

COMPUTER ORGANIZATION AND DE

The Hardware/Software Interface

Arithmetic for Computers

Arithmetic for Computers

- Operations on integers
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow
- Floating-point real numbers
 - Representation and operations

Integer Addition

Example: 7 + 6

- Overflow if result out of range
 - Adding +ve and –ve operands, no overflow
 - Adding two +ve operands
 - Overflow if result sign is 1
 - Adding two –ve operands
 - Overflow if result sign is 0

Integer Subtraction

- Add negation of second operand
- Example: 7 6 = 7 + (-6)

```
+7: 0000 0000 ... 0000 0111
```

<u>-6: 1111 1111 ... 1111 1010</u>

+1: 0000 0000 ... 0000 0001

- Overflow if result out of range
 - Subtracting two +ve or two -ve operands, no overflow
 - Subtracting +ve from –ve operand
 - Overflow if result sign is 0
 - Subtracting –ve from +ve operand
 - Overflow if result sign is 1

Multiplication

Start with long-multiplication approach

Length of product is the sum of operand lengths

Multiplication Hardware

Example of Multiplication

multiplicand(2) X multiplier(3) = product(6)

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial values	0011	0000 0010	0000 0000
1	1a: $1 \Rightarrow \text{Prod} = \text{Prod} + \text{Mcand}$	0011	0000 0010	0000 0010
	2: Shift left Multiplicand	0011	0000 0100	0000 0010
	3: Shift right Multiplier	0001	0000 0100	0000 0010
2	1a: $1 \Rightarrow \text{Prod} = \text{Prod} + \text{Mcand}$	0001	0000 0100	0000 0110
	2: Shift left Multiplicand	0001	0000 1000	0000 0110
	3: Shift right Multiplier	0000	0000 1000	0000 0110
3	1: 0 ⇒ No operation	0000	0000 1000	0000 0110
	2: Shift left Multiplicand	0000	0001 0000	0000 0110
	3: Shift right Multiplier	0000	0001 0000	0000 0110
4	1: 0 ⇒ No operation	0000	0001 0000	0000 0110
	2: Shift left Multiplicand	0000	0010 0000	0000 0110
	3: Shift right Multiplier	0000	0010 0000	0000 0110

Optimized Multiplier

Perform steps in parallel: add/shift

- One cycle per partial-product addition
 - That's ok, if frequency of multiplications is low

Booth's Multiplication Algorithm

Figure 10.12 Booth's Algorithm for Twos Complement Multiplication

Example of Booth's Algorithm

A 0000	Q 0011	Q ₋₁ 0	M 0111	Initial Values
1001	0011 1001	0 1	0111 0111	$A \leftarrow A - M$ First Shift Cycle
1110	0100	1	0111	Shift Second Cycle
0101 0010	0100 1010	1 0	0111 0111	$A \leftarrow A + M$ Third Shift Cycle
0001	0101	0	0111	Shift } Fourth Cycle

Figure 10.13 Example of Booth's Algorithm (7×3)

Faster Multiplier

- Uses multiple adders
 - Cost/performance tradeoff

- Can be pipelined
 - Several multiplication performed in parallel

RISC-V Multiplication

- Four multiply instructions:
 - mul: multiply
 - Gives the lower 64 bits of the product
 - mulh: multiply high
 - Gives the upper 64 bits of the product, assuming the operands are signed
 - mulhu: multiply high unsigned
 - Gives the upper 64 bits of the product, assuming the operands are unsigned
 - mulhsu: multiply high signed/unsigned
 - Gives the upper 64 bits of the product, assuming one operand is signed and the other unsigned
 - Use mulh result to check for 64-bit overflow

Division

n-bit operands yield *n*-bit quotient and remainder

- Check for 0 divisor
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
- Restoring division
 - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

Division Hardware

Example of Division

dividend(7) / divisor(2) => quotient(3), remainder(1)

