

WHAT IS CLAIMED IS:

1	1. A composition, comprising:		
2	a first salt of a first metal;		
3	a second salt of a second metal;		
4	a third salt of a rare earth metal,		
5	wherein at least one of the first, second and third salts comprises a trifluoroacetate		
6	and the composition has a total free acid concentration of less than about 1x10 ⁻³ molar.		
1	2. The composition of claim 1, wherein the composition has a total free acid		
1	concentration of less than about 1x10 ⁻⁵ molar.		
	3. The composition of claim 1, wherein the composition has a total free acid		
1 2 2 1	concentration of about 1x10 ⁻⁷ molar.		
1	4. The composition of claim 1, wherein the composition has a mole ratio of		
2	fluorine to the second metal of at least about two.		
1	5. The composition of claim 1, wherein the composition has a mole ratio of		
2	fluorine to the second metal of from about two to about 18.5.		
1	6. The composition of claim 1, wherein the composition has a mole ratio of		

fluorine to the second metal of from about two to about 10.

35 volume percent.

2

The composition of claim 1, wherein the first metal comprises copper and 1 7. the second metal is selected from the group consisting of barium, strontium and calcium. 2 8. The composition of claim 7, wherein the rare earth metal comprises 1 2 yttrium. 1 9. The composition of claim 1, wherein the first metal comprises copper, the second metal comprises barium and the third metal comprises yttrium. 2 1 2 1 2 10. The composition of claim 9, wherein a ratio of copper atoms to barium atoms to yttrium atoms contained in the solution is about 3:2:1. 11. The composition of claim 1, wherein the composition is disposed on a surface of a layer. 12. The composition of claim 11, wherein the layer comprises a material 1 2 selected from the group consisting of a substrate, a buffer layer and a superconductor layer. 13. The composition of claim 1, further comprising water, wherein the 1 2 composition has a water content of less than about 50 volume percent. 1 14. The composition of claim 13, wherein the water content is less than about

1	13. The composition of claim 13, wherein the water content is less than about
2	25 volume percent.
1	16. The composition of claim 1, wherein at least two of the first, second and
2	third salts comprises trifluoroacetates.
1	17. The composition of claim 1, wherein each of the first, second and third
2	salts comprise trifluoroacetates.
1	18. A composition, comprising:
2	a first salt of a first metal;
3	a second salt of a second metal;
4	a third salt of a rare earth metal,
5	wherein at least one of the first, second and third salts comprises a trifluoroacetate
6	and the composition has a mole ratio of fluorine to the second metal of from about two to
7	about 18.5.
1	19. The composition of claim 18, wherein the composition has a mole ratio of
2	fluorine to the second metal of from about two to about 10.
1	20. The composition of claim 18, wherein the first metal comprises copper

and the second metal is selected from the group consisting of barium, strontium and calcium.

25 volume percent.

1	21.	The composition of claim 20, wherein the rare earth metal comprises
2	yttrium.	
1	22.	The composition of claim 18, wherein the first metal comprises copper,
2	the second meta	al comprises barium and the third metal comprises yttrium.
1	23.	The composition of claim 22, wherein a ratio of copper atoms to barium
2	atoms to yttriun	n atoms contained in the solution is about 3:2:1.
	24.	The composition of claim 18, wherein the composition is disposed on a
2	surface of layer.	
	25.	The composition of claim 24, wherein the layer comprises a material
2	selected from th	e group consisting of a substrate, a buffer layer and a superconductor layer.
1	26.	The composition of claim 18, further comprising water, wherein the
2	composition has	s a water content of less than about 50 volume percent.
1	27.	The composition of claim 26, wherein the water content is less than about
2	35 volume perce	ent.
1	28.	. The composition of claim 26, wherein the water content is less than about

2

1

_ 2 _ _ 3

1

2

1

2

1

2

3

1	29.	The composition of claim 18, wherein at least two of the first, second and
2	third salts compris	ses trifluoroacetates.

- 30. The composition of claim 18, wherein each of the first, second and third salts comprise trifluoroacetates.
 - 31. A method, comprising:

combining a first solution with a compound containing a trifluoroacetate group to form a second solution, the first solution comprising a first soluble compound of a first metal, a second soluble compound of a second metal and a third soluble compound of a rare earth metal.

- 32. The method of claim 31, wherein the amount of the compound is selected so that the second solution has a total free acid concentration of less than about 1×10^{-3} molar.
- 33. The method of claim 31, wherein the amount of the compound is selected so that the second solution has a total free acid concentration of less than about 1×10^{-5} molar.
- 34. The method of claim 31, wherein the amount of the compound is selected so that the second solution has a total free acid concentration of less than about 1×10^{-7} molar.
- 35. The method of claim 31, wherein the amount of the compound combined with the first solution is selected so that the second solution has a mole ratio of fluorine to the second metal of at least about two.

