

planetmath.org

Math for the people, by the people.

diagonal functor

Canonical name DiagonalFunctor
Date of creation 2013-03-22 16:37:11
Last modified on 2013-03-22 16:37:11

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 5

Author CWoo (3771)
Entry type Definition
Classification msc 18A05
Classification msc 18-00

Let \mathcal{C} be a category. A diagonal functor on \mathcal{C} is a functor $\delta: \mathcal{C} \to \mathcal{C}^I$ for some set I given by

$$\delta(A) = (A)_{i \in I}$$
 and $\delta(\alpha) = (\alpha)_{i \in I}$.

Here, \mathcal{C}^I denotes the http://planetmath.org/ProductCategoryI-fold direct product of the category \mathcal{C} . For any given I, δ is unique.

 δ is http://planetmath.org/FaithfulFunctorfaithful. Its image, $\delta(\mathcal{C})$, is the subcategory of \mathcal{C}^I whose objects are $(A)_{i\in I}$ and morphisms are $(\alpha)_{i\in I}$. $\delta(\mathcal{C})$ is http://planetmath.org/CategoryIsomorphismisomorphic to \mathcal{C} , and may be pictured as the great diagonal of an I-dimensional "cube".

More generally, when I is a category, then the diagonal functor is just a functor δ that sends each object $A \in \mathcal{C}$ to the constant functor $\delta(A)$: $I \to \mathcal{C}$ with fixed value A, and every morphism $\alpha : A \to B$ to the natural transformation $\delta(\alpha) : \delta(A) \dot{\to} \delta(B)$, which sends every object $i \in I$ to α . A routine verification shows that $\delta(\alpha)$ is indeed a natural transformation.