Math 478 HW 2

Lucas Bouck

9/22/16

1 Problem 1.5.8

1.1 Part a)

Answer:

Suppose u, v solve $u_{tt} = c^2 u_{xx}$ with homogenous Neumann boundary conditions and with the initial conditions u(0,x) = v(0,x) = f(x) and $u_t(0,x) = v_t(0,x) = g(x)$. Let w(t,x) = u(t,x) - v(t,x). Then,

$$w_{tt} = u_{tt} - v_{tt}$$

$$= c^2 u_{xx} - c^2 v_{xx}$$

$$= c^2 (u_{xx} - v_{xx}) = c^2 w_{xx}$$

For the boundary conditions, since $w \equiv u - v$, which means $w_x \equiv u_x - v_x$, and $u_x = v_x = 0$ on the boundary, $w_x = 0$ on the boundary and w satisfies the wave equation with homogenous Neumann boundary conditions. The initial conditions for w are below.

$$w(0,x) = u(0,x) - v(0,x) = f(x) - f(x) = 0$$

$$w_t(0,x) = u_t(0,x) - v_t(0,x) = g(x) - g(x) = 0$$

Thus, the initial conditions, w(0,x) and $w_t(0,x)$, are the zero function.

1.2 Part b)

Answer:

We must show that the a solution u to the wave equation $u_{tt} = c^2 u_{xx}$ with homogenous Neumann boundary conditions and initial conditions u(0,x) = f(x) and $u_t(0,x) = g(x)$ is unique.

Suppose there exists another solution v to the wave equation with the same boundary conditions and initial conditions. Consider the function w(t,x) = u(t,x) - v(t,x). From the result in Part a, w(t,x) solves $w_{tt} = c^2 w_{xx}$ with homogenous Neumann boundary

conditions. Also from part a, w(0,x) = 0 and $w_t(0,x) = 0$. By the result in 1.5.7b, $w(t,x) \equiv 0$. This means $u(t,x) - v(t,x) \equiv 0$. Therefore, u(t,x) = v(t,x), and the solution to the wave equation $u_{tt} = c^2 u_{xx}$ with homogenous Neumann boundary conditions and initial conditions u(0,x) = f(x) and $u_t(0,x) = g(x)$ is unique.

2 Problem 1.5.10

Answer:

Let $\Omega \subset \mathbb{R}^d$ and assume that u satisfies $u_t = k\Delta u$ on Ω subject to homogenous Dirichlet boundary conditions. Define $E(t) = \int_{\Omega} u(t,x)^2 dx$. Show that $dE(t)/dt \leq 0$ for all $t \geq 0$.

First, we'll take the derivative of E(t) with respect to time.

$$\frac{dE(t)}{dt} = \frac{d}{dt} \int_{\Omega} u(t,x)^2 dx = \int_{\Omega} 2u(t,x)u_t(t,x) dx.$$

Since $u_t = k\Delta u$ on Ω ,

$$\int_{\Omega} 2u(t,x)u_t(t,x) dx = 2k \int_{\Omega} u(t,x)\Delta u(t,x) dx = 2k \int_{\Omega} u(t,x) \operatorname{div}(\nabla u(t,x)) dx.$$

From Theorem 1.37, we have

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\partial \Omega} v \nabla u \cdot n(s) \, ds - \int_{\Omega} \Delta u v \, dx.$$

Rearranging this, we get

$$\int_{\Omega} \Delta u v \, dx = \int_{\partial \Omega} v \nabla u \cdot n(s) \, ds - \int_{\Omega} \nabla u \cdot \nabla v \, dx.$$

In our case, just let v = u and we get

$$2k \int_{\Omega} \Delta u u \, dx = 2k \int_{\partial \Omega} u \nabla u \cdot n(s) \, ds - 2k \int_{\Omega} \nabla u \cdot \nabla u \, dx.$$

Our solution u satisfies homogenous Dirichlet boundary conditions so $2k \int_{\partial\Omega} u \nabla u \cdot n(s) ds = 2k \int_{\partial\Omega} 0(\nabla u \cdot n(s)) ds = 0$. Then,

$$2k \int_{\Omega} \Delta u u \, dx = -2k \int_{\Omega} \nabla u \cdot \nabla u \, dx$$
$$= -2k \int_{\Omega} \sum_{j=1}^{d} \left(\frac{\partial u}{\partial x_j} \right)^2 \, dx$$

We know $\left(\frac{\partial u}{\partial x_j}\right)^2 \ge 0$, so $\sum_{j=1}^d \left(\frac{\partial u}{\partial x_j}\right)^2 \ge 0$. Hence, $\int_{\Omega} \sum_{j=1}^d \left(\frac{\partial u}{\partial x_j}\right)^2 dx \ge 0$, which implies

$$\frac{dE(t)}{dt} = -2k \int_{\Omega} \sum_{i=1}^{d} \left(\frac{\partial u}{\partial x_j} \right)^2 dx \le 0.$$

Therefore $\frac{dE(t)}{dt} \leq 0$, which is what we want.

