Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

WATER SUPPLY OUTLOOK U.S. DEPT. FOR NEVADA

U. S. DEPT. OF AGMOULTURE NATIONAL AGRICULTURAL LIBRARY

APR -5 1967

CURRINT SERIAL RECONDS

and

FEDERAL - STATE - PRIVATE COOPERATIVE SNOW SURVEYS

UNITED STATES DEPARTMENT of AGRICULTURE...SOIL CONSERVATION SERVICE.

and

NEVADA DEPARTMENT of CONSERVATION and NATURAL RESOURCES
DIVISION of WATER RESOURCES

Data included in this report were obtained by the agencies named above in cooperation with Federal, State and private organizations listed on the last page of this report.

TO RECIPIENTS OF WATER SUPPLY OUTLOOK REPORTS:

Most of the usable water in western states originates as mountain snowfall. This snowfall accumulates during the winter and spring, several manths before the snow melts and appears as streamflow. Since the runoff from precipitation as snow is delayed, estimates of snowmelt runoff can be made well in advance of its occurrence. Streamflow forecasts published in this report are based principally on measurement of the water equivalent of the mountain snowpack.

Forecasts become more accurate as more of the data affecting runoff are measured. All forecasts assume that climatic factors during the remainder of the snow accumulation and melt season as they affect runoff will add to be an effective average. Early season forecasts are therefore subject to a greater change than those made on later dates.

The snaw course measurement is obtained by sampling snow depth and water equivalent at surveyed and marked locations in mountain areas. A total of about ten samples are taken at each lacation. The average of these are reparted as snow depth and water equivalent. These measurements are repeated in the same location near the same dates each year.

Snow surveys are made monthly or semi-monthly from January 1 through June 1 in most states. There are about 1400 snaw courses in Western United States and in the Columbia Basin in British Columbia. In the near future, it is anticipated that automatic snow water equivalent sensing devices along with radio telemetry will provide a continuous record of snaw water equivalent at key locations.

Detailed data on snow course and soil moisture measurements are presented in state and local reports. Other data or reservair storage, summaries of precipitation, current streamflow, and soil moisture conditions at valley elevations are also included. The report for Western United States presents a braad picture of water supply outlook conditions, including selected streamflow forecasts, summary of snow accumulation to date, and storage in larger reservoirs.

Snow survey and soil moisture data for the period of record are published by the Soil Conservation Service by states about every five years. Data for the current year is summarized in a West-wide basic data summary and published about October 1 of each year.

Listed below are water supply autlook reports based on Federal-State-Private Cooperative snow surveys. Those published by the Soil Conservation Service may be obtained from Soil Conservation Service, Room 507, Federal Building, 701 N. W. Glisan, Portland, Oregon 97209.

PUBLISHED BY SOIL CONSERVATION SERVICE

D. A. WILLIAMS, Administrator

The Soil Canservation Service publishes reports following the principal snow survey dates from January 1 through June 1 in cooperation with state water administrators, agricultural experiment stations and others. Copies of the reports for Western United States and all state reports may be obtained from Soil Conservation Service, Western Regianal Technical Service Center, Room 507, 701 N. W. Glisan, Portland, Oregon 97209.

Copies of state and local reports may also be obtained from state affices of the Sail Canservation Service in the following states:

STATE	ADDRESS
Alaska	P. O. Box "F", Palmer, Alaska 99645
Arizona	6029 Federal Building, Phoenix, Arizona 85205
Colarado (N. Mex.)	12417 Federal Building, Denver, Colorado 80202
Idaho	P. O. Box 38, Boise, Idaho 83701
Montana	P. O. Box 855, Bozeman, Montana 59715
Nevada	P. O. Box 4850, Reno Nevada 89505
Oregon	1218 S. W. Washington St., Portland, Oregon 97205
Utah	4001 Federal Building, Salt Lake City, Utah 84111
Washington	840 Bon Marche Bldg., Spokane, Washington 99206
Wyoming	P. O. Bax 340, Casper, Wyoming 82602

PUBLISHED BY OTHER AGENCIES

Water Supply Outlook reparts prepared by other agencies include a repart for California by the Water Supply Farecast and Snow Surveys Unit, California Department of Water Resources, P. O. Box 388, Sacramenta, California 95802 --- and for British Columbia by the Department of Lands, Forests and Water Resources, Water Resources Service, Parliament Building, Victoria, British Columbia

CONSERVATION OF WAT

WATER SUPPLY OUTLOOK for NEVADA

and FEDERAL - STATE - PRIVATE COOPERATIVE SNOW SURVEYS

Report Issued by

CHARLES W. CLEARY, JR.

