Data Mining, Data Science, Business Analytics

José Luís Borges

jlborges@fe.up.pt

(adaptado de materiais cedidos por Carlos Soares csoares@fe.up.pt)

Introduction

- Analytics in business is booming
- Businesses collect data about many processes
- There are several external sources of data available
- Companies want to exploit the data for competitive advantages
 - It is not enough to build reports and create dashboards
 - Moving the focus of interest from the past to the future

Introduction

- From
 - How many customers did we lose last year?
 (descriptive)
- To
 - Who will most likely churn within the next 10 days and what can we do about it?

(predictive)

Introduction

From

– What campaign was the most successful in the past?

To

— What will be the next action to trigger a purchase action for each of the prospects?

What is data mining?

 "non-trivial process of identifying valid, novel and potentially useful and ultimately understandable patterns in data"

• (Fayyad, piatetsky-shapiro and smyth, 1996)

knowledge discovery process involves: data cleaning, data integration, data selection, data transformation, data mining, evaluation, presentation

Application example

- Germany won the 2014 world cup against Argentina, having Big Data on its side!
- Partnered SAP to create a custom match analysis tool that collects and analyzes player performance data
 - data captured by video cameras around the pitch
 - performance indicators for individual players
 - team virtual "defensive shadows" that show how much area a player can protect with his own body. That can help visualize and exploit weak links in an opponent's setup

— ...

- There were eight cameras covering each pitch in Brazil and data was available to all the teams
- only Germany made use of this type of big data analytics.
- Oliver Bierhoff, assisting coach, said:
 - "We had a lot of qualitative data for the opposition available. Jerome Boateng asked to look at the way Cristiano Ronaldo moves in the box, for example.
 - And before the game against France, we saw that the French were very concentrated in the middle but left spaces on the flanks because their full-backs didn't push up properly. So we targeted those areas."

16 JUN 2014 - 13:00 Local time GROUP G Arena Fonte Nova Salvador	GERMANY	FULL-TIME 4-0 ■ ■	PORTUGAL
21 JUN 2014 - 16:00 Local time GROUP G Estadio Castelao Fortaleza	GERMANY	FULL-TIME 2-2 ■ ■	GHANA *
26 JUN 2014 - 13:00 Local time GROUP G Arena Pernambuco Recife	USA	FULL-TIME O-1	GERMANY
30 JUN 2014 - 17:00 Local time ROUND OF 16 Estadio Beira-Rio Porto Alegre	GERMANY	FULL-TIME 2-1 Germany win after extra time	ALGERIA 📭
04 JUL 2014 - 13:00 Local time QUARTER-FINALS Estadio do Maracana Rio De Janeiro	FRANCE	FULL-TIME O-1	GERMANY
08 JUL 2014 - 17:00 Local time SEMI-FINALS Estadio Mineirao Belo Horizonte	♦ BRAZIL	FULL-TIME 1-7	GERMANY
13 JUL 2014 - 16:00 Local time FINAL Estadio do Maracana Rio De Janeiro	GERMANY	FULL-TIME 1-0 Germany win after extra time	ARGENTINA

A simple example

Who should I send the promotion to?

Bought?	Age	Income	Family size	Cars bought previously	Value of last purchase
	41	50000	2	1	0
	39	68000	2	0	30000
	58	61000	4	0	0
	26	25000	3	0	0
	21	50000	1	1	20000
	38	43000	2	0	0
	44	43000	4	1	47000
	27	47000	2	1	21000
	70	23000	2	0	25000

Maybe I could learn something from previous promotions...

