

Ocean's Seven

Hasan Alahmed, Abbigail Caballero, Kyle Harlow, Daniel Henderson, Yuvin Kokuhennadige, Cassandra Noice

Sponsored by the CU Robotics Club
Special thanks to Cristopher "Topher" Pollard and Jeff Venicx

OCEAN'S

Power, Backplane & Controls System for RoboSub

Controls Requirements

- Pitch, Roll, and Yaw
- Velocity
- Depth

Success Criteria

- Settle Time: 5 seconds
- Overshoot: 10%
- Reject Step Disturbance

RoboSub Background

The University of Colorado -- Boulder Robosub Team has been competing in the AUVSI Robosub Competition for four years.

For Robosub competition student teams from around the world build autonomous robotic submarines which compete in a rigorous underwater obstacle course, which simulates real world tasks robots may be expected to perform.

Power Requirements

- Receives a 14.8V line from the backplane board
- Must deliver five different power outputs to the backplane

$m\ddot{\theta} = U - \frac{1}{2}\rho C_d A\dot{\theta}^2$

ODE of Plant Dynamics

Bode Plot of plant dynamics linearized at thetadot = 0, 0.2, 0.4, 0.6, 0.8

Controller Design

- Stability concerns for $\theta \approx 0$
- Drag: acts as a differential term
- Integrator: unfeasible
 - Third pole at $\omega = 0$ rad/s destabilizes system when $\dot{\theta} \approx 0$ rad/s
 - PM ≈ -90 degrees
- Gain Scheduled Lead Lag
 Compensator
 - Boost phase margin at $\omega \approx 10$ rad/s
 - Boost gain margin

Plant Analysis

- Drag makes system non-linear, therefore harder to develop a controller
- Linearize Plant around specific operating points thetadot
- Develop controllers individually and use gain scheduling

 $\frac{(s+2.68)(s+1)}{(s+37.32)(s+0.01)}(69.64+176.89|\dot{\theta}|)$

—Position

Error

Final Controller Design

Simulated Response To A 90 Degree Turn

Time [seconds]

Closed loop step response of

plant and controller

- Makes use of the
 STMicroelectronics HAL (Hardware
 develop a

 Abstraction Layer) libraries
 - Implements UART communication,
 8 simultaneous PWM signals

Software

 Performs controls algorithms as data is received, ~10-20 Hz

Hardware

- Custom PCB
- STM32F767Z1 ARM M7 microcontroller
- FT232 UART/USB converter to communicate with robosub main PC
- Power conversion: 5V to 3.3V
- JTAG programming interface

Backplane

Controls Board

- Provide connectivity and stability to merge board, ESC holders, control board and power conversion board.
- Takes in 14.8V at 40A from current merge circuit.
- Delivers 5V, 12V, 19V, and 48V from the power conversion board to the controls system, CPU, and sensors.
- Provide PWM from the controls system to ESCs.

PCB layout for the Backplane

Power Board

- 5V with maximum current draw of 1A for digital components of the submarine
- 12V with maximum current draw of 3A for electromechanical actuators
- 19V with maximum current draw of 4A for Central Processing Unit (CPU)
- 48V with maximum current draw of 0.5A for Doppler Velocity Logger (DVL)
- 48V with maximum current draw of 0.5A for a camera through Power over Ethernet (PoE)
- Current sensing using current shunt monitors and Arduino microcontroller.

PCB layout for the Merge board

PCB layout for the Power board

Merge Board

- Current controlled positive high voltage ideal diode controller (Current merge circuit) to get a 200A output from two 100A batteries at 14.8V.
- 14.8V, 140A output for motors through kill switch to turn off the motors for safety.
- Current sensing using current shunt monitors and Arduino microcontroller.