Principes
Table d'analyse LL
Analyseur récursif
Analyseur non-récursif
Construction de la table d'analyse
Caractérisation d'une grammaire LL(1)
Quand une grammaire n'est pas LL(1)

Analyse descendante LL(k)

Mirabelle Nebut

Bureau 332 - M3 mirabelle.nebut at lifl.fr

2011-2012

Principes
Table d'analyse LL
Analyseur récursif
Analyseur non-récursif
Construction de la table d'analyse
Caractérisation d'une grammaire LL(1)
Quand une grammaire n'est pas LL(1)

Principes

Table d'analyse LL

Analyseur récursif

Analyseur non-récursif

Construction de la table d'analyse

Ensembles Premier

Ensemble des ϵ -prod

Ensembles Suivant

Remplissage de la table d'analyse

Caractérisation d'une grammaire LL(1)

Quand une grammaire n'est pas LL(1)

Factorisation à gauche

Suppression de la récursivité à gauche

Analyse descendante

L'automate à pile sous-jacent :

- effectue uniquement des lectures et des expansions;
- construit un arbre en ordre préfixe (idem aut. items);
- « part » de l'axiome (idem aut. items);
- construit une dérivation gauche (idem aut. items).

Principes
Table d'analyse Lt
Analyseur récursif
Analyseur non-récursif
Construction de la table d'analyse
Caractérisation d'une grammaire LL(1)
Quand une grammaire n'est pas LL(1)

Différence avec l'automate des items

Deux différences fondamentales :

- analyse déterministe dite prédictive;
- plus d'items ni de réductions explicites.

Principes
Table d'analyse Lt
Analyseur récursif
Analyseur non-récursif
Construction de la table d'analyse
Caractérisation d'une grammaire LL(1)
Quand une grammaire n'est pas LL(1)

Analyse déterministe

À chaque expansion l'analyseur sait choisir une production.

Il ne revient jamais sur ce choix :

- en cas de succès le mot appartient au langage;
- en cas d'échec on est sûr que mot n'appartient pas au langage.

Analyse prédictive

L'analyseur "prédit" quelle production utiliser...

 \dots en analysant les k prochains symboles sous la tête de lecture.

Conséquences:

- ne fonctionne qu'avec certaines grammaires, dites LL(k);
- ▶ tête de lecture toujours définie : marqueur de fin de mot #.

NB : dans ce cours k=1, on regarde la tête de lecture et c'est tout.

Quand une grammaire n'est pas LL(1)

Exemple à suivre dans le cours

Soit la grammaire $G = \{V_T, V_N, S, P\}$ avec :

- $V_T = \{a, b, d, e\};$
- $V_N = \{S, A, B, D\};$
- ▶ *P* contient les productions :

$$S
ightarrow AB \mid Da$$

 $A
ightarrow aAb \mid \epsilon$
 $B
ightarrow bB \mid \epsilon$
 $D
ightarrow dD \mid e$

Quand une grammaire n'est pas LL(1)

Analyse prédictive LL(1), exemple - 1

$$S
ightarrow AB \mid Da$$

 $A
ightarrow aAb \mid \epsilon$
 $B
ightarrow bB \mid \epsilon$
 $D
ightarrow dD \mid e$
 $S
ightarrow ?$
 \triangle
 $a
ightarrow bb\#$

abb#?

Choix entre $S \rightarrow AB$ et $S \rightarrow Da$. Prédiction : expansion par $S \rightarrow AB$

Quand une grammaire n'est pas LL(1)

Analyse prédictive LL(1), exemple - 2

```
S 
ightarrow AB \mid Da
A 
ightarrow aAb \mid \epsilon
B 
ightarrow bB \mid \epsilon
D 
ightarrow dD \mid e
S 
ightarrow AB 
ightarrow ?
\triangle
abb\#
```

abb#?

Choix entre $A \rightarrow aAb$ et $A \rightarrow \epsilon$. Prédiction : expansion par $A \rightarrow aAb$

Quand une grammaire n'est pas LL(1)

Analyse prédictive LL(1), exemple - 3

$$S oup AB \mid Da$$
 $A oup aAb \mid \epsilon$
 $B oup bB \mid \epsilon$
 $D oup dD \mid e$
 $S oup AB oup aAbB$
 \triangle
 \triangle

Lecture de a.

abb#?

Quand une grammaire n'est pas LL(1)

Analyse prédictive LL(1), exemple - 4

$$S
ightarrow AB \mid Da$$

 $A
ightarrow aAb \mid \epsilon$
 $B
ightarrow bB \mid \epsilon$
 $D
ightarrow dD \mid e$
 $S
ightarrow AB
ightarrow a AbB
ightarrow ?$
 \triangle
 $a \ bb\#$

Choix entre $A \rightarrow aAb$ et $A \rightarrow \epsilon$. Prédiction : expansion par $A \rightarrow \epsilon$

abb#?

Quand une grammaire n'est pas LL(1)

Analyse prédictive LL(1), exemple - 5

$$S oup AB \mid Da$$
 $A oup aAb \mid \epsilon$
 $B oup bB \mid \epsilon$
 $D oup dD \mid e$

$$S oup AB oup aAbB oup abB oup abb B oup ?$$
 $abb \#$
 $abb \#$

Choix entre $B \rightarrow bB$ et $B \rightarrow \epsilon$.

Prédiction : expansion par $B \to \epsilon$, acceptation.

Se passer des items

Rappel : item de la forme $[X \to \alpha \bullet \beta]$:

- X est en cours de reconnaissance;
- α a déjà été reconnu;
- ▶ il reste à reconnaître β , le futur de l'item

Un analyseur LL:

- ne mémorise pas qu'il est en train de reconnaître X;
- ne mémorise pas qu'il a reconnu α ;
- ightharpoonup considère uniquement β .

Se passer des items : conséquences

Plus besoin d'axiome supplémentaire.

Dans la pile :

- ▶ plus d'items mais des mots étendus : mots de $(V_N \cup V_T)^*$;
- ▶ l'alphabet est $V_N \cup V_T$;
- le symbole de pile initiale est l'axiome.

Exemple - les piles pour *abb*#

Comparer avec l'automates des items! Dérivation gauche, arbre en ordre préfixe.

Principes
Table d'analyse LI
Analyseur récursif
Analyseur non-récursif
Construction de la table d'analyse
Caractérisation d'une grammaire LL(1)
Quand une grammaire n'est pas LL(1)

Principes

Table d'analyse LL

Analyseur récursif

Analyseur non-récursif

Construction de la table d'analyse

Ensembles Premier

Ensemble des ϵ -prod

Ensembles Suivant

Remplissage de la table d'analyse

Caractérisation d'une grammaire LL(1)

Quand une grammaire n'est pas LL(1)

Factorisation à gauche

Suppression de la récursivité à gauche

Deux types de mise en œuvre possibles

Avec pile explicite:

- analyseur dit non-récursif;
- encodage d'un automate à pile.

