

概率与统计第8讲

主讲: 邱玉文 内容: 正态分布, 随机变量函数的分布等

本次内容概要

ID 正态分布和标准正态分布;

Љ 分布函数;

ID 常见随机变量的分布函数;

/b 正态分布求概率;

一、正态分布和标准正态分布

正态分布的定义

1. 定义

定义 若随机变量 X 的密度函数为

$$f(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} - \infty < x < +\infty$$

其中 μ , σ 为常数, $\sigma > 0$

则称 X 服从参数为 μ , σ^2 的正态分布, 记作 $X \sim N(\mu, \sigma^2)$

正态分布的分布曲线

中间高两边低

■对称性

关于 $x = \mu$ 对称

■单调性

(-∞, μ)升, (μ, +∞)降

二、标准正态分布

 $\mu = 0$, $\sigma = 1$ 的正态分布称为标准正态分布,记作 $X \sim N(0,1)$

> 密度函数记为

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \quad -\infty < x < +\infty$$

标准正态分布的密度函数和分布函数都是专用字母

二、分布函数(续)

一. 随机变量的分布函数-

定义 设 X 是一个随机变量, 称。

$$F(x) = P(X \le x) \qquad (-\infty < x < +\infty) +$$

为 X 的分布函数.有时记作 $X \sim F(x)$ 或 $F_X(x)$...

二、离散型随机变量的分布函数。

设离散型随机变量X的概率分布为。

$$\frac{X \mid x_1 \quad x_2 \quad \cdots \quad x_n \quad \cdots}{p_i \mid p_1 \quad p_2 \quad \cdots \quad p_n \quad \cdots}$$

则 X 的分布函数为。

$$F(x) = P(X \le x) = \sum_{x_i \le x} P(X = x_i) = \sum_{x_i \le x} p_i$$

例 3 (讲义例 2) 设随机变量 X 的分布律为 $\frac{X \mid 0 \quad 1 \quad 2}{p_i \mid 1/3 \quad 1/6 \quad 1/2}$, 求 F(x) .

$$\mathbf{f}(x) = P\{X \le x\} \, \mathbf{1}$$

当
$$x < 0$$
 时, $\{X \le x\} = \emptyset$,故 $F(x) = 0$ 4

当
$$0 \le x < 1$$
时, $F(x) = P\{X \le x\} = P\{X = 0\} = \frac{1}{3}$

当
$$1 \le x < 2$$
时, $F(x) = P\{X = 0\} + P\{X = 1\} = \frac{1}{3} + \frac{1}{6} = \frac{1}{2}$

当
$$x \ge 2$$
时, $F(x) = P\{X = 0\} + P\{X = 1\} + P\{X = 2\} = 1$

故
$$F(x) = \begin{cases} 0, & x < 0 \\ 1/3, & 0 \le x < 1 \\ 1/2, & 1 \le x < 2 \end{cases}$$
1, $x \ge 2$

例 5 (讲义例 3) 设随机变量 X 的分布函数为。

$$F(x) = \begin{cases} 0, & x < 1, \\ 9/19, & 1 \le x < 2, \\ 15/19, & 2 \le x < 3, \\ 1, & x \ge 3. \end{cases}$$

求 X 的概率分布.~

解 由于F(x)是一个阶梯型函数,故知X是一个离散型随机变量,F(x)的跳跃点分别

为 1, 2, 3, 对应的跳跃高度分别为 9/19, 6/19, 4/19, 如图.~

故 X 的概率分布为。

$$\frac{X \mid 1}{p_{\epsilon} \mid 9/19 \mid 6/19 \mid 4/19}$$
.

连续型随机变量的分布函数

如果X是连续随机变量,密度函数是f(x),则X的分布函数是

$$F(x) = \int_{-\infty}^{\infty} f(t) dt \qquad -\infty < x < +\infty$$

密度函数是f(x),和分布函数F(x)的关系是

$$F'(x) = f(x); \quad F(x) = \int_{-\infty}^{x} f(t)dt$$

例5 设连续型随机变量X的概率密度为x

$$f(x) = \begin{cases} x, & 0 \le X < 1 \\ 2 - x, & 1 \le x \le 2 \end{cases}$$

$$0, \qquad \text{其它}$$

求: (1) X的分布函数
$$F(x)$$
; (2) $p(\frac{1}{2} < X \le \frac{3}{2})$.

