

How to use this tutorial • Questions will be presented and discussed today • Warning: there are lots of material that is not covered in this tutorial. • You should NOT rely only on this tutorial to prepare for the exam.

- Question-1: The decimal number 11 would be represented in base 12 by the digit:
 - a) A
 - b) B
 - c) C
 - d) D
 - e) None of the above

9

Number Systems

• Convert the number from base 10 to base 12

Base 10	Base 12
0	0
1	1
2	2
:	:
:	:
9	9
10	Α
11	В

Number Systems: Conversion

- Question-1: The decimal number 11 would be represented in base 12 by the digit:
 - a) A
 - b) E
 - c) (
 - d) D
 - e) None of the above

[11

Number Systems: Conversion

- Question-2: The decimal number 13 would be represented in base 12 by:
- a) A
- b) B
- c) C
- d) D
- e) None of the above

- Using the division method, find 13₁₀ in base 12:
 - $13/12 = 1 \rightarrow Remainder = 1$
 - $1/12 = 0 \rightarrow Remainder = 1$
- Answer: 11₁₂
- What if the question was the other way around?
 - Use positional representation:

$$11_{12} = (1X12^{1}) + (1X12^{0})$$
$$= 12 + 1$$

= 13₁₀

13

Number Systems: Conversion

- Question-2: The decimal number 13 would be represented in base 12 by:
- a) A
- b) B
- c) (
- d) D
- e) None of the above

14

Number Systems: Conversion

- Question-3: The number 321 in base 4 converts to what number in base 8?
- a) 311
- b) 57
- c) 71
- d) 17
- e) None of the above

15

Number Systems: Conversion

- Convert the number from base 4 to base 2
- Convert the number from base 2 to base 8

Base 4	Base 2
0	0
1	01
2	10
3	11

• 321₄ = 11 10 01₂

- 321₄ = 11 10 01₂
- $8 = 2^3 \rightarrow$ Create groups of 3 elements

Base 2	Base 8
001	1
111	7

• $321_4 = 111001_2 = 71_8$

17

Number Systems: Conversion

- Question-3: The number 321 in base 4 converts to what number in base 8?
- a) 311
- b) 57
- c) 71
- d) 17
- e) None of the above

18

Number Systems: Conversion

- Question-4: The number 77 in base 8 converts to what decimal number?
- a) 63
- b) 115
- c) 77
- d) 70
- e) None of the above

19

Number Systems: Conversion

• Using positional representation:

$$77_8 = (7 \times 8^1) + (7 \times 8^0)$$

= $(7 \times 8) + (7 \times 1)$
= $56 + 7$
= 63_{10}

• 77₈ = 63₁₀

- Question-4: The number 77 in base 8 converts to what decimal number?
- a) 63
- b) 115
- c) 77
- d) 70
- e) None of the above

21

Topics Number Systems: Conversion Number Systems: Sign systems IEEE-754 floating-point Circuits Assembly Computer Architecture

Number Systems: The Sign System Description Mag 0→ positive + magnitude 1 → negative+ magnitude 2's 0 → positive → all other bits same as unsigned 1 → negative → all other bits are opposite of unsigned+1

Number Systems: The Sign			
System	Example (2 ₁₀)	Example (-2 ₁₀)	
Mag	0000 00102	1000 00102	
2's	0000 00102	1111 1110 ₂	
			(24)

Number Systems: The Sign

- Example: How is the number -6 represented in 2's complement?
- **Step-1:** The unsigned representation of 6 is 110₂
- Step-2: We need an extra bit for the sign.
 - We know that $+6 = 0110_{2}$
- Step-3: Flip all bits of +6:
 - **0**110, → **1**001,
- Step-4: Add 1₂ to the flipped bits:
 - $1001_2 + 1_2 \rightarrow 1010_2$

25

Number Systems: The Sign

- Example: Find the 2's complement of the number: 1101.11011₂
- **Step-1:** The unsigned representation is 1101.11011₂
- Step-2: We need an extra bit for the sign.
 - **0** 1101.11011₂
- Step-3: Flip all bits:
 - **1** 0010.00100₂
- Step-4: Add 1₂ to the flipped bits:
 - 1 $0010.00100_2 + 1_2 \rightarrow$ 1 0010.00101_2

