Google Play Store Apps Report

Data Analyst: Chaimaa Driouech **GitHub:** https://github.com/cdriouech

Date: 01/04/2020

Summary

OVERVIEW	3
Acknowledgements	3
Inspiration	3
Tasks	3
PYTHON AND ALL IMPORTED LIBRARIES	
EXPLORATORY DATA ANALYSIS	5
DATA COLLECTION AND PRE-PROCESSING	10
FEATURE ENGINEERING	15
Transforming the Predictive Target (Y) using Label Uncoder	15
Method 1: Recursive Feature Elimination	15
Method 2: Feature Importance	16
DATA VISUALIZATION	18
App with large number of reviews	18
App with the largest size	18
App with the largest num of installs	18
Paid vs Free	19
App which hasn't been updated	19
Most popular category	20
DATA SCIENCE PROCESS: BEST PRACTICES	22
BADIR: Project Process Framework	22
PREDICTIVE MODELING AND EVALUATION (THE WHOLE PROCESS)	24
Random Forest Regression	26
Support Vector Regression	26
Linear Regression	27
Predictions	27
MODEL SELECTION	28
CDOSS VALIDATION	20

OVERVIEW

While many public datasets (on Kaggle and the like) provide Apple App Store data, there are not many counterpart datasets available for Google Play Store apps anywhere on the web. On digging deeper, I found out that iTunes App Store page deploys a nicely indexed appendix-like structure to allow for simple and easy web scraping. On the other hand, Google Play Store uses sophisticated modern-day techniques (like dynamic page load) using JQuery making scraping more challenging.

Acknowledgements

This information is scraped from the Google Play Store. This app information would not be available without it.

Inspiration

The Play Store apps data has enormous potential to drive app-making businesses to success. Actionable insights can be drawn for developers to work on and capture the Android market!

Tasks

- GitHub
- Python and all libraries needed to solve the problem
- Exploratory Data Analysis
- Data collection, pre-processing and feature engineering
- Data Visualization
- Data science process: Best practices
- Predictive Modeling and Evaluation (the whole process)
- Model selection
- Cross validation

PYTHON AND ALL IMPORTED LIBRARIES

#imports

#numpy,pandas,scipy, math, matplotlib import numpy as np import pandas as pd import scipy from math import sqrt import seaborn as sns import matplotlib.pyplot as plt

#estimators Regression

from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn import linear model

#estimators Classification

from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVR from sklearn import svm from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import StandardScaler, LabelEncoder

#model metrics Regression

from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score from sklearn.model_selection import cross_val_score #model metrics Classification from sklearn.metrics import confusion matrix, classification report

#cross validation

from sklearn.model_selection import train_test_split

import warnings warnings.filterwarnings('ignore') pd.options.display.max_columns = None

from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import StratifiedKFold from sklearn.feature_selection import RFECV

%matplotlib inline

EXPLORATORY DATA ANALYSIS

df_apps.dtypes.index

df apps.info()

df apps.describe()

```
Rating
count 9367.000000
mean
         4.193338
         0.537431
  std
         1.000000
 min
25%
         4.000000
50%
         4.300000
75%
         4.500000
        19.000000
 max
```

Content Rating

Out of the 10840 apps stored in our Dataset, 80 % of the applications are targeting all age groups from children, mature 21+ to adult as shown in the graph below.

Type vs Rating

Rating

Overall user rating of the app (as when scraped) shows in the following figure over 1000 apps were rated 4.4 as highest rating.

Genres

An application can belong to multiple genres (apart from its main category). For eg, a musical family game will belong to

Category vs Rating

Content Rating vs Rating

DATA COLLECTION AND PRE-PROCESSING

Data Collection

This information was scraped from the **Google Play Store**. Using the **Web Scraping** technique (also termed Screen Scraping, Web Data Extraction, Web Harvesting etc.) it is employed to extract large amounts of data from websites whereby the data is extracted and saved to a local file in your computer or to a database in table (spreadsheet) format.

Data displayed by most websites can only be viewed using a web browser. They do not offer the functionality to save a copy of this data for personal use. The only option then is to manually copy and paste the data - a very tedious job which can take many hours or sometimes days to complete. Web Scraping is the technique of automating this process, so that instead of manually copying the data from websites, the Web Scraping software will perform the same task within a fraction of the time.

