CH402 Chemical Engineering Process Design

Class Notes L4

Agitators

<u>Agitator Design – General Features</u>

Spargers

Designed as a run of pipe with fittings and a compressor Power requirements are for the compressor (gives cost). Figures 12-28 to 12-30, pages 531-532 and "PTW online" give costs of various compressors

$$P = \frac{\dot{m}_{\text{G}} \cdot \eta \cdot \Delta p}{\rho_{\text{G}}}$$

 $\dot{m}_{\text{G}} = \text{gas mass flow rate}$ $\eta = \text{compressor efficiency}$ $\Delta p = \text{compressor pressure differential}$ $\rho_{\text{G}} = \text{gas density}$

Motionless Mixers

advantage – no power requirement

Figure 10.53. Static mixer (Kenics Corporation).

Towler & Sinnott, page 614

Figure 12-41
Purchased cost of motionless mixers

PTW, page 645

Tank/Vessel Mixers PTW, p. 628

Figure 13-15
Purchased cost of jacketed and stirred reactors

Volume of a CSTR: (CH364)

$$V = F_{A_0} \frac{X_A}{-r_A}$$
$$-r_A = k \cdot C_{A_0} X_A$$

 $x_A =$ fractional conversion of A

 F_{A_0} = molar flow rate of A in feed

 C_{A_0} = molar concentration of A in feed

For stirred tanks, also need power...

... to size and price motors and mixers.... predict electricity requirement.

Figure 12-42
Purchased cost of turbine and propeller agitators

Other designs - Figs. 12-41 through 12-49, pages 545-549

<u>Agitator Design – Method 1</u>

(Stirred Tank Impeller Agitators)

Basic Design - top view

Basic Design - side view

vessel

baffle

impeller blade

Reynolds Number

$$Re = \frac{D_a^2 \cdot N_r \cdot \rho}{\mu}$$

defined in Fig. 12-40, p. 540 ratio of inertial to frictional forces

Froude Number

$$Fr = \frac{D_a \cdot N_r^2}{g}$$

defined in para. 3, p. 540 ratio of inertial forces to weight

Power Number

$$N_{Po} = \frac{P}{N_r^3 \cdot D_a^5 \cdot \rho}$$

defined in para. 3, p. 540 dimensionless power

$$N_{Po} = f(Re, Fr, S_1, S_2, S_3, S_4, S_5, S_6)$$

$N_{Po} = \phi \cdot Fr^{m}$

rotating shaft (connected to motor)

baffle

В

shape parameters:

$$S_1 = D_t/D_a$$

$$S_2 = C/D_a$$

$$S_3 = L/D_a$$

$$S_4 = W/D_a$$

$$S_5 = B/D_t$$

$$S_6 = Z/D_t$$

Note typo in Re and Fr formulas in example 12-6. Calculation is OK but formulas have D_t instead of D_a .

$$m = \frac{a - \log_{10} Re}{b}$$
(eq 12-41)
(p. 540)

$$\phi = f(Re, S_i)$$

$$Re = \frac{D_a^2 N_r \rho}{U}$$

$$Fr = \frac{D_a \cdot N_r^2}{q}$$

$$Re = \frac{D_a^2 \ N_r \ \rho}{u} \qquad \qquad Fr = \frac{D_a \cdot N_r^2}{q} \qquad \qquad m = \frac{a - log_{10} \ Re}{b} \qquad \qquad N_{Po} = \phi \cdot Fr^m \qquad \qquad N_{Po} = \frac{P}{N_r^3 \cdot D_a^{-5} \cdot \rho}$$

$$N_{Po} = \varphi \cdot Fr^m$$

$$N_{Po} = \frac{P}{N_r^3 \cdot D_a^5 \cdot \rho}$$

shape parameters:

$$S_1 = D_t/D_a = 3.0$$

$$S_2 = C/D_a = 1.0$$

$$S_3 = L/D_a = .25$$

$$S_4 = W/Da = .20$$

$$S_5 = B/D_t = 0 (= 0.1)$$

$$S_6 = Z/D_t = 1.0$$

(these shape factors go with this chart)

Figure 12-40

Relation between the power function ϕ and the Reynolds number for a six-blade turbine mixer. Constants a and b in Eq. (12-41) for this mixer have been evaluated as 1.0 and 40.0, respectively.

$$Re = \frac{D_a^2 \ N_r \ \rho}{U}$$

$$Fr = \frac{D_a \cdot N_r^2}{q}$$

$$m = \frac{a - \log_{10} Re}{b}$$

$$N_{Po} = \varphi \cdot Fr^m$$

$$Re = \frac{D_a^2 \ N_r \ \rho}{\mu} \qquad \qquad Fr = \frac{D_a \cdot N_r^{\ 2}}{g} \qquad \qquad m = \frac{a - log_{10} \ Re}{b} \qquad \qquad N_{Po} = \varphi \cdot Fr^m \qquad \qquad N_{Po} = \frac{P}{N_r^{\ 3} \cdot D_a^{\ 5} \cdot \rho}$$

shape parameters:

$$S_1 = D_t/D_a = 3.0$$

$$S_2 = C/D_a = 1.0$$

$$S_3 = L/D_a = .25$$

$$S_4 = W/Da = .20$$

$$S_5 = B/D_t = 0 (= 0.1)$$

$$S_6 = Z/D_t = 1.0$$

(these shape factors go with this chart)

