Observed Heterozygosity

The observed fraction of individuals that have at least two alleles per locus.

XY

 H_{Ω}

The expected fraction of individuals in the sample

that are not homozygous.

$$H_E = 1 - \sum_{i=1}^{\ell} p_i^2$$

The expected fraction of individuals in a sample of several populations that are not homozygous.

several populations that are not homozygous.
$$\tilde{N} = \begin{pmatrix} \ell & \ell & \ell \\ \tilde{N} & \ell & 2 \end{pmatrix} = \begin{pmatrix} H_O \end{pmatrix} = \tilde{N}$$

Observed Heterozygosity

The observed fraction of individuals that have at least two alleles per locus. $H_O = \frac{N_{XY}}{N}$

The expected fraction of individuals in the sample that are not homozygous. ρ

$$H_E = 1 - \sum_{i=1}^{n} p_i^2$$

The expected fraction of individuals in a sample of several populations that are not homozygous.

$$H_S = \frac{\tilde{N}}{\tilde{N} - 1} \left(1 - \sum_{i=1}^{\ell} p_{k,i}^2 - \frac{H_O}{2\tilde{N}} \right) \qquad \tilde{N} = \frac{1}{\sum_{i=1}^{K} \frac{1}{n_i}}$$

Genetic Distance