Housing Tenure Prediction Analysis

April 29, 2024

0.1 Housing Tenure Prediction Analysis

0.1.1 Libraries requires for this project

```
[1]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     from matplotlib.pyplot import subplots, cm
     import matplotlib.pyplot as plt
     from mlxtend.plotting import plot_decision_regions
     from sklearn import svm
     from sklearn.svm import SVC
     import sklearn.model_selection as skm
     from sklearn.model_selection import train_test_split, GridSearchCV, KFold
     from sklearn.preprocessing import StandardScaler, OneHotEncoder
     from sklearn.metrics import classification report, confusion matrix,
      →accuracy_score
     from sklearn.metrics import RocCurveDisplay
     from sklearn.preprocessing import LabelEncoder
     from sklearn.model_selection import GridSearchCV
     from ISLP import load_data, confusion_table
     from ISLP.svm import plot as plot_svm
     from sklearn.inspection import permutation_importance
```

0.1.2 Loading the 'Housing Data'

```
[2]: Housing_Data = pd.read_csv("Housing.csv")
Housing_Data
```

```
[2]:
              SERIAL DENSITY
                                OWNERSHP
                                           OWNERSHPD
                                                       COSTELEC
                                                                  COSTGAS
                                                                            COSTWATR
     0
             1371772
                        920.0
                                        1
                                                   13
                                                            9990
                                                                      9993
                                                                                  360
                                        2
                                                   22
     1
             1371773
                       3640.9
                                                                      9993
                                                                                 1800
                                                            1080
     2
                                        2
                                                   22
             1371773
                       3640.9
                                                            1080
                                                                      9993
                                                                                 1800
     3
             1371774
                          22.5
                                        1
                                                   13
                                                             600
                                                                      9993
                                                                                 9993
                                                   22
     4
             1371775
                       3710.4
                                                            3600
                                                                      9993
                                                                                 9997
     75383 1402573
                       2754.9
                                        2
                                                   22
                                                            9990
                                                                      7200
                                                                                  960
```

75384	1402573	2754.9	9	2		22	9990	7200		960	
75385	1402573	2754.9	9	2		22	9990	7200		960	
75386	1402573	2754.9	9	2		22	9990	7200		960	
75387	1402573	2754.9	9	2		22	9990	7200		960	
	COSTFUE	EL HHINC	OME	VALUEH		NFAMS	NCOUPLES	PERNUM	PERWT	AGE	\
0	999	3 750	000	700000		1	0	1	14	52	
1	999	3 13	600 9	999999		2	0	1	83	22	
2	999	3 13	600 9	999999		2	0	2	106	22	
3	999	3 70	000	800000		1	0	1	33	62	
4	999	3 50	500 9	999999		1	0	1	297	50	
	•••		•••					•••			
75383	999	93 86	700 9	999999		1	2	1	229	30	
75384	999	93 86	700 9	999999		1	2	2	331	30	
75385	999	93 86	700 9	999999		1	2	3	331	5	
75386	999	93 86	700 9	999999		1	2	4	157	64	
75387	999	93 86	700 9	999999		1	2	5	225	60	
	MARST	BIRTHYR	EDUC	EDUCD	I	NCTOT					
0	6	1969	7	71		75000					
1	6	1999	10	101		5600					
2	6	1999	7	71		8000					
3	4	1959	6	63		7000					
4	3	1971	7	71		16000					
			•••	•••							
75383	1	1991	6	63		35000					
75384	1	1991	6	64		50000					
75385	6	2016	0	2	99	99999					
75386	1	1957	6	63		1700					
75387	1	1961	7	71		0					

[75388 rows x 24 columns]

[3]: # Now let's see the columns in our data set Housing_Data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 75388 entries, 0 to 75387
Data columns (total 24 columns):

		,	-
#	Column	Non-Null Count	Dtype
0	SERIAL	75388 non-null	int64
1	DENSITY	75388 non-null	float64
2	OWNERSHP	75388 non-null	int64
3	OWNERSHPD	75388 non-null	int64
4	COSTELEC	75388 non-null	int64
5	COSTGAS	75388 non-null	int64
6	COSTWATR	75388 non-null	int64

```
7
   COSTFUEL
              75388 non-null int64
   HHINCOME
              75388 non-null int64
9
   VALUEH
              75388 non-null int64
10 ROOMS
              75388 non-null int64
              75388 non-null int64
11 BUILTYR2
12 BEDROOMS
              75388 non-null int64
              75388 non-null int64
13
   VEHICLES
              75388 non-null int64
14 NFAMS
15 NCOUPLES
              75388 non-null int64
16 PERNUM
              75388 non-null int64
17 PERWT
              75388 non-null int64
18
   AGE
              75388 non-null int64
              75388 non-null int64
19
   MARST
              75388 non-null int64
20
   BIRTHYR
21 EDUC
              75388 non-null int64
22 EDUCD
              75388 non-null int64
23 INCTOT
              75388 non-null int64
```

dtypes: float64(1), int64(23)

memory usage: 13.8 MB

[4]: # Let's check the shape of our dataset
Housing_Data.shape

[4]: (75388, 24)

