

AD			
		•	

TECHNICAL REPORT ARCCB-TR-94023

THE EFFECTS OF FATIGUE LOADING FREQUENCY ON FATIGUE LIFE OF HIGH-STRENGTH PRESSURE VESSEL STEELS

ROBERT R. FUJCZAK

354

JUNE 1994

US ARMY ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER

CLOSE COMBAT ARMAMENTS CENTER BENÉT LABORATORIES WATERVLIET, N.Y. 12189-4050

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

prio to her rames can 2

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The use of trade name(s) and/or manufacturer(s) does not constitute an official indorsement or approval.

DESTRUCTION NOTICE

For classified documents, follow the procedures in DoD 5200.22-M, Industrial Security Manual, Section II-19 or DoD 5200.1-R, Information Security Program Regulation, Chapter IX.

了了了了,这个人的,我们是我们是我们的教育的,我们们是我们的人,我们们们的人,我们们们的人,我们们们的人,我们们们的人,我们们们们的人,我们们们们们的人,我们们们们的人,我们们们们的人,我们们们们的人

For unclassified, limited documents, destroy by any method that will prevent disclosure of contents or reconstruction of the document.

For unclassified, unlimited documents, destroy when the report is no longer needed. Do not return it to the originator.

REPORT DOCUMENTATION PAGE

Form Approved

OMB No 0704-0188 Public reporting bur satisfaction of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data source, and completing and reviewing the collection of information. Send comments regarding this burden estimate of any other aspect of this collection of information. Send comments regarding this burden estimate of any other aspect of this collection of information. Development of processing suggestions for reducing this burden is of washington Headquarters Services, Directorate for information operations part Reduction Project (0704-0186), Washington, VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0186), Washington, DC 20503 2. REPORT DATE 1. AGENCY USE ONLY (Leave blank) 3. REPORT TYPE AND DATES COVERED 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS THE EFFECTS OF FATIGUE LOADING FREQUENCY ON FATIGUE AMCMS No. 6111.02.R611.1 LIFE OF HIGH-STRENGTH PRESSURE VESSEL STEELS PRON No. 1A11Z1CANMBI 6. AUTHOR(S) Robert R. Fujczak 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) PERFORMING ORGANIZATION REPORT NUMBER U.S. Army ARDEC Benet Laboratories, SMCAR-CCB-TL ARCCB-TR-94023 Watervliet, NY 12189-4050 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING AGENCY REPORT NUMBER U.S. Army ARDEC Close Combat Armaments Center Picatirny Arsenal, NJ 07806-5000 11 SUPPLEMENTARY NOTES 12a. DISTRIBUTION / AVAILABILITY STATEMENT 126. DISTRIBUTION CODE Approved for public release; distribution unlimited. 13. ABSTRACT (Maximum 200 words) Bend specimens of high-strength pressure vessel steel were tested in bending fatigue to failure at 1.5, 15, 30, and 75 Hz fatigue loading frequencies. In the 1.5 to 15 Hz range, there was no discernible difference in the frequency effect on fatigue life. However, in the 30 to 75 Hz range, there was a definite increase in fatigue life compared to the lower range of frequency. The average increase in fatigue life over the scress range was a factor of 10 greater than the life at the lower frequency range. This factor increased at lower stresses and decreased at higher stresses, but even at the highest stresses tested, the increase was significant, about 5 to 1. This indicates that the frequency effect is more effective at high-cycle fatigue and diminishes with low-cycle fatigue. A model for fatigue life deterioration caused by superimposition of loads under different frequencies is introduced. 14. SUBJECT TERMS 15. NUMBER OF PAGES Fatigue Life, High Strength, Pressure Vessels, Steel, Frequency 16. PRICE CODE 17. SECURITY CLASSIFICATION SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT SECURITY CLASSIFICATION OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