26

Number Systems: The Sign

- Question-5: If the binary value 10000110 is interpreted as an unsigned number, it represents the decimal value:
 - a) 122
 - b) 134
 - c) -122
 - d) 86
 - e) None of the above

27

Number Systems: The Sign

• Use positional representation directly:

$$1000\ 0110_2 = 2^7 + 2^2 + 2^1$$
$$= 128 + 4 + 2$$

= 134₁₀

Number Systems: The Sign

- Question-5: If the binary value 10000110 is interpreted as an unsigned number, it represents the decimal value:
 - a) 122
 - b) 134
 - c) -122
 - d) 86
 - e) None of the above

29

Number Systems: The Sign

- Question-6: In a system that uses 2's complement representation for signed integers, the largest positive integer that can be represented in 9 bits is:
- a) 9
- b) 255
- c) 256
- d) 511
- e) None of the above

30

Number Systems: The Sign

- In 2's complement, the largest positive integer in 9 bits:
 - · **0** 1111 1111
- This is equal to $1\,0000\,0000 1 = 2^8 1 = 256 1 = 255$

31

Number Systems: The Sign

- Question-6: In a system that uses 2's complement representation for signed integers, the largest positive integer that can be represented in 9 bits is:
- a) 9
- b) 255
- c) 256
- d) 511
- e) None of the above

Number Systems: The Sign

- Question-7: In which system(s) is the negative of a number formed by flipping the sign bit?
- a) signed magnitude system
- b) unsigned system
- c) 2's complement system
- d) two of the above systems
- e) all of the above systems

33

Number Systems: The Sign

- Question-7: In which system(s) is the negative of a number formed by flipping the sign bit?
- a) signed magnitude system
- b) unsigned system
- c) 2's complement system
- d) two of the above systems
- e) all of the above systems

34

Number Systems: The Sign

- Question-8: In which system(s) is there more than one representation for the value zero?
- a) signed magnitude system
- b) unsigned system
- c) 2's complement system
- d) two of the above systems
- e) all of the above systems

35

Number Systems: The Sign

- Question-8: In which system(s) is there more than one representation for the value zero?
- a) signed magnitude system:
- 0000 0000 and 1000 0000
- b) unsigned system
- c) 2's complement system
- d) two of the above systems
- e) all of the above systems

Number Systems: Conversion Number Systems: Sign systems IEEE-754 floating-point Circuits Assembly Computer Architecture

IEEE-754 floating-point format • Convert $(32.625)_{10}$ to the IEEE-754 floating-point • Using the division method, find 32_{10} in base 2: • $32/2 = 16 \rightarrow \text{Remainder} = 0$ • $16/2 = 8 \rightarrow \text{Remainder} = 0$ • $8/2 = 4 \rightarrow \text{Remainder} = 0$ • $4/2 = 2 \rightarrow \text{Remainder} = 0$ • $2/2 = 1 \rightarrow \text{Remainder} = 0$ • $1/2 = 0 \rightarrow \text{Remainder} = 1$ • Answer: $32_{10} \rightarrow 100000_2$

IEEE-754 floating-point format

- 32.625₁₀ → 100000.101₂ → 1.00000101₂ * 2⁵
- Unbiased exponent → 5
- Biased exponent \rightarrow 5 + 127 \rightarrow 132 \rightarrow 1000 0100₂
- Significand → 1.00000101₂
- Normalized Significant → 0.00000101₂
- Sign $\rightarrow 0_2$

- Answer → 42028000₁₆

41

IEEE-754 floating-point format

- Convert 42028000₁₆ from the *IEEE-754* floating-point to decimal

- Biased exponent \rightarrow 1000 0100₂ \rightarrow 132
- Unbiased exponent → 132 127 → 5
- Normalized Significant → 0.00000101 0000 0000 0000 000₂
- Significand → 1.00000101₂
- Sign $\rightarrow 0_2$
- Answer \rightarrow 42028000₁₆ \rightarrow +1.00000101₂ * 2⁵
 - → 100000.101₂ → 32.625₁₀

42

IEEE-754 floating-point format

- When representing a negative number with IEEE-754, you should NOT use 2's complement.
- You cannot add 2 IEEE-754 representations, directly (bitby-bit). You should convert to numbers before you can add.

