NOTES ON BYPASSES

ABSTRACT. Here we translate some of the key terminology from [HH18] into the language of open books and double positive factorizations (DPFs).

Throughout Σ is a Weinstein convex hypersurface with decomposition R^{\pm} , Γ . We'll take dim $\Gamma = 2n - 1$, dim $\Sigma = 2n$.

Here is our convention for building Lefschetz fibrations: Start with a trivial Lefschetz fibration for $\pi:W\times\mathbb{D}\to\mathbb{D}$ (for which π is the projection onto the \mathbb{D} factor) an open book on the boundary whose page is W and whose monodromy is trivial. Say that the whose mapping torus portion of the open book is $W\times S^1$. If we attach a Weinstein handle at some $\Lambda\subset W\times\{0\}$ then the Lefschetz fibration extends over the surgered Weinstein manifold so that the core of the handle becomes a Lefschetz thimble. The surgery locus in the boundary is $N_W(\Lambda)\times[0,3\epsilon]$ and the boundary of the cocore is $\Lambda\times\{0\}\simeq\Lambda\times\{3\epsilon\}$. Here $N_W(\Lambda_k)$ is a standard Weinstein neighborhood of Λ in W. The \simeq is a Legendrian isotopy coming from our ability to slide boundary of the cocore through the handle.

To build up to a general Lefschetz fibration, we attach k Weinstein handles to the neighborhoods

$$N_W(\Lambda_k) \times \left[\frac{i-1}{k}, \frac{i-1}{k} + 3\epsilon\right] \subset W \times S^1, \quad S^1 = \mathbb{R}/\mathbb{Z}$$

using the 3ϵ neighborhoods with ϵ small. With this ordering convention the monodromy of the open book on the boundary is

$$\tau_{\Lambda_k} \circ \cdots \circ \tau_{\Lambda_1} : W \to W.$$

We say that the Lefschetz fibration is determined by $\mathbf{\Lambda} = (\Lambda_1 \dots, \Lambda_k)$.

For a double positive factorization (DPF), we have R^\pm determined by Lefschetz fibrations with fiber W and ordered collections of (framed) Legendrian spheres $\mathbf{\Lambda}^\pm = (\Lambda_i^\pm)_{i=1}^{k^\pm}, \Lambda_i^\pm \subset W$. We identify with boundaries when we have an identifications of the fibers of the Lefschetz fibrations on the R^\pm with a fixed W and

$$\tau_{\pmb{\Lambda}^+} := \tau_{\Lambda_{k^+}^+} \circ \cdots \circ \tau_{\Lambda_1^+} = \tau_{\Lambda_{k^-}^-} \circ \cdots \circ \tau_{\Lambda_1^-} =: \tau_{\pmb{\Lambda}^-}.$$

Specifically the identification of the monodromies allows us identify the mapping tori

$$[0,1] \times W/\sim^{\pm}, \quad (1,x) \sim^{\pm} (0,\tau_{\mathbf{\Lambda}^{\pm}}).$$

From the open book picture, the mapping tori make up all of the ∂R^{\pm} except for the binding. The identification trivially extends over the binding since it is ∂W .

1. LEGENDRIAN SUM AND BYPASSES

1.1. **Legendrian sum.** Given a pair Λ^{\pm} of Legendrians in a contact manifold Γ intersecting ξ -transversely at a single point, we'll define the Legendrian sum using the Lagrangian projection formulation from [HH18].

Let $N_{\Gamma}(\Lambda^- \cup \Lambda^+)$ be a neighborhood in Γ inside of a subset of the $[0,4\epsilon]_t \times W$ where W is a Weinstein manifold containing a plumbing of two copies of $\mathbb{D}^*\mathbb{S}^{n-1}$. The Λ^\pm are given by the 0-sections of the $\mathbb{D}^*\mathbb{S}^{n-1}$ inside $\{0\} \times W$ and our contact structure is determined by $dt + \beta$ for β a Liouville form on W. Then define

$$\Lambda^- \uplus \Lambda^+ \subset [\epsilon, 2\epsilon] \times W$$

to be the Legendrian lift of the Lagrangian sphere

$$\tau_{\Lambda^+}\Lambda^- = \tau_{\Lambda^-}^{-1}\Lambda^+ \subset W$$

where τ is a Dehn twist. Then

$$F^{\pm\epsilon}(\Lambda^- \uplus \Lambda^+) := \operatorname{Flow}_{\partial_t}^{\pm\epsilon}(\Lambda^- \uplus \Lambda^+) \subset ([0,\epsilon] \cup [2\epsilon, 3\epsilon]) \times W.$$

