

HP signal processing board for SKALFAA

Malta, October 29th 2014

Experiences

- Industrial
 - Vision
 - Motor control
- Imaging
 - Surveillance camera & Industrial camera
 - FPGA analytics
 - Hi performance sensor
- Space and avionics
 - DO 254 development flow
 - FPGA based CPU board
 - Fault injection system
- Telecommunications
 - Ethernet QOS IP cores
- Production
 - Test and qualification process

Some success stories:

Model of the Hi-Reliable COTS Based Computer platform 10 GBit FPGA Ethernet Board for QoS and IDS (2008-2006)

METEOSAT - ESA satellite

CCD camera for industrial applications

 FPGA design flow compliant with a specific avionic standard (Galileo Avionica, SELEX)

 HI REL SBC with 1GHz PPC for space application (ESA, Thales)

 System for SEU fault emulation in SRAM FPGAs (INAF, ESA)

IASF-MILANO NEWCOMERS IN SKA (LFAA TPM)

TPM Project Objective

- Design and implementation of a digital hw platform with suitable FW and SW, for the first stadium of the Low Frequency Aperture Array of the SKA telescope
- Tight requirements
 - Low power
 - Low cost
 - Fit in the Bunker
- Main spec
 - 32 Analog input
 - Up to 1 Gsample
 - Up to 65 dB SFDR
 - Up to 80 Gbit Eth Out
 - Hi performance FPGA

Working Groups

- INAF IASF Milano & Sanitas EG
 - Feasibility study, Hardware design
 - Board prototyping
 - Management firmware & low level SW
- INAF IRA (Bologna, Medicina, Noto)
 - Scientific Case
 - FPGA firmware (Arcetri Observatory)
 - Mechanical design
- SELEX-ES LTD
 - Design specification and process overview
- Analog Device
 - AD & Clocking design support, FMC prototyping for performance verification
- Xilinx
 - Ultrascale Early access program access
 - Firmware for JESD interface and 10-40 Gbit Ethernet interface

Board challenges/numbers

- Main function coexistence:
 - Board powering
 - Digital function
 - Analog to digital low noise conversion
- Mechanical specs
- Cost, testability & manufacturability
- Total power

- 6U x 170 mm
- 17 large DC-DC converters, high current 20A, 5V expected
- 2 large FPGA
- 32 analog input

Feasibility output: main devices

- Direct support from market leader device supplier
 - Xilinx: state of the art 20nm Ultrascale FPGA,
 direct support and early access program
 - Analog Device: last devices close to release
 - JESDB 14 bit 1 GHz dual channel AD
 - JESDB PLL
 - Ultra High PSRR linear regulator for AD
 - SKA DEMO FMC board to performance evaluation

Feasibility output: board architecture

Feasibility output: mechanics and connectors

RF compact connector

8 positions, SNR > 60db Board 2 Board : 10 mm Board dimension: 233 x 170 mm

TPM Rack design for SKA

BOARD DESIGN

Data synchronization

- Synchronous acquisition JESD204B Subclass 1 over all 16 AD
 - Subclass 1 support deterministic latency between AD and FPGA
 - AD Sampling clock generated by PLL from External 10 MHz signal:
 - synchronous Dev Clock for AD distributed with side dedicated clock buffer 1-10
 - synchronous Dev Clock for FPGA transceiver with a scaling factor
 - synchronous Dev Clock for FPGA logic with a separate scaling factor
 - system reference event signal (SYSREF) distributed with side dedicated clock buffer
 1-10 to AD and FPGA
 - FPGA generate SYNC signal to start acquisition
 - PLL input switch over external and internal oscillator
 - On Board PLL generate Lock status signal for management
 - Input PLL lock
 - FPGA PLLs lock status after configurations

FPGA Xilinx Ultrascale: 20 nm device

Part Number	XCKU040	XCKU060	XCKU075
Logic Cells	424,200	580,440	756,000
CLB Flip-Flops	484,800	663,360	864,000
CLB LUTs	242,400	331,680	432,000
Maximum Distributed RAM (Kb)	7,050	9,180	7,290
Block RAM/FIFO w/ECC (36 Kb each)	600	1,080	1,188
Block RAM/FIFO (18 Kb each)	1,200	2,160	2,376
Total Block RAM (Mb)	21.1	38.0	41.8
DSP Slices	1,920	2,760	2,592

