Link to the original data: https://www.kaggle.com/jameslko/gun-violence-data (https://www.kaggle.com/jameslko/gun-violence-data)

We were interested in investigating gun violence in aggregate across the United States, as the issue is important and relevant, but often discussed on a case-by-case basis rather than holistically. The data standardizes incident reports including information related to the types of guns used, people involved, and locations incidents occur. Some of what we discovered was that certain cities like Chicago have significantly more gun violence than other cities, handguns pose more of a problem than assualt rifles with regards to the number of people killed, and that some seasons are more deadly than others.

```
In [59]: import pandas as pd
         import numpy as np
         import matplotlib as mpl
         import matplotlib.pyplot as plt
         import datetime as dt
         import statsmodels.formula.api as smf
         data = pd.read csv('C:/Users/kugelman/Documents/Python Scripts/gun-violence-da
         ta 01-2013 03-2018.csv')
         # Since an incident id uniquely identifies a row, we can use it as an index
         data.set_index('incident_id', drop = True, inplace=True)
         # Remove irrelevant columns
         data.drop([
                      'address','incident url','source url',
                      'participant_name', 'sources', 'state_house_district',
                      'state senate district', 'incident url fields missing',
                      'congressional_district','latitude','longitude'], axis=1, inplace=
         True)
```

What is the average number of people killed and injured in a typical incident?

```
In [60]: print('Average number of injuries:', round(data['n_injured'].mean(), 2))
    print('Average number of killed:', round(data['n_killed'].mean(), 2))

Average number of injuries: 0.49
    Average number of killed: 0.25
```

Based on the number of deaths and injuries, what's more deadly, a rifle or a handgun?

```
In [61]: # Classify weapons
         handguns = ['Handgun', '9mm', 'Auto', '40 SW', 'Mag',
                      '38 Spl', '10mm']
         assault rifles = ['AR-15', 'AK-47']
         all_rifles = ['22 LR', '308 Win', '30-30 Win', 'Rifle', '300 Win', '30-06 Spr'
         , 'AR-15', 'AK-47' ]
         shotguns = ['Shotgun', 'gauge']
         handgun list = []
         assault_rifle_list = []
         all rifle list = []
         shotgun_list = []
         # Create handauns column
         for i in data['gun type']:
             guncount = 0
             for j in handguns:
                 guncount += str(i).count(j)
             handgun_list.append(guncount)
         data['handguns used'] = handgun list
         # Create assault rifles column
         for i in data['gun_type']:
             guncount = 0
             for j in assault rifles:
                 guncount += str(i).count(j)
             assault_rifle_list.append(guncount)
         data['assault rifles used'] = assault rifle list
         # Create all rifles column
         for i in data['gun type']:
             guncount = 0
             for j in all_rifles:
                  guncount += str(i).count(j)
             all rifle list.append(guncount)
         data['all rifles used'] = all rifle list
         # Create shotgun column
         for i in data['gun type']:
             guncount = 0
             for j in shotguns:
                  guncount += str(i).count(j)
             shotgun_list.append(guncount)
         data['shotguns used'] = shotgun list
         data
```

Out[61]:

	date	state	city_or_county	n_killed	n_injured	gun_stolen	
incident_id							
461105	2013- 01-01	Pennsylvania	Mckeesport	0	4	NaN	_
460726	2013- 01-01	California	Hawthorne	1	3	NaN	
478855	2013- 01-01	Ohio	Lorain	1	3	0::Unknown 1::Unknown	0::Un
478925	2013- 01-05	Colorado	Aurora	4	0	NaN	
478959	2013- 01-07	North Carolina	Greensboro	2	2	0::Unknown 1::Unknown	0::Hɛ
478948	2013- 01-07	Oklahoma	Tulsa	4	0	NaN	
479363	2013- 01-19	New Mexico	Albuquerque	5	0	0::Unknown 1::Unknown	0:
479374	2013- 01-21	Louisiana	New Orleans	0	5	NaN	
479389	2013- 01-21	California	Brentwood	0	4	NaN	
492151	2013- 01-23	Maryland	Baltimore	1	6	NaN	
491674	2013- 01-23	Tennessee	Chattanooga	1	3	0::Unknown	
479413	2013- 01-25	Missouri	Saint Louis	1	3	0::Unknown	
479561	2013- 01-26	Louisiana	Charenton	2	3	0::Unknown	
479554	2013- 01-26	District of Columbia	Washington	0	5	0::Unknown	
479460	2013- 01-26	Ohio	Springfield	1	3	NaN	
479573	2013- 02-02	Tennessee	Memphis	0	5	0::Unknown	
479580	2013- 02-03	California	Yuba (county)	1	3	0::Unknown	
479592	2013- 02-07	Illinois	Chicago	0	4	NaN	
479603	2013- 02-09	Louisiana	New Orleans	0	4	0::Unknown	
480311	2013- 02-11	California	Vallejo	1	4	NaN	
480327	2013- 02-11	Delaware	Wilmington	3	2	0::Unknown	
480344	2013- 02-12	Utah	Midvale	4	1	NaN	

