Model dimensionare Bandgap Kujik

STUDENT: POP CATALIN-CORNEL

Cuprins

- 1.Introducere
- 2.Specificatii
- 2. Dimensionare Bandgap Kujik
- 3. Dimensionare Amplificator Miller
- 4.Simulari
- 5.Concluzii

1.Introducere

Ce sunt referințele de tensiune?

Referințele de tensiune sunt dispozitive electronice sau circuite care furnizează o tensiune stabilă și precisă, independentă de variațiile alimentării, temperaturii sau sarcinii.

2.Specificatii

Tip Bandgap	Tip OA_VV	ISS@25degC (μA)	Vout
Kujik	Miller	30μΑ	1.2V

3. Dimensionare Bandgap Kujik

$$v_{BG} = v_{BE} + m \cdot V_{T}$$

$$\frac{\partial v_{BG}}{\partial Temp} = \frac{\partial v_{BE}}{\partial Temp} + m \cdot \frac{\partial V_{T}}{\partial Temp}$$

$$\frac{\partial v_{BG}}{\partial Temp} = 0 \Rightarrow m = -\left(\frac{\partial v_{BE}}{\partial Temp}\right) / \frac{\partial V_{T}}{\partial Temp}$$

$$m \approx \frac{2mV/^{\circ}C}{0.087mV/^{\circ}C} = 23; v_{BG} \approx 1.24V \mid_{Temp=300K}$$

3. Dimensionare Bandgap Kujik

$$v_{R_3} = v_{EB2} - v_{EB1} = V_T \ln n$$

$$I_{R3} = \frac{v_{R_3}}{R_3} = \frac{V_T}{R_3} \ln n \; ; I_{R3} = I_{R1} = I_{R2}$$

Tensiunea de referinta:

$$V_{REF} = v_{EB2} + R_2 \cdot I_{R2} = v_{EB2} + V_T \cdot \frac{R_2}{R_3} \ln n$$

Aloc cate $4\mu A$ pentru R1 si R2 si $20\mu A$ pentru Amplificator

$$R1 = R2 = 150k$$
 $\frac{R2}{R3} = 10 \Rightarrow R3 = 15k$

Prezentare circuit

Cu rezistentele R1=R2=150k si R3 = 15k, curentul imi depaseste limita impusa, de aceea am ajuns cu dimensionarea la R1=R2=210k si R3= 22.5k. Cu aceste valori insa VBG este aproximativ 1.17V, si nu 1.2V

4. Dimensionare amplificator operational

Set de referinta tranzistori

	MOS size			DCOP			small signal							
	L	W	W/L	Ad,As	Pd,Ps	ID	Vdsat	Vth	Vgs	gm [S]	gds [S]	rds [Ohm]	gmb [S]	VE
NMOS	1.80E-07	1.80E-06	10	6.48E-13	4.32E-06	5.00E-05	1.45E-01	0.487	0.683	5.26E-04	1.40E-05	7.14E+04	1.16E-04	1.98E+07
PMOS	1.80E-07	7.20E-06	40	2.59E-12	1.51E-05	5.00E-05	1.56E-01	0.52	0.682	5.50E-04	1.15E-05	8.70E+04	1.68E-04	2.42E+07

Set de referinta specificatii amplificator

Specificatii	
GBW(Hz)	6.00E+06
a0Min [dB]	6.00E+01
a0min [V/V]	1.00E+03
PM	6.00E+01
CL(F)	1.20E-11
SR(V/us)	9.00E-01
IDD_MAX(A)	2.00E-05
Vout_max_amplitude	1.20E+00
VDD	5.00E+00
VICM	2.50E+00

4. Dimensionare amplificator operational

Tranzistor	ii din ciı	rcuit					
MIN1,MIn2	Id(A)	Vdsat(V)	gm(S)	W(m)	L(m)	Ad,As	Pd,Ps
	2.26E-06	5.00E-02	9.05E-05	7.93E-06	4.50E-07	2.85E-12	1.66E-05
MCM1, MCM2	Id(A)	Vdsat(V)	gm(S)	W(m)	L(m)	Ad,As	Pd,Ps
	2.26E-06	5.00E-02	9.05E-05	1.71E-06	4.50E-07	6.16E-13	4.14E-06
MOUT	Id(A)	Vdsat(V)	gm(S)	W(m)	L(m)	Ad,As	Pd,Ps
	1.70E-05	5.00E-02	6.79E-04	5.14E-06	1.80E-07	1.85E-12	1.10E-05
MBiasIN	Id(A)	Vdsat(V)	gm(S)	W(m)	L(m)	Ad,As	Pd,Ps
	4.52E-06	0.1	9.05E-05	3.96E-06	4.50E-07	1.43E-12	8.65E-06
MBiasOUT	Id(A)	Vdsat(V)	gm(S)	W(m)	L(m)	Ad,As	Pd,Ps
	1.70E-05	0.1	3.39E-04	1.49E-05	4.50E-07	5.35E-12	3.04E-05
MDiode	Id(A)	Vdsat(V)	gm(S)	W(m)	L(m)	Ad,As	Pd,Ps
mbiode	1.00E-05	0.1	2.00E-04	8.76E-06	4.50E-07	3.15E-12	1.82E-05
_	_						
Rc	1.47E+03						

5.Simulari

1)OP

2) Variatia tensiunii in functie de temperatura

1.1736-1.1698 = 3.8mV => 0.3%

3)Curent consumat

4.1) Variatia rezistentelor cu +20%

Variatie de 4.5mV => \sim 0, 3%

4.2) Variatia rezistentelor cu -20%

Variatie de 51.7mV => \sim 4.5%

5) Variatia in functie de tensiunea de intrare

Variatie de 1.1mv => \sim 0. 1%

6)PSRR

$$PSRR^{dB} = 20 \log \frac{a_{DIFF}}{a_{PS}}$$

PSRR de 70 dB reduce variațiile de tensiune de la intrare de 5 V la doar 1.5 mV la ieșire.

7)Stablitate

PM = 91° GBW = 1MHz A0 = 51dB

8)Transient - Start-up time

Start-up time ∼ 1us

5.Concluzii

Parametru	Specificatii	Rezultat obtinut
VBG	1.2V	1.17V
ISS@25degC (μA)	30μΑ	29.9μΑ
Precizie	2%	5.2%