

Gentle RED, Nonlinear RED and Self Configuring RED Queue Disciplines

Mohit P. Tahiliani

Assistant Professor

Department of Computer Science and Engineering National Institute of Technology Karnataka, Surathkal, India tahiliani@nitk.edu.in

Recap of RED algorithm

Motivation for Gentle RED

This behavior leads to aggressive packet drops i.e., when average queue length increases beyond the \max_{th} , the drop probability sharply rises to 1.

Working of Gentle RED

Gentle RED tries to flatten this curve with a slope similar to the original RED when average queue length is between \max_{th} and twice of \max_{th} .

Question: How is P_d and P_a calculated when \max_{th} < newavg < $2 \times \max_{th}$

Hint: See the paper mentioned below in 'Image Credits'

Motivation: Nonlinear RED and Self Configuring RED

Instead of increasing the P_d linearly, it might be better if P_d is increased slowly when it is near to \min_{th} and increased sharply when it is near to \max_{th} .

Working of Nonlinear RED

$$p_{
m d}' = egin{cases} 0 & ext{avg} \leqslant ext{min}_{
m th}, \ \left(rac{ ext{avg-min}_{
m th}}{ ext{max}_{
m th}- ext{min}_{
m th}}
ight)^2 ext{max}_p' & ext{min}_{
m th} < ext{avg} \leqslant ext{max}_{
m th}, \ 1 & ext{max}_{
m th} < ext{avg}. & lacktriangle ext{Dropping Probability} \end{cases}$$

where,

$$max'_{p} = 1.5 \times max_{p}$$

Equation Credits: Kaiyu Zhou, Kwan L. Yeung, and Victor OK Li. "Nonlinear RED: A simple yet efficient active queue management scheme." Computer Networks 50, no. 18 (2006): 3784-3794.

Image Credits: Hui Wang, Xiao-Hui Lin, Kai-Yu Zhou, Nin XIE, and Hui LI. "On the scalable fairness and efficient active queue management of RED." Int'l J. of Communications, Network and System Sciences 2009 (2009).

Working of Self Configuring RED

It adapts \max_{p} as shown in the pseudocode below:

```
On every update of 'newavg':
if (min<sub>th</sub> < newavg < max<sub>th</sub>)
     status = between:
else if (newayg < min<sub>th</sub> && status != below)
     status = below:
     \max_{p} = \max_{p} \div \alpha // default value is 3
else if (newavg > max<sub>th</sub> && status != above)
     status = above:
                                 // default value is 2
     \max_{p} = \max_{p} x \beta
```

Question: Is there an upper and lower limit for maxp in this algorithm?

Important Note!

- This algorithm is named as 'Adaptive RED' in the original paper published by Feng in 1999.
- Sally Floyd proposed another algorithm in 2001 which is also named as 'Adaptive RED'.
- Eventually, the research community went on to use the term 'Adaptive RED' for Floyd's algorithm.
- Feng's algorithm is popularly known as 'Self Configuring RED' or 'Feng Adaptive RED'. The latter is used in ns-3.

Recommended Reading

Gentle RED:

Link: https://ir.canterbury.ac.nz/bitstream/handle/10092/14719/tr_0502.pdf?sequence=1&isAllowed=y

Nonlinear RED

Link: https://www.sciencedirect.com/science/article/abs/pii/S1389128606000879?via%3Dihub

Self Configuring RED:

Link: https://ieeexplore.ieee.org/abstract/document/752150/