

Weak learner

• Transforms a weak learning algorithm into a strong one.

- A weak learner performs just better than random guessing.

Additive ensemble

• At each stage, a weak learner is introduced to compensate for the shortcomings of existing weak learners.

Additive ensemble

• Define an additive ensemble model at the end of the Tth iteration as

$$H_T(\mathbf{x}) = \sum_{t=1}^{T} \lambda h_t(\mathbf{x})$$

where λ is the step-size and h_t is the classifier that is added to the ensemble at the tth iteration.

Intuition

- Outputs: $\mathbf{y} = [y^{(1)}, y^{(2)}, y^{(3)}]^{\mathrm{T}}$
- Predictions of 1st weak learner: $\mathbf{h}_1 = \left[h_1(\mathbf{x}^{(1)}), h_1(\mathbf{x}^{(2)}), h_1(\mathbf{x}^{(3)})\right]^{\mathrm{T}}$

Loss function

- Let $\widehat{\mathcal{L}}(H_T(\mathbf{x}^{(n)}), y^{(n)})$ be a convex, differentiable loss function where $H_T(\mathbf{x}^{(n)})$ is the ensemble prediction and $y^{(n)}$ is the observed output for a input $\mathbf{x}^{(n)}$.
- The overall loss can then written as

$$\mathcal{L}(H_T) = \frac{1}{N} \sum_{n=1}^{N} \widehat{\mathcal{L}}(H_T(\mathbf{x}^{(n)}), y^{(n)})$$

• At the (t+1)th iteration, a new weak learner is added to the ensemble such that

$$h_{t+1} = \arg\min_{h \in \mathcal{H}} \mathcal{L}(H_t + \lambda h)$$

where λ is the step size.

• Employing Taylor approximation on $\mathcal{L}(H_t + \lambda h)$ gives

$$\mathcal{L}(H_t + \lambda h) \approx \mathcal{L}(H_t) + \lambda < \nabla \mathcal{L}(H_t), \mathbf{h} >$$

$$\approx \mathcal{L}(H_t) + \lambda \sum_{n=1}^{N} \frac{\partial \mathcal{L}}{\partial (H_t(\mathbf{x}^{(n)}))} h(\mathbf{x}^{(n)})$$

Loss function

• Therefore

$$h_{t+1} = \arg\min_{h \in \mathcal{H}} \mathcal{L}(H_t + \lambda h)$$

$$= \arg\min_{h \in \mathcal{H}} \sum_{n=1}^{N} \frac{\partial \mathcal{L}}{\partial (H_t(\mathbf{x}^{(n)}))} h(\mathbf{x}^{(n)})$$

$$= \arg\min_{h \in \mathcal{H}} \sum_{n=1}^{N} r_{t,n} h(\mathbf{x}^{(n)})$$

where
$$r_{t,n} = \frac{\partial \mathcal{L}}{\partial (H_t(\mathbf{x}^{(n)}))} h(\mathbf{x}^{(n)})$$

• The loss function \mathcal{L} is reduced as long as $\sum_{n=1}^{N} r_{t,n} h(\mathbf{x}^{(n)}) < 0$.

General boosting algorithm

```
Intialize H_0 = \mathbf{0}
for t = 0 to T - 1 do
     h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_{t=1}^{N} r_{t,n} h(\mathbf{x}^{(n)})
      if \sum_{t=0}^{\infty} r_{t,n} h(\mathbf{x}^{(n)}) < 0 then
              H_{t+1} = H_t + \lambda h_{t+1}
       else
              return H_t
       end if
end for
return H_T
```

AdaBoost

- Binary classification problem $-y^{(n)} \in \{-1,1\}.$
- Weak learners $h \in \mathcal{H}$ also have outputs $h(\mathbf{x}^{(n)}) \in \{-1, 1\}$.
- Loss function:

$$\mathcal{L}(H) = \sum_{n=1}^{N} \exp\left[-y^{(n)}H(\mathbf{x}^{(n)})\right]$$

• Gradient of loss function:

$$r_{t,n} = \frac{\partial \mathcal{L}}{\partial \left[H(\mathbf{x}^{(n)}) \right]} = -y^{(n)} \exp \left[-y^{(n)} H(\mathbf{x}^{(n)}) \right]$$

• Method enables computation of best step-size λ .