Serial Transceivers:

XCKU040 20

GTH = 16.3 Gb/s

Production 1q 2015

Block RAM Capacity (Mb):

XCKU040		1920	
XCKU060			2760
XCKU075			2592
Speed grade	-1	-2	-3
F _{MAX} [MHz] Max GMAC/s	594	661	741
Max GMAC/s	6558	7297	8181

DSP Slice Count

Speed grade	-1	-2	-3
True dual-port Block RAM FMAX [MHz]	525	585	660

FPGA POWER ESTIMATION

GTH Channels	20	100%

Device: XCU40

Overall Usage: 90%

Internal logic: 350 MHz

Toggle rate: 12.5% (default)

DDR3L: 32 bit 1600 MHz

Synthesis Test: Polyphase filter

Filter occupancies

Logic: 1265 CLB, 4.2 %

DSP: 140, 7.9%

AD9680 Datasheet

FEATURES

JESD204B (Subclass 1) coded serial digital outputs 1.65 W total power per channel at 1 GSPS (default settings) SFDR = 85 dBFS at 340 MHz, 80 dBFS at 1 GHz $SNR = 65.3 \text{ dBFS at } 340 \text{ MHz } (A_{IN} = -1.0 \text{ dBFS}),$ 61.4 dBFS at 1 GHz ENOB = 10.8 bits at 10 MHz $DNL = \pm 0.5 LSB$ $INL = \pm 2.5 LSB$ Noise density = -154 dBFS/Hz at 1 GSPS 1.25 V, 2.5 V, and 3.3 V dc supply operation No missing codes Internal ADC voltage reference Flexible input range and termination impedance 1.46 V p-p to 1.94 V p-p (1.70 V p-p nominal) 400 Ω , 200 Ω , 100 Ω , and 50 Ω differential 2 GHz usable analog input full power bandwidth 95 dB channel isolation/crosstalk Amplitude detect bits for efficient AGC implementation 2 integrated wideband digital processors per channel 12-bit NCO, up to 4 cascaded half-band filters Differential clock input Integer clock divide by -1, 2, 4, or 8

350mW per strange

TYPICAL PERFORMANCE CHARACTERISTICS

Small signal dither

Flexible JESD204B lane configurations

AD schematics

Board Powering

Multi stage PDS

- Hi range 12-48V input DC-DC:
 - Output 5V, up to 20 A
 - High Efficiency, 91-94%
- Digital supply: direct DC-DC
 - Management, FPGA, Memory
- Analog supply: DC-DC + Linear
 - PLL, ADC, Amplifier

Power manager

- Voltage /temperature monitoring
- Current monitoring
- Power sequencing

Board Power Est., 2014-2015

Device	Proto 2014	Final 2q 2015	Differences
FPGA, x2, 420 MHz	21,9	21,9	-
AD, x16, 800 MHz	37,5	18,8	New 40 nm from ADI
ADA, x32, gain amplifier	14,4	0	No populated, TBC
Clock (*1)	2,5	2,5	-
DDR3L, x8, 1Ghz	3,4	2,7	New DDR4, TBC
40 GEth & Management	2,8	2,8	-
TOTAL IC	82,7	48,8	
Front panel	16,0	16,0	
Absorbed power (5V):	98,7	64,8	
Panel absorbed , 12V:	103,9	68,2	

(*1) Clock power is a target, TBC

Management

- Voltage/power control
 - absorbed current
 - almost internal voltages
- Board start up
- Health monitor:
 - supply, PLL, FPGA, AD...
- System configuration
 - multiple FPGA bitsrteam
 - receiver board control
- Remote IF Eth
 - UDP direct with CPLD
 - TCP command with CPU

Management CPLD

- Ethernet interface:
 - UDP command with DMA
 - TCP routing to CPU
- FPGA Configuration IF (select map)
 - dynamic fast configuration
 - Radiation Effect monitoring & repair
- Slave serial interfaces
 - I2C, SPI
- Local Bus memory mapped FPGA resources
- Interrupt controller

