Macroeconometrics

Lecture 17 Bayesian estimation using simulation smoother

Tomasz Woźniak

Department of Economics University of Melbourne

Prior distributions

Derivation of Gibbs sampler

Simulation smoother

Compulsory readings:

Woźniak (2021) Bayesian estimation of simple Unobserved Component models using simulation smoother

Useful readings:

Woźniak (2021) Simulation Smoother using RcppArmadillo, Rcpp Gallery

Objectives.

- ► To present Bayesian estimation of state-space models
- ► To set the model specification through a prior distribution
- ► To derive a Gibbs sampler for Unobserved Component models

Learning outcomes.

- ► Deriving full conditional posterior distributions
- ► Implementing a simulation smoother
- ► Programming a sampler from multivariate normal distribution with special type of the mean and covariance

$$y_t = \tau_t + \epsilon_t \tag{1}$$

$$\tau_t = \mu + \tau_{t-1} + \eta_t \tag{2}$$

$$\epsilon_t = \alpha_1 \epsilon_{t-1} + \dots + \alpha_p \epsilon_{t-p} + e_t \tag{3}$$

$$\begin{bmatrix} \eta_t \\ e_t \end{bmatrix} \middle| Y_{t-1} \sim ii \mathcal{N} \left(\mathbf{0}_2, \begin{bmatrix} \sigma_{\eta}^2 & 0 \\ 0 & \sigma_e^2 \end{bmatrix} \right)$$

$$\alpha_p(L) = 1 - \alpha_1 L - \dots - \alpha_p L^p$$

$$\alpha_p(z) = 0 : \quad |z| > 1 \quad \forall z \in \mathbb{C}$$

$$\sigma_{\eta e} = \mathbb{C}ov[\eta_t, e_t] = 0$$

$$\tau_0 - \text{an estimated parameter}$$

$$\mathbf{0}_p = (\epsilon_0, \epsilon_{-1}, \dots, \epsilon_{-p+1})'$$

Define $T \times 1$ matrices.

$$y = \begin{bmatrix} y_1 \\ \vdots \\ y_T \end{bmatrix} \quad \tau = \begin{bmatrix} \tau_1 \\ \vdots \\ \tau_T \end{bmatrix} \quad \epsilon = \epsilon_{[1:T]} = \begin{bmatrix} \epsilon_1 \\ \vdots \\ \epsilon_T \end{bmatrix} \quad \eta = \begin{bmatrix} \eta_1 \\ \vdots \\ \eta_T \end{bmatrix} \quad e = \begin{bmatrix} e_1 \\ \vdots \\ e_T \end{bmatrix} \quad \iota_T = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \quad e_{1.T} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Define matrices.

$$\begin{split} \beta &= \begin{bmatrix} \mu & \tau_0 \end{bmatrix}' & \chi_{\tau} &= \begin{bmatrix} \iota_{\mathcal{T}} & e_{1.\mathcal{T}} \end{bmatrix} \\ \alpha &= \begin{bmatrix} \alpha_1 & \dots & \alpha_p \end{bmatrix}' & \chi_{\epsilon} &= \begin{bmatrix} \epsilon_{[0:(\mathcal{T}-1)]} & \epsilon_{[-1:(\mathcal{T}-2)]} & \dots & \epsilon_{[(-p+1):(\mathcal{T}-p)]} \end{bmatrix} \end{split}$$

Define $T \times T$ **matrices.**

$$H = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ -1 & 1 & 0 & \dots & 0 & 0 \\ 0 & -1 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & 0 & \dots & -1 & 1 \end{bmatrix} \quad H_{\alpha} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ -\alpha_1 & 1 & 0 & \dots & 0 & 0 \\ -\alpha_2 & -\alpha_1 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -\alpha_p & -\alpha_{p-1} & -\alpha_{p-2} & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & 0 & \dots & -\alpha_1 & 1_{\text{el}} / 30 \end{bmatrix}$$

$$y = \tau + \epsilon$$

$$H\tau = \mu_{IT} + \tau_0 e_{1.T} + \eta$$

$$H\tau = X_{\tau}\beta + \eta$$

$$\tau = H^{-1}X_{\tau}\beta + H^{-1}\eta$$

$$(2)$$

$$H_{\alpha}\epsilon = e$$

$$\epsilon = H_{\alpha}^{-1}e$$

$$= X_{\epsilon}\alpha + e$$

$$(3)$$

$$\eta \sim \mathcal{N}(\mathbf{0}_{T}, \sigma_{\eta}^{2}I_{T})$$

$$e \sim \mathcal{N}(\mathbf{0}_{T}, \sigma_{e}^{2}I_{T})$$

To be estimated: τ , ϵ , $\beta = (\mu, \tau_0)$, α , $\sigma = (\sigma_{\eta}^2, \sigma_e^2)$

