Número π

Bianca E. Kennedy Giménez

25 de abril de 2014

Índice

Primera sección

Índice

Primera sección

- Segunda sección
 - Antiguo egipto
 - Mesopotamia
 - Antiguedad clásica

Introducción

 π es la relación entre la longitud de la circunferencia y su diámetro, en geometría euclidiana. Es un número irracional y una de las constantes matemáticas más importantes. El valor númerico de π , tuncando a sus primeras cifras, es el siguiente:

 $\pi \approx 3,14159265358979323846.$

Vamos a hacer un ejemplo:

Antiguo egipto

¹Hay muchas más

- Antiguo egipto
- Mesopotamia

- Antiguo egipto
- Mesopotamia
- Antiguedad clásica

- Antiguo egipto
- Mesopotamia
- Antiguedad clásica
- Matemática china

- Antiguo egipto
- Mesopotamia
- Antiguedad clásica
- Matemática china
- Matemática india

- Antiguo egipto
- Mesopotamia
- Antiguedad clásica
- Matemática china
- Matemática india¹

Historia. Antiguo egipto.

• El valor aproximado de π en las antiguas culturas se remonta a la época del escriba egipcio Ahmes en el año 1800 a.C., decrito en el papiro Rindh, donde se emplea un valor de π afirmando que el área de un cículo es similar a la de un cuadrado cuyo lado es igual al diámetro del círculo disminuido en $\frac{1}{9}$, es decir, igual a $\frac{8}{9}$ del diámetro. En notación moderna:

$$S = \pi r^2 \simeq \left(\frac{8}{9} \cdot d\right)^2 = \frac{64}{81}d^2 = \frac{64}{81}(4r^2)$$

Historia. Mesopotamia.

• Algunos matemáticos mesopotámicos empleaban, en el cálculo de segmentos, valores de π igual a 3, alcanzando en algunos casos valores más aproximados, como el de:

$$\pi \approx 3 + \frac{1}{8} = 3,125$$

Historia.antiguedad clásica.

• El matemático griego Arquímedes(siglo III, a.C.) fue capaz de determinar el valor de π entre el intervalo comprendido por $\frac{310}{71}$, como valor mínimo, y $\frac{31}{7}$, como valor máximo. Con esta aproximación de Arquímedes se obtiene un valor con un error que oscila entre 0,024 % y 0,040 % sobre el valor real. El método usado por Arquímedes era muy simple y consistía en circunscribir e inscribir polígonos regulares de n-lados en circunferencias y calcular el perímetro de dichos polígonos. Arquímedes empezó con hexágonos circunscritos e inscritos, y fue doblando el número de lados hasta llegar a polígonos de 96 lados.

Alrededor del año 20 d. C., el arquitecto e ingeniero romano Vitruvio calcula π como el valor fraccionario $\frac{25}{8}$ midiendo la distancia recorrida en una revolución por una rueda de diámetro conocido.

En el siglo II, Claudio Ptolomeo proporciona un valor fraccionario por aproximaciones:

 $\pi \simeq \frac{377}{120} = 3{,}1416$

Historia. Matemática china.

• El cálculo de π fue una atracción para los matemáticos expertos de todas las culturas. Hacia 120, el astrónomo chino Zhang Heng fue uno de los primeros en usar la aproximación $\sqrt{10}$, que dedujo de la razón entre el volumen de un cubo y la respectiva esfera inscrita.

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = 1 - \frac{1}{3} + \frac{1}{5} - \dots = \frac{\pi}{4}$$

Historia. Matemática india.

• Usando un polígono regular inscrito de 384 lados, a finales del siglo V el matemático indio Aryabhata estimó el valor en 3,1416. A mediados del siglo VII, estimando incorrecta la aproximación de Aryabhata, Brahmagupta calcula π como $\sqrt{10}$, cálculo mucho menos preciso que el de su predecesor.

$$\pi = \sum_{k=0}^{\infty} \frac{2(-1)^k \ 3^{\frac{1}{2}-k}}{2k+1}$$

Bibliografía

Guía docente (año 2013) http://gjtsrh.com