

Embeddings

CS4248 Natural Language Processing

Week 06

Liangming PAN, Reza QORIB and Min-Yen KAN

Generative vs. Discriminative Classifiers

Classification with Logistic Regression and a Runthrough

Cross Entropy

Stochastic Gradient Descent

LR as a Probabilistic ML Classifier

Regularization

XOR

Neural Networks

Week 06 Agenda

One-hot Representation

Co-occurrence Vectors

Word Embeddings

Word2Vec: CBOW and Skip-gram

Properties of Embeddings

One-hot Representation

What are various ways to represent the meaning of a word?

Representing words as discrete symbols

In traditional NLP, we regard words as discrete symbols: hotel, conference, b&b – a localist representation

Words are represented by one-hot vectors:

Means one '1' and rest '0's

$$b\&b = [0000000000100000]$$

$$hotel = [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]$$

Where the vector dimension = |V| # of words in the vocabulary (20,000 to 50,000 dictionary lemmas, or 500K inflected tokens)

Problem with words as discrete symbols

Example: in Web search, if the user searches for singapore hotel, we would like to match documents containing singapore b&b.

$$b\&b = [0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]$$

 $hotel = [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]$

But we can see that the two vectors are orthogonal. Oh no! There is no natural notion of similarity for one-hot vectors!

Distributional Hypothesis

"The meaning of a word is its use in the language"

[Wittgenstein, Philosophical Investigations, n.d.]

"You shall know a word by the company it keeps"

[Firth, 1957]

"If A and B have almost identical environments, we say that they are synonyms"

[Harris, 1954]

...by the company it keeps...

When a word w appears in a text, its context is the set of words that appear nearby (within a fixed-size window).

Use the many contexts of w to build up representation for w.

```
...government debt problems turning into banking crises as happened in 2009...

...saying that Europe needs unified banking regulation to replace the hodgepodge...

banking system a shot in the arm...
```

These context words will represent banking

Works for OOV too

Remember the gompies?

All gompies are biff and luff voomly.

M'moon is a cramy gompy, she is the biffiest and luffs voomly

Co-occurrence Vectors

Back to the term-document matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Term-Document Matrix

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	17
soldier	2	80	62	89
fool	36	58	1	4
clown	20	15	2	3

How about a term-context matrix?

Term-Context Matrix (Word-Word Matrix) School of Computing

	knife	dog	sword	love	like
knife	0	1	6	5	5
dog	1	0	5	5	5
sword	6	5	0	5	5
love	5	5	5	0	5
like	5	5	5	5	2

Word Embeddings

Sparse versus Dense Vectors

PPMI vectors are

- Long (length | V | =20,000 to 50,000)
- Sparse (most elements are zero)

Alternative: learn vectors which are

- Short (length 200-1000)
- Dense (most elements are non-zero)

Why Dense Vectors?

Short vectors may be easier to use as features (less weights to tune; avoid overfitting)

Dense vectors may generalize better than storing explicit counts

They may do better at capturing synonymy

car and automobile are synonyms but are represented as distinct dimensions; This fails to capture similarity between a word with car as a neighbor and a word with automobile as a neighbor.

In practice, they work better

Intuition of Word Embeddings

- Hypothesis: Words that are semantically similar often have same surrounding words. (Distributional Hypothesis)
- Goal: We want words that are semantically similar to have close word vectors.
- Intermediate Goal: We need to make the words that have the same surrounding words to have close word vectors.

Making Word Embeddings

- Use neutral network to train a selfsupervised task.
- Use the weight matrix as the word vector representation.
- Common techniques for embedding words: CBOW, Skip-Gram, and GLoVe.
- Do not care about the actual model, we only take the embedding weight.

Diagram Credits: http://mccormickml.com/2016/04/19/ word2vec-tutorial-the-skip-gram-model/

Word2Vec: CBOW & Skip-Gram

Intuition

Words that are semantically similar often have same surrounding words. (Distributional Hypothesis)

Continuous Bag of Words (CBOW):

Train a model to predict a word from the surrounding words.

Skip-Gram:

• Train a model to predict the surrounding words from a word.

