Functions

Section 2.3 of Rosen

Outline

- Definitions & terminology
 - function, domain, co-domain, image, preimage (antecedent), range, image of a set, strictly increasing, strictly decreasing, monotonic
- Properties
 - One-to-one (injective), onto (surjective), one-to-one correspondence (bijective)
 - Exercices (5)
- Inverse functions (examples)
- Operators
 - ► Composition, Equality
- Important functions
 - ▶ identity, absolute value, floor, ceiling, factorial

Introduction

- You have already encountered function
 - $\blacktriangleright f(x,y) = x+y$
 - $\rightarrow f(x) = x$
 - $\rightarrow f(x) = \sin(x)$
- Here we will study functions defined on <u>discrete</u> domains and ranges
- ► We will generalize functions to mappings
- We may not always be able to write function in a 'neat way' as above

Definition: Function

- ▶ **Definition:** A function f from a set A to a set B is an assignment of exactly one element of B to each element of A.
- We write f(a)=b if b is the unique element of B assigned by the function f to the element $a \in A$.
- ▶ If *f* is a function from A to B, we write

$$f: A \rightarrow B$$

This can be read as 'f maps A to B'

- Note the subtlety
 - ► Each and every element of A has a <u>single</u> mapping
 - ► Each element of B may be mapped to by <u>several</u> elements in A or <u>not</u> at all

Terminology

- Let $f: A \to B$ and f(a)=b. Then we use the following terminology:
 - \blacktriangleright A is the <u>domain</u> of f, denoted <u>dom</u>(f)
 - ▶ B is the <u>co-domain</u> of *f*
 - b is the image of a
 - a is the <u>preimage</u> (<u>antecedent</u>) of b
 - ▶ The <u>range</u> of f is the set of all images of elements of A, denoted rng(f)

Function: Visualization

More Definitions (1)

- ▶ **Definition:** Let f_1 and f_2 be two functions from a set A to \mathbb{R} . Then f_1+f_2 and f_1f_2 are also function from A to R defined by:
 - $(f_1+f_2)(x) = f_1(x) + f_2(x)$
 - $f_1f_2(x) = f_1(x)f_2(x)$
- **Example:** Let $f_1(x) = x^4 + 2x^2 + 1$ and $f_2(x) = 2 x^2$
 - $(f_1+f_2)(x) = x^4+2x^2+1+2-x^2 = x^4+x^2+3$
 - $f_1f_2(x) = (x^4+2x^2+1)(2-x^2) = -x^6+3x^2+2$

More Definitions (2)

▶ **Definition:** Let $f: A \rightarrow B$ and $S \subseteq A$. The image of the set S is the subset of B that consists of all the images of the elements of S. We denote the image of S by f(S), so that

$$f(S)=\{f(s) \mid \forall s \in S\}$$

Note there that the image of S is a set and not an element.

Image of a set: Example

- Let:
 - \blacktriangleright A = {a₁,a₂,a₃,a₄,a₅}
 - \triangleright B = {b₁,b₂,b₃,b₄,b₅}
 - $ightharpoonup f = \{(a_1, b_2), (a_2, b_3), (a_3, b_3), (a_4, b_1), (a_5, b_4)\}$
 - \triangleright S={a₁,a₃}
- ▶ Draw a diagram for *f*
- ▶ What is the:
 - ▶ Domain, co-domain, range of *f*?
 - \blacktriangleright Image of S, f(S)?

More Definitions (3)

- **Definition:** A function f whose domain and codomain are subsets of the set of real numbers (R) is called
 - **strictly increasing** if f(x) < f(y) whenever x<y and x and y are in the domain of f.
 - \triangleright strictly decreasing if f(x)>f(y) whenever x<y and x and y are in the domain of f.
- A function that is increasing or decreasing is said to be monotonic

Outline

- Definitions & terminology
- Properties
 - One-to-one (injective)
 - Onto (surjective)
 - One-to-one correspondence (bijective)
 - Exercices (5)
- Inverse functions (examples)
- Operators
- Important functions

Definition: Injection

▶ **Definition:** A function *f* is said to be <u>one-to-one</u> or <u>injective</u> (or an injection) if

