#### Reinforcement Learning & Intelligent Agents

Lecture 2: Exploration and Exploitation

S. M. Ahsan Kazmi

#### Recap



- Reinforcement learning is the science of learning to make decisions
- Agents can learn a policy, value function and/or a model
- The general problem involves considering time and consequences
- Decisions affect the reward, the agent state, and the environment state
- Learning is active: decisions impact data

#### This Lecture

- In this lecture, we simplify the setting
- The environment is assumed to have only a **single state** 
  - actions no longer have long-term consequences on the environment
  - actions still do impact immediate reward, other observations can be ignored

### Agent Categories

#### **Agent Categories**

- Value Based
  - No Policy (Implicit) Value Function
- Policy Based

  - PolicyNo Value Function
- Actor Critic

  - Policy Value Function



**Agent Categories** 

- Model Free
  - Policy and/or Value Function No Model
- Model Based
  - Optionally Policy and/or Value Function Model



## Subproblems of the RL Problem

#### Learning and Planning

#### Two fundamental problems in reinforcement learning

- Learning:
  - The environment is initially unknown
  - The agent interacts with the environment
  - The agent improves its policy
- Planning:
  - A model of the environment is given (or learned)
  - The agent plans in this model (without external interaction)
  - a.k.a. reasoning, pondering, thought, search, planning

#### **Prediction and Control**

- Prediction: evaluate the future (for a given policy)
- Control: optimise the future (find the best policy)
- These can be strongly related:

$$\pi_*(s) = \operatorname{argmax} v_{\pi}(s)_{\pi}$$

If we could predict everything, do we need anything else?

#### Exploration and Exploitation (1)

- · Reinforcement learning is like trial-and-error learning
- The agent should discover a good policy
- From its experiences of the environment
- · Without losing too much reward along the way
- Exploration finds more information about the environment
- Exploitation exploits known information to maximize reward
  - · It is usually important to explore as well as exploit

#### Exploration and Exploitation (2)

- Restaurant Selection
  - Exploitation Go to your favourite restaurant
  - Exploration Try a new restaurant
- Online Banner Advertisements
  - Exploitation Show the most successful advert
  - Exploration Show a different advert
- Oil Drilling
  - Exploitation Drill at the best-known location
  - Exploration Drill at a new location
- Game Playing
  - Exploitation Play the move you believe is best
  - Exploration Play an experimental move

#### Exploration vs. Exploitation

- Learning agents need to trade off two things
  - **Exploitation**: Maximise performance based on current knowledge
  - Exploration: Increase knowledge
- We need to gather information to make the best overall decisions
- The best long-term strategy may involve short-term sacrifices

# Formalising the problem

#### The Multi-Armed Bandit

- A multi-armed bandit is a set of distributions  $\{R_a|a\in A\}$
- A is a (known) set of actions (or "arms")
- R<sub>a</sub> is a distribution of rewards, given action a
- At each step t the agent selects an action  $A_t \in A$
- The environment generates a reward  $R_t \sim R_{at}$
- The goal is to maximize cumulative reward  $\sum_{i=1}^{t} R_i$
- We do this by learning a **policy**: a distribution on A



#### Values and Regret

The **action value** for action **a** is the expected reward

$$q(a) = \mathbb{E}\left[R_t|A_t = a\right]$$

The **optimal value** is

$$v_* = \max_{a \in \mathcal{A}} q(a) = \max_{a} \mathbb{E} \left[ R_t \mid A_t = a \right]$$

**Regret** of an action *a* is

$$\Delta_a = v_* - q(a)$$

The regret for the optimal action is zero

#### Regret

We want to minimise total regret:

$$L_t = \sum_{n=1}^t v_* - q(A_n) = \sum_{n=1}^t \Delta_{A_n}$$

- Maximise cumulative reward ≡ minimise total regret
- The summation spans over the full 'lifetime of learning'

### Algorithms

#### Algorithms

- We will discuss several algorithms:
  - Greedy
  - ε-greedy
  - UCB
  - Thompson sampling
- The first three all use **action value estimates**  $Q_t(a) \approx q(a)$

