Lecture 10

Chapter 4 Analytic Geometry

- 4.1. Cartesian Coordinate System
- 4.2. Algebra in Euclidean Geometry

4.1 Analytic Geometry and Cartesian Coordinate System

Geometry is a branch of mathematics concerned with questions of *shape*, *size*, *relative position of figures*, and the *properties of space*.

Benefiting from the introduction of **Cartesian coordinate system** [笛卡尔坐标系] (also referred to as **rectangular coordinate system** [直角坐标系]), we can define shapes in Euclidean geometry by a group of equations which are generally considered in algebra.

René Descartes (1596-1650) was a French philosopher, mathematician and physicist.

Cartesian Coordinate System on Plane

- Original point O [原点]
- 2 axes: *x*-axis [*x*轴], *y*-axis [*y*轴]
- 4 quadrants [象限]

An ordered pair of numbers (x, y), is used to denote the point with x as its x-coordinate and y as its y-coordinate.

For instance, (2,3) denotes a point settled at the position x = 2 and y = 3.

Cartesian Coordinate System in Space

- origin O
- 3 axes

• 3 coordinate planes [坐标平面]

·8 octants[卦限]

Any point M in the space can be represented by a tuple of three numbers, say (x, y, z).

For instance, the coordinate of O can be written as (0,0,0).

Vectors in Cartesian Coordinate System

Recall the definition of coordinate vector (**Definition 3.5.1**), for a given ordered basis E of a finite-dimensional vector space V, any vector x in V, has a **unique coordinate vector** associated with x.

Now let $E = \{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}\}$ be the standard basis of vector

space
$$\mathbf{R}^3$$
 and $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ be a vector in \mathbf{R}^3 .

$$E = {\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}}$$
 standard basis of \mathbf{R}^3 and $\mathbf{x} = (x_1, x_2, x_3)^T$

The coordinate vector of \mathbf{x} w.r.t. the basis E can be found by solving

$$c_1 \mathbf{e_1} + c_2 \mathbf{e_2} + c_3 \mathbf{e_3} = \mathbf{x},$$
 (*)

where c_i , i = 1,2,3 are scalars. If we denote $[x]_E = (c_1, c_2, c_3)^T$, (*) can be written as

$$(\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3})[x]_E = I[x]_E = [x]_E = x.$$

This implies that three coordinates of vector $\mathbf{x} \in \mathbf{R}^3$ w.r.t. the standard basis E are exactly three components of vector \mathbf{x} .

Remark. In general, the coordinate vector $[x]_E$ of vector x w.r.t. a given ordered basis E is **different** from the vector x.

We can associate the coordinate vector $[x]_E$ with a directed line segment from point (0,0,0) to (x_1,x_2,x_3) , then each vector x can be represented by the **directed line segment**.

Remark. The expression of a point (a, b, c) is different from the row vector (a, b, c) discussed in the previous chapters.

4.2 Algebra in Euclidean Geometry

We shall restrict our study in \mathbb{R}^2 or \mathbb{R}^3 , but most of these concepts and conclusions can be extended to all vector spaces.

Euclidean Length

Definition 1. Let $\mathbf{x} = (x_1, x_2, ..., x_n)^T$, n = 2,3 be a vector in \mathbf{R}^n , then its **Euclidean length [欧几里得长度]** is defined by

$$l(\mathbf{x}) = \sqrt{x_1^2 + \dots + x_n^2} = \sqrt{\sum_{i=1}^n x_i^2},$$

and we use ||x|| to denote this number. If ||x|| = 1, we say x is a **unit vector** [单位向量].

Example. Let $\mathbf{x} = (1,0,1)^T$, $\mathbf{y} = (0,1,-1)^T$. Find $\|\mathbf{x} + \mathbf{y}\|$, $\|\mathbf{x} - \mathbf{y}\|$, $\|-\mathbf{x}\|$ and $\|\mathbf{2y}\|$.

Theorem 1. Let u, v be two vectors in \mathbb{R}^n , n = 2,3 and λ be a scalar. We have

- (1) positive homogeneity [正齐次性]: $\|\lambda u\| = |\lambda| \|u\|$;
- (2) triangle inequality [三角不等式]: $||u + v|| \le ||u|| + ||v||$;
- (3) positivity [非负性]: $||u|| \ge 0$ and ||u|| = 0 if and only if u = 0.

Example. Let $\mathbf{x} = (x_1, ..., x_n)^T$ be a nonzero vector in \mathbf{R}^n , n = 2,3. Show that $\mathbf{x}^0 = \frac{x}{\|\mathbf{x}\|}$ is a unit vector.

