TECHNICAL MEMORANDUM:

LONGITUDINAL ANALYSIS OF KLAMATH RIVER PHYTOPLANKTON DATA 2001-2004

PREPARED FOR THE

YUROK TRIBE ENVIRONMENTAL PROGRAM

BY

KIER ASSOCIATES, FISHERIES AND WATERSHED PROFESSIONALS BLUE LAKE AND ARCATA, CALIFORNIA

AND

AQUATIC ECOSYSTEM SCIENCES LLC ASHLAND, OREGON

SEPTEMBER, 2006

TECHNICAL MEMORANDUM:

LONGITUDINAL ANALYSIS OF KLAMATH RIVER PHYTOPLANKTON DATA 2001-2004

PREPARED FOR THE

YUROK TRIBE ENVIRONMENTAL PROGRAM

 \mathbf{BY}

JACOB KANN, PH.D AQUATIC ECOSYSTEM SCIENCES LLC ASHLAND, OREGON

AND

ELI ASARIAN KIER ASSOCIATES, FISHERIES AND WATERSHED PROFESSIONALS BLUE LAKE AND ARCATA, CALIFORNIA

SEPTEMBER 2006

Citation:

Kann, J and E. Asarian. 2006. Technical Memorandum: Longitudinal Analysis of Klamath River Phytoplankton Data 2001-2004. Prepared by Kier Associates and Aquatic Ecosystem Sciences for the Yurok Tribe Environmental Program, Klamath, California. 36 pp.

Cover photo credits: Michael Hentz and Eli Asarian

CONTENTS

INTRODUCTION	1
METHODS	1
Field and laboratory methods	1
Data analysis approach	4
RESULTS	5
Longitudinal analysis Biovolume of total and nitrogen-fixing phytoplankton. Chlorophyll a Major taxonomic groups.	5 5 7 12
Seasonal trends. Major taxonomic groups. Reservoir samples at various depths Species composition.	12 16 16 25
SUMMARY/CONCLUSIONS	33
LITERATURE CITED	36

ELECTRONIC APPENDICES ON CDA. Spreadsheet of PacifiCorp 2001-2004 phytoplankton data.

INTRODUCTION

The Klamath Hydroelectric Project (KHP) in southern Oregon and northern California is currently undergoing the Federal Energy Regulatory Commission (FERC) relicensing process. This process requires, among other things, that the two states make a finding, under Section 401 of the federal Clean Water Act, that project operations will comply with the states' water quality standards and other aquatic resource protection requirements. As part of these processes, PacifiCorp (the KHP operators) conducted a water quality monitoring program to help determine KHP effects on Klamath River water quality. This program included a phytoplankton sampling component from 2001-2005. The complete set of 2001-2004 phytoplankton data were posted on PacifiCorp's website in October 2004; 2005 data have not yet been released. Raymond (2005) described PacifiCorp's phytoplankton sampling methodology and presented some summary statistics for the 2001-2004 data. Kann (2006) provided a detailed longitudinal analysis of the PacifiCorp 2001-2004 data for toxigenic Microcystis aeruginosa. However, to date, PacifiCorp's 2001-2004 dataset has not been comprehensively analyzed for general phytoplankton trends in the Klamath River system.

The purpose of this memo is to analyze and summarize PacifiCorp's 2001-2004 dataset, including the description of seasonal, annual, and longitudinal patterns in algal species composition and biovolume. Due to the importance of Upper Klamath Lake (UKL) to Klamath River nutrient and algal dynamics, phytoplankton data collected by the Klamath Tribes near the outlet of UKL are also utilized to provide a context for comparison.

METHODS

Field and Laboratory Methods

A total of 22 sites on the Klamath River and several of its tributaries were sampled for phytoplankton between the outlet of UKL (river mile 254.79) and the Klamath River's confluence with the Shasta River (river mile 173). Locations of PacifiCorp mainstem sampling sites are shown in Figure 1 and Table 1. In 2002 only, samples were collected in Spencer Creek, Shovel Creek, Fall Creek, and the Shasta River; tributary data are not analyzed herein.

Sampling was performed by E&S Environmental Chemistry (Corvallis, Oregon) and laboratory analyses for chlorophyll a and phytoplankton species biovolume and abundance were performed by Aquatic Analysts (White Salmon, WA). Samples were collected approximately monthly from 2001-2004, with the number of sample stations and length of the sampling season varying between years (Figure 2). The start of the monitoring season varied from March in 2002-2003 to July in 2001, and monitoring ended each year in October or November.

Raymond (2005) provides the following description of the sampling methodology:

"Samples were collected from approximately 0.5 m depth at the river and stream sites, and from 0.5 to 1.0 m depth in the reservoirs at sites near the dams. In addition, an integrated sample of the top 10 m of water in Copco and Iron Gate reservoirs was collected by lowering a weighted tube to 10 m, clamping off the top, retrieving the tube and draining it into a container. The contents of the container were mixed and dispensed into sample bottles. Approximately every 10th sample, but at least one sample in every sample set, was duplicated for quality control purposes."

