

Trabalho Prático 1

Grupo 99:

- ► Martim Henriques, up202004421
- Rúben Viana, up202005108
- Tiago Barbosa, up202004926

Descrição do Problema

Uma empresa tecnológica pretende inovar, criando uma plataforma eletrónica de crowdsourcing para a entrega de mercadorias em zonas urbanas. A empresa tem o seu próprio armazém para guardar as encomendas e recorre a um conjunto de estafetas para realizar as entregas. A empresa pretende criar uma plataforma que lhe permita distribuir as encomendas pelos estafetas de forma a minimizar o número de carrinhas usadas ou maximizar o lucro total da empresa. Esta plataforma também deverá permitir minimizar o tempo médio de entrega das encomendas expresso.

Cenário 1 - Formalização

Neste cenário pretende-se distribuir as encomendas pelas carrinhas de forma a minimizar o número de estafetas usados para a entrega de todos os pedidos ou do maior número de pedidos, num dia.

Sendo C o vetor de n carrinhas. Sendo E o vetor das m encomendas de cada carrinha.

Objetivo : Min $\sum_{k=1}^{n} Ck$. u onde u é 1 se a carrinha for usada ou 0 se não.

Sujeito a:

 $\sum_{k=1}^m C \to Ek. p \le C.pm$ onde p representa o peso das encomendas e pm o peso máximo da carrinha e E o vetor das encomendas na carrinha.

 $\sum_{k=1}^{m} C \to Ek. v \le C. vm$ onde v representa o volume das encomendas e vm o volume máximo da carrinha e E o vetor das encomendas na carrinha.

Cenário 1 – Descrição de algoritmos relevantes

Para resolver este cenário optamos por uma estratégia gananciosa tendo como inspiração o algoritmo First Fit Decreasing de Bin Packing. Assim ordenamos as carrinhas e as encomendas de acordo com o seu tamanho de forma decrescente.

```
bool Empresa::compararCarrinhasCenario1(Carrinha &lhs, Carrinha &rhs) {
    return lhs.getVolMax()*lhs.getPesoMax() > rhs.getVolMax()*rhs.getPesoMax();
}

bool Empresa::compararEncomendasCenario1(Encomenda &lhs, Encomenda &rhs) {
    return lhs.getVolume()*lhs.getPeso() > rhs.getVolume() * rhs.getPeso();
}
```

Depois fomos colocando as encomendas por ordem nas carrinhas verificando sempre se estava dentro dos limites do volume e peso.

Cenário 1 – Análise de complexidade

Baseado no algoritmo First Fit Decreasing, depois de ordenar o vetor de carrinhas e encomendas, percorremos para cada encomenda o vetor de carrinhas até encontrar uma em que a encomenda possa ser colocada pelo que esta solução tem complexidade temporal O(n x m) onde n é o número de carrinhas e m o número de encomendas e complexidade espacial O(1).

Cenário 1 – Resultados da avaliação empírica

10 encomendas -> 3 111 575[ns]

200 encomendas -> 8 522 150 [ns]

50 encomendas -> 5 463 587[ns]

450 encomendas -> 10 009 134 [ns]

100 encomendas -> 5 852 909 [ns]

A avaliação empírica não está de acordo com a complexidade O(n²) no entanto isto pode se explicar visto que no caso médio o "for" interior nunca corre na sua totalidade visto que é terminado assim que encontra uma carrinha para colocar a encomenda pelo o que o tempo de execução não aumenta tanto como o esperado.

Cenário 2 - Formalização

Neste cenário pretende-se distribuir as encomendas pelas carrinhas de forma a maximizar o lucro da empresa para a entrega de todos os pedidos ou do maior número de pedidos, num dia.

Sendo C o vetor de n carrinhas. Sendo E o vetor das m encomendas de cada carrinha.

Objetivo: Max $\sum_{k=1}^{n} Ck.u * ((\sum_{k=1}^{m} Ck \rightarrow Ek.r) - Ck.c)$ onde Ck.u é 1 se a carrinha for usada ou 0 se não e Ek.r é a recompensa de cada encomenda e Ck.c é o custo da carrinha.

