STAT 576 Bayesian Analysis

Lecture 4: Asymptotic Properties of Bayesian Inference

Chencheng Cai

Washington State University

lackbox Let $\hat{m{ heta}}$ be the maximize-a-posteriori (MAP) estimator, that is

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{arg\,max}} \ p(\boldsymbol{\theta} \mid y)$$

Let $\hat{\theta}$ be the maximize-a-posteriori (MAP) estimator, that is

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{arg\,max}} \ p(\boldsymbol{\theta} \mid y)$$

► Consider a Taylor expansion of the $\log p(\theta \mid y)$ at its mode $\hat{\theta}$:

$$\log p(\boldsymbol{\theta} \mid \boldsymbol{y}) = \log p(\hat{\boldsymbol{\theta}} \mid \boldsymbol{y}) + \frac{1}{2} (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})^T \left[\frac{d^2}{d\boldsymbol{\theta}^2} \log p(\boldsymbol{\theta} \mid \boldsymbol{y}) \right]_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}} (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}) + o(\|\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}\|^2)$$

Let $\hat{\theta}$ be the maximize-a-posteriori (MAP) estimator, that is

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{arg\,max}} \ p(\boldsymbol{\theta} \mid y)$$

► Consider a Taylor expansion of the $\log p(\theta \mid y)$ at its mode $\hat{\theta}$:

$$\log p(\boldsymbol{\theta} \mid \boldsymbol{y}) = \log p(\hat{\boldsymbol{\theta}} \mid \boldsymbol{y}) + \frac{1}{2} (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})^T \left[\frac{d^2}{d\boldsymbol{\theta}^2} \log p(\boldsymbol{\theta} \mid \boldsymbol{y}) \right]_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}} (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}) + o(\|\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}\|^2)$$

▶ The linear term is omitted because

$$\left[\frac{d}{d\boldsymbol{\theta}}\log p(\boldsymbol{\theta}\mid y)\right]_{\boldsymbol{\theta}=\hat{\boldsymbol{\theta}}} = \mathbf{0}$$

▶ With the second approximation of the log-density around the mode:

$$\log p(\boldsymbol{\theta} \mid y) \approx \log p(\hat{\boldsymbol{\theta}} \mid y) + \frac{1}{2} (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})^T \left[\frac{d^2}{d\boldsymbol{\theta}^2} \log p(\boldsymbol{\theta} \mid y) \right]_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}} (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})$$

With the second approximation of the log-density around the mode:

$$\log p(\boldsymbol{\theta} \mid y) \approx \log p(\hat{\boldsymbol{\theta}} \mid y) + \frac{1}{2} (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})^T \left[\frac{d^2}{d\boldsymbol{\theta}^2} \log p(\boldsymbol{\theta} \mid y) \right]_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}} (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})$$

we have the normal approximation of the posterior by

$$p(\boldsymbol{\theta} \mid y) \approx \mathcal{N}\left(\hat{\boldsymbol{\theta}}, \boldsymbol{J}(\hat{\boldsymbol{\theta}})^{-1}\right)$$

where

$$\boldsymbol{J}(\boldsymbol{\theta}) = -\frac{d^2}{d\boldsymbol{\theta}^2} \log p(\boldsymbol{\theta} \mid y)$$

is the observed information matrix.

$$p(\boldsymbol{\theta} \mid y) \approx \mathcal{N}\left(\hat{\boldsymbol{\theta}}, \boldsymbol{J}(\hat{\boldsymbol{\theta}})^{-1}\right)$$

The normal approximation works for any distribution of θ (with mode $\hat{\theta}$) when

$$p(\boldsymbol{\theta} \mid y) \approx \mathcal{N}\left(\hat{\boldsymbol{\theta}}, \boldsymbol{J}(\hat{\boldsymbol{\theta}})^{-1}\right)$$

- ightharpoonup The normal approximation works for any distribution of θ (with mode $\hat{\theta}$) when
 - $ightharpoonup \hat{\theta}$ is an inner point of Θ .
 - ▶ $\log p(\theta \mid y)$ is second-order differentiable at $\hat{\theta}$.
 - $lackbox{J}(\hat{m{ heta}})$ is positive-definite / non-singular.

$$p(\boldsymbol{\theta} \mid y) \approx \mathcal{N}\left(\hat{\boldsymbol{\theta}}, \boldsymbol{J}(\hat{\boldsymbol{\theta}})^{-1}\right)$$

- lacktriangle The normal approximation works for any distribution of heta (with mode $\hat{ heta}$) when
 - \triangleright $\hat{\theta}$ is an inner point of Θ .
 - ▶ $\log p(\theta \mid y)$ is second-order differentiable at $\hat{\theta}$.
 - $lackbrack J(\hat{m{ heta}})$ is positive-definite / non-singular.
- Using Bayes' rule, we have

$$\boldsymbol{J}(\boldsymbol{\theta}) = -\frac{d^2}{d\boldsymbol{\theta}^2} \log p(\boldsymbol{\theta} \mid \boldsymbol{y}) = \underbrace{-\frac{d^2}{d\boldsymbol{\theta}^2} \log p(\boldsymbol{y} \mid \boldsymbol{\theta})}_{\text{info. from observations}} \underbrace{-\frac{d^2}{d\boldsymbol{\theta}^2} \log p(\boldsymbol{\theta})}_{\text{info. from prior}}$$

▶ Suppose we have i.i.d. observations $y = (y_1, ..., y_n)$ from a distribution F_{θ} from a parametric family $\{F_{\theta_0} : \theta \in \Theta\}$ with true parameter θ_0 .

- Suppose we have i.i.d. observations $y=(y_1,\ldots,y_n)$ from a distribution F_{θ} from a parametric family $\{F_{\theta_0}: \theta \in \Theta\}$ with true parameter θ_0 .
- ▶ Then the observed information matrix is

$$J_n(\boldsymbol{\theta}) = -\sum_{i=1}^n \frac{d^2}{d\boldsymbol{\theta}^2} \log p(y_i \mid \boldsymbol{\theta}) - \frac{d^2}{d\boldsymbol{\theta}^2} \log p(\boldsymbol{\theta})$$

- Suppose we have i.i.d. observations $y=(y_1,\ldots,y_n)$ from a distribution F_{θ} from a parametric family $\{F_{\theta_0}: \theta \in \Theta\}$ with true parameter θ_0 .
- ▶ Then the observed information matrix is

$$\boldsymbol{J}_n(\boldsymbol{\theta}) = -\sum_{i=1}^n \frac{d^2}{d\boldsymbol{\theta}^2} \log p(y_i \mid \boldsymbol{\theta}) - \frac{d^2}{d\boldsymbol{\theta}^2} \log p(\boldsymbol{\theta})$$

▶ With Law of Large Numbers, we know

$$-\frac{1}{n} \sum_{i=1}^{n} \frac{d^2}{d\boldsymbol{\theta}^2} \log p(y_i \mid \boldsymbol{\theta}) \xrightarrow{F_{\boldsymbol{\theta}_0}} \mathbb{E}_{\boldsymbol{\theta}_0} \left[-\frac{d^2}{d\boldsymbol{\theta}^2} \log p(y_i \mid \boldsymbol{\theta}) \right]$$

- Suppose we have i.i.d. observations $y=(y_1,\ldots,y_n)$ from a distribution F_{θ} from a parametric family $\{F_{\theta_0}: \theta \in \Theta\}$ with true parameter θ_0 .
- ▶ Then the observed information matrix is

$$\boldsymbol{J}_n(\boldsymbol{\theta}) = -\sum_{i=1}^n \frac{d^2}{d\boldsymbol{\theta}^2} \log p(y_i \mid \boldsymbol{\theta}) - \frac{d^2}{d\boldsymbol{\theta}^2} \log p(\boldsymbol{\theta})$$

▶ With Law of Large Numbers, we know

$$-\frac{1}{n} \sum_{i=1}^{n} \frac{d^{2}}{d\boldsymbol{\theta}^{2}} \log p(y_{i} \mid \boldsymbol{\theta}) \xrightarrow{F_{\boldsymbol{\theta}_{0}}} \mathbb{E}_{\boldsymbol{\theta}_{0}} \left[-\frac{d^{2}}{d\boldsymbol{\theta}^{2}} \log p(y_{i} \mid \boldsymbol{\theta}) \right]$$

Note: This is **NOT** the Fisher's information matrix because the expectation is taken under the true parameter θ_0 .

lacktriangle With the approximation from previous slide, we can revise the Taylor expansion of $\log p(m{ heta} \mid y)$ to

$$\log p(\boldsymbol{\theta} \mid \boldsymbol{y}) = \log p(\hat{\boldsymbol{\theta}} \mid \boldsymbol{y}) + \frac{n}{2} (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})^T \mathbb{E}_{\boldsymbol{\theta}_0} \left[-\frac{d^2}{d\boldsymbol{\theta}^2} \log p(\boldsymbol{y}_i \mid \boldsymbol{\theta}) \right]_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}} (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}) + o_P(n \|\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}\|^2)$$

lacktriangle With the approximation from previous slide, we can revise the Taylor expansion of $\log p(m{ heta} \mid y)$ to

$$\log p(\boldsymbol{\theta} \mid \boldsymbol{y}) = \log p(\hat{\boldsymbol{\theta}} \mid \boldsymbol{y}) + \frac{n}{2} (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})^T \mathbb{E}_{\boldsymbol{\theta}_0} \left[-\frac{d^2}{d\boldsymbol{\theta}^2} \log p(\boldsymbol{y}_i \mid \boldsymbol{\theta}) \right]_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}} (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}) + o_P(n \|\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}\|^2)$$

