МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Институт №8 «Информационные технологии и прикладная математика» Кафедра 806 «Вычислительная математика и программирование»

Лабораторная работа №4 по курсу «Программирование графических процессов»

Работа с матрицами. Метод Гаусса

Выполнил: Днепров И. С.

Группа: 8О-407Б-17

Преподаватели: К.Г. Крашенинников,

А.Ю. Морозов

Условие

Цель работы:

Использование объединения запросов к глобальной памяти. Реализация метода Гаусса с выбором главного элемента по столбцу. Ознакомление с библиотекой алгоритмов для параллельных расчетов *Thrust*.

В качестве вещественного типа данных необходимо использовать тип данных double. Библиотеку Thrust использовать только для поиска максимального элемента на каждой итерации алгоритма. В местах, где необходимо сравнение по модулю с нулем, в качестве нулевого значения использовать 10^{-7} . Все результаты выводить с относительной точностью 10^{-10} .

Вариант 3. Решение квадратной СЛАУ

Необходимо решить систему уравнений Ax = b, где A – квадратная матрица $n \times n$, b – вектор-столбец свободных коэффициентов длиной n, x – вектор неизвестных.

Входные данные:

На первой строке задано число n – размер матрицы. В следующих n строках, записано по n вещественных чисел – элементы матрицы. Далее, записываются n элементов вектора свободных коэффициентов. $n \le 10^4$.

Выходные данные:

Необходимо вывести n значений, являющиеся элементами вектора неизвестных x.

Пример:

Входной файл	Выходной файл		
2	-4.0000000000e+00 4.500000000e+00		
3 4			
5 6			

Программное и аппаратное обеспечение

GPU

Название: GeForce GT 545

Размер глобальной памяти: 3150381056

Размер константной памяти: 65536

Размер разделяемой памяти: 49152

Регистров на блок: 32768

Максимум потоков на блок: 1024

Размер варпа: 32

Максимальные размеры блока: 1024 x 1024 x 64

Максимальные размеры сетки: 65535 х 65535 х 65535

Количество мультипроцессоров : 3

CPU

Название: Intel Core i7-3770

Частота: 3.40GHz Размер кеша: 8192 KB

Количество ядер: 4

Количество потоков: 8

MEM

Размер: 16 GB

Тип: ddr3

Прочее

OS: Linux Ubuntu 16.04.6 Редактор: Atom

Метод решения

Будем хранить матрицу по столбцам, как это принято в Фортране для объединения запросов к глобальной памяти, причём элементы матрицы b будут располагаться в памяти непосредственно следом за A, чтобы можно было без лишних затрат работать с расширенной матрицей системы $(A \mid b)$.

Организуем прямой проход метода Гаусса по такой расширенной матрице с выбором главного элемента с помощью метода *max element* библиотеки *thrust*.

На каждой итерации алгоритма после успешного выбора главного элемента будем вызывать ядро $direct_move_kernel$ для обновления расширенной матрицы системы $(A \mid b)$. После прямого хода у нас получится ступенчатая матрица A.

Далее, организуем обратный ход метода Гаусса для главного минора и вектора b. В процессе обратного хода приведём матрицу системы сначала к простому виду $\left(diag(a_1,a_2,...,a_k)\,\middle|\, \widetilde{b}\,\right)$, а затем путём деления строк \widetilde{b} на соответствующие им диагональные элементы – к простейшему виду $\left(E\,\middle|\, \bar{b}\,\right)$.

 \bar{b} – и есть искомый вектор.

Описание программы

Прототип	Тип	Описание
struct abs_comparator	Структура	Компаратор для поиска ведущего элемента, как максимального элемента в подстолбце по модулю
<pre>global void swap_rows(double *A, int m, int n,</pre>	Ядро	Обмен местами строк в матрице A размером $m \times n$ с индексами i_1 и i_2
<pre>global void direct_move_kernel(double *A, int m, int n,</pre>	Ядро	Реализация одной итерации прямого хода метода Гаусса вычислением значащих значений в расширенной матрице системы
global void backward_move_kernel(const double *A, int n,	Ядро	Реализация одной итерации обратного хода метода Гаусса вычислением значащих значений в расширенной матрице системы
global void division_kernel(const double *A, int n, double *b)	Ядро	Деление всех элементов \widetilde{b} на ведущий
<pre>int main()</pre>	Функция	Главная точка входа в приложение

Результаты

№ теста	Размер матрицы <i>п</i>	Размер сетки блоков		Размер сетки нитей		Время, микросекунды	
		x	у	x	у		
1	5			32		1.523e+03	
2	100	128	128		32	16	2.610e+04
3	10000					1.013e+08	
4	5	256		32	16	2.309e+03	
5	100		256 256			6.320e+04	
6	10000					9.13e+07	
7	5		512 512	2 32	16	6.287e+03	
8	100	512				1.914e+05	
9	10000					8.13e+07	
10	5			32	16	2.304e+04	
11	100	1024	1024			5.732e+05	
12	10000					7.56e+07	

Выводы

Получен навык распараллеливания вычислений в алгоритме Гаусса с помощью CUDA, изучены вопросы объединения запросов к глобальной памяти. Численно решена задача Ax = b с помощью этого алгоритма. Во время выполнения лабораторной работы сложностей не возникло.