Write your name here					
Surname		Other names			
Edexcel GCE	Centre Number		Candidate Number		
Chemistry Advanced Subsidiary Unit 2: Application of Core Principles of Chemistry					
Friday 27 May 2011 – Aft Time: 1 hour 30 minute			Paper Reference 6CH02/01		
Candidates may use a calcu	lator.		Total Marks		

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

©2011 Edexcel Limited.

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box ⊠. If you change your mind, put a line through the box ⋈ and then mark your new answer with a cross ⋈.

- 1 The correct balanced equation for the reaction between heated magnesium and steam, including state symbols, is
 - \square A $Mg(s) + H_2O(l) \rightarrow MgO(s) + H_2(g)$
 - \square **B** $Mg(s) + 2H_2O(g) \rightarrow Mg(OH)_2(aq) + H_2(g)$
 - \square C $Mg(s) + H_2O(g) \rightarrow MgO(s) + H_2(g)$
 - \square **D** $Mg(s) + 2H_2O(1) \rightarrow Mg(OH)_2(aq) + H_2(g)$

(Total for Question 1 = 1 mark)

- 2 This question concerns the trends in properties on descending Group 2 of the Periodic Table.
 - (a) What are the trends in solubility of sulfates and hydroxides down Group 2?

(1)

- A Sulfates increase, hydroxides decrease.
- **■** B Sulfates decrease, hydroxides increase.
- C Sulfates increase, hydroxides increase.
- D Sulfates decrease, hydroxides decrease.
- (b) What are the trends in thermal stability of carbonates and nitrates down Group 2?

(1)

- A Carbonates increase, nitrates decrease.
- **■** B Carbonates decrease, nitrates increase.
- **C** Carbonates increase, nitrates increase.
- **D** Carbonates decrease, nitrates decrease.
- (c) What are the trends in first ionization energy and electronegativity of the elements down Group 2?

(1)

- A Ionization energy increases, electronegativity decreases.
- B Ionization energy decreases, electronegativity increases.
- \square C Ionization energy increases, electronegativity increases.
- \square **D** Ionization energy decreases, electronegativity decreases.

(Total for Question 2 = 3 marks)

3		n silver halide is a cream coloured solid which darkens in ntrated ammonia solution?	sunlight and dissolves in
	\boxtimes A	AgF	
	\boxtimes B	AgCl	
	区	AgBr	
	⊠ D	AgI	
		(Tot	eal for Question 3 = 1 mark)
4	What is	is the FBF bond angle in boron trifluoride, BF ₃ ?	
	\boxtimes A	180°	
	⊠ B	120°	
	区	109.5°	
	⊠ D	90°	
		(To	ral for Question 4 = 1 mark)
5		is the total number of electrons in the covalent bonds in ule, BeCl ₂ ?	a beryllium chloride
	\boxtimes A	. 2	
	⊠ B	4	
		6	
	⋈ D	8	
		(Tot	ral for Question 5 = 1 mark)
6	Which	n of the following molecules is linear?	
	\boxtimes A	CO_2	
	⊠ B	$\mathrm{C_2H_4}$	
		H_2O	
	⊠ D	NH_3	
		(Tot	cal for Question 6 = 1 mark)

7	Which	of the following molecules is non-polar ?			
	\mathbf{X} A	CH ₃ Cl			
	\boxtimes B	CH ₂ Cl ₂			
	\square C	CHCl ₃			
	\boxtimes D	CCl ₄			
		(Total for Question 7 = 1 mark)			
8	Methai	nol dissolves in water mainly due to the formation of new			
	$\boxtimes \mathbf{A}$	hydrogen bonds.			
	\boxtimes B	dipole-dipole forces.			
	\square C	London forces.			
	\square D	covalent bonds.			
		(Total for Question 8 = 1 mark)			
9	Which	of the following molecules does not absorb infrared radiation?			
7	W IIICII	N_2			
	⊠ B	NO_2			
	⊠ C	CO			
	ĭ D	CO_2			
		(Total for Question 9 = 1 mark)			
10	10 There would be a major peak in the mass spectrum for butan-1-ol, CH ₃ CH ₂ CH ₂ CH ₂ OH, but not for butan-2-ol, CH ₃ CH ₂ CH(OH)CH ₃ , at <i>m/e</i> value				
	$\boxtimes \mathbf{A}$	15			
	\boxtimes B	17			
	\square C	29			
	\boxtimes D	43			
		(Total for Question 10 = 1 mark)			
	Use th	is space for any rough working. Anything you write in this space will gain no credit.			