Then the posterior can be approximated by

$$p(\boldsymbol{\theta} \mid y) \approx \mathcal{N}\left(\boldsymbol{\theta} \mid \hat{\boldsymbol{\theta}}, \frac{1}{n} \mathbb{E}_{\boldsymbol{\theta}_0}^{-1} \left[-\frac{d^2}{d\boldsymbol{\theta}^2} \log p(y_i \mid \boldsymbol{\theta}) \right]_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}} \right)$$

▶ With the approximation from previous slide, we can revise the Taylor expansion of $\log p(\boldsymbol{\theta} \mid y)$ to

$$\log p(\boldsymbol{\theta} \mid \boldsymbol{y}) = \log p(\hat{\boldsymbol{\theta}} \mid \boldsymbol{y}) + \frac{n}{2} (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})^T \mathbb{E}_{\boldsymbol{\theta}_0} \left[-\frac{d^2}{d\boldsymbol{\theta}^2} \log p(\boldsymbol{y}_i \mid \boldsymbol{\theta}) \right]_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}} (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}) + o_P(n \|\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}\|^2)$$

► Then the posterior can be approximated by

$$p(\boldsymbol{\theta} \mid y) \approx \mathcal{N}\left(\boldsymbol{\theta} \mid \hat{\boldsymbol{\theta}}, \frac{1}{n} \mathbb{E}_{\boldsymbol{\theta}_0}^{-1} \left[-\frac{d^2}{d\boldsymbol{\theta}^2} \log p(y_i \mid \boldsymbol{\theta}) \right]_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}} \right)$$

Or the rescaled version:

$$p(\sqrt{n}(\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}) \mid y) \approx \mathcal{N}\left(\boldsymbol{h} \mid \boldsymbol{0}, \mathbb{E}_{\boldsymbol{\theta}_0}^{-1} \left[-\frac{d^2}{d\boldsymbol{\theta}^2} \log p(y_i \mid \boldsymbol{\theta}) \right]_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}}\right)$$

where $h = \sqrt{n}(\theta - \hat{\theta})$ is called the **local parameter** to $\hat{\theta}$.

The approximation

$$p(\sqrt{n}(\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}) \mid y) \approx \mathcal{N}\left(\boldsymbol{h} \mid \boldsymbol{0}, \mathbb{E}_{\boldsymbol{\theta}_0}^{-1} \left[-\frac{d^2}{d\boldsymbol{\theta}^2} \log p(y_i \mid \boldsymbol{\theta}) \right]_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}} \right)$$

is still not satisfying as an asymptotic result because

The approximation

$$p(\sqrt{n}(\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}) \mid y) \approx \mathcal{N}\left(\boldsymbol{h} \mid \boldsymbol{0}, \mathbb{E}_{\boldsymbol{\theta}_0}^{-1} \left[-\frac{d^2}{d\boldsymbol{\theta}^2} \log p(y_i \mid \boldsymbol{\theta}) \right]_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}} \right)$$

is still not satisfying as an asymptotic result because

- lt is a finite sample approximation.
- ightharpoonup The variance depends on the true parameter $heta_0$ and thus infeasible.
- lacktriangle The variance is random by involving $\hat{m{ heta}}$ in the formula.

The approximation

$$p(\sqrt{n}(\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}) \mid y) \approx \mathcal{N}\left(\boldsymbol{h} \mid \boldsymbol{0}, \mathbb{E}_{\boldsymbol{\theta}_0}^{-1} \left[-\frac{d^2}{d\boldsymbol{\theta}^2} \log p(y_i \mid \boldsymbol{\theta}) \right]_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}} \right)$$

is still not satisfying as an asymptotic result because

- lt is a finite sample approximation.
- ightharpoonup The variance depends on the true parameter $heta_0$ and thus infeasible.
- ightharpoonup The variance is random by involving $\hat{ heta}$ in the formula.

Therefore, we need first to investigate the asymptotic behavior of $\hat{\theta}$ itself.

Maximize-a-posteriori estimator:

$$\hat{\boldsymbol{\theta}}_n^{(map)} = \arg\max \log p(\boldsymbol{\theta} \mid y) = \arg\max \underbrace{\frac{1}{n} \sum_{i=1}^n \log p(y_i \mid \boldsymbol{\theta}) + \frac{1}{n} \log p(\boldsymbol{\theta})}_{f_n(\boldsymbol{\theta})}$$

► Maximize-a-posteriori estimator:

$$\hat{\boldsymbol{\theta}}_n^{(map)} = \arg\max \log p(\boldsymbol{\theta} \mid y) = \arg\max \underbrace{\frac{1}{n} \sum_{i=1}^n \log p(y_i \mid \boldsymbol{\theta}) + \frac{1}{n} \log p(\boldsymbol{\theta})}_{f_n(\boldsymbol{\theta})}$$

Maximum Likelihood Estimator:

$$\hat{\boldsymbol{\theta}}_n^{(mle)} = \arg\max \ \log p(y \mid \boldsymbol{\theta}) = \arg\max \ \underbrace{\frac{1}{n} \sum_{i=1}^n \log p(y_i \mid \boldsymbol{\theta})}_{g_n(\boldsymbol{\theta})}$$

► Maximize-a-posteriori estimator:

$$\hat{\boldsymbol{\theta}}_n^{(map)} = \arg\max \log p(\boldsymbol{\theta} \mid \boldsymbol{y}) = \arg\max \underbrace{\frac{1}{n} \sum_{i=1}^n \log p(y_i \mid \boldsymbol{\theta}) + \frac{1}{n} \log p(\boldsymbol{\theta})}_{f_n(\boldsymbol{\theta})}$$

Maximum Likelihood Estimator:

$$\hat{\boldsymbol{\theta}}_n^{(mle)} = \arg\max \log p(y \mid \boldsymbol{\theta}) = \arg\max \underbrace{\frac{1}{n} \sum_{i=1}^n \log p(y_i \mid \boldsymbol{\theta})}_{g_n(\boldsymbol{\theta})}$$

▶ The difference $f_n(\theta) - g_n(\theta)$ does not uniformly converge to zero.

► Maximize-a-posteriori estimator:

$$\hat{\boldsymbol{\theta}}_n^{(map)} = \arg\max \log p(\boldsymbol{\theta} \mid y) = \arg\max \underbrace{\frac{1}{n} \sum_{i=1}^n \log p(y_i \mid \boldsymbol{\theta}) + \frac{1}{n} \log p(\boldsymbol{\theta})}_{f_n(\boldsymbol{\theta})}$$

Maximum Likelihood Estimator:

$$\hat{\boldsymbol{\theta}}_n^{(mle)} = \arg\max \log p(y \mid \boldsymbol{\theta}) = \arg\max \underbrace{\frac{1}{n} \sum_{i=1}^n \log p(y_i \mid \boldsymbol{\theta})}_{g_n(\boldsymbol{\theta})}$$

- ▶ The difference $f_n(\theta) g_n(\theta)$ does not uniformly converge to zero.
- ▶ But since $p(\hat{\boldsymbol{\theta}}_n^{(map)}) \ge p(\hat{\boldsymbol{\theta}}_n^{(mle)})$, as long as $\hat{\boldsymbol{\theta}}_n^{(mle)} \in \{\boldsymbol{\theta} \in \Theta : p(\boldsymbol{\theta}) > 0\}$, we only need to consider the subset with positive prior density.

► Maximize-a-posteriori estimator:

$$\hat{\boldsymbol{\theta}}_n^{(map)} = \arg\max \log p(\boldsymbol{\theta} \mid \boldsymbol{y}) = \arg\max \underbrace{\frac{1}{n} \sum_{i=1}^n \log p(y_i \mid \boldsymbol{\theta}) + \frac{1}{n} \log p(\boldsymbol{\theta})}_{f_n(\boldsymbol{\theta})}$$

Maximum Likelihood Estimator:

$$\hat{\boldsymbol{\theta}}_n^{(mle)} = \arg\max \log p(y \mid \boldsymbol{\theta}) = \arg\max \underbrace{\frac{1}{n} \sum_{i=1}^n \log p(y_i \mid \boldsymbol{\theta})}_{g_n(\boldsymbol{\theta})}$$

- ▶ The difference $f_n(\theta) g_n(\theta)$ does not uniformly converge to zero.
- ▶ But since $p(\hat{\theta}_n^{(map)}) \ge p(\hat{\theta}_n^{(mle)})$, as long as $\hat{\theta}_n^{(mle)} \in \{\theta \in \Theta : p(\theta) > 0\}$, we only need to consider the subset with positive prior density.
- A sufficient condition is (1) $\hat{\theta}_n^{(mle)}$ is consistent for θ_0 , and (2) $p(\theta)$ is strictly positive in a neighbor of θ_0 .

