

温度传感器

本章主要内容

- 0 绪论
- 1 热电阻
- 2 热电偶
- 3 热敏电阻

0 绪论

0.1 温度的基本概念

宏观概念---是物体冷热程度的表示.

热平衡的两物体,其温度相等。

微观概念---是大量分子运动平均强度的表示。

分子运动愈激烈其温度表现越高。

温度量的特殊性:

- 1. 二温度不能相加或相减;
- 2. 无标准量直接进行比较测量;
- 3. 温度只能通过物体随温度变化的某些特性来间接测量

0.1 温度的基本概念(续)

温标:

现代统计热力学虽然建立了温度和分子动能之间的函数关系,但由于目前尚难以直接测量物体内部的分子动能,因而只能利用一些物质的某些物性(诸如尺寸、密度、硬度、弹性模量、辐射强度等)随温度变化的规律,通过这些量来对温度进行间接测量。为了保证温度量值的准确和利于传递,需要建立一个衡量温度的统一标准尺度,即温标。

国际实用温标是一个国际协议性温标,它与热力学温标相接近,而且 复现精度高,使用方便。

0.2 温度的基本概念(续)

-常用温标

(1) 华氏温标

1724年德国人法勒海特(Fahrenheit)以水银为测温介质,制成玻璃水银温度计,选取 氯化铵和冰水的混合物的温度为温度计的零度,人体温度为温度计的100度,则水的冰 点为32℃,沸点为212℃。 $^{\circ}C = \frac{5}{9}(^{\circ}F - 32)$

(2) 摄氏温标

1740年瑞典人摄氏(Celsius)提出在标准大气压下,把水的冰点规定为0度,水的沸点 规定为100度。根据水这两个固定温度点来对玻璃水银温度计进行分度。两点间作100 等分,每一份称为1摄氏度。记作1℃。 $K = {}^{\circ}C + 273.15$

(3) 热力学温标

1848年由开尔文(Ketvin)提出的以卡诺循环(Carnot cycle)为基础建立的热力学温标 ,是一种理想而不能真正实现的理论温标,它是国际单位制中七个基本物理单位之一 。该温标为了在分度上和摄氏温标相一致,把理想气体压力为零时对应的温度——绝 对零度(是在实验中无法达到的理论温度,而低于0 K的温度不可能存在)与水的三相 点温度分为273.15份,每份为1 K (Kelvin) 。热力学温度的单位为"K"。

0.2 温度检测方法及其测温范围

测温方式	类别	原 理	典型仪表	测温范围 ∕℃
	膨胀类	利用液体气体的热膨胀及物质的蒸气	玻璃液体温度计	-100~600
		压变化	压力式温度计	-100~500
		利用两种金属的热膨胀差	双金属温度计	-80~600
٠.	热电类	利用热电效应	热电偶	-200~1800
接触式测温	电阻类		铂热电阻	-260~850
按壓以例值		固体材料的电阻随温度而变化。	铜热电阻	-50~150
			热敏电阻	-50~300
		半导体器件的温度效应	集成温度传感器	-50~150
		晶体的固有频率随温度而变化	石英晶体温度计	-50~120
	光纤类	利用光纤的温度特性或作为传光介质	光纤温度传感器	-50~400
		利用几年的鱼及特性实作为传光外质	光纤辐射温度计	200~4000
非接触式测温	5 .		光电高温计	800~3200
H文版入例值	辐射类	利用普朗克定律	辐射传感器	400~2000
			比色温度计	500~3200

1金属热电阻

- 1.1 工作原理
- 1.2 铂电阻温度特性
- 1.3 连接线路
- 1.4 影响温度测量精度的因素
- 1.5 结构

1金属热电阻 1.1工作原理

热电阻效应: 物质的电阻率随其本身的温度而变化的现象.

