

AD-A130 962

HELICOPTER NOISE SURVEY PERFORMED AT PARKER CENTER
PASADENA AND ANAHEIM C. (U) FEDERAL AVIATION
ADMINISTRATION WASHINGTON DC OFFICE OF ENVIR.

1/1

UNCLASSIFIED

S R ALBERSHEIM JUN 83 FAA/EE-83-5

F/G 20/1

NL

END
DATE
FILED
8-83
DTIC

MICROFICHE RESOLUTION TEST CHART
NATIONAL MICROFICHE CENTER, INC., 1978

FAA-EE-83-5

**Helicopter Noise Survey Performed
at Parker Center, Pasadena,
and Anaheim California
on February 10-14, 1983**

ADA 130962

by Steven R Albersheim

DTIC
ELECTED
S D
AUG 2 1983
D

83 08 31 070

U.S. Department of Transportation

Federal Aviation Administration

Office of Environment and Energy

Washington D.C. 20591

DTIC FILE COPY
ADA 130962

Technical Report Documentation Page

1. Report No. TR-1-3-0	2. Government Accession No. <i>AD-A130962</i>	3. Recipient's Catalog No.	
4. Title and Subtitle Helicopter Noise Survey Performed at Parker Center, Pasadena, and Anaheim California on February 10-14, 1983		5. Report Date June 1983	
6. Author(s) Steven R. Albersheim		7. Performing Organization Code	
8. Performing Organization Name and Address Department of Transportation Federal Aviation Administration, Office of Environment and Energy, AEE-110, Washington, D.C. 20591		9. Work Unit No (TRAIS)	
10. Contract or Grant No		11. Type of Report and Period Covered	
12. Sponsoring Agency Name and Address Department of Transportation, Federal Aviation Administration, Office of Environment and Energy, AEE-110, Washington, D.C. 20591		13. Sponsoring Agency Code	
14. Supplementary Notes			
15. Abstract The FAA conducted a noise measurement survey of helicopter operations at three different helipads in the Los Angeles metropolitan area during the period of February 10-14, 1983. The purpose was to gather needed information for developing noise problems with in-service helicopter operations in a suburban and urban environment. Noise level data were sampled for a variety of helicopters for different operating conditions and land use characteristics. The data collected reflect noise levels at these sites from all local sources of noise during that particular sampling period. These data from helicopter "targets of opportunity" are termed "sampled data" as opposed to "controlled test data" in order to reflect the limited control over factors which contribute to the variability of the measured noise level.			
17. Key Words Helicopters, L _{MAX} , L _{eq} , Environmental Noise Impact	18. Distribution Statement		
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages	22. Price

-A-

CONTENTS

SECTION	<u>Page</u>
1.0 Introduction	1
1.1 Selection Criteria	1
2.0 Site Description	2
2.1 Downtown Los Angeles: Parker Center	2
2.2 Pasadena Heliport	3
2.3 Anaheim Stadium	3
3.0 Noise Survey	4
3.1 Test Approach	4
3.2 Noise Measurement	5
4.0 Monitoring Sites	5
4.1 Parker Center	5
4.2 Pasadena	8
4.3 Anaheim	8
5.0 Discussion of the Data	10
5.1 Parker Center	10
5.2 Pasadena	13
5.3 Anaheim	20
6.0 Perspective on the Data	26
7.0 Test Participants	28
7.1 Noise Test Field Team	28

Accession For	
NTIS GRA&I <input checked="" type="checkbox"/> DTIC TAB <input type="checkbox"/> Unannounced <input type="checkbox"/>	
Justification	
By _____	
Distribution/ _____	
Availability Codes _____	
Avail and/or _____	
Dist	Special
A	

LIST OF TABLES

TABLE	<u>Page</u>
1 Maximum A-weighted Slow Response Sound Level Observed at Parker Center, Los Angeles February 10, 1983	16
2 Maximum A-weighted Slow Response Sound Level With and Without Helicopter Operations at Pasadena Heliport, February 11, 1983	17
3 Maximum A-weighted Slow Response Sound Level for Helicopter Departure at Anaheim, February 13, 1983	21
4 Maximum A-weighted Slow Response Sound Level for Helicopter Approaches at Anaheim, February 14, 1983	24
5 Noise Levels Typically Encountered in an Urban Environment	27

LIST OF FIGURES

FIGURE	PAGE
1 Noise Measurement System	6
2 Noise Monitoring Sites for the Parker Center	7
3 Noise Monitoring Sites for the Pasadena Heliport	9
4 Approach and Departure Routes at Anaheim	11
5 Noise Monitoring Sites at Anaheim	12
6 Time History of Selected Noise Events at Pasadena	14

TERMINOLOGY

L_{eq} - The A-weighted sound level that is "equivalent" to an actual time varying sound level in the sense that it has the same total energy for the duration of the sound.

