Chapter 3

Arithmetic for Computers

(Only the Part on Floating Point)

Contents - Floating Point

- **■** Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding

Contents - Floating Point

- Background: Fractional binary numbers
- **IEEE floating point standard: Definition**
- **■** Example and properties
- Rounding

Fractional binary numbers

■ What is 1011.101₂?

Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$\sum_{k=-j}^{i} b_k \times 2^k$$

Fractional Binary Numbers: Examples

Value	Representation
-------	----------------

5 3/4	101.112
2 7/8	10.111 ₂
63/64	1.01112

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0

■
$$1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$$

• Use notation $1.0 - \varepsilon$

Representable Numbers

Limitation

- Can only exactly represent numbers of the form x/2^k
- Other rational numbers have repeating bit representations

Value Representation

- **1/3** 0.01010101[01]...₂
- **1/5** 0.001100110011[0011]...₂
- **1/10** 0.0001100110011[0011]...₂

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- **■** Example and properties
- **■** Rounding

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

❖ 실수

- 소수점의 위치를 고정하지 않는 부동 소수점(floating point) 표현법 사용
- 국제 표준 IEEE 754
- 헤더 파일 float.h에 표현 범위 등과 관련한 정보가 정의됨
- 단정도 실수 표현
 - 첫 번째 비트를 부호(S) 표현에 사용
 - 나머지 8개 비트를 지수(E) 표현에 사용
 - ▶ 지수 표현 범위: -127 ~ 128
 - 지수도 부호가 있을 수 있으므로 E=127을 0으로 취급(biased-127)
 - 1.M 형태로 정규화해서 표현하며, 1.은 실제로는 표현하지 않고M만 23비트로 표현

	E(8bits)		M(23bits)	
31 30) 2	3 22		0
S	Exponent		Mantissa	

[그림 2-9] 부동 소수점에 의한 실수(float) 표현

[예제 2-5] 실수 -0.75의 단정도 부동 소수점 2진수 표현

1. -0.75를 2진수로 표현하고 정규화

- 0.11 = -1.1
$$\times$$
 2⁻¹
X = (-1)¹ \times 1.1 \times 2⁻¹⁺¹²⁷

- 배정도 실수 표현
 - 첫 번째 비트를 부호(S) 표현에 사용
 - 나머지 11개 비트를 지수(E) 표현에 사용
 - ▶ 지수 표현 범위: -1023 ~ 1024
 - 유효 자리는 1.M 형태로 정규화해서 표현하며, 1.은 표현하지 않고 M을 52비트로 표현

S: sign bit(0:양수, 1: 음수)

E: 11bits Exponent(지수 부분), Biased-1023

M: 52bits Mantissa(Normalized fraction with hidden 1)

	E(11bits)	M(52bits)	
63 62	2 52	51	0
S	Exponent	Mantissa	

[예제 2-6] 실수 -0.75의 배정도 부동 소수점 2진수 표현

- 1. -0.75를 2**진수로 표현하고 정규화** X = (-1)¹ × 1.1 × 2⁻¹⁺¹⁰²³

특수 값	조건	비고
Zero	E: 모든 비트가 0 M: 모든 비트가 0	+0과 -0이 존재
Denormalized numbers	E: 모든 비트가 0 M: 모든 비트가 0은 아님	정규화되지 않은 수의 해석: -X = (-1) ^s ×2 ⁻¹²⁶ ×0.M(float) -X = (-1) ^s ×2 ⁻¹⁰²² ×0.M(double)
Infinity	E: 모든 비트가 1 M: 모든 비트가 0	+Infinity, -Infinity
NAN(Not A Number)	E: 모든 비트가 1 M: 모든 비트가 0은 아님	

- 실수 표현의 유효 자리
 - 실수를 제한된 비트(32, 64)로 표현하면 모든 실수를 정확하게 표현할 수 없게 되어,
 실제 10진수와 부동 소수점에 의한 2진 비트로 표현된 수 사이에 오차가 발생할 수 있음
 - 10진수 유효 자리(significant decimals): 부동 소수점 수가 해당 유효 자리까지는 실제 10진수와 일치함을 나타냄
 - ➤ 단정도 실수(float): 10진수 유효 자리 6
 - » 10진수로 변환했을 때 6자리까지는 신뢰할 수 있음
 - ▶ 배정도 실수(double): 10진수 유효 자리 15
 - » 10진수로 변환했을 때 15자리까지는 신뢰할 수 있음
 - 실수는 제한된 비트의 부동 소수점 표현으로 정확히 표현되지 않기 때문에 두 실수가 같은지 비교할 때 주의 필요
 - ▶ 두 실수가 응용 프로그램에서 요구하는 오차 범위 안에 있으면 같다고 판단하거나, 유효 자리까지 같으면 같다고 판단해야 함
 - » 10진수 0.1을 float로 표현하면 0x3DCCCCCD이고, 이를 다시 10진수로 소수점 이하 20자리까지 출력하면 0.10000000149011612000이 출력되어 오차 발생
 - » 유효 자리 6까지만 보면 0.100000으로 0.1과 같음. 즉, 10진수 0.1과 0.1000000149011612000을 단정도 실수 32비트로 표현하면 둘 다 16진수로 0x3DCCCCCD

