LOGIKA DAN PEMBUKTIAN

TK13029 COMPUTATION II

Tujuan Pembelajaran dan Materi

- Logika dan pembuktian dibutuhkan untuk memastikan program menghasilkan keluaran yang benar untuk segala kemungkinan nilai input, menjamin keamanan sistem, dan membuat kecerdasan buatan.
- Materi:
 - Proposisi
 - Kuantor (Quantifier)
 - Pembuktian
 - Induksi Matematika

Logika

- Logika = penalaran
- Logika berfokus pada hubungan antara pernyataan-pernyataan yang dipertentangkan dengan isi pernyataan tertentu.
- Contoh:
 - 1. Semua matematikawan memakai sandal
 - 2. Setiap orang yang memakai sandal pakar aljabar
 - 3. Jadi, semua matematikawan adalah pakar aljabar
- Secara teknis, logika tidak membantu menentukan apakah pernyataan tersebut benar.
 - Jika pernyatan 1 dan 2 benar, maka pernyataan 3 juga benar

Proposisi

Proposisi (1)

- Pernyataan (kalimat deklarasi) yang benar atau salah, tidak sekaligus keduanya.
- Contoh:
 - 1. Bilangan positif yang dapat membagi 7 hanyalah 1 dan 7 sendiri. => BENAR
 - 2. Tangerang adalah ibukota Indonesia. => **SALAH**
 - Belikan saya makan siang untuk besok. => BUKAN PROPOSISI Kalimat perintah
 - 4. n adalah bilangan ganjil => **BUKAN PROPOSISI**Bisa benar bisa salah, tergantung dari nilai n, jika n = 3 benar, jika n = 8 salah.

Proposisi (2)

Nilai	Bit
Т	1
F	0

 $\neg p$

- Proposisi dapat ditulis dalam sebuah huruf, umumnya yaitu, p,q,r,s,\dots
- Nilai kebenaran proposisi dinotasikan dengan:

• T: benar

• F : salah

- Negasi dari proposisi p
 - $\neg p$ (sumber lain menggunakan: $\sim p, -p, ! p, \bar{p}$ atau Np)
- Dua proposisi p dan q

• Konjungsi: $p \land q (p \text{ dan } q)$

• Disjungsi: $p \lor q \ (p \text{ atau } q)$

p	q	$p \wedge q$	$p \lor q$
T	Т	Т	Т
T	F	F	T
F	Т	F	T
F	F	F	F

Proposisi Majemuk (1)

• Contoh 1:

$$p: 1 + 1 = 2$$

q: Tangerang termasuk dalam provinsi Jawa Barat

p	$\neg p$
T	F
F	Т

p benar, q salah, konjungsi $p \land q$ salah, tetapi disjungsi $p \lor q$ benar

- Contoh 2:
 - Diketahui p dan q benar serta r salah.
 - $(p \land \neg q) \lor r = (T \land F) \lor F = F \lor F = F$

p	q	$p \wedge q$	$p \lor q$
Т	Т	Т	Т
Т	F	F	Т
F	Т	F	Т
F	F	F	F

Proposisi Majemuk (2)

- Proposisi bersyarat (conditional statement)
 - Jika p maka q, dinotasikan dengan: $p \rightarrow q$ p adalah hipotesis (antecedent atau premise) q adalah kesimpulan (conclusion atau consequence)

p	q	p o q	$p \leftrightarrow q$
T	T	Т	Т
T	F	F	F
F	Т	T	F
F	F	Т	Т

- Proposisi dwisyarat (biconditional statement)
 - p jika dan hanya jika q, dinotasikan dengan: $p \leftrightarrow q$
- Contoh:
 - Jika 2 + 2 = 4 maka x = x + 1 diasumsikan bernilai benar. Berapakah x?
 - Jawaban: x = 0

Proposisi Majemuk (3)

Operator	Urutan
コ	1
٨	2
V	3
\rightarrow	4
\leftrightarrow	5

p	q	p o q	$\neg q ightarrow eg p$
T	Т	Т	$F \rightarrow F = T$
Т	F	F	$T \rightarrow F = F$
F	Т	Т	$F \rightarrow T = T$
F	F	Т	$T \rightarrow T = T$

