情報セキュリティ

情報科学の世界II

2017年度

只木 進一(工学系研究科)

セキュリティは他人事ではない

- 個人情報の漏えい
 - 民間企業の顧客情報の漏えい
 - 一公的機関からの個人情報漏えい
 - 特定個人情報:マイナンバー
- 信用してアクセスしたサービス
 - ●乗っ取られていて、不正プログラムを押し込まれる

セキュリティは他人事ではない

- ■個人のPCやスマートフォーンからの情報漏えい
 - ■自分の情報だけでなく、他人の情報
- ▶様々なサービスのID
 - ●乗っ取り、なりすまし
- ■自分のデバイスが、攻撃の足場に使われる

個人情報漏洩事案

- 2017/6/20 佐賀銀行
 - ─ 行員が窃盗。共犯者へ大口顧客情報(169人)を漏えい
- 2016 佐賀県教育委員会
 - ▶ 1万人の生徒の住所、氏名、電話番号、成績など
 - 県内の少年、高校生が関与
- ▶ 2015/5/28 日本年金機構
 - 標的型攻撃
 - 150万件以上の個人情報漏えい

- 2014/7/9 ベネッセ

- 760万件の顧客情報を漏洩
- →子供と保護者の氏名、住所、生年月日など
- ▶システムを委託していた系列会社へ派遣 されていた社員が持ち出し

- 2014/4/18 東京医科大学

- 脳神経外科手術 33例
- 氏名、性別、生年月日、検査データ
- →職員がUSBで持ち出し、紛失

_2011/4/21 ソニー

- → Play Station Networkの顧客情報7700万件流出
- →住所、ログインID、パスワード、購入履 歴など
- →サーバーの脆弱性を突かれ、不正アクセ スを受ける

個人情報・プライバシーとその 管理

- ■個人情報:生存している個人を特定する情報
 - ■氏名や住所は重要な要素だが、それだけではない
 - −個人の属性から特定できる場合がある
 - ▶職業、出身大学、電話番号などの組合わせ

プライバシー

- →以下の三つの要件を満たす
 - ■個人の私的生活の事実
 - −公知でないもの
 - −公開を望まない
- −例えば
 - ■どういう食べ物や服装の好みがあるか
 - ▶病歴、服薬履歴

情報セキュリティの構成要素

- 機密性: confidentiality
 - ▶秘密であること
 - →制限された人だけが利用できる
- ─完全性: integrity
 - −正式で正しいものであること
- ■可用性: availability
 - 必要なときに利用できること

- 三つの要素のバランスが重要
 - ▶情報システムとしてのバランス
 - ▶システムの目的に合致しているか
 - ▶情報システムの運用の観点
 - ■システムとして運用できるのか
 - ■費用と効用の評価
- ▶情報システムは手段に過ぎない

情報セキュリティの対策

- 問題が発生しないための対策
 - 不正通信が起こらないように
 - ■ウィルスが入り込まないように
 - 不正侵入が起こらないように
- →問題の発生を想定した対策
 - 不正通信の確認と遮断の方法
 - ▶重要情報の暗号化
 - ▶重要情報の分散

- 問題が発生した後の対策
 - 緊急退避
 - ▶連絡・通報・責任体制
 - →影響範囲の迅速な確認方法
 - →適切な公表
- 問題の再発を防ぐ対策
 - ■原因の究明と対策
 - リスクとコストの再評価

技術的対策

- −通信路の対策
 - ネットワークの分離
 - ▶重要情報を持つネットワークを切り離す
 - Firewall
 - ▶送受信元、サービスで通信を制限
 - IDP(Intrusion Detection System)
 - ▶侵入の兆候を検知して遮断

ネットワークの構成例

- ウィルス対策:通信路
 - ■ウィルス付メールの遮断
 - →不正なWebサイトへ誘導するメール遮断
 - 不正な活動の検知と遮断
- ■ウィルス対策:クライアント
 - ■ファイルのフィルタリング
 - 不正な活動の検知と遮断

- 本人確認:不正利用防止
 - ユーザー名とパスワードによる認証
 - 多要素認証
 - ─持っているもの:ICカードなど
 - ─持っているものに一時的なパスワードを送信
 - 生体認証
 - →指紋、虹彩、静脈
 - 一証跡管理

暗号化

- −情報を暗号化する
 - ■暗号化には、その方法とともに鍵が必要
- →例: Caesarの暗号
 - ■アルファベットの先頭から鍵の文字列に 置き換える
 - →残りは、鍵の終端の後ろに残ったアルファベットを順番に対応させる

- →鍵:JULISCAER
- abcdefghljkl mnopqrstuvwxyz
- Juliscaertvwx yz bdfghkmnopq

- ─符号化: Encode, Encipher
 - →元のテキストを暗号テキスト(cipher text) にする
- ─ 復号化: Decode, Decipher
 - ━暗号テキストを元のテキストに戻す

- ■鍵を送信者と受信者が共有する方法
 - 一共通鍵方式
 - 符号化と復号化で同じ鍵
 - ▶どうやって鍵を送る?
- 送信用鍵と受信用鍵が異なる
 - 一公開鍵方式
 - 一符号化と復号化が異なる鍵

公開鍵暗号方式

- →受信者から送信者へ、符号化用鍵の送信
- →送信者は送信内容を符号化用鍵で暗号 化し、送信
- →受信者は、自分だけが持つ復号化用鍵で暗号テキストを復号

SSL (Secure Socket Layer)

- ► Web 通信で用いる暗号化方式
- ►Webの信頼性を示す証明書
- ■重要情報を送る場合には、確認必須

- → クライアントがサーバへ通信要求
- サーバが証明書と公開鍵を送信
- クライアントは、共通鍵を生成して サーバから受信した鍵で符号化して送 信
- ■サーバは共通鍵を受信して復号
- 双方が共有した鍵で、暗号通信

復号できない暗号

- ーパスワード
 - ─符号化できるが、復号できない
 - 攻撃手法
 - ■ユーザ名、名前、生年月日などをヒントに
 - −総当たり

個人としての安全対策: Webの利用

- ■重要情報をできるだけ送らない
 - →正しいサイトであることの確認:証明書
 - 一暗号化
 - ▶本当に必要なのか
- 不正サイトからの攻撃を防ぐ
 - 不要なサイトへアクセスしない

個人としての安全対策: ウィルス対策

- ■ウィルス対策ソフトの導入
 - ■ウィルスパターンの更新
 - −定期的な全体スキャン
- ▶危険なメール
 - ■知らない人からの「緊急」「重要」メール
 - 送信元のアドレスがおかしい
 - リンク先のアドレスがおかしい

個人としての安全対策: ID管理

- 一パスワードの管理
 - 重要なサービスのパスワードを他のサービスと共有しない
 - −他人に教えない
 - ─危ないと思ったら変更する

個人としての安全対策: データを失わない

- バックアップをする
 - CDTBD
 - →USB接続のポータブルHD
 - ■クラウドストレージ