Определение моментов инерции твёрдых тел с помощью трифилярного подвеса

Выполнил студент группы Б03-302: Танов Константин

1 Цель работы:

Измерение момента инерции ряда тел и сравнение результатов с расчётами по теоретическим формулам; проверка аддитивности моментов инерции и справедливости формулы Гюйгенса-Штейнера.

2 Оборудование:

Трифилярный подвес, секундомер, счйтчик числа колебаний, набор тел, момент инерции которых надлежит измерить (брусок, кольцо, цилиндр и другие).

Рис. 1: Физический маятник

Для наших целей удобно использовать устройство, показанное на Pис. 1 и называемое трифилярным подвесом. Оно состоит из укрепленной на некоторой высоте неподвижной платформы P и подвешенной к ней на трех симметрично расположеных нитях AA', BB' и CC', вращающейся платформы P'.

Чтобы не вызывать дополнительных раскачиваний, лучше поворачивать верхнюю платформу, укрепленную на неподвижной оси. После поворота верхняя платформа остается неподвижной в течение всего процесса колебний. После того, как нижняя платформа P' оказывается повернутой на угол φ относительно верхней платформы P,

вощникает момент сил, стремящийся вернуть нижнюю платформу в положение равновесия, при котором относительный поворот платформ отсутствует. В результате платформа совершает крутильные колебания.

3 Теоретические сведения

Инерционность при вращении тела относительно оси определяется моментом инерции тела относительно этой оси. Момент инерции твердого тела относительно неподвижной оси вращения вычисляется по формуле:

$$I = \int r^2 dm \tag{1}$$

Здесь r — расстояние элемента массы тела dm от оси вращения. Интегрирование проводится по всей массе тела m.

Если пренебречь потерями энергии на трение о воздух и крепление нитей, то уравнение сохранения энергии при коебаниях можно записать следующим образом:

$$\frac{I\dot{\varphi}^2}{2} + mg(z_0 - z) = E \tag{2}$$

Здесь I — момент инерции платформы вместе с исследуемым телом, m — масса платформы с телом, φ — угол поворота платформы от положения равновесия системы, z_0 — координата по вертикали центра нижней платформы O' при равновесии ($\varphi=0$), z — координата той же точки при некотором угле поворота φ . Превый член в левой части уравнения — кинетическач энергия вращения, второй член — потенциальная энергия в поле тяжести, E — полная энергия системы (платформы с телом).

Воспользуемся системой координат x,y,z, связанной с верхней платформой, как показано на Рис. 1. Координаты верхнего конца одной из нитей подвеса точки C в этой системе -(r,0,0). Нижний конец данной нити C', находящийся на нижней платформе, при равновесии имеет координаты $(R,0,z_0)$, а при повороте платформы на угол φ эта точка переходит в C'' с координатами $(R\cos\varphi,R\sin\varphi,z)$. расстояние между точками C и C'' равно длине нити, поэтому, после некоторых преобразований, получаем:

$$(R\cos\phi - r)^2 + R^2\sin^2\phi + z^2 = L^2$$

$$z^2 = L^2 - R^2 - r^2 + 2Rr\cos\phi \approx z_0^2 - 2Rr(1 - \cos\phi) \approx z_0^2 - Rr\phi^2$$

$$z = \sqrt{z_0^2 - Rr\phi^2} \approx z_0 - \frac{Rr\phi^2}{2z_0}$$

Подставляя z в уравнение (2), получаем:

$$\frac{1}{2}I\dot{\varphi}^2 + mg\frac{Rr}{2z_0}\varphi^2 = E \tag{3}$$

Дифференцируя по времени и сокращая на $\dot{\varphi}$, находим уравнение крутильных колебаний системы:

$$I\ddot{\varphi}^2 + mg\frac{Rr}{2z_0}\varphi^2 = 0\tag{4}$$

Производная по времени от E равна нулю, так как потерями на трение, как уже было сказано выше, пренебрегаем.