- $p \rightarrow q$
 - Converse: $q \rightarrow p$
 - Contrapositive: $\neg q \rightarrow \neg p$
 - Inverse: $\neg p \rightarrow \neg q$
- Ekuivalen secara logika (≡)
 - Dua proposisi majemuk disebut ekuivalen jika mereka memiliki nilai kebenaran yang sama untuk semua kemungkinan kondisi.
- Contoh:
 - $p \rightarrow q \equiv \neg q \rightarrow \neg p$ (note: $\neg q \rightarrow \neg p$ adalah kontrapositif dari $p \rightarrow q$
 - $p \leftrightarrow q \equiv (p \to q) \land (q \to p)$
 - Ekuivalen lain dapat dilihat di buku Rosen K.H. halaman 26 32.

Implementasi dari Logika Proposisi

- Konsistensi untuk spesifikasi sistem
- Web page searching
- Game: Logic Puzzles
- Gerbang Logika

Konsistensi Spesifikasi Sistem dengan Logika Proposisi (1)

Express the specification "The automated reply cannot be sent when the file system is full" using logical connectives.

Solution: One way to translate this is to let p denote "The automated reply can be sent" and q denote "The file system is full." Then $\neg p$ represents "It is not the case that the automated reply can be sent," which can also be expressed as "The automated reply cannot be sent." Consequently, our specification can be represented by the conditional statement $q \rightarrow \neg p$.

System specifications should be **consistent**, that is, they should not contain conflicting requirements that could be used to derive a contradiction. When specifications are not consistent, there would be no way to develop a system that satisfies all specifications.

Konsistensi Spesifikasi Sistem dengan Logika Proposisi (2)

EXAMPLE 4 Determine whether these system specifications are consistent:

"The diagnostic message is stored in the buffer or it is retransmitted."

"The diagnostic message is not stored in the buffer."

"If the diagnostic message is stored in the buffer, then it is retransmitted."

Solution: To determine whether these specifications are consistent, we first express them using logical expressions. Let p denote "The diagnostic message is stored in the buffer" and let q denote "The diagnostic message is retransmitted." The specifications can then be written as $p \lor q$, $\neg p$, and $p \to q$. An assignment of truth values that makes all three specifications true must have p false to make $\neg p$ true. Because we want $p \lor q$ to be true but p must be false, q must be true. Because $p \to q$ is true when p is false and q is true, we conclude that these specifications are consistent, because they are all true when p is false and q is true. We could come to the same conclusion by use of a truth table to examine the four possible assignments of truth values to p and q.

Quantifier

Quantifier (1)

- Proposisi yang menggunakan peubah (variabel).
- P(x) merupakan pernyataan yang mengandung variabel x
- D adalah domain (cakupan) dari P
 - P adalah fungsi proposisi (dalam D) jika untuk setiap x di D, P(x) adalah proposisi
- Contoh:
 - P(n) adalah pernyataan n adalah bilangan ganjil dan D adalah himpunan bilangan bulat positif.
 - P(1) benar, karena 1 adalah bilangan ganjil
 - P(2) salah, karena 2 bukan bilangan ganjil

Quantifier (2)

- Sebagian besar pernyataan dalam matematika dan ilmu komputer menggunakan kata "untuk setiap" dan "untuk beberapa"
- Contoh:
 - Untuk setiap segitiga T, jumlah sudut-sudut pada T sama dengan 180°
 - Untuk beberapa program P, keluaran dari P adalah P sendiri.
- Notasi:
 - anggota/bagian dari himpunan: ∈
 - Untuk setiap, semua, atau sembarang (universal quantifier): ∀
 - $\forall x \ P(x)$ atau $\forall x \in D, P(x)$
 - Untuk beberapa, paling sedikit (existential quantifier): ∃
 - $\exists x \ P(x)$ atau $\exists x \in D, P(x)$

Quantifier (3)

- Diketahui P(x) menyatakan x < 2 dan domain D adalah semua bilangan real, apa nilai kebenaran dari $\forall x \ P(x)$
 - **SALAH** karena untuk x = 3, x = 4, dst, x > 2.
 - Seharusnya $\exists x \ P(x)$

Aturan Penarikan Kesimpulan (1)

• Diketahui proposisi sebagai berikut:

Jika anda memiliki password saat ini, anda bisa mengakses jaringan.

