Меры. Внешние меры

<u>Щель</u>: Мера Лебега и мера Хаусдорфа. Меры Лебега хватает, чтобы говорить об объемах без тонкостей связанных с интегралом Римана и мерой Жордана. Мера Хаусдорфа это правильный способ говорить о поверхностных площадях, комерных объемах и так далее.

Таким образом, если хотим проинтегрировать в \mathbb{R}^n по какому-нибудь необычному множеству \Rightarrow мера Лебега, если хотим проинтегрировать в \mathbb{R}^n или в метрическом пространстве по какому-то объекту и хотим, чтобы мера учитывала его геометрию (например, выражала площадь поверхности или длину кривой), то надо использовать меру Хаусдорфа.

Опр: 1. Пусть $X \neq \emptyset$, набор подмножеств \mathcal{A} множества X называется алгеброй, если:

- 1) $\varnothing, X \in \mathcal{A}$;
- 2) $A, B \in \mathcal{A} \Rightarrow A \cap B, A \setminus B, A \cup B \in \mathcal{A};$

Если дополнительно верно, что:

3)
$$\forall n \in \mathbb{N}, A_n \in \mathcal{A} \Rightarrow \bigcup_n A_n, \bigcap_n A_n \in \mathcal{A};$$

то \mathcal{A} называется σ -алгеброй.

Примеры алгебр:

- 1) $\{\emptyset, X\}$ σ -алгебра;
- 2) 2^{X} σ -алгебра;
- 3) Возьмем $B \in X$ и набор $\{\varnothing, B, X \setminus B, X\}$ σ -алгебра;
- 4) {конечные объединения промежутков из [0,1]} алгебра, но не σ -алгебра;
 - □ Пересечение промежутков это промежуток, объединение промежутков это объединение промежутков. Дополнение к промежутку это либо промежуток, либо объединение двух промежутков. Дополнение к конечному объединению ⇒ пересечение дополнений ⇒ пересечение объектов из данного набора. Рассмотрим рациональные числа:

$$\mathbb{Q} = \bigcup_{n} \{r_n\} \stackrel{?}{=} \bigcup_{1}^{N} \mathbf{I}_k$$

Это будет не верно, поскольку если I_k не является точкой, то в I_k есть иррациональное число \Rightarrow должны быть точками \Rightarrow получается конечный набор точек, а $\mathbb Q$ - счётное множество \Rightarrow не являтеся σ -алгеброй.

- 5) $\{\varnothing, \mathbb{N},$ конечные множества и дополнения к конечным множествам в $\mathbb{N}\}$ алгебра, но не σ -алгебра;
 - □ Это можно показать взяв множество всех чётных чисел оно есть счётное объединение множеств из одного элмента (в отдельности каждого чётного числа), но при этом оно не конечное и не является дополнением к конечному.

Rm: 1. В теории вероятности к σ -алгебре относятся события. Поскольку интересуют обычно вопросы асимптотические, что происходит, когда количество событий - очень большое (бесконечное обычно) \Rightarrow надо уметь что-то делать не только с конечным набором, но и с счётным \Rightarrow рассматриваются σ -алгебры в качестве множества событий.

 \mathbf{Rm} : 2. Аналогично, с точки зрения вычисления объемов, площадей и длин, σ -алгебра также естественный объект потому, что сложные объекты получаются из простых \Rightarrow минимальный набор действий в алгебре.

Опр: 2. Пусть S - какой-либо непустой набор подмножеств X, тогда:

$$\sigma(S) = \bigcap_{S \subset \mathcal{F}} \mathcal{F}, \, \mathcal{F}$$
 - σ -алгебры

называется σ -алгеброй, порожденной S.

 \mathbf{Rm} : 3. Всегда существуют σ -алгебры, содержащие S, например, 2^X обязательно содержит S.

Rm: 4. $\sigma(S)$ это минимальная σ -алгебра по включению: если σ -алгебра $\mathcal{A} \supset S$, то $\mathcal{A} \supset \sigma(S)$.

