Consistency A formula is consistent if $\forall \neg A$. So a formula is consistent if and **Binding Conventions** (Strongest) $(\neg, \forall x, \exists x), \land, \lor, \rightarrow, \leftrightarrow$ (Weakest) only if it is satisfiable. Principle Connective Connective at the root (top) of a formation tree. A formula with principle connective \leftrightarrow is said to have the **logical form** $A \leftrightarrow B$. Signature Collection of constants and relation symbols and function symbols Atomic Formula of the form \top, \bot, p for an atom p. Propositional with specified arities. For a signature L:

1. Any constant in L is an L-te $M, h \models \forall xA$ if $M, g \models A$ for every assignment g into M with g = x h and $M, h \models \exists xA$ if $M, g \models A$ for some assignment g into M with g = x h and $M, h \models \exists xA$ if $M, g \models A$ for some assignment g into M with g = x h and $M, h \models \exists xA$ if $M, g \models A$ for some assignment g into M with g = x h and $M, h \models \exists xA$ if $M, g \models A$ for some assignment g into M with g = x h and $M, h \models \exists xA$ if $M, g \models A$ for some assignment g into M with g = x h and $M, h \models \exists xA$ if $M, g \models A$ for every assignment g into M with g = x h and M and a variable x, $(\forall xA)$ and $(\exists xA)$ are L-formulas.

1. Any variable is an L-term. Literal Formula that is atomic or negated-atomic. **Term** For a signature L: Logic Clause Disjunction of one or more literals. Situation Determines whether each propositional atom is true or false. **Argument** Given formulas A_1, A_2, \dots, A_n, B an argument 3. For an *n*-ary function symbol f in L and L-terms t_1, t_2, \ldots, t_n , $A_1, A_2, \ldots, A_n \models B$ is valid if B is true in any situation in which A_1, A_2, \ldots, A_n $f(t_1, t_2, \ldots, t_n)$ is an L-term. are all true. Here \models denotes logical entailment. Closed / Ground Term Does not involve a variable. **Valid Formula** A formula \overline{A} is valid if it is true in every situation, i.e. $\vDash A$. A tautology is a valid propositional formula.