There are 13 features in our Data (as when scraped):

- 1. App: Application name
- 2. Category: Category the app belongs to
- 3. Rating: Overall user rating of the app
- 4. Reviews: Number of user reviews for the app
- 5. Size: Size of the app
- 6. Installs: Number of user downloads/installs for the app
- 7. Type: Paid or Free
- 8. Price: Price of the app
- 9. Content Rating: Age group the app is targeted at Children / Mature 21+ / Adult
- **10. Genres:** An app can belong to multiple genres (apart from its main category). For eg, a musical family game will belong to Music, Game, Family genres.
- 11. Last Updated: Date when the app was last updated on Play Store
- 12. Current Ver: Current version of the app available on Play Store
- 13. Android Ver: Min required Android version

Data Pre-processing

#Detection of Missing Values

df_apps.info()

df_apps.isnull().sum()

```
0
App
Category
                    0
                 1474
Rating
Reviews
Size
                    0
Installs
Type
Price
                    1
Content Rating
Genres
                    0
                    0
Last Updated
Current Ver
                    3
Android Ver
dtype: int64
```

#Missing values in Rating should be filled with the integer value of 0

```
df_apps['Rating'] = df_apps['Rating'].fillna(int(0))
df_apps.dropna(inplace = True)
df_apps.info()
```

```
CategoryString = df_apps["Category"]
categoryVal = df_apps["Category"].unique()
categoryValCount = len(categoryVal)
category_dict = {}
for i in range(0,categoryValCount):
    category_dict[categoryVal[i]] = i
df_apps["Category_c"] = df_apps["Category"].map(category_dict).astype(int)
```

#scaling and cleaning size of installation

```
def change_size(size):
    if 'M' in size:
        x = size[:-1]
        x = float(x)*1000000
        return(x)
    elif 'k' == size[-1:]:
        x = size[:-1]
        x = float(x)*1000
        return(x)
    else:
        return None

df_apps["Size"] = df_apps["Size"].map(change_size)
```

#filling Size which had NA

```
df apps.Size.fillna(method = 'ffill', inplace = True)
```

```
#Converting Type classification into binary
def type cat(types):
  if types == 'Free':
     return 0
  else:
     return 1
df apps['Type'] = df apps['Type'].map(type cat)
#Cleaning of genres
GenresL = df apps.Genres.unique()
GenresDict = {}
for i in range(len(GenresL)):
  GenresDict[GenresL[i]] = i
df apps['Genres c'] = df apps['Genres'].map(GenresDict).astype(int)
#Cleaning prices
def price clean(price):
  if price == '0':
     return 0
  else:
     price = price[1:]
     price = float(price)
     return price
df apps['Price'] = df apps['Price'].map(price clean).astype(float)
# convert reviews to numeric
df apps['Reviews'] = df apps['Reviews'].astype(int)
#Cleaning of content rating classification
RatingL = df apps['Content Rating'].unique()
RatingDict = {}
for i in range(len(RatingL)):
  RatingDict[RatingL[i]] = i
df apps['Content Rating'] = df apps['Content Rating'].map(RatingDict).astype(int)
#Cleaning no of installs classification
df_apps['Installs'] = [int(i[:-1].replace(',',")) for i in df_apps['Installs']]
df apps.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 10829 entries, 0 to 10839
Data columns (total 15 columns):
App
                        10829 non-null object
Category
                        10829 non-null object
                       10829 non-null float64
Rating
Reviews
                       10829 non-null int32
Size
                        10829 non-null float64
                      10829 non-null int64
Installs
Type
                       10829 non-null int64
Price 10829 non-null float64
Content Rating 10829 non-null int32
Genres 10829
Genres 10829 non-null object
Last Updated 10829 non-null datetime64[ns]
Current Ver 10829 non-null object
Android Ver 10829 non-null object
Category_c 10829 non-null int32
Genres_c 10829 non-null int32
dtypes: datetime64[ns](1), float64(3), int32(4), int64(2), object(5)
memory usage: 1.2+ MB
```

df_apps.describe()

