BASIC NUMBER THEORY: LECTURE 6

WENHAN DAI

1. The cubic reciprocity (continued)

Recall that, for a prime π of $\mathbb{Z}[\omega]$, we have defined a character

$$\left(\frac{\cdot}{\pi}\right)_3: (\mathbb{Z}[\omega]/(\pi))^{\times} \longrightarrow \{1, \omega, \omega^2\}.$$

This will be appeared as the cubic Legendre/Jacobi symbol. Also recall that for $\pi \nmid \alpha \in \mathbb{Z}[\omega]$,

$$\left(\frac{\alpha}{\pi}\right)_3 = 1 \iff \exists x \in \mathbb{Z}[\omega] \text{ such that } x^3 \equiv \alpha \mod \pi,$$

namely, α is a cubic residue of π . Moreover, in case where $\left(\frac{\alpha}{\pi}\right)_3 = 1$, we have a (non-canonical) isomorphism

$$\mathbb{Z}[\omega]/\pi\mathbb{Z}[\omega] \simeq \mathbb{Z}/p\mathbb{Z},$$

where $p = N(\pi) = \pi \cdot \overline{\pi}$ is the prime lying below π . Note that this isomorphism possibly fails to exist when $p \equiv 2 \mod 3$ and α is not a cubic residue (cf. Lemma 10(2) in Lecture 5). To state the law of cubic reciprocity (next time), we need one definition: a prime π is called *primary* if $\pi \equiv \pm 1 \mod 3$. Given any prime $\pi \nmid 3$, one can show that exactly two of the six associates $\pm \pi, \pm \omega \pi$ and $\pm \omega^2 \pi$ are primary.

Theorem 1 (The cubic reciprocity). Let π, θ be primary primes and $N(\pi) \neq N(\theta)$. Then

$$\left(\frac{\theta}{\pi}\right)_3 = \left(\frac{\pi}{\theta}\right)_3$$
.

There are also supplementary formulas for $\left(\frac{\omega}{\pi}\right)_3$ and $\left(\frac{1-\omega}{\pi}\right)_3$. Let π be prime and not associate to $1-\omega$. Then we may assume that $\pi \equiv -1 \mod 3$ (if π is primary, one of $\pm \pi$ satisfies this condition). Writing $\pi = -1 + 3m + 3n\omega$, it can be shown that

$$\left(\frac{\omega}{\pi}\right)_3 = \omega^{m+n}, \left(\frac{1-\omega}{\pi}\right)_3 = \omega^{2m}.$$

The first equality above is easy to prove, while the second is more difficult.

Here comes an immediate application of Theorem 1. Note that for an odd prime $p = x^2 + 27y^2$, one can deduce the necessary condition that -27 is a quadratic residue of p. We infer by the quadratic reciprocity law that $p \equiv 1 \mod 3$. However, this is not sufficient.

Theorem 2. Let p be a prime. Then $p = x^2 + 27y^2$ if and only if $p \equiv 1 \mod 3$ and 2 is a cubic residue modulo p.

Date: October 20, 2020.

Proof. Assume $p = x^2 + 27y^2$ and in particular $3 \nmid p$. Hence $p \equiv x^2 \equiv 1 \mod 3$. Consider

$$p = (x + 3\sqrt{-3}y)(x - 3\sqrt{-3}y), \quad \pi = x + 3\sqrt{-3}y.$$

Then by the cubic reciprocity, for primary primes 2 and π with $N(2) \neq N(\pi)$,

$$\left(\frac{2}{\pi}\right)_3 = \left(\frac{\pi}{2}\right)_3 \equiv \pi^{(N(2)-1)/3} \equiv \pi \mod 2.$$

Since $3\sqrt{-3} = 3(2\omega + 1)$, this further becomes

$$\left(\frac{2}{\pi}\right)_3 = \left(\frac{\pi}{2}\right)_3 \equiv x + y = 1 \mod 2$$

as x, y are (consensually) assumed to be coprime. This shows that π is a cubic residue of 2, and hence 2 is a cubic residue of π as well. Then 2 is a cubic residue of p.

