Counting Roots and Linear Fractional Transformations

Matthew Seguin

94.2

Let f be a function that is analytic inside and on a positively oriented simple closed contour C.

Further suppose that f is never zero on C.

Let the image of C under w = f(z) be the closed contour Γ as shown in the book.

If you imagine a person standing at the origin (w = 0), initially looking to any point $w_0 \in \Gamma$ and tracing the path of someone else walking around Γ , then that person at the origin will do 3 complete counterclockwise rotations while tracing the other's path.

Therefore we know the winding number is 3 and so $\frac{1}{2\pi}\Delta_C \arg f(z) = 3$ which gives the result $\Delta_C \arg f(z) = 6\pi$. Since f is analytic inside and on C we know it has 0 poles inside C (that is $N_\infty = 0$).

Furthermore since f is nonzero on C we know that $\frac{1}{2\pi}\Delta_C \arg f(z) = 3 = N_0 - N_\infty$ where N_0 is the number of zeros of f inside C and N_∞ is the number of poles of f inside C (which we know is 0).

Therefore we have that f has 3 zeros (counting multiplicity) interior to C and $\Delta_C \arg f(z) = 6\pi$

Let C be the unit circle centered at the origin |z|=1, clearly C is a simple closed contour.

a.

Clearly $f(z) = -5z^4$ and $g(z) = z^6 + z^3 - 2z$ are both analytic inside and on C.

Furthermore we know that for all $z \in C$:

$$|g(z)| = |z^6 + z^3 - 2z| \le |z^6| + |z^3| + |-2z| = |z|^6 + |z|^3 + 2|z| = 4 < 5 = 5|z|^4 = |-5z^4| = |f(z)|$$

Therefore by Rouche's Theorem we know $f(z) = -5z^4$ and $f(z) + g(z) = z^6 - 5z^4 + z^3 - 2z$ have the same number of zeros (counting multiplicity) inside C.

Clearly $f(z) = -5z^4$ has 4 zeros (counting multiplicity) inside C so we know $f(z) + g(z) = z^6 - 5z^4 + z^3 - 2z$ has 4 zeros inside C

b.

c.

Clearly f(z) = 9 and $g(z) = 2z^4 - 2z^3 + 2z^2 - 2z$ are both analytic inside and on C.

Furthermore we know that for all $z \in C$:

$$|g(z)| = |2z^4 - 2z^3 + 2z^2 - 2z| \le |2z^4| + |-2z^3| + |2z^2| + |-2z| = 2|z|^4 + 2|z|^3 + 2|z|^2 + 2|z| = 8 < 9 = |f(z)|$$

Therefore by Rouche's Theorem we know f(z) = 9 and $f(z) + g(z) = 2z^4 - 2z^3 + 2z^2 - 2z + 9$ have the same number of zeros (counting multiplicity) inside C.

Clearly f(z)=9 has no zeros inside C so we know $f(z)+g(z)=2z^4-2z^3+2z^2-2z+9$ has no zeros inside C

Clearly $f(z) = -4z^3$ and $g(z) = z^7 + z - 1$ are both analytic inside and on C.

Furthermore we know that for all $z \in C$:

$$|g(z)| = |z^7 + z - 1| \le |z^7| + |z| + |-1| = |z|^7 + |z| + 1 = 3 < 4 = 4|z|^3 = |-4z^3| = |f(z)|$$

Therefore by Rouche's Theorem we know $f(z) = -4z^3$ and $f(z) + g(z) = z^7 - 4z^3 + z - 1$ have the same number of zeros (counting multiplicity) inside C.

Clearly $f(z) = -4z^3$ has 3 zeros (counting multiplicity) inside C so we know $f(z) + g(z) = z^7 - 4z^3 + z - 1$ has 3 zeros inside C

Let $c \in \mathbb{C}$ such that |c| > e then consider the functions $f(z) = cz^n$ for some $n \in \mathbb{N}$ and $g(z) = -e^z$.

Let C be the unit circle |z| = 1. Clearly both are analytic inside and on C.

On C we know
$$|f(z)| = |cz^n| = |c||z|^n = |c| > e$$
.

We also know if
$$z = x + iy$$
 then $|g(z)| = |-e^z| = |-e^{x+iy}| = |-e^x||e^{iy}| = e^x$.

On C this is clearly maximized my maximizing x = Re z and hence is maximized at z = 1.

