Trigonometric Functions on the Perimeter of any Regular Polygon

Eli Ruminer

Table of Contents

1	Introduction	2
2	Theroems	2
3	Trigonometric Equations 3.1 Identities	2 4
4	Proof	4
5	Shape Equations	7

1 Introduction

This paper derives and proves a set of functions that serve to find the point of intersection between an angle in standard position and an n-sided regular polygon through only algebra. Through these, the standard equation for any regular polygon can be derived.

2 Theroems

Theorem 1.1 $\arccos(\cos(ax))$ is periodic over $\frac{2\pi}{a*n}$. $\cos(ax)$ is periodic over $\frac{2\pi}{a*n}$ thus $\arccos(\cos(ax))$ must also be.

Theorem 1.2 For $x \in \mathbb{R}$ $\arccos(\cos(ax)) \in [0, \pi]$.

 $\cos(x)$ has a domain over \mathbb{R} and a range of [-1,1], $\arccos(x)$ has a domain over [-1,1] and a range of $[0,\pi]$. Due to the range of cos being the domain of arccos, all real numbers can be an input of x, and all numbers on the interval [-1,1] can be an output.

Theorem 1.3 $\cos(n(a+\frac{2\pi}{n}))=\cos(na)$ $\cos(n(a+\frac{2\pi}{n}))$ expands to $\cos(n(a+2\pi))$ which due to cosine's periodic nature evaluates to $\cos(na)$

Theorem 2.1 $\sin(\alpha) - \sin(\beta) = 2\sin(\frac{\alpha+\beta}{2})\cos(\frac{\alpha-\beta}{2})$

Theorem 2.2 $\cos(\alpha) - \cos(\beta) = -2\sin(\frac{\alpha+\beta}{2})\sin(\frac{\alpha-\beta}{2})$

3 Trigonometric Equations

Let $n = \{x : x \in \mathbb{Z}^+ \text{ and } x \ge 3\}$

$$d_{n}(\theta) = \cos(\frac{\pi}{n}) \sec(\frac{\pi - \arccos(\cos(n\theta))}{n})$$
$$\cos_{n}(\theta) = d_{n}(\theta) \cos(\theta)$$
$$\sin_{n}(\theta) = d_{n}(\theta) \sin(\theta)$$

This is derived through the original functions:

$$h_n(\theta) = \sin(\frac{\pi}{2} - \frac{\pi}{n} + (\theta \mod \frac{2\pi}{n})) - \sin(\frac{\pi}{2} - \frac{\pi}{n})$$

$$d_n(\theta) = \frac{h_n(\theta)}{\sin(\frac{\pi}{2} - \frac{\pi}{n} + (\theta \mod \frac{2\pi}{n}))}$$

$$\cos_n(\theta) = (1 - d_n(\theta))\cos(\theta)$$

$$\sin_n(\theta) = (1 - d_n(\theta))\sin(\theta)$$

These functions follow the premise that any n-sided regular polygon (shape s_n) centered at (0,0) can be circumscribed within a circle where each vertex touches the circumference of the circumcircle.

Arc a_n can be constructed which is $\frac{1}{n^{th}}$ of a circle, its diameter will be the same length as any line which constructs s_n , and it's circumference will equal to the circumference of the section of the circumcircle spanning from adjacent vertices on s_n .

Thus, the height of a_n at a given point on a circle subtracted from the radius of the circle will result in the distance from the midpoint of s_n to the point on the perimeter of s_n which intersects the ray of angle θ drawn in standard position.

