

WebRTCon

为开发者赋能为行业加速

2018年5月19日-20日 · 上海光大会展中心

AV1 - The New Open Video Codec

Zoe Liu, Google Inc

zoeliu@google.com

AOMedia and AV1

Coding Techniques

Coding Performance

What's Next

Outline

AOMedia and AV1

Coding Techniques

Coding Performance

What's Next

AOMedia

- AV1 is the first video codec developed by Alliance for Open Media (AOM)
- AOM was formed in 2015 Q4 to jointly deliver an open video format because
 - A fast pace of innovation is needed
 - A royalty-free codec is desirable
- 37 members: content providers, web platforms, hardware makers, ...
- Welcome to join!

AOMedia

- AV1 is the first video codec developed by Alliance for Open Media (AOM)
- AOM was formed in 2015 Q4 to jointly deliver an open video format because
 - o A fast pace of innovation is needed
 - o A royalty-free codec is desirable
- 36 members: content providers, web platforms, hardware makers ...
- Welcome to join!

ISIGMA

REALTEK

Vidyo

socionext.

XILINX°

Veri Silicon

VP9

YouTube
watch time gains
VP9 vs. H. 264

- The focus of AV1
 - Royalty-free
 - Open^[1] and interoperable
 - Optimized for hardware
 - Highest quality, real-time video delivery
 - Ubiquitous and flexible

- AV1 development starts from an extension of libvpx-VP9 and features in daala and thor
- New tools are proposed and iterated before decisions (adopt/reject) are made

- Each new coding tool has been iterated through workgroups to make sure it is
 - Beneficial
 - Hardware friendly for real-time decoding
 - Harmonized with adopted tools
 - Reviewed to work towards the goal of royalty-free

 Now, the bitstream has been frozen, and the spec has been published

AOMedia and AV1

Coding Techniques

Coding Performance

What's Next

Video coding at a glance

- Partition
- Prediction
- Transform Coding
- Quantization
- Entropy coding
- Restoration and Post-processing

Coding Block Partition

VP9

Recursive partition
64x64 down to 4x4
4-way partition
Constraints on sub 8x8 blocks

AV1

Recursive partition
128x128 down to 4x4
10-way partition
Flexibility for sub 8x8 blocks

Prediction

Intra
Prediction

Inter Prediction

Prediction

Intra
Prediction

Inter Prediction

Intra Prediction

VP9

8 directional prediction modes 2 smooth modes: DC + TM

AV1

56 directional prediction modes10 smooth modesChroma from luma predictionColor palette codingIntra block copying

Intra Prediction

VP9

8 directional prediction modes 2 smooth modes: DC + TM

AV1

56 directional prediction modes10 smooth modesChroma from luma predictionColor palette codingIntra block copying

Extended Directional Intra Modes

- On top of VP9's 8 extrapolation directions,
 [-3, 3] x 3° angle delta is enabled
- Extended modes are realized by bi-linear interpolation of spatial references

Intra Prediction

VP9

8 directional prediction modes 2 smooth modes: DC + TM

AV1

56 directional prediction modes10 smooth modesChroma from luma predictionColor palette codingIntra block copying

Smooth Intra Prediction Modes

Smooth H/V/AVG

- Approximate bottom and right boundaries
- Quadratic interpolation horizontally, or vertically, or taking the average

Paeth Predictor

- Copy one from the top, left or topleft edge references, whichever is closest to (top + left topleft)
- Adopt the reference from the direction with the lower gradient

Recursive Intra Filter

- Predict in batches of 4x2 blocks by recursively applying 8 7-tap filters to (4+2+1) predicted neighbors
- 5 sets of filters are predesigned to capture evolutions

Intra Prediction

VP9

8 directional prediction modes 2 smooth modes: DC + TM

AV1

56 directional prediction modes10 smooth modesChroma from luma predictionColor palette codingIntra block copying

