Computing the *least-commitment* action model from state observations

Diego Aineto¹, Sergio Jiménez¹, Eva Onaindia¹ and , Blai Bonet²

¹Departamento de Sistemas Informáticos y Computación. Universitat Politècnica de València. Valencia, Spain ²Departamento de Computación. Universidad Simón Bolívar. Caracas, Venezuela

{dieaigar,serjice,onaindia}@dsic.upv.es, bonet@usb.ve

Abstract

1 Introduction

Given a sequence of partially observed states, this paper formalizes the task of computing the *least-commitment* action model that is able to *explain* the given observation. This task is of interest because it allows the incremental learning of action models from arbitrary large sets of partial observations.

In addition, the paper introduces a new method to compute the *least-commitment* action model from a sequence of partially observed states. The method assumes that action models are specified as STRIPS action schemata and it is built on top of off-the-shelf algorithms for *conformant planning*.

2 Background

This section formalizes the planning models we use in the paper as well as the kind of observations that are given as input for the computation of the *least-commitment* action model.

2.1 Classical planning with conditional effects

Let F be the set of *fluents* or *state variables* (propositional variables). A *literal* l is a valuation of a fluent $f \in F$, i.e. either l = f or $l = \neg f$. L is a set of literals that represents a partial assignment of values to fluents, and $\mathcal{L}(F)$ is the set of all literals sets on F, i.e. all partial assignments of values to fluents. A *state* s is a full assignment of values to fluents. We explicitly include negative literals $\neg f$ in states s.t. |s| = |F| and the size of the state space is $2^{|F|}$.

A classical planning frame is a tuple $\Phi = \langle F, A \rangle$, where F is a set of fluents and A is a set of actions. An action $a \in A$ is defined with preconditions, $\operatorname{pre}(a) \in \mathcal{L}(F)$, positive effects, $\operatorname{eff}^+(a) \in \mathcal{L}(F)$, and negative effects $\operatorname{eff}^-(a) \in \mathcal{L}(F)$. The semantics of actions $a \in A$ is specified with two functions: $\rho(s,a)$ denotes whether action a is applicable in a state s and $\theta(s,a)$ denotes the successor state that results of applying action a in a state s. Then, $\rho(s,a)$ holds iff $\operatorname{pre}(a) \subseteq s$. And the result of applying a in s is $\theta(s,a) = \{s \setminus \operatorname{eff}^-(a)\} \cup \operatorname{eff}^+(a)\}$.

A classical planning problem is a tuple $P = \langle F, A, I, G \rangle$, where I is the initial state and $G \in \mathcal{L}(F)$ is the set of goal

conditions over the state variables. A plan π is an action sequence $\pi = \langle a_1, \ldots, a_n \rangle$, with $|\pi| = n$ denoting its plan length. The execution of π on the initial state I of P induces a trajectory $\tau(\pi, s_0) = \langle s_0, a_1, s_1, \ldots, a_n, s_n \rangle$ such that $s_0 = I$ and, for each $1 \leq i \leq n$, it holds $\rho(s_{i-1}, a_i)$ and $s_i = \theta(s_{i-1}, a_i)$. A plan π solves P iff the induced trajectory $\tau(\pi, s_0)$ reaches a final state $G \subseteq s_n$, where all goal conditions are met. A solution plan is optimal iff its length is minimal.

An action $a_c \in A$ with conditional effects is defined as a set of preconditions $\operatorname{pre}(a_c) \in \mathcal{L}(F)$ and a set of *conditional effects* $\operatorname{cond}(a_c)$. Each conditional effect $C \rhd E \in \operatorname{cond}(a_c)$ is composed of two sets of literals: $C \in \mathcal{L}(F)$, the *condition*, and $E \in \mathcal{L}(F)$, the *effect*. An action a_c is applicable in a state s if $\rho(s, a_c)$ is true, and the *triggered effects* resulting from the action application are the effects whose conditions hold in s:

$$triggered(s,a_c) = \bigcup_{C\rhd E\in \mathsf{cond}(a_c), C\subseteq s} E,$$

The result of applying action a_c in state s is $\theta(s, a_c) = \{s \setminus eff_c^-(s, a)) \cup eff_c^+(s, a)\}$, where $eff_c^-(s, a) \subseteq triggered(s, a)$ and $eff_c^+(s, a) \subseteq triggered(s, a)$ are, respectively, the triggered negative and positive effects.

