Exam 2 - Math 215

1 True/False

Problem 1.1 (60 points; 6 points each). Decide if each of the following are true or false. You do not need to justify your choice here.

- (a) TRUE $(x+a)^2 \equiv x^2 + a^2 \pmod{2}$
- (b) FALSE $a^n \equiv b^n \pmod{m}$ and $n^a \equiv n^b \pmod{m}$ whenever $a \equiv b \pmod{m}$.
- (c) TRUE Suppose ax + by = 1, then $x = a^{-1} \pmod{b}$ and $x = a^{-1} \pmod{y}$.
- (d) TRUE $G(x) = \frac{1}{(1-x^5)} \frac{1}{(1-x^{10})}$ is the generating function for the number of solutions (a,b) of 5a + 10b = n.
- (e) TRUE For all a, a has a multiplicative inverse modulo m iff ab + mn = 1 for some b and n.
- (f) <u>FALSE</u> For any integers a and b, ax + by = 1 is a line so there are infinitely many integers x and y satisfying ax + by = 1, namely, all integer pairs (x, y) that fall on this line.
- (g) <u>FALSE</u> The characteristic function for the recurrence relation $a_n = 3 \cdot a_{n-1} + 2 \cdot a_{n-3}$ is $x^2 3x + 2$.
- (h) TRUE If f(n) and g(n) are solutions to $a_n = 3a_n 2a_{n-1} + a_{n-3}$, then $c_1 \cdot f(n) + c_2 \cdot g(n)$ where c_1 and c_2 are scalars, is also a solution.
- (i) TRUE There are two solutions to $x^2 \equiv 2 \pmod{7}$.
- (j) TRUE $\sum_{i=0}^{n} {n \choose i} 4^i = \sum_{i=0}^{n} {n \choose i} (-1)^{n-i} 6^i$.

2 Free Response

100 points total, 15 points each

Problem 2.1. Find all solutions to $13x + 9 \equiv 1 \pmod{7}$.

$$13x + 9 \equiv 6x + 2 \equiv 1 \pmod{7}$$
$$6x \equiv -1 \equiv 6 \pmod{7}$$
$$x \equiv 1 \pmod{7}$$

So the solutions are all numbers x = 7k + 1.

Problem 2.2. Find s and t so that $s \cdot 953 + t \cdot 859 = 1$ using the extended Euclidean algorithm. Give the table (trace) of all intermediate values obtained along the way.

The rule is $[s_i, t_i] = [s_{i-2}, t_{i-2}] - q_{i-1}[s_{i-1}, t_{i-1}]$

So
$$(-265)(953) + (294)(859) = 1$$
.

Problem 2.3. Find a closed form solution to the recurrence relation $a_n = a_{n-1} + 2a_{n-2}$ given $a_0 = 2$ and $a_1 = 1$.

The characteristic function is $x^2 - x - 2 = (x - 2)(x + 1)$ so the general solution is $f(n) = c_0(-1)^n + c_1(2^n)$. We need to solve

$$2 = c_0 + c_1$$
$$1 = -c_0 + 2c_1$$

This can be seen by inspection, $c_0 = c_1 = 1$ so we have $a_n = (-1)^n + 2^n$.

Problem 2.4. How many non-negative integer solutions are there to $x_1 + x_2 + x_3 \le 20$ if $x_1, x_2 > 1$ and $x_3 > 2$?

There are two slight complications here, first $x_1, x_2 > 1$ and $x_3 > 2$. We can instead look at counting the number of solutions to $y_1 + y_2 + y_3 \le 13$. For each such solution, we get a solution to the original problem by letting $x_1 = y_1 + 2$, $x_2 = y_2 + 2$, and $x_3 = y_3 + 3$. The second issue is the \le , for this we introduce a y_4 and find the number

of non-negative integer solutions to $y_1 + y_2 + y_3 + y_4 = 13$. This is the number of ways to distribute 13 balls into 4 bins and that is given by

$$\begin{pmatrix} 13+4-1 \\ 13 \end{pmatrix}$$
 or $\begin{pmatrix} 13+4-1 \\ 4-1 \end{pmatrix}$

Problem 2.5. How many codes can be formed from the letters and numbers in 100221-XMNMXXN if every code must have all numbers preceding all letters? For example, 001122-MMNNXXX is a second code in this set.