Avec pile implicite:

- analyseur = ensemble de fonctions récursives;
- pile implicite résultant des appels récursifs;
- on parle d'analyseur récursif : cf TP.

Dans les deux cas : une table d'analyse indique la production à utiliser.

Table d'analyse - exemple

	S	Α	В	D
а	$S \rightarrow AB$	A ightarrow aAb	erreur	erreur
Ь	$S \rightarrow AB$	$A o \epsilon$	B o bB	erreur
d	S o Da	erreur	erreur	D o dD
e	S o Da	erreur	erreur	D o e
#	$S \rightarrow AB$	$A ightarrow \epsilon$	$B o \epsilon$	erreur

Table d'analyse LL(1)

Contient toute l'intelligence de l'analyseur syntaxique.

Definition

La table d'analyse Table est un tableau à deux dimensions tel que :

- ▶ chaque colonne est indicée par un non-terminal $\in V_N$;
- ▶ chaque ligne est indicée par un terminal $\in V_T$ ou #;
- ▶ chaque case contient une production \in *P* ou *erreur*.

On verra plus tard comment remplir cette table.

Interprétation de Table[a, X]

- ▶ si le terminal $a \in V_T$ est sous la tête de lecture;
- ightharpoonup et si le non-terminal en cours de traitement est $X \in V_N$;

alors on consulte Table[a, X].

Si Table[X, a] contient

- lacktriangle $X o \gamma$ alors on choisit une expansion par cette production;
- erreur alors erreur de syntaxe : X et a ne s'accordent pas.

Principes
Table d'analyse Lt
Analyseur récursif
Analyseur non-récursif
Construction de la table d'analyse
Caractérisation d'une grammaire LL(1)
Quand une grammaire n'est pas LL(1)

Principes

Table d'analyse LL

Analyseur récursif

Analyseur non-récursif

Construction de la table d'analyse

Ensembles Premier

Ensemble des ϵ -prod

Ensembles Suivant

Remplissage de la table d'analyse

Caractérisation d'une grammaire LL(1)

Quand une grammaire n'est pas LL(1)

Factorisation à gauche

Suppression de la récursivité à gauche

Analyseur descendant récursif

Principe:

- analyseur LL codé par un ensemble de fonctions;
- ces fonctions s'appellent les unes les autres;
- n'utilise pas de pile explicite : pile implicite des appels.

Codage des fonctions :

- ▶ une fonction X() par non-terminal $X \in V_N$ de la grammaire;
- X() reconnaît un mot engendré par X;
- ▶ la fonction X() code les productions Table[X, y] de la table d'analyse, pour tout y ∈ V_T ∪ #.

Exemple

Écrire un analyseur syntaxique récursif LL(1) Parser pour G:

$$S
ightarrow AB \mid Da$$

 $A
ightarrow aAb \mid \epsilon$
 $B
ightarrow bB \mid \epsilon$
 $D
ightarrow dD \mid e$

À voir :

- écriture de S(), A(), B(), D();
- collaboration avec un analyseur lexical.

Collaboration avec un analyseur lexical

On reprend les conventions utilisées en TP :

- un an. lexical anLex de type Scanner (supposé donné);
- symboles de type Symbole;
- codage entier du type des symboles dans TypeSymboles (noté TS dans les transparents);
- méthode int getType() de Symbole pour obtenir ce type;
- méthode Symbole next_token() de Scanner :
 - avance la tête de lecture teteLect;
 - retourne le symbole lu, de type Symbole.
- ▶ on remplace le marqueur # par TS.EOF.

Construction de l'analyseur syntaxique

```
. . .
public class Parser {
  // analyseur lexical
  private Scanner anLex;
  // symbole courant reçu de l'analyseur lexical
  private Symbole teteLect;
  public Parser (Scanner anLex) {
     this.anLex = anLex;
```

Table d'analyse LL Analyseur récursif Analyseur non-récursif Construction de la table d'analyse Caractérisation d'une grammaire LL(1) Quand une grammaire n'est pas LL(1)

Lancement de l'analyseur syntaxique

```
Dans la classe Parser :
public void analyser() throws ScannerException, ParserExcep
  // positionnement tete de lecture
  this.teteLect = (Symbole) this.anLex.next_token();
  this.S(); // je veux reconnaître l'axiome
  // et uniquement l'axiome
  if (this.teteLect.getType() != TS.EOF)
      throw new ParserException();
```

Table d'analyse LL Analyseur récursif Analyseur non-récursif Construction de la table d'analyse Caractérisation d'une grammaire LL(1) Quand une grammaire n'est pas LL(1)

Code de S()

La tête de lecture est déjà positionnée sur le symbole de prédiction.

```
S \rightarrow AB
а
        S \rightarrow AB
        S \rightarrow Da
        S \rightarrow Da
е
        S \rightarrow AB
#
```

```
private void S() throws ... {
  if (this.teteLect.getType() == TS.a)
  ... // S -> AB
  else if (this.teteLect.getType() == TS.b)
  ... // S -> AB
  else if (this.teteLect.getType() == TS.d)
  ... // S -> Da
  else if (this.teteLect.getType() == TS.e)
  ... // S -> Da
  else if (this.teteLect.getType() == TS.EOF)
  ... // S -> AB
  else throw new ParserException();
                                            27/117
                      4日 > 4周 > 4 3 > 4 3 > -
```

Code de S()

On factorise.

```
\begin{array}{c|c} S \\ a & S \rightarrow AB \\ b & S \rightarrow AB \\ d & S \rightarrow Da \\ e & S \rightarrow Da \\ \# & S \rightarrow AB \end{array}
```

Code des productions de S()

```
Code pour S \rightarrow AB:
```

- je veux reconnaître A puis B;
- ightharpoonup \Rightarrow A(); B();

Code pour $S \rightarrow Da$:

- ▶ je veux reconnaître *D*...
- ... puis vérifier que a est bien sous la tête de lecture;
- et consommer a.

Terminaux : vérification et consommation

Code pour $S \rightarrow Da : D()$; this.consommer(TS.a);.

Code final de S()

```
\begin{array}{c|cccc} & S \\ a & S \rightarrow AB \\ b & S \rightarrow AB \\ d & S \rightarrow Da \\ e & S \rightarrow Da \\ \# & S \rightarrow AB \end{array}
```

```
private void S() throws ... {
  if (this.teteLect.getType() == TS.a
   || this.teteLect.getType() == TS.b
   || this.teteLect.getType() == TS.EOF) {
  A(); B(); // S -> AB
  } else if (this.teteLect.getType() == TS.d
   || this.teteLect.getType() == TS.e) {
  D(); this.consommer(TS.a); // S -> Da
  } else throw new ParserException();
}
```

Quand S() termine, pour un mot accepté, la tête de lecture est sur TS.EOF.

