Geometric Group Theory (Spring 2023, Wenyuan Yang)

Yuxiang Jiao

Contents

Int	croduct	tion	3
	0.1	Groups acting on hyperbolic spaces	3
	0.2	Boundary theory	3
1		Groups acting on hyperbolic spaces	4
	1.1	Feb 23	4
	1.2	Feb 28	5
	1.3	Mar 2	7
	1.4	Mar 9	9
	1.5	Mar 14	10
	1.6	Mar 16	12
	1.7	Mar 23	14
	1.8	Mar 28	15
	1.9	Mar 30	17
	1.10	Apr 6	18
	1.11	Apr 11	19
2		Boundary Theory	21
	2.1		21
	2.2	•	21
	2.3	•	24
3		The Patterson-Sullivan Measure	26
4		Homework	27
	4.1	Exercise 1	27
	4.2	Exercise 2	29
	4.3		31
	44	Exercise 4	33

Introduction

There are three main topics in this semester.

- I. Groups acting on δ -hyperbolic spaces.
- II. Boundary Theory for groups: dynamics.
- III. Patterson-Sullivan measure on boundary.

§0.1 Groups acting on hyperbolic spaces

Hyperbolic groups. Gromov (1987), Rips, Cannon.

The fundamental group of a closed Riemannian manifold with negative curvature.

Relatively hyperbolic groups. Gromov, Farb (96), Bowditch, Osin

- (1) The fundamental group of a finite volume Riemannian manifold with negative curvature
- (2) H * K, for example, $\mathbb{Z}^2 * \mathbb{Z}^3$.

Acylinderically hyperbolic groups. Osin (2015), Guirardel, Dahmani(2012)

- ⇔ Groups with hyperbolic embed subgroups.
 - (1) Mapping class groups
 - (2) $\operatorname{Out}(F_n)$.
 - (3) Cremona groups $\operatorname{Aut}(\mathbb{P}^2(\mathbb{C}))$.
 - (4) Groups with contracting elements.

§0.2 Boundary theory

We focus on **Gromov boundary** of a δ -hyperbolic (geodesic) space. Let X and Y be two hyperbolic spaces associated with boundaries ∂X and ∂Y , respectively. Let $\psi:X\to Y$ be a QIE, then it induces a boundary map $\partial \psi:\partial X\to\partial Y$ which is continuous. The boundary is "better".

We will equip the boundary with a visual metric, then the boundary map $\partial \psi$ will be quasi-conformal.

Motivation. Mostow Rigidity Theorem.

Applications. Quasi-isometric rigidity.

1 Groups acting on hyperbolic spaces

§1.1 Feb 23

Let (X, d) be a **length space**, that is,

 $d(x, y) = \inf \{ len(\gamma) : \gamma \text{ is a path that connects } x \text{ and } y \}$

where

$$\operatorname{len}(\gamma) := \sup_{t_0 \leqslant t_1 \leqslant \dots \leqslant t_n} \sum_{i=1}^n d(\gamma(t_i), \gamma(t_{i-1})).$$

A path γ is called rectifiable if $len(\gamma) < \infty$.

We say a metric space is **proper** if for every $o \in X$ and r > 0, $\overline{B(o,r)}$ is compact.

Definition 1.1.1. A path γ is called a **geodesic** if there is a parametrization of γ as

$$\gamma: [0, \operatorname{len}(\gamma)] \to X$$

which is a isometric embedding. Or equivalently, let $\gamma:[0,1]\to X$, then for every $0\leqslant s\leqslant t\leqslant 1,$ $d(\gamma(s),\gamma(t))=\ln\gamma([s,t]).$

Theorem 1.1.2 (Arzela-Ascoli Lemma)

Let (M,d) be a compact metric space and $\gamma_n \in C((M,d) \to (M,d))$. Then there is a subsequence of γ_n converges in uniform convergence iff $\{\gamma_n\}$ is equi-continuous and uniformly bounded.

Let γ_n be a sequence of path uniformly converges to γ , then

$$\liminf_{n\to\infty} \operatorname{len}(\gamma_n) \geqslant \operatorname{len}(\gamma).$$

And if all of γ_n 's are geodesics, then γ is a geodesic.

Theorem 1.1.3 (Hopf-Rinow)

Let X be a length space. Then X is proper if and only if

- (i) X is locally compact, and
- (ii) X is complete.

In particular, X is a **geodesic space** in this case.

Example 1.1.4

A connected graph with combinatorial metric is a geodesic space. But it may not be proper if the graph is not locally finite.

Definition 1.1.5. A geodesic metric space (X,d) is δ -hyperbolic for $\delta \geqslant 0$ if for every geodesic triangle $\Delta(x,y,z)$, every side is contained in the δ -neighborhood of the other two sides.

A δ -hyperbolic space satisfies a **Thin Triangle Property**: let $\Delta(x,y,z)$ be a geodesic triangle with three sides α,β,γ , then there exists $o\in\alpha$ such that $d(o,\beta)\leqslant\delta$ and $d(o,\gamma)\leqslant\delta$. Such point o is called a δ -center.

Proposition 1.1.6 (Exponential divergence)

Let p be a rectifiable path in a δ -hyperbolic space (X,d). Let α be a geodesic connecting extremal points of p. Then for every $x \in \alpha$,

$$d(x, p) \le \delta \lceil \log \operatorname{len}(p) \rceil + 1.$$

Or equivalently,

$$\operatorname{len}(p) \geqslant 2^{(d(x,p)-1)/\delta}$$
.

Definition 1.1.7. A path p is called a (λ, c) -quasi geodesic in (X, d) if for every rectifiable subpath $q \subseteq p$,

$$d(q_-, q_+) \leqslant \operatorname{len}(q) \leqslant \lambda d(q_-, q_+) + c$$

where q_{-} and q_{+} are endpoints of q.

Theorem 1.1.8 (Morse Lemma: stability of quasi-geodesics)

Let p be a (λ,c) -quasi geodesic in a δ -hyperbolic space. Then there exists $D=D(\lambda,c,\delta)$ such that

$$p \subset \mathcal{N}_D([p_-, p_+]), \quad [p_-, p_+] \subset \mathcal{N}_D(p),$$

where \mathcal{N}_D denotes D-neighborhood and $[p_-,p_+]$ denotes the geodesic.

Remark 1.1.9 Morse lemma does not hold in an Euclidean space. For example, let Δxyz be a right triangle with $xy \perp yz$. Then [xy][yz] is a (2,0)-quasi-geodesic. But the is no D=D(2,0) such that $[x,y][y,z] \subset \mathcal{N}_D([x,z])$.

Proof. It suffices to prove the second assertion. The first one follows from the second one by a connected argument.

Take $x \in [p_-, p_+]$ and let R = d(x, p), then there exists $\theta = \theta(\delta) > 0$ such that $len(p) \geqslant e^{\theta R}$. On the other hand,

$$len(p) \leqslant \lambda d(p_-, p_+) + c.$$

It suffices to control $d(p_-, p_+)$ by a linear function of R. Then we can get a contradiction. \square

§1.2 Feb 28

Example 1.2.1 (Some examples of hyperbolic spaces)

- 1. Tree: $\delta = 0$.
- 2. \mathbb{H}^2 & Poincaré disk.

Continued proof of Theorem 1.1.8. Take $x \in [p_-, p_+]$ such that d(x, p) = R is maximal. Take y_1, y_2 on $[p_-, p_+]$ such that $d(y_1, x) = d(x, y_2) = 2R$. Let z_1, z_2 be the projection of y_1, y_2 on p, respectively. We consider the path

$$\widetilde{p} := y_1 \leadsto z_1 \leadsto z_2 \leadsto y_1.$$

Since $d(y_1, z_1), d(y_2, z_2) \leqslant R$, then \widetilde{p} is disjoint with B(x, R). Then we have

$$\operatorname{len}(\widetilde{p}) \leqslant 2R + \operatorname{len}(p[z_1, z_2]) \leqslant 2R + \lambda d(z_1, z_2) + c \leqslant 2R + 6\lambda R + c.$$

Combining with $len(\widetilde{p}) \geqslant e^{\theta R}$, we get a uniform bound on R.

Definition 1.2.2. Let $x, y, z \in (X, d)$ be three points, we define the **Gromov product** as

$$\langle x, y \rangle_z = \frac{1}{2} (d(x, z) + d(y, z) - d(x, y)).$$

Example 1.2.3

- 1. In \mathbb{E}^2 , let $\Delta(x,y,z)$ be a triangle and $\odot i$ be the incircle which tangents [yz] at a. Then $\langle x,y\rangle_z=d(z,a)$.
- 2. In a tree, we have $\langle x,y\rangle_z=d(z,[x,y])$. This identity is true for general spaces. But it always holds $\langle x,y\rangle_z\leqslant d(z,[x,y])$.

Definition 1.2.4. A point $x \in X$ is a δ -center for a triangle $\Delta(\alpha, \beta, \gamma)$ if

$$d(x, \alpha) \leq \delta$$
, $d(x, \beta) \leq \delta$, $d(x, \gamma) \leq \delta$.

Lemma 1.2.5

If there exists $\delta>0$ such that for every geodesic triangle $\Delta\subset (X,d),$ Δ has a δ -center, then for every $x,y,z\in X,$

$$d(z, [x, y]) \leq \langle x, y \rangle_z + 2\delta.$$

Proof. Consider a geodesic triangle $\Delta(x,y,z)$. By the condition, there exists $o \in [x,y]$ such that $d(o,[x,z]),d(o,[y,z]) \leq \delta$. By triangle inequality, the conclusion follows.

Lemma 1.2.6

If there exists $\delta>0$ such that for every geodesic triangle $\Delta\subset (X,d),$ Δ has a δ -center, then (X,d) is $\widetilde{\delta}$ -hyperbolic for $\widetilde{\delta}=\widetilde{\delta}(\delta).$

Proof. Let $\Delta(x,y,z)$ be geodesic triangle and o be a δ -center. Then p=[x,o][o,y] is a $(1,2\delta)$ -geodesic. Hence for every $z\in p$, we have $\langle x,y\rangle_z\leqslant \delta$. Let α be the edge of Δ connecting x and y. By the lemma above, we have $d(z,\alpha)\leqslant \delta+4\delta$ for every $z\in p$. Hence $p\subset \mathcal{N}_{5\delta}(\alpha)$. Also we have $\alpha\subset \mathcal{N}_{10\delta}(p)$, the conclusion follows. \square

Tree approximation for hyperbolic spaces.

Let (X,d) be a δ -hyperbolic space and $F \subset (X,d)$ be a finite set with #F = n. We construct an embedded tree T with leaves containing F as follows:

- 1) Let $F = \{x_0, \dots, x_{n-1}\}$.
- 2) Let $T_1 = [x_0, x_1]$. Assume that T_i is constructed, we construct

$$T_{i+1} = T_i \cup [x_i, z_i]$$

where z_i is the shortest projection from x_i to T_i . Then d induces a metric d_T on the tree T.

Proposition 1.2.7 (Tree approximation)

There exists $c = c(n, \delta)$ such that for every $x, y \in T$,

$$d(x,y) \leqslant d_T(x,y) \leqslant d(x,y) + c.$$

Corollary 1.2.8

There exists $\delta' = \delta'(\delta)$ such that for every $x, y, z, o \in (X, d)$,

$$\langle x, y \rangle_{\alpha} \geqslant \min \{ \langle x, z \rangle_{\alpha}, \langle z, y \rangle_{\alpha} \} - \delta'.$$

Remark 1.2.9 This is also a equivalent definition of a hyperbolic space.

Proof. This conclusion holds for a tree (0-hyperbolic space) with δ' . For general cases, it follows by the tree approximation.

Let p be a path and $x \in X$, we define the projection

$$\pi_n(x) := \{ y \in p : d(x, y) = d(x, p) \}.$$

Lemma 1.2.10 (Strong contractility of quasi-convex subsets)

Let α be a geodesic in a δ -hyperbolic space (X,d). Then for every metric ball B with $B \cap \alpha = \emptyset$, we have

$$\operatorname{diam} \pi_{\alpha}(B) \leqslant C$$

where $C = C(\delta)$ only depends on δ .