	Rating	Reviews	Size	Installs	Type	Price	Content Rating	Category_c	Genres_c
count	10829.000000	1.082900e+04	1.082900e+04	1.082900e+04	10829.000000	10829.000000	10829.00000	10829.000000	10829.000000
mean	3.623197	4.446018e+05	2.186270e+07	1.547990e+07	0.073599	1.028091	0.32810	17.665343	50.466248
std	1.513263	2.929213e+06	2.252805e+07	8.507114e+07	0.261129	15.957778	0.76176	7.480582	34.489114
min	0.000000	0.000000e+00	8.500000e+03	0.000000e+00	0.000000	0.000000	0.00000	0.000000	0.000000
25%	3.700000	3.800000e+01	5.100000e+06	5.000000e+03	0.000000	0.000000	0.00000	13.000000	19.000000
50%	4.200000	2.100000e+03	1.400000e+07	1.000000e+05	0.000000	0.000000	0.00000	18.000000	38.000000
75%	4.500000	5.481500e+04	3.000000e+07	5.000000e+06	0.000000	0.000000	0.00000	23.000000	89.000000
max	5.000000	7.815831e+07	1.000000e+08	1.000000e+09	1.000000	400.000000	5.00000	32.000000	118.000000

FEATURE ENGINEERING

from sklearn import preprocessing from sklearn import utils

Transforming the Predictive Target (Y) using Label Uncoder

```
from sklearn import preprocessing
from sklearn import utils
Y= df_apps['Rating']
X = df_apps.drop('Rating', axis=1)
lab_enc = preprocessing.LabelEncoder()
rating_encoded = lab_enc.fit_transform(Y)
print(rating_encoded)
print(utils.multiclass.type_of_target(Y))
print(utils.multiclass.type_of_target(Y.astype('int')))
print(utils.multiclass.type_of_target(rating_encoded))
```

```
[30 28 36 ... 0 34 34]
continuous
multiclass
multiclass
```

Method 1: Recursive Feature Elimination

Recursive Feature Elimination from sklearn import datasets from sklearn.feature_selection import RFE from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestRegressor

X = df apps.drop('Rating', axis=1)

```
rfc = RandomForestClassifier(random_state=101)
rfecv = RFECV(estimator=rfc, step=1, cv=StratifiedKFold(10), scoring='accuracy')
rfecv.fit(X, rating_encoded)
```

print('Optimal number of features: {}'.format(rfecv.n_features_))

```
Optimal number of features: 1
```

X.drop(X.columns[np.where(rfecv.support_ == False)[0]], axis=1,
inplace=True)

	Reviews
0	159
1	967
2	87510
3	215644
4	967

Method 2: Feature Importance

Feature Importance from sklearn import datasets from sklearn import metrics from sklearn.ensemble import ExtraTreesClassifier

plt.xlabel('Importance', fontsize=14, labelpad=20)

plt.show()

```
XX = df_apps.drop('Rating', axis=1)
```

```
# fit an Extra Trees model to the data
model = ExtraTreesClassifier()
model.fit(XX, rating_encoded)
# display the relative importance of each attribute
print(model.feature_importances_)
dset = pd.DataFrame()
dset['attr'] = XX.columns
dset['importance'] = model.feature_importances_

dset = dset.sort_values(by='importance', ascending=True)

plt.figure(figsize=(9, 5))
plt.barh(y=dset['attr'], width=dset['importance'], color='#1976D2')
plt.title('RFECV - Feature Importances', fontsize=20, fontweight='bold', pad=20)
```


I will be using the Feature Importance method result that shows more important features (comparing to the recursive feature elimination option) and that I have named in the python coding "X_FI" referring to X Features Importance.

#Selected Features using Feature Importance X_FI.head()

	Reviews	Size	Installs	Type	Price	Content Rating	Category_c	Genres_c
0	159	19000000.0	10000	0	0.0	0	0	0
1	967	14000000.0	500000	0	0.0	0	0	1
2	87510	8700000.0	5000000	0	0.0	0	0	0
3	215644	25000000.0	50000000	0	0.0	1	0	0
4	967	2800000.0	100000	0	0.0	0	0	2

DATA VISUALIZATION

App with large number of reviews

df_apps.loc[df_apps.Reviews == df_apps.Reviews.max()]

App	Category	Rating	Reviews	Size	Installs	Туре	Price	Content Rating	Genres	Last Updated	Current Ver	Android Ver	Category_c	Genres_c
2544 Facebook	SOCIAL	4.1	78158306	26000000.0	1000000000	0	0.0	1	Social	3-Aug- 18	Varies with device	Varies with device	20	86

