1 = \$.03 RS GHZ

b) $\frac{1}{64.15} = .05625 \text{ GeHz}$

$$\begin{array}{c|cccc}
\hline
A & A & B \\
\hline
\overline{A} & \overline{A}B & \overline{A}B
\end{array}$$

AROS

AB is the same case as \overline{AB} because \overline{B} in both cases they have the same respective values (A=1=B), $\overline{A}=0=\overline{B}$

a) $A\overline{B} = 10 \Rightarrow A > B$:

> HIGH

A=B %

 $b_3 = 93$ $b_2 = b_3 \oplus 92$ $b_1 = b_2 \oplus 91$ $b_0 = 6, \oplus 90$

93. 92 91 90

$$B_3 = 9+8$$
 $B_1 = 2+3+6+7$ $B_2 = 9+8+6+7$ $B_0 = 1+3+5+$

$$B_3 = 9+8$$
 $B_1 = 2+3+6+7$
 $B_2 = 9+8+6+7$ $B_0 = 1+3+5+7+9$

7)

100 ns = .01 Gultz

if the counter divides by 10 Hen final frequency will be .001671tz = 1000ns, so initial CLK speed must be snaker than 100ns

THE

1005= 10= 200 1 GHz 1000