Weights

• Define $w^{(n)}$ as

$$w^{(n)} = \frac{\exp\left[-y^{(n)}H(\mathbf{x}^{(n)})\right]}{\sum_{j=1}^{N} \exp\left[-y^{(j)}H(\mathbf{x}^{(j)})\right]}$$

- The denominator acts as a normalizing factor to give $\sum_{n=1}^{N} w^{(n)} = 1$.
- Each weight $w^{(n)}$ is the relative contribution of the data point $(\mathbf{x}^{(n)}, y^{(n)})$ to the overall loss.

Optimal weak-learner

• Optimal "weak-learner" at the (t+1)th iteration:

$$h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_{n=1}^{N} r_{t,n} h(\mathbf{x}^{(n)})$$

$$= \arg\min_{h \in \mathcal{H}} - \sum_{n=1}^{N} y^{(n)} \exp\left[-y^{(n)} H(\mathbf{x}^{(n)})\right] h(\mathbf{x}^{(n)})$$
as $r_{t,n} = -y^{(n)} \exp\left[-y^{(n)} H(\mathbf{x}^{(n)})\right]$

$$= \arg\min_{h \in \mathcal{H}} - \sum_{n=1}^{N} y^{(n)} (w^{(n)} Z) h(\mathbf{x}^{(n)})$$
as $w^{(n)} = \frac{\exp\left[-y^{(n)} H(\mathbf{x}^{(n)})\right]}{Z}$

Now

$$y^{(n)}h(\mathbf{x}^{(n)}) = 1$$
 if $h(\mathbf{x}^{(n)}) = y^{(n)}$
 $y^{(n)}h(\mathbf{x}^{(n)}) = -1$ if $h(\mathbf{x}^{(n)}) = -y^{(n)}$

Optimal weak-learner

therefore

$$\begin{split} h_{t+1} &= \arg\min_{h \in \mathcal{H}} - \sum_{n:h(\mathbf{x}^{(n)}) = y^{(n)}} w^{(n)} + \sum_{n:h(\mathbf{x}^{(n)}) \neq y^{(n)}} w^{(n)} \\ &= \arg\min_{h \in \mathcal{H}} - \left(1 - \sum_{n:h(\mathbf{x}^{(n)}) \neq y^{(n)}} w^{(n)}\right) + \sum_{n:h(\mathbf{x}^{(n)}) \neq y^{(n)}} w^{(n)} \\ &= \arg\min_{h \in \mathcal{H}} -1 + 2 \sum_{n:h(\mathbf{x}^{(n)}) \neq y^{(n)}} w^{(n)} \\ &= \arg\min_{h \in \mathcal{H}} 2 \sum_{n:h(\mathbf{x}^{(n)}) \neq y^{(n)}} w^{(n)} \\ &= \arg\min_{h \in \mathcal{H}} \sum_{n:h(\mathbf{x}^{(n)}) \neq y^{(n)}} w^{(n)} \\ h_{t+1} &= \arg\min_{h \in \mathcal{H}} \epsilon \quad \text{where } \epsilon = \sum_{n:h(\mathbf{x}^{(n)}) \neq y^{(n)}} w^{(n)} \quad \text{is the weighted classification} \end{split}$$

Optimal step-size

• Determining the optimal step-size λ at the (t+1)th iteration:

$$\lambda_{t+1} = \arg\min_{\lambda} \mathcal{L}(H_t + \lambda h_{t+1})$$

$$= \arg\min_{\lambda} \sum_{n=1}^{N} \exp\left[-y^{(n)}(H_t + \lambda h_{t+1})\right]$$

