

at Northeastern University

## EECE 5155 Wireless Sensor Networks (and The Internet of Things)

Prof. Francesco Restuccia Email: frestuc@northeastern.edu



# Contention-Based Mac Protocols: S-MAC



## S-MAC: Sleep MAC

W. Ye, J. Heidemann, D. Estrin, , "Medium Access Control with Coordinated Adaptive Sleeping for Wireless Sensor Networks," IEEE/ACM Trans. on Networking, June 2004.

- Problem: "Idle Listening" consumes significant energy
- Solution: Periodic listen and sleep



- During sleeping, radio is turned off
- Reduce duty cycle to ~ 10% (Listen for 200ms and sleep for 2s)

Latency Control Energy



### S-MAC

- ➤ Each node goes into periodic sleep mode during which it switches the radio off and sets a timer to awake later
- When the timer expires it wakes up and listens to the channel, to see if any other node wants to talk to it
- Requires a periodic synchronization among nodes to take care of any type of clock drift



## Periodic Sleep and Listen

- All nodes are free to choose their own listen/sleep schedules
- To reduce control overhead, only neighboring nodes are synchronized together
- Preferably, they listen at the same time and go to sleep at the same time



## Synchronization

SYNC packets are exchanged periodically to maintain schedule synchronization

### SYNC PACKET

Sender Node ID Next Sleep Time

- SYNCHRONIZATION PERIOD: Period for a node to send a SYNC packet
- > Receivers will adjust their timer counters immediately after they receive the SYNC packet



## Periodic Listen and Sleep





# Maintaining Synchronization





## Choosing and Maintaining Schedules

- Each node maintains a schedule table that stores schedules of all its known neighbors
- > For initial schedule, do:
  - 1. A node first listens to the medium for a certain amount of time (at least the synchronization period)
  - 2. If it does not hear a schedule from another node, it randomly chooses a schedule and broadcasts its schedule with a SYNC packet immediately
  - 3. This node is called a Synchronizer
  - 4. If a node receives a schedule from a neighbor before choosing its own schedule, it just follows this neighbor's schedule, i.e. becomes a Follower, waits for a random delay and broadcasts its schedule



## Coordinated Sleeping

- ➤ In a large network, we cannot guarantee that all nodes follow the same schedule
- > The node on the border will follow both schedules
- When it broadcasts a packet, it needs to do it twice, first for nodes on schedule 1 and then for those on schedule 2 Schedule





## Collision Avoidance

- S-MAC is based on contention, i.e., if multiple neighbors want to talk to a node at the same time, they will try to send when the node starts listening
- Similar to IEEE 802.11, i.e. use RTS/CTS mechanism to address the hidden terminal problem
- Perform carrier sense before initiating a transmission



### Collision Avoidance

- If a node fails to get the medium, it goes to sleep and wakes up when the receiver is free and listening again
- Broadcast packets are sent without using RTS/CTS
- Unicast data packets follow the sequence of RTS/CTS/DATA/ACK between the sender and receiver
- Duration field in each transmitted packet indicates how long the remaining transmission will be so if a node receives a packet destined to another node, it knows how long it has to keep silent
- The node records this value in network allocation vector (NAV) and sets a timer for it



### Collision Avoidance

- When a node has data to send, it first looks at NAV
- If this value is not zero, then medium is busy (virtual carrier sense)
- The medium is determined as free if both virtual and physical carrier sense indicate the medium is free
- All immediate neighbors of both the sender and receiver should sleep after they hear RTS or CTS packet until the current transmission is over



## Message Passing Feature

- Long messages are broken down into smaller packets and sent continuously once the channel is acquired by RTS/CTS handshake
- Increases the sleep time, but leads to fairness problems



## Msg Passing

### S-MAC message passing





### S-MAC – Performance Evaluation

- Topology: Two-hop network with two sources and two sinks
- Sources periodically generate a sensing message which is divided into fragments
- Traffic load is changed by varying the inter-arrival period of the messages: (for inter-arrival period of 5s, message is generated every 5s by each source. Here it varies between 1-10s)