L_{A8A} - The maximum A-weighted sound level for a given time interval or event.

A-weighted - The momentary magnitude of sound weighted to approximate Sound Level the ear's frequency sensitivity.

1. Introduction

The FAA is in the process of establishing a noise monitoring program for helicopter operations in the Atlanta area. This document describes the purpose of the program, the criteria used to select sites, and the methods to be used to measure helicopter operations within the Atlanta area.

In February 1974, the FAA conducted a survey of potential heliports in the Atlanta metropolitan area. From these sites, 12 were selected based on different criteria with each having unique operating conditions and surroundings. This report describes the opportunity to assess and evaluate noise levels from helicopter operations by site characteristics.

Noise level data, required for statistically valid samples at each selected site, reflect the noise levels at the sites from all noise sources during that particular day. Noise data from individual helicopter operations are also provided. These data from helicopter "tours of opportunity" are termed "survey data" as opposed to "controlled test data," in order to reflect the limited control over factors which contribute to the variability of the measured noise levels.

1.1. Selection Criteria

In selecting heliports to perform a noise monitoring program, the following criteria were used:

- location of people near the heliport who could be impacted by all operations.
- sufficient number of operations (landings and takeoffs) to justify a potential noise problem
- road ground access encouraging use and growth of helicopter operations
- potential for future growth and expansion of operations
- availability of monitoring locations to obtain reasonable community noise levels with respect to helicopter operations

Evaluation of the criteria is more or less a subjective analysis for selecting a heliport for monitoring. Location of people relative to the heliport is considered the most important factor and therefore has greater impact than any other factor for including that heliport in the survey.

During the period of February 10-14, 1983, a noise survey was performed at the Parker Center, Pasadena, and Anaheim Stadium heliports. The surveys completed for Pasadena and Parker Center were performed with respect to the above criteria. However, the selection of Anaheim was for a special case study.

2.0 Site Description

2.1 Downtown Los Angeles: Parker Center

The area is highly commercialized with local government offices being predominant. Automobile traffic is quite heavy in this area with buses observed on all the major arterials. There are three heliports, all

rooftop, within a block of each other. During the sampling period, no helicopter was flying east of city limits or actively being used. The principal noise source for the immediate area were automobiles with bases below the most intrusive source of noise, ground sources.

2.2 Pasadena Heliport

The Pasadena Heliport is owned and operated by the City of Pasadena and is located in the northwest sector of the city of Pasadena. The heliport is located in a suburban area surrounded by residential neighborhoods and a golf course. The only helicopters permitted to use the heliport are those owned and operated by the Pasadena Police Department and medivac units transporting victims to the nearest hospital. Ingress to the heliport is usually from the north to northwest sectors over the freeway. Egress is to the southwest over the freeway and the golf course away from the residential area immediately to the east of the heliport.

2.3 Anaheim Stadium

A temporary heliport was established at the Anaheim Stadium during the annual Helicopter Association International (HAI) Convention at Anaheim, California. It is customary for the HAI to provide a flight line at their annual convention so manufacturers can demonstrate the capability of their helicopters. In establishing the flight-line, the HAI marked off a parking area with a space reserved for each helicopter, landing and departing areas, taxiway, and approved ingress and egress routes to the heliport.

Even though this was a temporary facility the nature of operations provides an opportunity to monitor noise levels from an extremely busy urban heliport.

The heliport was located on the stadium grounds away from residential areas. Public access to the facility was restricted for safety reasons. The land-use characteristics in the immediate vicinity of the helipad are commercial and industrial. Helicopters operating out of this facility followed the primary highways. Ingress into the heliport was over Route 91 which is adjacent to the stadium and egress was directly over the industrial/commercial area just west of the stadium. During departure, helicopters were instructed to turn to the north or south before reaching Lewis Street in order to avoid the residential neighborhoods west of the Santa Ana Freeway. The helicopters then followed the normal designated VFR routes to their demonstration areas.