1.1.1. Translation. We'll always think of Λ^{\pm} as being Legendrian spheres sitting on a single page W of an open book for Γ . We'll always work far from the binding so that we can assume that each $t=t_0$ slice of $[-2\epsilon, 2\epsilon] \times W$ also sits in a page. After a slight perturbation of the open book the $(\Lambda^- \uplus \Lambda^+)^{\pm \epsilon}$ can be assumed to sit on pages as well.

One key observation is that we have conjugacy relations and a braid relation when Λ^{\pm} intersect at a single point in W,

$$\tau_{\tau_{\Lambda^+}\Lambda^-} = \tau_{\Lambda^+} \circ \tau_{\Lambda^-} \circ \tau_{\Lambda^+}^{-1}, \quad \tau_{\Lambda^+} \circ \tau_{\Lambda^-} \circ \tau_{\Lambda^+} \simeq \tau_{\Lambda^-} \circ \tau_{\Lambda^+} \circ \tau_{\Lambda^-}.$$

Another observation is that if Λ^+ is an unknot, then $\Lambda^- \uplus \Lambda^+$ will be loose in the ambient contact manifold. In the low dimensional case, dim $\Gamma=3$, this will be Λ^- both positively and negatively stabilized.

1.2. Bypass.

Definition 1.1. Bypass attachment data consists of a tuple (Λ^{\pm}, L^{\pm}) for which Λ^{\pm} is a pair of Legendrians intersecting in a single point and L^{\pm} are Lagrangian slice disks in the R^{\pm} for the Λ^{\pm} .

If we attach a bypass to $[-\epsilon, 0] \times \Sigma$ at $\{0\} \times \Sigma$ using the data of (Λ^{\pm}, L^{\pm}) then we get a contact structure on $[-\epsilon, 1] \times \Sigma$ with $\Sigma_1 = \{1\} \times \Sigma$ described as in [HH18, Theorem 5.1.3]:

- (1) R_1^{\pm} is obtained by attaching a Weinstein handle to $\Lambda^- \uplus \Lambda^+$ and cutting out standard neighborhoods of the $F^{\mp \epsilon}L^{\pm}$.
- (2) Γ_1 is obtained by performing a contact +1 surgery on $F^{\mp \epsilon} \Lambda^{\pm}$ and a contact -1 surgery along $(\Lambda^- \uplus \Lambda^+)$.
- (3) The boundaries of the R_1^{\pm} are identified by the contactomorphism $\partial R_1^+ \to \partial R_1^-$ obtained by sliding $F^{-\epsilon}\Lambda^+$ up over $(\Lambda^- \uplus \Lambda^+)$ to $F^{\epsilon}\Lambda^-$.

1.2.1. Translation.

Lemma 1.2. Suppose that the convex hypersurface is described by a DPF Λ^{\pm} with the Λ_1^{\pm} intersecting transversely at a single point in W. Then the Λ_1^{\pm} together with their thimbles $L_1^{\pm} \subset R^{\pm}$ give bypass attachment data. The result of the bypass can be described by a DPF Λ_b^{\pm} given by

$$\mathbf{\Lambda}_b^+ = (\tau_{\Lambda_1^+}^2 \Lambda_1^-, \Lambda_2^+, \dots, \Lambda_{k^+}^+), \quad \mathbf{\Lambda}_b^- = (\tau_{\Lambda_1^+} \Lambda_1^-, \Lambda_2^-, \dots, \Lambda_{k^-}^-)$$