Пример: Возьмем $S = \{B\} \Rightarrow \sigma(S) = \{\emptyset, X, B, X \setminus B\}$, мы уже знаем, что это σ -алгебра.

 \mathbf{Rm} : 5. Построение $\sigma(S)$ это всё, что можно собрать из S.

Упр. 1. Пусть $S = \{B, C\}$, опишите $\sigma(S)$.

$$\sigma(S) = \{ \varnothing, X, B, C, B \cap C, B \cup C, B \setminus C, C \setminus B, X \setminus B, X \setminus C, X \setminus (B \cup C), X \setminus (B \cap C), B \Delta C, X \setminus (B \Delta C), X \setminus (B \setminus C), X \setminus (C \setminus B) \}$$

Когда мы говорим, что "можно собрать из S" не нужно понимать это буквально, поскольку это не означает, что есть некий алгоритм, который по элементам S с помощью операций: \cap , \cup , \setminus выводит выражение для любого множества из этой σ -алгебры. Для больших S, $\sigma(S)$ столь огромны, что такого описания нет. Содержательным примером такой σ -алегбры является Борелевская σ -алгебра.

Борелевская σ -алгебра

Опр: 3. Пусть X - метрическое пространство. σ -алгебра: $\mathcal{B}(X) = \sigma(\{\text{открытые множества}\})$ называется <u>Борелевской</u> σ -алгеброй, то есть это минимальная σ -алгебра, порожденная всеми открытыми множествами X.

Утв. 1. $\mathcal{B}(\mathbb{R}^n) = \sigma(\{\text{шары}\}) = \sigma(\{\text{открытые кубы}\}).$

 \square Всякое открытое множество $\mathcal U$ это не более, чем счётное объединение открытых кубов: для каждой точки a строим куб $K_a \subset \mathcal U$ с рациональными вершинами $\Rightarrow \cup_a K_a = \mathcal U$ и таких кубов не более, чем счётное число. Тогда:

$$\mathcal{B}(\mathbb{R}^n)\subset\sigma(\{ ext{oткрытые кубы}\})$$

поскольку оно содержит все открытые ⇒ должно содержать минимальную порожденную всеми открытми. Обратное включение очевидно, поскольку среди открытых множеств есть открытые кубы. ■

σ -аддитивные меры

Опр: 4. Пусть на X задана σ -алгебра \mathcal{A} . Функция $\mu \colon \mathcal{A} \to [0, +\infty)$ называется σ -аддитивной мерой (конечной неотрицательной σ -аддитивной мерой), если верно свойство σ -аддитивности:

$$\forall A_j \in \mathcal{A}, A_i \cap A_j = \varnothing, \mu(\cup_j A_j) = \sum_j \mu(A_j)$$

Rm: 6. Можно допускать в качестве значения $\mu = +\infty$, если добавить в определение:

- 1) $\mu(\emptyset) = 0;$
- 2) $\forall c \in \mathbb{R}, c + (+\infty) = +\infty;$

Опр: 5. Мера μ называется конечной, если она нигде не принимает значение $+\infty$.

Rm: 7. Заметим, что свойство $\mu(\varnothing) = 0$ во множествах с конечной мерой появляется автоматически:

$$\mu(X) = \mu(X \cup \varnothing) = \mu(X) + \mu(\varnothing) \Rightarrow \mu(\varnothing) = 0$$

Примеры σ -аддитивных мер:

1) Дельта мера: Пусть $a \in X$, тогда на σ -алгебре 2^X определена мера:

$$\delta_a(B) = \begin{cases} 1, & a \in B \\ 0, & a \notin B \end{cases}$$

 \square Если взять объединение попарно непересекающихся множеств, то только одно из них может содержать $a \Rightarrow$ и справа и слева будет 1, а если ни одно не содержит, то справа и слева будет 0.