## S-MAC – Example

- ➤ In each test, there are 10 messages generated on each source node
- ➤ Each message has 10 fragments, and each fragment has 40 bytes (200 data packets to be passed from sources to sinks)
- The total energy consumption of each node is measured for sending this fixed amount of data



## Experiments

Average energy consumption in the source nodes A&B



Message inter-arrival period (traffic load) (second) (small value → heavy traffic load)

## Experiments

- S-MAC consumes much less energy than 802.11-like protocol without sleeping
- At heavy load, idle listening rarely happens, energy savings from sleeping is very limited.
- > At light load, periodic sleeping plays a key role



### Let's think...

What are the pros and cons of S-MAC? How would you improve it?

## Think-Share!



## S-MAC - Conclusions

- A mainly static network is assumed
- Trades off latency for reduced energy consumption
- Redundant data is still sent with increased latency
- Increased collision rate due to sleep schedules



# Contention-Based Mac Protocols: B-MAC



### **B-MAC**

J. Polastre, J. Hill, D. Culler, "Versatile Low Power Media Access for WSNs", Proc. of ACM SenSys, Nov. 2004.

### What is B-MAC?

- A configurable MAC protocol for WSNs
- Small core and factoring out higher-level functionality
- An adaptive bidirectional interface for WSN applications

### It's a traditional MAC protocol for WSNs

- Work reasonably well for a large set of traffic workloads (applications)
- Create a flexible set of functionalities able to provide solutions to a set of goals



### **B-MAC Goals**

### > Goals

- Low Power Operation
- Effective Collision Avoidance
- Simple Implementation, Small Code and RAM Size
- Efficient Channel Utilization
- Reconfigurable by Network Protocols
- Tolerant to Changing RF/Networking Conditions
- Scalable to Large Numbers of Nodes



### Classical vs. Minimalistic

### > S-MAC

- A classic approach
- User pre-configures duty cycle
- Applications rely on S-MAC to adjust its operation as the environment evolves

#### > B-MAC

- A minimalistic approach
- Small core of medium access functionalities
- RTS/CTS, ACKs, etc. are considered higher layer functionalities (services)
- Uses Clear Channel Assessment (CCA) and packet backoffs for channel arbitration, link layer acknowledgments for reliability
- Uses Low Power Listening (LPL)
- More flexible and more tunable



## **B-MAC:** Principles

- Reconfigurable parameters:
  - Backoff/Timeouts
  - Duty Cycle
  - Optional ACKs
- Flexible control
- Feedback to higher protocols
  - Model of operation
  - Upward costs (e.g., link quality)
- Minimal implementation
- Minimal state





## B-MAC Tiny OS Interface

- Interfaces for flexible control of B-MAC by higher layer services
- Allow services to toggle CCA and ACKs, set backoffs on a per message basis, and change the LPL mode for transmit and receive

```
interface MacControl {
  command result t EnableCCA();
  command result t DisableCCA();
  command result t EnableAck();
  command result t DisableAck();
  command void* HaltTx();
interface MacBackoff
  event uint16 t initialBackoff(void* msg);
  event uint16 t congestionBackoff(void* msg);
interface LowPowerListening
  command result t SetListeningMode (uint8 t mode);
  command uint8 t GetListeningMode();
  command result t SetTransmitMode(uint8 t mode);
  command uint8 t GetTransmitMode();
  command result t SetPreambleLength(uint16 t bytes);
  command uint16 t GetPreambleLength();
  command result t SetCheckInterval (uint16 t ms);
  command uint16 t GetCheckInterval();
```



## **B-MAC Important Design Aspects**

- Clear Channel Assessment (CCA)
- Low Power Listening (LPL)
- Packet backoffs
- Link layer acknowledgments



# Clear Channel Assessment (CCA)

- Effective collision avoidance
- Find out whether the channel is idle
  - If too pessimistic: waste bandwidth
  - If too optimistic: more collisions
- Key points:
  - Ambient noise may change significantly depending on the environment
  - Packet reception has fairly constant channel energy
  - What is noise? What is signal?
  - How can we be certain that the channel is free?
- Automatic gain control in software to estimate the noise floor