	date	state	city_or_county	n_killed	n_injured	gun_stolen
incident_id						
480358	2013- 02-19	California	Orange (county)	4	3	0::Unknown
480383	2013- 02-21	Oklahoma	Tulsa	1	3	NaN
480401	2013- 02-22	Michigan	Grand Rapids	0	4	NaN
480407	2013- 02-23	California	Lancaster	0	4	NaN
480443	2013- 02-24	Georgia	Macon	0	8	NaN
481186	2013- 03-02	Louisiana	Shreveport	1	3	NaN
481198	2013- 03-03	Georgia	Moultrie	2	2	0::Unknown
481208	2013- 03-03	Michigan	Saginaw (county)	0	4	NaN
1081936	2018- 03-31	Maine	Bangor	0	0	0::Unknown
1081946	2018- 03-31	District of Columbia	Washington	0	0	0::Unknown
1081949	2018- 03-31	Nevada	Las Vegas	0	0	0::Unknown
1082266	2018- 03-31	California	Palmdale	1	0	0::Unknown
1082483	2018- 03-31	Texas	Wichita Falls	0	1	0::Unknown
1082486	2018- 03-31	Texas	Dallas	0	1	0::Unknown
1083121	2018- 03-31	Nevada	Reno	1	0	0::Unknown
1081947	2018- 03-31	Nevada	Reno	1	0	0::Unknown
1082089	2018- 03-31	California	San Diego	0	0	0::Unknown
1081901	2018- 03-31	New York	Rochester	1	0	0::Unknown
1082394	2018- 03-31	California	Shafter	0	0	0::Unknown
1082392	2018- 03-31	California	Oakland	1	0	0::Unknown
1082057	2018- 03-31	Florida	Orlando	0	3	0::Unknown
1082091	2018- 03-31	California	Stockton	2	0	0::Unknown

	date	state	city_or_county	n_killed	n_injured	gun_stolen	
incident_id							
1081719	2018- 03-31	North Carolina	Kings Mountain	0	4	0::Unknown	
1082388	2018- 03-31	Minnesota	Saint Paul	0	2	0::Unknown	
1082197	2018- 03-31	Oklahoma	Guthrie	1	0	0::Unknown	
1082023	2018- 03-31	Missouri	Festus	0	1	0::Unknown	
1082226	2018- 03-31	Missouri	Saint Clair	0	1	0::Unknown	
1081894	2018- 03-31	Missouri	Saint Louis	1	0	0::Unknown	
1082234	2018- 03-31	Tennessee	Memphis	0	1	0::Unknown	
1081742	2018- 03-31	Michigan	Detroit	0	1	0::Unknown	
1082990	2018- 03-31	Wisconsin	Madison	0	0	0::Unknown	
1081752	2018- 03-31	Illinois	Chicago	0	1	0::Unknown	
1082061	2018- 03-31	Washington	Spokane (Spokane Valley)	0	0	0::Unknown	
1083142	2018- 03-31	Louisiana	Rayne	0	0	0::Unknown	
1083139	2018- 03-31	Louisiana	Natchitoches	1	0	0::Unknown	
1083151	2018- 03-31	Louisiana	Gretna	0	1	0::Unknown	
1082514	2018- 03-31	Texas	Houston	1	0	0::Unknown	
1081940	2018- 03-31	Maine	Norridgewock	2	0	0::Unknown 1::Unknown	0::H

