Método del gradiente reducido generalizado

Penadillo Lazares Wenses Johan

15 de noviembre de 2021

Índice

Introducción

GRG

Implementación en python

Introducción

Este método es una extensión del método del gradiente reducido.

Minimize
$$f(\mathbf{X})$$

 $h_j(\mathbf{X}) \le 0, \quad j = 1, 2, ..., m$

 $l_k(\mathbf{X}) = 0, \quad k = 1, 2, \dots, l$

$$x_i^{(l)} \le x_i \le x_i^{(u)}, \quad i = 1, 2, \dots, n$$

Introducción

Minimize $f(\mathbf{X})$

$$g_j(\mathbf{X}) = 0, \quad j = 1, 2, \dots, m + l$$

 $x_i^{(l)} \le x_i \le x_i^{(u)}, \quad i = 1, 2, \dots, n + m$

Donde el limite inferior y superior de las x_i sera 0 e ∞ respectivamente.

El método esta basado en la idea de eliminación de variables.

$$\mathbf{X} = \begin{cases} \mathbf{Y} \\ \mathbf{Z} \end{cases}$$

$$\mathbf{Y} = \begin{cases} y_1 \\ y_2 \\ \vdots \\ y_{n-l} \end{cases}$$

$$\mathbf{Z} = \begin{cases} z_1 \\ z_2 \\ \vdots \\ z_{m+l} \end{cases}$$

Donde *Y* serán variables independientes y *Z* variables dependientes.

Considerando la primera derivada de la función objetivo y las restricciones.

$$df(\mathbf{X}) = \sum_{i=1}^{n-l} \frac{\partial f}{\partial y_i} dy_i + \sum_{i=1}^{m+l} \frac{\partial f}{\partial z_i} dz_i = \nabla_{\mathbf{Y}}^{\mathrm{T}} f d\mathbf{Y} + \nabla_{\mathbf{Z}}^{\mathrm{T}} f d\mathbf{Z}$$
$$dg_i(\mathbf{X}) = \sum_{j=1}^{n-l} \frac{\partial g_i}{\partial y_j} dy_j + \sum_{j=1}^{m+l} \frac{\partial g_i}{\partial z_j} dz_j$$

$$d\mathbf{g} = [C]d\mathbf{Y} + [D]d\mathbf{Z}$$

Donde:

$$\nabla_{\mathbf{Y}} f = \begin{cases} \frac{\partial f}{\partial y_{1}} \\ \frac{\partial f}{\partial y_{2}} \\ \vdots \\ \frac{\partial f}{\partial y_{n-l}} \end{cases} \quad [C] = \begin{bmatrix} \frac{\partial g_{1}}{\partial y_{1}} & \dots & \frac{\partial g_{1}}{\partial y_{n-l}} \\ \vdots & & \vdots \\ \frac{\partial g_{m+l}}{\partial y_{1}} & \dots & \frac{\partial g_{m+l}}{\partial y_{n-l}} \end{bmatrix} \quad d\mathbf{Y} = \begin{cases} dy_{1} \\ dy_{2} \\ \vdots \\ dy_{n-l} \end{cases}$$

$$\nabla_{\mathbf{Z}} f = \begin{cases} \frac{\partial f}{\partial z_{1}} \\ \frac{\partial f}{\partial z_{2}} \\ \vdots \\ \frac{\partial f}{\partial z_{m+l}} \end{cases} \quad [D] = \begin{bmatrix} \frac{\partial g_{1}}{\partial z_{1}} & \dots & \frac{\partial g_{1}}{\partial z_{m+l}} \\ \vdots & & \vdots \\ \frac{\partial g_{m+l}}{\partial z_{1}} & \dots & \frac{\partial g_{m+l}}{\partial z_{m+l}} \end{bmatrix} \quad d\mathbf{Z} = \begin{cases} dz_{1} \\ dz_{2} \\ \vdots \\ dz_{m+l} \end{cases}$$

La solución a la ecuación anterior seria:

$$d\mathbf{Z} = -[D]^{-1}[C]d\mathbf{Y}$$

Reemplazando *dZ* tenemos:

$$df(\mathbf{X}) = (\nabla_{\mathbf{Y}}^{\mathrm{T}} f - \nabla_{\mathbf{Z}}^{\mathrm{T}} f[D]^{-1}[C]) d\mathbf{Y}$$
$$\frac{df}{d\mathbf{Y}}(\mathbf{X}) = \mathbf{G}_{R}$$

$$\mathbf{G}_R = \nabla_{\mathbf{Y}} f - ([D]^{-1}[C])^{\mathrm{T}} \nabla_{\mathbf{Z}} f$$

Donde G_R seria el gradiente reducido.