3 Problem 1.5.11

Answer:

We want to find a solution $u: \mathbb{R}^+ \times \mathbb{R} \to \mathbb{R}$ of $u_t + 2u_x = 0$, with the initial condition $u(0,x) = e^{-x^2}$. Note that the transport equation can be rewritten as $\nabla u \cdot (1,2) = 0$. This means the vector (1,2) is parallel to the level curves of u, which means $u(0,x_0) = u(t,x_0+2t)$.

Taking $x = x_0 + 2t$ as a level curve, then $x_0 = x - t2$ and

$$u(t,x) = u(0,x_0) = u(0,x-2t).$$

Given the initial condition $u(0,x) = e^{-x^2}$, our solution u(t,x) is

$$u(t,x) = u(0, x - 2t) = e^{-(x-2t)^2}$$

4 Problem 1.5.14

Answer:

We want to find a solution u on the domain x > 0 and t > 0 to $u_t + x^2 u_{xx} = 0$ with the initial condition $u(0, x) = \cos(x)$ and boundary condition u(t, 0) = 1

Another way of representing of $u_t + x^2 u_x = 0$ is $\nabla u \cdot (1, x^2) = 0$, which means the level curves of u are parallel to $(1, x^2)$. Thus, if we find a $\varphi(t)$ that satisfies $dx/dt = x^2$ with initial values (t_0, x_0) , then the solution will be of the form $f(\varphi(0))$, where f is the initial condition. Suppose we have the IVP $\varphi(t_0) = x_0$, $dx/dt = x^2$. Then,

$$\frac{dx}{dt} = x^2$$

$$\int \frac{1}{x^2} dx = \int dt$$

$$-\frac{1}{x} = t + C$$

$$\varphi(t) = \frac{-1}{t + C}$$

Since $\varphi(t_0) = x_0$, then $x_0 = \frac{-1}{t_0 + C}$, and $C = \frac{1}{-x_0} - t_0$. Then, $\varphi(t) = \frac{-1}{t + (\frac{1}{-x_0} - t_0)}$. The level curve that goes through (t_0, x_0) is $\varphi(t)$, so $u(t_0, x_0) = u(0, \varphi(0)) = \cos(\varphi(0)) = \cos\left(\frac{1}{\frac{1}{x_0} + t_0}\right) = \cos\left(\frac{x_0}{1 + x_0 t_0}\right)$. Thus the solution to $u_t + x^2 u_x = 0$ on the domain x > 0 and t > 0 with the initial condition $u(0, x) = \cos(x)$ and boundary condition u(t, 0) = 1 is

$$u(x,t) = \cos\left(\frac{x}{1+tx}\right) \tag{1}$$

Please note that the original $\cos(\varphi(0)) = \cos\left(\frac{1}{\frac{1}{x}+t}\right)$ is undefined at the boundary x=0. The limit of $\cos\left(\frac{1}{\frac{1}{x_0}+t_0}\right)$ as $x\to 0$ is 1 and we can define our solution as a piecewise function where $u(x,t)=\cos\left(\frac{1}{\frac{1}{x_0}+t_0}\right)$, when x>0 and u(x,t)=1, when x=0. This piecewise function is continuous at x=0, so the piecewise function can be a solution to our PDE. The solution we state in (1), which is $u(x,t)=\cos\left(\frac{x}{1+tx}\right)$, is defined at x=0 and $\cos\left(\frac{0}{1+t0}\right)=1$, which is equal to the piecewise function at x=0. Also, $\cos\left(\frac{x}{1+tx}\right)=\cos\left(\frac{1}{\frac{1}{x}+t}\right)$, when x>0. Therefore, I will use equation (1) as the solution to the stated PDE with the stated initial and boundary conditions. In summary,

$$u(x,t) = \cos\left(\frac{x}{1+tx}\right)$$
$$u(0,x) = \cos\left(\frac{x}{1+0x}\right) = \cos(x)$$
$$u(t,0) = \cos\left(\frac{0}{1+t0}\right) = 1$$

and u satisfies $u_t + x^2 u_x = 0$

Therefore, u is a solution on the domain x > 0 and t > 0 to $u_t + x^2 u_x = 0$ with the initial condition $u(0, x) = \cos(x)$ and boundary condition u(t, 0) = 1.

Let's look at what the solution does as $t \to \infty$.

$$\lim_{t \to \infty} \cos\left(\frac{x}{1 + tx}\right) = 1$$

so the asymptotic behavior of u as $t \to \infty$ is $u(t, x) \to 1$.

Let's look at the problem for all $x \in \mathbb{R}$. If we look at the level set that would go through the point $(t_0, x_0) = (t_0, -1/t_0)$, using the characteristics from before, $\varphi(t) = 1/t$ and $u(t_0, x_0) = \cos(\varphi(0))$ would be undefined. Thus, our solution u at (t, -1/t) will be undefined. Therefore, our solution cannot exist for all $x \in \mathbb{R}$.