

Unterlagen für die Lehrkraft

Zentrale Klausur am Ende der Einführungsphase 2022

Mathematik

1. Aufgabenart / Inhaltsbereich

Prüfungsteil A: Aufgaben ohne Hilfsmittel

Aufgabe 1: Analysis

Aufgabe 2: Stochastik

Prüfungsteil B: Aufgaben mit Hilfsmitteln

Aufgabe 3: Analysis (Innermathematische Argumentationsaufgabe)

Aufgabe 4: Analysis (Kontextbezogene Aufgabe)

2. Aufgabenstellung 1

siehe Prüfungsaufgaben

3. Materialgrundlage

entfällt

¹ Die Aufgabenstellung deckt inhaltlich alle drei Anforderungsbereiche ab.

4. Bezüge zum Kernlehrplan und zu den Vorgaben 2022

Die Aufgaben weisen vielfältige Bezüge zu Kompetenzbereichen und Inhaltsfeldern des Kernlehrplans bzw. zu den in den Vorgaben ausgewiesenen Fokussierungen auf. Im Folgenden wird auf Bezüge von zentraler Bedeutung hingewiesen.

Inhaltsfelder und inhaltliche Schwerpunkte

Prüfungsteil A: Aufgaben ohne Hilfsmittel

Inhaltsfeld Funktionen und Analysis (A)

- Grundlegende Eigenschaften von Potenz- und Exponentialfunktionen
- Grundverständnis des Ableitungsbegriffs
- Differentialrechnung ganzrationaler Funktionen (Untersuchung ganzrationaler Funktionen bis zum Grad drei)

Inhaltsfeld Stochastik (S)

- Mehrstufige Zufallsexperimente
- Bedingte Wahrscheinlichkeiten

Prüfungsteil B: Aufgaben mit Hilfsmitteln

Inhaltsfeld Funktionen und Analysis (A)

- Grundverständnis des Ableitungsbegriffs
- Differentialrechnung ganzrationaler Funktionen

5. Zugelassene Hilfsmittel

Prüfungsteil A:

Wörterbuch zur deutschen Rechtschreibung

Prüfungsteil B:

- GTR (Graphikfähiger Taschenrechner) oder CAS (Computeralgebrasystem)
- Mathematische Formelsammlung
- Wörterbuch zur deutschen Rechtschreibung

Vorgaben für die Bewertung der Leistungen

Die jeweilige Modelllösung stellt eine mögliche Lösung bzw. Lösungsskizze dar. Der gewählte Lösungsansatz und -weg der Schülerinnen und Schüler muss nicht identisch mit dem der Modelllösung sein. Sachlich richtige Alternativen werden mit entsprechender Punktzahl bewertet (Bewertungsbogen: Zeile "Sachlich richtige Lösungsalternative zur Modelllösung").

Aufgabe 1:

Modelllösung a)

$$f(x) = 0 \Leftrightarrow x^2 - 6 \cdot x + 8 = 0 \Leftrightarrow x = 3 - \sqrt{3^2 - 8} = 2 \lor x = 3 + \sqrt{3^2 - 8} = 4.$$

Modelllösung b)

- (1) $f'(x) = 2 \cdot x 6$, $f'(10) = 2 \cdot 10 6 = 14$.
- (2) Abbildung 2.3 zeigt den Graphen von f'.

Aufgabe 2:

Modelllösung

(1) Kind hat billige Kind hat teure Summe Schokolade erhalten. Schokolade erhalten. Kind vermutet: 2 10 12 Die Schokolade ist teuer. Kind vermutet: 6 20 14 Die Schokolade ist billig. 8 24 32 Summe

- (2) $P(\text{"Die Preisklasse der Schokolade wird richtig vermutet."}) = \frac{16}{32} = \frac{1}{2}$.
- (3) $P(\text{"Die Schokolade ist teuer."}) = \frac{6}{20} = \frac{3}{10}$.

Aufgabe 3:

Modelllösung a)

$$f\left(\frac{3}{2}\right) = \frac{3299}{1000} = 3,299 \neq 3,2 = \frac{16}{5}.$$

Der Punkt $P\left(\frac{3}{2} \mid \frac{16}{5}\right)$ liegt nicht auf dem Graphen der Funktion f.

