UIUC IE510 Applied Nonlinear Programming

Lecture 10: Optimization over a Convex Set

Ruoyu Sun

One Framework to Cover Unconstrained Optimization

- ► The first part of the semester: unconstrained optimization
- Starting point: gradient descent method
- Three classes of "faster" methods

 - HB or Nesteron: Yedaa K to JK

 CD/SGD: Yedace K to Jang = KCD:

 Newton/BFGS/BB: el:minete K". Yedae logs to light (locally)

 (Using Coursetine (true convergence rate unknown)

This Lecture

- Starting from today: constrained optimization
- Today: optimization over convex sets
- After this lecture, you should be able to
 - Apply optimality conditions for optimization over convex sets
 - Apply gradient projection method
 - Tell the pros and cons of gradient projection method

Outline

Motivation: SVM

Optimality Condition of Constrained Optimization

Gradient Projection Method

Motivating Example: Support Vector Machine

- Suppose the training data are linearly separable
- **Objective**: find a hyperplane to separate the data points, i.e., find w such that

Art of Constraints

Formulation: Consider the following problem

$$\min_{\mathbf{w}} \quad \mathbf{0} \tag{1}$$

s.t.
$$\mathbf{y}_i \mathbf{w}^T \mathbf{x}_i \mathbf{z} \mathbf{1}$$
, $\forall i$ (2)

- ► The objective does ________
- The constraint says "no classification error"
- ► This is a feasibility problem

 ("requirement", can be
 viewed as constraint)

Support Vector Machine

- ► Infinitely many solutions, pick which one?
- ► SVM: Find the separating plane that is far away from both classes
- Formulation of SVM:

$$\min_{\mathbf{w}} \|\mathbf{\omega}\|^2 \qquad \|\mathbf{\omega}\|_{3}. \tag{3}$$

Exercise: margin s.t.
$$y_i w^T x. \ge 1$$
, $\forall i$ (4)

Questions: How to characterize the optimal solution? Have a feasible solution? Which algorithm?

Outline

Motivation: SVM

Optimality Condition of Constrained Optimization

Gradient Projection Method

Constrained Optimization Problem

```
\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in X, \end{array}
```

- In the most general form, X can be any set, f can be any function on X
- In most parts of the course, we assume f is continuously differentiable, X is a convex set
- Convex set X means we allow the following types of constraints
 - 1. $g(x) \le 0$ where g(x) is a convex function $\|f(x)\|^2 \le \|f(x)\|^2$
 - 2. h(x) = 0 where h(x) is an affine function: Cx + d = 0
- If g(x) is convex, Why g(x)=0 is not a convex set? Consider ______

Optimality Conditions

- ▶ Question: How to characterize the global/local optimal solution x^* ?
- Still $\nabla f(x) = 0$, $\nabla^2 f(x) \succ 0$? Fermat 1)th century. $+ \chi_{\epsilon} \chi$. Not the right condition

Optimality Conditions

If x^* is a local minimum of f or X, then (necessary condition)

$$\langle \nabla f(x^*), \underline{x - x^*} \rangle \ge 0, \ \forall \ \underline{x \in X}.$$

► Remark 1: For general f (possibly nonconvex), solutions' satisfying this condition is called stationary point (nowhere to move). $f(x^*) = 0 \implies (5)$. If $X = \mathbb{R}^n$, $f(x^*) = 0 \implies (5)$.

▶ Remark 2: If f convex, this condition is also sufficient for x* to minimize f over X.

Feasible Directions

- A feasible direction at an $x \in X$ is a vector $d \neq 0$ such that $x + \alpha d$ is feasible for all sufficiently small $\alpha > 0$
- The set of feasible directions at x is the set of all

Proof of Optimality Conditions

"Better => not best"

If d is both desat,

of feesible.

If (x*+ord) < f(x),

x*+ord \(\infty \).