11 How many molecular ion peaks (parent ion peaks) occur in the mass spectrum of 1,2-dibromoethane, CH₂BrCH₂Br?

Assume the only isotopes present are ¹H, ¹²C, ⁷⁹Br and ⁸¹Br.

- $\mathbf{X} \mathbf{A}$ 1
- \mathbf{B} B 2
- **C** 3
- \square **D** 4

(Total for Question 11 = 1 mark)

- 12 The following reactions have been used in the chemical industry to make liquid and solid products, allowing any gaseous products to escape into the atmosphere:
 - A $CH_3OH(g) + CO(g) \rightarrow CH_3COOH(l)$
 - **B** $CaCO_3(s)$ $\rightarrow CaO(s) + CO_2(g)$
 - C $CH_4(g)$ + $3Cl_2(g)$ $\rightarrow CHCl_3(l) + 3HCl(g)$
 - **D** $CH_2CH_2(g) + Cl_2(g) \rightarrow CH_2ClCH_2Cl(l)$
 - (a) Which reaction has an atom economy by mass of 56%?

(1)

- \mathbf{X} \mathbf{A}
- \mathbf{X} **B**
- \mathbf{X} C
- \times D
- (b) Which reaction causes the most immediate damage to the environment?

(1)

- \mathbf{X} \mathbf{A}
- \mathbf{B}
- \mathbf{K} C
- \times **D**
- (c) Which reaction is an electrophilic addition?

(1)

- \mathbf{X} \mathbf{A}
- \boxtimes B
- \mathbf{K} C
- \boxtimes D

(Total for Question 12 = 3 marks)

13 Propan-1-ol and propan-2-ol are separately oxidized under mild conditions by acidified sodium dichromate(VI) and the product immediately distilled off. What is the oxidation product in each case?

		Propan-1-ol	Propan-2-ol
×	A	propanal	propanone
×	В	propanoic acid	propanone
×	C	propanal	propanoic acid
×	D	propanone	propanal

(Total for Question 13 = 1 mark)

- 14 Unsaturated vegetable oils are hardened to make margarine by reaction with hydrogen and a nickel catalyst. Which terms could both be used to describe this type of reaction?
 - A Substitution and oxidation
 - **B** Substitution and reduction
 - C Addition and oxidation
 - **D** Addition and reduction

(Total for Question 14 = 1 mark)

- 15 When iodomethane, CH₃I, is heated in a sealed tube with an excess of alcoholic ammonia, which of the following **cannot** be formed?
 - \square **A** Methylamine, CH₃NH₂
 - **B** Ethylamine, CH₃CH₂NH₂
 - \square C Dimethylamine, (CH₃)₂NH
 - **D** Ammonium iodide, NH₄I

(Total for Question 15 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

16 The enthalpy change of neutralization of an acid by an alkali is measured by adding $10.0~\text{cm}^3$ of hydrochloric acid to $10.0~\text{cm}^3$ of sodium hydroxide. $10.0~\text{cm}^3$ pipettes with an accuracy of $\pm 0.04~\text{cm}^3$ are used to measure out both solutions.

The overall percentage error in measuring the total volume of the reaction mixture is

- \triangle A $\pm 0.04\%$
- \blacksquare **B** ±0.08%
- **C** ±0.4%
- **■ D** ±4.0%

(Total for Question 16 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

- 17 This question is about the element chlorine and its compounds.
 - (a) When chlorine is bubbled through water, a solution of chlorine water forms. What is the colour of chlorine water?