#### Action values

The **action value** for action **a** is the expected reward

$$q(a) = \mathbb{E}[R_t|A_t = a]$$

A simple estimate is the average of the sampled rewards:

$$Q_{t}(a) = \frac{\sum_{n=1}^{t} I(A_{n} = a) R_{n}}{\sum_{n=1}^{t} I(A_{n} = a)}$$

 $\mathcal{I}(\cdot)$  is the **indicator** function:  $\mathcal{I}(\text{True}) = 1$  and  $\mathcal{I}(\text{False}) = 0$ 

The **count** for action **a** is

$$N_t(a) = \sum_{n=1}^t \mathcal{I}(A_n = a)$$

#### Action values

This can also be updated incrementally:

$$Q_t(A_t) = Q_{t-1}(A_t) + \alpha_t \underbrace{\left(R_t - Q_{t-1}(A_t)\right)}_{\text{error}},$$
 
$$\forall a \neq A_t \ : \ Q_t(a) = Q_{t-1}(a)$$

with

$$\alpha_t = \frac{1}{N_t(A_t)}$$
 and  $N_t(A_t) = N_{t-1}(A_t) + 1$ ,

where  $N_0(a) = 0$ .

- We will later consider other step sizes  $\alpha$
- For instance, constant  $\alpha$  would lead to **tracking**, rather than averaging

# Algorithms: greedy

#### The greedy policy

One of the simplest policies is **greedy**:

- Select action with highest value:  $A_t = \underset{a}{\operatorname{argmax}} Q_t(a)$
- Equivalently:  $\pi_t(a) = I$  ( $A_t = \underset{a}{\operatorname{argmax}} Q_t(a)$ ) (assuming no ties are possible)

### Algorithms: $\varepsilon$ -greedy

#### *ε*-Greedy Algorithm

- Greedy can get stuck on a suboptimal action forever
  - · linear expected total regret
- The  $\varepsilon$ -greedy algorithm:

With probability 1 
$$-\varepsilon$$
 select greedy action:  $a = \operatorname{argmax} Q_t(a)$   $a \in A$ 

With probability,  $\varepsilon$  select a random action Equivalently:

$$\pi_t(a) = \begin{cases} (1 - \epsilon) + \epsilon/|\mathcal{A}| & \text{if } Q_t(a) = \max_b Q_t(b) \\ \epsilon/|\mathcal{A}| & \text{otherwise} \end{cases}$$

- ε-greedy continue to explore
  - $\varepsilon$ -greedy with constant  $\varepsilon$  has linear expected total regret

#### Decaying $\varepsilon_t$ -Greedy Algorithm

- Pick a decay schedule for £1, £2, ...
- Decaying ε<sub>t</sub> -greedy has logarithmic asymptotic total regret!
- Unfortunately, the schedule requires advanced knowledge of gaps
- Goal: find an algorithm with sublinear regret for any multi-armed bandit (without knowledge of R)



- If an algorithm forever explores it will have linear total regret
- If an algorithm never explores it will have linear total regret
- Is it possible to achieve sublinear total regret?

#### How well can we do?

#### Theorem (Lai and Robbins)

Asymptotic total regret is at least logarithmic in number of steps

$$\lim_{t \to \infty} L_t \ge \log t \sum_{a \mid \Delta_a > 0} \frac{\Delta_a}{KL(\mathcal{R}_a \mid \mid \mathcal{R}_{a*})}$$

- The performance of any algorithm is determined by similarity between the optimal arm and other arms
- Hard problems have similar-looking arms with different means
- This is described formally by the gap and the similarity in distributions

## Optimism in the face of uncertainty

Theory: what is possible?