STATE CONSERVATIONIST SOIL CONSERVATION SERVICE RENO, NEVADA ELMO J. DE RICCO

DIRECTOR
DEPARTMENT OF CONSERVATION AND
NATURAL RESOURCES
CARSON CITY, NEVADA

FEBRUARY 8, 1967

Prepared by

BOB L. WHALEY

SNOW SURVEY SUPERVISOR

ROY E. MALSOR, JR.

ASSISTANT SNOW SURVEY SUPERVISOR

SOIL CONSERVATION SERVICE
P. 0. BOX 4850
RENO, NEVADA

INDEX TO NEVADA SNOW COURSES (By Basins)

NUMBER			TWP.	RGE.	ELEV.
15H1MA 15H2 15H13 15H15A 14H1 15H2Oa 15H14 15H18a 15H3A 15H19a	SNAKE RIVER B. RIVER BEAR CREEK FOX CREEK GOAT CREEK HUMMINGBIRO SPRINGS JAKES CREEK MERRITT MOUNTAIN POLE CREEK RANGER STATION REO POINT 76 CREEK STAG MTN.	31 33 31 6 6 10 13 15 6 29	46 N 46 N 46 N 45 N 42 N 46 N 46 N 47 N 44 N 41 N	588EEEEEEEEEEEEE	7800 6800 8800 8945 7000 7000 8330 7940 7100 7800
OWYHE 15H4MP 16H6a 16H8a 15H5 16H1M 16H2A 16H4 16H5 17G4a 15H9MP	E RIVER BIG BENO COLUMBIA BASIN FAWN CREEK GOLO CREEK JACK CREEK, LOWER JACK CREEK, UPPER JACKS PEAK LAUREL ORAW LAUREL ORAW TAYLOR CANYON (OREG.)	3 0 3 1 2 32 1 8 9 2 8 2 0 2 7 3 5	4 5 N 4 4 N 4 5 N 4 5 N 4 2 N 4 2 N 4 2 N 4 5 N 4 2 N 4 5 N 4 S N 8 S N	5 5 3 2 E E E E E E E E E E E E E E E E E E	6700 6650 7000 6600 6800 7250 8450 6700 6440 6200
UPPE	INTERIOR HUMBOLOT RIVER				
15J17a 16H6a 15J12A 15J13 15H7 15J3 15H7 15J9MP 15J16 15J5 15J6M 15J5 15J6M 15J16a 15J16	A HOMBOLOI RIVER AMERICAN SEAUTY COLUMBIA BASIN CORRAL CANYON ORSEY BASIN ORY CREEK FRY CANYON GREEN MOUNTAIN HARRISON PASS #1 HARRISON PASS #2 LAMOILLE #1 LAMOILLE #1 LAMOILLE #2 LAMOILLE #3 LAMOILLE #4 LAMOILLE #5 POLE CANYON ROBINSON LAKE ROGEO FLAT RYAN RANCH TREMEWAN RANCH TROUT CREEK, LOWER TROUT CREEK, LOWER	32172851229 165124 19131123619 284	31N 28N 35N 34N 29N 28N 322N 322N 322N 332N 337N 37N 37N	55556655555555556555555555555666	7800 6650 8500 8100 6500 6500 6700 7400 7300 7300 7300 7300 914;0 9260 6800 5700 8500
LOWER 17K1 17K2 17K3 17H2 17H1 17J2 17H4 17H5 17H3 16H3AP 16H7	R HUMBOLOT RIVER BIG CREEK MINE BIG CREEK MINE BIG CREEK, WIPPER BUCKSKIN, LOWER BUCKSKIN, UPPER GOLCONOA #2 GRANITE PEAK LAMANCE CREEK LOWER CORRAL MARTIN CREEK MIOAS TOE JAM a UPPER CORRAL	1 0 2 3 2 6 2 5 1 1 2 2 2 1 3 1 2 1 8 1 8 2 9 2 0	17N 17N 17N 45N 45N 35N 44N 42N 11N 44N 49N 40N 11N	438EEEEEEEEEEEEEEEEEEEE	6600 7600 8000 6700 8200 6000 7800 6000 7500 6700 7200 7700 8500
	ERN NEVAOA	20	TIN	416	8300
14L1 14L2 14K3 14K2 14K1 15J13 15J14 15J15 14K8 15K1 14K3 15K1 14K7 14K5 15L1	BAKER #1 BAKER #2 BAKER #3 BERRY CREEK BIRO CREEK CAVE CREEK HAGER CANYON HOLE-IN-MTN KALAMAZOO CREEK MURRAY 5UMMIT ROBINSON SUMMIT SILVER CREEK #2 WARO MOUNTAIN #2 WHITE RIVER #1	2 9 3 0 2 5 2 3 3 4 2 5 3 4 2 6 2 3 3 0 2 5 3 1	13N 13N 13N 17N 19N 27N 27N 20N 16N 16N 15N 13N	6998EEEEEEEEEEEEEEEEEE	7 9 5 0 8 9 5 0 9 2 5 0 9 1 0 0 7 5 0 0 8 0 0 0 7 9 0 0 7 4 0 0 7 4 0 0 7 6 0 0 8 0 0 0 7 8 7 5 7 4 0 0
1 8M 2 1 8M 5 a 1 5N 2	RAL GREAT BASIN CAMPITO MTN (CAL.) CHICTOVICH FLAT CLARK CANYON MONTGOMERY PASS PINCHOT CREEK PIUTE PASS (CAL.) TROUGH SPRINGS	1 9 3 2 8 4 2 8 3 3 2 3	5 S 2 S 1 9 5 1 N 1 N 4 S 1 8 S	35E 34E 56E 33E 33E 33E 55E	1 0 2 0 0 1 0 5 0 0 9 0 0 0 7 1 0 0 9 3 0 0 1 1 7 0 0 8 5 0 0
NORT 1 9H 1 20H5 20H6 18G6 a 18H1 20H3 a 20H7 19H3 19H2 19H4 a 17 G5 a 17H6 a 20H4 18G5 a	HERN GREAT BASIN BALO MOUNTAIN BARBER CREEK (CAL.) CEOAR PASS (CAL.) OENIO CREEK (OREG.) OISASTER PEAK OISMAL SWAMP (CAL.) EAGLE PEAK (CAL.) HAYS CANYON LITTLE BALLY MIN OREGON CANYON (OREG.) OUINN RIOSE RESERVATIIN CREEK (CAL.) TROUT CREEK (OREG.)	17 23 12 14 8 31 35 7 1 8 9 9	45N 39N 41S 47N 48N 40N 42N 39N 45N 40S 47N 46N 41S	21E 16E 14E 34E 34E 22E 15E 19E 18E 40E 41E 38E	67 20 6500 7100 6500 7200 6500 7200 6400 6400 6000 7240 6300 5900 7800

