Machine Learning

(機器學習)

Lecture 4: Theory of Generalization

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- 1 When Can Machines Learn?
- Why Can Machines Learn?

Lecture 4: Theory of Generalization

- Effective Number of Lines
- Effective Number of Hypotheses
- Break Point
- Definition of VC Dimension
- VC Dimension of Perceptrons
- Physical Intuition of VC Dimension
- Interpreting VC Dimension

Is
$$M = \infty$$
 Feasible?

- input $x \in [-1, +1] \subset \mathbb{R}^1$, uniform iid
- target f(x) = sign(x), taking sign(0) = +1
- hypothesis set: h_a(x) = sign(x − a) for a ∈ [-1, 1] infintely many a
- algorithm: $g = h_{a^*}$ with $a^* = \min_{y_n = +1} x_n$, assuming at least one $y_n = 1$
- for $\epsilon < 0.5$, $E_{\text{out}}(g) > \epsilon$ if every $y_n = +1$ satisfies $x_n > 2\epsilon$

$$\mathbb{P}\left[\left|\underbrace{E_{\mathsf{in}}(g)}_{\mathsf{O}} - E_{\mathsf{out}}(g)\right| > \epsilon\right] \leq \left(\frac{2 - 2\epsilon}{2}\right)^{N}$$

BAD data can happen rarely even for infinitely many hypotheses

Where Did M Come From?

$$\mathbb{P}\left[\left| \textit{E}_{\mathsf{in}}(\textit{g}) - \textit{E}_{\mathsf{out}}(\textit{g})
ight| > \epsilon
ight] \leq 2 \cdot \c M \cdot \exp\left(-2\epsilon^2 \emph{N}
ight)$$

- $\mathcal{B}AD$ events \mathcal{B}_m : $|E_{in}(h_m) E_{out}(h_m)| > \epsilon$
- to give \mathcal{A} freedom of choice: bound $\mathbb{P}[\mathcal{B}_{7}]$ or \mathcal{B}_{2} or ... \mathcal{B}_{M}
- worst case: all \mathcal{B}_m non-overlapping 把所有从pothesis 發生BAD的代字

$$\mathbb{P}[\mathcal{B}_1 \text{ or } \mathcal{B}_2 \text{ or } \dots \mathcal{B}_M] \leq \mathbb{P}[\mathcal{B}_1] + \mathbb{P}[\mathcal{B}_2] + \dots + \mathbb{P}[\mathcal{B}_M]$$
union bound
$$\mathbb{P}[\mathcal{B}_1] + \mathbb{P}[\mathcal{B}_2] + \dots + \mathbb{P}[\mathcal{B}_M]$$

Union bound 有了能变成 ∞

where did union bound fail to consider for $M = \infty$?

*BAD. Ein and Eout 差很多

Where Did Union Bound Fail?

union bound $\mathbb{P}[\mathcal{B}_1] + \mathbb{P}[\mathcal{B}_2] + \ldots + \mathbb{P}[\mathcal{B}_M]$ where

但的~Bu,真的桧overdap嗎?

• $\mathcal{B}AD$ events \mathcal{B}_m : $|E_{in}(h_m) - E_{out}(h_m)| > \epsilon$

overlapping for similar hypotheses $h_1 \approx h_2$ (e.g. if $a_1 \approx a_2$ in previous example)

- why? 1 $E_{\text{out}}(h_1) \approx E_{\text{out}}(h_2)$
 - (2) for most \mathcal{D} , $E_{in}(h_1) = E_{in}(h_2)$
- union bound over-estimating

to account for overlap, can we group similar hypotheses by kind?