239677 rows × 21 columns

In [62]: # Create dataframe for weapons percentages. # The info below uses the subset of data for which weapons information is avai Lable. weapons data = data.dropna(subset = ['gun type']).loc[(data['gun type'].str.fi nd('0::Unknown') == -1)] # Classify weapons by use in incidents. handgun percent = int(((len(weapons data.loc[weapons data['handguns used'] != 0]))/(len(weapons data)))*100) rifle_percent = int(((len(weapons_data.loc[weapons_data['all_rifles_used'] != 0]))/(len(weapons data)))*100) shotgun percent = int(((len(weapons data.loc[weapons data['shotguns used'] != 0]))/(len(weapons_data)))*100) print('Average number of deaths when handgun is used:', round(weapons data.loc[weapons data['handguns used'] != 0]['n killed'].me an(), 2)) print('Average number of injured when handgun is used:', round(weapons_data.loc[weapons_data['handguns_used'] != 0]['n_injured'].m print('Percentage of incidents involving handgun: ', handgun_percent, '%', sep = '') print('\n') print('Average number of deaths when rifle is used:', round(weapons data.loc[weapons data['all rifles used'] != 0]['n killed']. mean(), 2)) print('Average number of injured when rifle is used:', round(weapons data.loc[weapons data['all rifles used'] != 0]['n injured'] .mean(), 2)) print('Percentage of incidents involving rifle: ', rifle percent, '%', sep = '') print('\n') print('Average number of deaths when Shotgun is used:', round(weapons_data.loc[weapons_data['shotguns_used'] != 0]['n_killed'].me an(), 2)) print('Average number of injured when rifle is used:', round(weapons_data.loc[weapons_data['shotguns_used'] != 0]['n_injured'].m ean(), 2)) print('Fraction of incidents involving rifle: ', shotgun percent, '%', sep = '')

Average number of deaths when handgun is used: 0.14 Average number of injured when handgun is used: 0.23 Percentage of incidents involving handgun: 77%

Average number of deaths when rifle is used: 0.18 Average number of injured when rifle is used: 0.25 Percentage of incidents involving rifle: 19%

Average number of deaths when Shotgun is used: 0.17 Average number of injured when rifle is used: 0.24 Fraction of incidents involving rifle: 11%

Which guns are most ubiquitous at shooting incidents?

Out[63]: Text(0, 0.5, 'Percentage of Incidents')

Handguns are far more prevalent at shooting incidents than are rifles or shotuns.

Which states have the most gun violence?

The below shows the five states with the largest number of gun violence incidents. Illinois in particular leads the pack.

```
In [64]: fig1,ax1 = plt.subplots()
    ax1.set_title('States with the most gun violence', size = 20)
    ax1.set_xlabel('States', size=15)
    ax1.set_ylabel('Gun violence incidents', size=15)
    ax1.tick_params(axis='both', labelsize=15)

data['state'].value_counts().head().plot.bar(ax = ax1, figsize = (15,10))
```

Out[64]: <matplotlib.axes._subplots.AxesSubplot at 0x19b6aba8>

Which cities have the most gun violence?

We can see below that Chicago has the most reported incidents, likely driving Illinois to the top of the back above. Interestingly, the next most violent states do not line up with the next most violent cities. One further area of exploration could be to investigate what leads to diffusion or concentration of gun violence across states.

```
In [65]: fig2,ax2 = plt.subplots()
ax2.set_title('Cities with the most gun violence', size = 20)
ax2.set_xlabel('Cities', size=15)
ax2.set_ylabel('Gun violence incidents', size=15)
ax2.tick_params(axis='both', labelsize=15)

data['city_or_county'].value_counts().head().plot.bar(ax = ax2, figsize= (15,1 0))

#Follow up: What percentage of gun violence incidents occur in Chicago?
numerator = len(data.loc[data['city_or_county'] == 'Chicago'].index)
denominator = len(data)

percent = (numerator/denominator) * 100

print('Percentage of gun violence incidents that occur in Chicago: ' + str(np. round(percent, decimals = 2)) + '%')
```

Percentage of gun violence incidents that occur in Chicago: 4.51%

Which cities have the most deaths from gun violence? Injuries?