Chroma from Luma Prediction

- Predict Chroma AC from subsampled Luma AC
- Coefficients for linear prediction are conveyed in the bitstream

Intra Prediction

VP9

8 directional prediction modes 2 smooth modes: DC + TM

AV1

56 directional prediction modes10 smooth modesChroma from luma predictionColor palette codingIntra block copying

Palette Mode

- Blocks can be approximated by a few unique colors
- A screen-content coding tool as a general code mode
- Palette representation
 - Encode k (2~8) anchor base colors, delta coded
 - Encode a k-ary color index map, entropy coded

Intra Block Copying

- Another screen-content coding tool
- AV1 intra coder can refer to previously reconstructed blocks in the same frame by signaling an intra frame motion vector
- Particularly helpful in screen-shots with a lot of texts

Prediction

Intra
Prediction

Inter Prediction

Inter Prediction

VP9

3 reference frames
Fixed MV pred
Same H/V interpolation filter
Block-based prediction
Averaged compound prediction
Only translational motion comp.

AV1

7 reference frames

Dynamic spatio+temp. MV pred.

Separate H/V interpolation filters

Support overlapped block prediction

Support masked compound modes

Support warped motion comp.

Inter Prediction

VP9

3 reference frames
Fixed MV pred
Same H/V interpolation filter
Block-based prediction
Averaged compound prediction
Only translational motion comp.

AV1

7 reference frames

Dynamic spatio+temp. MV pred.

Separate H/V interpolation filters

Support overlapped block prediction

Support masked compound modes

Support warped motion comp.

Extended Reference Frames

- Candidate pool: golden, last, alt (VP9) + last2, last3, bwd, alt2
 - Past frames: golden + last3, last2, last
 - Future frames: bwd + alt2, alt (temporal filtered)
- A coding block can pick 1 (single pred) or 2 (compound pred) frames
- AV1 compound prediction can be bi-directional (VP9) or uni-directional

Inter Prediction

VP9

3 reference frames
Fixed spatio MV pred.
Same H/V interpolation filter
Block-based prediction
Averaged compound prediction
Only translational motion comp.

AV1

7 reference frames

Dynamic spatio+temp. MV pred.

Separate H/V interpolation filters

Support overlapped block prediction

Support masked compound modes

Support warped motion comp.

Motion Vector Prediction

• For each reference frame (or pair), a MV candidate pool is constructed

Spatial MV Pred

- -MVs of neighbors using the same ref frame(s) are added to the pool
- -Compared to VP9:
 A deeper neighborhood is searched.
 Building separate pools for compound pairs.

Temporal MV Pred

- -Temporal MV candidates are computed from motion trajectories passing through the current block
- -Capable of tracking motion at various velocities

Dynamic Motion Vector Referencing

- VP9 only considers 2 MV candidates pulled from a fixed searching order
- In AV1, spatial and temporal MV candidates are prepared, scored, merged and ranked
- AV1 supports up to 4 candidates
- Index coding is also adaptive to the size of the pool

Inter Prediction

VP9

3 reference frames
Fixed MV pred
Same H/V interpolation filter
Block-based prediction
Averaged compound prediction
Only translational motion comp.

AV1

7 reference frames

Dynamic spatio+temp. MV pred.

Separate H/V interpolation filters

Support overlapped block prediction

Support masked compound modes

Support warped motion comp.

Inter Prediction

VP9

3 reference frames
Fixed MV pred.
Same H/V interpolation filter
Block-based prediction
Averaged compound prediction
Only translational motion comp.

AV1

7 reference frames

Dynamic spatio+temp. MV pred.

Separate H/V interpolation filters

Support overlapped block prediction

Support masked compound modes

Support warped motion comp.

Overlapped Block Motion Compensation

- Block motion compensation only uses the assigned MV
- OBMC creates secondary predictions from neighbors' MVs, and blend them with BMC to mitigate the effect of discontinued motion field
- AV1 OBMC is a 2-sided causal overlapped predictor
 - Overlapping is operated in the top/left halves
 - Uses predefined 1-D smooth filters
 - Same memory bandwidth as compound pred.

