Exploration of Spam ReviewsDetection

Yu Huang, Lingjie Zhang

Motivation

Consumers increasingly rate, review and research products and services online.

Motivation

Fake reviews prompt Belkin

apology

Historian Orlando I damages for fake re

Amazon withdraws ebook explaining In a Race to Out-I how to manipulate its sales rankings

Ebook claiming one can become a Kindle 'bestseller' simply by posting fake reviews temporarily removed from bookseller's listings

Orlando Figes posted reviews on Amazon praising his own work

and rubbishing that of his rivals Tripadvisor bribes: Hotel owners For \$2 a Star, an On offer free rooms in return for glowing reviews

Reviews

Author Claims To Manipulate Amazon Rankings By Buying Own Book Every Day

Company Settles Case of Reviews It Faked

Challenges

Recap:

- Disruptive Opinion Spam: uncontroversial
 - Content-based filtering
- Deceptive Opinion Spam: hard to tell
 - Psycholinguistic failure
 - Unreliable human performance

Challenges

- Limited qualified information
 - User ID: grouped fake reviewers?
 - IP: no access
- No labeled data
 - Evaluation

Overview

- Motivation
- Research Challenges
- Labeled data set
- Research questions and methodology
- Results and analysis
- Limitation

Labeled Data Set:

Deceptive Opinion Spam Corpus v1.4

Previous work

Positive

Truthful: 400
TripAdvisor

Deceptive: 400 Mechanical Turk

Negative

Truthful: 400
Expedia, Hotels.com,
Orbitz, Priceline

Deceptive: 400 Mechanical Turk

Research Questions

- Traditional preprocessing methods?
 - Stopwords removal
 - Normalization
 - Stemming
- Sentiment effects?
 - Positive corpus
 - Negative corpus
 - No previous sentiment information: complete corpus
- Feature selection and classifier model selection?

Methodology: experiment sets

Positive Corpus

Chi Squa	re			Truthful			Deceptiv	e
Apporach	Ngram	Feature-set Size	P	R	F	P	R	F
		200	0.861	0.823	0.841	0.83	0.868	0.848
		500	0.872	0.833	0.852	0.84	0.878	0.858
	Unigram	800	0.859	0.838	0.848	0.841	0.863	0.852
	Bigram	200	0.856	0.82	0.838	0.827	0.863	0.845
		200	0.872	0.818	0.844	0.828	0.88	0.853
		500	0.879	0.833	0.855	0.841	0.885	0.862
	Bigram+	800	0.878	U 83	n 853	U 839	0.885	0.861
	Trigram	200	0.852	0.808	0.829	0.817	0.86	0.838
		200	0.762	0.81	0.785	0.797	0.748	0.772
NB		500	0.87	0.835	0.852	0.841	0.875	0.858
IND	Trigram+	800	0.870	0.83	0.852	0.838	0.883	0.80
		200	0.876	0.845	0.86	0.85	0.88	0.865
		300	0.655	0.04	0.047	0.043	0.000	0.60
	Unigram	800	0.835	0.835	0.835	0.835	0.835	0.835
	Bigram	200	0.762	0.81	0.785	0.797	0.748	0.772
		200	0.856	0.82	0.838	0.827	0.863	0.845
		500	0.84	0.84	0.84	0.84	0.84	0.84
	Bigram+	800	0.879	0.833	0.855	0.841	0.885	0.862
	Trigram	200	0.846	0.823	0.834	0.827	0.85	0.838
		200	0.846	0.823	0.834	0.827	0.85	0.838
SVM		500	0.841	0.83	0.835	0.832	0.843	0.837
2 4 141	Trigram+	800	0.846	0.823	0.834	0.827	0.85	0.838

