CHEM 238 Organic Chemistry Reactions

Organized by Teng-Jui Lin

Warning

- WARNING: These equations are hand-typed and for personal reference use, so it is guaranteed to have some mistakes, both innocent and unforgivable. Therefore, use with caution!
- By using this equation sheet, you accept the risk associated with potential mistakes.
- If you find any mistakes, I welcome you to raise an issue.
- Updated: 18 March 2021

Table of Contents

- CHEM 238 Organic Chemistry Reactions
 - Warning
 - Table of Contents
 - O Ch10 Alcohol, Thiol Reactions
 - Synthesis of alcohol
 - o Ch11 Ether, Sulfide, Epoxide, Glycol
 - Synthesis, Cleavage of ether
 - Synthesis of epoxide
 - Ring opening of epoxide
 - Preparation, Cleavage of glycol
 - Oxonium salt
 - O Ch14 Alkyne Reactions
 - Ch15 Diene Reactions
 - O Ch16 Benzene Reactions
 - Ch17 Allylic/Benzylic Reactions
 - O Ch18 Vinylic/Aryl Halide Reactions

Ch10 Alcohol, Thiol Reactions

Reaction	Reactant	Condition	Product	Overall
Dehydration of alcohol	alcohol	phosphoric acid H3PO4	alkene, water	$ ext{ROH} \xrightarrow{ ext{H}_3 ext{PO}_4} ext{alkene} + ext{H}_2 ext{O}$
Alcohol and HX	alcohol, hydrogen halide		alkyl halide, water	$\mathrm{ROH} + \mathrm{HX} \longrightarrow \mathrm{RX} + \mathrm{H_2O}$
Alcohol and sulfonate ester TsCl	alcohol, sulfonate ester TsCl, ROTs	pyridine, NaBr	alkyl bromide	$\text{ROH} + \text{TsCl} \xrightarrow{\text{pyridine}} \text{R} - \text{OTs} \xrightarrow{\text{NaBr}} \text{RBr}$
Alkoxide and inorganic acid	alkoxide, inorganic acid (dimethyl sulfate)		ester, conjugate base	$\mathrm{RO^-} + (\mathrm{CH_3})_2\mathrm{SO_4} \longrightarrow \mathrm{ROCH_3} + \mathrm{CH_3SO_4}^-$
Alcohol and SOCI2	alcohol, thionyl chloride SOCl2	pyridine	alkyl chloride, sulfate dioxide, hydrogen chloride	$\mathrm{ROH} + \mathrm{SOCl_2} \xrightarrow{\mathrm{pyridine}} \mathrm{RCl} + \mathrm{SO_2} + \mathrm{HCl}$
Alcohol and Ph3PBr2	alcohol, triphenylphosphine dibromine Ph3PBr2	DMF	alkyl bromide, base	$\mathrm{ROH} + \mathrm{Ph_3PBr_2} \xrightarrow[\mathrm{DMF}]{} \mathrm{RBr} + \mathrm{Ph_3P^+O^-} + \mathrm{HBr}$
Oxidation of secondary 2nd alcohol	secondary alcohol, Cr(VI) (PCC)		ketone, Cr(III)	$\mathrm{ROH} + \mathrm{Cr}(\mathrm{VI}) \; (\mathrm{CrO}_3, \mathrm{pyridine}) \longrightarrow \mathrm{R=O} + \mathrm{Cr}(\mathrm{III})$
Oxidation of primary 1st alcohol	primary alcohol	Cr2O4-	aldehyde, carboxylic acid	$\text{RCH}_2\text{OH} \xrightarrow[\text{H}_2\text{SO}_4]{\text{Cr}_2\text{O}_4^-}} \text{RCH=O} \xrightarrow[\text{H}_2\text{SO}_4]{\text{Cr}_2\text{O}_4^-}} \text{RC-OH=O}$

Reaction	Reactant	Condition	Product	Overall
Controlled oxidation of primary 1st alcohol	primary alcohol	PCC	aldehyde	$\text{RCH}_2\text{OH} \xrightarrow[\text{CH}_2\text{Cl}_2]{\text{PCC}} \text{RCH} = \text{O}$
Oxidation of primary alcohol	primary alcohol, potassium permaganate KMnO4		carboxylic acid's conjugate base	$\mathrm{RCH_2OH} + \mathrm{KMnO_4} + \mathrm{OH}^- \longrightarrow \mathrm{MnO_2} + \mathrm{RCOO}^- \xrightarrow{\mathrm{H_3O}^+} \mathrm{RCOOH}$
Oxidation of thiols/disulfide	thiols/disulfide, KMnO4/HNO3		sulfonic acid	$ ext{RSH} \xrightarrow{ ext{HNO}_3} ext{RSO}_3 ext{H}$
Oxidation of thiols	thiol, oxygen O2/iodine I2/bromine Br2		disulfide	$2\mathrm{RSH} + \mathrm{I}_2 + 2\mathrm{NaOH} \longrightarrow \mathrm{RSSR} + 2\mathrm{NaI} + 2\mathrm{H}_2\mathrm{O}$