 $h_n(\theta)$ serves to find the height of a_n at a position by splitting the circumcircle into n^{ths} (resulting in a period of $\frac{2\pi}{n}$), finding the height of a point on a_n through sin and changing from the "left" vertex to the "right" vertex over the period of a_n . The use of mod makes the function repeat over each period. It then subtracts by the height of the "right" vertex to equal 0 when $\theta=0$

 $d_n(\theta)$ divides the height $(h_n(\theta))$ by the angle between the assumed intersection point on s_n and the intersection point on the circumcircle to get the actual distance. These functions then simplify to:

$$d_n(\theta) = \cos(\frac{\pi}{n}) \sec(\frac{\pi}{n} - (\theta \mod \frac{2\pi}{n}))$$
$$\cos_n(\theta) = d_n(\theta) \cos(\theta)$$
$$\sin_n(\theta) = d_n(\theta) \sin(\theta)$$

Which is not algebraic due to mod (and the resultant floor function behind it), yet it can be noted that due to the nature of the original $h_n(\theta)$, θ mod $\frac{2\pi}{n}$ can be substituted for an equivalent function which has an equal period of $\frac{2\pi}{n}$, increases linearly over $[0, \frac{2\pi}{n}]$ to $[0, \frac{\pi}{n}]$ and decreases linearly at the same rate from $[\frac{\pi}{n}, \frac{2\pi}{n}]$.

These requirements can be met by $\frac{\arccos(\cos(n\theta))}{n}$, which due to **Theorem 1.1** is periodic over $\frac{2\pi}{n}$ and due to **Theorem 1.2** has a domain of $n\theta \in \mathbb{R}$ and a range of $[0, \frac{\pi}{n}]$ thus changing the above equations to:

$$\begin{split} d_n(\theta) &= \cos(\frac{\pi}{n}) \sec(\frac{\pi - \arccos(\cos(n\theta))}{n}) \\ &\cos_n(\theta) = d_n(\theta) cos(\theta) \\ &\sin_n(\theta) = d_n(\theta) sin(\theta) \end{split}$$

Identities 3.1

Identity 1.1

$$\cos_n(\theta + \frac{2\pi}{n}) = d_n(\theta)\cos(\theta + \frac{2\pi}{n})$$
$$\sin_n(\theta + \frac{2\pi}{n}) = d_n(\theta)\sin(\theta + \frac{2\pi}{n})$$

This identity is true due to **Theorem 1.3**

Identity 1.2 When $0 \le \theta \le \frac{2\pi}{n}$ then $d_n(\theta) = \cos(\frac{\pi}{n}) \sec(\frac{\pi}{n} - \theta)$ When θ only spans one period, $\frac{\arccos(\cos(n\theta))}{n}$ is not required to make the function periodic. **Identity 1.3** Let $i = \mathbb{Z}$ then:

$$\cos_n(i\frac{2\pi}{n}) = (1)\cos(i\frac{2\pi}{n}) = \cos(i\frac{2\pi}{n})$$
$$\sin_n(i\frac{2\pi}{n}) = (1)\sin(i\frac{2\pi}{n}) = \sin(i\frac{2\pi}{n})$$

This is true because $\arccos(\cos(n\theta))$ evaluates to 0 whenever $\theta = i\frac{2\pi}{n}$, which means $\sec(\frac{\pi}{n} - \frac{\arccos(\cos(n\theta))}{n})$ simplifies to $\sec(\frac{\pi}{n})$ which means $d_n = \sec(\frac{\pi}{n})\cos(\frac{\pi}{n}) = 1$

Proof 4

Let $i = \mathbb{Z}$. Assume s_n is made of n vertices and n line segments with the i^{th} vertex at the point $(\cos(i\frac{2\pi}{n}), \sin(i\frac{2\pi}{n}))$. The ith line segment, L_i, spans between v_i and v_{i+1} and is represented by the equation

$$L_{i} = \frac{\sin((i+1)\frac{2\pi}{n}) - \sin(i\frac{2\pi}{n})}{\cos((i+1)\frac{2\pi}{n}) - \cos(i\frac{2\pi}{n})}x + \sin(i\frac{2\pi}{n}) - \frac{\sin((i+1)\frac{2\pi}{n}) - \sin(i\frac{2\pi}{n})}{\cos((i+1)\frac{2\pi}{n}) - \cos(i\frac{2\pi}{n})}\cos(i\frac{2\pi}{n})$$

which due to **Theorem 2.1** and **Theorem 2.2** simplifies to

$$L_{i} = -\cot((2i+1)\frac{\pi}{n})x + \sin(i\frac{2\pi}{n}) + \cot((2i+1)\frac{\pi}{n})x$$

