import numpy as np
import pandas as pd

import matplotlib.pyplot as py

import seaborn as sns

In [2]:

d=pd.read_csv(r"C:\Users\user\Desktop\salesman.csv")

Out[2]:		SALESMAN	JAN	FEB	MAR	APR	MAY	JUN	TOTAL SALES	Unnamed: 8	Unnamed: 9	Unnamed: 10	Unn
	0	ANU	70.0	80.0	75.0	60.0	72.0	55.0	412.0	NaN	NaN	NaN	
	1	BABU	30.0	48.0	35.0	45.0	25.0	37.0	220.0	NaN	NaN	NaN	Ind Sales
	2	CHANDRU	65.0	54.0	49.0	54.0	35.0	65.0	322.0	NaN	NaN	NaN	2. Fi F cond
	3	DAVID	85.0	71.0	68.0	77.0	88.0	73.0	462.0	NaN	NaN	NaN	3. A using to c
	4	EINSTEIN	55.0	25.0	45.0	50.0	53.0	30.0	258.0	NaN	NaN	NaN	4.
	5	FAROOK	35.0	45.0	15.0	45.0	45.0	25.0	210.0	NaN	NaN	NaN	5. R retur rar
	6	GOWTHAM	75.0	66.0	59.0	65.0	56.0	30.0	351.0	NaN	NaN	NaN	
	7	HARSHITH	29.0	35.0	49.0	48.0	35.0	55.0	247.0	NaN	NaN	NaN	
	8	INIYAN	35.0	35.0	50.0	59.0	67.0	73.0	319.0	NaN	NaN	NaN	
	9	JOHN	77.0	85.0	77.0	68.0	56.0	25.0	388.0	NaN	NaN	NaN	
	10	MONTHLY SALES	556.0	544.0	522.0	571.0	532.0	468.0	NaN	3193.0	NaN	NaN	
	11	NaN	NaN	NaN	NaN	NaN	NaN	NaN	3189.0	NaN	NaN	NaN	
	4 =												•

In [3]:

d.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 12 entries, 0 to 11 Data columns (total 12 columns): # Column Non-Null Count Dtype 0 SALESMAN object 11 non-null 11 non-null float64 1 JAN 2 **FEB** 11 non-null float64 3 MAR 11 non-null float64 4 **APR** 11 non-null float64 5 MAY 11 non-null float64 6 11 non-null float64 JUN 7 TOTAL SALES 11 non-null float64 float64 8 Unnamed: 8 1 non-null float64 9 Unnamed: 9 0 non-null

0 non-null

6 non-null

dtypes: float64(10), object(2)

memory usage: 1.2+ KB

Unnamed: 10

Unnamed: 11

In [4]: d.isna()

10

11

Out[4]: **TOTAL Unnamed: Unnamed:** Unnamed: Unnam JUN **SALESMAN** JAN **FEB** MAR APR MAY **SALES** 9 8 10 ٦ 0 False False False False False False False **False** True True True 1 False False False False False False False **False** True True True Fa 2 False False False False False False False **False** True True True Fa 3 False False False False False False False **False** True True True Fa 4 False False False False False False False **False** True True True Fa 5 False False False False False False False **False** True True True Fa 6 False False False False False False False **False** True True True ٦ 7 False False False False False False False **False** True True True Fa 8 ٦ False False False False False False False **False** True True True 9 ٦ False False False False False False False **False** True True True 10 False False False False False False False True **False** True True ٦ ٦ 11 True True True True True True True True False True True

float64

object

In [5]: d.

d.fillna(value=0)

Out[5]: **TOTAL Unnamed: Unnamed: Unnamed:** Unn **SALESMAN JAN FEB MAR** APR MAY JUN **SALES** 8 9 10 55.0 0 ANU 70.0 0.08 75.0 60.0 72.0 412.0 0.0 0.0 0.0 Ind 1 0.0 **BABU** 30.0 48.0 35.0 45.0 25.0 37.0 220.0 0.0 0.0 Sales