Code de A()

La tête de lecture est déjà positionnée sur le symbole de prédiction.

	Ā	
а	A o aAb	
b	$A o \epsilon$	
d	erreur	
e	erreur	
#	$A ightarrow \epsilon$	

Code des productions de A()

on ne fait rien.

```
Code pour A \to aAb:  
this.consommer(TS.a); A(); this.consommer(TS.b);  
Code pour A \to \epsilon:

• le mot vide est immédiatement reconnu;  
• sans toucher à la tête de lecture;
```

Code final de A()

	Α	
а	A o aAb	
b	$A o \epsilon$	
d	erreur	
e	erreur	
#	$A o \epsilon$	

Quand A() termine, pour un mot accepté, la tête de lecture est positionnée pour reconnaître un B ou lire un b.

Code final de B()

	В		
а	erreur		
b	B o bB		
d	erreur		
e	erreur		
#	$B o \epsilon$		

```
private void B() throws ... {
  if (this.teteLect.getType() == TS.b) {
    // B -> bB
    this.consommer(TS.b); B();
  } else if (this.teteLect.getType() == TS.EOF
    // rien, B ->
  } else // erreur
    throw new ParserException();
}
```

Code final de D()

	D	
а	erreur	
b	erreur	
d	D o dD	
e	D o e	
#	erreur	

```
private void D() throws ... {
  if (this.teteLect.getType() == TS.d) {
    // D -> dD
    this.consommer(TS.d); D();
} else if (this.teteLect.getType() == TS.e)
    // D -> e
    this.consommer(TS.e);
else // erreur
    throw new ParserException();
}
```

Principes
Table d'analyse Lt
Analyseur récursif
Analyseur non-récursif
Construction de la table d'analyse
Caractérisation d'une grammaire LL(1)
Quand une grammaire n'est pas LL(1)

Exemple d'exécution

Reconnaître abb#?

Mise en pratique : TP3 (INIT)

Principes
Table d'analyse LL
Analyseur récursif
Analyseur non-récursif
Construction de la table d'analyse
Caractérisation d'une grammaire LL(1)
Quand une grammaire n'est pas LL(1)

Principes

Table d'analyse LL

Analyseur récursif

Analyseur non-récursif

Construction de la table d'analyse

Ensembles Premier

Ensemble des ϵ -prod

Ensembles Suivant

Remplissage de la table d'analyse

Caractérisation d'une grammaire LL(1)

Quand une grammaire n'est pas LL(1)

Factorisation à gauche

Suppression de la récursivité à gauche

Exemple - les piles pour abb#

Comment ça se généralise?

Principes - 1

- ▶ La configuration initiale est (m#, S);
- ▶ La configuration finale est (#,): acceptation par pile vide.

On traite systématiquement le sommet de pile.

Principes - transition de lecture

Si le sommet de pile est un terminal $a \in V_T$:

- on contrôle que a est bien sous la tête de lecture (sinon échec);
- on le consomme;
- on le dépile.

Lecture de a :

$$(am, z_1 \dots z_n a) \vdash (m, z_1 \dots z_n)$$

Principes - transition d'expansion

Si le sommet de pile est un non terminal $X \in V_N$...

... et que la tête de lecture est $y \in V_T \cup \{\#\}$...

- si Table[X, y] contient $X \to X_1 \dots X_n$:
 - ▶ on dépile X ;
 - ▶ on empile à sa place $X_1 ... X_n$, avec X_1 au sommet.

$$(m, z_1 \ldots z_n X) \vdash (m, z_1 \ldots z_n X_n \ldots X_1)$$

sinon erreur.

Transition d'expansion : remarque

Expansion par
$$X \to X_1 \dots X_n$$
:

$$(m, z_1 \ldots z_n X) \vdash (m, z_1 \ldots z_n X_n \ldots X_1)$$

- X₁ sera traité en premier.
- on assure ainsi la construction d'une dérivation gauche;

Construction de l'arbre syntaxique : ordre préfixe

Transition d'expansion par $X \to X_1 \dots X_n$:

- ➤ X est le « prochain » nœud à traiter dans l'arbre (pour l'ordre préfixe);
- \blacktriangleright on lui rajoute les fils $X_1 \dots X_n$ de la gauche vers la droite;
- le prochain nœud à traiter devient X_1 .

Transition de a-lecture :

- a est le « prochain » nœud à traiter dans l'arbre (pour l'ordre préfixe);
- on vérifie que a concorde bien avec la tête de lecture;
- et on passe au nœud suivant.

Principes

Table d'analyse LL

Analyseur récursif

Analyseur non-récursif

Construction de la table d'analyse

Ensembles Premier

Ensemble des ϵ -prod

Ensembles Suivant

Remplissage de la table d'analyse

Caractérisation d'une grammaire LL(1)

Quand une grammaire n'est pas LL(1)

Factorisation à gauche

Suppression de la récursivité à gauche

Principes
Table d'analyse LL
Analyseur récursif
Analyseur non-récursif
Construction de la table d'analyse
Caractérisation d'une grammaire LL(1)
Quand une grammaire n'est pas LL(1)

Ensembles Premier
Ensemble des ϵ -prod
Ensembles Suivant
Remplissage de la table d'analyse

Principes

Table d'analyse LL

Analyseur récursif

Analyseur non-récursif

Construction de la table d'analyse Ensembles *Premier*

Ensemble des ϵ -prod

Ensembles Suivant

Remplissage de la table d'analyse

Caractérisation d'une grammaire LL(1)

Quand une grammaire n'est pas LL(1)

Factorisation à gauche

Suppression de la récursivité à gauche

Outils pour l'analyse prédictive, intuition - 1

Comment choisir entre $S \rightarrow AB$ et $S \rightarrow Da$?

Supposons que je sache que :

- ► AB ne permet de dériver que des mots préfixés par a ou par b;
- ▶ $AB \Rightarrow^* au$ et $AB \Rightarrow^* bu$, pour $u \in V_T^*$;
- Da ne permet de dériver que des mots préfixés par d ou par e;
- ▶ $Da \Rightarrow^* du$ et $Da \Rightarrow^* eu$, pour $u \in V_T^*$.

Outils pour l'analyse prédictive, intuition - 1

Maintenant je sais (partiellement) choisir entre $S \to AB$ et $S \to Da$:

- ▶ si tête lecture $\in \{a, b\}$: choisir $S \to AB$;
- ▶ si tête lecture $\in \{d, e\}$: choisir $S \to Da$.

	5	
a	$S \rightarrow AB$	
b	$S \rightarrow AB$	
d	S o Da	
e	S o Da	
#	?	

Ensemble Premier - définition

On dit que $Premier(AB) = \{a, b\}$ et $Premier(Da) = \{d, e\}$.

Pour $\alpha \in (V_T \cup V_N)^+$, $Premier(\alpha)$ contient l'ensemble des terminaux de V_T susceptibles de commencer un mot de V_T^+ dérivé de α .

