

#### 1352-2310(95)00439-4

# LOW-EMITTING URBAN FORESTS: A TAXONOMIC METHODOLOGY FOR ASSIGNING ISOPRENE AND MONOTERPENE EMISSION RATES

# MICHAEL T. BENJAMIN,\* MARK SUDOL,† LAURA BLOCH‡ and ARTHUR M. WINER§

Environmental Science and Engineering Program, School of Public Health, University of California, Los Angeles, CA 90095-1772, U.S.A.

(First received 27 October 1994 and in final form 28 September 1995)

Abstract—Large-scale tree planting programs have been proposed, and are being implemented, as a means of reducing energy demand, mitigating urban heat islands, and improving air quality. However, many species of trees emit highly photochemically reactive hydrocarbons and the rates of such emissions can vary by four orders of magnitude, depending upon the tree species. Thus, planting of high-emitting trees species on a massive scale has the potential to adversely affect air quality rather than leading to improvement. However, the selection of low-emitting trees is difficult because emission rates have been experimentally determined for only a limited number of species. The present study describes a methodology for assigning biogenic emission rates based on taxonomic relationships. Using this methodology, direct emission measurements from 124 tree and shrub species found in the California South Coast Air Basin (SoCAB) are used to assign emission rates to 253 other species found in the SoCAB but for which there are no measured emission rates. The combined listing of 377 species is ranked according to total (isoprene and monoterpenes) biogenic emission rate on an hourly basis. Although the ranking of trees developed here is specific to Southern California, the methodology described can be applied to other geographic areas to assist in the planting of low-emitting urban forests.

Key word index: Biogenic hydrocarbons, isoprene, monoterpenes, biogenic emission rates, taxonomic methodology, urban forests.

# INTRODUCTION

Widespread planting of trees and shrubs in urban areas improves air quality directly by shading buildings, thus reducing cooling demand and powerplant emissions of oxides of nitrogen (NO<sub>x</sub>). Properly located trees and shrubs have been found to reduce air conditioning electricity use by as much as 50% (Parker, 1981). In addition, increasing the size of the urban forest provides for enhanced surface deposition area for removal of labile gaseous air pollutants such as ozone, peroxyacetylnitrate (PAN), and nitric acid

There are also a number of indirect benefits from large-scale tree planting programs. For example, increased evapotranspiration from additional trees decreases ambient air temperature, reducing cooling demand and hence powerplant emissions. Reduced air temperature also results in lower rates of emission of volatile organic compounds (VOCs) from liquid fuels (e.g. gasoline) employed in mobile sources, as well as solvents and coatings used in a wide range of stationary sources.

A number of cities throughout the world have implemented large-scale tree planting programs in an effort to reduce the "urban heat island effect" (Landsberg, 1981; Lowry, 1967). Average summer temperatures in Nanjing, China, dropped 3°C following the planting of 34 million trees in the late 1940s (EPA, 1992). In Stuttgart, Germany, fingers of open space extending into the city are being planted with trees to convey cool night air into downtown areas and to

 $<sup>(</sup>HNO_3)$ , as well as fine particulates. As an example, it has been estimated that planting 500,000 trees in Tucson would reduce airborne particulates by  $6500 \, t \, yr^{-1}$  (McPherson, 1991).

<sup>\*</sup> Present address: California Air Resources Board, Analysis Section, 9528 Telstar Ave., El Monte, CA 91731, U.S.A.

<sup>†</sup> Present address: U.S. Army Corps of Engineers, Regulatory Branch M/C CESPL-CO-R, P.O. Box 2711, Los Angeles, CA 90053-2325, U.S.A.

<sup>‡</sup> Present address: U.S. Environmental Protection Agency, Hazardous Waste Management Division, 751 Hawthorne St H-1B, San Francisco, CA 94105, U.S.A.

<sup>§</sup>To whom correspondence should be addressed.

help reduce daytime temperatures (EPA, 1992). In the United States, the Sacramento Municipal Utility District, in cooperation with the Sacramento Tree Foundation, has planted more than 50,000 trees to date, with the goal of planting 500,000 new shade trees by the year 2000 (Ashizawa, 1992). Trees for Tucson/Global Releaf has proposed planting 500,000 desert-adapted trees throughout the city by 1996 as a means of conserving energy and improving environmental quality (McPherson, 1992). In the Los Angeles Basin, where average temperatures have increased 3°C since 1940 (EPA, 1992), there have been suggestions to plant as many as 5 million trees (Trees, 1993).

However, against the numerous benefits cited earlier, and the additional benefit of sequestering carbon dioxide, there is a potential air quality liability associated with the addition of large numbers of trees to polluted urban airsheds. Following initial recognition (Went, 1960; Rasmussen, 1972; Westberg and Rasmussen, 1972) that hydrocarbons are emitted by vegetation, it is now well established (Zimmerman, 1979a; Tingey et al., 1979, 1980; Evans et al., 1982; Lamb et al., 1985, 1986, 1987, 1993; Winer et al., 1983, 1989, 1992; Corchnoy et al., 1992) that many species of vegetation, including coniferous and deciduous trees, emit volatile organic compounds (VOCs) which react with anthropogenic oxides of nitrogen (NO<sub>x</sub>) in a complex series of photochemical reactions to produce ozone.

Prior to a seminal modeling study conducted by Chameides and co-workers (1988), it had been assumed that the effects of biogenic hydrocarbon emissions in major urban areas were minimal or negligible when compared to anthropogenic hydrocarbons. However, the high reactivity of biogenic hydrocarbons, estimated to be 2-3 times that of a weighted average of hydrocarbons from gasoline combustion (Carter, 1994), increases their relative contribution to the formation of ozone and other secondary pollutants. The Chameides et al. (1988) study determined that even if all anthropogenic hydrocarbon emissions were eliminated from the Atlanta atmosphere, the flux and high photochemical reactivity of biogenic hydrocarbons (as well as the presence of anthropogenic NO<sub>x</sub>) were sufficient to make attainment of the National Ambient Air Quality Standard for ozone (0.12 ppmv) in Atlanta difficult, if not impossible.

Biogenic emission rates are species-specific, varying by as much as four orders of magnitude depending upon the plant species. This wide range of emission rates makes the selection of low-emitting tree and shrub species critical in polluted urban airsheds where large-scale tree planting programs are being considered. However, the selection of low-emitting tree and shrub species is difficult since emission rates have been experimentally measured for only a limited number of plant species and this situation is unlikely to change in the near future due to the magnitude of resources required to make such measurements. In order to obtain a ranking of candidate tree species by

biogenic emission rate, it is therefore necessary to explore various methods for assigning rates to those species for which no experimental data are available.

In this paper we propose a taxonomic methodology which can be used to assign total hourly (isoprene and monoterpene) biogenic emission rates to tree and shrub species for which there are no measured emission rates. While explicitly identifying the uncertainties and limitations inherent in this method, we believe it can assist in the selection of tree and shrub species suitable for planting in polluted urban airsheds, and aid in the development of more reliable biogenic hydrocarbon emission inventories for airsheds containing these species, until such time as direct experimental measurement data become available

#### BIOGENIC HYDROCARBONS

The concept that emissions from vegetation could have a negative impact on air quality was first proposed by Went (1960) to explain the "Blue Haze" that was known to occur in unpopulated, supposedly pristine, wooded areas during late summer afternoons. Recognition that these biogenic hydrocarbons might also be contributing to urban air pollution stimulated further research. Early work identified isoprene and various monoterpenes as the predominant chemical species emitted by vegetation (Rasmussen, 1972), but recent studies have identified more than 70 hydrocarbons, including isoprene, mono- and sesquiterpenes, and a substantial number of oxygenated organics, as being emitted from ornamental, agricultural and natural plant species (Isidorov et al., 1985; Winer et al., 1992). Over the past two decades, however, relatively few studies have directly measured the emission rates of hydrocarbons from vegetation. The majority of those which have been conducted to date, and the measurement techniques employed, are summarized in Table 1.

The mechanisms governing the synthesis of biogenic hydrocarbons, such as isoprene and the monoterpenes, form the basis for the development of a methodology for the taxonomic assignment of biogenic hydrocarbon emission rates. The biosynthetic pathways involved in the synthesis of the more common monoterpenes are fairly well understood (Croteau, 1987; Tingey et al., 1991); however, the synthesis of isoprene has not been fully elucidated and a detailed discussion is beyond the scope of this paper (Loreto and Sharkey, 1990; Monson et al., 1991a, b, 1992; Sharkey et al., 1991; Sharkey and Singsaas, 1995).

There is no clear consensus as to the purpose of hydrocarbon production and emission by vegetation; various hypotheses suggest that different plant species may produce biogenic hydrocarbons for different reasons, depending upon their environment and the particular type of hydrocarbon produced. It has been

Table 1. Chronological listing of studies used in compiling the present database of biogenic hydrocarbon emission rates

| Investigator                | Predominant technique             | Predominant plant species        |
|-----------------------------|-----------------------------------|----------------------------------|
| Flyckt (1979)               | Enclosure                         | Oak                              |
| Zimmerman (1979b)           | Enclosure                         | Southern Forest variety          |
| Tingey et al. (1979, 1980)  | Laboratory chamber                | Live Oak, Slash Pine             |
| Evans et al. (1982)         | Total enclosure                   | Crops, shrubs, herbs, trees      |
| Cronn and Nutmagul (1982)   | Enclosure                         | Tropical shrubs and trees        |
| Winer et al. (1983)         | Enclosure                         | Natural and ornamental species   |
| Yokouchi and Ambe (1984)    | Chamber                           | Red Pine                         |
| Isidorov et al. (1985)      | Branch enclosure                  | Oaks and pines                   |
| Lamb et al. (1983, 1985)    | Enclosure and micrometeorological | Deciduous forest, Douglas Fir    |
| Lamb et al. (1986)          | Tracer flux and branch enclosure  | Oregon White Oak                 |
| Winer et al. (1989, 1992)   | Enclosure                         | Agricultural and natural species |
| Corchnoy et al. (1992)      | Enclosure                         | Potential shade trees            |
| Janson (1993)               | Enclosure                         | Scots Pine, Norwegian Spruce     |
| Tanner and Zielinska (1994) | Enclosure                         | Oak and pine                     |
| Arey et al. (1995)          | Enclosure                         | Native species                   |

hypothesized that plants tend to produce biogenic hydrocarbons because these emissions protect the plant from photosynthetic damage but are not attractive to herbivores due to their inherent toxicity (Mooney, 1972; Ross and Sombrero, 1991). In support of this hypothesis, it has been found that a large percentage of plant species in Mediterranean ecosystems emit hydrocarbons (Ross and Sombrero, 1991). However, there is growing evidence that plants may produce monoterpenes for other reasons, including as a defense against plant pathogens (Harborne, 1988; Walter et al., 1989). The function of isoprene within plant tissues remains uncertain, although it is known that between 0.5 and 8% of the carbon fixed through photosynthesis (Tingey et al., 1979; Monson and Fall, 1991) is in the form of isoprene. Recently, Sharkey and Singsaas (1995) have suggested that production of isoprene during photosynthetic activity occurs in order to increase the thermal tolerance of plants.

Although there remains a lack of comprehensive knowledge concerning the exact function of biogenic hydrocarbons, their distribution in plant tissues, and their emission pathways, various researchers (e.g. Seigler, 1981; Croteau, 1987) have found that biogenic hydrocarbons are emitted only by certain plant families. For example, of the approximately 400 families of flowering plants (Cronquist, 1988), only about 50 plant families produce significant quantities of monoterpenes. Findings such as these (Seigler, 1981; Charlwood and Charlwood, 1991) are the basis for the taxonomic assignment of emission rates presented in this paper.

# METHODOLOGY

In the present study, average isoprene and total monoterpene emission rates for 124 species experimentally measured in previous studies (Table 1) were compiled into a single database, grouped alphabetically by plant family (Table 2). Total non-methane hydrocarbon (TNMHC) emission rates are not included in this database because only a few of the emission surveys conducted to date quantified emission rates of TNMHCs (Zimmermann, 1979b; Winer et al., 1989, 1992; Arey et al., 1995). Although these studies indicate that NMHCs other than isoprene and monoterpenes may account for approximately 15% of the total biogenic emissions from vegetation, the amount of information concerning these NMHCs is too limited to permit assignment of NMHC emission rates for unmeasured plant species.

#### Normalization of reported emission rates

Experimental studies (Tingey et al., 1979; Juuti et al., 1990; Guenther et al., 1991; Monson and Fall, 1991) have found that biogenic emission rates vary as a function of temperature, photosynthetically active radiation (PAR) levels, humidity, and CO<sub>2</sub> concentration. Correction algorithms (Tingey et al., 1979; Guenther et al., 1991, 1993) which model the effect of these environmental factors on biogenic emissions indicate that isoprene emissions increase with increasing PAR levels and temperature (up to a certain critical temperature) while monoterpene emissions increase solely as a function of increasing temperature.