	SALESMAN	JAN	FEB	MAR	APR	MAY	JUN	TOTAL SALES	Unnamed: 8	Unnamed: 9	Unnamed: 10	Unn
2	CHANDRU	65.0	54.0	49.0	54.0	35.0	65.0	322.0	0.0	0.0	0.0	2. Fi
3	DAVID	85.0	71.0	68.0	77.0	88.0	73.0	462.0	0.0	0.0	0.0	3. A using ta c
4	EINSTEIN	55.0	25.0	45.0	50.0	53.0	30.0	258.0	0.0	0.0	0.0	4.
5	FAROOK	35.0	45.0	15.0	45.0	45.0	25.0	210.0	0.0	0.0	0.0	5. R retui rai
6	GOWTHAM	75.0	66.0	59.0	65.0	56.0	30.0	351.0	0.0	0.0	0.0	
7	HARSHITH	29.0	35.0	49.0	48.0	35.0	55.0	247.0	0.0	0.0	0.0	
8	INIYAN	35.0	35.0	50.0	59.0	67.0	73.0	319.0	0.0	0.0	0.0	
9	JOHN	77.0	85.0	77.0	68.0	56.0	25.0	388.0	0.0	0.0	0.0	
10	MONTHLY SALES	556.0	544.0	522.0	571.0	532.0	468.0	0.0	3193.0	0.0	0.0	
11	0	0.0	0.0	0.0	0.0	0.0	0.0	3189.0	0.0	0.0	0.0	

In [6]:

d.describe()

Out[6]:

	JAN	FEB	MAR	APR	MAY	JUN	TOTAL SALES	Unnamed: 8
count	11.000000	11.000000	11.000000	11.000000	11.000000	11.000000	11.000000	1.0
mean	101.090909	98.909091	94.909091	103.818182	96.727273	85.090909	579.818182	3193.0
std	152.263886	148.884153	142.770763	155.277054	145.500578	128.347540	869.142775	NaN
min	29.000000	25.000000	15.000000	45.000000	25.000000	25.000000	210.000000	3193.0
25%	35.000000	40.000000	47.000000	49.000000	40.000000	30.000000	252.500000	3193.0
50%	65.000000	54.000000	50.000000	59.000000	56.000000	55.000000	322.000000	3193.0
75%	76.000000	75.500000	71.500000	66.500000	69.500000	69.000000	400.000000	3193.0
max	556.000000	544.000000	522.000000	571.000000	532.000000	468.000000	3189.000000	3193.0

```
In [7]:
            d.columns
 Out[7]: Index(['SALESMAN', 'JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN', 'TOTAL SALES', 'Unnamed: 8', 'Unnamed: 9', 'Unnamed: 10', 'Unnamed: 11'],
                  dtype='object')
 In [8]:
            d.index
           RangeIndex(start=0, stop=12, step=1)
 In [9]:
            d=d.head(10)
            d
                                                                TOTAL Unnamed:
                                                                                    Unnamed: Unnamed:
 Out[9]:
                                                                                                            Unnamed
              SALESMAN JAN
                                 FEB MAR APR MAY JUN
                                                                SALES
                                                                                 8
                                                                                             9
                                                                                                       10
                                                                                                                   11
           0
                                                          55.0
                     ANU
                           70.0
                                 80.0
                                        75.0
                                              60.0
                                                    72.0
                                                                 412.0
                                                                              NaN
                                                                                          NaN
                                                                                                     NaN
                                                                                                                  NaN
                                                                                                                    1
                                                                                                             Individua
           1
                    BABU
                           30.0 48.0
                                        35.0
                                              45.0
                                                    25.0 37.0
                                                                 220.0
                                                                              NaN
                                                                                          NaN
                                                                                                     NaN
                                                                                                            Sales using
                                                                                                                Sum(
                                                                                                            2. Find thε
                                                                                                               patterr
                                                                                                                 trenc
                                                    35.0 65.0
                CHANDRU 65.0 54.0
                                        49.0
                                              54.0
                                                                 322.0
                                                                              NaN
                                                                                          NaN
                                                                                                     NaN
                                                                                                                 using
                                                                                                            conditiona
                                                                                                                  fo..
                                                                                                             3. Analyz€
                                                                                                            using Pivot
           3
                   DAVID 85.0 71.0
                                       68.0 77.0
                                                    88.0 73.0
                                                                 462.0
                                                                              NaN
                                                                                          NaN
                                                                                                              table as
                                                                                                     NaN
                                                                                                               columr
                                                                                                            percentage
                                                                                                              4. Insert
           4
                 EINSTEIN 55.0 25.0
                                       45.0
                                              50.0
                                                    53.0 30.0
                                                                 258.0
                                                                              NaN
                                                                                          NaN
                                                                                                     NaN
                                                                                                                 Pivo<sup>1</sup>
                                                                                                                charts
                                                                                                             5. Rank() -
                                                                                                            returns the
           5
                  FAROOK 35.0 45.0
                                        15.0 45.0
                                                    45.0 25.0
                                                                 210.0
                                                                              NaN
                                                                                          NaN
                                                                                                     NaN
                                                                                                              rank of a
                                                                                                                 giver
                                                                                                               value ..
               GOWTHAM 75.0 66.0
                                        59.0
                                              65.0
                                                    56.0 30.0
                                                                 351.0
                                                                              NaN
                                                                                          NaN
                                                                                                     NaN
                                                                                                                  NaN
           7
                HARSHITH 29.0 35.0
                                        49.0
                                              48.0
                                                    35.0
                                                          55.0
                                                                 247.0
                                                                              NaN
                                                                                          NaN
                                                                                                     NaN
                                                                                                                   33
           8
                   INIYAN 35.0 35.0
                                        50.0
                                              59.0
                                                    67.0
                                                         73.0
                                                                 319.0
                                                                              NaN
                                                                                          NaN
                                                                                                     NaN
                                                                                                                  NaN
           9
                    JOHN 77.0 85.0
                                        77.0
                                              68.0
                                                    56.0 25.0
                                                                 388.0
                                                                              NaN
                                                                                          NaN
                                                                                                     NaN
                                                                                                                  NaN
In [10]:
            sns.pairplot(d)
```

