Multiple Sequence Alignment (MSA) di sequenze SARS-CoV-2

Edoardo Silva 816560 Davide Marchetti 815990

A.A.: 2019/2020

1 Abstract

La seconda parte del progetto prevede di elaborare i file prodotti in precedenza ricavando informazioni relative alle alterazioni rilevate e producendo in output una tabella riassuntiva contenente:

- il gene id del gene in cui cade la variazione con lo start e l'end della sua CDS rispetto alla reference
- il codone (o i codoni) alterato della reference, con posizione di inizio rispetto alla CDS, sequenza del codone e amminoacido codifcato
- il nuovo codone generato dalla variazione (o i nuovi codoni generati) specificando la sequenza del codone e il nuovo amminoacido codificato

2 Algoritmo

L'algoritmo inizia caricando tutti i file necessari per l'elaborazione, in particolare quelli prodotti in output nella parte precedente del progetto:

- 1. Caricamento della sequenza reference dal file corrispondente memorizzato in /project-1/input/reference.fasta.
- Caricamento di uno dei file di output prodotti nella prima parte di progetto. Nel nostro caso è stato utilizzata l'analisi dell'allineamento di ClustalW.
- 3. Lettura del file Genes-CDS.xlsx contenente le informazioni sui geni e le CDS della sequenza di reference. In particolare, per le CDS che derivano dalla join di due sequenze è possibile specificare il punto di unione della sequenza.

Dopo la lettura del materiale rilevante a questa fase di elaborazione, l'algoritmo itera le variazioni rilevate nell'allineamento e per ciascuna di esse esegue i seguenti step:

- 1. Trova le CDS nelle quali avviene l'alterazione rispetto alla reference.
- 2. Recupera le informazioni del gene associato alle CDS rilevate calcolando le posizioni globali e relative alla CDS dell'alterazione.
- 3. Identifica i codoni alterati e ne effettua la ritraduzione in amminoacidi grazie ad una look-up table (listato 1). Vengono ignorate le alterazioni che presentano sequenze di soli -, derivate probabilmente da un sequenziamento errato o un'alterazione posta ai capi dell'allineamento.
- 4. Memorizza tutte le informazioni ricavate in una struttura dati tramite cui derivare la tabella per l'output finale associando i valori a chiavi prestabilite (listato 2).

Al termine dell'elaborazione di tutte le alterazioni, viene costruito un oggetto di tipo DataFrame fornito dalla libreria pandas.

Le chiavi utilizzate nella costuzione della struttura dati a lista diventeranno le colonne del DataFrame. Questo sarà esportato in CSV nella cartella /project-2/output/alteration-table.csv per permettere una visualizzazione più semplice tramite programmi terzi (come riportato in fig. 1)

3 Informazioni memorizzate

Ad ogni variazione analizzata corrisponde un entrata nella struttura dati a lista contenente le seguenti informazioni:

- gene id: id del gene in cui cade la variazione
- gene start: inizio del gene in cui cade la variazione (1-based)
- gene end: fine del gene in cui cade la variazione (1-based)
- cds_start: inizio della Coding DNA Sequence della porzione del gene in cui cade la variazione (1-based)
- cds_end: fine della Coding DNA Sequence della porzione del gene in cui cade la variazione (1-based)
- relative_start: inizio della variazione in rispetto all'inizio della cds (1-based)
- relative_end: fine della variazione in rispetto all'inizio della cds (1-based)
- alteration: sequenza della variazione
- original codone: codone della reference prima della modifica
- original aminoacid: amminoacido codificato da original codone
- altered codone: codone della reference modificati dalla variazione
- encoded aminoacid: amminoacido codificato da altered codone

4 Output

Come riportato in fig. 1 la maggior parte delle alterazioni coinvolgono un singolo codone e quelli ottenuti rimangono traducibili.