Proof. By positive homogeneity, we have

$$||x^0|| = \left|\left|\frac{x}{||x||}\right|\right| = \frac{1}{||x||}||x|| = 1.$$

Remark. x^0 is called direction vector [方向向量] of x, since it always heads in the same direction as x and we have

$$x = ||x||x^0.$$

Moreover, since $\mathbf{0} = 0 \cdot \mathbf{u}^0$, where \mathbf{u}^0 is arbitrary unit vector, we can think that zero vector $\mathbf{0}$ can have any direction.

In \mathbb{R}^3 , we also denote unit direction vectors of the x-, y- and z-axis as i, j, k, respectively. That is

$$i = \mathbf{e_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix},$$

$$\mathbf{j} = \mathbf{e_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix},$$

$$\mathbf{k} = \mathbf{e_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Included Angle of Two Vectors

Included angle [夹角] of vectors u and v.

Definition 2. Let \boldsymbol{u} and \boldsymbol{v} be two vectors in \mathbf{R}^n , n=2,3.

- They are called **collinear** [共线] (or **parallel** [平行]), denoted by $\boldsymbol{u} \parallel \boldsymbol{v}$, if their included angle is 0 or π ;
- They are called **orthogonal** [正交] (or **perpendicular** [垂直]), denoted by $u \perp v$, if their included angle is $\frac{\pi}{2}$.

Geometric Interpretations of Operations on Vectors

Take \mathbb{R}^2 as an example.

Addition of vectors.
$$u = (x_1, y_1)^T$$
, $v = (x_2, y_2)^T$.
 $u + v = (x_1 + x_2, y_1 + y_2)^T$, $u - v = (x_1 - x_2, y_1 - y_2)^T$.

Theorem 2. (Distance between two points) Let $A(x_1, y_1)$ and $B(x_2, y_2)$ be two points in two dimensional Euclidean space. The distance between them can be calculated by

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

In three dimensional Euclidean space, the distance of two points, say $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ can be calculated by

calculated by
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

Scalar multiplication.

Let $\mathbf{u} = (x_1, y_1)^T$ and λ be a scalar. By the definition of scalar multiplication, we have

$$\lambda \boldsymbol{u} = \lambda(x_1, y_1)^T = (\lambda x_1, \lambda y_1)^T.$$

Projection of Vectors

The vector $\overline{A'B'}$ is called the **projection vector** of \boldsymbol{v} onto \boldsymbol{u} , and is denoted by $\operatorname{proj}_{\boldsymbol{u}}\boldsymbol{v}$.

Definition 3. Let the included angle of vector \boldsymbol{u} and \boldsymbol{v} be θ .

The **orthogonal projection vector** [正交投影向量] of \boldsymbol{v} onto \boldsymbol{u} , or the **projection vector** [投影向量], is

$$\operatorname{proj}_{\boldsymbol{u}} \boldsymbol{v} = \|\boldsymbol{v}\| \cos \theta \cdot \boldsymbol{u}^0.$$

The scalar

$$(v)_u = ||v|| \cos \theta$$

is called the **orthogonal projection** [正交投影] of v onto u, or simply the **projection** [投影].

Property 1. Let u, v, w be vectors in \mathbb{R}^n , n = 2,3, λ be a scalar,

$$(1) (\lambda \mathbf{v})_{\mathbf{u}} = \lambda(\mathbf{v})_{\mathbf{u}};$$

(2)
$$(v + w)_u = (v)_u + (w)_u$$
.

Proof of (1). We have

$$(\lambda v)_u = ||\lambda v|| \cos \theta = |\lambda|||v|| \cos \theta$$
,

where θ is the included angle of λv and u. Let γ be the included angle of v and u.

Property 1. Let u, v, w be vectors in \mathbb{R}^n , n = 2,3, λ be a scalar,

(1)
$$(\lambda v)_{\boldsymbol{u}} = \lambda(v)_{\boldsymbol{u}};$$

(2)
$$(v + w)_u = (v)_u + (w)_u$$
.

Proof of (2).

