transformer exploration

June 7, 2025

```
import numpy as np
import torch
import matplotlib.pyplot as plt
import scipy.signal as signal
import torch.distributions as dist
from jaxtyping import Float, Int
from torch import Tensor
import spikeinterface.extractors as se
import spikeinterface.comparison as sc
from spikeinterface.preprocessing import bandpass_filter
from sklearn.metrics import confusion_matrix, adjusted_rand_score
from scipy.signal import find_peaks
import h5py
```

```
[3]: def load_mearec_data(recording_file="recordings.h5"):
         Load MEArec data and convert to PyTorch tensors compatible with the
      ⇔notebook format
         11 11 11
         # Load MEArec data
         recording, sorting_true = se.read_mearec(recording_file)
         # Apply preprocessing (bandpass filter)
         recording_filt = bandpass_filter(recording, freq_min=300, freq_max=6000)
         # Get traces as numpy array and convert to torch tensor
         traces = torch.tensor(recording_filt.get_traces(), dtype=torch.float32)
         # Get ground truth spike times and IDs
         true spike times = []
         true_spike_ids = []
         for unit_id in sorting_true.unit_ids:
             unit_spikes = sorting_true.get_unit_spike_train(unit_id)
             true_spike_times.extend(unit_spikes)
             # Convert unit id to integer (remove '#' if present)
```

```
unit_idx = int(unit_id.lstrip('#')) if isinstance(unit_id, str) else__
→int(unit id)
      true_spike_ids.extend([unit_idx] * len(unit_spikes))
  # Sort by spike times
  sorted indices = np.argsort(true spike times)
  true_spike_times = torch.tensor([true_spike_times[i] for i in_
⇔sorted_indices], dtype=torch.long)
  true_spike_ids = torch.tensor([true_spike_ids[i] for i in sorted_indices],_
→dtype=torch.long)
  # Extract true templates from MEArec data
  with h5py.File(recording_file, 'r') as f:
      templates = f['templates'][:] # Shape: (n_units, n_jitters, __
\rightarrow n channels, n samples)
  # Convert templates to the expected format: (n_units, n_samples, n_channels)
  # Take median across jitters and transpose
  →1), dtype=torch.float32)
  # Constants
  sampling_frequency = recording.sampling_frequency
  num_samples, num_channels = traces.shape
  true_num_spikes = len(true_spike_times)
  true_num_neurons, window_size, _ = true_templates.shape
  return {
      'traces': traces,
      'true_spike_times': true_spike_times,
      'true_spike_ids': true_spike_ids,
      'true_templates': true_templates,
      'sampling_frequency': sampling_frequency,
      'num_samples': num_samples,
      'num_channels': num_channels,
      'true_num_spikes': true_num_spikes,
      'true_num_neurons': true_num_neurons,
      'window_size': window_size
  }
```

```
[33]: data = load_mearec_data("data/sim_data/recordings2.h5")

# Extract variables in the same format as the original notebook
traces = data['traces']
true_spike_times = data['true_spike_times']
true_spike_ids = data['true_spike_ids']
true_templates = data['true_templates']
```

```
SAMPLING FREQUENCY = data['sampling frequency']
     NUM_SAMPLES, NUM_CHANNELS = traces.shape
     TRUE_NUM_SPIKES = data['true_num_spikes']
     TRUE_NUM_NEURONS, WINDOW_SIZE, _ = true_templates.shape
     WINDOW_SIZE = 96
     print(f" Loaded MEArec data:")
     print(f" Traces shape: {traces.shape}")
     print(f" True spikes: {TRUE_NUM_SPIKES}")
     print(f" True neurons: {TRUE NUM NEURONS}")
     print(f" Sampling frequency: {SAMPLING_FREQUENCY} Hz")
     print(f" Window size: {WINDOW SIZE}")
     Loaded MEArec data:
       Traces shape: torch.Size([1920000, 32])
       True spikes: 4805
       True neurons: 8
       Sampling frequency: 32000.0 Hz
       Window size: 96
[5]: def plot_slice(traces: Float[Tensor, "num_samples num_channels"],
                    spike times: Int[Tensor, "num spikes"],
                    spike_ids: Int[Tensor, "num_spikes"],
                    start time: float=0,
                    end_time: float=1.0,
                    vlim: float=None):
         11 11 11
         Plot a slice of the recording and the corresponding spike times.
         # Extract constants
         num_samples, num_channels = traces.shape
         num_neurons = spike_ids.max() + 1
         # Extract the slice of the recording
         slc = slice(int(start_time * SAMPLING_FREQUENCY), int(end_time *_
      →SAMPLING_FREQUENCY))
         # Get the y-limit for traces if not specified
         if ylim is None:
             ylim = 1.05 * traces[slc].abs().max()
         # Make an array of times in seconds
         times_sec = torch.arange(0, num_samples) / SAMPLING_FREQUENCY
         spike_times_sec = times_sec[spike_times]
         spike_in_slice = (spike_times_sec >= start_time) & (spike_times_sec <=_u
      ⇔end_time)
```

```
# Plot the spike raster
        fig, axs = plt.subplots(num_channels + 1, 1, sharex=True, figsize=(6, 1.5 *__

    (num_channels + 1)))
        axs[0].plot(spike times sec[spike in slice], spike ids[spike in slice],
      axs[0].set_ylabel("neuron")
        axs[0].set_yticks(torch.arange(0, num_neurons))
        axs[0].set_title("spike train")
        # Plot the voltage traces
        for i in range(num_channels):
            axs[i+1].plot(times_sec[slc], traces[slc, i], color='k', lw=1, alpha=0.
      →5)
            axs[i+1].set_title(f"channel {i+1}", fontsize=10)
            axs[i+1].set_ylim(-ylim, ylim)
            axs[i+1].set_ylabel("trace\n[z-score]")
            axs[i+1].set_xlim(start_time, end_time)
            if i == num_channels - 1:
                axs[i+1].set_xlabel(f"time [sec]")
        plt.tight_layout()
        return fig, axs
[6]: def plot_waveforms(waveforms: Float[Tensor, "num_waveforms windows_size_
      name: str="waveform"):
        Plot a grid of spike waveforms or templates.
        num_waveforms, window_size, num_channels = waveforms.shape
        times = torch.arange(-window_size//2, window_size//2) / SAMPLING_FREQUENCY_
      →* 1000
        fig, axs = plt.subplots(num_channels, num_waveforms,
                               figsize=(1.25 * num_waveforms, 1.25 * num_channels),
                               sharex=True, sharey=True)
         # Handle case where there's only one channel or one waveform
        if num_channels == 1:
            axs = axs.reshape(1, -1)
        if num_waveforms == 1:
            axs = axs.reshape(-1, 1)
```

