

## Instituto Superior de Engenharia de Lisboa

# Mestrado em Matemática Aplicada para a Indústria

### MAS

(Modelação Avançada e Simulação)

### Relatório Trabalhos Práticos

A51113 - José Casimiro A21013 - Rui Nobre

**Docentes:** 

Prof. Doutor Gonçalo Morais Prof. Doutor Ricardo Enguiça

Maio 2023

### 1 Introdução

O presente relatório pretende, com o objetivo de consolidar os conhecimentos adquiridos, descrever a teoria e código desenvolvido, usados na realização dos trabalhos práticos solicitados ao longo da unidade curricular

#### 2 Prática 1

Construir uma tabela em Excel, que simule um empréstimo para crédito habitação nas seguintes condições:

• Divida: 100000€

• Euribor:3

• Spread:2

• Numero de Anos: 30

Campos usados para a simulação:

• Ano

 $\bullet$  Divida - d

• Tx Juro (Euribor+Spread) - r

 $\bullet$  Prestação Anual - co cálculo da Prestação anual, recorre à expressão de uma progressão geométrica de razão r.

$$d = \frac{c}{1+r} + \dots + \frac{c}{(1+r)^{30}} \leftrightarrow c = d\left(\frac{1 - \frac{1}{1+r}}{\frac{1}{1+r} - \frac{1}{(1+r)^{30}}}\right)$$
(1)

• Juro Capital em divida -  $Vj = d \times r$ 

• Amortização - Va = d - Vj

• Divida Final - df = d - Va

O resultado da simulação da Prática 1, encontra-se no excel: "Pratica1-Simulação EB Tx Fixa.xlsx"

#### 3 Prática 2

Simular em Phyton um empréstimo para crédito habitação, com perturbações na taxa de Juro Anual, nas seguintes condições:

- Divida: 100000€
- $\bullet$  Euribor: Taxa de juro Anual variável com média de 3%e desvio padrão de 1%
- Spread:2
- Numero de Anos: 30

Para a geração da taxa de juro, foi usado o método Box Muller para obter 30 valores de taxas, recorrendo a um LCM-linear congruent method para a geração de números aleatórios entre 0 e 1. A geração foi feita recorrendo à programação Python

No LCM os valores entre 0 e 1 são gerados recorrendo à seguinte expressão.

$$LCM \to \begin{cases} X_0 = \text{valor inteiro do relogio interno do PC} \\ X_n = (aa \times X_{n-1} + cc) \times \text{mod}(2^N) \end{cases}$$
 (2)

Xn segue uma distribuição normal

onde:

aa = 110351525

cc = 12345

N = 31

Neste caso gerámos 30 valores de Xn para serem usados no cálculo das Gausianas do método Box Muller:

A expressão para calcular as Gaussianas são:

$$G1 = \sqrt{-2 \times logXn_{0a14} \times cos(2\pi \times Xn_{15a30})}$$
(3)

$$G2 = \sqrt{-2 \times logXn_{0a14} \times sin(2\pi \times Xn_{15a30})}$$
 (4)

São Gerados 15 valores para G1 e 15 valores para G2, onde G é conjunto do 30 valores

Como se pretende uma taxa média de 3% com desvio padrão de 1%, basta fazer:  $TX = AVG + G \times DP$ , onde:

AVG = 3%

DP = 1%

ullet Prestação Anual - c

Como a Taxa de Juro Varia anualmente com os valores calculados no ponto anterior, o Valor da Prestação anual é calculado tendo em conta o valor da respetiva taxa do ano correspondente:

• exemplo para a prestação do Ano 1:

$$c = d \left( \frac{1 - \frac{1}{1 + r_{Ano1}}}{\frac{1}{1 + r_{Ano1}} - \frac{1}{(1 + r_{Ano1})^{30}}} \right)$$
 (5)

• exemplo para a prestação do Ano 2:

$$c = d \left( \frac{1 - \frac{1}{1 + r_{Ano2}}}{\frac{1}{1 + r_{Ano2}} - \frac{1}{(1 + r_{Ano2})^{29}}} \right)$$
 (6)

• exemplo para a prestação do ultimo Ano:

$$c = d \left( \frac{1 - \frac{1}{1 + r_{Ano30}}}{\frac{1}{1 + r_{Ano30}} - \frac{1}{(1 + r_{Ano30})^{1}}} \right)$$
 (7)

A simulação solicitada na Prática 2, encontra-se no ficheiro python "Simulador Emprestimo Bancario LCM e Box Muller.py", e retorna uma tabela com a simulação do emprestimo ao longo dos 30 anos de contrato

#### 4 Prática 3

Simular em Phyton um empréstimo para crédito habitação, com perturbações na taxa de Juro Anual, balizadas por um ficheiro que contempla os valores da inflação registadas entre 1/01/1960 a 1/01/2021.

