Transport security layer

Questions and answers: "sslyze analysis"

Results via sslyze localhost

- 1. Are only strong cipher suites supported?
 - I think some ciphers are no longer considered strong (e.g.
 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA, considered weak by https://www.ssllabs.com/.. 128
 bit is not really strong) Various ciphers are listed as "should be rejected"
- 2. Does the server support and prefer cipher suites with forward secrecy?
 - yes, it is supported and from my understanding TLS always prefers the strongest cipher.
 Forward Secrecy means: Not possible to break encryption later even if long-term secret which is used to exchange session keys is compromissed (known to the attacker)
- 3. Does the server support strong protocol versions?
 - It supports TLS 1.0 1.2 (but not 1.3). TLS 1.2 is ok, but support for the older TLS versions should be stopped
- 4. Does the server support downgrade detection?
 - Not sure what is meant by this. Does it refer to the TLS_FALLBACK_SCSV? (not found any indicator that it is activated though)
- 5. What is TLS_FALLBACK_SCSV?
 - It is a flag passed during the handshake that a client might send to tell the server that it supports
 a higher version of TLS than advertised. (According to the article below, this can prevent a
 downgrade attack in edge cases, for example when a server aborts a connection during a
 handshake for some reason and client will then try with a lower protool version..)
 - https://security.stackexchange.com/questions/112531/is-tls-fallback-scsv-useless-if-onlytls-1-0-1-1-2-is-supported
 - https://crashtest-security.com/de/tls-fallback-scsv/
- 6. Does the server support secure TLS renegotiation?
 - o yes
- 7. Does the server support client-initiated renegotiation?
 - No as the server is NOT vulnerable to "client renegotiation Dos Attack".
 - According to https://crashtest-security.com/secure-client-initiated-ssl-renegotiation/#:~:text=The%20SSL%2FTLS%20renegotiation%20vulnerability,attack%20into%20t he%20HTTPS%20sessions. client initiated renegotiation is disabled to prevent such a DOS attack
- 8. Is TLS compression support enabled?
 - o no
 - there is a known attack (CRIME) that is only possible when the TLS compression feature is enabled (feature was dropped in TLS 1.3 i believe)
- 9. Is the server vulnerable to the Heartbleed attack?
 - o no
 - Heartbleed is a known attack on incorrect implementation of TLS in the OpenSSL library.
- 10. Is the server vulnerable to the OpenSSL CCS injection attack?
 - o no
 - A known vulnerability of the OpenSSL library

- https://crashtest-security.com/prevent-ccs-injection/
- 11. Is the server vulnerable to the ROBOT attack?
 - o no
 - This is an attack on certain RSA ciphers that allow an attacker to decrypt the traffic.
 - https://crashtest-security.com/prevent-robot-attack/
- 12. Does the Domain use CAA to specify CAs, which can be used to issue certificates for it?
 - Since i tested "localhost" with a certificate from a local CA, I'm quite certain that no CAA was specified. (However, hacking-lab.com uses CAA)

Remark: Quick analyzes results via https://www.ssllabs.com/ssltest/analyze.html?d=hacking-lab.com: Only supports TLS 1.2 but supports some week ciphery (128 bit, EDES) but overall rating still A

Notes and varia

- TLS provides:
 - Confidentialy
 - Authenticity
 - Client and Server supported
 - Usually: unilateral..just server is authenticated
 - Integrity
- often used for HTTP, FTP, IMAP, POP3, SMTP
 - HTTS is just HTTP wrapped in TLS (no new protocol)
- Encryption
 - 1. Assyemtric encrption to establish connection
 - keay exchange
 - 2. Symmetric encryption for actual data

TLS handshake

- 1. client -> server: hello
- 2. server -> client:
- 3. ... etc.. (see diagram in powerpoint or links)

https://de.wikipedia.org/wiki/Transport_Layer_Security https://tls.ulfheim.net/

CLR Certificate revokation list Client (browser) can download list and check if certificate is on list

OCSP During the handshake: the client (browser) can ask the OCSP responder if server certificate is still valid. (Alternative: OCSP Stapling: server asks OCSP responder and caches answer from some time and can then send its OCSP status to the client during handshake. Not widely supported/used yet)

-> generally: CRL, OCSP browser will still accept certificate if CLR or OCSP servers not reachable. When using OCSP stapling: Flag "Must Staple" (X.509 extension), makes browser abort connection when no OCSP response is present.

analyte TLS configuration of a server

- Linux tool. "sslyze"
 - sslyze localhost (did not work: sslyze --regular localhost)
 - https://www.kali.org/tools/sslyze/
 - o Doku: https://nabla-c0d3.github.io/sslyze/documentation/
- Website
 - https://www.ssllabs.com/ssltest/analyze.html?d=hacking-lab.com

Changes in TLS 1.3

- Removed support for: Weak ciphers
- Added: Improved handshake, downgrade protected, new algorithms (etc.)

Varia

- Perfect forward secrecy: Not possible to break encryption later even if long-term secret which is used to exchange session keys is compromissed (known to the attacker).
- CAA (Certificate Authority Authorization)
 - A DNS entry (CAA) that specifies one or more CA's to issue certificates for a certain domain
 - https://www.websecurity.digicert.com/security-topics/what-is-certificate-authority-authorization