Definition 4. Let u be a vector in \mathbb{R}^3 . If i, j, k are unit direction vectors of x-, y-, z-axis, respectively and u_x , u_y , u_z are projections of u onto x-, y-, z-axis, then the **component** representation [分量表示] of u is

$$\boldsymbol{u} = u_{x}\boldsymbol{i} + u_{y}\boldsymbol{j} + u_{z}\boldsymbol{k}.$$

Similarly, the component representation in \mathbb{R}^2 is

$$\boldsymbol{u} = u_{x}\boldsymbol{i} + u_{y}\boldsymbol{j}.$$

Inner Product

Let $\boldsymbol{u} = (x_1, y_1)^T$ and $\boldsymbol{v} = (x_2, y_2)^T$ be two vectors in \mathbf{R}^2 .

Recall the inner product of u and v is defined by

$$\boldsymbol{u} \cdot \boldsymbol{v} = \langle \boldsymbol{u}, \boldsymbol{v} \rangle = \boldsymbol{u}^T \boldsymbol{v} = x_1 x_2 + y_1 y_2.$$

By the law of cosine,

$$\|\mathbf{u} - \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - 2\|\mathbf{u}\|\|\mathbf{v}\|\cos\theta$$
, we can derive that

$$\boldsymbol{u}\cdot\boldsymbol{v}=\langle\boldsymbol{u},\boldsymbol{v}\rangle=\|\boldsymbol{u}\|\cdot\|\boldsymbol{v}\|\cos\theta$$
,

where θ is the included angle of \boldsymbol{u} and \boldsymbol{v} .

If \boldsymbol{u} and \boldsymbol{v} are nonzero vectors, we have

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \|\boldsymbol{u}\| \cdot \|\boldsymbol{v}\| \cos \theta$$

= $\|\boldsymbol{u}\| \cdot \|\operatorname{proj}_{\boldsymbol{u}} \boldsymbol{v}\|$.

Similarly, we have

$$\langle u, v \rangle = ||v|| \cdot ||\text{proj }_{v}u||.$$

The included angle of nonzero vectors \boldsymbol{u} and \boldsymbol{v} can be calculated by

$$\theta = \arccos\left(\frac{u \cdot v}{\|u\| \cdot \|v\|}\right) = \arccos\left(u^0 \cdot v^0\right).$$

In case that \boldsymbol{u} and \boldsymbol{v} are perpendicular, we will have

$$\boldsymbol{u}\cdot\boldsymbol{v}=\|\boldsymbol{u}\|\cdot\|\boldsymbol{v}\|\cos\frac{\pi}{2}=0.$$

Conversely, if $\mathbf{u} \cdot \mathbf{v} = 0$, we have

$$\theta = \arccos\left(\frac{\boldsymbol{u}\cdot\boldsymbol{v}}{\|\boldsymbol{u}\|\cdot\|\boldsymbol{v}\|}\right) = \arccos(0) = \frac{\pi}{2}.$$

Theorem 3. Suppose that u and v are nonzero vectors in \mathbb{R}^n , n=2,3. The necessary and sufficient condition of $u \perp v$ is $u \cdot v = 0$.

In case that \boldsymbol{u} and \boldsymbol{v} are parallel, we have

$$u^{0} \cdot v^{0} = ||u^{0}|| \cdot ||v^{0}|| \cos 0 = 1$$
,

or

$$u^{0} \cdot v^{0} = ||u^{0}|| \cdot ||v^{0}|| \cos(\pi) = -1.$$

If $\boldsymbol{u^0} \cdot \boldsymbol{v^0} = 1$ or -1, we have

$$\theta = \arccos(\mathbf{u^0} \cdot \mathbf{v^0}) = \arccos(1) = 0$$

or

$$\theta = \arccos(\mathbf{u^0} \cdot \mathbf{v^0}) = \arccos(-1) = \pi.$$

Theorem 4. Let u and v be nonzero vectors in \mathbb{R}^n , n=2,3. The necessary and sufficient condition of $u \parallel v$ is $|u^0 \cdot v^0| = 1$.

Example.

Find the included angle between the following vectors and determine their relative positions.

(1)
$$\mathbf{u} = (0,1,0)^T$$
 and $\mathbf{v} = (1,0,1)^T$;

(2)
$$\mathbf{u} = (1, -1, 1)^T$$
 and $\mathbf{v} = (-1, -1, 1)^T$;

(3)
$$\mathbf{u} = (1,0,-1)^T$$
 and $\mathbf{v} = (-1,0,1)^T$;

(4)
$$\mathbf{u} = (0,1,-1)^T$$
 and $\mathbf{v} = (0,2,-2)^T$.

Property 2. Let u, v, w be vectors in \mathbb{R}^n , n = 2,3. Then $(u + v) \cdot w = u \cdot w + v \cdot w$.

Proof. It follows easily by the definition of inner product.

