

Environment for Solving Inverse and Optimization Problems

- Algorithm development
- Outline of Optimization Environment
- Inclusion of Artificial Neural Networks-based Approximations

Igor Grešovnik Feb 22, 2011

This is presentation of plans for optimization environment developed in COBIK, which will also be used to support the UNG-StoreSteel project.

Optimization Problems – Formulation

minimise
$$f(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^n$$

subject to
$$c_i(\mathbf{x}) \leq 0, i \in I$$

and
$$c_j(\mathbf{x}) = 0, \ j \in E$$

where
$$l_k \le x_k \le u_k, \ k = 1, 2, ..., n$$
.

Use of Optimization

Industrial use of simulations:

- Improvement of Current Processes & Designs
 - Virtual Prototyping

Development of numerical models:

- Experimental Validation
 - Inverse identification of model parameters

Inverse Identification of Model Parameters

Concept:

- Perform laboratory & industrial measurements
- Prepare numerical models of these tests, some parameters unspecified
- Minimization of discrepancies between measurements and model results -> parameter estimates

Numerical difficulties:

- Long computational times
- Noise in model results
- Non-availability of derivatives w.r. parameters

Engineering problems:

- Complexity of industrial systems (variability of process conditions, complex interactions)
- Limited set of affordable measurements
 - Insufficiency of data for solution of identification problem

Efficient Optimization Algorithms for Constrained Problems

• Transformation to unconstrained problems

- Penalty methods
- Lagrangean methods (eliminate constraints by Lagrange multipliers)
- Projection methods (feasible set)

• SQP

- Newton method for 1st order conditions for a local minimum
- QP subproblem
- Feasible set method
 - Sequentially solve unconstrained problems by BFGS
- Superilinear convergence

Popular Optimization Algorithms: Global Optimization

- Predominantly stochastic approaches
 - Simulated annealing, genetic algorithms, particle swarm method, differential evolution
- Robust in terms of response requirements
 - Perform on discontinuous, multimodal functions
- Inefficient in terms of required number of function evaluations
- Notion of "global algorithm" is asymptotic
 - When number of iterations goes to **infinity**, the **probability** of "missing" the neighbourhood of a global optimum tends to 0
- Even if not "global" in practical sense, these methods less easily get stuck in a local minimum
- Notion of local convergence is difficult to define
- Incorporate heuristics often taken from nature
 - Biological evolution, swarm intelligence, statistical mechanics, self-organization of dynamical systems
- Performance typically increased by tuning a number of control parameters (case dependent)

Classification of Optimization Algorithms

Response functions with noise

- a) objective function
- b) constraint function

Response Smoothing (Global, MLS Approximation)

Optimization of Approximated Response (SQP)

Feasible Alternative: Optimization Based on Successive MLS Approximations of Response Functions with Restricted Step Approach

Approximated response for iteration 1

Approximated response for iteration 3

Approximated response for iteration 6

Building Blocks: Restricted Step Constraint

- Restricts the feasible region to a neighborhood of the current guess
- Unit ball constraint:

$$\bullet \qquad c_U\left(\tilde{\mathbf{x}}\right) = \left\|\mathbf{x}\right\|_2 - 1 \le 0$$

- General form:
 - Obtained from unit ball constraint by affine transformation of co-ordinates:

$$\bullet \qquad c_{rs}(\mathbf{x}) = \|\tilde{\mathbf{A}}^{-1}(\mathbf{x} - \mathbf{x}_0)\|_2 - 1 \le 0$$

Design of Experiments

Building blocks: Weighting Functions for Approximations

- Different forms of 1D weighting functions w(r)
- Multivariate weighting functions obtained by affine maps:

Integration in algorithm scheme

- To build adaptive approximations of response functions
- To solve approximated sub-problem with restricted step constraint

