Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики университет итмо

учебный центр общей физики фтф

Группа <u>Р3207</u>	_К работе допущен				
Студент Садовой Г.В.	_Работа выполнена				
Преподаватель Агабабаев В.А.	Отчет принят				
Рабочий протокол и отчет по лабораторной работе №1.02					
Изучение скольжения тележки по					
наклонной поверхности					

1. Цель работы.

- 1) Экспериментальная проверка равноускоренности движения тележки по наклонной плоскости.
 - 2) Определение величины ускорения свободного падения g.

2. Задачи.

- 1. Измерение времени движения тележки по рельсу с фиксированным углом наклона.
- 2. Измерение времени движения тележки по рельсу при разных углах наклона рельса к горизонту.
- 3. Исследование движения тележки при фиксированном угле наклона рельса. Проверка равноускоренности движения тележки.
- 4. Исследование зависимости ускорения тележки от угла наклона рельса к горизонту. Определение ускорения свободного падения.

3. Объект исследования.

Ускорение тележки при различных углах наклона.

4. Метод экспериментального исследования.

Измерение времени, за которое тележка проходит заданное расстояние по наклонной плоскости при различных углах наклона.

5. Рабочие формулы и исходные данные.

$$Y = x_{2} - x_{1}$$

$$Z = \frac{t_{2}^{2} - t_{1}^{2}}{2}$$

$$\Delta Y = \sqrt{\frac{df_{1}}{dx_{1}} \cdot \Delta x_{1}^{2} + \frac{df_{1}}{dx_{2}} \cdot \Delta x_{2}^{2}}$$

$$\Delta Z = \sqrt{\frac{df_{2}}{dt_{1}} \cdot \Delta t_{1}^{2} + \frac{df_{2}}{dt_{2}} \cdot \Delta t_{2}^{2}}$$

$$\varepsilon_{Y} = \frac{\Delta Y}{Y} \cdot 100\% \quad \varepsilon_{Z} = \frac{\Delta Z}{Z} \cdot 100\%$$

$$a = \frac{\sum_{i=1}^{N} Z_{i} \cdot Y_{i}}{\sum_{i=1}^{N} Z_{i}^{2}} \qquad \sigma_{a} = \sqrt{\frac{\sum_{i=1}^{N} (Y_{i} - a \cdot Z_{i})^{2}}{(N - 1) \cdot \sum_{i=1}^{N} Z_{i}^{2}}}$$

$$\Delta_{a} = 2\sigma_{a} \quad \varepsilon_{a} = \frac{\Delta_{a}}{a} \cdot 100\%$$

$$\sin \alpha = \frac{(h - h_{0}) - (h' - h'_{0})}{x' - x}$$

$$\langle a \rangle = \frac{2(x_{2} - x_{1})}{\langle t_{2} \rangle^{2} - \langle t_{1} \rangle^{2}}$$

$$\begin{split} & \Delta a = \langle a \rangle \cdot \sqrt{\frac{(\Delta x_{\text{\tiny M2}})^2 + (\Delta x_{\text{\tiny M1}})^2}{(x_2 - x_1)^2}} + 4 \cdot \frac{(\langle t_1 \rangle \Delta t_1)^2 + (\langle t_2 \rangle \Delta t_2)^2}{(\langle t_2 \rangle^2 - \langle t_1 \rangle^2)^2} \\ & B \equiv g = \frac{\sum_{i=1}^N (a_i \cdot \sin \alpha_i) - \frac{1}{N} \cdot \sum_{i=1}^N a_i \cdot \sum_{i=1}^N \sin \alpha_i}{\sum_{i=1}^N \sin \alpha_i^2 - \frac{1}{N} \cdot (\sum_{i=1}^N \sin \alpha_i)^2} \\ & A = \frac{1}{N} \cdot (\sum_{i=1}^N a_i - B \cdot \sum_{i=1}^N \sin \alpha_i) \\ & \sigma_g = \sqrt{\frac{\sum_{i=1}^N (a_i - (A + B \cdot \sin \alpha_i))^2}{(\sum_{i=1}^N \sin \alpha_i^2 - \frac{1}{N} \cdot (\sum_{i=1}^N \sin \alpha_i)^2) \cdot (N - 2)}} \\ & \Delta_g = 2\sigma_g \qquad \varepsilon_g = \frac{\Delta_g}{g} \cdot 100\% \\ & \epsilon t \Rightarrow \frac{\sum_{i=1}^N t_i}{N} \\ & \Delta t = \sqrt{(\frac{df_3}{dt_1} \cdot \Delta t_1)^2 + (\frac{df_3}{dt_2} \cdot \Delta t_2)^2 + (\frac{df_3}{dt_3} \cdot \Delta t_3)^2 + (\frac{df_3}{dt_4} \cdot \Delta t_4)^2 + (\frac{df_3}{dt_5} \cdot \Delta t_5)^2} \\ & \alpha = 0.90 \\ & N = 5 \\ & g_{\text{\tiny Ta6,0}} = 9.82 \, \frac{M}{c^2} \end{split}$$