Prior distribution of τ is specified by equation (2)

$$\tau = H^{-1}X_{\tau}\beta + H^{-1}\eta$$

$$\eta \sim \mathcal{N}\left(\mathbf{0}_{\tau}, \sigma_{\eta}^{2}I_{\tau}\right)$$

$$H^{-1}\eta \sim \mathcal{N}\left(\mathbf{0}_{\tau}, \sigma_{\eta}^{2}(H'H)^{-1}\right)$$

$$\downarrow$$

$$\tau|\beta, \sigma_{\eta}^{2} \sim \mathcal{N}_{\tau}\left(H^{-1}X_{\tau}\beta, \sigma_{\eta}^{2}(H'H)^{-1}\right)$$

$$\propto \exp\left\{-\frac{1}{2}\frac{1}{\sigma_{\eta}^{2}}\left(\tau - H^{-1}X_{\tau}\beta\right)'H'H\left(\tau - H^{-1}X_{\tau}\beta\right)\right\}$$

Prior distribution of ϵ is specified by equation (3)

$$\epsilon = H_{\alpha}^{-1} e$$

$$e \sim \mathcal{N} \left(\mathbf{0}_{T}, \sigma_{e}^{2} I_{T} \right)$$

$$H_{\alpha}^{-1} e \sim \mathcal{N} \left(\mathbf{0}_{T}, \sigma_{e}^{2} (H_{\alpha}' H_{\alpha})^{-1} \right)$$

$$\downarrow$$

$$\epsilon | \alpha, \sigma_{e}^{2} \sim \mathcal{N} \left(\mathbf{0}_{T}, \sigma_{e}^{2} (H_{\alpha}' H_{\alpha})^{-1} \right)$$

$$\propto \exp \left\{ -\frac{1}{2} \frac{1}{\sigma_{e}^{2}} \epsilon' H_{\alpha}' H_{\alpha} \epsilon \right\}$$

Prior distributions of α , β , σ_{η}^2 , σ_e^2 are assumed to be

$$\alpha \sim \mathcal{N}_{p}\left(\underline{\alpha}, \underline{V}_{\alpha}\right) \mathcal{I}(\alpha \in A) \quad \propto \exp\left\{-\frac{1}{2}(\alpha - \underline{\alpha})' \underline{V}_{\alpha}^{-1}(\alpha - \underline{\alpha})\right\} \mathcal{I}(\alpha \in A)$$

$$\beta \sim \mathcal{N}_{2}\left(\underline{\beta}, \underline{V}_{\beta}\right) \qquad \propto \exp\left\{-\frac{1}{2}(\beta - \underline{\beta})' \underline{V}_{\beta}^{-1}(\beta - \underline{\beta})\right\}$$

$$\sigma_{\eta}^{2} \sim \mathcal{IG2}\left(\underline{s}, \underline{\nu}\right) \qquad \propto \left(\sigma_{\eta}^{2}\right)^{-\frac{\underline{\nu}+2}{2}} \exp\left\{-\frac{1}{2}\frac{\underline{s}}{\sigma_{\eta}^{2}}\right\}$$

$$\sigma_{e}^{2} \sim \mathcal{IG2}\left(\underline{s}, \underline{\nu}\right) \qquad \propto \left(\sigma_{e}^{2}\right)^{-\frac{\underline{\nu}+2}{2}} \exp\left\{-\frac{1}{2}\frac{\underline{s}}{\sigma_{e}^{2}}\right\}$$

