Homework2 Monday, September 11, 2023 2:22 PM				Tony Samour APPM 4600
(a) Show that $(1+x)^n = 1 + nx + o(x)$ as $x = 1$	0.			
$(1+x)^{n} - nx - 1 = o(x) a$	x x > 0 if Liu	$\frac{ (1+x)^n - nx - 1 }{ x }$	= 0	
$\lim_{x\to 0} \frac{ (1+x)^2 - nx - 1 }{ x } = \frac{ (1+0)^2 - nx - 1 }{ x }$	$\frac{ n(0)-1 }{ o } = \frac{ o }{ o } \stackrel{\text{left}}{=} \mathcal{J}$	$\overline{m} \left[\frac{n(1+x)^{n-1}-n}{n} \right] =$	n(1)^-1 - n =	0 /
(b) Show that $x \sin \sqrt{x} = O(x^{3/2})$ as $x \to 0$.				
$X \cdot Sin(JX) = O(X^{3/2})$ as				
$\lim_{x\to 0} \frac{ x\sin(\sqrt{x}) }{ x^{3/2} } \leq M$	+ values of	× in neighborh	cod of O	
				12. (5)
$\frac{\sum_{\mathbf{M}} \mathbf{x} \cdot \mathbf{s}_{in}(\mathbf{x}) }{ \mathbf{x}^{3/2} } = \underbrace{O} \stackrel{LH}{=}$	x→0 = √x	x (1851 (187)) = 2 th	3/x x >0	3 2
$= \frac{2 \cdot \cos(\sqrt{50})}{\frac{3}{2}} = \frac{4}{3} \neq$			6	
(c) Show that $e^{-t} = o(\frac{1}{t^2})$ as $t \to \infty$.		ion of O(t) as	shown is part ((a)
	$ t^2 = \infty$ $ e^t = \infty$			
(d) Show that $\int_0^\varepsilon e^{-x^2} dx = O(\varepsilon)$ as $\varepsilon \to 0$.				
$\lim_{\epsilon \to 0} \frac{\left \int_{0}^{\epsilon} e^{-\lambda} dx \right }{\left \epsilon \right } = \lim_{\epsilon \to 0}$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2. <u>2</u> . <u>1</u>	
= Zim 1 E-90 px2				
2-90 2 × 1				

