DATA SCIENCE

BUMPER

EXPLORATORY DATA ANALYSIS

★ Data Exploration Part 1 ★

Exploratory Data Analysis is the assessment of the quality and characteristics of data available to tackle business problems

Exploratory Data Analysis is the assessment of the quality and characteristics of data available to tackle business problems

Exploratory Data Analysis is the assessment of the quality and characteristics of data available to tackle business problems

We will cover the following in the session:

What is data?

Exploratory Data Analysis is the assessment of the quality and characteristics of data available to tackle business problems

- What is data?
- I have a data set, can I start modeling?

Exploratory Data Analysis is the assessment of the quality and characteristics of data available to tackle business problems

- What is data?
- I have a data set, can I start modeling?
- Good or Bad : How do I assess quality of data?

Exploratory Data Analysis is the assessment of the quality and characteristics of data available to tackle business problems

- What is data?
- I have a data set, can I start modeling?
- Good or Bad : How do I assess quality of data?
- Data Characteristics How to summarize information

Exploratory Data Analysis is the assessment of the quality and characteristics of data available to tackle business problems

- What is data?
- I have a data set, can I start modeling?
- Good or Bad : How do I assess quality of data?
- Data Characteristics How to summarize information
- Data not conforming to expectations big problem?

Data Exploration

Where in the analytics methodology?

Data exploration and data preparation usually are done together

Data exploration and data preparation usually are done together

Data Extraction
Data Integration
Data Assessment

Data Exploration

Data exploration and data preparation usually are done together

Data Extraction

Data Integration

Data Assessment

Data Exploration

Data Cleaning

Data Transformation

Data Reduction

Data Preparation

Data Exploration Case Study

A mobile service provider has noticed a lot of attrition in customers subscribing to their services. It wants to understand what is driving attrition, and identify potential options to retain customers

Data Exploration Case Study

A mobile service provider has noticed a lot of attrition in customers subscribing to their services. It wants to understand what is driving attrition, and identify potential options to retain customers

Data available includes:

- Subscriber information: including age, location
- Service start date
- Service end date
- Usage by month in minutes
- Plan details
- Promotion details

Data Exploration Case Study

														NEW_CELL
sbscrp_id	minuse1	minuse2	minuse3	minuse4	Plan Type	prom1	prom2	prom3	prom4	svc_start_dt	svc_end_dt	BIRTH_DT	zip_code	_IND
19164958	57	21	40	60	200 for 10	0	0	0	0	09-Aug-01	09-Apr-03	19730120	30339	Υ
39244924	80	510	173	139	200 for 10	0	0	1	1	30-Oct-01	26-Mar-02	19730418	48125	N
39578413	439	805	874	1133	Nights and Weekends	0	0	0	0	16-Aug-01	27-Apr-02	19820820	63120	Υ
40992265	200	304	29	135	Nights and Weekends	0	1	0	0	11-Oct-01	26-May-02	19500915	94022	Υ
43061957	245	244	286	238	Nights and Weekends	0	0	0	0	09-Aug-01	22-Oct-02	19331224	11212	U
47196850	27	175	91	221	200 for 10	0	0	0	0	19-Oct-01		19730930	21221	N
51236987	77	549	464	256	Nights and Weekends	0	0	0	0	19-Oct-01	06-Feb-03	19760409	80919	N
51326773	131	274	438	320	Nights and Weekends	0	1	0	0	16-Aug-01	11-Apr-02	19480621	95828	U
54271247	37	56	60	72	200 for 10	0	0	0	0	27-Aug-01	30-Nov-02	19570713	75482	U
70765025	169	128	35	0	Nights and Weekends	0	1	1	0	02-Aug-01	26-Nov-02	19761001	8618	Υ
70781923	311	334	409	261	Nights and Weekends	0	1	1	1	02-Aug-01		19830305	65201	Υ
70782614	2	177	280	177	Nights and Weekends	0	0	0	0	30-Aug-01		19780407	57110	U
70797166	83	217	202	181	Nights and Weekends	0	1	1	1	05-Aug-01		19500411	7018	U
70992941	126	247	428	409	Nights and Weekends	0	1	0	0	02-Aug-01	30-Aug-02	19340901	92543	U
70995813	163	350	213	426	Nights and Weekends	0	1	0	0	02-Aug-01		19821119	35214	U
71000813	251	275	356	371	Nights and Weekends	0	1	1	0	02-Aug-01		19521214	6525	N
71001054	46	116	48	69	200 for 10	0	1	1	1	02-Aug-01	23-Jun-02	19580302	27504	U
71008771	144	74	73	107	Nights and Weekends	0	1	1	1	02-Aug-01	23-Jun-02	19550116	78852	U
71011165	207	105	2	113	Nights and Weekends	0	0	0	0	02-Aug-01	11-Oct-02	19750609	7865	U
71014528	347	334	283	240	Nights and Weekends	0	1	0	0	02-Aug-01		19471106	30215	U
71015314	80	46	49	45	200 for 10	0	0	0	0	02-Aug-01	22-Feb-03	19760415	48509	U

Data exploration and data preparation usually are done together

Data Extraction

Data Integration

Data Assessment

Data Exploration

Data Cleaning

Data Transformation

Data Reduction

Data Preparation

Sometimes, the first step of data exploration will be data extraction

Sometimes, the first step of data exploration will be data extraction

Data maybe in database table or flat file format

Sometimes, the first step of data exploration will be data extraction

- Data maybe in database table or flat file format
- May need specialized queries to extract the right data