Information	on Gain			Truthful			Deceptive	
Apporach	Ngram	Feature-set Size	P	R	F	P	R	F
		200	0.862	0.828	0.844	0.834	0.868	0.85
		500	0.869	0.833	0.851	0.839	0.875	0.857
	Unigram	800	0.854	0.835	0.845	0.839	0.858	0.848
	Bigram	200	0.748	0.788	0.767	0.776	0.735	0.755
		200	0.869	0.813	0.84	0.824	0.878	0.85
		500	0.873	0.828	0.85	0.836	0.88	0.857
	Bigram+	800	0.876	0.833	0.854	0.84	0.883	0.861
	Trigram	200	0.609	0.705	0.686	0.697	0.495	0.579
		200	0.852	0.818	0.834	0.825	0.858	0.841
NB		500	0.871	0.83	0.85	0.838	0.878	0.857
IND	Trigram+	800	0.874	0.83	0.851	0.838	0.88	0.859
		200	0.882	0.838	0.859	0.845	0.888	0.866
		500	0.857	0.84	0.848	0.843	0.86	0.851
	Unigram	800	0.838	0.825	0.831	0.828	0.84	0.834
	Bigram	200	0.769	0.79	0.779	0.784	0.763	0.773
		200	0.841	0.82	0.83	0.824	0.845	0.835
		500	0.837	0.823	0.83	0.826	0.84	0.833
	Bigram+	800	0.876	0.833	0.854	0.84	0.883	0.861
	Trigram	200	0.695	0.765	0.729	0.739	0.665	0.7
		200	0.852	0.818	0.834	0.825	0.858	0.841
SVM		500	0.839	0.835	0.837	0.836	0.84	0.838
20101	Trigram+	800	0.845	0.818	0.831	0.823	0.85	0.836

Negative Corpus

Chi Square			Truthful		Deceptive			
Apporach	Ngram	Feature-set Size	P	R	F	P	R	F
		200	0.819	0.803	0.811	0.806	0.823	0.814
		500	0.813	0.805	0.809	0.807	0.815	0.811
	Unigram	800	0.807	0.783	0.794	0.789	0.813	0.8
	Bigram	200	0.714	0.755	0.734	0.74	0.698	0.718
		200	0.785	0.813	0.799	0.806	0.778	0.791
		500	0.819	0.803	0.811	0.806	0.823	0.814
	Bigram+	800	0.800	0.700	0.750	0.752	0.81	0.801
	Trigram	200	0.686	0.76	0.721	0.731	0.653	0.69
	NR	200	0.776	0.83	0.802	0.817	0.76	0.788
NB		500	0.811	0.795	0.803	0.799	0.815	0.807
140	Trigram+	800	0.000	0.799	0.707	0.703	0.913	0.802
		200	0.833	0.788	0.81	0.799	0.843	0.82
		500	0.83	0.795	0.812	0.803	0.838	0.82
	Unigram	800	0.805	0.805	0.805	0.805	0.805	0.805
	Bigram	200	0.723	0.743	0.732	0.735	0.715	0.725
		200	0.808	0.798	0.803	0.8	0.81	0.805
		500	0.798	0.78	0.789	0.785	0.803	0.794
	Bigram+	800	0.798	0.763	0.78	0.773	0.808	0.79
	Trigram	200	0.666	0.773	0.715	0.729	0.613	0.666
		200	0.807	0.805	0.806	0.805	0.808	0.806
SVM		500	0.799	0.795	0.797	0.796	0.8	0.798
3 V IVI	Trigram+	800	0.788	0.808	0.798	0.803	0.783	0.792

