Hints and Partial Solutions for *Topology*, 2nd edition by James R. Munkres

Mitch Haslehurst

 $May\ 21,\ 2022$

Part I General Topology

Set Theory and Logic

1.1 Fundamental Concepts

1. We prove the second distributive law and the first of DeMorgan's laws.

If x is in $A \cup (B \cap C)$ then it is either in A or $B \cap C$. If x is in A, then it is in both $A \cup B$ and $A \cup C$, hence it is in $(A \cup B) \cap (A \cup C)$. If it is in $B \cap C$, then it is in both B and C. This means, again, that it is in both $A \cup B$ and $A \cup C$, hence it is in $(A \cup B) \cap (A \cup C)$. Conversely, suppose x is in $(A \cup B) \cap (A \cup C)$. If x is in A, then it is in $A \cup (B \cap C)$, so suppose it is not in A. It is in both $A \cup B$ and $A \cup C$, but not in A, so it must be in both B and C. Hence X is in $B \cap C$ and thus in $A \cup (B \cap C)$.

If x is in $A-(B\cup C)$ then x is in A and not in $B\cup C$. This means x is not in B and so x is in A-B. Similarly, x is not in C so x is also in A-C. It follows that x is in $(A-B)\cap (A-C)$. Conversely, if x is in $(A-B)\cap (A-C)$, then x is in A but not B, and also not in C. Thus x is in A but not $B\cup C$, so x is in $A-(B\cup C)$.

2. Let's do (m). If (x, y) is in $(A \times B) \cup (C \times D)$, then it's either in $A \times B$ or $C \times D$. If it's in $A \times B$, then x is in A (hence in $A \cup C$) and y is in B (hence in $B \cup D$). If (x, y) is in $C \times D$, the proof is similar. This shows that $(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D)$.

The other inclusion may not be true. Take $X = Y = \{a, b\}$ and $A = B = \{a\}$ and $C = D = \{b\}$.

- 3. (a) The contrapositive is "If $x^2 x \le 0$, then $x \ge 0$." The converse is "If $x^2 x > 0$, then x < 0." The original and contrapositive are true; the converse is false.
 - (b) The contrapositive is "If $x^2 x \le 0$, then $x \le 0$." The converse is "If $x^2 x > 0$, then x > 0." All of them are false.
- 4. (a) For at least one $a \in A$, it is true that $a^2 \notin B$.
 - (b) For every $a \in A$, it is true that $a^2 \notin B$.
 - (c) For at least one $a \in A$, it is true that $a^2 \in B$.

- (d) For every $a \notin A$, it is true that $a^2 \notin B$.
- 5. (a) True.
 - (b) False.
 - (c) True.
 - (d) True.
- 6. (a) $x \notin A$ for all $A \in \mathcal{A}$ implies $x \notin \bigcup_{A \in \mathcal{A}} A$.
 - (b) $x \notin A$ for at least one $A \in \mathcal{A}$ implies $x \notin \bigcup_{A \in \mathcal{A}} A$.
 - (c) $x \notin A$ for all $A \in \mathcal{A}$ implies $x \notin \bigcap_{A \in \mathcal{A}} A$.
 - (d) $x \notin A$ for at least one $A \in \mathcal{A}$ implies $x \notin \bigcap_{A \in \mathcal{A}} A$.
- 7. $D = A \cap (B \cup C), E = (A \cap B) \cup C, F = (A B) \cup (A \cap B \cap C).$
- 8. If $A = \{a, b\}$, then

$$\mathcal{P}(A) = \{\varnothing, \{a\}, \{b\}, A\}$$

so $\mathcal{P}(A)$ has four elements. If A has one element, $\mathcal{P}(A)$ has two elements. If A has three elements, $\mathcal{P}(A)$ has eight elements. $\mathcal{P}(\emptyset) = \{\emptyset\}$ so that $\mathcal{P}(\emptyset)$ has one element. $\mathcal{P}(A)$ is called the power set of A because $\mathcal{P}(A)$ has 2^n elements when A has n elements.

- 9. $X \bigcup_{A \in \mathcal{A}} A = \bigcap_{A \in \mathcal{A}} (X A)$ and $X \bigcap_{A \in \mathcal{A}} A = \bigcup_{A \in \mathcal{A}} (X A)$
- 10. (a) $\{(x,y): x \text{ is an integer}\} = \mathbb{Z} \times \mathbb{R}$.
 - (b) $\{(x,y) : 0 < y \le 1\} = \mathbb{R} \times (0,1].$
 - (c) Suppose $\{(x,y): y > x\} = A \times B$ for two subsets A and B of \mathbb{R} . We have that both (0,1) and (1,2) are in $A \times B$, thus $1 \in A$ and $1 \in B$. It follows that $(1,1) \in A \times B$, but $1 \nleq 1$.
 - (d) $\{(x,y): x \text{ is not an integer and } y \text{ is an integer}\} = (\mathbb{R} \mathbb{Z}) \times \mathbb{Z}$.
 - (e) Suppose $\{(x,y): x^2+y^2<1\}=A\times B$ for two subsets A and B of \mathbb{R} . We have that both $(1/\sqrt{2},0)$ and $(0,1/\sqrt{2})$ are in $A\times B$, thus $1/\sqrt{2}\in A$ and $1/\sqrt{2}\in B$. It follows that $(1/\sqrt{2}),1/\sqrt{2})\in A\times B$, but $(1/\sqrt{2})^2+(1/\sqrt{2})^2=1\not<1$.

1.2 Functions

- 1. (a) One simply follows the definitions: if $a \in A_0$, then $f(a) \in f(A_0)$ and so $a \in f^{-1}(f(A_0))$. If $a \in f^{-1}(f(A_0))$, then $f(a) \in f(A_0)$ and a is the only preimage of f(a) if f is injective.
 - (b) If $b \in f(f^{-1}(B_0))$, then b = f(a) for some $a \in f^{-1}(B_0)$. But $a \in f^{-1}(B_0)$ means that $b = f(a) \in B_0$. If $b \in B_0$, there exists some $a \in A$ such that b = f(a) provided that f is surjective. Then $a \in f^{-1}(B_0)$ and so $b = f(a) \in f(f^{-1}(B_0))$.
- 2. (a) If $x \in f^{-1}(B_0)$, then $f(x) \in B_0$. Then $f(x) \in B_1$ by assumption, so $x \in f^{-1}(B_1)$.
- 3.
- 4.

5. (a) Suppose f(x) = f(y). If there is a function $g: B \to A$ such that $g \circ f = i_A$, then

$$f(x) = f(y)$$
 implies $g(f(x)) = g(f(y))$ implies $i_A(x) = i_A(y)$ implies $x = y$.

Now suppose $b \in B$. If there exists a function $h : B \to A$ such that $f \circ h = i_B$, then the element $h(b) \in A$ is a preimage for b under f because

$$f(h(b)) = i_B(b) = b.$$

- (b) Any function which is injective but not surjective.
- (c) Any function which is surjective but not injective.
- (d) Yes. Define $f: \mathbb{Z} \to \mathbb{Z}: n \mapsto 2n$. Then

$$g_1(n) = \begin{cases} n/2 & n \text{ is even} \\ 0 & n \text{ is odd} \end{cases}$$
 and $g_2(n) = \begin{cases} n/2 & n \text{ is even} \\ 1 & n \text{ is odd} \end{cases}$

are both left inverses for f. Now look at $g: \mathbb{Z} \to \{0\}: n \mapsto 0$. Two right inverses for g are $h_1: \{0\} \to \mathbb{Z}: 0 \mapsto 0$ and $h_2: \{0\} \to \mathbb{Z}: 0 \mapsto 1$.

(e) By part (a), f is both injective and surjective so it is bijective and has an inverse f^{-1} . We first show that $g = f^{-1}$. Take $b \in B$. Since f is surjective, there is an element $x \in A$ such that f(x) = b. Then

$$i_A(x) = i_A(x)$$
 implies $g(f(x)) = f^{-1}(f(x))$ implies $g(b) = f^{-1}(b)$.

Now we show that $h = f^{-1}$. If $b \in B$ again,

$$i_B(b) = i_B(b)$$
 implies $f(h(b)) = f(f^{-1}(b))$ implies $h(b) = f^{-1}(b)$

because f is injective.

1.3 Relations

1.

2.

3. Take the empty relation on A, that is, $\varnothing \subseteq A \times A$. \varnothing is symmetric and transitive by default, and is not reflexive since $(a, a) \notin \varnothing$ for any $a \in A$. Using this example, it is a small step to see the flaw in the proof provided: it assumes that there are elements in C to begin with.

4.

5.

6.

7.

9.

10.

11.

- 12. In (i), every element has an immediate predecessor ((m,n) has (m,n-1), and the set does not have a smallest element.
- 13. Suppose A has the least upper bound property and A_0 is a nonempty subset of A which is bounded below. Let B be the set of all lower bounds for A_0 . B is nonempty and bounded above (any element of A_0 is an upper bound) and the claim is that the least upper bound of B is the greatest lower bound of A_0 . Let b be the least upper bound of B. Let us first check that b is a lower bound for A_0 : if $a \in A_0$, then $c \le a$ for all $c \in B$ and so a is an upper bound for B. Since b is the least such, we have $b \le a$. Seeing that it is the greatest lower bound is easy: if b' is any other lower bound for A_0 , then $b' \in B$ and thus $b' \le b$ since b is an upper bound for B.