Remark 1.2.11 If X is a tree, then $\pi_{\alpha}(B)$ can only have one point if $B \cap \alpha = \emptyset$.

§1.3 Mar 2

Some properties of a Hyperbolic space:

- Thin triangle property.
- Morse lemma.
- **Contracting property**. This property can describe a "partially hyperbolic space" with some "hyperbolic direction": the geodesics satisfy the contracting property.

Lemma 1.3.1 (Bounded image property)

There exists $C = C(\delta) > 0$ such that for every geodesics $\alpha = [x, y]$ and γ , if

$$d(\pi_{\gamma}(x), \pi_{\gamma}(y)) \geqslant C,$$

then

$$d(\pi_{\gamma}(x), \alpha) \leqslant C, \quad d(\pi_{\gamma}(y), \alpha) \leqslant C.$$

Proof. Let $u \in \pi_{\gamma}(x)$ and $v \in \pi_{\gamma}(y)$, then [x,u][u,v] is a (3,0)-quasi-geodesic. Let $D = D(3,0,\delta)$, then $d(u,[x,v]) \leqslant D$. Let $z \in \pi_{[x,v]}(u)$, we know that $z \in \mathcal{N}_{\delta}([x,y][y,v])$.

If $z \in \mathcal{N}_{\delta}([y,v])$, take $w \in \pi_{[y,v]}(z)$, then $d(w,\gamma) \leqslant d(w,z) + d(z,u) \leqslant \delta + D$. Hence $d(w,v) = d(w,\gamma) \leqslant D + \delta$. It follows that $d(u,v) \leqslant d(w,v) + d(w,u) \leqslant 2(D+\delta)$.

Otherwise $z \in \mathcal{N}_{\delta}([x,y])$, then $d(u,\alpha) \leq (D+\delta)$. Similarly, $d(v,\alpha) \leq (D+\delta)$. Take $C := 2(D+\delta)$ is enough.

Proof of Lemma 1.2.10. Let B=B(x,R). Take C=10C' where C' is the constant given by previous lemma. Take $y\in B(x,R)$ and let u,v be projections of x,y on α respectively. If d(u,v)>10C', then $d(u,[x,y]),d(v,[x,y])\leqslant C'$. Let u_1,v_1 be the projections of u,v on [x,y] respectively. Then $d(x,u_1),d(x,v_1)\geqslant R-C'$. On the other hand, $d(u_1,v_1)\geqslant d(u,v)-2C'$. Then

$$R \geqslant d(x,y) \geqslant (R - C') + (d(u,v) - 2C') \geqslant R + 7C'.$$

We get a contradiction.

Lemma 1.3.2 (Section **4.1**, Exercise 1.5)

Let (X,d) be a general geodesic space. Let γ be a C-contracting geodesic. Then for every (λ,c) -quasi-geodesic p with endpoints on γ , we have $p \in \mathcal{N}_D(\gamma)$ where $D = D(\lambda,c,C)$.

Centers. Let $\Delta(x,y,z)$ be a geodesic triangle in a δ -hyperbolic space. Then the projection point $\pi_{[y,z]}(x)$ is a $D(3,0,\delta)$ -center of $\Delta(x,y,z)$.

Now we consider the points $u \in [y,z]$ such that $d(u,z) = \langle x,y \rangle_z$. We construct $v \in [x,z]$ and $w \in [x,y]$ similarly. These points u,v,w are called **congruent points**. One can show that congruent points are uniform centers of $\Delta(x,y,z)$.

Lemma 1.3.3

For every C > 0, there exists D > 0 such that for every geodesic triangle Δ ,

$$\operatorname{diam} \{C - \operatorname{centers of } \Delta\} \leqslant D.$$

Proof. The key point is that if o is a C-center of Δ then $|d(x,o)-\langle y,z\rangle_x|\leqslant 3C$. Then for two different centers o_1,o_2 . Let w_1,w_2 be the projections of o_1,o_2 on [x,y]. Then $d(w_1,w_2)\leqslant 2(3C+C)=8C$ and hence $d(o_1,o_2)\leqslant 8C+2C=10C$.

Proof of tree approximation (Proposition 1.2.7). We want to show that any arc in T_i is a $(1, c_i)$ -quasi-geodesic. When i=1, we have $c_1=0$. When i=2, we can choose $c_2=2D$ since the point $\pi_{[x_1,x_2]}(x_3)$ is a center. Then we can do the induction on i.

§1.4 Mar 9

Definition 1.4.1. Let (X, d_X) and (Y, d_Y) be metric spaces. A map $f: X \to Y$ is called a (λ, c) -quasi-isometric embedding (QIE) where $\lambda \geqslant 1$ and $c \geqslant 0$, if for every $x_1, x_2 \in X$,

$$\frac{1}{\lambda} d_X(x_1, x_2) - c \leqslant d_Y(fx_1, fx_2) \leqslant \lambda d_X(x_1, x_2) + c.$$

Remark 1.4.2 A QIE is not necessarily injective or continuous. But it is coarsely injective. Specifically, if $d_X(x_1, x_2) \geqslant \lambda c + 1$ then $fx_1 \neq fx_2$.

Definition 1.4.3. Let $f: X \to Y$ be a QIE, we say f is a (λ, c) -quasi-isometry (QI) if there exists $R \geqslant 0$ such that $\mathcal{N}_R(f(X)) \supset Y$. In this case, we say X and Y are quasi-isometric.

Example 1.4.4

- 1. Every bounded metric space is quasi-isometric with $\{pt\}$.
- 2. The natural embedding $\mathbb{Z}^n \hookrightarrow \mathbb{R}^n$ is a QI.

Definition 1.4.5. Let $f: X \to Y$ be a map. A map $g: Y \to X$ is called a **quasi-inverse** of f if there exists $R \geqslant 0$ such that for every $x \in X$, $d_X(gfx, x) \leqslant R$.

Remark 1.4.6 The map g is a quasi-inverse of f does not imply f is a quasi-inverse of g.

Lemma 1.4.7 A map f is QI \iff f admits a quasi-inverse which is also a QIE.

Remark 1.4.8 During the proof, we can see that if f admits a quasi-inverse g which is a QIE then f is also a quasi-inverse of g. It asserts that the quasi-isometry between two spaces is a equivalence relation.

Given a metric space (X, d), we can consider the family of self-quasi-isometries on X. Define

$$\operatorname{QI}(X,d) \coloneqq \left\{ f: X \to X \text{ is a quasi-isometry} \right\} / \sim$$

where $f \sim g$ if $\sup_{x \in X} d(fx, gx) < \infty$. Then $\mathrm{QI}(X, d)$ is a group and $\mathrm{QI}(X, d_X) \cong \mathrm{QI}(Y, d_Y)$ if X and Y are quasi-isometric.

Program (Gromov). Classify the class of finitely generated groups up to quasi-isometry (between Cayley graphs).

The Cayley graph

Given a finitely generated group, we want to correspond it with a geometric object (a proper geodesic space). The Cayley graph.

Definition 1.4.9. Let G be a group generated by a finite, symmetric generating set S. The **Cayley graph** Cay(G, S) is a directed graph defined as below:

• The vertices V := G.

• The edges $E := G \times S$. An edge e = (g, s) has two endpoints $e_- = g$ and $e_+ = gs$.

For example, if $g_1,g_2\in G$ satisfying $g_2=g_1s$ with $s\in S$. Then there are two edges between g_1,g_2 (with a little abuse of notation): $g_1\stackrel{s}{\longrightarrow} g_2$ and $g_2\stackrel{s^{-1}}{\longrightarrow} g_1$.

Fact 1.4.10. A Cayley graph $\mathrm{Cay}(G,S)$ is connected and regular. The degree of every vertex equals to #S.

The Cayley graph is equipped with a metric d induced by paths on the graph, defined as:

$$d(g_1, g_2) := \inf \{ l(p) : p \text{ is a directed path connecting } g_1 \text{ and } g_2 \}.$$

We refer to d as the **word metric**. Thus, $(\operatorname{Cay}(G,S),d)$ is a proper metric space. Note that G acts naturally on the Cayley graph $\operatorname{Cay}(G,S)$ by left multiplication, and this action is by isometries.

Remark 1.4.11 Cayley graph is dual graph of tessellation of discrete groups on \mathbb{H}^n or \mathbb{E}^n .

Example 1.4.12

- 1. \mathbb{Z}^n .
- 2. $\pi_1(\Sigma_q)$ with $g \geqslant 2$. The dual graph of tessellation of $\Sigma_q \cap \mathbb{H}^2$.
- 3. The Baumslag-Solitar group $BS(m,n) = \langle a,t|ta^mt^{-1} = a^n\rangle$.
 - BS(1,2) \cap \mathbb{H}^2 by $a=(z\mapsto z+1)$ and $t=(z\mapsto 2z)$. Note that there is a elementary cycle in the graph as a,a,t,a^{-1},t^{-1} . Then we can draw the graph as a fractal of such rectangles (see wiki).

§1.5 Mar 14

Fundamental lemma

Let G be a group and (X,d) be a length space. We consider G acting on (X,d) isometrically, that is, a homomorphism $G \to \text{Isom}(X,d)$.

Definition 1.5.1. Let G be a group and X be a set. An **action** $G \cap X$ means a map $G \times X \to X, (g,x) \mapsto g.x$ satisfying 1.x = x and $g_1.(g_2.x) = (g_1g_2).x$. Equivalently, it is a homomorphism $G \to \operatorname{Sym}(X)$. Let us first recall some definition of group actions.

Definition 1.5.2. 1) We say the action is **effective** if $\ker(G \to \operatorname{Sym}(X))$ is finite.

- 2) We say the action is **faithful** if $\ker(G \to \operatorname{Sym}(X))$ is trivial.
- 3) If X is a topological space. We say the action is **proper** if for every compact subset $K \subset X$, we have

$$\#\{g \in G : g.K \cap K \neq \emptyset\} < \infty.$$

Fact 1.5.3. Let X be a locally compact space. It the action $G \cap X$ is proper, then $G_x = \{g \in G : g.x = x\}$ is finite and the orbit $Gx = \{g.x : g \in G\}$ is a discrete closed subset in X.

Fact 1.5.4. The converse is true. [Ratciffe, Found Hypermanifold]

Definition 1.5.5. We say $G \cap X$ is **cocompact** if $\exists K \subset X$ compact such that G.K = X.

Remark 1.5.6 If X is locally compact then $G \cap X$ is cocompact iff X/G is compact.

Remark 1.5.7 The action $G \cap X$ is proper $\iff \Phi: G \times X \to X \times X, (g, x) \mapsto (g.x, x)$ is proper (preimage of compact is compact), where we equip G with the discrete topology.

Theorem 1.5.8 (Fundamental Lemma, Milnor-Svarc)

If G (isometrically) acts on a proper geodesic space (X,d) properly and cocompactly. Then

- 1. G is finitely generated by S.
- 2. Fix $o \in X$, then the map $(G, d_S) \to (X, d), g \mapsto g.o$ is a quasi-isometry.

Remark 1.5.9 For every finite generating sets S,T, we have (G,d_S) and (G,d_T) are quasi-isometric.

Remark 1.5.10 If we do not assume that (X, d) is proper, then the second term still holds while S may be infinite. (Need the action is cobounded, see Section 4.2.)

