Contact Information

- Stephan Heinemann
- SMS: +1 (250) 891-5446
- Email: stephan.heinemann@hotmail.com
- Bookings, Questions

Flight for Range and Endurance

- Review Straight and Level Flight
- Definition and Motivation
- Flight for Range
 - Diagrams, Maximum Range (Experimental)
- Flight for Endurance
 - Diagrams, Maximum Endurance (Experimental)
- Summary and Questions
- Pre-Flight Briefing

Review Straight and Level Flight

- Attitude plus power equals performance!
- Mentally perform a power reduction from the cruise power setting while maintaining straight and level flight.
- What effect does the power reduction have on the airspeed and the fuel consumption?
- What effect does the power reduction have on the estimated time of arrival?

Definition and Motivation

- Airspeed and fuel flow can be traded off
- Range achievable distance per fuel unit (air versus ground range): destinations, alternates
- Endurance achievable time per fuel unit: holding or orbiting procedures, cockpit management / decision making, economy
- Maximum range best achievable distance
- Maximum endurance best achievable time

CRUISE PERFORMANCE

CONDITIONS:

2550 Pounds

Recommended Lean Mixture

Pressure Altitude	RPM	20°C BELOW STANDARD TEMP			STANDARD TEMPERATURE			20°C ABOVE STANDARD TEMP		
Feet		% MCP	KTAS	GPH	% MCP	KTAS	GPH	% MCP	KTAS	GPH
2000	2550	83	117	11.1	77	118	10.5	72	117	9.9
	2500	78	115	10.6	73	115	9.9	68	115	9.4
	2400	69	111	9.6	64	110	9.0	60	109	8.5
	2300	61	105	8.6	57	104	8.1	53	102	7.7
	2200	53	99	7.7	50	97	7.3	47	95	6.9
	2100	47	92	6.9	44	90	6.6	42	89	6.3
4000	2600	83	120	11.1	77	120	10.4	72	119	9.8
	2550	79	118	10.6	73	117	9.9	68	117	9.4
	2500	74	115	10.1	69	115	9.5	64	114	8.9
	2400	65	110	9.1	61	109	8.5	57	107	8.1
	2300	58	104	8.2	54	102	7.7	51	101	7.3
	2200	51	98	7.4	48	96	7.0	45	94	6.7
	2100	45	91	6.6	42	89	6.4	40	87	6.1
6000	2650	83	122	11.1	77	122	10.4	72	121	9.8
	2600	78	120	10.6	73	119	9.9	68	118	9.4
	2500	70	115	9.6	65	114	9.0	60	112	8.5
	2400	62	109	8.6	57	108	8.2	54	106	7.7
	2300	54	103	7.8	51	101	7.4	48	99	7.0
	2200	48	96	7.1	45	94	6.7	43	92	6.4

Cruise Performance POH Section 5

- Consider conditions
- Select pressure altitude
- Select temperature
- Select power setting
- Interpolate as required
- Determine airspeed and fuel flow

Flight for Endurance

ENDURANCE PROFILE **45 MINUTES RESERVE** 53 GALLONS USABLE FUEL

mended Lean Mixture for Cruise At All Altitudes

Temperature

This chart allows for the fuel used for engine start, taxl, takeoff climb, and the time during climb.

Endurance Profile POH Section 5

- Consider conditions
- Select pressure altitude
- Select **power** setting
- Determine endurance
- **Endurance** decreases *slightly* for given % of power available
- Specific fuel consumption (SFC) increases slightly with altitude for power-rated engines (pistonpropeller)

Flight for Maximum Endurance (Experimental)

- Reduce power in 100 RPM steps maintaining level flight with stable airspeed steps and trim
- Unstable decreasing airspeed indicates slow flight range more power required
- Accelerate to cruise airspeed and then decrease power to slightly higher than last stable setting to compensate for turbulence and possible required turns
- Lean mixture as recommended
- Notice reduced control responses due to reduced airflow

Leaning

- Slowly turn mixture knob out / anticlockwise until a drop in RPM can be observed
- Turn the mixture knob back in / clockwise until the RPM has increased again (2-3 turns)
- Check fuel flow and exhaust gas temperature (50°F)
 below peak EGT)

Flight for Range

RANGE PROFILE 45 MINUTES RESERVE 53 GALLONS USABLE FUEL

CONDITIONS: 2550 Pounds Recommended Lean Mixture for Cruise At All Altitudes Standard Temperature Zern, Wind

NOTES:

 This chart allows for the fuel used for engine start, taxi, takeoff and climb, and the distance during climb.

