CS738: Advanced Compiler Optimizations Constant Propagation

Amey Karkare

karkare@cse.iitk.ac.in

http://www.cse.iitk.ac.in/~karkare/cs738

Department of CSE, IIT Kanpur

Agenda

- Using data flow analysis to identify "constant expressions" in a program
- Identify similarity/differences with bit-vector data flow analyses discussed earlier
- Other properties of constant propagation

Constant Propagation

► CP: Replace expressions that evaluate to same constant "c" every time they are executed, by the value "c"

Domain

- Domain
 - For a single variable v of type τ , all possible constants of type τ

- Domain
 - For a single variable v of type τ , all possible constants of type τ
- Semilattice

- Domain
 - For a single variable v of type τ , all possible constants of type τ
- Semilattice
 - What is ∧?

- Domain
 - For a single variable v of type τ , all possible constants of type τ
- Semilattice
 - What is ∧?
 - What is ⊤?

- Domain
 - For a single variable v of type τ , all possible constants of type τ
- Semilattice
 - What is ∧?
 - What is ⊤?
 - What is ⊥?

NAC: not a constant

- NAC: not a constant
 - If variable is inferred not to be a constant

- NAC: not a constant
 - If variable is inferred not to be a constant
 - Multiple (different valued) defs, non-const defs, assigned an "un-interpreted" value, ...

- NAC: not a constant
 - If variable is inferred not to be a constant
 - Multiple (different valued) defs, non-const defs, assigned an "un-interpreted" value, ...
- Undef: No definition of the variable is seen yet nothing known!

NAC vs Undef

NAC ⇒ too many definitions seen for a variable v to declare v is NOT a constant

NAC vs Undef

- NAC ⇒ too many definitions seen for a variable v to declare v is NOT a constant
- ► Undef ⇒ too few definitions seen to declare anything about the variable

NAC vs Undef

- NAC ⇒ too many definitions seen for a variable v to declare v is NOT a constant
- ► Undef ⇒ too few definitions seen to declare anything about the variable
- ▶ \top is *Undef*; \bot is *NAC*

$$\top \bigwedge x = x$$
$$\bot \bigwedge x = \bot$$

$$\top \bigwedge x = x$$

$$\perp \bigwedge x = \perp$$

Undef
$$\bigwedge c = c$$

$$\top \bigwedge x = x$$
$$\bot \bigwedge x = \bot$$

$$Undef \land c = c$$

 $NAC \land c = NAC$

$$op \langle x=x
angle$$
 $op \langle x=x
angle$ $op \langle x=b
angle$ Undef $extstyle c=c$ $extstyle NAC \wedge c=NAC$ $c_1 \wedge c_2=NAC$ when $c_1
eq c_2$

$$op \langle x=x
angle$$
 $op \langle x=x
angle$ $op \langle x=b
angle$ Undef $extstyle c=c$ $extstyle NAC \wedge c=NAC$ $c_1 \wedge c_2=NAC$ when $c_1
eq c_2$ $c \wedge c=c$

CP Semilattice for an integer variable

Infinite domain, but finite height

CP Semilattice

Previous figure was semilattice for one variable of one type

CP Semilattice

- Previous figure was semilattice for one variable of one type
- CP Semilattice = Product of such lattices for all variables (of all types)

CP Semilattice

- Previous figure was semilattice for one variable of one type
- CP Semilattice = Product of such lattices for all variables (of all types)
- Each semilattice has a finite height

Statement	GEN
x = c // const	
x = y + z	
x = complicated	
expr	

Statement	GEN
x = c // const	$\{x \to c\}$
x = y + z	
x = complicated	
expr	

Statement	GEN
x = c // const	$\{X \to C\}$
	if $\{y \rightarrow c_1, z \rightarrow c_2\}$ in IN then $\{x \rightarrow c_1 + c_2\}$
x = y + z	
$\overline{x = complicated}$	
expr	

Statement	GEN
x = c // const	$\{X \to C\}$
x = y + z	if $\{y \to c_1, z \to c_2\}$ in IN then $\{x \to c_1 + c_2\}$ else if $\{y \to NAC\}$ in IN then $\{x \to NAC\}$
x = complicated expr	

