Aidan Winblad

Superconducting Triangular Islands as a Platform for Manipulating Majorana Zero Modes

Aidan Winblad Hua Chen

Department of Physics

Colorado State University

March 8, 2024

arXiv:

2309.11607

Motivation

Aidan Winblad

Motivation

Kitaev Triangle

Hollow Triangle

Braiding

Summary

- P-wave superconductors contain half-quantum vortices.
 - Majorana fermions located at core of a vortex.
 - Braiding vortices exhibits Non-Abelian statistics.
- 1D p-wave superconductors host Majorana fermions on end points.
 - Measurements in real systems:
 V. Mourik, Science 336, 1003 (2012)
 S. Nadj-Perge, Science 346, 602 (2014)
 L. Schneider, Nat. Nanotechnol. 17, 384 (2022)
- Quasi-1D T-junction
 - Braiding of Majorana fermions is defined for 2D.
 - In practice challenging to make, but still feasible and seriously pursued.

Alicea, Nature Phys. 7, 412 (2011)

Motivation

Aidan Winblad

Motivation

Kitaev Triangle

Hollow Triangle

Braiding

Summary

■ Consider triangular islands, topologically similar to T-junctions.

 Islands of three-fold rotational symmetry occur naturally in epitaxial growth on close-packed metal surfaces.

 Good platform for transition from 2D to 1D topological superconductor.

Triangular Co islands on Cu(111). Pietzsch et al., PRL **96**, 237203 (2006)

arXiv: 2309 11607

3/9

Kitaev Triangle

Aidan Winblad

Kitaev

Triangle

arXiv:

2309.11607

Kitaev Triangle

Aidan Winblad

Kitaev

Triangle

arXiv:

$$\mathcal{H} = \sum_{\langle j,l \rangle} \left[-te^{i\phi_{jl}} c_j^{\dagger} c_l + \Delta e^{i\theta_{jl}} c_j c_l + h.c. \right] - \sum_j \mu c_j^{\dagger} c_j$$

$$(\phi_{12}, \phi_{23}, \phi_{31}) = \left(0, -\frac{\pi}{3}, -\frac{\pi}{3}\right) = \phi_1$$

$$\to \left(-\frac{\pi}{3}, -\frac{\pi}{3}, 0\right) = \phi_2$$

$$\to \left(-\frac{\pi}{2}, 0, -\frac{\pi}{2}\right) = \phi_3$$

$$\rightarrow oldsymbol{\phi}_1$$

Kitaev Triangle

Aidan Winblad

Kitaev Triangle

 $\rightarrow \phi_1$

 $\rightarrow \left(-\frac{\pi}{2}, -\frac{\pi}{2}, 0\right) = \phi_2$ $\rightarrow \left(-\frac{\pi}{2},0,-\frac{\pi}{2}\right)=\phi_3$

2309.11607

Triangular Ribbon and Topological Phases

Aidan Winblad

Kitaev

Hollow Triangle

 $\phi_{jl} = \frac{e}{\hbar} \int_{\mathbf{r}_j}^{\mathbf{r}_l} \mathbf{A} \cdot d\mathbf{l} = \mathbf{A} \cdot \mathbf{r}_{jl} = -\phi_{lj}$

arXiv:

2309.11607

n = L

Triangular Ribbon and Topological Phases

Hollow Triangle

arXiv:

2309.11607

Triangular Ribbon and Topological Phases

Aidan Winblad

Hollow Triangle

arXiv:

2309.11607 5/9

Rotating MZM on a Triangular Chain (W=1)

Aidan Winblad

Motivatio

Kitaev Triangle

Hollow Triangle

Braiding

Summary

arXiv: 2309.11607

6/9

Rotating MZM on a Triangular Chain (W=1)

Aidan Winblad

Motivatio

Kitaev Triangle

Hollow Triangle

Braiding

Summary

Rotating MZM on a Triangular Chain (W=1)

Aidan Winblad

Motivatio

Kitaev Triangle

Hollow Triangle

Braiding

Summary

$$L=50,\,W=1,\,\mu=1.1,\,A=2.35$$

Rotating MZM on a Triangular Chain (W=1)

Aidan Winblad

Motivatio

Kitaev Triangle

Hollow Triangle

Braiding

Summary

 $L=50,~W=1,~\mu=1.1,~A=2.35$

Rotating MZM on a Triangular Chain (W=1)

Aidan Winblad

Motivatio

Kitaev Triangle

Hollow Triangle

Braiding

Summary

$$L=50,~W=1,~\mu=1.1,~A=2.35$$

Rotating MZM on a Triangular Chain (W=1)

Aidan Winblad

Motivatio

Kitaev Triangle

Hollow Triangle

Braiding

Summary

$$L=50,~W=1,~\mu=1.1,~A=2.35$$

Rotating MZM on a Triangular Chain (W=1)

Aidan Winblad

Motivatio

Kitaev Triangle

Hollow Triangle

Braiding

Summary

 $L=50,~W=1,~\mu=1.1,~A=2.35$

Aidan Winblad

Kitaev

Hollow Triangle

arXiv:

Aidan Winblad

Kitaev

Hollow Triangle

arXiv:

Aidan Winblad

. . . .

Kitaev Triangle

Hollow Triangle

Braiding

Summary

$$L = 80, W = 3, \mu = 1.6, (A, \varphi) = (0.83, 0) \rightarrow (0.77, \frac{\pi}{6}) \rightarrow (0.83, \frac{\pi}{3}) \rightarrow (0.77, \frac{\pi}{2}) \dots$$

Aidan Winblad

Motivatio

Kitaev Triangle

Hollow Triangle

Braiding

Summary

$$L=80,\,W=3,\,\mu=1.6,\,(A,\varphi)=(0.83,0)\to(0.77,\tfrac{\pi}{6})\to(0.83,\tfrac{\pi}{3})\to(0.77,\tfrac{\pi}{2})\dots$$

Aidan Winblad

Motivatio

Kitaev Triangle

Hollow Triangle

Braiding

Summary

$$L = 80, W = 3, \mu = 1.6, (A, \varphi) = (0.83, 0) \rightarrow (0.77, \frac{\pi}{6}) \rightarrow (0.83, \frac{\pi}{3}) \rightarrow (0.77, \frac{\pi}{2}) \dots$$

Aidan Winblad

Motivatio

Kitaev Triangle

Hollow Triangle

Braiding

Summary

$$L = 80, W = 3, \mu = 1.6, (A, \varphi) = (0.83, 0) \rightarrow (0.77, \frac{\pi}{6}) \rightarrow (0.83, \frac{\pi}{3}) \rightarrow (0.77, \frac{\pi}{2}) \dots$$

Aidan Winblad

Motivatio

Kitaev Triangle

Hollow Triangle

Braiding

Summary

$$L = 80, W = 3, \mu = 1.6, (A, \varphi) = (0.83, 0) \rightarrow (0.77, \frac{\pi}{6}) \rightarrow (0.83, \frac{\pi}{3}) \rightarrow (0.77, \frac{\pi}{2}) \dots$$

Braiding Two of Four MZM

Aidan Winblad

Motivatio

Kitaev Triangle

Hollow

Braiding

Summary

 γ_3

Summary

Aidan Winblad

Summarv

■ Introduction of Peierls phase allows for a minimal Kitaev triangle, reducing fermionic sites down to 3.

■ Vector potential field and its rotation allows additional tunability of topology.

■ MZM can be hosted and braided on a network of triangular islands.

arXiv:

2309 11607

Majorana fermion notation and coupling isolations

Aidan Winblad

The complex fermion operator can be written as a superposition of two Majorana fermions $c_i = \frac{1}{2}(a_i + ib_i)$. Due to the nature of Majorana fermions, $a_i^{\dagger} = a_i$, the creation operator is $c_i^{\dagger} = \frac{1}{2}(a_i - ib_i)$.

$$H = -\frac{i\mu}{2} \sum_{j} a_{j}b_{j} - \frac{i}{2} \sum_{\langle jl \rangle} [(t\sin\phi_{jl} - \Delta\sin\theta_{jl})a_{l}a_{j} + (t\sin\phi_{jl} + \Delta\sin\theta_{jl})b_{l}b_{j}]$$

 $+(t\cos\phi_{il}-\Delta\cos\theta_{il})a_lb_i-(t\cos\phi_{il}+\Delta\cos\theta_{il})b_la_i$].

 $(t\sin\phi_{il}-\Delta\sin\theta_{il})a_la_i$, (1)

 $(t\sin\phi_{il}+\Delta\sin\theta_{il})b_lb_i$, (2)

 $(t\cos\phi_{il}+\Delta\cos\theta_{il})a_lb_i$

(3) $(t\cos\phi_{il}-\Delta\cos\theta_{il})b_la_i$ (4)

arXiv:

2309.11607

Aidan Winblad

Braiding MZM in a Small Network of Triangles

Braiding MZM in a Small Network of Triangles

Aidan Winblad