So on
$$C$$
 we have that $|f(z)|=|c|>e=|-e^1|\geq |e^z|=|g(z)|.$

Therefore we know $f(z) = cz^n$ and $f(z) + g(z) = cz^n - e^z$ have the same number of zeros (counting multiplicity) inside C.

Clearly $f(z) = cz^n$ has n zeros (counting multiplicity) inside C (namely all at z = 0), so we know $f(z) + g(z) = cz^n - e^z$

has n zeros inside C.

This is equivalent to saying the equation $cz^n = e^z$ has n roots inside $C \square$

Consider the circle $|z - z_0| = R$ under the map $f(z) = \frac{1}{z} = \frac{\overline{z}}{|z|^2}$.

Given we know that the circle is mapped to another circle we know that neither circle passes through the origin.

Recall that we may represent such a circle with the equation:

$$A(x^2 + y^2) + Bx + Cy + D = 0$$

Where $A \neq 0$ because it's a circle and $D \neq 0$ because it does not pass through the origin.

This is also equivalent to:

$$\left(x + \frac{B}{2A}\right)^2 + \left(y + \frac{C}{2A}\right)^2 = \left(\frac{\sqrt{B^2 + C^2 - 4AD}}{2A}\right)^2$$

Implying that the such a circle has center $z_0 = -\frac{B}{2A} - i\frac{C}{2A}$ and radius $R = \left(\frac{\sqrt{B^2 + C^2 - 4AD}}{2A}\right)^2$ Further recall that this under $f(z) = \frac{1}{z} = u(x,y) + iv(x,y)$ is mapped to:

$$D(u^2 + v^2) + Bu - Cv + A = 0$$

We may also write this as:

$$\begin{split} u^2 + \frac{B}{D}u + v^2 - \frac{C}{D}v + \frac{A}{D} &= 0 \\ \\ u^2 + 2\frac{B}{2D}u + (\frac{B}{2D})^2 + v^2 - 2\frac{C}{2D} + (-\frac{C}{2D})^2 &= -\frac{A}{D} + (\frac{B}{2D})^2 + (-\frac{C}{2D})^2 \\ \left(u + \frac{B}{2D}\right)^2 + \left(v - \frac{C}{2D}\right)^2 &= \frac{B^2 + C^2 - 4AD}{4D^2} = \left(\frac{\sqrt{B^2 + C^2 - 4AD}}{2D}\right)^2 \end{split}$$

This is clearly the equation of a circle with center $w_0 = -\frac{B}{2D} + i\frac{C}{2D}$ and radius $\rho = \left(\frac{\sqrt{B^2 + C^2 - 4AD}}{2D}\right)^2$. If we had $z_0 = w_0$ then it must be that $-\frac{B}{2A} - i\frac{C}{2A} = -\frac{B}{2D} + i\frac{C}{2D}$.

Giving the simultaneous equations $-\frac{B}{2A}=-\frac{B}{2D}$ (hence A=D) and $-\frac{C}{2A}=\frac{C}{2D}$ (hence A=-D).

The only way for these to be simultaneously true is if A = D = 0 which contradicts the initial assumption that $A \neq 0$ and $D \neq 0$.

Therefore a circle that is mapped to a circle never has it's center mapped to the new center \Box

Note that if the center of the original circle is the origin then the center remains the origin for the new circle, however under $\frac{1}{z}$ the origin is mapped to ∞ so there is still no issue.

100.1

Recall that the implicit form of the linear fractional transformation (given below) maps z_1 to w_1 , z_2 to w_2 , and z_3 to w_3 :

$$\frac{(w-w_1)(w_2-w_3)}{(w-w_3)(w_2-w_1)} = \frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)}$$

Therefore by letting $z_1 = -1$, $z_2 = 0$, $z_3 = 1$, $w_1 = -i$, $w_2 = 1$, and $w_3 = i$ we get the following:

$$\frac{(w+i)(1-i)}{(w-i)(1+i)} = \frac{(z+1)(0-1)}{(z-1)(0+1)}$$

$$(w+i)(1-i)(z-1) = -(z+1)(1+i)(w-i)$$

$$(w-iw+i+1)(z-1) = -(z+iz+i+1)(w-i)$$

$$wz - iwz + iz + z - w + iw - i - 1 = -zw - izw - iw - w + iz - z - 1 + i$$

$$wz + z + iw - i = -wz - iw - z + i$$

$$2(wz + z + iw - i) = 0$$

$$w(z+i) + (z-i) = 0$$

$$w = -\frac{z-i}{z+i} = \frac{i-z}{i+z}$$

Problem 2

a. Let $f(z) = \frac{1}{z+1}$ and Γ be the contour shown in the problem description.

