Markov models

Source: Hastie et at. (2009), Daumé III. Thanks to D. Hsu.

Please do not distribute these slides publicly, beyond using them for this course.

A sequence model (or time series model) is a family of probability distributions for (possibly infinite) sequences of random variables $\{X_t\}_{t\in\mathcal{T}}$.

▶ $\{X_t\}_{t \in \mathcal{T}}$ is a **stochastic process** indexed by the totally-ordered set \mathcal{T} (e.g., $\mathcal{T} = \mathbb{N}$ for discrete time series).

- ▶ $\{X_t\}_{t \in \mathcal{T}}$ is a **stochastic process** indexed by the totally-ordered set \mathcal{T} (e.g., $\mathcal{T} = \mathbb{N}$ for discrete time series).
- ▶ Special emphasis is placed on the linear ordering of *T*.

- ▶ $\{X_t\}_{t\in\mathcal{T}}$ is a **stochastic process** indexed by the totally-ordered set \mathcal{T} (e.g., $\mathcal{T} = \mathbb{N}$ for discrete time series).
- ightharpoonup Special emphasis is placed on the linear ordering of \mathcal{T} .

```
If t \in \mathcal{T} is the "current time", then X_t is the "current state"; X_{\tau} for \tau < t are "past states"; and X_{\tau} for \tau > t are "future states".
```

- ▶ $\{X_t\}_{t\in\mathcal{T}}$ is a **stochastic process** indexed by the totally-ordered set \mathcal{T} (e.g., $\mathcal{T} = \mathbb{N}$ for discrete time series).
- ightharpoonup Special emphasis is placed on the linear ordering of \mathcal{T} .

```
If t \in \mathcal{T} is the "current time", then X_t is the "current state"; X_{\tau} for \tau < t are "past states"; and X_{\tau} for \tau > t are "future states". (May interchange "state" and "observation"—no distinction for now.)
```

A sequence model (or time series model) is a family of probability distributions for (possibly infinite) sequences of random variables $\{X_t\}_{t\in\mathcal{T}}$.

- ▶ $\{X_t\}_{t \in \mathcal{T}}$ is a **stochastic process** indexed by the totally-ordered set \mathcal{T} (e.g., $\mathcal{T} = \mathbb{N}$ for discrete time series).
- Special emphasis is placed on the linear ordering of T.

```
If t \in \mathcal{T} is the "current time", then X_t is the "current state"; X_{\tau} for \tau < t are "past states"; and X_{\tau} for \tau > t are "future states". (May interchange "state" and "observation"—no distinction for now.)
```

Sequence / time series modeling is an entire subfield in statistics, largely due to the plethora of sequence / time series data in applications:

- ► Economic / financial data over time
- Climate science
- ► Genomic sequences
- ► Speech and natural language
- **>** ...

MARKOV MODELS

A stochastic process $\{X_t\}_{t\in\mathbb{N}}$ has the **Markov property** if the conditional distribution of the next state X_{t+1} given all previous states $\{X_\tau: \tau \leq t\}$ only depends on the value of the current state X_t .

MARKOV MODELS

A stochastic process $\{X_t\}_{t\in\mathbb{N}}$ has the **Markov property** if the conditional distribution of the next state X_{t+1} given all previous states $\{X_\tau: \tau \leq t\}$ only depends on the value of the current state X_t .

If the X_t are discrete-valued, then the Markov property means that

$$\Pr(X_{t+1} = x_{t+1} \mid X_1 = x_1, \dots, X_t = x_t) = \Pr(X_{t+1} = x_{t+1} \mid X_t = x_t).$$

$$\cdots \longrightarrow X_{t-1} \longrightarrow X_t \longrightarrow X_{t+1} \longrightarrow \cdots$$

Markov models

A stochastic process $\{X_t\}_{t\in\mathbb{N}}$ has the **Markov property** if the conditional distribution of the next state X_{t+1} given all previous states $\{X_\tau: \tau \leq t\}$ only depends on the value of the current state X_t .

If the X_t are discrete-valued, then the Markov property means that

$$\Pr(X_{t+1} = x_{t+1} \mid X_1 = x_1, \dots, X_t = x_t) = \Pr(X_{t+1} = x_{t+1} \mid X_t = x_t).$$

$$\cdots \longrightarrow X_{t-1} \longrightarrow X_t \longrightarrow X_{t+1} \longrightarrow \cdots$$

A stochastic process with the Markov property is called a Markov chain.

MARKOV MODELS

A stochastic process $\{X_t\}_{t\in\mathbb{N}}$ has the **Markov property** if the conditional distribution of the next state X_{t+1} given all previous states $\{X_\tau: \tau \leq t\}$ only depends on the value of the current state X_t .

If the X_t are discrete-valued, then the Markov property means that

$$\Pr(X_{t+1} = x_{t+1} \mid X_1 = x_1, \dots, X_t = x_t) = \Pr(X_{t+1} = x_{t+1} \mid X_t = x_t).$$

$$\cdots \longrightarrow X_{t-1} \longrightarrow X_t \longrightarrow X_{t+1} \longrightarrow \cdots$$

A stochastic process with the Markov property is called a Markov chain.

A sequence model for a Markov chain is called a Markov model.

MARKOV CHAIN DISTRIBUTIONS

To specify a Markov chain (MC):

- ightharpoonup Specify the distribution of the initial state X_1 .
- ▶ Specify a transition kernel: $Pr(X_{t+1} = x' | X_t = x)$ for all (x, x').

(Nothing to do with kernels as in SVMs/kernel trick/RKHS.)

MARKOV CHAIN DISTRIBUTIONS

To specify a Markov chain (MC):

- ▶ Specify the distribution of the initial state X_1 .
- ▶ Specify a transition kernel: $\Pr(X_{t+1} = x' \mid X_t = x)$ for all (x, x'). (Nothing to do with *kernels* as in SVMs/kernel trick/RKHS.)

We focus on MCs where the **state space** (possible values for each X_t) is finite. For simplicity, we'll assume the state space is $[d] := \{1, 2, \dots, d\}$.