Seven locally)

- ▶ Descent direction *d*: for small enough $\alpha > 0$, $f(x + \alpha d) < f(x)$.
 - ► Set of descent directions: $\langle -9f(x), 2 \rangle > 0$. 44. $\langle 9f(\omega, \beta) \rangle < 0$
- Utilizing the characterizations of feasible directions and descent directions, we get

$$\langle \nabla f(x), x - x^* \rangle \ge 0, \quad \forall \ x \in X.$$

Graph Illustration of Optimality Conditions

Find example:

- (1) X* is Local- min
- (2) Condition fails.

Key: for nonconvex set X, $x-x^*$, where $x \in X$ is possibly not a descent direction at x^* .

For example, x^* is a local min but we have $\nabla f(x^*)'(x-x^*) < 0$ for some feasible vector $x \in X$.

Optimality Conditions with/without Convexity

▶ **Summary**: What kind of condition is (5)?

	X convex	X general
f general	necessary	not nec, not sufficient
f convex	suf. & nec.	7 Sufficient.
f convex sup	nec. Neither	ote. A: Not meoningful B: maybe meoningful

Rigorous Proofs

a) Suppose that $\nabla f(x^*)'(x-x^*)<0$ for some $x\in X$. By the Mean Value Theorem, for every $\epsilon>0$ there exists an $s\in[0,1]$ such that

$$f(x^* + \epsilon(x - x^*)) = f(x^*) + \epsilon \nabla f(x^* + s\epsilon(x - x^*))'(x - x^*).$$

Since ∇f is continuous, for sufficiently small $\epsilon > 0$,

$$\nabla f(x^* + s\epsilon(x - x^*))'(x - x^*) < 0,$$

so that $f(x^* + \epsilon(x - x^*)) < f(x^*)$. The vector $x^* + \epsilon(x - x^*)$ is feasible for all $\epsilon \in [0,1]$ because X is convex, contradicting the local optimality of x^* .

b) Using the convexity of f

$$f(x) \ge f(x^*) + \nabla f(x^*)'(x - x^*)$$

for every $x \in X$. If the condition $\nabla f(x^*)'(x-x^*) \ge 0$ holds for all $x \in X$, we obtain $f(x) \ge f(x^*)$, so x^* minimizes f over X.

Application of (5): Optimization Subject to Bounds

- Consider nonnegative orthant: $X = \{x \mid x \ge 0\}$.
- ▶ Then the necessary condition for $x^* = (x_1^*, \dots, x_n^*)'$ to be a local min is

$$\sum_{i=1}^{n} \frac{\partial f(x^*)}{\partial x_i} (x_i - x_i^*) \ge 0, \forall x_i \ge 0, i = 1, \dots, n.$$

• Fix i. Let $x_j = x_j^*$ for $j \neq i$ and $x_i = x_i^* + 1$:

• If $x_i^*>0$. let also $x_j=x_j^*$ for $j\neq i$ and $x_i=\frac{1}{2}x_i^*$. Then $\frac{\partial f(x^*)}{\partial x_i}\leq 0$, so

Another example: apply optimality condition to My fix)

s.t. IX:=1, X:30, Y:.

Outline

Motivation: SVM

Optimality Condition of Constrained Optimization

Gradient Projection Method

Projection Over A convex Set

- Can we use gradient descent to solve $\min_x f(x)$, $s.t.x \in X$? $x \to x \nabla f(x)$.
- Central issue: What if the iterate goes out of the feasible set X?

One solution: "Project" it back to X!

Projection Over A convex Set

- ▶ Can we use gradient descent to solve $\min_x f(x), s.t.x \in X$? $x \to x \nabla f(x)$.
- ▶ Central issue: What if the iterate goes out of the feasible set *X*?

▶ One solution: "Project" it back to X!

Projection Over A convex Set

• **Projection Theorem** (part 1): Let $z \in \mathbb{R}^n$ and a closed convex set X be given. Problem:

minimize
$$f(x) = \|\mathbf{z} - \mathbf{x}\|^2$$
 subject to $\mathbf{x} \in X$.

has a unique solution $x^* = \text{proj}[z]$ (the projection of z).

