Eigenvalue eigenvector

Instructor: Dr. Avijit Pal

Linear algebra- II (IC152)

Motivation

- In \mathbb{R}^2 , given two vectors $\mathbf{x} = (x_1, x_2)$, $\mathbf{y} = (y_1, y_2)$, we know the inner product $\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2$.
- Note that for any $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^2$ and $\alpha \in \mathbb{R}$, this inner product satisfies the conditions:

 - $2 x \cdot y = y \cdot x$
 - $\mathbf{0} \ \mathbf{x} \cdot \mathbf{x} \ge 0$ and $\mathbf{x} \cdot \mathbf{x} = 0$ if and only if $\mathbf{x} = \mathbf{0}$.
- Thus, we are motivated to define an inner product on an arbitrary vector space.

Inner product space

Definition (Inner product)

Let $V(\mathbb{F})$ be a vector space over \mathbb{F} . An inner product over $V(\mathbb{F})$, denoted by $\langle \ , \ \rangle$, is a map, $\langle \ , \ \rangle : V \times V \longrightarrow \mathbb{F}$ such that for $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $a, b \in \mathbb{F}$

- $\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$ for all $\mathbf{u} \in V$ and equality holds if and only if $\mathbf{u} = \mathbf{0}$.

Definition (Inner product space)

Let V be a vector space with an inner product $\langle \ , \ \rangle$. Then $(V, \langle \ , \ \rangle)$ is called an inner product space, in short denoted by IPS.

Example 1

• Let $V = \mathbb{R}^n$ be the real vector space of dimension n. Given two vectors $\mathbf{u} = (u_1, \dots, u_n)$ and $\mathbf{v} = (v_1, \dots, v_n)$ of V, we define

$$\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n = \mathbf{u} \mathbf{v}^t.$$

- We will show that $\langle \ , \ \rangle$ is an inner product.
- One can easily check from definition that $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$.
- $\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$ for all $\mathbf{u} \in V$, because $\langle \mathbf{u}, \mathbf{u} \rangle = \sum_{i=1}^{n} u_i^2$.
- Also, $\langle \mathbf{u}, \mathbf{u} \rangle = 0 \Leftrightarrow \sum_{i=1}^{n} u_i^2 = 0$ which is equivalent to $\mathbf{u} = 0$.
- Note that for any $\mathbf{w} = (w_1, \dots, w_n)$ of V, and $\alpha, \beta \in \mathbb{R}$, we have

$$\langle \alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w} \rangle = \alpha \sum_{i=1}^{n} u_i w_i + \beta \sum_{i=1}^{n} v_i w_i$$
$$= \alpha \langle \mathbf{u}, \mathbf{w} \rangle + \beta \langle \mathbf{v}, \mathbf{w} \rangle.$$

Example 2

• Let $V = \mathbb{C}^n$ be a complex vector space of dimension n. Then for $\mathbf{u} = (u_1, u_2, \dots, u_n)$ and $\mathbf{v} = (v_1, v_2, \dots, v_n)$ in V, we define

$$\langle \mathbf{u}, \mathbf{v} \rangle = u_1 \overline{v_1} + u_2 \overline{v_2} + \cdots + u_n \overline{v_n} = \mathbf{u} \mathbf{v}^*$$

• Check that $\langle \ , \ \rangle$ is an inner product.

Remark

Note that in parts 1 and 2 of above Example , the inner products are $\mathbf{u}\mathbf{v}^t$ and $\mathbf{u}\mathbf{v}^*$, respectively. This occurs because the vectors \mathbf{u} and \mathbf{v} are row vectors. In general, \mathbf{u} and \mathbf{v} are taken as column vectors and hence one uses the notation $\mathbf{u}^t\mathbf{v}$ or $\mathbf{u}^*\mathbf{v}$.

• Let
$$V = \mathbb{R}^2$$
 and let $A = \begin{bmatrix} 4 & -1 \\ -1 & 2 \end{bmatrix}$.

