5. Source Coding: Lossless Compression

Recall Shannon's entropy (information entropy)

How Much Compression Is Possible?

Suppose that we're faced with N equally probable choices and we receive information that narrows it down to M choices. Shannon offered the following formula for the information received:

$$\log_2(N/M)$$
 bits of information

▼ Example

one flip of a fair coin:

Before the flip, there are two equally probable choices: heads or tails. After the flip, we've narrowed it down to one choice. Amount of information $= \log_2(2/1) = 1$ bits.

We can use this equation to compute the information content when learning of a choice by computing the weighted average of the information received for each particular choice:

$$\text{Information content in a choice} = \sum_{i=1}^N p_i log_2(1/p_i)$$

The **main problem** in source coding is to ensure that the most probable source symbols are represented by the shortest <u>codewords</u>, and the less probable by longer codewords as necessary, the weighted average codeword length being minimized within the bounds of Kraft's inequality.

▼ Source coding

Architecture of Communication Systems

Goal: Removing uncertainty and gaining information

Source Coding: To remove redundancy in the information to make the message smaller.

Source coding = Data compression

The goal: size(C) < size(D)

Compression Ratio: $ho = rac{\mathrm{size}(C)}{\mathrm{size}(D)} < 1$

Channel:

- Communications channel ("from here to there")
- Storage channel ("from now to then")

Source Code: A mapping C from a source alphabet \mathcal{X} to $D-\operatorname{ary}$ sequences

- \mathcal{D}^* is set of finite-length strings of symbols from D-ary alphabet $\mathcal{D}=\{1,2,..,D\}$, i.e. $\mathcal{D}^*=\mathcal{D}\cup\mathcal{D}^2\cup\mathcal{D}^3\cup....$
- ullet $C(x)\in \mathcal{D}^*$ is the codeword for $x\in \mathcal{X}$.
- $\ell(x)$ is the length of C(x).

A code is nonsingular if

$$x
eq ilde{x} \Rightarrow C(x)
eq C(ilde{x})$$

The **extension** of the code C is the mapping from finite length strings of $\mathcal X$ to finite length strings of $\mathcal D$

$$C(\underbrace{x_1x_2\cdots x_n}_{ ext{input (source)}}) = \underbrace{C(x_1)C(x_2)\cdots C(x_n)}_{ ext{output (code)}}$$

A code C is **uniquely decodable** if its extension C^* is nonsingular, i.e., for all n,

$$x_1x_2\cdots x_n
eq ilde{x}_1 ilde{x}_2\cdots ilde{x}_n \quad\Longrightarrow\quad C\left(x_1
ight),C\left(x_2
ight),\cdots,C\left(x_n
ight)
eq C\left(ilde{x}_1
ight),C\left(ilde{x}_2
ight),\cdots,C\left(ilde{x}_n
ight)$$

A code is **prefix-free** if no codeword is prefixed by another codeword. Such codes are also known as "prefix" codes or instantaneous codes.

Given a distribution p(x) on the input symbol, the goal is to minimize the expected length per-symbol

$$\mathbb{E}[\ell(X)] = \sum_{x \in \mathcal{X}} \ell(x) p(x)$$

▼ Example:

prefix code is such that no codeword is a prefix of any other codewords. For instance, suppose we'd like to encode the letters $\{a,b,c,d\}$ in binaries, i.e. using $\{0,1\}$. Then one possible coding scheme is as follows:

$$\left\{egin{array}{l} a
ightarrow 0 \ b
ightarrow 01 \ c
ightarrow 011 \ d
ightarrow 0111 \end{array}
ight.$$

This is uniquely decodable but it is not a prefix code because the codeword for a is a prefix for the codeword for b. This means that we can not instantaneously decode a without waiting for the next bit of data (to determine whether it is actually a or just the first half of b.)

Alternatively, we can encode using a prefix code as follows:

$$\left\{ egin{array}{l} a
ightarrow 0 \ b
ightarrow 10 \ c
ightarrow 110 \ d
ightarrow 111 \end{array}
ight.$$

As you can see no codeword is a prefix of another codeword.

▼ Compression

Shannon Source Coding Theorem: For any source distribution p(x), the expected length $\mathbb{E}[\ell(X)]$ of the optimal

uniquely decodable D-ary code obeys

$$rac{H(X)}{\log D} \leq \mathbb{E}[\ell(X)] \leq rac{H(X)}{\log D} + 1$$

Furthermore, there exists a prefix-free code which is optimal.

