



# Introduction to Optimization Modeling in Python



Alba Carrero, Juan Javaloyes & Daniel Vázquez



# **Contents**

- ► Install PYOMO and solvers
- ► Mathematical Programming Background
- **▶ PYOMO Components**
- ▶ Case Studies

https://github.com/CAChemE/pyomo



# Install PYOMO and Solvers

#### **PYOMO**

- conda install -c conda-forge pyomo
- conda install -c conda-forge pyomo.extras http://www.pyomo.org/installation/

Background

- glpk [LP, MILP] >> conda install -c conda-forge glpk http://ftp.gnu.org/gnu/glpk/
  - gurobi[LP, MILP] >> download and install. Free university license http://www.gurobi.com/

#### **SOLVERS**

- IPOPT[NLP] >> conda install -c conda-forge ipopt https://www.coin-or.org/download/binary/
- SCIP [MINLP] >> download and add the solver installation to the path environment variable http://scip.zib.de/#download



# **PYOMO Sources**

# Homepage:



http://www.pyomo.org/



https://software.sandia.gov/trac/pyomo

#### **Book Reference**

Springer Optimization and Its Applications 67

William E. Hart Carl D. Laird Jean-Paul Watson David L. Woodruff Gabriel A. Hackebeil Bethany L. Nicholson John D. Siirola

Pyomo — Optimization Modeling in Python

Second Edition



# **PYOMO Sources**

#### **GitHub**

https://github.com/Pyomo

# **Help Forums**

https://groups.google.com/forum/#!forum/pyomo-forum

#### **Stack Overflow**

https://stackoverflow.com/questions/tagged/pyomo



Contents Installation Background PYOMO Components Case Studies

# **Mathematical Programming Background**



# **Classes of Optimization Problems**

$$\min \quad f_0(x)$$

$$s.t \qquad f_i\left(x\right) \leq b_i \qquad \quad i=1,\ldots,m. \quad \clubsuit \text{ Constraints}$$

$$x \in \mathbb{R}^n$$

$$f_0(x): \mathbb{R}^n \to \mathbb{R}, f_i(x): \mathbb{R}^n \to \mathbb{R}$$



$$f_i\left(\alpha x_1 + \beta x_2\right) \neq x f_i\left(x_1\right) + \beta f_i\left(x_2\right) \ x_1, x_2 \in \mathbb{R}^n$$
 $\alpha, \beta \in \mathbb{R}$ 

Nonlinear Program (NLP)









$$\alpha, \beta \in \mathbb{R}$$
 with  $\alpha + \beta = 1, \alpha, \beta \geq 0$ 



# **Classes of Optimization Problems**

$$\begin{aligned} & \min \quad & f_0\left(x,y\right) \\ & s.t \quad & f_i\left(x,y\right) \leq b_i \qquad i = 1,\ldots,m. \\ & x \in R^n, \ y \in \left\{0,1\right\}^q \end{aligned}$$

$$f_0(x,y): R^n \to R, f_i(x,y): R^n \to R$$

- ← Objective Function
- ← Constraints
  - ← Mixed-Integer (Non) Linear Programming (MI(N)LP)





# **Classes of Optimization Problems – Convex Problems**





Sub-estimation of the Objective function

#### Convex feasible region



Overestimation of the feasible region



### Classes of Optimization Problems – Non-Convex Problems





#### Non-Convex feasible region





# **Classes of Optimization Problems**





# **Classes of Optimization Problems - Solvers**

|          | Problem Class |      |     |       |  |  |
|----------|---------------|------|-----|-------|--|--|
| Solver   | LP            | MILP | NLP | MINLP |  |  |
| ALPHAECP |               |      |     | X     |  |  |
| ANTIGONE |               |      | X   | X     |  |  |
| BARON    | X             | X    | X   | X     |  |  |
| CONOPT4  | X             |      | X   |       |  |  |
| CPLEX    | X             | X    |     |       |  |  |
| DICOPT   |               |      |     | X     |  |  |
| GUROBI   | X             | X    |     |       |  |  |
| GLPK     | X             | X    |     |       |  |  |
| IPOPT    | X             |      | X   |       |  |  |
| SCIP     |               | X    | X   | X     |  |  |



# **Modeling of Discrete-Continuous Optimization Problems**

Motivation Example (Grossmann & Trespalacios (2013), doi.org/10.1002/aic.14088)

"A company has to decide whether to produce either product A or product B in order to maximize its profit. The profit of product A is 3, and the profit of product B is 2. The limit on production of A is 4, and the limit in production of B is 5."



