Project for the final oral examination PHY981

Project G, Studies of electromagnetic transitions in Ar isotopes and ⁴⁸Ca

The aim of this project is to study the structure of selected low-lying states of the Ar isotopes and selected $B(E2; 2_1^+ \to 0_1^+)$ transitions using Alex Brown's Nushellx code. There is considerable interest in neutron-rich nuclei between N=14 and N=28, motivated particularly by the development of collectivity in nuclei such as 40,42 S and by questions concerning the strength of the N=28 shell gap far from stability (see Refs. [1-5] and references therein). The Ar isotopes from 34 Ar (N=16) to 46 Ar (N=28) are important for studying this evolution of collectivity and for testing shell model calculations for neutron-rich nuclei in the region. Because they have two proton holes in the sd shell, the neutron-rich Ar isotopes offer a relatively âAŸsimpleâAŹ case to probe proton-neutron interactions and build up a microscopic description of nuclear structure in neutron rich nuclei near N=28. Being close to 48 Ca, there is great interest in understanding the role of such interactions. The lightest Ar isotopes can be studied with effective interactions for sd-shell only as a first trial. For the heavier ones, one would need to test effective interactions that include the $0f_{7/2}$ orbit as well and possibly the $1p_{3/2}$ single-particle state. In Refs. [2,3], shell-model calculations where performed with effective interactions that included parts of the pf-shell as well.

The task here is to compute low-lying states of the Ar isotopes from N=16 to N=28 and compute $B(E2; 2_1^+ \to 0_1^+)$ transition strengths and compare with available data. To achieve this you will need to use an effective interaction designed for the 1s0d and 1s0d1p0f shells. Since a full calculation in two major shells may be beyond reach, you will need to truncate the number of particles which can leave/occupy selected single-particle states. In the file which contains the single-particle data, you should block some of the single-particle orbis in the 1p0f shells.

The possible tasks are as follows

- 1. Compute the spectra of the low-lying spectrum of the above even Ar isotopes using the 1s0d shell as degree of freedom first. Add thereafter the $0f_{7/2}$ single-particle orbit and study the behavior of your results. Compare with Refs. [2,3].
- 2. Add thereafter the $1p_{3/2}$ single-particle state and commute your results.
- 3. Compute thereafter the $B(E2; 2_1^+ \to 0_1^+)$ transition strengths and compare with available data using the above model spaces.
- 4. To study the similar transition in 48 Ca, you will need to use the 1p0f shell. Compute the above transition strength in 48 Ca and discuss the differences between 48 Ca and 46 Ar where two protons have been removed from the 1s0d shell.

Here follows a list of possible references.

- 1. H. Scheit et al., Phys Rev Lett 77, 3967 (1996)
- 2. J. Retamosa et al., Phys Rev C 55, 1266 (1997)
- 3. S. Nummela et al., Phys Rev C 63, 044316 (2001)
- 4. A.D. Davies et al., Phys Rev Lett 96, 112503 (2006)
- 5. A.E. Stuchbery et al., Phys Rev C 74, 054307 (2006)
- 6. S. Raman et al., At Data Nucl Data Tables 78, 1 (2001)

TABLE I: Experimental excitation energies, B(E2) values and lifetimes for the Ar isotopes. Data are from [1,6-11].

A N	$E(2^+)$ [keV]	B(E2) [e2fm4]
38 20	2167	130(10)
40 22	1461	330(40)
42 24	1208	430(100)
44 26	1158	345(41)
46 28	1577	196(39); 218(31)

- 7. B. Fornal et al., Eur Phys J A 7, 147 (2000)
- 8. A. Gade et al., Phys Rev C 68, 014302 (2003)
- 9. K.-H. Speidel et al., Phys Lett B632, 207 (2006)
- 10. J. Cub et al., Nucl Phys A 549, 304 (1992)
- $11.~\mathrm{E.~A.}$ Stefanova et al., Phys Rev C 72, 014309