Architektura systemów komputerowych

Wykład I

Podstawowe pojęcia

Część I

Informacja cyfrowa

System binarny

Dlaczego system binarny?

Dwójkowy system liczenia, choć nieintuicyjny dla człowieka, ma trzy cechy czyniące go idealnym z punktu widzenia elektroniki cyfrowej i informatyki. Są nimi:

- łatwość implementacji elektrycznej i elektronicznej,
- odporność na zakłócenia,
- możliwość interpretacji wartości 0 i 1 jako wartości logicznych "prawda" i "fałsz" (algebra Boole'a).

System binarny

- ✓ Współczesne urządzenia techniki cyfrowej pracują na nieco innej zasadzie.
- ✓ Zero i jedynka reprezentowane są jako dwie różne wartości napięcia elektrycznego.
- ✓ Najczęściej są to wartości napięcia o przeciwnych znakach. Np. napięcie
 +5 woltów oznaczać może cyfrę zero, a −5 woltów jedynkę.

CIEKAWOSTKA

CIEKAWOSTKA

Jedynym komputerem pracującym w systemie trójkowym był eksperymentalny radziecki Setun (rok 1959).

Elementem przechowującym informacje była tu para rdzeni magnetycznych. Każdy z nich mógł być namagnesowany w jednym z dwóch kierunków. Dawało to w sumie cztery możliwe stany, lecz wykorzystane były tylko trzy z nich (cyfry {0,1,2}). Czwarty stan pełnił funkcję kontrolną.

Wyprodukowano 50 takich komputerów, z czego 30 działało na uniwersytetach w całym ZSRR

System binarny – odporność na zakłócenia

Odporność na zakłócenia

- ✓ Na rysunku widzimy cyfrowy **sygnał dziesiętny** może on przyjmować 10 wartości odpowiadających cyfrom 0-9
- ✓ Wartość "3" może być zinterpretowana jako "2" lub "4" zależnie od tego, w której dokładnie chwili nastąpi pomiar napięcia.

System binarny – odporność na zakłócenia

Odporność na zakłócenia

- ✓ Dla porównania rysunek przedstawia sygnał binarny o takiej samej rozpiętości (10V), na który nałożył się sygnał zakłócający o amplitudzie jednego wolta. Widzimy, że pomimo zakłóceń nie ma ryzyka błędnego zinterpretowania transmisji.
- ✓ Aby wprowadzić przekłamania do transmisji binarnej, sygnał zakłócający musiałby sięgnąć połowy różnicy napięć pomiędzy stanem "0" i "1", czyli w omawianym tu przykładzie, pięciu wolt.

Cyfrowe dane

Dopuszczalne tolerancje parametru P w przypadku sygnału 2-wartościowego (a) i 3-wartościowego (b)

- ✓ Wewnątrz komputera informacja ma postać fizycznych sygnałów dwuwartościowych (np. dwa poziomy napięcia, dwa kierunki namagnesowania, dwie fazy przebiegu okresowego), którym można przypisać np. symbole 0 i 1.
- Każdy komunikat musi być przedstawiony jako łańcuch zerojedynkowy określonej długości (słowo).

Cyfrowe dane

Definicja:

Informacją cyfrową nazywamy informację przedstawioną (zakodowaną) w postaci słów cyfrowych.

Definicja:

Słowem cyfrowym (binarnym) nazywamy dowolny ciąg o ściśle określonej długości składający się z symboli 0 i/lub l

Słowo binarne

- ✓ W technice cyfrowej nie posługujemy się naturalnym kodem binarnym. Najmniejszą porcją informacji która może być przesłana, zapamiętana czy tez przetworzona jest SŁOWO
- ✓ Rozmiar słowa zależy od architektury systemu.