在一定温度范围内,大多数金属的电阻率几乎与温度成正比

常用的有: 铂电阻、铜电阻

1金属热电阻(续) 对材料的要求:

- ① 电阻温度系数大, 电阻随温度变化保持单值并且最好呈线性关系;
- ② 热容量小;
- ③ 电阻率尽量大,这样可以在同等灵敏度情况下使元件尺寸减小
- ④ 在工作范围内,物理和化学性能稳定;
- ⑤ 容易获得较纯物质,材料复制性好,价格低廉。

常用的热电阻主要是

铂热电阻: 主要作为标准电阻温度计,广泛应用于温度基准、标准的传递。

铜热电阻: 测量精度要求不高且温度较低的场合,测量范围一般为-50~

150°C。

1.2 铂电阻的温度特性

工业仪表选择铂作为热电阻材料,因为它具有耐腐蚀、易加工、物理、化学性质稳定以及极佳的可重复电特性等优点。

国际电工委员会(IEC)的751号标准中规定热电阻在0℃时的标准值为100.00欧姆及其温度测量范围,常说Pt100热电阻。也有标准值为500和1000的热电阻温度传感器。适用温度范围-200℃~850℃

缺点: 易被金属蒸气污染变脆, 但可用保护套管保护; 属贵金属, 成本高。

铂电阻与温度的关系:

当温度t在 - 200°C≤ t ≤0°C时: $R_t = R_0[1 + At + Bt^2 + C(t-100)t^3]$

当温度t在0°C≤ t ≤650°C时: $R_t = R_0[1 + At + Bt^2]$

其中: A、B、C为常数 $A=3.940\times10^{-3}(1/^{0}C)$

 $B = -5.802 \times 10^{-7} (1/^{0} C^{2})$

 $C = -4.274 \times 10^{-12} (1/^{0} C^{3})$

1.2 铂电阻的温度特性(续)

PT100热电阻的精度(IEC751)

说明	误差(℃)	测量范围	接线方式
A 级	0.15+0.002× t	-200 ~ +650°C	3 线制/4 线制
B级	0.30+0.005× t	-200 ~ +850°C	2 线制/3 线制/4 线制

t是指测量温度,因为温度有正负,所以加绝对值。

例①如0℃时,t=0℃,|t|=0℃,A级精度允许测量误差±0.15℃,B级为 ±0.3℃;

例②t=-20℃, |t|=20℃, A级精度允许测量误差±0.19℃, B级为±0.4℃;

例③t=20℃,|t|=20℃, A级精度允许测量误差±0.19℃, B级为±0.4℃。

"铂热电阻分度表"

工作端温度/℃	Pt100	工作端温度/℃	Pt100	工作端温度/C	Pt100
-50	80.31	100	138.51	250	194.10
-40	84.27	110	142.29	260	197.71
-30	88.22	120	146.07	270	201.31
-20	92.16	130	149.83	280	204.90
-10	96.09	140	153.58	290	208.48
0	100.00	150	157.33	300	212.05
10	103.90	160	161.05	310	215.61
20	107.79	170	164.77	320	219.15
30	111.67	180	168.48	330	222.68
40	115.54	190	172.17	340	226.21
50	119.40	200	175.86	350	229.72
60	123.24	210	179.53	360	233.21
70	127.08	220	183.19	370	236.70
80	139.90	230	186.84	380	240.18
90	134.71	240	190.47	390	243.64

1.3 连接线路: 两线制的问题

- ◆在工业应用上,热电阻一般安装在生产现场,而其指示或记录仪安装在控制室,其间的引线很长。
- ◆如果仅用两根导线接在热电阻两端,导线本身电阻必然和热电阻的阻值串连在一起,造成测量误差,如果每根导线电阻的变化量是r,测量结果中必然含有绝对误差2r。如100Ω的铂电阻,1Ω的导线电阻就将产生约2.5℃的误差。
- ◆因为导线阻值r是随环境温度而变的,而环境温度又变化不定,因而实际上这种误差很难修正,这就注定了用两线制的连接方式不宜在工业热电阻上应用。

1.3 连接线路:三线制热电阻测温线路

◆热电阻的三根连接导线,直径和长度及材料均相同,阻值均是r。其一串接在电桥的电源上,对电桥平衡与否毫无影响,另外两根分别串接在电桥的相邻两桥臂的阻值都增加相同阻值r。

当电桥平衡时: $(R_t + r)R_2 = (R_3 + r)R_1$

此时得: $R_t = \frac{R_3 R_1}{R_2} + (\frac{R_1}{R_2} - 1)r$

如果设计满足: $R_1 = R_2$

则: $R_t = R_3$ 即消除了导线电阻r的影响。

注意: 只有在对称电桥 $R_1=R_2$, 且电桥平衡时,才

能彻底消除r的影响,即要用平衡法测量。

1.3 连接线路: 四线制热电阻测温线路

四线制就是热电阻两端各用两根导线连到仪表上。 由恒流源提供已知电流I流过热电阻Rt,使其产生压 降U,再用电位差计测出U。因为电位差计测量时不 取电流,所以四根导线的电阻r对测量均无影响。四 线制和电位差计的配合使用,是测量热电阻比较完 善的方法,它不受任何条件的约束,总能消除连接 导线电阻对测量的影响。当然恒流必须保证电流I的 稳定不变,而且其精确度应该和Rt的测量精度相适 应。