One question we have is whether incidents of gun violence necessarily correlate strongly with injuries and deaths. The common-sense answer is yes, but is it one-to-one?

```
figMostKilledCities, axMostKilledCities = plt.subplots()
axMostKilledCities.set title('Cities with the most gun violence deaths', size
= 20)
axMostKilledCities.set ylabel('Gun violence deaths', size=15)
axMostKilledCities.tick params(axis='both', labelsize=15)
figMostInjuredCities,axMostInjuredCities = plt.subplots()
axMostInjuredCities.set title('Cities with the most gun violence injuries', si
ze = 20)
axMostInjuredCities.set_ylabel('Gun violence injuries', size=15)
axMostInjuredCities.tick params(axis='both', labelsize=15)
casualtyData = data.groupby('city_or_county').sum()
killedData = casualtyData.sort values(by='n killed', ascending=False)['n kille
d']
injuredData = casualtyData.sort values(by='n injured', ascending=False)['n inj
ured']
killedData.head().plot.bar(ax = axMostKilledCities)
injuredData.head().plot.bar(ax = axMostInjuredCities)
axMostInjuredCities.set xlabel('Cities', size=15)
axMostKilledCities.set xlabel('Cities', size=15)
```

Out[66]: Text(0.5, 0, 'Cities')

It looks like incidents/injuries/deaths are all correlated, which we show below. A naive conclusion here would be that all gun use is associated with injury and death, but it's important to remember that these are correlations conditional on the incident having been reported to the police. So to make that point fully we'd have to compare gun incidents not reported to police (and probably then expand our definition of "incident") to see if the pattern holds across all gun use.

0.890021 1.000000

What is the ratio of women to men participants in gun violence?

For every woman involved in a gun violence incident, there are 7.16 men.

0.942140

n_killed

```
In [68]:
         figGender, axGender = plt.subplots()
         participantGenderList = data['participant_gender']
         participantGenderList.dropna(inplace=True)
         maleCount = 0
         femaleCount = 0
         for i in participantGenderList:
             femaleCount += i.count('Female')
             maleCount += i.count('Male')
         ratio = maleCount/femaleCount
         genderRatioDf = pd.DataFrame([np.round(ratio, decimals = 2),1], index=['Men',
         'Women'])
         genderRatioDf.plot.pie(subplots=True,
                                 title ='Gender Ratio of Gun Violence Participation',
                                 legend = False,
                                 autopct = '%1.1f%%',
                                 ax = axGender)
         figGender.set_size_inches(5,5)
         axGender.set ylabel('')
```

Out[68]: Text(0, 0.5, '')

Gender Ratio of Gun Violence Participation

Which cities are seeing the largest increase/decrease in gun violence deaths?

We now want to think about gun violence as a time series, it changes rather than levels.

Based on the below findings, it looks like most of the cities that have the largest increases in gun violence deaths are situated in the southeastern/midwestern area. Most of these cities have either no increase in population, or a slight increase in population.

