

Closed Loop Hall Current Sensor CYHCS-B100

This Hall Effect current sensor is based on closed loop compensating principle and can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications			
Excellent accuracy	Photovoltaic equipmentGeneral Purpose Inverters			
Very good linearity	AC/DC Variable Speed Drivers			
Small size and encapsulated	Battery Supplied Applications			
Less power consumption	Uninterruptible Power Supplies (UPS)			
Current overload capability	Switched Mode Power Supplies			

ELECTRICAL CHARACTERISTIC

Parameters	CYHCS-B100-	CYHCS-B100-	CYHCS-B100-	CYHCS-B100-		
Farameters	6A	15A	25A	50A		
Nominal current	6A	15A	25A	50A		
Measuring range	18A 45A		75A	100A		
Measuring resistance	100Ω	100Ω 50Ω		25Ω		
Number of secondary turns	960±1	1200±1	2000±2	2000±2		
Nominal output voltage	+2.5VDC ± (0.625V±0.5%)					
Supply voltage	+5VDC ±5%					
Galvanic isolation	50Hz, 1min, >3kV					
Impulse withstand voltage	1.2/50µs, >8kV					
Creepage distance	>15.5mm					

ACCURACY DYNAMIC PERFORMANCE

Zero offset voltage at +25°C	2.5±0.5%	V DC
Thermal drift of offset voltage (-25°C ~ +85°C)	Typ.: ±0.08, Max.: ±0.20	mV/°C
Linearity	≤0.1	%FS
Accuracy	±0.7	%
di/dt accuracy followed	>50	A/µs
Response time	<500	ns
Bandwidth (-1db)	DC ~ 200	kHz

GENERAL CHARACTERISTIC

Operating temperature	-25 ~ +85	°C
Storage temperature	-40 ~ + 100	°C
Current consumption	<45	mA

Tel.: +49 (0)8121 – 2574100

Fax: +49 (0)8121- 2574101 Email: info@cy-sensors.com

http://www.cy-sensors.com

Dimensions (mm)

Wiring diagram

Number of Primary turns	Nominal current (A)	Output voltage (V)	Primary resistance (mΩ)	Primary inductance (µH)	Input Pin Connection
1	±6 (±15,±25,±50)	2.5±0.625	0.18	0.013	6 5 4 OUT 0 0 0 IN 1 2 3
2	±3 (±7.5,±12.5,±25)	2.5±0.625	0.81	0.05	6 5 4 OUT O O O IN 1 2 3
3	±2(±5,±8.3, ±16.6)	2.5±0.625	1.62	0.12	6 5 4 OUT O O O IN 1 2 3

Application Notes

There are two inputs methods: 1) Cable Input using the sensor hole; 2) PCB Input using the input pins. You should only use one of these input models.

For the cable input model the current cable should be passed through the hole of the sensor. Taking the sensor CYHCS-B100-6A as example, the nominal current is 6A if the cable is passed through the hole one time. The nominal current is 3A or 2A if the cable is wired through the hole 2 or 3 times. In this input model please don't use the input pins.

For PCB input model one should wire the sensor according to the input pin connection shown in the above table. The 3 wiring diagrams correspond to the number of primary turns 1, 2 and 3. In this input model please don't use the hole of sensor as input.

Tel.: +49 (0)8121 - 2574100

Fax: +49 (0)8121- 2574101

Email: info@cy-sensors.com http://www.cy-sensors.com

Relation between Input Current and Output Voltage

Take the sensor CYHCS-B100-25A as sample, the relation between the input current and output voltage is shown in the table 1, Fig.1 and Fig. 2

Table 1. Relation between the input current and output voltage

Input current (A)	-75	-50	-25	-12.5	0	12.5	25	50	75
Output voltage (V)	0.625	1.25	1.875	2.188	2.5	2.813	3.125	3.75	4.375

Fig. 1 Relation between the input current (DC) and output voltage (DC)

Fig. 2 Relation between the input current (AC) and output voltage (AC)