Intégration - entraînement

Amphi B

Exercice 1: Contre-exemples.

- 1. Donnez un contre-exemple au théorème de convergence dominée, lorsque l'on enlève l'hypothèse de domination.
- 2. Donnez un contre-exemple au théorème de convergence monotone, lorsque l'on enlève l'hypothèse de monotonicité.
- 3. Donnez un contre-exemple au lemme de Fatou, lorsque l'on enlève l'hypothèse de positivité.

Exercice 2

On se donne un espace mesuré (E, \mathcal{A}, μ) , f et $(f_n)_{n\geq 0}$ des fonctions intégrables de E dans \mathbb{R} . On suppose que

$$\int_{E} |f_n - f| d\mu \xrightarrow[n \to \infty]{} 0. \tag{\Delta}$$

1. Montrez que pour tout $\epsilon > 0$,

$$\mu(\{|f_n - f| > \epsilon\}) \xrightarrow[n \to \infty]{} 0.$$

2. En déduire qu'il existe une extraction ϕ (i.e. $\phi:\mathbb{N}\to\mathbb{N}$ strictement croissante) telle que pour tout $k\in\mathbb{N}$

$$\mu\left(\left\{|f_{\phi(k)} - f| > \frac{1}{2^k}\right\}\right) \le \frac{1}{2^k}.$$

- **3.** On pose alors, pour $k \in \mathbb{N}$, $A_k = \{|f_{\phi(k)} f| > \frac{1}{2^k}\}$. On définit $A = \limsup_{k \to \infty} A_k$. Montrez que $\mu(A) = 0$.
- **4.** En déduire que $(f_{\phi(k)})_{k\geq 0}$ converge vers f μ -presque partout.
- 5. Quitte à extraire une nouvelle sous-suite, on peut supposer (grâce à (Δ)) que $\int_E |f_{\phi(k)} f| d\mu \le \frac{1}{2^k}$ pour tout $k \in \mathbb{N}$. On pose alors

$$h = \sum_{k=0}^{+\infty} |f_{\phi(k+1)} - f_{\phi(k)}|.$$

Montrez que $\int_E h d\mu < +\infty$.

6. En déduire qu'il existe une fonction g intégrable qui domine la suite $(f_{\phi(k)})_{k\geq 0}$, au sens où

$$\sup_{k\geq 0} |f_{\phi(k)}| \leq g.$$

