366 - Prismen-Spekbralapparat

1.) Einleitung: Im Versuch 366 werden wir das Licht von Spektrallampen durch ein Prismen spektrowneter betrachten und 50 die Spektrallinien verschiedener Elemente kennenlernen. Nach dem Vermessen einer Hg/Cd. Spektrallampe und dem Erstellen einer Kalibrationskeurze daraus soll ein unbekennntes Element anhand seines Spektrums bestimmt werden. v

2.) Theorie: Speletrallampen basieren auf der Gasentladung. Sie sind mit einem Edelgas
oder einem Motalldampf gefüllt, dessen Atoure angeregt werden. Wenn die
Elektronen in den Schalen der Atoure wieder in energieärmere Zustände
zurüdsfallen, so geschieht dies unter Emission wa Licht ganz bestimmter Wellenlängen. Die Messung dieses diskreten Spektrums ist Ziel des Versuchs. Wir
blantzen desse ein Prismen spektrometer, das wie folgt antgebount ist:

kennen. Es gilt:

Das Licht der Spektrallampe dringt durch einem Spalt in das Kolimatorrahr. Der Spalt liegt im Brennpunkt der Kollimatorlinse am Ende des Robers Dadurch verlösst das Licht den Kollimator als paralleles Strahlenbündel, das von dem Prisma gebrochen und silnließlich mit einem Ternrohr beobachtet wird. Das Ternrohr ist beweglich auf einem Skalenteller angebracht. Für die Vermessung der Spekbrallinien dreht man das Fernrohr solange, bis die zu untersudende Linie in Derlaung mit dem in der Zwischen-bildebene des Ternrohrs befindlichen Fadenkreuz ist und liest dann den Winkel am Skalenteller ab.

Dispersion wäre schön av erwähnen

Neben der Bestimmung eines umbekannten Elementes anhand seines Spektrum soll auch das Antlosungsvermögen des Prismenspektrometers ermittelt werden. Dazu müssen wir die

Dispersion des Prismas d.h. die Abhängigkeit seines Brechungsindexes von der Wellenlänge,

ausgelluchtete Basisbreik des Prismas

4.1	L.	Ke	. (1/1/		1 -	\(\lambda_{=}^{2} = \)	Idn 1	· 4	Ar.	2k.	b
$n(\lambda) =$	K,+	λ	+ 0	(1)	,	A=	DA -	Idal	0	25	73	V

Um die Konstante ka zu ermitteln, mussen wir den Brechungsindex in nich auf eine andere Art berechnen. Wir betrachten dazu den Strahlengang durch das Prisma:

aten	MARIA	neu		00		
			À		8/0	
	1	N	/	2 88) (
	-	10	7	16-0	P.	
			10	8-61-1-1	1	

lichty, Geometrisch gilt: abor niche nötz y+ (30°- a') + (90°- B') = 180° = y = x'+B' (Winkelsomme im Dreiech ABC) $(\alpha - \alpha') + (\beta - \beta') + (180° - \delta) = 180° (=) \delta = \alpha - \alpha' + \beta - \beta'$ ABD)

Nach Snellius gilt:

Sin at = n. sin at', sin B = n. sin B'

Das Hinimam der Ableskung wird bei symmetrischem Durchlauf des Strants erreicht, d.h.

a= B, bew x'= B'. Dann ergibt sich:

S= 2α - 2α' = 2α - y (=) α = 8+ y

414.66

			(5)	Formel	+	Erwähne
		Sin	3			1.
シ	n=	Sin	4	von Sr	اله	ius rech

Da= 3' d, = 118°+ 11' d. = 58°+7' 3.) Messwerte: 366.6

	366. c	λ in um	Farbe	Ablenkeninkel 8	18=5'
	-114	643,85	rot	46,5° + 15'	
		570,06	gelb	47 + 14	
		576,96	gelb	47° + 17'	
		546,07	grain	47.5° + 6'	
	1571 - 554	512.85	grain	47,5° + 26	
		508,58	(turkis) grun	48° + 4'	11,60 lūrkis 48
910	19	479,99	blan	48.50+0'	+2
		467, 82	blan	48,5°+ 13'	
		435, 92	blan	49° + 23'	
0		407, 38	violett	50° + 4'	

violett

50° + 23'