Out[10]: <seaborn.axisgrid.PairGrid at 0x1cf5e25ac70>


```
In [11]: sns.distplot(d['TOTAL SALES'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning:
`distplot` is a deprecated function and will be removed in a future version. Please adap
t your code to use either `displot` (a figure-level function with similar flexibility) o
r `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[11]: <AxesSubplot:xlabel='TOTAL SALES', ylabel='Density'>


```
In [12]:
    d1=d[['JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN', 'TOTAL SALES']]
    sns.heatmap(d1.corr())
```

Out[12]: <AxesSubplot:>


```
In [13]: x=d1[['JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN']]
y=d1[ 'TOTAL SALES']
```

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

In [15]: from sklearn.linear_model import LinearRegression

```
Out[16]: LinearRegression()
In [17]:
           print(lr.intercept_)
          -5.613062975537218
In [18]:
           coeff =pd.DataFrame(lr.coef_,x.columns,columns=["Co-efficient"])
           coeff
                Co-efficient
Out[18]:
           JAN
                   1.092769
           FEB
                   1.048318
          MAR
                   0.991263
          APR
                   1.200999
          MAY
                   0.887495
           JUN
                   0.853627
In [19]:
           prediction =lr.predict(x_test)
           py.scatter(y_test,prediction)
Out[19]: <matplotlib.collections.PathCollection at 0x1cf643eba30>
          400
          380
          360
          340
          320
                320
                      330
                             340
                                   350
                                          360
                                                 370
                                                       380
                                                              390
In [20]:
           print(lr.score(x_test,y_test))
          0.9278891104256549
In [21]:
           print(lr.score(x_train,y_train))
          1.0
```

Ridge,Lasso

```
In [22]:
          from sklearn.linear_model import Ridge,Lasso
In [23]:
          rr=Ridge(alpha=10)
          rr.fit(x_train,y_train)
Out[23]: Ridge(alpha=10)
In [24]:
          rr.score(x_test,y_test)
         0.9672777756399883
Out[24]:
In [25]:
          la=Lasso(alpha=10)
          la.fit(x_train,y_train)
Out[25]: Lasso(alpha=10)
In [26]:
          la.score(x_test,y_test)
Out[26]: 0.9099345782725198
        elasticnet regression
In [27]:
          from sklearn.linear_model import ElasticNet
          en=ElasticNet()
          en.fit(x_train,y_train)
Out[27]: ElasticNet()
In [28]:
          print(en.coef_)
         [1.10238852 1.04527613 0.97881937 1.08399162 0.9256584 0.89046154]
In [30]:
          print(en.intercept_)
         -2.745812442670683
In [31]:
          print(en.predict(x_test))
         [312.34172923 355.68206551 394.16550485]
In [32]:
          print(en.score(x_test,y_test))
         0.9562757518364674
```

evaluation metrics