Research Report

利用视觉语言预训练框架做OCR相关任务

2022年 5月

指导老师: 刘绍辉 汇报人: 研一 舒言

Vision-Language Pre-Training for Boosting Scene Text Detectors

Sibo Song^{1*} Jianqiang Wan^{1*} Zhibo Yang¹ Jun Tang¹ Wenqing Cheng² Xiang Bai² Cong Yao¹

¹DAMO Academy, Alibaba Group

²Huazhong University of Science and Technology

{sibosongzju, hustwjq, yangzhibo450, yaocong2010}@gmail.com xixing.tj@alibaba-inc.com {xbai, chengwq}@hust.edu.cn

FI EXCONTENTS

- ▷ 第一部分 『任务概述』
- ▷ 第二部分 『方法』
- > 第三部分『未来展望』

1 任务

1. decoder是以字符级别输入学习的,并不能学习到词语的语义信息

2. 预训练侧重于从视觉到语言的单流向,缺少两种模态的交互

- 1. 设计了视觉-语言交互的预训练框架,可以用于视觉和 文本的特征对齐
- 2. 设计了三种预训练代理任务,尤其是WIP(word-In-Image)任务,用于丰富视觉表示
- 3. 实验证明该方法超越了之前的预训练方法。(STKM)

1. ResNet+FPN+Attention_pooling

FPN:
$$\mathcal{F}_c = \text{Conv}_{1\times 1, s2}([DS_{\times 2}(P_2); P_3; US_{\times 2}(P_4); US_{\times 4}(P_5)])$$

Attention_pooling: Multi-head attention layer

$$x^I$$
 $V = \{V_{\texttt{[CLS]}}, V_1, ..., V_S\} \in \mathbb{R}_d$

$$\mathbf{W} = \{W_{\texttt{[CLS]}}, W_1, W_2, \cdots, W_K\} \in \mathbb{R}_d$$

Bert

 $W_{ text{[CLS]}}$

Image token

Text token

Pretext task1 ITC (Image-Text Contrastive learning)

$$L_q = -lograc{exp(q\cdot k_+/ au)}{\sum_{i=0}^k exp(q\cdot k_i/ au))}$$

2 交叉熵 ->NCE loss -> InfoNCE loss

$$\hat{y}_{+} = softmax(z+) = rac{exp(z+)}{\sum_{i=0}^{k} exp(z_i)}$$

$$L(\hat{y}) = - \sum_{i \in K} y_i log(\hat{y}_i)$$

$$-lograc{exp(z+)}{\sum_{i=0}^{k}exp(z_i)}$$

NCE(noise constrative estimation)

多分类变为二分类 + 负样本采样

InfoNCE

多分类,k为负样本的数量

$$L_q = -log rac{exp(q \cdot k_+/ au)}{\sum_{i=0}^k exp(q \cdot k_i/ au))}$$

Pretext task1 ITC (Image-Text Contrastive learning)

$$\mathcal{L}_{ ext{I2T}} = -\sum_{j} \log rac{\exp\left(I_{j} \cdot T_{j} / au
ight)}{\sum_{k=1}^{N} \exp\left(I_{j} \cdot T_{k} / au
ight)}$$

$$\mathcal{L}_{\text{T2I}} = -\sum_{j} \log \frac{\exp \left(T_{j} \cdot I_{j} / \tau\right)}{\sum_{k=1}^{N} \exp \left(T_{j} \cdot I_{k} / \tau\right)}$$

$$\mathcal{L}_{ITC} = \lambda_1 \mathcal{L}_{I2T} + \lambda_2 \mathcal{L}_{T2I}$$

2 Pretext task2 WIP (Word-in-Image Prediction)

OHEM + text embeddings` similarites

Query	Top-5 nearest neighbors from VLPT-STD								
eco	850	800	630	rca	600				
vote	note	voice	work	role	write				
sale	safe	scale	said	able	sake				
north	worth	keith	math	norton	both				
river	liver	layer	viper	driver	meter				
right	light	night	rights	might	higher				
special	specific	typical	serial	social	optical				
affected	attached	selected	attacked	scattered	affiliated				

Pretext task2 WIP (Word-in-Image Prediction)

$$\mathcal{L}_{\text{WIP}} = -\sum_{k=1}^{K} \log \frac{\exp(I \cdot W_k / \tau)}{\exp(I \cdot W_k / \tau) + \sum_{l=1}^{L} \exp(I \cdot \widetilde{W}_k^l / \tau)}$$