Najbardziej znaczący bit

Najmniej znaczący bit

Przyczyny zastosowania systemu binarnego

kb	Mb	Gb	Tb		
kilobit	megabit	gigabit	terabit		

1 **bajt** = 8 bitów (*ang. byte*)

kB	MB	GB	ТВ
kilobajt	megabajt	gigabajt	terabajt

Ważniejsze potęgi dwójki

$$2^{0} = 1$$

$$2^{1} = 2$$

$$2^{2} = 4$$

$$2^3 = 8$$

$$2^4 = 16$$

$$2^{5} = 32$$

$$2^{6} = 64$$

$$2^{7} = 128$$

$$2^{8} = 256 = 1$$
 bajt

$$2^{16} = 65.536$$

$$2^{24} = 16.777.216$$

$$2^{10}$$
 bajtów=1kB (1024)

$$2^{20}$$
bajtów=1MB (1024*1024)

$$2^{30}$$
 bajtów=1GB (1024*1024*1024)

System szesnastkowy (hexadecymalny)

Duże liczby binarne są nieczytelne.

Celem wprowadzenia systemy szesnastkowego jest skrócenie zapisu bez przeliczania na system dziesiętny.

Każde 4 bity da się przedstawić za pomocą 1 cyfry szesnastkowej – bez żadnego przeliczania.

```
hex bin dec
   0000 0
   0001 1
   0010 2
 3 0011 3
 4 0100 4
   0101 5
   0110 6
   0111 7
   1000 8
   1001 9
 A 1010 10
 B 1011 11
 C 1100 12
   1101 13
   1110 14
```


System szesnastkowy (hexadecymalny)

```
hex bin dec
Przykład:
                                                0000 0
                                                0001 1
0010 2
                                              3 0011 3
0101 0010 1001 0010 0001 1110 0101 0100 1010
                                              4 0100 4
1010 1100
                                                0101 5
                                                0110 6
              0010 0001 1110
                            0101
                                                0111 7
   5
                                                1000 8
            8
                          \mathbf{E}
                               5
                                                1001 9
1010 1100
                                              A 1010 10
                                                1011 11
                                              C 1100 12
52821E54AAC
                                                1101 13
                                                1110 14
                                                1111 15
```

Liczby zmiennopozycyjne

5 973 600 000 000 000 000 000 000 kg (Masa Ziemii)

5,9736*10²⁴

5,9736 E+24

mantysa (precyzja)

cecha (wykładnik)

Notacja naukowa pozwala na kodowanie bardzo dużych / małych liczb

Liczby zmiennopozycyjne

101,101

5,625₁₀

 $0,101101*2^3$

Mantysa znormalizowana dla liczb binarnych należy do przedziału $<\frac{1}{2},1$).

W praktyce oznacza to, że przecinek należy ustawić w taki sposób, aby liczba miała postać:

0,**1**xxxxxx...

Dzięki normalizacji zapis staje się jednoznaczny.

znak cecha / wykładnik

mantysa / precyzja

1100101010110101

Standard IEEE 754

pojedyncza precyzja	1	8	23	(32 bity)
podwójna precyzja	1	11	52	(64 bity)

Liczby zmiennopozycyjne

Przykład

1000110110110101

1000110110110101

Kod ASCII

American Standard Code for Information Interchange Kod przypisujący 7-bitowe (128 kombinacji) ciągi do znaków.

0	1	0	0	0	0	1	0	0	1	0	0	0	0	0	1	1	1
0	1	1	1	1	0	0	1	1	1	0	1	1	1	1	0	0	1
1	0	1	1	0	1	0	1	1	0	1	0	1	1	0	1	0	1

