Predicción de errores de maquinaria.

Problema a resolver

El problema principal es predecir cuando la máquina va a fallar, para anticiparnos y...

... minimizar costes de reparación, mantenimiento y producción.

... evitar inactividad.

... cumplir con compromisos de producción.

Datos

- 10000 registros.
- Limpios, sin valores nulos
- Bien estructurados.
- No consistentes en los fallos y tipos de fallos

			DATO	OS UTILIZADO	OS PARA EL CALCULO DE NUESTROS MODELOS			DELOS	OBJETIVOS A PREDECIR					
	UDI	Product ID	Туре	Air temperature [K]	Process temperature [K]	Rotational speed [rpm]	Torque [Nm]	Tool wear [min]	Machine failure	TWF	HDF	PWF	OSF	RNF
0	1	M14860	М	298.1	308.6	1551	42.8	0	0	0	0	0	0	0
1	2	L47181	L	298.2	308.7	1408	46.3	3	0	0	0	0	0	0
2	3	L47182	L	298.1	308.5	1498	49.4	5	0	0	0	0	0	0
3	4	L47183	L	298.2	308.6	1433	39.5	7	0	0	0	0	0	0
4	5	L47184	L	298.2	308.7	1408	40.0	9	0	0	0	0	0	0

Fallo en máquina y distintos tipos fallos

Ajuste de cantidades

"Machine Failure"

 \rightarrow 339

Suma Tipos de fallos TWF, HDF, PWF, OSF, RNF

 \rightarrow 373

Creación de nueva variable

Múltiples tipos de error: Múltiple Fallos → "MF"

Después de hacer los ajustes tenemos:

Machine Failure"

 \rightarrow 357

Suma Tipos de fallos (TWF, HDF, PWF, OSF, RNF, MF → 357

Datos desbalanceados

Tratamiento de variables

Nuevas variables

- Potencia = (2π * Torque * Velocidad de rotación)/60
- Diferencia de temperatura = Temp. proceso Temp. ambiente

Transformar la variable Type

- 3 columnas con valor 0,1 dependiendo del tipo H, M, L

Distribución

Tratamiento de Outliers (solo registros sin fallo)

Entrenamiento primero modelo

Balanceo mediante SMOTE Random Forest Classifier

TEST

TRAIN

Ajustar predicción de fallos

Variable a clasificar (target):

- $0 \rightarrow FM \rightarrow FALLO MULTIPLE$
- $1 \rightarrow RNF \rightarrow FALLO ALEATORIO$
- 2 → OSF → FALLO SOBREESFUERZO
- $3 \rightarrow PWF \rightarrow FALLO DE POTENICA$
- 4 → HDF → FALLO POR DISIPACIÓN DE CALOR
- 5 → TWF → FALLO POR DESGASTE DE HERRAMIENTA

Entrenamiento segundo modelo

Balanceo mediante SMOTE

XGBOOST

TEST

TRAIN

Conclusiones

El primer modelo aprende bien, tiene una buena métrica de evaluación del 89% contra los datos de test.

Es capaz de predecir el 80 % verdaderos errores.

El segundo modelo no tiene tan buena métrica de evaluación un 67%, Le cuesta clasificar las categorías de "error múltiple" y los "fallos aleatorios". Estás dos categorías penalizan el modelo, en cambio el resto la clasificación es óptima