Algoritmos e Estruturas de Dados

Expressões

Python

Expressões

Uma expressão é uma combinação de elementos, que podem ser valores, variáveis, operadores e chamadas a funções. Com o uso das expressões é possível realizar cálculos que produzem novos valores, ou seja, fazem a transformação das informações.

Variáveis

Como visto anteriormente, variáveis são localizações na memória que armazenam dados.

Para associar um valor a uma variável utiliza-se o operador ← ao lado direito da variável.

Exemplo

Um exemplo de expressão é

```
soma = 5 + 4
```

em que:

- 5 e 4 são valores,
- + é um operador aritmético,
- = é o operador de atribuição, e
- soma é uma variável.

Podemos ler a expressão como "soma recebe cinco mais quatro".

A execução da expressão 5 + 4 expressão resulta no valor 9, o qual será armazenado na variável soma.

Operadores

Os operadores são utilizados para construir **expressões**, que podem conter diferentes quantidades de operandos.

Atribuição

Como dito anteriormente, a atribuição é o operador que determina a passagem de valor para uma variável. Por definição toda variável pode ser seu valor alterado, e a modificação deste valor é realizada com o operador de atribuição.

|Operador|Função| |

__

= |atribuição|

Exemplo

- lado = 8
- distancia = 49.6
- nome = "Adalberto"
- custo = 5.50

Exemplos

```
valor_i = 5+10
print(valor_i) #15
valor_i = 8-4
print(valor_i) #4
valor_i = 6*4
print(valor_i) #24
valor_i = 6*4.5
print(valor_i) #27.0
valor_i = 10/2
print(valor_i) #5.0
```

Exercícios

- Calcule a área de um quadrado de lado L. Utilize duas variáveis.
- No dia de seu aniversário, Tomás deseja saber qual e a sua idade, em dias.
 Considere que Tomás está completando X anos, e cada ano possui 365 dias.
 Utilize duas variáveis.

Relacionais

São operadores de comparação entre valores. As expressões realizadas com estes operadores retornam um resultado do tipo lógico, verdadeiro ou falso (FORBELLONE 2022, p.27).

```
print("Olá Mundo")
```

Exemplos

```
print(6>7) #False
print(6<7) #True</pre>
print(6==7) #False
print(4==4) #True
print(12>=12) #True
print(15>=12) #True
print(12>=12) #True
print(12<=12) #True</pre>
print(15<=12) #False</pre>
print(8<=12) #True</pre>
print(3!=11) #True
print(12!=12) #False
```

A conjunção corresponde ao **e** lógico. Possui resultado verdadeiro apenas quando ambas entradas forem verdadeiras, e falso para os demais casos.

Disjunção

A disjunção corresponde ao **ou** lógico. É falso apenas quando ambas as entradas são falsas. Basta apenas um dos dos operandos serem verdadeiros para resultar em verdadeiro.

Negação

A negação corresponde ao **não** lógico. Consiste na inversão lógica do valor de entrada. A negação é um operador unário, ou seja, atua sobre um único operando.

Em resumo, para os operadores lógicos temos:

|Operador|Função|

Operadores compostos

É possível combinar alguns operadores, que realizam a operação utilizando os parâmetros passados ao operador, e em seguida realiza uma atribuição utilizando a variável à esquerda dos operadores.

Operador	Função		
+=	adição e atribuição		
-=	subtração e atribuição		
*=	multiplicação e atribuição		
/=	divisão e atribuição		
//=	divisão inteira e atribuição		

mesma prioridade, a expressão será executada da esquerda para a direita. |Tipo|Símbolo| |parênteses, colchetes e chaves| () , [] , {} | |potência| ** | |positivo, negativo| +x -x ||multiplicação e divisão| * / // % | |adição e subtração| + | - | comparações in not in is is not < <= >= != == |não lógico| not | le lógico and l ou lógico or | |atribuição| = |

Adaptado de PYTHON SOFTWARE FOUNDATION. Expressions - Python 3 documentation.