Emission rates included in the database (Table 2) were measured at temperatures between 10 and 45°C and PAR levels between approximately 100 and 2000  $\mu E \, m^{-2} \, s^{-1}$ . To permit comparison of the compiled emission rates, reported isoprene and monoterpene emission rates were normalized to 30°C and a light intensity level of 1000  $\mu E \, m^{-2} \, s^{-1}$ , using the correction algorithms developed by Guenther et al. (1993). These correction algorithms were selected because they better represent isoprene and monoterpene emissions at higher temperatures and light intensities. When possible, reported PAR levels were used in normalizing emission rates. Light intensities qualitatively reported as "full", "partial", or "none" sunlight exposure were assumed to be equivalent to PAR levels of 1500, 1000, and 500  $\mu E \, m^{-2} \, s^{-1}$ , respectively. For those published emission rates for which light intensities were not reported, PAR levels were assumed to be  $1000 \, \mu E \, m^{-2} \, s^{-1}$ .

#### Taxonomic assignment of hourly emission rates

Based on phytochemical research (Seigler, 1981; Croteau, 1987; Charlwood and Charlwood, 1991) indicating biogenic hydrocarbons are emitted only by certain plant families,

Table 2. Tree and shrub species with measured isoprene and monoterpene emissions, listed in alphabetical order by taxonomy (family, genus species)

|                |                           |                      | Isoprene m   | onoterpenes                            | _                           |
|----------------|---------------------------|----------------------|--------------|----------------------------------------|-----------------------------|
| Family         | Botanical name            | Common name          | (μg(g dry le | af wt) <sup>-1</sup> h <sup>-1</sup> ) | Reference                   |
| Aceraceae      | Acer floridanum           | Silver Maple         | BDL          | 2.0                                    | Winer et al. (1983)         |
|                | Acer rubrum               | Red Maple            | NED          | 3.5                                    | Zimmerman (1979)            |
|                | Acer saccharinum          | Silver Maple         | NED          | 2.2                                    | Evans et al. (1982)         |
|                | Acer saccharinum          | Silver Maple         | NR           | 3.5                                    | Lamb et al. (1983)          |
| nacardiaceae   | Pistacia vera             | Kerman Pistachio     | NED          | 9.0                                    | Winer et al. (1992)         |
|                | Rhus ovata                | Sugarbush            | BDL          | BDL                                    | Winer et al. (1983)         |
|                | Schinus molle             | California Pepper    | NED          | 3.7                                    | Corchnoy et al. (1992)      |
|                | Schinus molle             | California Pepper    | NED          | NED                                    | Winer et al. (1983)         |
|                | Schinus terebinthifolius  | Brazilian Pepper     | NED          | 1.3                                    | Corchnoy et al. (1992)      |
|                | Schinus terebinthifolius  | Brazilian Pepper     | BDL          | 10.4                                   | Winer et al. (1983)         |
| pocynaceae     | Carissa macrocarpa        | Natal Plum           | BDL          | BDL                                    | Winer et al. (1983)         |
|                | Nerium oleander           | Oleander             | BDL          | BDL                                    | Winer et al. (1983)         |
|                | Nerium oleander           | Oleander             | NED          | NED                                    | Zimmerman (1979)            |
| quifoliaceae   | Ilex cassine              | Dahoon Holly         | NED          | NED                                    | Zimmerman (1979)            |
| recaceae       | Elaeis guineensis         | Palm Oil Tree        | 172.9        | NR                                     | Cronn and Nutmagul (1982    |
|                | Phoenix dactylifera       | Date Palm            | 15.8         | BDL                                    | Winer et al. (1983)         |
|                | Sabel palmetto            | Sabel Palmetto       | 4.7          | 0.4                                    | Zimmerman (1979)            |
|                | Serenoa repens            | Saw Palmetto         | 8.9          | BDL                                    | Zimmerman (1979)            |
|                | W ashingtonia filifera    | California Fan Palm  | 9.9          | BDL                                    | Winer et al. (1983)         |
|                | X ylosma congestum        | Shiny Xylosma        | 6.8          | BDL                                    | Winer et al. (1983)         |
| Berberidaceae  | Nandina domestica         | Heavenly Bamboo      | 25.1         | BDL                                    | Winer et al. (1983)         |
| lignoniaceae   | Jacaranda mimosifolia     | Jacaranda            | NR           | BDL                                    | Corchnoy et al. (1992)      |
| -              | Jacaranda mimosifolia     | Jacaranda            | NED          | NED                                    | Winer et al. (1983)         |
|                | Tecomaria capensis        | Cape-Honeysuckle     | BDL          | BDL                                    | Winer et al. (1983)         |
|                | Trichostema lanatum       | Woolly Blue Curls    | 0.0          | 17.7                                   | Winer et al. (1983)         |
| aprifoliaceae  | Sambucus simponii         | Elderberry           | NED          | BDL                                    | Zimmerman (1979)            |
| •              | Viburnum rufidulum        | Viburnum             | NED          | 0.2                                    | Zimmerman (1979)            |
| Compositae     | Artemisia californica     | California Sagebrush | 0.0          | 47.0                                   | Arey et al. (1995)          |
| -              | Artemisia californica     | California Sagebrush | BDL          | 9.6                                    | Winer et al. (1983)         |
| upressaceae    | Cupressus forbesii        | Tecate Cypress       | 0.0          | 1.7                                    | Arey et al. (1995)          |
| -              | Cupressus sempervirens    | Italian Cypress      | 0.0          | 0.1                                    | Winer et al. (1983)         |
|                | Juniperus chinensis       | Chinese Juniper      | 0.0          | 0.6                                    | Winer et al. (1983)         |
| ricaceae       | Arctostaphylos glandulosa | Peninsular Manzanita | NED          | NED                                    | Arey et al. (1995)          |
|                | Arctostaphylos glauca     | Bigberry Manzanita   | BDL          | BDL                                    | Winer et al. (1983)         |
| uphorbiaceae   | Hevea brasiliensis        | Rubber Tree          | 7.5          | 0.5                                    | Cronn and Nutmagul (1982)   |
| •              | Macaraunga triloba        | Macauranga           | 45.3         | 0.7                                    | Cronn and Nutmagul (1982)   |
|                | Mallotus paniculatis      | Mallotus             | NR           | 0.8                                    | Cronn and Nutmagul (1982)   |
| agaceae        | Quercus agrifolia         | Coast Live Oak       | 35.3         | BDL                                    | Winer et al. (1983)         |
| · ·            | Quercus alba              | White Oak            | 7.8          | 1.5                                    | Lamb et al. (1983)          |
|                | Quercus borealis          | Red Oak              | 19.7         | 0.0                                    | Evans et al. (1982)         |
|                | Quercus borealis          | Red Oak              | 40.4         | NR                                     | Flyckt (1979)               |
|                | Quercus coccinea          | Scarlet Oak          | 20.1         | 3.2                                    | Lamb et al. (1983)          |
|                | Quercus douglasii         | Blue Oak             | 8.7          | 0.0                                    | Tanner and Zielinska (1994) |
|                | Quercus dumosa            | California Scrub Oak | 5.2          | 0.0                                    | Arey et al. (1995)          |
|                | Ouercus dumosa            | California Scrub Oak | 54.4         | BDL                                    | Winer et al. (1983)         |
|                | Quercus garryana          | Oregon White Oak     | 59.2         | NR                                     | Lamb et al. (1986)          |
|                | Quercus incana            | Bluejack Oak         | 45.6         | 0.2                                    | Zimmerman (1979)            |
|                | Quercus laevis            | Scrub Oak            | 24.3         | 0.8                                    | Zimmerman (1979)            |
|                | Quercus laurifolia        | Diamond Leaf Oak     | 10.4         | 0.2                                    | Zimmerman (1979)            |
|                | Quercus lobata            | Valley Oak           | 3.4          | 0.0                                    | Winer et al. (1992)         |
|                | Quercus myrtifolia        | Myrtle Oak           | 15.2         | 0.2                                    | Zimmerman (1979)            |
|                | Quercus nigra             | Water Oak            | 24.6         | BDL                                    | Zimmerman (1979)            |
|                | Quercus phellos           | Willow Oak           | 32.2         | NED                                    | Zimmerman (1979)            |
|                | Quercus prinus            | Chestnut Oak         | 6.5          | 1.5                                    | Lamb et al. (1983)          |
|                | Ouercus robur             | European Oak         | 76.6         | NR                                     | Isidorov et al. (1985)      |
|                | Quercus rubra             | Northern Red Oak     | 14.8         | 1.8                                    | Lamb et al. (1983)          |
|                | Quercus velutina          | Black Oak            | 18.9         | 1.0                                    | Lamb et al. (1983)          |
|                | Ouercus virginiana        | Virginia Live Oak    | 30.9         | NR                                     | Tingey et al. (1979)        |
|                | Quercus virginiana        | Virginia Live Oak    | 9.5          | 0.3                                    | Zimmerman (1979)            |
|                | Quercus wislizenii        | Interior Live Oak    | 12.5         | 0.0                                    | Arey et al. (1995)          |
| inkgoaceae     | Ginkgo biloba             | Ginkgo               | NED          | 3.0                                    | Corchnoy et al. (1992)      |
| lamamelidaceae | Liquidambar styraciflua   | Liquidambar          | 35.3         | 3.0                                    | Corchnoy et al. (1992)      |
|                | Liquidambar styraciflua   | Liquidambar          | 17.8         | 2.9                                    | Evans et al. (1982)         |
|                | Liquidambar styraciflua   | Liquidambar          | 3.5          | 51.5                                   | Zimmerman (1979)            |
| uglandaceae    | Carya aquatica            | Water Hickory        | NED          | 0.7                                    | Zimmerman (1979)            |
| -bianateac     | Juglans regia             | English Walnut       | NED<br>NED   | 1.8                                    |                             |
| amiaceac       |                           |                      |              |                                        | Winer et al. (1992)         |
| amiaceae       | Salvia mellifera          | Black Sage           | 0.0          | 5.0                                    | Arey et al. (1995)          |
| 011100000      | Salvia mellifera          | Black Sage           | BDL          | 11.7                                   | Winer et al. (1983)         |
| auraceae       | Cinnamomum camphora       | Camphor              | NED          | 0.0                                    | Corchnoy et al. (1992)      |
|                | Cinnamomum camphora       | Camphor              | NED          | 0.0                                    | Winer et al. (1983)         |
|                | Persea americana          | Avocado              | BDL          | BDL                                    | Winer et al. (1983)         |
|                | Persea borbonia           | Red Bay              | NED          | 1.2                                    | Zimmerman (1979)            |

Table 2. (Continued)