Let's first verify that the monodromies of the Λ_b^{\pm} agree as a sanity check:

$$\begin{split} \tau_{\pmb{\Lambda}_b^+} &= \tau_{\Lambda_{k^+}^+} \circ \cdots \circ \tau_{\Lambda_2^+} \circ \tau_{\tau_{\Lambda_1^+}^2 \Lambda_1^-} = \tau_{\Lambda_k^+} \circ \cdots \circ \tau_{\Lambda_2^+} \circ \tau_{\Lambda_1^+}^2 \circ \tau_{\Lambda_1^-} \circ \tau_{\Lambda_1^+}^{-2} \\ &= \tau_{\pmb{\Lambda}^+} \circ \tau_{\Lambda_1^+} \circ \tau_{\Lambda_1^-} \circ \tau_{\Lambda_1^+}^{-2} = \tau_{\pmb{\Lambda}^+} \circ \tau_{\tau_{\Lambda_1^+}^+ \Lambda_1^-} \circ \tau_{\Lambda_1^+}^{-1} \\ &= \tau_{\pmb{\Lambda}^-} \circ \tau_{\tau_{\Lambda_1^+}^+ \Lambda_1^-} \circ \tau_{\Lambda_1^+}^{-1} = \tau_{\pmb{\Lambda}^-} \circ \tau_{\tau_{\Lambda_1^-}^{-1} \Lambda_1^+} \circ \tau_{\Lambda_1^+}^{-1} \\ &= \tau_{\pmb{\Lambda}^-} \circ \tau_{\Lambda_1^-} \circ \tau_{\Lambda_1^+} \circ \tau_{\Lambda_1^-} \circ \tau_{\Lambda_1^+}^{-1} \\ &= \tau_{\Lambda_{k^-}^-} \circ \cdots \circ \tau_{\Lambda_2^-} \circ \tau_{\Lambda_1^-} \circ \tau_{\Lambda_1^-}^{-1} \circ \tau_{\Lambda_1^+} \circ \tau_{\Lambda_1^-} \circ \tau_{\Lambda_1^+}^{-1} \\ &= \tau_{\Lambda_{k^-}^-} \circ \cdots \circ \tau_{\Lambda_2^-} \circ \tau_{\Lambda_1^+} \circ \tau_{\Lambda_1^-} \circ \tau_{\Lambda_1^+}^{-1} \\ &= \tau_{\Lambda_{k^-}^-} \circ \cdots \circ \tau_{\Lambda_2^-} \circ \tau_{\Lambda_1^+} \circ \tau_{\Lambda_1^-} \circ \tau_{\Lambda_1^+}^{-1} \\ &= \tau_{\Lambda_{k^-}^-} \circ \cdots \circ \tau_{\Lambda_2^-} \circ \tau_{\Lambda_1^+} \circ \tau_{\Lambda_1^-} \circ \tau_{\Lambda_1^+}^{-1} \end{split}$$

Now to prove the lemma we apply the definition of the bypass. Suppose that the Λ_1^{\pm} lie on $\{3\epsilon\} \times W$. The cocores of the surgery handles can then be pushed down to $\{2\epsilon\} \times W$ as shown in the left-hand side of Figure 1 so that they share a single transverse intersection.

Working out Λ_b^- is very easy. According to the definition of the bypass, we must perform a contact +1 surgery on a copy of Λ_1^- placed slightly above the new surgery locus $\Lambda_1^- \uplus \Lambda_1^+ = \tau_{\Lambda_1^+} \Lambda_1^-$ in the boundary of ∂R_1^- . This is as shown in the left-hand side of Figure 1. The ± 1 surgeries along the Λ_1^- at heights 2ϵ and 3ϵ cancel, so that we are only left with the new -1 surgery locus.

FIGURE 1. Depiction of bypass surgeries in an open book.

To describe the boundary of the new positive region R_1^+ we must perform a contact -1 surgery along $\tau_{\Lambda_1^+}\Lambda_1^-$ (at height 2ϵ) along with a contact +1 surgery slightly below it, say at $\{\epsilon\}\times W$. This is as depicted in the center row of Figure 1. We want to make the ± 1 surgeries on Λ_1^+ cancel. To that end, we handle-slide $\Lambda_1^- \uplus \Lambda_1^+ = \tau_{\Lambda_1^+}\Lambda_1^-$ (currently at height 2ϵ) down through the surgery locus at $\{\epsilon\}\times \Lambda_1^+$. The before and after pictures are as shown in the left and right columns of Figure 2, respectively. Because we are flowing down through a +1 surgery handle, the effect is a positive Dehn twist: We obtain $\tau_{\Lambda_1^+}^2\Lambda_1^-$ on the bottom (say, at height ϵ) and canceling ± 1 surgeries (say at heights 2ϵ , 3ϵ). Deleting the canceling ± 1 surgeries, we are left with Λ_b^+ as claimed.

