Probabilités

Espaces probabilisés

Question 1/26

Système quasi-complet d'événements

Réponse 1/26

 \mathcal{C} est quasi-complet si

Les événements de \mathcal{C} ne sont pas impossibles Les événements de \mathcal{C} sont deux à deux disjoints

 $\sum_{A \in \mathcal{C}} (\mathbb{P}(A)) = 1$

Question 2/26

Espace probabilisé Modèle probabiliste de Kolmogorov

Réponse 2/26

 $(\Omega, \mathcal{T}, \mathbb{P})$ où (Ω, \mathcal{T}) est un espace probabilisable et \mathbb{P} une mesure de probabilités

Question 3/26

Tribu des boréliens

Réponse 3/26

$$\mathcal{B}^1$$
 ou \mathcal{B} $\sigma((]-\infty,a[)_{a\in\mathbb{R}})$

 \mathcal{B}^1 est aussi engendrée par n'importe quel type d'intervalle de \mathbb{R}

Question 4/26

$$\mathbb{P}\left(\bigcup_{n\in\mathbb{N}}(A_n)\right)$$

Réponse 4/26

$$\lim_{N\to+\infty} \left(\mathbb{P} \left(\bigcup_{n=0}^{N} (A_n) \right) \right)$$

Question 5/26

Les A_i , $i \in I$ sont mutuellement indépendants

Réponse 5/26

$$\forall J \in \mathcal{P}_f(I), \ \mathbb{P}\left(\bigcap_{j \in J} (A_j)\right) = \prod_{j \in J} (\mathbb{P}(A_j))$$

Question 6/26

Système complet d'événements

Réponse 6/26

Famille $\{A_i, i \in I\}$ d'éléments non vides formant une partition de Ω

Question 7/26

$$\mathbb{P}_B(A) = \mathbb{P}(A \mid B)$$

Réponse 7/26

$$\frac{\mathbb{P}(A\cap B)}{\mathbb{P}(B)}$$

Question 8/26

Formule de Bayes sur un système complet

Réponse 8/26

Si
$$(A_i)_{i \in I}$$
 est un système quasi-complet au plus
dénombrable tel que pour tout $i \in I$,
$$\mathbb{P}(A_i) \neq 0 \text{ et } \mathbb{P}(B) \neq 0$$
$$\mathbb{P}(A_j \mid B) = \frac{\mathbb{P}(B \mid A_j)\mathbb{P}(A_j)}{\sum (\mathbb{P}(B \mid A_i)\mathbb{P}(A_i))}$$

 $i \in I$

Question 9/26

Espace probabilisable

Réponse 9/26

$$(\Omega, \mathcal{T})$$

 \mathcal{T} est une σ -algèbre sur Ω

Question 10/26

Mesure de probabilités

Réponse 10/26

Application
$$\mathbb{P} \colon \mathcal{T} \to \mathbb{R}$$
 vérifiant $0 \leqslant \mathbb{P}(A) \leqslant 1$ $\mathbb{P}(\Omega) = 1$ $\mathbb{P}\left(\biguplus_{n \in \mathbb{N}} (A_n)\right) = \sum_{n \in \mathbb{N}} (\mathbb{P}(A_n))$

Question 11/26

Tribu des boréliens sur \mathbb{R}^n

Réponse 11/26

 \mathcal{B}^n

Tribu engendrée par les $I_1 \times \cdots \times I_n$ où les I_k sont des intervalles

Question 12/26

Formule des probabilités totales associée à une variable aléatoire réelle discrète

Réponse 12/26

$$\mathbb{P}(B) = \sum (\mathbb{P}(X = x)\mathbb{P}(B \mid X = x))$$

 $x \in X(\Omega)$

Question 13/26

Formule de Bayes simple

Réponse 13/26

Si
$$\mathbb{P}(A) \neq 0$$
 et $\mathbb{P}(B) \neq 0$
 $\mathbb{P}(A \mid B) = \frac{\mathbb{P}(B \mid A)\mathbb{P}(A)}{\mathbb{P}(B)}$

Question 14/26

Intersection de tribus

Réponse 14/26

 $i \in I$

Si
$$(\mathcal{T}_i)_{i\in I}$$
 est une famille de σ -algèbres sur Ω , alors $\bigcap (\mathcal{T}_i)$ est une σ -algèbre sur Ω

Question 15/26

$$\mathbb{P}\left(\bigcap_{n\in\mathbb{N}}(A_n)\right)$$

Réponse 15/26

$$\lim_{N\to+\infty} \left(\mathbb{P} \left(\bigcap_{n=0}^{N} (A_n) \right) \right)$$

Question 16/26

A et B sont indépendants

Réponse 16/26

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

Question 17/26

Formule des probabilités composées

Réponse 17/26

Si
$$\mathbb{P}\left(\bigcap_{i=1}^{n-1}(A_i)\right) \neq 0$$

$$\mathbb{P}\left(\bigcap_{i=1}^{n}(A_i)\right) = \mathbb{P}(A_1)\prod_{i=2}^{n}\left(\mathbb{P}\left(A_i \middle| \bigcap_{j=1}^{i-1}(A_i)\right)\right)$$

Question 18/26

Formule des probabilités totales pour le système complet (A, \overline{A})

Réponse 18/26

$$\mathbb{P}(B) = \mathbb{P}(A)\mathbb{P}(B \mid A) + \mathbb{P}(\overline{A})\mathbb{P}(B \mid \overline{A})$$

Question 19/26

Distribution de probabilités

Réponse 19/26

Famille
$$(p_i)_{i \in I}$$
 tel que $\sum_{i \in I} (p_i) = 1$

Question 20/26

Formule des probabilités totales

Réponse 20/26

Si $(A_i)_{i \in I}$ est un système quasi-complet au plus dénombrable $\mathbb{P}(B) = \sum (\mathbb{P}(A_i)\mathbb{P}(B \mid A_i))$

 $i \in I$

Question 21/26

$$\limsup(A_n)$$

Réponse 21/26

$$\bigcap_{n\in\mathbb{N}} \left(\bigcup_{k=n}^{+\infty} (A_k) \right)$$

Question 22/26

 σ -algèbre Tribu

Réponse 22/26

Une σ -algèbre $\mathcal T$ est un sous-ensemble de

$$\mathcal{P}(\Omega)$$
 vérifiant $\Omega \in \mathcal{T}$

 $A \in \mathcal{T} \Rightarrow \overline{A} \in \mathcal{T}$ Si I est dénombrable et $(A_i)_{i \in I}$ une famille

d'éléments de $\mathcal{T}, \bigcup_{i \in I} (A_i) \in \mathcal{T}$

Question 23/26

 $\liminf(A_n)$

Réponse 23/26

$$\bigcup_{n\in\mathbb{N}} \left(\bigcap_{k=n}^{+\infty} (A_k)\right)$$

Question 24/26

 $\mathbb{P}(\{\omega\})$ pour une distribution de probabilités uniforme

Réponse 24/26

Question 25/26

Tribu engendrée par une famille

Réponse 25/26

$$\sigma((A_i)_{i\in I})$$
 avec A_i des éléments de $\mathcal{P}(\Omega)$
Plus petite σ -algèbre de Ω contenant $(A_i)_{i\in I}$

Question 26/26

$$\mathbb{P}igg(igcup_{i=1}^n(A_i)igg)$$

Réponse 26/26

$$\sum_{I \subset \llbracket 1, n \rrbracket} \left((-1)^{|I|-1} \mathbb{P} \left(\bigcap_{i \in I} (A_i) \right) \right)$$