NUMBER	NAME	SEC.	TWP.	RGE.	ELEV.			
LAKE	TAHOE							
19L3M 20L4 19K4M 20L3	OAGGETTS PASS ECHO SUMMIT (CAL.) FREEL BENCH (CAL.) GLENBROOK #2 HAGANS MEAOOW (CAL.) LAKE LUCILLE (CAL.) MARLETTE LAKE RICHAROSONS #2 (CAL.) RUBICON #1 (CAL.) RUBICON #2 (CAL.) TAHOE CITY (CAL.) UPPER TRUCKEE (CAL.) WARO CREEK (CAL.)	1 9 6 3 6 1 3 3 6 2 8 1 8 6 6 6 2 1 2 1	12N 13N	19E 18E 18E 18E 17E 19E 17E 17E 17E 18E	7 3 5 0 7 4 5 0 7 3 0 0 8 9 0 0 8 2 0 0 8 2 0 0 6 5 0 0 8 1 0 0 7 5 0 0 6 4 0 0 7 0 0 0			
	KEE RIVER							
20K3 20K5 19K3	BOCA #2 (CAL.) BROCKWAY SUMMIT (CAL.) OONNER PARK #2 (CAL.) OONNER SUMMIT (CAL.) FORNYCE LAKE (CAL.) FURNACE FLAT (CAL.) INOEPENDENCE CAMP (CAL.) INOEPENDENCE CREEK (CAL.) INOEPENDENCE LEXE (CAL.) LITTLE VALLEY MT. ROSE SAGE HEN CREEK (CAL.) TRUCKEE #2 (CAL.) TRUCKEE #2 (CAL.) WEBBER LAKE (CAL.) WEBBER LAKE (CAL.)) 14	16 N	17E 16E 13E 13E 13E 15E 19E 16E 16E 14E	5900 7100 6900 6900 6500 7000 8450 6300 9000 6500 7500 7500 8000			
CARS	ON RIVER							
19L5 19L4 19K5 19L19 a 19L6 A 19L16 a 19L20 a 19L18 a	BLUE LAKES (CAL.) CARSON PASS, UPPER (CAL. CLEAR CREEK EBBETS PASS (CAL.) POISON FLAT (CAL.) UPPER FISH VALLEY (CAL.) WOLF CREEK (CAL.) WET MEADOWS LAKE (CAL.)	30 22 6 17 25 18 35 26	9 N 1 O N 1 4 N 8 N 8 N 7 N 8 N 9 N	19E 18E 19E 20E 21E 22E 20E 19E	8000 8600 7300 8700 7900 8050 8000 8100			
WALK	ER RIVER							
18L 19L8 19L17 a 18L2 19L7M 19M1* 19L13M	BUCKEYE FORKS (CAL.) BUCKEYE ROUGHS (CAL.) CENTER MOUNTAIN (CAL.) LAPON MEAOOW LEAVITT MEAOOWS (CAL.) LOBOELL LAKE (CAL.) MT. GRANT SONORA PASS (CAL.) TIOGA PASS (CAL.) VIRGINIA LAKES (CAL.) WILLOW FLAT (CAL.)	20 15 4 36 4 20 23 1 30 5	8 N 5 N 1 N	23E 23E 23E 28E 22E 24E 24E 25E 25E 25E	8500 7900 9400 9000 7200 9200 9000 8800 9500 8250			
LOWE	COLORADO LOWER COLORADO RIVER							
1 5N 5	KYLE CANYON	27	195	56 E	8200			
15N4 15N3 15N8 14M1 14M2 15N7	LEE CANYON #1 LEE CANYON #2 LEE CANYON #3 MATHEW CANYON PINE CANYON RAINBOW CANYON #2	1 0 9 1 0 1 0 2 3 6	195 195 195 65 65 205	56 E 56 E 70 E 69 E 57 E	8 4 0 0 9 2 0 0 8 5 0 0 6 0 0 0 6 2 0 0 8 1 0 0			

