NTUEE DCLAB

Problem-Based Learning

Oct. 18, 2022

Bonus Lab:

Smith-Waterman (SW) Algorithm for Short-read Mapping

Presenter: Chung-Hsuan Yang

Advisor: Prof. Chia-Hsiang Yang

Graduate Institute of Electronics Engineering, National Taiwan University

Outline

- Next-generation sequencing
- Short-read mapping algorithms
 - Seed-and-Extend
- Smith-Waterman Algorithm
- Affine gap penalty
- Lab introduction
- Hardware simulation
- Lab requirements
- System setup and run testing program
- Report regulations

Next-Generation Sequencing (NGS)

Next-Generation Sequencing (NGS)

- Shear the subject DNA sequence into fragments
- Adapters (blue) are attached to both sides of each fragment
- Read out the fragments when the complement bases are added
- The read out fragments are called **Short-read** (about 100 300 base pairs (bp))

Sequencing Machine

Output Result

Short-read Mapping

Find the most-likely sequence compared to the reference sequence

Short-read Mapping

Find the most-likely sequence compared to the reference sequence

- Heuristic method: sweep and compare base-by-base
 - Time-consuming (for hundreds of millions of short-reads)

Seed-and-Extend

- Cut a short-read into shorter sequences (seeds)
 - k-mer: a sequence with length k
- Find all sequences (in the reference DNA) that exactly match the seed

Seed-and-Extend

- Cut a short read into shorter sequences (seeds)
 - k-mer: a sequence with length k
- Find all sequences (in the reference DNA) that exactly match the seed
- Extend the sequences around all candidate locations

Seed-and-Extend

- Cut a short read into shorter sequences (seeds)
 - k-mer: a sequence with length k
- Find all sequences (in the reference DNA) that exactly match the seed
- Extend the sequences around all candidate locations
- Find the most-likely (inexact match) sequence with the read

Smith-Waterman Algorithm

H(i, j) = max

Calculate the similarity between two sequences

Equation for scoring

 $H(i-1, j-1) + S(a_i, b_i)$

- Dynamic programming
- Input
 - Two sequences: a, b
 - Substitution score: S(a_i, b_i)
 - Gap penalty: G
- Two matrices
 - Score matrix
 - Direction matrix
- Output
 - Similarity score
 - Alignment path

Score matrix

	A	С	G	С	A	T
A	5	3	1	0	0	0
С	3	10	8	6	5	3
G	1	8	15	13	11	9
Т	0	6	13	12	10	16
С	0	4	11	18	16	14
Α	0	5	9	16	23	21

Direction matrix

	Α	С	G	C	A	T
Α		\rightarrow	\rightarrow			
С	1		\rightarrow	\rightarrow	\rightarrow	\rightarrow
G	1		/	\rightarrow	\rightarrow	\rightarrow
T		1	1			
С		1	1		\rightarrow	\rightarrow
Α		1	1	1		1

$S(a_i,b_j) = $	$\int 5$, if $a_i = b_j$ -3, otherwise
C	2 – 2

Input sequences

Read (a) = ACGTCA

Reference (b) = ACGCAT

Alignment Result

Read (a): ACGTCA

Reference (b): ACG-CA

Affine Gap Penalty

- Consider gap opening and gap extension separately
- Gap_{open} + Gap_{extend} \times (M 1), where M is the length of gap

Affine Gap Penalty

		Matrix H													
		Α	Т	G	Α	Α	Т	C							
	0	0	0	0	0	0	0	0							
Α	0	5	0	0	0	0	0	0							
С	0	0	3	0	0	0	0	0							
G	0														
Т	0														
G	0														
Α	0														
Α	0														

	Matrix <i>I</i>													
		Α	Т	G	Α	Α	Т	С						
	0	0	0	0	0	0	0	0						
Α	0	0	0	0	0	0	0	0						
С	0	2	0	0	0	0	0	0						
G	0													
T	0													
G	0													
Α	0													
Δ	n													

	Matrix D													
		Α	T	G	Α	Α	T	С						
	0	0	0	0	0	0	0	0						
Α	0	0	2	1	0	0	0	0						
С	0	0	0	0	0	0	0	0						
G	0													
Т	0													
G	0													
Α	0													
Α	0													