Si $\alpha = \epsilon$, cet ensemble est vide.

Definition

Soit une grammaire algébrique. On définit :

Premier :
$$(V_T \cup V_N)^* \rightarrow \mathcal{P}(V_T)$$

 $\alpha \mapsto \{a \in V_T \mid \alpha \Rightarrow^* au, u \in V_T^*\}$

Principes
Table d'analyse Lt
Analyseur récursif
Analyseur non-récursif
Construction de la table d'analyse
Caractérisation d'une grammaire Lt(1)
Quand une grammaire n'est pas Lt(1)

Ensembles *Premier*Ensemble des ϵ -prod Ensembles *Suivant*Remplissage de la table d'analyse

Les *Premier* sur les arbres syntaxiques - notation

Calcul des Premier - 0

Soit
$$\alpha \in (V_N \cup V_T)^*$$
:

cas
$$\alpha = \epsilon :?$$

$$\alpha = a, \ a \in V_T :?$$

$$\alpha = a\beta, \ a \in V_T, \ \beta \in (V_N \cup V_T)^* :?$$

$$\alpha = X, \ X \in V_N : ?$$

$$\alpha = X\beta, \ X \in V_N, \ \beta \in (V_N \cup V_T)^* :?$$

fcas

Calcul des Premier - 1

Soit
$$\alpha \in (V_N \cup V_T)^*$$
:

cas
$$\alpha = \epsilon : \emptyset$$

$$\alpha = a, \ a \in V_T : \{a\}$$

$$\alpha = a\beta, \ a \in V_T, \ \beta \in (V_N \cup V_T)^* : \{a\}$$

$$\alpha = X, \ X \in V_N : ?$$

$$\alpha = X\beta, \ X \in V_N, \ \beta \in (V_N \cup V_T)^* : ?$$

fcas

Calcul de Premier(X), $X \in V_N$ - exemple

Si l'ensemble des productions de membre gauche S est :

$$S \rightarrow AB \mid Da$$

alors on a:

$$Premier(S) = Premier(AB) \cup Premier(Da)$$

Calcul de Premier(X), $X \in V_N$ - généralisation

Si la grammaire contient les productions de membre gauche \boldsymbol{X} :

$$X \to \gamma_1 \mid \ldots \mid \gamma_n$$

$$Premier(X) = \bigcup \{Premier(\gamma_i) \mid X \to \gamma_i \in P\}$$

Calcul des Premier - 2

Soit
$$\alpha \in (V_N \cup V_T)^*$$
:

$$\alpha = \epsilon : \emptyset$$

$$\alpha = a, \ a \in V_T : \{a\}$$

$$\alpha = a\beta, \ a \in V_T, \ \beta \in (V_N \cup V_T)^* : \{a\}$$

$$\alpha = X, \ X \in V_N : \bigcup \{Premier(\gamma_i) \mid X \to \gamma_i \in P\}$$

$$\alpha = X\beta, \ X \in V_N, \ \beta \in (V_N \cup V_T)^* : ?$$

fcas

Calcul des *Premier*, $\alpha = X\beta$, $X \in V_N$

Deux cas selon que X peut « s'effacer » ou non :

$$X \Rightarrow^* \epsilon$$
?

Si $X \Rightarrow^* \epsilon$ on dit que X est ϵ -productif : $X \in \epsilon$ -Prod

Calcul des *Premier*, $\alpha = X\beta$, $X \notin \epsilon$ -Prod - exemple

Par exemple $D \not\in \epsilon$ -productif :

$$D \rightarrow dD \mid e$$

alors Premier(Da) = Premier(D)

Principes
Table d'analyse LL
Analyseur récursif
Analyseur non-récursif
Construction de la table d'analyse
Caractérisation d'une grammaire LL(1)
Quand une grammaire n'est pas LL(1)

Ensembles *Premier*Ensemble des ϵ -prod Ensembles *Suivant*Remplissage de la table d'analyse

Calcul des *Premier*, $\alpha = X\beta$, $X \notin \epsilon$ -Prod - généralisation

Calcul des *Premier*, $\alpha = X\beta$, $X \in \epsilon$ -Prod - exemple

Par exemple $A \in \epsilon$ -productif :

$$A
ightarrow \epsilon \mid aAb$$

$$Premier(AB) = Premier(A) \cup Premier(B)$$

 $Premier(ABS) = Premier(A) \cup Premier(BS)$

Principes
Table d'analyse LL
Analyseur récursif
Analyseur non-récursif
Construction de la table d'analyse
Caractérisation d'une grammaire LL(1)
Quand une grammaire n'est pas LL(1)

Ensembles *Premier*Ensemble des ϵ -prod Ensembles *Suivant*Remplissage de la table d'analyse

Calcul des *Premier*, $\alpha = X\beta$, $X \in V_N$ - généralisation

Calcul des Premier

Soit
$$\alpha \in (V_N \cup V_T)^*$$
:

 $\alpha = \epsilon : \emptyset$
 $\alpha = a, a \in V_T : \{a\}$
 $\alpha = a\beta, a \in V_T, \beta \in (V_N \cup V_T)^* : \{a\}$
 $\alpha = X, X \in V_N : \bigcup \{Premier(\gamma_i) \mid X \to \gamma_i \in P\}$
 $\alpha = X\beta, X \in V_N \setminus \epsilon\text{-Prod}, \beta \in (V_N \cup V_T)^* : Premier(X)$
 $\alpha = X\beta, X \in V_N \cap \epsilon\text{-Prod}, \beta \in (V_N \cup V_T)^* : Premier(X) \cup Premier(X)$

fcas

Calcul effectif des ensembles Premier

On procède en deux étapes :

- 1. on pose un système d'équations pour *Premier*;
- on calcule par itération de point fixe les plus petits ensembles qui satisfont ces équations.

Pour le moment on suppose donné ϵ -Prod, l'ensemble des ϵ -productifs.