|                |                                  |                      | Isoprene m    | onoterpenes                            |                             |
|----------------|----------------------------------|----------------------|---------------|----------------------------------------|-----------------------------|
| Family         | Botanical name                   | Common name          | (μg(g dry lea | af wt) <sup>-1</sup> h <sup>-1</sup> ) | Reference                   |
| Leguminosae    | Acacia farnesiana                | Sweet Acacia         | NED           | 4.7                                    | Zimmerman (1979)            |
| •              | Cercis canadensis                | Redbud               | 0.0           | NED                                    | Evans et al. (1982)         |
|                | Glycine max                      |                      | 0.0           | 0.0                                    | Evans et al. (1982)         |
|                | Pueraria lobata                  |                      | 9.6           | 0.0                                    | Evans et al. (1982)         |
|                | Robinia pseudoacacia             | Black Locust         | 13.5          | 4.7                                    | Lamb et al. (1983)          |
|                | Robinia pseudoacacia             | Black Locust         | 10.1          | 0.0                                    | Winer et al. (1983)         |
| _ythraceae     | Lagerstroemia indica             | Crape Myrtle         | NED           | NED                                    | Corchnoy et al. (1992)      |
| •              | Lagerstroemia indica             | Crape Myrtle         | NED           | NED                                    | Winer et al. (1983)         |
| Magnoliaceae   | Liriodendron tulipifera          | Tulip Tree           | 4.1           | NR                                     | Lamb et al. (1983)          |
| · ·            | Magnolia grandiflora             | Magnolia             | BDL           | 5.9                                    | Winer et al. (1983)         |
| Moraceae       | Ficus fistulosa                  | Fig                  | 27.0          | 0.2                                    | Cronn and Nutmagul (1982)   |
|                | Morus rubra                      | Red Mulberry         | NED           | 1.6                                    | Zimmerman (1979)            |
| Myrtaceae      | Callistemon citrinus             | Bottlebrush          | 16.0          | BDL                                    | Winer et al. (1983)         |
| •              | Eucalyptus globulus              | Blue Gum Eucalyptus  | 57.0          | 9.2                                    | Evans et al. (1982)         |
|                | Eucalyptus viminalis             | Ribbon Gum           | 8.0           | BDL                                    | Winer et al. (1983)         |
|                | Eugenia grandis                  | Eugenia              | 12.1          | NR                                     | Cronn and Nutmagul (1982)   |
|                | Myrtica cerifera                 | Wax Myrtle           | NED           | 1.1                                    | Zimmerman (1979)            |
|                | Myrtus communis                  | Common Myrtle        | 34.0          | BDL                                    | Winer et al. (1983)         |
| Oleaceae       | Fraxinus caroliniana             | Carolina Ash         | NED           | NED                                    | Zimmerman (1979)            |
| Jicaccac       | Fraxinus uhdei                   | Evergreen Ash        | BDL           | BDL                                    | Winer et al. (1983)         |
|                | Ligustrum lucidum                |                      | BDL           | BDL                                    | Winer et al. (1983)         |
|                | v                                | Glossy Privet        | BDL<br>BDL    |                                        | . ,                         |
|                | Olea europaea                    | Olive<br>Olive       | NED           | 0.5<br>0.1                             | Winer et al. (1983)         |
| N              | Olea europaea                    |                      |               |                                        | Winer et al. (1992)         |
| Pinaceae       | Cedrus deodara                   | Deodar Cedar         | NED           | 0.3                                    | Corchnoy et al. (1992)      |
|                | Cedrus deodara                   | Deodar Cedar         | BDL           | 0.9                                    | Winer et al. (1983)         |
|                | Picea abies                      | Norwegian Spruce     | NR            | 1.2                                    | Janson (1993)               |
|                | Picea engelmannii                | Engelmann Spruce     | 16.3          | 3.4                                    | Evans et al. (1982)         |
|                | Picea sitchensis                 | Sitka Spruce         | 4.0           | 1.1                                    | Evans et al. (1982)         |
|                | Pinus canariensis                | Canary Island Pine   | NED           | 1.7                                    | Corchnoy et al. (1992)      |
|                | Pinus canariensis                | Canary Island Pine   | BDL           | 2.6                                    | Winer et al. (1983)         |
|                | Pinus clausa                     | Sand Pine            | NED           | 11.5                                   | Zimmerman (1979)            |
|                | Pinus densiflora                 | Red Pine             | NR            | 0.2                                    | Yokouchi and Ambe (1984)    |
|                | Pinus ellotii                    | Slash Pine           | NED           | 6.9                                    | Evans et al. (1982)         |
|                | Pinus ellotii                    | Slash Pine           | NED           | 6.2                                    | Tingey et al. (1979)        |
|                | Pinus ellotii                    | Slash Pine           | NED           | 5.0                                    | Tingey et al. (1980)        |
|                | Pinus ellotii                    | Slash Pine           | NED           | 3.2                                    | Zimmerman (1979)            |
|                | Pinus halepensis                 | Aleppo Pine          | NR            | 0.2                                    | Corchnoy et al. (1992)      |
|                | Pinus halepensis                 | Aleppo Pine          | BDL           | 0.5                                    | Winer et al. (1983)         |
|                | Pinus palustris                  | Longleaf Pine        | NED           | 5.9                                    | Zimmerman (1979)            |
|                | Pinus pinea                      | Italian Stone Pine   | NED           | 0.4                                    | Corchnoy et al. (1992)      |
|                | Pinus pinea                      | Italian Stone Pine   | BDL           | BDL                                    | Winer et al. (1983)         |
|                | Pinus radiata                    | Monterey Pine        | NED           | 0.9                                    | Corchnoy et al. (1992)      |
|                | Pinus radiata                    | Monterey Pine        | BDL           | 0.7                                    | Winer et al. (1983)         |
|                | Pinus sabiniana                  | Foothill Pine        | NED           | 0.6                                    | Tanner and Zielinska (1994) |
|                | Pinus sylvestris                 | Scots Pine           | NED           | 12.1                                   | Isidorov et al. (1985)      |
|                | Pinus sylvestris                 | Scots Pine           | NR            | 0.8                                    |                             |
|                |                                  |                      |               | 5.1                                    | Janson (1993)               |
|                | Pinus taeda                      | Loblolly Pine        | NR<br>00      |                                        | Lamb et al. (1985)          |
| N:44           | Pseudotsuga macrocarpa           | Bigcone Douglas Fir  | 0.0           | 1.1                                    | Arey et al. (1995)          |
| Pittosporaceae | Pittosporum tobira               | Japanese Pittosporum | BDL           | BDL                                    | Winer et al. (1983)         |
|                | Pittosporum undulatum            | Victorian Box        | BDL           | BDL                                    | Winer et al. (1983)         |
| Platanaceae    | Platanus occidentalis            | American Sycamore    | 27.5          | NED                                    | Evans et al. (1982)         |
|                | Platanus racemosa                | Western Sycamore     | 10.9          | BDL                                    | Winer et al. (1983)         |
| odocarpaceae   | Podocarpus gracilior             | Fern Pine            | BDL           | BDL                                    | Winer et al. (1983)         |
| Polygonaceae   | Eriogonum fasciculatum           | California Buckwheat | BDL           | BDL                                    | Winer et al. (1983)         |
| Polypodiaceae  | Thelypteris decursive-pinnata    |                      | 24.5          | 0.0                                    | Evans et al. (1982)         |
| Rhamnaceae     | Ceanothus crassifolius           | Hoaryleaf Ceanothus  | BDL           | BDL                                    | Winer et al. (1983)         |
|                | Ceanothus leucodermis            | Chaparral Whitehorn  | NED           | 5.4                                    | Winer et al. (1992)         |
|                | Ceanothus spinosus               | Greenbark            | 0.0           | 1.8                                    | Arey et al. (1995)          |
|                | Rhamnus californica              | Coffeeberry          | 29.3          | NED                                    | Evans et al. (1982)         |
|                | Rhamnus crocea                   | Redberry             | 54.4          | BDL                                    | Winer et al. (1983)         |
| Rosaceae       | Adenostoma fasciculatum          | Chamise              | NED           | NED                                    | Arey et al. (1995)          |
|                | Adenostoma fasciculatum          | Chamise              | NED           | NED                                    | Winer et al. (1983)         |
|                | Adenostoma fasciculatum          | Chamise              | NED           | 0.4                                    | Winer et al. (1992)         |
|                | Cercocarpus betuloides           | Mountain Mahogany    | NED           | NED                                    | Arey et al. (1995)          |
|                | Cotoneaster pannosus             | Cotoneaster          | BDL           | BDL                                    | Winer et al. (1992)         |
|                | Prunus armeniaca                 | Blenheim Apricot     | NED           | 0.1                                    | Winer et al. (1992)         |
|                | Prunus armeniaca Prunus avium    | Bing Cherry          | NED           | 0.1                                    | Winer et al. (1992)         |
|                | Prunus avium<br>Prunus domestica | Santa Rosa Plum      | NED<br>NED    | 0.1                                    |                             |
|                |                                  |                      |               |                                        | Winer et al. (1992)         |
|                | Prunus dulcis                    | Nonpareil Almond     | NED           | 0.0                                    | Winer et al. (1992)         |
|                | Prunus persica                   | Halford Peach        | NED           | 0.1                                    | Winer et al. (1992)         |
|                | Pyrus kawakamii                  | Evergreen Pear       | BDL           | BDL                                    | Winer et al. (1983)         |
| _              | Rhaphiolepis indica              | India Hawthorne      | BDL           | BDL                                    | Winer et al. (1983)         |
| Rutaceae       | Citrus limon                     | Lisbon Lemon         | NED           | 3.2                                    | Winer et al. (1989)         |
|                | Citrus limon 'Meyer'             | Meyer Lemon          | BDL           | BDL                                    | Winer et al. (1983)         |
|                | Citrus sinensis                  | Navel Orange         | NED           | 1.8                                    | Winer et al. (1992)         |
|                | Citrus sinensis 'Valencia'       | Valencia Orange      | NED           | 0.9                                    | Winer et al. (1992)         |

Table 2. (Continued)

|             |                           |                    | Isoprene n   | nonoterpenes       |                        |
|-------------|---------------------------|--------------------|--------------|--------------------|------------------------|
| Family      | Botanical name            | Common name        | (μg(g dry le | eaf wt) - 1 h - 1) | Reference              |
| Salicaceae  | Populus deltoides         | Eastern Cottonwood | 37.0         | NED                | Evans et al. (1982)    |
|             | Populus tremuloides       | Quaking Aspen      | 50.2         | NED                | Evans et al. (1982)    |
|             | Salix babylonica          | Weeping Willow     | 115.0        | NED                | Winer et al. (1983)    |
|             | Salix caroliniana         | Coast Plain Willow | 12.5         | BDL                | Zimmerman (1979)       |
|             | Salix nigra               | Black Willow       | 25.2         | NED                | Evans et al. (1982)    |
| Sapindaceae | Cupaniopsis anacardioides | Carrotwood         | 50.9         | NED                | Corchnoy et al. (1992) |
| Taxodiaceae | Taxodium sp.              | Cypress            | NED          | 8.5                | Zimmerman (1979)       |
| Ulmaceae    | Ulmus americana           | American Elm       | BDL          | BDL                | Winer et al. (1983)    |
|             | Ulmus americana           | American Elm       | NED          | NED                | Zimmerman (1979)       |
|             | Ulmus parvifolia          | Chinese Elm        | BDL          | BDL                | Winer et al. (1983)    |

All emissions, expressed in  $\mu g(g \text{ dry leafwt})^{-1} h^{-1}$ , normalized at 30°C using Guenther et al. (1993) algorithms. NR = not reported; BDL = below detection limit; NED = no emissions detected.

several researchers (Horie et al., 1990; Sidawi and Horie, 1992; Sudol and Winer, 1992; Tanner et al., 1992) have employed a taxonomic methodology for assigning emission rates to species for which no measurements exist. The basic premise of this approach is that, within broad qualitative ranges, taxonomic relationships between plant species at the lowest possible level (i.e. genus, then family level) can be used to assign measured emission rates to other species within that level for which no measurements exist.

In the present study, the taxonomic method was applied to the compilation of measured emission rates for 124 tree and shrub species (Table 2) in order to assign emission rates to 253 other species which might be considered for planting in the SoCAB. The resulting database of emission rates for 377 tree and shrub species was then grouped into genus and family clusters. Since detection limits were not reported in all of the previous studies, emission rates shown in Table 2 as "BDL" (below detection limit) or "NED" (no emissions detected) were assumed to be zero, while emission rates shown as "NR" (not reported) were assumed to be missing and therefore not used in assigning emission rates. For those plant species for which emission rates were reported by multiple investigators, mean emission rates were calculated.

The taxonomic methodology used in assigning isoprene and monoterpene emissions values is summarized in Fig. 1. For those species for which direct measurements were reported, the individual or mean (if more than one measurement was available) emission rate for that species was assumed. If direct measurements were not available for a species but were reported for other species within the same genus, the mean value for that genus was assigned to the unmeasured species. If no measurements were reported for any of the species within the genus, but direct measurements for other species within the family were available, then the mean emission rate for the family was assigned to the unmeasured species. Finally, for those species for which no measurements were reported for any other species within the family, emission rates were not assigned.

# RESULTS AND DISCUSSION

# Ranking of species

As shown in Fig. 1, direct measurements accounted for 33% of the emission rates in the combined database (124/377). Genus relationships were used in assigning 30% of the emission rates (114/377) while family relationships accounted for 21% (79/377) of the emission rates. The remaining 16% (62/377) of the species were not assigned emission rates

because there were no direct measurements made within their families.

The resulting database of emission rates for 377 tree and shrub species (Table 3) was ranked by the sum of the hourly emission rates of isoprene and monoterpenes, expressed as  $\mu$ g emissions (g dry leaf wt)<sup>-1</sup> h<sup>-1</sup>. A plot of the cumulative fraction of species vs total emission rate (Fig. 2) shows that emission rates for the 316 species for which emission rates could be assigned vary by approximately four orders of magnitude. In addition, emission rates for the species examined are skewed towards low and moderate emitters. In Fig. 2, a detection limit of 0.01  $\mu$ g (g dry leaf wt)<sup>-1</sup> h<sup>-1</sup> was assumed for species reported in Table 3 as having zero emissions.

Based upon the distribution of emission rates shown in Fig. 2, the 316 tree and shrub species for which emission rates were measured or could be assigned were classified as being "low-", "moderate-", and "high-emitters". For practical purposes, "low-", "moderate-", and "high-emitters" were defined as those species emitting less than  $1 \mu g$  total emissions (g dry leaf wt)<sup>-1</sup> h<sup>-1</sup>, between 1-10  $\mu$ g total emissions (g dry leaf wt)<sup>-1</sup> h<sup>-1</sup>, and greater than  $10 \mu g$  total emissions (g dry leaf wt)-1 h-1. Based upon these definitions, 115 of the 316 species (36%) were lowemitters, 105 (34%) were moderate-emitters, and 96 (30%) were high-emitters. When these definitions were applied only to the 124 measured species, 39% were low-emitters, 30% were moderate-emitters, and 31% were high-emitters.

#### Validation of the taxonomic method

Although the use of taxonomic methods (Horie et al., 1990; Sidawi and Horie, 1992; Sudol and Winer, 1992; Tanner et al., 1992) for assigning hydrocarbon emission rates to unmeasured plant species is supported by phytochemical research (Seigler, 1981; Croteau, 1987; Charlwood and Charlwood, 1991), there are alternative schemes for making such assignments. Accordingly, we investigated the statistical robustness of the present taxonomic method (based on genus and family) relative to three other assignment



Fig. 1. Flowchart showing taxonomic methodology for the assignment of emission rates to species for which measured emission rates do not exist. The percentages shown represent the fraction of species in the database for which emission rates were assigned at each stage of the taxonomic method.

methods (i.e. vegetation class, preferred sun exposure, and plant growth rate) by calculating the coefficient of variation (COV) for each method. The COV is an estimate of the relative standard deviation of a population and is often used to quantify the variability of different analytical methods (Gilbert, 1987; Skoog and Leary, 1992).