Sometimes, the first step of data exploration will be data extraction

- Data maybe in database table or flat file format
- May need specialized queries to extract the right data
- If data is already available, then may need to load the data into the specified tool

After data extraction, another intermediate step – data integration

After data extraction, another intermediate step – data integration

 Usually, all the raw data required for analysis may not be part of a single database or table (transactions data and customer data)

After data extraction, another intermediate step – data integration

- Usually, all the raw data required for analysis may not be part of a single database or table (transactions data and customer data)
- Sometimes, we may also need to add data sourced from third-party sources to make the analysis robust

After data extraction, another intermediate step – data integration

- Usually, all the raw data required for analysis may not be part of a single database or table (transactions data and customer data)
- Sometimes, we may also need to add data sourced from third-party sources to make the analysis robust
- The data integration may require specialized skills especially if data is not all at the same level of aggregation

Data exploration and data preparation usually are done together

Data Extraction

Data Integration

Data Assessment

Data Exploration

Data Cleaning

Data Transformation

Data Reduction

Data Preparation

Data Assessment:

1. What is the information contained in the data?

- 1. What is the information contained in the data?
- 2. What is the quality of this information?

- 1. What is the information contained in the data?
- 2. What is the quality of this information?
- 3. Is the data complete?

- 1. What is the information contained in the data?
- 2. What is the quality of this information?
- 3. Is the data complete?

Analytical approaches to business problems focus on data driven analysis and conclusions.

Analytical approaches to business problems focus on data driven analysis and conclusions.

So, What is "Data?"

Analytical approaches to business problems focus on data driven analysis and conclusions.

So, What is "Data?"

Thesaurus definition: "Information in visible form"

Analytical approaches to business problems focus on data driven analysis and conclusions.

So, What is "Data?"

Thesaurus definition: "Information in visible form"

Information – any kind

Analytical approaches to business problems focus on data driven analysis and conclusions.

So, What is "Data?"

Thesaurus definition: "Information in visible form"

- Information any kind
- Visibility collected and compiled, accessible

Analytical approaches to business problems focus on data driven analysis and conclusions.

So, What is "Data?"

Thesaurus definition: "Information in visible form"

- Information any kind
- Visibility collected and compiled, accessible
- Neutral, Factual always

How to collect Data? Why is it important to understand mode of data collection?

How to collect Data? Why is it important to understand mode of data collection?

Primary v/s Secondary

How to collect Data? Why is it important to understand mode of data collection?

Primary v/s Secondary

Manual v/s Automated

How to collect Data? Why is it important to understand mode of data collection?

- Primary v/s Secondary
- Manual v/s Automated
- Census v/s Sample

Data Classification

First Step:

Data Classification

First Step:

Data Classification

Qualitative:

Quantitative:

First Step:

Data Classification

Qualitative:

Name, Address, Gender (M/F)

Quantitative:

First Step:

Data Classification

Qualitative:

Name, Address, Gender (M/F)

Quantitative:

Discrete: Nominal / Ordinal

Continuous

Date / Time

Other classification schemes

Other classification schemes

Primary v/s Secondary

Other classification schemes

- Primary v/s Secondary
- Actual v/s Derived

Other classification schemes

- Primary v/s Secondary
- Actual v/s Derived
- Based on usefulness

EDA Case Study: Data Classification

Data contained is of three types:

Variable	Туре
sbscrp_id	Quantitative
minuse1	Quantitative
minuse2	Quantitative
minuse3	Quantitative
Plan_type	Qualitiative
prom1	Quantitative
prom2	Quantitative
prom3	Quantitative
svc_start_dt	Date
svc_end_dt	Date
BIRTH_DT	Quantitative
zip_code	Quantitative
NEW_CELL_IND	Qualitiative

EDA Case Study : Data Classification

Data contained is of three types:

a. Qualitative – Type of plan, Type of promotion

Variable	Туре
sbscrp_id	Quantitative
minuse1	Quantitative
minuse2	Quantitative
minuse3	Quantitative
Plan_type	Qualitiative
prom1	Quantitative
prom2	Quantitative
prom3	Quantitative
svc_start_dt	Date
svc_end_dt	Date
BIRTH_DT	Quantitative
zip_code	Quantitative
NEW_CELL_IND	Qualitiative

EDA Case Study: Data Classification

Data contained is of three types:

- a. Qualitative Type of plan, Type of promotion
- Quantitative Subscriber Ids, Zip Codes, Number of minutes used in month

Variable	Туре
sbscrp_id	Quantitative
minuse1	Quantitative
minuse2	Quantitative
minuse3	Quantitative
Plan_type	Qualitiative
prom1	Quantitative
prom2	Quantitative
prom3	Quantitative
svc_start_dt	Date
svc_end_dt	Date
BIRTH_DT	Quantitative
zip_code	Quantitative
NEW_CELL_IND	Qualitiative

EDA Case Study: Data Classification

Data contained is of three types:

- a. Qualitative Type of plan, Type of promotion
- Quantitative Subscriber Ids, Zip Codes, Number of minutes used in month

 Date – Date denoted separately. It is quantitative data, but needs to be treated with care

Variable	Туре
sbscrp_id	Quantitative
minuse1	Quantitative
minuse2	Quantitative
minuse3	Quantitative
Plan_type	Qualitiative
prom1	Quantitative
prom2	Quantitative
prom3	Quantitative
svc_start_dt	Date
svc_end_dt	Date
BIRTH_DT	Quantitative
zip_code	Quantitative
NEW_CELL_IND	Qualitiative

1. What is the information contained in the data?

- 1. What is the information contained in the data?
- 2. What is the quality of this information?

