Chapter3: Multiplexer, Latch, Buffer

Asst.Prof.Dr.Supakit Nootyaskool

Objective

 Describe concept multiplexer and demultiplexer circuit.

Compare and contrast latch circuit and buffer circuit.

Explain truth table of set-reset flipflop.

Topic

- Multiplexer circuit
- Demultiplexer circuit
- Latch circuit
- Buffer circuit
- Set-Reset Flipflop

MULTIPLEXER CIRCUIT

Selector switch

Selector switch is mechanical switch for selecting the signal channels
We found the selector switch in electrical machines, radio event if the car.

Switch -> Multiplexer (MUX)

Multiplexer Breakout Board Module For Arduino

Compare between No MUX and MUX

What is circuit inside MUX and DEMUX

Multiplexer circuit

Multiplexer circuit

DEMULTIPLEXER CIRCUIT

De-multiplexer circuit

MUX + DEMUX

Example devices use MUX/DMUX

TRISTATE GATE

Tristate gate

- Tristate gate is three logic levels (H/L/Z)
- High impendence (Z) means two junction having high resistance over $1M\Omega$ like open circuit.
- Tristate gate is applied to an output selector from two or more circuit.

Enable	Input	Output
0	0	Hi-Z
0	1	Hi-Z
1	0	1
1	1	0

Tristate gate datasheet and package

SUESZZSI -AFRIL 1888-REVISED OUTOBER ZUIA

SN74LVC1G125 Single Bus Buffer Gate With 3-State Output

1 Features

- Available in the Ultra Small 0.64-mm² Package (DPW) With 0.5-mm Pitch
- Supports 5-V V_{CC} Operation
- Inputs Accept Voltages to 5.5 V
- Provides Down Translation to V_{CC}
- Max t_{nd} of 3.7 ns at 3.3 V
- Low Power Consumption, 10-µA Max I_{CC}
- ±24-mA Output Drive at 3.3 V
- I_{off} Supports Live Insertion, Partial-Power-Down Mode, and Back-Drive Protection
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

2 Applications

- Cable Modem Termination System
- High-Speed Data Acquisition and Generation
- · Military: Radar and Sonar
- Motor Control: High-Voltage
- Power Line Communication Modem
- · SSD: Internal or External
- Video Broadcasting and Infrastructure: Scalable Platform
- Video Broadcasting: IP-Based Multi-Format Transcoder
- · Video Communications System

3 Description

This bus buffer gate is designed for 1.65-V to 5.5-V $\ensuremath{V_{\text{CC}}}$ operation.

The SN74LVC1G125 device is a single line driver with a 3-state output. The output is disabled when the output-enable (\overline{OE}) input is high.

The CMOS device has high output drive while maintaining low static power dissipation over a broad V_{CC} operating range.

The SN74LVC1G125 device is available in a variety of packages including the ultra-small DPW package with a body size of 0.8 mm × 0.8 mm.

Device Information⁽¹⁾

DEVICE NAME	PACKAGE	BODY SIZE (NOM)
SN74LVC1G125	SOT-23 (5)	2.90 mm × 1.60 mm
	SC70 (5)	2.00 mm × 1.25 mm
	SON (6)	1.45 mm × 1.00 mm
	DSBGA (5)	1.40 mm × 0.90 mm
	X2SON (4)	0.80 mm × 0.80 mm

For all available packages, see the orderable addendum at the end of the data sheet.

4 Simplified Schematic

LATCH AND BUFFER

Latch vs Buffer

- Buffers and Latches are different in concepts and usages.
- Latch is in a digital circuit for holding data until a clearing or enable signal send to the latch then the data will be changed.
- Latch is just to hold memory.
- Buffer uses both analog and digital signal
- Buffer is not just to hold memory but also to increase output power or changing output impedance.

Latch/buffer concept

Latch circuit functions

- Hold data from inputs
- Control the data holding with clock/enable pin
- Have an output enable pin to control on/off output signal

Buffer circuit functions

- No hold logic data
- Pass through by amplify the signal
- Some buffer has an enable pin to on/off output signal

Work of the buffer circuit

Work of the buffer circuit

Work of the buffer circuit

Work of the latch circuit

Work of the latch circuit

Work of the latch circuit

Latch/buffer in the computer

SET-RESET FLIP-FLOP

SR Flip-Flop truth table

S	R	Q	State
0	0	Previous state	No change
0	1	0 Reset	
1	0	1 Set	
1	1	?	Forbidden

Α	В	Y	Z
0	0	1	0
0	1		
0	0		
1	0		
0	0		
0	1		

A	В	Y	Z
0	0	1	0
0	1	1	0
0	0		
1	0		
0	0		
0	1		

7.7		· ·	——————————————————————————————————————
0	0	1	0
0	1	1	0
0	0	1	0
1	0		
0	0		
0	1		

A	В	Y	Z
0	0	1	0
0	1	1	0
0	0	1	0
1	0	0	1
0	0		
0	1		

Α	В	Y	Z
0	0	1	0
0	1	1	0
0	0	1	0
1	0	0	1
0	0	0	1
0	1		

Α	В	Y	Z
0	0	1	0
0	1	1	0
0	0	1	0
1	0	0	1
0	0	0	1
0	1	1	0

Step6

Truth table of SET/RESET – Flip Flop

Reset	Set	Q	Q'	
0	0	1	0	
0	1	1	0	
0	0	1	0 No	change
1	0	0	1	
0	0	0	1 No	change
0	1	1	0	

Activity 3.1 Build the SR flipflop on ThinkerCAD

Activity 3.2 Build the SR flipflop with clock on ThinkerCAD

Reference