Introducción a los Sistemas Operativos

Administración de Memoria - I

150 / C50

- ✓ Versión: Septiembre 2018
- Palabras Claves: Procesos, Espacio de Direcciones, Memoria, Seguridad, Paginación, Segmentación Fragmentación

Algunas diapositivas han sido extraídas de las ofrecidas para docentes desde el libro de Stallings (Sistemas Operativos) y el de Silberschatz (Operating Systems Concepts). También se incluyen diapositivas cedidas por Microsoft S.A.

Administración de Memoria

- ☑ División Lógica de la Memoria Física para alojar múltiples procesos
 - Garantizando protección
 - Depende del mecanismo provisto por el HW
- Asignación eficientemente
 - Contener el mayor numero de procesos para garantizar el mayor uso de la CPU por los mismos

Requisitos

☑ Reubicación

- ✓ El programador no debe ocuparse de conocer donde será colocado en la Memoria RAM
- Mientras un proceso se ejecuta, puede ser sacado y traído a la memoria (swap) y, posiblemente, colocarse en diferentes direcciones.
- ✓ Las referencias a la memoria se deben "traducir" según ubicación actual del proceso.

Requisitos (cont).

Protección

- ✓ Los procesos NO deben referenciar acceder - a direcciones de memoria de otros procesos
 - Salvo que tengan permiso
- El chequeo se debe realizar durante la ejecución:
 - NO es posible anticipar todas las referencias a memoria que un proceso puede realizar.

Requisitos (cont).

Compartición

- ✓ Permitir que varios procesos accedan a la misma porción de memoria.
 - Ej: Rutinas comunes, librerías, espacios explícitamente compartidos, etc.
- ✓ Permite un mejor uso aprovechamiento de la memoria RAM, evitando copias innecesarias (repetidas) de instrucciones

Abstracción - Espacio de Direcciones

- Rango de direcciones (a memoria) posibles que un proceso puede utilizar para direccionar sus instrucciones y datos.
- ☑El tamaño depende de la Arquitectura del Procesador
 - ✓ 32 bits: 0 .. 2³² 1
 - ✓ 64 bits: 0 .. 2⁶⁴ 1
- ☑Es independiente de la ubicación "real" del proceso en la Memoria RAM

Abstracción -Espacio de Direcciones (cont.)

Direcciones

∠Lógicas

- ✓ Referencia a una localidad de memoria independiente de la asignación actual de los datos en la memoria.
- ✓ Representa una dirección en el "Espacio de Direcciones del Proceso"

✓ Físicas

- ✓ Referencia una localidad en la Memoria Física (RAM)
 - Dirección absoluta

En caso de usar direcciones Lógicas, es necesaria algún tipo de conversión a direcciones Físicas.

Conversión de Direcciones

- Una forma simple de hacer esto es utilizando registros auxiliares
- ☑ Registro Base
 - ✓ Dirección de comienzo del Espacio de Direcciones del proceso en la RAM
- ☑ Registro Limite
 - ✓ Dirección final del proceso o medida del proceso
 - Tamaño de su Espacio de Direcciones
- Ambos valores se fijan cuando el ED del proceso es cargado a memoria.
- ✓ Varían entre procesos (Context Switch)

Direcciones (cont.)

Dir. Lógicas vs. Físicas

- Si la CPU trabaja con direcciones lógicas, para acceder a memoria principal, se deben transformar en direcciones físicas.
 - Resolución de direcciones (address-binding): transformar la dirección lógica en la dirección física correspondiente
- ☑ Resolución en momento de compilación (Archivos .com de DOS) y en tiempo de carga
 - ✓ Direcciones Lógicas y Físicas son idénticas
 - ✓ Para reubicar un proceso es necesario recompilarlo o recargarlo.

