Internetworking

Pascal Adam TSBE

Internetworking - Komponenten

- Unter Internetworking-Komponenten versteht man Systeme, die zwischen zwei (oder mehreren) LAN-Segmenten eine Verbindung ermöglichen. Es können dies sowohl physikalische wie auch logische Verbindungen sein. Je nach Aufgabengebiet unterscheidet man vier Arten (Ebenen) von Kopplungselementen:
 - Repeater
 - Bridges (Switches)
 - Router
 - Gateways
- Die Unterteilung der Komponenten kann anhand des OSI-Modells gemacht werden:

Beziehung zwischen dem OSI-Modell und den Internetworking-Komponenten

Ueberblick

Bei den vier grundsätzlichen Internetworking-Komponenten gibt es eine Vielzahl von Untergruppen. Hier ein kleiner Ueberblick:

Repeater

Local Repeater Remote Repeater Multiport Rep. Hub

Switch

Local Bridge Remote Bridge Filter Bridge Self Learning B. Switch

Router

Local Router Remote Router Multiprotokol R. Brouter

Gateway

Mail Gateway
Host Gateway
Applikations G.

Ueberblick (2)

 Das nachfolgende Bild soll den grundsätzlichen Einsatz der verschiedenen Internetworking-Komponenten aufzeigen:

Ueberblick (3)

6

Repeater

- Repeater dienen hauptsächlich zur Topologieerweiterung des LAN's.
- Die Repeater regenerieren bitserielle Datenströme, d.h. alle empfangenen Signale werden verstärkt und regeneriert auf das andere angeschlossene Segment weitergeleitet.

- Local Repeater werden zur Kopplung von 2 oder mehr Netzsegmenten eingesetzt, die bis max. 100m voneinander entfernt sind (max. Anschlusskabel-Länge).
- Remote Repeater k\u00f6nnen mittels Glasfaserinterface Segmente \u00fcber eine Distanz von maximal 1000m (pro Segmentseite) miteinander verbinden.

Bridge

- Brücken verbinden LANs
- Sie entflechten (entlasten) den Datenverkehr
- Sie entscheiden anhand der Hardware-Adr., ob ankommende Pakete übertragen oder lokal gehalten werden.
- Sie speichern Pakete, bis die Empfangsseite bereit ist.

8

- Bei Bufferüberlauf und Verkehrsüberlast werden Datenpakete 'gelöscht'!
- Brücken passen die Uebertragungsgeschwindigkeiten (LAN <-> Mietleitung) an.
- Brücken können Daten filtern (frei wählbare Bedingungen; Layer 2 Adressen!).

Local Bridge

- Kopplung der physikalischen Subnetze zu einem logischen Gesamtnetz (echter Datenrefresh durch CRC-Kontrolle)
- Netzlastentkopplung (Der lokale Datenverkehr wird nicht auf das angeschlossene Segment übertragen.)
- Datenfilter (Frei wählbare Kriterien auf Stufe MAC-Adresse).

LAN 2

Remote Bridge

- Die Remote Bridge erfüllt grundsätzlich die gleichen Aufgaben wie eine Local Bridge.
- Zusätzlich kann eine Remote Bridge entfernte Subnetze über öffentliche Netze zu einem logischen Gesamtnetz verbinden. Dazu hat sie neben dem LAN-Interface auch eine weitverkehrs-taugliche Schnittstelle (V.24, V.35, etc.).

Wie erfüllen Brücken ihre Aufgabe?

- Brücken brauchen Entscheidungshilfen, ob ein Paket im lokalen Segment bleibt, oder ob das Paket auf das andere Segment geschickt werden muss.
- Zur Entscheidung bauen sich Brücken Port-Tabellen mit den an diesem Segment angeschlossenen Stationen (MAC-Adresse) auf (dynamisch oder statisch).

Wie erfüllen Brücken ihre Aufgabe ? (2)

- Station '123412341234' will Station '777788889999' (DA = Destination Address) ein Paket senden.
- Bridge findet DA nicht auf ihrer eigenen Port A-Seite; somit wird das Paket auf den anderen Bridge-Port gegeben (wo hoffentlich Empfänger Paket abnimmt).

Wie erfüllen Brücken ihre Aufgabe ? (3)

- Vorteile / Wirkungsweise von Brücken:
 - Die ausschliessliche Uebertragung von Datenpaketen mit nicht-lokaler Zieladresse auf das benachbartangeschlossene Segment.
 - Sehr einfach zu installieren (plug und play).
 - Ermöglichen einen transparenten Datentransport (Transparent Bridge; TB).
 - Mittels des Selbstlernmechanismus werden portabhängige Tabellen erstellt.
 - Aufgrund von Vergleichen der Zieladresse eines Datenpaketes mit den Einträgen der Adress-Tabellen wird entschieden, ob Pakete übertragen oder verworfen werden.
 - Echte Lasttrennung (segmentweise Abblockung von Paketen).
 - Durch zusätzliche Datenfilter können einfache Filter oder komplexe Filter-masken erstellt werden. Diese Filter sperren den Datentransport für be-stimmte Daten oder Ereignisse.