Floating Point Representation

Numerical Form:

$$(-1)^{s} M 2^{E}$$

- Sign bit s determines whether number is negative or positive
- **Significand M** normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two

Encoding

- MSB s is sign bit s
- exp field encodes E (but is not equal to E)
- frac field encodes M (but is not equal to M)

S	ехр	frac
---	-----	------

Precisions

■ Single precision: 32 bits

■ Double precision: 64 bits

Extended precision: 80 bits (Intel only)

S	ехр	frac
1	15-bits	63 or 64-bits

Normalized Values

- Condition: exp ≠ 000...0 and exp ≠ 111...1
- **■** Exponent coded as *biased* value: E = Exp Bias
 - Exp: unsigned value exp
 - $Bias = 2^{k-1} 1$, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: M = 1.xxx...x2
 - xxx...x: bits of frac
 - Minimum when 000...0 (M = 1.0)
 - Maximum when 111...1 ($M = 2.0 \varepsilon$)
 - Get extra leading bit for "free"

Normalized Encoding Example

```
■ Value: Float F = 15213.0;

■ 15213<sub>10</sub> = 11101101101101<sub>2</sub>

= 1.1101101101101<sub>2</sub> x 2<sup>13</sup>
```

Significand

```
M = 1.101101101101_2
frac= 1101101101101_0000000000_2
```

Exponent

```
E = 13
Bias = 127
Exp = 140 = 10001100_{2}
```

Result:

 0
 10001100
 11011011011010000000000

 s
 exp
 frac

Denormalized Values

- **Condition:** exp = 000...0
- Exponent value: E = -Bias + 1 (instead of E = 0 Bias)
- Significand coded with implied leading 0: *M* = 0.xxx...x₂
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - $exp = 000...0, frac \neq 000...0$
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equispaced

Special Values

- **Condition: exp** = 111...1
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, frac ≠ 000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

Visualization: Floating Point Encodings

Today: Floating Point

- Background: Fractional binary numbers
- **■** IEEE floating point standard: Definition
- **■** Example and properties
- **■** Rounding

Tiny Floating Point Example

8-bit Floating Point Representation

- the sign bit is in the most significant bit
- the next four bits are the exponent, with a bias of 7
- the last three bits are the frac

Same general form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

Dynamic Range (Positive Only)

	s exp	frac	E	Value	
	0 0000	000	-6	0	
	0 0000	001	-6	1/8*1/64 = 1/512	closest to zero
Denormalized	0 0000	010	-6	2/8*1/64 = 2/512	Closest to zero
numbers					
	0 0000	110	-6	6/8*1/64 = 6/512	
	0 0000	111	-6	7/8*1/64 = 7/512	largest denorm
	0 0001	_ 000	-6	8/8*1/64 = 8/512	smallest norm
	0 0001	001	-6	9/8*1/64 = 9/512	Silialiest Horili
	•••				
	0 0110	110	-1	14/8*1/2 = 14/16	
	0 0110	111	-1	15/8*1/2 = 15/16	closest to 1 below
Normalized	0 0111	000	0	8/8*1 = 1	
numbers	0 0111	001	0	9/8*1 = 9/8	closest to 1 above
	0 0111	010	0	10/8*1 = 10/8	
	0 1110	110	7	14/8*128 = 224	
	0 1110	111	7	15/8*128 = 240	largest norm
	0 1111	000	n/a	inf	

Distribution of Values

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 23-1-1 = 3

■ Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

Interesting Numbers

■ Double $\approx 1.8 \times 10^{308}$

{single,double}

Description	exp	frac	Numeric Value
Zero	0000	0000	0.0
Smallest Pos. Denorm.	0000	0001	$2^{-\{23,52\}} \times 2^{-\{126,1022\}}$
■ Single $\approx 1.4 \times 10^{-45}$			
■ Double $\approx 4.9 \times 10^{-324}$			
Largest Denormalized	0000	1111	$(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$
■ Single $\approx 1.18 \times 10^{-38}$			
■ Double $\approx 2.2 \times 10^{-308}$			
Smallest Pos. Normalized	0001	0000	1.0 x $2^{-\{126,1022\}}$
Just larger than largest denor	malized		
One	0111	0000	1.0
Largest Normalized	1110	1111	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$
■ Single $\approx 3.4 \times 10^{38}$			

Special Properties of Encoding

- FP Zero Same as Integer Zero
 - All bits = 0

■ Can (Almost) Use Unsigned Integer Comparison

- Must first compare sign bits
- Must consider -0 = 0
- NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
- Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Today: Floating Point

- Background: Fractional binary numbers
- **IEEE floating point standard: Definition**
- **■** Example and properties
- Rounding

Floating Point Operations: Basic Idea

- $\mathbf{x} +_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} + \mathbf{y})$
- $\mathbf{x} \times_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} \times \mathbf{y})$

■ Basic idea

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1	\$1	\$1	\$2	- \$1
■ Round down (-∞)	\$1	\$1	\$1	\$2	- \$2
Round up (+∞)	\$2	\$2	\$2	\$3	- \$1
Nearest Even (default)	\$1	\$2	\$2	\$2	- \$2

■ What are the advantages of the modes?