6. Измерительные приборы.

Таблица 1: Измерительные приборы

Наименование	Предел	Цена	Класс	Погрешность
	измерений	деления	точности	
Линейка на рельсе	1,3 м	1 см/дел	-	5,0 мм
Линейка на угольнике	250 мм	1 мм/дел	-	0,5 мм
ПКЦ-3 в режиме	100 c	0,1 c	-	0,1 c
секундомера				

7. Схема установки.

Рис. 2. Общий вид экспериментальной установки

- 1. Рельс с сантиметровой шкалой на лицевой стороне
- 2. Тележка
- 3. Воздушный насос
- 4. Источник питания насоса ВС 4-12
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)
- 7. Фиксирующий электромагнит
- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Пульт дистанционного управления прибором ПКЦ-3
- 11. Линейка угольник

8. Результаты прямых измерений и их обработки.

Задание 1. Исследование движения тележки при фиксированном угле наклона рельса. Проверка равноускоренности движения тележки

Таблица 2

X, M	x', m	h_o , мм	h'_{o} , mm
$0,\!22 \pm 0,\!005$	$1,00 \pm 0,005$	187 ± 0.5	$187 \pm 0,5$

Таблица 3: Результаты прямых измерений (Задание 1)

№	Измеренные величины			нины	Рассчитанные величины	
	x_1, m	x_2, m	t_1, c	t_2, c	x_2-x_1,m	$\frac{t_2^2 - t_1^2}{2}, c^2$
1	0,15	0,40	1,40	2,70	0,25	2,665
2	0,15	0,50	1,40	3,10	0,35	3,825
3	0,15	0,70	1,40	3,60	0,55	5,5
4	0,15	0,90	1,30	4,00	0,75	7,155
5	0,15	1,10	1,20	4,40	0,95	8,96

Задание 2. Исследование зависимости ускорения тележки от угла наклона рельса к горизонту. Определение ускорения свободного падения

Таблица 4: Результаты прямых измерений (Задание 2)

n_p	h', mm	h, mm	№	t_1, c	t_2, c
1	188	196	1	1,3	4,5
			2	1,3	4,5
			3	1,2	4,4
			4	1,3	4,4
			5	1,3	4,5
2	188	205	1	0,9	3,2
			2	0,9	3,2
			3	0,9	3,1
			4	0,9	3,1
			5	0,9	3,1
3	188	215	1	0,7	2,5
			2	0,7	2,5
			3	0,7	2,5
			4	0,7	2,5
			5	0,7	2,5
4	189	225	1	0,6	2,2
			2	0,6	2,2
			3	0,6	2,2
			4	0,6	2,2
			5	0,6	2,2
5	190	235	1	0,5	1,9
			2	0,5	1,9
			3	0,5	1,9
			4	0,6	1,9
			5	0,6	1,9

9. Расчет результатов косвенных измерений.