Pretext task3 MLM (Masked Language Modeling)

$$\mathcal{L}_{\text{MLM}} = -\mathbb{E}_{(W,V)} \log P_{\theta}(W_{\text{masked}}|W_{\text{unmasked}}, \mathbf{V})$$

Methods	ICDAR2015			Total-Text			CTW1500		
	P	R	F	P	R	F	P	R	F
SegLink [46]	73.1	76.8	75.0	30.3	23.8	26.7	42.3	40.0	40.8
TextSnake [33]	84.9	80.4	82.6	82.7	74.5	78.4	67.9	85.3	75.6
TextDragon [10]	84.8	81.8	83.1	79.5	81.0	80.2	84.5	74.2	79.0
SAE [50]	84.5	85.1	84.8	-	-	-	82.7	77.8	80.1
PSENet + ST ¹	84.3	78.4	81.3	89.2	79.2	83.9	83.6	79.7	81.6
PSENet + STKM ¹	85.7	81.8	83.7	89.2	79.9	84.3	85.3	80.6	82.9
PSENet + Ours	86.0	82.8	84.3	90.8	82.0	86.1	86.3	80.7	83.3
Δ		3.0	, 0.6↑		2.2	, 1.8 ↑		1.7 ↑	, 0.4↑

Methods	ICDAR2015		ICDAR2017			MSRA-TD500			
	P	R	F	P	R	F	P	R	F
SegLink [46]	73.1	76.8	75.0		_	-	86	70	77
TextField [55]	84.3	80.1	82.4	17-	7-	-	87.4	75.9	81.3
CRAFT [1]	89.8	84.3	86.9	80.6	68.2	73.9	88.2	78.2	82.9
GNNets [53]	90.4	86.7	88.5	79.6	70.1	74.5	-	-	-
EAST + ST ¹	89.6	81.5	85.3	75.1	61.9	67.9	86.9	77.6	82.0
EAST + STKM ¹	90.2	84.6	87.3	76.9	64.3	70.0	85.2	75.3	80.0
EAST + Ours	91.5	85.4	88.3	77.7	64.6	70.5	88.5	76.7	82.2
Δ		3.0	, 1.0 ↑		2.6	, 0.5↑		0.2	, 2.2↑

¹ We report results using our reimplementation.

Methods	ICDAR2015			Total-Text			MSRA-TD500		
	P	R	F	P	R	F	P	R	F
DB + ST ¹	88.2	82.7	85.4	87.1	82.5	84.7	91.5	79.2	84.9
DB + STKM ¹	91.4	81.4	86.1	87.7	83.4	85.5	90.2	82.0	85.9
DB + Ours	92.0	81.6	86.5	88.7	84.0	86.3	92.3	84.9	88.5
Δ	1.1 ↑, 0.4 ↑			1.6 ↑, 0.8 ↑			3.6 ↑ , 2.6 ↑		

¹ We report results using our reimplementation.

Image	Encoder	PSENet	EAST		
FPN [†]	Our FPN	w/o MHCA	w/ MHCA	CTW	IC15
	ŝ		$\sqrt{}$	82.7	88.0
	\checkmark			83.1	87.4
	\checkmark		\checkmark	83.3	88.3

				PSENe	t		EAST	•
ITC	MLM	WIP	IC15	TT	CTW	IC15	IC17	TD500
		İ	81.3	83.9	81.6	85.3	67.9	82.0
			82.2	84.3	82.2	86.0	69.4	79.3
	\checkmark		84.5	85.9	83.1	87.7	70.2	81.5
·-		$\sqrt{}$	83.1	85.3	82.2	86.9	70.2	82.1
	\checkmark		84.3	85.6	83.2	87.5	70.3	81.7
\checkmark		\checkmark	83.3	85.3	82.5	87.3	70.2	81.5
×	\checkmark	$\sqrt{}$	84.7	85.8	82.9	87.6	70.4	81.9
		$\sqrt{}$	84.3	86.1	83.3	88.3	70.5	82.2

Table 6. Ablation study on pre-training datasets with PSENet. **ST** denotes SynthText and **TO** denotes TextOCR. Only F-measure is presented.

Supervision	Pre-training Datasets	IC15	TT	CTW
Region	ST+TO (1 epoch)	82.24	84.52	81.75
Text (Ours)	ST (1 epoch)	84.33	86.14	83.30
Text (Ours)	ST+TO (1 epoch)	85.07	86.18	83.50

感谢聆听!

THANK YOU FOR WATCHING!