Sujet de TP n°1 : Sur le modèle MA(1)...

On utilisera le script R « scriptTP1.R » disponible sur Campus. On rappelle qu'un processus X est une moyenne mobile d'ordre 1 (ou MA(1)) de moyenne μ si X est de la forme :

$$X_t = \mu + Z_t + \theta Z_{t-1}$$
 avec Z bruit blanc.

Partie 1 - étude d'un MA(1)

1. Faire une simulation de taille n = 200 d'un MA(1) avec $\mu = 0$, $\theta = 1$, $\sigma_Z = 1$ et visualiser le chronogramme. Expliquer l'allure de la série ainsi simulée sachant que $x_t = z_t + \theta z_{t-1}$...

Faire la même analyse avec $\theta = -1$. Comparer avec le cas $\theta = +1$.

- 2. Pour ces deux valeurs de θ (1 ou 1), retrouver la structure d'auto-corrélation vue au TD n°1 en visualisant à chaque fois les auto-corrélations empiriques ainsi que l'ACF (augmenter n si besoin).
- 3. On modifie maintenant la valeur de σ_z . Avec $\theta = 1$, comparer des séries simulées avec respectivement $\sigma_z = 0.1$, 1 et 10. Que peut-on dire de ce paramètre ?
- 4. Faire une simulation avec $\sigma_Z = 1$ mais $\theta = 10$. Que peut-on dire de la série simulée au regard de l'ACF empirique? Expliquer qualitativement ce phénomène à partir de la relation $x_t = z_t + \theta z_{t-1}$.
- 5. Enfin, faire varier µ et expliquer comment se modifie la série.

Partie 2 - simulation de la série de chômage...

On reprend le jeu de données du TD $n^{\circ}1$ (série de chômage). On rappelle que la série différenciée a été modélisée par un MA(1).

- 1. Proposer des estimations naturelles des paramètres θ et σ^2 .
- 2. Pour les valeurs estimées des paramètres, faire une simulation de taille $n=299\ (=300-1)$ de la série différenciée $(Y_t)_t$ puis de la série initiale (X_t) (qui démarre de la même valeur en date t=01/1961). Comparer la « trajectoire simulée » avec la « trajectoire réelle » sur un même graphique (faire plusieurs essais).
- 3. A partir de plusieurs simulations indépendantes, estimer et tracer la variance du processus $(X_t)_t$ en fonction de t. Conclusion.
- 4. Représenter l'ACF de la série initiale de chômage. Conclusion.

Partie 3 - étude d'un AR(1)

1. Faire une simulation de taille n = 200 d'un AR(1)

$$X_t - \mu = \phi(X_{t-1} - \mu) + Z_t$$

avec $\mu = 0$, $\phi = 0.9$, Z bruit blanc gaussien de variance $\sigma^2 = 1$.

A partir du chronogramme, expliquer l'allure de la série ainsi simulée sachant que

$$x_t = \phi \times x_{t-1} + z_t$$

Faire la même analyse avec $\phi = -0.9$. Comparer avec le cas $\phi = 0.9$.

- 2. Pour ces deux valeurs de ϕ (0.9 ou 0.9), tracer l'ACF empirique. On essaiera les valeurs successives n = 100, n = 200 et n = 500. Commentaires.
- 3. On modifie maintenant la valeur de σ_Z . Avec $\phi=0.9$, comparer des séries simulées avec respectivement $\sigma=0.1, 1$ et 10. Que peut-on dire à nouveau de ce paramètre ?
- 4. Que se passe-t-il si ϕ s'approche trop de 1 ou de -1? Et si $|\phi| > 1$?