Chapter 12. Electrodynamics and Relativity

12.1	The Sp	pecial Theory of Relativity	477
	12.1.1	Einstein's Postulates	477
	12.1.2	The Geometry of Relativity	483
		The Lorentz Transformations	493
	12.1.4	The Structure of Spacetime	500
12.2		ristic Mechanics	507
		Proper Time and Proper Velocity	507
	12.2.2	Relativistic Energy and Momentum	509
	12.2.3	Relativistic Kinematics	511
	12.2,4	Relativistic Dynamics	516
12.3	Relativ	ristic Electrodynamics	522
	12.3.1	Magnetism as a Relativistic Phenomenon	522
	12.3.2	How the Fields Transform	525
	12.3.3	The Field Tensor	535
	12.3.4	Electrodynamics in Tensor Notation	537
	12.3.5	Relativistic Potentials	541

Does the principle of relativity apply to the laws of electrodynamics?

12.3 Relativistic Electrodynamics

12.3.1 Magnetism as a Relativistic Phenomenon

net current: $I = 2\lambda v$

A point charge q traveling to the right at speed u < v

In the reference frame where q is at rest, system \bar{S} ,

by the Einstein velocity addition rule, the velocities of the positive and negative lines are

$$v_{\pm} = \frac{v \mp u}{1 \mp v u/c^2}$$

Because $v_{-} > v_{+}$, the Lorentz contraction of the spacing between negative charges is more severe;

→ the wire carries a net negative charge!

$$\lambda_{\pm} = \pm (\gamma_{\pm})\lambda_{0} \longrightarrow \lambda_{\text{tot}} = \lambda_{+} + \lambda_{-} = \lambda_{0}(\gamma_{+} - \gamma_{-}) = \frac{-2\lambda uv}{c^{2}\sqrt{1 - u^{2}/c^{2}}}$$
where $\gamma_{\pm} = \frac{1}{\sqrt{1 - v_{+}^{2}/c^{2}}} = \gamma \frac{1 \mp uv/c^{2}}{\sqrt{1 - u^{2}/c^{2}}}$

Conclusion: As a result of unequal Lorentz contraction of the positive and negative lines, a current-carrying wire that is electrically neutral in one inertial system will be charged in another.

Magnetism as a Relativistic Phenomenon

In the reference frame where q is at rest, system \bar{S} ,

$$\lambda_{\text{tot}} = \lambda_{+} + \lambda_{-} = \lambda_{0}(\gamma_{+} - \gamma_{-}) = \frac{-2\lambda u v}{c^{2} \sqrt{1 - u^{2}/c^{2}}}$$

The line charge sets up an *electric* field: $E = \frac{\lambda_{\text{tot}}}{2\pi \epsilon_0 s}$

$$E = \frac{\lambda_{\text{tot}}}{2\pi \epsilon_0 s}$$

so there is an electrical force on
$$q$$
 in \bar{S} ,
$$\bar{F} = qE = -\frac{\lambda v}{\pi \epsilon_0 c^2 s} \frac{qu}{\sqrt{1 - u^2/c^2}}$$

 (λ_{-})

 \rightarrow In \bar{S} system, the wire is attracted toward the charge by a purely electrical force.

The force \bar{F} can be transformed into F in S (wire at rest) by (Eq. 12.68)

$$F = \frac{1}{\gamma}\bar{F} = \sqrt{1 - u^2/c^2}\,\bar{F} = -\frac{\lambda v}{\pi \epsilon_0 c^2} \frac{qu}{s}$$

But, in the wire frame (S) the total charge is neutral!

- → what does the force F imply?
- → Electrostatics and relativity imply the existence of another force in view point of S frame.
- → magnetic force

In fact, by using $c^2 = (\epsilon_0 \mu_0)^{-1}$ and $I = 2\lambda v$

$$F = -\frac{\lambda v}{\pi \epsilon_0 c^2} \frac{q u}{s} = -q u \left(\frac{\mu_0 I}{2\pi s} \right) \quad \text{, magnetic field, B} = \left(\frac{\mu_0 I}{2\pi s} \right)$$

- → One observer's electric field is another's magnetic field!
- → Therefore, the relativistic force F is the Lorentz force in system S, not Minkowski!