Equation for scoring

H(i, j) = max
$$\begin{cases} H(i-1, j-1) + S(a_i, b_j) & I(i, j) = max \\ I(i-1, j) + G_{\text{open}} \\ I(i, j) & 0 \end{cases}$$

$$D(i, j) = max \begin{cases} H(i, j-1) + G_{\text{open}} \\ D(i, j-1) + G_{\text{open}} \\ D(i, j-1) + G_{\text{extend}} \\ O \end{cases}$$
NTU / DCS Lab

$$S(a_i,b_j) = \begin{cases} 5, & \text{if } a_i = b_j \\ -2, & \text{otherwise} \end{cases}$$

$$G_{\text{open}} = -3$$

$$G_{\text{extend}} = -$$

Affine Gap Penalty

Matrix H

Matrix I

Matrix D

		Α	Т	G	Α	Α	Т	C
	0	0	0	0	0	0	0	0
Α	0	0	2	1	0	0	0	0
С	0	0	0	0	0	0	0	0
G	0							
T	0							
G	0							
Α	0							
Α	0							

Direction H

Direction I

		A	H	G	4	A	\vdash	O
	0	0	0	0	0	0	0	0
Α	0	0	0	0	0	0	0	0
С	0	I	0	0	0	0	0	0
O	0							
T	0							
G	0							
Α	0							
Α	0							

Direction D

		Α	Т	G	Α	Α	T	C
	0	0	0	0	0	0	0	0
Α	0	0	Н	D	0	0	0	0
С	0	0	0	0	0	0	0	0
G	0							
T	0							
G	0							
Α	0							
Α	0							

Lab Introduction

• 實驗目的

- 實作 Dynamic Programming 運算,比較軟硬體運算速度差別
- 了解 RS-232 輸入輸出界面,理解模組溝通的基礎模式與系統間通訊的匯流排 (bus) 觀念

• FPGA 上實現序列比對演算法 Smith-Waterman (SW)

- PC端透過 RS232 傳輸待測 reference 序列以及 short-read 序列給 FPGA
- FPGA 接收資料並進行 SW algorithm 運算
- 運算完成後 FPGA 透過 RS232 將答案傳回給 PC 端
- PC 端檢查是否和軟體有一致答案

RS232

- Very old (1969) and very simple protocol
 - Only has two signal lines receiver/transmitter (RX/TX)
- But very slow (~10KB/s)
- Here, we use Qsys IP
 - Access different data by address BASE+0, 4, 8, ...

Offset	Register	R/W		Description/Register Bits												
Oliset	Name		15:13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	rxdata	RO	Reserved	Reserved						Receive Data						
1	txdata	WO	Reserved					1	1	Transmit Data						
2	status 2	RW	Reserved	eop	cts	dcts	1	e	rrd y	trd y	tmt	toe	roe	brk	fe	pe
3	control	RW	Reserved	ieo P	rts	idct s	trb k	ie	irrd y	itrd y	itm t	itoe	iroe	ibrk	ife	ipe
4	divisor 3	RW	Baud Rate	Divis	or											
5	endof- packet 3	RW	Reserved					1	1	End-of-Packet Value						

SW_Wrapper

- 操作 Qsys 生成的 RS232 IP
 - 先讀入資料 (reference sequence & read sequence)
 - 讀取完後交給 SW_core 進行運算
 - 將答案 (null, column, row, highest score), 31bytes寫出
- 在讀寫前要先確定IP準備好了
 - 讀取BASE+8的[7]和[6](前頁螢光筆標示處)
 - Ex: 當addr給BASE+8, readdata[7]代表RX準備情況
 - 同時要確認 avm_waitrequest 為 0 並在讀到時將 addr更改成 BASE+0
- 讀寫時每次只有8 bits
 - 所以每一筆 256b 資料要分 32 次讀
 - Ex:當addr給BASE+0, readdata[7:0]是RX送來的8b資料

Code Template

- DE2_115/
 - Design setup files
- cpp/
 - Software Code (c++) for SW algorithm and generating testing data
- pc_python/
 - Python executable test program for PC
- tb_verilog/
 - Verilog testbench for core and wrapper
- SW Core.sv
 - Implement Smith-Waterman algorithm here
- SW_Wrapper.sv
 - Implement controller for RS232 protocol
 - Including reading check bits and read/write data

Generating Testing Data

- Move to cpp/cd ./lab_bonus_SW/src/cpp
- Compile ./cpp/src/gen_data.cpp> source compile_gen.sh
- Generate testing datasource generate_testdata.sh
- There are two files being generated
 - ./test_data/random_pattern.txt
 - ./test data/random pattern.bin

in gen_data.cpp

```
srand (2);  //random seed
int random_num; // random number
std::string reference_seq, read_seq, replace_seq;

char* ref_buffer = new char[32];
char* read_buffer = new char[32];
int temp_byte = 0;

for (int i=0; i<data_num; i++){</pre>
```

You can change the random seed to generate different testing data

in generate_testdata.sh

Perform SW Algorithm (c code)

- Move to cpp/cd ./lab_bonus_SW/src/cpp
- Compile ./cpp/src/main.cpp> source compile_SW.sh
- Perform SW algorithm
 - > source run_SW.sh
- The results will be recorded in
 - ./exe_SW.log