 \forall x and y in in the domain of f, $f(x)=f(y) \Rightarrow x=y$

- Intuitively, an injection simply means that each element in the range has at most one preimage (antecedent)
- ▶ It is useful to think of the contrapositive of this definition

$$x \neq y \implies f(x) \neq f(y)$$

Definition: Surjection

- ▶ **Definition:** A function $f: A \rightarrow B$ is called <u>onto</u> or <u>surjective</u> (or an surjection) if \forall b∈B, \exists a∈A with f(a)=b
- Intuitively, a surjection means that every element in the codomain is mapped into (i.e., it is an image, has an antecedent)
- ► Thus, the range is the same as the codomain

Definition: Bijection

- ▶ Definition: A function f is a <u>one-to-one</u> correspondence (or a <u>bijection</u>), if is both one-to-one (injective) and onto (surjective)
- ▶ One-to-one correspondences are important because they endow a function with an <u>inverse</u>.
- They also allow us to have a concept cardinality for infinite sets
- Let's look at a few examples to develop a feel for these definitions...

- ► Is this a function? Why?
- No, because each of a₁, a₃ has two images

- ▶ Is this a function
 - One-to-one (injective)? Why?
 - Onto (surjective)? Why?

No, b₁ has 2 preimages No, b₄ has no preimage

- Is this a function
 - One-to-one (injective)? Why?
 - Onto (surjective)? Why?

Yes, no b_i has 2 preimages No, b₄ has no preimage

- ▶ Is this a function
 - One-to-one (injective)? Why?
 - Onto (surjective)? Why?

No, b₃ has 2 preimages Yes, every b_i has a preimage

- ▶ Is this a function
 - ► One-to-one (injective)?
 - Onto (surjective)?

Thus, it is a bijection or a one-to-one correspondence

Exercice 1

 \blacktriangleright Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be defined by

$$f(x)=2x-3$$

- ▶ What is the domain, codomain, range of *f*?
- ▶ Is *f* one-to-one (injective)?
- ▶ Is *f* onto (surjective)?
- Clearly, $dom(f)=\mathbb{Z}$. To see what the range is, note that:

```
b \in rng(f) \Leftrightarrow b=2a-3, with a \in \mathbb{Z}

\Leftrightarrow b=2(a-2)+1

\Leftrightarrow b \text{ is odd}
```

Exercise 1 (cont'd)

- ► Thus, the range is the set of all odd integers
- Since the range and the codomain are different (i.e., $rng(f) \neq Z$), we can conclude that f is not onto (surjective)
- ▶ However, f is one-to-one injective. Using simple algebra, we have:

$$f(x_1) = f(x_2) \Rightarrow 2x_1-3 = 2x_2-3 \Rightarrow x_1 = x_2$$
 QED

Exercise 2

▶ Let *f* be as before

$$f(x) = 2x - 3$$

but now we define $f: \mathbb{N} \to \mathbb{N}$

- ▶ What is the domain and range of *f*?
- ► Is *f* onto (surjective)?
- ▶ Is *f* one-to-one (injective)?
 - By changing the domain and codomain of f, f is not even a function anymore. Indeed, $f(1)=2\cdot 1-3=-1 \notin \mathbb{N}$

Exercice 3

► Let $f: Z \rightarrow Z$ be defined by

$$f(x) = x^2 - 5x + 5$$

- Is this function
 - One-to-one?
 - Onto?

Exercice 3: Answer

It is not one-to-one (injective)

$$f(x_1)=f(x_2) \Rightarrow x_1^2-5x_1+5=x_2^2-5x_2+5 \Rightarrow x_1^2-5x_1=x_2^2-5x_2$$

\Rightarrow x_1^2-x_2^2=5x_1-5x_2 \Rightarrow (x_1-x_2)(x_1+x_2)=5(x_1-x_2)
\Rightarrow (x_1+x_2)=5

Many $x_1, x_2 \in \mathbb{Z}$ satisfy this equality. There are thus an infinite number of solutions. In particular, f(2)=f(3)=-1

It is also not onto (surjective).

