Prova-01-rec

Prof. Msc. Elias Batista Ferreira Prof. Dr. Gustavo Teodoro Laureano Profa. Dra. Luciana Berretta Prof. Dr. Thierson Rosa Couto

Sumário

1	Calcular Plano de Saúde (++)	2
2	Cálculo do imposto de renda (+++)	3
3	Trajetória da partícula (+++)	5

1 Calcular Plano de Saúde (++)

Uma empresa concede plano de saúde a seus funcionários, porém, um percentual da mensalidade deve ser custeado pelo funcionário. Esse percentual é calculado conforme o tipo do plano (Enfermaria ou Apartamento) e o valor do salário bruto do funcionário. A tabela de mensalidade segue abaixo:

Salário bruto	Tipo do plano	% mensalidade para cada pessoa
Até 1.800,00	Enfermaria	25%
	Apartamento	30%
Acima de 1.800,00 e até 5.000,00	Enfermaria	28%
	Apartamento	35%
Acima de 5.000,00	Enfermaria	31%
	Apartamento	40%

Entrada

O programa deve ler 4 valores de entrada: um número double correspondente ao salário bruto do funcionário, um valor inteiro correspondente a quantidade de pessoas no plano, um tipo char correspondendo ao tipo do plano (A ou E) e o valor total da mensalidade, do tipo double.

Saída

A saída deve apresentar um texto com o tipo de plano de saúde (ENFERMARIA ou APARTAMENTO) e o total pago pelo funcionário com plano de saúde (com duas casas decimais). Se o tipo de plano for informado incorretamente, deve aparecer a mensagem "TIPO DE PLANO INVALIDO". Caso o salário líquido do funcionário (Salário bruto - Total pago com plano de saúde) for inferior a 30% do salário bruto, o programa deve emitir a mensagem "DESCONTO NAO AUTORIZADO". Após a saída, o programa deve imprimir o caractere de quebra de linha.

Exemplo

Entrada							
3000.12	3	А	350.00				
Saída							
APARTAME	367,50						

Entrac	da						
4500.	.00	4	Н	4 (00.	50	
Saída							
TIPO	DE	ΡI	LAI	10	IN	IVALIDO	

Entrada	
1500.00 6 E	750.00
Saída	
DESCONTO NAO	AUTORIZADO

2 Cálculo do imposto de renda (+++)

Desenvolver um algoritmo que determine o imposto de renda cobrado de um funcionário pelo governo. Seu programa deverá ler a matrícula de um funcionário, o valor do salário mínimo, o número de dependentes, o salário do funcionário e a taxa de imposto normal que já foi paga pelo funcionário. O imposto bruto é:

- 20% do salário do funcionário, se o funcionário ganha mais de 12 salários mínimos;
- 8% do salário do funcionário, se o funcionário ganha mais de cinco salários mínimos;
- Zero % do salário do funcionário, se ele ganha cinco salários mínimos ou menos.

Determine o imposto líquido a ser pago pelo funcionário subtraindo R300,00 no imposto bruto, para cada dependente do funcionário. O programa calculará e imprimirá o imposto a ser pago ou devolvido, que é a diferença entre o imposto líquido e o imposto normal **descontado** do salário do funcionário. Se a diferença for negativa, o programa deve emitir a mensagem de "imposto a receber". Se a diferença for um valor positivo o programa deve emitir a mensagem, "imposto a pagar", e, se for igual a zero, deve emitir a mensagem "imposto quitado".

Entrada

O programa deve ler uma linha contendo cinco valores na entrada, separados entre si por um espaço: a matrícula (um número inteiro), o valor do salário mínimo (float), o número de dependentes (inteiro), o salário do funcionário (float) e a taxa de imposto (float), nesta ordem.

Saída

O programa deve imprimir quatro linhas, contendo o seguinte:

- MATRICULA = u, onde u é o valor da matrícula do funcionário;
- IMPOSTO BRUTO = v, onde v é o valor do imposto bruto;
- IMPOSTO LIQUIDO = x, onde x é o valor do imposto líquido;
- RESULTADO = w, onde w é o valor da diferença entre o imposto normal e o imposto líquido;
- A mensagem IMPOSTO A RECEBER, se o valor de w for negativo ou a mensagem IMPOSTO QUITADO, se w for igual a zero, ou a mensagem IMPOSTO A PAGAR, caso w for maior que zero.

