Tarea 1 - Análisis Multivariado

Fabián Ramírez

Vídeo de comentarios

Dejo un vídeo con comentarios que considero importante de destacar de la tarea Dejo un vídeo con comentarios que considero importante de destacar de la tarea

Problemas

Suponga $x_1,...,x_n$ vectores aleatorios IID desde $\mathcal{N}_p(\boldsymbol{\mu},\boldsymbol{\Sigma})$ y considere:

1. Si $\mu = \mu_0$ conocido. Entonces:

$$\widehat{\boldsymbol{\Sigma}} = \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{x}_i - \boldsymbol{\mu}_0) (\boldsymbol{x}_i - \boldsymbol{\mu}_0)^{\top}$$

Demostración:

Note que si $\mu = \mu_0$ conocido entonces la función de densidad conjunta adopta la siguiente forma:

$$f(\boldsymbol{x}; \boldsymbol{\Sigma}) = |2\pi \boldsymbol{\Sigma}|^{-n/2} \exp \left\{ -\frac{1}{2} \sum_{i=1}^{n} (\boldsymbol{x}_i - \boldsymbol{\mu}_0)^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu}_0) \right\}$$

la verosimilitud viene dada por:

$$L(\mathbf{\Sigma}) = (2\pi)^{-np/2} |\mathbf{\Sigma}|^{-n/2} \exp \left\{ -\frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_i - \boldsymbol{\mu}_0)^{\top} \mathbf{\Sigma}^{-1} (\mathbf{x}_i - \boldsymbol{\mu}_0) \right\}$$

Y la log-verosimilitud por:

$$\ell(\mathbf{\Sigma}) = -\frac{np}{2}\log(2\pi) - \frac{n}{2}\log|\mathbf{\Sigma}| - \frac{1}{2}\operatorname{tr}\left(\mathbf{\Sigma}^{-1}\sum_{i=1}^{n} (\mathbf{x}_{i} - \boldsymbol{\mu}_{0})(\mathbf{x}_{i} - \boldsymbol{\mu}_{0})^{\top}\right)$$

Note que debemos derivar ℓ con respecto a una matriz, por tanto:

$$\begin{split} \mathrm{d}\ell(\mathbf{\Sigma}) &= \mathrm{d}\left[-\frac{np}{2}\log(2\pi) - \frac{n}{2}\log|\mathbf{\Sigma}| - \frac{1}{2}\operatorname{tr}\left(\mathbf{\Sigma}^{-1}\sum_{i=1}^{n}\left(\mathbf{x}_{i} - \boldsymbol{\mu}_{0}\right)\left(\mathbf{x}_{i} - \boldsymbol{\mu}_{0}\right)^{\top}\right)\right] \\ &= -\frac{n}{2}\operatorname{d}\left[\log|\mathbf{\Sigma}|\right] - \frac{1}{2}\operatorname{d}\left[\operatorname{tr}\left(\mathbf{\Sigma}^{-1}\left(\mathbf{x} - \boldsymbol{\mu}_{0}\right)\left(\mathbf{x} - \boldsymbol{\mu}_{0}\right)^{\top}\right)\right] \\ &= -\frac{n}{2}\operatorname{tr}\left(\mathbf{\Sigma}^{-1}\mathrm{d}\mathbf{\Sigma}\right) - \frac{1}{2}\operatorname{tr}\left[\mathrm{d}\left\{\mathbf{\Sigma}^{-1}\sum_{i=1}^{n}\left(\mathbf{x}_{i} - \boldsymbol{\mu}_{0}\right)\left(\mathbf{x}_{i} - \boldsymbol{\mu}_{0}\right)^{\top}\right\}\right] \\ &= -\frac{n}{2}\operatorname{tr}\left(\mathbf{\Sigma}^{-1}\mathrm{d}\mathbf{\Sigma}\right) - \frac{1}{2}\operatorname{tr}\left[-\mathbf{\Sigma}^{-1}(\mathrm{d}\mathbf{\Sigma})\mathbf{\Sigma}^{-1}\sum_{i=1}^{n}\left(\mathbf{x}_{i} - \boldsymbol{\mu}_{0}\right)\left(\mathbf{x}_{i} - \boldsymbol{\mu}_{0}\right)^{\top}\right] \\ &= -\frac{1}{2}\operatorname{tr}\left(n\mathbf{\Sigma}^{-1}\mathrm{d}\mathbf{\Sigma}\right) + \frac{1}{2}\operatorname{tr}\left[\mathbf{\Sigma}^{-1}\sum_{i=1}^{n}\left(\mathbf{x}_{i} - \boldsymbol{\mu}_{0}\right)\left(\mathbf{x}_{i} - \boldsymbol{\mu}_{0}\right)^{\top}\mathbf{\Sigma}^{-1}(\mathrm{d}\mathbf{\Sigma})\right] \\ &= \frac{1}{2}\operatorname{tr}\left[\mathbf{\Sigma}^{-1}\sum_{i=1}^{n}\left(\mathbf{x}_{i} - \boldsymbol{\mu}_{0}\right)\left(\mathbf{x}_{i} - \boldsymbol{\mu}_{0}\right)^{\top}\mathbf{\Sigma}^{-1}(\mathrm{d}\mathbf{\Sigma}) - n\mathbf{\Sigma}^{-1}(\mathrm{d}\mathbf{\Sigma})\right] \\ &= \frac{1}{2}\operatorname{tr}\left[\mathbf{\Sigma}^{-1}\left\{\sum_{i=1}^{n}\left(\mathbf{x}_{i} - \boldsymbol{\mu}_{0}\right)\left(\mathbf{x}_{i} - \boldsymbol{\mu}_{0}\right)^{\top}\mathbf{\Sigma}^{-1} - n\right\}(\mathrm{d}\mathbf{\Sigma})\right] \\ &= \frac{1}{2}\operatorname{tr}\left[\mathbf{\Sigma}^{-1}\left\{\sum_{i=1}^{n}\left(\mathbf{x}_{i} - \boldsymbol{\mu}_{0}\right)\left(\mathbf{x}_{i} - \boldsymbol{\mu}_{0}\right)^{\top}\mathbf{\Sigma}^{-1} - n\mathbf{\Sigma}\right\}\mathbf{\Sigma}^{-1}(\mathrm{d}\mathbf{\Sigma})\right] \end{split}$$

