- 2. Spatio-temporal graph structure allows association between nodes over time, while including the spatial context for edge classification
- 3. However, our method cannot handle false positive object detections. Therefore it fails to perform on state-of-the-art levels.

Future Work

- 1. Additional strategy for handling false positive detections:
 - 1.1 Classification of nodes, as in [Zae+22]
 - 1.2 Randomly add false positive nodes to graph (augmentation method)
- 2. Random removal of nodes, while training. Improve Robustness of GNN towards occlusions. (augmentation method)
- 3. Graph construction: Increase robustness by including appearance features and orientation features to K-Nearest Neighbor methods
- 4. Initial feature selection:
 - 4.1 $h_i^{(0)}$ with appearance features and class-id
 - 4.2 $h_{(i,i)}^{(0)}$ contains difference in bounding box dimensions

References I

- [BSZ21] Benbarka, N., Schroder, J., and Zell, A. "Score refinement for confidence-based 3D multi-object tracking". In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 27.09.2021 01.10.2021, pp. 8083–8090. ISBN: 978-1-6654-1714-3. DOI: 10.1109/IROS51168.2021.9636032.
- [BL20] Braso, G. and Leal-Taixe, L. "Learning a Neural Solver for Multiple Object Tracking". In: *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*. 2020.
- [Cae+20] Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E., Xu, Q., Krishnan, A., Pan, Y., Baldan, G., and Beijbom, O. "nuScenes: A multimodal dataset for autonomous driving". In: *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*. 2020. URL: http://arxiv.org/pdf/1903.11027v5.
- [KOL21] Kim, A., Ošep, A., and Leal-Taixé, L. "EagerMOT: 3D Multi-Object Tracking via Sensor Fusion". In: 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021. DOI: 10.1109/ICRA48506.2021.9562072. URL: http://arxiv.org/pdf/2104.14682v1.
- [Wen+20] Weng, X., Wang, Y., Man, Y., and Kitani, K. "GNN3DMOT: Graph Neural Network for 3D Multi-Object Tracking with Multi-Feature Learning". In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020. ISBN: 978-1-7281-7168-5. URL: http://arxiv.org/pdf/2006.07327v1.

References II

- [YZK21] Yin, T., Zhou, X., and Krahenbuhl, P. "Center-based 3D Object Detection and Tracking". In: *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*. 2021, pp. 11784–11793.
- [Zae+22] Zaech, J.-N., Liniger, A., Dai, D., Danelljan, M., and van Gool, L. "Learnable Online Graph Representations for 3D Multi-Object Tracking". In: *IEEE Robotics and Automation Letters* (2022), p. 1. DOI: 10.1109/LRA.2022.3145952.

Spatio-Temporal Graph Neural Networks for Multiple Object Tracking

Final Presentation, Master's Thesis

Maximilian Listl

June 24, 2022

Supervisor: Emeç Ercelik, M.Sc.

Examiner: Prof. Dr.-Ing. habil. Alois C. Knoll

Motivation

Graph Neural Networks - based

- Feature fusion for learned association metric [Wen+20]
- Direct Matching over Edge Classification [Zae+22]

Spatio-Temporal Graph Builder

Spatio-Temporal Shift:

constant shift value a_{shift}

$$x_i' = x_i + \begin{bmatrix} 0 \\ 0 \\ a_{shift} \cdot t_i \end{bmatrix} \in \mathbb{R}^3$$
 (11)

with
$$t_i = \{0, ..., N-1\}$$

Spatial Edge Construction:

K-Nearest Neighbor with $k_{spatial}$

Temporal Edge Construction:

K-Nearest Neighbor with k_{temp}

Connect time frames with a time difference of up to β (maximum temporal edge length)

Spatio-Temporal Graph Builder

Algorithm 1 Algorithm to build temporal edges

```
Require: \beta \geq (t_j - t_i) and t_i < t_j

Given: k_{temp}

Given: X'_{t_i} \leftarrow \left\{ x'_{t_{i_1}}, ..., x'_{t_{i_p}} \right\}

Given: X'_{t_j} \leftarrow \left\{ x'_{t_{j_1}}, ..., x'_{t_{j_q}} \right\}

A \leftarrow \{\} \Rightarrow A is the empty set initially for x'_{t_{i_g}} \in X'_{t_i} do \Rightarrow A \leftarrow knn\_method(X'_{t_j}, x'_{t_{i_g}}, k_{temp}) \Rightarrow a_i contains index pairs of the k_{temp} neighbors of detection o_i A \leftarrow A \cup a_i end for return A \Rightarrow Contains the index pairs of all k_{temp} neighbors for all detection from O_{t_i}. They represent the temporal edges.
```

Figure: Input Graph

Message Passing Network

We adopt the time-aware node update step from [BL20]

Node Update:

Computing Neural Messages:

$$m_{(i,j)}^{(l)} = \begin{cases} \mathcal{N}_{v}^{past} \left(\left[h_{i}^{(l-1)}, h_{(i,j)}^{(l-1)}, h_{i}^{(0)} \right] \right), & \text{if } j \in \left\{ \mathbb{N}_{i,temp}^{past} \cup \mathbb{N}_{i,spatial}^{flow_in} \right\} \\ \mathcal{N}_{v}^{fut} \left(\left[h_{i}^{(l-1)}, h_{(i,j)}^{(l-1)}, h_{i}^{(0)} \right] \right), & \text{if } j \in \left\{ \mathbb{N}_{i,temp}^{fut} \cup \mathbb{N}_{i,spatial}^{flow_out} \right\} \end{cases}$$

$$(12)$$

Message Passing Network

We adopt the time-aware node update step from [BL20] Node Update:

Aggregating Messages:

$$h_{i,past}^{(l)} = \sum_{j \in \left\{ \mathbb{N}_{i,temp}^{past} \cup \mathbb{N}_{i,spatial}^{flow_in} \right\}} m_{(i,j)}^{(l)}$$

$$(13)$$

$$h_{i,fut}^{(l)} = \sum_{j \in \left\{ \mathbb{N}_{i,temp}^{fut} \cup \mathbb{N}_{i,spatial}^{flow_out} \right\}} m_{(i,j)}^{(l)}$$

$$(14)$$

$$h_i^{(l)} = \mathcal{N}_v \left(\left[h_{i,past}^{(l)}, h_{i,fut}^{(l)} \right] \right)$$
 (15)

Message Passing Network

Figure: Visualization of indexing problem. Given node i with i = 2 and its adjacent nodes j with $j \in \mathbb{N}_i$.

Message Passing Network

Feature selection:

$$h_i^{(0)} = [x_i', t_i] \in \mathbb{R}^4 \tag{16}$$

$$h_{(i,j)}^{(0)} = \left[q_{i,j}, q_{i,j} \right] \in \mathbb{R}^2$$
 (17)

with

$$q_{(i,j)} = \begin{cases} 0, & \text{if } (i,j) \in E_{spatial} \\ 1, & \text{if } (i,j) \in E_{temp} \end{cases}$$
 (18)

Message Passing Network

Training and Inference:

Edge classification:

$$\hat{y}_{(i,j)}^{(l)} = \sigma\left(\mathcal{N}_e^{class}\left(h_{(i,j)}^{(l)}\right)\right) \in [0,1]$$

$$\tag{19}$$

Loss:

$$\mathcal{L} = \frac{-1}{|E|} \sum_{l=l_0}^{L} \sum_{(i,j)\in E} w \cdot y_{(i,j)} \log\left(\hat{y}_{(i,j)}^{(l)}\right) + (1 - y_{(i,j)}) \log\left(1 - \hat{y}_{(i,j)}^{(l)}\right)$$
(20)

Greedy Rounding

```
Algorithm 2 Algorithm for Greedy Rounding based on Greedy Projection from [BL20]
    Given: Graph G = (V, E_{temp})
    Given: Edge Predictions \hat{y}^L
    Return: feasible flow solution y
    for (i,j) \in E_{temp} do
         if \hat{y}_{(i,j)}^{L} > 0.5 then
               y_{(i,j)} \leftarrow 1
          else
        y_{(i,j)} \leftarrow 0 end if
    end for
    for i \in V do
          if Constraint 3.4 is violated then
               j* \leftarrow \operatorname{argmax}_{j \in \mathbb{N}^{past}_{i,temp}} \hat{y}^{L}_{(i,j)}
for \ j \in \mathbb{N}^{past}_{i,temp} \setminus \{j*\} \ \mathbf{do}
                     y_{(i,j)} \leftarrow 0
                end for
          end if
          if Constraint 3.5 is violated then
               j* \leftarrow \operatorname{argmax}_{j \in \mathbb{N}_{i,temp}^{fut}} \hat{y}_{(i,j)}^{L}
               for j \in \mathbb{N}_{i,temp}^{fut} \setminus \{j*\} do
y_{(i,j)} \leftarrow 0
                end for
          end if
    end for
```

Figure: Greedy rounding method from [BL20]

Tracker Routine

• Given: Local tracking IDs for each node in one graph

Goal: Global tracking IDs to for each node within a whole scene

Tracker Routine

• Solution: Window shifting

Figure: Visualization of window shifting of tracker.

Experiments

Feasibility Study

Influence of spatial edges:

$k_{spatial}$	AMOTA†	AMOTP↓	RECALL [↑]	TP↑	FP↓	FN↓	IDS↓
6	0.9487	0.0699	0.9954	99,766	2,717	738	1,393
3	0.9487	0.0699	0.9954	99,766	2,717	738	1,393

Table: MOT-results after varying the number of frames $k_{spatial}$. Using GT annotations from Nuscenes validation split and GT edge labels as predictions.

Experiments - Feasibility Study

Influence of Frames per Graph

N	AMOTA↑	AMOTP↓	RECALL [↑]	MOTA↑	TP↑	FP↓	FN↓	IDS↓
3	0.9201	0.1268	0.995	0.9378	96,347	2,729	738	4,812
6	0.9129	0.1411	0.986	0.9294	95,643	2,741	1,506	4,748
12	0.7672	0.4403	0.847	0.7985	82,608	2,367	15,048	4,241

Table: MOT-results after varying the number of frames N. Using GT annotations from Nuscenes validation split and GT edge labels as predictions.

- ullet Increased N leads to worse AMOTA and AMOTP for constant $k_{temp}=3$
- ullet Low k_{temp} at high N probably does not allow to connection between nodes belonging to same object

Experiments - Feasibility Study

Influence of Maximum Temporal Edge Length

β	AMOTA†	AMOTP↓	RECALL [↑]	TP↑	FP↓	FN↓	IDS↓
2	0.7672	0.4403	0.8472	82,608	2,367	15,048	4,241
6	0.7668	0.4403	0.8477	82,759	2,439	14,957	4,181
11	0.7662	0.4403	0.8477	82,761	2,464	14,956	4,180

Table: MOT-results after varying β . Using GT annotations from Nuscenes validation split and GT edge labels as predictions.

- ullet Increased eta minimally affects AMOTA and AMOTP for constant $k_{temp}=3$
- ullet Low k_{temp} at high eta probably does not allow to connection between nodes belonging to same object