UYGULAMALAR

Soru 1. Şekil 1.'deki devrenin girişine $v_i = 12.8 \sin \omega t \, Volt$ gerilimi uygulandığında;

- a) R_{yiik} üzerinde oluşacak v_o çıkış geriliminin dalga şeklini tepe değerini göstermek suretiyle çiziniz.
- b) Yük üzerindeki ortalama gerilimini entegral hesabını yaparak hesaplayınız ($R_{yiik}=6\,k\Omega$, $R_2=R_3=4\,k\Omega$).
- c) Devredeki diyotlar üzerindeki PIV değerlerini bulunuz. (D_1 ve D_4 diyotları **idealdir**)

- **Soru 2**. Şekil 1.'deki devrenin girişine tepe değeri 9.6 Volt olan bir sinüs işareti uygulandığında;
- a.) v_o çıkış geriliminin dalga şeklini değerini göstererek çiziniz ve her bir diyot için PIV değerlerini elde ediniz.
- b.) Yük üzerindeki doğru gerilimi hesaplayınız ($R_{yiik}=4\,k\Omega$, $R_1=R_2=8\,k\Omega$) (Diyotlar idealdir)

- **Soru 3**. Şekil 1.'deki devrenin girişine tepe değeri 9 Volt olan bir sinüs işareti uygulandığında;
- d) Yük üzerindeki v_o çıkış geriliminin dalga şeklini çiziniz
- e) Yük üzerindeki doğru gerilimi hesaplayınız ($R_{y\ddot{u}k}$ =6 k Ω , R_1 =3 k Ω).

Şekil 1

Soru 4.

- a.) Primer gerilimi $v(t) = 10\sin\omega t$ volt ve çevirme oranı 1:4 olan üç uçlu bir transformatör kullanmak suretiyle bir tam dalga doğrultucu tasarlayarak devre şemasını tam olarak ciziniz.
- b.) Her bir diyot üzerindeki ters tepe gerilimini bulunuz.
- c.) Yük direnci üzerindeki gerilimin dalga şeklini çizerek, çıkışta elde edilecek olan doğru gerilimin değerini bulunuz. (Devredeki diyotlar ideal kabul edilecektir.)

Soru 5. Şekil 1.'deki kırpıcı devrenin girişine, şekil 2.'deki gibi bir üçgen dalga işaret uygulandığında, devrenin çıkışındaki gerilim dalga şeklini açıklayarak belirleyiniz. (Diyod idealdir)

Soru 6. Şekil 3.'deki kırpıcı devrenin girişine tepe değeri 8 Volt olan Şekil 2.'deki gibi bir kare dalga işaret uygulandığında, çıkış geriliminin dalga şeklini veriniz. (Diyotlar idealdir)

Soru 7. Şekil 2.'deki paralel kırpıcı devrede kullanılan diyotlar **silisyum diyot** olduğuna göre, devrenin girişine tepe değeri 9 Volt olan şekil 3.'deki gibi bir üçgen dalga işaret uygulandığında;

- a.) Çıkış geriliminin dalga şeklini veriniz.
- b.) $R = 1 k\Omega$ luk direnç üzerinde düşen gerilimin dalga şeklini veriniz.

Soru 8. Şekil 3.'deki kenetleme devresinin girişine frekansı f=1kHz olan şekil 4.'deki gibi bir işaret uygulandığında, R direnci uçlarındaki v_0 çıkışının değerini bulunuz ve dalga şeklini çiziniz. (Diyod idealdir)

Soru 9. Şekil 1.'deki kenetleme devresinin girişine frekansı $f = 1 \, kHz$ olan şekil 2.'deki gibi bir v_i giriş işareti uygulandığında, $R = 100 \, k\Omega$ luk direnç uçlarındaki v_o çıkışının dalga şeklini çiziniz.

Soru 10. Girişine şekil 4.'deki gibi frekansı 1 kHz olan bir kare dalga işaret uygulandığında, çıkışında şekil 5.'deki gibi bir v_o gerilimi elde edebileceğimiz bir kenetleme devresi tasarlayınız. Tasarlamış olduğunuz devredeki elemanlara değer tayin ederek devrenin çalışmasını açıklayınız.

