

Adjusting numerical values

Mark van der Loo and Edwin de Jonge

Statistics Netherlands Research & Development @markvdloo @edwindjonge

useR!2019

Try the code

O3valid/adjusting.R

Adjusting numerical values

Minimally adjust values so that they conform to rules after imputation.

Imputation

- Almost all imputation methods, do not take the data restrictions/rules into account.
- This means that valid data can be become invalid after missing values have been imputed.

Successive projection algorithm

Idea

Alter (imputed) values in a record x as little as possible to satisfy all restrictions.

As little as possible?

The minimal Eucledian distance between the original x and the adjusted record x^* .

$$\mathbf{x}^* = \min_{\mathbf{x}} (\mathbf{x}^* - \mathbf{x})'(\mathbf{x}^* - \mathbf{x})$$

Successive Projection Algorithm (sketch)

Project x on each (in)equality restriction sequentially and iteratively until convergence. Hildredth (1957) Naval Research Logistics 4 79–85

Extension: weighted distance

$$x^* = \min_{\mathbf{x}} (\mathbf{x}^* - \mathbf{x})' \mathbf{W} (\mathbf{x}^* - \mathbf{x})$$

Property

If $W_{ij} = \delta_{ij}x_j^{-1}$, then the ratios between altered variables are preserved to $\mathcal{O}(1)$. Pannekoek & Zhang (2015) Survey Methodology 41 127–144; SDCR §10.11

Assignments

- load "O3valid/imputed.csv" into imputed
- use confront to find out how many values are invalid and make a plot of the object
- apply rspa::match_restrictions to the data
- use confront to find out how many values are invalid and make a plot of the object

