Propositional Logic

DISCRETE MATHEMATICS DANIEL GONZALEZ CEDRE

Definition 1 (Proposition).

A proposition is a sentence (in our language) that has one (and only one) definite, consistent truth value.

Definition 2 (Negation).

Given a proposition p, the negation of p, denoted $\neg p$, is defined by

p	$\neg p$
Т	Τ
\perp	Т

Definition 3 (Conjunction).

Given two propositions p and q, the *conjunction* of p with q, denoted $p \wedge q$, is defined by

p	q	$p \wedge q$
Т	Т	Т
Т	_	
1	Т	
1	_	

Definition 4 (Disjunction).

Given two propositions p and q, the disjunction of p with q, denoted $p \lor q$, is defined by

p	q	$p \lor q$
Т	Т	Т
Т		Т
1	Т	Т
_	\perp	1

Definition 5 (Material Implication).

Given two propositions p and q, the conditional formed by assuming p and concluding q, denoted $p \to q$, is defined by

p	q	$p \rightarrow q$
Т	Τ	Т
Т	\perp	1
\perp	Т	Т
\perp	\perp	Т

Some possible readings of $\neg p$:

- · Not p.
- \cdot p does not hold.
- · It is not the case that p.
- · We do not have that p.

Some possible readings of $p \wedge q$:

- $\cdot p$, and q.
- $\cdot p$, but q.
- · p; also, q.
- · p; further, q.
- · In addition to p, we also have q.

Some possible readings of $p \vee q$:

- $\cdot p$, or q.
- · Either p, or q.

Some possible readings of $p \to q$:

- · If p, then q.
- $\cdot p \text{ implies } q.$
- · q is conditioned on p.
- \cdot q only if p.
- · p is sufficient for q.
- · q is necessary for p.