

Angles in all four quadrants

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs

Key points

• The sine, cosine and tangent of some angles may be written exactly.

	0	30°	45°	60°	90°
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	

• You can use these rules to find sin, cos and tan of any positive or negative angle using the corresponding cute angle made with the x-axis, θ .

$$\sin(180^{\circ} - \theta) = \sin\theta$$

$$\cos (180^{\circ} - \theta) = -\cos \theta$$

$$\tan (180^{\circ} - \theta) = -\tan \theta$$

$$\sin(180^\circ + \theta) = -\sin\theta$$

$$\cos (180^{\circ} + \theta) = -\cos \theta$$

$$\tan (180^{\circ} + \theta) = \tan \theta$$

Practice questions

- 1 Without using a calculator, write down the values of:
 - (a) $\sin 90^{\circ}$
- (b) $\cos 270^{\circ}$
- (c) tan 360°
- (d) sin 270°
- 2 Express the following in terms of trigonometric ratios of acute angles:
 - (a) $\sin (-200^{\circ})$
- b)
- $\cos{(-200^{\circ})}$
- (c) $\tan (-40^{\circ})$
- (d) tan 335°
- 3 Express the following as trigonometric ratios of either 30°, 45° or 60°, and hence find their exact values:
 - (a) $\sin (-135^{\circ})$
- (b) $\cos 225^{\circ}$
- (c) $\tan (-120^{\circ})$
- (d) $\sin (-200^{\circ})$

4.

Figure 1

Figure 1 shows the triangle ABC, with AB = 6 cm, BC = 4 cm and CA = 5 cm.

- (a) Show that $\cos A = \frac{3}{4}$.
- (b) Hence, or otherwise, find the exact value of $\sin A$.

Answers

1 (a) (b) 0 (c) 0

(d) -1

2

sin 20°

(b) $-\cos 20^{\circ}$ (c) $-\tan 40^{\circ}$

(d) - tan 25°

3

(a) $-\frac{1}{\sqrt{2}}$ (b) $-\frac{1}{\sqrt{2}}$ (c) $\sqrt{3}$

(d) $-\frac{\sqrt{3}}{2}$

(a) $4^2 = 5^2 + 6^2 - (2 \times 5 \times 6 \cos \theta)$

 $\cos\theta = \frac{5^2 + 6^2 - 4^2}{2 \times 5 \times 6}$

 $\left(=\frac{45}{60}\right) = \frac{3}{4}$

(b) $\sin^2 A + \left(\frac{3}{4}\right)^2 = 1$

 $\left(\sin^2 A = \frac{7}{16}\right) \sin A = \frac{1}{4}\sqrt{7}$