第七章 参数估计

- 1. 参数的点估计
- 2. 估计量的优良性准则
 - 3 区间估计

点估计的缺陷

- ① 由于样本是随机的,估计值可能非真值——即便估计量是无偏有效估计量;
- ②即使估计值等于真实值,也无从肯定;不知相差多少.

改进:

对于 θ 的估计,给定一个范围: $\theta \in [\hat{\theta}_1, \hat{\theta}_2]$

对于 θ 的估计,给定一个范围: $\theta \in [\hat{\theta}_1, \hat{\theta}_2]$,

并满足:

- (1) $P\{\widehat{\theta}_1 \leq \theta \leq \widehat{\theta}_2\}$ 应尽可能大
- (2) $\hat{\theta}_2 \hat{\theta}_1$ 应尽可能小

我们希望两者都能满足,但这二<mark>者是矛盾的!</mark> 无法同时满足.

可以将上述两个要求改为:

- ①在一定可靠程度下,
- ②指出被估参数的可能取值范围,

置信区间

定义

设总体的未知参数为 θ , 由样本 X_1 , ..., X_n 确定两个统计量 $\hat{\theta}_1 = \hat{\theta}_1(X_1,...,X_n)$ 和 $\hat{\theta}_2 = \hat{\theta}_2(X_1,...,X_n)$, 对于给定的实数 α (0< α <1), 满足

 $P\{\hat{\theta}_{1}(X_{1},...,X_{n}) \le \theta \le \hat{\theta}_{2}(X_{1},...,X_{n})\} = 1 - \alpha$

则称随机区间 $[\hat{\theta}_1, \hat{\theta}_2]$ 为 θ 的显信 Δ 为 $1-\alpha$ 的显信 Δ 0.

 $1-\alpha$ 又称置信系数或置信概率 α 又称置信水平,通常取值为0.1, 0.05.

TIPS

正态分布中μ的区间估计

寻找置信区间的步骤(枢軸変量は):

1) 选取待估参数 θ 的估计量;

原则: 优良性准则

常用: $\overline{X} \to \mu$, $S^2 \to \sigma^2$ $\sigma^2 \leftarrow \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$

μ己知时

2) 考察估计量服从的分布(若有其他未知参数,则 选一优良估计量来替代);

化至常用分布(主要是:正态、 χ^2 、T、F分布); 相应的变换函数 W 称为枢轴变量

- 3) 对 $P\{w_{1-\alpha/2} \le W \le w_{\alpha/2}\} = 1-\alpha$ 查上侧分位数;
- 4) 代換得到 $P\{A \le \theta \le B\} = 1-\alpha$ 区间 [A, B] 即为所求.

TIPS

估计量的选取

未知参数的替换

由于正态分布是最常见的分布,后续内容将以正点点体为主要分析对象进行区间估计.

正态总体的区间估计

、单个正态总体: $X\sim N(\mu,\sigma^2)$

1. µ 的估计

$$U = rac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$$
 枢轴变量

$$P\left\{-u_{\frac{\alpha}{2}} \leq \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \leq u_{\frac{\alpha}{2}}\right\} = 1 - \alpha$$

$$\left[\frac{\overline{X} - \frac{\sigma}{\sqrt{n}} u_{\frac{\alpha}{2}}, \overline{X} + \frac{\sigma}{\sqrt{n}} u_{\frac{\alpha}{2}}\right]$$

正态总体的区间估计

、单个正态总体: $X \sim N(\mu, \sigma^2)$

1. µ 的估计

2) σ²未知

$$T = rac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$
 枢轴变量

$$P\left\{-t_{\frac{\alpha}{2}}(n-1) \leq \frac{\overline{X}-\mu}{S/\sqrt{n}} \leq t_{\frac{\alpha}{2}}(n-1)\right\} = 1-\alpha$$

$$\left[\overline{X} - t_{\frac{\alpha}{2}}(n-1) \cdot \frac{S}{\sqrt{n}}, \ \overline{X} + t_{\frac{\alpha}{2}}(n-1) \cdot \frac{S}{\sqrt{n}} \right]$$

正态总体的区间估计

一、单个正态总体: $X \sim N(\mu, \sigma^2)$

2. σ² 的估计

1)
$$\mu$$
 已知 $\chi^2 = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 \sim \chi^2(n)$ 枢轴变量

$$P\left\{\chi_{1-\frac{\alpha}{2}}^{2}(n) \leq \frac{1}{\sigma^{2}} \sum_{i=1}^{n} \left(X_{i} - \mu\right)^{2} \leq \chi_{\frac{\alpha}{2}}^{2}(n)\right\} = 1 - \alpha$$

$$\begin{bmatrix} \sum\limits_{i=1}^{n}(X_{i}-\mu)^{2} & \sum\limits_{i=1}^{n}(X_{i}-\mu)^{2} \\ \chi_{\frac{\alpha}{2}}^{2}(n) & \chi_{1-\frac{\alpha}{2}}^{2}(n) \end{bmatrix}$$