Optimization Problems – Solution Scheme

Optimization Problems – Solution Scheme

- 1. Take current optimization parameters
- 2. Prepare numerical model according to parameters
- 3. Run numerical simulation of the process
- 4. Extract the relevant quantities from simulation results
- 5. From measured data
 - Read result file
 - Extract relevant data
- 6. Calculate the response functions and eventually their gradients (in our case the discrepancy function *f*)
- 7. Store the response functions in output arguments and return

Integrated Optimization Platform

File Format for Data Exchange

```
Analysis input file:
{ { p1, p2, ... }, { requalcobj, requalconstr, requalcgradobj,
      reqcalcgradconstr }, cd }
 Analysis output file:
   p1, p2 ... },
   calcobi, obi,
   calcconstr, { constr1, constr2, ... },
    calcgradobj, { dobjdp1, dobjdp2, ... },
    calcaradconstr,
      { dconstrldp1, dconstrldp2, ... },
       dconstr2dp1, dconstr2dp2, ... \},
   errorcode
   reqcalcobj, reqcalcconstr, reqcalcgradobj, reqcalcgradconstr }
  < , { ind1, ind2, ... }, { coef1, coef2, ... }, defdata >
```


Neural Networks: Response Approximation

• Provides approximate relation between process parameters and outcomes

Neural Networks: Training

Trained neural network

(known layout and known weights w_i)

Neural Networks: Direct Analysis Surrogate

Neural Networks: Direct Analysis Surrogate

Conversion definition file

Corresponding Default П: active flag: opt. parameter: value::

		1 1	
π_1	yes	1	3.56
π_2	no	0	1.2e7
π_3	no	0	109.3
π_4	yes	2	24.5
•••			
•••			
•••			
			•••
$\pi_{\mathrm{N}\pi}$	yes	10	1.53e-3

To Discuss:

- Which data to take from process' databases
 - Quality of data to be considered:
 - There must be enough measurements
 - Distribution of samples must cover parameter space well
 - There must be no hidden parameters (parameters that vary over provided data, but are not included in data sets)

Technicalities

- Procedures for gathering data
- Formats of data

Optimization Environment - State & Plans:

IGLib – Investigative Generic Library

- Origins: IOptLib (Investigative Optimization Library), Inverse (optimization framework)
- Purpose: base library for technical applications
 - Emphasis on numerical modeling and optimization
- Motivation: use in personal projects to speed up development process
- What is it:
 - A set of software concepts for solution of various technical problems
 - A set of tools
 - Modular & extensible
 - Carefully structured, based on experience
 - Based on a number of external libraries

IGLib: Some Existent Tools

• Application framework

- Initialization, directory structures, etc.
- Error reporting, Notifications, Event logging
- Export of application state & settings

• Data exchange:

- Parsers (general text files, XML files)
- Generic data storage/retrieval techniques (persistent objects)
- Inter-process communication

• Numerics:

- Linear algebra, FFT, interpolations, integration, differentiation,
- Error reporting, Notifications, Event logging

• Optimization:

- Various standards (e.g. standard form of direct analysis, response differentiation, modified response such as penalty formulations, parallel jobs)
- Basic utilities for response approximation techniques (need to be extended)
- Dragonfly Optimization Server

IGLib: To implement

• Algorithmic support (optimization)

- Line searches
- Convergence tests in difficult conditions (noise, etc.)
- Improved & generalized dispatchers (distributed optimization)
- Extend test environment
- Extend algorithmic base (SQP, evolutionary, etc.)
- Additional standardization of analysis & optimization servers
- Error estimations approximation + optimization
- Implementation of iteration schemes in approximation-based optimization
- Reliability based optimization

Environment

- Supplement standard interaction methods (analysis ⇔ optimization)
- Improve application framework, including reporting & logging
- Additional standards for interaction with simulation & control
- Application server (multitier architecture, remote control, etc.)

http://dl.dropbox.com/u/12702901/code_documentation/generated/develop/html/index.html