$\begin{array}{c} \textbf{Internet Service Provider ARA} \\ \textbf{Project} \end{array}$

Universidade de Aveiro

Diogo Silva 60337 Eduardo 68633

Internet Service Provider ARA Project

Arquitectura de Redes Avançada Universidade de Aveiro

Diogo Silva 60337

Eduardo Sousa 68633

January 5, 2016

Contents

1	\mathbf{Bas}	ic Mechanisms and BGP	2
	1.1	Internal BGP & OSPF Redistribution	2
	1.2	External BGP	2
	1.3	Private AS	2
	1.4	Routing Constraints	2
		1.4.1 Internet Traffic	2
		1.4.2 Net L1 and Net L2 Preferences	3
		1.4.3 SIP Proxy 2 Traffic	4
		1.4.4 Non-Transit ISP-X	4
	1.5	Changes for IPv6	5
2	MP	LS	6
	2.1	MPLS Tunnel for SIP Traffic	6
	2.2	MPLS VPN	6
3	VoI	P SIP	7
	3.1	Internal Extensions	7
	3.2	PTSN Calls Support	7
	3.3	Forward to SIP Proxy 2	7

Chapter 1

Basic Mechanisms and BGP

1.1 Internal BGP & OSPF Redistribution

#EDUARDO

1.2 External BGP

#EDUARDO

1.3 Private AS

#EDUARDO

1.4 Routing Constraints

Neste projecto todas as restrições de routing apresentadas a seguir foram efectuadas usando route-map para efectuar a respectiva regra, ou negar a rota, ou aumentar a local preference da rede anunciada no iBGP.

1.4.1 Internet Traffic

"IP traffic towards Internet should be preferably routed via ISP S (Lisboa)."

Se a rota pertence à internet incrementa-se a preferência local (podia-se ter usado 0.0.0.0 para representar qualquer outra rede externa, ou seja, internet). No trecho de código seguinte podemos ver que se o ip da internet se verificar, coloca uma preferência local acima da default, caso não seja, anuncia a rota como veio.

```
access-list 5 permit 8.8.8.0 0.0.0.255
route-map INTERNET_LP permit 10
```

```
4 match ip address 5
5 set local-preference 200
6
7 route-map INTERNET_LP permit 20
```

Listing 1.1: Route-map para a Internet

Como se pretende dar mais preferência à ligação entre Sintra e Lisboa quando o tráfico vai para a internet, aplica-se o route-map a todas as rotas anunciadas por Sintra a Lisboa, sendo que se alguma dessas rotas anunciadas por Sintra pertencer a internet, a preferência local será aumentada.

```
router bgp 9.345
address-family ipv4
...
neighbor 4.20.20.13 route-map INTERNET_LP in
```

Listing 1.2: Route-map da Internet no Neighbor Sintra no Router de Lisboa

1.4.2 Net L1 and Net L2 Preferences

"IP traffic towards netL1 and netL2, should be preferably routed via Porto from Aveiro, and via Lisboa from Faro."

Definiu-se a seguinte route-map em Aveiro e Faro, tendo em conta que ambos querem aumentar a preferência para a route-map na netL1 e netL2, a única diferença é por onde querer ir (só muda onde é aplicada a route-map), então definiu-se a mesma para os dois.

```
1 access—list 10 permit 82.84.100.0 0.0.0.255
2 access—list 10 permit 82.84.200.0 0.0.0.255
3
4 route—map LNET_LP permit 25
5 match ip address 10
6 set local—preference 210
7 route—map LNET_LP permit 30
```

Listing 1.3: Route-map para a netL1 e netL2

Depois de definida a route-map, aplicou-se a rota ao neighbor respectivo. Se Aveiro receber uma rota anunciada pelo Porto que cumpra a route-map, aumenta-lhe a perferência. Em Faro caso receba uma rota anunciada por Lisboa que cumpra a route-map, aumenta-lhe a preferência local. Isso fez-se através do seguinte código.

```
neighbor 192.172.100.1 route-map LNET_LP in
```

Listing 1.4: Route-map LNET LP no Neighbor Porto no Router de Aveiro

```
neighbor 192.172.100.2 route-map LNET LP in
```

Listing 1.5: Route-map LNET LP no Neighbor Lisboa no Router de Faro

1.4.3 SIP Proxy 2 Traffic

"IP traffic for remote SIP proxy 2 (to network netS1) should be routed only via Lisboa using the direct peering link to ISP S."

Para fazer com que Lisboa -> Sintra fosse o único peering possível do ISP X para a NetS1, optou-se pela estratégia oposta, negar todas as saídas possíveis, ou seja, tudo o que anunciar a NetS1 e que não seja aquele link não é aceite. Sendo definida a seguinte rota:

```
access-list 6 permit 200.1.100.0 0.0.0.255

route-map SIP_ROUTE deny 11
match ip address 6
route-map SIP_ROUTE permit 21
```

Listing 1.6: Route-map SIP ROUTE para cancelar rotas

Sendo que foi preciso definir nos neighbors as rotas, neste caso, em Lisboa e Porto, rotas para a NetS1 recebidas pelo link de London.

```
neighbor 4.20.20.5 route—map SIP_ROUTE in
Listing 1.7: Cancelar rota para NetS1 recebida em Lisboa por London
```

```
neighbor 4.20.20.1 route-map SIP_ROUTE in
```

Listing 1.8: Cancelar rota para NetS1 recebida no Porto por London

1.4.4 Non-Transit ISP-X

Para efectuar o Non-Transit foi preciso definir uma verificação no as-path, se o AS-PATH for vazio, ou contiver apenas o AS 65000 (privado) significa que é uma rota interna e pode ser anunciada para que os outros saibam que aquele neighbor pode ser usado para chegar a rede anunciada, sendo que redes que contenham outros AS-PATH (Sistemas autonomos externos não serão anunciados para fora).

Teve-se de verificar para o AS 65000 porque ele atravessa pelo AS 9.345 para sair para London ou Sintra, e o rm-private-as é apenas retirado depois da validação das route-maps definidas no neighbor.

Sendo que se usou a seguinte route-map em todas as saídas possíveis do AS 9.345:

```
ip as-path access-list 4 permit ^$
2 ip as-path access-list 4 permit ^65000$
3 route-map NON_TRANSIT permit 10
4 match as-path 4
```

Listing 1.9: Tornar ISP X num AS Non-Transit

Sendo depois aplica-se esta route-map em Lisboa e no Porto em todos os neighbors ao anunciar rotas para fora (neighbor VIZINHO route-map NON_TRANSIT out)

1.5 Changes for IPv6

EDUARDO

Chapter 2

MPLS

#DIOGO

- 2.1 MPLS Tunnel for SIP Traffic
- 2.2 MPLS VPN

Chapter 3

VoIP SIP

EDUARDO

- 3.1 Internal Extensions
- 3.2 PTSN Calls Support
- 3.3 Forward to SIP Proxy 2

Listings

1.1	Route-map para a Internet	2
1.2	Route-map da Internet no Neighbor Sintra no Router de Lisboa	3
1.3	Route-map para a $netL1$ e $netL2$	3
1.4	Route-map LNET_LP no Neighbor Porto no Router de Aveiro	3
1.5	Route-map LNET_LP no Neighbor Lisboa no Router de Faro	4
1.6	Route-map SIP_ROUTE para cancelar rotas	4
1.7	Cancelar rota para NetS1 recebida em Lisboa por London	4
1.8	Cancelar rota para NetS1 recebida no Porto por London	4
1.9	Tornar ISP X num AS Non-Transit	5