1

The Klamath Tribes of Oregon collected phytoplankton samples near the outlet of Upper Klamath Lake at Pelican Marina (river mile 255.50) in the year 2004 only at bi-weekly intervals. Samples were depth-integrated across the entire 1.5-2.5m water column and were processed by the same laboratory as PacifiCorp's samples (Klamath Tribes Upper Klamath Lake Phytoplankton Data; 1990-1999 and 2004-2005- Electronic data file)

Figure 1. Phytoplankton samples collected in 2001-2004 in the vicinity of the Klamath Hydroelectric Project, by PacifiCorp and the Klamath Tribes. Figure adapted from Raymond (2005).

Table 1. Locations where PacifiCorp and the Klamath Tribes collected phytoplankton samples in the vicinity of the Klamath Hydroelectric Project in the years 2001-2004. Table adapted from Raymond (2005).

Data Collector	Site ID	River Mile	Latitude	Longitude	Site Name
PacifiCorp	KR17300	173.00	41.8362	-122.5825	Klamath River above Shasta River
PacifiCorp	KR17600	176.00	41.8301	-122.5937	Klamath River at I-5 Rest Area
PacifiCorp	KR18973	189.73	41.9310	-122.4423	Iron Gate dam Outflow
PacifiCorp	KR19019	190.19	41.9342	-122.4350	Iron Gate reservoir near dam
PacifiCorp	KR19645	196.45	41.9731	-122.3652	Copco 2 dam Outflow
PacifiCorp	KR19874	198.74	41.9794	-122.3333	Copco reservoir
PacifiCorp	KR20642	206.42	41.9721	-122.2016	Klamath River upstream of Shovel Creek
PacifiCorp	KR22040	220.40	42.0932	-122.0713	Klamath River upstream, of J.C. Boyle Powerhouse
PacifiCorp	KR22460	224.60	42.1217	-122.0494	Klamath River below J.C. Boyle dam
PacifiCorp	KR22478	224.78	42.1228	-122.0470	J.C. Boyle reservoir at Log Boom
PacifiCorp	KR22600	226.00	42.1351	-122.0313	J.C. Boyle reservoir at Hwy 66 Bridge
PacifiCorp	KR22822	228.22	42.1499	-122.0154	Klamath River above J.C. Boyle reservoir
PacifiCorp	KR23334	233.34	42.1353	-121.9489	Keno dam Outflow
PacifiCorp	KR23360	233.60	42.1345	-121.9482	Keno reservoir at Log Boom
PacifiCorp	KR23490	234.90	42.1222	-121.9194	Klamath River at Keno Bridge (Hwy 66)
PacifiCorp	KR25200	252.00	-	-	Lake Ewuana (coordinates not provided, river mile approximated from general location)
PacifiCorp	KR25312	253.12	42.2188	-121.7884	Link River at Mouth
PacifiCorp	KR25479	254.79	42.2383	-121.8053	Upper Klamath Lake at Fremont St Bridge
Klamath Tribes	KR25550	255.50			Upper Klamath Lake at Pelican Marina
PacifiCorp	SP00	0	42.1528	-122.0325	Spencer Creek near Mouth
PacifiCorp	SR00	0	41.9724	-122.2027	Shovel Creek near Mouth
PacifiCorp	FA00	0	41.9681	-122.3653	Fall Creek near Mouth
PacifiCorp	SH01	1	41.8231	-122.5944	Shasta River near Mouth

Figure 2. Timing of phytoplankton samples collected in the vicinity of the Klamath Hydroelectric Project by PacifiCorp in 2001-2004 and the Klamath Tribes in 2004.

Data Analysis Approach

Longitudinal Analyses

Longitudinal trends in the biovolume of total phytoplankton, nitrogen fixing phytoplankton, and major algal taxonomic groups (Chlorophyta, Chrysophyta, Cryptophyta, Cyanophyta, Diatoms, Euglenophyta, and Pyrrophyta) were evaluated for the years 2001 to 2004. Because river station samples represent surface grabs, longitudinal plots that include reservoir stations are for surface samples only (reservoir depth variability is evaluated separately below). These data were evaluated for all dates, and, separately for the June-September period when maximum phytoplankton biomass typically occurs.

Because UKL is known to exhibit large blooms of the nitrogen fixing blue-green alga, Aphanizomenon flos-aquae, and this and other species such as Anabaena can play an important role in introducing nitrogen into aquatic systems, specific analyses for total and percent biovolume of nitrogen fixing phytoplankton (NFP) were evaluated to assess the distribution and relative magnitude of these blue-green algal species.

