LA2 Vektorraum

John Truninger

LATEX

Vektorraum

Enthält folgende Regeln:

 Addition Skalare $\vec{a}, \vec{b} \in V \rightarrow \vec{a} + \vec{b} \in V$ $\vec{a} \in V \to \alpha \cdot \vec{a} \in V$

Existenz 0

 $\vec{a} + (-\vec{a}) = \vec{0}$

Beispiel:

$$V = \left\{ \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} \mid x_k \in \mathbb{R}, k = 1, \dots, n \right\} = \mathbb{R}^n$$

Untervektorraum

Enthält folgende Regeln:

- Addition
- Skalare
- Existenz $\vec{0}$

 $\vec{a} \in V \rightarrow \alpha \cdot \vec{a} \in V$ $\vec{a} + (-\vec{a}) = \vec{0}$

 $\vec{a}, \vec{b} \in V \rightarrow \vec{a} + \vec{b} \in V$

Affiner Unterraum:

Untervektorraum ohne $\vec{0}$

Beispiel:

Ebene ist UVR von \mathbb{R}^3 wenn $\vec{0} \in$ Ebene

Raum Kombinationen

Schnittmenge:

Vereinigungsmenge:

$$w_1, \dots, w_n \in V$$

 $w = w_1 \cup \dots \cup w_n$

 w_1 oder w_2 Teilmenge Nur wenn evtl. von anderen ist könnte $w_1 \cup w_2 \rightarrow \mathsf{UVR}$

Summe:

$$\begin{array}{rcl} w_1, \dots, w_n \in V \\ w &=& w_1 + \dots + w_n \end{array}$$

Lineare Hülle / Erzeugendensysteme

Lineare Hülle: (alle Vektor Kombinationen):

$$Lin_k(v_1,\ldots,v_n) = k \cdot v_1 + \ldots + k \cdot v_n$$

aufgespannter Span:

Erzeugendensystem:

$$Span_k(v_1,\ldots,v_n)$$

 $\{v_1,\ldots,v_n\}$

Beispiel: (Horizontale Ebene in \mathbb{R}^3)

$$\vec{a} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \vec{b} = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} \rightarrow \text{Erzeugendensystem}$$
 Hülle: $Lin(\vec{a}, \vec{b}) = \{ \vec{x} \in \mathbb{R}^3 \mid \vec{x} = \lambda \cdot \vec{a} + \mu \cdot \vec{b} \}$

 $Lin(\vec{v_1}) \rightarrow \text{beschreibt Gerade mit Richtungsvektor}$ $Lin(\vec{v_1}, \vec{v_2}) \rightarrow \text{beschreibt aufgespannte Ebene}$ $Lin(\vec{v_1}, \vec{v_2}, \vec{v_3}) \rightarrow \text{beschreibt aufgespanntes Volumen}$

Dimension beinflusst Obiekt

Lineare Abhängigkeit

Tupel $(v_1, \ldots, v_n) \in V^n$ ist linear unabhängig:

- $0 = \lambda \cdot \vec{v_1} + \ldots + \mu \cdot \vec{v_n}$
- \rightarrow eindeutia
- $v_1 \in Span_k(v_1, \ldots, v_n)$
- → muss enthalten

Voraehen:

- Vektoren in lin. Kombination
- $\lambda_1 \cdot \vec{v_1} + \ldots + \lambda_n \cdot \vec{v_n} = \vec{0}$
- LGS aufstellen lösen lin, unabhängig:
- $\lambda_1, \dots, \lambda_n = 0$
- · LGS:
- $x^0: x^0(\lambda_1, \dots, \lambda_n)$
- $x^1: x^1(\lambda_1, \ldots, \lambda_n)$
- LGS = 0 nicht lin. abhängig
- LGS ≠ 0 lin. abhängig (zb. unendliche Lösungen)