• Differentiating the objective function w.r.t. λ and equating to 0:

$$\frac{\partial \sum_{n=1}^{N} \exp\left[-y^{(n)} \left(H_t + \lambda h_{t+1}\right)\right]}{\partial \lambda} = 0$$

$$-\sum_{n:h(\mathbf{x}^{(n)})=y^{(n)}} \exp\left[-y^{(n)} H_t - \lambda y^{(n)} h_{t+1}\right] + \sum_{n:h(\mathbf{x}^{(n)})\neq y^{(n)}} \exp\left[-y^{(n)} H_t - \lambda\right] = 0$$

$$-\sum_{n:h(\mathbf{x}^{(n)})=y^{(n)}} \exp\left[-\lambda\right] + \sum_{n:h(\mathbf{x}^{(n)})\neq y^{(n)}} \exp\left[-y^{(n)} H_t\right] \exp\left[\lambda\right] = 0$$

$$-\sum_{n:h(\mathbf{x}^{(n)})=y^{(n)}} w^{(n)} Z \exp\left[-\lambda\right] + \sum_{n:h(\mathbf{x}^{(n)})\neq y^{(n)}} w^{(n)} Z \exp\left[\lambda\right] = 0$$
as $w^{(n)} = \exp[-y^{(n)} H(\mathbf{x}^{(n)})]/Z$

Optimal step-size

$$-\sum_{n:h(\mathbf{x}^{(n)})=y^{(n)}} w^{(n)} \exp\left[-\lambda\right] + \sum_{n:h(\mathbf{x}^{(n)})\neq y^{(n)}} w^{(n)} \exp\left[\lambda\right] = 0$$

$$-\exp\left[-\lambda\right] \left(1 - \sum_{n:h(\mathbf{x}^{(n)})\neq y^{(n)}} w^{(n)}\right) + \exp\left[\lambda\right] \sum_{n:h(\mathbf{x}^{(n)})\neq y^{(n)}} w^{(n)} = 0$$

$$-\exp\left[-\lambda\right] (1 - \epsilon) + \exp\left[\lambda\right] \epsilon = 0$$

$$\exp\left[\lambda\right] \epsilon = \exp\left[-\lambda\right] (1 - \epsilon)$$

$$\exp\left[2\lambda\right] = \frac{1 - \epsilon}{\epsilon}$$

$$\lambda = \frac{1}{2} \log\left(\frac{1 - \epsilon}{\epsilon}\right)$$

• The optimal step-size leads to fast convergence of the AdaBoost algorithm.

AdaBoost training

• Optimal "weak-learner" at the (t+1)th iteration:

$$h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_{n=1}^{N} r_{t,n} h(\mathbf{x}^{(n)})$$

$$= \arg\min_{h \in \mathcal{H}} \sum_{n:h(\mathbf{x}^{(n)}) \neq y^{(n)}} w^{(n)}$$
weighted classification error

• Optimal step-size λ at the (t+1)th iteration:

$$\lambda_{t+1} = \arg\min_{\lambda} \mathcal{L}(H_t + \lambda h_{t+1})$$

• Differentiating the objective function w.r.t. λ and equating to 0:

$$\frac{\partial \sum_{n=1}^{N} \exp\left[-y^{(n)} \left(H_t + \lambda h_{t+1}\right)\right]}{\partial \lambda} = 0 \quad \Rightarrow \lambda_{t+1} = \frac{1}{2} \log\left(\frac{1-\epsilon}{\epsilon}\right)$$

• The optimal step-size leads to fast convergence of the AdaBoost algorithm.

