Determinarea componentelor tare conexe ale unui graf orientat

Fie G=(V,E) orientat

- G este tare conex dacă între oricare două vârfuri există un drum
- O componentă tare conexă a lui G = subgraf indus al lui G tare conex, maximal

Graf tare conex

Componentele tare conexe

 Detectarea de comunități în rețele (sociale, de colaborare/citări, economice)

Etape în alţi algoritmi, rezolvarea altor probleme, precum 2-SAT

Folosind mai multe parcurgeri?

```
Posibilă idee:

componenta(x) =

multimea vârfurilor accesibile din x în G ∩

multimea vârfurilor accesibile din x în G<sup>⊤</sup>

unde G<sup>⊤</sup> = (V, E<sup>⊤</sup>), E<sup>⊤</sup> = {yx | xy∈ E}
```

Componenta tare conexă a vârfului 1 =

mulțimea vârfurilor accesibile din 1 în G (vizitate în DFS(1,G))

∩ intersectată cu

mulțimea vârfurilor accesibile din 1 în G^T (vizitate în DFS(1, G^T))

Observaţii

Într-un graf orientat:

- Componentele tare conexe sunt vârf-disjuncte
- Orice vârf aparține unei (unice) componente tare-conexe
- Un arc poate să nu aparțină niciunei componente tare-conexe
- Componente tare conexe din $G = componente tare conexe din <math>G^T$

Folosind mai puține (un număr constant) de parcurgeri?

Observaţii

Dacă C_1 și C_2 sunt componente tare conexe aî există arc de la C_1 la C_2 , atunci nu există arc/drum de la C_2 la C_1

în G^T – ar fi bine sa determinăm întâi componenta lui 10: DF(G^T ,10) (să nu se "amestece" componentele

=> nu mai trebuie intersecție cu nodurile vizitate în DF(G,10))

Ar fi bine sa determinăm întâi componenta lui 10 în G^T ("de la margine"). Dar ce proprietate are vârful 10?

Ar fi bine sa determinăm întâi componenta lui 10 în G^T ("de la margine"). Dar ce proprietate are vârful 10? =>

Este ultimul finalizat în DF pentru G

Folosind mai puține (un număr constant) de parcurgeri?

Folosind doar două parcurgeri, una în G şi una în G[™]?

DA, dar a doua într-o ordine particulară a vârfurilor (în funcție de ordinea în care au fost finalizate de parcurgerea DF în G)

⇒ Algoritmul lui Kosaraju

Dar folosind o singură parcurgere?

DA, folosind o idee similară cu cea de la componente biconexe (vom discuta)

⇒ Algoritmul lui Tarjan (SUPLIMENTAR)

▶ Pasul 0. Constuim G^T

Pasul 1. Parcurgem DFS graful G +

introducem într-o stivă S fiecare varf la momentul la care este finalizat

(pentru a obține o ordonare descrescătoare a varfurilor după timpul de finalizare)

```
stack S

DFS(G, i)
    viz[i] = 1
    pentru ij ∈ E(G)
        daca viz[j]==0 atunci
        DFS(j)
    push(S, i) //i este finalizat

pentru x ∈ V executa
    daca viz[x]==0 atunci
    DFS(G, x)
```

Pasul 2. Parcurgem DFS graful G^T considerând vârfurile în ordinea în care sunt extrase din S (descrescătoare după timpul de finalizare de la Pasul 1):

```
marcăm toate vârfurile ca fiind nevizitate

cat timp S este nevida

x = pop(S)

daca x este nevizitat atunci

DFS(G<sup>T</sup> , x)

afiseaza componenta tare conexă (formată cu
varfurile vizitate in DFS(G<sup>T</sup>,x))
```

Complexitate:

2 parcurgeri + construcția lui $G^T => O(n+m)$

Timp de finalizare

Timp de finalizare

Algoritmul lui Kosaraju Timp de finalizare Pasul 1.

Timp de finalizare

Timp de finalizare

Timp de finalizare

Ordinea descrescătoare finalizare:

6, 3, 9, 8, 4

Timp de finalizare

Ordinea descrescătoare finalizare:

5, 6, 3, 9, 8, 4

Timp de finalizare

Ordinea descrescătoare finalizare:

5, 6, 3, 9, 8, 4

Timp de finalizare

Ordinea descrescătoare finalizare:

Ordinea descrescătoare finalizare:

Algoritmul lui Kosaraju Timp de finalizare Pasul 1.

Ordinea descrescătoare finalizare:

Ordinea descrescătoare finalizare:

Algoritmul lui Kosaraju Timp de finalizare Pasul 1.

Ordinea descrescătoare finalizare:

Algoritmul lui Kosaraju Timp de finalizare Pasul 1.

Ordinea descrescătoare finalizare:

Ordinea descrescătoare finalizare:

Ordinea descrescătoare finalizare: 10, 12, 1, 11, 2, 7, 5, 6, 3, 9, 8, 4

Componenta tare conexă: 10, 12

Componenta tare conexă: 5, 6, 8, 3, 9

Corectitudine

Lemă

Fie C o componentă tare conexă si v ∉ C, astfel încât există un drum de la C la v. Atunci

 $\max\{ fin[u] \mid u \in C \} > fin[v]$

Demonstrație: Fie x primul vârf din $C \cup \{v\}$ vizitat la pasul 1

Cazul 1: x = v.

x = v va fi finalizat inainte de a fi descoperit vreun vârf din C

Cazul 2: $x \in C$

v este accesibil din x și este încă nevizitat =>

va fi descoperit și finalizat în DFS(x,G), deci înaintea lui x: fin[v] < fin[x]

Consecința 1

Fie C_1 , C_2 componente tare conexe astfel încât există un drum de la C_1 la C_2 . Atunci

 $\max\{ fin[u] \mid u \in C_1 \} > \max\{ fin[v] \mid v \in C_2 \}$

Consecința 2

Fie C_1 , C_2 componente tare conexe astfel încât

 $\max\{ fin[u] \mid u \in C_1 \} > \max\{ fin[v] \mid v \in C_2 \}$

Atunci

- ▶ nu există drum de la C₂ la C₁ în G
- nu există drum de la C_1 la C_2 în G^T

Teoremă - Corectitudinea Algoritmului Kosaraju

Fie C_1 , C_2 , ..., C_k toate componente tare conexe ale lui G aî $\max\{ fin[u] \mid u \in C_1 \} > \max\{ fin[u] \mid u \in C_2 \} > ... > \max\{ fin[u] \mid u \in C_k \} .$

Fie x cel de al i-lea vârf pentru care se apelează $DF(x,G^T)$ la Pasul 2.

componente determinate corect

apelează **DF(x,G**^T)

Teoremă - Corectitudinea Algoritmului Kosaraju

Fie C_1 , C_2 , ..., C_k toate componente tare conexe ale lui G aî $\max\{ \text{ fin}[u] \mid u \in C_1 \} > \max\{ \text{ fin}[u] \mid u \in C_2 \} > ... > \max\{ \text{ fin}[u] \mid u \in C_k \} .$

Fie x cel de al i-lea vârf pentru care se apelează $DF(x,G^T)$ la Pasul 2.

Atunci, la momentul acestui apel toate vârfurile din $C_1,..., C_{i-1}$ au fost vizitate, iar cele din $C_i,..., C_k$ nu

În plus, în apelul $DF(x,G^T)$ se vor vizita toate vârfurile componentei C_i și doar acestea

G