[5]: # Lets calculate the summary statistics for our dataset for imputation
Housing_Data.describe()

[5]:		SERIAL	DENSITY	OWNERSHP	OWNERSHPD	COSTELEC	\
	count	7.538800e+04	75388.000000	75388.000000	75388.000000	75388.000000	
	mean	1.387234e+06	2423.430017	1.266050	15.152146	2155.588184	
	std	8.903828e+03	2526.581859	0.441894	4.114694	1918.598151	
	min	1.371772e+06	22.500000	1.000000	12.000000	48.000000	
	25%	1.379509e+06	448.200000	1.000000	13.000000	1080.000000	
	50%	1.387292e+06	1667.900000	1.000000	13.000000	1680.000000	
	75%	1.394971e+06	3843.300000	2.000000	22.000000	2400.000000	
	max	1.402573e+06	13284.600000	2.000000	22.000000	9997.000000	
		COSTGAS	COSTWATR	COSTFUEL	HHINCOME	VALUEH	\
	count	75388.000000	75388.000000	75388.000000	7.538800e+04	7.538800e+04	
	mean	6532.804850	3282.154680	9132.200363	1.325857e+05	3.115290e+06	
	std	4379.021441	3968.876334	2704.300467	1.300609e+05	4.178808e+06	
	min	48.000000	4.000000	4.000000	-7.100000e+03	1.000000e+03	
	25%	1200.000000	500.000000	9993.000000	5.500000e+04	4.000000e+05	
	50%	9992.000000	1200.000000	9993.000000	1.000000e+05	6.500000e+05	
	75%	9993.000000	9993.000000	9993.000000	1.640000e+05	9.99999e+06	
	max	9997.000000	9997.000000	9997.000000	1.674500e+06	9.99999e+06	

		NFA	AMS NCOUP	LES	PERN	IUM	PER	RW1	Γ \	
count		75388.0000	75388.000	000	75388.0000	000	75388.0000	000)	
mean	•••	1.1201	l38 0.772	722	2.1330	72	100.7466	344	1	
std	•••	0.5204	137 0.466	072	1.3479	956	79.4281	L51	L	
min	•••	1.0000	0.000	000	1.0000	000	2.0000	000)	
25%		1.0000	1.000	000	1.0000	000	54.0000	000)	
50%	•••	1.0000	1.000	000	2.0000	000	80.0000	000)	
75%	•••	1.0000	1.000	000	3.0000	000	117.0000	000)	
max	•••	13.0000	3.000	000	16.0000	000	1113.0000	000)	
		AGE	MARST	•	BIRTHYR		EDUC		EDUCD	\
count	75	388.000000	75388.000000	75	388.000000	753	388.000000	7	75388.000000	
mean		41.737040	3.466599	1	979.262960		6.553802		67.954754	
std		23.497059	2.323782		23.497059		3.368158		33.507170	
min		0.000000	1.000000	1	928.000000		0.000000		1.000000	
25%		22.000000	1.000000	1	960.000000		6.000000		61.000000	
50%		42.000000	4.000000	1	979.000000		7.000000		71.000000	
75%		61.000000	6.000000	1	999.000000		10.000000		101.000000	
max		93.000000	6.000000	2	021.000000		11.000000		116.000000	
		INCTOT								
count	7.	538800e+04								
mean	1.	741325e+06								
std	3.	730804e+06								
	-8.	700000e+03								
25%	1.	560000e+04								
50%	4.	800000e+04								
75%	1.	250000e+05								
max	9.	999999e+06								

[8 rows x 24 columns]

0.1.3 Data Cleaning and Preprocessing

For our analysis, we will be looking for owners/renters whose age falls between the range 18 years to 80 years

```
[6]: # So, lets filter our data accordingly to condition

Housing_Data = Housing_Data[(Housing_Data['AGE'] >= 18) & (Housing_Data['AGE']_

<= 80)]
```

