

CS 4390 Computer Networks

History and Some Fundamental Concepts

Internet History

1961-1972: Early packet-switching principles

- 1961: Kleinrock queueing theory shows effectiveness of packet-switching
- 1964: *Baran* packetswitching in military nets
- 1967: ARPAnet conceived by Advanced Research Projects Agency
- 1969: first ARPAnet node operational

- 1972:
 - ARPAnet public demo
 - NCP (Network Control Protocol) first host-host protocol
 - first e-mail program
 - ARPAnet has 15 nodes

1972-1980: internetworking, new and proprietary nets

- 1970: ALOHAnet satellite network in Hawaii
- 1974: Cerf and Kahn architecture for interconnecting networks
- 1976: Ethernet at Xerox PARC
- late70's: proprietary architectures: DECnet, SNA, XNA
- late 70's: switching fixed length packets (ATM precursor)
- 1979: ARPAnet has 200 nodes

Cerf and Kahn's internetworking principles:

- minimalism, autonomy no internal changes required to interconnect networks
- best effort service model
- stateless routers
- decentralized control

define today's Internet architecture

1980-1990: new protocols, a proliferation of networks

- 1983: deployment of TCP/IP
- 1982: SMTP e-mail protocol defined
- 1983: DNS defined for name-to-IP-address translation
- 1985: FTP protocol defined
- 1988: TCP congestion control

- new national networks: Csnet, BITnet, NSFnet, Minitel
- 100,000 hosts connected to confederation of networks

1990, 2000's: commercialization, the Web, new apps

- early 1990's: ARPAnet decommissioned
- 1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995)
- early 1990s: Web
 - hypertext [Bush 1945, Nelson 1960's]
 - HTML, HTTP: Berners-Lee
 - 1994: Mosaic, later Netscape
 - late 1990's: commercialization of the
 Web

late 1990's - 2000's:

- more killer apps: instant messaging, P2P file sharing
- network security to forefront
- est. 50 million host, 100 million+ users
- backbone links running at Gbps

2005-present

- Billions of hosts
 - Smartphones
 - Tablets
- Aggressive deployment of broadband access
- Increasing ubiquity of high-speed wireless access
- Emergence of online social networks:
 - Facebook, Twitter, LinkedIn
- Service providers (Google, Microsoft) create their own networks
 - Bypass Internet, providing "instantaneous" access to search, email, etc.
- E-commerce, universities, enterprises running their services in "cloud" (e.g., Amazon EC2)
 - Cloud computing

Computer Networking – What?

- Infrastructure that provides applications running on different hosts (end systems) with the ability to exchange data
 - Networked applications
- Important driver of the Information Revolution
 - Along with computing technology
 - Make cheap and ubiquitous information access

possible

- Enabler of innovation & education
- Economic engine!

Computer Networking – Why?

- Resource sharing
 - Printers, super computers, hosts, etc...
- Distributed processing
 - Data can be anywhere (data centers)
 - Processing capacity can be distributed and used in parallel
- Innovative applications
 - Social networking
 - E-commerce
 - Entertainment
 - Smart home, smart TV, smart ...everything!!! ©

Computer Networking – How?

- Data communications
 - Circuit switching
 - Packet switching
 - Transmission medium
- Network architecture
 - Protocols
 - Layering
 - Abstraction
- Application paradigms
 - Client-server
 - Peer-to-peer
 - Broadcast

• ...

Data Communication Circuit Switching

end-end resources allocated to, reserved for "call" between source & destination:

- In diagram, each link has four circuits.
 - call gets 2nd circuit in top link and 1st circuit in right link.
- dedicated resources: no sharing
 - circuit-like (guaranteed) performance
- circuit segment idle if not used by call (no sharing)
- Commonly used in traditional telephone networks

Data Communication Packet Switching

- Store and forward
 - The network nodes between source host and destination host store and forward a chunk of data
 - Packets is the unit for storing and forwarding

Packet Switching v.s. Circuit Switching

packet switching allows more users to use network!

example:

- 1 Mb/s link
- each user:
 - 100 kb/s when "active"
 - active 10% of time

- circuit-switching:
 - 10 users
- packet switching:
 - 35 users, probability > 10 active at same time is less than .0004

Packet Switching – Characteristics

- Efficient
 - Resources used on demand (v.s. dedicated path of circuit switching)
 - Statistical multiplexing
- Generic can be used for many types of applications
- Out-of-order delivery
 - Path is not guaranteed to be the same for different packets
- Contention
 - Due to shared resources: switch, links, bandwidth
- Delay
 - Packets may be queued

