CS 348 Intro to Artificial Intelligence

Day 5
Games

(slides based on Downy, Sood, Dan Klein, Pieter Abbeel)

Mike Rubenstein

Today:

- Class business
 - Lab 1 Due today, 7pm
- Adversarial search (chapter 5.1 5.4)
 - Alpha-beta pruning
 - Expecta-minimax
 - Evaluation functions
- Labs:
 - Intro Lab 3 (A*)
 - Discuss lab 2
 - Answer questions about lab 1

Minimax Example

Minimax Efficiency

- How efficient is minimax?
 - Just like (exhaustive) DFS
 - Time: O(b^m)
 - Space: O(bm)
- Example: For chess, $b \approx 35$, $m \approx 100$
 - Exact solution is completely infeasible
 - But, do we need to explore the whole tree?

Alpha-Beta Implementation

 α : MAX's best option on path to root β : MIN's best option on path to root

```
def max-value(state, \alpha, \beta):
    initialize v = -\infty
    for each successor of state:
        v = \max(v, value(successor, \alpha, \beta))
        if v \ge \beta return v
        \alpha = \max(\alpha, v)
    return v
```

```
\label{eq:def-min-value} \begin{split} & \text{def min-value}(\text{state }, \alpha, \beta): \\ & \text{initialize } v = +\infty \\ & \text{for each successor of state:} \\ & v = \min(v, \text{value}(\text{successor}, \alpha, \beta)) \\ & \text{if } v \leq \alpha \text{ return } v \\ & \beta = \min(\beta, v) \\ & \text{return } v \end{split}
```

Alpha-beta pruning example

Alpha-Beta Pruning Properties

- This pruning has no effect on minimax value computed for the root!
- Values of intermediate nodes might be wrong
 - Important: children of the root may have the wrong value
 - So the most naïve version won't let you do action selection
- Good child ordering improves effectiveness of pruning
- With "perfect ordering":
 - Time complexity drops to O(b^{m/2})
 - Doubles solvable depth!
- With random ordering
 - Time complexity is O(b^{3m/4})
- This is a simple example of metareasoning (computing about what to compute)

Worst-Case vs. Average Case

Idea: Uncertain outcomes controlled by chance, not an adversary!

Expectimax Search

- Why wouldn't we know what the result of an action will be?
 - Explicit randomness: rolling dice
 - Unpredictable opponents: the pacman ghosts respond randomly
 - Actions can fail: when moving a robot, wheels might slip
- Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes

- Expectimax search: compute the average score under optimal play
 - Max nodes as in minimax search
 - Chance nodes are like min nodes but the outcome is uncertain
 - Calculate their expected utilities
 - I.e. take weighted average (expectation) of children

Expectimax Search

Expectimax Pseudocode

```
def value(state):
                    if the state is a terminal state: return the state's
                       utility
                    if the next agent is MAX: return max-value(state)
                    if the next agent is EXP: return exp-value(state)
                                                          def exp-value(state):
def max-value(state):
                                                              initialize v = 0
     initialize v = -\infty
                                                              for each successor of state:
    for each successor of state:
                                                                    p = probability(successor)
          v = max(v,
                                                                   v += p * value(successor)
            value(successor))
                                                               return v
     return v
```

Expectimax Pseudocode

```
def exp-value(state):
    initialize v = 0
    for each successor of state:
        p = probability(successor)
        v += p * value(successor)
    return v
```


$$v = (1/2)(8) + (1/3)(24) + (1/6)(-12) = 10$$

Expectimax Example

Expectimax Pruning?

Expecti-minimax

Utility values

- For worst-case minimax reasoning, terminal function scale doesn't matter
 - We just want better states to have higher evaluations (get the ordering right)
 - We call this insensitivity to monotonic transformations

Utility values

- For worst-case minimax reasoning, terminal function scale doesn't matter
 - We just want better states to have higher evaluations (get the ordering right)
 - We call this insensitivity to monotonic transformations
 - For average-case expectimax reasoning, we need magnitudes to be meaningful

Resource Limits

Resource Limits

- Problem: In realistic games, cannot search to leaves!
- Solution: Depth-limited search
 - Instead, search only to a limited depth in the tree
 - Replace terminal utilities with an evaluation function for non-terminal positions
- Example:
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - α - β reaches about depth 8 decent chess program
- Guarantee of optimal play is gone
- More plies makes a BIG difference
- Use iterative deepening for an anytime algorithm

Depth Matters

- Evaluation functions tend to be imperfect
- The deeper in the tree the evaluation function is buried, the less the quality of the evaluation function matters
- An important example of the tradeoff between complexity of features and complexity of computation

Depth 2 search

Depth 10 search

Evaluation Functions

Evaluation Functions

Evaluation functions score non-terminals in depth-limited search

- Ideal function: returns the actual minimax value of the position
- In practice: typically weighted linear sum of features:

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

• e.g. $f_1(s)$ = (num white queens – num black queens), etc.

Evaluation for Pacman

What features are we using? Eval(n)=

Other Game Types

Mixed Layer Types

- E.g. Backgammon
- Expectiminimax
 - Environment is an extra "random agent" player that moves after each min/max agent
 - Each node computes the appropriate combination of its children

Example: Backgammon

- Dice rolls increase b: 21 possible rolls with2 dice
 - Backgammon ≈ 20 legal moves
- As depth increases, probability of reaching a given search node shrinks
 - So usefulness of search is diminished
 - So limiting depth is less damaging
- Historic AI: TDGammon uses depth-2 search + very good evaluation function + reinforcement learning: world-champion level play
- 1st AI world champion in any game!

What if the game is not zero-sum, or has multiple players?

Terminals have utility tuples

Node values are also utility tuples

Each player maximizes its own component

 Can give rise to cooperation and competition dynamically...

Summary

- Adversarial search
 - Mini-Max
 - Alpha-Beta pruning
 - Expecti-mini-max
 - Limited depth search

Lab 3 Intro

- A* search on grid world
 - Due April 28,7pm
- Use Manhattan distance as H(n)

1	1	1	1	0
0	-2	0	0	0
0	1	1	1	1
0	1	1	3	1
0	0	0	0	0

- In case of multiple nodes in frontier with lowest F(n)
 - Expand node with lowest x, if still tied, then expand node with lowest y
- No loops
- Exactly 1 starting position, 1 goal position
- OK to reuse portions of your code from lab 1

Lab 2, Due April 21, 7pm

(0,0)

- 10-queens problem
 - Queens constrained to column
 - Find local minima using greedy search
 - Each step is motion of one queen in her column
 - 81 possible next moves
 - Follow tie breaking rules

q		q		q					
	q								
									q
			q						
					q				
								q	
						q			
							q		

Lab 2 discussion

Lab 2 discussion