MARKOV CHAIN DISTRIBUTIONS

To specify a Markov chain (MC):

- ▶ Specify the distribution of the initial state X_1 .
- ▶ Specify a transition kernel: $\Pr(X_{t+1} = x' \mid X_t = x)$ for all (x, x'). (Nothing to do with *kernels* as in SVMs/kernel trick/RKHS.)

We focus on MCs where the **state space** (possible values for each X_t) is finite. For simplicity, we'll assume the state space is $[d]:=\{1,2,\ldots,d\}$.

lacktriangle Initial state distribution given by a d-dimensional probability vector $oldsymbol{\pi}$

$$\pi_i = \Pr(X_1 = i).$$

Markov Chain distributions

To specify a Markov chain (MC):

- ightharpoonup Specify the distribution of the initial state X_1 .
- ▶ Specify a transition kernel: $Pr(X_{t+1} = x' | X_t = x)$ for all (x, x').

(Nothing to do with *kernels* as in SVMs/kernel trick/RKHS.)

We focus on MCs where the **state space** (possible values for each X_t) is finite. For simplicity, we'll assume the state space is $[d] := \{1, 2, \dots, d\}$.

lacktriangle Initial state distribution given by a d-dimensional probability vector $oldsymbol{\pi}$

$$\pi_i = \Pr(X_1 = i).$$

▶ Transition kernel can be written as a $d \times d$ matrix A

$$A_{i,j} = \Pr(X_{t+1} = j \mid X_t = i)$$

(rows of A are probability vectors).

Also called a transition matrix or (right) stochastic matrix.

State space: $\{1,2\}$.

Parameters:

$$\pi = \frac{\text{state 1}}{\text{state 2}} \begin{pmatrix} 0.1\\0.9 \end{pmatrix}, \quad A = \frac{\text{state 1}}{\text{state 2}} \begin{pmatrix} 0.3&0.7\\0.6&0.4 \end{pmatrix}.$$

$$A_{1,2}$$

 $A_{2,1}$

State space: $\{1, 2\}$.

Parameters:

$$m{\pi} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.1 \ 0.9 \end{pmatrix}, & m{A} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.3 & 0.7 \ 0.6 & 0.4 \end{pmatrix}.$$
 $m{A}_{1,2}$
 $m{A}_{2,1}$

A random state sequence drawn from this MC:

State space: $\{1, 2\}$.

Parameters:

$$m{\pi} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.1 \ 0.9 \end{pmatrix}, & m{A} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.3 & 0.7 \ 0.6 & 0.4 \end{pmatrix}.$$
 $m{A}_{1,2}$ $m{A}_{2,1}$

A random state sequence drawn from this MC:

State space: $\{1, 2\}$.

Parameters:

$$m{\pi} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.1 \ 0.9 \end{pmatrix}, \quad m{A} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.3 & 0.7 \ 0.6 & 0.4 \end{pmatrix}.$$
 $m{A}_{1,2}$

 $A_{2,1}$

A random state sequence drawn from this MC:

What is the probability of this sequence?

 π_2

State space: $\{1, 2\}$.

Parameters:

$$m{\pi} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.1 \ 0.9 \end{pmatrix}, & m{A} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.3 & 0.7 \ 0.6 & 0.4 \end{pmatrix}.$$
 $m{A}_{1,2}$ $m{A}_{2,1}$

A random state sequence drawn from this MC:

$$\pi_2 \times A_{2,2}$$

State space: $\{1, 2\}$.

Parameters:

$$m{\pi} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.1 \ 0.9 \end{pmatrix}, & m{A} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.3 & 0.7 \ 0.6 & 0.4 \end{pmatrix}.$$
 $m{A}_{1,2}$ $m{A}_{2,1}$

A random state sequence drawn from this MC:

$$\pi_2 \times A_{2,2} \times A_{2,2}$$

State space: $\{1, 2\}$.

Parameters:

$$m{\pi} \ = \ rac{ ext{state 1}}{ ext{state 2}} \left(egin{array}{c} 0.1 \ 0.9 \end{array}
ight), \quad m{A} \ = \ rac{ ext{state 1}}{ ext{state 2}} \left(egin{array}{c} 0.3 & 0.7 \ 0.6 & 0.4 \end{array}
ight).$$

 $A_{2,1}$

A random state sequence drawn from this MC:

$$\pi_2 \times A_{2,2} \times A_{2,2} \times A_{2,1}$$

State space: $\{1, 2\}$.

Parameters:

$$m{\pi} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.1 \ 0.9 \end{pmatrix}, & m{A} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.3 & 0.7 \ 0.6 & 0.4 \end{pmatrix}.$$
 $A_{1,1}$ $A_{1,2}$ $A_{2,1}$

A random state sequence drawn from this MC:

$$\pi_2 \times A_{2,2} \times A_{2,2} \times A_{2,1} \times A_{1,1}$$

State space: $\{1, 2\}$.

Parameters:

$$m{\pi} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.1 \ 0.9 \end{pmatrix}, & m{A} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.3 & 0.7 \ 0.6 & 0.4 \end{pmatrix}.$$
 $m{A}_{1,2}$ $m{A}_{2,1}$

A random state sequence drawn from this MC:

$$\pi_2 \times A_{2,2} \times A_{2,2} \times A_{2,1} \times A_{1,1} \times A_{1,2}$$

State space: $\{1, 2\}$.

Parameters:

$$m{\pi} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.1 \ 0.9 \end{pmatrix}, & m{A} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.3 & 0.7 \ 0.6 & 0.4 \end{pmatrix}.$$
 $A_{1,1}$ $A_{1,2}$ $A_{2,1}$

A random state sequence drawn from this MC:

$$\pi_2 \times A_{2,2} \times A_{2,2} \times A_{2,1} \times A_{1,1} \times A_{1,2} \times A_{2,2}$$

State space: $\{1, 2\}$.

Parameters:

$$m{\pi} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.1 \ 0.9 \end{pmatrix}, & m{A} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.3 & 0.7 \ 0.6 & 0.4 \end{pmatrix}.$$
 $A_{1,1}$ $A_{1,2}$ $A_{2,1}$

A random state sequence drawn from this MC:

$$\pi_2 \times A_{2,2} \times A_{2,2} \times A_{2,1} \times A_{1,1} \times A_{1,2} \times A_{2,2} \times A_{2,1}$$

State space: $\{1, 2\}$.