Conversely, suppose 2 is a cubic residue modulo p and $p \equiv 1 \mod 3$. Then $p = \pi \overline{\pi} = a^2 - ab + b^2$ is primary with $\pi = a + b\omega$. In particular, $a \equiv \pm 1 \mod 3$ and $3 \mid b$. Suppose b = 3b' for some $b' \in \mathbb{Z}$. Then

$$4p = 4a^{2} - 12ab' + 36b'^{2} = (2a - 3b')^{2} + 27b'^{2} = (\frac{2a - 3b'}{2})^{2} + 27(\frac{b'}{2})^{2}.$$

On the other hand, by the cubic reciprocity.

$$1 = \left(\frac{2}{\pi}\right)_3 = \left(\frac{\pi}{2}\right)_3 \equiv \pi \bmod 2.$$

Hence b is even and so also is b'. This proves that there are x, y such that $4p = x^2 + 27y^2$, which is enough.

2. The biquadratic reciprocity

We now concern about the ring of the 4th root of unity, i.e. $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$ with $i = \sqrt{-1}$. We list out some basic properties of $\mathbb{Z}[i]$ without proof.

- (1) $\mathbb{Z}[i]$ is an Euclidean domain.
- (2) For $x + yi \in \mathbb{Z}[i]$, the norm $N(x + iy) = x^2 + y^2$.
- (3) $\mathbb{Z}[i]^{\times} = \{\pm 1, \pm i\}.$
- (4) The primes in $\mathbb{Z}[i]$ are classified as follows:
 - $2 = i^3(1+i)^2$,
 - if $p \equiv 1 \mod 4$ then $p = \pi \overline{\pi}$ for some $\pi \mid p$, and
 - if $p \equiv 3 \mod 4$ then p is inert as a prime in $\mathbb{Z}[i]$.
- (5) For a prime π , the quotient $\mathbb{Z}[i]/(\pi)$ is a finite field of cardinality $N(\pi)$.

If a prime $\pi \nmid \alpha$ and $\pi \nmid 2$, we know that $\alpha^{N(\pi)-1} \equiv 1 \mod \pi$ by (generalized) Fermat's little theorem. This heuristically forces us to define a multiplicative group homomorphism

$$\left(\frac{\cdot}{\pi}\right)_4: \mathbb{Z}[i] \longrightarrow \{\pm 1, \pm i\}, \quad \left(\frac{\alpha}{\pi}\right)_4 = \alpha^{\frac{N(\pi)-1}{4}} \bmod \pi.$$

Here π is non-associate to 1+i.

Again, a prime π is called *primary* in $\mathbb{Z}[i]$ if $\pi \equiv 1 \mod (2+2i)$. It turns out that exactly one of $\pm \pi, \pm i\pi$ is primary.

Theorem 3 (The biquadratic reciprocity). Let π, θ be distinct primes in $\mathbb{Z}[i]$ such that $\pi, \theta \nmid 2$. Then

$$\left(\frac{\theta}{\pi}\right)_4 = \left(\frac{\pi}{\theta}\right)_4 \cdot (-1)^{\frac{N(\pi)-1}{4} \cdot \frac{N(\theta)-1}{4}}.$$

Write $\pi = a + bi$ and one can prove that

$$\left(\frac{i}{\pi}\right)_{A} = i^{-\frac{a-1}{2}}, \quad \left(\frac{1+i}{\pi}\right)_{A} = i^{\frac{a-b-1-b^2}{4}}.$$

When π is primary, $a-b-1-b^2$ is automatically divisible by 4.

Using the biquadratic reciprocity, the conjecture of Euler about $p = x^2 + 64y^2$ is proved.

Theorem 4 (Euler's conjecture).

(1) Let $\pi = a + bi$ be a primary prime in $\mathbb{Z}[i]$. Then

$$\left(\frac{2}{\pi}\right)_{A} = i^{\frac{ab}{2}}.$$

(2) A prime number $p = x^2 + 64y^2$ if and only if $p \equiv 1 \mod 4$ and 2 is a biquadratic residue modulo p.

