Machine Learning CSE 6363 (Fall 2019)

Lecture 10 Support Vector Machine

Dajiang Zhu, Ph.D.

Department of Computer Science and Engineering

- SVM is related to statistical learning theory [3]
- SVM was first introduced in 1992 [1]
- SVM becomes popular because of its success in handwritten digit recognition
 - 1.1% test error rate for SVM. This is the same as the error rates of a carefully constructed neural network
- SVM is now regarded as an important example of "kernel methods", one of the key area in machine learning

^[1] B.E. Boser *et al.* A Training Algorithm for Optimal Margin Classifiers. Proceedings of the Fifth Annual Workshop on Computational Learning Theory 5 144-152, Pittsburgh, 1992.

^[2] L. Bottou *et al.* Comparison of classifier methods: a case study in handwritten digit recognition. Proceedings of the 12th IAPR International Conference on Pattern Recognition, vol. 2, pp. 77-82.

^[3] V. Vapnik. The Nature of Statistical Learning Theory. 2nd edition, Springer, 1999.

- Consider a two-class, linearly separable classification problem
- Many decision boundaries!
 - The Perceptron algorithm can be used to find such a boundary
 - Different algorithms have been proposed
- Are all decision boundaries equally good?

Examples of Bad Decision Boundaries

Large-margin Decision Boundary

- The decision boundary should be as far away from the data of both classes as possible
 - We should maximize the margin, m
 - Distance between the origin and the line w^tx=k is k/||w||

Finding the Decision Boundary

- Let $\{x_1, ..., x_n\}$ be our data set and let $y_i \in \{1,-1\}$ be the class label of x_i
- The decision boundary should classify all points correctly $\Rightarrow y_i(\mathbf{w}^T\mathbf{x}_i + b) \geq 1, \quad \forall i$
- The decision boundary can be found by solving the following constrained optimization problem

Minimize
$$\frac{1}{2}||\mathbf{w}||^2$$

subject to $y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$ $\forall i$

- This is a constrained optimization problem. Solving it requires some new tools
 - Feel free to ignore the following several slides; what is important is the constrained optimization problem above

- Suppose we want to: minimize $f(\mathbf{x})$ subject to $g(\mathbf{x}) = 0$
- A necessary condition for \mathbf{x}_0 to be a solution:

$$\begin{cases} \frac{\partial}{\partial \mathbf{x}} (f(\mathbf{x}) + \alpha g(\mathbf{x})) \Big|_{\mathbf{x} = \mathbf{x}_0} = \mathbf{0} \\ g(\mathbf{x}) = \mathbf{0} \end{cases}$$

- \bullet α : the Lagrange multiplier
- For multiple constraints $g_i(\mathbf{x}) = 0$, i=1, ..., m, we need a Lagrange multiplier α_i for each of the constraints

$$\begin{cases} \frac{\partial}{\partial \mathbf{x}} \left(f(\mathbf{x}) + \sum_{i=1}^{n} \alpha_i g_i(\mathbf{x}) \right) \Big|_{\mathbf{x} = \mathbf{x}_0} = \mathbf{0} \\ g_i(\mathbf{x}) = \mathbf{0} & \text{for } i = 1, \dots, m \end{cases}$$

Recap of Constrained Optimization

- The case for inequality constraint $g_i(\mathbf{x}) \le 0$ is similar, except that the Lagrange multiplier α_i should be positive
- If x₀ is a solution to the constrained optimization problem

$$\min_{\mathbf{x}} f(\mathbf{x})$$
 subject to $g_i(\mathbf{x}) \leq \mathbf{0}$ for $i = 1, \dots, m$

■ There must exist $\alpha_i \ge 0$ for i=1, ..., m such that \mathbf{x}_0 satisfy

$$\begin{cases} \frac{\partial}{\partial \mathbf{x}} \left(f(\mathbf{x}) + \sum_{i} \alpha_{i} g_{i}(\mathbf{x}) \right) \Big|_{\mathbf{x} = jx_{0}} = \mathbf{0} \\ g_{i}(\mathbf{x}) \leq \mathbf{0} \quad \text{for } i = 1, \dots, m \end{cases}$$

■ The function $f(\mathbf{x}) + \sum_i \alpha_i g_i(\mathbf{x})$ is also known as the Lagrangrian; we want to set its gradient to **0**