After that, We will be considering the education of owners/renters to who have education attainment from 12th grade to 5+ years of college. There are some missing values in our data (code 99 means missing). So handling that and also getting rid of the column 'EDUCD' which means education attainment [detailed version] to handle redundancy.

```
[7]: # Filtering the data accordingly
```

```
Housing_Data = Housing_Data[(Housing_Data['EDUC'] >= 6) & (Housing_Data['EDUC']
       # Removing the 'EDUCD' column
     Housing_Data.drop('EDUCD', axis=1, inplace=True)
 [8]: # Removing the 'DENSITY' column
     Housing_Data.drop('DENSITY', axis=1, inplace=True)
 [9]: # Looking for properties built from the year 2000 to 2021
      # So, Filtering our datase accordingly
     Housing_Data = Housing_Data[(Housing_Data['BUILTYR2'] >= 9) &_
       ⇔(Housing_Data['BUILTYR2'] <= 26)]</pre>
[10]: # Removing the 'PERWT' column
     Housing_Data.drop('PERWT', axis=1, inplace=True)
[11]: # Removing the 'BIRTHYR' column
     Housing_Data.drop('BIRTHYR', axis=1, inplace=True)
[12]: # Removing the 'OWNERSHPD' column
     Housing_Data.drop('OWNERSHPD', axis=1, inplace=True)
[13]: # Removing the 'INCTOT' column
     Housing_Data.drop('INCTOT', axis=1, inplace=True)
[14]: # Removing the 'NFAMS' column
     Housing_Data.drop('NFAMS', axis=1, inplace=True)
[15]: # Removing the 'NCOUPLES' column
     Housing_Data.drop('NCOUPLES', axis=1, inplace=True)
[16]: # REmoving the 'PERNUM' column
     Housing_Data.drop('PERNUM', axis=1, inplace=True)
[17]: Housing_Data.head(10)
[17]:
          SERIAL OWNERSHP COSTELEC COSTGAS COSTWATR COSTFUEL HHINCOME \
     20 1371783
                         1
                                1920
                                         1440
                                                     50
                                                             9993
                                                                      30000
     21 1371783
                                1920
                                                     50
                                                                      30000
                         1
                                         1440
                                                             9993
     32 1371786
                         2
                                1800
                                         9993
                                                   1400
                                                             9993
                                                                      62000
     33 1371786
                         2
                                1800
                                         9993
                                                   1400
                                                             9993
                                                                     62000
     34 1371787
                         1
                                 960
                                          360
                                                   5000
                                                             9993
                                                                    507500
     35 1371787
                         1
                                 960
                                          360
                                                   5000
                                                            9993
                                                                    507500
     38 1371788
                         1
                                1200
                                         9997
                                                    110
                                                             9993
                                                                     115600
     39 1371788
                         1
                                1200
                                                    110
                                                             9993
                                                                     115600
                                         9997
     79 1371802
                         1
                                1560
                                         9993
                                                   9993
                                                             9993
                                                                     12000
```

```
3600
                                                   9993
      81 1371803
                  2
                                         9993
                                                             9993
                                                                      45800
          VALUEH ROOMS BUILTYR2 BEDROOMS VEHICLES AGE
                                                            MARST EDUC
                      3
                                                        40
      20
           15000
                               15
                                          3
                                                                6
      21
           15000
                      3
                               15
                                          3
                                                    4
                                                        32
                                                                6
                                                                      6
      32 9999999
                                9
                                                        28
                      4
                                          3
                                                    2
                                                                6
                                                                     11
      33 9999999
                      4
                                9
                                          3
                                                    2
                                                        26
                                                                6
                                                                     10
                                          6
                                                    2
      34 5279000
                     10
                               15
                                                        37
                                                                1
                                                                     10
                                                    2
      35 5279000
                     10
                               15
                                          6
                                                        36
                                                                1
                                                                     10
      38
          375000
                      5
                                9
                                          4
                                                    2
                                                        71
                                                                1
                                                                     10
                                                    2
      39
          375000
                      5
                                9
                                          4
                                                        71
                                                                1
                                                                      7
      79
          550000
                      7
                               15
                                          4
                                                    2
                                                        67
                                                                5
                                                                     10
      81 9999999
                                9
                                                        44
                                                                      6
[18]: # Group by 'SERIAL' and aggregating the data
      # Serial number of household members are associated with different variables so_{f \sqcup}
      ⇔grouping them with it
      Housing_Data = Housing_Data.groupby('SERIAL').agg({
          'OWNERSHP': 'first',
          'COSTELEC': 'first',
          'COSTGAS': 'first',
          'COSTWATR': 'first',
          'COSTFUEL': 'first',
          'HHINCOME': 'first',
          'VALUEH': 'first',
          'ROOMS': 'first',
          'BUILTYR2': 'first',
          'BEDROOMS': 'first',
          'VEHICLES': 'first',
          'MARST': 'first',
          'AGE': 'max', # Taking the highest age of household member assuming that
       →he is earning the highest among the others
          'EDUC': 'max' # Highest education attainment of that household member
      }).reset_index()
[19]: # Final housing data set after cleaning and prefrocessing
      Housing_Data.head(10)
[19]:
         SERIAL OWNERSHP COSTELEC COSTGAS COSTWATR COSTFUEL HHINCOME \
      0 1371783
                        1
                               1920
                                        1440
                                                    50
                                                            9993
                                                                     30000
      1 1371786
                        2
                               1800
                                        9993
                                                  1400
                                                            9993
                                                                     62000
                        1
                                                  5000
      2 1371787
                                960
                                         360
                                                            9993
                                                                    507500
      3 1371788
                        1
                               1200
                                        9997
                                                   110
                                                            9993
                                                                    115600
      4 1371802
                        1
                               1560
                                        9993
                                                  9993
                                                            9993
                                                                     12000
                        2
                                                  9993
     5 1371803
                               3600
                                        9993
                                                            9993
                                                                     45800
      6 1371804
                        1
                               2400
                                        1800
                                                    40
                                                            9993
                                                                    775000
```