Se debe cumplir:

$$g(X) + dg(X) = 0$$

Reemplazando dg

$$dZ = [D]^{-1}(-g(X) - [C]dY)$$

Este valor sera usado para actualizar Z.

$$Z_{update} = Z_{current} + dZ$$

Ejemplo

minimize
$$x_1^2 + x_2^2 + x_3^2 + x_4^2 - 2x_1 - 3x_4$$

subject to $2x_1 + x_2 + x_3 + 4x_4 = 7$
 $x_1 + x_2 + 2x_3 + x_4 = 6$
 $x_i \ge 0$, $i = 1, 2, 3, 4$.

```
1
    import numpy as np
2
    import matplotlib.pyplot as plt
    from sympy import *
3
4
5
    def generalized_reduced_gradient():
6
7
        x1, x2, x3, x4 = symbols('x1 x2 x3 x4')
8
        xvars = [x1, x2, x3, x4]
9
10
        fx = x1**2 + x2**2 + x3**2 + x4**2 - 2*x1 - 3*x4
11
        hxs = [2*x1 + x2 + x3 + 4*x4 - 7, x1 + x2 +
12
               2*x3 + x4 - 61
13
                                                       # Constraints to be ob
14
        alpha_0 = 1
        gamma = 0.4
15
        max iter = 100
16
        max_outer_iter = 50
17
        eps_1, eps_2, eps_3 = 0.001, 0.001, 0.001
18
19
        xcurr = np.array([2, 2, 1, 0])
20
21
        dfx = np.array([diff(fx, xvar) for xvar in xvars])
22
        dhxs = np.array([[diff(hx, xvar) for xvar in xvars] for hx in hxs])
23
```

```
nonbasic_vars = len(xvars) - len(hxs)
        opt_sols = []
25
26
        for outer_iter in range(max_outer_iter):
27
28
            print('\n\nOuter loop iteration: {0}, optimal solution: {1}'.fo
29
                outer_iter + 1, xcurr))
30
            opt_sols.append(fx.subs(zip(xvars, xcurr)))
31
32
33
            # Step 1
34
            delta_f = np.array([df.subs(zip(xvars, xcurr)) for df in dfx])
35
            delta_h = np.array([[dh.subs(zip(xvars, xcurr)) for dh in dhx]
36
                                for dhx in dhxs])
                                                                   # Value of
37
            # Computation of J and C matrices
38
            J = np.array([dhx[nonbasic_vars:] for dhx in delta_h])
39
            C = np.array([dhx[:nonbasic_vars] for dhx in delta_h])
40
            delta_f_bar = delta_f[nonbasic_vars:]
41
            delta_f_cap = delta_f[:nonbasic_vars]
42
43
            J_inv = np.linalg.inv(np.array(J, dtype=float))
44
            delta_f_tilde = delta_f_cap - delta_f_bar.dot(J_inv.dot(C))
45
46
47
            # Step 2
```

24

```
if abs(delta_f_tilde[0]) <= eps_1:</pre>
49
                 break
50
51
            d bar = - delta f tilde.T
52
            d_cap = - J_inv.dot(C.dot(d_bar))
53
             d = np.concatenate((d_bar, d_cap)).T
54
55
             # Step 3
56
57
58
             alpha = alpha_0
59
             while alpha > 0.001:
60
61
                 print('\nAlpha value: {0}\n'.format(alpha))
62
63
                 # Step 3(a)
64
65
                v = xcurr.T + alpha * d
66
                 v_bar = v[:nonbasic_vars]
67
                 v_cap = v[nonbasic_vars:]
68
                 flag = False
69
70
71
                 for iter in range(max_iter):
```

```
print('Iteration: {0}, optimal solution obtained at x =
72
                         iter + 1, v))
73
                     h = np.array([hx.subs(zip(xvars, v)) for hx in hxs])
74
                     # Check if candidate satisfies all constraints
75
                     if all([abs(h_i) < eps_2 for h_i in h]):
76
                         if fx.subs(zip(xvars, xcurr)) <= fx.subs(zip(xvars,</pre>
77
                             alpha = alpha * gamma
78
                             break
79
                         else:
80
81
                             xcurr = v
82
                             flag = True
                             break
83
84
                     # Step 3(b)
85
86
                     delta_h_v = np.array([[dh.subs(zip(xvars, v))
87
                                           for dh in dhx] for dhx in dhxs])
88
                     J_inv_v = np.linalg.inv(
89
                         np.array([dhx[nonbasic_vars:] for dhx in delta_h_v]
90
                     v_next_cap = v_cap - J_inv_v.dot(h)
91
92
                     # Step 3(c)
93
94
95
                     if abs(np.linalg.norm(np.array(v_cap - v_next_cap, dtyp
```

```
v_cap = v_next_cap
96
                           v = np.concatenate((v_bar, v_cap))
97
                       else:
98
                           v_cap = v_next_cap
99
                           v = np.concatenate((v_bar, v_cap))
100
                           h = np.array([hx.subs(zip(xvars, v)) for hx in hxs]
101
                           if all([abs(h_i) < eps_2 for h_i in h]):</pre>
102
103
                                # Step 3(d)
104
105
106
                                if fx.subs(zip(xvars, xcurr)) <= fx.subs(zip(xv
                                    alpha = alpha * gamma
107
                                    break
108
                                else:
109
                                    xcurr = v
110
                                    flag = True
111
                                    break
112
                           else:
113
                                alpha = alpha * gamma
114
                                break
115
116
                  if flag == True:
117
                       break
118
119
```

```
print('\n\nFinal solution obtained is: {0}'.format(xcurr))
120
         print('Value of the function at this point: {0}\n'.format(
121
             fx.subs(zip(xvars, xcurr))))
122
123
         # Plot the solutions obtained after every iteration
124
         plt.plot(opt_sols, 'ro')
125
         plt.show()
126
127
128
129
    if __name__ == '__main__':
130
         generalized_reduced_gradient()
```