

ĐẠI HỌC BÁCH KHOA HÀ NỘI VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Electronics for Information Technology

(Điện tử cho Công nghệ Thông tin)

IT3420E

Đỗ Công Thuần

Department of Computer Engineering

Email: thuandc@soict.hust.edu.vn

General Information

- Course: Electronics for Information Technology
- ID Number: IT3420
- Credits: 2 (2-1-0-4)
- Lecture/Exercise: 32/16 hours (48 hours, 16 weeks)
- Evaluation:
 - Midterm examination and weekly assignment: 50%
 - Final examination: **50%**
- Learning Materials:
 - Lecture slides
 - Textbooks
 - *Introductory Circuit Analysis* (2015), $10^{th} 13^{th}$ ed., Robert L. Boylestad
 - *Electronic Device and Circuit Theory* (2013), 11th ed., Robert L. Boylestad, Louis Nashelsky
 - *Microelectronics Circuit Analysis and Design* (2006), 4th ed., Donald A. Neamen
 - Digital Electronics: Principles, Devices and Applications (2007), Anil K. Maini

Contact Your Instructor

- You can reach me through office in **Room 802, B1 Building**, HUST.
 - You should make an appointment by email before coming.
 - If you have urgent things, just come and meet me!
- You can also reach me at the following **email** any time. This is the best way to reach me!
 - thuandc@soict.hust.edu.vn

Course Contents

- The Concepts of Electronics for IT
- Chapter 1: Passive Electronic Components and Applications
- Chapter 2: Semiconductor Components and Applications
- Chapter 3: Operational Amplifiers
- Chapter 4: Fundamentals of Digital Circuits
- Chapter 5: Logic Gates
- Chapter 6: Combinational Logic
- Chapter 7: Sequential Logic

Chapter 2: Semiconductor Components and Applications

- Semiconductor Materials
- Diodes and Applications
- Transistors and Applications

Analog Circuits

- A signal contains some type of information.
 - Ex: a sound wave produced by a speaking human
- Electronic circuits that process analog signals are called analog circuits.
 - Ex: a linear amplifier

Analysis Method

- Using a small-signal analysis → a linear model
 - Doing the DC analysis to establish the Q-point of the transistor in the linear amplifier
 - Doing the AC analysis to determine the relationships between the time-varying output and input signals
 - Applying the superposition principle (thanks to the linear model)
 - "The response of a linear circuit excited by multiple independent input signals is the sum of the responses of the circuit to each of the input signals alone."

Graphical Analysis

- DC Analysis: to find the desired Q-point
- AC Analysis: to determine the relationships between the timevarying output and input signals

AC Equivalent Circuit

Common-Emitter Circuit

AC equivalent circuit

Small-Signal Hybrid-π Equivalent Circuit

Can treat the bipolar transistor as a two-port network

Hybrid- π equivalent circuit with small time-varying signals

$$r_{\pi} = rac{V_T}{I_{BO}}$$
 Diffusion resistance or B-E input resistance

$$g_m = \frac{I_{CQ}}{V_T}$$
 Transconductance

Hybrid-π Equivalent Circuit

Output signal voltage

Small-signal B-E voltage

Small-signal voltage gain

$$V_o = V_{ce} = -(g_m V_\pi) R_C$$

$$V_\pi = \left(\frac{r_\pi}{r_\pi + R_B}\right) \cdot V_s$$

$$A_v = \frac{V_o}{V_s} = -(g_m R_C) \cdot \left(\frac{r_\pi}{r_\pi + R_B}\right)$$

- Calculate the small-signal voltage gain.
- Assume:

$$eta = 100$$
 $V_{BE} = 0.7 \text{ V}$
 $R_C = 6 \text{ k}\Omega$
 $R_B = 50 \text{ k}\Omega$
 $V_{BB} = 1.2 \text{ V}$

Example 2.13: DC Analysis

• DC equivalent circuit:

$$I_{BQ} = \frac{V_{BB} - V_{BE}(on)}{R_B} = \frac{1.2 - 0.7}{50} = 10 \,\mu\text{A}$$

$$I_{CQ} = \beta I_B = 100 * 0.01 = 1 \text{mA}$$

$$V_{CEQ} = V_{CC} - I_C R_C$$

$$= 12 - 1 * 6 = 6V$$

$$\downarrow I_{BQ} = 10 \,\mu\text{A}$$

$$V_{CEQ} = 6V$$

$$\downarrow I_{BQ} = 10 \,\mu\text{A}$$

$$V_{CEQ} = 6V$$
The transistor is biased in the forward-active mode

Example 2.13: Hybrid-π Equivalent Circuit

$$A_v = \frac{V_o}{V_s} = -(g_m R_C) \cdot \left(\frac{r_\pi}{r_\pi + R_B}\right)$$

