

Optimal Dynamic Subset Sampling: Theory and Applications

Lu Yi, Hanzhi Wang, Zhewei Wei Contact: zhewei@ruc.edu.cn

Technique 1: Group Partition

- The index of the first sample: $i \sim p(1-p)^{i-1}$
- The geometric distribution is memoryless
- ➤ The query time = # of the sampled events

Try a more complicated case!

- $> 2^{-j} < p(x_i) \le 2^{-j+1}$ \triangleright Let $p = 2^{-j+1}$ be the upper bound
- First sample each event with p as a candidate, then accept it with $\frac{p(x_i)}{x_i}$
- Each event is sampled with probability $p \cdot \frac{p(x_i)}{r} = p(x_i)$
- The expect number of candidates $= np \le 2\mu \rightarrow \text{It costs } O(1 + \mu) \text{ time}$

domain set S

 \triangleright Create ($\lceil \log n \rceil + 1$) groups: $G_1, G_2, \dots, G_K(K = \lceil \log n \rceil + 1)$

Why Group Partition?

GeoSS

Step 0. Let p be the upper bound

Step 2. Generate $i \sim p(1-p)^{i-1}$

Step 3. The next candidate: (i +

h)-th event, accept it with $\frac{p(x_i)}{x_i}$

Step 4. h = i + h, repeat Step 2 to

h=0 initially

4 until h > n

Step 1. Currently at the *h*-th event,

- $Figspare G_j = \{x_i | 2^{-j} < p(x_i) \le 2^{-j+1} \},$
- $1 \le j \le K 1$
- $\succ G_j = \{x_i | p(x_i) \le 2^{-j+1}\}, j = K$ ➤ Use *GeoSS* within each group
- \triangleright Totally costs $O(1 + \mu + \log n)$

How to $O(1 + \mu + \log n) \to O(1 + \mu)$?

➢Only sample the groups with at least one candidate! \triangleright The probability that G_i contains at least one candidate:

$$p(G_j) = 1 - (1 - 2^{-j+1})^{|G_j|}$$

 \triangleright First sample among the groups with $p(G_i)$, then sample within the sampled groups

Algorithm 1: SampleWithinGroup **Input:** a group G_k

- **Output:** a drawn sample *T* $n_k \leftarrow |G_k|, T \leftarrow \emptyset, h \leftarrow 0;$
- ² Let $G_k[i]$ be the *i*-th element of G_k ;
- 3 Generate a random r s.t. $Pr[r = j] = \frac{2^{-k+1}(1-2^{-k+1})^{j-1}}{r(G_k)}$,
- 4 while $r + h \le n_k$ do
- **if** rand() < $p(G_k[h])/2^{-k+1}$ **then**
- $T \leftarrow T \cup \{G_k[h]\};$ Generate a random $r \sim \text{Geo}(2^{-k+1})$;

Tips for updates

Example: inserting an event x

S0. Insert x to a group $G_k^{(0)}$ based on p(x)

S1. Recalculate the prob. $p(G_k^{(0)})$

S2. Transfer $x_k^{(1)}$ from one group to another according to $p(x_k^{(1)})$

(also $p(G_k^{(0)})$)

S3. Recalculate the prob. of the modified groups at **S2**

How to sample among the groups?

→ Partition again!

- ➤ We add level index to distinguish various subset sampling problems
- >Use **Technique 2** to sample the groups at level 1, only $O(\log \log n)$ events

Overview

Subset Sampling Problem

 \triangleright Given a set of n distinct events $S = \{x_1, \dots, x_n\}$, in which each event x_i has an associated probability $p(x_i)$, a query for the subset sampling problem returns a subset $T \subseteq S$, such that every x_i is independently included in T with probability $p(x_i)$.

domain set S

Each x_i is included in T independently with probability $p(x_i)$

sample result $T \subseteq S$

Dynamic Subset Sampling Problem

- Insert an event
- Delete an event
- Modify the probability of an event

Contributions

Maximization

- \checkmark Optimal query time: $0(1 + \mu)$
- \checkmark Optimal update time: O(1)
- ✓ Great experimental performance ✓ Empirical study on Influence

Influence spreading under the IC (Independent Cascade) model

Applications

- Dynamic Influence Maximization
- Approximate Graph Propagation
- Computational Epidemiology Fractional (bipartite) matching

Technique 2: Table Lookup

Sample each element independently Sample one subset

An example with # of events m=3

Obtain a row for sampling! > Just uniformly select an entry and return the subset as the sample result

multiples of $\frac{1}{m}$

Deal with non-multiples of 1/m \succ Fill the row with respect to $\bar{p}(x_i) = \frac{\lceil mp(x_i) \rceil}{\rceil} \in$

 $\left\{\frac{1}{m}, \dots, \frac{m}{m}\right\}$

 \triangleright Accept the event with $\bar{p}(x_i)/p(x_i)$

Deal with dynamic probabilities Create a lookup row for each

- possible distribution
- Store the current row index $A(\bar{p}(x_1), ..., \bar{p}(x_m)) = \sum_{i=1}^{m} (m\bar{p}(x_i) - 1)m^{i-1}$
- > m must be small enough!

General Framework Tips for updates

Suppose: $\bar{p}(x_i) \to \bar{p}'(x_i)$, $\bar{p}(x_j) \to \bar{p}'(x_j)$ The new row index: $A'(\bar{p}(x_1), \dots, \bar{p}(x_m))$ $= A\big(\bar{p}(x_1), \dots, \bar{p}(x_m)\big) + \big(m\bar{p}'(x_i) - m\bar{p}(x_i)\big)m^{i-1}$ $+\left(m\bar{p}'(x_j)-m\bar{p}(x_j)\right)m^{j-1}$

Experiments

Empirical Study on Influence Maximization

- > Based on the framework OPIM-C[ICMD'18], replace the subset sampling module with various dynamic subset sampling structures and thus obtain a new dynamic IM algorithm for the fully dynamic model.
- > No algorithms can achieve any meaningful approximation guarantee in the fully dynamic network model. That is, re-running an IM algorithm upon each update can achieve the lower bound of the running time.

>Running time of dynamic IM algorithms based on various subset sampling structures.

>Update time of dynamic IM algorithms based on various subset sampling structures.

Competitors

Normal distribution

query time (s)

Distributions of probabilities

- Normal distribution (skewness as 0) Half-normal distribution (skewness below 1)
- Exponential distribution (skewness as 2) Log-normal distribution (skewness as 4)
- Re-scale the range of the random number into [0,1]

 \triangleright Trade-off between query time and update time. ($n=10^5, \mu=1$)

Half-normal distribution

query time (s)

 \triangleright Varying μ : query time (s) on distributions with different skewnesses. ($n=10^6$)

 \triangleright Varying n: update time (s) on distributions with different skewnesses.