- 1. What is the information contained in the data?
- 2. What is the quality of this information?
- 3. Is the data complete?

Information contained in the data?

How was the data collected?

Information contained in the data?

- How was the data collected?
- 2. Are the fields accurately labeled?

Information contained in the data?

- 1. How was the data collected?
- 2. Are the fields accurately labeled?
- 3. Is there any missing information?

- 1. What is the information contained in the data?
- 2. What is the quality of this information?
- 3. Is the data complete?

Recap

Data exploration, the need for it and how to look at information contained in the data

THANK YOU

DATA SCIENCE

BUMPER

EXPLORATORY DATA ANALYSIS

★ Data Exploration Part 2 ★

- 1. What is the information contained in the data?
- 2. What is the quality of this information?
- 3. Is the data complete?

Data Exploration - Steps

Data integrity, usefulness cannot be assumed

Data Exploration - Steps

Data integrity, usefulness cannot be assumed

Basic sanity checks – do I see what I expect to see?

Data Exploration - Steps

Data integrity, usefulness cannot be assumed

Basic sanity checks – do I see what I expect to see?

Should I always see what I expect to see?

Data Exploration - Steps

Data integrity, usefulness cannot be assumed

Basic sanity checks – do I see what I expect to see?

- Should I always see what I expect to see?
- Anomalies always noise? What is an anomaly?

Data Exploration - Steps

Data integrity, usefulness cannot be assumed

Basic sanity checks – do I see what I expect to see?

- Should I always see what I expect to see?
- Anomalies always noise? What is an anomaly?
- Domain knowledge

What data is contained in the telecom dataset?

1. How was it collected?

What data is contained in the telecom dataset?

1. How was it collected?

2. Is it the universe?

- 1. How was it collected?
- 2. Is it the universe?
- 3. Active or Passive?

- 1. How was it collected?
- 2. Is it the universe?
- 3. Active or Passive?
- 4. What are values in each variable?

What data is contained in the telecom dataset?

5. Do you understand the values?

- 5. Do you understand the values?
- 6. Is there missing data?

- 5. Do you understand the values?
- 6. Is there missing data?
- 7. Do you see unexpected values?

- 5. Do you understand the values?
- 6. Is there missing data?
- 7. Do you see unexpected values?
- 8. Is the data enough? Do you need more variables?

What data is contained in the telecom dataset?

 Once we review the data, we can formulate an approach to answer the problems posed by the telecom service provider

- Once we review the data, we can formulate an approach to answer the problems posed by the telecom service provider
- Without a thorough review, we run the danger of applying techniques that may not be appropriate, leading to incorrect results

6 steps in data exploration

6 steps in data exploration

Transform qualitative into quantitative

6 steps in data exploration

1

Transform qualitative into quantitative

2

Generate derived variables

6 steps in data exploration

1

Transform qualitative into quantitative

2

Generate derived variables

3

Summary statistics

6 steps in data exploration

0

Transform qualitative into quantitative

2

Generate derived variables

3

Summary statistics

4

Cross tabulation

6 steps in data exploration

Transform qualitative into quantitative

Generate derived variables

Summary statistics

5Graphical analysis

Cross tabulation

6 steps in data exploration

Transform qualitative into quantitative

Generate derived variables

Summary statistics

6 Anomaly detection

Graphical analysis

5

Cross tabulation

- 1. Transform qualitative data to quantitative
- 2. Generate required derived values
- 3. Generate summary statistics
 - Big Picture view
 - Basic sanity checks

1. Transform qualitative data to quantitative

Plan type currently has: 200 for 10, Nights and Weekends, and Coast to Coast.

Create a variable Plan_Type1 = 1 if field has "200 for 10"; Plan_Type2 = 1 if field has "Nights and Weekends" etc.

- 1. Transform qualitative data to quantitative
- 2. Generate required derived values

Derived Variables

Is there a direct variable for the objective in this dataset?

Derived Variables

Is there a direct variable for the objective in this dataset?

Attrition?

If service end date exists, customer has left. Create a variable that lists customer left = 1 if service date > 0

- 1. Transform qualitative data to quantitative
- 2. Generate required derived values

Other examples of derived variables

- Age
- Birthdt not useful directly
- Others?

- 1. Transform qualitative data to quantitative
- 2. Generate required derived values

More complex

- 1. Transform qualitative data to quantitative
- 2. Generate required derived values

More complex

Bucket users into High Medium Low

- 1. Transform qualitative data to quantitative
- 2. Generate required derived values

More complex

Bucket users into High Medium Low

Judgment and domain knowledge is required

- 1. Transform qualitative data to quantitative
- 2. Generate required derived values
- 3. Generate Summary Statistics

- 1. Transform qualitative data to quantitative
- 2. Generate required derived values
- 3. Generate Summary Statistics

Generate summary statistics

Basic summary statistics help identify values in data, range, missing value issues, and potential outliers

Data Exploration Summary Statistics

1. Summary statistics to assess

- Completeness of data
- Missing data
- Outliers

Data Exploration Summary Statistics

1. Summary statistics to assess

- Completeness of data
- Missing data
- Outliers

2. Why "summary" stats?

Large data sets

Data Exploration Summary Statistics

1. Summary statistics to assess

- Completeness of data
- Missing data
- Outliers

2. Why "summary" stats?

Large data sets

3. Which summary stats?

- Min, Max
- mean, median, mode
- Std. Deviation
- # Missing observations

- 1. Transform qualitative data to quantitative
- 2. Generate required derived values
- 3. Generate summary statistics

- 1. Transform qualitative data to quantitative
- 2. Generate required derived values
- 3. Generate summary statistics

3a. Generate understanding of "big picture"

EDA Case Study Steps

- 1. Transform qualitative data to quantitative
- 2. Generate required derived values
- 3. Generate summary statistics

3a. Generate understanding of "big picture"

3b. Basic sanity checks

EDA Case Study Steps

- 1. Transform qualitative data to quantitative
- 2. Generate required derived values
- 3. Generate summary statistics

3a. Generate understanding of "big picture"

3b. Basic sanity checks

- What % of customers have left?
- What is the earliest start date? Latest end date?
- If customer has left, is there usage date post leaving?
- What is the maximum monthly usage in minutes?
 Minimum? Are there negative numbers?

EDA Case Study Steps

- 1. Transform qualitative data to quantitative
- 2. Generate required derived values
- 3. Generate summary statistics

3a. Generate understanding of "big picture"

3b. Basic sanity checks

- What % of customers have left?
- What is the earliest start date? Latest end date?
- If customer has left, is there usage date post leaving?
- What is the maximum monthly usage in minutes?
 Minimum? Are there negative numbers?

Variable Name	Number of Observations	Number Missing	Mean	Minimum	Maximum	Std Dev
sbscrp_id	12500	0	82,371,783	19,164,958	88,705,192	5,938,658
minuse1	12499	1	48	0	1,500	98
minuse2	12499	1	182	(-55)	1,500	165
minuse3	12431	69	182	0	1,500	152
minuse4	12383	117	194	0	(177,700)	1,603
prom2	12499	1	0.36	0	1	0
prom3	12431	69	0.26	0	1	0
prom4	12383	117	0.24	0	1	0
prom5	12130	370	0.12	0	1	0
BIRTH_DT	12411	89	19,600,025	19,031,021	20,010,212	147,290
zip_code	12500	0	49,395	605	99,901	29,457

Variable Name	Number of Observations	Number Missing	Mean	Minimum	Maximum	Std Dev
sbscrp_id	12500	0	82,371,783	19,164,958	88,705,192	5,938,658
minuse1	12499	1	48	0	1,500	98
minuse2	12499	1	182	(-55)	1,500	165
minuse3	12431	69	182	0	1,500	152
minuse4	12383	117	194	0	(177,700)	1,603
prom2	12499	1	0.36	0	1	0
prom3	12431	69	0.26	0	1	0
prom4	12383	117	0.24	0	1	0
prom5	12130	370	0.12	0	1	0
BIRTH_DT	12411	89	19,600,025	19,031,021	20,010,212	147,290
zip_code	12500	0	49,395	605	99,901	29,457

Variable Name	Number of Observations	Number Missing	Mean	Minimum	Maximum	Std Dev
sbscrp_id	12500	0	82,371,783	19,164,958	88,705,192	5,938,658
minuse1	12499	1	48	0	1,500	98
minuse2	12499	1	182	(-55)	1,500	165
minuse3	12431	69	182	0	1,500	152
minuse4	12383	117	194	0	(177,700)	1,603
prom2	12499	1	0.36	0	1	0
prom3	12431	69	0.26	0	1	0
prom4	12383	117	0.24	0	1	0
prom5	12130	370	0.12	0	1	0
BIRTH_DT	12411	89	19,600,025	19,031,021	20,010,212	147,290
zip_code	12500	0	49,395	605	99,901	29,457

Initial Findings:

1. Unexpected values: negative for minutes used

Variable Name	Number of Observations	Number Missing	Mean	Minimum	Maximum	Std Dev
sbscrp_id	12500	0	82,371,783	19,164,958	88,705,192	5,938,658
minuse1	12499	1	48	0	1,500	98
minuse2	12499	1	182	(-55)	1,500	165
minuse3	12431	69	182	0	1,500	152
minuse4	12383	117	194	0	(177,700)	1,603
prom2	12499	1	0.36	0	1	0
prom3	12431	69	0.26	0	1	0
prom4	12383	117	0.24	0	1	0
prom5	12130	370	0.12	0	1	0
BIRTH_DT	12411	89	19,600,025	19,031,021	20,010,212	147,290
zip_code	12500	0	49,395	605	99,901	29,457

- 1. Unexpected values: negative for minutes used
- 2. Very high monthly minutes?

