PROJETO 2016 Simulação dirigida por eventos: Aplicação da técnica à simulação de dispositivos do tipo autômato

Aplicação a dispositivos da classe autômato (autômatos finitos, autômatos de pilha estruturados e máquinas de Turing)

Introdução

- A técnica de simulação dirigida por eventos é bastante simples, poderosa e geral.
- Sua área de aplicação mais usual costuma ser a simulação de fenômenos que envolvem episódios temporais.
- No entanto, a aplicabilidade dessa técnica é muito mais abrangente, bastando que as ocorrências de interesse exibam uma clara ordenação sequencial.
- Nessas condições, é possível equipará-las a eventos (interrupções), e tratá-las como tais.
- Assim, pode-se construir um simulador dirigido por eventos, de forma idêntica ao que se faz, por exemplo, na simulação de Sistemas Operacionais.
- O algoritmo que trata cada tipo de evento deve ser especificado através de um procedimento associado, único e bem estabelecido, de forma análoga ao que se faz quando se associa a ocorrência de uma interrupção à respectiva rotina de tratamento.

2

Atenção

- Este ano, o projeto aqui proposto para ser desenvolvido na disciplina Lógica Computacional poderá também ser reutilizado na disciplina Sistemas Operacionais, a qual igualmente emprega simuladores dirigidos por eventos em sua componente prática.
- Assim, alunos que estiverem cursando as duas disciplinas poderão dispender melhor o tempo que empregarão na elaboração dos seus projetos.
- Da mesma forma, o uso conjunto deste projeto nas duas disciplinas tende a proporcionar para o aluno um desenvolvimento mais amplo da sua percepção acerca da abrangência da aplicabilidade das técnicas estudadas.

PCS 2427 – Lógica Computacional – Edição de 2016

ENUNCIADO DO PROJETO 2016

Regras

- Este é um material de apoio para a elaboração do projeto da disciplina PCS 2427, edição de 2016.
- Deseja-se que seja construído um ambiente para simular dispositivos formais da classe dos autômatos (autômatos finitos, autômatos de pilha estruturados e máquinas de Turing), usando para isso a técnica da simulação dirigida por eventos.
- Escolha um formato padronizado para essas regras, de forma que seja compatível com os três tipos de autômatos a serem simulados, de forma que os autômatos mais simples sejam tratados como casos particulares dos mais complexos.
- No início do processamento, o programa simulador deve, a partir de um arquivo .txt, ler o conjunto de regras que define o particular dispositivo a ser simulado.
- A partir das regras lidas, seu programa deve preencher as estruturas de dados do simulador, a serem interpretadas e aplicadas a cadeias de entrada igualmente lidas de arquivos .txt também fornecidos ao simulador.

Rastros

- Para cada cadeia de entrada fornecida, o simulador deve aplicar o conjunto de regras do autômato a ser utilizado em seu reconhecimento, fornecendo como saída um rastro passo a passo do seu funcionamento.
- Esse rastro deve reportar cada variação ocorrida na configuração instantânea do autômato com destaque ao estado, ao símbolo de entrada utilizado, e à submáquina e ao topo da pilha (quando for o caso), e também informando a regra aplicada e seus efeitos.
- Como entradas para esse ambiente, fornecer:
 - o tipo de dispositivo a utilizar
 - o particular dispositivo a simular e as entradas a aplicar
 - opção de rastreamento da operação (ligar/desligar)

Testes e relatório

- Exercite a ferramenta simulando no mínimo três autômatos de cada tipo (autômatos finitos, autômatos de pilha estruturados e máquinas de Turing), que apresentem complexidades progressivas.
- Visando à comprovação do funcionamento do projeto, devem ser utilizados diversos casos de teste para cada um desses autômatos ensaiados, cobrindo todos os recursos das linguagens representadas por tais formalismos.
- Elabore um relatório técnico completo para este projeto, incluindo a descrição do ambiente e dos simuladores, descrevendo os testes efetuados e comentando as saídas geradas nesses testes, e analisando os resultados obtidos.

ELEMENTOS PARA A CONSTRUÇÃO DO SIMULADOR

Considerações gerais

- Conforme foi dito anteriormente, este projeto tem como meta familiarizar o aluno com a técnica de simulação dirigida por eventos, que é muito simples e amplamente aplicável em inúmeras situações reais das profissões ligadas à computação.
- No projeto desta disciplina, em particular, o alvo da simulação são as máquinas de estados reconhecedoras (do tipo autômato), todas elas muito semelhantes, variando apenas quanto a pequenos detalhes em sua estrutura e em seu funcionamento.
- O objetivo deste projeto nesta disciplina é o exercício do aluno na observação dessas similaridades e diferenças, e em na obtenção de programas de propósito geral, que se aproveitem dessas semelhanças para a fatoração de códigos compartilháveis.
- Aos que forem reutilizar este programa na disciplina Sistemas
 Operacionais, recomendamos que levem em consideração suas
 especificações no desenvolvimento do presente trabalho.

