CCF 全国信息学奥林匹克联赛(NOIP2018)复赛 提高组 国庆集训模拟赛 Day2

(请选手务必仔细阅读本页内容)

一. 题目概况

中文题目名称	舞厅热舞	分赃	不夜城
英文题目与子目录名 (Lemon测评机请忽略)	dance	tiller	city
可执行文件名	dance	tiller	city
输入文件名	dance.in	tiller.in	city.in
输出文件名	dance.out	tiller.out	city.out
每个测试点时限	2秒	1秒	1秒
测试点数目	10	10	10
附加样例文件	见附件	见附件	见附件
结果比较方式	实数比较	全文比较(过滤行末空格及文末回车)	
题目类型	传统	传统	传统
运行内存上限	256M	256M	256M

二. 交源程序文件名

对于 C++语言	dance.cpp	tiller.cpp	city.cpp
对于 C 语言	dance. c	tiller.c	city.c
对于 pascal 语言	dance. pas	tiller.pas	city.pas

三. 编译命令(不包含任何优化开关)

对于 C++语言	g++ -o dancedance.cpp	g++ -o tillertiller.cpp	g++ -o citycity.cpp
	- 1m	- 1m	- 1m
对于 C 语言	gcc -o dancedance.c	gcc -o tillertiller.c	gcc -o citycity.c - 1m
	- 1m	- 1m	
对于 pascal	fpc dance.pas	fpc tiller.pas	fpc city.pas
语言			

注意事项:

- 1、文件名(程序名和输入输出文件名)必须使用英文小写。
- 2、C/C++中函数 main()的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3、测评环境为Window10
- 4、特别提醒: 评测在 Lemon 下进行,各语言的编译器版本以其为准。

1. 舞厅热舞

(dance. cpp/c/pas)

【问题描述】

现有一个舞厅,可以被看做二维平面直角坐标系。一共有 n 个舞者,跳舞的人移动区域是以(x_i, y_i)为圆心, r_i 为半径的圆形区域 C_i 。并且对于任意的两个舞者,他们的**移动区域不超过一个交点**。

定义舞厅的宽敞度:为舞厅内,**移动区域被奇数次覆盖的舞者的区域**。以下图(样例)为例,C1、C4和 C5 分别被覆盖了 1、3、3。所以,舞厅宽敞度为下图中的蓝色阴影部分。

现在为了带来更好的跳舞体验,经营者决定把舞厅分成午夜上半场和午夜下半场。其中 n 个舞者可以被分配到任意的场合。**求分成两场后,舞厅总宽敞度最大是多少?** 下图(样例)为分成两场后,宽敞度的其中一个解:

【输入】

第一行包含一个正整数 $n(1 \le n \le 1000)$,接下来 n 行,每行包含 x_i , y_i 和 $r_i(-10^6 \le x_i, y_i \le 10^6)$, $1 \le r_i \le 10^6$)。表示以 (x_i, y_i) 为圆心, r_i 为半径的移动区域。

【输出】

输出一个十进制,代表舞厅的最大宽敞度。误差精度控制在10⁻⁷以内

【输入输出样例1】

dance.in	dance. out
5	138. 23007676
2 1 6	
0 4 1	
2 -1 3	
1 -2 1	
4 -1 1	

【数据范围】

对于 100%的数据, 1≤n≤1000

2. 分赃

(tiller.cpp/c/pas)

【问题描述】

通过在 T1 中最大化,舞厅宽敞度。经营者和他的合伙人大大捞了一瓢。但是,他的合伙人太多了,他并不想都给他们钱。并且,分钱的合伙人之间,差距又不能太大。所以他非常的困扰,更加具体地说:现有 n 天,每天的盈利额为 a_i,分钱的限制条件有两个:

- 1. 每个分到钱的人至少有 L 天以上
- 2. 对于每个分到钱的人,他们分到天数里最大盈利额和最小盈利额的差值不能超过 s
- 3. 每个人分配的天数必须是连续的

请你帮助这个烦恼的经营者,在满足上述条件的情况下,至少分给多少个人?

【输入】

第一行包含三个正整数 n, s, L $(1 \le n \le 10^5, 0 \le s \le 10^9, 1 \le L \le 10^5)$. 第二行包含 n 个整数 $a_i (-10^9 \le a_i \le 10^9)$.

【输出】

输出最少的分赃人数,如果不存在这样的一个解,输出-1

【输入输出样例】

tiller.out	
3	

【数据范围】

对于 30%的数据, $1 \le n \le 10^3$, $0 \le s \le 10^9$, $1 \le L \le 10^3$ 对于 100%的数据, $1 \le n \le 10^5$, $0 \le s \le 10^9$, $1 \le L \le 10^5$

3. 不夜城

(city.cpp/c/pas)

【问题描述】

ZJY 准备去往一个新世界去旅游。这个世界的城市布局像一棵树。每两座城市之间只有一条路径可以互达。每座城市都有一种宝石,有一定的价格。ZJY 为了赚取最高利益,她会选择从 A 城市买入再转手卖到 B 城市。由于 ZJY 买宝石时经常卖萌,因而凡是 ZJY 路过的城市,这座城市的宝石价格会上涨。让我们来算算 ZJY 旅游完之后能够赚取的最大利润。(如 a 城市宝石价格为 v,则 ZJY 出售价格也为 v)

【输入】

第一行输入一个正整数 N,表示城市个数。

接下来一行输入 N 个正整数表示每座城市宝石的最初价格 p,每个宝石的初始价格不超过 100。

第三行开始连续输入 N-1 行,每行有两个数字 x 和 y。表示 x 城市和 y 城市有一条路径。城市编号从 1 开始。

下一行输入一个整数 Q, 表示询问次数。

接下来 Q 行,每行输入三个正整数 a, b, v,表示 ZJY 从 a 旅游到 b,城市宝石上涨 v。(即求出 a->b 路线中的最大利润后,对于经过的城市涨价 v)

【输出】

对于每次询问,输出 ZJY 可能获得的最大利润,如果亏本则输出 0。

【输入输出样例1】

city. in	city.out
3	1
1 2 3	1
1 2	
2 3	
2	
1 2 100	
1 3 100	

【数据范围】

对于 30%的数据 $1 \le N \le 500$, $1 \le Q \le 500$

对于 50%的数据 $1 \le N \le 5000$, $1 \le Q \le 5000$

对于 100%的数据 $1 \le N \le 50000$, $1 \le Q \le 50000$