Claims

1	1.	A met	hod for determining the quality of a formation fluid sample comprising:
2		(a)	conveying a tool into a borehole on a work string, the borehole traversing a
3			subterranean formation containing formation fluid under pressure, the
4			borehole and work string having an annulus between the borehole wall and
5			work string, the annulus being filled with a pressurized fluid containing the
6			formation fluid;
7		(b)	sealing a portion of the annulus by extending at least one selectively
8			extendable device disposed on the tool;
9		(c)	exposing a port to the sealed portion of the annulus, the port being in fluid
10			communication with a test volume created by (a) and (b), the test volume
11			containing a fluid including the formation fluid;
12		(d)	increasing the test volume at a first rate with a volume control device until the
13			test volume pressure falls below formation pressure; and
14		(e)	sensing at least one characteristic of the fluid using a test device at least twice
15			while the test volume is being increased at the first rate.
1	2.	The m	nethod of claim 1 wherein the at least one parameter of interest is selected from
2		a gro	oup consisting of (i) permeability, (ii) mobility, (iii) fluid compressibility,
3		(iv) co	ontact points, and (v) pressure.

3.

The method of claim 2 further comprising:

plotting the parameter of interest versus time to determine the quality of a sample. 2 4. The method of claim 2 further comprising: 1 matching a pumping rate to the parameter of interest to ensure single sample 2 acquisition. 3 5. The method of claim 2 further comprising: 1 detecting a pumping problem based on the parameter of interest. 2 6. The method of claim 2, further comprising: 1 determining a correlation coefficient for pressure; and 2 detecting a pumping problem based on the correlation coefficient. 3 l 7. The method of claim 3, further comprising: monitoring a parameter of interest versus time to determining formation cleanup. 2 The method of claim 3 wherein sensing at least one characteristic of the fluid includes 8. 1 a characteristic selected from the group consisting of (i) pressure, (ii) temperature, 2 (iii) volume, (iv) change in volume, (v) volume change rate, and (vi) compressibility. 3 9. The method of claim 3 further comprising: i monitoring a parameter of interest versus time to determine whether a formation 2 sample is in a single phase state. 3

1	10.	An ap	paratus for determining at least one parameter of interest of a subterranean		
2		forma	formation, the formation having a borehole drilled therein traversing a reservoir		
3		contai	ning formation fluid under pressure, the apparatus comprising:		
4		(a)	a tool conveyable into the borehole on a work string, the borehole and work		
5			string having an annulus between the borehole wall and work string, the		
6			annulus being filled with a fluid;		
7		(b)	at least one selectively extendable device disposed on the tool to seal a portion		
8			of the annulus;		
9		(c)	a port exposable to the sealed portion of annulus;		
10		(d)	a test volume in fluid communication with the port, the test volume containing		
11			at least some formation fluid;		
12		(e)	a volume control device for varying the volume of the test volume to at		
13			plurality of predetermined rates including non-zero rates;		
14		(f)	a test device capable of sensing at least one characteristic of the fluid at least		
15			twice while the test volume is being increased each of the plurality of rates;		
16			and		
17		(g)	a processor capable of using the at least one sensed characteristic to modify		
18			each of the plurality of predetermined rates.		

11. An apparatus according to claim 10 wherein the fluid volume control device includes at least one pump.

1

- 1 12. An apparatus according to claim 10 wherein the at least one parameter of interest is 2 selected from a group consisting of (i) pressure, (ii) permeability, (iii) mobility, (iv) fluid 3 compressibility, (v) temperature and (vi) contact points.
- 1 13. An apparatus according to claim 10 wherein the at least one sensor is selected from the group consisting of (i) a pressure sensor; (ii) a volume sensor, and (iii) a temperature sensor.
- 1 14. An apparatus according to claim 10 wherein the at least one sensor is at least two sensors, the at least two sensors comprising a pressure sensor and a volume sensor.
 - 15. An apparatus according to claim 10 wherein the at least one sensor is at least three sensors, the at least three sensors comprising a pressure sensor, a volume sensor, and a temperature sensor.
 - 16. An apparatus according to claim 11 further comprising:
 - (i) a first controller disposed at a surface location for initial activation of the volume control.device;
 - (ii) a two way communication system for transmitting test initiation commands downhole and for transmitting data up hole; and
 - (iii) a second controller disposed downhole for determining each of the plurality of rates.

1

2

3

1

2

3

4

5

6

1	17.	An apparatus according to claim 16 wherein the second controller further comprises a
2	proces	sor and an algorithm installed in the processor for computing the formation pressure
3	based	on the sensed fluid characteristics.

- 18. An apparatus according to claim 16 further comprising a processor for matching a pumping rate to mobility.
- 19. An apparatus according to claim 16 further comprising a processor for detecting a pumping problem based on the parameter of interest.
 - 20. An apparatus according to claim 16, further comprising: a processor for determining a correlation coefficient and detecting a pumping problem based on the correlation coefficient.
 - 21. A computer readable medium containing instruction that when executed by a computer, perform a method for determining the quality of a formation fluid sample comprising:
 - (a) conveying a tool into a borehole on a work string, the borehole traversing a subterranean formation containing formation fluid under pressure, the borehole and work string having an annulus between the borehole wall and work string, the annulus being filled with a pressurized fluid containing the formation fluid;
 - (b) sealing a portion of the annulus by extending at least one selectively extendable device disposed on the tool;

ì

2

1

2

1

2

l

2

3

4

5

6

7

8

9

11	(c)	exposing a port to the sealed portion of the annulus, the port being in fluid
12		communication with a test volume created by (a) and (b), the test volume
13		containing a fluid including the formation fluid;
14	(d)	increasing the test volume at a first rate with a volume control device until the
15		test volume pressure falls below formation pressure; and
16	(e)	sensing at least one of (i) permeability, (ii) mobility, (iii) fluid compressibility,
17		(iv) contact points, and (v) pressure of the fluid using a test device at least

quality of the formation fluid sample.

twice while the test volume is being increased at the first rate to determine the

18