Predicting a word from context

Predicting a word from context

Predicting a word from context

CBOW and Skip-Gram

- CBOW \rightarrow given a context, predict the word.
- Skip-gram \rightarrow given a word, predict the context.

glass of

cars wall juice

tablespoon

jam

table

apron

____ apricot ____

Photo by Philippe Gonyea on Unsplash

glass

cars wall juice

tablespoon

jam

table

_____ apricot ____

Photo by Philippe Gonyea on Unsplash

Training Objective

Optimize the weight so that word and its context have close vector representation

$$\mathcal{L}(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{\substack{-m \le j \le m \\ j \ne 0}} \log P(w_{t+j} | w)$$

Training Objective

Optimize the weight so that word and its context have close vector representation

$$\mathcal{L}(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{\substack{-m \le j \le m \\ j \ne 0}} \log P(w_{t+j} | w)$$

$$P(w_{t+j}|w_t) = \frac{\exp(u_{w_{t+j}} \cdot v_{w_t})}{\sum_{w'} \exp(u_{w'} \cdot v_{w_t})}$$

Training Objective

Optimize the weight so that word and its context have close vector representation

$$\mathcal{L}(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{\substack{-m \leq j \leq m \\ j \neq 0}} \log P(w_{t+j} | w)$$

$$P(w_{t+j} | w_t) = \frac{\exp\left(u_{w_{t+j}} \cdot v_{w_t}\right)}{\sum_{w'} \exp(u_{w'} \cdot v_{w_t})}$$
more similar = higher dot product = larger probability

Training Objective

Optimize the weight so that word and its context have close vector representation

$$\begin{split} \mathcal{L}(\theta) &= -\frac{1}{T} \sum_{t=1}^{T} \sum_{\substack{-m \leq j \leq m \\ j \neq 0}} \log P \big(w_{t+j} \big| w \big) \\ P \big(w_{t+j} \big| w_t \big) &= \frac{\exp \big(u_{w_{t+j}} \cdot v_{w_t} \big)}{\sum_{w'} \exp \big(u_{w'} \cdot v_{w_t} \big)} & \xrightarrow{\text{Normalize over entire vocabulary to give probability distribution}} \end{split}$$

Skip-Gram with Negative Sampling (SGNS)

For each positive sample, create k negative samples from random word, c_{neg}

example with k=2

positive examples +

W	c_{pos}
apricot	tablespoon
apricot	of
apricot	jam
apricot	a

negative examples -

W	c_{neg}	W	c_{neg}
apricot	aardvark	apricot	seven
apricot	my	apricot	forever
apricot	where	apricot	dear
apricot	coaxial	apricot	if

Slide Credits: Dan Jurafsky (Stanford)

$$P(w_{t+j}|w_t) = \frac{\exp(u_{w_{t+j}} \cdot v_{w_t})}{\sum_{w'} \exp(u_{w'} \cdot v_{w_t})}$$

$$\mathcal{L}(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{\substack{-m \le j \le m \\ j \ne 0}} \log p(w_{t+j} | w)$$

$$P(w_{t+i}|w) = \exp\left(v_{w_t+j} \cdot v_{w_t}\right)$$

$$\sum_{w'} \exp\left(u_{w'} \cdot v_{w_t}\right)$$

$$P(+|c_{pos}, w)$$

$$\mathcal{L}(\theta) = -\frac{1}{T} \sum_{\substack{m \leq j \leq m \\ j \neq 0}}^{T} \frac{(w_{t+j}|w)}{w}$$
 Contrastive Loss

$$P(+|c_{pos},w) = \frac{1}{1 + \exp(-c_{pos} \circ w)}$$

$$c_{pos} = \{w_{t-j}, \dots, w_{t-1}, w_{t+1}, \dots, w_{t+j}\}$$
context or surrounding words

$$c_{pos} = \{w_{t-j}, \dots, w_{t-1}, w_{t+1}, \dots, w_{t+j}\}$$
context or surrounding words

$$P(+|c_{pos},w) = \sigma(c_{pos} \circ w) = \frac{1}{1 + \exp(-c_{pos} \circ w)} \quad c_{pos} = \{w_{t-j}, \dots, w_{t-1}, w_{t+1}, \dots, w_{t+j}\}$$

$$w_{t+1}, \dots, w_{t+1}, \dots, w_{t+1}$$

context / surrounding words

$$\mathcal{L}(\theta) = -\log \left[P(+|c_{pos}, w) \prod_{i=1}^{k} P(-|c_{neg}, w) \right]$$