The cities with the largest decreases in population have little to no change in population size and are located in either the northeast or California.

```
In [69]: #Only consider the cities that have had over 100 gun violence deaths total
         killedData > 100
         citiesToConsider = killedData[killedData > 100]
         citiesToConsider = citiesToConsider.index.tolist()
         dataWithFilteredCities = data.loc[data['city or county'].isin(citiesToConsider
         ) ]
         dataWithFilteredCities['year'] = pd.to numeric(dataWithFilteredCities['date'].
         str[:4])
         dataWithFilteredCities = dataWithFilteredCities.loc[~dataWithFilteredCities['y
         ear'].isin([2013,2018])]
         dataWithFilteredCities = dataWithFilteredCities.groupby(['year','city or count
         y']).sum()
         #For each city, look at the differences in death totals between 2014 and 2017.
         # 2014 and 2017 are the first and last full years of data, and that's why the
         v're chosen
         # (Since 2013 and 2018 have relatively few gun incident entries)
         percentageDifferenceInDeaths = []
         for i in citiesToConsider:
             query2014 = 'year == 2014 and city or county == "'+ i +'"'
             query2017 = 'year == 2017 and city_or_county == "'+ i +'"'
             numKilled2014 = dataWithFilteredCities.query(query2014)['n killed'].tolist
         ()
             numKilled2017 = dataWithFilteredCities.query(query2017)['n killed'].tolist
         ()
             #Only include cities that have values for the number of people killed in 2
         014/2017
             if len(numKilled2014) & len(numKilled2017):
                 if numKilled2014[0]:
                     #Add the percentage differences in the number of people killed to
          an array
                     percentDiff = np.round(100 * (numKilled2017[0] - numKilled2014[0])
         /numKilled2014[0], decimals = 2)
                     percentageDifferenceInDeaths.append([i, percentDiff])
         percentDiffDf = pd.DataFrame(percentageDifferenceInDeaths , columns=['city',
          'percentDiff'])
         percentDiffDf.sort values(by='percentDiff', ascending = False, inplace = True)
         citiesWithMostIncrease = percentDiffDf.head()['city'].tolist()
         citiesWithMostDecrease = percentDiffDf.tail()['city'].tolist()
         figIncreasedCities,axIncreasedCities = plt.subplots()
         axIncreasedCities.set_title('Cities with the largest increase in gun violence
          deaths', size = 20)
         axIncreasedCities.set ylabel('Gun violence deaths', size=15)
         axIncreasedCities.tick params(axis='both', labelsize=15)
         figDecreasedCities,axDecreasedCities = plt.subplots()
         axDecreasedCities.set_title('Cities with the largest decrease in gun violence
          deaths', size = 20)
         axDecreasedCities.set ylabel('Gun violence deaths', size=15)
```

```
axDecreasedCities.tick params(axis='both', labelsize=15)
for i in citiesWithMostIncrease:
   display(dataWithFilteredCities.query('city or county == "' + i + '"')['n k
illed'].plot(ax = axIncreasedCities,
figsize=(15,10),
legend = True,
label = i))
for i in citiesWithMostDecrease:
   display(dataWithFilteredCities.query('city or county == "' + i + '"')['n k
illed'].plot(ax = axDecreasedCities,
figsize=(15,10),
legend = True,
label = i))
# Set the x-ticks appropriately
xtickYears = ['2014','2015','2016','2017']
xtickPositions = np.array([0,1,2,3])
axIncreasedCities.set_xticks(xtickPositions)
axDecreasedCities.set_xticks(xtickPositions)
axIncreasedCities.set_xticklabels(xtickYears)
axDecreasedCities.set xticklabels(xtickYears)
axIncreasedCities.set_xlabel('Year', size=15)
axDecreasedCities.set xlabel('Year', size=15)
axIncreasedCities.legend(fontsize='x-large')
axDecreasedCities.legend(fontsize='x-large')
```

C:\Users\kugelman\AppData\Local\Continuum\anaconda3\lib\site-packages\ipykern
el_launcher.py:8: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

<matplotlib.axes._subplots.AxesSubplot at 0x2cd311d0>
<matplotlib.axes._subplots.AxesSubplot at 0x24e599e8>

Out[69]: <matplotlib.legend.Legend at 0x1b561c50>

What percentage of total deaths occur in the most dangerous cities?

Out[70]:

incidents n_killed percentage of total killed

city_or_county			
Chicago	10814	2104	0.88
Houston	2501	1145	0.48
Baltimore	3943	1055	0.44
Saint Louis	2501	919	0.38
Philadelphia	2963	901	0.38
New Orleans	3071	703	0.29
Los Angeles	1066	636	0.27
Memphis	2386	623	0.26
Indianapolis	1920	616	0.26
Detroit	1834	604	0.25

