SELF-SUPERVISED LEARNING

Introduction

- Supervised learning learning with labeled data
 Collect a dataset with labels (labels are expensive)
- Unsupervised learning learning with unlabeled data
 Collect a large dataset without label (unlabeled data are cheap)

Deep Neural Networks: Very large Models (many parameters)
How to train?

Introduction

Introduction

TRANSFER LEARNING

- * knowledge of an already trained <u>machine learning</u> model is applied to a different but related problem
- The general idea is to use the knowledge a model has learned from a task with a lot of available labeled training data in a new task that doesn't have much data.
- that become quite popular in combination with neural networks that require huge amounts of data and computational power.

In computer vision, neural networks usually try to detect edges in the earlier layers, shapes in the middle layer and some task-specific features in the later layers.

- ❖ In transfer learning, the early and middle layers are used
- only retrain the latter layers
- saving training time
- good performance of neural networks (in most cases)
- ❖ not needing a lot of data.

1. Train on Imagenet

FC-1000 FC-4096

FC-4096

MaxPool

Conv-512 Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

Conv-64

Image

ImageNet

	very similar dataset	very different dataset
very little data	?	?
quite a lot of data	?	?

	very similar dataset	very different dataset
very little data	Use Linear Classifier on top layer	You're in trouble Try linear classifier from different stages
quite a lot of data	Finetune a few layers	Finetune a larger number of layers

SELF-SUPERVISED LEARNING

Self-supervised learning

Why self-supervised learning?

- Creating labeled datasets for each task is an expensive
- ❖ Vast amount of unlabeled data on the internet (images, videos, text)
- Extract good features

Self-supervised learning

- Supervised learning learning with labeled data
- Unsupervised learning learning with unlabeled data
- Self-supervised learning a subclass of unsupervised learning

Goal: Learn useful representations through pretraining tasks for downstream tasks

$$y = f_L(...f_3(f_2(f_1(x|\theta_1)|\theta_2)|\theta_3)...|\theta_L)$$

Self-supervised learning

Pretext Task pre-designed tasks for networks to solve, and visual features are learned by learning objective functions of pretext tasks.

Downstream Task: applications that are used to evaluate the quality of features learned by self-supervised learning.

Pretext tasks:

- Not simple, sufficiently complex
- Pseudo label

Longlong Jing and Yingli Tia, "Self-supervised Visual Feature Learning with Deep Neural Networks: A Survey" IEEE trans PAMI, 2020

Pretraining Tasks: Image rotation

Geometric transformation recognition: Image rotation

Pretraining data

Gidaris (2018) - Unsupervised Representation Learning by Predicting Image Rotations

Pretraining Tasks: Image rotation

Gidaris (2018) - Unsupervised Representation Learning by Predicting Image Rotations

Relative Patch Position

Pretraining data: multiple patches extracted from images

Pretraining task: train a model to predict the relationship between the patches

Dorsch (2015) Unsupervised Visual Representation Learning by Context Prediction

Relative Patch Position

$$X = (W, W); Y = 3$$

Dorsch (2015) Unsupervised Visual Representation Learning by Context Prediction

Image Jigsaw Puzzle

Noroozi (2016) Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles

Image Jigsaw Puzzle

Pretraining data: 9 patches extracted in images

Pretraining task: predict the positions of all 9 patches

Noroozi (2016) Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles

Pretraining data: remove a random region in images

random missing region

Pretraining task: fill in a missing piece in the image

an encoder-decoder architecture

A Euclidean ℓ_2 distance is used as the reconstruction loss function L_{rec} In the downstream task, use the encoder networks as the representation

Pathak (2016) Context Encoders: Feature Learning by Inpainting

Improvement was achieved by adding a GAN branch A weighted combination of the two losses, i.e., $\lambda_{rec}L_{rec} + \lambda_{gan}L_{gan}$

Input image

 $\begin{array}{c} \text{Encoder-decoder} \\ \text{with reconstruction} \\ \text{loss } \mathcal{L}_{rec} \end{array}$

GAN with loss \mathcal{L}_{gan}

Image Super-Resolution

Pretraining data: pairs of regular and downsampled low-resolution images

Pretraining task: predict a high-resolution image that corresponds to a downsampled low-resolution image

Ledig (2017) Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Image Super-Resolution

- A GAN architecture
- The paper did not consider downstream tasks other than super-resolution

Ledig (2017) Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Learned representations may be tied to a specific pretext task! Can we come up with a more general pretext task?

CONTRASTIVE REPRESENTATION LEARNING

Contrastive Representation Learning formulation

 $\operatorname{score}(f(x),f(x^+)) >> \operatorname{score}(f(x),f(x^-))$

Contrastive Representation Learning formulation

$$\operatorname{score}(f(x),f(x^+)) >> \operatorname{score}(f(x),f(x^-))$$

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-))))} \right]$$

Contrastive Representation Learning formulation

$$L = -\mathbb{E}_X \left[\log \frac{\overline{\exp(s(f(x), f(x^+))}}{ \overline{\exp(s(f(x), f(x^+))} + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-))})} \right]$$

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right]$$
 score for the score for the N-1 positive pair negative pairs

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-))))} \right]$$
 score for the positive pair score for the N-1 negative pairs

Cross entropy loss for a N-way softmax classifier!

I.e., learn to find the positive sample from the N samples

SimCLR: A Simple Framework for Contrastive Learning

Ting Chen et al, "A Simple Framework for Contrastive Learning of Visual Representations", 2020

SimCLR: A Simple Framework for Contrastive Learning

Use a projection network $g(\cdot)$ to project features to a space where contrastive learning is applied

$$s(u,v)=rac{u^Tv}{||u||||v||}$$

Ting Chen et al, "A Simple Framework for Contrastive Learning of Visual Representations", 2020

Ting Chen et al, "A Simple Framework for Contrastive Learning of Visual Representations", 2020

SimCLR

Generate a positive pair by sampling data augmentation functions

Algorithm 1 SimCLR's main learning algorithm.

input: batch size N, constant τ , structure of f, g, \mathcal{T} . for sampled minibatch $\{x_k\}_{k=1}^N$ do for all $k \in \{1, \ldots, N\}$ do draw two augmentation functions $t \sim T$, $t' \sim T$ # the first augmentation $\tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)$ # representation $h_{2k-1} = f(\hat{x}_{2k-1})$ $z_{2k-1} = g(h_{2k-1})$ # projection # the second augmentation $\tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)$ $\boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})$ # representation $\boldsymbol{z}_{2k} = g(\boldsymbol{h}_{2k})$ # projection end for for all $i \in \{1, \dots, 2N\}$ and $j \in \{1, \dots, 2N\}$ do $s_{i,j} = \mathbf{z}_i^{\top} \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_j\|)$ # pairwise similarity end for **define** $\ell(i,j)$ **as** $\ell(i,j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k\neq i]} \exp(s_{i,k}/\tau)}$ $\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell(2k-1, 2k) + \ell(2k, 2k-1) \right]$ update networks f and g to minimize \mathcal{L} end for

return encoder network $f(\cdot)$, and throw away $g(\cdot)$

$$s_{i,j} = rac{z_i^T z_j}{||z_i||\,||z_j||}$$

"Affinity matrix"

2N

2N