Satisfiable Formula True in at least one situation. **Bound Variable** For a formula A and variable x, x is bound if it lies under a quantifier $\forall x$ or $\exists x$ in the formation tree of A. Free Variable Variable which is not bound (this includes variables which do **Equivalent Formulas** True in exactly the same situations, i.e. $A \equiv B$. not appear in A!). Disjunctive Normal Form Formula as a disjunction of conjunctions of liter-Sentence Formula with no free variables. (Does not require an assignment for als, not further simplifiable. evaluation). Conjunctive Normal Form Formula as a conjunction of disjunction of literevaluation). **Predicate Formula** $R(t_1, t_2, \dots, t_n) \top , \bot t_1 = t_2 (\neg A), (A \land B), (A \lor B), (A \to B), (A \leftrightarrow B)$ $(\forall xA)$ and $(\exists xA)$ are L-formulas. als, not further simplifiable. **Theorem** Formula that can be established by a given proof system, i.e. any A Many-Sorted Predicate Logic such that $\vdash A$. (Note that \vdash is syntactic whilst \models is semantic - $A_1, A_2, \ldots, A_n \models B$ 1. Each variable and constant comes with a sort s. We indicate this as $x:\mathbf{s}$ means there is a proof of B starting with A_1, A_2, \ldots, A_n as givens). Term 2. Each n-ary function symbol f comes with a template $f:(s_1,s_2,\ldots,s_n)\to s$. **Soundness** Any provable formula is valid, i.e. if $A_1, A_2, \ldots, A_n \vdash B$ then 1. Each *n*-ary relation symbol R comes with a template $R(s_1, s_2, \ldots, s_n)$. $A_1, A_2, \ldots, A_n \vDash B.$ **Formula** 2. $t_1 = t_2$ is a formula if t_1, t_2 have the same sort. **Completeness** Any valid formula can be proved, i.e. if $A_1, A_2, \ldots, A_n \models B$ It is polite to indicate the sort of a variable in \forall , \exists , e.g. $\forall x$: lecturer $\exists y$: then $A_1, A_2, \dots, A_n \vdash B$. **Provably equivalent** Show that $A \vdash B$ and $B \vdash A$ Sun (bough $t_{lecturer,Sun}(x,y)$). argument validity **Predicate Logic** To show the argument $A_1, A_2, \ldots, A_n \models B$ is valid: $\phi \models \psi$ $\phi \rightarrow \psi$ valid $\phi \wedge \neg \psi$ unsatisfiable $(\phi \rightarrow \psi) \equiv \top$ 1. Consider any M such that $M \vDash A_1, M \vDash A_2, ..., M \vDash A_n$. $\neg \phi$ unsatisfiable **Propositional Logic** 2. Show $M \models B$, e.g.: d satisfiable $\phi \not\equiv \bot$ $\phi \not\models \bot$ ¬φ not valid (a) $M \models \forall x (B(x))$: Consider an arbitrary object a in dom (M). Show 1. Take an arbitrary situation. $\phi \models \psi \text{ and } \psi \models \phi$ $M \vDash B(a)$ 2. Prove that the formula is true in this situation. (Often this will require the (b) $M \vDash \exists x (B(x))$: Consider any object b in dom (M). Show $M \vDash B(b)$. law of excluded middle - argument by cases) 1. $A \wedge B \equiv B \wedge A$ (Commutativity) 1. $A \lor B \equiv B \lor A$ (Commutativity) 1. $\neg \top \equiv \bot$ 2. $A \wedge A \equiv A$ (Idempotence) $2. \ \neg \bot \equiv \top$ 2. $A \lor A \equiv A$ (Idempotence) 3. $A \wedge \top \equiv A$ 3. $\neg \neg A \equiv A$ 3. $\top \lor A \equiv \neg A \lor A \equiv \top$ $\bot \land A \equiv \neg A \land A \equiv \bot$ 4. $\neg (A \land B) \equiv \neg A \lor \neg B$ (De Morgan) 4. $A \lor \bot \equiv A$ 5. $(A \wedge B) \wedge C \equiv A \wedge (B \wedge C)$ (Associativity) 5. $\neg (A \lor B) \equiv \neg A \land \neg B$ (De Morgan) 5. $(A \lor B) \lor C \equiv A \lor (B \lor C)$ (Associativity) 6. $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$ (Distributivity) 1. $A \to A \equiv \top$ 6. $A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$ (Distributivity) 7. $A \wedge (A \vee B) \equiv A$ (Absorption) 2. $\top \to A \equiv A$ 7. $A \lor (A \land B) \equiv A$ (Absorption) 3. $A \to \top \equiv \top$ 1. $A \leftrightarrow B \equiv (A \to B) \land (B \to A) \equiv (A \land B) \lor (\neg A \land \neg B) \equiv \neg A \leftrightarrow \neg B$ $4. \perp \rightarrow A \equiv \top$ \leftrightarrow 2. $\neg (A \leftrightarrow B) \equiv A \leftrightarrow \neg B \equiv \neg A \leftrightarrow B \equiv (A \land \neg B) \lor (\neg A \land B)$ 5. $A \rightarrow \bot \equiv \neg A$ 6. $A \to B \equiv \neg A \lor B \equiv \neg (A \land \neg B)$ For \boldsymbol{A} in which \boldsymbol{x} does not Occur Free: Modus Tollens 7. $\neg (A \rightarrow B) \equiv A \land \neg B$ 1. $A \equiv \forall xA \equiv \exists xA$ 1. $\forall x \forall y A \equiv \forall y \forall x A$ Natural $I A \rightarrow B$ 2. $\exists x (A \land B) \equiv A \land \exists x B$ 2. $\exists x \exists y A \equiv \exists y \exists x A$ 2 7 B Deduction 3. $\forall x (A \lor B) \equiv A \lor \forall x B$ 3. $\neg \forall x A \equiv \exists x \neg A$ 3 7 A MT(1,2) 4. $\exists x (A \to B) \equiv A \to \exists x B$ 4. $\neg \exists x A \equiv \forall x \neg A$ 5. $\forall x (A \land B) \equiv \forall x A \land \forall x B$ 5. $\forall x (A \rightarrow B) \equiv A \rightarrow \forall x B$ ∨-Elim 6. $\exists x (A \lor B) \equiv \exists x A \lor \exists x B$ 6. $\exists x (B \to A) \equiv \forall x B \to A^*$ $A \vee B$ 1 ∨-Intro 2 \overline{A} 7. $\forall x (B \to A) \equiv \exists x B \to A^*$ 4 Bass Equivalences AC3 5 C $A \vee B$ $\wedge I(1)$ * Watch out for these two cases! $\vee E(1, 2, 3, 4, 5)$ ₩→ Elim \rightarrow -Intro \rightarrow -Elim 1 P(c,d) 1 \boldsymbol{A} ass $A \to B$ 1 **Proof by Contradiction** $z \forall x \forall y [P(x,y) \rightarrow Q(x)]$ $\mathbf{2}$ B2 \boldsymbol{A} $\neg A$ ass 3 Q(c) 3 $A \to B$ $\rightarrow I(1,2)$ ¥->E(1,2) B $\rightarrow E(1,2)$ 2 丄 \perp -Intro \leftrightarrow -Intro $\begin{vmatrix} 1 \\ 2 \end{vmatrix}$ ¬-Intro $A \rightarrow B$ $A \leftrightarrow B$ 3 \boldsymbol{A} PC(1,2) \leftrightarrow -Elim \boldsymbol{A} Aass orall-Intro $\leftrightarrow I(1,2)|3$ B $A \leftrightarrow B$ $\leftrightarrow E(1,2)$ 3 $\neg I(1,2)$ \perp $\perp I(1,2)$ 2 $\forall I \text{ const}$ c∃-Elim ∃-Intro \perp - ${f Elim}$ 3 $\neg extbf{-} ext{Elim}$ A(c/x)1 $\exists x A$ 1 1 A(t/x) $\neg \neg A$ $\forall xA$ $\forall I (1,2)$ 2 A(c/x) \boldsymbol{A} $\neg \neg E(1) | 2$ \boldsymbol{A} $\perp E(1)|2$ $\exists x A$ $\exists I (1)$ Borall- \mathbf{Elim} $\exists E (1,2,3)$ Substitution Symmetry 1 $\forall xA$ A(t/x)Reflexivity **Excluded Middle** 1 c = dt = uA(t/x) $\forall E(1)$ sub(1,2)2 $A \vee \neg A$ lemma d = csym(1) | 1 t = trefl | 1A(u/x)