Kod ASCII

1 - 🛛	30 - ▲	54 - 6	78 - N	102 - f	126 -	150 - û	174 - «	198 - 222 -
2 - ⊖	31 - ▼	55 - 7	79 - 0	103 - q	127 - 🗅	151 - ù	175 - »	199 - 1 223 -
3 - ♥	32 -	56 - 8	80 - P		128 - Ç			
4 - +	33 - !	57 - 9	81 - 0	100	120 3	102	477	201 - 227 0
			01 - U	100 - 1	127 - U	100 - U	470 8	201 - <u>F</u> 225 - B 202 - <u>F</u> 226 - F
5 - 🙅	34 -	58 - :	82 - R	106 - 1	130 - e	154 - 0	178 - \$	ZUZ - = ZZ6 - I
6 - 🖢	35 – #	59 -	83 - S	107 - k	131 - ä	155 - ¢	1/9 -	203 - 〒 227 - Ⅱ
11 – ਗ	36 - \$	60 - C	84 - T	108 - 1	132 - ä	156 - Ł	180	203 - π 227 - π 204 - π 228 - Σ
12 - 9	37 - %	61 - =	85 - U	109 - m	133 - a	157 - ¥	181 - =	205 - = 229 - σ
14 - 1	38 - &	62 - >	86 - V	110 - n	134 - a	158 - s	182	206 - # 230 - μ
15 - 🌣	39 -	63 - ?	87 - W	111 - 0	135 - c	159 - f	183 - п	207 - ± 231 - Y
16 - →	40 - (64 - 0	88 – X	112 — р	136 - ê	160 - Ź	184 - 9	208 - ¹¹ 232 - Q
17 - ∢	41 -)	65 - A	89 - Y	113 - q	137 - ë	161 - Z	185 - 📲	209 - = 233 - 8
18 - ‡	42 – *	66 - B	90 - Z	114	138 - è	162 - ó	186 -	210 - π 234 - Ω
19 - !!	43 - +	67 - C	91 - [115 - s	139 - ï	163 - Ó	187 - 7	211 - [⊥] 235 - δ
20 - ¶	44 -	68 - D	92 - Ī	116 - t	140 - î	164 - ń	188 - 4	212 236 - ∞
21 - S	45	69 - E	93 -]	117 - u	141 - ć	165 - Ń	189 - 4	213 - F 237 - Ø
22 - 🕳	46	70 - F	94	118 - v	142 - X	166 - ź	190 - =	214 - π 238 - €
23 - ±	47 - /	71 - G	95 - - 96 - -	119 - w	143 - A	$167 - \dot{z}$	191 - 7	215 - 🕂 239 - N
24 - T	48 - O	72 - H	96 -	120 - x	144 - Ę	168 - 6	192 - L	216 - ∓ 240 - ≡
25 – ↓	49 - 1	73 - I	97 - a		145 - e	169 - г	193 - 🗆	217 - J 241 - ±
26 - →	50 - 2	74 - J	98 - b	122 - z	146 - Ì	170	194 - T	218 - ┌ 242 - ≥
27 - +	51 - 3	75 – K	99 – с	123 - {	147 - 6	171 - %	195	218 - 242 - 2 219 - 243 - 3
28 - L	52 - 4	76 - L	100 - d	124 - 1	148 - ö	172 - 4	196	220 244
29 - +	53 - 5	77 - M		125 - 1				
==	==				==	-		· ·

Kod ASCII

Regionalne strony kodowe

128 kombinacji wystarcza do zakodowania wszystkich liter i cyfr oraz kilkudziesięciu znaków drukowalnych (+ - =...) i niedrukowalnych znaków sterujących (np. nowy wiersz).

Rozbudowanie kodu do 8 bitów pozwala na przypisanie znaków narodowych (ąęäö...). Przykładowo Europa Centralna używa dla swoich alfabetów rozszerzenia iso-8859-2, a Europa Zachodnia iso-8895-1.

Jak opisujemy budowę komputera – poziomy abstrakcji

- Wygaszanie normalne
- Wygaszanie zer wiodących zabronione

Jak opisujemy komputer?

Przy opisie komputera przyjmuje się zwykle trzy poziomy abstrakcji :

- architektura.
- implementacja;
- realizacja.
- √ Te same poziomy występują przy projektowaniu;
- √ wprawdzie są one wzajemnie zależne, lecz realizowane przez osobne zespoły i wymagające od twórców innej wiedzy, stosujące inne narzędzia i inaczej dokumentowane

Opis komputera – poziomy abstrakcji

Poglądowo można powiedzieć, że:

- realizacja określa z czego maszyna jest zbudowana,
- implementacja jaka jest jej struktura i jak działa,
- architektura opisuje zachowanie się z punktu widzenia użytkownika.

