ATTAQUES ET VULNÉRABILITÉS MALWARES ET AUTRES SCHÉMAS D'ATTAQUE

INDICATEURS DE COMPROMISSION

- Quelque chose qui indique (avec un haut degré de confiance) une intrusion informatique
 - trafic réseau sortant élevé
 - anomalies dans les requêtes DNS
 - port d'application non conformes
 - activité anormale d'un compte administrateur...

MALWARES

- Malware = Malicious Software (logiciel malveillant)
- Exploite toujours une/des vulnérabilité(s) (notamment logicielles mais pas uniquement)
- Objectifs:
 - amusement, hacktivisme, destruction, profit
- Quelques types de malwares : virus, ver, rootkit, ransomware, keylogger, adware, cheval de Troie, spyware...

PRÉVENTION FONDAMENTALE

- 1. Mises à jour logicielles
- 2. Antivirus à jour
- 3. Ne pas télécharger/exécuter des fichiers de nature incertaine
 - notamment les liens et les pièces jointes dans les emails
 - inciter les utilisateurs à demander assistance en cas de doute

VIRUS

- Code malicieux qui requiert une interaction utilisateur pour s'installer
- Comme un virus biologique, le virus informatique tente de se dupliquer dès qu'il le peVtEiRe(WAC)RM programmes lancés, y

compris depuis le réseau) Un peu comme un virus, sauf qu'il **ne requiert pas en général** ■ *MyDoom* (2004): 2 millions PCs infectés, 30 milliards € de dommages **d'interaction utilisateur** (il.s'auto-propage) ■ *Conficker* (2009): 3,5 millions PCs infectés, 8 milliards € de

oite des vulnérabilités réseau pour se propager is virulents mettent entre 10 minutes et 96 heures pour se

Ver email répandre (moyenne 24 h)

distribue des copies dé lui-même dans un executable infecté attaché à des emails

PUP

- PUP = Potentially Unwanted Program (programme potentiellement indésiré)
 - adware, spyware, barre de recherche de navigateur...
- Est typiquement inclus dans un programme utilitaire
 - lors de l'installation, le programme vous incite à installer ces PUP en supplément

CHEVAL DE TROIE (TROJAN HORSE)

- Logiciel apparemment anodin qui contient un autre logiciel, quant à lui malveillant (charge utile ou payload)
- L'application de base semble fonctionner de manière normale, ce qui contribue à ne pas alerter la victime
- Parfois le *trojan* télécharge la charge utile depuis internet
 - ex.: RAT (Remote Access Tool), permettra à l'attaquant, à distance, de télécharger/téléverser des fichiers, allumer et consulter la caméra, lancer un keylogger, etc.

BOTNET

- **Botnet** = réseau d'ordinateurs « zombies »
 - ordinateurs infectés par un malware (quel que soit le moyen d'infection)
 - le malware permet à l'attaquant de prendre le contrôle des ressources à distance
 - le contrôle se fait par l'intermédiaire d'un serveur dit Command & Control (C&C)
 - le C&C peut contrôler des milliers de bots zombies en même temps
- Objectif : utiliser cette énorme puissance pour lancer une attaque de grande ampleur, à la demande, sur une cible spécifique

BOMBE LOGIQUE

- Code malicieux qui se déclenche seulement après un certain temps
 - à une date prédéfinie
 - ou lorsqu'il détecte une activité spécifique
- Le code en question peut déclencher des actions de tout type
 - dysfonctionnement du système
 - communication avec un serveur
 - chiffrement
 - exfiltration de données...

KEYLOGGER

- Logiciel malveillant qui capture toutes les entrées clavier de la machine cible
 - identifiants de connexion
 - numéros de CB
 - données et conversations personnelles ou professionnelles
 - toute information sensible...
- Les fichiers de retranscription sont ensuite :
 - envoyés à un serveur externe (par email ou upload)
 - ou stockés localement pour récupération ultérieure

LOGICIEL ESPION (SPYWARE)

- Logiciel qui capture l'activité de l'utilisateur et transmet à l'attaquant
 - capture clavier (keylogger)
 - historique de navigation
 - autres données...
- Souvent injecté lors de l'installation d'un logiciel quelconque

ROOTKITS

- Code malveillant qui s'installe au niveau de l'OS ou du noyau pour maintenir un accès caché et privilégié
 - en gros, le code est activé avant le système
 - ça lui permet d'éviter la détection par anti-malware en désactivant tout ou partie de ce qui permet de les trouver
- Contre-mesure: des logiciels spécifiques comme TDSSKiller (rootkit removing tool de Kaspersky) vont:
 - scanner services et pilotes
 - et également le secteur de boot de la machine

PORTE DÉROBÉE (BACKDOOR)

- Logiciel installé dans le but d'ouvrir des accès depuis l'extérieur
 - l'attaquant peut ensuite agir sur le système comme s'il s'y était connecté
- Lors d'une attaque de pénétration réussie, un attaquant va souvent tenter d'installer une *backdoor* pour pouvoir se réintroduire discrètement dans le système sans avoir à relancer à nouveau le (potentiellement long et difficile) processus de l'attaque originale

