Home / My courses / Microelectronics - BMEVIEEAB00 2021/22/2 / Midterm and exam / Midterm - calculation, essay

Started on	Monday, 11 April 2022, 3:26 PM
State	Finished
Completed on	Monday, 11 April 2022, 4:00 PM
Time taken	33 mins 21 secs
Grade	8.00 out of 20.00 (40 %)
Question 1	
Correct	
Mark 2.00 out of 2.00	
N_d=10^17/cm3 N_a=10^15/cm3.	of an abrupt Si diode are ion potential at room temperature!
Question 2	
Partially correct	
Mark 2.00 out of 4.00	
N_d=10^18/cm3 N_a=10^16/cm3 and eps_r=11.8 eps_0=8.85419e-12 U=0	of an abrupt Si diode are F/m of the depletion layers on the less doped side (um)!

Comment:

Conversion error.

Answer: 0.003

Question 3	
Correct	
Mark 4.00 out of 4.00	
Calculate the saturation current (mA) of a -gate-source voltage is -1.2 V -threshold voltage is -0.3 V -channel width 0.5 µm -channel length 0.35 µm! -electron mobility 500 cm^2/(V*s) -oxide relative permittivity 3.84 -vacuum permittivity 8.85419E-12 F/m -oxide thickness 15 nm Assume that the MOSFET is in saturation!	p channel enhancement MOSFET if
Answer: 0.07405	✓

mΑ

	stion 4
	plete
Mark	x 0.00 out of 10.00
De	escribe the breakdown phenomena of the diode (explanation, cross-section view, characteristic figures and equations)!
CL	breakdown phenomena of a diode happens when we apply a negative value across the diode. the diode will try to prevent the inverse urrent (there will still be some small negative current at this point) for a certain amount of negative voltage until one point which the reakdown happened and a reverse current will just flow back based on the characteristic.
Di	ue to the flow of reverse current the width of the junction barrier increases. When this applied reverse bias voltage is increased graduall
	omment: /rong description.
-	■ Midterm - test questions
J	ump to

Semiconductor technology laboratory - Interactive virtual tour ►