Sujeito a:

 $\sum_{k=1}^{m} C \to Ek. p \le C. pm$ onde p representa o peso das encomendas e pm o peso máximo da carrinha e E o vetor das encomendas na carrinha.

 $\sum_{k=1}^{m} C \to Ek. v \le C. vm$ onde v representa o volume das encomendas e vm o volume máximo da carrinha e E o vetor das encomendas na carrinha.

Cenário 2 – Descrição de algoritmos relevantes

Para resolver este cenário voltamos a optar por uma estratégia gananciosa como o algoritmo First Fit Decreasing de Bin Packing.

A primeira forma de ordenação de encomendas dá o lucro total máximo mas pode deixar bastantes encomendas por entregar. Na segunda opção apesar de o lucro poder ser um pouco mais baixo entregamos a maior parte das encomendas. Deixamos o utilizador escolher a abordagem.

Depois, tal como no cenário 1, fomos colocando as encomendas por ordem nas carrinhas verificando sempre se estava dentro dos limites do volume e peso.

```
bool Empresa::compararCarrinhasCenario2(Carrinha &lhs, Carrinha &rhs) {
    return (lhs.getVolMax()*lhs.getPesoMax())/lhs.getCusto() > (rhs.getVolMax()*rhs.getPesoMax())/rhs.getCusto();
}

bool Empresa::compararEncomendasCenario2LucroMaximo(Encomenda &lhs, Encomenda &rhs) {
    return lhs.getRecompensa()/(lhs.getVolume()*lhs.getPeso()) > rhs.getRecompensa()/(rhs.getVolume() * rhs.getPeso());
}

bool Empresa::compararEncomendasCenario2LucroEquilibrado(Encomenda &lhs, Encomenda &rhs) {
    return lhs.getRecompensa()*lhs.getVolume()*lhs.getPeso() > rhs.getRecompensa()*rhs.getVolume() * rhs.getPeso();
}
```

Cenário 2 – Análise de complexidade

Tal como no cenário 1 é usado a mesma abordagem gananciosa logo esta solução tem complexidade temporal O(n x m) onde n é o número de carrinhas e m o número de encomendas e complexidade espacial O(1).

Cenário 2 – Resultados da avaliação empírica

10 encomendas -> 2 854 062 [ns]

200 encomendas -> 7 885 947 [ns]

50 encomendas -> 4 109 946 [ns]

450 encomendas -> 9 863 822 [ns]

100 encomendas -> 4 937 306 [ns]

A avaliação empírica não está de acordo com a complexidade O(n²) no entanto isto pode se explicar visto que no caso médio o "for" interior nunca corre na sua totalidade visto que é terminado assim que encontra uma carrinha para colocar a encomenda pelo o que o tempo de execução não aumenta tanto como o esperado.

Cenário 3 - Formalização

Neste cenário pretende-se entregar as encomendas expresso de forma a minimizar o tempo médio previsto das entregas expresso a serem realizadas num dia.

Sendo E o vetor de n encomendas expresso do dia.

Objetivo : Min $(\sum_{k=1}^n Ek.u*Ek.t/\sum_{k=1}^n Ek.u)$ onde Ek.u é 1 se a encomenda for entregue ou 0 se não e Ek.t é o tempo de duração da entrega da encomenda.

Sujeito a:

 $\sum_{k=1}^{n} Ek. t * Ek. u \le 8 \ hrs$ visto que as encomendas expresso têm que ser entregues entre as 9 e as 17 horas.

