Cálculo Avanzado - 1º Cuatrimestre 2019 Recuperatorio del 1º parcial (12/07/2019)

- 1. a) Sean A,A',B y B' conjuntos. Probar que si #(A') = #(A) y #(B') = #(B), entonces $\#\{f:A\to B|f \text{ es inyectiva}\} = \#\{f:A'\to B'|f \text{ es inyectiva}\}.$
 - b) Calcular $\#\{f: \mathbb{Q}^2 \to \mathbb{Q} | f \text{ es inyectiva}\}.$
- Sea (X, d) un espacio métrico y F ⊂ X cerrado.
 - a) Probar que $F = \bigcap_{n \in \mathbb{N}} \{x \in X : d(x, F) < \frac{1}{n}\}.$
 - b) Pobar que F tiene interior vacío si y sólo si existe un abierto $U \subset X$ tal que $F = \partial U$.
- 3. Sean (X, d_X) y (Y, d_Y) dos espacios métricos. Dada $f: X \to Y$ inyectiva definimos en X la distancia $d_f(x_1, x_2) = d_Y(f(x_1), f(x_2))$.
 - a) Probar que si $f: X \to Im(f)$ es un homeomorfismo entonces d_f resulta topológicamente equivalente a d_X .
 - b) Probar que si f es sobreyectiva e Y es completo entonces (X, d_f) lo es.
 - c) Mostrar un homeomorfismo $f: \mathbb{R} \to Im(f)$ tal que (\mathbb{R}, d_f) no resulte completo.
- 4. Sean (X,d) un espacio métrico y $f,g:X\longrightarrow\mathbb{R}$ uniformemente continuas y acotadas. Probar que f.g es uniformemente continua. Mostrar que el producto de funciones uniformemente continuas puede no serlo incluso si una de ellas está acotada.

Sugerencia: Considerar la función $x \operatorname{sen}(x)$.

5. Sea (X,d) un espacio métrico acotado y separable. Para cada $x \in X$ definimos la función f_x como $f_x(y) = d(x,y)$. Probar que $\mathcal{F} = \{f_x : x \in X\}$ es un subespacio separable de $(\mathcal{B}(X,\mathbb{R}),d_{\infty})$.

Observación: $\mathcal{B}(X,\mathbb{R})$ es el conjunto de funciones acotadas de X en \mathbb{R} .

Complete esta hoja con sus datos y entréguela con el resto del examen.

Para aprobar el examen es suficiente resolver correctamente tres ejercicios.

Si desea citar un resultado de la guía práctica consulte o incluya una demostración.