What is the average participant age?

```
In [71]: figAge, axAge = plt.subplots()
         totalAge = 0
         totalParticipants = 0
         ageArray = []
         #This method takes in a string list
         # (for example, the string from participant age group: '0::Adult 18+||1::Adult
         18+||2::Adult 18+||3::Adult 18+||4::Adult 18+|
         # returns a list ['Adult 18+', 'Adult 18+', 'Adult 18+', 'Adult 18+', 'Adult
          18+'])
         def convertStringList(givenStr):
             #Some strings are formatted incorrectly: with only one ':' and '|'. Ex: 0:
         47 | 1:34 | 2:34
             isIncorrectMultiple = (givenStr.count('||') == 0) & (givenStr.count('|') >
         0)
             isIncorrectSingle = (givenStr.count(':') == 1) & (givenStr.count('|') == 0
         )
             if isIncorrectSingle or isIncorrectMultiple:
                 givenStr = givenStr.replace(':','::')
                 givenStr = givenStr.replace('|','||')
             constructedList = givenStr.split('||')
             for i in range(0, len(constructedList)):
                  strToReplace = constructedList[i]
                  index = strToReplace.index('::') + 2
                  constructedList[i] = strToReplace[index:]
             return constructedList
         for i in data['participant age']:
             if pd.isnull(i) == False:
                  ageList = convertStringList(i)
                 totalParticipants += len(ageList)
                 for j in ageList:
                      #There are invalid dates in the data (possibly incorrect entries t
         yped in)
                      #Adjust the code in these cases
                      if int(j) > 110:
                          totalParticipants-=1
                      else:
                          totalAge += int(j)
                          ageArray.append(int(j))
         averageAge = np.round(totalAge / totalParticipants, decimals = 2)
         print('The average age of participants is: ' + str(averageAge))
         plt.hist(x=ageArray, bins = 25)
         plt.xlabel('Age')
         plt.ylabel('No. of Participants')
         plt.title('Participant Age in Gun Violence')
```

The average age of participants is: 29.46

Out[71]: Text(0.5, 1.0, 'Participant Age in Gun Violence')

Shooting incidents disproportionately affect young adults.

Let's take a monthly look at Manhattan violence, and Chicago violence.

Out[72]: <matplotlib.axes._subplots.AxesSubplot at 0xbc1da20>


```
In [73]: drange = ["2014","2015","2016","2017"]
    fig,ax = plt.subplots()
    ax.set_title('Number of Gun Incidents in Chicago', size=20)
    d1.loc[(d1['city_or_county']=='Chicago')&(d1['year'].isin(drange))].groupby([
    'year','month']).agg({'incident_id':'count'}).plot.bar(ax=ax, figsize=(15,10))
```

Out[73]: <matplotlib.axes._subplots.AxesSubplot at 0xb41ba90>

While violence in Chicago exceeds violence in Manhattan, we can see a sort of oscillating pattern in the data for both cities. We've all heard the phrase that gun violence correlates with ice cream sales (the latent variable being heat - let's run a regression to test this. We create dummy variables per quarter and assume for now that Q2 and Q3 are the "summer" quarters while Q1 and Q4 are the "winter" quarters, and aggregate across quarters.

```
In [75]: drange = ["2014","2015","2016","2017"]
    fig,ax = plt.subplots()
    ax.set_title("Total Number of Gun Violence Incidents in each Quarter, 2004 - 2
    007", size = 20)
    ax.set_ylabel('Gun violence Incidents', size=15)
    ax.tick_params(axis='both', labelsize=15)
    d1.loc[(d1['year'].isin(drange))].groupby('quarter').agg({'incident_id':'count'}).plot.bar(ax=ax, figsize=(15,10))
```

Out[75]: <matplotlib.axes._subplots.AxesSubplot at 0x2ea73438>

We already know that gun incidents correlate with violence and deaths, but let's check if this holds up across "seasons":

```
In [76]: drange = ["2014","2015","2016","2017"]
    fig,ax = plt.subplots()
    ax.set_title("Total Number of Injuries in 2014 - 2017 by Quarter")
    d1.loc[(d1['year'].isin(drange))].groupby('quarter').agg({'n_injured':'sum'}).
    plot.bar(ax=ax, figsize=(15,10))
```

Out[76]: <matplotlib.axes._subplots.AxesSubplot at 0xb44fe10>


```
In [77]: drange = ["2014","2015","2016","2017"]
    fig,ax = plt.subplots()
    ax.set_title("Total Number of Deaths in 2014 - 2017 by Quarter")
    d1.loc[(d1['year'].isin(drange))].groupby('quarter').agg({'n_killed':'sum'}).p
    lot.bar(ax=ax, figsize=(15,10))
```

Out[77]: <matplotlib.axes._subplots.AxesSubplot at 0xb9ed320>

Let's use a regression to see if there is a statistically significant effect of entering summer months on the likelihood of gun incidents.