注意:无论是三线制或四线制,都要从热电阻感温体的根部引出导线,因为从热电阻的接线端子分出,感温体到接线端子之间的这段导线距被测温度太近,虽然在保护套管内的这段导线不长,但其电阻影响却不容忽视。

1.4 影响温度测量精度的因素

1.电缆影响

当使用2线制接线时需考虑导线电阻的影响

2.绝缘电阻

因受潮湿或高温因素等影响而造成的绝缘电阻下降。对Pt100来说, 100kΩ绝缘电阻会带来0.25℃的误差。

3.热电势的影响

导线连接处所产生的热电势会干扰对热电阻压降的正常测量。使用不同的电流流向进行两次测量,其差别越大表明此项误差越大。

4.自温升

在测量电流小于 1mA时, Pt100上的压降不到0.1V,此时由测量电流引起的自温升误差可以忽略不计。

1.5 结构

18

防爆型铂热电阻

小型铂热电阻

汽车用水温传感器及水温表

2 热电偶

- 2.1 热电效应
- 2.2 分度表
- 2.3 测量电路
 - 2.3.1 热电偶基本定律
 - 2.3.2 热电偶传感器的冷端补偿
- 2.4 常用热电偶及结构

2 热电偶 (续)

热电偶是工业和武器装备试验中温度测量应用最多的器件。

特点: 测温范围宽、测量精度高、性能稳定、结构简单, 且动态响应

较好;输出直接为电信号,可以远传,便于集中检测和自动控制。

~~~	热	电	//////////////////////////////////////	- 200~+1800
			830一铂铑6	0~1800
		铂铼	10一铂	0~1600
		镍铬	一镍硅	-50~+1200
_		镍锌	4一考铜	-50~+800
	祠一康铜		-200~ +400	

2.1 热电效应

定义:

将两种不同的导体A和B 连成闭合回路, 当两个接点处 的温度不同时, 回路中将产生 热电势的现象。

(由于这种热电效应现象是1821年 塞贝克 (Seeback) 首先发现提出, 故又称塞贝克效应。)

图 2.1 赛贝克效应原理图

把两种不同导体的组合称热电偶。 称A、B两种导体为热电极。结点 一为称为工作端或热端,结点二称 为自由端或冷端

热电势=接触电势+温差电势

2.1 热电效应 (续)

热电势=接触电势+温差电势

- > 热电偶闭合回路中产生的热电势由两种电势组成: 温差电 势和接触电势。
- ✓ 温差电势: 同一热电极两端因温度不同而产生的电势。
- ✓ 接触电势:两热电极由于材料不同而具有不同的自由电子密度,而热电极接点接触面处就产生自由电子的扩散现象, 当达到动态平衡时,在热电极接点处便产生一个稳定电势差。

2.1热电效应 (续) (1) 接触电势

两种不同的金属互相接触时,由于不同金属内自由电子的密度不同,在两金属A和B的接触点处会发生自由电子的扩散现象。自由电子将从密度大的金属A扩散到密度小的金属B,使A失去电子带正电,B得到电子带负电,从而产生接触热电势。

接触电势 $e_{AB}(T)$ 的大小:

$$e_{AB}(T) = \frac{kT}{e} \ln \frac{n_{AT}}{n_{BT}} = f\left(T, \frac{n_{AT}}{n_{BT}}\right)$$

k 一波尔兹曼常数 e—电子电荷量 n_{AT} n_{BT}—材料A、B在温度T的自由电子密度

2.1 热电效应 (续) (2) 温差电势

温差电势:

$$e_{A}(T,T_{0}) = \int_{T_{0}}^{T} \sigma dT$$

 $e_A(T,T_0)$ —导体A两端温度为时T、T0时形成的温差电势 σ —汤姆逊系数,其值与材料性质及温度有关。

说明:在热电偶中,温差电势相对于接触电势非常小,工程上常将 其忽略不计,起决定作用的是接触电势。但热电偶作为检测计量使用 时要加以考虑。

2.1热电效应(续) (3) 热电偶回路总热电势

对于由导体A、B组成的热电偶回路, $^{(T_0)}$ 当 $^{T>T_0}$, $n_A>n_B$ 时,闭合回路中产生的接 触电势和温差电势如图所示。设回路电流顺时 针方向为正,则闭合回路总的热电动势为:

$$E_{AB}(T, T_0) = \left[e_{AB}(T) - e_{AB}(T_0)\right] + \left[-e_A(T, T_0) + e_B(T, T_0)\right]$$

