SS 2024 Marc Kegel

Differentialtopologie

Blatt 8

Aufgabe 1. Abbildung 1 zeigt gerahmte Knoten in $S^1 \times S^2$.

- (a) Welche dieser Knoten sind (als gerahmte Knoten) isotop?
- (b) Klassifizieren Sie die Isotopieklassen von gerahmten Knoten in $S^1 \times S^2$, welche den S^2 -Faktor transversal genau einmal schneiden.
- (c) Welche Mannigfaltigkeiten sind durch die Kirby-Diagramme in Abbildung 1 beschrieben?

Abbildung 1: Vier Diagramme von gerahmten Knoten in $S^1 \times S^2$.

Aufgabe 2.

- (a) Zeigen Sie, dass das S^1 -Bündel über S^2 mit Euler-Zahl $e \in \mathbb{Z}$ diffeomorph zu dem Linsenraum L(-e,1)=-L(e,1) ist.
 - Hinweis: Betrachten Sie dazu das Kirby-Diagramm aus der Vorlesung des D^2 -Bündels über S^2 mit Euler-Zahl $e \in \mathbb{Z}$ und vergleiche dessen Rand mit dem Heegaard-Diagramm des entsprechenden Linsenraums.
- (b) Beschreiben Sie Abbildungen $S^1 \to L(e,1) \to S^2$, welche eine S^1 -Bündelstruktur über S^2 auf dem Linsenraum L(e,1) induzieren.
- (c) Zeichnen Sie ein Kirby-Diagramm der komplex projektiven Ebene $\mathbb{C}P^2$.

Aufgabe 3.

- (a) Sei F eine geschlossene orientierte Fläche mit einer Henkelzerlegung bestehend aus genau einem 0-Henkel und genau einem 2-Henkel. Beschreiben Sie eine Henklezerlegung von $I \times F$ und $S^1 \times F$ welche von der Henkelzerlegung von F induziert wird. Nutzen Sie dies um Heegaard-Diagramme von $S^1 \times F$ zu zeichnen (siehe Blatt 7 Aufgabe 2).
- (b) Konstruieren Sie aus einem Heegaard-Diagramm einer 3-Mannigfaltigkeit M ein Kirby-Diagramm von $S^1 \times M$.
- (c) Beschreiben Sie den 4-Torus $T^4 = S^1 \times S^1 \times S^1 \times S^1$ als ein Kirby-Diagramm.

Aufgabe 4.

Eine orientierbare Mannigfaltigkeit M heißt **umkehrbar** wenn sie einen Diffeomorphismus besitzt, welcher die Orientierung umkehrt.

- (a) Zeigen Sie, dass S^n , $S^1 \times M^{n-1}$ und Σ_q umkehrbar sind.
- (b) Wie erhält man aus einem Heegaard-Diagramm einer 3-Mannigfaltigkeit M ein Heegaard-Diagramm der selben Mannigfaltigkeit mit umgekehrter Orientierung -M?
- (c) Wie erhält man aus einem Kirby-Diagramm einer 4-Mannigfaltigkeit W ein Kirby-Diagramm der selben Mannigfaltigkeit mit umgekehrter Orientierung -W?
- (d) Zeigen Sie mittels der Kirby-Diagramme von S^4 , $S^1 \times S^3$ und T^4 , dass diese 4-Mannigfaltigkeiten umkehrbar sind.
- (e) Beschreiben Sie ein Kirby-Diagramm von $-\mathbb{C}P^2$.
- (f) Ist $\mathbb{C}P^2$ umkehrbar? *Hinweis:* Betrachten Sie die Schnittform von $\mathbb{C}P^2$.

Abbildung 2: Ein D^2 -Bündel über T^2 mit Euler-Zahl n.

Aufgabe 5.

- (a) Zeigen Sie, dass der Anklebeknoten des 2-Henkels im Kirby-Diagramm aus Abbildung 2 eine Fläche von Geschlecht 1 berandet. Erklären Sie wie man daraus eine wohldefinierte (isotopieinvariante) 0-Rahmung erhält und wie man dann eine Rahmung dieses Knotens durch eine ganze Zahl $n \in \mathbb{Z}$ eindeutig beschreiben kann.
- (b) Zeigen Sie, dass das Kirby-Diagramm aus Abbildung 2 ein D^2 -Bündel über T^2 mit Euler-Zahl n beschreibt.
- (c) Zeichnen Sie ein Kirby-Diagramm eines D^2 -Bündels über einer Geschlecht-g Fläche Σ_g mit Euler-Zahl n.

Bonusaufgabe 1.

- (a) Jeder Knoten K in einer 3-Mannigfaltigkeit M liefert eine Homologieklasse $[K] \in H_1(M)$.
- (b) Ein Knoten ist nullhomolog genau dann, wenn er eine Seifert-Fläche besitzt.