A 1	• .
Λnn	licont.
עטגת	licant
1- 1	

Petrovich et al.

For:

SENSOR READOUT CIRCUIT

1	1.	A sensor readout circuit which provides a frequency signal output, the
2	readout circui	t comprising:
3		a phase detector circuit responsive to an output signal from a sensor and
4	an input signa	l to the sensor and configured to detect the phase difference between the
5	input signal a	nd the output signal; and
6		a drive circuit responsive to the phase detector circuit and configured to
7	maintain a fix	ed phase difference between the input signal and the output signal.
1	2.	The sensor readout circuit of claim 1 in which the fixed phase difference
2	between the in	nput signal and the output signal is maintained at zero degrees by the drive
3	circuit.	
1	3.	The sensor readout circuit of claim 1 in which the fixed phase difference
2	between the in	nput signal and the output signal is maintained at 90° by the drive circuit.
1	4.	The sensor readout circuit of claim 1 in which the fixed phase difference
2	between the in	nput signal and the output signal is maintained at 180° by the drive circuit.
1	5.	The sensor readout circuit of claim 1 in which the fixed phase difference
2	between the in	nput signal and the output signal is maintained at 270° by the drive circuit.

DR-338J RJC:ci 1

2

1	6. The sensor readout circuit of claim 1 in which the fixed phase diff	fere	nce
2	between the input signal and the output signal is maintained at a fixed phase diffe	eren	ice
3	between 0° and 360° by the drive circuit.		

- 7. The sensor readout circuit of claim 1 further including a phase delay adjustment circuit responsive to the input signal and the phase detection circuit for adjusting the phase difference between the input signal and the output signal.
 - 8. The sensor readout circuit of claim 1 in which the output signal is a sinusoidal voltage at a predetermined frequency.
- 1 9. The sensor readout circuit of claim 8 in which the predetermined 2 frequency is in the range of 10 MHz to 30 MHz.
- 1 10. The sensor readout circuit of claim 8 further including a voltage step
 2 module configured to offset the input voltage by a predetermined amount to offset the
 3 frequency and measure the corresponding phase detector circuit output change.
- 1 11. The sensor readout circuit of claim 10 in which input voltage is offset 90°.
- 1 12. The sensor readout circuit of claim 10 in which input voltage is offset 2 180°.

- 1 13. The sensor readout circuit of claim 10 in which input voltage is offset 2 270°.
- 1 14. The circuit of claim 9 in which the Q is calculated from the ratio of the 2 offset of the voltage and the offset of the frequency.
- 1 15. The sensor readout circuit of claim 1 in which the sensor is a flexure plate 2 wave device.
- 1 16. The sensor readout circuit of claim 1 in which the sensor readout circuit 2 continuously outputs a frequency representing the resonance frequency of the sensor.

1	17. A sensor readout circuit which provides a frequency signal output, the
2	readout circuit comprising:
3	a phase detector circuit responsive to an output signal from a sensor and
4	an input signal to the sensor and configured to detect the phase difference between the
5	input signal and the output signal;
6	a drive circuit responsive to the phase detector circuit and configured to
7	maintain a fixed phase difference between the input signal and the output signal; and
8	a phase delay adjustment circuit responsive to the input signal and
9	the phase detection circuit for adjusting the phase difference.

1	18.	A sensor readout circuit which provides a frequency signal output, the
2	readout circui	t comprising:
3		a phase detector circuit responsive to an output signal from a sensor and
4	an input signa	al to the sensor and configured to detect the phase difference between the
5	input signal a	nd the output signal; and
6	-	a drive circuit responsive to the phase detector circuit and configured to
7	maintain a fix	ed phase difference between the input signal and the output signal; and
8		a voltage step module configured to offset the voltage by a predetermined
9	amount to off	set the frequency and measure the corresponding phase detector circuit
0	output change	2.
1	19.	The circuit of claim 18 in which the Q is calculated from the ratio of the
2	offset of the v	oltage and the offset of the frequency.

20. A sensor readout circuit which provides a frequency signal output, the
readout circuit comprising:
a phase detector circuit responsive to an output signal from a sensor and
an input signal to the sensor and configured to detect the phase difference between the
input signal and the output signal;
a drive circuit responsive to the phase detector circuit and configured to
maintain a fixed phase difference between the input signal and the output signal;
a phase delay adjustment circuit responsive to the input signal and the
phase detection circuit for adjusting the phase difference; and
a voltage step module configured to offset the voltage by a predetermined
amount to offset the frequency and measure the corresponding phase detector circuit
output change.

1

2

3

1

2

1	21. A sensor readout circuit which provides a frequency signal output, the
2	readout circuit comprising:
3	a phase detector circuit responsive to an output signal from a flexure plate
4	wave device and an input signal to the flexure plate wave device and configured to detect
5	the phase difference between the input signal and the output signal; and
6	a drive circuit responsive to the phase detector circuit and configured to
7	maintain a fixed phase difference between the input signal and the output signal.

- 22. The sensor readout circuit of claim 21 in which the fixed phase difference between the input signal and the output signal is maintained at zero degrees by the drive circuit.
- 23. The sensor readout circuit of claim 21 in which the fixed phase difference between the input signal and the output signal is maintained at 90° by the drive circuit.
- 1 24. The sensor readout circuit of claim 21 in which the fixed phase difference 2 between the input signal and the output signal is maintained at 180° by the drive circuit.
- 1 25. The sensor readout circuit of claim 21 in which the fixed phase difference 2 between the input signal and the output signal is maintained at 270° by the drive circuit.

- 1 26. The sensor readout circuit of claim 21 in which the fixed phase difference
- 2 between the input signal and the output signal is maintained at a fixed phase difference
- 3 between 0° and 360° by the drive circuit.
- 1 27. The sensor readout circuit of claim 21 further including a phase delay
- 2 adjustment circuit responsive to the input signal and the phase detection circuit for
- 3 adjusting the phase difference.
- 1 28. The sensor readout circuit of claim 21 in which the output signal is a
- 2 sinusoidal voltage at a predetermined frequency.
- 1 29. The circuit of claim 24 further including a voltage step module configured
- 2 to offset the voltage by a predetermined amount to offset the frequency and measure the
- 3 corresponding phase detector circuit output change.
- 1 30. The sensor readout circuit of claim 21 in which the sensor readout circuit
- 2 continuously outputs a frequency representing the resonance frequency of the flexure
- 3 plate wave device.

6

output signal.

A method for determining the frequency signal output of a sensor, the 1 31. method comprising the steps of: 2 3 detecting the phase difference between an output signal from a sensor and 4 an input signal to a sensor; and 5 maintaining a fixed phase difference between the input signal and the

1	32.	A method for determining the frequency signal output of a sensor, the
2	method compr	rising:
3		detecting the phase difference between an output signal from a sensor and
4	an input signa	l to a sensor;
5		maintaining a fixed phase difference between the input signal and the
6	output signal;	and
7		adjusting the phase difference between the input signal and the output
8	signal to a pre	determined fixed phase difference.