# **Modeling of Discrete-Continuous Optimization Problems**

Motivation Example (Grossmann & Trespalacios (2013), doi.org/10.1002/aic.14088)

$$\max \quad 3A + 2B$$

$$s.t \qquad A y_2 = 0$$

$$B y_1 = 0$$

$$y_1 y_2 = 0$$

$$y_1 + y_2 = 1$$

$$0 \le A \le 4$$

$$0 \le B \le 5$$

$$0 \le y_1, y_2 \le 1$$

$$A, B, y_1, y_2 \in \mathbb{R}^n$$

```
3A + 2B
0 \le A \le 4 y_1
  0 \le B \le 5 y_2
 y_1 + y_2 = 1
 A, B \in \mathbb{R}
  y_1, y_2 \in \{0,1\}
```



# **Generalized Disjunctive Programming (GDP) Formulation**

$$\min: z = f(x)$$

s.t. 
$$g(x) \le 0$$

$$h(x)=0$$

$$\bigvee_{i \in D_k} \begin{bmatrix} Y_{k,i} \\ r_{i,k}(x) \le 0 \\ s_{i,k}(x) = 0 \end{bmatrix} \quad k \in K$$

 $k \in K$ 

$$\bigvee_{i \in D_k} Y_{k,i}$$

$$\Omega(Y) = True$$

$$x^{lo} \le x \le x^{up}$$

 $x \in \mathbb{R}^n$ ;

$$Y \in \{True, False\}$$
  $k \in K, i \in D_k$ 

$$k \in K, i \in D_k$$

Objective function global constraints

**Disjunctions** 

Logic propositions

Balas (1979)



Raman and Grossmann (1994)





# **Generalized Disjunctive Programming (GDP) Formulation**

GDP Reformulation (Grossmann & Trespalacios (2013), doi.org/10.1002/aic.14088)

#### **GDP**

#### Big-M (BM)

#### **Hull Reformulation (HR) [Linear]**

min: 
$$z = f(x)$$
  
s.t.  $g(x) \le 0$   
 $h(x) = 0$ 

min: 
$$z = f(x)$$
  
s.t.  $g(x) \le 0$   
 $h(x) = 0$ 

min: 
$$z = f(x)$$
  
s.t.  $g(x) \le 0$   
 $h(x) = 0$ 

$$\bigvee_{i \in D_k} \begin{bmatrix} Y_{k,i} \\ r_{i,k}(x) \le 0 \\ s_{i,k}(x) = 0 \end{bmatrix} \quad k \in K$$

$$\bigvee_{i \in D_k} Y_{k,i} \qquad k \in K$$

$$r_{ki}(x) \le M^{ki}(1-y_{ki})$$
  $k \in K, i \in D_k$ 

$$\sum_{i \in D_k} y_{ki} = 1 \qquad k \in K$$

$$x = \sum_{i \in D_k} v^{ki} \qquad k \in K$$

$$y_{ki} r_{ki} \left( v^{ki} / y_{ki} \right) \le 0 \qquad k \in K, i \in D_k$$

$$x^{lo} y_{ki} \le v^{ki} \le x^{up} y_{ki} \qquad k \in K, i \in D_k$$

$$\sum_{i \in D_k} y_{ki} = 1 \qquad k \in K$$

$$\Omega(Y) = True \qquad Hx \ge h$$

$$x^{lo} \le x \le x^{up}, \qquad x \in \mathbb{R}^n \qquad x^{lo} \le x \le x^{up}, \qquad x \in \mathbb{R}^n$$

$$Y \in \{True, False\} \quad k \in K, i \in D_k \qquad y_{ki} \in \{0,1\} \quad k \in K, i \in D_k$$

$$Hx \ge h$$
  
 $x^{lo} \le x \le x^{up}, \quad x \in \mathbb{R}^n$   
 $y_{ki} \in \{0,1\} \quad k \in K, i \in D_k$ 

$$Hx \ge h$$

$$x \in \mathbb{R}^n$$

$$y_{ki} \in \{0,1\} \ k \in K, i \in D_k$$



Contents Installation Background PYOMO Components Case Studies

# **PYOMO Components**



# **PYOMO Components**

# **Example: Machinery Problem**

A company manufacture four types of machinery. The factory is divided in three sections. The first section has available 960 h/week, the second 1110 h/week and the third 400 h/week. Each machinery unit requires the following time at each section

| Plants      | ho        | Profit   |          |                   |
|-------------|-----------|----------|----------|-------------------|
|             | Machining | Painting | Assembly | [units/machinery] |
| Machinery 1 | 6         | 3        | 2        | 12                |
| Machinery 2 | 4         | 3        | 1        | 8                 |
| Machinery 3 | 4         | 6        | 2        | 12                |
| Machinery 4 | 8         | 9        | 1        | 17                |

Determine the number of units of machinery for each type that should be manufacture per week to maximize the profit.