3.0 Noise Survey

3.1 Test Approach

Precision integration sound level meters (GEN RAD 1988s) were used during the period of February 10-14, 1983, at selected sites to monitor noise levels near the helipads at Parker Center, Pasadena, and Anaheim. These systems computed the L_{eq} for a given sample period and recorded the maximum noise level (L_{ASm}) on the A-weighted scale. Graphic-level time-history recordings were also produced at selected sites during the monitoring. The graphic level recorders (GLR) provided a hard copy record of the temporal changes of noise levels observed during the monitoring periods. Operators noted the local intrusive sounds in a log and on the GLR record.

The noise surveys were conducted during light wind conditions with ambient temperature in the 60°F's.

3.2 Noise Measurement Equipment

Each of the two noise measurement systems used in the survey consisted of a GEN RAD 1988 Precision Integrating Sound Level Meter (PISLM) with DC output to a Metrosonics 404 Graphic Level Recorder. The system powered a P-42 microphone preamplifier driving a GEN RAD, 1/2 inch electret microphone. The microphone-preamplifier assembly was mounted four (4) feet above ground level with the microphone oriented perpendicular to the ground at Anaheim and at five (5) feet straight-up at Pasadena for community noise monitoring. At Parker Center the 1988s were hand held at a 45° angle away from the body at waist height. The GLR operated at a paper transport speed of 5 centimeters per minute (300 cm/hr). Each instrument was calibrated before and after each survey measurement period. During the measurements at Anaheim additional calibrations were taken between the initial and final calibration to check for drift in the system.

Each system deployed was capable of collecting maximum A-weighted sound level, integration time, and equivalent sound level. The data presented in this report are a compilation of these acoustical measurements. A schematic of the acoustical measurement system is shown in Figure 1.

4.0 Monitoring Sites

4.1 Parker Center

A noise survey was performed between 1 pm and 3 pm in the area of the Parker Center complex. Figure 2 shows the sampling locations

Figure 1 Noise Measurement System

Noise Monitoring Sites for the Parker Center

Figure 2

the characteristics of the immediate vicinity. The samples were collected in order to allow the operator to determine which of the measured points represent typical situations in the marker centered airports. The pilot was asked to "sample the air masses." The samples collected were to be used for identification.

卷之三

noise measurements were performed on February 11, 1983. Two monitoring sites were selected at the locations shown in Figure 3. The sites were chosen to monitor the noise levels in neighborhoods near the helipad which could be affected by the normal approach and departure paths of the helicopters. Site 1 was located near the curb on a dead end street in a residential neighborhood at a distance of approximately 100 feet to the northeast of the helipad. The site was also approximately 100 feet from the helipad. Site 1 was located adjacent to the Brookside Golf Course on Crenoit Avenue. Because of the nature of the terrain, the soil was very clayey which places the monitoring site approximately 50 feet from the helipad during departures. Both sites were situated so the monitoring was located over a grass or dirt surface.

1000 Amphetamine

A noise survey was performed on February 13 and 14, 1983, at the Kona Kai Kaiwi to monitor noise levels associated with routine departures and approaches from the temporary heliport facility (Figure 4). Site 1, the primary monitoring site, sampled noise levels from helicopters during approach if the helicopter passed directly over the microphone. Site 2 measured groundline noise levels located on a small grass plot between the

Figure 3

Noise Monitoring Sites
for the
Pasadena Heliport

Site 2 *

(Not drawn to scale)

sidewalk in the parking lot. The time of holding the microphone is indicated by a cross-hatched area in the building. The reference location of the helicopter is depicted in Figure 1. The primary site was located directly across from the helipad on the College Street side of the station at approximately 100 ft from the helipad. Site 2 was located directly to the south of the primary site along Station Street. A secondary site, located on the north side of the primary site, was used for altitude measurements. At the secondary site, only one camera and one microphone were required.

The primary site for monitoring arrivals was located approximately 100 ft west-southwest of the helipad on the station parking lot. Located to the west of the station pad the microphone was located on the approach side 2 vs 100 ft directly to the north. Both sites were on an asphalt parking lot. A camera was used to photograph the helicopters as they passed over the primary site for both arrivals and departures in order to determine the helicopters' altitudes.

