Name	Matriculation Number	Date
Lab Partners		Group

Single Slit Diffraction

Part A: Single Slit Diffraction Pattern (Qualitative)

A-1 Describe what happens to the spatial width and overall brightness of the central peak as the slit width becomes narrower. Explain the observed trend qualitatively according to theoretical consideration.

A-2 The angular spread of the central peak $\Delta\theta$ can be approximated as $\Delta\theta\approx 2y/L$ radians. Determine the angular spread of the central peak $\Delta\theta$ for the slit width a=0.20 mm. Compare your experimental value of the angular spread with the angular spread of the central peak calculated by using the formula $\Delta\theta\approx 2\lambda/a$.

Part B: Single Slit Diffraction Pattern (Quantitative)

$I_0 = \underline{\hspace{1cm}}$				
Secondary Maxima	$y_{ m left}$	$I_{ m left}$	$y_{ m right}$	$I_{ m right}$
First				
Second				
Third				
Fourth				

Data Table 2

Demonstrator's signature

B-1 Theoretical calculations from Equation (6) show that the angular locations and intensities of the secondary maxima are:

Secondary Maxima	Angular Position	Intensity
First	$\sin \theta_1 = 1.43030 \lambda / a$	$I_1 = 0.047I_0$
Second	$\sin \theta_2 = 2.45902\lambda/a$	$I_2 = 0.016I_0$
Third	$\sin \theta_3 = 3.47089 \lambda/a$	$I_3 = 0.008I_0$
Fourth	$\sin \theta_4 = 4.47741\lambda/a$	$I_4 = 0.005I_0$

Compare the angular location and intensity of the secondary maxima of your scan with the values in the table above. State the percentage discrepancy for each value.

m	$y_{ m left}$	$y_{ m right}$
1		
2		
3		
4		
5		

	4			
	5			
		Data Table	3	1
				Demonstrator's signature
B-2 For each minimium	m in your s	can, determine	the angular posi	ition $\sin \theta_m$.
B-3 Use an appropriat				
fit to your data with th				
as the horizontal axis. Also show on the graph				
to the data. Attached	_			
Gradient:				
y-intercept:				
B-4 The gradient of the			·	
for the slit width a give		_		-
the manufacturer-state	a varue ana	carculate the p	ercentage discre	epancy.
Experimental value:				
Manufacturer-stated va	alue:			

% discrepancy:

Part C: Diffraction Pattern of A Human Hair

L =	$L = \underline{\hspace{1cm}} d = \underline{\hspace{1cm}}$		
m	$y_{ m left}$	$y_{ m right}$	
1			
2			
3			
4			
5			

Data Table 4

Demonstrator's signature

C-1 Determine the angular position $\sin \theta_m$ of the minima of the scan and the thickness of the hair strand.

Analysis C-2 Estimate an experimental value for the thickness of your hair strand d and its associated uncertainty with the appropriate number of significant figures. Compare this value with the one determined in C-1.

Submission of Laboratory Report

Submit your full laboratory report including all the graphs within 24 hours after your laboratory session (except for Friday group - you will submit by the following working day (usually Monday) at 5 pm).

Important: Before leaving the laboratory, have a demonstrator sign on your data table(s)!