# **PYOMO Components**

# **Example: Machinery Problem**

#### Nomenclature

m → machinery type (set)

s → factory section (set)

profit<sub>m</sub> → profit per machinery type (parameter)

b<sub>s</sub> → time availability in each section per week (parameter)

 $T_{m,s}$   $\rightarrow$  time required for each machinery type in each section(parameter)

x<sub>m</sub> → number of units of machinery for each type (variable)

$$\min_x: \sum_m profit_m \, x_m \qquad \qquad \text{Objective function}$$
 
$$s.t. \quad \sum_m^m T_{m,s} \, \, x_m \, \leq \, b_i \qquad \forall s \qquad \text{Factory section time limit}$$
 
$$x_m \, \in \, \mathbb{Z}$$



# **Model Structure**

Contents

```
from pyomo.environ import *
m = ConcreteModel()
M = m.M = Set(initialize = ['m1', 'm2', 'm3', 'm4'])
S = m.S = Set(initialize = ['s1', 's2', 's3'])
profit = \{'m1':12, 'm2':8, 'm3':12, 'm4':17\}
max time = \{'s1': 960, 's2': 1110, 's3': 400\}
time x section = {
('m1', 's1'): 6, ('m1', 's2'): 3, ('m1', 's3'): 2,
('m2', 's1'): 4, ('m2', 's2'): 3, ('m2', 's3'): 1,
('m3', 's1'): 4, ('m3', 's2'): 6, ('m3', 's3'): 2,
('m4', 's1'): 8, ('m4', 's2'): 9, ('m4', 's3'): 1
x = m.x = Var(M, within = PositiveIntegers)
m.value = Objective(
expr = sum( profit[i] * m.x[i] for i in M),
            sense = maximize )
def constraint rule(m, j):
    return sum(time x section[i,j] * x[i] for i in M)
                    <= max time[i]
m.constraint = Constraint(S, rule = constraint rule)
opt = SolverFactory('glpk').solve(m)
```

# **Model Structure**

```
from pyomo.environ import *
```

Contents

Import packages

**Case Studies** 

```
m = ConcreteModel()
```

Create model object

```
M = m.M = Set(initialize = ['m1', 'm2', 'm3', 'm4'])
S = m.S = Set(initialize = ['s1', 's2', 's3'])
```

Sets declarations

```
profit = {'m1':12, 'm2':8, 'm3':12, 'm4':17}
max_time = {'s1': 960, 's2': 1110, 's3': 400}
time_x_section = {
  ('m1','s1'): 6 ,  ('m1','s2'): 3 ,  ('m1','s3'): 2,
   ('m2','s1'): 4 ,  ('m2','s2'): 3 ,  ('m2','s3'): 1,
   ('m3','s1'): 4 ,  ('m3','s2'): 6 ,  ('m3','s3'): 2,
   ('m4','s1'): 8 ,  ('m4','s2'): 9 ,  ('m4','s3'): 1}
```

Specify/import problem data

```
x = m.x = Var( M, within = PositiveIntegers)
```

Variable declarations

Objective function declaration

Constraint functions declaration

```
opt = SolverFactory('glpk').solve(m)
```

Solver call



#### **Case Studies**

Case Studies



Installation

Background

**PYOMO Components** 



# **Assignment Problem**

In this problem, we have a number of people "p" and a number of tasks "t". Each person has a suitability coefficient "SC", which represents how effectively can a person "p" perform a task "t". The objective is to maximize the total suitability of the system. For this example, the following data is presented:

PEOPLE: Pedro, Marta, Laura

TASKS: Accountant, Sell Manager, Human Resources

**SUITABILITY COEFFICIENTS:** 

| Person | SC Accountant | SC Sell Manager | SC Human Resources |
|--------|---------------|-----------------|--------------------|
| Pedro  | 11            | 5               | 2                  |
| Marta  | 15            | 12              | 8                  |
| Laura  | 3             | 1               | 10                 |