### Noise Floor Estimation

- Take a number of received signal strength indicator (RSSI) samples when the channel is assumed to be free/idle
- > RSSI samples are entered into a FIFO queue
- Median of the queue is added to an exponentially weighted moving average with decay a
- Median is used as a simple low pass filter to add robustness to the noise floor estimate

$$A_t = a * S_t + (1 - a) * S_t - 1$$

where a is assumed to be 0.06 and FIFO queue size of 10

Once a good estimate of the noise floor is established, a request to transmit a packet starts the process of monitoring the received signal from the radio



## Single-Sample Thresholding vs Outlier Detection

- Common approach: take single sample, compare to noise floor
  - Large number of false negatives → lower effective channel BW
- B-MAC: search for outliers
  - If a sample has significantly lower energy than the noise floor during the sampling period, then the channel is clear

If 5 samples are taken and no outlier is found, the channel is busy



## CCA vs. Threshold Techniques



- A packet arrives between 22 and 54ms. The middle graph shows the output of a thresholding CCA algorithm (1: channel clear, 0: channel busy)
- Bottom shows the output of an outlier detection algorithm
- Threshold: waste channel utilization
- CCA: Fully utilize the channel since a valid packet could have no outlier significantly below the noise floor

## Clear Channel Assessment - Recap

- Before transmission take samples of the channel
- If five samples are taken, and no outlier found => channel busy, take a random backoff
- Noise floor updated when the channel is known to be clear, i.e., just after packet transmission



## Low Power Listening (LPL)

- Periodic Channel Sampling
  - Energy Cost = RX + TX + Listen
  - Goal: minimize idle listening
- Periodically
  - Wake up, sample channel, sleep
- **Properties**
- wake up, sample charmer, sicepoperties

  Wake-up time fixed

  "Check Time" between wakeups variable

  Preamble length matches wakeup interval
- Overhear all data packets
  - Duty cycle depends on number of neighbors and traffic







## Low Power Listening (LPL) - 2

- Goal: Minimize "Listen Cost"
- Principles
  - Node periodically wakes up, turns radio on and checks activity on the channel
  - If energy/activity on the channel is detected, node powers up and stays awake for the time required to receive the incoming packet
- Node goes back to sleep
  - If the complete packet is received
  - After a timeout (if no packet received (a false positive))
- Preamble length matches channel checking period
  - No explicit synchronization required
- Noise floor estimation used to detect channel activity during LPL



# Check Interval for Channel Activity

- To reliably receive data, the preamble length is matched to the interval that the channel is checked for activity
- ➤ If the channel is checked for every 100 ms, the preamble must be at least 100 ms long for a node to wake up, detect activity on the channel, receive the preamble and then receive the message
- Interval between LPL samples is maximized so that the time spent sampling the channel is minimized
  - Transmit mode ~~ Preamble length
  - Listening mode ~~ Check interval



## LPL Check Interval

- Sampling rate (traffic pattern) defines optimal check interval
- Check interval
  - Too small: energy wasted on idle listening
  - Too large: energy wasted on transmissions (long preambles)
- In general, it is better to have larger preambles than to check more often!



# S-MAC and B-MAC: Comparison

- Experimental Setup:
  - n nodes send as quickly as possible to saturate the channel
  - Shown: throughput as a function of the number of nodes
- B-MAC has about 4.5 time higher throughput than S-MAC-unicast
  - Not as much when ACK or RTS/CTS is used
  - Differences less pronounced as # of nodes increases
  - B-MAC has CCA, thus it backs off less frequently





# Throughput vs Power Consumption



# Tradeoffs: Latency vs Reliability

- Reliability
  - 98.5% of all packets delivered
  - Some nodes 100% delivery
- ...but communication links are volatile
  - Retransmissions required
  - After 5 retries, give up and pick a new parent
- Actual latency
  - Retransmission delay
  - Contention delay (infrequent)





# Tradeoffs: Latency for Energy



10-hop network
Source sends a 100-byte packet every 10 seconds
SMAC: 10% Duty Cycle
BMAC: choose optimal check interval
Poor SMAC again performs worse...

