Package 'IASbreeding'

August 21, 2024

Type Package

Title Intelligent Animal Solutions of breeding
Version 0.1.0
Depends R (>= 3.5.0)
Author Wentao Cai <caiwentao@caas.cn></caiwentao@caas.cn>
Maintainer Wentao Cai <caiwentao@caas.cn></caiwentao@caas.cn>
Description IASbreeding can calculate kinship matrix, variance component analysis using linear mixed model, breeding value using BLUP.
License GPL-3
Encoding UTF-8
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3
Imports Rcpp (>= 0.12.16), RcppEigen LinkingTo Rcpp, RcppEigen
R topics documented:
IASbreeding-package 2 Akin 2 GetEBV 3 getEBV_cpp 4 Gkin 4 gkin_cpp 5 IASBLUP 5 IASREML 6 iasreml_cpp 7 pedcheck 8 prepareped 8 read_bed 9 read_bed2_cpp 9
Index 11

2 Akin

IASbreeding-package

A short title line describing what the package does

Description

A more detailed description of what the package does. A length of about one to five lines is recommended.

Details

This section should provide a more detailed overview of how to use the package, including the most important functions.

Author(s)

Your Name, email optional.

Maintainer: Your Name <your@email.com>

References

This optional section can contain literature or other references for background information.

See Also

Optional links to other man pages

Examples

```
## Not run:
    ## Optional simple examples of the most important functions
    ## These can be in \dontrun{} and \donttest{} blocks.
## End(Not run)
```

Akin

Get kinship from pedigree

Description

Get kinship from three columns pedigree (ID, Sire, Dam)

Usage

```
Akin(data = NULL)
```

Arguments

data

pedigree

GetEBV 3

Details

Title

Value

pedigree kinship

Examples

GetEBV

Calculate Breeding value

Description

Calculate heritability and breeding value using AI-REML

Usage

```
GetEBV(formula, random, kinship, data, h2 = 0.3)
```

Arguments

formula $y \sim 1 + fixed_effects$

random column name of random effect

 $\begin{array}{ll} \mbox{kinship} & \mbox{kinship(pedigree kinship A or genomic kinship G)} \\ \mbox{data} & \mbox{phenotype data with both phenoytpe and covariate} \end{array}$

h2 the heritability of this trait, default: 0.3

Details

Title

Value

Variance component, Heritability.

Examples

```
phe_file <- system.file("extdata", "Phenotype.txt", package = "IASbreeding", mustWork = TRUE)
pheno <- read.table(phe_file, header=TRUE)
ped_file <- system.file("extdata", "Pedigree.txt", package = "IASbreeding", mustWork = TRUE)
ped <- read.table(ped_file, header=TRUE)
newped<-pedcheck(ped)
A<-Akin(newped)
Results <- GetEBV(BW56 ~ 1 + Sex + Condition, random = "ID", kinship = A, data = pheno, h2 = 0.3)</pre>
```

4 Gkin

getEBV_cpp

Estimate Breeding Values (EBV)

Description

This function calculates the estimated breeding values (EBV) for individuals based on a given kinship matrix, fixed effects, and observed phenotypes.

Usage

```
getEBV_cpp(Kin, X, y, H2)
```

Arguments

Kin A numeric matrix representing the kinship matrix.
 X A numeric matrix representing fixed effects.
 y A numeric matrix (or vector) representing the observed phenotypes.
 H2 A numeric value representing the heritability (H2).

Value

A list containing the fixed effects and the random effects (EBV).

Gkin

Get kinship from genotype

Description

Get kinship from genotype

Usage

Gkin(Genotype)

Arguments

Genotype genotype matrix

Details

Title

Value

Genomic kinship

Examples

```
bed_file <- system.file("extdata", "Genotype.bed", package = "IASbreeding", mustWork = TRUE)
file_prefix <- sub("\\.bed$", "", bed_file)
Genotype <-read_bed(file_prefix)
kin<-Gkin(Genotype)</pre>
```

gkin_cpp 5

gkin_cpp

Compute the G Matrix from Genotype Data

Description

This function computes the G matrix (genomic relationship matrix) from a given genotype matrix. The function handles missing data by replacing missing values with the column mean and normalizes the resulting matrix.

Usage

```
gkin_cpp(matrix)
```

Arguments

matrix

M numeric matrix where each row represents an individual and each column represents a genetic marker. The values in the matrix are expected to be 0, 1, or 2, corresponding to the number of minor alleles. Missing values (NA) are allowed and will be replaced by the mean of the corresponding column.

Value

M numeric matrix representing the G matrix, which is the genomic relationship matrix. The matrix is normalized based on allele frequencies.

IASBLUP

Calculate Heritability and Breeding Value

Description

Calculates heritability and breeding values using AI-REML.