Rm: 8. Также эту мерй называют мерой Дирака;

2) Пусть $X = \{1, 2, \dots, N\}$, σ -алгебра - 2^X и заведём числа: $p_k \ge 0$, зададим меру:

$$\mu(B) = p_1 \cdot \delta_1(B) + \ldots + p_N \cdot \delta_N(B) = \sum_{k: k \in B} p_k$$

- \square Слева единички выставятся у тех p_k , для которых $k \in B \Rightarrow$ получится нужная нам сумма, а каждая в отдельности δ_k это σ -аддитивная мера;
- 3) Пусть $X=\mathbb{N},$ заведем числа: $p_k\geq 0\colon \sum_k p_k<\infty,$ определим меру на $2^\mathbb{N}$:

$$\mu(B) = \sum_{k \colon k \in B} p_k$$

Упр. 2. Проверить, что эта мера является аддитивной и σ -аддитивной;

- 4) Существует функция $\mu \colon 2^{\mathbb{N}} \to [0, +\infty)$ такая, что:
 - (1) μ аддитивна;
 - (2) $\mu(\{k\})=0$ и $\mu(\mathbb{N})=1$, то есть не является σ -аддитивной;

Rm: 9. Для построения такой меры требуются знания из функционального анализа;

Утв. 2. (**Непрерывность меры**) Пусть μ это конечная σ -аддитивная мера на σ -алгебре $\mathcal A$ подмножеств X. Тогда:

- 1) $A_m \in \mathcal{A}, A_{m+1} \subset A_m \Rightarrow \mu(\cap_m A_m) = \lim_{m \to \infty} \mu(A_m);$
- 2) $B_m \in \mathcal{A}, B_m \subset B_{m+1} \Rightarrow \mu(\cup_m B_m) = \lim_{m \to \infty} \mu(B_m);$

1) Поймем, что 2) \Rightarrow 1): возьмем $X \setminus A_m = B_m$, тогда $X \setminus (\cap_m A_m) = \cup_m (X \setminus A_m) = \cup_m B_m$, заметим: $\mu(B_m) = \mu(X) - \mu(A_m)$

а также, что $B_m \subset B_{m+1} \Rightarrow A_{m+1} \subset A_m$, тогда:

$$\mu(B_m) \leftarrow \mu(\cup_m B_m) = \mu(X) - \mu(\cap_m A_m) \Rightarrow \mu(\cap_m A_m) \rightarrow \mu(A_m)$$

2) Рассмотрим множества: $C_1 = B_1, C_2 = B_2 \setminus B_1, C_3 = B_3 \setminus B_2, \ldots$, тогда по построению:

$$B_m = \bigcup_{k=1}^m C_k, \, \forall k, l, \, k \neq l, \, C_k \cap C_l = \varnothing \Rightarrow$$

$$\Rightarrow \mu(B_m) = \sum_{k=1}^m \mu(C_k) \to \sum_{k=1}^\infty \mu(C_k) = \mu(\cup_k C_k) = \mu(\cup_m B_m)$$

где в предпоследнем равенстве мы воспользовались σ -аддитивностью;

Приближение борелевского множества замкнутыми и открытыми

Теорема 1. Пусть X - метрическое пространство, $\mathcal{B}(X)$ - борелевская σ -алгебра, мера μ это σ -аддитивная, конечная мера на $\mathcal{B}(X)$, тогда: $\forall B \in \mathcal{B}(X), \ \forall \varepsilon > 0, \ \exists$ замкнутое F_{ε} , открытое $\mathcal{U}_{\varepsilon}$ такие, что:

- 1) $F_{\varepsilon} \subset B \subset \mathcal{U}_{\varepsilon}$;
- 2) $\mu(\mathcal{U}_{\varepsilon} \setminus F_{\varepsilon}) < \varepsilon;$

То есть всякое борелевское множество приближается изнутри и снаружи замкнутым и открытым множеством.