Proof. (1) A priori we obtain

$$\left(\frac{2}{\pi}\right)_4 = \left(\frac{i}{\pi}\right)_4^3 \left(\frac{1+i}{\pi}\right)_4^2 = i^{\frac{a-b-1-b^2}{2} - \frac{3(a-1)}{2}} = i^{\frac{2-2a-b-b^2}{2}}.$$

It reduces to show that $ab \equiv 2 - 2a - b - b^2 \mod 8$. Consider

$$ab - (2 - 2a - b - b^2) = b^2 + ab + b + 2a - 2$$

= $(b+2)(b-1) + a(b+2)$
= $(b+2)(a+b-1)$.

Then the required condition is equivalent to $8 \mid (b+2)(a+b-1)$. On the other hand, since π is primary, $\pi - 1 = a - 1 + bi = (2+2i)(\lambda + \mu i)$ for some $\lambda, \mu \in \mathbb{Z}$ by definition. Hence (a-1)/2 and b/2 must have the same parity mod 2. The condition is deduced from this.

(2) The "only if" part is relatively easy to check. As for the "if" part, suppose $p \equiv 1 \mod 4$. Consequently, $p = \pi \overline{\pi}$ for some primary $\pi = a + bi$. Then $p = N(\pi) = a^2 + b^2$, where $2 \nmid a$ and $2 \mid b$. Also, 2 is a biquadratic residue modulo p if and only if $\left(\frac{2}{\pi}\right)_4 = 1 = i^{ab/2}$ by (1). Hence

$$\left(\frac{2}{\pi}\right)_4 = 1 \iff 8 \mid ab \iff 8 \mid b.$$

This completes the proof of Euler's conjecture.

3. Proof of the cubic reciprocity

The material refers to §9.4 of the textbook [IR82] by Ireland and Rosen.¹

¹K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, Berlin, Heidelberg, and New York, 1982.

3.1. Multiplicative character on \mathbb{F}_p . Let $\chi : \mathbb{F}_p^{\times} \to \mathbb{C}^{\times}$ be a character such that $\chi(0) = 0$ if $\chi \neq \epsilon$, and $\chi(0) = 1$ if $\chi = \epsilon$, where ϵ denotes the trivial character on \mathbb{F}_p^{\times} . Hence

$$\sum_{t \in \mathbb{F}_p} \chi(t) = \begin{cases} p, & \chi = \epsilon; \\ 0, & \chi \neq \epsilon. \end{cases}$$

Moreover, $\chi(ab) = \chi(a)\chi(b)$ for all $a, b \in \mathbb{F}_p^{\times}$.

3.2. Gauss sum. Fix an element $a \in \mathbb{F}_p$. Define the Gauss sum with respect to a to be the function in a multiplicative character χ that

$$g_a(\chi) := \sum_{t \in \mathbb{F}_p} \chi(t) \zeta_p^{at}, \quad \zeta_p = \exp(\frac{2\pi i}{p}).$$

For simplicity we denote $g(\chi) := g_1(\chi)$. It turns out for $a \in \mathbb{F}_p^{\times}$ that, by the left multiplication,

$$g_a(\chi) = \sum_{t \in \mathbb{F}_p} \chi(a^{-1}t)\zeta_p^t = \chi(a^{-1})g(\chi)$$

as χ is multiplicative.

Remark 5. Let p be a prime. Consider the cyclotomic extension of \mathbb{Q} by ζ_p that

$$\operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q}) \simeq (\mathbb{Z}/p\mathbb{Z})^{\times} \simeq \mathbb{F}_p^{\times}.$$

Here the first isomorphism is the correspondence between the (arithmetic) Frobenius automorphism $x \mapsto x^p$ and a selected generator of $(\mathbb{Z}/p\mathbb{Z})^{\times}$ (hence the isomorphism is non-canonical). For $a \in \mathbb{F}_p^{\times}$ we correspondingly obtain (by abuse of notation)

$$a \longleftrightarrow (a: \zeta \mapsto \zeta^a) \in \operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}).$$

Then in $\mathbb{Q}(\zeta_p)$, the Galois action

$$a(g(\chi)) = g_a(\chi) = \chi(a^{-1})g(\chi),$$

hence $g(\chi)$ is invariant under the action of $\ker \chi = \{a \in \mathbb{F}_p^{\times} : \chi(a^{-1}) = 1\}.$

Proposition 6. Assume $\chi \neq \epsilon$. Then

$$|g(\chi)| = \sqrt{p},$$

where we view $g(\chi)$ as an element in $\mathbb{Q}(\zeta_p)$ and then take the complex norm.