Sets

Union: $A \cup B \triangleq \{x | x \in A \lor x \in B\}.$

Intersection: $A \cap B \triangleq \{x | x \in A \land x \in B\}.$

Difference: $A \setminus B \triangleq \{x | x \in A \land x \notin B\}.$

Symmetric Difference: $A \triangle B \triangleq (A \backslash B) \cup (B \backslash A)$

Idempotence $A \cup A = A$

Commutativity $A \cup B = B \cup A$ Associativity $A \cup (B \cup C) = (A \cup B) \cup C$

 $A \cap (B \cap C) = (A \cap B) \cap C$

Distributivity $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$

Absorption $A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$ $\wp\{a,b\} = \{\phi,\{a\},\{b\},\{a,b\}\}$ $\wp \emptyset = \{\emptyset\}$

1. Subset: $A \subseteq B \triangleq \forall x \in A (x \in B)$.

2. Equality: $A = B \triangleq A \subseteq B \land B \subseteq A$.

Theorem 2.26 (THE PIGEONHOLE PRINCIPLE) If a set of n distinct objects is partitioned into k subsets, where 0 < k < n, then at least one subset contains at least two elements.

Relations

Identity $id_A = \{\langle x, y \rangle \in A^2 | x = y \}.$

Composition For $R \subseteq A \times B, S \subseteq B \times C$: $R \circ S \triangleq \{ \langle a, c \rangle \in A \times C | \exists b \in B (a R b \land b R c) \}.$

Complement: $\overline{R} \triangleq \{\langle a, b \rangle \in A \times B | \langle a, b \rangle \notin R\}.$

Inverse: $R^{-1} \triangleq \{\langle b, a \rangle \in A \times B | a R b \}.$

Proposition 3.9 1) If $R \subseteq A \times B$, then $Id_A \circ R = R = R \circ Id_B$.

2) Composition is associative: for arbitrary relations $R \subseteq A \times B$ and $S \subseteq B \times C$ and $T \subseteq C \times D$, we have $R \circ (S \circ T) = (R \circ S) \circ T$.

Proposition 3.12 Let R be a binary relation on A.

1) R is reflexive if and only if $Id_A \subseteq R$.

2) R is symmetric if and only if $R = R^{-1}$.

3) R is transitive if and only if $R \circ R \subseteq R$.

R is reflexive $\triangle \forall x \in A (x R x)$ R is symmetric $\triangleq \forall x, y \in A \ (x R y \Rightarrow y R x)$

R is transitive $\triangleq \forall x, z \in A (\exists y \in A (x R y \land y R z) \Rightarrow x R z)$

Order

R is a pre-order: R is reflexive and transitive (so not necessarily symmetric).

R is anti-symmetric: $\forall x, y \in A \ (x R y \land y R x \Rightarrow x =_A y)$.

R is a partial order relation: R is an anti-symmetric pre-order (so is reflexive, transitive, and antisymmetric).

R is irreflexive: $\forall a \in A \ (\neg(a R a))$.

R is a strict partial order relation: R is irreflexive and transitive.

