Семинар 6

Обозначения: V-векторное пространство, $e = (e_1, e_2, ..., e_n)$ базис в V, V^* – двойственное векторное пространство с двойственным базисом $e^* = (e^1, e^2, ..., e^n)$. Координаты вектора $v \in V$ в базисе e записываются в виде $(v^1, v^2, ..., v^n)$ (в двойственном пространстве координаты вектора l записываются стандартно: $(l_1, l_2, ..., l_n)$. Теперь разложение вектора по базису выглядит так $v = v^i e_i$ (суммирование по повторяющемуся индексу). Соответственно, $l = l_j e^j$.

В тензорном произведении $V \bigotimes W$ двух пространств с базисами e и f рассматривается базис $e_i \bigotimes f_i$, который упорядочен лексикографически. Такой базис назовем стандартным.

- 1. Найти координаты тензора $(e_1 + 2e_2) \bigotimes (e_3 + e_4) (e_1 2e_2) \bigotimes (e_3 e_4)$.
- 2. Найти координаты тензора $F \in V^* \bigotimes V^*$ в стандартном базисе, если $F(s,t) = s^1 t^2 s^2 t^1$, $(s,t) \in (V \times V)$.
- 3. Все координаты тензора $F \in V \bigotimes V^*$ в стандартном базисе равны 2. В V перешли к новому базису $(e'_1, e'_2) = (e_1, e_2) \left(\frac{1}{2} \frac{1}{3} \right)$. Найти координаты F в новом стандартном базисе.
 - 4. Построить канонические изоморфизмы пространств:
- а) $V^* \bigotimes V^*$ и пространства билинейных форм на $V \times V$;
- б) $V^* \bigotimes V^*$ и $(V \bigotimes V)^*$.
 - 5. Доказать, что $Z_n \bigotimes \mathbb{Q} = 0$.