Takehome Assigment 3 Solutions Due Monday, April 26

In this assignment we establish some basic facts about prime and maximal ideals in *commutative* unital rings. In this assignment all rings are commutative unital rings, and all ring homomorphisms are unital, meaning that they send 1 to 1,

- 1. Let $\varphi: R \to S$ be a homomorphism between commutative unital rings with $\varphi(1_R) = 1_S$.
 - (a) Let $\mathfrak{q} \subseteq S$ be a prime ideal. Show that $\varphi^{-1}(\mathfrak{q})$ is a prime ideal of R.

Proof. We present two proofs. The first is direct. Let $x, y \in R$ with $xy \in \varphi^{-1}(\mathfrak{q})$. Then $\varphi(xy) = \varphi(x)\varphi(y) \in \mathfrak{q}$, so that $\varphi(x) \in \mathfrak{q}$ or else $\varphi(y) \in \mathfrak{q}$ (by the primality of \mathfrak{q}). This in turn implies that either x or y are in $\varphi^{-1}(\mathfrak{q})$, which implies primality of $\varphi^{-1}(\mathfrak{q})$.

Here's another proof I consider cuter. Consider the composition $R \to S \to S/\mathfrak{q}$. The kernel of this map is plainly $\varphi^{-1}(\mathfrak{q})$, so that by the first isomorphism theorem we obtain an injective unital ring homomorphisms $R/\varphi^{-1}(\mathfrak{q}) \hookrightarrow S/\mathfrak{q}$. Since \mathfrak{q} is prime, S/\mathfrak{q} is an integral domain. Therefore $R/\varphi^{-1}(\mathfrak{q})$ is isomorphic to a subring of an integral domain, so it cannot have any zero divisors (else S/\mathfrak{q} would). This in turn implies $\varphi^{-1}(\mathfrak{q})$ is prime.

(b) Suppose φ is surjective, and $\mathfrak{m} \subseteq S$ is a maximal ideal. Show that $\varphi^{-1}(\mathfrak{m})$ is a maximal ideal of R.

Proof. Consider the composition $R \to S \to S/\mathfrak{m}$. The composition is surjective, and the kernel is $\varphi^{-1}(\mathfrak{m})$. Therefore by the first isomorphism theorem, $R/\varphi^{-1}(\mathfrak{m}) \cong S/\mathfrak{m}$. Since \mathfrak{m} is maximal, S/\mathfrak{m} is a field, and therefore so is $R/\varphi^{-1}(\mathfrak{m})$, so that $\varphi^{-1}(\mathfrak{m})$ is maximal in R.

Here's another proof using the fourth isomorphism theorem (HW11 Problem 2(a)). Since $S \cong R/\ker \varphi$, there is an inclusion preserving bijection between ideals of S and those of R containing $\ker \varphi$. In particular, an ideal I with $\varphi^{-1}(\mathfrak{m}) \subseteq I \subsetneq R$ corresponds to an ideal $\mathfrak{m} \subseteq \overline{I} \subsetneq S$. The maximality of \mathfrak{m} shows that $\overline{I} = \mathfrak{m}$, so that $I = \varphi^{-1}(\mathfrak{m})$.

(c) Give a counterexample to part (b) if φ is not surjective.

Proof. Consider $\mathbb{Z} \hookrightarrow \mathbb{Q}$. Then the 0 ideal is maximal in \mathbb{Q} , but its preimage in \mathbb{Z} is also the zero ideal, which is not maximal, since for any $n \geq 2$ we have $0 \subseteq n\mathbb{Z} \subseteq \mathbb{Z}$.