# **Assignment Problem**

#### **Mathematical Model**

$$\max(\sum_{p,t} C_{p,t} y_{p,t})$$

Maximize the suitability of the assignment

s.t.

$$\sum y_{n\,t} = 1$$

 $\forall p$ 

Each person can only perform one job

$$\sum_{p,t} y_{p,t} = 1$$

 $\forall t$ 

Each job must be performed by one and only one person



# **Set Covering Problem**

In this problem, we have a number of zones in which we may or may not install awesome new firefighter stations. However, the mayor of the city is a bit stingy, and wants us to install the absolute minimum number of stations possible. Having the following map of the zone:

Background



And considering that a single station can only provide service to the zones in its immediate neighborhood, what stations should be built?



# **Set Covering Problem**

#### **Mathematical Model**

$$\min(\sum_i y_i)$$

Minimize the number of stations

s.t.

$$\sum_{i} C_{i',i} y_i \ge 1$$

$$\forall i$$

Service constraint



Installation

Background

**PYOMO Components** 



# **Knap-Sack Problem**

In this problem, we are adventurous thieves. We want to loot all of the treasures that we can before the guards arrive. Since it will not be possible to come back to loot whatever we leave behind, we must ensure that we maximize the benefit of what we steal. Our horse can handle up until 2500 g of weight (It's a tiny pony) and a volume of 2000 cm3. Considering the loot table, what should we carry out there to sell?

| ltem        | Market Price | Volume (cm3) | Unit Weight (g) | Units available |
|-------------|--------------|--------------|-----------------|-----------------|
| Chest       | 50           | 1000         | 2000            | 1               |
| Ring        | 5            | 2            | 20              | 10              |
| Necklace    | 3            | 10           | 300             | 1               |
| Mirror      | 20           | 500          | 1000            | 1               |
| Bracelet    | 16           | 15           | 300             | 15              |
| Ruby        | 5            | 3            | 75              | 1               |
| Parfum      | 1            | 100          | 100             | 1               |
| Diamond     | 30           | 5            | 50              | 1               |
| Gold goblet | 12           | 250          | 500             | 1               |
| Spice       | 40           | 100          | 100             | 1               |



# **Knap-Sack Problem**

#### **Mathematical Model**

$$\max(\sum_i MP_i n_i)$$
 Maximize Profit

s.t.

$$\sum V_i n_i \leq 2000$$

Volume constraint

$$\sum_{i=1}^{i} W_i n_i \le 2500$$

 $n_i^{"} \leq N_i \qquad \forall i \qquad {\it Amount constraint}$ 



# Sudoku problem

#### Nomenclature

y<sub>r,c,k</sub> → binary variable. y<sub>r,c,k</sub> = 1 means cell [r. c] is assigned number k

Every position in the Sudoku is filled

$$\sum_{k} y_{r,c,k} = 1 \quad \forall r, c$$

Cells in the same column must be assigned distinct numbers

$$\sum_{r} y_{r,c,k} = 1 \quad \forall c, k$$

Cells in the same row must be assigned distinct numbers

$$\sum_{c} y_{r,c,k} = 1 \quad \forall r, k$$

| 1 | c2               | c3                     | c4                                      | c5                                | c6                                          | c7                                                                                                  | c8                                                                                                                          | c9                                                                                                                                      |
|---|------------------|------------------------|-----------------------------------------|-----------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 5 | 3                |                        |                                         | 7                                 |                                             |                                                                                                     |                                                                                                                             |                                                                                                                                         |
| 6 |                  |                        | 1                                       | 9                                 | 5                                           |                                                                                                     |                                                                                                                             |                                                                                                                                         |
|   | 9                | 8                      |                                         |                                   |                                             |                                                                                                     | 6                                                                                                                           |                                                                                                                                         |
| 8 |                  |                        |                                         | 6                                 |                                             |                                                                                                     |                                                                                                                             | 3                                                                                                                                       |
| 4 |                  |                        | 8                                       |                                   |                                             |                                                                                                     |                                                                                                                             | 1                                                                                                                                       |
| 7 |                  |                        |                                         | 2                                 |                                             |                                                                                                     |                                                                                                                             | 6                                                                                                                                       |
|   | 6                |                        |                                         |                                   |                                             | 2                                                                                                   | 8                                                                                                                           |                                                                                                                                         |
|   | ·                | ·                      | 4                                       | 1                                 |                                             |                                                                                                     |                                                                                                                             | 5                                                                                                                                       |
|   |                  |                        |                                         | 8                                 |                                             |                                                                                                     | 7                                                                                                                           | 9                                                                                                                                       |
|   | 5<br>5<br>8<br>4 | 5 3<br>6 9<br>8 4<br>7 | 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 5 3 1<br>6 1<br>9 8<br>8 8<br>7 6 | 5 3 7<br>5 1 9<br>9 8 6<br>4 8 7 2<br>6 4 1 | 5     3     7       6     1     9     5       9     8     6       4     8     7       6     4     1 | 5     3     7       6     1     9     5       9     8       8     6       4     8       7     2       6     2       4     1 | 5     3     7       6     1     9     5       9     8     6       8     6       4     8       7     2       6     2     8       4     1 |