▶ Under regularity conditions on the prevoius slide, we have

$$\hat{\theta}_n^{(map)} \xrightarrow{P} \boldsymbol{\theta}_0$$

▶ Under regularity conditions on the prevoius slide, we have

$$\hat{\theta}_n^{(map)} \xrightarrow{P} \boldsymbol{\theta}_0$$

► Therefore.

$$\mathbb{E}_{\boldsymbol{\theta}_0} \left[-\frac{d^2}{d\boldsymbol{\theta}^2} \log p(y_i \mid \boldsymbol{\theta}) \right]_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}_n} \xrightarrow{P} \mathbb{E}_{\boldsymbol{\theta}_0} \left[-\frac{d^2}{d\boldsymbol{\theta}^2} \log p(y_i \mid \boldsymbol{\theta}) \right]_{\boldsymbol{\theta} = \boldsymbol{\theta}_0} = \mathcal{I}(\boldsymbol{\theta}_0)$$

Under regularity conditions on the prevoius slide, we have

$$\hat{\theta}_n^{(map)} \xrightarrow{P} \boldsymbol{\theta}_0$$

► Therefore.

$$\mathbb{E}_{\boldsymbol{\theta}_0} \left[-\frac{d^2}{d\boldsymbol{\theta}^2} \log p(y_i \mid \boldsymbol{\theta}) \right]_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}_n} \xrightarrow{P} \mathbb{E}_{\boldsymbol{\theta}_0} \left[-\frac{d^2}{d\boldsymbol{\theta}^2} \log p(y_i \mid \boldsymbol{\theta}) \right]_{\boldsymbol{\theta} = \boldsymbol{\theta}_0} = \mathcal{I}(\boldsymbol{\theta}_0)$$

In this case, the approximation of the posterior is

$$p(\sqrt{n}(\boldsymbol{\theta} - \boldsymbol{\theta}_0) \mid y) pprox \mathcal{N}\left(\boldsymbol{h} \mid \boldsymbol{0}, \mathcal{I}^{-1}(\boldsymbol{\theta}_0)\right)$$

with $h = \sqrt{n}(\theta - \theta_0)$ the local parameter.

▶ Under regularity conditions on the prevoius slide, we have

$$\hat{\theta}_n^{(map)} \xrightarrow{P} \boldsymbol{\theta}_0$$

► Therefore.

$$\mathbb{E}_{\boldsymbol{\theta}_0} \left[-\frac{d^2}{d\boldsymbol{\theta}^2} \log p(y_i \mid \boldsymbol{\theta}) \right]_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}_n} \xrightarrow{P} \mathbb{E}_{\boldsymbol{\theta}_0} \left[-\frac{d^2}{d\boldsymbol{\theta}^2} \log p(y_i \mid \boldsymbol{\theta}) \right]_{\boldsymbol{\theta} = \boldsymbol{\theta}_0} = \mathcal{I}(\boldsymbol{\theta}_0)$$

In this case, the approximation of the posterior is

$$p(\sqrt{n}(\boldsymbol{\theta} - \boldsymbol{\theta}_0) \mid y) \approx \mathcal{N}\left(\boldsymbol{h} \mid \boldsymbol{0}, \mathcal{I}^{-1}(\boldsymbol{\theta}_0)\right)$$

with $h = \sqrt{n}(\theta - \theta_0)$ the local parameter.

lacktriangle The unnormalized version is the distribution that is degenerate at $oldsymbol{ heta}_0$.

$$p(\boldsymbol{\theta} \mid y) \approx \delta_{\boldsymbol{\theta}_0}$$

Besides the MAP estimator, we can define a general Bayes estimator based on any loss function ${\cal L}.$

Besides the MAP estimator, we can define a general Bayes estimator based on any loss function ${\cal L}.$

- $ightharpoonup L(\theta, \delta)$ is the **loss** in utitlity when the true parameter is θ while the estimator is δ .
 - Squared loss: $L(\theta, \delta) = (\theta \delta)^2$
 - Misclassification loss: $L(y, \hat{y}) = \mathbb{I}\{y \neq haty\}.$

Besides the MAP estimator, we can define a general Bayes estimator based on any loss function ${\cal L}.$

- $ightharpoonup L(\theta,\delta)$ is the **loss** in utitlity when the true parameter is θ while the estimator is δ .
 - Squared loss: $L(\theta, \delta) = (\theta \delta)^2$
 - ▶ Misclassification loss: $L(y, \hat{y}) = \mathbb{I}\{y \neq haty\}.$
- ▶ The **risk** of an estimator δ is given by

$$R(\theta, \delta) = \mathbb{E}_{\theta}[L(\theta, \delta)]$$

Besides the MAP estimator, we can define a general Bayes estimator based on any loss function ${\cal L}.$

- $ightharpoonup L(\theta, \delta)$ is the **loss** in utitlity when the true parameter is θ while the estimator is δ .
 - Squared loss: $L(\theta, \delta) = (\theta \delta)^2$
 - ▶ Misclassification loss: $L(y, \hat{y}) = \mathbb{I}\{y \neq haty\}.$
- ▶ The **risk** of an estimator δ is given by

$$R(\theta, \delta) = \mathbb{E}_{\theta}[L(\theta, \delta)]$$

▶ The **Bayes risk** of an estimator δ is

$$R(\delta) = \mathbb{E}_{p(\theta)}[R(\theta, \delta)] = \mathbb{E}[L(\theta, \delta)]$$

Besides the MAP estimator, we can define a general Bayes estimator based on any loss function ${\cal L}.$

- $ightharpoonup L(\theta, \delta)$ is the **loss** in utitlity when the true parameter is θ while the estimator is δ .
 - ▶ Squared loss: $L(\theta, \delta) = (\theta \delta)^2$
 - ▶ Misclassification loss: $L(y, \hat{y}) = \mathbb{I}\{y \neq haty\}.$
- ▶ The **risk** of an estimator δ is given by

$$R(\theta, \delta) = \mathbb{E}_{\theta}[L(\theta, \delta)]$$

▶ The **Bayes risk** of an estimator δ is

$$R(\delta) = \mathbb{E}_{p(\theta)}[R(\theta, \delta)] = \mathbb{E}[L(\theta, \delta)]$$

▶ The **Bayes estimator** is the estimator $\hat{\theta}$ that minimizes the Bayes risk:

$$\hat{\theta}_n = \underset{\delta \in \Theta}{\operatorname{arg\,min}} \ R(\delta)$$

▶ Note that $R(\delta) = \mathbb{E}[\mathbb{E}_{p(\theta|y)}[L(\theta,\delta) \mid y]]$

- Note that $R(\delta) = \mathbb{E}[\mathbb{E}_{p(\theta|y)}[L(\theta,\delta) \mid y]]$
- ▶ The Bayes estimator turns our to be the conditional optimizer:

$$\hat{\theta}_n(y) = \underset{\delta \in \Theta}{\operatorname{arg\,min}} \ \mathbb{E}_{p(\theta \mid y)}[L(\theta, \delta) \mid y] = \underset{\delta \in \Theta}{\operatorname{arg\,min}} \ \int L(\theta, \delta) p(\theta \mid y) d\mu$$

- ▶ Note that $R(\delta) = \mathbb{E}[\mathbb{E}_{p(\theta|y)}[L(\theta,\delta) \mid y]]$
- ▶ The Bayes estimator turns our to be the conditional optimizer:

$$\hat{\theta}_n(y) = \underset{\delta \in \Theta}{\operatorname{arg\,min}} \ \mathbb{E}_{p(\theta \mid y)}[L(\theta, \delta) \mid y] = \underset{\delta \in \Theta}{\operatorname{arg\,min}} \ \int L(\theta, \delta) p(\theta \mid y) d\mu$$

- Examples:
 - under squared loss: $\hat{\theta}_n$ is the posterior mean.
 - under absolute loss: $\hat{\theta}_n$ is the posterior median.
 - ightharpoonup under cross entropy loss: $\hat{\theta}_n$ is the one with minimum Kullback-Leibler divergence.

- ▶ Note that $R(\delta) = \mathbb{E}[\mathbb{E}_{p(\theta|y)}[L(\theta,\delta) \mid y]]$
- ▶ The Bayes estimator turns our to be the conditional optimizer:

$$\hat{\theta}_n(y) = \underset{\delta \in \Theta}{\operatorname{arg\,min}} \ \mathbb{E}_{p(\theta \mid y)}[L(\theta, \delta) \mid y] = \underset{\delta \in \Theta}{\operatorname{arg\,min}} \ \int L(\theta, \delta) p(\theta \mid y) d\mu$$

- Examples:
 - under squared loss: $\hat{\theta}_n$ is the posterior mean.
 - under absolute loss: $\hat{\theta}_n$ is the posterior median.
 - ightharpoonup under cross entropy loss: $\hat{\theta}_n$ is the one with minimum Kullback-Leibler divergence.
- ▶ Do we still have the consistency result for Bayes estimators other than the MAP?

- ▶ Note that $R(\delta) = \mathbb{E}[\mathbb{E}_{p(\theta|y)}[L(\theta, \delta) \mid y]]$
- ▶ The Bayes estimator turns our to be the conditional optimizer:

$$\hat{\theta}_n(y) = \underset{\delta \in \Theta}{\operatorname{arg\,min}} \ \mathbb{E}_{p(\theta \mid y)}[L(\theta, \delta) \mid y] = \underset{\delta \in \Theta}{\operatorname{arg\,min}} \ \int L(\theta, \delta) p(\theta \mid y) d\mu$$

- Examples:
 - under squared loss: $\hat{\theta}_n$ is the posterior mean.
 - under absolute loss: $\hat{\theta}_n$ is the posterior median.
 - ightharpoonup under cross entropy loss: $\hat{\theta}_n$ is the one with minimum Kullback-Leibler divergence.
- ▶ Do we still have the consistency result for Bayes estimators other than the MAP? Yes. Doob's Consistency Theorem.

