STAT 135 Lecture 8

Henry Liev

9 July 2025

Example 0.1 (Rao-Blackwellization Example)

Have $X_1, \ldots, X_n \stackrel{iid}{\sim} Bernoulli(p)$ Estimate p

Solution. $T = \sum_{i=1}^{n} X_i$ is sufficient

$$\hat{\theta} = X_1$$

Use Rao-Blackwell to improve

$$\tilde{\theta} = E(\hat{\theta}|T)$$

$$E\left[\sum_{i=1}^{n} X_i | T = t\right] = t \to \sum_{i=1}^{n} E\left[X_i | T = t\right] = t$$

$$E(X_1|\sum_{i=n}^{n} X_i = t) = \frac{t}{n} = \frac{\sum_{i=1}^{n} x_i}{n} \quad \text{sample fraction}$$

Method 0.2 (Rao-Blackwell Playbook)

- 1. Start with an estimator $\hat{\theta}$, could be bad
- 2. Find a sufficient statistic T
- 3. Rao-Blackwell says make a new estimator $\tilde{\theta} = E(\hat{\theta}|T)$
- 4. $\tilde{\theta}$ is better than $\hat{\theta}$

Remark 0.3 (Statistics Big Picture, Coin Flipping)

- 1. What is a good estimate for p? (Estimation)
- 2. Is the coin fair? (Hypothesis testing)
- 3. What is a reasonable range for p? (Interval esimation/confidence intervals)

Definition 0.4 (Hypothesis Testing)

- Statements about a parameter and whether data provides evidence for/against
- Decisions based on statements

Example 0.5 (Analogy: Criminal Trial)

 H_0 : Defendent is not guilty H_1 : Defendent is guilty

True state of the world	Don't reject H_0 (Find not Guilty)	Reject H_0 (Find Guilty)
	(rma not Gunty)	(rma Gunty)
H_0 : Defendent Not Guilty	No Error	Type II Error
H_1 : Defendent Is Guilty	Type I Error	No Error

Definition 0.6 (Simple Hypotheses)

Two possible values for unknown θ , write the problem as:

Null $H_0: \theta = \theta_0$ vs. Alternative $H_1: \theta = \theta_1$ Sample: One possible value

Method 0.7 (Setup)

Data $X_1, \ldots, X_n \sim f(x|\theta)$

 $H_0: \theta = \theta_0$ $H_1: \theta = \theta_1$

Binary decisions $d(X_1, \ldots, X_n) = 0$ or 1

 $P(d(X_1, ..., X_n) = 1 | H_0) = P(\text{Type I error}) = \alpha$ (Significance level)

 $P(d(X_1, ..., X_n) = 0 | H_1) = P(\text{Type II error}) = \beta, 1 - \beta$ (Power)

Example 0.8

Two types of coin

p = P(heads)

 $H_0: p = 0.5$

 $H_1: p = 0.7$

Three flips of the coin

 $X = \text{number of heads}, X \sim bin(3, p)$

Solution.

x	$P(X = x H_0)$	$P(X=x H_1)$	$\frac{P(X=x H_0)}{P(X=x H_1)}$
0	0.125	0.027	4.63
1	0.375	0.189	1.98
2	0.375	0.441	0.85
3	0.125	0.343	0.36

Suppose we want $\alpha=\frac{1}{2}$, we would make the cutoff at $X\geq 2$ or LR<1.98 (LR = Likelihood Ratio) What is β if we do that? $\beta=0.216$ and power of test = 1-0.216

$$LR = \frac{P(X = x|H_0)}{P(X = x|H_1)}$$

Definition 0.9 (Test Statistic)

Function of data we use to make the decision

Definition 0.10 (Rejection Region)

Sample values for which we reject H_0

Remark 0.11 (Problem Framing)

Require a hard limit on α . Try to minimize β subject to that or maximize power $1 - \beta$. Start with a limit on α

Lemma 0.12 (Neyman-Pearson Lemma)

Suppose H_0 and H_1 are simple hypotheses, if there is a likelihood ratio test with level α . No other test has higher power

Definition 0.13 (Likelihood Ratio Test)

$$\frac{f(X_1,\ldots,X_n|\theta_0)}{f(X_1,\ldots,X_n|\theta_1)}$$

Rejects for H_0 for some LR ; C