Itérations : approfondissements et exemples

Exemples d'autres formes de boucles for

```
for (int p(0); p < 10; p += 2) { ... la variable p prendra les valeurs de 0, 2, 4, 6, 8 (p += 2 est équivalent à p = p + 2)
```

```
for(int i(0); i >= 0; ++i) {
```

la condition est toujours vraie (du moins dans le principe).

La boucle est répétée indéfiniment et la variable i prendra toutes les valeurs positives que le type int peut représenter

Boucles infinies

La boucle for peut ne pas s'arrêter, ce qui se produit quand la condition est toujours vraie. Plusieurs causes sont possibles:

1. On s'est trompé sur la condition:

Par exemple:

```
for (int i(0); i > -1; ++i) { // !!!
```

2. On s'est trompé sur l'incrémentation:

```
for(int i(0); i < 10; ++j) { // !!!</pre>
```

j est incrémenté au lieu de i, i garde donc toujours la valeur 0, et la boucle ne s'arrête pas.

Pas de point-virgule (;) à la fin de l'instruction for

Les instructions suivantes n'affichent qu'une seule fois la chaine "bonjour":

```
for(int i(0); i < 10; ++i(;)
cout << "bonjour" << endl;</pre>
```

Le point-virgule seul est considéré comme une instruction (qui ne fait rien).

Le corps de la boucle est donc constitué de cette instruction qui ne fait rien:

```
for(int i(0); i < 10; ++i)
;
cout << "bonjour" << endl;</pre>
```

Attention aux accolades

```
for(int i(0); i < 5; ++i)
   cout << "i = " << i << endl;

affiche:
   i = 0
   i = 1
   i = 2
   i = 3
   i = 4
   Bonjour

Interprétation:
   for(int i(0); i < 5; ++i)
      cout << "i = " << i << endl;

cout << "Bonjour" << endl;</pre>
```

Evitez de modifier une variable compteur à l'intérieur d'une boucle for

```
for(int i(0); i < 10; ++i) {
    ...
    if (...)
    --i; // !!!
}</pre>
```

- Ça ne fera sans doute pas ce que vous voulez : n'oubliez pas que la boucle for, de son côté, incrémente la variable i.
- 2. Un relecteur risque de ne pas s'apercevoir que la variable est modifiée également à l'intérieur de la boucle, et de ne pas comprendre le fonctionnement.

Moyenne de 4 notes

Sans boucle for, en utilisant 5 variables:

```
double note1;
cout << "Entrez la note numero 1" << endl;
cin >> note1;

double note2;
cout << "Entrez la note numero 2" << endl;
cin >> note2;

double note3;
cout << "Entrez la note numero 3" << endl;
cin >> note3;
cout << "Entrez la note numero 3" << endl;
cin >> note3;
double note4;
cout << "Entrez la note numero 4" << endl;
cin >> note4;
double somme(note1 + note2 + note3 + note4);
cout << "Moyenne = " << somme / 4 << endl;</pre>
```

Sans boucle for, en n'utilisant que 2 variables:

```
double note, somme(0.0);

cout << "Entrez la note numero 1" << endl;
cin >> note;

somme = somme + note;

cout << "Entrez la note numero 2" << endl;
cin >> note;

somme = somme + note;

cout << "Entrez la note numero 3" << endl;
cin >> note;

somme = somme + note;

cout << "Entrez la note numero 4" << endl;
cin >> note;
somme = somme + note;

cout << "Entrez la note numero 4" << endl;
cin >> note;
somme = somme + note;

cout << "Moyenne = " << somme / 4 << endl;</pre>
```


Pour vérifier le programme précédent, supposons que l'utilisateur entre les notes 5, 4, 6 et 4: double note, somme(0.0); note cout << "Entrez la note numero 1" << endl;</pre> cin >> note: somme = somme + note; cout << "Entrez la note numero 2" << endl;</pre> cin >> note; somme = somme + note; cout << "Entrez la note numero 3" << endl;</pre> cin >> note; somme = somme + note; cout << "Entrez la note numero 4" << endl;</pre> cin >> note; somme = somme + note; cout << "Moyenne = " << somme / 4 << endl;</pre>

```
Même programme en utilisant une boucle for.

double note, somme (0.0);

for (int i(1); i <= 4; ++i) {
   cout << "Entrez la note numero " << i << endl;
   cin >> note;
   somme = somme + note;
}

cout << "Moyenne = " << somme / 4 << endl;</pre>
```

```
double note, somme(0.0);

for(int i(1); i <= 4; ++i) {
  cout << "Entrez la note numero " << i << endl;
  cin >> note;
  somme = somme + note;
}

cout << "Moyenne = " << somme / 4 << endl;</pre>
```

```
comment modifier le code pour laisser l'utilisateur choisir le nombre de notes ?

double note, somme(0.0);

for(int i(1); i <= 4; ++i) {
   cout << "Entrez la note numero " << i << endl;
   cin >> note;
   somme = somme + note;
}

cout << "Moyenne = " << somme / 4 << endl;</pre>
```

```
double note, somme(0.0);
int nombre de notes;
cout << "Entrez le nombre de notes" << endl;</pre>
cin >> nombre de notes;
for(int i(1); i <= nombre_de_notes; ++i) {</pre>
 cout << "Entrez la note numero " << i << endl;</pre>
 cin >> note;
 somme = somme + note;
cout << "Moyenne = " << somme / nombre_de_notes << endl;</pre>
```

```
Il y a un bug!
double note, somme(0.0);
int nombre de notes;
cout << "Entrez le nombre de notes" << endl;</pre>
cin >> nombre de notes;
for(int i(1); i <= nombre_de_notes; ++i) {</pre>
  cout << "Entrez la note numero " << i << endl;</pre>
 cin >> note;
  somme = somme + note;
cout << "Moyenne = " << somme / nombre_de_notes << endl;</pre>
```