3.1.2 Division of the data

3.1.2.1 Parker Center

The most intrusive sources of noise in the immediate area of the Parker Center complex were helicopters and city transit buses. Table 1 summarizes the noise levels associated with intrusive noise events. The highest reading recorded for helicopter operations was 89 dB(A) associated with the approach of a Bell 212 to the top of a 17-story building adjacent to city hall. This maximum reading was 3-4 dB(A) lower

Figure 4 Approach and Departure Routes at Anaheim

Figure 5 Noise Monitoring Sites at Anaheim

than the maximum readings associated with traffic or other ground activities at monitoring sites. Another distinguishable characteristic noted about the helicopters observed at Parker Center was their approach flight. The northwest down First Street was the blade slap which was quite distinct over approximately three blocks away. Operating technique did not change. This distinctive characteristic can be used to identify the blade slap.

2.2 Pasadena

Table 2 summarizes the L_{MAX} and L_{AEP} values observed during the survey at the two Pasadena sites. Seven short sampling periods (30-min each) were made at Site 1 with and without helicopter operations. Two samples each approximately 3 minutes in duration with and without helicopter activity were made at site 2. Noise levels associated with routine departures and approaches to the heliport were recorded at each site. Examination of these data indicates that operation of an Eastman E-250 turbine powered helicopter did not change the L_{AEP} values in the residential areas during normal routine operations. A maximum level of 66 dB(A) was recorded at Site 1 while the helicopter was on the pad preparing for departure. This compares to a maximum level of 64 dB(A) associated with a car passing by the monitoring site or the loudest noise event recorded during the entire sampling period of 76 dB(A) which was from a car horn. Figure 6 present a graphical picture of the recorded data at Sites 1 and 2 and a comparison of maximum levels of noise associated with routine approaches and departures of the Eastman E-250 relative to other sources of noise in the residential area.

Figure 6(a) Time History of Selected Noise Events at Pasadena

Figure 6(b), Time History of Selected Noise Events at Pasadena

Table 1

Maximum A-weighted, Slow Response Sound Level Observed at
Parker Center, Los Angeles February 14, 1983

LOCATION	MAX SOUND LEVEL dB(A)	REMARKS
First and San Pedro	93 77 65 80	transit Bus at 5 feet ambient for moving traffic ambient for stopped traffic truck pass-by
First and Los Angeles	76 78 74 74 80 84 75	transit Bus pass-by Light duty truck Tire screech Accelerating car Car with bad muffler Transit bus pass-by motorcycle

TABLE 2
 Maximum A-weighted Slow Response Sound Level With and
 Without Helicopter Operations at Pasadena Heliport
 February 11, 1983

Sample	Location	Maximum dB(A)	Leq	Noise Event
No. 1	Residential La Canada Verdugo and Vista Laguna	56 63 51 59 59 58 64	53.5	Loud radio Car pass-by F-28 Helicopter fly by F-28 Helicopter on pad preparing for departure F-28 Helicopter departure toward Golf Course Conversation Car pass-by
				5 Min. sample with above observations
No. 2	Residential La Canada Verdugo and Vista Laguna	63 62 56 58 66 52	55.1	Car turning F-28 helicopter departing GA fly by F-28 making approach to pad F-28 on pad F-28 departing
				11 min. sample with helicopter operations
No. 4	Residential La Canada Verdugo and Vista Laguna	63 58 76 55	55.8	Two cars pass-by G.A. fly-by Car Horn Highway traffic on I-210
				5 min. sample with- out helicopter operations

TABLE 2 (cont'd)

Sample	Location	Maximum dB(A)	Leq	Noise Event
No. 5	Residential La Canada Verdugo and Vista Laguna	53		Truck on freeway in distance
		58		Motorcycle on free- way
		61		Car pass-by
		58		Car pass-by
		56		General Aviation fly-by
		52		Motorcycle on free- way and truck
			50.7	10 minute sample without helicopter operations
	Golf Course off	70		Car pass-by
		71		F-28 helicopter fly-by
		68		Car pass-by
		44		Crickets
		72		Car and truck pass- by
		69		F-28 helicopter fly-by
		54		F-28 Helicopter turning in distance to return to pad
		76		Mobile home pass-by
		68		Car pass-by
		68		F-28 Helicopter departing pad
No. 6	Rosemont Blvd.	62		Twin-engine turboprop fly-by
		53		F-28 Helicopter fly-by
		69		Car pass-by
		69		F-28 Helicopter directly over- head during fly- by with a car pass-by
		54		F-28 Helicopter approaching pad from northwest
			60.7	18 minute sample period with helicopter operations

