3) Calculer la distance IM.

- 4) a) Démontrer que : IM = $2 \times \sin \frac{\pi}{8}$.
 - b) En déduire la valeur exacte de $\sin \frac{\pi}{8}$
- 5) Calculer la valeur exacte de $\cos \frac{\pi}{8}$.
- 6) Déduire les lignes trigonométriques de : $\frac{7\pi}{8}$, $\frac{9\pi}{8}$, $\frac{5\pi}{8}$ et $\frac{3\pi}{8}$.

Exercice 19

Calcul de $\sin \frac{\pi}{12}$ et $\cos \frac{\pi}{12}$

 $\mathscr C$ est le cercle trigonométrique associé à un repère orthonormé direct (O, I, J) du plan. M est le point de $\mathscr C$ tel que $(\overrightarrow{OI}, \overrightarrow{OM}) = \frac{\pi}{6}$.

- 1) Faire une figure
- 2) Quelles sont les coordonnées du point M dans le repère (O, I, J)?
- 3) Calculer la distance IM.
- 4) a) Démontrer que : IM = $2 \times \sin \frac{\pi}{12}$.
 - b) En déduire la valeur exacte de $\sin \frac{\pi}{12}$.
 - c) Montrer que l'on peut mettre $\sin \frac{\pi}{12}$ sous la forme $\frac{\sqrt{6} \sqrt{2}}{4}$
- 5) a) Calculer la valeur exacte de $\cos \frac{\pi}{12}$.
 - b) Montrer que l'on peut mettre $\cos \frac{\pi}{12}$ sous la forme $\frac{\sqrt{6} + \sqrt{2}}{4}$
- 6) Déduire les lignes trigonométriques de : $\frac{11\pi}{12}$, $\frac{13\pi}{12}$, $\frac{5\pi}{12}$ et $\frac{7\pi}{12}$.

Études de fonctions

Exercice 20

f est la fonction définie sur \mathbb{R} par : $f(x) = \frac{2}{2 + \cos x}$

- 1) Justifier que la fonction f est définie sur \mathbb{R} .
- 2) Montrer que la fonction f est paire et 2π -périodique. En déduire le plus petit intervalle d'étude de la fonction f.
- 3) Calculer la fonction dérivée f' et déterminer son signe sur l'intervalle $[0; \pi]$.
- 4) Dresser le tableau de variation de f sur $[-\pi; \pi]$ et tracer l'allure de la fonction sur $[-\pi; 3\pi]$