departamento de matemática

universidade de aveiro

- Em cada uma das alíneas que se seguem, averigúe se a aplicação considerada é uma aplicação linear:
 - (a) $\varphi: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que $\varphi(x, y, z) = (2x y z, x + y, x), \forall (x, y, z) \in \mathbb{R}^3$;
 - (b) $\varphi: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que $\varphi(x, y, z) = (y, x, 0), \forall (x, y, z) \in \mathbb{R}^3$;
 - (c) $\varphi: \mathbb{R}^3 \longrightarrow \mathbb{R}$ tal que $\varphi(x, y, z) = xyz, \forall (x, y, z) \in \mathbb{R}^3$;
 - (d) $\varphi: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que $\varphi(x,y) = (x^2 + y, x 2y, x), \forall (x,y) \in \mathbb{R}^2$;
 - (e) $\varphi: \mathbb{R}^2 \longrightarrow \mathbb{R}$ tal que $\varphi(x,y) = |x-y|, \forall (x,y) \in \mathbb{R}^2$;
 - (f) $\varphi: P_2[x] \longrightarrow P_1[x]$ tal que $\varphi(ax^2 + bx + c) = b + 2cx$, $\forall ax^2 + bx + c \in P_2[x]$;
 - (g) $\varphi: P_2[x] \longrightarrow \mathbb{R}$ tal que $\varphi(ax^2 + bx + c) = c 2b a$, $\forall ax^2 + bx + c \in P_2[x]$;
 - (h) $\varphi: P_2[x] \longrightarrow P_2[x]$ tal que $\varphi(ax^2 + bx + c) = a(x+1)^2 + b(x+1) + c$, $\forall ax^2 + bx + c \in P_2[x]$;
 - (i) $\varphi: \mathbb{R}^2 \longrightarrow M_{2\times 1}(\mathbb{R})$ tal que $\varphi(x,y) = \begin{bmatrix} 2x 5y \\ 2x \end{bmatrix}, \forall (x,y) \in \mathbb{R}^2;$
 - (j) $\varphi: M_{n\times n}(\mathbb{R}) \longrightarrow M_{n\times n}(\mathbb{R})$ tal que $\varphi(A) = AB + BA$, com $B \in M_{n\times n}(\mathbb{R})$, $\forall A \in M_{n\times n}(\mathbb{R})$;
 - (k) $\varphi: M_{n \times n}(\mathbb{R}) \longrightarrow \mathbb{R}$ tal que $\varphi(A) = \det(A), \forall A \in M_{n \times n}(\mathbb{R});$
 - (1) $\varphi: M_{n \times m}(\mathbb{R}) \longrightarrow M_{m \times n}(\mathbb{R})$ tal que $\varphi(A) = A^T, \forall A \in M_{n \times m}(\mathbb{R})$.
- 2. (a) Seja E um espaço vectorial real e seja $\varphi: E \longrightarrow \mathbb{R}$ uma aplicação linear e sejam $v_1, v_2 \in E$ tais que

$$\varphi(v_1) = 1$$
 e $\varphi(v_2) = -1$.

Determine $\varphi(3v_1 - 5v_2)$.

(b) Seja $\psi:\mathbb{R}^2 \longrightarrow \mathbb{R}^2$ uma aplicação linear tal que

$$\psi(1,3) = (1,1)$$
 e $\psi(1,1) = (0,1)$.

Determine $\psi(-1,3)$.

(c) Seja $\phi: \mathbb{R}^3 \longrightarrow \mathbb{R}$ uma aplicação linear tal que

$$\phi(3,-1,2) = 5$$
, $\phi(1,0,1) = 2$ e $\phi(0,0,1) = -1$.

Determine $\phi(-1, 1, 0)$.

(d) Seja $\theta: P_2[x] \longrightarrow P_1[x]$ uma aplicação linear tal que

$$\theta(x+1) = x$$
, $\theta(x-1) = 1$ e $\theta(x^2) = 0$.

Determine $\theta(2-x+3x^2)$.

5.1. aplicações lineares

página 2/4

- 3. Para cada caso, verifique se existe uma aplicação linear que satisfaça as condições indicadas. Em caso afirmativo, determine a expressão geral de tal aplicação linear.
 - (a) $\varphi: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tal que $\varphi(1,1) = (1,-2)$ e $\varphi(1,0) = (-4,1)$;
 - (b) $\varphi : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que $\varphi(1,0) = (1,2,-1)$ e $\varphi(0,1) = (0,1,0)$;
 - (c) $\varphi : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que $\varphi(1,2) = (3,-1,5)$ e $\varphi(0,1) = (2,1,-1)$;
 - (d) $\varphi : \mathbb{R}^3 \longrightarrow \mathbb{R}$ tal que $\varphi(1,1,1) = 3$, $\varphi(0,1,-2) = 1$ e $\varphi(0,0,1) = -2$;
 - (e) $\varphi: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que

$$\varphi(1,1,1) = (1,2,3), \quad \varphi(1,2,3) = (1,4,9) \quad \text{e} \quad \varphi(2,3,4) = (1,8,27);$$

- (f) $\varphi: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que $\varphi(1,0) = (0,0,0), \varphi(1,1) = (1,0,1) e \varphi(3,2) = (2,0,2);$
- (g) $\varphi: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que

$$\varphi(1,2) = (4,5,0), \quad \varphi(0,1) = (1,-1,2) \quad \text{e} \quad \varphi(1,1) = (1,3,-2);$$