Bought?	Age	Income	Family size	Cars bought previously	Value of last purchase
nao	37	49000	2	1	42000
sim	43	68000	3	0	0
sim	42	61000	4	0	0
sim	26	52000	2	0	0
sim	40	64000	1	1	21000
sim	38	52000	1	0	0
sim	45	43000	4	1	47000
sim	35	45000	2	1	34000
nao	39	43000	2	0	0
sim	31	55000	3	1	46000
sim	34	57000	3	1	52000
nao	38	44000	4	0	0
nao	34	68000	2	1	33000
sim	30	45000	2	1	44000
sim	38	41000	3	1	47000
sim	40	62000	3	0	0
sim	43	69000	2	0	0
nao	26	45000	3	0	0
sim	35	66000	4	1	17000
	•••	•••	•••		

a model relating attributes to result

and use it to make predictions

prediction	confidence(nao)	confidence(sim)	Age	Income	Family si	Cars bough	Value of last
nao	1	0	41	50000	2	1	0
sim	0	1	39	68000	2	0	30000
sim	0	1	58	61000	4	0	0
nao	0.889	0.111	26	25000	3	0	0
nao	0.889	0.111	21	50000	1	1	20000
nao	1	0	38	43000	2	0	0
sim	0	1	44	43000	4	1	47000
nao	0.889	0.111	27	47000	2	1	21000
nao	1	0	70	23000	2	0	25000

Other names for Data Mining

- Data science
 - Involves principles, processes, and techniques for understanding phenomena via the analysis of data
- Business analytics
 - Refers to the skills, technologies, practices for continuous iterative exploration and investigation of past business performance to gain insight and drive business planning.
 Focuses on developing new insights and understanding of business performance based on data and statistical methods

Learning from data

 Data mining explores the study and construction of algorithms that can learn from data

Basic Idea:

- Instead of trying to create a very complex program to do X
- Use a (relatively) simple program that can learn to do X

Example:

- Instead of trying to program a car to drive (If light(red) && NOT(pedestrian) || speed(X) <= 12 && ..),</p>
- create a program that watches human drive, and learns how to drive

Why learning from data

- It is often much cheaper, faster and more accurate
- It may be possible to teach a computer something that we are not sure how to program.
 - We could explicitly write a program to tell if a person is obese
 - If (weight_kg /(height_m × height_m)) > 30, printf("Obese")
 - It is hard to write a program to tell is a person is sad
 We can easily obtain a 1,000 photographs of sad/not sad
 people, and ask an algorithm to learn to tell them apart

The data scientist Venn diagram (1)

The data scientist Venn diagram (2)

Hot topic

FORTUNE

The hot tech gig of 2022: D scientist

Jessi Hempel

Updated: Jan 06, 2012 10:00 AM GMT

By the end of the decade 50 billion devices widata

help manage it all.

FORTUNE -- A decade from now the smart techies who decided to become app developers may wish they had taken an appliedmathematics class or two. The coming deluge of data

https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century

Q

by Thomas H. Davenport and D.J. Patil FROM THE OCTOBER 2012 ISSUE

hen Jonathan Goldman arrived for work in June 2006 at LinkedIn, the business networking site, the place still felt like a start-up. The company had just under 8 million

"Data scientists have tended to come from two different disciplines, computer science and statistics, but the best data science involves both disciplines. One of the dangers is statisticians not picking up on some of the new ideas that are coming out of machine learning, or computer scientists just not knowing enough classical statistics to know the pitfalls."

Rob Hyndman

https://blog.stitchdata.com/5-things-you-should-know-before-getting-a-degree-in-data-science-40cddf44aac3

What for?

- Clustering group elements
 - customers according to credit card spending
 - customers according to call behavior
 - shops according to customers segments
 - doctors according to prescription patterns
 - http://yippy.com

data mining

Sources Sites Time Topics

Top 558 Results

remix

- + Knowledge, Discovery (52)
- + Data warehousing (36)
- + Learning, Machine (40)
- + Education (29)
- + Artificial intelligence (13)
- + Data Mining Tools (22)
- + Healthcare (16)
- + SAS (9)
- Similar data gathering and extraction (13)
- + Blog (15)
- + Image (18)
- + Conference, International (16)
- + Data Mining Techniques (13)
- + Predictive modeling (15)
- + Canada, CBC (7)
- + Tutorials (12)

Data mining - Wikipedia new window preview

Data mining is the computing process of discovering patterns in large **data** sets involving machine ...