übliche Filterarten: - Source- / Destination-Address

- Typ-Feld (nur bei Ethernet, nicht 802.3)
- Daten / Ereignisfelder

Wie erfüllen Brücken ihre Aufgabe ? (4)

Nachteile beim Bridging-Prinzip (gegenüber Routing)

- Pakete werden über alle abgehenden Leitungen gesendet
- Broadcast werden übers ganze Netz (LAN und WAN) verbreitet
- Redundante Leitungen werden nicht aktiv genutzt (hot standby; realisiert durch IEEE 802.1d - spanning tree algorithm)

Switch

- Switches arbeiten auf OSI-Layer 2 (wie Bridge)
- Switching verwendet das 'switched path'-Prinzip an Stelle des 'shared media'-Prinzip (wie bspw. CSMA, Token-Ring, FDDI)
- Hauptelement ist das Koppelwerk (cross connect)
- Switches können nur bei einer strukturierten Verkabelung eingesetzt werden (twisted pair oder LWL).
- Bei Switching mit Microsegmentierung hat jede LAN-Station die volle Netzwerk-Bandbreite zur Verfügung.
- Switches ergänzen Router, ersetzen sie jedoch nicht (Kopplung von Switching-Inseln; Kopplung auf Protokoll-Layer 3)!

Router

- Router verbinden LANs (auch über WAN)
- Sie verbinden zwei (oder mehrere) physikalisch und logisch getrennte Netzwerke.
- Sie arbeiten auf dem OSI-Layer 3 (Network).
- Sie sind gegenüber den unteren Schichten (bspw. MAC-Adresse) unabhängig.
- Fragmentieren und reassemblieren Pakete.

- Sie ermitteln in komplexen Netzwerken für Datenpakete eine geeignete Route.
- Stellen für die Wegwahl einen Adressabbildungsmechanismus zur Verfügung.
- Steuern den Datenfluss durch Windows-mechanismen.
- Haben neben den LAN-Interfaces auch WAN-Schnittstellen für den Weitverkehr.
- Router sind bei grossen und vermaschten Netzen geeigneter (effizienter) als Brücker jedoch auch teurer.

Wie arbeiten Router?

- Ermitteln für die Datenpakete den geeignetsten Weg. Entscheiden anhand von Netzwerkadressen wo die Pakete durchgeleitet werden.
- Finden die geeigneten Partner-Router durchs Netzwerk (selbständig, dynamisch)
- Behandeln nur Pakete, die explizit an den Router adressiert sind.
- Netzwerkadress-Systeme sind protokollabhängig (TCP/IP, DECnet, IPX, XNS,...)
- Die zu übertragenden Protokolle müssen verstanden und konfiguriert sein.
- Router erlauben ein (zusätzliches) detailliertes Filtern nach verschiedenen Kriterien.

Wie arbeiten Router? (2)

- Router brauchen Entscheidungshilfen, ob ein Paket im lokalen Segment bleibt, oder ob und wie das Paket auf ein anderes Segment geschickt werden muss.
- Zur Entscheidung bauen sich Router Tabellen auf, anhand derer sie entscheiden können, wie ein Ziel erreicht werden kann (dynamisch oder statisch).

Router-Table Router 1		
Ziel	via	Variante
LAN A	direkt	_
LAN B	direkt	LAN D
LAN C	LAN B	LAN D
LAN D	direkt	LAN B
LAN E	LAN D	LAN B

Wie arbeiten Router? (3)

- Funktionsweise eines Netzwerkes mit einer TCP/IP-Protokoll-Umgebung. (Das IP; Internet Protokoll resp. Internet-Address ist für den Netzwerk-Teil verantwortlich.)
- Die Netzwerk-, Router- und Nodeadressen müssen übereinstimmen d.h. entsprechend konfiguriert sein!
- Die Router haben für jeden Port (d.h. für jedes Netz) eine eigene Adresse.
- Die Bekanntmachung der Netze zwischen den Routern erfolgt automatisch (dynamisch) mit speziellen Router-Informations-Protokollen.

Beispiele: RIP, OSPF, IS-IS

Wie arbeiten Router ? (4)

- Erster IP-Adressteil (Net-Id) ist pro Netzsegment immer gleich (hier: 128.10, resp. 132.50).
 Zweiter Teil (Node-Id) muss pro Netz eindeutig (unterscheidbar) sein (bspw. 0.2 oder 9.2). Die Aufteilung erfolgt durch eine Netzmaske (IP-Netmask).
- Beispiel: Node 128.10.0.2 will Node 132.50.9.2 ein Paket senden.
- Paket gelangt zu seinem Net-Router (gleiches Netz -> 128.10-Router)
- Der lokale Router routet Paket über WAN-Port (166.0.0.1) zu Router mit Zielnetzwerk (Port -> 166.0.0.2.)
- Zeil-Router findet Zielnetz in seiner Portliste -> legt das Paket auf Netz 132.50 wo dieses zu Node (132.50.) 9.2 gelangt.

Gateway

- Gateway-Server realisieren Verbindungen zwischen vollkommen inkompatiblen Netz-werken (bspw IBM - DEC).
- Gateways konvertieren unterschiedliche Protokolle nicht-standardisierter Hersteller-architekturen bis zu Ebene 7 im OSI-Modell.

- Jeder Port eines Gateways kommuniziert mit einem anderen Protokoll. Dabei muss das Gateway für die Abbildung der Protokolle aufeinander besorgt sein.
- Durch die Komplexität der Umwandlungen ist die Performance und die Anzahl der unterstützten Knoten limitiert.
- Für jede einzelne Anwendung ist eine eigene Gatewayfunktion zu entwickeln!
- Gateways sind sehr aufwendig und teuer eine Aenderung auf einer Seite be-deutet automatisch eine entsprechende Anpassung auf der Gegenseite!

Gateway Beispiele

- Mail-Gateway (bspw. X.400 zu Internet-Mail, MS-Mail oder Lotus Notes)
- Host-Gateway (bspw. IBM-SNA zu DEC-DECnet)
- Terminal-Gateway (Umsetzung eines zeichenorientierten Terminals zu einem Windows; grafikorientierten Terminal)

Weitere Informationsquellen

- 802.3 Standards / Kursunterlagen TSBe P.Adam
- Moderne Datenkommunikation / Datacom / F.-J. Kauffels