

Gestão da Qualidade de Software

Profa. Mª. Vânia de Oliveira Borges Vania.borges@uemg.br

Mais ou menos isso...

A ideia básica é que qualidade é uma característica que diz se algo é bom ou não, se atende ou não uma expectativa, porém o conceito é relativo, vejamos...

QUALIDADE - CONCEITO

Segundo o Dicionário Michaelis:

- Qualidade qua.li.da.de sf (lat qualitate)
- 1) Atributo, condição natural, propriedade pela qual algo ou alguém se individualiza, distinguindo-se dos demais;
- 2) Excelência, virtude, talento.
- 3) Grau de perfeição, de precisão, de conformidade a um certo padrão.

QUALIDADE - CONCEITO

 Apesar das definições, a noção de qualidade é mais complexa do que parece;

- A ideia de qualidade é intuitiva e relativa;
 - Difícil consenso a respeito de um produto;
 - Avaliação pode mudar conforme diversos fatores como: Marca, gosto, cor, tamanho, design, desempenho, etc.

 Para julgar é necessário estabelecer critérios que podem ser simples ou complexos (mais requisitos).

O ASSUNTO É ANTIGO...

- Preocupação c/ o rigor desde a antiguidade;
- Padrão de medida de comprimento egípcio;
 - Cúbito

Grandes templos da Grécia e Roma antigas;

Feitos da Navegação no século XVI;

- Catedrais medievais;
 - Compassos simples e cordas com nós a intervalos regulares;

- Revolução Industrial (Marco):
 - > Mudanças socioeconômicas;
 - ►Início da Automação;
 - >Surgimento do consumo de massa;
 - Surgimento de milhares de novas empresas;

REVOLUÇÃO INDUSTRIAL

Cenas do filme **Tempos Modernos**

- Concorrência de indústrias:
 - Aumento da eficiência (sobrevivência);
 - Processo de melhoria contínua (evoluindo);
- Década de 20:
 - Garantir Qualidade individual de cada peça;
 - Mudar trabalho artesanal para industrial;
 - Controle estatístico da Produção;
 - Diagramas de Controle (Shewhart chart)

DIAGRAMA DE SHEWHART / CONTROL CHARTS

LS = Limite superior; M = Média; LI = Limite inferior.

- Década de 40
 - Segunda Guerra Mundial;
 - Aprimoramento da fabricação de materiais bélicos;
 - Metodologias Japonesas (Taguchi, 5s, Ishikawa, etc.)

- Década de 40
 - Surg. órgãos ligados a Qualidade;
 - ASQC (American Society for Quality Control);
 - ISO (International Standardization Organization)
 - ABNT (Associação Brasileira de Normas Técnicas);

QUALIDADE DE SOFTWARE - DEFINIÇÃO BÁSICA

QUALIDADE DE SOFTWARE – HISTÓRIA

- Pós-Guerra
 - Uso de computadores por militares e acadêmicos;
 - Conforme aumenta o número de pessoas usando computadores, inicia-se uma preocupação com a qualidade do software;

QUALIDADE DE SOFTWARE – HISTÓRIA

- Mudança Tecnológica (Hardware)
 - Melhoria de máquinas;
 - Criação de produtos + complexos (Crise do Software);
 - Evolução do hardware incompatível com o software;

ENIAC (ATÉ 1970) X INTEL 4004 (A PARTIR DE 1971)

1971: INTEL 4004

O Intel 4004, o primeiro microprocessador do mundo, foi inicialmente criado para operar uma calculadora da empresa japonesa Busicom. Contudo, os dirigentes da Intel perceberam que aquele microprocessador poderia realizar muito mais funções, e empregaram uma evolução do 4004 para o desenvolvimento do primeiro computador pessoal, o ALTAIR 8800.

O chip 4004 e o computador ALTAIR, com processador Intel 8080, 40 vezes mais rápido que o ENIAC.

CRISE DO SOFTWARE

"Não havia sequer a profissão programador..."

"Enquanto não havia máquinas, programar não era um problema..."

QUALIDADE DE SOFTWARE – HISTÓRIA

- 1968 Conferência de "Engenharia de Software" (OTAN);
- Problemas da época iguais aos de hoje!?
- Diversidade de erros
 - (mais conhecido: Bug do Milênio);

PROBLEMAS DA DÉCADA DE 70 SÃO IGUAIS AOS DE HOJE?

- Cronogramas não observados;
- Projetos com tantas dificuldades que são abandonados;
- Módulos que não operam corretamente quando combinados;
- Programas que n\u00e3o fazem exatamente o que era esperado;
- Programas tão difíceis de usar que são descartados;
- Programas que simplesmente param de funcionar.

