Unidad 1: Introducción

BBDD01, Sesión 1:

Introducción a las bases de datos.

Oscar Gutierrez Blanco Lorena Lozano Plata María Teresa Villalba de Benito Javier Albert Segui

INDICE

- oIntroducción
- ONiveles de abstracción
- oInstancias y esquemas
- oModelos de datos
- OLenguajes de un SGBD
- oEstructura de un SGBD
- oUsuarios de un BD
- oSistemas informáticos
- oProceso de diseño en BBDD

Referencias: Silberschatz 4ª Ed. pp 1-16

Introducción

- oBD: Colección de datos interrelacionados con el objetivo de integrar y compartir
- oSGBD: Conjunto de programas que acceden a los datos
- oSGBD + BD contienen información sobre una parcela de la realidad
- oSGBD proporciona un entorno conveniente y eficiente para usar
- oAplicaciones Bases de Datos:
 - -Banca. Transacciones
 - -Líneas Aéreas: reserva de billetes
 - -Universidades: registros, calificaciones
 - -Ventas: productos, clientes, proveedores, etc.
 - Fabricación: inventario, producción, etc.
 - -Recursos Humanos: salarios, registros empleados, etc.
- oBases de Datos toca todos aspectos de nuestras vidas.

Introducción

 $1950-1980? \Rightarrow Datos sobre ficheros$

Características:

- -Redundancia e Inconsistencias de los datos: Múltiple formatos y duplicidad de información
- -Dificultad para acceder a los datos: escribir un nuevo programa para una nueva tarea
- -Aislamiento de Datos: múltiple formatos y ficheros
- Problemas de integridad (contenidas en el programa) :
 - Restricciones de integridad (balance de una cuenta > 0)
 - Difícil añadir restricciones o cambiarlas
- -Atomicidad de las modificaciones: fallos pueden producir inconsistencias
- -Concurrencia de múltiples usuarios: necesario para incrementar rendimiento y controlar el acceso
- Problemas de seguridad

Introducción

Sistemas de Bases de Datos

- -Solucionan el problema de los ficheros
- Características:
 - Persistencia
 - Soportan al menos un modelo de datos
 - Soporte de lenguajes de alto nivel para la manipulación y definir la estructura de los datos → SQL
 - Control de acceso y seguridad
 - Evitar inconsistencias de los datos

OArquitectura de tres niveles: Abstracción de datos

- o Nivel Físico \Rightarrow describe <u>cómo</u> se almacena un registro (ejemplo: cliente). Depende del SGBD
- oNivel Lógico ⇒ describe los datos almacenados en la base de datos y las relaciones entre ellos. Esquema global de BD

- oNivel Vistas o externo \Rightarrow ocultan detalles de tipo de datos. Programas de aplicación se escriben a este nivel
 - Cada usuario o grupos de usuarios tiene su propia vista
 - Pueden ocultar información (ejemplo salario) para determinados usuarios

- -Los niveles proporcionan <u>independencia</u> <u>de datos</u>: No cambia el esquema sino el mapa entre dos niveles.
- -Ejemplos prácticos:
 - 1. Se desea migrar una BD (con un diseño en tres niveles: Diccionario de Datos, conceptual E/R, lógico relacional, físico Oracle) de Oracle a SQL Server.
 - No cambia: modelo conceptual, modelo lógico
 - Cambia: modelo físico, regenerándolo para cumplir las reglas y peculiaridades del nuevo SGBD.
 - 2. Una nueva aplicación requiere un nuevo campo \rightarrow Una tabla en el modelo global tiene un atributo más.
 - Se crea un esquema externo nuevo para esa aplicación, conteniendo ese nuevo campo
 - •El resto de las aplicaciones no se ven afectadas ya que sus esquemas externos no han cambiado.