例5 设连续型随机变量 X 的概率密度为。

$$f(x) = \begin{cases} x, & 0 \le X < 1 \\ 2 - x, & 1 \le x \le 2 \end{cases}$$

$$0, \quad$$
其它

求: (1) X的分布函数F(x); (2) $p(\frac{1}{2} < X \le \frac{3}{2})$.

$$\int_{-\infty}^{-\infty} (x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x)$$

$$F(x) = \begin{cases} 0, & x < 0 \\ \frac{x^2}{2}, & 0 \le x < 1 \\ -\frac{x^2}{2} + 2x - 1, & 1 \le x < 2 \\ 1, & x \ge 2 \end{cases}$$

【练习】已知随机变量的密度为

$$f(x) = \begin{cases} ax^3, & 0 < x < 1 \\ 0, & \text{ 其他} \end{cases}$$

求 (1) 参数 a; (2) 分布函数F(x)。

#: (1)
$$1 = \int_{-\infty}^{+\infty} f(x) dx = \int_{0}^{1} ax^{3} dx = a/4 \implies a = 4$$

(2)
$$F(x) = \begin{cases} 0 & x \le 0 \\ x^4 & 0 < x \le 1 \\ 1 & x > 1 \end{cases}$$

【例1】 设随机变量 X 的密度函数为

$$f(x) = \begin{cases} \frac{2}{\pi} \sqrt{1 - x^2}, & -1 \le x \le 1 \\ 0, & \text{!!} \dot{\Xi} \end{cases}$$

求其分布函数F(x).

【解】
$$F(x) = P\{X \le x\} = \int_{-\infty}^{x} f(t)dt$$

$$\pm x < -1$$
, $F(x) = 0$;

$$4 \times 1$$
, $F(x) = 1$,

$$\mathbf{X} \quad F(x) = \begin{cases} \frac{x}{\pi} \sqrt{1 - x^2} + \frac{1}{\pi} \arcsin x + \frac{1}{2}, & -1 \le x \le 1. \\ 1, & x > 1 \end{cases}$$

三、常用随机变量的分布函数

一、均匀分布

定义 设随机变量 X 的密度函数为

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \sharp \text{ } \end{cases}$$

则称随机变量 X 在[a, b]上服从均匀分布,记作 $X \sim U(a, b)$,其中 a,b是分布的参数。

均匀分布的密度函数和分布函数

$X\sim U(a,b)$, 即X在区间(a,b)上服从均匀分布

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{ } \end{cases}$$

均匀分布X的分布函数为:

$$F(x) = \begin{cases} 0 & x < a \\ \frac{x - a}{b - a} & a \le x < b \\ 1 & x \ge b \end{cases}$$

指数分布的密度函数和分布函数

指数分布的密度函数为

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0 \\ 0 & x \le 0 \end{cases} \qquad (\lambda > 0 为常数)$$

指数分布的分布函数为

$$F(x) = \begin{cases} 1 - e^{-\lambda x} & x \ge 0 \\ 0 & x < 0 \end{cases}$$

四、分布函数的性质

4. 分布函数的性质

随机变量的分布函数F(x)具有下列性质: \bullet

(1)
$$0 \le F(x) \le 1$$
;

(2) F(x) 是x 的非减函数;

(3)
$$F(-\infty) = \lim_{x \to -\infty} F(x) = 0$$
, $F(+\infty) = \lim_{x \to +\infty} F(x) = 1$; $\lim_{x \to +\infty} F(x) = 1$

(4) 离散型随机变量 X 的分布函数 F(x) 是右连续函数, 而连续型随机

变量 X 的分布函数 F(x) 在 $(-\infty, \infty)$ 上处处连续.。 重要

TianjinSino-German University of Applied Sciences
$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1.$$

$$1$$

2.若随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{1}{4}e^{-\frac{x}{4}}, & x > 0 \\ 0, & x \le 0 \end{cases}$

设连续型随机变量X的分布函数为 $F(x) = \begin{cases} A + Be^{-3x} & x > 0 \\ 0 & x \le 0 \end{cases}$

- (2) 求概率密度 f(x);

Ų

- 2.设连续型随机变量X的分布函数为 $F(x) = A + B \arctan x (-\infty < x < +\infty)$,
 - (1) 求 A, B 的值; (2) 求概率密度 f(x); (3) 求概率 P(|X|<1).