lim = 1.05 * waveforms.abs().max()

```
for j in range(num_waveforms):
    for i in range(num_channels):
        axs[i,j].plot(times, waveforms[j,:,i], color='k', lw=1, alpha=0.5)
        axs[i,j].set_ylim(-lim, lim)

if j == 0:
        axs[i,j].set_ylabel(f"channel {i}\n [z-score]")

if i == 0:
        axs[i,j].set_title(f"{name} {j}")

if i == num_channels - 1:
        axs[i,j].set_xlabel(f"time [ms]")

plt.tight_layout()
    return fig, axs

def evaluate_detected_spikes(
```

```
[7]: def evaluate_detected_spikes(
         detected_spike_times: Int[Tensor, "num_detected_spikes"],
         true_spike_times: Int[Tensor, "num_true_spikes"]) -> dict:
         Evaluate detected spikes against ground truth with boundary handling
         num_windows = NUM_SAMPLES // WINDOW_SIZE
         # Filter out spikes that would cause out-of-bounds errors
         # Keep only spikes that fall within valid window boundaries
         valid_true_spikes = true_spike_times[true_spike_times < num_windows *_
      →WINDOW SIZE]
         valid_detected_spikes = detected_spike_times[detected_spike_times <__
      →num_windows * WINDOW_SIZE]
         # Create masks for windows containing spikes
         true_spike_mask = torch.zeros(num_windows, dtype=torch.bool)
         if len(valid_true_spikes) > 0:
             true_spike_mask[valid_true_spikes // WINDOW_SIZE] = True
         detected_spike mask = torch.zeros(num_windows, dtype=torch.bool)
         if len(valid_detected_spikes) > 0:
             detected spike mask[valid_detected_spikes // WINDOW_SIZE] = True
         # Calculate confusion matrix elements
         tp = (true_spike_mask & detected_spike_mask).sum().item()
         fp = (detected_spike_mask & ~true_spike_mask).sum().item()
         fn = (~detected_spike_mask & true_spike_mask).sum().item()
         tn = (~detected_spike_mask & ~true_spike_mask).sum().item()
         return dict(tp=tp, fp=fp, fn=fn, tn=tn)
```

```
[34]: # Plot the first second of MEArec data
_ = plot_slice(traces, true_spike_times, true_spike_ids, start_time=0.0,
_ → end_time=1.0)
```



```
[35]: # Plot true templates
fig, axs = plot_waveforms(true_templates, name="template")
fig.suptitle("MEArec True Templates", y=1.05)
plt.show()
```