Opis komputera – poziomy abstrakcji

Opis komputera – poziomy abstrakcji

- ✓ Z punktu widzenia użytkownika, komputer jest postrzegany poprzez język, w jakim się z nim komunikuje - jako pewna maszyna wirtualna.
- ✓ Może być nieistotne, jaka ta maszyna "jest naprawdę" jaki jest procesor, jaki jest system operacyjny, jakie jest inne oprogramowanie.

Standaryzacja technologii komputerowych

Technologia komputerowa jest rozwijana przez tysiące niezależnych i konkurujących ze sobą firm. Stanowi jednak spójną całość – urządzenia różnych producentów są ze soba kompatybilne.

Ponieważ nie jest możliwe "centralne sterowanie" jej rozwojem, wypracowano metody negocjowania standardów.

IEEE (ang. Institute of Electrical and Electronics Engineers - Instytut Inżynierów Elektryków i Elektroników,) – organizacja typu non-profit skupiająca profesjonalistów. Powstała z konsolidacji grup AIEE oraz IRE w 1963 roku. Jednym z podstawowych jej zadań jest ustalanie standardów konstrukcji, pomiarów itp. dla urządzeń elektronicznych, w tym standardów dla urządzeń i formatów komputerowych.

ISO Międzynarodowa Organizacja Normalizacyjna (ang. International Organization for Standardization) – organizacja pozarządowa zrzeszająca krajowe organizacje normalizacyjne.

Pojęcie komputera

- Układy cyfrowe służą do przetwarzania informacji.
- Do układu podajemy dane.
- Układ wykonuje na danych określone operacje.
- Układ zwraca wyniki.
- ✓ Układ cyfrowy to nie to samo co procesor czy nawet ALU.
- ✓ Pojęcie Układu cyfrowego obejmuje każde urządzenie elektroniki i automatyki spełniające powyższe funkcje.

KOMPUTER

- Każdy komputer porównać można do czarnej skrzynki.
- ✓ W tym modelu widać, że zarówno "surowcem", jak i "produktem" komputera jest informacja, przy czym - ze względu na olbrzymią różnorodność jej postaci - musi być ona przekształcana: na wejściu do postaci wymaganej przez maszynę, a na wyjściu do postaci czytelnej dla użytkownika

KOMPUTER

Model von Neumana

Podstawowym modelem prezentującym strukturę blokową każdego komputera, jest tzw. model von Neumanna. Został on zaproponowany w roku 1945 przez jednego z pionierów informatyki Johna von Neumanna.

W modelu tym wyróżniamy trzy podstawowe części:

- procesor zawierający część sterującą (CU) oraz część arytmetycznologiczną (ALU),
- pamięć przechowuje dane i program,
- układy wejścia-wyjścia zapewniające komunikację z otoczeniem.

Model von Neumana

ALU - jednostka arytmetyczno-logiczna

CU - jednostka sterująca

I/O - układy wejścia-wyjścia

Model ten jest implementacją czysto matematycznej konstrukcji zwanej maszyną Turinga.

Model von Neumana

Podstawowym założeniem, stanowiącym cześć definicji komputera, jest przechowywanie zarówno danych (argumentów operacji i ich wyników), jak i rozkazów (informacji sterującej przetwarzaniem) we wspólnej pamięci.

Model von Neumana

- Jednolitość postaci informacji przetwarzanej i kodu sterującego umożliwia modyfikacje programu w czasie jego wykonywania.
- Ta właśnie cecha decyduje o niebywałej uniwersalności komputerów
- Komputer wykonać może dowolny algorytm, a dostosowanie go do nowego zadania wymaga wyłącznie wprowadzenia do pamięci operacyjnej nowego zestawu instrukcji (wczytania nowego programu).