Let's find the general transformation rules for electromagnetic fields:

 \rightarrow Given the fields in a frame (S), what are the fields in another frame (\bar{S})?

consider the *simplest possible* electric field in a large parallel-plate capacitor in S_0 frame.

$$\mathbf{E}_0 = \frac{\sigma_0}{\epsilon_0} \,\hat{\mathbf{y}}$$

In the system **S**, moving to the right at speed v_o , the plates are moving to the left with the different surface charge σ :

$$\mathbf{E} = \frac{\sigma}{\epsilon_0} \,\hat{\mathbf{y}}$$

The total charge on each plate is invariant, and the *width* (*w*) is unchanged, but the *length* (*l*) is Lorentz-contracted by a factor

$$\frac{1}{\gamma_0} = \sqrt{1 - v_0^2/c^2} \longrightarrow \sigma = \gamma_0 \sigma_0 \longrightarrow \mathbf{E}^{\perp} = \gamma_0 \mathbf{E}_0^{\perp}$$

 \rightarrow This rule pertains to components of E that are *perpendicular* to the direction of motion of S.

Let's find the general transformation rules for electromagnetic fields:

 \rightarrow Given the fields in a frame (S), what are the fields in another frame (\bar{S})?

For *parallel* components, consider the capacitor lined up with the *y z* plane.

- → the plate separation (d) that is Lorentz-contracted,
- \rightarrow whereas I and w (and hence also σ) are the same in both frames.

$$E^{\parallel} = E_0^{\parallel}$$

$$E^{\parallel} = E_0^{\parallel} \quad \mathbf{E}^{\perp} = \gamma_0 \mathbf{E}_0^{\perp}$$

This case is not the most general case: we began with a system S_o in which the charges were at rest and where, consequently, there was no magnetic field.

To derive the *general* rule we must start out in a system with both electric and magnetic fields.

To derive the *general* rule we must start out in a system with both electric and magnetic fields.

Consider the S system, there is also a *magnetic* field due to the surface currents:

$$\mathbf{E} = \frac{\sigma}{\epsilon_0} \,\hat{\mathbf{y}}$$

$$\mathbf{K}_{\pm} = \mp \sigma v_0 \,\hat{\mathbf{x}} \quad (v_0 : \text{ velocity of } S \text{ relative to } S_0)$$

By the right-hand rule, this field points in the negative z direction;

$$B_z = -\mu_0 \sigma v_0$$
 by Ampère's law

What we need to derive the *general* rule is an introduction of another frame S, then, derivation of the transformation of (E,B) fields in S system into $(\overline{E},\overline{B})$ fields in $\overline{\mathcal{S}}$ system.

In a third system, \bar{S} , traveling to the right with speed (v): velocity of \bar{S} relative to S

$$\bar{E}_y = \frac{\bar{\sigma}}{\epsilon_0}, \quad \bar{B}_z = -\mu_0 \bar{\sigma} \bar{v}$$

$$\bar{v} = \frac{v + v_0}{1 + v v_0 / c^2} \quad (\bar{v} : \text{ velocity of } \bar{S} \text{ relative to } S_0)$$

$$\bar{\sigma} = \bar{\gamma} \sigma_0 \quad \bar{\gamma} = \frac{1}{\sqrt{1 - \bar{v}^2 / c^2}}$$

$$\text{also, since } \sigma = \gamma_0 \sigma_0 \quad \frac{1}{\gamma_0} = \sqrt{1 - v_0^2 / c^2}$$

$$\bar{E}_y = \left(\frac{\bar{\gamma}}{\gamma_0}\right) \frac{\sigma}{\epsilon_0}, \quad \bar{B}_z = -\left(\frac{\bar{\gamma}}{\gamma_0}\right) \mu_0 \sigma \bar{v}$$

$$\bar{S} \text{ relative to } S_0$$

$$\bar{v} : \bar{S} \text{ relative to } S_0$$

$$\bar{v} : \bar{S} \text{ relative to } S_0$$

Similarly, to do E_z and B_y simply align the same capacitor parallel to xy plane instead of xz plane

$$\bar{E}_z = \gamma (E_z + v B_y),$$

$$\bar{B}_y = \gamma \left(B_y + \frac{v}{c^2} E_z \right).$$

$$\bar{E}_{y} = \gamma (E_{y} - vB_{z}),
\bar{B}_{z} = \gamma \left(B_{z} - \frac{v}{c^{2}}E_{y}\right).$$

$$\bar{E}_z = \gamma (E_z + v B_y),
\bar{B}_y = \gamma \left(B_y + \frac{v}{c^2} E_z \right).$$

