Prova sem consulta. Duração: 1h30m (15m de tolerância).

1ª Prova de Avaliação

- * Todas as folhas devem ser identificadas com o <u>nome completo</u>. Justifique adequadamente todos os cálculos que efetuar;
- * A entrega da prova e a desistência só serão possíveis após 1 hora do início da prova;
- * Não se pode utilizar telemóveis, máquinas de calcular e microcomputadores;
- * Resolva cada um dos <u>dois grupos</u> utilizando <u>folhas de capa distintas</u>. Em cada pergunta da prova é apresentada a cotação prevista.

GRUPO I

- **1.** [3,5] Seja a curva, C, parametrizada por $\vec{r}(t) = (\text{sen}(2t), \pi t, 1 \cos(2t))$, $t \in [0, \pi]$. Sejam os pontos $P = (0, \pi/2, 2)$ e $Q = (\sqrt{3}/2, 2\pi/3, 3/2)$. Determine:
 - a) O versor da tangente a C no ponto P.
 - **b**) O comprimento do arco de C compreendido entre os pontos Q e P.
- 2. [4] Seja a função escalar $f(x, y, z) = x^2 z xy$ e a superfície, S, $y^2 + z^2 = x$.
 - a) Calcule a derivada direcional de f no ponto P = (4, 2, 0) segundo a normal exterior a S neste ponto.
 - **b**) Em que direção *f* tem a mínima taxa de variação no ponto *P*? Qual o valor dessa taxa mínima? Justifique.
- 3. [3,5] Seja a função $f(x,y) = y^3 + 3xy + x^2 x$. Determine e classifique os seus pontos críticos.

GRUPO II

- **4.** [4] Sabendo que a equação $yz y 3z^2 + \ln(x) = -2$ define, de modo implícito, z = z(x, y) como função de x e de y na vizinhança do ponto P = (1, 2, 0), obtenha as derivadas $\frac{\partial z}{\partial y}$ e $\frac{\partial^2 z}{\partial y^2}$ em P.
- 5. [3] Considere a função escalar:

$$f(x,y) = \frac{yx^2}{x^4 + y^2}$$
, $(x,y) \neq (0,0)$.

- a) Determine o limite de f no ponto (0,0), ao longo da reta y = mx, $m \ne 0$.
- **b**) Existirá limite no ponto (0,0)? Justifique.

(continua no verso)

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO | 2020-2021 EIC0009 | COMPLEMENTOS DE MATEMÁTICA | 1º ANO - 2º SEMESTRE

Prova sem consulta. Duração: 1h30m (15m de tolerância).

1ª Prova de Avaliação

- **6.** [2] Seja a curva, C, parametrizada por $\vec{r}(t)$, $t \in \mathbb{R}$.
 - a) Defina os versores que determinam o triedro de Frenet num ponto de C.
 - **b**) Mostre que se C é uma curva regular e plana, então $\vec{N}'(t) = -k(t) \vec{r}'(t)$, em que k(t) é a sua curvatura.