- 2. In class we defined the ring of fractions for a good multiplicative subset of a ring, i.e., a subset of R which contains no zero divisors and is closed under multiplication. Let's generalize this. We define a subset $S \subseteq R$ to a be multiplicative subset if it is closed under multiplication and contains 1. In this exercise we will describe the ring of fractions $S^{-1}R$.
 - (a) Consider the subset $\{(a,b): a \in R, b \in S\} \subseteq R \times R$. Prove that:

$$(a_1,b_1) \sim (a_2,b_2)$$
 if there exits $t \in S$ such that $t(a_1b_2-b_1a_2)=0$,

is an equivalence relation on R. The equivalence class of (a, b) will be denoted $\frac{a}{b}$. Explain why if S contains no zero divisors (or zero), this is the same equivalence relation as the one defined in class.

Proof. We must show it is symmetric, reflexive, and transitive.

Symmetric: This follows because the ring is commutative. Explicitly: suppose $(a_1, b_1) \sim \overline{(a_2, b_2)}$. Then there is some $t \in S$ so that $t(a_1b_2 - b_1a_2) = t(a_2b_1 - b_2a_1) = 0$ which is what it means for $(a_2, b_2) \sim (a_1, b_1)$.

Reflexive: To see $(a_1, b_1) \sim (a_1b_1)$ we observe that $t(a_1b_1 - b_1a_1) = 0$, for any t, so in particular for any $t \in S$.

Transitive: Suppose $(a_1,b_1) \sim (a_2,b_2)$ and $(a_2,b_2) \sim (a_3,b_3)$. Therefore there are $t,s \in S$ such that:

$$t(a_1b_2 - b_1a_2) = 0 \text{ and } s(a_2b_3 - b_2a_3) = 0.$$
 (1)

In particular, we can multiply the first equation by s and the second by t to obtain:

$$sta_1b_2 = sta_2b_1 \text{ and } sta_2b_3 = stb_2a_3. \tag{2}$$

Multiply the first by b_3 and the second by b_1 , then add them together to obtain:

$$sta_1b_2b_3 + stb_1a_2b_3 = stb_1a_2b_3 + stb_1b_2a_3.$$
 (3)

We observe that $stb_1a_2b_3 = stb_1a_2b_3$, by Equation (2), so that we can cancel this from equation (3) and rearrange it to obtain:

$$stb_2(a_1b_3 - b_1a_3) = 0 (4)$$

Since $s, t, b_2 \in S$, and S is multiplicatively closed, then $stb_2 \in S$, so that Equation (4) witnesses the relation $(a_1, b_1) \sim (a_3, b_3)$, completing the proof of transitivity.

Finally, if S contains no zero divisors (or 0), then if $t(a_1b_2 - b_1a_2) = 0$ for some $t \in S$ if and only if $a_1b_2 - b_1a_2 = 0$, which is precisely the condition we described in class.

(b) Let $S^{-1}R = \{\frac{a}{b} : a \in R, b \in S\}$ be the set of equivalence classes of the relation described above. Define addition and multiplication on $S^{-1}R$ by the rules:

$$\begin{array}{rcl} \frac{a_1}{b_1} + \frac{a_2}{b_2} & = & \frac{a_1b_2 + a_2b_1}{b_1b_2} \\ \frac{a_1}{b_1} \times \frac{a_2}{b_2} & = & \frac{a_1a_2}{b_1b_2}. \end{array}$$

Show that these rules make $S^{-1}R$ into a commutative ring with identity. (You must first show that they are well defined. Then show that the ring axioms are satisfied)

Proof. There is a whole laundry list of things to check.

+ is well defined: Suppose $\frac{a_1}{b_1} = \frac{\hat{a}_1}{\hat{b}_1}$ and $\frac{a_2}{b_2} = \frac{\hat{a}_2}{\hat{b}_2}$. These are witnessed by $s, t \in S$ such that:

$$t(a_1\hat{b}_1 - b_1\hat{a}_1) = 0 \text{ and } s(a_2\hat{b}_2 - b_2\hat{a}_2) = 0.$$
 (5)