https://en.wikipedia.org/wiki/Data mining - - Yippy Index V

Data Mining: What is Data Mining? - UCLA Anderson School ... new winder

Overview Generally, **data mining** (sometimes called **data** or knowledge discovery) is the p summarizing it into ...

www.anderson.ucla.edu/.../technologies/palace/datamining.htm - - Yippy Index V

What is data mining? | SAS | new window | preview

Data Mining History and Current Advances. The process of digging through **data** to discove long history.

https://www.sas.com/en_us/insights/analytics/data-mining.html - - Yippy Index V

Data mining is a process used by companies to turn raw data into useful information. By t data, businesses can ...

www.investopedia.com/terms/d/datamining.asp - - Yippy Index V

What for?

- Association co-occurrence
 - cross-selling product
 - recommend books (<u>Amazon.co.uk</u>,...)
 - music playlists

Frequently Bought Together

Total price: £54.48

Add both to Basket

- ☑ This item: Predictive Analytics and Data Mining: Concepts and Practice with RapidMiner by Vijay Kotu Paperback £30.49
- ☑ Exploring Data with RapidMiner by Andrew Chisholm Paperback £23.99

Customers Who Bought This Item Also Bought

<

Data Science for Business:
What you need to know
about data mining and...
Foster Provost

Fundamentals of Machine
Learning for Predictive Data
Analytics: Algorithms,...

John D. Kelleher

Data Smart: Using Data
Science to Transform
Information into Insight

John W. Foreman

15
Paperback
£18.79 / Prime

What for?

- Classification assign to a know set of categories
 - classify customers into known segments (good credit, bad credit, grey area)
 - classify customers as churners/non churners
 - diagnostic according to symptoms
 - http://news.google.pt/

Mundo

Portugal

Negócios

Ciência

Entretenimento

Desporto

Saúde

Jornal de Notícias - há 16 horas 6 🙀 🧺 🖂

Uma mala suspeita foi detetada, este domingo à noite, na dependência da Caixa Geral de Depósitos de Mala suspeita lançou alerta no centro histórico do Porto Correio da Manhã

Universidade do Porto "muda-se" para Palácio de Cristal

Jornal Económico (liberação de imprensa) - há 8 horas

As faculdades e laboratórios desta universidade vão promover experiências científicas para toda a família dura A mostra da Universidade do Porto regressa ao Palácio de Cristal para dar a ...

Ryanair pede a passageiros do Porto que cheguem três horas antes do voo

Correio da Manhã - há 19 horas

A companhia aérea Ryanair está este domingo a avisar os clientes que vão viajar, a partir do Aeroporto do Po horário previsto do voo, por causa da greve parcial de seguranças. "Fomos avisados ...

Mala suspeita lança alerta no centro histórico do Porto

Correio da Manhã - há 15 horas 6+

Uma mala de viagem suspeita foi encontrada na noite deste domingo no interior dependência bancária da Cai: Porto. A PSP montou um perímetro de segurança e cortou o trânsito entre os ...

Rombeiros do Porto são os mais acionados nelo INFM no norte

What for?

Regression/Forecasting

- surgery duration
- travel time
- retail sales

Outlier/Fraud

- credit card
- prescriptions
- telecom
- spam

Analytics and politics

https://www.publico.pt/2016/12/11/p olitica/noticia/a-politica-na-era-dosrobos-1754224

Foi aqui que a campanha de Donald Trump fez a diferença, "na sua capacidade de construir robôs, para que a eficácia das mensagens fosse potenciada, constituindo nichos específicos de eleitores, que recebem a comunicação certa".

Estes robôs, explica Maurício, são algoritmos, programas informáticos que varrem milhares de milhões de *posts*, comentários e conversas nas redes sociais, para definir grupos e respectivas características, e bombardeá-los com as mensagens adequadas. O robô que Maurício usa é um servidor localizado em Hong Kong que pode recolher informação maciça sobre eleitores americanos, ou sobre adeptos do Benfica em Lisboa, e, entre estes, os que estão descontentes com a arbitragem do último jogo. Ou ainda sobre os portugueses que se queixam das obras na capital, dividindo-os entre os que acreditam e os que não acreditam que a sua situação vai melhorar depois das obras.