 $\alpha \in A$ – set of parameters α for which stationarity holds and

$$\mathcal{I}(\alpha \in A) = \begin{cases} 1 & \text{if } \alpha \in A \\ 0 & \text{otherwise} \end{cases}$$

$$p(\tau, \epsilon, \alpha, \beta, \sigma) = p(\tau | \beta, \sigma_{\eta}^{2}) p(\beta) p(\sigma_{\eta}^{2}) p(\epsilon | \alpha, \sigma_{e}^{2}) p(\alpha) p(\sigma_{e}^{2})$$

$$\tau | \beta, \sigma_{\eta}^{2} \sim \mathcal{N} \left(H^{-1} X_{\tau} \beta, \sigma_{\eta}^{2} (H' H)^{-1} \right)$$

$$\beta \sim \mathcal{N}_{2} \left(\underline{\beta}, \underline{V}_{\beta} \right)$$

$$\sigma_{\eta}^{2} \sim \mathcal{IG2} \left(\underline{s}, \underline{\nu} \right)$$

$$\epsilon | \alpha, \sigma_{e}^{2} \sim \mathcal{N} \left(\mathbf{0}_{T}, \sigma_{e}^{2} (H'_{\alpha} H_{\alpha})^{-1} \right)$$

$$\alpha \sim \mathcal{N}_{p} \left(\underline{\alpha}, \underline{V}_{\alpha} \right) \mathcal{I}(\alpha \in A)$$

$$\sigma_{e}^{2} \sim \mathcal{IG2} \left(\underline{s}, \underline{\nu} \right)$$

Gibbs sampler

is an iterative algorithm at each iteration of which draws are sampled from the following full-conditional posterior distributions

$$au \sim p\left(\tau|y,\alpha,\beta,\sigma\right)$$
 $\epsilon \sim p\left(\epsilon|y,\alpha,\beta,\sigma\right)$
 $\beta \sim p\left(\beta|y,\tau,\sigma_{\eta}^{2}\right)$
 $\alpha \sim p\left(\alpha|y,\epsilon,\sigma_{e}^{2}\right)$
 $\sigma_{\eta}^{2} \sim p\left(\sigma_{\eta}^{2}|y,\tau,\beta\right)$
 $\sigma_{e}^{2} \sim p\left(\sigma_{e}^{2}|y,\epsilon,\alpha\right)$

Full-conditional posterior distribution of $\tau | y, \alpha, \beta, \sigma$

Conditional likelihood is based on equation (1)

$$\begin{split} \tau &= y - \epsilon \\ \epsilon &\sim \mathcal{N}\left(\mathbf{0}_{T}, \sigma_{e}^{2}(H_{\alpha}'H_{\alpha})^{-1}\right) \\ L\left(\tau|y,\alpha,\sigma_{e}^{2}\right) &\propto \exp\left\{-\frac{1}{2}\sigma_{e}^{-2}(\tau-y)'H_{\alpha}'H_{\alpha}(\tau-y)\right\} \end{split}$$

Prior distribution is given by

$$p\left(\tau|\beta,\sigma_{\eta}^{2}\right)\propto\exp\left\{-\frac{1}{2}\frac{1}{\sigma_{\eta}^{2}}\left(\tau-H^{-1}X_{\tau}\beta\right)'H'H\left(\tau-H^{-1}X_{\tau}\beta\right)\right\}$$

$$\begin{split} \rho\left(\tau|y,\alpha,\beta,\sigma\right) &\propto L\left(\tau|y,\alpha,\sigma_{e}^{2}\right) \rho\left(\tau|\beta,\sigma_{\eta}^{2}\right) \\ &= \mathcal{N}_{T}\left(\overline{\tau},\overline{V}_{\tau}\right) \\ \overline{V}_{\tau} &= \left[\sigma_{e}^{-2}H'_{\alpha}H_{\alpha} + \sigma_{\eta}^{-2}H'H\right]^{-1} \\ \overline{\tau} &= \overline{V}_{\tau}\left[\sigma_{e}^{-2}H'_{\alpha}H_{\alpha}y + \sigma_{\eta}^{-2}H'X_{\tau}\beta\right] \end{split}$$

Full-conditional posterior distribution of $\epsilon | y, \alpha, \beta, \sigma$

Conditional likelihood is based on equation (1)

$$\begin{aligned} \epsilon &= y - \tau \\ y - \tau &\sim \mathcal{N} \left(y - H^{-1} X_{\tau} \beta, \sigma_{\eta}^{2} (H'H)^{-1} \right) \\ L \left(\epsilon | y, \beta, \sigma_{\eta}^{2} \right) &\propto \exp \left\{ -\frac{1}{2} \sigma_{\eta}^{-2} \left(\epsilon - \left(y - H^{-1} X_{\tau} \beta \right) \right)' H' H \left(\epsilon - \left(y - H^{-1} X_{\tau} \beta \right) \right) \right\} \end{aligned}$$