In this comparison, the COVs of the five assignment methods were calculated using the species emission rates reported in Table 2. For each method, the 124 species were assigned to bins depending upon the parameter of interest. For example, in the case of the growth rate method, species were assigned to six growth rate bins (slow, moderately slow, moderate, moderately fast, fast, very fast) based on botanical information (PGE, 1991; Bauml, 1994). In addition to the growth rate bins, species were assigned to 75 genus bins, 37 family bins, six vegetation class bins (conifer, broad-leaf evergreen, broad-leaf deciduous, palms, shrubs, unknown), and three exposure bins (sunny, partly shady, shady). Statistics, including the COV, were then generated for both isoprene and monoterpene emissions for each bin for which there were sufficient emission rates. Based on the individual bin COVs, a mean COV for each method was then calculated, thus permitting quantitative comparison of the variability of the different assignment methods.

The results of this statistical analysis are presented as a plot of the mean COV values, including the 95% confidence interval, for both isoprene and monoterpene emissions for each assignment method (Fig. 3).

Of the methods examined, it is apparent that the genus and family assignment methods have the least variability. Of these two methods, the genus method exhibits the lower COVs, suggesting that it is the preferable assignment method. We found that emission rates for most tree species within the same genus differ by less than a factor of ten (e.g. Acer, Schinus, Picea) whereas species within some families (e.g. Arecaceae) differ by as much as a factor of 32. Regardless, COVs for all of the methods are relatively high, ranging from approximately 0.7 to 2.0, indicating considerable uncertainty in assigned emission rates. These high COV values reflect the relatively small number of measured species reported in the literature, as well as the inherent error involved in the measurement of highly complex, biological systems.

### CONCLUSIONS AND RECOMMENDATIONS

In many non-attainment urban airsheds, present state and federal air quality regulations call for large reductions in anthropogenic VOCs to meet air quality standards for ozone and PM-10. It has been suggested (Chameides et al., 1988) that in some airsheds, biogenic hydrocarbon emissions could become critical if anthropogenic VOCs are sufficiently reduced. Assuming 5 million new trees were planted in the SoCAB over the next 20 years, on a typical summer day, a mix of high-emitting species would contribute an additional 35 TPD of biogenic VOCs as compared to

Table 3. Trees and shrubs ranked by sum of hourly emission rate of isoprene and monoterpenes

|                                                         |                                  | Isoprene monoterpenes |                                      |              |        |  |
|---------------------------------------------------------|----------------------------------|-----------------------|--------------------------------------|--------------|--------|--|
| Botanical name                                          | Common name                      | μg(g dry lea          | af wt) <sup>-1</sup> h <sup>-1</sup> | Iso. + mono. | Assign |  |
| Arbutus menziesii                                       | Madrone                          | 0.0                   | 0.0                                  | 0.0          | 3      |  |
| Arbutus unedo                                           | Strawberry Madrone               | 0.0                   | 0.0                                  | 0.0          | 3      |  |
| Arctostaphylos glandulosa                               | Peninsular Manzanita             | 0.0                   | 0.0                                  | 0.0          | 1      |  |
| Arctostaphylos glauca                                   | Bigberry Manzanita               | 0.0                   | 0.0                                  | 0.0          | 1      |  |
| Arctostaphylos manzanita                                | Dr. Hurd Manzanita               | 0.0                   | 0.0                                  | 0.0          | 2      |  |
| Carissa macrocarpa                                      | Natal Plum                       | 0.0                   | 0.0                                  | 0.0          | 1      |  |
| Ceanothus crassifolius                                  | Hoaryleaf Ceanothus              | 0.0                   | 0.0                                  | 0.0          | 1      |  |
| Celtis sinensis                                         | Chinese Hackberry                | 0.0                   | 0.0                                  | 0.0          | 3.     |  |
| Cercocarpus betuloides                                  | Mountain Mahogany                | 0.0                   | 0.0                                  | 0.0          | 1      |  |
| Cercocarpus ledifolius                                  | Curly-Leaf Mountain Mahogany     | 0.0                   | 0.0                                  | 0.0          | 2      |  |
| Citrus limon 'Meyer'                                    | Meyer Lemon                      | 0.0                   | 0.0                                  | 0.0          | 1      |  |
| Comarostaphylis diversifolia                            | Summer Holly                     | 0.0                   | 0.0                                  | 0.0          | 3      |  |
| Cotoneaster pannosus                                    | Cotoneaster                      | 0.0                   | 0.0                                  | 0.0          | 1      |  |
| Eriogonum fasciculatum                                  | California Buckwheat             | 0.0                   | 0.0                                  | 0.0          | 1      |  |
| Fraxinus caroliniana                                    | Carolina Ash                     | 0.0                   | 0.0                                  | 0.0          | 1      |  |
| Fraxinus dipetala                                       | Foothill Ash                     | 0.0                   | 0.0                                  | 0.0          | 2      |  |
| Fraxinus latifolia                                      | Oregon Ash                       | 0.0                   | 0.0                                  | 0.0          | 2      |  |
| Fraxinus pennsylvanica                                  | Green Ash                        | 0.0                   | 0.0                                  | 0.0          | 2      |  |
| Fraxinus pennsylvunicu<br>Fraxinus uhdei                | Evergreen Ash                    | 0.0                   | 0.0                                  | 0.0          | 1      |  |
| Fraxinus unuei<br>Fraxinus velutina                     | Arizona Ash                      | 0.0                   | 0.0                                  | 0.0          | 2      |  |
| Fraxinus velutina 'Modesto'                             | Modesto Ash                      | 0.0                   | 0.0                                  | 0.0          | 2      |  |
| Fraxinus velutina Modesto<br>Fraxinus velutina coriacea | Montebello Ash                   | 0.0                   | 0.0                                  | 0.0          | 2      |  |
|                                                         | Sweetshade                       | 0.0                   | 0.0                                  | 0.0          | 3      |  |
| Hymenosporum flavum                                     | English Holly                    |                       | 0.0                                  | 0.0          | 2      |  |
| Ilex aquifolium                                         | ,                                | 0.0                   |                                      |              | 1      |  |
| Ilex cassine                                            | Dahoon Holly                     | 0.0                   | 0.0                                  | 0.0          | 2      |  |
| Ilex comuta                                             | Chinese Holly                    | 0.0                   | 0.0                                  | 0.0          |        |  |
| Jacaranda mimosifolia                                   | Jacaranda                        | 0.0                   | 0.0                                  | 0.0          | 1      |  |
| Lagerstroemia indica                                    | Crape Myrtle                     | 0.0                   | 0.0                                  | 0.0          | l      |  |
| Ligustrum lucidum                                       | Glossy Privet                    | 0.0                   | 0.0                                  | 0.0          | 1      |  |
| Nerium oleander                                         | Oleander                         | 0.0                   | 0.0                                  | 0.0          | 1      |  |
| Persea americana                                        | Avocado                          | 0.0                   | 0.0                                  | 0.0          | 1      |  |
| Pittosporum rhombifolium                                | Queensland Pittosporum           | 0.0                   | 0.0                                  | 0.0          | 2      |  |
| Pittosporum tobira                                      | Japanese Pittosporum             | 0.0                   | 0.0                                  | 0.0          | 1      |  |
| Pittosporum undulatum                                   | Victorian Box                    | 0.0                   | 0.0                                  | 0.0          | 1      |  |
| Podarcarpus macrophyllus                                | Yew Pine                         | 0.0                   | 0.0                                  | 0.0          | 3      |  |
| Podocarpus gracilior                                    | Fern Pine                        | 0.0                   | 0.0                                  | 0.0          | 1      |  |
| Pyrus calleryana 'Aristocrat'                           | Aristocrat Flowering Pear        | 0.0                   | 0.0                                  | 0.0          | 2      |  |
| Pyrus calleryana 'Bradford'                             | Bradford Pear                    | 0.0                   | 0.0                                  | 0.0          | 2      |  |
| Pyrus kawakamii                                         | Evergreen Pear                   | 0.0                   | 0.0                                  | 0.0          | 1      |  |
| Pyrus sp.                                               | Pear                             | 0.0                   | 0.0                                  | 0.0          | 2      |  |
| Rhaphiolepis excelsa                                    | Lady Palm                        | 0.0                   | 0.0                                  | 0.0          | 2      |  |
| Rhaphiolepis indica                                     | India Hawthorne                  | 0.0                   | 0.0                                  | 0.0          | 1      |  |
| Rhaphiolepis 'Majestic Beauty'                          | Majestic Beauty-Indian Hawthorne | 0.0                   | 0.0                                  | 0.0          | 2      |  |
| Rhododendron spp.                                       | Azalea/Rhododendron              | 0.0                   | 0.0                                  | 0.0          | 3      |  |
| Rhus glabra                                             | Smooth Sumac                     | 0.0                   | 0.0                                  | 0.0          | 2      |  |
| Rhus lancea                                             | African Sumac                    | 0.0                   | 0.0                                  | 0.0          | 2      |  |
| Rhus ovata                                              | Sugarbush                        | 0.0                   | 0.0                                  | 0.0          | 1      |  |
| Sambucus callicarpa                                     | Red Coastal Elderberry           | 0.0                   | 0.0                                  | 0.0          | 2      |  |
| Sambucus canica pa<br>Sambucus glauca                   | Blue Elderberry                  | 0.0                   | 0.0                                  | 0.0          | 2      |  |
| Sambucus giauca<br>Sambucus mexicana                    | Hairy Blue Elderberry            | 0.0                   | 0.0                                  | 0.0          | 2      |  |
| Sambucus mexicana<br>Sambucus simponii                  | Elderberry                       | 0.0                   | 0.0                                  | 0.0          | 1      |  |
|                                                         | Cape-Honeysuckle                 | 0.0                   | 0.0                                  | 0.0          | 1      |  |
| Tecomaria capensis                                      | American Elm                     | 0.0                   | 0.0                                  | 0.0          | 1      |  |
| Ulmus americana                                         | Chinese Elm                      | 0.0                   | 0.0                                  | 0.0          | 1      |  |
| Ulmus parvifolia                                        | Sawleaf Zelkova                  | 0.0                   | 0.0                                  | 0.0          | 3      |  |
| Zelkova serrata                                         |                                  |                       |                                      |              | 3<br>1 |  |
| Prunus dulcis                                           | Nonpareil Almond                 | 0.0                   | 0.0                                  | 0.0          | _      |  |
| Cercis canadensis                                       | Redbud                           | 0.0                   | 0.0                                  | 0.0          | 1      |  |
| Cercis occidentalis                                     | Western Redbud                   | 0.0                   | 0.0                                  | 0.0          | 2      |  |
| Cinnamomum camphora                                     | Camphor                          | 0.0                   | 0.0                                  | 0.0          | 1      |  |
| Cinnamomum pedunculatum                                 | Camphor                          | 0.0                   | 0.0                                  | 0.0          | 2      |  |
| Glycine max                                             | G . B . B!                       | 0.0                   | 0.0                                  | 0.0          | 1      |  |
| Prunus domestica                                        | Santa Rosa Plum                  | 0.0                   | 0.0                                  | 0.0          | 1      |  |
| Amelanchier alnifolia                                   | Mountain Serviceberry            | 0.0                   | 0.1                                  | 0.1          | 3      |  |
| Eriobotrya deflexa                                      | Bronze Loquat                    | 0.0                   | 0.1                                  | 0.1          | 3      |  |
| Eriobotrya japonica                                     | Loquat                           | 0.0                   | 0.1                                  | 0.1          | 3      |  |
| Heteromeles arbutifolia                                 | Toyon                            | 0.0                   | 0.1                                  | 0.1          | 3      |  |
| Lyonothamnus floribundus aspenifolia                    | Catalina Ironwood                | 0.0                   | 0.1                                  | 0.1          | 3      |  |
| Malus sp.                                               | Apple                            | 0.0                   | 0.1                                  | 0.1          | 3      |  |
| Photinia fraseri                                        | Common Photinia                  | 0.0                   | 0.1                                  | 0.1          | 3      |  |
| Pyracantha coccinea                                     | Firethorn                        | 0.0                   | 0.1                                  | 0.1          | 3      |  |