		tem	plate 0	template 1	template 2	template 3	template 4	template 5	template 6	template 7
	0 [5-80 or] -10 channel 0	0			-		-			
The state of the s										
The part of the pa		20 -	ᆜ					<u> </u>		
### PART 1990	channel 2 [2-score]	0-								
Part	score]	0-								
Security Common		-								
Part	channel [2-score	0-								
1 1 1 1 1 1 1 1 1 1	2-score)	0-								
1 1 1 1 1 1 1 1 1 1		20 -	귀	\ -	\ -	1,	1,,,,,	\ -	1,	1,,,,,
Secretary 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	channe (2-9co									
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Channel 7 [2-score]	0-		-v-				-	-	-
### Page 12 100		20 -								
### Page 100		10-						Щ		
T	Channel 9 (2-Score) -10	0-	v-					1		
T	900 10 10 10 10 10 10 10 10 10 10 10 10 1	0-								
Et paus de la 100 de la 10		10 L	⊣	H	H			\square		
Et pareir (1 par	Channel [2-score	0								
Et pareir (1 par	(z-score)	0-			-	-				
H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		20 -		<u></u>	·					1
T panel 2 100	Channe [2:50 = 10									
T panel 2 100	Dannel 14 [2-score]	0-				-	-			
# page 2 - 200		20-								
E para 2 - 100 - 1		10 -								
# page 2 - 200	Channel 16 [2-5core] –10	0-	-				-			
# page 2 - 200	Score]	0								
## Part		10-	귀				<u></u>			
R page 20 20 20 20 20 20 20 20 20 20 20 20 20	channel [2-score	0								
R part 200	2-score]	0-	v—							
T page 2 100		10-	⊣	L	\			 -		
22 page 20 pag		20 -								
22 page 20 pag	Channel 21 [2-score]	0	~				-			
T page 2 - 100 - 1		10 -								
R page 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		10 L	픠		H	<u></u>	<u></u>		<u></u>	
11 100 100 100 100 100 100 100 100 100	Channel 2 (2-5core)	0								
11 100 100 100 100 100 100 100 100 100	2-score]	0-								
R post 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		20 -	귀	<u></u>	1l	1	1	1	1	1
E 100 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0										
E 100 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	Channel 26 [2-5core] 10	0-	\neg							
		20-	H							
7 7 100 - 100		10 -	\exists							
€ -100	Channel 28 [2-5core] 20 -10	0-	_							
£ 2 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		10 -								
		» <u>_</u>	늬							
R 2007-100	Channel 2	0				9				
T 100-100-100-100-100-100-100-100-100-100	[2-score]	0-	<u></u>							
$ \begin{cases} \frac{2}{3} - 100 \\ \frac{1}{3} - \frac{1}{$	ti — −10	-5	o S ne [ms]	-5 0 5 time [ms]	-5 0 5 time [ms]	-5 0 5	-5 0 5	-5 0 5	-5 0 5	-5 0 5

```
from spikeinterface.sortingcomponents.peak_detection import detect_peaks
      # Use SpikeInterface's peak detection
      print(" Using SpikeInterface peak detection...")
      # Convert back to SpikeInterface format temporarily
      recording si = se.read mearec("data/sim data/recordings2.h5")[0]
      recording_filt = bandpass_filter(recording_si, freq_min=300, freq_max=6000)
      # Detect peaks using SpikeInterface
      peaks = detect_peaks(recording_filt,
                          method='locally_exclusive',
                          peak_sign='neg',
                          detect_threshold=5.0,
                          exclude_sweep_ms=1.0)
      # Convert back to torch tensors
      si_spike_times = torch.tensor(peaks['sample_index'])
      print(f" SpikeInterface detected {len(si_spike_times)} spikes")
      # Extract waveforms using SpikeInterface detection
      \#spike\ waveforms\ si\ =\ torch.zeros((len(si\ spike\ times),\ WINDOW\ SIZE, ))
       →NUM CHANNELS))
      traces_np = recording_filt.get_traces()
      # for i, t in enumerate(si_spike_times):
          start\_idx = t - WINDOW\_SIZE // 2
            end_idx = t + WINDOW_SIZE // 2
            if start_idx >= 0 and end_idx < traces_np.shape[0]:</pre>
                spike\_waveforms\_si[i] = torch.tensor(traces\_np[start\_idx:end\_idx])
       Using SpikeInterface peak detection...
     noise_level (no parallelization):
                                                        | 0/20 [00:00<?, ?it/s]
                                         0%|
     detect peaks using locally_exclusive (no parallelization):
                                                                    0%1
                                                                                  1 0/60
      \Rightarrow [00:00<?, ?it/s]
       SpikeInterface detected 4714 spikes
[37]: def extract_waveforms_robust(traces_np, spike_times, window_size):
          Robust waveform extraction with proper boundary handling
```

[36]: import spikeinterface.sorters as ss

```
num_spikes = len(spike_times)
    num_samples, num_channels = traces_np.shape
    half_window = window_size // 2
    spike_waveforms = []
    valid_spike_times = []
    print(f"Extracting waveforms with window size {window_size}...")
    for i, t in enumerate(spike_times):
        start_idx = int(t - half_window)
        end_idx = int(t + half_window)
        # Check boundaries
        if start_idx >= 0 and end_idx < num_samples:</pre>
            waveform = traces_np[start_idx:end_idx, :]
            # Verify we got the right shape
            if waveform.shape[0] == window_size:
                spike_waveforms.append(torch.tensor(waveform))
                valid_spike_times.append(t)
            else:
                print(f"Skipping spike {i}: wrong shape {waveform.shape}")
        else:
            print(f"Skipping spike {i}: out of bounds (start={start_idx},__
 ⇔end={end idx})")
    if len(spike_waveforms) > 0:
        spike_waveforms = torch.stack(spike_waveforms)
        print(f" Extracted {len(spike_waveforms)} valid waveforms")
    else:
        print(" No valid waveforms extracted!")
        spike_waveforms = torch.zeros((0, window_size, num_channels))
    return spike_waveforms, torch.tensor(valid_spike_times)
# Apply robust extraction
spike_waveforms_fixed, valid_spike_times = extract_waveforms_robust(
    traces_np, si_spike_times, WINDOW_SIZE
# Plot the results
if len(spike_waveforms_fixed) > 0:
    fig, axs = plot_waveforms(spike_waveforms_fixed[:5], name="waveform")
    fig.suptitle("Robust Extraction - First 5 Waveforms", y=1.05)
    plt.show()
```

```
else:
   print("No waveforms to plot!")
```

```
Extracting waveforms with window size 96...

Skipping spike 0: out of bounds (start=-46, end=50)

Skipping spike 1: out of bounds (start=-40, end=56)

Extracted 4712 valid waveforms
```