2.2 The observation model

Given a classical planning problem $P = \langle F, A, I, G \rangle$, a plan π and a trajectory $\tau(\pi, s_0)$, we define the *observation* of the trajectory as a sequence of partial states that results from observing the execution of π on I. Formally, $\mathcal{O}(\tau) = \langle s_0^o, s_1^o \dots, s_m^o \rangle$ where $s_0^o = I$.

A partially observable state s_i^o , 0 < i < m, is one in which $|s_i^o| < |F|$; i.e., a state in which at least a fluent of F is not observable. Note that this definition also comprises the case $|s_i^o| = 0$, when the state is fully unobservable. Whatever the sequence of observed states of $\mathcal{O}(\tau)$ is, it must be consistent with the sequence of states of $\tau(\pi,s_0)$, meaning that $\forall i,s_i^o \subseteq s_i$. In practice, the number of observed states t_i^o , ranges from 1 (the initial state, at least), to $|\pi| + 1$, and the observed intermediate states will comprise a number of fluents between [1,|F|].

In other words, we assume there is a *bijective monotone* mapping between trajectories and observations [?], thus also granting the inverse consistency relationship (the trajectory is

a superset of the observation). Therefore, transiting between two consecutive observed states in $\mathcal{O}(\tau)$ may require the execution of more than a single action $(\theta(s_i^o,\langle a_1,\ldots,a_k\rangle)=s_{i+1}^o$, where $k\geq 1$ is unknown but finite. In other words, having $\mathcal{O}(\tau)$ does not imply knowing the actual length of π .

Definition 1 (Explaning a $\mathcal{O}(\tau)$ **observation)** Given a classical planning problem P and a sequence of partially observed states $\mathcal{O}(\tau)$, we say that a plan π explains the observation (denoted $\pi \mapsto \mathcal{O}(\tau)$) iff π is a solution for P that is consistent with $\mathcal{O}(\tau)$. If π is also optimal, we say that π is the best explanation for $\mathcal{O}(\tau)$.

2.3 Conformant planning

Conformant planning is planning with incomplete information about the initial state, no sensing, and validating that goals are achieved with certainty (despite the uncertainty of the initial state) [?; ?; ?].

Syntactically, conformant planning problems are expressed in compact form through a set of state variables. A conformant planning problem can be defined as a tuple $P_c = \langle F, A, \Upsilon, G \rangle$ where F, A and G are the set of fluents, actions and goals (as previously defined for classical planning). Now Υ is a set of clauses over literals l = f or $l = \neg f$ (for $f \in F$) that define the set of possible initial states.

A solution to a conformant planning problem is an action sequence that maps each possible initial state into a goal state. More precisely, an action sequence $\pi = \langle a_1, \ldots, a_n \rangle$ is a conformant plan for P_c iff, for each possible trajectory $\tau(\pi,s_0) = \langle s_0,a_1,s_1,\ldots,a_n,s_n \rangle$ s.t. s_0 is a valuation of the fluents in F that satisfies Υ , then $\tau(\pi,s_0)$ reaches a final state $G \subseteq s_n$.

3 Computing the *least-commitment* action model from state observations

First, this section formalizes the notion of the *least-commitment* action model that is able to *explain* a sequence of partially observed states. Next, the section describes our approach to compute such model via *conformant planning*.

3.1 The *least-commitment* action model

The task of computing the *least-commitment* action model from a sequence of state observations is defined as $\langle \Phi, \mathcal{O}(\tau) \rangle$:

- $\Phi = \langle F, A[\cdot] \rangle$ is a classical planning frame where $A[\cdot]$ is a set of actions s.t. the semantics of each $a \in A[\cdot]$ is unknown; i.e. the corresponding $\langle \rho, \theta \rangle$ functions are undefined.
- $\mathcal{O}(\tau)$ is a sequence of partial states that results from the partial observation of a trajectory $\tau(\pi, s_0)$ that is defined within the *classical planning frame* Φ .

