

Goals

- Understand real-world crypto via a rigorous approach
- When you encounter crypto in your career:
 - Understand the key terms
 - Understand the security guarantees provided
 - Know how to use crypto
 - Understand what goes on "under the hood"
- "Crypto mindset"

Non-goals

- Designing your own crypto schemes
- Implementing your own crypto for real-world use

 Course goal: realize when to consult an expert!

Cryptography (historically)

"...the art of writing or solving codes..."

 Historically, cryptography focused exclusively on ensuring private communication between two parties sharing secret information in advance (using "codes" aka private-key encryption)

- Much broader scope!
 - Data integrity, authentication, protocols, ...
 - The public-key setting
 - Group communication
 - More-complicated trust models
 - Foundations (e.g., number theory, quantumresistance) to systems (e.g., electronic voting, cryptocurrencies)

Design, analysis, and implementation of **mathematical techniques** for securing information, systems, and distributed computations against adversarial attack

- Cryptography is ubiquitous
 - Passwords, password hashing
 - Secure credit-card transactions over the internet
 - Encrypted WiFi
 - Disk encryption
 - Digitally signed software updates
 - Bitcoin

– ...

Cryptography (historically)

"...the art of writing or solving codes..."

- Historically, cryptography was an art
 - Heuristic, unprincipled design and analysis
 - Schemes proposed, broken, repeat...

- Cryptography is now much more of a science
 - Rigorous analysis, firm foundations, deeper understanding, rich theory

- The "crypto mindset" has permeated other areas of computer security
 - Threat modeling
 - Proofs of security

Rough course outline

	Secrecy	Integrity
Private-key setting	Private-key encryption	Message authentication codes
Public-key setting	Public-key encryption	Digital signatures

Building blocks

- Pseudorandom (number) generators
- Pseudorandom functions/block ciphers
- Hash functions
- Number theory

Motivation

- Allows us to "ease into things...," introduce notation
- Shows why unprincipled approaches are dangerous
- Illustrates why things are more difficult than they may appear

Classical cryptography

 Until the 1970s, exclusively concerned with ensuring secrecy of communication

I.e., encryption

Classical cryptography

 Until the 1970s, relied exclusively on secret information (a key) shared in advance between the communicating parties

Private-key cryptography

 aka secret-key / shared-key / symmetric-key cryptography

Private-key encryption

Private-key encryption

Private-key encryption

- A private-key encryption scheme is defined by a message space M and algorithms (Gen, Enc, Dec):
 - Gen (key-generation algorithm): outputs $k \in K$
 - Enc (encryption algorithm): takes key k and message $m \in \mathcal{M}$ as input; outputs ciphertext c

 $c \leftrightarrow Enc_k(m)$

Dec (decryption algorithm): takes key k and ciphertext c as input; outputs m or "error"
m) = Dec_k(c)

For all $m \in \mathcal{M}$ and k output by Gen, $Dec_k(Enc_k(m)) = m$

Kerckhoffs's principle

- The encryption scheme is not secret
 - The attacker knows the encryption scheme
 - The only secret is the key
 - The key must be chosen at random; kept secret
- Some arguments in favor of this principle
 - Easier to keep key secret than algorithm
 - Easier to change key than to change algorithm
 - Standardization
 - Ease of deployment
 - Public validation

The shift cipher

- Consider encrypting English text
- Associate 'a' with 0; 'b' with 1; ...; 'z' with 25
- $k \in \mathcal{K} = \{0, ..., 25\}$
- To encrypt using key k, shift every letter of the plaintext by k positions (with wraparound)
- Decryption just does the reverse

helloworld jgnnqyqtnf

Modular arithmetic

- x = y mod N if and only if N divides x-y
- [x mod N] = the remainder when x is divided by N
 - I.e., the unique value $y \in \{0, ..., N-1\}$ such that $x = y \mod N$

- 25 = 35 mod 10
- $25 \neq [35 \mod 10]$
- 5 = [35 mod 10]

The shift cipher, formally

- $\mathcal{M} = \{\text{strings over lowercase English alphabet}\}\$
- Gen: choose uniform k∈{0, ..., 25}
- Enc_k($m_1...m_t$): output $c_1...c_t$, where $c_i := [m_i + k \mod 26]$
- $Dec_k(c_1...c_t)$: output $m_1...m_t$, where $m_i := [c_i k \mod 26]$

Can verify that correctness holds...

Is the shift cipher secure?

- No -- only 26 possible keys!
 - Given a ciphertext, try decrypting with every possible key
 - Only one possibility will "make sense"
 - (What assumptions are we making here?)

 Example of a "brute-force" or "exhaustivesearch" attack

Example

- Ciphertext uryybjbeyq
- Try every possible key...
 - tqxxaiadxp
 - spwwzhzcwo
 - **—** ...
 - helloworld