

FIG. 1A
(Prior Art)

WHITE DISPLAY
(VOLTAGE NOT APPLIED)

FIG. 1B
(Prior Art)

HALF TONE DISPLAY
(VOLTAGE V_1)

BLACK DISPLAY
(VOLTAGE V_2)

FIG. 2A
(Prior Art)
BLACK DISPLAY
(VOLTAGE NOT APPLIED)

FIG. 2B
(Prior Art)
HALF TONE DISPLAY
(VOLTAGE V1)

FIG. 2C
(Prior Art)
WHITE DISPLAY
(VOLTAGE V2)

FIG. 3A
(Prior Art)

FIG. 3B
(Prior Art)

FIG. 3C
(Prior Art)

FIG. 4A
(Prior Art)

FIG. 4B
(Prior Art)

FIG. 4C
(Prior Art)

FIG. 5 (Prior Art)

FIG. 6 (Prior Art)

FIG. 7 (Prior Art)

FIG. 8 (Prior Art)

FIG. 9A (Prior Art)

FIG. 9B (Prior Art)

- ① A tilt angle of a liquid crystal molecule is changed in response to a voltage.

- ② A capacitance is changed by the tone.
③ A capacitance is also changed by light irradiation.

FIG. 10A (Prior Art)

FIG. 10B (Prior Art)

FIG. 11
(Prior Art)

FIG. 12
(Prior Art)

FIG. 13
(Prior Art)

FIG. 14A (Prior Art)

FIG. 14B

FIG. 15

FIG. 16

FIG. 17

FIG. 18

FIG. 19

FIG. 20A

FIG. 20B

FIG. 21

FIG. 22

FIG. 23

FIG. 24

FIG. 25

FIG. 26A

FIG. 26B

FIG. 27

FIG. 28

FIG. 29

FIG. 30

FIG. 31A

FIG. 31B 40f

FIG. 32A

FIG. 32B

FIG. 33

FIG. 34

FIG. 35

FIG. 36

FIG. 37

FIG. 38

FIG. 39A

FIG. 39B

FIG. 40

FIG. 41A

FIG. 41B

FIG. 42

FIG. 43

FIG. 44

FIG. 45A

FIG. 45B

FIG. 46

FIG. 47

FIG. 48

FIG. 49

ALIGNMENT OF LIQUID CRYSTAL MOLECULES
(NO POSITIONAL DISPLACEMENT)

FIG. 50

ALIGNMENT OF LIQUID CRYSTAL MOLECULES
(POSITIONAL DISPLACEMENT)

FIG. 51

FIG. 52

FIG. 53

FIG. 54

FIG. 55

The equipotential lines are pushed out outwardly from the liquid crystal layers.

FIG. 56

AN AREA IN WHICH NO DISCLINATION
IS GENERATED, BUT THE ALIGNMENT
IS UNSTABLE.

FIG. 57

FIG. 58A

FIG. 58B

FIG. 59