Types of Data

Bought?	Age	Income	Family size	Cars bought previously	Value of last purchase
nao	37	49000	2	1	42000
sim	43	68000	3	0	0
sim	42	61000	4	0	0
sim	26	52000	2	0	0
sim	40	64000	1	1	21000
sim	38	52000	1	0	0
sim	45	43000	4	1	47000
sim	35	45000	2	1	34000
nao	39	43000	2	0	0
sim	31	55000	3	1	46000
sim	34	57000	3	1	52000
nao	38	44000	4	0	0
nao	34	68000	2	1	33000
sim	30	45000	2	1	44000
sim	38	41000	3	1	47000
sim	40	62000	3	0	0
sim	43	69000	2	0	0
nao	26	45000	3	0	0
sim	35	66000	4	1	17000
•••		•••	•••	•••	

Types of data

Relational data

Text Documents

Spatial temporal

images video streaming

...

Challenges

Volume

- Some companies are generating huge amounts of data
- Traditional technologies
 - (just) read 1 TB of data
 - 90 MB/s -> 3.23 hours
 - 350 MB/s -> 50 minutes

Map Reduce can **sort** 1000 TB of data in 33 minutes using 8000 machines

Be aware that more data does not always mean better models

- The 1936 election: the literary digest poll
- Candidates: Democrat FD Roosevelt and Republican Alfred Landon

- Sample Size: 2.3 million people
- Prediction: Landon to win with 57% of the vote
- Outcome: Landon lost with only 38% of the vote
- Literary Digest went bankrupt soon after

SAMPLING

Legislativas 2002

819 entrevistas e apresenta um erro de amostragem para um intervalo de confiança de 95 por cento, de mais ou menos 3,42 por cento.

EXPRESSO-SIC-Renascença -> Eurosondagem

2057 entrevistas validadas e apresenta um erro de amostra de 2,16 por cento para um grau de probabilidade de 95 por cento.

Independente -> Instituto de Pesquisa de Opinião e Mercado (IPOM)

997 entrevistas validadas e apresenta um erro de amostragem, para um nível de confiança de 95,5 por cento, de mais ou menos 3,1 pontos percentuais.

JN -> Intercampus

1015 entrevistas, e apresenta um erro de amostragem, para um intervalo de confiança de 95 por cento, de mais ou menos 3,1 por cento.

Velocity

- Data arriving at high velocity
- Needs to be analyzed quickly
 - Traditional algorithms analyze each example multiple times
- Streaming analytics
 - New algorithms process each example once and store sufficient statistics

Variety

- Different types of structured and unstructured data
- New methods to deal with new data types

	Databases	Data Science
Data Value	"Precious"	"Cheap"
Data Volume	Modest	Massive
Examples	Bank records, Personnel records, Census, Medical records	Online clicks, GPS logs, Tweets, Building sensor readings
Priorities	Consistency, Error recovery, Auditability	Speed, Availability, Query richness
Structured	Strongly (Schema)	Weakly or none (Text)
Properties	Transactions, ACID*	CAP* theorem (2/3), eventual consistency
Realizations	SQL	NoSQL: Riak, Memcached, Apache River, MongoDB, CouchDB, Hbase, Cassandra,

Scientific Modeling

Physics-based models

Problem-Structured

Mostly deterministic, precise

Run on Supercomputer or High-end Computing Cluster

Data-Driven Approach

General inference engine replaces model

Structure not related to problem

Statistical models handle true randomness, and unmodeled complexity.