Três tipos de autômatos

- A seguir, a título de ilustração, em direção à elaboração deste projeto, apresentam-se a seguir considerações técnicas sobre autômatos finitos e máquinas de Turing.
- Resta portanto ao aluno complementar esse estudo com a elaboração de um material similar acerca dos autômatos de pilha estruturados.
- Esse estudo complementar deve ser incluído no relatório, assim como o levantamento detalhado das similaridades e diferenças entre os três formalismos estudados.

Roteiro

- Apenas como roteiro ilustrativo, aqui estão os títulos dos slides apresentados a seguir para autômatos finitos e máquinas de Turing:
 - Estrutura do formalismo / Elementos a considerar / Eventos a considerar / Configuração do formalismo / Notação / Categorias de eventos / Mudança de configuração (passo) / Definição formal de passo / Tratamento dos eventos / Leitura e Gravação de dados / Movimento do cabeçote / Início e final do processamento / Esboço da lógica do simulador do formalismo
- Use os slides seguintes como roteiro, para elaborar um material correspondente para autômatos de pilha estruturados (e o simulador de sistema operacional, para quem estiver cursando essa disciplina).

AUTÔMATO FINITO

Estrutura de um Autômato Finito

Elementos a considerar

- Lista dos eventos a serem considerados.
- Especificação dos constituintes da configuração do dispositivo que deve processar os eventos.
- Categorização dos eventos de acordo com o tipo de tratamento a receber.
- Especificação da mudança de configuração do dispositivo como resultado da ação dos eventos.
- Especificação dos **tratamentos** a serem aplicados a cada categoria de evento.

Eventos a considerar

- Início do processamento.
- Movimento do cabeçote para a direita.
- Leitura de símbolo do alfabeto, presente na célula da fita apontada pelo cabeçote.
- Leitura de uma marca de final da cadeia de entrada, presente na célula da fita apontada pelo cabeçote.
- Atingir um estado final (fim da computação).

Configuração do Autômato Finito

• A configuração de um Autômato Finito $\mathbf{M} = (\mathbf{Q}, \Sigma, \delta, \mathbf{q}_0, \mathbf{F})$ é qualquer membro de:

Configuração

- A configuração da máquina de Turing compreende:
 - Estado corrente da máquina.
 - Posição do cabeçote sobre a fita.
 - Conteúdo da fita
 - Cadeia à esquerda do cursor
 - Símbolo apontado pelo cursor
 - Cadeia à direita do cursor
 - Marca de final da cadeia de entrada

Notação

- Pode-se denotar abreviadamente uma configuração (q, w, a, u) como (q, wau), omitindo os símbolos separadores.
- O elemento sublinhado indica a posição do cabeçote sobre cadeia de entrada na fita de entrada do Autômato Finito.

Categorias de eventos

Leitura de dados na fita

- Leitura de Símbolo da cadeia presente na célula da fita, correntemente apontada pelo cabeçote.
- Autômatos finitos não gravam dados na fita.

Movimento do cabeçote

- Movimento do cabeçote para a direita, após leitura.
- Autômatos finitos não movem o cabeçote para a esquerda.

Início e final do processamento

- Partida inicial (estando o autômato no estado inicial).
- Rejeição: Erro por não haver transição aplicável.
- Aceitação: Chegada a um estado final, com o cabeçote apontando um marcador de final da cadeia de entrada.

Mudança de configuração (passo)

Configuração

- Estado corrente .
- Conteúdo da fita.
- Posição do cabeçote sobre a fita.

Estímulo

- Símbolo de entrada apontado pelo cursor na fita.
- Movimento de cabeçote à direita.

Parada

- Aceitação (estado final, cabeçote no final da cadeia de entrada).
- Rejeição (inexistência de movimento viável).