Iteration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
1	1: Rem = Rem - Div	0000	0010 0000	①110 0111
	2b: Rem $< 0 \implies +Div$, SLL Q, Q0 = 0	0000	0010 0000	0000 0111
	3: Shift Div right	0000	0001 0000	0000 0111
2	1: Rem = Rem - Div	0000	0001 0000	1111 0111
	2b: Rem $< 0 \implies$ +Div, SLL Q, Q0 = 0	0000	0001 0000	0000 0111
	3: Shift Div right	0000	0000 1000	0000 0111
3	1: Rem = Rem - Div	0000	0000 1000	①111 1111
	2b: Rem $< 0 \implies$ +Div, SLL Q, Q0 = 0	0000	0000 1000	0000 0111
	3: Shift Div right	0000	0000 0100	0000 0111
4	1: Rem = Rem - Div	0000	0000 0100	@000 0011
	2a: Rem $\geq 0 \implies$ SLL Q, Q0 = 1	0001	0000 0100	0000 0011
	3: Shift Div right	0001	0000 0010	0000 0011
5	1: Rem = Rem - Div	0001	0000 0010	0000 0001
	2a: Rem $\geq 0 \implies$ SLL Q, Q0 = 1	0011	0000 0010	0000 0001
	3: Shift Div right	0011	0000 0001	0000 0001

Optimized Divider

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

Non-Restoring Division

- Restoring division in each step
 - $R_{i+1} < 2R_i V$
 - If $2R_i < V$ then $Q_i = 0 \& R_{i+1}$ should be restored to $2R_i$
 - Thus $R_{i+1} < -R_{i+1} + V$
 - Since probability(Q_i =1) = $\frac{1}{2}$, n subtraction & n/2 addition in average
- Non restoring division
 - Restoring addition in the current step
 - $R_i < R_i + V (1)$
 - Is followed by a subtraction in the next step
 - $R_{i+1} \le 2R_i V (2)$
 - By merging (1) & (2), $R_{i+1} \leftarrow 2R_i + V (3)$
 - If $Q_i = 1$, R_{i+1} is computed using (2)
 - If $Q_i = 0$, R_{i+1} is computed using (3)
 - No restoring addition necessary
 - N (addition or subtraction): faster than restoring division

Example of Non-Restoring Division

```
1001 Quotient (9)
01000 01001010 Dividend (74) / Divisor (8)
            -V
     -01000
      00001
       00010 2R_{i}
      -01000 -V
       11010
        10101 2Ri
       +01000 + V
        11101
         11010 \, 2R_{i}
        +01000 + V
         00010 Remainder (2)
```

Faster Division

- Can't use parallel hardware as in multiplier
 - Subtraction is conditional on sign of remainder
- Faster dividers (e.g. SRT devision)
 generate multiple quotient bits per step
 - Still require multiple steps

RISC-V Division

- Four instructions:
 - div, rem: signed divide, remainder
 - divu, remu: unsigned divide, remainder

- Overflow and division-by-zero don't produce errors
 - Just return defined results
 - Faster for the common case of no error

Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation

- In binary
 - \bullet ±1. $xxxxxxxx_2 \times 2^{yyyy}$
- Types float and double in C

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent Fraction

$$x = (-1)^S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand: 1.0 ≤ |significand| < 2.0</p>
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1203

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001⇒ actual exponent = 1 - 127 = -126
 - Fraction: $000...00 \Rightarrow significand = 1.0$
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 11111110⇒ actual exponent = 254 127 = +127
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001⇒ actual exponent = 1 - 1023 = -1022
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value

 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

- Relative precision
 - all fraction bits are significant
 - Single: approx 2⁻²³
 - Equivalent to 23 × log₁₀2 ≈ 23 × 0.3 ≈ 6 decimal digits of precision => 10⁻⁶
 - Double: approx 2⁻⁵²
 - Equivalent to $52 \times \log_{10} 2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision => 10^{-16}

Floating-Point Example

- Represent –0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = 1
 - Fraction = $1000...00_2$
 - Exponent = -1 + Bias
 - Single: $-1 + 127 = 126 = 011111110_2$
 - Double: $-1 + 1023 = 1022 = 0111111111110_2$
- Single: 1011111101000...00
- Double: 10111111111101000...00

