CSC445: Neural Networks

CHAPTERS 8

UNSUPERVISED LEARNING:

PRINCIPAL-COMPONENTS ANALYSIS (PCA)

Prof. Dr. Mostafa Gadal-Haqq M. Mostafa
Computer Science Department
Faculty of Computer & Information Sciences
AIN SHAMS UNIVERSITY

Credits: Some Slides are taken from presentations on PCA by:

- 1. Barnabás Póczos University of Alberta
- 2. Jieping Ye, http://www.public.asu.edu/~jye02

Outlines

- Introduction
- Tasks of Unsupervised Learning
- What is Data Reduction?
- Why we need to Reduce Data Dimensionality?
- Clustering and Data Reduction
- The PCA Computation
- Computer Experiment

Unsupervised Learning

• In unsupervised learning, the requirement is to discover significant patterns, or features, of the input data through the use of unlabeled examples.

That it, the network operates according to the rule:

"Learn from examples without a teacher"

What is feature reduction?

- Feature reduction refers to the mapping of the original high-dimensional data onto a lower-dimensional space.
 - Criterion for feature reduction can be different based on different problem settings.
 - Unsupervised setting: minimize the information loss
 - Supervised setting: maximize the class discrimination
- Given a set of data points of p variables
 Compute the linear transformation (projection)

$$\{x_1, x_2, \dots, x_n\}$$

$$G \in \Re^{p \times d} : x \in \Re^p \longrightarrow y = G^T x \in \Re^d \ (d \ll p)$$

High Dimensional Data

Gene expression

Face images

Handwritten digits

Why feature reduction?

- Most machine learning and data mining techniques may not be effective for highdimensional data
 - Curse of Dimensionality
 - Query accuracy and efficiency degrade rapidly as the dimension increases.
- The intrinsic dimension may be small.
 - For example, the number of genes responsible for a certain type of disease may be small.

Why feature reduction?

• Visualization: projection of high-dimensional data onto 2D or 3D.

Data compression: efficient storage and retrieval.

Noise removal: positive effect on query accuracy.

What is Principal Component Analysis?

- Principal component analysis (PCA)
 - Reduce the dimensionality of a data set by finding a new set of variables, smaller than the original set of variables
 - Retains most of the sample's information.
 - Useful for the compression and classification of data.
- By information we mean the variation present in the sample, given by the correlations between the original variables.
 - The new variables, called principal components (PCs), are uncorrelated, and are ordered by the fraction of the total information each retains.

principal components (PCs)

- the 1st PC Z_1 is a minimum distance fit to a line in X space
- the $2^{\rm nd}$ PC z_2 is a minimum distance fit to a line in the plane perpendicular to the $1^{\rm st}$ PC

PCs are a series of linear least squares fits to a sample, each orthogonal to all the previous.

Algebraic definition of PCs

Given a sample of *n* observations on a vector of *p* variables

$$\{x_1, x_2, \cdots, x_n\} \in \Re^p$$

define the first principal component of the sample by the linear transformation

$$z_1 = a_1^T x_j = \sum_{i=1}^p a_{i1} x_{ij}, \quad j = 1, 2, \dots, n.$$

where the vector

$$a_1 = (a_{11}, a_{21}, \dots, a_{p1})$$

$$x_{j} = (x_{1j}, x_{2j}, \dots, x_{pj})$$

is chosen such that $var[z_1]$ is maximum.

Algebraic Derivation of the PCA

To find Q_1 first note that

$$var[z_1] = E((z_1 - \overline{z_1})^2) = \frac{1}{n} \sum_{i=1}^{n} (a_1^T x_i - a_1^T \overline{x})^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} a_{i}^{T} \left(x_{i} - \overline{x} \right) \left(x_{i} - \overline{x} \right)^{T} a_{1} = a_{1}^{T} \Sigma a_{1}$$

where

$$\Sigma = \frac{1}{n} \sum_{i=1}^{n} \left(x_i - \overline{x} \right) \left(x_i - \overline{x} \right)^T$$

is the covariance matrix.

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 is the mean.