41

五、正态分布求概率

二、正态分布的定义

定义 若随机变量 X 的密度函数为

$$f(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} - \infty < x < +\infty$$

其中 μ , σ 为常数, $\sigma > 0$ 记作 $X \sim N(\mu, \sigma^2)$

3. 正态分布的分布函数及其图像

> 分布函数表达式(不用记)

$$F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx, \quad -\infty < x < +\infty$$

正态分布不能通过求积分计算概率

$$P(a < X \le b) = \int_a^b \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

上面这个积分"积不出来"

想求这个概率,只能通过查表标准正态分布来计算;

f(x)

标准正态分布

 $\mu = 0$, $\sigma = 1$ 的正态分布称为标准正态分布,记作 $X \sim N(0,1)$

> 密度函数记为

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \quad -\infty < x < +\infty$$

> 分布函数记为

标准正态分布的密度函数和分布函数都是专用字母

标准正态分布求概率

> 标准正态分布的分布函数表达式

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx, \quad -\infty < x < +\infty$$

标准正态分布也不能通过求积分计算概率

$$P(a < X \le b) = \int_{a}^{b} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx$$

上面这个积分也"积不出来"

想求这个概率,可以通过查表标准正态分布来得到;

标准正态分布求概率

> 标准正态分布的分布函数表达式

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx, \quad -\infty < x < +\infty$$

$$\Phi(a) = \int_{-\infty}^{a} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx,$$

查表可以得到上面数值 $\Phi(a)$

2. 标准正态分布的分布函数值表

见课本附表。我们一起学查表。

注: $\Phi(-x) = 1 - \Phi(x)$

Х	0	1	2	3	4	5	6	7	8	9
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9278	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9430	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545

【例】已知 $X \sim N(0, 1)$, 查表解决以下问题。

> 求概率 $P(-1 < X < 1) = \Phi(1) - \Phi(-1)$ = $2\Phi(1) - 1 = 0.6826$

$$P(-2 < X < 2) = 0.9544$$

$$P(-3 < X < 3) = 0.9973$$

$$0.9973$$

$$0.6826$$

> 求 x , 使得 $P(X \ge x) = 0.05$

$$|-p(x \leq x) = 0.05$$

四、正态分布的期望和方差

【定理】正态分布的标准化:已知 $X \sim N(\mu, \sigma^2)$,则有

$$Y = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

【定理】已知
$$X \sim N(\mu, \sigma^2)$$
,则有

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < \frac{X - \mu}{\sigma} < \frac{b - \mu}{\sigma}\right)$$
$$= \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right)$$

【例4.1-3】已知 $X \sim N(\mu, \sigma^2)$, 计算

(1)
$$P(\mu - \sigma \le X \le \mu + \sigma) = \Phi(1) - \Phi(-1) = 0.6826$$

(2)
$$P(\mu - 2\sigma \le X \le \mu + 2\sigma) = \Phi(2) - \Phi(-2) = 0.9544$$

例2 已知 $X \sim N(1.5,4)$, 求 P(X < -4)和 P(|X| > 2).

解: X 服从参数 $\mu = 1.5, \sigma = 2$ 的正态分布,故有 ν

$$P(X < -4) = \Phi\left(\frac{-4 - 1.5}{2}\right) = \Phi(-2.75) = 1 - \Phi(2.75) = 1 - 0.9970 = 0.0030$$

$$P(|X| > 2) = P(X < -2) + P(X > 2) = P(X < -2) + 1 - P(X < 2)$$

$$= \Phi\left(\frac{-2 - 1.5}{2}\right) + 1 - \Phi\left(\frac{2 - 1.5}{2}\right) = \Phi(-1.75) + 1 - \Phi(0.25)^{4}$$

$$= 2 - \Phi(1.75) - \Phi(0.25) = 2 - 0.9599 - 0.5981 = 0.4414$$

正态分布求概率的重要结论

1. 若 $X \sim N(0,1)$, 则查表可得 $P(a < X < b) = \Phi(b) - \Phi(a)$

注:
$$\Phi(-x) = 1 - \Phi(x)$$

注意
$$P(-1 < X < 2) = \Phi(2) + \Phi(1) - 1$$
 $P(-a < X < a) = 2\Phi(a) - 1$

2. 若 $X \sim N(\mu, \sigma^2)$,则查表可得

$$P(a < X < b) = \Phi(\frac{b - \mu}{\sigma}) - \Phi(\frac{a - \mu}{\sigma})$$

六、随机变量函数的分布(备学)

本节内容是做什么的?

已知随机变量X的分布,即已知X的概率函数(概率密度);Y=g(X)是X的函数;本节内容研究Y的概率函数(概率密度)。

比如: *X*是球状产品的直径, *Y*是产品的质量; 本节研究,在直径分布已知的情况下,如何求质量的分布。

一、 随机变量的函数。

定义 如果存在一个函数 g(X), 使得随机变量 X,Y 满足:Y = g(X),

则称随机变量Y是随机变量X的函数.