Let D be a domain that encompasses Γ but that does not contain -1, such a domain exists because -1 is exterior to Γ . Clearly f is analytic in D since $-1 \notin D$ and -1 is clearly the only point where f is not analytic.

If you imagine a person standing outside of D, initially looking to any point $w_0 \in \Gamma$ and tracing the path of someone else walking around Γ , then that person standing outside of D won't rotate any times counterclockwise while tracing the other's path.

Therefore we know the winding number $W(\Gamma, \xi) = 0$ for $\xi \in \mathbb{C} \backslash D$.

Therefore since $0 \in D \setminus \Gamma$ and $W(\Gamma, \xi) = 0$ for $\xi \in \mathbb{C} \setminus D$ we know:

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z} dz = W(\Gamma, 0) f(0)$$

Where $W(C, z_0)$ represents the winding number for a contour C and a given point $z_0 \notin C$.

If you imagine a person standing at the origin $(z_0 = 0)$, initially looking to any point $w_0 \in \Gamma$ and tracing the path of someone else walking around Γ , then that person at the origin will do 3 complete counterclockwise rotations while tracing the other's path.

Therefore we know the winding number $W(\Gamma, 0) = 3$.

So we have that:

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z} dz = W(\Gamma, 0) f(0) = 3(\frac{1}{0+1}) = 3$$

Leaving us with the final result:

$$\int_{\Gamma} \frac{f(z)}{z} dz = \int_{\Gamma} \frac{1}{z(z+1)} dz = 6\pi i$$

Part b on next page.

b. Let $f(z) = \frac{1}{z(z^2-1)}$ and C be the contour shown in the problem description.

What we are going to do is deconstruct this into a number of simple closed contours.

Let C_1 be the simple closed contour encompassing only $z_1 = 0$, Γ_1 be the contour following directly from C_1 and ending where C intersects itself next, C_2 be the simple closed contour following directly from Γ_1 and ending where C intersects itself next, Γ_2 be the contour following directly from C_2 and ending where C intersects itself next, and finally let

$$C_3 = \Gamma_1 + \Gamma_2$$
.

Note that C_1 , C_2 , and C_3 are all simple closed contours.

We know first that:

$$\int_{C} f(z)dz = \int_{C_{1}} f(z)dz + \int_{\Gamma_{1}} f(z)dz + \int_{C_{2}} f(z)dz + \int_{\Gamma_{2}} f(z)dz = \int_{C_{1}} f(z)dz + \int_{C_{2}} f(z)dz + \int_{C_{3}} f(z)d$$

• Considering C_1 :

Let D_1 be a domain that encompasses C_1 but that does not contain ± 1 , such a domain exists because ± 1 are exterior C_1 . Clearly $f_1(z) = \frac{1}{z^2 - 1}$ is analytic in D_1 since $\pm 1 \notin D_1$ and ± 1 are clearly the only points where f_1 is not analytic. If you imagine a person standing outside of D_1 , initially looking to any point $w_0 \in C_1$ and tracing the path of someone else walking around C_1 , then that person standing outside of D_1 won't rotate any times counterclockwise while tracing the other's path.

Therefore we know the winding number $W(C_1, \xi) = 0$ for $\xi \in \mathbb{C} \backslash D_1$.

Therefore since $0 \in D_1 \backslash C_1$ and $W(C_1, \xi) = 0$ for $\xi \in \mathbb{C} \backslash D_1$ we know:

$$\frac{1}{2\pi i} \int_{C_1} \frac{f_1(z)}{z} dz = W(C_1, 0) f_1(0)$$

Where $W(\Gamma, z_0)$ represents the winding number for a contour Γ and a given point $z_0 \notin \Gamma$.

If you imagine a person standing at the origin $(z_0 = 0)$, initially looking to any point $w_0 \in C_1$ and tracing the path of someone else walking around C_1 , then that person at the origin will do 1 complete clockwise rotation while tracing the other's path.

Therefore we know the winding number $W(C_1, 0) = -1$.