Usage

```
IASBLUP(
  formula,
  random,
  kinship,
  data,
  init = 0.3,
  max_iter = 30,
  cc = 1e-05,
  allblup = FALSE
)
```

6 IASREML

Arguments

formula	A formula specifying the fixed effects (e.g., $y \sim 1 + fixed_effects$).
random	A character string specifying the column name of the random effect.
kinship	A matrix or data frame representing kinship (pedigree kinship A or genomic kinship G).
data	A data frame containing phenotype and covariate information.
init	The pre-estimated heritability (default: 0.3).
max_iter	The maximum number of iterations for AI-REML (default: 30).
СС	The threshold for changed variance to stop iteration (default: 1.0e-5).
allblup	Logical. If TRUE, predict all animals in the pedigree (default: FALSE). Note

that this may use a large amount of memory.

Details

Title

Value

A list containing variance components, heritability estimates, and breeding values.

Examples

IASREML

Calculate heritability and variance component

Description

Calculate heritability and breeding value using AI-REML

Usage

```
IASREML(formula, random, kinship, data, init = 0.3, max_iter = 30, cc = 1e-05)
```

Arguments

formula	y~ 1+fixed_effects
random	column name of random effect
kinship	kinship(pedigree kinship A or genomic kinship G)
data	phenotype data with both phenoytpe and covariate
init	the pre-estimated heritability, default: 30.
max_iter	the maximum iteration for AI-REML, default: 1.0e-5.
СС	the threshold of changed variance when stop iteration, default: 1.0e-5.

iasreml_cpp 7

Details

Title

Value

Variance component, Heritability.

Examples

```
phe_file <- system.file("extdata", "Phenotype.txt", package = "IASbreeding", mustWork = TRUE)
pheno <- read.table(phe_file,header=TRUE)
ped_file <- system.file("extdata", "Pedigree.txt", package = "IASbreeding", mustWork = TRUE)
ped <- read.table(ped_file,header=TRUE)
newped<-pedcheck(ped)
A<-Akin(newped)
Results <- IASREML(BW56 ~ 1 + Sex + Condition, random = "ID",
kinship = A, max_iter = 20, data = pheno)</pre>
```

iasreml_cpp

Restricted Maximum Likelihood (REML) Estimation

Description

This function performs the restricted maximum likelihood (REML) estimation to obtain variance components and heritability estimates.

Usage

```
iasreml_cpp(ZKZ, X, y, int_h2, cc, max_iter)
```

Arguments

ZKZ	A numeric matrix representing the kinship matrix multiplied by Z (design matrix).
X	A numeric matrix representing fixed effects.
у	A numeric matrix (or vector) representing the observed phenotypes.
int_h2	A numeric value representing the initial heritability estimate.
сс	A numeric value for the convergence criterion.
max_iter	An integer indicating the maximum number of iterations.

Value

A list containing the variance components, heritability estimates, and their standard errors.

8 prepareped

pedcheck

Check pedigree

Description

Check of pedigree and rebuild the unlisted individuals.

Usage

```
pedcheck(ped)
```

Arguments

ped

pedigree input file

Value

The checked pedigree

Examples

```
ped_file <- system.file("extdata", "Pedigree.txt", package = "IASbreeding", mustWork = TRUE)
ped <- read.table(ped_file,header=TRUE)
newped<-pedcheck(ped)</pre>
```

prepareped

prepare pedigree

Description

renumber pedigree.

Usage

```
prepareped(data = NULL, n.max = 50)
```

Arguments

data

input file of checked pedigree

n.max

the maximum iteration for reorder sire and dam

Details

Title

Value

renumber pedigree

read_bed 9

Examples

read_bed

Read genotype from PLINK binary file

Description

Read genotype from PLINK binary file (bed, bim and fam)

Usage

```
read_bed(file_prefix, verbose = TRUE)
```

Arguments

file_prefix The prefix of genotype file.

verbose remind log of reading bed file.

Details

Title

Value

Genotype matrix

Examples

```
bed_file <- system.file("extdata", "Genotype.bed", package = "IASbreeding", mustWork = TRUE)
file_prefix <- sub("\\.bed$", "", bed_file)
Genotype <-read_bed(file_prefix)</pre>
```

read_bed2_cpp

Fast read Plink binary genotype file (bed) This function read the genotype from given Plink binary files with bim, fam and bed suffix.

Description

Fast read Plink binary genotype file (bed) This function read the genotype from given Plink binary files with bim, fam and bed suffix.

Usage

```
read_bed2_cpp(file, m_loci, n_ind)
```

10 read_bed2_cpp

Arguments

file where bed file of PLINK.

 m_loci represents number of genetic markers. n_ind represents number of individuals.

Value

genotype matrix with each row represents an individual and each column represents a genetic marker.

Index

```
* package
    IASbreeding-package, 2
Akin, 2
GetEBV, 3
getEBV_cpp, 4
Gkin, 4
gkin_cpp, 5
IASBLUP, 5
IASbreeding(IASbreeding-package), 2
IASbreeding-package, 2
IASREML, 6
iasreml_cpp, 7
pedcheck, 8
prepareped, 8
\mathsf{read\_bed}, 9
read_bed2_cpp, 9
```