LABORATOR#9

EX#1 Fie matricea inversabilă la stânga $\mathbf{A} \in \mathcal{M}_{m,n}(\mathbb{R}), m \geq n$, şi vectorul $\mathbf{b} \in \mathbb{R}^m$, şi sistemul supraabundent/supradeterminat de ecuații liniare

$$\mathbf{A}\mathbf{x} = \mathbf{b}. \tag{1}$$

Scrieţi o funcţie în Python care are ca date de intrare matricea \mathbf{A} şi vectorul \mathbf{b} , iar ca date de ieşire soluţia sistemului (1), $\mathbf{x} \in \mathbb{R}^n$, şi vectorul eroare reziduală, $\mathbf{r} := \mathbf{b} - \mathbf{A} \mathbf{x}$, obţinute prin rezolvarea sistemului de ecuații normale asociat sistemului (1) folosind

- (a) MEGFP;
- (b) MEGPP;
- (c) MEGPPS;
- (d) factorizarea Cholesky a matricei sistemului de ecuații normale.

Testați funcția pentru

$$\mathbf{A} = \begin{bmatrix} 0, 10 & 0, 10 \\ 0, 17 & 0, 11 \\ 2, 02 & 1, 29 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 0, 26 \\ 0, 28 \\ 3, 31 \end{bmatrix}; \tag{2a}$$

$$\mathbf{A} = \begin{bmatrix} 0, 10 & 0, 10 \\ 0, 17 & 0, 11 \\ 2, 02 & 1, 29 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 0, 27 \\ 0, 25 \\ 3, 33 \end{bmatrix}; \tag{2b}$$

$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 0 & 10^{-10} \\ 0 & 0 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 0 \\ 10^{-10} \\ 1 \end{bmatrix}. \tag{2c}$$

Indicații: Trebuie verificate următoarele condiții:

- (i) A este o matrice $m \times n$, cu $m \ge n$;
- (ii) ${\bf A}$ este o matrice inversabilă la stânga;
- (iii) A și b sunt compatibili.

 $\mathbf{EX\#2}$ Se dau următoarele puncte în planul Oxy:

	-5										
y	4,4	4,5	4	3,6	3,9	3,8	3,5	2,5	1,2	0,5	-0,2

(a) Determinați polinomul de gradul întâi, y(x) = ax + b, $a, b \in \mathbb{R}$, care rezolvă problema celor mai mici pătrate pentru setul de date de mai sus folosind sistemul de ecuații normale, i.e. dreapta de regresie.

- (b) Reprezentaţi grafic, în aceeaşi figură, setul de date de mai sus şi dreapta de regresie determinată la punctul (a).
- (c) Determinați polinomul de gradul doi, $y(x) = ax^2 + bx + c$, $a, b, c \in \mathbb{R}$, care rezolvă problema celor mai mici pătrate pentru setul de date de mai sus folosind sistemul de ecuații normale, i.e. parabola de regresie.
- (d) Reprezentaţi grafic, în aceeaşi figură, setul de date de mai sus şi parabola de regresie determinată la punctul (c).
- (e) Determinați polinomul de gradul trei, $y(x) = ax^3 + bx^2 + cx + d$, $a, b, c, d \in \mathbb{R}$, care rezolvă problema celor mai mici pătrate pentru setul de date de mai sus folosind sistemul de ecuații normale, i.e. funcția cubică de regresie.
- (f) Reprezentați grafic, în aceeași figură, setul de date de mai sus și funcția cubică de regresie determinată la punctul (e).

EX#3 Fie $\epsilon > 0$ şi sistemul supraabundent/supradeterminat de ecuații liniare

$$\begin{bmatrix} 1 & 1 & 1 \\ \epsilon & 0 & 0 \\ 0 & \epsilon & 0 \\ 0 & 0 & \epsilon \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 (3)

- (a) Determinați analitic soluția în sensul celor mai mici pătrate a sistemului (3) folosind sistemul de ecuații normale asociat.
- (b) Scrieți o funcție în Python care determină soluția în sensul celor mai mici pătrate a sistemului (3) și calculează vectorul eroare reziduală, $\mathbf{r} \coloneqq \mathbf{b} \mathbf{A} \mathbf{x}$, folosind sistemul de ecuații normale asociat.
- (c) Rulați funcția de la punctul (b) pentru valori din ce în ce mai mici ale lui ϵ care să conțină inclusiv valorile $\epsilon = \epsilon_M$ și $\epsilon = \sqrt{\epsilon_M}$, unde ϵ_M este precizia mașinii.