Modelllösung b)

$$f'(x) = \frac{81}{125} \cdot x^2 - \frac{54}{25} \cdot x$$
.

Aus der notwendigen Bedingung f'(x) = 0 für lokale Extremstellen ergeben sich die beiden Lösungen x = 0 und $x = \frac{10}{3}$.

Zusätzlich gilt $f'(-1) = \frac{351}{125} > 0$, $f'(2) = -\frac{216}{125} < 0$ und $f'(4) = \frac{216}{125} > 0$. An der Stelle x = 0 liegt also ein Vorzeichenwechsel von positiven zu negativen Funktionswerten von f' und damit ein lokales Maximum von f vor. An der Stelle $x = \frac{10}{3}$ liegt ein Vorzeichenwechsel von negativen zu positiven Funktionswerten von f' und damit ein lokales Minimum von f vor.

Mit f(0) = 5 und $f\left(\frac{10}{3}\right) = 1$ folgt, dass H(0|5) der lokale Hochpunkt und $T\left(\frac{10}{3} \mid 1\right)$ der lokale Tiefpunkt des Graphen von f ist.

Modelllösung c)

(1) Ansatz: $t: y = m \cdot x + b$.

$$m = f'(5) = \frac{27}{5}, f(5) = 5.$$

Einsetzen in $y = m \cdot x + b$ liefert:

$$5 = \frac{27}{5} \cdot 5 + b \Leftrightarrow b = -22.$$

Gleichung der Tangente $t: y = \frac{27}{5} \cdot x - 22$.

(2) Durch Gleichsetzen ergibt sich die Gleichung $f(x) = \frac{27}{5} \cdot x - 22$ mit den beiden Lösungen x = -5 und x = 5.

Mit
$$f(-5) = -49$$
 gilt dann $R(-5|-49)$.

Modelllösung d)

- (1) Da additive Konstanten beim Ableiten wegfallen, gilt g'(x) = (f(x) + a)' = f'(x), die Graphen von g' und f' sind daher identisch.
- (2) Wenn der Graph von g genau drei Schnittpunkte mit der x-Achse besitzen soll, dann dürfen für a nur Werte eingesetzt werden, die größer als -5 und kleiner als -1 sind.

Modelllösung e)

Der Graph von h ist verglichen mit dem Graphen von f um $\frac{2}{3}$ Einheiten nach rechts und um 2 Einheiten nach unten verschoben.

Es gilt also
$$b = \frac{2}{3}$$
 und $c = -2$.

Aufgabe 4:

Modelllösung a)

(1) Die Höhe des Punktes *A* über dem umgebenden Gelände beträgt 2,12 m.

(2)
$$\frac{f(8)-f(0)}{8} = -0.265$$
.

Der angegebene Wert für die durchschnittliche Steigung zwischen den Punkten *A* und *B* ist richtig.

- (3) Die durchschnittliche Steigung ergibt sich nur aus den Koordinaten zweier Punkte. Über den Verlauf des Abschnitts zwischen diesen Punkten, beispielsweise über das steilste Gefälle im Abschnitt, kann daraus keine Aussage abgeleitet werden.
- (4) $f'(x) = -0.03 \cdot x^2 + 0.48 \cdot x 1.545$.

Die Gleichung f'(x) = -0.265 besitzt genau zwei Lösungen x_1 und x_2 mit $x_1 \approx 3.38$ und $x_2 \approx 12.62$. Nur x_1 liegt im Modellierungsbereich.

Mit $f(x_1) \approx -0.75$ gilt dann: Der Punkt des seitlichen Profils, in dem die durchschnittliche Steigung als Steigung vorkommt, hat ungefähr die Koordinaten $(3.38 \mid -0.75)$.

Modelllösung b)

Aus der notwendigen Bedingung f'(x) = 0 für lokale Extremstellen ergeben sich die beiden Lösungen x_3 und x_4 mit $x_3 \approx 4,46$ und $x_4 \approx 11,54$. Die Lösung x_4 liegt nicht im Modellierungsbereich.

Zusätzlich gilt f'(0) = -1,545 < 0 und f'(5) = 0,105 > 0. An der Stelle x_3 liegt also ein Vorzeichenwechsel von negativen zu positiven Funktionswerten von f' und damit ein lokales Minimum von f vor. Wegen f(0) = 2,12, $f(x_3) \approx -0,88$ und f(8) = 0 liegt bei x_3 auch das absolute Minimum von f im Intervall [0;8] vor.