$$e_A(T, T_0) = \int_{T_0}^{T} \sigma dT \qquad e_{AB}(T) = \frac{KT}{e} \cdot \ln \frac{n_{AT}}{n_{BT}}$$

$$E_{AB}(T, T_0) = \frac{KT}{e} \ln \frac{n_{AT}}{n_{BT}} - \frac{KT_0}{e} \ln \frac{n_{AT_0}}{n_{BT_0}} + \int_{T_0}^{T} (\sigma_B - \sigma_A) dT$$

$$E_{AB}(T, T_0) = \frac{KT}{e} \ln \frac{n_{AT}}{n_{BT}} - \frac{KT_0}{e} \ln \frac{n_{AT_0}}{n_{BT_0}} + \int_{T_0}^{T} (\sigma_B - \sigma_A) dT$$

分析: (忽略温差电势)

- 〈1〉若热电偶两极材料相同,回路热电势为零
- 〈2〉若两结点(两端)温度相同,回路热电势也为零。

测量条件: 热电偶必须用两种不同的材料作电极, 两结点有温差。 实际测量时通常固定冷端温度。

$$E_{AB}(T,T_0) \approx e_{AB}(T) - e_{AB}(T_0)$$

固定
$$\mathbf{T}_0$$
,则 $E_{AB}(T,T_0)=f(T)-c$ 常数

2.2 分度表

如何由热电偶的热电势查热端温度值?

设冷端 $T_0=0$ °C,根据以下电路中的毫伏表的示值及热电偶的分度表,查出热端的温度T。

图 2.1 赛贝克效应原理图

K热电偶的 分度表

附录 E 镍铬-镍硅 K 热电偶分度表 (自由端温度为 0℃)

工作端温度/ *C	热电势/ mV	工作端 温度/ *C	热电势/ mV	工作黨 温度/ で	热电势/ mV	工作端 温度/ で	热电势 mV
-270	-6.458	0	0.000	270	10.971	540	22.350
-260	-6.441	.10	0.397	280	11.382	550	22.776
-250	-6.404	20	0.798	290	11.795	560	23.203
-240	-6.344	30	1.203	300	12.209	570	23.629
-230	-6.262	40	1.612	310	12.624	580	24.055
-220	-6.158	50	2.023	320	13.040	590	24.480
-210	-6.035	60	2.436	330	13.457	600	24.905
-200	-5.891	70	2.851	340	13.874	610	25.330
-190	-5.730	80	3.267	350	14.293	620	25,755
-180	-5.550	90	3.682	360	14.713	630	26.179
-170	-5.354	100	4.096	370	15.133	640	26.602
-160	-5.141	110	4.509	380	15.554	650	27.025
-150	-4.913	120	4.920	390	15.975	660	27.447
-140	-4.669	130	5.328	400	16.397	670	27,869
-130	-4.411	140	5.735	410	16.820	680	28.289
-120	-4.138	150	6.138	420	17.243	690	28.710
-110	-3.852	160	6.540	430	17.667	700	29.129
-100	-3.554	170	6.941	440	18.091	710	29.548
-90	-3.243	180	7.340	450	18.516	720	29.965
-80	-2.920	190	7.739	460	18.941	730	30.382
-70	-2.587	200	8.138	470	19.366	740	30.798
-60	-2.243	210	8,539	480	19.792	750	31.213
-50	-1.889	220	8.940	490	20.218	760	31.628
-40	-1.527	230	9.343	500	20.644	770	32.041
