Lineární zobrazení

DEF Lineární zobrazení je taková funkce $f:U\to V$ pro kterou platí, že:

- f(u+v) = f(u) + f(v)
- $f(\alpha u) = \alpha f(u)$

DEF Buď $f: U \rightarrow V$ lineárni zobrazení:

- obraz $f(U) = \{f(v) : x \in U\}$
- $Ker(f) = \{x \in U : f(u) = 0\}$

THM Buď $f: U \to V$ lineárni zobrazení, pak platí:

- f(U)jepodprostoremV
- Ker(f)jepodprostoremU

 \mathbf{THM} Buď $f:U\to V$ lineárni zobrazení, pak následující tvrzení jsou ekvivalentní:

- f je prosté
- Ker(f) = 0
- obraz libovolné lineráné nezavislé množiny je nezávislá množina

DEF Buď $f: U \to V$ lineárni zobrazení, $B_U = \{x_1 \dots x_n\}$ báze U, \$B_V = $\{y_1 \dots y_n\}$ báze V. Nechť $\sum_i a_{ij} y_i = f(x_j)$. Potom matice zobrazení A je tvořena prvnky a_{ij} . Značíme $B_V[f]_{B_U}$

Taková matice vždy existuje a je jednoznačná.

DEF zobrazení je isomorfní, pokud je surjektivní a na. Pokud mezi dvěma prostory existuje isomorfní zobrazení, tyto prostory jsou isomorfní.

- Jeli $f: U \to V$ isomorfismus, pak $f^{-1}: V \to U$ je také isomorfismus
- Jsou-li $f:U\to V$ a $g:V\to W$ isomorfismi, pak $f\circ g$ je isomorfismus