Range Profile POH Section 5

- Consider conditions
- Select pressure altitude
- Select power setting
- Determine range
- Range increases with increasing altitude
- True airspeed (TAS) increases with increasing altitude

Flight for Maximum Range

- Increase power in 100 RPM steps until a non-linear increase in airspeed can be observed
- Maintain level flight, trim and lean mixture as recommended (rich of peak)

Range and Endurance – Instruments

- **Control**: Attitude, Power → **Performance**: Airspeed, Altitude
- Mixture → Exhaust Gas Temperature, Fuel Flow

Factors Affecting Range and Endurance

- Endurance: fuel available, power setting, flap setting (configuration), weight, center of gravity, air density (altitude, temperature, humidity), contamination, mixture, turbulence
- Range: fuel available, power setting, flap setting
 (configuration), weight, center of gravity, air density
 (altitude, temperature, humidity), contamination, mixture,
 wind (air versus ground range)

Summary / Quiz

- Define range, maximum range, endurance and maximum endurance.
- Give examples for when flight for range or endurance is preferable.
- What are the main factors that influence range and endurance and how do they affect them?
- Mentally configure the airplane for best range and endurance and state all required actions, respectively.

Pre-Flight Briefing

- Exercise
- Training Area
- Departure and Arrival Procedures
- Weather Briefing / NOTAMs
- Aircraft and Documents
- Time and Fuel Requirements
- Safety Considerations and Responsibilities

Additional Materials

- Additional materials for Flight for Range and Endurance
- Flight Instructor Guide Exercise 10, Lesson Plan 4

Specific Fuel Consumption

- Jet (thrust specific fuel consumption):
 - TSFC = Fuel Consumption / Unit of Thrust
 - Fuel Flow = TSFC * Thrust
- Propeller (brake specific fuel consumption):
 - BSFC = Fuel Consumption / Unit of Power
 - Fuel Flow = BSFC * Power

Maximum Endurance

Weight and Endurance

Factors Affecting Endurance - Weight

Increasing weight will increase the drag and power required and therefore increase the fuel flow and decrease endurance. The speed for maximum endurance increases.

Configuration and Endurance

Factors Affecting Endurance - Configuration

Deploying flaps and undercarriage will increase the drag and power required and therefore increase the fuel flow and decrease endurance.

The speed for maximum endurance decreases.

Altitude and Endurance

Factors Affecting Endurance - Wind and Altitude

Wind has no effect on the endurance of the aeroplane.

Jet aeroplanes reach maximum endurance above the tropopause.

Turbo-propeller aeroplanes reach maximum endurance at about 10,000 ft.

Piston engine aeroplanes reach maximum endurance at mean sea level (MSL).

Specific Range

- Specific Air Range
 - Air Range = Air Distance / Unit of Fuel
 - SAR = TAS / Fuel Flow
 - Jet: SAR = TAS / TSFC * Thrust Required
 - Propeller: SAR = TAS / BSFC * Power Required
- Specific Ground Range
 - Ground Range = Ground Distance / Unit of Fuel
 - SGR = GS / Fuel Flow
 - Jet: SGR = GS / TSFC * Thrust Required
 - Propeller: SGR = GS / BSFC * Power Required
- Maximum Specific Range
 - Maximize TAS or GS while minimizing SFC

Maximum Air Range

Weight and Range

Factors Affecting Range - Weight

Increasing weight will increase the drag and power required and therefore increase the fuel flow and decrease range. The speed for maximum range increases.

Configuration and Range

Factors Affecting Range - Configuration

Deploying the flaps and undercarriage will increase the drag and power required and therefore increase the fuel flow and decrease range.

Altitude and Range