根别法战重量的部份

How Many Lines Are There? (1/2)

$$\mathcal{H} = \left\{ \mathsf{all\ lines\ in}\ \mathbb{R}^2
ight\}$$

- how many lines? ∞
- how many kinds of lines if viewed from one input vector x₁?

$$\frac{2 \text{ kinds: } h_1\text{-like}(\mathbf{x}_1) = \circ \text{ or } h_2\text{-like}(\mathbf{x}_1) = \times}{2}$$
 2种线 如果我們看一個桌: 线不是說 \times 1. 变成 \circ 0. \times

How Many Lines Are There? (1/2)

$$\mathcal{H} = \left\{ \text{all lines in } \mathbb{R}^2 \right\}$$

- how many lines? ∞
- how many kinds of lines if viewed from one input vector x₁?

2种线

2 kinds:
$$h_1$$
-like(\mathbf{x}_1) = \circ or h_2 -like(\mathbf{x}_1) = \times

How Many Lines Are There? (2/2)

$$\mathcal{H} = \left\{ \text{all lines in } \mathbb{R}^2 \right\}$$

• how many kinds of lines if viewed from two inputs x_1, x_2 ?

one input: 2; two inputs: 4; three inputs?

How Many Lines Are There? (2/2)

$$\mathcal{H} = \left\{ \text{all lines in } \mathbb{R}^2 \right\}$$

how many kinds of lines if viewed from two inputs x_1, x_2 ?

one input: 2; two inputs: 4; three inputs?

How Many Kinds of Lines for Three Inputs? (1/2)

 $\mathcal{H}=\left\{ ext{all lines in }\mathbb{R}^2
ight\}$ Uncar separatable

always 8 for three inputs?

How Many Kinds of Lines for Three Inputs? (2/2)

$$\mathcal{H} = \left\{ \text{all lines in } \mathbb{R}^2 \right\}$$

'fewer than 8' when degenerate (e.g. collinear or same inputs)

How Many Kinds of Lines for Four Inputs?

for any four inputs at mos

Effective Number of Lines

maximum kinds of lines with respect to N inputs $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N$ \iff effective number of lines

- must be ≤(2^N)(why?)
- finite 'grouping' of infinitely-many lines $\in \mathcal{H}$
- · wish:

$$\mathbb{P}\left[\left|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)\right| > \epsilon\right]$$
 $\leq 2 \cdot \underbrace{\mathsf{effective}(N)}_{\mathfrak{F}$ 化原基的M \mathbf{E}_{i} 、於 $2^{\mathsf{r}'}$

Ines in 2D N effective(N) 1 2 2 4

8

14

if 1 effective(N) can replace M and 2 effective(N) \ll 2^{N} \sim $2^{$

Questions?

Dichotomies: Mini-hypotheses

$$\mathcal{H} = \{\text{hypothesis } h \colon \mathcal{X} \to \{\times, \circ\}\}$$

call

$$h(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N) = (h(\mathbf{x}_1), h(\mathbf{x}_2), \dots, h(\mathbf{x}_N)) \in \{\times, \circ\}^N$$

a dichotomy: hypothesis 'limited' to the eyes of $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$

• $\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)$

 $\mathcal{H}(\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_N)$ all dichotomies 'implemented' by \mathcal{H} on $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_N$ 知识规则

	hypotheses \mathcal{H}	dichotomies $\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)$
e.g.	all lines in \mathbb{R}^2	{0000,000×,00××,}
size	possibly infinite	upper bounded by 2 ^N

 $|\mathcal{H}(\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_N)|$: candidate for replacing M

Growth Function

- $|\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)|$ depend on inputs $(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)$ 才希望這值与 input 怎麼地
- Pigrowth function: */ 有关 remove dependence by taking max of all possible (x₁, x₂,...,x_N) 选载大时 dlcho tombes

finite, upper-bounded by 2^N

lines in 2D					
	Ν	$m_{\mathcal{H}}(N)$			
	1	2 装織			
	2	4			
;	3	max(,6)8)			
		=8			
	4	$14 < 2^N$			

how to 'calculate' the growth function?

