VORKURS EINFÜHRUNG IN DIE HOCHSCHULMATHEMATIK:

Kurvendiskussion

JONATHAN BUSSE

Universität Duisburg Essen Github.com/JoKaBus/VEH2020

SITZUNG VOM 9. OKTOBER 2020

ORGANISATORISCHES

ORGANISATORISCHES

ZEITPLANUNG

ZEITPLANUNG

- 10:00 Begrüßung
- 10:05 Break-Out-Session
 - Übung 4.3-1
 - Übung 4.3-2
- 10:50 Kaffepause
- 11:00 Besprechung der Übungsabe(n)

8

ÜBUNGSAUFGABE

ÜBUNGSAUFGABE

VORRECHNEN

ÜBUNG 4.2 AUFGABE 1

Aufgabe 1: Bestimme:

(a) $\sin(x)$ und $\cos(x)$, wenn $\cot(x) = -2$ und $0 < x < \pi$.

(b)
$$\frac{5\sin(x) + 7\cos(x)}{6\cos(x) - 3\sin(x)}$$
, wenn $\tan(x) = \frac{4}{15}$.

a)

b)

LOGARITHMUS RECHENREGELN 1

Produkte

Für das Rechnen mit Logarithmen von Produkten steht die hilfreiche Rechenregel

$$\log_b(x \cdot y) = \log_b x + \log_b y$$

zur Verfügung; oder allgemeiner:

$$\log_b(x_1x_2\cdots x_n) = \log_b x_1 + \log_b x_2 + \cdots + \log_b x_n$$

bzw.

$$\log_b \prod_{i=1}^n x_i = \sum_{i=1}^n \log_b x_i.$$

Der Logarithmus eines Produkts ist die Summe der Logarithmen der Faktoren.

Quotienten

Die Quotienten leiten sich direkt aus den Logarithmen von Produkten ab. Hier sei nur der einfache Fall

$$\log_b \frac{x}{y} = \log_b x - \log_b y$$

angegeben. Der Logarithmus eines Quotienten ist der Logarithmus des Zählers x minus den Logarithmus des Nenners y. Insbesondere ergibt sich daraus (da $\log 1 = 0$):

$$\log_b \frac{1}{x} = -\log_b x$$

Allgemeiner ergibt sich direkt aus der obigen Quotientenregel das Reziprozitätsgesetz:

$$\log_b \frac{x}{y} = -\log_b \frac{y}{x}$$

3

LOGARITHMUS RECHENREGELN 2

Potenzen

Für Potenzen mit reellem Exponent r gilt die Regel

$$\log_b(x^r) = r \log_b x.$$

Der Logarithmus einer Potenz ist also das Produkt aus dem Exponenten mit dem Logarithmus der Basis.

Auch daraus lässt sich für r=-1

$$\log_b rac{1}{x} = -\log_b x$$

ermitteln.

Der Logarithmus eines Stammbruchs $\frac{1}{x}$ ist der negative Logarithmus des Nenners x.

Diese Rechenregeln lassen sich von den Potenzgesetzen ableiten.

Wurzeln

Da Wurzeln nichts anderes als Potenzen mit gebrochenem Exponenten sind, ergibt sich nach der oben angegebenen Potenzregel des Logarithm

$$\log_b \sqrt[n]{x} = \log_b \left(x^{rac{1}{n}}
ight) = rac{1}{n} \log_b x.$$

4

ÜBUNG 4.2 AUFGABE 2

Aufgabe 2: Löse:

(a) $2^{x-3} = 3^{4-x}$ (b) $e^{2x} + e^x - 2 = 0$

(c) $\log_2 x + \log_2(2 + x) = 3$ (d) $6 \lg(\sqrt{1 + x}) = 2 + \lg(1 + x)$

a)

b)

ÜBUNG 4.2 AUFGABE 2

Aufgabe 2: Löse:

(a) $2^{x-3} = 3^{4-x}$ (b) $e^{2x} + e^x - 2 = 0$

(c) $\log_2 x + \log_2(2 + x) = 3$ (d) $6 \lg(\sqrt{1 + x}) = 2 + \lg(1 + x)$

c)

d)

ÜBUNGSAUFGABE

VISUALISIERUNG

ÜBUNG 4.3 AUFGABE 1

Aufgabe 1: Bestimme:

```
(a) sin(x) und cos(x), wenn cot(x) = -2 und 0 < x < \pi.
```

$$(b) \ \frac{5 \sin(x) + 7 \cos(x)}{6 \cos(x) - 3 \sin(x)}, \ \text{wenn} \ \tan(x) = \frac{4}{15}.$$

ÜBUNG 4.3 AUFGABE 2

Aufgabe 2: Löse:

(a)
$$2^{x-3} = 3^{4-x}$$
 (b) $e^{2x} + e^x - 2 = 0$

(b)
$$e^{2x} + e^x - 2 = 0$$

(c)
$$\log_2 x + \log_2(2 + x) = 3$$

(c)
$$\log_2 x + \log_2(2+x) = 3$$
 (d) $6 \lg(\sqrt{1+x}) = 2 + \lg(1+x)$

Produkte

Für das Rechnen mit Logarithmen von Produkten steht die hilfreiche Rechenregel

$$\log_b(x \cdot y) = \log_b x + \log_b y$$

zur Verfügung; oder allgemeiner:

$$\log_b(x_1x_2\cdots x_n) = \log_b x_1 + \log_b x_2 + \cdots + \log_b x_n$$

bzw.

$$\log_b \prod_{i=1}^n x_i = \sum_{i=1}^n \log_b x_i.$$

Der Logarithmus eines Produkts ist die Summe der Logarithmen der Faktoren.

Quotienten

Die Quotienten leiten sich direkt aus den Logarithmen von Produkten ab. Hier sei nur der einfache Fall

$$\log_b \frac{x}{y} = \log_b x - \log_b y$$

angegeben. Der Logarithmus eines Quotienten ist der Logarithmus des Zählers x minus den Logarithmus des Nenners y. Insbesondere ergibt sich daraus (da $\log 1 = 0$):

$$\log_b \frac{1}{x} = -\log_b x$$

VIEL ERFOLG FÜR DEN STUDIENSTART!