Example 5. Let \boldsymbol{u} and \boldsymbol{v} are two nonzero vectors in \mathbb{R}^n .

Prove that $(u - \operatorname{proj}_{v} u) \perp \operatorname{proj}_{v} u$.

Proof. It is enough to show that $(u - \text{proj}_v u) \cdot \text{proj}_v u = 0$. By **Property 2**, we have

$$(\boldsymbol{u} - \operatorname{proj}_{\boldsymbol{v}} \boldsymbol{u}) \cdot \operatorname{proj}_{\boldsymbol{v}} \boldsymbol{u} = \boldsymbol{u} \cdot \operatorname{proj}_{\boldsymbol{v}} \boldsymbol{u} - \operatorname{proj}_{\boldsymbol{v}} \boldsymbol{u} \cdot \operatorname{proj}_{\boldsymbol{v}} \boldsymbol{u}$$

$$= \boldsymbol{u} \cdot (\|\boldsymbol{u}\| \cos \theta \, \boldsymbol{v}^0) - \|\operatorname{proj}_{\boldsymbol{v}} \boldsymbol{u}\|^2$$

$$= (\|\boldsymbol{u}\| \cos \theta) \boldsymbol{u} \cdot \boldsymbol{v}^0 - \|\|\boldsymbol{u}\| \cos \theta \, \boldsymbol{v}^0\|^2$$

$$= (\|\boldsymbol{u}\| \cos \theta) (\|\boldsymbol{u}\| \cos \theta) - (\|\boldsymbol{u}\| \cos \theta)^2$$

$$= (\|\boldsymbol{u}\| \cos \theta) (\|\boldsymbol{u}\| \cos \theta) - (\|\boldsymbol{u}\| \cos \theta)^2$$

$$= 0.$$

Theorem 5. Let \boldsymbol{u} and \boldsymbol{v} be two nonzero vectors in \mathbf{R}^n , n=2,3, then \boldsymbol{u} and \boldsymbol{v} are linearly dependent if and only if $\boldsymbol{u} \parallel \boldsymbol{v}$.

Proof. Suppose that u and v are linearly dependent. Then there exist scalars c_1 , c_2 not all zero such that

$$c_1 \boldsymbol{u} + c_2 \boldsymbol{v} = \boldsymbol{0}.$$

Assume without loss of generality $c_2 \neq 0$, then

$$\boldsymbol{v} = -\frac{c_1}{c_2}\boldsymbol{u} = \lambda \boldsymbol{u},$$

which means $\boldsymbol{u} \parallel \boldsymbol{v}$. Conversely, if $\boldsymbol{u} \parallel \boldsymbol{v}$, then there exists scalar λ such that $\boldsymbol{v} = \lambda \boldsymbol{u}$. This gives

$$\lambda \boldsymbol{u} - \boldsymbol{v} = 0,$$

meaning that u, v are linearly dependent.

Cauchy-Schwarz Inequality

Theorem 6. (Cauchy-Schwarz inequality (1888)) If

 $x_1, x_2, \dots, x_n \in \mathbf{R}$ and $y_1, y_2, \dots, y_n \in \mathbf{R}$, then we have

$$\left(\sum_{i=1}^{n} x_i y_i\right)^2 \le \left(\sum_{i=1}^{n} x_i^2\right) \left(\sum_{i=1}^{n} y_i^2\right). \tag{1}$$

If we take x_i and y_i , i = 1, 2, ..., n as components of two vectors in \mathbb{R}^n :

 $\mathbf{x} = (x_1, x_2, ..., x_n)^T$ and $\mathbf{y} = (y_1, y_2, ..., y_n)^T$, then the inequality (1) can be rewritten as

$$|x \cdot y| \le ||x|| \cdot ||y||. \tag{2}$$

The equality in (2) holds only when x and y are linearly dependent.

Cauchy-Schwarz inequality

$$|x\cdot y|\leq ||x||\cdot ||y||.$$

Proof. We have

$$|\mathbf{x} \cdot \mathbf{y}| = ||\mathbf{x}|| \cdot ||\mathbf{y}|| \cos \theta| = ||\mathbf{x}|| \cdot ||\mathbf{y}|| \cdot |\cos \theta|,$$

where $\theta \in [0, \pi]$ is the included angle of x, y. Since $|\cos \theta| \le 1$, we get $|x \cdot y| \le ||x|| \cdot ||y||$.

The equality holds if and only if $|\cos \theta| = 1$, which means $\theta = 0$ or π , x, y are parallel. By **Theorem 5**, we know that x, y are linearly dependent.

