Assignment -2

Python Programming

Assignment Date	
Student Name	CHENNURU SAI SADVIKA REDDY
Student Roll Number	111519104007
Maximum Marks	2 Marks

Question-1:

Download the dataset: Dataset

Solution:

Downloaded successfully

Question-2:

Load the dataset.

Solution:

import pandas as pd importnumpyas np

```
file=pd.read_csv("/content/Churn_Modelling (1).csv")
df=pd.DataFrame(file)
df.head()
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
0		15634602	Hargrave	619	France	Female	42	2	0.00				101348.88
		15647311	Hill	608	Spain	Female	41		83807.86				112542.58
		15619304	Onio	502	France	Female	42		159660.80				113931.57
		15701354	Boni	699	France	Female	39		0.00				93826.63
		15737888	Mitchell	850	Spain	Female	43		125510.82				79084.10

df['HasCrCard'] = df['HasCrCard'].astype('category')

df['IsActiveMember'] = df['IsActiveMember'].astype('category')
df['Exited'] = df['Exited'].astype('category')

df = df.drop(columns=['RowNumber', 'CustomerId', 'Surname'])

df.head()

Question 3:

Perform Below Visualizations:

Univariate Analysis, Bi - Variate Analysis, Multi - Variate Analysis

Solution:

```
import seaborn assns
density = df['Exited'].value_counts(normalize=True).reset_index()
sns.barplot(data=density, x='index', y='Exited', );
density
```

	index	Exited
0	0	0.7963
1	1	0.2037

The data is significantly imbalanced

```
importmatplotlib.pyplotasplt
```

```
categorical = df.drop(columns=['CreditScore', 'Age', 'Tenure', 'Balance', 'EstimatedSalary'])
rows = int(np.ceil(categorical.shape[1] / 2)) - 1
```

```
# create sub-plots anf title them
fig, axes = plt.subplots(nrows=rows, ncols=2, figsize=(10,6))
axes = axes.flatten()

for row inrange(rows):
    cols = min(2, categorical.shape[1] - row*2)
    for col inrange(cols):
        col_name = categorical.columns[2 * row + col]
        ax = axes[row*2 + col]
        sns.countplot(data=categorical, x=col_name, hue="Exited", ax=ax);

plt.tight_layout()
```


Question 4:

Perform descriptive statistics on the dataset.

Solution:

df.info()

df.describe()

	CreditScore	Age	Tenure	Balance	NumOfProducts	EstimatedSalary
count	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000
mean	650.561300	38.660800	5.012800	76485.889288	1.527200	100090.239881
std	96.558702	9.746704	2.892174	62397.405202	0.570081	57510.492818
min	383.000000	18.000000	0.000000	0.000000	1.000000	11.580000
25%	584.000000	32.000000	3.000000	0.000000	1.000000	51002.110000
50%	652.000000	37.000000	5.000000	97198.540000	1.000000	100193.915000
75%	718.000000	44.000000	7.000000	127644.240000	2.000000	149388.247500
max	850.000000	62.000000	10.000000	250898.090000	3.500000	199992.480000

Question 5:

Handle the Missing values.

Solution:

df.isna().sum()

```
CreditScore 0
Geography 0
Gender 0
Age 0
Tenure 0
Balance 0
NumOfProducts 0
HasCrCard 0
IsActiveMember 0
EstimatedSalary 0
Exited 0
dtype: int64
```

There is no missing values in dataset

foriindf:

```
ifdf[i].dtype=='object'ordf[i].dtype=='category':
    print("unique of "+i+" is "+str(len(set(df[i])))+" they are "+str(set(df[i])))
```

```
unique of Geography is 3 they are {'France', 'Germany', 'Spain'} unique of Gender is 2 they are {'Male', 'Female'} unique of Has CrCard is 2 they are {0,1} unique of Is Active Member is 2 they are {0,1} unique of Exited is 2 they are {0,1}
```

Question 6:

Find the outliers and replace the outliers.

Solution:

Checking for outliers

```
defbox_scatter(data, x, y):
fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, figsize=(16,6))
sns.boxplot(data=data, x=x, ax=ax1)
sns.scatterplot(data=data, x=x,y=y,ax=ax2)
```

```
box_scatter(df,'CreditScore','Exited');
plt.tight_layout()
print(f"# of Bivariate Outliers: {len(df.loc[df['CreditScore'] <400])}")
```

of bivariate Outliers:19