 $\bar{E}_x = E_x$ the field component s parallel to the motion is unchanged.

$$\bar{E}_x = E_x, \quad \bar{E}_y = \gamma (E_y - vB_z), \quad \bar{E}_z = \gamma (E_z + vB_y),$$

$$\bar{E}_x = E_x, \quad \bar{E}_y = \gamma (E_y - vB_z), \qquad \bar{E}_z = \gamma (E_z + vB_y), \quad \text{where} \quad \gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$$

$$\bar{B}_x = B_x, \quad \bar{B}_y = \gamma \left(B_y + \frac{v}{c^2} E_z \right), \quad \bar{B}_z = \gamma \left(B_z - \frac{v}{c^2} E_y \right) \qquad (\upsilon : \bar{S} \text{ relative to } S)$$

where
$$\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$$

$$\bar{E}_x = E_x, \quad \bar{E}_y = \gamma (E_y - vB_z), \quad \bar{E}_z = \gamma (E_z + vB_y),$$

$$\bar{E}_x = E_x, \quad \bar{E}_y = \gamma (E_y - vB_z), \quad \bar{E}_z = \gamma (E_z + vB_y), \quad \text{where } \gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$$
 $\bar{B}_x = B_x, \quad \bar{B}_y = \gamma \left(B_y + \frac{v}{c^2} E_z \right), \quad \bar{B}_z = \gamma \left(B_z - \frac{v}{c^2} E_y \right) \quad \left(\upsilon \colon \bar{S} \text{ relative to } S \right)$

where
$$\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$$

Two special cases:

(1) If B = 0 in S frame, $(E \neq 0)$;

$$\bar{\mathbf{B}} = \gamma \frac{v}{c^2} (E_z \,\hat{\mathbf{y}} - E_y \,\hat{\mathbf{z}})$$
or, since $\mathbf{E}^{\perp} = \gamma_0 \mathbf{E}_0^{\perp} \longrightarrow \bar{\mathbf{B}} = \frac{v}{c^2} (\bar{E}_z \,\hat{\mathbf{y}} - \bar{E}_y \,\hat{\mathbf{z}})$
or, since $\mathbf{v} = v \,\hat{\mathbf{x}}, \longrightarrow \bar{\mathbf{B}} = -\frac{1}{c^2} (\mathbf{v} \times \bar{\mathbf{E}})$

(2) If E = 0 in S frame, $(B \neq 0)$;

$$\bar{\mathbf{E}} = -\gamma v(B_z \,\hat{\mathbf{y}} - B_y \,\hat{\mathbf{z}}) = -v(\bar{B}_z \,\hat{\mathbf{y}} - \bar{B}_y \,\hat{\mathbf{z}}) \longrightarrow \bar{\mathbf{E}} = \mathbf{v} \times \bar{\mathbf{B}}$$

→ If either E or B is zero (at a particular point) in *one* system, then in any other system the fields (at that point) are very simply related.

12.3.3 The Field Tensor $F^{\mu u}$

$$\bar{E}_x = E_x, \quad \bar{E}_y = \gamma (E_y - vB_z), \quad \bar{E}_z = \gamma (E_z + vB_y),$$

$$\bar{B}_x = B_x, \quad \bar{B}_y = \gamma \left(B_y + \frac{v}{c^2} E_z \right), \quad \bar{B}_z = \gamma \left(B_z - \frac{v}{c^2} E_y \right)$$

The components of **E** and **B** are stirred together when you go from one inertial system to another.

- → What sort of an object is this, which has six components and transforms according to the above relations?
- → It's an antisymmetric, second-rank tensor.