366. d	Intensität	Farbe	Ablenkwinkel 8	A8=5'
	hoch	rot	46.5° + 15'	
	gering	rot	46,5° + 20'	
	sehr gering	rot	47,0°+0'	
	gering	grün	47,5° + 26'	
	hodi	grün	48,0°+3'	
	hode	blan	480°+27'	
	hela	blan	48,5°+ 13'	Lampe 5
	mittel	dunkeltan	49° + 25′	,

26. e ausgelenchtete Breite des Prismas: b = 2,5 cm I 0,3 cm

4.) Durch führung und Auswertung

366.a Bevor wir mit der Anfnahme der Spektren beginnen konnen, müssen wir das Prismenspektronneter zumächst justieren. Wir beginnen damit, das Fadenkrenz durch Verschieben des Okulars schartzustellen. Danadn stecken nür den
Justierkellimator auf das Ende des Fernrohres und fokussieren dieses durch
Scharfstellen des kleinen Lochs auf unendlich. Zuletet stellen wir mit dem fertig
justierten Fernrohr das Kolimatorrohr so ein, dass der Belenchtungsspalt schart
erscheint. Nun schalken wir die Hg/Cd-Lampe ein, stellen sie vor den Spalt und
verändern die Spaltbreite so, dass die zu beobachtelen Spektrallinien einerseits
hell genug, andererseits nicht zu breit erscheinen.

366.b Wir messen den Winkel y der breihenden Kante des Prismas, indem wir die Prismenspitze auf das Kollimatorrohr richten und die Winkel der Reflexionsbilder messen. Das "linke Reflexionsbild war unter einem Winkel von $\alpha_2 = (118, 18 \pm 0.05)^\circ$ Zu sohen und das rechte unter einem Winkel von $\alpha_1 = (58, 12 \pm 0.05)^\circ$, Wobei zu letterem noch 180° hinzuaddiert werden müssen, da dieser Winkel am

gegenüberliegenden Nonius abgelesen wurde. Für z ergibt sich: $\gamma = \frac{1}{2} \left(238, 12^{\circ} - 118, 18^{\circ} \right) \pm \frac{1}{2} \sqrt{2(\Delta \alpha)^{2}}$ = 59,97 ± 0,04 Dieses Ergebnis erscheint plansibel, da es sich angenscheinlich um ein gleichsentiges Prisma gehandelt hat. V Bei der Vermessung der Spelitrallinien der Hg/Cd-Lampe gehen wir wie folgt vor: Wir beginnen mit der ersten sinktbaren Linie inn voten Wellenlangenbereich, bringen sie mit dem Fadenkrenz in Deckung und lesen den Winkel als. Anhand der Farbe und Intensität der Linien ordnen wit- mittilfe der in der Praktikumsanleitung abgedruckten Tabelle jeder Spelatrollinie eine Wellenlange zu. Wahrend die ausgeprägten Linien meist sofort zuzuordnen waren, ergaben sich bei den schwächeren Linien mandmal Schwierigkeiten. Beispielsweise sahen wir zwischen dem Kräftigen gelbgrün des Quedosilbers bei 546 mm und dem kräftigen dunkelgrün des Cadmiums bei 508 nm eine neitere mittelstarke Linie, die wir lant den in der Tabelle gegebenen Intensitäten kann hätten sehen dürken. Wir tippten auf die Quecksilber-Linie bei 512 nm, die die Tabelle in der Praktikumsauleitung allerdings nur mit der Intensität 2 bezistert. Erst der Blick in die im Praktikums Com ausliegende Tabelle bestätigte unsere Vermutung: Dort wird (im Giegensate zur Praktikum anleitung) noch eine Cadminus-Livie bei 515 mm antgeführt, die die unerwartet hohe Intensität der Linie erklären konnte. Schön Weil es nicht immer eintach war, das Fadenbreuz mittig auf die Linien zu richten (speziell bei sehr schwachen Intensitäten), wählen wir als Fehler auf den Ablenkwinkel 5'. Das Ergebnis der Messung ist in folgendem Plot zu sehen. Für den Fit nehmen wir an dass der Ablenkwinkel & in dem untersuchtan Wellenlänzenbeveich in etwa propertional Zum Breihungsindex ist und daher analog zur Canchy-Formel beschrieben werden kann, d.h. $\delta(\lambda) \approx \alpha + \sqrt{2}$ Für a und b liefert der Fit: $a = 44, 4 \pm 0, 1$, $b = (956260 \pm 18588)$ nm^2