Therefore:

$$st((a_1b_2 + a_2b_1)\hat{b}_1\hat{b}_2) - b_1b_2(\hat{a}_1\hat{b}_2 + \hat{a}_2\hat{b}_1))$$

$$= (ta_1\hat{b}_1)(sb_2\hat{b}_2) + (sa_2\hat{b}_2)(tb_1\hat{b}_1) - (tb_1\hat{a}_1)(sb_2\hat{b}_2) - (tb_1\hat{b}_1)(sb_2\hat{a}_2)$$

$$= t(a_1\hat{b}_1 - b_1\hat{a}_1)(sb_2\hat{b}_2) + s(a_2\hat{b}_2 - b_2\hat{a}_2)(tb_1\hat{b}_1)$$

$$= 0$$

Where the last step comes from substituting en Equation (5). We may therefore conclude that:

$$\frac{a_1b_2 + a_2b_1}{b_1b_2} = \frac{\hat{a}_1\hat{b}_2 + \hat{a}_2\hat{b}_1}{\hat{b}_1\hat{b}_2}$$

+ is associative: We directly check that:

$$\begin{pmatrix} \frac{a_1}{b_1} + \frac{a_2}{b_2} \end{pmatrix} + \frac{a_3}{b_3} = \frac{a_1b_2 + a_2b_1}{b_1b_2} + \frac{a_3}{b_3}
= \frac{(a_1b_2 + a_2b_1)b_3 + (b_1b_2)a_3}{(b_1b_2)b_3}
= \frac{a_1(b_2b_3) + b_1(a_2b_3 + b_2a_3)}{b_1(b_2b_3)}
= \frac{a_1}{b_1} + \frac{a_2b_3 + b_2a_3}{b_2b_3}
= \frac{a_1}{b_1} + \left(\frac{a_2}{b_2} + \frac{a_3}{b_3}\right).$$

<u>+ has identity:</u> We notice that $\frac{0}{t}$ is an additive identity for any $t \in S$ (uniqueness doesn't need to be checked, it follows from the group axioms). Indeed, for any $\frac{a}{b}$ we have:

$$\frac{a}{b} = \frac{0}{t} = \frac{at + b0}{bt} = \frac{at}{bt}.$$

But since abt - bat = t(ab - ba) = 0, we see that $\frac{a}{b} = \frac{at}{bt}$

+ has inverses: We see that $-\frac{a}{b} = \frac{-a}{b}$. Indeed:

$$\frac{a}{b} + \frac{-a}{b} = \frac{ab + -ab}{bb} = \frac{0}{b^2},$$

as desired.

+ is commutative: This is immediate as + and \times both are in R. Indeed:

$$\frac{a}{b} + \frac{a'}{b'} = \frac{ab' + a'b}{bb'} = \frac{a'b + ab'}{b'b} = \frac{a'}{b'} + \frac{a}{b}.$$

This completes the proof that $(S^{-1}R, +)$ is an abelian group under +. We now move on to proving \times as the properties we'd like.

 \times is well defined: We begin exactly as in showing + is well defined with $\frac{a_1}{b_1} = \frac{\hat{a}_1}{\hat{b}_1}$ and $\frac{a_2}{b_2} = \frac{\hat{a}_2}{\hat{b}_2}$, witnessed by Equation (5) above. Rarranging we see that:

$$ta_1\hat{b}_1 = tb_1\hat{a}_1 \text{ and } sa_2\hat{b}_2 = sb_2\hat{a}_2.$$

Therefore:

$$sta_1a_2\hat{b}_1\hat{b}_2 = stb_1b_2\hat{a}_1\hat{a}_2,$$

so that

$$st(a_1a_2\hat{b}_1\hat{b}_2 - b_1b_2\hat{a}_1\hat{a}_2).$$

Since $st \in S$ this witnesses that:

$$\frac{a_1 a_2}{b_1 b_2} = \frac{\hat{a}_1 \hat{a}_2}{\hat{b}_1 \hat{b}_2},$$

as desired.