NUMBERING SYSTEM (EXAMPLE)

19K4 SNOW COURSE ONLY
19K4M SNOW COURSE AND SOIL MOISTURE
19K4A SNOW COURSE AND AERIAL MARKER
19K4P SNOW COURSE AND STORAGE PRECIPITATION GAGE
19K4MA SNOW COURSE, SOIL MOISTURE AND AERIAL MARKER
19K4MP SNOW COURSE, SOIL MOISTURE AND PRECIPITATION
GAGE

LOWER CASE LETTERS m, a, p, INDICATE NO SNOW COURSE, ONLY A SOIL MOISTURE STATION, AERIAL MARKER OR STORAGE PRECIPITATION GAGE.

* LOCATEO ON AOJACENT WATERSHEO

WATER SUPPLY OUTLOOK

FOR NEVADA

February 1, 1967

Snow storms, beginning about January 20, dumped heavy amounts of snow on Nevada watersheds. Snow surveyors found traveling very difficult, and many surveys were delayed. February 1 snow surveys show a snow pack ranging from 97 percent on the Owyhee-North Fork Humboldt to 190 percent on the Walker. The Carson and Surprise Valley Basins are 136 percent and 115 percent respectively. Soil moisture measurements indicate watershed soils are near capacity and should increase runoff potential this coming season.

Streamflow forecasts for the April-July period vary from 130,000 acre-feet, or 75 percent of the 1948-62 average on the Humboldt at Palisade, to 190,000 acre-feet, or 136 percent of the average on the West Walker near Coleville. The Owyhee near Gold Creek is forecast to flow 20,000 acre-feet or 91 percent, and the Owyhee near Owyhee 65,000 acre-feet for 88 percent for the April through July period. These forecasts assume average precipitation and temperature from February 1 to the end of July.

