

Hochschule Bonn-Rhein-Sieg University of Applied Sciences

Semantic Mapping for Enhanced Localization in Indoor Environments

R&D Defense

December 01, 2023

Allen Isaac Jose

Advisors

Prof. Dr.-Ing. Sebastian Houben Deebul Nair, M.Sc.

Introduction

Fig 1. Indoor environment 1

- Simultaneous localization and mapping (SLAM).
- Mapping given robot pose, unknown environment.
- Localization given map, unknown robot pose.
- Focus on the indoor environment.
- Semantics of objects.

2D SLAM

Fig 3. 2D Semantic map²

Fig 2. Occupany grid map¹

3D SLAM

Fig 4. Kimera dense 3D map¹

Fig 5. ORB-SLAM sparse 3D map²

Research question

- How to add semantic information to a 3D sparse map?
- How does the localization capability improve by incorporating abstract object models?
- How to perform comparative evaluation on the mapped objects quantitatively?
- How is the real-time performance of the 3D sparse semantic mapping?
- How robust is the SLAM algorithm to the noise in object detection?

Ellipsoidal mapping

Fig 7. Constrained space

9 unknown parameters - 3 each for the centroid, orientation and size

GraphSLAM

Fig 8. Factor Graph1

- u odometry factor
- b bounding box factor
- \bullet x robot pose
- q quadric/ellipsoid parameters

Hochschule

Bonn-Rhein-Sieg

QuadricSLAM

QuadricSLAM

Object Aided-SLAM (OA-SLAM)

Fig 9. ORB SLAM21

Object Aided-SLAM (OA-SLAM)

Fig 10. OA SLAM¹

Synthetic dataset generation

Fig 11. Sample image from scene

Fig 12. Visualization of dataset

Evaluation metrics

Camera trajectory metrics

- Camera trajectory error
- Camera rotation error
- Procrustes analysis
- Fréchet distance
- Chamfer distance

Object mapping metrics

- Object centroid error
- Object rotation error
- Object IoU comparison

Fig 13. Object IoU comparison method

Evaluation results on scene 9

Fig 14. OA-SLAM output

Evaluation results on scene 9

Fig 15. QuadricSLAM batch mode output

Evaluation results on scene 9

Fig 16. QuadricSLAM increment mode output

System profile metrics

	OA-SLAM	QuadricSLAM - batch	QuadricSLAM - incremental
Average CPU Utilization	30.59%	16.01%	58.97%
Min CPU Utilization	10.86%	10.61%	10.24%
Max CPU Utilization	35.96%	75.85%	71.43%
Average Memory Utilization	645.09 MB	209.43 MB	261.52 MB
Min Memory Utilization	128.53 MB	$205.05~\mathrm{MB}$	211.66 MB
Max Memory Utilization	744.55 MB	234.16 MB	328.04 MB
Overall Time Taken	68.13 s	49.06 s	532.58 s
FPS	22	30	2
Map Size	5.28 MB	444 KB	612 KB

Table 1. System profile – scene 9

Object

banana

foam_brick

large_clamp

tomato_soup_can

wood_block

Fig 17. Object centroid error – scene 9

Object banana

large clamp

wood block

tomato soup can

Fig 18. Object centroid error – all scenes

Scene

Scene 000001 Scene 000002

Scene 000003

Scene 000004 Scene 000005

Scene 000006

Scene 000007

Scene 000008Scene 000009Scene 000010

Fig 19. Object rotation error – scene 9

Hochschule
Bonn-Rhein-Sieg
University of Applied Sciences

Object

wood block

tomato soup can

Scene Scene 000001 Scene 000002 Scene 000003 Scene 000004 Scene 000005 Scene 000006 Scene 000007 Scene 000008 Scene 000009 Scene 000010

Fig 20. Object rotation error – all scenes

Scene Scene 000001

Scene 000002 Scene 000003

Scene 000006

Scene 000007

Scene 000008

Scene 000009

Object

banana

foam_brick

large_clamp

tomato_soup_can

wood_block

Fig 21. Object overlap percentage – scene 9

Object

wood block

tomato soup can

Fig 22. Object overlap percentage – all scenes

50

40

30

20

10

OA-SLAM

Scene Scene 000001

Scene 000002

Scene 000003 Scene 000004

Scene 000005

Scene 000006

Scene 000007

Scene 000008 Scene 000009

Scene 000010

Object

banana

foam_brick

large_clamp

tomato_soup_can

wood_block

Fig 23. Object aligned overlap percentage – scene 9

Object

wood block

tomato soup can

Fig 24. Object aligned overlap percentage – all scenes

Scene

Scene 000001 Scene 000002

Scene 000003 Scene 000004 Scene 000005

Scene 000006 Scene 000007

Scene 000008 Scene 000009

Scene 000010

Fig 25. Camera trajectory error comparison – scene 9

Fig 26. Camera trajectory error comparison – all scenes

Fig 27. Camera trajectory RMSE comparison – all scenes

Scene

Scene 000001

Scene 000002

Scene 000003 Scene 000004

Scene 000005 Scene 000006

Scene 000007

Scene 000008

Scene 000009
 Scene 000010

Fig 28. Camera rotation error comparison – scene 9

Fig 29. Camera rotation error comparison – all scenes

Fig 30. Camera average rotation error comparison – all scenes

Fig 31. Procrustes analysis comparison – all scenes

Fig 32. Frechet distance comparison – all scenes

Scene

Scene 000001 Scene 000002

Scene 000003

Scene 000004 Scene 000005

Scene 000006 Scene 000007

Scene 000008

Scene 000009

Scene 000010

Fig 33. Chamfer distance comparison – all scenes

Bonn-Aachen
International Center fo
Information Technology

Scene Scene 000001

Scene 000002 Scene 000003

Scene 000004

Scene 000005

Scene 000006

Scene 000007 Scene 000008

Scene 000009

Scene 000010

Results of evaluation on scene 9 corrupted with noise

Bbox corruption

- Changing box center x.
- Changing box center y.
- Changing box height.
- Changing box width.
- Deleteing 1 object's bbox.

Fig 34. OA-SLAM output

Results of evaluation on scene 9 corrupted with noise

Bonn-Rhein-SiegUniversity of Applied Sciences

Results of localization task on scene 9 – full map

Fig 37. Localization using objects-only mode at a previously seen viewpoint

Results of localization task on scene 9 – half map

Fig 38. Localization using objects-only mode only at an unseen viewpoint

Summary

- OA-SLAM is more robust to noises in a bounding box.
- OA-SLAM is able to capture the size and orientation of the object more accurately.
- QuadricSLAM has a lower object centroid error and camera trajectory error as it has the true depth info.
- Localization could be achieved within a single RGB image using the pnp algorithm from an unseen viewpoint.
- Point constraints are more accurate for mapping and objects are useful in global relocalization.
- The parallel threads in the backend and the redundant mappoints and keyframes culling help in achieving real-time operation and efficient storage of the scene.

Future work

- Along with point and object constraints, add plane constraints to the factor graph to improve the mapping accuracy and also to provide a meaningful representation of the map.
- The addition of planes such as wall, floor and ceiling can help to extend the application of OA-SLAM to semantic navigation.

Thank you! Questions?