Although the typical monthly sampling frequency makes it difficult to determine specific magnitude and seasonal trends in any given year, taken in its entirety the four available years of data provide

adequate resolution to evaluate general seasonal and longitudinal patterns in algal species composition and biovolume. The robustness of longitudinal trends is enhanced by combining the data from all years and evaluating each sample station, with stations arranged in longitudinal (downstream-upstream) order (Figures 3-6 and Tables 2 and 3). The Klamath Tribes phytoplankton data from UKL (UKL Pel Mar in Figure 2 above) are biweekly but are only available for 2004. However, because the predominance of high blue-green algal biomass is well documented in UKL (Kann 1998; Kann and Welch 2005), this station is included below as a representation of phytoplankton conditions at the outlet of UKL. UKL chlorophyll a data were available for 2001-2004 and are shown in Figure 5.

Seasonal Analyses

Seasonal trends in surface samples (Figures 7-11) and at varying depths for reservoir stations (Figures 12-14) were evaluated for major taxonomic groups. Seasonal trends in surface samples for dominant phytoplankton species are shown in Figures 15-19.

RESULTS

Longitudinal Analysis

Biovolume of Total and Nitrogen Fixing Phytoplankton

Analysis of all dates

Box plots of total phytoplankton biovolume over all years, combined for all sample dates, show a declining longitudinal trend in biovolume from the headwaters at UKL to the station above JC Boyle powerhouse (RM 220.4), with the greatest median (red line in Figure 3) decreases occurring between UKL (RM 255.5) and Link Mouth (RM 253.12), between Keno Dam (RM 233.4) and above JC Boyle Reservoir (RM 228.22) and then, again, between below JC Boyle Dam (RM 224.6) and above the JC Boyle powerhouse (Figure 3; top panel). Upper quartile (UQ) values (top line of the box indicating the upper 25% of measurements) show a similar trend through the above IC Boyle reach, but then increase in JC Boyle Reservoir (RM 224.78).

Low values in samples above the JC Boyle powerhouse are highly influenced by bypass operations and often consist predominantly of spring water inflow. Between RM 220.4 (Abv JCB PH) and Abv Copco (RM 206.42) releases from JC Boyle reenter the river at the powerhouse increasing the median total biovolume above Copco to levels similar to those below IC Boyle Dam (Figure 3: top panel). However, the UQ value at the above Copco station was substantially lower than both the JC Boyle Reservoir station and the below JC Boyle Dam station (7x and 2.3x lower, respectively; Table 2). As discussed in Asarian and Kann (2006), flows and concentrations at this location are influenced by hydropower peaking operations from the J.C. Boyle Powerhouse.

From this point downstream, both median and UQ total biovolume showed an overall increase as the river traveled through the Copco/Iron Gate reservoir complex (Figure 3; Table 2). The median Copco and Iron Gate Reservoir values were 2-3 times greater than the median value above Copco, and the UQ values were 9.2 and 3.6 times higher, respectively. Below Iron Gate Reservoir, total phytoplankton biovolume decreases but remains elevated compared to that above Copco, where the upper quartile was 3 times higher and the median 2 times higher (Table 2). Continuing downstream from Iron Gate to Interstate 5 and above the Shasta River confluence (Figure 3: RM 173/176) levels returned to values similar to those above Copco station.

Total and Nitrogen-Fixing Phytoplankton Biovolume, Klamath River 2001-2004 (all dates)

Figure 3. Total phytoplankton biovolume (top panel), total biovolume of nitrogen-fixing species (middle panel), and percent biovolume of nitrogen fixing species (bottom panel) of surface samples at major Klamath River sampling sites for the years 2001-2004, all months. The line inside each box is the median and the edges of each box are the 25th and 75th percentiles. The whiskers represent data points beyond 1.5 times the interquartile (75th-25th) range, while individual points shown in black are outliers.

A separate evaluation of NFP species (Figure 3; middle panel) showed a trend similar to total biovolume, with a consistent decline from UKL to the above Copco station (RM 206.42), and then a substantial increase through the Copco/Iron Gate Reservoir complex. However, both median and UQ values for NFP species showed a greater relative increase than did total biovolume, where median and UQ values for Copco Reservoir were 20 and 515 times higher than for above Copco, and were 50 and 138 times higher for Iron Gate Reservoir than for above Copco (Figure 3: middle panel; Table 2).

Document 31-7

The most pronounced longitudinal trend occurred for the percent biovolume of NFP species (Figure 4: lower panel). Beginning at UKL, median percent NFP biovolume decreases from 94% down to <1% at the above Copco Station; and although the median then increased slightly in Copco Reservoir (to 5.8%), it rose to 29% in Iron Gate Reservoir. Further, the upper distribution of percent nitrogen fixers increased in both reservoirs to levels similar to those at UKL (the UQ was 89% and 80% for Copco and Iron Gate, respectively; Table 2).

