Topic(s): eigenvalues, eigenvectors

Let A be an $n \times n$ matrix. A vector $\mathbf{v} \in \mathbb{R}^n$ is called an **eigenvector** of A if it is non-zero and there is a scalar $\lambda \in \mathbb{R}$ for which $A\mathbf{v} = \lambda \mathbf{v}$. The prefix "eigen" is German for "characteristic" or "own" (in the sense of ownership).

If **v** is an eigenvector for an $n \times n$ matrix A, the scalar λ for which A**v** = λ **v** is called the **eigenvalue** of A associated with **v**.

Example 1. The 2×2 matrix $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ has eigenvectors $\mathbf{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. What is the eigenvalue associated with each eigenvector?

We see that
$$\overrightarrow{AU} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \overrightarrow{U}$$
 and $\overrightarrow{AV} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ -3 \end{bmatrix} = \overrightarrow{3V}$.

So, $\lambda_{\vec{x}} = 1$ and $\lambda_{\vec{v}} = 3$.

Not all matrices have eigenvectors!

Example 2. For an angle θ that is neither 0° nor 180° , the rotation matrix

$$A_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

has no eigenvectors.

$$A_0 \vec{V} = \begin{cases} \vec{V} & \theta = 0^{\circ} \\ -\vec{V} & \theta = 180^{\circ} \end{cases}$$
 For any other value of θ , $A_0 \vec{V}$ cannot be a scalar multiple of \vec{V} .

Example 3. If the null space of an $n \times n$ matrix A contains a non-zero vector w, is w an eigenvector of A?

If $\vec{O} \neq \vec{w} \in N(A)$, then $A\vec{w} = \vec{O} = O\vec{w}$. So, \vec{w} is an eigenector of A with $\lambda \vec{w} = O$.

Hence, 0 is an eigenvalue of A precisely when A is not invertible.

©2023 Gene B. Kim, Stanford Math Dept. This content is protected and may not be shared, uploaded, or distributed.

Proposition 23.1.11. A scalar λ is an eigenvalue for an $n \times n$ matrix A precisely when $A - \lambda I_n$ is not invertible, or equivalently, the null space $N(A - \lambda I_n)$ contains a non-zero vector. The eigenvectors for A with eigenvalue λ are the non-zero vectors in $N(A - \lambda I_n)$ (this is called the λ -eigenspace for A).

Example 4. Identify the eigenvectors and associated eigenvalues for an $n \times n$ diagonal matrix

$$A = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix}.$$

$$A - \lambda I_n = \begin{bmatrix} d_1 - \lambda & 0 & \cdots & 0 \\ 0 & d_2 - \lambda & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n - \lambda \end{bmatrix}$$
 is not invertible (i.e., there is a nonzero vector in

N(A-XIn)) only if di-X=0 for some i.

Ez is an eigenvector for A with eigenvalue di for all i (Aëi=diëi).

The theory of eigenvectors gives a way to make a lot of $n \times n$ matrices A "look diagonal" when the effect of the corresponding linear transformation is expressed in an appropriate reference frame. More precisely, if there is a basis $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ of \mathbb{R}^n consisting of eigenvectors for A, say with respective eigenvalues $\lambda_1, \dots, \lambda_n$ (some of which may be equal to each other), then the effect of A "looks diagonal" when n-vectors \mathbf{x} are expressed in terms of this basis.

Example 5. Recall that, from Example 1, $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ has eigenvectors $\mathbf{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ with corresponding eigenvalues 1 and 3. If $\mathbf{x} = a\mathbf{u} + b\mathbf{v}$ for some scalars a and b, write $A\mathbf{x}$ as a linear combination of \mathbf{u} and \mathbf{v} .

We get

$$A\vec{z} = A(a\vec{u} + b\vec{v}) = aA\vec{u} + bA\vec{v} = a\vec{u} + 3b\vec{v}$$

More generally, if $\mathbf{x} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$ for a basis of eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ (when such a basis exists) with $A\mathbf{v}_j = \lambda_j \mathbf{v}_j$, then

$$A\mathbf{x} = c_1 A\mathbf{v}_1 + \dots + c_n A\mathbf{v}_n = \lambda_1 c_1 \mathbf{v}_1 + \dots + \lambda_n c_n \mathbf{v}_n.$$

In other words, if \mathbf{x} has coefficients (c_1, \ldots, c_n) in terms of the \mathbf{v}_j 's, then $A\mathbf{x}$ has coefficients $(\lambda_1 c_1, \ldots, \lambda_n c_n)$ in terms of the \mathbf{v}_j 's. Thus, the effect of the matrix-vector product against A behaves like the diagonal matrix of λ_j 's when general n-vectors are written in terms of the basis of eigenvectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ for A!