Dir. Lógicas vs. Físicas

- Resolución en tiempo de ejecución
 - ✓ Direcciones Lógicas y Físicas son diferentes
 - ✓ Direcciones Lógicas son llamadas "Direcciones Virtuales"
 - ✓ La reubicación se puede realizar fácilmente
 - ✓ El mapeo entre "Virtuales" y "Físicas" es realizado por hardware
 - Memory Management Unit (MMU)

Memory Management Unit (MMU)

- ☑ Dispositivo de Hardware que mapea direcciones virtuales a físicas
 - Es parte del Procesador
 - ✓ Re-programar el MMU es una operación privilegiada
 - solo puede ser realizada en Kernel Mode
- ☑ El valor en el "registro de realocación" es sumado a cada dirección generada por el proceso de usuario al momento de acceder a la memoria.
 - ✓ Los procesos nunca usan direcciones físicas

MMU

Problemas del esquema

- ☑El esquema de Registro Base + Limite presenta problemas:
 - Necesidad de almacenar el Espacio de Direcciones de forma continua en la Memoria Física
 - Fragmentación
 - Mantener "partes" del proceso que no son necesarias
- **✓** Solución
 - Paginación
 - Segmentación

Paginación

- ✓ Memoria Física es dividida lógicamente en pequeños trozos de igual tamaño → Marcos
- ✓ Memoria Lógica (espacio de direcciones) es dividido en trozos de igual tamaño que los marcos → Paginas
- ☑ El SO debe mantener una tabla de paginas por cada proceso, donde cada entrada contiene (entre otras) el Marco en la que se coloca cada pagina.
- La dirección lógica se interpreta como:
 - un numero de pagina y un desplazamiento dentro de la misma.

Paginación – Ejemplo I

Pagina 0

Pagina 1

Pagina 2

Pagina 3

Memoria Lógica (Espacio de Direcciones)

Tabla de Paginas

Memoria Física (RAM)

Paginación – Ejemplo II

14

	Main memory
0	A.0
1	A.1
2	A.2
3	A.3
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	

0	0
1	1
2	2
3	3
	Process A page tabl

0	_	
1	_	
2		

Process B page table

Process C page table

> Process D page table

13 14

Free frame

	Main memory
0	A.0
1	A.1
2	A.2
3	A.3
4 5	
6	
7	
8	
9	
10	////63////
11	
12	
13	
14	

Main memory		
A.0		
A.1		
A.2		
A.3		
D.0		
D.1		
D.2		
////¢s////		
D.3		
D.4		

Paginación - Direcciones Lógicas

Traducción de direcciones

Segmentación

- ☑ Esquema que soporta el "punto de vista de un usuario"
- Un programa es una colección de segmentos. Un segmento es una unidad lógica como:
 - ✓ Programa Principal, Procedimientos y Funciones, variables locales y globales, stack, etc.
- ✓ Puede causar Fragmentación

Programa desde la visión del usuario

Ejemplo de Segmentación

Segmentación (cont.)

- ✓ Todos los segmentos de un programa pueden no tener el mismo tamaño (código, datos, rutinas).
- Las direcciones Lógicas consisten en 2 partes:
 - ✓ Selector de Segmento
 - ✓ Desplazamiento dentro del segmento

Segmentación (cont.) - Arquitectura

- ☑ Tabla de Segmentos
 - ✓ Permite mapear la dirección lógica en física. Cada entrada contiene:
 - Base: Dirección física de comienzo del segmento
 - Limit: Longitud del Segmento
- ☑ Segment-table base register (STBR): apunta a la ubicación de la tabla de segmentos.
- ☑ Segment-table length register (STLR): cantidad de segmentos de un programa

Segmentación (cont.)

Segmentación - Direcciones (cont.)

Ventajas sobre Paginación

☑ Compartir

☑ Proteger

Segmentación Paginada

- ☑ La paginación
 - ✓ Transparente al programador
 - ✓ Elimina Fragmentación externa.
- ✓ Segmentación
 - Es visible al programador
 - ✓ Facilita modularidad, estructuras de datos grandes y da mejor soporte a la compartición y protección
- ☑Cada segmento es dividido en paginas de tamaño fijo.

Segmentación Paginada (cont.)

Intel x386

