

Relational Database Design

Cheng-En Chuang

(Slides Adopted from Jan Chomicki and Ning Deng)

- 1. Functional Dependencies
 - 1. Functional Dependencies
 - 2. Inference of FDs
- 2. Normal Forms
 - 1. BCNF and 3NF

- 1. Functional Dependencies
 - 1. Functional Dependencies
 - 2. Inference of FDs
- 2. Normal Forms
 - 1. BCNF and 3NF

- Keys of Relations
 - Given a set of attributes $\{A_1, A_2, ..., A_n\}$
 - Impossible for two distinct tuples of R
 - Agree on all $\{A_1, A_2, ..., A_n\}$
 - No proper subset of $\{A_1, A_2, ..., A_n\}$ determines all other attributes
 - Key must be minimal
 - Key {title, year, starName}
 - Is {title, year} a key?

title	year	length	genre	studioName	starName
Star Wars	1977	124	SciFi	Fox	Carrie Fisher
Star Wars	1977	124	SciFi	Fox	Mark Hamill
Star Wars	1977	124	SciFi	Fox	Harrison Ford
Gone With the Wind	1939	231	drama	MGM	Vivien Leigh
Wayne's World	1992	95	comedy	Paramount	Dana Carvey
Wayne's World	1992	95	comedy	Paramount	Mike Meyers

- Superkeys
 - Superset of a key
 - Every key is a superkey
 - Some superkeys are not keys
 - Why?
 - §Example of superkey?

title	year	length	genre	studioName	starName
Star Wars	1977	124	SciFi	Fox	Carrie Fisher
Star Wars	1977	124	SciFi	Fox	Mark Hamill
Star Wars	1977	124	SciFi	Fox	Harrison Ford
Gone With the Wind	1939	231	drama	MGM	Vivien Leigh
Wayne's World	1992	95	comedy	Paramount	Dana Carvey
Wayne's World	1992	95	comedy	Paramount	Mike Meyers

- Dependency Implication
 - A set of FDs F implies an FD X → Y
 - If every relations instance that satisfies all dependencies in F
 - Also satisfies X → Y
 - Notation
 - $F \models X \rightarrow Y$
 - Closure of a dependency set F
 - $F^+ = \{X \rightarrow Y : F \models X \rightarrow Y\}$
 - Suppose $\{A_1, ..., A_n\}$ is a set of attributes and F is a set of FDs
 - The closure of $\{A_1, ..., A_n\}$ under F is set of attribute B
 - such that every relation that satisfies all the *FDs* in *F* also satisfies $A_1, ..., A_n \rightarrow B$
 - Notation: $\{A_1, ..., A_n\}^+$

- Formal Specification of Key
 - $X \subseteq \{A_1, \dots, A_n\}$ is a key of R if
 - The dependency $X \to A_1, ..., A_n$ is in F^+
 - For all proper subsets Y of X
 - The dependency $Y \to A_1, ..., A_n$ is not in F^+
- Notations
 - Superkey: supetset of a key
 - Primary key: one designated key
 - Candidate key: one of the keys

- 1. Functional Dependencies
 - 1. Functional Dependencies
 - 2. Inference of FDs
- 2. Normal Forms
 - 1. BCNF and 3NF

Inference of FDs

•	How to	tell	whether	$X \rightarrow$	$Y \in$	F^+

- Inference Rules (Armstrong Axioms)
 - Reflexivity: infer $X \to Y$ if $Y \subseteq X \subseteq attr(R)$ (trivial dependency)

title

Star Wars

Star Wars

Star Wars

Gone With the Wind

Wayne's World

Wayne's World

- Augmentations: from $X \to Y$ infer $XZ \to YZ$ if $Z \subseteq attr(R)$
- Transitivity: from $X \to Y$ and $Y \to Z$, infer $X \to Z$
- Armstrong axioms are
 - Sound: if $X \to Y$ is derived from F, then $X \to Y \in F^+$
 - Complete: if $X \to Y \in F^+$, then $X \to Y$ is derived from F
- Additional (implied) inference rules
 - Union: from $X \to Y$ and $X \to Z$, infer $X \to YZ$
 - Decomposition: from $X \to Y$ infer $X \to Z$, if $Z \subseteq Y$

studioName

Paramount

Paramount

Fox

Fox

Fox

MGM

length

124

124

124

231

95

95

year

1977

1977

1977

1939

1992

1992

genre

SciFi

SciFi

SciFi

drama

comedy

comedy

starName

Carrie Fisher

Harrison Ford

Vivien Leigh

Dana Carvey

Mike Meyers

Mark Hamill

- 1. Functional Dependencies
 - 1. Functional Dependencies
 - 2. Inference of FDs
- 2. Normal Forms
 - 1. BCNF and 3NF

Normal Forms

- To eliminate or reduce redundancy in database relations
 - 1NF: a relation is in 1NF
 - Every attribute in that relation is atomic
 - Reduce the need for restructuring the collection of relations, as new types of data are introduced
 - Make the relational model more informative to users
 - 2NF: a relation is in 2NF
 - iff it's in 1NF
 - And has no partial dependency
 - No non-prime attribute (attributes which are not part of any candidate key) is dependent on any proper subset of any candidate key of the relation

Normal Forms (3NF, BCNF)

- A relation R is in 3NF if for every non-trivial FD $X \rightarrow A \in F$
 - either
 - X contains a key of R
 - *A* is part of some key of *R*
- A relation R is in BCNF if
 - For every non-trivial FD $X \rightarrow A \in F$
 - X contains a key of R
 - BCNF does not contain a redundancy
- 3NF vs. BCNF
 - If R is in BCNF, it is also in 3NF
 - A relations the are in 3NF but not in BCNF

Normal Forms (3NF, BCNF)

- 3NF vs. BCNF
 - A relations the are in 3NF but not in BCNF
 - R(A,B,C)
 - FD: {A,B} -> {C}, {C} -> {B}
 - Candidate Keys: {A,B}, {A,C}
 - In 3NF
 - {A,B} -> {C} (A contains a key of R)
 - {C} -> {B} (*B* is part of some key of *R*)
 - Not BCNF
 - {C} -> {B} (C does NOT contain a key of R)

Recommended Reading

Database Systems: The Complete Book

Chapter 3.1 – 3.6