Lorentz transformation matrix

Remember that a 4-vector transforms by the rule
$$\Rightarrow$$
 $\bar{a}^{\mu} = \Lambda^{\mu}_{\nu} a^{\nu}$ $\Lambda = \begin{pmatrix} \gamma & -\gamma\beta & 0 & 0 \\ -\gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

A (second-rank) tensor is an object with *two* indices, which transform with *two* factors of Λ (one for each index):

$$\tilde{t}^{\mu\nu} = \Lambda^{\mu}_{\lambda} \Lambda^{\nu}_{\sigma} t^{\lambda\sigma}$$

A tensor (in 4 dimensions) has $4 \times 4 = 16$ components, which we can display in a 4×4 array:

$$t^{\mu\nu} = \left\{ \begin{array}{cccc} t^{00} & t^{01} & t^{02} & t^{03} \\ t^{10} & t^{11} & t^{12} & t^{13} \\ t^{20} & t^{21} & t^{22} & t^{23} \\ t^{30} & t^{31} & t^{32} & t^{33} \end{array} \right\}$$

However, the 16 elements need not all be different.

The Field Tensor $F^{\mu u}$

$$\bar{t}^{\mu\nu} = \Lambda^{\mu}_{\lambda} \Lambda^{\nu}_{\sigma} t^{\lambda\sigma} \qquad t^{\mu\nu} = \begin{cases} t^{00} & t^{01} & t^{02} & t^{03} \\ t^{10} & t^{11} & t^{12} & t^{13} \\ t^{20} & t^{21} & t^{22} & t^{23} \\ t^{30} & t^{31} & t^{32} & t^{33} \end{cases}$$

 $t^{\mu\nu} = t^{\nu\mu}$ (symmetric tensor) \rightarrow 10 distinct elements

 $t^{\mu\nu} = -t^{\nu\mu}$ (antisymmetric tensor) \rightarrow 6 distinct elements, and four are zero $(t^{00}, t^{11}, t^{22}, \text{ and } t^{33})$

Thus, the general antisymmetric tensor has the form

$$t^{\mu\nu} = \left\{ \begin{array}{cccc} 0 & t^{01} & t^{02} & t^{03} \\ -t^{01} & 0 & t^{12} & t^{13} \\ -t^{02} & -t^{12} & 0 & t^{23} \\ -t^{03} & -t^{13} & -t^{23} & 0 \end{array} \right\}$$

$$\bar{t}^{\mu\nu} = \Lambda^{\mu}_{\lambda} \Lambda^{\nu}_{\sigma} t^{\lambda\sigma}$$

Let's see how the transformation rule works, for the six distinct components of an antisymmetric tensor.

$$\begin{split} \vec{t}^{01} &= \Lambda_{\lambda}^{0} \Lambda_{\sigma}^{1} t^{\lambda \sigma} \\ \Lambda_{\lambda}^{0} &= 0 \text{ unless } \lambda = 0 \text{ or } 1, \text{ and } \Lambda_{\sigma}^{1} = 0 \text{ unless } \sigma = 0 \text{ or } 1. \\ \vec{t}^{01} &= \Lambda_{0}^{0} \Lambda_{0}^{1} t^{00} + \Lambda_{0}^{0} \Lambda_{1}^{1} t^{01} + \Lambda_{1}^{0} \Lambda_{0}^{1} t^{10} + \Lambda_{1}^{0} \Lambda_{1}^{1} t^{11} \\ t^{00} &= t^{11} = 0, \text{ while } t^{01} = -t^{10}, \end{split}$$

$$\vec{t}^{01} &= (\Lambda_{0}^{0} \Lambda_{1}^{1} - \Lambda_{1}^{0} \Lambda_{0}^{1}) t^{01} = (\gamma^{2} - (\gamma \beta)^{2}) t^{01} = t^{01} \end{split}$$

The Field Tensor $F^{\mu u}$

Lorentz transformation of an antisymmetric tensor: $\tilde{t}^{\mu\nu} = \Lambda^{\mu}_{\lambda} \Lambda^{\nu}_{\sigma} t^{\lambda\sigma}$

$$t^{\mu\nu} = \left\{ \begin{array}{cccc} 0 & t^{01} & t^{02} & t^{03} \\ -t^{01} & 0 & t^{12} & t^{13} \\ -t^{02} & -t^{12} & 0 & t^{23} \\ -t^{03} & -t^{13} & -t^{23} & 0 \end{array} \right\} \qquad \Lambda = \left(\begin{array}{cccc} \gamma & -\gamma\beta & 0 & 0 \\ -\gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right)$$

