

3D1 heavy chain variable region sequence

30

ATG	GGT	TGG	AAC	TGT	ATC	ATC	TTC	TTT	CTG	GTT	ACA	ACA	GCT	ACA	GGT	GTG	CAC	TCC	CAG
M	G	W	N	C	I	I	F	F	L	V	T	T	A	T	G	V	H	S	Ω

90

GTC	CAG	CTG	CAG	CAG	TCT	GGG	CCT	GAG	CTG	GTG	AGG	CCT	GGG	GAA	TCA	GTG	AAG	ATT	TCC
V	Q	L	Q	Q	S	G	P	E	L	V	R	P	G	E	S	V	K	I	S

150

TGC	AAG	GGT	TCC	GGC	TAC	ACA	TTC	ACT	GAT	TAT	GCT	ATA	CAG	TGG	GTG	AAG	CAG	AGT	CAT
C	K	G	S	G	Y	T	F	T	<u>D</u>	<u>Y</u>	<u>A</u>	<u>I</u>	<u>O</u>	W	V	K	Q	S	H

210

GCA	AAG	AGT	CTA	GAG	TGG	ATT	GGA	GTT	ATT	AAT	ATT	TAC	TAT	GAT	AAT	ACA	AAC	TAC	AAC
A	K	S	L	E	W	I	G	<u>V</u>	<u>I</u>	<u>N</u>	<u>I</u>	<u>Y</u>	<u>Y</u>	D	N	T	N	Y	N

270

CAG	AAG	TTT	AAG	GGC	AAG	GCC	ACA	ATG	ACT	GTA	GAC	AAA	TCC	TCC	AGC	ACA	GCC	TAT	ATG
<u>O</u>	<u>K</u>	<u>F</u>	<u>K</u>	<u>G</u>	<u>K</u>	<u>A</u>	<u>T</u>	<u>M</u>	<u>T</u>	<u>V</u>	<u>D</u>	<u>K</u>	<u>S</u>	<u>S</u>	<u>S</u>	<u>T</u>	<u>A</u>	<u>Y</u>	<u>M</u>

330

GAA	CTT	GCC	AGA	TTG	ACA	TCT	GAG	GAT	TCT	GCC	ATC	TAT	TAC	TGT	GCA	AGA	GCG	GCC	TGG
E	L	A	R	L	T	S	E	D	S	A	I	Y	Y	C	A	R	<u>A</u>	<u>A</u>	W

390

TAT	ATG	GAC	TAC	TGG	GGT	CAA	GGA	ACC	TCA	GTC	ACC	GTC	TCC	TCA					
Y	M	D	Y	W	G	O	G	T	S	V	T	V	S	S					

Figure 1 (A)

3D1 light chain variable region sequence

30 60
ATG GAT TCA CAG GCC CAG GTT CTT ATA TTG CTG CTG CTA TGG GTA TCT GGT ACC TGT GGG
M D S Q A Q V L I L L L W V S G T C G

90 120
GAC ATT GTG CTG TCA CAG TCT CCA TCC TCC CTG GCT GTG TCA GCA GGA GAG AAG GTC ACT
R I V L S Q S P S S L A V S A G E K V T

150 180
ATG AGC TGC AAA TCC AGT CAG AGT CTG CTC AAC AGT AGA ACC CGA GAG AAC TAC TTG GCT
M S C K S S O S L L N S R T R E N Y L A

210 240
TGG TAC CAG CAG AAA CCA GGG CAG TCT CCT AAA CTG CTG ATC TAC TGG GCA TCC ACT AGG
W Y Q Q K P G Q S P K L L I Y W A S T R

270 300
~~GAA TCT GGG GTC CCT GAT CGC TTC ACA GGC AGT GGA TCT GGG ACA GAT TTC ACT CTC ACC~~
~~E S G V P D R F T G S G S G T D F T L T~~

330 360
ATC AGC AGT GTG CAG GCT GAA GAC CTG GCA GTT TAT TAC TGC ACG CAA TCT TAT AAT CTT
I S S V Q A E D L A V Y Y C T O S Y N L

