1.	Find the	slope	of the	curve	defined	by
----	----------	-------	--------	-------	---------	----

$$\begin{cases} x = \theta - \sin \theta \\ y = 1 - \cos \theta \end{cases} \text{ at } \theta = \frac{\pi}{2}$$

$$\begin{cases} x = 6t^2 \\ y = 2t^3 \end{cases}$$
 on the interval [1, 4].

3. Find the area of a surface of revolution of the curve
$$x = 3\cos\theta, y = 4\sin\theta,$$
 $0 \le \theta \le \frac{\pi}{2}$ about y-axis.

4. Determine the concavity of the curve $x = x = 3t^2$ and $y = t^3 - t$.

5. Find the tangent line to the curve
$$r = 2 + 3 \sin \theta$$
, at the point $(x, y)=(2, 0)$.

6. Find the area of one petal of the rose $r = \sin 3\theta$.

- 7. Find the vector projection of vector u=<-9,
 -2, -4> onto v=<0, 4, 4> and also the vector component of u orthogonal to v.
- 8. Find the distance from the point Q(1,3,-2) to the line x = 1 3t, y = 2 t, z = 3 + 5t.

9. Find the distance from the point Q(2,8,4) to the plane $2x - y + 3z = 5$	10.Find the distance between two parallel planes 3x-2y+z=6 and 6x-4y+2z=10.
11.Convert the point $(3, \frac{\pi}{4}, 4)$ from cylindrical coordinate(r, θ , z) to rectangular coordinate(x,y,z).	12.Convert the point $(4, \frac{\pi}{6}, \frac{\pi}{4})$ from spherical coordinate (ρ, θ, ϕ) to rectangular coordinate (x,y,z) .
13. Find the area of the parallelogram with u=<3, 2, -1> and v=<1, 2, 3> as adjacent sides.	14. Find the volume of the parallelepiped with u =<1,1,1>, v =<2, 1, 0> and w =<1, 0, 1> as adjacent edges.