ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA

Corso di Laurea Triennale in Ingegneria e Scienze Informatiche

Analisi e sviluppo di algoritmi per la valutazione della qualità delle immagini del volto

Tesi di laurea in: Visione Artificiale

Relatore
Franco Annalisa

Candidato Senni Mattia

Correlatore
Borghi Guido

Abstract

L'uso delle tecniche di visione artificiale per il riconoscimento delle persone tramite il volto è in costante aumento, grazie alla diffusione dei sistemi di riconoscimento biometrico automatico. In questi contesti, è fondamentale garantire un'acquisizione controllata e standardizzata delle immagini facciali, al fine di ridurre errori di riconoscimento e vulnerabilità a minacce come il face morphing. Una cattiva acquisizione può compromettere l'intero processo biometrico, esponendo il sistema a minacce quali la falsificazioni e riducendone l'affidabilità. Questo progetto contribuisce allo sviluppo ed alla valutazione di un software che ha l'obbiettivo di implementare un draft ISO, volto a valutare la qualità dell'acquisizione delle immagini facciali secondo diverse metriche.

Contents

1.1 1.2 1.3 1.4 Il se	Motivazioni Obbiettivo Metodo Struttura della tesi Oftware OFIQ Dementazione della metrica per il rilevamento del difetto degli hi rossi Obbiettivo della metrica Requisiti preliminari Implementazione della metrica	1 1 3 3 3 3 5 5 9 9 10 11
Imp occ 3.1 3.2	olementazione della metrica per il rilevamento del difetto degli hi rossi Obbiettivo della metrica	9 9 10
3.1 3.2	hi rossi Obbiettivo della metrica	9
_	Obbiettivo della metrica per il rilevamento dello sguardo ntale Obbiettivo della metrica	15 15 15 16
Rile 5.1 5.2 5.3	evamento dello sguardo frontale tramite CNN Scelta del modello	19 19 19 20
Ril 6.1	Fine-Tuning di modelli CNN	23 23 24 25 26
	5.3 Rile 6.1	5.2 Utilizzo del modello

CONTENTS

CONTENTS

	6.3		li di machine learning basati sui landmark facciali					
		6.3.1	Risultati dei modelli basati su landmark	29				
7	Str	Strumenti utilizzati per lo sviluppo delle metriche 31						
	7.1	Datase	et utilizzati per la valutazione					
		7.1.1	ONOT	31				
		7.1.2	TONO	32				
	7.2	Onnx	e OnnxRuntime	32				
	7.3	FVC (Ongoing	33				
	7.4	Frame	work PyTorch	33				
	7.5	Libreri	ia Keras	33				
	7.6	Libreri	ia XGBoost	33				
	7.7	Jupyte	er Notebook, Numpy e Matplotlib	35				
8	Val	utazion	ne delle metriche	37				
	8.1	Valuta	zione su FVC-Ongoing	37				
		8.1.1	Metriche valutate					
		8.1.2	Il protocollo					
		8.1.3	Valutazione delle metriche di OFIQ					
		8.1.4	Valutazione metrica per il rilevamento del difetto degli occhi					
			rossi	41				
		8.1.5	Valutazione metrica per il rilevamento dello sguardo frontale					
	8.2		zione su dataset sintetici					
	0	8.2.1	Dataset utilizzati					
		8.2.2	Metriche valutate					
		8.2.3	Procedimento di valutazione					
		8.2.4	Valutazione delle metriche di OFIQ					
		8.2.5	Valutazione metrica per il rilevamento dello sguardo frontale					
		8.2.6	Valutazione dei modelli di machine learning sviluppati					
	8.3		i dei risultati					
	0.0	8.3.1	Metriche di OFIQ					
		8.3.2	Rilevamento del difetto degli occhi rossi					
		8.3.3	Rilevamento del difetto dello sguardo frontale					
9	Con	clusio	ni	55				
				57				
Bi	bliog	graphy		57				

vi CONTENTS

List of Figures

3.1 3.2	Immagine dei landmark estratti dalla rete ADNet	10
	degli occhi rossi	14
4.1	Immagine rappresentativa dei rapporti utilizzato dall'algoritmo di stima dello sguardo frontale manuale	16
6.1 6.2 6.3 6.4 6.5	Matrice di confusione del Fine-Tuning di MobileNetV2, versione 1 . Matrice di confusione del Fine-Tuning di MobileNetV2, versione 2 . Matrice di confusione del modello CNN sviluppato da zero Architettura della CNN implementata	25 26 27 28 30
8.1	Distribuzione degli score per la metrica di rilevamento del difetto degli occhi rossi (versione HSV)	41
8.2	Distribuzione degli score per la metrica di rilevamento del difetto degli occhi rossi (versione yCbCr)	42
8.3	Distribuzione degli score per la metrica di rilevamento del difetto degli occhi rossi (versione yCbCr senza esclusione dei pixel della pupilla dal calcolo dei pixel dell'iride)	43
8.4	Distribuzione degli score per la metrica di rilevamento dello sguardo frontale	43
8.5	Grafici sulla valutazione della metrica del rilevamento dello sguardo frontale (metodo algoritmico)	46
8.6	Grafici sulla valutazione della metrica del rilevamento dello sguardo frontale (metodo L2CS-Net)	47
8.7	Distribuzione degli score per MobileNetV2 versione 1 su TONO e ONOT	49
8.8	Distribuzione degli score per MobileNetV2 versione 2 su TONO e ONOT	49
8.9	Distribuzione degli score per il modello gdd CNN su TONO e ONOT	49

LIST OF FIGURES vii

LIST OF FIGURES

8.10	Esempi di falsi positivi nella metrica di rilevamento degli occhi rossi	
	(dataset Biolab)	51
8.11	Esempi di falsi positivi e falsi negativi nel rilevamento dello sguardo	
	frontale con metodo algoritmico	52
8.12	Esempi di falsi positivi e falsi negativi nel rilevamento dello sguardo	
	frontale con L2CS-Net	53

viii LIST OF FIGURES

List of Listings

listings/onnx_exporter.py	34
---------------------------	----

LIST OF LISTINGS ix

LIST OF LISTINGS

x LIST OF LISTINGS

Introduzione

1.1 Motivazioni

Nell'ambito della visione artificiale, e in particolare del riconoscimento facciale, si è ottenuta negli ultimi anni a una significativa riduzione dei tassi di errore grazie all'introduzione di algoritmi basati su tecniche di deep learning. Tuttavia, gli errori di riconoscimento rimangono ancora rilevanti e possono essere influenzati da numerosi fattori, tra cui le modalità di acquisizione dell'immagine, la cooperazione del soggetto durante la cattura biometrica, la specifica implementazione dell'algoritmo di confronto e la logica decisionale associata. In questo contesto, risulta evidente la necessità di un ammodernamento delle procedure di acquisizione, per evitare un peggioramento delle prestazioni dei sistemi biometrici a fronte dell'incremento dei volumi di dati da elaborare. L'urgenza di intervenire su questi aspetti si collega anche a una maggiore consapevolezza dell'importanza dell'usabilità dei sistemi biometrici, sia per gli utenti finali sia per gli operatori umani, i quali possono contribuire in modo significativo alla riduzione degli errori attraverso una migliore qualità nella fase di acquisizione. Spesso, infatti, un sistema progettato esclusivamente sulla base della tecnologia rischia di mostrare i propri limiti se non considera in modo integrato le dinamiche dell'interazione umana. Parallelamente, l'adozione crescente del riconoscimento facciale in contesti di ampia scala, come la gestione dei documenti di identità elettronici, le applicazioni commerciali e le attività di controllo delle forze dell'ordine, ha comportato la raccolta massiva di immagini del volto, che fungono sia da campioni di riferimento in fase di registrazione sia da elementi di confronto successivo. Programmi di portata nazionale e internazionale, come quelli attivati in Cina, nell'Unione Europea, negli Stati Uniti e in India, testimoniano il crescente impiego di questa tecnologia in settori critici quali i trasporti, l'immigrazione e la verifica dell'identità. Tuttavia, molte delle immagini facciali oggi raccolte provengono da dispositivi di acquisizione non specificamente progettati per l'acquisizione di immagini del volto. Le immagini destinate a documenti d'identità o a database ufficiali vengono per lo più acquisite con telecamere configurate secondo specifiche documentarie, come lo standard ISO/IEC 39794-5, che ne disciplina l'inquadratura e le caratteristiche fotografiche. In assenza di strumenti automatici di valutazione della qualità, la verifica della conformità ai requisiti previsti dagli standard vigenti viene spesso affidata al fotografo. A questo si aggiunge il problema rappresentato da comportamenti involontari dei soggetti durante la cattura, portando ad una variazioni tra l'immagine di riferimento e quella di confronto, compromettendo l'efficacia del riconoscimento. È pertanto essenziale garantire la coerenza con la presentazione canonica prevista dagli standard, ossia un volto centrato e frontale, con espressione neutra, occhi aperti e privo di montature di occhiali che coprano gli occhi o troppo spesse. Considerando la grande eterogeneità degli utenti, per età, costituzione fisica, etnia, lingua, cultura, alfabetizzazione e familiarità con la tecnologia, è evidente l'importanza di un'attenta progettazione dal punto di vista dei fattori umani per migliorare l'acquisizione delle immagini facciali. Un'ulteriore criticità risiede nella separazione tra il processo di acquisizione dell'immagine e quello di valutazione della qualità, che spesso avviene solo in un secondo momento, quando la fotografia viene inviata a un server remoto. Se la qualità dell'immagine risulta inadeguata, si rende necessaria una nuova acquisizione aggravando tempi e costi. In questo scenario, il lavoro descritto da questa tesi si colloca nell'ambito della valutazione della qualità delle immagini del volto (ISO 29794-5), nell'ambito della specifica applicazione legata ai documenti di identità elettronici (ISO 39794-5).