Growth Function for Positive Rays

- $\mathcal{X}=\mathbb{R}$ (one dimensional) 一维数线上 方同的 threshold 決定不同的
- \mathcal{H} contains h, where each h(x) = sign(x a) for threshold(a)
- 'positive half' of 1D perceptrons 10 perceptor

one dichotomy for $a \in \text{each spot } (x_n, x_{n+1})$: $m_{\mathcal{H}}(N) = N+1$

$$m_{\mathcal{H}}(N) = N + 1$$

$$(N+1) \ll 2^N$$
 when N large!

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄
0	0	0	0
×	0	0	0
×	×	0	0
×	×	×	0
×	×	×	×

- $\mathcal{X} = \mathbb{R}$ (one dimensional)
- 1~r内缸,其他都负 • \mathcal{H} contains h, where each h(x) = +1 iff $x \in [\ell, r)$, -1 otherwise

one dichotomy for each 'interval kind'

$$m_{\mathcal{H}}(N) = \underbrace{\begin{pmatrix} N+1 \\ 2 \end{pmatrix}}_{\text{interval ends in } N+1 \text{ spots}} \underbrace{\begin{pmatrix} 2j+1 \\ 2j+1 \end{pmatrix}}_{\text{interval}} \underbrace{\begin{pmatrix} 2j+1 \\ 2j+1 \end{pmatrix}}_{\text{interval}$$

$$(\frac{1}{2}N^2 + \frac{1}{2}N + 1) \ll \frac{2^N}{2}$$
 when N large!

<i>x</i> ₁	<i>X</i> ₂	<i>x</i> ₃	<i>X</i> ₄
0	X	×	×
0	0	×	×
0	0	0	×
0	0	0	0
×	0	×	×
×	0	0	×
×	0	0	0
×	×	0	×
×	×	0	0
×	×	×	0
×	×	×	×

Growth Function for Convex Sets (1/2)

Blue: ⊕ Pinl(:⊖

convex region in blue

non-convex region

- $\mathcal{X} = \mathbb{R}^2$ (two dimensional)
- \mathcal{H} contains h, where $h(\mathbf{x}) = +1$ iff \mathbf{x} in a convex region, -1 otherwise

what is $m_{\mathcal{H}}(N)$?

Growth Function for Convex Sets (2/2)

- every dichotomy can be implemented by H using a convex region slightly extended from contour of positive inputs

$$m_{\mathcal{H}}(N) = 2^N$$

• call those N inputs shattered by H

找到特定的NT美使 MH(N)=2", 将此)HSh attered.

$$m_{\mathcal{H}}(N)=2^N \Longleftrightarrow$$

exists N inputs that can be shattered

The Four Growth Functions

positive rays:

$$m_{\mathcal{H}}(N) = N + 1$$

positive intervals:

$$m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1$$

convex sets:
$$m_{\mathcal{H}}(N) = 2^N$$
 2D perceptrons: $m_{\mathcal{H}}(N) = 2^N$ in some cases

what if $m_{\mathcal{H}}(N)$ replaces M?

$$\mathbb{P}\left[\left|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)\right| > \epsilon\right] \stackrel{?}{\leq} 2 \cdot m_{\mathcal{H}}(N) \cdot \left[\exp\left(-2\epsilon^2 N\right)\right] \leftarrow \mathbb{P}\left[\left|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)\right| > \epsilon\right]$$

上增加的te exp慢

for 2D or general perceptrons, $m_{\mathcal{H}}(N)$ polynomial?