366. d Wir tauschen die Hg/Cd-Lampe durch eine unbekannte Spektrallampe aus (LAMPE 5).

Wie bereits zuvor messen wir für alle erkennboren Spektrallimien die Ablenkwinkel Um unser Ergebnis nachber zu kontrollieren, notieren wir uns zusätzlich Farbe und Intensität.

Das Ergebnis aus 366.c läset sich unformen zu:

8 = a + \frac{b}{12} \left(=>) \lambda = \frac{b}{5-a}

Danit ergeben sich folgende Wellenlängen:

V		V	Zum Vergleich:	Cadmium
8 [0]	2 [nm]	Farbe, Intensität	2 [nm]	Intensitat
46,75 ± 0,08	636,2 ± 16,7	not, had	643, 85	5
46, 83 ± 008	625,3 ± 16,0	rot, gering	632, 52	2
47,00 ± 0,08	605,0 ± 14,6	rot, sehr gening	609, 92	2
47,93 ± 0,08	519,3 ± 9,9	grūn gering	515, 47	– (febli in dir Frotifiktimsansik
48,05± 0,08	5M,0 ± 9,5	gran, soun	508, 58	5
48, 45 ± 0,03	485, 2 ± 8,4	blan hol	479,99	5
48,71 ± 0,08	470,0 ± 7,8	blans, hed.	467, 81	5
49,42 ± 0,08	436.1 = 6.6	dunkelblan, mittel	441, 46	3

