Activity Recognition in Smart Phones

Abdullah Alhoshan, Zhen Hu, Nicholas Jewell, and Zhe Zhang

Introduction

- Motivation
- Data Collection
- Preprocessing
- Frame Analysis
- Sequential Analysis (Hidden Markov Model (HMM))
- Summary

Motivation

- Smartphones are everywhere.
- Many types of sensors are built in.
 - Accelerometer, gyroscope, gps, etc.
- We can leverage this data to determine what the user is doing.
 - Many cell phones already do this.
 - However, it is much more general. (run, walk, bike)
- Our Goal
 - Detect 5 activities:
 - Run, Sit, Stand, Downstairs, Upstairs.

Data Collection

- Used one app to collect data.
 - o iPhone app: SensorLog
- 4 people * 5 activity * 10 repetition
- Collects 58 attributes per log.
- Logs 1 record every 33 ms.
- Restricted to right pocket, when recording data.
 - Chose this so we would be consistent.

Data Preprocessing

- Don't need all 58 attributes.
 - o GPS, battery life, deviceID, etc.
- Limit data to only the accelerometer.
 - Has three attributes:
 - X, Y, and Z axis.

V	W	X
accelerometerAccelerationX	accelerometerAccelerationY	accelerometerAccelerationZ
0.117965698	-0.323181152	-0.880813599
0.198104858	-0.327148438	-0.908966064
0.192642212	-0.320648193	-0.977523804
0.185043335	-0.328796387	-0.953536987
0.145019531	-0.353729248	-0.991226196
0.141555786	-0.356002808	-0.921310425
0.143051147	-0.418060303	-0.791702271
0 118499756	-0 351501465	-0 907104492

First Step

- Need to extract features from the accelerometer data.
 - However, we need more information beyond data in the time domain.
- Conversion of data from time domain to frequency domain.
 - We achieve this by the Fourier Transformation.
 - This gets us a data frame.

Feature Extraction

- Digital Component (DC)
- Mean in time domain
- Entropy from frequency domain
- Energy

Each axis contains 4 features and we have 12 features in total (3 axises).

FFT of Run (Fourier Transform)

FFT

Downstairs & Upstairs

FFT

Upstairs & Run

FFT of

Sit & Stand

Post Fourier Transformation (Second Step)

- After conversion of the data to frequency domain:
 - o Extract Digital Component (DC), Entropy (without DC), Energy
- Combine those attributes with mean Value from time domain.

Results of Second Step

Model Name	Correctly Classified (%)	Incorrectly Classified (%)	Root mean squared error
Random Forest	100	0	0.0705
Naive Bayesian	48.366	51.634	0.3714
J48	94.7712	5.2288	0.1299
Bagging	93.4641	6.5359	0.1628

Can We Do Better?

- Previously we looked at 1 second frames to classify our activities.
- Looking at sequential data can give us better results.
 - Sequences are back to back frames.
 - Goal is for 6 seconds.
 - Some of these activities are less.
- Use Hidden Markov Models

Hidden Markov Model (Third Step)

- 1. $X = \{x_1, x_2, x_3, ..., x_n\}$ is observable data sequence.
- 2. $Y = \{y_1, y_2, y_3, ..., y_m\}$ is hidden state sequence.

$$P(x_{1}, x_{2}, x_{3}, ..., x_{n}, y_{1}, y_{2}, y_{3}, ..., y_{m}) = P(y_{1})P(x_{1} | y_{1}) \prod P(y_{k} | y_{k-1})P(x_{k} | y_{k})$$

We need:

- 1. Initial probabilities
- 2. Transition probabilities
- 3. Emission probabilities

Goal: Choose $\{y_1, y_2, y_3, ..., y_m\}$ to maximize $P(x_1, x_2, x_3, ..., x_n, y_1, y_2, y_3, ..., y_m)$

Data Frame

- Each data frame includes 32 samples (~1 second)
- Two data frames are overlapped with half of each other

Results on training data

Actual activity sequence from training data

Results on Testing Data

Future Work

- Detect more activities.
 - Jump, Walk.
 - Injury (hurt leg)
- HMM
 - Find relationship between cluster and real activity.
 - Add features to help classification.
 - Difference of change.

Summary

- Frame Analysis:
 - Tree based models works well.
 - Other common models do not.
- Sequential Analysis:
 - Training set works well
 - Against test data, results in some classification issues.
 - Sit and Stand are ambiguous.
 - Need to add more features.
 - Possibly gyroscope data.