→ GAN - Bonus Points

For this part of the assignment you implement two different types of generative adversarial networks. We will train the networks on the Celeb A dataset which is a large set of celebrity face images.

```
1
    import torch
 2
    from torch.utils.data import DataLoader
 3
    from torchvision import transforms
 4
    from torchvision.datasets import ImageFolder
 5
    import matplotlib.pyplot as plt
 6
    import numpy as np
 7
 8
    %matplotlib inline
 9
    plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
    plt.rcParams['image.interpolation'] = 'nearest'
10
11
    plt.rcParams['image.cmap'] = 'gray'
12
13
    %load ext autoreload
14
    %autoreload 2
 1
    !wget https://uofi.box.com/shared/static/q4pf89jtkvjndi4f8ip7wofuulhhphjj.zip
 2
    !mkdir celeba data
 3
    !unzip q4pf89jtkvjndi4f8ip7wofuulhhphjj.zip -d celeba data
    !rm g4pf89jtkvjndi4f8ip7wofuulhhphjj.zip
    Streaming output truncated to the last 5000 lines.
      inflating: celeba data/celeba train 128res/175430 crop.jpg
      inflating: celeba data/celeba train 128res/157564 crop.jpg
      inflating: celeba_data/celeba_train_128res/039881_crop.jpg
      inflating: celeba_data/celeba_train_128res/150303_crop.jpg
      inflating: celeba_data/celeba_train_128res/145071_crop.jpg
      inflating: celeba_data/celeba_train_128res/165362_crop.jpg
      inflating: celeba_data/celeba_train_128res/197644_crop.jpg
      inflating: celeba data/celeba train 128res/015423 crop.jpg
      inflating: celeba_data/celeba_train_128res/188193_crop.jpg
      inflating: celeba_data/celeba_train_128res/124213_crop.jpg
      inflating: celeba_data/celeba_train_128res/160818_crop.jpg
      inflating: celeba_data/celeba_train_128res/169663_crop.jpg
      inflating: celeba data/celeba train 128res/066406 crop.jpg
      inflating: celeba_data/celeba_train_128res/135163_crop.jpg
      inflating: celeba_data/celeba_train_128res/116258_crop.jpg
      inflating: celeba data/celeba train 128res/113618 crop.jpg
      inflating: celeba data/celeba train 128res/000109 crop.jpg
      inflating: celeba data/celeba train 128res/110779 crop.jpg
      inflating: celeba data/celeba train 128res/006145 crop.jpg
      inflating: celeba data/celeba train 128res/181839 crop.jpg
      inflating: celeba data/celeba train 128res/028015 crop.jpg
      inflating: celeba_data/celeba_train_128res/133077_crop.jpg
      inflating: celeba data/celeba train 128res/107053 crop.jpg
      inflating: celeba data/celeba train 128res/076031 crop.jpg
      inflating: celeba data/celeba train 128res/110833 crop.jpg
```

1 of 9 10/31/21, 14:30

inflating: celeba_data/celeba_train_128res/166880_crop.jpg
inflating: celeba data/celeba train 128res/143283 crop.jpg

```
10h 58m 55s completed at 10:45 AM
     intlating: celeba_data/celeba_train_iz&res/wi4&&&_crop.jpg
     inflating: celeba_data/celeba_train_128res/053605_crop.jpg
     inflating: celeba_data/celeba_train_128res/163895_crop.jpg
     inflating: celeba_data/celeba_train_128res/117500_crop.jpg
     inflating: celeba data/celeba train 128res/192585 crop.jpg
     inflating: celeba_data/celeba_train_128res/013972_crop.jpg
     inflating: celeba_data/celeba_train_128res/191699_crop.jpg
     inflating: celeba data/celeba train 128res/028127 crop.jpg
     inflating: celeba data/celeba train 128res/080856 crop.jpg
     inflating: celeba data/celeba train 128res/177193 crop.jpg
     inflating: celeba_data/celeba_train_128res/066551_crop.jpg
     inflating: celeba data/celeba train 128res/063110 crop.jpg
     inflating: celeba data/celeba train 128res/070300 crop.jpg
     inflating: celeba data/celeba train 128res/172739 crop.jpg
     inflating: celeba data/celeba train 128res/198872 crop.jpg
     inflating: celeba data/celeba train 128res/158186 crop.jpg
     inflating: celeba data/celeba train 128res/147772 crop.jpg
     inflating: celeba_data/celeba_train_128res/137374_crop.jpg
     inflating: celeba data/celeba train 128res/167688 crop.jpg
     inflating: celeba_data/celeba_train_128res/052678_crop.jpg
     inflating: celeba data/celeba train 128res/126112 crop.jpg
     inflating: celeba_data/celeba_train_128res/021357_crop.jpg
     inflating: celeba data/celeba train 128res/009576 crop.jpg
     inflating: celeba data/celeba train 128res/126043 crop.jpg
     inflating: celeba data/celeba train 128res/031951 crop.jpg
     inflating: celeba_data/celeba_train_128res/176003_crop.jpg
     inflating: celeba_data/celeba_train_128res/093079_crop.jpg
1 from gan.train import train
1 device = torch.device("cuda:0" if torch.cuda.is available() else "gpu")
```

GAN loss functions

In this assignment you will implement two different types of GAN cost functions. You will first implement the loss from the <u>original GAN paper</u>. You will also implement the loss from <u>LS-GAN</u>.

GAN loss

TODO: Implement the discriminator loss and generator loss functions in gan/losses.py.