The complete set of transformation rules is

Now we can construct the **field tensor** $F_{\mu\nu}$ by direct comparison:

$$\bar{E}_x = E_x, \quad \bar{E}_y = \gamma (E_y - vB_z), \qquad \bar{E}_z = \gamma (E_z + vB_y),
\bar{B}_x = B_x, \quad \bar{B}_y = \gamma \left(B_y + \frac{v}{c^2} E_z \right), \quad \bar{B}_z = \gamma \left(B_z - \frac{v}{c^2} E_y \right)$$

$$F^{01} \equiv \frac{E_x}{c}, \quad F^{02} \equiv \frac{E_y}{c}, \quad F^{03} \equiv \frac{E_z}{c}, \quad F^{12} \equiv B_z, \quad F^{31} \equiv B_y, \quad F^{23} \equiv B_x.$$

The Field Tensor

$$F^{\mu
u}$$

$$F^{\mu\nu} = \begin{cases} 0 & E_x/c & E_y/c & E_z/c \\ -E_x/c & 0 & B_z & -B_y \\ -E_y/c & -B_z & 0 & B_x \\ -E_z/c & B_y & -B_x & 0 \end{cases} \qquad \underbrace{\mathbf{E}/c \to \mathbf{B}}_{\mathbf{B} \to -\mathbf{E}/c} \to \mathbf{G}^{\mu\nu} = \begin{cases} 0 & B_x & B_y & B_z \\ -B_x & 0 & -E_z/c & E_y/c \\ -B_y & E_z/c & 0 & -E_x/c \\ -B_z & -E_y/c & E_x/c & 0 \end{cases}$$

Dual tensor

Properties

Antisymmetry: $F^{\mu\nu} = -F^{\nu\mu}$

Six independent components: In Cartesian coordinates, the three spatial components of (E_x, E_y, E_z) and (B_x, B_y, B_z) .

Inner product: If one forms an inner product of the field strength tensor a Lorentz invariant is formed

$$F_{\mu\nu}F^{\mu\nu} = 2\left(B^2 - \frac{E^2}{c^2}\right)$$

→ meaning this number does not change from one frame of reference to another.

Pseudoscalar invariant: The product of the tensor (F**) with its dual tensor (G***) gives the Lorentz invariant:

$$G_{\gamma\delta}F^{\gamma\delta} = \frac{1}{2}\epsilon_{\alpha\beta\gamma\delta}F^{\alpha\beta}F^{\gamma\delta} = -\frac{4}{c}\left(\mathbf{B}\cdot\mathbf{E}\right)$$

Determinant: $\det(F) = \frac{1}{c^2} (\mathbf{B} \cdot \mathbf{E})^2$

12.3.4 Electrodynamics in Tensor Notation $F^{\mu u}$

$$F^{\mu\nu} = \left\{ \begin{array}{cccc} 0 & E_x/c & E_y/c & E_z/c \\ -E_x/c & 0 & B_z & -B_y \\ -E_y/c & -B_z & 0 & B_x \\ -E_z/c & B_y & -B_x & 0 \end{array} \right\} \qquad \overline{F}^{\mu\nu} = \Lambda^{\mu}_{\lambda} \Lambda^{\nu}_{\sigma} F^{\lambda\sigma}$$

To begin with, we must determine how the *sources* of the fields, ρ and $\bf J$, transform.

Imagine a cloud of charge drifting by, we concentrate on an infinitesimal volume V, which contains charge Q moving at velocity \mathbf{u} .

charge density
$$\rightarrow \rho = \frac{Q}{V}$$
 current density $\rightarrow \mathbf{J} = \rho \mathbf{u}$

The charge density in the rest system of the charge: $\rho_0 = \frac{Q}{V_0}$

$$V = \sqrt{1 - u^2/c^2} \ V_0 \qquad \qquad \rho = \rho_0 \frac{1}{\sqrt{1 - u^2/c^2}} \ J = \rho_0 \frac{\mathbf{u}}{\sqrt{1 - u^2/c^2}}$$

$$\eta = \frac{1}{\sqrt{1 - u^2/c^2}} \mathbf{u}$$

$$\eta^0 = \frac{c}{\sqrt{1 - u^2/c^2}} \qquad \qquad J^\mu = (c\rho, J_X, J_Y, J_Z,) \Rightarrow \text{current density 4-vector.}$$

Continuity equation in Tensor Notation

Transformation of the charge density and current density

$$J^{\mu}=\rho_0\eta^{\mu}$$

$$J^{\mu}=(c\rho,J_{\rm X},J_{\rm Y},J_{\rm Z},)\ o {\rm current\ density\ 4-vector.}$$

The **continuity equation** in terms of J^{μ}

→ The current density 4-vector is divergenceless.

