Docket No. 00884.229US1

Client Ref. No. P7912

Clean Version of Pending Claims

DEVICE AND METHOD FOR CONTROLLING VOLTAGE VARIATION

Applicant: Rajendran Nair et al. Serial No.: 09/460,742

4. [Amended] A circuit comprising:

a voltage node;

a ground node; and

a transistor including a gate, a drain, and a source, the gate being coupled to the voltage node and the drain and source being coupled to the ground node, the gate comprising a p-type polysilicon, wherein the transistor is capable of decreasing noise signals above an absolute value of an operating voltage value at the voltage node and increasing noise signals below the absolute value of the operating voltage value.

- 5. The circuit of claim 4, wherein the operating voltage value is between about .5 volts and about 1.5 volts.
- 6. The circuit of claim 5, further comprising:
 a logic cell coupled to the voltage node and located in close proximity to the transistor.
- 9. [Amended] A circuit comprising:

 a die having a high power supply voltage node and a low power supply voltage node; and
 a transistor coupled between the high power supply voltage node and the low power
 supply voltage node and operable for controlling avoltage at the low power supply voltage node.
- 10. [Amended] The circuit of claim 9, wherein the transistor has a gate, a drain, and a source, and the gate is coupled to the high power supply voltage node and the source and the drain are coupled to the low power supply voltage node.

14. Amended A circuit comprising:

a die;

a ground node located on the die;

a power supply voltage node located on the die; and

an electronic device permanently coupled between the ground node and the power supply voltage node and capable of providing an asymmetrical response to incremental voltage variations about an operational node voltage at the power supply voltage node.

The circuit of claim 14, wherein incremental voltage variations of one polarity are 15. damped and incremental voltage variations of the opposite polarity are amplified.

[Amended] The circuit of clais 4, wherein the operational node voltage is about 1.3