Model Harwardzki

Drugim możliwym modelem komputera jest model harwardzki.

W architekturze harwardzkiej pamięć podzielona jest na dwie odrębne części – pamięć danych i pamięć programu

Model Harwardzki

- ✓ Komputer taki jest, mówiąc najprościej, komputerem zaprojektowanym do wykonywania jednego programu.
- ✓ Program ten zapisany jest na stałe w pamięci RAM.
- ✓ Zaletą tego rozwiązania jest duża wydajność.
- ✓ W technologii tej wykonywane są obecnie procesory sygnału (DSP) wykorzystywane między innymi w kamerach i aparatach cyfrowych oraz mikrokontrolery jednoukładowe, obecne między innymi w nowoczesnych samochodach.

Model Harwardzki

CIEKAWOSTKA

Najstarsze komputery (komputery generacji zerowej i pierwsze komputery generacji pierwsze) zaprojektowane były w oparciu o model harwardzki. Algorytm przetwarzania danych, według którego pracowały, wynikał bezpośrednio z ich budowy. Zmiana programu wymagała więc fizycznego przebudowania komputera.

Przekaźnikowy komputer Harvard Mark I

Magistrala

Główne podzespoły komputera (CPU, pamięć operacyjna i układy we/wy). Komunikują się za pośrednictwem magistral.

Definicias

Magistrala nazywamy zestaw linii oraz układów przełączających, łączących dwa lub więcej układów mogących być nadajnikami lub odbiornikami informacji.

Przesyłanie informacji zachodzi zawsze pomiędzy dokładnie jednym układem będącym nadajnikiem a dokładnie jednym układem będącym odbiornikiem, przy pozostałych układach odseparowanych od linii przesyłających.

NAJPROSTRSZY MODEL KOMPUTERA

CPU

(mikroprocesor zegar i sterownik magistrali)

W skład CPU wchodzą:

- mikroprocesor,
- zegar
- oraz opcjonalnie sterownik magistrali oraz koprocesor matematyczny.

Zegar systemowy tworzy przebiegi czasowe synchronizujące pracę wszystkich elementów systemu.

Sterownik magistrali jest specjalizowanym układem który na podstawie informacji otrzymanych z mikroprocesora sygnały sterujące pracą pamięci układów we/wy i innych.

Zadaniem CPU oprócz przetwarzania informacji jest także sterowanie pracą pozostałych układów systemu.

Wszystkie działania i operacje w systemie są sterowane lub zainicjowane przez procesor.

Działanie jest skutkiem ciągu instrukcji dostarczonych do mikroprocesora czyli programu.

Wszystkie działania i operacje w systemie są sterowane lub zainicjowane przez procesor.

dane i rozkazy
sygnały sterujące

ALU - jednostka arytmetyczno-logiczna

CU - jednostka sterująca

I/O - układy wejścia-wyjścia

Program musi być przechowywany w pamięci o krótkim czasie dostępu (pamięć półprzewodnikowa ROM). Pamięci masowa nie nadają się - mają zbyt długi czas dostępu.

W każdym systemie komputerowym musi istnieć pomięć stała (RAM), która przechowuje instrukcję (niewielki fragment kodu), od której procesor startuje (wykonuje ja po załączeniu zasilania).

Literatura:

Metzger Piotr - Anatomia PC, wydanie XI, Helion 2007

Wojtuszkiewicz Krzysztof - Urządzenia techniki komputerowej, część I: Jak działa komputer, MIKOM, Warszawa 2000

Wojtuszkiewicz Krzysztof - Urządzenia techniki komputerowej, część II: Urządzenia <u>peryferyjne i interfejsy, MIKOM, Warszawa 2000</u>

Komorowski Witold - Krótki kurs architektury i organizacji komputerów, MIKOM Warszawa 2004

Gook Michael - Interfejsy sprzetowe komputerów PC, Helion, 2005