

Exercice 1

Soit X_1, X_2, \cdots, X_n un échantillon de taille n avec densité $f_{\theta}(x) = \frac{1+\theta x}{2}\chi_{[-1,1]}(x)$, où $\theta \in [-1,1]$ est inconnu. Écrire $Y_i = \chi_{[0,1]}(X_i)$ pour tout $i \in \{1,2,\cdots,n\}$. Estimer θ par la méthode des moments utilisant $\{X_i\}_{i=1}^n$ et calculer l'écart quadratique moyenne. Proposez un autre estimateur de θ qui améliore cet écart quadratique moyenne. Répétez les mêmes tâches utilisant $\{Y_i\}_{i=1}^n$ et pas $\{X_i\}_{i=1}^n$.

Solution à faire

Exercice 2

On a un échantillon de taille 2 de Cauchy $(\theta, 1)$, où le centre $\theta \in \mathbb{R}$ est inconnu. Estimer θ selon la méthode du maximum de vraisemblance.

Solution à faire

Exercice 3

Soit $g: \mathbb{R} \to \mathbb{R}$ une fonction continue et décroissante. On suppose que toutes les fonctions $f_{\theta}: \mathbb{R} \to \mathbb{R}$, où $\theta \in \mathbb{R}$, définies par $f_{\theta}(x) = g(|x - \theta|)$ sont densités de probabilité. Soit x_1, x_2, \cdots, x_n un échantillon de taille n avec densité f_{θ} , où $\theta \in \mathbb{R}$ est inconnu. Écrire $x_{(1)} \leqslant \cdots \leqslant x_{(n)}$ pour les statistiques d'ordre. Montrez que l'estimateur de maximum de vraisemblance de θ existe et se trouve dans l'intervalle $[x_{(1)}, x_{(n)}]$.

Solution à faire