Digital Health

UCSD Extension – Specialization Certificate

Data Science for Healthcare

L3: Statistics

Hobson Lane, UC San Diego Instructor

Agenda

- What is statistics and probability?
- Descriptive statistics
 - Probability distributions
 - Distribution parameters
- Prescriptive statistics
 - Accuracy
 - Bayes Rule

Statistics

- **Describe** a set of numbers in a dataset
- Describe probabilities outside the dataset
- Probabilities used to infer properties about the world
- Probabilities used to predict the future
- Probabilities used to prescribe actions in the world

Probability

How often an event will happen among a set of trials

heads

tails

• Inherently binary (coin flip)

Probability of Heads	P(H)	IN GOD WE TRUST	
Probability of True result	P(T)	True	False
Probability of binary 1	P(1)	1	0
Probability of red pill	P(R)		

Binary Probabilities are Complementary

Probability of **Heads** P(H) = 1 - P(T)

heads

tails

Probability of **True**

$$P(T)=1-P(F)$$

True

False

Probability of 1

$$P(1)=1-P(0)$$

1

0

Probability of red pill

$$P(R)=1-P(B)$$

Binary = Mutually Exclusive

- P(Event) = 1 P(All other events)
- Binary event: only one single alternative event

Probability of Tails	P(T)=1-P(H)	NO.
Probability of False	P(0) = 1 - P(1)	False
Probability of Zero	P(F)=1-P(T)	0
Probability of Blue	P(B)=1-P(R)	

Binary Dice?

- Machines "think" and learn in binary logic
 - Is it a 1?
 - Is it a 2?
 - Is it a 3?
 - Is it a 4?
 - Is it a 5?
 - Is it a 6 (six pips up)?
- Presence or absence of a number
- 1 bit for each number or category
- Works even for non numerical (pictograph) dice or loaded dice

One-hot encoding (used for categorical variables)

Ordinal Dice?

- But machines can work with numbers right?
- Ordinal encoding
- Sides assigned discrete numerical values
- Six mutually exclusive discrete values
 - _ 1
 - 2
 - 3
 - 4
 - 5
 - 6

JUST SAY "NO!" or "YES!" but never "2, 3, 4, 5, 6"

1

Ordinal values

Dice Probability

Die 1	Die 2	Sum	Р
1	1	2	1/6
1	2	3	1/6
2	1	3	1/6
1	3	4	1/6

Sum of Two Die Rolls

Categorical Probability

- Thought of as binary
- 1 bit for each category
- Often need "unknown" bit
- Probability = confidence

```
1 =
```

P(Malignant)

- + P(Benign)
- + P(Healthy)
- + P(Unknown)

Malignant?
Benign?
Healthy?
Unknown? (none of the above)

Die Statistics

• Min: 1.0

• Max: 6.0

• Mean: 3.47

• Median: 3.0

• Mode: 3.0

• Midpoint: 3.5

• Variance: 2.9

• Standard deviation: 1.7

Histogram

2 Dice Statistics

• Min: 2.0

• Max: 12.0

• Mean: 6.9

• Median: 7.0

• Mode: 7.0

• Midpoint: 7.0

• Variance: 6.1

• Standard deviation: 2.4

Histogram

sns.distplot()

1000 rolls, Two 6-sided Dice

3 Dice Statistics

• Min: 2.0

• Max: 18

• Mean: 10.5

• Median: 10

• Mode: 10.0

• Midpoint: 10.5

• Variance: 8.6

• Standard deviation: 2.9

Histogram

sns.distplot()

Mystery Dataset

	X
count	13.0
mean	12.5
std	3.4
min	8.7
25 %	9.0
50 %	12.6
75 %	14.9
max	18.9

	X
count	578.0
mean	13.0
std	2.0
min	8.3
25 %	11.6
50 %	13.2
75 %	14.5
max	17.9

Coordinate Frame (Representation) Matters!

- Coordinate frame
 - Origin (offset)
 - Orientation
- Scale (units)
- Filtering
 - Clipping
 - Outliers
 - Smoothing/imputing

Kinds of Distributions

- Discrete probability:
 - Dice, gender, disease, death, recovery
 - Distribution (histogram)
- Continuous probability:
 - Height, weight, (x, y) position
 - Probability density (kernel density)
- Conditional probability:
 - Height based on weight (continuous condition)
 - Death based on distance (discrete & continuous condition)
 - 2D probability density

Common Distributions

- Uniform
 - Dice, coin flips, cards
- Normal (Gaussian)
 - Height, weight
 - Probability density (kernel density)

- Time between infections, epidemics
- Asymmetric distribution

Height Normal Distributions

ŏ 0.08

0.06

Arithmetic Mean (Average)

