Classification of macular degenerative pathologies from OCT images with speckle noise

Brent Savage Spring 2024

BME 541L: Machine Learning and Imaging MEng in Photonics and Optical Sciences

Presentation Agenda

- Background and Motivation
- Data Capture: Optical Coherence Tomography
- Speckle Noise
- Machine Learning Pipeline
 - Dataset
 - Preprocessing
 - Cleaning up Speckle Noise
 - Classification
- Results
- Conclusions

Background and Motivation

- Age-related macular degeneration (AMD) is the leading cause of legal blindness in individuals > 55 years old
- AMD accounts for 6 9% of legal blindness globally
- Several different pathologies associated with AMD:
 - Choroidal neovascularization (CNV)
 - o Drusen
 - Diabetic Macular Edema (DME)
- Each pathology has its own symptoms, progression timelines, treatments, etc.
- Need for rapid retinal imaging and classification techniques for early detection and vision loss prevention

Optical Coherence Tomography (OCT)

- Rapid, noninvasive, singlecell resolution medical imaging technique
- Clinical gold standard in retinal imaging
- Interferometric imaging using backscattered light from biological samples
- Dependent on coherence properties of light source

B-Scan Image

Speckle Noise

Coherence

- Fixed phase relationship between electromagnetic field values at:
 - (1) different locations (Spatial Coherence)
 OR
 - (2) different times (Temporal Coherence)
- Can be modified by bandwidth of source or spatial filtering of beam
- Axial resolution of OCT imaging dependent on coherence length of source:

$$l_c \approx 0.44 \; \frac{\lambda_c^2}{\Delta \lambda}$$

Lower coherence = higher resolution !!

Duke

Speckle Noise

- Interference between different parts of an object due to scattering
- Manifests as random fluctuation in intensity (noise)
- Degrades overall image quality
- Can be quantified using speckle contrast (C_s) :

$$C_S = \frac{\sigma_n}{\langle I \rangle}$$

 σ_n : standard deviation of image intensity

 $\langle I \rangle$: mean image intensity

Low Speckle Noise

High Speckle Noise

Machine Learning Pipeline

Dataset

- Data taken from "Large Dataset of Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images"
 Daniel Kermany et al., University of California San Diego, Guangzhou Women and Children's Medical Center
- OCT dataset:
 - 109,309 total images
 - o 1,000 test images
 - o 108,309 training images
 - Broken up into four main categories, based on AMD pathology
 - o 37,455 choroidal neovascularization images (CNV)
 - o 11,598 diabetic macular edema images (DME)
 - o 8,866 drusen images (DRUSEN)
 - 51,390 normal images (NORMAL)
 - Varying image sizes, orientations, and speckle noise

Preprocessing

1. Resizing the dataset:

- Need images to all have same dimensions for CNN
- All images resized to be 256 x 256 pixels
- Aspect ratio threshold set at 1.5:1
- New Dataset:
 - o Total: 42,345 Images
 - Train: 41,345 images
 - Test: 1,000 images
 - CNV: 9,494 images
 - DME: 10,144 images
 - DRUSEN: 5,371 images
 - NORMAL: 16,336 images

Preprocessing

2. Adding speckle noise:

• Speckle noise simulated using random phasors:

$$phasor = Ae^{i\phi}$$

- Amplitude (A) had a constant value
- \circ Phase (ϕ) had a unform distribution from $-\pi$ to π
- A sum of N phasors is added to each pixel to produce the speckle noise in your image

$$Speckled\ Pic = \alpha \sqrt{Original\ Pic} + phasorSum$$

 \circ α : pre-factor (can be set to any value)

Smaller α = more speckle noise

Low Speckle Noise ($\alpha = 10$):

Original Image

Speckle Noise ($\alpha = 10$)

Medium Speckle Noise ($\alpha = 5$):

Original Image

Speckle Noise ($\alpha = 5$)

High Speckle Noise ($\alpha = 2.5$):

Original Image

Speckle Noise ($\alpha = 2.5$)

Cleaning up Speckle Noise

- Denoising Autoencoder:
 - Task:
 - Denoising speckled images to recover original images
 - Labels: OCT resized dataset
 - Model:
 - Conv2D + ReLU
 - MaxPooling2D
 - UpSampling2D
 - Conv2D + Sigmoid
 - Compile:
 - Optimizer: Adam
 - Loss Function: Mean squared error
 - Learning Rate: 0.001

Classification

- VGG-11 model:
 - Task:
 - Multiclass classification
 - Labels:
 - CNV = 1
 - DME = 2
 - DRUSEN = 3
 - NORMAL = 4
 - Model:
 - Conv2D + ReLU
 - MaxPooling2D
 - Fully Connected + ReLU
 - Fully Connected + SoftMax
 - Compile:
 - Optimizer: Adam
 - Loss Function: Categorical cross entropy
 - o Learning Rate: 0.001

Results

Image reconstruction from denoising autoencoder:

Low Speckle Noise:

Original Image

Speckled Image

Reconstructed Image

High Speckle Noise:

Original Image

Speckled Image

Reconstructed Image

Mean Squared Error = 0.0200

Medium Speckle Noise:

Original Image

Speckled Image

Reconstructed Image

Mean Squared Error = 0.00670

Mean Squared Error = 0.00512

Results

2. Classification Accuracy vs Speckle Noise Level:

Conclusions

- Denoising autoencoder is effective in removing speckle noise, but causes a strong gaussian blur effect (not ideal for classification)
- Medium speckle noise performs best in terms of speckle noise suppression and classification
- Possible future work:
 - Explore other options for cleaning up speckle noise (e.g., mean filter)
 - Test on dataset with known and predictable speckle noise values
 - \circ Optimize speckle noise (α value) within the CNN itself through a custom layer
 - Test classification on other types of CNN architectures (ResNet, MobileNet, etc.)

References

- [1] Fleckenstein, M., Keenan, T.D.L., Guymer, R.H. et al. Age-related macular degeneration. Nat Rev Dis Primers 7, 31 (2021). https://doi.org/10.1038/s41572-021-00265-2
- [2] Nabila Eladawi *et al.*, "Optical coherence tomography: A review," pp. 191–221, Jan. 2020, doi: https://doi.org/10.1016/b978-0-12-817440-1.00007-3.
- [3] T. Yoneyama and Y. Sakamoto, "Speckle control for electro-holographic display using high-brightness yellow phosphor light source in projector," *Optical engineering*, vol. 62, no. 08, Aug. 2023, doi: https://doi.org/10.1117/1.oe.62.8.083103.
- [4] "VGG-16 | CNN model," *GeeksforGeeks*, Feb. 26, 2020. https://www.geeksforgeeks.org/vgg-16-cnn-model/
- [5] S. Diao et al., "Classification and segmentation of OCT images for age-related macular degeneration based on dual guidance networks," Biomedical Signal Processing and Control, vol. 84, p. 104810, Jul. 2023. doi:10.1016/j.bspc.2023.104810