Finalmente si $d\ell(\Sigma) = 0$ se tiene que:

$$d\ell(\mathbf{\Sigma}) = 0 \iff \frac{1}{2} \operatorname{tr} \left[\mathbf{\Sigma}^{-1} \left\{ \sum_{i=1}^{n} (\mathbf{x}_{i} - \boldsymbol{\mu}_{0}) (\mathbf{x}_{i} - \boldsymbol{\mu}_{0})^{\top} - n\mathbf{\Sigma} \right\} \mathbf{\Sigma}^{-1} (d\mathbf{\Sigma}) \right] = 0$$

$$\iff \mathbf{\Sigma}^{-1} \left\{ \sum_{i=1}^{n} (\mathbf{x}_{i} - \boldsymbol{\mu}_{0}) (\mathbf{x}_{i} - \boldsymbol{\mu}_{0})^{\top} - n\mathbf{\Sigma} \right\} \mathbf{\Sigma}^{-1} (d\mathbf{\Sigma}) = 0$$

$$\iff \sum_{i=1}^{n} (\mathbf{x}_{i} - \boldsymbol{\mu}_{0}) (\mathbf{x}_{i} - \boldsymbol{\mu}_{0})^{\top} - n\mathbf{\Sigma} = 0$$

$$\iff \mathbf{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_{i} - \boldsymbol{\mu}_{0}) (\mathbf{x}_{i} - \boldsymbol{\mu}_{0})^{\top}$$

Por tanto el estimador máximo verosímil para Σ para la distribución normal multivariada con μ conocido viene dado por:

$$\widehat{\boldsymbol{\Sigma}}_{MV} = \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{x}_i - \boldsymbol{\mu}_0) (\boldsymbol{x}_i - \boldsymbol{\mu}_0)^{\top}$$

2. Si $\Sigma = \Sigma_0$ conocido. Entonces:

$$\hat{\boldsymbol{\mu}} = \overline{x}$$

Demostración:

Note que si $\Sigma = \Sigma_0$ conocido entonces la función de densidad conjunta adopta la siguiente forma:

$$f(\boldsymbol{x}; \boldsymbol{\mu}) = |2\pi \boldsymbol{\Sigma}_0|^{-n/2} \exp \left\{ -\frac{1}{2} \sum_{i=1}^n (\boldsymbol{x}_i - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}_0^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu}) \right\}$$

la verosimilitud viene dada por:

$$L(\boldsymbol{\mu}) = (2\pi)^{-np/2} |\boldsymbol{\Sigma}_0|^{-n/2} \exp \left\{ -\frac{1}{2} \sum_{i=1}^n (\boldsymbol{x}_i - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}_0^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu}) \right\}$$