2

3

1

2

1

2

1

1	36. The method of claim 31, wherein the amount of the compound combined
2	with the first solution is selected so that the second solution has a mole ratio of fluorine to the
3	second metal of from about two to about 18.5.

- 37. The method of claim 31, wherein the amount of the compound combined with the first solution is selected so that the second solution has a mole ratio of fluorine to the second metal of from about two to about 10.
- 38. The method of claim 31, wherein the first metal comprises copper and the second metal is selected from the group consisting of barium, strontium and calcium.
 - 39. The method of claim 38, wherein the rare earth metal comprises yttrium.
- 40. The method of claim 31, wherein the method is performed without refluxing the first solution or the second solution.
- 41. The method of claim 31, wherein the second solution comprises a salt of at least one of the rare earth, first and second metals.
- 42. The method of claim 31, wherein the second solution comprises a salt of at least two of the rare earth, first and second metals.
- 43. The method of claim 31, wherein the second solution comprises a salt of each of the rare earth, first and second metals.

1	44	The method of claim 31, wherein the compound comprises trifluoroacetic
2	acid.	
1	45	. A method, comprising:
2	co	mbining with a solvent a first compound of a first metal, a second compound of
3	a second meta	al and a third compound of a rare earth metal to form a solution, the first, second
4	and third com	pounds being soluble in the solvent,
5	wh	nerein at least one of the first, second and third compounds comprises a
6	trifluoroacetat	e salt.
1	46	The method of claim 45, wherein the amount of the trifluoroacetate salt is
2	selected so that	at the solution has a total free acid concentration of less than about $1x10^{-3}$
3	molar.	
1	47.	The method of claim 45, wherein the amount of the trifluoroacetate salt is
2	selected so that	at the solution has a total free acid concentration of less than about $1x10^{-5}$
3	molar.	
1	48.	The method of claim 45, wherein the amount of the at least one
2	trifluoroacetat	e salt is selected so that the solution has a total free acid concentration of less
3	than about 1x1	0 ⁻⁷ molar.

1

2

1

2

- The method of claim 45, wherein the amount of the at least one 1 49. trifluoroacetate salt is selected so that the solution has a mole ratio of fluorine to the second 2 3 metal of at least about two.
- 1 50. The method of claim 45, wherein the amount of the at least one trifluoroacetate salt is selected so that the solution has a mole ratio of fluorine to the second 2 metal of from about two to about 18.5. 3
 - 51. The method of claim 45, wherein the amount of the compound combined with the first solution is selected so that the second solution has a mole ratio of fluorine to the second metal of from about two to about 10.
 - The method of claim 45, wherein the first metal comprises copper and the 52. second metal is selected from the group consisting of barium, strontium and calcium.
 - 53. The method of claim 52, wherein the rare earth metal comprises yttrium.
 - 54. The method of claim 45, wherein the method is performed without refluxing the solution.
 - 55. The method of claim 45, wherein the solution comprises a trifluoroacetate of at least two of the rare earth, first and second metals.
- 56. The method of claim 45, wherein the solution comprises a trifluoroacetate 2 of each of the rare earth, first and second metals.

	1
	2
	3
	1
M	2
	1
J. H	2
20241 1	1

1

1	57. A multi-layer article, comprising:
2	a first superconductor material layer having a surface; and

- a second superconductor material layer disposed on the surface of the first
- 4 superconductor material layer.
 - 58. The multi-layer article of claim 57, wherein the first and second superconductor material layers have a combined thickness of at least about one micron and a critical current density of at least about $5x10^5$ Amperes per square centimeter.
 - 59. The multi-layer article of claim 58, wherein the combined thickness is at least about two microns.
 - 60. The multi-layer article of claim 58, wherein the combined thickness is at least about three microns.
 - 61. The multi-layer article of claim 58, wherein the combined thickness is at least about four microns.
- 1 62. The multi-layer article of claim 58, wherein the combined thickness is at least about five microns.
 - 63. The multi-layer article of claim 58, wherein the combined thickness is at least about six microns.

three microns.

	1	64. The multi-layer article of claim 58, wherein the critical current density is
	2	at least about 1x10 ⁶ Amperes per square centimeter.
	1	70. The multi-layer article of claim 58, wherein the critical current density is
	2	at least about 2x10 ⁶ Amperes per square centimeter.
	1	71. A method of making a multi-layer article, comprising:
	2	coating a precursor solution of a second superconductor material on a surface of a
	3	first superconductor material; and
	4	treating the precursor solution of the second superconductor material to form a
	5	layer of the second superconductor material disposed on the surface of the first
	6	superconductor material.
	1	72. The method of claim 71, wherein the first and second superconductor
iner iner	2	material layers have a combined thickness of at least about one micron and a critical current
	3	density of at least about 5x10 ⁵ Amperes per square centimeter.
	1	73. The method of claim 71, wherein the combined thickness is at least about
	2	two microns.
	1	74. The method of claim 71 wherein the combined thickness is at least about

2

1

2

a thickness of less than about 0.5 micron.

a thickness of less than about 0.2 micron.

