Transformées de Fourier et Laplace

- J. DIEUDONNE. Calcul infinitésimal. Hermann (1968).
- M. Herve. Transformation de Fourier et distributions. P. U. F. (1986).
- T. W. Korner. Fourier analysis. Cambridge University Press. (1996).
- E. LEICHTNAM. Exercices corrigés de Mathématiques. Polytechnique et ENS. Analyse. Ellipses (2000).

Ramis, Deschamps, Odoux. Analyse 2, exercices avec solutions. Masson. (1972).

Exercice 1 On note C^0 l'espace des fonctions $f: \mathbb{R} \to \mathbb{C}$ qui sont continues; \mathcal{L}^{∞} le sous-espace de C^0 constitué des fonctions continues et bornées; \mathcal{L}^1 le sous-espace de C^0 constitué des fonctions continues et intégrables.

- 1. Soient f, g dans \mathcal{L}^1 , l'une de ces deux fonctions étant dans \mathcal{L}^{∞} .
 - (a) Montrer qu'on peut définir la fonction :

$$f * g : x \in \mathbb{R} \mapsto \int_{\mathbb{R}} f(x - y) g(y) dy$$

que cette fonction f * g est dans \mathcal{L}^1 et que $\int_{\mathbb{R}} (f * g)(x) dx = \int_{\mathbb{R}} f(x) dx \times \int_{\mathbb{R}} g(x) dx$ (f * g est le produit de convolution de f et de g).

- (b) Montrer que $\widehat{f * g} = \widehat{f} \cdot \widehat{g}$.
- 2. Calculer, pour tout réel a > 0, la transformée de Fourier de la fonction $\varphi_a : t \mapsto e^{-a|t|}$.
- 3. Montrer qu'il n'existe pas d'unité pour le produit de convolution, c'est-à-dire qu'il n'est pas possible de trouver une fonction $f \in \mathcal{L}^1$ [resp. $f \in \mathcal{L}^1 \cap \mathcal{L}^{\infty}$] telle que f * g = g pour tout $g \in \mathcal{L}^1 \cap \mathcal{L}^{\infty}$ [resp. $g \in \mathcal{L}^1$] (on admettra que $\lim_{|x| \to +\infty} \widehat{f}(x) = 0$).
- 4. Soit $(\varphi_n)_{n\in\mathbb{N}^*}$ la suite de fonctions définie sur \mathbb{R} par :

$$\varphi_n(t) = \begin{cases} 1 - \frac{|t|}{n} si |t| \le n \\ 0 si |t| > n \end{cases}$$

- (a) Montrer que, pour tout entier $n \in \mathbb{N}^*$, la fonction φ_n est dans $\mathcal{L}^1 \cap \mathcal{L}^{\infty}$ et calculer sa transformée de Fourier.
- (b) En admettant que $\int_{-\infty}^{+\infty} \frac{\sin^2(t)}{t^2} dt = \pi$, calculer $\int_{-\infty}^{+\infty} \widehat{\varphi_n}(x) dx$ pour tout entier $n \in \mathbb{N}^*$.
- (c) Montrer que, pour tout réel $\eta > 0$, on a :

$$\lim_{n \to +\infty} \int_{|x| > \eta} \widehat{\varphi_n}(x) \, dx = 0$$

(d) Soit $f \in \mathcal{L}^1$ telle que $\widehat{f} \in \mathcal{L}^1$. Montrer que, pour tout entier $n \in \mathbb{N}^*$ et tout réel t, on a :

1

$$f * \widehat{\varphi_n}(t) = \int_{-\infty}^{+\infty} \varphi_n(x) \, \widehat{f}(x) \, e^{ixt} dx$$

(e) On suppose de plus que $f \in \mathcal{L}^{\infty}$. Montrer que pour tout réel t, on a :

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \widehat{f}(x) e^{ixt} dx$$

soit $f(t) = \frac{1}{2\pi} \widehat{\widehat{f}}(-t)$ (formule d'inversion de Fourier). En fait l'hypothèse $f \in \mathcal{L}^{\infty}$ n'est pas indispensable et la transformation de Fourier est injective sur \mathcal{L}^1 .

5. Résoudre l'équation f * f = f dans $\mathcal{L}^1 \cap \mathcal{L}^{\infty}$.

Exercice 2

1. Soient $f: \mathbb{R} \to \mathbb{C}$ une fonction continue sur \mathbb{R} et y un réel tel que l'intégrale $\int_{-\infty}^{+\infty} f(t) e^{-iyt} dt$ soit convergente. La transformée de Fourier de f en y est définie par :

$$\forall y \in \mathbb{R}^{+,*}, \ \widehat{f}(y) = \int_{-\infty}^{+\infty} f(t) e^{-iyt} dt$$

Donner une expression de $\widehat{f}(y)$ qui utilise les transformées de Laplace des fonctions f_+ et $f_$ définies sur $\mathbb{R}^{+,*}$ par :

$$\forall t \in \mathbb{R}^{+,*}, \ f_{+}(t) = f(t), \ f_{-}(t) = f(-t)$$

2. Pour tout nombre complexe α et tout nombre réel x>0 fixé, on définit la fonction $\varphi_{\alpha}:\mathbb{R}\to\mathbb{C}$

$$\varphi_{\alpha}(y) = |x + iy|^{\alpha} e^{i\alpha \arctan\left(\frac{y}{x}\right)}$$

et on note $\varphi_{\alpha}(y) = (x + iy)^{\alpha}$.

