

# ADA02\_Adrian\_Fonseca\_leccion2.pdf

# Sección 1

- ¿Cuáles de las siguientes sentencias son proposiciones?
- a. Boston es la capital de Massachusetts. 

  Proposición
- b. Miami es la capital de Florida. 

  Proposición
- c. 2+3=5 ← Proposición
- d. 5+7=10. ← Proposición
- e. x+2=11. ← No es proposición
- f. Responde esta pregunta. ← No es proposición

# Sección 2

Suponga que un un Smartphone A tiene 256MB RAM y 32GB de ROM, y la resolución de su cámara es de 8MP; El Smartphone B tiene 288 MB en RAM y 64 AAGB de ROM, y la resolución de su cámara es de 4 MP; y el Smartphone C tiene 128 MB en RAM y 32 GB en ROM, y la resolución de su cámara es de 5 MP. Determine el valor de verdad de cada una de las siguientes proposiciones.

- a. El Smartphone B es el que tiene mayor RAM de estos tres smartphones. Verdadero
- b. El Smartphone C tiene mayor ROM o una mayor resolución en la cámara que el Smartphone B. Verdadero
- c. El Smartphone B tiene mayor RAM, más ROM, y una mayor resolución en la cámara que el Smartphone A. Falso
- d. Si el Smartphone B tiene mayor RAM y más ROM que el Smartphone C, entonces también tiene una mayor resolución en la cámara. Verdadero

## Sección 3

Sean p y q las siguientes proposiciones

- p : Yo compré un boleto de lotería esta semana.
- q : Yo gané un millón de pesos en el casino.

Expresa cada una de estas proposiciones (en el lenguaje español) como se indica a continuación.

- a. ¬p ← Yo no gané un millón de pesos en el casino
- b. p∨q ← Yo compré un boleto de lotería esta semana o gané un millón de pesos en el casino
- c.  $p \rightarrow q \leftarrow$  Si compré un boleto de lotería esta semana entonces gané un millón de pesos en el casino
- d. p∧q ← Yo compré un boleto de lotería esta semana y gané un millón de pesos en el casino
- e.  $\neg p \rightarrow \neg q \leftarrow Si$  no compré un boleto de lotería esta semana entonces no gané un millón de pesos en el casino
- f.  $\neg p \land \neg q \leftarrow No$  compré un boleto de lotería esta semana y no gané un millón de pesos en el casino
- g.  $\neg p \lor (p \land q) \leftarrow No$  compré un boleto de lotería esta semana o compré un boleto de lotería esta semana y gané un millón de pesos en el casino

#### Sección 4

Sean p y q las siguientes proposiciones

- p: Está bajo cero.
- q : Está nevando.

Escribe estas proposiciones usando p y q y los conectores lógicos (y, o, no,

- si..entonces)
- a. Está bajo cero y está nevando.
- b. Está bajo cero pero no está.
- c. No está bajo cero y no está nevando.
- d. Está nevando o bajo cero (o ambos)
- e. Si está bajo cero entonces está nevando.
- f. Que esté bajo cero es condición necesaria para que esté nevando.

#### Sección 5

Determine si cada una de estas sentencias condicionales son verdaderas o falsas:

- a. Si 1+1=3, entonces los unicornios existen. Falso
- b. Si 1+1=3, entonces los perros vuelan. Falso
- c. Si 1+1=2, entonces los perros pueden volar. Verdadero
- d. Si 2+2=4, entonces 1+2=3. Verdadero

# Sección 6

Construye una tabla de verdad para cada una de estas proposiciones compuestas.

- a. p∧¬p
- b. p∨¬p

c.  $(p \lor \neg q) \rightarrow q$ 

d.  $(p \lor q) \rightarrow (p \land q)$ 

e.  $(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$ 

f.  $(p \rightarrow q) \rightarrow (q \rightarrow p)$ 

| <u>Аа</u> р∧¬р  | <b>≡</b> р∨¬р | $\equiv (p \lor \neg q) \rightarrow q$ | $\equiv (p \lor q) \rightarrow (p \land q)$ |   |   |
|-----------------|---------------|----------------------------------------|---------------------------------------------|---|---|
| <u>V</u>        | F             | F                                      | F                                           | F | V |
| <u>Untitled</u> |               |                                        |                                             |   |   |
| <u>Untitled</u> |               |                                        |                                             |   |   |

### Sección 7

Realiza las operaciones OR, AND y XOR de cada uno de los siguientes pares de cadenas de bits.

#### a. 101 1110, 010 0001

| <u>Aa</u> BIT 01 | <b>■</b> BIT 02 | <b>≡</b> OR | <b>≡</b> AND | <b>≡</b> XOR |
|------------------|-----------------|-------------|--------------|--------------|
| <u>101 1110</u>  | 010 0001        | 111 1111    | 000 0000     | 111 1111     |

#### b. 1111 0000, 1010 1010

| Aa BIT 01        | <b>■</b> BIT 02 | <b>≡</b> OR | <b>≡</b> AND | <b>≡</b> XOR |
|------------------|-----------------|-------------|--------------|--------------|
| <u>1111 0000</u> | 1010 1010       | 1111 1010   | 0101 1010    | 111 1111     |

#### c. 00 0111 0001, 10 0100 1000

| <u>Aa</u> BIT 01 | <b>■</b> BIT 02 | <b>≡</b> OR  | <b>≡</b> AND | <b>≡</b> XOR |
|------------------|-----------------|--------------|--------------|--------------|
| 00 0111 0001     | 10 0100 1000    | 10 0111 1001 | 00 0100 0000 | 10 0011 1001 |

#### d. 11 1111 1111, 00 0000 0000

| Aa BIT 01           | <b>≡</b> BIT 02 | <b>≡</b> OR  | <b>≡</b> AND | <b>≡</b> XOR |
|---------------------|-----------------|--------------|--------------|--------------|
| <u>11 1111 1111</u> | 00 0000 0000    | 11 1111 1111 | 00 0000 0000 | 11 1111 1111 |