Homework 3

蒋翌坤 20307100013

1.(a) $A(A-I) = 0 \Rightarrow 0 = |A(A-I)| = |A||A-I| \Rightarrow |A| = 0$ or |A-I| = 0. If |A| = 0, then 0 is obviously an eigenvalue. If |A-I|=0, then 1 is obviously an eigenvalue. So, A has at least one eigenvalue 0 or 1.

(b) Let x be the eigenvector corresponding to the eigenvalue λ . It has been proven that λ can be 0 or 1 previously at (a). If $\lambda \neq 0, 1$, then $Ax = \lambda x \neq \lambda^2 x = AAx \Rightarrow A \neq AA$, which is a contradiction. So, λ must be 0 or 1.

2. Let
$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$$
 and $p(\lambda) = |\lambda I - A| = \lambda^n + c_{n-1}\lambda^{n-1} + \cdots + c_1\lambda + c_0$. We know that λ_i are

to solution to $p(\lambda) = 0$, so $p(\lambda) = \prod_{i=1}^{n} (\lambda - \lambda_i)$. Let $\lambda = 0$, we get $p(0) = \prod_{i=1}^{n} (0 - \lambda_i) = (-1)^n \prod_{i=1}^{n} \lambda_i$. Also, $p(0) = |-A| = (-1)^n |A|$ So, $|A| = \prod_{i=1}^n \lambda_i$.

Consider the coefficient of λ^{n-1} . From $p(\lambda) = \prod_{i=1}^{n} (\lambda - \lambda_i)$, the coefficient of λ^{n-1} is $-(\sum_{i=1}^{n} \lambda_i)$.

Expanding the determinant, we have
$$|\lambda I - A| = \begin{vmatrix} \lambda - a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & \lambda - a_{nn} \end{vmatrix} = (\lambda - a_{11}) \dots (\lambda - a_{nn}) + q(\lambda),$$
 where $q(\lambda)$ is a function of λ with max degree of $n-2$, so the coefficient of λ^{n-1} is $-(\sum_{i=1}^n a_{ii}) = -\text{tr}(A)$.

3. We have $BAx = \lambda x$. Then, $ABAx = A\lambda x = \lambda Ax$. So, λ is also an eigenvalue of AB with the

Therefore, we have $\sum_{i=1}^{n} \lambda_i = \operatorname{tr}(A)$

corresponding eigenvector being Ax.

If λ is not an eigenvalue of BA. Then, $\forall x \neq 0, \lambda BAx \neq \lambda x$. So, $\lambda ABAx \neq \lambda Ax$. Here, Ax is also any vectors not equal to 0, So, λ is not an eigenvalue of AB.