Discrete Mathematics

Propositional Logic

Shin Hong

Textbook coverage

- Sec. I.I Propositional logic
- Sec. I.3. Propositional equivalence
- Sec. I.2 Applications of propositional logic

Propositional Logic

Logic

- Logic, or a logic system, is a set of rules to specify and derive a certain kind of statements
 - to achieve clarity and correctness in an argument

- A logic system has the syntactic and the semantic aspects
 - syntax: symbolic structure of the statements
 - semantics: a relation between symbolic structures and meaning

Propositional Logic

Discrete Math.

Propositional Logic

- A statement in the propositional logic consists one or multiple propositions connected with logical operators
- A proposition is a declarative sentence that is either true or false
 - | + | = 2
 - Vancouver is the capital of Canada
 - $-\frac{1+2+3}{}$
 - -x+1=2

- A propositional variable is a symbol that represents a propositional statement
 - the value of a propositional variable is either true or false
 - the value is definitive within a statement

Propositional Logic

Propositional Logic

- An atomic proposition is a propostion that cannot be expressed in term of simpler terms
- A compound proposition is formed with other propositions and logical operators
 - logical operators (connectives): negation, disjunction, conjunction, XOR, implication, etc.
 - E.g., The negation of p for a proposition p, denoted as $\neg p$, is the proposition that is true only when p is false.
- Formal grammar

```
P := A \mid C
A := p \mid q \mid r \mid ...
C := \neg P \mid (P) \mid P \lor P \mid P \land P \mid ...
```

Propositional Logic

Discrete Math.

Evaluation

 A propositional statement with propositional variables may have different evaluations (truth values) depending on the values of each propositional variable

-ex.
$$p \lor (q \land r)$$

• An assignment (model or valuation) of a proposional statement is a combination of truth values of the propositional variables

- e.g.,
$$\phi_1 = (p: T, q: T, r: T)$$
 or $[p]_{\phi_1} = T$, $[q]_{\phi_1} = T$, $[r]_{\phi_1} = T$
 $\phi_2 = (p: F, q: T, r: F)$ or $[p]_{\phi_1} = F$, $[q]_{\phi_1} = T$, $[r]_{\phi_1} = F$

$$\phi_1 \vDash p \lor (q \land r)$$
$$\phi_2 \not\vDash p \lor (q \land r)$$

Propositional Logic

Discrete Math.

Implication (Conditional Statement)

- An implication is a logical connective such that $p \to q$ evaluates to True when q is true if p is true
 - $p \rightarrow q$ is equivalent with $\neg p \lor q$
 - used to state a condition
 - examples
 - if you do not take midterm, you get F
 - if you are in the Handong campus, you are in Pohang
 - $x < y \rightarrow x < y + 1$
 - $(2 + 3 = 4) \rightarrow (1 + 2 = 4)$
- The converse of $p \rightarrow q$ is $q \rightarrow p$.
- The inverse of $p \rightarrow q$ is $\neg p \rightarrow \neg q$.
- The contrapositive of $p \rightarrow q$ is $\neg q \rightarrow \neg p$.

Propositional Logic

Logic

Discrete Math.

Equivalence

- The condition that two propositions p and q evaluate to the same can be expressed as $(p \to q) \land (q \to p)$, or simply $p \leftrightarrow q$
 - have the same truth value for every assignment
 - a statement $p \leftrightarrow q$ refers as p if and only if q (or simply p iff q)

Propositional Logic

Example

Equivalence	Name
$p \wedge \mathbf{T} \equiv p$	Identity laws
$p \vee \mathbf{F} \equiv p$	
$p \vee \mathbf{T} \equiv \mathbf{T}$	Domination laws
$p \wedge \mathbf{F} \equiv \mathbf{F}$	
$p \lor p \equiv p$	Idempotent laws
$p \wedge p \equiv p$	
$\neg(\neg p) \equiv p$	Double negation law
$p \vee q \equiv q \vee p$	Commutative laws
$p \wedge q \equiv q \wedge p$	
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	Associative laws
$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Distributive laws
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	

• De Morgan's law:

$$\neg(p \land q) \leftrightarrow \neg p \lor \neg q$$
$$\neg(p \lor q) \leftrightarrow \neg p \land \neg q$$

p	q	$p \lor q$	$\neg (p \lor q)$	$\neg p$	$\neg q$	$\neg p \land \neg q$
Т	T	Т	F	F	F	F
T	F	T	F	F	T	F
F	T	T	F	T	F	F
F	F	F	T	T	T	T

Propositional Logic

Discrete Math.

Propositional Satisfiability

- ullet A proposition p is **satisfiable** if there exists an assignment that makes p true
- A proposition p is **unsatisfiable** if p is not satisfiable
 - A unsatisfiable proposition is called as contradiction
- ullet A proposition p is **valid** if p is true for all assignments
 - A valid proposition is called as tautology
 - E.g., if x = y, then x = y
 I just want to live while I am alive Bon Jovi

Propositional Logic

Logic Puzzle: Knight or Knaves

- An island has two kinds of inhabitants, knights, who always tell the truth, and knaves, who always lie.
- You go to the island and meet A and B.
 - A says "B is a knight."
 - B says "The two of us are of opposite types."

What are the types of A and B?

Propositional Logic

Discrete Math.

Logic Puzze: Treasure

- There are 3 trunks only one of which contains a treasure.
- Trunk I and Trunk 2 are inscribed with "This trunk is empty" and Trunk 3 is inscribed with "Treasure is in Trunk 2".
- You know that only one of the three inscriptions is true.
- Where's the treasure?

Propositional Logic

Discrete Math.

System Requirement Analysis

- Logic-based languages (formal languages) are powerful tools for specifying and analyzing software requirements rigorously
- E.g., Lufthansa A320 Airbus accident at Warsaw in 1993
 - Requirement: Turn on reverse thrust when airplane is running on runway for landing
 - System design specification (adopted)
 - SET REVERSE THRUST AS ON IFF (MODE IS LANDING) AND (ALTITUDE IS 0)
 - SET MODE AS LANDING IFF

 NOT(VELOCITY IS 0) AND NOT(LAND GEAR ANG IS 0)

Propositional Logic

Discrete Math.