Cenário 3 – Descrição de algoritmos relevantes

Baseamo-nos no algoritmo de job scheduling para minimizar o tempo médio de entrega da encomenda ordenando as encomendas de forma crescente da sua duração e entregamo-las de acordo com essa ordem verificando se chegamos ao final do dia e se sobrarem encomendas ficam para serem entregues no dia seguinte.

```
std::sort(encomendasDoDiaExpresso.begin(), encomendasDoDiaExpresso.end(),
        [](Encomenda e1, Encomenda e2){return e1.getDuracao() < e2.getDuracao();}); // ordenar encomendas por duracao decrescente

int intervaloTempoEntregas = 28800; // das 9:00 as 17:00|
int index = 0;
while (intervaloTempoEntregas > 0 && index < encomendasDoDiaExpresso.size()){
    intervaloTempoEntregas -= encomendasDoDiaExpresso[index].getDuracao();
    encomendasExpressoEntregues.push_back(encomendasDoDiaExpresso[index]);
    index++;
}

for (int i = index; i < encomendasDoDiaExpresso.size(); ++i) {
    encomendasExpressoNaoEntregues.push_back(encomendasDoDiaExpresso[i]); //encomendas nao entregues
}</pre>
```

Cenário 3 – Análise de complexidade

Neste caso a função sort é de maior complexidade que a parte de ir entregando as encomendas pelo o que a complexidade temporal é O(nlogn) onde n é o número de encomendas e a complexidade espacial O(1).

std::SOTt <algorithm>

```
default(1)

template <class RandomAccessIterator>
    void sort (RandomAccessIterator first, RandomAccessIterator last);

custom(2)

template <class RandomAccessIterator, class Compare>
    void sort (RandomAccessIterator first, RandomAccessIterator last, Compare comp);
```

Sort elements in range

Sorts the elements in the range [first,last) into ascending order.

The elements are compared using operator< for the first version, and comp for the second.

Equivalent elements are not guaranteed to keep their original relative order (see stable sort).

Complexity

On average, linearithmic in the distance between *first* and *last*: Performs approximately $N*log_2(N)$ (where N is this distance) comparisons of elements, and up to that many element swaps (or moves).

Cenário 3 – Resultados da avaliação empírica

10 encomendas -> 2 014 772 [ns]

200 encomendas -> 6 808 535 [ns]

50 encomendas -> 5 025 354 [ns]

450 encomendas -> 8 033 480 [ns]

100 encomendas -> 5 281 210 [ns]

O tempo de execução está como esperado numa complexidade O(n*logn) visto que como é logarítmica não aumenta tanto para inputs maiores comparando a inputs mais pequenos, explicando assim o pouco aumento do tempo de execução.

Funcionalidade extra

Encomendas não entregues passam para o dia seguinte com prioridade

Decidimos implementar uma funcionalidade extra no cenário 3 que quando chegava às 17 horas do dia e ainda sobravam encomendas expresso para entregar estas passavam para o dia seguinte com prioridade em comparação com as encomendas já planeadas para esse dia.

```
if (!encomendasExpressoNaoEntregues.empty()) {
    waitEnter(); // pressionar tecla para continuar
    cenario3DiaSeguinte(encomendasExpressoNaoEntregues); //entregar as encomendas que restaram
}
```

Funcionalidade extra

Encomendas não entregues passam para o dia seguinte com prioridade

É utilizada uma função recursiva que enquanto existir encomendas que vieram de dias anteriores ela vai as processando de forma a dar prioridade às do dia anterior em relação às geradas para aquele dia e voltando a entregar todas as encomendas e verificar no final do dia se ainda sobraram algumas.

Solução algorítmica destacada

Decidimos destacar a solução gananciosa que utilizamos tanto no cenário 1 como no cenário 2 onde ordenamos tanto as carrinhas e as encomendas de acordo com as que queríamos que fossem utilizadas primeiro.

Assim conseguimos escolher a cada passo uma solução local ótima que nos daria uma solução global que apesar de poder não ser a ideal será sempre muito próxima de uma solução global ótima.

No geral, esta abordagem, apesar de apenas dar uma solução muito próxima ideal, tem uma baixa complexidade temporal pelo o que permite dar uma solução mais rápida quando comparada a algoritmos com melhores soluções como brute force ou knapsack.

