Задача 1. Да се намери рангът на системата n-мерни вектори $a_1(\lambda,\lambda,...,\lambda,\lambda,0),\ a_2(\mu,\mu,...,\mu,0,\lambda),\ a_3(\mu,\mu,...,0,\mu,\lambda),...,$ $a_n(0,\mu,...,\mu,\mu,\lambda)$ в зависимост от стойността на параметрите. Да се определи кога векторите са базис на n-мерното векторно пространство \mathbb{R}^n и в тези случаи да се намерят координатите на вектора b(1,1,...,1) спрямо този базис.

Задача 2. В тримерното евклидово пространство $E=\mathbb{R}^3$ е зададено изображението φ т.че $\varphi(x)=(a,x)b-(b,x)a$ за всеки вектор $x\in E$, където $a=e_2-2e_3,\ b=e_1-e_2$ и $e=\{e_1(1,0,0),\ e_2(0,1,0),\ e_3(0,0,1)\}$ е стандартният ортонормиран базис на E.

- а) Да се докаже, че изображението φ е линеен оператор и φ^2 е симетричен оператор.
- б) Да се намери матрицата на оператора φ^2 в базиса e и да се намери ортонормиран базис на E, в който матрицата на φ^2 е диагонална.
- в) Да се намери матрицата на φ^{2009} в базиса e.

Задача 3. а) Да се реши системата

където k е естествено число и $\lambda_1,\ \lambda_2,\ \dots,\ \lambda_k$ са различни помежду си ненулеви комплексни числа .

б) Да се докаже, че системата

има само нулево решение $\lambda_1=\lambda_2=\cdots=\lambda_n=0$, където λ_i е комплексна променлива за всяко i.

ПИСМЕН ИЗПИТ ПО АЛГЕБРА 1 Вариант С, 28.01.2008г.

Задача 1. Да се намери рангът на системата n-мерни вектори $a_1(\lambda,\lambda,...,\lambda,\lambda,0),\ a_2(\mu,\mu,...,\mu,0,\lambda),\ a_3(\mu,\mu,...,0,\mu,\lambda),\dots,$ $a_n(0,\mu,...,\mu,\mu,\lambda)$ в зависимост от стойността на параметрите. Да се определи кога векторите са базис на n-мерното векторно пространство \mathbb{R}^n и в тези случаи да се намерят координатите на вектора b(1,1,...,1) спрямо този базис.

Задача 2. В тримерното евклидово пространство $E=\mathbb{R}^3$ е зададено изображението φ т.че $\varphi(x)=(a,x)b-(b,x)a$ за всеки вектор $x\in E$, където $a=e_2-2e_3,\ b=e_1-e_3$ и $e=\{e_1(1,0,0),e_2(0,1,0),e_3(0,0,1)\}$ е стандартният ортонормиран базис на E.

- а) Да се докаже, че изображението φ е линеен оператор и φ^2 е симетричен оператор.
- б) Да сè намери матрицата на оператора φ^2 в базиса e и да се намери ортонормиран базис на E, в който матрицата на φ^2 е диагонална.
- в) Да се намери матрицата на $arphi^{2009}$ в базиса e.

Задача 3. а) Да се реши системата

където k е естествено число и $\lambda_1,\,\lambda_2,\,\ldots,\,\lambda_k$ са различни помежду си ненулеви комплексни числа .

б) Да се докаже, че системата

$$\begin{vmatrix} \lambda_1 & + & \lambda_2 & + & \cdots & + & \lambda_n & = & 0 \\ \lambda_1^2 & + & \lambda_2^2 & + & \cdots & + & \lambda_n^2 & = & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \lambda_1^n & + & \lambda_2^n & + & \cdots & + & \lambda_n^n & = & 0 \end{vmatrix}$$

има само нулево решение $\lambda_1=\lambda_2=\cdots=\lambda_n=0$, където λ_i е комплексна променлива за всяко i.

ПИСМЕН ИЗПИТ ПО АЛГЕБРА 1 Вариант В, 28.01.2008г.

Задача 1. Да се намери рангът на системата n-мерни вектори $a_1(\lambda,\lambda,...,\lambda,\lambda,0),\ a_2(\mu,\mu,...,\mu,0,\lambda),\ a_3(\mu,\mu,...,0,\mu,\lambda),...,$ $a_n(0,\mu,...,\mu,\mu,\lambda)$ в зависимост от стойността на параметрите. Да се определи кога векторите са базис на n-мерното векторно пространство \mathbb{R}^n и в тези случаи да се намерят координатите на вектора b(1,1,...,1) спрямо този базис.

