

Assignment Pesisystem Help

https://powcoder.com

Add WeChat powcoder

Computer Graphics Instructor: Sungkil Lee

Today

- Image formation
- Two basic approaches of graphics systems
 - Physical approach
 - Pipeline approach Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Image Formation

Geometry of image formation

 determines where the projection of a point will be located in the image plane (or the sensor plane)

Assignment Project Exam Help Physics of light

- interaction of light hwith geometric outer com
- determines the brightness of a point in the image plane (or the sensor) as a function of illumination with surface properties:
- Rendering: simulation of light physics, yielding photorealism

Image Formation

- In computer graphics, we form images using a model analogous to the physical process
 - The scene is illuminated by a single light source
 - The scene reflects radiation towards the camera
 - The camera sassignment Project Fixam Help

Three Elements of Image Formation

- Light sources
- Objects
- Camera

(1) Light Sources

- Light is the part of the electromagnetic spectrum that causes a reaction in our visual systems
 - Generally visible spectra are in about wavelengths of 350-750 nm.
 - Long wavelengths appear as reds and short wavelengths as blues.
 Assignment Project Exam Help
- The typical attributes of a light source are: https://powcoder.com
 - direction or position (often together)
 - · colors (typically, whiteleplovis@falt powcoder

(2) Objects

- Objects are a set of geometries whose representation is defined mathematically.
 - As already mentioned, vector graphics representation is used.
 - 3D positions and normal vectors are typically defined.
 Assignment Project Exam Help
- Also, surface properties of the objects are defined to simulate https://powcoder.com/ surface interaction with light propagation
 - Blinn-Phong model Appl Wie Phatiffus and deprender colors.

(3) Cameras

 Pinhole camera model, which causes sharp imagery, is common for most of the graphics model.

- Typically, the following attributes define a pinhole camera.
 - 3D transformation of a camera
 - Viewing angle, the aspect ratio of the sensor size, the range of object depths

Assignment Project Exam Help

Graphics Systems https://powcoder.com

Add WeChat powcoder

Physical Approach

Global illumination

- Captures all the light inter-reflections among the surfaces and light sources
- Usually implemented on software
- Very slow and suitable freshig Projetty film production

https://powcoder.com
 Typical example: ray tracing

Pipeline Approach

Local/direct illumination

- Captures only direct light-object reflection
- Based on rasterization
- High performance suitable for real-time interactive rendering
- However, qualitysisglegnætett Rito jægtificara approximations.

https://powcoder.com

Typical examples

- · OpenGL, on which Addo Wse Colaste pawd condens
- Facilitated by special-purpose graphics hardware (GPU)

Pipeline Approach

- Missing visual effects in local illumination model
 - Inter-object reflections
 - Refractions
 - Shadows

Assignment Project Exam Help

- However, most of the real-time rendering techniques simulate such effects through approximation.
 - In most cases, visually plays it be huttphysically degraded.

Assignment Project Exam Help

Pipeline Approach https://powcoder.com

Add WeChat powcoder

Pipeline Approach

- Process objects one at a time in the order they are generated by the application
 - One unit independently processes a single object but there are more units processing more objects at the same time.
 - Local/direct in the singular processed independently
 Local/direct in the singular processed independently

https://powcoder.com

 Pipeline architecture on graphics hardware Add WeChat powcoder

Graphics Pipeline (GPU)

Before Vertex Processing

- A host application transfers the data in main memory to the GPU memory
 - Data in GPU memory is only the copy of ones in main memory.
 - We need to maintain the source of GPU memory.
 Assignment Project Exam Help
- Vertex data (buffer) are transferred to GPU. https://powcoder.com
 - These do not have to be done for every rendering frame.
 - When there are changes, we work of the first of the property of t

Vertex Processing: 3D Transformation

- Vertex indicates a single 3D point with its attributes
 - 3D position, normal vector, and texture coordinate
- Primary role of vertex processing is positioning a single Assignment Project Exam Help vertex
 - Local object coordinates → world object coordinates
 World object coordinates → camera (eye) coordinates

Add WeChat powcoder

Every change of coordinates is equivalent to a 4×4 matrix transformation

Vertex Processing: Projection

- Projection is the process that projects 3D camera coordinates to 2D screen (window) coordinates
 - Perspective projection
 - all projectors meet at the center of projection
 - Parallel projectionignment Project Exam Help
- The projection is attracone with a 4×4 matrix multiplication.