1.4 The Integers and the Real Numbers

1.

2.

- 3. (a) Clearly $1 \in \bigcap_{A \in \mathcal{A}} A$ since 1 is in each A. If $x \in \bigcap_{A \in \mathcal{A}} A$, then x is in each A, hence x+1 is in each A because they are all inductive. It follows that $x+1 \in \bigcap_{A \in \mathcal{A}} A$ and that $\bigcap_{A \in \mathcal{A}} A$ is inductive.
 - (b) Property (1) follows from part (a). If A_0 is an inductive set of positive integers, it is in particular a set of positive integers and so $A_0 \subseteq \mathbb{Z}_+$. On the other hand, if \mathcal{A} is the collection of all inductive subsets of \mathbb{R} , then

$$\mathbb{Z}_+ = \bigcap_{A \in \mathcal{A}} A \subseteq A_0$$

since $A_0 \in \mathcal{A}$.

4.

5.

6.

- 8. (a) This follows from Exercise 13 in Section 1.3.
 - (b) The fact that 0 is a lower bound follows from n > 0 for all $n \in \mathbb{Z}_+$, and Exercise 2 (i). To see that 0 is the greatest lower bound, suppose some x > 0 satisfies $x \le 1/n$ for all n. Then $n \le 1/x$ for all n, contradicting the fact that \mathbb{Z}_+ is not bounded above.

(c) First observe that 0 is indeed a lower bound (use a > 0, Exercise 2 (b), and induction). Following the hint, we let h = (1 - a)/a and show by induction that $(1 + h)^n \ge 1 + nh$ for all $n \in \mathbb{Z}_+$. It is clearly true for 1, so suppose it is true for an arbitrary n. Then

$$(1+h)^{n+1} \ge (1+nh)(1+h) = 1 + (n+1)h + nh^2 \ge 1 + (n+1)h.$$

since $nh^2 \ge 0$ (by Exercise 2 (f)). Now note that $(1+h)^n = 1/a^n$, 1+nh = n/a - (n-1), and so we have shown that

$$\frac{1}{n(\frac{1}{a}-1)+1} \ge a^n$$

for all $n \in \mathbb{Z}_+$. Now use part (b) in some clever way.

1.5 Cartesian Products

1. Define

$$\Phi: A \times B \to B \times A: (a,b) \mapsto (b,a).$$

 Φ is injective: if (b, a) = (b', a'), then a = a' and b = b', so (a, b) = (a', b'). It is also surjective since (b, a) has preimage (a, b).

2.

3.

4. (a) Since X is nonempty, let $x \in X$. Then set

$$f: X^m \to X^n: (x_1, \dots, x_m) \mapsto (x_1, \dots, x_m, \overbrace{x, \dots, x}^{n-m})$$

(b) Set

$$g: X^m \times X^n \to X^{m+n}: ((x_1, \dots, x_m), (y_1, \dots, y_n)) \mapsto ((x_1, \dots, x_m, y_1, \dots, y_n))$$

(c) Again let $x \in X$. Set

$$h: X^n \to X^\omega: (x_1, \dots, x_n) \mapsto (x_1, \dots, x_n, x, x, x, \dots).$$

(d) Set

$$k: X^n \times X^\omega \to X^\omega: ((x_1, \dots, x_n), (y_1, y_2, \dots)) \mapsto (x_1, \dots, x_n, y_1, y_2, \dots).$$

(e) Set

$$\ell: X^{\omega} \times X^{\omega} \to X^{\omega}: ((x_1, x_2, \ldots), (y_1, y_2, \ldots)) \mapsto (x_1, y_1, x_2, y_2, x_3, \ldots).$$

(f) If $\mathbf{x}_k = (x_1^{(k)}, x_2^{(k)}, x_3^{(k)}, \dots)$ is in A^{ω} for $k = 1, 2, \dots n$, set

$$m: (A^{\omega})^n \to B^{\omega}$$

$$(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n) \mapsto (x_1^{(1)}, x_1^{(2)}, \dots, x_1^{(n)}, x_2^{(1)}, x_2^{(2)}, \dots).$$

5. (a) \mathbb{Z}^{ω} .

- (b) $\prod_{i=1}^{\infty} [i, \infty)$.
- (c) $\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R} \times \mathbb{Z} \times \mathbb{Z} \times \cdots$.
- (d) Suppose $\{\mathbf{x}: x_2 = x_3\} = A_1 \times A_2 \times A_3 \times \cdots$ where each A_i is a subset of \mathbb{R} . Then the elements $(0,0,0,\ldots)$ and $(1,1,1,\ldots)$ are both in $\prod A_i$, which means 0 and 1 are both in A_i for all i. But then $(0,1,0,0,0,\ldots) \in \prod A_i = \{\mathbf{x}: x_2 = x_3\}$, which is a contradiction because $0 \neq 1$.

1.6 Finite Sets

1.

2. This is just the contrapositive of Corollary 6.6.

3. Set

$$\Phi: X^{\omega} \to X^{\omega}: (x_n)_{n \in \mathbb{Z}^+} \mapsto (x_{n+1})_{n \in \mathbb{Z}^+}.$$

The image of Φ is a proper subset of X^{ω} , and Φ is a bijection onto its image.

4.

5. Yes. If $b \in B$ is arbitrary, there is a bijection between A and $A \times \{b\}$. $A \times \{b\}$ is a proper subset of $A \times B$, so $A \times \{b\}$, and hence A, is finite. An identical argument applies to B.

6.

7. Every function $f: A \to B$ is a subset of $A \times B$, thus there can be only finitely many.

1.7 Countable and Uncountable Sets

1. The set $\mathbb{Z} \times \mathbb{Z}$ is countable since \mathbb{Z} is countable, and the function

$$f: \mathbb{Q} \to \mathbb{Z} \times \mathbb{Z}$$

defined by f(r) = (m, n), where r = m/n is in lowest terms and n > 0, is well-defined and injective.

2.

3. The bijection is given by $\mathcal{P}(\mathbb{Z}_+) \to X^{\omega} : A \mapsto \chi_A$, where χ_A is the characteristic function of $A \subseteq \mathbb{Z}_+$.

4.

5.

6. (a) Following the hint, we verify that $A_1 \supset B_1 \supset A_2 \supset B_2 \supset A_3 \supset \cdots$. Clearly $A_1 \supset B_1$, so suppose $A_n \supset B_n$; we will show that $A_{n+1} \supset B_{n+1}$. If $x \in B_{n+1} = f(B_n)$, then x = f(y) for some $y \in B_n$. $y \in A_n$ by assumption, so $x \in f(A_n) = A_{n+1}$. That $A_n \subseteq B_{n-1}$ for all $n \geq 2$ is proven similarly.

Now take the function $h: A \to B$ as defined and suppose that h(x) = h(y). To show that h is injective we consider three cases.

Case 1. $x \notin A_n - B_n$ for any n and $y \notin A_n - B_n$ for any n. Then x = h(x) = h(y) = y.

Case 2. $x \in A_n - B_n$ for some n and $y \in A_m - B_m$ for some m. Then f(x) = h(x) = h(y) = f(y), so x = y since f is injective.

Case 3. $x \in A_n - B_n$ for some n and $y \notin A_m - B_m$ for any m (we are assuming, then, that $x \neq y$). We have f(x) = h(x) = h(y) = y, but $y = f(x) \in f(A_n - B_n) = f(A_n) - f(B_n) = A_{n+1} - B_{n+1}$, a contradiction.

To see that h is surjective, let $b \in B$. If $b \in A_n - B_n$ for some n, then b = f(x) = h(x) for some $x \in A_{n-1} - B_{n-1}$. If $b \notin A_n - B_n$ for any n, then b = h(b).

(b) We have $g(C) \subseteq A$ and $g \circ f : A \to g(C)$ is an injection, so apply part (a).

1.8 The Principle of Recursive Definition

1. If $f:\{1,\ldots,m\}\to\mathbb{R}$, let $\rho(f)=f(m)+b_{m+1}$. Then there is a function $h:\mathbb{Z}_+\to\mathbb{R}$ such that $h(1)=b_1$ and

$$h(i) = \rho(h|_{\{1,\dots,i-1\}}) = h(i-1) + b_i.$$

Then $h(n) = \sum_{i=1}^{n} b_i$.

- 2. Similar to the previous problem, except let $\rho(f) = f(m)b_{m+1}$.
- 3. Take the sequences $\{a, a, a, \ldots\}$ and $\{1, 2, 3, \ldots\}$.
- 4. If $f: \{1, ..., m\} \to \mathbb{Z}_+$, let

$$\rho(f) = \begin{cases} f(m) + f(m-1) & m \ge 2 \\ 1 & m = 1 \end{cases}.$$

Then Theorem 8.4 gives a function h such that h(1) = 1,

$$h(2) = \rho(h|_{\{1\}}) = 1$$

and

$$h(i) = \rho(h|_{\{1,\dots,i-1\}}) = h(i-1) + h(i-2)$$

when i > 2.

