Ministerul Educației al Republicii Moldova Universitatea Tehnică a Moldovei Facultatea Calculatoare, Informatică și Microelectronică Departamentul Ingineria Software și Automatică.

Raport

Lucrarea de laborator nr.1 Disciplina: Circuite și Dispozitive Electronice.

Tema: Studierea circuitelor electrice liniare de curent continuu și alternativ.

Efectuat: st.gr. TI-207 Bunescu Gabriel

Verificat: asist. univ. Litra Dinu

Scopul lucrării: verificare experimentală a respectării legii lui Ohm și Kirchhoff pentru circuitele electrice ramificate și neramificate de curent continuu; cercetarea raportului de amplitudine și fază dintre tensiune și curent pentru elementele *R*, *L*, *C*.

Mersul lucrării:

Partea 1. Verificarea îndeplinirii legilor lui Ohm și Kirchhoff pentru circuitele electrice ramificate și neramificate.

Schema 1. Circuit liniar de curent continuu cu conexiune în serie a receptoarelor.

Rezistența		Curentul,	Tens	siunea, V,	Curentul I în	Tensiunea, V,		
(Ω)		mA	(calculat)		circuit, mA,	(măsurat)		
, ,		(calculat)			(măsurat)			
R_1	103		U_1 4.32			U_1	4.37	
R_2	199		U_2	8.36		U_2	8.42	
R_3	50	42.6	U ₃ 2.1		42.7	U_3	2.08	

Tabelul 1. Rezultatele măsurărilor și calculelor.

Calcule:

Calcule:
$$I_{1} = \frac{E}{R+r_{0}} = \frac{E}{\frac{U_{1}}{I_{1}}+r_{0}} = 42.7 \text{ mA} \qquad I_{2} = \frac{E}{R_{1}+R_{2}+r_{0}} = \frac{E}{\frac{U_{2}}{I_{2}}+r_{0}} = 98.8 \text{ mA}$$

$$U_{1} = 14.95 \text{ V} \quad U_{2} = 15.09 \text{ V}$$

$$R = R_{1} + R_{2} + R_{3} = 103 + 199 + 50 = 353$$

$$U_{1} = I_{1}(R_{1} + R_{2} + R_{3}) = 42.7*353 = 15.0731$$

$$U_{2} = I_{2}(R_{1} + R_{3}) = 98.8 * (103 + 50) = 98.8 * 153 = 15.1164$$

$$r_{0} = \frac{U_{2} - U_{1}}{I_{1} - I_{2}} = \frac{15.0731 - 15.1164}{42.7 - 98.8} = \frac{-0.0433}{-56.1} 0.000771$$

$$I = \frac{E}{R_{1} + R_{2} + R_{3} + r_{0}} = \frac{15}{103 + 199 + 50 + (0.000771)} = \frac{15}{353.000771}$$

$$= 0.04249 \text{ A}$$

$$U_1 = IR_1 = 0.04249 * 103 = 4.37 \text{ V}$$

 $U_2 = IR_2 = 0.04249 * 199 = 8.45 \text{ V}$
 $U_3 = IR_3 = 0.04249 * 50 = 2.1245 \text{ V}$

Schema 2. Circuit electric liniar de curent continuu cu conexiune mixtă a receptoarelor.

Rezistența		Curentul,		Tens	siunea, V,	Cur	entul I în	Tensiunea, V,		
(Ω)		mA		(c	alculat)	circ	uit, mA,	(măsurat)		
		(calculat)				(m	ıăsurat)			
R_1	103	I_1	60.6	U_1	6.01	I_1	60 .6	U_1	6.12	
R_2	199	I_2	45.6	U_2	9	I_2	45.6	U_2	8.73	
R_3	600	I_3	15	U_3	9	I_3	14.8	U_3	8.77	

Tabelul 2. Rezultatele măsurărilor și calculelor.

