UNIVERSIDADE FEDERAL DO MARANHÃO

CENTRO DE CIÊNCIAS EXATAS E DA TERRA

DEPARTAMENTO DE MATEMÁTICA

PROFESSOR: ÍTALO AUGUSTO OLIVEIRA DE ALBUQUERQUE

DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL III

ALUNX:

2ª Avaliação de Aprendizagem

1. Considere a função $F(x,y,z) = \frac{x-y}{x^2+y^2} + \frac{1}{z}$ e a hélice circular

$$C:\gamma(t)=(5\cos 2t,5\sin 2t,3t),t\in [\frac{\pi}{8},\frac{5\pi}{8}].$$

Encontre a massa total do arame que tem o formato em C e cuja densidade em cada ponto é dada por F(x, y, z).

2. Considere as curvas C_1 dada pela equação y=x e C_2 pela equação $x^2+y^2=11$. Sejam P_1 a intersecção de C_1 e C_2 no primeiro quadrante, P_2 a intersecção no terceiro quadrante e P uma partícula que percorre de P_1 à P_2 pela curva C_1 e que retorna novamente a P_1 pela curva C_2 . Faça a ilustração da figura, dê uma orientação da curva e calcule o trabalho realizado pela partícula ao longo desse trajeto sabendo que a força aplicada em cada ponto é dada por

$$F(x,y) = (xy, x^2 + y^2).$$

3. Seja L o losango formado pelas quatro retas abaixo:

$$r_1: y = -x + 8, r_2: x + 8, r_3: -x - 8, r_4: x - 8.$$

Considere também a elipse $E: \frac{x^2}{4} + \frac{y^2}{2} = 1$ e $F: \mathbb{R}^2 - \{(0,0)\} \longrightarrow \mathbb{R}^2$, $F = (F_1, F_2)$ tal que

$$\int_{F} F ds = 18\sqrt{2}\pi \quad e \quad \frac{\partial F_2}{\partial x} = \frac{\partial F_1}{\partial y} + 9.$$

Faça o esboço da região de integração e utilize o Teorema de Green para encontrar $\int_{L} \mathsf{Fds}$.

4. Considere o campo abaixo:

$$F(x,y) = \left(2x\sin xy + x^2y\cos xy + \frac{1}{x^2u^2}, x^3\cos xy + \frac{2}{xu^3}\right).$$

Mostre que F é conservativo, encontre sua função potencial e calcule $\int_C Fds$, onde C é uma curva que liga os pontos $A = (\frac{\pi}{6}, 1)$ à $B = (1, \frac{\pi}{3})$.

5. Deseja-se pintar uma cerca que tem como base a curva

$$C:\sigma(t)=(\sin^2t,\cos^2t),\ t\in[0,\frac{\pi}{3}]$$

E altura em cada ponto dada pela função $f(x,y)=\frac{xy}{\sqrt{2}},\ x,y>0$. Se o valor para a pintura por m^2 custa p dólares, quanto será gasto para pintar a cerca inteira?

- "Não existe satisfação maior do que lutar pela realização dos seus sonhos."
- Anônimo

São Luís - 2022