Synthesis of alcohol

Reaction	Reactant	Condition	Product	Overall
Hydroboration- oxidation	alkene	HBR2, H2O2/OH-	alcohol	alkene $\frac{(1) \mathrm{HBR_2}}{(2) \mathrm{H_2O_2/OH^-}} + \mathrm{ROH}$
Oxymercuration- reduction	alkene	Hg(OAc)2/H2O, NaBH2/NaOH	alcohol	$alkene \xrightarrow{(1) \; Hg(OAc)_2/H_2O} ROH$
Acid-cayalyzed hydration of alkene	alkene, water H2O	acid	alcohol	$alkene + H_2O \xrightarrow{\ \ H_3O^+ \ \ } ROH$

Ch11 Ether, Sulfide, Epoxide, Glycol

Synthesis, Cleavage of ether

Reaction	Reactant	Condition	Product	Overall
Williamson ether synthesis	alcohol	NaH, THF	ether	$ROH \xrightarrow{NaH} RO^{-} + Na^{+} + H_{2} \xrightarrow{XR'} ROR' + NaX + H_{2}$
Williamson sulfide synthesis	thiol	ROTs	sulfide	$RSH \xrightarrow[CH_3OH]{OH^-} RS^- + H_2O \xrightarrow[R'OTs]{R'OTs} RSR' + H_2O + OTs^-$
Alkoxymercuration- reduction	alkene	Hg(OAc)2/HOR, NaBH4	ether	$\text{alkene} \xrightarrow{\text{(1) Hg(OAc)}_2/\text{HOR}'} \longrightarrow \text{ROR}'$
Primary 1st alcohol dehydration	primary alcohol	sulfuric acid H2SO4, heat	ether, water H2O	$2\mathrm{ROH} \xrightarrow{\mathrm{H_2SO_4},\;\Delta} \mathrm{ROR} + \mathrm{H_2O}$
Tertiary 3rd alcohol dehydration	tertiary alcohol, primary alcohol	sulfuric acid H2SO4	ester, water H2O	$\mathrm{ROH} + \mathrm{R'OH} \xrightarrow{\mathrm{dilute}\mathrm{H_2SO_4}} \mathrm{ROR'} + \mathrm{H_2O}$
Alkene addition by tertiary alcohol	alkene, tertiary alcohol	sulfuric acid H2SO4	ether	$ ext{alkene} + ext{ROH} \xrightarrow{ ext{dilute H}_2 ext{SO}_4} (ext{CH}_3)_3 ext{COR};$
Ether cleavage	ether, hydrogen halide	heat	alcohol, alkyl halide	$ROR' + HX \xrightarrow{\Delta} ROH + R'X$

Synthesis of epoxide

Reaction	Reactant	Condition	Product	Overall
Oxidation of alkene with RCOOOH	alkene, peroxycarboxylic acid RCOOOH (MCPBA)		epoxide, carboxylic acid	${\rm alkene} + {\rm RCOOOH} ({\rm MCPBA}) \longrightarrow {\rm epoxide} + {\rm RCOOH}$

Reaction	Reactant	Condition	Product	Overall
Cyclization of	halohydrin (alcohol + alkyl		epoxide, water	${\rm halohydrin}\;({\rm OH-C-C-X}) + {\rm NaOH} \longrightarrow {\rm epoxide} + {\rm NaX} + {\rm H}_2{\rm O}$
halohydrin	halide RX), base		H2O	

Ring opening of epoxide

Reaction	Reactant	Condition	Product	Overall
Base ring opening	epoxide, alcohol	alkoxide	alcohol- ether	$epoxide + R'OH \xrightarrow{R'O^-} ester-alcohol$
Acid ring opening	epoxide, alcohol	acid	alcohol- ether	$epoxide, R'OH \xrightarrow{H_3O^+} alcohol-ether$
Grignard organometallic ring opening	Grignard reagent MgBr, epoxide	ether, heat, acid H3O+	alcohol	$epoxide + R'MgBr \xrightarrow[H_3O^+]{(1) \text{ ether, heat}} R'CR_2CR_2OH$

