Wrap-up (from Mon) topologies on R, so far:

- analytic
- indiscrete
- discrete
- finite-complement

<u>Df</u> given topologies T, T' on the same X

if T sub T', then we say that

T is <u>coarser</u> than T'

T' is <u>finer</u> than T

[T' is more refined: it sees more open sets]

 \underline{Ex} T_{indisc} sub T_f sub T_{an} sub T_{disc}

Rem topologies can be incomparable: think about $X = \{a, b, c\}$

[notice: most q's about $T_{an} \approx q$'s about balls]

(Munkres §13) {B_i}_{i in I} any collection of subsets of X

 \underline{Df} {B_i}_{i in I} is a <u>basis</u> (for a top) on X iff

- 1) X = bigcup_{i in I} B_i
- 2) for all i, j in I, and x in B_i cap B_j, have k in I s.t. x in B_k sub B_i cap B_j ["B i cap B j is covered by B k's"]

Rem Munkres also discusses "subbases"

any basis generates a topology:

Thm if {B_i}_{i in I} is a basis on X, then

 $T = \{U \text{ sub } X \mid \text{ for all } x \text{ in } U, \text{ have i in I s.t.}$ $x \text{ in B_i sub } U\}$

is a topology on X [note! formula includes $J = \emptyset$]

<u>Pf</u> 1) Ø, X in T [why?]

2) T is closed under unions [why?]

to show 3) T is closed under finite intersections:

by induction, just need to show: if U, V in T, then U cap V in T

U = bigcup_{j in J} B_i for some J sub I
V = bigcup_{k in K} B_i for some K sub I
U cap V = bigcup_{j in J, k in K} (B_j cap B_k)

for all j in J and k in K and x in B_j cap B_k, have ℓ in I s.t. x in B_ ℓ sub B_j cap B_k so x in B_ ℓ sub U cap V

Ex $\{B(x, \delta) \mid x \text{ in R and } \delta > 0\}$ is a basis for the analytic top on R [why?]

same as $\{(a, b) \mid a < b\} \text{ [why?]}$

Rem different bases can generate the same topology

[criterion to check when a subcoll is a basis]

Thm suppose T is a topology on X, {B_i}_{i in I} a subcollection of T

s.t. for all U in T, and x in U, there is some k in I s.t. x in B_k sub U

then $\{B_i\}_{i \in I}$ in $I\}$ is a basis, and it generates T

Pf
1) X = bigcup_{i in I} B_i [why?]
2) pick i, j, and x in B_i cap B_j
B_i cap B_j in T since B_i, B_j in T

get k s.t. x in B_k sub B_i cap B_k

so {B_i}_i is a basis

 \underline{Ex} recall: $\{(a, b) \mid a < b\}$ is a basis for the analytic top on R

is $\{(a, b) \mid a < b \text{ and } a, b \text{ in } Q\}$ a basis? [yes] is $\{(a, b) \mid a < b \text{ and } a, b \text{ in } Z\}$ a basis? [no]

 $\{[a, b) \mid a < b\}$

Q1 is {[a, b) | a, b in R} really a basis? [yes]

Q2 how does T_{ℓ} compare to T_{an} ?

and T is generated by {B_i}_{i in I} tautologically

<u>Thm</u>	T_{ℓ} is strictly finer than T_{ℓ}	(Munkres §18, 16) recall from real analysis:
<u>Pf</u>	T_ ℓ is finer than T_{an}: suppose U anlytc open in R	f : R^n to R^m is <u>Bolzano continuous</u> iff
	suppose x in U pick a < b s.t. x in (a, b) sub U then [x, b) sub (a, b)	for all x in R^n and $\epsilon > 0$, there exists $\delta > 0$ s.t. $ x - x' < \delta$ implies $ f(x) - f(x') < \epsilon$
		equivalently
strict because [0, 1) in T_ℓ but notin T_{an}		for all x in R^n and $\varepsilon > 0$, there exists $\delta > 0$ s.t. x' in B(x, δ) implies f(x') in B(f(x), ε)
T_	indisc $< T_f < T_{an} < T_\ell < T_disc$	
		equivalently

for all x in R^n and $\epsilon > 0$, there exists $\delta > 0$ s.t.

 $B(x, \delta)$ sub $f^{-1}(B(f(x), \epsilon))$

will write R_{ℓ} to mean "R in the topology T_{ℓ} ", etc.

<u>Goal</u> generalize to topological spaces

Df a function f : X to Y is <u>continuous</u> iff V open in Y implies f^{-1}(V) open in X

Thm f: R^n to R^m is Bolzano cts iff f is cts wrt the analytic topologies

[<u>Pf</u> suppose f cts wrt analytic topologies:

for all x in R^n and $\epsilon > 0$, want $\delta > 0$ s.t. $|x - x'| < \delta$ implies $|f(x) - f(x')| < \epsilon$ know: B(f(x), ϵ) is open in R^m so f^{-1}(B(f(x), ϵ)) is open in R^n so have $\delta > 0$ s.t. B(x, δ) sub f^{-1}(B(f(x), ϵ)) suppose f Bolzano cts:

for all V open in Y, want f^{-1}(V) open in X pick x in f^{-1}(V) want $\delta > 0$ s.t. B(x, δ) sub f^{-1}(V) pick $\epsilon > 0$ s.t. B(f(x), ϵ) sub V pick $\delta > 0$ s.t. for all x' s.t. $|x - x'| < \delta$, have $|f(x) - f(x')| < \epsilon$ then f(B(x, δ)) sub B(f(x), ϵ) sub V so B(x, δ) sub f^{-1}(V)]

 each C_i is open in Y
so each f^{-1}(C_i) is open in X

Df cts f : X to Y is a <u>homeomorphism</u> iff it has a two-sided inverse g : Y to X s.t. g is also cts

now suppose $f^{-1}(C_i)$ open in X for all i in I pick V open in Y know: $V = bigcup_{i in J} C_i$ for some J sub I $f^{-1}(V) = f^{-1}(bigcup_{i in J} (C_i))$ = $bigcup_{i in J} f^{-1}(C_i)$ so $f^{-1}(V)$ is open in X

in this case, we say X and Y are <u>homeomorphic</u>

["what is shape?" "X and Y have the same shape when there is a homeo between them"]

Rem any homeo is a cts bijection but a cts bijection need not be a homeo: [already have an example: which?]

f: R ℓ to R $\{an\}$, f(x) = x

<u>Ex</u> id : X to X is a homeo when we use the same topology for domain and range

Ex which maps are continuous?

f: R_{an} to R_ ℓ , f(x) = x [no: [0, 1)] f: R_ ℓ to R_{an}, f(x) = x [yes] f: R_{an} to R_ ℓ , f(x) = 32 [yes]

<u>Ex</u> other homeo's wrt analytic topologies:

f: R to R,
f: R^2 to R^2
$$f(x, y) = (x + y, (x - y)^3)$$

[why?]

Q is there a homeo R to R^2? vice versa?

Bonus Material

recall that Z is the set of integers

Df the <u>evenly spaced</u> topology on Z

is generated by the basis

 $\{aZ + b \mid a, b \text{ in } Z \text{ and } a \neq 0\}$

[will show on PS1 that this really is a basis]

<u>Thm</u> there are infinitely many prime numbers

Proof (Furstenberg, 1955)

assume finitely many primes p

then $Z - bigcup_p pZ = bigcap_p (Z - pZ)$ is open because Z - pZ is open for all p

but $Z - bigcup_p pZ = \{\pm 1\}$ because if |a| > 1, then some prime divides a

so {±1} is open

but $\{\pm 1\}$ is not an evenly spaced set in Z \square