```
box_scatter(df,'Age','Exited');
plt.tight_layout()
print(f'# of Bivariate Outliers: {len(df.loc[df['Age'] > 87])}")
```

of bivariate Outliers:0

			ý	
		Age .		
box_scatter(df,'Baland plt.tight_layout() print(f"# of Bivariate		lf['Balance'] >2200	000])}")	
# of bivariate Outlier	s:4			
0 0 0 00 00 0000	50000 1000 	90 IIalance 15: 00: 00: 00: 00: 00: 00: 00: 00: 00: 0	2000 2000 2000 2000 2000 2000 2000 200	D 250000
box_scatter(df,'Estimaplt.tight_layout()	atedSalary','Exited');) (ES) (-83333(18)) (ES) (-816 (-81	0000 00 0
0 25000 (8:36(8)8) 9)8((8)36(8)36(8)36(8)8)8)	50000 75000	100000 Estimated Salary	125000 150000 C 6/49 (8) (9) (9) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6	175000 200000

Removing Outliers

```
foriindf:

ifdf[i].dtype=='int64'ordf[i].dtypes=='float64':

q1=df[i].quantile(0.25)

q3=df[i].quantile(0.75)

iqr=q3-q1

upper=q3+1.5*iqr

lower=q1-1.5*iqr

df[i]=np.where(df[i] >upper, upper, df[i])

df[i]=np.where(df[i] <lower, lower, df[i])
```

After removing outliers, boxplot will be like

```
box_scatter(df,'CreditScore','Exited');
plt.tight_layout()
print(f"# of Bivariate Outliers: {len(df.loc[df['CreditScore'] <400])}")
```

of bivariate Outliers:19


```
box_scatter(df,'Age','Exited');
plt.tight_layout()
print(f'# of Bivariate Outliers: {len(df.loc[df['Age'] >87])}")
# of bivariate Outliers:0
```

```
box_scatter(df,'Balance','Exited');
plt.tight_layout()
print(f"# of Bivariate Outliers: {len(df.loc[df['Balance'] >220000])}")
```

of bivariate Outliers:4

Question 7:

Check for Categorical columns and perform encoding.

Solution:

```
fromsklearn.preprocessingimportLabelEncoder
encoder=LabelEncoder()
foriindf:
    ifdf[i].dtype=='object'ordf[i].dtype=='category':
    df[i]=encoder.fit_transform(df[i])
```

Question 8:

Split the data into dependent and independent variables.

Solution:

```
x=df.iloc[:,:-1]
x.head()
```

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
0	619.0			42.0	2.0	0.00	1.0			101348.88
1	608.0	2		41.0	1.0	83807.86	1.0			112542.58
2	502.0			42.0	8.0	159660.80	3.0			113931.57
3	699.0			39.0	1.0	0.00	2.0			93826.63
4	850.0	2		43.0	2.0	125510.82	1.0			79084.10

```
y=df.iloc[:,-1]
y.head()
```

```
0  1
1  0
2  1
3  0
4  0
Name: Exited, dtype: int64
```

Question 9:

Scale the independent variables

Solution:

```
fromsklearn.preprocessingimportStandardScaler
scaler=StandardScaler()
x=scaler.fit_transform(x)
```

```
X
```

```
array([[-0.32687761, -0.90188624, -1.09598752, ..., 0.64609167, 0.97024255, 0.02188649],

[-0.44080365, 1.51506738, -1.09598752, ..., -1.54776799, 0.97024255, 0.21653375],

[-1.53863634, -0.90188624, -1.09598752, ..., 0.64609167, -1.03067011, 0.2406869],

...,

[ 0.60524449, -0.90188624, -1.09598752, ..., -1.54776799, 0.97024255, -1.00864308],

[ 1.25772996, 0.30659057, 0.91241915, ..., 0.64609167, -1.03067011, -0.12523071],

[ 1.4648682, -0.90188624, -1.09598752, ..., 0.64609167, -1.03067011, -1.07636976]])
```

Question 10:

Split the data into training and testing

Solution:

fromsklearn.model_selectionimporttrain_test_split x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33)

x_train.shape	Python
(6700, 10)	
x_test.shape	Python
(3300, 10)	
y_train.shape	Python
(6700,)	
y_test.shape	Python
(3300,)	