Задача 2. В тримерното евклидово пространство $E=\mathbb{R}^3$ е зададено изображението φ т.че $\varphi(x)=(a,x)b-(b,x)a$ за всеки вектор $x\in E$, където $a=e_1-2e_3$, $b=e_1-e_2$ и $e=\{e_1(1,0,0),\,e_2(0,1,0),\,e_3(0,0,1)\}$ е стандартният ортонормиран базис на E.

- а) Да се докаже, че изображението φ е линеен оператор и φ^2 е симетричен оператор.
- б) Да се намери матрицата на оператора φ^2 в базиса e и да се намери ортонормиран базис на E, в който матрицата на φ^2 е диагонална.
- в) Да се намери матрицата на $arphi^{2009}$ в базиса e.

Задача 3. а) Да се реши системата

$$\begin{vmatrix} \lambda_1 x_1 & + & \lambda_2 x_2 & + & \cdots & + & \lambda_k x_k & = & 0 \\ \lambda_1^2 x_1 & + & \lambda_2^2 x_2 & + & \cdots & + & \lambda_k^2 x_k & = & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \lambda_1^k x_1 & + & \lambda_2^k x_2 & + & \cdots & + & \lambda_k^k x_k & = & 0 \end{vmatrix}$$

където k е естествено число и $\lambda_1,\ \lambda_2,\ \dots,\ \lambda_k$ са различни помежду си ненулеви комплексни числа .

б) Да се докаже, че системата

$$\begin{vmatrix} \lambda_1 & + & \lambda_2 & + & \cdots & + & \lambda_n & = & 0 \\ \lambda_1^2 & + & \lambda_2^2 & + & \cdots & + & \lambda_n^2 & = & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \lambda_1^n & + & \lambda_2^n & + & \cdots & + & \lambda_n^n & = & 0 \end{vmatrix}$$

има само нулево решение $\lambda_1=\lambda_2=\cdots=\lambda_n=0$, където λ_i е комплексна променлива за всяко i.

ПИСМЕН ИЗПИТ ПО АЛГЕБРА 1 Вариант D, 28.01.2008г.

Задача 1. Да се намери рангът на системата n-мерни вектори $a_1(\lambda,\lambda,...,\lambda,\lambda,0),\ a_2(\mu,\mu,...,\mu,0,\lambda),\ a_3(\mu,\mu,...,0,\mu,\lambda),...,$ $a_n(0,\mu,...,\mu,\mu,\lambda)$ в зависимост от стойността на параметрите. Да се определи кога векторите са базис на n-мерното векторно пространство \mathbb{R}^n и в тези случаи да се намерят координатите на вектора b(1,1,...,1) спрямо този базис.

Задача 2. В тримерното евклидово пространство $E=\mathbb{R}^3$ е зададено изображението φ т.че $\varphi(x)=(a,x)b-(b,x)a$ за всеки вектор $x\in E$, където $a=e_1-2e_2$, $b=e_1-e_2$ и $e=\{e_1(1,0,0),e_2(0,1,0),e_3(0,0,1)\}$ е стандартният ортонормиран базис на E.

- а) Да се докаже, че изображението φ е линеен оператор и φ^2 е симетричен оператор.
- б) Да се намери матрицата на оператора φ^2 в базиса e и да се намери ортонормиран базис на E, в който матрицата на φ^2 е диагонална.
- в) Да се намери матрицата на $arphi^{2009}$ в базиса e.

Задача 3. а) Да се реши системата

$$\begin{vmatrix} \lambda_1 x_1 & + & \lambda_2 x_2 & + & \cdots & + & \lambda_k x_k & = & 0 \\ \lambda_1^2 x_1 & + & \lambda_2^2 x_2 & + & \cdots & + & \lambda_k^2 x_k & = & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \lambda_1^k x_1 & + & \lambda_2^k x_2 & + & \cdots & + & \lambda_k^k x_k & = & 0 \end{vmatrix}$$

където k е естествено число и $\lambda_1,\,\lambda_2,\,\ldots,\,\lambda_k$ са различни помежду си ненулеви комплексни числа .

б) Да се докаже, че системата

$$\begin{vmatrix} \lambda_1 & + & \lambda_2 & + & \cdots & + & \lambda_n & = & 0 \\ \lambda_1^2 & + & \lambda_2^2 & + & \cdots & + & \lambda_n^2 & = & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \lambda_1^n & + & \lambda_2^n & + & \cdots & + & \lambda_n^n & = & 0 \end{vmatrix}$$

има само нулево решение $\lambda_1=\lambda_2=\cdots=\lambda_n=0$, където λ_i е комплексна променлива за всяко i.