- 1.求多项式 $f(x) = x^5 + x^4 6x^3 14x^2 11x 3$ 的有理根.
- 2.证明下列多项式在有理数域上不可约.

$$(1)f(x) = 5x^4 - 6x^3 + 12x + 6$$

(2)
$$f(x) = x^6 + x^3 + 1$$

- 27. 求下列多项式的有理根:
 - 1) $x^3 6x^2 + 15x 14$;
 - 2) $4x^4 7x^2 5x 1$;
 - 3) $x^5 + x^4 6x^3 14x^2 11x 3$.
- 28. 判断下列多项式在有理数域上是否可约?
 - 1) $x^2 + 1$;
 - 2) $x^4 8x^3 + 12x^2 + 2$;
 - 3) $x^6 + x^3 + 1$;
 - 4) x^p + px + 1, p 为奇素数;
 - 5) x⁴+4kx+1,k 为整数.

27.(2), 28.(5)

1.

- \therefore 由题目可知x只可能是 \pm 1, \pm 3
- $\therefore f(-1) = -1 + 1 + 6 14 + 11 3 = 0$
- $f(1) = 1 + 1 6 14 11 3 = -30 \neq 0$

1	1 -1	-6 0			-3 3
1		-6 9		-3 3	0
1	3 -3	_	1 -9	0	
1	0	3	-8		

$$\therefore f(x) = (x+1)(x-3)(x^3+3x^2+3x+1) = (x+1)^4(x-3)$$

 $\therefore f(x)$ 的有理根为 -1和3

2.

(1)

$$f(x) = 5x^4 - 6x^3 + 12x + 6$$
在有理数域上不可约

(2)

$$f(x) = x^6 + x^3 + 1$$

 $\therefore f(x)$ 的有理根只能为 ± 1

$$f(1) = 3 \neq 0, f(-1) = 1 \neq 0$$

∴ f(x)在有理数域上无有理根, 即无一次因式

当
$$(x^2 + ax + 1)|f(x)$$
时,

		1	-a	a^2-1 1	2a-a^3-1 a	1 1
1	0 a	0 1	1	0	0	1
	-a -a	-1 -a^2	1 -a			
		a^2-1 a^2-1		0 a^2-1		
			2a-a^3+1 2a-a^3+1		0 4+a 2a-a^3+1	
				a^4-3a^ 1	2-a+1 a^3-2a-1 a	1 1

$$\therefore a^4 - 3a^2 + a + 1 = 1, a^3 - 2a - 1 = a$$

$$\therefore a(a^3 - 3a + 1) = 0, a^3 - 3a - 1 = 0$$

:: 易知无解, 所以此情况不成立.

$$\therefore \begin{cases} 2ab - a^3 - 1 = 0 \\ b^2 - a^2b = 0 \\ -a^2 = 0 \end{cases} \Rightarrow \begin{cases} -1 = 0 \\ b = 0 \\ a = 0 \end{cases}$$

- .: 产生矛盾, 此情况也不成立
- .: 综上f(x)在有理数域上不可约

27.(2)

$$\Rightarrow f(x) = 4x^4 - 7x^2 - 5x - 1$$

$$\therefore$$
 易知有理根只可能是 $\pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}$

$$\therefore f(1) = 4 - 7 - 5 - 1 = -9 \neq 0, f(-1) = 4 - 7 + 5 - 1 = 1 \neq 0$$

经检验
$$\frac{1}{2}$$
和 $\pm \frac{1}{4}$ 均不符合

$$\therefore f(x)$$
的有理根为 $-\frac{1}{2}, -\frac{1}{2}$

28.(5)

$$x = t + 1, x f(t) = (t + 1)^4 + 4k(t + 1) + 1$$

$$\therefore f(t) = t^4 + 4t^3 + 6t^2 + (4+4k)t + 4k + 2$$

... 令
$$p=2$$
,则 $p \not| 1, p | 4, 6, (4+4k), (4k+2), p^2 \not| 4k+2$

 \therefore 由Eisenstain判别法可知f(t)有理数域上不可约

$$\therefore x^4 + 4kx + 1$$
在有理数域上也不可约