Physical Media

- signal: propagates between transmitter/receiver pairs
- physical link: what lies between transmitter & receiver
- guided media:
 - signals propagate in solid media: copper, fiber, coax
- unguided media:
 - signals propagate freely,e.g., radio

twisted pair (TP)

- two insulated copper wires
 - Category 5: 100 Mbps, 1Gpbs Ethernet
 - Category 6: 10Gbps

Physical Media: coax, fiber

coaxial cable:

- two concentric copper conductors
- bidirectional
- broadband:
 - multiple channels on cable
 - HFC

fiber optic cable:

- glass fiber carrying light pulses, each pulse a bit
- high-speed operation:
 - high-speed point-to-point transmission (e.g., 10' s-100' s Gpbs transmission rate)
- low error rate:
 - repeaters spaced far apart
 - immune to electromagnetic noise

Physical Media: Radio Frequency (RF)

- signal carried in electromagnetic spectrum
- no physical "wire"
- bidirectional
- propagation environment effects:
 - reflection
 - obstruction by objects
 - interference

radio link types:

- terrestrial microwave
 - e.g. up to 45 Mbps channels
- LAN (e.g., WiFi)
 - 11Mbps, 54Mbps, 300Mbps
- wide-area (e.g., cellular)
 - 3G cellular: ~ few Mbps
- satellite
 - Kbps to 45Mbps channel (or multiple smaller channels)
 - 270 msec end-end delay
 - geosynchronous versus low altitude

What is a Protocol?

human protocols:

- "what's the time?"
- "I have a question"
- introductions
- ... specific msgs sent
- ... specific actions taken when msgs received, or other events

network protocols:

- machines rather than humans
- all communication activity in Internet governed by a suite of protocols

protocols define format, order of messages sent and received among network entities, and actions taken on message transmission, receipt

Message Syntax and Semantic

What is a Protocol?

a human protocol and a computer network protocol:

Q: other human protocols?

Layering

Computer networks are complex, with many "pieces":

- hosts
- routers
- links of various media
- applications
- protocols
- hardware, software
- interfaces
- **–** ...

that provide many functionalities

- routing and forwarding
- framing
- error control
- ...

Question:

is there any hope of organizing and discussing functionalities and structure of networks?

Answer:

The key is *layering*!
It uses the power of *abstraction*

Layering and Power of Abstraction

- Divide the (complex) functionality of a system into manageable chunks (layers) – divide-and-conquer principle!
 - Each layer relies on functions of the layer below
 - Each layer exports functions to the one above
 - A layer 'sees' the immediate lower layer as an abstraction
- Power of abstraction
 - Implementation details are hidden
 - Functions in a layer can be changed without disturbing other layers
- Interface between layers defines interaction between them

Interfaces

- Inter-layer
 - Service interface
- Inter-host
 - Peer-to-peer interface

Analogy: Organization of Air Travel

a series of steps

ticket (purchase)

baggage (check)

gates (load)

runway takeoff

airplane routing

ticket (complain)

baggage (claim)

gates (unload)

runway landing

airplane routing

Layering of Airline Functionality

layers: each layer implements a service

- via its own internal-layer actions
- relying on services provided by layer below

ticket (purchase)		ticket (complain)	ticket
baggage (check)		baggage (claim	baggage
gates (load)		gates (unload)	gate
runway (takeoff)		runway (land)	takeoff/landing
airplane routing	airplane routing airplane routing	airplane routing	airplane routing

departure airport

intermediate air-traffic control centers

arrival airport

Why Layering?

dealing with complex systems:

- explicit structure allows identification, relationship of complex systems pieces
 - layered reference model for discussion
- modularization eases maintenance, updating of system
 - change of implementation of layer's service transparent to rest of system
 - e.g., change in gate procedure does not affect rest of system
- layering considered harmful?

Internet (TCP/IP) Protocol Stack

- application: supporting network applications
 - FTP, SMTP, HTTP
- transport: process-process data transfer
 - TCP, UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- *link:* data transfer between neighboring network elements
 - Ethernet, 802.11 (WiFi), PPP
- physical: bits "on the wire"

ISO/OSI Reference Model

- presentation: allow applications to interpret meaning of data, e.g., encryption, compression, machinespecific conventions
- session: synchronization, checkpointing, recovery of data exchange
- Internet stack "missing" these layers!
 - these services, if needed, must be implemented in application
 - needed?

Protocol Reference Model for 3GPP Packet Switching Domain

3GPP User-plane Protocol Stack between Mobile and GGSN

3GPP Control-plane Protocol Stack between Mobile and SGSN