Anda memiliki password saat ini.

Oleh karena itu, anda bisa mengakses jaringan.

- p = "anda memiliki password saat ini"
- q = "anda bisa mengakses jaringan"
- ∴ = oleh karena itu
- Pernyataan di atas dapat dituliskan $((p \rightarrow q) \land p) \rightarrow q$ sebagai berikut:

$$\frac{p \to q}{p}$$

$$\therefore a$$

• pernyataan di atas valid karena jika $p \to q$ dan p adalah benar, maka q juga benar (cek ke tabel kebenaran)

Aturan Penarikan Kesimpulan (2)

- Aturan penarikan kesimpulan di table digunakan untuk memvalidasi bahwa kondisi (premis) mengarahkan pada kesimpulan
- Contoh: "Hari ini sangat dingin" dan hari ini sedang hujan. Oleh karena itu, hari ini sangat dingin.

$$\frac{p \wedge q}{\therefore p}$$

Argumen tersebut menggunakan aturan simplification Argumen valid!

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	→ ¬p		Modus tollens
$\frac{q \to r}{\therefore p \to r}$ $p \lor q$ $\frac{\neg p}{\therefore q}$ $\frac{p}{\Rightarrow q}$ $\frac{p}{\Rightarrow p} \Rightarrow p \Rightarrow (p \lor q)$ $\frac{p \land q}{\Rightarrow p} \Rightarrow p \Rightarrow (p \land q) \Rightarrow p$ $\frac{p \land q}{\Rightarrow p} \Rightarrow p \Rightarrow (p \land q) \Rightarrow p$ $\frac{p \land q}{\Rightarrow p} \Rightarrow p \Rightarrow (p \land q) \Rightarrow (p \land$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(r)) \rightarrow $(p \rightarrow r)$		Hypothetical syllogism
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•		,,
$ \begin{array}{c c} \neg p \\ \hline p \\ \hline p \\ \hline p \lor q \\ \hline \\ p \lor q \\ \hline \\ p \land q \\ \hline \\ p \\ \hline \\ p \\ \hline \\ p \\ \hline \\ p \\ \hline \\ (p) \land (q)) \rightarrow (p \land q) \\ \hline \\ D \\ \hline \\ Conjunction \\ \hline \\ \\ Conjunction \\ \hline \\ \\ P \\ \hline \\ P \\ \hline \\ P \\ \\ P \\ \hline \\ P \\ P$			
$\begin{array}{c c} p & p \rightarrow (p \lor q) & \text{Addition} \\ \hline p \nearrow q & (p \land q) \rightarrow p & \text{Simplification} \\ \hline p & ((p) \land (q)) \rightarrow (p \land q) & \text{Conjunction} \\ \hline \end{array}$	q		Disjunctive syllogism
$\begin{array}{c c} p & p \rightarrow (p \lor q) & \text{Addition} \\ \hline p \nearrow q & (p \land q) \rightarrow p & \text{Simplification} \\ \hline p & ((p) \land (q)) \rightarrow (p \land q) & \text{Conjunction} \\ \hline \end{array}$			
			Addition
$\therefore \overline{p}$ $p \qquad ((p) \land (q)) \rightarrow (p \land q) \qquad \text{Conjunction}$			
p $((p) \land (q)) \rightarrow (p \land q)$ Conjunction			Simplification
		L	
q	$\land q)$		Conjunction
$\therefore \overline{p \wedge q}$			
$p \lor q \qquad ((p \lor q) \land (\neg p \lor r)) \to (q \lor r) \qquad \text{Resolution}$	$(a \lor r) \rightarrow (a \lor r)$		Resolution
$p \lor q \qquad ((p \lor q) \land (\neg p \lor r)) \to (q \lor r) \qquad \text{Resolution}$ $\neg p \lor r$	$(q \vee I)$	J.	Resolution
$\therefore \overline{q \lor r}$			

Name

Modus ponens

TABLE 1 Rules of Inference.