(1)

- (b) Chlorine water is added to potassium iodide solution.
 - (i) State the colour of the solution produced.

(1)

(ii) Write the **ionic** equation for the reaction, including state symbols.

(2)

(c) The concentration of chlorine water was found by taking 10.0 cm³ of solution, adding an excess of potassium iodide solution, and titrating with 0.0100 mol dm⁻³ of sodium thiosulfate solution. The experiment was repeated.

The following results were obtained.

Titration number	1	2
Final burette reading/cm ³	38.60	47.60
Initial burette reading/cm ³	29.50	38.60
Volume added/cm ³	9.10	9.00

	(i)	Name a suitable indicator for the titration. State the colour change you would expect to see at the end point.	(2)
Indicat	or		
Colour	cha	nge from to	
	(ii)	Calculate the mean titre and use this value to calculate the number of moles of sodium thiosulfate used in the titration.	(1)
Mean t	itre	= cm ³	` ′
Moles	of so	odium thiosulfate	
	(iii)	Complete the ionic equation for the reaction between iodine and thiosulfate ions	. (2)
		$I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow$	
	(iv)	Calculate the number of moles of iodine which reacted with the sodium thiosulfate solution.	
			(1)
	(v)	Hence state the number of moles of chlorine present in 10.0 cm ³ of the chlorine water.	
			(1)
	(vi)	Calculate the concentration of the chlorine water, in mol dm ⁻³ .	(1)
			(1)

(i) Give the colour of the flame when potassium burns in chlorine.	(1)
(ii) Write the equation for the reaction between potassium and chlorine. State symbols are not required.	(1)
e) Concentrated sulfuric acid is added to potassium chloride in a test tube. Steamy fumes are given off which react with ammonia to give dense white smoke. (i) Name the gas given off in this reaction.	(1)
(ii) Steamy fumes are observed at the mouth of the test tube. Explain how these fumes are formed.	(1)
(iii) The steamy fumes react with ammonia to give a dense white smoke. Identify the white smoke by name or formula.	(1)
 (i) Name the chemical you would add to butan-2-ol in the laboratory to make 2-chlorobutane. 	(1)

(ii)	2-chlorobutane reacts with alcoholic potassium hydroxide at a high temperature to form a mixture of gaseous alkenes.	
	Draw a fully labelled diagram of the apparatus you would use to prepare and collect this mixture.	
		(3)
	(Total for Question 17 = 21 mar)	ks)

BLANK PAGE

18 This question is about ethanethiol, CH ₃ CH ₂ SH. Thiols are like alcohols, but the oxygen atom has been replaced by a sulfur atom. They react in a similar way to alcohols.				
(a) (i) Draw a dot and cross diagram for ethanethiol, showing outer electro	ons only. (2)			
(ii) Give the value for the CSH bond angle in ethanethiol. Justify your compared to the CSH angle	answer.			
Justification				
(b) There are hydrogen bonds between ethanol molecules but not between et molecules.				
(i) Explain why the bond angle around the hydrogen atom involved in a bond is 180°.	a hydrogen (2)			
(ii) Explain why there are no hydrogen bonds between ethanethiol mole	cules.			

(c) (i) Describe the formation of London forces.	(2)
(ii) Explain why the London forces in ethanethiol are stronger than those in ethanol	. (1)
 (d) The reaction of sodium with ethanethiol, CH₃CH₂SH, is similar to its reaction with ethanol. (i) Suggest one observation you would make when sodium is added to ethanethiol. 	(1)
(ii) Suggest a balanced equation for this reaction. State symbols are not required.	(1)

(e) Ethanol can be made from bromoethane by reaction with aqueous potassium hydroxide, KOH(aq), under suitable conditions.(i) Write the equation for this reaction. State symbols are not required.	
	(1)
(ii) State the type and mechanism of this reaction.	(2)
Jechanism	
(iii) Suggest the formula of a suitable chemical to make ethanethiol from bromoethane.	
	(1)
(f) When ethanethiol undergoes complete combustion in air, a gas is produced venot formed on the complete combustion of ethanol. Identify the gas and sug it is damaging to the environment.	
it is damaging to the environment.	(2)
(Total for Question 18 =	= 19 marks)
TOTAL FOR SECTION B =	40 MARKS

SECTION C

Answer ALL the questions. Write your answers in the spaces provided.

