ChE445_Chemical Reactor Analysis II Seminar12 Winter2020 Solution

April 7, 2020

Q1. Internal, external and global mass transfer limitations at isothermal conditions. Review of TOF.

(Fogler Ed5. Chp 15 & Hayes Ch 5)

A reaction rate was measured in a PBR without pressure drop at the following isothermal conditions:

Run#	Particle radius,	Total flow	Observed
	mm	rate, mol/s	$rate, mol/(g_{cat}.h)$
1	0.1	600	0.50
2	0.2	400	0.50
3	0.2	800	0.49
4	0.2	1200	0.51
5	0.4	400	0.26
6	0.4	800	0.24
7	0.4	1200	0.25
8	4	400	0.02
9	4	800	0.05
10	4	1200	0.05

Hint: remember that these are experimental data subject to an experimental error.

- a). What are the internal, external and global effectiveness factors for runs 1-4? Explain your choices and provide relevant calculations, where necessary.
- b). What are the internal, external and global effectiveness factors for runs 5-7? Explain your choices and provide relevant calculations, where necessary.
- c). What are the internal, external and global effectiveness factors for runs 9-10? Explain your choices and provide relevant calculations, where necessary.
- d). What are the internal, external and global effectiveness factors for run 8? Explain your choices and provide relevant calculations, where necessary.
- e). Calculate TOF if the catalyst contains 5wt.% Pd of 30% dispersion. Pd molar mass is 106g/mol.

(Hint: TOF is characteristic of an active site, it reflects intrinsic catalyst activity and must calculated based on the intrinsic rate law).

Answer to Q1

a.) For runs 1-4, variables are particle radius, R_p and total flow rate, F_T .

but observed rate is alomost the same $0.50\pm0.01~\frac{mol}{gr}$ so this is an intrinsic kinetic regime, $\Omega=\eta_{ext}=\eta_{int}=1$

b.) For runs 5-7 the total flow rate, F_T , does not have an effect on the reaction rate, so there are no external MTL ($\eta_{ext} = 1$)

but the observed rate= 0.25 < 0.50 in kinetic regime (for runs 1-4) , so there are internal MTL.

$$\eta_{int} = \frac{Observed\ rate\ without\ external\ MTL}{Intrinsic\ rate} = \frac{0.25}{0.5} = 0.5$$

 $\Omega = Overall\ effectiveness\ factor$

$$\Omega = \frac{Actual/observed \ overal \ rate \ of \ reaction}{Rate \ that \ would \ result \ if \ the \ entire \ surface \ were \ exposed \ to \ the \ bulk \ condition, \ C_{Ab}, T_b} \quad (1)$$

$$\Omega = \eta_{int} * \eta_{ext} = 0.5 * 1 = 0.5 \tag{2}$$

c.) For runs 9-10, the total flow rate, F_T , does not have an effect on the reaction rate, so there are no external MTL $\eta_{ext} = 1$.

$$\eta_{int} = \frac{Observed\ rate\ without\ external\ MTL}{Intrinsic\ rate} = \frac{0.05}{0.50} = 0.1$$

$$\Omega = \eta_{int} * \eta_{ext} = \eta_{int} * 1 = 0.1$$

d.) For run 8: Where both external and internal limitation affect the rate.

From runs 9 and 10 for $R_{particle} = 4mm$, $\eta_{int} = 0.1$

$$\Omega = \frac{observed\ rate}{Intrinsic\ rate} = \frac{0.02[run8]}{0.50[run\ 1-4]} = 0.04 \tag{3}$$

$$\Omega = \eta_{int} * \eta_{ext} \tag{4}$$

$$\eta_{ext} = \frac{0.04}{0.1} = 0.4 \tag{5}$$

e.) TOF (turn over frequency) is intrinsic reaction rate as $\left[\frac{mol_A}{mol_{Active\ sites}*s}\right]$.

Use runs 1-4, rate 0.5 to calculate TOF as follows:

$$TOF[\frac{mol_{A}}{mol_{active\ site}*s}] = 0.5\frac{mol}{g_{cat}*h}*\frac{1}{0.05}\frac{g_{cat}}{g_{pd}}*106\frac{g_{Pd}}{mol_{Pd}}*\frac{1}{0.3}\frac{mol\ Pd}{mol\ surf(active\ site)\ Pd}*\frac{1}{3600}\frac{h}{s} = 0.98s^{-1} \ (600)$$

[]: