$(a\in\{a_1,\ldots,a_n\})\Longleftrightarrow((a=a_1)\lor\ldots\lor(a=a_n))$ מתקיים $\{a_1,\ldots,a_n\}$ מתקיים מינרת רשימת איברים:

. סימון: תהא Σ אלפבית אזי באלפבית כל המחרוזות הסופיות באלפבית

טענה: יהי עולם $\Sigma\subseteq \Sigma^*$ אזי קיימת ויחידה $S\subseteq \Sigma^*$ ותהא $B\subseteq \Sigma^*$ אזי קיימת $F=\{f_i: (\Sigma^*)^{n_i} o \Sigma^*\mid i\in I\}$ המקיימת ויחידה $B\subseteq \Sigma^*$

- $.B \subseteq S \bullet$
- .F סגורה להפעלת S
- $S\subseteq A$ אזי F אזי הפעלת סגורה וכן $B\subseteq A$ עבורה עבורה $A\subseteq \Sigma^*$ אזי \bullet

אינדוקציה מבנית: יהי עולם $X_{B,F}\subseteq \Sigma^*$ אזי $F=\{f_i: (\Sigma^*)^{n_i} o \Sigma^* \mid i\in I\}$ ותהא $B\subseteq \Sigma^*$ מינימלית סגורה מבנית: יהי עולם $B\subseteq X_{B,F}$ מינימלית סגורה $B\subseteq X_{B,F}$ עבורה F

 $X_{B,F}=\bigcap\{Y\subseteq\Sigma^*\mid (B\subseteq Y)\land (F \text{ סענה: תהא}\ F=\{f_i:(\Sigma^*)^{n_i} o\Sigma^*\mid i\in I\}$ אזי ותהא $B\subseteq\Sigma^*$ ותהא $B\subseteq\Sigma^*$ סענה: יהי עולם A ותהא A סגורה להפעלת A עבורה $B\subseteq Y$ אזי A עבורה להפעלת A

 $(p(0) \land (\forall n \in \mathbb{N}.p(n) \Longrightarrow p(n+1))) \Longrightarrow (\forall n \in \mathbb{N}.p(n))$ מסקנה משפט האינדוקציה: תהא p טענה על p אזי

על ידי הפעלת a_i יים ($a_i\in B$) מתקיים a_i ירת יצירה: יהי $a_i=a$ אזי (a_1,\ldots,a_n) עבורה $a_i=a$ אזי (a_1,\ldots,a_n) אזי (a_1,\ldots,a_n) אזי (a_1,\ldots,a_{i-1}).

 $(a \in X_{B,F})$ אזי ($a \in X_{B,F}$) אזי (מיימת סדרת יצירה ל־ $a \in \Sigma^*$ יהי

 $X_{B,F} = igcup_{i=1}^\infty \left\{ a \in \Sigma^* \mid n$ מסקנה: $a \in \mathbb{R}$ בעלת סדרת יצירה באורך

 $\Sigma = \{\land,\lor,\lnot,\Longrightarrow,(,)\} \cup \{p_i \mid i\in\mathbb{N}\}$ עולם תחשיב הפסוקים:

 $a\in\Sigma^*$ יהי תחשיב הפסוקים אזי יהי ביטוי:

אזי $\omega_1,\omega_2\in\{p_i\mid i\in\mathbb{N}\}$ אזי הגדרה: יהיו

- $.\wedge (\omega_1, \omega_2) = "(\omega_1 \wedge \omega_2)"$ •
- $(\omega_1, \omega_2) = (\omega_1 \vee \omega_2)$
- $\Longrightarrow (\omega_1, \omega_2) = "(\omega_1 \Longrightarrow \omega_2)" \bullet$
 - $\neg (\omega_1) = "(\neg \omega_1)" \bullet$

.WFF $=X_{\{p_i|i\in\mathbb{N}\},\{\wedge,\vee,\neg,\Longrightarrow\}}$: קבוצת הנוסחאות המוגדרות היטב/ביטוי חוקי

 $p \in \{p_i \mid i \in \mathbb{N}\}$ עבורו $p \in \mathrm{WFF}$ פסוק אטומי:

.(") ונגמר עם (") ונגמר עם (הפסוק אטומי) אזי (ונגמר עם $p \in \mathsf{WFF}$ יהי יהי $p \in \mathsf{WFF}$

 $.q_1(q_2
otin {
m WFF}$ אזי $q_1,q_2 \in {
m WFF}$ מסקנה: יהיו

משפט הקריאה היחידה: יהי יהי מתקיים בדיוק אחד מהבאים משפט הקריאה היחידה:

- . פסוק אטומי lpha
- $\alpha = (\beta \wedge \gamma)$ עבורם $\beta, \gamma \in \mathsf{WFF}$ •
- $lpha=(etaee\gamma)$ עבורם $eta,\gamma\in \mathrm{WFF}$ פיימים ויחידים
- $.\alpha = (\beta \Longrightarrow \gamma)$ עבורם $\beta, \gamma \in \mathsf{WFF}$ ם ייחידים
 - $\alpha = (\neg \beta)$ עבורו $\beta \in \mathsf{WFF}$ •

מסקנה אלגוריתם לבדיקת חוקיות: יהי יהי מסקנה אלגוריתם לבדיקת חוקיות: יהי יהי מסקנה אלגוריתם לבדיקת חוקיות: יהי

```
function IsWellFormedFormula ( lpha )
      \mid \text{ if } \alpha \in \{p_i \mid i \in \mathbb{N}\}
      return true
     \mid \text{if } (\alpha \, [0] = \text{"(")} \lor (\alpha \, [-1] = \text{")"})
      | lpha . DeleteLast ( )
      elsereturn false
      \mid \text{ if } \alpha \ [0] = " \, \neg "
      | \alpha . DeleteFirst ( )
              return IsWellFormedFormula ( lpha )
      (\textit{LeftParentheses}, \textit{RightParentheses}, i) \leftarrow 0
      | \quad \text{ while } ( \text{LeftParentheses} \neq \text{RightParentheses}) \vee ( \text{LeftParentheses} = 0) \\
      | \quad | \quad \text{if } \alpha \left[ i \right] = \text{"("}
      | \quad | \quad | \quad LeftParentheses \leftarrow LeftParentheses + 1
      | \quad | \quad \text{if } \alpha \, [i] = ")"
      | \quad | \quad | \quad | \quad RightParentheses \leftarrow RightParentheses + 1
      | \quad | \quad i \leftarrow i+1
      |\qquad \text{if }\alpha \ [i+1] \not\in \{\land, \lor, \lnot, \Longrightarrow\}
      return false
      | \quad | \quad (\beta,\gamma) \leftarrow (\alpha \, [:i+1] \, , \alpha \, [i+2:])
      | return (IsWellFormedFormula (eta)) \wedge (IsWellFormedFormula (\gamma))
```

.(IsWellFormedFormula $(\alpha)=$ true) \iff $(\alpha\in$ WFF) ביטוי אזי $\alpha\in$ Σ^* ביטוי ויהי Σ תחשיב הפסוקים ויהי סדר ביצוע פעולות

- .¬ .1
- .∧, ∨ .2
- .⇒ .3