Block 10 (Donnerstag 29.2.2024)

11 Monte Carlo Simulations

VIDEO: video08b_markov_ketten_r

11.1 Markov Chains

Given; system with (a finite number of) states $\underline{y} = \underline{y}_1, \underline{y}_2, \dots, \underline{y}_K$ and probabilities P(y).

Typical: K exponentially large in number N of particles and $P(\underline{y})$ significant only for an exponentially small fraction of states $(\sum_{\text{significant }\underline{y}} 1/K \to 0 \text{ and } \overline{y})$

 $\sum_{\text{significant } \underline{\underline{y}}} P(\underline{\underline{y}}) \to 1)$

Example: Boltzmann distribution

Target: Estimation of expectation values of obervables A(y)

$$\langle A \rangle := \sum_{\underline{y}} A(\underline{y}) P(\underline{y})$$
 (52)

Assumption: K very large \rightarrow impossible to enumerate all states.

Simple Sampling:

Generate M states $\{\underline{y}^i\}$ $(i=1,\ldots,M)$ randomly, with uniform probability. Then:

$$\langle A \rangle \approx \overline{A}^{(1)} := \sum_{\underline{y}^i} A(\underline{y}^i) P(\underline{y}^i) / \sum_{\underline{y}^i} P(\underline{y}^i)$$

Drawback: for almost all states $P(\underline{y}^i)$ is exponentially small $\to \overline{A}^{(1)}$ not accurate.

Importance Sampling:

Better: generate M configurations \underline{y}^i according to $P(\underline{y}^i)$. (generate most important states more often), then:

$$\langle A \rangle \approx \overline{A}^{(2)} := \sum_{\underline{y}^i} A(\underline{y}^i) / M$$
 (53)

But: usually no algorithm to generate y^i directly according to $P(\underline{y}^i)$ (distribution function cannot be obtained or inverted).

 \rightarrow

Baisc idea: states \underline{y}^i are not generated independently but by a probabilistic dynamics of states $\underline{y}(t)$ at discrete times $t=0,1,2,\ldots:\underline{y}(0)\to\underline{y}(1)\to\underline{y}(2)\to\ldots$

Assumption: states $\underline{y}(t+1)$ depend only on random numbers and on $\underline{y}(t)$. $\{y(t)|t=0,1,2,\ldots\}$ is called a *Markov chain*.

Description of transitions $\underline{y}(t) \to \underline{y}(t+1)$ by $W_{\underline{y}\underline{z}} = W(\underline{y} \to \underline{z}) = \text{probability}$ to move from state \underline{y} (at time t) to state \underline{z} (at time t+1), where $W_{\underline{y}\underline{z}}$ does not depend on time.

Which properties has $W_{\underline{y}\underline{z}}$?

The state space plus the transition probabilities is called a *Markov process*.

Example: Two state system

Two states A,B and transition probabilities $W_{AA} = 0.6$, $W_{AB} = 0.4$, $W_{BA} = 0.1$, $W_{BB} = 0.9$.

Assumption: One generates N=100 Markov chains, which all start in A: N(A/B,t)= number of chains which are in state A/B, at time step t. Let N(A,0)=100 and N(B,0)=0. How could the dynamics look like?

For (about) average values Mittelwerte: $N(A,0)W_{AB} = 100 \times 0.4 = 40$ chains move from $A \to B$, while no transitions happen $B \to A$ at t = 0. An so on. Evolution:

$$t = 0:$$
 $N(A)=100 \rightarrow N(B)=0$

$$t = 1: \quad \boxed{N(A)=60} \stackrel{\stackrel{4}{\longleftarrow}}{\xrightarrow{24}} \boxed{N(B)=40}$$

$$t = 2: \quad \boxed{\text{N(A)=40}} \xrightarrow{\frac{6}{16}} \boxed{\text{N(B)=60}}$$

$$t = 3: \quad \boxed{N(A)=30} \xrightarrow{\frac{7}{12}} \boxed{N(B)=70}$$

$$t = 4: \quad \boxed{N(A)=25} \xrightarrow{\frac{8}{10}} \boxed{N(B)=75}$$

$$t = 5: \quad \boxed{N(A)=23} \xrightarrow{\frac{8}{9}} \boxed{N(B)=77}$$

$$t = 6: \quad \boxed{N(A)=22} \xrightarrow{\frac{8}{9}} \boxed{N(B)=78}$$

$$t = 7: \quad \boxed{N(A)=21} \xrightarrow{\frac{8}{8}} \boxed{N(B)=79}$$

From now on about $N(A,t)W_{AB} = N(B,t)W_{BA}$. The transfer between states balances $\rightarrow N(A/B,t) = \text{const}$, stationary state \square

General:

Let $P(\underline{y},t) = \langle N(\underline{y},t)/N \rangle$ the probability that system at time t is in state $y(t) = \overline{y}$. Balance for state y:

Therefore ("Master Equation"):

$$\Delta P(\underline{y},t) := P(\underline{y},t+1) - P(\underline{y},t) = \sum_{\underline{z}} W_{\underline{z}\underline{y}} P(\underline{z},t) - \sum_{\underline{z}} W_{\underline{y}\underline{z}} P(\underline{y},t) \quad \forall \underline{y} \ (54)$$

Under specific conditions (in particular if there is only one eigen value $\lambda = 1$ of matrix \hat{W} ($\hat{W}_{\underline{y}\underline{z}} = W_{\underline{y}\underline{z}} - \delta_{\underline{y}\underline{z}} \sum_{z'} W_{\underline{y}\underline{z'}}$), see L. Reichel, 1998 [7]), the probability distribution \rightarrow stationary (time-independent) distribution.

$$P_{ST}(\underline{y}) := \lim_{t \to \infty} P(\underline{y}, t)$$

Independent of given initial state y(0)! System is called *ergodic*.

Example for non-ergodic system:

Target: Choose $W_{\underline{y}\underline{z}}$ such that $P_{ST} = P$

Since P(.) time-independent, from (54) with

$$0 = \Delta P(\underline{y}) = \sum_{\underline{z}} W_{\underline{z}\underline{y}} P(\underline{z}) - \sum_{\underline{z}} W_{\underline{y}\underline{z}} P(\underline{y}) \quad \forall \underline{y}$$

one has more conditions for transition probabilities.

Can be fulfilled, e.g. by

$$W_{\underline{z}\underline{y}}P(\underline{z}) - W_{\underline{y}\underline{z}}P(\underline{y}) = 0 \quad \forall \underline{y}, \underline{z}$$
 (55)

(called detailled balance).

Thus: Markov process generates state distributed according to P(.). Hence averages (53) can be obtained.

Attention: at beginning states depend on $\underline{y}(0)$ \Rightarrow states for $t < t_{equi}$ or omitted from average calculation ("equilibration").

 $\underline{y}(t+1)$ typically "similar" to $\underline{y}(t)$ \Rightarrow only distant states $y(t), y(t+\Delta t), y(t+2\Delta t), \dots$ are almost independent.

Remark: t_{equi} , Δt depend STRONGLY on model, algorithm and parameters \Rightarrow have to be determined experimentally in simulations.

VIDEO: video08c_metropolis_r

11.2 Disordered (diluted) Ferromagnet

Model:

$$\mathcal{H} = -J \sum_{\langle i,j \rangle} e_i s_i e_j s_j \quad J > 0.$$
 (56)

 $\langle i, j \rangle$: sum over interacting neighbors (e.g. next neighbours)

 $e_i = 0, 1$: site free/occupied

 $s_i = \pm 1$: spin orientation "up" / "down".

configuration: $\underline{x} = (s_1, s_2, \dots, s_N)$ (spins with $e_i = 0$ are effectively ignored)

Target: simulation in canonical ensemble:

$$P(\underline{x}) = \frac{1}{Z} \exp(-\mathcal{H}(\underline{x})/T), \qquad (57)$$

with $Z = \text{partition function } Z = \sum_{\{\underline{x}\}} \exp(-\mathcal{H}(\underline{x})/T)$.

Method: use Markov chain.

Here:

Metropolis Algorithmus defined by transition probabilities $W_{\underline{y}\underline{z}} = W(\underline{y} \to \underline{z})$.

Basic idea: (given $\underline{y} = \underline{y}(t)$)

- 1. Create test configuration \underline{z} randomly, according to $A(\underline{y} \to \underline{z})$
- 2. With probability $\tilde{W}(\underline{y} \to \underline{z})$ <u>z</u> is accepted, i.e. $\underline{y}(t+1) = \underline{z}$. $\tilde{W}(\underline{y} \to \underline{z})$ is called acceptance probability

With probability $1 - \tilde{W}(\underline{y} \to \underline{z}) \ \underline{z}$ is rejected, i.e. $\underline{y}(t+1) = \underline{y}$

 \rightarrow Full probability:

$$W(\underline{y} \to \underline{z}) = A(\underline{y} \to \underline{z})\tilde{W}(\underline{y} \to \underline{z}) \quad (\underline{y} \neq \underline{z}). \tag{58}$$

(probability that state \underline{y} remains: $W(\underline{y} \to \underline{y}) = 1 - \sum_{\underline{z} \neq \underline{y}} W(\underline{y} \to \underline{z})$).