- ▶ Note that $R(\delta) = \mathbb{E}[\mathbb{E}_{p(\theta|y)}[L(\theta,\delta) \mid y]]$
- ▶ The Bayes estimator turns our to be the conditional optimizer:

$$\hat{\theta}_n(y) = \underset{\delta \in \Theta}{\operatorname{arg\,min}} \ \mathbb{E}_{p(\theta \mid y)}[L(\theta, \delta) \mid y] = \underset{\delta \in \Theta}{\operatorname{arg\,min}} \ \int L(\theta, \delta) p(\theta \mid y) d\mu$$

- Examples:
 - under squared loss: $\hat{\theta}_n$ is the posterior mean.
 - under absolute loss: $\hat{\theta}_n$ is the posterior median.
 - ightharpoonup under cross entropy loss: $\hat{\theta}_n$ is the one with minimum Kullback-Leibler divergence.
- ▶ Do we still have the consistency result for Bayes estimators other than the MAP? Yes. Doob's Consistency Theorem.
- ▶ Do we still have the normal approximation for the posterior without utilizing the MAP?

- ▶ Note that $R(\delta) = \mathbb{E}[\mathbb{E}_{p(\theta|y)}[L(\theta, \delta) \mid y]]$
- ▶ The Bayes estimator turns our to be the conditional optimizer:

$$\hat{\theta}_n(y) = \underset{\delta \in \Theta}{\operatorname{arg\,min}} \ \mathbb{E}_{p(\theta \mid y)}[L(\theta, \delta) \mid y] = \underset{\delta \in \Theta}{\operatorname{arg\,min}} \ \int L(\theta, \delta) p(\theta \mid y) d\mu$$

- Examples:
 - under squared loss: $\hat{\theta}_n$ is the posterior mean.
 - under absolute loss: $\hat{\theta}_n$ is the posterior median.
 - under cross entropy loss: $\hat{\theta}_n$ is the one with minimum Kullback-Leibler divergence.
- Do we still have the consistency result for Bayes estimators other than the MAP? Yes. Doob's Consistency Theorem.
- ▶ Do we still have the normal approximation for the posterior without utilizing the MAP?
 - Yes. Berstein-Von Mises Theorem.

Before we move on to the Doob's Theorem and the Berstein-Von Mises Theorem. We first look at the a few counter-examples that are related to the key assumptions so far.

Before we move on to the Doob's Theorem and the Berstein-Von Mises Theorem. We first look at the a few counter-examples that are related to the key assumptions so far.

Unidentifiable Models:
Only observe the values of u for

$$\begin{pmatrix} u \\ v \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \right)$$

Before we move on to the Doob's Theorem and the Berstein-Von Mises Theorem. We first look at the a few counter-examples that are related to the key assumptions so far.

Unidentifiable Models:Only observe the values of u for

$$\begin{pmatrix} u \\ v \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \right)$$

Non-fixed Number of Parameters:

$$y_i \sim \mathcal{N}(\theta_i, 1)$$

Before we move on to the Doob's Theorem and the Berstein-Von Mises Theorem. We first look at the a few counter-examples that are related to the key assumptions so far.

Unidentifiable Models:Only observe the values of u for

$$\begin{pmatrix} u \\ v \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \right)$$

Non-fixed Number of Parameters:

$$y_i \sim \mathcal{N}(\theta_i, 1)$$

- ightharpoonup Zero prior density at θ_0 .
- Converge to the edge of the parameter space.

Notation

- ▶ Distribution family $\{P_{\theta} : \theta \in \Theta\}$
- ightharpoonup For any measurable function $f: \mathcal{X} \to \mathbb{R}$,

$$P_{\theta}f := \mathbb{E}_{\theta}[f(X)]$$

is the expectation of f under probability measure P_{θ} .

- $ightharpoonup P_{\theta}^{n}$ is the joint probability measure for n independent copies.
- $ightharpoonup P_{\theta|y_1,y_2,\dots,y_n}$ is the posterior probability measure given obervations y_1,\dots,y_n .

Doob's Consistency Theorem

Definition (Consistency)

A sequence of posterior measures $P_{\theta|y_1,y_2,\dots,y_n}$ is called consistent under θ_0 if under $P_{\theta_0}^{\infty}$ -probability it converges in distribution to the measure δ_{θ_0} that is degenerate at θ_0 , in probability. It is strongly consistent if this happens for almost every sequence X_1,X_2,\dots

Doob's Consistency Theorem

Definition (Consistency)

A sequence of posterior measures $P_{\theta|y_1,y_2,\dots,y_n}$ is called consistent under θ_0 if under $P_{\theta_0}^{\infty}$ -probability it converges in distribution to the measure δ_{θ_0} that is degenerate at θ_0 , in probability. It is strongly consistent if this happens for almost every sequence X_1,X_2,\dots

Main result for the consistency of the posterior measure:

Theorem (Doob's Consistency Theorem)

Suppose that the sample space $(\mathcal{X},\mathcal{A})$ is a subset of Euclidean space with its Borel σ -field. Suppose that $P_{\theta} \neq P_{\theta'}$ whenever $\theta \neq \theta'$. Then for every prior probability measure Π on Θ the sequence of posterior measures is consistent for Π -almost every θ .

- ▶ The probability space we are working with: $\theta \sim \Pi$ and $y_1, y_2, \dots \mid \theta \sim P_\theta$ i.i.d..
- Let Q be the joint probability measure on $\mathcal{X}^{\infty} \times \Theta$ such that the joint distribution $(y_1, \ldots, y_n, \theta)$ is a cylinder of the space.

- ▶ The probability space we are working with: $\theta \sim \Pi$ and $y_1, y_2, \dots \mid \theta \sim P_\theta$ i.i.d..
- Let Q be the joint probability measure on $\mathcal{X}^{\infty} \times \Theta$ such that the joint distribution $(y_1, \ldots, y_n, \theta)$ is a cylinder of the space.
- ▶ Step 1: Claim: there exists a measurable function $h: \mathcal{X}^{\infty} \to \Theta$ such that

$$h(x_1, x_2, \dots) = \theta, \quad Q - a.s.$$

- ▶ The probability space we are working with: $\theta \sim \Pi$ and $y_1, y_2, \dots \mid \theta \sim P_\theta$ i.i.d..
- Let Q be the joint probability measure on $\mathcal{X}^{\infty} \times \Theta$ such that the joint distribution $(y_1, \ldots, y_n, \theta)$ is a cylinder of the space.
- ▶ Step 1: Claim: there exists a measurable function $h: \mathcal{X}^{\infty} \to \Theta$ such that

$$h(x_1, x_2, \dots) = \theta, \quad Q - a.s.$$

▶ **Step 2:** Then, for any bounded, measurable function $f: \Theta \to \mathbb{R}$, we construct a sequence η_1, η_2, \ldots by

$$\eta_n = \mathbb{E}[f(\theta) \mid y_1, \dots, y_n].$$

- ▶ The probability space we are working with: $\theta \sim \Pi$ and $y_1, y_2, \dots \mid \theta \sim P_{\theta}$ i.i.d..
- Let Q be the joint probability measure on $\mathcal{X}^{\infty} \times \Theta$ such that the joint distribution $(y_1, \ldots, y_n, \theta)$ is a cylinder of the space.
- ▶ **Step 1:** Claim: there exists a measurable function $h: \mathcal{X}^{\infty} \to \Theta$ such that

$$h(x_1, x_2, \dots) = \theta, \quad Q - a.s.$$

▶ **Step 2:** Then, for any bounded, measurable function $f: \Theta \to \mathbb{R}$, we construct a sequence η_1, η_2, \ldots by

$$\eta_n = \mathbb{E}[f(\theta) \mid y_1, \dots, y_n].$$

 \triangleright η_n is a martingale. By Doob's martingale convergence theorem, we have

$$\eta_n \to \eta_\infty := \mathbb{E}[f(\theta) \mid y_1, y_2, \dots] = f(h(y_1, y_2, \dots)), \quad Q - a.s.$$

Theorem (Doob's Martingale Convergence Theorem)

Suppose X_n is a super-martingale that satisfies $\sup_n \mathbb{E}[|X_n|] < +\infty$. Then

ightharpoonup Recall: for any bounded, measurable function f, we have

$$\mathbb{E}[f(\theta) \mid y_1, \dots, y_n] \to f(h(y_1, y_2, \dots)), \quad Q - a.s.$$

ightharpoonup Recall: for any bounded, measurable function f, we have

$$\mathbb{E}[f(\theta) \mid y_1, \dots, y_n] \to f(h(y_1, y_2, \dots)), \quad Q - a.s.$$

Lemma (Convergence-Determining Class)

There exists a countable set of continous functions $f: \mathbb{R}^k \to [0,1]$ that $X_n \xrightarrow{\mathcal{D}} X$ if and only if $\mathbb{E}[X_n] \to \mathbb{E}[X]$ uniformly in $f \in \mathcal{F}$.

ightharpoonup Recall: for any bounded, measurable function f, we have

$$\mathbb{E}[f(\theta) \mid y_1, \dots, y_n] \to f(h(y_1, y_2, \dots)), \quad Q - a.s.$$

Lemma (Convergence-Determining Class)

There exists a countable set of continous functions $f: \mathbb{R}^k \to [0,1]$ that $X_n \xrightarrow{\mathcal{D}} X$ if and only if $\mathbb{E}[X_n] \to \mathbb{E}[X]$ uniformly in $f \in \mathcal{F}$.