App with the largest size df_apps.loc[df_apps.Size == df_apps.Size.max()]

Арр	Category	Rating	Reviews	Size	Installs	Туре	Price	Content Rating	Genres	Last Updated	Current Ver	Android Ver	Cat
Post Bank	FINANCE	4.5	60449	100000000.0	1000000	0	0.00	0	Finance	23-Jul- 18	2.9.12	4.0 and up	
Talking Babsy Baby: Baby Games	LIFESTYLE	4.0	140995	100000000.0	10000000	0	0.00	0	Lifestyle;Pretend Play	16-Jul- 18	9	4.0 and up	
Hungry Shark Evolution	GAME	4.5	6074334	100000000.0	100000000	0	0.00	1	Arcade	25-Jul- 18	6.0.0	4.1 and up	
Mini Golf King - Multiplayer Game	GAME	4.5	531458	100000000.0	5000000	0	0.00	0	Sports	20-Jul- 18	3.04.1	4.0.3 and up	
Hungry Shark Evolution	GAME	4.5	6074627	100000000.0	100000000	0	0.00	1	Arcade	25-Jul- 18	6.0.0	4.1 and up	

App with the largest num of installs df_apps.loc[df_apps.lnstalls == df_apps.lnstalls.max()]

Арр	Category	Rating	Reviews	Size	Installs	Type	Price	Content Rating	Genres	Last Updated	Current Ver	Android Ver	Category_c	Genres_c
Google Play Books	BOOKS_AND_REFERENCE	3.9	1433233	5000000.0	1000000000	0	0.0	1	Books & Reference	3-Aug- 18	Varies with device	Varies with device	3	6
Messenger – Text and Video Chat for Free	COMMUNICATION	4.0	56642847	35000000.0	1000000000	0	0.0	0	Communication	1-Aug- 18	Varies with device	Varies with device	6	10
WhatsApp Messenger	COMMUNICATION	4.4	69119316	35000000.0	1000000000	0	0.0	0	Communication	3-Aug- 18	Varies with device	Varies with device	6	10
Google Chrome: Fast & Secure	COMMUNICATION	4.3	9642995	17000000.0	1000000000	0	0.0	0	Communication	1-Aug- 18	Varies with device	Varies with device	6	10

Paid vs Free

sns.countplot(df_apps['Type'],label="Count")
plt.show()

df_apps.groupby('Type')['Type'].count()

```
Type
0 10032
1 797
Name: Type, dtype: int64
```

App which hasn't been updated

App which hasn't been updated min(df_apps['Last Updated']) print(df_apps[df_apps['Last Updated'] == df_apps['Last Updated'].min()])

```
App
                                Category
                                          Rating Reviews Size Installs
7479
     FML F*ck my life + widget
                                 FAMILY
                                            4.2
                                                    1415
                                                          209k 100,000+
            Price Content Rating
                                                 Last Updated Current Ver
      Type
                                      Genres
7479
     Free
                      Everyone
                                   Entertainment
                                                   2010-05-21
                                                                      3.1
    Android Ver
7479 1.5 and up
```

Most popular category

sns.countplot(df_apps['Category'],label="Count")
plt.xticks(rotation='vertical')
plt.show()

df_apps.groupby('Category')['Category'].count()

Category	
ART_AND_DESIGN AUTO_AND_VEHICLES BEAUTY	64
AUTO_AND_VEHICLES	85
BEAUTY	53
BUSINESS COMICS COMMUNICATION DATING EDUCATION	460
COMICS	60
COMMUNICATION	387
DATING	234 156
DDOCMITON	100
ENTERTAINMENT	149
ENTERTAINMENT EVENTS FAMILY EINANGE	64
FAMILY	1968
LINANCE	366
FOOD_AND_DRINK GAME	127
GAME	1144
HEALTH_AND_FITNESS	341
HOUSE AND HOME	88
LIBRARIES_AND_DEMO	84
HEALTH_AND_FITNESS HOUSE_AND_HOME LIBRARIES_AND_DEMO LIFESTYLE	382
MAPS_AND_NAVIGATION	137
MAPS_AND_NAVIGATION MEDICAL	463
NEWS_AND_MAGAZINES PARENTING PERSONALIZATION PHOTOGRAPHY	283
PARENTING	60
PERSONALIZATION	390
PHOTOGRAPHY	335
PRODUCTIVITY	424
SHOPPING	260 295
SOCIAL	
SPORTS TOOLS	384
TOOLS	841
TRAVEL_AND_LOCAL	258
TRAVEL_AND_LOCAL VIDEO_PLAYERS WEATHER	175
WEATHER	82
Name: Category, dtype	

