Работа 5.(2.2 - 2.3)

Излучение атома водорода и молекулы йода

Богданов Александр Б05-003

1 декабря 2022 г.

Цель работы: исследовать спектральные закономерности в оптическом спектре водорода; вычислить постоянную Ридберга; исследовать спектр поглощения паров йода в видимой области; вычислить энергию колебательного кванта молекулы йода и энергию ее диссоциации в основном и возбужденном состояниях.

В работе используются: стеклянно-призменный монохроматор-спектрометр УМ-2; ртутная лампа ПРК-4; неоновая лампа; водородная лампа.

Теоретические положения:

Спектр атома водорода

Длины волн спектральных линий водородоподобного атома описываются формулой:

$$\frac{1}{\lambda_{mn}} = RZ^2 \left(\frac{1}{n^2} - \frac{1}{m^2} \right),$$

где R — константа (постоянной Ридберга), Z — порядковый номер атома, а m и n — целые числа.

Рис. 1: Уровни энергии атома водорода и образование спектральных серий

Если считать ядро неподвижным, то возможные энергетические состояния водородоподобного атома определяются выражением:

$$E_n = -\frac{2\pi^2 m_e e^4 Z^2}{h^2} \frac{1}{n^2}.$$

Из схемы видно, что линии в спектре водорода можно расположить по сериям; для всех линий серии значение n остается постоянным, а m может принимать любые значения от n+1 до ∞ .

В данной работе изучается серия Бальмера, линии которой лежат в видимой области. Для серии Бальмера n=2. Величина m для первых четырех линий этой серии принимает значение $3,\,4,\,5,\,6$. Эти линии обозначаются символами $H_{\alpha},\,H_{\beta},\,H_{\gamma},\,H_{\delta}$.

Спектр молекулы йода

В первом приближении энергия молекулы может быть представлена в виде:

$$E = E_{\text{эл}} + E_{\text{колеб}} + E_{\text{враш}},$$

где $E_{\text{эл}}, E_{\text{колеб}}$ и $E_{\text{вращ}}$ – электронная, колебательная и вращательная энергии молекулы соответственно.

Оптические переходы (переходы, связанные с излучением фотонов в видимом диапазоне длин волн) соответствуют переходам между различными электронными состояниями молекулы. При этом обычно происходят также изменения ее вращательного и колебательного состояний, однако наблюдение первых оптическими спектрометрами невозможно в силу малости их энергии.

Рис. 2: Электронные и электронно-колебательные энергетические уровни двухатомной молекулы

На схеме изображены энергетические уровни молекулы без учета вращательной структуры. Штриховыми линиями показаны чисто электронные уровни E_1 и E_2 , а сплошными – колебательные подуровни этих состояний. Следует подчеркнуть, что минимальное значение колебательной энергии при n=0 отлично от нуля и равно $h\nu/2$.

Наименьшая энергия, которую нужно сообщить молекуле в нижайшем колебательном состоянии, чтобы она диссоциировала, называется энергией диссоциации. На схеме $E_{\rm a}$ – энергия возбуждения атома, возникающая при переходе молекулы из состояния 1 в область непрерывного спектра, соответствующего состоянию 2. Энергия чисто электронного перехода $E_2 - E_1 = h\nu_{\rm эл}$. Границу схождения спектра, т.е. энергию возбуждения, при которой происходит переход молекулы в область непрерывного спектра, обозначим через $h\nu_{\rm rp}$.

Рис. 3: Структура электронно-колебательного спектра поглощения молекулы йода в видимой области

На схеме показана структура электронно-колебательного спектра поглощения молекул йода, который исследуется в данной работе. Серии, указанные на схеме, называются сериями Деландра. Энергетические расстояния между линиями в начале серии приблизительно равны:

$$h\nu_{0,n_2} - h\nu_{0,(n_2-1)} \approx h\nu_2,$$

т.е. они равны колебательному кванту в возбужденном электронном состоянии.

Рис. 4: Спектр поглощения паров йода

Общий вид спектра показан на схеме. Из рассмотренного ясно, что спектр поглощения паров йода в видимой области при температуре $T \approx 300~\mathrm{K}$ практически состоит из двух серий Деландра (1-й и 0-й), накладывающихся друг на друга.