In the following, we assume the Data is centered.

$$x = 0$$

Algebraic derivation of PCs

Assume
$$\bar{x} = 0$$

Form the matrix:
$$X = [x_1, x_2, \cdots, x_n] \in \Re^{p \times n}$$

then
$$S = \frac{1}{n} XX^T$$

Obtain eigenvectors of S by computing the SVD of X:

$$X = U \Sigma V^T$$

Principle Component Analysis

PCA:

- Orthogonal projection of data onto lower-dimension linear space that...
 - o maximizes variance of projected data (purple line)
 - o minimizes mean squared distance between
 - *data point and
 - *projections (sum of blue lines)

Principle Components Analysis

Idea:

- Given data points in a d-dimensional space, project into lower dimensional space while preserving as much information as possible
 - x Eg, find best planar approximation to 3D data
 - x Eg, find best 12-D approximation to 10⁴-D data
- In particular, choose projection that minimizes squared error in reconstructing original data

The Principal Components

- Vectors originating from the center of mass
- Principal component #1 points in the direction of the **largest variance**.
- Each subsequent principal component...
 - o is **orthogonal** to the previous ones, and
 - o points in the directions of the **largest variance of the residual subspace**

2D Gaussian dataset

1st PCA axis

ond PCA axis

PCA algorithm I (sequential)

Given the **centered** data $\{x_1, ..., x_m\}$, compute the principal vectors:

$$\mathbf{w}_1 = \arg\max_{\|\mathbf{w}\|=1} \frac{1}{m} \sum_{i=1}^m \{ (\mathbf{w}^T \mathbf{x}_i)^2 \}$$
 1st PCA vector

We maximize the variance of projection of \mathbf{x}

$$\mathbf{w}_{k} = \arg\max_{\|\mathbf{w}\|=1} \frac{1}{m} \sum_{i=1}^{m} \{ [\mathbf{w}^{T} (\mathbf{x}_{i} - \sum_{j=1}^{k-1} \mathbf{w}_{j} \mathbf{w}_{j}^{T} \mathbf{x}_{i})]^{2} \}$$

$$\mathbf{x'} \text{ PCA reconstruction}$$

We maximize the variance of the projection in the residual subspace

PCA algorithm II (sample covariance matrix)

Given data $\{x_1, ..., x_m\}$, compute covariance matrix Σ

$$\sum = \frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}_i - \overline{\mathbf{x}}) (\mathbf{x} - \overline{\mathbf{x}})^T \quad \text{where} \quad \overline{\mathbf{x}} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_i$$

$$\overline{\mathbf{x}} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i}$$

PCA basis vectors = the eigenvectors of Σ

Larger eigenvalue ⇒ more important eigenvectors

PCA algorithm II

PCA algorithm(X, k): top k eigenvalues/eigenvectors

% $\underline{\mathbf{X}} = \mathbf{N} \times \mathbf{m}$ data matrix, % ... each data point $\mathbf{x}_i = \text{column vector}$, i=1...m

- $\bullet \quad \underline{\mathbf{x}} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i}$
- $X \leftarrow$ subtract mean \underline{x} from each column vector \mathbf{x}_i in \underline{X}
- $\Sigma \leftarrow XX^T$... covariance matrix of X
- $\{\lambda_i, \mathbf{u}_i\}_{i=1..N}$ = eigenvectors/eigenvalues of Σ ... $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_N$
- Return { λ_i, **u**_i }_{i=1..k}
 % top *k* principle components

PCA algorithm III (SVD of the data matrix)

Singular Value Decomposition of the **centered** data matrix **X**.

$$\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_m] \in \mathbb{R}^{N \times m}$$
,

m: number of instances,

N: dimension

$$\mathbf{X}_{\text{features} \times \text{samples}} = \mathbf{U} \mathbf{S} \mathbf{V}^{\mathsf{T}}$$

 \mathbf{V}^{T}

significant

noise

PCA algorithm III

Columns of U

- \circ the principal vectors, { $\mathbf{u}^{(1)}$, ..., $\mathbf{u}^{(k)}$ }
- \circ orthogonal and has unit norm so $U^{T}U = I$
- Can reconstruct the data using linear combinations of { u⁽¹⁾, ..., u^(k) }

Matrix S

- Diagonal
- Shows importance of each eigenvector

Columns of V^T

The coefficients for reconstructing the samples

Challenge: Facial Recognition

- Want to identify specific person, based on facial image
- Robust to glasses, lighting,...
 - ⇒ Can't just use the given 256 x 256 pixels

Applying PCA: Eigenfaces

Method A: Build a PCA subspace for each person and check which subspace can reconstruct the test image the best
Method B: Build one PCA database for the whole dataset and then classify based on the weights.

- Example data set: Images of faces
 - Famous Eigenface approach
 [Turk & Pentland], [Sirovich & Kirby]
- Each face x is ...