Tautology

 $(p \land (p \rightarrow q)) \rightarrow q$

Rule of Inference

 $p \rightarrow q$

Aturan Penarikan Kesimpulan (3)

Diketahui hipotesis atau premises
 ¬r, p → q, q → r. Dengan
 menggunakan aturan di Tabel 1,
 kita mendapatkan kesimpulan
 berikut:

- 1. $\neg r$
- 2. $p \rightarrow q$
- 3. $q \rightarrow r$
- 4. $p \rightarrow r$ Hypo Syll dari 2 dan 3
- 5. $\neg p$ Modus tollens 1 dan 4

Maka kesimpulannya adalah $\neg p$

$$egreen r$$
 $p o q$
 $q o r$
 $egreen r$
 $egreen r$
 $egreen r$
 $egreen r$

TABLE 1 Rules of Inference.			
Rule of Inference	Tautology	Name	
$p \\ p \to q \\ \therefore q$	$(p \land (p \to q)) \to q$	Modus ponens	
	$(\neg q \land (p \to q)) \to \neg p$	Modus tollens	
$p \to q$ $q \to r$ $\therefore p \to r$	$((p \to q) \land (q \to r)) \to (p \to r)$	Hypothetical syllogism	
$p \lor q$ $\neg p$ $\therefore \overline{q}$	$((p \lor q) \land \neg p) \to q$	Disjunctive syllogism	
$\therefore \frac{p}{p \vee q}$	$p \to (p \lor q)$	Addition	
$\therefore \frac{p \wedge q}{p}$	$(p \land q) \to p$	Simplification	
p $\frac{q}{\therefore p \land q}$	$((p) \land (q)) \to (p \land q)$	Conjunction	
$p \lor q$ $\neg p \lor r$ $\therefore \overline{q \lor r}$	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$	Resolution	

Aturan Penarikan Kesimpulan (4)

- Diketahui premises p o q, $\neg p o r$, dan r o s, serta konklusi $\neg q o s$. Buktikan bahwa argumen tersebut valid
 - 1. $p \rightarrow q$
 - 2. $\neg q \rightarrow \neg p$ kontrapositif dari 1
 - 3. $\neg p \rightarrow r$
 - 4. $\neg q \rightarrow r$ Hypo Syll dari 2 & 3
 - 5. $r \rightarrow s$
 - 6. $\neg q \rightarrow s$ Hypo Syll dari 4 & 5

Argumen valid!

	TABLE 1 Rules of I	nference.	
	Rule of Inference	Tautology	Name
	$p \\ p \to q \\ \therefore \overline{q}$	$(p \land (p \to q)) \to q$	Modus ponens
	$ \begin{array}{c} \neg q \\ p \to q \\ \therefore \overline{\neg p} \end{array} $	$(\neg q \land (p \to q)) \to \neg p$	Modus tollens
	$p \to q$ $q \to r$ $\therefore p \to r$	$((p \to q) \land (q \to r)) \to (p \to r)$	Hypothetical syllogism
	$p \lor q$ $\neg p$ $\therefore \overline{q}$	$((p \lor q) \land \neg p) \to q$	Disjunctive syllogism
	$\therefore \frac{p}{p \vee q}$	$p \to (p \lor q)$	Addition
	$\therefore \frac{p \wedge q}{p}$	$(p \land q) \rightarrow p$	Simplification
_	$p \\ \frac{q}{p \wedge q}$	$((p) \land (q)) \to (p \land q)$	Conjunction
Dican.	$p \lor q$ $\neg p \lor r$ $\therefore \overline{q \lor r}$	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$	Resolution