 Reason: sync packets, probability of multiple schedules---less time to sleep



# Latency





### Let's think...

## Can you compare S-MAC vs B-MAC?

# Think-Share!



# Comparison of S-MAC and B-MAC

|                          | S-MAC          | B-MAC                |
|--------------------------|----------------|----------------------|
| Collision avoidance      | CSMA/CA        | CSMA                 |
| ACK                      | Yes            | Optional             |
| Message passing          | Yes            | No                   |
| Listen period            | Pre-defined    | Pre-defined          |
| Listen interval          | Long           | Very short           |
| Schedule synchronization | Required       | Not required         |
| Packet transmission      | Short preamble | Long preamble        |
| Code size                | 6.3KB          | 4.4KB (LPL &<br>ACK) |



# IEEE 802.15.4 MAC LEVEL



### Content

- Overview
- > Topologies
- Superframe structure
- Frame formatting
- Data service
- Management service
- Interframe spacing
- CSMA procedure



## 802.15.4 Architecture



## What IEEE 802.15.4 Aims at

- Extremely low cost
- Ease of installation
- Reliable data transfer
- Short range operation
- Reasonable battery life



### MAC Overview

- Star and peer-to-peer topologies
- Association
- CSMA-CA channel access mechanism
- Packet validation and message rejection
- Optional guaranteed time slots (GTS)
- Guaranteed packet delivery
- Facilitates low-power operation
- > Security



### IEEE 802.15.4 Device Classes

- Full function device (FFD)
  - Any topology
  - Capable to be a PAN coordinator
  - Talks to any other device
  - Implements complete protocol set
- Reduced function device (RFD)
  - Limited to star topology or end-device in a peer-to-peer network.
  - Cannot become a PAN coordinator
  - Very simple implementation
  - Reduced protocol set



## IEEE 802.15.4 Definitions

- Network Device: An RFD or FFD implementation containing an IEEE 802.15.4 medium access control and physical interface to the wireless medium.
- Coordinator: An FFD with network device functionality that provides coordination and other services to the network.
- ➤ PAN Coordinator: A coordinator that is the principal controller of the PAN. A network has exactly one PAN coordinator.



## Low-Power Operation

Duty-cycle control using superframe structure



- Beacon order and superframe order
- Coordinator battery life extension
- Indirect data transmission
- Devices may sleep for extended period over multiple beacons
- Allows control of receiver state by higher layers



# Star Topology







Communications flow



# Peer-Peer Topology





## Combined Topology



# Optional Frame Structure

#### Battery life extension



## Optional Frame Structure





Superframe may have optional inactive period (duty cycle)

## General MAC Frame Format

| MAC header       |                    |                   |             |                   |         | MAC<br>payload | MAC footer |
|------------------|--------------------|-------------------|-------------|-------------------|---------|----------------|------------|
| 33,111,01        |                    | Identifier        | Addressi    | ng fields         |         | J Pay 10 a.a.  | sequence   |
| Frame<br>control | Sequence<br>number | PAN<br>identifier | address     | PAN<br>identifier | address | Frame payload  | check      |
|                  |                    | Destination       | Destination | Source            | Source  |                | Frame      |
| Octets:2         | 1                  | 0/2               | 0/2/8       | 0/2               | 0/2/8   | variable       | 2          |

| L |            |                     |               |           |           |          |                             |          |                        |
|---|------------|---------------------|---------------|-----------|-----------|----------|-----------------------------|----------|------------------------|
|   | Bits: 0-2  | 3                   | 4             | 5         | 6         | 7-9      | 10-11                       | 12-13    | 14-15                  |
|   | Frame type | Sequrity<br>enabled | Frame pending | Ack. Req. | Intra PAN | Reserved | Dest.<br>addressing<br>mode | Reserved | Source addressing mode |

