Page No:

U...**1**0. 10

Aim:

Write a program to implement queue using arrays.

Array representation

```
Sample Input and Output:
        1. Enqueue 2. Dequeue 3. Display 4. Is Empty 5. Size 6. Exit
        Enter your option : 1
        Enter element: 23
        Successfully inserted.
        1. Enqueue 2. Dequeue 3. Display 4. Is Empty 5. Size 6. Exit
        Enter your option : 1
        Enter element : 56
        Successfully inserted.
        1. Enqueue 2. Dequeue 3. Display 4. Is Empty 5. Size 6. Exit
        Enter your option: 3
        Elements in the queue : 23 56
        1. Enqueue 2. Dequeue 3. Display 4. Is Empty 5. Size 6. Exit
        Enter your option : 4
        Queue is not empty.
        1. Enqueue 2. Dequeue 3. Display 4. Is Empty 5. Size 6. Exit
        Enter your option : 5
        Queue size : 2
        1. Enqueue 2. Dequeue 3. Display 4. Is Empty 5. Size 6. Exit
        Enter your option : 2
        Deleted element = 23
        1. Enqueue 2. Dequeue 3. Display 4. Is Empty 5. Size 6. Exit
        Enter your option: 2
        Deleted element = 56
        1. Enqueue 2. Dequeue 3. Display 4. Is Empty 5. Size 6. Exit
        Enter your option : 4
        Queue is empty.
        1. Enqueue 2. Dequeue 3. Display 4. Is Empty 5. Size 6. Exit
        Enter your option : 6
```

Source Code:

QueueUsingArray.c

```
#include <conio.h>
#include <stdio.h>
#include "QueueOperations.c"
int main() {
   int op, x;
   while(1) {
      printf("1.Enqueue 2.Dequeue 3.Display 4.Is Empty 5.Size 6.Exit\n");
      printf("Enter your option : ");
      scanf("%d",&op);
      switch(op) {
        case 1:
            printf("Enter element : ");
            scanf("%d",&x);
```

```
enqueue(x);
            break;
         case 2:
            dequeue();
            break;
         case 3:
            display();
            break;
         case 4:
            isEmpty();
            break;
         case 5:
            size();
            break;
         case 6: exit(0);
   }
}
```

QueueOperations.c

```
#include<stdlib.h>
#define MAX 5
int q[MAX];
int front=-1;
int rear=-1;
void enqueue(int key)
   if(front==-1&&rear==-1)
      front++;
      rear++;
      q[rear]=key;
   }
   else
   {
      rear++;
      q[rear]=key;
   printf("Successfully inserted.\n");
}
void dequeue()
   if(front==-1&&rear==-1)
      printf("Queue is underflow.\n");
   else if(front<=rear)</pre>
      printf("Deleted element = %d\n",q[front]);
      front++;
   }
   else
      printf("Queue is underflow.\n");
```

```
}
}
   void display()
   {
      int i;
      if((front==-1&&rear==-1)||(front>rear))
         printf("Queue is empty.\n");
      }
      else
      {
         printf("Elements in the queue : ");
         for(i=front;i<=rear;i++)</pre>
         printf("%d ",q[i]);
         printf("\n");
      }
   }
   void isEmpty()
      if(front==-1&&rear==-1)
         printf("Queue is empty.\n");
      else if(front<=rear)</pre>
         printf("Queue is not empty.\n");
      }
      else
      {
         printf("Queue is empty.\n");
      }
   }
   void size()
      if(front==-1&&rear==-1)
         printf("Queue size : %d\n",0);
      else if(front==rear)
         printf("Queue size : %d\n",1);
      }
      else
         printf("Queue size : %d\n",rear-front+1);
      }
   }
```

Execution Results - All test cases have succeeded!

Test Case - 1 User Output 1.Enqueue 2.Dequeue 3.Display 4.Is Empty 5.Size 6.Exit 2

Enter your option : 2 Queue is underflow. 3 1.Enqueue 2.Dequeue 3.Display 4.Is Empty 5.Size 6.Exit 3 Enter your option : 3 Queue is empty. 4 1. Enqueue 2. Dequeue 3. Display 4. Is Empty 5. Size 6. Exit 4 Enter your option : 4 Queue is empty.5 1.Enqueue 2.Dequeue 3.Display 4.Is Empty 5.Size 6.Exit 5 Enter your option : 5 Queue size : 01 1.Enqueue 2.Dequeue 3.Display 4.Is Empty 5.Size 6.Exit 1 Enter your option : 1 Enter element : 14 Successfully inserted. 1 1.Enqueue 2.Dequeue 3.Display 4.Is Empty 5.Size 6.Exit 1 Enter your option : 1 Enter element : 78 Successfully inserted. 1 1.Enqueue 2.Dequeue 3.Display 4.Is Empty 5.Size 6.Exit 1 Enter your option : 1 Enter element : 53 Successfully inserted. 3 1.Enqueue 2.Dequeue 3.Display 4.Is Empty 5.Size 6.Exit 3 Enter your option : 3 Elements in the queue : 14 78 53 5 1.Enqueue 2.Dequeue 3.Display 4.Is Empty 5.Size 6.Exit 5 Enter your option : 5 Queue size : 36 1. Enqueue 2. Dequeue 3. Display 4. Is Empty 5. Size 6. Exit 6 Enter your option : 6

Test Case - 2
User Output
1.Enqueue 2.Dequeue 3.Display 4.Is Empty 5.Size 6.Exit 1
Enter your option : 1
Enter element : 25
Successfully inserted. 2
1.Enqueue 2.Dequeue 3.Display 4.Is Empty 5.Size 6.Exit 2
Enter your option : 2
Deleted element = 25 2
1.Enqueue 2.Dequeue 3.Display 4.Is Empty 5.Size 6.Exit 2
Enter your option : 2
Queue is underflow. 3
1.Enqueue 2.Dequeue 3.Display 4.Is Empty 5.Size 6.Exit 3
Enter your option : 3
Queue is empty. 1
1.Enqueue 2.Dequeue 3.Display 4.Is Empty 5.Size 6.Exit 1
Enter your option : 1
Enter element : 65

Successfully inserted. 3
1.Enqueue 2.Dequeue 3.Display 4.Is Empty 5.Size 6.Exit 3
Enter your option : 3
Elements in the queue : 65 4
1.Enqueue 2.Dequeue 3.Display 4.Is Empty 5.Size 6.Exit 4
Enter your option : 4
Queue is not empty. 2
1.Enqueue 2.Dequeue 3.Display 4.Is Empty 5.Size 6.Exit 2
Enter your option : 2
Deleted element = 65 4
1.Enqueue 2.Dequeue 3.Display 4.Is Empty 5.Size 6.Exit 4
Enter your option : 4
Queue is empty. 5
1.Enqueue 2.Dequeue 3.Display 4.Is Empty 5.Size 6.Exit 5
Enter your option : 5
Queue size : 01
1.Enqueue 2.Dequeue 3.Display 4.Is Empty 5.Size 6.Exit 1
Enter your option : 1
Enter element : 63
Successfully inserted.5
1.Enqueue 2.Dequeue 3.Display 4.Is Empty 5.Size 6.Exit 5
Enter your option : 5
Queue size : 16
1.Enqueue 2.Dequeue 3.Display 4.Is Empty 5.Size 6.Exit 6
Enter your option : 6