1.2 Obbiettivo

Il progetto consiste in una valutazione del software OFIQ (Open Source Face Image Quality), strumento open source sviluppato per implementare le metriche descritte nel draft dello standard ISO precedentemente illustrato. Il lavoro consiste inoltre nella contribuzione allo sviluppo del software mediante l'implementazione di ulteriori metriche tra cui alcune suggerite dallo standard, ma non ancora integrate nel software. L'obiettivo principale è quello di verificare l'affidabilità di OFIQ per il controllo di qualità delle immagini facciali destinate all'identificazione biometrica, testandolo su esempi conformi alle specifiche e su esempi non conformi. Si vuole valutare se l'impiego del software durante la fase di acquisizione possa rappresentare uno strumento accurato per garantire la qualità e la conformità delle immagini biometriche.

1.3 Metodo

Per la realizzazione di questo progetto si è partiti con la comprensione delle varie metriche descritte nel draft ISO 29794-5:2024. Successivamente si è testata ogni singola metrica comparando diversi dataset divisi tra immagini che soddisfano i requisiti dello standard e immagini che non soddisfano la determinata metrica che si sta valutando, in seguito a queste valutazioni si guarda la distribuzione dei risultati.

1.4 Struttura della tesi

La tesi è organizzata come segue:

- Capitolo 2: il software OFIQ.
- Capitoli 3 6: presentazione delle metriche sviluppate, degli algoritmi implementati e dei modelli di machine learning proposti.
- Capitolo 7: descrizione e spiegazione degli strumenti utilizzati per lo sviluppo delle metriche.

1.4. STRUTTURA DELLA TESI

- Capitolo 8: valutazione delle metriche ed analisi dei risultati con approfondimento sui casi di fallimento.
- Capitolo 9: conclusioni con una sintesi dei risultati ottenuti e delle prospettive di miglioramento emerse dall'analisi.

Il software OFIQ

Il software OFIQ, acronimo di *Open Source Face Image Quality*, è il progetto open source stato dell'arte per l'implementazione delle metriche descritte nel draft dello standard ISO 29794-5. È sviluppato in linguaggio C++ e dispone di file CMake che ne consentono la compilazione su sistemi Linux, Windows e macOS. Al suo interno utilizza librerie come OpenCV per la gestione delle immagini e ONNX Runtime per l'esecuzione di modelli in formato ONNX.

Il progetto implementa in maniera fedele tutte le metriche previste dallo standard ISO 29794-5, restituendo per ciascuna un valore grezzo e un valore normalizzato compreso tra 0 e 100, utilizzato come *score* di riferimento. OFIQ costituisce la base all'interno della quale, in questa tesi, sono state sviluppate ed integrate nuove metriche e algoritmi.

Il software implementa le seguenti metriche:

- Quality Score: valutazione complessiva della qualità dell'immagine tramite il modello MagFace.
- Background uniformity: misura dell'uniformità dello sfondo.
- Illumination uniformity: confronto dell'uniformità dell'illuminazione tra lato destro e lato sinistro del volto.
- Luminance mean: verifica della presenza di un'illuminazione adeguata e uniforme.

- Luminance variance: misura del livello di contrasto dell'immagine.
- Under-exposure prevention: controllo che l'immagine non contenga un numero eccessivo di pixel sottoesposti.
- Over-exposure prevention: controllo che l'immagine non contenga un numero eccessivo di pixel sovraesposti.
- Dynamic range: misura della variazione di intensità luminosa nella regione del volto, assicurando che non sia né troppo scura né troppo chiara.
- Sharpness: valutazione della nitidezza e della corretta messa a fuoco.
- No compression artifacts: rilevamento di eventuali artefatti di compressione che possano compromettere la qualità dell'immagine.
- Natural colour: valutazione della naturalezza del colore della pelle.
- Single face present: verifica della presenza di un solo volto nell'immagine.
- Eyes open: controllo che entrambi gli occhi siano naturalmente aperti.
- Mouth closed: verifica che la bocca sia chiusa.
- Eyes visible: controllo che pupilla e iride siano visibili in entrambi gli occhi.
- Mouth occlusion prevention: verifica che la bocca non sia occlusa.
- Face occlusion prevention: controllo che la regione del volto, dalla sommità del capo al mento e da orecchio a orecchio, sia completamente visibile.
- Inter-eye distance: misura in pixel della distanza tra gli occhi.
- Head size: valutazione della dimensione del volto per evitare immagini troppo ravvicinate o troppo distanti.
- Leftward crop of face: controllo che il volto non risulti decentrato a sinistra.
- Rightward crop of face: controllo che il volto non risulti decentrato a destra.

- **Downward crop of face**: controllo che il volto non risulti decentrato verso il basso.
- Upward crop of face: controllo che il volto non risulti decentrato verso l'alto.
- Pose angle yaw frontal alignment: verifica che l'angolo yaw sia inferiore a $\pm 5^{\circ}$ rispetto al frontale.
- Pose angle pitch frontal alignment: verifica che l'angolo pitch sia inferiore a $\pm 5^{\circ}$ rispetto al frontale.
- Pose angle roll frontal alignment: verifica che l'angolo roll sia inferiore a $\pm 8^{\circ}$ rispetto al frontale.
- Expression neutrality: verifica che il volto presenti un'espressione neutrale.
- No head covering: controllo che il soggetto non indossi copricapi, come ad esempio cappelli.

OFIQ include inoltre alcune utility che consentono l'utilizzo dei seguenti modelli, disponibili in formato ONNX:

- SSD Face Detector CNN: modello per il rilevamento dei volti in un'immagine.
- ADNet: modello per l'estrazione dei landmark facciali.

Implementazione della metrica per il rilevamento del difetto degli occhi rossi

3.1 Obbiettivo della metrica

L'obbiettivo di questa metrica è quello di rilevare il difetto degli occhi rossi all'interno di un viso. Il difetto degli occhi rossi nelle foto si verifica quando il flash della fotocamera illumina rapidamente la pupilla dell'occhio. La luce intensa penetra nella parte posteriore dell'occhio, raggiungendo la retina, che è ricca di vasi sanguigni. Poiché la luce viene riflessa direttamente verso la fotocamera dai capillari della retina, i quali sono rossi, l'effetto risultante nell'immagine è quello di pupille rosse anziché nere. Questo fenomeno è più comune in condizioni di scarsa illuminazione, quando le pupille sono più dilatate, permettendo a una maggiore quantità di luce di entrare e riflettersi. Dato che questo difetto noto altera il colore originale delle pupille è importante che un software per la valutazione di immagini di volti riesca a rilevarlo con una certa precisione. L'implementazione di questa metrica permette di dare un riscontro sotto forma di valutazione normalizzata da 0 a 100 sulla correttezza della foto rispetto a questo difetto.

Figure 3.1: Immagine dei landmark estratti dalla rete ADNet

3.2 Requisiti preliminari

I requisiti preliminari di questo task sono i landmark del viso. Il draft della ISO utilizza come riferimento per l'estrazione dei landmark facciali la CNN ADNet [WCHG20], prende in input un'immagine RGB e restituisce in output un set di 98 landmark fig. 3.1. I landmark che interessano questa metrica sono i seguenti:

- dal 60 al 67: contorno occhio sinistro
- dal 68 al 75: contorno occhio destro
- 96: pupilla occhio sinistro
- 97: pupilla occhio destro

3.3 Implementazione della metrica

Viene inizialmente effettuata la segmentazione dell'occhio, l'algoritmo inizia isolando l'area dell'occhio dall'immagine completa utilizzando i landmarks forniti. Una volta estratta la regione dell'occhio, l'algoritmo crea una maschera specifica per l'iride, escludendo sia la pupilla centrale (che appare normalmente scura) sia le aree esterne all'occhio. Questa segmentazione geometrica si basa su proporzioni anatomiche standard. Lo scopo dell'algoritmo è ora quello di rilevare le zone dell'iride dove sono presenti pixel rosse, per eseguire questo compito è necessario convertire l'immagine dal tradizionale spazio colori RGB ad alcuni più utili all'isolamento di determinati colori all'interno dell'immagine quali:

- HSV: separa il colore dalla luminosità rendendo la misurazione meno sensibilile alle variazioni di luce
- yCbCr: separa luminanza da crominanza garantendo una misurazione più robusta a luce ed combre, inoltre, come illustrato dal paper "Face Detection in Color Images", questo spazio colore è ottimo per segmentare elementi facciali contraddistinti dal colore rosso.