Let $0 \le a < b \le \frac{2\pi}{n}$, a "modified" line can be drawn with the equation $\sin_n(\theta)$ and $\cos_n(\theta)$ which would be written as

$$y_m = \frac{\sin_n(b + i\frac{2\pi}{n}) - \sin_n(a + i\frac{2\pi}{n})}{\cos_n(b + i\frac{2\pi}{n}) - \cos_n(a + i\frac{2\pi}{n})}x + \sin_n(a) - \frac{\sin_n(b + i\frac{2\pi}{n}) - \sin_n(a + i\frac{2\pi}{n})}{\cos_n(b + i\frac{2\pi}{n}) - \cos_n(a + i\frac{2\pi}{n})}\cos_n(a)$$

the slope of y_m can be simplified through these steps:

$$\frac{d_{n}(b+i\frac{2\pi}{n})\sin(b+i\frac{2\pi}{n})-d_{n}(a+i\frac{2\pi}{n})\sin(a+i\frac{2\pi}{n})}{d_{n}(b+i\frac{2\pi}{n})\cos(b+i\frac{2\pi}{n})-d_{n}(a+i\frac{2\pi}{n})\cos(a+i\frac{2\pi}{n})} \frac{d_{n}(b+i\frac{2\pi}{n})\sin(b+i\frac{2\pi}{n})\cos(b+i\frac{2\pi}{n})-d_{n}(a+i\frac{2\pi}{n})\cos(a+i\frac{2\pi}{n})}{d_{n}(b+i\frac{2\pi}{n})\cos(\frac{\pi}{n}-b)\sin(b+i\frac{2\pi}{n})-\sec(\frac{\pi}{n}-a)\sin(a+i\frac{2\pi}{n})} * \frac{\cos(\frac{\pi}{n}-a)\cos(\frac{\pi}{n}-b)\cos(\frac{\pi}{n}-b)}{\cos(\frac{\pi}{n}-b)\cos(b+i\frac{2\pi}{n})\cos(\frac{\pi}{n}-a)-\sin(a+i\frac{2\pi}{n})\cos(\frac{\pi}{n}-b)} \frac{\sin(b+i\frac{2\pi}{n})\cos(\frac{\pi}{n}-a)-\sin(a+i\frac{2\pi}{n})\cos(\frac{\pi}{n}-b)}{\cos(b+i\frac{2\pi}{n})\cos(\frac{\pi}{n}-a)-\cos(a+i\frac{2\pi}{n})\cos(\frac{\pi}{n}-b)} \frac{\sin(b+i\frac{2\pi}{n})\cos(\frac{\pi}{n}-a)-\sin(a+i\frac{2\pi}{n})\cos(\frac{\pi}{n}-b)}{\cos(b+i\frac{2\pi}{n})(\cos(\frac{\pi}{n})\cos(a)+\sin(\frac{\pi}{n})\sin(a))-\sin(a+i\frac{2\pi}{n})(\cos(\frac{\pi}{n})\cos(b)+\sin(\frac{\pi}{n})\sin(b))} * \frac{\sec(\frac{\pi}{n})}{\cos(b+i\frac{2\pi}{n})(\cos(a)+\sin(\frac{\pi}{n})\sin(a))-\sin(a+i\frac{2\pi}{n})(\cos(b)+\tan(\frac{\pi}{n})\sin(b))} \frac{\sin(b+i\frac{2\pi}{n})(\cos(a)+\tan(\frac{\pi}{n})\sin(a))-\sin(a+i\frac{2\pi}{n})(\cos(b)+\tan(\frac{\pi}{n})\sin(b))}{\cos(b+i\frac{2\pi}{n})(\cos(a)+\tan(\frac{\pi}{n})\sin(a))-\cos(a+i\frac{2\pi}{n})(\cos(b)+\tan(\frac{\pi}{n})\sin(b))} (3.1)$$