Independencia de datos:

- -Lógica: es la capacidad de modificar el esquema conceptual sin tener que alterar los esquemas externos ni los programas de aplicación (solo el mapa)
- -**Física:** es la capacidad de modificar el esquema interno sin tener que alterar el esquema conceptual
- -Las aplicaciones dependen del esquema externo \rightarrow no cambian
- -La interfaz (o mapa) entre niveles esta definida para que cambios en una parte, no influyan en otras
- -Ojo: La independencia es sólo de arriba abajo (si hay que incluir un campo en el nivel externo, afecta al global y al físico)

Modelos de datos

Bases de datos relacionales (Modelo de datos)

- Modelo E-R (del mundo real)
 - Entidades (objetos): clientes, cuentas
 - Atributos (características): nombre, apellidos, dni
 - Relaciones entre entidades: cuenta A-101 pertenece a Javier
 - Relación impositora asocia clientes con cuentas
- Usado ampliamente para el diseño de bases de datos
 - Diseño de bases de datos con modelo E-R se convierte usualmente en el modelo relacional que es usado para procesamiento y almacenamiento
 - Sencillo, fácil de entender, usado incluso para hablar con nuestro cliente
- El esquema global se representa mediante un diagrama

Modelos de datos

oEjemplo (parcial) de esquema en el modelo entidad relación.

Bases de datos relacionales - Modelo relacional

o Se utilizan tablas para los datos y relaciones Ejemplo de instancia en el modelo relacional

Ejemplo de instancia en el modelo relacional Atributo id-cliente nombre-cliente calle-cliente ciudad-cliente 19.283.746 González La Granja Arenal -01.928.374 Gómez Cerceda Carretas 67.789.901 López Mayor Peguerinos Ocurrencia 18.273.609 Abril Preciados Valsaín 32.112.312 Santos Mayor Peguerinos Ramblas León 33.666.999 Rupérez 01.928.374 Gómez Cerceda Carretas

Ejemplo de Base de datos relacional

La relación entre tablas se establece por el valor contenido

ciudad-cliente	
nja	
а	
inos	
inos	
a	

(a) La tabla cliente

número-cuenta	saldo	id-cliente	número-cuenta
C-101	500	19.283.746	C-101
C-215	700	19.283.746	C-201
C-102	400	01.928.374	C-215
C-305	350	67.789.901	C-102
C-201	900	18.273.609	C-305
C-217 750		32.112.312	C-217
C-222	700	33.666.999	C-222
(b) La tabla cu	ienta	01.928.374	C-201

(b) La tabla impositor

¿Saldo del
Cliente
"Santos"?=750

Base de datos, esquema e instancia

- oConceptos equivalentes a variable, tipo y valor en lenguajes de programación
- oBD ⇒ contenedor de información, al iqual que una variable
 - -Lo deseable es **la** (una) BD de **la** empresa, pero un economista que realiza la nómina de distintas empresas tendría una BD para cada una de ellas
- oEsquema ⇒ Estructura lógica de una base de datos (recoge restricciones en el mundo real)
 - Equivalente al tipo de una variable en un programa
 - -Esquema físico ⇒ cómo almacenar los datos en el disco
 - -Esquema lógico ⇒ qué datos son relevantes en el universo del discurso
- oInstancia ⇒ el contenido de una base de datos en un instante determinado (conjunto de datos concretos que almacena)
 - -Análogo al valor de una variable
 - También llamada ocurrencia, ejemplar, estado (de la BD) o instantánea
 - -El back-up contiene una instancia de una BD
 - -El Universo Discurso (UD) evoluciona en el tiempo, y con él la BD, generando instancias distintas
 - -Virtualmente el número de instancias puede ser infinito.

 (buena discusión de esto en Piattini2006, pag 100)

Instancias

- -Cuando se crea una base de datos, sólo se está definiendo su **esquema**, aún no tiene datos, por lo que se dice que tiene un **estado vacío** o es **instancia vacía**
- -Cuando se cargan los datos iniciales (tablas con datos "maestros") ⇒ Estado inicial o instancia inicial
- -Los estados pueden ser infinitos debido a la evolución del sistema, pero siempre satisfaciendo las restricciones del UD
- -El SGBD (Sistema Gestor de Base de Datos) se encarga de que sólo se almacenen estados ó instancias válidos, ajustados a las reglas del esquema proporcionado
- -Si las reglas son erróneas ⇒ Base de Datos contendrá estados o instancias imposibles en el mundo real (por fallos en el diseño). Ejemplo: (Vehículo: bicicleta, motor=diesel)

Diccionario de datos

- -La validación de las instancias se lleva a cabo mediante el esquema, almacenado en una sección de la BD
- -llamada Meta-Base de Datos, o Base de Datos del Sistema, o Catálogo del Sistema
- -Actúa como catálogo del sistema, permitiendo al SGBD saber qué reglas debe aplicar
- -Metadatos ⇒ **Intensión** de la Base de Datos
- -Instancia determinada ⇒ Extensión del esquema de la Base de Datos.