Preparation, Cleavage of glycol

Reaction	Reactant	Condition	Product	Overall
Acid ring opening (hydrolysis) of epoxide	epoxide, water H2O	acid	glycol	$ ext{epoxide} + ext{H}_2 ext{O} \xrightarrow{ ext{acid}} ext{glycol}$
Oxidation of alkene by OsO4	alkene, osmium tetroxide OsO4	water H2O, NaHSO3	glycol	$ m R_2C=CR_2 + OsO_4 \xrightarrow[NaHSO_3]{H_2O} glycol + OsO_3(OH)_2$
Alkene + KMnO4	alkene, potassium permanganate KMnO4	water, acetone	glycol, MnO2	$ ext{alkene} + ext{KMnO}_4 \xrightarrow{ ext{H}_2 ext{O, OH}^-} ext{glycol} + ext{MnO}_2$
Glycol cleavage	glycol, periodic acid H5IO6	HOAc	aldehyde, ketone, water	$\mathrm{glycol} + \mathrm{H}_5\mathrm{IO}_6 \xrightarrow{\mathrm{HOAc}} \mathrm{R'} - \mathrm{CH} = \mathrm{O} + \mathrm{R} - \mathrm{CR} = \mathrm{O} + 2\mathrm{H}_2\mathrm{O} + \mathrm{HIO}_3\mathrm{H}_2\mathrm{O}$

Oxonium salt

Reaction	Reactant	Condition	Product	Overall
Oxonium	nucleophile,		alcohol	$\mathrm{Nu}^- + \mathrm{R}_3\mathrm{O}^+ \longrightarrow \mathrm{ROH} + \mathrm{H}_2\mathrm{O}$
salt	oxonium salt		aiconoi	$\text{Nu} + \text{R}_3\text{O} \longrightarrow \text{ROH} + \text{H}_2\text{O}$

Ch14 Alkyne Reactions

Reaction	Reactant	Condition	Product	Overall
Alkyne addition	alkyne, hydrogen halide		alkene halide	$C{\equiv}C+HX{\longrightarrow}XC{=}C$
Hydration of alkyne	alkyne, water	mercury ion, sulfuric acid H2SO4	ketone	$RC{\equiv}CH + H_2O \xrightarrow{Hg^{2+}, H_2SO_4} RC{=}OCH_3$
Hydroboration- oxidation of symmetric alkyne	symmetric alkyne	borane BH3, THF, hydrogen peroxide	ketone	$R - C \!\!\equiv\!\! C - R \xrightarrow[(2) \ H_2O_2/OH^-]{(1) \ BH_3/THF}} R - CH_2 - C \!\!=\!\! O - R$
Hydroboration- oxidation of asymmetric	asymmetric 1-alkyne	disiamylborane, THF, hydrogen peroxide	aldehyde	${\rm R-C}\!\!\equiv\!\!{\rm C-H}\xrightarrow{(1)\;({\rm branch})_2{\rm BH/THF}}\!$

Reaction	Reactant	Condition	Product	Overall
alkyne				
Catalytic hydrogenation of alkyne	alkyne	hydrogen gas H2, catalyst	cis alkene	$ ext{RC=CR} \xrightarrow{ ext{H}_2, ext{ catalyst}} ext{RCH=HCR}$
Catalytic hydrogenation of alkene	alkene	hydrogen gas H2, catalyst	alkane	$ ext{RCH=HCR} \xrightarrow{ ext{H}_2, ext{ catalyst}} ext{RCH}_2 = ext{H}_2 ext{CR}$
Controlled catalytic hydrogenation of alkyne	alkyne	Lindlar catalyst/(Pd/C), pyridine	cis alkene	$ RC = CR \xrightarrow{Lindlar \ catalyst \ Pd/CaCO_3 + Pb(OAc)_2} RCH = HCR $ or Pd/C, pyridine
Reduction of alkyne with Na and NH3	alkyne, sodium, liquid ammonia		trans alkene, sodium ion, azanide	$RC{=}CR+2Na+2NH_{3} {\:\longrightarrow\:} RCH{=}HCR+2Na^{+}+2NH_{2}{}^{-}$
Grignard reaction of alkyne	1-alkyne, Grignard reagent	THF	acetylenic Grignard reagent, hydrocarbon	$RC \equiv \!$
Alkyne in SN2 rxn	alkane halide, acetylenic anion		alkyne, halide ion	$RX + C \equiv CR^- \longrightarrow RC \equiv CR + X^-$