Proof. Take compact $K \subset X$ such that G.K = X. Let $R = \operatorname{diam}(K)$, then $\mathcal{N}_R(Go) = X$ for some $o \in K$. For $g \in G$, assume that $n \leqslant d(o, go) < n + 1$. Let $x_0, x_1, \cdots, x_n, x_{n+1}$ be points on [o, go] such that $o = x_0 < x_1 < \cdots < x_n \leqslant x_{n+1} = go$ with $d(x_{i-1}, x_i) = 1$ for $1 \leqslant i \leqslant n$. Then there exists $g_i \in G$ such that $d(g_i o, x_i) \leqslant R$. We have

$$d(o, g_i^{-1}g_{i+1}o) = d(g_i o, g_{i+1}o) \le 2R + 1.$$

Let $S=\{s\in G: d(o,so)\leqslant 2R+1\}$, which is a finite set. Then $\langle S\rangle=G.$

Now we verifies the second term. Since $\mathcal{N}_R(Go)=X$, it suffices to show $g\mapsto g.o$ is a QIE. For every $g\in G$, write $g=s_1\cdots s_l$ a geodesic word. Then

$$d(o, go) \leq d(o, s_1o) + d(s_1o, s_1s_2o) + \dots + d(s_1 \dots s_{l-1}o, s_1 \dots s_lo)$$

= $d(o, s_1o) + d(o, s_2o) + \dots + d(o, s_lo) \leq \lambda d_S(1, g).$

On the other hand, if $d(o,go) \geqslant n$, then g can be written into a multiplication of at most n+1 elements s_i with $d(o,s_io) \leqslant 2R+1$. Then $d(1,g) \leqslant Cn$. Hence $d(o,go) \geqslant C^{-1}d_S(1,g)$. \square

Corollary 1.5.11

Let H < G be a finite index subgroup. If G is finitely generated then H is finitely generated.

Proof. Since H is a finite index subgroup, the action $H \cap Cay(G, S)$ is cocompact.

Corollary 1.5.12

The fundamental group of a compact manifold is finitely generated.

Proof. Consider $\pi_1(M) \cap (\widetilde{M}, d)$ where \widetilde{M} is the universal cover of M.

Corollary 1.5.13

Assume that $1 \to N \to G \to \Gamma \to 1$ and G is finitely generated, N is finite. Then G is quasi-isometric to Γ .

Some history

- 1. **Milnor, 1968.** Let M be a closed manifold with negative curvature, then $\pi_1(M)$ has exponential growth. Specifically, let B(n) be the ball of radius n on $\mathrm{Cay}(G,S)$, then $\varphi: n \mapsto \#B(n)$ has exponential growth.
- 2. **Milnor-Wolf**, **1968**. A finitely generated solvable group is of exponential growth or polynomial growth. Furthermore, if it has polynomial growth then it is nilpotent. Their work induced two questions:
 - Does there exists an intermediate growth?
 - Polynomial growth implies (virtually) nilpotent?
- 3. **Grigorchuk**, **1980s**. Grigorchuk's group has an intermediate growth.
- 4. **Gromov**, **1980**. Polynomial growth implies (virtually) nilpotent.

Remark 1.5.14 Growth function and hyperbolicity are QI-invariants.

§1.6 Mar 16

Definition 1.6.1. A finitely generated group G is **hyperbolic** if for some finite generating set S the Cayley graph $(\text{Cay}(G, S), d_S)$ is δ -hyperbolic for some $\delta \ge 0$.

Example 1.6.2 (Hyperbolic groups)

- 1. Finite groups are hyperbolic.
- 2. Free groups $\mathbb{F}(S)$ are hyperbolic.
- 3. Let (X, d) be a proper δ -hyperbolic space and G act on (X, d) properly and cocompactly. Then Cay(G, S) is quasi-isometric with (X, d) hence G is hyperbolic.
- 4. $\pi_1(\Sigma_q) \cap \mathbb{H}^2$, hence $\pi_1(\Sigma_q)$ is hyperbolic.
- 5. π_1 (compact Riemann manifold with negative curvature) is hyperbolic.

Lemma 1.6.3

Let $\varphi: X \to Y$ be a QIE between any two length spaces. If Y is hyperbolic then X is hyperbolic. In particular, hyperbolicity is QI-invariant.

Proof. First we consider that $\Phi:I=[a,b]\subset\mathbb{R}\to (X,b)$ is a (λ,c) -QIE. Then there exists a (λ',c') -quasi-geodesic from $\Phi(a)$ to $\Phi(b)$ has a (D,λ) -Hausdorff distance to $\Phi(I)$. The aim of this assertion is to modify $\Phi(I)$ (which can be a discrete set) a little to make it be a path. The rest of the proof is a direct consequence of Morse lemma.

Remark 1.6.4 Then G is hyperbolic iff Cay(G, S) is hyperbolic for a fixed S.

Example 1.6.5 \mathbb{Z}^2 is not hyperbolic.

Corollary 1.6.6

A finitely generated group is hyperbolic iff it admits a geometric (proper and cocompact) action on a proper δ -hyperbolic space.

Properties. [We will prove later]

- 1. Hyperbolic groups are finitely presentable. If it is torsion free, then it has a finite classifying space.
- 2. There exists only finitely many finite subgroups up to conjugacy class.
- 3. Word/conjugacy problem is solvable.
- 4. Hyperbolic groups are automatic groups.

Now we consider a finitely generated group G with a finite generating set S. Let $\mathbb{F}(S)$ be the free group generated by S. Then we have an exact sequence

$$1 \to N \to \mathbb{F}(S) \to G \to 1.$$

Hence $\operatorname{Cay}(\mathbb{F}(S),S)$ is a cover of $\operatorname{Cay}(G,S)$. Since $\operatorname{Cay}(\mathbb{F}(S),S)$ is simply connected, we have

$$\pi_1(\operatorname{Cay}(G,S)) = N.$$

Then $N \longleftrightarrow \{ \text{word labeling loops at } 1 \in G \}$. Now we modify $\operatorname{Cay}(G, S)$ to a Cayley complex X given by attaching cells to loops such that X is simply connected and $\pi_1(X/G) = G$.

Definition 1.6.7. We say $G = \langle S | \mathcal{R} \rangle$ if $G \cong \mathbb{F}(S) / \langle \langle \mathcal{R} \rangle \rangle$.

Theorem 1.6.8

Hyperbolic groups are finitely presentable, that is,

$$G = \langle S | \mathcal{R} \rangle, \quad \# \mathcal{R} < \infty.$$

Proof. We have $N \hookrightarrow \mathbb{F}(S) \twoheadrightarrow G$. The aim is to find a finite set \mathcal{R} such that

$$N = \langle \langle \mathcal{R} \rangle \rangle = \left\{ \prod_{i=1}^{n} g_i r_i g_i^{-1} : g_i \in G, r_i \in \mathcal{R} \right\}.$$

For a loop $w=s_1s_2\cdots s_n$ in $\mathrm{Cay}(G,S)$, it suffices to write $\widetilde{w}_1s_i\widetilde{w}_2^{-1}$ as a product of conjugate of $r\in\mathcal{R}$ where $\widetilde{w}_1,\widetilde{w}_2$ are geodesics from 1 to another point. The triangle $\widetilde{w}_1s_i\widetilde{w}_2^{-1}$ has an edge with length 1. Hence for every point on edge \widetilde{w}_1 , there exists a point in \widetilde{w}_2^{-1} with distance at most $\delta+1$. We separate \widetilde{w}_1 into segments with length $2\delta+3$, then we can divide the triangle into small pieces with circumference at most $O_\delta(1)$. Take $\mathcal{R}=\{w\in N:|w|< O_\delta(1)\}$, the conclusion follows.

§1.7 Mar 23

Definition 1.7.1. Let $G=\langle S|\mathcal{R}\rangle$ be a finitely presentable group. We define the **Dehn function**

$$\Phi(n) := \sup_{W \in \langle \langle \mathcal{R} \rangle \rangle, |W| \leqslant n} \min \left\{ m : W = \prod_{i=1}^m g_i r_i g_i^{-1}, g_i \in \mathbb{F}(S), r_i \in \mathcal{R} \right\}.$$

Notation 1.7.2. Let $f,g:\mathbb{N}\to\mathbb{N}$ be monotone increasing functions. We denote $f\preccurlyeq g$ if there exists a,b,c,d,e>0 such that

$$f(n) \leqslant ag(bn+c) + dn + e.$$

We denote $f \asymp g$ if $f \preccurlyeq g$ and $g \preccurlyeq f$.

Theorem 1.7.3

Any hyperbolic group G admits a **Dehn presentation** $G = \langle S | \mathcal{R} \rangle$. That is, for every word w with $w \equiv_G 1$, there exists a subword $u \subseteq w$ and $r \in \mathcal{R}$ with r = uv and |u| > |v|.

Corollary 1.7.4 Any hyperbolic group G has linear Dehn function.

Remark 1.7.5 If $\Phi(n) \leq n$, then G is hyperbolic.

Remark 1.7.6 (Gromov) If $\Phi(n) \lesssim n^2$, then $\Phi \approx n$.

Remark 1.7.7 (Braidy-Bridson) There exists $A \subset [2, \infty)$ with $\overline{A} = [2, \infty)$ such that for every $d \in A$, there exists G with $\Phi(n) \approx n^d$.

Remark 1.7.8 BS(1,2) has exponential Dehn function.

Proof of Theorem 1.7.3. Let $\mathcal{R} \coloneqq \{w \in \mathbb{F}(S) : w \equiv_G 1, |w| \leqslant 100\delta\}$. We prove that $\langle S|\mathcal{R}\rangle$ is a Dehn presentation. Let γ be a path in $\mathrm{Cay}(G,S)$ corresponds to w. Let $v \in \gamma$ such that d(1,v) is maximal.

Claim 1.7.9. The subpath $\alpha \subset \gamma$ of length 10δ with midpoint v must not be a geodesic.

Proof. Assume that α is a geodesic. Denote $\alpha = [x,v][v,y]$. Then $d(x,v) = d(v,y) = 5\delta$. Then $d(v,z) \leqslant \delta$ for some $z \in [x,1]$. We have $d(x,1) \geqslant d(x,v) + d(v,1) - 2\delta \geqslant d(1,v) + 3\delta$. A contradiction.

Case 1. There exists such α in the claim. Let $\alpha = \alpha(x,y)$. Let [x,y] be the geodesic between x and y. Then let $r = \alpha[y,x]$ satisfying the condition.

Case 2. Let $w_1 = \gamma(1, v)$ and $w_2 = \gamma(v, 1)$. Then $d(1, v) < 5\delta$ and hence $\gamma \subset B(1, 5\delta)$. If $|\gamma| > 5\delta$, cut off a subpath with length $5\delta + 1$. Otherwise $|\gamma| \le 5\delta$, then $\gamma \in \mathcal{R}$.

Theorem 1.7.10

There are only finitely many conjugacy classes of finite subgroups in a hyperbolic group.

Fact 1.7.11. Let F be a bounded subset in a δ -hyperbolic space (X,d). Then there exists $D=D(\delta)$ such that

diam {centers of
$$F$$
} $\leq D$.

Definition 1.7.12. Let F be a bounded set. For $x \in X$, we define $r_x = \inf \left\{ r > 0 : \overline{B(x,r)} \supset F \right\}$. A point c is called a **center of** F if $r_c = \inf \left\{ r_x : x \in X \right\}$.

Proof of Theorem 1.7.10. Let F be a finite subgroup. Then

- fCenter(F) = Center(F) for every $f \in F$.
- $gFg^{-1}(g\operatorname{Center}(F)) = g\operatorname{Center}(F)$, for every $g \in G$.

Claim 1.7.13. There exists $g \in G$ and $g \operatorname{Center}(F) \subset B(1,2D)$. Then for every $f \in F$, $d(gfg^{-1},1) \leq 6D$.

Proof. Note that $gFg^{-1}(g\operatorname{Center}(F))=g\operatorname{Center}(F)$, then there exists $o\in g\operatorname{Center}(F)$ with $d(o,1)\leqslant 2D$. We have

$$d(gfg^{-1}, 1) \le d(gfg^{-1}, gfg^{-1}o) + d(o, 1) + d(o, gfg^{-1}o) \le 6D$$

since $o, gfg^{-1}o \in g \operatorname{Center}(F)$.

Hence $G \cap \{F < G : \#F < \infty\}$ by conjugacy has only finite orbits. \square

§1.8 Mar 28

Rips complex

Theorem 1.8.1

Let G be a hyperbolic group. Then G acts geometrically on a contractible simplicial complex. In particular, if G is torsion-free, then is has finite K(G,1).

Remark 1.8.2 G has finite K(G,1) means that there is a finite simplicial complex X with $\pi_1(X) \cong G$ and $\pi_n(X) \cong \{1\}$ for $n \geqslant 2$.