With the countable convergence-determing class, we have

$$P_{\theta|y_1,\dots,y_n} \xrightarrow{\mathcal{D}} \delta_{h(y_1,y_2,\dots)}, \quad Q-a.s.$$

End of Step 2.

ightharpoonup Recall: for any bounded, measurable function f, we have

$$\mathbb{E}[f(\theta) \mid y_1, \dots, y_n] \to f(h(y_1, y_2, \dots)), \quad Q - a.s.$$

Lemma (Convergence-Determining Class)

There exists a countable set of continous functions $f: \mathbb{R}^k \to [0,1]$ that $X_n \xrightarrow{\mathcal{D}} X$ if and only if $\mathbb{E}[X_n] \to \mathbb{E}[X]$ uniformly in $f \in \mathcal{F}$.

▶ With the countable convergence-determing class, we have

$$P_{\theta|y_1,\dots,y_n} \xrightarrow{\mathcal{D}} \delta_{h(y_1,y_2,\dots)}, \quad Q-a.s.$$

End of Step 2.

Now we need to traslate the right-hand side to δ_{θ_0} .

- ▶ Step 3: Let $C \subset \mathcal{X}^{\infty} \times \Theta$ be the subset that all current results hold,
- ▶ that is the intersection of all Q a.s. sets so far.

- ▶ Step 3: Let $C \subset \mathcal{X}^{\infty} \times \Theta$ be the subset that all current results hold,
- ▶ that is the intersection of all Q a.s. sets so far.
- By Fubini's Theorem, we have

$$1 = Q(C) = \iint \mathbb{I}\{(y, \theta) \in C\} dP_{\theta}^{\infty}(y) d\Pi(\theta) = \int P_{\theta}^{\infty}(C_{\theta}) d\Pi(\theta),$$

where $C_{\theta} = \{y : (y, \theta) \in C\}.$

- ▶ Step 3: Let $C \subset \mathcal{X}^{\infty} \times \Theta$ be the subset that all current results hold,
- ▶ that is the intersection of all Q a.s. sets so far.
- ▶ By Fubini's Theorem, we have

$$1 = Q(C) = \iint \mathbb{I}\{(y, \theta) \in C\} dP_{\theta}^{\infty}(y) d\Pi(\theta) = \int P_{\theta}^{\infty}(C_{\theta}) d\Pi(\theta),$$

where $C_{\theta} = \{y : (y, \theta) \in C\}.$

• We immediately have $P_{\theta}^{\infty}(C_{\theta}) = 1$ for Π -almost every θ .

- ▶ Step 3: Let $C \subset \mathcal{X}^{\infty} \times \Theta$ be the subset that all current results hold,
- ▶ that is the intersection of all Q a.s. sets so far.
- ▶ By Fubini's Theorem, we have

$$1 = Q(C) = \iint \mathbb{I}\{(y, \theta) \in C\} dP_{\theta}^{\infty}(y) d\Pi(\theta) = \int P_{\theta}^{\infty}(C_{\theta}) d\Pi(\theta),$$

where $C_{\theta} = \{y : (y, \theta) \in C\}.$

- We immediately have $P_{\theta}^{\infty}(C_{\theta})=1$ for Π -almost every θ .
- For those θ_0 that $P^{\infty}_{\theta}(C_{\theta})=1$, we have $(y,\theta_0)\in C$ for $P^{\infty}_{\theta_0}$ -almost every sequence y_1,y_2,\ldots , then

$$P_{\theta|y_1,\dots,y_n} \xrightarrow{\mathcal{D}} \delta_{h(y_1,y_2,\dots)} = \delta_{\theta_0}$$

Now the theorem is proved.

Claim: there exists a measurable function $h: \mathcal{X}^{\infty} \to \Theta$ such that

$$h(x_1, x_2, \dots) = \theta, \quad Q - a.s.$$

Claim: there exists a measurable function $h: \mathcal{X}^{\infty} \to \Theta$ such that

$$h(x_1, x_2, \dots) = \theta, \quad Q - a.s.$$

Definition (Accessibility)

A measurable function $f:\Theta\to\mathbb{R}$ is called accessible if there exists a sequence of measurable functions $h_n:\mathcal{X}^n\to\mathbb{R}$ such that

$$\int |h_n(y) - f(\theta)| \wedge 1dQ(y, \theta) \to 0.$$

Claim: there exists a measurable function $h: \mathcal{X}^{\infty} \to \Theta$ such that

$$h(x_1, x_2, \dots) = \theta, \quad Q - a.s.$$

Definition (Accessibility)

A measurable function $f:\Theta\to\mathbb{R}$ is called accessible if there exists a sequence of measurable functions $h_n:\mathcal{X}^n\to\mathbb{R}$ such that

$$\int |h_n(y) - f(\theta)| \wedge 1dQ(y, \theta) \to 0.$$

- ▶ The claim is equivalent to say all $f(\theta) = \theta_0$ is accessible.
- ▶ We can show: every Borel measurable function is accessible.

- ▶ **Step 1.1:** $f(\theta) = P_{\theta}(A)$ for any measurable set A is accessible.
- ▶ We can choose $h_n(y) = n^{-1} \sum_{i=1}^n \mathbb{I}\{y_i \in A\}$ and by LLN.

- ▶ **Step 1.1:** $f(\theta) = P_{\theta}(A)$ for any measurable set A is accessible.
- ▶ We can choose $h_n(y) = n^{-1} \sum_{i=1}^n \mathbb{I}\{y_i \in A\}$ and by LLN.
- ▶ **Step 1.2:** every function that is measurable in the σ -field generated by accessible functions is accessible.

- ▶ **Step 1.1:** $f(\theta) = P_{\theta}(A)$ for any measurable set A is accessible.
- ▶ We can choose $h_n(y) = n^{-1} \sum_{i=1}^n \mathbb{I}\{y_i \in A\}$ and by LLN.
- ▶ **Step 1.2:** every function that is measurable in the σ -field generated by accessible functions is accessible.
- ▶ Step 1.3: Since $(\mathcal{X}, \mathcal{A})$ is Euclidean, there exits a countable measure determing subcollection $\mathcal{A}_0 \subset \mathcal{A}$.
- ► For A ranging over A_0 , the function $P_{\theta}(A)$ separates the points of Θ because of the identifiability. These functions generates the Borel σ -field on Θ .

- ▶ **Step 1.1:** $f(\theta) = P_{\theta}(A)$ for any measurable set A is accessible.
- ▶ We can choose $h_n(y) = n^{-1} \sum_{i=1}^n \mathbb{I}\{y_i \in A\}$ and by LLN.
- ▶ **Step 1.2:** every function that is measurable in the σ -field generated by accessible functions is accessible.
- ▶ Step 1.3: Since $(\mathcal{X}, \mathcal{A})$ is Euclidean, there exits a countable measure determing subcollection $\mathcal{A}_0 \subset \mathcal{A}$.
- ► For A ranging over A_0 , the function $P_{\theta}(A)$ separates the points of Θ because of the identifiability. These functions generates the Borel σ -field on Θ .
- ▶ **Step 1.4:** Therefore all Borel measurable functions are accessible.

To show: every function that is measurable in the σ -field generated by accessible functions is accessible.

To show: every function that is measurable in the σ -field generated by accessible functions is accessible.

Lemma

Let $\mathcal F$ be a linear subspace of $\mathcal L^1(\Pi)$ with the properties:

- 1. if $f, g \in \mathcal{F}$, then $f \wedge g \in \mathcal{F}$;
- 2. if $0 \le f_1 \le f_2 \le \cdots \in \mathcal{F}$, and $f_n \uparrow f \in \mathcal{L}^1(\Pi)$, then $f \in \mathcal{F}$;
- 3. $1 \in \mathcal{F}$.

Then \mathcal{F} contains everty $\sigma(\mathcal{F})$ -measurable function in $\mathcal{L}^1(\Pi)$.

To show: every function that is measurable in the σ -field generated by accessible functions is accessible.

Lemma

Let \mathcal{F} be a linear subspace of $\mathcal{L}^1(\Pi)$ with the properties:

- 1. if $f, g \in \mathcal{F}$, then $f \land g \in \mathcal{F}$;
- 2. if $0 \le f_1 \le f_2 \le \cdots \in \mathcal{F}$, and $f_n \uparrow f \in \mathcal{L}^1(\Pi)$, then $f \in \mathcal{F}$;
- 3. $1 \in \mathcal{F}$.

Then \mathcal{F} contains everty $\sigma(\mathcal{F})$ -measurable function in $\mathcal{L}^1(\Pi)$.