Define

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} A \mathbf{y}^t = 4x_1 y_1 - x_1 y_2 - x_2 y_1 + 2x_2 y_2.$$

- Check that (,) is an inner product.
- Observe that the matrix *A* is real symmetric matrix.
- xAx^t is a quadratic form of a real symmetric matrix A which we will discuss later.

Example 4

- Consider the set $M_{n \times n}(\mathbb{R})$ of all real square matrices of order n. For $A, B \in M_{n \times n}(\mathbb{R})$ we define $\langle A, B \rangle = tr(AB^t)$.
- Then

$$\langle A+B,C\rangle=tr\big((A+B)C^t\big)=tr(AC^t)+tr(BC^t)=\langle A,C\rangle+\langle B,C\rangle.$$

- Let $A = (a_{ij})$. Then

$$\langle A, A \rangle = tr(AA^t) = \sum_{i=1}^n (AA^t)_{ii} = \sum_{i=1}^n \sum_{j=1}^n a_{ij} a_{ij} = \sum_{i=1}^n \sum_{j=1}^n a_{ij}^2$$

and therefore, $\langle A, A \rangle > 0$ for all non-zero matrices A.

ullet So, it is clear that $\langle A,B \rangle$ is an inner product on $M_{n \times n}(\mathbb{R})$.

Norm of a Vector

Definition (Length/Norm of a Vector)

For $\mathbf{u} \in V$, we define the length (norm) of \mathbf{u} , denoted $\|\mathbf{u}\|$, by $\|\mathbf{u}\| = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$, the positive square root.

 A very useful and a fundamental inequality concerning the inner product is due to Cauchy and Schwartz. The next theorem gives the statement and a proof of this inequality.

Theorem (Cauchy-Schwartz inequality)

Let $V(\mathbb{F})$ be an inner product space. Then for any $\mathbf{u},\mathbf{v}\in V$

$$|\langle u,v\rangle| \leq \|u\| \ \|v\|.$$

The equality holds if and only if the vectors ${\bf u}$ and ${\bf v}$ are linearly dependent. Further, if ${\bf u} \neq {\bf 0}$, then

$$v = \langle v, \frac{u}{\|u\|} \rangle \frac{u}{\|u\|}.$$

Outline of the proof

- If $\mathbf{u} = \mathbf{0}$, then the inequality holds.
- Let $\mathbf{u} \neq \mathbf{0}$. Note that $\langle \lambda \mathbf{u} + \mathbf{v}, \lambda \mathbf{u} + \mathbf{v} \rangle \geq 0$ for all $\lambda \in \mathbb{F}$.
- In particular, for $\lambda = -\frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\|\mathbf{u}\|^2}$, we get

$$\begin{split} 0 & \leq \langle \lambda \mathbf{u} + \mathbf{v}, \lambda \mathbf{u} + \mathbf{v} \rangle \\ & = \lambda \bar{\lambda} \|\mathbf{u}\|^2 + \lambda \langle \mathbf{u}, \mathbf{v} \rangle + \bar{\lambda} \langle \mathbf{v}, \mathbf{u} \rangle + \|\mathbf{v}\|^2 \\ & = \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\|\mathbf{u}\|^2} \frac{\overline{\langle \mathbf{v}, \mathbf{u} \rangle}}{\|\mathbf{u}\|^2} \|\mathbf{u}\|^2 - \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\|\mathbf{u}\|^2} \langle \mathbf{u}, \mathbf{v} \rangle - \frac{\overline{\langle \mathbf{v}, \mathbf{u} \rangle}}{\|\mathbf{u}\|^2} \langle \mathbf{v}, \mathbf{u} \rangle + \|\mathbf{v}\|^2 \end{split}$$

Or, in other words

$$|\langle \mathbf{v}, \mathbf{u} \rangle|^2 \le \|\mathbf{u}\|^2 \|\mathbf{v}\|^2$$

and the proof of the inequality is over.

Outline of the proof cont.