Exemple

$$S \rightarrow AB \mid Da$$

$$A \rightarrow aAb \mid \epsilon$$

$$B \rightarrow bB \mid \epsilon$$

$$D \rightarrow dD \mid e$$

$$\epsilon - Prod = \{A, B, S\}$$

$$Premier(S) = ?$$

$$Premier(B) = ?$$

$$Premier(D) = ?$$

$$\alpha = a, a \in V_T : \{a\}$$

$$\alpha = a\beta, a \in V_T, \beta \in (V_N \cup V_T)^* : \{a\}$$

$$\alpha = X, X \in V_N :$$

$$(V_N \cup V_T)^* : \{a\}$$

$$\alpha = X, X \in V_N :$$

$$(V_N \cup V_T)^* : \{a\}$$

$$\alpha = X, X \in V_N :$$

$$(V_N \cup V_T)^* : \{a\}$$

$$\alpha = X, X \in V_N :$$

$$\alpha = X, X \in V_N \setminus \epsilon - Prod, \beta \in (V_N \cup V_T)^* :$$

$$\alpha = X, X \in V_N \setminus \epsilon - Prod, \beta \in (V_N \cup V_T)^* :$$

$$\alpha = X, X \in V_N \cap \epsilon - Prod, \beta \in (V_N \cup V_T)^* :$$

Exemple

```
Premier(S) = Premier(A) \cup Premier(B) \cup Premier(D)
Premier(A) = \{a\}
Premier(B) = \{b\}
Premier(D) = \{d, e\}
D'où
Premier(S) = \{a, b, d, e\}
                             Premier(aAb) = \{a\}
Premier(A) = \{a\}
                             Premier(bB) = \{b\}
Premier(B) = \{b\}
                             Premier(dD) = \{d\}
Premier(D) = \{d, e\}
                             Premier(e) = \{e\}
                             Premier(\epsilon) = \emptyset
Premier(AB) = \{a, b\}
Premier(Da) = \{d, e\}
```

Exemple : remplissage de la table

$$A \rightarrow aAb$$
 et $Premier(aAb) = \{a\}$
 $A \rightarrow \epsilon$ et $Premier(\epsilon) = \emptyset$

	S	Α	В	D
а	$S \rightarrow AB$	A ightarrow aAb	erreur	erreur
Ь	$S \rightarrow AB$	$A ightarrow \epsilon$	B o bB	erreur
d	$\mathcal{S} o \mathcal{D}$ a	erreur	erreur	D o dD
е	$\mathcal{S} o \mathcal{D}$ a	erreur	erreur	D o e
#	$S \rightarrow AB$	$A o\epsilon$	$B o \epsilon$	erreur

Exemple : remplissage de la table

$$S \rightarrow AB$$
 et $Premier(AB) = \{a, b\}$
 $S \rightarrow Da$ et $Premier(Da) = \{d, e\}$

	S	Α	В	D
а	$S \rightarrow AB$	A ightarrow aAb	erreur	erreur
Ь	$S \rightarrow AB$	$A ightarrow \epsilon$	B o bB	erreur
d	S o Da	erreur	erreur	D o dD
e	S o Da	erreur	erreur	D o e
#	$S \rightarrow AB$	$A o\epsilon$	$B o \epsilon$	erreur

Remarque : résolution du système

$$Premier(S) = Premier(A) \cup Premier(B) \cup Premier(D)$$

 $Premier(A) = \{a\}$
 $Premier(B) = \{b\}$
 $Premier(D) = \{d, e\}$

Se résoud sans itération de point fixe : système d'équations non récursif.

Ce n'est pas toujours le cas.

Résolution du système : autre exemple

$$S oup S_1 S_2 \mid a$$
 $Premier(S) = Premier(S_1) \cup \{a\}$
 $S_1 oup S \mid b$ $Premier(S_1) = Premier(S) \cup \{b\}$
 $S_2 oup c$ $Premier(S_2) = \{c\}$

iter	Premier(S)	$Premier(S_1)$	$Premier(S_2)$
0	Ø	Ø	Ø
1	{a}	{b}	{c}
2	{a, b}	{b, a}	{c}
3	{ a, b}	{ b, a}	{c}

stabilisation

Principes

Table d'analyse LL

Analyseur récursif

Analyseur non-récursif

Construction de la table d'analyse

Ensembles Premier

Ensemble des ϵ -prod

Ensembles Suivant

Remplissage de la table d'analyse

Caractérisation d'une grammaire LL(1)

Quand une grammaire n'est pas LL(1)

Factorisation à gauche

Suppression de la récursivité à gauche

Définition des ϵ -prod

Definition

Un non terminal $X \in V_N$ est dit ϵ -productif si $X \Rightarrow^* \epsilon$.

L'ensemble des ϵ -productif est ϵ -Prod.

X est ϵ -productif si la grammaire contient la production :

- $ightharpoonup X
 ightarrow \epsilon$;
- ou $X \to Y_1 Y_2 \dots Y_n$ telle que l'ensemble des non-terminaux $\{Y_1, Y_2, \dots, Y_n\} \subseteq V_N$ ne contient que des non-terminaux ϵ -productifs.

Algorithme de calcul similaire à celui qui calcule les productifs.

Exemple

$$S o AB \mid Da$$

 $A o aAb \mid \epsilon$
 $B o bB \mid \epsilon$
 $D o dD \mid e$
 ϵ -Prod?

Principes

Table d'analyse LL

Analyseur récursif

Analyseur non-récursif

Construction de la table d'analyse

Ensembles Premier

Ensemble des ϵ -prod

Ensembles Suivant

Remplissage de la table d'analyse

Caractérisation d'une grammaire LL(1)

Quand une grammaire n'est pas LL(1)

Factorisation à gauche

Suppression de la récursivité à gauche

Outils pour l'analyse prédictive, intuition - 2

Pour choisir entre $S \rightarrow AB$ et $S \rightarrow Da$:

- ▶ si tête lecture $\in \{a, b\}$: choisir $S \to AB$;
- ▶ si tête lecture $\in \{d, e\}$: choisir $S \to Da$.

Et si la tête de lecture est $\#? \# \notin Premier(AB) \cup Premier(Da)$.

Comment choisir entre $A \to aAb$ et $A \to \epsilon$? $Premier(\epsilon) = \emptyset$

 \Rightarrow les ensembles *Premier* ne suffisent pas.

Ensembles Suivant, intuition

Quand appliquer $A \rightarrow \epsilon$?

Quand la tête de lect. correspond à un terminal qui peut suivre A.

 $Suivant(A) \supseteq Premier(B)$

Ensembles Premier Ensemble des ϵ -prod Ensembles Suivant Remplissage de la table d'analyse

Ensembles Suivant, intuition

On a donc $b \in Suivant(A)$

	Α
а	A ightarrow aAb
Ь	$A ightarrow \epsilon$
d	?
е	?
#	?

Ensembles Premier Ensemble des ϵ -prod Ensembles Suivant Remplissage de la table d'analyse

Ensembles Suivant, intuition

Pour $\alpha \in (V_T \cup V_N)^+$, $Suivant(\alpha)$ contient l'ensemble des terminaux de V_T susceptibles de suivre α dans un mot de V_T^+ dérivé de l'axiome S.

Si $\alpha = \epsilon$, cet ensemble est vide.

Par convention, $Suivant(S) \supseteq \{\#\}$.

