Module 8

RANDOM VARIABLES and INDUCED PROBABILITY SPACE

- \mathcal{E} : given random experiment;
- $(\Omega, \mathcal{P}(\Omega), P)$: probability space associated with \mathcal{E} ;
- In many situations we may not be directly interested in sample space Ω ; rather we may be interested in some numerical aspect of sample space (i.e., we may be interested in a real-valued function defined on sample space Ω).

Example 1:

- \mathcal{E} : Tossing a fair can three times independently;
- Sample space $\Omega = \{(\omega_1, \omega_2, \omega_3) : \omega_i \in \{H, T\}, i = 1, 2, 3\}$; here, in $(\omega_1, \omega_2, \omega_3), \omega_i \ (i = 1, 2, 3)$ indicates the outcome of i^{th} toss. Clearly the sample space has $2^3 = 8$ elements;
- Suppose we are interested in number of heads obtained in three tosses, i.e., we are interested the function $X:\Omega\to\mathbb{R}$, where

$$X(w_1, w_2, w_3) = \begin{cases} 0, & \text{if } (\omega_1, \omega_2, \omega_3) = (T, T, T) \\ 1, & \text{if } (\omega_1, \omega_2, \omega_3) \in \{(H, T, T), (T, H, T), (T, T, H)\} \\ 2, & \text{if } (\omega_1, \omega_2, \omega_3) \in \{(H, H, T), (H, T, H), (T, H, H)\} \end{cases}.$$

$$3, & \text{if } (\omega_1, \omega_2, \omega_3) = (H, H, H)$$

Definition 1: A real valued function $X : \Omega \to \mathbb{R}$ is called a random variable (r.v.).

Notations:

- $\mathcal{P}(\mathbb{R})$: power set of the real line \mathbb{R} ;
- \bullet For a r.v. X

$$\{X \in A\} \doteq X^{-1}(A) = \{\omega \in \Omega : X(\omega) \in A\}, A \in \mathcal{P}(\mathbb{R}).$$

For example, for a real constant c,

$${X = c} = X^{-1}({c}) = {\omega \in \Omega : X(\omega) = c};$$

$${X \le c} = X^{-1}((-\infty, c]) = {\omega \in \Omega : X(\omega) \le c};$$

$${X > c} = X^{-1}((c, \infty)) = {\omega \in \Omega : X(\omega) > c}.$$

Result 1: Let X be a r.v. Then

(a)

$$X^{-1}(\bigcap_{\alpha \in \Lambda} A_{\alpha}) = \bigcap_{\alpha \in \Lambda} X^{-1}(A_{\alpha});$$

(b)

$$X^{-1}(\bigcup_{\alpha \in \Lambda} A_{\alpha}) = \bigcup_{\alpha \in \Lambda} X^{-1}(A_{\alpha});$$

(c)

$$X^{-1}(A^c) = (X^{-1}(A))^c$$

(d)

$$A \cap B = \phi \implies X^{-1}(A) \bigcap X^{-1}(B) = \phi.$$

Proof: Left as an exercise.

Induced probability space

- X: a given r.v. on probability space $(\Omega, \mathcal{P}(\Omega), P)$;
- Define the set function $P_X : \mathcal{P}(\Omega) \to [0,1]$ as

$$P_X(A) = P(X^{-1}(A))$$

 $\Rightarrow P(\{\omega \in \Omega : X(\omega) \in A\}), \quad A \in \mathcal{P}(\Omega).$

Result 2: The set function $P_X(.)$ defined above is a probability function on $\mathcal{P}(\mathbb{R})$, i.e., $(\mathbb{R}, \mathcal{P}(\mathbb{R})), P_X$ is a probability space.

Proof: Since, $P(\cdot)$ is a probability function

$$P_X(A) = P(X^{-1}(A)) \ge 0, \quad \forall \ A \in \mathcal{P}(\mathbb{R}).$$

Let $\{A_i : i \in S\}$ be a countable collection of disjoint events in $\mathcal{P}(\mathbb{R})$. Then

$$P_X(\bigcup_{i \in S} A_i) = P(X^{-1}(\bigcup_{i \in S} A_i))$$

$$= P(\bigcup_{i \in S} X^{-1}(A_i)) \text{ (using Result 1 (b))}$$

$$= \sum_{i \in S} P(X^{-1}(A_i)) \quad (X^{-1}(A_i)\text{s are disjoint)}$$

$$= \sum_{i \in S} P_X(A_i).$$

Also

$$P_X(\mathbb{R}) = P(X^{-1}(\mathbb{R}))$$

= $P(\Omega)$
= 1.

Remark 1:

- (a) The probability space $(\mathbb{R}, \mathcal{P}(\mathbb{R}), P_X)$ is called the probability space induced by r.v. X and the probability function $P_X(\cdot)$ is called the probability function induced by r.v. X.
- (b) Given a r.v. X, we are generally no longer interested in the original probability space $(\Omega, \mathcal{P}(\Omega), P)$; rather we are then, interested in induced probability space $(\mathbb{R}, \mathcal{P}(\mathbb{R}), P_X)$. We have

$$X: (\Omega, \mathcal{P}(\Omega), P) \rightarrow (\mathbb{R}, \mathcal{P}(\mathbb{R}), P_X),$$

where

$$P_X(A) = P(X^{-1}(A))$$

= $P(\{\omega \in \Omega : X(\omega) \in A\}), A \in \mathcal{P}(\mathbb{R}).$

Example 2:

- \mathcal{E} : a fair coin is tossed three times independently;
- Sample space $\Omega = \{(\omega_1, \omega_2, \omega_3) : \omega_i \in \{H, T\}, i = 1, 2, 3\};$
- Suppose we are interested in number of heads in three tosses of coin, i.e., we are interested in r.v. $X: \Omega \to \mathbb{R}$, defined by

$$X(\omega) = \begin{cases} 0, & \text{if } \omega = (T, T, T) \\ 1, & \text{if } \omega \in \{(H, T, T), (T, H, T), (T, T, H)\} \\ 2, & \text{if } \omega \in \{(H, H, T), (H, T, H), (T, H, H)\} \end{cases}$$

$$3, & \text{if } \omega = (H, H, H)$$

• We have

$$P_X(\{0\}) = P(X^{-1}(\{0\}))$$

$$= P(\{(T,T,T)\})$$

$$= \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8};$$

$$P_X(\{1\}) = P(X^{-1}(\{1\}))$$

$$= P(\{(H,T,T),(T,H,T),(T,T,H)\})$$

$$= \frac{3}{8};$$

$$P_X(\{2\}) = P(X^{-1}(\{2\}))$$

$$= P(\{(H,H,T),(H,T,H),(T,H,H)\})$$

$$= \frac{3}{8};$$

$$P_X(\{3\}) = P(X^{-1}(\{3\}))$$

$$= P(\{(H,H,H)\})$$

$$= \frac{1}{8}.$$

• For $A \subseteq \mathcal{P}(\mathbb{R})$

$$P_X(A) = P(X^{-1}(A))$$

= $\sum_{\omega \in A \cap \{0,1,2,3\}} P_X(\{\omega\})$

Take Home Problem:

Prove result 1.

Abstract of Next Module

• We will introduce the concept of distribution function (d.f):

$$F_X(x) = P_X((-\infty, x])$$

= $P(\{\omega \in \Omega : X(\omega) \le x\}), x \in \mathbb{R}.$

• One can study the induced probability space $(\mathbb{R}, \mathcal{P}(\mathbb{R}), P_X)$ through d.f. F_X .

Thank you for your patience