A geração das taxas de juro anuais, ao longo dos 30 anos, foi feita recorrendo, a um Nucleo Parabólico para definir a densidade da distribuição da inflação, onde depois são selecionadas 30 taxas, recorrendo ao método de aceitação rejeição. Para tal serão gerados 1000 valores para cada uma das 30 taxas, sendo apenas aceite 1 para cada taxa, ou seja 30 no total.

Abaixo podemos ver as curva de densidade para os valores da Inflação com Largura de banda 5 e 10



Figure 1: Densidade com BW =5



Figure 2: Densidade com BW =10

Para o Método de Aceitação rejeição vamos usar BW=10

a equação usada pelo núcleo é:

$$\frac{0.75}{h} \times \left(1 - (\frac{x - x0}{h + 0.0})^2\right) \tag{8}$$

onde: h=10

x0 = valor médio da inflação x = respectivo valor de inflação

Abaixo apresento a densidade das 1000 taxas de Juro geradas para calcular a Taxa para o  $1^{\rm o}$  Ano



Figure 3: Aceitação Rejeição 1º Ano

A título de exemplo, para o gráfico acima o valor médio calculado foi de  $3.7964\,$ 

A simulação descrita, encontra-se no ficheiro python "pratica3.py". O Output mostra uma tabela com a simulação ao longo dos 30 Anos do empréstimo

#### Prática 4 5

Esta Simulação é a mesma que a realizada na Prática 3, mas com a adição do cálculo da probabilidade dos valores das taxas ocorrerem em diferentes intervalos.

O que foi feito, foi o de dividir em 4 intervalos os valores de Inflação existentes no ficheiro da Inflação. Como mencionado na prática 3, por Ano é eleita uma taxa, calculada com base no valor médio das 1000 taxas geradas. Essas 1000 taxas ocorrem de forma aleatória e é registado em qual dos 4 intervalos pertencem. Conhecendo esse valor é calculada a probabilidade para cada intervalo. No fim é disponibilizado um excel com a simulação do empréstimo onde aparecem os 4 intervalos e os respetivos valores de probabilidade. Exemplo da tabela disponibilizada no Excel:

1 Juro Simulado Divida Juro Total Prestação Anual Juro Capital em Divida Amortização (1) [-2.36,2.12] (2) [2.12,6.6] (3) [6.6,11.07] (4) [11.07,15.55]