R is a total order: A partial order that also satisfies: $\forall a, b \in A \ (a \ R \ b \lor b \ R \ a)$.

Proposition 4.9 Let (A, \leq) be a partial order.

1) If A has a least element, then it is a minimal element.

2) If A has a least element, then it is unique.

3) If A is finite and non-empty, then (A, \leq) has a minimal element.

4) If (A, <) is a total order, where A is finite and non-empty, then it has a least element.

Union: $R \cup S \triangleq \{\langle a, b \rangle \in A \times B | \langle a, b \rangle \in R \vee \langle a, b \rangle \in S\}.$

Intersection: $R \cap S \triangleq \{\langle a, b \rangle \in A \times B | \langle a, b \rangle \in R \land \langle a, b \rangle \in S\}.$

Transitive Closure Transitive closure: $a R^+ b = \exists n \geq 1 (a R^n b)$, i.e. $R^+ =$ $\cup_{i>1}R^i$. Contains at 'paths' in A through R. This is the smallest transitive relation containing R.

2) We write R^* for the reflexive and transitive closure of R.

first clause of Definition 5.1:

Definition 5.20 (INVERSE FUNCTION)

3) The transitive reduction R^- of a transitive relation R is a smallest (it need not be unique) set S such that $S \subseteq R$, and $S^+ = R$. So

 $R^{-} = \{ \langle a,b \rangle \in R \mid \neg \exists c \in A \ (a \neq c \land b \neq c \land \langle a,c \rangle \in R \land \langle c,b \rangle \in R) \}.$

a is minimal $\triangleq \forall b \in A \ (b R a \Rightarrow b =_A a)$ a is least $\triangleq \forall b \in A (a R b)$

a is maximal $\triangleq \forall b \in A \ (a R b \Rightarrow a =_A b)$

a is greatest $\triangleq \forall b \in A (b R a)$

Definition 4.10 (Well-founded partial orders) A partial order (A, \leq) is well-founded if it has no infinite decreasing chain of elements: that is, for every infinite sequence a_1, a_2, a_3, \ldots of elements in A with $a_1 \ge a_2 \ge a_3 \ge \cdots$, there exists $m \in \mathbb{N}$ such that $m \ge 1$ and $a_n = a_m$ for every $n \ge m$.

Proposition 4.11 If two partial orders (A, \leq_A) and (B, \leq_B) are well-founded, then the lexicographical order \leq_L on $A \times B$ (see Definition 4.3) is also well-founded.

> **Definition 5.2** Let $f: A \to B$ and $h: A \to B$. Then $f =_{A \to B} h \triangleq \forall a \in A (f(a) =_B h(a))$. **Definition 5.4** Let $f: A \to B$. For any $V \subseteq A$, we define the image of V under f to be $f[V] \triangleq \{b \in B \mid \exists a \in V (b = f(a))\}$

> > $\chi_B(a) = \begin{cases} 1 & (a \in B) \\ 0 & (a \in A \setminus B) \end{cases}$

 $\chi_B(a_1,\ldots,a_n) = \begin{cases} 1 & (\langle a_1,\ldots,a_n \rangle \in B) \\ 0 & (\langle a_1,\ldots,a_n \rangle \notin B) \end{cases}$

Definition 5.8 A partial function f from a set A to a set B is a relation $f \subseteq A \times B$ such that just some

elements of A are related to unique elements of B; more formally, it is a relation which satisfies only the

 $\forall a \in A, b_1, b_2 \in B[\langle a, b_1 \rangle \in f \land \langle a, b_2 \rangle \in f \Rightarrow b_1 = b_2]$

Proposition 5.18 If $f: A \rightarrow B$ *and* $g: B \rightarrow C$ *are bijections, then so is* $g \circ f: A \rightarrow C$.

left inverse of f when $g \circ f = Id_A$: $\forall a \in A (g \circ f(a) = a)$

2) The characteristic function of $B \subseteq A_1 \times \cdots \times A_n$ is the function $\chi_B : A_1 \times \cdots \times A_n \to \{0,1\}$ de-

Proposition 5.6 If |A| = m and |B| = n, then $|B^A| = n^m$.

1. A function f from a set A to a set B, $f:A\to B$ is a relation $f\subseteq A\times B$ Definition 5.7 (Characteristic function) I) Let A be a set. The characteristic function of $B\subseteq A$ is the function $X \in A \to A$ Defined on such that every element of A is related to one element in B.

2. A is the domain of f. 3. B is the co-domain of f.

4. Consider f(a) = b: a is the pre-image of b under f and b is the image of a under f. Every element of the domain has a single image but elements of the co-domain can have any number of pre-images.