Current density 4-vector (charge and current densities) $J^{\mu}=\rho_0\eta^{\mu}=(c\rho,J_x,J_y,J_z,)$

Continuity equation
$$\nabla \cdot \mathbf{J} = -\frac{\partial \rho}{\partial t}$$
 \longrightarrow $\frac{\partial J^{\mu}}{\partial x^{\mu}} = 0$.

Maxwell's Equations in Tensor Notation:

$$F^{\mu\nu} = \left\{ \begin{array}{cccc} 0 & E_x/c & E_y/c & E_z/c \\ -E_x/c & 0 & B_z & -B_y \\ -E_y/c & -B_z & 0 & B_x \\ -E_z/c & B_y & -B_x & 0 \end{array} \right\} \qquad G^{\mu\nu} = \left\{ \begin{array}{cccc} 0 & B_x & B_y & B_z \\ -B_x & 0 & -E_z/c & E_y/c \\ -B_y & E_z/c & 0 & -E_x/c \\ -B_z & -E_y/c & E_x/c & 0 \end{array} \right\}$$

$$\frac{\partial F^{\mu\nu}}{\partial x^{\nu}} = \mu_0 J^{\mu}, \quad \frac{\partial G^{\mu\nu}}{\partial x^{\nu}} = 0.$$
 \longrightarrow 4 Maxwell's Equations

$$\frac{\partial F^{\mu\nu}}{\partial x^{\nu}} = \mu_0 J^{\mu}$$

If
$$\mu$$
 = 0, Gauss's law:
$$\frac{\partial F^{0\nu}}{\partial x^{\nu}} = \mu_0 J^0 \longrightarrow \nabla \cdot \mathbf{E} = \frac{1}{\epsilon_0} \rho$$

$$\frac{\partial F^{0\nu}}{\partial x^{\nu}} = \frac{\partial F^{00}}{\partial x^0} + \frac{\partial F^{01}}{\partial x^1} + \frac{\partial F^{02}}{\partial x^2} + \frac{\partial F^{03}}{\partial x^3} = \frac{1}{c} \left(\frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} \right) = \frac{1}{c} (\nabla \cdot \mathbf{E})$$

$$\mu_0 J^0 = \mu_0 c \rho$$

If μ = 1, 2, and 3, Ampere's law with Maxwell's correction: $\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t}$

$$\frac{\partial F^{1\nu}}{\partial x^{\nu}} = \frac{\partial F^{10}}{\partial x^{0}} + \frac{\partial F^{11}}{\partial x^{1}} + \frac{\partial F^{12}}{\partial x^{2}} + \frac{\partial F^{13}}{\partial x^{3}} = -\frac{1}{c^{2}} \frac{\partial E_{x}}{\partial t} + \frac{\partial B_{z}}{\partial y} - \frac{\partial B_{y}}{\partial z} = \left(-\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t} + \mathbf{\nabla} \times \mathbf{B}\right)_{x}$$

 $\mu_0 J^1 = \mu_0 J_x$ Combine this with the corresponding results for $\mu = 2$ and 3.

Maxwell's Equations in Tensor Notation:

$$F^{\mu\nu} = \left\{ \begin{array}{cccc} 0 & E_x/c & E_y/c & E_z/c \\ -E_x/c & 0 & B_z & -B_y \\ -E_y/c & -B_z & 0 & B_x \\ -E_z/c & B_y & -B_x & 0 \end{array} \right\} \qquad G^{\mu\nu} = \left\{ \begin{array}{cccc} 0 & B_x & B_y & B_z \\ -B_x & 0 & -E_z/c & E_y/c \\ -B_y & E_z/c & 0 & -E_x/c \\ -B_z & -E_y/c & E_x/c & 0 \end{array} \right\}$$

