fP

- We expect the fP approach to be the best, by design
- It shows the upper bounds on effectiveness for this task
- Can we design a model that can predict which keywords require PICO annotations?

	Recall	Precision	F3	F1	F0.5	WSS
В	0.7553^{p}	0.0137 ^{pf}	0.0901^{pf}	0.0255^{pf}	0.0168^{pf}	0.0120 <i>pf</i>
P	0.6509^{bcf}	0.0215^{bc}	0.1128^{bc}	0.0375^{bc}	$0.0258^{m{bc}}$	0.0206^{bc}
cP	0.7002^{pf}	0.0139^{pf}	0.0886pf	0.0257^{pf}	0.0170^{pf}	0.0124^{pf}
fP	0.7553^{pc}	0.0223^{bc}	0.1263^{bc}	0.0400^{bc}	0.0271^{bc}	0.0214^{bc}

Task 4: Screening Prioritisation

- Trained a learning to rank models using clinical features (PICO) and limited number of QPPs
 - IDFSum, IDFStd, IDFMax, IDFAvg, P-Count, I-Count, O-Count
- Systematic review queries then transformed manually into Elasticsearch queries
- Train 5 LTR models using these features and evaluate the performance of each
 - MART, AdaRank, Coordinate Ascent, LambdaMART, Random Forests
- Compare the difference between queries with PICO features and non-PICO features