June-September analysis

The basic trends for the June-September period followed that of the analysis using data from all dates; generally decreasing from UKL to above Copco and then increasing through the reservoir complex (Figure 4; Table 2). However, because June-September is the major growing season for blue-green algae blooms in the basin, the trends in biovolume and percent biovolume of NFP species tended to be more pronounced than the analysis using all dates (Figure 4; middle and bottom panels). For example, NFP biovolume and percent biovolume were 10.8 and 5.7 times higher in Copco Reservoir than they were at the above Copco station, and were 164 and 37 times higher in Iron Gate Reservoir

The overall distribution of June-September reservoir values was higher than that for the analysis including all dates, and the UQ values increased substantially from the above Copco Station (Figure 4). Compared to an UQ NFP composition of 24.5% above Copco, reservoir UQ NFP percent composition values returned to levels closer to UKL, exceeding ~90% in both reservoirs (Table 2) Despite declining between UKL and above Copco Reservoir, all parameters (total biovolume, NFP biovolume, and NFP percent biovolume) showed a clear increase in the Copco/Iron Gate Reservoir complex during the June- September period.

Chlorophyll a

Although not as pronounced for the analysis including all dates (Figure 5; top panel), the June-September analysis (Figure 5; bottom panel) for chlorophyll confirms the trends shown above for total phytoplankton biomass. Distribution of chlorophyll a, which provides an approximation of algal biomass, showed the same basic decreasing trend between UKL and above Copco (RM 206.42), then increasing (both median and UQ values) as the river traveled through the reservoir complex.

Total and Nitrogen-Fixing Phytoplankton Biovolume, Klamath River 2001-2004 (Jun-Sep)

Figure 4. Total phytoplankton biovolume (top panel), total biovolume of nitrogen-fixing species (middle panel), and percent biovolume of nitrogen fixing species (bottom panel) of surface samples at major Klamath River sampling sites for the years 2001-2004, June 1- September 30.

8

Table 2. Summary of biovolume data by site for surface samples* collected for the years 2001-2004. For each site, statistics include the number of samples (N), lower quartile, median, and upper quartile for total biovolume, nitrogen-fixing biovolume, and nitrogen-fixing biovolume as a percent of total biovolume.

			all st	urface sam	ples	June	l - Sept. 30 s samples	urface
River Mile	Site Name	Metric	Total Biovolume (mm³/L)	N-Fixer Biovolume (mm³/L)	N-Fixer Biovolume (Percent)	Total Biovolume (mm³/L)	N-Fixer Biovolume (mm³/L)	N-Fixet Biovolume (Percent)
173/176	I-5 Shasta	N	13	13	13	7	7	7
173/176	I-5 Shasta	Lower Quartile	0.221	0.000	0.000	0.236	0.000	0.000
173/176	I-5 Shasta	Median	0.346	0.000	0.000	0.292	0.008	2.429
173/176	I-5 Shasta	Upper Quartile	0.509	0.026	7.243	0.356	0.047	13.917
189.73	IG Dam	N	27	27	27	15	15	15
189.73	IG Dam	Lower Quartile	0.202	0.000	0.000	0.456	0.003	0.202
189.73	IG Dam	Median	0.614	0.000	0.000	0.888	0.111	29.043
189.73	IG Dam	Upper Quartile	1.420	0.185	30.566	1.926	0.638	90.710
190.19	IG Res	N	24	24	24	15	15	15
190.19	lG Res	Lower Quartile	0.441	0.000	0.000	0.619	0.085	11.657
190.19	IG Res	Median	0.864	0.099	29.275	1.208	0.820	75.247
190.19	IG Res	Upper Quartile	1.738	1.102	80.106	1.931	1.478	89.426
196.45	Bel Copco	N	25	25	25	12	12	12
196.45	Bel Copco	Lower Quartile	0.126	0.000	0.000	0.159	0.006	2.869
196.45	Bel Copco	Median	0.286	0.009	3.187	0.319	0.041	7.535
196.45	Bel Copco	Upper Quartile	0.601	0.080	20.906	0.806	0.120	49.727
198.74	Copco Res	N	27	27	27	16	16	16
198.74	Copco Res	Lower Quartile	0.282	0.001	0.071	0.456	0.011	4.209
198.74	Copco Res	Median	0.618	0.041	5.847	0.885	0.054	11.459
198.74	Copco Res	Upper Quartile	4.700	4.118	89.460	6.184	5.286	97.613
206.42	Abv Copco	N	32	32	32	14	14	14
206.42	Abv Copco	Lower Quartile	0.197	0.000	0.000	0.196	0.000	0.000
206.42	Abv Copco	Median	0.285	0.002	0.733	0.258	0.005	2.020
206.42	Abv Copco	Upper Quartile	0.474	0,008	3.679	0.498	0.088	24.481
220.40	Abv JCB PH	N	26	26	26	13	13	13
220,40	Abv JCB PH	Lower Quartile	0.065	0.000	0.000	0.070	0.002	1.416
220.40	Abv JCB PH	Median	0.119	0.000	0.000	0.118	0.003	2.922
220,40	Abv JCB PH	Upper Quartile	0.192	0.004	4,007	0.174	0.008	4.477
224.60	Bel JCB Dam	N	26	26	26	12	12	12
224.60	Bel JCB Dam	Lower Quartile	0.194	0.000	0.000	0.183	0.016	5.363
224.60	Bel JCB Dam	Median	0.409	0.024	6.612	0.374	0.048	11.494
224.60	Bel JCB Dam	Upper Quartile	1.098	0.049	19.236	0.852	0.182	48.977