Nel caso dello spazio colori HSV viene scelta una soglia di identificazione del colore rosso su tutti e tre i calanli. Nel caso dello spazio colori yCbCr viene scelta una soglia minima per il canale cr, una massima per il canale cb ed inoltre vengono selezionati solamente i pixel con un valore di cr superiore alla medie per evitare problemi di saturazione. In entrambi i casi le soglie sono state scelte in maniera sperimentale, cercando di rispettare un giosto connubio tra falsi positivi e falsi negativi. Infine l'algoritmo calcola il rapporto tra i pixel rossi rilevati nell'iride e l'area totale dell'iride stessa, fornendo un valore normalizzato tra 0 e 1 che quantifica l'intensità dell'effetto occhi rossi. La soglia di rosso è stata scelta in base ai risultati dei test, cercando di avere un giusto equilibrio tra falsi positivi e falsi negativi, come ad esempio le persone con gli occhi marrone o marrone chiaro. L'algoritmo prende in input:

- immagine: immagine digitale a colori
- puntiOcchio: vettore di punti che definiscono il contorno dell'occhio

• cornea: punto centrale della cornea

E restituisce in output:

• rapportoRosso: valore decimale tra 0 e 1 che rappresenta la proporzione di pixel rossi nell'iride

Algoritmo

- 1. Creazione maschera occhio [Fig. eye mask]
 - Crea una maschera nera delle dimensioni dell'immagine
 - Riempie l'area delimitata dai punti dell'occhio con bianco
 - Calcola il rettangolo che racchiude l'occhio
- 2. Estrazione regione di interesse (ROI)
 - Estrae la porzione di immagine corrispondente al rettangolo dell'occhio [Fig. eye roi]
 - Estrae anche la corrispondente porzione di maschera dell'occhio [Fig. eye mask roi]
- 3. Calcolo parametri geometrici
 - Calcola raggio pupilla = max(2, min(larghezza, altezza) / 8)
 - Calcola raggio iride = altezza / 2
 - Calcola centro pupilla rispetto alla ROI
- 4. Creazione maschera iride [Fig. iris mask]
 - Crea maschera nera delle dimensioni della ROI
 - Disegna cerchio bianco con raggio iride centrato sulla pupilla
 - Disegna cerchio nero con raggio pupilla per escludere la pupilla centrale (la versione yCbCr è stata valutata sia con che senza questo passaggio)
- 5. Combinazione maschere [Fig. combined mask]

- Combina maschera occhio e maschera iride con operazione AND
- Risultato: maschera che isola solo la regione dell'iride
- 6. Rilevamento colore rosso [Fig. red mask]
 - Versione con HSV
 - Converte l'immagine dell'occhio da BGR a HSV per migliore rilevamento colori
 - Definisce soglie HSV per il colore rosso:
 - * Gamma 1: H(0-10), S(100-255), V(50-255)
 - * Gamma 2: H(160-180), S(100-255), V(50-255)
 - Crea maschere separate per ciascuna gamma
 - Combina le maschere rosse con operazione OR
 - Versione con yCbCr
 - Converte l'immagine dell'occhio da BGR a yCbCr
 - Separa i canali cb e cr
 - calcola media cr = la media dei valori della matrice cr
 - calcola la matrice valoriAltiCr = maschera sui valori di cr maggiori di 150
 - calcola la matrice valoriBassiCb = maschera sui valori di cb minori di 120
 - calcola la matrice valori Maggiore Media Cr = maschera sui valori di cr maggiori alla media cr
 - calcola red mask = end logico bit a bit tra valoriAltiCr, valoriBassiCb, valoriMaggioreMediaCr
- 7. Isolamento pixel rossi nell'iride [Fig. red iris mask]
 - Applica maschera rossa alla maschera iride combinata
 - Risultato: pixel rossi presenti solo nell'area dell'iride
- 8. Calcolo rapporto finale

Figure 3.2: Immagine descrittiva del procedimento per il rilevamento del difetto degli occhi rossi

- P_r : Numero di pixel rossi nell'iride
- $\bullet \ P_t$: Numero di pixel totali nell'area iride
- R_r : Il rapporto tra pixel rossi e pixel totali
- A_i : L'area dell'iride

•
$$R_r = \begin{cases} \frac{P_r}{P_t} & \text{se } A_i > 0\\ 0 & \text{Altrimenti} \end{cases}$$

9. Ritorna R_r

Implementazione della metrica per il rilevamento dello sguardo frontale

4.1 Obbiettivo della metrica

L'obiettivo della metrica è quello di assegnare uno score da 0 a 100 sul grado in cui un soggetto guarda in camera, misura necessaria per garantire l'idoneità delle foto nei documenti di identità. Guardare dritto in camera è un requisito fondamentale per il riconoscimento facciale e per la conformità agli standard internazionali.

4.2 Requisiti preliminari

I requisiti preliminari di questo task sono i landmark del viso. Il draft della ISO utilizza come riferimento per l'estrazione dei landmark facciali la CNN ADNet allenata sul Wild dataset, prende in input un'immagine RGB e restituisce in output un set di 98 landmark fig. 3.1. I landmark che interessano questa metrica sono i seguenti:

- 60, 64: angoli occhio sinistro
- 68, 72: angoli occhio destro

Figure 4.1: Immagine rappresentativa dei rapporti utilizzato dall'algoritmo di stima dello sguardo frontale manuale

• 96: pupilla occhio sinistro

• 97: pupilla occhio destro

4.3 Implementazione della metrica

L'algoritmo analizza la direzione dello sguardo misurando la posizione delle pupille all'interno degli occhi. Per ogni occhio, calcola la larghezza totale (distanza tra gli angoli interno ed esterno) e la distanza tra la pupilla e l'angolo interno. Dividendo queste due misure ottiene un rapporto che indica dove si trova la pupilla: un valore di 0.5 significa che la pupilla è perfettamente centrata, mentre valori minori o maggiori indicano sguardo verso sinistra o destra. L'algoritmo confronta entrambi gli occhi e sceglie quello con maggiore deviazione dal centro per determinare la direzione principale dello sguardo. Infine, applica una trasformazione parabolica (con parametri alpha = -400 e beta = 100) che mappa il risultato su una scala da 0 a 100, dove valori più alti indicano maggiore deviazione dalla posizione frontale. Questo approccio permette di quantificare oggettivamente quanto una persona stia guardando lateralmente rispetto alla fotocamera. Una visione grafica dei rapporti sopra elencati è disponibile.

L'algoritmo prende in input:

- a: coordinate x ed y dell'angolo esterno dell'occhio sinistro
- b: coordinate x ed y dell'angolo interno dell'occhio sinistro
- c: coordinate x ed y dell'angolo esterno dell'occhio destro
- d: coordinate x ed y dell'angolo interno dell'occhio destro

- e: coordinate x ed y della pupilla dell'occhio sinistro
- f: coordinate x ed y della pupilla dell'occhio destro

E restituisce in output:

• valoreScalare: valore numerico che rappresenta la deviazione dello sguardo da 0 a 100

Algoritmo

- 1. Calcolo larghezza degli occhi
 - $larghezzaSinistra = \sqrt{(b_x a_x)^2 + (b_y a_y)^2}$
 - $larghezzaDestra = \sqrt{(d_x c_x)^2 + (d_y c_y)^2}$
- 2. Calcolo distanza pupilla-angolo interno
 - $distanzaSinistra = \sqrt{(e_x b_x)^2 + (e_y b_y)^2}$
 - $distanzaDestra = \sqrt{(f_x d_x)^2 + (f_y d_y)^2}$
- 3. Calcolo rapporti normalizzati
 - $rapportoSinistro = \frac{distanzaSinistra}{larghezzaSinistra}$
 - $rapportoDestro = \frac{distanzaDestra}{larghezzaDestra}$
- 4. Calcolo variazioni dal centro (Nota: 0.5 rappresenta la posizione centrale ideale della pupilla)
 - variazioneSinistra = |rapportoSinistro 0.5|
 - variazioneDestra = |rapportoDestro 0.5|
- 5. Selezione rapporto dominante
 - \bullet Se variazione Destra > variazione Destra allora: punteggio Grezzo = rapporto Sinistro
 - Altrimenti: punteggioGrezzo = rapportoDestro

4.3. IMPLEMENTAZIONE DELLA METRICA

- 6. Applicazione funzione di scaling
 - alpha = -400
 - beta = 100

Rilevamento dello sguardo frontale tramite CNN

5.1 Scelta del modello

Dopo un'analisi dei modelli di riferimento nello stato dell'arte per il rilevamento dello sguardo, è stata individuata come base l'implementazione della rete neurale descritta nel paper [AHK+23, L2CS-NET: Fine-Grained Gaze Estimation in Unconstrained Environments]. Il modello proposto in questo lavoro ha l'obiettivo di stimare lo sguardo in contesti non vincolati, fornendo la previsione degli angoli *Pitch* e *Yaw* del volto, espressi in radianti.

