Control de Concurrencia

Profesor Heider Sanchez

P1. Detección de problemas de concurrencia:

Analizar los siguientes planes de transacciones y deducir que problemas de concurrencia pueden ocurrir: actualización perdida, dependencia no confirmada (lectura sucia) y lectura no repetible. Mostrar los valores del recurso compartido X en cada instante de tiempo. Resalte claramente en donde se producen los conflictos.

T1	T2	X=100
READ(X)		X=100
SHOW(X)		X=100
	READ(X)	X=100
	X= X + 1	X=100
	WRITE(X)	X=101
READ(X)		X=101
SHOW(X)		X=101

- Existe lectura no repetible (Primero cuando leemos tenemos 100 y en la siguiente lectura tenemos 101)
- No es critico

T1 (N=5)	T2 (M=3)	X=100
READ(X)		X=100
X= X - N		X= 100 95
	READ(X)	X=100
	X = X + M	X=100 103
WRITE(X)		X=95
READ(Y)		X=95
	WRITE(X)	X=103
Y=Y+N		X=103
WRITE(Y)		X=103

- Tenemos una lectura sucia ya que hemos perdido la actualización de la Transacción 1.

T1 (N=5)	T2 (M=3)	X=100
READ(X)		X=100
X= X - N		X= 100 95
WRITE(X)		X= 95
	READ(X)	X= 95
	X = X + M	X= 100 98
READ(Y)		X= 100
	WRITE(X)	X = 98
ROLLBACK		X= 100

P2. Detección de problemas de concurrencia:

Analice el siguiente plan de ejecución de transacciones, ¿Qué problema se presenta si se tiene que mantener la **restricción A=B** al finalizar la ejecución del plan? ¿Qué modificación haría a dicho plan concurrente para garantizar la restricción?

T1	T2	A=100, B=100
READ(A)		A=100
A = A + 1		A= 100 101
WRITE(A)		A= 101
	READ(A)	A= 101
	A = 2 * A	A= 101 202
	WRITE(A)	A= 202
	READ(B)	B= 100
	B = 2 * B	B= 100 200
	WRITE(B)	B= 200
READ(B)		B= 200
B = B + 1		B=200
WRITE(B)		B=201

T1	T2	A=100, B=100
READ(A)		A=100
A = A + 1		A= 100 101
WRITE(A)		A= 101
	READ(A)	A= 101
	A = 2 * A	A= 101 202
	WRITE(A)	A= 202
READ(B)		B= 100
B = B + 1		B= 100 101
WRITE(B)		B= 101
	READ(B)	B= 101
	B = 2 * B	B= 101 202
	WRITE(B)	B=202

P3. Grafo de Precedencia:

Dada los siguientes planes de transacciones indique usted si corresponde a una planificación serializable por conflictos usando el grafo de precedencia. Caso de no ser serializable, permute las instrucciones para obtener un plan serializable (si es factible) y muestre el plan secuencial equivalente.

T1	T2	T3
	READ(z)	
	READ(y)	
	WRITE(y)	
		READ (y)
		READ (z)
READ (x)		, ,
WRITE (x)		
, ,		WRITE (y)
		WRITE (z)
	READ (x)	()
READ (y)		
WRITE (y)		

WRITE (x)	

- GRAFICO

T1	T2	T3
	READ(z)	
	READ(y)	
	WRITE(y)	
		READ (y)
		READ (z)
READ (x)		
WRITE (x)		
		WRITE (y)
	WRITE (z)	.,,
	READ (x)	
READ (y)	,	
WRITE (y)		
(77	WRITE (x)	

- GRAFICO

P4. Protocolos de Bloqueos:

Aplicando protocolos de bloqueo, rediseñe los siguientes planes (sin variar el orden cronológico) para garantizar una planificación serializable.

T1	T2
READ(X)	
X= X - N	
	READ(X)
	X = X + M
WRITE(X)	
READ(Y)	
	WRITE(X)
Y=Y+N	
WRITE(Y)	

T1	T2
READ(X)	
X= X - 10	
	READ(Y)
WRITE(X)	
	Y = Y - 20
READ(Y)	
	WRITE(Y)
Y=Y+10	
	READ(C)
WRITE(Y)	
	C = C + 20
	WRITE(C)

P5: Bloqueo en dos fases

Considere el protocolo de bloque en dos fases e indique como dicho mecanismo de control podría manejar la siguiente secuencia de instrucciones:

T1:R(X), T2:W(X) T2:W(Y), T3:W(Y), T1:W(Y) T1: Commit, T2:Commit, T3:Commit

- **P6.** Diseñe el algoritmo para verificar si una planificación es serializable por conflicto. Considere los tres pasos generales (slide 44).
- P7. Diseñe el algoritmo de bloqueo para el protocolo de actualización (slide 65 -67).
- P7. Diseñe el algoritmo de desbloqueo considerando el protocolo de actualización (slide 65 -67).