Y la log-verosimilitud por:

$$\ell(\boldsymbol{\mu}) = -\frac{np}{2}\log(2\pi) - \frac{n}{2}\log|\boldsymbol{\Sigma}_0| - \frac{1}{2}\operatorname{tr}\left(\boldsymbol{\Sigma}_0^{-1}\sum_{i=1}^n \left(\boldsymbol{x}_i - \boldsymbol{\mu}\right)\left(\boldsymbol{x}_i - \boldsymbol{\mu}\right)^{\top}\right)$$

Note que debemos derivar ℓ con respecto a una matriz, por tanto:

$$d\ell(\boldsymbol{\mu}) = d\left[-\frac{np}{2} \log(2\pi) - \frac{n}{2} \log|\boldsymbol{\Sigma}_0| - \frac{1}{2} \operatorname{tr} \left(\boldsymbol{\Sigma}_0^{-1} \sum_{i=1}^n (\boldsymbol{x}_i - \boldsymbol{\mu}) (\boldsymbol{x}_i - \boldsymbol{\mu})^\top \right) \right]$$

$$= -\frac{1}{2} \operatorname{tr} \left(\boldsymbol{\Sigma}_0^{-1} d \left[\sum_{i=1}^n (\boldsymbol{x}_i - \boldsymbol{\mu}) (\boldsymbol{x}_i - \boldsymbol{\mu})^\top \right] \right)$$

$$= -\frac{1}{2} \operatorname{tr} \left(\boldsymbol{\Sigma}_0^{-1} \sum_{i=1}^n d \left\{ (\boldsymbol{x}_i - \boldsymbol{\mu}) (\boldsymbol{x}_i - \boldsymbol{\mu})^\top \right\} \right)$$

Note que:

$$d\left\{\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)^{\top}\right\} = d\left[\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)\right]\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)^{\top} + \left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)d\left[\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)^{\top}\right]$$
$$= -(d\boldsymbol{\mu})\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)^{\top} - \left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)(d\boldsymbol{\mu})^{\top}$$

Luego:

$$\begin{split} \mathrm{d}\ell(\boldsymbol{\mu}) &= -\frac{1}{2} \operatorname{tr} \left(\boldsymbol{\Sigma}_{0}^{-1} \sum_{i=1}^{n} \mathrm{d} \left\{ \left(\boldsymbol{x}_{i} - \boldsymbol{\mu} \right) \left(\boldsymbol{x}_{i} - \boldsymbol{\mu} \right)^{\top} \right\} \right) \\ &= \frac{1}{2} \operatorname{tr} \left(\boldsymbol{\Sigma}_{0}^{-1} \sum_{i=1}^{n} \left[\left(\mathrm{d} \boldsymbol{\mu} \right) \left(\boldsymbol{x}_{i} - \boldsymbol{\mu} \right)^{\top} + \left(\boldsymbol{x}_{i} - \boldsymbol{\mu} \right) \left(\mathrm{d} \boldsymbol{\mu} \right)^{\top} \right] \right) \\ &= \frac{n}{2} \operatorname{tr} \left(\boldsymbol{\Sigma}_{0}^{-1} \left[\left(\mathrm{d} \boldsymbol{\mu} \right) \left(\overline{\boldsymbol{x}} - \boldsymbol{\mu} \right)^{\top} + \left(\overline{\boldsymbol{x}} - \boldsymbol{\mu} \right) \left(\mathrm{d} \boldsymbol{\mu} \right)^{\top} \right] \right) \\ &= \frac{n}{2} \operatorname{tr} \left(\boldsymbol{\Sigma}_{0}^{-1} \left(\mathrm{d} \boldsymbol{\mu} \right) \left(\overline{\boldsymbol{x}} - \boldsymbol{\mu} \right)^{\top} \right) + \frac{n}{2} \operatorname{tr} \left(\boldsymbol{\Sigma}_{0}^{-1} \left(\overline{\boldsymbol{x}} - \boldsymbol{\mu} \right) \left(\mathrm{d} \boldsymbol{\mu} \right)^{\top} \right) \\ &= \frac{n}{2} \operatorname{tr} \left(\left(\overline{\boldsymbol{x}} - \boldsymbol{\mu} \right)^{\top} \boldsymbol{\Sigma}_{0}^{-1} \left(\mathrm{d} \boldsymbol{\mu} \right) \right) + \frac{n}{2} \operatorname{tr} \left(\left(\mathrm{d} \boldsymbol{\mu} \right)^{\top} \boldsymbol{\Sigma}_{0}^{-1} \left(\overline{\boldsymbol{x}} - \boldsymbol{\mu} \right) \right) \\ &= \frac{n}{2} \operatorname{tr} \left(\left(\mathrm{d} \boldsymbol{\mu} \right)^{\top} \boldsymbol{\Sigma}_{0}^{-1} \right) \left(\overline{\boldsymbol{x}} - \boldsymbol{\mu} \right) + \frac{n}{2} \operatorname{tr} \left(\left(\mathrm{d} \boldsymbol{\mu} \right)^{\top} \boldsymbol{\Sigma}_{0}^{-1} \left(\overline{\boldsymbol{x}} - \boldsymbol{\mu} \right) \right), \quad \text{como } \boldsymbol{\Sigma}_{0}^{-\top} = \boldsymbol{\Sigma}_{0}^{-1} \\ &= n (\mathrm{d} \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}_{0}^{-1} \left(\overline{\boldsymbol{x}} - \boldsymbol{\mu} \right) \end{split}$$