		4			11-11-1
	Zunachst fällt ums auf,	dass die berechnete	en Wellen	längen mit de	in tatsachlich hanhachlele.
	Farben übereinstimmen	. unsere Werte si	ad also	Plansibel Bei	un Varileil mit den
	Cl. Colle d	de és la l	"	111/2	Vergeria par news
	Jamina - Jekana 21	tilla Liv 1858, das	ss all u	nsloc Wellen	ingen innerhals ihres Fehler-
<u></u>	bereichs mit den Cadh	imm - Linien Zusam	men faller	. And die	beologihteten Intensitäten passeu
	sehr aut zu den in	der Postebileum souleit	2100	choice labore.	To the de selection
	1 . 1 . 1	of the state of th	The state of the s	DOMEN TOWN	. Is ist also sehr Wahr-
	Scheinlich dass os s	sich bei deus unte	rsuchten	Spektrum un	u das einer Cd-Lampe
	handelt. 1st riching V				
366.€	Mit den Ablenkwinkel	n 8 aus 366.c	Sowie	dem Prismeni	vinkel y aus 366.6
	hered on wir amab	do- in Theorie	Tail bo	eneleikada. T	
	Determina Post Granta D	aer ma interite	THE NE	V V V	mel die Brechungsindion
	Nach der Canchy-Fi	ormel gilt:			
		$n(\lambda) \approx k_0 +$	KI		8
					1.1.6
\	Tragen wir also die	Weste fur die Br	echangs in d	izes n über	den reziproken Wellenlangen-
•					
	quadraten out so ex	Warten Wir einen	linearen A	usammenhana	aux degree Steinmanir
	quadraten auf, so er	Warten Wir einen	linearen E	usammenhang.	aus dessen Steigung wir d
4.0	guadraten auf, so en zur Berechnung des A	marten wir einen internagens	linearen E Izuotigte K	insammenhang bustante k, e	aus dessen Steigung wir d
45	guadraten auf, so en zur Berechnung des A	marten wir einen internagens	linearen E Izuotigte K	insammenhang bustante k, e	aus dessen Steigung wir d
45.1	guadraten auf, so en zur Berechnung des A Die folgende Tabelle z	marten wir einen internagens	linearen E Izuotigte K	insammenhang bustante k, e	aus dessen Steigung wir d
* 1	guadraten auf, so en zur Berechnung des A	marten wir einen internagens	linearen E Izuotigte K	insammenhang bustante k, e	aus dessen Steigung wir der waitteln. auf der nächsten Seite
\$ 10 mm	guadraten auf, so en zur Berechnung des A Die folgende Tabelle z	marten wir einen internagens	linearen E Izuotigte K	insammenhang bustante k, e	aus dessen Steigung wir d
4.5	guadraten auf, so ex zur Bereihnung des A Die folgende Tabelle z eingetragen sind:	Marten wir einen und einen werten werden werden werden werten werten werten werten werten werten werten werten werden werten werden werten werden wer	linearen E kunstigte k e, die in	insammenhang bustante k, e m Diagramm	aus dessen Steigung wir der waitteln. auf der nächsten Seite
	guadraten auf, so en Zur Berechnung des A Die folgende Tabelle z eingetragen sind: \$\lambda[nm]\$ 643.8	ntlösungsvermögens heigt die hertepaar 1/2[1/nm²] 2.41e-06	linearen E Izuotigte K	isammenhang oustante k, e n Dagramm n_err	aus dessen Steigung wir der wantteln. auf der nachsten Seite
\$ T	guadraten auf, so en zur Berechnung des A Die folgende Tabelle z eingetragen sind: \$\lambda[nm]\$ 643.8 579.0	narten wir einen internagens der die Nertepaar 1/2[1/nm²] 2.41e-06 2.98e-06	n 1.606 1.611	n_err 0.001 0.001	aus dessen Steigung wir der waitteln. auf der nächsten Seite
	guadraten auf, so ex zur Bereihnung des A Die folgende Tabelle z eingetragen sind: \$\lambda[nm]\$ 643.8 579.8 576.9	1/λ ² [1/nm ²] 2.41e-06 6 3.00e-06	n 1.606 1.611	n_err 0.001 0.001	aus dessen Steigung wir der wächsten Seite Dausibilität von n