QUALIDADE DE SOFTWARE – HISTÓRIA

- Desenvolvimento de software
 - Aspecto não repetitivo torna atividade mais difícil;
 - Imprevisibilidade;
 - Dificuldade inicial para delimitar o escopo
 - Volatilidade de requisitos

IMPREVISIBILIDADES E INCERTEZAS EM PROJETO DE ENGENHARIA CIVIL

(ZONAS DE SOMBRA)

Projeto e realização de uma ponte

IMPREVISIBILIDADES E INCERTEZAS EM PROJETO DE SOFTWARE (ZONAS DE SOMBRA)

Projeto e implementação de software

Sim... ⊗

...existe um elemento que pode comprometer todo um projeto...

Elemento Humano = Sentimentos, emoções, ego...

O trabalho intelectual pode influenciar (e muito) gerando diversos obstáculos ao sucesso de um projeto.

- DESAFIOS: Conciliar disciplina p/ garantir melhor previsibilidade de resultados c/ caráter aleatório da criação de soluções;
- Desenvolvimento de metodologias (pedagógicas), modelos, tecnologias, ferramentas (automatizar, ganhar tempo, ter uniformidade)
- Propósito da Engenharia de Software
 - Definição clara do objetivo (alvo);
 - Garantir qualidade;

- Qualidade e Requisitos:
 - Como julgar a qualidade?
 - Como escolher o melhor?
 - Difícil consenso;
 - > Pessoas diferentes;
 - > Cenários diferentes;

REQUISITOS DIFERENTES

- Qualidade e Requisitos:
 - Necessidade de critérios p/ julgar um produto;
 - Ex.: Avaliar a qualidade de um Computador
 - Especificações diferentes p/ cada componente;
 - >HD, Memória, Processador, etc.
 - Necessidade de um ponto de referência para julgar um produto.

"A qualidade é a conformidade com os requisitos" (Crosby, 1992)

Ah! Então qualidade de software é isso?
Atender os requisitos do cliente!?

Opa! Pode-se dizer que este é um grande passo, mas há mais coisas a se considerar...

- E quando temos mais de um *cliente?* e os *stakeholders*?
- E se houver uma deficiência de diálogo?
- Engenheiros de Software precisam saber todas as fontes de requisitos, os conflitos e a falta de consenso;

QUALIDADE DE SOFTWARE E BUGS

Dogma: "Não cometerás erros de programação." ...!?

- Qual software não contém erros? Tem certeza!?
- Programa pode ter erros e continuar sendo um produto de qualidade;
- A questão é: Quais os custos associados aos erros!?

QUALIDADE DE SOFTWARE E BUGS

- Há casos de bugs aceitáveis
 - Risco de mudanças profundas no código (99% clientes satisfeitos X 1% clientes insatisfeitos);
 - Certos detalhes de jogos;
- "zero-defeitos" é um ideal, mas até que ponto pode-se evitar os erros?
- O que é mais *decisivo* e/ou *custoso* para a organização?

QUALIDADE DE SOFTWARE E BUGS

- Estabilidade de um programa
 - Correções, atualizações que diminuem falhas;
 - Quanto mais estável menos falhas;
 - Normalmente é proporcional a idade do programa;
 - Mais tempo de uso, menos correções;

QUALIDADE DE SOFTWARE E BUGS

- Resumindo sobre erros/falhas:
 - A gravidade dos erros é relativa;
 - Tratar erros constitui (apenas) um dos aspectos da Qualidade de software.
- Alguns casos de erros de software dramáticos:
 - ARIANE 501 (Foguete);
 - THERAC-25 (Máquina de terapia radiológica);

TRATEM AS FALHAS, MAS NÃO SE ESQUEÇAM DE QUE...

...E O "MANO" PODE SER UM PROGRAMADOR!

OOPS! ©

MAS ONDE ESTÃO OS DEFEITOS ???

Há uma visão comum de entender que os defeitos estão apenas no código-fonte ou ainda que somente os profissionais de desenvolvimento, qualidade e testes são os responsáveis por um software sem defeitos;

- ✓ Deve haver uma interação contínua das áreas de desenvolvimento e qualidade (QA) com outras áreas;
 - ✓ Áreas de negócio, produção, suporte, infraestrutura, atendimento a cliente, etc.

MAS ONDE ESTÃO OS DEFEITOS ???

✓ Erros ocorrem em todas as fases do processo de desenvolvimento de software;

- ✓ Estudos demonstram que a *maior incidência* de *erros* está nas *fases iniciais* do processo;
 - ✓ Especificação e/ou entendimento mal compreendidos sobre os objetivos;

MAS ONDE ESTÃO OS DEFEITOS???

É verdade... Tudo isso pode afetar a qualidade não é!?

Tudo isso e mais um pouco...

Eita...! ©

...Qualidade de
Software envolve
uma série de
fatores... ©

Vish!