Before formalizing the solution to this task, i.e. the least-commitment action model, we introduce several necessary definitions. Given a classical planning frame $\Phi = \langle F, A[\cdot] \rangle$ and a sequence of partial states $\mathcal{O}(\tau) = \langle s_0^o, s_1^o \dots, s_m^o \rangle$, we can build the classical planning problem $P_{\mathcal{O}} = \langle F, A[\cdot], s_0^o, s_m^o \rangle$. We say that an action model \mathcal{M} is a

definition of the $\langle \rho, \theta \rangle$ functions of every action in $A[\cdot]$. Further we say that a model \mathcal{M} explains a sequence of observations $\mathcal{O}(\tau)$ iff, when the $\langle \rho, \theta \rangle$ functions of the actions in $P_{\mathcal{O}}$ are given by \mathcal{M} , there exists a solution plan for $P_{\mathcal{O}}$ that explains $\mathcal{O}(\tau)$.

Now, we define a *partially specified action model* inspired by the notion of *incomplete (annotated) model* [?].

Definition 2 (Partially specified action model) Given a classical planning frame $\Phi = \langle F, A[\cdot] \rangle$ then, a partially specified action model M is a set of possible models for the actions in $A[\cdot]$ such that: (1), any model $\mathcal{M} \in M$ is a definition of the $\langle \rho, \theta \rangle$ functions of every action in $A[\cdot]$ and (2), for every $\mathcal{M} \in M$ the $\langle \rho, \theta \rangle$ functions are defined in the set of state variables F. (Note that if M is a singleton it represents a fully specified action model).

Now we are ready to define the *least-commitment* action model for an observation $\mathcal{O}(\tau)$.

Definition 3 (The least-commitment action model) Given $a \langle \Phi, \mathcal{O}(\tau) \rangle$ task and the partially specified action model M that represents the full space of possible action models for the actions in $A[\cdot] \in \Phi$, then the least-commitment action model is another partially specified action model that represents the largest subset of models $M^* \subseteq M$ such that every model $M \in M^*$ explains the input observation.

3.2 The space of STRIPS action models

Despite previous definitions are general, this work focuses on the particular kind of action models that are specified as STRIPS action schemata.

A STRIPS action schema ξ is defined by four lists: A list of parameters $pars(\xi)$, and three list of predicates (namely $pre(\xi)$, $del(\xi)$ and $add(\xi)$) that shape the kind of fluents that can appear in the preconditions, negative effects and positive effects of the actions induced from that schema. Let be Ψ the set of *predicates* that shape the propositional state variables F, and a list of parameters $pars(\xi)$. The set of elements that can appear in $pre(\xi)$, $del(\xi)$ and $add(\xi)$ of the STRIPS action schema ξ is given by FOL interpretations of Ψ over the parameters $pars(\xi)$. We denote this set of FOL interpretations as $\mathcal{I}_{\Psi,\xi}$. For instance, in the *blocksworld* the $\mathcal{I}_{\Psi,\xi}$ set contain eleven elements for the stack (v_1, v_2) schemata, $\mathcal{I}_{\Psi,stack} = \{\text{handempty,}$ holding (v_1) , holding (v_2) , clear (v_1) , clear (v_2) , ontable (v_1) , ontable (v_2) , on (v_1, v_1) , on (v_1, v_2) , on (v_2, v_1) , on (v_2, v_2) }.