Variable Name	Number of Observations	Number Missing	Mean	Minimum	Maximum	Std Dev
sbscrp_id	12500	0	82,371,783	19,164,958	88,705,192	5,938,658
minuse1	12499	1	48	0	1,500	98
minuse2	12499	1	182	(-55)	1,500	165
minuse3	12431	69	182	0	1,500	152
minuse4	12383	117	194	0	(177,700)	1,603
prom2	12499	1	0.36	0	1	0
prom3	12431	69	0.26	0	1	0
prom4	12383	117	0.24	0	1	0
prom5	12130	370	0.12	0	1	0
BIRTH_DT	12411	89	19,600,025	19,031,021	20,010,212	147,290
zip_code	12500	0	49,395	605	99,901	29,457

- 1. Unexpected values: negative for minutes used
- 2. Very high monthly minutes?
- 3. Should all zip codes have standard length

Variable Name	Number of Observations	Number Missing	Mean	Minimum	Maximum	Std Dev
sbscrp_id	12500	0	82,371,783	19,164,958	88,705,192	5,938,658
minuse1	12499	1	48	0	1,500	98
minuse2	12499	1	182	(-55)	1,500	165
minuse3	12431	69	182	0	1,500	152
minuse4	12383	117	194	0	(177,700)	1,603
prom2	12499	1	0.36	0	1	0
prom3	12431	69	0.26	0	1	0
prom4	12383	117	0.24	0	1	0
prom5	12130	370	0.12	0	1	0
BIRTH_DT	12411	89	19,600,025	19,031,021	20,010,212	147,290
zip_code	12500	0	49,395	(605)	99,901	29,457

- 1. Unexpected values: negative for minutes used
- 2. Very high monthly minutes?
- 3. Should all zip codes have standard length
- 4. What do the means of the promotion variables reveal?c0

EDA Case Study: Basic Checks

Variable: Minuse 2			
Lowest	Record	Highest	Record
Value	Number	Value	Number
-55	851	1500	6211
0	12495	1500	6416
0	12325	1500	7040
0	12320	1500	7525
0	12258	1500	10791

Only one negative number Potential data entry error?

Only one huge number

Potential data entry error?

Many instances of < 5 digit codes

Need further investigation

variable Zip Code		
Zin Oada Landh	Number of	% of
Zip Code Length	observations	Observations
3 digit zip code	75	0.6
4 digit zip code	922	7.38
5 digit zip code	11503	92.02

EDA Case Study : Qualitative Variables

Plan Type	Frequency	Percent
200 for 10	6643	53.14
Coast to Coast	941	7.53
Nights & Weekends	4916	39.33

NEW_CELL_IND	Frequency	Percent
N	672	5.38
U	9875	79
Υ	1953	15.62

EDA Case Study: Qualitative Variables

Plan Type	Frequency	Percent
200 for 10	6643	53.14
Coast to Coast	941	7.53
Nights & Weekends	4916	39.33

NEW_CELL_IND	Frequency	Percent
N	672	5.38
U	9875	79
Y	1953	15.62

- 1. 200 for 10 most popular
- 2. Coast to Coast least popular
- 3. Transform to numeric variable:
 - •In excel find and replace
 - •In SAS create variable

- 1. Three values for new cell, is that expected?
- 2. "U" is most frequent, so does "U" denote No?
- Transform to numeric variable:
 - •In excel find and replace
 - •In SAS create variable

EDA Case Study: Derived Variables

Customer Status	Frequency	Percent
Retained	7733	61.86
Lost	4767	38.14

Deriving actual customers lost reveals almost 40% of total customers have ended service – big number

EDA Case Study: Derived Variables

Customer Status	Frequency	Percent
Retained	7733	61.86
Lost	4767	38.14

Deriving actual customers lost reveals almost 40% of total customers have ended service – big number

Age Group	Frequency	Percent
< 25	1861	14.89
25 - 35	3003	24.02
35 - 45	2539	20.31
45 - 55	2618	20.94
> 55	2479	19.83

EDA Case Study: Derived Variables

Customer Status	Frequency	Percent
Retained	7733	61.86
Lost	4767	38.14

Deriving actual customers lost reveals almost 40% of total customers have ended service – big number

Age Group	Frequency	Percent
< 25	1861	14.89
25 - 35	3003	24.02
35 - 45	2539	20.31
45 - 55	2618	20.94
> 55	2479	19.83

A distribution of customers by age group shows no skew by age – is that reasonable or contrary to expectations?

Assessing Data Quality

6 steps in data exploration

Transform qualitative into quantitative

Generate derived variables

Summary statistics

Anomaly detection

6

Graphical analysis

5

Cross tabulation

Recap

Transform qualitative data into quantitative data, generate derived variables and summary statistics

THANK YOU

DATA SCIENCE

BUMPER

EXPLORATORY DATA ANALYSIS

★ Data Exploration Part 3 ★

Assessing Data Quality

6 steps in data exploration

Transform qualitative into quantitative

Generate derived variables

Summary statistics

6 Anomaly detection

Graphical analysis

5

Cross tabulation

Investigating patterns one variable at a time is a starting point, but need to look for patterns across groups of variables

Investigating patterns one variable at a time is a starting point, but need to look for patterns across groups of variables

For example, age buckets created by looking at:

Proportion of attrition by age group

Investigating patterns one variable at a time is a starting point, but need to look for patterns across groups of variables

For example, age buckets created by looking at:

Proportion of attrition by age group

The simplest way to look at patterns across groups of variables is to create **cross-tabs**

Age Bucket	Retained	Lost	Retained %	Lost %
< 25	869	992	47%	53%
25 - 35	1651	1352	55%	45%
35 - 45	1555	984	61%	39%
45 - 55	1771	847	68%	32%
> 55	1887	592	76%	24%

Age Bucket	Retained	Lost	Retained %	Lost %
< 25	869	992	47%	53%
25 - 35	1651	1352	55%	45%
35 - 45	1555	984	61%	39%
45 - 55	1771	847	68%	32%
> 55	1887	592	76%	24%

Clearly, high attrition for customers below the age of 25, and much lower for customers above the age of 55.

