Lezioni di Ricerca Operativa

Università degli Studi di Salerno

Lezione n° 15

Teoria della dualità:

- Interpretazione Economica

R. Cerulli – F. Carrabs

Esempio: Piano di Produzione

Una azienda produce due tipi di mangime A e B, entrambi costituiti da una miscela di carne e cereali. La seguente tabella mostra quanti kg di carne e di cereali sono necessari per produrre un kg di A e B:

		Prodotti			
		Α	В		
motorio primo	Cereali	1 Kg	1.5 Kg		
materie prime	Carne	2 Kg	1 Kg		

Ogni giorno l'azienda ha a disposizione 240 kg di cereali e 180 Kg di carne. Inoltre, essendo il mangine A più pregiato, prima di poter essere venduto deve essere raffinato attraverso un macchinario in grado di raffinare al più 110 kg di mangime al giorno. Il ricavo per kg è pari a 560€ euro per il mangime A e 420€ per il mangime B.

PROBLEMA: determinare quanti kg di mangime A e B devono essere prodotti giornalmente per massimizzare il ricavo dell'azienda.

Introduciamo due variabili che rappresentano le quantità di mangime A e B prodotte:

Kg di mangime A: x_1 Kg di mangime B: x_2

(P)
$$max \ z = 560x_1 + 420x_2$$
 $x_1 + 1.5x_2 \le 240$ Cereali $2x_1 + x_2 \le 180$ Carne $x_1 \le 110$ Raffinatrice $x_1 \ge 0, x_2 \ge 0$

- Risolvere graficamente il problema per individuare il punto di ottimo ed il valore ottimo;
- Trasformare il problema in forma standard e calcolare la base associate al punto di ottimo;
- 3. Scrivere il problema duale e la sua forma standard;
- 4. Calcolare la soluzione ottima del problema duale.

Supponiamo che un'altra azienda chieda alla prima di venderle parte della carne o dei cereali. Quale è il prezzo minimo al quale la prima azienda deve vendere la carne e i cereali facendo rimanere inalterato il proprio ricavo?

Per rispondere a questa domanda risolviamo il problema duale:

Problema (D):

(D)
$$min \ g = 240w_1 + 180w_2 + 110w_3$$

 $w_1 + 2w_2 + w_3 \ge 560$
 $1.5w_1 + w_2 \ge 420$
 $w_1 \ge 0, w_2 \ge 0, w_3 \ge 0$

La soluzione ottima del problema primale (P) è:

$$x_1^* = 15$$
, $x_2^* = 150$, $x_3^* = 0$, $x_4^* = 0$, $x_5^* = 95$

La soluzione ottima del problema duale (D) è:

$$w_1^* = 140$$
, $w_2^* = 210$, $w_3^* = 0$, $w_4^* = 0$, $w_5^* = 0$

Vediamo adesso il significato delle \underline{x}^* e delle \underline{w}^* considerando la seguente tabella:

Cereali	Carne	x ₁	X ₂	X ₃	X ₄	X ₅	\mathbf{w}_1	w ₂	W ₃	\mathbf{w}_4	w ₅	$\mathbf{z}^* = \mathbf{g}^*$
240	180	15	150	0	0	95	140	210	0	0	0	71400
239	180											
241	180											
240	179											
240	181											
250	200											
250	350											

Cereali	Carne	x ₁	X ₂	X ₃	X ₄	X ₅	\mathbf{w}_1	W ₂	W ₃	W ₄	W ₅	$\mathbf{z}^* = \mathbf{g}^*$
240	180	15	150	0	0	95	140	210	0	0	0	71400
239	180	15,5	149	0	0	94,5	140	210	0	0	0	71260
241	180	14,5	151	0	0	95,5	140	210	0	0	0	71540
240	179	14,25	150,5	0	0	95,75	140	210	0	0	0	71190
240	181	15,75	149,5	0	0	94,25	140	210	0	0	0	71610
250	200	25	150	0	0	85	140	210	0	0	0	77000
250	350	110	93,3	0	36,6	0	280	0	280	0	0	100800

Riassumento

• Le variabili duali <u>w</u> rappresentano i "prezzi ombra", ovvero i prezzi minimi a cui bisogna vendere le risorse per mantenere invariato il valore ottimo della funzione obiettivo.

• I prezzi ombra sono validi fino a quando non viene cambiata la base ottima (quando ciò avviene devono essere ricalcolati).

Dal teorema forte della dualità:

$$z^* = \underline{c}^T \underline{x}^* = \underline{w}^{*T} \underline{b} \qquad \qquad \frac{\partial z}{\partial b_i} = w_i^*$$

Riassumento

 Quando un vincolo è attivo la risorsa ad esso associata è scarsa. La variabile duale corrispondente, a meno di degenerazione, sarà diversa da zero. Se invece la risorsa è abbondante sicuramente la variabile duale ad essa associata è nulla.

Dal teorema degli scarti complementari:

$$s_j w_j = (\underline{a}^j \underline{x} - b_j) w_j = 0 \qquad j = 1, ..., m$$
$$v_i x_i = (c_i - \underline{a}_i^T \underline{w}) x_i = 0 \qquad i = 1, ..., m$$