Today, we'll be exploring surface parametrizations and surface integrals.

Recall that, last section, we were integrating real-valued functions over curves to get 'surface area of a fence', and integrating vector fields dotted with trajectories to get 'work done on a particle'. In each case, we were integrating along a path $\mathbf{c} : \mathbb{R} \to \mathbb{R}^2$.

Today, we'll do the same, but integrate instead along surfaces, given to us as 'paths' $\Phi: \mathbb{R}^2 \to \mathbb{R}^3$.

Surface Integral for Scalar Functions

Given a surface parameterized by differentiable map $\Phi:D\subset\mathbb{R}^2\to\mathbb{R}^3$ and a function $f:\mathbb{R}^3\to\mathbb{R}$, the integral of f over the surface $\Phi(D)$ is...

$$\int \int_{D} (f \circ \Phi)(u, v) || \mathbf{T}_{u} \times \mathbf{T}_{v} || du dv$$

where \mathbf{T}_u is the vector consisting of derivatives of components of Φ w.r.t. u, and similarly for v. Think of this as the mass of the surface $\Phi(D)$ whose density at a point is given by f.

The special case when f=1 yields the surface area of $\Phi(D)$. In another special case, when Φ is a 'graph', that is, it is defined as $\Phi(u,v)=(u,v,g(u,v))$, we get a simplification: $||\mathbf{T}_u\times\mathbf{T}_v||=\sqrt{1+||\nabla g||^2}$.

Surface Integral for Vector-Valued Functions

In the same setting of a surface S parameterized by differentiable map $\Phi: D \subset \mathbb{R}^2 \to \mathbb{R}^3$, if we are given a vector field $\mathbf{F}: \mathbb{R}^3 \to \mathbb{R}^3$, the surface integral of \mathbf{F} over S is...

$$\int \int_{D} \mathbf{F}(\Phi(u,v)) \cdot d\mathbf{S} := \int \int_{D} \mathbf{F}(\Phi(u,v)) \cdot (\mathbf{T}_{u} \times \mathbf{T}_{v}) du dv$$

If we think of \mathbf{F} as the velocity field of a fluid in 3D space, this gives us the rate of flow of the fluid across the surface.

Surface Parameterizations

We introduced these concepts while sweeping the idea of a surface parameterization under the rug. Now, a **surface parameterization** is to a surface (a 2D object) what a **path parameterization** is to a curve (a 1D object).

Therefore, you want to be able to accomplish two things...

- 1. given a surface parameterization $\Phi: D \subset \mathbb{R}^2 \to \mathbb{R}^3$, develop a sketch of its image surface, $\Phi(D)$.
- 2. Reciprocally, given a surface S, find a map $\Phi: D \subset \mathbb{R}^2 \to \mathbb{R}^3$ whose image is this surface (which we call its **parameterization**).

Questions

Q1) Sketch the surfaces obtained from the following parameterizations:

1.
$$\Phi: \begin{cases} [0,1] \times [0,1] \to \mathbb{R}^3 \\ (x,y) \mapsto (x,y,x+y) \end{cases}$$

2.
$$\Phi: \begin{cases} [0,2] \times [0,2\pi] \to \mathbb{R}^3\\ (r,\theta) \mapsto (r\cos(\theta),r\sin(\theta),r) \end{cases}$$

- Q2) Find the parameterization of the following surfaces:
 - 1. surface bounded by z = 4 and $z = x^2 + y^2$.
 - 2. surface bounded by $z = 4 x^2 y^2$ and z = 0.

Q3) A Pringles chip is shaped according to a hyperbolic paraboloid, whose equation in 3D is given by $z = \frac{x^2}{2} - \frac{y^2}{2}$, for $x, y \in [0, 1]$. It's density at a point (x, y) is given by d(x, y) = 4. Can you find an integral to express its mass?