Os valores de v,x e w devem conter duas casas decimais.

Exemplo

Abaixo são mostrados dois exemplos de entrada e saída, mas há apenas um caso de entrada (uma linha) para esse programa.

Entrada	Saída
99123 510.0 3 1531.97 8.5	MATRICULA = 99123
	IMPOSTO BRUTO = 0.00
	IMPOSTO LIQUIDO = -900.00
	RESULTADO = -1030.22
	IMPOSTO A RECEBER

Entrada	Saída			
56789 630.00 2 4567.01 56.7	MATRICULA = 56789			
	IMPOSTO BRUTO = 365.36			
	IMPOSTO LIQUIDO = -234.64			
	RESULTADO = -2824.13			
	IMPOSTO A RECEBER			

3 Trajetória da partícula (+++)

Em um experimento físico realizado em uma área de $10 \text{cm} \times 10 \text{cm}$, uma determinada partícula descreve uma trajetória no Plano Carteziano (X,Y) definida por um polinônimo de grau máximo igual a 2, como apresentado na Equação 1. A região mais provável de se conhecer a posição dessa partícula é quando ela intercepta o eixo X. No entanto, por mais comportada que seja essa partícula, no mundo quântico ocorrem fenômenos que ainda não são completamente compreendidos. Observa-se dois fatos interessantes: Fato 1) quando a soma dos coeficientes do polinômio é divisível por 3 a partícula desaparece do experimento. Fato 2) Outro fato curioso é que a partícula sempre está na origem do plano quando o coeficiente c é par e menor que a+b.

Considerando que a origem do Plano Carteziano coincide com o centro da área do experimento, quando as raízes ultrapassam o valor de 5cm ou -5cm, dizemos que é impossível determinar a posição mais provável da partícula pois ela está fora da área do experimento. Assim, determine as posições mais prováveis dessa partícula para um polinômio dado, de acordo com a equação abaixo.

$$0 = ax^2 + bx + c \tag{1}$$

Entrada

O programa deve ler 3 valores inteiros (int), correspondendo aos coeficientes a, b, c, respectivamente.

Saída

Caso o polinômio tenha raízes imaginárias, o programa deve apresentar a mensagem: "POSICOES IMAGINARIAS" e encerrar. Caso contrário, o programa deve imprimir uma linha contento as raízes do polinômio com a seguinte estrutura: "POSICOES: $X1=x_1$ e $X2=x_2$ ". Se pelo menos uma das raízes estiver fora da área do experimento, o programa deve imprimir o texto das raízes seguido de um espaço e o texto "(FORA DO EXPERIMENTO)". Caso os coeficientes atendam os fatos 1 ou 2, o programa de imprimir as raízes calculadas seguidas de uma nova linha com texto seguinte: "FATO1: DESAPARECIDA" ou "FATO2: ORIGEM". Note que todas essas condições podem acontecer simultaneamente.

Observações

Dada uma equação do segundo grau do tipo $ax^2 + bx + c$, Δ (delta) $= b^2 - 4ac$. Se $\Delta = 0$, a raiz da equação é ÚNICA. Se $\Delta < 0$. As raízes da equação são IMAGINÁRIAS. Se $\Delta > 0$, então há duas RAÍZES DISTINTAS para a equação. A fórmula geral para computar as raízes de uma equação do segundo grau é a fórmula de Báskara, dada por:

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$

e

$$x_2 = \frac{-b - \sqrt{\Delta}}{2a}$$

Exemplo

Entrada						
2 20 1						
Saída						
POSICOES:	X1=-0.05	е	X2=-9.95	(FORA	DO	EXPERIMENTO)

Entrada

2 20 2

Saída

POSICOES: X1=-0.10 e X2=-9.90 (FORA DO EXPERIMENTO)

FATO1: DESAPARECIDA

FATO2: ORIGEM

Entrada

2 5 2

Saída

POSICOES: X1=-0.50 e X2=-2.00

FATO1: DESAPARECIDA

FATO2: ORIGEM

Entrada

1 2 3

Saída

POSICOES IMAGINARIAS

Entrada

2 8 0

Saída

POSICOES: X1=0.00 e X2=-4.00

FATO2: ORIGEM