(1) Проверим, что утверждение верно для замкнутых множеств. Пусть F - замкнуто, выберем некоторое $\varepsilon > 0$, тогда $F = F_{\varepsilon}$. Рассмотрим открытое множество:

$$\mathcal{U}_m = F^{\frac{1}{m}} = \bigcup_{x \in F} \mathcal{B}(x, \frac{1}{m}) \Rightarrow \mathcal{B}(x, \frac{1}{m+1}) \subset \mathcal{B}(x, \frac{1}{m}) \Rightarrow \mathcal{U}_{m+1} \subset \mathcal{U}_m$$

Поскольку F - замкнуто, то $F = \cap_m \mathcal{U}_m$: если точка не лежит в F, то вокруг неё есть шар радиуса r в котором никаких точек из F нет и как только $\frac{1}{m} < r$, то эта точка не будет лежать ни в каком шаре $\mathcal{B}(x,\frac{1}{m})$. Тогда мы знаем:

$$\mu(F) = \lim_{m \to \infty} \mu(\mathcal{U}_m) \Rightarrow \exists m \colon \mu(\mathcal{U}_m \setminus F_{\varepsilon}) = \mu(\mathcal{U}_m \setminus F) = \mu(\mathcal{U}_m) - \mu(F) < \varepsilon$$

(2) Проверим верность утверждения для открытых множеств. Рассмотрим набор множеств:

$$S = \{ E \in X : \forall \varepsilon > 0, \exists F_{\varepsilon}, \mathcal{U}_{\varepsilon} : F_{\varepsilon} \subset E \subset \mathcal{U}_{\varepsilon} \land \mu(\mathcal{U}_{\varepsilon} \setminus F_{\varepsilon}) < \varepsilon \}$$

S содержит все замкнутые множества. Если доказать, что S это σ -алгебра, то $\mathcal{B}(x) \subset S$, поскольку борелевская порождается в том числе замкнутыми множествами, а тогда для борелевских множеств автоматически будут выполнены свойства S. Докажем это:

- 1) $\varnothing \in S$, $F_{\varepsilon} = \mathcal{U}_{\varepsilon} = \varnothing$, $X \in S$, $F_{\varepsilon} = \mathcal{U}_{\varepsilon} = X$;
- 2) Пусть $E \in S$, возьмем $\varepsilon > 0 \Rightarrow \exists F_{\varepsilon}, \mathcal{U}_{\varepsilon} \colon F_{\varepsilon} \subset E \subset \mathcal{U}_{\varepsilon} \Rightarrow X \setminus \mathcal{U}_{\varepsilon} \subset X \setminus E \subset X \setminus F_{\varepsilon}$, тогда:

$$(X \setminus F_{\varepsilon}) \setminus (X \setminus \mathcal{U}_{\varepsilon}) = \mathcal{U}_{\varepsilon} \setminus F_{\varepsilon} \Rightarrow \mu((X \setminus F_{\varepsilon}) \setminus (X \setminus \mathcal{U}_{\varepsilon})) = \mu(\mathcal{U}_{\varepsilon} \setminus F_{\varepsilon}) < \varepsilon$$

Таким образом, $X \setminus E \in S$;

3) Остается проверить, замкнутость относительного счетного объединения. Пусть $E_m \in S$, возьмем $\varepsilon > 0$. Рассмотрим множество $E = \cup_m E_m \Rightarrow$ рассмотрим каждое E_m :

$$\forall m, \exists F_m, \mathcal{U}_m \colon F_m \subset E_m \subset \mathcal{U}_m \land \mu(\mathcal{U}_m \setminus F_m) < \frac{\varepsilon}{2^m}$$

Тогда мы можем взять в качестве $\mathcal{U} = \bigcup_m \mathcal{U}_m$: оно будет открытым и будет содержать все \mathcal{U}_m . Рассмотрим множество $\widetilde{F} = \bigcup_m F_m$ оно уже может не быть замкнутым, доработаем его:

$$\widetilde{F} = \bigcup_{m} F_m = \bigcup_{M} F^M, F^M = \bigcup_{m=1}^{M} F_m$$

