ZIMSKI ISPITNI ROK IZ DIGITALNE LOGIKE – PISMENI ISPIT

Grupa C

1	Uporabom Hammingovog kôda uz neparni paritet potrebno je zaštititi podatak 01011011. Kako
	glasi zaštićena kodna riječ ako se koristi uobičajeni razmještaj zaštitnih i podatkovnih bitova?

a) 010010101011

b) 100110101011

c) 110010101011

d) 110110111011

e) 000010101011

f) ništa od navedenog

- 2 Koji od pretvornika u sebi sadrži dvosmjerno brojilo (tj. brojilo naprijed/natrag)?
 - a) brojeći A/D pretvornik
 - b) Wilkinsonov pretvornik
 - c) pretvornik sa sukcesivnom aproksimacijom
 - d) kontinuirano brojeći A/D pretvornik
 - e) težinski D/A pretvornik
 - f) niti jedan od navedenih (ili više navedenih)
- U nekom digitalnom sustavu cijeli se brojevi pamte kao 8 znamenaka u bazi B=8. Što će u tom sustavu biti zapisano kao rezultat oduzimanja 35721-4437252 ako se oduzimanje izvodi na uobičajen način uporabom B-komplementa?

a) 72717437

d) 37315577

b) 53172251

e) 73376447

c) 74425371

f) ništa od navedenog

Koliko iznosi redundancija Hammingovog kôda kada se štite 17-bitni podatci? 4

a) 5/17

b) 5/22

c) 6/23

d) 4/17

e) 4/21

f) ništa od navedenoga

a)
$$f_1 = \overline{x}_2 x_0 + x_2 \overline{x}_1$$
, $f_2 = \overline{x}_2 \overline{x}_0 + \overline{x}_1 \overline{x}_0$

d)
$$f_1 = \bar{x}_1$$
, $f_2 = \bar{x}_1 \bar{x}_0 + x_2 \bar{x}_0$

b)
$$f_1 = x_2 x_0 + \overline{x}_2 \overline{x}_1$$
, $f_2 = x_2 \overline{x}_0 + \overline{x}_1 \overline{x}_0$

e)
$$f_1 = \overline{x}_0$$
, $f_2 = x_1 x_2$

c)
$$f_1 = \overline{x}_2 \overline{x}_0 + \overline{x}_1 \overline{x}_0$$
, $f_2 = \overline{x}_2 x_0 + x_2 \overline{x}_1$

f) ništa od navedenog

- Za neku porodicu integriranih logičkih sklopova poznati su sljedeći podatci: U_{OHmin} =4,3V, 6 U_{OLmax} =0,2V, U_{IHmin} =3,7V, U_{ILmax} =0,7V. Neka je u_{gs} granica izmjenične smetnje za tu porodicu. Što sigurno vrijedi?
- a) $u_{gs} \le 0.6V$ b) $u_{gs} \le 0.5V$ c) $u_{gs} \ge 0.5V$ d) $u_{gs} \ge 0.6V$ e) $u_{gs} = 0.55V$
- f) ništa od navedenoga