Passos de transição

- Seja um Autômato finito $M = (Q, \Sigma, \delta, q_0, F)$, e (q_1, w_1, a_1, u_1) e (q_2, w_2, a_2, u_2) configurações de M. Lembrando que a_1 é o símbolo da cadeia de entrada apontado pelo cabeçote do autômato finito, um passo de transição de M é definido como: $(q_1, w_1, a_1, u_1) \vdash_M (q_2, w_2, a_2, u_2)$
- Ocorrem diversas possíveis situações:
 - $-\delta(q_1, a_1) = q_2$ para algum elemento $a_1 \in \Sigma$ [consumo de símbolo a_1]
 - $-\delta(q_1, a_1) = q_2$ para $a_1 = \varepsilon$ e, neste caso, $w_2 = w_1$, $u_2 = u_1$ e $a_2 = a_1$, ou seja, ocorre apenas uma mudança de estado sem alterar os demais elementos da configuração do autômato finito. [transição em vazio]
 - $-\delta(q_1, a_1)$ não está definido, e neste caso há uma rejeição da cadeia de entrada pelo autômato. [cadeia de entrada rejeitada]
 - No caso de $\mathbf{q_2}$ ser um estado final, se $\mathbf{a_2}$ for o marcador de final de cadeia de entrada e portanto $\mathbf{u_2} = \mathbf{\epsilon}$, então ocorre a aceitação da cadeia de entrada. [cadeia de entrada aceita]
 - Tanto neste caso como no de rejeição, a máquina M não mais transita, portanto sua sequência de transições termina.

TRATAMENTO DOS EVENTOS

Leitura e Gravação de dados na fita

- Leitura de Símbolo da cadeia presente na fita
 - Atualiza o símbolo corrente.

- Gravação de Símbolo na posição do cursor
 - Remove o símbolo apontado pelo cabeçote.
 - Insere o símbolo a ser gravado.
 - Atualiza o símbolo corrente.

Movimento do cabeçote (1)

- Cabeçote para a direita
 - Concatenar o símbolo corrente à direita do conteúdo da fita à esquerda do cabeçote.
 - Destacar o primeiro símbolo da cadeia presente na fita à direita do cabeçote e posicionar o cabeçote sobre ele.
 - Se a cadeia à direita do cabeçote estiver vazia, avançar para a direita uma célula em branco.
 - Caso contrário, atualizar a cadeia à direita do cabeçote removendo-lhe o primeiro símbolo.

Movimento do cabeçote (2)

- Cabeçote para a esquerda
 - Se a cadeia à esquerda do cabeçote estiver vazia, terminar o processamento bloqueando a máquina.
 - Caso contrário,
 - Concatenar, à esquerda da cadeia presente na fita à direita do cabeçote, o símbolo apontado pelo cabeçote.
 - Destacar o último símbolo da cadeia à esquerda do cabeçote e posicionar o cabeçote sobre ele.
 - Atualizar o símbolo apontado pelo cabeçote.
 - Atualizar a cadeia presente à esquerda do cabeçote.

Início e final do processamento

Partida inicial

- Posicionar o autômato no estado inicial.
- Preencher a fita de trabalho com a cadeia a analisar.
- Acionar pela primeira vez a execução de uma regra.

Ausência de transição viável

 Parada por erro (cadeia de entrada não pertence à linguagem representada pela máquina de Turing).

Chegada ao estado de Halt

 Verificar o conteúdo da fita, e aplicar a convenção adotada para avaliar se a cadeia foi aceita ou rejeitada.

Tentativa de recuar à esquerda do início da fita

Bloqueio da máquina de Turing por movimento proibido.

Esboço da lógica do simulador do A.F.

MÁQUINA DE TURING

Estrutura da Máquina de Turing

Elementos a considerar

- Lista dos eventos a serem considerados.
- Especificação dos constituintes da configuração do dispositivo que deve processar os eventos.
- Categorização dos eventos de acordo com o tipo de tratamento a receber.
- Especificação da mudança de configuração do dispositivo como resultado da ação dos eventos.
- Especificação dos **tratamentos** a serem aplicados a cada categoria de evento.

Eventos a considerar

- Início do processamento.
- Leitura de símbolo do alfabeto, presente na célula da fita apontada pelo cabeçote.
- Gravação de símbolo do alfabeto, na célula da fita apontada pelo cabeçote.
- Movimento do cabeçote para a esquerda (L).
- Movimento do cabeçote para a direita (R).
- Tentativa de recuar para antes do início da fita.
- Atingir o estado de Halt (fim da computação).

Configuração da Máquina de Turing

• A configuração de uma Máquina de Turing $M = (Q, \Sigma, \delta, s)$ é qualquer membro de:

Configuração

- A configuração da máquina de Turing compreende:
 - Estado corrente da máquina.
 - Posição do cabeçote sobre a fita.
 - Conteúdo da fita
 - Cadeia à esquerda do cursor
 - Símbolo na posição do cursor
 - Cadeia à direita do cursor

Notação

- Pode-se denotar abreviadamente uma configuração (q, w, a, u) como (q, wau), omitindo os símbolos separadores.
- O elemento sublinhado indica a posição do cabeçote sobre cadeia de entrada na fita da Máquina de Turing.