5.2 Utilizzo del modello

Il modello L2CS-Net è distribuito sotto forma di pacchetto Python che espone un'API attraverso la quale è possibile processare un'immagine ed ottenere, per ciascun volto rilevato, i valori degli angoli *Pitch* e *Yaw*. Il modello è stato implementato in PyTorch e, per poter essere integrato nel software OFIQ, è stato necessario convertirlo nel formato ONNX, uno standard open-source per la rappresentazione di modelli di machine learning. Tale formato consente l'esecuzione in C++ tramite la libreria ONNX Runtime, già disponibile all'interno del software.

Il pacchetto Python originale di L2CS-Net include inoltre una pipeline di pre-

processing che segue i seguenti passaggi:

- Utilizzo del modello RetinaFace (fornito dalla libreria face_detection) per individuare le bounding box dei volti presenti nell'immagine.
- Estrazione della regione di interesse corrispondente a ciascuna bounding box
- Conversione dello spazio colore da BGR a RGB.
- Ridimensionamento di ciascuna regione di interesse a 224×224 pixel.
- Elaborazione delle immagini tramite ResNet-50, seguita da due layer fullyconnected che producono in output 90 classi rappresentanti intervalli discreti sia per *Pitch* che per *Yaw*, ognuna associata a una probabilità.
- Applicazione della funzione Softmax per ottenere la distribuzione di probabilità normalizzata sugli intervalli.
- Calcolo del valore atteso dell'angolo come somma pesata delle probabilità per ciascun intervallo.
- Conversione del risultato da classi discrete a gradi, mediante moltiplicazione per quattro e successiva sottrazione di 180.
- Trasformazione finale da gradi a radianti.

Le operazioni di preprocessing basate su OpenCV possono essere facilmente replicate all'interno di OFIQ tramite la libreria OpenCV per C++. Per la rilevazione della bounding box facciale, invece, è stato utilizzato il modello SSD Face Detector CNN, già integrato in OFIQ in formato ONNX. Questo modello fornisce risultati comparabili a quelli di RetinaFace.

5.3 Implementazione della metrica

L'algoritmo prende in input:

• immagine: L'immagine del volto da valutare

E restituisce in output:

 valoreScalare: valore numerico che rappresenta la deviazione dello sguardo da 0 a 100

Algoritmo

- 1. Calcola detectedFaces tramite il modello SSD Face Detector CNN
- 2. Se detectedFaces.length < 1 allora: valoreScalare = 0. Fine.
- 3. faceBoundingBox = detectedFaces[0], solamente il primo volto trovato verrà valutato
- 4. Carica il modello in formato onnx tramite onnxRuntime
- 5. Calcola immagineVolto = la sezione di immagine all'interno di faceBoundingBox
- 6. Preprocessing per L2CS-NET
 - Definisce inputSize = 443
 - Calcola immagineRidimensionata ridimensionando con open cv immagineVolto alla grandezza $(inputSize \times inputSize)$
 - \bullet Converte lo schema colore di immagineRidimensionata da BGR a RGB
 - Scala i valori dell'immagine dall'intervallo [0,255] a [0,1] convertendoli a float
 - Normalizza l'immagine
 - Definisce mean = [0.485f, 0.456f, 0.406f] (dal preprocessing della librerie L2CS-NET)
 - Definisce std = [0.229f, 0.224f, 0.225f] (dal preprocessing della librerie L2CS-NET)
 - Per ogni canale RGB dell'immagine: $channels[i] = \frac{(channels[i] mean[i])}{std[i]}$ con i = 0..3
 - Definisce immaginePreprocessata la matrice formata dai canali normalizzati nei punti precedenti

- Definisce $input_shape = [1, 3, inputSize, inputSize]$ (aggiunge la dimensione della batch (in questo caso 1 dato che viene processata solamente un'immagine))
- Converte l'input in una matrice CHW:
 - Per ogni canale c = 0..3:
 - Per ogni riga dell'immagine h = 0...inputSize
 - Per ogni colonna dell'immagine w = 0...inputSize
 - tensoreInput[c * inputSize * inputSize + h * inputSize + w] = immaginePreprocessata[h][w][c]
- 7. Vengono usate le API offerte da *onnxRuntime* per eseguire il modello L2CS in formato Onnx.
- 8. Vengono calcolati *pitch* e *yaw* sulla base dell'output del modello (il modello restituisce in output i valori per 90 classi sia per pitch che per yaw, i seguenti step vengono eseguiti per entrambi gli angoli)
- 9. \bullet Sia x il vettore con i 90 valori
 - $angoloInRadianti = \frac{\sum_{i}^{x}(e^{x_i}*i)}{\sum_{i}^{x}(e^{x_i})} * 4 180$
- 10. value = max(|pitch|, |yaw|) (Si usa il valore assoluto in quanto lo sguardo frontale viene classificato come angolo 0)
- 11. $score = round((1 (\frac{min(value, 45)}{45})) * 100)$ (Uso 45 come valore limite, tutti valore da 45 a 180 vengono classificati come punteggio 0)
- 12. value è il valore assoluto dell'angolo più lontano da 0 Gradi, mentre score è la valutazione dell'immagine da 0 a 100

Rilevamento dello sguardo frontale tramite Machine Learning

L'utilizzo di metodi algoritmici basati sulle coordinate dei landmark, insieme a modelli in grado di predire l'angolazione dello sguardo, rappresenta un approccio valido per determinare se un volto stia guardando in fotocamera. Esistono tuttavia ulteriori strategie degne di nota. Questo capitolo è dedicato a tre approcci alternativi sviluppati per stabilire se uno sguardo sia rivolto verso la camera.

6.1 Fine-Tuning di modelli CNN

In questa sezione viene approfondito l'utilizzo di reti neurali convoluzionali preaddestrate come classificatori, successivamente adattate tramite la tecnica del *Fine-Tuning*, con l'obiettivo di predire se un volto presenti lo sguardo diretto in camera.

Per eseguire i test è stato necessario disporre di un dataset di grandi dimensioni con dati reali. La scelta è ricaduta sul dataset Gaze Direction Detection, disponibile sulla piattaforma Kaggle.

Il dataset contiene circa 53000 coppie di occhi ed è rilasciato sotto forma di array binario numpy (.npz), al cui interno sono presenti tre array principali:

• targets: contiene valori binari (0 e 1), dove l'elemento i-esimo indica se

lo sguardo corrispondente negli altri array è rivolto in camera (1) oppure altrove (0).

- right_eyes: immagini raffiguranti gli occhi destri.
- left_eyes: immagini raffiguranti gli occhi sinistri.

Ogni immagine ha dimensioni 64×64 e raffigura un occhio con una piccola porzione del volto, comprendendo, a volte, anche parte del naso. Il dataset è stato suddiviso in training set (40000 immagini) e test set (4000 immagini), bilanciati in termini di immagini con sguardo in camera e non.

Il Fine-Tuning è stato eseguito sul modello MobileNetV2, la cui architettura è descritta in [SHZ⁺18]. Il layer di output è stato sostituito con un layer denso (Dense) di 2 nodi con funzione di attivazione softmax. L'addestramento è stato condotto con l'ottimizzatore Adam e come funzione di loss categorical_crossentropy.

Sono inoltre stati adottati i seguenti accorgimenti:

- Early stopping: interruzione dell'addestramento se, per n epoche consecutive, non si osservano miglioramenti della loss, mantenendo i pesi relativi al miglior risultato.
- Addestramento iniziale dei soli strati finali, mantenendo congelati gli altri.
- Successivo addestramento dell'intera rete.

6.1.1 Fine-Tuning di MobileNetV2 - versione 1

Nella prima versione il modello è stato addestrato direttamente sulle immagini originali del dataset "Gaze Direction Detection".

Accuracy sul test set: 74.0%.

La matrice di confusione è riportata in Figure 6.1.

Per integrare il modello in OFIQ, è stato esportato in formato ONNX e affiancato da una pipeline di preprocessing delle immagini, così strutturata:

 Costruzione di un bounding box attorno ai landmark dell'occhio rilevati da ADNet.

Figure 6.1: Matrice di confusione del Fine-Tuning di MobileNetV2, versione 1

- Individuazione del lato maggiore del bounding box e moltiplicazione per un fattore di scala (2.5).
- Ricostruzione del bounding box mantenendo l'occhio al centro.
- Ridimensionamento dell'immagine a 224×224 , dimensione richiesta da MobileNetV2.
- Inferenza tramite il modello, che restituisce due valori: probabilità di sguardo frontale (tensore 0) e probabilità contraria (tensore 1).

6.1.2 Fine-Tuning di MobileNetV2 - versione 2

Poiché la versione 1 mostrava buoni risultati sul test set ma scarsa capacità di generalizzazione su dataset differenti, nella versione 2 si è intervenuti sul preprocessing, facendo in modo che il modello valutasse esclusivamente l'occhio.