Parameters:

$$m{\pi} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.1 \ 0.9 \end{pmatrix}, & m{A} = rac{ ext{state 1}}{ ext{state 2}} egin{pmatrix} 0.3 & 0.7 \ 0.6 & 0.4 \end{pmatrix}.$$
 $m{A}_{1,2}$
 $m{A}_{2,1}$

A random state sequence drawn from this MC:

$$\pi_2 \times A_{2,2} \times A_{2,2} \times A_{2,1} \times A_{1,1} \times A_{1,2} \times A_{2,2} \times A_{2,1} = 0.00435456$$

EXAMPLE: RANDOM WALK ON A DIRECTED GRAPH

Consider a directed graph G=(V,E) over $\lvert V \rvert = d$ vertices (self-loops ok).

Example: random walk on a directed graph

Consider a directed graph G = (V, E) over |V| = d vertices (self-loops ok).

MC for random walk on G:

$$\pi_i = \mathbb{1}\{\text{start vertex is } i\}, \quad A_{i,j} = \frac{\mathbb{1}\{(i,j) \in E\}}{\text{out degree}(i)}.$$

	state 1	state 2	state 3	state 4	state 5
state 1	0	0.5		0.5	0
state 2	0	0	0.5		0
state 3	0	0	0.5	0	0.5
state 4	0	0	0	0.5	0.5
state 4	$\setminus 0.5$	0	0	0	0.5

Example: random walk on a directed graph

Consider a directed graph G = (V, E) over |V| = d vertices (self-loops ok).

MC for random walk on G:

$$\pi_i = \mathbb{1}\{\text{start vertex is } i\}, \quad A_{i,j} = \frac{\mathbb{1}\{(i,j) \in E\}}{\operatorname{out degree}(i)}.$$

The non-zero pattern of A gives the adjacency structure of G (vertices = states).

EXAMPLE: PAGERANK

Web graph G = (V, E):

Vertices are webpages, directed edges are hyperlinks between webpages.

Adjacency matrix of the web graph for 500 web pages.

EXAMPLE: PAGERANK

Web graph G = (V, E):

Vertices are webpages, directed edges are hyperlinks between webpages.

Adjacency matrix of the web graph for 500 web pages.

How popular is webpage i?

Example: PageRank

Web graph G = (V, E):

Vertices are webpages, directed edges are hyperlinks between webpages.

Adjacency matrix of the web graph for 500 web pages.

How popular is webpage i?

Possible answer: probability that random walk ends at i after many steps.

EXAMPLE: PAGERANK

Web graph G = (V, E):

Vertices are webpages, directed edges are hyperlinks between webpages.

Adjacency matrix of the web graph for 500 web pages.

How popular is webpage i?

Possible answer: probability that random walk ends at i after many steps.

$$\Pr(X_t = i)$$
 for large t .

Markov Chain State distributions

MARGINAL PROBABILITIES

What is the marginal distribution of X_2 in terms of π and A?

What is the marginal distribution of X_2 in terms of π and A?

$$\Pr(X_2 = j)$$

What is the marginal distribution of X_2 in terms of π and A?

$$\Pr(X_2 = j) = \sum_{i=1}^d \Pr(X_1 = i, X_2 = j)$$

What is the marginal distribution of X_2 in terms of π and A?

$$Pr(X_{2} = j) = \sum_{i=1}^{d} Pr(X_{1} = i, X_{2} = j)$$
$$= \sum_{i=1}^{d} Pr(X_{1} = i) \cdot Pr(X_{2} = j | X_{1} = i)$$

What is the marginal distribution of X_2 in terms of π and A?

$$\Pr(X_{2} = j) = \sum_{i=1}^{d} \Pr(X_{1} = i, X_{2} = j)$$

$$= \sum_{i=1}^{d} \Pr(X_{1} = i) \cdot \Pr(X_{2} = j \mid X_{1} = i)$$

$$= \sum_{i=1}^{d} \pi_{i} \cdot A_{i,j}$$

What is the marginal distribution of X_2 in terms of π and A?

$$\begin{split} \Pr(X_2 = j) &= \sum_{i=1}^d \Pr(X_1 = i, \ X_2 = j) \\ &= \sum_{i=1}^d \Pr(X_1 = i) \cdot \Pr(X_2 = j \, | \, X_1 = i) \\ &= \sum_{i=1}^d \pi_i \cdot A_{i,j} \\ &= j\text{-th entry of } \boldsymbol{\pi}^\top \boldsymbol{A}. \end{split}$$

What is the marginal distribution of X_3 in terms of π and A?

What is the marginal distribution of X_3 in terms of ${m \pi}$ and ${m A}$? For each $k \in [d]$,

$$Pr(X_3 = k) = \sum_{i=1}^{d} \sum_{j=1}^{d} Pr(X_1 = i, X_2 = j, X_3 = k)$$

What is the marginal distribution of X_3 in terms of ${m \pi}$ and ${m A}$? For each $k \in [d]$,

$$\Pr(X_3 = k) = \sum_{i=1}^d \sum_{j=1}^d \Pr(X_1 = i, X_2 = j, X_3 = k)$$

$$= \sum_{i=1}^d \sum_{j=1}^d \Pr(X_1 = i) \cdot \Pr(X_2 = j \mid X_1 = i) \cdot \Pr(X_3 = k \mid X_1 = i, X_2 = j)$$

What is the marginal distribution of X_3 in terms of π and A? For each $k \in [d]$,

$$\Pr(X_3 = k) = \sum_{i=1}^d \sum_{j=1}^d \Pr(X_1 = i, X_2 = j, X_3 = k)$$

$$= \sum_{i=1}^d \sum_{j=1}^d \Pr(X_1 = i) \cdot \Pr(X_2 = j \mid X_1 = i) \cdot \Pr(X_3 = k \mid X_1 = i, X_2 = j)$$

$$= \sum_{i=1}^d \sum_{j=1}^d \Pr(X_1 = i) \cdot \Pr(X_2 = j \mid X_1 = i) \cdot \Pr(X_3 = k \mid X_2 = j)$$

