Collaborators:

Name: Tian Zijun

Student ID: 3160104043

Problem 3-1. Neural Networks

In this problem, we will implement the feedforward and backpropagation process of the neural networks.

(a) **Answer:** loss = 0.268 accuracy = 0.92

Problem 3-2. K-Nearest Neighbor

In this problem, we will play with K-Nearest Neighbor (KNN) algorithm and try it on real-world data. Implement KNN algorithm (in *knn.m/knn.py*), then answer the following questions.

(a) Try KNN with different K and plot the decision boundary.

[U. U. U. ... I. I. I.]

Figure 1: k=1

Homework 3 3

Figure 2: k=10

Figure 3: k=100

(b) We have seen the effects of different choices of K. How can you choose a proper K when dealing with real-world data?

Answer: By using cross validation, we can find and choose the k which has the best accuracy.

(c) Finish hack.m/hack.py to recognize the CAPTCHA image using KNN algorithm.

Homework 3 5

Answer:

Through the result above, we can find that under the condition of 50 training data the accuracy is 100

Problem 3-3. Decision Tree and ID3

Consider the scholarship evaluation problem: selecting scholarship recipients based on gender and GPA. Given the following training data:

Problem 3-4. K-Means Clustering

Homework 3 7

Finally, we will run our first unsupervised algorithm k-means clustering.

(a) Visualize the process of k-means algorithm for the two trials.

Figure 4: min SD

Figure 5: max SD

(b) How can we get a stable result using k-means?

Answer: Since the result of k-means differs due to different initial values of centers, we should run k-means algorithm for several times to get stable average result.

(c) Visualize the centroids.

Figure 6: k-means

(d) Vector quantization.

Figure 7: k=8

Figure 8: k=16

Tret-72

Figure 9: k=32

Figure 10: k=64