Categorias de eventos

Leitura e Gravação de dados na fita

- Leitura de Símbolo da cadeia presente na fita.
- Gravação de Símbolo na posição do cursor.

Movimento do cabeçote

- Cabeçote para a esquerda.
- Cabeçote para a direita.

Início e final do processamento

- Partida inicial.
- Erro por não haver transição aplicável.
- Chegada ao estado de Halt.
- Bloqueio por tentativa de mover aquém do início da fita.

Mudança de configuração (passo)

Configuração

- Estado corrente .
- Conteúdo da fita.
- Posição do cabeçote sobre a fita.

Estímulo

- Símbolo de entrada apontado pelo cursor na fita.
- Movimento de cabeçote à esquerda.
- Movimento de cabeçote à direita.

Parada

- Final normal (estado Halt).
- Final bloqueado (tentativa de transpor o início da fita).
- Final com erro (inexistência de transição viável).

Definição formal de passo

- Seja uma Máquina de Turing $\mathbf{M} = (\mathbf{Q}, \Sigma, \delta, \mathbf{s})$, e sejam $(\mathbf{q}_1, \mathbf{w}_1, \mathbf{a}_1, \mathbf{u}_1)$ e $(\mathbf{q}_2, \mathbf{w}_2, \mathbf{a}_2, \mathbf{u}_2)$ configurações de \mathbf{M} , então um passo de \mathbf{M} é definido como:
- $(q_1, w_1, a_1, u_1) \vdash_M (q_2, w_2, a_2, u_2)$ se e somente se ocorre, em uma das opções seguintes, $\delta(q_1, a_1) = (q_2, b)$, para algum elemento $b \in (\Sigma \cup \{L, R\})$:
 - Ou $b \in \Sigma$, $w_1 = w_2$, $u_1 = u_2$, $a_2 = b$;
 - Ou $\mathbf{b} = \mathbf{L}$, $\mathbf{w}_1 = \mathbf{w}_2 \mathbf{a}_2$, e uma das opções abaixo ocorre:
 - a) u₂ = a₁u₁, se a₁ ≠ # ou u₁ ≠ ε;
 - b) $u_2 = \varepsilon$, se $a_1 = \# e u_1 = \varepsilon$;
 - Ou $\mathbf{b} = \mathbf{R}$, $\mathbf{w}_2 = \mathbf{w}_1 \mathbf{a}_1$, e uma das opções abaixo ocorre:
 - a) $u_1 = a_2 u_2$;
 - b) $u_2 = \varepsilon$, $u_1 = \varepsilon e a_2 = \#$;

TRATAMENTO DOS EVENTOS

Leitura e Gravação de dados na fita

- Leitura de Símbolo da cadeia presente na fita
 - Atualiza o símbolo corrente.

- Gravação de Símbolo na posição do cursor
 - Remove o símbolo apontado pelo cabeçote.
 - Insere o símbolo a ser gravado.
 - Atualiza o símbolo corrente.

Movimento do cabeçote (1)

- Cabeçote para a direita
 - Concatenar o símbolo corrente à direita do conteúdo da fita à esquerda do cabeçote.
 - Destacar o primeiro símbolo da cadeia presente na fita à direita do cabeçote e posicionar o cabeçote sobre ele.
 - Se a cadeia à direita do cabeçote estiver vazia, avançar para a direita uma célula em branco.
 - Caso contrário, atualizar a cadeia à direita do cabeçote removendo-lhe o primeiro símbolo.

Movimento do cabeçote (2)

- Cabeçote para a esquerda
 - Se a cadeia à esquerda do cabeçote estiver vazia, terminar o processamento bloqueando a máquina.
 - Caso contrário,
 - Concatenar, à esquerda da cadeia presente na fita à direita do cabeçote, o símbolo apontado pelo cabeçote.
 - Destacar o último símbolo da cadeia à esquerda do cabeçote e posicionar o cabeçote sobre ele.
 - Atualizar o símbolo apontado pelo cabeçote.
 - Atualizar a cadeia presente à esquerda do cabeçote.

Início e final do processamento

Partida inicial

- Posicionar o autômato no estado inicial.
- Preencher a fita de trabalho com a cadeia a analisar.
- Acionar pela primeira vez a execução de uma regra.

Ausência de transição viável

 Parada por erro (cadeia de entrada não pertence à linguagem representada pela máquina de Turing).

Chegada ao estado de Halt

 Verificar o conteúdo da fita, e aplicar a convenção adotada para avaliar se a cadeia foi aceita ou rejeitada.

Tentativa de recuar à esquerda do início da fita

Bloqueio da máquina de Turing por movimento proibido.

Esboço da lógica do simulador da M.T.