FIGURE 2. Handle-sliding the new -1 surgery locus on ∂R_1^+ down through the new +1 surgery locus. On the bottom left, we see $\tau_{\Lambda_1^+}^2\Lambda^-$ sitting on $\{\epsilon\}\times W$.

2. STABILIZATION, UNKNOTS, AND OBVIOUSLY OVERTWISTED BYPASSES

Suppose that we have a Lefschetz fibration π (whose total space has dimension 2n) determined by some Λ with non-singular fiber W (of dimension 2n-2>0). Write Γ for the boundary of the total space of π .

Suppose that W admits a Lefschetz fibration $\pi_W:W\to\mathbb{D}$ for which we have a thimble $D\subset W$ with Legendrian boundary $\partial D\subset \partial W$. When $\dim W=2$ this imposes no restrictions on D, other than it is a Legendrian-realized arc. We may attach a $\operatorname{ind}=n-1, \dim=2n-2$ Weinstein handle H_D to W along ∂D . The union of the core Lagrangian disk C_D of H_D together with D forms a Lagrangian sphere Λ_D in the surgered Weinstein manifold

$$\Lambda_D := C_D \cup D \subset W_D := W \cup H_D.$$

The $\Lambda_i \subset W$ then determine $\Lambda_i \subset W_D$ via the natural inclusion $W \subset W_D$. It follows that Λ_D intersects to cocore Lagrangian disk C_D^{\perp} of H_D exactly once,

$$\#(\Lambda_D \cap C_D^{\perp}) = 1.$$

Adding a ind = n, dim = 2n Weinstein handle H_{Λ_D} to the total space of π then yields a *stabilization* of π . It is determined by a tuple of Lagrangians in W_D which we may view as Legendrians in the boundary of the total space of the new Lefschetz fibration,

$$\mathbf{\Lambda}_s = (\Lambda_D, \Lambda_1, \dots, \Lambda_k)$$

The boundary of the new Lefschetz fibration, π_s is then supported by an open book which is a positive stabilization of the open book induced by π . Hence the boundary of the total space is again Γ with the same contact structure. Write L_{Λ_D} for the Lefschetz thimble in the total space of π_s for which

$$\partial L_{\Lambda_D} = \Lambda_D \subset \Gamma$$

is Legendrian.

Lemma 2.1. Λ_D is a Legendrian unknot in Γ and L_{Λ_D} is a standard bounding disk.

Proof. In the case that $W=\mathbb{D}^{2n-2}$ with $\pi_W=\sum z_j^2$, we obtain $W_D=\mathbb{D}^*\mathbb{S}^{n-1}$ with $\Lambda_D\subset W_D$ the zero section. The total space of π_s is then \mathbb{D}^{2n} with Λ_D a standard Legendrian unknot bounding a standard Lagrangian disk.

Editor notes 2.2. Finish writing this proof. The idea is to build up the total space of π_s from the basic example. The delicate point is that we need to ensure that the disk remains standard.

REFERENCES

[BEM15] M. S. Borman, Y. Eliashberg, and E. Murphy, Existence and classification of overtwisted contact structures in all dimensions, Acta Math. 215, p.281–361, 2015.

[BHH] J. Breen, K. Honda, and Y. Huang, The Giroux correspondence in arbitrary dimensions, arXiv:2307.02317, 2023.

[GP17] E. Giroux and J. Pardon, Existence of Lefschetz fibrations on Stein and Weinstein domains, Geom. Topol., 21, no. 2, 963–997, 2017.

[HH18] K. Honda and H. Huang, *Bypass attachments in higher-dimensional contact topology*, preprint, arXiv:1803.09142, 2018. 1, 2

[HH19] K. Honda and H. Huang, Convex hypersurface theory in contact topology, preprint, arXiv:1907.06025, 2019.

[HT22] Ko Honda and Yin Tian, Contact categories of disks, J. Symp. Geom., Vol. 20, 2022.