Probabilistic Programming, excercises 3. Jan Boerman, Jasper van Rooijen.

	gratis collegeblok	Jan Boerman Jasper van Rooijen	Onderwerp: Datum:
a			natural numbers is t with no largest element. or-create relation apper bound part of the domain. S) is not a complet lattice
	l Yes	the domain	of complet lattices
	Refare impand	Eheir reverse (exivity transfolies that the vice versu. this is a	on a complete lattice complete lattice. The same sitivity and contisymmetry inect but the veverse order supremum becomes the infimum complet lattice.
	Not be	every elem	even a partial order. nent in the domain can with another. e.g.: 20,10)

gratis Jan Boerman onderwerp: collegeblok Jasper van Rasijen
Za show that wp[c](o) = 0.
the structure of c.
Base cases Distip. wp [skip](0) = 0
Decause it's always o for a diverge, by affinition
3) assignment. wp[x:=E](0) = 0[x:=E] =0
Franction Step: suppose we already know that for programs p and q wp [p](0)=0 and wp [q](0)=0.
(G) wp (F) (9](0) = wp (P) (wp (9](0)) = wp (P) (0) (apply induction hypothesis) (apply induction) (b) wp (if (6) P else Q](0) = (G1 wp (P)(Q)) V
(5) wp [if (6) P else Q](0) = (G1 wp [P](0)) V = (G10) V (7610) (apply It) twice)

G wp [while (G) P] (Θ)= Ifp x. ((G 1 wp [P](x)) v (+G 1 G) = Ifp x ((G 1 wp [P](x)) apply kleene's fix point theorem (p(x) = G 1 wp [P](x) Ifp φ = sup new φ (fulse) let's try n=0. we get φ (ω) = G 1 wp [P](ω) = G 1 ωρ [P](ω) = G 1 ωρ [P](ω) Since there can be no smaller set than o, this is the sup remum. The while case is therefore proven at last. The (ombination of base (ases Θ, Θ, Θ, Θ) and induction cases (Θ, Θ, Θ, Θ proves that for any arbitrairy program C	gratis collegeblok	Onderwerp: Datum:
= Ifp x ((61 wp Cp)(x)) apply kleene's firpoint theorem (p(x) = 61 wp Cp)(x) Ifp \(\phi = \sup \phi n \text{en} \) Ifp \(\phi = \sup \phi \neq \text{of } \frac{\frac{\phi}{\phi} \text{en}}{\phi} \) If \(\phi = \sup \frac{\phi}{\phi} \text{of } \phi \text{of } \phi \text{of } \t	(G) WP	
Ifp $\varphi = Sup_{neN} \varphi^n(false)$ let's Ery $n = 0$. We get $\varphi(\omega) = G \wedge wp Ep (0)$ $= G \wedge wp Ep (0)$ $= G \wedge wp Ep (0)$ Since there can be no smaller set then 0 , this is the supremum. The while case is therefore proven at last. The combination of base (uses 0 , 0 , 0) and in duction cases 0 , 0 , 0 proves		17 To 10 March 1
let's Ery n=0. We get $ \varphi(u) = G \wedge wp E \cap U $ $ = G \wedge G \wedge G $ Since there can be no smaller set than 0, this is the supremum. The while case is therefore proven at last. The Combination of base cases G , G , G proves	ap	
let's try n=0. We get $\varphi(o) = G \land wp E P F(o)$ $= G \land o (apply IH)$ $= 0.$ Since there can be no smaller set than 0, this is the supremum. The while case is therefore proven at last. The combination of base cases 0, 0, 0, and in duction cases 0, 0, 0, 0 proves	1FP	
= \$ 1 0 (apply IH) = 0. Since there can be no smaller set than 0, this is the supremum. The while - case is therefore proven at last. The combination of base cases 0, 0, 0 proves	let's E	ry n=0. We get
Since there can be no smaller set than o, this is the supremum. The while case is therefore proven at last. The combination of base cases O, O, O and induction cases O, O, O proves	φ	(- nd/ T11)
The combination of base cases 0, 0, 0 proves		there can be no smaller set than o,
and induction cases @, O, @ proves		
WP[c](0) =0	and i	or any arbitrairy program c

tothersofthe In bothor cases the same set of variables will still be "tracked".