SGBD

Sistemas Gestores de Bases de Datos:

- -Conjunto de programas para crear, gestionar y administrar la información contenida en una Base de Datos
- -Sirve de interfaz entre los usarios, los datos y los programas de la BD
- -Ejemplos
 - Relacionales: Oracle, MySQL, SQL Server, Postgres, Sqlite..
 - NoSQl: MongoDB, Redis, Cassandra..

Lenguajes de un SGBD (LDD)

oSGBD ⇒ programarlo para introducir el esquema de definición de la BD

- -LDD (Lenguaje de definición de datos) Se puede dividir en:
 - LDA (Lenguaje de definición de Almacenamiento): utilizado sólo para crear el esquema
 - LDV (Lenguaje de definición de vistas) Ej:

create table cuenta (número-cuenta char(10), saldo integer)

- o Genera el esquema de la base de datos \Rightarrow Metadatos (datos sobre los datos)
- o Se guarda en el catálogo de la Base de Datos

El catálogo de un SGBD relacional

- o Almacena el esquema de la base de datos
 - -Nombre de las relaciones
 - -Nombre de atributos
 - Nuevos dominios
 - Restricciones:
 - · Dominio de datos
 - Claves candidatas y primarias
 - Claves extranjeras o foráneas
 - Valores NULL/NOT NULL
 - -Vistas
 - -Estructura de almacenamiento
 - -Índices y métodos de acceso
 - Autorización: Usuarios/Permisos/Datos
 - -En sistemas avanzados también almacena:
 - Funciones de usuario
 - Operadores
 - Estadísticas para la gestión del SGBD
 - Disparadores (triggers)

El catálogo de un SGBD relacional

oEs una BD sobre la BD

oEjemplo: relación de catálogo que describe esquemas de relación.

REL_AND_ATTR_CATALOG

REL_NAME	ATTR NAME	ATTR_TYPE	MEMBER_OF_PK	MEMBER_OF_FK	FK_RELATION :
EMPLEADO	NOMBRE	VSTR15	no	no	·
EMPLEADO	INIC	CHAR	no	no	
EMPLEADO	APELLIDO	VSTR15	no	no	
EMPLEADO	NSS	STR9	sí	no	
EMPLEADO	FECHA_NCTO	STR9	no	no	
EMPLEADO	DIRECCIÓN	VSTR30	no	no	
EMPLEADO	SEXO	CHAR	no	no	
EMPLEADO	SALARIO	INTEGER	no	no	
EMPLEADO	NSS_SUPERV	STR9	no	SÍ	
EMPLEADO	ND	INTEGER	no	sí	EMPLEADO
DEPARTAMENTO	NOMBRED	VSTR10	no	no	DEPARTAMENTO
DEPARTAMENTO	NÚMEROD	INTEGER	sí	no	
DEPARTAMENTO	MGRSSN	STR9	no	sí	
DEPARTAMENTO	FECHA_INIC_JEFE	STR10	no	no	EMPLEADO
LOCALIZACIONES_DEPT	NÚMEROD	INTEGER	sí	sí	
LOCALIZACIONES_DEPT	LOCALIZACIÓND	VSTR15	sí	no	DEPARTAMENTO
PROYECTO	NOMBREP	VSTR10	no	no	
PROYECTO	NÚMEROP	INTEGER	SÍ	no	
PROYECTO	LOCALIZACIÓNP	VSTR15	no	no	
PROYECTO	NUMD	INTEGER	no	SÍ	
TRABAJA_EN	NSSE	STR9	SÍ	sí	DEPARTAMENTO
TRABAJA_EN	NP	INTEGER	sí	SÍ	EMPLEADO
TRABAJA_EN	HORAS	REAL	no	no	PROYECTO
DEPENDIENTE	NSSE	STR9	sí	sí	
DEPENDIENTE	NOMBRE DEPENDIENTE	VSTR15	SÍ	no	EMPLEADO
DEPENDIENTE	SEXO	CHAR	no	no	
DEPENDIENTE	FECHA_NCTO	STR9	no	no	