-30	-1.156	240	9.747	510	21.071	780	32.453
-20	-0.778	250	10.153	520	21.497	790	32.865
-10	-0.392	260	10.561	530	21.924	800	33.275

铜-康铜热电偶分度表(自由端温度为0℃时t—mV对应值)

工作端	0	10	20	30	40	50	60	70	80	90
温度 /℃		mV(绝对值)								
_	- 0.00	-0.39	-0.78	-1.16	-1.53	- 1.89		10-2-121	707 127 334 3	10000
0	0.00	0.40	0.80	1.20	1.61	2.02	2.44	2.85	3.27	3.68
100	4.10	4.51	4.92	5.33	5.73	6.14	6.54	6.94	7.34	7.74
200	8.14	8.54	8.94	9.34	9.75	10.15	10.56	10.97	11.38	11.7
300	12.21	12.62	13.04	13.46	13.87	14.29	14.71	15.13	15.55	15.9
400	16.40	16.82	17.24	17.66	18.09	18.51	18.94	19.36	19.79	20.2
500	20.64	21.07	21.49	21.92	22.35	22.77	23.20	23.62	24.05	24.4
600	24.90	25.33	25.75	26.18	26.60	27.02	27.45	27.87	28.29	28.7
700	29.13	29.55	29.97	30.38	30.80	31.21	31.63	32.04	32.46	32.8
800	33.29	33.69	34.10	34.50	34.91	35.31	35.72	36.12	36.52	36.9
900	37.33	37.72	38.12	38.52	38.92	39.31	39.70	40.10	40.49	40.8
1000	41.27	41.66	42.05	42.43	42.82	43.20	43.59	43.97	44.35	44.7
1100	45.11	45.49	45.86	46.21	46.61	46.99	47.36	47.73	48.10	48.4
1200	48.83	49.19	49.56	49.92	50.28	50.63	50.99	51.34	51.70	52.0
1300	52.40	R Fe B R					能取得	牛普牌	炎翔装抱	

2.3 测量电路

问题: 多种导体? 多种温度?

2.3 测量电路(续)

2.3.1 热电偶基本定律

(1) 中间导体定律

$$\begin{split} E_{ABC}(T, T_0) &\approx e_{AB}(T) + e_{BC}(T_0) + e_{CA}(T_0) \\ &= \frac{KT}{e} \ln \frac{n_{AT}}{n_{BT}} + \frac{KT_0}{e} \ln \frac{n_{BT_0}}{n_{CT_0}} + \frac{KT_0}{e} \ln \frac{n_{CT_0}}{n_{AT_0}} \\ &= \frac{KT}{e} \ln \frac{n_{AT}}{n_{BT}} + \frac{KT_0}{e} \ln \frac{n_{BT_0}}{n_{AT_0}} = E_{AB}(T, T_0) \end{split}$$

2.3.1 热电偶基本定律

(1) 中间导体定律

在热电偶回路中接入第三种金属材料,只要该第三种金属材料两端温度相同,则热电偶所产生的热电势保持不变。即不受第三种金属材料接入的影响。

推论:连接热电偶的许多引线,只要新形成的各个连结点均处于同一温度下,就不会影响被测热电势的精度。

图 2.2 热电偶测温电路

2.3.1 热电偶基本定律

(2) 标准电极定律

如果将电极C (一般为纯铂丝)作为参考电极 (也称标准电极) , 并已知参考电极与各种热电极配对的热电势, 那么在相同接点温度 (T,T₀)下, 任意两热电极A、B配对热电势可按下式求得:

$$E_{AB}(T,T_0) = E_{AC}(T,T_0) + E_{CB}(T,T_0) = E_{AC}(T,T_0) - E_{BC}(T,T_0)$$