aratis Jan Boerman Onderwerp:
gratis Jan Doerman Onderwerp: Collegeblok Jasper von Roojin Datum:
$\beta a (y > 0) \rightarrow (x == 2 \cdot y)$
$\ell (G1(y>0) \rightarrow (x=2\cdot y)) \rightarrow$
WP[Z:=Z+1, x:=x-y]((y>0)+(x==Z.y))
= (61(y>0)-(x = = z.y)) ->
wp [z:=z+1] (wp [x:=x-y]((y>v->(x==z.y)))
= $(y \le 0) \lor (((G \land (x = = Z \cdot y)) \rightarrow (x = = Z \cdot y)))$ $up \{z := z + 1\}(up \{x := x - y\}(x = = Z \cdot y)))$
$((CA(x=+\sqrt{2}))=)$
= y <0 \(\left(\(\frac{1}{2} \cdot = \frac{1}{2} \cdot \) \(\frac{1}{2} \cdot = \frac \cdot \) \(\frac{1}{2} \cdot = \frac{1}{2} \cdot \) \(\frac{1}
= Y S U V (Wp [Z := Z+1] (x-y == Z · y))
= Y < OV (61(x==Z,Y)) -> = Y < OV (61(x==Z,Y)) Z :=Z+])
$= y \le 0 \ V\left(\frac{(6 \ 1 \ (x = = z \cdot y))}{(x - y = = (z + 1) \cdot y)}\right)$
$= y \leq U \left((61(x==7.7)) \rightarrow (x-y==2.7) \right)$
= y < UV ((G1 (x==2.y)) ->(x-2y == 2.y))
there does not seem to
-> <0 V (6 1 x == x-24
the re does not seem to be a solution
other than y < 0.

gratis Jan Boerman Onderwerp: Collegeblok Jasper van Roogen Datum:
4 P(x) = (61 wp(P,x)) V (-61F)
non-empty chain $S \subseteq BP$ $P(L S) = LP(S)$
we know (P, E) is a complete lattice thus ever subset x = P hus a a least apper bound let's try to compute. (P is the domain of predicates)
$\varphi(US) = U\varphi(S)$ $= 2$ $(G \wedge up(P, US)) \vee (\neg G \wedge F) = 1$ $U((G \wedge up(P, S)) \vee (\neg G \wedge F))$ $(G \wedge US) \vee (\neg G \wedge F) = 1$ $U((G \wedge up(US)) $

arotis Jan Boerman Onderwerp:
gratis Collegeblok Jasper van Rooijen Datum:
5 a we need to show that (D -D, E)
D is the domain Of Sets
D > D is a first set of functions of Eype set to set
proof of G $f(d) \subseteq F(d)$
any set is its own subset.
proof of (2) $f(d) \subseteq g(d)$ 1 $g(d) \subseteq h(d) = f(d) \subseteq h(d)$
For add deD and my f g, h ED+OD
also true by definition of the subset relation
$g(d) \subseteq g(d) \land g(d) = g(d)$
Erue by definition of Set equivalence
set B contains all elements of set B, and set B contains all elements of set A, then set
The condition of the co

gratis collegeblok	Onderwerp:
(1) (D- (2) all 5	Show (D-D, E) is a complete co we need to show that 3D, E) is a partial order and absets of D-D have as supremen and subsets of D-D have an infimum
Funct	Of Θ : Proven in Sa a Q : Supremum of a subset is the ion that returns the intersection all sets returned by other runtions he subset that the same parameter $P(A) \mapsto P(A) \mapsto P(A) = P(A$
proof of our states	