Make 1 Wile 1819)

2)
$$(7^{2n} - 4^{2n})$$
 mod 33
= $((7^{2})^{n} - (4^{2})^{n})$ mod 33 = $(49^{n} - 16^{n})$ mod 33
= $((49 \text{ mod } 33)^{n} - (16 \text{ mod } 33)^{n})$ mod 33
= $((16 \text{ mod } 33)^{n} - (16 \text{ mod } 33)^{n})$ mod 33 = 0
Mer gill dik huxage für alle $n \in \mathbb{N}$.

Induktionsarkung:

For
$$n=0$$
 gilt: $(h \times)^n = 1 = 1 + n \times \sqrt{1 + n \times 1 +$

Induktions hypothese:

Retrait no 1:

Ec gill:

$$\frac{1}{1000} \stackrel{\text{al}}{=} \frac{1}{1000} \stackrel{\text{d}}{=} \frac{1}{10000} \stackrel{\text{d}}{=} \frac{1}{100000} \stackrel{\text{d}}{=} \frac{1}{10000} \stackrel{\text{d}}{=} \frac{1}{1$$

"2": Offeneithligh at MC2M7, heferder int CM7 UVR won V.

Mos gill: 2M76MBarnit gilt: MU = 2M71M UU = 2M71M UUU UU UUU UUU UUU UU UUU UUU UUU UUU UUU UUU UUU UU UUU UU UU

S)

a) wahr: A orthogonal $|AA^{\circ}=I|$ => |au|A|=1Regnindung:

$$|\operatorname{old} A| = \sqrt{\left|\operatorname{old} A\right|^{2}} = \sqrt{\left|\operatorname{old} A \cdot \operatorname{old} A\right|}$$

$$= \sqrt{\left|\operatorname{old} A \cdot \operatorname{old} A^{T}\right|}$$

$$= \sqrt{\left|\operatorname{old} \left(A \cdot A^{T}\right)\right|} = \sqrt{\left|\operatorname{old} \left(T\right)\right|} = 1$$

b)
$$A_6 \text{ IL}^{n\times n}$$
, $A_40 \Rightarrow A^n \neq 0 \quad \forall n ?$
Foliah. $n=2$ $A=(30)\neq 0$, $A=(00)[00]=(00)$.

6) Sir A symmulisch pos. def. (x/x) = (x/Ay)
Prûfe Eigenschaften des Skala produkk:

Definithing $(x | x)_A = (x | A_X) Z O$ five alle $x \in \mathbb{R}^n$ and Gleichhuit gill rev five x = O, with A positive definit.

Symmetric: $(x | y)_A = (x | A_Y) = (A_Y | x) = (y | A_X)$ Therefore $(x | y)_A = (x | A_Y) = (A_Y | x) = (y | A_X)$

Legenmetrisch
$$= (y | Ax) = (y | x)_A$$
Acquamatical

· Linearitat:

$$(-1 \times_{1} + \mu \times_{2} | y)_{A} = (-1 \times_{1} + \mu \times_{2} | Ay)$$

$$(-1 \cdot)_{\mu\nu} = -1 \cdot (\times_{1} | Ay) + \mu \cdot (\times_{2} | Ay)$$

$$= -1 (\times_{1} | y)_{A} + \mu (\times_{2} | y)_{A}$$
12

Her definiet (x14), in Skolarprodukt and 10".

$$f(a)$$
 $f(a) = \begin{pmatrix} \frac{1}{2} & \alpha - \frac{1}{2} \\ \alpha - \frac{1}{2} & \frac{1}{2} \end{pmatrix}$

$$det(A_{\alpha})=$$

$$= \alpha - \alpha^{2} = \alpha(1-\alpha)$$

$$= (\frac{1}{2} - 1)^2 - (\alpha - \frac{1}{2})^2$$

Meo cel of ahrlish zu

$$\mathcal{D}_{\omega} = \begin{pmatrix} \infty & O \\ O & 1 - \infty \end{pmatrix}$$

$$S = (S^{-1})^{-1} \frac{1}{dut} \left(\frac{-1}{-1} \frac{-1}{1} \right) = \frac{1}{-2} \left(\frac{-1}{-1} \frac{-1}{1} \right) = \frac{1}{2} \left(\frac{1}{1-1} \frac{1}{1} \right) = \left(\frac{1}{2} \frac{1}{2} \frac{1}{2} \right)$$

- Ol) 1) A_{α} all pos definit, when min $\{\alpha, 1-\alpha\} > 0$, also for $\alpha \in (0, \infty) \cap (-\infty, 1) = (0, 1)$ D.h. A_{α} all pos. Clebinit for $\alpha \in (0, 1)$
 - 2) Aa ist regalier definit, wern max {2,1-2} 20, also Fix \$\lambda 6(-\infty,0) \lambda \left(1,\infty) = \varphi\$

 Nev id Aa Fix bein \$\lambda 612\$ regalier definit.
 - 3) A_{α} ist indefinit , wenn $\alpha > 0$ and $1-\alpha < 0$ order $\alpha < 0$ and $1-\alpha > 0$ $\alpha < 1$ $\alpha < 0$ $\alpha < 1$ α

Mar od to indefinit Fir a6(1,2) U (-2,0).

$$U = \begin{pmatrix} \frac{1}{2} & e^{-\frac{1}{2}} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 - x^{2} \end{pmatrix}$$

$$\begin{aligned}
\det(B_{x} - \lambda I) &= \begin{pmatrix} A_{x} - \lambda I & 0 \\ 0 & 0 & 1 - \alpha^{2} - \lambda \end{pmatrix} \\
&= (1 - \alpha^{2} - \lambda) \cdot \det(A_{\alpha} - \lambda I) \\
&= (1 - \alpha^{2} - \lambda) \cdot (\lambda - \alpha) (\lambda - (1 - \alpha))
\end{aligned}$$

> EN von Be sind &, 1-a, 1-a2,

1) Oill: As invelibre (=> Bs invertible ?

Noin, des gill right.

Most An inviteta, aber

$$aut(B_{-1}) = \begin{vmatrix} \frac{1}{2} & -\frac{3}{2} & 0 \\ -\frac{3}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{vmatrix} = 0$$

Meo il By will investive box.