Statement	GEN
x = c // const	$\{X \to C\}$
x = y + z	if $\{y \to c_1, z \to c_2\}$ in IN then $\{x \to c_1 + c_2\}$ else if $\{y \to NAC\}$ in IN then $\{x \to NAC\}$ else if $\{z \to NAC\}$ in IN then $\{x \to NAC\}$
x = complicated expr	

Statement	GEN
x = c // const	$\{X \to C\}$
x = y + z	if $\{y \rightarrow c_1, z \rightarrow c_2\}$ in IN then $\{x \rightarrow c_1 + c_2\}$ else if $\{y \rightarrow NAC\}$ in IN then $\{x \rightarrow NAC\}$ else if $\{z \rightarrow NAC\}$ in IN then $\{x \rightarrow NAC\}$ else $\{x \rightarrow Undef\}$
x = complicated	
expr	

Statement	GEN
x = c // const	$\{X \to C\}$
x = y + z	if $\{y \rightarrow c_1, z \rightarrow c_2\}$ in IN then $\{x \rightarrow c_1 + c_2\}$ else if $\{y \rightarrow NAC\}$ in IN then $\{x \rightarrow NAC\}$ else if $\{z \rightarrow NAC\}$ in IN then $\{x \rightarrow NAC\}$ else $\{x \rightarrow Undef\}$
x = complicated expr	$\{x \rightarrow NAC\}$

Case analysis on transfer function f

- Case analysis on transfer function f
- ▶ $NAC \le c \le Undef$

- Case analysis on transfer function f
- ▶ $NAC \le c \le Undef$
- \triangleright x = c has constant transfer function.

- Case analysis on transfer function f
- ▶ $NAC \le c \le Undef$
- \triangleright x = c has constant transfer function.
- ightharpoonup x = complicated expr also has constant transfer function

Monotonicity of CP

- Case analysis on transfer function f
- ▶ $NAC \le c \le Undef$
- \triangleright x = c has constant transfer function.
- ightharpoonup x = complicated expr also has constant transfer function
- See the next slide for x = y + z (and similar statements)

► Fix z to be one of *Undef*, c₂, *NAC*

- ► Fix z to be one of *Undef*, c₂, *NAC*
- ► Vary *y* over *Undef*, *c*₁, *NAC*

- ► Fix z to be one of *Undef*, c₂, *NAC*
- ▶ Vary y over Undef, c₁, NAC
- Confirm that x does not "increase"

- ► Fix z to be one of *Undef*, c₂, *NAC*
- ► Vary y over Undef, c₁, NAC
- Confirm that x does not "increase"
- Do this for all z choices.

- ► Fix z to be one of *Undef*, c₂, *NAC*
- ► Vary y over Undef, c₁, NAC
- Confirm that x does not "increase"
- Do this for all z choices.
- Similarly, fix y and vary z.

► All paths:

All paths:

$$\blacktriangleright B_0 \to B_1 \to B_3$$

All paths:

- $\blacktriangleright \ B_0 \to B_1 \to B_3$
- $\blacktriangleright \ B_0 \to B_2 \to B_3$

- All paths:
 - $ightharpoonup B_0
 ightarrow B_1
 ightarrow B_3$
 - $\blacktriangleright \ B_0 \to B_2 \to B_3$
- ▶ Value of z is 5 along both the paths.

- ► All paths:
 - $ightharpoonup B_0
 ightarrow B_1
 ightarrow B_3$
 - $\blacktriangleright \ B_0 \to B_2 \to B_3$
- ▶ Value of z is 5 along both the paths.
- ► MOP value for z is 5.

- ► All paths:
 - $ightharpoonup B_0
 ightarrow B_1
 ightarrow B_3$
 - $\blacktriangleright \ B_0 \to B_2 \to B_3$
- ▶ Value of z is 5 along both the paths.
- ► MOP value for z is 5.
- MFP value for z is NAC. (Exercise)

- All paths:
 - $ightharpoonup B_0
 ightarrow B_1
 ightarrow B_3$
 - $\blacktriangleright \ B_0 \to B_2 \to B_3$
- ▶ Value of z is 5 along both the paths.
- ► MOP value for z is 5.
- MFP value for z is NAC. (Exercise)
- MFP value ≠ MOP value (MFP < MOP)</p>