What is the marginal distribution of X_3 in terms of π and A? For each $k \in [d]$,

$$\Pr(X_3 = k) = \sum_{i=1}^d \sum_{j=1}^d \Pr(X_1 = i, X_2 = j, X_3 = k)$$

$$= \sum_{i=1}^d \sum_{j=1}^d \Pr(X_1 = i) \cdot \Pr(X_2 = j \mid X_1 = i) \cdot \Pr(X_3 = k \mid X_1 = i, X_2 = j)$$

$$= \sum_{i=1}^d \sum_{j=1}^d \Pr(X_1 = i) \cdot \Pr(X_2 = j \mid X_1 = i) \cdot \Pr(X_3 = k \mid X_2 = j)$$

$$= \sum_{i=1}^d \sum_{j=1}^d \pi_i \cdot A_{i,j} \cdot A_{j,k}$$

What is the marginal distribution of X_3 in terms of π and A? For each $k \in [d]$,

$$\begin{split} \Pr(X_3 = k) &= \sum_{i=1}^d \sum_{j=1}^d \Pr(X_1 = i, \ X_2 = j, \ X_3 = k) \\ &= \sum_{i=1}^d \sum_{j=1}^d \Pr(X_1 = i) \cdot \Pr(X_2 = j \mid X_1 = i) \cdot \Pr(X_3 = k \mid X_1 = i, \ X_2 = j) \\ &= \sum_{i=1}^d \sum_{j=1}^d \Pr(X_1 = i) \cdot \Pr(X_2 = j \mid X_1 = i) \cdot \Pr(X_3 = k \mid X_2 = j) \\ &= \sum_{i=1}^d \sum_{j=1}^d \pi_i \cdot A_{i,j} \cdot A_{j,k} \\ &= k\text{-th entry of } \boldsymbol{\pi}^\top \boldsymbol{A} \boldsymbol{A}. \end{split}$$

What is the marginal distribution of X_3 in terms of π and A? For each $k \in [d]$,

$$\begin{split} \Pr(X_3 = k) &= \sum_{i=1}^d \sum_{j=1}^d \Pr(X_1 = i, \, X_2 = j, \, X_3 = k) \\ &= \sum_{i=1}^d \sum_{j=1}^d \Pr(X_1 = i) \cdot \Pr(X_2 = j \, | \, X_1 = i) \cdot \Pr(X_3 = k \, | \, X_1 = i, \, X_2 = j) \\ &= \sum_{i=1}^d \sum_{j=1}^d \Pr(X_1 = i) \cdot \Pr(X_2 = j \, | \, X_1 = i) \cdot \Pr(X_3 = k \, | \, X_2 = j) \\ &= \sum_{i=1}^d \sum_{j=1}^d \pi_i \cdot A_{i,j} \cdot A_{j,k} \\ &= k\text{-th entry of } \pi^\top A A. \end{split}$$

For any $t \in \mathbb{N}$, the marginal distribution of X_t in terms of π and A is

$$\Pr(X_t = k) = k$$
-th entry of $\boldsymbol{\pi}^{\top} \underbrace{\boldsymbol{A} \boldsymbol{A} \cdots \boldsymbol{A}}_{t-1 \text{ times}}$.

The
$$(i,j)$$
-th entry of ${\pmb A}^p = \underbrace{{\pmb A}{\pmb A}\cdots{\pmb A}}_{p \text{ times}}$ is the p -step transition matrix

$$\left[\boldsymbol{A}^{p}\right]_{i,j} = \Pr(X_{t+p} = j \mid X_{t} = i).$$

The
$$(i,j)$$
-th entry of ${\pmb A}^p = \underbrace{{\pmb A}{\pmb A}\cdots{\pmb A}}_{p \text{ times}}$ is the p -step transition matrix

$$\left[\boldsymbol{A}^{p}\right]_{i,j} = \Pr(X_{t+p} = j \mid X_{t} = i).$$

Example: State space:
$$\{1,2\}$$
. Parameters: $\boldsymbol{\pi} = \begin{pmatrix} 0.1 \\ 0.9 \end{pmatrix}, \quad \boldsymbol{A} = \begin{pmatrix} 0.3 & 0.7 \\ 0.6 & 0.4 \end{pmatrix}$

The
$$(i,j)$$
-th entry of ${\pmb A}^p = \underbrace{{\pmb A}{\pmb A}\cdots{\pmb A}}_{p \text{ times}}$ is the p -step transition matrix

$$\left[\boldsymbol{A}^{p}\right]_{i,j} = \Pr(X_{t+p} = j \mid X_{t} = i).$$

Example: State space:
$$\{1,2\}$$
. Parameters: $\boldsymbol{\pi} = \begin{pmatrix} 0.1 \\ 0.9 \end{pmatrix}$, $\boldsymbol{A} = \begin{pmatrix} 0.3 & 0.7 \\ 0.6 & 0.4 \end{pmatrix}$

$$\boldsymbol{\pi}^{\top} \boldsymbol{A} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.3 & 0.7 \\ 0.6 & 0.4 \end{pmatrix} = \begin{pmatrix} 0.57 & 0.43 \end{pmatrix}$$

The
$$(i,j)$$
-th entry of ${m A}^p = \underbrace{{m A}{m A} \cdots {m A}}_{p \text{ times}}$ is the p -step transition matrix

$$\left[\boldsymbol{A}^{p}\right]_{i,j} = \Pr(X_{t+p} = j \mid X_{t} = i).$$

Example: State space:
$$\{1,2\}$$
. Parameters: $\boldsymbol{\pi} = \begin{pmatrix} 0.1 \\ 0.9 \end{pmatrix}, \quad \boldsymbol{A} = \begin{pmatrix} 0.3 & 0.7 \\ 0.6 & 0.4 \end{pmatrix}$

$$\boldsymbol{\pi}^{\top} \boldsymbol{A} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.3 & 0.7 \\ 0.6 & 0.4 \end{pmatrix} = \begin{pmatrix} 0.57 & 0.43 \end{pmatrix}$$

$$\boldsymbol{\pi}^{\top} \boldsymbol{A}^{5} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.46023 & 0.53977 \\ 0.46266 & 0.53734 \end{pmatrix} = \begin{pmatrix} 0.462417 & 0.537583 \end{pmatrix}$$