Despite any element of $\mathcal{I}_{\Psi,\xi}$ can *a priori* appear in the $pre(\xi)$, $del(\xi)$ and $add(\xi)$ of schema ξ , the space of possible STRIPS schemata is bounded by constraints of three kinds:

- 1. Syntactic constraints. STRIPS constraints require $del(\xi) \subseteq pre(\xi), \ del(\xi) \cap add(\xi) = \emptyset$ and $pre(\xi) \cap add(\xi) = \emptyset$. Considering exclusively these syntactic constraints, the size of the space of possible STRIPS schemata is given by $2^{2 \times |\mathcal{I}_{\Psi, \xi}|}$.
- 2. Domain-specific constraints. One can introduce domain-specific knowledge to constrain further the space of possible schemata. For instance, in the *blocksworld* one can argue that $on(v_1, v_1)$ and

Figure 1: PDDL encoding of the stack (?v1, ?v2) schema and our propositional representation for this same schema.

on (v_2, v_2) will not appear in the $pre(\xi)$, $del(\xi)$ and $add(\xi)$ lists of an action schema ξ because, in this specific domain, a block cannot be on top of itself. As a rule of thumb, *state invariants* constraining the possible states of a given planning domain belong to this second class of constraints [?].

3. Observation constraints. A sequence of state observations $\mathcal{O}(\tau)$ depicts semantic knowledge that constraints further the space of possible action schemata.

3.3 Computing the *least-commitment* model via conformant planning

Given a task $\langle \Phi, \mathcal{O}(\tau) \rangle$, this section shows that we can build a *conformant planning problem* P_c whose solution induces the *least-commitment* action model for the input observation $\mathcal{O}(\tau)$. In more detail, we build a *conformant planning problem* $P_c = \langle F_c, A_c, \Upsilon, G_c \rangle$ such that:

- The set of fluents F_c extends F with two new sets of fluents:
 - $\{test_j\}_{1 \leq j \leq m}$, indicating the state observation $s_j \in \mathcal{O}(\tau)$ where the action model is validated
 - Fluents $pre_-e_-\xi$ and $eff_-e_-\xi$ (where $e\in\mathcal{I}_{\Psi,\xi}$) implementing a propositional encoding of the *preconditions*, *negative*, and *positive* effects of an action schema ξ . Our encoding exploits the syntactic constraint of STRIPS so, if $pre_-e_-\xi$ and $eff_-e_-\xi$ holds it means that $e\in\mathcal{I}_{\Psi,\xi}$ is a negative effect in ξ while if $pre_-e_-\xi$ does not hold but $eff_-e_-\xi$ holds, it means that $e\in\mathcal{I}_{\Psi,\xi}$ is a positive effect in ξ . Figure 1 shows the PDDL encoding of the stack (?v1, ?v2) schema and our propositional representation for this same schema.
- The set of actions A_c contains now actions of three different kinds:
 - Actions for committing pre_e_ξ fluents to a positive/negative value (similar actions are also defined for committing eff_e_ξ fluents to a positive/negative value).

```
\begin{split} \operatorname{pre}(\operatorname{commit}\top_{-}\operatorname{pre}_{-}e_{-}\xi) &= \{ mode_{commit} \}, \\ \operatorname{cond}(\operatorname{commit}\top_{-}\operatorname{pre}_{-}e_{-}\xi) &= \{ pre_{-}e_{-}\xi \} \\ &= \{ pre_{-}e_{-}\xi \} \\ &= \{ pre_{-}e_{-}\xi \} \\ \end{split} \\ \operatorname{pre}(\operatorname{commit}\bot_{-}\operatorname{pre}_{-}e_{-}\xi) &= \{ mode_{commit} \}, \\ \operatorname{cond}(\operatorname{commit}\bot_{-}\operatorname{pre}_{-}e_{-}\xi) &= \{ pre_{-}e_{-}\xi \} \\ &= \{ \neg pre_{-}e_{-}\xi \} \\ &= \{ \neg pre_{-}e_{-}\xi \} \\ \end{split}
```

- Actions for *validating* that committed models explain the s_j observed states, $0 \le j < m$.

```
\begin{split} \operatorname{pre}(\operatorname{validate_j}) = & s_j \cup \{test_{j-1}\}, \\ \operatorname{cond}(\operatorname{validate_j}) = & \{\emptyset\} \rhd \{\neg test_{j-1}, test_j, \\ & \{mode_{commit}\} \rhd \{\neg mode_{commit}, mode_{val}\}. \end{split}
```