Splitting the equation up the numerator simplifies like so:

$$\sin(b + i\frac{2\pi}{n})(\cos(a) + \tan(\frac{\pi}{n})\sin(a)) - \sin(a + i\frac{2\pi}{n})(\cos(b) + \tan(\frac{\pi}{n})\sin(b))$$

$$(\sin(b)\cos(i\frac{2\pi}{n}) + \cos(b)\sin(i\frac{2\pi}{n}))(\cos(a) + \tan(\frac{\pi}{n})\sin(a)) - \dots$$

$$\dots(\sin(a)\cos(i\frac{2\pi}{n}) + \cos(a)\sin(i\frac{2\pi}{n}))(\cos(b) + \tan(\frac{\pi}{n})\sin(b))$$

$$\cos(a)\sin(b)\cos(\mathrm{i}\frac{2\pi}{\mathrm{n}}) + \sin(a)\sin(b)\cos(\mathrm{i}\frac{2\pi}{\mathrm{n}})\tan(\frac{\pi}{\mathrm{n}}) + \cos(a)\cos(b)\sin(\mathrm{i}\frac{2\pi}{\mathrm{n}}) + \dots$$

$$\dots\sin(a)\cos(b)\sin(\mathrm{i}\frac{2\pi}{\mathrm{n}})\tan(\frac{\pi}{\mathrm{n}}) - \sin(a)\cos(b)\cos(\mathrm{i}\frac{2\pi}{\mathrm{n}}) - \sin(a)\sin(b)\cos(\mathrm{i}\frac{2\pi}{\mathrm{n}})\tan(\frac{\pi}{\mathrm{n}}) - \dots$$

$$\dots\cos(a)\cos(b)\sin(\mathrm{i}\frac{2\pi}{\mathrm{n}}) - \cos(a)\sin(b)\sin(\mathrm{i}\frac{2\pi}{\mathrm{n}})\tan(\frac{\pi}{\mathrm{n}})$$

$$\cos(\mathrm{i}\,\frac{2\pi}{\mathrm{n}})(\cos(a)\sin(b)-\sin(a)\cos(b)) + \sin(\mathrm{i}\,\frac{2\pi}{\mathrm{n}})\tan(\frac{\pi}{\mathrm{n}})(\sin(a)\cos(b)-\cos(a)\sin(b))$$

$$\sin(\mathrm{i}\,\frac{2\pi}{\mathrm{n}})\tan(\frac{\pi}{\mathrm{n}})(\sin(a)\cos(b)-\cos(a)\sin(b)) - \cos(\mathrm{i}\,\frac{2\pi}{\mathrm{n}})(\sin(a)\cos(b)-\cos(a)\sin(b))$$

$$(\sin(i\frac{2\pi}{n})\tan(\frac{\pi}{n})-\cos(i\frac{2\pi}{n}))(\sin(a)\cos(b)-\cos(a)\sin(b))$$

$$(\sin(i\frac{2\pi}{n})\tan(\frac{\pi}{n})-\cos(i\frac{2\pi}{n}))\sin(a-b)$$

and the denominator simplifies to

$$\cos(b+\mathrm{i}\,\frac{2\pi}{\mathrm{n}})(\cos(a)+\tan(\frac{\pi}{\mathrm{n}})\sin(a))-\cos(a+\mathrm{i}\,\frac{2\pi}{\mathrm{n}})(\cos(b)+\tan(\frac{\pi}{\mathrm{n}})\sin(b))$$

