

Lecture 4 Heap and Heap-Sort

Subject Lecturer: Kevin K.F. YUEN, PhD.

Acknowledgement: Slides were offered from Prof. Ken Yiu. Some parts have been revised and indicated.

Outline

- What is a heap?
- How do we maintain the heap property?
- How do we use a heap to sort an array?
- How do we insert, delete, update items in a heap?
- What are the variants of heaps?

Source: google photo

Heap: Applications

- Heap (or called Max-Heap)
 - A data structure that supports fast retrieval of the maximum value
 - Also called a *priority queue*, used for managing a set of items based on their "priority"

Applications

- Task/resource management (based on priority)
- Sorting
- \diamond Selection (e.g., finding the *k*-th largest value in an array)
- Graph problems

Heap

Instance variables

Meaning

Array Implementation

A	An array of items
length	Length of array A
size	Actual size of the heap

Note that n=size

Operation	Complexity	Meaning	
Max-Heapify (A, i)	$O(\log n)$	Maintain the heap property	
Build-Max-Heap(A)	O(n)	Build a max-heap from array	
Get-Max(A)	O(1)	Get the maximum item	
Extract-Max(A)	$O(\log n)$	Remove the maximum item	
Update-Key (A, i, k)	$O(\log n)$	Update at position i by item k	
Insert-Key (A, k)	$O(\log n)$	Insert an item k	

Heap Structure

- It is stored as an **array** A[0..length-1]
 - No need to store any pointer ©
 - \triangleright Length: the length of array A
 - Size: the actual number of items

- It can be viewed as a hidden binary tree
 - Nodes are filled from top to bottom
 - At the same level, nodes are filled from left to right
- \bullet Given node *i*, we can find:
 - \Rightarrow Parent(i) = $\lfloor (i-1)/2 \rfloor$
 - \bullet Left(*i*) = 2 *i* + 1
 - \Rightarrow Right(i) = 2 i + 2

[Exercise] find the parent, left child, and right child of node i=2

- \bullet Substitute i=2 in the following functions
 - \Rightarrow Parent(i) = $\lfloor (i-1)/2 \rfloor$
 - \bullet Left(*i*) = 2 *i* + 1
 - \Rightarrow Right(i) = 2 i + 2

0	1	2	3	4	5	6
18	9	12	6	2	5	/

Which of these positions are valid (i.e., less than size=6)?

Heap Property

- **Heap property**: $A[Parent(i)] \ge A[i]$
 - The root (i=0) stores the largest item
- Height $h = \lfloor \log_2 n \rfloor$, the largest distance of the path from the root to any leaf node
 - \bullet where *n* is number of items in the heap

[Exercise] Check the heap property for each array

Heap: comparison for other types of objects

- In the previous examples, integers are stored in a heap
- Can other types of objects (e.g., strings) be stored in a heap?
 - Yes, provided that we can define the **comparator** (i.e., comparison rule) between two objects
- Example application: task management by the task priority
 - Each task object has two attributes: taskID, taskPriority
 - \diamond Define the comparator for two tasks x and y as:

```
-1 if (x.taskPriority < y.taskPriority)</li>
0 if (x.taskPriority = y.taskPriority)
1 if (x.taskPriority > y.taskPriority)
```

0	1	2	3	4	5
(A,18)	(B,9)	(C,12)	(D,6)	(E,2)	(F,5)

Java: Priority Queue < E >

- PriorityQueue<E>
 - <E> is the type of item stored
 - We need a "Comparator" to compare two (type-<E>) objects
 - It behaves as a Min-heap, but not Max-heap
- Reference:
- https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/Priority Queue.html

Operation

Meaning

boolean add(E e)	Inserts the specified item into this priority queue
E peek()	Retrieves, but does not remove, the head of this priority queue
E poll()	Removes the head of this priority queue
int size()	Returns the number of items
void clear()	Removes all items

Code example: a priority queue for strings by increasing length

```
import java.util.*;
class CompareSTR implements Comparator<String> {
   public int compare(String s1, String s2) {
       if (s1.length() < s2.length())</pre>
           return -1;
       else if(s1.length() > s2.length())
           return 1;
       else
           return 0;
public class Test {
   public static void main(String[] args) {
       PriorityQueue<String> pg = new PriorityQueue<String>(new CompareSTR());
       pq.add("@@@@@@@@@@@@");
       pg.add("##############;");
                                               $$$$$$$$$$
       pq.add("$$$$$$$");
                                               8888888888888888888
       while (!pq.isEmpty())
                                                ###################
           System.out.println(pq.poll());
```

Outline

What is a heap?