Break Point of \mathcal{H}

what do we know about 2D perceptrons now?

three inputs: 'exists' shatter; four inputs, 'for all' no shatter

if no k inputs can be shattered by \mathcal{H} , call k a **break point** for \mathcal{H}

- · mH(k) < 2k 某反小於 2 L 後後面也都小於
- k + 1, k + 2, k + 3, ... also break points!
- will study_Iminimum break point k

第一個做到2~的矣

2D perceptrons: minimum break point at(4)

The Four Minimum Break Points

- positive rays: $m_{\mathcal{H}}(N) = N + 1 = O(N)$ minimum break point at 2 $m_{\mathcal{H}}(2) = 2 < 2^{\frac{3}{2}} + 4$
- positive intervals: $m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1 = O(N^2)$ minimum break point at 3 $m_{\mathcal{H}}(3) = \frac{9}{2} + \frac{1}{2} + 1 = 6 < 2^3$
- convex sets: $m_{\mathcal{H}}(N) = 2^N$

no break point

• 2D perceptrons: $m_{\mathcal{H}}(N) < 2^N$ in some cases minimum break point at 4 $m_{\mathcal{H}}(4) = 14$

theorem from combinatorics (not going to prove in class):

- no break point: $m_{\mathcal{H}}(N) = 2^N$ (sure!) By definition

Questions?

BAD Bound for General ${\cal H}$

want:

$$\mathbb{P}\Big[\exists h \in \mathcal{H} \text{ s.t. } |E_{\text{in}}(h) - E_{\text{out}}(h)| > \epsilon\Big] \leq 2 \quad \underbrace{m_{\mathcal{H}}(N)}_{\text{疑忧.}} \cdot \exp\left(-2 - e^2N\right)$$

actually, when N large enough,

$$\mathbb{P}\Big[\exists h \in \mathcal{H} \text{ s.t. } |E_{\text{in}}(h) - E_{\text{out}}(h)| > \epsilon\Big] \leq 2 \cdot 2 m_{\mathcal{H}}(2N) \cdot \exp\left(-2 \cdot \frac{1}{16} \epsilon^2 N\right)$$

called Vapnik-Chervonenkis (VC) Bound

Theory of Generalization Definition of VC Dimen

Interpretation of Vapnik-Chervonenkis (VC) Bound

For any $g = \mathcal{A}(\mathcal{D}) \in \mathcal{H}$ and 'statistical' large \mathcal{D} , for $N \geq 2$ $k \geq 3$

$$\mathbb{P}_{\mathcal{D}}\Big[\big|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)\big| > \epsilon\Big]$$

$$\leq \mathbb{P}_{\mathcal{D}}\Big[\exists h \in \mathcal{H} \text{ s.t. } \big|E_{\mathsf{in}}(h) - E_{\mathsf{out}}(h)\big| > \epsilon\Big]$$

$$\leq 4m_{\mathcal{H}}(2N) \exp\left(-\frac{1}{8}\epsilon^2N\right)$$
if $k \text{ exists}$

$$\leq 4(2N)^{k-1} \exp\left(-\frac{1}{8}\epsilon^2N\right)$$

```
if 1 m_{\mathcal{H}}(N) breaks at k (good \mathcal{H})

2 Narge enough \mathcal{H} (good \mathcal{D})

\Rightarrow probably generalized 'E_{\text{out}} \approx E_{\text{in}}', and if 3 \mathcal{A} picks a g with small E_{\text{in}} (good \mathcal{A})

\Rightarrow probably learned! (:-) good luck)
```

VC Dimension

the formal name of maximum non-break point d_{VC} = (minimum break point k-1) f(k) non-break point

Definition

VC dimension of \mathcal{H} , denoted $d_{VC}(\mathcal{H})$ is

largest N for which $\underline{m_{\mathcal{H}}(N)} = 2^N$ (the most inputs \mathcal{H} that can shatter)

$$C_{Vc}$$
 = minimum $k-1$

2D perception

 $N \leq d_{VC} \implies \mathcal{H}$ can shatter some N inputs

 $M_H(1) = 2$
 $M_H(2) < 4$
 $t \leq d_{VC} \downarrow K$ is a break point for \mathcal{H}
 $M_H(3) = 8 \leftarrow d_{Vc}(H) = 3$ if $N \geq 2$, $d_{VC} \geq 2$, $m_H(N) \leq N_{C}(H) = 3$
 $M_H(4) = 14 \leftarrow k \leq 4$ (preak point)