In alcuni casi, l'amminoacido risultante dalla traduzione dell'alterazione non viene modificato. La maggior parte delle variazioni si concentrano nel gene ORF1ab identificato da gene_id = 43740578.

Le ultime righe della tabella riportano delle alterazioni che determinano la cacellazione di alcune basi rispetto alla sequenza reference. Queste sono relative solo alla sequenza MT262993.1 e si pensa possano derivare da un errore in fase di sequenziamento.

000000000000000000000000000000000000000	200	11111				* ***				
43/405/8	997	71555	997	13483	1132	1132 A	AGI	2	AAI	2
43740578	266	21555	592	21555	1132	1132 A	AGT	S	AAT	Z
43740578	266	21555	592	13483	10818	10818 T	GTA	^	TTA	Γ
43740578	266	21555	266	21555	10818	10818 T	GTA	>	TTA	_
43740578	266	21555	266	21555	18112	18112 T	TAC	\	TTC	ш
43740575	28274	29533	28274	29533	1101	1101 A	205	A	ACC	⊢
43740578	266	21555	266	13483	794	794 T	CAC	Ξ	CAT	I
43740578	266	21555	266	21555	794	794 T	CAC	I	CAT	I
43740578	266	21555	266	13483	2772	2772 T	CTA		TTA	
43740578	266	21555	266	21555	2772	2772 T	CTA	_	TTA	٦
43740578	266	21555	266	21555	14143	14143 T	ACC	-	ATC	_
43740578	266	21555	266	13483	3638	3638 T	200	A	GCT	A
43740578	266	21555	266	21555	3638	3638 T	209	А	GCT	Ą
43740578	266	21555	266	13483	9249	9249 G	ACT	F	GCT	A
43740578	266	21555	266	21555	9249	9249 G	ACT	-	GCT	A
43740578	266	21555	266	13483	13111	13111 G	TAC	>	TGC	U
43740578	266	21555	266	21555	13111	13111 G	TAC	>	TGC	C
43740578	266	21555	266	13483	13211	13211 T	TGC	U	TGT	O
43740578	266	21555	266	21555	13211	13211 T	TTG		E	ш
43740578	266	21555	266	21555	19219	19219 T	TGC	O	TTC	L.
43740571	26523	27191	26523	27191	198	198 C	GCT	A	CCT	Ь
43740575	28274	29533	28274	29533	415	415 C	СТТ		CCT	Ь
43740575	28274	29533	28274	29533	562	562 C	ATC	_	ACC	⊥
43740578	266	21555	266	13483	8442	8442 C	TGG	Μ	990	æ
43740578	266	21555	566	21555	8442	8442 C	TGG	W	990	œ
43740578	266	21555	592	21555	20622	20622 A	AGG	æ	AGG	œ
43740568	21563	25384	21563	25384	65	65 T	AAC	Z	AAT	Z
43740568	21563	25384	21563	25384	1173	1173 T	Ш	_	Ш	ш
43740575	28274	29533	28274	29533	257	557 T	ттс	ш	Ш	ш
43740578	592	21555	592	13483	48	48 T	CAG	δ	TAG	STOP
43740578	592	21555	592	21555	48	48 T	CAG	٥	TAG	STOP
43740568	21563	25384	21563	25384	1841	1841 G	GGA	9	999	9
43740575	28274	29533	28274	29533	809	610 AAC	TAGGGG	STOPG	TAAACG	STOPT
43740578	266	21555	592	13483	8517	8517 T	CCA	Ь	TCA	S
43740578	266	21555	592	21555	8517	8517 T	CCA	Ь	TCA	S
43740568	21563	25384	21563	25384	906	T 906	СТТ	^	Ш	ш
43740568	21563	25384	21563	25384	3752	3752 T	TGG	W	TGT	C
43740577	27894	28259	27894	28259	251	251 C	Ш	ш	TTC	ш
43740575	28274	29533	28274	29533	909	605 A	CAG	Q	CAA	Q
43740578	266	21555	266	13483	619	619 T	ACG	_	ATG	START
43740578	266	21555	592	21555	619	1 619 T	ACG	_	ATG	START
43740578	266	21555	566	13483	1083	1083 T	CCA	Ф	TCA	S
43740578	592	21555	592	21555	1083	1083 T	CCA	Ь	TCA	S
43740578	266	21555	266	13483	8894	8894 T	TCC	S	TCT	S
43740578	566	21555	592	21555	8894	8894 T	TCC	S	TCT	S
43740568	21563	25384	21563	25384	2314	2314 A	TGT	O	TAT	>
43740576	29558	29674	29558	29674	9	E T	CTA	7	TTA	7
43740578	266	21555	266	13483	9456	9470	TTTCTATTGGTTCTT	FLLVL		
43740578	266	21555	566	21555	9456	9470	TITCTATIGGTICIT	FLIVI		