Prior distribution is given by

$$p\left(\epsilon|\alpha,\sigma_e^2\right) \propto \exp\left\{-\frac{1}{2}\frac{1}{\sigma_e^2}\epsilon'H_\alpha'H_\alpha\epsilon\right\}$$

$$\begin{split} p\left(\epsilon|y,\alpha,\beta,\sigma\right) &\propto L\left(\epsilon|y,\beta,\sigma_{\eta}^{2}\right) p\left(\epsilon|\alpha,\sigma_{e}^{2}\right) \\ &= \mathcal{N}_{T}\left(\overline{\epsilon},\overline{V}_{\epsilon}\right) \\ \overline{V}_{\epsilon} &= \left[\sigma_{e}^{-2}H'_{\alpha}H_{\alpha} + \sigma_{\eta}^{-2}H'H\right]^{-1} \\ \overline{\epsilon} &= \overline{V}_{\epsilon}\sigma_{\eta}^{-2}H'H\left(y - H^{-1}X_{\tau}\beta\right) \end{split}$$

Full-conditional posterior distribution of $\beta|y$, τ , σ_{η}^2

Conditional likelihood is based on equation (2)

$$\begin{aligned} H\tau - X_{\tau}\beta &= \eta \\ \eta &\sim \mathcal{N}\left(\mathbf{0}_{\tau}, \sigma_{\eta}^{2}I_{\tau}\right) \\ L\left(\beta|y, \tau, \sigma_{\eta}^{2}\right) &\propto \exp\left\{-\frac{1}{2}\sigma_{\eta}^{-2}\left(X_{\tau}\beta - H\tau\right)'\left(X_{\tau}\beta - H\tau\right)\right\} \end{aligned}$$

Prior distribution is given by

$$p(\beta) \propto \exp\left\{-\frac{1}{2}(\beta - \underline{\beta})'\underline{V}_{\beta}^{-1}(\beta - \underline{\beta})\right\}$$

$$\begin{split} \rho\left(\beta|y,\tau,\sigma_{\eta}^{2}\right) &\propto L\left(\beta|y,\tau,\sigma_{\eta}^{2}\right)\rho(\beta) \\ &= \mathcal{N}_{2}\left(\overline{\beta},\overline{V}_{\beta}\right) \\ &\overline{V}_{\beta} = \left[\sigma_{\eta}^{-2}X_{\tau}'X_{\tau} + \underline{V}_{\beta}^{-1}\right]^{-1} \\ &\overline{\beta} = \overline{V}_{\beta}\left[\sigma_{\eta}^{-2}X_{\tau}'H\tau + \underline{V}_{\beta}^{-1}\underline{\beta}\right] \end{split}$$

Full-conditional posterior distribution of $\alpha | y, \epsilon, \sigma_e^2$

Conditional likelihood is based on equation (3)

$$\begin{aligned} \epsilon - X_{\epsilon} \alpha &= e \\ e &\sim \mathcal{N} \left(\mathbf{0}_{T}, \sigma_{e}^{2} I_{T} \right) \\ L \left(\alpha | y, \epsilon, \sigma_{e}^{2} \right) &\propto \exp \left\{ -\frac{1}{2} \sigma_{e}^{-2} \left(X_{\epsilon} \alpha - \epsilon \right)' \left(X_{\epsilon} \alpha - \epsilon \right) \right\} \end{aligned}$$

Prior distribution is given by

$$p(\alpha) \propto \exp\left\{-\frac{1}{2}(\alpha - \underline{\alpha})'\underline{V}_{\alpha}^{-1}(\alpha - \underline{\alpha})\right\}\mathcal{I}(\alpha \in A)$$

$$p(\alpha|y, \epsilon, \sigma_e^2) \propto L(\alpha|y, \epsilon, \sigma_e^2) p(\alpha) \mathcal{I}(\alpha \in A)$$

$$= \mathcal{N}_p(\overline{\alpha}, \overline{V}_\alpha) \mathcal{I}(\alpha \in A)$$

$$\overline{V}_\alpha = \left[\sigma_e^{-2} X_\epsilon' X_\epsilon + \underline{V}_\alpha^{-1}\right]^{-1}$$

$$\overline{\alpha} = \overline{V}_\alpha \left[\sigma_e^{-2} X_\epsilon' \epsilon + \underline{V}_\alpha^{-1}\underline{\alpha}\right]$$

