Youngsuk Park | Résumé

+1 (650) 422-8541, youngsuk@cs.stanford.edu

Keywords: machine learning, optimization, reinforcement learning, time-series analysis

Education

Stanford University Stanford, CA

Ph.D. Candidate in Electrical Engineering, 4.0/4.0

Advisors: Stephen Boyd and Jure Leskovec

Stanford University Stanford, CA

M.S. in Electrical Engineering Jan. 2016

Korea Advanced Institute of Science and Technology Daejeon, South Korea Jun. 2013

B.S. in Electrical Engineering, Minor in Mathematics, Summa Cum Laude

Work Experience

Adobe Research San Jose

Data Science Research Intern

Jun.-Sept. 2019

- Develop a structured reinforcement learning algorithm in continuous space.
- Apply for an efficient cloud management service, improving $\sim 20-40\%$ resource waste and $\sim 70\%$ risk overhead.
- Submit two papers to SoCC and ICML.

Criteo Artificial Intelligence Labs

Palo Alto

Jun. 2020

Research Scientist Intern

Jun.-Sept. 2018

- Develop an off-policy learning RL algorithm under a function approximation with convergence guarantees.
- Apply the algorithm for the off-line evaluation of new policy without executing it on a bidding system online.

Bosch Center for Artificial Intelligence

Palo Alto

Machine Learning Intern

Jun.-Sept. 2017

- Develop an adaptive rule of spectral stepsize selections for optimization, solving machine learning problems.
- Submit to ICASPP (short version) and PKDD (journal version).

Research

- Y. Park et al., "Structured Neural Network for Learning Undirected Graphical Models", in preparation.
- Y. Park et al., "Structured Policy Iteration for Linear Quadratic Regulator", in preparation.
- H. Maei, Y. Park, "Convergent Actor-Critic under Off-policy and Function Approximation", in preparation.
- J. Kim, Y. Park, J.Fox, S. Boyd, W. Dally, "Model Predictive Control for Engine and Battery Management", submitted to American Control Conference (ACC), 2019.
- Y. Park, K. Mahadik, R. Rossi, G. Wu, H. Zhao, "Linear Quadratic Regulator for Resource-Efficient Cloud Services", accepted ACM Symposium on Cloud Computing (SOCC) Poster Session, 2019.
- Y. Park, E. K. Ryu, "Linear Convergence of Cyclic SAGA", accepted to Optimization Letters, 2019.
- Y. Park, D. Hallac, S. Boyd, J.Leskovec, "Learning the Network Structure of Heterogeneous Data via Pairwise Exponential Markov Random Fields", International Conference on Artificial Intelligence and Statistics (AISTATS), 2017.

D. Hallac, **Y. Park**, S. Boyd, J.Leskovec, "Inferring Time Varying Networks via Graphical Lasso", ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2017.

Y. Park, S.Boyd, S. Dhar, M. Shah, "Variable Metric Proximal Gradient Method with Diagonal Barzilai-Borwien Stepsize", Neural Information Processing Systems (NIPS), Optimization for Machine Learning Workshop, 2017.

Honor & Awards

Hyundai Global Forum, 1st-rank Presenter in Al Session (awarded \$ 3,000)	Aug. 2018
Kwanjeong Graduate Fellowship (awarded \$ 110,000 over 2 years)	2013-2015
Fulbright Graduate Fellowship (Declined)	Mar. 2013
Korean National Science & Technology Scholarship	2006-2010
Kwanjeong Graduate Fellowship (awarded \$ 110,000 over 2 years) Fulbright Graduate Fellowship (Declined)	2013-2015 Mar. 2013

Seminars

Hyundai Artificial Intelligence Lab

Time-series Network Inference for Event Detections

Jun. 2019

Kakao Brain

Inferring Undirected Graphical Models from Heterogeneous Data

Mar. 2017

Relevant Coursework

Machine Learning/Reinforcement Learning: Artificial Intelligent (CS221), Machine Learning (CS229), Statistical Learning Theory (CS229T), Reinforcement Learning (CS234 and MS&E 338)

Optimization/Control: Convex Optimization 1 & 2, Introduction to Optimization Theory, Large-scale Numerical Optimization, Dynamic Programming and Optimal Control

Statistics/Mathematics: Theory of Probability A, Theory of Statistics B, Numerical Linear Algebra, Real Analysis 1&2, Lebesque Integral, Differential Geometry, etc.

Information Theory: Information Theory, Universal Schemes in Information Theory, Network Information Theory.

Technical Skills

Programming: Python, TensorFlow, PyTorch, C++, Git, LATEX