Finalmente si $d\ell(\mu) = 0$ se tiene que:

$$d\ell(\boldsymbol{\mu}) = 0 \iff n(d\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}_{0}^{-1} (\overline{\boldsymbol{x}} - \boldsymbol{\mu}) = 0$$
$$\iff \boldsymbol{\mu} = \overline{\boldsymbol{x}}$$

Por tanto el estimador máximo verosímil para μ para la distribución normal multivariada con Σ_0 conocido viene dado por:

$$\hat{\boldsymbol{\mu}}_{MV} = \overline{\boldsymbol{x}}$$

- **3**. Sea $\mu = \gamma a$, $\gamma \in \mathbb{R}$ y con $a \in \mathbb{R}^p$ conocido. Entonces,
 - a. Si Σ es conocido:

$$\widehat{\gamma}_{\Sigma} = \frac{\boldsymbol{a}^{\top} \boldsymbol{\Sigma}^{-1} \overline{\boldsymbol{x}}}{\boldsymbol{a}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{a}}$$

b. Si Σ es desconocido:

$$\widehat{\gamma} = \frac{\boldsymbol{a}^{\top} \mathbf{S}^{-1} \overline{\boldsymbol{x}}}{\boldsymbol{a}^{\top} \mathbf{S}^{-1} \boldsymbol{a}}$$

Demostración:

a. Note que la función de log-verosimilitud adopta la siguiente forma:

$$\ell(\gamma) = -\frac{np}{2}\log(2\pi) - \frac{n}{2}\log|\mathbf{\Sigma}| - \frac{1}{2}\operatorname{tr}\left(\mathbf{\Sigma}^{-1}\sum_{i=1}^{n} (\mathbf{x}_{i} - \gamma\mathbf{a})(\mathbf{x}_{i} - \gamma\mathbf{a})^{\top}\right)$$

Derivando con respecto a γ tenemos que:

$$d\ell(\gamma) = -\frac{1}{2} \operatorname{tr} \left(\mathbf{\Sigma}^{-1} \sum_{i=1}^{n} d\left[\left(\mathbf{x}_{i} - \gamma \mathbf{a} \right) \left(\mathbf{x}_{i} - \gamma \mathbf{a} \right)^{\top} \right] \right)$$

Note que:

$$d\left\{ (\mathbf{x}_i - \gamma \mathbf{a}) (\mathbf{x}_i - \gamma \mathbf{a})^{\top} \right\} = d\left[(\mathbf{x}_i - \gamma \mathbf{a}) \right] (\mathbf{x}_i - \gamma \mathbf{a})^{\top} + (\mathbf{x}_i - \gamma \mathbf{a}) d\left[(\mathbf{x}_i - \gamma \mathbf{a})^{\top} \right]$$
$$= -(d\gamma) \mathbf{a} (\mathbf{x}_i - \gamma \mathbf{a})^{\top} - (\mathbf{x}_i - \gamma \mathbf{a}) \mathbf{a}^{\top} (d\gamma)^{\top}$$