Daher liegt der niedrigste Punkt des Pumptrack-Abschnitts ca. 0,88 m unterhalb des Niveaus des umgebenden Geländes.

Modelllösung c)

(1) Wegen f(8) = 0 = g(8) besitzen die Funktionen f und g an der Übergangsstelle x = 8 den gleichen Funktionswert.

Wegen f'(8) = 0.375 = g'(8) besitzen die Funktionen f und g an der Übergangsstelle x = 8 die gleiche Steigung.

Die Graphen der beiden Funktionen gehen daher an der Stelle x = 8 knickfrei ineinander über.

(2) $g(x) = 0 \Leftrightarrow x = 8 \lor x = 13$.

Die horizontale Länge des zweiten Abschnitts beträgt 5 m.

7. Bewertungsbogen zur Klausur

Name des Prüflings:	Kursbezeichnung:
•	
Schule:	

Aufgabe 1: Analysis (Hilfsmittelfrei zu bearbeitende Aufgabe)

Teilaufgabe a)

	Anforderungen	Lösungsqualität	
	Der Prüfling	maximal erreichbare Punktzahl	erreichte Punktzahl
1	berechnet die Nullstellen der Funktion f .	3	
Sachl	Sachlich richtige Lösungsalternative zur Modelllösung: (3)		
	Summe Teilaufgabe a)	3	

Teilaufgabe b)

	Anforderungen	Lösungsqualität	
	Der Prüfling	maximal erreichbare Punktzahl	erreichte Punktzahl
1	(1) berechnet $f'(10)$.	2	
2	(2) gibt an, welche Abbildung den Graphen von f' zeigt.	1	
Sachl	Sachlich richtige Lösungsalternative zur Modelllösung: (3)		
	Summe Teilaufgabe b)	3	

	Summe Aufgabe 1	6		
--	-----------------	---	--	--

Aufgabe 2: Stochastik (Hilfsmittelfrei zu bearbeitende Aufgabe)

	Anforderungen	Lösungsqualität	
	Der Prüfling	maximal erreichbare Punktzahl	erreichte Punktzahl
1	(1) gibt die fehlenden Werte in der <i>Tabelle</i> an.	2	
2	(2) berechnet die Wahrscheinlichkeit, dass ein zufällig ausgewähltes Kind die Preisklasse seiner Schokolade richtig vermutet.	2	
3	(3) bestimmt die Wahrscheinlichkeit, dass ein zufällig ausgewähltes Kind, das vermutet, es habe eine billige Schokolade erhalten, tatsächlich aber eine teure Schokolade erhalten hat.	2	
Sachlich richtige Lösungsalternative zur Modelllösung: (6)			

Summe Aufgabe 2 6

Aufgabe 3: Analysis (Innermathematische Argumentationsaufgabe)

Teilaufgabe a)

	Anforderungen	Lösungsqualität	
	Der Prüfling	maximal erreichbare Punktzahl	erreichte Punktzahl
1	prüft, ob der Punkt $P\left(\frac{3}{2} \mid \frac{16}{5}\right)$ auf dem Graphen der Funktion f liegt.	2	
Sachl	ich richtige Lösungsalternative zur Modelllösung: (2)		
	Summe Teilaufgabe a)	2	

Teilaufgabe b)

	Anforderungen	Lösungsqualität	
	Der Prüfling	maximal erreichbare Punktzahl	erreichte Punktzahl
1	gibt $f'(x)$ an.	1	
2	bestimmt rechnerisch – ohne dabei an Funktionsgraphen abgelesene Werte oder Zusammenhänge zu verwenden – die Koordinaten der lokalen Extrempunkte des Graphen von f .	6	
Sachlich richtige Lösungsalternative zur Modelllösung: (7)			
	Summe Teilaufgabe b)	7	

Teilaufgabe c)

	Anforderungen	Lösungsqualitä	
	Der Prüfling	maximal erreichbare Punktzahl	erreichte Punktzahl
1	(1) ermittelt rechnerisch eine Gleichung der Tangente t an den Graphen von f im Punkt $Q(5 f(5))$.	4	
2	(2) bestimmt die Koordinaten des weiteren gemeinsamen Punktes R , den die Tangente t und der Graph von f besitzen.	S	
Sachl	ich richtige Lösungsalternative zur Modelllösung: (7)		
	Summe Teilaufgabe c)	7	

