Отчет по теме введение в секвенирование единичных клеток

Горохов Никита

Ноябрь 2019

Исследуем субпопуляции клеток

Были установлены и загружены следующие пакеты:

```
library (Seurat)
library (velocyto.R)
library (Seurat Wrappers)
library (ggplot2)
library (cowplot)
library (gridExtra)
library (dplyr)
library (monocle3)
   Теперь загрузим наши данные
load(file = "hse.object.Rdata")
data <- sc.object
   В этом объекте хранятся два объекта: RNA (все гены) и integrated (остались только
наиболее вариабельные гены)
dim (data@assays$RNA@data)
[1] 19602
             2233
dim(data@assays$integrated@data)
[1] 2684 2233
Мы будем работать с integrated. Последовательно применим линейные и нелинейные
преобразования (PCA, tSNE, uMAP) и разобьем данные на кластеры.
data <- RunPCA(object = data, verbose = FALSE, assay = "integrated", npcs = 1
data <- RunTSNE(object = data , dims = 1:50, verbose = FALSE)
data <- RumUMAP(object = data , dims = 1:50, verbose = FALSE)
data <- FindNeighbors(object = data , dims = 1:50, verbose = FALSE)
\mathbf{data} \leftarrow \mathrm{FindClusters}\left(\mathrm{object} = \mathbf{data}\right), \ \mathrm{resolution} = 0.2, \ \mathrm{verbose} = \mathrm{FALSE}
DimPlot(object = data, reduction = "pca")
DimPlot(object = data, reduction = "tsne")
DimPlot(object = data, reduction = "umap")
```

Результаты можно увидеть на Рис. 1-3. Как и ожидалось, нелинейные методы (uMAP и tSNE) преобразуют данные лучше, чем линейные (PCA). Также посмотрим на типы

клеток:

Больше всего у нас представлено клеток 2 и 4 класса. Однако алгоритм разбил на 5 классов:

Дифференциально-экспрессионный анализ и анализ значимых генов

Теперь найдем значимые гены (гены которые экспрессируют только в определенных кластерах)

```
pbmc.markers.cell <- FindAllMarkers(object = data, only.pos = TRUE,  \begin{aligned} & min.pct = 0.5 \,, & logfc.threshold = 0.2 \,, \\ & test.use = "roc") \end{aligned}   \\ dim(pbmc.markers.cell)  [1] 901 7
```

По заданым критерями нашелся 901 ген. Посмотрим каким кластерам принадлежат эти гены.

Выберем топ 2 генов из каждого кластера.

 $top2 \leftarrow pbmc.markers.cell \%\% group_by(cluster) \%\% top_n(n = 2, wt = avg_difnortpoum heatmap и featureplot.$

```
DoHeatmap(object = data, features = top2$gene)
FeaturePlot(object = data, features = top2$gene)
```

Теперь попробуем сделать все тоже самое, только дополнительно применим информацию о классах (cells)

Idents (data) = data\$cells

 $\begin{array}{lll} \textbf{all}.\, markers.\, type &=& FindAllMarkers (object &=& \textbf{data}, \ \textbf{min}.\, pct &=& 0.5\,, \ logfc.\, threshologoup_top2 &=& \textbf{all}.\, markers.\, type \,\%\% \, group_by (cluster) \,\%\% \, top_n (n &=& 2\,, \ \textbf{wt} &=& avg_legoup \\ DoHeatmap (object &=& \textbf{data}\,, \ features &=& \textbf{new_top2\$gene}) \\ FeaturePlot (object &=& \textbf{data}\,, \ features &=& \textbf{new_top2\$gene}) \end{array}$

И теперь сравним полученные результаты. На рис 4 и 5 изображены два heatmap. На левом heatmap граница между кластерами 1 и 2, 3 и 4 особо не прослеживается. Также гены PTTG1 и HMGB2 одинаково экспрессируют в 0 и 1 кластерах. После применения функции Ident() картина поменялась в лучшую сторону. Рис 6 7 подтверждают также подтверждают это.

Pис. 4: Heatmap before

Рис. 5: Heatmap after

Pис. 6: Feature plot before

Рис. 7: Feature plot after

Найдем биологический смысл полученных результатов. Для этого подсчитаем топ 5 генов для каждого кластера (см. табл.1). Попробуем найти связь между этими 20 генами. Для этого используем сервис **Enrichr**. Переходим по первому совпадению (ChEA

2016 - содержит результаты Chip-Seq). И выбираем вкладку Clustergram. На рис. 8 показана кластерграмма (по оси х наборы генов, а по у гены). Попробуем проанализировать полученные результаты. Можно отметить два набора, для которых найдено больше всех совпадений:

- СПТА: 3 гена из 4 кластера и 2 гена из 1 кластера.
- XRN2: 4 гена из 20го кластера и по 1 гену из 10го и 40го.

Итого, с биологической точки зрения можно сделать вывод, что наиболее экспрессионные гены из 2 и 4 кластеров связаны между собой. Также это подтвержает очень низконе значение p-value.

p-val-adj	cluster	gene
3.16e-3	3	PNRC1
1.83e-2	3	MT2A
1.62e-1	3	VMP1
3.33e-1	3	TIMP1
1.00e+0	3	CITED2
1.69e-258	2	HNRNPA1
7.92e-227	2	LGALS1
1.91e-208	2	HMGA1
9.02e-161	2	TAGLN
1.07e-154	2	TUBA1B
3.38e-268	4	CD74
6.37e-247	4	IFI6
1.64e-237	4	HLA-DRA
6.98e-237	4	HLA-DRB1
4.77e-236	4	CST3
4.23e- 52	1	HLA-DQB1
1.33e- 49	1	CPVL
1.10e- 37	1	HLA-DPA1
1.12e- 30	1	UCP2
1.46e- 27	1	C1orf54

Таблица 1: 5 наиболее значимых генов в каждом кластере

Разбор статьи

Я выбрал статью [1]. В ней использовался протокол Drop-Seq. Пайплайн изображен на Рис. Этапы:

- Выделение единичных клеток
- Изолирование каждой клетки с последующим навешиванием баркода в капле (droplet)

- лизирование клетки
- получение мРНК, формирую STAMP (single-cell transcriptomes attached to microparticles)
- Обратная транскрипция, амплификация
- секвенирование тысячи STAMPs
- декодирование (используя баркоды)
- каждый олигонуклеотид состоит из 4 частей: PCR id, barcode, UMI и TTTT...

•

Обработка:

- В качестве иструмента они использовали библиотеку Seurat
- Всего было 49.300 клеток и из них отобрали клетки, в которых обнаружилось более 900 генов. Итого получилось 13,155 клеток.
- Затем на отобранных клетках применили РСА и отобрали 32 статистически значимых компоненты (используя перестановочный тест)
- После применили t-SNE и получили двумерную матрицу (2 компоненты остались).
- Основываясь на полученных компонентах они спроецировали оставшиеся клетки.
- Разбили на 39 кластеров (39 потому что столько популяций было). В каждом кластере было от 50 до 29,400 клеток.

Список литературы

[1] Evan Z. Macosko et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. *Cell*, 2015.

Рис. 8: Кластерграмма 20 генов

Рис. 9: (A): классы клеток, (B): покрасили согласно классам после кластеризации (D): heatmap + кластеризация (E): покрасили согласно кластерам