 \times is associative and commutative: This is an easy check, following immediately from the associativity and commutativity of R. Indeed:

$$\left(\frac{a_1}{b_1}\frac{a_2}{b_2}\right)\frac{a_3}{b_3} = \frac{(a_1a_2)a_3}{(b_1b_2)b_3} = \frac{a_1(a_2a_3)}{b_1(b_2b_3)}.$$
$$\frac{a_1}{b_1}\frac{a_2}{b_2} = \frac{a_1a_2}{b_1b_2} = \frac{a_2a_1}{b_2b_1} = \frac{a_2}{b_2}\frac{a_1}{b_1}.$$

<u>The distributive law holds:</u> Since we checked commutativity first, we need only the distributive law on one side. Let's do it:

$$\frac{c}{d} \left(\frac{a_1}{b_1} + \frac{a_2}{b_2} \right) = \frac{c}{d} \frac{a_1 b_2 + a_2 b_1}{b_1 b_2}$$
$$= \frac{c(a_1 b_2 + a_2 b_1)}{db_1 b_2}.$$

On the other hand:

$$\frac{c}{d}\frac{a_1}{b_1} + \frac{c}{d}\frac{a_2}{b_2} = \frac{ca_1}{db_1} + \frac{ca_2}{db_2}$$
$$= \frac{cda_1b_2 + cda_2b_1}{d^2b_1b_2}.$$

To see that these are the same we cross multiply and observe that:

$$c(a_1b_2 + a_2b_1)d^2b_1b_2 - (cda_2b_2 + cda_2b_1)db_1b_2 = cd^2b_1b_2((a_1b_2 + a_2b_1) - (a_1b_2 - a_2b_1)) = 0.$$

Therefore these are equal and distributivity holds. We have now shown that $S^{-1}R$ is a commutative ring. One thing remains.

 \times is unital: We finish by observing that $\frac{1}{1}$ is a unit (here we are using that $1 \in S$, but in fact $\frac{t}{t}$ would work for any $t \in S$). Indeed:

$$\frac{1}{1}\frac{a}{b} = \frac{1a}{1b} = \frac{a}{b}.$$

The other side immediately holds by commutativity.

(c) Define $\iota: R \to S^{-1}R$ by the rule $\iota(r) = \frac{r}{1}$. Show that ι is a ring homomorphism, that $\iota(1_R) = 1_{S^{-1}R}$ and that if $s \in S \subseteq R$, the $\iota(s)$ is a unit in $S^{-1}R$. Prove also that ι is injective if and only if S contains no zero divisors (or zero),

Proof. ι is a unital homomorphism: Fix $r, s \in R$. Then:

$$\iota(r) + \iota(s) = \frac{r}{1} + \frac{s}{1} = \frac{r1 + 1s}{11} = \frac{r+s}{1} = \iota r + s,$$

$$\iota(r)\iota(s) = \frac{r}{1}\frac{s}{1} = \frac{rs}{1} = \iota(rs),$$

so ι is a homomorphism. Furthermore, $\iota(1) = \frac{1}{1}$ which we verified in part (b) was the identity of $S^{-1}R$.

<u> ι takes elements of S to units:</u> Let $s \in S$. Then $\iota(s) = \frac{s}{1}$. Notice that $\frac{1}{s} \in S^{-1}R$, and that $\frac{1}{s} \frac{s}{1} = \frac{s}{s}$ But $\frac{s}{s} = \frac{1}{1}$. Indeed, if we cross multiply this is s1 - 1s = 0. Therefore $\iota(s)$ has a left inverse, which is also a right inverse by commutativity. Thus $\iota(s)$ is a unit.

Characterizing injectivity: Notice that $\iota(r)=0$ if and only if $\frac{r}{1}=\frac{0}{1}$. This holds if and only if there is some $t\in S$ such that $t(r1-1\cdot 0)=tr=0$. Therefore, there is some nonzero $r\in\ker\iota$ if and only if there is some $t\in S$ such that tr=0, which holds if and only if t=0 or t is a zero divisor. So ι is not injective if and only if S contains a zero or zero divisor.