Out[82]:

```
In [82]:
            reg.summary()
            OLS Regression Results
                                      incident_id
                 Dep. Variable:
                                                        R-squared:
                                                                           0.000
                        Model:
                                            OLS
                                                    Adj. R-squared:
                                                                           0.000
                                                         F-statistic:
                      Method:
                                   Least Squares
                                                                           7.523
                         Date: Wed, 10 Jul 2019
                                                  Prob (F-statistic):
                                                                        4.98e-05
                         Time:
                                        11:38:15
                                                    Log-Likelihood: -2.4967e+05
             No. Observations:
                                          69122
                                                               AIC:
                                                                       4.994e+05
                 Df Residuals:
                                           69118
                                                               BIC:
                                                                       4.994e+05
                     Df Model:
                                               3
             Covariance Type:
                                       nonrobust
                                 std err
                                                   P>|t|
                                                         [0.025 0.975]
                           coef
                                  0.068 47.149
                                                  0.000
                                                          3.062
              Intercept
                         3.1950
                                                                  3.328
             q1[T.True]
                        -0.1674
                                   0.097
                                          -1.728 0.084
                                                         -0.357
                                                                  0.022
             q2[T.True]
                         0.1853
                                   0.097
                                           1.917 0.055
                                                        -0.004
                                                                  0.375
             q3[T.True]
                         0.2464
                                   0.095
                                           2.587 0.010
                                                          0.060
                                                                  0.433
                   Omnibus: 131467.104
                                             Durbin-Watson:
                                                                       0.155
                                          Jarque-Bera (JB):
                                                              351423899.575
             Prob(Omnibus):
                                    0.000
                      Skew:
                                   14.673
                                                   Prob(JB):
                                                                        0.00
                   Kurtosis:
                                  351.077
                                                   Cond. No.
                                                                        4.77
```

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

This is not an impressive r^2, which isn't surprising. Let's see if we can control for heterogeneity across cities/counties by de-meaning the LHS variable (note: Python has dropped the PanelOLS method as of Version 3. We're estimating a loose interpretation of a fixed-effects model here.)

```
d2.drop('dt',1,inplace=True)
In [83]:
In [84]:
         d2.reset index(inplace=True)
         d2['dmy'] = d2['incident id'] - d2.groupby('city or county')['incident id'].tr
         ansform('mean')
         reg = smf.ols('dmy \sim q1 + q2 + q3', data=d2).fit()
```

```
In [86]:
            reg.summary()
Out[86]:
            OLS Regression Results
                 Dep. Variable:
                                            dmy
                                                        R-squared:
                                                                           0.003
                        Model:
                                            OLS
                                                    Adj. R-squared:
                                                                           0.003
                      Method:
                                   Least Squares
                                                         F-statistic:
                                                                           77.41
                                Wed, 10 Jul 2019
                                                  Prob (F-statistic):
                                                                        5.56e-50
                         Date:
                         Time:
                                        11:38:16
                                                    Log-Likelihood: -1.8166e+05
             No. Observations:
                                          69122
                                                               AIC:
                                                                       3.633e+05
                 Df Residuals:
                                           69118
                                                               BIC:
                                                                       3.634e+05
                     Df Model:
                                               3
             Covariance Type:
                                       nonrobust
                                                        [0.025 0.975]
                           coef std err
```

Intercept	-0.0429	0.025	-1.694	0.090	-0.093	0.007
q1[T.True]	-0.2474	0.036	-6.830	0.000	-0.318	-0.176
q2[T.True]	0.1152	0.036	3.189	0.001	0.044	0.186
q3[T.True]	0.2877	0.036	8.080	0.000	0.218	0.357

Omnibus: 76/10 081

0.324	Duibin-watson.	70410.001	Ollillibus.
604453740.946	Jarque-Bera (JB):	0.000	Prob(Omnibus):
0.00	Prob(JB):	4.250	Skew:
1 77	Cond No.	461 041	Kurtosis

Kurtosis: 461.041 **Cond. No.** 4.77

Durhin-Watson:

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

0 024

So that helps a bit. We'd likely have to use other data like micro- and macroeconomic factors that could contribute to violence, or person-specific factors that could contribute to the likelihood of participating in gun violence to get a better fit/r^2 - fundamentally, we don't expect seasonality to explain variation in incidents. But we do see that gun incidents increase in the hotter months.