Full-conditional posterior distribution of $\sigma_n^2|y,\tau,\beta|$

Conditional likelihood is based on equation (2)

$$\begin{split} H\tau - X_{\tau}\beta &= \eta \\ \eta \sim \mathcal{N}\left(\mathbf{0}_{\tau}, \sigma_{\eta}^{2}I_{\tau}\right) \\ L\left(\sigma_{\eta}^{2}|y, \tau, \beta\right) \propto \left(\sigma_{\eta}^{2}\right)^{-\frac{\tau}{2}} \exp\left\{-\frac{1}{2}\sigma_{\eta}^{-2}\left(X_{\tau}\beta - H\tau\right)'\left(X_{\tau}\beta - H\tau\right)\right\} \end{split}$$

Prior distribution is given by

$$p\left(\sigma_{\eta}^{2}\right) \propto \left(\sigma_{\eta}^{2}\right)^{-\frac{\nu+2}{2}} \exp\left\{-\frac{1}{2}\frac{\underline{s}}{\sigma_{\eta}^{2}}\right\}$$

$$p\left(\sigma_{\eta}^{2}|y,\tau,\beta\right) \propto L\left(\sigma_{\eta}^{2}|y,\tau,\beta\right) p\left(\sigma_{\eta}^{2}\right)$$

$$= \mathcal{I}\mathcal{G}2\left(\overline{s}_{\eta},\overline{\nu}_{\eta}\right)$$

$$\overline{s}_{\eta} = \underline{s} + (H\tau - X_{\tau}\beta)'(H\tau - X_{\tau}\beta)$$

$$\overline{\nu}_{\eta} = \underline{\nu} + T$$

Full-conditional posterior distribution of $\sigma_e^2|y,\epsilon,\alpha$

Conditional likelihood is based on equation (3)

$$\begin{aligned} \epsilon - X_{\epsilon} \alpha &= e \\ e &\sim \mathcal{N} \left(\mathbf{0}_{T}, \sigma_{e}^{2} I_{T} \right) \\ L \left(\sigma_{e}^{2} | y, \epsilon, \alpha \right) &\propto \left(\sigma_{e}^{2} \right)^{-\frac{T}{2}} \exp \left\{ -\frac{1}{2} \sigma_{e}^{-2} \left(X_{\epsilon} \alpha - \epsilon \right)' \left(X_{\epsilon} \alpha - \epsilon \right) \right\} \end{aligned}$$

Prior distribution is given by

$$p\left(\sigma_e^2\right) \propto \left(\sigma_e^2\right)^{-rac{
u+2}{2}} \exp\left\{-rac{1}{2}rac{\underline{s}}{\sigma_\eta^2}
ight\}$$

$$\begin{split} p\left(\sigma_{e}^{2}|y,\epsilon,\alpha\right) &\propto L\left(\sigma_{e}^{2}|y,\epsilon,\alpha\right)p\left(\sigma_{e}^{2}\right) \\ &= \mathcal{I}\mathcal{G}2\left(\overline{s}_{e},\overline{\nu}_{e}\right) \\ \overline{s}_{e} &= \underline{s} + (\epsilon - X_{\epsilon}\alpha)'(\epsilon - X_{\epsilon}\alpha) \\ \overline{\nu}_{e} &= \underline{\nu} + T \end{split}$$

Sampling from a multivariate normal distribution using a precision matrix

$$\mathcal{N}\left(D^{-1}b, D^{-1}\right)$$

- D^{-1} an $N \times N$ covariance matrix
- D an $N \times N$ precision matrix that is a tridiagonal
- $O(N^3)$ operations needed to invert D with usual computing routines
- O(N) operations are required to invert D using dedicated routines for special types of matrices

$$\mathcal{N}\left(D^{-1}b,D^{-1}\right)$$

Let L = chol(D) be a lower-triangular matrix such that D = LL'

Suppose that L^{-1} can be computed efficiently

Compute the mean of the distribution by:

$$L^{-1}L^{-1}b = (LL')^{-1}b = D^{-1}b$$

Let x denote an $N \times 1$ vector with elements drawn independently from a standard normal distribution

Sample a draw from the target normal distribution

$$L^{-1\prime}\left(L^{-1}b+x\right)$$

The method in the next slide further simplifies the algorithm and bypasses inverting L

Let $L \setminus b$ denote the unique solution to the triangular system Lx = b obtained by forward (backward) substitution, that is, $L \setminus b = L^{-1}b$.