(d) Show that $S^{-1}R$ satisfies the following universal property. For any commutative unital ring A, and ring homomorphisms $\varphi: R \to A$ such that $\varphi(s) \in A^{\times}$ for every $s \in S$, there is a unique homomorphism $\tilde{\varphi}: S^{-1}R \to A$ such that $\tilde{\varphi} \circ \iota = \varphi$.

Deduce that there is a bijection:

{Homomorphisms $\varphi: R \to A$ such that elements of S map to A^{\times} }

1

{(Unital) homomorphisms $\tilde{\varphi}: S^{-1}R \to A$ }.

Proof. We first verify the following fact.

Lemma 1. Let $\psi: T_1 \to T_2$ be a unital ring homomorphism (i.e. that takes 1 to 1). Then if $t \in T_1^{\times}$, $\varphi(t) \in T_2^{\times}$ and $\varphi(t^{-1}) = \varphi(t)^{-1}$.

Proof. This is clear because $\varphi(t)\varphi(t^{-1}) = \varphi(tt^{-1}) = \varphi(1) = 1$, and varifying that it is also a left inverse is identical.

Fix some $\varphi: R \to A$ such that $\varphi(s) \in A^{\times}$ for every $s \in S$. Notice that then φ is unital, since it must take 1 to a unit, and therefore a nonzero divisor, which by HW11 1(d) means it must take 1 to 1. We build a homomorphism $\tilde{\varphi}: S^{-1}R \to A$ by the rule $\tilde{\varphi}\left(\frac{a}{b}\right) = \varphi(a)\varphi(b)^{-1}$ (where $\varphi(b)$ has an inverse in A since $b \in S$).

 $\underline{\tilde{\varphi}}$ is well defined: Suppose $\frac{a_1}{b_1} = \frac{a_2}{b_2}$, so that there is some $t \in S$ so that $t(a_1b_2 - a_2b_1) = -$. Applying φ gives

$$\varphi(t)(\varphi(a_1)\varphi(b_2) - \varphi(a_2)\varphi(b_1)) = 0.$$

As $\varphi(t)$ is a unit, we can multiply by itse inverse and deduce that $\varphi(a_1)\varphi(b_2) = \varphi(a_2)\varphi(b_1)$. Multiplying on both sides by the inverses of $\varphi(b_1)$ and $\varphi(b_2)$ gives:

$$\tilde{\varphi}\left(\frac{a_1}{b_1}\right) = \varphi(a_1)\varphi(b_1)^{-1} = \varphi(a_2)\varphi(b_2)^{-1}\tilde{\varphi}\left(\frac{a_2}{b_2}\right).$$

 $\tilde{\varphi}$ is a homomorphism: We check directly:

$$\tilde{\varphi}\left(\frac{a_{1}}{b_{1}} + \frac{a_{2}}{b_{2}}\right) = \tilde{\varphi}\left(\frac{a_{1}b_{2} + a_{2}b_{1}}{b_{1}b_{2}}\right)
= \varphi(a_{1}b_{2} + a_{2}b_{1})\varphi(b_{1}b_{2})^{-1}
= (\varphi(a_{1})\varphi(b_{2}) + \varphi(a_{2})\varphi(b_{1}))\varphi(b_{1})^{-1}\varphi(b_{2})^{-1}
= \varphi(a_{1})\varphi(b_{1})^{-1} + \varphi(a_{2})\varphi(b_{2})^{-1}
= \tilde{\varphi}\left(\frac{a_{1}}{b_{1}}\right) + \tilde{\varphi}\left(\frac{a_{2}}{b_{2}}\right).$$

$$\tilde{\varphi}\left(\frac{a_1}{b_1}\frac{a_2}{b_2}\right) = \tilde{\varphi}\left(\frac{a_1a_2}{b_1b_2}\right)
= \varphi(a_1a_2)\varphi(b_1b_2)^{-1}
= \varphi(a_1)\varphi(b_1)^{-1}\varphi(a_2)\varphi(b_2)^{-1}
= \tilde{\varphi}\left(\frac{a_1}{b_1}\right)\tilde{\varphi}\left(\frac{a_2}{b_2}\right).$$