Une solution:

```
double note, somme(0.0);
int nombre de notes;
cout << "Entrez le nombre de notes" << endl;</pre>
cin >> nombre de notes;
if (nombre_de_notes > 0) {
 for(int i(1); i <= nombre de notes; ++i) {</pre>
    cout << "Entrez la note numero " << i << endl;</pre>
   cin >> note;
   somme = somme + note;
  cout << "Moyenne = " << somme / nombre de notes << endl;</pre>
}
```

Boucles imbriquées

Reprenons l'exemple précédent de la table de multiplication par 5:

```
for(int i(1); i <= 10; ++i) {</pre>
  cout << "5 multiplie par " << i << " vaut " << 5 * i << endl;</pre>
```

Supposons qu'on veuille maintenant afficher toutes les tables de multiplication, de 2 à 10.

Il suffit de mettre la boucle précédente dans une autre boucle, et de remplacer le 5 par...ce qu'il faut.

Boucles imbriquées

```
for (int j(2); j <= 10; ++j) {
  for (int i(1); i <= 10; ++i) {
    cout << "5 multiplie par " << i << " vaut " << 5 * i << endl;
  }
}
affiche 9 fois la table de multiplication par 5</pre>
```

Boucles imbriquées

affiche la table de multiplication par 2, puis par 3, jusque 10.

```
for(int j(2); j <= 10; ++j) {
  for(int i(1); i <= 10; ++i) {
    cout << j << " multiplie par " << i << " vaut " << j * i << endl;
  }
}</pre>
```

```
for(int j(2); j <= 10; ++j) {
  cout << "Table de multiplication par " << j << ":" << endl;
  for(int i(1); i <= 10; ++i) {
    cout << j << " multiplie par " << i << " vaut " << j * i << endl;
  }
}</pre>
```

```
for(int j(2); j <= 10; ++j) {
    cout << "Table de multiplication par " << j << ":" << endl;

    for(int i(1); i <= 10; ++i) {
        cout << j << " multiplie par " << i << " vaut " << j * i << endl;
    }
}

Table de multiplication par 2:
2 multiplie par 1 vaut 2</pre>
```

```
for(int j(2); j <= 10; ++j) {
  cout << "Table de multiplication par " << j << ":" << endl;
  for(int i(1); i <= 10; ++i) {
   cout << j << " multiplie par " << i << " vaut " << j * i << endl;
}

Table de multiplication par 2:
2 multiplie par 1 vaut 2
2 multiplie par 2 vaut 4
...
2 multiplie par 10 vaut 20
</pre>
```

```
for(int j(2); j <= 10; ++j) {
  cout << "Table de multiplication par " << j << ":" << endl;
  for(int i(1); i <= 10; ++i) {
    cout << j << " multiplie par " << i << " vaut " << j * i << endl;
  }
}

Table de multiplication par 2:
2 multiplie par 1 vaut 2
2 multiplie par 2 vaut 4
...
2 multiplie par 10 vaut 20
</pre>
```

```
for(int j(2); j <= 10; ++j) {
   cout << "Table de multiplication par " << j << ":" << endl;

   →for(int i(1); i <= 10; ++i) {
     cout << j << " multiplie par " << i << " vaut " << j * i << endl;
}

Table de multiplication par 2:
2 multiplie par 1 vaut 2
2 multiplie par 2 vaut 4
...
2 multiplie par 10 vaut 20
Table de multiplication par 3:
</pre>
```

```
for(int j(2); j <= 10; ++j) {
  cout << "Table de multiplication par " << j << ":" << endl;
  for(int i(1); i <= 10; ++i) {
    → cout << j << " multiplie par " << i << " vaut " << j * i << endl;
  }
}

Table de multiplication par 2:
2 multiplie par 1 vaut 2
2 multiplie par 2 vaut 4
...
2 multiplie par 10 vaut 20
Table de multiplication par 3:
3 multiplie par 1 vaut 3</pre>
```