The
$$(i,j)$$
-th entry of ${m A}^p = \underbrace{{m A}{m A} \cdots {m A}}_{p \text{ times}}$ is the p -step transition matrix

$$\left[\boldsymbol{A}^{p}\right]_{i,j} = \Pr(X_{t+p} = j \mid X_{t} = i).$$

Example: State space:
$$\{1,2\}$$
. Parameters: $\boldsymbol{\pi} = \begin{pmatrix} 0.1 \\ 0.9 \end{pmatrix}, \quad \boldsymbol{A} = \begin{pmatrix} 0.3 & 0.7 \\ 0.6 & 0.4 \end{pmatrix}$

$$\boldsymbol{\pi}^{\top} \boldsymbol{A} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.3 & 0.7 \\ 0.6 & 0.4 \end{pmatrix} = \begin{pmatrix} 0.57 & 0.43 \end{pmatrix}$$

$$\boldsymbol{\pi}^{\top} \boldsymbol{A}^{5} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.46023 & 0.53977 \\ 0.46266 & 0.53734 \end{pmatrix} = \begin{pmatrix} 0.462417 & 0.537583 \end{pmatrix}$$

$$\boldsymbol{\pi}^{\top} \boldsymbol{A}^{100} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.461538 & 0.538414 \\ 0.461538 & 0.538414 \end{pmatrix} = \begin{pmatrix} 0.461538 & 0.538414 \end{pmatrix}$$

The
$$(i,j)$$
-th entry of ${m A}^p = \underbrace{{m A}{m A} \cdots {m A}}_{p \text{ times}}$ is the p -step transition matrix

$$\left[\boldsymbol{A}^{p}\right]_{i,j} = \Pr(X_{t+p} = j \mid X_{t} = i).$$

Example: State space:
$$\{1,2\}$$
. Parameters: $\pmb{\pi} = \begin{pmatrix} 0.1 \\ 0.9 \end{pmatrix}, \quad \pmb{A} = \begin{pmatrix} 0.3 & 0.7 \\ 0.6 & 0.4 \end{pmatrix}$

$$\boldsymbol{\pi}^{\top} \boldsymbol{A} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.3 & 0.7 \\ 0.6 & 0.4 \end{pmatrix} = \begin{pmatrix} 0.57 & 0.43 \end{pmatrix}$$

$$\boldsymbol{\pi}^{\top} \boldsymbol{A}^{5} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.46023 & 0.53977 \\ 0.46266 & 0.53734 \end{pmatrix} = \begin{pmatrix} 0.462417 & 0.537583 \end{pmatrix}$$

$$\boldsymbol{\pi}^{\top} \boldsymbol{A}^{100} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.461538 & 0.538414 \\ 0.461538 & 0.538414 \end{pmatrix} = \begin{pmatrix} 0.461538 & 0.538414 \end{pmatrix}$$

$$\boldsymbol{\pi}^{\top} \boldsymbol{A}^{1000} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.461538 & 0.538414 \\ 0.461538 & 0.538414 \end{pmatrix} = \begin{pmatrix} 0.461538 & 0.538414 \end{pmatrix}$$

The (i,j)-th entry of ${m A}^p = \underbrace{{m A}{m A} \cdots {m A}}_{p \text{ times}}$ is the p-step transition matrix

$$\left[\boldsymbol{A}^{p}\right]_{i,j} = \Pr(X_{t+p} = j \mid X_{t} = i).$$

Example: State space:
$$\{1,2\}$$
. Parameters: $\boldsymbol{\pi} = \begin{pmatrix} 0.1 \\ 0.9 \end{pmatrix}, \quad \boldsymbol{A} = \begin{pmatrix} 0.3 & 0.7 \\ 0.6 & 0.4 \end{pmatrix}$

$$\boldsymbol{\pi}^{\top} \boldsymbol{A} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.3 & 0.7 \\ 0.6 & 0.4 \end{pmatrix} = \begin{pmatrix} 0.57 & 0.43 \end{pmatrix}$$

$$\boldsymbol{\pi}^{\top} \boldsymbol{A}^{5} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.46023 & 0.53977 \\ 0.46266 & 0.53734 \end{pmatrix} = \begin{pmatrix} 0.462417 & 0.537583 \end{pmatrix}$$

$$\boldsymbol{\pi}^{\top} \boldsymbol{A}^{100} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.461538 & 0.538414 \\ 0.461538 & 0.538414 \end{pmatrix} = \begin{pmatrix} 0.461538 & 0.538414 \end{pmatrix}$$

$$\boldsymbol{\pi}^{\top} \boldsymbol{A}^{1000} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.461538 & 0.538414 \\ 0.461538 & 0.538414 \end{pmatrix} = \begin{pmatrix} 0.461538 & 0.538414 \end{pmatrix}$$

Convergence?

The (i,j)-th entry of ${\pmb A}^p = \underbrace{{\pmb A}{\pmb A}\cdots{\pmb A}}_{p \text{ times}}$ is the p-step transition matrix

$$\left[\boldsymbol{A}^{p}\right]_{i,j} = \Pr(X_{t+p} = j \mid X_{t} = i).$$

Example: State space:
$$\{1,2\}$$
. Parameters: $\boldsymbol{\pi} = \begin{pmatrix} 0.1 \\ 0.9 \end{pmatrix}, \quad \boldsymbol{A} = \begin{pmatrix} 0.3 & 0.7 \\ 0.6 & 0.4 \end{pmatrix}$

$$\boldsymbol{\pi}^{\top} \boldsymbol{A} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.3 & 0.7 \\ 0.6 & 0.4 \end{pmatrix} = \begin{pmatrix} 0.57 & 0.43 \end{pmatrix}$$

$$\boldsymbol{\pi}^{\top} \boldsymbol{A}^{5} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.46023 & 0.53977 \\ 0.46266 & 0.53734 \end{pmatrix} = \begin{pmatrix} 0.462417 & 0.537583 \end{pmatrix}$$

$$\boldsymbol{\pi}^{\top} \boldsymbol{A}^{100} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.461538 & 0.538414 \\ 0.461538 & 0.538414 \end{pmatrix} = \begin{pmatrix} 0.461538 & 0.538414 \end{pmatrix}$$

$$\boldsymbol{\pi}^{\top} \boldsymbol{A}^{1000} = \begin{pmatrix} 0.1 & 0.9 \end{pmatrix} \begin{pmatrix} 0.461538 & 0.538414 \\ 0.461538 & 0.538414 \end{pmatrix} = \begin{pmatrix} 0.461538 & 0.538414 \end{pmatrix}$$

Convergence? Doesn't even seem to matter what π is!