|    | Julo Silliulauo | Divida      | Julo Iotai | Frestação Alluai | Julo Capital Elli Divida | Ailloitização | (1)[-2.30,2.12] | (2) [2.12,0.0] | (3) [0.0,11.07] | (4) [11.07,13.33] |
|----|-----------------|-------------|------------|------------------|--------------------------|---------------|-----------------|----------------|-----------------|-------------------|
| 2  | 0,0374          | 100000,0000 | 0,0574     | 7066,4599        | 5743,2816                | 1323,1783     | 0,296           | 0,576          | 0,1             | 0,028             |
| 3  | 0,0375          | 98676,8217  | 0,0575     | 7067,9404        | 5669,2306                | 1398,7099     | 0,283           | 0,596          | 0,085           | 0,036             |
| 4  | 0,0364          | 97278,1118  | 0,0564     | 6991,6175        | 5487,6123                | 1504,0052     | 0,308           | 0,574          | 0,079           | 0,039             |
| 5  | 0,0376          | 95774,1066  | 0,0576     | 7074,9238        | 5514,2413                | 1560,6825     | 0,305           | 0,554          | 0,105           | 0,036             |
| 6  | 0,0360          | 94213,4241  | 0,0560     | 6962,8491        | 5272,9150                | 1689,9341     | 0,301           | 0,586          | 0,078           | 0,035             |
| 7  | 0,0372          | 92523,4899  | 0,0572     | 7049,2379        | 5296,2442                | 1752,9937     | 0,306           | 0,566          | 0,093           | 0,035             |
| 8  | 0,0371          | 90770,4962  | 0,0571     | 7042,3272        | 5186,4025                | 1855,9247     | 0,276           | 0,606          | 0,08            | 0,038             |
| 9  | 0,0371          | 88914,5715  | 0,0571     | 7037,1973        | 5073,2405                | 1963,9568     | 0,299           | 0,575          | 0,089           | 0,037             |
| 10 | 0,0368          | 86950,6147  | 0,0568     | 7021,0007        | 4938,4731                | 2082,5277     | 0,304           | 0,577          | 0,096           | 0,023             |
| 11 | 0,0368          | 84868,0870  | 0,0568     | 7020,5601        | 4819,5691                | 2200,9910     | 0,317           | 0,568          | 0,08            | 0,035             |
| 12 | 0,0362          | 82667,0960  | 0,0562     | 6986,4177        | 4645,6857                | 2340,7319     | 0,316           | 0,575          | 0,07            | 0,039             |
| 13 | 0,0367          | 80326,3640  | 0,0567     | 7013,5579        | 4553,3953                | 2460,1626     | 0,298           | 0,584          | 0,088           | 0,03              |
| 14 | 0,0369          | 77866,2014  | 0,0569     | 7025,3277        | 4431,1056                | 2594,2221     | 0,296           | 0,582          | 0,096           | 0,026             |
| 15 | 0,0365          | 75271,9794  | 0,0565     | 7006,8613        | 4256,2700                | 2750,5912     | 0,295           | 0,589          | 0,082           | 0,034             |
| 16 | 0,0372          | 72521,3882  | 0,0572     | 7038,0814        | 4147,1615                | 2890,9199     | 0,3             | 0,583          | 0,078           | 0,039             |
| 17 | 0,0379          | 69630,4683  | 0,0579     | 7069,4510        | 4028,8397                | 3040,6114     | 0,308           | 0,551          | 0,1             | 0,041             |
| 18 | 0,0367          | 66589,8569  | 0,0567     | 7017,6278        | 3774,4728                | 3243,1550     | 0,298           | 0,583          | 0,083           | 0,036             |
| 19 | 0,0368          | 63346,7019  | 0,0568     | 7022,9377        | 3598,7652                | 3424,1726     | 0,278           | 0,61           | 0,079           | 0,033             |
| 20 | 0,0364          | 59922,5294  | 0,0564     | 7005,1185        | 3376,7352                | 3628,3833     | 0,302           | 0,577          | 0,088           | 0,033             |
| 21 | 0,0372          | 56294,1461  | 0,0572     | 7034,9191        | 3218,5961                | 3816,3229     | 0,302           | 0,576          | 0,083           | 0,039             |
| 22 | 0,0357          | 52477,8232  | 0,0557     | 6985,7601        | 2923,4058                | 4062,3543     | 0,309           | 0,573          | 0,08            | 0,038             |
| 23 | 0,0383          | 48415,4689  | 0,0583     | 7065,9742        | 2823,2438                | 4242,7304     | 0,295           | 0,567          | 0,101           | 0,037             |
| 24 | 0,0362          | 44172,7385  | 0,0562     | 7007,6039        | 2483,7885                | 4523,8155     | 0,323           | 0,553          | 0,093           | 0,031             |
| 25 | 0,0367          | 39648,9230  | 0,0567     | 7019,9224        | 2248,8775                | 4771,0449     | 0,292           | 0,581          | 0,094           | 0,033             |
| 26 | 0,0378          | 34877,8781  | 0,0578     | 7044,5327        | 2016,9277                | 5027,6050     | 0,303           | 0,577          | 0,082           | 0,038             |
| 27 | 0,0369          | 29850,2731  | 0,0569     | 7026,7933        | 1698,6398                | 5328,1534     | 0,307           | 0,572          | 0,08            | 0,041             |
| 28 | 0,0375          | 24522,1196  | 0,0575     | 7036,6477        | 1410,3877                | 5626,2600     | 0,303           | 0,564          | 0,096           | 0,037             |
| 29 | 0,0377          | 18895,8596  | 0,0577     | 7039,2873        | 1090,6126                | 5948,6746     | 0,302           | 0,564          | 0,098           | 0,036             |
| 30 | 0,0378          | 12947,1850  | 0,0578     | 7040,2983        | 748,5966                 | 6291,7018     | 0,298           | 0,573          | 0,088           | 0,041             |
| 31 | 0,0391          | 6655,4833   | 0,0591     | 7048,7909        | 393,3077                 | 6655,4833     | 0,276           | 0,582          | 0,095           | 0,047             |

Figure 4: Simulação do Empréstimo

A simulação descrita, encontra-se no ficheiro python "pratica4.py".