The following table shows a comparison of streamflow forecasts with past years' flow:

	A 1 T 1	Ch	1 (71)		E		
	April-July Streamflow, Thousand Acre-Fe						
	15-Yr. 1967 as Mea						
	Forecast	Average	% of	Run	off		
	1967	1948-62	15-Yr. Av.	1966	1965		
Owyhee River near Gold Creek, Nev.	* 20	22	91	6	28		
Owyhee River near Owyhee, Nev. *	65	74	88	21	97		
Humboldt River at Palisade, Nev.	130	173	75	54	247		
West Walker below East Fork near	190	140	136	98	186		
Coleville, Calif.							
Virgin River at Virgin, Utah **	5 5	43	128	39	NA		

^{*} Corrected for storage in Wild Horse Reservoir.

^{**} April-June forecast furnished by SCS, Salt Lake City, Utah.

NA Not available.

Reservoir storage is 10 percent above the 15-year average for February 1. Seven major irrigation reservoirs, not including Mead, Mohave, and Prosser, now have 736,000 acre-feet compared with a February 1 average of 670,000 acre-feet. Last year, at this time, these reservoirs held 1,056,000 acre-feet.

With the reservoir water in storage on February 1, and water forecast to come during the April-June period, Nevada is expected to have a "good to better than average" water supply season.

STATUS OF NEVADA RESERVOIR STORAGE FEBRUARY 1, 1967

			USAB	LE STORAGE	- 1000 AC	CRE FEET
BASIN AND		USABLE CAPACITY				FEBRUARY 1 15-YR AVE.
STREAM	RESERVOIR	(1000 AF)	1967	1966	1965	1948-62
Owyhee	Wild Horse	33	2	16	5 %	12
Lower Humbolát	Rye Patch	179	70	167	116	56
Colorado	Mohave	1,810	1,639	1,768	1,680	1,319 **
Colorado	Mead	27,217	15,629	15,502	11,289	17,402
Tahoe	Tahoe	732	451	555	510	378
Truckee	Boca	41	2	2	3	8
Truckee	Prosser ***	30	9	9	9	Storage began 1/30/63
Carson	Lahontan	286	160	228	212	164
West Walker	Topaz	59	27	50	39	28
East Walker	Bridgeport	42	24	31	26	24

^{*} Reservoir drained during summer to effect repairs to dam.

TOTAL RESERVOIR STORAGE

Developed from Wild Horse, Rye Patch, Tahoe, Boca, Lahontan, Topaz, and Bridgeport Reservoirs in 1000°s Acre Feet

MONTH	1961-62	1962-63	1963-64	1964-65	1965-66	1966 - 67	AVERAGE 1948-62
October 1	65	345	707	498	1144	558	572
January 1	57	419	756	785	1112	592	622
February 1	73	558	784	911	1049	736	670
March 1	210	696	777	948	1039		725
April 1	318	769	775	1008	1052		776
May 1	499	844	814	1104	1089		834

TOTAL USABLE CAPACITY 1,372

¹⁹⁵⁰⁻⁶²

Flood control use allocation of 20,000 A.F. between November 1 and April 10.