图 2.4 参考电极回路

2.3.1 热电偶基本定律

(3) 连接导体定律

在热电偶回路中,如果热电极A、B分别与连接导线A'、B'相连接,接点温度分别为 T, T_n, T₀, 那么回路的总热电势等于热电偶电势 E_{AB}(T,T_n)

与连接导线热电势 $E_{A'B'}(T_n,T_0)$

代数和。

$$E_{ABBA'}(T,T_n,T_0) = E_{AB}(T,T_n) + E_{A'B'}(T_n,T_0)$$

指导意义:工业测温中使用补偿导线提供了理论基础。

2.3.1 热电偶基本定律 (4) 中间温度定律(分度表应用基础)

中间温度定律:热电偶回路两结点温度为T和T₀的热电势,等于热电偶在结点温度为T和T_n时的热电势与结点温度为T_n和T₀时的热电势代数和。

$$E_{AB}(T,T_0) = E_{AB}(T,T_n,T_0) = E_{AB}(T,T_n) + E_{AB}(T_n,T_0)$$

2.3.2 热电偶传感器的冷端补偿

- ●只有当热电偶冷端温度保持不变时,热电势才是被测温度的单值函数。实际中由于热电偶工作端与冷端距离很近,冷端又暴露于空间,容易受到周围环境波动的影响,因而冷端温度难以保持恒定;
- ●热电偶分度表给出的热电势是以冷端温度0°C为依据,否则 会产生误差。

2.3.2 热电偶式传感器的冷端补偿 (1) 补偿导线法

热电偶的材料通常为贵重金属,由于受到材料价格的限制不可能做很长,而要使其冷端不受测温对象的温度影响,必须使冷端远离温度对象,采用补偿导线可以做到这一点。所谓补偿导线,实际上是一对材料化学成分不同的导线,在一定温度范围内(0-100℃或0-150℃)与配接的热电偶有一致的热电特性,但价格相对要便宜。

$$E_{ABB'A'}(T_1,T_2,T_0) = E_{AB}(T_1,T_2) + E_{A'B'}(T_2,T_0)$$

当导体A与A', B与B'具有相同的热电特性时

$$E_{ABB'A'}(T_1, T_2, T_0) = E_{AB}(T_1, T_2) + E_{A'B'}(T_2, T_0)$$

$$= E_{AB}(T_1, T_2) + E_{AB}(T_2, T_0)$$

$$= E_{AB}(T_1, T_0)$$

2.3.2 热电偶式传感器的冷端补偿 (2) 冰浴法

2.3.2 热电偶式传感器的冷端补偿

(3) 冷端温度计算校正法

由于热电偶的分度表是在冷端温度保持在0度的情况下得到,与它配套使用的仪表又是根据分度表进行刻度的,因此,尽管已采用了补偿导线使热电偶冷端延伸到温度恒定的地方,但只要冷端温度不等于0度,就必须对仪表示值加以修正。

$$E(T,0) = E(T,T_0) + E(T_0,0)$$

例 : 用铜-康铜热电偶测某一温度T,参比端在室温环境 $T_{\rm H}$ 中,测得热电动势 $E_{\rm AB}(T,T_{\rm H})$ =1.979 ${\rm mV}$,又用室温计测出 $T_{\rm H}$ =21° ${\rm C}$,查此种热电偶的分度表可知, $E_{\rm AB}(21,0)$ =0.84 ${\rm mV}$,故得

 $E_{AB}(T, 0)=E_{AB}(T, 21)+E_{AB}(21, 0)=1.979+0.84=2.819$ (mV) 再次查分度表,与2.819mV对应的热端温度T=69°C。

(4) 其它冷端补偿法

2.4 常用热电偶及结构

- (-)热电偶的材料
- 一般应满足如下要求:
- (1)性能稳定;
- (2)导电率高,电阻温度系数要小;
- (3)dE/dT要大,且为常数;
- (4)强度高,复现(制)性好,便宜。
- (二)热电偶的分类

标准热电偶: 共有八种→

非标准热电偶

S型: 铂铑₁₀ - 铂

R型: 铂铑₁₃ - 铂

B型: 铂铑30 - 铂铑6

K型:镍铬-镍硅

N型: 镍铬硅-镍硅

E型: 镍铬-铜镍

(康铜)

J型:铁-铜镍(康铜)

T型:铜-铜镍(康铜)

几种常用热电偶的测温范围及热电势

分度号	名称	测量温度范围	1000°C 热电势/ mV
В	铂铑30 - 铂铑6	50 ~ 1820 °C	4.834
R	铂铑 ₁₃ —铂	-50 ~ 1768 °C	10.506
S	铂铑 ₁₀ —铂	-50 ~ 1768 °C	9.587