 $M_H(4) = 14 \leftarrow k \leq 4$ (preak point)

 $M_H(4) = 14 \leftarrow k \leq 4$ (preak point)

The Four VC Dimensions

• positive rays: $\underline{M_{H}(1)=2}$, $\underline{M_{H}(2)=3}$

 $m_{\mathcal{H}}(N) = N+1$

 $m_{\mathcal{H}}(N) = 2^N$

- positive intervals: $M_H(1) = 2$, $M_H(2) = 4$
 - $m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1$

 $d_{\text{VC}}=2$

 $M_{H}(3) = 9$ break point

$$d_{ extsf{VC}} = \infty$$

• 2D perceptrons:

$$d_{\text{VC}} = 3$$

$$m_{\mathcal{H}}(N) \leq N^3$$
 for $N \geq 2$

good: finite d_{VC}

VC Dimension and Learning

finite $d_{VC} \Longrightarrow g$ 'will' generalize ($E_{Out}(g) \approx E_{in}(g)$)

- regardless of learning algorithm ATVC dimension 跟這些東西無关
- regardless of input distribution P
- regardless of target function f

From Noiseless VC to Noisy VC

real-world learning problems are often noisy

age	23 years			
gender	female			
annual salary	NTD 1,000,000			
year in residence	1 year			
year in job	0.5 year			
current debt	200,000			
PiO (/ 4) / 4))				

credit? $\{no(-1), yes(+1)\}$

but more!

- noise in x (covered by P(x)): inaccurate customer information?
- noise in y (covered by P(y|x)): good customer, 'mislabeled' as bad?

does VC bound work under noise?

Probabilistic Marbles

one key of VC bound: marbles!

'deterministic' marbles

- marble $\mathbf{x} \sim P(\mathbf{x})$
- deterministic color

 [f(x) ≠ h(x)]

'probabilistic' (noisy) marbles

- marble x ~ P(x)
- probabilistic color
 [y ≠ h(x)] with y ~ P(y|x)

same nature: can estimate $\mathbb{P}[\text{orange}]$ if $\overset{i.i.d.}{\sim}$

VC holds for
$$\underbrace{\mathbf{x} \overset{i.i.d.}{\sim} P(\mathbf{x}), y \overset{i.i.d.}{\sim} P(y|\mathbf{x})}_{(\mathbf{x},y)^{i.i.d.} P(\mathbf{x},y)}$$

The New Learning Flow

Questions?

2D PLA Revisited

general PLA for x with more than 2 features?

VC Dimension of Perceptrons

- 1D perceptron (pos/neg rays): d_{VC} = 2
- 2D perceptrons: $d_{VC} = 3 \frac{m_{-1}(3)}{5}$
 - $d_{\rm VC} > 3$:
 - $d_{VC} \leq 3$: \times
- d-D perceptrons: $d_{VC} \stackrel{?}{=} d + 1$

- dvc ≥ d + 1] 證道2件事情
 dvc ≤ d + 1]

Extra Fun Time

What statement below shows that $d_{VC} > d + 1$?

- 1 There are some d+1 inputs we can shatter. $\int d_{vc} \frac{24}{2} t \frac{1}{2} \frac{dv}{dt}$
- 2 We can shatter any set of d + 1 inputs.
- ③ There are some d + 2 inputs we cannot shatter.] 但 稿7以有一些 ワベ
- 4 We cannot shatter any set of d+2 inputs. \Rightarrow hocal point point point

Reference Answer: (1)

 d_{VC} is the maximum that $m_{\mathcal{H}}(N) = 2^N$, and $m_{\mathcal{H}}(N)$ is the most number of dichotomies of N inputs. So if we can find 2^{d+1} dichotomies on some d+1 inputs, $m_{\mathcal{H}}(d+1)=2^{d+1}$ and hence $d_{VC} \geq d + 1$.

$$d_{\rm VC} > d + 1$$

There are some d + 1 inputs we can shatter.