Let X be a metric space. Fix R > 0, we construct the **Victoris-Rips complex** $P_R(X)$ as below:

- The vertex set is X.
- For every $x_0, \dots x_n \subset X$, we add an n-simplex iff $d(x_i, x_j) \leq R$ for every i, j.

If we assume that X is a discrete, proper space, then

- 1. Isom(X) acts on $P_R(X)$ cellularly.
- 2. $X \hookrightarrow P_R(X)$ is a QI.

Lemma 1.8.3

Let G be a hyperbolic group. Let $X=(G,d_S)$ where S is a fixed finite generating set, such that $\operatorname{Cay}(G,S)$ is δ -hyperbolic. Then for every $R\geqslant 10\delta, P_R(X)$ is contractible.

Proof. Note that G acts transitively on the vertexes of $P_R(X)$. Hence $\dim(P_R(X)) \leq \#B(1,R)$, which is finite. Besides, for every $d \leq \dim P_R(X)$, $G \cap P_R(X)$ has finitely many orbits of Δ^d . Then the action is geometric. It remains to show $P_R(X)$ is contractible. It suffices to show $\pi_n(P_R(X)) = \{1\}$, equivalently, to show every finite simplicial complex is homotopic to $\{\operatorname{pt}\}$. Let $L \subset P_R(X)$ be a simplicial complex and take $v \in L$ maximizing d(o,v). Let $v' \in [o,v]$ such that d(v',v) = R/2. The key point is the following claim.

Claim 1.8.4. $\operatorname{St}(v) \subset \operatorname{St}(v')$, where $\operatorname{St}(v)$ is the star of v in L, that is the union of simplexes containing v.

Then we push $L = \{v, x_1, \cdots, x_r\}$ to $L' = \{v', x_1, \cdots, x_r\}$, where L' is closer to o. For complete proofs, see Bridson's textbook.

Rips sequence

Theorem 1.8.5

Let Q be a finitely presentable group. Then there exists a hyperbolic group G and a finitely generated normal subgroup $N \lhd G$ such that

$$1 \to N \to G \to Q \to 1$$
.

The proof uses small cancellation theory.

Definition 1.8.6. Let $\lambda \in (0,1)$, a finitely presentable group $\langle S|\mathcal{R}\rangle$ where \mathcal{R} is closed under cyclic permutation and inverse, is called $C'(\lambda)$ -group (small cancellation group) if for every $r \neq r' \in \mathcal{R}$, the maximal common prefix (a piece) of r and r' is with length less than $\lambda \min \{|r|, |r'|\}$.

Example 1.8.7

The surface group $\pi_1(\Sigma_g) \cong \langle a_1, b_1, \cdots, a_g, b_g | \mathcal{R}_g \rangle$ where \mathcal{R}_g contains $[a_1, b_1] \cdots [a_g, b_g]$ and its cyclic permutations and their inverses. Then it is a C'(1/(4g-1))-group.

Theorem 1.8.8

If a finitely presentable group $\langle S|\mathcal{R}\rangle$ is a C'(1/6)-group, then it is a hyperbolic group.

Proof of Theorem 1.8.5 assuming Theorem 1.8.8. Let $Q = \langle S | \mathcal{R} \rangle$. We take

$$G = \langle S \cup \{a, b\} | \mathcal{R}' \rangle, \quad N = \langle a, b \rangle < G.$$

We \mathcal{R}' is constructed as below

- For every $r \in \mathcal{R}$, choose $w_r \in W(\{a,b\})$.
- For every $s \in S$, we choose $u_{s^+}, u_{s^-}, v_{s^+}, v_{s^-} \in W(\{a,b\})$.
- Set $r = W_r$ in \mathcal{R} .
- Set $sas^{-1} = u_{s^+}$, $s^{-1}as = u_{s^-}$, $sbs^{-1} = v_{s^+}$, $s^{-1}bs = v_{s^-}$ in \mathcal{R} .

If the chosen words in $W(\{a,b\})$ are complicated enough, G is a C'(1/6)-group.

§1.9 Mar 30

Theorem 1.9.1 (Tits alternative in hyperbolic groups)

A subgroup in a Gromov-hyperbolic group G is

- (1) either virtually cyclic
- (2) or contains a free subgroup \mathbb{F}_2 such that $(\mathbb{F}_2,d)\hookrightarrow (G,d)$ is a QIE.

Remark 1.9.2 Tits alternative is first proved in linear groups by Tits. He showed that such group is either virtually solvable or contains a free subgroup \mathbb{F}_2 .

Corollary 1.9.3

A Gromov-hyperbolic hyperbolic cannot contain a \mathbb{Z}^2 or a non-virtually-cyclic solvable group as a subgroup.

Open Problem 1.9.4 (Gromov)

Does there exist a closed surface group in every one-ended hyperbolic group?

Remark 1.9.5 (Kahn-Markovich) For every hyperbolic three-manifold M^3 , there exists a surface group in $\pi_1(M^3)$.

Definition 1.9.6. Let (X, d) be a geodesic space. A subset $S \subset (X, d)$ is called σ -quasiconvex for $\sigma > 0$ if for every $x, y \in S$, we have $[x, y] \in \mathcal{N}_{\sigma}(S)$.

Example 1.9.7

- 1. Bounded subsets are quasi-convex.
- 2. Convex subsets are quasi-convex.
- 3. A quasi-geodesic is a quasi-convex subset in a hyperbolic space.
- 4. If H < G is quasi-convex with respect to $\operatorname{Cay}(G,S)$, then it is NOT necessarily quasi-convex for other generating set. For example, $\mathbb{Z}^2 = \langle a,b|ab=ba\rangle$, then $\langle ab\rangle$ is not quasi-convex. But $\langle a\rangle$ is not quasi-convex with respect to $\mathbb{Z}^2 = \langle a,b,ab|\rangle$, where $\langle ab\rangle$ is quasi-convex.
- 5. If H < G is quasi-convex and G is a hyperbolic group, then H is quasi-convex for every generating set.

Lemma 1.9.8

Let H < G be a σ -quasi-convex subgroup with respect to $\mathrm{Cay}(G,S), \#S < \infty$. Then H is finitely generated by T and $(H,d_T) \hookrightarrow (G,d_S)$ is a QIE.

Proof. Let $h \in H$ and γ be a geodesic in $\operatorname{Cay}(G, S)$. Let $\gamma \subset \mathcal{N}_{\sigma}(H)$. We take $T = \{t \in H : d_S(1, t) \leq 2\sigma + 1\}$. The conclusion follows.

Definition 1.9.9. Let H < G be two finitely generated groups. We say H is **undistorted** if $H \hookrightarrow G$ is a QIE for some word metric.

Remark 1.9.10 This definition does not depend on the choice of generating set.

Remark 1.9.11 Every $H < \mathbb{Z}^n$ is undistorted.

Then quasi-convex subgroups are undistorted. Furthermore, we can show that every undistorted subgroup is quasi-convex in a Hyperbolic group.

Theorem 1.9.12

For every $g \in G$ where G is a hyperbolic group, the centralizer

$$C_G(g) := \{c \in G : cgc^{-1} = g\}$$

is quasi-convex in G.

Proof. It suffices to show there exists $\sigma > 0$ such that $\forall c \in C_G(g), [1, c] \in \mathcal{N}_{\sigma}(C_G(g))$. We consider a quadrangle [1, c][c, cg][cg, g][g, 1]. We label the vertexes on [1, c] by x_i 's and the vertexes on [g, cg] by y_i 's.

Claim 1.9.13. If $d(x_i, 1), d(x_i, g) \ge d(1, g) + 2\delta$, then $d(x_i, y_i) \le D(|g|, \delta)$.

Proof. Applying the thin-quadrangle property, we have $d(x_i, [g, cg]) \leq \delta$. Then there exists $z_i \in [g, cg]$ with $d(x_i, z_i) \leq \delta$. Note that $|d(g, z_i) - d(1, x_i)| \leq d(1, g) + \delta$ and $d(g, y_i) = d(1, x_i)$, hence $d(x_i, y_i) \leq 2\delta + d(1, g)$. Take $D = 2(\delta + d(1, g))$ as desired. \square

By this claim, we have $N=\#\left\{x_i^{-1}y_i\right\}<\infty$. Hence if $d(1,c)\geqslant N+1$, there are i,j such that $x_i^{-1}y_i=x_j^{-1}y_j$. Now we consider $c'=x_ix_j^{-1}c$, which is also contained in $C_G(g)$. It shortens d(1,c).

§1.10 Apr 6

Remark 1.10.1 $\mathbb{Z}^m \hookrightarrow \mathbb{Z}^n$ can be a QIE but not quasi-convex.

Lemma 1.10.2

Let H, K be quasi-convex subgroups in a group G. Then $H \cap K$ is also quasi-convex.

Proof. Let $g \in H \cap K$ be an element. Assume that the geodesic [1,g] is $x_0x_1\cdots x_n$. Then there exists $y_i \in H$ and $z_i \in K$ such that $d(x_i,y_i) \leqslant \sigma$ and $d(x_i,z_i) \leqslant \sigma$. Then $d(y_i,z_i) \leqslant 2\sigma$ hence $y_i^{-1}z_i \in B(1,2\sigma)$. If $d(1,g) > \#B(1,2\sigma)$, then there exists $i \neq j$ with $\Delta(x_i,y_i,z_i) \cong \Delta(x_j,y_j,z_j)$. Besides $c=y_iy_j^{-1}=z_iz_j^{-1} \in H \cap K$. Now we replace g by cg, then d(x,cg) < d(x,g) where x is a given point on [1,g]. Then the conclusion follows by an inductive argument.

Theorem 1.10.3

If g is of infinite order in a hyperbolic group G. Then $\langle g \rangle$ is a quasi-convex subgroup in G. Equivalently, $n \mapsto g^n$ is a QIE.

Proof. Note that $\langle g \rangle \subset C_G(g)$. Here $H = C_G(g)$ is a quasi-convex subgroup of G and hence finitely generated by T. Besides

$$Z(H) = \bigcap_{t \in T} Z_H(t) < H,$$

hence Z(H) is a quasi-convex subgroup of H. We have

$$\langle q \rangle \hookrightarrow Z(H) \hookrightarrow H \hookrightarrow G.$$

Note that $Z(H)\hookrightarrow G$ is a QIE and Z(H) is a finitely generated abelian group. Hence $\langle g\rangle\hookrightarrow Z(H)\hookrightarrow G$ is a QIE. \qed

Lemma 1.10.4

Let H be a infinite quasi-convex subgroup in a hyperbolic group G. Then $[E(H):H]<\infty$ where

$$E(H) := \{ g \in G : d_{\mathbf{H}}(H, gH) < \infty \}.$$

Corollary 1.10.5

If g is of infinite order in a hyperbolic group G, then

$$\langle g \rangle \subset C_G(g) \subset N_G(g) \subset E(\langle g \rangle).$$

In particular, both $C_G(g)$ and $N_G(g)$ are virtually \mathbb{Z} .

Proof. It suffices to show that $N_G(g) \subset E(\langle g \rangle)$. Note that for every $f \in N_G(g)$, we have $f \langle g \rangle = \langle g \rangle f$. Then $d_H(f \langle g \rangle, \langle g \rangle) = d_H(\langle g \rangle f, \langle g \rangle) \leqslant d(1, f) < \infty$.

Corollary 1.10.6

If H is a finitely generated normal subgroup of a hyperbolic group G and $\#H=\infty,$ then $[G:H]<\infty.$

Corollary 1.10.7

If $G = \langle S | \mathcal{R} \rangle$ is a finitely presentable group and $\langle \langle \mathcal{R} \rangle \rangle$ is infinite, then G is finite.

§1.11 Apr 11

Proof of Lemma 1.10.4. Let $D=\delta+2\sigma$, we will show that for every $g\in E(H), d_{\mathrm{H}}(H,gH)\leqslant D$. Assume that $d_{\mathrm{H}}(H,gH)=r$. Note that gHg^{-1} acts transitively on gH. Then for every $x\in gH$, there exists $y,z\in gH$ such that

- (i) $d(y,z) \ge 2r + 10\delta$,
- (ii) x is σ -close to the mid point of [y, z].

