ÁLGEBRA I

RELACIÓN 1

- (1) ¿Cuáles de los siguientes son monoides? (i) $\mathbb{N} = \{0, 1, ...\}$ con la operación de adición
 - (ii) N con la operación de multiplicación
 - (iii) Todos los naturales impares con la operación de multiplicación
 - (iv) Todos los naturales pares con la operación de adición
 - (v) Todos los naturales pares con la operación de multiplicación
 - (vi) Todos los números racionales no negativos que son mitades de números enteros con la operación de adición.
 - (vii) Todos los números racionales positivos que son mitades de números naturales con la operación de multiplicación.
- (2) Si X es cualquier conjunto no vacío ¿Es el conjunto X^X de todas las aplicaciones de X en si mismo un monoide con la operación de composición? ¿Es conmutativo? ¿Que elementos tiene su grupo de unidades $U(X^X)$? Si $\mathbf{n} = \{1, \dots, n\}$ ¿Cuantos elementos tiene $\mathbf{n}^{\mathbf{n}}$? ¿Y $U(\mathbf{n}^{\mathbf{n}})$?
- (3) Sea $\mathbb{N} \times \mathbb{N}$ el conjunto de pares de naturales (x_1, x_2) . Definimos

$$(x_1, x_2) \circ (y_1, y_2) = (x_1y_1 + 2x_2y_2, x_1y_2 + x_2y_1).$$

Probar esta multiplicación define una estructura de monoide en $\mathbb{N} \times \mathbb{N}$ ¿Qué elemento es el neutro?

- (4) En \mathbb{Z} definimos $a \circ b = a + b ab$. ¿Es \mathbb{Z} con esa operación de multiplicación un monoide? ¿Es un grupo? ¿Qué unidades tiene?
- (5) En el conjunto de todos los pares de números reales $(a,b) \in \mathbb{R} \times \mathbb{R}$ con $a \neq 0$ y definimos (a,b)(c,d) = (ac,b+ad) ¿Es un monoide? ¿Es abeliano? ¿Es un grupo
- (6) En $\mathbb{Z} \times \mathbb{Z}$ definimos (n, n') + (m, m') = (n + m, n' + m') y $(n, n') \cdot (m, m') =$ (nm, nm' + n'm). ¿Es $\mathbb{Z} \times \mathbb{Z}$ un anillo con estas operaciones? ¿Es un dominio de integridad? ¿Que unidades tiene? ¿Es un cuerpo?
- (7) En \mathbb{Z} definimos $a \oplus b = a + b 1$ y $a \otimes b = a + b ab$. Es \mathbb{Z} un anillo con estas operaciones? ¿Es un dominio de integridad?
- (8) ¿Cuáles de los siguientes son subanillos de los anillos indicados?
 - $(i) \{x \in \mathbb{Q} \mid 3x \in \mathbb{Z}\} \subseteq \mathbb{Q},$
 - (ii) $\{x \in \mathbb{Q} \mid 3^n x \in \mathbb{Z} \text{ para algún } n \geq 0\} \subseteq \mathbb{Q},$

 - (iii) $\{m + 2n\sqrt{3} \mid m, n \in \mathbb{Z}\} \subseteq \mathbb{R}$, (iv) $\{x = \frac{m}{n} \mid m, n \in \mathbb{Z}, \mod(m, n) = 1 \text{ y } n \text{ es impar}\} \subseteq \mathbb{Q}$.
- (9) Escribir las tablas de sumar y multiplicar de los anillos \mathbb{Z}_5 y \mathbb{Z}_6 .
- (10) Escribir las tablas de sumar y de multiplicar del anillo producto $\mathbb{Z}_3 \times \mathbb{Z}_2$ ¿Es un dominio de identidad?.