DETECCIÓN DE ÁRBOLES EN IMÁGENES AÉREAS

RESULTADOS

PABLO ASENSIO MARTÍNEZ VANESA LOMAS GARCÍA

ÍNDICE

- 1. Introducción al Problema
- 2. Descripción de Resultados
- 3. Requisitos Cumplidos
- 4. Curva Precision Recall
- 5. Acierto Esperado
- 6. Métricas del Desarrollo
- 7. Conclusiones y Futuras Mejoras

1. Introducción al Problema

Requisitos

- ► Imágenes de gran resolución.
- ▶ Tiempo de procesamiento por imagen < 1 min.</p>
- ► Error < 10%
- Detección de cada árbol con un punto y un radio.
- ▶ Aplicación servidor web.

1. Introducción al Problema

Metodología

- ► Uso de Deep Learning → Red de detección de objetos.
- RetinaNet
- Creación de un dataset de entrenamiento y de test.
- Servidor en Docker para la aplicación.

2. Descripción de los Resultados

2. Descripción de los Resultados

3. Requisitos Cumplidos

Requisitos cumplidos

- Tiempo de procesamiento por imagen < 1 min.
 - GPU: 20-30 segundos (5000x5000)
- Detección con radio y punto.
- Aplicación Web.

Requisitos no cumplidos

- No detección de árboles pelados.
- ► Error 17,56 %

4. Curva Precision - Recall

Conceptos

$$IoU = \frac{\text{área de intersecición}}{\text{área de unión}} = \frac{}{}$$

▶
$$Precision = \frac{TP}{TP + FP} = \frac{TP}{todas\ las\ detecciones}$$

5. Acierto Esperado

Para IoU=0.5

 $IoU > 0.5 \rightarrow TP$

 $IoU < 0.5 \rightarrow FP$

Ground Truth	TP	FP	FN
444	366	151	78

Precision =
$$\frac{TP}{TP+FP} = \frac{366}{366+151} = 0.708$$

$$Recall = \frac{TP}{TP+FN} = \frac{366}{366+78} = 0.8243$$

$$FNR = \frac{FN}{TP + FN} = \frac{78}{366 + 78} = 0.175$$

6. Métricas del Desarrollo

Métricas	
N° Clases	5 (6)
N° Funciones	8 (11)
Nº Líneas	233 (4180)
N° Pruebas	2
% Comentarios	9.4
% Complejidad	0.0
% Duplicado	0.8
Tiempo 1 caso (s)	25

Fuentes: SonarCloud, Codacy

7. Conclusiones y Futuras Mejoras

Conclusiones

- Buena estimación del número y posición de los árboles.
- Primer sistema funcional aceptable.

Trabajos futuros

- Dataset más grande y variado.
- Paralelizar la detección.

Repositorio

https://github.com/pasensio97/AIVA 2021-imagenes aereas

¡GRACIAS POR VUESTRA ATENCIÓN!