Задание 1

 $N_{\Pi\Pi}$ - количество пластин h - высота на координате x=0,22 м h ' - высота на координате x '=1,00 м

$$a = \frac{\sum_{i=1}^{N} Z_i \cdot Y_i}{\sum_{i=1}^{N} Z_i^2} \cong 0.103 \frac{M}{c^2}$$

$$\sqrt{\sum_{i=1}^{N} (Y_i - q \cdot Z_i)^2}$$

$$\sigma_a = \sqrt{\frac{\sum_{i=1}^{N} (Y_i - a \cdot Z_i)^2}{(N-1) \cdot \sum_{i=1}^{N} Z_i^2}} \cong 0,002249 \frac{M}{c^2}$$

Задание 2

Таблица 5: Результаты расчетов (Задание 2)

$N_{\Pi J}$	sin α	$\langle t_1 \rangle \pm \Delta t_1$, c	$\langle t_2 \rangle \pm \Delta t_2, c$	$\langle a \rangle \pm \Delta a, \frac{M}{c^2}$
1	0,01025641	1,28 ± 0,06	4,46 ± 0,06	0,104 ± 0,003
2	0,021794872	0,90 ± 0,05	3,14 ± 0,06	$0,210 \pm 0,009$
3	0,034615385	0.70 ± 0.05	2,50 ± 0,05	$0,330 \\ \pm 0,015$
4	0,046153846	$0,60 \\ \pm 0,05$	2,20 ± 0,05	$0,424 \\ \pm 0,021$
5	0,057692308	0,54 ± 0,06	1,90 ± 0,05	0,573 ± 0,034

$$N_{\Pi \Pi}$$
 — количество пластин $\langle t_{1,2} \rangle = rac{1}{N} \sum_{i=1}^N t_{1i,2i}$

$$B \equiv g = \frac{\sum_{i=1}^{N} (a_i \cdot \sin \alpha_i) - \frac{1}{N} \cdot \sum_{i=1}^{N} a_i \cdot \sum_{i=1}^{N} \sin \alpha_i}{\sum_{i=1}^{N} \sin \alpha_i^2 - \frac{1}{N} \cdot (\sum_{i=1}^{N} \sin \alpha_i)^2} = 9,64821 \frac{M}{C^2}$$

$$A = \frac{1}{N} \cdot (\sum_{i=1}^{N} a_i - B \cdot \sum_{i=1}^{N} \sin \alpha_i) = -0,00091$$

$$\sigma_g = \sqrt{\frac{\sum_{i=1}^{N} (a_i - (A + B \cdot \sin \alpha_i))^2}{(\sum_{i=1}^{N} \sin \alpha_i^2 - \frac{1}{N} \cdot (\sum_{i=1}^{N} \sin \alpha_i)^2) \cdot (N - 2)}} = 1,07845 \frac{M}{c^2}$$

$$\Delta g = 2\sigma_g = 2,1569$$

$$\varepsilon_g = \frac{\Delta g}{g} * 100\% = 22\%$$

11. Графики.

График 1. Зависимость Y от Z

График 2. Зависимость а от sinlpha

12. Высчитывание погрешностей.

$$\Delta a = 2\sigma = 0.005598$$

$$\varepsilon a = \frac{\Delta a}{a} \cdot 100\% = 4,37\%$$

$$\Delta g = 2\sigma_g = 2,1569$$

$$\varepsilon_g = \frac{\Delta g}{g} * 100\% = 22\%$$

Табличное значение g для Санкт-Петербурга = 9,8195

$$|g - g_{\text{табл}}| = |9,64821 - 9,8195| = 0,17129 \frac{M}{C^2}$$

$$\varepsilon_{g_{\text{табл}}} = \frac{|g - g_{\text{табл}}|}{g_{\text{табл}}} \cdot 100\% = \frac{0,17129}{9,8195} \cdot 100\% = 1,74\%$$

13. Результаты работы.

$$a = 0.103 \pm 0.006 \frac{M}{c^2}$$
 $\varepsilon_a \approx 4\%$ $a = 0.9$ $g = 9.6 \pm 2.2 \frac{M}{c^2}$ $\varepsilon_g \approx 22\%$ $a = 0.9$ $\varepsilon_{g_{\text{Tab}_B}} = 1.74\%$

14. Выводы и анализ результатов работы.

На основании графика, представленного на рисунке №2, можно сделать вывод, что полученная зависимость, с учетом погрешности ускорения, имеет линейный характер, что подтверждает равномерное движение тележки.

Значение ускорения свободного падения для Санкт-Петербурга, $g_{\text{табл}} = 9,8195$, входит в рассчитанный интервал $g = 9,6 \pm 2,2$. Это свидетельствует о согласованности экспериментальных данных с табличным значением.