Luego tenemos que:

$$d\ell(\gamma) = -\frac{1}{2} \operatorname{tr} \left(\mathbf{\Sigma}^{-1} \sum_{i=1}^{n} d \left[(\mathbf{x}_{i} - \gamma \mathbf{a}) (\mathbf{x}_{i} - \gamma \mathbf{a})^{\top} \right] \right)$$

$$= \frac{1}{2} \operatorname{tr} \left(\mathbf{\Sigma}^{-1} \sum_{i=1}^{n} \left\{ (d\gamma) \mathbf{a} (\mathbf{x}_{i} - \gamma \mathbf{a})^{\top} + (\mathbf{x}_{i} - \gamma \mathbf{a}) \mathbf{a}^{\top} (d\gamma)^{\top} \right\} \right)$$

$$= \frac{n}{2} \operatorname{tr} \left(\mathbf{\Sigma}^{-1} (d\gamma) \mathbf{a} (\overline{\mathbf{x}} - \gamma \mathbf{a})^{\top} + \mathbf{\Sigma}^{-1} (\overline{\mathbf{x}} - \gamma \mathbf{a}) \mathbf{a}^{\top} (d\gamma)^{\top} \right)$$

$$= \frac{n}{2} \operatorname{tr} \left(\mathbf{\Sigma}^{-1} (d\gamma) \mathbf{a} (\overline{\mathbf{x}} - \gamma \mathbf{a})^{\top} \right) + \frac{n}{2} \operatorname{tr} \left(\mathbf{\Sigma}^{-1} (\overline{\mathbf{x}} - \gamma \mathbf{a}) \mathbf{a}^{\top} (d\gamma)^{\top} \right)$$

$$= \frac{n}{2} \operatorname{tr} \left((\overline{\mathbf{x}} - \gamma \mathbf{a}) \mathbf{a}^{\top} (d\gamma)^{\top} \mathbf{\Sigma}^{-\top} \right) + \frac{n}{2} \operatorname{tr} \left(\mathbf{\Sigma}^{-1} (\overline{\mathbf{x}} - \gamma \mathbf{a}) \mathbf{a}^{\top} (d\gamma)^{\top} \right)$$

$$= n \operatorname{tr} \left(\mathbf{\Sigma}^{-1} (\overline{\mathbf{x}} - \gamma \mathbf{a}) \mathbf{a}^{\top} (d\gamma)^{\top} \right)$$

$$= n \operatorname{tr} \left(\mathbf{a}^{\top} (d\gamma)^{\top} \mathbf{\Sigma}^{-1} (\overline{\mathbf{x}} - \gamma \mathbf{a}) \right)$$

$$= n \left(\mathbf{a}^{\top} (d\gamma)^{\top} \mathbf{\Sigma}^{-1} (\overline{\mathbf{x}} - \gamma \mathbf{a}) \right)$$

$$= n \left(\mathbf{a}^{\top} (d\gamma)^{\top} \mathbf{\Sigma}^{-1} (\overline{\mathbf{x}} - \gamma \mathbf{a}) \right)$$

$$= n \left(\mathbf{a}^{\top} (d\gamma)^{\top} \mathbf{\Sigma}^{-1} (\overline{\mathbf{x}} - \gamma \mathbf{a}) \right)$$

$$= n \left(\mathbf{a}^{\top} (d\gamma)^{\top} \mathbf{\Sigma}^{-1} (\overline{\mathbf{x}} - \gamma \mathbf{a}) \right)$$

Finalmente si $d\ell(\gamma) = 0$ se tiene que:

$$d\ell(\gamma) = 0 \iff n\left(\boldsymbol{a}^{\top}(d\gamma)^{\top}\boldsymbol{\Sigma}^{-1}\overline{x} - \boldsymbol{a}^{\top}(d\gamma)^{\top}\boldsymbol{\Sigma}^{-1}\gamma\boldsymbol{a}\right) = 0$$

$$\iff \boldsymbol{a}^{\top}(d\gamma)^{\top}\boldsymbol{\Sigma}^{-1}\overline{x} = \boldsymbol{a}^{\top}(d\gamma)^{\top}\boldsymbol{\Sigma}^{-1}\gamma\boldsymbol{a}$$

$$\iff \gamma = \frac{\boldsymbol{a}^{\top}\boldsymbol{\Sigma}^{-1}\overline{x}}{\boldsymbol{a}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{a}}$$

Note que esto se tiene pues $d\gamma \in \mathbb{R}^{1\times 1}$. Finalmente el estimador de γ para Σ conocido viene dado por:

$$\widehat{\gamma}_{MV} = \frac{\boldsymbol{a}^{\top} \boldsymbol{\Sigma}^{-1} \overline{\boldsymbol{x}}}{\boldsymbol{a}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{a}}$$

b. Sea $\theta = (\gamma, \Sigma)$. Buscamos el estimador máximo verosímil para θ , note que la función de logverosimilitud ahora tiene la siguiente estructura:

$$\ell(\gamma, \Sigma) = -\frac{np}{2}\log(2\pi) - \frac{n}{2}\log|\mathbf{\Sigma}| - \frac{1}{2}\operatorname{tr}\left(\mathbf{\Sigma}^{-1}\sum_{i=1}^{n} (\mathbf{x}_{i} - \gamma\mathbf{a})(\mathbf{x}_{i} - \gamma\mathbf{a})^{\top}\right)$$