7	Neka je $f(A,B,C,D) = A\overline{B} + BC + \overline{C}D$ te neka je f_D njezina dualna funkcija. Utvrdite kako glasi $g(A,B,C,D) = f + f_d$ zapisana u obliku produkta suma.							
	a) $\prod M(0,2,4)$		c) $\prod M(1)$	c) $\prod M(2,5,7)$		e) $\prod M(7)$		
	b) $\prod M(0,1,2,4,5,6)$		d) $\prod M$	d) $\prod M(1,3,5,6)$		f) ništa od navedenoga		
8	Tri funkcije zadane u nastavku potrebno je ostvariti sklopom PLA tipa NI-NI. Koje su minimalne dimenzije sklopa PLA kojim je to moguće ostvariti? $f_1(A,B,C,D) = \sum m(5,7,8,10,12,13,14,15), f_2(A,B,C,D) = \sum m(5,10,13,14),$							
	$f_3(A,B,C,D) = \sum m(7,8,12,15)$.							
	a) 4×7×3 b) 4	1×6×3	c) 4×3×3	d) 4×4×3	e) 4×5×	f) ništa od navedenoga		
9	Funkciju $f(A, B, C, D, E, F) = A\overline{F} + BCDE$ potrebno je ostvariti uporabom tehnologije CMOS uz minimalnu potrošnju tranzistora. Koliko je potrebno p-kanalnih tranzistora ako komplementi varijabli nisu unaprijed dostupni?							
	a) 6 b) :	5	c) 10	d) 11	e) 8	f) ništa od navedenoga		
10	Projektirati kombinacijski sklop koji na ulaz dobiva kôd jedne BCD znamenke $(a_3a_2a_1a_0)$ a na izlazu y generira vrijednost 1 samo ako je ta znamenka prost broj (napomena: 1 ćemo smatrati prostim brojem). Na ulaz sklopa se nikada neće dovesti binarni uzorak koji nije valjani BCD kôd. Minimalni zapis funkcije $y(a_3,a_2,a_1,a_0)$ u obliku sume produkata glasi:							
	a) $\overline{a}_1 a_0 + \overline{a}_3 a_1 \overline{a}_0$		c) $\bar{a}_3 a_0 +$	c) $\overline{a}_3 a_0 + \overline{a}_2 a_1$		e) $\overline{a}_3 a_0 + \overline{a}_2 a_1 \overline{a}_0$		
	b) $\overline{a}_3 a_0 + \overline{a}_2 a_1 a_0$		d) $a_3 a_1 +$	d) $a_3 a_1 + a_2 \overline{a}_0$		ništa od navedenoga		
11	Prijemnik s komunikacijskog kanala očitava $y_1y_2y_3y_4y_5$. Poznato je da predajnik i prijemnik štite poruke uporabom Hammingovog kôda uz uobičajen raspored podatkovnih i zaštitnih bitova. Sklop za ispravljanje posljednjeg podatkovnog bita na ulaz dobiva čitavu očitanu riječ te izračunate bitove sindroma. Ako taj sklop želimo ostvariti uporabom jednog dekodera minimalne veličine, koliki nam treba dekoder?							
	a) 3/8 b) 1	1/2	c) 5/32	d) 4/16	e) 8/256	f) ništa od navedenoga		
12	Funkcija $f = ABEF\overline{G} + C\overline{D}E + \overline{B}\overline{C}DG$ ostvaruje se multipleksorom 4/1. Na adresni ulaz veće težine dovedeno je A a na adresni ulaz manje težine B. Podatkovni ulazi multipleksora su d_0 , d_1 , d_2 i d_3 . O koliko varijabli ovisi rezidualna funkcija koja se dovodi na podatkovni ulaz d_1 ?							
	a) 7 b) 2		c) 4	d) 0	e) 3	f) ništa od navedenoga		
13	Koji je osnovni razlog za prelazak s 2D na 2½D organizaciju memorije? a) povećavanje duljine linije bita b) smanjivanje duljine linije bita c) eliminacija destruktivnog čitanja d) povećavanje duljine linije retka e) smanjivanje duljine linije retka f) ništa od navedenoga							