Pembuktian

Sistem Matematika Pembuktian dan Contoh

- Aksioma: pernyataan diasumsikan benar
 - Jika diberikan dua titik yang berbeda, terdapat tepat satu garis yang memuat kedua titik tersebut.
- Definisi: membuat konsep baru dari sesuatu yang ada
 - Proposisi seperti $p \land q$ dan $p \lor q$ yang merupakan hasil kombinasi dari proposisi-proposisi disebut **proposisi majemuk**.
- Teorema: proposisi yang telah terbukti benar
 - Untuk semua bilangan real x, y dan z, jika $x \le y$ dan $y \le z$, maka $x \le z$.
- Lemma: teorema yang biasanya tidak terlalu menarik untuk isinya sendiri tetapi berguna untuk membuktikan teorema lain
 - Jika n adalah bilangan bulat positif, maka baik n-1 bilangan positif ataupun n-1=0.
- Corollary: teorema yang mengikuti sekilas dari teorema lain
 - Jika sebuah segitiga adalah sama sisi, maka segitiga tersebut sama sudut.
 - Collorary di atas mengikuti dari teorema: "Jika dua sisi dari sebuah segitiga adalah sama, maka sudut yang berlawanan dengan sisi-sisi tersebut adalah sama besar"

Pembuktian Langsung

- Pembuktian langsung untuk proposisi bersyarat $p \rightarrow q$ dibuat dengan
 - 1. Mengasumsikan p adalah benar
 - 2. Menggunakan aksioma, definisi, teorema sebelumnya yang sudah dibuktikan benar, serta aturan penarikan kesimpulan untuk melengkapi pembuktian
- ullet Contoh: jika n bilangan ganjil, maka n^2 juga bilangan ganjil
 - P(n): "n bilangan ganjil"
 - Q(n): " n^2 juga bilangan ganjil"
 - Teorema: $\forall n P(n) \rightarrow Q(n)$
 - Bukti:
 - Diasumsikan hipotesis P(n) benar
 - Definisi bilangan ganjil: n=2k+1, untuk beberapa bilangan bulat k (tidak termasuk k < 0)
 - Kuadrat kedua ruas untuk merepresentasikan n^2 : $n^2=(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1$, maka berdasarkan definisi bilangan ganjil Q(n) benar.
 - Oleh karena itu terbukti bahwajika n bilangan ganjil, maka n^2 juga bilangan ganjil.

Pembuktian dengan Kontrapositif (1)

- Pembuktian tidak langsung: menggunakan fakta bahwa proposisi bersyarat $p \to q$ ekuivalen dengan kontrapositifnya yaitu $\neg q \to \neg p$
 - Pembuktian kebenaran dari proposisi bersyarat $p \to q$ dapat menggunakan kontrapositifnya yaitu $\neg q \to \neg p$
- Contoh: jika n bilangan bulat dan 3n + 2 ganjil, maka n bilangan ganjil
 - p: "3n + 2 ganjil"
 - q: "n bilangan ganjil"
- Pembuktian langsung:
 - Diasumsikan adalah benar 3n + 2 ganjil
 - Definisi bilangan ganjil: 3n + 2 = 2k + 1, untuk beberapa bilangan bulat k (tidak termasuk k < 0)
 - Sulit untuk pembukti secara langsung karena 3n+2=2k+1, jika disederahanakan menjadi 3n+1=2k

Pembuktian dengan Kontrapositif (2):

- $p \rightarrow q$
 - p: 3n + 2 ganjil
 - q: n bilangan ganjil
- Pembuktian tidak langsung: $\neg q \rightarrow \neg p$
 - Diasumsikan: $\neg q$ salah, sehingga n bilangan genap
 - Definisi bilangan genap: n=2k, untuk beberapa bilangan bulat k (tidak termasuk k < 0)
 - Pembuktian $\neg p$: Subtitusi ke 3n+2=2(2k)+2=6k+2=2(3k+1); maka 3n+2 adalah genap, bukan ganjil.
 - Kesimpulan: $\neg p$ salah, maka aslinya p benar!
 - Terbukti: jika 3n + 2 ganjil, maka n bilangan ganjil