Ensembles Suivant, définitions équivalentes

Definition

Soit une grammaire algébrique d'axiome S. On définit :

Suivant :
$$(V_T \cup V_N)^* \rightarrow \mathcal{P}(V_T)$$

 $\alpha \mapsto \{a \in V_T \mid S \Rightarrow^* \beta \alpha a \gamma, \text{ pour } \beta, \gamma \in (V_N \cup V_T)^*\}$

Definition

Suivant :
$$(V_T \cup V_N)^* \rightarrow \mathcal{P}(V_T)$$

 $\alpha \mapsto \{a \in Premier(\gamma) \mid S \Rightarrow^* \beta \alpha \gamma, pour \beta, \gamma \in (V_N \cup V_T)^*\}$

Calcul des Suivant - 1

Pour calculer Suivant(X), on regarde les productions dans lesquelles X apparaît en partie droite (différent du calcul des Premier).

Pour Suivant(A):

Calcul des Suivant - 2

Soit $P_X \subseteq P$ l'ensemble des productions p dans lesquelles X apparaît en partie droite :

$$Suivant(X) = \bigcup_{p \in P_X} Suivant_p(X)$$

Ex:
$$P_A = \{S \to AB, A \to aAb\}$$

 $Suivant(A) = Suivant(A)_{S \to AB} \cup Suivant(A)_{A \to aAb}$

Calcul des Suivant, cas de l'axiome

Pour l'axiome, on ajoute le marqueur de fin de mot :

$$Suivant(S) = \{\#\} \cup \bigcup_{p \in P_S} Suivant_p(S)$$

Ex : pour
$$X \to aXb \mid \epsilon$$

 $P_X = \{X \to aXb\}$
 $Suivant(X) = \{\#\} \cup Suivant(X)_{X \to aXb}$

Ensembles Premier Ensemble des ϵ -prod Ensembles Suivant Remplissage de la table d'analyse

Calcul des *Suivant* - 3 - exemple

 $Suivant(A)_{S \to AB}$? (exemple précédent)

Cas déjà vu :

Ensembles PremierEnsemble des ϵ -prod **Ensembles Suivant** Remplissage de la table d'analyse

Calcul des *Suivant* - 3 - exemple

Suivant(A)_{S \rightarrow AB}? (exemple précédent) mais B est ϵ -Prod!

 $Suivant(A) \supseteq Suivant(S)$

Ensembles *Premier*Ensemble des ε-prod **Ensembles Suivant**Remplissage de la table d'analyse

Calcul des Suivant - 3 - exemple

$$Suivant(A)_{S \rightarrow AB} = Premier(B) \cup Suivant(S)$$

Calcul des Suivant - 4

Quand une production est de la forme $\ldots \to X\alpha$:

- pour calculer Suivant(X);
- ▶ Il faut pouvoir dire si $\alpha \in (V_N \cup V_T)^*$ est ϵ -productif ou pas.

Definition

 $\alpha \in (V_N \cup V_T)^*$ est ϵ -productif si $\alpha \Rightarrow^* \epsilon$. On définit la fonction :

Eps:
$$(V_N \cup V_T)^* \rightarrow \{vrai, faux\}$$

 $\alpha \mapsto \alpha \text{ est } \epsilon\text{-productif}$

On verra après comment calculer Eps.

Ensembles Premier Ensemble des ϵ -prod Ensembles Suivant Remplissage de la table d'analyse

Calcul des Suivant - 5

Pour calculer $Suivant_p(X)$ avec :

$$p = Y \rightarrow \alpha X \beta$$
 et $Eps(\beta) = faux$, $\alpha, \beta \in (V_N \cup V_T)^*$

 $Suivant_p(X) = Premier(\beta)$

Ex : pour
$$Y \to Xb$$
, $Suivant(X)_{Y \to Xb} = \{b\}$.

Calcul des Suivant - 6

Pour calculer $Suivant_p(X)$ avec :

$$p = Y \rightarrow \alpha X$$

$$Suivant_p(X) = Suivant(Y)$$

Ensembles PremierEnsemble des ϵ -prod **Ensembles Suivant** Remplissage de la table d'analyse

Calcul des Suivant - 7

Pour calculer $Suivant_p(X)$ avec :

$$p = Y \rightarrow \alpha X \beta$$
 et $Eps(\beta) = vrai$, $\alpha, \beta \in (V_N \cup V_T)^*$

$$Suivant_p(X) = Premier(\beta) \cup Suivant(Y)$$

 $\mathsf{Ex}:\mathsf{pour}\; S\to AB,\; \mathit{Suivant}(A)_{S\to AB}=\mathit{Premier}(B)\cup \mathit{Suivant}(S).$

Remarque - 1

Si X apparaît plusieurs fois en partie droite d'une production, il faut prendre en compte toutes ses occurrences dans le calcul de Suivant(X).

Ex :
$$Y \rightarrow XaXaXc$$

$$Suivant_{Y \to XaXaXc}(X) = \{a, c\}$$

Ensembles Premier Ensemble des ϵ -prod Ensembles Suivant Remplissage de la table d'analyse

Remarque - 2

```
Pourquoi pas Suivant(X)_{Y \to X\beta} = Premier(\beta) \cup Suivant(\beta)?

Parce que Suivant(Y) \subseteq Suivant(\beta).

Ex:
S \to Y \mid Z \qquad Suivant(S) = \{\#\}
Y \to X_1 X_2 \qquad Suivant(Y) = Suivant(S) = \{\#\}
X_1 \to a \qquad Suivant(Z) = Suivant(S) = \{\#\}
X_2 \to \epsilon \mid b \qquad Suivant(X_2) = \{c\} \cup Suivant(Y) = \{c, \#\}
Z \to X_2 c \qquad Suivant(X_1) = Premier(X_2) \cup Suivant(Y)
```


Calcul des Suivant, récapitulons!

```
\# \in Suivant(axiome)
```

Soit $P_X \subseteq P$ l'ensemble des productions p dans lesquelles X apparaît en partie droite :

$$Suivant(X) = \bigcup_{p \in P_X} Suivant_p(X)$$

```
avec : Suivant_p(X) =

cas
p = Y \rightarrow \alpha X : Suivant(Y)
p = Y \rightarrow \alpha X \beta \text{ et } Eps(\beta) = faux : Premier(\beta)
p = Y \rightarrow \alpha X \beta \text{ et } Eps(\beta) = vrai : Premier(\beta) \cup Suivant(Y)
fincas
```

Calcul effectif des ensembles Suivant

On procède en deux étapes :

- on pose un système d'équations pour Suivant ;
- on calcule par itération de point fixe les plus petits ensembles qui satisfont ces équations.
- ▶ avec initialement $Suivant(S) = \{\#\}$, et pour les autres non-terminaux $Suivant(X) = \emptyset$.