Note que la ecuación $\mathrm{d}\ell_{\gamma}=0$ tiene como solución $\gamma=\frac{a^{\top}\Sigma^{-1}\overline{x}}{a^{\top}\Sigma^{-1}a}$. Resta encontrar la solución de $\mathrm{d}\ell_{\Sigma}$, pero usando 1. tenemos el óptimo que es S_{MV} y reemplazando en la estimación de γ tenemos que:

$$\widehat{\gamma}_{MV} = \frac{\boldsymbol{a}^{\top} \boldsymbol{S}_{MV}^{-1} \overline{\boldsymbol{x}}}{\boldsymbol{a}^{\top} \boldsymbol{S}_{MV}^{-1} \boldsymbol{a}}$$

- **4.** Sea $A\mu = a$, $A \in \mathbb{R}^{q \times p}$, $a \in \mathbb{R}^q$ matrices conocidas. Luego:
 - a. Si Σ es conocido:

$$\widehat{\boldsymbol{\mu}}_{\Sigma} = \overline{\boldsymbol{x}} - \boldsymbol{\Sigma} \boldsymbol{A}^{\top} \left(\boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{\top} \right)^{-1} \left(\boldsymbol{A} \overline{\boldsymbol{x}} - \boldsymbol{a} \right)$$

b. Si Σ es desconocido:

$$\widehat{\boldsymbol{\mu}} = \overline{\boldsymbol{x}} - \boldsymbol{S} \boldsymbol{A}^{\top} \left(\boldsymbol{A} \boldsymbol{S} \boldsymbol{A}^{\top} \right)^{-1} \left(\boldsymbol{A} \overline{\boldsymbol{x}} - \boldsymbol{a} \right)$$

Demostración:

a. Note que queremos optimizar la función:

$$\ell(\boldsymbol{\mu}) = -\frac{np}{2}\log(2\pi) - \frac{n}{2}\log|\boldsymbol{\Sigma}| - \frac{1}{2}\operatorname{tr}\left(\boldsymbol{\Sigma}^{-1}\sum_{i=1}^{n} \left(\boldsymbol{x}_{i} - \boldsymbol{\mu}\right)\left(\boldsymbol{x}_{i} - \boldsymbol{\mu}\right)^{\top}\right)$$

Sujeto a:

$$A\mu = a \Longleftrightarrow \mu^{T} A^{T} = a^{T}$$

Por tanto para encontrar el óptimo debemos optimizar mediante multiplicadores de Lagrange. Definamos el Lagrangiano:

$$\mathcal{L}(\boldsymbol{\mu}) = -\frac{np}{2}\log(2\pi) - \frac{n}{2}\log|\boldsymbol{\Sigma}| - \frac{1}{2}\operatorname{tr}\left(\boldsymbol{\Sigma}^{-1}\sum_{i=1}^{n} (\boldsymbol{x}_{i} - \boldsymbol{\mu})(\boldsymbol{x}_{i} - \boldsymbol{\mu})^{\top}\right) + \lambda\left[\boldsymbol{\mu}^{\top}\boldsymbol{A}^{T}\right]$$

Luego:

$$d\mathcal{L}(\boldsymbol{\mu}) = n(d\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\overline{\boldsymbol{x}} - \boldsymbol{\mu}) + \lambda (d\boldsymbol{\mu})^{\top} \boldsymbol{A}^{\top}$$

$$= n(d\boldsymbol{\mu})^{\top} [\boldsymbol{\Sigma}^{-1} \overline{\boldsymbol{x}} - \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}] + \lambda (d\boldsymbol{\mu})^{\top} \boldsymbol{A}^{\top}$$

$$= (d\boldsymbol{\mu})^{\top} \{ n ([\boldsymbol{\Sigma}^{-1} \overline{\boldsymbol{x}} - \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}]) + \lambda \boldsymbol{A}^{\top} \}$$

$$= (d\boldsymbol{\mu})^{\top} \{ n \boldsymbol{\Sigma}^{-1} \overline{\boldsymbol{x}} + \boldsymbol{A}^{\top} \lambda - n \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} \}$$

$$= \boldsymbol{\Sigma}^{-1} (d\boldsymbol{\mu})^{\top} n \{ \overline{\boldsymbol{x}} + \frac{\lambda}{n} \boldsymbol{\Sigma} \boldsymbol{A}^{\top} - \boldsymbol{\mu} \}$$