Teilaufgabe d)

	Anforderungen	Lösungsqualität	
	Der Prüfling	maximal erreichbare Punktzahl	erreichte Punktzahl
1	(1) begründet, warum die Graphen von g' und f' identisch sind.	2	
2	(2) gibt den Bereich an, aus dem die Werte für <i>a</i> eingesetzt werden dürfen, wenn der Graph von <i>g</i> genau drei Schnittpunkte mit der <i>x</i> -Achse besitzen soll.	3	
Sachl	ich richtige Lösungsalternative zur Modelllösung: (5)		
	Summe Teilaufgabe d)	5	

Teilaufgabe e)

	Anforderungen	Lösungsqualität	
	Der Prüfling	maximal erreichbare Punktzahl	erreichte Punktzahl
1	ermittelt <i>b</i> .	2	
2	ermittelt <i>c</i> .	1	
Sachl	Sachlich richtige Lösungsalternative zur Modelllösung: (3)		
	Summe Teilaufgabe e)	3	

S	Summe Aufgabe 3	24	
---	-----------------	----	--

Aufgabe 4: Analysis (Aufgabe mit realitätsnahem Kontext)

Teilaufgabe a)

	Anforderungen	Lösungs	qualität
	Der Prüfling	maximal erreichbare Punktzahl	erreichte Punktzahl
1	(1) gibt die genaue Höhe des Punktes A über dem Niveau des umgebenden Geländes an.	1	
2	(2) prüft die Angabe -0.265 für die durchschnittliche Steigung zwischen dem Punkt A und dem Punkt B .	3	
3	(3) erklärt, warum die durchschnittliche Steigung nur wenig über den Verlauf des Pumptrack-Abschnitts aussagt.	2	
4	(4) gibt $f'(x)$ an.	1	
5	(4) berechnet die Koordinaten des Punktes des seitlichen Profils, in dem die durchschnittliche Steigung -0.265 auch als Steigung vorkommt.	3	
Sachl	Sachlich richtige Lösungsalternative zur Modelllösung: (10)		
	Summe Teilaufgabe a)	10	

Teilaufgabe b)

	Anforderungen	Lösungs	qualität
	Der Prüfling	maximal erreichbare Punktzahl	erreichte Punktzahl
1	bestimmt rechnerisch – ohne dabei an Funktionsgraphen abgelesene Werte oder Zusammenhänge zu verwenden –, wie tief unterhalb des Niveaus des umgebenden Geländes der niedrigste Punkt des Pumptrack-Abschnitts liegt.	7	
Sachlich richtige Lösungsalternative zur Modelllösung: (7)			
	Summe Teilaufgabe b)	7	

Teilaufgabe c)

	Anforderungen	Lösungsqualität	
	Der Prüfling	maximal erreichbare Punktzahl	erreichte Punktzahl
1	(1) weist rechnerisch nach, dass die Graphen der beiden Funktionen f und g an der Stelle $x=8$ knickfrei ineinander übergehen.	4	
2	(2) ermittelt rechnerisch die horizontale Länge des zweiten Abschnitts.	3	
Sachl	Sachlich richtige Lösungsalternative zur Modelllösung: (7)		
	Summe Teilaufgabe c)	7	

	Summe Aufgabe 4	24	
--	-----------------	----	--

Festlegung der Gesamtnote

	Lösung	Lösungsqualität	
	maximal erreichbare Punktzahl	erreichte Punktzahl	
Übertrag der Punktsumme aus der ersten Aufgabe			
Übertrag der Punktsumme aus der zweiten Aufgabe	6		
Übertrag der Punktsumme aus der dritten Aufgabe	24		
Übertrag der Punktsumme aus der vierten Aufgabe			
Gesamtpunktzahl			

Note	
------	--

Unterschrift, Datum

Grundsätze für die Bewertung (Notenfindung)

Für die Zuordnung der Noten zu den Punktsummen ist folgende Tabelle zu verwenden:

Note	Erreichte Punktsummen
sehr gut	52 – 60
gut	43 – 51
befriedigend	34 – 42
ausreichend	25 – 33
mangelhaft	13 – 24
ungenügend	0 – 12