Simulation smoother.

Compute L = chol(D) such that D = LL'

Sample $x \sim \mathcal{N}\left(0_{N \times 1}, I_N\right)$

Compute a draw from the distribution via the affine transformation:

$$L' \setminus (L \setminus b + x)$$

Simulation smoother in R for tridiagonal D matrix

```
library(mgcv)
N
              = dim(D)[1]
lead.diag
              = diag(D)
              = sdiag(D, -1)
sub.diag
D.chol
              = trichol(ld = lead.diag, sd=sub.diag)
              = diag(D.chol$ld)
D.I.
sdiag(D.L,-1) = D.chol\$sd
              = matrix(rnorm(n*N), ncol=n)
X
              = forwardsolve(D.L, b)
а
draw
              = backsolve(t(D.L), a + x)
```

```
rmvnorm.tridiag.precision = function(n, D, b){
             = dim(D)[1]
 N
 lead.diag = diag(D)
  sub.diag = sdiag(D, -1)
  D.chol = trichol(ld = lead.diag, sd=sub.diag)
             = diag(D.chol$ld)
 D.L
  sdiag(D.L,-1) = D.chol\$sd
             = matrix(rnorm(n*N), ncol=n)
 X
             = forwardsolve(D.L, b)
  а
 draw
             = backsolve(t(D.L),
                   matrix(rep(a,n), ncol=n) + x)
 return(draw)
```

```
rmvnorm.usual = function(n, D, b){
  N
             = dim(D)[1]
 D. chol = t(chol(D))
 variance.chol = solve(D.chol)
              = matrix(rnorm(n*N), ncol=n)
 X
  draw
              = t(variance.chol) %*%
           (matrix(rep(variance.chol%*%b,n), ncol=n) + x)
 return(draw)
```

library(mgcv); library(microbenchmark)

```
set.seed(12345)
T
   = 240
md = rgamma(T, shape=10, scale=10)
od = rgamma(T-1, shape=10, scale=1)
     = 2*diag(md)
sdiag(D, 1) = -od
sdiag(D, -1) = -od
b = as.matrix(rnorm(T))
microbenchmark(
 trid = rmvnorm.tridiag.precision(n=100, D=D, b=b),
 usual = rmvnorm.nothing.special(n=100, D=D, b=b),
 check = "equal", setup=set.seed(123456)
Unit: milliseconds
           min
                     lq mean median
                                                 uq max neval
expr
trid 3.489267 4.539225 6.655018 4.666931 4.963046 154.70131 100
usual 13.769023 15.355094 16.746697 15.694483 17.626655 28.79406
```

100

```
set.seed(12345)
     = 720
md = rgamma(T, shape=10, scale=10)
     = rgamma(T-1, shape=10, scale=1)
od
     = 2*diag(md)
sdiag(D, 1) = -od
sdiag(D, -1) = -od
b = as.matrix(rnorm(T))
microbenchmark(
  trid = rmvnorm.tridiag.precision(n=100, D=D, b=b),
  usual = rmvnorm.nothing.special(n=100, D=D, b=b),
  check = "equal", setup=set.seed(123456)
Unit: milliseconds
                             mean median
           min
                      lq
                                                           max neval
expr
                                                   uq
trid 22.46832 26.55893 45.00241 29.93325 35.21184 164.7311
                                                                 100
usual 249.23538 263.19570 286.56741 270.97134 289.85116 583.5321
                                                                 100
```

Bayesian estimation of Unobserved Component models

proceeds via Gibbs sampling with well-specified full conditional posterior distributions

bypasses the application of Kalman filter that requires sequential computer calculations

uses the simulation smoother instead in order to sample draws of latent processes

applies dedicated algorithms for special types of matrices for fast computations