のでは、これ

のでは、10mmのでは、

UL

TABLE OF CONTENTS

	<u>Page</u>
ACKNO	WLEDGEMENTS ii
INTROI	DUCTION1
MATER	GAL1
SPECIM	TEN CONFIGURATION AND TEST MACHINES USED
STRESS	S EQUATIONS
TEST R	ESULTS AND DISCUSSION
FATIGU	JE LIFE SUPERIMPOSITION MODEL
CONCL	USIONS4
	TABLES
1.	Bend Fatigue Data for Four Test Loading Frequencies
2.	Combined Fatigue Life for 1.5 and 15 Hz
3.	Combined Fatigue Life for 1.5 and 30 Hz
4.	Combined Fatigue Life for 1.5 and 75 Hz
	LIST OF ILLUSTRATIONS
1.	Fatigue specimen schematic
2.	Bend test loading schematic
3.	Effects of low-frequency cyclic loading on fatigue life of ASTM A723 steel
4.	Effects of high-frequency cyclic loading on fatigue life of ASTM A723 steel
5.	Effects of fatigue loading frequency rate on fatigue life of ASTM A723 steel
6.	Fatigue life deterioration for 15 Hz superimposed on 1.5 Hz
7	Fatigue life deterioration for three rates superimposed on 1.5 Hz

ACKNOWLEDGEMENTS

I wish to thank Joseph Kapp for his technical guidance, Ronald Abbott of the Materials Science Branch for his technical assistance in the many phases of the test program, Daniel Corrigan of the Experimental Mechanics Branch for his drafting assistance, and Ellen Fogarty and Rose Neifeld of the Technical Publications and Editing Office for their editing assistance.

INTRODUCTION

High frequency, high amplitude dynamic strain waves are produced in high-strength pressure vessels during cyclic loading. Consideration must be given to the effect of these strain waves on fatigue life, since the pressure vessel is subjected to more than one strain cycle per operation cycle.

MATERIAL

The high-strength material used in this program is A723 steel with a 0.2 percent offset yield strength of 966 MPa (140 Ksi) and an ultimate tensile strength of 1035 MPa (150 Ksi).

SPECIMEN CONFIGURATION AND TEST MACHINES USED

Figure 1 shows a schematic diagram of the bending test specimen designed for the range of loading frequencies tested: 1.5, 15, 30, and 75 Hz. Figure 2 shows a schematic of the loading configuration on the bend specimens. An Instron Model 1350 fatigue testing machine with a 45 kN (10,000-pound) capacity was used for the tests at 1.5 and 15 Hz. For 30 Hz, a Sonntag fatigue testing machine was used because of its fixed frequency of operation. For the final frequency, 75 Hz, an Instron Model 1603 electromagnetic resonance machine capable of 50 to 400 Hz was used.

We attempted to achieve 150 Hz with this specimen configuration, but the Instron Model 1603 machine only allowed a peak of 75 Hz for this size specimen. In order to reach 150 Hz, a smaller specimen is needed, so we were unable to test beyond 75 Hz with the available systems and the specific specimen design.

STRESS EQUATIONS

The maximum stress, S, on the outside surface in bending is represented by the following well-known bending equation:

S = Mc/I

The substitution of equations (2), (3), and (4) into equation (1) yields the following equation:

$$S = 3PV(Bb^2) \tag{5}$$

(1)

Since this equation is calculated for reverse bending where the stress ratio, R, between S_{max} and S_{min} is R = -1, the loads had to be recalculated for this test program, because we used a stress ratio of R = 0, or $S_{min} = 0$. To give a root mean square comparison for R = 0, the maximum loads were multiplied by 1.414 for the one-sided loading program.

TEST RESULTS AND DISCUSSION

The bend specimens were tested to failure in groups at the four different frequencies in order to generate fatigue data curves. Table 1 represents the bending fatigue test results using R=0 at the four loading frequencies tested.

Figure 3 shows a comparison of the effects of two low frequencies, 1.5 and 15 Hz, on bending fatigue life of A723 steel. Examination of both sets of data indic tes there may be a slight improvement in fatigue life with increase in loading rate from 1.5 to 15 Hz, but statistically it is very small. Note that the individual scatter is greater than the difference between both sets. This indicates that there is not enough difference within this range to be considered significant.

