International Conference on Energy Systems Integration

Flexible Industrial Demand Supporting Cost Effective Integration of Renewables

Goran Strbac

Imperial College London

Challenges of decarbonisation of European power system

- Degradation in utilization of generation and network infrastructure
- Limited ability to integrate renewable generation

Key objectives

Cost-effective transition to a low-carbon European power system

Rising cost of electricity – impact on competitiveness of the European Industry

- Formulate business models
- Develop tools to facilitate their adoption
- Quantify the potential benefits for the European power system and industrial consumers
 - Formulate regulatory and policy recommendations

Imperial College London

Case Studies

IndustRE – targeted 6 countries in Europe:

- Belgium France Germany Italy –
 Spain UK
- Combined these represent:
 - >60% EU population
 - 80% of EU wind and PV capacity
- Industrial sectors targeted in IndustRE

Share of EU industrial demand per country

Case Studies

Imperial College London

	Sector	Country	Flexibility	
	Paper	Belgium	Electric / gas boiler identified as main source of flexibility Overcapacity of pulpmill factory	
	Steel	Italy	Thermal buffer in induction furnace	~
**	Cold Storage	UK	Thermal buffer in cold storage, emergency generators	- <u> </u>
	Water treatment	Germany	Switching between electricity and gas with multiple sources of flexibility	Flexibility source
*	Cold storage	France	Thermal buffer	
	Chemicals	Germany	Overcapacity of liquefaction process	Flexibility source
	Non-ferrous metals	Germany	Thermal buffer in induction furnace	→ →

Quantification of whole system value of industrial demand flexibility

Benefits across multiple system sectors:

- ➤ Generation system (incl. conventional and renewable generation)
- Transmission network
- ➤ Distribution network

Benefits across multiple timescales:

- >Long-term investment planning
- ➤ Short term scheduling
- ➤ Real-time balancing

Overall modelling approach

London

Benefits for European power system

Utilisation of industrial demand flexibility

London

IndustRE

Benefits for European distribution networks

London

Flexible industrial consumer market model

Quantification of system benefits

Operational constraints of flexible industrial consumer

Objective function:
Minimise overall electricity
cost for flexible industrial
consumer

Prices of energy, balancing and capacity services

- Energy procured by industrial consumer in the energy market
- Volume of balancing services offered by industrial consumer
- Reduction of peak demand of industrial consumer

Benefits for flexible industrial consumer

Need for fundamental reform of market and regulatory framework

London

Main findings: System perspective

- Multiple value streams of industrial demand flexibility for the European power system:
 - Reduction in system operation costs by providing balancing services (reserves, frequency response) and enabling higher utilisation of renewable and cheaper energy sources and
 - ➤ Reduction in generation and network investments by limiting peak demand levels and limiting the required generation flexibility
- System cost savings become more significant under higher renewable generation levels
- Value of industrial demand flexibility varies across different European countries

Main findings: Industry perspective

- Multiple revenue streams for demand flexibility for the European industrial consumers:
 - Energy cost savings by adjusting electricity consumption patterns to the temporal variation of energy prices
 - ➤ Revenues from provision of balancing services (reserves, frequency response)
 - ➤ Revenues from provision of capacity services (generation, transmission and distribution level)
- Total cost savings and revenues become more significant under higher renewable generation levels
- Need for fundamental reform of market and regulatory framework to remunerate the multiple provided services in a cost-reflective way

Business Models identified for FID /1

Available tools

Flexible demand only

+ contract with offsite VRE

+ contract with onsite VRE

Energy costs

Flexible Industrial Demand (FID)

Network and other regulated costs

Savings

Revenues

System services

Variable Renewable energy (VRE)

Business Model

Authors:

Imperial College London

Business Models identified for FID

Available tools

London

Authors:

Key Market/Policy Recommendations

- Harmonize flexibility mechanism and products across EU markets
 - Level playing field trading of flexibility cross-border
- Energy and Capacity Market access
 - Improve access and participation of small and large industries in wholesale electricity markets (day-ahead and intraday markets)
 - Ensure level playing field for flexible industrial demand into these markets
- Ancillary services
 - Promote active network access / management by DSOs
 - Apply marginal pricing contracting balancing energy instead of pay-as-bid (also supported by National Grid); Reduce procurement horizons to closer to real time
- Tariff design
 - Establish cost-reflective network tariffs
- Carbon benefits of flexibility
- Option value of flexibility

Detailed project results:

www.industre.eu/downloads/category/project-results

International Conference on Energy Systems Integration

Flexible Industrial Demand Supporting Cost Effective Integration of Renewables

Goran Strbac,

Roberto Moreira, Dimitrios Papadaskalopoulos, Danny Pudjianto, Predrag Djapic, Fei Teng Imperial College London