7 1371807

```
8 1371810
                    1
                           1800
                                     1200
                                                1800
                                                          9993
                                                                   172500
9 1371811
                            480
                                                          9993
                                                                    84000
                    1
                                      600
                                                 110
                                                                 EDUC
    VALUEH ROOMS
                   BUILTYR2
                              BEDROOMS
                                         VEHICLES
                                                   MARST
                                                            AGE
     15000
                3
                          15
                                      3
                                                 4
                                                        6
                                                             40
0
1 9999999
                                      3
                                                 2
                 4
                           9
                                                        6
                                                             28
                                                                   11
2 5279000
                10
                          15
                                      6
                                                 2
                                                             37
                                                                   10
                                                        1
                5
                                                 2
3
    375000
                           9
                                      4
                                                        1
                                                            71
                                                                   10
                7
                                                 2
    550000
                                      4
4
                          15
                                                        5
                                                             67
                                                                   10
5 9999999
                 9
                           9
                                      5
                                                 2
                                                        4
                                                             60
                                                                    7
                 8
                           9
                                      5
                                                 3
                                                             51
                                                                   11
6
    950000
7
    285000
                 6
                           9
                                      4
                                                 2
                                                        1
                                                             80
                                                                   10
8
    950000
                 9
                           9
                                      6
                                                 2
                                                        1
                                                            41
                                                                   10
9
    750000
                 6
                          25
                                      4
                                                 2
                                                        1
                                                             35
                                                                    7
```

0.1.4 Encoding the categorical variables

```
[20]: # Converting 'MARST' and 'EDUC' to categorical using the label-Encoder
le = LabelEncoder()
Housing_Data['MARST'] = le.fit_transform(Housing_Data['MARST'])
Housing_Data['EDUC'] = le.fit_transform(Housing_Data['EDUC'])
```

```
[21]: # Scaling our data to improve the perfomance of models
# We will be using standard scaler function
scaler = StandardScaler()

# This will not consider ownership as one of the feature
# Also, it is our target variable
features = Housing_Data.columns.difference(['OWNERSHP'])

# Fit the scaler to your data
Housing_Data[features] = scaler.fit_transform(Housing_Data[features])
```

0.1.5 Splitting the dataset into Training and Testing set

```
[22]: # Splitting the dataset (70 - 30 ratio)
Housing_train_set, Housing_test_set = train_test_split(Housing_Data, test_size_u = 0.3, random_state = 1)
```