The function is a parabola with a global minimum at (5/2,-5/4). Therefore, the function fails to map to any integer less than -1

▶ What would happen if we changed the domain/codomain?

Exercice 4

► Let $f: Z \rightarrow Z$ be defined by

$$f(x) = 2x^2 + 7x$$

- Is this function
 - One-to-one (injective)?
 - Onto (surjective)?
- Again, this is a parabola, it cannot be onto (where is the global minimum?)

Exercice 4: Answer

► However, it is one-to-one! Indeed:

$$f(x_1)=f(x_2) \Rightarrow 2x_1^2 + 7x_1 = 2x_2^2 + 7x_2 \Rightarrow 2x_1^2 - 2x_2^2 = 7x_2 - 7x_1$$

$$\Rightarrow 2(x_1 - x_2)(x_1 + x_2) = 7(x_2 - x_1) \Rightarrow 2(x_1 + x_2) = -7 \Rightarrow (x_1 + x_2) = -7$$

$$\Rightarrow (x_1 + x_2) = -7/2$$

But $-7/2 \notin Z$. Therefore it must be the case that $x_1 = x_2$. It follows that f is a one-to-one function. QED

Exercise 5

► Let $f: Z \rightarrow Z$ be defined by

$$f(x) = 3x^3 - x$$

- Is this function
 - ► One-to-one (injective)?
 - Onto (surjective)?

Exercice 5: f is one-to-one

► To check if f is one-to-one, again we suppose that for $x_1, x_2 \in \mathbb{Z}$ we have $f(x_1)=f(x_2)$

$$f(x_1)=f(x_2) \Rightarrow 3x_1^3-x_1=3x_2^3-x_2$$

 $\Rightarrow 3x_1^3-3x_2^3=x_1-x_2$
 $\Rightarrow 3 (x_1-x_2)(x_1^2+x_1x_2+x_2^2)=(x_1-x_2)$
 $\Rightarrow (x_1^2+x_1x_2+x_2^2)=1/3$
which is impossible because $x_1, x_2 \in \mathbb{Z}$
thus, f is one-to-one

Exercice 5: f is not onto

- \triangleright Consider the counter example f(a)=1
- If this were true, we would have $3a^3 a = 1 \Rightarrow a(3a^2 1) = 1$ where a and $(3a^2 1) \in \mathbb{Z}$
- ► The only time we can have the product of two integers equal to 1 is when they are both equal to 1 or -1
- ► Neither 1 nor -1 satisfy the above equality
 - Thus, we have identified $1 \in \mathbb{Z}$ that does not have an antecedent and f is not onto (surjective)

Outline

- Definitions & terminology
 - function, domain, co-domain, image, preimage (antecedent), range, image of a set, strictly increasing, strictly decreasing, monotonic
- Properties
 - One-to-one (injective), onto (surjective), one-to-one correspondence (bijective)
 - Exercices (5)
- Inverse functions (examples)
- Operators
 - Composition, Equality
- Important functions
 - identity, absolute value, floor, ceiling, factorial

Inverse Functions (1)

- ▶ **Definition**: Let $f: A \rightarrow B$ be a bijection. The <u>inverse</u> function of f is the function that assigns to an element $b \in B$ the unique element $a \in A$ such that f(a)=b
- ▶ The inverse function is denote f^{-1} .
- ▶ When *f* is a bijection, its inverse exists and

$$f(a)=b \Leftrightarrow f^{-1}(b)=a$$

Inverse Functions (2)

- Note that by definition, a function can have an inverse if and only if it is a bijection. Thus, we say that a bijection is <u>invertible</u>
- ▶ Why must a function be bijective to have an inverse?
 - ► Consider the case where f is not one-to-one (not injective). This means that some element $b \in B$ has more than one antecedent in A, say a_1 and a_2 . How can we define an inverse? Does $f^{-1}(b)=a_1$ or a_2 ?
 - ► Consider the case where f is not onto (not surjective). This means that there is some element $b \in B$ that does not have any preimage $a \in A$. What is then $f^{-1}(b)$?