Решение этого уравнения имеет вид:

$$\varphi = \varphi_0 \sin\left(\sqrt{\frac{mgRr}{Iz_0}}t + \theta\right) \tag{5}$$

Здесь амплитуда φ_0 и фаза θ колебаний определяются начальными условиями. Период кртуильных полебаний нашей системы равен:

$$T = 2\pi \sqrt{\frac{Iz_0}{mgRr}} \tag{6}$$

Из формулы для периода получаем:

$$I = \frac{mgRrT^2}{4\pi^2 z_0} = kmT^2 \tag{7}$$

где $k = \frac{gRr}{4\pi^2z_0}$ — величина, постоянная для данной установки.

4 Ход работы

1. При возбуждении крутильных колебаний маятникообразных движений платформы не наблюдается – устройство функционирует нормально.

При выводе формул мы предполагали, что потери энергии, связанные с трением, малы, то есть мало затухание колебаний. Это значит, что теоретические вычисления будут верны, если выполняется условие:

$$\tau \gg T$$
 (8)

Проверим данное условие. Амплитуду необходимо уменьшать до тех пор, пока период колебаний не перестанет зависеть от амплитуды. При отклонении на угол $\alpha \approx 30^\circ$ время, за которое амплитуда уменьшится в 2 раза, $\tau \approx 87,33\mathrm{c}$, а $T \approx 4,4~\mathrm{c}$. Соотношение выполняется – установка пригодна для проведение эксперимента. Рабочий диапазон начинается с 20 колебаний.

2. Измеряем параметры установки: z_0 , R и г. Результаты вместе с погрешностями, обусловленными инструментальными погрешностями приборов заносим в таблицу 1.

m, г	R, mm	r, MM	L, cm	z_0 , cm
1066,8	114,6	30,2	215,6	215,4
σ_m , Γ	σ_R , MM	σ_r , MM	σ_L , cm	σ_{z_0} , cm
0,5	0,5	0,3	0,1	0,1

Таблица 1: Парметры установки

где z_0 вычисляется по формуле:

$$z_0 = \sqrt{L^2 - (R - r)^2} \approx 198,39 \pm 0,1$$
cm

По полученным данным вычисляем константу установки k, входящую в формулу 7. Получается, что $k=4,42\cdot 10^{-4}\frac{\text{M}^2}{\text{c}^2}.$ A её погрешность по формуле:

$$\sigma_k = k \cdot \sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(\frac{\sigma_r}{r}\right)^2 + \left(\frac{\sigma_{z_0}}{z_0}\right)^2} \approx 0,048 \cdot 10^{-4} \frac{M^2}{c^2}$$

3. Определить момент инерции платформы можно по формуле (7). Для этого нам необходимо определить период колебаний ненагруженной платформы. Измеряем преиод, получаем:

$N_{\overline{0}}$	Количество полных колебаний	Время колебаний – t_n , с	Период колебаний – T , с	
1	20	87,73	4,387	
2	20	87,33	4,367	

Тогда, средний период колебания платформы будет: $\overline{T}\approx 4,377$ с Давайте здесь же и определим погрешность времени:

$$\sigma_T^{\rm cuct}=0,001{\rm c}$$

$$\sigma_T^{\text{случ}} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^n (T_i - \overline{T})^2} \approx 0,01c$$

$$\sigma_T = \sqrt{\sigma_{\text{случ}}^2 + \sigma_{\text{сист}}^2} \approx 0,01c$$

Значит $T = (4, 38 \pm 0, 01)$ с. Теперь мы можем определить момен инерции платформы:

$$I_{\text{пл}} = kmT^2 \approx 9,046 \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