Back to the Original Problem

Minimize
$$\frac{1}{2}||\mathbf{w}||^2$$

subject to
$$1-y_i(\mathbf{w}^T\mathbf{x}_i+b) \leq 0$$
 for $i=1,\ldots,n$

for
$$i = 1, \ldots, r$$

The Lagrangian is

$$\mathcal{L} = \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{i=1}^n \alpha_i \left(1 - y_i (\mathbf{w}^T \mathbf{x}_i + b) \right)$$

- Note that $||\mathbf{w}||^2 = \mathbf{w}^\mathsf{T}\mathbf{w}$
- Setting the gradient of \mathcal{L} w.r.t. **w** and b to zero, we have

$$\mathbf{w} + \sum_{i=1}^{n} \alpha_i (-y_i) \mathbf{x}_i = \mathbf{0} \quad \Rightarrow \quad \mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

The Dual Problem

If we substitute $\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$ to \mathcal{L} , we have

$$\mathcal{L} = \frac{1}{2} \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i^T \sum_{j=1}^{n} \alpha_j y_j \mathbf{x}_j + \sum_{i=1}^{n} \alpha_i \left(1 - y_i (\sum_{j=1}^{n} \alpha_j y_j \mathbf{x}_j^T \mathbf{x}_i + b) \right)$$

$$= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j + \sum_{i=1}^{n} \alpha_i - \sum_{i=1}^{n} \alpha_i y_i \sum_{j=1}^{n} \alpha_j y_j \mathbf{x}_j^T \mathbf{x}_i - b \sum_{i=1}^{n} \alpha_i y_i$$

$$= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j + \sum_{i=1}^{n} \alpha_i$$

$$= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j + \sum_{i=1}^{n} \alpha_i$$

- Note that $\sum_{i=1}^{n} \alpha_i y_i = 0$
- This is a function of α_i only

The Dual Problem

- The new objective function is in terms of α_i only
- It is known as the dual problem: if we know \mathbf{w} , we know all α_i ; if we know all α_i , we know \mathbf{w}
- The original problem is known as the primal problem
- The objective function of the dual problem needs to be maximized!
- The dual problem is therefore:

max.
$$W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

subject to $\alpha_i \geq 0$,

$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

Properties of α_i when we introduce the Lagrange multipliers

The result when we differentiate the original Lagrangian w.r.t. b

The Dual Problem

max.
$$W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$
 subject to $\alpha_i \geq 0, \sum_{i=1}^{n} \alpha_i y_i = 0$

- This is a quadratic programming (QP) problem
 - A global maximum of α_i can always be found
- \mathbf{w} can be recovered by $\mathbf{w} = \sum_{i=1}^{\infty} \alpha_i y_i \mathbf{x}_i$

Characteristics of the Solution

- Many of the α_i are zero
 - w is a linear combination of a small number of data points
- **x**_i with non-zero α_i are called support vectors (SV)
 - The decision boundary is determined only by the SV
 - Let t_j (j=1, ..., s) be the indices of the s support vectors. We can write $\mathbf{w} = \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} \mathbf{x}_{t_j}$
- For testing with a new data z
 - Compute $\mathbf{w}^T\mathbf{z} + b = \sum_{j=1}^s \alpha_{t_j} y_{t_j}(\mathbf{x}_{t_j}^T\mathbf{z}) + b$ and classify \mathbf{z} as class 1 if the sum is positive, and class 2 otherwise
 - Note: w need not be formed explicitly

The Quadratic Programming Problem

- Many approaches have been proposed
 - Loqo, cplex, etc. (see http://www.numerical.rl.ac.uk/qp/qp.html)
- Most are "interior-point" methods
 - Start with an initial solution that can violate the constraints
 - Improve this solution by optimizing the objective function and/or reducing the amount of constraint violation
- For SVM, sequential minimal optimization (SMO) seems to be the most popular
 - A QP with two variables is trivial to solve
 - Each iteration of SMO picks a pair of (α_i, α_j) and solve the QP with these two variables; repeat until convergence
- In practice, we can just regard the QP solver as a "black-box" without bothering how it works

A Geometrical Interpretation

Dataset with Noise

- denotes +1
- denotes -1

- Hard Margin: So far we require all data points be classified correctly
 - No training error
- What if the training set is noisy?
 - Solution 1: use very powerful kernels

OVERFITTING!