• some 'trivial' inputs: < 定義- 子 特 别 in put 使它被 H shattered.

$$X = \begin{bmatrix} -\mathbf{x}_{1}^{T} - \\ -\mathbf{x}_{2}^{T} - \\ -\mathbf{x}_{3}^{T} - \\ \vdots \\ -\mathbf{x}_{d+1}^{T} - \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 0 & \dots & 0 \\ 1 & 0 & \dots & 0 \\ 0 & 1 & & 0 \\ \vdots & & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{bmatrix}$$
 one-hot vectors

• visually in 2D:

note: X invertible!

Can We Shatter X?

$$X = \begin{bmatrix} & -\mathbf{x}_{1}^{T} - \\ & -\mathbf{x}_{2}^{T} - \\ & \vdots \\ & -\mathbf{x}_{d+1}^{T} - \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & & \ddots & 0 \\ 1 & 0 & \dots & 0 & 1 \end{bmatrix} \text{ invertible}$$

to shatter . . .

for any
$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_{d+1} \end{bmatrix}$$
, find \mathbf{w} such that
$$\begin{array}{c} \mathbf{y} \\ \mathbf{$$

Extra Fun Time

What statement below shows that $d_{vc} \le d + 1$?

- ① There are some d + 1 inputs we can shatter. ← 但了能有些不行
- ② We can shatter any set of d + 1 inputs.← 那镀镜式
- 3 There are some d + 2 inputs we cannot shatter. ←但り能有些り以
- 4 We cannot shatter any set of d+2 inputs. d+2 break point, Fixed d_{vc}

小可能大がd+l

Reference Answer: (4)

 d_{VC} is the maximum that $m_{\mathcal{H}}(N) = 2^N$, and $m_{\mathcal{H}}(N)$ is the most number of dichotomies of N inputs. So if we cannot find 2^{d+2} dichotomies on any d+2 inputs (i.e. break point), $m_{\mathcal{H}}(d+2) < 2^{d+2}$ and hence $d_{VC} < d+2$. That is, $d_{VC} \le d+1$.

$$d_{\rm VC} \le d + 1 \, (1/2)$$

A 2D Special Case

$$\mathbf{w}^T \mathbf{x}_4 = \mathbf{w}^T \mathbf{x}_2^{\oplus} + \mathbf{w}^T \mathbf{x}_3^{\oplus} - \mathbf{w}^T \mathbf{x}_1^{\oplus} > 0$$
 只能是①.不能是义 這是因為 $\mathbf{w}^T \mathbf{x}_4$ 是 \mathbf{X}_2 义 \mathbf{x}_3 人, 的 线 性 組合

linear dependence restricts dichotomy

$$d_{VC} \le d + 1 \ (2/2)$$

d-D General Case

$$X = \begin{pmatrix} dt \\ -\mathbf{x}_{1}^{T} - \\ -\mathbf{x}_{2}^{T} - \\ \vdots \\ -\mathbf{x}_{d+1}^{T} - \\ -\mathbf{x}_{d+2}^{T} - \end{pmatrix}$$

more rows than columns:

linear dependence (some a_i non-zero) $\mathbf{x}_{d+2} = a_1 \mathbf{x}_1 + a_2 \mathbf{x}_2 + \ldots + a_{d+1} \mathbf{x}_{d+1}$ $\mathbf{x}_{d+2} = a_1 \mathbf{x}_1 + a_2 \mathbf{x}_2 + \ldots + a_{d+1} \mathbf{x}_{d+1}$

Juli 2 x det

can you generate $(sign(a_1), sign(a_2), ..., sign(a_{d+1}), \times)$? if so, what **w**?

$$\mathbf{w}^{T}\mathbf{x}_{d+2} = \mathbf{a}_{1}\underbrace{\mathbf{w}^{T}\mathbf{x}_{1}}_{\circ} + \mathbf{a}_{2}\underbrace{\mathbf{w}^{T}\mathbf{x}_{2}}_{\times} + \dots + \mathbf{a}_{d+1}\underbrace{\mathbf{w}^{T}\mathbf{x}_{d+1}}_{\times}$$

$$> 0(\text{contradition!})$$

'general' X no-shatter $\implies d_{VC} < d + 1$

Questions?