Masked Compound Prediction

AV1 masked compound prediction framework enables per-pixel blending

Integerized mask m(i, j) ∈ [0, 64]

Wedge Based Inter Prediction

Wedge codebook:

Inter-Inter
4-bit shape
1-bit sign

5 bits total

Used for 8x8 up to 32x32 sizes (32x16, 16x8, etc.)

Inter Prediction

VP9

3 reference frames

Fixed MV pred.

Same H/V interpolation filter

Block-based prediction

Averaged compound prediction

Only translational motion comp.

AV1

7 reference frames

Dynamic spatio+temp. MV pred.

Separate H/V interpolation filters

Support overlapped block prediction

Support masked compound modes

Support warped motion comp

Warped Motion Compensation

- AV1 warped model: affine or simpler, only small warping allowed
- Advantage of small warping
 - Can be implemented with two shears like separable sub-pel interpolation

Warped Motion Compensation

- AV1 support two warped prediction modes: global warping, or local warping
 - They are picked at block-level
- Global warping: model is estimated from source and conveyed
 - Works great with camera motions like zoom, panning, and rotation
- Local warping: model is estimated from conveyed neighborhood MVs
 - Low-complexity 4 parameter least square is solved at decoder side

Transform (TX) Coding

VP9

DCT only for inter
Hybrid DCT/ADST for intra
32x32 to 4x4 square TX
Fixed-grid TX partitioning

AV1

16 hybrid TX kernels for both inter and intra64x64 to 4x4 square+rect TXRecursive TX partitioning

Transform (TX) Coding

VP9

DCT only for inter
Hybrid DCT/ADST for intra
32x32 to 4x4 square TX
Fixed-grid TX partitioning

AV1

16 hybrid TX kernels for both inter and intra

64x64 to 4x4 square+rect TX Recursive TX partitioning

Transform Kernels

- 16 separable 2-D kernels: { DCT, ADST, fADST, IDTX }²
 - DCT: works great in general
 - ADST and flip-ADST: capture monotonic changes in residual energy
 - o IDTX: no transform, great for sharp edges
- The kernel sets are gradually reduced as TX sizes increase because some kernels act similarly as sizes get larger

Transform (TX) Coding

VP9

DCT only for inter
Hybrid DCT/ADST for intra
32x32 to 4x4 square TX
Fixed-grid TX partitioning

AV1

16 hybrid TX kernels for both inter and intra

64x64 to 4x4 square+rect TX Recursive TX partitioning

Transform Block Partitioning

- Support 1:2/2:1 and 1:4/4:1 transform sizes
- Support flexible recursive
 TX partition in inter PUs

VP9 32x32 16x16 8x8 4x4

Entropy Coding

VP9

Frame-to-frame adaptive binary arithmetic coder

TX coefficients are coded with uniform context models

AV1

Symbol-to-symbol adaptive multi-symbol arithmetic coder

Level-map based coefficient coding

Entropy Coding

VP9

Frame-to-frame adaptive binary arithmetic coder

TX coefficients are coded with uniform context models

AV1

Symbol-to-symbol adaptive multi-symbol arithmetic coder

Level-map based coefficient coding

AV1 Symbol Coding

- Most syntax elements have non-binary long alphabets
- AV1 multi-symbol arithmetic coder facilitates high throughput symbol coding and straightforward probability model adaptation
 - AV1 arithmetic coding is based on 15-bit CDF tables
 - CDFs are tracked and updated symbol-to-symbol

Entropy Coding

VP9

Frame-to-frame adaptive binary arithmetic coder

TX coefficients are coded with uniform context models

AV1

Symbol-to-symbol adaptive multi-symbol arithmetic coder

Level-map based coefficient coding

Level-map TX Coefficient Coding

- TX coefficients are decomposed into level planes and coded separately
- Lower levels cost the majority of rates so richer contexts are utilized

