alpaka Parallel Programming - Online Tutorial

Lecture 20: Thread Parallelism in alpaka

Lesson 23: Computing π – Part I

www.casus.science

Computing π

- Focus of the next four lessons
- Good example for Thread parallelism
- Introduces parameter passing and memory management
- Initial algorithm: Find points in a circle

Points in a circle

- Task: Given a circle quarter with the radius *r* and a set of *n* randomly scattered points, find all points inside the circle quarter
- Approach:
 - Create a Grid with *n* Threads
 - Each Thread evaluates a single point

Algorithm

• Using Pythagoras' theorem, the distance *d* from a point to the origin can be calculated:

$$d = \sqrt{x^2 + y^2}$$

• If $d \le r$, return true, otherwise false

Kernel requirements

- For the computation we need:
 - The point coordinates:

```
struct Points {
   float * x;
   float * y;
   bool * inside;
```

- The radius: float r;
- How do we pass these to the kernel?

Passing parameters

- alpaka kernels accept three different parameter types:
 - The accelerator: Acc const & acc (required)
 - Pointers to memory buffers of any data type: float * bufferA, MyDataType * bufferB
 - Scalar values of trivially copyable types: float scalar, struct Composed { int a; float b; };
- Signature of the PixelFinderKernel's operator():

```
template <typename Acc>
ALPAKA_FN_ACC void operator()(Acc const & acc, // required
                            Points points, // this struct contains memory buffers
                            float r // this is a scalar
 const
```


www.casus.science

SPONSORED BY THE