Exemple

$$\begin{array}{lll} S \rightarrow AB & \mid Da \\ A \rightarrow aAb & \mid \epsilon \\ B \rightarrow bB & \mid \epsilon \\ D \rightarrow dD & \mid e \\ \\ Suivant(X) = \bigcup_{p \in P_X} Suivant_p(X) \\ & \text{avec} : Suivant_p(X) = \\ & \text{cas} \\ Suivant? & \text{cas} \\ P = Y \rightarrow \alpha X : Suivant(Y) \\ p = Y \rightarrow \alpha X \beta \text{ et } Eps(\beta) = faux : Premier(\beta) \\ p = Y \rightarrow \alpha X \beta \text{ et } Eps(\beta) = vrai : Premier(\beta) \\ & \cup Suivant(Y) \\ & \text{fincas} \end{array}$$

Ensembles PremierEnsemble des ϵ -prod Ensembles SuivantRemplissage de la table d'analyse

Exemple de remplissage de table

$$A \rightarrow \epsilon$$
 et $Suivant(A) = \{b, \#\}$

	S	Α	В	D
а	$S \rightarrow AB$	A ightarrow aAb	erreur	erreur
b	$S \rightarrow AB$	$A o \epsilon$	B o bB	erreur
d	S o Da	erreur	erreur	D o dD
e	S o Da	erreur	erreur	D o e
#	$S \rightarrow AB$	$A ightarrow \epsilon$	$B o \epsilon$	erreur

Ensembles Premier Ensemble des ϵ -prod Ensembles Suivant Remplissage de la table d'analyse

Exemple de remplissage de table

$$S \rightarrow AB$$
 et $Suivant(S) = \{\#\}$

	5	Α	В	D
а	$S \rightarrow AB$	A ightarrow aAb	erreur	erreur
Ь	$S \rightarrow AB$	$A o \epsilon$	B o bB	erreur
d	S o Da	erreur	erreur	D o dD
е	S o Da	erreur	erreur	D o e
#	$S \rightarrow AB$	$A ightarrow \epsilon$	$B o \epsilon$	erreur

Ensembles *Premier*Ensemble des *e*-prod **Ensembles** *Suivant*Remplissage de la table d'analyse

Calcul des ϵ -productifs

On connaît déjà ϵ -*Prod*, ens. des non-terminaux ϵ -productifs.

Pour calculer $Eps(\alpha)$:

$$Eps(\alpha) =$$
 cas

$$\alpha = \epsilon$$
 : vrai

$$\alpha = X_1 \dots X_n, n \ge 1 \text{ avec } \{X_1, \dots, X_n\} \subseteq V_N \text{ et } \{X_1, \dots, X_n\} \subseteq \epsilon \text{-} Prod : vrai$$

autre : faux // α contient un terminal

fincas

Ensemble des e-prod Ensembles Suivant Remplissage de la table d'analyse

Exemple

```
Sachant que \epsilon-Prod = {A, B, S}:
Eps(Da)?
```

$$Eps(AB)$$
?

$$Eps(\epsilon)$$
?

$$Eps(B)$$
?

Ensembles *Premier* Ensemble des ε-prod Ensembles *Suivant* Remplissage de la table d'analyse

Principes

Table d'analyse LL

Analyseur récursif

Analyseur non-récursif

Construction de la table d'analyse

Ensembles Premier

Ensemble des ϵ -prod

Ensembles Suivant

Remplissage de la table d'analyse

Caractérisation d'une grammaire LL(1)

Quand une grammaire n'est pas LL(1)

Factorisation à gauche

Suppression de la récursivité à gauche

Ensembles *Premier* Ensemble des ε-prod Ensembles *Suivant* Remplissage de la table d'analyse

Table d'analyse : au préalable

On calcule:

- les ε-productifs;
- les ensembles Premier ;
- les ensembles Suivant.

Ensembles Premier Ensemble des ϵ -prod Ensembles Suivant Remplissage de la table d'analyse

Remplissage de la table

```
Entrée : une gram. alg. G, ses ensembles Premier et Suivant Sortie : la table d'analyse Table pour toute production X \to \gamma \in P faire pour tout a \in Premier(\gamma) faire ajouter X \to \gamma à Table[X, a] fait si Eps(\gamma) = vrai alors pour tout b \in Suivant(X) faire Table[X, b] = X \to \gamma fait finsi fait
```

Ajouter erreur dans les entrées de Table restées vides

Exemple

$$S \rightarrow AB$$
:

$$Premier(AB) = \{a, b\};$$

$$\triangleright$$
 Eps(AB) = vrai;

•
$$Suivant(S) = \{\#\}.$$

$$S \rightarrow Da$$
:

$$Premier(Da) = \{d, e\};$$

$$ightharpoonup$$
 Eps(Da) = faux.

Rien à compléter par erreur.

	S		
а	$S \rightarrow AB$		
b	$S \rightarrow AB$		
d	S o Da		
e	S o Da		
#	$S \rightarrow AB$		

Exemple

$$A \rightarrow aAb$$
:

- $Premier(aAb) = \{a\};$
- ightharpoonup Eps(aAb) = faux.

$A \rightarrow \epsilon$:

- ▶ $Premier(\epsilon) = \emptyset$;
- $Eps(\epsilon) = vrai;$
- $Suivant(A) = \{b, \#\}.$

On complète par erreur.

b

Principes
Table d'analyse LL
Analyseur récursif
Analyseur non-récursif
Construction de la table d'analyse
Caractérisation d'une grammaire LL(1)
Quand une grammaire n'est pas LL(1)

Principes

Table d'analyse LL

Analyseur récursif

Analyseur non-récursif

Construction de la table d'analyse

Ensembles Premier

Ensemble des ϵ -prod

Ensembles Suivant

Remplissage de la table d'analyse

Caractérisation d'une grammaire LL(1)

Quand une grammaire n'est pas LL(1)

Factorisation à gauche

Suppression de la récursivité à gauche

Analyseur LL(1)

Un analyseur LL(1) est déterministe et piloté par le sommet de pile :

- si terminal a : lecture de a (ou erreur);
- ▶ si non terminal X avec a sous la tête de lecture : expansion selon Table[X, a].

Et si Table[X, a] contient plus d'une production?

Non-déterminisme :

- ▶ la grammaire n'est pas LL(1);
- ▶ on ne peut pas appliquer une analyse LL(1).

Caractérisation d'une grammaire LL(1)

Caractérisation par table d'analyse : une grammaire est LL(1) si chaque case contient exactement une production ou erreur.

Caractérisation « par contre-exemple » : une grammaire n'est pas LL(1) s'il existe 2 productions $X \to \alpha$ et $X \to \beta$ telles que :

- 1. soit $Premier(\alpha) \cap Premier(\beta) \neq \emptyset$;
 - $\mathsf{Ex}: S \to \mathsf{aS} \,|\, \mathsf{A}, \, \mathsf{A} \to \mathsf{a}$
- 2. soit $Eps(\alpha) = vrai$ et $Premier(\beta) \cap Suivant(X) \neq \emptyset$;

Ex :
$$S \rightarrow aS \mid Ab$$
, $A \rightarrow \epsilon \mid b$

3. soit $Eps(\alpha) = vrai$ et $Eps(\beta) = vrai$ (la grammaire est ambiguë)

Ex :
$$S \rightarrow A \mid B$$
, $A \rightarrow \epsilon$, $B \rightarrow \epsilon$

Principes
Table d'analyse Lt
Analyseur récursif
Analyseur non-récursif
Construction de la table d'analyse
Caractérisation d'une grammaire LL(1)
Quand une grammaire n'est pas LL(1)

LL(1) et ambiguïté

Une grammaire LL(1) n'est pas ambiguë.