- 5. Set $\rho(f) = \sqrt{f(m) + 1}$.
- 6. (a) Iterating the formula a couple of times, we obtain $h(2) = \sqrt{2}$ and $h(3) = \sqrt{\sqrt{2} 1}$, but then h(4) is not well-defined since $\sqrt{\sqrt{2} 1} < 1$.

This does not violate the principle because ρ cannot be well-defined. If one were to try defining $\rho(f) = \sqrt{f(m) - 1}$, it cannot be guaranteed that $f(m) - 1 \ge 0$.

1.9 Infinite Sets and the Axiom of Choice

1. Setting $f(n) = (0, 0, \dots, 0, \stackrel{n}{1}, 0, 0, \dots)$ does not require choice.

2.

3.

4. In the proof of Theorem 7.5, an arbitrary function $f_n: \mathbb{Z}_+ \to A_n$ was found for each n. Each set

$$\mathcal{A}_n = \{\text{all surjective functions } \mathbb{Z}_+ \to A_n\}$$

is nonempty since each A_n is countable. Then use the choice axiom on the collection $\{A_n\}$.

1.10 Well-Ordered Sets

- 1. It is equivalent to show that every well-ordered set has the greatest lower bound property. (Why?) If A is well-ordered and B is a nonempty subset, denote by a the least element of B. This is certainly a lower bound for B, and it is the greatest because it is an element of B.
- 2. (a) Given any element x which is not the largest element, let

$$A = \{y : x < y\}.$$

A is not empty since x is not the largest element, so A contains a smallest member. This member is the immediate successor of x.

- (b) Take \mathbb{Z} with its usual order.
- 3. No. In $\{1,2\} \times \mathbb{Z}_+$, the element (2,1) has no immediate predecessor, but every element of $\mathbb{Z}_+ \times \{1,2\}$ has an immediate predecessor.
- 4. (a) Suppose A is not well-ordered, so there is a nonempty set $B \subseteq A$ such that B has no least element. Choose any b_{-1} in B; b_{-1} is not the smallest element of B (there is none) so there is an element b_{-2} such that $b_{-2} < b_{-1}$. Continuing, we obtain

$$b_{-1} > b_{-2} > b_{-3} > b_{-4} > \cdots$$

and

$$\mathbb{Z}_- \to B : n \mapsto b_n$$

is an order preserving injection into A. Conversely, if we have an order preserving injection of \mathbb{Z}_{-} into A, its range is a subset of A which has no least element.

- (b) If A were not well-ordered, part (a) would give a sequence $\{b_n\}$ in A which is countable and not well-ordered.
- 5. Let \mathcal{A} be a nonempty collection of sets. Put a well-ordering on each $A \in \mathcal{A}$. Then define c(A) to be the least element of A.
- 6. (a) Suppose S_{Ω} has a largest element α . Then $S_{\Omega} = S_{\alpha} \cup \{\alpha\}$. But S_{α} is countable, hence S_{Ω} is countable, a contradiction.

- (b) If not, S_{Ω} would be a finite union of countable sets, namely $S_{\alpha} \cup \{x : \alpha < x\} \cup \{\alpha\}$.
- (c) Suppose X_0 is countable. By Theorem 10.3, X_0 has an upper bound, say α . Since every element β in S_{Ω} has an immediate successor $s(\beta)$, consider

$$\{\alpha, s(\alpha), s(s(\alpha)), \ldots\}.$$

The above set is countable and thus has a least upper bound γ . Then γ has no immediate predecessor. If δ was an immediate predecessor of γ , then there is some n such that $\delta = s^n(\alpha)$, but then $\delta < s^{n+1}(\alpha) < \gamma$. It follows that $\gamma \in X_0$, which cannot happen since γ is an upper bound for X_0 which is larger than α .

7. If $J_0 \neq J$, choose the smallest element α which is not in J_0 . Then $S_{\alpha} \subseteq J_0$, whence $\alpha \in J_0$, a contradiction.

8.

9.

10. (a) Let J_0 be the set of all elements of J at which h and k agree. If $x \in J$ and $S_x \subseteq J_0$, then $h(S_x) = k(S_x)$ and

$$h(x) = \text{smallest}[C - h(S_x)] = \text{smallest}[C - k(S_x)] = k(x).$$

So by the principle of transfinite induction, $J_0 = J$ and h = k.

- (b)
- (c)

1.11 The Maximum Principle

1. a-a=0 is not positive, and c-a=(c-b)+(b-a)>0 is positive and rational if both c-b and b-a are. $\mathbb Q$ is a maximal simply ordered subset: if A is another which properly contains $\mathbb Q$, then any irrational number is not comparable with 0 (or any other rational number). The other maximal simply ordered subsets are $a+\mathbb Q$ for $a\in\mathbb R$ since they have the same order type as $\mathbb Q$.

2.

3.

- 5. The union of elements in any such collection \mathcal{B} is an upper bound for the elements of \mathcal{B} . Zorn's Lemma then implies that \mathcal{A} has a maximal element, i.e., an element which is not properly contained in any other element.
- 6. Let \mathcal{B} be a subcollection which is simply ordered by proper inclusion, and consider $\bigcup_{B \in \mathcal{B}} B$. If $F \subseteq \bigcup_{B \in \mathcal{B}} B$ is finite, then $F \subseteq B_0$ for some $B_0 \in \mathcal{B}$ since \mathcal{B} is simply ordered. Then F belongs to \mathcal{A} since it is a finite subset of B_0 , which is in \mathcal{A} . Thus $\bigcup_{B \in \mathcal{B}} B$ is in \mathcal{A} , and Kuratowski's Lemma implies that there is a maximal element of \mathcal{A} .

7. Take a strict partial order on a set A. Following the hint, let A be the collection of all subsets of A which are simply ordered. We show that A is of finite type.

Suppose $B \in \mathcal{A}$ and F is a finite subset of B. Clearly F is simply ordered. Conversely, if B is not simply ordered, choose two distinct elements x and y in B which are not comparable. Then $F = \{x, y\}$ is a finite subset of B which is not simply ordered.

Applying the Tukey Lemma gives a maximal simply ordered subset of A.

8.

1.12 Supplementary Exercises: Well-Ordering

Topological Spaces and Continuous Functions

2.1 Topological Spaces

2.2 Basis for a Topology

- 1. For each $x \in A$, choose an open set U_x such that $x \in U_x$ and $U_x \subseteq A$. Then $A = \bigcup_{x \in A} U_x$ is a union of open sets.
- 2.
- 3.
- 4.
- 5.
- 6. [0,1) is open in \mathbb{R}_{ℓ} but not in \mathbb{R}_{K} . Indeed, there is no set of the form (a,b) or (a,b)-K that contains 0 and is contained in [0,1). Conversely, the set $\mathbb{R}-K$ is open in \mathbb{R}_{K} , but if a < b and $0 \in [a,b)$, then $[a,b) \cap K \neq \emptyset$. So $\mathbb{R}-K$ is not open in \mathbb{R}_{ℓ} .

2.3 The Order Topology

None

2.4 The Product Topology on $X \times Y$

None

2.5 The Subspace Topology

- 1. If U is open in A (from either the topology from X or Y) and V is open in X, note that $U = A \cap V = A \cap (V \cap Y)$ since $A \subseteq Y$.
- 2. The subspace topology from \mathcal{T}' is strictly finer, since any open set from \mathcal{T} intersecting Y will be an open set from \mathcal{T}' .

3.

4. It suffices to check basis elements since maps preserve arbitrary unions. Let U and V be open in X and Y respectively. Then $\pi_1(U \times V) = U$ and $\pi_2(U \times V) = V$; both are open.

5.

6. This follows from Theorem 15.1 and Exercise 8(a) from Section 13.

2.6 Closed Sets and Limit Points

- 1. DeMorgan's Laws.
- 2. $A = C \cap Y$ where C is closed in X, and $C \cap Y$ is the intersection of two sets which are closed in X.
- 3. $X \times Y A \times B = (X \times (Y B)) \cup ((X A) \times Y)$.
- 4. $U A = U \cap (X A)$ and $A U = A \cap (X U)$.
- 5. The inclusion holds because [a, b] is a closed set which contains (a, b). For equality to hold, the points a and b must be limit points of (a, b). This occurs if and only if a does not have an immediate successor and b does not have an immediate predecessor. Indeed, if a has an immediate successor a_+ , then $(-\infty, a_+)$ is a neighbourhood of a which does not intersect (a, b). If a does not have an immediate successor, then any basic neighbourhood of a, $(-\infty, c)$ where a < c, contains points of (a, b).
- 6. (a) If $A \subseteq B$, then $A \subseteq \overline{B}$. \overline{B} is a closed set containing A, so $\overline{A} \subseteq \overline{B}$.
 - (b) $A \subseteq \overline{A}$ and $B \subseteq \overline{B}$, so $A \cup B \subseteq \overline{A} \cup \overline{B}$. The set $\overline{A} \cup \overline{B}$ is closed, so $\overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$. On the other hand, if $x \in \overline{A} \cup \overline{B}$, then every neighbourhood of x contains points of either A or B, hence points of $A \cup B$. It follows that $x \in \overline{A \cup B}$.
 - (c) The proof of the inclusion is similar to the proof in (b). For the counterexample,

$$\bigcup_{r\in\mathbb{Q}}\overline{\{r\}}=\bigcup_{r\in\mathbb{Q}}\{r\}=\mathbb{Q},$$

but

$$\overline{\bigcup_{r\in\mathbb{Q}}\{r\}}=\overline{\mathbb{Q}}=\mathbb{R}.$$

7. It is true that every neighbourhood U must intersect $\bigcup A_{\alpha}$, but different neighbourhoods may intersect different sets A_{α} .

