Beta Prior for Binomial

User

Prove me that the prior of a Binomial Distribution is Beta

Assistant chatgpt-4o-latest

2025-03-04, 09:28:07

User

2025-03-04, 09:30:52

But why did we assume a Beta prior for the Binomial Distribution?

Assistant chatgpt-4o-latest

2025-03-04, 09:30:52

towards higher or lower values. 3. **It is the conjugate prior of the Binomial**: - When we assume a Beta prior, the posterior distribution after observing data remains **Beta**, just with updated parameters \((\alpha + k, \beta + n - k) \). - This makes Bayesian updating simple and computationally efficient, since the posterior is in the same family as the prior. --- ### 4. **Derivation of Why Beta is Conjugate to Binomial** We saw in the previous response that, given: - A **Binomial likelihood**: \[P(X = k \mid \theta) = \binom{n}{k} \theta^k (1 - \theta)^{n - k} \] - A **Beta prior**: \[P(\theta) = \frac{\theta^{\alpha - 1} (1 - \theta)^{\beta - 1}}{B(\alpha, \beta)} \] Then, after applying Bayes' theorem, the posterior remains a **Beta distribution**: \[P(\theta \mid X = k) = \text{Beta}(\alpha + k, \beta + n - k). \] This conjugacy property makes Beta a **natural choice** for modeling uncertainty in \(\theta \). --- ### 5. **What If We Chose a Different Prior?** If we chose a non-Beta prior (e.g., a uniform distribution on some other domain or a normal distribution), the posterior would not have a simple closed form. Instead, we'd have to: - Calculate the posterior using **numerical integration** or approximations. - Lose the convenient **Bayesian updating rule**. Thus, choosing a Beta prior simplifies both the theory and computation. --- ### **Final Answer: Why Assume a Beta Prior for a Binomial?** We assume a **Beta prior** for the Binomial distribution because: 1. **The domain matches**: Both \(\theta \) and the Beta distribution are defined on \([0,1] \). 2. **Beta is flexible**: It can represent different prior beliefs about \(\) \theta \). 3. **It is conjugate**: The posterior remains Beta, which simplifies Bayesian updating. 4. **It allows for efficient computations**: We can update beliefs about \(\\theta\\) easily after observing data. This is why the **Beta distribution is the natural prior for a Binomial model** in Bayesian inference.