« Understanding Embedded Linux Benchmarking Using Kernel Trace Analysis »

ALEXIS MARTIN
INRIA / LIG / UNIV. GRENOBLE, FRANCE

alexis.martin@inria.fr

We do Need Benchmarking!

- Benchmark: a standard or point of reference against which things may be compared or assessed. (new Oxford American Dictionary)
- Benchmarking computer systems:
 - Assess performance in different execution settings
 - Compare computer systems
- Performance criteria:
 - speed, latency, bandwidth, power consumption, memory used, ...

→ Critical step in system design

Benchmarking is Challenging

- Benchmarking construction is difficult
- There are many different benchmarks available
 - 3D rendering, DBMS test, NAS...
- In some cases benchmark is nonexistent
- Major motivation for using a benchmark is popularity
- The behavior of tests is not necessarily known

Understand What We Benchmark

- Identify what is measured and how
- Interpret results
- Draw a profile
- Compare different benchmarks
 - → Help to chose the right benchmark

Work Summary

- 1. Execute benchmark application (UDOO+Phoronix)
- 2. Record a trace from this execution (LTTng)
- 3. Analyze the traces (Framesoc + TraceCompass)
- 4. Draw a profile and compare benchmarks

Phoronix Test Suite for Benchmarking

- Phoronix Test Suite (PTS) is an open-source platform (openbenchmarking.org)
 - It contains various tests (over 170)
 - PTS is cross-platform (i686, x86_64, ARM, PowerPC)
 - It includes every mechanism for automated tests
 - Result sharing for statistics and platform comparisons
- Tests are classified into families:

	System	Processor	Network	Memory	Graphics	Disk
# tests	6	79	1	2	53	12

Benchmark Selection

- Select 10 tests from 5 different families
- Use « recommended » tests from PTS
 - Calculated from most used tests

system: idle, pybench, phpbench
processor: scimark2, ffmpeg, compress-gzip
network: network-loopback
memory: stream, ramspeed
disk: dbench

The Test Platform

- UDOO development board (<u>udoo.org</u>)
- i.MX 6 Quad ARM CPU (A9) @1GHz + 1 coprocessor (Cortex-M3)
- 1GB RAM, WiFi, Gigabit ethernet, HDMI, microSD, SATA
- Touchscreen, camera, GPIO
- Debian ARM kernel (armmp 3.16)

Tracing With LTTng

- LTTng (lttng.org) open-source tracing framework:
 - Trace engine:
 - kernel-space: kprobes & kernel tracepoints
 - user-space: user implemented tracepoints
 - Viewing and analyzing: Trace compass (eclipse)

Trace only the kernel to avoid benchmark code modifications

Trace Properties

Trace Properties

What does the Given Family Mean?

- Phoronix gives us a family without explanations
- Families are related to kernel functionalities
- Compute family:
 - Biggest number of events?

→ We want to check if the announced family corresponds to the computed one

Assigning Family to Events

Assigning Family to Events

Assigning Family to Events

mm_page_alloc mm_page_free kmem_cache_alloc

memory

rpc_bind_status sock_rcvqueue_full net_dev_xmit

network

power_cpu_idle timer_init

processor

scsi_eh_wakeup jbd2_commit_locking block_rq_insert

disk

workqueue_activate_work sched_switch rcu_utilization

system

Kernel

Family Distribution is not Enough

- Computed family = announced family ?
 - 5 matches over 10
- Kernel function is different from one to another benchmark
 - No relation between announced and calculated families

- We trace only kernel part
 - → Check the distribution of time during which the kernel is used

Time spent in kernel mode

Long time spent in kernel mode → Right computed family

Short time spent in kernel mode → Wrong computed family

Time spent in kernel mode

Long time spent in kernel mode → Right computed family

Short time spent in kernel mode → Wrong computed family

Do We Observe More Than the Benchmark?

- Big stack of programs for running those benchmarks:
 - ssh
 - custom bash script
 - LTTng
 - Phoronix
 - Benchmark
- Analyze overhead induced by those programs

→ Observe events by processes

Event Distribution by Processes

Event Distribution by Processes

LTTng produces a huge number of events

Analysis of LTTng Overhead

- **Not easy** to get only events from the benchmark
 - Names depend on benchmark
 - Some benchmarks are not only a single program
 - several instances of the same program
 - network-loopback = cat + dd + netcat
- Overhead comes mainly from LTTng
- LTTng overhead is easy to remove from trace
 - Get events from process by name and extract it
 - → Overhead **removed**, we observe only the benchmark

LTTng Overhead Profile

LTTng Overhead Profile

Real Benchmark Profile

Conclusion

- Benchmark results:
 - Better understanding of benchmarking programs
 - Profile the kernel use (families, duration)
 - What can impact the performance
 - Most used benchmarks on phoronix are very different
 - Different profiles for similar tests
- Intrusiveness of used tools:
 - Phoronix is not intrusive
 - LTTng produces many kernel events
 - Constant profile (memory + disk)
 - We know how to remove this overhead for the analysis
 - → Generic way to analyze benchmarks

Acknowledgment

- This work was done and funded within the SoC-TRACE project (link)
 - French ministry of industry
 - Inria, UJF, STMicroelectronics, ProbaYes
- Framesoc tool is an outcome of this project (soctrace-inria.github.io/framesoc/)
 - Framework for the management and analysis of traces

Thank You!