	,	waveform 0	waveform 1	. waveform 2	waveform 3	waveform 4
channel 0 [2-score]	100 -	~~~~				
ag 22	-100 -			<u></u>		<u></u>
(2-score)	0 - -100 -	40.000			-/4/4/4/4	
27	100 -					$\overline{\Box}$
channel 2 [2-score]	0 - -100 -	~~~~	~~~~			
E	100 -					
[2-score]	-100 -	was Man				
ie 4	100 -					
channel 4 [2-score]	0 - -100 -			-		
(2-score)	100 -		1			
25.5 12.5	-100 -					
(2-score)	100 -		1			
공	-100 -	<u></u>	<u></u>	<u></u>		<u></u>
[2-score]	0 -		1	-w-w-w	~~~	
	-100 - 100 -		1		-	<u></u>
channel 8 [2-score]	-100 -	·~~			·~~	
(z-score)	100 -	Phonon Apr				m ,
Char [2-50	-100 -				. V	LV
channel 10 [2-score]	100 -	VValue				400000
	-100 - 100 -		\perp	<u></u>	<u></u>	
channel 11 [2-score]	0 -	~~~~	\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/			
	-100 - 100 -	\square	+			+
channel 12 [2-score]	0 -	-1/-1/1/-1	·~~~	-,~~,~~		-4~~~
	-100 - 100 -				-	
(z-score)	0 -	ww.~~~	-1000m/m		-11-11-1-1-1-1	
2-	100 -					
(2-score)	-100	·~~~		-14/		
115 re]	100 -					
channel 15 [2-score]	-100 -				-~~~	~~~~~
ore]	100 -				1	
channel 16 [2-score]	-100 -					
[2-Score]	100 -		Imm M			
Chan (2:5	-100 -					
[2-score]	100 -	~~~~			-~~	
	-100 - 100 -	<u></u>		-	<u></u>	<u></u>
(2-score)	0 -	www			~~~	
	-100 - 100 -		\vdash		<u></u>	
channel 20 [2-score]	0-			~~~	-~~~~	-Vm
	100 -		1			
(2-score)	0-	~~~~			~~~	m/m
	100 -					
channel 22 [2-score]	-100 -	~~~~				-0/_000
el 23 ore]	100 -		1			
channel 23 [z-score]	-100 -					
channel 24 [2-score]	100 -	~~~~			·~~~	
	-100 -		<u></u>	<u></u>	<u> </u>	<u></u>
channel 25 [2-score]	0 -	~~~~		·~~/~#//	, proposition	
	100 -				-	
channel 26 [2-score]	0 - -100 -	~~~				
channel 27 [2-score]	0 -	~~~	1			
	-100 - 100 -			-	-	+
channel 28 [2-score]	0-		\-\m	~~~~		~~~~
	-100 - 100 -	H	+		-	
channel 29 [2-score]	-100 -			-www.		
	100 -	$\overline{\Box}$		10		
channel 30 [2-score]	0 - -100 -	******		13~~	-^~	w/w
nel 31	100 -			-		
channel 31 [2-score]	-100 -	-1 0 1	-1 0 1	-1 0 1	-1 0 1	-1 0 1
		-1 0 1 time [ms]	-1 0 1 time [ms]	-1 0 1 time [ms]	-1 0 1 time [ms]	-1 0 1 time [ms]

```
[38]: # Set fallback before any imports
import os
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1'

import torch

# Your existing transformer code will now work with MPS
device = torch.device('mps' if torch.backends.mps.is_available() else 'cpu')
print(f"Using device: {device} with MPS fallback enabled")
```