8.

9.

10. If x and y are distinct points with x < y, then $(-\infty, y)$ and (x, ∞) are disjoint neighbourhoods.

11.

- 12. If x and y are distinct points in the subspace $A \subseteq X$, they have disjoint neighbourhoods U and V which are open in X. Then $U \cap A$ and $V \cap A$ are disjoint neighbourhoods in A.
- 13. If $x \neq y$ in X, then $x \times y$ has a basic neighbourhood $U \times V$ that does not intersect Δ . This implies that U and V are disjoint. Conversely, if X is Hausdorff, the complement of Δ is a union of neighbourhoods of the form $U \times V$ (where U and V separate x and y), hence is open.

14.

15.

16.

17.

18.

- 19. (a) g
 - (b) If A is clopen, then $A = \overline{A}$ and $X A = \overline{X A}$, so $\overline{A} \cap \overline{(X A)} = A \cap (X A) = \emptyset$. If the boundary is empty, then the closure of A is equal to the interior of A by (a), hence A is clopen.
 - (c) If U is open, then $\overline{X} \overline{U} = X U$ and so $\overline{U} U = \overline{U} \cap (X U)$. Conversely, if $\overline{U} U = \overline{U} \cap (\overline{X} U)$,
 - (d) It is not true: take $U = (-\infty, 0) \cup (0, \infty)$ in \mathbb{R} .

2.7 Continuous Functions

1. Let V be open in \mathbb{R} . If $f^{-1}(V) = \emptyset$ there is nothing to do, so assume $x \in f^{-1}(V)$. Then $f(x) \in V$ and thus there is an $\varepsilon > 0$ such that $(f(x) - \varepsilon, f(x) + \varepsilon) \subseteq V$ because V is open. By assumption, there is a $\delta > 0$ so that

$$y \in (x - \delta, x + \delta)$$
 implies $f(y) \in (f(x) - \varepsilon, f(x) + \varepsilon)$

which means that $(x - \delta, x + \delta) \subseteq f^{-1}(V)$. Thus $f^{-1}(V)$ is open.

2. No: let $f: \mathbb{R} \to \mathbb{R}: x \mapsto 0$. Then 0 is a limit point of (0,1), but the set $f((0,1)) = \{0\}$ has no limit points at all.

3.

5. Maps of the like

$$f: [0,1] \to [a,b]: x \mapsto (b-a)x + a$$

do the trick.

6. The classical example is $f: \mathbb{R} \to \mathbb{R}$ where

$$f(x) = \left\{ \begin{array}{ll} x & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{array} \right.$$

7.

8.

2.8 The Product Topology

1. If $(x_{\alpha}) \in \prod X_{\alpha}$, choose, for each α , a basis element B_{α} with $x_{\alpha} \in B_{\alpha}$. Then $(x_{\alpha}) \in \prod B_{\alpha}$, so every point is contained in a basis element.

If $\prod B_{\alpha}$ and $\prod C_{\alpha}$ are two basis elements with nonempty intersection, choose, for each α , a basis element $D_{\alpha} \subseteq B_{\alpha} \cap C_{\alpha}$. Then

$$\prod D_{\alpha} \subseteq \prod (B_{\alpha} \cap C_{\alpha}) = \left(\prod B_{\alpha}\right) \cap \left(\prod C_{\alpha}\right).$$

2.

3.

4.

5.

6.

7. The closure in the product topology is \mathbb{R}^{ω} . The closure in the box topology is \mathbb{R}^{∞} .

8.

9. An element of $\prod A_{\alpha}$ is a choice function, so the product being nonempty is the same as a choice function existing.

2.9 The Metric Topology

1.

2.

3.

5. The closure of \mathbb{R}^{∞} in the uniform topology is all sequences which converge to 0. If $x_n \to 0$ and $\varepsilon > 0$, pick N large enough so that $|x_n| < \varepsilon/2$ for $n \ge N$. Then

$$(x_1, x_2, \ldots, x_N, 0, 0, \ldots)$$

is in the ε -neighbourhood of $\{x_n\}$.

6. (a) For simplicity let $\mathbf{x} = (0, 0, 0, \ldots)$. So

$$U = (-\varepsilon, \varepsilon) \times (-\varepsilon, \varepsilon) \times \cdots$$

The element

$$\mathbf{y} = \left(\frac{\varepsilon}{2}, \frac{2\varepsilon}{3}, \dots, \frac{n\varepsilon}{n+1}, \dots\right)$$

is in U but not in $B_{\overline{\rho}}(\mathbf{x}, \varepsilon)$ since $\overline{\rho}(\mathbf{x}, \mathbf{y}) = \varepsilon \not< \varepsilon$.

- (b) The point \mathbf{y} from part (a) has no neighbourhood ball contained in U.
- (c) If $\overline{\rho}(\mathbf{x}, \mathbf{z}) < \varepsilon$, then there is a $\delta > 0$ so that $\overline{\rho}(\mathbf{x}, \mathbf{z}) < \delta < \varepsilon$. Then $\mathbf{z} \in U(\mathbf{x}, \delta)$. Conversely, if $\mathbf{z} \in U(\mathbf{x}, \delta)$ for some $\delta < \varepsilon$, then $\overline{\rho}(\mathbf{x}, \mathbf{z}) \le \delta < \varepsilon$.

2.10 The Metric Topology (continued)

1.

2. If $x_n \to x$ in X, then $d(f(x_n), f(x)) = d(x_n, x) \to 0$, so $f(x_n) \to f(x)$ and f is continuous. f is injective because if f(x) = f(y), then d(x, y) = d(f(x), f(y)) = 0 so x = y.

3.

4.

5.

6.

7.

8.

9.

10. Let $f: \mathbb{R}^2 \to \mathbb{R}$ and $g: \mathbb{R}^2 \to \mathbb{R}$ be defined by f(x,y) = xy and $g(x,y) = x^2 + y^2$. They are both continuous by Exercise 5, and $A = f^{-1}(\{1\})$, $S^1 = g^{-1}(\{1\})$, and $B^2 = g^{-1}([0,1])$.

2.11 The Quotient Topology

- 1. This is more satisfying to do in one's head rather than writing it down. Pull back all possible subsets of $\{a, b, c\}$ to see if the preimages are open in \mathbb{R} .
- 2. (a) Let $U \subseteq Y$ such that $p^{-1}(U)$ is open in X. Then $U = f^{-1}(p^{-1}(U))$ is open since f is continuous.
 - (b) Let $\iota: A \to X$ denote the inclusion. It is continuous and $r \circ \iota$ is the identity on A, so r is a quotient map by part (a).
- 3. The set $[0,\infty)\times(1,2)$ is open in A, but $[0,\infty)$ is not open in \mathbb{R} . The set of points on the curve y=1/x for x>0 is closed in A, but $(0,\infty)$ is not closed in \mathbb{R} .

Note that saturated sets in A are unions of vertical lines in the right half plane and individual points in the left half plane. Let U be a saturated open set in A and consider a point $x_0 \in \pi_1(U)$. The only interesting case is when $x_0 = 0$, so I'll leave the cases $x_0 > 0$ and $x_0 < 0$ out. Since $0 \in \pi_1(U)$, we have that $\pi_1^{-1}(\{0\}) = 0 \times \mathbb{R} \subseteq U$ since U is saturated. Thus $0 \times 0 \in U$ so we may choose an open rectangle $V = (a, b) \times (c, d)$ centred at 0×0 such that $V \cap A \subseteq U$ (at this point it helps to draw a picture).

Now the crux of the argument: because V is centred at 0×0 it must contain some members of the negative horizontal axis (which are in A). Then $\pi_1(V) = \pi_1(V \cap A) = (a, b)$ is open in \mathbb{R} , $0 \in \pi_1(V)$, and $\pi_1(V) \subseteq \pi_1(U)$. It follows that $\pi_1(U)$ is open.

2.12 Supplementary Exercises: Topological Groups

Connectedness and Compactness

3.1 Connected Spaces

- 1. If $A \cup B$ is a separation of X in the coarser topology, then it is also a separation in the finer topology since A and B are both open in the finer topology.
- 2. Suppose $C \cup D$ is a separation of $\bigcup A_n$. Then each A_n lies entirely in C or entirely in D. Let

$$\mathcal{M} = \{n : A_n \subseteq C\} \text{ and } \mathcal{N} = \{n : A_n \subseteq D\}.$$

Use some well-ordering nonsense to show that there is a pair of consecutive integers k and k+1 such that $A_k \subseteq C$ and $A_{k+1} \subseteq D$ (or vice versa). But then $A_k \cap A_{k+1} = \emptyset$.