DATA SCIENCE PROCESS: BEST PRACTICES

BADIR: Project Process Framework

Business Question

The Play Store apps data has enormous potential to drive app-making businesses to success. Actionable insights can be drawn for developers to work on and capture the Android market!

• Analysis Plan

Analysis Goal	Have a better understanding of the Android market.						
Hypothesis	The social and games apps are the best rated						
Methodology	Predictive Analysis Methods using Regression Algorithms like Random Forest Regression, Support Vector Regression and Linear Regression.						
Project Plan	 Business & Data Understanding (BADIR Framework) Data Preparation (cleaning, Selecting and transformation) Modeling Evaluation: evaluate the result in the context of the business goal + new business requirements can pop up, due to the new patterns discovered during the data evaluation. Deployment: The final report needs to summarize the project insights and outcomes and review the project to see what needs to be improved upon. 						

Data Collection

- The data was scraped from the Google Play Store. Using the Web Scraping technique (for more details go back to Data Collection section in this file).
- o In order to clean and validate the data, I used the following preprocesses:
 - Remove all Missing Data
 - Feature Selection
 - Transformation of variables
- 80% Time spent on Data Munging.

• Build Model / Derive Insights

- Try more than one machine learning technique.
- Fine-Tune parameters.
- Assess Model Performance.
- Avoid Over-fitting.
- o 20% Time spent.

Recommendations

- Visualizations of derived insights presenting each predictor's relationship with target "Rating": Histogram, scatter plots, Heat map...
- o Review existing business rules/model.
- o Target customers that are likely to default less.
- o Tracking model: Test, Measure and Improve.

PREDICTIVE MODELING AND EVALUATION (THE WHOLE PROCESS)

#XX refers to the data frame with the Important features only

XX.head()
depVar= df apps['Rating']

#estimators

from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.svm import SVR from sklearn import linear model

#model metrics

from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score from sklearn.model_selection import cross_val_score

#cross validation

from sklearn.model selection import train test split

#Training Set (Feature Space: X Training)

X_train = XX[: 1000]

X_train_count = len(X_train.index)

print('The number of observations in the Y training set are:',str(X train count))

X train.head()

The number of observations in the Y training set are: 1000 Reviews Size Installs Type Price Content Rating Category_c Genres_c 159 19000000.0 10000 0 0 0 0 0.0 0 1 967 14000000.0 500000 0.0 0 0 1 2 87510 8700000.0 5000000 0.0 0 0 0 3 215644 25000000.0 50000000 0.0 0 0 967 2800000.0 100000 0.0 2

#Dependent Variable Training Set (y Training)

```
y_train = depVar[: 1000]
```

y_train_count = len(y_train.index)

#y_train_count = len(y_train)

print('The number of observations in the Y training set are:',str(y_train_count))

y_train.head()

```
Out[71]:

Out[71]:

0 4.1
1 3.9
2 4.7
3 4.5
4 4.3
Name: Rating, dtype: float64
```

#Testing Set (X Testing)

 $X_{test} = XX[-100:]$

X_test_count = len(X_test.index)

print('The number of observations in the feature testing set is:',str(X_test_count))

X test.head()

The number of observations in the feature testing set is: 100 Installs Type Price Content Rating Category_c Genres_c Reviews Size 10740 8484 1700000.0 1000000 0 0.0 25 91 10741 32 7900000.0 1000 0 0.0 0 16 29 10742 16 1200000.0 500 0 18 19 0.0 0 10743 1 2000000.0 100 0 0.0 0 11 24 10744 1 5800000.0 1 0 0.0 0 11 24

#Ground Truth (y_test)

y_test = depVar[-100:]

y test count = len(y test.index)