- *Editable* actions whose semantics is given by the value of pre_e_ ξ , eff_e_ ξ fluents at the current state. Figure 2 shows the PDDL encoding of an *editable* stack (?v1,?v2) schema. Note that this editable schema when the set of fluents (pre_holding_v1_stack) (pre_clear_v2_stack) (eff_holding_v1_stack) (eff_clear_v2_stack) (eff_clear_v1_stack) (eff_non_v1_v2_stack) hold at the current state, then it behaves exactly as the original PDDL schema defined in Figure 1. Formally, given an operator schema $\xi \in \mathcal{M}$ its *editable* version is:

```
\begin{split} \operatorname{pre}(\operatorname{editable}_{\xi}) = & \{pre\_e \cdot \xi \implies e\}_{\forall e \in \mathcal{I}_{\Psi, \xi}} \\ \operatorname{cond}(\operatorname{editable}_{\xi}) = & \{pre\_e \cdot \xi, eff\_e \cdot \xi\} \rhd \{\neg e\}_{\forall e \in \mathcal{I}_{\Psi, \xi}}, \\ & \{\neg pre\_e \cdot \xi, eff\_e \cdot \xi\} \rhd \{e\}_{\forall e \in \mathcal{I}_{\Psi, \xi}}. \end{split}
```

- The clauses in Υ comprises:
 - 1. The *unit clauses* given by the fluents that hold in the initial state $I = s_0$ and $mode_{commit}$ set to true.
 - 2. The clauses representing that the actual value of fluents $pre_-e_-\xi$, $eff_-e_-\xi$ is unknown. In other words, that any model from the STRIPS space of models (following the previously mentioned syntactic constraints) can initially be part of the *least-commitment* action model. Formally, for every ξ and $e \in \mathcal{I}_{\Psi,\xi}$, then Υ includes these two clauses:

```
pre_e_ξ V ¬pre_e_ξ.eff_e_ξ V ¬eff_e_ξ.
```

One can also add here clauses that encode *domain-specific constraints* (as mentioned in the previous section) to make the conformant planning problem easier for a specific domain.

• The new goals are $G_c = s_m \cup \{test_m\}$.