Figura 1: Tabella di output delle alterazioni

5 Listati di codice

Code Listing 1: Tabella per la traduzione in amminoacidi

```
aminoacids_lookup_table = {
1
2
        'START': 'ATG',
3
        'STOP': ['TAA', 'TAG', 'TGA'],
        'F': ['TTT', 'TTC'],
4
        'L': ['TTA', 'TTG', 'CTT', 'CTA', 'CTC', 'CTG'],
        'I': ['ATT', 'ATC', 'ATA'],
6
7
        'M': ['ATG'],
8
        'V': ['GTT', 'GTA', 'GTC', 'GTG'],
9
        'S': ['TCT', 'TCA', 'TCC', 'TCG', 'AGT', 'AGC'],
        'P': ['CCT', 'CCA', 'CCC', 'CCG'],
10
       'T': ['ACT', 'ACA', 'ACC', 'ACG'],
'A': ['GCT', 'GCA', 'GCC', 'GCG'],
11
12
        'Y': ['TAT', 'TAC'],
13
        'H': ['CAT', 'CAC'],
14
        'Q': ['CAA', 'CAG'],
15
16
        'N': ['AAT', 'AAC'],
        'K': ['AAA', 'AAG'],
17
        'D': ['GAT', 'GAC'],
18
        'E': ['GAA', 'GAG'],
19
        'C': ['TGT', 'TGC'],
20
21
        'W': ['TGG'],
        'R': ['CGT', 'CGA', 'CGC', 'CGG', 'AGA', 'AGG'],
22
23
        'G': ['GGT', 'GGA', 'GGC', 'GGG']
24
```

Code Listing 2: Memorizzazione dei risultati nella struttura dati a lista

```
1
     for key, value in variations:
2
       for index, cds in affected_cdses.iterrows():
3
4
         variations_to_genes.append({
5
           'gene_id': gene_id,
6
           'gene_start': gene_start + 1, # 1-based position
7
           'gene_end': gene_end,
8
           'cds_start': cds_start + 1, # 1-based position
9
           'cds_end': cds_end,
10
           'original_codone': original_codone,
11
           'altered_codone': altered_codone,
12
           'relative_start': relative_start + 1, # 1-based position
13
           'relative_end': relative_end,
14
           'alteration': sequence,
15
           'original_aminoacid': original_aminoacid,
           'encoded_aminoacid': encoded_aminoacid
16
17
         })
```

6 Divisone del lavoro

Durante la realizzazione del progetto entrambi i componenti del gruppo hanno partecipato attivamente alla sua realizzazione. In particolare:

- Edoardo Silva si è occupato principalmente di recuperare e gestire l'output JSON del progetto1 e delle funzioni di supporto.
- Davide Marchetti si è occupato principalmente di generare i file di output e correggere le porzioni di codice relative alle letture delle reference.
- Entrambi hanno lavorato alla creazione ed elaborazione dei dati, alla matrice delle mutazioni e le traduzioni di quest'ultime.