Recall that $y, z \in \mathcal{N}_r(H)$, by the thin-quadrangle property, if r > D then $d(x, H) \leq D$. \square

Definition 1.11.1. A group is called **elementary** if it is virtually cyclic.

Remark 1.11.2 Let g be a infinite order element in a hyperbolic group. Then $\langle g \rangle$ is contained in a maximal elementary subgroup $E(\langle g \rangle)$.

Recall Rips sequence

$$1 \to N \to G \to Q \to 1$$
,

where $N \lhd G$ and G is a hyperbolic group. If $\#Q = \infty$, then we know that N is NOT quasi-convex in G.

Corollary 1.11.3

Let G be a hyperbolic group, then

- 1. $\mathbb{Z}^2 \not < G$.
- 2. BS $(m,n) = \langle a, t | ta^m t^{-1} = a^n \rangle \not < G$.

Proof. 1 follows from $C_G(g)\geqslant \mathbb{Z}^2$ for an element $g\in \mathbb{Z}^2$, which leads to a contradiction. Now we show the second item. It suffices to show for the case m>n. Assume that $\mathrm{BS}(m,n)\hookrightarrow G$ a hyperbolic group. For every $l\geqslant 0$, we have $t^la^{m^l}t^{-l}=a^{n^l}$. Recall that $n\mapsto a^n$ is a QIE. Then

$$2l|t| + m^l|a| \asymp n^l|a|.$$

We get a contradiction.

2 Boundary Theory

§2.1 Apr 11

Let X be a δ -hyperbolic proper geodesic space. The **Gromov boundary** ∂X of X is defined by

$$\partial X := \{ \text{ geodesic rays } \} / \sim_{\text{asymptotic}},$$

where the asymptotic relation is given by $\alpha \sim \beta$ iff $d_H(\alpha, \beta) < \infty$.

Fix a base point $o \in X$, we consider the set

$$\partial_o X := \{ \text{ geodesic rays from } o \} / \sim .$$

Then $\partial_o X \hookrightarrow \partial X$.

Lemma 2.1.1 $\partial_o X = \partial X$.

Proof. Let α be a geodesic ray from another point x. Let $\alpha(n)$ be the point on α with $d(x,\alpha(n))=n$. Let $\beta_n=[o,\alpha(n)]$. By Arzela-Ascoli lemma, there exists a subsequence $\beta_{n_k}\to\beta_\infty$ where β_∞ is a geodesic ray from o. Since X is hyperbolic, we have $\beta_n\subset\mathcal{N}_D(\alpha)$ for $D=\delta+d(o,x)$. Then $\beta_\infty\subset\mathcal{N}_D(\alpha)$. We also have $\alpha\subset\mathcal{N}_{D'}(\beta_\infty)$ for some D' by the connectedness argument.

A bi-infinite geodesic $\gamma:(-\infty,+\infty)\to X$ connects two points $\gamma^+\coloneqq\gamma([0,+\infty))\in\partial X$ and $\gamma^-\coloneqq\gamma((-\infty,0])\in\partial X$.

Lemma 2.1.2 (∂X is visual) For every $p \neq q \in \partial X$, there exists γ connecting p to q.

Proof. Fix a base point o and assume that $p=[\alpha]$ and $q=[\beta]$ where α,β are geodesics from o. For every $n\in\mathbb{Z}_+$, there exists a geodesic $\gamma_n=[\alpha(n),\beta(n)]$. We want to show that $\gamma_n\to\gamma_\infty$ which is a desired bi-infinite geodesic. We need the following claim, which guarantees the condition of Arzela-Ascoli lemma.

Claim 2.1.3. There exists D > 0 such that $d(o, \gamma_n) \leqslant D$.

Proof. Assume that $d(o, \gamma_n) \to \infty$. Let $x_n = \pi_{\gamma_n}(o)$. Then there exists $y_n \in \alpha$ and $z_n \in \beta$ such that $d(y_n, z_n) \leqslant D$ for some $D = D(\delta)$ but $d(o, y_n) \to \infty$. This will lead to $d_H(\alpha, \beta) < \infty$ by an application of Morse lemma.

§2.2 Apr 13

Lemma 2.2.1 (Asymptotic rays are eventually uniform thin)

Let $\alpha \sim \beta$ be two asymptotic geodesic rays. Then there exists $s_0, t_0 > 0$ such that

$$\alpha[s_0,\infty)\subset \mathcal{N}_{6\delta}(\beta[t_0,\infty)),\quad \text{and}\quad \beta[t_0,\infty)\subset \mathcal{N}_{6\delta}(\alpha[s_0,\infty)).$$

Proof. Let $T=d(\alpha(0),\beta(0))$ and $D=d_{\mathrm{H}}(\alpha,\beta)<\infty$. Let $s_0=D+L+4\delta$. Consider the quadrangle $[\alpha(0),\alpha(2s_0),\beta(t_1),\beta(0)]$ where $\beta(t_1)=\pi_{\beta}(\alpha(2s_0))$. By the thin-quadrangle property, $d(\alpha(s_0),\beta)\leqslant 2\delta$. Let t_0 be the positive number such that $d(\beta(t_0),\alpha(s_0))\leqslant 2\delta$. It suffices to show that for every $s\geqslant s_0,\alpha(s)\subset\mathcal{N}_{6\delta}(\beta[t_0,\infty))$. If $s\leqslant s_0+4\delta$, the conclusion is direct. If $s\geqslant s_0+4\delta$, let $s'=s+D+2\delta$, by a thin-quadrangle argument, the conclusion follows.

Remark 2.2.2 For every $x, y, z \in \partial X$, the triangle $\Delta(x, y, z)$ is uniform thin.

The topology on the boundary. Now we construct a cone topology on $\partial_o X \cong \partial X$, which compactifies X, that is

$$X \hookrightarrow \overline{X} := X \cup \partial_o X$$

is an open dense subset. Let $k=12\delta$, we construct the topology as follows.

- (1) For every $x \in X$, let U(x, n) := B(x, 1/n).
- (2) For every $x \in \partial_o X$, let

$$U(x,n) := \{ y \in \overline{X} : \exists \alpha \in x, \beta \in y \text{ such that } d(\alpha(kn), \beta(kn)) < 4\delta \}.$$

For simplicity, we assume that δ satisfies the following "fellow travel" property. This guaran-

tees the following fact, which shows that $\{U(x,n)\}$ forms a topological basis.

Fact 2.2.3. $U(x, n) \supset U(x, n + 1)$.

Definition 2.2.4. A subset $S \subset \overline{X}$ is open if for every $x \in S$, there exists n such that $U(x,n) \subset S$.

This topology is equivalent with the following topology which is constructed by giving the convergence sequences in \overline{X} .

 $x_n \to x$ iff $\exists \alpha_n \in x, \alpha \in x$ such that $\alpha_n \to \alpha$ locally uniformly.

The visual metric on the boundary. We present two examples to draw some inspiration.

Example 2.2.5

- 1. X is a tree. Then $\partial X=\{$ geodesic rays from o $\}$. For $x,y\in\partial\partial X,$ let $\rho(x,y)=2^{-n}$ where n is the length of the longest common subpath of x and y. Indeed, $n=\langle x,y\rangle_o$. Then $\rho(x,y)$ is an ultra-metric, i.e., $\rho(x,y)\leqslant\max\{\rho(x,z),\rho(y,z)\}$.
- 2. $X=\mathbb{H}^n$ and $\partial X=\mathbb{S}^{n-1}$. We equip \mathbb{S}^{n-1} with the chord-metric. For every $x,y\in\mathbb{S}^{n-1}$, let $\alpha=[o,x]$ and $\beta=[o,y]$ then

$$\rho(x,y) = \frac{|x-y|}{2} = \lim_{n \to \infty} e^{-\langle \alpha(n), \beta(n) \rangle_o}.$$

Recall that for a hyperbolic space X and every $x, y, z, o \in X$, we have

$$\langle x, y \rangle_o \geqslant \min \{ \langle x, z \rangle_o, \langle x, y \rangle_o \} - \delta.$$

This inequality can be extended to \overline{X} . Besides, we have $|\langle x,y\rangle_o-d(o,[x,\underline{y}])|\leqslant O(\delta)$ for every $x,y\in X$. Then there exists $\delta'>0$ such that for every $o\in X,x,y,z\in \overline{X}$,

$$d(o, [x, y]) \ge \min \{d(o, [x, z]), d(o, [y, z])\} - \delta'.$$

Fix a positive number a. We first define a quasi-metric on \overline{X} as

$$\overline{\rho}_a(x,y) := e^{-a\langle x,y\rangle_o}$$

for every $x,y\in X.$ For the points $x,y\in \partial X,$ we define

$$\overline{\rho}_a(x,y) := e^{-ad(o,[x,y])}$$

Fact 2.2.6. (1) $\overline{\rho}_a(x,y) = \overline{\rho}_a(y,x)$. (2) $\overline{\rho}_a(x,y) \leqslant K \max \{\overline{\rho}_a(x,z), \overline{\rho}_a(y,z)\}$, where $K = e^{a\delta'} \in [1,\infty)$.

Lemma 2.2.7 (Frink)

If $1 \le K \le \sqrt{2}$, then there exists a metric ρ_a on ∂X such that

$$\frac{1}{K^2}\overline{\rho}_a(x,y) \leqslant \rho_a(x,y) \leqslant \overline{\rho}_a(x,y). \tag{2.2.1}$$

Definition 2.2.8. The metric ρ_a is called the **visual metric** on ∂X .

Remark 2.2.9 The metric ρ_a can also be defined on X, but the topology it induced is different with the original topology on X, since $\overline{\rho}_a(o,x)=1$ for every $x\in X$.

Proof. For every $x, y \in \partial X$, we define

$$\rho_a(x,y) := \inf \left\{ \sum_{i=1}^n \overline{\rho}_a(x_{i-1},x_i) : x = x_0 \to x_1 \to \cdots \to x_n = y \right\}.$$

It suffices to show (2.2.1). We induct on $n \ge 2$ to prove

$$\overline{\rho}_a(x,y) \leqslant K^2 \sum_{i=1}^n \overline{\rho}_a(x_{i-1},x_i).$$

It is direct when n=2. For the case of n+1. Assume that $\sum_{i=1}^{n+1} \overline{\rho}_a(x_{i-1},x_i) = R$, take the maximal p such that $\sum_{i=1}^p \overline{\rho}_a(x_{i-1},x_i) < R/2$. By inductive hypothesis, we have

$$\begin{split} \overline{\rho}_a(x,y) \leqslant K \max \left\{ \overline{\rho}_a(x,x_p), \overline{\rho}_a(x_p,y) \right\} \\ \leqslant \max \left\{ K^3 \frac{R}{2}, K^2 \max \left\{ \overline{\rho}_a(x_p,x_{p+1}), \overline{\rho}_a(x_{p+1},y) \right\} \right\} \\ \leqslant \max \left\{ K^3 \frac{R}{2}, K^2 R, K^4 \frac{R}{2} \right\} \leqslant K^2 R. \end{split}$$

The conclusion follows.

§2.3 Apr 20

Let X be a hyperbolic space. We have constructed metrics ρ_a on the Gromov boundary ∂X .

Fact 2.3.1. If *X* is proper, then $(\partial X, \rho_a)$ is compact.

Fact 2.3.2. For different choices of the base point o, o' we have

$$\frac{1}{\lambda} \rho_a^{o'}(x, y) \leqslant \rho_a^{o}(x, y) \leqslant \lambda_a^{o'}(x, y),$$

where $\lambda = \lambda(d(o,o'))$. For different choices of a, we have a Hölder dependence between metrics as

$$\rho_a^o(x,y) \simeq [\rho_{a'}^o(x,y)]^{a/a'}$$
.

