Práctico 0 Álgebra II – Año 2024/1 **FAMAF**

Objetivos.

- o Familiarizarse con los números complejos.
- o Aprender a operar con números complejos (sumar, multiplicar, calcular inversos, conjugados y normas).

Ejercicios.

(1) Expresar los siguientes números complejos en la forma a+ib. Hallar el módulo y conjugado de cada uno de ellos, y graficarlos.

a)
$$(-1+i)(3-2i)$$
 b) $i^{131}-i^9+1$

b)
$$i^{131} - i^9 + 1$$

c)
$$\frac{1+i}{1+2i} + \frac{1-i}{1-2i}$$

- (2) Encontrar números reales x e y tales que 3x + 2yi xi + 5y = 7 + 5i
- (3) Probar que si $z \in \mathbb{C}$ tiene módulo 1 entonces $z + z^{-1} \in \mathbb{R}$.
- (4) Probar que si $a \in \mathbb{R} \setminus \{0\}$ entonces el polinomio $x^2 + a^2$ tiene siempre dos raíces complejas distintas.
- (5) Simplificar las siguientes expresiones:

a)
$$\left(\frac{-3}{\frac{4}{5}+1}\right)^{-1} \cdot \left(\frac{4}{5}-1\right) + \frac{1}{3}$$
, b) $\frac{a}{2\pi-6}(\pi-3)^2 - \frac{2a(\pi^2-9)}{\pi-3}$.

b)
$$\frac{a}{2\pi - 6}(\pi - 3)^2 - \frac{2a(\pi^2 - 9)}{\pi - 3}$$

(6) Demostrar que dados z, z_1 , z_2 en \mathbb{C} se cumple:

$$|\bar{z}| = |z|, \qquad |z_1 z_2| = |z_1| |z_2|.$$

1

- (7) Sean $z = 1 + i y w = \sqrt{2} i$. Calcular:
 - a) z^{-1} ; 1/w; z/w; w/z.
 - b) $1 + z + z^2 + z^3 + \cdots + z^{2019}$.
 - c) $(z(z + w)^2 iz)/w$.
- (8) Sumar y multiplicar los siquientes pares de números complejos
 - a) 2 + 3i + 4.
 - b) 2 + 3i + 4i.
 - c) 1 + i + i + 1 i.
 - d) 3 2i + i.

(9) Expresar los siguientes números complejos en la forma a+ib. Hallar el módulo, argumento y conjugado de cada uno de ellos y graficarlos.

a)
$$2e^{i\pi} - i$$
, b) $i^3 - 2i^{-7} - 1$, c) $(-2 + i)(1 + 2i)$.

- (10) Sean $a, b \in \mathbb{C}$. Decidir si existe $z \in \mathbb{C}$ tal que:
 - a) $z^2 = b$. ¿Es único? ¿Para qué valores de b resulta z ser un número real?
 - b) z es imaginario puro y $z^2 = 4$.
 - c) z es imaginario puro y $z^2 = -4$.

Ejercicios de repaso. Si ya hizo los ejercicios anteriores continue a la siguiente guía. Los ejercicios que siguen son similares a los anteriores y le pueden servir para practicar antes de los exámenes.

(11) Expresar los siguientes números complejos en la forma a+ib. Hallar el módulo y conjugado de cada uno de ellos, y graficarlos.

(a)
$$(\cos \theta - i \sin \theta)^{-1}$$
, $0 \le \theta < 2\pi$, (b) $3i(1+i)^4$, (c) $\frac{1+i}{1-i}$

(12) Sea $z = 2 + \frac{1}{2}i$, calcular

a)
$$\frac{(z+i)(z-i)}{z^2+1}$$
. b) $z-2+\frac{1}{z-2}$. c) $\left|\frac{1}{z-i}\right|^2$.

- (13) Sea $z \in \mathbb{C}$. Calcular $\frac{1}{z} + \frac{1}{\overline{z}} \frac{1}{|z|^2}$.
- (14) (Designaldad triangular) Sean w y z números complejos. Probar que $|w+z| \le |w| + |z|$,

y la igualdad se cumple si y sólo si $w = r \cdot z$ para algún número real $r \ge 0$. En general, sean z_1, z_2, \ldots, z_n números complejos. Probar que

$$\left|\sum_{k=1}^n z_k\right| \le \sum_{k=1}^n |z_k|.$$

(15) Sean w y z números complejos. Entonces

$$||w| - |z|| \le |w - z|.$$