Physical Intuition of VC Dimension

Degrees of Freedom

(modified from the work of Hugues Vermeiren on http://www.texample.net)

- hypothesis parameters $\mathbf{w} = (w_0, w_1, \dots, w_d)$: creates degrees of freedom
- hypothesis quantity $M = |\mathcal{H}|$: 'analog' degrees of freedom
- hypothesis 'power' d_{VC} = d + 1:
 effective (binary) degrees of freedom

這是最ypothesis set的發度, 」它能shatter到N=dvc

 $d_{VC}(\mathcal{H})$: powerfulness of \mathcal{H}

Two Old Friends

Positive Rays (dvc = 1) 上水 弱野 Bypothesis

$$h(x) = -1 \qquad \qquad h(x) = +1$$

free parameters: a

Positive Intervals ($d_{VC} = 2$)

$$h(x) = -1$$
 $h(x) = +1$ $h(x) = -1$

free parameters: ℓ , r

practical rule of thumb:

d_{VC} ≈ #free parameters (but not always, e.g., mystery about deep learning models)

M and d_{VC}

copied from Lecture 3:-)

- 1 can we make sure that $E_{out}(g)$ is close enough to $E_{in}(g)$?
- 2 can we make $E_{in}(g)$ small enough?

small M

- 1 Yes!, Fin $\approx E_{out}$ $\mathbb{P}[BAD] \leq 2 \cdot M \cdot \exp(...)$
- 2 No!, too few choices

small d_{vc}

- 1 Yes!, ℙ[BAD] ≤ 5 by parts set 4 · (2N) dvc · exp(...)
- 2 No!, too limited power

large M

- 2 Yes!, many choices Ein √

large d_{VC}

- 1 No!, $\mathbb{P}[BAD] \le 4 \cdot (2N)^{d_{VC}} \cdot \exp(...)$
- Yes!, lots of power

using the right d_{VC} (or \mathcal{H}) is important

Questions?

VC Bound Rephrase: Penalty for Model Complexity

For any $g = \mathcal{A}(\mathcal{D}) \in \mathcal{H}$ and 'statistical' large \mathcal{D} , for $\mathcal{N} \geq 2$, $d_{VC} \geq 2$

$$\mathbb{P}_{\mathcal{D}}\left[\underbrace{\left|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)\right| > \epsilon}_{\mathsf{BAD}}\right] \qquad \leq \qquad \underbrace{4(2N)^{d_{\mathsf{VC}}} \exp\left(-\frac{1}{8}\epsilon^2N\right)}_{\delta}$$

Rephrase

..., with probability
$$\geq 1 - \delta$$
, **GOOD**: $|E_{in}(g) - E_{out}(g)| \leq \epsilon$

VC Bound Rephrase: Penalty for Model Complexity

For any $g = \mathcal{A}(\mathcal{D}) \in \mathcal{H}$ and 'statistical' large \mathcal{D} , for $N \geq 2$, $d_{VC} \geq 2$

$$\mathbb{P}_{\mathcal{D}}\left[\left|E_{\text{in}}(g) - E_{\text{out}}(g)\right| > \epsilon\right] \leq 4(2N)^{d_{\text{VC}}} \exp\left(-\frac{1}{8}\epsilon^2N\right)$$
 女性 PAD 教育 δ bound δ

