

เสาสูงสุขสันต์

เมืองจาการ์ตามีเสาวิทยุทั้งหมด N ต้น โดยเสาวิทยุตั้งอยู่ในแนวเส้นตรงเดียวกัน และกำหนดด้วยหมายเลข 0 ถึง N-1 จากซ้ายไป ขวา เสาต้นที่ i ($0 \le i \le N-1$) มีความสูง H[i] เมตร ความสูงของเสาแต่ละต้น**แตกต่างกัน**

เมื่อกำหนดค่าสัญญาณรบกวน δ , คู่ของเสา i และ j ($0 \leq i < j \leq N-1$) สามารถสื่อสารกันได้ก็ต่อเมื่อมีเสา k เป็นเสา ตัวกลางโดยที่

- ullet เสา i อยู่ทางซ้ายของเสา k และ เสา j อยู่ทางขวาของเสา k กล่าวคือ i < k < j และ
- ullet ความสูงของทั้งเสา i และเสา j จะต้องมีค่าไม่เกิน $H[k]-\delta$ เมตร

คุณภัค เดงเกล็ก ต้องการที่จะเช่าเสาวิทยุสำหรับเครือข่ายกระจายเสียงของเขา หน้าที่ของคุณคือให้ตอบคำถามจำนวน Q คำถามของ คุณภัค เดงเกล็ก ที่มีรูปแบบดังนี้: กำหนดพารามิเตอร์ L,R และ D ($0 \le L \le R \le N-1$ และ D>0) มาให้ ให้หาว่า จำนวนเสาวิทยุที่มากที่สุดที่คุณภัค เดงเกล็ก สามารถเช่าได้คือเท่าใด โดยมีสมมติฐานคือ

- ullet คุณภัค เดงเกล็ก สามารถเช่าเสาวิทยุที่มีหมายเลขระหว่าง L และ R (รวมหัวท้าย) และ
- ullet ค่าสัญญาณรบกวน δ มีค่าเท่ากับ D และ
- สำหรับเสาวิทยุคู่ใด ๆ ที่ คุณภัค เดงเกล็ก เช่า จะต้องสามารถสื่อสารกันได้ทั้งหมดทุกคู่

หมายเหตุ เสาวิทยุที่เช่าอาจสื่อสารกันผ่านเสาตัวกลาง k ทั้งนี้เสาตัวกลาง k อาจจะเป็นเสาที่เช่าหรือไม่เช่าก็ได้

รายละเอียดการเขียนโปรแกรม

คุณต้องเขียนฟังก์ชันด้านล่าง:

void init(int N, int[] H)

- N: จำนวนเสาวิทยุทั้งหมด
- ullet H: อาร์เรย์ความยาว N ที่ระบุความสูงของเสา
- ฟังก์ชันนี้จะถูกเรียกใช้งานเพียงครั้งเดียวเท่านั้น และก่อนการเรียกฟังก์ชัน max_towers

int max_towers(int L, int R, int D)

- ullet L, R: ขอบเขตช่วงของเสา
- ullet D: ค่าของ δ
- ฟังก์ชันนี้จะคืนค่าจำนวนเสาวิทยุที่มากที่สุดที่คุณภัค เดงเกล็ก สามารถเช่าได้สำหรับเครือข่ายกระจายเสียงของเขา เมื่อเขา สามารถเช่าเสาวิทยุระหว่างเสา L และเสา R (รวมหัวท้าย) และค่าของ δ มีค่าเท่ากับ D
- ullet ฟังก์ชันนี้จะถูกเรียกทั้งสิ้น Q ครั้ง

ตัวอย่าง

พิจารณาลำดับการเรียกฟังก์ชันด้านล่าง:

คุณภัค เดงเกล็ก สามารถเช่าเสาวิทยุ $1,\,3,\,$ และ 5 ดังภาพ โดยเสาวิทยุที่แรเงาคือเสาที่เช่า

เสา 3 และเสา 5 สามารถสื่อสารกันได้ผ่านเสาตัวกลาง 4 เนื่องจาก $40 \le 50-10$ และ $30 \le 50-10$, เสา 1 และเสา 3 สามารถสื่อสารกันได้ผ่านเสาตัวกลาง 3 ทั้งนี้ไม่มีวิธีที่สามารถเช่าเสาได้ มากกว่า 3 ต้น ดังนั้นฟังก์ชันนี้จะคืนค่า 3

มีเสาเพียง 1 ต้นในช่วงที่กำหนด ดังนั้นคุณภัค เด็งเกล็ก สามารถเช่าเสาได้เพียง 1 ต้นเท่านั้น ดังนั้นฟังก์ชันนี้จะคืนค่า 1

คุณภัค เดงเกล็ก สามารถเช่าเสา 1 และเสา 3 โดยเสา 1 และเสา 3 สามารถสื่อสารกันได้ผ่านเสาตัวกลาง 2 เนื่องจาก $20 \le 60-17$ และ $40 \le 60-17$ ทั้งนี้ไม่มีวิธีใดที่สามารถเช่าเสาได้มากกว่า 2 ต้น ดังนั้นฟังก์ชันนี้จะคืนค่า 2

ข้อจำกัด

- $1 \le N \le 100\ 000$
- $1 \le Q \le 100\ 000$
- ullet $1 \leq H[i] \leq 10^9$ (สำหรับทุก i ที่ $0 \leq i \leq N-1$)
- ullet H[i]
 eq H[j] (สำหรับทุก i และ j ที่ $0 \leq i < j \leq N-1$)
- $0 \le L \le R \le N-1$
- $1 \le D \le 10^9$

ปัญหาย่อย

- 1. (4 คะแนน) จะมีเสาตัวกลาง k ($0 \leq k \leq N-1$) ที่
 - \circ สำหรับทุก i ที่ $0 \leq i \leq k-1$: H[i] < H[i+1] และ
 - \circ สำหรับทุก i ที่ $k \leq i \leq N-2$: H[i] > H[i+1]
- 2. (11 คะแนน) Q=1, $N \leq 2000$
- 3. (12 คะแนน) Q=1
- 4. (14 คะแนน) D=1
- 5. (17 คะแนน) L=0, R=N-1
- 6. (19 คะแนน) ค่าของ D คงที่ตลอดสำหรับทุกการเรียกฟังก์ชัน $\max_{\sf towers}$
- 7. (23 คะแนน) ไม่มีข้อจำกัดใดเพิ่มเติม

เกรดเดอร์ตัวอย่าง

เกรดเดอร์ตัวอย่างอ่านข้อมูลนำเข้าในรูปแบบต่อไปนี้:

- ullet บรรทัดที่ 1: N Q
- ullet บรรทัดที่ 2: H[0] H[1] \dots H[N-1]
- ullet บรรทัดที่ 3+j ($0\leq j\leq Q-1$): $L\mathrel{R} D$ สำหรับคำถาม j

เกรดเดอร์ตัวอย่างจะแสดงคำตอบของคุณในรูปแบบต่อไปนี้:

ullet บรรทัดที่ 1+j ($0\leq j\leq Q-1$): ค่าที่คืนจากการเรียกฟังก์ชัน $exttt{max_towers}$ สำหรับคำถาม j