Proof. By computation,

$$g(\chi)\overline{g(\chi)} = \left(\sum_{t_1 \in \mathbb{F}_p^{\times}} \chi(t_1)\zeta^{t_1}\right) \left(\sum_{t_2 \in \mathbb{F}_p^{\times}} \chi(t_2)^{-1}\zeta^{-t_2}\right)$$

$$= \sum_{t_1, t_2 \in \mathbb{F}_p^{\times}} \chi(t_1 t_2^{-1})\zeta^{t_1 - t_2}$$

$$= \sum_{\lambda \in \mathbb{F}_p^{\times}} \chi(\lambda) \sum_{t \in \mathbb{F}_p^{\times}} \zeta^{\lambda t - t}$$

$$= \chi(1)(p - 1) + \sum_{\lambda \neq 1} \chi(\lambda) \sum_{t \in \mathbb{F}_p^{\times}} \zeta^{(\lambda - 1)t}.$$

The second last equality is given by the change of variables $t_1 = \lambda t_2$. Note that for $\lambda \neq 1$, $\sum_{t \in \mathbb{F}_n^{\times}} \zeta^{(\lambda-1)t} = -1$. Hence

$$g(\chi)\overline{g(\chi)} = p - 1 - \sum_{\lambda \neq 1} \chi(\lambda) = p.$$

This completes the proof.

3.3. **Jacobi sum.** Let χ, λ be two characters on \mathbb{F}_p . Define their *Jacobi sum* to be

$$J(\chi,\lambda):=\sum_{a+b=1}\chi(a)\lambda(b),\quad a,b\in\mathbb{F}_p.$$

Lemma 7. If $\chi \lambda \neq \epsilon$, then

$$J(\chi, \lambda) = \frac{g(\chi)g(\lambda)}{g(\chi\lambda)}.$$

Proof. This can be done simply by computation:

$$g(\chi)g(\lambda) = \sum_{t \in \mathbb{F}_p} \sum_{a+b=t} \chi(a)\lambda(b)\zeta^t$$

$$= \sum_{t \in \mathbb{F}_p^{\times}} \sum_{a+b=t} \chi(a)\lambda(b)\zeta^t + \sum_{\underline{a \in \mathbb{F}_p}} \chi(a)\lambda(-a)$$

$$= \left(\sum_{t \in \mathbb{F}_p^{\times}} (\chi\lambda)(t)\zeta^t\right) \left(\sum_{a+b=1} \chi(a)\lambda(b)\right)$$

$$= g(\chi\lambda)J(\chi,\lambda).$$

It is necessary to point out in the end that $\sum_{a\in\mathbb{F}_p}\chi(a)\lambda(-a)=0$ uses the assumption $\chi\lambda\neq\epsilon$. Otherwise this sum equals the sum of square of all elements in \mathbb{F}_p .

Proposition 8 ([Prop 8.3.3, IR82]). Fix n > 2 and let $p \equiv 1 \mod n$ be a prime number. Suppose χ is a multiplicative character of order n, i.e. $\chi^n = \epsilon$. Then

$$g(\chi)^n = p \cdot \chi(-1) \cdot J(\chi, \chi) J(\chi, \chi^2) \cdots J(\chi, \chi^{n-2}).$$

Proof. By Lemma 7 above, $g(\chi)g(\lambda) = g(\chi\lambda)J(\chi,\lambda)$. The recipe is to apply this relation inductively, say

$$g(\chi)^{n} = J(\chi, \chi)g(\chi^{2})J(\chi)^{n-2}$$

$$= J(\chi, \chi)J(\chi, \chi^{2})g(\chi^{3})J(\chi)^{n-3}$$

$$= J(\chi, \chi)J(\chi, \chi^{2})\cdots J(\chi, \chi^{n-2})g(\chi^{n-1}).$$

Since χ has order n,

$$g(\chi)g(\chi^{n-1}) = g(\chi)g(\overline{\chi}) = g(\chi)g(\overline{\chi})\chi(-1) = p\chi(-1)$$

by Proposition 6 above.

School of Mathematical Sciences, Peking University, 100871, Beijing, China $\it Email\ address$: daiwenhan@pku.edu.cn