

Unsupervised Domain Adaptation for Semantic Segmentation

Arshad Kazi, Bhuyashi Deka, Sadman Sakib

Problem-Distribution Shift

Satellite images (different seasons)

Autonomous driving (different weather)

Medical images (different stains)

Problem-Distribution Shift

Solution 1 - Augmentation

Solution 2 - Add Data from that Distribution

Drawback:

- Retraining Needed
- Annotation Effort

Solution 3 - Test Time Adaptation

Solution 3 - Test Time Adaptation

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\};$ Parameters to be learned: γ , β

Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$
 // mini-batch mean
$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{\mathcal{B}})^2$$
 // mini-batch variance

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$
 // mini-batch variance

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$
 // normalize

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i)$$
 // scale and shift

Learning mean and variance from test data

Iteratively Forward feed mini batches of Test Data

Inferring on test data

Experimental setup

Encoder: Resnet50

Experimental setup

Test batch

Baseline Model Results

	Normal	Fog 0.005	Fog 0.01	Fog 0.02
w/o Aug	0.7	0.68	0.64	0.55
w/ Aug	0.72	0.7	0.67	0.62

Normal CityScape

Foggy CityScape

After TTN Results

Fog 0.02, Batch size 8

Test:Train	No mix	0.2	0.5	1	Baseline
w/o aug	0.645	0.645	0.639	0.631	0.55
w/ Aug	0.689	0.693	0.691	0.682	0.62

Baseline model

After TTN

Weakness and Shortcomings

 Recomputing statistics during inference introduces additional computational costs, which may not be ideal for time-sensitive applications

 For substantial domain shifts, recalibrating the statistics may not be sufficient