ORGANIZAÇÃO BÁSICA DE COMPUTADORES E LINGUAGEM DE MONTAGEM

Introdução à linguagem assembly do 8086 - Sintaxe - continuação

O registrador de sinalizadores (FLAGS)

1. Flags de Status e Flags de Controle

indica o estado do microprocessador após a execução de cada instrução;

conjunto de bits individuais, cada qual indicando alguma propriedade; subdividem-se em: Flags de Estado (*status*) e Flags de Controle.

Organização

1 registrador de 16 bits 6 FLAGS de estado 3 FLAGS de controle

7 bits não utilizados (sem função)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				OF	DF	IF	TF	SF	ZF		AF		PF		CF

Ricardo Pannain

Organização Básica de Computadores e Linguagem de Montagem

5 - 1

ORGANIZAÇÃO BÁSICA DE COMPUTADORES E LINGUAGEM DE MONTAGEM

Introdução à linguagem assembly do 8086 - Sintaxe - continuação

Flags de estado

Nome	Símbolo	Função/característica
Carry Flag	CF	Indicador de "vai-um"
Parity Flag	PF	Indicador de número PAR de 1's no byte inferior
Auxiliary Carry	AF	Indicador de "vai-um" para operações em BCD
Zero Flag	ZF	Indicador de "zero" na última operação
Sign Flag	SF	Indicador de resultado negativo
Overflow Flag	OF	Indicador de erro de transbordamento

Obs: o emprego dos **Flags de Controle** será discutido juntamente com operações com *arrays* e interrupções.

Organização Básica de Computadores e Linguagem de Montagen

5 - 2

Ricardo Pannain

ORGANIZAÇÃO BÁSICA DE COMPUTADORES E LINGUAGEM DE MONTAGEM

Introdução à linguagem assembly do 8086 - Sintaxe - continuação

2 Overflow (erro de transbordamento)

ocorre porque a representação dos números está limitada Overflow -> a uma certa faixa

Tipos	8 bits	16 bits
Não-sinalizado	0 a 255	0 a 65.535
Sinalizado (C2)	-128 a +127	- 32.768 a + 32.767

- Qualquer operação aritmética que tenha como resultado um número fora da faixa de representação, estará produzindo Overflow.
- O resultado armazenado no registrador destino estará truncado e terá, portanto, um valor incorreto.

Organização Básica de Computadores e Linguagem de Montagem

Ricardo Pannain

5 - 3

ORGANIZAÇÃO BÁSICA DE COMPUTADORES E LINGUAGEM DE MONTAGEM

Introdução à linguagem assembly do 8086 - Sintaxe - continuação

Tem-se dois Flags que podem indicar overflow: CF e OF

CF -> indica se há um vai-um para fora do Bit Mais Significativo do número MSB (most significant bit)

OF -> testa o vem-um que chega e o vai-um gerado no MSB:

se iguais (0 e 0 ou 1 e 1) -> OF = 0 se diferentes, OF = 1

Ricardo Pannain

ORGANIZAÇÃO BÁSICA DE COMPUTADORES E LINGUAGEM DE MONTAGEM

Introdução à linguagem assembly do 8086 - Sintaxe - continuação Exemplos de operações com 8 bits:

ADD AL,BL ;AL contem FFh e BL contem 01h

> repres. não-sinalizada repres. sinalizada

1111 1111b 255 -1 **FFh** <u>+ 1</u> 01h + 0000 0001b <u>+1</u> 1 0000 0000b 256 (fora da faixa) 0 (OK)

Logo após a execução da instrução:

CF = 1, indicado em negrito;

OF = 0, pois no MSB o "vem-um" é igual ao "vai-um" (ambos 1).

Organização Básica de Computadores e Linguagem de Montagem

Ricardo Pannain

ORGANIZAÇÃO BÁSICA DE COMPUTADORES E LINGUAGEM DE MONTAGEM

Introdução à linguagem assembly do 8086 - Sintaxe - continuação

ADD AL,BL ;ambos AL e BL contém 7Fh

repres. não-sinalizada repres. sinalizada

7Fh 0111 1111b + 127 127 7Fh + 0111 1111b 127 + 127 0 1111 1110b -> 254 (OK) 254 (fora)

Logo após a execução da instrução:

CF = 0, indicado em negrito;

OF = 1, pois no MSB o "vem-um" é diferente do "vai-um".

Portanto:

representação não-sinalizada -> Flag CF indica overflow; representação sinalizada Flag OF indica overflow.