Table 3. (Continued)

|                                 |                                    | Isoprene me      | onoterpenes                         |              |        |
|---------------------------------|------------------------------------|------------------|-------------------------------------|--------------|--------|
| Botanical name                  | Common name                        | <br>μg(g dry lea | f wt) <sup>-1</sup> h <sup>-1</sup> | Iso. + mono. | Assign |
| Rosa sp.                        | Rose                               | 0.0              | 0.1                                 | 0.1          | 3      |
| Jasminum sp.                    | Jasmine                            | 0.0              | 0.1                                 | 0.1          | 3      |
| Osmanthus fragrans              | Sweet Olive                        | 0.0              | 0.1                                 | 0.1          | 3      |
| Prunus caroliniana              | Carolina Laurel Cherry             | 0.0              | 0.1                                 | 0.1          | 2      |
| Prunus cerasifera               | Cherry Plum                        | 0.0              | 0.1                                 | 0.1          | 2 2    |
| Prunus ilicifolia               | Hollyleaf Cherry                   | 0.0              | 0.1                                 | 0.1          |        |
| Prunus lusitanica Prunus lvonii | Portugal Laurel<br>Catalina Cherry | 0.0<br>0.0       | 0.1<br>0.1                          | 0.1<br>0.1   | 2 2    |
| Prunus tyonu<br>Prunus serotina | Black Cherry                       | 0.0              | 0.1                                 | 0.1          | 2      |
| Prunus subcordata               | Sierra Plum                        | 0.0              | 0.1                                 | 0.1          | 2      |
| Prunus virginiana               | Choke Cherry                       | 0.0              | 0.1                                 | 0.1          | 2      |
| Prunus avium                    | Bing Cherry                        | 0.0              | 0.1                                 | 0.1          | ĩ      |
| Cupressus sempervirens          | Italian Cypress                    | 0.0              | 0.1                                 | 0.1          | 1      |
| Abelia grandiflora              | Glossy Abelia                      | 0.0              | 0.1                                 | 0.1          | 3      |
| Adenostoma fasciculatum         | Chamise                            | 0.0              | 0.1                                 | 0.1          | 1      |
| Prunus armeniaca                | Blenheim Apricot                   | 0.0              | 0.1                                 | 0.1          | 1      |
| Prunus persica                  | Halford Peach                      | 0.0              | 0.1                                 | 0.1          | 1      |
| Prunus persica                  | Halford Peach                      | 0.0              | 0.1                                 | 0.1          | 1      |
| Pinus densiflora                | Red Pine                           | 0.0              | 0.2                                 | 0.2          | 1      |
| Viburnum rufidulum              | Viburnum                           | 0.0              | 0.2                                 | 0.2          | 1      |
| Pisum pinea                     | Italian Stone Pine                 | 0.0              | 0.2                                 | 0.2          | 1      |
| Olea europaea                   | Olive                              | 0.0              | 0.3                                 | 0.3          | 1      |
| Pinus halepensis                | Aleppo Pine                        | 0.0              | 0.3                                 | 0.3          | 1      |
| Laurus nobilis                  | Grecian Laurel                     | 0.0              | 0.4                                 | 0.4          | 3      |
| Sassafras albidum               | Sassafras                          | 0.0              | 0.4                                 | 0.4          | 3      |
| Cedrus atlantica                | Atlas Cedar                        | 0.0              | 0.6                                 | 0.6          | 2      |
| Cedrus deodara                  | Deodar Cedar                       | 0.0              | 0.6                                 | 0.6          | 1      |
| Juniperus californica           | California Juniper                 | 0.0              | 0.6                                 | 0.6          | 2      |
| Juniperus chinensis             | Chinese Juniper                    | 0.0              | 0.6                                 | 0.6          | 1      |
| Juniperus occidentalis          | Western Juniper                    | 0.0              | 0.6                                 | 0.6          | 2      |
| Pinus sabiniana                 | Foothill Pine                      | 0.0              | 0.6                                 | 0.6          | 1      |
| Carya aquatica                  | Water Hickory                      | 0.0              | 0.7                                 | 0.7          | 1      |
| Carya sp.                       | Red Hickory                        | 0.0              | 0.7                                 | 0.7          | 2      |
| Calocedrus decurrens            | Incense Cedar                      | 0.0              | 0.8                                 | 0.8          | 3      |
| Chamaecyparis lawsoniana        | Port Orford Cedar                  | 0.0              | 0.8                                 | 0.8          | 3      |
| Chamaecyparis nootkatensis      | Nootka Cypress                     | 0.0              | 0.8                                 | 0.8          | 3      |
| Cupressocyparis leylandii       | Leylandi Cypress                   | 0.0              | 0.8                                 | 0.8          | 3      |
| Cycas revoluta                  | Sago Palm                          | 0.0              | 0.8                                 | 0.8          | 3      |
| Platycladus orientalis          | Oriental Arborvitae                | 0.0              | 0.8                                 | 0.8          | 3      |
| Thuja plicata                   | Western Red Cedar                  | 0.0              | 0.8                                 | 0.8          | 3      |
| Pinus radiata                   | Monterey Pine                      | 0.0              | 0.8                                 | 0.8          | 1      |
| Cupressus glabra                | Smooth Arizona Cypress             | 0.0              | 0.9                                 | 0.9          | 2      |
| Cupressus macnabrana            | Macnab Cypress                     | 0.0              | 0.9                                 | 0.9          | 2      |
| Cupressus macrocarpo            | Monterey Cypress                   | 0.0              | 0.9                                 | 0.9          | 2      |
| Citrus sinensis 'Valencia'      | Valencia Orange                    | 0.0              | 0.9                                 | 0.9          | 1      |
| Myrtica cerifera                | Wax Myrtle                         | 0.0              | 1.1                                 | 1.1          | 1      |
| Pseudotsuga macrocarpa          | Bigcone Douglas Fir                | 0.0              | 1.1                                 | 1.1          | 1      |
| Persea horbonia                 | Red Bay                            | 0.0              | 1.2                                 | 1.2          | 1      |
| Calodendrum capense             | Cape Chestnut                      | 0.0              | 1.5                                 | 1.5          | 3      |
| Casimiroa edulis                | White Sapote                       | 0.0              | 1.5                                 | 1.5          | 3      |
| Citrus limonia burm.            | Meyer Lemon                        | 0.0              | 1.5                                 | 1.5          | 2      |
| Citrus orangoma                 | Orange                             | 0.0              | 1.5                                 | 1.5          | 2      |
| Citrus paradisi                 | Grapefruit                         | 0.0              | 1.5                                 | 1.5          | 2      |
| Geijera parvifolia              | Australian Willow                  | 0.0              | 1.5                                 | 1.5          | 3      |
| Morus alba 'Fruitless'          | Fruitless Mulberry                 | 0.0              | 1.6                                 | 1.6          | 2      |
| Morus rubra                     | Red Mulberry                       | 0.0              | 1.6                                 | 1.6          | 1      |
| Cupressus forbesii              | Tecate Cypress                     | 0.0              | 1.7                                 | 1.7          | 1      |
| Juglans californica             | California Walnut                  | 0.0              | 1.8                                 | 1.8          | 2      |
| Juglans hindsii                 | California Black Walnut            | 0.0              | 1.8                                 | 1.8          | 2      |
| Juglans nigra                   | Black Walnut                       | 0.0              | 1.8                                 | 1.8          | 2      |
| Juglans regia                   | English Walnut                     | 0.0              | 1.8                                 | 1.8          | 1      |
| Citrus sinensis                 | Navel Orange                       | 0.0              | 1.8                                 | 1.8          | ļ      |
| Citrus sinensis                 | Valencia Orange                    | 0.0              | 1.8                                 | 1.8          | 1      |
| Ceanothus spinosus              | Greenbark                          | 0.0              | 1.8                                 | 1.8          | 1      |
| Schinus molle                   | California Pepper                  | 0.0              | 1.9                                 | 1.9          | 1      |
| Acer floridanum                 | Silver Maple                       | 0.0              | 2.0                                 | 2.0          | 1      |
| Pinus canariensis               | Canary Island Pine                 | 0.0              | 2.1                                 | 2.1          | 1      |
| Ceanothus thyrsiflorus          | Blue Blossom                       | 0.0              | 2.4                                 | 2.4          | 2      |
| Acer circinatum                 | Vine Maple<br>Rocky Mountain Maple | 0.0              | 2.8                                 | 2.8          | 2<br>2 |
| Acer glabrum Acer macrophyllum  | Rocky Mountain Maple Bigleaf Maple | 0.0<br>0.0       | 2.8<br>2.8                          | 2.8<br>2.8   | 2      |
|                                 | Kidleat Manie                      | UU               | Z.8                                 | 2 X          | ,      |

Table 3. (Continued)

|                                        |                         | Isoprene m    | onoterpenes                          |              | Assign 2    |
|----------------------------------------|-------------------------|---------------|--------------------------------------|--------------|-------------|
| Botanical name                         | Common name             | μg (g dry lea | af wt) <sup>-1</sup> h <sup>-1</sup> | Iso. + mono. |             |
| Acer negundo                           | Box Elder               | 0.0           | 2.8                                  | 2.8          |             |
| Acer palmatum                          | Japanese Maple          | 0.0           | 2.8                                  | 2.8          | 2           |
| Acer saccharinum                       | Silver Maple            | 0.0           | 2.8                                  | 2.8          | 1           |
| Ginkgo biloba                          | Ginkgo                  | 0.0           | 3.0                                  | 3.0          | 1           |
| Citrus limon                           | Lisbon Lemon            | 0.0           | 3.2                                  | 3.2          | 1           |
| Quercus lobata                         | Valley Oak              | 3.4           | 0.0                                  | 3.4          | 1           |
| Acer rubrum                            | Red Maple               | 0.0           | 3.5                                  | 3.5          | 1           |
| Pinus albicaulis                       | Whitebark Pine          | 0.0           | 3.4                                  | 3.5          | 2           |
| Pinus aristata                         | Bristlecone Pine        | 0.0           | 3.5                                  | 3.5          | 2           |
| Pinus attenuata                        | Knobcone Pine           | 0.0           | 3.5                                  | 3.5          | 2           |
| Pinus balfouriana                      | Foxtail Pine            | 0.0           | 3.5                                  | 3.5          | 2           |
| Pinus contorta                         | Beach Pine              | 0.0           | 3.5                                  | 3.5          | 2           |
| Pinus coulteri                         | Coulter Pine            | 0.0           | 3.5                                  | 3.5          | 2           |
| Pinus edulis                           | Pinyon Pine             | 0.0           | 3.5                                  | 3.5          | 2           |
| Pinus flexilis                         | Limbar Pine             | 0.0           | 3.5                                  | 3.5          | 2           |
| Pinus jeffreyri                        | Jeffery Pine            | 0.0           | 3.5                                  | 3.5          | $\tilde{2}$ |
| Pinus lambertiana                      | Sugar Pine              | 0.0           | 3.5                                  | 3.5          | 2           |
|                                        | Singleleaf Pinyon Pine  | 0.0           | 3.5                                  | 3.5          | 2           |
| Pinus monophylla                       |                         |               |                                      | 3.5<br>3.5   | 2           |
| Pinus monticola                        | Western White Pine      | 0.0           | 3.5                                  |              |             |
| Pinus muricata                         | Bishop Pine             | 0.0           | 3.5                                  | 3.5          | 2           |
| Pinus pinaster                         | Cluster Pine            | 0.0           | 3.5                                  | 3.5          | 2           |
| Pinus ponderosa                        | Ponderosa Pine          | 0.0           | 3.5                                  | 3.5          | 2           |
| Pinus quadrifolia                      | Four Needle Pinyon Pine | 0.0           | 3.5                                  | 3.5          | 2           |
| Pinus thunbergiana                     | Japanese Black Pine     | 0.0           | 3.5                                  | 3.5          | 2           |
| Pinus torreyana                        | Torrey Pine             | 0.0           | 3.5                                  | 3.5          | 2           |
| Harpephyllum caffrum                   | Kaffir Plum             | 0.0           | 4.2                                  | 4.2          | 3           |
| Mangifera indica                       | Mango                   | 0.0           | 4.2                                  | 4.2          | 3           |
| Abies bracteata                        | Santa Lucia Fir         | 1.4           | 2.9                                  | 4.3          | 3           |
| Abies concolor                         | White Fir               | 1.4           | 2.9                                  | 4.3          | 3           |
| Abies grandis                          | Lowland Fir             | 1.4           | 2.9                                  | 4.3          | 3           |
| Abies magnifica                        | Red Fir                 | 1.4           | 2.9                                  | 4.3          | 3           |
| Abies procera                          | Noble Fir               | 1.4           | 2.9                                  | 4.3          | 3           |
| Pseudotsuga menziesii                  | Douglas Fir             | 1.4           | 2.9                                  | 4.3          | 3           |
|                                        | Western Hemlock         | 1.4           | 2.9                                  | 4.3          | 3           |
| Tsuga heterophylla                     |                         | 1.4           | 2.9                                  | 4.3          | 3           |
| Tsuga mertensiana                      | Mountain Hemlock        | 0.0           | 4.7                                  | 4.3<br>4.7   | 2           |
| Acacia baileyana                       | Bailey Acacia           |               |                                      |              |             |
| Acacia farnesiana                      | Sweet Acacia            | 0.0           | 4.7                                  | 4.7          | 1           |
| Acacia melanoxylon                     | Blackwood Acacia        | 0.0           | 4.7                                  | 4.7          | 2           |
| Acacia subporosa                       | River Wattle            | 0.0           | 4.7                                  | 4.7          | 2           |
| Sabel palmetto                         | Sabel Palmetto          | 4.7           | 0.4                                  | 5.1          | 1           |
| Pinus taeda                            | Loblolly Pine           | 0.0           | 5.1                                  | 5.1          | 2           |
| Picea sitchensis                       | Sitka Spruce            | 4.0           | 1.1                                  | 5.1          | 1           |
| Pinus ellotii                          | Slash Pine              | 0.0           | 5.3                                  | 5.3          | 1           |
| Ceanothus leucodermis                  | Chaparral Whitehorn     | 0.0           | 5.4                                  | 5.4          | 1           |
| Albizia julibrissin                    | Silk Tree               | 4.3           | 1.4                                  | 5.7          | 3           |
| Bauhinia variegata                     | Purple Orchid Tree      | 4.3           | 1.4                                  | 5.7          | 3           |
| Calliandra haematocephela              | Pink Powder Puff        | 4.3           | 1.4                                  | 5.7          | 3           |
| Ceratonia siliqua                      | Carob                   | 4.3           | 1.4                                  | 5.7          | 3           |
| Cercidium floridum                     | Blue Palo Verde         | 4.3           | 1.4                                  | 5.7          | 3           |
| Cercidium nicrophyllum                 | Foothills Palo Verde    | 4.3           | 1.4                                  | 5.7          | 3           |
| Dalea spinosa                          | Smoke Tree              | 4.3           | 1.4                                  | 5.7          | 3           |
| Erythrina caffra                       | Kaffirboom Coral Tree   | 4.3           | 1.4                                  | 5.7          | 3           |
|                                        | Desert Ironwood         | 4.3           | 1.4                                  | 5.7          | 3           |
| Olneya tesota                          |                         |               |                                      |              |             |
| Parkinsonia aculeata                   | Jerusalem Thorn         | 4.3           | 1.4                                  | 5.7          | 3           |
| Sophora japonica                       | Japanese Pagoda Tree    | 4.3           | 1.4                                  | 5.7          | 3           |
| Tipuana tipu                           | Tipu Tree               | 4.3           | 1.4                                  | 5.7          | 3           |
| Umbellularia californica               | California Laurel       | 4.3           | 1.4                                  | 5.7          | 3           |
| Schinus terebinthifolius               | Brazilian Pepper        | 0.0           | 5.9                                  | 5.9          | 1           |
| Chilopsis linearis                     | Desert Willow           | 0.0           | 5.9                                  | 5.9          | 3           |
| Tabebuia chrysotricha                  | Golden Trumpet Tree     | 0.0           | 5.9                                  | 5.9          | 3           |
| Pinus palustris                        | Longleaf Pine           | 0.0           | 5.9                                  | 5.9          | 1           |
| Magnolia grandiflora                   | Magnolia                | 0.0           | 5.9                                  | 5.9          | 1           |
| Magnolia soulangiana                   | Saucer Magnolia         | 0.0           | 5.9                                  | 5.9          | 2           |
| Pinus sylvestris                       | Scots Pine              | 0.0           | 6.4                                  | 6.4          | 1           |
| Xylosma congestum                      | Shiny Xylosma           | 6.8           | 0.0                                  | 6.8          | 1           |
| Hevea brasiliensis                     | Rubber Tree             | 7.5           | 0.5                                  | 8.0          | 1           |
| Quercus prinus                         | Chestnut Oak            | 6.5           | 1.5                                  | 8.0          | 1           |
| Quercus prinus<br>Eucalyptus viminalis | Ribbon Gum              | 8.0           | 0.0                                  | 8.0<br>8.0   | 1           |
|                                        |                         |               |                                      |              | _           |
| Salvia mellifera                       | Black Sage              | 0.0           | 8.3                                  | 8.3          | 1           |
| Sequoia sempervirens                   | Coast Redwood           | 0.0           | 8.5                                  | 8.5          | 3           |
| Sequoiadendron giganteum               | Giant Seguoia           | 0.0           | 8.5                                  | 8.5          | 3           |