19 This question is about nitrogen monoxide, NO, which can be described both as a friend and a foe.

Chemists have discovered that nitrogen monoxide plays an important role in the body by dilating blood vessels. If someone is suffering from blood circulatory or heart problems, a chemical may be given which will quickly break down to give nitrogen monoxide. Years ago, nitroglycerine was used for this purpose. Interestingly, the same chemical Nobel had used to make dynamite was used to treat him in old age.

In the laboratory, nitrogen monoxide can be prepared by adding concentrated nitric acid to powdered silver. Nitrogen monoxide is a colourless gas which is partially soluble in water. It is difficult to detect its smell, because it reacts with oxygen in the air to form pungent-smelling nitrogen dioxide.

Nitrogen monoxide is formed when a mixture of air and oxygen is heated to a high temperature. This reaction occurs in the engines of cars and aeroplanes. Nitrogen monoxide has a disastrous effect on the ozone layer because it is a free radical. Nitrogen monoxide is also a greenhouse gas.

(a) ((1)	What is meant by the term free radical ? (1))
((ii)	Suggest a dot and cross diagram for nitrogen monoxide, showing outer shell	

(ii) Suggest a dot and cross diagram for nitrogen monoxide, showing outer shell electrons only, remembering that it is a free radical.

(2)

(b) (i)	Part of the unbalanced equation for the preparation of nitrogen monoxide from nitric acid is shown below.	1
	$Ag(s) + HNO_3(aq) \rightarrow NO(g) + AgNO_3(aq)$	
	Identify the elements which are oxidized and reduced and give their oxidation numbers.	(3)
	Element oxidized	
	Oxidation number initial final final	
	Element reduced	
	Oxidation number initial final final	
(ii)	1	
	acid.	(2)
	$Ag(s) + \dots AgNO_3(aq) \rightarrow NO(g) + \dots AgNO_3(aq) + \dots$	
	reaction between nitrogen and oxygen to form nitrogen monoxide reaches ilibrium.	
	$N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ $\Delta H^{\oplus} = +180.4 \text{ kJ mol}^{-1}$	
(i)	Explain why the yield of nitrogen monoxide is increased when the temperature is increased.	(1)
		(1)
*(ii)	State and explain the effect, if any, on the yield of nitrogen monoxide when the pressure is increased.	
		(2)

		(2)
<i>4</i>) (:)	Evalsia velev e iet conculous in flicht course accel acces de conculous to the course	
d) (i)	Explain why a jet aeroplane in flight causes much more damage to the ozone layer than cars carrying the same number of passengers at sea level. You should	d
	assume that the nitrogen monoxide outputs for both methods of conveying the	
	passengers are the same.	(2)

(ii)	The reactions of chlorine free radicals with ozone may be represented by the	ıe
	following equations.	

$$Cl^{\bullet} + O_3 \rightarrow ClO^{\bullet} + O_2$$

$$ClO \cdot + O_3 \rightarrow Cl \cdot + 2O_2$$

Write corresponding equations for the reactions of the free radical nitrogen monoxide with ozone. Combine your two equations to show the overall reaction.

Use these equations to explain why a small quantity of nitrogen monoxide can have a continuing effect on the ozone layer.

