

Continuous Functions

by Sophia

WHAT'S COVERED

In this lesson, you will learn what it means for a function to be continuous, including how limits are used in relation to continuity. Specifically, this lesson will cover:

- 1. The Definition of Continuity
- 2. Determining if a Function Is Continuous at x = a
- 3. Determining Intervals Over Which a Function Is Continuous

1. The Definition of Continuity

A function is called continuous at a point where there is no break in the graph at that point.

That is,
$$\lim_{x \to a} f(x) = f(a)$$
.

Consider the graph of y = f(x) shown below. We will examine the continuity of f(x) when x = 1, 2, 3, 3 and 4.

Given Point	Continuity of $f^{(\chi)}$ at the Given Point
<i>x</i> = 1	The graph of $f(x)$ is continuous when $x=1$ since there are no breaks in the graph at that point. Looking just before $x=1$, the graph passes through the point $(1, f(1))$ and continues to "flow" afterwards.
x=2	The graph of $f(x)$ is NOT continuous when $x = 2$. There is a hole in the graph when $x = 2$, meaning there is a break in the graph.
x=3	The graph is NOT continuous when $x=3$. There is a break in the graph.
x = 4	The graph is NOT continuous when $x = 4$. There is a hole in the graph.

Now, considering these 4 points, let's examine the limits at these points and the values of f(x) at these points as well as whether or not the function is continuous at these points:

x-value	$\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x})$	f(a)	Continuous?
x=1	$\lim_{x \to 1} f(x) = 2$	f(1) = 2	Yes
x=2	$\lim_{x \to 2} f(x) = 2$	f(2) = 1	No
x=3	$\lim_{x\to 3} f(x)$ does not exist (the left- hand and right-hand limits are	f(3) = 2	No

	not equal).		
x = 4	$\lim_{x \to 4} f(x) = 2$	f(4) is not defined.	No

From this table, we can conclude the following:

- A function f(x) is continuous at x = a if $\lim_{x \to a} f(x) = f(a)$. That is, $\lim_{x \to a} f(x)$ exists and is equal to the value of f(a).
- A function f(x) is not continuous at x = a if any of the following occur:
 - $\lim f(x)$ does not exist.
 - f(a) is undefined.
 - $\lim f(x)$ exists, but is not equal to f(a).

Continuous Function

A function that has no breaks in the graph. That is, $\lim_{x \to a} f(x) = f(a)$.

2. Determining if a Function Is Continuous at x = a

To determine if a function is continuous at x = a, we need to compare the values of $\lim_{x \to a} f(x)$ and f(a). While computing f(a) is straightforward, computing $\lim_{x\to a} f(x)$ requires more care, and sometimes requires one-sided limits.

 \Leftrightarrow EXAMPLE Consider the function $f(x) = \begin{cases} 2x + 1 & \text{if } x < 4 \\ (x - 1)^2 & \text{if } x > 4 \end{cases}$. Determine if f(x) is continuous at x = 4.

First, check to see if $\lim_{x \to 4} f(x)$ exists. Since f(x) changes definition when x = 4, we need to consider the onesided limits:

- Left-sided limit: $\lim f(x) = \lim (2x+1) = 2(4) + 1 = 9$
- Lert-sided limit: $\lim_{x\to 4^-} f(x) = \lim_{x\to 4^-} (2x+1) = 2(4)+1=9$ Right-sided limit: $\lim_{x\to 4^+} f(x) = \lim_{x\to 4^+} (x-1)^2 = (4-1)^2 = 9$ Conclusion: $\lim_{x\to 4} f(x) = 9$, which means it exists and is equal to 9.

From looking at the function definition, $f(4) = (4-1)^2 = 9$. Thus, the limit and the function value are the same; therefore the function is continuous at x = 4. Here is the graph of f(x) to help visualize this:

 \Leftrightarrow EXAMPLE Consider the function $f(x) = \begin{cases} \frac{x^2 - x - 12}{x^2 - 16} & \text{if } x \neq 4 \\ 5 & \text{if } x = 4 \end{cases}$. Determine if f(x) is continuous at x = 4.