Ricardo Pannain

5 - 6

5 - 5

ORGANIZAÇÃO BÁSICA DE COMPUTADORES E LINGUAGEM DE MONTAGEM

Introdução à linguagem assembly do 8086 - Sintaxe - continuação 3 Como as instruções afetam os Flags

Algumas instruções, imediatamente após a sua execução:

- afetam todos os Flags;
- afetam apenas alguns;
- não afetam nenhum.

Instrução	Flags afetados
MOV	nenhum
XCHG	nenhum
LEA	nenhum
ADD/SUB	todos
INC/DEC	todos, exceto CF que não é afetado
NEG	todos, CF=1 se o resultado não for zero

Ricardo Pannain

Organização Básica de Computadores e Linguagem de Montagem

5 - 7

ORGANIZAÇÃO BÁSICA DE COMPUTADORES E LINGUAGEM DE MONTAGEM

Introdução à linguagem assembly do 8086 - Sintaxe - continuação

Exemplos:

ADD AX,BX ;onde ambos AX e BX valem FFFFh

FFFFh 1111 1111 1111 b
FFFFh + 1111 1111 1111 b
FFFEh 1 1111 1111 1111 1110 b

Como resultado: CF = 1 AF = 1 ZF = 0 PF = 0 SF = 1 OF = 0

INC AL ;onde AL contem FFh

FFh 1111 1111 b
01h + 1 b
100h 1 0000 0000 b

Como resultado: CF = não afetado AF = 1 ZF = 1 F = 1 SF = 0 OF = 0

Organização Básica de Computadores e Linguagem de Montagem

Ricardo Pannain

5 - 8

ORGANIZAÇÃO BÁSICA DE COMPUTADORES E LINGUAGEM DE MONTAGEM

Introdução à linguagem assembly do 8086 - Sintaxe - continuação

4 O programa DEBUG

O programa DEBUG do DOS provê um meio de depuração de programas em Linguagem Montadora e permite acompanhar a modificação do conteúdo de registradores (inclusive o de Flags).

```
Escrevendo um programa de teste e verificação dos Flags:
    TITLE PROGRAMA PARA VERIFICAÇÃO DOS FLAGS
    ;usado no DEBUG para verificar o registradores de Flags
    .MODEL SMALL
    .STACK 100H
    .CODE
        MOV AX,4000H
                         ;AX = 4000h - valor inicial de AX
                         ;AX = 8000h (4000h + 4000h = 8000h)
        ADD AX.AX
        SUB AX,0FFFFH ;AX = 8001h (8000h - FFFFh = 8001h)
        NEG AX
                         ;AX = 7FFFh (C2 de 8001h)
        INC AX
                         ;AX = 8000h (7FFFh + 0001h = 8000h)
        MOV AH,4CH
```

INT 21H ;saida para o DOS

END

Ricardo Pannain

Organização Básica de Computadores e Linguagem de Montagem

5 - 9

ORGANIZAÇÃO BÁSICA DE COMPUTADORES E LINGUAGEM DE MONTAGEM

Introdução à linguagem assembly do 8086 - Sintaxe - continuação

Acesso ao DEBUG:

C:\ DEBUG <nome_do_programa>.EXE

alguns comandos de linha do DEBUG

- r -> "registers", para exibir o conteúdo dos registradores
- t -> "trace", para executar linha por linha
- g -> "go", para ir até o fim
- q -> "quit", para sair do DEBUG

Ricardo Pannain

5 - 10

ORGANIZAÇÃO BÁSICA DE COMPUTADORES E LINGUAGEM DE MONTAGEM

Introdução à linguagem assembly do 8086 - Sintaxe - continuação

Tela do DOS rodando o DEBUG:

Organização Básica de Computadores e Linguagem de Montagem

5 - 11

ORGANIZAÇÃO BÁSICA DE COMPUTADORES E LINGUAGEM DE MONTAGEM

Introdução à linguagem assembly do 8086 - Sintaxe - continuação Simbologia usada para os Flags no Programa Debug

	Símbolo quando 1	Símbolo quando 0		
Flag de Estado		_		
CF	CY (carry)	NC (no carry)		
PF	PE (parity even - PAR)	PO (parity odd - IMPAR)		
AF	AC (auxiliary carry)	NA (no aux. carry)		
ZF	ZR (zero)	NZ (no zero)		
SF	NG (negativo)	PL (plus - positivo)		
OF	OV (overflow)	NV (no overflow)		
Flag de Controle				
DF	DN (down - para baixo)	UP (up - para cima)		
IF	El (permite interrupção)	DI (desabilita interup.)		

Organização Básica de Computadores e Linguagem de Montager

Ricardo Pannain

Ricardo Pannain

5<u>- 12</u>