## **Euler-McLaurin formula**

The expansion

$$T(h) = \int_{a}^{b} f(x) dx + c_1 h^2 + c_2 h^4 + \cdots$$
 (1)

is the Euler-McLaurin formula and obtained by repeated integration by part as we now show.

For simplicity of notation, we consider

$$\int_0^N \tilde{f}(x) \, dx = \sum_{j=0}^{N-1} \int_j^{j+1} \tilde{f}(x) \, dx$$

Integration by parts gives

$$\int_{j}^{j+1} \tilde{f}(x) dx = \left[ (x - j - 1/2)\tilde{f}(x) \right]_{j}^{j+1} - \int_{j}^{j+1} (x - j - 1/2)\tilde{f}'(x) dx$$

Hence

$$\frac{1}{2}\tilde{f}(j) + \frac{1}{2}\tilde{f}(j+1) = \int_{\hat{x}}^{j+1} \tilde{f}(x) \, dx + \int_{\hat{x}}^{j+1} \varpi_1(x)\tilde{f}'(x) \, dx, \qquad \varpi_1(x) = x - \lfloor x \rfloor - \frac{1}{2}$$

1 – Slides

Summation yields

$$\sum_{j=0}^{N-1} \frac{1}{2} \left( \tilde{f}(j) + \tilde{f}(j+1) \right) = \int_0^N \tilde{f}(x) \, dx + \int_0^N \varpi_1(x) \tilde{f}'(x) \, dx$$

- Let  $\varpi_2(x)$  be an antiderivative of  $\varpi_1$ , i.e.,  $\varpi_2' = \varpi_1$ . Note that  $\varpi_2$  is 1-periodic since  $\varpi_1$ is 1-periodic and  $\int_0^1 \varpi_1(x) dx = 0$ . This implies  $\varpi_2(0) = \varpi_2(j) = \varpi_2(j+1)$  for all j. We select the integration constant of  $\varpi_2$  such that  $\int_0^1 \varpi_2(x) dx = 0$ .
- A two-fold integration by parts yields with an antiderivative  $\varpi_3(x)$  of  $\varpi_2(x)$

$$\int_{j}^{j+1} \varpi_{1}(x)\tilde{f}'(x) dx =$$

$$\varpi_{2}(0) \left( \tilde{f}'(j+1) - \tilde{f}'(j) \right) - \varpi_{3}(0) \left( \tilde{f}''(j+1) - \tilde{f}''(j) \right) + \int_{j}^{j+1} \varpi_{3}(x)\tilde{f}'''(x) dx$$

Slides

- **a** again, one selects the integration constant of  $\varpi_3$  such that  $\int_0^1 \varpi_3(x) \, dx = 0$ .
- repeating the process yields

$$\frac{1}{2} \left( \tilde{f}(j) + \tilde{f}(j+1) \right) = \int_{j}^{j+1} \tilde{f}(x) \, dx + \sum_{s=1}^{m-1} (-1)^{s+1} \varpi_{s+1}(0) \left( \tilde{f}^{(s)}(j+1) - \tilde{f}^{(s)}(j) \right) + (-1)^{m+1} \int_{j}^{j+1} \varpi_{m}(x) \tilde{f}^{(m)}(x) \, dx$$

summation over j yields

$$\sum_{j=0}^{N} \frac{1}{2} (\tilde{f}(j) + \tilde{f}(j+1)) = \int_{0}^{N} \tilde{f}(x) dx$$

$$+ \sum_{s=1}^{m-1} (-1)^{s+1} \varpi_{s+1}(0) \left( \tilde{f}^{(s)}(N) - \tilde{f}^{(s)}(0) \right) + (-1)^{m+1} \int_{0}^{N} \varpi_{m}(x) \tilde{f}^{(m)}(x) dx$$

$$(2)$$

S – Slides

■ The values  $\varpi_s(0)$  are the  $\to$  Bernoulli numbers



■ Exercise: Given a function f on (0,1), define  $\tilde{f}(x) := f(hx)$  on (0,N) and derive the expansion (1) from (2).