$$(\cos(b)\cos(i\frac{2\pi}{n}) - \sin(b)\sin(i\frac{2\pi}{n}))(\cos(a) + \tan(\frac{\pi}{n})\sin(a)) - \dots$$
$$\dots(\cos(a)\cos(i\frac{2\pi}{n}) - \sin(a)\sin(i\frac{2\pi}{n}))(\cos(b) + \tan(\frac{\pi}{n})\sin(b))$$

$$\frac{\cos(a)\cos(b)\cos(\mathrm{i}\frac{2\pi}{\mathrm{n}})+\sin(a)\cos(b)\cos(\mathrm{i}\frac{2\pi}{\mathrm{n}})\tan(\frac{\pi}{\mathrm{n}})-\cos(a)\sin(b)\sin(\mathrm{i}\frac{2\pi}{\mathrm{n}})-\dots}{\sin(a)\sin(b)\sin(\mathrm{i}\frac{2\pi}{\mathrm{n}})\tan(\frac{\pi}{\mathrm{n}})-\cos(a)\cos(b)\cos(\mathrm{i}\frac{2\pi}{\mathrm{n}})-\cos(a)\sin(b)\cos(\mathrm{i}\frac{2\pi}{\mathrm{n}})\tan(\frac{\pi}{\mathrm{n}})+\dots}\\ \dots\sin(a)\cos(b)\sin(\mathrm{i}\frac{2\pi}{\mathrm{n}})+\underline{\sin(a)\sin(b)\sin(\mathrm{i}\frac{2\pi}{\mathrm{n}})\tan(\frac{\pi}{\mathrm{n}})}$$

$$(\cos(i\frac{2\pi}{n})\tan(\frac{\pi}{n}))(\sin(a)\cos(b) - \cos(a)\sin(b)) + \sin(i\frac{2\pi}{n})(\sin(a)\cos(b) - \cos(a)\sin(b))$$

$$(\cos(i\frac{2\pi}{n})\tan(\frac{\pi}{n}) + \sin(i\frac{2\pi}{n})(\sin(a)\cos(b) - \cos(a)\sin(b))$$

$$(\cos(i\frac{2\pi}{n})\tan(\frac{\pi}{n}) + \sin(i\frac{2\pi}{n})\sin(a - b)$$

meaning that we can now simplify the original fraction (denoted 3.1) to become:

$$\frac{(\sin(i\frac{2\pi}{n})\tan(\frac{\pi}{n})-\cos(i\frac{2\pi}{n}))\sin(a-b)}{(\cos(i\frac{2\pi}{n})\tan(\frac{\pi}{n})+\sin(i\frac{2\pi}{n}))\sin(a-b)}$$

$$\frac{\sin(i\frac{2\pi}{n})\tan(\frac{\pi}{n})-\cos(i\frac{2\pi}{n})}{\cos(i\frac{2\pi}{n})\tan(\frac{\pi}{n})+\sin(i\frac{2\pi}{n})}*\frac{\cos(\frac{\pi}{n})}{\cos(\frac{\pi}{n})}$$

$$\frac{\sin(i\frac{2\pi}{n})\sin(\frac{\pi}{n})-\cos(i\frac{2\pi}{n})\cos(\frac{\pi}{n})}{\cos(i\frac{2\pi}{n})\sin(\frac{\pi}{n})-\cos(i\frac{2\pi}{n})\cos(\frac{\pi}{n})}$$

$$\frac{\cos(i\frac{2\pi}{n})\sin(\frac{\pi}{n})+\sin(i\frac{2\pi}{n})\cos(\frac{\pi}{n})}{\cos(i\frac{2\pi}{n})\sin(i\frac{2\pi}{n})\cos(i\frac{\pi}{n})}$$

$$\frac{-(\cos(i\frac{2\pi}{n})\cos(i\frac{2\pi}{n})+\cos(\frac{\pi}{n})\sin(i\frac{2\pi}{n})}{\sin(i\frac{2\pi}{n}+\frac{\pi}{n})}$$