Principais Dificuldades

Principais dificuldades:

- Documentação do Doxygen muito trabalhosa
- Descobrir qual algoritmo aplicar em cada cenário

O esforço foi equivalente por todos os elementos do grupo.

```
1 - Simular a entrega de encomendas normais
2 - Simular a entrega de encomendas expresso
 - Minimizar o numero de estafetas usados
2 - Maximizar o lucro da empresa
Com quantas encomendas pretende simular?
Encomendas normais para este dia:
1630
                                        1281
```

```
Carrinhas usadas:
###################################
    ID CARRINHA :
      LUCRO :
                  7072
>75
                   >265
    >353
           >245
                   >203
    >44
           >35
                   >100
    >61
           >433
                   >368
    >425
           >123
##################################
    ID CARRINHA : 25
      LUCRO :
                  -249
#####################################
    >130
           >298
                   >419
    >131
           >119
                   >341
    >309
           >243
                   >195
   >11
                   >43
           >206
           >190
                   >320
   >19
```

```
#################################
    ID CARRINHA :
       LUCRO :
                   10830
################################
    >319
             >133
                     >175
    >434
            >386
                     >450
    >82
            >398
                     >183
    >380
                     >8
    >176
            >110
                     >105
    >356
            >429
                     >78
    >188
            >289
                     >247
##################################
    ID CARRINHA :
       LUCRO :
                    8296
##################################
    >46
             >85
                     >442
            >229
                     >263
    >374
            >138
                     >197
    >311
            >361
                     >165
    >439
            >330
                     >420
    >435
            >22
                     >140
    >344
                     >392
Carrinha usadas: 4
Eficiencia: 100%
```

```
1 - Simular a entrega de encomendas normais
2 - Simular a entrega de encomendas expresso
1 - Minimizar o numero de estafetas usados
2 - Maximizar o lucro da empresa
Com quantas encomendas pretende simular?
1 - Maximizar o lucro total (podendo ficar muitas encomendas por entregar)
2 - Maximizar o lucro total (entregando o maior numero de encomendas)
Encomendas normais para este dia:
VOLUME
                         PES0
                                    DURACAO
                                               RECOMPENSA
1229
   125
   193
               13
   107
               10
                                     766
                                                 547
```

Carrinhas usadas:	##
##############	#
# ID CARRINHA : 16 #	#
# LUCRO : 27853 #	##
###################################	1
>149 >62 >25	
>218 >207 >146	
>315 >18 >210	L
>304 >107 >98	1
>187 >241 >132	1
>173 >297 >276	+-
>148 >150 >347	
>404 >280 >448	##
>273 >284 >339	#
>176 >57 >70	
>274 >423 >193	##
+	
	+-
##############	1
# ID CARRINHA : 1 #	+-
# LUCRO : 9401 #	í
#############	
>306 >398 >143	
>151 >323 >361	I
>125 >355 >161	+-
>136 >72 >10	
>385 >419 >109	+-
>170 >191 >127	
+	<u> </u>

	###	####	####	####	####	####	####	###	#	
# #	#	ID	CARE	RINHA		7	25	;	#	
#	#		LUCF	RO :		447	71	;	#	
#	###	####	####	####	####	####	####	###	#	
##	1	>43	0	>16	9	>4	145			
1	1	>19)	>29	8	>3	386			
+	1	>18	39	>36	9	>3	376			
ï	1	>15	8	>12	0	>:	192			
i	1	>34	9	>30	9	>4	121			
1	+								+	
1										
1	###	####	####	####	####	###	####	###	###:	##
¦	#	ID E	NCON	1ENDA	S NA	40 E	ENTR	REGU	ES	#
i	###	####	####	####		###	####	###	###:	##
+	1			1	14					
	+				· 					-+
## #				4	00					
#	+									+
 ##					29					
1	1			1	 96					T T
1	 				30 					 -#
1	1				 50					Γ [†]
	+			4						-+
	1			2	 75					
+	+			<u>-</u>	<u></u>					-+
	100									

