Mappeoppgave 1 - Sok-2009

Fakultet for biovitenskap, fiskeri og økonomi.

Kandidatnummer 5, SOK-2009 Høst 2023

Innholdsfortegnelse

Oppgave 5*	2
1: Er forventningverdien lik for disse to terningene? Forklar svaret ditt	2
2: Tegn en graf med mulige utfall for T_1 og T_2 . Hvilke utfall er mulige og hvilke er	
ikke mulige gitt $T_2^1 > T_2^2$?	2
2.1 Er det uniform sannsynlighet for utfallene?	2
3. Bruk R og regn ut forventningsverdien til de to terningene	3
3.2. Fjern alle vektorer der terning sett en er større en terningsett to dvs. der	
[(1, 1) < (1, 2)].	3
3.3 Du skal nå sitte igjen med litt mindre en havlparten av de $[36 imes 36]$	
utfallene. (Disse oppfyller at summen av terningkast på to er større en	
en $T_2^1 > T_2^2$.)	4
3.4. Kalkuler forventningen til den første av terningen. Alle utfall er like	
sannsynlige så dette er lett	4
	_
Appendix KI bruk	4

Oppgave 5^*

Anta at du har to sett med to seksidede terninger. Noen andre kaster terningene og skriver ned summen av prikker fra begge terningene T_2^1 og T_2^2 . Du får ikke se terningene men får vite at summen fra sett en er større en fra sett to dvs. $T_2^1 > T_2^2$. La oss si at du tar ut to terninger en fra sett en t_1^1 og en fra sett to t_2^2 .

1: Er forventningverdien lik for disse to terningene? Forklar svaret ditt.

Ja, forventningsverdien for en terning er alltid $\frac{1+2+3+4+5+6}{6} = 3.5$ uansett om terningen er valgt fra sett 1 eller 2. Det har forandrer ingenting at vi vet at summen fra det ene settet er større enn det andre.

2: Tegn en graf med mulige utfall for T_1 og T_2 . Hvilke utfall er mulige og hvilke er ikke mulige gitt $T_2^1>T_2^2$?

2.1 Er det uniform sannsynlighet for utfallene?

Ja det er uniform sannsynlighet men for betingelsen om at $T_2^1 > T_2^2$ så er ikke alle utfall i utfallsrommet mulig men den relative sannsynligheten for de mulige utfallene vil være uniform

3. Bruk R og regn ut forventningsverdien til de to terningene.

```
Lag 36x36 vektorer med et tall for hver terning, det vil si [(1,1)(1,1)], [(1,1)(1,2)], [(1,1)(1,3)],......, [(6,6)(6,6)].
```

Dette er utfallsrommet for to sett med to terninger. Du må muligens bruke en spesial komando for å få til dette datasettet.

Sjekk kode på: https://stackoverflow.com/questions/45878448/creating-sample-space-in-r

```
terninger <- expand.grid(1:6, 1:6, 1:6)
names(terninger) <- c("t1_1", "t1_2", "t2_1", "t2_2")
str(terninger)

'data.frame': 1296 obs. of 4 variables:
$ t1_1: int 1 2 3 4 5 6 1 2 3 4 ...
$ t1_2: int 1 1 1 1 1 1 1 2 2 2 2 ...
$ t2_1: int 1 1 1 1 1 1 1 1 1 1 ...
$ t2_2: int 1 1 1 1 1 1 1 1 1 ...
$ t2_2: int 1 1 1 1 1 1 1 1 1 ...
- attr(*, "out.attrs")=List of 2
...$ dim : int [1:4] 6 6 6 6
...$ dimnames:List of 4
....$ Var1: chr [1:6] "Var1=1" "Var1=2" "Var1=3" "Var1=4" ...
....$ Var2: chr [1:6] "Var3=1" "Var3=2" "Var3=3" "Var3=4" ...
....$ Var4: chr [1:6] "Var4=1" "Var4=2" "Var4=3" "Var4=4" ...
```

3.2. Fjern alle vektorer der terning sett en er større en terningsett to dvs. der [(1, 1) < (1, 2)].

```
sett_1 <- terninger[terninger$t1_1 + terninger$t1_2 > terninger$t2_1 + terninger$t2_2, ]
str(sett_1)

'data.frame': 575 obs. of 4 variables:
$ t1_1: int 2 3 4 5 6 1 2 3 4 5 ...
$ t1_2: int 1 1 1 1 1 2 2 2 2 2 2 ...
$ t2_1: int 1 1 1 1 1 1 1 1 1 1 ...
$ t2_2: int 1 1 1 1 1 1 1 1 1 1 ...
- attr(*, "out.attrs")=List of 2
...$ dim : int [1:4] 6 6 6 6
...$ dimnames:List of 4
```

```
....$ Var1: chr [1:6] "Var1=1" "Var1=2" "Var1=3" "Var1=4" ...
....$ Var2: chr [1:6] "Var2=1" "Var2=2" "Var2=3" "Var2=4" ...
....$ Var3: chr [1:6] "Var3=1" "Var3=2" "Var3=3" "Var3=4" ...
....$ Var4: chr [1:6] "Var4=1" "Var4=2" "Var4=3" "Var4=4" ...
```

3.3 Du skal nå sitte igjen med litt mindre en havlparten av de [36 \times 36] utfallene. (Disse oppfyller at summen av terningkast på to er større en en $T_2^1 > T_2^2$.)

```
nrow(sett_1) # Utfall der T^1_2 > T^2_2
[1] 575
```

3.4. Kalkuler forventningen til den første av terningen. Alle utfall er like sannsynlige så dette er lett.

```
forventningsverdi_t1_1 <- mean(sett_1$t1_1)
forventningsverdi_t1_1</pre>
```

[1] 4.273043

Appendix KI bruk

Har fått hjelp til ChatGPT til å hjelpe med graf tegning for å få den til å se "bra" ut.

Satt ved kandidatnummer 6 under jobbing så det er mulig det er likheter mellom våre besvarelser.