SW_Core.sv

```
define REF_MAX_LENGTH
                                   128
define READ_MAX_LENGTH
                                   128
define REF LENGTH
                                   128
define READ LENGTH
                                   128
//* Score parameters
`define DP SW SCORE BITWIDTH
                                   10
`define CONST MATCH SCORE
define CONST MISMATCH SCORE
                                   -4
`define CONST GAP_OPEN
                                   -6
`define CONST GAP EXTEND
// SW Core -
module SW core(
    input
                                               clk,
    input
                                               rst,
   output reg
                                               o ready,
   input
                                               i valid,
   input [2*`REF MAX LENGTH-1:0]
                                               i sequence ref,
                                                                   // reference seq
   input [2*`READ_MAX_LENGTH-1:0]
                                               i_sequence_read,
   input [$clog2(`REF_MAX_LENGTH):0]
                                               i seq ref length, // (1-based)
   input [$clog2(`READ_MAX_LENGTH):0]
                                               i_seq_read_length, // (1-based)
                                               i ready,
   input
                                               o valid,
   output reg
                                               o alignment_score,
   output signed [`DP SW SCORE BITWIDTH-1:0]
   output reg [$clog2(`REF_MAX_LENGTH)-1:0]
                                               o column,
   output reg [$clog2(`READ MAX LENGTH)-1:0]
                                               o row
```

SW_Wrapper.sv

```
define REF_MAX_LENGTH
                                   128
define READ MAX LENGTH
                                   128
define REF_LENGTH
                                   128
define READ_LENGTH
                                   128
//* Score parameters
define DP SW SCORE BITWIDTH
                                   10
define CONST MATCH SCORE
define CONST MISMATCH SCORE
                                   -4
define CONST GAP OPEN
                                   -6
define CONST GAP EXTEND
                                   -1
module SW Wrapper (
   input
                 avm rst,
                 avm clk,
   input
   output [4:0] avm address,
   output
                 avm read,
   input [31:0] avm readdata,
   output
                 avm write,
   output [31:0] avm writedata,
   input
                 avm waitrequest
```

Hardware Simulation

- Testbench for core and wrapper are provided in tb_verilog/
- To run simulation for SW core
 - > source 01_run_core.sh
- To run simulation for SW wrapper
 - > source 02_run_wrapper.sh
- Use nWave to check the waveform and happy debugging
 - It is advised to test individual modules first
- Feel free to design your own testbench!

Lab Requirements (1/2)

- Input reference length: 128 bp (256 bits)
- Input read length: 128 bp (256 bits)
 - A: 00, C: 01, G: 10, T: 11
- Provided Scoring system
 - Match score: 1
 - Mismatch score: -4
 - Gap open penalty: -6
 - Gap extension penalty: -1
- Output Results
 - Highest score
 - Row
 - Column

Lab Requirements (2/2)

- Key0 可以 reset
- Pass all patterns
 - 100 public patterns
 - 5 hidden patterns (Demo 當天會公布)
- Demo 時間: 12/01 (四) 12:20 13:10
 - 記得提前一個禮拜和助教預約是否要 demo
- Bonus (請在 demo 時和 report 中詳細説明)
 - 能輸出 backtracking alignment results
 - 不需要按 reset 即可連續運算多份 patterns
 - 其他想得到的變化
- Materials
 - https://github.com/sandy30538/NTUEE-DCLAB-Materials.git

System Setup

Testing Program

- Environment setup
 - Install Python2
 - ez_setup.py (https://pypi.org/project/setuptools/) or sudo apt-get install python-pip
 - (sudo) pip install pySerial
- Usage
 - Copy random_pattern.bin and pattern_ans.txt next to the executable
 - ./test_rs232.py [COM? | /dev/ttyS0 | /dev/ttyUSB0]
- Several testing data are provided
- Flow
 - Send 32-Byte reference sequence
 - Send 32-Byte read sequence
 - FPGA perform SW algorithm
 - Receive 31-Byte result (col, row, score)

Submission

- 繳交項目
 - Report(.pdf)
 - source code(.v)
- 繳交檔案架構

```
team01_lab1
|-team01_lab1_report.pdf
|-src
| -<all of your verilog code>.v
```

· 先創一個teamXX_lab_bonus的資料夾再壓縮,不要直接壓縮繳交項目

NTU / DCS Lab

27

Report Regulation

- 內容應包含
 - 層級架構
 - Block Diagram (必須包含 Data Path, control signal可有可無)
 - FSM or Scheduling
 - Fitter Summary 截圖
 - Timing Analyzer 截圖
 - 問與答
 - 1. Short-read mapping 的流程為何?
 - 2. 以軟體實現 SW 演算法的挑戰是什麼?
 - 3. 以硬體實現的優勢是甚麼?
- 一組交一份,以pdf檔繳交
- 命名方式:teamXX_lab_bonus_report.pdf
 - Ex: team01_lab_bonus_report.pdf
- 繳交期限:demo隔天午夜