El catálogo de un SGBD relacional

oEj. acceso de usuario mediante herramienta administrativa:

Lenguajes de un SGBD (LMD)

- o Lenguajes de un SGBD
 - LMD
 - De Alto Nivel o no procedimental:
 - Típico lenguaje de consulta orientado a conjuntos
 - Qué obtener pero no cómo obtenerlo
 - Son declarativos
 - De Bajo Nivel o procedimental:
 - Trabajan registro a registro
 - Están integrados en un lenguaje de programación de propósito general (Lenguaje anfitrión).
 - Los LMD utilizados de forma independiente se les llama **lenguajes de** consulta
 - -SQL (Select Query Language) es el lenguaje de consultas más utilizado. Es un estándar.
 - -Especializados: 4GL

Lenguajes de un SGBD (SQL)

oSQL: ampliamente usado como lenguaje no-procedimental Ejemplo: En la BD de la trasparencia 16

- Encontrar el nombre del cliente cuyo identificador es 19.283.746

SELECT cliente.nombre_cliente
FROM cliente
WHERE cliente.id cliente= '19.238.746'

- Encontrar el saldo del cliente anterior

SELECT cuenta.saldo
FROM impositor, cuenta
WHERE impositor.id_ cliente= '19 238 746'

impositor.numero cuenta=cuenta.numero cuenta

id-cliente	nombre-cliente	calle-cliente	ciudad-cliente	
19.283.746	González	Arenal	La Granja	
01.928.374	Gómez	Carretas	Cerceda	
67.789.901	López	Mayor	Peguerinos	
18.273.609	Abril	Preciados	Valsaín	
32.112.312	Santos	Mayor	Peguerinos	
33.666.999	Rupérez	Ramblas	León	
01.928.374	Gómez	Carretas	Cerceda	

(a) La tabla cliente

número-cuenta	saldo
C-101	500
C-215	700
C-102	400
C-305	350
C-201	900
C-217	750
C-222	700

/h	١	La	ta	h	la	01		nt	
ιD	,	La	ra	O	ıa	CL	ıe	m	2

id-cliente	número-cuenta
19.283.746	C-101
19.283.746	C-201
01.928.374	C-215
67.789.901	C-102
18.273.609	C-305
32.112.312	C-217
33.666.999	C-222
01.928.374	C-201
	19.283.746 19.283.746 01.928.374 67.789.901 18.273.609 32.112.312 33.666.999

(b) La tabla impositor

- oLos programas de aplicación acceden a la base de datos por:
 - Extensiones de un lenguaje de programación convencional (COBOL, PL1..) que permiten embeber SOL
 - Interfaces de aplicación (ODBC/JDBC) que permiten enviar consultas SQL a la base de datos

Esquema de funcionamiento de un SGBD

Tipos de usuarios

Procesadores de consultas

Gestor de almacenamiento

Estructura de un SGBD a nivel interno

oGestor de almacenamiento

- -Interface entre los datos y programas de alto nivel y consultas
- -Responsable del almacenamiento, recuperación y actualización de la base de datos
- Componentes:
 - Gestor autorización e integridad ⇒ satisface las ligaduras de integridad y la autorización de usuarios para acceder
 - Gestor de transacciones ⇒ asegura que la BD quede en estado consistente (correcto) a pesar de fallos en el sistema y transacciones concurrentes (ACID)
 - Gestor de archivos ⇒ gestiona la reserva de espacio en disco y las estructuras de archivos empleadas para la representación de la información almacenada
 - Gestor de memoria intermedia \Rightarrow trae los datos del disco a la memoria principal y decide qué datos tratar en la memoria cache.

Estructura de un SGBD a nivel interno

oProcesador de consultas

- -Intérprete del LDD ⇒ interpreta las instrucciones LDD y las registra en un conjunto de tablas que tienen metadatos
- -Compilador del LMD ⇒ traduce instrucciones del LMD a instrucciones de bajo nivel que entiende el motor de evaluación de consultas
- -Precompilador del LMD \Rightarrow convierte las instrucciones del LMD en llamadas a procedimientos normales del anfitrión
- -Optimizador de consultas ⇒ obtiene la consulta más eficiente equivalente a la original para ser procesada posteriormente
- -Motor de evaluación de consultas \Rightarrow ejecuta las instrucciones de bajo nivel generadas por el compilador del LMD.

