

planetmath.org

Math for the people, by the people.

star-free

Canonical name Starfree

Date of creation 2013-03-22 18:59:05 Last modified on 2013-03-22 18:59:05

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 16

Author CWoo (3771)
Entry type Definition
Classification msc 68Q42
Classification msc 68Q45
Synonym star free

Synonym non-counting
Synonym noncounting
Related topic StarHeight

Let \mathcal{R} and $\mathcal{G}\mathcal{R}$ be the families of languages represented by regular expressions and generalized regular expressions respectively. It is well-known that

$$\mathcal{R} = \mathcal{G}\mathcal{R}$$
.

This means that the additional symbols \cap and \neg in a generalized regular expressions are extraneous: removing them will not affect the representational power of the expressions with respect to regular languages.

What if we remove *, the Kleene star symbol, instead? With regard to regular expressions, removing * severely limits the power of the expressions. By induction, the represented languages are all finite. In this entry, we briefly discuss what happens when * is removed from the generalized regular expressions.

Definition. Let Σ be an alphabet. A language L over Σ is said to be star-free if it can be expressed by a generalized regular expression without *. In other words, a star-free language is a language that can be obtained by applying the operations of union, concatenation, and complementation to \varnothing and atomic languages (singleton subsets of Σ) a finite number of times.

If we denote \mathscr{IF} the family of star-free languages (over some alphabet Σ), then \mathscr{IF} is the smallest set of languages over Σ such that

- $\varnothing \in \mathscr{SF}$,
- $\{a\} \in \mathscr{SF}$ for any $a \in \Sigma$,
- if $L, M \in \mathscr{SF}$, then $L \cup M, LM, L^c \in \mathscr{SF}$.

A shorter characterization of a star-free language is a language with star height 0 with respect to representations by generalized regular expressions.

In relations to finite and regular languages, we have the following:

$$\mathscr{F} \subseteq \mathscr{S}\mathscr{F} \subseteq \mathscr{R},\tag{1}$$

where \mathscr{F} denotes the family of finite languages over Σ .

Furthermore, it is easy to see that \mathscr{SF} is closed under Boolean operations, so that \mathscr{SF} contains infinite languages, for example $\neg \varnothing$ represents Σ^* . As a result, the first inclusion must be strict. This example also shows that languages representable by expressions including the Kleene star may still be star-free. Here's another example: $\{ab\}^*$ over the alphabet $\{a,b\}$. This language can be represented as

$$\lambda \cup (ab\Sigma^* \cap \Sigma^*ab \cap \neg(\Sigma^*a^2\Sigma^*) \cap \neg(\Sigma^*b^2\Sigma^*))$$

The expression above, of course, is not star-free, and includes the symbol λ representing the empty word. However, Σ^* is just $\neg \varnothing$, and λ is just $\Sigma^* \cap \neg(a\Sigma^*) \cap \neg(b\Sigma^*)$. Some substitutions show that $\{ab\}^*$ is indeed star-free.

Is the second inclusion strict? Are there regular languages such that representations by expressions including the Kleene star is inevitable? The following proposition answers the question:

Proposition 1. A language L is star-free iff there exists a non-negative integer n such that, for any words u, v, w over Σ , $uv^n w \in L$ iff $uv^{n+1}w \in L$.

A language satisfying the second statement in the proposition is known as *noncounting*, so the proposition can be restated as: a language is star-free iff it is noncounting.

As a result of this fact, we see that languages such as $\{(ab)^2\}^*$ is not star-free, although it is regular. Indeed, if we pick u = v = w = ab as in the statement of the proposition above, we see that $uv^n w$ is in the language iff $uv^{n+1}w$ is not in the language, for any $n \geq 0$. Therefore, the second inclusion in chain (1) above is also strict.

The above proposition also strengthens chain (1): denote by $\mathscr{T}(\infty)$ the family of locally testable languages, then

$$\mathscr{T}(\infty) \subset \mathscr{SF} \subset \mathscr{R}.$$
 (2)

The first inclusion is due to the fact that, for any k-testable language L (over some Σ), we have

$$\operatorname{sw}_k(uv^kw) = \operatorname{sw}_k(uv^{k+1}w)$$

(the definition of $\operatorname{sw}_k(u)$ is found in the entry on locally testable languages). Note the first inclusion is also strict. For example, the language represented by $(ab)^* \cup (ba)^*$ is star-free but not locally testable.

References

- [1] A. Ginzburg, Algebraic Theory of Automata, Academic Press (1968).
- [2] A. Salomaa, Formal Languages, Academic Press, New York (1973).