Simple can achieve 0.8

I hate mmsegmentation

남혜린, 주세환

Introduction

Methods

Results

ETC

Introduction

Pipeline – Fold Training

Pipeline – Ensemble

Methods

1) 전처리 - DICOM to PNG

• DICOM file의 HU array를 불러와 -1024 ~ 3096 의 범위를 image로 저장하기 위해서 0 ~ 255 단위로 변환하여 PNG 로 저장

1) 전처리 – Stratified K fold

- Case 별로 비슷한 image가 들어있는 것을 보고 비슷한 image가 한 fold내에서 학습이 되지 않도록 case 단위로 4 fold로 split (k fold)
- 이 때 각 case 별로 존재하는 tumor와 kidney area를 균등하게 나눔 (Stratified)

1) 전처리 – Augmentation

■ Horizontal Flip과 RandomRotation을 동시에 사용할 때 성능이 가장 좋았음

Origin Data

Horizontal Flip

Rotation

2) 모델

■ Encoder로는 EfficientNet v2를 Decoder로는 Unet을 사용함

Table 4. EfficientNetV2-S architecture – MBConv and Fused-MBConv blocks are described in Figure 2.

Stage	Operator	Stride	#Channels	#Layers
0	Conv3x3	2	24	1
1	Fused-MBConv1, k3x3	1	24	2
2	Fused-MBConv4, k3x3	2	48	4
3	Fused-MBConv4, k3x3	2	64	4
4	MBConv4, k3x3, SE0.25	2	128	6
5	MBConv6, k3x3, SE0.25	1	160	9
6	MBConv6, k3x3, SE0.25	2	256	15
7	Conv1x1 & Pooling & FC	-	1280	1

Figure 2. Structure of MBConv and Fused-MBConv.

2) 모델 - 최적화

- Loss function
 - 0.75 * Focal + 0.25 * Dice
- Optimizer
 - Adam
- Lr scheduler
 - Step [30epoch, 40epoch]
- Hyperparameter
 - 50 epoch
 - Ir 0.001

3) 후처리 - TTA

- TTA
 - 그림과 같이 TTA4를 적용
 - No Aug, Flip, Random Rotation, Flip + Random Rotation 을 적용한 image를 동일한 Model에 적용
 - 4개의 output을 Ensemble

3) 후처리 – Fold Ensemble

- TTA ensemble을 각 Model 0 ~ 3 까지 적용
- 각 Model 별 TTA 결과를 Fold Ensemble 하여 최종 output 추출

4) CV Metric

- 리더 보드 산출 방식이 case 단위로 DICE를 계산하여 동일하게 case 단위로 DICE 를 계산
- 그 결과 리더보드와 CV score가 유사하여 실험을 신뢰하고 할 수 있었음.

Results

Model search

Backbone	평균 dice	Kidney dice	Tumor dice
Resnet34	0.477	0.888	0.065
Efficientnet B0	0.538	0.854	0.222
Efficientnet V2	0.726	0.941	0.512

Decoder	평균 dice	Kidney dice	Tumor dice
PAN	0.626	0.915	0.337
PSP	0.642	0.926	0.358
Unet	0.726	0.941	0.512

Loss search

Loss	평균 dice	Kidney dice	Tumor dice
BCE	0.669	0.929	0.409
0.75 BCE + 0.25 DICE	0.723	0.934	0.512
Focal	0.658	0.919	0.396
Lovasz	0.548	0.927	0.169
Focal 0.75 + 0.25 DICE	0.726	0.930	0.521

Augmentation Test

Augmentation	평균 dice	Kidney dice	Tumor dice
Base	0.713	0.929	0.496
HU Normalization	0.706	0.936	0.475
Flip & Rotate	0.801	0.943	0.658

Final Result

	Score
Fold 0	0.77562
Fold 0 + TTA 4	0.78747
Fold Ensemble + TTA4	0.80098

ETC

HU Preprocessing

- Kidney와 tumor가 존재하는 값은 0~100 사이인 사실에 근거하여 HU 값을 -350 ~ 350으로 조정 (주변 background 고려)
- -350이하는 전부 -350으로 통일, 350 이상은 전부 350으로 통일
- 실험 결과 HU prerprocessing을 안했을 때와 비슷하거나 오히려 성능이 하락

CROP

- Kidney와 tumor의 주변부만 background 포함하여 crop하여 Model을 학습
- Model의 속도는 빨라졌으나 오히려 성능 하락

Origin Data

384 x 384 Center Crop

Swin Transformer

- CNN이 아닌 self-attention 을 이용한 Swin Transformer를 backbone으로 사용하여 실험
- 처음에는 score가 CNN 계열의 backbone 보다 높았으나, 다양한 기법을 적용하였을 때 CNN 계열의 backbone이 성능향상 폭이 컸음

Swin Transformer Decoder

Decoder	평균 dice	Kidney dice	Tumor dice	Public LB
DeeplabV3	0.85385	0.943	0.7647	0.6857
DeeplabV3 plus	0.87035	0.945	0.7957	0.71878
Upernet	0.9013	0.951	0.8516	0.74322

• Swin transformer는 image 단위로 dice 계산, CNN 계열의 backbone case 단위로 dice 계산

Loss finder

Loss	평균 dice	Kidney dice	Tumor dice
BCE 0.9 + DICE 0.1	0.8249	0.8778	0.7621
BCE 0.8 + DICE 0.1	0.8232	0.8889	0.7576
BCE 0.7 + DICE 0.1	0.8116	0.8708	0.7524
Lovasz	0.8313	0.8901	0.7725
Focal 0.75 + DICE 0.25	0.8476	0.9102	0.7850

• Swin transformer는 image 단위로 dice 계산, CNN 계열의 backbone case 단위로 dice 계산

Fold Training

SwinTransformer-base Upernet

	평균 dice	Kidney dice	Tumor dice
Fold 0	0.8249	0. 9591	0.8341
Fold 1	0.8232	0.8889	0.7576
Fold 2	0.8116	0.8708	0.7524
Fold 3	0.8313	0.8901	0.7725

Final Fold Ensemble Score: 0.76075

• Swin transformer는 image 단위로 dice 계산, CNN 계열의 backbone case 단위로 dice 계산

Thank You