Mathematical proofs

Michal Špano

March 2022

The inner angle of an n-sided convex regular 1 polygon

Suppose an n-sided convex regular polygon. Its 4 consecutive vertices are shown in the figures, $N_1, N_2, N_3, ..., N_i$ respectively. Thus $\Delta_{N_1, N_2, S} \cong \Delta_{N_2, N_3, S}$, i.e. such n-sided polygon consists of n congruent isosceles triangles. That is, $|\angle N_2 N_1 S| = |\angle N_1 N_2 S| \implies |\angle N_1 N_2 S| = |\angle S N_2 N_3|$, denoted as β, β' respectively.

An angle $\alpha=|\angle N_1SN_2|=\frac{360}{n}$, since such an angle multiplied by n makes for a perfect circle of 360°. Likewise $\alpha=180^\circ-2\beta$.

Let Φ be an inner angle of the polygon, such that $\phi = 2\beta$ (shown in the figure at the vertex N_2).

Express in terms of
$$\beta$$
: $\alpha = 180 - 2\beta \iff \beta = \frac{-\alpha + 180}{2}$

Substitute
$$\alpha$$
 for $\alpha = \frac{360}{n}$: $\beta = \frac{-\frac{360}{n} + 180}{2} \iff \beta = \frac{180n - 360}{2n}$
Express in terms of Φ : $\Phi = 2\beta = 2\left(\frac{180n - 360}{2n}\right) = \frac{180n - 360}{n}$

Express in terms of
$$\Phi$$
: $\Phi = 2\beta = 2\left(\frac{180n - 360}{2n}\right) = \frac{180n - 360}{n}$

The expression can be further simplified to the following form:

$$\Phi = \frac{(n-2)\pi}{n}$$

Figure 1: n - sided polygon with its 4 vertices in a plane