• Observe that if $\mathbf{u} \neq \mathbf{0}$ then the equality holds if and only of $\lambda \mathbf{u} + \mathbf{v} = \mathbf{0}$ for $\lambda = -\frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\|\mathbf{u}\|^2}$.

- That is, u and v are linearly dependent.
- We leave it for the reader to prove

$$v = \langle v, \frac{u}{\|u\|} \rangle \frac{u}{\|u\|}.$$

Angle between two vectors

Definition (Angle between two vectors)

Let V be a real vector space. Then for every $\mathbf{u},\mathbf{v}\in V$, by the Cauchy-Schwartz inequality, we have

$$-1 \le \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \ \|\mathbf{v}\|} \le 1.$$

Remark

We know that $\cos:[0,\pi] \longrightarrow [-1,\ 1]$ is an one-one and onto function. Therefore, for every real number $\frac{\langle \mathbf{u},\mathbf{v}\rangle}{\|\mathbf{u}\|\ \|\mathbf{v}\|}$, there exists a unique $\theta,\ 0\leq\theta\leq\pi,$ such that

$$\cos \theta = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|}.$$

Observations

• The real number θ with $0 \le \theta \le \pi$ and satisfying

$$\cos \theta = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \ \|\mathbf{v}\|}$$

is called the angle between the two vectors \mathbf{u} and \mathbf{v} in V.

- The vectors \mathbf{u} and \mathbf{v} in V are said to be orthogonal if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.
- A set of vectors $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ is called mutually orthogonal if $\langle \mathbf{u}_i, \mathbf{u}_j \rangle = 0$ for all $1 \leq i \neq j \leq n$.

Orthogonal Complement

Definition (Orthogonal Complement)

Let W be a subspace of a vector space V with inner product $\langle \;,\; \rangle$. Then the subspace

$$W^{\perp} = \{ \mathbf{v} \in V : \langle \mathbf{v}, \mathbf{w} \rangle = 0 \text{ for all } \mathbf{w} \in W \}$$

is called the orthogonal complement of W in V.

Theorem

Let *V* be an inner product space. Let $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ be a set of non-zero, mutually orthogonal vectors of *V*.

- Then the set $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ is linearly independent.
- $\|\sum_{i=1}^{n} \alpha_i \mathbf{u}_i\|^2 = \sum_{i=1}^{n} |\alpha_i|^2 \|\mathbf{u}_i\|^2$;
- Let $\dim(V) = n$ and also let $\|\mathbf{u}_i\| = 1$ for i = 1, 2, ..., n. Then for any $\mathbf{v} \in V$,

$$\mathbf{v} = \sum_{i=1}^n \langle \mathbf{v}, \mathbf{u}_i \rangle \mathbf{u}_i.$$

In particular, $\langle \mathbf{v}, \mathbf{u}_i \rangle = 0$ for all i = 1, 2, ..., n if and only if $\mathbf{v} = \mathbf{0}$.

Outline of proof

• Consider the set of non-zero, mutually orthogonal vectors $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$. Suppose there exist scalars c_1, c_2, \dots, c_n not all zero, such that

$$c_1\mathbf{u}_1+c_2\mathbf{u}_2+\cdots+c_n\mathbf{u}_n=\mathbf{0}.$$

• Then for $1 \le i \le n$, we have

$$0 = \langle \mathbf{0}, \mathbf{u}_i \rangle = \langle \sum_{i=1}^n c_i u_i, u_i \rangle = \sum_{j=1}^n c_j \langle \mathbf{u}_j, \mathbf{u}_i \rangle = c_i$$

as $\langle \mathbf{u}_i, \mathbf{u}_i \rangle = 0$ for all $j \neq i$ and $\langle \mathbf{u}_i, \mathbf{u}_i \rangle = 1$.

- This gives a contradiction to our assumption that some of the c_i 's are non-zero.
- This establishes the linear independence of a set of non-zero, mutually orthogonal vectors.

Outline of proof cont.