Une grammaire ambiguë n'est pas LL(1).

Cas classiques non LL(1)

Dans les cas suivants, la grammaire n'est pas LL(1):

- ambiguïté;
- ▶ récursivité gauche : $A \rightarrow Aa \mid \epsilon$;
 - ▶ intuitivement récursivité infinie de A().
- ▶ non factorisation gauche : $S \rightarrow aA \mid aB$

On peut parfois arranger ça :

- factorisation à gauche;
- suppression de la récursivité gauche.

Principes

Table d'analyse LL

Analyseur récursif

Analyseur non-récursif

Construction de la table d'analyse

Ensembles Premier

Ensemble des ϵ -prod

Ensembles Suivant

Remplissage de la table d'analyse

Caractérisation d'une grammaire LL(1)

Quand une grammaire n'est pas LL(1)

Factorisation à gauche

Suppression de la récursivité à gauche

Principes

Table d'analyse LL

Analyseur récursif

Analyseur non-récursif

Construction de la table d'analyse

Ensembles Premier

Ensemble des ϵ -prod

Ensembles Suivant

Remplissage de la table d'analyse

Caractérisation d'une grammaire LL(1)

Quand une grammaire n'est pas LL(1)

Factorisation à gauche

Suppression de la récursivité à gauche

Factorisation à gauche : exemple - 1

Les listes d'identificateur de INIT:

 $\textit{listeIdent} \rightarrow \mathsf{IDENT} \mid \mathsf{IDENT} \; \mathsf{SEPVAR} \; \textit{listeIdent}$

On factorise IDENT et on obtient :

 $\begin{array}{l} \textit{listeldent} \rightarrow \textit{IDENT suiteListeldent} \\ \textit{suiteListeldent} \rightarrow \epsilon \mid \textit{SEPVAR listeldent} \end{array}$

Factorisation à gauche : exemple - 2

$$X \rightarrow ab \mid abbX \mid abbbX$$

Factorisation de ab : on prend le plus grand préfixe commun.

$$Y \rightarrow \epsilon \mid bX \mid bbX$$

Puis à nouveau factorisation de b.

Factorisation à gauche - algorithme

On remplace les règles de la forme :

$$X \to \alpha \beta_1 \mid \ldots \mid \alpha \beta_n \mid \gamma_1 \mid \ldots \mid \gamma_m$$

οù

- $\qquad \qquad \alpha \in (V_T \cup V_N)^+ \text{ et } \beta_i, \gamma_j \in (V_T \cup V_N) *;$
- **Les préfixe commun** α est choisi le plus grand possible;
- $ightharpoonup \alpha$ n'est pas préfixe de γ_j .

par les règles :

$$X \to \alpha X' | \gamma_1 | \dots | \gamma_m$$
$$X' \to \beta_1 | \dots | \beta_n$$

où X' est un nouveau non-terminal.

On réitère ce processus tant que nécessaire.

Principes

Table d'analyse LL

Analyseur récursit

Analyseur non-récursif

Construction de la table d'analyse

Ensembles Premier

Ensemble des ϵ -prod

Ensembles Suivant

Remplissage de la table d'analyse

Caractérisation d'une grammaire LL(1)

Quand une grammaire n'est pas LL(1)

Factorisation à gauche

Suppression de la récursivité à gauche

Suppression de la récursivité à gauche

Récursivité gauche :

- ▶ immédiate : production $A \rightarrow A\alpha$, $\alpha \in (V_T \cup V_N)^+$;
- ▶ générale : il existe une dérivation $A \Rightarrow *A\alpha$, $\alpha \in (V_T \cup V_N)^+$.

Il est possible de supprimer les deux cas.

On ne verra que la récursivité immédiate.

Suppression de la récursivité gauche immédiate

On remplace les règles de la forme

$$X \to X\alpha_1 \mid \ldots \mid X\alpha_n \mid \beta_1 \mid \ldots \mid \beta_m$$

οù

- $ightharpoonup \alpha_i \in (V_T \cup V_N)^+ \text{ et } \beta_j \in (V_T \cup V_N)^*;$
- ▶ les β_j ne commencent pas par X.

par les règles :

$$X \to \beta_1 X' \mid \dots \mid \beta_m X'$$

 $X' \to \alpha_1 X' \mid \dots \mid \alpha_n X' \mid \epsilon$

où X' est un nouveau non-terminal.

Suppression de la récursivité gauche : exemple

Grammaire non ambiguë des expressions arithmétiques :

$$E \rightarrow E + T \mid T$$
$$T \rightarrow T * F \mid F$$
$$F \rightarrow i \mid (E)$$

$$X \to X\alpha_1 | \dots | X\alpha_n$$

 $|\beta_1 | \dots | \beta_m$

Après suppression de la rec gauche :

$$\begin{split} E &\to TE' \\ E' &\to +TE' \,|\, \epsilon \\ T &\to FT' \\ T' &\to *FT' \,|\, \epsilon \end{split}$$

$$F \to i \mid (E)$$

$$X \to \beta_1 X' \mid \dots \mid \beta_m X'$$

 $X' \to \alpha_1 X' \mid \dots \mid \alpha_n X' \mid \epsilon$

Parfois ça ne suffit pas

La grammaire $({a,b},{S,A},S,P)$ avec

$$P = \{S \to aSb \,|\, A, \ A \to aA \,|\, \epsilon\}$$

- n'est pas ambiguë;
- n'est pas récursive gauche;
- est factorisée à gauche;

mais elle n'est pas LL(1).

Au delà des grammaires LL(1) - 1

La grammaire $(\{a, b\}, \{A, B\}, A, P)$ avec

$$P = \{A \rightarrow abB \mid \epsilon, \ B \rightarrow Aaa \mid b\}$$

n'est pas LL(1).

En effet Eps(A) = vrai et $a \in Premier(A) \cap Suivant(A)$.

Mais cette grammaire est LL(2):

$$Premier_2(A) = \{ab\}$$

$$Premier_2(B) = \{ab, aa, b\}$$

$$Suivant_2(A) = \{aa, \#\}$$

Au delà des grammaires LL(1) - 2

$$A
ightarrow abB \mid \epsilon$$

 $B
ightarrow Aaa \mid b$

	aa	ab	Ь	#
Α	$A o \epsilon$	A o abB	erreur	$A \rightarrow \epsilon$
В	B o Aaa	B o Aaa	$B \rightarrow b$	erreur

Table d'analyse LL(2)