- Potential to create age buckets as less than 25, between 25 to 55, and greater than 55?
- Why is it better to have fewer variables?

Age Bucket	Retained	Lost	Retained %	Lost %
< 25	869	992	47%	53%
25 - 35	1651	1352	55%	45%
35 - 45	1555	984	61%	39%
45 - 55	1771	847	68%	32%
> 55	1887	592	76%	24%

Clearly, high attrition for customers below the age of 25, and much lower for customers above the age of 55.

- Potential to create age buckets as less than 25, between 25 to 55, and greater than 55?
- Why is it better to have fewer variables?
- Other relevant cross-tabs based on this dataset?

	Table of churn by dur																	
churn	dur																	
Frequency Percent	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total
0	0 0.00	0 0.00	0 0.00	0 0.00	0 0.00	0.00	0 0.00	0.00	0.00	0 0.00	0 0.00	0.00	0.00	0.00		0 0.00	7733 61.86	7733 61.86
1	1 0.01	1 0.01	68 0.54		238 1.90	217 1.74				196 1.57		933 7.46					289 2.31	4767 38.14
Total	1 0.01	1 0.01	68 0.54						212 1.70		209 1.67							12500 100.00

	Table of churn by dur																	
churn		dur																
Frequency Percent	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total
0	0.00	0 0.00	0.00	0.00	0.00	0.00	0 0.00	0 0.00	0 0.00	0 0.00	0.00	0.00	0.00	0 0.00	0 0.00	0 0.00		7733 61.86
1	1 0.01	1 0.01	68 0.54			217 1.74			212 1.70			933 7.46		367 2.94		317 2.54	289 2.31	4767 38.14
Total	1 0.01	1 0.01	68 0.54						212 1.70				639 5.11					12500 100.00

	Table of churn by dur																	
churn		dur																
Frequency Percent	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total
0	0 0.00	0.00	0 0.00	0 0.00	0 0.00	0.00	0 0.00	0 0.00	0.00	0 0.00	0 0.00	0.00	0 0.00	0.00	0.00	0 0.00		7733 61.86
1	1 0.01	1 0.01	68 0.54	227 1.82	238 1.90	217 1.74				196 1.57	209 1.67	933 7.46		367 2.94		317 2.54	289 2.31	4767 38.14
Total	1 0.01	1 0.01	68 0.54										639 5.11		329 2.63			12500 100.00

How would you use this information?

Assessing Data Quality

6 steps in data exploration

Transform qualitative into quantitative

Generate derived variables

Summary statistics

6 Anomaly detection

Graphical analysis

5

Cross tabulation

EDA – Graphical Analysis

Visualization of data is a powerful method of understanding data and patterns within data

Multiple techniques used to look at data to

- Determine distribution
- · Identify spread
- Assess bias / skewness
- Identify outliers

Graphical Data Exploration

1. Useful graphical representations include

Graphical Data Exploration

- 1. Useful graphical representations include
 - I. Simple run charts

Graphical Data Exploration

- 1. Useful graphical representations include
 - I. Simple run charts
 - II. Frequency distribution plots
 - Histograms
 - Probability plots

- 1. Useful graphical representations include
 - I. Simple run charts
 - II. Frequency distribution plots
 - Histograms
 - Probability plots
 - III. Range charts
 - Box Plots
 - Stem and Leaf Plots

- 1. Useful graphical representations include
 - I. Simple run charts
 - II. Frequency distribution plots
 - Histograms
 - Probability plots
 - III. Range charts
 - Box Plots
 - Stem and Leaf Plots
 - IV. Joint distribution charts

Simplest charts for single variables: Run Charts

Can assess distribution, spread, and outliers

Usage (minutes)

Outlier Identification: Histogram

Probability Plots – assess distribution shape

 Normal probability plot – widely used to check for normality of distribution

Graphical EDA – Box Plots

 Box plots allow us to look at measures of central tendency explicitly (quartiles are specified)

Graphical EDA – Box Plots

- Box plots allow us to look at measures of central tendency explicitly (quartiles are specified)
- It makes it easier to assess distance for potential outliers

Assessing Data Quality

6 steps in data exploration

Transform qualitative into quantitative

Generate derived variables

Summary statistics

6 Anomaly detection

Graphical analysis

Cross tabulation

We have looked at examples of obvious exceptions in previous slides (for example, negative minutes used, etc)

Based on derived variables, need to look at other conditions to identify potential anomalies

- Example: if service end date exists, then do data exist for minutes used post end date?
- Other examples?

We have looked at examples of obvious exceptions in previous slides (for example, negative minutes used, etc)

Based on derived variables, need to look at other conditions to identify potential anomalies

- Example: if service end date exists, then do data exist for minutes used post end date?
- Other examples?

Exceptions need to be investigated

We have looked at examples of obvious exceptions in previous slides (for example, negative minutes used, etc)

Based on derived variables, need to look at other conditions to identify potential anomalies

- Example: if service end date exists, then do data exist for minutes used post end date?
- Other examples?

Exceptions need to be investigated

There may be valid explanations for extreme values

We have looked at examples of obvious exceptions in previous slides (for example, negative minutes used, etc)

Based on derived variables, need to look at other conditions to identify potential anomalies

- Example: if service end date exists, then do data exist for minutes used post end date?
- Other examples?