• $x^* = \text{proj}[z] \iff$ The angle between $z - x^*$ and $x - x^*$ is greater or equal to 90 degrees for all $x \in X$, or $(z - x^*)'(x - x^*) \le 0$

• If X is a subspace, $z - x^* \perp X$. \longrightarrow "Orthogonality prohable"

nonconvex set;

- (i) projection may not be unique:
- (2) Angle may be larger than 90°.

• The mapping $f: \mathbb{R}^n \mapsto X$ defined by $f(x) = \operatorname{proj}[x]$ is continuous and non-expansive, that is,

$$\| \operatorname{proj}[x] - \operatorname{proj}[y] \| \le \| x - y \|, \forall x, y \in \mathbb{R}^n.$$

Why? [Add
$$\langle x - \mathsf{proj}[x], \mathsf{proj}[y] - \mathsf{proj}[x] \rangle \le 0$$
 to $\langle y - \mathsf{proj}[y], \mathsf{proj}[x] - \mathsf{proj}[y] \rangle \le 0$]

Exercise: Assume X is convex. A vector $x^* \in X$ is a stationary point of

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in X, \end{array}$$

iff x^* satisfies the following fixed point equation

$$x^* = \operatorname{proj}[x^* - \alpha \nabla f(x^*)] \iff (5)$$

 $\chi^* = \varphi(\chi^*)$ Another optimality condition,

for any $\alpha > 0$.

principle of algorithm design:

global-min/desired solution should be fixed point (or close to)

Gradient Projection Methods

Simplest version of Gradient projection method (GP):

$$\mathsf{GP1}: \quad x^{r+1} = \mathsf{proj}_X[x^r - s_r \nabla f(x^r)].$$

Gradient projection method (GP):

GP2:
$$x^{r+1} = x^r + \alpha_r(\overline{x}^r - x^r),$$
 where $\overline{x}^r = \operatorname{proj}_X[x^r - s_r \nabla f(x^r)]$

where, $\operatorname{proj}_X[\cdot]$ denotes projection on the set X, $\alpha_r \in (0,1]$ is a stepsize, and s_r is a positive scalar.

- Stepsize rule for GP1, i.e. assuming $\alpha_r \equiv 1$:
 - Armijo along the projection arc (s_r : variable)
 - constant stepsize for s_r
 - Diminishing s_r
- Stepsize rules for GP2. Allow changing α_r , but fixed $s_r \equiv s$
 - Limited minimization
 - Armijo along the feasible direction
 - constant stepsize

Perform the Projections

Example 1: Projection to nonnegative orthant R_+ . Solve

$$\min \frac{1}{2}\|x-y\|^2, \quad \text{s.t. } x \geq 0$$

Solution [graphically]

 $x_i^* = y_i$, if $y_i > 0$, $x_i^* = 0$ otherwise,

or simiply denote $y = [y]^+$ (means taking non-negative part)

Example 1b: Projection to bounds $l_i \le x_i \le u_i$. Answer:

Example 2: Projection to ball $||x|| \le B$.

Answer:
$$\frac{1}{2} = 2 \cdot \frac{1}{\|\mathbf{z}\|}$$
.

e.g. batch-normalization

Example: Nonnegative LS

Nonnegative least square problem (we discussed it for CD methods)

$$\min \ \frac{1}{2} ||Ax - b||^2, \quad \text{s.t..} \ x \ge 0$$

- CD can solve it
- Lots of practical applications, especially useful when dealing with nonnegative data
- Gradient projection?

$$x^{r+1} = \operatorname{proj}_{x \geq 0} \left[\underbrace{x^r - \frac{1}{L} (A^T (Ax^r - b))}_{\text{denote as } y} \right]$$

Another example, NMF; mi 11 M- xy7112.

Limitation of GP

- Common misconception (by many non-optimizers): constraints are not scary, just do projection.
- No! Constraints are often scary!
- Mi (12-x) = Projx (2). GP is VERY restricted.
 - ▶ In general, solve a subproblem to find projection; often expensive
 - Only practical for very simple constraints: bounds, simplex, one ball
- Ax = b: Linear constraints Ax = b? Closed-form projection (inverting
- ▶ Two constraints Ax = b, x > 0? Solve a quadratic programming! Another example:

 | Man floor
 | Git. ||X|| 51, ||X = b, x > 0.
 ||X:|| 5 1/0. Hi- not easy to do GP.