## Romberg extrapolation

## Romberg extrapolation for $\int_0^1 f(x) dx$ with f smooth

## Procedure:

- lacksquare compute the values of the trapezoidal rule  $T_{i0}:=T(h_i)$  for  $h_i=2^{-i}$
- 2 evaluate the interpolating polynomial  $P_{i,n} \in \mathcal{P}_n$  for the data  $(h_{i+j}^2, T(h_{i+j}))$ ,  $j=0,\ldots,n$ , at h=0:  $T_{in}:=P_{i,n}(0)$ . This is achieved with the Neville scheme:

$$T_{i0} = T(h_i)$$

$$T_{ij} = P_{i,j}(0) = P_{i+1,j-1}(0) - \frac{h_{i+j}^2}{h_{i+j}^2 - h_i^2} \left[ P_{i+1,j-1}(0) - P_{i,j-1}(0) \right]$$

$$= T_{(i+1)(j-1)} - \frac{h_{i+j}^2}{h_{i+j}^2 - h_i^2} \left[ T_{(i+1)(j-1)} - T_{i(j-1)} \right], \quad j \ge 1$$

5 – Slides

Romberg extrapolation for  $\int_0^1 e^x dx$ 

|          |           |                   | ./                |                   |                   |
|----------|-----------|-------------------|-------------------|-------------------|-------------------|
| h        | $h^2$     | n = 0             | n = 1             | n = 2             | n = 3             |
| 1        | 1         | 1.859140914229523 | 1.718861151876593 | 1.718282687924754 | 1.718281828794499 |
| $2^{-1}$ | $2^{-2}$  | 1.753931092464825 | 1.718318841921747 | 1.718281842218437 | 1.718281828460412 |
| $2^{-2}$ | $2^{-4}$  | 1.727221904557517 | 1.718284154699897 | 1.718281828675358 | 1.718281828459105 |
| $2^{-3}$ | $2^{-6}$  | 1.720518592164302 | 1.718281974051892 | 1.718281828462428 | 1.718281828459017 |
| $2^{-4}$ | $2^{-8}$  | 1.718841128579994 | 1.718281837561771 | 1.718281828459097 | 1.718281828459077 |
| $2^{-5}$ | $2^{-10}$ | 1.718421660316327 | 1.718281829028016 | 1.718281828459049 | 1.718281828459047 |
| $2^{-6}$ | $2^{-12}$ | 1.718316786850094 | 1.718281828494605 | 1.718281828478246 |                   |
| $2^{-7}$ | $2^{-14}$ | 1.718290568083478 | 1.718281828461267 |                   |                   |
| $2^{-8}$ | $2^{-16}$ | 1.718284013366820 |                   |                   |                   |
| 1        | 1         | $1.41_{-01}$      | $5.79_{-04}$      | $8.59_{-07}$      | $3.35_{-10}$      |
| $2^{-1}$ | $2^{-2}$  | $3.56_{-02}$      | $3.70_{-05}$      | $1.40_{-08}$      | $1.37_{-12}$      |
| $2^{-2}$ | $2^{-4}$  | $8.94_{-03}$      | $2.33_{-06}$      | $2.16_{-10}$      | $5.95_{-14}$      |
| $2^{-3}$ | $2^{-6}$  | $2.24_{-03}$      | $1.46_{-07}$      | $3.38_{-12}$      | $-2.80_{-14}$     |
| $2^{-4}$ | $2^{-8}$  | $5.59_{-04}$      | $9.10_{-09}$      | $5.20_{-14}$      | $3.20_{-14}$      |
| $2^{-5}$ | $2^{-10}$ | $1.40_{-04}$      | $5.69_{-10}$      | $3.77_{-15}$      | $1.78_{-15}$      |
| $2^{-6}$ | $2^{-12}$ | $3.50_{-05}$      | $3.56_{-11}$      | $1.92_{-11}$      |                   |
| $2^{-7}$ | $2^{-14}$ | $8.74_{-06}$      | $2.22_{-12}$      |                   |                   |
| $2^{-8}$ | $2^{-16}$ | $2.18_{-06}$      |                   |                   |                   |
| expected |           | $O(h^2)$          | $O(h^4)$          | $O(h^6)$          | $O(h^8)$          |

- 6 -