Fisica nucleare e subnucleare

Marco Militello

Anno accademico 2022-2023

Indice

Fisica subnucleare	2
Particelle elementari	:

Fisica subnucleare

Particelle elementari

Falsificazione sperimentale dell'idea che la materia sia costituita da mezzi continui come la terra, il fuoco, l'aria, . . .

Definizione di mezzo continuo di Cauchy

Mezzo continuo insieme dei punti $A \subset \mathbb{R}^3$ tali che $\forall x$ in A posso definire una funzione $\rho(x)$

 $m = \int_b d^3x \rho(x)$ con $B \subset A \to \text{massa inerziale del mezzo continuo}$

É un mezzo continuo se $\rho(x)$ è una funzione continua in A

Significato fisico:

$$\forall \epsilon > 0 \exists \delta > 0 \ t.c. \ \forall x \ in \ U_{\delta}(x) \Rightarrow |\rho(x') - \rho(x)| < \epsilon$$

 \rightarrow proprietà del mezzo continuo restano le stesse

Se $\delta \simeq 10^{-10}\,m$ allora non vale l'ultima disuguaglianza \to granularità della materia; le leggi della fisica sotto questa distanza non sono più le stesse

In fisica classica non c'è distinzione tra particella elementare e punto materiale

Un punto materiale è un punto di \mathbb{R}^3 a cui posso associare una massa inerziale (m > 0) e una carica $q \in \mathbb{R}$ la cui equazione del moto è data dalla traiettoria, una mappa $f : \mathbb{R} \to \mathbb{R}^3$

In fisica relativistica vanno fatte alcune modifiche

Un punto materiale è un punto nello spazio di Minkowski $M = (\mathbb{R}^4, ||\cdot||)$ a cui è associata una massa a riposo m, che è un invariante di Lorentz, una carica $q \in \mathbb{R}$, che è un invariante di Lorentz, la cui equazione del moto è data daòòa traiettoria, una mappa $\mathbb{R} \mapsto \mathbb{R}^4$

Anche in questo caso il punto materiale concide con la particella elementare

Meccanica quantistica \rightarrow non esistono traiettorie deterministiche, inoltre, essendo il punto materiale privo di estensione, per localizzarlo devo avere una precisione infinita $\Delta x \Delta p_z \geq \frac{\hbar}{2}$