0.1.6 Models

• SVM Model with linear kernel

```
[23]: # Support Vector Machine model with linear kernel and using cost value = 1
# I used max_iterations as the model was taking time to execute
svm_linear_model = svm.SVC(kernel = 'linear', C = 1, max_iter = 10000)
```

```
svm_linear_model.fit(Housing_train_set[['AGE', 'HHINCOME']],__
       →Housing_train_set['OWNERSHP'])
[23]: SVC(C=1, kernel='linear', max_iter=10000)
[24]: # Predicting the ownership status on the test set
      lin_model_predicts = svm_linear_model.predict(Housing_test_set[['AGE',_

    'HHINCOME']

      # Evaluating the model
      print(classification_report(Housing_test_set['OWNERSHP'], lin_model_predicts))
      print("Accuracy:", round(accuracy_score(Housing_test_set['OWNERSHP'],_
       ⇔lin_model_predicts), 4))
                                recall f1-score
                   precision
                                                    support
                        0.80
                                   0.90
                                             0.85
                                                       1631
                1
                2
                        0.68
                                   0.49
                                             0.57
                                                        723
                                                       2354
         accuracy
                                             0.77
                                                       2354
                        0.74
                                   0.69
                                             0.71
        macro avg
     weighted avg
                        0.76
                                   0.77
                                             0.76
                                                       2354
     Accuracy: 0.7727
[25]: # Lets construct a confusion matrix for our predictions
      linear_matrix = confusion_matrix(Housing_test_set['OWNERSHP'],__
       →lin_model_predicts)
      # Plotting the confusion matrix
      plt.figure(figsize=(5, 4))
      sns.heatmap(linear_matrix, annot=True, fmt="d", linewidths=.5, cmap="Blues", __
       ⇔cbar=False)
      plt.xlabel('Predicted Values')
      plt.ylabel('True Values')
      plt.title('Confusion Matrix with linear kernel')
      plt.show()
```


So, with the linear kernel and default cost value, our model was poorly performing with the accuracy around 72.38%.

Now, we apply cross validation using skm.GridSearchCV() to select the best C value for our SVM model with a linear kernel.

```
[26]: # Defining the KFold cross-validation for 5 folds
kfold = skm.KFold(5, random_state = 1, shuffle=True)

# Let's set up a grid for our cost value
c_values = {'C':[0.01, 0.1, 1, 10, 100]}

# Lets apply 5 fold cross validation using GridSearchCV() to get the best_
c_value for our model

# we will be using the above model for cross-validation
grid = skm.GridSearchCV(svm_linear_model, c_values, cv = kfold, scoring =_
c'accuracy');

# refitting the model after cross-validation
grid.fit(Housing_train_set[['AGE', 'HHINCOME']], Housing_train_set['OWNERSHP'])
grid.best_params_
```

C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm_base.py:297: ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-

```
processing your data with StandardScaler or MinMaxScaler.
       warnings.warn(
     C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
     ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
     processing your data with StandardScaler or MinMaxScaler.
       warnings.warn(
     C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\ base.py:297:
     ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
     processing your data with StandardScaler or MinMaxScaler.
       warnings.warn(
     C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
     ConvergenceWarning: Solver terminated early (max iter=10000). Consider pre-
     processing your data with StandardScaler or MinMaxScaler.
       warnings.warn(
     C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
     ConvergenceWarning: Solver terminated early (max iter=10000). Consider pre-
     processing your data with StandardScaler or MinMaxScaler.
       warnings.warn(
     C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
     ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
     processing your data with StandardScaler or MinMaxScaler.
       warnings.warn(
     C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
     ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
     processing your data with StandardScaler or MinMaxScaler.
       warnings.warn(
     C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
     ConvergenceWarning: Solver terminated early (max iter=10000). Consider pre-
     processing your data with StandardScaler or MinMaxScaler.
       warnings.warn(
     C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
     ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
     processing your data with StandardScaler or MinMaxScaler.
       warnings.warn(
     C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\ base.py:297:
     ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
     processing your data with StandardScaler or MinMaxScaler.
       warnings.warn(
[26]: {'C': 0.01}
     Now, lets refit the model with this c-value and check if our accuracy has been improved or not.
```

[27]: best_linear_model = grid.best_estimator_
Predicting the ownership status on the test set

	precision	recall	f1-score	support
1	0.80	0.90	0.85	1631
2	0.69	0.49	0.57	723
2 COURT ON			0.78	2354
accuracy macro avg	0.75	0.70	0.78	2354
weighted avg	0.77	0.78	0.76	2354

Accuracy: 0.7761

So after cross-validation, the SVM linear kernel model with best cost value of 100 slighty decreased the accuracy around 72.25%.

