

DR BHESH BHANDARI
FOOD SCIENCE AND TECHNOLOGY
SCHOOL OF LAND AND FOOD SCIENCES
THE UNIVERSITY OF QUEENSLAND

BEST AVAILABLE COPY

- Wet and plastic appearance Agglomeration and clumping in packing container
- Operational problems

Products exhibiting stermess

raineswithininanoundisurasdrovaileelis

- · Fruit (infees/pieces/purces/leathers)
- : #Honey
- Molasses
- Whey (acid or sweet)
- High DE maltodextrins (DE>30)
- Pure sugars- lactose, glucose, sucrose, fructose
- High acid foods

High fat foods

- e High hygroseop**icit**y
- High solubility
- Low melting point temperature
- Low glass transition temperature (related to thermoplasticity)

Class Transfion Approach

Recentanproachtodesetbe stickiness

•Applied to spray drying

Sugars	Hygroscopicity (relative)		Approx solubility in H ₂ 0 60°C (%,w/w)	Tg (°C)	Stickiness (relative)
Lactose	+	223	35	101	+ -
Maltose	++	165	52	87	++
Sucrose	+++	186	71	62	+++
Glucose	++++	146	72	31	++++
Fructose	+++++	105	89	5	+++++

What is a glass transition?

Pivstedseicsolditedordritusolidmaierials

- Amorphous
 - non-aligned molecular structure
 - very hygroscopic
 - go through glass transition
 - predominant in dried food

- Crystalline

- aligned molecular structure
- non hygroscopic
- no glass transition

÷

- ; Contoring Connection of the Contoring Contor
- Shorter chain molecules: low glass transition temperature (Tg of monosaccharides < Tg of disaccharides)
- Water depresses the Tg significantly (Tg of amorphous solid water is -135°C)
- For a complex food system, the Tg is a function of weight fraction of each component and their Tgs'- but the relationship is not linear

Defizione de la company de la

	The second second
Fructose	5 - 7 - 7 - 7
Glucose	31,5 446 444
Galactose	32
Sucrose	62
∴ Maliose	87
Lactose	101
Citric acid	6
Tartaric acid	18
Malic acid	-21
Lactic acid	-60
Maltodextrins	
DE^{d} 36 (MW=550)	100
DE 25 (MW=720)	121
DE 20 (MW=900)	141
DE 10 (MW=1800)	160
DE 5 (MW=3600)	188
Starch	243° ,
Ice-cream f	-34.3
Honey ⁸	-42 to -51

- Spray dryings staking on the drier well, duct and cyclone, poortecovery of powder, _ agglomeration in the collection bag or container.
- •Coventional hot air solid drying: poor fluidisation, stick on the drying racks/shelves, soft product while drying but solid after cooling
- •Storage: Clumping, agglomeration, caking, crystallisation

- Drying below the glass transition temperature (often not feasible)
- Choosing mild drying temperature conditions
- Increasing the Tg of the food by adding high molecular weight materials (such as maltodextrins)- a predictive approach according to the composition
- Immediate cooling of the product below its Tg
- Appropriate drier design to suit the sticky product

CONTINE

- At the glass transition temperature the amorphous food is converted to rubbery state (from its solid glassy state)
- If the temperature of the product is above its glass transition temperature it exhibits stickiness
- The stickiness can be minimised by lowering drying temperature and increasing the Tg by adding high molecular weight additive
- An optimisation procedure is needed to control the Tg of the product and to select correct drying conditions

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.