43

Topics

- Number Systems: Conversion
- Number Systems: Sign systems
- IEEE-754 floating-point
- Circuits
- Assembly
- Computer Architecture

44)

Assembly

- Question-9: In order for a program to be executed on the ARM, it must be:
- a) in machine language
- b) written in assembly
- c) stored in main memory
- d) more than one of the above
- e) none of the above

53

Assembly

- Question-9: In order for a program to be executed on the ARM, it must be:
- a) in machine language
- b) written in assembly
- c) stored in main memory
- d) more than one of the above
- e) none of the above

54

Assembly

- Question-10: Which of the following is/are true about an assembler?
- a) it is machine independent
- b) it is a part of the CPU
- c) it is software that translates a high-level language into assembly language
- d) more than one of the above
- e) none of the above

55

Assembly

- Question-10: Which of the following is/are true about an assembler?
- a) it is machine independent
- b) it is a part of the CPU
- c) it is software that translates a high-level language into assembly language
- d) more than one of the above
- e) none of the above
- It is translates assembly instruction into opcodes

Computer Architecture

- Question-12: The external representation of information in the ARM is always in:
- a) Binary
- b) Octal
- c) Decimal
- d) Hexadecimal
- e) None of the above

61

Computer Architecture

- Question-13: The character "5" typed on the keyboard, is stored internally in the keyboard buffer as:
- a) the binary value 0000 0101
- b) the binary value 0011 0101
- c) the binary value 0101 0011
- d) the binary value 0101 0000
- e) none of the above

62

Computer Architecture

- The ASCII value for the character "5" is 53
- Convert the ASCII value to binary:

 $53/2 = 26 \rightarrow Remainder=1$

 $26/2 = 13 \rightarrow Remainder=0$

 $13/2 = 6 \rightarrow Remainder = 1$

 $6/2 = 3 \rightarrow Remainder = 0$

 $3/2 = 1 \rightarrow Remainder = 1$

 $1/2 = 0 \rightarrow Remainder = 1$

• $53_{10} = 00110101_2$

63

Computer Architecture

- Question-13: The character "5" typed on the keyboard, is stored internally in the keyboard buffer as:
- a) the binary value 0000 0101
- b) the binary value 0011 0101
- c) the binary value 0101 0011
- d) the binary value 0101 0000
- e) none of the above

Computer Architecture

- Question-14: Which of the following is/are part of the architectural specifications for a computer?
- a) representation used for signed integers
- b) assembly language instruction set
- c) machine language instruction set
- d) exactly two of the above
- e) all three of (a), (b), and (c)

65

Computer Architecture

- Question-14: Which of the following is/are part of the architectural specifications for a computer?
- a) representation used for signed integers
- b) assembly language instruction set
- c) machine language instruction set
- d) exactly two of the above
- e) all three of (a), (b), and (c)

66

Computer Architecture

- Question-15: What is the size of an ARM machine language instruction?
 - a) 8 bits
 - b) 13 bits
 - c) 32 bits
 - d) it depends on the opcode
 - e) none of the above

Computer Architecture

- Question-15: What is the size of an ARM machine language instruction?
 - a) 8 bits
 - b) 13 bits
 - c) 32 bits
 - d) it depends on the opcode
 - e) none of the above

Computer Architecture

- Question-16: In assembly language, a label is:
- a) a symbolic name for a local variable
- b) a symbolic name for the location of an instruction
- c) a comment
- d) more than one of the above answers
- e) none of the above answers

Computer Architecture

- Question-16: In assembly language, a label is:
- a) a symbolic name for a local variable
- b) a symbolic name for the location of an instruction
 - User-defined identifier
 - May use letters, digits, underscore, may not start with a digit
- c) a comment
- d) more than one of the above answers
- e) none of the above answers

Help

- Graduate Teaching Assistants:
 - Abdulwahab Kabani, akabani5@uwo.ca
 - Mike Molnar, mmolnar2@uwo.ca
 - Sakif Pritom, spritom@uwo.ca
- · Send us an email or see us after class
- Consultation Room : Middlesex College 342

