Exercise Sheet 1

Exercise 1

Prove the following inequalities and in each case give the condition under which the equality holds.

(a) Cauchy's inequality.

$$ab \le \frac{a^2}{2} + \frac{b^2}{2}$$
 for $a, b \in \mathbb{R}$.

Hint: $0 \le (a - b)^2$.

(b) Cauchy's inequality with ε .

$$ab \le \varepsilon a^2 + \frac{b^2}{4\varepsilon}$$
 for $a, b \in \mathbb{R}, \ \varepsilon > 0$.

Hint: $ab = ((2\varepsilon)^{1/2}a)\left(\frac{b}{(2\varepsilon)^{1/2}}\right)$.

(c) Young's inequality.

Let $1 < p, q < \infty$, $\frac{1}{p} + \frac{1}{q} = 1$. Then, we have

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$
 for $a, b \in \mathbb{R}$

and equality holds if and only if $a^p = b^q$.

Hint 1: $x \mapsto e^x$ is convex, $ab = e^{\ln a + \ln b} = e^{\frac{1}{p} \ln a^p + \frac{1}{q} \ln b^q}$

Hint 2: For given a, b > 0 calculate area of regions

$$R_1 = \left\{ 0 \le x \le a, \ 0 \le y \le x^{p-1} \right\}, \quad R_2 = \left\{ 0 \le y \le b, \ 0 \le x \le y^{q-1} \right\},$$

and compare with the area of the rectangle $R = [0, a] \times [0, b]$.

(d) Hölder's inequality.

Let
$$\Omega \subset \mathbb{R}^N$$
, $1 < p, q < \infty$, $\frac{1}{p} + \frac{1}{q} = 1$. If

$$\int_{\Omega} |f(x)|^p dx \,, \, \int_{\Omega} |g(x)|^q dx < \infty \,,$$

then

$$\int_{\Omega} |f(x)g(x)| dx \leq \left(\int_{\Omega} |f(x)|^p dx\right)^{1/p} \left(\int_{\Omega} |g(x)|^q dx\right)^{1/q} \,.$$

Hint: Consider two cases:

(i) $\int_{\Omega} |f(x)|^p dx > 0$, $\int_{\Omega} |g(x)|^q dx > 0$.

Define $\bar{f}(x) = f(x) / \left(\int_{\Omega} |f(x)|^p dx \right)^{1/p}$ and $\bar{g}(x) = g(x) / \left(\int_{\Omega} |g(x)|^q dx \right)^{1/q}$.

Apply Young's inequality to $|\bar{f}(x)||\bar{g}(x)|$, integrate over Ω .

- (ii) one of the integrals, $\int_{\Omega} |f(x)|^p dx$ or $\int_{\Omega} |g(x)|^q dx$, vanishes.
- (e) Minkowski's inequality.

Let $\Omega \subset \mathbb{R}^N$, 1 . If

$$\int_{\Omega} |f(x)|^p dx, \int_{\Omega} |g(x)|^p dx < \infty,$$

then

$$\left(\int_{\Omega}|f(x)+g(x)|^p\,dx\right)^{1/p}\leq \left(\int_{\Omega}|f(x)|^p\,dx\right)^{1/p}+\left(\int_{\Omega}|g(x)|^p\,dx\right)^{1/p}\,.$$

Hint:

- (i) $|f(x) + g(x)|^p = |f(x) + g(x)|^{p-1}(|f(x) + g(x)|) \le |f(x) + g(x)|^{p-1}(|f(x)| + |g(x)|).$
- (ii) $\frac{p-1}{p} + \frac{1}{p} = 1$, apply Hölder's inequality with appropriate exponents $1 < p', q' < \infty$ to

$$\int_{\Omega} |f(x) + g(x)|^{p-1} |f(x)| dx \text{ and } \int_{\Omega} |f(x) + g(x)|^{p-1} |g(x)| dx.$$