TABLE 2 (Cont'd) /

Sample	Location	Maximum dB(A)	Leq	Noise Event
No. 7	Golf Course off Rosemont Blvd.		56.1	19 minute sample without helicopter operations

5.3 Anaheim

Tables 3 and 4 present the maximum recorded noise levels for departures and arrivals at the Anaheim Stadium. On February 13, 1983, between the hours of 1300 to 1700 routine departures of helicopters from the Anaheim stadium were monitored (Table 3). In total there were 89 events; however, only 82 were considered valid. The highest reading recorded was 92.4 dB(A) associated with the Augusta A-109 which passed over Site 1 at an altitude of 159 feet. The lowest noise level recorded during departures at Site 1 was 77.5 dB(A) for the Hiller FH-1100 which passed over this site at an altitude of 187 feet. In general the majority of the helicopters passed over Site 1 during departure at an average altitude of 213 feet with an average A-weighted maximum level of 81.4 dB(A). The average difference between the maximum levels recorded at Site 2 was 6 dB(A), resulting in average weighted maximum sideline dB(A) at 77.9.

On February 14, 1983, arrivals were monitored at Anaheim (Table 4). During the sample period 1000 to 1300 hours there were 69 events. Of these events only 55 were used. Helicopter events were not used when the helicopter did not pass directly over Site 1. The highest value recorded was 97.9 dB(A) and was associated with the Augusta A-109 which passed over Site 1 at 325 feet. The lowest reading of 77.4 dB(A) was associated with a Hiller FH-1100 which passed over Site 1 at 306 feet. The average weighted maximum level recorded at the Site 1 was 85.9 dB(A) and for Site 2 the average weighted maximum level was 78.2 dB(A).

TABLE 3

Maximum A-weighted slow-response sound level for helicopter
Departure at Anaheim, February 13, 1963

helicopter	Event No.	Maximum Noise Levels		Altitude(1) (ft)	Slant(2) Range (ft)
		Site 1	Site 2		
Hughes 500-B(3)					
Location #1	31	52.7	51.3	304	573
	38	81.3	75.3	296	566
	48	79.9	77.0	340	592
	60	79.3	78.1	255	540
Location #2	27	80.4	75.3	296	569
	37	79.9	74.0	274	558
	42	83.3	77.7	201	526
	55	83.5	79.3	187	521
	68	84.1	79.1	161	486
	70	82.3	76.0	224	536
Location #3	50	79.7	74.6	312	578
	60	79.8	77.8	313	579
	71	81.6	77.6	323	584
	103	79.6	75.7	343	591
Hughes 500-B	13	80.2	78.2	296	569
	25	84.9	77.7	152	509
	46	86.1	80.6	140	503
	35	81.0	81.1	274	535
	95	81.0	78.3	238	541
Sikorsky S-76	44	85.7	80.2	186	52
	79	85.8	81.6	214	533
	88	86.8	82.9	156	510
Westland WG-30	54	87.6	82.1	256	549
	91	86.3	83.2	341	591
	98	86.5	83.4	241	542
Enstrom F-280C	61	82.6	77.7	197	524
Boelkow BO-105Ls	14	84.8	75.6	193	523
	24	84.1	77.4	186	520
	36	84.0	75.6	205	527
	43	83.7	75.6	219	533
	62	84.1	78.6	242	543
	93	83.5	75.9	219	533
	102	81.9	76.0	252	547

Table 3 (cont'd.)

