CSc 345 — Analysis of Discrete Structures (McCann)

Asymptotic Notation: O(), o(), O(), o(), and O()

The Idea

"Big-O" notation was introduced in P. Bachmann's 1892 book Analytische Zahlentheorie. He used it to say things like "x is $O(\frac{n}{2})$ " instead of " $x \approx \frac{n}{2}$." The notation works well to compare algorithm efficiencies because we want to say that the growth of effort of a given algorithm approximates the shape of a standard function.

The Definitions

Big-O (O()) is one of five standard asymptotic notations. In practice, Big-O is used as a tight upper-bound on the growth of an algorithm's effort (this effort is described by the function f(n)), even though, as written, it can also be a loose upper-bound. To make its role as a tight upper-bound more clear, "Little-o" (o()) notation is used to describe an upper-bound that cannot be tight.

Definition (Big-O, O()): Let f(n) and g(n) be functions that map positive integers to positive real numbers. We say that f(n) is O(g(n)) (or $f(n) \in O(g(n))$) if there exists a real constant c > 0 and there exists an integer constant $n_0 \ge 1$ such that $f(n) \le c * g(n)$ for every integer $n \ge n_0$.

Definition (Little-0, o()): Let f(n) and g(n) be functions that map positive integers to positive real numbers. We say that f(n) is o(g(n)) (or $f(n) \in o(g(n))$) if for any real constant c > 0, there exists an integer constant $n_0 \ge 1$ such that f(n) < c * g(n) for every integer $n \ge n_0$.

On the other side of f(n), it is convenient to define parallels to O() and o() that provide tight and loose lower bounds on the growth of f(n). "Big-Omega" $(\Omega())$ is the tight lower bound notation, and "little-omega" $(\omega())$ describes the loose lower bound.

Definition (Big-Omega, $\Omega()$): Let f(n) and g(n) be functions that map positive integers to positive real numbers. We say that f(n) is $\Omega(g(n))$ (or $f(n) \in \Omega(g(n))$) if there exists a real constant c > 0 and there exists an integer constant $n_0 \ge 1$ such that $f(n) \ge c \cdot g(n)$ for every integer $n \ge n_0$.

Definition (Little-Omega, ω ()): Let f(n) and g(n) be functions that map positive integers to positive real numbers. We say that f(n) is $\omega(g(n))$ (or $f(n) \in \omega(g(n))$) if for any real constant c > 0, there exists an integer constant $n_0 \ge 1$ such that $f(n) > c \cdot g(n)$ for every integer $n \ge n_0$.

This graph should help you visualize the relationships between this notations:

These definitions have far more similarities than differences. Here's a table that summarizes the key restrictions in these four definitions:

Definition	? c > 0	$\boxed{?} \ n_0 \ge 1$	$f(n)$? $c \cdot g(n)$
O()	3	3	≤
o()	\forall	∃	<
$\Omega()$	3	∃	\geq
$\omega()$	\forall	3	>

While $\Omega()$ and $\omega()$ aren't often used to describe algorithms, we can build on them (on $\Omega()$ in particular) to define a notation that describes a combination of O() and $\Omega()$: "Big-Theta" $(\Theta())$. When we say that an algorithm is $\Theta(g(n))$, we are saying that g(n) is both a tight upper-bound and a tight lower-bound on the growth of the algorithm's effort.

Definition (Big–Theta, $\Theta()$): Let f(n) and g(n) be functions that map positive integers to positive real numbers. We say that f(n) is $\Theta(g(n))$ (or $f(n) \in \Theta(g(n))$) if and only if $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$.

Application Examples

Here are a few examples that show how the definitions should be applied.

1. Let f(n) = 7n + 8 and g(n) = n. Is $f(n) \in O(g(n))$?

For $7n + 8 \in O(n)$, we have to find c and n_0 such that $7n + 8 \le c \cdot n$, $\forall n \ge n_0$. By inspection, it's clear that c must be larger than 7. Let c = 8.

Now we need a suitable n_0 . In this case, $f(8) = 8 \cdot g(8)$. Because the definition of O() requires that $f(n) \le c \cdot g(n)$, we can select $n_0 = 8$, or any integer above 8 – they will all work.

We have identified values for the constants c and n_0 such that 7n + 8 is $\leq c \cdot n$ for every $n \geq n_0$, so we can say that 7n + 8 is O(n).

(But how do we know that this will work for every n above 7? We can prove by induction that $7n+8 \le 8n$, $\forall n \ge 8$. Be sure that you can write such proofs if asked!)

2. Let f(n) = 7n + 8 and g(n) = n. Is $f(n) \in o(g(n))$?

In order for that to be true, for any c, we have to be able to find an n_0 that makes $f(n) < c \cdot g(n)$ asymptotically true.

However, this doesn't seem likely to be true. Both 7n + 8 and n are linear, and o() defines loose upper-bounds. To show that it's not true, all we need is a counter-example.

Because any c > 0 must work for the claim to be true, let's try to find a c that won't work. Let c = 100. Can we find an n_0 such that 7n + 8 < 100n? Sure; let $n_0 = 10$. Try again!

OK, let $c = \frac{1}{100}$. Can we find an n_0 such that $7n + 8 < \frac{n}{100}$? Of course not. Therefore, $7n + 8 \notin o(n)$, meaning g(n) = n is not a loose upper-bound on 7n + 8.

3. Is $7n + 8 \in o(n^2)$?

Again, to claim this we need to be able to argue that for any c, we can find an n_0 that makes $7n+8 < c \cdot n^2$. Let's try examples again to make our point, keeping in mind that we need to show that we can find an n_0 for any c

If c = 100, the inequality is clearly true. If $c = \frac{1}{100}$, we'll have to use a little more imagination, but we'll be able to find an n_0 . (Try $n_0 = 1000$.)

At this point, it should be clear that, regardless of the c we choose, we'll be able to get $c \cdot n^2$ to dominate 7n+8 eventually (that is, we can find a large enough n_0 to make the definition hold). Thus, $7n+8 \in o(n^2)$.