Using device: mps with MPS fallback enabled

```
[39]: import numpy as np
      import torch
      import torch.nn as nn
      import torch.nn.functional as F
      from sklearn.mixture import GaussianMixture
      from sklearn.metrics import confusion_matrix, adjusted_rand_score, u
       ⇔silhouette_score
      from sklearn.preprocessing import StandardScaler
      from tqdm.notebook import tqdm
      import matplotlib.pyplot as plt
      import math
      class MultiChannelSpikeTransformer(nn.Module):
          def __init__(self, n_channels=32, window_size=96, d_model=256, n_heads=8,
                       n_layers=4, patch_sizes=[8, 16, 24], dropout=0.1):
              super().__init__()
              self.n_channels = n_channels
              self.window_size = window_size
              self.d_model = d_model
              self.patch sizes = patch sizes
              self.n_scales = len(patch_sizes)
              # Calculate target number of patches
              self.target_patches = window_size // min(patch_sizes)
              # FIX: Ensure dimensions add up to d_model exactly
              base_dim = d_model // self.n_scales # 85 for 3 scales
              remainder = d_model % self.n_scales # 1 for 256 % 3
              # Distribute dimensions: [86, 85, 85] to sum to 256
              scale_dims = [base_dim + (1 if i < remainder else 0) for i in_
       →range(self.n_scales)]
```

```
print(f"Scale dimensions: {scale_dims}, sum: {sum(scale_dims)}")
      # Multi-scale patch embeddings with exact dimension allocation
      self.patch_embedders = nn.ModuleList([
          nn.Conv1d(n_channels, scale_dims[i], kernel_size=p, stride=p)
          for i, p in enumerate(patch_sizes)
      ])
      # Channel embeddings for spatial awareness
      self.channel_embeddings = nn.Embedding(n_channels, d_model)
      # Positional encodings for temporal structure
      self.pos encoder = PositionalEncoding(d model, dropout, max len=self.
→target_patches)
      # Temporal Transformer encoder
      temporal layer = nn.TransformerEncoderLayer(
          d_model=d_model, nhead=n_heads, dim_feedforward=d_model*4,
          dropout=dropout, activation='gelu', batch_first=True
      self.temporal_encoder = nn.TransformerEncoder(temporal_layer,__
→num_layers=n_layers)
      # Global pooling for spike-level embeddings
      self.global_pool = nn.MultiheadAttention(d_model, n_heads,__

¬dropout=dropout, batch_first=True)

      self.cls token = nn.Parameter(torch.randn(1, 1, d model))
      # Final embedding projection
      self.embedding_head = nn.Sequential(
          nn.Linear(d_model, d_model),
          nn.GELU(),
          nn.Dropout(dropout),
          nn.Linear(d_model, d_model)
      )
  def forward(self, x):
      Forward pass for spike embedding generation
      Args:
          x: (batch_size, window_size, n_channels)
      Returns:
          embeddings: (batch_size, embedding_dim)
      batch_size = x.size(0)
      # Step 1: Multi-scale patch embedding with exact dimensions
```

```
x_patches = []
        x_transposed = x.transpose(1, 2) # (batch, channels, time)
        for embedder in self.patch_embedders:
            patches = embedder(x_transposed) # (batch, scale_dim, n_patches)
            # Use interpolation for consistent patch count
            if patches.size(2) != self.target_patches:
                patches = torch.nn.functional.interpolate(
                    patches, size=self.target_patches, mode='linear',
 ⇒align_corners=False
                )
            patches = patches.transpose(1, 2) # (batch, target_patches,__
 \hookrightarrow scale dim)
            x_patches.append(patches)
        # Concatenate multi-scale features (now sums to exactly d_model)
        x_{embedded} = torch.cat(x_{patches}, dim=-1) # (batch, target_patches,__
 \hookrightarrow d_{model}
        # Verify dimension match
        assert x embedded.size(-1) == self.d model, f"Embedding dim {x embedded.
 ⇔size(-1)} != d_model {self.d_model}"
        # Step 2: Add positional encoding
        x_embedded = self.pos_encoder(x_embedded)
        # Step 3: Temporal encoding
        x_temporal = self.temporal_encoder(x_embedded)
        # Step 4: Global pooling with CLS token
        cls_tokens = self.cls_token.expand(batch_size, -1, -1)
        x_with_cls = torch.cat([cls_tokens, x_temporal], dim=1)
        attn_output, _ = self.global_pool(cls_tokens, x_with_cls, x_with_cls)
        spike_embedding = attn_output.squeeze(1) # (batch, d_model)
        # Step 5: Final embedding projection
        final_embedding = self.embedding_head(spike_embedding)
        return final_embedding
class PositionalEncoding(nn.Module):
    """Positional encoding for transformer"""
```

```
def __init__(self, d_model, dropout=0.1, max_len=5000):
        super().__init__()
        self.dropout = nn.Dropout(p=dropout)
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() *
                            (-math.log(10000.0) / d model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div term)
        pe = pe.unsqueeze(0).transpose(0, 1)
        self.register_buffer('pe', pe)
    def forward(self, x):
        x = x + self.pe[:x.size(1), :].transpose(0, 1)
        return self.dropout(x)
class TransformerGMMSpikeSorter:
    Complete Transformer-GMM pipeline for spike sorting
    11 11 11
    def __init__(self, n_channels=32, window_size=96, d_model=256, n_heads=8,
                 n_layers=4, patch_sizes=[8, 16, 24], device='cpu'):
        self.device = device
        self.transformer = MultiChannelSpikeTransformer(
            n_channels=n_channels, window_size=window_size, d_model=d_model,
            n_heads=n_heads, n_layers=n_layers, patch_sizes=patch_sizes
        ).to(device)
        self.scaler = StandardScaler()
        self.gmm = None
        self.embeddings = None
        self.cluster_labels = None
        self.templates = None
    def _train_transformer(self, spike_waveforms, n_epochs=50, batch_size=64,_
 \hookrightarrowlr=1e-4):
        Train transformer using contrastive learning for better embeddings
        print("Training Transformer with contrastive learning...")
        # Create data loader
        dataset = torch.utils.data.TensorDataset(spike_waveforms)
        dataloader = torch.utils.data.DataLoader(dataset,_
 ⇒batch size=batch size, shuffle=True)
```

```
# Optimizer and loss
      optimizer = torch.optim.AdamW(self.transformer.parameters(), lr=lr,_u
⇒weight_decay=1e-5)
      scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer,_
\hookrightarrowT max=n epochs)
      self.transformer.train()
      for epoch in tqdm(range(n_epochs), desc="Training epochs"):
           epoch_loss = 0
          for batch_idx, (batch_spikes,) in enumerate(dataloader):
               batch_spikes = batch_spikes.to(self.device)
               # Generate embeddings
               embeddings = self.transformer(batch_spikes)
               # Simple contrastive loss (InfoNCE-style)
               # Create positive pairs by adding noise
              noise = torch.randn_like(batch_spikes) * 0.1
               augmented_spikes = batch_spikes + noise
               augmented_embeddings = self.transformer(augmented_spikes)
               # Contrastive loss
               loss = self._contrastive_loss(embeddings, augmented_embeddings,_
→temperature=0.1)
               optimizer.zero_grad()
               loss.backward()
               optimizer.step()
               epoch_loss += loss.item()
           scheduler.step()
          if (epoch + 1) \% 10 == 0:
              print(f"Epoch {epoch+1}/{n_epochs}, Loss: {epoch_loss/
→len(dataloader):.4f}")
  def _contrastive_loss(self, z1, z2, temperature=0.1):
      """Simple contrastive loss for self-supervised learning"""
      z1 = F.normalize(z1, dim=1)
      z2 = F.normalize(z2, dim=1)
      batch_size = z1.size(0)
      sim_matrix = torch.mm(z1, z2.t()) / temperature
      # Positive pairs are on the diagonal
      labels = torch.arange(batch_size).to(self.device)
```

```
loss = F.cross_entropy(sim_matrix, labels)
      return loss
  def _extract_embeddings(self, spike_waveforms, batch_size=64):
       """Extract embeddings from trained transformer"""
      print("Extracting embeddings...")
      self.transformer.eval()
      all_embeddings = []
      dataset = torch.utils.data.TensorDataset(spike_waveforms)
      dataloader = torch.utils.data.DataLoader(dataset,__
→batch_size=batch_size, shuffle=False)
      with torch.no_grad():
          for batch_spikes, in tqdm(dataloader, desc="Extracting embeddings"):
              batch_spikes = batch_spikes.to(self.device)
               embeddings = self.transformer(batch_spikes)
               all_embeddings.append(embeddings.cpu())
      return torch.cat(all_embeddings, dim=0)
  def _estimate_clusters_gmm(self, embeddings, max_clusters=20):