Herramientas

- oCarga de Datos de ficheros existentes
- OHerramientas de conversión (importar/exportar)
- oCopia de Seguridad (Back-up)
- OReorganización de ficheros
- oControl del rendimiento para la supervisión de la base de datos
- oCompresión de datos
- oSistema de comunicaciones.

Usuarios de las BD

- oSegún la manera en que interactúen con la BD:
 - -Programadores de aplicaciones \Rightarrow interactúan con el sistema a través de llamadas al LMD sobre otro lenguaje (anfitrión)
 - -Usuarios sofisticados ⇒ realizan peticiones usando un lenguaje de consultas
 - -Usuarios especializados ⇒ escriben aplicaciones especializadas
 - -Usuarios normales \Rightarrow usuarios no sofisticados que interactúan con el sistema a través de aplicaciones permanentes
 - Oficinistas, clientes que acceden a través de web o puestos de consulta. Ej: reservas aéreas, banca.
 - -Administrador de la Base de Datos (ABD) \Rightarrow control central sobre el sistema. Una o varias personas.
 - Definición del esquema
 - Definición de la estructura y métodos de acceso
 - Modificación del esquema y de la organización física
 - Concesión de la autorización para el acceso a los datos
 - · Mantenimiento rutinario: Back-up, espacio en disco, supervisión, etc.

Sistemas Informáticos (Centralizado)

- oEl sistema de la Base de Datos se ejecuta en un único sistema informático, sin interactuar con ningún otro sistema
- oEstos sistemas abarcan a los típicos equipos monopuesto, y a los sistemas multipuesto, donde la base de datos está centralizada en el sistema principal
- ONo suelen ofrecer soluciones excesivamente avanzadas en la gestión de la base de datos.

Sistemas Informáticos (Centralizado)

Sistemas Informáticos (Cliente-Servidor)

- oMuy extendidos en la actualidad
- oLa base de datos se sitúa en un ordenador, el cuál realiza toda la gestión y almacenamiento de datos. Es el servidor
- oLos ordenadores (quizá menos potentes) hacen consultas sobre los datos del servidor ⇒ proporcionando una interface amigable de acceso a datos al usuario, descargando de esta tarea al servidor. Son los clientes
- oSistema cliente-servidor típico: Servidores de páginas Web con conexión a base de datos.

Sistemas Informáticos (Cliente-Servidor)

Sistemas Informáticos (Paralelos)

oUtilizan varias CPU y discos en paralelo para optimizar el rendimiento

oRendimiento:

- -Productividad: n° de tareas completadas en un intervalo de tiempo
- -Tiempo de respuesta : tiempo en completar una tarea.

Sistemas Informáticos (Distribuidos)

oLa información se almacena en varios ordenadores

oDichos ordenadores están conectados entre sí por redes de comunicación.

Clasificación Sistemas de Bases de Datos

- oPor Modelo de Datos: relacional, objeto-relacional, jerárquico, red, NoSQL
- oPor el n° de usuarios: monousuario, multiusuario
- oN° de sitios en los que está dividido: centralizado, distribuido
- oCampo de aplicación:
 - Propósito general
 - -Propósito específico: reserva de billetes de líneas aéreas (OLTP)
- oCoste.

Proceso de Diseño de las BBDD

- oEl proceso de diseño de una base de datos, idealmente, es un proceso secuencial e incremental
 - -Captura de requisitos: Diccionario de Datos (Documentos + ME/R Ext)
 - -Aproximación inicial (Análisis): Modelo Lógico (ME/R Ext → MR)
 - -Solución específica (Diseño): Modelo Físico (MR específico del SGBD)
 - Programación: Implementación (Estructuras y consultas) (SQL)
 - -Carga inicial (a veces conocida como carga de ficheros maestros) (SQL)
 - -Pruebas (SQL, Java, otros lenguajes con acceso al SGBD).

oProblemas:

- -Partimos de un enunciado en lenguaje natural: poco formal, dado a confusiones y ambigüedades, con información incompleta
- -Errores en las primeras fases se magnifican en fases siguientes
- -La base de datos es un ente vivo, cambia y se adapta, y por tanto el diseño también se debe adaptar: A veces hay que volver atrás a cambiar elementos, pero sin perder los datos ya almacenados.