- How do we maintain the heap property?
- How do we use a heap to sort an array?
- How do we insert, delete, update items in a heap?
- What are the variants of heaps?

Maintaining the Heap Property

<u>Pre-condition</u>: before calling Max-Heapify, we require that "the trees rooted at Left(i) and Right(i) are max-heaps"

Max-Heapify (A, i)

- 1. $l \leftarrow Left(i)$
- 2. $r \leftarrow \text{Right}(i)$
- 3. $largest \leftarrow i$
- 4. if l < A.size and A[l] > A[largest]
- 5. $largest \leftarrow l$
- 6. if r < A.size and A[r] > A[largest]
- 7. $largest \leftarrow r$
- 8. if $largest \neq i$
- 9. swap A[i] with A[largest]
- 10. Max-Heapify(A, largest)

Maintaining the Heap Property

Example: Max-Heapify(A, 0)

Max-Heapify (A, i)

- 1. $l \leftarrow Left(i)$
- 2. $r \leftarrow \text{Right}(i)$
- 3. $largest \leftarrow i$
- 4. if l < A.size and A[l] > A[largest]
- 5. $largest \leftarrow l$
- 6. if r < A.size and A[r] > A[largest]
- 7. $largest \leftarrow r$
- 8. if $largest \neq i$
- 9. swap A[i] with A[largest]
- 10. Max-Heapify(A, largest)

Max-Heapify: Running Time

Max-Heapify (A, i)

- 1. $l \leftarrow \text{Left}(i)$
- 2. $r \leftarrow \text{Right}(i)$
- 3. $largest \leftarrow i$
- 4. if l < A.size and A[l] > A[largest]
- 5. $largest \leftarrow l$
- 6. if r < A.size and A[r] > A[largest]
- 7. $largest \leftarrow r$
- 8. if $largest \neq i$
- 9. swap A[i] with A[largest]
- 10. Max-Heapify(A, largest)

- $T(n) = O(\log n)$
 - \bullet where *n* is *A.size*
- We skip the detailed analysis
 - beyond the scope of this course

Outline

- What is a heap?
- How do we maintain the heap property?

- How do we use a heap to sort an array?
- How do we insert, delete, update items in a heap?
- What are the variants of heaps?

Heap Sort

- Sorting problem

 - Output: an array of n items in ascending order
- The idea of heap sort
 - 1. Build a heap from an array
 - 2. Repeatedly move the largest item in the heap to the end of the array
- How do we implement these steps?

Building a Heap from Array

Is this method is correct?

Build-1 (*A*)

- 1. $n \leftarrow A$.length
- 2. for $i \leftarrow 0$ to n-1
- 3. Max-Heapify (A, i)

Pre-condition (of Max-Heapify):

The trees rooted at Left(*i*) and Right(*i*) are required to be max-heaps!

Any wasted work in this method?

Build-2(A)

- 1. $n \leftarrow A$ length
- 2. for $i \leftarrow n-1$ downto 0
- 3. Max-Heapify (A, i)

Build-3 (A)

- 1. $n \leftarrow A.length$
- 2. for $i \leftarrow \lfloor n/2 \rfloor 1$ downto 0
- 3. Max-Heapify (A, i)

0	1	2	3	4	5	6
11	22	33	44	55	66	77

Building a Heap from Array

Build-Max-Heap (A)

- 1. $n \leftarrow A.length$
- 2. for $i \leftarrow \lfloor n/2 \rfloor 1$ downto 0
- 3. Max-Heapify (A, i)

11	55	77	44	22	66	33
						-

i=0, during the execution of line 3:

	1			•		
77	55	11	44	22	66	33

i=0, after line 3:

0	1	2	3	4	5	6
77	55	66	44	22	11	233

Build-Max-Heap: Correctness

0	1	2	3	4	5	6
11	22	33	44	55	66	77

Build-Max-Heap (A)

- 1. $n \leftarrow A.length$
- 2. for $i \leftarrow \lfloor n/2 \rfloor 1$ downto 0
- 3. Max-Heapify (A, i)

Loop invariant

At the start of iteration of loop i, each node i+1, i+2, ..., n-1 is the root of a max-heap

Initialization: We have: $i = \lfloor n/2 \rfloor - 1$ before 1st iteration. Each node $\lfloor n/2 \rfloor$, $\lfloor n/2 \rfloor + 1$, $\lfloor n/2 \rfloor + 2$, ..., n-1 is a leaf.