Exceptions need to be investigated

- There may be valid explanations for extreme values
- Danger of making data set very "general"

What is Data Exploration?

- 1. What is the information contained in the data?
- 2. What is the quality of this information?
- 3. Is the data complete?

EDA Summary

 It is very critical to invest time in understanding the data once it has been pulled/received, since it is really the starting point to building any solution

EDA Summary

- It is very critical to invest time in understanding the data once it has been pulled/received, since it is really the starting point to building any solution
- Model results will only be as good as the data that goes in; and model results be reliable only if the right models are applied to the existing data

EDA Summary

- It is very critical to invest time in understanding the data once it has been pulled/received, since it is really the starting point to building any solution
- Model results will only be as good as the data that goes in; and model results be reliable only if the right models are applied to the existing data
- There are many techniques of EDA that can be used to gain a real understanding of available data, relationships between variables, and potential issues with available data

Recap – Data Exploration

Data Assessment:

- 1. What is the information contained in the data?
- 2. What is the quality of this information?
- 3. Is the data complete?

Assessing Data Quality

6 steps in data exploration

Transform qualitative into quantitative

Generate derived variables

Summary statistics

Anomaly detection

6

Graphical analysis

5

Cross tabulation

Internal audience / analyst:

Internal audience / analyst:

1. Understanding of data and all variables

Internal audience / analyst:

- 1. Understanding of data and all variables
- 2. Identification and assessment of exceptions / outliers / wrong values / missing values

Internal audience / analyst:

- 1. Understanding of data and all variables
- 2. Identification and assessment of exceptions / outliers / wrong values / missing values
- 3. Follow up questions

Internal audience / analyst:

- 1. Understanding of data and all variables
- Identification and assessment of exceptions / outliers / wrong values / missing values
- 3. Follow up questions

Internal audience / analyst:

- 1. Understanding of data and all variables
- 2. Identification and assessment of exceptions / outliers / wrong values / missing values
- 3. Follow up questions

External audience:

1. Presentation summarizing initial data assessment

Internal audience / analyst:

- 1. Understanding of data and all variables
- Identification and assessment of exceptions / outliers / wrong values / missing values
- 3. Follow up questions

- 1. Presentation summarizing initial data assessment
- 2. Visuals showing interesting/useful patterns in dataset

Internal audience / analyst:

- 1. Understanding of data and all variables
- Identification and assessment of exceptions / outliers / wrong values / missing values
- 3. Follow up questions

- 1. Presentation summarizing initial data assessment
- 2. Visuals showing interesting/useful patterns in dataset
- 3. Follow up questions

Internal audience / analyst:

- 1. Understanding of data and all variables
- Identification and assessment of exceptions / outliers / wrong values / missing values
- 3. Follow up questions

- 1. Presentation summarizing initial data assessment
- 2. Visuals showing interesting/useful patterns in dataset
- 3. Follow up questions
- 4. Next steps

THANK YOU

DATA SCIENCE

Continued Lab Sessions *

Data Manipulation: DATA EXPLORATION

Type of variable	Variable	Description	Data Type	Data Values
		Age of customer as of date of data		
	Age	collection	Numeric	Years
	Marital Status	Marital status of customer	Character, Categorical	"Married", "Divorced", "Single"
D b : - \/ i - b				"admin.","unknown","unemployed","manage
Demographic Variables				ment","housemaid","entrepreneur","student"
				, "blue-collar","self-
	Job Type	Type of job	Character, Categorical	employed","retired","technician","services"
	Education Level	Education level completed	Character, Categorical	"unknown","secondary","primary","tertiary"
		Does the customer have some loans in		
	Credit default	default	Character, Binary	"yes","no"
	Balance	Average Yearly Balance (in Euros)	Numeric	Euros
Financial variables		Does the customer have an existing		
	Housing Loan	housing loan?	Character, Binary	"yes","no"
		Does the customer have oan existing		
	Personal Loan	personal loan?	Character, Binary	"yes","no"
		Type of communication used in the		
	Contact communication type	last contact	Character, Categorical	unknown,"telephone","cellular"
	Day of last contact	last contact day of the month	Numeric	1-31
	Month of last contact	last contact month of year	Numeric	"jan", "feb", "mar",, "nov", "dec"
	Duration	last contact duration, in seconds	Numeric	Seconds
		number of contacts performed during		
Telemarketing history	Current Campaign Contacts	this campaign and for this client	Numeric, includes last con	tact
relemarketing mistory		number of days that passed by after		
		the client was last contacted from a		
	Days since last contact	previous campaign	Numeric	-1 means client was not previously contacted
		number of contacts performed before		
	Previous Contacts	this campaign and for this client	Numeric	Number
		outcome of the previous marketing		
	Previous Outcome		Character, Categorical	"unknown,"other","failure","success"
Target Variable		has the client subscribed a term		
rarget variable	Outcome	deposit?	Character, Binary	"yes","no"

The aim of data exploration is to:

- 1. Assess the data quality and completeness
- 2. Get a big picture understanding of individual variables and overall trends
- 3. Identify any potential data issues and ways to manage them

Data Exploration can be performed using Excel, SAS or a combination of both

Number	Variable	Type
9	contact	Char
5	default	Char
4	education	Char
7	housing	Char
2	job	Char
8	loan	Char
3	marital	Char
11	month	Char
16	poutcome	Char
17	У	Char
1	age	Num
6	balance	Num
13	campaign	Num
10	day	Num
12	duration	Num
14	pdays	Num
15	previous	Num