Let's construct a plot to get the decision boundry about the ownership based on age and total household income

C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\base.py:493:
UserWarning: X does not have valid feature names, but SVC was fitted with
feature names
 warnings.warn(

SVM Decision Boundary with Linear Kernel

• SVM Model with polynomial kernel

```
[30]: # Support Vector Machine model with polynomial kernel and using cost value = 1

→ and degree = 2

svm_poly_model = svm.SVC(kernel = 'poly', C = 1, degree = 2, max_iter = 10000)

svm_poly_model.fit(Housing_train_set[['AGE', 'MARST', 'HHINCOME']],

→ Housing_train_set['OWNERSHP'])
```

[30]: SVC(C=1, degree=2, kernel='poly', max_iter=10000)

precision recall f1-score support

1	0.78	0.90	0.83	1631
2	0.65	0.43	0.52	723
accuracy			0.75	2354
macro avg	0.71	0.66	0.67	2354
weighted avg	0.74	0.75	0.74	2354

Accuracy: 0.7528

Confusion Matrix with polynomial kernel


```
[33]: # Defining the KFold cross-validation for 5 folds
      kfold = skm.KFold(5, random_state = 1, shuffle=True)
      # Let's set up a grid for our cost value and degree values
      para_values = {'C':[0.01, 0.1, 1, 10, 100], 'degree':[2,3,4,5]}
      # Lets apply 5 fold cross validation using GridSearchCV() to get the best⊔
      ⇔c-value for our model
      # we will be using the above model for cross-validation
      grid = skm.GridSearchCV(svm_poly_model, para_values, cv = kfold, scoring = L
       # refitting the model after cross-validation
      grid.fit(Housing_train_set[['AGE', 'MARST', 'HHINCOME']],__
       →Housing_train_set['OWNERSHP'])
      grid.best_params_
     C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
     ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
     processing your data with StandardScaler or MinMaxScaler.
       warnings.warn(
     C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
     ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
     processing your data with StandardScaler or MinMaxScaler.
       warnings.warn(
     C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
     ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
     processing your data with StandardScaler or MinMaxScaler.
       warnings.warn(
     C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
     ConvergenceWarning: Solver terminated early (max iter=10000). Consider pre-
     processing your data with StandardScaler or MinMaxScaler.
       warnings.warn(
     C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
     ConvergenceWarning: Solver terminated early (max iter=10000). Consider pre-
     processing your data with StandardScaler or MinMaxScaler.
       warnings.warn(
     C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
     ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
     processing your data with StandardScaler or MinMaxScaler.
       warnings.warn(
     C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\ base.py:297:
     ConvergenceWarning: Solver terminated early (max iter=10000). Consider pre-
     processing your data with StandardScaler or MinMaxScaler.
       warnings.warn(
     C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
     ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
```

```
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\ base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\ base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
```

```
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\ base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\ base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
```

```
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\ base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\ base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
```

```
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\ base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\ base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
```

```
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\ base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\ base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
```

```
processing your data with StandardScaler or MinMaxScaler.
       warnings.warn(
     C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
     ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
     processing your data with StandardScaler or MinMaxScaler.
       warnings.warn(
[33]: {'C': 0.1, 'degree': 5}
[34]: # Support Vector Machine model with polynomial kernel and using cost value = 0.
      →1 and degree = 5 after cross validation
      svm_poly_modelCV = svm.SVC(kernel = 'poly', C = 0.1, degree = 5, max_iter = 0.1
       →10000)
      svm_poly_modelCV.fit(Housing_train_set[['AGE', 'MARST', 'HHINCOME']],__
       →Housing_train_set['OWNERSHP'])
     C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
     ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
     processing your data with StandardScaler or MinMaxScaler.
       warnings.warn(
[34]: SVC(C=0.1, degree=5, kernel='poly', max_iter=10000)
[35]: # Predicting the ownership status on the test set
      poly_model_predictsCV = svm_poly_modelCV.predict(Housing_test_set[['AGE',_

¬'MARST', 'HHINCOME']])
      # Evaluating the model
      print(classification_report(Housing_test_set['OWNERSHP'],__
       →poly_model_predictsCV))
      print("Accuracy:", round(accuracy score(Housing test set['OWNERSHP'], ...
       →poly_model_predictsCV), 4))
                                recall f1-score
                   precision
                                                    support
                        0.78
                                  0.94
                                             0.85
                                                       1631
                1
                        0.73
                2
                                  0.40
                                             0.52
                                                        723
                                             0.77
                                                       2354
         accuracy
        macro avg
                        0.76
                                  0.67
                                             0.68
                                                       2354
     weighted avg
                        0.76
                                  0.77
                                             0.75
                                                       2354
     Accuracy: 0.771
[36]: # Lets construct a confusion matrix for our predictions
      poly_matrixCV = confusion_matrix(Housing_test_set['OWNERSHP'],__
       ⇒poly model predictsCV)
```



```
# Decision Boundary Plot for polynomial kernel

# Assuming a mode value for the MARST (marital status)
mode_MARST = Housing_train_set['MARST'].mode()

# Creating a meshgrid for plotting based on the mode values from MARST variable
X = np.c_[X_train[:, :2], np.full(len(X_train), fill_value=mode_MARST)]

# Plotting the decision boundary graph
fig, ax = plt.subplots(figsize=(8, 6))
plot_svm(X, y_train, svm_poly_modelCV, ax=ax)
ax.set_xlabel('Age')
ax.set_ylabel('Total Household Income')
ax.set_title('SVM Decision Boundary with Polynomial Kernel')
```

plt.show()

