



Malak Gaballa - 900201683 Masa Tantawy - 900201312

CSCE 4604 - Advanced Machine Learning
Dr. Moustafa Youssef

### **Table of contents**

01

Proposal Summary 02

Progress Report 03

Timeline & Member Contribution

# **Problem Statement:** Facial expressions recognition (FER)

Given images of human faces showing different expressions, the model should be able to **categorise each image into one of 7 categories**, **each representing a facial expression**. These are: 0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral).

Model input: image - vector of pixels for a 48x48 pixel grayscale image,

Model output: A number from 0 to 6 which indicates the facial expression illustrated in the image.

To evaluate the model effectiveness, we opt for the **weighted accuracy metric**, which accounts for class imbalance in the data.





### Related Work (SOTA)

| Model                           | Datasets                    | Accuracy (%) |
|---------------------------------|-----------------------------|--------------|
| VGG,Res-Net, and Inception      | FER2013                     | 75.2         |
| LHC-Net                         | FER2013                     | 74.42        |
| VGGNet                          | FER2013                     | 73.28        |
| CNN Hyperparameter Optimization | FER2013                     | 72.16        |
| Ad-Corre                        | FER2013, AffectNet , RAF-DB | 72.03        |
| DeepEmotion                     | FER2013, CK+, FERG, JAFFE   | 70.02        |

#### **The VGGNet model**, short for Visual Geometry Group Network

- Research Paper: <u>Facial Emotion Recognition</u>: <u>State of the Art Performance on FER2013</u>
- Repository: Github link
- Frameworks: PyTorch

### **Baseline Model** - VGGNet

A classical convolutional neural network architecture used in large-scale image processing & pattern recognition.

The network consists of 4 convolutional stages and 3 fully connected layers. The convolutional stages are responsible for feature extraction, dimension reduction, and non-linearity. The fully connected layers are trained to classify the inputs as described by extracted features.



- **Each convolutional stage:** 2 convolutional blocks & a max-pooling layer.
- Convolution block: consists of a convolutional layer, a ReLU activation, and a batch normalization layer. Batch normalization is used to speed up the learning process, reduce the internal covariance shift, and prevent gradient vanishing or explosion.



### **Baseline Model** - VGGNet

A classical convolutional neural network architecture used in large-scale image processing & pattern recognition.

The network consists of 4 convolutional stages and 3 fully connected layers. The convolutional stages are responsible for feature extraction, dimension reduction, and non-linearity. The fully connected layers are trained to classify the inputs as described by extracted features.



 The first two fully connected layers are followed by a ReLU activation. The third fully connected layer is for classification.



### **Proposed Updates**

#### **Hyperparameters Tuning**

- Number of epochs,
- Regularisation, ...

#### Data Imbalance Handling

- Oversampling: ROS & SMOTE
- Undersampling: RUS & Tomeklinks
- Smote + Tomek & Smote + ENN

#### Model Ensemble

To enhance model performance and interpretability

#### Data Augmentation

- Adding auxiliary datasets to train the model
- Image manipulation: such as mirroring/reflecting them, adding background noise, or other appropriate approaches.

#### Real-time App (TENTATIVE)

To afford high generalisability on the Egyptian/Arab race





### The Model

#### This is a trained model in KERAS TENSORFLOW

• Epochs = 180 instead of 350 due to GPU limit

Top-1 Accuracy: 65.76%
 Top-2 Accuracy: 79.91%
 Top-3 Accuracy: 88.49%











# **Progress Report**

Progress on the proposed solutions during this milestone



### Milestone 2 Progress

#### **Hyperparameters Tuning**

Using different regularizers and optimizers

**Image Manipulation** 

Horizontal Flipping, Rotation and Noise addition to the images

Data Imbalance Handling

Training the model on the different variations of the data (milestone 1)

**Auxiliary Data** 

Extra model training on AffectNet dataset

### 1. Hyperparameters Tuning

#### Optimizer

Regularizers and Optimizers with varying learning rates

- *L1 regularization*: neither improved performance nor reduced overfitting.
- *SGD optimizer:* resulted in poor performance.
- Experimented with different learning rates for ADAM optimizer.
  - Ir=0.0001 resulted in highest performance.