Rephrase

..., with probability
$$\geq 1 - \delta$$
 (GOOD)

generalization ernor

gen. error
$$|E_{in}(g) - E_{out}(g)|$$

$$\leq \sqrt{\frac{8}{N}} \ln \left(\frac{4(2N)^{d_{VC}}}{\delta} \right)$$

$$E_{\text{in}}(g) - \sqrt{\frac{8}{N} \ln\left(\frac{4(2N)^{d_{\text{VC}}}}{\delta}\right)} \le E_{\text{out}}(g) \le E_{\text{in}}(g) + \sqrt{\frac{8}{N} \ln\left(\frac{4(2N)^{d_{\text{VC}}}}{\delta}\right)}$$

$$\underbrace{\sqrt{\dots}}_{\text{contaction}}: \text{penalty for } \underline{\text{model complexity}}$$

THE VC Message

with a high probability,

$$E_{\mathsf{out}}(g) \leq E_{\mathsf{in}}(g) + \underbrace{\sqrt{\frac{8}{N} \ln\left(\frac{4(2N)^{d_{\mathsf{VC}}}}{\delta}\right)}}_{\Omega(N,\mathcal{H},\delta) \quad model \; complexity}$$

- $d_{\text{VC}} \uparrow: E_{\text{in}} \downarrow \text{but } \Omega \uparrow \atop d_{\text{VC}} \downarrow: \Omega \downarrow \text{but } E_{\text{in}} \uparrow$
- best d_{VC}^* in the middle

powerful \mathcal{H} not always good!

VC Bound Rephrase: Sample Complexity

For any $g = \mathcal{A}(\mathcal{D}) \in \mathcal{H}$ and 'statistical' large \mathcal{D} , for $N \geq 2$, $d_{VC} \geq 2$

$$\mathbb{P}_{\mathcal{D}}\left[\underbrace{\left|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)\right| > \epsilon}_{\mathsf{BAD}}\right] \qquad \leq \qquad \underbrace{4(2N)^{d_{\mathsf{VC}}} \exp\left(-\frac{1}{8}\epsilon^2N\right)}_{\delta}$$

```
PIBADJ=10%
                                       20 perception hypothesis set.
given specs \epsilon = 0.1, \delta = 0.1, d_{VC} = 3, want 4(2N)^{d_{VC}} \exp\left(-\frac{1}{8}\epsilon^2N\right) \leq \delta
(N) to #
              bound
                                                           1号e.g. 2D perception 要
人 30K points.
 duta 100
              2.82 \times 10^{7}
     1,000 \quad 9.17 \times 10^9
                                 sample complexity: \checkmark
   10,000 \quad 1.19 \times 10^8
                                 need N \approx 10,000 d_{VC} in theory/
  100,000
            29,300
              9.99 \times 10^{-2}
```

practical rule of thumb:

 $N \approx 10 d_{\rm VC}$ often enough!

Looseness of VC Bound

$$\mathbb{P}_{\mathcal{D}} \Big[\big| E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g) \big| > \epsilon \Big] \qquad \leq \qquad 4 (2N)^{d_{\mathsf{VC}}} \exp \left(- \frac{1}{8} \epsilon^2 \mathbf{N} \right)$$

theory: $N \approx 10,000 d_{VC}$; practice: $N \approx 10 d_{VC}$

Why?

- $N^{d_{VC}}$ instead of $m_{\mathcal{H}}(N)$
- union bound on worst cases

any distribution, any target

'any' data

'any' \mathcal{H} of same d_{VC}

any choice made by A

—but hardly better, and 'similarly loose for all models'

*不要一中未近式 typothesis Set complexity

philosophical message of VC bound important for improving ML

Questions?

Summary

When Can Machines Learn?

Lecture 3: Feasibility of Learning

Why Can Machines Learn?

Lecture 4: Theory of Generalization

- Effective Number of Lines
- Effective Number of Hypotheses
- Break Point
- Definition of VC Dimension
- VC Dimension of Perceptrons
- Physical Intuition of VC Dimension
- Interpreting VC Dimension
- next: beyond VC theory, please :-)