45	guadraten auf, so en zur Berechnung des A Die folgende Tabelle z eingetragen sind: \$\lambda[nm]\$ 643.8 579.0	1/2[1/nm²] 5 2.41e-06 6 3.00e-06 7 3.35e-06	n 1.606 1.611 1.614	n_err 0.001 0.001 0.001	plausibilitie von n mit Gekendem \ hömnte
	guadraten auf, so en zur Berechnung des A Die folgende Tabelle z eingetragen sind: \$\lambda[nm]\$ 643.8 579.0 576.9 546.0 512.8 508.5	1/2[1/nm²] 2.41e-06 3.00e-06 7 3.35e-06 8 3.87e-06	n 1.606 1.611	n_err 0.001 0.001 0.001 0.001 0.001	plausibilitie von n mit Gekendem \ hömnte
	guadraten auf, so en zur Berechnung des A Die folgende Tabelle z eingetragen sind: \$\lambda[nm]\$ 643.8 579.0 576.9 546.0 512.8 508.5 491.6	1/2[1/nm²] 1/2[1/nm²] 2.41e-06 2.98e-06 3.35e-06 3.80e-06 3.87e-06 4.14e-06	n 1.606 1.611 1.614 1.618	n_err 0.001 0.001 0.001	aus dessen Steigung wir der wächsten Seite Dausibilität von n
	Quadratan auf, 50 en Zur Berechnung des A Die folgende Tabelle z eingetragen sind: \$\lambda[nm]\$ 643.8 579.0 576.9 546.0 512.8 508.5 491.6 479.9	1/\lambda^2[1/nm^2] 1/\lambda^2[1/nm^2] 2.41e-06 2.98e-06 3.35e-06 3.80e-06 3.87e-06 4.14e-06 4.34e-06	n 1.606 1.611 1.614 1.618 1.619	n_err 0.001 0.001 0.001 0.001 0.001 0.001 0.001	plausibilitie von n mit Gekendem \ hömnte
	Quadratan auf, 50 en Zur Berechnung des A Die folgende Tabelle z eingetragen sind: λ[nm] 643.8 579.0 576.9 546.0 512.8 508.5 491.6 479.9 467.8	1/\lambda^2[1/nm^2] 1/\lambda^2[1/nm^2] 2.41e-06 2.98e-06 3.35e-06 3.80e-06 3.87e-06 4.14e-06 4.34e-06 4.57e-06	n 1.606 1.611 1.614 1.618 1.623 1.624 1.626	n_err 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	plausibilitie von n mit Gekendem \ hömnte
	Quadratan auf, 50 ex Zur Berechnung des A Die folgende Tabelle z eingetragen sind: \$\frac{\lambda}{579.6}\$ 576.9 546.0 512.8 508.5 491.6 479.9 467.8 435.9	1/2[1/nm²] 2.41e-06 3.35e-06 3.80e-06 3.87e-06 4.14e-06 4.34e-06 4.57e-06 5.26e-06	n 1.606 1.611 1.614 1.618 1.624 1.626 1.633	n_err 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	plausibilitie von n mit Gekendem \ hömnte
	Quadratan auf, 50 ex Zur Berechnung des A Die folgende Tabelle z eingetragen sind: \$\frac{\lambda}{579.0}\$ 576.9 546.0 512.8 508.5 491.6 479.9 467.8 435.9 407.3	1/2[1/nm²] 1/2[1/nm²] 2.41e-06 2.98e-06 3.35e-06 3.80e-06 3.87e-06 4.14e-06 4.34e-06 4.57e-06 5.26e-06 8.603e-06	n 1.606 1.611 1.614 1.618 1.623 1.624 1.626 1.633 1.639	n_err 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	plausibilitie von n mit Gekendem \ hömnte
	Quadratan auf, 50 ex Zur Berechnung des A Die folgende Tabelle z eingetragen sind: \$\frac{\lambda}{579.6}\$ 576.9 546.0 512.8 508.5 491.6 479.9 467.8 435.9	1/2[1/nm²] 2.41e-06 2.98e-06 3.35e-06 3.80e-06 3.87e-06 4.14e-06 4.34e-06 4.57e-06 5.26e-06 6.03e-06	n 1.606 1.611 1.614 1.618 1.624 1.626 1.633	n_err 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	plausibilitie von n mit Gekendem \ hömnte
	Quadratan auf, 50 ex Zur Berechnung des A Die folgende Tabelle z eingetragen sind: \$\frac{\lambda}{579.0}\$ 576.9 546.0 512.8 508.5 491.6 479.9 467.8 435.9 407.3	1/2[1/nm²] 1/2[1/nm²] 2.41e-06 2.98e-06 3.35e-06 3.80e-06 3.87e-06 4.14e-06 4.34e-06 4.57e-06 5.26e-06 8.603e-06	n 1.606 1.611 1.614 1.618 1.623 1.624 1.626 1.633 1.639	n_err 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	plausibilitie von n mit Gekendem \ hömnte

