

Enseignes et afficheurs à LED

LED, lumière et couleur

LED, lumière et couleur

Prof. Alain Tiedeu

LED, lumière et couleur

- Energie et radiations
- Couleur des radiations
- Applications aux LED

Transitions énergétiques

- Rappel des éléments du modèle de Bohr
- Électron qui reçoit de l'énergie et passe à une couche supérieure : **absorption**
- Électron qui émet de l'énergie et passe à une couche inférieure: **émission**
- Naturellement, électron a tendance à re-émettre de l'énergie et passer à la couche inférieure: émission spontanée
- Émission peut être **stimulé**
- Émission d'énergie se fait sous forme de lumière

E_V: Energie de la couche de valence E_C: Energie de la couche de conduction

Transitions énergétiques

- Rappel des éléments du modèle de Bohr
- Électron qui reçoit de l'énergie et passe à une couche supérieure : **absorption**
- Électron qui émet de l'énergie et passe à une couche inférieure: **émission**
- Naturellement, électron a tendance à re-émettre de l'énergie et passer à la couche inférieure: émission spontanée
- Émission peut être **stimulé**
- Émission d'énergie se fait sous forme de lumière

E_V: Energie de la couche de valence

Bandes d'énergie

- (1 couche => 1 valeur d'énergie) est approximative et correspond à atome isolé
- Pour N (grand) atomes, ils dépendent les uns des autres
 - => Niveaux d'énergie entrelacés
- On passe des niveaux à des bandes d'énergie
- Les transitions ont lieu entre les **sous-niveaux** des bandes d'énergie

B_C: Bande de conduction

Relation énergie-lumière

 Relation de Planck-Einstein lie l'énergie à la longueur d'onde de la lumière manière suivante :

$$E = \frac{hc}{\lambda}$$

h est la constante de Planck , c la vitesse de la lumière et λ la longueur d'onde

Relation énergie-lumière

 Relation de Planck-Einstein lie l'énergie à la longueur d'onde de la lumière manière suivante :

$$E = \frac{hc}{\lambda}$$

h est la constante de Planck , c la vitesse de la lumière et λ la longueur d'onde

Pour une transition entre 2 sous-niveaux 1 et 2, on a :

$$E_1 - E_2 = \Delta E = \frac{hc}{\lambda}$$

λ est la longueur d'onde de la lumière émise/reçue

Relation énergie-lumière

 Relation de Planck-Einstein lie l'énergie à la longueur d'onde de la lumière manière suivante :

$$E = \frac{hc}{\lambda}$$

h est la constante de Planck , c la vitesse de la lumière et λ la longueur d'onde

Pour une transition entre 2 sous-niveaux 1 et 2, on a :

$$E_1 - E_2 = \Delta E = \frac{hc}{\lambda}$$

λ est la longueur d'onde de la lumière émise/reçue

Chaque valeur de λ correspond à une couleur de lumière

Exemples de triplets (Ε, λ, C)

Énergie (eV)	λ (nm)	Couleur	
1.72	720	Rouge	
2.17	570	Vert	
2.53	490	Bleu	

Application à la LED

- LED alimentée
- Courant passe dans la LED
- Transitions énergétiques des électrons dans le matériau de la LED (l'intensité du courant influence les transitions)
- => **Lumière** de longueur d'onde λ
- Chaque valeur de λ correspond à une couleur de lumière

Couleur de la radiation émise

Examinons trois façons de déterminer la couleur de la radiation émise :

- Alliages spéciaux issus de la recherche,
- Astuces
- Synthèse de couleurs

Alliages et couleur de radiation

 Depuis les années 1960, la recherche a permis de découvrir des alliages d'éléments chimiques qui, utilisés dans la fabrication des LED permettent d'émettre des radiations de couleurs différentes

Alliages et couleur de radiation

 Depuis les années 1960, la recherche a permis de découvrir des alliages d'éléments chimiques qui, utilisés dans la fabrication des LED permettent d'émettre des radiations de couleurs différentes

• Quelques exemples sont donnés dans ce tableau :

Exemples de couleurs en fonction de l'alliage

Matériau	λ (nm)	Couleur
GaAs	850	Rouge
Arséniure de Gallium		
GaP	635	Rouge
Arséniure-Phosphure		
de Galium		
PGa	565	Verte
Phosphure de Gallium		
InGaN	490	Bleue
Nitrure de		
Gallium-Indium		

Astuces

• Etaler plusieurs couches de phosphore de couleurs différentes sur une jonction PN qui aurait produit de la lumière bleue (Nitrure de Gallium-Indium).

Une fraction de la lumière bleue initiale subit l'effet dit « Stokes shift » et est transformée en longueur d'onde plus longue. C'est le principe utilisé dans les ampoules fluorescentes.

Ajouter Arséniure-Phosphure de Gallium (Rouge) sur Phosphure de Gallium (Vert).
On obtient du Jaune (cf. synthèse des couleurs)

- Synthèse de couleurs
- = obtention d'autres couleurs à partir des couleurs de base dites primaires

- Synthèse de couleurs
- = obtention d'autres couleurs à partir des couleurs de base dites primaires
- Synthèse additive utilise Rouge, Vert, Bleu

Synthèse additive

- Synthèse de couleurs
- = obtention d'autres couleurs à partir des couleurs de base dites primaires
- Synthèse additive utilise Rouge, Vert, Bleu
- Synthèse soustractive utilise Cyan, Magenta, Jaune

Synthèse additive

Synthèse soustractive

- Synthèse de couleurs
- = obtention d'autres couleurs à partir des couleurs de base dites primaires
- Synthèse additive utilise Rouge, Vert, Bleu
- Synthèse soustractive utilise Cyan, Magenta, Jaune

- Triplet de LED pour générer les couleurs voulues
- LED **RGB** = Red Green Blue

Synthèse additive

Synthèse soustractive

- Synthèse de couleurs
- = obtention d'autres couleurs à partir des couleurs de base dites primaires
- Synthèse additive utilise Rouge, Vert, Bleu
- Synthèse soustractive utilise Cyan, Magenta, Jaune

- Triplet de LED pour générer les couleurs voulues
- LED **RGB** = Red Green Blue
- LED souvent reliées par l'anode ou par la cathode

Synthèse de couleurs avec une LED RGB

- On peut générer 7 couleurs avec une LED RGB
- Les 3 couleurs de base rouge, vert et bleu
- Les 3 couleurs composées jaune, cyan et magenta
- Le blanc en allumant les 3 LED
- ... et le noir en les éteignant

Synthèse de couleurs avec une LED RGB

- On peut générer 7 couleurs avec une LED RGB
- Les 3 couleurs de base rouge, vert et bleu
- Les 3 couleurs composées jaune, cyan et magenta
- Le blanc en allumant les 3 LED
- ... et le noir en les éteignant

On peut générer toutes les couleurs avec du PWM

LED, lumière et couleur

- Energie et radiations
- Couleur des radiations
- Applications aux LED