Polynomial Interpolation

Find the polynomial that interpolates the data points $\{(-1,-1), (0,3), (2,11), (3,27)\}$

02. Show that the polynomial that interpolates the data

x	-2	-1	0	1	2	3
f(x)	1	4	11	16	13	-4

has degree 3.

Recall that if $P_n(x)$ is the degree n polynomial that interpolates f(x) at the set of $\left\{x_i\right\}_{0\leq i\leq n}$, and if f(x) has (n+1) continuous derivatives in the interval $\big[\min_{0\leq i\leq n}\,x_i\;,\;\max_{0\leq i\leq n}\,x_i\big],$ then

$$f(x) - P_n(x) = \frac{f^{(n+1)}(\theta)}{(n+1)!} (x - x_0) (x - x_1) \cdots (x - x_n)$$

Let $f(x) = \cos(x) + \sin(x)$ and let $P_2(x)$ be the polynomial that interpolates f(x) at the points $x_0 = 0$, $x_1 = 1/4$, $x_2 = 1/2$ and x = 1.

Find a bound for $\max_{0 \le x \le 1} |f(x) - P_2(x)|$

Use MATLAB to solve the system satisfied by the coefficients of $P_2(x)$ and compare the value of $|f(\pi/6) - P_2(\pi/6)|$ to the bound found in the previous question.

let $P_n(x)$ be the degree n polynomial that interpolates a function f(x) at the points $\left\{x_i\right\}_{0 < i \leq n}. \quad \text{Suppose} \quad x_i = x_0 + i\,h, \quad h > 0, \text{ and that } f(x) \text{ has } (n+1) \text{ continuous } f(x) \text{ and that } f(x) \text{ has } (n+1) \text{ continuous } f(x) \text{ and that } f(x) \text{ has } (n+1) \text{ continuous } f(x) \text{ has } f($ derivatives in the interval $[x_0, x_n]$.

Show that $\max_{\substack{x_0 \leq x \leq x_n \\ 0 \leq t \leq 1}} |(x - x_0)(x - x_1) \cdots (x - x_n)| = h^{n+1} \max_{\substack{0 \leq t \leq 1}} |t(t-1) \cdots (t-n)|$ Compute $\max_{\substack{0 \leq t \leq 1}} |t(t-1) \cdots (t-n)|$, for n = 1, 2, 3