aircraft	event no.	Maximum Noise Level (dB(A))	Altitude (ft)	Latitude (°N)
Boeing 747	78	76.8	76.8	170
	89	76.9	76.9	176
	91	76.9	76.9	176
	94	76.9	76.9	176
	104	76.9	76.9	176
Boeing 747	87	81.6	76.8	170
Learjet 44	77	81.6	76.8	172
Convair 990/142	14	76.2	76.2	148
	36	76.2	76.2	149
	47	76.2	76.2	149
DC-10	63	81.4	81.4	237
	65	81.4	81.4	234
	82	81.4	81.4	238
	96	81.4	81.4	179
Convair 990/142	30	91.4	81.9	-
	89	92.4	83.9	159
	90	92.4	83.9	156
DC-10/Boeing 747	1	81.6	77.8	158
	31	81.7	77.8	143
	43	80.9	73.0	212
	87	81.6	76.0	287
DC-10 (SrhNA)	95	85.6	76.3	148
	69	86.9	75.9	263
	89	86.1	78.9	236
Aerospatiale				
SA-350C	7	86.2	76.8	116
	16	86.3	79.2	144
	34	88.5	78.0	269
	41	87.6	76.8	136
	67	88.0	79.0	117
	78	86.2	78.0	141
	83	84.1	79.0	200

Table 3 (Cont'd)

Helicopter	Event No.	Maximum Noise Levels		Altitude (ft)	Slant Range (ft)
		Site 1	Site 2		
Aerospatiale					
AS-355F	12	88.7	79.3	124	502
	18	90.7	80.3	104	497
	29	90.6	77.6	214	531
	77	91.2	80.4	113	499
	90	89.9	80.5	131	503
SA-365C	8	86.4	77.1	216	532
	15	87.3	79.4	299	571
	33	85.6	77.9	293	561
	40	85.8	79.1	246	543
	76	88.4	81.5	210	529
	84	89.6	80.1	204	527
	92	82.1	77.5	537	724
	99	83.9	78.9	464	671
Hiller FH-1100	19	81.3	77.0	118	504
	32	78.6	73.2	146	507
	81	81.8	75.1	166	514
	100	77.5	71.6	187	521
Robinson R-22	105	80.3	74.7	152	509

- (1) The altitude of the helicopter as it passed directly overhead at Site 1.
- (2) The slant range distance of the helicopter to Site 2 as it passed directly over Site 1.
- (3) Hughes Helicopter had 3 (three) 500-E's available for demonstration flights. The helicopters were stationed at parking locations 1, 2, and 3 on the flight-line.

TABLE 4

Maximum A-Weighted Slow Response Sound Level for Helicopter Approaches at Anaheim, February 14, 1983

Helicopter	Event No.	Maximum Noise Level dB(A)	Altitude ⁽¹⁾ (ft.)		Sound Level ⁽²⁾ (dB)
			Site 1	Site 2	
Hughes 500-D(3)					
Location #1	19	84.0	76.8	244	50
	25	81.7	78.5	274	46
	32	83.3	79.0	274	52
	40	84.4	76.5	275	51
	46	85.8	76.4	173	47
	62	83.7	75.0	241	45
Location #2	26	80.5	77.1	245	42
	54	86.8	75.2	118	47
	65	86.4	77.2	179	42
Location #3	8	86.0	76.3	281	50
	13	84.1	76.1	323	50
	35	84.1	76.2	284	50
	43	84.0	76.3	213	51
	55	88.4	78.6	231	51
	61	86.5	76.7	168	48
Hughes 500-D	14	84.4	79.8	189	50
	20	87.1	77.0	171	49
Sikorsky S-76	51	90.1	83.3	183	49
Westland WG-30	41	96.9	88.7	228	51
Enstrom F-280C	16	88.8	78.5	267	53
Boekow BO-105LS	31	83.5	78.1	228	51
	57	83.8	79.9	224	51
BK-117	50	87.2	82.4	217	51
	17	92.7	79.7	183	49.8
	59	85.3	82.4	214	51
Bell B-206L	23	87.5	77.2	270	53
Location #11	39	91.1	79.7	165	49
B-206L	37	79.0	78.1	327	56
Location #12	66	79.2	78.2	285	54

TABLE 4 (Cont'd)