Igualando a 0 con la finalidad de obtener el óptimo tenemos que:

$$d\mathcal{L}(\boldsymbol{\mu}) = 0 \iff \boldsymbol{\Sigma}^{-1} \left(d\boldsymbol{\mu} \right)^{\top} n \left\{ \overline{\boldsymbol{x}} + \frac{\lambda}{n} \boldsymbol{\Sigma} \boldsymbol{A}^{\top} - \boldsymbol{\mu} \right\} = 0$$

$$\iff \overline{\boldsymbol{x}} + \frac{\lambda}{n} \boldsymbol{\Sigma} \boldsymbol{A}^{\top} - \boldsymbol{\mu} = 0 \quad (\bigstar)$$

$$\iff \boldsymbol{\mu} = \overline{\boldsymbol{x}} + \frac{\lambda}{n} \boldsymbol{\Sigma} \boldsymbol{A}^{\top}$$

$$\iff \boldsymbol{A} \boldsymbol{\mu} = \boldsymbol{A} \overline{\boldsymbol{x}} + \frac{\lambda}{n} \boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{\top}$$

$$\iff \boldsymbol{n} \left(\boldsymbol{a} - \boldsymbol{A} \overline{\boldsymbol{x}} \right) = \lambda \left(\boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{\top} \right)$$

$$\iff \lambda = n \left(\boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{\top} \right)^{-1} \left(\boldsymbol{a} - \boldsymbol{A} \overline{\boldsymbol{x}} \right)$$

$$\iff \lambda = n \left(\boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{\top} \right)^{-1} \left(\boldsymbol{a} - \boldsymbol{A} \overline{\boldsymbol{x}} \right)$$

Reemplazando en (★) tenemos que:

$$\overline{x} + \frac{\lambda}{n} \Sigma A^{\top} - \mu = 0 \iff \mu = \overline{x} + \Sigma A^{\top} (A \Sigma A^{\top})^{-1} (a - A \overline{x})$$

Por tanto $\hat{\boldsymbol{\mu}}_{MV} = \overline{\boldsymbol{x}} + \boldsymbol{\Sigma} \boldsymbol{A}^{\top} (\boldsymbol{A} \boldsymbol{\Sigma} \boldsymbol{A}^{\top})^{-1} (\boldsymbol{a} - \boldsymbol{A} \overline{\boldsymbol{x}}).$

b. Note que el Lagrangiano viene dado por:

$$\mathcal{L}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\frac{np}{2}\log(2\pi) - \frac{n}{2}\log|\boldsymbol{\Sigma}| - \frac{1}{2}\operatorname{tr}\left(\boldsymbol{\Sigma}^{-1}\sum_{i=1}^{n} \left(\boldsymbol{x}_{i} - \boldsymbol{\mu}\right)\left(\boldsymbol{x}_{i} - \boldsymbol{\mu}\right)^{\top}\right) + \lambda\left[\boldsymbol{\mu}^{\top}\boldsymbol{A}^{T}\right]$$

Note que al derivar el Lagrangiano con respecto a Σ e igualarlo a 0 se obtiene el mismo sistema que en el problema 1. por tanto se obtiene de forma directa que $\widehat{\Sigma} = S_{MV}$. Además si derivamos el Lagrangiano con respecto a μ obtenemos el mismo sistema que en 4a. por tanto reemplazando el estimador de Σ en esta expresión obtenemos que:

$$\widehat{\mu}_{MV} = \overline{\mathbf{x}} + \mathbf{S}_{MV} \mathbf{A}^{\top} \left(\mathbf{A} \mathbf{S}_{MV} \mathbf{A}^{\top} \right)^{-1} \left(\mathbf{a} - \mathbf{A} \overline{\mathbf{x}} \right)$$

5. Suponga $\Sigma = \phi V \text{ con } V > 0 \text{ conocida y } \phi > 0$. Por tanto:

$$\widehat{\boldsymbol{\mu}} = \overline{\boldsymbol{x}}, \quad \widehat{\phi} = \frac{1}{p} \operatorname{tr} (\boldsymbol{V}^{-1} \boldsymbol{S})$$

Demostración:

Note que la función de log-verosimilitud adopta la forma:

$$\ell(\boldsymbol{\mu}, \boldsymbol{\phi}) = -\frac{np}{2}\log(2\pi) - \frac{n}{2}\log|\boldsymbol{\phi}\boldsymbol{V}| - \frac{1}{2}\operatorname{tr}\left(\left(\boldsymbol{\phi}\boldsymbol{V}\right)^{-1}\sum_{i=1}^{n}\left(\boldsymbol{x}_{i} - \boldsymbol{\mu}\right)\left(\boldsymbol{x}_{i} - \boldsymbol{\mu}\right)^{\top}\right)$$