Найдем погрешность найденного нами момента инерции платформы:

$$\sigma_{I_{\text{пл}}} = I_{\text{пл}} \cdot \sqrt{\left(\frac{\sigma_k}{k}\right)^2 + \left(\frac{\sigma_m}{m}\right)^2 + \left(2\frac{\sigma_T}{T}\right)^2} \approx 0,107 \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$

Получаем момент инерции для платформы $I_{\rm пл} = (9,046 \pm 0,107) \cdot 10^{-3} {\rm kr} \cdot {\rm m}^2$

4. Измерим периоды колебаний платформы с различными телами таким же образом, как и для ненагруженной платформы, а именно – 5 измерений по 20 колебаний для каждого набора тел, получаем:

Набор тел	t, c	T, c	σ_T	т, г	$I \cdot 10^{-3}$ кг · м ²	$\sigma_I \cdot 10^{-3} \mathrm{kg \cdot m}^2$
Платформа и брусок	73,95	3,697	0,045	2339,8	14,135	0,377
Платформа и кольцо	84,33	4,216	0,045	1887,9	14,832	0,355
Платформа и кольцо и брусок	75,96	3,798	0,045	3160,9	20,153	0,525

Таблица 2: Моменты инерции платформы с различными телами

Для подтверждения аддитивности необходимо показать, что выполняется:

$$I_{\Pi\Pi+6+K} = I_{\Pi\Pi+6} + I_{\Pi\Pi+K} - I_{\Pi\Pi}$$

Так как $(20, 153\pm0, 525) = (14, 832\pm0, 355) + (14, 135\pm0, 377) - (9, 046\pm0, 107) = (19, 921\pm0, 625)$, то моменты инерции аддитивны.

Теперь можно эксперементально рачитать моменты инерции кольца и бруска:

$$I_{\text{K}} = I_{\text{ПЛ}+\text{K}} - I_{\text{ПЛ}} = (5,786 \pm 0,248), \text{ KF} \cdot \text{M}^2 \cdot 10^{-3}$$

 $I_{6} = I_{\text{ПЛ}+6} - I_{\text{ПЛ}} = (5,089 \pm 0,270), \text{ KF} \cdot \text{M}^2 \cdot 10^{-3}$

Теперь сравним полученные нами моменты инерциии для тел, и их теоретические значения. Для кольца момент инерции вычисляется как: $I_{\kappa} = m_{\kappa}R_{\kappa}^2$. Радиус данного кольца $R_{\kappa} = 0,0825$ м, тогда $I_{\rm ц} = 5,589\cdot10^{-3}$ кг · м², что подтверждает экспериментальное значение в пределах погрешности.

Для бруска момент инерции высчитывается по формуле: $I_6 = \frac{m_6}{12}(a^2 + l^2) = 4,767\cdot 10^{-3}~{\rm kr}\cdot {\rm m}^2$, что тоже совпадает с полученным экспериментально значением в пределах погрешности.

5. Определим зависимость момента инерции системы двух тел от их взаимного расположения. Затем используя формулу 7, определим зависимость $I(h^2)$.

Полученные результаты измерений занесем в таблицы (3),(4) соответсвенно. Основывыаясь на результатах таблицы (4), построим график зависимости $I(h^2)$ (Рис. 2). По графику понятно, что $I=kh^2+b$. Тогда $b=I_0$ — момент инерции платформы + диска относительно оси, проходящей через центр масс. Для вычисления коэффициентов k и b воспользуемся методом наименьших квадратов:

$$k = \frac{\langle xy\rangle - \langle x\rangle\langle y\rangle}{\langle x^2\rangle - \langle x\rangle^2} \approx 0,159 \cdot 10^{-3} \frac{\text{K}\Gamma \cdot \text{M}^2}{\text{CM}^2}$$
 (9)

$$b = \langle y \rangle - k \langle x \rangle \approx 10,778 \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$
 (10)

где $x = h^2, y = I$.