Ch15 Diene Reactions

Reaction	Reactant	Condition	Product	Overall
Diels-Alder Rxn	diene, alkene (dienophile)		ring	$\mathrm{diene} + \mathrm{dienophile} \longrightarrow \mathrm{ring}$
Addition of HX to conjugated diene	conjugated diene, hydrogen halide		alkene halide	$\operatorname{conj} \cdot \operatorname{diene} + \operatorname{HX} \longrightarrow \operatorname{mixed\ alkene\ halide}$

Ch16 Benzene Reactions

Reaction	Reactant	Condition	Product	Overall
Halogenation of benzene	benzene, halide gas X2	iron/iron(iii) bromide FeBr3	benzene halide, hydrogen halide	$\mathrm{Ph} + \mathrm{X}_2 \xrightarrow{\mathrm{FeBr}_3/\mathrm{Fe}} \mathrm{PhX} + \mathrm{HX}$
Nitration of benzene	benzene, nitric acid HNO3	sulfuric acid H2SO4	nitrobenzene, water	$\mathrm{Ph} + \mathrm{HNO_3} \xrightarrow{\mathrm{H_2SO_4}} \mathrm{PhNO_2} + \mathrm{H_2O}$
Sulfonation of benzene	benzene, sulfur trioxide	fuming sulfuric acid H2SO4	benzenesulfuric acid	$\mathrm{Ph} + \mathrm{SO}_3 \xrightarrow{\mathrm{fuming} \mathrm{H}_2\mathrm{SO}_4} \mathrm{PhSO}_3\mathrm{H}$
Friedel-Crafts alkylation of benzene	benzene, alkyl chloride	aluminum chloride AlCl3	alkyl benzene, hydrogen chloride	$\mathrm{Ph} + \mathrm{RCl} \xrightarrow{\mathrm{AlCl_3}} \mathrm{PhR} + \mathrm{HCl}$
Friedel-Crafts acylation of benzene	benzene, acyl chloride	aluminum chloride AICI3, water	ketone, hydrogen chloride	$Ph + Cl - CR = O \xrightarrow{(1) AlCl_3} Ph - C = OCH_3 + HCl$
Hydrogenation of benzene	benzene, hydrogen	Ni	cyclohexane	$\mathrm{Ph} + 3\mathrm{H_2} \xrightarrow{\mathrm{Ni}} \mathrm{cyclohexane}$

Reaction	Reactant	Condition	Product	Overall
	gas H2			
Hydrogenation of benzene derivatives	benzene derivative, hydrogen gas H2	Ni	substituted cyclohexane	$\mathrm{PhR} + 3\mathrm{H}_{2} \xrightarrow{\mathrm{Ni}} \mathrm{cyclohexane} - \mathrm{R}$

Ch17 Allylic/Benzylic Reactions

Reaction	Reactant	Condition	Product	Overall
Radical bromonation of allylic/benzylic hydrogen	allylic/benzylic species, bromine gas Br2	light hv	allylic/benzylic bromide, hydrogen bromide	$\begin{array}{c} \operatorname{PhCH_3} + \operatorname{Br_2} \xrightarrow{\operatorname{light} \operatorname{hv}} \operatorname{PhCH_2Br} + \operatorname{HBr} \\ \operatorname{CH_3-CH_2=CH_2} \xrightarrow{\operatorname{light} \operatorname{hv}} \operatorname{BrCH_2-CH_2=CH_2} \end{array}$
Controlled radical bromonation of allylic/benzylic hydrogen	allylic/benzylic species, NBS (N- bromosuccinimide)	heat/light, peroxide	allylic/benzylic bromide, succinimide	$\begin{array}{c} PhCH_{3} + NBS \xrightarrow{heat/light, \; peroxide} \\ CH_{3} - CH_{2} = CH_{2} + NBS \xrightarrow{light \; hv} BrCH_{2} - CH_{2} = CH_{2} + succin \end{array}$
Allylic/benzylic Grignard Reagent	alkene bromide Br, magnesium Mg		alkene, MgBrOH	\longrightarrow see Ch 17 allylic Grignard reagent
Allylic/benzylic E2 elimination	allylic/benzylic bromide	EtOH, Na+, EtO-	alkene	$Ph-CH_{2}CH_{2}-Br\xrightarrow[EtOH]{Na^{+},\ EtO^{-}}Ph-CH_{2}CH_{2}-OEt$
Oxidation of allylic/benzylic alcohol with MnO2	allylic/benzylic alcohol, manganese dioxide MnO2	CH2Cl2	aldehyde/ketone, Mn(OH)2	$\begin{array}{l} \text{PhCH}_2\text{OH} + \text{MnO}_2 \xrightarrow[\text{CH}_2\text{Cl}_2]{\text{CH}_2\text{Cl}_2}} \text{PhCH=O} + \text{Mn(OH)}_2 \\ \text{H}_2\text{C=CH-CH}_2\text{OH} + \text{MnO}_2 \xrightarrow[\text{CH}_2\text{Cl}_2]{\text{CH}_2\text{Cl}_2}} \text{H}_2\text{C=CH-CH}_2\text{=O} + \text{Mn(OH)}_2 \end{array}$
Benzylic oxidation of alkylbenzene	alkylbenzene	Cr(VI): Na2CrO7/CrO3; Mn(VII): KMnO4; O2 + catalyst	benzylic carboxylic acid	$PhR \xrightarrow[\text{or } KMnO_4 \text{ or } O_2 + catalyst]{} PhCOOH$
Biosynthesis of terpene	isopentenyl pyrophosphate IPP, gamma,gamma- dimethylallyl pyrophosphate DMAP	prenyl transferase	terpene, HOPP	$\text{IPP} + \text{DMAP} \xrightarrow{\text{prenyl transferase SN}_1} \text{terpene, HOPP}$