Floating-Point Example

 What number is represented by the singleprecision float

11000000101000...00

- S = 1
- Fraction = $01000...00_2$
- Exponent = $10000001_2 = 129$

$$x = (-1)^{1} \times (1 + .01_{2}) \times 2^{(129 - 127)}$$

$$= (-1) \times 1.25 \times 2^{2}$$

$$= -5.0$$

Denormal Numbers

Exponent = $000...0 \Rightarrow$ hidden bit is 0

$$x = (-1)^{S} \times (0 + Fraction) \times 2^{-Bias}$$

- Smaller than normal numbers
 - allow for gradual underflow, with diminishing precision
- Denormal with fraction = 000...0

$$x = (-1)^{S} \times (0 + 0) \times 2^{-Bias} = \pm 0.0$$

Two representations of 0.0!

Infinities and NaNs

- Exponent = 111...1, Fraction = 000...0
 - ±Infinity
 - Can be used in subsequent calculations, avoiding need for overflow check
- Exponent = 111...1, Fraction ≠ 000...0
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - e.g., 0.0 / 0.0
 - Can be used in subsequent calculations

Floating-Point Addition

- Consider a 4-digit decimal example
 - $-9.999 \times 10^{1} + 1.610 \times 10^{-1}$
- 1. Align decimal points
 - Shift number with smaller exponent
 - \bullet 9.999 × 10¹ + 0.016 × 10¹
- 2. Add significands
 - \bullet 9.999 × 10¹ + 0.016 × 10¹ = 10.015 × 10¹
- 3. Normalize result & check for over/underflow
 - \bullet 1.0015 × 10²
- 4. Round and renormalize if necessary
 - 1.002×10^2

Floating-Point Addition

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Align binary points
 - Shift number with smaller exponent
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - $-1.000_2 \times 2^{-4}$ (no change) = 0.0625

FP Adder Hardware

- Much more complex than integer adder
- Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
- FP adder usually takes several cycles
 - Can be pipelined

FP Adder Hardware

Floating-Point Multiplication

- Consider a 4-digit decimal example
 - $1.110 \times 10^{10} \times 9.200 \times 10^{-5}$
- 1. Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5
- 2. Multiply significands
 - $1.110 \times 9.200 = 10.212 \Rightarrow 10.212 \times 10^{5}$
- 3. Normalize result & check for over/underflow
 - \bullet 1.0212 × 10⁶
- 4. Round and renormalize if necessary
 - 1.021×10^6
- 5. Determine sign of result from signs of operands
 - $+1.021 \times 10^6$

Floating-Point Multiplication

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$
- 1. Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2. Multiply significands
 - $1.000_2 \times 1.110_2 = 1.1102 \implies 1.110_2 \times 2^{-3}$
- 3. Normalize result & check for over/underflow
 - $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- 5. Determine sign: +ve x −ve ⇒ −ve
 - $-1.110_2 \times 2^{-3} = -0.21875$

Floating-Point Multiplication

Figure 10.23 Floating-Point Multiplication ($Z \leftarrow X \times Y$)

FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP ↔ integer conversion
- Operations usually takes several cycles
 - Can be pipelined

FP Instructions in RISC-V

- Separate FP registers: f0, ..., f31
 - double-precision
 - single-precision values stored in the lower 32 bits
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - flw, fld
 - fsw, fsd

FP Instructions in RISC-V

- Single-precision arithmetic
 - fadd.s, fsub.s, fmul.s, fdiv.s, fsqrt.se.g., fadd.s f2, f4, f6
- Double-precision arithmetic
 - fadd.d, fsub.d, fmul.d, fdiv.d, fsqrt.d
 e.g., fadd.d f2, f4, f6
- Single- and double-precision comparison
 - feq.s, flt.s, fle.s
 - feq.d, flt.d, fle.d
 - Result is 0 or 1 in integer destination register
 - Use beq, bne to branch on comparison result
- Branch on FP condition code true or false
 - B.cond: beq,bne,blt,bge...