- (h) $\varphi : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que $\varphi(1,2) + \varphi(2,4) = -\varphi(1,2), \ \varphi(0,1) = (1,1,-1);$
- (i) $\varphi : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que $\varphi(0,0) = (1,0,0)$;
- (j) $\varphi: P_2[x] \longrightarrow P_3[x]$ tal que $\varphi(1+x) = x x^3$, $\varphi(1+x^2) = 1 x$ e $\varphi(x) = x$;
- (k) $\varphi: P_2[x] \longrightarrow P_2[x]$ tal que $\varphi(1) = 1 + x + x^2$, $\varphi(x) = 1 + x^2$ e $\varphi(x + 2x^2) = 4x^2$;
- (1) $\varphi: M_{2\times 2}(\mathbb{R}) \longrightarrow \mathbb{R}$ tal que

$$\varphi\left(\begin{bmatrix}1 & 0\\ 0 & 0\end{bmatrix}\right) = 3, \ \varphi\left(\begin{bmatrix}0 & 1\\ 1 & 0\end{bmatrix}\right) = -1, \ \varphi\left(\begin{bmatrix}1 & 0\\ 1 & 0\end{bmatrix}\right) = 0 \ \text{e} \ \varphi\left(\begin{bmatrix}0 & 0\\ 0 & 1\end{bmatrix}\right) = 2.$$

- 4. Considere a aplicação $\varphi: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ definida por $\varphi(x,y,z) = (x-y+z,x+y+2z)$, para todo $(x,y,z) \in \mathbb{R}^3$.
 - (a) Verifique que φ é aplicação linear.
 - (b) Calcule $\varphi(\mathbb{R}^3)$.
 - (c) Determine $\varphi^{-1}(\{(1,-2)\})$.
- 5. Considere a aplicação linear $\varphi: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ definida por

$$\varphi(1,2) = (2,3)$$
 e $\varphi(0,1) = (1,4)$.

Seja $S = \{(x, y) \in \mathbb{R}^2 : x + y = 0\}$ um subespaço vectorial de \mathbb{R}^2 .

- (a) Determine $\varphi(x,y)$, para todo $(x,y) \in \mathbb{R}^2$.
- (b) Calcule $\varphi(S)$.
- (c) Determine $\varphi^{-1}(\{(2,7)\})$.

5.1. aplicações lineares

página 3/4

6. Considere o subespaço vectorial de $P_3[x]$

$$S = \{ax^3 + bx^2 + cx + d \in P_3[x] : d = c + b \land a = -d\}.$$

Seja $\varphi: \mathbb{R}^3 \longrightarrow P_3[x]$ uma aplicação linear definida por

$$\varphi(1,0,0) = x^3 + 2x$$
, $\varphi(0,1,1) = x^2 - 2x$ e $\varphi(0,0,1) = x^3 + x^2$.

Determine $\varphi^{-1}(S)$ e comprove, usando a definição, que $\varphi^{-1}(S)$ é um subespaço vectorial de \mathbb{R}^3 .

- 7. Sejam E e E' espaços vectoriais sobre $\mathbb K$ e seja F um subespaço vectorial de E. Seja ainda φ uma aplicação linear de E para E'. Mostre que:
 - (a) $\varphi^{-1}(\varphi(F)) \supseteq F$;
 - (b) $\varphi^{-1}(\varphi(E)) = \varphi^{-1}(E')$.

5.1. aplicações lineares

página 4/4

- 1. Não são aplicações lineares as alíneas (c), (d), (e) e(k).
- 2. (a) 8; (b) (2,-1); (c) -1 (d) $\frac{1}{2}x-\frac{3}{2}$;
- 3. (a) $\varphi(x,y) = (5y 4x, -3y + x), \forall (x,y) \in \mathbb{R}^2$;
 - (b) $\varphi(x,y) = (x, 2x + y, -x), \forall (x,y) \in \mathbb{R}^2;$
 - (c) $\varphi(x,y) = (2y x, y 3x, 7x y), \forall (x,y) \in \mathbb{R}^2;$
 - (d) $\varphi(x, y, z) = 8x 3y 2z, \forall (x, y, z) \in \mathbb{R}^3;$
 - (e) φ não é aplicação linear;
 - (f) $\varphi(x,y) = (y,0,y), \forall (x,y) \in \mathbb{R}^2;$
 - (g) φ não é aplicação linear;
 - (h) $\varphi(x,y) = (y-2x, y-2x, 2x-y), \forall (x,y) \in \mathbb{R}^2;$
 - (i) φ não é aplicação linear;

 - (j) $\varphi(ax^2 + bx + c) = (a c)x^3 + bx + a, \forall ax^2 + bx + c \in P_2[x];$ (k) $\varphi(ax^2 + bx + c) = (c + b + \frac{3}{2}a)x^2 + cx + c + b \frac{a}{2}, \forall ax^2 + bx + c \in P_2[x];$

(1)
$$\varphi\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = 3a + 2b - 3c + 2d, \ \forall \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{2\times 2}(\mathbb{R}).$$

- 4. (b) \mathbb{R}^2 ; (c) $\{(4+3y,y,-3-2y): y \in \mathbb{R}\}.$
- 5. (a) $\varphi(x,y) = (y,4y-5x), \forall (x,y) \in \mathbb{R}^2;$ (b) $\{(x,9x) : x \in \mathbb{R}\};$ (c) $\{(\frac{1}{5},2)\}.$
- 6. $\{(u, u, 0) : u \in \mathbb{R}\}.$