C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\base.py:493: UserWarning: X does not have valid feature names, but SVC was fitted with feature names

warnings.warn(

• SVM Model with radial basis function (rbf) kernel

```
[38]: # Support Vector Machine model with rbf kernel and using cost value = 1 and__

degree = 2 and gamma = 1

svm_rbf_model = svm.SVC(kernel = 'rbf', C = 1, degree = 2, gamma = 1, max_iter_

= 10000)

svm_rbf_model.fit(Housing_train_set[['AGE','HHINCOME',__

'COSTWATR','COSTELEC','EDUC']], Housing_train_set['OWNERSHP'])
```

C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider preprocessing your data with StandardScaler or MinMaxScaler.
 warnings.warn(

```
[38]: SVC(C=1, degree=2, gamma=1, max_iter=10000)
[39]: # Predicting the ownership status on the test set
     rbf_model_predicts = svm_rbf_model.predict(Housing_test_set[['AGE', 'HHINCOME', __
      # Evaluating the model
     print(classification_report(Housing_test_set['OWNERSHP'], rbf_model_predicts))
     print("Accuracy:", round(accuracy_score(Housing_test_set['OWNERSHP'],__
       →rbf_model_predicts), 4))
                  precision
                               recall f1-score
                                                  support
                1
                        0.82
                                 0.92
                                           0.87
                                                     1631
                2
                        0.76
                                 0.55
                                           0.64
                                                      723
                                           0.81
                                                     2354
         accuracy
        macro avg
                       0.79
                                 0.74
                                           0.75
                                                     2354
     weighted avg
                        0.80
                                 0.81
                                           0.80
                                                     2354
     Accuracy: 0.808
[40]: # Lets construct a confusion matrix for our predictions
     rbf_matrix = confusion_matrix(Housing_test_set['OWNERSHP'], rbf_model_predicts)
     # Plotting the confusion matrix
     plt.figure(figsize=(5, 4))
     sns.heatmap(rbf_matrix, annot=True, fmt="d", linewidths=.5, cmap="Blues", u
      ⇔cbar=False)
     plt.xlabel('Predicted Values')
     plt.ylabel('True Values')
     plt.title('Confusion Matrix with RBF kernel')
```

plt.show()

C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider preprocessing your data with StandardScaler or MinMaxScaler.
 warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-

```
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\ base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\ base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
```

```
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\ base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\ base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
```

```
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\ base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\ base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
```

```
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\ base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\ base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
processing your data with StandardScaler or MinMaxScaler.
  warnings.warn(
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
```

```
C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
     ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
     processing your data with StandardScaler or MinMaxScaler.
       warnings.warn(
     C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\ base.py:297:
     ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
     processing your data with StandardScaler or MinMaxScaler.
       warnings.warn(
     C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
     ConvergenceWarning: Solver terminated early (max iter=10000). Consider pre-
     processing your data with StandardScaler or MinMaxScaler.
       warnings.warn(
     C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
     ConvergenceWarning: Solver terminated early (max iter=10000). Consider pre-
     processing your data with StandardScaler or MinMaxScaler.
       warnings.warn(
     C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
     ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
     processing your data with StandardScaler or MinMaxScaler.
       warnings.warn(
     C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
     ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
     processing your data with StandardScaler or MinMaxScaler.
       warnings.warn(
     C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
     ConvergenceWarning: Solver terminated early (max iter=10000). Consider pre-
     processing your data with StandardScaler or MinMaxScaler.
       warnings.warn(
     C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
     ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
     processing your data with StandardScaler or MinMaxScaler.
       warnings.warn(
     C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
     ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
     processing your data with StandardScaler or MinMaxScaler.
       warnings.warn(
     C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\svm\_base.py:297:
     ConvergenceWarning: Solver terminated early (max_iter=10000). Consider pre-
     processing your data with StandardScaler or MinMaxScaler.
       warnings.warn(
[41]: {'C': 1, 'degree': 3, 'gamma': 3}
[42]: # Support Vector Machine model with rbf kernel and using cost value = 1 and
       \rightarrowdegree = 3 and gamma = 3 after cross validation
```

processing your data with StandardScaler or MinMaxScaler.

