Matematiska Institutionen KTH

TENTAMEN i Linjär algebra, SF1604, den 15 december, 2009.

Kursexaminator: Sandra Di Rocco

- Svaret skall motiveras och lösningen skrivas ordentligt och klart.
- Inga hjälpmedel är tillåtna.
- Betyg Fx ger möjlighet till att komplettera till betyg E. Datumet och formen på kompletteringsprovet meddelas via email.

Betyg enligt följande tabell:

- A minst 35 poäng
- B minst 30 poäng
- C minst 25 poäng
- D minst 20 poäng
- E minst 15 poäng
- Fx 13-14 poäng

DEL I

15 poäng totalt inklusive bonus poäng.

- 1. Låt $\vec{v} = (1, 2, 1), \vec{w} = (1, 2, -1), \vec{u}_t = (5, 3 + t, 1) \in \mathbb{R}^3$, där $t \in \mathbb{R}$.
 - (a) (2 p.) För vilka $t \in \mathbb{R}$ är vektorerna $\vec{v}, \vec{w}, \vec{u}_t$ linjärt oberoende?
 - (b) (3 p.) Bestäm $\dim(Span(\vec{v}, \vec{w}, \vec{u}_t))$ för alla $t \in \mathbb{R}$.
- 2. Betrakta följande linjer i rummet \mathbb{R}^3 :

$$l_1:\left\{\begin{array}{ccc} x+y&=&1\\ 2x-z&=&0 \end{array}\right.,\quad l_2:\left\{\begin{array}{ccc} x&=&1-t\\ y&=&-t\\ z&=&1-t \end{array}\right.$$

- (a) (1 p.) Är linjerna parallella?
- (b) (2 p.) Skär linjerna varandra?
- (c) (2 p.) Skriv ekvationen till planet π , som innehåller linjen l_1 och är parallellt med linjen l_2 .
- 3. Betrakta följande matris:

$$A = \left(\begin{array}{ccc} 0 & 0 & 1\\ 0 & 2 & 0\\ 3 & 0 & 0 \end{array}\right)$$

- (a) (2 p.) Bestäm egenvektorerna till A.
- (b) (1 p.) Är A diagonaliserbar?
- (c) (2 p.) Bestäm A^{10} .

DEL II

15 poäng totalt.

- 4. Betrakta mängden av komplexa tal $\mathbb C$ som ett vektorrum över $\mathbb R$. Låt $F:\mathbb C\to\mathbb C$ vara avbildningen definierad av $F(z)=z+\overline{z}$.
 - (a) (2 p.) Visa att F är en linjär avbildning.
 - (b) (2 p.) Bestäm Ker(F).
 - (c) (1 p.) Är F en isomorfi?
- 5. Betrakta följande system, där $\lambda, \mu \in \mathbb{R}$:

$$\begin{cases} \lambda x + \lambda y & = \mu \\ \lambda x + y & = \mu \\ \lambda x + y - (\lambda + \mu)z & = \mu \end{cases}$$

- (a) (2 p.) För vilka $\lambda, \mu \in \mathbb{R}$ har systemet en entydig lösning?
- (b) (3 p.) Sätt $\mu = 0$. Bestäm för vilka $\lambda \in \mathbb{R}$ systemet har ett lösningsrum av dimension 2.
- 6. Betrakta rummet \mathbb{R}^3 med den standardskalärprodukten.
 - (a) (3 p.) Bestäm för vilka $a \in \mathbb{R}$ det finns en vektor $\vec{v} \in \mathbb{R}^3$ sådan att $||\vec{v}|| = a$ och $proj_U(\vec{v}) = (1,3,0)$, där U är xy-planet , dvs planet med ekvation z = 0.
 - (b) (2 p.) Bestäm om det finns ett a och en motsvarande vektor \vec{v} så att vinkeln mellan $proj_U(\vec{v})$ och \vec{v} är lika med $\frac{\pi}{3}$.

DEL III

10 poäng totalt

- 7. (5 p.) I tillämpningar inom statistik förekommer *stokastiska matriser*. Det är kvadratiska matriser där elementen i matrisen är sannolikheter och därför ligger i intervallet [0, 1] och där summan av elementen i varje kolonn är lika med 1.
 - (a) Visa att produkten av två stokastiska matriser av samma storlek är en stokatisk matris.
 - (b) Visa att varje stokastisk matris har ett egenvärde som är 1.
- 8. (5 p.) Låt (V, <>) vara ett änligtdimensionellt euklidiskt rum. Låt $F: V \to V$ vara en linjär avbildning sådan att $||F(\vec{v})|| = ||\vec{v}||$ för alla $\vec{v} \in V$.
 - (a) Visa att $\langle F(\vec{u}), F(\vec{v}) \rangle = \langle \vec{u}, \vec{v} \rangle$ för alla $\vec{u}, \vec{v} \in V$.
 - (b) Visa att om $U\subseteq V$ är ett delrum till V sådant att $F(\vec{u})\in U$ för alla $\vec{u}\in U$ så gäller det att $F(\vec{v})\in U^\perp$ för alla $\vec{v}\in U^\perp$.