Table 2 (continued)

			all s	urface sam	ples		June 1	- Sept. 30 s samples	urface
River Mile	Site Name	Metric	Total Biovolume (mm³/L)	N-Fixer Biovolume (mm³/L)	N-Fixer Biovolume (Percent)	_	Total Biovolume (mm³/L)	N-Fixer Biovolume (mm³/L)	N-Fixer Biovolume (Percent)
224.78	JCB Res	N	15	15	15		9	9	9
224.78	JCB Res	Lower Quartile	0.239	0.000	0.000		0.213	0.026	0.768
224.78	ICB Res	Median	0.375	0.051	5.545		0.628	0.085	12.804
224.78	JCB Res	Upper Quartile	3.339	0.102	20.207		3.845	0.232	35.508
228.22	Aby JCB Res	N	24	24	24		12	12	12
228.22	Abv JCB Res	Lower Quartile	0.287	0.000	0.000		0.296	0.016	2.324
228.22	Abv JCB Res	Median	0.527	0.028	6.807		0.611	0.059	10.112
228.22	Abv JCB Res	Upper Quartile	1.479	0.126	22.953		1.636	0.730	86.204
233.34	Keno Dam	N	24	24	24		12	12	12
233,34	Keno Dam	Lower Quartile	0.518	0.015	3.471		1.464	0.490	49.946
233.34	Keno Dam	Median	1.464	0.285	31.349		2.402	1.308	78.168
233.34	Keno Dam	Upper Quartile	3.408	1.308	78.168		4.908	3.581	89.518
234.90	Keno Res 66	N	9	9	9		4	4	4
234.90	Keno Res 66	Lower Quartile	0.420	0.015	5.789		2.492	1.118	48.231
234.90	Keno Res 66	Median	1.187	0.341	29.975		5.539	2.820	71.461
234.90	Keno Res 66	Upper Quartile	8.350	2.189	65.302		9,797	8.383	91.863
253.12	Link Mouth	N	28	28	28		19	19	19
253.12	Link Mouth	Lower Quartile	0.579	0.312	72.419		0.631	0.502	93.071
253.12	Link Mouth	Median	1.786	1.604	96.280		2.139	2.116	98.922
253.12	Link Mouth	Upper Quartile	8.013	7.949	99.145	_	9.135	9.024	99.556
255.50	UKL Pel Mar*	N	11	11	11		8	8	8
255.50	UKL Pel Mar*	Lower Quartile	4.232	2.299	44.981		10.003	9.437	92.868
255.50	UKL Pel Mar*	Median	10.249	9.989	93.509		11.034	10.347	97.186
255.50	UKL Pel Mar*	Upper Quartile	14.887	14.638	99,693	_	20.414	20.392	99.842

^{*}Note that although the Pelican Marina site in Upper Klamath Lake (river mile 255.50) is depth-integrated across the entire 1.5-2.5m water column, it is compared to surface samples at the other sites.

Chlorophyll a at Klamath River Sites 2001-2004, all dates

Chlorophyll a at Klamath River Sites 2001-2004, June-September

Figure 5. Chlorophyll *a* concentrations at Klamath River sites for all dates (top panel) and June-September (bottom panel), 2001-2004. Data are from samples collected by PacifiCorp and the Klamath Tribes.

Major Taxonomic Groups

Cyanophyta

As expected, based upon the longitudinal trend described above in NFP species, which are comprised of algae from the taxonomic group Cyanophyta (blue-green algae), the longitudinal trend in both total biovolume and percent biovolume of the Cyanophyta (Figure 6) was similar to that of NFP shown above. UKL, dominated by the blue-green algal species *Aphanizomenon flos-aquae*, showed high median and UQ biomass and percent biomass levels. Downstream values then drop substantially, with median values decreasing from 10.8 mm³/L to less than 0.01 mm³/L above Copco (RM 206.42). However, although still low relative to UKL, median values were 5.8 and 86 times higher in Copco and Iron Gate Reservoirs than they were above Copco (Figure 6; top panel and Table 3). The trend in Cyanophyta percent composition is more pronounced through the reservoir complex than absolute biomass, with levels in Copco and Iron Gate increasing from 5% above Copco to 50% and 82% in Copco and Iron Gate Reservoirs, respectively.

As with total and NFP biomass, the upper distribution or UQ metric showed a more pronounced increase in the reservoir complex, especially for Copco Res (RM 198.74) which showed the overall increase to be 65 times higher than the above Copco station (Figure 6; bottom panel and Table 3). Moreover, percent Cyanophyta composition increased to 90% and 78% in Copco and Iron Gate, respectively. These trends in the upper distribution indicate that periodic high values of both biovolume and percent biovolume of Cyanophyta occurred in the reservoir complex relative to stations directly upstream.

