Solution Bank

Exercise 8C

1 a
$$y = x(x+2)$$
 is \bigvee shaped

$$y = 0 \Rightarrow x = 0, -2$$

Area =
$$\int_{-2}^{0} x(x+2) dx$$

= $-\int_{-2}^{0} (x^2 + 2x) dx$
= $-\left(\frac{x^3}{3} + x^2\right)_{-2}^{0}$
= $\left\{(0) - \left(-\frac{8}{3} + 4\right)\right\}$
= $-\left(-\frac{4}{3}\right)$
= $\frac{4}{3}$ or $1\frac{1}{3}$

b
$$y = (x+1)(x-4)$$
 is \bigvee shaped $y = 0 \Rightarrow x = -1, 4$

$$\int_{-1}^{4} (x+1)(x-4) dx = \int_{-1}^{4} (x^2 - 3x - 4) dx$$

$$= \left(\frac{x^3}{3} - \frac{3x^2}{2} - 4x\right)_{-1}^{4}$$

$$= \left(\frac{64}{3} - \frac{3}{2} \times 16 - 16\right)$$

$$-\left(-\frac{1}{3} - \frac{3}{2} + 4\right)$$

$$= \frac{64}{3} - 40 + \frac{11}{6} - 4$$

$$= -20\frac{5}{6}$$
So area = $20\frac{5}{6}$

1 c
$$y = (x+3)x(x-3)$$

 $y = 0 \Rightarrow x = -3,0,3$
 $x \to \infty, y \to \infty$
 $x \to -\infty, y \to -\infty$

$$\int y dx = \int (x^3 - 9x) dx$$

$$= \left(\frac{x^4}{4} - \frac{9}{2}x^2\right)$$

$$\int_{-3}^0 y dx = (0) - \left(\frac{81}{4} - \frac{9}{2} \times 9\right)$$

$$= +\frac{81}{4}$$

$$\int_0^3 y dx = \left(\frac{81}{4} - \frac{9}{2} \times 9\right) - (0)$$

$$= -\frac{81}{4}$$
So area = $\frac{81}{4} + \frac{81}{4}$

$$= \frac{81}{2} \text{ or } 40\frac{1}{2}$$

Solution Bank

1 d $y = x^2(x-2)$

$$y = 0 \Rightarrow x = 0$$
 (twice), 2

There is a turning point at (0, 0).

$$x \to \infty, y \to \infty$$

$$x \to -\infty, y \to -\infty$$

Area =
$$-\int_0^2 x^2 (x-2) dx$$

= $-\int_0^2 (x^3 - 2x^2) dx$
= $-\left(\frac{x^4}{4} - \frac{2}{3}x^3\right)_0^2$
= $-\left\{\left(\frac{16}{4} - \frac{2}{3} \times 8\right) - (0)\right\}$
= $-\left(4 - \frac{16}{3}\right)$
= $\frac{4}{3}$ or $1\frac{1}{3}$

1 e
$$y = x(x-2)(x-5)$$

 $y = 0 \Rightarrow x = 0, 2, 5$
 $x \to \infty, y \to \infty$
 $x \to -\infty, y \to -\infty$

$$\int y \, dx = \int x \left(x^2 - 7x + 10\right) \, dx$$

$$= \int \left(x^3 - 7x^2 + 10x\right) \, dx$$

$$= \left(\frac{x^4}{4} - \frac{7}{3}x^3 + 5x^2\right)$$

$$\int_0^2 y \, dx = \left(\frac{16}{4} - \frac{7}{3} \times 8 + 20\right) - (0)$$

$$= 24 - \frac{56}{3}$$

$$= 5\frac{1}{3}$$

$$\int_2^5 y \, dx = \left(\frac{625}{4} - \frac{7}{3} \times 125 + 125\right) - \left(5\frac{1}{3}\right)$$

$$= -15\frac{3}{4}$$
So area = $5\frac{1}{3} + 15\frac{3}{4}$

$$= 21\frac{1}{12}$$

2 **a**
$$x(x+3)(2-x) = 0$$

 $x = 0, x = -3 \text{ or } x = 2$
 $A(-3, 0), B(2, 0)$

Solution Bank

2 **b**
$$\int_0^2 x(x+3)(2-x) dx - \int_{-3}^0 x(x+3)(2-x) dx$$

= $\int_0^2 (-x^3 - x^2 + 6x) dx$
 $-\int_0^0 (-x^3 - x^2 + 6x) dx$

$$\int_{0}^{2} (-x^{3} - x^{2} + 6x) dx$$

$$= \left[-\frac{x^{4}}{4} - \frac{x^{3}}{3} + \frac{6x^{2}}{2} \right]_{0}^{2}$$

$$= \left[-\frac{x^{4}}{4} - \frac{x^{3}}{3} + 3x^{2} \right]_{0}^{2}$$

$$= \left(-\frac{2^{4}}{4} - \frac{2^{3}}{3} + 3(2)^{2} \right) - \left(-\frac{0^{4}}{4} - \frac{0^{3}}{3} + 3(0)^{2} \right)$$