warnings.warn(

```
svm_rbf_modelCV = svm.SVC(kernel = 'rbf', C = 1, degree = 3, gamma = 3, __
       \rightarrowmax_iter = 10000)
     svm_rbf_modelCV.fit(Housing_train_set[['AGE','HHINCOME', 'COSTELEC',_
       [42]: SVC(C=1, gamma=3, max_iter=10000)
[43]: # Predicting the ownership status on the test set
     rbf_model_predictsCV = svm_rbf_modelCV.predict(Housing_test_set[['AGE',_
      ⇔'HHINCOME', 'COSTELEC', 'COSTWATR', 'EDUC']])
      # Evaluating the model
     print(classification_report(Housing_test_set['OWNERSHP'], rbf_model_predictsCV))
     print("Accuracy:", round(accuracy_score(Housing_test_set['OWNERSHP'],__
       →rbf_model_predictsCV), 4))
                  precision
                               recall f1-score
                                                  support
                1
                       0.82
                                 0.92
                                           0.87
                                                     1631
                       0.75
                                 0.55
                                           0.63
                                                      723
                                           0.81
                                                     2354
         accuracy
                                           0.75
                                                     2354
                       0.79
                                 0.73
        macro avg
     weighted avg
                       0.80
                                 0.81
                                           0.80
                                                     2354
     Accuracy: 0.8059
[44]: # Lets construct a confusion matrix for our predictions
     rbf_matrixCV = confusion_matrix(Housing_test_set['OWNERSHP'],__
       →rbf_model_predictsCV)
     # Plotting the confusion matrix
     plt.figure(figsize=(5, 4))
     sns.heatmap(rbf_matrixCV, annot=True, fmt="d", linewidths=.5, cmap="Blues", u
      ⇔cbar=False)
     plt.xlabel('Predicted Values')
     plt.ylabel('True Values')
     plt.title('Confusion Matrix with RBF kernel')
```

plt.show()


```
[45]: # Decision Boundary Plot for rbf kernel
      \# Selecting median values for COSTWATR and COSTELEC to make them constant \sqcup
       ⇔values for the sake of the graph
      median_COSTELEC = Housing_train_set['COSTELEC'].median()
      median_COSTWATR = Housing_train_set['COSTWATR'].median()
      # gettting the mode for EDUC as it is a categorical variable to make it_{\sqcup}
       ⇔constant as well
      mode_EDUC = Housing_train_set['EDUC'].mode()[0]
      # Creating the feature grid for the fixed values
      X = np.c_[X_train[:, 0:2],
                     np.full(len(X_train), fill_value = median_COSTELEC),
                     np.full(len(X_train), fill_value = median_COSTWATR),
                     np.full(len(X_train), fill_value = mode_EDUC)]
      # plotting the decision boundary graph for rbf kernel
      fig, ax = plt.subplots(figsize=(8, 6))
      plot_svm(X, y_train, svm_rbf_modelCV, ax=ax)
      ax.set_xlabel('Age')
      ax.set_ylabel('Total Household Income')
      ax.set_title('SVM Decision Boundary with RBF Kernel')
```

plt.show()

C:\Users\hirshikesh\anaconda3\lib\site-packages\sklearn\base.py:493: UserWarning: X does not have valid feature names, but SVC was fitted with feature names

warnings.warn(

0.2 Getting the Strong Predictors

```
# Getting the feature names
names = ['Age of Household Member', 'Total Household Income', 'Cost of
L
LELECTRICITY', 'Cost of Water', 'Education Attainment']

# Now putting the results into a DataFrame and sorting them in descending order
imp_df = pd.DataFrame({'Feature': names, 'Importance': results.
Limportances_mean})
imp_df = imp_df.sort_values(by='Importance', ascending=False)
```

```
[47]: # Feature Importance Plot
plt.figure(figsize=(8, 6))
sns.barplot(x='Importance', y='Feature', data=imp_df, color='blue')
plt.title('Feature Importance Plot')
plt.xlabel('Importance')
plt.ylabel('Features')
plt.show()
```


0.3 References

- 1) Ch9-1 and Ch9-2 python files
- 2) lecture notes
- 3) Python Documentation on scikit learn and other functions
 - https://scikit-learn.org/stable/modules/svm.html

 $\bullet \ \ https://scikit-learn.org/stable/user_guide.html$