Day-6 Quiz-DataScience-Training

Welcome to the Python Programming Quiz! This quiz tests your knowledge of daily learnings. Please read the instructions carefully before starting the quiz.

Instructions and Rules

- Time Limit: You have 20 minutes to complete the quiz.
- Number of Questions: The quiz consists of 20 multiple-choice questions.
- Scoring: Each correct answer is worth 1 point. There is no negative marking for incorrect answers.
- Single Attempt: You are allowed only one attempt to complete the quiz.
- Required Fields: All questions are mandatory. You must answer each question to submit the quiz.
- Resources: This is a closed-book guiz. Do not use any external resources, including books, notes, or the internet.
- **Honesty:** Please answer the questions honestly and to the best of your ability. Cheating or dishonesty will result in disqualification.
- Environment: Ensure you are in a quiet environment where you can concentrate without interruptions.
- Technical Issues: In case of technical issues, please contact the quiz administrator immediately.
- Retakes: There are no retake opportunities for this quiz. Ensure you are prepared before starting.

Good luck, and do your best!

* Indicates	required	question
		7

1. Email *

2.	1. What does OLS stand for in linear regression? *				
	Mark only one oval.				
	a) Optimal Linear System				
	b) Ordinary Least Squares				
	c) Ordinary Linear System				
	d) Optimal Least Squares				
3.	2. Which of the following is minimized in the OLS method? * Mark only one oval.				
3.	_				
3.	Mark only one oval.				
3.	Mark only one oval. a) Sum of squared errors				
3.	Mark only one oval. a) Sum of squared errors b) Sum of absolute errors				

4. 3. Which of the following is the equation of a simple linear reg

Mark only one oval.

- a) $y = \beta 0 + \beta 1x + \epsilon$
- b) $y = \alpha + \beta x^2 + \epsilon$
- \bigcirc c) y = β0x + β1 + ε

5. 4. What is the primary goal of linear regression? *

Mark only one oval.

- a) To classify data points
- b) To predict a continuous outcome variable
- c) To cluster data points
- d) To reduce the dimensionality of the data

6.	5. What distinguishes multiple linear regression from simple linear regression? *				
	Mark only one oval.				
	a) The number of predictors				
	b) The type of response variable				
	c) The method of estimation				
	d) The presence of interaction terms				
7.	6. How is the goodness of fit of an OLS model commonly assessed? *				
	Mark only one oval.				
	a) By examining the p-values				
	b) By checking the residuals				
	c) By calculating the R-squared value				
	d) By using the F-test				

8.	7. What are the components of total variability in a regression model? *				
	Mark only one oval.				
	a) Mean and median variability				
	b) Sum and product variability				
	c) Linear and non-linear variability				
	d) Explained and unexplained variability				
9.	8. What does the term SST refer to in linear regression? * Mark only one oval.				
	a) Sum of Squared Total				
	b) Sum of Squared Terms				
	c) Total Sum of Squares				
	d) Total Sum of Terms				

10.	9. Which metric can indicate whether a regression model has overfitted the data? *				
	Mark only one oval.				
	a) Mean Absolute Error				
	b) R-squared				
	c) Adjusted R-squared				
	d) Mean Squared Error				
11.	10. Which feature scaling technique scales features to have a mean of 0 and a standard deviation of 1? *				
	Mark only one oval.				
	a) Min-Max Scaling				
	b) Standardization				
	c) Normalization				
	d) Binarization				

12.	11. What is the purpose of feature scaling in linear regression? *				
	Mark only one oval.				
	a) To increase the range of the features				
	b) To reduce the number of features				
	c) To ensure that all features contribute equally to the model				
	d) To improve the interpretability of the coefficients				
13.	12. What is the purpose of regularization in linear regression? *				
	Mark only one oval.				
	Mark only one oval. a) To improve the model's performance on the training data				
	a) To improve the model's performance on the training data				

14.	14. 13. In linear regression, what does multicollinearity refer to? *					
	Mark only one oval.					
	a) High correlation between the dependent variable and an independent variable					
	b) High correlation among the independent variables					
	c) Non-linearity in the relationship between dependent and independent variables					
	d) High variance in the error terms					
15.	14. What is the main difference between Ridge Regression and Lasso Regression? *					
	Mark only one oval.					
	a) Ridge Regression adds an L2 penalty, while Lasso Regression adds an L1 penalty					
	b) Ridge Regression is used for classification, while Lasso Regression is used for regression					
	c) Ridge Regression adds an L1 penalty, while Lasso Regression adds an L2 penalty					
	d) Ridge Regression reduces model complexity, while Lasso Regression increases model complexity					

16.	15. Which type of linear regression would you use if you suspect that your data suffers from multicollinearity? *			
	Mark only one oval.			
	a) Simple Linear Regression			
	b) Ridge Regression			
	c) Lasso Regression			
	d) Polynomial Regression			
17.	16. What is the correct way to import the LinearRegression class from sklearn.linear_model? *			
	Mark only one oval.			
	a) import linear_model.LinearRegression from sklearn			
	b) from sklearn.linear_model import LinearRegression			
	c) import sklearn.linear_model.LinearRegression			
	d) import LinearRegression from sklearn.linear_model			

18.	17. Which of the following is the correct way to import the StandardScaler from sklearn? *					
	Mark only one oval.					
	a) from sklearn.scale import StandardScaler					
	b) import StandardScaler from sklearn					
	c) from sklearn.preprocessing import StandardScaler					
	d) import sklearn.preprocessing.StandardScaler					
19.	18. How do you import the r2_score function from sklearn? *					
	Mark only one oval.					
	a) from sklearn.metrics import r2_score					
	b) import r2_score from sklearn.metrics					
	c) from sklearn.metric import r2_score					
	d) import sklearn.metrics.r2_score					

0.	19. Which of the following is used to import the make_regression function from sklearn? *
	Mark only one oval.
	a) from sklearn.make import make_regression
	b) import make_regression from sklearn.datasets
	c) from sklearn.datasets import make_regression
	d) import aklaara dataaata maka ragraasian
	() d) import sklearn.datasets.make_regression
1.	
1.	20. What is the correct way to import the mean_squared_error (mse) from sklearn? *
1.	
1.	20. What is the correct way to import the mean_squared_error (mse) from sklearn? *
1.	20. What is the correct way to import the mean_squared_error (mse) from sklearn? * Mark only one oval.
1.	20. What is the correct way to import the mean_squared_error (mse) from sklearn? * Mark only one oval. a) import mean_squared_error from sklearn.metrics

This content is neither created nor endorsed by Google.