Finite Automata for the Sub- and Superword Closure of CFLs: Descriptional and Computational Complexity

Maximilian Schlund

joint work with Georg Bachmeier and Michael Luttenberger

Department of Computer Science TU München

March 4, 2015

Subwords and Closure

 $w \leq u :\Leftrightarrow w$ subword (subsequence) of u

aabcab ≼ *bbcababacbcbabacc*

Subwords and Closure

$$w \leq u :\Leftrightarrow w \text{ subword (subsequence) of } u$$

aabcab ≼ *bbcababaacbcbabacc*

Def.: Subword Closure of a Language

$$\nabla L := \{ w \in \Sigma^* : \exists u \in L.w \leq u \}$$

Example

$$L = \{a^n c b^n : n \in \mathbb{N}\} \rightsquigarrow \nabla L = a^* (\varepsilon + c) b^*$$

Higman/Haines, 1950s

 ∇L is regular for any language L.

Higman/Haines, 1950s

 ∇L is regular for any language L.

But beware...

$$\nabla L = \emptyset \Leftrightarrow L = \emptyset$$

 \rightarrow Automaton for ∇L not computable in general (e.g. for context-sensitive languages).

Higman/Haines, 1950s

 ∇L is regular for any language L.

But beware...

$$\nabla L = \emptyset \Leftrightarrow L = \emptyset$$

 \sim Automaton for ∇L not computable in general (e.g. for context-sensitive languages).

Effective regularity for CFLs (van Leeuwen '78, Courcelle '91)

 ∇L computable for context-free languages (as automaton/regex).

Higman/Haines, 1950s

 ∇L is regular for any language L.

But beware...

$$\nabla L = \emptyset \Leftrightarrow L = \emptyset$$

 \sim Automaton for ∇L not computable in general (e.g. for context-sensitive languages).

Effective regularity for CFLs (van Leeuwen '78, Courcelle '91)

 ∇L computable for context-free languages (as automaton/regex).

Question: Size of finite automata representing ∇L (DFA/NFA)?

Size of NFA for the Subword Closure of a CFL

Context-free grammar G, NFA \mathcal{A}^{∇} for $\nabla L(G)$,

• Gruber/Holzer/Kutrib '09: $|\mathcal{A}^{\nabla}| \in 2^{2^{\mathcal{O}(|G|)}}$, based on [vL78].

Size of NFA for the Subword Closure of a CFL

Context-free grammar G, NFA \mathcal{A}^{∇} for $\nabla L(G)$,

- Gruber/Holzer/Kutrib '09: $|A^{\nabla}| \in 2^{2^{\mathcal{O}(|G|)}}$, based on [vL78].
- We show $|\mathcal{A}^{\nabla}| \in 2^{\mathcal{O}(|G|)}$, based on [Cou91].

Size of NFA for the Subword Closure of a CFL

Context-free grammar G, NFA \mathcal{A}^{∇} for $\nabla L(G)$,

- Gruber/Holzer/Kutrib '09: $|A^{\nabla}| \in 2^{2^{\mathcal{O}(|G|)}}$, based on [vL78].
- We show $|\mathcal{A}^{\nabla}| \in 2^{\mathcal{O}(|G|)}$, based on [Cou91].

Known lower bound $|\mathcal{A}^{\nabla}| \in \Omega(2^{|\mathcal{G}|})$:

Consider $L_n = \{a^{2^n}\}$, context-free grammar with $|G| \in \mathcal{O}(n)$:

$$A_n \to A_{n-1}A_{n-1}$$

$$\vdots$$

$$A_1 \to A_0A_0$$

$$A_0 \to a$$

NFAs for L_n and $\nabla L_n = \{a^i : 0 \le i \le 2^n\}$ need 2^n states.

- 1. Assume *G* in 2-normal form: $X \to \alpha$, $|\alpha| \le 2$ (w.l.o.g.).
- 2. If $X \Rightarrow^* \alpha X \beta X \gamma$ then $\nabla X = \Sigma_X^* \rightsquigarrow$ non-expansive grammar.

- 1. Assume *G* in 2-normal form: $X \to \alpha$, $|\alpha| \le 2$ (w.l.o.g.).
- 2. If $X \Rightarrow^* \alpha X \beta X \gamma$ then $\nabla X = \Sigma_X^* \leadsto$ non-expansive grammar.