Consider the next range of loading frequency data represented in Figure 4. In this case, there is a slightly larger difference between the effects from 30 to 75 Hz than the difference noted between 1.5 and 15 Hz, that even in this case the difference is not very large. The 75 Hz loading rate contributes an average increase of about 50 percent compared to 30 Hz.

The greatest surprise comes from examination of Figure 5, which displays the spectrum of results. Figure 5 shows that the improvement in fatigue life contributed by the 30 Hz loading rate compared to 15 Hz is the greatest even though the frequency ratio is only doubled. All the other ratios are greater than 2-to-1, but do not enhance the fatigue life accordingly with equivalent loading frequency rate. For instance, the response in fatigue 1 fe improvement gained by the increase of loading rate from 15 Hz to 30 Hz (2-to-1) shows an average increase of 8-to-1, whereas the improvement gained from 1.5 Hz to 75 Hz (50-to-1) shows an average increase in life of 15-to-1. Therefore, the greatest improvement within this limited range occurred between 15 and 30 Hz loading rate, suggesting some type of step phenomenon in the intermediate frequency range.

Upon examination of the slopes of the regression curves in Figure 5, it is apparent that the effects of fatigue life improvement by increase in loading frequency rate become minimized at very high stresses, as shown by the convergence of the lines at the upper left portion of the graph. This indicates that fatigue life improvement is a high-cycle phenomenon and contributes very little in the low-cycle fatigue range. The greatest improvements can be experienced at stresses with fatigue cycle failures from 10,000 cycles and on, especially at higher cycles and lower stresses, because the fanning effect contributes increasing payoffs in fatigue life improvement as the curves diverge at lower stresses.

Conversely, if high-frequency waves are superimposed upon conditions under high stress and in or near the low-cycle fatigue range, these added cycles caused by possible strain waves may be disastrous in taking away remaining fatigue life from the original cyclic source. As the operating stress is lowered, these additional highfrequency cycles diminish their effect, so it is important to find a suitable operating range that will effectively wash out this effect.

FATIGUE LIFE SUPERIMPOSITION MODEL

Reflecting back to Figure 3, we can determine that there is little, if any, difference in fatigue life caused by a loading rate of 1.5 or 15 Hz. Indeed, a least squares analysis indicates that the correlation coefficient, r, for both sets of data is 0.939, demonstrating a good logarithmic straight-line fit. In this case, superimposition of an equal load at 15 Hz upon an applied load at 1.5 Hz costs ten cycles added on to each cycle at 1.5 Hz, or the equivalent damage of eleven cycles, producing an equivalent fatigue life of 1/11th of the single loading. Figure 6 shows this effect applied to superimposition of 15 Hz on 1.5 Hz. The deterioration factor may be worse for stresses at or near 1000 MPa approaching yield values, and may diminish for stresses lower than 400 MPa, where the endurance limit may be reached.

The following model describes fatigue life deterioration as applied to the fatigue data presented in this report. When the superimposed frequency, Hz, is greater than the applied loading rate, Hz, then the cyclic loss factor is defined as

$$CLF = Hz/Hz, (6)$$

The mitigation factor, MF, is defined as the ratio between fatigue life of the superimposed loading rate by itself, N_a, and the fatigue life of the applied loading rate, N_a, or

$$MF = N_{J}N_{\bullet} \tag{7}$$

The mitigation factor then becomes a way of "mitigating" the effects of a cyclic loading rate that allows more cycles-to-failure by itself than the applied rate.

Thus, the effective cyclic loss factor, CLF, is defined as

$$CLF_{-} = CLF/MF \tag{8}$$

In the case of 15 Hz superimposed upon 1.5 Hz, the mitigation factor washes out to become 1, and has no mitigating effect on the effective fatigue life in superimposition. That explains why the effective life curve is constantly at 1/11th of the applied life curve alone. Table 2 displays fatigue life values for 1.5 and 15 Hz and the deterioration of the fatigue life by combining the two frequencies in superimposition. In this case, superimposition of a 15 Hz wave over an applied 1.5 Hz causes the fatigue life to deteriorate to 1/11th of the fatigue life with the applied 1.5 Hz load alone.

