BÀI SỐ 8. TÍNH TRỰC GIAO

1. Một số định nghĩa

- Véc tơ u đgl trực giao với v nếu u.v = 0.
- Cho U, V là các không gian con của Rⁿ. Ta nói
 U trực giao với V, ký hiệu U ⊥ V nếu mọi véc
 tơ trong U đều trực giao với mọi véc tơ trong V.

VD:
$$N(A) \perp C(A^T)$$
 và $N(A^T) \perp C(A)$.

- Gọi $h_1, h_2, ..., h_m$ là các hàng của $A = [a_{ij}]_{m \times n}$.
- Lấy $x \in N(A) \Rightarrow Ax = O$ nên:

$$Ax = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} = \begin{bmatrix} h_1 x \\ h_2 x \\ \dots \\ h_m x \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \dots \\ 0 \end{bmatrix}$$

$$\Rightarrow h_i.x = 0, \forall i = 1, 2, ..., m.$$

- $C(A^T) = \{y_1h_1 + y_2h_2 + ... + y_mh_m | y_1, y_2, ..., y_m \in R\}$
- Lấy $y \in C(A^T) \Rightarrow y = y_1 h_1 + y_2 h_2 + \dots + y_m h_m$

•
$$y.x = (y_1h_1 + y_2h_2 + ... + y_mh_m).x$$

= $y_1h_1.x + y_2h_2.x + ... + y_mh_m.x = 0.$

$$\bullet \Rightarrow N(A) \perp C(A^T).$$

2. Phần bù trực giao

Định nghĩa: Cho W là một không gian con của R^n . Tập các véc tơ trong R^n mà trực giao với mọi véc tơ trong W đgl phần bù trực giao của W, ký hiệu w

$$\mathbf{w}^{\perp} = \left\{ u \in R^n \middle| u.v = 0, \forall v \in \mathbf{w} \right\}$$

VD. Cho $w = \{(0,0,0)\}$. Tìm w^{\perp} .

Định lý: Nếu
$$A = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n}$$
 thì $N(A) = C(A^T)^{\perp}$ và $N(A^T) = C(A)^{\perp}$.

VD. Tìm phần bù trực giao của $C(A^T)$ biết:

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 3 & 1 \end{bmatrix}$$

VD. Cho
$$v_1 = (1; 2; 3; 4), v_2 = (2; 5; 3; 1).$$

Đặt
$$\mathbf{w} = span(v_1, v_2)$$
. Tìm \mathbf{w}^{\perp}

VD. Cho
$$S = \{(x_1; x_2; x_3) \in R^3 | x_1 + x_2 + x_3 = 0\}$$
. Tìm S^{\perp}

$$VD: C(A^{\mathrm{T}})^{\perp} = N(A)$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 3 & 1 \end{bmatrix} \xrightarrow{H2 \to H2 - 2H1} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & -3 & -7 \end{bmatrix},$$

$$\Rightarrow$$
 bien tru: x_1, x_2 ; bien tu do: x_3, x_4

Nghiem d/b:
$$s_1 = (-9, 3, 1, 0), s_2 = (-18, 7, 0, 1)$$

$$\Rightarrow$$
 Co so cua $N(A): \{s_1, s_2\}$

$$VD: W = C(A^{\mathrm{T}}) \text{ voi: } A = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \Rightarrow W^{\perp} = N(A)...$$

$$VD: Xet: A = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \Rightarrow S = N(A) \Rightarrow S^{\perp} = C(A^{\mathsf{T}})...$$

II. Phương pháp trực giao hóa Gram – Schmidt

1. Định nghĩa

- Tập $\{v_1, v_2, ..., v_k\}$ của R^n đgl tập trực giao nếu $v_i.v_j = 0, \ \forall i \neq j.$
- Tập $\{v_1, v_2, ..., v_k\}$ của R^n đgl tập trực chuẩn nếu: $+\{v_1, v_2, ..., v_k\}$ là tập trực giao
 - $+ |v_i| = 1, \forall i = 1, 2, ..., k.$
- Một cơ sở {v₁, v₂,..., v_n} của Rⁿ đgl cơ sở trực giao nếu nó là một tập trực giao.
- Một cơ sở $\{v_1, v_2, ..., v_n\}$ của R^n đgl cơ sở trực chuẩn nếu nó là một tập trực chuẩn.

2. Phương pháp trực giao hóa Gram - Schmidt

a. Bài toán

Xây dựng một tập trực giao $\{u_1, u_2, ..., u_n\}$ từ tập $\{v_1, v_2, ..., v_n\}$ cho trước.

b. Nội dung phương pháp

- Đặt $u_1 = v_1$
- Đặt $u_2 = au_1 + v_2$. Tìm a để $u_2.u_1 = 0$.
- Đặt $u_3 = bu_2 + cu_1 + v_3$. Tìm b, c để $u_3.u_2 = u_3.u_1 = 0$
- Đặt $u_k = x_1 u_1 + x_2 u_2 + ... + x_{k-1} u_{k-1} + v_k$. Tìm $x_1, x_2, ..., x_{k-1}$ để $u_k.u_i = 0, \forall i = 1, 2, ..., k-1$.

VD. Xây dựng tập trực giao
$$\{u_1, u_2, u_3\}$$
 từ tập $\{v_1 = (1, -1, 0, 0); v_2 = (0, 1, -1, 0); v_3 = (0, 0, 1, -1)\}$

$$Dat: u_1 = v_1 = (1, -1, 0, 0)$$

$$Dat: u_2 = au_1 + v_2, do: u_2 \perp u_1 \Leftrightarrow u_1u_2 = 0 \Leftrightarrow u_1(au_1 + v_2) = 0$$

$$\Leftrightarrow au_1^2 = -u_1v_2 \Leftrightarrow a = \frac{-u_1v_2}{u_1^2} = \frac{-(1, -1, 0, 0)(0, 1, -1, 0)}{(1, -1, 0, 0)(1, -1, 0, 0)} = \frac{-(-1)}{2} = \frac{1}{2}$$

$$\Rightarrow u_2 = \frac{1}{2}u_1 + v_2 = \dots = \left(\frac{1}{2}, \frac{1}{2}, -1, 0\right)$$

$$Dat: u_{3} = bu_{1} + cu_{2} + v_{3}, co: \begin{cases} u_{3} \perp u_{1} \\ u_{3} \perp u_{2} \end{cases} \Leftrightarrow \begin{cases} u_{3}u_{1} = 0 \\ u_{3}u_{2} = 0 \end{cases}$$

III. Ma trận trực giao

- 1. $\mathbf{D/n}$: Q là ma trận trực giao nếu Q^TQ = QQ^T = I hay Q^T = Q⁻¹.
- 2. Tính chất: Q là ma trận trực giao, cấp n, khi đó:
- a. $|Q| = \pm 1$
- b. Cho u, v là các vector trong R^n : (Qu).(Qv) = u.v
- c. Gọi h_1 , ..., h_n , c_1 , ..., c_n là các vector hàng, vector cột của Q (cấp n). Khi đó có:
- ightharpoonup $c_i.c_k = 1 = h_i.h_k$ nếu i = k
- $ightharpoonup c_i.c_k = 0 = h_i.h_k$ nếu i $\neq k$, tức là c_i trực giao với c_k , h_i trực giao với h_k nếu i $\neq k$

Câu hỏi:

- Cho trước một ma trận vuông A có cấp n.
- 1. Nêu thuật toán kiểm tra: A có trực giao hay không?
- 2. Xác định độ phức tạp của thuật toán trên?