Note que derivando ℓ con respecto a μ y asumiendo $\Sigma = \phi V$ constante se tiene que:

$$\mathrm{d}\ell_{\boldsymbol{\mu}} = n(\mathrm{d}\boldsymbol{\mu})^{\top} \left(\phi V\right)^{-1} \left(\overline{\boldsymbol{x}} - \boldsymbol{\mu}\right)$$

Igualando a 0 tenemos que:

$$d\ell_{\mu} = 0 \iff n(d\mu)^{\top} (\phi V)^{-1} (\overline{x} - \mu) = 0$$
$$= \overline{x} = \mu$$

Note que para derivar con respecto a ϕ es conveniente notar que la log-verosimilitud se puede escribir de la siguiente forma:

$$\ell(\boldsymbol{\mu}, \phi) = -\frac{np}{2} \log(2\pi) - \frac{n}{2} \log|\phi \boldsymbol{V}| - \frac{1}{2} \operatorname{tr} \left((\phi \boldsymbol{V})^{-1} \sum_{i=1}^{n} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) (\boldsymbol{x}_{i} - \boldsymbol{\mu})^{\top} \right)$$

$$= -\frac{np}{2} \log(2\pi) - \frac{np}{2} (\log(\phi)) - \frac{n}{2} (\log|\boldsymbol{V}|) + \frac{1}{\phi} \left\{ -\frac{1}{2} \operatorname{tr} \left(\boldsymbol{V}^{-1} \sum_{i=1}^{n} (\boldsymbol{x}_{i} - \boldsymbol{\mu}) (\boldsymbol{x}_{i} - \boldsymbol{\mu})^{\top} \right) \right\}$$

Luego derivando con respecto a ϕ tenemos que:

$$d\ell_{\phi} = -\frac{np}{2} \frac{1}{\phi} + \left(-\frac{1}{\phi^{2}}\right) \left\{ -\frac{1}{2} \operatorname{tr} \left(\boldsymbol{V}^{-1} \sum_{i=1}^{n} \left(\boldsymbol{x}_{i} - \boldsymbol{\mu} \right) \left(\boldsymbol{x}_{i} - \boldsymbol{\mu} \right)^{\top} \right) \right\}$$

$$= -\frac{np}{2} \frac{1}{\phi} + \left(\frac{1}{2\phi^{2}} \right) \left\{ \operatorname{tr} \left(\boldsymbol{V}^{-1} \sum_{i=1}^{n} \left(\boldsymbol{x}_{i} - \boldsymbol{\mu} \right) \left(\boldsymbol{x}_{i} - \boldsymbol{\mu} \right)^{\top} \right) \right\}$$

$$= -\phi \frac{np}{2\phi^{2}} + \left(\frac{1}{2\phi^{2}} \right) \left\{ \operatorname{tr} \left(\boldsymbol{V}^{-1} (\boldsymbol{n}) \frac{1}{\boldsymbol{n}} \sum_{i=1}^{n} \left(\boldsymbol{x}_{i} - \boldsymbol{\mu} \right) \left(\boldsymbol{x}_{i} - \boldsymbol{\mu} \right)^{\top} \right) \right\}$$

$$= \left(\frac{np}{2\phi^{2}} \right) \left\{ -\phi + \frac{1}{p} \operatorname{tr} \left(\boldsymbol{V}^{-1} \frac{1}{n} \sum_{i=1}^{n} \left(\boldsymbol{x}_{i} - \boldsymbol{\mu} \right) \left(\boldsymbol{x}_{i} - \boldsymbol{\mu} \right)^{\top} \right) \right\}$$

Haciendo $d\ell_{\phi} = 0$ y reemplazando $\mu = \overline{x}$ tenemos que:

$$\phi = \frac{1}{p} \operatorname{tr} \left(V^{-1} \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{x}_i - \boldsymbol{\mu}) (\boldsymbol{x}_i - \boldsymbol{\mu})^{\top} \right)$$
$$= \frac{1}{p} \operatorname{tr} \left(V^{-1} \boldsymbol{S}_{MV} \right)$$

Por lo tanto el estimador de ϕ por maxima verosimilitud es $\widehat{\phi} = \frac{1}{p} \operatorname{tr} (V^{-1} S_{MV})$