Pembuktian dengan Kontradiksi (1)

- Termasuk pembuktian tidak langsung
- Dari proposisi bersyarat $p \to q$, ingin dibuktikan p adalah benar dengan menggunakan kontradiksi dari q, dimana $\neg p \to q$ bernilai benar. Karena q salah, tapi $\neg p \to q$ benar, disimpulkan $\neg p$ salah, yang artinya p benar.
- Proposisi $r \land \neg r$ adalah kontradiksi untuk r adalah sebuah proposisi
- p dapat dibuktikan benar jika terbukti $\neg p \rightarrow (r \land \neg r)$ benar untuk sejumlah proposisi r.

Pembuktian dengan Kontradiksi (2)

- Contoh: jika 3n + 2 ganjil, maka n bilangan ganjil
 - p: "3n + 2 ganjil"
 - q: "n bilangan ganjil"
- Diasumsikan: p dan $\neg q$ keduanya benar
 - p: 3n + 2 ganjil
 - $\neg q$: n bilangan genap
- Definisi bilangan genap: n=2k, untuk beberapa bilangan bulat k (tidak termasuk k < 0)
- Subtitusi ke 3n + 2 = 2(2k) + 2 = 6k + 2 = 2(3k + 1); 3n + 2 = 2t, dimana t = 3k + 1, maka 3n + 2 genap
- "3n + 2 genap" adalah $\neg p$; p dan $\neg p$ benar, kontradiksi!
- Terbukti: "jika 3n + 2 ganjil, maka n bilangan ganjil"

Induksi Matematika

Kegunaan: pembuktian kompleksitas algoritma, kebenaran dari sebuah program aplikasi, teori graf dan pohon

Prinsip Induksi Matematika

- Untuk membuktikan P(n) untuk semua bilangan bulat positif n, dimana P(n) adalah fungsi proposisi, digunakan dua langkah berikut:
 - Langkah awal: P(1) benar
 - Langkah induksi: $P(k) \rightarrow P(k+1)$ benar untuk semua bilangan positif k
- Contoh: buktikan $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$
 - Langkah awal: P(1) benar karena untuk n=1, $1=\frac{1(1+1)}{2}=1$
 - Langkah induksi:
 - diasumsikan untuk n=k, maka $1+2+\cdots+k=\frac{k(k+1)}{2}$
 - buktikan P(k+1) adalah benar, dimana untuk n=k+1, kedua ruas kiri dan kanan sama
 - Ruas kiri: $1 + 2 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$

$$=\frac{k(k+1)}{2} + \frac{2(k+1)}{2} = \frac{(k+1)(k+2)}{2}$$

 $= \frac{k(k+1)}{2} + \frac{2(k+1)}{2} = \frac{(k+1)(k+2)}{2}$ • Ruas kanan: $\frac{(k+1)((k+1)+1)}{2} = \frac{(k+1)(k+2)}{2}$

Latihan (1)

1. Diketahui p = F, q = T, r = F. Tuliskan nilai kebenaran dari proposisi berikut:

$$\neg (p \lor q) \land (\neg p \lor r) \land (q \rightarrow r)$$

- 2. Tentukan nilai kebenaran dari pernyataan berikut. Domain adalah himpunan bilangan real: "untuk setiap x, $x^2 > x$ "
- 3. Gunakan table *rules of inference* untuk menjawab pertanyaan berikut:
 - a. Buktikan apakah argument dengan premises $\neg p \land q, r \rightarrow p, \neg r \rightarrow s$, dan $s \rightarrow t$, serta konklusi t adalah valid (gunakan).
 - b. Tentukan konklusi dari premises $\neg p \lor r, \neg r \lor q$, dan p

Latihan (2)

4. Menggunakan induksi, tunjukkan bahwa setiap persamaan berikut adalah benar untuk setiap bilangan bulat positif n:

a.
$$\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}$$

b. $7^n - 1$ terbagi oleh 6, untuk n = 1, 2, ...