Now we prove the bijection. Indeed, given some $\varphi: R \to A$ we get a unique $\tilde{\varphi}$ applying the construction we just discussed. Conversely, given some $\tilde{\varphi}$ we let φ be the compositon:

$$R \xrightarrow{\iota} S^{-1}R \xrightarrow{\bar{\varphi}} A.$$

We must show that φ takes elements of S to units in A. Fix $t \in S$. Then $\iota(t)$ is a unit in $S^{-1}R$. Since $\tilde{\varphi}$ is unital, Lemma 1 implies that $\tilde{\varphi}\iota(t)$ is a unit in A, but this is just $\varphi(t)$. These two constructions are clearly inverses two eachother. Indeed, starting at the top we have $\varphi \mapsto \tilde{\varphi} \mapsto \iota \circ \tilde{\varphi} = \varphi$, so that going down and back up is the identity. Conversely, we have $\tilde{\varphi} \mapsto \tilde{\varphi} \circ \iota \mapsto \tilde{\varphi} \circ \iota$, but the latter has to be $\tilde{\varphi}$ due to the uniqueness of the contractino of $\tilde{\varphi}$.

(e) Let $r \in R$ be nonzero and consider the multiplicative set $S = \{1, r, r^2, r^3, \dots\}$. Define $R[1/r] := S^{-1}R$. Show that R[1/r] = 0 if and only if r is nilpotent.

Proof. Suppose R[1/r]=0. Then for all $a\in R$, we have $\frac{a}{1}=\frac{0}{1}$. In particular there is some $t\in S$ such that $t(a\cdot 1-1\cdot 0)=ta=0$. Since each $t=r^m$ for some m, this means that for all a there is some naturan number n such that $r^na=0$. In particular, letting a=0, we see that there is an n such that $r^n1=r^n=0$, so that r is nilotent. Conversely, suppose r is nilpotent. Then $r^n=0$ for some n. Therefore any $\frac{a}{b}=\frac{0}{1}$. Indeed, $r^n(a\cdot 1-b\cdot 0)=0$ because $r^n=0$ to begin with.

- 3. In this exercise we calculate the intersection of all the prime ideals in a commutative unital ring R.
 - (a) Show that the element 0 is contained in every ideal of R.

Proof. Let I be an ideal. It must be nonempty, so fix some $r \in I$. Then $0 = 0 \cdot r \in I$ by the ideal property.

(b) Let r be a nilpotent element of R. Show that r is contained in every prime ideal of R.

Proof. We first prove the following claim: if \mathfrak{p} is a prime ideal and $f^n \in \mathfrak{p}$, then $f \in p$. We proceed by induction on n. The base case is n = 1 and is trivial. For the general case, suppose $f^n = f \cdot f^{n-1} \in \mathfrak{p}$. Then by primality either $f \in \mathfrak{p}$ (in which case we win), or else $f^{n-1} \in \mathfrak{p}$. But then by induction, $f^{n-1} \in \mathfrak{p}$ implies $f \in \mathfrak{p}$, so we win. Now suppose $r \in R$ is nilpotent. Then for any prime ideal \mathfrak{p} , $r^n = 0 \in \mathfrak{p}$ by part (a). But now primality implies $r \in \mathfrak{p}$ as desired.

(c) Conversely, suppose r is not nilpotent. Show that there is some prime ideal not containing r. Deduce that:

$$\mathfrak{N}(R) = \bigcap_{\mathfrak{p} \subseteq R \text{ prime}} \mathfrak{p}.$$

(Hint: To find such a prime ideal, try applying 1(a) and 2(e) to the map $\iota: R \to R[1/r]$.)

