Signali i sustavi – zadaci za bodove iz aktivnosti IV tjedan

- 1. Konstruirajte konačni automat koji prepoznaje paran broj pojavljivanja niza SIS u ulaznom nizu koji je sastavljen od nasumce odabranih simbola iz skupa ulazi = {S, I, odsutan}. Skup izlaznih simbola je izlazi = {1, odsutan} (automat daje na izlazu jedinicu kada prepozna paran broj pojavljivanja niz SIS, npr. za SISSIS). Funkciju prijelaza možete navesti dijagramom ili tablično.
- 2. Raspolažete s dvije sklopke i žaruljom prikazanima na slici. Sklopke su postavljene na krajeve hodnika i koriste se za paljenje i gašenje svjetla u hodniku. Konstruirajte konačni automat koji simulira opisanu situaciju tako da iz modela možemo odrediti položaje obje sklopke i stanje žarulje. Funkciju prijelaza možete navesti dijagramom ili tablično.

3. Konstruirajte konačni automat koji prepoznaje niz **abbab** u ulaznom nizu koji je sastavljen od nasumce odabranih simbola iz skupa $ulazi = \{a, b, odsutan\}$. Skup izlaznih simbola je $izlazi = \{0, 1, odsutan\}$ (automat daje na izlazu jedinicu kada se prepozna niz inače na izlazu daje nulu).

4. Neka je skup ulaznih i izlaznih signala {0, 1}. Konstruirajte konačan automat čija je ulazno izlazna funkcija:

$$y = \begin{cases} 1, & \text{ako } (x(n-3), (x(n-1)) = (0,1) \\ 0, & \text{inace} \end{cases}$$

Primjer rada: ulaz ..., 0,1,1,1,0,0,1,0,1,0,1,0,1,... izlaz ...,0,0,0,1,0,0,0,1,0,0,0,0,0,...

- 5. Ulaz u konačan automat je $x(n) = \{0,1,0,1,0,1,...\}$. Za svaki od zadanih odziva potrebno je konstruirati konačan automat koji na temelju gore navedenog ulaza generira dani izlaz, ako takav automat postoji, a ako takav automat ne postoji, obrazložiti zašto ne postoji!
 - a) $y(n) = \{a,b,a,b,a,b,...\}$
 - b) $y(n) = \{a, a, a, a, a, b, a, b, a, b, a, \dots\}$

c) $y(n) = \{a,b,a,a,b,b,a,a,a,b,b,b,...\}$

- 6. Komunikacijski kanal ima skup ulaznih simbola $Ulazi = \{0, 1\}$ i skup izlaznih simbola $Izlazi = \{0, 1, \bot\}$. Komunikacijski kanal za svaki ulazni simbol na izlazu uglavnom daje taj isti simbol, no ponekad nulu ili jedinicu zamijeni \bot simbolom. Kanal može na izlazu dati najviše tri \bot simbola u nizu. Definirajte nedeterministički automat koji modelira zadani komunikacijski kanal. Funkciju prijelaza možete navesti dijagramom ili tablicom.
- 7. Zadana su dva konačna automata, *Student* i *Studentica*. Automat *Student* generira niz **KISS** ili **KISSKISS** ovisno o tome koliko voli *Studenticu*, dok automat *Studentica* prepoznaje niz **KISS**. Funkcija prijelaza za oba zadana automata dana je na slici. Odredi skup ulaznih i izlaznih simbola za svaki zadani automat. Navedi uređenu petorku koja definira kaskadu *Student* → *Studentica* (funkciju prijelaza možete navesti dijagramom ili tablično). Koja stanja kaskade nisu dostupna?

8. Potrebno je definirati automat koji opisuje relaciju jednako. Na ulaz automata dolaze signali iz skupa {0, 1}. Automat u koraku *n* na izlazu daje nulu, ako se različit broj jedinica i nula pojavio na ulazu automata do tog koraka (uključujući spomenuti korak), a ako se na ulazu pojavio jednak broj jedinica i nula, tada automat na izlazu daje jedinicu. Je li dobiveni automat konačan?

Primjer rada: ulaz 0,1,1,1,0,0,1,0,1,0,1,0,1,... izlaz 0,1,0,0,0,1,0,1,0,1,0,1,0,...

Skup Mogucih Stanja = [A,B,C,D,E,F] Ulazi = [S, E, odsutan] Izlani = [1, odsutan]

Hoj St.

