Nalve ad n=a, y=b if there enid a small neighbourhood of (a,b) &.t.

fla,b) 7 flath & bek)

whereas a furtion f(x,y) is laid to have a minimum value for x=a, y=b if those exist a small neighbourhood of (a,b) b. f(a,b) < f(a+b,b+k).

Saddle point: A point whose a function is neather maximum noo manimum.

mountains and court court the wife in the case of the last of the case

in some the start with the service.

(C. BY Tring with the same

Wosking Sale to find extremom Valuess

- (1) Differentiate flags for $\frac{\partial f}{\partial g}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y^2}$,
- $\frac{\partial f}{\partial x}$ =0 and $\frac{\partial f}{\partial y}$ =0 () () () () () () ()
- (3) Evaluato $n = \frac{\partial^2 f}{\partial n^2}$, $S = \frac{\partial^2 f}{\partial n \partial y}$, $t = \frac{\partial^2 f}{\partial y^2}$ for the value (a,b); hardendelpine unit
- (4) It St-S270 and then the flx,y) has maximum value when MZO f(x,y) has minimum value when 270.
- (5) of ht-s2 Lo, then flrig) has no entremom value at the point (a,b)
- (6) If At-52=0 then the test is inconclusive.

Sol= he have flu,y)= n'+y+6x+12.

 $\frac{\partial f}{\partial n} = 2n + 6, \frac{\partial f}{\partial y} = 2y, \frac{\partial^2 f}{\partial n^2} = 2, \frac{\partial^2 f}{\partial y^2} = 2, \frac{\partial^2 f}{\partial n \partial y} = 0$

For maxima and minima, $\frac{\partial f}{\partial n} = 0$ and $\frac{\partial f}{\partial y} = 0$

2x+6=0, 2y=0

n=-3, y=0.

Af (-3,0) $ht-s^{2} = 2 \times 2 - 0 = 470$

and 9=270.

Hence fla, y) in minimum value when 2 = -3, y = 0

And minimum value at (-3,0) = (-3) + (0) + 6.(-3) +12

= 21-18=3/

Ex Examine $f(x,y) = \pi - y - 3any$ for maximum and minimum value.

$$\frac{\partial f}{\partial x} = 3x^2 - 3ay, \frac{\partial f}{\partial y} = 3y^2 - 3ax$$

$$\frac{\partial \mathcal{S}}{\partial n^2} = 6\pi, \quad \frac{\partial^2 f}{\partial y^2} = 6y, \quad \frac{\partial^2 f}{\partial n \partial y} = -3a$$

$$\frac{\partial f}{\partial n} = 0$$
 and $\frac{\partial f}{\partial y} = 0$.

$$3y^2 - 3ax = 0$$

$$\chi^{2} - \alpha y = 0$$

$$\chi^{2} - \alpha \chi = 0.$$

$$\chi^{2} - \alpha \chi$$

$$n^2 = ny$$

$$y = nx$$

$$\left(\frac{\chi}{a}\right)^{2} = a \chi$$

$$\chi^{4} = a^{3} \chi$$

$$\chi^{4} - a^{3} \chi = 0 \Rightarrow \chi(\chi^{3} - a^{3}) = 0$$

$$\int \frac{n^3 - y^3}{-(n-y)(n-y)(y^2)}$$

$$\chi = 0$$
, $\chi = 0$ $\chi = 0$

$$ht - s^2 = (6x.6y) - (-3a)^2$$

$$= 18ny - 9a^2$$

$$=-9a^{2}Lo$$

$$84 - S^{2} = 6.a.6.a - (-3a)^{2}$$

$$= 36a - 9a^{2}$$

At 10,0) there so no estremom value, Bince Sit-520 At (a,a). nt-1, 50, 9,70

therefore at (a.a) in a point of minimum Volne.

And minimum value afla,a) $= \frac{3}{4} \cdot \frac{3}{4} - \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} = \frac{3}{4} \cdot \frac{$

Tony yoursel!

(0.5) (1.4 x x x) . 1.3 1. Examene f(n,y) = 2 + 4 ny +3n + n maxim un y 2 + 4 ny +3n + n and mindnum.

2. Évanine fla,y) = xy (1-x-y)