Run on cheaper computer Clusters (EC2)

Methodology CRISP-DM

DM Methodologies

- Framework for recording experience
 - Allows projects to be replicated
- Aid to project planning and management
 - "Comfort factor" for new adopters
- Demonstrates maturity of Data Mining
 - Reduces dependency on "stars"
- Encourage best practices and help to obtain better results

CRISP tasks

Business Understanding	Data Understanding	Data Preparation	Modeling	Evaluation	Deployment
Determine Business Objectives Background Business Objectives Business Success Criteria Assess Situation Inventory of Resources Requirements, Assumptions, and Constraints Risks and Contingencies Terminology Costs and Benefits Determine Data Mining Goals Data Mining Goals Data Mining Success Criteria Produce Project Plan Project Plan Initial Assessment of Tools and Techniques	Collect Initial Data Initial Data Collection Report Describe Data Data Description Report Explore Data Data Exploration Report Verify Data Quality Data Quality Report	Select Data Rationale for Inclusion/ Exclusion Clean Data Data Cleaning Report Construct Data Derived Attributes Generated Records Integrate Data Merged Data Format Data Reformatted Data Dataset Dataset Dataset Dataset Description	Select Modeling Techniques Modeling Technique Modeling Assumptions Generate Test Design Test Design Build Model Parameter Settings Models Model Descriptions Assess Model Model Assessment Revised Parameter Settings	Evaluate Results Assessment of Data Mining Results w.r.t. Business Success Criteria Approved Models Review Process Review of Process Determine Next Steps List of Possible Actions Decision	Plan Deployment Deployment Plan Plan Monitoring and Maintenance Monitoring and Maintenance Plan Produce Final Report Final Report Final Presentation Review Project Experience Documentation

Figure 3: Generic tasks (bold) and outputs (italic) of the CRISP-DM reference model

Keep in mind that

- A data mining project should always start with an analysis of the data with traditional query tools
- 80% of the interesting information can be extracted using SQL
 - how many transactions per month include item number 15?
 - show me all the items purchased by Sandy Smith
- 20% of hidden information requires more advanced techniques
 - which items are frequently purchased together by my customers?
 - how should I classify my customers in order to decide whether future loan applicants will be given a loan or not?

Be aware that

 60 to 80% of the effort in a Data Mining project is about preparing the data and the remaining 20% is about mining

How NOT to estimate performance

1. Induce model

2. Evaluate prediction

How to estimate performance

training set

2. Induce model

1. randomly split

test set

Bought?	Age	Income	Family size	Cars bought previously	Value of last purchase
MAC	37	4900C	2	1	42000
den	43	69000	3	0	0
class	42	£1000	4	Q	0
	26	5200C	2	0	0
dan	49	\$400¢	1	1	21,000
cim	98	5200C	1	0	0
raine.	45	49000	4	1	47000
190	35	45000	2	1	34000

3. Evaluate prediction

Privacy and ethics

 Spotify asks for your photos, location and contacts in privacy code revamp

http://www.telegraph.co.uk/technology/news/11815778/spotify-privacy-policy-asks-for-photos-and-contacts.html

- What google knows about you...
- "These databases will grow to connect every individual to at least one closely guarded secret. This might be a secret about a medical condition, family history, or personal preference...."
 https://hbr.org/2012/08/dont-build-a-database-of-ruin
- How Companies Learn Your Secrets
 "If we wanted to figure out if a customer is pregnant, even if she didn't want us to know, can you do that?"
 http://www.nytimes.com/2012/02/19/magazine/shopping-habits.html? r=1

Data-Analytic Thinking

- Data-Driven Decision Making
 - the practice of basing decisions on the analysis of data,
 rather than on intuition
- When facing a business problem
 - ability to assess whether and how data can improve performance
- Understanding the fundamental concepts
 - will help to envision opportunities for improving datadriven decision-making

Application examples

Retail

- Target retailer used DS methods to predict that customers were expecting a baby
- Retailers' coupons targeting and human resource management to anticipate impact of promotions
- Spotify sells data about customers listening habits
 - Bands' tours
- Online adds
 - Google

Applications

- Contact centers
 - Customer profiling
 - Match between operator and costumer needs
- Recommender Systems
 - Long tail help users find what they want
- Churn
 - Will the customer leave?
- Manufacturing

Questions?