The generator loss is given by:

$$\ell_G = -\mathbb{E}_{z \sim p(z)} \left[\log D(G(z))
ight]$$

and the discriminator loss is:

$$\ell_D = -\mathbb{E}_{x \sim p_{ ext{data}}} \left[\log D(x)
ight] - \mathbb{E}_{z \sim p(z)} \left[\log (1 - D(G(z)))
ight]$$

Note that these are negated from the equations presented earlier as we will be minimizing these losses.

HINTS: You should use the torch.nn.functional.binary_cross_entropy_with_logits function to

output from the discriminator. Given a score $s\in\mathbb{R}$ and a label $y\in\{0,1\}$, the binary cross entropy loss is

$$bce(s, y) = -y * \log(s) - (1 - y) * \log(1 - s)$$

Instead of computing the expectation of $\log D(G(z))$, $\log D(x)$ and $\log (1 - D(G(z)))$, we will be averaging over elements of the minibatch, so make sure to combine the loss by averaging instead of summing.

1 from gan.losses import discriminator_loss, generator_loss

Least Squares GAN loss

TODO: Implement the ls_discriminator_loss and ls_generator_loss functions in gan/losses.py.

We'll now look at <u>Least Squares GAN</u>, a newer, more stable alernative to the original GAN loss function. For this part, all we have to do is change the loss function and retrain the model. We'll implement equation (9) in the paper, with the generator loss:

$$\ell_G = rac{1}{2}\mathbb{E}_{z\sim p(z)}\left[\left(D(G(z))-1
ight)^2
ight]$$

and the discriminator loss:

$$\ell_D = rac{1}{2}\mathbb{E}_{x \sim p_{ ext{data}}}\left[\left(D(x) - 1
ight)^2
ight] + rac{1}{2}\mathbb{E}_{z \sim p(z)}\left[\left(D(G(z))
ight)^2
ight]$$

HINTS: Instead of computing the expectation, we will be averaging over elements of the minibatch, so make sure to combine the loss by averaging instead of summing. When plugging in for D(x) and D(G(z)) use the direct output from the discriminator (scores_real and scores_fake).

1 from gan.losses import ls_discriminator_loss, ls_generator_loss

GAN model architecture

TODO: Implement the Discriminator and Generator networks in gan/models.py.

We recommend the following architectures which are inspired by <u>DCGAN</u>:

Discriminator:

- convolutional layer with in_channels=3, out_channels=128, kernel=4, stride=2
- convolutional layer with in_channels=128, out_channels=256, kernel=4, stride=2
- · batch norm
- convolutional layer with in_channels=256, out_channels=512, kernel=4, stride=2
- batch norm
- convolutional layer with in_channels=512, out_channels=1024, kernel=4, stride=2

Instead of Relu we LeakyReLu throughout the discriminator (we use a negative slope value of 0.2). You can use simply use relu as well.

The output of your discriminator should be a single value score corresponding to each input sample. See torch.nn.LeakyReLU.

Generator:

Note: In the generator, you will need to use transposed convolution (sometimes known as fractionally-strided convolution or deconvolution). This function is implemented in pytorch as torch.nn.ConvTranspose2d.

- transpose convolution with in_channels=NOISE_DIM, out_channels=1024, kernel=4, stride=1
- batch norm

assign3 MP3 bonus1.ipynb - Colaboratory

- transpose convolution with in_channels=1024, out_channels=512, kernel=4, stride=2
- batch norm
- transpose convolution with in_channels=512, out_channels=256, kernel=4, stride=2
- batch norm
- transpose convolution with in_channels=256, out_channels=128, kernel=4, stride=2
- batch norm
- transpose convolution with in_channels=128, out_channels=3, kernel=4, stride=2

The output of the final layer of the generator network should have a tanh nonlinearity to output values between -1 and 1. The output should be a 3x64x64 tensor for each sample (equal dimensions to the images from the dataset).

```
1 from gan.models_bonus_128 import Discriminator, Generator
```

Data loading: Celeb A Dataset

The CelebA images we provide have been filtered to obtain only images with clear faces and have been cropped and downsampled to 128x128 resolution.

```
1 batch_size = 128
2 scale_size = 128  # use the original resize the images 128x128 for training
3
4 celeba_root = 'celeba_data'

1 celeba_train = ImageFolder(root=celeba_root, transform=transforms.Compose([
2     transforms.Resize(scale_size),
3     transforms.ToTensor(),
```

```
1 from gan.utils import show_images
2
3 imgs = celeba_loader_train.__iter__().next()[0].numpy().squeeze()
4 show_images(imgs, color=True)
```


Training

TODO: Fill in the training loop in gan/train.py.

```
1 \text{ NOISE\_DIM} = 100
```

EPOCH: 1

Iter: 0, D: 0.694, G:0.8789

Iter: 300, D: 0.692, G:0.7342

Iter: 600, D: 0.6683, G:0.6823

Train LS-GAN

```
1 D = Discriminator().to(device)
2 G = Generator(noise_dim=NOISE_DIM).to(device)

1 D_optimizer = torch.optim.Adam(D.parameters(), lr=learning_rate, betas = (0.5, 0.999))
2 G_optimizer = torch.optim.Adam(G.parameters(), lr=learning_rate, betas = (0.5, 0.999))

1 # ls-gan
2 train(D, G, D_optimizer, G_optimizer, ls_discriminator_loss,
3 ls_generator_loss, num_epochs=NUM_EPOCHS, show_every=300,
4 train_loader=celeba_loader_train, device=device)

EPOCH: 1
Iter: 0, D: 0.3609, G:0.6999
```

Iter: 300, D: 0.287, G:0.3357

Iter: 900, D: 0.2654, G:0.3943

1