Tiny Video Networks on UCF50 dataset

Постановка задачи

- Воспроизвести одну из сетей, описанный в статье Tiny Video Networks, AJ Piergiovanni Anelia Angelova Michael Ryoo
- Обучить её на датасете UCF50
- Сравнить с известными результатами

О статье

3: Example Tiny Video Networks found using architecture evolution showing several blocks with different configurations. A Tiny Video Net has multiple blocks, each repeated R times. Each block has a different configuration with spatial and temporal convolution, pooling, non-local layers, context gating and squeeze-excitation layers. It can select the image resolution and frame rate. From top to bottom: TVN-2, TVN-3, TVN-4. TVN-1 is shown in Figure 1.

Runtime	Runtime	GFlops	Acc.
CPU(ms)	GPU(ms)		(%)
2120	105	38	21.1
2256	110	50	24.2
3022	125	124	28.1
3750	140	245	30.2
-	-	-	24.1
-	-	-	27.1
-	-	-	31.4
37	10	13	23.1
65	13	17	24.2
85	16	69	25.9
402	19	106	28.0
86	16	52	29.8
142	18	93	30.7
	CPU(ms) 2120 2256 3022 3750 37 65 85 402 86	CPU(ms) GPU(ms) 2120 105 2256 110 3022 125 3750 140 37 10 65 13 85 16 402 19 86 16	CPU(ms) GPU(ms) 2120 105 38 2256 110 50 3022 125 124 3750 140 245 37 10 13 65 13 17 85 16 69 402 19 106 86 16 52

Table 3. Results on the MiT dataset comparing different Tiny Networks to baselines and state-of-the-art (which are all RGB-only). TVN models perform competitively and are also much faster. No runtime was reported in prior work.

О датасете UCF50

О реализации

Figure 1: An example of a highly efficient 'Tiny Video Network', working on a video snippet. TVN-1 is shown. It takes 37 ms (CPU), 10ms (GPU).

- Архитектура TVN1
- Входной размер 200х200
- Нет аугментации при обучении
- Нет предобучения

- Соотношение train/test: 85/15
- Берём каждый 10ый кадр из видео
- Всего берём 8 кадров (из 80)
- Если кадров не хватает повторяем последний

Обучение

Сравнение с другими моделями

Performance	Experimental Setup	Paper
76.90%	Leave One Group Out Cross- validation (25 cross-validations)	Reddy and Shah. (MVAP), 2012
57.90%	5-fold group-wise cross-validation	Sadanand and Corso. (CVPR), 2012
76.40%*	Video Wise Cross-validation (*Since videos belonging to a group are obtained from a single long video, similar videos can end up in both training and testing in "video-wise cross-validation" leading to high performance)	Sadanand and Corso. (CVPR), 2012
81.03%*	2/3 training and 1/3 testing for each class (*From the details given in the paper, we are not sure if videos belonging to the same group are kept seperate in training and testing sets and the paper does not give details on number of cross-validations)	Todorovic. (ECCV), 2012
73.70%	Leave One Group Out Cross- validation (25 cross-validations)	Solmaz, et al. (MVAP), 2012
72.60%	Leave One Group Out Cross- validation (25 cross-validations)	Kliper-Gross, et al. (ECCV), 2012

Сравнение с другими моделями

Action Recognition on UCF101

SMART на данный момент является SOTA для аналогичной задачи на UCF101

Method	Backbone	UCF101	HMDB51
Two-stream	VGG	92.5	62.4
I3D	Inc v3	98.0	80.7
DynaMotion + I3D	Inc v3	98.4	84.2
TSN	BN-Inc	94.2	69.9
KI-Net	Res-152	97.8	78.2
AAS	TSN	94.6	71.2
SMART	TSN	95.8	74.6
AAS	TSN+Kinetics	96.8	77.3
SMART	TSN+Kinetics	98.6	84.3

Table 5: Extending SMART to other approaches

Method	UCF101	HMDB51
ISTPAN	95.5	70.7
ISTPAN + SMART	96.4	72.1
I3D	98.0	80.0
I3D + Smart	98.2	81.1
STM-Resnet	94.2	68.9
STM-Resnet + SMART	94.9	69.7

Проблемы

- Сравнительно маленикий датасет UCF50, который входит в датасет побольше.
- Для работы с видео требуется значительно больше параметров
- Из-за отсутствия аугментаций модели не хватает информации, чтобы что-либо выучить