#y test count = len(y test)

print('The number of observations in the Y training set are:',str(y_test_count))

y test.head()

```
The number of observations in the Y training set are: 100
Out[73]:

10740    4.2
10741    5.0
10742    3.4
10743    0.0
10744    0.0
Name: Rating, dtype: float64
```

```
X_train, X_test, y_train, y_test = train_test_split(X_train, y_train, test_size=0.25, random_state=0)
```

X train.shape, y train.shape, X test.shape, y test.shape

```
((750, 8), (750,), (250, 8), (250,))
```

#Models

modelSVR = SVR() modelRF = RandomForestRegressor() modelLR = LinearRegression()

Random Forest Regression

```
from sklearn.model_selection import cross_val_score
modelRF.fit(X_train,y_train)
print(cross_val_score(modelRF, X_train, y_train))

print('These values correspond to the the following: ')
print('1st value: The score array for test scores on each cv split. (Higher is an indicator of a better
performing model')
print('2nd value: The time for fitting the estimator on the train set for each cv split.')
print('3rd Value: The time for scoring the estimator on the test set for each cv split.')
print('R-Squared: %.3f' % modelRF.score(X_train,y_train))
```

```
[0.43065548 0.56608103 0.31868752]
These values correspond to the the following:
1st value: The score array for test scores on each cv split. (Higher is a n indicator of a better performing model
2nd value: The time for fitting the estimator on the train set for each c v split.
3rd Value: The time for scoring the estimator on the test set for each cv split.
R-Squared: 0.922
```

Support Vector Regression

```
modelSVR.fit(X_train,y_train)
print(cross_val_score(modelSVR, X_train, y_train))
print('R-Squared: %.3f' % modelSVR.score(X_train,y_train))
```

```
[-0.01695971 -0.01677 0.01178045]
R-Squared: 0.496
```

Linear Regression

```
modelLR.fit(X_train,y_train)
print(cross_val_score(modelLR, X_train, y_train))
print('R-Squared: %.3f' % modelLR.score(X_train,y_train))
```

```
[-0.01257082 -0.03493534 0.02720635]
R-Squared: 0.094
```

Predictions

#RandomForest Regression Model Predictions

```
predRF = modelRF.predict(X_test)
predRF_Rsquared = r2_score(y_test,predRF)
rmseRF = sqrt(mean_squared_error(y_test, predRF))
print('RandomForest Regression Model Predictions:')
print('RMSE: %.3f' % rmseRF)
```

#Support Vector Regression Model Predictions

```
predSVR = modelSVR.predict(X_test)
predSVR_Rsquared = r2_score(y_test,predSVR)
rmseSVR = sqrt(mean_squared_error(y_test, predSVR))
print('Support Vector Regression Model Predictions:')
print('RMSE: %.3f' % rmseSVR)
```

#Linear Regression Model Predictions

```
predLR = modelLR.predict(X_test)
predLR_Rsquared = r2_score(y_test,predLR)
rmseLR = sqrt(mean_squared_error(y_test, predLR))
print('Linear Regression Model Predictions:')
print('RMSE: %.3f' % rmseLR)
```

```
RandomForest Regression Model Predictions:
RMSE: 0.717
Support Vector Regression Model Predictions:
RMSE: 0.942
Linear Regression Model Predictions:
RMSE: 0.928
```

MODEL SELECTION

#Random Forest Selected Model with best performance

#RMSE: 0.717 #R-Squared: 0.922

plt.scatter(y_test, predRF, c='r', alpha = 0.5)

plt.xlabel('Ground Truth') plt.ylabel('Predictions')

plt.show();

CROSS VALIDATION

Necessary imports

from sklearn.model_selection import cross_val_score, cross_val_predict from sklearn import metrics

Perform 6-fold cross validation

scores = cross_val_score(modelRF, XX, depVar, cv=6)
print ("Cross-validated scores:", scores)

Cross-validated scores: [0.36185322 0.44389649 0.56824708 0.46541865 0.4687 7069 0.46052085]

Make cross validated predictions

predictions = cross_val_predict(modelRF, XX, depVar, cv=6)
plt.scatter(y_test, predRF)

accuracy = metrics.r2_score(y_test, predRF)
print ("Cross-Predicted Accuracy:", accuracy)

Cross-Predicted Accuracy: 0.45928695245513584