Helicopter	Event No.	Maximum Noise Level dB(A)		Altitude (ft)	Slant Range (ft)
		Site 1	Site 2		
B-222	6	89.3	83.7	190	500
	22	86.4	82.7	213	510
	28	88.9	80.9	196	500
	50	87.5	81.6	218	510
	64	91.0	78.9	181	490
Augusta A-109	30	98.4	81.9	142	480
	53	97.9	83.1	325	560
Bell B-206A	24	80.5	75.7	210	500
	33	79.1	75.5	254	520
<i>Aerospatiale</i>					
SA-350C	7	81.6	73.2	262	530
	27	84.2	72.8	271	530
	34	80.8	74.0	247	524
	48	80.0	72.1	274	533
AS-355F	21	85.3	74.8	300	550
	36	88.2	75.4	256	520
	58	82.7	72.9	213	510
	63	93.3	83.5	192	501
SA-365	18	93.2	80.8	263	532
	44	90.5	76.6	206	506
	60	93.3	79.6	256	529
Hiller FH-1100	9	79.7	76.4	344	570
	29	82.6	79.4	307	550
	42	77.4	75.4	306	506
	47	78.1	77.7	281	542
	56	78.9	77.0	264	532
Bell B-206 (NITE SIGN)	52	89.0	81.5	449	640

- (1) The altitude of the helicopter as it passed directly overhead at Site 1.
- (2) The slant range distance of the helicopter to Site 2 as it passed directly over Site 1.
- (3) Hughes Helicopter had 3 (three) 500-E's available for demonstration flights. The helicopter were stationed at parking locations 1, 2, and 3 on the flight-line.

b. Perspective on the Data

In reviewing the noise data collected during the survey period, the noise levels from helicopter operations at the three heliports should be placed in perspective with other sources of noise in an urban environment. Table 5 presents a list of noise levels typically encountered in an urban environment. The purpose of performing this noise survey was to obtain additional information with regard to helicopter operations in one area in relation to other sources of noise. However, it must be noted that this survey only represents noise levels measured for helicopter and other sources of noise for a specific sample period and may not be representative of typical conditions of the area. In any event, the data provide at least a perspective.

At the Parker Center complex the noise associated with the two helicopters observed during the sampling period was quite noticeable when compared to other sources of noise in the area. However, the frequency of occurrence of helicopters is quite small when compared to the operation of transit buses which were about as noisy as the helicopter. The frequency of helicopters operating at this location would not significantly change the L_{eq} for this area. The major sources of noise which have the greatest contributing factors to the cumulative noise level are buses and automobiles.

As to the Pasadena heliport, helicopter operations do not significantly affect the L_{eq} values in the residential areas at the monitoring sites. The helicopter operations are noticeable, but the L_{ASm} as monitored is not any greater than an automobile or truck passing by.

TABLE 5

Noise Levels Typically Encountered
in an Urban Environment

<u>Source</u>	LASm *
Rustling leaves	20
Room in a quiet dwelling at midnight	32
Soft whispers at 5 feet	34
Men's clothing department of large store	53
Window air conditioner	55
Conversational speech	60
Household department of large store	62
Busy restaurant	65
Typing pool (9 typewriters in use)	65
Vacuum cleaner in private residence (at 10 feet)	69
Ringing alarm clock (at 2 feet)	80
Loudly reproduced orchestral music in large room	82
Printing press plant (medium size automatic)	86
Heavy city traffic	92
Heavy diesel-propelled vehicle (about 25 ft. away)	92
Air grinder	95
Cut-off saw	97
Home lawnmower	98
Turbine condenser	98
150 cubic foot air compressor	100
Banging of steel plate	104
Air hammer	107
Jet airliner (500 feet overhead)	115

* Maximum A-weighted slow response sound level

Because of the nature of operations and the location of the Anaheim heliport, there were no noise impacts on the immediate areas adjacent to the stadium. However, if this heliport were a prototype of a proposed heliport, noise impacts could be expected in the areas in the immediate vicinity (i.e., on the order of approximately 1000 ft.) of the landing path.

7.0 Test Participants

7.1 Noise Test Field Team

The noise survey was conducted by personnel from the FAA Headquarters, Office of Environment and Energy, Noise Abatement Division, AEE-100, Washington, D.C. 20591.

The field team consisted of the following individuals:

Steve Albersheim

Steve Newman

Sharon Daboin

Donna Warren

The cooperation of the following other people is greatly appreciated in coordinating the operations of helicopter operations at Pasadena and Anaheim:

Lt. N.J. Augusta, Pasadena Police Department
Nelson, Chief Pilot, Pasadena Police Department

Donald L. Litvak, Manager, Air Traffic Control Tower, Fullerton Municipal Airport

William D. Jones, Director of Safety Helicopter Association 'att'l,