This seems very restrictive however – how do we check if such basis of eigenvectors exist? One of the truly great theorems of mathematics is that for symmetric matrices, such a basis always exists! In fact, such bases also exist for many non-symmetric matrices as well. We will discuss this amazing result and its awesome applications in the remaining lectures of this quarter.

©2023 Gene B. Kim, Stanford Math Dept. This content is protected and may not be shared, uploaded, or distributed.

Theorem 23.2.2. Let M be an $n \times n$ upper triangular (or lower triangular) matrix. The eigenvalues of M are exactly the diagonal entries. For each eigenvalue λ , the corresponding eigenvectors are the non-zero vectors in the null space $N(M - \lambda I_n)$: non-zero solutions \mathbf{x} to the upper (or lower) triangular system

$$(M - \lambda I_n)\mathbf{x} = \mathbf{0}$$

of n linear equations in n variables (which we can solve via back-substitution).

Example 6. Let $M = \begin{bmatrix} 2 & 3 & 1 \\ 0 & 8 & 2 \\ 0 & 0 & 2 \end{bmatrix}$. Find the eigenvectors and the corresponding eigenvalues of M.

Since M is upper triangular, the eigenvalues of M are 2 and 8. $\lambda = 8$.

We see that M-8I_s =
$$\begin{bmatrix} -6 & 3 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & -6 \end{bmatrix}$$
, and $\begin{bmatrix} -6 & 3 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ leads to $2x_1 = x_2$ and $x_3 = 0$. Hence, $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$, and so, 8-eigenspace = span $\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$.

 $\lambda = 2$.

We get M-2I_s = $\begin{bmatrix} 0 & 3 & 1 \\ 0 & 6 & 2 \\ 0 & 0 & 0 \end{bmatrix}$, and $\begin{bmatrix} 0 & 3 & 1 \\ 0 & 6 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ leads to $x_2 = -3x_1$. Thus, $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix}$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ -3x_1 \\ x_3 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ -3 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \text{ and so, } 2\text{-eigenspace} = \text{span} \left(\begin{bmatrix} 1 \\ -3 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right).$$

One of the ways to approach the problem of finding eigenvalues is by making use of the following observation. Since we are looking for λ 's that make $A - \lambda I_n$ not invertible, an equivalent problem is: for which λ 's is $\det(A - \lambda I_n) = 0$? It turns out that $\det(A - \lambda I_n)$ is a polynomial in λ (in fact, this polynomial is called the **characteristic polynomial** of A).

Theorem 23.3.1. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be a 2×2 matrix. Define its **trace** $\operatorname{tr}(A) = a + d$ to be the sum of its diagonal entries, and its **determinant** $\det(A) = ad - bc$.

- (a) The eigenvalues of A in \mathbb{R} are exactly the roots of $P_A(\lambda) = \lambda^2 \operatorname{tr}(A)\lambda + \operatorname{det}(A)$. This quadratic polynomial is called the **characteristic polynomial** of A.
- (b) For each such root λ , the corresponding eigenvectors are the non-zero vectors in $N(A \lambda I_2)$.

Corollary 23.3.2. A 2×2 matrix A has an eigenvalue precisely when $P_A(\lambda)$ has a real root, which is to say that its discriminant $\operatorname{tr}(A)^2 - 4 \operatorname{det}(A)$ is greater than or equal to 0.

©2023 Gene B. Kim, Stanford Math Dept. This content is protected and may not be shared, uploaded, or distributed.

Example 7. Find the characteristic polynomial of A_{θ} .

Recall that
$$A_0 = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
. Hence,
$$P_{A_0}(\lambda) = (\cos \theta - \lambda)^2 + \sin^2 \theta = \lambda^2 - 2\cos \theta \lambda + 1.$$

The polynomial only has real rooks if the discriminant

$$D = b^2 - 4ac = 4(\cos^2\theta - 1) \ge 0$$

which happens only if $\cos\theta = \pm 1$ ($\theta = 0^{\circ}$, 180°).

Example 8. Find the eigenvalues of $A = \begin{bmatrix} 3 & 16 \\ 2 & -1 \end{bmatrix}$.

Since
$$A - \lambda I_{\lambda} = \begin{bmatrix} 3 - \lambda & 16 \\ 2 & -1 - \lambda \end{bmatrix}$$
, we get
$$\det(A - \lambda I_{\lambda}) = (3 - \lambda)(-1 - \lambda) - 32$$

$$= \lambda^{2} - 2\lambda - 35$$

$$= (\lambda + 5)(\lambda - 7).$$

Thus, $\lambda = 5, 7$

Example 9. Assume that A is a 2×2 matrix and that $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$ are eigenvectors with respective eigenvalues 1 and 0. Calculate $A \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. (Hint: express $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ as a linear combination of $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$.)