SNOW WATER ACCUMULATION IN NEVADA

Percent of average maximum accumulation

As (February . 1967

SNOW WATER ACCUMULATION IN NEVADA

Percent of average maximum accumulation
As of February 1, 1967

					COVER ME			
				1967				cord
DRAINAGE BASIN			Date	Snow	Water	Water	Content	
AND		Elev.	of	Depth	Content			1948-62
SNOW COURSE	No.	(Ft.)	Survey	(In.)	(In.)	1966	1965	Ave.
SNAKE RIVER								
Bear Creek	15H1MA	7800	1/30	51	15.6e	9.8e	21.1e	11.7*
+Big Bend	15H4M	6700	1/31	23	5.3	3.4	8.7	6.4%
Goat Creek	15H13A	8800	1/30	39	11.3e	4.1e	14.2e	10.0%
+Gold Creek	15H5	6600	1/31	16	3.6	2.1	4.4	4.7%
Hummingbird Springs		8945	1/30	57	17.4e	9.5e	27.3e	10.7*
Merritt Mountain	15H2Oa	7000	2/4	23	5.3e	Te	1.8e	
Pole Creek R. S.	15H14	8330	1/30	48	14.7	8.2	16.4	10.5%
Red Point	15H18a	7940	1/30	43	13.2e	3.4e	6.9e	
76-Creek	15H3A	7100	1/30	29	6.7e	4.2e		7.4*
Stag Mountain	15H19a	7700	2/4	18	4.1e	1.4e		
OWYHEE RIVER			·					
	15H1MA	7800	1/30	51	15.6e	9.8e	21.le	11.7*
+Bear Creek Big Bend	15H1MA	6700	1/31	23	5,3	3.4	8.7	6.4*
Columbia Basin	15H4M 16H6a	6650	2/4	27	6.7e	2.6e	5.2e	0.4"
Fawn Creek	16H8a	7000					1.5e	
+Fry Canyon	15H7	6700	2/4 2/1	18 23	4.5e 6.0	2,4e 5.0	5.8	6.0*
Gold Creek	15H7 15H5	6600	1/31	16	3.6			
+Granite Peak	17H4	7800	1/31	51		2.1 5.7	4.4	4.7* 7.5*
	17H4 16H2A	7250			15.3	2.8e	17.0 3.5e	7.3* 6.8*
Jack Creek - Upper	16H2A	6700	2/4	18	4.9e			
Laurel Draw +Martin Creek	17H3	6700	2/7 1/30	24 37	6.6 12.2	4.2 4.0	5.0 10.0	5.2* 5.8*
+Rodeo Flat	17H3 15H6M	6800	2/1	18	4.5			5.6*
+76-Creek	15H3A	7100	1/30	29	4.3 6.7e	3.4	4.6 8.1e	7.4*
	15H9M	6200	1/30	27	6.0	4.2e 4.0		7.4 [*] 3.9 [*]
Taylor Canyon +Toe Jam	15H9M 16H7a	7700					3.8	
+Tremewan Ranch	15H8	5700	2/4 1/30	34 14	7.5e 2.4	4.6e	5.5e	 1.7*
		3700	1/30	14	2.4	2.2	1.5	1./~
UPPER HUMBOLDT RIVE	<u>K</u>							
American Beauty	15J17a	7800	2/4	31	8.7e	4.2e	3.8e	´
+Bear Creek	15H1MA	7800	1/30	51	15.6e	9.8e	21.1e	11.7*
+Big Bend	15H4M	6700	1/31	23	5.3	3.4	8.7	6.4*
Corral Canyon	15J12A	8500	2/4	24	8.1e	7.6e		
Fry Canyon	15H7	6700	2/1	23	6.0	5.0	5.8	6.0%
+Gold Creek	15H5	6600	1/31	16	3.6	2.1	4.4	4.7*
+Jack Creek - Upper	16H2A	7250	2/4	18	4.9e	2.8e	3.5e	6.8*
Lamoille #1	15J4	7100	2/2	32	8.0	6.0	6.7	6.9*
Lamoille #2	15J5	7200	2/2	30	7.3	5.9	5.9	6.4*
Lamoille #3	15J6	7700	2/2	39	10.4	6.4	10.2	8.3*
Lamoille #4	15J7	8000	2/2	54	15.8	9.5	17.0	12.0*
Lamoille #5	15J8	8700	2/2	62	19.0	14.0	23.6	17.8*

⁺ Located on adjacent drainage.

e Aerial snow depth gage reading; water content estimated.

^{* 1948-62} adjusted average.