The number of rearrangements of 100221 and XMNMXXN are $\frac{6!}{2!2!2!}$ and $\frac{7!}{2!2!3!}$ respectively. The total number of codes is

$$\left(\frac{6!}{2!2!2!}\right) \cdot \left(\frac{7!}{2!2!3!}\right)$$

Problem 2.6 (fixed). Show that gcd(4n+2, 3n+1) = 1 for all $n \ge 0$.

$$gcd(4n+1,3n+1) = gcd(3n+1,n) = gcd(n,1) = 1$$

The point here is 4n+1=(3n+1)+n or $4n+1\pmod{3n+1}=n$ and then similarly, $\gcd(3n+1,n)=1$.

Problem 2.7. Give a combinatorial argument for

$$\sum_{i \le n, i \text{ even}} \binom{n}{i} = \sum_{i \le n, i \text{ odd}} \binom{n}{i}$$

Proof 1: On the left-hand side, you have the number subsets of $\{1, \ldots, n\}$ of even size, and on the right, those of odd size. So, the equality just follows from knowing that there are as many even-sized subsets as odd-sized subsets.

There are many ways to accomplish this. Induction on n is a good method. Here, I will just define a one-one and onto the map, although you can see the obvious hint of the inductive argument. Let

$$E^+ = \{ S \subseteq \{1, \dots, n\} \mid n \in S \land |S| \text{ is even} \}$$

$$E^- = \{ S \subseteq \{1, \dots, n\} \mid n \notin S \land |S| \text{ is even} \}$$

 $E=E^+\cup E^-$ is the set of all even-sized subsets of $\{1,\dots,n\}.$

Similarly define O, O^+ , and O^- . Clearly, $|O^-| = |E^+|$ as every $S \in E^+ = S' \cup \{n\}$ for a unique $S' \in O^-$ and conversely, for each $S' \in O^-$, $S = S' \cup \{n\} \in E^+$. Similarly, $|O^+| = |E^-|$ and as $O^+ \cap O^- = \emptyset = E^+ \cap E^-$ we have

$$|E| = |E^+| + |E^-| = |O^-| + |O^+| = |O|$$

Proof 2: By induction. (Actually, this made me realize that I needed $n \geq 1$ as for n = 0, there is one even -ized subset of \emptyset , namely, \emptyset , but no odd-sized.

Base Case: For n = 1, let $S = \{1\}$, then there is one even sized subset, namely, \emptyset and one odd sized subset, $\{1\}$. The equation itself reduces to just $\binom{1}{0} = \binom{1}{1}$ which is true as both sides are just 1.

Induction step: Suppose the claim is true for n. Then consider subsets of $\{1, \ldots, n, n+1\}$. There are those subsets $A \subseteq \{1, \ldots, n\}$, and by induction, there is the same number of these that are even as odd. Then there are those $A = A' \cup \{n+1\}$ where $A' \subseteq \{1, \ldots, n\}$. Clearly, |A| is odd/even iff A' is even/odd respectively, and again by induction, there are the same number of each. So we actually see that if $E_n = |\{A \subseteq \{1, \ldots, n\} \mid |A| \text{ is even}\}$ and likewise O_n , then $|E_n| = |O_n|$ by the induction hypothesis and $E_{n+1} = |E_n| + |O_n| = 2|E_n|$ and similarly $|O_{n+1}| = 2|O_n|$.

Proof 3: (From a student.) There are two issues here: (1) This proof is not combinatorial, and that was part of the instructions, but still, it is a cute proof. (2) This only works for n odd.

For any $n \ge 1$ odd, for k < n even, n - k is odd, and we have:

$$\sum_{i \le n, i \text{ even}} \binom{n}{i} = \sum_{i \le n, i \text{ even}} \binom{n}{n-i} = \sum_{k \le n, k \text{ odd}} \binom{n}{k}$$

This is just because $\binom{n}{i} = \binom{n}{n-i}$.