390
TAC ACG TTC GGA GGG GGG ACC AAG CTG GAA ATA AAA
~~Y T F G G G T K L E I K~~

Figure 1 (B)

Hu3D1 heavy chain variable region sequence

30 60

ATG GGT TGG AAC TGT ATC ATC TTC TTT CTG GTT ACC ACA GCT ACA GGT GTG CAC TCC CAG
M G W N C I I F F L V T T A T G V H S Q

90 120

GTC CAG CTG GTG CAG TCT GGG GCT GAG GTG AAG AAG CCT GGG AGC TCA GTG AAG GTG TCC
V Q L V Q S G A E V K K P G S S V K V S

150 180

TGG AAA GCT TCC GGC TAC ACA TTC ACT GAT TAT GCT ATA CAG TGG GTG AGA CAG GCT CCT
C K A S G Y T F T D Y A I Q W V R Q A P

210 240

- GGA CAG GGC CTC GAG TGG ATT GGA GTT ATT AAT ATT TAC TAT GAT AAT ACA AAC TAC AAC
G Q G L E W I G V I N I Y Y D N T N Y N

270 300

CAG AAG TTT AAG GGC AAG GCC ACA ATG ACT GTA GAC AAG TCG ACG AGC ACA GCC TAT ATG
Q K F K G K A T M T V D K S T S T A Y M

330 360

GAA CTT AGT TCT TTG AGA TCT GAG GAT ACG GCC GTT TAT TAC TGT GCA AGA GCG GCC TGG
E L S S L R S E D T A V Y Y C A R A A W

390

= TAT ATG GAC TAC TGG GGT CAA GGT ACC CTT GTC ACC GTC TCC TCA
Y M D Y W G Q G T L V T V S S

Figure 2 (A)

Hu3D1 light chain variable region sequence

ATG GAT TCA CAG GCC CAG GTT CTT ATA TTG CTG CTG CTA TGG GTA TCT GGC ACC TGT GGG
 M D S Q A Q V L I L L L W V S G T C G 60

GAC ATT GTG CTG ACA CAG TCT CCA GAT TCC CTG GCT GTA AGC TTA GGA GAG AGG GCC ACT
 D I V L T Q S P D S L A V S L G E R A T 120

ATT AGC TGC AAA TCC AGT CAG AGT CTG CTC AAC AGT AGA ACC CGA GAG AAC TAC TTG GCT
 I S C K S S O S L L N S R T R E N Y L A 180

TGG TAC CAG CAG AAA CCA GGG CAG CCT CCT AAA CTG CTG ATC TAC TGG GCA TCC ACT AGG
 W Y Q Q K P G Q P P K L L I Y W A S T R 240

GAA TCT GGG GTC CCT GAT CGC TTC AGT GGC AGT GGA TCT GGG ACA GAT TTC ACT CTC ACC
 E S G V P D R F S G S G S G T D F T L T 300

ATC AGC AGT CTG CAG GCT GAA GAC GTG GCA GTT TAT TAC TGC ACG CAA TCT TAT AAT CTT
 I S S L Q A E D V A V Y Y C T O S Y N L 360

TAC ACG TTC GGA CAG GGG ACC AAG GTG GAA ATA AAA
 Y T F G Q G T K V E I K 390

Figure 2 (B)

Competition Binding Assay of Anti-B7.2 mAbs

Figure 3

Direct Binding Assay of Anti-B7.2 mAbs

Figure 4

0.9627896 • 0.72700

00224096822960

Inhibition of CD28⁺ T Cell Proliferation by Anti-B7.2 mAbs

Figure 5

Inhibition of a Mixed Lymphocyte Reaction by Anti-B7 Antibodies and CTLA4IG

Figure 6

Figure 7

Figure 8

Antibody Response to Tetanus Immunization During Costimulation Blockade
with Humanized Anti-B7.1 and Anti-B7.2

Figure 9

Serum Concentration of Humanized Anti-B7-2 in cynomolgus Monkeys

Figure 10