			SNOW COVER MEASUREMENTS					
				1967	OO / ER TIE		t Re	cord
DRAINAGE BASIN			Date	Snow	Water	Water	Content	(In.)
AND		Elev.	of	Depth	Content			1948-62
SNOW COURSE	No.	(Ft.)	Survey	(In.)	(In.)	1966	1965	Ave.
UPPER HUMBOLDT RIVER	Continu	ied)						
Pole Canyon	15J18a	7140	2/4	5	1.2e	3.4e	New Aer	ial Marker
Robinson Lake	15J16a	9200	2/4	60	18.0e	19.5e		ial Marker
Rodeo Flat	15H6M	6800	2/1	18	4.5	3.4	4.6	5.6*
+76-Creek	15H3A	7100	2/4	37	8.5e	4.2e	8.1e	7.4*
+Stag Mountain	15H19a	7700	2/4	18	4.le	1.4e		
+Taylor Canyon	15H9M	6200	1/30	27	6.0	3.9	3.8	3.9*
+Toe Jam	16H7a	7700	2/4	34	7.5e	4.6e	5.5e	
Tremewan Ranch	15H8	5700	1/30	14	2.4	2.2	1.5	1.7*
Trout Creek - Upper	15H11A	8500	2/4	18	5.4e	15.6e	9.1e	
LOWER HUMBOLDT RIVER								
Granite Peak	17H4	7800	1/30	51	15.3	5.7	17.0	7.5*
Martin Creek	17H3	6700	1/30	37	12.2	4.0	10.0	5.8*
Midas	16H3A	7200	, 2/4	12	3.0e	1.0e	0.3e	
Toe Jam	16H7a	7700	2/4	34	7.5e	4.6e	5.5e	
Lower Corral	17L2	7500	1/30	7	1.5	1.5	0.6	
Upper Corral	17L1	8500	1/30	18	4.7	3.5	3.6	
QUINN RIVER								
Denio Creek	18G6a	6000	2/5	4	1.2e	0.8e	0.0e	
Louse Canyon	17G4a	6440	2/5	24	7.2e	2.5e	1.0e	
Oregon Canyon	17G5a	7240	2/5	28	8.4e	1.1e	2.1e	
Quinn Ridge	17H6a	6300	2/5	10	3.0e	0.6e		
Trout Creek	18G3a	7800	2/5	32	9.6e	1.8e	5.6e	
LOWER COLORADO RIVER		, 555	2, 5	32	,,,,,	1.00		
	-	6000	0.10	0	0 5	0.6	,	0 04
Mathew Canyon	14M1 14M2	6000 6200	2/2 2/2	9	2.5	0.6	0.0	3.0*
Pine Canyon	14112	0200	2/2	11	2.8	2.2	0.9	3.2*
TAHOE								
Brockway Summit	20K22	7100	1/27	72	18.1	12.1	20.1	
Daggetts Pass	19L14	7350	1/26	55	12.5	10.7	12.7	8.9*
Echo Summit	20L5	7500	2/1	110	33.3	27.4	42.7	23.1
Freel Bench	19L2	7300	1/25	51	11.8	10.8	17.0	8.6*
Glenbrook #2	19K6	6900	1/28	51	11.6	10.8	12.0	7.6*
Hagans Meadow	19L3	8000	1/25	76	16.9	13.9	22.9	9.8*
Marlette Lake	19K4	8000	1/26	76	20.8	17.8	19.0	12.7*
Richardsons #2	20L3	6500	1/28	57	15.8	13.1	17.9	11.1*
Tahoe City	20K16	6250	1/28	45	13.8	10.1	13.4	8.4*
Upper Truckee	19L1	6400	1/25	40	9.4	10.6	12.5	7.4*
Ward Creek	20K17	7000	1/27	110	35.0	28.1	45.8	25.8*

⁺ Located on adjacent drainage.

e Aerial snow depth gage reading; water content estimated.

^{* 1948-62} adjusted average.