Na verdade, qualquer decisão tomada no processo de desenvolvimento pode afetar a qualidade final...

QUALIDADE DE SOFTWARE - DEFINIÇÃO MAIS ABRANGENTE

"Qualidade de Software é um processo sistemático que focaliza todas as etapas e artefatos produzidos com o objetivo de garantir a conformidade de processos, produtos, prevenindo e eliminando defeitos."

QS - EVOLUÇÃO GERAL

Desenvolvimento científico (fatos, teorias, métodos...);

Desdobramento da computação em subáreas de estudo;

Grande e rápido crescimento da tecnologia;

• Grande aumento da qtde de informações (necessidade de especialização);

QS – EVOLUÇÃO DAS ORGANIZAÇÕES DESENVOLVEDORAS DE SOFTWARE

Evolução das Organizações Desenvolvedoras de Software			
Características	1960	1980	2000
Tamanho do Software	Pequeno	Médio	Muito
			Grande
Complexidade do Software	Baixa	Média	Alta
Tamanho da Equipe de	Pequeno	Médio	Grande
Desenvolvimento			
Padrões e Metodologias de	Interno	Moderado	Sofisticado
Desenvolvimento			
Padrões e Metodologias de Qualidade	Interno	Emergente	Sofisticado
e Testes			
Organizações de Qualidade e Testes	Bem Poucas	Algumas	Muitas
Reconhecimento da Importância da	Pequeno	Algum	Significante
Qualidade			
Tamanho da Equipe de Qualidade e	Pequeno	Pequeno	Grande
Testes			

Guia SWEBOK (Software Engineering Body of Knowledge / Corpo de Conhecimento de Engenharia de Software) pelo IEEE;

Dividido em áreas de conhecimento:

Gerência de engenharia, projeto, métodos e ferramentas de engenharia, construção, processo de engenharia, **testes**, **qualidade**, manutenção, disciplinas relacionadas e gerência de configuração;

Áreas trabalhando em conjunto;

Fundamentos de Qualidade de Software:

- Definição de requisitos a partir de um modelo (Norma SQuaRE, ISO/IEC 25000);
- Aspectos éticos do trabalho com software
 - (Ex.: Problemas com crimes por computador);
- Valor e custo da qualidade
 - Prejuízos pela falta de qualidade;
 - Custos p/ garantir exigências de software;

Processos de Gerência de Qualidade de Software:

- Aspectos p/ construção do produto
- Ferramentas: controle de versão e linguagens, metodologias p/ revisão, verificações e validações, auditorias, técnicas organizacionais e de administração de pessoas, etc.

Considerações Práticas:

Requisitos de qualidade de software (fatores de influência, orçamento para realização, usuários envolvidos, segurança de funcionamento, consequências de falhas;

Caracterização e detecção de erros;

Revisões e auditorias;

Medição da Qualidade (Medidas para auxiliar a tomada de decisão antes, durante e depois).

QUALIDADE DE SOFTWARE - PMI

Pilares da Qualidade de Software (PMBOK):

- Planejamento da Qualidade:
 - Identificação de padrões de qualidade relevantes ao projeto e como satisfazê-los;
 - Elaboração do Plano de Garantia da QS;
 - Estratégias de Testes;

QUALIDADE DE SOFTWARE - PMI

Pilares da Qualidade de Software (PMBOK):

- Garantia da Qualidade:
 - Execução de atividades para garantir o desempenho de cada etapa do desenvolvimento;
 - Testes de verificação (documentação);
 - Testes de Validação (software);

QUALIDADE DE SOFTWARE - PMI

Pilares da Qualidade de Software (PMBOK):

- Controle da Qualidade (Contínuo):
 - Monitoramento dos resultados;
 - Verificação de atendimento aos padrões;
 - Acompanhar eficiência e variações de qualidade;
 - Avaliação da qualidade do processo e do produto;

QUALIDADE DE SOFTWARE – ONDE APLICAR?

Temos uma tendência a pensar em desenvolvimento de software com uma linha do tempo... 🙁

QUALIDADE DE SOFTWARE – ONDE APLICAR?

"Qualidade não é uma fase do ciclo de desenvolvimento de software...
...é parte de todas as fases."

Processo de Garantia da Qualidade de Software

QUALIDADE DE SOFTWARE - CICLO DE VIDA

- Maior confiabilidade (Etapas monitoradas e avaliadas durante o desenvolvimento);
- Descoberta de defeitos antecipadamente;
- Menor índice de retrabalho;
- Controle de prazos e compromissos;
- Aumento na satisfação do cliente;
- Equipe mais motivada (atividades + construtivas);

RELAÇÃO CUSTO X QUALIDADE

RELAÇÃO CUSTO X QUALIDADE

EFETIVIDADE NO PROCESSO DE IDENTIFICAÇÃO DE DEFEITOS