Let $\ell(x)$ be the length function associated with a code C. A code C satisfies the **Kraft Inequality** if and only if

$$\sum_{x \in \mathcal{X}} D^{-\ell(x)} \leq 1 \qquad \text{(Kraft Inequality)}$$

▼ Example

If we encoding letters $\{a, b, c, d\}$ in binaries as following:

$$\left\{egin{array}{l} a
ightarrow 0 \ b
ightarrow 10 \ c
ightarrow 110 \ d
ightarrow 111 \end{array}
ight.$$

Followed by Kraft Inequality, we have D=2 and then

$$2^{-1} + 2^{-2} + 2^{-3} + 2^{-3} \le 1$$

Theorem: Every uniquely decodable code satisfies the Kraft inequality

▼ Proof

- 1. Let *C* be a uniquely decodable source code.
- 2. For a source sequence x^n , the length of the extended codeword $C(x^n)$ is given by

$$\ell(x^n) = \sum_{i=1}^n \ell(x_i)$$

and thus, the length function of the extended codeword obeys

$$n\ell(x)_{min} \le \ell(x^n) \le n\ell_{max}$$

3. Let A_k be the number of source sequences of length n for which $\ell(x^n)=k$, i.e.

$$A_k=\#\{x^n\in\mathcal{X}^n\ :\ \ell(x^n)=k\}$$

4. Since the code is uniquely decodable, the number of source sequence with codewords of length k cannot exceed the number of D-ary sequences of length k, an so

$$A_k \leq D^k$$

5. The extended codeword lengths must obey

$$egin{aligned} \sum_{x^n \in \mathcal{X}^n} D^{-\ell(x^n)} &= \sum_{x^n \in \mathcal{X}^n} \left(\sum_{k=1}^\infty \mathbf{1} \left(\ell\left(x^n
ight) = k
ight) D^{-k}
ight) \ &= \sum_{k=1}^\infty \left(\sum_{x^n \in \mathcal{X}^n} \mathbf{1} \left(\ell\left(x^n
ight) = k
ight)
ight) D^{-k} \ &= \sum_{k=1}^\infty A_k D^{-k} \ &\leq \sum_{k=n\ell_{\min}}^{n\ell_{\max}} D^k D^{-k} \ &< n\ell_{\max} \end{aligned}$$

6. The extended codeword lengths must also obey

$$\sum_{x^n \in \mathcal{X}^n} D^{-\ell(x^n)} = \sum_{x_1 \in \mathcal{X}} D^{-\ell(x_1)} \sum_{x_2 \in \mathcal{X}} D^{-\ell(x_2)} \times \dots \times \sum_{x_n \in \mathcal{X}} D^{-\ell(x_n)} = \left[\sum_{x \in \mathcal{X}} D^{-\ell(x)} \right]^n$$

7. Combining the above displays shows that

$$\left[\sum_{x \in \mathcal{X}} D^{-\ell(x)}
ight]^n \leq n\ell_{ ext{max}} \quad ext{ for all } n$$

8. If the code does not satisfy the Kraft inequality, then the left hand side will blow up exponentially as n becomes large, and this inequality will be violated. Thus, the code must satisfy the Kraft inequality.

▼ Codes on Tree

Any D-ary code can be represented as a D-ary tree, A D-ary tree consists of a root with branches, nodes, and leaves. The root and every node has exactly D children.

For example, for a binary tree, here D=2 .

From this figure we can know that the sum of the probability of blue nodes is equal to 1.

Lemma: A code is prefix-free if and only if each of its codewords is a leaf

source: http://reeves.ee.duke.edu/information_theory/lecture5-Lossless_Compression.pdf

Theorem: There exists a prefix-free code with length function $\ell(x)$ if only if $\ell(x)$ satisfies the Kraft Inequality

 $\ell(x)$ is the length function of a prefix-free code $\Leftrightarrow \sum_x D^{-\ell(x)} \leq 1$

$$A=rac{1}{2^3} \ B=C=rac{1}{2^4} \ D=E=F=rac{1}{2^2} \ Sum=rac{1}{2^3}+rac{2}{2^4}+rac{3}{2^2}<1$$

▼ Shannon Code

Consider the following binary Shannon code. The entropy is $\ H(X) \approx 2.2855$ (bits) and the expected length is $E[\ell(X)] = 3.5$.