Note: Matritzen:
$$\rightarrow \lambda_1 \cdot A + \ldots + \lambda_n \cdot N = \vec{0}$$

$$LGS = \left(\begin{array}{cccc} \lambda_1 A_{11} & \dots & \lambda_n N_{11} & 0 \\ \lambda_1 A_{12} & \dots & \lambda_n N_{12} & 0 \\ \vdots & \ddots & \vdots & \vdots \\ \lambda_1 A_{nn} & \dots & \lambda_n N_{nn} & 0 \end{array} \right)$$

$$x^2+1$$
, $x+1$, $1 \rightarrow$ linear unabhängig? $\lambda_1 \cdot (x^2+1) + \lambda_2 \cdot (x+1) + \lambda_3 \cdot 1 = 0 \rightarrow LGS$

$$x^{0}: \lambda_{1} + \lambda_{2} + \lambda_{3} = 0$$

 $x^{1}: \lambda_{2} = 0$
 $x^{2}: \lambda_{1} = 0$

$$\lambda_1 = \lambda_2 = \lambda_3 = 0$$
 \rightarrow linear unabhängig

Basis

min. Menge von Erzeugendensystem welche

lin. unabhängig sind

Vorgehen Verkürzung:

- Ist lin. unabhängig?
 - Ja: → Basis
- Nein: Erzeugendensystem verkleinern
- Vorgehen Erweiterung:
- Teilmenege Erzeugendensystem von V?
 - Ja: → Basis
- Nein: Elemente von V hinzufügen nur lin. unabhängige

Matritzen:

$$\begin{pmatrix} \star & \star & \star & \star \\ 0 & \star & \star & \star \\ 0 & 0 & \star & \star \\ 0 & 0 & \star & \star \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \text{Enweitern: ZS fortsetzen}$$

$$\rightarrow \text{K\"{u}rzen: lin. Kombination k\"{u}rzen}$$

Basis Dimensionen:

- Polynome: dim(P) = Grad + 1
- Matritzen: $dim(M^{n \times m}) = n \times m$
- Vektoren: dim(V) = Anzahl Vektoren

Koordinaten

Skalare $\lambda_1, \ldots, \lambda_n$ von geordnetem Tuple

Beispiel Vektoren:

$$\begin{aligned} & \overrightarrow{Basis(\vec{v_1},\vec{v_2})} \\ & \overrightarrow{v_1} = \begin{pmatrix} 1\\0 \end{pmatrix}, \quad \overrightarrow{v_2} = \begin{pmatrix} 2\\2 \end{pmatrix}, \quad \overrightarrow{b} = \begin{pmatrix} -2\\2 \end{pmatrix} \\ & \lambda_1 \cdot \overrightarrow{v_1} + \lambda_2 \cdot \overrightarrow{v_2} = \overrightarrow{b} \\ & \lambda_1 \cdot \begin{pmatrix} 1\\0 \end{pmatrix} + \lambda_2 \cdot \begin{pmatrix} 2\\2 \end{pmatrix} = \begin{pmatrix} -2\\2 \end{pmatrix} \rightarrow \mathsf{LGS} \end{aligned}$$

Beispiel Polynome:

$$Basis(p_0, p_1, p_2)$$

$$p_0 = 1$$
, $p_1 = 1 + x$, $p_2 = x + x^2$, $p_3 = 2 - 7x + 3x^2$
 $\lambda_1 \cdot p_0 + \lambda_2 \cdot p_1 + \lambda_3 \cdot p_2 = p_3$

 \rightarrow LGS aufstellen nach x^0, x^1, x^2 und für $\lambda_1, \lambda_2, \lambda_3$ einsetzen

Koordinatenvektor:

Ist Vektor aus $\lambda_1, \ldots, \lambda_n$ Resultate von LGS

$$\rightarrow \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix}$$

Dimension

$$dim_k(V) = len(Basis(v_1, \dots, v_n))$$

Jedes Element in V lässt sich eindeutig mit Basen darstellen

V nicht endlich: $dim_k(V) = \infty$