Ch18 Vinylic/Aryl Halide Reactions

Reaction	Reactant	Condition	Product	Overall
Vinylic/aryl halide under SN1, SN2 conditions	Vinylic/aryl halide	SN1, SN2	no reaction	$\begin{array}{l} CH_2{=}CHX+Nu\xrightarrow{SN_1,\ SN_2} \text{no reaction} \\ PhX+Nu\xrightarrow{SN_1,\ SN_2} \text{no reaction} \end{array}$
Elimination of vinylic halide	vinylic halide, nucleophile (hydroxide)	harsh conditions, high temp	vinylic alkyne, bromide, water	$Ph-CH=CH-Br+KOH\xrightarrow[200^{\circ}C]{}Ph-C\equiv C-H+KBr+H_{2}O$
Nucleophilic aromatic substitution of aryl	nitro aryl halide, nucleophile		nitro aryl nucleophile: halide ion	$O_2N-Ph-X+Nu^-\longrightarrow O_2N-Ph-Nu+X^-$

Reaction	Reactant	Condition	Product	Overall
halide				
Heck reaction (aryl)	aryl bromide/iodide, alkene	Pd(0) catalyst (Pd(OAc)2, Pd(PPh3)4)	aryl alkene, hydrogen bromide	$PhBr + alkene \xrightarrow{Pd(0)} Ph-alkene + HBr$
Heck reaction (general)	alkyl halide + alkene	Pd(0) catalyst (Pd(OAc)2, Pd(PPh3)4)	alkene, hydrogen bromide	$R_1X + alkene - R_2 \xrightarrow{PdL_4} R_1 - alkene - R_2 + HX$
Suzuki coupling	aryl boronic acid, aryl halide, sodium hydroxide	Pd(OAc)2, PPh3, Na2CO3	biaryl compound, NaBr, B(OH)2	$RB(OH)_2 + R'X + NaOH \xrightarrow{Pd(OAc)_2, PPh_3, Na_2CO_3} RR' + NaBr + B(OH)_2$
Oxidation of phenol	phenol -> semiquinone	Na2Cr2O7, H2SO4	quinone	$\mathrm{Ph}(\mathrm{OH})_2 \xrightarrow{\mathrm{Na_2Cr_2O_7,\ H_2SO_4}} \mathrm{quinone}$
Bromination of phenol	phenol, bromine gas	CCl4, Hbr, water H2O	phenol bromide	$ ext{PhOH} + n \operatorname{Br}_2 \xrightarrow{ ext{various conditions}} ext{PhOH-Br}_n + n \operatorname{HBr}$
Nitration of phenol	phenol	nitric acid HNO3	nitric phenol	$\text{PhOH} \xrightarrow{\text{HNO}_3} \text{PhOH-NO}_2 + \text{H}_2\text{O}$
Friedel- Crafts alkylation	phenol, alcohol	sulfuric acid H2SO4	alkyl phenol, water H2O	$PhOH + ROH \xrightarrow{H_2SO_4} RPhOH + H_2O$
Friedel- Crafts acylation	phenol, AlCl3, acyl chloride	PhNO2	acyl phenol	$PhOH + AlCl_3 + RC = O - Cl \xrightarrow{PhNO_2} PhOH - CR = O$