Metody numeryczne

Sprawozdanie 9

Aproksymacja Pade funkcji sin(x)

Kateryna Andrusiak

3 maja 2020

1. Wstęp teoretyczny

Aproksymacja – proces określania rozwiązań przybliżonych na podstawie rozwiązań znanych, które są bliskie rozwiązaniom dokładnym w ściśle sprecyzowanym sensie. Od funkcji aproksymującej, przybliżającej zadaną funkcję nie wymaga się, aby przechodziła ona przez jakieś konkretne punkty, tak jak to ma miejsce w interpolacji.

Aproksymacja funkcji powoduje pojawienie się błędów, zwanych błędami aproksymacji. Dużą zaletą aproksymacji w stosunku do interpolacji jest to, że aby dobrze przybliżać, funkcja aproksymująca nie musi być wielomianem wysokiego stopnia. Przybliżenie w tym wypadku rozumiane jest, jako minimalizacja pewnej funkcji błędu. Prawdopodobnie najpopularniejszą miarą tego błędu jest średni błąd kwadratowy, ale możliwe są również inne funkcje błędu, jak choćby błąd średni.

Aproksymacja Padego.

Funkcję aproksymowaną przybliżamy funkcją wymierną tj. ilorazu dwóch wielomianów

$$R_{n,m}(x) = \frac{P_n(x)}{Q_m(x)}$$

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

$$Q_m(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_m x^m, \quad b_0 \neq 0$$

W tym celu rozwijamy funkcję f(x) w szereg Maclaurina

$$f(x) = \sum_{i=0}^{\infty} c_i x^i$$

i przyrównujemy pochodne f(x) oraz $R_{n,m}(x)$ dla rzędu k=0,1,...,n+m

$$\frac{d^k R_{n,m}(x)}{dx^k}|_{x=0} = \frac{d^k f(x)}{dx^k}|_{x=0}$$

Warunki te generują układ równań:

$$\begin{bmatrix} c_{n-m+1} & c_{n-m+2} & \dots & c_n \\ c_{n-m+2} & c_{n-m+3} & \dots & c_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ c_n & c_{n+1} & \dots & c_{n+m-1} \end{bmatrix} \begin{bmatrix} b_m \\ b_{m-1} \\ \vdots \\ b_1 \end{bmatrix} = \begin{bmatrix} -c_{n+1} \\ -c_{n+2} \\ \vdots \\ -c_{n+m} \end{bmatrix}$$

który trzeba rozwiązać aby znaleźć współczynniki $\vec{b} = [b_0, b_1, ..., b_m]$, a następnie korzystamy z relacji:

$$a_i = \sum_{j=0}^{i} c_{i-j} b_j$$
, $i = 0,1,...,n$

w celu wyznaczenia współczynników $\vec{a} = [a_0, a_1, ..., a_n]$.

2. Problem

Naszym zadaniem było wykonanie aproksymacji Padego funkcji

$$f(x) = \sin(x)$$

Kolejno dla n = m = 3,5,7. W tym celu wykonali następujące kroki

1. Ustaliliśmy N = n + m i policzyliśmy pochodne $f^{(k)}(0), k = 0,1,2,...,N$

$$\frac{d^k \sin(x)}{dx^k} \bigg|_{x=0} = \begin{cases} f^{(2p)}(0) = 0, & p = 0, 1, 2, 3, \dots \\ f^{(2p+1)}(0) = (-1)^p, & p = 0, 1, 2, 3, \dots \end{cases}$$

Współczynniki c_k we wzorze (4) to skalowane pochodne (jak we wzorze Taylora)

$$c_k = \frac{f^{(k)}(0)}{k!}$$

Wartości współczynników c_k zapisaliśmy do wektora $\vec{c} = [c_0, c_1, ..., c_N]$.

2. Rozwiązujemy układ równań dany wzorem (6) używając biblioteki GSL

$$A \cdot \vec{x} = \vec{y}$$

Gdzie:

$$A_{i,j} = c_{n-m+i+j+1},$$
 $i, j = 0, 1, ..., m-1$
 $y_i = -c_{n+1+i},$ $i = 0, 1, ..., m-1$

po rozwiązaniu układu równań (11) zachowujemy współczynniki wielomianu $Q_m(x)$

$$b_0 = 1$$
 oraz $b_{m-i} = x_i$, $i = 0,1,...,m-1$

Współczynniki zapisaliśmy do wektora $\vec{b} = [b_0, b_1, ..., b_m]$.

3. Wyznaczamy współczynniki wielomianu $P_n(x)$ zgodnie z wzorem (7). Współczynniki zapisaliśmy do wektora $\vec{a} = [a_0, a_1, ..., a_n]$.

3. Wyniki

Dla ustalonego n tworzymy wykresy f(x) oraz $R_{n,m}(x)$, (używając wzoru 1) na jednym rysunku w zakresie $x \in [-2\pi, 2\pi]$.

Rysunek 1. Wykres f(x) oraz aproksymacji tej funkcji dla n = m = 3.

Rysunek 2. Wykres f(x) oraz aproksymacji tej funkcji dla n = m = 5.

Rysunek 3. Wykres f(x) oraz aproksymacji tej funkcji dla n = m = 7.

4. Wnioski

Przeprowadziliśmy aproksymację Padego funkcji sin(x). Funkcja aproksymowana jest nieparzysta – niezerowe współczynniki wielomianu ${\bf L}$ to te stojące przy jednomianach o wykładnikach nieparzystych.

Z wyników można wywnioskować, że im większe stopnie wielomianu ${\bf m}$ i ${\bf n}$, tym dokładniejsze wyniki otrzymujemy. Dla m=n=7 otrzymaliśmy prawie idealne dopasowanie.