Table 3. (Continued)

|                                                  |                            | Isoprene m  | onoterpenes                          | _            |             |
|--------------------------------------------------|----------------------------|-------------|--------------------------------------|--------------|-------------|
| Botanical name                                   | Common name                | μg(g dry le | af wt) <sup>-1</sup> h <sup>-1</sup> | Iso. + mono. | Assign<br>1 |
| Taxodium sp.                                     | Cypress                    | 0.0         | 8.5                                  | 8.5          |             |
| Quercus douglasii                                | Blue Oak                   | 8.7         | 0.0                                  | 8.7          | 1           |
| Serenoa repens                                   | Saw Palmetto               | 8.9         | 0.0                                  | 8.9          | 1           |
| Pistacia chinensis                               | Chinese Pistache           | 0.0         | 9.0                                  | 9.0          | 2           |
| Pistacia vera                                    | Kerman Pistachio           | 0.0         | 9.0                                  | 9.0          | 1           |
| Quercus alba                                     | White Oak                  | 7.8         | 1.5                                  | 9.3          | 1           |
| Pueraria lobata                                  |                            | 9.6         | 0.0                                  | 9.6          | 1           |
| W ashingtonia filifera                           | California Fan Palm        | 9.9         | 0.0                                  | 9.9          | 1           |
| W ashingtonia robusta                            | Mexico Fan Palm            | 9.9         | 0.0                                  | 9.9          | 2           |
| Liriodendron tulipifera                          | Tulip Tree                 | 4.1         | 5.9                                  | 10.0         | 3           |
| Quercus laurifolia                               | Diamond Leaf Oak           | 10.4        | 0.2                                  | 10.6         | 1           |
| Platanus racemosa                                | Western Sycamore           | 10.9        | 0.0                                  | 10.9         | 1           |
| Picea abies                                      | Norwegian Spruce           | 10.1        | 1.2                                  | 11.4         | 2           |
| Pinus clausa                                     | Sand Pine                  | 0.0         | 11.5                                 | 11.5         | 1           |
| Picea breweriana                                 | Brewer's Weeping Spruce    | 10.1        | 1.9                                  | 12.1         | 2           |
| Ouercus wislizenii                               | Interior Live Oak          | 12.5        | 0.0                                  | 12.5         | 1           |
| Salix caroliniana                                | Coast Plain Willow         | 12.5        | 0.0                                  | 12.5         | i           |
| Eugenia grandis                                  | Eugenia                    | 12.1        | 2.1                                  | 14.1         | 3           |
|                                                  | 2                          | 11.8        | 2.1                                  |              | 1           |
| Robinia pseudoacacia                             | Black Locust               | 15.2        | 0.2                                  | 14.1         | •           |
| Quercus myrtifolia                               | Myrtle Oak                 |             |                                      | 15.4         | 1           |
| Phoenix canariensis                              | Canary Island Date Palm    | 15.8        | 0.0                                  | 15.8         | 2           |
| Phoenix dactlifera                               | Date Palm                  | 15.8        | 0.0                                  | 15.8         | 1           |
| Phoenix recliinata                               | Senegal Date Palm          | 15.8        | 0.0                                  | 15.8         | 2           |
| Callistemon citrinus                             | Bottlebrush                | 16.0        | 0.0                                  | 16.0         | 1           |
| Callistemon viminalis                            | Weeping Bottlebrush        | 16.0        | 0.0                                  | 16.0         | 2           |
| Quercus rubra                                    | Northern Red Oak           | 14.8        | 1.8                                  | 16.7         | 1           |
| Trichostema lanatum                              | Woolly Blue Curls          | 0.0         | 17.7                                 | 17.7         | 1           |
| Platanus acerifolia                              | London Plane Tree          | 19.2        | 0.0                                  | 19.2         | 2           |
| Picea engelmannii                                | Engelmann Spruce           | 16.3        | 3.4                                  | 19.7         | 1           |
| Quercus velutina                                 | Black Oak                  | 18.9        | 1.0                                  | 19.9         | 1           |
| Quercus virginiana                               | Virginia Live Oak          | 20.2        | 0.3                                  | 20.5         | 1           |
| Agonis flexuosa                                  | Willow Myrtle              | 21.2        | 2.1                                  | 23.2         | 3           |
| Feijoa sellowiana                                | Pineapple Guava            | 21.2        | 2.1                                  | 23.2         | 3           |
| Melaleuca ericifolia                             | Heath Melaleuca            | 21.2        | 2.1                                  | 23.2         | 3           |
| Melaleuca linariifolia                           | Flaxleaf Paperbark         | 21.2        | 2.1                                  | 23.2         | 3           |
| Melaleuca quinquenervia                          | Cajeput Tree               | 21.2        | 2.1                                  | 23.2         | 3           |
| Metateucu quinqueneroid<br>Metrosideros excelsus | New Zealand Christmas Tree | 21.2        | 2.1                                  | 23.2         | 3           |
|                                                  |                            | 21.2        | 2.1                                  |              |             |
| Myrica californica                               | Pacific Wax-Myrtle         |             |                                      | 23.2         | 3           |
| Psidium guajava                                  | Guava                      | 21.2        | 2.1                                  | 23.2         |             |
| Syzygium paniculatum                             | Brush Cherry               | 21.2        | 2.1                                  | 23.2         | 3           |
| Tristania conferta                               | Brisbane Box               | 21.2        | 2.1                                  | 23.2         | 3           |
| Quercus coccinea                                 | Scarlet Oak                | 20.1        | 3.2                                  | 23.3         | 1           |
| Thelypteris decursive-pinnata                    |                            | 24.5        | 0.0                                  | 24.5         | 1           |
| Quercus nigra                                    | Water Oak                  | 24.6        | 0.0                                  | 24.6         | 1           |
| Quercus laevis                                   | Scrub Oak                  | 24.3        | 0.8                                  | 25.1         | 1           |
| Nandina domestica                                | Heavenly Bamboo            | 25.1        | 0.0                                  | 25.1         | 1           |
| Salix nigra                                      | Black Willow               | 25.2        | 0.0                                  | 25.2         | 1           |
| Fagus sp.                                        | Beech                      | 24.8        | 0.6                                  | 25.4         | 3           |
| Quercus chrysolepis                              | Canyon Live Oak            | 24.8        | 0.6                                  | 25.4         | 2           |
| Ouercus durata                                   | Leather Oak                | 24.8        | 0.6                                  | 25.4         | 2           |
| Quercus engelmanii                               | Mesa Oak                   | 24.8        | 0.6                                  | 25.4         | 2           |
| Quercus falcata                                  | Southern Red Oak           | 24.8        | 0.6                                  | 25.4         | 2           |
| Quercus ilex                                     | Holly Oak                  | 24.8        | 0.6                                  | 25.4         | 2           |
| Quercus hex<br>Quercus kelloggii                 | California Black Oak       | 24.8        | 0.6                                  | 25.4         | 2           |
| Quercus kenoggn<br>Quercus suber                 | Cork Oak                   | 24.8        | 0.6                                  | 25.4         | 2<br>2      |
| Guercus suber<br>Ficus benjamina                 | Weeping Chinese Banyan     |             |                                      |              | 2           |
| 3                                                |                            | 27.0        | 0.2                                  | 27.1         | 2           |
| Ficus carica                                     | Edible Fig                 | 27.0        | 0.2                                  | 27.1         | 2           |
| Ficus elastica                                   | Rubber Plant               | 27.0        | 0.2                                  | 27.1         | 2           |
| Ficus fistulosa                                  | Fig                        | 27.0        | 0.2                                  | 27.1         | 1           |
| Ficus lyrata                                     | Fiddleleaf Fig             | 27.0        | 0.2                                  | 27.1         | 2           |
| Ficus macrocarpa                                 | Indian Laurel Fig          | 27.0        | 0.2                                  | 27.1         | 2           |
| Ficus macrophylla                                | Moreton Bay Fig            | 27.0        | 0.2                                  | 27.1         | 2           |
| Ficus rubiginosa                                 | Rustyleaf Fig              | 27.0        | 0.2                                  | 27.1         | 2           |
| Mallotus paniculatis                             | Mallotus                   | 26.4        | 0.8                                  | 27.2         | 3           |
| Platanus occidentalis                            | American Sycamore          | 27.5        | 0.0                                  | 27.5         | 1           |
| Artemisia californica                            | California Sagebrush       | 0.0         | 28.3                                 | 28.3         | 1           |
| Baccharis pilularis                              | Coyote Brush               | 0.0         | 28.3                                 | 28.3         | 3           |
| Euryops pectinatus                               | Euryops Daisy              | 0.0         | 28.3                                 | 28.3         | 3           |
| Rhamnus californica                              | Coffeeberry                | 29.3        | 0.0                                  | 29.3         | 1           |
| Quercus dumosa                                   | California Scrub Oak       | 29.8        | 0.0                                  | 29.8         | 1           |
| Quercus aumosa<br>Quercus borealis               | Red Oak                    | 30.1        | 0.0                                  | 30.1         | 1           |
| Sucremo noremno                                  | Nou Oak                    | 30.1        | 0.0                                  | 50.1         | 1           |