где F^M уже замкнутые множества, поскольку конечное объединение замкнутых множеств - замкнуто. Мы хотим найти M так, чтобы: $\mu(\mathcal{U} \setminus F^M) < 2\varepsilon$. Заметим:

$$\lim_{M \to \infty} \mu(\mathcal{U} \setminus F^M) = \lim_{M \to \infty} \mu(\mathcal{U}) - \mu(F^M) = \mu(\mathcal{U} \setminus \widetilde{F}) \le \sum_m \mu(\mathcal{U}_m \setminus \widetilde{$$

$$\leq \sum_{m} \mu(\mathcal{U}_m \setminus F_m) \leq \sum_{m} \frac{\varepsilon}{2^m} = \varepsilon \Rightarrow \exists M_0 \colon \mu(\mathcal{U} \setminus F^{M_0}) < 2\varepsilon$$

где мы воспользовались следующим фактом: $\mu(\cup_m \mathcal{U}_m) \leq \sum_m \mu(\mathcal{U}_m)$, а также тем, что F_m меньше, чем \widetilde{F} . Первое доказывается в курсе действительного анализа, либо так:

$$A_i \cap A_j = \varnothing \Rightarrow \mu(\cup_m A_m) = \sum_m \mu(A_m)$$

по определению для попарно непересекающихся множеств, для любых же будет верно:

$$\mu(B_1 \cup B_2) = \mu(B_1) + \mu(B_2) - \mu(B_1 \cap B_2) \le \mu(B_1) + \mu(B_2)$$

$$\mu(\cup_{j=1}^m B_j) = \mu(\cup_{j=1}^{m-1} B_j \cup B_m) \le \mu(\cup_{j=1}^{m-1} B_j) + \mu(B_m)$$

далее в предположении индукции получается для всех. Такие объединения - возрастающая последовательность, переходим к пределу - получаем неравенство. Следовательно, у нас лежат дополнения, объединения \Rightarrow пересечения \Rightarrow у нас σ -алгебра и утверждение доказано;

Следствие 1. Если μ и σ - конечные σ -аддитивные меры на $\mathcal{B}(X)$ совпадают на всех открытых множествах (тоже самое, что на всех замкнутых), то $\mu = \sigma$ на $\mathcal{B}(X)$.

 \square Пусть $B \in \mathcal{B}(X)$, $\varepsilon > 0$, $F_{\varepsilon} \subset B \subset \mathcal{U}_{\varepsilon}$, $\mu(\mathcal{U}_{\varepsilon} \setminus F_{\varepsilon}) < \varepsilon$, но поскольку на B меры совпадают, то:

$$\mu(\mathcal{U}_{\varepsilon} \setminus F_{\varepsilon}) = \mu(\mathcal{U}_{\varepsilon}) - \mu(F_{\varepsilon}) = \sigma(\mathcal{U}_{\varepsilon}) - \sigma(F_{\varepsilon}) < \varepsilon \Rightarrow$$

$$\Rightarrow \mu(B) - \sigma(B) \le \mu(\mathcal{U}_{\varepsilon}) - \sigma(F_{\varepsilon}) = \mu(\mathcal{U}_{\varepsilon} \setminus F_{\varepsilon}) < \varepsilon \land \sigma(B) - \mu(B) \le \sigma(\mathcal{U}_{\varepsilon}) - \mu(F_{\varepsilon}) = \sigma(\mathcal{U}_{\varepsilon} \setminus F_{\varepsilon}) < \varepsilon \Rightarrow$$

$$\Rightarrow \forall \varepsilon > 0, \ |\sigma(B) - \mu(B)| \le \varepsilon \Rightarrow \mu(B) = \sigma(B)$$