正态总体的区间估计

、单个正态总体: $X \sim N(\mu, \sigma^2)$

σ^2 的估计

2) µ未知

$$\chi^2 = \frac{n-1}{\sigma^2} S^2 \sim \chi^2 (n-1)$$
 枢轴变量

$$P\left\{\chi_{1-\frac{\alpha}{2}}^{2}\left(n-1\right) \leq \frac{n-1}{\sigma^{2}}S^{2} \leq \chi_{\frac{\alpha}{2}}^{2}\left(n-1\right)\right\} = 1-\alpha$$

$$(n-1)S^2/\chi^2_{\frac{\alpha}{2}}(n-1), (n-1)S^2/\chi^2_{1-\frac{\alpha}{2}}(n-1)$$

正态总体的区间估计

一、单个正态总体: $X \sim N(\mu, \sigma^2)$

TIPS

零件长度的方差

婴儿体重的估计

正态总体的区间估计

二、两个正态总体: $X \sim N(\mu_1, \sigma_1^2)$

 $Y \sim N(\mu_2, \sigma_2^2)$

- 1. μ₁- μ₂ 的估计
 - 1) σ_1^2 和 σ_2^2 已知

$$U = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1)$$

枢轴变量

$$\left[\overline{X} - \overline{Y} - u_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}, \overline{X} - \overline{Y} + u_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \right]$$

正态总体的区间估计

二、两个正态总体: $X \sim N(\mu_1, \sigma_1^2)$

 $Y \sim N(\mu_2, \sigma_2^2)$

1. μ₁- μ₂ 的估计

2)
$$\sigma_1^2$$
和 σ_2^2 未知, $\sigma_1^2 = \sigma_2^2 = \sigma^2$

$$T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

枢轴变量

$$\left[\overline{X} - \overline{Y} - t_{\frac{\alpha}{2}} (n_1 + n_2 - 2) S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, \overline{X} - \overline{Y} + t_{\frac{\alpha}{2}} (n_1 + n_2 - 2) S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \right]$$

正态总体的区间估计

二、两个正态总体: $X \sim N(\mu_1, \sigma_1^2)$ $Y \sim N(\mu_2, \sigma_2^2)$

1. μ₁- μ₂ 的估计

二总体物位差的置信区间的含义是:

- 若 μ_1 · μ_2 的置信下限大于零,则可认为 $\mu_1 > \mu_2$;
- 若 μ_1 μ_2 的置信上限小于零,则可认为 $\mu_1 < \mu_2$.

两稻种产量的鄉望差的置信区间

正态总体的区间估计

二、两个正态总体: $X \sim N(\mu_1, \sigma_1^2)$

 $Y \sim N(\mu_2, \sigma_2^2)$

|2. σ_2^2/σ_1^2 的估计

1) μ1与μ2已知

枢轴变量

$$F = \sum_{i=1}^{n_1} \left(\frac{X_i - \mu_1}{\sigma_1} \right)^2 / n_1 / \sum_{j=1}^{n_2} \left(\frac{Y_j - \mu_2}{\sigma_2} \right)^2 / n_2 = \frac{n_2 \cdot \sigma_2^2}{n_1 \cdot \sigma_1^2} \cdot \frac{\sum_{i=1}^{n_1} (X_i - \mu_1)^2}{\sum_{j=1}^{n_2} (Y_j - \mu_2)^2} \sim F(n_1, n_2)$$

正态总体的区间估计

二、两个正态总体: $X \sim N(\mu_1, \sigma_1^2)$

 $Y \sim N(\mu_2, \sigma_2^2)$

- 2. σ_2^2/σ_1^2 的估计
 - 2) μ₁与μ₂未知

枢轴变量

$$F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} = \frac{\sigma_2^2}{\sigma_1^2} \cdot \frac{S_1^2}{S_2^2} \sim F(n_1 - 1, n_2 - 1)$$

$$\left[\frac{S_2^2}{S_1^2} \cdot F_{1-\frac{\alpha}{2}}(n_1-1,n_2-1), \quad \frac{S_2^2}{S_1^2} \cdot F_{\frac{\alpha}{2}}(n_1-1,n_2-1)\right]$$

三、大样本方法构造置信区间(略)

要点: 利用独立同分布中心极限定理

 \mathcal{M} 设某总体的期望为 μ ,方差为 \mathcal{C} ,且 μ 、 \mathcal{C} 未 知,从该总体抽取样本 $X_1, X_2, ..., X_n$,试求参数 μ 的置信度为 $1-\alpha$ 的置信区间.