82.

1		75.	The method of claim 71, wherein the combined thickness is at least about
2	four micro	ns.	
1		76.	The method of claim 71, wherein the combined thickness is at least about
2	five micro	ns.	
1		77.	The method of claim 71, wherein the combined thickness is at least about
2	six micron	s.	
			•
1		78.	The method of claim 72, wherein the critical current density is at least
2	about 1x10) ⁶ Amp	peres per square centimeter.
1		79.	The method of claim 72, wherein the critical current density is at least
2	about 2x10) ⁶ Amp	eres per square centimeter.
1		80.	An article, comprising:
2		a first	layer of superconductor material; and
3		a seco	nd layer of superconductor material different than the first layer of
4	supercondu	ictor m	aterial.
			•
1		81.	The article of claim 80, wherein first layer of superconductor material has

The article of claim 80, wherein first layer of superconductor material has

2

2

2

1

2

1

2

Docket No.: 05770-01

- 1 83. The article of claim 80, wherein first layer of superconductor material has 2 a thickness of from about 0.05 micron to about 0.2 micron.
- 1 84. The article of claim 80, wherein second layer of superconductor material

 has a thickness of at least about one micron.
 - 85. The article of claim 84, wherein second layer of superconductor material has a thickness of at less than about 10 microns.
 - 86. The article of claim 80, wherein second layer of superconductor material has a thickness of from about 4 microns to about 10 microns.
 - 87. The article of claim 80, wherein a combined thickness of the first and second layers of superconductor material is at least about one micron.
 - 88. The article of claim 80, wherein a combined thickness of the first and second layers of superconductor material is at least about two microns.
 - 89. The article of claim 80, wherein a combined thickness of the first and second layers of superconductor material is at least about four microns.
 - 90. The article of claim 80, wherein a combined thickness of the first and second layers of superconductor material is from about four microns to about 10 microns.

i esta
Q1
#
4
1000
- Printed

1	91. The article of claim 80, wherein the first and second layers of
2	superconductor material have a combined critical current density of at least about 5x10 ⁵
3	Amperes per square centimeter as determined by transport measurement at 77K in self field
4	using a one microVolt per centimeter criterion.

- 92. The article of claim 80, wherein the first and second layers of superconductor material have a combined critical current density of at least about 1x10⁶ Amperes per square centimeter as determined by transport measurement at 77K in self field using a one microVolt per centimeter criterion.
- 93. The article of claim 80, wherein the first and second layers of superconductor material have a combined critical current density of at least about 2x10⁶ Amperes per square centimeter as determined by transport measurement at 77K in self field using a one microVolt per centimeter criterion.
- 94. The article of claim 80, wherein the second layer of superconductor material is disposed on a surface of the first layer of superconductor material.
 - 95. The article of claim 80, wherein the first and second layers of superconductor material comprise the same superconductor material.
 - 96. The article of claim 95, wherein the same superconductor material comprise a REBCO superconductor material.

n
la de
M
u
ļ.
#

- Section
See See See

2

1

2

1

1

1

2

3

1	97.	The article of claim 95, wherein the same superconductor material
2	comprises a YBC	O superconductor material.

- 1 98. The article of claim 97, wherein the YBCO superconductor material comprises YBa₂Cu₃O_{7-x}. 2
 - 99. The article of claim 80, wherein the first and second layers of superconductor material comprise different superconductor materials.
 - The article of claim 80, further comprising a third layer of superconductor 100. material different than the first and second layers of superconductor material.
 - 101. The article of claim 80, further comprising a substrate.
 - The article of claim 101, further comprising a buffer layer stack. 102.
 - 103. The article of claim 102, wherein the buffer layer stack is disposed on a surface of the substrate, the first layer of superconductor material is disposed on a surface of the buffer layer stack, and the second layer of superconductor material is disposed on a surface of the surface of the first layer of superconductor material.
- 1 104. The article of claim 103, wherein the buffer layer stack comprises one 2 buffer layer.

material.

Docket No.: 05770-01

- 1 105. The article of claim 104, wherein the buffer layer stack comprises more 2 than one buffer layer.
- 1 106. The article of claim 80, further comprising a substrate, wherein the first
 2 layer of superconductor material is disposed on a surface of the substrate, and the second
 3 layer of superconductor material is disposed on a surface of the first layer of superconductor