Definition 5. Let u be a vector in \mathbb{R}^3 , u_x , u_y , u_z are projections of u onto x, y, z axes. Let α , β , γ be the included angles between u and x, y, z axes, respectively. These angles are called **direction angles** [方向角] and the cosines of these angles are called **direction cosine** [方向余弦].

$$\cos \alpha = \frac{u_x}{\|\mathbf{u}\|}$$

$$\cos \beta = \frac{u_y}{\|\mathbf{u}\|}$$

$$\cos \gamma = \frac{u_z}{\|\mathbf{u}\|}$$

$$\Rightarrow (\cos \alpha, \cos \beta, \cos \gamma)^T = \frac{1}{\|\boldsymbol{u}\|} (u_x, u_y, u_z)^T = \boldsymbol{u}^0$$

Cross Product

Definition 6. Let u and v be two vectors in \mathbb{R}^3 , then the **cross product** [叉积] of them is a new vector that is perpendicular to both u and v, with a direction given by the right-hand rule, and a magnitude equal to the area of the parallelogram that the vectors span. The cross product of u and v is denoted by $u \times v$.

 $\mathbf{u} \times \mathbf{v} = \|\mathbf{u}\| \cdot \|\mathbf{v}\| \cdot \sin \theta \cdot \mathbf{n}$, \mathbf{n} is a unit direction vector of $\mathbf{u} \times \mathbf{v}$, θ is the include angle of \mathbf{u} and \mathbf{v} .

Property 3. Let u, v, w be nonzero vectors in \mathbb{R}^3 , λ , μ be scalars.

- (1) anti-commutative [反交换律]: $\mathbf{u} \times \mathbf{v} = -\mathbf{v} \times \mathbf{u}$;
- (2) associative [结合律]: $(\lambda u) \times v = u \times (\lambda v) = \lambda(u \times v)$ and $(\lambda u) \times (\mu v) = (\lambda \mu)(u \times v)$;
- (3) **distributive** [分配律]: $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w}$ and $(\mathbf{v} + \mathbf{w}) \times \mathbf{u} = \mathbf{v} \times \mathbf{u} + \mathbf{w} \times \mathbf{u}$.

Example 6. (Cross Product of Standard Bases) Let i, j, k be the standard bases of \mathbb{R}^3 . Find $i \times i, j \times j, k \times k, i \times j, j \times k, k \times i, j \times i, k \times j$ and $i \times k$.

Solution. By definition of cross product, we have

$$||\mathbf{i} \times \mathbf{i}|| = ||\mathbf{j} \times \mathbf{j}|| = ||\mathbf{k} \times \mathbf{k}|| = 1 \cdot 1 \cdot |\sin 0| = 0,$$
 so that
$$\mathbf{i} \times \mathbf{i} = \mathbf{j} \times \mathbf{j} = \mathbf{k} \times \mathbf{k} = \mathbf{0}.$$

By the right-hand rule, we know that $i \times j$ is in the direction of k, $j \times k$ is in the direction of i, $k \times i$ is in the direction of j; the included angle between i, j, k are all $\pi/2$ so that $||i \times j|| = ||j \times k|| = ||k \times i|| = 1$. As a result,

$$i \times j = k$$
, $j \times k = i$, $k \times i = j$.

Finally by the anti-commutativity, we have

$$j \times i = -i \times j = -k$$
, $k \times j = -i$, $i \times k = -j$.

Theorem 7. (Component Representation of Cross Product) Let $u = u_x i + u_y j + u_z k$ and $v = v_x i + v_y j + v_z k$,

Then

$$\boldsymbol{u} \times \boldsymbol{v} = (u_y v_z - u_z v_y) \boldsymbol{i} - (u_x v_z - u_z v_x) \boldsymbol{j} + (u_x v_y - u_y v_x) \boldsymbol{k}.$$

