COMP 446 / 546 ALGORITHM DESIGN AND ANALYSIS

LECTURE 8 SKIP LISTS ALPTEKİN KÜPÇÜ

SKIP LIST

- A skip list for a set S of distinct (key, element) items is a series of linked lists S_0, S_1, \ldots, S_h such that
 - Each list S_i contains the special keys $+\infty$ and $-\infty$
 - List S₀ contains the keys of S in non-decreasing order
 - Each list is a subsequence of the previous one, i.e.,

$$S_0 \supseteq S_1 \supseteq \ldots \supseteq S_h$$

• List S_h contains only the two special keys $+\infty$ and $-\infty$

SKIP LIST ALGORITHMS: SEARCH

- We search for a key x in a a skip list as follows:
 - We start at the first position of the top list (the root)
 - At the current position p, we compare x with $y \leftarrow key(next(p))$

```
x = y: we return element(next(p))
 x > y: we "scan forward"
 x < y: we "drop down"
```

- If we try to drop down past the bottom list, we return null
- Example: search for 78

SKIP LIST ALGORITHMS: INSERT

- To insert an entry (x, o) into a skip list, we use a randomized algorithm:
 - We repeatedly toss a coin until we get tails, and we denote with i the number of times the coin came up heads
 - If $i \ge h$, we add to the skip list new lists S_{h+1}, \ldots, S_{i+1} , each containing only the two special keys $+\infty$ and $-\infty$
 - We search for x in the skip list and find the positions $p_0, p_1, ..., p_i$ of the items with largest key less than x in each list $S_0, S_1, ..., S_i$
 - For $j \leftarrow 0..i$, we insert item (x, o) into list S_j after position p_j

4

SKIP LIST ALGORITHMS: DELETE

- To delete an entry with key x from a skip list:
 - We search for x in the skip list and find the positions $p_0, p_1, ..., p_i$ of the items with key x, where position p_i is in list S_i
 - We remove positions $p_0, p_1, ..., p_i$ from the lists $S_0, S_1, ..., S_i$
 - We remove all but one list containing only the two special keys
- Example: delete key 34

SPACE COMPLEXITY

- Remember: We repeatedly toss a coin until we get tails, and we denote
 with *i* the number of times the coin came up heads. The element goes
 up *i* levels. Thus, on average:
 - 1/2 the elements go up to level 1
 - 1/4 the elements go up to level 2
 - 1/8 the elements go up to level 3, etc.
- We insert each entry in list S_i with probability $1/2^i$
- The expected size of list S_i is $n/2^i$
- The expected total number of nodes in a skip list with *n* elements is

$$\sum_{i=0}^{h} \frac{n}{2^{i}} = n \sum_{i=0}^{h} \frac{1}{2^{i}} < 2n$$

• The expected space complexity of a skip list with n elements is O(n)

HEIGHT OF A SKIP LIST

- Theorem: With high probability, a skip list with n elements has O(log n) levels
- An event occurs E with high probability if, for any k ≥ 1, there is an appropriate choice of constants for which E occurs with probability at least 1- O(1/n^k)

Proof:

- Remember, we insert an entry in list S_i with probability $1/2^i$
- Thus, Pr[element x is in level $i = c \log n$] = $\frac{1}{2}^{c \log n} = \frac{1}{n^c}$
- Recall Boole's inequality / union bound:
 - $Pr[E_1 \cup E_2 \cup ... \cup E_n] \le Pr[E_1] + Pr[E_2] + + Pr[E_n]$
 - Hence, the probability that list S_i has at least one item is at most $n/2^i$
- Pr[any element is in more than c log n levels] ≤ n/n^c = 1/n^{c-1}
- Let $c \ge 2$ be a constant. A skip list with n entries has height at most $O(c \log n)$ with probability at least $1 1/n^{c-1}$

RUNNING TIME ANALYSIS: SEARCH, INSERT, DELETE

- The search time in a skip list is proportional to
 - the number of drop-down steps, plus
 - the number of scan-forward steps
- The drop-down steps are bounded by the height of the skip list and thus are $O(\log n)$ with high probability
- Each level contains half of the elements of the level below, in expectation.
 - Hence, a scan-forward at level *i* skips roughly $n/2^{h-i}$ of the elements.
 - Thus, the expected number of scan-forward steps is $O(\log n)$
- Therefore a search in a skip list takes $O(\log n)$ expected time.
- The analysis of insertion and deletion are very similar, and both take $O(\log n)$ expected time.

CONCLUSIONS

- In a skip list with n entries
 - The expected space used is O(n)
 - The expected height is $O(\log n)$
 - The expected search, insertion and deletion time is $O(\log n)$
 - All these bounds hold with high probability
- Skip lists are fast in practice and simple to implement.
- They are nice alternatives to balanced trees.