FP Example: °F to °C

C code:

```
float f2c (float fahr) {
  return ((5.0/9.0)*(fahr - 32.0));
}
```

- fahr in f10, result in f10, literals in global memory space
- Compiled RISC-V code:

```
f2c:
  flw   f0,const5(x3)  // f0 = 5.0f
  flw   f1,const9(x3)  // f1 = 9.0f
  fdiv.s f0, f0, f1  // f0 = 5.0f / 9.0f
  flw   f1,const32(x3)  // f1 = 32.0f
  fsub.s f10,f10,f1  // f10 = fahr - 32.0
  fmul.s f10,f0,f10  // f10 = (5.0f/9.0f) * (fahr-32.0f)
  jalr  x0,0(x1)  // return
```

FP Example: Array Multiplication

- $C = C + A \times B$
 - All 32 × 32 matrices, 64-bit double-precision elements
- C code:

Addresses of c, a, b in x10, x11, x12, and i, j, k in x5, x6, x7

FP Example: Array Multiplication

RISC-V code:

```
mm: . . .
      lί
            x28,32
                        // x28 = 32 (row size/loop end)
      lί
            x5,0
                        // i = 0; initialize 1st for loop
      1i x6,0
L1:
                        // j = 0; initialize 2nd for loop
      1i x7,0
                        // k = 0; initialize 3rd for loop
L2:
      slli x30,x5,5 // x30 = i * 2**5 (size of row of c)
                        // x30 = i * size(row) + j
      add
            x30,x30,x6
      slli
           x30,x30,3 // x30 = byte offset of [i][j]
      add
            x30,x10,x30 // x30 = byte address of c[i][i]
      fld
            f0.0(x30)
                        // f0 = c[i][j]
L3:
      slli
            x29, x7, 5
                        // x29 = k * 2**5  (size of row of b)
      add
            x29,x29,x6
                        // x29 = k * size(row) + j
      slli
           x29,x29,3
                        // x29 = byte offset of [k][j]
      add
            x29,x12,x29 // x29 = byte address of b[k][j]
      f1d
            f1.0(x29) // f1 = b[k][j]
```


FP Example: Array Multiplication

```
x29,x5,5 // x29 = i * 2**5 (size of row of a)
slli
     x29,x29,x7 // x29 = i * size(row) + k
add
slli x29, x29, 3 // x29 = byte offset of [i][k]
add x29,x11,x29 // x29 = byte address of a[i][k]
fld f2,0(x29) // f2 = a[i][k]
fmul.d f1, f2, f1 // f1 = a[i][k] * b[k][j]
fadd.d f0, f0, f1 // f0 = c[i][j] + a[i][k] * b[k][j]
    x7, x7, 1 // k = k + 1
addi
bltu x7,x28,L3 // if (k < 32) go to L3
fsd f0,0(x30) // c[i][j] = f0
addi
    x6, x6, 1 // j = j + 1
bltu
    x6,x28,L2 // if (j < 32) go to L2
addi
    x5, x5, 1 // i = i + 1
bltu
    x5,x28,L1 // if (i < 32) go to L1
```

Accurate Arithmetic

- IEEE Std 754 specifies additional rounding control
 - Extra bits of precision (guard, round, sticky)
 - Choice of rounding modes
 - Allows programmer to fine-tune numerical behavior of a computation
- Not all FP units implement all options
 - Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements

Subword Parallellism(skip)

- Graphics and audio applications can take advantage of performing simultaneous operations on short vectors
 - Example: 128-bit adder:
 - Sixteen 8-bit adds
 - Eight 16-bit adds
 - Four 32-bit adds
- Also called data-level parallelism, vector parallelism, or Single Instruction, Multiple Data (SIMD)

x86 FP Architecture

- Originally based on 8087 FP coprocessor
 - 8 x 80-bit extended-precision registers
 - Used as a push-down stack
 - Registers indexed from TOS: ST(0), ST(1), ...
- FP values are 32-bit or 64 in memory
 - Converted on load/store of memory operand
 - Integer operands can also be converted on load/store
- Very difficult to generate and optimize code
 - Result: poor FP performance

x86 FP Instructions

Data transfer	Arithmetic	Compare	Transcendental
FILD mem/ST(i) FISTP mem/ST(i) FLDPI FLD1 FLDZ	FIADDP mem/ST(i) FISUBRP mem/ST(i) FIMULP mem/ST(i) FIDIVRP mem/ST(i) FSQRT FABS FRNDINT	FICOMP FSTSW AX/mem	FPATAN F2XMI FCOS FPTAN FPREM FPSIN FYL2X

