Disclosed is a novel bidentate pyridine transition metal catalyst having the general formula

10

$$\begin{bmatrix} R' & R' \\ R' & R' \\ N & Y \end{bmatrix}_{a}$$

$$C4 & (X)_{c}$$

where Y is O, S, NR,

$$\begin{bmatrix} R \\ C \\ R \end{bmatrix}_{n} NR - , \begin{bmatrix} R \\ C \\ R \end{bmatrix}_{n} PR - \text{ or } \begin{bmatrix} R \\ I \\ C \\ R \end{bmatrix}_{n} O - ,$$

each R is independently selected from hydrogen or C₁ to C₆ alkyl, or C₆ to C₁₄ aryl, each R' is independently selected from R, C₁ to C₆ alkoxy, C₆ to C₁₄ aryl, C₇ to C₂₀ alkaryl, C₇ to C₂₀ aralkyl, halogen, or CF₃, M is a Group 3 to 10 metal, each X is independently selected from haloge h, C_1 to C_6 alkyl, C_6 to C_{14} aryl, C_7 to C_{20} alkaryl,

5

10

L is X, cyclopentadienyl, C₁ to C₆/alkyl substituted cyclopentadienyl, indenyl,

fluorenyl, or

511B R' R'

R' R'

R'

N Y-

"n" is 1 to 4;

"a" is 1 to 3;

"b" is 0 to 2;

 $a + b \le 3$;

"c" is 1 to 6; and

a + b + c equals the oxidation state of M.

all est