

Práctica 7: Interpolación polinómica y aproximación de funciones

Métodos Numéricos 2021

Brian Luporini

02 de Noviembre de 2021

Eiercicio 3

Se desea tabular la función de Bessel de orden 0

$$J_0(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \sin(t)) dt$$

en el intervalo [0,1] en abscisas equidistantes. ¿Qué paso de tabulación ha de usarse para que todos los valores obtenidos por interpolación lineal tengan un error (debido a la interpolación) menor que $\frac{1}{2}10^{-6}$? ¿Y si se realiza una interpolación cuadrática?

Una tabulación de $J_0(x)$ en el intervalo [0,1] en abscisas equidistantes $x_i=i/n$ para i=0,...,n, es

x_i	0	1/n	2/n	 1	
y_i	$J_0(0)$	$J_0(1/n)$	$J_0(2/n)$	 $J_0(1)$	

para $n \in \mathbb{N}$.

Supongamos que usamos una tabulación para aproximar $J_0(x)$ por interpolación lineal con error menor a $\frac{1}{2}10^{-6}$. Sea p(x) el polinomio lineal que interpola a $J_0(x)$ en los puntos x_i , x_{i+1} para $j \in \{1,...,n-1\}$ fijo. El error de interpolación está dado por

$$J_0(x) - p(x) = \frac{(x - x_j)(x - x_{j+1})}{2} J_0''(x), \quad x \in [x_j, x_{j+1}].$$

siempre que $J_0 \in \mathcal{C}^2[x_j,x_{j+1}]$. Más aún,

$$|J_{0}(x) - p(x)| = \frac{|x - x_{j}||x - x_{j+1}|}{2} |J_{0}''(x)|$$

$$\leq \frac{|x_{j+1} - x_{j}||x_{j+1} - x_{j}|}{2} |J_{0}''(x)|$$

$$= \frac{(1/n)^{2}}{2} |J_{0}''(x)|$$

$$= \frac{1}{2n^{2}} |J_{0}''(x)|.$$
(1)

Para utilizar esta cota tenemos que probar que $J_0\in\mathcal{C}^2[x_j,x_{j+1}]$ y acotar $|J_0''(x)|$ para $x\in[x_j,x_{j+1}]$. Para esto vamos a utilizar el siguiente resultado:

Regla de Leibniz (forma clásica)

Sea F(t,x) una función diferenciable con derivadas parciales continuas. Entonces

$$\frac{d}{dx} \int_{a}^{b} F(t, x) dt = \int_{a}^{b} \frac{\partial}{\partial x} F(t, x) dt.$$

En nuestro caso

$$F(t,x) = \cos(x\sin(t))$$

tiene derivadas parciales continuas de todo orden. Luego, por la Regla de Leibniz se tiene que $J_0(x)$ tiene derivadas de todo orden y se puede derivar bajo signo integral. Entonces.

$$J_0''(x) = \frac{1}{\pi} \int_0^{\pi} \frac{\partial^2}{\partial x^2} \cos(x \sin(t)) dt = -\frac{1}{\pi} \int_0^{\pi} \cos(x \sin(t)) \sin^2(t) dt.$$

Acotando.

$$|J_0''(x)| \le \frac{1}{\pi} \int_0^{\pi} |\cos(x\sin(t))| |\sin^2(t)| dt \le \frac{1}{\pi} \int_0^{\pi} dt = 1.$$

Por lo tanto, como $J_0(x)$ tiene derivada de orden 2 continua vale (1) y se tiene

$$|J_0(x) - p(x)| \le \frac{1}{2n^2}.$$

Buscamos un n tal que el error sea menor a $\frac{1}{2}10^{-6}$. Basta tomar n tal que

$$\frac{1}{2n^2} < \frac{1}{2}10^{-6}.$$

Luego,

$$n > 10^3$$
.

Por lo tanto, $n = 10^3 + 1$ verifica lo pedido.

Supongamos ahora que queremos una tabulación para aproximar $J_0(x)$ por interpolación cuadrática con error menor a $\frac{1}{2}10^{-6}$. Sea q(x) el polinomio cuadrático que interpola a $J_0(x)$ en los puntos x_j , x_{j+1} , x_{j+2} para $j\in\{1,...,n-2\}$ fijo. En este caso el error está dado por

$$J_0(x) - q(x) = \frac{(x - x_j)(x - x_{j+1})(x - x_{j+2})}{3!} J_0'''(x), \quad x \in [x_j, x_{j+2}].$$

Ejercicio: Proceder de la misma manera que antes y encontrar el n. En este caso, $n > 2 \cdot 100 / \sqrt[3]{3}$ (chequear).

Ejercicio 4

Se dispone de la siguiente tabla

			2.2			2.5	
$J_0(x)$	0.2239	0.1666	0.1104	0.0555	0.0025	-0.0484	

para la función de Bessel de orden 0 definida en el ejercicio (3), usar el método de las diferencias divididas de Newton para hallar los valores de $J_0(2,15)$ y $J_0(2,35)$ con errores menores que $\frac{1}{2}10^{-6}$.

Vamos a resolverlo en Scilab.

Ejercicio 8

Dado el conjunto de datos:

i	1	2	3	4	5	6	7	8	9	10
x_i	4	4.2	4.5	4.7	5.1	5.5	5.9	6.3	6.8	7.1
y_i	102.56	113.18	130.11	142.05	167.53	195.14	224.87	256.73	299.5	$ \begin{array}{r} 10 \\ \hline 7.1 \\ 326.72 \end{array} $

- a) Construya una aproximación por mínimos cuadrados de grado 1, 2 y 3. Calcule el error.
- b) Utilizando Scilab grafique los datos de la tabla y las sucesivas funciones aproximantes obtenidas en el ítem anterior.

Supongamos que tenemos m datos $\{(x_1,y_1),...,(x_m,y_m)\}$. La aproximación (polinomial) por mínimos cuadrados de orden n-1 es de la forma

$$f(x) = a_1 + a_2x + a_3x^2 + \dots + a_nx^{n-1}$$

donde $\Phi_i(x) = x^{i-1}$ para i = 1, ..., n.

Definimos

$$A = \begin{bmatrix} 1 & x_1 & \dots & x_1^{n-1} \\ 1 & x_2 & \dots & x_2^{n-1} \\ \vdots & \vdots & & & \\ 1 & x_m & \dots & x_m^{n-1} \end{bmatrix}, \quad b = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}, \quad x = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

por el Teorema 2 se tiene que el conjunto solución del problema de mínimos cuadrados es el conjunto de soluciones del sistema

$$A^T A x = A^T b.$$

Cuando A tiene rango n, el sistema tiene solución única. Seguimos en Scilab.