由独立同分布中心极限定理: $\frac{X-\mu}{\sigma/\sqrt{n}}$ $\xrightarrow{n\to+\infty}$ N(0,1)

$$\sigma^2$$
未知,统计量应为 $\frac{\overline{X} - \mu}{S/\sqrt{n}} \xrightarrow{n \to +\infty} N(0,1)$

因为S是o的相合估计量

三、大样本方法构造置信区间(略)

例 设某总体的期望为 μ ,方差为 σ ,且 μ 、 σ 未知,从该总体抽取样本 $X_1,X_2,...,X_n$,试求参数 μ 的置信度为 $1-\alpha$ 的置信区间.

$$\frac{\overline{X} - \mu}{S/\sqrt{n}} \xrightarrow{n \to +\infty} N(0,1)$$

从而参数μ的置信度为1-α的置信区间近似为

$$\left[\overline{X} - \frac{S}{\sqrt{n}} u_{\frac{\alpha}{2}}, \overline{X} + \frac{S}{\sqrt{n}} u_{\frac{\alpha}{2}} \right]$$

四、单侧置信区间(略)

定义

设总体的未知参数为 θ ,由样本 $X_1,...,X_n$ 确定两个统计量 $\hat{\theta}_1 = \hat{\theta}_1(X_1,...,X_n)$ 和 $\hat{\theta}_2 = \hat{\theta}_2(X_1,...,X_n)$,对于给定的实数 α (0< α <1),满足

$$P\{\widehat{\theta}_1(X_1,...,X_n) \leq \theta\} = 1 - \alpha$$

则称随机区间 $[\hat{\theta}_1, +\infty)$ 为 θ 的显信意为 $1-\alpha$ 的单侧显信区 \emptyset , $\hat{\theta}_1$ 称为单侧显信下限.

$$P\left\{\theta \leq \widehat{\theta}_{2}(X_{1},...,X_{n})\right\} = 1 - \alpha$$

则称随机区间 $(-\infty, \hat{\theta}_2]$ 为 θ 的显信意为 $1-\alpha$ 的单侧显信区间, $\hat{\theta}_2$ 称为单侧置信工限.

四、单侧置信区间(略)

 \mathcal{M} 设总体 $X\sim N(\mu,\sigma)$, σ 已知,试求参数 μ 的置

信度为1-α的单侧置信区间。 比较单侧、双侧置

$$U = \frac{X - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$$

信区间相似之处

$$P\left\{-u_{\alpha} \leq \frac{\overline{X} - \mu}{\sigma/\sqrt{n}}\right\} = 1 - \alpha \qquad P\left\{\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \leq u_{\alpha}\right\} = 1 - \alpha$$

置信
上限
$$\left[-\infty, \overline{X} + \frac{\sigma}{\sqrt{n}}u_{\alpha}\right]$$

$$P\left\{\frac{\overline{X}-\mu}{\sigma/\sqrt{n}} \leq u_{\alpha}\right\} = 1-\alpha$$

$$\left[\frac{\overline{X} - \frac{\sigma}{\sqrt{n}} u_{\alpha}, +\infty}{\sqrt{n}}\right] \frac{\Xi \text{ 信}}{\tau \text{ 限}}$$

双侧置 信区间

$$\left[\frac{\overline{X}-\frac{\sigma}{\sqrt{n}}u_{\frac{\alpha}{2}},\overline{X}+\frac{\sigma}{\sqrt{n}}u_{\frac{\alpha}{2}}\right]$$

小结: 常见区间估计

$$X \sim N(\mu, \sigma^2)$$

$$P\{w_{1-\alpha/2} \leq W \leq w_{\alpha/2}\} = 1 - \alpha$$

被估参数	条件	统计量 (枢轴变量)	置信区间
μ	σ ² 已 知	$U = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$	$\left[\overline{X} - \frac{\sigma}{\sqrt{n}} u_{\frac{\alpha}{2}}, \overline{X} + \frac{\sigma}{\sqrt{n}} u_{\frac{\alpha}{2}} \right]$
μ	σ ² 未 知	$T = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1)$	$\left[\overline{X} - \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1), \overline{X} + \frac{S}{\sqrt{n}} t_{\frac{\alpha}{2}}(n-1)\right]$
σ^2	μ己 知	$\chi^2 = \frac{\sum_{i=1}^n (X_i - \mu)^2}{\sigma^2} \sim \chi^2(n)$	$\left[\frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\chi^{2}_{\alpha/2}(n)}, \frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\chi^{2}_{1-\alpha/2}(n)}\right]$
σ^2	μ未 知	$\chi^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$	$\left[\frac{(n-1)S^{2}}{\chi_{\alpha/2}^{2}(n-1)}, \frac{(n-1)S^{2}}{\chi_{1-\alpha/2}^{2}(n-1)}\right]$

$$X \sim N(\mu_1, \sigma_1^2)$$
 $Y \sim N(\mu_2, \sigma_2^2)$
 $P\{w_{1-\alpha/2} \leq W \leq w_{\alpha/2}\} = 1 - \alpha$

被估参数	条件	统计量 (枢轴变量)
$\mu_1 - \mu_2$	σ_1^2 已知 σ_2^2 已知	$U = \frac{\left(\overline{X} - \overline{Y}\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1)$
$\mu_1 - \mu_2$	σ_1^2 未知 σ_2^2 未知	$T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$
$rac{\sigma_1^2}{\sigma_2^2}$	μ ₁ 未知 μ ₂ 未知	$F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} = \frac{\sigma_2^2}{\sigma_1^2} \frac{S_1^2}{S_2^2} \sim F(n_1 - 1, n_2 - 1)$