Certain "nice" transition matrices $oldsymbol{A} \in \mathbb{R}^{d imes d}$ have the property that

 $\lim_{p o\infty} {m A}^p =$ stochastic matrix with identical rows

Certain "nice" transition matrices $oldsymbol{A} \in \mathbb{R}^{d imes d}$ have the property that

$$\lim_{p o\infty} oldsymbol{A}^p \;=\; ext{stochastic matrix with identical rows} \;=:\; egin{pmatrix} oldsymbol{-} & oldsymbol{q}^{ op} & oldsymbol{-} \ & dots \ & dots \ & oldsymbol{-} \ & dots \ & oldsymbol{q}^{ op} \end{pmatrix}$$

Certain "nice" transition matrices $oldsymbol{A} \in \mathbb{R}^{d imes d}$ have the property that

$$\lim_{p o\infty} oldsymbol{A}^p \;=\; ext{stochastic matrix with identical rows} \;=:\; egin{pmatrix} oldsymbol{-} & oldsymbol{q}^{ op} & oldsymbol{-} \ & dots \ & dots \ & oldsymbol{-} \ & dots \ & oldsymbol{q}^{ op} \end{pmatrix}$$

What can we say about q?

Certain "nice" transition matrices $oldsymbol{A} \in \mathbb{R}^{d imes d}$ have the property that

$$\lim_{p o\infty} m{A}^p = ext{stochastic matrix with identical rows} =: egin{pmatrix} m{q}^{\scriptscriptstyle \top} & m{-} \ m{q}^{\scriptscriptstyle \top} & m{-} \ & dots \ m{-} \ m{q}^{\scriptscriptstyle \top} & m{-} \end{pmatrix}$$

What can we say about q? For such ${m A}$,

$$\lim_{p \to \infty} A^p$$

Certain "nice" transition matrices $oldsymbol{A} \in \mathbb{R}^{d imes d}$ have the property that

$$\lim_{p o\infty} m{A}^p = ext{stochastic matrix with identical rows} =: egin{pmatrix} m{-} & m{q}^{ op} & m{-} \ m{-} & m{q}^{ op} & m{-} \ m{\cdot} & m{\cdot} \ m{-} & m{q}^{ op} & m{-} \end{pmatrix}$$

What can we say about q? For such A,

$$\lim_{p\to\infty} \boldsymbol{A}^p = \left(\lim_{p\to\infty} \boldsymbol{A}^{p-1}\right) \boldsymbol{A}$$

Certain "nice" transition matrices $oldsymbol{A} \in \mathbb{R}^{d imes d}$ have the property that

$$\lim_{p o\infty} oldsymbol{A}^p \ = \ ext{stochastic matrix with identical rows} \ =: egin{pmatrix} igchtharpoonup & oldsymbol{q}^ op & oldsymbol{$$

What can we say about q? For such A,

$$\lim_{p o\infty} oldsymbol{A}^p \ = \ \left(\lim_{p o\infty} oldsymbol{A}^{p-1}
ight) oldsymbol{A} \ = \ \left(egin{matrix} & oldsymbol{q}^{ op} & oldsymbol{---} \ & dots \ & dots \ & oldsymbol{---} \ & oldsymbol{q}^{ op} \ \end{pmatrix} oldsymbol{A}$$

Certain "nice" transition matrices $oldsymbol{A} \in \mathbb{R}^{d imes d}$ have the property that

$$\lim_{p o\infty} A^p \ = \ ext{stochastic matrix with identical rows} \ =: egin{pmatrix} --- & q^{ op} & --- \ --- & q^{ op} & --- \ --- & \vdots \ --- & q^{ op} & --- \end{pmatrix}$$

What can we say about q? For such A,

$$\lim_{p o\infty} oldsymbol{A}^p \ = \ igg(\lim_{p o\infty} oldsymbol{A}^{p-1}igg)oldsymbol{A} \ = \ egin{pmatrix} --- & oldsymbol{q}^{ op} & --- \ --- & --- & oldsymbol{q}^{ op} & --- \ --- & --- & --- \ --- & --- & --- \ --- & --- & --- \ --- & --- & --- \ --- & --- & --- \ --- & --- & --- \ --- & --- & --- \ --- & --- & --- \ --- & --- & --- \ --- & --- & --- \ --- & --- & --- \ --- & --- & --- \ --- & --- & --- \ --- & --- & --- \ --- & --- & --- \ --- & --- & --- \ --- & --- & --- \ --- & --- & --- \ --- & --- &$$

Certain "nice" transition matrices $oldsymbol{A} \in \mathbb{R}^{d imes d}$ have the property that

$$\lim_{p o\infty} m{A}^p \ = \ ext{stochastic matrix with identical rows} \ =: egin{pmatrix} m{-} & m{q}^ op & m{-} \ m{q}^ op & m{-} \ m{\vdots} \ m{-} & m{q}^ op & m{-} \end{pmatrix}$$

What can we say about q? For such A,

$$\lim_{p o\infty} oldsymbol{A}^p = igg(\lim_{p o\infty} oldsymbol{A}^{p-1} igg) oldsymbol{A} = egin{pmatrix} -- & oldsymbol{q}^ op & -- \ -- & -- & oldsymbol{q}^ op & -- \ -- & oldsymbol{q}^ op & -- \ -- & -- & oldsymbol{q}^ op & -- \ -- & oldsymbol$$

i.e.,

$$\boldsymbol{q}^{\top} \boldsymbol{A} = \boldsymbol{q}^{\top}. \tag{\star}$$

Certain "nice" transition matrices $oldsymbol{A} \in \mathbb{R}^{d imes d}$ have the property that

$$\lim_{p o\infty} m{A}^p \;=\; ext{stochastic matrix with identical rows} \;=:\; egin{pmatrix} m{-} & m{q}^ op & m{-} \ m{-} & m{q}^ op & m{-} \ m{\cdot} & m{\cdot} \ m{-} & m{q}^ op & m{-} \end{pmatrix}$$

What can we say about q? For such A,

$$\lim_{p o\infty} oldsymbol{A}^p \ = \ igg(\lim_{p o\infty} oldsymbol{A}^{p-1}igg)oldsymbol{A} \ = \ egin{pmatrix} igcup_{q^ op} & oldsymbol{q}^ op & igcup_{q^ op} &$$

i.e.,

$$\boldsymbol{q}^{\top} \boldsymbol{A} = \boldsymbol{q}^{\top}. \tag{\star}$$

A solution q to (\star) , is called a stationary distribution.