Il preprocessing adottato è il seguente:

- Rilevamento degli occhi tramite classificatore HaarCascade di OpenCV.
- Ritaglio del bounding box dell'occhio.
- Ridimensionamento a 96×96 .

CHAPTER 6. RILEVAMENTO DELLO SGUARDO FRONTALE TRAMITE25 MACHINE LEARNING

Figure 6.2: Matrice di confusione del Fine-Tuning di MobileNetV2, versione 2

• Aggiunta di un bordo nero fino a raggiungere 224×224 , così da preservare le proporzioni senza introdurre rumore eccessivo.

Accuracy sul test set: 78.4%.

La matrice di confusione è riportata in Figure 6.2.

6.2 Costruzione di un modello CNN gdd CNN

Per ridurre l'impatto del rumore dovuto al ridimensionamento e a particolari tecniche di preprocessing, è stato implementato un modello CNN da zero, accettando in input immagini di dimensione 96×96 .

La struttura del modello, illustrata in Figure 6.4, comprende 4 blocchi alternati di convoluzione e max pooling, fino a ottenere una dimensione di $6 \times 6 \times 256$. Segue una rete fully connected con 512 nodi, un layer di dropout e infine il layer di output con 2 classi e funzione di attivazione softmax.

Addestramento:

- Ottimizzatore: Adam.
- Funzione di loss: sparse_categorical_crossentropy.
- Early stopping.

6.3. MODELLI DI MACHINE LEARNING BASATI SUI LANDMARK FACCIALI

Figure 6.3: Matrice di confusione del modello CNN sviluppato da zero

Il modello è stato addestrato sul dataset "Gaze Direction Detection" e successivamente convertito in formato ONNX per l'integrazione in OFIQ.

Pipeline di preprocessing:

- Rilevamento dell'occhio con HaarCascade di OpenCV.
- Ritaglio del bounding box dell'occhio;
- Ridimensionamento a 96×96 .

Accuracy sul test set: 85.0%.

La matrice di confusione è riportata in Figure 6.3.

Il modello è stato denominato gdd CNN (Gaze Direction Detector CNN).

6.3 Modelli di machine learning basati sui landmark facciali

Per affrontare i problemi di generalizzazione emersi nei modelli CNN, è stata sviluppata una soluzione basata sull'estrazione dei landmark facciali e sul loro utilizzo come input per modelli di machine learning.

Struttura generale:

CHAPTER 6. RILEVAMENTO DELLO SGUARDO FRONTALE TRAMITE?7
MACHINE LEARNING

Figure 6.4: Architettura della CNN implementata

6.3. MODELLI DI MACHINE LEARNING BASATI SUI LANDMARK FACCIALI

- Estrattore di landmark: due approcci testati
 - MediaPipe Face Mesh (20 landmark per occhio, comprensivi dell'iride,
 Paper [LTN+19]).
 - **ADNet** (9 landmark per occhio).
- DataFrame pandas: per la gestione dei landmark.
- Modello predittivo: XGBoost: Paper [CG16].

L'addestramento ha utilizzato la tecnica della K-Fold Cross Validation, con landmark normalizzati per favorire la generalizzazione.

Dataset:

- ONOT: immagini con sguardo in camera;
- TONO: immagini con sguardo non in camera;

per un totale di circa 1.000 immagini.

Il dataset "Gaze Direction Detection" non è stato utilizzato poiché non includeva il volto completo, necessario agli estrattori di landmark. I modelli sono stati inoltre testati su un sotto-dataset di immagini reali fornite da Biolab, tutte con sguardo frontale.

6.3.1 Risultati dei modelli basati su landmark

- MediaPipe Face Mesh + XGBoost Accuracy: 77.0%, Equal Error Rate: 26.5%, Accuracy Biolab: 63.2%. Matrice di confusione: Figure 6.5a.
- ADNet + XGBoost Accuracy: 64.3%, Equal Error Rate: 43.1%, Accuracy Biolab: 12.1%. Matrice di confusione: Figure 6.5b.

Figure 6.5: Matrici di confusione dei modelli basati su landmark facciali

Chapter 7

Strumenti utilizzati per lo sviluppo delle metriche

7.1 Dataset utilizzati per la valutazione

I seguenti dataset sono stati utilizzati per la valutazione delle metriche implementate.

7.1.1 ONOT

ONOT è un dataset introdotto nel paper [DDBF⁺24, ONOT: a High-Quality ICAO-compliant Synthetic Mugshot Dataset]. È composto da immagini sintetiche di alta qualità conformi ai requisiti dello standard ISO/IEC 39794-5. Quest'ultimo definisce un formato per lo scambio di immagini facciali negli electronic Machine-Readable Travel Documents (eMRTD), seguendo le linee guida dell'International Civil Aviation Organization (ICAO). Le immagini di ONOT includono volti di diverse etnie, età, generi e caratteristiche facciali, rendendo il dataset adatto alla valutazione delle metriche implementate. Per questa analisi sono state considerate le sole immagini del Subset 1, ICAO compliant.

7.1.2 TONO

TONO è un dataset introdotto nel paper [BFDDM24, TONO: a synthetic dataset for face image compliance to ISO/ICAO standard]. È costituito da immagini sintetiche di volti ad alta qualità, create per sviluppare e valutare sistemi di verifica della conformità delle immagini facciali allo standard ISO/ICAO. Le immagini di TONO derivano dal dataset ONOT ([DDBF+24]), con l'aggiunta di uno o più elementi non conformi agli standard. I difetti presenti in TONO sono i seguenti:

- Head and Shoulder Pose: assenza di posa frontale sia del volto che delle spalle.
- Gaze Direction: assenza di sguardo frontale.
- Expression: mancanza di espressione neutrale o presenza di denti visibili.
- Face Illumination: non uniformità dell'illuminazione del volto.
- Background: sfondo non uniforme.
- Head Coverings: presenza di copricapi.
- Eye Visibility: occhi chiusi, presenza di occhiali (da vista o da sole), make-up eccessivo.
- Photographic: difetti quali pixelazione, posterizzazione, sfocatura, sovraesposizione, sovrasaturazione.

Per questa casistica è stata utilizzata la versione di TONO in cui ogni immagine contiene un solo elemento in contrasto con i requisiti ISO/ICAO.

7.2 Onnx e OnnxRuntime

ONNX (*Open Neural Network Exchange*) è un formato open source per la rappresentazione di modelli di machine learning, progettato per garantire compatibilità tra diversi framework (PyTorch, TensorFlow, ecc.). Permette di salvare un modello in un file .onnx indipendente dall'ambiente di training. La libreria OnnxRuntime fornisce API utilizzabili da diversi linguaggi di programmazione e su diverse piattaforme (inclusi i web browser). Il progetto, sviluppato da Microsoft, è disponibile al seguente repository GitHub: https://github.com/microsoft/onnxruntime.

7.3 FVC Ongoing

FVC Ongoing ([DCF⁺09]) è una piattaforma web che consente la valutazione di algoritmi di vario tipo, tra cui il task *Face Image ISO Compliance Verification*. I test vengono condotti su diversi dataset e metriche note.

7.4 Framework PyTorch

Il linguaggio di programmazione Python ed il framework PyTorch sono comunemente utilizzati per l'addestramento e la distribuzione di modelli di Machine Learning. Nel progetto il loro impiego riguarda principalmente il testing e la conversione in formato Onnx del modello L2CS-Net, originariamente distribuito in PyTorch. In particolare, è stato utilizzato il modulo ONNX exporter API, che consente di esportare un modello PyTorch in formato Onnx, impiegato per la conversione di L2CS-Net tramite il seguente codice: section 7.4

7.5 Libreria Keras

Keras è una libreria open-source di alto livello per il deep learning, scritta in Python e basata sul motore di calcolo TensorFlow. Nel presente lavoro, Keras è stata utilizzata per:

- Eseguire il Fine-Tuning di MobileNetV2 (Sezione 6.1).
- Sviluppare la rete CNN descritta nella Sezione 6.2.

7.6 Libreria XGBoost

La libreria XGBoost (eXtreme Gradient Boosting) [CG16] mette a disposizione il modulo XGBoostClassifier, che consente di utilizzare modelli basati su alberi

```
import torch
   from 12cs import Pipeline
2
   from pathlib import Path
3
   def export_l2cs_to_onnx():
5
6
       gaze_pipeline = Pipeline(
           weights=Path("./L2CSNet_gaze360.pkl"), # pretrained model weight
8
           arch='ResNet50',
9
           device=torch.device('cpu')
10
11
12
       model = gaze_pipeline.model
13
14
15
       dummy_input = torch.randn(1, 3, 448, 448)
16
17
       torch.onnx.export(
18
           model,
19
           dummy_input,
20
           "12cs_gaze.onnx",
21
           export_params=True,
           opset_version=11,
22
23
           do_constant_folding=True,
           input_names=['input'],
24
            output_names=['pitch', 'yaw']
25
26
       print("Model exported to 12cs_gaze.onnx")
27
28
   if __name__ == "__main__":
29
       export_12cs_to_onnx()
```

decisionali ottimizzati tramite l'algoritmo del Gradient Boosting per la risoluzione di problemi di classificazione. In questo lavoro, XGBoost è stato impiegato per costruire due dei modelli basati sui landmark (Sezione 6.3).