First, evaluate $\lim_{x \to 4} f(x)$. Since $f(x) = \begin{cases} \frac{x^2 - x - 12}{x^2 - 16} & \text{if } x \neq 4 \\ 5 & \text{if } x = 4 \end{cases}$ is defined on both sides of x = 4, there is no need

to compute one-sided limits.

$$\lim_{x \to 4} f(x) = \lim_{x \to 4} \frac{x^2 - x - 12}{x^2 - 16} = \lim_{x \to 4} \frac{(x - 4)(x + 3)}{(x + 4)(x - 4)} = \lim_{x \to 4} \frac{(x + 3)}{(x + 4)} = \frac{7}{8}$$

However, f(4) = 5. Since the limit and the function value are different, this function is not continuous at x = 4. Here is a graph to help visualize this:

TRY IT

Consider the function: $f(x) = \begin{cases} 3x + 4 & \text{if } x < 1 \\ \sqrt{x+8} & \text{if } x \ge 1 \end{cases}$

Determine if f(x) is continuous when x = 1.

Т

3. Determining Intervals Over Which a Function Is Continuous

For a function to be continuous on an interval of values, it has to be continuous at every point contained in the interval.

 \approx EXAMPLE $f(x) = x^2 - 4x + 5$ is continuous at every real number. Thus, we say that f(x) is continuous on the interval $(-\infty, \infty)$.

 $\not \in$ EXAMPLE $f(x) = \frac{2}{x-1}$ is continuous at every value except x = 1. We can say that f(x) is continuous on the intervals $(-\infty, 1)$ and $(1, \infty)$. This can also be written as $(-\infty, 1) \cup (1, \infty)$.

It is also possible to define continuity at an endpoint. For example, consider $f(x) = \sqrt{6x - x^2}$, whose graph is shown below. Note that the domain of this function is [0, 6].

This means that defining continuity at x = 0 and x = 6 takes a bit more care.

Consider the endpoint x = 0. It can only be approached from the right. Looking at the graph, observe that $\lim_{x \to 0^+} f(x) = 0$ and f(0) = 0.

Consider the endpoint x = 6. It can only be approached from the left. Looking at the graph, observe that $\lim_{x \to 6^{-}} f(x) = 0$ and f(6) = 0.

A function is **continuous from the left** at x = a if $\lim_{x \to a^{-}} f(x) = f(a)$.

A function is **continuous from the right** at x = a if $\lim_{x \to a^+} f(x) = f(a)$.

Thus, in the previous problem, we can say that f(x) is continuous from the left at x = 6 and continuous from the right at x = 0. This enables us to say that f(x) is continuous for all values on the interval [0, 6].

 \Leftrightarrow EXAMPLE Determine the interval(s) over which $f(x) = \sqrt{x-4}$ is continuous. The graph is shown below.

Note that the domain of f(x) is $[4, \infty)$. It follows that f(x) is continuous on the interval $[4, \infty)$, noting that it is continuous from the right at x = 4.

Consider the following table:

Function	Continuous Interval
$f(x) = 3x - x^4$?
$g(x) = \frac{x}{x+4}$?

Determine the interval(s) over which each function is continuous.

Function	Continuous Interval
$f(x) = 3x - x^4$	(-∞,∞)
$g(x) = \frac{x}{x+4}$	(-∞, -4)∪(-4, ∞)
$h(x) = \sqrt{2x - 1}$	$\left[\frac{1}{2},\infty\right)$

TERMS TO KNOW

Continuous From the Left

A function is continuous from the left at x = a if $\lim_{x \to a^{-}} f(x) = f(a)$.

Continuous From the Right

A function is continuous from the right at x = a if $\lim_{x \to a^+} f(x) = f(a)$.

SUMMARY

In this lesson, you learned the definition of continuity, understanding that when given a graph, continuity is determined by locations where the graph has no breaks, jumps, or holes. A continuous function has no breaks in the graph; that is, $\lim_{x\to a} f(x) = f(a)$. You learned that you can use limits to determine if a function is continuous at x=a (a specific point) by comparing the values of $\lim_{x\to a} f(x)$ and f(a). It's important to note that while computing f(a) is straightforward, computing $\lim_{x\to a} f(x)$ requires more care, and sometimes requires one-sided limits. Lastly, you learned that by examining the domain of a function, you can use it to determine the intervals over which a function is continuous, noting that the function has to be continuous at every point contained in the interval in order to say the function is continuous on the interval.

SOURCE: THIS WORK IS ADAPTED FROM CHAPTER 1 OF CONTEMPORARY CALCULUS BY DALE HOFFMAN.

TERMS TO KNOW

Continuous From the Left

A function is continuous from the left at x = a if $\lim_{x \to a^{-}} f(x) = f(a)$.

Continuous From the Right

A function is continuous from the left at x = a if $\lim_{x \to a^+} f(x) = f(a)$.

Continuous Function

A function that has no breaks in the graph. That is, $\lim_{x \to a} f(x) = f(a)$.