Regression part 1: Anatomy of the ANOVA

16 May 2022

- Data from 10 individual plants
- Yield of fruit in grams
- What will our next yield be?

Y mean

$$Y_i - \overline{Y}$$
 observation mean

Sum of Squared Deviations

$$\sum (Y_i - \overline{Y})^2$$

Sum of Squared Deviations

$$\sum_{i} (Y_i - \overline{Y})^2$$

- 1) $(17.7 18.45)^2$
- 2) $(18.7 18.45)^2$
- 3) $(17.2 18.45)^2$
- 4) $(20.1 18.45)^2$
- 5) $(19.1 18.45)^2$
- 6) $(17.7 18.45)^2$
- 7) $(18.9 18.45)^2$
- 8) $(19.8 18.45)^2$
- 9) $(15.8 18.45)^2$
- + 10) $(19.5 18.45)^2$

Sum of Squared Deviations = 16.045

Sum of squares

Variance =
$$\frac{\sum (Y_i - \overline{Y})^2}{n-1}$$
Degrees of freedom

What if we know more about our system?

- Mass in grams of our fruit yield
- Concentration in parts per million of nitrogen in the soil

What if we know more about our system?

Fruit mass likely depends
 upon the nitrogen available to
 the plant.

What if we know more about our system?

- Fruit mass likely depends
 upon the nitrogen available to
 the plant.
- The starting nitrogen concentration is likely independent of the fruit on the plant.

 Model how a dependent variable (Y) changes over an independent variable (X)

- Model how a dependent variable (Y) changes over an independent variable(X)
- "regression"
- $\bullet Y = mX + b$

$$Y = mX + b$$

$$Y_{i} = \beta_{1}X_{i} + \beta_{0}$$

$$Y_{intercept}$$
Parameters

$$Y = mX + b$$

$$Y_{i} = \beta_{1}X_{i} + \beta_{0}$$

$$Y_{i} = b_{1}X_{i} + b_{0} + error$$

$$Slope Y intercept$$

$$Statistics$$

- Model how a dependent variable (Y) changes over an independent variable(X)
- "regression"
- Y = mX + b
- Does not have to be a straight line!

- Model how a dependent variable (Y) changes over an independent variable(X)
- "regression"
- Y = mX + b
- Does not have to be a straight line!
- No parameter in the model is multiplied by another parameter
- $Y_i = b_1 X_i + b_0 + error$

Small Group Discussion - 3 min.

- How is the linear model different from a correlation model?
- Come up with a few examples of data that would be better modeled as a general linear model than as a correlation/covariation.

So you want to use a linear model?

How do we estimate β_1 and β_0 ?

$$Y_i = \beta_1 X_i + \beta_0$$

So you want to use a linear model?

How do we estimate β_1 and β_0 ?

Ordinary Least Squares

$$\beta_1 \sim b_1 = \frac{cov(X,Y)}{var(X)}$$

$$\beta_1 \sim b_1 = \frac{cov(X,Y)}{var(X)}$$

$$b_1 = \frac{(X_i - \overline{X})(Y_i - \overline{Y})}{(X_i - \overline{X})(X_i - \overline{X})}$$

$$\beta_1 \sim b_1 = \frac{cov(X,Y)}{var(X)}$$

$$b_1 = \frac{(X_i - \overline{X})(Y_i - \overline{Y})}{(X_i - \overline{X})(X_i - \overline{X})}$$

$$\beta_1 \sim b_1 = \frac{cov(X,Y)}{var(X)}$$

$$b_1 = \frac{(X_i - \overline{X})(Y_i - \overline{Y})}{(X_i - \overline{X})(X_i - \overline{X})}$$
Run
Rise

$$\beta_1 \sim b_1 = \frac{cov(X,Y)}{var(X)}$$

$$\beta_1 \sim b_1 = \frac{cov(X,Y)}{var(X)}$$

$$\beta_1 \sim b_1 = \frac{cov(X,Y)}{var(X)}$$

$$Y_i = \mathbf{b}_1 \cdot X_i + \mathbf{b}_0$$

$$\beta_1 \sim b_1 = \frac{cov(X,Y)}{var(X)}$$

$$Y_i = b_1 \cdot X_i + b_0$$

$$\beta_1 \sim b_1 = \frac{cov(X,Y)}{var(X)}$$

$$Y_i = \mathbf{b}_1 \cdot X_i + \mathbf{b}_0$$

$$b_0 = \overline{Y} - b_1 \cdot \overline{X}$$

$$\beta_1 \sim b_1 = \frac{cov(X,Y)}{var(X)}$$

$$\beta_0 \sim b_0 = \overline{Y} - b_1 \cdot \overline{X}$$

$$Y_i = b_1 X_i + b_0$$

$$Y_i = b_1 X_i + b_0$$

 $Y_i = 0.92 X_i + 10.66$

$$Y_i = b_1 X_i + b_0$$

 $Y_i = 0.92 X_i + 10.66$

Expected Fruit Mass = 0.92 · (Observed Nitrogen) + 10.66

$$Y_i = b_1 X_i + b_0$$

 $Y_i = 0.92 X_i + 10.66$

Expected Fruit Mass = $0.92 \cdot (Observed Nitrogen) + 10.66$

Observed Nitrogen 个 1ppm: Expected Fruit Mass 个 0.9g

$$Y_i = b_1 X_i + b_0$$

 $Y_i = 0.92 X_i + 10.66$

Expected Fruit Mass = 0.92 · (Observed Nitrogen) + 10.66

Observed Nitrogen = 0.0 : Expected Fruit Mass 10.66

Lets jump into R and see how this is done...

Predicted values
Fitted values

$$\widehat{Y}_i = \mathbf{b}_1 \cdot X_i + \mathbf{b}_0$$

Total sum of squares
$$\sum (Y_i - \overline{Y})^2$$

Model sum of squares
SS Regression

$$\sum (\hat{Y}_i - \overline{Y})^2$$

Residual sum of squares
$$\sum (Y_i - \hat{Y}_i)^2$$

Model sum of squares SS Regression

$$\sum (\hat{Y}_i - \overline{Y})^2$$

Model sum of squares SS Regression

$$\sum (\hat{Y}_i - \overline{Y})^2$$

Model sum of squares SS Regression

$$\sum (\hat{Y}_i - \overline{Y})^2$$

Residual sum of squares
$$\sum (Y_i - \hat{Y}_i)^2$$

Residual sum of squares
$$\sum (Y_i - \hat{Y}_i)^2$$

Total sum of squares **SS Total**

$$\sum (Y_i - \overline{Y})^2$$

Coefficient of determination R²

Model sum of squares

$$R^{2} = \frac{\sum (\hat{Y}_{i} - \overline{Y})^{2}}{\sum (Y_{i} - \overline{Y})^{2}}$$

Total sum of squares

How much variation in Y does our model explain on average?

Mean Square=
$$\frac{\sum (\hat{Y}_i - \overline{Y})^2}{df}$$

If the model is "good", it should account for more variation on average than the average variation the error accounts for

$$F = \frac{\frac{\sum (\hat{Y}_i - Y)^2}{df}}{\frac{\sum (Y_i - \hat{Y}_i)^2}{df}}$$