Optional variations

- I: integer operand
- P: pop operand from stack
- R: reverse operand order
- But not all combinations allowed

Streaming SIMD Extension 2 (SSE2)

- Adds 4 × 128-bit registers
 - Extended to 8 registers in AMD64/EM64T
- Can be used for multiple FP operands
 - 2 × 64-bit double precision
 - 4 × 32-bit double precision
 - Instructions operate on them simultaneously
 - Single-Instruction Multiple-Data

Matrix Multiply

Unoptimized code:

```
1. void dgemm (int n, double* A, double* B, double* C)
2. {
3. for (int i = 0; i < n; ++i)
4. for (int j = 0; j < n; ++j)
5. {
6. double cij = C[i+j*n]; /* cij = C[i][j] */
7. for(int k = 0; k < n; k++)
8. cij += A[i+k*n] * B[k+j*n]; /* cij += A[i][k]*B[k][j] */
9. C[i+j*n] = cij; /* C[i][j] = cij */
10. }
11. }</pre>
```


Matrix Multiply

Optimized C code:

```
1. #include <x86intrin.h>
2. void dgemm (int n, double* A, double* B, double* C)
3. {
4. for (int i = 0; i < n; i+=8)
5. for (int j = 0; j < n; ++j)
6. {
7.
        m512d c0 = mm512 load pd(C+i+j*n); // c0 = C[i][j]
8.
         for ( int k = 0; k < n; k++ )
9.
           { // c0 += A[i][k]*B[k][j] }
10.
            m512d bb = mm512 broadcastsd pd(mm load sd(B+j*n+k));
            c0 = mm512 \text{ fmadd pd(} mm512 \text{ load pd(}A+n*k+i), bb, c0);
11.
12.
13.
       mm512 store pd(C+i+j*n, c0); // C[i][j] = c0
14. }
15.}
```

Matrix Multiply

Optimized x86 assembly code:

```
# Load 8 elements of C into %zmm1
vmovapd (%r11),%zmm1
                                 # register %rcx = %rbx
       %rbx,%rcx
mov
                                 # register %eax = 0
       %eax,%eax
xor
                                 # Make 8 copies of B element in %zmm0
vbroadcastsd (%rax, %r8,8), %zmm0
                                 # register %rax = %rax + 8
       $0x8,%rax
add
                                 # Parallel mul & add %zmm0, %zmm1
vfmadd231pd (%rcx),%zmm0,%zmm1
                                 # register %rcx = %rcx
add %r9,%rcx
cmp %r10,%rax
                                 # compare %r10 to %rax
jne 50 < dgemm + 0x50 >
                                 # jump if not %r10 != %rax
                                 # register % esi = % esi + 1
    $0x1, %esi
add
vmovapd %zmm1, (%r11)
                                 # Store %zmm1 into 8 C elements
```

Right Shift and Division

- Left shift by i places multiplies an integer by 2ⁱ
- Right shift divides by 2ⁱ?
 - Only for unsigned integers
- For signed integers
 - Arithmetic right shift: replicate the sign bit
 - e.g., -5 / 4
 - \blacksquare 11111011₂ >> 2 = 111111110₂ = -2
 - Rounds toward –∞
 - c.f. $11111011_2 >>> 2 = 001111110_2 = +62$

Associativity

- Parallel programs may interleave operations in unexpected orders
 - Assumptions of associativity may fail

		(x+y)+z	x+(y+z)
X	-1.50E+38		-1.50E+38
У	1.50E+38	0.00E+00	
Z	1.0	1.0	1.50E+38
		1.00E+00	0.00E+00

 Need to validate parallel programs under varying degrees of parallelism

Who Cares About FP Accuracy?

- Important for scientific code
 - But for everyday consumer use?
 - "My bank balance is out by 0.0002¢!" ⊗
- The Intel Pentium FDIV bug
 - The market expects accuracy
 - See Colwell, The Pentium Chronicles

Concluding Remarks

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied

- Computer representations of numbers
 - Finite range and precision
 - Need to account for this in programs

Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals

- Bounded range and precision
 - Operations can overflow and underflow