Theorem 2.3.3

Let $\psi: X \to Y$ be a QI between hyperbolic spaces. Then ψ extends to a homeomorphism between Gromov boundaries. We denote by $\partial \psi: \partial X \to \partial Y$. The extension is continuous in the following sense, if $x_n \to x \in \partial X$ then $\psi(x_n) \to \partial \psi(x)$. Moreover, if we fix $o \in X$ and $o' = \psi(o)$ then $\partial \psi: (\partial X, \rho^o) \to (\partial Y, \rho^o')$ is **quasi-conformal**, i.e.

$$H_p := \limsup_{r \to 0^+} \frac{\sup \left\{ \rho^{o'}(\partial \psi(p), \partial \psi(q)) : \rho^{o}(p, q) = r \right\}}{\inf \left\{ \rho^{o'}(\partial \psi(p), \partial \psi(q)) : \rho^{o}(p, q) = r \right\}}$$

is uniformly bounded for $p \in \partial X$.

Proof. We define the boundary map as

$$\partial \psi : \alpha \in X \mapsto [\beta] \in \partial Y$$

where β is a geodesic ray in Y with finite Hausdorff distance to $\psi(\alpha)$.

Fact 2.3.4 (Section 4.4). QIE coarsely commutes with the projection map.

 $\partial \psi$ is injective. For $p \neq q$, we have

$$\rho^{o'}(p',q') \gg \overline{\rho}^{o'}(p',q') \gg e^{-ad(o',[p',q'])} \gg e^{-Cad(o,[p,q])}$$

is uniformly bounded away from 0.

 $\partial \psi$ is quasi-conformal. Let $p \in \partial X$ and q_1,q_2 such that $\rho^o(p,q_1) = \rho^o(p,q_2) = r$. Then we have

$$|d(o, [p, q_1]) - d(o, [p, q_2])| \leq D_1.$$

It suffices to show that $|d(o',[p',q_1']) - d(o',[p',q_2'])| \leq D_2$ where D_2 is independent with the choice of r and p. Assume that r is small enough, then $d(\pi_{[p,q_1]}(o),\pi_{p,q_2})(o) \leq D_1 + \delta$. Then the conclusion follows by ψ is a QI and the previous fact. \square

For a hyperbolic group G, the Gromov boundary of G is defined to be the Gromov boundary if its Cayley graph. Then for different generating sets S, S', we have

$$(\partial \operatorname{Cay}(G, S), \rho) \cong (\partial \operatorname{Cay}(G, S'), \rho)$$

which is a quasi-conformal isomorphism.

Conjecture 2.3.5 (Cannon)

If $\partial G \cong \mathbb{S}^2$, then there exists a finite index subgroup $\dot{G} < G$ such that \dot{G} acts properly, cocompactly on \mathbb{H}^3 .

One of consequences of this conjecture is Thurston's hyperbolization conjecture.

```
Theorem 2.3.6 (Bonk-Kleiner)
```

lf

 $\inf \left\{ \dim_{\mathrm{H}} (\partial G, \rho) : \rho \text{ is quasi-conformal to } \rho_a \right\} = 2,$

then G is virtually a subgroup of $\text{Isom}(\mathbb{H}^3)$.

3 The Patterson-Sullivan Measure

4 Homework

§4.1 Exercise 1

EXERCISE SHEET #1

Let (X, d) be a geodesic metric space. We denote by [x, y] a choice of a geodesic between x and y. Here we collect a few elementary facts in general metric spaces.

Exercise 0.1. Let γ be a geodesic in X. Let $x \in X$ and $y \in \pi_{\gamma}(x)$. Then for any point $z \in \gamma$, we have the path [x,y][y,z] is a (3,0)-quasi-geodesic.

Could you propose a version of this statement if γ is a (λ, c) -quasi-geodesic.

Exercise 0.2. Let p be a rectifiable path in X so that $Len(p) \leq d(p_-, p_+) + c$ for some c > 0. Then any subpath q of p satisfies $Len(q) \leq d(q_-, q_+) + c$.

Exercise 0.3. Let x, y, z be any points in X. Then $\langle x, y \rangle_z \leq d(z, [x, y])$.

Exercise 0.4. Let α, β be two (λ, c) -quasi-geodesics for $\lambda, c > 0$. If $\alpha \subset N_D(\beta)$ for some D > 0, then $\beta \subset N_{2\lambda D+c}(\alpha)$.

A geodesic α is C-contracting for some $C \geq 0$ if for any metric ball B with $B \cap \alpha = \emptyset$, $diam(\pi_{\alpha}(B)) \leq C$.

Exercise 0.5 (Alternative proof of Morse Lemma). Let α be a C-contracting geodesic. Then for any $\lambda, c > 0$, there exists $D = D(\lambda, c, C) > 0$ with the following property. Let p be any (λ, c) -quasi-geodesic with two endpoints on α . Then $p \subset N_D(\alpha)$. (Tips: find an appropriate cover of p by balls and then project them to α .)

We assume now that (X, d) is a δ -hyperbolic space.

Exercise 0.6 (Strengthened version of Morse Lemma). Let p be a path in (X, d). Given a non-decreasing function $f : \mathbb{R}_{>0} \to \mathbb{R}_{>0}$, let p be a path such that $Len(q) \le f(d(q_-, q_+))$ for any subpath q of p. Assume that f is sub-exponential, i.e.:

$$\lim_{n \to \infty} \log f(n)/n = 0$$

Then p is a quasi-geodesic. (Tips: prove that p is contained in a uniform neighborhood of $[p_-, p_+]$.)

Answers

Exercise 1.1. For every $u \in [x,y], v \in [y,z]$, we have $d(u,v) \geqslant d(u,y)$. By triangle inequality, $d(y,v) \leqslant d(y,u) + d(u,v) \leqslant 2d(u,v)$. It follows that

$$\operatorname{len}([u, y][y, v]) \leqslant 3d(u, v),$$

hence $\left[x,y\right]\left[y,z\right]$ is a (3,0)-quasi-geodesic.

If γ is a (λ, c) -quasi-geodesic, then $p = [x, y]\gamma(y, z)$ is a $(2\lambda + 1, c)$ -quasi-geodesic. \square

Exercise 1.2. Assume that $len(q) > d(q_-, q_+) + c$, then we have

$$\operatorname{len}(p) \geqslant d(p_-, q_-) + \operatorname{len}(q) + d(q_-, p_-) > d(p_-, q_-) + d(q_-, q_+) + d(q_-, p_-) + c \geqslant d(p_-, p_+) + c.$$

We get a contradiction.

Exercise 1.3. Let $o \in \pi_{[x,y]}(z)$, then $d(x,z) \leqslant d(x,o) + d(o,z)$ and $d(y,z) \leqslant d(y,o) + d(o,z)$. Hence we have $\langle x,y \rangle_z \leqslant d(o,z) = d(z,[x,y])$.

Exercise 1.4. Let x,y be endpoints of α and β . For any $z \in \beta$, assume without loss of generality that $d(z,\alpha) > D$. Then we consider closed sets $\mathcal{N}_D(\beta(x,z))$ and $\mathcal{N}_D(\beta(z,y))$. Since they cover α , which is connected, then they have a nonempty intersection. Then we can take $w \in \alpha$ and $a \in \alpha(x,z), b \in \alpha(z,y)$ such that $d(w,a) \leqslant D$ and $d(w,b) \leqslant D$. Combining with α is a (λ,c) -quasi-geodesic, we have

$$\operatorname{len}(\alpha(a,z)\alpha(z,b)) \leqslant \lambda d(a,b) + c \leqslant 2\lambda D + c.$$

Then at least one of len($\alpha(a,z)$) and len($\alpha(a,z)$) is less than $\lambda D + c/2$. Which implies that

$$d(z,\alpha)\leqslant D+(\lambda D+\frac{c}{2})=(\lambda+1)D+\frac{c}{2}\leqslant 2\lambda D+c.$$

The conclusion follows.

Exercise 1.5. Let $x \in p$ such that $d(x, \alpha) = D$. Assume that $D > 100\lambda^2 C$. We consider set

$$\mathcal{E} = \left\{ y \in p : d(y, \alpha) \geqslant \frac{D}{10\lambda} \right\}.$$

Let $p(x_1, x_2)$ be the connected component of \mathcal{E} containing x. Then

$$L = \text{len}(p(x_1, x_2)) \ge 2D - d(x_1, \alpha) - d(x_2, \alpha) \ge D.$$

On the other hand, for every $y \in p(x_1, x_2)$, $B(y, 10\lambda C) \cap \alpha = \emptyset$ by the assumption that $D/(10\lambda) > 10\lambda C$. Then we can cover $p(x_1, x_2)$ by at most $\lceil L/(10\lambda C) \rceil$ metric balls with radius $10\lambda C$. Take $y_1 \in \pi_\alpha(x_1)$ and $y_2 \in \pi_\alpha(x_2)$, then

$$d(y_1, y_2) \leqslant C \cdot \lceil L/(10\lambda C) \rceil \leqslant \frac{L}{10\lambda} + C.$$

Since $p(x_1, x_2)$ is a (λ, c) -quasi-geodesic and $d(x_1, y_1) = d(x_2, y_2) = D/(10\lambda)$. We have

$$L \leqslant \lambda d(x_1, x_2) + c \leqslant \lambda \left(\frac{3L}{10\lambda} + C\right) + c.$$

Which implies that $L \leq 2(\lambda C + c)$. Hence

$$D \leqslant \max \left\{ 100\lambda^2 C, 2(\lambda C + c) \right\},$$

only depends on (λ, c, C) .

Exercise 1.6. We first show the following claim.

Claim. There exists D > 0 such that for every subpath q of p, $[q_-, q_+] \subset \mathcal{N}_D(q)$.

Proof. We apply a similar argument with the proof of Morse lemma. There exists $\theta=\theta(\delta)>0$ such that for every rectifiable path γ , if there exists $x\in\gamma$ satisfying $d(x,[\gamma_-,\gamma_+])>R$, then $\operatorname{len}(\gamma)\geqslant 2^{\theta R-1}$. Assume that there exists $x\in[q_-,q_+]$ such that d(x,q)>D and maximizing $d(\boldsymbol{\cdot},q)$. Without loss of generality, we assume $d(x,q_-),d(x,q_+)\geqslant 2D$. Take x_1,x_2 on $[q_-,q_+]$ with $d(x_1,x)=d(x,x_2)=2D$. Let $y_1\in\pi_q(x_1)$ and $y_2\in\pi_q(x_2)$, then $d(x_i,y_i)\leqslant D$ for i=1,2.

On one hand, $\widetilde{q}=[x_1,y_1]q(y_1,y_2)[y_2,x_2]\cap B(x,D)=\varnothing$, hence $\operatorname{len}(\widetilde{q})\geqslant 2^{\theta D-1}$. On the other hand, $\operatorname{len}(q(y_1,y_2))\leqslant f(d(y_1,y_2))\leqslant f(6D)$. Thus $2^{\theta D-1}\leqslant f(6D)+2D$. Since f is sub-exponential, it follows that D is bounded. This claim holds.

For every subpath $q\subset p$, we separate $[q_-,q_+]$ into segments with length 1 except the last segment. Denote the endpoints of these segments by $q_0,q_1,\cdots q_n$. Then $n=\lceil d(q_-,q_+)\rceil\leqslant d(q_-,q_+)+1$. For each i, take $x_i\in\pi_q(q_i)$. In particular, $x_0=q_0=q_-$ and $x_n=q_n=q_+$. By the claim, we know that $d(x_i,q_i)\leqslant D$. Hence for every $0\leqslant i\leqslant n-1$, we have $d(x_i,x_{i+1})\leqslant 2D+1$. Then

$$len(q) \leqslant nf(2D+1) \leqslant f(2D+1)(d(q_-, q_+) + 1).$$

Take $\lambda = c = f(2D+1)$, p is a (λ, c) -quasi-geodesic.

§4.2 Exercise 2

EXERCISE SHEET #2

We call an isometric action of a group G on a metric space X is co-bounded if there exists a bounded set K such that $G \cdot K = X$.

Exercise 0.1. Suppose G acts by co-boundedly on a length space (X, d). Fix a basepoint $o \in X$. Then there exists a (possibly infinite) generating set S of G such that the map

$$(G, d_S) \to (Go, d), g \mapsto go,$$

is a G-equivariant quasi-isometric map.

Exercise 0.2. Let $d \geq 3$ be an integer. Prove that any two trees with vertices of degree between 3 and d are quasi-isometric.