Example 2.13: AC Analysis

• The small-signal hybrid- π parameters are:

$$r_{\pi} = \frac{\beta V_T}{I_{CQ}} = \frac{(100)(0.026)}{1} = 2.6 \text{ k}\Omega$$

$$g_m = \frac{I_{CQ}}{V_T} = \frac{1}{0.026} = 38.5 \text{ mA/V}$$

$$A_v = \frac{V_o}{V_s} = -(g_m R_C) \cdot \left(\frac{r_{\pi}}{r_{\pi} + R_B}\right)$$

$$= -(38.5)(6) \left(\frac{2.6}{2.6 + 50}\right)$$

Example 2.13: Sinusoidal Input Voltage

• Considering a specific sinusoidal input voltage:

$$v_s = 0.25 \sin \omega t \text{ V}$$

• The sinusoidal base current is given by:

$$i_b = \frac{v_s}{R_B + r_\pi} = \frac{0.25 \sin \omega t}{50 + 2.6} \to 4.75 \sin \omega t \ \mu A$$

• The sinusoidal base current is given by:

$$i_c = \beta i_b = (100)(4.75 \sin \omega t) \to 0.475 \sin \omega t \text{ mA}$$

• The sinusoidal C-E voltage is:

$$v_{ce}=-i_cR_C=-(0.475)(6)\sin\omega t=-2.85\sin\omega t~{
m V}$$
 viện công nghệ thông tin và truyền thông

Example 2.13: Sinusoidal Input Voltage

• The DC and AC signals in the common-emitter circuit:

Problem-Solving Technique: AC Analysis

- Step 1: Analyze the circuit with only the dc sources present → Q-point. The transistor must be biased in the forward-active region to produce a linear amplifier.
- Step 2: Replace each element in the circuit with its small-signal model. Apply the small-signal hybrid- π model to the transistor.
- Step 3: Analyze the small-signal equivalent circuit, setting the dc source components equal to zero, to produce the response of the circuit to the time-varying input signals only.
- Step 4: Apply the principle of superposition.

Transformation of Elements in DC and Small-Signal Analysis

Element	<i>I–V</i> relationship	DC model	AC model
Resistor	$I_R = \frac{V}{R}$	R	R
Capacitor	$I_C = sCV$	Open	C
		→	
Inductor	$I_L = \frac{V}{sL}$	Short ———	L
Diode	$I_D = I_S(e^{v_D/V_T} - 1)$	$+V_{\gamma}-r_f$	$r_d = V_T/I_D$ $-\!$
Independent voltage source	$V_S = \text{constant}$	$+V_S -$	Short →⊶—
Independent current source	$I_S = \text{constant}$	I_S	Open →

Superposition Principle

• The time-varying signals are superimposed on dc values:

$$i_B = I_{BQ} + i_b$$

 $i_C = I_{CQ} + i_c$
 $v_{CE} = V_{CEQ} + v_{ce}$
 $v_{BE} = V_{BEQ} + v_{be}$

Variable	Meaning
i_B,v_{BE}	Total instantaneous values
I_B,V_{BE}	DC values
i_b,v_{be}	Instantaneous ac values
I_b, V_{be}	Phasor values

Example 2.13: Superposition Principle

• The total instantaneous base current is given by:

$$i_B = I_{BQ} + i_b$$

$$= 10 + 4.75 sin\omega t \mu A$$

• The total instantaneous collector current is given by:

$$i_C = I_{CQ} + i_c$$
$$= 1 + 0.475 sin\omega t mA$$

• The total instantaneous C-E voltage is given by:

$$v_{CE} = V_{CEQ} + v_{ce}$$
$$= 6 - 2.85 sin \omega t V$$

Hybrid-π Equivalent Circuit, Including the Early Effect

• When the curves are extrapolated to zero current, they meet at a point on the negative voltage axis, at $v_{CE} = -V_A$.

• Typical values of V_A : $50 < V_A < 300 \text{ V}$

Hybrid-π Equivalent Circuit, Including the Early Effect

The small-signal equivalent circuit, including the output resistance when the circuit contains the transconductance parameter.

The small-signal equivalent circuit, including the output resistance when the circuit contains the current gain parameter.

$$r_{o} = \frac{V_{A}}{I_{CO}}$$

Small-signal transistor output resistance

• Determine the small-signal voltage gain, including the effect of the transistor output resistance r_0 , with the parameters:

$$\beta = 100$$

$$V_{BE} = 0.7 \text{ V}$$

$$R_C = 6 \text{ k}\Omega$$

$$R_B = 50 \text{ k}\Omega$$

$$V_{BB} = 1.2 \text{ V}$$

$$V_A = 50 \text{ V}$$

• The small-signal equivalent circuit, including the output resistance r_o:

• The output resistance is given by:

$$r_o = \frac{V_A}{I_{CQ}} = \frac{50}{1 \text{ mA}} = 50 \text{ k}\Omega$$

• The small-signal voltage gain is therefore:

$$A_v = \frac{V_o}{V_s} = -g_m(R_C || r_o) \left(\frac{r_\pi}{r_\pi + R_B}\right)$$
$$= -(38.5)(6||50) \left(\frac{2.6}{2.6 + 50}\right)$$
$$= -10.2$$

r_o reduces the magnitude of the small-signal voltage gain

- Basic common-emitter circuit with voltage-divider biasing:
 - Do the dc analysis (to find the Q-point).
 - Do the ac analysis using the small-signal model.