Экспериментальная установка:

Рис. 5: Устройство монохроматора УМ-2

Для измерения длин волн спектральных линий в работе используется стеклянно-призменный монохроматор-спектрометр УМ-2. Основные элементы монохроматора представлены на схеме.

Спектрометр УМ-2 нуждается в предварительной градуировке. Для градуировки в коротковолновой части спектра удобно применять ртутную лампу ПРК-4, а в длинноволновой и средней части спектра — неоновую лампу. Таблицы спектральных линий ртути и неона с визуальной оценкой их относительной интенсивности приведены на установке:

Рис. 6: Схема экспериментальной установки

В нашей работе спектр поглощения паров йода наблюдается визуально на фоне сплошного спектра лампы накаливания 1, питаемой от блока питания 2. Кювета 3 с кристаллами йода подогревается нихромовой спиралью, подключенной вместе с лампой накаливания к блоку питания. Линза 4 используется как конденсор.

Ход работы:

- 1. Настроим установку.
- 2. Произведём градуировку монохроматора. Для этого проведём измерения линий спектра неона и ртути, сняв зависимость длины волны наблюдаемого света λ от параметра θ барабана монохроматора:

	lo.	0 °	3 8
	<u> 0</u>	θ,°	λ, Å
_	1	2592	7032
	2	2558	6929
	1	2556	6907
	3	2508	6717
4	4	2482	6678
!	5	2456	6599
	6	2434	6533
	7	2424	6507
	8	2388	6402
	9	2380	6383
1	.0	2358	6334
1	.1	2350	6305
1	.2	2332	6267
:	2	2324	6234
1	.3	2314	6217
1	.4	2292	6164
1	.5	2284	6143
1	.6	2264	6096
1	.7	2254	6074
1	.8	2232	6030
1	.9	2210	5976
2	.0	2194	5945
2	1	2164	5882
2	2	2152	5852
	3	2120	5791
	4	2108	5770
	5	1930	5461
2	3	1890	5401
2	4	1856	5341
2	.5	1844	5331
	6	1508	4916
	7	846	4358
	8	294	4047

Рис. 7: Голубой – неон, серый – йод

Рис. 8: Спектр неона

Рис. 9: Спектр йода

По таблице построим калибровочный график:

3. Измерим положение линий $H_{\alpha}, H_{\beta}, H_{\gamma}, H_{\delta}$, затем с помощью калибровочного графика определим длины волн линий:

Линия спектра	θ,°	λ, Å	m	n
H_alpha	2448	6575	3	2
H_beta	1460	4847	4	2
H_gamma	816	4377	5	2

Линию H_{δ} наблюдать не удалось из-за слабой интенсивности.

Для проверки формулы сериальной закономерности построим график зависимости $1/\lambda$ от $1/n^2-1/m^2$:

Для каждой из наблюдаемых линий водорода вычислим значение постоянной Ридберга, а затем определим ее среднее значение:

$$R_H^{(m)} = \left(\lambda_{m,n} Z^2 \left(\frac{1}{n^2} - \frac{1}{m^2}\right)\right)^{-1}$$

$$R_H^{\alpha} = (109502, 3 \pm 163, 1) \text{ cm}^{-1}$$

$$R_H^{\beta} = (110034, 2 \pm 215, 2) \text{ cm}^{-1}$$

$$R_H^{\gamma} = (108794, 5 \pm 207, 1) \text{ cm}^{-1}$$

$$R_H = (109443, 7 \pm 195, 3) \text{ cm}^{-1}$$

Теоретическая формула:

$$R_H^{\text{reop}} = \frac{m_e e^4}{4\pi c \hbar^3} = 109726 \text{ cm}^{-1}$$

- 4. Сопоставим наблюдаемый спектр йода со спектром поглощения. Определим деления барабана монохроматора θ , соответствующие:
 - (a) линии $h\nu_{1,0}$ одной из самых длинноволновых хорошо видимых линий поглошения:

$$\theta_{1,0} = (2230 \pm 2)^{\circ}$$

(b) линии $h\nu_{1,5}$ – шестой по счету от выбранной длинноволновой линии:

$$\theta_{1,5} = (2132 \pm 2)^{\circ}$$

(c) линии $h\nu_{\rm rp}$ – началу сплошного спектра поглощения:

$$\theta_{1,0} = (1770 \pm 2)^{\circ}$$

При помощи градуировочной кривой монохроматора определим длины волн линий поглощения йода и соответствующие энергии:

$$\lambda_{1,0} = (6495 \pm 9) \text{ Å}$$
 $h\nu_{1,0} = (1,921 \pm 0,03) \text{ 9B}$ $\lambda_{1,5} = (6227 \pm 9) \text{ Å}$ $h\nu_{1,5} = (2,012 \pm 0,03) \text{ 9B}$

$$\lambda_{\rm rp} = (5443 \pm 9) \ {\rm Å} \qquad h \nu_{\rm rp} = (2, 301 \pm 0, 03) \ {\rm эB}$$

Вычислим энергию колебательного кванта возбужденного состояния молекулы йода:

$$h\nu_2 = \frac{h\nu_{1,5} - h\nu_{1,0}}{5}$$

$$h\nu_2 = (0,018 \pm 0,002)$$
 эВ

Используя то, что энергия колебательного кванта основного состояния $h\nu_1 = 0,027$ эВ, а энергия возбуждения атома $E_a = 0,94$ эВ, вычислим:

(a) Энергию электронного перехода $h\nu_{\text{эл}}$:

$$h\nu_{n_1,n_2} = h\nu_{\text{эл}} + h\nu_2\left(n_2 + \frac{1}{2}\right) - h\nu_1\left(n_1 + \frac{1}{2}\right)$$
$$h\nu_{\text{эл}} = h\nu_{1,0} + \frac{3}{2}h\nu_1 - \frac{1}{2}h\nu_2$$

$$h\nu_{\text{эл}} = (1,952 \pm 0,005) \text{ эВ}$$

(b) Энергию диссоциации молекулы в основном состоянии D_1 :

$$D_1 = h\nu_{rp} - E_a$$

$$D_1 = (1,361 \pm 0,006) \text{ } \text{9B}$$

(c) Энергию диссоциации молекулы в возбужденном состоянии D_2 :

$$D_2 = h\nu_{\rm pp} - h\nu_{\rm au}$$

$$D_2 = (0,349 \pm 0,009)$$
 эВ

Вывод:

В результате выполнения лабораторной работы:

- 1. Проверена справедливость формулы сериальной закономерности.
- 2. При исследовании спектра водорода наблюдались линии, соответствующие серии Бальмера. Последнюю линию H_{δ} не удалось увидеть в силу ее слабой интенсивности, однако значения оставшихся достаточно точно совпадают с табличными:

$$\lambda_{\alpha}=(657,5\pm1,5)$$
 нм $\lambda_{\alpha}^{
m reop}=656,3$ нм

$$\lambda_{eta} = (484, 7 \pm 1, 5)$$
 нм $\lambda_{eta}^{
m reop} = 486, 1$ нм

$$\lambda_{\gamma} = (437, 7 \pm 1, 5)$$
 нм $\lambda_{\gamma}^{\mathrm{reop}} = 434, 1$ нм

3. Вычислена постоянная Ридберга, которая достаточно точно совпадает с табличным:

$$R_H = (109443, 7 \pm 195, 3) \text{ cm}^{-1}$$
 $R_H^{\text{reop}} = 109726 \text{ cm}^{-1}$

- 4. Для молекулы йода были вычислены:
 - (а) Энергия электронного перехода:

$$h\nu_{\text{эл}} = (1,952 \pm 0,005) \text{ эВ}$$

(b) Энергия диссоциации молекулы в основном состоянии:

$$D_1 = (1,361 \pm 0,006) \text{ } 9B$$

(с) Энергию диссоциации молекулы в возбужденном состоянии:

$$D_2 = (0,349 \pm 0,009) \text{ } 9B$$