Exercise 0.3. Prove that finite presentability is a quasi-isometric invariant: Assume that two finitely generated groups G and Γ are quasi-isometric. If G is finitely presentable, then Γ is finitely presentable.

We consider the set of all quasi-isometries of X. Two quasi-isometries $\phi, \psi: X \to X$ are called *equivalent* if they differ by a bounded constant: $||\phi - \psi||_{\infty} < \infty$. Denote by QI(X) the set of equivalent classes of quasi-isometries of X.

Exercise 0.4. The set QI(X) with the composition operation is a group. Moreover, there exists a homomorphism from the isometry group Isom(X) of X into the group QI(X).

Exercise 0.5. Suppose two metric spaces X, Y are quasi-isometric. Then QI(X) is isomorphic to QI(Y) (given by conjugating the isometric actions on X).

Answers

Exercise 2.1. Take a bounded set $K \subset X$ such that G.K = X. Let $R = \operatorname{diam}(K)$, then $\mathcal{N}_R(Go) = X$ for some $o \in K$. For $g \in G$, assume that $n \leqslant d(o, go) < n+1$. Let $x_0, x_1, \cdots, x_n, x_{n+1}$ be points on [o, go] such that $o = x_0 < x_1 < \cdots < x_n \leqslant x_{n+1} = go$

with $d(x_{i-1}, x_i) = 1$ for $1 \le i \le n$. Then there exists $g_i \in G$ such that $d(g_i o, x_i) \le R$. We have

$$d(o, g_i^{-1}g_{i+1}o) = d(g_i o, g_{i+1}o) \le 2R + 1.$$

Let $S = \{s \in G : d(o, so) \leqslant 2R + 1\}$, then $\langle S \rangle = G$.

Since $\mathcal{N}_R(Go)=X$, it suffices to show $g\mapsto g.o$ is a QIE. For every $g\in G$, write $g=s_1\cdots s_l$ a geodesic word. Then

$$d(o,go) \leq d(o,s_1o) + d(s_1o,s_1s_2o) + \dots + d(s_1 \dots s_{l-1}o,s_1 \dots s_lo)$$

= $d(o,s_1o) + d(o,s_2o) + \dots + d(o,s_lo) \leq \lambda d_S(1,g).$

On the other hand, if $d(o, go) \ge n$, then g can be written into a multiplication of at most n+1 elements $s_i \in S$. Then $d_S(1,g) \le n+1$ and hence $d_S(1,g) \le d(o,go)+1$.

Exercise 2.2. It suffices to show that any such tree is quasi-isometric to a 3-regular tree. Let T_1 be a 3-regular tree and T_2 be any such tree. We will construct a QI $f: T_1 \to T_2$. We assume that both T_1 and T_2 are trees with roots, denote r_1 and r_2 respectively. Then for every i=1,2, each vertex of T_i has one father and T_i to T_i to T_i then for every T_i to T_i the solution of T_i and T_i the solution of T_i then for every T_i the solution of T_i the solution of T_i that T_i is the solution of T_i is the solution of T_i that T_i is the solution of T_i that T_i is the solution of T_i that T_i is the solution of T_i then T_i is the solution of T_i is the solution of T_i that T_i is the solution of T_i the solution of T_i is the solution of T_i then T_i is the solution of T_i the solution of T_i and T_i is the solution of T_i the solution of T_i is the solution of T_i the solution of T_i is the solution of T_i the solution of T_i is the solution of T_i the solution of T_i is the solution of T_i the solution of T_i is the solution of T_i the solution of T_i is the solution of T_i the solution of T_i is the solution of T_i the solution of T_i is the solution of T_i the solution of T_i is the solution of T_i the solution of T_i is the solution of T_i the solution of T_i is the solution of T_i the solution of T_i is the solution of T_i the solution of T_i is the solution of T_i the solution of T_i is the solution of T_i the solution of T_i is th

Assume that f(u) is defined for some $u \in T_1$, then the number of children of v = f(u) is more than the number of u's. Let u_1, u_2 (or maybe three children if u is the root) be all children of u and v_1, \cdots, v_i be children of v with $2 \leqslant i \leqslant d-1$. Let $u_2u_3 \cdots u_{i-1}$ be the path such that u_{j+1} is a child of u_i . Let u_j' be the another child of u_j differs from u_{j+1} . Then we construct

$$f: u_1 \mapsto v_1, \quad u_j \mapsto v_1, u'_j \mapsto v_j (2 \leqslant j \leqslant i-1), \quad u_i \mapsto v_i.$$

Each edge maps to the corresponding edge. This construction can ran over all points of T_1 . Then f is a (1,d)-quasi-isometric embedding and indeed surjective. Hence a QI.

Exercise 2.3. Let S,S' be generating sets of G and Γ respectively. We consider two Cayley graphs $\operatorname{Cay}(G,S)$ and $\operatorname{Cay}(\Gamma,S')$. Since G is finite presentable by $\langle S|\mathcal{R}\rangle$, every cycle in $\operatorname{Cay}(G,S)$ can be divided into small cycles such that the edges of each cycle is labeled in \mathcal{R} . In particular, every cycle can be divided into small cycles with a uniform bound of circumferences. This property is invariant under quasi-isometry since the circumferences are expanded by at most a multiplicity of $(\lambda+c)$ where (λ,c) is the constant given by QIE. \square

Exercise 2.4. If ϕ is QI, the it has a quasi-inverse ψ which is QI. Then $\|\phi \circ \psi - \mathrm{id}\|_{\infty} < \infty$ and $\|\psi \circ \phi - \mathrm{id}\|_{\infty} < \infty$. Hence $\mathrm{QI}(X)$ is closed under inversion. It is obvious that $\mathrm{QI}(X)$ is closed under convolution, hence $\mathrm{QI}(X)$ is a group. There exists a natural map $\iota : \mathrm{Isom}(X) \to \mathrm{QI}(X)$ given by $f \mapsto [f]$, which is a homomorphism.

Exercise 2.5. Let $\phi: X \to Y$ be a QI and $\psi: Y \to X$ be a quasi-inverse of ϕ which is also a QI. Then for every $f \in \mathrm{QI}(X)$, the map $\widetilde{f} = \phi \circ f \circ \psi: Y \to Y$ is also a QI since ϕ, f, ψ are QI. Moreover, if $\|f-g\|_{\infty} < \infty$ then $\|\widetilde{f}-\widetilde{g}\| < \infty$ by the property of quasi-isometry. Then $\Phi: f \mapsto \phi \circ f \circ \psi$ gives a well-defined map between $\mathrm{QI}(X)$ and $\mathrm{QI}(Y)$. It preserves the group operation since

$$||f \circ g - f \circ (\psi \circ \phi) \circ g||_{\infty} < \infty.$$

Hence Φ is a group homomorphism. It has a inverse Φ^{-1} given by $\widetilde{f}\mapsto \psi\circ\widetilde{f}\circ\phi$ since

$$\|f-\psi\circ(\phi\circ f\circ\psi)\circ\phi\|_{\infty}<\infty.$$

§4.3 Exercise 3

EXERCISE SHEET #3

Prove that there are only finitely many conjugacy classes of finite subgroups in a hyperbolic group. You may proceed by the following steps:

Exercise 0.1. Assume that a group G acts geometrically on a proper hyperbolic space (X, d).

(1) Define a notion of the center for any bounded set B in a metric space X. Define first the radius of B:

$$r_B := \inf\{r : B \subset B(x,r), r \ge 0, x \in X\}.$$

where B(x,r) is the closed ball of radius r at x. The center of B is then defined to be set of points $o \in X$ such that

$$B \subset B(o, r_B + 1)$$
.

- (2) Prove that if X is δ -hyperbolic space, the center of any bounded set is bounded by a constant depending only on δ .
- (3) Apply the assertion (2) to the orbit $B = F \cdot x$ of a finite group F of G, and conclude the proof that there are finitely many conjugacy classes of finite subgroups F.

Here are two useful facts about quasiconvex subgroups.

Exercise 0.2. If H is a undistorted subgroup in a hyperbolic group G, then it is quasi-convex.

Exercise 0.3. Prove that any finitely generated subgroup in a free group of finite rank is quasiconvex.

The following fact allows to solve conjugacy problem for hyperbolic groups.

Exercise 0.4. Let g, h be two conjugate elements in a hyperbolic group G. Prove that there exists a short conjugator $f \in G$ of length at most D = D(|g|, |h|) so that $g = fhf^{-1}$.

Answers

Exercise 3.1. (2) Take $D=4(\delta+1)$. Let B be a bounded set. Assume there are two points x,y in the center of B with d(x,y)>D. Taking $o\in[x,y]$ with d(x,o)=d(x,y)/2, we will show that $B\subset B(o,r_B-1)$, which leads to a contradiction. For every $z\in B$, note that $d(x,z),d(y,z)\leqslant r_B+1$. By δ -thin triangle property, $d(o,[x,z])\leqslant \delta$ or $d(o,[y,z])\leqslant \delta$. Without loss of generality, there is $o_1\in[x,z]$ such that $d(o,o_1)\leqslant \delta$. Note that $d(o,x)\geqslant D/2$, we have $d(o_1,x)\geqslant D/2-\delta\geqslant \delta+2$. Then

$$d(o, z) \leq d(o, o_1) + d(o_1, z) \leq \delta + (r_B + 1) - (\delta + 2) \leq r_B - 1.$$

Which contradicts the definition of r_B .

(3) Let C be the center of B=F.x, then C is an F-invariant set that $\operatorname{diam}(C)$ is uniformly bounded by $D=D(\delta)$. Let K be a fundamental domain of G which is compact, then

there exists $g \in G$ such that $g.C \cap K \neq \emptyset$. Hence $g.C \subset \widetilde{K}$ where $\widetilde{K} = \overline{\mathcal{N}_D(K)}$ is a fixed compact set. Note that g.C is invariant under gFg^{-1} , hence

$$h.\widetilde{K} \cap \widetilde{K} \neq \emptyset, \quad \forall h \in gFg^{-1}.$$

Since the action is proper, we have gFg^{-1} is contained in a finite subset $A \subset G$. It follows that every finite group conjugates to a subgroup contained in A.

Exercise 3.2. Let $(H,d_T)\hookrightarrow (G,d_S)$ be a QIE. Let $x_0x_1\cdots x_n$ be a geodesic in $\mathrm{Cay}(H,T)\hookrightarrow \mathrm{Cay}(G,S)$, let $[x_i,x_j]$ be the geodesic in $\mathrm{Cay}(G,S)$. Then the path $[x_0,x_1][x_1,x_2]\cdots [x_{n-1},x_n]$ is a (λ,C) -quasi-geodesic in $\mathrm{Cay}(G,S)$ where (λ,C) only depends on the QIE $(H,d_T)\hookrightarrow (G,d_S)$ and $\sup_{t\in T}d_S(1,t)$. By Morse lemma, we have

$$[x_0, x_n] \subset \mathcal{N}_D([x_0, x_1][x_1, x_2] \cdots [x_{n-1}, x_n])$$

for some $D = D(\lambda, C)$. Taking $\sigma = D + \sup_{t \in T} d_S(1, t)$, we have

$$[x_0, x_n] \subset \mathcal{N}_{\sigma}(\{x_0, x_1, \cdots, x_n\}) \subset \mathcal{N}_{\sigma}(H).$$

Hence H is σ -quasi-convex.

