WHAT IS CLAIMED IS

- 1. A method for fast global motion estimation, the global motion defined by a plurality of parameters in which each parameter has an interval, the method comprising:
 - a. providing a first and a second image,
 - b. providing an initial estimate of each of two translation parameters, and
 - c. determining the relative global motion between said first and second images using a symmetric gradient approach in an iterative process starting with said initial estimate of said two translation parameters, whereby said symmetric gradient approach provides the center of each parameter interval and results in improved global motion estimation convergence properties.
- 2. The method of claim 1, wherein said step of providing an initial estimate of each of two translation parameters includes
 - i. providing an initial interval for each said translation parameter,
 and
 - ii. dividing each said translation parameter initial interval into two equal sub-intervals,

and wherein said step of determining the relative global motion between said first and second images using a symmetric gradient approach includes

- i. providing a basic symmetric gradient formulation that includes said sub-intervals,
- ii. running in each iteration a point-wise linearization procedure on said basic symmetric gradient formulation, and
- iii. deriving in each iteration a symmetric linearization error based on said linearization procedure.
- 3. The method of claim 2, wherein said substep of providing a basic symmetric gradient formulation further includes using a motion parameters vector $\underline{\mathbf{P}}$ representing the plurality of parameters.

- 4. The method of claim 3, wherein said step of determining the relative global motion between said first and second images using a symmetric gradient approach further includes: for each iteration:
 - i. calculating separately for each of said first and second images respective first and second $(\underline{H}^t\underline{H})$ matrices,
 - ii. calculating a combined matrix $\left(\underline{\underline{H}}^t\underline{\underline{H}}\right)^{SGM}$ using said first and second matrices,
 - iii. calculating a vector $\underline{H}^{t}\underline{I}_{t}$, and
 - iv. calculating a parameters vector $\underline{\mathbf{P}}^{\text{SGM}}$ using said combined matrix and said vector $\underline{\underline{H}}'\underline{I}_i$, and using said symmetric linearization error for a continue/stop check.
- 5. The method of claim 4, wherein said substep of calculating respective first and second $(\underline{\underline{H}^t}\underline{\underline{H}})$ matrices includes calculating said matrices using respectively equations 59 and 60.
- 6. The method of claim 4, wherein said combined $(\underline{\underline{H}^t}\underline{\underline{H}})$ matrix is calculated according to equation 62.
- 7. The method of claim 1, wherein said global motion is selected from the group consisting from image translation, rotation, affine motion and panoramic motion.
- 8. The method of claim 1, wherein said improved convergence properties include an improved convergence rate.
- 9. The method of claim 1, wherein said improved convergence properties include an improved linearization error rate.

- 10. A method for fast global motion estimation, the global motion defined by a plurality of parameters in which each parameter has an interval, the method comprising:
 - a. providing a first and a second image,
 - b. providing an initial estimate of each of two translation parameters, and
 - c. determining the relative global motion between said first and second images using a bi-directional gradient approach in an iterative process starting with said initial estimate of said two translation parameters, whereby said bi-directional gradient approach provides the optimal location of each parameter interval and results in improved global motion estimation convergence properties.
- 11. The method of claim 10, wherein said step of providing an initial estimate of each of two translation parameters includes
 - i. providing an initial interval for each said translation parameter, and
 - ii. dividing each said translation parameter initial interval into two non-equal equal sub-intervals,

and wherein said step of determining the relative global motion between said first and second images using a bi-directional gradient approach includes

- i. providing a basic bi-directional gradient formulation that includes said sub-intervals,
- running in each iteration a point-wise linearization procedure
 on said basic bi-directional gradient formulation, and
- iii. deriving in each iteration a bi-directional linearization error based on said linearization procedure.
- 12. The method of claim 11, wherein said substep of providing a basic bidirectional gradient formulation further includes using a motion parameters vector <u>P</u> representing the plurality of parameters.

- 13. The method of claim 12, wherein said step of determining the relative global motion between said first and second images using a bi-directional gradient approach further includes: for each iteration:
 - i. calculating separately for each of said first and second images respective first and second $(\underline{H}^{\iota}\underline{H})$ matrices,
 - ii. calculating a combined matrix $\underline{\underline{H}}^{BDGM}$ using said first and second matrices.
 - iii. calculating a vector $\underline{H}^{BDGM}\underline{I}_{t}$, and
 - iv. calculating a parameters vector $\underline{\mathbf{P}}^{\mathrm{BDGM}}$ using said combined matrix and said vector $\underline{\underline{H}}^{\mathrm{BDGM}}\underline{I}_{L}$, and using said symmetric linearization error for a continue/stop check.
- 14. The method of claim 13, wherein said substep of calculating respective first and second $(\underline{\underline{H}^t}\underline{\underline{H}})$ matrices includes calculating said matrices using respectively equations 78 and 79.
- 15. The method of claim 13, wherein said combined $(\underline{\underline{H}^t}\underline{\underline{H}})$ matrix is calculated according to equation 80.
- 16. The method of claim 10, wherein said global motion is selected from the group consisting from image translation, rotation, affine motion and panoramic motion.
- 17. The method of claim 10, wherein said improved convergence properties include an improved convergence rate.
- 18. The method of claim 10, wherein said improved convergence properties include an improved linearization error rate.