ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Η/Υ Ψηφιακή Σχεδίαση [ΗΥ 130]

XEIMEPINO EEAMHNO 2018-2019

Εργαστηριακή Άσκηση 4:

Α).Σηματοδότες σε διασταύρωση.

Έστω ότι οι λωρίδες είναι οι V1,V10 και V11,V12. Οι λωρίδες V1,V10 έχουν ως σηματοδότη το PR1 (όταν ο PR1 είναι 0 ο σηματοδότης είναι κόκκινος ενώ όταν είναι 1 πράσινος). Αντίστοιχα οι λωρίδες V11,V12 έχουν έναν σηματοδότη PR1 που ισχύει ότι ίσχυε και για τις προηγούμενες λωρίδες μόνο που αλλάζουν οι προτεραιότητες.

ΠΙΝΑΚΑΣ ΑΛΗΘΕΙΑΣ(Για λωρίδες V11,V12)

V1	V10	V11	V12	PR1
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Με τη βοήθεια του χάρτη **Karnaugh** έχουμε:

	V11' V12'	V11' V12	V11 V12	V11 V12'
V1' V10'	0	1	1	1
V1' V10	0	0	1	0
V1 V10	0	0	0	0
V1 V10'	0	0	1	0

PR1=(V11+V12)*(V10'+V11)*(V10'+V12)*(V1'+V11)*(V1'+V12)*(V1'+V10')

ΠΙΝΑΚΑΣ ΑΛΗΘΕΙΑΣ(Για λωρίδες V1,V10)

V1	V10	V11	V12	PR1
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Με τη χρήση του χάρτη Karnaugh έχουμε:

	\mathbf{V} 1	l1'V12'	\mathbf{V}	11' V12	V11	V12	\mathbf{V}	11 V12'
V1' V10'	1		0		0		0	
V1' V10	1		1		0		1	
V1 V10	1		1		1		1	
V1 V10'	1		1		0		1	

PR1=(V1+V10+V12')*(V1+V10+V11')*(V1+V11'+V12') *(V10+V11'+V12')

Β). Ημιαθροιστής - Αθροιστής.

Έστω ότι οι είσοδοι είναι **V3,V4** και **PR1** είναι το αποτέλεσμα ενώ **PR2** το κρατούμενο.(Επειδή το κύκλωμα είναι απλό δεν χρησιμοποιώ χάρτη **Karnaugh**).

ΠΙΝΑΚΑΣ ΑΛΗΘΕΙΑΣ (Ημιαθροιστή)

V3	V4	PR1	PR2
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

ΠΙΝΑΚΑΣ ΑΛΗΘΕΙΑΣ(Αθροιστή) (Εδώ το **PR2** είναι το αποτέλεσμα)

V6	V7	V8	PR2	PR1
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Γ).2Nbit αριθμών.(Εάν οι αριθμοί είναι ίσοι δίνει 0 και αν όχι 1).

Θα δούμε την ποιό απλή περίπτωση όπου **V5,V4** δύο αριθμοί και **PR1** το αποτέλεσμα.

ΠΙΝΑΚΑΣ ΑΛΗΘΕΙΑΣ

V5	V 4	PR1
0	0	0
0	1	1
1	1	1
1	0	0

Και εφόσον το υλοποιήσουμε έχουμε...

Δ)Σύγριση ΑΕΜ mod 16 με έναν αριθμό. (Όταν ο αριθμός είναι μεγαλύτερος από το mod 16 τότε δίνει αποτέλεσμα 1 αλλιώς 0).

(ΑΕΜ = 2801 και μόνο το νούμερο 8 μου δίνει υπόλοιπο διάφορο του 0 και 1).

ΠΙΝΑΚΑΣ ΑΛΗΘΕΙΑΣ

V4	V5	V6	V7	PR1
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Με χρήση χάρτη **Karnaugh** έχουμε...

	V6' V7'	V6' V7	V6 V7	V6 V7'
V4' V5'	0	0	0	0
V4' V5	0	0	0	0
V4 V5	1	1	1	1
V4 V5'	0	1	1	1

PR1=(V4)*(V5+V6+V7)

Και εάν το υλοποιήσουμε...