- 3. Suppose $C \cup D$ is a separation of $A \cup (\bigcup A_{\alpha})$. A is connected so it lies entirely in C (or in D). D is nonempty, so it must contain an element of some A_{α_0} , hence all of A_{α_0} because A_{α_0} is connected. But then $A \cap A_{\alpha_0} = \emptyset$.
- 4. There cannot be a nonempty proper set which is open and closed since such a set would be simultaneously finite and cofinite.
- 5. If a subset of a discrete space has more than one point, any nontrivial partition gives a separation because all subsets are open.

6.

7.

8.

9.

10.

11. Suppose $C \cup D$ is a separation of X. Then each $p^{-1}(\{y\})$ lies entirely in C or D since each is connected. It follows that C and D are open and saturated, so p(C) and p(D) are open in Y. But then $p(C) \cup p(D)$ is a separation of Y.

3.2 Connected Subspaces of the Real Line

- 1. (a) Suppose $f:(0,1] \to (0,1)$ is a homeomorphism. If we denote $x_0 = f(1)$, then $f|_{(0,1)}:(0,1) \to (0,x_0) \cup (x_0,1)$ is a homeomorphism. But (0,1) is connected and $(0,x_0) \cup (x_0,1)$ is not. The other cases are similar.
 - (b) (0,1) can clearly be imbedded in (0,1] (via the inclusion map) and (0,1] can be imbedded into (0,1) by $x \mapsto \frac{1}{2}x$.
 - (c) Similar tactic as in part (a): remove a point from \mathbb{R} and it becomes disconnected, but not \mathbb{R}^n .
- 2. The map g defined by g(x) = f(x) f(-x) is continuous. g(1) = f(1) f(-1) and g(-1) = f(-1) f(1), hence g(1) = -g(-1). If g(1) = 0, then f(1) = f(-1) and we are done. Otherwise, g(1) > 0 and g(-1) < 0 (or vice versa) hence there is a point $c \in S^1$ such that g(c) = 0 by the Intermediate Value Theorem. Then f(c) = f(-c).
- 3. Same idea as the previous exercise with g(x) = f(x) x. Take the function $f(x) = \frac{1}{2}(x+1)$ for the two counterexamples.
- 4. Suppose there are two elements x and y of X such that there is no z with x < z < y. Then $(-\infty, y) \cup (x, \infty)$ is a separation of X.

Now suppose A is a subset of X which is bounded above but does not have a least upper bound. Let

$$C = \bigcup \{(-\infty, x) : x \in A\}$$
 and $D = \bigcup \{(y, \infty) : y \text{ is an upper bound for } A\}.$

Then $C \cup D$ is a separation of X.

5.

6.

7.

8.

9. Let x and y be two points in $\mathbb{R}^2 - A$. There are uncountably many lines passing through each of x and y, so there is a pair of lines, one passing through x and one through y, which are not parallel and do not intersect A. These two lines give a path between x and y.

10.

11.

3.3 Components and Local Connectedness

3.4 Compact Spaces

- 1. (a) If \mathcal{T}' is compact, so is \mathcal{T} . A cover consisting of elements of \mathcal{T} is also a cover consisting of elements of \mathcal{T}' , and thus has a finite subcover.
 - (b) Suppose they are comparable, say $\mathcal{T} \subseteq \mathcal{T}'$. The identity map $(X, \mathcal{T}') \to (X, \mathcal{T})$: $x \mapsto x$ is continuous since $\mathcal{T}' \supset \mathcal{T}$, and is bijective. Theorem 26.6 implies that it is a homeomorphism, and so $\mathcal{T} = \mathcal{T}'$.
- 2. (a) If $\{U_{\alpha}\}$ is an open cover, choose one U_{α_0} that contains all but finitely many points. Then choose finitely many members of the collection to cover the remaining points.
 - (b) No, in fact, the only compact subsets of \mathbb{R} in this topology are the finite ones. For suppose $A \subseteq \mathbb{R}$ is infinite and let $C = \{x_1, x_2, \ldots\}$ be a countably infinite subset of A. Then

$$C_n = \{x_n, x_{n+1}, \ldots\}$$

is closed in A, nonempty, and $C = C_1 \supseteq C_2 \supseteq \cdots$. But $\bigcap C_n = \emptyset$.

- 3. The union of finitely many collections of sets, each containing finitely many sets, again contains finitely many sets.
- 4. The first part of the proof of Theorem 27.3 carries over. For the counterexample, take any infinite set and put the discrete metric on it.
- 5. For each $x \in A$ use Lemma 26.4 to obtain disjoint open sets U_x and V_x with $x \in U_x$ and $B \subseteq V_x$. The sets U_x cover A, so choose finitely many

$$U_{x_1}, \dots U_{x_n}$$

that cover A. Then the open sets

$$\bigcup_{i=1}^n U_{x_i} \text{ and } \bigcap_{i=1}^n V_{x_i}$$

are disjoint and respectively contain A and B.

6.

7. Suppose F is closed in $X \times Y$ and let x_0 be a point not in $\pi_1(F)$ (If $\pi_1(F) = X$ there is nothing to do). Then the slice $x_0 \times Y$ is disjoint from F. For every $y \in Y$, choose a neighbourhood U_y in $X \times Y$ of $x_0 \times y$ that is disjoint from F. Then $\bigcup U_y$ is a tube about $x_0 \times Y$, so apply the tube lemma to obtain a neighbourhood W of x_0 such that $W \times Y \subseteq \bigcup U_y$. Then W is disjoint from $\pi_1(F)$, hence $X - \pi_1(F)$ is open.

3.5 Compact Subspaces of the Real Line

1. Let $A \subseteq X$ be nonempty and bounded above. Consider the collection

$$\mathcal{A} = \{[a, b] \mid a \in A \text{ and } b \text{ is an upper bound for } A\}$$

Show that \mathcal{A} has the finite intersection property, so that $C = \bigcap_{A \in \mathcal{A}} A$ is nonempty. Then show that if x is in C, x is the least upper bound for A.

- 2. (a) d(x,A)=0 if and only if $d(x,A)<\varepsilon$ for every $\varepsilon>0$, if and only if for every $\varepsilon>0$ there is some a in A with $d(x,a)<\varepsilon$, if and only if $B(x,\varepsilon)\cap A\neq\varnothing$ for every $\varepsilon>0$, if and only if $x\in\overline{A}$.
 - (b) Fix x. We show that the map

$$A \to \mathbb{R} : a \mapsto d(x, a)$$

is continuous. If $a_n \to a$, that is, $d(a_n, a) \to 0$, then

$$|d(x, a_n) - d(x, a)| \le d(a_n, a) \to 0$$

by the triangle inequality. Note that compactness was not used here. It is, however, necessary in applying Theorem 27.4 which says that the above map attains a minimum, which is what we wanted to show.

(c) Fix $\varepsilon > 0$. We want to show that

$$U(A,\varepsilon) = \bigcup_{a \in A} B(a,\varepsilon).$$

 $x \in U(A, \varepsilon)$ if and only if $d(x, A) < \varepsilon$, if and only if $d(x, a) < \varepsilon$ for some a in A, if and only if $x \in B(a, \varepsilon)$ for some a in A.

(d) For each a in A, there is some $\varepsilon_a > 0$ such that $B(a, 2\varepsilon_a) \subseteq U$. The open balls $B(a, \varepsilon_a)$ cover A, so there is a finite number $B(a_i, \varepsilon_{a_i})$ for i = 1, 2, ..., n which cover A. Let $\varepsilon = \min\{\varepsilon_{a_i}\}$. Then $U(A, \varepsilon) \subseteq U$. Indeed, if $a \in A$, then $a \in B(a_i, \varepsilon_{a_i})$ for some i and thus

$$B(a,\varepsilon) \subseteq B(a_i,\varepsilon+\varepsilon_{a_i}) \subseteq B(a_i,2\varepsilon_{a_i}) \subseteq U.$$

- (e) See Figure 26.3 for a hint.
- 3.
- 4.

3.6 Limit Point Compactness

- 1. $x_n = (0, 0, \dots, 0, \stackrel{n}{1}, 0, \dots).$
- 2. The sequence n/(n+1) has no limit point in [0,1] with the lower limit topology. The only candidate would be 1, but $\{1\}$ is a neighbourhood that contains no points of the sequence.

3.

4.

5.

6. If f(x) = f(y), then d(x, y) = d(f(x), f(y)) = 0, hence x = y and f is injective. If $a \notin f(X)$, we may choose an ε -neighbourhood of a which is disjoint from f(X) because f(X) is compact in X and hence closed. If we define a sequence in X by $x_n = f^{n-1}(a)$ for $n \ge 1$, then $d(x_m, x_n) \ge \varepsilon$ for all $m \ne n$. Indeed, suppose m < n. Then

$$d(x_m, x_n) = d(f^{m-1}(a), f^{n-1}(a)) = d(a, f^{n-m}(a)) \ge \varepsilon$$

where we obtain the second equality because f is an isometry. But then $\{x_n\}$ cannot have a convergent subsequence.