- 256×256 values (luminance at location)
 - \circ x in $\Re^{256 \times 256}$ (view as 64K dim vector)
- Form $\mathbf{X} = [\mathbf{x}_1, ..., \mathbf{x}_m]$ centered data mtx
 - Compute $\Sigma = XX^T$
 - Problem: Σ is $64K \times 64K \dots$ HUGE!!!

Computational Complexity

- Suppose m instances, each of size N
 - Eigenfaces: m=500 faces, each of size N=64K
- Given $N \times N$ covariance matrix Σ , can compute
 - o all N eigenvectors/eigenvalues in O(N3)
 - o first k eigenvectors/eigenvalues in O(k N²)
- But if N=64K, EXPENSIVE!

A Clever Workaround

- Note that m<<64K
- Use L= X^TX instead of $\Sigma = XX^T$
- If \mathbf{v} is eigenvector of \mathbf{L} then $\mathbf{X}\mathbf{v}$ is eigenvector of $\mathbf{\Sigma}$

Proof:
$$\mathbf{L} \ \mathbf{v} = \gamma \ \mathbf{v}$$

$$\mathbf{X}^{T}\mathbf{X} \ \mathbf{v} = \gamma \ \mathbf{v}$$

$$\mathbf{X} \ (\mathbf{X}^{T}\mathbf{X} \ \mathbf{v}) = \mathbf{X}(\gamma \ \mathbf{v}) = \gamma \ \mathbf{X}\mathbf{v}$$

$$(\mathbf{X}\mathbf{X}^{T})\mathbf{X} \ \mathbf{v} = \gamma \ (\mathbf{X}\mathbf{v})$$

$$\mathbf{\Sigma} \ (\mathbf{X}\mathbf{v}) = \gamma \ (\mathbf{X}\mathbf{v})$$

Principle Components (Method B)

Reconstructing... (Method B)

- ... faster if train with...
 - only people w/out glasses
 - same lighting conditions

Shortcomings

- Requires carefully controlled data:
 - All faces centered in frame
 - Same size
 - Some sensitivity to angle
- Alternative:
 - o "Learn" one set of PCA vectors for each angle
 - Use the one with lowest error
- Method is completely knowledge free
 - o (sometimes this is good!)
 - Doesn't know that faces are wrapped around 3D objects (heads)
 - Makes no effort to preserve class distinctions

Facial expression recognition

Happiness subspace (method A)

Disgust subspace (method A)

Facial Expression Recognition Movies (method A)

Facial Expression Recognition Movies (method A)

Facial Expression Recognition Movies (method A)

Image Compression

Original Image

- Divide the original 372x492 image into patches:
 - Each patch is an instance that contains 12x12 pixels on a grid
- View each as a 144-D vector

La error and PCA dim

PCA compression: 144D) 60D

PCA compression: 144D) 16D

16 most important eigenvectors

PCA compression: 1/1D \6D

6 most important eigenvectors

3 most important eigenvectors

PCA compression: 1/1D \ 2D

3 most important eigenvectors

PCA compression: 1/1D \1D

60 most important eigenvectors

Looks like the discrete cosine bases of JPG!...

2D Discrete Cosine Basis

Noise Filtering

Noise Filtering, Auto-Encoder...

Noisv image

Denoised image using 15 PCA components

PCA Shortcomings

PCA, a Problematic Data Set

PCA vs Fisher Linear Discriminant

- PCA maximizes variance, independent of class
- ⇒ magenta

1.5

- FLD attempts to separate classes
 - \Rightarrow green line

PCA, a Problematic Data Set

PCA cannot capture NON-LINEAR structure!

PCA Conclusions

- PCA
 - o finds orthonormal basis for data
 - Sorts dimensions in order of "importance"
 - Discard low significance dimensions
- Uses:
 - Get compact description
 - Ignore noise
 - Improve classification (hopefully)
- Not magic:
 - Doesn't know class labels
 - Can only capture linear variations
- One of many tricks to reduce dimensionality!

Applications of PCA

- Eigenfaces for recognition. Turk and Pentland. 1991.
- Principal Component Analysis for clustering gene expression data. Yeung and Ruzzo. 2001.
- Probabilistic Disease Classification of Expression-Dependent Proteomic Data from Mass Spectrometry of Human Serum. Lilien. 2003.

PCA for image compression

d=2

d=4

d=8

d=32

d=64

d=100

Original Image