a) 12

b) 3.5

c) 6

Za sklop čiji su ulazi a, b, c i d te izlaz f u jeziku VHDL napisan je strukturni model. Korišteni su već gotovi modeli troulaznih sklopova I (sklopI) i te ILI (sklopILI) kod kojih se izlaz nalazi u sučelju na posljednjem mjestu. Invertori su opisani modelom inv čije sučelje najprije navodi ulaz a potom izlaz. Arhitektura sklopa dana je u nastavku. Koliko i kakvih hazarada ima takav sklop ako bi implementacija direktno odgovarala strukturnom modelu? ac, bc, cc, dc, s1, s2 i s3 su interni signali. Osnovni logički sklopovi imaju kašnjenja. i1: ENTITY work.inv PORT MAP (a,ac); i2: ENTITY work.inv PORT MAP (b,bc); i3: ENTITY work.inv PORT MAP (c,cc); i4: ENTITY work.inv PORT MAP (d,cc); c1: ENTITY work.sklopILI PORT MAP (ac, b, c2: ENTITY work.sklopILI PORT MAP (bc, cc, dc, s2); c3: ENTITY work.sklopILI PORT MAP (a, bc, c, c4: ENTITY work.sklopI PORT MAP (s1, s2, s3, f); a) 1 statički-1 hazard c) 2 statička-1 hazarda e) 2 dinamička-1 hazarda b) 2 statička-0 hazarda f) ništa od navedenoga d) 1 statički-0 hazard 15 Uporabom više memorijskih modula RAM-a 256×4 izgrađena je veća memorija. Ako je za omogućavanje čipova korišten binarni dekoder s 5 adresnih ulaza te ako je ukupno potrošeno 128 memorijskih modula, kakav je RAM izgrađen? f) ništa od navedenoga a) 8192×16 b) 16384×16 c) 4096×8 d) 16384×8 e) 4096×32 16 Za memoriju organizacije 2 ½ D poznati su sljedeći podatci: na adresni dekoder dovodi se 10 adresnih bitova. Fizička riječ sadrži 16 logičkih riječi. Memorija na izlazu daje 16-bitne podatke. Koliki je kapacitet te memorije u bitovima? b) 2^{10} c) 2^{22} d) 2^{16} e) 2^{18} f) ništa od navedenoga Unutar digitalnog sklopa koji radi sa znamenkama u bazi 4 koristi se sljedeći kôd: 0=00, 1=10, 17 2=11, 3=01. Potrebno je konstruirati kombinacijski sklop koji na ulaz dobiva kôd jedne znamenke (a_1a_0) te upravljački signal x. Ako je x=0, sklop treba na izlaze y_1y_0 propustiti kôd znamenke s ulaza. Ako je x=1, na izlazu y_1y_0 treba generirati 3-komplement znamenke s ulaza. Minimalni zapis izlaza v_0 glasi: c) $\bar{x}a_0 + x\bar{a}_0$ a) $\bar{x}a_0 + x\bar{a}_1$ e) $\bar{x}a_1 + x\bar{a}_1$ c) $\overline{x}a_0 + x\overline{a}_0$ d) $xa_1 + x\overline{a}_0$ f) ništa od navedenoga b) $\bar{x} + xa_0$ Neki AB-bistabil ostvaren je uporabom troulaznog 18 konfigurabilnog logičkog bloka (CLB) sklopa FPGA temeljenog 0 na preglednoj tablici (LUT) i bistabilu D kako je prikazano na 1 slici. Bistabil iste funkcionalnosti potrebno je ostvariti uporabom 1 jednog bistabila tipa T. Što je potrebno dovesti na njegov ulaz 0 a_0 T? Upravljački bit s upravlja multipleksorom koji na izlaz CLB-1 a propušta za s=0 izlaz iz LUT-a, a za s=1 izlaz iz bistabila D. 0 0 1 1 b) $A \oplus B$ d) A + Be) $A \cdot B$ f) ništa od navedenoga c) $\overline{A+B}$ a) $A \cdot B$ 19 Izračunajte omjer maksimalnih frekvencija rada 12-bitnog sinkronog binarnog brojila s paralelnim prijenosom i 12-bitnog sinkronog binarnog brojila sa serijskim prijenosom, ako je vrijeme kašnjenja bistabila 30 ns, vrijeme postavljanja 10 ns, vrijeme pridržavanja 10 ns te kašnjenje logičkog sklopa 5 ns.

d) 2

e) 4.25

f) ništa od navedenoga