一、离散随机变量的情况

假设X是一维离散型随机变量,Y=g(X),则 Y也是一个离散型随机变量。如果已知X的分布列为:

则 Y=g(X) 的分布列容易得到:

<u>Y</u>	$g(x_1)$	$g(x_2)$	• • •
P_k	p_1	p_2	• • •

应当注意的是有些 $g(x_i)$ 可能会相等,要在分布列中将其对应的概率相加合并成一项。

例1 设X的分布列为:

求下列各函数的分布列:

(1)
$$X+2$$
; (2) $-X+1$; (3) X^2 .

解将X的分布列中两行对调可以算的下表:

离散型随机变量函数的分布。

例 1(讲义例 1)设随机变量 X 具有以下的分布律, 试求 $Y = (X-1)^2$ 的分布律.

$$egin{array}{c|ccccc} X & -1 & 0 & 1 & 2 \\ \hline p_i & 0.2 & 0.3 & 0.1 & 0.4 \end{array}$$

解 Y 所有可能的 取值 0,1,4,由

$$P{Y = 0} = P{(X - 1)^2 = 0} = P{X = 1} = 0.1,$$

 $P{Y = 1} = P{X = 0} + P{X = 2} = 0.7,$
 $P{Y = 4} = P{X = -1} = 0.2,$

既得 Y 的分布律为。

二、连续随机变量函数的分布

1. Y = g(X) 的分布(只要求单调函数)

已知连续随机变量X 的分布(密度函数),求X 的函数 Y = g(X) 的分布(密度函数)。

思路:根据X的分布先求随机变量Y的分布函数,然后通过求导得到Y = g(X)的密度函数。

$$F_{Y}(y) = P(Y \le y) = P(g(X) \le y) = \begin{cases} P(X \le g^{-1}(y)), & g(x)$$
单调增
$$P(X \ge g^{-1}(y)), & g(x)$$
单调减

$$= \begin{cases} F_X(g^{-1}(y)), & g(x) 单 调 增 \\ 1 - F_X(g^{-1}(y)), & g(x) 单 调 减 \end{cases} \Rightarrow f_Y(y) = F_Y'(y)$$

【例2.9-3】 设随机变量 X 的密度函数为

$$f_X(x) = \begin{cases} \frac{x}{8}, & 0 < x < 4 \\ 0, & \text{ 其他} \end{cases}$$

求 Y = 2X + 8 的密度函数。

解: 设Y的分布函数为 $F_{y}(y)$,则

$$F_Y(y) = P(Y \le y) = P(2X + 8 \le y) = P(X \le \frac{y - 8}{2}) = F_X(\frac{y - 8}{2})$$

于是Y的密度函数为

$$f_Y(y) = \frac{dF_Y(y)}{dy} = f_X(\frac{y-8}{2}) \cdot \frac{1}{2}$$

注意到 0 < x < 4 时, $f_X(x) \neq 0$,即 8 < y < 16 时, $f_Y(y) \neq 0$

所以Y的密度函数为

$$f_{Y}(y) = \begin{cases} \frac{y-8}{32}, & 8 < y < 16 \\ 0, & \sharp \text{ } \end{cases}$$

例 4 设 $X \sim N(0,1)$, 求 $Y = X^2$ 的密度函数.

解 记 Y 的分布函数为 $F_Y(x)$, 则 $F_Y(x) = P\{Y \le x\} = P\{X^2 \le x\}$.

显然, 当x < 0时, $F_Y(x) = P\{X^2 \le x\} = 0;$

当
$$x \ge 0$$
时, $F_Y(x) = P\{X^2 \le x\} = P\{-\sqrt{x} < X < \sqrt{x}\} = 2\Phi(\sqrt{x}) - 1.4$

从而
$$Y = X^2$$
 的分布函数为 $F_Y(x) = \begin{cases} 2\Phi(\sqrt{x}) - 1, & x \ge 0 \\ 0, & x < 0 \end{cases}$

于是其密度函数为
$$f_Y(x) = F_Y'(x) = \begin{cases} \frac{1}{\sqrt{x}} \varphi(\sqrt{x}), & x \ge 0 \\ 0, & x < 0 \end{cases} = \begin{cases} \frac{1}{\sqrt{2\pi x}} e^{-x/2}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

2. 设随机变量 X 的概率密度为 ϕ

$$f(x) = \begin{cases} 2x/\pi^2, & 0 < x < \pi, \\ 0, & \sharp \dot{\Xi}. \end{cases}$$

求 $Y = \sin X$ 的概率密度.