7.7 Jupyter Notebook, Numpy e Matplotlib

Jupyter Notebook, Numpy e Matplotlib sono stati utilizzati per creare documenti interattivi e rappresentare graficamente (tramite boxplot e istogrammi) le performance delle metriche di valutazione sui dataset ONOT, TONO e su un sottoinsieme di Biolab (un dataset con immagini di volti reali etichettati). Il linguaggio Python è stato inoltre impiegato per:

- suddividere i dataset in base ai file di riferimento in formato .txt;
- elaborare le metriche per valutare il software OFIQ e gli algoritmi proposti.

7.7.	JUPYTER NOTEBOOK, NUMPY E MATPLOTLIB

Chapter 8

Valutazione delle metriche

Per quanto riguarda le valutazioni del software OFIQ, verranno riportati ed analizzati esclusivamente i risultati delle metriche implementate nelle loro diverse versioni. In particolare, per ogni metrica saranno presi in esame l'Equal Error Rate e la distribuzione dei risultati.

8.1 Valutazione su FVC-Ongoing

8.1.1 Metriche valutate

La piattaforma FVC-Ongoing valuta 24 diverse metriche table 8.1. Nel caso di questo progetto, le metriche selezionate sono:

- Looking Away: valuta se un soggetto sta guardando in camera.
- Red Eyes: valuta la presenza del difetto degli occhi rossi.

8.1.2 Il protocollo

Per la sottomissione degli algoritmi sulla piattaforma FVC-Ongoing è necessario rispettare il seguente protocollo:

• inviare una cartella compressa in formato ZIP;

N°	Description of the test		
Fea	Feature extraction accuracy tests		
1	1 Eye center location accuracy		
Pho	Photographic and pose-specific tests		
2	Blurred		
3	Looking away		
4	Ink marked/creased		
5	Unnatural skin tone		
6	Too dark/light		
7	Washed out		
8	Pixelation		
9	Hair across eyes		
10	Eyes closed		
11	Varied background		
12	Roll/pitch/yaw > predefined thresholds		
13	Flash reflection on skin		
14	Red eyes		
15	Shadows behind head		
16	Shadows across face		
17	Dark tinted lenses		
18	Flash reflection on lenses		
19	Frames too heavy		
20	Frame covering eyes		
21	Hat/cap		
22	Veil over face		
23	Mouth open		
24	Other faces/toys too close		

Table 8.1: Metriche valutate da FVC-Ongoing

- all'interno deve essere presente un file *Check.exe*, eseguibile per Win32 in formato *console application*;
- la sintassi da riga di comando deve essere: ./Check.exe <faceimagefile> <outputfile>, dove:
 - faceimagefile: percorso dell'immagine del volto da valutare (formati supportati: BMP, JPG, PNG);
 - outputfile: percorso del file TXT di output, su cui scrivere (in modalità

append) l'esito dei test.

- Ogni riga del file di output deve contenere i seguenti campi separati da spazi:
 - ImageName: nome del file immagine;
 - RetVal: intero che indica se l'immagine può essere processata:
 - * 1: immagine processabile;
 - * 0: immagine non processabile;
 - * -1: dimensione dell'immagine non supportata;
 - * -2: formato immagine non supportato;
 - * -3: contenuto non processabile.
 - LE_x, LE_y: coordinate X e Y del centro dell'occhio sinistro (in pixel);
 - RE_x, RE_y: coordinate X e Y del centro dell'occhio destro (in pixel);
 - Test_2: intero compreso tra 0 e 100 indicante il grado di conformità rispetto al test 2 (0 = non conforme, 100 = massimo livello di conformità). In alternativa, può assumere i valori:
 - * -: se la metrica non è supportata dal programma;
 - * ?: se la metrica è supportata ma non valutabile nell'immagine corrente per un motivo specifico;
 - * !: se la metrica è supportata ma non valutabile nell'immagine corrente per motivo indefinito.
 - **–** ...
 - Test_24: analogo al campo Test_2, relativo al test 24.
- L'eseguibile deve avere permessi di scrittura solo sul file di output, mentre i file di configurazione possono essere caricati esclusivamente in lettura.

Dopo un'attenta analisi del protocollo richiesto dalla piattaforma FVC-Ongoing, è stato necessario rendere il software OFIQ conforme a tali specifiche ed adattare le metriche implementate.

8.1.3 Valutazione delle metriche di OFIQ

Non tutte le metriche valutate su FVC-Ongoing sono implementate in OFIQ, perciò alcune metriche non corrispondono precisamente alla richiesta.

Metrica di FVC-Ongoing	Metrica utilizzata di OFIQ	Equal Error Rate (%)
2, Blurred	Sharpness	6.9
4, Ink marked/creased	BackgroundUniformity	18.8
5, Unnatural skin tone	NaturalColour	7.9
	${\bf Under Exposure Prevention}$	
6, Too dark/ligth	& OverExposurePrevention	32.5
7, Washed out	OverExposurePrevention	50
8, Pixelation	Sharpness	9.4
9, Hair across eyes	EyesVisible	3.2
10, Eye closed	EyesOpen	0.6
11, Varied background	BackgroundUniformity	40.6
	HeadPoseRoll	
	& HeadPosePitch	
12, Roll/pitch/yaw rotation	& HeadPoseYaw	3.8
13, Flash reflection on skin	DynamicRange	85.6
15, Shadow behind head	BackgroundUniformity	33.0
16, Shadow across face	DynamicRange	46.2
17, Dark tintend lenses	EyesVisible	0.6
18, Flash reflection on lenses	EyesVisible	6.7
19, Frames to heavy	FaceOcclusionPrevention	0.5
20, Frame covering eyes	EyesVisible	5.0
21, Hat/cap	NoHeadCoverings	1.9
22, Veil over face	FaceOcclusionPrevention	0
23, Mouth open	MouthClosed	0
24, Presence of other faces		
or toys too close to face	SingleFacePresent	47.7

Figure 8.1: Distribuzione degli score per la metrica di rilevamento del difetto degli occhi rossi (versione HSV)

8.1.4 Valutazione metrica per il rilevamento del difetto degli occhi rossi

Versione dell'algoritmo	Equal Error Rate (%)	Distribuzione degli score	
versione HSV	18.1	Figure 8.1	
versione YCBCR	17.1	Figure 8.2	
versione YCBCR			
(senza esclusione dei pixel			
della pupilla da quelli dell'iride)	14.6	Figure 8.3	

Figure 8.2: Distribuzione degli score per la metrica di rilevamento del difetto degli occhi rossi (versione yCbCr)

8.1.5 Valutazione metrica per il rilevamento dello sguardo frontale

Versione dell'algoritmo	Equal Error Rate (%)	Distribuzione degli score
metodo algoritmico	17.1	Figure 8.4a
metodo L2CS-Net	12.9	Figure 8.4b

8.2 Valutazione su dataset sintetici

8.2.1 Dataset utilizzati

I dataset utilizzati per questa valutazione sono ONOT e TONO (già introdotti in precedenza). TONO fornisce immagini non conformi per i singoli difetti analizzati, mentre ONOT fornisce immagini conformi.

Figure 8.3: Distribuzione degli score per la metrica di rilevamento del difetto degli occhi rossi (versione yCbCr senza esclusione dei pixel della pupilla dal calcolo dei pixel dell'iride)

Figure 8.4: Distribuzione degli score per la metrica di rilevamento dello sguardo frontale

8.2.2 Metriche valutate

Nei dataset TONO e ONOT non è possibile valutare il difetto degli occhi rossi in quanto assente. La valutazione verrà effettuata sul solo difetto dello sguardo frontale.

8.2.3 Procedimento di valutazione

La valutazione delle metriche sui dataset ONOT e TONO è stata condotta secondo le seguenti fasi:

- 1. Filtraggio delle immagini in ONOT: tramite i file TXT forniti con il dataset, sono state mantenute solo le immagini conformi allo standard ICAO.
- 2. Valutazione delle metriche in TONO: ogni cartella di TONO e le rimanenti immagini di ONOT sono state valutate dal software OFIQ, generando file CSV contenenti, per ciascuna immagine, gli score assegnati alle metriche.
- 3. Analisi dei risultati: le valutazioni delle immagini di TONO sono state confrontate con quelle di ONOT. Per ciascuna sottocartella di TONO, i risultati nella metrica relativa al difetto rappresentato sono stati messi in relazione con i corrispondenti risultati di ONOT.
- 4. **Visualizzazione dei risultati**: per ogni metrica valutata, i risultati sono stati rappresentati con:
 - BoxPlot: un confronto diretto tra distribuzioni di TONO e ONOT;
 - Distribuzione degli score: un istogramma che confronta la distribuzione degli score (rosso = TONO, verde = ONOT);
 - Equal Error Rate: misura dell'equilibrio tra falsi positivi e falsi negativi.

