

Documento de ArquiteturaMUSA

Fazemos Qualquer Negócio Inc.

Compilação 2.0

Histórico de Revisões

Date	Descrição	Autor(s)
25/06/2014	Concepção do documento	joaocarlos
15/10/2014	Adição da subseção de acesso à memória	Weverson Gomes
16/10/2014	Adição da subseção de acesso à memória	Weverson Gomes
16/10/2014	Adição da seção "Leitura da Instrução"com dados preliminares e modificação do nome do projeto no documento.	santana22 e gabri14el.
19/10/2014	Modificações na seção "Leitura da Instrução"	santana22
20/10/2014	Adição da imagem do datapath da seção "Leitura da Instrução".	santana22 e gabri14el

SUMÁRIO

1	Intr	odução	4
	1	Propósito do Documento	4
	2	Stakeholders	4
	3	Visão Geral do Documento	4
	4	Definições	5
	5	Acrônimos e Abreviações	5
2	Visã	o Geral da Arquitetura	6
	1	Restrições	6
	2	Codificação das instruções	6
	3	Descrição dos Componentes	7
	4	Diagrama de Classe (Interface)	7
	5	Definições de Entrada e Saída	8
	6	Datapath Interno	8
3	Des	crição da Arquitetura	9
	1	Unidade de Processamento	9
		1.1 Diagrama de Classe	9
		1.2 Definições de Entrada e Saída	9
		1.3 Datapath Interno	10
	2	Leitura da Instrução	11
		2.1 Diagrama de Classe	11
		2.2 Definições de entrada e saída	11
		2.3 Datapath Interno	11
	3	Acesso à memória	12

	3.1	Diagrama de Classe	12
	3.2	Definições de entrada e saída	12
4	Interfa	ce de Comunicação	13
	4.1	Diagrama de Classe	13
	4.2	Definições de Entrada e Saída	13
	4.3	Máquina de Estados	14
	4.4	Diagrama de Temporização	15

1 Introdução

1. Propósito do Documento

Este documento descreve a arquitetura do projeto MUSA, incluindo especificações do circuitos internos de cada componente. Ele também apresenta diagramas de classe, definições de entrada e saída.O principal objetivo deste documento é definir as especificações do projeto MUSA e prover uma visão geral completa do mesmo.

2. Stakeholders

Nome	Papel/Responsabilidades
Manuelle Macedo	Gerência
Patrick	Análise
Dilan Nery, Lucas Almeida, Mirela Rios, Cabele e Vinícius Santana	Desenvolvimento
Antônio Gabriel e Weverson Gomes	Testes
Tarles Walker e Anderson Queiroz	Implementação

3. Visão Geral do Documento

O presente documento é apresentado como segue:

- Capítulo 2 Este capítulo apresenta uma visão geral da arquitetura, com foco em entrada e saída do sistema e arquitetura geral do mesmo;
- Capítulo 3 Este capítulo descreve a arquitetura interna do IP a partir do detalhamento dos seus componentes, definição de portas de entrada e saída e especificação de caminho de dados.

4. Definições

Termo	Descrição	
RS232	Protocolo de comunicação serial utilizado em aplicações que requerem transmissão de dados entre elementos conectados à um mesmo canal.	

5. Acrônimos e Abreviações

Sigla	Descrição	
TBD	To be defined (A ser definido)	

2 | Visão Geral da Arquitetura

1. Restrições

· Restrições -

2. Codificação das instruções

Instrução é uma palavra da linguagem de máquina, sua codificação é de fundamental importância para o processamento das operações.

Todas as instruções contém 32 bits. Exitem 4 formatos de instruções: R (R-type), I (I-type), Load/Store e Jump.

O formato R está relacionado as instruções lógicas e aritméticas.

OPCODE	RS	RT	RD	SHAMT	FUNCT
31:26	25:21	15:11	15:11	10:6	5:0

Figura 2.1: Formato R

Seus respectivos campos são:

- OPCODE Código da operação básica da instrução.
- **RS** Registrador do primeiro operando de origem.
- **RT** Registrador do segundo operando de origem.
- **RD** Registrador destino.
- SHAMT Shift amount; Quantidade de deslocamento.
- **FUNCT** Função; Esse campo seleciona a variante específica da operação no campo opcode, e as vezes, é chamado de código de função.

Um segundo tipo de formato de instrução é chamado de formato I, utilizado pelas instruções imediatas e de transferência de dados.