Robustness of Soft vs Hard Margin SVMs

Soft Margin SVN

Hard Margin SVN

Non-linearly Separable Problems

- We allow "error" ξ_i in classification; it is based on the output of the discriminant function $\mathbf{w}^{\mathsf{T}}\mathbf{x}+\mathbf{b}$
- \bullet ξ_i approximates the number of misclassified samples

Fall 2019

If we minimize $\sum_{i} \xi_{i}$, ξ_{i} can be computed by

$$\begin{cases} \mathbf{w}^T \mathbf{x}_i + b \ge 1 - \xi_i & y_i = 1 \\ \mathbf{w}^T \mathbf{x}_i + b \le -1 + \xi_i & y_i = -1 \\ \xi_i \ge 0 & \forall i \end{cases}$$

- ξ_i are "slack variables" in optimization
- Note that ξ_i =0 if there is no error for \mathbf{x}_i
- ullet ξ_i is an upper bound of the number of errors
- We want to minimize $\frac{1}{2}||\mathbf{w}||^2 + C\sum_{i=1}^n \xi_i$
 - C: tradeoff parameter between error and margin
- The optimization problem becomes

Minimize
$$\frac{1}{2}||\mathbf{w}||^2 + C\sum_{i=1}^n \xi_i$$

subject to $y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1 - \xi_i, \quad \xi_i \ge 0$

The Optimization Problem

The dual of this new constrained optimization problem is

See Bishop: 7.22-7.32

max.
$$W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$
 subject to $C \ge \alpha_i \ge 0, \sum_{i=1}^{n} \alpha_i y_i = 0$

- w is recovered as $\mathbf{w} = \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} \mathbf{x}_{t_j}$
- This is very similar to the optimization problem in the linear separable case, except that there is an upper bound C on α_i now
- ■Once again, a QP solver can be used to find α_i

Extension to Non-linear Decision Boundary

- So far, we have only considered large-margin classifier with a linear decision boundary
- How to generalize it to become nonlinear?
- Key idea: transform x_i to a higher dimensional space to "make life easier"
 - Input space: the space the point **x**_i are located
 - Feature space: the space of $\phi(\mathbf{x}_i)$ after transformation
- Why transform?
 - Linear operation in the feature space is equivalent to nonlinear operation in input space
 - Classification can become easier with a proper transformation. In the XOR problem, for example, adding a new feature of x_1x_2 make the problem linearly separable

Note: feature space is of higher dimension than the input space in practice

- Computation in the feature space can be costly because it is high dimensional
 - The feature space is typically infinite-dimensional!
- The kernel trick comes to rescue

Recall the SVM optimization problem

max.
$$W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$
 subject to $C \ge \alpha_i \ge 0, \sum_{i=1}^{n} \alpha_i y_i = 0$

- The data points only appear as inner product
- As long as we can calculate the inner product in the feature space, we do not need the mapping explicitly
- Many common geometric operations (angles, distances) can be expressed by inner products
- Define the kernel function K by

$$K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$

An Example for $\phi(.)$ and K(.,.)

• Suppose $\phi(.)$ is given as follows

$$\phi(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

An inner product in the feature space is

$$\langle \phi(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}), \phi(\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}) \rangle = (1 + x_1y_1 + x_2y_2)^2$$

•So, if we define the kernel function as follows, there is no need to carry out $\phi(.)$ explicitly

$$K(\mathbf{x}, \mathbf{y}) = (1 + x_1y_1 + x_2y_2)^2$$

■ This use of kernel function to avoid carrying out $\phi(.)$ explicitly is known as the kernel trick

- In practical use of SVM, the user specifies the kernel function; the transformation $\phi(.)$ is not explicitly stated
- Given a kernel function $K(\mathbf{x}_i, \mathbf{x}_j)$, the transformation $\phi(.)$ is given by its eigenfunctions (a concept in functional analysis)
 - Eigenfunctions can be difficult to construct explicitly
 - This is why people only specify the kernel function without worrying about the exact transformation
- Another view: kernel function, being an inner product, is really a similarity measure between the objects

Examples of Kernel Functions

Polynomial kernel with degree d

$$K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^T \mathbf{y} + \mathbf{1})^d$$

Radial basis function kernel with width σ

$$K(x, y) = \exp(-||x - y||^2/(2\sigma^2))$$

- Closely related to radial basis function neural networks
- The feature space is infinite-dimensional
- Sigmoid with parameter κ and θ

$$K(\mathbf{x}, \mathbf{y}) = \tanh(\kappa \mathbf{x}^T \mathbf{y} + \theta)$$

■ It does not satisfy the Mercer condition on all κ and θ

Modification Due to Kernel Function

- Change all inner products to kernel functions
- For training,

Original

max.
$$W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

subject to $C \ge \alpha_i \ge 0, \sum_{i=1}^{n} \alpha_i y_i = 0$

With kernel function
$$\max_{i=1}^{m} W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^{n} \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$$
 subject to $C \geq \alpha_i \geq 0, \sum_{i=1}^{n} \alpha_i y_i = 0$

Modification Due to Kernel Function

• For testing, the new data **z** is classified as class 1 if $f \ge 0$, and as class 2 if f < 0

Original

$$\mathbf{w} = \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} \mathbf{x}_{t_j}$$
$$f = \mathbf{w}^T \mathbf{z} + b = \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} \mathbf{x}_{t_j}^T \mathbf{z} + b$$

With kernel w =
$$\sum_{j=1}^{s} \alpha_{t_j} y_{t_j} \phi(\mathbf{x}_{t_j})$$

function $f = \langle \mathbf{w}, \phi(\mathbf{z}) \rangle + b = \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} K(\mathbf{x}_{t_j}, \mathbf{z}) + b$

- Since the training of SVM only requires the value of $K(\mathbf{x}_i, \mathbf{x}_j)$, there is no restriction of the form of \mathbf{x}_i and \mathbf{x}_j
 - **x**_i can be a sequence or a tree, instead of a feature vector
- $K(\mathbf{x}_i, \mathbf{x}_j)$ is just a similarity measure comparing \mathbf{x}_i and \mathbf{x}_j
- For a test object z, the discrimiant function essentially is a weighted sum of the similarity between z and a preselected set of objects (the support vectors)

$$f(\mathbf{z}) = \sum_{\mathbf{x}_i \in \mathcal{S}} \alpha_i y_i K(\mathbf{z}, \mathbf{x}_i) + b$$

 \mathcal{S} : the set of support vectors

- $x_1=1$, $x_2=2$, $x_3=4$, $x_4=5$, $x_5=6$, with 1, 2, 6 as class 1 and 4, 5 as class 2 \Rightarrow $y_1=1$, $y_2=1$, $y_3=-1$, $y_4=-1$, $y_5=1$
- We use the polynomial kernel of degree 2
 - $K(x,y) = (xy+1)^2$
 - C is set to 100
- We first find α_i (i=1, ..., 5) by

max.
$$\sum_{i=1}^{5} \alpha_i - \frac{1}{2} \sum_{i=1}^{5} \sum_{j=1}^{5} \alpha_i \alpha_j y_i y_j (x_i x_j + 1)^2$$
 subject to $100 \ge \alpha_i \ge 0, \sum_{i=1}^{5} \alpha_i y_i = 0$

Example

$$\alpha_1 = 0$$
, $\alpha_2 = 2.5$, $\alpha_3 = 0$, $\alpha_4 = 7.333$, $\alpha_5 = 4.833$

- Note that the constraints are indeed satisfied
- The support vectors are $\{x_2=2, x_4=5, x_5=6\}$
- The discriminant function is f(z)
- $= 2.5(1)(2z+1)^2 + 7.333(-1)(5z+1)^2 + 4.833(1)(6z+1)^2 + b$ = 0.6667z² - 5.333z + b
- *b* is recovered by solving f(2)=1 or by f(5)=-1 or by f(6)=1, as x_2 and x_5 lie on the line $\phi(\mathbf{w})^T\phi(\mathbf{x})+b=1$ and x_4 lies on the line $\phi(\mathbf{w})^T\phi(\mathbf{x})+b=-1$
- •All three give b=9 $\longrightarrow f(z) = 0.6667z^2 5.333z + 9$

- Probably the most tricky part of using SVM.
- The kernel function is important because it creates the kernel matrix, which summarizes all the data
- Many principles have been proposed (diffusion kernel, Fisher kernel, string kernel, ...)
- There is even research to estimate the kernel matrix from available information
- In practice, a low degree polynomial kernel or RBF kernel with a reasonable width is a good initial try
- Note that SVM with RBF kernel is closely related to RBF neural networks, with the centers of the radial basis functions automatically chosen for SVM

Strengths and Weaknesses of SVM

- Strengths
 - Training is relatively easy
 - No local optimal, unlike in neural networks
 - It scales relatively well to high dimensional data
 - Tradeoff between classifier complexity and error can be controlled explicitly
 - Non-traditional data like strings and trees can be used as input to SVM, instead of feature vectors
- Weaknesses
 - Need to choose a "good" kernel function.