Exercise 3.3. Let $G=\mathbb{F}(S)$ with $\#S<\infty$, then G is hyperbolic. Let $H=\langle T\rangle$ be a subgroup generating by a finite set T. Let $\lambda=\sup_{t\in T}d_S(1,t)$ and $\widetilde{T}=\{t\in H:d_S(t)\leqslant \lambda\}$. Note that $H=\langle \widetilde{T}\rangle$. Then for every $x,y\in H$, we have

$$d_{\widetilde{T}}(x,y) - 1 \leqslant d_S(x,y) \leqslant \lambda d_{\widetilde{T}}(x,y).$$

Hence $(H, d_{\widetilde{T}}) \hookrightarrow (G, d_S)$ is a QIE. The conclusion follows by the previous exercise. \Box

Exercise 3.4. Note that $g=fhf^{-1}$ iff there is a quadrangle formed by [1,g], [g,gf][gf,f][f,1] such that [f,gf] is labeled by h. Denote the points on [1,f] and [g,gf] by x_i 's and y_i 's respectively, such that $[x_i,x_{i+1}]$ and $[y_i,y_{i+1}]$ is labeled by the same element in S, the generating set of G. Assume that |f|>D, which is a constant only depends on |g|,|h| to be determined later. For every y_i with $d(y_i,g)>|g|+\delta$ and $d(y_i,gf)>|h|+\delta$, by the δ -thin-quadrangle property, $y_i\in\mathcal{N}_\delta([g,1][1,f][f,gf])$. Hence there exists $z_i\in[1,f]$ such that $d(y_i,z_i)\leqslant \delta$. Since $d(g,y_i)=d(1,x_i)$, we have $|d(1,z_i)-d(1,x_i)|\leqslant |g|+\delta$. Hence $d(x_i,y_i)\leqslant |g|+2\delta$. Take $D=(|g|+|h|+2\delta)+\#\{s\in G:|s|\leqslant |g|+2\delta\}$. Then there are i< j, such that $x_i^{-1}y_i=x_j^{-1}y_j$. Now we consider another element $x_ix_j^{-1}f$, which has a shorter word norm than |f| and also conjugates g and g. By an inductive method. We conclude that g and g can always be conjugated by an element of length at most D=D(|g|,|h|).

§4.4 Exercise 4

EXERCISE SHEET #4

Let X be a proper δ -hyperbolic space with Gromov boundary ∂X .

Exercise 0.1. There exists a uniform constant C depending only on δ such that the following thin triangle property holds.

Let $x, y, z \in X \cup \partial X$ be any triple of distinct points. Then any geodesic [x, y] is contained in the C-neighborhood of $[x, z] \cup [y, z]$.

Let X be a metric complete space and A be a closed subset. Let $\pi_A : X \to A$ be the shortest projection (set-valued) map so that $\pi_A(x)$ is the set of points $a \in A$ satisfying d(x, a) = d(x, A).

Execise 0.2. Let $\phi: X \to Y$ be a (λ, c) -quasi-isometry between two proper geodesic δ -hyperbolic spaces X, Y. Let γ be a geodesic. Prove that there exists a constant $D = D(\lambda, c, \delta)$ such that for any point $x \in X$,

$$d_H(\phi(\pi_{\gamma}(x)), \pi_{\phi\gamma}(\phi(x))) \leq D$$

where d_H denotes the Hausdorff distance.

We say that a (not necessarily geodesic) metric space X is δ -hyperbolic if for any four points x, y, z, w, we have

(1)
$$\langle x, y \rangle_w \ge \min\{\langle x, z \rangle_w, \langle z, y \rangle_w\} - \delta.$$

If X is a geodesic metric space, this is equivalent to the usual thin triangle property.

Definition 0.3 (Gromov boundary defined by sequences). A sequence (x_n) in X converges at infinity if $(x_i, x_j)_o \to \infty$ as $i, j \to \infty$. Two such sequences $(x_n), (y_n)$ are called equivalent if $(x_i, y_j)_o \to \infty$ as $i, j \to \infty$. The Gromov boundary $\partial_s X$ of X is the set of all equivalent classes of sequences converging at infinity.

Exercise 0.4. If X is a proper geodesic hyperbolic space, there exists a natural bijection from $\partial_s X$ to ∂X .

By using (1), we can prove the following.

Exercise 0.5. Consider $w, x, y, z \in X$, and $C \geq 0$. Assume $\langle w, y \rangle_x \leq C$ and $\langle x, z \rangle_y \leq C + \delta$ and $d(x, y) \geq 2C + 2\delta + 1$. Then $\langle w, z \rangle_x \leq C + \delta$.

Definition 0.6. For $C, D \ge 0$, a sequence of points x_0, \dots, x_n is a (C, D)-chain if one has $\langle x_{i-1}, x_{i+1} \rangle_{x_i} \le C$ for all 0 < i < n, and $d(x_i, x_{i+1}) \ge D$ for all $0 \le i < n$.

Using induction via the previous exercise, we can prove the following very useful fact, saying that a "long" local quasi-geodesic is a global quasi-geodesic.

Exercise 0.7. Let x_0, \dots, x_n be a (C, D)-chain with $D \geq 2C + 2\delta + 1$. Then $\langle x_0, x_n \rangle_{x_1} \leq C + \delta$, and

$$d(x_0, x_n) \ge \sum_{i=0}^{n-1} (d(x_i, x_{i+1}) - (2C + 2\delta)) \ge n.$$

Corollary 0.8. In particular, if $D > 2(2C+2\delta)$ then $2d(x_0, x_n) \ge \sum_{i=0}^{n-1} d(x_i, x_{i+1})$. This implies that the path $\bigcup_{i=0}^{n-1} [x_i, x_{i+1}]$ is a $(2, 4C + 4\delta + 2)$ -quasi-geodesic.

Answers

Exercise 4.1. There exists $x_1,y_1\in [x,y]$ and $x_2\in [z,x],y_2\in [z,y]$ such that $[x_1,x]\subset \mathcal{N}_{6\delta}([x_2,x]),[y_1,y]\subset \mathcal{N}_{6\delta}([y_2,y]).$ Moreover, we can choose x_1,x_2,y_1,y_2 satisfying $d(x_1,x_2)\leqslant 6\delta$ and $d(y_1,y_2)\leqslant 6\delta$. It suffices to show there exists C such that $[x_1,y_2]\subset \mathcal{N}_C([x,z]\cup [y,z]).$ We can also take $z_1\in [x,z]$ and $z_2\in [y,z]$ such that $d(z_1,z_2)\leqslant 6\delta$. Consider the hexagon $(x_1,x_2,z_1,z_2,y_2,y_1)$, which is 4δ -thin. Then

$$[x_1, y_1] \subset \mathcal{N}_{4\delta}([x_1, x_2][x_2, z_1][z_1, z_2][z_2, y_2][y_2, y_1]) \subset \mathcal{N}_{10\delta}([x_2, z_1] \cup [z_2, y_2]).$$

The conclusion follows. \Box

Exercise 4.2. Let $\gamma = [y,z]$, then there exists $D_1 = D_1(\lambda,c,\delta)$ such that $d_{\rm H}(\phi\gamma,[\gamma y,\gamma z]) \leqslant D_1$. Then $|d(\phi x,\phi\gamma) - d(\phi x,[\phi y,\phi z])| \leqslant D_1$. It follows that $d_{\rm H}(\pi_{\phi\gamma}(\phi x),\phi_{[\phi y,\phi z]}(\phi x)) \leqslant D_1 + 10\delta$.

It suffices to show that $d_{\mathrm{H}}(\phi\pi_{[y,z]}(x),\pi_{[\phi y,\phi z]}(\phi x))\leqslant D=D(\lambda,c,\delta)$ for every $x,y,z\in X$. For every $o\in\pi_{[y,z]}(x), o$ is a $D_2=D_2(3,0,\delta)$ -center of the geodesic triangle $\Delta(x,y,z)$. Since ϕ is a QIE, combining with Morse lemma, $\phi(o)$ is a $D_3=D_3(\lambda,c,\delta)$ -center of the geodesic triangle $\Delta(\phi x,\phi y,\phi z)$. Recall that for every C>0, every C-center of a geodesic triangle is uniformly bounded. Combining with both $\phi\pi_{[y,z]}(x)$ and $\pi_{[\phi y,\phi z]}(\phi x)$ are contained in the $\max\{D_2,D_3\}$ -center of $\Delta(\phi x,\phi y,\phi z)$, we obtain the desired conclusion. \Box

Exercise 4.4. Fix a base point $o \in X$. It suffices to construct a natural bijection from $\partial_o X$ to $\partial_s X$. For every geodesic ray γ with $\gamma(0) = o$, we construct the sequence (x_n) with $x_n = \gamma(n)$, which is a sequence converges at infinity. For every $\gamma_1 \sim \gamma_2$, we have $d(\gamma_1(n), \gamma_2(n)) \leqslant 2d_{\mathrm{H}}(\gamma_1, \gamma_2) < \infty$. Then $(\gamma_1(n), \gamma_2(m))_o \geqslant \frac{1}{2}(n+m-|n-m|)-C$, where $C=d_{\mathrm{H}}(\gamma_1, \gamma_2)$. Hence $(\gamma_1(n))$ and $(\gamma_2(n))$ are equivalent. It shows that the map is well-defined.

Next we show that the following claim.

Claim 4.4.1. For every sequences $(x_n), (y_n) \subset X$ assume that $x_n \to x \in \partial X$ and $y_n \to y \in \partial Y$ and $(x_i, y_j)_o \to \infty$ as $i, j \to \infty$, then x = y.

Proof. It suffice to show that $\overline{\rho}(x,y)=0$, where $\overline{\rho}=\overline{\rho}_a$ is a quasi-metric on X. Note that

$$\overline{\rho}(x,y) \asymp \lim_{n \to \infty} e^{-ad(o,[x_n,y_n])} = 0,$$

the conclusion follows.

Now for every sequence (x_n) converges at infinity. We want to show that $x_n \to x$ for some $x \in \partial X$. This follows by a "sub-subsequence argument". By Arzela-Ascoli lemma, every subsequence of (x_n) has a further subsequence converges to some point in ∂X . By the claim above, every converging subsequence of (x_n) converges to the same point on ∂X . Hence (x_n) converges to some $x \in \partial X$. We maps such sequence (x_n) to the point $x \in \partial X$. Again by the claim above, two equivalent sequences map to the same point. This map is indeed the inverse of $\gamma \in \partial X \mapsto (\gamma(n))$. The conclusion follows.

Exercise 4.5. Note that
$$\langle y,z\rangle_x=d(x,y)-\langle x,z\rangle_y\geqslant C+\delta+1.$$
 We have $\langle y,z\rangle_x-\delta\geqslant C+1>\langle w,y\rangle_x$. Hence $\langle w,z\rangle_x\leqslant \langle w,y\rangle_x+\delta\leqslant C+\delta.$

Exercise 4.7. It suffices to show $\langle x_0, x_n \rangle_{x_{n-1}} \leqslant C + \delta$. We induct on k to show that $\langle x_0, x_k \rangle_{x_{k-1}} \leqslant C + \delta$. The case of k=1 follows by the condition. By inductive hypothesis, $\langle x_0, x_k \rangle_{x_{k-1}} \leqslant C + \delta$. Combining with $\langle x_{k-1}, x_{k+1} \rangle_{x_k} \leqslant C$ and $d(x_{k-1}, x_k) \geqslant 2C + 2\delta + 1$, we obtain $\langle x_0, x_{k+1} \rangle_{x_k} \leqslant C + \delta$ by the previous exercise.

Since $\langle x_0, x_{i+1} \rangle_{x_i} \leqslant C + \delta$, we have

$$d(x_0, x_{i+1}) - d(x_0, x_i) = d(x_i, x_{i+1}) - 2\langle x_0, x_{i+1} \rangle_{x_i} \geqslant d(x_i, x_{i+1}) - (2C + 2\delta).$$

Summing i from 0 to (n-1), we obtain the desired inequality.

Corollary 4.8. Denote this path by γ . For every $z_1, z_2 \in \gamma$, assume that $z_1 \in [x_i, x_{i+1}], z_2 \in [x_j, x_{j+1}]$ with $i \leq j$. If $d(x_i, z_i) \leq 4C + 4\delta$ for i = 1, 2 then

$$\operatorname{len}(\gamma(z_1, z_2)) \leqslant 8C + 8\delta + \sum_{k=i+1}^{j-1} d(x_k, x_{k+1}) \leqslant 8C + 8\delta + 2d(x_{i+1}, x_j) \leqslant 2d(z_1, z_2) + 24(C + \delta).$$

If $d(x_i,z_i)>4C+4\delta$, for i=1,2, we consider the path $[z_1,x_{i+1}]\cdots[x_{j-1},x_j][x_j,z_2]$. Then conclusion follows directly. A similar argument works for one of $d(x_i,z_i)$ larger than $4C+4\delta$. Hence γ is a $(2,24(C+\delta))$ -quasi-geodesic.