SPRAYING

- Principe:
 - on a récupéré (fuite, achat...) un grand nombre d'identifiants/pseudos
 - mais on ne connaît ni les sites ni les mots de passe associés
 - on va utiliser un programme qui va tester chacun de ces identifiants sur une cible donnée (site, programme, tout accès qui requiert de s'authentifier par mot de passe)
 - tout en essayant de casser le mot de passe
- Exemple de contre-mesure : 2FA

ATTAQUE PAR RÉTROGADATION (DOWNGRADE ATTACK)

- Force un système à passer à un mode de communication de sécurité inférieure
 - le pirate configure sa version ancienne (protocoles de sécurité

ATAQUES PAR PÉRIPHÉRIQUE EXTERNE de communiquer à la

- Une intente dé sés Brité ut être un vecteur d'attaque physique très efficaisece service est également configuré pour accepter les

 - aquipre activé sur le système
 - USB MHE plus au pirate qu'à utiliser une faille connue sur cette
 - ancienne version pour effectuer son attaque
- Juice Jacking: ports USB de recharge malveillants

ATTAQUE DE LA CHAÎNE LOGISTIQUE (SUPPLY CHAIN ATTACK)

- L'attaque vise un élément moins sécurisé de la chaîne
 - l'élément infecté « remonte » la chaîne pour finalement pénétrer le coeur de l'organisation
- Exemples:
 - équipement quelconque infecté avant d'être livré à l'organisation
 - fonctionne aussi avec des programmes : des composants logiciels développés ailleurs peuvent avoir été modifiés avant d'être rapatriés et utilisés en interne dans l'organisation

CLOUD VS « SUR SITE »

- Qu'est-ce qui est plus sécurisé?
 - installer et maintenir toute son infrastructure **sur site** (*on*premises)?
 - ou utiliser des services cloud pour remplacer l'infrastructure sur site?
- - législation / conformité, activités de l'organisation, expertise en
 Deux grandes techniques : place
 - force brute
 coûts d'abonnement vs coûts de maintien et de renouvellement
 fréquence et volume d'accès aux données

 - mobilité des données (changer de fournisseur cloud ?)

Mais d'abord, c'est quoi une attaque de mot de passe?

TRANSFERT ET STOCKAGE DE MOT DE PASSE SUR SERVEUR

- Un mot de passe ne doit **jamais** transiter « en clair »
- Il doit être d'abord **haché** et le serveur ne doit connaître et stocker que la version hachée

ATTAQUE PAR FORCE BRUTE

- Principe : tentative systématique de toutes les possibilités
 - trouvera tous les mots de passe courts car teste toutes les combinaisons
- Contre-mesures:
 - accès qui bloque après X tentatives infructueuses
 - temps de cassage augmente exponentiellement avec la taille du mot de passe

FORCE BRUTE - DICTIONNAIRE

- **Principe** : on dispose d'un grand ensemble de mots qui ont des chances d'être utilisés comme mot de passe
 - c'est le dictionnaire
 - plutôt que d'essayer toutes les combinaisons, on va se contenter d'essayer tous les mots du dictionnaire
- Très efficace:
 - mots que les gens utilisent car faciles à retenir
 - souvent issus de bases de mots de passe réels qui ont fuités
 - et ça rend les mots de passe longs non aléatoires beaucoup plus fragiles

FORCE BRUTE - ATTAQUE HYBRIDE

- On va combiner dictionnaire et techniques de force brute pure
- À partir d'un mot du dictionnaire, on construit des variations
- Ex: le dictionnaire contient jeanmichel
 - Jeanmichel
 - JEANMICHEL
 - *jeanmichel123*
 - Jeanmichel!
 - J34NM1CH31 (leetspeak)

RAINBOW TABLES

- Liste précalculée de mots de passe hachés
 - réduit grandement le temps de cassage (on doit juste comparer les hashes)
 - mais augmente drastiquement la taille de stockage nécessaire (Tb)
 - d'autant qu'il faut une rainbow table pour chaque type de hachage
- Contre-mesure : salage

SÉCURITÉ DES MOTS DE PASSE

- Taille = élément le plus important
 - min 12, 16 recommandé
- Casse + nombres + cars spéciaux bienvenus, mais moins primordiaux qu'on ne le pense
- Éviter mots du dictionnaire
 - y compris variations ((H@CK3R\$...)
 - et les patterns usuels (Monsupermotdepasse123!)
 - sauf si passphrase!

SÉCURITÉ DES MOTS DE PASSE (2)

- Éviter éléments personnels (dates de naissance, prénoms...)
- Utiliser mots de passe uniques pour différents comptes
 - Credential Stuffing
- Dans tous les cas, le mot de passe n'a-t-il pas déjà été compromis ?
 - haveibeenpwned.com/passwords

BONNE PRATIQUE: GESTIONNAIRE DE MOTS DE PASSE

- Garantit unicité et force des mots de passe (si correctement configuré)
- Lastpass, 1password, Keepass...

RANÇONGICIEL

- Chiffre les données sur le PC infecté (et les données auxquelles il peut avoir accès sur le réseau)
 - accès aux données rendu impossible
- Propose le paiement d'une rançon pour récupérer les données
- Paiement en Bitcoin ou autre crypto-monnaie (intraçable)
 - 100-500 € pour utilisateur isolé ou TPE
 - et bien plus en fonction de la taille de l'entreprise
- WannaCry, NotPetya