 V_{CC}

Output voltage:
$$V_o = -g_m V_\pi (r_o || R_C)$$

Control voltage:
$$V_{\pi} = \frac{R_1 || R_2 || r_{\pi}}{R_1 || R_2 || r_{\pi} + R_S} \cdot V_s$$

Voltage gain:
$$A_v = \frac{V_o}{V_s} = -g_m(r_o || R_C) \left(\frac{R_1 || R_2 || r_\pi}{R_1 || R_2 || r_\pi + R_S} \right)$$

• Using the Emitter resistor (R_E) so that the voltage gain of the amplifier circuit will be less dependent on the transistor current gain β .

• The small-signal equivalent circuit:

Output voltage: $V_o = -(\beta I_b)R_C$

Input resistance: $R_{ib} = \frac{V_{\text{in}}}{I_b} = r_{\pi} + (1 + \beta)R_E$

• Input resistance to the amplifier: $R_i = R_1 || R_2 || R_{ib}$

• Input voltage:
$$V_{\text{in}} = \left(\frac{R_i}{R_i + R_S}\right) \cdot V_s$$

• The small-signal voltage gain is:

$$A_v = \frac{V_o}{V_s} = \frac{-(\beta I_b)R_C}{V_s} = -\beta R_C \left(\frac{V_{\text{in}}}{R_{ib}}\right) \cdot \left(\frac{1}{V_s}\right)$$

or:

$$A_v = \frac{-\beta R_C}{r_\pi + (1+\beta)R_E} \left(\frac{R_i}{R_i + R_S}\right)$$

• Voltage gain is:

$$A_v = \frac{-\beta R_C}{r_\pi + (1+\beta)R_E} \left(\frac{R_i}{R_i + R_S}\right)$$

• If:

$$\begin{cases} R_i \gg R_S \\ (1+\beta)R_E \gg r_\pi \end{cases}$$

• Voltage gain is approximately:

$$A_v \cong \frac{-\beta R_C}{(1+\beta)R_E} \cong \frac{-R_C}{R_E}$$

• For the circuit in the figure:

$$V_{BE}(\text{on}) = 0.7 \text{ V}$$

$$\beta = 100 \quad V_A = \infty$$

- Determine:
 - Small-signal voltage gain
 - Input resistance

 $V_{CC} = 10 \text{ V}$

Example 2.15: DC Analysis

• DC solution:

$$V_{CEQ} = 4.81 \text{ V}$$

 $I_{CQ} = 2.16 \text{ mA}$

The transistor is biased in the forward-active mode

Example 2.15: AC Analysis

• The small-signal equivalent circuit:

Example 2.15: AC Analysis

• The small-signal hybrid- π parameters:

$$r_{\pi} = \frac{V_T \beta}{I_{CQ}} = \frac{(0.026)(100)}{(2.16)} = 1.20 \,\mathrm{k}\Omega$$
 $g_m = \frac{I_{CQ}}{V_T} = \frac{2.16}{0.026} = 83.1 \,\mathrm{mA/V}$

• The input resistance to the base:

$$R_{ib} = r_{\pi} + (1 + \beta)R_E = 1.20 + (101)(0.4) = 41.6 \text{ k}\Omega$$

• The input resistance to the amplifier:

$$R_i = R_1 || R_2 || R_{ib} = 10 || 41.6 = 8.06 \text{ k}\Omega$$

Example 2.15: AC Analysis

• Voltage gain:

$$A_v = \frac{-(100)(2)}{1.20 + (101)(0.4)} \left(\frac{8.06}{8.06 + 0.5}\right)$$
$$= -4.53$$

Approximate voltage gain:

$$A_v \cong \frac{-\beta R_C}{(1+\beta)R_E} \cong \frac{-R_C}{R_E}$$

• Obtain:

$$A_v = \frac{-R_C}{R_E} = \frac{-2}{0.4} = -5.0$$

Example 2.15: Comment

- The magnitude of the voltage gain is substantially reduced when an emitter resistor (R_E) is included.
 - Because of the $(1 + \beta)R_E$ term in the denominator
- $-R_C/R_E$ can be used in the initial design of a commonemitter circuit with an emitter resistor.
- The amplifier gain is nearly independent of changes in the current gain parameter β .

β	A_v
50	-4.41
100	-4.53
150	-4.57