Случайные погрешности вычисления k и b можно найти по следующим формулам:

№ изм.	Т, с	h, мм	№ изм.	Т, с	h, см	№ изм.	Т, с	h, см
1	3,116	0	4	3,196	20	7	3,648	50
2	3,124	5	5	3,315	30	8	3,861	60
3	3.144	10	6	3,472	40	9	4,209	75

Таблица 3: Зависимость Периода колебаний от расстояния

№ изм.	$I \cdot 10^{-3} \text{ kg} \cdot \text{m}^2$	h, cm	№ изм.	$I \cdot 10^{-3} \text{ kg} \cdot \text{m}^2$	h, cm	№ изм.	$I \cdot 10^{-3} \text{ kg} \cdot \text{m}^2$	h, cm
1	10.77	0	4	11.33	20	7	14.76	50
2	10.825	5	5	12.19	30	8	16.535	60
3	10.964	10	6	13.37	40	9	19.65	75

Таблица 4: Зависимость момента инерции системы от расстояния

Рис. 2: График зависимости $I(h^2)$

$$\sigma_k = \frac{1}{\sqrt{N}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - k^2} \approx 0,00077 \cdot 10^{-3} \frac{\text{K}\Gamma \cdot \text{M}^2}{\text{CM}^2}$$
(11)

$$\sigma_b^{\text{случ}} = \sigma_k^{\text{случ}} \sqrt{\langle x^2 \rangle - \langle x \rangle^2} \approx 0,014 \cdot 10^{-3} \text{кг} \cdot \text{м}^2$$
 (12)

Систематическая погрешность вычисления коэффициентов определяется следующим соотношением:

$$\sigma_b^{\text{cuct}} = b\sqrt{(\varepsilon_I)^2 + (\varepsilon_{h^2})^2} \approx b \cdot \varepsilon_I \approx 0,127 \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$
 (13)

Тогда полную погрешность вычисления коэффициентов подсчитываем по следующей формуле:

$$\sigma_b = \sqrt{\left(\sigma_b^{\text{случ}}\right)^2 + \left(\sigma_b^{\text{сист}}\right)^2} \approx 0,127 \cdot 10^{-3} \text{kg} \cdot \text{m}^2$$
(14)

Необходимый нам момент инерции можно найти по графику, тогда $b=I_{\Pi\Pi+д}=I_{\Pi\Pi}+I_{д}=(10,778\pm0,127)\cdot10^{-3}$ кг · м² . Так как момент инерции платформы уже изветсен, и он равняется: $I_{\Pi\Pi}=(9,046\pm0,107)\cdot10^{-3}$ кг · м² , то момент инерции диска $I_{д}=(1,732\pm0,234)$, кг · м² · 10^{-3} Зная радиус диска $R_{д}=(0,048\pm0,0001)$ м, мы можем определить его массу: $m_{д}=2I_{д}/R_{д}^{2}\approx1,503$ кг, $\sigma_{m_{д}}=m_{д}\cdot\sqrt{\varepsilon_{I}^{2}+(2\varepsilon_{R})^{2}}\approx0,036$ кг. Значит, что экспериментальная масса диска $m_{g}=(1,503\pm0,036)$, кг, что совпадает с реальной полной массой диска в пределах погрешности $m=(1442,6\pm0,1)$, г

5 Вывод

С помощью трифилярного подвеса можно определять момент инерции с достаточно большой точностью $\varepsilon \approx 1,18\%$. Такая точность обусловлена малой погрешностью измерения времени и условиями, при которых колебания подвеса можно считать слабозатухающими.

Мы экспериментально доказали аддитивность моментов инерции с помощью различных тел.

Полученная зависимость $I(h^2)$ аппроксимируется линейой зависимостью, что подвтерждает формулу Гюйгенса-Штейнера ($I=I_c+Mh^2$, где I — момент инерции тела, I_c —момент инерции тела относительно центра масс, M — масса тела, а h — расстояние между двумя осями, в нашем случае — между осью вращения и половинками диска).