(5)

•			

TOTAL FOR SECTION C = 20 MARKS TOTAL FOR PAPER = 80 MARKS

(Total for Question 19 = 20 marks)

4	C
non	5
2	5
ū	ĭ
þ	5
0	ر
2 	2
۴	2
۷.	ر
<u>.</u>	2
ξ.	2
٥	5
9	ט
T	

							ı,
0 (8)	(18) 4.0 He hetium 2	20.2 Ne neon	39.9 Ar argon 18	83.8 Kr krypton 36	Xe xenon 54	[222] Rn radon 86	ted
7	(17)	19.0 F fluorine 9	35.5 Cl chlorine 17	79.9 Br bromine 35	126.9 	[210] At astatine 85	seen repor
9	(16)	16.0 O oxygen 8	32.1 S sulfur 16	Se selenium 34	Te Te tellurium 52	[209] Po polonium 84	116 have b
2	(15)	14.0 N nitrogen	31.0 P	74.9 As arsenic 33	Sb antimony 51	209.0 Bi bismuth 83	tomic numbers 112-116 hav but not fully authenticated
4	(14)	12.0 C carbon 6	28.1 Si silicon	72.6 Ge germanium 32	118.7 Sn tin 50	207.2 Pb tead 82	Elements with atomic numbers 112-116 have been reported but not fully authenticated
æ	(13)	10.8 B boron 5	27.0 Al aluminium 13	69.7 Ga gallium 31	114.8 In indium 49	204.4 Tl thallium 81	ents with
	,		(12)	65.4 Zn zinc 30	112.4 Cd cadmium 48	200.6 Hg mercury 80	Elem
			(11)	63.5 Cu copper 29	107.9 Ag silver 47	197.0 Au gold 79	Rg centgenium 111
			(01)	58.7 Ni nickel 28	Pd Pd palladium 46	195.1 Pt platinum 78	[268] [271] [272] Mt Ds Rg metrerium damstadtum roentgenium 109 111
			(6)	58.9 Co cobalt 27	Rh rhodium 45	192.2 Ir iridium 77	[268] Mt meitnerium 109
	1.0 H hydrogen		(8)	55.8 Fe iron 26	Ru Ru ruthenium 44	190.2 Os osmium 76	[277] Hs hassium 108
			0	54.9 Mn manganese 25		Re rhenium 75	[264] Bh bohrium 107
	ā	mass bol umber	(9)	52.0 54.9 Cr Mn chromium manganese 24 25	95.9 [98] Mo Tc molybdenum technetium 42 43	183.8 W tungsten 74	Sg seaborgium 106
	Key	relative atomic mass atomic symbol name atomic (proton) number	(5)	50.9 V vanadium 23	92.9 Nb niobium 41	180.9 Ta tantalum 73	[262] Db dubnium 105
	ė	relati ato atomic	<u>\$</u>	47.9 Ti titanium 22	91.2 Zr zirconium 40	178.5 Hf hafnium 72	[261] Rf nutherfordium 104
			(3)	Sc scandium 21	88.9 Y yttrium 39	138.9 La* lanthanum 57	[227] Ac* actinium 89
7	(2)	9.0 Be beryllium 4	24.3 Mg magnesium 12	40.1 Ca calcium 20	87.6 Sr strontium 38	137.3 Ba barium 56	[226] Ra radium 88
-	(1)	6.9 Li lithium 3	23.0 Na sodium 11	39.1 K potassium 19	85.5 Rb rubidium 37	132.9 Cs caesium 55	[223] Fr francium 87

75	tetium 71	[257] Lr wrencium 103
	2	n lav
£ 4	ytterbium 70	[254] No nobeliur
169 Tm	thulium 69	[256] Md mendelevium 101
167 Fr	erbium 68	[253] Fm fermium 100
165 Ho	holmium 67	[254] Es einsteinium 99
163	dysprosium 66	[251] Cf californium 98
159 Th	terbium 65	[245] BK berkelium 97
157 Gd	gadolinium 64	(247) Cm curium 96
152 Fu	europium 63	[243] Am americium 95
150 Sn	samarium 62	[242] Pu plutonium 94
[147] Pm	promethium 61	[237] Np neptunium 93
4 Z	neodymium 60	238 U uranium 92
141 P	praseodymium 59	[231] Pa protactinium 91
9 4	serium 58	232 Th horium 90

* Lanthanide series * Actinide series