       """Estimate optimal number of clusters using GMM with multiple_{\sqcup}
⇔criteria"""
      print("Estimating optimal number of clusters...")
      embeddings_np = embeddings.numpy()
      n_samples = len(embeddings_np)
      max_clusters = min(max_clusters, n_samples // 10)
      bic_scores = []
      aic scores = []
      silhouette_scores = []
      cluster_range = range(2, max_clusters + 1)
      for n_components in tqdm(cluster_range, desc="Testing cluster counts"):
          gmm = GaussianMixture(
              n_components=n_components,
              covariance_type='full',
              random_state=42,
              max iter=100
          )
          try:
               gmm.fit(embeddings_np)
```

```
labels = gmm.predict(embeddings_np)
              bic_scores.append(gmm.bic(embeddings_np))
              aic_scores.append(gmm.aic(embeddings_np))
              if len(np.unique(labels)) > 1:
                  sil_score = silhouette_score(embeddings_np, labels)
                  silhouette_scores.append(sil_score)
              else:
                  silhouette_scores.append(-1)
          except Exception as e:
              print(f"Failed for {n_components} components: {e}")
              bic_scores.append(float('inf'))
              aic_scores.append(float('inf'))
              silhouette_scores.append(-1)
      # Select optimal using silhouette score
      optimal_idx = np.argmax(silhouette_scores)
      optimal_clusters = cluster_range[optimal_idx]
      print(f"Optimal clusters: {optimal_clusters}")
      print(f"Best silhouette score: {silhouette_scores[optimal_idx]:.3f}")
      return optimal_clusters, silhouette_scores[optimal_idx]
  def fit(self, spike_waveforms, true_num_neurons=None,_
⇔train transformer=True):
      Complete Transformer-GMM fitting pipeline
      print("TRANSFORMER-GMM SPIKE SORTING PIPELINE")
      print("=" * 60)
      # Convert to torch tensor and move to device
      if not torch.is_tensor(spike_waveforms):
          spike_waveforms = torch.tensor(spike_waveforms, dtype=torch.float32)
      spike_waveforms = spike_waveforms.to(self.device)
      n_spikes, window_size, n_channels = spike_waveforms.shape
      print(f"Processing {n_spikes} spikes ({window_size} samples x⊔
⇔{n_channels} channels)")
      # Step 1: Train transformer (optional)
      if train_transformer:
          self._train_transformer(spike_waveforms)
```

```
# Step 2: Extract embeddings
      self.embeddings = self._extract_embeddings(spike_waveforms)
      # Step 3: Standardize embeddings
      embeddings_scaled = self.scaler.fit_transform(self.embeddings.numpy())
      # Step 4: Estimate clusters or use ground truth
      if true_num_neurons is not None:
          n_clusters = true_num_neurons
          silhouette_score_final = None
          print(f"Using ground truth: {n_clusters} clusters")
          n_clusters, silhouette_score_final = self._estimate_clusters_gmm(
               torch.tensor(embeddings_scaled)
       # Step 5: Fit final GMM
      print(f"Fitting GMM with {n_clusters} components...")
      self.gmm = GaussianMixture(
          n_components=n_clusters,
          covariance_type='full',
          random state=42,
          max_iter=200
      )
      self.gmm.fit(embeddings scaled)
      self.cluster_labels = self.gmm.predict(embeddings_scaled)
      # Calculate silhouette score if not already computed
      if silhouette_score_final is None:
          silhouette_score_final = silhouette_score(embeddings_scaled, self.
⇔cluster_labels)
       # Step 6: Generate templates
      self.templates = self._generate_templates(spike_waveforms.cpu(), self.
⇔cluster_labels, n_clusters)
      print(f"\nTransformer-GMM Clustering Complete!")
      print(f"Clusters found: {n_clusters}")
      print(f"Silhouette score: {silhouette_score_final:.3f}")
      print(f"Embedding dimension: {self.embeddings.shape[1]}")
      return {
           'cluster_labels': torch.tensor(self.cluster_labels),
           'templates': self.templates,
           'embeddings': self.embeddings,
           'n_clusters': n_clusters,
```

```
'silhouette_score': silhouette_score_final,
            'gmm': self.gmm
        }
   def _generate_templates(self, spike_waveforms, cluster_labels, n_clusters):
        """Generate templates from clusters"""
        templates = torch.zeros((n_clusters, spike_waveforms.shape[1],__
 ⇔spike_waveforms.shape[2]))
        for cluster_id in range(n_clusters):
            mask = cluster_labels == cluster_id
            if np.sum(mask) > 0:
                templates[cluster_id] = spike_waveforms[mask].mean(dim=0)
        return templates
# Integration function for the existing pipeline
def run_transformer_gmm_spike_sorting(spike_waveforms, true_num_neurons=None,
                                    sampling_frequency=32000, device='cpu'):
   Run complete Transformer-GMM spike sorting pipeline
   print("\nTRANSFORMER-GMM SPIKE SORTING INTEGRATION")
   print("=" * 70)
   print("Novel approach: Multi-scale Transformer embeddings + GMM clustering")
   print("- Multi-scale patch embedding for temporal patterns")
   print("- Channel-wise attention for spatial correlations")
   print("- Contrastive learning for discriminative embeddings")
   print("- GMM clustering on learned representations")
   print()
    # Initialize sorter
   n_channels = spike_waveforms.shape[2]
   window_size = spike_waveforms.shape[1]
   sorter = TransformerGMMSpikeSorter(
       n channels=n channels,
       window_size=window_size,
       d model=256,
       n_heads=8,
       n_layers=4,
       patch_sizes=[8, 16, 24],
       device=device
   )
    # Fit the model
   results = sorter.fit(spike_waveforms, true_num_neurons=true_num_neurons)
```

```
results['sorter'] = sorter
   return results
# Main execution pipeline
print("Running Transformer-GMM Spike Sorting...")
# Check for GPU availability
device = torch.device('cuda' if torch.cuda.is available() else
                     'mps' if torch.backends.mps.is_available() else 'cpu')
print(f"Using device: {device}")
# Run Transformer-GMM clustering
transformer_gmm_results = run_transformer_gmm_spike_sorting(
    spike waveforms fixed,
   true_num_neurons=TRUE_NUM_NEURONS,
    sampling_frequency=SAMPLING_FREQUENCY,
   device='cpu'
)
# Extract results
transformer_cluster_labels = transformer_gmm_results['cluster_labels']
transformer_templates = transformer_gmm_results['templates']
transformer n clusters = transformer gmm results['n clusters']
transformer_silhouette = transformer_gmm_results['silhouette_score']
print(f"\nTransformer-GMM Results:")
print(f"Clusters found: {transformer n clusters}")
print(f"Template shape: {transformer_templates.shape}")
print(f"Silhouette score: {transformer_silhouette:.3f}")
# Plot generated templates
fig, axs = plot_waveforms(transformer_templates, name="Transformer-GMM__
 ⇔template")
fig.suptitle("Transformer-GMM Generated Templates", y=1.05)
plt.show()
# Evaluate against ground truth
def evaluate_transformer_gmm_clustering():
    """Evaluate Transformer-GMM clustering against ground truth"""
   print("Evaluating Transformer-GMM clustering...")
    # Use ground truth spike times for evaluation
   gt_waveforms = []
   valid_gt_ids = []
   for i, t in enumerate(true_spike_times[:len(transformer_cluster_labels)]):
```

```
start_idx = t - WINDOW_SIZE // 2
        end_idx = t + WINDOW_SIZE // 2
        if start_idx >= 0 and end_idx < traces.shape[0]:</pre>
            gt_waveforms.append(traces[start_idx:end_idx])
            valid_gt_ids.append(true_spike_ids[i])
    valid_gt_ids = torch.tensor(valid_gt_ids[:len(transformer_cluster_labels)])
    # Create confusion matrix
    cm = confusion_matrix(valid_gt_ids.numpy(), transformer_cluster_labels.
 →numpy())
    ari = adjusted_rand_score(valid_gt_ids.numpy(), transformer_cluster_labels.
 →numpy())
    return cm, ari, valid_gt_ids
# Generate confusion matrix
cm_transformer, ari_transformer, matched_gt_ids =_
 ⇔evaluate_transformer_gmm_clustering()
# Plot confusion matrix
plt.figure(figsize=(10, 8))
plt.imshow(cm transformer, interpolation="none", cmap=plt.cm.Blues)
plt.colorbar()
plt.xlabel('Transformer-GMM Cluster IDs')
plt.ylabel('True Neuron IDs')
plt.title("Transformer-GMM: Confusion Matrix")
# Add text annotations
for i in range(cm_transformer.shape[0]):
    for j in range(cm_transformer.shape[1]):
        plt.text(j, i, str(cm_transformer[i, j]), ha='center', va='center',
                color='white' if cm_transformer[i, j] > cm_transformer.max() / ___
 →2 else 'black')
plt.tight_layout()
plt.show()
# Print performance metrics
print(f"\nTransformer-GMM Performance:")
print(f"Adjusted Rand Index: {ari_transformer:.3f}")
print(f"Silhouette Score: {transformer_silhouette:.3f}")
print(f"Number of clusters: {transformer_n_clusters}")
```