VP9

In loop deblocking filters

AV1

In loop deblocking filters with adaptive strengths
Directional enhancement filter
Loop restoration filter
Frame super resolution
Film grain synthesis

VP9

In loop deblocking filters

AV1

In loop deblocking filters with adaptive strengths

Directional enhancement filter

Loop restoration filter

Frame super resolution

Film grain synthesis

VP9

In loop deblocking filters

AV1

In loop deblocking filters with adaptive strengths

Directional enhancement filter Loop restoration filter

Frame super resolution Film grain synthesis

Constrained Dire. Enhancement Filtering

- Applied after deblocking
- Edge directions are estimated at 8x8 block level
- 5x5 pre-designed detailpreserving deringing filters are applied

In-loop restoration Filters

- Applied after CDEF
- By comparing reconstruction with original video, restoration filters are computed and conveyed
 - Switchable filter at RU (128x128) level
 - Type A: Wiener filter
 - Type B: Linear combination of two cheap edge-preserving filters

Frame

In-loop restoration Filters

Type A: Wiener filter

Separable (horz + vert filter) 7-tap, symmetric, normalized

Type B: Self-guided projected filters

 X_1 and X_2 are cheap restored versions, Subspace projection can yield a much better final restoration X_r , X_s [Clean source]

VP9

In loop deblocking filters

AV1

In loop deblocking filters with adaptive strengths
Directional enhancement filter
Loop restoration filter
Frame super resolution

Film grain synthesis

In-loop Frame Super Resolution

- AV1 supports a frame super-resolution coding mode: coding a frame at lower horizontal resolution and then restored it normatively to full resolution
- Super-res = linear upscaling + guided in-loop restoration tool at higher res
- This mode could bring perceptual advantages at low bit-rate

VP9

In loop deblocking filters

AV1

In loop deblocking filters with adaptive strengths
Directional enhancement filter
Guided loop restoration filter
Frame super resolution
Film grain synthesis

Film Grain Synthesis

- Film grain is present in much of the commercial content
- It is difficult to compress but needs to be preserved as part of creative intent
- AV1 supports film grain synthesis via a normative post-processing applied outside of the encoding/decoding loop

AOMedia and AV1

Coding Techniques

Outline

Coding Performance

What's Next

Compression Efficiency

- Test condition: AWCY^[1] objective1-fast^[2], 30 x 1080p~360p clips, 60 frames
- AV1 CQ mode, libvpx-VP9 CQ mode, x265 CRF mode
- BDRate (%)

Codecs \ Metric	PSNR-Y	PSNR-Cb	PSNR-Cr	CIEDE-2000
AV1 speed 0 vs. libvpx speed 0	-28.46	-30.78	-32.99	-29.86
AV1 speed 1 vs. libvpx speed 0	-26.91	-30.45	-32.00	-28.88
AV1 speed 0 vs. x265 placebo	-23.97	-40.60	-41.78	-34.62
AV1 speed 1 vs. x265 placebo	-22.43	-40.34	-41.33	-33.74

Compression Efficiency

Results from Facebook Tests^[1]

Coding Complexity

- Coding complexity of AV1 speed 1
- Compared against libvpx-vp9 speed 0
- More speed-up is on the way

Resolution	ENC time/frame	ENC time vs libvpx	DEC frame/s	DEC time vs libvpx
832x480, 8 bit	33s	59x	231	4.8x
480x360, 10 bit	72s	41x	183	4.6x

AOMedia and AV1

Coding Techniques

Coding Performance

What's Next

Outline

What's next?

- Speed up the codec
 - More SIMD coverage, two-pass partition decision making, fast mode determination, including those ML based approaches ...
 - Set up and tune lower complexity speed modes (speed 1 8)
- Continue improving compression performance
 - o Rate control, adaptive quantization, frame super resolution, ...
 - Different eng usage modes will be explored, e.g. perceptual quality mode

Thank You!