Other dominant groups

As expected as the system changed from the lacustrine environment of UKL to the riverine environment of the Klamath River, diatoms increased in prevalence downstream, before decreasing again in the Copco/Iron Gate Reservoir complex (Figure 6; red color) as the Cyanophyta again dominated. Other major taxonomic groups that increased in prevalence downstream were the Cryptophyta (cryptophytes) and Chlorophyta (green algae); with the highest percent composition for these groups occurring in JC Boyle Reservoir (JCB Res; RM 224.78). As with the Cyanophyta, the species in these groups (e.g., Cryptomonas erosa and Actinastrum hantzschii) tend to be more lacustrine. Relative to diatoms and the Cyanophyta, the Euglenophyta (euglena), Pyrrophyta (dinoflagellates), and Chrysophyta (golden algae) comprised a very minor portion of the overall biovolume at all stations.

Seasonal Trends

Phytoplankton can respond to changes in their environment with periods of rapid growth or decline. These changes usually occur at intervals substantially shorter than the monthly sampling frequency of the PacifiCorp dataset. Given these limitations, apparent differences in peak biomass between years may in fact be due to the timing of sample collection rather than to any real differences. As such, it is not the goal in the following sections to compare the specific magnitudes among years, but rather to determine the general consistency of seasonal trends among years and to determine general seasonal trajectories. Bi-weekly data, such as that collected by the Klamath Tribes at its Pelican Marina site in UKL, would provide much-improved resolution for identifying and interpreting seasonal and inter-annual trends.

Median Biovolume of Major Phytoplankton Taxa, 2001-2004 June-Sept, Surface Samples

Upper Quartile Biovolume of Major Phytoplankton Taxa, 2001-2004 June-Sept, Surface Samples

Figure 6. Median and upper quartile biovolume and percent composition of major phytoplankton taxonomic groups for surface samples collected June 1 – September 30, 2001-2004.

Table 3. Summary of biovolume data by site for surface samples' collected for the years 2001-2004 during the period June 1 – September 30. For each site, statistics include the number of samples (N) and the mean total biovolume for each major taxonomic group.

		Mean Biovolume (mm ³ /L) for June 1 - Sept. 30 surface samples								
River Mile	Site Name	Metric	Chloro - phyta	Chryso- phyta	Crypto- phyta	Cyano- phyta	Diatoms	Eugleno- phyta	Pyrro- phyta	
173/176	I-5 Shasta	N	7	7	7	7	7	7	7	
173/176	I-5 Shasta	Lower Quartile	0.0000	0.0000	0.0000	0.0000	0.2252	0.0000	0.0000	
173/176	I-5 Shasta	Median	0.0000	0.0000	0.0045	0.0294	0.2646	0.0000	0.0000	
173/176	I-5 Shasta	Upper Quartile	0.0003	0.0000	0.0061	0.0774	0.3003	0.0000	0.0000	
189.73	IG Dam	N	15	15	15	15	15	15	15	
189.73	IG Dam	Lower Quartile	0.0012	0.0000	0.0070	0.0070	0.0617	0.0000	0.0000	
189.73	IG Dam	Median	0.0043	0.0000	0.0169	0.1707	0.1626	0.0000	0.0000	
189.73	IG Dam	Upper Quartile	0.0188	0.0011	0.0574	0.6381	0.7728	0.0000	0.0000	
190.19	IG Res	N	15	15	15	15	15	15	15	
190.19	IG Res	Lower Quartile	0.0030	0.0000	0.0177	0.0846	0.0369	0.0000	0.0000	
190.19	IG Res	Median	0.0091	0.0000	0.0554	0.8278	0.1072	0.0000	0.0000	
190.19	IG Res	Upper Quartile	0.0115	0.0025	0.0793	1.4777	0.3245	0.0000	0.0000	
196.45	Bel Copco	N	12	12	12	12	. 12	12	12	
196.45	Bel Copco	Lower Quartile	0.0002	0.0000	0.0003	0.0161	0.0207	0.0000	0.0000	
196.45	Bel Copco	Median	0.0015	0.0000	0.0129	0.0557	0.1425	0.0000	0.0000	
196.45	Bel Copco	Upper Quartile	0.0060	0.0000	0.0247	0.1778	0.4024	0.0000	0.0000	
198.74	Copco Res	N	16	16	16	16	16	16	16	
198.74	Copco Res	Lower Quartile	0.0006	0.0000	0.0000	0.0262	0.0108	0.0000	0.0000	
198.74	Copco Res	Median	0.0045	0.0000	0.0047	0.0550	0.0445	0.0000	0.0000	
198.74	Copco Res	Upper Quartile	0.0120	0.0035	0.0205	6.1296	0.4748	0.0000	0.0000	
206.42	Aby Copco	N	14	14	14	14	14	14	14	
206.42	Aby Copco	Lower Quartile	0.0019	0.0000	0.0005	0.0000	0.1395	0.0000	0.0000	
206.42	Aby Copco	Median	0.0057	0.0000	0.0044	0.0096	0.1709	0.0000	0.0000	
206.42	Aby Copco	Upper Quartile	0.0221	0.0003	0.0166	0.0946	0.2550	0.0000	0.0000	
220.40	Abv JCB PH	N	13	13	13	13	13	13	13	
220.40	Abv JCB PH	Lower Quartile	0.0012	0.0000	0.0000	0.0017	0.0588	0.0000	0.0000	
220.40	Abv JCB PH	Median	0.0020	0.0000	0.0013	0.0027	0.0827	0.0000	0.0000	
220.40	Abv JCB PH	Upper Quartile	0.0054	0.0000	0.0048	0.0288	0.1251	0.0000	0.0000	
224.60	Bel JCB Dam	N	12	12	12	12	12	12	12	
224.60	Bel JCB Dam	Lower Quartile	0.0025	0.0000	0.0033	0.0168	0.0678	0.0000	0.0000	
224.60	Bel JCB Dam	Median	0.0049	0.0000	0.0314	0.0487	0.1284	0.0000	0.0000	
224.60	Bel JCB Dam	Upper Quartile	0.0395	0.0003	0.0445	0.3209	0.2060	0.0000	0.0000	
224.78	JCB Res	N	9	9	9	9	9	9	9	
224.78	JCB Res	Lower Quartile	0.0229	0.0000	0.0503	0.0260	0.0616	0.0000	0.0000	
224.78	JCB Res	Median	0.0229	0.0000	0.0303	0.0260	0.0016	0.0000	0.0000	
224.78	JCB Res	Upper Quartile	0.3117	0.0003	0.5285	0.3038	0.1176	0.0000	0.0000	
228.22	Abv JCB Res	N	12							
228.22	Abv JCB Res			0.0000	0.0000	12	0.1281	0.0000	0.0000	
	•	Lower Quartile Median	0.0005		0,000	0.0158	0.1281	0.000.0	0.0000	
228.22	Aby JCB Res		0.0104	0.0000	0.0022	0.0593	0.2820	0.0000	0.0000	
228.22	Abv JCB Res	Upper Quartile	0.0438	0.0003	0.0262	0.7299	().4419	00000	0,000	