#### Frame control field



## **Beacon Frame Format**

| Octets:2         | 1                            | 4 or 10                    | 2                        | variable      | variable                     | variable       | 2                          |
|------------------|------------------------------|----------------------------|--------------------------|---------------|------------------------------|----------------|----------------------------|
| Frame<br>control | Beacon<br>sequence<br>number | Source address information | Superframe specification | GTS<br>fields | Pending<br>address<br>fields | Beacon payload | Frame<br>check<br>sequence |
| MAC header       |                              |                            |                          | MA            | AC payload                   |                | MAC<br>footer              |
|                  |                              |                            |                          |               |                              |                |                            |





## MAC Command Frame

| Octets:2         | 1                          | 4 to 20             | 1               | variable        | 2                          |
|------------------|----------------------------|---------------------|-----------------|-----------------|----------------------------|
| Frame<br>control | Data<br>sequence<br>number | Address information | Command<br>type | Command payload | Frame<br>check<br>sequence |
| MAC header       |                            |                     |                 | MAC payload     | MAC<br>footer              |



- Association request
- Association response
- Disassociation notification
- Data request
- PAN ID conflict notification

- Orphan Notification
- Beacon request
- Coordinator realignment
- GTS request



## **Data Frame Format**

| Octets:2         | 1                          | 4 to 20             | <b>v</b> ariable | 2                          |
|------------------|----------------------------|---------------------|------------------|----------------------------|
| Frame<br>control | Data<br>sequence<br>number | Address information | Data payload     | Frame<br>check<br>sequence |
| MAC header       |                            |                     | MAC Payload      | MAC<br>footer              |

## Acknowledgement Frame Format

| Octets:2 | 1        | 2        |  |
|----------|----------|----------|--|
| Frame    | Data     | Frame    |  |
| control  | sequence | check    |  |
| Control  | number   | sequence |  |
| MAC      | MAC      |          |  |
| MACT     | footer   |          |  |



### **Data Service**

- Data transfer to neighboring devices
  - Acknowledged or unacknowledged
  - Direct or indirect
  - Using GTS service
- Maximum data length (MSDU) aMaxMACFrameSize (102 bytes)



## **MAC Data Primitives**

| Primitive  | Request          | Confirm          | Indication | Response |
|------------|------------------|------------------|------------|----------|
| MCPS-DATA  | Required         | Required         | Required   |          |
| MCPS-PURGE | Optional for RFD | Optional for RFD |            |          |



## Data Transfer

### Message Sequence Diagram





# Indirect Data Transfer Message Sequence Diagram





# Management Service

- Association / disassociation
- GTS allocation
- Message pending
- Node notification
- Network scanning/start
- Network synchronization/search



# MAC Management Primitives

| Primitive          | Request          | Confirm          | Indication       | Response         |
|--------------------|------------------|------------------|------------------|------------------|
| MLME-GET           | Required         | Required         |                  |                  |
| MLME-SET           | Required         | Required         |                  |                  |
| MLME-ASSOCIATE     | Required         | Required         | Optional for RFD | Optional for RFD |
| MLME-DISASSOCIATE  | Required         | Required         | Required         |                  |
| MLME-GTS           | Optional for RFD | Optional for RFD | Optional for RFD |                  |
| MLME-BEACON-NOTIFY |                  |                  | Required         |                  |
| MLME-POLL          | Required         | Required         |                  |                  |
| MLME-COMM-STATUS   |                  |                  | Required         |                  |
| MLME-ORPHAN        |                  |                  | Optional for RFD | Optional for RFD |
| MLME-SCAN          | Required         | Required         |                  |                  |
| MLME-START         | Optional for RFD | Optional for RFD |                  |                  |
| MLME-RX-ENABLE     | Required         | Required         |                  |                  |
| MLME-SYNC          | Required         |                  |                  |                  |
| MLME-SYNC-LOSS     |                  |                  | Required         |                  |
| MLME-RESET         | Required         | Required         |                  |                  |

# Association Message Sequence Diagram





# Disassociation Message Sequence Diagram





# Data Polling Message Sequence Chart





No data pending at the coordinator



# Data Polling Message Sequence Chart





## Data pending at the coordinator



# Passive Scan





## **Active Scan**



# Orphaning Message Sequence Diagram





## Slotted CSMA Procedure



# Un-slotted CSMA Procedure

Used in non-beacon networks.



!!!!!