Analysis II (HW - 2) Date: February 15, 2022 Instructor: Jaydeb Sarkar

NOTE: (i) B[a,b] = the set of all bounded real-valued functions on [a,b]. (ii) R[a,b] = the set of all Riemann integrable functions on [a, b]. (iii) C[a, b] =the set of all continuous functions on [a, b]. (iv) C[a, b] = the set of all partitions on [a, b].

- (1) Give an example to show that the composition of Riemann integrable functions need not be Riemann integrable.
- (2) Let $f \in C[0,1]$ and suppose that $f(x) \neq 0$ for all $x \in (0,1)$. If

$$f(x)^2 = 2 \int_0^x f(t)dt$$
 $(\forall x \in [0,1]),$

then prove that f(x) = x for all $x \in [0, 1]$.

- (3) Let $f \in C[a,b]$. If $\int_a^x f = \int_x^b f$ for all $x \in [a,b]$, then prove that $f \equiv 0$.
- (4) Compute the derivative (if it exists) of the function $x \mapsto \int_0^x \sqrt{t^2 + 4} dt$.
- (5) Prove that $\ln x \le 2(\sqrt{x} 1)$ for all $x \ge 1$. [Hint: $\frac{1}{x} \le \frac{1}{\sqrt{x}}$ for all $x \ge 1$.]
- (6) Let $f \in R[a,b]$. Consider the function $F(x) = \int_a^x f$, $x \in [a,b]$. Prove that
 - (i) if f > 0 on [a, b], then F is monotonic increasing.
 - (ii) if $f \leq 0$ on [a, b], then F is monotonic decreasing.
- (7) Prove that $\int_{-1}^{x} sgn = |x| 1$ for all $x \in \mathbb{R}$ (here sgn is the sign function). [Note: Hence $\int_a^x f$ can exist for all $x \in [a, b]$ even when f has no antiderivative.]
- (8) Suppose $f \in C[a,b]$ and $f(x) = \int_a^x f$. Prove that $f \equiv 0$.
- (9) Let f(x) = [x] for all $x \in [0, 3.5]$.
 - (a) Prove that $f \in R[0, 3.5]$.

 - (b) Evaluate $\int_0^{3.5} f$. (c) Prove that $\int_0^{3.5} f$ can not be evaluated by the fundamental theorem of calculus.
- (10) Suppose $F \in C[a,b]$ is differentiable on $[a,b] \setminus X$, where X is a finite set, and let $f \in R[a,b]$. If $F'(x) = f(x), x \in [a,b] \setminus X$, then prove that

$$\int_{a}^{b} f = F(b) - F(a).$$

- (11) Compute (i) $\frac{d}{dx} \left(\int_{-x}^{x} e^{t^2} dt \right)$, (ii) $\frac{d}{dx} \left(\int_{0}^{x^2} \sin(t^2) dt \right)$.
- (12) Let $f \in C[a, b]$. If $\int_a^r f = 0$ for all rational r in [a, b], then prove that $f \equiv 0$.
- (13) Let $f, g \in C[a, b]$, and suppose $\int_a^b f = \int_a^b g$. Prove that $f(\zeta) = g(\zeta)$ for some $\zeta \in [a, b]$.
- (14) Let $f \in C[0,1]$. Prove that

$$\int_0^1 \left(\int_0^x f(t)dt \right) dx = \int_0^1 (1-x)f(x)dx.$$

(15) (Weighted mean value theorem for integrals) Let $f \in C[0,1]$ and $g \in R[a,b]$. Suppose that g does not change sign in [a, b]. Prove that there exists $c \in [a, b]$ such that

$$\int_{a}^{b} fg = f(c) \int_{a}^{b} g.$$

(16) Let $f \in C[-1,1]$ and suppose

$$\int_{-x}^{x} f = 0,$$

for all $x \in (0,1]$. Prove that f is an odd function.