AdaBoost algorithm

```
Initialize H_0 = \mathbf{0} and w^{(n)} = 1/N, n = 1, 2, ...N
for t = 0 to T - 1 do
       h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_{n: h(\mathbf{x}^{(n)}) \neq y^{(n)}} w^{(n)}
       \epsilon = \sum_{n=1}^{\infty} w^{(n)}
               n:h(\mathbf{x}^{(n)})\neq y^{(n)}
       if \epsilon < 1/2 then
                 \lambda_{t+1} = \frac{1}{2} \log \left( \frac{1 - \epsilon}{\epsilon} \right)
                  H_{t+1} = H_t + \lambda_{t+1} h_{t+1}
                  w^{(n)} \leftarrow \frac{w^{(n)} \exp(-\lambda_{t+1} h(\mathbf{x}^{(n)}) y^{(n)})}{2\sqrt{\epsilon(1-\epsilon)}} \qquad n = 1, 2, ...N
        else
                  return H_t
       end if
end for
return H_T
```

AdaBoost (with decision stumps)

Original Dataset

Instance	Weather	Health	Teaching	Topic Importance	Going to class?	w ₁ ⁽ⁿ⁾
1	Hot	Good	Interesting	Medium	Yes	1/8
2	Cold	Average	Boring	High	Yes	1/8
3	Cold	Sick	Mediocre	Medium	No	1/8
4	Mild	Average	Interesting	High	Yes	1/8
5	Rainy	Sick	Mediocre	Low	No	1/8
6	Hot	Good	Boring	High	Yes	1/8
7	Rainy	Good	Mediocre	Medium	No	1/8
8	Mild	Good	Mediocre	Medium	Yes	1/8

- One example of weak classifier Decision stumps.
 - A decision stump is a one-level decision tree comprising one root and terminal nodes.
- Can use a separate stump for splitting w.r.t. a particular feature.
- Select the stump giving the least weighted error
 - Suppose the feature Health gives the best result.

AdaBoost (with decision stumps)

Original Dataset			al Dataset				
Instance	Weather	Health	Teaching	Topic Importance	Going to class?	w ₁ ⁽ⁿ⁾	w ₂ ⁽ⁿ⁾
1	Hot	Good	Interesting	Medium	Yes	1/8	0.07
2	Cold	Average	Boring	High	Yes	1/8	0.07
3	Cold	Sick	Mediocre	Medium	No	1/8	0.07
4	Mild	Average	Interesting	High	Yes	1/8	0.07
5	Rainy	Sick	Mediocre	Low	No	1/8	0.07
6	Hot	Good	Boring	High	Yes	1/8	0.07
7	Rainy	Good	Mediocre	Medium	No	1/8	0.50
8	Mild	Good	Mediocre	Medium	Yes	1/8	0.07

- Compute λ .
- Update the weights.
- For determining the next weak classifier, algorithms use one of the following two ways:
 - same data with updated weights.
 - samples from the training dataset according to the distribution $p_{\mathbf{w}}(\mathbf{x})$.

Boosting error – example

rounds

Figure source: Schapire, A Brief Introduction to Boosting, 1999.

- In some cases, boosting is found to be robust to overfitting, i.e. test error decreases even after training error is zero.
- Boosting increases the margin as it focusses on the hardest example.
- Boosting can overfit if
 - margin is small.
 - learners are complex.
 - weak learners perform arbitrarily close to random guessing.

Boosting

Outlier detection

Figure source: Freund and Schapire, Experiments with a New Boosting Algorithm, 1996.

- Adaboost has the ability to identify outliers
- Outliers are those examples which are
 - inherently ambiguous and hard to categorize, or
 - mislabelled
- Adaboost assigns high weights to the hardest examples.
 - These examples often turn to be outliers

Face detection using Adaboost

• Face Detection: Where is the face? Challenge: Real-time detection

Viola-Jones algorithm:

- Feature evaluation
 - Use Haar-like features
 - Slide the filters across the image
 - Value = \sum (Pixels in white region) \sum (Pixels in black region)
 - If value > threshold, then feature matches

Face detection using Adaboost

• Face Detection: Where is the face?

Viola-Jones algorithm:

- Feature evaluation
- Integral images approach for efficient feature evaluation
- Adaboost for feature selection
 - There are tens of thousands of location and scale combinations of different types of filters.
 - Adaboost is used to select the best features based on weighted error values.
- Cascade of classifiers
 - The cascade quickly discards non-faces and thus gives computational benefits.

Boosting