7. (a) First we show uniqueness. If x and y are fixed points of f, then

$$d(x,y) = d(f(x), f(y)) \le \alpha d(x,y)$$

and since $\alpha < 1$, we must have d(x, y) = 0.

Now for existence. Suppose, by normalizing the metric if necessary, that the diameter of X is 1. Then $A_1 = f(X)$ has diameter at most α . Indeed,

$$d(f(x), f(y)) \le \alpha d(x, y) \le \alpha.$$

Similarly, $A_2 = f(f(X))$ has diameter at most α^2 , and more generally $A_n = f^n(X)$ has diameter at most α^n . Since $\alpha^n \to 0$, the intersection $\bigcap A_n$ consists of at most one point. Since each A_n is closed and X is compact, $\bigcap A_n$ consists of exactly one point, say x. Then x is a fixed point of f. Indeed, since $x \in A_1 \cap A_2 \cap A_3 \cap \cdots$, we have $f(x) \in A_2 \cap A_3 \cap A_4 \cap \cdots$. But since this intersection consists of only one point, it must be that f(x) = x.

(b) Uniqueness is proven similarly as in (a), that is, if x and y are distinct fixed points, then

$$d(x, y) = d(f(x), f(y)) < d(x, y),$$

a contradiction.

For existence, consider the sets A_n from (a). $\bigcap A_n$ is nonempty as before, so we need only show that it consists of a single point. Suppose $x \in \bigcap A_n$ and for each n, choose x_n so that $x = f^{n+1}(x_n)$. X is compact so the sequence $y_n = f^n(x_n)$ has a limit point, say $y_{n_k} \to a$. Then

$$f(a) = \lim_{k \to \infty} f(y_{n_k}) = \lim_{k \to \infty} f(f^{n_k}(x_{n_k})) = \lim_{k \to \infty} f^{n_k + 1}(x_{n_k}) = \lim_{k \to \infty} x = x$$

where we obtain the first equality because f is continuous. If $a \notin A_N$ for some N, then $d(y_n, a) \geq \varepsilon$ for some $\varepsilon > 0$ for n > N because A_N is closed, but then $y_{n_k} \not\to a$. So $a \in \bigcap A_n$, and thus $A \subseteq f(A)$. The inclusion $f(A) \subseteq A$ is clear, so A = f(A) and so the diameter of A is 0 because f is shrinking.

(c) f(0) = 0 and f(1) = 1/2, while $f'(x) = 1 - x \ge 0$. f is therefore increasing and so $f(X) \subseteq [0,1]$. Suppose there was a number $\alpha < 1$ such that

$$d(f(x), f(y)) \le \alpha d(x, y)$$

for all x and y in [0,1], or equivalently,

$$\frac{|f(x) - f(y)|}{|x - y|} \le \alpha$$

for all x and y in [0,1]. Then, by taking y=0,

$$\frac{f(x)}{r} \le \alpha$$

for all x in [0, 1]. But $f(x)/x \to 1$ as $x \to 0$, which means there is an x_0 such that

$$\frac{f(x_0)}{x_0} > \alpha,$$

a contradiction. So f is not a contraction.

To see that it is shrinking, suppose x > y and observe

$$\frac{f(x) - f(y)}{x - y} = \frac{(x - x^2/2) - (y - y^2/2)}{x - y} = 1 - \frac{x^2/2 - y^2/2}{x - y} < 1.$$

(d) Setting f(x) = x yields $x^2/4 + 1 = 0$ after a little algebra, which is impossible. So f has no fixed point. We compute

$$f'(x) = \frac{1}{2} + \frac{x}{2(x^2 + 1)^{1/2}}$$

and observe that $f'(x) \to 1$ as $x \to \infty$. By the mean value theorem,

$$f(x+1) - f(x) \to 1 \text{ as } x \to \infty$$

so f is not a contraction, as in (c). To see that f is shrinking, apply the mean value theorem again to

$$\frac{f(x) - f(y)}{x - y}$$

when x > y and observe that f' < 1.

3.7 Local Compactness

1. If U is open and C is compact in \mathbb{Q} with $U \subseteq C$, then every sequence in C would have a convergent subsequence with its limit in \mathbb{Q} . But any sequence in \mathbb{Q} converging to an irrational number in U does not have this property.

- 2. (a) To show that each X_{α} is locally compact, use the fact that the projection maps π_{α} are continuous and open. Let $U = \prod U_{\alpha}$ be any basic open set in $\prod X_{\alpha}$ which is contained in a compact set C. Then $U_{\alpha} = X_{\alpha}$ for all but finitely many α , so $X_{\alpha} = \pi_{\alpha}(U) \subseteq \pi_{\alpha}(C)$ is compact for all but finitely many α .
 - (b) If (x_{α}) is in $\prod X_{\alpha}$, find open neighbourhoods U_{α} of x_{α} and compact $C_{\alpha} \supseteq U_{\alpha}$ for the non-compact X_{α} , and set $U_{\alpha} = C_{\alpha} = X_{\alpha}$ for the rest. Then $(x_{\alpha}) \in \prod U_{\alpha} \subseteq \prod C_{\alpha}$, the latter set being compact by the Tychonoff theorem.
- 3. The answer is no if f is only continuous. For example, take $f: \mathbb{Z} \to \mathbb{Q}$ to be any bijection; it is continuous because \mathbb{Z} has the discrete topology, but \mathbb{Z} is locally compact (any one-point set is a compact neighbourhood) and \mathbb{Q} is not (Exercise 1).

On the other hand, if f is continuous and open, take a point y in f(X) and pick x in $f^{-1}(y)$. Find a neighbourhood U and a compact set C with $x \in U \subseteq C$. Then f(U) is open, f(C) is compact, and $y \in f(U) \subseteq f(C)$.

4. Take the point $(0,0,0,\ldots)$ and basic ε -neighbourhood

$$U = \bigcup_{\delta < \varepsilon} U(\mathbf{0}, \delta)$$

(see Section 20, Exercise 6(c)). Then

$$\overline{U} = [-\varepsilon, \varepsilon]^{\omega}$$

Define x_n in \overline{U} by

$$x_n = (0, 0, 0, \dots, 0, 0, \varepsilon, 0, 0, \dots)$$

with ε in the *n*-th spot. Then $\rho(x_m, x_n) = \varepsilon$ for $m \neq n$, so it does not have a convergent subsequence.

- 5. We define the extension $\tilde{f}: X_1 \cup \{\infty_1\} \to X_2 \cup \{\infty_2\}$ in the obvious way: $\tilde{f}(x) = f(x)$ for all x in X_1 , and $\tilde{f}(\infty_1) = \infty_2$.
- 6. \mathbb{R} is homeomorphic to $S^1 \{(1,0)\}$. Use Theorem 29.1.
- 7. Use Theorem 29.1.
- 8. \mathbb{Z}_+ is homeomorphic to $\{1/n \mid n \in \mathbb{Z}_+\}$. Use Theorem 29.1.
- 9. Use Exercise 5(c) from the supplementary exercises on topological groups, and Exercise 3 from this section.
- 10. Find a neighbourhood W of x and a compact set C with $W \subseteq C$. Then W is a locally compact Hausdorff space by Corollary 29.4. Apply Theorem 29.2 with W in place of X.

3.8 Supplementary Exercises: Nets

1.

2. If α and β are in K, choose γ in J with $\alpha \leq \gamma$ and $\beta \leq \gamma$. Then use cofinality of K to choose ω in K such that $\gamma \leq \omega$, and hence $\alpha \leq \omega$ and $\beta \leq \omega$.

Countability and Separation Axioms

4.1 The Countability Axioms

- 1. (a) Let x be a point of X and $\{B_n\}$ be a countable base of neighbourhoods at x. Then $\bigcap B_n = \{x\}$ because if y is a point which is not x, the T_1 axiom implies that there is an open set U containing x but not y. Some B_N must be contained in U, and hence y cannot be in $\bigcap B_n$.
 - (b) Consider \mathbb{R}^{ω} with the box topology. Every point is a G_{δ} set as

$$\{(x_1, x_2, x_3, \ldots)\} = \bigcap_{n=1}^{\infty} \left[\left(x_1 - \frac{1}{n}, x_1 + \frac{1}{n} \right) \times \left(x_2 - \frac{1}{n}, x_2 + \frac{1}{n} \right) \times \cdots \right]$$

but the space is not first-countable. Suppose $\{B_n\}$ is a countable base at $(0,0,0,\ldots)$. We may assume that each $B_n = \prod_{k=1}^{\infty} U_k^{(n)}$ where each $U_k^{(n)}$ is open in \mathbb{R} , see Exercise 2. For each k, choose an open set V_k in \mathbb{R} that contains 0 and is properly contained in $U_k^{(k)}$. Then no B_n is contained in $\prod_{k=1}^{\infty} V_k$.