Maintenance: Any children of the current node *i* is greater than *i*. The pre-condition of Max-Heapify is true. After the call, the heap property holds at the subtree rooted at *i*. Decrementing *i* maintains the invariant.

Termination: We have: i=0 at termination.

Node 0 is the root of the whole max-heap.

Heapsort: Example

Idea: extract the maximum item from the heap repeatedly

Heapsort (A)

- 1. Build-Max-Heap (A)
- 2. for $i \leftarrow A$.length-1 downto 1
- 3. swap A[0] with A[i]
- 4. $A.size \leftarrow A.size 1$
- 5. Max-Heapify (A, 0)

Continue with these steps to get a sorted array

After line 1:

v						
0	1	2	3	4	5	6
77	55	66	44	22	11	33
<i>i</i> =6, a	after lin	ne 3:				
0	1	2	3	4	5	6
33	55	66	44	22	11	77
<i>i</i> =6, a	ıfter lir	ne 5:				
0	1	2	3	4	5	6
66	55	33	44	22	11	77
i=5, a	fter lin	ne 3:				
0	1	2	3	4	5	6
11	55	33	44	22	66	77
<i>i</i> =5. a	fter lin	ne 5:				
0	1	2	3	4	5	6
55	44	33	11	22	66	77

Heapsort: Running Time

Heapsort (A)

- 1. Build-Max-Heap (A)
- 2. for $i \leftarrow A$.length-1 downto 1
- 3. swap A[0] with A[i]
- 4. $A.size \leftarrow A.size 1$
- 5. Max-Heapify (A, 0)

- \bullet Build-Max-Heap: O(n) time
- Total n 1 calls of Max-Heapify
 - \bullet Max-Heapify: O(log n) time
- Total time:

$$= O(n) + (n-1) * O(\log n)$$

$$= O(n + (n-1) * log n)$$

$$= O(n + n \log n)$$

$$= O(n \log n)$$

Outline

- What is a heap?
- How do we maintain the heap property?
- How do we use a heap to sort an array?

- How do we insert, delete, update items in a heap?
- What are the variants of heaps?

Heap: Get-Max(A)

Get-Max(A)

1. return A[0]

0	1	2	3	4	5	6
77	55	66	44	22	11	/

♦ Time: O(1)

Heap: Extract-Max(A)

Extract-Max(A)

- 1. assert A.size ≥ 1
- 2. $max \leftarrow A[0]$
- $3. A[0] \leftarrow A[A.size-1]$
- 4. A.size $\leftarrow A$.size -1
- 5. Max-Heapify (A, 0)
- 6. return *max*

0	1	2	3	4	5	6
77	55	66	44	22	11	/

0	1	2	3	4	5	6
11	55	66	44	22	/	/

0	1	2	3	4	5	6
66	55	11	44	22	/	/

 \bullet Time: O(log n)

Pre-condition (of Max-Heapify):

The trees rooted at Left(*i*) and Right(*i*) are max-heaps!

Update-Key(A,i,k): Decrease

- Consider the case that the new key k is less than A[i]
- Should we go up or go down the tree?
- Time complexity: $O(\log n)$
- \bullet Example: Update-Key(A, 1, 33)

Update-Key (A, i, k)

- 1. if A[i] > k
- 2. $A[i] \leftarrow k$
- 3. Max-Heapify (A, i)
- 4. else
- 5.

