

SCHOOL OF AEROSPACE MECHANICAL AND MECHATRONIC ENGINEERING AERO3760: SPACE ENGINEERING 2

SnapSat Preliminary Design Report

21 AUGUST 2015

Name and Email	Role and Responsibility
James Allworth 312073038 jall8741@uni.sydney.edu.au	Attitude Determination and Control System
Thomas Forbutt 312101058 tfor8012@uni.sydney.edu.au	
Oscar McNulty 312106130 omcn3220@uni.sydney.edu.au	
Penelope Player 312106718 ppla7388@uni.sydney.edu.au	
Nikita Sardesai 312088205 nsar2497@uni.sydney.edu.au	

Contents

I	Space	ecrait Deign Overview	Z
	1.1	Subsystem Design Schematic	2
2	Payl	oad Design Overview	3
3	Spac	cecraft Modes of Operation	4
4	Syst	em Budgets	5
	4.1	Mass Budget	5
	4.2	Power Budget	7
	4.3	Pointing Budget	7
	4.4	Link Budgets	7
		4.4.1 Uplink Budget	7
		4.4.2 Downlink Budget	8
	4.5	Data Budget	8
5	Proj	ect Plans and Schedule	9
	5.1	Gantt Chart	10
6	Con	nments by Independent Reviewer	11
A	App	endix: Supplementary Plots and Data	13
В	App	endix: MATLAB Codes	13
Li	st c	of Figures	
	1.1	Design Schematic	2
	3.1	SnapSat State Diagram	4
Li	st c	of Tables	
	1.1	SnapSat Design Overview	2
	3.1	SnapSat Modes of Operation	4
	4.1	SnapSat Mass Budget	6
	4.2	SnapSat Power Budget	7
	5.1	SnapSat Project Schedule	9

1 Spacecraft Deign Overview

Summarised in table 5.1 below is the outline of all components in the SnapSat proposed design.

Table 1.1: SnapSat Design Overview

Subsystem	Description
Structural	
ADCS	
EPS	
OBC / OBDH	
TT&C	
Thermal	

1.1 Subsystem Design Schematic

The layout of Snapsat, with the interconnects of power and data lines between the subsystems is shown in the figure below. (NOTE: this is only an example for now)

Figure 1.1: Design Schematic

2 Payload Design Overview

One page limit describing the payload and design operations.

3 Spacecraft Modes of Operation

The spacecraft will experience the following modes during its lifetime. A different configuration of system operations and instructions will be executed by *SnapSat* in each case. These are summarised in table 3.1 below.

Table 3.1: SnapSat Modes of Operation

Spacecraft Mode	Description
Safe mode	(NOTE: this is example text) This mode is intended to keep the satellite alive. Only the essential components are ON all the time - such as the OBC, power board and VHF receiver. Transmitter is turned ON occasionally. Has uncontrolled attitude.
Recovery/De-tumble mode	(NOTE: this is example text) This mode is used to de-tumble the spacecraft after ejection from the deployment dispenser as well as to recover it from any spin-ups. In addition to the essential components that are ON all the time, the ADCS is also operational during this mode. Any other device could be turned ON by ground command.
Payload Operation Mode	This mode is used only when taking a picture. The camera module is booted up, the camera takes a picture, stores it is RAM/ROM and then the camera is powered town again to conserve power. This mode can be triggered by reaching a preset GPS location or manually via communications.
Transmission Mode	In this mode the camera is almost constantly transmitting images taken through the camera.
etc. (Other Modes)	

Figure 3.1: SnapSat State Diagram

Insert State diagram showing transitions between states

4 System Budgets

This section detail the power and mass budgets of SnapSat. (overview/description)

4.1 Mass Budget

Table 4.1: SnapSat Mass Budget

Subsystem	Mass (g)	Contingency (g)	Mass + Contingency (g)	Fraction of Total Mass (%)
Structural				
ADCS				
EPS				
OBS / ОВDН				
TT&C				
Thermal				
Payload				
Integration				
Total				
Target Mass	ı	I		ı
Mass Margin	I	I		

4.2 Power Budget

Table 4.2: SnapSat Power Budget

			Average Duty Cycle by Mode (%)				
Load	Power Consump- tion (W)	Number of Units On	Safe Mode	Recovery Mode	Payload Mode	Other Mode	
OBC							
VHF Rx							
S-band Tx							
Reaction Wheels							
Power Board							
Camera							
etc.							
Sum Loads (W)							
Efficiency							
Power Consumed (W)							
Power Generated (W)							
Power Margin							

4.3 Pointing Budget

Pointing budget CALCULATIONS

4.4 Link Budgets

Calculations for both link budgets (list assumptions here).

4.4.1 Uplink Budget

The uplink budget allows for XXX. The specifications are

- Antenna type at satellite: (omni, directional+gain)
- Frequency Band: (VHF (145.800MHz), UHF (435.xxx MHz), SHF etc.)

- Objective C/N:
- Bit rate and modulation type:
- Expected occupied bandwidth:

4.4.2 Downlink Budget

The downlink budget allows for XXX. The specifications are

- Antenna type at satellite: (omni, directional+gain)
- Frequency Band: (VHF (145.800MHz), UHF (435.xxx MHz), SHF etc.)
- Objective C/N:
- Bit rate and modulation type:
- Expected occupied bandwidth:

4.5 Data Budget

Data budget CALCULATIONS.

5 Project Plans and Schedule

A general schedule for the SnapSat project is outlined below. A Gantt chart is provided on the following page.

Table 5.1: SnapSat Project Schedule

Major Task	Responsibility	Start Date	End Date

5.1 Gantt Chart

Preliminary Design

Component Selection
Structural Design
Link Budgets
Mass Budgets
Power Budgets

Critical Design

Component Reselection
Budget Reevaluation
PCB Design and Order
Thermal Design
Order Componenets
Finalise/Send Structure
Report Compilation
Code Development

Environment Model Simulink Model

Arduino

Interface

Componenet Testing

Receive Components
Thermal System Testing
ADCS Testing
Link Testing
Solar Cell Testing
Vibration and Intgeration

Launch Preparation

Assembly
Final Testing
Balloon Launch

6 Comments by Independent Reviewer

One page maximum. (Not quite sure what this is)

References

[1] W. J. Larson and J. R. Wertz, "Space mission analysis and design," tech. rep., Microcosm, Inc., Torrance, CA (US), 1992.

- A Appendix: Supplementary Plots and Data
- B Appendix: MATLAB Codes