PSA

Teoreticna 02 notes

PATRICIA TREE

Patricia trees ali practical algorithm to retrieve information in alphanumeric so kompresirana razlicica binarnih radix dreves (prefix trees).

BASIC CONCEPTS

Tip trie drevesa, kjer so pogosti prefixi shranjeni samo 1x, da se izboljša space complexity. Trie drevesa imajo v rodes shranjeno po en znak, medtem ko imajo Patricijina drevesa Združene single-child nodes.

Nodes: vsak node lahko predstavlja vec znakov (ali bitov)

Edges: (branches) med vodes so označeni z bitnimi indices, ki povejo, kateri bit med klynti naj pogleda raprej.

Compression: zaporedni vodes z enim otrokom so združena v evo vozli sõe.

PRIMER DREVESA

(A je to prou ...)

NALOGA 1: Patricijina drevesa. Predpostavimo, da smo vstavili nzz elementov v Patricijino drevo nad abecedo Z in da noben element ni predpona nekega drugega.

- (i) Te je == {0,13, pokazi, da ima Patricijino drevo natanko n-1 notranjih rozlião.
 - · Vsako vozlisce predstavlja en znak iz abecede.
 - · Robovi povezujejo vozlišťa, ki predstavljajo zaporedne znake v nizu.

 - Vsak list predstavlja konec nekega viza.
 Ni notranjih vozlišē zenim Samim otrokom.

Vsako notranje vozlišče predstavlja varcep med dvema vazličnima nizoma.

- 1. Vsak list predstavlja en viz.
- 2. Vsako notranje vozlišče predstavlja vazcep med dvema RAZLIČNIMA

- 3. Te imamo n nizov, imamo n listov (po 1.)
 4. Vsak list je dosegljiv po ENI SAMI POTI od korena.
 5. Obstaja n poti (po 4).
 6. Vsaka pot od korena do lista vsebnje natanko eno manjše število notranjih vozlišt, kot je število robov.
 2. Te imamo n listov indama n-a notranjih vozlišt.
- 7. Te imamo n listor, inlamo n-1 notranjih vozlišē

n 72 o2. $n=2 \Rightarrow notranja vozli <math>\overline{5ca} = n-1 = 2-1 = 1$, v tem primern je to koren drevesa.

n=472 → notranja vozlišča = 4-1=3 [

Notranje vozlišče je vsako vodišče, ki ima vsaj enega otroka ⇔ vsako vozlišče, ki ni list.

Elementi drevesa so njegovi LISTI; zato je

· Abeceda 90,13 ima 190,131 = 2, zato nastane 1 nazcep poti na

· n 7,2 elementor zatotori, da je vsaj koren z dvena otrokoma.

 $n = 2 \Rightarrow \text{ u.v.} = 1$

n=2 ⇒ n. V. = 1, kar je v protislovju, TODA drevo ne dopusta vozlist z enim otrokom, zato se zdruzita onedva na levi strani! il

Za binarna drevesa, ki majo vedno 2 roba, je viŝina definirana kot

 $h = log_2 n = log n$

Patricijina drevesa (oz. trie drevesa) pa imajo neko abecedo E, ki odloža o tem koliko robov bo obstajalo. Ker ima naša abeceda IEI=2, to pomeni, da je višiva:

h = log n = log n Če ima drevo n7/2 notranjih vozlišč in 121=2, potem je vjegova višina lahko:

 $h = log_2 2 = 1$, ali ce je n72: $h = log_2 n$, ozirowa $n = 2^n$

(ii) ce je = {0,1,x}, kakāva je najvecija možna višina u Patrici-jinem drevesu in kakāna najmayāa?

Najvecja visina je takrat, ko drevo ne kompresira poti/vozlist >> ko so vsi vizi med sabo, različni. Ker je 121=3, pride do treh rej/poddreves na vozliste.

 $\log_3 9 = \log_3 3^2 = 2 \cdot \log_3 3 = 2 \cdot 1 = 2$

Najvetja možna višina z n73 elementi (listi) in $Z=\frac{20.1, \times 3}{121=3}$ in $Z=\frac{20.1, \times 3}{121=3}$ in $Z=\frac{20.1, \times 3}{121=3}$ in $Z=\frac{20.1, \times 3}{121=3}$ in

Najwanj sa mozna visiva je, ko je n=3 (in ne 2, saj mora imeti vsak rode najwanj (z) otroke -3): log33=1.

BINARY TREE

Podatkovna struktura, kjer ima vsak node največ DVA otoka (levi in desni) oz. poddrevesi.

KEY PROPERTIES

Nodes - element drevesa

Root - najvišji (prvi) element brez starša

Child - vode povezan na dragi node od zgoraj

Parent - obratno od child

Leaf - node brez otrok

Height - stevilo razvejiter drevesa

Depth - stevilo razvejiter do nekega node

Balanced tree - drevo, kjen je razlika v višini med levim in desnim poddrevesom

kateregakoli node minimizirana

Primer uravnovešenega dvojiškega drevesa:

BINARY SEARCH TREE

Vse vrednosti v levem poddrevesu so manjse od root, medtem ko so vse v desnem vecje.

frimer neuravnovesenega dvojiškega drevesa

CASOUNA BAHTEVNOST BT

Odvisna je od višine dvojiškega drevesa. Naj bo višina označena s h. h je max število razdvojitev drevesa od root do nekega leaf. Višina odloža o tem, koliko primerjav je potrebnih v najslabšem primern za insert, search, delete.

OPEPACIJA Search	BEST-CASE Ollogn)	AVERAGE-CASE O(log n)	WORST-CASE	
Insert	Ollog ni	Ollog n)	O(n) køje dr O(n) neurav	reno
Pelete	O(log n)	O(log n)	O(n)) neural	noveseno;

Naj bo n število rodes v drevesu in h višina drevesa. V uravnovesenem dvojiškem drevesu je h = log n, kar vodi v O(log n) za večino operacij. V najslabšem primeru (neuravnovešeno, "degenerate" tree), je h = n-1, kar vodi v O(n) za operacije.

> V bistuu pride do poveranega servama, kar unici smisel drevesa.

NALBGA 2: Dvojiška drevesa. Višino drevesa definiramo kot število vozlišē, vključno s korenom, na najdaljši poti od korena do lista.

(i) Koliko največ vozli se ima lahko dvoji sko drevo vi sine h?

Vem, da je h = Leogz(n), kar bi torej pomenilo n = 2 2 ?