Desenho de Algoritmos-2021/2022

Lucro: 41725 euros

Eficiencia: 85%

```
- Simular a entrega de encomendas normais
2 - Simular a entrega de encomendas expresso
 - Minimizar o numero de estafetas usados
2 - Maximizar o lucro da empresa
Com quantas encomendas pretende simular?
 - Maximizar o lucro total (podendo ficar muitas encomendas por entregar)
2 - Maximizar o lucro total (entregando o maior numero de encomendas)
Encomendas normais para este dia:
888
                                                        828
                                           919
                                                        801
    12
                              13
                                           384
                                                        1251
     Desenho de Algoritmos-2021/2022
```

```
Carrinhas usadas:
#################################
   ID CARRINHA : 16
                 11957
       LUCRO :
################################
    >55
           >35
                   >192
           >224
    >318
                   >86
    >59
           >36
                   >419
    >350
           >97
                   >317
    >5
           >353
                   >446
###################################
    ID CARRINHA :
       LUCRO :
                 10795
################################
           >184
    >10
                   >323
           >230
                   >56
    >430
    >216
           >182 >349
    >228
           >227
                   >143
           >291
    >12
                   >159
    >49
           >183
                   >114
```

#	TD	CAI	RRI		Α			 25		#
 #										#
 ###;	####								####	##
l	>28	8		>1	35		>	131		
i	>15	1		>2	58		>	403		
	>36	4		>6	0		>	357		
	>36	5		>2	05		>	110		۱
	>12	9		>3	75		>	448		۱
	>36	2		>1	13		>	259		۱
	>21	0		>1	5		>	18		١
+										- +
###1	####	###	###	##	##:	###	##	###	####	##
#	ID	CAI	RRI	NH	Α			37		#
#		LU	CRO				93	14		#
###	ишш		$u \cdot u \cdot u$	11.11	ΨΨ.					
TT 1111	Ŧ##Ŧ	##;	###	##	##1	###	##	###	####	##
			###				>	8		
 		25			15		>			
 	>32 >14 >19	25 16 94		>3 >2 >2	15 5 2		> >	8 254 437		
 	>32 >14 >19 >17	25 16 94 74		>3 >2 >2 >2 >2	15 5 2 96		> > >	8 254 437 439		ا
 	>32 >14 >15 >17 >21	25 16 94 74		>3 >2 >2 >2 >2 >2	15 5 2 96 26		> > > >	8 254 437 439 54		ا
 	>32 >14 >19 >17 >21 >9	25 16 94 74 19		>3 >2 >2 >2 >2 >2 >3	15 5 2 96 26 52		> > > >	8 254 437 439 54 91		ا
 	>32 >14 >19 >17 >21 >9 >26	25 16 94 74 19		>3 >2 >2 >2 >2 >2 >3 >3	15 5 96 26 52		>	8 254 437 439 54 91 231		##
 	>32 >14 >19 >17 >21 >9	25 16 94 74 19		>3 >2 >2 >2 >2 >2 >3 >3	15 5 2 96 26 52		>	8 254 437 439 54 91		ا

Eficiencia: 100%

Encomendas expresso	entregues r	o dia o	de hoje:	16:26 170
###################	+#############	#####		++
# HORA DE ENTREGA	\ # I) #		16:41 191
##################	+############	#####		16:57 64
09:00	268			++
+				,
09:02	426			Numero de encomendas nao entregues : 4
+				
09:05	403			Eficiencia: 93.3%
+				
09:09	215	· I		Press enter to continue
09:13	I 178	· +		
+		, I		Com quantas encomendas pretende simular
09:17	I 373			20
+				30

Desenho de Algoritmos-2021/2022

Encome	ndas	expresso	entr	regue	s no	dia	de	hoje:				
		########	<i></i>	<i>- 11-11-11-11</i>								
# HO	RA DE	ENTREGA		#	ID	#			+-			
######	#####	#######	#####	#####	####	####			1		15:	08
1	09	:00			337				1		-5.	00
+									T-			
1	09	:16			15						15:	26
+									+-			
1	0.9	: 33			408							
<u>'</u>	0,5				700	<u> </u>			Εf	icien	cia:	100%
					242							
1	09	:51			243							
+												
1	10	: 09			185							
+												

160

I 410