.

Die Regressionsgerade erfasst die Datenpunkte sehr gut, was man sowohl mit bloßen Ange als auch am R²-Wert erkennt, der fast 1 beträgt. Demnach ist auch die Candry- Formel für den befrachteten Wellenlängenbereich eine gute Näherung. Mithilfe der Os dem Fit ermittelten Steigung von k, = (9748 ± 180) nm² können wir nun das Auftörungsvarragen bestimmen.

Autlösungsvermögen bestimmen:

Die Breite b des ausgelenchteten Prismenteils haben wir gemessen, indem wir die Kollimatorlinse parallel zum Rohr verlängert und auf die Prismenkante projeziert haben (siche Skizze). Es ergab sich ein Wert von

Da sich das Mossen schwierig gestaltet.

Neil nicht genau erkeninbar war, wo der Strall

auf das Prisma fiel, haben wir einen relativ

großen Fehler gewählt.

		= 5	**	
	eten Werte für das Anflös Wellenlängen 400 nm, 500 n			
	400 7616 9 500 3899 4	A_err Δλ[nm] 025 0.05 073 0.13 074 0.27	Δλ_err[nm] 0.01 0.02 0.03	
	t deutlich, dass das Aus Licht stärker abgelenkt w			
	gen insgesamt zu hoch, b			
A arts	Istrictur der gelben Hg-L			
different w	n Δλ = (573,06-576,96) hm = 2,1 mm ;	> 0,27 mm Lant 11	nserem Ergelenis
problemles	hatte aufgelöst werden vin	sseu. Eine Fl	ögliche Erlelarung	For die Haveilung
	das die ausgelendlete			
wurde. Ein	e andere mögliche Eddarn	ing konnte in	der Cauchy- Form	el liegen: Womoglich
hatten hier,	Zumindest für die Bestimm	nung des Andlo	sungstermalus au	h hohere Ordnumeen
in a bertic	Ksichtigt werden müssen.	ler Dishell was we	gen engenave Jessey 1	wicht to erhanne
	() OK			
5.) Fazit Im 1/es	rsuch 366 haben wir gel	errat mit einem	Priznen soelchound	er zu experimentier
	n Erstellen einer Kalibrat	ionskume aus a	low Ha/Cd- Snel	treus bahar vot das
Soolehrum	oines imboleannie Flores	ts 100merces	and in day America	L. berry wa was
doce of	eines unbehannten Elemen	" Cadain la	and of the A bands	below is solver
doss die	sich sehr wahrscheinlich u	it dow Coul	Tourse land in	There will get me
	Dispersion des Prismas m			
	r Weise and das Antläsm		wer heartange a	Bunge.
	oball, abor night in linic	erem Heft !!!		
Dest	ander 03.03.22			
				tika dika dika dika pikapika pikapika pikapi aga masa masa kata dika dika dika dika dika dika dika dik

Spektren der Spektrallampen (starke Linien fett gedruckt)

Wellenlänge	<u>Farbname</u>	Quecksilber (Hg)
380 – 450 nm	violett	404,66 nm
450 – 482 nm	blau	407,78 nm
482 – 487 nm	grünlich-blau	435,83 nm
487 – 492 nm	türkis	491,61 nm
492 – 497 nm	bläulich-grün	546,08 nm
497 – 530 nm	grün	576,96 nm
530 – 560 nm	gelblich-grün	579,06 nm
560 – 570 nm	gelb-grün	690,75 nm
570 – 575 nm	grünlich-gelb	,
575 – 580 nm	gelb	Kalium (K)
580 – 585 nm	gelblich-orange	404,41 nm
585 – 595 nm	orange	404,72 nm
595 - 620 nm	rötlich-orange	583,19 nm
620 – 780 nm	rot	693,88 nm
		696,47 nm
		766,49 nm
Calcium (Ca)		769,90 nm
455,54 nm		779,52 nm
459,32 nm		777,522 11111
584,47 nm		Rubidium (Rb)
601,03 nm		420,18 nm
621,29 nm		421,56 nm
671,77 nm		543,15 nm
697,33 nm		564,78 nm
077,33 1111		•
Cadmium (Cd)		572,41 nm
441,46 nm		589,81 nm 607,08 nm
467,81 nm		•
479,99 nm		615,96 nm
508,58 nm		620,63 nm
515,47 nm		629,83 nm
*		728,00 nm
632,52 nm		740,81 nm
643,85 nm		761,89 nm
Tr.11. (TT.)		775,77 nm
Helium (He)		780,03 nm
388,86 nm		
447,15 nm		Zink (Zn)
471,31 nm		462,98 nm
492,19 nm		468,01 nm
501,57 nm		472,22 nm
587,56 nm		481,05 nm
667,81 nm		518,20 nm
706,52 nm		530,87 nm
728,13 nm		577,71 nm
		636,23 nm

