SUPPLEMENTARY MATERIALS: A SEMI-ANALYTIC DIAGONALIZATION FEM FOR THE SPECTRAL FRACTIONAL LAPLACIAN

ABNER J. SALGADO* AND SHANE E. SAWYER†

SM1. Proof of Corollary 2.4. Let $\{\phi_j\}_{j\geq 1}\subset H^1_0(\Omega)$ and

 $\{\psi_k\}_{k\geq 1}\subset H^1_{\mathcal{V}}(y^\alpha,(0,\mathcal{Y}))$ be orthonormal bases which, in addition, are orthogonal in $L^2(\Omega)$ and $L^2(y^{\alpha}, (0, \mathcal{Y}))$, respectively. We can, for instance, choose $\{\phi_j\}_{j\geq 1}$ to be the eigenfunctions of the Dirichlet Laplacian, as described in Subsection 2.1. An example of the family $\{\psi_k\}_{k\geq 1}$ will be given below in Theorem 3.1.

Clearly, $\phi_i \psi_k \in \check{H}^1_L(y^\alpha, \mathcal{C}_{\mathcal{Y}})$. Observe, in addition, that

11
$$(\phi_{j}\psi_{k}, \phi_{s}\psi_{t})_{\hat{H}_{L}^{1}(y^{\alpha}, \mathcal{C}_{\mathcal{Y}})} = \int_{0}^{\mathcal{Y}} \int_{\Omega} \left([\nabla \phi_{j}(x) \cdot \nabla \phi_{s}(x)] \psi_{k}(y) \psi_{t}(y) + \phi_{j}(x) \phi_{s}(x) \psi_{k}'(y) \psi_{t}'(y) \right) dx dy$$
13
$$= \delta_{js} \int_{0}^{\mathcal{Y}} y^{\alpha} \psi_{k}(y) \psi_{t}(y) dy + \delta_{kt} \int_{\Omega} \phi_{j}(x) \phi_{s}(x) dx$$
14
$$= C_{jkst} \delta_{js} \delta_{kt} .$$

Thus, the family $\{\phi_j \psi_k\}_{j,k \geq 1}$ is linearly independent. Using Gram-Schmidt, this lin-16 early independent set contains an orthonormal subset which, to simplify the notation, we do not relabel.

Next we show that $\{\phi_j \psi_k\}_{j,k \geq 1}$ is complete in $\mathring{H}_L^1(y^\alpha, \mathcal{C}_{\mathcal{Y}})$. To see this we assume that $W \in \mathring{H}_L^1(y^\alpha, \mathcal{C}_{\mathcal{V}})$ is such that

$$\int_0^{\mathcal{Y}} y^{\alpha} \int_{\Omega} \left(\left[\nabla_x W(x, y) \cdot \nabla \phi_j(x) \right] \psi_k(y) + \partial_y W(x, y) \phi_j(x) \psi_k'(y) \right) dx dy = 0,$$

for all $j, k \in \mathbb{N}$. This implies that

2

3 4

5

6

9

10

17 18

20

29

23
$$0 = \int_0^{\mathcal{Y}} y^{\alpha} \psi_k(y) \left(\int_{\Omega} \nabla_x W(x, y) \cdot \nabla_x \phi_j(x) \, dx \right) \, dy + \int_{\Omega} \phi_j(x) \left(\int_0^{\mathcal{Y}} y^{\alpha} \partial_y W(x, y) \psi_k'(y) \, dy \right) \, dx \, .$$

But, because ϕ_j and ψ_k are linearly independent, this is only possible if 26

$$\int_{\Omega} \nabla_x W(x,y) \cdot \nabla_x \phi_j(x) \, dx = 0 \,,$$

for all $j \in \mathbb{N}$ and a.e. $y \in (0, \mathcal{Y})$; and

$$\int_0^{\mathcal{Y}} y^{\alpha} \partial_y W(x, y) \psi_k'(y) \, dy = 0 \,,$$

^{*}Department of Mathematics, University of Tennessee, Knoxville (asalgad1@utk.edu, https:// math.utk.edu/people/abner-i-salgado/).

[†]Department of Mathematics, University of Tennessee, Knoxville (sjw355@vols.utk.edu).

36

38

39

44

for all $k \in \mathbb{N}$ and a.e. $x \in \Omega$. Let now, for each $j \in \mathbb{N}$, $S_j \subset (0, \mathcal{Y})$ be the set where 30 the first condition is false. Since S_j is null, i.e., 31

$$\int_{S_j} y^{\alpha} \, dy = 0 \,,$$

we have that $S=\bigcup_{j=1}^\infty S_j$ is also a null set, as it is a countable union of null sets. Similarly, for $k\in\mathbb{N}$ we let $T_k\subset\Omega$ is the where the second condition fails. We 34 again have that 35

$$\int_{T_h} dx = 0,$$

and that $T = \bigcup_{k=1}^{\infty} T_k$ is another null set.

The previous observations show that

$$A(x,y) = |\nabla_x W(x,y)| + |\partial_y W(x,y)| = 0, \quad \forall (x,y) \in \mathcal{C}_{\mathcal{V}} \setminus (T \times S).$$

However, $T \times S$ is a null set and therefore, A(x,y) = 0 almost everywhere in $\mathcal{C}_{\mathcal{Y}}$. As 40 a consequence, W = 0 a.e. in $\mathcal{C}_{\mathcal{V}}$. 41

In conclusion, we have shown that $\{\phi_j \psi_k\}_{j,k \geq 1}$ is a complete orthonormal basis 42 in $H_L^1(y^\alpha, \mathcal{C}_{\mathcal{Y}})$. 43

This shows that the mapping defined by

45
$$\mathcal{W}: H_0^1(\Omega) \otimes H_{\mathcal{Y}}^1(y^{\alpha}, (0, \mathcal{Y})) \to \mathring{H}_L^1(y^{\alpha}, \mathcal{C}_{\mathcal{Y}})$$

$$\phi_j \otimes \psi_k \mapsto \phi_j \psi_k ,$$

and extended by linearity, is the requisite isomorphism. 48

SM2. Convergence Figures. The convergence results from Subsection 5.1 49 shown in Table 1 is presented visually in Figure SM1 and from Table 2 in Figure SM2. 50

Fig. SM1. Error in the $L^2(\Omega_L)$ norm versus the number of degrees of freedom using \mathbb{Q}_1 finite elements for s=1/4 and s=3/4 on uniformly refined meshes of Ω_L .

Fig. SM2. Error in the $L^2(\Omega_C)$ norm versus the number of degrees of freedom using \mathbb{Q}_1 finite elements for s=1/4 and s=3/4 on uniformly refined meshes of Ω_C .