1.3 の補足

最初に λ の値を十分大きくして全ての β_j を 0 に設定した後, λ の値を下げながら,座標降下法を実行することを考える.簡単のため,各 $j=1,\cdots,p$ について $\sum_{i=1}^N x_{i,j}^2=1$ であって, $\sum_{i=1}^N x_{i,j}y_i$ の値が全て異なると仮定する.このとき,全ての j に対して $\beta_j=0$ であるような λ の値は $\lambda=\max_{1\leq j\leq p}\left|\frac{1}{N}\sum_{i=1}^N x_{i,j}y_i\right|$ で与えられる;

 β_j を 1 つ選び,そのほかの β_k は 0 として固定する.このとき,(1.10) 式から L の劣微分を 0 にするような β_j を求めると

$$-\frac{1}{N} \sum_{i=1}^{N} x_{i,j} \left(y_i - \sum_{k=1}^{p} x_{i,k} \beta_k \right) + \lambda \begin{cases} 1 & \beta_j > 0 \\ [-1,1] & \beta_j = 0 \\ -1 & \beta_j < 0 \end{cases}$$

$$= -\frac{1}{N} \sum_{i=1}^{N} x_{i,j} y_i + \frac{1}{p} \sum_{i=1}^{N} x_{i,j}^2 \beta_j + \lambda \begin{cases} 1 & \beta_j > 0 \\ [-1,1] & \beta_j = 0 \\ -1 & \beta_j < 0 \end{cases} \quad (\because \beta_k = 0 \ (k \neq j))$$

$$= -\frac{1}{N} \sum_{i=1}^{N} x_{i,j} y_i + \frac{1}{N} \beta_j + \lambda \begin{cases} 1 & \beta_j > 0 \\ [-1,1] & \beta_j = 0 \ni 0 \end{cases} \quad \left(\because \sum_{i=1}^{N} x_{i,j}^2 = 1 \right)$$

$$\therefore \beta_j = N \mathcal{S}_{\lambda} \left(\frac{1}{N} \sum_{i=1}^{N} x_{i,j} y_i \right) = 0 \quad \left(\because \lambda \geq \max_{1 \leq j \leq p} \left| \frac{1}{N} \sum_{i=1}^{N} x_{i,j} y_i \right| \right)$$

となるからである.もし λ をその値より小さくすると,ある 1 つの j で $p_j = \frac{1}{N}\sum_{i=1}^N x_{i,j}y_i$ としたときに

$$\beta_j = NS_{\lambda}(p) = N\begin{cases} p - \lambda & (p > \lambda) \\ p + \lambda & (p < \lambda) \end{cases}$$

となるので

$$\frac{1}{N} \left| \sum_{i=1}^{N} x_{i,j} \left(y_i - \sum_{k=1}^{p} x_{i,k} \beta_k \right) \right| = \frac{1}{N} \left| \sum_{i=1}^{N} x_{i,j} y_i - \sum_{k=1}^{N} x_{i,j}^2 \beta_j \right|$$
$$= \frac{1}{N} |N\lambda| = \lambda$$

が成立する.

Ridge

1.1 節において,行列 X^TX が正則であるという仮定の下で二乗誤差 $||y-X\beta||$ を最小に する β が $\hat{\beta}=(X^TX)^{-1}X^Ty$ となることを導いた.

その後 N < p の場合には X^TX が正則でないことを示したが, $N \ge p$ であって X^TX が正則であっても,行列式が小さければ信頼区間が大きくなるなど不都合が生じる.このような問題を避けるため,定数 $\lambda \ge 0$ を用いて二乗誤差に β のノルムの λ 倍を加えた

$$L := \frac{1}{N} ||y - X\beta||^2 + \lambda ||\beta||^2$$

を最小にする方法がよく用いられる.この方法を Ridge と呼ぶ.上式を最小にする β を求めるために,L を β で微分すると

$$\frac{\partial L}{\partial \beta} = -\frac{2}{N} X^T (y - X\beta) + 2\lambda \beta$$

となる. $(ベクトル微分の公式 \partial/\partial x(Ax-b)^T(Ax-b)=2A^T(Ax-b)$ を用いた.) さらに $X^TX+N\lambda I$ が正則であれば、 $\frac{\partial L}{\partial \beta}=0$ となる $\hat{\beta}$ は

$$0 = -\frac{2}{N}X^{T}(y - X\beta) + 2\lambda\beta$$
$$= \frac{2}{N}X^{T}y - \frac{2}{N}(X^{T}X + N\lambda)\hat{\beta}$$
$$(X^{T}X - N\lambda)\hat{\beta} = X^{T}y$$
$$\hat{\beta} = (X^{T}X + N\lambda)^{-1}X^{T}y$$

となることがわかる. ここで, $\lambda>0$ ならば $X^TX+N\lambda$ が正則になることがわかる. 証明 は以下の通り

Proof. まず、 $(X^TX)^T=X^TX$ が成立するので X^TX は対称行列となる. さらに任意の $m{x}\in\mathbb{R}^p$ に対して

$$\boldsymbol{x}^{T}(X^{T}X)\boldsymbol{x} = (\boldsymbol{x}^{T}X^{T})(X\boldsymbol{x})$$
$$= (\boldsymbol{x}X)^{T}(\boldsymbol{x}X)$$

となり、最右辺は xX 自身の内積を示しているので $x^T(X^TX)x \ge 0$ であること、つまり X^TX が非負定値行列であることがわかる.さらに X^TX は対称行列であるから、ある直交 行列 P と対角行列 Λ を用いて

$$X^T X = P^{-1} \Lambda P$$

と表すことができる. φe_i を \mathbb{R}^p の標準基底とすると,

$$(P^{-1}e_i)^T (X^T X)(P^{-1}e_i) = ((P^{-1}e_i)^T P^{-1}) \Lambda (P(P^{-1}e_i))$$

$$= (P(P^{-1}e_i) \Lambda (e_i) \quad (\because P^{-1} = P^T)$$

$$= e_i^T \Lambda e_i = \mu_i \ge 0$$

となることがわかる.ただし μ_i は Λ の (i,i) 成分.したがって任意の λ に対して $\mu_i \geq 0$ であることがわかり,各 μ_i は X^TX の固有値であることから X^TX の全ての固有値が非負であることがわかる.さらに, $X^TX-n\lambda$ の固有値を t とすると

$$\det|(X^TX + N\lambda) - tI| = \det|X^TX - (t - N\lambda)I| = 0$$

$$\Rightarrow t - N\lambda = \mu_i \ge 0 \quad \forall i$$

$$\Leftrightarrow t = N\lambda + \mu_i > 0 \quad \forall i$$

が成立するので $X^TX - n\lambda$ の固有値が全て正であることがわかり、これより X^TX の行列式が 0 でないことがわかる.したがって X^TX が正則であることがわかる.