					COVER ME			
				1967		Pas.	t Re	$c \circ r d$
DRAINAGE BASIN			Date	Snow	Water	Water	Content	
AND		Elev.	of	Depth	Content			1948-62
SNOW COURSE	No.	(Ft.)	Survey	(In.)	(In.)	1966	1965	Ave.
TRUCKEE RIVER								
	0.0111.6	5000	. /0.	0.0			0 0	5 0.1.
Boca #2	20K14	5900	1/31	23	6.9	7.0	8.9	5.9*
Brockway Summit	20K22	7100	1/27	72	18.1	12.1	20.1	
Donner Park #2	20K21	6000	1/30	62	19.1	14.1	15.4	11.2*
+Donner Summit	20K10	6900	1/31	126	45.0	25.2	42.5	23.4
+Fordyce Lake	20K7	6500	_	rt dela		23.2	29.6e	23.1*
+Furnace Flat	20K8	6600	1 / 0 0	11		30.4	40.5e	26.2*
Independence Camp	20K4M	7000	1/30	80	23.8	16.8	24.3	
Sage Hen Creek	20K6	6500	1/30	64	19.6	14.0	18.5	12.2*
Squaw Valley #2	20K19	7500	2/5	133	49.1	.31.1	54.4	29.3*
Tahoe City	20K16	6250	1/28	45	13.8	10.1	13.4	8.4*
Truckee #2	20K13M	6400	1/31	60	18.4		18.4	10.5*
+Ward Creek	20K17	7000	1/27	110	35.0	28.1	45.8	25.8*
CARSON RIVER								
	19L4	8600	2/1	107	34.4	2/ 1	41.4	19.3
Carson Pass (Upper) Ebbetts Pass	19L4 19L19a	8700		observe		24.1 23.0e		
			2/2	84	26.0e		31.8e	
Wet Meadow Lake	19L18a	8100		60	18.0e	21.6e	10.7	
Poison Flat	19L6A	7900	2/1			15.9e	13.7e	
Upper Fish Valley	19L16a	8050	2/1	52	15.6e	20.7e	10.3e	
Wolf Creek	19L20a	8000	2/1	96	28.8e	24.8e	36.0e	
WALKER RIVER								
Center Mountain	19L12A	9400	2/1	129	37.4e	24.8e	29.4e	
Lobdell Lake	19L17a	9200	2/1	62	18.0e	13.8e	16.1e	
Sonora Pass	19L7	8800	1/31	88	26.6	18.3	28.1	13.0*
Tioga Pass	1 9M1	9900	2/1	84	29.0	14.2	25.2	16.2*
Virginia Lakes	19L13	9500	1/23	66	18.4	13.8	18.5	10.7*
WHITE MOUNTAINS								
			٠.				_	
Campito Mountain	18M2	10200	2/2	35	11.6		1.8	3.7*
Chiatovich Flat	18M5a	10500	2/1	27	7.3	T	T	
Montgomery Pass	18M1	7100	1/31	9	2.4e	3.5	0.0	0.8*
Pinchot Creek	18M3a	9300	2/1	3	0.8e	T	T	
Piute Pass	18M4a	11700	2/1	34	9.2e	5.4	T	
NORTHERN GREAT BASIN	(Surprise	Valley)						
Barber Creek	20H2	6500	1/26	35	5.8	6.1	14.5	7.6*
Cedar Pass	20H2	7100	2/1	42	11.1	7.4	14.9	10.0
	20H3a	7000	1/31	48	13.4e	9.2e	15.6e	8.2*
Dismal Swamp	20H3a 19H3	6000	1/27	19	5.5	2.1	5.9	3.5*
49-Mountain	19H2	6400	1/26	13	2.8	3.4	5.5	2.4*
Hays Canyon		6000	1/20	12	3.4e	1.1e		
Little Bally Mtn.	19H4a	5900	1/31	31	7.0	8.1	3.le 10.8	 7.9*
Reservation Creek	20H1	2900	1/2/	31	/ • 0	0.1	10.0	7.90

⁺ Located on adjacent drainage.

e Aerial snow depth gage reading; water content estimated.

^{* 1948-62} adjusted average

Agencies Cooperating in Collecting Data Contained in this Bulletin

FEDERAL

Agricultural Research Service
Army
Bureau af Reclamation
Fish and Wildlife Service
Forest Service
Geological Survey
Navy
Soil Conservation Service
U.S. District Court - Federal Water Master
Weather Bureau

STATE

California Cooperative Snow Surveys
California Department of Parks and Recreation
California Department of Water Resources
Colorado River Commission of Nevada
Nevada Association of Soil Conservation Districts
Nevada Cooperative Snow Surveys
Nevada Department of Conservation & Natural Resources
Division af Water Resources
Nevada State Forester-Firewarden
Oregon Cooperative Snow Surveys
University of Nevada
White Mountain Research Station, Univ. of California

PRIVATE

Amalgamated Sugar Company
Kennecott Copper Corporation
Nevada Irrigation District
Owyhee Project North Board of Control
Owyhee Project South Board of Control
Pacific Gas & Electric Company
Pershing County Water Conservation District
Sierra Pacific Power Company
Squaw Valley Development Company
Truckee-Carson Irrigation District
Virginia City Water Company
Walker River Irrigation District
Washoe County Water Conservation District

Other organizations and individuals furnish valuable information for the snow survey reparts. Their Cooperation is gratefully acknowledged.

POSTAGE AND FEES PAID S. DEPARTMENT OF AGRICULTURE

. _

FEDERAL - STATE - PRIVATE

COOPERATIVE SNOW SURVEYS

domestic and municipal water water supply for irrigation, supply, hydro-electric power necessary for forecasting generation, navigation, Furnishes the basic data mining and industry "The Conservation of Water begins with the Snow Survey"