Running Transformer-GMM Spike Sorting... Using device: mps

TRANSFORMER-GMM SPIKE SORTING INTEGRATION

Novel approach: Multi-scale Transformer embeddings + GMM clustering

- Multi-scale patch embedding for temporal patterns
- Channel-wise attention for spatial correlations
- Contrastive learning for discriminative embeddings
- GMM clustering on learned representations

Scale dimensions: [86, 85, 85], sum: 256 TRANSFORMER-GMM SPIKE SORTING PIPELINE

Processing 4712 spikes (96 samples x 32 channels) Training Transformer with contrastive learning...

Training epochs: 0%| | 0/50 [00:00<?, ?it/s]

Epoch 10/50, Loss: 0.0332 Epoch 20/50, Loss: 0.0244 Epoch 30/50, Loss: 0.0217 Epoch 40/50, Loss: 0.0204 Epoch 50/50, Loss: 0.0202 Extracting embeddings...

Extracting embeddings: 0%| | 0/74 [00:00<?, ?it/s]

Using ground truth: 8 clusters Fitting GMM with 8 components...

Transformer-GMM Clustering Complete!

Clusters found: 8
Silhouette score: 0.025
Embedding dimension: 256

Transformer-GMM Results:

Clusters found: 8

Template shape: torch.Size([8, 96, 32])