- 1. Assume *G* in 2-normal form: $X \to \alpha$, $|\alpha| \le 2$ (w.l.o.g.).
- 2. If $X \Rightarrow^* \alpha X \beta X \gamma$ then $\nabla X = \Sigma_X^* \leadsto$ non-expansive grammar.
- 3. Contract strongly-connected components.

- 1. Assume *G* in 2-normal form: $X \to \alpha$, $|\alpha| \le 2$ (w.l.o.g.).
- 2. If $X \Rightarrow^* \alpha X \beta X \gamma$ then $\nabla X = \Sigma_X^* \rightsquigarrow$ non-expansive grammar.
- 3. Contract strongly-connected components.
- 4. Dependency graph is now a DAG (with self-loops)

$$S \rightarrow XA \mid AB \mid AX \mid XB$$

$$X \rightarrow CX \mid XA \mid C \mid A$$

$$A \rightarrow a$$

$$B \rightarrow b$$

$$C \rightarrow c$$

$$A_{\nabla A}$$

$$S \rightarrow XA \mid AB \mid AX \mid XB$$

$$X \rightarrow CX \mid XA \mid C \mid A$$

$$A \rightarrow a$$

$$B \rightarrow b$$

$$C \rightarrow c$$

$$A_{\nabla X}$$

$$Start \rightarrow Q_{en}$$

$$\varepsilon \rightarrow A_{\nabla A}$$

$$\varepsilon \rightarrow Q_{en}$$

$$A_{\nabla A}$$

Total size of NFA

At every stage, copy each automaton at most twice $\Rightarrow |\mathcal{A}^{\nabla}| \in 2^{\mathcal{O}(|G|)}$.

Size of DFA for the Subword Closure of a CFL L

 $\bullet \ \ \mathsf{NFA} \ \ \mathsf{for} \ \ \nabla \mathit{L} \colon \ \left| \mathcal{A}^\nabla \right| \in 2^{\mathcal{O}(|\mathit{G}|)} \leadsto \ \mathsf{DFA} \colon \left| \mathcal{D}^\nabla \right| \in 2^{2^{\mathcal{O}(|\mathit{G}|)}}.$

Size of DFA for the Subword Closure of a CFL L

- NFA for ∇L : $|\mathcal{A}^{\nabla}| \in 2^{\mathcal{O}(|G|)} \rightsquigarrow \mathsf{DFA}$: $|\mathcal{D}^{\nabla}| \in 2^{2^{\mathcal{O}(|G|)}}$.
- Bound is tight: $w \in \{0,1\}^{2N+1}$, w = x0y0z with |y| = N (finite language, binary alphabet).

$$L_N := \bigcup_{j=1}^N \underbrace{\{0,1\}^{j-1}}_{x} \{0\} \underbrace{\{0,1\}^N}_{y} \{0\} \underbrace{\{0,1\}^{N-j}}_{z}.$$

Size of DFA for the Subword Closure of a CFL L

- NFA for ∇L : $|\mathcal{A}^{\nabla}| \in 2^{\mathcal{O}(|G|)} \rightsquigarrow \text{DFA}$: $|\mathcal{D}^{\nabla}| \in 2^{2^{\mathcal{O}(|G|)}}$.
- Bound is tight: $w \in \{0,1\}^{2N+1}$, w = x0y0z with |y| = N (finite language, binary alphabet).

$$L_N := \bigcup_{j=1}^N \underbrace{\{0,1\}^{j-1}}_{\times} \{0\} \underbrace{\{0,1\}^N}_{y} \{0\} \underbrace{\{0,1\}^{N-j}}_{z}.$$

- $|G| \in \mathcal{O}(\log N)$: let derivation "guess" the location of y.
- $|\mathcal{D}| \ge 2^N$: all $u \in \{0,1\}^N$ inequivalent w.r.t. Myhill-Nerode.
- $|\mathcal{D}^{\nabla}| \geq 2^{N}$ (use same witnesses for inequivalence).