$$\frac{\partial G^{\mu\nu}}{\partial x^{\nu}} = 0 \quad \Box$$

If
$$\mu = 0$$
, $\longrightarrow \frac{\partial G^{0\nu}}{\partial x^{\nu}} = 0$ $\longrightarrow \nabla \cdot \mathbf{B} = 0$

$$\frac{\partial G^{0\nu}}{\partial x^{\nu}} = \frac{\partial G^{00}}{\partial x^{0}} + \frac{\partial G^{01}}{\partial x^{1}} + \frac{\partial G^{02}}{\partial x^{2}} + \frac{\partial G^{03}}{\partial x^{3}} = \frac{\partial B_{x}}{\partial x} + \frac{\partial B_{y}}{\partial y} + \frac{\partial B_{z}}{\partial z} = \nabla \cdot \mathbf{B} = 0$$

If
$$\mu$$
 = 1, 2, and 3, Faraday's law: $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$

$$\frac{\partial G^{1\nu}}{\partial x^{\nu}} = \frac{\partial G^{10}}{\partial x^{0}} + \frac{\partial G^{11}}{\partial x^{1}} + \frac{\partial G^{12}}{\partial x^{2}} + \frac{\partial G^{13}}{\partial x^{3}}$$

$$= -\frac{1}{c} \frac{\partial B_{x}}{\partial t} - \frac{1}{c} \frac{\partial E_{z}}{\partial y} + \frac{1}{c} \frac{\partial E_{y}}{\partial z} = -\frac{1}{c} \left(\frac{\partial \mathbf{B}}{\partial t} + \mathbf{\nabla} \times \mathbf{E} \right)_{x} = 0$$

Combine this with the corresponding results for μ = 2 and 3.

Minkowski force in Tensor Notation

$$F^{\mu\nu} = \begin{cases} 0 & E_x/c & E_y/c & E_z/c \\ -E_x/c & 0 & B_z & -B_y \\ -E_y/c & -B_z & 0 & B_x \\ -E_z/c & B_y & -B_x & 0 \end{cases} \qquad G^{\mu\nu} = \begin{cases} 0 & B_x & B_y & B_z \\ -B_x & 0 & -E_z/c & E_y/c \\ -B_y & E_z/c & 0 & -E_x/c \\ -B_z & -E_y/c & E_x/c & 0 \end{cases}$$

 $K^{\mu} = q \, \eta_{
u} F^{\mu
u}$: Minkowski force (Lorentz force in relativistic notation)

If
$$\mu = 1$$
, $K^1 = q\eta_{\nu}F^{1\nu} = q(-\eta^0F^{10} + \eta^1F^{11} + \eta^2F^{12} + \eta^3F^{13})$

$$= q\left[\frac{-c}{\sqrt{1 - u^2/c^2}}\left(\frac{-E_x}{c}\right) + \frac{u_y}{\sqrt{1 - u^2/c^2}}(B_z) + \frac{u_z}{\sqrt{1 - u^2/c^2}}(-B_y)\right]$$

$$= \frac{q}{\sqrt{1 - u^2/c^2}}[\mathbf{E} + (\mathbf{u} \times \mathbf{B})]_{x}$$

With a similar formula for $\mu = 2$, and 3,

$$K^{\mu} = q \eta_{\nu} F^{\mu\nu}$$
 \longrightarrow $\mathbf{K} = \frac{q}{\sqrt{1 - u^2/c^2}} [\mathbf{E} + (\mathbf{u} \times \mathbf{B})]$

→ Lorentz force law in relativistic notation

12.3.5 Relativistic Potentials

$$F^{\mu\nu} = \begin{cases} 0 & E_x/c & E_y/c & E_z/c \\ -E_x/c & 0 & B_z & -B_y \\ -E_y/c & -B_z & 0 & B_x \\ -E_z/c & B_y & -B_x & 0 \end{cases} \qquad G^{\mu\nu} = \begin{cases} 0 & B_x & B_y & B_z \\ -B_x & 0 & -E_z/c & E_y/c \\ -B_y & E_z/c & 0 & -E_x/c \\ -B_z & -E_y/c & E_x/c & 0 \end{cases}$$

$$F^{\mu\nu} = \frac{\partial A^{\nu}}{\partial x_{\mu}} - \frac{\partial A^{\mu}}{\partial x_{\nu}} \longrightarrow \mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t}, \quad \mathbf{B} = \nabla \times \mathbf{A}$$