Tyco Brahe, 1587

mean
$$\mu = \frac{\sum_{i=0}^{N} X_i}{N}$$

$$\mu = \frac{2+3+3+4+...+11+11+12}{36} = 7$$

```
# x = [2, 3, 3, 4, 4, 4, 5, 5, 5, 5, ... 9, 9, 9, 9, 10, 10, 10, 11, 11, 12]
# x = [die1 + die2 for (die1, die2) in product(range(1, 7), range(1, 7))]
# mu = sum(x) / len(x)

x = [sum(dice) for dice in product([1, 2, 3, 4, 5, 6], [1, 2, 3, 4, 5, 6])])
mu = np.mean(x) # 7
```

Standard Deviation (and Variance)

Karl Pearson, 1894

variance:
$$\sigma^2 = \sum_{i=0}^{N} \frac{(x_i - \mu)^2}{N}$$

standard deviation:
$$\sigma = \sqrt{\sigma^2} = \sqrt{\sum_{i=0}^{N} \frac{(x_i - \mu)^2}{N}}$$

```
# sigma = np.sqrt(sum(x**2) / len(x))
sigma = np.std(x) # 2.415...
```

Normal (Gaussian) Distribution

68-95-99.7 rule

$$1\sigma = 68\%$$
 $2\sigma = 95\%$ $3\sigma = 99.7\%$

Accuracy

- Continuous numerical predictions (regression):
 - How close to correct are your predictions?
- RMSE: Root Mean Square Error

$$RMSE(y,z) = \sqrt{\frac{\sum_{i=0}^{N} (y_i - z_i)^2}{N}}$$

Categorical Accuracy

- Categorical predictions (classification):
 - What proportion of your predictions were correct?

$$\frac{N_{correct}}{N_{total}} = \frac{N_{correct}}{N_{correct} + N_{incorrect}} = \frac{TP + TN}{TP + TN + FP + FN}$$

Bayes Rule

Updated Probability = Likelihood Ratio * Prior Probability

Bayes Rule Example

Prior	P(D)	Probability of getting breast cancer	1 in 700 per yr 1 in 70,000 (men)
True Positive Rate (Sensitivity)	P(T D)	Probability of mammogram detecting cancer	.73
False Positive Rate (False Alarm)	P(T ~D)	Probability of positive mammogram w/o cancer	.12
Positive Rate	P(T) = P(D) * P(T D) + P(~D) * P(T ~D)	Probability of a positive mammogram among all women	.73 * 1 / 700 + .27 * 699 / 700 = .121

Real Numbers

P(D)	1/700
P(T D)	.73
P(T)	.121

$$P(D|T) = \frac{P(T|D)}{P(T)} \times P(D)$$

$$P(D|T) = \frac{.73}{.121} \times \frac{1}{700} = .0086 \approx 1\%$$

What is statistics? How is statistics used in healthcare?

Probability

Conditional Probability

Probability Distribution

Probability Distribution

PMF: Probability Mass Function (Discrete PDF)

PDF: Probability **Density** Function

Continuous Probability Distribution

Ethics and Accuracy

DeepMind (London)

Clinical records can predict Kidney failure

2 days in advance55% accuracy for acute problems90% accuracy for serious issues

Dataset: 100% UK citizens 100% military 90% male

Berkson's Paradox

	General Population		Hospitalization past 6 mo			
	Bone Disease	No Bone Disease	% Bone Disease	Bone Disease	No Bone Disease	% Bone Disease
Lung disease	17	207	7.6%	5	15	25.0%
No lung disease	184	2,376	7.2%	18	219	7.6%

Correlation enables prediction

Breast Cancer Rates 2011: bit.ly/ucsdbreast

Correlation is not enough

- Computers are good at finding patterns
- But often those patterns are "spurious correlation"

Per capita cheese consumption

correlates with

Number of people who died by becoming tangled in their bedsheets

tylervigen.com

Bayes Rule

Updated Probability = Likelihood Ratio X Prior Probability

$$P(D \lor T) = \frac{P(T \lor D)}{P(T)} \times P(D)$$

Bayes Rule Example

Prior	P(D)	Probability of getting breast cancer	1 in 700 per yr 1 in 70,000 (men)
Sensitivity	P(T D)	Probability of mammogram detecting cancer	.73
False Positive Rate (False Alarm)	P(T ~D)	Probability of positive mammogram w/o cancer	.12
	P(T) = P(D) * P(T D) + P(~D) * P(T ~D)	Probability of a positive mammogram among all women	.73 * 1 / 700 + .27 * 699 / 700 = .121

Mammograms can cause harm!

ACP: biannually after age 50+

previously: annual exams at 40+

P(D)	1/700
P(T D)	.73
P(T)	.121

$$P(D \lor T) = \frac{P(T \lor D)}{P(T)} \times P(D)$$

$$P(D \vee T) = \frac{.73}{.121} \times \frac{1}{700} = .0086 \approx 1\%$$

Assignments

Quiz

1. Why is understanding Baye's Rule so important?

Homework: Create diabetes MLE

 Download diabetes dataset: http://totalgood.org/midata/...

2.

Project

1. Use numpy.random.randint() to simulated rolling a pair of dice.

2.