- 2. Following the hint, Let $C_{n,m} \in \mathcal{C}$ be such that $B_n \subseteq C_{n,m} \subseteq B_m$, whenever this is possible. Then the collection of all $C_{n,m}$ is a countable base. Indeed, if U is open and x is in U, choose B_m with $x \in B_m \subseteq U$. Then choose $C \in \mathcal{C}$ with $x \in C \subseteq B_m \subseteq U$. Then choose B_n with $x \in B_n \subseteq C \subseteq B_m \subseteq U$. Then replace C with $C_{n,m}$ so that $C_{n,m} \subseteq U$.
- 3. Denote a countable base by $\mathcal{B} = \{B_n\}$ and let $E \subseteq A$ be all points of A that are not limit points. For each x in E, choose an integer n_x such that $x \in B_{n_x}$ and $B_{n_x} \cap A = \{x\}$. The map $E \to \mathcal{B}: x \mapsto B_{n_x}$ is injective, thus E is at most countable. Since $A = E \cup (A E)$, A is uncountable, and E is at most countable, it follows that A E (all limit points of A) is uncountable.
- 4. For $n \geq 1$, the collection $\{B(x, \frac{1}{n}) \mid x \in X\}$ is a cover, so by compactness there is a finite subcover A_n . The collection $\mathcal{B} = \bigcup_{n \geq 1} A_n$ is a countable base.

- 5. (a) If D is a countable dense subset, the collection $\{B(x, \frac{1}{n}) \mid x \in D \text{ and } n \geq 1\}$ is a countable base.
 - (b) For $n \geq 1$, the collection $\{B(x, \frac{1}{n}) \mid x \in X\}$ is a cover, so since the space is Lindelöf, there is a countable subcover \mathcal{A}_n . The collection $\mathcal{B} = \bigcup_{n \geq 1} \mathcal{A}_n$ is a countable base.
- 6. \mathbb{R}_{ℓ} has a countable dense subset by Example 3. If \mathbb{R}_{ℓ} were metrizable, it would have a countable base by Exercise 5(a), but it does not, by Example 3.
 - I_o^2 is compact, so if it were metrizable, it would have a countable base by Exercise 4. Then the subset $A \subseteq I_o^2$ from Example 5 would have a countable base by Theorem 30.2. Then A would have a countable dense subset by Theorem 30.3(b). But A is the disjoint union of an uncountable collection of open subsets, and this contradicts Exercise 13 below.
- 7. If D is a countable subset of S_{Ω} , then it has an upper bound in S_{Ω} by Theorem 10.3, call it α . Then D is a subset of the closed proper subset $\{x \in S_{\Omega} \mid x \leq \alpha\}$, so D cannot be dense. It follows that S_{Ω} is not separable.

 S_{Ω} is not second-countable since it is not separable.

Let x be in S_{Ω} and y be the least element in S_{Ω} such that x < y. The collection $\{(a, y) \mid a \in S_x\}$ is a countable base at x, therefore S_{Ω} is first-countable.

Since S_{Ω} has no largest element, every element is contained in a section, so $\bigcup \{S_x \mid x \in S_{\Omega}\}$ is an open cover of S_{Ω} . If $\{S_{x_n} \mid n \geq 1\}$ is a countable subcollection, then $\bigcup_{n \geq 1} S_{x_n}$ would be a countable union of countable sets, hence countable, hence not all of S_{Ω} . It follows that S_{Ω} is not Lindelöf.

If D is dense in \overline{S}_{Ω} , then $D \cap S_{\Omega}$ is dense in S_{Ω} . Since S_{Ω} is not separable, D cannot be countable, hence \overline{S}_{Ω} is not separable.

 \overline{S}_{Ω} is not second-countable since it is not separable.

Suppose $\{B_n\}$ is a countable base at Ω . By replacing B_n with $B_1 \cap B_2 \cap \cdots \cap B_n$, we may assume that $B_n \supseteq B_{n+1}$ for all n. For each n, pick x_n in B_n such that $x_n \neq \Omega$. Then $x_n \to \Omega$. $\{x_n\}$ is a countable subset of S_{Ω} , so it has an upper bound α in S_{Ω} . But then x_n cannot converge to Ω since $(\alpha, \Omega]$ is a neighbourhood of Ω that contains none of the terms x_n . Thus \overline{S}_{Ω} is not first-countable.

 \overline{S}_{Ω} is compact, so it is Lindelöf.

8. In the uniform topology, \mathbb{R}^{ω} is a metric space, so it is first-countable.

The set of all $\mathbf{q} = (q_1, q_2, \ldots)$ in \mathbb{R}^{ω} such that q_j is rational for all j is a countable dense subset.

By Exercise 5(a), \mathbb{R}^{ω} is second-countable.

By Theorem 30.3(a), \mathbb{R}^{ω} is Lindelöf.

9. The proof that A is Lindelöf is analogous to the proof of Theorem 26.2.

For the counterexample, consider the subset L of \mathbb{R}^2_{ℓ} from Example 4.

10. If D_n is a countable dense subset of X_n for all $n \geq 1$, then $\prod_{n=1}^{\infty} D_n$ is a countable dense subset of $\prod_{n=1}^{\infty} X_n$.

- 11. If \mathcal{A} is an open cover of f(X), then $\{f^{-1}(U) \mid U \in \mathcal{A}\}$ is an open cover of X, so extract a countable subcover and map back to f(X). If D is dense in X, f(D) is dense in f(X) since $f(X) = f(\overline{D}) \subseteq \overline{f(D)}$, see Theorem 18.1.
- 12. More generally, a continuous open map takes bases to bases. Let \mathcal{A} be a base for X and $V \subseteq f(X)$ be open. Then $f^{-1}(V)$ is open, hence $f^{-1}(V) = \bigcup_{\text{some } U \text{'s in } \mathcal{A}} U$ and $V = \bigcup_{\text{some } U \text{'s in } \mathcal{A}} f(U)$.
- 13. If \mathcal{A} is a collection of disjoint open sets and D is countable and dense, pick a point x_U from $D \cap U$ for each U in \mathcal{A} . Then the map $\mathcal{A} \to D : U \mapsto x_U$ is injective, hence \mathcal{A} is at most countable.
- 14. Let \mathcal{A} be a cover of $X \times Y$. For each x in X, $\{x\} \times Y$ is compact, so it may be covered by finitely many elements A_1, \ldots, A_n of \mathcal{A} . Using Lemma 26.8 with $N = A_1 \cup \cdots \cup A_n$, we obtain an open set $W_x \subseteq X$ with $x \in W_x \times Y \subseteq N$. The sets W_x cover X, so extract a countable subcover $\{W_{x_j}\}$. Each $W_{x_j} \times Y$ is covered by finitely many elements of \mathcal{A} , so all these elements taken together form a countable subcover of $X \times Y$.
- 15. Use the Stone-Weierstrass theorem; the countable dense subalgebra is all polynomials with rational coefficients.
- 16. (a) Let D be the countable set of all functions in \mathbb{R}^I of the form

$$\sum_{j=1}^{m} r_j \chi_{[q_{j-1}, q_j]}$$

where r_j, q_j are in \mathbb{Q} and $0 = q_0 < q_1 < \cdots < q_m = 1$. Let U be a basic open subset of \mathbb{R}^I , which means there are finitely many elements x_1, \ldots, x_n in I and finitely many open sets U_1, \ldots, U_n in \mathbb{R} such that

$$U = \{ f \in \mathbb{R}^I \mid f(x_j) \in U_j, 1 \le j \le n \}$$

Assume without loss of generality that $x_1 < x_2 < \cdots < x_n$. Choose rationals q_j such that

$$0 = q_0 \le x_1 < q_1 < x_2 < q_2 < x_3 < q_3 < \dots < x_{n-1} < q_{n-1} < x_n \le q_n = 1$$

and rationals r_j such that r_j is in U_j for $1 \le j \le n$. Then the function above is in U. It follows that D is dense.