Proof. It suffices to use conclusions in **Example 6** to get

$$\mathbf{u} \times \mathbf{v} = (u_x \mathbf{i} + u_y \mathbf{j} + u_z \mathbf{k}) \times (v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k})$$

$$= u_x v_x \mathbf{i} \times \mathbf{i} + u_y v_y \mathbf{j} \times \mathbf{j} + u_z v_z \mathbf{k} \times \mathbf{k} + u_x v_y \mathbf{i} \times \mathbf{j} + u_y v_x \mathbf{j} \times \mathbf{i}$$

$$+ u_y v_z \mathbf{j} \times \mathbf{k} + u_z v_y \mathbf{k} \times \mathbf{j} + u_x v_z \mathbf{i} \times \mathbf{k} + u_z v_x \mathbf{k} \times \mathbf{i}$$

$$= (u_x v_y - u_y v_x) \mathbf{k} + (u_y v_z - u_z v_y) \mathbf{i} + (u_z v_x - u_x v_z) \mathbf{j}$$

$$= (u_y v_z - u_z v_y) \mathbf{i} - (u_x v_z - u_z v_x) \mathbf{j} + (u_x v_y - u_y v_x) \mathbf{k}.$$

$$\boldsymbol{u} = u_{x}\boldsymbol{i} + u_{y}\boldsymbol{j} + u_{z}\boldsymbol{k}, \quad \boldsymbol{v} = v_{x}\boldsymbol{i} + v_{y}\boldsymbol{j} + v_{z}\boldsymbol{k},$$

$$\boldsymbol{u} \times \boldsymbol{v} = (u_y v_z - u_z v_y) \boldsymbol{i} - (u_x v_z - u_z v_x) \boldsymbol{j} + (u_x v_y - u_y v_x) \boldsymbol{k}.$$

By using the matrix notation of determinant, we can also rewrite as

$$m{u} imes m{v} = egin{bmatrix} m{i} & m{j} & m{k} \\ u_{x} & u_{y} & u_{z} \\ v_{x} & v_{y} & v_{z} \end{bmatrix}.$$

Exercise. Let u = 2i + j + k and v = -4i + 3j + k. Find $u \times v$ and $v \times u$.

Theorem 8. (Necessary and Sufficient Condition for Collinear Vectors) Suppose that \boldsymbol{u} and \boldsymbol{v} are nonzero vectors in \mathbf{R}^3 , then $\boldsymbol{u} \parallel \boldsymbol{v}$ if and only if $\boldsymbol{u} \times \boldsymbol{v} = \mathbf{0}$.

Proof. According to the definition of cross product, it is easy to see that $\mathbf{u} \times \mathbf{v} = \mathbf{0}$ if and only if $\theta = 0$ or π .

Triple Scalar or Box Product

Definition 7. Suppose u, v, w are three vectors in \mathbb{R}^3 , then the product $(u \times v) \cdot w$ is called the **triple scalar product** [混合积] of u, v and w, denoted by [u, v, w].

Volume of the parallelepiped

$$=$$
 Area of base \times Height

$$= \|\mathbf{u} \times \mathbf{v}\| \cdot \|\mathbf{w}\| \cdot |\cos \theta|$$

$$= |(u \times v) \cdot w|$$

Area of base =
$$\|\mathbf{u} \times \mathbf{v}\|$$

Height =
$$||w|| \cdot |\cos \theta|$$

Theorem 9. (Component Representation of Triple Scalar Product)

$$u = u_x i + u_y j + u_z k,$$

$$v = v_x i + v_y j + v_z k,$$

$$w = w_x i + w_y j + w_z k.$$

Then

$$(\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{w} = \begin{vmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{vmatrix}.$$

Proof. Notice that
$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} u_y & u_z \\ v_y & v_z \end{vmatrix} \mathbf{i} - \begin{vmatrix} u_x & u_z \\ v_x & v_z \end{vmatrix} \mathbf{j} + \begin{vmatrix} u_x & u_y \\ v_x & v_z \end{vmatrix} \mathbf{k}$$
, so that

$$(\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{w} = \begin{vmatrix} u_y & u_z \\ v_y & v_z \end{vmatrix} w_x - \begin{vmatrix} u_x & u_z \\ v_x & v_z \end{vmatrix} w_y + \begin{vmatrix} u_x & u_y \\ v_x & v_z \end{vmatrix} w_z = \begin{vmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{vmatrix}.$$

Property 4. Let u, v, w be three vectors in \mathbb{R}^3 , then

(1)
$$(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} = (\mathbf{v} \times \mathbf{w}) \cdot \mathbf{u} = (\mathbf{w} \times \mathbf{u}) \cdot \mathbf{v}$$
;

(2)
$$(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} = -(\mathbf{v} \times \mathbf{u}) \cdot \mathbf{w}$$
.

Theorem 10. Let u, v, w be three vectors in \mathbb{R}^3 , then they are **coplanar** [共面] if and only if [u, v, w] = 0.

Review

- Cartesian coordinates on plane and in space;
- Projection of a vector onto another;
- Inner product and Cross product of vectors;
- Triple Scalar product of vectors

Preview

Planes and Lines