So we have that:

$$\frac{1}{2\pi i} \int_{C_1} \frac{f_1(z)}{z} dz = W(C_1, 0) f_1(0) = -\left(\frac{1}{0 - 1}\right) = 1$$

Leaving us with the final result:

$$\int_{C_1} \frac{f_1(z)}{z} dz = \int_{C_1} \frac{1}{z(z^2 - 1)} dz = 2\pi i$$

Continued on next page.

• Considering C_3 :

Let D_3 be a domain that encompasses C_3 but that does not contain 1 or 0, such a domain exists because 1 and 0 are exterior C_1 .

Clearly $f_3(z) = \frac{1}{z(z-1)}$ is analytic in D_3 since $0, 1 \notin D_1$ and 0, 1 are clearly the only points where f_3 is not analytic. If you imagine a person standing outside of D_3 , initially looking to any point $w_0 \in C_3$ and tracing the path of someone else walking around C_3 , then that person standing outside of D_3 won't rotate any times counterclockwise while tracing the other's path.

Therefore we know the winding number $W(C_3,\xi)=0$ for $\xi\in\mathbb{C}\backslash D_3$.

Therefore since $-1 \in D_3 \backslash C_3$ and $W(C_3, \xi) = 0$ for $\xi \in \mathbb{C} \backslash D_3$ we know:

$$\frac{1}{2\pi i} \int_{C_2} \frac{f_3(z)}{z+1} dz = W(C_3, -1) f_3(-1)$$

Where $W(\Gamma, z_0)$ represents the winding number for a contour Γ and a given point $z_0 \notin \Gamma$.

If you imagine a person standing at the origin $(z_0 = 0)$, initially looking to any point $w_0 \in C_3$ and tracing the path of someone else walking around C_3 , then that person at the origin will do 1 complete counterclockwise rotation while tracing the other's path.

Therefore we know the winding number $W(C_3, -1) = 1$.

So we have that:

$$\frac{1}{2\pi i} \int_{C_3} \frac{f_3(z)}{z+1} dz = W(C_3, -1) f_3(-1) = \frac{1}{-1(-1-1)} = \frac{1}{2}$$

Leaving us with the final result:

$$\int_{C_3} \frac{f_3(z)}{z} dz = \int_{C_3} \frac{1}{z(z^2 - 1)} dz = \pi i$$

Continued on next page.

• Considering C_2 :

Clearly C_2 is a simple closed contour that encompasses all of the singularities $(0, \pm 1)$ of $f(z) = \frac{1}{z(z^2-1)}$. Furthermore we may write $f(z) = \frac{\frac{1}{z^2-1}}{z}$, $f(z) = \frac{\frac{1}{z(z+1)}}{z-1}$, and $f(z) = \frac{\frac{1}{z(z-1)}}{z+1}$.

The numerator of the first representation above is analytic at $z_1 = 0$, similarly that of the second is analytic at $z_2 = 1$, and finally that of the third is analytic at $z_3 = -1$.

Since these are simple poles we may use the fact that $Res_{z=z_0} \frac{\phi(z)}{z-z_0} = \phi(z_0)$ where $\phi(z)$ is analytic at z_0 .

Therefore

$$Res_{z=0}f(z) = Res_{z=0} \frac{1}{z(z^{2}-1)} = \frac{1}{z^{2}-1} \Big|_{z=0} = -1$$

$$Res_{z=-1}f(z) = Res_{z=-1} \frac{1}{z(z^{2}-1)} = \frac{1}{z(z-1)} \Big|_{z=-1} = \frac{1}{2}$$

$$Res_{z=1}f(z) = Res_{z=1} \frac{1}{z(z^{2}-1)} = \frac{1}{z(z+1)} \Big|_{z=1} = \frac{1}{2}$$

Since C_2 is a simple closed contour and $f(z) = \frac{1}{z(z^2-1)}$ is analytic inside and on C_2 except at isolated singularities we know:

$$\int_{C_2} f(z)dz = \int_{C_2} \frac{1}{z(z^2 - 1)} dz = 2\pi i \left(\sum_{k=1}^3 Res_{z=z_k} f(z) \right) = 2\pi i \left(-1 + \frac{1}{2} + \frac{1}{2} \right) = 0$$

So finally we have that:

$$\int_C \frac{1}{z(z^2-1)} dz = \int_C f(z) dz = \int_{C_1} f(z) dz + \int_{C_2} f(z) dz + \int_{C_3} f(z) dz = 2\pi i + 0 + \pi i = 3\pi i$$