- (b) Following the hint, let $D \subseteq \mathbb{R}^J$ be dense, fix an interval (a,b) in \mathbb{R} , and define $f: J \to \mathcal{P}(D)$ by $f(\alpha) = D \cap \pi_{\alpha}^{-1}((a,b))$. $f(\alpha)$ is always nonempty because D is dense and $\pi_{\alpha}^{-1}((a,b))$ is open. If $\alpha_0 \neq \beta_0$ in J, pick (x_{α}) in $D \cap \pi_{\alpha_0}^{-1}((a,b)) \cap \pi_{\beta_0}^{-1}(\mathbb{R} [a,b])$. Then the tuple (x_{α}) is in $D \cap \pi_{\alpha_0}^{-1}((a,b))$ but not $D \cap \pi_{\beta_0}^{-1}((a,b))$, so f is injective. If D were countable, there would be an injective function $g: \mathcal{P}(D) \to \mathcal{P}(\mathbb{Z}_+)$, which means $g \circ f: J \to \mathcal{P}(\mathbb{Z}_+)$ is injective, which contradicts J having greater cardinality than $\mathcal{P}(\mathbb{Z}_+)$.
- 17. The space \mathbb{Q}^{∞} is trivially Lindelöf and separable because the set itself is countable. It is not first-countable (use a similar argument as in Exercise 1(b)) and hence not second-countable.
- 18. If x is in G

4.2 The Separation Axioms

- 1. Use Lemma 31.1(a).
- 2. Use Lemma 31.1(b).
- 3. We use Lemma 31.1(a). We know that every order topology is Hausdorff, so one-point sets are closed. Let x be a point of X and U a neighbourhood of x. Find an open interval (a,b) with $a \le x \le b$ and $(a,b) \subseteq U$. If there are c and d with $a \le c \le x \le d \le b$, then $x \in (c,d) \subseteq \overline{(c,d)} \subseteq [c,d] \subseteq (a,b) \subseteq U$, so let V = (c,d). If there are no such c and d, then $(a,b) = \{x\}$, and $\{x\}$ is closed and open, so take $V = \{x\}$. If there is no c but there is a d, take V = [x,d), and similarly take V = (c,x] if there is a c but no d.
- 4. A Hausdorff (regular, normal) space is also Hausdorff (regular, normal) in any finer topology since there are more open sets available to separate points and/or closed sets.
- 5. Let $A = \{x \mid f(x) = g(x)\}$ and choose y in X A (if $X A = \emptyset$, then A is closed automatically). Then $f(y) \neq g(y)$, so, since Y is Hausdorff, there are disjoint open sets U and V in Y with f(y) in U and g(y) in V. Then $f^{-1}(U) \cap g^{-1}(V)$ is an open set in X that contains y. It is disjoint from A, for if there were some z in $A \cap f^{-1}(U) \cap g^{-1}(V)$, then

$$U \ni f(z) = g(z) \in V$$

contradicting $U \cap V = \emptyset$. Thus X - A is open and A is closed.

- 6. We first verify the claim in the hint. Let y be in Y and U an open set with p⁻¹(y) ⊆ U. X U is closed, so p(X U) is closed and does not contain y. Find a neighbourhood W with y in W and W ∩ p(X U) = Ø. Then p⁻¹(W) ∩ (X U) = Ø, so p⁻¹(W) ⊆ U.
 Now let A and B be disjoint closed sets in Y, so p⁻¹(A) and p⁻¹(B) are disjoint closed sets in X. Find disjoint open sets U and V with p⁻¹(A) ⊆ U and p⁻¹(B) ⊆ V. Now we may, by the claim above, find open sets W_y ∋ y for each y in A and W_z ∋ z for each z in B with p⁻¹(W_y) ⊆ U and p⁻¹(W_z) ⊆ V. Then A ⊆ ∪_{y∈A} W_y and B ⊆ ∪_{z∈B} W_z, and these unions are disjoint.
- 7. (a) Let x and y be distinct in Y. Since $p^{-1}(x)$ and $p^{-1}(y)$ are disjoint and compact in the Hausdorff space X, there are disjoint open sets U and V with $p^{-1}(x) \subseteq U$ and $p^{-1}(y) \subseteq V$. Use the hint from the previous exercise to obtain open sets W_x and W_y in Y with $p^{-1}(W_x) \subseteq U$ and $p^{-1}(W_y) \subseteq V$. Then W_x and W_y separate x and y.
 - (b) Similar to (a).
 - (c) Let y be in Y. Since $p^{-1}(y)$ is compact, we may cover it with finitely many compact neighbourhoods. This implies that there is an open set U and a compact set K with $p^{-1}(y) \subseteq U \subseteq K$. Use the hint from the previous exercise to obtain a neighbourhood W of y such that $p^{-1}(W) \subseteq U$. Then $y \in W \subseteq p(K)$.

4.3 Normal Spaces

1. Suppose X is normal and $A \subseteq X$ is closed. Take E and F to be two closed subsets of A. Then E and F are closed in X because A is closed. Find two open subsets U and V of X that separate E and F. Then $A \cap U$ and $A \cap V$ are open subsets of A that separate E and F.

- 4.4 The Urysohn Lemma
- 4.5 The Urysohn Metrization Theorem
- 4.6 The Tietze Extension Theorem
- 4.7 Imbeddings of Manifolds
- 4.8 Supplementary Exercises: Review of the Basics

The Tychonoff Theorem

- 5.1 The Tychonoff Theorem
- 5.2 The Stone-Čech Compactification

Metrization Theorems and Paracompactness

- 6.1 Local Finiteness
- 6.2 The Nagata-Smirnov Metrization Theorem
- 6.3 Paracompactness
- 6.4 The Smirnov Metrization Theorem

Complete Metric Spaces and Function Spaces

7.1 Complete Metric Spaces

- 1. (a) Suppose $\varepsilon > 0$ satisfies the hypothesis and let $\{x_n\}$ be Cauchy. Choose N so that $d(x_m, x_n) < \varepsilon$ when $m, n \geq N$. Then x_n is in the ε -ball about x_N when $n \geq N$. Thus $\{x_n\}_{n \geq N}$ has a cluster point, and by Lemma 43.1 $\{x_n\}$ converges.
 - (b) Take X to be an open interval in \mathbb{R} .
- 2. For $x \in \overline{A} A$, take a sequence x_n in A with $x_n \to x$. Then x_n is Cauchy, and by uniform continuity, so is $f(x_n)$. Thus it converges to a point y. Define g(x) = y.
- 3.
- 4.
- 5.

7.2 A Space-Filling Curve

7.3 Compactness in Metric Spaces

- 1. Take $\varepsilon > 0$ and choose i_0 so that $1/i_0 < \varepsilon$. Also for each $n < i_0$ choose a finite subset $x_1^n, x_2^n, \ldots, x_{k_n}^n$ of X_n .
- 2.
- 3.
- 4. (a) At the point 1.
 - (b)

7.4 Pointwise and Compact Convergence

- 1. If $f \in B_{C_1}(f_1, \varepsilon_1) \cap B_{C_2}(f_2, \varepsilon_2)$, then $B_{C_1 \cup C_2}(f, \min\{\varepsilon_1, \varepsilon_2\}) \subseteq B_{C_1}(f_1, \varepsilon_1) \cap B_{C_2}(f_2, \varepsilon_2)$.
- 2.
- 3.
- 4. It converges pointwise and compactly.

7.5 Ascoli's Theorem

Baire Spaces and Dimension Theory

- 8.1 Baire Spaces
- 8.2 A Nowhere-Differentiable Function
- 8.3 Introduction to Dimension Theory
- 8.4 Supplementary Exercises: Locally Euclidean Spaces

Part II Algebraic Topology

The Fundamental Group

9.1 Homotopy of Paths

- 1. Let $F: X \times I \to Y$ be a homotopy between h and h' and $G: Y \times I \to Z$ a homotopy between k and k'. Then $H: X \times I \to Z$ defined by H(x,t) = G(F(x,t),t) is a homotopy between $h \circ k$ and $h' \circ k'$.
- 2. This is taken care of by Exercise 3.
- 3. (a) The map $F: X \times I \to X$ defined by F(x,t) = tx is a homotopy between i_X and the constant map $x \mapsto 0$ for both X = I and $X = \mathbb{R}$.
 - (b) Let $F: X \times I \to X$ be a homotopy with $F(x,0) = x_0$ and F(x,1) = x for all x in X. Let x and y be points of X. Then $G: I \to X$ defined by

$$G(t) = \begin{cases} F(x, 1-2t) & 0 \le t \le \frac{1}{2} \\ F(y, 2t-1) & \frac{1}{2} \le t \le 1 \end{cases}$$

is a path from x to y.

(c) Let $F: Y \times I \to Y$ be a homotopy with $F(y,0) = y_0$ and F(y,1) = y for all y in Y. Let $f, f': X \to Y$ be two continuous maps. Then $G: X \times I \to Y$ defined by

$$G(x,t) = \begin{cases} F(f(x), 1-2t) & 0 \le t \le \frac{1}{2} \\ F(f'(x), 2t-1) & \frac{1}{2} \le t \le 1 \end{cases}$$

is a homotopy between f and f'.

(d) Let $F: X \times I \to X$ be a homotopy with $F(x,0) = x_0$ and F(x,1) = x for all x in X and $G: I \to Y$ a path with $G(0) = f(x_0)$ to $G(1) = f'(x_0)$. Let $f, f': X \to Y$ be two continuous maps. Then $H: X \times I \to Y$ defined by

$$H(x,t) = \begin{cases} f(F(x,1-3t)) & 0 \le t \le \frac{1}{3} \\ G(3t-1) & \frac{1}{3} \le t \le \frac{2}{3} \\ f'(F(x,3t-2)) & \frac{2}{3} \le t \le 1 \end{cases}$$

is a homotopy between f and f'.

- 9.2 The Fundamental Group
- 9.3 Covering Spaces
- 9.4 The Fundamental Group of the Circle
- 9.5 Retractions and Fixed Points
- 9.6 The Fundamental Theorem of Algebra
- 9.7 The Borsuk-Ulam Theorem
- 9.8 Deformation Retracts and Homotopy Type
- 9.9 The Fundamental Group of S^n
- 9.10 Fundamental Groups of Some Surfaces