Table 3. (Continued)

|                                                  |                                         | Isoprene m    |                                      |              |        |
|--------------------------------------------------|-----------------------------------------|---------------|--------------------------------------|--------------|--------|
| Botanical name                                   | Common name                             | μg(g dry le   | af wt) <sup>-1</sup> h <sup>-1</sup> | Iso. + mono. | Assign |
| Quercus phellos                                  | Willow Oak                              | 32.2          | 0.0                                  | 32.2         | 1      |
| Myrtus communis                                  | Common Myrtle                           | 34.0          | 0.0                                  | 34.0         | 1      |
| Quercus agrifolia                                | Coast Live Oak                          | 35.3          | 0.0                                  | 35.3         | 1      |
| Populus deltoides                                | Eastern Cottonwood                      | 37.0          | 0.0                                  | 37.0         | 1      |
| Eucalyptus camaldulensis                         | Red Gum                                 | 32.5          | 4.6                                  | 37.1         | 2      |
| Eucalyptus citriodora                            | Lemon-Scented Gum                       | 32.5          | 4.6                                  | 37.1         | 2      |
| Eucalyptus erythrocorys                          | Red-Cap Gum                             | 32.5          | 4.6                                  | 37.1         | 2      |
| Eucalyptus gunnii                                | Cider Gum                               | 32.5          | 4.6                                  | 37.1         | 2 2    |
| Eucalyptus maculata                              | Spotted Eucalyptus<br>Silver Dollar Gum | 32.5<br>32.5  | 4.6<br>4.6                           | 37.1<br>37.1 | 2      |
| Eucalyptus polyanthemos                          | Flooded Gum                             | 32.5<br>32.5  | 4.6<br>4.6                           | 37.1<br>37.1 | 2      |
| Eucalyptus rudis                                 | Red Ironbark                            | 32.5          | 4.6                                  | 37.1<br>37.1 | 2      |
| Eucalyptus sideroxylon<br>Liquidambar formosana  | Chinese Sweet Gum                       | 18.9          | 4.0<br>19.1                          | 38.0         | 2      |
| Liquidambar jormosana<br>Liquidambar styraciflua | Liquidambar                             | 18.9          | 19.1                                 | 38.0         | 1      |
| Rhamnus crocea ilicifolia                        | Hollyleaf Redberry                      | 41.9          | 0.0                                  | 41.9         | 2      |
| Rnamnus crocea incijona<br>Populus angustifolia  | Narrowleaf Cottonwood                   | 43.6          | 0.0                                  | 43.6         | 2      |
| Populus angustyotta<br>Populus fremontii         | Fremont Cottonwood                      | 43.6          | 0.0                                  | 43.6         | 2      |
| Populus fremonta<br>Populus trichocarpa          | Black Cottonwood                        | 43.6          | 0.0                                  | 43.6         | 2      |
|                                                  | Bluejack Oak                            | 45.6          | 0.0                                  | 45.8         | 1      |
| Quercus incana<br>Macaraunga triloba             | Macauranga                              | 45.3          | 0.2                                  | 46.0         | 1      |
| Macaraunga truoba<br>Populus termuloides         | Quaking Aspen                           | 50.2          | 0.7                                  | 50.2         | 1      |
| - · · · · · · · · · · · · · · · · · · ·          | Western Black Willow                    | 50.9          | 0.0                                  | 50.2         | 2      |
| Salix lasiandra                                  | Arroyo Willow                           | 50.9          | 0.0                                  | 50.9         | 2      |
| Salix lasiolepis                                 | •                                       | 50.9          | 0.0                                  | 50.9         | 2      |
| Salix scouleriana                                | Scouler Willow                          |               |                                      |              | 1      |
| Cupaniopsis anacardioides                        | Carrotwood                              | 50.9<br>50.9  | 0.0<br>0.0                           | 50.9<br>50.9 | 3      |
| Koelreuteria bipinnata                           | Chinese Flametree                       | -             |                                      |              | 3      |
| Koelreuteria paniculata                          | Goldenrain Tree                         | 50.9          | 0.0                                  | 50.9         | 3<br>1 |
| Rhamnus crocea                                   | Redberry                                | 54.4<br>59.2  | 0.0                                  | 54.4<br>59.8 | 2      |
| Quercus garryana                                 | Oregon White Oak                        |               | 0.6                                  |              |        |
| Eucalyptus globulus                              | Blue Gum Eucalyptus                     | 57.0          | 9.2                                  | 66.2         | 1<br>2 |
| Quercus robur                                    | European Oak                            | 76.6<br>115.0 | 0.6<br>0.0                           | 77.2<br>115  | 1      |
| Salix babylonica                                 | Weeping Willow                          | 172.9         | 0.0                                  | 173          | 3      |
| Elaeis guinensis                                 | Palm Oil Tree                           | 1 / 2.9       | U.1<br>***                           | 1/3          | 4      |
| Aesculus californica                             | California Buckeye<br>Tree-of-Heaven    | ***           | ***                                  | ***          | 4      |
| Ailanthus altissima                              | Italian Alder                           | ***           | ***                                  | ***          | 4      |
| Alnus cordata                                    |                                         | ***           | ***                                  | ***          | 4      |
| Alnus oregona                                    | Red Alder<br>White Alder                | ***           | ***                                  | ***          | 4      |
| Alnus rhombifolia                                | Mountain Alder                          | ***           | ***                                  | ***          | 4      |
| Alnus tenuifolia                                 |                                         | ***           | ***                                  | ***          | 4      |
| Araucaria bidwilli                               | Bunya-Bunya<br>Araucaria                | ***           | ***                                  | ***          | 4      |
| Araucaria spp.<br>Archontophoenix cunninghamiana | King Palm                               | ***           | ***                                  | ***          | 4      |
|                                                  |                                         | ***           | ***                                  | ***          | 4      |
| Arecastrum romanzoffianum                        | Queen Palm<br>Sweet Birch               | ***           | ***                                  | ***          | 4      |
| Betula lenta                                     | River Birch                             | ***           | ***                                  | ***          | 4      |
| Betula nigra                                     |                                         | ***           | ***                                  | ***          | 4      |
| Betula occidentalis                              | Streamside Birch                        | ***           | ***                                  | ***          | 4      |
| Betula pendula                                   | European White Birch                    | ***           | ***                                  | ***          |        |
| Bougainvillea spp.                               | Bougainvillea Flame Tree                | ***           | ***                                  | ***          | 4<br>4 |
| Brachychiton acerifolius                         | Bottle Tree                             | ***           | ***                                  | ***          | 4      |
| Brachychiton populneus<br>Brahea edulis          | Guadalupe Palm                          | ***           | ***                                  | ***          | 4      |
|                                                  | Brahea Palm                             | ***           | ***                                  | ***          | 4      |
| Brahea spp.                                      | Common Camellia                         | ***           | ***                                  | ***          | 4      |
| Camellia japonica                                |                                         | ***           | ***                                  | ***          | 4      |
| Carica papaya                                    | Papaya                                  | ***           | ***                                  | ***          | 4      |
| Cedrella fissilis                                | Cedrella                                | ***           | ***                                  | ***          | 4      |
| Cephalanthus occidentalis                        | Buttonbush                              | ***           | ***                                  | ***          | 4      |
| Chamaerops humilis                               | Mediterranean Palm<br>Silk-Floss Tree   | ***           | ***                                  | ***          | 4      |
| Chorisia speciosa                                | Mirror Plant                            | ***           | ***                                  | ***          | 4      |
| Coprosma repens                                  |                                         | ***           | ***                                  | ***          | 4      |
| Cordyline australis                              | Bronze Dracaena Pacific Dogwood         | ***           | ***                                  | ***          | 4      |
| Cornus nutalli                                   | 2                                       | ***           | ***                                  | ***          | 4      |
| Cornus sp.                                       | Dogwood Redstem Dogwood                 | ***           | ***                                  | ***          | 4      |
| Cornus stolonifera                               | Redstem Dogwood  Jade Plant             | ***           | ***                                  | ***          | 4      |
| Crassula argentea<br>Davidia involucrata         | Dove Tree                               | ***           | ***                                  | ***          | 4      |
|                                                  |                                         | ***           | ***                                  | ***          | 4      |
| Dendromecon harfordii                            | Island Bushpoppy American Persimmon     | ***           | ***                                  | ***          | 4      |
| Diospyros virginiana<br>Escallonia avoniansis    | Escallonia                              | ***           | ***                                  | ***          | 4      |
| Escallonia exoniensis<br>Euonymus japonica       | Escanonia Evergreen Euonymus            | ***           | ***                                  | ***          | 4      |
|                                                  |                                         |               |                                      |              |        |

Table 3. (Continued)

|                           |                        | Isoprene n  | nonoterpenes    |              |        |
|---------------------------|------------------------|-------------|-----------------|--------------|--------|
| Botanical name            | Common name            | μg(g dry le | eaf wt) -1 h -1 | Iso. + mono. | Assign |
| Fremontodendron mexicanum | Southern Flannel Bush  | ***         | ***             | ***          | 4      |
| Garrya elliptica          | Coast Silktassel       | ***         | ***             | ***          | 4      |
| Grevillea robusta         | Silk Oak               | ***         | ***             | ***          | 4      |
| Grevillea rosmarinifolia  | Rosemary Grevillea     | ***         | ***             | ***          | 4      |
| Hebe buxifolia            | Boxleaf Hebe           | ***         | ***             | ***          | 4      |
| Hibiscus rosa-sinensis    | Chinese Hibiscus       | ***         | ***             | ***          | 4      |
| Justicia brandegeana      | Shrimp Plant           | ***         | ***             | ***          | 4      |
| Maytenus boaria           | Mayten Tree            | ***         | ***             | ***          | 4      |
| Melia azedarach           | Chinaberry             | ***         | ***             | ***          | 4      |
| Musa paradisiaca          | Banana                 | ***         | ***             | ***          | 4      |
| Myoporum laetum           | Myoporum               | ***         | ***             | ***          | 4      |
| Nicotiana glauca          | Tree Tobacco           | ***         | ***             | ***          | 4      |
| Nyssa sylvatica           | Black Gum              | ***         | ***             | ***          | 4      |
| Plumbago auriculata       | Cape Plumbago          | ***         | ***             | ***          | 4      |
| Punica granatum           | Pomegranate            | ***         | ***             | ***          | 4      |
| Sapium sebiferum          | Chinese Tallow Tree    | ***         | ***             | ***          | 4      |
| Schefflera actinophylla   | Octopus Tree           | ***         | ***             | ***          | 4      |
| Stenocarpus sinuatus      | Firewheel Tree         | ***         | ***             | ***          | 4      |
| Strelitzia nicolai        | Giant Bird of Paradise | ***         | ***             | ***          | 4      |
| Taxus brevifolia          | Western/Oregon Yew     | ***         | ***             | ***          | 4      |
| Torreya californica       | California Nutmeg      | ***         | ***             | ***          | 4      |
| Trachycarpus fortunei     | Windmill Palm          | ***         | ***             | ***          | 4      |
| Yucca brevifolia          | Joshua Tree            | ***         | ***             | ***          | 4      |
| Yucca elephantipes        | Giant Yucca            | ***         | ***             | ***          | 4      |

Emission rate, expressed as  $\mu$ g (g dry leaf wt)<sup>-1</sup> h<sup>-1</sup>, corrected to an ambient temperature of 30 °C. "Assign" column indicates the method for assigning emission rates to each species: 1 = direct measurement; 2 = assigned based on genus average; 3 = assigned based on family average; 4 = no emission rate assigned.



Fig. 2. Total (isoprene and monoterpenes) emission rate vs cumulative fraction of the 316 species for which emission rates were measured or assigned. Species for which zero emission rates were assigned or measured are shown as having emission rates of 0.01 µg (g dry leaf wt)<sup>-1</sup> h<sup>-1</sup>.



Fig. 3. Comparison of the mean and 95% confidence intervals of the coefficient of variation (COV) of different methods for assigning isoprene and monoterpene emission rates. COVs for each method were calculated using only those 124 species for which emission rates have been measured.

0 TPD for a similar number of low-emitting tree species. Although negligible when compared on a mass basis to the present anthropogenic VOC inventory of approximately 1500 TPD, the relative contribution of these additional biogenic VOCs to ozone formation in the SoCAB is significantly enhanced when their higher reactivities are taken into account (Benjamin and Winer, 1996) and given that anthropogenic VOCs in the SoCAB are to be reduced to only about 300 TPD by 2010 (AQMP, 1994). Hence, the selection of low-emitting tree species can be critical in urban airsheds where large-scale tree planting programs are being implemented for energy conservation, heat island mitigation, and air pollution abatement. Unfortunately, however, biogenic emission rates have been measured for only a fraction of relevant plant species because of the high cost and substantial effort involved in making such measurements.

Using reported biogenic hydrocarbon emission rates, algorithms normalizing for temperature and light intensity, and appropriate taxonomic relationships, we have ranked most of 377 tree and shrub species found in the California SoCAB according to the sum of their hourly emission rates of isoprene and monoterpenes. This ranking allows us to identify low-emitting species for consideration for massive tree planting programs. Of the 316 species for which emission rates were measured or assigned, approximately 36% have emission rates lower than the 1  $\mu$ g (g dry leaf wt)<sup>-1</sup> h<sup>-1</sup> emissions threshold we defined as "low-emitters".

Compared to the other assignment schemes examined in this paper, the phylogenetic method is phytochemically and statistically the most robust means of assigning emission rates. Although the differences between reported emission rates within the genus and family levels can be large, when compared with the four orders of magnitude difference between the lowest and highest emitters, the taxonomic approach appears to provide an adequate first-order approximation of hydrocarbon emission rates for the many trees for which experimental measurements have not been made.

However, research determining species-specific emission rates is needed to provide a more complete coverage of biogenic emissions from tree species planted within the SoCAB and other major airsheds, and to validate the taxonomic relationship methodology. Conversely, the use of taxonomic relationships provides a cost- and time-effective basis for focusing future experimental emission rate measurements on the most important data gaps. Specifically, future efforts should concentrate on those tree species nominally predicted to be low emitters of biogenic hydrocarbons but for which no data exist, and on those tree species which will provide the most rigorous testing and validation of the taxonomic approach. By extension, this should improve the reliability of biogenic emissions inventories and allow positive identification of low-emitting tree species. However, better methods for standardization of emission rate measurements, taking into account all of the important variables, are also needed in future experimental studies. We emphasize that although biogenic hydrocarbon emission rates are an important factor to consider when deciding on which trees and shrubs should be planted, a wide range of horticultural and landscape factors, both biological and physical, must also be critically analyzed. Such factors include water requirements, fire hazard, disease and pollution resistance, aesthetics, growth rate, health of the plant, organic debris production, and allergin potential.