Proof. We consider the map $\iota: R \to R[1/r]$. Since R[1/r] is a unital ring, and is nonzero by 2(e), there is some maximal ideal $\mathfrak{m} \in R[1/r]$. Since maximal ideals are prime, 1(a) shows that $\mathfrak{p} := \iota^{-1}(\mathfrak{m})$ is a prime ideal of R. To conclude we must show that $r \notin \mathfrak{p}$. But if it were, then $\iota(r) \in \mathfrak{m}$. Then \mathfrak{m} contains a unit, so that by HW11 Problem 5(c), we have that $\mathfrak{m} = R[1/r]$, contradicting that \mathfrak{m} is maximal (since maximal ideals are proper).

(d) Deduce that the intersection of all the prime ideals in an integral domain is the 0 ideal.

Proof. HW10 Problem 3(a) implies that nonzero nilpotents are zero divisors. Therefore in an integral domain R we have $\mathfrak{N}(R) = \{0\}$. Then the result is an immediate consequence of part (c).

(e) Suppose that r is in the intersection of all the prime ideals of R. Show that $1 - ry \in R^{\times}$ for every $y \in R$. (We will see below that the converse is not true in general, but that we can characterize all elements satisfying this property).

Proof. By part (c) we see that r is nilpotent, and so -ry is nilpotent as well (by HW10 Problem 3(d)). But then 1 + (-ry) is a unit by HW10 Problem 3(e).

4. In this exercise we calculate the intersection of all the maximal ideals in a commutative unital ring R. Given a ring R, we define the *Jacobson radical* of R to be:

$$\mathfrak{J}(R) = \bigcap_{\mathfrak{m} \subseteq R \text{ maximal}} \mathfrak{m}.$$

(a) Show that $\mathfrak{N}(R) \subseteq \mathfrak{J}(R)$.

Proof. A nilpotent element x is in every prime ideal (by 3(b)). But every maximal is prime, so in particular x is in every maximal ideal.

(b) Show that an element $r \in R$ is a unit if and only if it is not contained in any maximal ideal.

Proof. Let r be a unit. If r is contained in some maximal ideal \mathfrak{m} , that ideal must be all of R by HW11 Problem 5(c). But maximal ideals are proper, so this cannot be. Therefore units aren't contained in maximal ideals. Conversely, suppose r is not in any maximal ideal. If (r) were a proper ideal, it would have to be contined in some maximal ideal, so this says that (r) isn't proper, that is, (r) = R. By HW11 Problem 5(a) we may conclude that r is a unit.

(c) Suppose \mathfrak{m} is a maximal ideal and $r \in R \setminus \mathfrak{m}$. Compute the ideal (\mathfrak{m}, r) generated by \mathfrak{m} and r.

Proof. Notice that $\mathfrak{m} \subseteq (\mathfrak{m}, r) \subseteq R$. Since $r \in (\mathfrak{m}, r) \setminus \mathfrak{m}$, we see that $\mathfrak{m} \neq (\mathfrak{m}, r)$. By the maximality of \mathfrak{m} , we conclude that $(\mathfrak{m}, r) = R$.

(d) Prove that the condition from 3(e) actually characterizes elements in the *Jacobson Radical!* That is, prove that $r \in \mathfrak{J}(R)$ if and only if $1 - ry \in R^{\times}$ for every $y \in R$. (Parts (b) and (c) might help!)

Proof. Suppose $r \in \mathfrak{J}(R)$, then so is ry. If 1 - ry is not a unit, then $1 - ry \in \mathfrak{m}$ for some maximal ideal \mathfrak{m} , but so is ry (since it is in every maximal ideal), so that $1 - ry + ry = 1 \in \mathfrak{m}$, implying that $\mathfrak{m} = R$, contradicting that it is a maximal ideal. Therefore 1 - ry must be a unit.

Conversely, if $r \notin \mathfrak{J}(R)$ then $r \notin \mathfrak{m}$ for some maximal ideal \mathfrak{m} . But then $(r,\mathfrak{m}) = R$, Therefore, there is some $y \in Y$ and $m \in \mathfrak{m}$ so that ry + m = 1. In particular, $1 - ry \in \mathfrak{m}$ and therefore is not a unit.