

Language: French

French (fre), day 1

Mardi 18 juillet 2017

Problème 1. Pour tout entier $a_0 > 1$, on définit la suite a_0, a_1, a_2, \ldots par :

$$a_{n+1} = \begin{cases} \sqrt{a_n} & \text{si } \sqrt{a_n} \text{ est un entier,} \\ a_n + 3 & \text{sinon,} \end{cases}$$
 pour tout $n \ge 0$.

Déterminer toutes les valeurs de a_0 pour lesquelles il existe un nombre A tel que $a_n = A$ pour une infinité de valeurs de n.

Problème 2. Soit \mathbb{R} l'ensemble des nombres réels. Déterminer toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ telles que, pour tous réels x et y:

$$f(f(x)f(y)) + f(x+y) = f(xy).$$

Problème 3. Un lapin invisible et un chasseur jouent dans le plan Euclidien. La position initiale A_0 du lapin et la position initiale B_0 du chasseur coïncident. Après n-1 tours de jeu, le lapin se trouve au point A_{n-1} et le chasseur au point B_{n-1} . Lors du $n^{\text{ème}}$ tour de jeu, trois évenements successifs se produisent :

- (i) le lapin se déplace sans être vu jusqu'en un point A_n tel que la distance entre A_{n-1} et A_n est égale à 1;
- (ii) un système de localisation indique un point P_n au chasseur, avec pour seule garantie que la distance entre P_n et A_n ne dépasse pas 1;
- (iii) le chasseur se déplace de manière visible jusqu'en un point B_n tel que la distance entre B_{n-1} et B_n est égale à 1.

Est-il toujours possible pour le chasseur que, quels que soient les déplacements du lapin et les points indiqués par le système de localisation, il puisse choisir ses déplacements de sorte qu'après 10^9 tours de jeu, il soit certain que la distance entre lui et le lapin ne dépasse pas 100?

Durée: 4 heures et 30 minutes Chaque problème vaut 7 points

French (fre), day 2

Mercredi 19 juillet 2017

Problème 4. Soit R et S des points distincts appartenant à un cercle Ω tels que le segment [RS] n'est pas un diamètre de Ω . Soit ℓ la tangente à Ω en R. Le point T est tel que S est le milieu du segment [RT]. Le point J est choisi sur le plus petit arc \widehat{RS} de Ω de sorte que le cercle Γ circonscrit au triangle JST rencontre ℓ en deux points distincts. Soit A le point commun de Γ et ℓ qui est le plus proche de R. La droite (AJ) recoupe Ω en K. Prouver que la droite (KT) est tangente à Γ .

Problème 5. Soit $N \ge 2$ un entier. Les N(N+1) joueurs d'un club de football, tous de tailles différentes, sont placés en ligne. Clara souhaite exclure N(N-1) joueurs de cette ligne afin que la ligne résultante formée par les 2N joueurs restants satisfasse aux N conditions suivantes :

- (1) il n'y a personne entre les deux plus grands joueurs,
- (2) il n'y a personne entre le troisième et le quatrième plus grand joueur,

:

(N) il n'y a personne entre les deux plus petits joueurs.

Montrer que son souhait est toujours réalisable.

Problème 6. Une paire ordonnée (x, y) d'entiers est appelée *point primitif* si le plus grand diviseur commun de x et y est égal à 1. Un ensemble fini de points primitifs S étant donné, prouver qu'il existe un entier strictement positif n et des entiers a_0, a_1, \ldots, a_n tels que, pour tout (x, y) appartenant à S, on ait :

$$a_0x^n + a_1x^{n-1}y + a_2x^{n-2}y^2 + \dots + a_{n-1}xy^{n-1} + a_ny^n = 1.$$

Language: French

Durée: 4 heures et 30 minutes Chaque problème vaut 7 points