Application: Approximate Grammar Equivalence Checking

Given two context-free languages
$$L_1 = L(G_1), L_2 = L(G_2)$$
,

$$\nabla L_1 \neq \nabla L_2 \Longrightarrow L_1 \neq L_2$$

Application: Approximate Grammar Equivalence Checking

Given two context-free languages $L_1 = L(G_1)$, $L_2 = L(G_2)$,

$$\nabla L_1 \neq \nabla L_2 \Longrightarrow L_1 \neq L_2$$

Questions:

- Complexity of checking $\nabla L_1 \stackrel{?}{=} \nabla L_2$ (given as NFAs)?
- How to build a semi-decision procedure?
 - If $\nabla L_1 \neq \nabla L_2$ output witness $w \in (L_1 \setminus L_2) \cup (L_2 \setminus L_1)$.
 - If $\nabla L_1 = \nabla L_2$ refine grammars and iterate.

Equivalence of NFAs modulo Closure

For NFAs A_1, A_2 ,

$$A_1 \equiv_{\mathsf{cl}} A_2 \text{ if } \mathsf{cl}(L_1) = \mathsf{cl}(L_2).$$

• $A_1 \stackrel{?}{=} A_2$: PSPACE-complete.

Equivalence of NFAs modulo Closure

For NFAs A_1, A_2 ,

$$A_1 \equiv_{\mathsf{cl}} A_2 \text{ if } \mathsf{cl}(L_1) = \mathsf{cl}(L_2).$$

- $A_1 \stackrel{?}{=} A_2$: PSPACE-complete.
- $A_1 \stackrel{?}{\equiv}_{cl} A_2$: stays PSPACE-complete for cl =prefix/suffix/factor closure (Rampersad/Shallit/Xu 2012).

Equivalence of NFAs modulo Closure

For NFAs A_1, A_2 ,

$$A_1 \equiv_{\mathsf{cl}} A_2 \text{ if } \mathsf{cl}(L_1) = \mathsf{cl}(L_2).$$

- $A_1 \stackrel{?}{\equiv} A_2$: PSPACE-complete.
- $A_1 \stackrel{?}{\equiv}_{cl} A_2$: stays PSPACE-complete for cl =prefix/suffix/factor closure (Rampersad/Shallit/Xu 2012).
- Our result: $A_1 \stackrel{?}{\equiv}_{\nabla} A_2$ is (only) coNP-complete.

(I)
$$\mathcal{A}_1 \stackrel{?}{\equiv}_{\nabla} \mathcal{A}_2$$
 is in coNP

Structure of \mathcal{A}^{∇} and its powerset-DFA:

- If $s \xrightarrow{a} t$ then $s \xrightarrow{\varepsilon} t$ in \mathcal{A}^{∇} .
- If $S \stackrel{a}{\rightarrow} T$ in powerset-DFA, then $S \supseteq T$.

(I)
$$A_1 \stackrel{?}{=}_{\nabla} A_2$$
 is in coNP

Structure of \mathcal{A}^{∇} and its powerset-DFA:

- If $s \xrightarrow{a} t$ then $s \xrightarrow{\varepsilon} t$ in \mathcal{A}^{∇} .
- If $S \stackrel{a}{\rightarrow} T$ in powerset-DFA, then $S \supseteq T$.
- \implies Longest acyclic path in powerset-DFA has length $\leq |\mathcal{A}^{\nabla}|$.

(I)
$$A_1 \stackrel{?}{=}_{\nabla} A_2$$
 is in coNP

Structure of \mathcal{A}^{∇} and its powerset-DFA:

- If $s \xrightarrow{a} t$ then $s \xrightarrow{\varepsilon} t$ in \mathcal{A}^{∇} .
- If $S \stackrel{a}{\to} T$ in powerset-DFA, then $S \supseteq T$.
- \implies Longest acyclic path in powerset-DFA has length $\leq |\mathcal{A}^{\nabla}|$.

Corollary: In-equivalence modulo ∇ is in NP

If $A_1 \not\equiv_{\nabla} A_2$ then there is a short witness w ($|w| \leq |A_1^{\nabla}| + |A_2^{\nabla}|$).

(II) $A_1 \stackrel{?}{=}_{\nabla} A_2$ is coNP-hard

Even more: $\mathcal{A}_1 \stackrel{?}{\equiv}_{\nabla} \mathcal{A}_2$ is coNP-hard for finite languages.

Same idea as hardness of equivalence for regex without Kleene-stars.