\boldsymbol{x}	p(x)	F(x)	$\bar{F}(x)$	$\bar{F}(x)$ in binary	$\log \frac{1}{p(x)}$	+1	C(x)
1	0.25					-	
2	0.25						
3	0.2						
4	0.15						
5	0.15						

1. The source alphabet be $\mathcal{X}=1,2,\cdots,m$, and the cumulative distribution function (cdf) of the source distribution is

$$F(x) = \sum_{k \le x} p(k)$$

Then we update the table:

x	p(x)	F(x)	$ar{F}(x)$	$\bar{F}(x)$ in binary	$\left\lceil \log \frac{1}{p(x)} \right\rceil$	+1	C(x)
	0.25						
2	0.25	0.5					
3	$0.25 \\ 0.2$	0.7					
4	0.15	0.85					
5	0.15	1					

2. Let $\overline{F}(x)$ be the midpoint of the interval [F(x-1),F(x)),i.e.

$$\overline{F}(x)=rac{F(x-1)+F(x)}{2}=F(x-1)+rac{p(x)}{2}$$

Then we update the table:

\boldsymbol{x}	p(x)	F(x)	$\bar{F}(x)$	$\bar{F}(x)$ in binary	$\log \frac{1}{p(x)}$	+1	C(x)
		0.25					
2	0.25	$\begin{array}{c} 0.5 \\ 0.7 \end{array}$	0.375				
3	0.2	0.7	0.6				
4	0.15	0.85	0.775				
5	0.15	1	0.925				

3. We transfer the decimal to binary, i.e. for x=0.125

$$0.125*2 = \underline{0}.25 \to 0 \ 0.25*2 = \underline{0}.5 \to 0 \ 0.5*2 = \underline{1} \to 1$$

Then we update the table as follows:

x	p(x)	F(x)	$\bar{F}(x)$	$\bar{F}(x)$ in binary	$\log \frac{1}{p(x)}$	+1	C(x)
			0.125				
			0.375				
3	0.2	0.7	0.6	$0.1\overline{0011}$			
4	0.15	0.85	0.775	$0.110\overline{0011}$			
5	0.15	1	0.925	$0.111\overline{01100}$			

4. The length function $\ell(x)$ is given by:

$$\ell(x) = \left\lceil \log\left(rac{1}{p(x)}
ight)
ight
ceil$$

Then we update the table as follows:

\boldsymbol{x}	p(x)	F(x)	$ar{F}(x)$	$\bar{F}(x)$ in binary	$\left\lceil \log \frac{1}{p(x)} ight ceil + 1$	C(x)
			0.125		3	
2	0.25	0.5	0.375	0.011	3	
3	0.2	0.7	0.6	$0.1\overline{0011}$	4	
4	0.15	0.85	0.775	$0.110\overline{0011}$	4	
5	0.15	1	0.925	$0.111\overline{01100}$	4	

5. The codeword corresponds to the D-ary expansion of the real number $\overline{F}(x)$, truncated at the point where the codeword is unique

$$C(x)= ext{D-ary expansion of }\overline{F}(x) ext{ such that }|C(x)-\overline{F}(x)|<rac{1}{2}p(x)$$

$$ar{F}(x) = \overbrace{0.z_1 z_2 \cdots z_{\ell(x)}}^{D ext{-ary expansion}} z_{\ell(x)+1} z_{\ell(x)+2} \cdots$$

Then we update the table as follows:

\boldsymbol{x}	p(x)	F(x)	$ar{F}(x)$	$\bar{F}(x)$ in binary	$\left\lceil \log rac{1}{p(x)} ight ceil + 1$	C(x)
1	0.25	0.25	0.125	0.001	3	001
2	0.25	0.5	0.375	0.011	3	011
3	0.2	0.7	0.6	$0.1\overline{0011}$	4	1001
4	0.15	0.85	0.775	$0.110\overline{0011}$	4	1100
5	0.15	1	0925	$0.111\overline{01100}$	4	1110

6. Here the expected length of the Shannon code obeys:

$$\mathbb{E}[\ell(X)] < \frac{H(X)}{\log D} + 2$$

▼ Huffman Code

Recall that the Kraft inequality is a:

- · necessary condition for uniquely decodable
- sufficient condition for the existence of a prefix-free code

The search for the optimal code can be states as the following optimization problem. Given p(x) find a length function $\ell(x)$ that minimizes the expected length and satisfies the Kraft inequality:

$$\min_{\ell(\cdot)} \sum_{x \in \mathcal{X}} p(x) \ell(x) \quad ext{ s.t. } \quad \sum_{x \in \mathcal{X}} D^{-\ell(x)} \leq 1, \quad \ell(x) ext{ is an integer}$$

Construction of the Huffman Code:

- 1. Take the two least probable symbols. These are assigned the longest codewords which have equal length and differ only in the last digit.
- 2. Merge these two symbols into a new symbol with combined probability mass and repeat.

Theorem: Huffman's algorithm produces an optimal code tree

Lemma 1: In an optimal code, shorter codewords are assigned large probabilities, i.e.

$$p_i > p_j \Rightarrow \ell_i < \ell_j$$

Lemma 2: There exists an optimal code for which the codewords assigned to the smallest probabilities are siblings (i.e., they have the same length and differ only in the last symbol).