Inverse Functions: Representation

Inverse Functions: Example 1

 \blacktriangleright Let $f: R \rightarrow R$ be defined by

$$f(x) = 2x - 3$$

- \blacktriangleright What is f^{-1} ?
 - We must verify that f is invertible, that is, is a bijection.
 We prove that is one-to-one (injective) and onto (surjective). It is.
 - 2. To find the inverse, we use the substitution
 - Let $f^{-1}(y) = x$
 - And y=2x-3, which we solve for x. Clearly, x=(y+3)/2
 - So, $f^{-1}(y) = (y+3)/2$

Inverse Functions: Example 2

- Let $f(x)=x^2$. What is f^{-1} ?
- ▶ No domain/codomain has been specified.
- Say $f: R \rightarrow R$ Answer: No
 - ► Is f a bijection? Does its inverse exist? Say we specify that f: A \rightarrow B where

$$A = \{x \in \mathbb{R} \mid x \le 0\} \text{ and } B = \{y \in \mathbb{R} \mid y \ge 0\}$$

- Is f a bijection? Does its inverse exist?
- Answer: Yes, the function becomes a bijection and thus, has an inverse

Inverse Functions: Example 2 (cont')

- ► To find the inverse, we let
 - $f^{-1}(y) = x$
 - \rightarrow y=x², which we solve for x
- ▶ Solving for x, we get $x=\pm \sqrt{y}$, but which one is it?
- Since dom(f) is all nonpositive and rng(f) is nonnegative, thus x must be nonpositive and

$$f^{-1}(y) = -\sqrt{y}$$

From this, we see that <u>the domains/codomains are just as</u> <u>important to a function as the definition of the function itself</u>

Inverse Functions: Example 3

- \blacktriangleright Let $f(x)=2^x$
 - What should the domain/codomain be for this function to be a bijection?
 - ▶ What is the inverse?
- ► The function should be $f: R \rightarrow R^+$
- Let $f^{-1}(y)=x$ and $y=2^x$, solving for x we get $x=\log_2(y)$. Thus, $f^{-1}(y)=\log_2(y)$
- ▶ What happens when we include 0 in the codomain?
- ▶ What happens when restrict either sets to *Z*?

Important Functions: Absolute Value

Definition: The <u>absolute value</u> function, denoted |x|, $f: \mathbb{R} \to \{y \in \mathbb{R} \mid y \ge 0\}$. Its value is defined by

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x \le 0 \end{cases}$$

Important Functions: Floor & Ceiling

Definitions:

- The <u>floor function</u>, denoted $\lfloor x \rfloor$, is a function $R \rightarrow Z$. Its values is the <u>largest integer</u> that is less than or equal to x
- The ceiling function, denoted $\lceil x \rceil$, is a function $R \rightarrow Z$. Its values is the <u>smallest integer</u> that is greater than or equal to x
- In LaTex: \$\lceil\$, \$\rceil\$, \$\rfloor\$, \$\lfloor\$

Important Functions: Floor

Important Functions: Ceiling

Important Function: Factorial

- ► The factorial function gives us the number of permutations (that is, uniquely ordered arrangements) of a collection of n objects
- ▶ **Definition:** The <u>factorial</u> function, denoted n!, is a function $N \rightarrow N^{+}$. Its value is the <u>product</u> of the n positive integers

$$n! = \prod_{i=1}^{i=n} i = 1 \cdot 2 \cdot 3 \cdot \dots \cdot (n-1) \cdot n$$

Factorial Function & Stirling's Approximation

- ▶ The factorial function is defined on a discrete domain
- In many applications, it is useful a continuous version of the function (say if we want to differentiate it)
- To this end, we have the Stirling's formula

$$n!=\sqrt{2\pi}n (n/e)^n$$

Summary

- Definitions & terminology
 - function, domain, co-domain, image, preimage (antecedent), range, image of a set, strictly increasing, strictly decreasing, monotonic
- Properties
 - One-to-one (injective), onto (surjective), one-to-one correspondence (bijective)
 - Exercices (5)
- Inverse functions (examples)
- Operators
 - ► Composition, Equality
- Important functions
 - ▶ identity, absolute value, floor, ceiling, factorial