Insert Eq. (58) into detailled balance condition

$$\frac{\tilde{W}(\underline{y} \to \underline{z})}{\tilde{W}(\underline{z} \to y)} = \frac{P(\underline{z})}{P(y)} \frac{A(\underline{z} \to \underline{y})}{A(y \to \underline{z})}.$$
 (59)

For Metropolis algorithmus [8], choice:

$$\tilde{W}(\underline{y} \to \underline{z}) = \min\left(1, \frac{P(\underline{z})}{P(y)} \frac{A(\underline{z} \to \underline{y})}{A(y \to \underline{z})}\right), \tag{60}$$

One sees easily that Eq. (59) holds.

Most simple: single-spin flip dynamics:

Let $y = (s_1, s_2, \dots, s_N)$. Choose a spin j randomly, then $\underline{z} = (s'_1, s'_2, \dots, s'_N)$ with

$$s_i' = \begin{cases} -s_i & \text{for } i = j \\ s_i & \text{else} \end{cases}$$

All spins equal likely: $A(y \to \underline{z}) = 1/N$

(better: choose among spins $e_i \neq 0$: $A(\underline{y} \to \underline{z}) = 1/(\sum_i e_i)$)

[Activator]

What is the result for the Boltzmann distribution when inserting into (Metropolis Acceptance probability)?

Acceptance probability depends only on energy change $\Delta \mathcal{H} = \mathcal{H}(\underline{z}) - \mathcal{H}(y)$ \Rightarrow easy to compute, because only neighbors N(j) of j contribute:

$$\Delta \mathcal{H} = \Delta \mathcal{H}(j) = 2J \sum_{i \in N(j)} e_i s_i e_j s_j$$

Obervation: at low temperatures, changes which increase energy are rarely accepted.

Since at most on spin flipped: algorithm is slow, configurations change globaly only on large time scales.

Slowest: Close to phase transitions. (Solution here: cluster algorithms). Summary:

```
algorithm MC Ferromagnet
begin
```

for (MC iterations)

begin

select occupied site t randomly

 $\Delta H = 0$

for(all neighbors of t)

add contribution to ΔH

flip spin with Metropolis probability (ΔH)

end

end

VIDEO: video08d_messgroessen_r.mkv

11.3 Ferromagnet: oservables

Repetition:

Average magnetisation:

$$\langle m \rangle = \frac{1}{Z} \sum_{\{\underline{s}\}} m(\underline{s}) \exp(-\beta H(\underline{s}))$$
 (61)

with $m = \sum_{i} s_i/N$, $Z = \sum_{\{\underline{s}\}} \exp(-\beta H(\underline{S}))$, $\beta = 1/k_B T$, $N = L^d$ spins. Small magnetic field $B: H_B(\underline{s}) = -\sum_{\langle i,j \rangle} s_i s_j - B \sum_i s_i \rightarrow$ [Activator]

 $\overline{\text{Calculate}} \ \frac{\partial Z}{\partial B} \big|_{B=0}$

For the suszeptibility

$$\chi \equiv \frac{\partial \langle m \rangle}{\partial B} \Big|_{B=0}
= \frac{\partial}{\partial B} \Big|_{B=0} \frac{1}{Z} \sum_{\{\underline{s}\}} m \exp(-\beta H(\underline{s}))
= -\frac{1}{Z^2} \frac{\partial Z}{\partial B} \Big|_{B=0} \sum_{\{\underline{s}\}} m \exp(-\beta H(\underline{s})) + \frac{1}{Z} \frac{\partial}{\partial B} \Big|_{B=0} \sum_{\{\underline{s}\}} m \exp(-\beta H(\underline{s}))
= -\frac{1}{Z^2} \beta N \left(\sum_{\{\underline{s}\}} m \exp(-\beta H(\underline{s})) \right)^2 + \frac{1}{Z} \beta N \sum_{\{\underline{s}\}} m^2 \exp(-\beta H(\underline{s}))
= \beta N \left(\langle m^2 \rangle - \langle m \rangle^2 \right) = \beta N \sigma^2$$
(62)

Determination of phase transition: Binder cumulant of magnetization

$$b(L,T) = 0.5 \left(3 - \frac{\langle m^4 \rangle}{\langle m^2 \rangle^2} \right) \tag{63}$$

One can show:

- b(L,T) curves for different L intersect (almost) at T_c .
- Average absolute magnetisation per spin $M \equiv \langle |m| \rangle$ behaves (theory of phase transitions):

$$M(T) \sim |T - T_c|^{\beta} \quad (T < T_c) \tag{64}$$

For finite systems

$$M(T, L) = L^{-\beta/\nu} \tilde{\xi}_1(L/\xi) = L^{-\beta/\nu} \hat{\xi}_1(L^{1/\nu}(T - T_c))$$

where ν describes the divergence of the correlation length at the critical point.