$$P(+|c_{pos}, w) = \sigma(c_{pos} \circ w) = \frac{1}{1 + \exp(-c_{pos} \circ w)}$$

$$c_{pos} = \{w_{t-j}, \dots, w_{t-1}, w_{t+1}, \dots, w_{t+j}\}\}$$

$$context / surrounding words$$

$$\mathcal{L}(\theta) = -\log \left[P(+|c_{pos}, w) \prod_{i=1}^{k} P(-|c_{neg}, w) \right]$$

$$Remember, P(-|c_{neg}, w) = 1 - P(+|c_{neg}, w)$$

$$= -\left[\log P(+|c_{pos}, w) + \sum_{i=1}^{k} \log \left(1 - P(+|c_{neg}, w)\right) \right]$$

$$\begin{split} P\Big(+\Big|c_{pos},w\Big) &= \sigma(c_{pos}\circ w) = \frac{1}{1+\exp(-c_{pos}\circ w)} & c_{pos} = \{w_{t-j},\dots,w_{t-1}, w_{t+1},\dots,w_{t+j}\} \\ & context \ / \ surrounding \ words \end{split}$$

$$\mathcal{L}(\theta) = -\log\left[P\Big(+\Big|c_{pos},w\Big)\prod_{i=1}^{k}P\Big(-\Big|c_{neg},w\Big)\right] \\ &= -\left[\log P\Big(+\Big|c_{pos},w\Big) + \sum_{i=1}^{k}\log\Big(1-P\Big(+\Big|c_{neg},w\Big)\Big)\right] \\ &= -\left[\log \sigma(c_{pos}\circ w) + \sum_{i=1}^{k}\log\sigma(-c_{neg}\circ w)\right] \end{split}$$

Negative Sampling

Negative samples chosen according to their (α -)weighted unigram frequency

- Common practice $\alpha < 0.75$
- $\alpha < 1$ gives more chance to rare words

$$P_{\alpha}(w) = \frac{count(w)^{\alpha}}{\sum_{w'} count(w')^{\alpha}}$$

Negative Sampling

Word	Unigram frequency		
the	0.99		
durian	0.01		

Weighted	α = 0.75	
0.97		
0.03		

$$P_{\alpha}(w) = \frac{count(w)^{\alpha}}{\sum_{w'} count(w')^{\alpha}} \qquad P_{\alpha}(a) = \frac{.99^{.75}}{.99^{.75} + .01^{.75}} = .97$$

$$P_{\alpha}(b) = \frac{.01^{.75}}{.99^{.75} + .01^{.75}} = .03$$

$$P_{\alpha}(a) = \frac{.99.75}{.99.75 + .01.75} = .97$$

$$P_{\alpha}(b) = \frac{.01^{.75}}{.99^{.75} + .01^{.75}} = .03$$

Slide Credits: Dan Jurafsky (Stanford)

Model training

Diagram Credits: Patent Keyword Extraction Algorithm Based on Distributed
Representation for Patent Classification (2018)

Properties of Embeddings

Vector differences yield semantic relationships!

$$\bar{v}(\text{king}) - \bar{v}(\text{man}) + \bar{v}(\text{woman}) \approx \bar{v} \text{ (queen)}$$

$$\bar{v}(Paris) - \bar{v}(France) + \bar{v}(Italy) \approx \bar{v}(Rome)$$

Male-Female

Verb tense

Country-Capital

Modeling semantic similarity in Glove School of Computing

Global Vectors (GloVe): represent the probabilities as *ratios* of their co-occurrences.

Probability and Ratio	k = solid	k = gas	k = water	k = fashion		
P(k ice) P(k steam)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}		
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}		
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96		
$F(w_i, w_j, w_k) = \frac{P_{ij}}{P_{jk}}$						

Nearest Neighbors

o. frog

- 1. frogs
- 2. toad
- 3. litoria
- 4. leptodactylidae
- 5. rana
- 6. lizard
- 7. eleutherodactylus

3. litoria

4. leptodactylidae

5. rana

7. eleutherodactylus

Linear substructures

Embeddings Summary

Move from term-document matrix to a term-context matrix

Solves semantically relatedness

Embed the resultant term-context vectors into a denser space

- The side effect is the objective!
- Solves sparsity problem

Vectorial differences yields semantics relationships

Many extensions, we'll see some later