Informa	tion Gain			Truthful			Deceptive	
Apporach	Ngram	Feature-set Size	P	R	F	P	R	F
		200	0.818	0.8	0.809	0.804	0.823	0.813
		500	0.813	0.805	0.809	0.807	0.815	0.811
	Unigram	800	0.807	0.783	0.794	0.789	0.813	0.8
	Bigram	200	0.71	0.76	0.734	0.742	0.69	0.715
		200	0.706	0.915	0.8	0.808	0.770	0.792
		500	0.819	0.805	0.812	0.808	0.823	0.815
	Bigram+	800	0.806	0.788	0.796	0.792	0.81	0.801
	Trigram	200	0.686	0.76	0.721	0.731	0.653	0.69
		200	0.781	0.83	0.805	0.819	0.768	0.792
NB		500	0.814	0.81	0.812	0.811	0.815	0.813
140	Trigram+	800	U 8U8	0.79	0.799	0.795	N 912	U 8U3
		200	0.831	0.8	0.815	0.807	0.838	0.822
		300	0.832		0.813	0.804		0.822
	Unigram	800	0.805	0.805	0.805	0.805	0.805	0.805
	Bigram	200	0.716	0.725	0.72	0.722	0.713	0.717
		200	0.804	0.8	0.802	0.801	0.805	0.803
		500	0.794	0.75	0.771	0.763	0.805	0.783
	Bigram+	800	0.802	0.76	0.78	0.772	0.813	0.792
	Trigram	200	0.661	0.765	0.709	0.721	0.608	0.659
		200	0.81	0.798	0.804	0.8	0.813	0.806
SVM		500	0.79	0.773	0.781	0.778	0.795	0.786
2 4 141	Trigram+	800	0.787	0.785	0.786	0.786	0.788	0.787

Complete Corpus

Chi Squa	are			Truthful			Deceptive	
Apporach	Ngram	Feature-set Size	P	R	F	P	R	F
		200	0.82	0.849	0.834	0.843	0.814	0.828
		500	0.024	0.044	0.054	0.04	0.02	0.05
	Unigram	800	0.859	0.838	0.848	0.841	0.863	0.852
	Bigram	200	0.71	0.758	0.733	0.74	0.69	0.714
		200	0.815	0.839	0.827	0.834	0.81	0.822
		500	0.817	0.846	0.831	0.84	0.81	0.825
	Bigram+	800	0.823	0.843	0.833	0.839	0.819	0.829
	Trigram	200	0.647	0.799	0.715	0.737	0.565	0.64
		200	0.845	0.854	0.85	0.852	0.844	0.848
NB	NID	500	0.808	0.833	0.82	0.827	0.803	0.815
IND	Trigram+	800	0.818	U 834	0.826	N 831	0.815	0.833
		200	0.869	0.871	0.87	0.871	0.869	0.87
		300	0.873	0.004	0.803	0.657	0.870	0.807
	Unigram	800	0.875	0.848	0.861	0.852	0.879	0.865
	Bigram	200	0.758	0.803	0.78	0.79	0.744	0.766
		200	0.817	0.846	0.831	0.84	0.81	0.825
		500	0.868	0.863	0.865	0.863	0.869	0.866
	Bigram+	800	0.838	0.843	0.84	0.842	0.838	0.84
	Trigram	200	0.701	0.819	0.755	0.782	0.65	0.71
		200	0.855	0.865	0.86	0.863	0.854	0.859
CV/VA		500	0.861	0.839	0.85	0.843	0.865	0.854
2 4 141	Trigram+	800	0.841	0.835	0.838	0.836	0.843	0.839