Table 3 (continued)

		Mean Biovolume (mm ³ /L) for June 1 - Sept. 30 surface samples							
River Mile	Site Name	Metric	Chloro- phyta	Chryso - phyta	Crypto- phyta	Cyano- phyta	Diatoms	Eugleno- phyta	Pyrro- phyta
233.34	Keno Dam	N	12	12	12	12	12	12	12
233.34	Keno Dam	Lower Quartile	0.0004	00000	0.0256	0.4902	0.0666	0.0000	0.0000
233.34	Keno Dam	Median	0.0057	0.0000	0.0620	1.3081	0.1928	0.0000	0.0000
233.34	Keno Dam	Upper Quartile	0.0610	0.0022	0.2381	3.5811	0.4824	0.0000	0.0000
234.90	Keno Res 66	N	4	4	4	4	4	4	4
234.90	Keno Res 66	Lower Quartile	0.0007	0.0000	0.0244	1.1177	0.0439	0.0000	0.0000
234.90	Keno Res 66	Median	0.0226	0.0000	1.0991	2.8241	0.1459	0.0000	0.0000
234.90	Keno Res 66	Upper Quartile	0.0532	0,000	2.3557	8.3872	0.3057	0.0000	0.0000
253.12	Link Mouth	N	19	19	19	19	19	19	19
253.12	Link Mouth	Lower Quartile	0.0000	0.0000	0.0003	0.5019	0.0252	0.0000	0.0000
253.12	Link Mouth	Median	0.0004	0.0000	0.0039	2.1158	0.0392	0.0000	0.0000
253.12	Link Mouth	Upper Quartile	0.0007	0.0000	0.0091	9.0240	0.0774	0.0000	0.0000
255.50	UKL Pel Mar	N	8	8	8	8	8	8	8
255.50	UKL Pel Mar	Lower Quartile	0.0010	0.0040	0.0040	9.8190	0,000	0.0000	0.0000
255.50	UKL Pel Mar	Median	0.0110	0.0060	0.0190	10.7720	0.0020	0.0000	0.0000
255.50	UKL Pel Mar	Upper Quartile	0.0370	0.0150	0.1440	20.3920	0.0270	0.0000	0.0000

^{*}Note that although the Pelican Marina site in Upper Klamath Lake (river mile 255.50) is depth-integrated across the entire 1.5-2.5m water column, it is compared to surface samples at the other sites.

Major Taxonomic Groups

Seasonal trends for major taxonomic groups are shown for each station ordered longitudinally from UKL to the Klamath River above the Shasta River confluence in Figures 7-11. Similar to the above analyses, Cyanophyta biomass and composition dominated the June-September period at up-river stations (Figure 7), with diatoms, cryptophytes, and chlorophytes dominating during the spring months. Although the summer Cyanophyta dominance persists downstream to Below JCB Dam (RM 224.6), the period of dominance becomes seasonally restricted at sites downstream (Figures 8 and 9).