Cells in the same 3x3 grid must be assigned distinct numbers

$$\sum_{r=3}^{3p} \sum_{r=3}^{3q} y_{r,c,k} = 1 \quad \forall k, p,q = \{1,2,3\}$$



# Strip packing 2D problem

#### Nomenclature

→ rectangles, i = {1,2,...,n}

→ length of the strip

 $(x_i,y_i) \rightarrow$  rectangle coordinates

 $L_i$ ,  $H_i \rightarrow Length$  and height of rectangle i

→ Width of the strip

→ Upper bound for the x-coordinate of every rectangle



#### **GDP** Formulation

Source: Sawaya & Grossmann (2005), https://doi.org/10.1016/j.compchemeng.2005.04.004

 $\min lt$ 

$$s.t \quad lt \geq x_i + L_i \quad \forall i \in N$$

$$\begin{bmatrix} Y_{i,j}^1 \\ x_i + L_i \leq x_j \end{bmatrix} \vee \begin{bmatrix} Y_{i,j}^2 \\ x_j + L_j \leq x_i \end{bmatrix} \vee \begin{bmatrix} Y_{i,j}^3 \\ y_i - H_i \geq y_j \end{bmatrix} \vee \begin{bmatrix} Y_{i,j}^4 \\ y_j - H_j \geq y_i \end{bmatrix} \quad \forall i, j \in N, i < j$$

$$x_i \leq UB_i - L_i \quad \forall i \in N$$

$$H_i \leq y_i \leq W \quad \forall i \in N$$

$$lt, x_i, y_i \in \mathbb{R}$$

$$Y_{i,j} \in \{Ture, False\}$$

$$\begin{bmatrix} Y_{i,j}^3 \\ y_i - H_i > y_j \end{bmatrix} \lor \begin{bmatrix} Y_{i,j}^4 \\ y_i - H_i > y_j \end{bmatrix} \quad \forall i, j \in N, i < j$$



# Strip packing 2D problem

#### Nomenclature

→ rectangles, i = {1,2,...,n}

→ length of the strip

 $(x_i,y_i) \rightarrow$  rectangle coordinates

L<sub>i</sub>, H<sub>i</sub> → Length and height of rectangle i

W → Width of the strip

UB<sub>i</sub> → Upper bound for the x-coordinate of every rectangle



#### MILP Formulation [Big-M]

 $\min t$ 

$$\begin{array}{lll} s.t & lt \geq x_i + L_i & \forall i \in N \\ & x_i + L_i \leq x_j + M_{ij}^1 \left(1 - w_{ij}^1\right) & \forall i, j \in N, i < j \\ & x_j + L_j \leq x_i + M_{ij}^2 \left(1 - w_{ij}^2\right) & \forall i, j \in N, i < j \\ & y_i - H_i \geq y_j - M_{ij}^3 \left(1 - w_{ij}^3\right) & \forall i, j \in N, i < j \\ & y_j - H_j \geq y_i - M_{ij}^4 \left(1 - w_{ij}^4\right) & \forall i, j \in N, i < j \\ & \sum_{d \in D} w_{ij}^d = 1 & \forall i, j \in N, i < j \\ & x_i \leq UB_i - L_i & \forall i \in N \\ & H_i \leq y_i \leq W & \forall i \in N \\ & lt, x_i, y_i \in \mathbb{R}, & w_{i,j} \in \left\{0,1\right\} \end{array}$$

$$\forall i, j \in N, i < j$$

$$\forall i, j \in N, i < j$$

$$\forall i, j \in N, i < j$$



# PYOMO Introduction to Optimization Modeling in Python



Alba Carrero, Juan Javaloyes & Daniel Vázquez

javaloyes.juan@gmail.com

danielvazquez150791@gmail.com

October 2018