Informa	tion Gain			Truthful			Deceptive	
Apporach	Ngram	Feature-set Size	P	R	F	P	R	F
		200	0 921	0.630	0 03	U 632	N 010	0.836
		500	0.824	0.844	0.834	0.84	0.82	0.83
	Unigram	888	0.020	0.010	0.000	0.000	0.019	0.029
	Bigram	200	0.698	0.76	0.728	0.737	0.671	0.702
		200	0.81	0.846	0.828	0.839	0.801	0.82
		500	0.816	0.836	0.826	0.832	0.811	0.822
	Bigram+	800	0.821	0.844	0.832	0.839	0.816	0.828
	Trigram	200	0.642	0.804	0.714	0.738	0.553	0.632
		200	0.797	0.851	0.823	0.84	0.784	0.811
NB		500	0.804	0.835	0.819	0.828	0.796	0.812
IND	Trigram+	800	0.816	0.836	0.826	0.832	0.811	0.822
		200	0.067	0.066	0.067	0.055	0.000	0.067
		500	0.878	0.856	0.867	0.86	0.881	0.87
	Unigram	800	0.873	0.839	0.855	0.845	0.878	0.801
	Bigram	200	0.75	0.811	0.78	0.795	0.73	0.761
		200	0.859	0.861	0.86	0.861	0.859	0.86
		500	0.866	0.856	0.861	0.858	0.868	0.863
	Bigram+	800	0.854	0.841	0.848	0.844	0.856	0.85
	Trigram	200	0.69	0.823	0.751	0.781	0.631	0.698
		200	0.86	0.866	0.863	0.865	0.859	0.862
SVM		500	0.859	0.848	0.853	0.85	0.861	0.855
2 4 141	Trigram+	800	0.85	0.829	0.839	0.833	0.854	0.843

- IG vs. ChiSq
 - Almost the same
- SVM:
 - Unigram
- Naïve Bayes
 - Single polarity corpus:
 bigram+, larger feature set
 - Complete corpus: unigram
 - Lower requirement for complete corpus

- Best performance
 - Complete corpus
 - SVM
 - IG
 - -200
 - The simplest

- Complete corpus
 - SVM, unigram,feature setsize=200
 - Ranked by weights

Top 10		Bottom 10				
ChiSq	IG	ChiSq	IG			
Upgraded	-	Luxury	luxury			
River	Upgrade	Seemed	Vacation			
-	&	Relax	Smelled			
Attached	River	Vacation	Grand			
Larger	Street	Smelled	Relax			
&	Floor	Grand	Husband			
Conference	Reviews	Hilton	Millennium			
Reviews	Separate	Millennium	Once			
Separate	Larger	Regency	Cleaned			
floor	we	hotel	Hilton			

- Negative corpus
 - SVM, unigram,feature setsize=200
 - Ranked by weights

Spatial difficulty?! Psychological distancing?!

Top 10		Bottom 10				
ChiSq	IG	ChiSq	IG			
Star	Day	Luxury	Chicago			
Covered	Star	Prices	Luxury			
Conference	Conference	Seemed	Prices			
Frequently	Frequently	Vacation	vacation			
Prior	Covered	Decision	Seemed			
Called	Prior	Website	Decision			
Dated	-	Cleanliness	Cleanliness			
Rate	Called	Hadn't	website			
Trip	Dated	Sorely	settled			
location	generally	Settled	Millennium			

General Findings

- SVM performs better than NB
- Truthful better than Deceptive

General Findings

- Ngram(bigram, trigram) only is a bad choice
- Negative corpus is more difficult to classify

Limitation

- Corpus
 - Size
 - Length: log normal?
- More effective feature sets
 - LIWC

Questions? Thanks.

Yu Huang, Lingjie Zhang

backups

Classifier: Psycholinguistic deception detection

- Psycholinguistic deception detection
 - -Linguistic Inquire and Word Count (Pennebaker et. al., 2007)
 - Counts instances of ~4500 keywords
 - Keywords are divided into 80 psycholinguistically meaningful dimensions across 4 broad groups
 - Create a feature for each of the 80 dimensions

Classifier: Psycholinguistic deception detection

- Psycholinguistic deception detection
 - Keywords are divided into 80 psycholinguistically meaningful dimensions across 4 broad groups
 - Linguistic processes
 - e.g., average number of words per sentence
 - Psychological processes
 - e.g., happy, feeling, eat, feeling
 - Personal concerns
 - e.g., job, cook, family
 - Spoken categories
 - e.g. umm, blah, yes

Motivation

- 87%
 - "Positive information I've read online has reinforced my decision to purchase a product or service recommended to me."
- 80%
 - "Negative information I've read online has made me change my mind about purchasing a product or service recommended to me."