Ulazmi simboli

up Mogueith Sta	uja 5		odsutau
A	(B,odoutan)	(A, odsutam)	(A jodnutan)
В	(B, odsutan)	(c, odoutan)	(Biodouta)
C	(D, odsutan)	(A, odoutan)	(c,odoutan)
•	(E. odputan)	(c,odoutan)	(D, odovtan)
Lan.	(Biodoutam)	(F. odsutan)	(E,odsutan)
F	(A,1)	(A,odovtom)	(Frodsutan)

MOGUÉE KOMBINACIJE SKLOPKE:

3	Y = ZARULJA	_
3	SVIJETLI (S)	=> \$13
4	NE SYLETLI (NS)	=> S14
3	NE SVIJETLI (NS)	=> \$23
4	SVINETLI (S)	=> \$24
	3 4	3 SVINETLI(S) 4 NE SVINETLI(NS) 3 NE SVINETLI(NS)

4

DANKO BUNDALO 0036420895 2.E1 SIGNALI I SUSTAVI - ZADACI - TJEDAN 04

ST - START A1 - 1. SLOVO A

4.

STANJE		
	0	1
7	6/0	7/0
1	2/1	3/1
26	4/0	5/0
3	6/1	7/1
5	2/0	3/0
04	0/0	1/0

Početno stanje: 7

Mealyev automat.

Ulazi: {0,1} Izlazi: {0,1}

(binarni zapis imena stanja predstavlja niz predhodna tri ulaza. Parovi stanja ekvivalentnih:

2,6 i 0,4)

Toni Baržić 0036419390

5. a)

	0	1
p0	p1 \ a	p0 \ 0
p1	p1 \ 1	p0 \ b

početno stanje: p0

napomena: prijelazi $(p0,0) \rightarrow p0\0$ i $(p1,1) \rightarrow p1\1$ isu bitni, jer se neće dogoditi za zadani ulazni niz

b)

	0	1
p0	p1\a	p0 \ 0
p1	p1 \ 1	p2 \ a
p2	p3 \ a	p2 \ 2
р3	p3 \ 3	p4 \ a
p4	p5 \ a	p4 \ 4
p5	p5 \ 5	p6 \ b
р6	p5 \ a	p6 \ 6

početno stanje: p0

napomena: prijelazi označeni zelenom bojom nisu bitni jer za zadani ulazni niz se oni neće dogoditi

c) Nije moguće konstruirati automat koji bi obavljao zadanu funkciju jer broj ponavljanja znakova *a* i *b* raste u beskonačnost, a naš automat može imati samo konačno mnogo stanja.

6.

	0	1
p0	{ p0\0, p1\1 }	{ p0\1, p1\1 }
p1	{ p0\0, p2\⊥ }	{ p0\1, p2\1 }
p2	{ p0\0, p3\1 }	{ p0\1, p3\1 }
р3	p0\0	p0\1

početno stanje: p0

SIGNALI I SUSTAVI - ZADACI - TJEDAN 04

7. ULAZ/IZLAZ ZA "STUDENT"

 $ULAZ_{1} = \{0, 1, 0DSUTAN\}$ $12LAZ_{1} = \{K, 1, S, 0DSUTAN\}$

VLAZ 2 = {KI, S, ODSUTAN}

12LAZ = {O, 1, ODSUTAN}

KASKADA $ULAZ = \{0, 1, ODSUTAN\} = ULAZ_1$ $IZLAZ = \{0, 1, ODSUTAN\} = IZLAZ_2$

NISU DOSTUPNA STANJA: (3,1), (4,1), (2,2)

ULAZ = {0,1, odoutau}

12LAZ = { 1,0, odsutau}

Skypstauja = skup ajelih brojeva

automat opisuje relaciju jedualis

¥ S ∈ Stanja & XX € Ulaz:

 $f_{-ja} \text{ prijelaza}(S_{1}x) = \begin{cases} (0,1) & x=1 \ i = -1 \end{cases} \text{ if } x=0 \text{ is } s=1 \\ (S+1,0) & x=1 \text{ is } s=-1 \\ (S-1,0) & x=0 \text{ is } s\neq 1 \end{cases}$ $(S_{1} \text{ odsytan}), \text{ in a se}$

Automat NJE Kongean!

Skup stanje nje honatar Imoze bit bilo noji broj EZ)