Exercises for Architectures of Supercomputers

2nd Exercise, 30./31.10.2019

- In the lecture, you learned that the instruction cycle can be pipelined to increase instruction throughput
- The same concept can be applied to execution units, if operations take longer than one cycle to execute

- In the lecture, you learned that the instruction cycle can be pipelined to increase instruction throughput
- The same concept can be applied to execution units, if operations take longer than one cycle to execute

123456.7 + 101.7654 =

Familiar mathematical representation of numbers

- In the lecture, you learned that the instruction cycle can be pipelined to increase instruction throughput
- The same concept can be applied to execution units, if operations take longer than one cycle to execute

 $123456.7 + 101.7654 = (1.234567 \times 10^5) + (1.017654 \times 10^2)$

Floating-point number representation (always one digit left of the decimal point)

- In the lecture, you learned that the instruction cycle can be pipelined to increase instruction throughput
- The same concept can be applied to execution units, if operations take longer than one cycle to execute

```
123456.7 + 101.7654 = (1.234567 \times 10^{5}) + (1.017654 \times 10^{2})
= (1.234567 \times 10^{5}) + (0.001017654 \times 10^{5})
```

First step of floating-point addition:
Shift mantissa to make exponents match

- In the lecture, you learned that the instruction cycle can be pipelined to increase instruction throughput
- The same concept can be applied to execution units, if operations take longer than one cycle to execute

```
123456.7 + 101.7654 = (1.234567 \times 10^{5}) + (1.017654 \times 10^{2})
= (1.234567 \times 10^{5}) + (0.001017654 \times 10^{5})
= (1.234567 + 0.001017654) \times 10^{5}
```

Second step of floating-point addition: Perform the actual addition

- In the lecture, you learned that the instruction cycle can be pipelined to increase instruction throughput
- The same concept can be applied to execution units, if operations take longer than one cycle to execute

```
123456.7 + 101.7654 = (1.234567 \times 10^{5}) + (1.017654 \times 10^{2})
= (1.234567 \times 10^{5}) + (0.001017654 \times 10^{5})
= (1.234567 + 0.001017654) \times 10^{5}
= 1.235584654 \times 10^{5}
```

Third step of floating-point addition: Rounding and normalization of result

- In the lecture, you learned that the instruction cycle can be pipelined to increase instruction throughput
- The same concept can be applied to execution units, if operations take longer than one cycle to execute

```
123456.7 + 101.7654 = (1.234567 \times 10^{5}) + (1.017654 \times 10^{2})
= (1.234567 \times 10^{5}) + (0.001017654 \times 10^{5})
= (1.234567 + 0.001017654) \times 10^{5}
= 1.235584654 \times 10^{5}
```

- Rationale: Use hardware implementing different stages simultaneously to increase throughput (number of operations over time)
- The latency (execution time of one operation) is unchanged

Exercise 2: Vector sum

- Continue with your code from last week
- Implement a function double vec_sum(double *A, int N), that adds
 up all elements of an array A of length N and returns the result
 - As before, make sure to implement the function in a separate file
- In your existing code, run the vec_sum function on the array after it is initialized by the init function
 - Change the init function to initialize your array elements with 1.0
 - Allows easy verification of the correctness of your vec_sum implementation
 - Instead of measuring the runtime of the init function, this week you should measure the runtime of the vec_sum function
 - Instead of bandwidth, the performance metric for the vec_sum function should be floating-point operations per second (Flop/s)
 - To derive the performance the number of floating-point operations carried out in the vec_sum function is divided by the function's runtime
 - Make sure the runtime of your vec_sum function is at least 0.1 seconds
 - Call the function multiple times if necessary (see next slide)

Exercise 2: Minimum runtime

- Why enfore a minimum runtime of 100ms?
 - Various effects can bias performance when using small sample times
 - OS (scheduler, interrupts, ...)
 - Overhead (startup, function, ...)
- How to enforce minimum runtime?

Johannes Hofmann

R = R / 2; // update expr executed before exit cond. s evaluated

Pipelining and unrolling

Exercise 2: Unrolling to improve performance FRIEDRICH-ALEXANDER UNIVERSITÄT TECHNISCHE FAKULTÄT

- In this exercise, you will investigate the impact of loop-unrolling on performance
- Start with an implementation of the vec_sum function that does not use unrolling
 - To prevent the compiler from automatically unrolling your high-level C code, use #pragma nounroll in addition to #pragma novector in front of your for-loop in your vec_sum function
- Next, implement 2-, 3-, 4-, and 8-way unrolling versions of vec_sum function
 - Implement them in separate files and functions
 - E.g., vec_sum2.c containing the two-way unrolled vec_sum2 and so on...
 - Take care to correctly address the remainder loop
 - See blackboard...

Exercise 2: Measurements

- Measure the performance of your different vector-sum implementations
- Use a data-set size of 23kB
 - large enough to be non-trivial
 - small enough to fit into the L1 cache
- Try to find an explanation for the observed performance
 - The CPU cores are clocked with a frequency of 2.2 GHz
 - According to the Intel Optimization Reference Manual [1] the addss instruction has a latency of three clock cycles on the Ivy Bridge microarchitecture

[1] http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html, cf. Tab C-15