$$= \left(-4 - \frac{8}{3} + 12 \right)$$

$$= 5\frac{1}{3}$$

$$\int_{-3}^{0} (-x^3 - x^2 + 6x) dx$$

$$= \left[-\frac{x^4}{4} - \frac{x^3}{3} + 3x^2 \right]_{-3}^{0}$$

$$= \left(-\frac{0^4}{4} - \frac{0^3}{3} + 3(0)^2 \right)$$

$$- \left(-\frac{(-3)^4}{4} - \frac{(-3)^3}{3} + 3(-3)^2 \right)$$

$$= -\left(-\frac{81}{4} + 9 + 27 \right)$$

$$= -15\frac{3}{4}$$

Total area =
$$5\frac{1}{3} + 15\frac{3}{4}$$

= $21\frac{1}{12}$

3 **a**
$$f(-3) = -(-3)^3 + 4(-3)^2 + 11(-3) - 30$$

= $27 + 36 - 33 - 30 = 0$

$$\begin{array}{r}
-x^2 + 7x - 10 \\
3 \quad \mathbf{b} \quad x + 3) - x^3 + 4x^2 + 11x - 30 \\
\underline{-x^3 - 3x^2} \\
7x^2 + 11x \\
\underline{-7x^2 + 21x} \\
-10x - 30 \\
\underline{-10x - 30} \\
0
\end{array}$$

$$f(x) = (x+3)(-x^2 + 7x - 10)$$

$$\mathbf{c}$$
 $f(x) = (x+3)(-x+2)(x-5)$

d
$$x = -3$$
, $x = 2$ or $x = 5$ $(-3, 0)$, $(2, 0)$ and $(5, 0)$

Solution Bank

3 e Total area is:

$$\int_{2}^{5} (-x^{3} + 4x^{2} + 11x - 30) dx$$
$$- \int_{-3}^{2} (-x^{3} + 4x^{2} + 11x - 30) dx$$

$$\int_{2}^{5} (-x^{3} + 4x^{2} + 11x - 30) dx$$

$$= \left[-\frac{x^{4}}{4} + \frac{4x^{3}}{3} + \frac{11x^{2}}{2} - 30x \right]_{2}^{5}$$

$$= \left(-\frac{5^{4}}{4} + \frac{4(5)^{3}}{3} + \frac{11(5)^{2}}{2} - 30(5) \right)$$

$$- \left(-\frac{2^{4}}{4} + \frac{4(2)^{3}}{3} + \frac{11(2)^{2}}{2} - 30(2) \right)$$

$$= \left(-\frac{625}{4} + \frac{500}{3} + \frac{275}{2} - 150 \right)$$

$$- \left(-4 + \frac{32}{3} + 22 - 60 \right)$$

$$= 29\frac{1}{4}$$

$$\int_{-3}^{2} (-x^{3} + 4x^{2} + 11x - 30) dx$$

$$= \left[-\frac{x^{4}}{4} + \frac{4x^{3}}{3} + \frac{11x^{2}}{2} - 30x \right]_{-3}^{2}$$

$$= \left(-\frac{2^{4}}{4} + \frac{4(2)^{3}}{3} + \frac{11(2)^{2}}{2} - 30(2) \right)$$

$$- \left(-\frac{(-3)^{4}}{4} + \frac{4(-3)^{3}}{3} + \frac{11(-3)^{2}}{2} - 30(-3) \right)$$

$$\int_{-3}^{2} (-x^3 + 4x^2 + 11x - 30) dx$$

$$= \left(-4 + \frac{32}{3} + 22 - 60 \right)$$

$$- \left(-\frac{81}{4} - \frac{108}{3} + \frac{99}{2} + 90 \right)$$

$$= -114 \frac{7}{12}$$

Total area =
$$29\frac{1}{4} + 114\frac{7}{12}$$

= $143\frac{5}{6}$

Challenge

1 **a**
$$x(3-x)=0$$

 $x=0 \text{ or } x=3$

$$f(x) = 3x - x^{2}$$
Area = $\int_{0}^{3} (3x - x^{2}) dx$
= $\left[\frac{3x^{2}}{2} - \frac{x^{3}}{3}\right]_{0}^{3}$
= $\left(\frac{3(3)^{2}}{2} - \frac{3^{3}}{3}\right) - \left(\frac{3(0)^{2}}{2} - \frac{0^{3}}{3}\right)$
= $\left(\frac{27}{2} - 9\right)$
= $4\frac{1}{2}$

Solution Bank

Challenge

1 b

$$f(x) = 6x - 2x^2$$

Area =
$$\int_0^3 (6x - 2x^2) dx$$

= $\left[\frac{6x^2}{2} - \frac{2x^3}{3} \right]_0^3$
= $\left[3x^2 - \frac{2x^3}{3} \right]_0^3$
= $\left[3(3)^2 - \frac{2(3)^3}{3} \right] - \left[3(0)^2 - \frac{2(0)^3}{3} \right]$
= $(27 - 18)$
= 9

c
$$f(x) = a(3x - x^2)$$

Area = $a \times$ area of $f(x)$
= $a \times 4\frac{1}{2}$
= $\frac{9a}{2}$

d y = f(x + a) is a translation of y = f(x) by $\begin{pmatrix} -a \\ 0 \end{pmatrix}$.

Therefore, the area of y = f(x + a) is equal to the area of y = f(x).

The area of y = f(x + a) is $4\frac{1}{2}$

1 e
$$f(ax) = 3ax - a^2x^2$$

Area = $\int_0^{\frac{3}{a}} (3ax - a^2x^2) dx$
= $\left[\frac{3ax^2}{2} - \frac{a^2x^3}{3}\right]_0^{\frac{3}{a}}$
= $\left(\frac{3a\left(\frac{3}{a}\right)^2}{2} - \frac{a^2\left(\frac{3}{a}\right)^3}{3}\right)$
- $\left(\frac{3(0)^2}{2} - \frac{0^3}{3}\right)$
= $\left(\frac{27}{2a} - \frac{9}{a}\right)$
= $\frac{9}{2a}$