Add WeChat powcoder

Primitive Assembly

- Vertices must be collected into geometric objects prior to later steps
 - Line segments: 2 vertices
 - Triangles: 3 vertices

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Clipping

- As a real camera cannot see the whole world, the virtual camera can only see part of the world.
 - Invisible objects outside view volume are said to be clipped.
 - Clipped triangles are no more processed in later steps.
 Assignment Project Exam Help

Rasterization

Rasterization

- Conversion of non-clipped objects (in vector graphics formats) to potential pixels (called the *fragments*).
- Produce a set of fragments whose centers lie inside in each triangle.

Assignment Project Exam Help

Rasterization

- Vertex attributes are interpolated over objects by the rasterizer.
 - 2D screen position, normal vectors, texture coordinates
 - Color and depth attributes

Fragment Processing

- Fragments are processed to determine the color of the corresponding pixel in the frame buffer
 - Colors can be determined by texture mapping or interpolation of vertex colors

Assignment Project Exam Help

- Hidden-surface removal/មុខរាជន៍deticlering
 - Fragments may be blocked by other fragments closer to the camera
 - Additional frame based come the tepthwospectermines whether the current fragment is nearer than one in the frame buffer.

Display

- Still alive fragments (now, we call pixels) are transferred to the display devices.
 - Now we can see an image in the monitor.

Example Data Flow

Assignment Project Exam Help

Appendix: https://powcoder.com Tile-Based Rendering for Mobile Graphics

Add WeChat powcoder

Immediate Mode Rendering (IMR)

Background

- IMR (typical desktop-like rendering pipeline with the full framebuffer) costs large bandwidth/space and power consumption.
 - c.f., IMR here is different from IMR in desktop rendering (IM vs. Retained Mode)
- Mobile devices are limited in physical space and power consumption.

Immediate Mode Rendering (IMR)

Background

- IMR needs costly update (e.g., blending and frame buffer operations) with intermediate data.
- e.g., basic data flow in ARM

Assignment Project Exam Help

Tile-Based Rendering (TBR)

Tile-Based Rendering

- Subdivide scenes into smaller tiles (e.g., 16x16 or 32x32) in screen space and render each section of tile separately.
- Intermediate data interact with a **small** and **on-chip** (local) tile buffer, and thereby, memory pandwidth ipsignificantly reduced to

Tile-Based Rendering (TBR)

Tile-Based Rendering

- Triangles are not directly sent to a rasterizer, but sorted by their location (i.e., tile ID) in the middle of the graphics pipeline.
- When their tile is activated, the triangles start to be rasterized.
- Temporary transfer for for the position of the p

Tile-Based Deferred Rendering (TBDR)

TBDR (mostly in PowerVR)

- Rasterization is deferred until all the primitives are stored into the tile triangle lists.
- To gain additional speedup, the triangles are sorted front-to-back in advance to facilitate early-7 (pre-raster hidden surface removal).
 - This step uses on-chip (tile) depth buffer.
 - Made more efficient, combined with on-chip color blending (in TBR). https://powcoder.com

Tile-Based Deferred Rendering (TBDR)

TBDR (mostly in PowerVR)

 After the hidden surface removal (HSR), the pixel shading starts (with texture fetch). In other words, rendering (more precisely, texturing and shading) is deferred until after a per-pixel visibility test is passed.

