Example 1

Given the Pollowing equation, how many grams of PbCO3 will dissolve when 1.00 L of 1.00 M H+ is added to 5.00 g of PbCO3?

PbCo3 (3) + 2H+Caq) -> Pb2+Caq) +H20(e)+Co2(g)

1. Calculate # moles CH+) added

moles CH+) = 1.002 · 1.00M = 1 mol CH+)

2. Calculate # moles of PbCoz Hal is dissolving

moles (PbCo3) = #moles (H+). \frac{\intermoles (PbCo3)}{2 \intermoles (H+)}

= 1.00 mol . 1 mol

= 0.500 mol

3. Calculate the mass PbCo3 dissolved

mass (PbCO3) dissolved = 0.500mol. 267.29

= 134 g

A solution of Agt and Hg 2+ ions. The addition of 0.1002 of 1.22M NaI is just enough to precipitate all of the ions as AgI and HgIz. The total mass of the precipitate is 28.1g. Find the mass of AgI in the precipitate. Plan:

moles (NaI) -> moles (1-) -> Ag/ and Hg/2

2. Let x be the moles of Ag1 and y be the moles of Ag12

$$x + 2y = 0.122 \, \text{me} \, (1^{-})$$

=> $y = 0.061 \, \text{mre} - 0.5 \, x$

3. Total mass precipitate = mass (Ag1) + moss (Hg/2)

total mass = x mre (Ag1) · Mw (Ag1) + y mre (Hg1z) · Mw (Hg1z)

28.1 g = (x mre (Ag1) · \frac{239.77g}{1mre}) + (y mre Hg1z · \frac{459.4g}{1mre})

4. Suboh'tuke "y"

$$28.1g = 234.77g \cdot x + (0.061 - 0.5x) 454.4 g$$

 $28.1g = 234.77g \cdot x + 27.72g - 227.2x$

$$7.575 \times = 0.38$$

$$\times = 0.0502$$

Toxicities of heavy metals

Table 1 The MCL standards for the most hazardous heavy metals (Babel and Kurniawan, 2003).					
Heavy metal	Toxicities				
Arsenic	Skin manifestations, visceral cancers, vascular disease				
Cadmium	Kidney damage, renal disorder, human carcinogen				
Chromium	Headache, diarrhea, nausea, vomiting, carcinogenic				
Copper	Liver damage, Wilson disease, insomnia				
Nickel	Dermatitis, nausea, chronic asthma, coughing, human carcinogen				
Zinc	Depression, lethargy, neurological signs and increased thirst				
Lead	Damage the fetal brain, diseases of the kidneys, circulatory system, and nervous system				
Mercury	Rheumatoid arthritis, and diseases of the kidneys, circulatory system, and nervous system				

Heavy metal precipitation

Table 1
Heavy metal removal using chemical precipitation.

Species	Initial metal conc.	Precipitant	Optimum pH	Removal efficiency (%)	Ref.
Zn ²⁺	32 mg/L	CaO	9-10	99-99.3	Ghosh et al., in press
Cu ²⁺ , Zn ²⁺ , Cr ³⁺ , Pb ²⁺	100 mg/L	CaO	7-11	99.37-99.6	Chen et al., 2009b
Cu ²⁺ , Zn ²⁺ , Pb ²⁺	0.018, 1.34, 2.3 mM	H ₂ S	3.0	100, >94, >92	Alvarez et al., 2007
Cr ³⁺	5363 mg/L	CaO and MgO	8.0	>99	Guo et al., 2006
Hg ²⁺	65.6, 188 μg/L	1,3-benzenediamidoethanethiolate	4.7 and 6.4	>99.9	Blue et al., 2008
CuEDTA	25, 50,100 mg/L	1,3,5-hexahydrotriazinedithiocarbamate	3.0	99.0, 99.3, 99.6	Fu et al., 2007

Hydroxide precipitation:

$$M^{2+}(aq) + 20H^{-}(aq) \longrightarrow M (OH)_{2}$$

 $M^{3+}(aq) + 30H^{-}(aq) \longrightarrow M (OH)_{3}$
Lime:
 $Cao(J) + H_{2}o(e) \rightleftharpoons Ca (OH)_{2} (aq)$

Alternative;

Sulfide precipitation

M2+ (aq) + H2S(g) -> MSCs) + 2H+ (aq)

Hydroxyapahite

toothe enamel: Ca10 (PO4)6 (OH)2

Tooth de coy: backeric produce acids when aching on sugar and other corboly drakes

 $(Ca_{10}(Po_4)_6(OH)_2 + 8H^+(Caq) - 5$ $10(Ca^{2+}(Caq) + 6HPO_4^2-(Coq) + 2H_{20}e$

Add Fluoride: -> Ca10 (PO4) & F2

Coca Cola

Phosphorie acid -> reach with Co 24 in the intertine => len Ca2+ available for HA production

Vitamin C: supprense production of obleoclests (born clestroying cells)

and promote production of obleoblests (bone producing cells)