Suppose a MC has a unique stationary distribution ${m q}=(q_1,q_2,\ldots,q_d).$

Suppose a MC has a unique stationary distribution $q = (q_1, q_2, \dots, q_d)$.

▶ For any $\varepsilon > 0$,

$$\lim_{n \to \infty} \Pr\left(\left| \frac{1}{n} \sum_{t=1}^{n} \mathbb{1}\{X_t = i\} - q_i \right| > \varepsilon \right) \to 0.$$

Law of Large Numbers for MCs.

Suppose a MC has a unique stationary distribution $q = (q_1, q_2, \dots, q_d)$.

▶ For any $\varepsilon > 0$,

$$\lim_{n \to \infty} \Pr\left(\left| \frac{1}{n} \sum_{t=1}^{n} \mathbb{1}\{X_t = i\} - q_i \right| > \varepsilon \right) \to 0.$$

Law of Large Numbers for MCs.

▶ However, rate of convergence not the same as in the iid case.

Suppose a MC has a unique stationary distribution $q = (q_1, q_2, \dots, q_d)$.

▶ For any $\varepsilon > 0$,

$$\lim_{n \to \infty} \Pr\left(\left| \frac{1}{n} \sum_{t=1}^{n} \mathbb{1}\{X_t = i\} - q_i \right| > \varepsilon \right) \to 0.$$

Law of Large Numbers for MCs.

▶ However, rate of convergence not the same as in the iid case. Critically depends on how quickly $\Pr(X_t = \cdot) \to q$ (mixing rate).

Suppose a MC has a unique stationary distribution $q = (q_1, q_2, \dots, q_d)$.

▶ For any $\varepsilon > 0$,

$$\lim_{n \to \infty} \Pr\left(\left| \frac{1}{n} \sum_{t=1}^{n} \mathbb{1}\{X_t = i\} - q_i \right| > \varepsilon \right) \to 0.$$

Law of Large Numbers for MCs.

▶ However, rate of convergence not the same as in the iid case. Critically depends on how quickly $\Pr(X_t = \cdot) \to q$ (mixing rate).

When does a MC even have a unique stationary distribution?

What can go wrong

1. Directed graph underlying A has more than one strongly connected component "sinks" \longrightarrow stationary distribution may not be unique.

What can go wrong

1. Directed graph underlying A has more than one strongly connected component "sinks" \longrightarrow stationary distribution may not be unique.

Markov chains with only one strongly connected component are called **irreducible**.

2. Oscillation among two or more states \longrightarrow limit does not exist.

2. Oscillation among two or more states \longrightarrow limit does not exist.

Example:

If start at state 1, then never at state 1 on even time steps.

2. Oscillation among two or more states \longrightarrow limit does not exist.

Example:

If start at state 1, then never at state 1 on even time steps.

Markov chains without such oscillation are called aperiodic.

(Formally: there exists p_0 s.t. for all $p \geq p_0$, $[{m A}^p]_{i,i} > 0$ for all $i \in [d]$.)

Oscillation among two or more states → limit does not exist.
 Example:

If start at state 1, then never at state 1 on even time steps.

Markov chains without such oscillation are called aperiodic.

(Formally: there exists p_0 s.t. for all $p \geq p_0$, $[\mathbf{A}^p]_{i,i} > 0$ for all $i \in [d]$.) If every state $i \in [d]$ has $A_{i,i} > 0$, then aperiodicity is guaranteed.

CONDITIONS FOR UNIQUE STATIONARY DISTRIBUTION

Theorem: If MC with transition matrix A is irreducible and aperiodic, then

lacktriangle There is a unique stationary distribution q (which satisfies $q^ op A = q^ op$).

$$lackbox{igspace}{igspace{igspace}{igspace} \lim_{p o\infty} oldsymbol{A}^p \ = egin{pmatrix} --- & q^ op & --- \ -- & q^ op & --- \ -- & arphi^ op & --- \end{pmatrix}}.$$

For irreducible and aperiodic MCs, the q that satisfies

$$\boldsymbol{q}^{\mathsf{T}}\boldsymbol{A} = \boldsymbol{q}^{\mathsf{T}}$$

is unique.

For irreducible and aperiodic MCs, the q that satisfies

$$\boldsymbol{q}^{\mathsf{T}}\boldsymbol{A} = \boldsymbol{q}^{\mathsf{T}}$$

is unique. Therefore, suffices to find *left eigenvector* of A with eigenvalue 1.

For irreducible and aperiodic MCs, the q that satisfies

$$\boldsymbol{q}^{\top} \boldsymbol{A} = \boldsymbol{q}^{\top}$$

is unique. Therefore, suffices to find *left eigenvector* of A with eigenvalue 1. In fact, A has no other eigenvalue of larger modulus!

For irreducible and aperiodic MCs, the q that satisfies

$$\boldsymbol{q}^{\mathsf{T}}\boldsymbol{A} = \boldsymbol{q}^{\mathsf{T}}$$

is unique. Therefore, suffices to find *left eigenvector* of A with eigenvalue 1. In fact, A has no other eigenvalue of larger modulus!

Direct method: Find any vector in *left null space* of A-I

$$q^{\top}(A-I) = 0,$$

and properly normalize it to be a state distribution.

