Examples for 12/01/15, Part 4

ANOVA and Multiple Linear Regression

Consider a two-factor analysis of variance experiment was performed with I = 2, J = 3, and K = 2 (a 2×3 factorial experiment with 2 replicates):

	B1	B2	В3
A1	Y ₁₁₁	Y ₁₂₁	Y ₁₃₁
	Y ₁₁₂	Y ₁₂₂	Y ₁₃₂
A2	Y ₂₁₁	Y ₂₂₁	Y ₂₃₁
	Y ₂₁₂	Y ₂₂₂	Y ₂₃₂

A1 – base category

 \mathbf{v}_2 – indicator of A2

(In general, will need I-1 dummy variables for I levels of factor A.)

B1 – base category

 \mathbf{w}_2 – indicator of B2

w₃ – indicator of B3

(In general, will need J-1 dummy variables for J levels of factor B.)

Then will need $(I-1)\times(J-1)$ interaction terms $\mathbf{v}_i \mathbf{w}_i$.

	β_0	β ₁	β_2	β_3	β_4	β ₅
Y ₁₁₁	1	0	0	0	0	0
Y ₁₁₂	1	0	0	0	0	0
Y ₁₂₁	1	0	1	0	0	0
Y ₁₂₂	1	0	1	0	0	0
Y ₁₃₁	1	0	0	1	0	0
Y ₁₃₂	1	0	0	1	0	0
Y ₂₁₁	1	1	0	0	0	0
Y ₂₁₂	1	1	0	0	0	0
Y ₂₂₁	1	1	1	0	1	0
Y 222	1	1	1	0	1	0
Y ₂₃₁	1	1	0	1	0	1
Y ₂₃₂	1	1	0	1	0	1
	1	v ₂	w ₂	w ₃	$\mathbf{v}_2 \mathbf{w}_2$	$\mathbf{v}_2 \mathbf{w}_3$

$$\mathbf{Y} = \beta_0 \, \mathbf{1} \, + \, \beta_1 \, \mathbf{v}_2 \, + \, \beta_2 \, \mathbf{w}_2 \, + \, \beta_3 \, \mathbf{w}_3 \, + \, \beta_4 \, \mathbf{v}_2 \, \mathbf{w}_2 \, + \, \beta_5 \, \mathbf{v}_2 \, \mathbf{w}_3 \, + \, \boldsymbol{\varepsilon} \, .$$

$$\begin{array}{llll} \mu_{11} & = & \beta_0 \\ \mu_{12} & = & \beta_0 & + \beta_2 \\ \mu_{13} & = & \beta_0 & + \beta_3 \\ \mu_{21} & = & \beta_0 + \beta_1 \\ \mu_{22} & = & \beta_0 + \beta_1 + \beta_2 & + \beta_4 \\ \mu_{23} & = & \beta_0 + \beta_1 & + \beta_3 & + \beta_5 \end{array}$$

Interaction:
$$H_0: \beta_4 = \beta_5 = 0.$$
 (In general, $(I-1)\times(J-1)$ parameters.)

Factor A:
$$H_0: \beta_1 = 0.$$
 (In general, $I-1$ parameters.)

Factor B:
$$H_0: \beta_2 = \beta_3 = 0.$$
 (In general, $J-1$ parameters.)

Residuals DF
$$n-p$$

$$= IJK - [(I-1) + (J-1) + (I-1) \times (J-1) + 1)]$$

$$= IJK - IJ = IJ(K-1).$$