Additionally, this fatigue life model was used for superimposition of 30 Hz and 75 Hz on the applied 1.5 Hz, with the results displayed in Figure 7. In these examples, the mitigation factor starts low at high stresses and increases as stresses decrease. This is indicated by the differences in the slopes between the 1.5 Hz line and the 30 Hz and 75 Hz lines.

Table 3 displays the calculated deterioration of fatigue life by combining the fatigue lives at 1.5 Hz and 30 Hz in superimposition. Table 4 displays a similar deterioration in fatigue life by combining 1.5 Hz and 75 Hz. Both Tables 3 and 4 indicate that the deterioration effect caused by superimposition diminishes as the applied stress drops.

CONCLUSIONS

- 1. Under a high-stress, low-cycle fatigue environment, high-frequency dynamic strains are detrimental to the fatigue life because they rob cycles from the remaining life by superimposition, and cause the structure to fail prematurely.
- 2. Since remaining fatigue life increases with an increase in loading frequency as the operating stress is lowered, the detrimental effect can be minimized or nullified by designing an operating stress low enough to enable high-cycle fatigue life.
- 3. The minimization of the effects of high-frequency strains occurs at low operating stresses because the fanning-away effect of the slope changes in the high cycle range. It becomes more and more forgiving as the operating stress is lowered.
- 4. The model indicates that the frequency effect may be detrimental when superimposed upon a lower frequency at a high operating stress, but may disappear entirely at lower stresses, again suggesting an operating stress design criterion at reasonably low stresses.

Table 1. Bend Fatigue Data for Four Test Loading Frequencies

Loading Frequency (Hz)	Stress Ksi (MPa)	Cycles to Failure
1.5	150 (1035)	15,131
	140 (966)	18,908
	120 (808)	45,246
	115 (793)	44,007
	110 (759)	172,928
	100 (690)	112,285
15	150 (1035)	18,500
	140 (966)	25,700
	120 (828)	56,500
	115 (793)	80,000
	115 (793)	61,000
	110 (759)	146,200
	100 (690)	156,100
	95 (655)	200,400
30	150 (1035)	58,000
	130 (897)	363,000
75	170 (1173)	32,000
	160 (1104)	68,000
	150 (1035)	74,000
	140 (966)	210,000
	130 (897)	599,000
	120 (828)	1,300,000

是是这种,我是是什么是,也是是我们是是是我们的是是是是我们的,我们们是我们的,我们们们是我们是是是是我们的人们是是我们的人们是是我们的,这个人,是一个人,这个人,是是我们的是是是我们的,我们们是我们的

Table 2. Combined Fatigue Life for 1.5 and 15 Hz

Stress (MPa)	N (1.5)	N (15)	N Ratio	Combined N
1,381	2,118	2,118	0.0909	193
1,300	3,111	3,111	0.0909	283
1,200	5,176	5,176	0.0909	471
1,100	9,002	9,002	0.0909	818
1,000	16,505	16,505	0.0909	1,500
900	32,259	32,259	0.0909	2,933
800	68,231	68,231	0.0909	6,203
700	159,522	159,522	0.0909	14,502
600	425,218	425,218	0.0909	38,656
500	1,355,864	1,355,864	0.0909	123,261
400	5,605,030	5,505,030	0.0909	509,550
300	34,930,637	34,930,637	0.0909	3,175,526
200	460,439,513	460,439,513	0.0909	41,858,299

