

Analise de algoritmos

Notação Assintótica

Análise de algoritmos

Análise de algoritmo

- Tempo de processamento em função dos dados de entrada;
- Espaço de memória total requerido para os dados;
- Comprimento total do código;
- Obtenção correta do resultado pretendido;
- Robustez (como comporta-se com as entradas inválidas ou não previstas).
- Análise de algoritmos é medição de complexidade de algoritmo
 - Quantidade de "trabalho" necessária para a sua execução, expressa em função das operações fundamentais, as quais variam de acordo com o algoritmo, e em função do volume de dados.

Complexidade

- Porquê o estudo da complexidade?
 - Performance
 - Escolher entre vários algoritmos o mais eficiente para implementar;
 - Desenvolver novos algoritmos para problemas que já têm solução;
 - Desenvolver algoritmos mais eficientes (melhorar os algoritmos), devido ao aumento constante do "tamanho" dos problemas a serem resolvidos.
 - Complexidade computacional torna possível determinar se a implementação de determinado algoritmo é viável.

Complexidade

- Tipos de complexidade
 - Espacial
 - Este tipo de complexidade representa, por exemplo, o espaço de memória usado para executar o algoritmo.
 - Temporal
 - Este tipo de complexidade é o mais usado podendo dividir-se em dois grupos:
 - Tempo (real) necessário à execução do algoritmo. (Como podemos medir?)
 - Número de instruções necessárias à execução.

Analise de algoritmos

- Medidas de análise
 - Devem ser independentes da tecnologia (hardware/software)
 - Modelos matemáticos simplificados baseados nos fatores relevantes:
 - Tempo de execução

Uma função que relaciona o tempo de execução com o tamanho de entrada:

$$T = F(n)$$

- Conjunto de operações a serem executadas.
- Custo associado à execução de cada operação.
- Ocupação de espaço em memória.

Complexidade

Exemplo

- Sejam cinco (5) algoritmos A₁ a A₅ para resolver um mesmo problema, de complexidade diferentes. (Supomos que uma operação leva 1 ms para ser efetuada.)
- Tk(n) é a complexidade ou seja o número de operações que o algoritmo efetua para N entradas.

n	A1 T1(n) = n	A2 T2(n) = nlog n	A_3 $T_3(n) = n^2$	A4 T4(n) = n ³	$A5$ $T_5(n) = 2^n$
16	0,016s	0,064s	0,256s	4 S	1m4s
32	0,0325	0,16s	1S	33s	46 Dias
512	0,5125	9s	4m22s	1 Dia 13 h	10 ¹³⁷ Séculos

Tempo necessário para o algoritmo em função de n entradas

Operações primitivas

- Atribuição de valores a variáveis
- Chamada de métodos
- Operações aritméticas
- Comparação de dois números
- Acesso a elementos de um array
- Seguir uma referência de objeto (acesso a objeto)
- Retorno de um método

A análise!

- Você acha importante essa análise?
- •Por que?

Notação assintótica

- Notação O (big O)
 - Definição: Considere uma função f(n) não negativa para todos os inteiros n >=
 o.

Dizemos que "f(n) é O(g(n))" e escrevemos f(n) = O(g(n)), se existem um inteiro no e uma constante c > 0, tais que para todo inteiro n >= no, f(n) <= cg(n)

- Caracteriza o comportamento assintótico de uma função, estabelecendo um limite superior quanto à taxa de crescimento da função em relação ao crescimento de n.
- Permite ignorar fatores constantes e termos de menor ordem, centrando-se nos componentes que mais afetam o crescimento de uma função.

Notação Assintótica

- Terminologia de classes mais comuns de funções:
 - Logarítmica O(log n)
 - Linear O(n)
 - Quadrática O(n^2)
 - Polinomial O(n^k), com k >= 1
 - Exponencial O(a^n), com a > 1

Função	Designação		
C	Constante		
Log N	Logaritmo		
log^2 N	Logaritmo Quadrado		
N	Linear		
N log N	N log N		
N^2	Quadrática		
N^3	Cúbica		
2^n	Exponencial		

Diagrama

Vídeo de ajuda