Proof:

- $\blacktriangleright \text{ Let } \mathcal{A}_0 = \{A : \mathbf{1}_A \in \mathcal{F}\}$
- $ightharpoonup \mathcal{A}_0$ is a π -system and a λ -system. By Dynkin Theorem, \mathcal{A}_0 is a σ -field.
- ▶ For any $f \in \mathcal{F}$, the function $n(f \alpha)_+ \wedge 1$ is in \mathcal{F} and converges to $\mathbb{I}\{f > \alpha\}$. So $\{f > \alpha\} \in \mathcal{A}_0$.
- ▶ So $\sigma(\mathcal{F}) \subset \mathcal{A}_0$.

Lemma

Let \mathcal{F} be a countable collection of measurable functions $f:\Theta\subset\mathbb{R}^k\to\mathbb{R}$ that separates the points of Θ . Then the Borel σ -field and the σ -field generated by \mathcal{F} on Θ coincide.

Quadratic Mean Differentiability (QMD)

Now we consider expand the likelihood function at the true parameter θ_0 with local parameter h.

Quadratic Mean Differentiability (QMD)

- Now we consider expand the likelihood function at the true parameter θ_0 with local parameter h.
- ► Taylor expansion:

$$\log \prod_{i=1}^{n} p(y_i \mid \theta_0 + h/\sqrt{n}) = \log \prod_{i=1}^{n} p(y_i \mid \theta_i) + \frac{h}{\sqrt{n}} \sum_{i=1}^{n} \dot{\ell}(\theta_0; y_i) + \frac{h^2}{2n} \sum_{i=1}^{n} \ddot{\ell}(\theta_0; y_i) + o(h^2/n)$$

- Now we consider expand the likelihood function at the true parameter θ_0 with local parameter h.
- ► Taylor expansion:

$$\log \prod_{i=1}^{n} p(y_i \mid \theta_0 + h/\sqrt{n}) = \log \prod_{i=1}^{n} p(y_i \mid \theta_i) + \frac{h}{\sqrt{n}} \sum_{i=1}^{n} \dot{\ell}(\theta_0; y_i) + \frac{h^2}{2n} \sum_{i=1}^{n} \ddot{\ell}(\theta_0; y_i) + o(h^2/n)$$

▶ By Law of Large Numbers, we have

$$\log \prod_{i=1}^{n} \frac{p(y_i \mid \theta_0 + h/\sqrt{n})}{p(y_i \mid \theta_0)} = h\Delta_{n,\theta_0} - \frac{1}{2}h^2 \mathcal{I}(\theta_0) + o_P(1),$$

where
$$\Delta_{n,\theta_0} = n^{-1/2} \sum_{i=1}^n \dot{\ell}(\theta_0; y_i)$$
 and $\mathcal{I}(\theta_0) = -P_{\theta_0} \ddot{\ell}(\theta_0; y_i)$.

- Now we consider expand the likelihood function at the true parameter θ_0 with local parameter h.
- ► Taylor expansion:

$$\log \prod_{i=1}^{n} p(y_i \mid \theta_0 + h/\sqrt{n}) = \log \prod_{i=1}^{n} p(y_i \mid \theta_i) + \frac{h}{\sqrt{n}} \sum_{i=1}^{n} \dot{\ell}(\theta_0; y_i) + \frac{h^2}{2n} \sum_{i=1}^{n} \ddot{\ell}(\theta_0; y_i) + o(h^2/n)$$

▶ By Law of Large Numbers, we have

$$\log \prod_{i=1}^{n} \frac{p(y_i \mid \theta_0 + h/\sqrt{n})}{p(y_i \mid \theta_0)} = h\Delta_{n,\theta_0} - \frac{1}{2}h^2 \mathcal{I}(\theta_0) + o_P(1),$$

where
$$\Delta_{n,\theta_0} = n^{-1/2} \sum_{i=1}^n \dot{\ell}(\theta_0; y_i)$$
 and $\mathcal{I}(\theta_0) = -P_{\theta_0} \ddot{\ell}(\theta_0; y_i)$.

▶ Do we require the second-order Differentiability of ℓ to have this result?

Definition (Quadratic Mean Differentiability)

The probility family $\{P_{\theta}:\theta\in\Theta\}$ is called differentiable in quadratic mean at θ_0 if there exists a measurable vector function $\dot{\ell}(\theta)$ such that

$$\int \left[\sqrt{p_{\theta_0+h}} - \sqrt{p_{\theta_0}} - \frac{1}{2} h^T \dot{\ell}(\theta_0) \right]^2 d\mu = o(\|h\|^2), \quad h \to 0.$$

Definition (Quadratic Mean Differentiability)

The probility family $\{P_{\theta}: \theta \in \Theta\}$ is called differentiable in quadratic mean at θ_0 if there exists a measurable vector function $\dot{\ell}(\theta)$ such that

$$\int \left[\sqrt{p_{\theta_0 + h}} - \sqrt{p_{\theta_0}} - \frac{1}{2} h^T \dot{\ell}(\theta_0) \right]^2 d\mu = o(\|h\|^2), \quad h \to 0.$$

- ▶ QMD does not require the existence of $\dot{\ell}$ everywhere.
- ▶ Instead, it finds a proxy function that works as $\dot{\ell}$ as long as the **overall** error is controlled.

Theorem

Suppose that Θ is an open subset of \mathbb{R}^k , and the probability family $\{P_\theta:\theta\in\Theta\}$ is differentiable in quadratic mean at θ_0 . Then $P_{\theta_0}\dot{\ell}(\theta_0)=0$ and the Fisher information matrix $\mathcal{I}(\theta_0)=P_{\theta_0}\dot{\ell}(\theta_0)\dot{\ell}(\theta_0)^T$ exists. Furthermore, for every converging sequence $h_n\to h$ as $n\to\infty$,

$$\log \prod_{i=1}^{n} \frac{p(y_i \mid \theta_0 + h/\sqrt{n})}{p(y_i \mid \theta_0)} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} h^T \dot{\ell}(\theta_0) - \frac{1}{2} h^T \mathcal{I}(\theta_0) h + o_P(1).$$

Theorem (Bernstein-Von Mises)

Suppose the probability family $\{P_{\theta}: \theta \in \Theta\}$ is differentiable in quadratic mean at θ_0 with nonsingular Fisher information matrix $\mathcal{I}(\theta_0)$, and suppose that for any $\epsilon > 0$ there exists a sequence of tests ϕ_n such that

$$P_{\theta_0}^n \phi_n \to 0$$
, $\sup_{\|\theta - \theta_0\| > \epsilon} P_{\theta}^n (1 - \phi_n) \to 0$.

Futhermore, let the prior measure be absolutely continuous in a neighborhood of θ_0 with a continuous density function at θ_0 . Then the corresponding posterior distribution satisfy

$$\left\| P_{\sqrt{n}(\theta-\theta_0)|y_1,..,y_n} - \mathcal{N}\left(\Delta_{n,\theta_0}, \mathcal{I}(\theta_0)^{-1}\right) \right\|_{TV} \xrightarrow{P_{\theta_0}^n} 0$$

▶ The assumption on the distribution family is weak. (QMD)

- ▶ The assumption on the distribution family is weak. (QMD)
- $ightharpoonup \phi_n: \mathcal{X}^n \to \{0,1\}$ is a test with $\phi_n(y_1,\ldots,y_n)=1$ meaning "reject".

- ▶ The assumption on the distribution family is weak. (QMD)
- $lack \phi_n: \mathcal{X}^n o \{0,1\}$ is a test with $\phi_n(y_1,\ldots,y_n)=1$ meaning "reject".
- ▶ The assumption

$$P_{\theta_0}^n \phi_n \to 0$$
, $\sup_{\|\theta - \theta_0\| > \epsilon} P_{\theta}^n (1 - \phi_n) \to 0$.

means there exists a sequence of tests that distinguishes θ_0 from any other points.

- ▶ The assumption on the distribution family is weak. (QMD)
- $lack \phi_n: \mathcal{X}^n o \{0,1\}$ is a test with $\phi_n(y_1,\ldots,y_n)=1$ meaning "reject".
- ► The assumption

$$P_{\theta_0}^n \phi_n \to 0$$
, $\sup_{\|\theta - \theta_0\| > \epsilon} P_{\theta}^n (1 - \phi_n) \to 0$.

means there exists a sequence of tests that distinguishes θ_0 from any other points.

 \blacktriangleright The **total variation** distance between two distributions F_1 and F_2 is defined as

$$||F_1 - F_2||_{TV} = \sup_{A \in \mathcal{F}} |F_1(A) - F_2(A)| = \frac{1}{2} \int |f_1(x) - f_2(x)| d\mu(x)$$

- ▶ The assumption on the distribution family is weak. (QMD)
- $lack \phi_n: \mathcal{X}^n o \{0,1\}$ is a test with $\phi_n(y_1,\ldots,y_n)=1$ meaning "reject".
- ► The assumption

$$P_{\theta_0}^n \phi_n \to 0$$
, $\sup_{\|\theta - \theta_0\| > \epsilon} P_{\theta}^n (1 - \phi_n) \to 0$.

means there exists a sequence of tests that distinguishes θ_0 from any other points.

 \blacktriangleright The **total variation** distance between two distributions F_1 and F_2 is defined as

$$||F_1 - F_2||_{TV} = \sup_{A \in \mathcal{F}} |F_1(A) - F_2(A)| = \frac{1}{2} \int |f_1(x) - f_2(x)| d\mu(x)$$

The in probability convergence is w.r.t. $P_{\theta_0}^n$, because the randomness of the left-hand side is the observations y_1, \ldots, y_n .