BOARD LAYOUT

FPGA BANK ASSIGNEMENT

STACKUP (14 LAYERS)

Layer Name	Туре	Usage	Thickness um	Er	Test Width um	Z0 ohm	Diff Z0 ohm	Width um	Gap um
1	Metal	Plane	35	<auto></auto>	150	77.6	100	193.578	100
	Dielectric	Substrate	120	3.7					
2	Metal	Signal	15	<auto></auto>	150	40	100	84.557	150
	Dielectric	Substrate	100	3.7					
3	Metal	Plane	15	<auto></auto>	1000	18.4	75	306.356	203.2
	Dielectric	Substrate	75	4.3					
4	Metal	Signal	15	<auto></auto>	124	39.4	86	92.078	150
	Dielectric	Substrate	75	4.3					
5	Metal	Signal	15	<auto></auto>	124	39.4	100	69.365	203.2
	Dielectric	Substrate	75	4.3					
6	Metal	Plane	15	<auto></auto>	1000	9.3	75	138.219	203.2
	Dielectric	Substrate	75	4.3					
13	Metal	Plane	15	<auto></auto>	254	20.1	75	94.473	203.2
	Dielectric	Substrate	75	4.3					
14	Metal	Plane	15	<auto></auto>	254	20.1	75	94.473	203.2
	Dielectric	Substrate	75	4.3					
7	Metal	Plane	15	<auto></auto>	1000	9.3	75	138.219	203.2
	Dielectric	Substrate	75	4.3					
8	Metal	Signal	15	<auto></auto>	124	39.4	86	98.368	203.2
	Dielectric	Substrate	75	4.3					
9	Metal	Signal	15	<auto></auto>	124	39.4	76	119.834	150
	Dielectric	Substrate	75	4.3					
10	Metal	Plane	15	<auto></auto>	1000	18.4	75	306.356	203.2
	Dielectric	Substrate	100	3.7					
11	Metal	Signal	15	<auto></auto>	100	49.3	90	101.457	124
	Dielectric	Substrate	120	3.7					
12	Metal	Plane	35	<auto></auto>	150	77.6	75	551.498	203.2

SKA TPM STACK UP AREAS

		MANAG	DDR COL.	MGT COL.	AD PDS	AD
1	SHLD/comp	SHLD/comp	SHLD/comp	SHLD/comp	SHIELD/comp	SHIELD/comp
2	50 Ω	50 Ω	Supply 0 HF	Supply 0 HF	strip 100 Ω d	strip 100 Ω d
3	GND	GND	GND	GND	AGND	AGND
4	SIGN 40 Ω	SIGN 40 Ω	SIGN 40 Ω		SW_AVDD1	AVDD1, DVDD
5	SIGN 40 Ω	SIGN 40 Ω	SIGN 40 Ω		AGND	AGND
6	Supply 1	MAN_1V2	DDR_VDD	MGT_AV	SW_AVDD2, SW_AMP_VDD	AVDD2
7	Supply 2	MAN_2V5	MAN_2V5	MGT(i)_AUX	AGND	AGND
8	Supply 3	5V0	5V0	CORE(0,1)	SW_AVDD3	AVDD3,DRVDD AMP_VDD
9	Supply 4	MAN_3V3	Vcc_AUX	MGT_AVTT	AGND	AGND
10	40 Ω /Supply 5	SIGN 40 Ω	SIGN 40 Ω		SW_DVDD	40 Ω
11	40 Ω/Supply 6	SIGN 40 Ω	SIGN 40 Ω		40 Ω	40 Ω
12	GND	GND	GND	GND	AGND	AGND
13	50 Ω/Supply 7	50 Ω			strip 100 Ω d	strip $100 \Omega d$
14	SHLD/comp	SHLD/comp			SHLD/comp	SHLD/comp

ADC related issues (partial)

Device specific positioning and layout issues:

- HS signal routing (16 device in 233 mm board height)
- Staggered placement
- Clock and Sync routing

Stripline technology, 10 G JESDB, 10Geth, Analog Signal, Analog clocks

Stripline on Layer 2, 13

- External shield, layer 1, 14
- Reference GND plane, layer 3, 12

x 4 AD Layout overview

AD input details

THANKS !!!