Acknowledgements-This work was supported by the California Institute for Energy Efficiency (CIEE) under Grant No. MOU4902710 (Karl Brown and Diane Fisher, Project Officers). Jim Bauml of the Los Angeles County Arboretum kindly assisted with the assignment of species to vegetation classes and Pablo Cicero-Fernandez of the California Air Resources Board provided valuable suggestions concerning statistical analysis of the data. We gratefully acknowledge helpful suggestions and information from Janet Arey and Roger Atkinson, Statewide Air Pollution Research Center at the University of California-Riverside; James Adams, UCLA; John Karlik, University of California Agricultural Extension Program-Bakersfield; Paul Miller, U.S. Forest Service Fire Laboratory-Riverside; and Haider Taha, Lawrence Berkeley Laboratory. The expertise and knowledge of the specialists who attended the June 1993 Trees Workshop at UCLA provided important perspective and insights in preparing this manuscript. We are particularly grateful to David Tingey of the U.S. Environmental Protection Agency, whose constructive review of the submitted manuscript resulted in an improved final paper.

#### REFERENCES

- AQMP (1994) 1994 Air Quality Management Plan. Report prepared by the South Coast Air Quality Management District, Diamond Bar, California.
- Arey J. A., Crowley D. E., Crowley M. and Resketo M. (1995) Hydrocarbon emissions from plants in California's South Coast Air Basin. Atmospheric Environment 29, 2977-2988.
- Ashizawa W. (1992) The Conservation Power Program. In Alliances for Community Trees. Proc. 5th National Urban Forest Conf., Los Angeles, California, U.S.A., 12–17 November 1991.
- Bauml J. (1994) Personal communication.
- Benjamin M. T. and Winer A. M. (1996) Estimating the ozone-forming potential of urban trees and shrubs. *Atmospheric Environment* (in press).
- Carter W. P. L. (1994) Development of ozone reactivity scales for volatile organic compounds. J. Air Waste Man. Ass. 44, 881–899.
- Chameides W. L., Lindsay R. W., Richardsen J. and Kiang C. S. (1988) The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study. *Science* **241**, 1473–1475.
- Charlwood B. V. and Charlwood K. A. (1991) Terpenoid production in plant cell cultures. In *Ecological Chemistry and Biochemistry of Plant Terpenoids* (edited by Harborne J. B. and Tomas-Barberan F. A.). Oxford University Press, Cambridge, U.K.
- Corchnoy S. B., Arey J. and Atkinson R. (1992) Hydrocarbon emissions from twelve urban shade trees of the Los Angeles, California, Air Basin. *Atmospheric Environment* **26B.** 339–348.
- Cronn D. R. and Nutmagul W. (1982) Analysis of atmospheric hydrocarbons during winter MONEX. Tellus 34, 159–165.

- Cronquist A. (1988) The Evolution and Classification of Flowering Plants, 2nd Edn. New York Botanical Garden, Bronx, New York, U.S.A.
- Croteau R. (1987) Effect of irrigation method on essential oil yield and rate of oil evaporation in mint grown under controlled conditions. *Horticultural Sci.* 12, 563-565.
- EPA (1992) Cooling our Communities: A Guidebook on Tree Planting and Light-Colored Surfacing (edited by Akbari H., Davis S., Dorsano S., Huang J. and Winnett S.). U.S. Environmental Protection Agency.
- Evans R. C., Tingey D. T., Gumpertz M. L. and Burns W. F. (1982) Estimates of isoprene and monoterpene emission rates in plants. *Bot. Gaz.* 143, 304–310.
- Flyckt D. L. (1979) Seasonal variation in the volatile hydrocarbon emissions from ponderosa pine and red oak. M.S. thesis, Washington State University, Pullman, Washington, U.S.A.
- Gilbert R. O. (1987) Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold, New York, New York, U.S.A.
- Guenther A. B., Monson R. K. and Fall R. (1991) Isoprene and monoterpene emission rate variability: observations with Eucalyptus and emission rate algorithm development. J. geophys. Res. 96, 10,799-10,808.
- Guenther A. B., Zimmerman P. R., Harley P. C., Monson R. K. and Fall R. (1993) Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses. J. geophys. Res. 98, 12,609-12,617.
- Harborne J. B. (1988) Introduction to Ecological Biochemistry. Academic Press, London, U.K.
- Horie Y., Sidawi S. and Ellefsen R. (1990) Inventory of leaf biomass and emission factors for vegetation in California's South Coast Air Basin. Contract No. 90163, prepared for the South Coast Air Quality Management District, by Valley Research Corp., Van Nuys, California, U.S.A.
- Isidorov V. A., Zenkavich I. G. and loffe B. V. (1985) Volatile organic compounds in the atmosphere of forests. *Atmospheric Environment* 19, 1-8.
- Janson R. W. (1993) Monoterpene emissions from Scots Pine and Norwegian Spruce. J. geophys. Res. 98, 2839–2850.
- Juuti S., Arey J. and Atkinson R. (1990) Monoterpene emission rate measurements from a Monterey Pine. J. geophys. Res. 95, 7515-7519.
- Lamb B., Westberg H., Quarles T. and Flyckt D. (1983) Natural hydrocarbon emission rate measurements from vegetation in Pennsylvania and Washington. Report PB84-124981, U.S. Environmental Protection Agency, Nat. Tech. Inf. Serv., Springfield, Virginia, U.S.A.
- Lamb B., Westberg H. and Allwine G. (1985) Biogenic hydrocarbon emissions from deciduous and coniferous trees in the United States. J. geophys. Res. 90, 2380–2390.
- Lamb B., Westberg H. and Allwine G. (1986) Isoprene emission fluxes determined by atmospheric tracer technique. Atmospheric Environment 20, 1–8.
- Lamb B., Guenther A., Gay D. and Westberg H. (1987) A national inventory of biogenic hydrocarbons emissions. Atmospheric Environment 21, 1695–1705.
- Lamb B., Gay D., Westberg H. and Pierce T. (1993) A biogenic hydrocarbon emission inventory for the U.S.A. using a simple forest canopy model. *Atmospheric Environment* 27, 1673-1690.
- Landsberg H. E. (1981) *The Urban Heat Island*. Academic Press, New York, New York, U.S.A.
- Loreto F. and Sharkey T. D. (1990) A gas-exchange study of photosynthesis and isoprene emission in *Quercus rubra L. Planta* 182, 523-531.
- Lowry W. P. (1967) The climate of cities. Scientific American 217(2), 15–23.
- McPherson E. G. (1991) Economic modeling for largescale tree plantings. In Energy Efficiency and the

- Environment: Forging the Link (edited by Vine E., Crawley D. and Centolella P.), Chap. 19. American Council for an Energy-Efficient Economy, Washington, District of Columbia, U.S.A.
- McPherson E. G. (1992) Environmental benefits and costs of the urban forest. In *Alliances for Community Trees. Proc.* 5th National Urban Forest Conf., Los Angeles, California, U.S.A., 12–17 November 1991.
- Monson R. K. and Fall R. (1991) Isoprene emission from aspen leaves. *Plant Physiol.* **90**, 267–274.
- Monson R. K., Hills A. J., Zimmerman P. R. and Fall R. R. (1991a) Studies of the relationship between isoprene emission rate and CO<sub>2</sub> or photon-flux density using a real time isoprene analyzer. *Plant Cell Envir.* 14, 517-523.
- Monson R. K., Guenther A. B. and Fall R. (1991b) Physiological reality in relation to ecosystem- and global-level estimates of isoprene emission. In *Trace Gas Emissions by Plants* (edited by Sharkey T. D., Holland E. A. and Mooney H. A.). Academic Press, New York, New York, U.S.A.
- Monson R. K., Jaeger C. H., Adams W. W. III, Driggers E. M., Silver G. M. and Fall R. (1992) Relationships among isoprene emission rate, photosynthesis, and isoprene synthase activity as influenced by temperature. *Plant Physiol.* 98, 1175-1180.
- Parker J. (1981) Uses of landscaping for energy conservation. Report by the Department of Physical Sciences, Florida International University, Miami, for the Governor's Energy Office of Florida, U.S.A.
- PGE (1991) Tree Finder. A botanical database developed by Pacific Gas & Electric Co.
- Rasmussen R. A. (1972) What do hydrocarbons from trees contribute to air pollution? J. Air Pollut. Control Ass. 22, 537-542.
- Reich P. B. (1987) Quantifying plant response to ozone: a unifying theory. *Tree Physiol.* 3, 63-91.
- Ross J. D. and Sombrero C. (1991) Environmental control of essential oil production in Mediterranean plants. In Ecological Chemistry and Biochemistry of Plant Terpenoids (edited by Harborne J. and Tomas-Barberan F.). Oxford University Press, Cambridge, U.K.
- Salter L. and Hewitt C. N. (1992) Ozone-hydrocarbon interactions in plants. *Phytochemistry* 31, 4045-4050.
- Seigler D. S. (1981) Terpenes and plant phylogeny. In Phytochemistry and Angiosperm Phylogeny (edited by Young D. A. and Seigler D. S.). Praeger Publishers, New York, New York, U.S.A.
- Sharkey T. D. and Singsaas E. L. (1995) Why plants emit isoprene. *Nature* **374**, 769.
- Sharkey T. D., Loreto F. and Delwiche C. F. (1991) High carbon dioxide and sun/shade effects on isoprene emissions from oak and aspen tree leaves. *Plant Cell Envir.* 14, 333–338.
- Sidawi S. and Horie Y. (1992) Leaf biomass density for urban, agricultural and natural vegetation in California's San Joaquin Valley. VRC Document No. 1072-F2, prepared for the San Joaquin Valley Air Pollution Study Agency by Valley Research Corp., Van Nuys, California.
- Skoog D. A. and Leary J. J. (1992) Principles of Instrumental Analysis. Saunders College Publishing, Fort Worth, Texas.
- Sudol M. and Winer A. M. (1992) Estimate of biogenic emissions for South Coast Air Basin. LBL/Energy and Environmental Division Report MOU-4902710, prepared for the California Institute for Energy Efficiency by the University of California—Los Angeles.

- Tanner R. L. and Zielinska B. (1994) Determination of the biogenic emission rates of species contributing to VOC in the San Joaquin Valley of California. Atmospheric Environment 28, 1113–1120.
- Tanner R. L., Minor T., Hatzell J., Jackson J., Rose M. R. and Zielinska B. (1992) Development of a natural source emission inventory. DRI Final Report No. 8303-009. FR1, prepared by the Desert Research Institute, Reno, Nevada, U.S.A.
- Tingey D. T., Manning M., Grothaus L. C. and Burns W. F. (1979) The influence of light and temperature on isoprene emissions from live oak. *Physiological Plant* 47, 112–118.
- Tingey D. T., Manning M., Grothaus L. C. and Burns W. F. (1980) Influence of light and temperature on monoterpene emission rates from slash pine. *Plant Physiol.* 65, 797–801.
- Tingey D. T., Evans R. and Gumpertz M. (1981) Effects of environmental conditions on isoprene emissions from live oak. *Planta* 152, 565-570.
- Tingey D. T., Turner D. P. and Weber J. A. (1991) Factors controlling the emissions of monoterpenes and other volatile organic compounds. In *Trace Gas Emissions by Plants* (edited by Sharkey T. D., Holland E. A. and Mooney H. A.). Academic Press, New York, New York, U.S.A.
- Trees (1993) Transcript of the Trees Workshop, University of California—Los Angeles, 8 June 1993.
- Walter J., Charon J., Marpeau A. and Launay J. (1989) Effects of wounding on terpene content of twigs of maritime pine (*Pinus pinaster* Ait.). Trees 4, 210–219.
- Went F. W. (1960) Blue hazes in the atmosphere. *Nature* 187, 641-643.
- Westberg H. H. and Rasmussen R. A. (1972) Atmospheric photochemical reactivity of monoterpene hydrocarbons. *Chemosphere* 1, 163–168.
- Winer A. M., Fitz D. R. and Miller P. R. (1983) Investigation of the role of natural hydrocarbons in photochemical smog formation in California. Contract No. AO-056-32, prepared for the California Air Resources Board, by the Statewide Air Pollution Research Center, Riverside, California, U.S.A.
- Winer A. M., Arey J., Aschmann S. M., Atkinson R., Long W. D., Morrison L. C. and Olszyk O. M. (1989) Hydrocarbon emissions from vegetation found in California's Central Valley. Contract No. A732-155, prepared for the California Air Resources Board, by the Statewide Air Pollution Research Center, Riverside, California, U.S.A.
- Winer A. M., Arey J., Atkinson R., Aschmann S. M., Long W. D., Morrison C. L. and Olszyk D. M. (1992) Emission rates of organic compounds from agricultural and natural vegetation found in California's Central Valley. *Atmospheric Environment* 14, 2647–2659.
- Yokouchi Y. and Ambe Y. (1984) Factors affecting the emission of monoterpenes from red pine (*Pinus densiflora*). *Plant Physiol.* **75**, 1009–1012.
- Zimmerman P. R. (1979a) Natural sources of ozone in Houston: natural organics. In *Proceedings of Specialty Conference on Ozone/Oxidants—Interactions with the Total Environment*. Air Pollution Control Association, Pittsburgh, Pennsylvania, U.S.A.
- Zimmerman P. R. (1979b) Determination of emission rates of hydrocarbons from indigenous species of vegetation in the Tampa/St Petersburg, Florida Area. EPA Contract No. 904/9-77-0282, prepared by the Tampa Bay Area Photochemical Oxidant Study.