• For the second part, using $= \langle \mathbf{u}_i, \mathbf{u}_j \rangle \begin{cases} 0 & \text{if } i \neq j \\ \|\mathbf{u}_i\|^2 & \text{if } i = j \end{cases}$ for 1 < i, j < n, we have

$$\|\sum_{i=1}^{n} \alpha_{i} \mathbf{u}_{i}\|^{2} = \langle \sum_{i=1}^{n} \alpha_{i} \mathbf{u}_{i}, \sum_{i=1}^{n} \alpha_{i} \mathbf{u}_{i} \rangle$$

$$= \sum_{i=1}^{n} \alpha_{i} \langle \mathbf{u}_{i}, \sum_{j=1}^{n} \alpha_{j} \mathbf{u}_{j} \rangle$$

$$= \sum_{i=1}^{n} \alpha_{i} \sum_{j=1}^{n} \overline{\alpha_{j}} \langle \mathbf{u}_{i}, \mathbf{u}_{j} \rangle$$

$$= \sum_{i=1}^{n} \alpha_{i} \overline{\alpha_{i}} \langle \mathbf{u}_{i}, \mathbf{u}_{i} \rangle$$

$$= \sum_{i=1}^{n} |\alpha_{i}|^{2} \|\mathbf{u}_{i}\|^{2}$$

Outline of proof cont.

- For the third part, observe from the first part, the linear independence of the non-zero mutually orthogonal vectors u₁, u₂,..., u_n.
- Since $\dim(V) = n$, they form a basis of V. Thus, for every vector $\mathbf{v} \in V$, there exist scalars α_i , $1 \le i \le n$, such that $\mathbf{v} = \sum_{i=1}^n \alpha_i \mathbf{u}_n$.
- Hence,

$$\langle \mathbf{v}, \mathbf{u}_j \rangle = \langle \sum_{i=1}^n \alpha_i \mathbf{u}_i, \mathbf{u}_j \rangle = \sum_{i=1}^n \alpha_i \langle \mathbf{u}_i, \mathbf{u}_j \rangle = \alpha_j.$$

• Therefore, we have obtained the required result.

Orthonormal set

Definition (Orthonormal Set)

Let V be an inner product space. A set of non-zero, mutually orthogonal vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ in V is called an orthonormal set if $\|\mathbf{v}_i\| = 1$ for $i = 1, 2, \dots, n$. If the set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is also a basis of V, then the set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is called an orthonormal basis of V.

- In view of Theorem (7), we inquire into the question of extracting an orthonormal basis from a given basis.
- In the next lecture, we describe a process (called the Gram-Schmidt Orthogonalisation process) that generates an orthonormal set from a given set containing finitely many vectors.

Examples

• Consider the vector space \mathbb{R}^2 with the standard inner product. Then the standard ordered basis

$$\mathcal{B} = \big((1,0),(0,1)\big)$$

is an orthonormal set. Also, the basis

$$\mathcal{B}_1 = \left(\frac{1}{\sqrt{2}}(1,1), \frac{1}{\sqrt{2}}(1,-1)\right)$$

is an orthonormal set.

• Let \mathbb{R}^n be endowed with the standard inner product. Then check that the standard ordered basis

$$(\mathbf{e}_1,\mathbf{e}_2,\ldots,\mathbf{e}_n)$$

is an orthonormal set.

Remark

The last part of the above theorem can be rephrased as "suppose $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is an orthonormal basis of an inner product space V. Then for each $\mathbf{u} \in V$ the numbers $\langle \mathbf{u}, \mathbf{v}_i \rangle$ for $1 \leq i \leq n$ are the coordinates of \mathbf{u} with respect to the above basis".

That is, let $\mathcal{B}=(\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n)$ be an ordered basis. Then for any $\mathbf{u}\in V,$

$$[\mathbf{u}]_{\mathcal{B}} = (\langle \mathbf{u}, \mathbf{v}_1 \rangle, \langle \mathbf{u}, \mathbf{v}_2 \rangle, \dots, \langle \mathbf{u}, \mathbf{v}_n \rangle)^t.$$

Thank You