Simplified Masters

$$T(n) = aT(\frac{n}{b}) + \Theta(n^d)$$

$$a \ge 1$$

$$b > 1$$

$$d \ge 0$$

- $a > b^d \to T(n) = \Theta(n^{\log_b a})$
- $a = b^d \to T(n) = \Theta(n^d \log_b n)$
- $\bullet \ a < b^d \to T(n) = \Theta(n^d)$

Masters

$$T(n) = aT(\frac{n}{b}) + f(n)$$
$$a \ge 1$$
$$b > 1$$

$$\bullet \ f(n) = \mathcal{O}(n^{\log_b a - \epsilon}) \to T(n) = \Theta(n^{\log_b a}), \epsilon > 0$$

- $f(n) = \Theta(n^{\log_b a}) \to T(n) = \Theta(n^{\log_b a} \log(n))$
- $f(n)=\Omega(n^{\log_b a+\epsilon})\to T(n)=\Theta(f(n)), \epsilon>0$ and $af(\frac{n}{b})\leq cf(n)$ for some c<1 and big enough n
- \bullet case 2 ext: $f(n) = \Theta(n^{log_ba}log^k(n)) \rightarrow T(n) = \Theta(n^{log_ba}log^{k+1}(n))$

Akra-Bazzi

$$T(n) = \sum_{i=1}^{k} a_i T(b_i n) + f(n), n > n_0$$

- $n_0 \ge \frac{1}{b_i}$, $n_0 \ge \frac{1}{1-b_i}$ for each i,
- $a_i > 0$ for each i,
- $0 < b_i$ for each i,
- $k \ge 1$,
- f(n) is non-negative function,

• $c_1 f(n) \le f(u) \le c_2 f(n)$, for each u satisfying condi-

$$T(n) = \Theta(n^p(1 + \int_1^n \frac{f(u)}{u^{p+1}} du))$$

$$\sum_{i=1}^{k} a_i b_i^p = 1$$

Extended Akra-Bazzi
$$T(n) = \sum_{i=1}^k a_i T(b_i n + h_i(n)) + f(n), n > n_0$$

all of the conditions from Akra-Bazzi still hold plus:

$$|h_i(n)| = \mathcal{O}(\frac{n}{\log^2 n})$$

Annihilators

Steps:

- Write the recurrence in operator form.
- Extract the annihilator for the recurrence.
- Factor the annihilator (if necessary).
- Extract the generic solution form the annihilator.
- Solve for coefficients using base cases (if known).

Operator	Definition
addition	(f+g)(n) := f(n) + g(n)
subtraction	(f-g)(n) := f(n) - g(n)
multiplication	$(a \cdot f)(n) := a \cdot (f(n))$
shift	Ef(n) := f(n+1)
k-fold shift	$E^k f(n) := f(n+k)$
composition	(X+Y)f := Xf + Yf
	(X - Y)f := Xf - Yf
	XYf := X(Yf) = Y(Xf)
distribution	X(f+g) = Xf + Xg

Operator	Functions annihilated		
E-1	α		
E-a	αa^n		
(E-a)(E-b)	$\alpha a^n + \beta b^n$	(if $a \neq$	
$(E-a_0)(E-a_1)\cdots(E-a_k)$	$\sum_{i=0}^{k} \alpha_i a_i^n$	(if a_i distinct	
$(E-1)^2$	$\alpha n + \beta$		
$(E - a)^2$	$(\alpha n + \beta)a^n$		
$(E-a)^2(E-b)$	$(\alpha n + \beta)a^n + \gamma b^n$	(if $a \neq$	
$E - 1$ $E - a$ $(E - a)(E - b)$ $(E - a_0)(E - a_1) \cdots (E - a_k)$ $(E - 1)^2$ $(E - a)^2$ $(E - a)^2(E - b)$ $(E - a)^d$	$\left(\sum_{i=0}^{d-1} \alpha_i n^i\right) a^n$		

If X annihilates f, then X also annihilates Ef.

If X annihilates both f and g, then X also annihilates $f \pm g$. If X annihilates f, then X also annihilates αf , for any constant

If X annihilates f and Y annihilates g, then XY annihilates $f \pm f$