			Calculat						
R_3	$\begin{array}{ c c c c c }\hline U & U_1 & U_2 \\\hline \end{array}$			I_1	I_2	I_3	U_1+U_2	$I_2 + I_3$	P
Ω		V			mA		V	mA	mW
1	15	14.16	0.54	140	2.9	136.4	14.7	139.3	2047.71
65	15	10.73	3.93	105.8	20.1	85.2	14.66	105.3	1543.7
100	15	9.35	5.45	92.4	28.6	63.4	14.8	92	1361.6
150	15	8.38	6.43	82.9	33.6	48.8	14.81	82.4	1220.34
300	15	6.94	7.9	68.7	41.3	27.1	14.84	68.4	1015.06
400	15	6.54	8.3	64.8	43.4	21.1	14.84	64.5	957.18
500	15	6.29	8.56	63.3	44.7	17.3	14.85	62	920.7
600	15	5.98	8.82	59.2	46.1	12.8	14.8	58.9	871.72
700	15	6.12	8.73	60.6	45.6	14.8	14.85	60.4	896.94

Tabelul 3. Rezultatele măsurărilor și calculelor.

Calcule:

$$U_1 + U_2 = 14.16V + 0.54V = 14.7 V$$

 $I_2 + I_3 = 2.9 mA + 136.4 mA = 139.3 mA$
 $P = U * I = 14.7V * 139.3 mA = 2047.71 mW$

$$U_1 + U_2 = 10.73 V + 3.93 V = 14.66 V$$

 $I_2 + I_3 = 21.1 mA + 85.2 mA = 105.3 mA$

$$P = U * I = 14.66 V * 105.3 mA = 1543.7 mW$$

$$U_1 + U_2 = 9.35 V + 5.45 V = 14.8 V$$

 $I_2 + I_3 = 28.6 mA + 63.4 mA = 92 mA$
 $P = U * I = 14.8 V * 92 mA = 1361.6 mW$

$$U_1 + U_2 = 8.38 V + 6.43 V = 14.81 V$$

 $I_2 + I_3 = 33.6 mA + 48.8 mA = 82.4 mA$
 $P = U * I = 14.81 V * 82.4 mA = 1220.34 mW$

$$U_1 + U_2 = 6.94 V + 7.9 V = 14.84 V$$

 $I_2 + I_3 = 41.3 mA + 27.1 mA = 68.4 mA$
 $P = U * I = 14.84 V * 68.4 mA = 1015.06 mW$

$$U_1 + U_2 = 6.54 V + 8.3 V = 14.84 V$$

 $I_2 + I_3 = 43.4 mA + 21.1 mA = 64.5 mA$
 $P = U * I = 14.84 V * 64.5 mA = 957.18 mW$

$$U_1 + U_2 = 6.29 V + 8.56 V = 14.85 V$$

 $I_2 + I_3 = 44.7 mA + 17.3 mA = 62 mA$
 $P = U * I = 14.85 V * 62 mA = 920.7 mW$

$$U_1 + U_2 = 5.98 V + 8.82 V = 14.8 V$$

 $I_2 + I_3 = 46.1 mA + 12.8 mA = 58.9 mA$
 $P = U * I = 14.8 V * 58.9 mA = 871.72 mW$

$$U_1 + U_2 = 6.12 V + 8.73 V = 14.85 V$$

 $I_2 + I_3 = 45.6 mA + 14.8 mA = 60.4 mA$
 $P = U * I = 14.85 V * 60.4 mA = 896.94 mW$

Partea 2. Cercetarea proprietăților elementelor pasive (R,L,C) în circuitul de curent alternativ.

Schema 3. Circuit electric de curent alternativ pentru a determina parametrii elementelor R,L,C.

Schema 4. Circuit electric de curent alternativ pentru a studia relațiile de amplitudine și fază dintre elementele de curent și tensiune.