Closer Look at Round-To-Even

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

1.2349999	1.23	(Less than half way)
1.2350001	1.24	(Greater than half way)
1.2350000	1.24	(Half way—round up)
1.2450000	1.24	(Half way—round down)

Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.00110 ₂	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.002	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.102	(1/2—down)	2 1/2

7. 부동소수점 산술연산의 부정확성은 심각한 결과를 초래할 수 있다. 1991년 2월 25일 1차 걸프 전쟁 기간 중에 사우디아라비아 Dharan에 위치한 미국 패트리엇 미사일 부대는 날아오는 이라크의 스커드 미사일을 격추하는 데 실패했다. 스커드 미사일은 미 육군 막사에 떨어져 28명의 대원이 사망했다. 미국 일반 조사위는 이 실패에 관해 상세한 조사를 수행하였으며 수 차 계산의 부정확성이 주요 원인이라는 결론을 내렸다. 이 예제에서는 조사위 부석의 일부분을 검증하게 된다.

패트리엇 시스템은 내부 클럽을 가지고 있으며, 이것은 때 0.1초마다 증가하는 카운터로 구현되어 있다. 시간을 초로 계산하기 위해 프로그램은 이 카운터 값을 24비트 값으로 곱해주는 데, 이것은 급로의 비율 이진수 근사한 것이다. 특히 급의 이진 표시는 비결정성 수열 0.000110011[0011]···₂ 이며, 여기서 []안은 무한 반복된다. 이 프로그램은 χ의 값으로 0.1을 근사하였는데, 이진 소수점 우측의 수열에서 앞부분의 23비트만을 이용하였다: χ = 0.00011001100110011001100.

- A. 0.1 χ의 이진수 표시는 어떻게 되는가?
- B. 0.1 χ의 근사한 십진수 값은 얼마인가?
- C. 클럽은 시스템에 최초로 전원이 공급되면 0에서 시작해서 계속 증가한다. 이 경우, 시스템은 약 100시간 동안 동작하였다. 이때 실제 시간과 소프트웨어가 계산한 시간과의 차이는 얼마인가?
- D. 스커드 미사일이 약 초속 2,000미터로 날아갔다면, 이 예측은 얼마나 틀리게 되는가?

Problem 7 Solution:

In most cases, the limited precision of floating-point numbers is not a major problem, because the *relative* error of the computation is still fairly low. In this example, however, the system was sensitive to the *absolute* error.

- B. Comparing this to the binary representation of $\frac{1}{10}$, we can see that it is simply $2^{-20} \times \frac{1}{10}$, which is around 9.54×10^{-8} .
- C. $9.54 \times 10^{-8} \times 100 \times 60 \times 60 \times 10 \approx 0.343$ seconds.
- D. $0.343 \times 2000 \approx 687$ meters.

- 8. 문제 7에서 패트리엇 미사일 소프트웨어가 0.1을 $\chi = 0.00011001100110011001100_2$ 로 근사한다는 것을 알았다. 대신에 이들이 IEEE 짝수 근사 모드로 이진 소수점의 우측 23비트를 이용해서 χ' 을 0.1로 근사하였다고 가정하자.
- A. x/는 이진수로 어떻게 표시하는가?
- B. x' 0.1을 근사한 십진수 값은 얼마인가?
- C. 계산한 클럽은 100시간 후에 얼마나 큰 오차를 갖게 되었는가?
- D. 프로그램의 스커드 미사일 위치 오차는 얼마나 되겠는가?

Problem 8 Solution:

- A. Looking at the <u>nonterminating</u> sequence for 1/10, we can see that the 2 bits to the right of the rounding position are 1, and so a better approximation to 1/10 would be obtained by incrementing x to get $\chi' = 0.00011001100110011001101_2$, which is larger than 0.1.

Comparing this to the binary representation of $\frac{1}{10}$, we can see that it is $2^{-22} \times \frac{1}{10}$, which is around 2.38×10^{-8} .

- C. 2.38 \times 10⁻⁸ \times 100 \times 60 \times 60 \times 10 \approx 0.086 seconds, a factor of 4 less than the error in the Patriot system.
- D. $0.343 \times 2000 \approx 171$ meters.