0	1	2	3	4	5	6
77	55	66	44	22	11	/

0	1	2	3	4	5	6
77	33	66	44	22	11	/

0	1	2	3	4	5	6
77	44	66	33	22	11	/

Update-Key(A,i,k): Increase

- Consider the case that the new key k is greater than A[i]
- Should we go up or go down the tree?
- \diamond Time complexity: $O(\log n)$
- \bullet Example: Update-Key(A, 1, 88)

opaate Hey (11, 1, 11)	Update-Key	(A,	i,	k
------------------------	------------	-----	----	---

1. if A[i] > k

• • • • •

- 4. else
- 5. $A[i] \leftarrow k$
- 6. while $i \ge 0$ and $A[Parent(i)] \le A[i]$
- 7. swap A[i] with A[Parent(i)]
- 8. $i \leftarrow Parent(i)$

77	55	66	44	22	11	/

0	1	2	3	4	5	6
77	88	66	44	22	11	/

0	1	2	3	4	5	6
88	77	66	44	22	11	/

Insert-Key(A,k)

Insert-Key(A, k)

- 1. A.size \leftarrow A.size + 1
- 2. $A[A.size-1] \leftarrow -\infty$
- 3. Update-Key(A, A.size–1, k)

- \bullet Example: Insert-Key(A, 70)
- \bullet Time: O(log n)

•	_	_	_	-	5	•
77	55	66	44	22	11	/

0	1	2	3	4	5	6
77	55	66	44	22	11	70

0	1	2	3	4	5	6
77	55	70	44	22	11	66

Outline

- What is a heap?
- How do we maintain the heap property?
- How do we use a heap to sort an array?
- How do we insert, delete, update items in a heap?

What are the variants of heaps?

Min-Heap

- Min-heap is a data structure that supports fast retrieval of the minimum value
 - ♦ Min-heap property: $A[Parent(i)] \le A[i]$
 - The root (i=0) contains the smallest item
- Algorithms for max-heap can be easily modified to work on min-heap

How?

0	1	2	3	4	5
8	9	12	16	32	25

d-ary Heap

- \bullet d-ary heap is a generalization of binary heap
 - \bullet In d-ary heap, each node stores d keys
- How do we define the parent and children of a key?
 - \diamond Let *i* be the absolute position of a key in the array
 - ♦ Access parent: Parent(i) = $\lfloor (i-1)/d \rfloor$
 - ⋄ Access *j*-th child: Child_{*i*}(*i*) = d i + j

d-ary Heap Property

- *d*-ary heap property: $A[Parent(i)] \ge A[i]$
- \bullet Height $h = \lfloor \log_d n \rfloor$
 - Smaller height than binary heap
- Insert operations:

 $O(\log_d n)$

faster

Extract-max operations:

 $O(d \log_d n)$

slower

Some Questions about Heaps

Question 1

Given two heaps A and B, how to print all their items in the descending order?

Question 2

 \diamond Given an array A, how to find the k-minimum value quickly by using a heap?

About Week 5 (2 Oct 2024)

- 1 Oct 2024 is the public holiday. No Class on Tuesday.
- 6:30 pm 9:20 pm, 2 Oct 2024: the hybrid lab class (Online +lab rooms)
- Both Tuesday and Wednesday groups should join online or in person.
- ♦ Lab rooms are at PQ604ABC and PQ603. First come, first served. (because #Student > #lab computers).
- Online link of Microsoft Teams will be sent within one day before the class. Please use your PolyU Connect account to login MS Teams.
- Recorded video will be provided after the class, if you are not available to join.
- You are encouraged to use your own computer. So, you can easily continue the unfinished work after the class.
- If you use lab computers, please save the file in J: or the other proper space.
 Reboot will reset everything.
- If your laptop OS is macOS and you are new to the programming area, please use lab computer in Windows System.
- If you use your own laptop, please refer to previous guide to install JDK 21 and IntelliJ (community Edition 2024) before the class.

Information about Quiz 1

- Date/Time: a 45-minute time slot
 - Quiz 1 for Tuesday class: about 8:00pm, 8 Oct 2024,
 - Quiz 1 for Wednesday class: about 8:00pm, 9 Oct 2024.
 - No resit quiz will be made.
- \diamond Scope: Lectures 1-5
 - Data structures: stack, queue, linked list, tree, heap
 - Sorting algorithms
- Format: short questions on 3 hard-copy pages
 - E.g., draw the running steps of an algorithm
 - E.g., apply a data structure to solve a problem
 - Closed book

Summary

- The heap structure and heap property
- Sort an array by using a heap
- Heap operations
 - Extract-Max, Update-Key, Insert-Key
- How do we solve problems by using heap?
- Please read Chapter 9 in the book
 "Data Structures and Algorithms in Java", 6th Edition