#### **Early Stopping**

- Utilized due to model's early saturation and lack of improvement in validation performance
- Monitors validation accuracy
  - Patience = 10
- training process will stop if the validation accuracy does not improve for 10 consecutive epochs

#### **Final Modifications**

- Adam Learning Rate = 0.0001 instead of 0.001
- Early Stopping with patience = 10



### 1. Hyperparameters Tuning

#### **Improved Results**

Training process stopped after 54 epochs

Top-1 Accuracy: 66.15%Top-2 Accuracy: 82.22%

Top-3 Accuracy: 90.89%





#### **Final Modifications**

- Adam Learning Rate = 0.0001 instead of 0.001
- Early Stopping with patience = 10



### 2. Data Imbalance Handling



Original Data

Highly imbalanced A total of 35,887 images

SmoteTomek

Almost Balanced A total of 62,675 images ROS/ SMOTE

Balanced A total of 62,923 images

Smoteen

Highly Imbalanced A total of 32,809 images

#### **Before Modelling**

- Split using sklearn (80% train ,10% test ,10% validation)
- Ran model with tuned hyperparameters on each balanced dataset
- 3 Models



### **ROS Model**

• Epochs = 61

Top-1 Accuracy: 85.75%

Top-2 Accuracy: 92.74%

Top-3 Accuracy: 96.55%









### **SMOTE Model**

• Epochs = 24

Top-1 Accuracy: 86.68%
Top-2 Accuracy: 93.55%

Top-3 Accuracy: 96.68%









### **SmoteTomek Model**

• •

• Epochs = 19

Top-1 Accuracy: 87.00%
Top-2 Accuracy: 94.23%
Top-3 Accuracy: 97.19%









### **Comparative Analysis**

### Random Oversampling (ROS)

- 61 Trained Epochs
  - Top-1 Accuracy: 85.75%
  - Top-2 Accuracy: 92.74%
  - Top-3 Accuracy: 96.55%



#### **SMOTE**

#### 24 Trained Epochs

- Top-1 Accuracy: 86.68%
- Top-2 Accuracy: 93.55%
- Top-3 Accuracy: 96.68%



#### **SmoteTomek**

#### 19 Trained Epochs

- Top-1 Accuracy: 87.00%
- Top-2 Accuracy: 94.23%
- Top-3 Accuracy: 97.19%



Note: The model zoo for each model has been saved for future use.



### 3. Image Manipulation

#### **Vertical & Horizontal Flipping**

Original Horizontal Flip





Original



**Image Rotation** Rotated Image



Rotated Image 2



**Image Cropping** 

Original



Cropped Image



Gaussian Noise Addition

Original



Image with Noise



Image with Noise 2







### 3. Image Manipulation

- Adopted suitable approaches to FER problem: only 3 techniques
- Randomization used to select technique(s) and amount of change in each image

Select a random balanced sample from original data (BASED ON MINIMUM CLASS- HAPPY = 436) Horizontal Flipping **Image Rotation** Gaussian Noise Addition Random choice - T / F Random choice - T / F Random choice - T / F Random proportion of the Random angle between Random mean & standard image from 50% to 100% -100° & 100° deviation between 1 & 10





### 3. Image Manipulation

Random Oversampling

Top-1 Accuracy: 59.74% Top-2 Accuracy: 79.91% Top-3 Accuracy: 88.63%



#### SMOTE

Top-1 Accuracy: 60.88% Top-2 Accuracy: 78.99% Top-3 Accuracy: 89.22%



#### SmoteTomek

Top-1 Accuracy: 58.29% Top-2 Accuracy: 77.46% Top-3 Accuracy: 86.77%









### 4. Auxiliary Data



The largest database of facial expression

#### Advantage

 Manually Annotated → Higher real-life accuracy

#### Disadvantage

- 8 categories not 7
  - 1. Select only common 7 categories (read as pixels)
  - 2. Convert from RGB to Grayscale
- 3. Resize from 96x96 to 48x48

#### Exp-W

Expression in-the-Wild (ExpW) Dataset

#### Advantage

- 7 categories
- Accessible
- Manually Annotated → Higher real-life accuracy

#### Disadvantage

 Over 91,000 instances → large size (given GPU constraints)



### 4. Auxiliary Data



Epoch

0.3 -

### 4. Auxiliary Data



#### Random Oversampling

Top-1 Accuracy: 29.51% Top-2 Accuracy: 45.33% Top-3 Accuracy: 53.41%



#### **SMOTE**

Top-1 Accuracy: 30.31% Top-2 Accuracy: 44.58% Top-3 Accuracy: 54.25%



#### SmoteTomek

Top-1 Accuracy: 29.17% Top-2 Accuracy: 42.71% Top-3 Accuracy: 51.96%









### **Timeline & Member Contribution**



**Note:** The timeline is tentative and subject to adjustments depending on progress / time availability.

#### Malak

- Hyperparameters Tuning
- Model Training (on data resulting from any handling approaches)

#### Masa

- Image Manipulation Techniques
- Auxiliary Datasets



# Thanks

## Facial Express on Recognition Miles one 2

Malak Gabal - 900201683 Masa Tantawy - 900201312



CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**