(II) $\mathcal{A}_1 \stackrel{?}{=}_{\nabla} \mathcal{A}_2$ is coNP-hard

Even more: $A_1 \stackrel{?}{=}_{\nabla} A_2$ is coNP-hard for finite languages.

Same idea as hardness of equivalence for regex without Kleene-stars.

Standard reduction from TAUT:

• Given: Propositional formula φ (in DNF) with n variables.

(II)
$$\mathcal{A}_1 \stackrel{?}{\equiv}_{\nabla} \mathcal{A}_2$$
 is coNP-hard

Even more: $A_1 \stackrel{?}{=}_{\nabla} A_2$ is coNP-hard for finite languages.

Same idea as hardness of equivalence for regex without Kleene-stars.

Standard reduction from TAUT:

- Given: Propositional formula φ (in DNF) with n variables.
- Build regex ρ , $L(\rho) \in \{0,1\}^n$ that enumerates all satisfying assignments of φ .

(II)
$$\mathcal{A}_1 \stackrel{?}{\equiv}_{\nabla} \mathcal{A}_2$$
 is coNP-hard

Even more: $A_1 \stackrel{?}{=}_{\nabla} A_2$ is coNP-hard for finite languages.

Same idea as hardness of equivalence for regex without Kleene-stars.

Standard reduction from TAUT:

- Given: Propositional formula φ (in DNF) with n variables.
- Build regex ρ , $L(\rho) \in \{0,1\}^n$ that enumerates all satisfying assignments of φ .
- $\varphi \in \mathsf{TAUT} \Longleftrightarrow \mathsf{L}(\rho) = \{0,1\}^n \Longleftrightarrow \nabla \mathsf{L}(\rho) = \{0,1\}^{\leq n}$.

(II)
$$A_1 \stackrel{?}{=}_{\nabla} A_2$$
 is coNP-hard

Even more: $A_1 \stackrel{?}{=}_{\nabla} A_2$ is coNP-hard for finite languages.

Same idea as hardness of equivalence for regex without Kleene-stars.

Standard reduction from TAUT:

- Given: Propositional formula φ (in DNF) with n variables.
- Build regex ρ , $L(\rho) \in \{0,1\}^n$ that enumerates all satisfying assignments of φ .
- $\varphi \in \mathsf{TAUT} \Longleftrightarrow \mathsf{L}(\rho) = \{0,1\}^n \Longleftrightarrow \nabla \mathsf{L}(\rho) = \{0,1\}^{\leq n}$.
- Last step: $L(\rho) \neq \{0,1\}^n \Longrightarrow \nabla L(\rho) \neq \{0,1\}^{\leq n}$ since ∇ only adds shorter words.

Summary, Future Work

- Tight bounds on the size of NFAs/DFAs for $\nabla L(G)$.
- $A_1 \stackrel{?}{\equiv}_{\nabla} A_2$ is (only) coNP-complete.
- All results hold for superword closures as well (see paper).
- Application: Semi-decision procedure for grammar inequivalence (fast in practice – see paper).

Summary, Future Work

- Tight bounds on the size of NFAs/DFAs for $\nabla L(G)$.
- $A_1 \stackrel{?}{\equiv}_{\nabla} A_2$ is (only) coNP-complete.
- All results hold for superword closures as well (see paper).
- Application: Semi-decision procedure for grammar inequivalence (fast in practice – see paper).

Current/Future Work:

- Simple regex as representation (size $2^{\mathcal{O}(|G|)}$ as well), equivalence in $\mathcal{O}(n^2)$ (Abdulla/Bouajjani/Jonsson '98).
- Develop practical tool for inclusion/equivalence checking.
- Computability of ∇L for larger language classes.

Summary, Future Work

- Tight bounds on the size of NFAs/DFAs for $\nabla L(G)$.
- $A_1 \stackrel{?}{\equiv}_{\nabla} A_2$ is (only) coNP-complete.
- All results hold for superword closures as well (see paper).
- Application: Semi-decision procedure for grammar inequivalence (fast in practice – see paper).

Current/Future Work:

- Simple regex as representation (size $2^{\mathcal{O}(|G|)}$ as well), equivalence in $\mathcal{O}(n^2)$ (Abdulla/Bouajjani/Jonsson '98).
- Develop practical tool for inclusion/equivalence checking.
- Computability of ∇L for larger language classes.

Thank you!