Step 0: Notations.

▶ We use the local parameter $h = \sqrt{n}(\theta - \theta_0)$.

Step 0: Notations.

- ▶ We use the local parameter $h = \sqrt{n}(\theta \theta_0)$.
- ▶ The prior on θ , Π , is translated to the prior on h, Π_n , by

$$\Pi_n(A) = \Pi(\theta_0 + A/\sqrt{n})$$
 for any measurable set A .

Step 0: Notations.

- ▶ We use the local parameter $h = \sqrt{n}(\theta \theta_0)$.
- ▶ The prior on θ , Π , is translated to the prior on h, Π_n , by

$$\Pi_n(A) = \Pi(\theta_0 + A/\sqrt{n})$$
 for any measurable set A .

▶ For a given set C, let Π_n^C be the probability measure by restricting Π_n to C and then renormalizing.

Step 0: Notations.

- ▶ We use the local parameter $h = \sqrt{n}(\theta \theta_0)$.
- ▶ The prior on θ , Π , is translated to the prior on h, Π_n , by

$$\Pi_n(A) = \Pi(\theta_0 + A/\sqrt{n})$$
 for any measurable set A .

- ▶ For a given set C, let Π_n^C be the probability measure by restricting Π_n to C and then renormalizing.
- ▶ We write $P_{n,h}$ as the distribution of $y_1, \ldots, y_n \mid \theta_0 + h/\sqrt{n}$.
- ▶ Let $P_{n,C} = \int P_{n,h} \ d\Pi_n^C(h)$ be the average probability measure on C.

Step 0: Notations.

- ▶ We use the local parameter $h = \sqrt{n}(\theta \theta_0)$.
- ▶ The prior on θ , Π , is translated to the prior on h, Π_n , by

$$\Pi_n(A) = \Pi(\theta_0 + A/\sqrt{n})$$
 for any measurable set A .

- For a given set C, let Π_n^C be the probability measure by restricting Π_n to C and then renormalizing.
- ▶ We write $P_{n,h}$ as the distribution of $y_1, \ldots, y_n \mid \theta_0 + h/\sqrt{n}$.
- ▶ Let $P_{n,C} = \int P_{n,h} \ d\Pi_n^C(h)$ be the average probability measure on C.
- lacktriangle The posterior distributions with priors Π_n and Π_n^C are $P_{h|y_1,\dots,y_n}$ and $P_{h|y_1,\dots,y_n}^C$.

Step 1: show $P_{\theta|y_1,\dots,y_n}$ and $P_{\theta|y_1,\dots,y_n}^{C_n}$ are close.

Step 1: show $P_{\theta|y_1,\dots,y_n}$ and $P_{\theta|y_1,\dots,y_n}^{C_n}$ are close.

Let C_n be the ball with radius M_n .

Step 1: show $P_{\theta|y_1,...,y_n}$ and $P_{\theta|y_1,...,y_n}^{C_n}$ are close.

- ▶ Let C_n be the ball with radius M_n .
- For any measurable set B, (let $y = (y_1, \ldots, y_n)$)

$$\begin{split} P_{h|y}(B) - P_{h|y}^{C_n}(B) &= P_{h|y}(B \cap C_n^c) + P_{h|y}(B \cap C_n) - P_{h|y}^{C_n}(B \cap C_n) - P_{h|y}^{C_n}(B \cap C_n^c) \\ &= P_{h|y}(B \cap C_n^c) + P_{h|y}(B \cap C_n) - P_{h|y}^{C_n}(B \cap C_n) \\ &= P_{h|y}(B \cap C_n^c) + P_{h|y}(C_n) P_{h|y}^{C_n}(B \cap C_n) - P_{h|y}^{C_n}(B \cap C_n) \\ &= P_{h|y}(B \cap C_n^c) - P_{h|y}(C_n^c) P_{h|y}^{C_n}(B \cap C_n) \\ &= P_{h|y}(B \cap C_n^c) - P_{h|y}(C_n^c) P_{h|y}^{C_n}(B) \\ &\leq 2 P_{h|y}(C_n^c) \end{split}$$

Step 1: show $P_{\theta|y_1,...,y_n}$ and $P_{\theta|y_1,...,y_n}^{C_n}$ are close.

- ▶ Let C_n be the ball with radius M_n .
- For any measurable set B, (let $y = (y_1, \ldots, y_n)$)

$$\begin{split} P_{h|y}(B) - P_{h|y}^{C_n}(B) &= P_{h|y}(B \cap C_n^c) + P_{h|y}(B \cap C_n) - P_{h|y}^{C_n}(B \cap C_n) - P_{h|y}^{C_n}(B \cap C_n^c) \\ &= P_{h|y}(B \cap C_n^c) + P_{h|y}(B \cap C_n) - P_{h|y}^{C_n}(B \cap C_n) \\ &= P_{h|y}(B \cap C_n^c) + P_{h|y}(C_n) P_{h|y}^{C_n}(B \cap C_n) - P_{h|y}^{C_n}(B \cap C_n) \\ &= P_{h|y}(B \cap C_n^c) - P_{h|y}(C_n^c) P_{h|y}^{C_n}(B \cap C_n) \\ &= P_{h|y}(B \cap C_n^c) - P_{h|y}(C_n^c) P_{h|y}^{C_n}(B) \\ &\leq 2 P_{h|y}(C_n^c) \end{split}$$

► Therefore,

$$\|P_{h|y} - P_{h|y}^{C_n}\|_{TV} \le 2P_{h|y}(C_n^c)$$

ightharpoonup Let U be a ball around zero with fixed radius.

- ▶ Let U be a ball around zero with fixed radius.
- ► Then

$$\begin{split} P_{n,U}P_{h|y}(C_{n}^{c})(1-\phi_{n}) &= P_{n,U}\int_{C_{n}^{c}}\frac{p_{n,h}(y)(1-\phi_{n})}{\int p_{n,\tilde{h}}(y)d\Pi_{n}(\tilde{h})}d\Pi_{n}(h) \\ &= \int_{U}\left[\int_{\mathcal{X}^{n}}p_{n,h'}(y)\int_{C_{n}^{c}}\frac{p_{n,h}(y)(1-\phi_{n})}{\int p_{n,\tilde{h}}(y)d\Pi_{n}(\tilde{h})}d\Pi_{n}(h)dy\right]d\Pi_{n}^{U}(h') \\ &= \frac{1}{\Pi_{n}(U)}\int_{U}\int_{\mathcal{X}^{n}}\int_{C_{n}^{c}}\frac{p_{n,h}(y)p_{n,h'}(y)(1-\phi_{n})}{\int p_{n,\tilde{h}}(y)d\Pi_{n}(\tilde{h})}d\Pi_{n}(h)dyd\Pi_{n}(h') \\ &= \frac{\Pi_{n}(C_{n}^{c})}{\Pi_{n}(U)}P_{n,C_{n}^{c}}P_{h|y}(U)(1-\phi_{n}) \\ &\leq \frac{1}{\Pi_{n}(U)}\int_{C_{n}^{c}}P_{n,h}(1-\phi_{n})d\Pi_{n}(h) \end{split}$$

- Let U be a ball around zero with fixed radius.
- ► Then

$$\begin{split} P_{n,U}P_{h|y}(C_{n}^{c})(1-\phi_{n}) &= P_{n,U}\int_{C_{n}^{c}} \frac{p_{n,h}(y)(1-\phi_{n})}{\int p_{n,\tilde{h}}(y)d\Pi_{n}(\tilde{h})} d\Pi_{n}(h) \\ &= \int_{U} \left[\int_{\mathcal{X}^{n}} p_{n,h'}(y) \int_{C_{n}^{c}} \frac{p_{n,h}(y)(1-\phi_{n})}{\int p_{n,\tilde{h}}(y)d\Pi_{n}(\tilde{h})} d\Pi_{n}(h) dy \right] d\Pi_{n}^{U}(h') \\ &= \frac{1}{\Pi_{n}(U)} \int_{U} \int_{\mathcal{X}^{n}} \int_{C_{n}^{c}} \frac{p_{n,h}(y)p_{n,h'}(y)(1-\phi_{n})}{\int p_{n,\tilde{h}}(y)d\Pi_{n}(\tilde{h})} d\Pi_{n}(h) dy d\Pi_{n}(h') \\ &= \frac{\Pi_{n}(C_{n}^{c})}{\Pi_{n}(U)} P_{n,C_{n}^{c}} P_{h|y}(U)(1-\phi_{n}) \end{split}$$

► The integrand converges pointwise to 0. But that's not enough.