Ele-	U	$U_{\rm m}$	I	I_{m}	φ	Q	S	P	R	С	L	X _c =1/	$X_L = 1/$
mentul					•							ω C	ωL
	7	1	m <i>A</i>	7	0	VAR	VA	W	Ω	nF	mH	Ω	Ω
$R_1 = 534$	6,49		12,7		18,00	61,90	691,20	54,43	0,51	3.12227	6.11	0,51	0,38
Ω										$* 10^{-4}$	$*10^{-5}$		
C=103	7,16		5		18,00	26,89	118,20	23,64	1,43	1.1354	1.712	1,43	1,08
nF										$*10^{-4}$	$*10^{-4}$		
L=4	2,3		121,1		36,00	276,24	4316,21	35,64	0,02	7.961783	3	0,02	0,02
mH										* 10 ⁻³	$*10^{-6}$		

Tabelul 4. Rezultatele măsurărilor și calculelor

Calcule:

$$Q = U * I * \sin(\varphi)$$

$$Q_1 = 6.49 V * 12.7 mA * \sin(18) = 61.9 VAR$$

 $Q_2 = 7.16 V * 5 mA * \sin(18) = 26.89 VAR$
 $Q_3 = 2.3 V * 121.1 mA * \sin(36) = 276.24 VAR$

$$P = U * I * cos(\varphi)$$

$$P_1 = 6.49 V * 12 mA * cos(18) = 54.43 W$$

$$P_2 = 7.16 V * 5 mA * cos(18) = 23.64 W$$

$$P_3 = 2.3 V * 121.1 mA * cos(36) = 35.64 W$$

$$S = P * I$$

$$S_1 = 54.43 W * 12.7 mA * cos(18) = 691.2 VA$$

$$S_2 = 23.64 W * 5 mA * cos(18) = 118.2 VA$$

$$S_3 = 35.64 W * 121.1 mA * cos(36) = 4316.21 VA$$

$$R = \frac{U}{I}$$

$$R_1 = \frac{6.49 \, V}{12.7 \, mA} = 0.51 \, \Omega$$

$$R_2 = \frac{7.16 \, V}{5 \, mA} = 1.43 \, \Omega$$

$$R_3 = \frac{2.3 V}{121.1 mA} = 0.02 \Omega$$

$$X_c = \frac{U}{I} = R$$

$$X_{C1} = 0.51 \; \Omega \; \; X_{C2} = 1.43 \; \Omega \; \; X_{C3} = 0.02 \; \Omega$$

$$X_L = \frac{Q}{I^2}$$

$$X_{L1} = \frac{61.9 \, VAR}{(12.7 \, mA)^2} = 0.38 \, \Omega$$

$$X_{L2} = \frac{26.89 \, VAR}{(5 \, mA)^2} = 1.08 \, \Omega$$

$$X_{L3} = \frac{276.24 \, VAR}{(121.1 \, mA)^2} = 0.02 \, \Omega$$

$$\omega = 2 * \pi * f = 2 * 3,14 * 1KH = 6280$$

$$C = \frac{1}{w * X_c}$$

$$C_1 = \frac{1}{6280 * 0.51 \Omega} = 3.12227 * 10^{-4} F$$

$$C_2 = \frac{1}{6280 * 1.43 \Omega} = 1.1354 * 10^{-4} F$$

$$C_3 = \frac{1}{6280 * 0.02 \Omega} = 7.961783 * 10^{-3} F$$

$$L = \frac{X_L}{W}$$

$$L_1 = \frac{0.38}{6280} = 6.11 * 10^{-5} \, mH$$

$$L_1 = \frac{1.08}{6280} = 1.712 * 10^{-4} mH$$

$$L_1 = \frac{0.02}{6280} = 3 * 10^{-6} \, mH$$

Diagrama potențială:

Diagrama vectorială a tensiunii:

Diagrama vectorială a curentului:

Concluzie:

În această lucrare de labrator am lucrat asupra verificarii experimentală a respectării legii lui Ohm și Kirchhoff pentru circuitele electrice ramificate și neramificate de curent continuu, cercetarea raportului de amplitudine și fază dintre tensiune și curent pentru elementele R, L, C. Am extras date din Circuit electric liniar de curent continuu cu conexiune mixtă a receptoarelor și Circuit liniar de curent continuu cu conexiune în serie a receptoarelor. Am Cercetarea proprietăților elementelor pasive (R,L,C) în circuitul de curent alternativ pentru a determina parametrii elementelor R,L,C și pentru a studia relațiile de amplitudine și fază dintre elementele de curent și tensiune.