The first step is to generate a high level understanding of what is contained in the data

Variable	Туре	Description	Values	Distribution		Distri	bution		Comments
	G	Type of communication used in the last		Cellular: 64.3% telephone: 6.5% unknown:	Cellular:	Telephone			
contact	Char	contact Does the customer have some loans in	Categorical	28.8% no: 98.2%	64.3%	: 6.5%	28.8%		30% missing
default	Char	default	Categorical	yes: 1.8%	No: 98.2%	Yes 1.8%			Cross Tab with Y variable to see if useful?
				primary: 15.15% secondary: 51.3%					
		Education level		tertiary:29.4%	Primary:	Secondary	Tertiary:	Unknown:	
education	Char	completed	Categorical	unknown: 4.1%	15.15%	: 51.3%	29.4%	4.1%	
		Does the customer have							
		an existing		no: 44.4%					
housing	Char	housing loan?	Categorical	yes: 55.6%	no: 44.4%	yes 55.6%			
				admin: 11.4%,					Combine entrepenuer with mgmt, self
				blue collar:		managem			employed, housemaid with services, and
job	Char	Type of job	Categorical	21.5%	21.5%	ent: 20.9%	9.2%	16.8%	retited, unemployed, student as no

Descriptive summary statistics for continuous data

Variable	Minimum	Maximum	Mean	nmiss	Median	Std
age	18	95	41	0	39	11
balance	-8019	102127	1362	0	448	3045
day	1	31	16	0	16	8
duration	0	4918	258	0	180	258
campaign	1	63	3	0	2	3
pdays	-1	871	40	0	-1	100
previous	0	275	1	0	0	2

Negative balance - wrong data? Check incidence of negatives

Balance: Max is an outlier?

Duration: check max for outliers? Campaign: check max for outliers

pdays: -1 is no contact. Remove and make 0

previous: check max for outlier

Distribution of the balance variable shows multiple negative values

Possibly overdraft facilities?

The maximum value is much higher than 99% value, but looking at top 5 values shows a gradual increase.

May want to exclude high values, but first, check if behaviour is different for high values:

of obs where balance > 20000 = 193 Proportion of No responses in these obs: 85% Negative Balance:

Max

Quantiles (definition 5)			
Quantile	Estimate		
100% Max	102127		
99%	13165		
95%	5768		
90%	3574		
75% Q3	1428		
50% Median	448		
25% Q1	72		
10%	0		
5%	-172		
1%	-627		
0% Min	-8019		

Extreme Observations						
Value Obs Value Obs						
-8019	12910	71188	41694			
-6847	15683	81204	42559			
-4057	38737	81204	43394			
-3372	7414	98417	26228			
-3313	1897	102127	39990			

Many negative observations - OD? High value may not be an

of obs > 20000:

у	Frequency	Percent
no	164	84.97
ye	29	15.03

193 obs

% of yes/no not different from total sample

Distribution of the balance variable shows multiple negative values

Possibly overdraft facilities?

The maximum value is much higher than 99% value, but looking at top 5 values shows a gradual increase.

May want to exclude high values, but first, check if behaviour is different for high values:

of obs where balance > 20000 = 193 Proportion of No responses in these obs: 85% Negative Balance:

Max

Quantiles (definition 5)				
Quantile	Estimate			
100% Max	102127			
99%	13165			
95%	5768			
90%	3574			
75% Q3	1428			
50% Median	448			
25% Q1	72			
10%	0			
5%	-172			
1%	-627			
0% Min	-8019			

Extreme Observations						
Value	Obs	Value	Obs			
-8019	12910	71188	41694			
-6847	15683	81204	42559			
-4057	38737	81204	43394			
-3372	7414	98417	26228			
-3313	1897	102127	39990			

Many negative observations - OD? High value may not be an

of obs > 20000:

у	Frequency	Percent
no	164	84.97
ye	29	15.03

193 obs

% of yes/no not different from total sample

Count of y	Column Labels			
Row Labels	▼ no	ye	(blank)	Grand Total
failure	4283	618		4901
other	1533	307		1840
success	533	978		1511
unknown	33573	3386		36959
(blank)				
Grand Total	39922	5289		45211

Count of y	Column Lab	els 🔻		
Row Labels	no		ye	Grand Total
no		16727	3354	20081
yes		23195	1935	25130
(blank)				
Grand Total		39922	5289	45211

Count of y	Column Labels			
Row Labels	no	ye	(blank)	Grand Total
failure	4283	618		4901
other	1533	307		1840
success	533	978		1511
unknown	33573	3386		36959
(blank)				
Grand Total	39922	5289		45211

Count of y		Column Labels	•		
Row Labels	•	no		ye	Grand Total
no		167	27	3354	20081
yes		231	95	1935	25130
(blank)					
Grand Total		399	22	5289	45211

DATA EXPLORATION - FINDINGS

Missing Data:

Previous Outcome: 81% missing – cannot be used in analysis Contact type: 29% missing – recommend dropping from analysis

Outliers:

One outlier in Previous (value 275, next highest value 16)

Potential outliers:

balance: > 20k duration > 2000 pdays > 550 campaign > 20

DATA EXPLORATION - FINDINGS

Other findings:

Overall response percent in the dataset: 15%

Bivariate data analysis suggests that age, call duration, job type are potentially strong influencers of response

Previous outcome looks to have a strong impact on outcome, but 80% data is missing