 $\leq \frac{1}{\prod_n(U)} \int_{C^c} P_{n,h} (1 - \phi_n) d\Pi_n(h)$

Lemma

There exists a sequence of tests ϕ_n and a constant c such that for every sufficiently large n and every $\|\theta - \theta_0\| \ge M_n/\sqrt{n}$,

$$P_{\theta_0}^n \phi_n \to 0, \quad P_{\theta}^n (1 - \phi_n) \le \exp\left\{-cn(\|\theta - \theta_0\|^2 \wedge 1)\right\}$$

Lemma

There exists a sequence of tests ϕ_n and a constant c such that for every sufficiently large n and every $\|\theta - \theta_0\| \ge M_n/\sqrt{n}$,

$$P_{\theta_0}^n \phi_n \to 0, \quad P_{\theta}^n (1 - \phi_n) \le \exp\left\{-cn(\|\theta - \theta_0\|^2 \wedge 1)\right\}$$

proof sketch:

- ▶ For $M_n/\sqrt{n} \le \|\theta \theta_0\| \le \epsilon$, we set $\phi_n = \mathbb{I}\{(\mathbb{P}_n P_{\theta_0})\dot{\ell}^L(\theta_0) \ge \sqrt{M_n/n}\}$
- ▶ For $\|\theta-\theta_0\|>\epsilon$, we first choose k such that $P_{\theta_0}^k\phi_k<1/4$ and $P_{\theta}^k(1-\phi_k)<1/4$ as the assumption in the BVM theorem. For n=mk, let ψ_1,\ldots,ψ_m be ϕ_k applied to $(y_1,\ldots,y_k),\ldots,(y_{(m-1)k+1},\ldots,y_{mk})$. Let $\phi_n=\mathbb{I}\{\bar{\psi}\geq 1/2\}$.

Return to our Step 1 of the main proof.

Let $D \le 1$ be sufficiently small such that $\pi(\theta)$ is uniformly bounded on $\|\theta - \theta_0\| \le D$.

Return to our Step 1 of the main proof.

- Let $D \le 1$ be sufficiently small such that $\pi(\theta)$ is uniformly bounded on $\|\theta \theta_0\| \le D$.
- ► Then

$$P_{n,U}P_{h|y}(C_n^c)(1-\phi_n) \leq \frac{1}{\Pi_n(U)} \int_{C_n^c} P_{n,h}(1-\phi_n) d\Pi_n(h)$$

$$\leq \frac{1}{\Pi_n(U)} \int_{\|h\| \geq M_n} e^{-c(\|h\|^2 \wedge n)} d\Pi_n(h)$$

$$= \frac{1}{\Pi_n(U)} \left(\int_{M_n \leq \|h\| \leq D\sqrt{n}} + \int_{\|h\| \geq D\sqrt{n}} \right) e^{-c(\|h\|^2 \wedge n)} d\Pi_n(h)$$

$$\leq K \left(\int_{\|h\| \geq M_n} e^{-c\|h\|^2} dh + \sqrt{n^k} e^{-cD^2 n} \right) \to 0$$

Return to our Step 1 of the main proof.

- Let $D \le 1$ be sufficiently small such that $\pi(\theta)$ is uniformly bounded on $\|\theta \theta_0\| \le D$.
- ► Then

$$P_{n,U}P_{h|y}(C_{n}^{c})(1-\phi_{n}) \leq \frac{1}{\Pi_{n}(U)} \int_{C_{n}^{c}} P_{n,h}(1-\phi_{n})d\Pi_{n}(h)$$

$$\leq \frac{1}{\Pi_{n}(U)} \int_{\|h\| \geq M_{n}} e^{-c(\|h\|^{2} \wedge n)} d\Pi_{n}(h)$$

$$= \frac{1}{\Pi_{n}(U)} \left(\int_{M_{n} \leq \|h\| \leq D\sqrt{n}} + \int_{\|h\| \geq D\sqrt{n}} \right) e^{-c(\|h\|^{2} \wedge n)} d\Pi_{n}(h)$$

$$\leq K \left(\int_{\|h\| > M_{n}} e^{-c\|h\|^{2}} dh + \sqrt{n^{k}} e^{-cD^{2}n} \right) \to 0$$

► Therefore $P_{h|y}(C_n^c) \xrightarrow{P_{\theta_0}^n} 0$.

Step 2: show that $\mathcal{N}(\Delta_{n,\theta_0},\mathcal{I}(\theta_0)^{-1})$ and $P_{h|y}^{C_n}$ are close.

Now let C be the ball with fixed radius M around 0. Let $\mathcal{N}^C(\mu, \Sigma)$ be the normal distribution restricted to C.

Step 2: show that $\mathcal{N}(\Delta_{n,\theta_0},\mathcal{I}(\theta_0)^{-1})$ and $P_{h|y}^{C_n}$ are close.

- Now let C be the ball with fixed radius M around 0. Let $\mathcal{N}^C(\mu, \Sigma)$ be the normal distribution restricted to C.
- ► Then

$$\begin{split} & \| \mathcal{N}^{C}(\Delta_{n,\theta_{0}}, \mathcal{I}(\theta_{0})^{-1}) - P_{h|y}^{C} \|_{TV} \\ &= \int \left(1 - \frac{d\mathcal{N}^{C}}{dP_{h|y}^{C}} \right)_{+} dP_{h|y}^{C} = \int \left(1 - \frac{d\mathcal{N}^{C}(h) \int_{C} p_{n,g}(y) d\Pi_{n}(g)}{\mathbb{I}\{h \in C\} p_{n,h}(y) d\Pi_{n}(h)} \right)_{+} dP_{h|y}^{C}(h) \\ &\leq \iint \left(1 - \frac{p_{n,g}(y) d\Pi_{n}(g) d\mathcal{N}^{C}(h)}{p_{n,h}(y) d\Pi_{n}(h) d\mathcal{N}^{C}(g)} \right)_{+} d\mathcal{N}^{C}(g) dP_{h|y}^{C}(h) \end{split}$$

 \blacktriangleright It suffices to show the integral converges to 0 in mean under $P_{n,C}$.

- ▶ It suffices to show the integral converges to 0 in mean under $P_{n,C}$.
- Notice that

$$P_{n,C}(dy)P_{h|y}^C(dh)\mathcal{N}^C(dg) = \Pi_n^C(dh)P_{n,h}(dy)\mathcal{N}^C(dg)$$

- ▶ It suffices to show the integral converges to 0 in mean under $P_{n,C}$.
- Notice that

$$P_{n,C}(dy)P_{h|y}^{C}(dh)\mathcal{N}^{C}(dg) = \Pi_{n}^{C}(dh)P_{n,h}(dy)\mathcal{N}^{C}(dg)$$

 \blacktriangleright Since Π_n^C and \mathcal{N}^C are bounded on C , they can be replaced by a multiple of uniform measure λ_C

- \blacktriangleright It suffices to show the integral converges to 0 in mean under $P_{n,C}$.
- Notice that

$$P_{n,C}(dy)P_{h|y}^{C}(dh)\mathcal{N}^{C}(dg) = \Pi_{n}^{C}(dh)P_{n,h}(dy)\mathcal{N}^{C}(dg)$$

- \blacktriangleright Since Π_n^C and \mathcal{N}^C are bounded on C , they can be replaced by a multiple of uniform measure λ_C
- ▶ Therefore, it suffices to show the integrand converges to 0 in probability

$$\lambda_C(dh)P_{n,0}(dy)\lambda_C(dg)$$

- ▶ It suffices to show the integral converges to 0 in mean under $P_{n,C}$.
- Notice that

$$P_{n,C}(dy)P_{h|y}^{C}(dh)\mathcal{N}^{C}(dg) = \Pi_{n}^{C}(dh)P_{n,h}(dy)\mathcal{N}^{C}(dg)$$

- ▶ Since Π_n^C and \mathcal{N}^C are bounded on C, they can be replaced by a multiple of uniform measure λ_C
- ▶ Therefore, it suffices to show the integrand converges to 0 in probability

$$\lambda_C(dh)P_{n,0}(dy)\lambda_C(dg)$$

It follows from the expansion theorem of QMD family.

Summary

▶ Both Doob's Consistency Theorem and Bernstein-Von Mises Theorem requires QMD.

Summary

- ▶ Both Doob's Consistency Theorem and Bernstein-Von Mises Theorem requires QMD.
- Some sufficient condition for QMD:

Lemma

For every θ in an open subset of \mathbb{R}^k , let p_{θ} be a μ -probability density. Assume the map $\theta \mapsto \sqrt{p_{\theta}(x)}$ is continously differentiable for every x. If the elements of the matrix

$$\mathcal{I}(\theta) = \int \frac{\dot{p}_{\theta}}{p_{\theta}} \frac{\dot{p}_{\theta}^{T}}{p_{\theta}} p_{\theta} d\mu$$

are well defined and continuous in θ . Then the map $\theta\mapsto \sqrt{p_{\theta}(x)}$ is QMD with $\dot{\ell}(\theta)=\dot{p}_{\theta}/p_{\theta}$.

Summary

Under regularity conditions, the Doob's consistency theorem gives

$$p(\theta \mid y) \xrightarrow{\mathcal{D}} \delta_{\theta_0}$$

Under regularity conditions, the Bernstein-Von Mises Theorem gives

$$\|p(\sqrt{n}(\theta - \theta_0) \mid y) - \mathcal{N}(\Delta_{n,\theta_0}, \mathcal{I}(\theta_0)^{-1})\|_{TV} \xrightarrow{P} 0$$

or the resclaed version

$$\left\| p(\theta \mid y) - \mathcal{N} \left(\theta_0 + \frac{1}{n} \sum_{i=1}^n \dot{\ell}(\theta_0 \mid y_i), \frac{1}{n} \mathcal{I}(\theta_0)^{-1} \right) \right\|_{TV} \xrightarrow{P} 0$$