电力电子习题

往年题汇总:

- 1. 单相交流调压电路
- 2. 单相全控整流桥-漏感 单相桥半控-阻感负载
- 3.三相全控桥
- 4.Buck电路CCM
- Boost电路
- 5.正激电路
- 6.单相桥电压型逆变
 - 三相逆变

- 3. 单相桥式全控整流电路, $U_2 = 100V$, 负载中 $R = 2\Omega$, L 值极大, 当 $\alpha = 30$ °时, 要求:
- ① 画出 u_d 、 i_d 和 i_2 的波形;
- ② 求整流输出平均电压 U_{d} 、电流 I_{d} 以及变压器二次电流有效值 I_{2} ;
- ③ 考虑安全裕量,确定晶闸管的额定电压和额定电流。

- 5. 单相桥式全控整流电路, U_2 = 200V,负载中 R = 2 Ω ,L 值极大,反电动势 E = 100V,当 α = 45°时,要求;
 - 画出 u_d、i_d和 i₂的波形;
 - ② 求整流输出平均电压 U_d、电流 I_d 以及变压器二次电流有效值 I₂;
 - ③ 考虑安全裕量,确定晶闸管的额定电压和额定电流。

11. 三相半波可控整流电路, $U_2 = 100$ V, 带电阻电 感负载, $R = 5\Omega$, L 值极大, 当 $\alpha = 60$ °时, 要求:

- ① 画出 u_d、i_d 和 i_{VT1} 的波形;
- ② 计算 $U_{\rm d}$ 、 $I_{\rm d}$ 、 $I_{\rm dVT}$ 和 $I_{\rm VT}$ 。

- 13. 三相桥式全控整流电路, U_z = 100V,带电阻电感负载,R = 5 Ω ,L 值极大,当 α = 60°时,要求:① 画出 u_a , i_a 和 i_{v_1} 的波形;
- ② 计算 $U_{\rm d}$ 、 $I_{\rm d}$ 、 $I_{\rm dVT}$ 和 $I_{\rm VT}$ 。

15. 三相半波可控整流电路,反电动势阻感负载, U_2 = 100V,R = 1 Ω , L = ∞ , L_8 = 1mH,求当 α = 30° 时,E = 50V 时 U_4 , I_4 , I_5 的值并画出 I_4 与 I_{17} 和 I_{17} 和 I_{17} 的波形。

16. 三相桥式不可控整流电路,阻感负载, $R=2\Omega$, $L=\infty$, $U_2=100$ V, $X_8=0.1\Omega$,求 U_a 、 I_a 、 I_{vo} 、 I_3 和 γ 的值并画出 u_a 、 i_{vo} 和 i ,的波形。

17. 三相全控桥,反电动势阻感负载,E=200V, $R=1\Omega$, $L=\infty$, $U_2=220V$, $\alpha=60^\circ$,当① $L_{\rm B}=0$ 和② $L_{\rm B}=1$ mH 情况下分别求 U_a 、 I_a 的值,后者还应求 y 并分别画出 u_a 与 $i_{\rm YI}$ 的波形。

27. 三相全控桥变流器,反电动势阻感负载, $R=1\Omega$, $L=\infty$, $U_2=220$ V, L=1mH, 当 $E_u=-400$ V、 $\beta=60^\circ$ 时求 U_a 、 I_a 与 γ 的值,此时送回电网的有功功率是多少?

28. 单相全控桥,反电动势阻燃负载, $R=1\Omega$, $L=\infty$, $U_2=100$ V,L=0.5mH,当 $E_u=-99$ V、 $\beta=60$ °时求 U_a 、 I_a 和 y 的值。

前刀八, ヨューマル, ron - 20 po ..., -

3. 在图 5-1a 所示的降压斩波电路中,E=100V,L=1mH, $R=0.5\Omega$, $E_m=20$ V,采用脉宽调制控制方 式, $T=20\mu s$,当 $t_{co}=10\mu s$ 时,计算输出电压平均值 U_{o} 、输出电流平均值 I_{o} ,计算输出电流的最大和最小 瞬时值并判断负载电流是否连续。

- 4. 简还图 3-28 所办开压初级电库时至十二下办工。
- 5. 在图 5-2a 所示的升压斩波电路中,已知 E=50V,L 值和 C 值极大, $R=25\Omega$,采用脉宽调制控制方
- 式,当 $T=50\mu s$, $I_{co}=20\mu s$ 时,计算输出电压平均值 U_c 和输出电流平均值 I_c

整流电路补充1:

• 单相全控桥,阻感负载,电感极大,要求直流输出电压范围15~60V,电压最高时的 I_d = 10A,从220V电源经变压器供电,考虑最小控制角 α_{min} =30°,计算变压器一、二次侧绕组电流和晶闸管的额定电流和额定电压。

- 三相全控桥整流电路,变压器的原边接220V工频电,阻感负载,其中, $R=5\Omega$,L=0.3H,现要求整流输出电压 U_a 在0 \sim 260V之间可调,试回答:
- (1) 整流变压器的副边相电压U2;
- (2) 电路的最大功率因数;
- (3) 晶闸管的额定电压、额定电流;
- (4) 画出 U_d =182V时, u_d 、 i_d 、 u_{VT1} 的波形;

- 1. BUCK电路,设输入电压为20V,电感L为50μH,输出接2Ω的电阻,电路的工作频率为20kHz,IGBT的导通占空比为0.4,输出电压的绞波ΔUo/Uo=2%,求:
- (1)输出直流电压Uo、输出直流电流Io;
- (2)流过IGBT 的峰值电流ITM;
- (3) 所需的最小滤波电容值;
- (4) 如要将IGBT的峰值电流减小为输出直流电流的110%,应改变什么参数,如何改变?

- 2. B00ST电路如图所示,设输入电压为10V,电感L是80μH,电容C为25μF,输出接10 Ω 的电阻,电路的工作频率是50kHz,开关管的占空比为0. 5,求:
- (1)输出直流电压U。;输出直流电流I。;
- (2) 电感电流平均值I_L;
- (3) 开关管阻断时的电压。

- ・全桥逆变电路,设R=0.4 Ω , L=1mH, Ud=100V, f=100Hz, 成对的两个桥臂同时导通,两对交替各导通180°, 试回答:
- · (1) 画出开关管V1的电压和电流波形;
- · (2) 求V1的峰值电流;
- (3) 求输出电压的傅里叶展开式、有效值和其基波的有效值。

・ 对单相全控桥逆变电路采用移相调压,设 θ =120°, U_d =100V,求输出电压的傅里叶展开式、有效值 U_o 和其基波的有效值 U_{o1} 。

可以看回顾

2. 一单相交流调压器,电源为工频 220V,阻感申联作为负载,其中 $R=0.5\Omega$,L=2mH。试求:①触 发延迟角 α 的变化范围。②负载电流的最大有效值;③最大输出功率及此时电源侧的功率因数;④当 $\alpha=\pi/2$ 时,晶闸管电流有效值、晶闸管等通角和电源侧功率因数。