OPCODE	RS	RT	ADDRESS OR IMMEDIATE
31:26	25:21	15:11	15:0

Figura 2.2: Formato I

Seus respectivos campos são:

- OPCODE Código da operação básica da instrução.
- **RS** Registrador do operando de origem.
- RT Registrador destino.
- ADDRESS Endereço de memória ou constante numérica.

OPCODE	RS	ADDRESS
31:26	25:21	20:0

Figura 2.3: Formato Load/Store

OPCODE	ADDRESS
31:26	25:0

Figura 2.4: Formato Jump

3. Descrição dos Componentes

A unidade de processamento a ser desenvolvida é composta a partir dos seguintes componentes:

- Serial Controller Controlador para comunicação com módulo de transmissão serial através do protocolo RS232.
- Interface Control Interface de controle, responsável por fazer a leitura correta das informações da serial e transmiti-las para a unidade de processamento.
- Processing Unit Unidade responsável pela realização das operações e armazenamento do resultado.

4. Diagrama de Classe (Interface)

5. Definições de Entrada e Saída

Nome	Tamanho	Direção	Descrição
clock_in	1	entrada	Clock principal do sistema.
reset_in	1	entrada	Sinal de reset geral do sistema.
rx_in	1	entrada	Dado serial da RS232.
result_data_out	8	saída	Representação do resultado da operação.
overflow_out	1	saída	Sinal indicador de overflow aritmético.

6. Datapath Interno

3 | Descrição da Arquitetura

1. Unidade de Processamento

1.1. Diagrama de Classe

1.2. Definições de Entrada e Saída

Nome	Tamanho	Direção	Descrição	
clock_in	1	entrada	Clock principal do sistema.	
reset_in	1	entrada	Sinal de reset geral do sistema.	
data_a_in	8	entrada	Dado do primeiro operando.	
data_b_in	8	entrada	Dado do segundo operando.	
operation_in	TBD	entrada	Código da operação.	
result_data_out	8	saída	Representação do resultado da operação.	
	continua na próxima página			

continuação da página anterior					
Nome	Tamanho	Direção	Descrição		
overflow_out	1	saída	Sinal indicador de overflow aritmético.		

1.3. Datapath Interno

2. Leitura da Instrução

2.1. Diagrama de Classe

Instruction Fetch

+ clock : input bit

+ pcInput : input bit[32]

+ pcWrite : input bit

+ pcOutput : output bit[32]

+ instruction : output bit[32]

2.2. Definições de entrada e saída

Nome	Tamanho	Direção	Descrição
pcInput	32	entrada	Valor do PC atual.
pcWrite	1	entrada	Sinal proveniente da UC que habilita a modificação do valor de PC.
pcOutput	32	saída	Valor do PC atual.
instruction	32	saída	Instrução a ser executada.

2.3. Datapath Interno

Datapath preliminar

3. Acesso à memória

3.1. Diagrama de Classe

MemoryExecute

+ zero : input bit

+ address : input bit

+ writeData : input bit[TBD]

+ memRead : input bit

+ memWrite : input bit

+ readData()

+ writeToRegister()

3.2. Definições de entrada e saída

Nome	Tamanho	Direção	Descrição
zero	1	entrada	Executa branch quando é zero.
address	TBD	entrada	Endereço no qual o dado deve ser escrito.
memRead	1	entrada	Sinal proveniente da UC que abilita leitura.
memWrite	1	entrada	Sinal proveniente da UC que abilita escrita.
writeData	1	entrada	O dado a ser escrito na memória.
readData	TBD	saída	Dado a ser utilizado pelo MUX do "Write Back".
writeToRegister	TBD	saída	Dado do segundo operando.

4. Interface de Comunicação

4.1. Diagrama de Classe

4.2. Definições de Entrada e Saída

Nome	Tamanho	Direção	Descrição
clock_in	1	entrada	Clock principal do sistema.
reset_in	1	entrada	Sinal de reset geral do sistema.
rx_data_ready_in	1	entrada	Indica que o dado foi recebido pelo controle RS232.
rx_data_in	8	entrada	Dado proveniente da transmissão.
data_a_out	8	saída	Dado do primeiro operando.
data_b_out	8	saída	Dado do segundo operando.
operation_out	TBD	saída	Código da operação.

4.3. Máquina de Estados

4.4. Diagrama de Temporização