K	镍铬 - 镍铬 (铝)	-270 ~ 1370 °C	41.276
E	镍铬 - 铜镍 (康 铜)	- 270 ~ 800 °C	?

分度号: <u>S、R、B</u>、N、K、E、J、T

贵金属 廉金属

2.4 常用热电偶及结构

(三) 热电偶结构

基本构成:

由热电极4、绝缘管3、

保护套管2,和接线盒1组成。

普通装配型热电偶的外形

安装螺纹

裸丝热电偶

铠装热电偶:

铠装热电偶的制造工艺: 把热电极材料与高温绝缘材料预置 在金属保护管中、运用同比例压缩延伸工艺、将这三者合为一体,制成各种直径、规格的铠装偶体,再截取适当长度、将工 作端焊接密封、配置接线盒即成为柔软、细长的铠装热电偶。

铠装热电偶特点:内部的热电偶丝与外界空气隔绝,有着良好的抗高温氧化、抗低温水蒸气冷凝、抗机械外力冲击的特性。 铠装热电偶可以制作得很细,能解决微小、狭窄场合的测温问题,且具有抗震、可弯曲、超长等优点。

铠装热电偶

薄壁金属 保护套管 (铠体) 铠装型热电偶 横截面

法兰

开路热电偶测液态金属演示

3 热敏电阻 3.1 多种规格

●材料:铁、镍、锰、铂、钛、镁、铜等的氧化物,碳酸盐、硝酸盐、氯化物等。热敏电阻有负温度系数 (NTC) 和正温度系数 (PTC) 之分。

●优点:具有大的负电阻温度系数(-6%~-3%),灵敏度高,电阻率大,体积小,热惯性小。

●缺点:同种热敏电阻的电阻温度特性分散性大,非线性严重,性能不稳定,互换性差、精度较低。

●测温范围: - 100~300°C。

3 热敏电阻 3.1 多种规格 (续)

MF12型NTC热敏电阻

玻璃封装NTC热敏电阻

聚脂塑料封装热敏电阻

贴片式NTC热敏电阻

3 热敏电阻 3.1 多种规格 (续)

带安装孔的热敏电阻

大功率PTC 热敏电阻

MF58型(珠形)高精度 负温度系数热敏电阻

3 热敏电阻 3.1 多种规格 (续)

3 热敏电阻 3.2 主要特点: 优点

1)灵敏度高。

电阻温度系数绝对值比一般金属电阻大10-100倍。

2)使用方便

热敏电阻阻值范围在 $(10^2-10^3)\Omega$ 之间可以任意挑选.

不必考虑线路引线电阻和接线方式,易实现远距离测量,功耗小,热惯性小。

3) 体积小

珠形热敏电阻探头的最小尺寸达0.2mm。可测其它温度计无法测量的空隙、腔体、内孔等,例如人体血管内温度 4)结构简单坚固,能承受较大的冲击、振动。

3 热敏电阻 3.2 主要特点: 缺陷

- ①阻值与温度的关系非线性严重;
- ②元件的一致性差, 互换性差;
- ③元件易老化,稳定性较差;
- ④除特殊高温热敏电阻外,绝大多数热敏电阻仅适合 0~150℃范围,使用时必须注意。

3 热敏电阻 3.3 三种热敏传感器特性

① NTC(负温度系数)

特点: 电阻率随温度增加比较均匀的减小;

用途:一定范围的温度量值的检测;

② PTC(正温度系数)

特点: 当温度超过某一数值后, 电阻率才

随温度的增加迅速地增大;

用途:用于某一特定温度窄范围的检测;

③ CTR(临界温度系数)

特点:有一个阻值突变点,当温度变化到此点

附近(约68℃)时,电阻率产生突变,突变数

量级为2-4;

用途:与PTC类似

电阻率 p/Orcm

3 热敏电阻 3.3 三种热敏传感器特性

NTC型热敏电阻的主要特性

在一定的温度范围内(低于450℃),热敏电阻的电阻-温度特 性符合指数规律,即

眉釵规律,即
$$B_n(\frac{1}{T}-\frac{1}{T_0})$$
 $R_T=R_{T_0}e$ B_n : 热敏电阻的 材料系数 的热敏电 20℃时的热敏电

100℃时的热敏电 阻值,记为 R_{100}

阻值,记为 R_{20}

材料系数

NTC型半导体热敏电阻在温度T下的温度系数 $lpha_T$

$$\alpha_T = \frac{1}{R_T} \cdot \frac{dR_T}{dT} = -\frac{B_n}{T^2}$$

NTC型半导体热敏电阻的电阻温度系数与温度的平方成反比

3 热敏电阻 3.4 PTC自恢复保险丝

时间/电流特性:

PTC的响应速度比普通保险 丝要慢得多,而这一点对保 护电路中异常敏感的部分特 别关键。

习题: 8-9、8-10、8-11、8-14、8-15

下周二交作业