Document 31-7

The importance of diatoms, cryptophytes, and chlorophytes begins to increase in importance below Keno Dam (RM 233.34) with diatoms dominating for much of the summer growing season by the time the river reaches the above Copco station (Figure 9; RM 206.42). Only restricted peaks in Cyanophyta dominance were observed at this station, occurring in July-August of 2003 and June-July of 2004. In contrast, peak Cyanophyta in Copco and Iron Gate Reservoirs (Figure 10) was substantially higher (note scale change from Figure 9 showing the Abv Copco station), with an overall decrease in diatom dominance during the summer months. Given that Cyanophyta tend to be buoyant and concentrate near the surface, and that releases from Iron Gate Reservoir are drawn from a depth ~30-40 feet, it is not surprising that the Iron Gate Dam station (RM 189.73 showed reduced composition of Cyanophyta, although relative to Abv. Copco, levels were higher and the period of dominance was protracted (Figure 11). Sampling frequency was insufficient (stations at RM's 173 and 176 were each only sampled in one year) to thoroughly evaluate stations below Iron Gate dam (Figure 11); however there is an indication of continued but diminished blue-green peaks, with increasing diatom dominance.

The overall seasonal pattern observed at most stations consists of spring diatom dominance, followed by increasing chlorophytes and cryptophytes, followed by a period of Cyanophyta (bluegreen algae) dominance, and finally a return to diatoms during the fall. The magnitude and period of Cyanophyta dominance was dependant upon whether the station is a reservoir or river station.

Reservoir samples at various depths

Periodic multiple depth sampling occurred in JC Boyle, Copco, and Iron Gate Reservoirs from 2001-2004 (Figures 12-14). The grab samples shown as 0-1m are the same as the surface samples depicted in all above graphs; other sample depths consist of either a depth integrated sample of the top 8-10 m of the water column (thus is inclusive of the 0-1 m grab sample), and a depth-specific sample taken between the 7 and 10 m depths.

Depth-specific samples were limited but tend to indicate that in JC Boyle and Copco Reservoirs, the composition of diatoms increases relative to the surface samples that showed higher predominance of chlorophytes and cryptophytes in JC Boyle (Figure 12) and higher Cyanophyta in Copco (Figure 13). The depth integrated sampling was more consistent, and as expected based on dilution of surface water where algae tend to be more concentrated, overall water column biovolume was substantially lower (again note scale change from surface to depth-integrated graphs) than surface samples in all three reservoirs. Although overall biovolume was lower in the depth-integrated samples, they showed a similar seasonal pattern of blue-green dominance as the surface samples. This may be partially due to the inclusion of surface material in the integrated sample. Copco and Iron Gate depth-integrated samples during summer months also showed greater dominance by cryptophytes and chlorophytes than did surface samples (Figures 13 and 14).

Figure 7. Biovolume and percent biovolume of major taxonomic groups of phytoplankton for surface samples collected in the years 2001-2004. Sites are listed in downstream order: Upper Klamath Lake at Pelican Marina, Link River at its mouth, and Keno Reservoir at the Highway 66 Bridge.

CYANOPHY-A

CRYPTOPHYTA

CHLOROPHYTA EUGLENOPHYTA PYRROPHYTA CHRYSOPHYTA

DIATOMS

Figure 8. Biovolume and percent biovolume of major taxonomic groups of phytoplankton for surface samples collected in the years 2001-2004. Sites are listed in downstream order: Keno Dam, Above J.C. Boyle Reservoir, and J.C. Boyle Reservoir.

CYANOPHYTA

CRYPTOPHYTA CHLOROPHYTA EUGLENOPHYTA PYRROPHYTA CHRYSOPHYTA

DIATOMS

Figure 9. Biovolume and percent biovolume of major taxonomic groups of phytoplankton for surface samples collected in the years 2001-2004. Sites are listed in downstream order: Below J.C. Boyle Dam, Above J.C. Boyle Powerhouse, and Above Copco Reservoir.

CYANOPHYTA

CRYPTOPHYTA CHLOROPHYTA EUGLENOPHYTA PYRROPHYTA CHRYSOPHYTA

DIATOMS

Figure 10. Biovolume and percent biovolume of major taxonomic groups of phytoplankton for surface samples collected in the years 2001-2004. Sites are listed in downstream order: Copco Reservoir, Below Copco Dam, and Iron Gate Reservoir.

DIATOMS

CHRYSOPHYTA

Figure 11. Biovolume and percent biovolume of major taxonomic groups of phytoplankton for surface samples collected in the years 2001-2004. Sites are listed in downstream order: Iron Gate Dam, Above the Shasta River, at the Interstate 5 Collier Rest Area.

CYANOPHYTA

DIATOMS
CRYPTOPHYTA
CHLOROPHYTA
EUGLENOPHYTA
PYRROPHYTA
CHRYSOPHYTA