Silhouette score: 0.025

Tra	nsfor	ner-G btM-t fe	mplet@##	ister	mplert ellitivi ste	יזנ	plente lini k + 6	or	piat€#M≠4	m	piet em moi	יזנ	plet 6 10 Maria	יונ	mpiante661M t∝	
2-score]	100										-				-	
	100		<u></u>	ب ا		-	L]	Ĺ ſ] ·		·] ·	<u> </u>]
[S-score]	-100															
[2-8core]	100														-	
	100		_	7			L]	<u> </u>] :	L			ŀ	<u> </u>]
[2-score]	-100			_	Ļ.,,						ļ.,,					
[2-Score]	100 - 0 - 100 -		-	-												
[2-score]	100]						1]
	-100 ·		Ļ	_]	<u> </u>] . 1 .						
[2-score]	-100															
[2-score]	100							1								1
	100		-	H	<u></u>	-	<u> </u>] -	<u> </u>] -		-	V	- -	<u></u>]
[2-score]	-100												~		<u></u>	
[2-score]	100	~		_	·]
	100			7	+		L]	<u> </u>		<u></u>	-			<u></u>	
[2-score]	-100			1	<u></u>				<u></u>]	[V					
[2-score]	100 · 0 ·		-	-	_						-		_~	1	-	
[2-score]	100			i]
	-100 ·		<u></u>	4	ļ		ļ] .	<u></u>] .] .	<u> </u>				<u> </u>	
[2-score]	-100								_						<u></u>	
[2-score]	100													1]
	-100 ·		-	<u>لـ</u>		-	L] ·	<u> </u>] -] -	<u> </u>	-] ·	<u> </u>]
[2-score]	0 - -100 -														<u></u>	
[2-score]	100		-	_									_~	1]
	100			7	1,	-	L]	<u> </u>		t	-			<u> </u>	
[2-score]	-100			1]	<u> </u>		~			
[2-score]	100 · 0 ·		-	-	-								~~	1		
[2-Score]	100			Ĭ]
	-100 ·		F	_			<u> </u>] .	<u> </u>] .	<u> </u>			-	<u> </u>	
[2-score]	-100	~														
[2-score]	100			j												
	100		<u></u>	_	<u> </u>	·	L] ·	<u> </u>] .] .	<u>. </u>	·		·	<u> </u>	
[2-score]	-100															
[2-score]	100			_	-			1]
	100		_	7	<u> </u>	-	L]	<u> </u>] •	<u> </u>	-	<u> </u>		1]
	-100				<u></u>				<u></u>							
[2-score]	100 ·		-	-				1						1		
[2-score]	100							1] :				ĺ]
	-100		<u>_</u>	_].		. .				
[5-score]	-100		_						<u></u>							
[2-score]	100			_										1]
	100		<u></u>	Ļ		-	L] -	<u> </u>] -	<u> </u>	-	L	- -		
[2-8core]	-100										<u> </u>					
[2-score]	100			-			-2	(5					1		1
	100			7	<u> </u>		L]	<u></u>] -	<u> </u>	•			<u></u>]
[2-score]	-100	-1 0 1 time [ms]	-1 0 time [m		-1 0 1 time [ms]		-1 0 1 time [ms]		-1 0 i		-1 0 1 time [ms]		-1 0 1		-1 0 1 time [ms]	
		time [ms]	time [m	s]	time [ms]		time [ms]		-1 0 1 time [ms]		time [ms]		time [ms]		time [ms]	

```
ValueError
                                           Traceback (most recent call last)
Cell In[39], line 449
           return cm, ari, valid_gt_ids
    448 # Generate confusion matrix
--> 449 cm_transformer, ari_transformer, matched_gt_ids =_
 ⇔evaluate_transformer_gmm_clustering()
    451 # Plot confusion matrix
    452 plt.figure(figsize=(10, 8))
Cell In[39], line 443, in evaluate_transformer_gmm_clustering()
    440 valid_gt_ids = torch.tensor(valid_gt_ids[:
 →len(transformer cluster labels)])
    442 # Create confusion matrix
--> 443 \text{ cm} = 11
 confusion_matrix(valid_gt_ids numpy(), transformer_cluster_labels numpy())
    444 ari = adjusted_rand_score(valid_gt_ids.numpy(),__
 →transformer_cluster_labels.numpy())
    446 return cm, ari, valid_gt_ids
File ~/PycharmProjects/STATS320 FinalProject/.venv/lib/python3.12/site-packages
 sklearn/utils/ param validation.py:216, in validate params.<locals>.decorator

<locals>.wrapper(*args, **kwargs)
    210 try:
    211
            with config_context(
    212
                skip_parameter_validation=(
                    prefer_skip_nested_validation or global_skip_validation
    213
    214
            ):
    215
--> 216
                return func(*args, **kwargs)
    217 except InvalidParameterError as e:
            # When the function is just a wrapper around an estimator, we allow
    218
            # the function to delegate validation to the estimator, but we_
    219
 ⇔replace
    220
            # the name of the estimator by the name of the function in the error
            # message to avoid confusion.
    221
    222
            msg = re.sub(
                r"parameter of \w+ must be",
    223
                f"parameter of {func.__qualname__} must be",
    224
    225
                str(e),
    226
            )
```

```
File ~/PycharmProjects/STATS320_FinalProject/.venv/lib/python3.12/site-packages_
 →sklearn/metrics/_classification.py:340, in confusion_matrix(y_true, y_pred,__
 →labels, sample_weight, normalize)
    257 """Compute confusion matrix to evaluate the accuracy of a classification.
    258
    259 By definition a confusion matrix :math: `C` is such that :math: `C {i, j}
    337 (np.int64(0), np.int64(2), np.int64(1), np.int64(1))
    338 """
    339 y_true, y_pred = attach_unique(y_true, y_pred)
--> 340 y_type, y_true, y_pred = _check_targets(y_true, y_pred)
    341 if y_type not in ("binary", "multiclass"):
            raise ValueError("%s is not supported" % y_type)
    342
File ~/PycharmProjects/STATS320 FinalProject/.venv/lib/python3.12/site-packages
 sklearn/metrics/_classification.py:98, in _check_targets(y_true, y_pred)
     71 """Check that y true and y pred belong to the same classification task.
     73 This converts multiclass or binary types to a common shape, and raises
   (\dots)
     95 y_pred : array or indicator matrix
     96 """
     97 xp, _ = get_namespace(y_true, y_pred)
---> 98 check_consistent_length(y_true, y_pred)
     99 type_true = type_of_target(y_true, input_name="y_true")
    100 type_pred = type_of_target(y_pred, input_name="y_pred")
File ~/PycharmProjects/STATS320 FinalProject/.venv/lib/python3.12/site-packages
 sklearn/utils/validation.py:475, in check_consistent_length(*arrays)
    473 uniques = np.unique(lengths)
    474 if len(uniques) > 1:
            raise ValueError(
--> 475
    476
                "Found input variables with inconsistent numbers of samples: %r
                % [int(1) for 1 in lengths]
    477
    478
            )
ValueError: Found input variables with inconsistent numbers of samples: [4711, ]
 4712]
```

```
[]:
```