Soru 11. Girişine şekil 1.'deki gibi frekansı 1 kHz olan bir kare dalga V_{input} giriş işareti uygulandığında, çıkışında şekil 2.'deki gibi bir V_{output} çıkış gerilimi elde edebileceğimiz bir kenetleme devresi tasarlayınız. Tasarlamış olduğunuz devredeki elemanlara değer tayin ederek devrenin çalışmasını açıklayınız.

Soru 12. Girişine şekil 1.'deki gibi frekansı 1 kHz olan bir kare dalga V_{input} giriş işareti uygulandığında, çıkışında şekil 2.'deki gibi bir V_{output} çıkış gerilimi elde edebileceğimiz bir kenetleme devresi tasarlayınız. Tasarlamış olduğunuz devredeki elemanlara değer tayin ederek devrenin çalışmasını açıklayınız.

Soru 13. Şekil 3.'deki zener devresinde;

- a) $R_L = 180\Omega$ iken V_{RL} , I_{RL} , I_Z ve I_{RS} değerlerini bulunuz.
- b) $R_L=470\Omega$ iken V_{RL} , I_{RL} , I_{Z} ve I_{RS} değerlerini bulunuz. $(V_Z=10V$ ve $P_{Z\max}=400mW$)

Cevap13a.

$$I_Z = 0$$
, $I_{RS} = I_{RL} = 0.05 A = 50 \, mA$, $V_{RL} = 9 \, V$

Cevap 13b.

$$V_{RL} = 10 \, V$$
, $I_{RL} = 0.021 \, A$, $I_{RS} = 0.045 \, A$, $I_{Z} = 0.024 \, A$

Soru 14. 1 $k\Omega$ luk bir yük direnci üzerinde 20 voltluk bir çıkış gerilimi sağlayacak, 30 ila 50 volt arası girişe sahip bir gerilim regülatörü tasarlayınız. Yani uygun R_S değerini ve maksimum zener akımını ($I_{Z\max}$) bulunuz.

Cevap 14.

$$R_S = 500\Omega$$
, $I_{Z \text{max}} = 40 mA$

Soru 15.

- a.) Aşağıdaki devrede V_i giriş gerilimi 16V olmak üzere aşağıdaki şekildeki devrede I_L yük akımının 0 ila 200 mA değer aralığında değişmesi durumunda V_L yi 12V da tutacak R_S ve R_L değerlerini bulunuz.
- b.) a şıkkındaki zener diyod için $P_{Z \max}$ değerini bulunuz.

Cevap 15.

a.)
$$R_{L \text{max}} = \infty$$
, $R_{L \text{min}} = 60\Omega$, $R_S = 20\Omega$

b.)
$$P_{Z \max} = 2400 mW$$

Soru 16. Aşağıdaki şekildeki devrede $V_C=6V$ u sağlayacak R_E değerini yaklaşık analiz yapmak suretiyle bulunuz. ($V_{CC}=16V$, $R_{B1}=82k\Omega$, $R_{B2}=24k\Omega$, $R_C=5k\Omega$, $V_{BE}=0.7V$, $\beta=150$)

Soru 17. $V_{CC}=25V$, $R_{B1}=220k\Omega$, $R_{B2}=33k\Omega$, $R_{E}=1.8k\Omega$, $C_{1}=C_{2}=C_{E}=1\mu F$, $V_{BE}=0.7V$ ve $\beta=180$ olmak üzere aşağıdaki devreyi $V_{CE}=0.5V_{CC}$ de öngerilimleyecek R_{C} değerini,

- a.) Tam analiz yapmak suretiyle bulunuz.
- b.) Yaklaşık analiz yapmak suretiyle bulunuz.

Soru 18. Aşağıdaki şekildeki BJT kuvvetlendirici devresinin doğru akım analizini yaparak I_C akımını ve V_{CE} gerilimini hesaplayınız.