#### Optimism in the Face of Uncertainty



- Which action should we pick?
- More uncertainty about its value: more important to explore that action
- The more uncertain we are about an action-value, the more important it is to explore that action
- It could turn out to be the best action

#### Optimism in the Face of Uncertainty



- After picking blue action
- We are less uncertain about the value
- And more likely to pick another action
- Until we home in on the best action

### Algorithms: UCB

#### **Upper Confidence Bounds**

- Estimate an upper confidence  $U_t(a)$  for each action such that:  $q(a) \le Q_t(a) + U_t(a)$  with high probability
- Select action maximizing upper confidence bound (UCB)

$$a_t = \operatorname{argmax} Q_t(a) + U_t(a)$$
  
 $a \in A$ 

- The uncertainty should depend on the number of times  $N_t$  (a) action a has been selected
  - Small  $Nt(a) \Rightarrow \text{large } Ut(a)$  (estimated value is uncertain)
  - Large  $N_t(a) \Rightarrow \text{small } U_t(a)$  (estimated value is accurate)
- Then **a** is only selected if either...
  - ... $Q_t(a)$  is large (=good action), or
  - ... *U<sub>t</sub>* (*a*) is large (=high uncertainty) (or both)
- Can we derive an optimal bound?

#### **UCB**

UCB using Hoeffding's Inequality:

$$a_t = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \ Q_t(a) + c \sqrt{\frac{\log t}{N_t(a)}}$$

where **c** is a hyper-parameter

- Intuition:
  - If  $\Delta_a$  is large, then  $N_t(a)$  is small, because  $Q_t(a)$  is likely to be small
  - So either  $\Delta_a$  is small or  $N_t(a)$  is small

## Bayesian approaches

#### Bayesian Bandits

- So far we have made no assumptions about the reward distribution R, except bounds on rewards
- Bayesian bandits exploit prior knowledge of rewards, p [R]
- They compute posterior distribution of rewards p [R | ht ]
  - where ht = a1, r1, ..., at-1, rt-1: is the history
- Use posterior to guide exploration:
  - Upper confidence bounds (Bayesian UCB)
  - Probability matching (Thompson sampling)
- Better performance if prior knowledge is accurate

#### Bayesian Bandits: Example

- Consider bandits with Bernoulli reward distribution: rewards are 0 or +1
- For each action, the prior could be a **uniform distribution** on [0, 1]
- This means we think each value in [0,1] is equally likely
- Updating the posterior

#### Bayesian Bandits: Example

Suppose:  $R_1 = +1$ ,  $R_2 = +1$ ,  $R_3 = 0$ ,  $R_4 = 0$ 



#### Bayesian Bandits with Upper Confidence Bounds



- We can estimate upper confidences from the posterior
  - e.g.,  $U_t(a) = c\sigma_t(a)$  where  $\sigma(a)$  is std dev of  $p_t(q(a))$
- Then, pick an action that maximises  $Q_t(a) + c\sigma(a)$

## Algorithms: Thompson sampling

#### **Probability Matching**

- A different option is to use probability matching:
- Select action *a* according to the probability (belief) that *a* is optimal

$$\pi_t(a) = p\left(q(a) = \max_{a'} q(a') \mid \mathcal{H}_{t-1}\right)$$

- Probability matching is optimistic in the face of uncertainty:
  - Actions have higher probability when either the estimated value is high, or the uncertainty is high
- Can be difficult to compute  $\pi(a)$  analytically from posterior (but can be done numerically)

#### Thompson Sampling

#### Thompson sampling (Thompson 1933):

- Start with prior beliefs (probability distributions) for each action. Typically, a Beta distribution is used
- Sample  $Q_t(a) \sim p_t(q(a))$ ,  $\forall a$
- Select action maximising sample,  $A_t = \operatorname{argmax} Q_t(a)$
- · Observe the reward for the chosen action.
- Update the probability distribution for the chosen action based on the observed reward using Bayesian inference.
- · Repeat the process for the next time step.
- The idea behind Thompson Sampling is to balance exploration and exploitation by using
  uncertainty in the estimated values. It adapts over time as more data is collected, making
  it a powerful and flexible strategy.
- For Bernoulli bandits, Thompson sampling achieves Lai and Robbins lower bound on regret, and therefore is optimal

## End of lecture