Table 3. Combined Fatigue Life for 1.5 and 30 Hz

Stress (MPa)	N (1.5)	N (30)	N Ratio	Combined N
1,381	2,118	1,440	0.0329	70
1,300	3,111	3,125	0.0478	149
1,200	5,176	8,717	0.0777	402
1,100	9,002	26,587	0.1287	1,158
1,000	16,505	90,190	0.2146	3,542
900	32,259	347,998	0.3504	11,303
800	68,231	1,574,481	0.5357	36,552
700	159,522	8,716,688	0.7321	116,779
600	425,218	62,853,449	0.8808	374,541
500	1,355,864	650,281,255	0,9600	1,301,587
400	5,605,030	11,352,249,745	0,9902	5,550,223
300	34,930,637	453,182,933,827	0.9985	34,376,872
200	460,439,513	81,851,448,561,775	0.9999	460,387,716

Table 4. Combined Fatigue Life for 1.5 and 75 Hz

Stress (MPa)	N (1.5)	N (75)	N Ratio	Combined N
1,381	2,118	4,540	0.0411	87
1,300	3,111	8,851	0.0538	167
1,200	5,176	21,427	0.0765	396
1,100	9,002	56,021	0.1107	996
1,000	16,505	160,529	0.1628	2,688
900	32,259	514,001	0.2417	7,796
800	68.231	1,807,839	0.3562	24,306
700	159,522	8,2,1,066	0.5085	81,113
600	425,218	45,286,124	0.6805	289,367
500	1,355,864	339,277,356	0.8335	1,130,059
400	5,605,030	3,989,938,361	0.9344	5,237,173
300	34,930,637	95,711,997,923	0.9821	34,304,653
200	460,439,513	8,432,714,870,322	0.9973	459,185,899

Figure 1. Fatigue specimen schematic.

Figure 2. Bend test loading schematic.

BENDING FATIGUE CHART STRESS VS. CYCLES TO FAILURE

FOR 1.5 AND 15 HZ LOADING RATE ASTM A723 BEND SPECIMENS, R = 0

Figure 3. Effects of low-frequency cyclic leading on fatigue life of ASTM A723 steel.

THE PARTY OF THE P

BENDING FATIGUE CHART STRESS VS. CYCLES TO FAILURE

FOR 30 AND 75 Hz LOADING RATES ASTM A723 BEND SPECIMENS, R=0

Figure 4. Effects of high-frequency cyclic loading on fatigue life of ASTM A:23 steel.

BENDING FATIGUE CHART CYCLES TO FAILURE STRESS vs.

である。これにいるできた。他の生活が経済に対している。これでは、1980年には、1980

FOR 1.5, 15, 30 AND 75Hz LOADING RATES ASTM A723 BEND SPECIMENS, R = 0

Figure 5. Effects of fatigue loading frequency rate on fatigur life of ASTM A723 steel.

Figure 6. Fatigue life deterioration for 15 Hz superimposed on 1.5 Hz.

THE PROPERTY OF THE PROPERTY O

Figure 7. Faiigue life deterioration for three rates superimposed on 1.5 Hz.

CYCLES TO FAILURE, N

TECHNICAL REPORT INTERNAL DISTRIBUTION LIST

	NO. OF <u>COPIES</u>
CHIEF, DEVELOPMENT ENGINEERING DIVISION	
ATTN: SMCAR-CCB-DA	1
-DC	î
-DI	1
·DR	ı
-DS (SYSTEMS)	1
CHIEF, ENGINEERING DIVISION	
ATTN: SMCAR-CCB-S	1
-SD	1
-SE	1
CHIEF, RESEARCH DIVISION	
ATTN: SMCAR-CCB-R	2
-RA	1
-RE	1
-RM	1
-RP	1
-RT	1
TECHNICAL LIBRARY	
ATTN: SMCAR-CCB-TL	5
TECHNICAL PUBLICATIONS & EDITING SECTION	
ATTN: SMCAR-CCB-TL	3
OPERATIONS DIRECTORATE	
ATTN: SMCWV-ODP-P	1
DIRECTOR, PROCUREMENT & CONTRACTING DIRECTORATE	
ATTN: SMCWV-PP	1
DIRECTOR, PRODUCT ASSURANCE & TEST DIRECTORATE	
ATTN: SMCWV-QA	1

NOTE: PLEASE NOTIFY DIRECTOR, BENÉT LABORATORIES, ATTN: SMCAR-CCB-TL OF ADDRESS CHANGES.

TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST

NO. OF <u>COPIES</u>	
ASST SEC OF THE ARMY RESEARCH AND DEVELOPMENT ATTN: DEPT FOR SCI AND TECH THE PENTAGON WASHINGTON, D.C. 20310-0103	COMMANDER ROCK ISLAND ARSENAL ATTN: SMCRI-ENM 1 ROCK ISLAND, IL 61299-5000
ADMINISTRATOR DEFENSE TECHNICAL INFO CENTER 12 ATTN: DTIC-FDAC CAMERON STATION	MIAC/CINDAS PURDUE UNIVERSITY P.O. BOX 2634 WEST LAFAYETTE, IN 47906
ALEXANDRIA, VA 22304-6145 COMMANDER U.S. ARMY ARDEC	COMMANDER U.S. ARMY TANK-AUTMV R&D COMMAND ATTN: AMSTA-DDL (TECH LIBRARY) 1 WARREN, MI 48397-5000
· · · · · · · · · · · · · · · · · · ·	1 COMMANDER 1 U.S. MILITARY ACADEMY 1 ATTN: DEPARTMENT OF MECHANICS 1
SMCAR-FSS-D, BLDG. 94 1 SMCAR-IMI-I, (STINFO) BLDG. 59 2 PICATINNY ARSENAL, NJ 07806-5000 DIRFCTOR	1 U.S. ARMY MISSILE COMMAND REDSTONE SCIENTIFIC INFO CENTER 2 ATTN: DOCUMENTS SECTION, BLDG. 4484 REDSTONE ARSENAL, AL 35898-5241
U.S. ARMY RESEARCH LABORATORY	COMMANDER U.S. ARMY FOREIGN SCI & TECH CENTER ATTN: DRXST-SD 1 220 7TH STREET, N.E.
DIRECTOR U.S. ARMY RESEARCH LABORATORY ATTN: AMSRL-WT-PD (DR. B. BURNS) ABERDEEN PROVING GROUND, MD	CHARLOTTESVILLE, VA 22901 COMMANDER U.S. ARMY LABCOM
21005-5066 DIRECTOR U.S. MATERIEL SYSTEMS ANALYSIS ACTV	MATERIALS TECHNOLOGY LABORATORY ATTN: SLCMT-IML (TECH LIBRARY) 2 WATERTOWN, MA 02172-0001
A TOTAL A DATE OF A DECEMBER O	1 COMMANDER U.S. ARMY LABCOM, ISA ATTN: SLCIS-IM-TL 2800 POWER MILL ROAD ADELPHI, MD 20783-1145

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINLERING CENTER, U.S. ARMY AMCCOM, ATIN: BENÉT LABORATORIES, SMCAR-CCB-TL, WATERVLIET, NY 12189-4050 OF ADDRESS CHANGES.

TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST (CONT'D)

NO. OF COPIES	NO. OF <u>COPIES</u>
COMMANDER U.S. ARMY RESEARCH OFFICE ATTN: CHIEF, IPO P.O. BOX 12211	COMMANDER AIR FORCE ARMAMENT LABORATORY ATTN: AFATL/MN 1 EGLIN AFB, FL 32542-5434
RESEARCH TRIANGLE PARK, NC 2. /09-2211	COMMANDER
U.S. NAVAL RESEARCH LABORATORY ATTN: MATERIALS SC) & TECH DIV 1	AIR FORCE ARMAMENT LABORATORY ATTN: AFATL/MNF 1 EGLIN AFB, FL 32542-5434
CODE 26-27 (DOC LIBRARY) WASHINGTON, D.C. 20375	EGERT I M E, E E GEO TE GTO T

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING CENTER, U.S. ARMY AMCCOM, ATTN: BENÉT LABORATORIES, SMCAR-CCB-TL, WATERVLIET, NY 12189-4050 OF ADDRESS CHANGES.