8.2.4 Valutazione delle metriche di OFIQ

Non tutte le metriche valutabili con TONO sono implementate in OFIQ, perciò alcune metriche non corrispondono precisamente alla richiesta.

Difetto di TONO	Metrica OFIQ	Equal Error Rate (%)
bkg — Sfondo non uniforme	BackgroundUniformity	30.9
ce — Occhi chiusi	EyesOpen	0.0
	OverExposurePrevention	
expos — Esposizione errata	& UnderExposurePrevention	42.4
sat — Saturazione errata	NaturalColour	10.5
cap — Testa coperta	NoHeadCoverings	0.3
sm — Sorriso	ExpressionNeutrality	3.9
mkup - Trucco	FaceOcclusionPrevention	54.7
sun — Occhiali da sole	EyesVisible	0.0
pixel — Immagine pixelizzata	Sharpness	9.7
zoom — Distanza errata	HeadSize	87.6
ceg — Occhi chiusi (con occhiali)	EyesOpen	0.0
light — Illuminazione non uniforme	IlluminationUniformity	45.6
oof — Sfocatura	Sharpness	0.0
poster - Posterizzazione	DynamicRange	8.2
tq — Posizione non frontale	${\it HeadPoseYaw}$	5.8

8.2.5 Valutazione metrica per il rilevamento dello sguardo frontale

Il dataset TONO contiene due cartelle con immagini relative al difetto dello sguardo frontale:

- la_1: immagini di volti con lo sguardo rivolto verso destra;
- $la_{-}2$: immagini di volti con lo sguardo rivolto verso sinistra.

Metodo	Cartella	EER (%)	Distribuzione Score	BoxPlot
Algoritmico	$la_{-}1$	15.8	Figure 8.5a	Figure 8.5b
Algoritmico	la_2	11.1	Figure 8.5c	Figure 8.5d
L2CS-Net	$la_{-}1$	18.8	Figure 8.6a	Figure 8.6b
L2CS-Net	$la_{-}2$	18.6	Figure 8.6c	Figure 8.6d

(a) Distribuzione degli score per il rileva- (b) BoxPlot comparativo per il rilevamento dello sguardo frontale (metodo al- mento dello sguardo frontale (metodo algoritmico), dataset TONO (cartella la_1) e goritmico), dataset TONO (cartella la_1) e ONOT

ONOT

ONOT

(c) Distribuzione degli score per il rileva- (d) BoxPlot comparativo per il rilevamento dello sguardo frontale (metodo al- mento dello sguardo frontale (metodo algoritmico), dataset TONO (cartella la-2) e goritmico), dataset TONO (cartella la-2) e ONOT

Figure 8.5: Grafici sulla valutazione della metrica del rilevamento dello sguardo frontale (metodo algoritmico)

(a) Distribuzione degli score per il rilevamento dello sguardo frontale (metodo L2CS-Net), dataset TONO (cartella la_1) e ONOT

(c) Distribuzione degli score per il rilevamento dello sguardo frontale (metodo L2CS-Net), dataset TONO (cartella la_2) e ONOT

(b) BoxPlot comparativo per il rilevamento dello sguardo frontale (metodo L2CS-Net), dataset TONO (cartella la_1) e ONOT

(d) BoxPlot comparativo per il rilevamento dello sguardo frontale (metodo L2CS-Net), dataset TONO (cartella la_2) e ONOT

Figure 8.6: Grafici sulla valutazione della metrica del rilevamento dello sguardo frontale (metodo L2CS-Net)

8.2.6 Valutazione dei modelli di machine learning sviluppati

Di seguito sono riportati i valori di Equal Error Rate (EER) e la distribuzione degli score sui dataset TONO e ONOT per i modelli ottenuti tramite *Fine-Tuning* di MobileNetV2 e per la CNN sviluppata da zero.

Versione 1, Fine-Tuning di MobileNetV2 sul dataset "Gaze Direction Detection" (Sezione 6.1.1)

- Dataset la_1 di TONO: EER = 47.3%, Score distribution: Figure 8.7a
- Dataset $1a_2$ di TONO: EER = 58.5%, Score distribution: Figure 8.7b

Versione 2, Fine-Tuning di MobileNetV2 sul dataset "Gaze Direction Detection" (Sezione 6.1.2)

- Dataset la_1 di TONO: EER = 46.9%, Score distribution: Figure 8.8a
- Dataset la_2 di TONO: EER = 58.0%, Score distribution: Figure 8.8b

gdd CNN, Modello CNN sviluppato sul dataset "Gaze Direction Detection" (Sezione 6.2)

- Dataset la_1 di TONO: EER = 38.4%, Score distribution: Figure 8.9a
- Dataset la_2 di TONO: EER = 21.8%, Score distribution: Figure 8.9b

Non sono state riportate le metriche su TONO e ONOT per i modelli basati sui landmark (Sezione 6.3), in quanto tali modelli sono stati addestrati direttamente su questi dataset. Per essi sono pertanto sufficienti le metriche calcolate sul test set.

(a) Confronto con cartella la_1 di TONO (b) Confronto con cartella la_2 di TONO

Figure 8.7: Distribuzione degli score per Mobile Net
V2 versione 1 su TONO e ONOT

(a) Confronto con cartella la_1 di TONO (b) Confronto con cartella la_2 di TONO

Figure 8.8: Distribuzione degli score per Mobile Net
V2 versione 2 su TONO e ONOT

(a) Confronto con cartella la_1 di TONO (b) Confronto con cartella la_2 di TONO Figure 8.9: Distribuzione degli score per il modello gdd CNN su TONO e ONOT

8.3 Analisi dei risultati

8.3.1 Metriche di OFIQ

Le metriche implementate in OFIQ hanno in generale ottenuto buoni risultati, con valori di *EER* elevati soltanto in compiti diversi rispetto a quelli per cui erano state originariamente progettate. Le uniche metriche a riportare prestazioni insufficienti, pur essendo valutate nel proprio contesto d'uso, sono:

- Background Uniformity: ha registrato un EER di circa il 30% sui dataset TONO e ONOT e di circa il 40% nei test condotti su FVC-Ongoing.
- Under Exposure Prevention & Over Exposure Prevention: hanno registrato un EER di circa il 40% sui dataset TONO e ONOT e di circa il 30% nei test condotti su FVC-Ongoing.

Al contrario, hanno mostrato performance ottimali, con valori di *EER* inferiori al 10%, le seguenti metriche: *Natural Colour*, *No Head Coverings*, *Expression Neutrality*, *Eyes Visible*, *Sharpness*, *Eyes Open*, *Dynamic Range*, *Head Pose* (Roll, Pitch, Yaw), *Face Occlusion Prevention* e *Mouth Closed*.

8.3.2 Rilevamento del difetto degli occhi rossi

Nella valutazione della metrica per il rilevamento degli occhi rossi si è osservato un miglioramento delle performance utilizzando lo spazio colore YCbCr rispetto a quello HSV. Ciò è dovuto principalmente a due fattori:

- Il canale Cr assume valori elevati in presenza del colore rosso, favorendone l'isolamento.
- L'informazione di luminanza è separata dagli altri componenti, rendendo il filtro più robusto alle variazioni di luce e ombra.

Un ulteriore incremento delle performance è stato ottenuto considerando anche i pixel della pupilla nel calcolo dei pixel totali dell'iride. Infatti, in alcuni casi il landmark non risultava correttamente centrato nella pupilla, con il rischio di escludere pixel significativi dal conteggio.

Un fattore che potrebbe aver influito sull'*Equal Error Rate* (EER), pari al 14%, è la presenza nel dataset di immagini con difetti diversi dagli occhi rossi, ma classificate come prive del difetto in questione. In questi casi, l'algoritmo ha attribuito valori di score bassi (ad esempio 51 e 66), come mostrato in Figure 8.10. Tali errori derivano da un'errata saturazione dell'immagine, difetto rilevabile tramite altre metriche implementate in OFIQ.

(a) Score: 51

(b) Score: 66

Figure 8.10: Esempi di falsi positivi nella metrica di rilevamento degli occhi rossi (dataset Biolab).

8.3.3 Rilevamento del difetto dello sguardo frontale

Versione algoritmica Le migliori prestazioni del metodo algoritmico sono state ottenute su immagini generate artificialmente e prive di difetti aggiuntivi, come quelle dei dataset TONO e ONOT. Al contrario, nelle immagini reali, ad esempio quelle della piattaforma FVC-Ongoing, le performance risultano sensibilmente inferiori. Oltre alla performance, anche gli score ottenuti sui dataset TONO e ONOT sono significativamente più alti rispetto a quelli registrati su FVC-Ongoing.