Following the hint, we get
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{2}{3} \begin{bmatrix} 3 \\ 1 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
. Hence,

$$A\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{2}{3} A \begin{bmatrix} 3 \\ 1 \end{bmatrix} - \frac{1}{3} A \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \frac{2}{3} \begin{bmatrix} 3 \\ 1 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ \frac{2}{3} \end{bmatrix}.$$

Example 10. Suppose A has eigenvector $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ with respective eigenvalues -2 and 1.

(a) What is $P_A(\lambda)$?

Since - 2 and 1 are eigenvalues of A,

$$P_A(\lambda) = (\lambda + 2)(\lambda - 1) = \lambda^2 + \lambda - 2$$

(b) Find A.

Motivated by Example 9, we see that

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \frac{1}{3} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 0 \\ 1 \end{bmatrix} = -\frac{2}{3} \begin{bmatrix} 1 \\ -1 \end{bmatrix} + \frac{1}{3} \begin{bmatrix} 2 \\ 1 \end{bmatrix}.$$

Thus,

$$A\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{3}A\begin{bmatrix} 1 \\ -1 \end{bmatrix} + \frac{1}{3}A\begin{bmatrix} 2 \\ 1 \end{bmatrix} = \frac{1}{3}\begin{bmatrix} -2 \\ 2 \end{bmatrix} + \frac{1}{3}\begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$A\begin{bmatrix} 0 \\ 1 \end{bmatrix} = -\frac{2}{3}A\begin{bmatrix} 1 \\ -1 \end{bmatrix} + \frac{1}{3}A\begin{bmatrix} 2 \\ 1 \end{bmatrix} = -\frac{2}{3}\begin{bmatrix} -2 \\ 2 \end{bmatrix} + \frac{1}{3}\begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

Hence,
$$A = \begin{bmatrix} 0 & 2 \\ 1 & -1 \end{bmatrix}$$

(c) Show that $P_A(A) = 0$.

We compute

$$P_{A}(A) = A^{2} + A - 2I_{2}$$

$$= \begin{bmatrix} 2 & -2 \\ -1 & 3 \end{bmatrix} + \begin{bmatrix} 0 & 2 \\ 1 & -1 \end{bmatrix} - \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

In general, for any $n \times n$ matrix A, $P_A(A) = 0$. This is a theorem due to Cayley and Hamilton.

Example 11. Let

$$A = \begin{bmatrix} 2 & 0 & -1 & 1 \\ 0 & -1 & 3 & 0 \\ 0 & 0 & -1 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

(a) Check that e_1 is an eigenvector of A. What is the corresponding eigenvalue?

(b) Determine the collection of eigenvectors for the eigenvalue 1 (write it as a span). What is its dimension?

We see that
$$A - I_4 = \begin{bmatrix} 1 & 0 & -1 & 1 \\ 0 & -2 & 3 & 0 \\ 0 & 0 & -2 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
. Solving

$$\begin{bmatrix} 1 & 0 & -1 & 1 \\ 0 & -2 & 3 & 0 \\ 0 & 0 & -2 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

via back-substitution gives
$$x_1 = x_4$$
, $x_2 = 3x_4$, and $x_3 = 2x_4$. Thus, $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = x_4 \begin{bmatrix} 1 \\ 3 \\ 2 \\ 1 \end{bmatrix}$,

and so, 1-eigenspace = span
$$\begin{pmatrix} 1 \\ 3 \\ 2 \\ 1 \end{pmatrix}$$
 is 1-dimensional.

(c) Determine the collection of eigenvectors for the eigenvalue -1 (write it as a span). What is its dimension?

$$A + \mathbf{I_{4}} = \begin{bmatrix} 3 & 0 & -1 & 1 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 2 \end{bmatrix} \text{ and solving } \begin{bmatrix} 3 & 0 & -1 & 1 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \text{ gives } x_{1} = 0, x_{3} = 0, \text{ and } x_{4} = 0$$

$$X_4 = 0$$
. Hence, $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = X_2 \overrightarrow{\ell}_2$, and so, (-1)-eigenspace = span($\overrightarrow{\ell}_2$) has dimension 1.

Exercise 23.7. Let A be a symmetric $n \times n$ matrix. Assume that **v** is an eigenvector with eigenvalue λ , and **w** is an eigenvector with eigenvalue μ , and that $\lambda \neq \mu$.

- (a) Show that $(\lambda \mathbf{v}) \cdot \mathbf{w} = \mathbf{v} \cdot (\mu \mathbf{w})$.
- (b) Explain why **v** and **w** are orthogonal. (This is a general feature of symmetric matrices!)