SCRIBE

7

Instructors: Purushottam Kar, Neeraj Misra

Authors: Gurpreet Singh Email: guggu@iitk.ac.in

JOINT DISTRIBUTION OF RANDOM VARIABLES AND INDEPENDENCE

Random Vector

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, we may be interested in two or more numerical characteristics of the sample space simultaneously.

Example 7.1. \mathcal{E} : Casting two dice simultaneously

$$\Omega\{(i,j) \mid i,j \in \{1,2\dots 6\}\}$$

Then, we can define two random variables $X_1:\Omega\to\mathbb{R}$ and $X_2:\Omega\to\mathbb{R}$ such that

$$X_1((i,j)) = i+j$$

 $X_2((i,j)) = |i-j|$

Since we may be interested in studying X_1 and X_2 simultaneously, we study the function $\underline{X}:\Omega\to\mathbb{R}^2$, where $\underline{X}=[X_1,X_2]'$, and $\underline{X}((i,j))=[X_1((i,j)),X_2((i,j))]'$ where $(i,j)\in\Omega$. Here, \underline{X} is a random vector.

Definition 7.1 (Random Vector). A function

$$\underline{X} = [X_1, X_2 \dots X_p]' : \Omega \to \mathbb{R}^p$$

is called a p-dimensional random vector (\mathbb{R}^p denotes the p-dimensional Euclidean Space)

Probability Distribution for a Random Vector

We can also define a probability measure of the random vector \underline{X} for the sample space Ω and the event space \mathcal{F} as $\mathbb{P}_{\underline{X}}: \mathcal{F} \to [0,1]$ such that

$$\begin{array}{lcl} \underset{\underline{X}}{\mathbb{P}}\left[\,A\,\right] & = & \mathbb{P}\left[\,\,\underline{X}^{-1}\left(A\right)\,\right] \\ \\ & = & \mathbb{P}\left[\,\left\{w\in\Omega\mid\underline{X}(w)\in A\right\}\,\right] \end{array}$$

It can be proved that this indeed is a probability measure, and hence $(\Omega, \mathcal{F}, \mathbb{P}_{\underline{X}})$ is a probability space.

We can also define the Joint Cumulative Distribution Function (Joint CDF) of \underline{X} .

Definition 7.2. The joint distribution function (d.f.) of a random vector \underline{X} is the function $F_X : \mathbb{R}_p \to \mathbb{R}$ defined by

$$F_{\underline{X}}(\mathbf{x}) = \mathbb{P}_{X}[(-\infty, \mathbf{x})]$$

where
$$(\mathbf{a}, \mathbf{b}] = \{ [x_1, x_2 \dots x_p]' \mid \forall n \in [p], a_n < x_n \le b_n \}$$

Definition 7.3 (Marginal Distributive Function). The Joint CDF of any supset of the r.v.s $\{X_1, X_2 \dots X_p\}$ is called a marginal CDF of $F_{\underline{X}}$. Suppose if $\underline{X} = [X_1, X_2 \dots X_p]'$ is a random vector with the joint CDF $F_{\underline{X}}$, then the marginal CDF

$$F_{X_1, X_2 \dots X_{p-1}}(x_1, x_2 \dots x_{p-1}) = \lim_{t \to \infty} F_{\underline{X}}(x_1, x_2 \dots x_{p-1}, t)$$

Exercise 7.1. Prove the derived term for the marginal CDF

The above result suggests that to get a marginal CDF, we need to take (in limit) the arguments of unwanted variables in the joint CDF to ∞ .

Result 7.3.1. Let $\underline{X} = [X_1, X_2 \dots X_p]'$ be a p-dimensional random vector with joint CDF F_X . Then, for any p-dimensional "rectangle" (\mathbf{a}, \mathbf{b})

$$\mathbb{P}\left[\underline{X} \in (\mathbf{a}, \mathbf{b}]\right] = \mathbb{P}\left[\forall n \in [p], a_n < X_n \le b_n\right]$$
$$= \sum_{k=0}^{p} (-1)^n \sum_{\mathbf{z} \in \Delta_{k,p}((\mathbf{a}, \mathbf{b}])} F_{\underline{X}}(\mathbf{z})$$

where for $k \in \{0, 1 \dots p\}$

$$\Delta_{k,p} = \left\{ \mathbf{z} = [z_1, z_2 \dots z_p] \mid k \text{ of } z_n s \text{ are } a_n s \text{ and rest are } b_n s \right\}$$

Exercise 7.2. Prove the above result using induction.

2.1 Properties of a Joint CDF

Just like CDF for a random variable, the joint CDF of a random vector must satisfy the following properties

(i)

$$\lim_{\substack{x_n \to \infty \\ n \in [p]}} F_{\underline{X}}(x_1, x_2 \dots x_p) = 1$$

(ii)

$$\lim_{\substack{x_n \to -\infty \\ n \in [p]}} F_{\underline{X}}(x_1, x_2 \dots x_p) = 0$$

- (iii) $F_{\underline{X}}$ is right continuous in each dimension, keeping other dimensions fixed
- (iv) For each "rectangle" $[\mathbf{a}, \mathbf{b}] \subseteq \mathbb{R}^p$

$$\mathbb{P}\left[\mathbf{a} \leq \underline{X} \leq \mathbf{b}\right] \geq 0$$

If a function $G: \mathbb{R} \to [0,1]$ satisfies properties mentioned above, then there exists a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a r.v. $\underline{X} = [X_1, X_2 \dots X_p]'$ on Ω such that G is the joint CDF of \underline{X}

3. Independence of Random Variables

<++>