Convergence Analysis of GP Methods

- The first two results are for GP1.
- ▶ **Result 1** (constant stepsize): Assume f has L-Lipschitz gradient. If $\alpha_r = 1$, and $s_r = s \in (0, 2/L)$, then every limit point of the GP iterates is stationary. [Prop. 2.3.2 in book 1999]

Result 2 (Armijo s): Fix s, if α_r is chosen by the limited minimization rule or by the Armijo rule along the feasible direction, every limit point of $\{x^r\}$ is stationary; [Prop. 2.3.3 in book 1999]

- ► The last result is for GP2.
- **Result 3** (fix s): Fix s, if α_r is chosen by the limited minimization rule or by the Armijo rule along the feasible direction, every limit point of $\{x^r\}$ is stationary; [Prop. 2.3.1 in book 1999]

Convergence Rate Analysis (Optional)

- Consider a strongly convex quadratic function f(x) = ½x'Ax + b'x, with A > 0.
- \exists a unique solution $x^* \in X$ satisfying $x^* = \operatorname{proj}_X[x^* s \nabla f(x^*)]$ (why?),so

In the last inequality we choose $s = \frac{2}{m+M}$.

- Convergence rate depends on $\kappa = \lambda_{max}/\lambda_{min}$, but independent of dimension.
- Requires $O(1)\kappa \ln(1/\epsilon)$ to find ϵ -relative optimal solution.

Feasible Directions Method (Optional)

• A feasible direction method:

$$x^{r+1} = x^r + \alpha_r d^r,$$

where d^r : feasible descent direction, i.e., $\nabla f(x^r)'d^r < 0$, and $\alpha_r > 0$ is such that $x^{r+1} \in X$.

Feasible Directions Method (Optional)

Alternative definition:

$$x^{r+1} = x^r + \alpha_r(\overline{x}^r - x^r)$$

where $\alpha_r \in (0,1]$, \bar{x}^r is some feasible point. If x^r is nonstationary,

$$x^r \in X$$
, $\nabla f(x^r)'(\overline{x}^r - x^r) < 0$.

• Stepsize rules: Limited minimization, Constant $\alpha_r = 1$, Armijo: $\alpha_r = \beta^{m_r} s$, where m_r is the first nonnegative m for which

$$f(x^r) - f(x^r + \beta^m(\overline{x}^r - x^r)) \ge -\sigma\beta^m \nabla f(x^r)'(\overline{x}^r - x^r),$$

Convergence Analysis (Optional)

- Similar to the one for (unstrained) gradient methods.
- The direction sequence $\{d^r\}$ is gradient related to $\{x^r\}$ if the following property can be shown: For any subsequence $\{x^r\}_{r\in K}$ that converges to a nonstationary point, the corresponding subsequence $\{d^r\}_{r\in K}$ is bounded and satisfies

$$\lim_{r \to \infty, r \in K} \nabla f(x^r)' d^r < 0.$$

- Proposition (Stationary of Limit Points) Let $\{x^r\}$ be a sequence generated by the feasible direction method $x^{r+1} = x^r + \alpha_r d^r$,. Assume that:
 - $\star \{d^r\}$ is gradient related
 - $\star \alpha_r$ is chosen by the limited minimization rule or the Armijo rule. Then every limit point of $\{x^r\}$ is a stationary point.
- Proof is nearly identical to the unconstrained case.

Summary

In this lecture, we learned the following:

- Constrained optimization: various types
- Optimality condition of constrained optimization
- Gradient projection method
 - When projection is easy
 - Convergence theory

Summary

In this lecture, we learned the following:

- Constrained optimization: various types
- Optimality condition of constrained optimization
- Gradient projection method
 - When projection is easy
 - Convergence theory