$$\frac{-\cos(i\frac{2\pi}{n}+\frac{\pi}{n})}{\sin(i\frac{2\pi}{n}+\frac{\pi}{n})}$$

$$-\cot(i\frac{2\pi}{n}+\frac{\pi}{n})$$

$$-\cot((2i+1)\frac{\pi}{n})$$

meaning that the equation of the "modified" line becomes:

$$y_m = -\cot((2i+1)\frac{\pi}{n})x + \sin_n(a+i\frac{2\pi}{n}) + \cot((2i+1)\frac{\pi}{n})\cos_n(a+i\frac{2\pi}{n})$$

This leads to the conclusion that when $0 \le a < b \le \frac{2\pi}{n}$ the slopes of y_m and y are equal. This leads to the fact that if a = 0, due to **Identity 1.3**, then for any applicable value of b y_m becomes:

$$y_m = -\cot((2i+1)\frac{\pi}{n})x + \sin(i\frac{2\pi}{n}) + \cot((2i+1)\frac{\pi}{n})\cos(i\frac{2\pi}{n})$$

Meaning that $y_m = L_i$ when a = 0 and due to **Identity 1.3** $\sin_n(a+i\frac{2\pi}{n}) = \sin(i\frac{2\pi}{n})$ and $\cos_n(a+i\frac{2\pi}{n}) = \cos(i\frac{2\pi}{n})$ thus the point at point p_a (located at $(\cos_n(a), \sin_n(a))$) is equal to point v_i .

Because $y_m = L_i$, point p_b (located at $(\cos_n(b), \sin_n(b))$) is always on line segment L_i , thus when $a \neq 0$, p_a must also always be on line segment L_i .

This means that for any value x where $0 \le x \le \frac{2\pi}{n}$, the point p_x (found at $(\cos_n(x + i\frac{2\pi}{n}), \sin_n(x + i\frac{2\pi}{n}))$) falls on line L_i of shape s_n , and since $i \in \mathbb{Z}$, any point p_θ (found at $(\cos_n(\theta), \sin_n(\theta))$) will always be located on the perimeter of shape s_n .

5 Shape Equations

From these formulas, the equation for any regular polygon can be derived. The equation is found through a mutation of the ellipse equation by $d_n(\theta)$:

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = d_n^2(\theta) * 1$$

To derive theta, one would start with the assumption that $\theta = \arctan(\frac{(y-k)a}{(x-h)b})$, which would find the angle at the correct point offset from the center, but, due to the left side of the equation involving x^2 , the shape is mirrored over x = h, which works perfectly for even sided polygons as they are symmetric over x = h. Yet, odd-sided polygons do not work due to their anti-symmetry over x = h. This can be fixed by firstly noting that the angle is calculated correctly in Quadrants I and IV, and π radians off from the expected angle in Quadrants II and III. Thus when x < h, π must be added to θ . Using the sign function, which is defined as

$$\operatorname{sgn}(x) = \frac{x}{|x|} = \frac{|x|}{x}$$

and modifying sgn to equal 1 when x < h and 0 when $x \ge h$ results in the formula:

$$-\frac{1}{2}(\frac{x-h}{|x-h|}-1)$$

which when multiplied by π and added to θ , θ becomes equal to:

$$\arctan(\frac{(y-k)a}{(x-h)b}) - \frac{\pi}{2}(\frac{x-h}{|x-h|} - 1)$$

meaning that the standard equation, with the above equation substitued for θ becomes:

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = d_n^2(\arctan(\frac{(y-k)a}{(x-h)b}) - \frac{\pi}{2}(\frac{x-h}{|x-h|} - 1))$$

Interestingly, due to the existence of θ inside this equation, a constant value can be added to it to make any shape rotate, allowing for quick and efficient rotation calculations.