For irreducible and aperiodic MCs, the ${\it q}$ that satisfies

$$\boldsymbol{q}^{\top} \boldsymbol{A} = \boldsymbol{q}^{\top}$$

is unique. Therefore, suffices to find *left eigenvector* of A with eigenvalue 1. In fact, A has no other eigenvalue of larger modulus!

Direct method: Find any vector in *left null space* of A-I

$$\boldsymbol{q}^{\top}(\boldsymbol{A}-\boldsymbol{I}) = \boldsymbol{0},$$

and properly normalize it to be a state distribution.

Power method:

 $\begin{aligned} & \textbf{initialize} \ \ q \ & \textbf{arbitrarily.} \\ & \textbf{repeat} \\ & \quad q^\top := q^\top A. \\ & \textbf{until} \ & \textbf{bored.} \\ & \textbf{return} \ \ q. \end{aligned}$

EXAMPLE: PAGERANK

Random walk on web graph:

- definitely not irreducible, (some pages have no links to other pages);
- probably not aperiodic.

Example: PageRank

Random walk on web graph:

- definitely not irreducible, (some pages have no links to other pages);
- probably not aperiodic.

Modification:

$$\widetilde{\boldsymbol{A}} := (1-\alpha)\boldsymbol{A} + \frac{\alpha}{d} \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix}.$$

New MC (with \widetilde{A}) is both irreducible and aperiodic.

Example: PageRank

Random walk on web graph:

- definitely not irreducible, (some pages have no links to other pages);
- probably not aperiodic.

Modification:

$$\widetilde{\boldsymbol{A}} := (1-\alpha)\boldsymbol{A} + \frac{\alpha}{d} \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix}.$$

New MC (with \widetilde{A}) is both irreducible and aperiodic.

PageRank scores = stationary distribution of this new MC.

EXAMPLE: PAGERANK

PageRank distribution.

(From K. Murphy, "Machine Learning", MIT Press 2012.)

Have some labeled data $(x_1,y_1),(x_2,y_2),\ldots,(x_m,y_m)$ from $\mathcal{X}\times\{\pm 1\}$, and also many unlabeled data $x_{m+1},x_{m+1},\ldots,x_{m+n}$ from \mathcal{X} .

Have some labeled data $(x_1,y_1),(x_2,y_2),\ldots,(x_m,y_m)$ from $\mathcal{X}\times\{\pm 1\}$, and also many unlabeled data $x_{m+1},x_{m+1},\ldots,x_{m+n}$ from \mathcal{X} .

Main question: How to take advantage of U?

Have some labeled data $(x_1,y_1),(x_2,y_2),\ldots,(x_m,y_m)$ from $\mathcal{X}\times\{\pm 1\}$, and also many unlabeled data $x_{m+1},x_{m+1},\ldots,x_{m+n}$ from \mathcal{X} .

Main question: How to take advantage of U?

[Zhu, Ghahramani, and Lafferty, 2003]

▶ Construct weighted similarity graph G = (V, W) over all data.

Have some labeled data $(x_1,y_1),(x_2,y_2),\ldots,(x_m,y_m)$ from $\mathcal{X}\times\{\pm 1\}$, and also many unlabeled data $x_{m+1},x_{m+1},\ldots,x_{m+n}$ from \mathcal{X} .

Main question: How to take advantage of U?

[Zhu, Ghahramani, and Lafferty, 2003]

lacktriangle Construct weighted similarity graph G=(V,W) over all data.

For example:

- $V = \{1, 2, \dots, m+n\}.$
- Weight $W_{i,j} = \exp\left(-\frac{1}{2}\operatorname{dist}(x_i, x_j)^2\right)$.

Have some labeled data $(x_1,y_1),(x_2,y_2),\ldots,(x_m,y_m)$ from $\mathcal{X}\times\{\pm 1\}$, and also many unlabeled data $x_{m+1},x_{m+1},\ldots,x_{m+n}$ from \mathcal{X} .

Main question: How to take advantage of U?

[Zhu, Ghahramani, and Lafferty, 2003]

lacktriangle Construct weighted similarity graph G=(V,W) over all data.

For example:

- $V = \{1, 2, \dots, m+n\}.$
- Weight $W_{i,j} = \exp\left(-\frac{1}{2}\operatorname{dist}(x_i, x_j)^2\right)$.
- ▶ Weighted random walk MC:

$$A_{i,j} = \frac{W_{i,j}}{\sum_{k=1}^{m+n} W_{i,k}}.$$

Example: Semi-Supervised Learning

Have some labeled data $(x_1,y_1),(x_2,y_2),\ldots,(x_m,y_m)$ from $\mathcal{X}\times\{\pm 1\}$, and also many unlabeled data $x_{m+1},x_{m+1},\ldots,x_{m+n}$ from \mathcal{X} .

Main question: How to take advantage of U?

[Zhu, Ghahramani, and Lafferty, 2003]

▶ Construct weighted similarity graph G = (V, W) over all data.

For example:

- $V = \{1, 2, \dots, m+n\}.$
- Weight $W_{i,j} = \exp\left(-\frac{1}{2}\operatorname{dist}(x_i, x_j)^2\right)$.
- Weighted random walk MC:

$$A_{i,j} = \frac{W_{i,j}}{\sum_{k=1}^{m+n} W_{i,k}}.$$

▶ Start weighted random walk starting from unlabeled point x_{m+i} . If first labeled point reached has label $y \in \{\pm 1\}$, then use $\hat{y}_{m+i} := y$ as the label for x_{m+i} .

(Can actually compute, in closed form, the probabilities of $\hat{y}_{m+i} = y$ for each y.)

Example: semi-supervised learning

Example: semi-supervised learning

Example: Semi-supervised learning

RECAP

- Markov property: past and future are conditionally independent given the present.
- ► Transition matrix: the conditional next-state distributions for each state.
- Random walk on graphs: extremely important process, very well-studied, many applications (including in ML, statistics, etc).
- Irreducible and aperiodic Markov chains have limiting behavior: doesn't matter where you start, eventually marginal state distribution is the stationary distribution.
 - Some qualities similar to iid processes, some rather different.
 - Related to eigenvectors/eigenvalues, computation via power method.
- ► Forms the basis of PageRank.