EE2801: DSP Lab (Jan – Apr 2021)

Lecture 3

Contents

- Continuation of downsampling and upsampling
- Decimation
- Interpolation
- Practical Implementation of decimation and interpolation
- Cascading decimator and interpolator
- Generalizing decimation and interpolation to any factor M or L
- Reference

Downsampler(Compressors)

• Time domain relation between input and output y[n] = x[Mn]

- It is a Linear Time Varying (LTV) system.
- Frequency domain relation between input and output

$$Y(e^{j\omega}) = \frac{1}{M} \sum_{k=0}^{M-1} X(e^{j\frac{(\omega - 2\pi k)}{M}})$$

- For M=2, $Y(e^{j\omega}) = \frac{1}{2} \sum_{k=0}^{1} X(e^{j\frac{(\omega-2\pi k)}{2}})$
- For M=3, $Y(e^{j\omega}) = \frac{1}{3} \sum_{k=0}^{2} X(e^{j\frac{(\omega-2\pi k)}{3}})$

Downsampler(contd....)

Downsampler(contd....)

This is known as decimation

fig 4 : Low pass filter with cutoff freq π/M

fig 5 : output of LPF

fig 6: Downsampling with factor 3

Downsampler(contd....)

Observations

- BW of input signal is π .
- No aliasing when M=2
- Aliasing occurs when M=3
- Because signal BW $< \frac{2\pi}{M}$ when M=2 and signal BW $> \frac{2\pi}{M}$ when M=3

Exercise

- BW of input signal is 2π .
- M=2
- Aliasing will be there or not?
- Yes, because signal BW is more than $\frac{2\pi}{M}$

<u>Key observation</u>: Signal BW must be less than $\frac{2\pi}{M}$, where M is the downsampling factor.

Decimation

- LPF followed by downsampler is known as decimator.
- The job of LPF is to prevent aliasing.
 Hence it is known as anti-aliasing filter.
- Cutoff frequency is π/M .
- When M = 2, then the LPF is also known as Half Band Filter(HBF) with cutoff frequency $\pi/2$.

Decimation

Decimation Example:

Upsampler(Expander)

Time domain relation between input and output

$$y[n] = \begin{cases} x[n/L], & if n is a multiple of L \\ 0, & otherwise \end{cases}$$

- It is a Linear Time Varying (LTV) system.
- Frequency domain relation between input and output

$$Y(e^{j\omega}) = X(e^{j\omega L})$$

Upsampler(contd....)

fig 1: Input to upsampler

fig 2: Upsampling with L = 2

Unwanted image

Upsampler(contd....)

This is known as interpolation

fig 3 : LPF with cutoff frequency π/L

fig 4: output of LPF

Interpolation

- Upsampler followed by LPF is known as interpolator.
- The job of LPF is to remove unwanted image of $X(e^{j\omega})$. Hence it is known as anti-imaging filter.
- Cutoff frequency is π/L .
- When L = 2, then the LPF is also known as Half Band Filter(HBF) with cutoff frequency $\pi/2$.

Interpolation

Interpolation Example:

Practical Implementation of decimation

- Length of x[n] is l_x
- Length of $x_f[n]$ is l_{xf}
- Length of y[n] is l_v

- Impulse response of filter is h[n]
- Length of h[n] is l_h

say M = 2

Problem is

$$x_f[n] = x[n] * h[n]$$

Let $l_x = 36$, $l_h = 51$
then $l_{xf} = 86$, $l_y = 43$

Solution is

Discard first and last $(l_h - 1)/2$ samples from $x_f[n]$, i.e. take only middle l_x sample of $x_f[n]$ and then do downsampling.

So now
$$l_y = 18$$

Practical Implementation of interpolation

- Length of x[n] is l_x
- Length of $x_u[n]$ is l_{xu}
- Length of y[n] is l_y

- Impulse response of filter is h[n]
- Length of h[n] is l_h

Problem is

$$y[n] = x_u[n] * h[n]$$

Let $l_x = 18$, $l_h = 51$
then $l_{xu} = 36$, $l_v = 86$

Solution is

Discard first and last $(l_h - 1)/2$ samples from y[n], i.e. take only middle l_{xu} sample of y[n]. So now $l_v = 36$

Cascading of decimator and interpolator

Sampling period

$$T_2 = \frac{T_1}{L} = \frac{MT}{L}$$

$$|Y(e^{j\omega})| = |X_u(e^{j\omega})| = \frac{L}{M}|X(e^{j\omega})|$$

Sampling period

$$T_{2} = \frac{T_{1}}{L} = \frac{MT}{L}$$

$$T_{2} = \frac{T_{1}}{L} = \frac{MT}{L}$$

$$|Y(e^{j\omega})| = |X_{u}(e^{j\omega})| = \frac{L}{M}|X(e^{j\omega})|$$

$$|X_{u}(e^{j\omega})| = |X_{d}(e^{j\omega})| = \frac{1}{M}|X(e^{j\omega})|$$

Generalizing decimation and interpolation to any factor M or L

- **Note:** 1. We will generalize here for M = L
 - 2. Sampling frequency of x[n] and h[n] should be same.

Generalizing decimation and interpolation to any factor M or L

• Ex-1: Let decimation and interpolation factors are M = L = 3, what are the filter gain and cutoff frequency of anti-aliasing filter and anti-imaging filter?

Ans: For anti-aliasing filter, gain = 1, cutoff frequency $\omega_c = \pi/3$. For anti-imaging filter, gain = 3, cutoff frequency $\omega_c = \pi/3$.

• Ex-2: Let decimation and interpolation factors are M = L = 4, what are the filter gain and cutoff frequency of anti-aliasing filter and anti-imaging filter?

Ans: For anti-aliasing filter, gain = 1, cutoff frequency $\omega_c = \pi/4$. For anti-imaging filter, gain = 4, cutoff frequency $\omega_c = \pi/4$.

Reference

Discrete Time Signal Processing by Alan V. Oppenheim and Ronald W.
 Schafer - <u>link</u>