Convolutional neural networks for classification of transmission electron microscopy imagery

Sergii Gryshkevych

Uppsala University
Supervisor: Max Pihlström
Reviewer: Ida-Maria Sintorn
Examinator: Justin Pearson
Opponent: Christopher Lagerhult

December 14, 2016

Introduction

This MSc project is done in cooperation with Vironova AB.

Objective

 Discuss the suitability of applying CNN method for classification of electron microscopy images

Objective

- Discuss the suitability of applying CNN method for classification of electron microscopy images
- Benchmark CNN models against SVM classifier for the selected problems

Objective

- Discuss the suitability of applying CNN method for classification of electron microscopy images
- Benchmark CNN models against SVM classifier for the selected problems
- Discuss Deep Learning software:
 - OS availability
 - Licenses
 - Performance
 - Community support

Problem description: Lamellarity

Determine structure of a liposome according to the number of lamellae.

There are 14169 EM images and three classes:

- Unilamellar 12368, 87.29%
- Multilamellar 1717, 12.12%
- Uncertain 84, 0.5%

4 / 19

Problem description: Encapsulation

Determine presence of a liposomal encapsulation.

There are 24918 EM images and three classes:

- Full 24255, 97.34%
- Empty 161, 2.01%
- Uncertain
 502, 0.65%

The data set of image features

- Maximum width
- Diameter
- Length
- Histogram
- Image Moments
- Radial Density Profile
- Edge Density Profile
- Signal to noise

SVM operates on feature representation of the image.

Convolutional neural networks (CNN)

Convolutional neural network (CNN)

It is a special kind of neural network for processing data that has a known, grid-like topology. CNN are simply neural networks that use convolution in place of general matrix multiplication in at least one of their layers.

Why CNN?

- Scalability due to the following assumptions:
 - Local connectivity
 - Parameter sharing
- CNN operate on raw pixel data, i.e. minimum preprocessing
- CNN learn image features themselves, i.e. do not need expert knowledge for selecting feature
- Documented success

The Class Imbalance Problem

Lamellarity and Encapsulation data sets are imbalanced and it is a problem!

How to mitigate the class imbalance problem? I tried:

- Oversampling
- Undersampling
- SMOTE (Synthetic Minority Oversampling Technique)
- Artificial data
- Higher penalties for misclassification of minority classes

Regularization

Definition

Regularization is any modification we make to a learning algorithm that is intended to reduce its generalization error but not its training error

- Weight decay
- Noise injection: label smoothing
- Dropout
- Early stopping
- Data augmentation

Data augmentation example

Input images: surrounding and masking

Each image contains a liposome object and its surrounding which goes 50 pixels in each direction. Corresponding particle masks are also available.

Three choices:

- Images with surrounding
- Cropped images
- Cropped and masked

Input images: surrounding and masking

Each image contains a liposome object and its surrounding which goes 50 pixels in each direction. Corresponding particle masks are also available.

Three choices:

- Images with surrounding
- Cropped images
- Cropped and masked

Performance measures

Accuracy is not enough when the data set is imbalanced.

Confusion matrix

	Predicted Positive	Predicted Negative
Actual Positive	True Positive	False Negative
Actual Negative	False Positive	True Negative

- True Positive Rate: $TPR = \frac{TP}{TP+FN}$ (sensitivity or recall)
- True Negative Rate: $TNR = \frac{TN}{TN + FP}$ (specificity)
- Positive Predicted Value: $PPV = \frac{TP}{TP+FP}$ (precision)
- Negative Predicted Value: $NPV = \frac{TN}{TN + FN}$
- F₁ score : harmonic mean of TPR and PPV

Network architectures

Which LipNet model is the best?

Five LipNet models are evaluated by recording their 5-fold cross validated F_1 scores.

Which LipNet model is the best?

Five LipNet models are evaluated by recording their 5-fold cross validated F_1 scores.

• The Lamellarity Problem: **LipNet-4** is the best

Which LipNet model is the best?

Five LipNet models are evaluated by recording their 5-fold cross validated F_1 scores.

- The Lamellarity Problem: **LipNet-4** is the best
- The Encapsulation Problem: There is no clear leader. **LipNet-2** is selected for the final experiment. LipNet-6 performed worst.

CNN vs SVM: Lamellarity

- CNN is slightly better than SVM.
- More false negative unilamellar by SVM than CNN.
- More false positive multilamellar by SVM than by CNN.
- SVM is better in predicting *uncertain*.
- Many false positive predictions of *uncertain*, mainly *unilamellar* is confused with *uncertain*.

CNN vs SVM: Encapsulation

- SVM is slightly better than CNN.
- Some full are falsely classified as empty and uncertain
 - Low NPV for full
 - ▶ Poor precision (PPV) for *empty* and *uncertain*
- PPV for *full* and NPV for *empty* and *uncertain* are almost 1, so hardly any false positive of *full*.

Deep learning software

OS and API

The path of least resistance:

- Linux
- Python

Deep learning software

OS and API

The path of least resistance:

- Linux
- Python

Licensing

Nearly all libraries are distributed according to some of OSI-approved licenses like Apache, BSD, MIT, etc.

Deep learning software

OS and API

The path of least resistance:

- Linux
- Python

Licensing

Nearly all libraries are distributed according to some of OSI-approved licenses like Apache, BSD, MIT, etc.

GPU

All libraries benefit from GPUs. At the moment there is no study that shows superiority of any library in terms of performance.

Popularity of deep learning software as of October 2016

Conclusion and future work

Conclusions:

- Reasonable performance
- CNN is an excellent research tool

Future work:

- Fully convolutional networks with input of variable size
- Alternative ways to expand the training set
- Late fusing