 $A^{\mu} = (V/c, A_x, A_y, A_z)$: 4-vector potential

For
$$\mu = 0$$
, $\nu = 1$ (2,3):
$$\mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t}$$
$$F^{01} = \frac{\partial A^{1}}{\partial x_{0}} - \frac{\partial A^{0}}{\partial x_{1}} = -\frac{\partial A_{x}}{\partial (ct)} - \frac{1}{c} \frac{\partial V}{\partial x} = -\frac{1}{c} \left(\frac{\partial \mathbf{A}}{\partial t} + \nabla V \right)_{x} = \frac{E_{x}}{c}$$

For
$$\mu = 1$$
, $\nu = 2$ ($\mu = 1$, $\nu = 2$) ($\mu = 2$, $\nu = 3$): \longrightarrow $\mathbf{B} = \nabla \times \mathbf{A}$

$$F^{12} = \frac{\partial A^2}{\partial x_1} - \frac{\partial A^1}{\partial x_2} = \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} = (\nabla \times \mathbf{A})_z = B_z$$

Relativistic Potentials

$$F^{\mu\nu} = \begin{cases} 0 & E_x/c & E_y/c & E_z/c \\ -E_x/c & 0 & B_z & -B_y \\ -E_y/c & -B_z & 0 & B_x \\ -E_z/c & B_y & -B_x & 0 \end{cases} \qquad G^{\mu\nu} = \begin{cases} 0 & B_x & B_y & B_z \\ -B_x & 0 & -E_z/c & E_y/c \\ -B_y & E_z/c & 0 & -E_x/c \\ -B_z & -E_y/c & E_x/c & 0 \end{cases}$$

$$F^{\mu\nu} = \frac{\partial A^{\nu}}{\partial x_{\mu}} - \frac{\partial A^{\mu}}{\partial x_{\nu}} \xrightarrow{A^{\mu} = (V/c, A_x, A_y, A_z)} \mathbf{E} = -\nabla V - \frac{\partial \mathbf{A}}{\partial t}, \quad \mathbf{B} = \nabla \times \mathbf{A}$$

Maxwell's Equations

$$\frac{\partial F^{\mu\nu}}{\partial x^{\nu}} = \mu_0 J^{\mu} \qquad \qquad \frac{\partial}{\partial x_{\mu}} \left(\frac{\partial A^{\nu}}{\partial x^{\nu}} \right) - \frac{\partial}{\partial x_{\nu}} \left(\frac{\partial A^{\mu}}{\partial x^{\nu}} \right) = \mu_0 J^{\mu}$$

The Lorentz gauge condition in relativistic notation,

$$\nabla \cdot \mathbf{A} = -\frac{1}{c^2} \frac{\partial V}{\partial t} \longrightarrow \frac{\partial A^{\nu}}{\partial x^{\nu}} = 0.$$

In the Lorentz gauge, Maxwell's Equations reduces to,

$$\frac{\partial}{\partial x_{\nu}} \left(\frac{\partial A^{\mu}}{\partial x^{\nu}} \right) = -\mu_0 J^{\mu} \qquad \longrightarrow \qquad \Box^2 A^{\mu} = -\mu_0 J^{\mu}$$

(d' Alembertian)
$$\Box^2 \equiv \frac{\partial}{\partial x_{\nu}} \frac{\partial}{\partial x^{\nu}} = \nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}$$
 The most elegant (and the simplest) formulation of Maxwell's equations

Introduction to Electrodynamics, David J. Griffiths

- 1. Vector analysis
- 2. Electrostatics
- 3. Special techniques
- 4. Electric fields in mater
- 5. Magnetostatics
- 6. Magnetic fields in matter
- 7. Electrodynamics
- 8. Conservation laws
- 9. Electromagnetic waves
- 10. Potentials and fields
- 11. Radiation
- 12. Electrodynamics and relativity

$$\Box^2 A^\mu = -\mu_0 J^\mu$$

$$\Box^2 \equiv \frac{\partial}{\partial x_{\nu}} \frac{\partial}{\partial x^{\nu}} = \nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}$$

$$A^{\mu} = (V/c, A_x, A_y, A_z)$$

4-vector potential

$$J^{\mu} = (c\rho, J_x, J_y, J_z,)$$
4-vector density