5. An *n*-ary function is written $f(a_1, a_2, \ldots, a_n)$.

6. B^A denotes the set of all functions from A to B.

Functions

7. If |A| = m and |B| = n, then $|B^A| = n^m$ or $(n+1)^m$ including partial functions.

Definition 5.10

f is onto (surjective): every element of B is in the image of f; that is:

$$\forall b \in B \ \exists a \in A \ (f(a) = b)$$

f is one-to-one (injective): for each $b \in B$ there exists at most one $a \in A$ with f(a) = b; that is:

$$\forall a, a' \in A \ (f(a) = f(a') \Rightarrow a = a') \quad \forall a, a' \in A \ (a \neq a' \Rightarrow f(a) \neq f(a')) \quad \text{an inverse of } f.$$

f is bijective: f is both one-to-one and onto.

Theorem 5.14 ((Dual) Cantor-Bernstein Theorem) If there exists functions $f: A \to B$ and $g: A \to B$

 $B \rightarrow A$, both injective or both surjective, then there exists a bijection $h: A \rightarrow B$.

right inverse of f when $f \circ g = Id_B$: $\forall b \in B \ (f \circ g(b) = b)$ Proposition 5.22 Let $f: A \to B$ be a bijection, then f^{-1} (as relation) is a well-defined function, and is

Proposition 5.23 Let $f: A \to B$. If f has an inverse g, then f is a bijection and the inverse is unique.

Definition 5.25 $A \approx B \triangleq \exists f : A \rightarrow B \ (f \text{ is a bijection}).$

Corollary 5.26 If there exists functions $f: A \to B$ and $g: B \to A$, both injective or both surjective, then

Definition 5.32 (CARDINALITY) Given two (arbitrary) sets A and B, we say that A has the same cardinality as B, written |A| = |B|, whenever there exists a bijection between A and B, so when $A \approx B$.

$$|A| = |B| \triangleq A \approx B$$

Definition 6.1 (COUNTABILITY) A set A is *countable* if A is finite or $A \approx \mathbb{N}$.

Proposition 6.2 1) If $V \subseteq \mathbb{N}$, then V is countable.

2) Let A be a non-empty set. The statements i) A is countable; ii) there exists a surjection from IN to A; iii) there exists an injection from A to IN, are equivalent.

Example 6.5 The set of finite subsets of IN, defined as $\{V \in \wp \mid N \mid \exists n \in N \mid (|V| = n)\}$, is countable. We define $f: \wp_f(IN \setminus \{0\}) \to IN$ by:

(notice that we need to exclude 0 since it would not contribute to this product). Since each number has its unique decomposition as a product of prime numbers, it is straightforward to verify that if $V \neq V' \Rightarrow$ $f(V) \neq f(V')$, so f is an injection. Then by Proposition 6.2, we know that $\wp_f(IN \setminus \{0\})$ is countable.

Example 6.6 (\wp IN is not countable) Example 6.8 (IR $\approx \wp$ IN)

 $f(V) = 2^{v_1} \times 3^{v_2} \times 5^{v_3} \times 7^{v_4} \times \cdots \times p_n^{v_n} = \prod_{i=1}^n p_i^{v_i}$

Theorem 5.35 (CANTOR'S THEOREM) For any set A, $A \not\approx \wp A$.

* Example 6.7 (IR IS NOT COUNTABLE)

Example 5.33 ($\mathbb{N} \approx \mathbb{N}^2$) We can build a bijection $f: \mathbb{N} \to \mathbb{N}^2$ as illustrated by the following diagram:

so $f(0) = \langle 0,0 \rangle$, $f(1) = \langle 0,1 \rangle$, $f(2) = \langle 1,0 \rangle$, $f(3) = \langle 2,0 \rangle$, $f(4) = \langle 1,1 \rangle$, $f(5) = \langle 0,2 \rangle$, $f(6) = \langle 0,3 \rangle$, etc.. It is clear that f is a surjection, since all pairs will be visited; also, since all pairs are different, f is injective, even if we do not give a formal definition for f(n).

We also have $[0,1] \approx \mathit{IR}$ via the surjections $f:[0,1] \to \mathit{IR}$ and $g:\mathit{IR} \to [0,1]$:

$$f(x) = \begin{cases} 0 & (x = 0) \\ 1 & (x = 1) \\ \tan(\pi \times (x^{-1}/2)) & (otherwise) \end{cases} \text{ and } g(x) = \begin{cases} 0 & (x \le 0) \\ 1 & (x \ge 1) \\ x & (otherwise) \end{cases}$$