(a) Montrer que la fonction φ est de classe \mathcal{C}^1 sur \mathbb{R} avec :

$$\varphi_{\alpha}'(y) = i\alpha (x + iy)^{\alpha - 1}$$

- (b) Résoudre l'équation différentielle $\varphi'(y) = \frac{i\alpha}{x+iy}\varphi(y)$, où φ fonction φ est de classe \mathcal{C}^1 $sur \mathbb{R}$.
- 3. En utilisant les résultats des questions précédentes, on se propose de calculer la transformée de Fourier sur \mathbb{R}^* de la fonction :

$$f: t \in \mathbb{R}^{+,*} \mapsto t^{\alpha - 1}$$

où α est un nombre complexe tel que $0 < \Re(\alpha) < 1$.

- (a) Vérifier que $\hat{f}(y)$ est bien défini pour tout réel $y \in \mathbb{R}^*$.
- (b) Calculer $\mathcal{L}(f)(x)$, pour tout réel x > 0.
- (c) Calculer $\mathcal{L}(f)(x+iy)$, pour tout réel x>0 et tout réel y.
- (d) En déduire la valeur de $\widehat{f}(y)$ pour tout réel $y \in \mathbb{R}^*$.
- (e) En déduire les valeurs des intégrales de Fresnel :

$$\int_0^{+\infty} \cos(t^2) dt \ et \int_0^{+\infty} \sin(t^2) dt$$

Exercice 3

1. Soit $f: \mathbb{R}^+ \to \mathbb{R}$ (ou à valeurs dans \mathbb{C}) une fonction continue telle que $\int_0^{+\infty} f(t) dt$ soit convergente.

Montrer que la fonction $\mathcal{L}(F)$ est définie et continue sur \mathbb{R}^+ .

En particulier, on a:

$$\lim_{x \to 0^{+}} \mathcal{L}\left(f\right)\left(x\right) = \int_{0}^{+\infty} f\left(t\right) dt$$

2. On désigne par f la fonction définie sur \mathbb{R}^+ par :

$$\forall t \in \mathbb{R}^+, \ f(t) = \begin{cases} \frac{\sin(t)}{t} \ si \ t > 0 \\ 1 \ si \ t = 0 \end{cases}$$

(a) Montrer que les intégrales $\int_0^{+\infty} \frac{\sin^2{(t)}}{t^2} dt$ et $\int_0^{+\infty} \frac{\sin{(t)}}{t} dt$ sont convergentes et que :

$$\int_{0}^{+\infty} \frac{\sin^{2}(t)}{t^{2}} dt = \int_{0}^{+\infty} \frac{\sin(t)}{t} dt$$

- (b) Montrer que $\mathcal{L}(f)(x)$ est définie pour tout nombre réel x > 0, calculer $\mathcal{L}(f)(x)$ pour tout x > 0 et en déduire la valeur de l'intégrale de Dirichlet $\int_0^{+\infty} \frac{\sin(t)}{t} dt$.
- 3. En considérant la fonction $f = \cos$, vérifier que la fonction $\mathcal{L}(f)$ peut être définie sur $\mathbb{R}^{+,*}$ avec une limite finie quand x tend vers 0^+ , alors que l'intégrale de f sur $\mathbb{R}^{+,*}$ est divergente.

Exercice 4

1. Montrer que les solutions sur $\mathbb{R}^{+,*}$ de l'équation différentielle $y'' + y = \frac{1}{x}$ sont les fonctions définies par :

$$\forall x \in \mathbb{R}^{+,*}, \ y(x) = \alpha \cos(x) + \beta \sin(x) + \int_0^{+\infty} \frac{\sin(t)}{x+t} dt$$

 $où \alpha, \beta$ sont deux constantes réelles.

Vérifier qu'il existe une unique solution sur $\mathbb{R}^{+,*}$ de limite nulle en $+\infty$.

2. Montrer que la transformée de Laplace de f est définie sur \mathbb{R}^+ , puis que :

$$\forall x \in \mathbb{R}^{+,*}, \ \mathcal{L}(f)(x) = \int_{0}^{+\infty} \frac{\sin(t)}{x+t} dt$$

3. En déduire la valeur de $\int_0^{+\infty} \frac{\sin(t)}{t} dt$.

Exercice 5

1. En utilisant la transformation de Laplace, résoudre l'équation différentielle :

$$y'''(t) - 5y''(t) + 8y'(t) - 4y(t) = t\cos(t)$$

avec les conditions initiales y(0) = y'(0) = y''(0) = 1, où y est une fonction de classe C^2 sur \mathbb{R} .

2. En utilisant la transformation de Laplace, résoudre le système différentiel :

$$\begin{cases} 2u''(t) + v''(t) + 2u(t) = 0 \\ u''(t) + v''(t) + v(t) = 0 \end{cases}$$

avec les conditions initiales u(0) = 1, u'(0) = v(0) = v'(0) = 0, où u et v sont des fonctions de classe C^2 sur \mathbb{R} .

3