Le principali criticità del metodo includono:

- proporzioni non corrette nei rapporti tra le distanze di specifici landmark oculari (esempi in Figure 8.11);
- dipendenza dalla precisione del modello di rilevamento dei landmark: in presenza di riflessi vicino agli occhi, i landmark risultano talvolta disallineati di alcuni pixel, con conseguente calo degli score;
- presenza di difetti non direttamente correlati allo sguardo, come pose non frontali del viso, con conseguente calo degli score.

(a) Falso negativo, score: 94

(c) Falso negativo, score: 0

(b) Falso negativo, score: 80

(d) Falso positivo, score: 98

Figure 8.11: Esempi di falsi positivi e falsi negativi nel rilevamento dello sguardo frontale con metodo algoritmico.

Versione con l'utilizzo del modello L2CS-Net Il metodo basato su L2CS-Net ha ottenuto i migliori risultati tra i modelli valutati, classificandosi al secondo posto tra i risultati pubblicati sulla piattaforma FVC-Ongoing. Nonostante ciò, gli score ottenuti sono ulteriormente migliorabili.

Un aspetto rilevante riguarda la pipeline di preprocessing, il modello L2CS-Net si aspetta come input un volto rilevato dal modello RetinaFace (libreria python face_detection), mentre per le valutazioni in OFIQ è stato utilizzato un diverso face detector in formato ONNX già integrato. In un caso specifico (Figure 8.12b), la stima dell'angolo yaw differisce in modo significativo (0.03 radianti con RetinaFace contro 0.27 radianti con il detector interno). Tuttavia, nella media delle immagini la differenza supera raramente 0.03 radianti.

Inoltre, come mostrato in Figure 8.12, esistono casi in cui il modello assegna score migliori a un'immagine generata da AI con sguardo laterale (Figure 8.12a) rispetto a una reale con sguardo frontale (Figure 8.12b). In particolare le distribuzioni degli score mette in luce come questo metodo tenda a dare valutazioni migliori ad immagini generate da AI non conformi rispetto che ad immagini vere non conformi.

Versione con modelli di machine learning I modelli descritti nel Chapter 6 mostrano significative difficoltà di generalizzazione: sebbene ottengano punteggi elevati sul test-set, come nel caso della CNN gdd che raggiunge un'accuratezza

(a) Falso positivo, angolo pitch: 0.02

(b) Falso negativo, angolo pitch: 0.05

Figure 8.12: Esempi di falsi positivi e falsi negativi nel rilevamento dello sguardo frontale con L2CS-Net.

dell'85%, le prestazioni calano drasticamente quando vengono valutati su dataset differenti. In particolare, i modelli ottenuti tramite Fine Tuning di MobileNetV2, testati sui dataset Tono e Onot, presentano equal error rate compresi tra il 46% e il 58%, rendendoli poco affidabili. Anche sul sottodataset Biolab, composto esclusivamente da immagini reali e compliance, le performance non migliorano, con un'accuratezza che si attesta intorno al 40%.

La CNN gdd ottiene performance migliori con EER compresi tra il 21% e il 38% su TONO e ONOT, e un'accuracy di circa il 66% su Biolab. Tuttavia, anche questo modello risulta inferiore ai metodi algoritmico e L2CS-Net (8.2.5).

Per quanto riguarda i modelli basati sui landmark facciali, le performance non sono attualmente affidabili. Va però evidenziato che il training è stato effettuato interamente su dati sintetici, con dataset ridotto (~ 1000 immagini totali, divise in 80% training e 20% test) e sbilanciato (2 immagini non frontali ogni immagine frontale). Dai test condotti si può notare che il modello che utilizzano Mediapipe come estrattore di landmark mostra score e capacità di generalizzazione migliori rispetto all'altro approccio.

Chapter 9

Conclusioni

Le valutazioni condotte sul software OFIQ e la relativa analisi dei risultati hanno confermato la solidità delle metriche già implementate nel software e nel draft ISO 29794-5. Sebbene i parametri considerati in OFIQ non coincidano pienamente con quelli previsti dallo standard ICAO, nelle metriche comuni il software ha dimostrato buone prestazioni sia su TONO e ONOT che su FVC Ongoing, mantenendo valori di Equal Error Rate sempre inferiori al 10%.

L'obiettivo di questa tesi è stato l'implementazione di due metriche non ancora presenti in OFIQ: il rilevamento del difetto degli occhi rossi e quello dello sguardo frontale. Nel primo caso, oltre a proporre un metodo algoritmico efficace, è stato dimostrato come l'utilizzo dello spazio colore YCbCr permetta di isolare la componente rossa con maggiore precisione rispetto allo spazio HSV, grazie alla separazione tra luminanza e crominanza che rende il filtro meno sensibile alle variazioni di illuminazione.

Per quanto riguarda lo sguardo frontale, la metrica era menzionata nel draft ISO ma non era stata implementata né resa operativa, rimanendo una proposta per edizioni future dello standard. Il lavoro è iniziato sviluppando l'approccio algoritmico suggerito, valutandolo sia su FVC Ongoing che sui dataset TONO e ONOT. Successivamente la ricerca si è concentrata sull'esplorazione di soluzioni alternative in grado di migliorare le prestazioni, obiettivo raggiunto attraverso l'impiego del modello L2CS-Net, che ha ottenuto risultati competitivi su FVC Ongoing. Nonostante questi progressi, il metodo risulta ulteriormente migliorabile

sfruttando RetinaFace per il rilevamento della bounding box facciale da utilizzare come input del modello.

Parallelamente, sono stati progettati e sperimentati ulteriori approcci basati sullo sviluppo di modelli di machine learning. Tra questi, la rete neurale gdd CNN ha mostrato le migliori prestazioni, evidenziando come l'adattamento del modello al contesto specifico possa incidere in maniera significativa sui risultati. L'elaborazione di immagini a dimensioni ridotte rispetto a MobileNetV2 ha ridotto il rumore nei dati, contribuendo al miglioramento delle predizioni. Tuttavia, i test cross-dataset hanno messo in luce problemi di generalizzazione, che potranno essere affrontati con l'impiego di dataset più ampi ed eterogenei. Un ulteriore contributo della ricerca è stato lo sviluppo di modelli basati sui landmark facciali. L'integrazione di MediaPipe Face Mesh con XGBoost ha prodotto buoni risultati, considerando che l'addestramento è stato condotto su un dataset ridotto, non bilanciato e composto totalmente da immagini generate artificialmente. L'ampliamento del dataset potrebbe contribuire nel miglioramento delle prestazioni e della capacità di generalizzazione. Inoltre, l'accuratezza dei landmark estratti da MediaPipe suggerisce possibili applicazioni per il miglioramento del metodo algoritmico proposto nello standard ISO 29794-5.

In conclusione, il lavoro svolto ha proposto un approccio più efficace rispetto a quello suggerito nel draft ISO 29794-5 per il rilevamento dello sguardo frontale, individuando anche diversi spunti per migliorare ulteriormente le metriche sviluppate.

Bibliography

- [AHK⁺23] Ahmed A. Abdelrahman, Thorsten Hempel, Aly Khalifa, Ayoub Al-Hamadi, and Laslo Dinges. L2cs-net: Fine-grained gaze estimation in unconstrained environments. In 2023 8th International Conference on Frontiers of Signal Processing (ICFSP), pages 98–102, 2023.
- [BFDDM24] Guido Borghi, Annalisa Franco, Nicolò Di Domenico, and Davide Maltoni. Tono: a synthetic dataset for face image compliance to iso/icao standard. In *The 18th European Conference on Computer Vision Workshops 2024*, 2024.
- [CG16] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. pages 785–794, 08 2016.
- [DCF+09] B. Dorizzi, R. Cappelli, M. Ferrara, D. Maio, D. Maltoni, N. Houmani, S. Garcia-Salicetti, and A. Mayoue. Fingerprint and on-line signature verification competitions at icb 2009. In *Proceedings* of the International Conference on Biometrics (ICB), pages 725–732, Alghero, Italy, 2009.
- [DDBF⁺24] Nicol'o Di Domenico, Guido Borghi, Annalisa Franco, Davide Maltoni, et al. Onot: a high-quality icao-compliant synthetic mugshot dataset. In *The 18th IEEE International Conference on Automatic Face and Gesture Recognition (FG)*, pages 1–6, 2024.
- [LTN+19] Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris McClanahan, Esha Uboweja, Michael Hays, Fan Zhang, Chuo-Ling Chang, Ming Yong, Juhyun Lee, Wan-Teh Chang, Wei Hua, Manfred Georg, and

BIBLIOGRAPHY 57

BIBLIOGRAPHY

Matthias Grundmann. Mediapipe: A framework for perceiving and processing reality. In *Third Workshop on Computer Vision for* AR/VR at *IEEE Computer Vision and Pattern Recognition (CVPR)* 2019, 2019.

- [SHZ⁺18] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4510–4520, 2018.
- [WCHG20] Mingjie Wang, Hao Cai, Xin Huang, and Minglun Gong. Adnet: Adaptively dense convolutional neural networks. In 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 990–999, 2020.

58 BIBLIOGRAPHY