

Incomplete Label Uncertainty Estimation for Petition Victory Prediction with Dynamic Features

Junxiang Wang, Yuyang Gao, Andreas Zufle, Jingyuan Yang and Liang Zhao

An Example of Online Petitions

Research Challenges

4. Scalability regarding increasing features and petitions.

- > a fast growing number of online petitions;
- > an increasing number of features for each petition;
- > frequent updates of petition information.

Computational scalability is challenging due to:

Multi-task Learning with Uncertainty Estimation(MLUE)

- we propose an Expectation-Maximization(EM)-like algorithm \triangleright E-step: update *Y* when fixing β and *b*.
- \triangleright M-step: update β and b when fixing Y.
- Updating Y: dynamic programming.
- Updating β and b: Alternating Direction Method of Multipliers (ADMM).
- The convergence condition of ADMM is analyzed.

Petition Victory Prediction Problem

- A petition will be labeled as victorious if
- > (1). The required number of signatures is satisfied or
- > (2). The appeals of the petition launcher have been addressed by the decision-makers within a limited time interval.
- The petition victory prediction problem is formulated as
- \triangleright Given the petition vector $X_{i,t}$, the goal of this problem is to predict whether the i-th petition will succeed at time $t + \tau$ by learning the mapping $f: X_{i,t} \to t$ $Y_{i,t+\tau}$, where τ is the lead time.

Increasing Feature Block and Uncertainty Estimation

- Increasing Feature Block
- > An increasing feature block(IFB) is a block of petition sets that share the same available feature sets. All tasks are petitioned by

- Uncertainty Estimation
- ➤ If the predicted label in IFB(j) is correct while that in IFB(j-1) is wrong, we earn more certainty.
- ➤ If the predicted label in IFB(j) is wrong while that in IFB(j-1) is correct, we lose more certainty. *i:* the i-th petition. the accuracy earning of $earn(Y_{i,q}, Y_{i,p}, Y_{i,d_i}) = I(Y_{i,q} \neq Y_{i,d_i})I(Y_{i,p} = Y_{i,d_i})$ d_i : the label time. the classifier $= (1 - Y_{i,q}Y_{i,d_i})(1 + Y_{i,p}Y_{i,d_i})/4$ $Y_{i,p}(p \in T_i)$: the predict label in IFB(j). $lose(Y_{i,q}, Y_{i,p}, Y_{i,d_i}) = I(Y_{i,q} = Y_{i,d_i})I(Y_{i,p} \neq Y_{i,d_i})$ $Y_{i,q} (q \in T_{j-1})$: the the accuracy losing of $= (1 + Y_{i,q}Y_{i,d_i})(1 - Y_{i,p}Y_{i,d_i})/4$ predict label in IFB(j-1). the classifier

 $Y_{i.d.}$: the label of the i-th $R(Y_{i,q}, Y_{i,p}, Y_{i,d_i}) = lose(Y_{i,q}, Y_{i,p}, Y_{i,d_i}) - earn(Y_{i,q}, Y_{i,p}, Y_{i,d_i})$ petition at time d_i . uncertainty function

Experiments Results

Our method(MLUE) is shown in the red curve, which covered other baselines.

The training time of our method(MLUE) increases linearly with number of features and petitions.