Figure 12-40

Relation between the power function ϕ and the Reynolds number for a six-blade turbine mixer. Constants a and b in Eq. (12-41) for this mixer have been evaluated as 1.0 and 40.0, respectively.

$$Re = \frac{D_a^2 N_r \rho}{U}$$

$$Fr = \frac{D_a \cdot N_r^2}{q}$$

$$Re = \frac{D_a^2 \ N_r \ \rho}{u} \qquad \qquad Fr = \frac{D_a \cdot N_r^2}{q} \qquad \qquad m = \frac{a - log_{10} \ Re}{b} \qquad \qquad N_{Po} = \phi \cdot Fr^m \qquad \qquad N_{Po} = \frac{P}{N_r^3 \cdot D_a^{-5} \cdot \rho}$$

$$N_{Po} = \varphi \cdot Fr^m$$

$$N_{Po} = \frac{P}{N_r^3 \cdot D_a^5 \cdot \rho}$$

shape parameters:

$$S_1 = D_t/D_a = 3.0$$

$$S_2 = C/D_a = 1.0$$

$$S_3 = L/D_a = .25$$

$$S_4 = W/Da = .20$$

$$S_5 = B/D_t = 0 (= 0.1)$$

$$S_6 = Z/D_t = 1.0$$

(these shape factors go with this chart)

Figure 12-40

Relation between the power function ϕ and the Reynolds number for a six-blade turbine mixer. Constants a and b in Eq. (12-41) for this mixer have been evaluated as 1.0 and 40.0, respectively.

Mixing Time (θ) for a Stirred Tank:

$$\theta = 12000 \cdot \left(\frac{\mu \cdot V}{P}\right)^{0.5} \cdot \left(V\right)^{0.2}$$

Mixing time in seconds

Equation 12-45, page 542

V = tank volume in m³ P = power in watts μ = viscosity in kg/(m·s)

Important for CSTR design:

Compare θ to τ (space-time)

Generally, $\theta \ll \tau$

Calculating Power Requirement – Method 1

1. Determine Fluid Properties

density, viscosity

2. Determine Mechanical Properties

dimensions, propeller speed

3. Calculate dimensionless groups

Reynolds #, Froude #

- 4. Determine m
- 5. Determine φ
- 6. Calculate Power Number (N_{Po}) and then Power (P)
- 7. Calculate Mixing Time (Slide 12)

<u>Agitator Design – Method 2</u>

(Stirred Tank Impeller Agitators)

Calculating Power Requirement – Method 2

(Table 12-9 Method)

This method is for baffled tanks only.

impeller	K_L	K_{T}
propeller, square pitch, three blades	41.0	0.32
propeller, 2:1 pitch, three blades	43.5	1.00
turbine, 6 flat blades	71.0	6.30
turbine, 6 curved blades	70.0	4.80
turbine, 6 arrowhead blades	71.0	4.00
fan turbine, 6 blades	70.0	1.65
flat paddle, 2 blades	36.5	1.70
shrouded turbine	97.5	1.08

$$Re < 10$$

$$N_{Po} \cdot Re = K_{L}$$

$$Re = \frac{D_a^2 \cdot N_r \cdot \rho}{\mu}$$

$$N_{Po} = \frac{P}{N_r^3 \cdot D_a^5 \cdot \rho}$$

$$Re > 10,000$$
$$N_{Po} = K_{T}$$

Calculating Power Requirement – Method 2

(Table 12-9 Method)

1. Determine Fluid Properties

density, viscosity

2. Determine Mechanical Properties

dimensions, propeller speed, type of impeller

- 3. Use Table 12-9 to determine K_L and K_T
- 4. Calculate Reynolds Number
- 5. Calculate Power Number (N_{Po}) and then Power (P)

5a. Laminar (Reynolds <10)

$$N_{Po} Re = K_{L}$$

5b. Turbulent (Re>10,000) with baffles:

$$N_{Po} = K_{T}$$

6. Calculate Mixing Time (Slide 12)

Homework

Problem 12-13

What power will be required to mix an aqueous solution of 50% NaOH in a baffled tank, 2 m in diameter? The mixing will be performed in the vertical tank filled to a height of 2 m by a disk turbine with six flat blades. The turbine is 0.67 m in diameter and is positioned 0.67 m above the bottom of the tank. The turbine blades are 0.134 m wide and turn at 90 r/min. The solution has a viscosity of 0.012 Pa·s and a density of 1500 kg/m³.

Solve by methods 1 and 2

Determine mixing time by methods 1 and 2

Questions?