3.4 Optimization of the compilation

In fact, we do not need to compute the *least-commitment* action model (i.e. solve the P_c conformant planning problem) from scratch for all the $\langle s_0^o, s_1^o \ldots, s_m^o \rangle$ observations. A more efficient approach is to compute the *least-commitment* action model from scratch only for the first observation, that is for $\langle s_0^o, s_1^o \rangle$. Then, the obtained *least-commitment* action model can be used as input for improving the computation of the two first observations $\langle s_0^o, s_1^o, s_2^o \rangle$. In other words, including the commits found in the previous step as new *unit clauses* in set of the *initial clauses* Υ . This process is repeated until the *least-commitment* action model is computed for the full sequence of state observations $\langle s_0^o, s_1^o \ldots, s_m^o \rangle$.

```
(:action stack
:parameters (?o1 - object ?o2 - object)
:precondition
   (and (or (not (pre_on_v1_v1_stack)) (on ?o1 ?o1))
         (or (not (pre_on_v1_v2_stack)) (on ?o1 ?o2))
         (or (not (pre on v2 v1 stack)) (on ?o2 ?o1))
         (or (not (pre_on_v2_v2_stack)) (on ?o2 ?o2))
         (or (not (pre_ontable_v1_stack)) (ontable ?o1)
         (or (not (pre ontable v2 stack)) (ontable ?o2))
         (or (not (pre_clear_v1_stack)) (clear ?o1))
         (or (not (pre_clear_v2_stack)) (clear ?o2))
         (or (not (pre holding v1 stack)) (holding ?o1))
         (or (not (pre_holding_v2_stack)) (holding ?o2))
         (or (not (pre_handempty_stack)) (handempty)))
:effect (and
   (when (and (pre_on_v1_v1_stack)(eff_on_v1_v1_stack)) (not (on ?o1 ?o1)))
   (when (and (pre_on_v1_v2_stack) (eff_on_v1_v2_stack)) (not (on ?o1 ?o2)))
               (pre_on_v2_v1_stack) (eff_on_v2_v1_stack)) (not (on ?o2 ?o1)))
   (when (and
               (pre_on_v2_v2_stack) (eff_on_v2_v2_stack)) (not (on ?o2 ?o2))
   (when
   (when (and
               (pre_ontable_v1_stack) (eff_ontable_v1_stack)) (not (ontable ?o1)))
               (pre_ontable_v2_stack)(eff_ontable_v2_stack)) (not (ontable ?o2)))
   (when
         (and
         (and (pre_clear_v1_stack) (eff_clear_v1_stack)) (not (clear ?o1)))
   (when
   (when (and
               (pre clear v2 stack) (eff clear v2 stack)) (not (clear ?o2)))
   (when
               (pre_holding_v1_stack) (eff_holding_v1_stack)) (not (holding ?o1)))
   (when (and (pre_holding_v2_stack)(eff_holding_v2_stack)) (not (holding ?o2)))
               (pre_handempty_stack)(eff_handempty_stack)) (not (handempty)))
(not(pre_on_v1_v1_stack))(eff_on_v1_v1_stack)) (on ?o1 ?o1))
   (when
         (and
   (when (and (not(pre_on_v1_v2_stack)) (eff_on_v1_v2_stack)) (on ?o1 ?o2))
(when (and (not(pre_on_v2_v1_stack)) (eff_on_v2_v1_stack)) (on ?o2 ?o1))
               (not(pre_on_v2_v2_stack))(eff_on_v2_v2_stack)) (on ?o2 ?o2))
   (when (and (not(pre_ontable_v1_stack))(eff_ontable_v1_stack)) (ontable ?o1))
               (not (pre_ontable_v2_stack)) (eff_ontable_v2_stack)) (ontable ?o2))
   (when (and
               (not(pre_clear_v1_stack)) (eff_clear_v1_stack)) (clear ?o1);
   (when (and (not(pre_clear_v2_stack)) (eff_clear_v2_stack)) (clear ?o2))
(when (and (not(pre_holding_v1_stack)) (eff_holding_v1_stack)) (holding ?o1))
               (not(pre_holding_v2_stack)) (eff_holding_v2_stack)) (holding ?o2))
   (when (and (not(pre_handempty_stack))(eff_handempty_stack)) (handempty))))
```

Figure 2: PDDL encoding of the editable version of the stack(?v1,?v2) schema.

3.5 Compilation properties

4 Evaluation

5 Conclusions

Related work [?].

References

[Bonet and Geffner, 2000] Blai Bonet and Hector Geffner. Planning with incomplete information as heuristic search in belief space. In *Proceedings of the Fifth International Conference on Artificial Intelligence Planning Systems*, pages 52–61. AAAI Press, 2000.

[Fox and Long, 1998] Maria Fox and Derek Long. The automatic inference of state invariants in tim. *Journal of Artificial Intelligence Research*, 9:367–421, 1998.

[Goldman and Boddy, 1996] Robert P Goldman and Mark S Boddy. Expressive planning and explicit knowledge. In *AIPS*, volume 96, pages 110–117, 1996.

[Ramírez and Geffner, 2009] Miquel Ramírez and Hector Geffner. Plan recognition as planning. In *International Joint conference on Artifical Intelligence*, (*IJCAI-09*), pages 1778–1783. AAAI Press, 2009.

[Smith and Weld, 1998] David E Smith and Daniel S Weld. Conformant graphplan. In *AAAI/IAAI*, pages 889–896, 1998.

[Sreedharan et al., 2018] Sarath Sreedharan, Tathagata Chakraborti, and Subbarao Kambhampati. Handling model uncertainty and multiplicity in explanations via

model reconciliation. In *International Conference on Automated Planning and Scheduling, (ICAPS-18)*, pages 518–526, 2018.

[Stern and Juba, 2017] Roni Stern and Brendan Juba. Efficient, safe, and probably approximately complete learning of action models. In *International Joint Conference on Artificial Intelligence*, (*IJCAI-17*), pages 4405–4411, 2017.