Lecture Handout 24: MOLECULAR EVOLUTION AND PHYLOGENETICS 2

Adaptations from:

Page and Holmes "Molecular Evolution: Phylogenetic Approach" © Blackwell Science 1998
Terry Brown "Genomes 3" © Garland Science 2007
Phillip Benfey and Alexander Protopapas. "Genomics" © Pearson / Prentice Hall 2007
Thanks also to Taras Oleksyk

Gene trees vs. species trees:

Mutation vs. speciation

- Mutation can precede speciation
 - Both alleles present in the population before the split
 - Random drift or selection could fix frequencies in the two populations
 - Mutation can also follow the isolation event

Gene trees vs. species trees:

Example: incongruent lineage sorting

- A gene tree can be different from a species tree
- If mutation precedes speciation it could also give an incorrect time for a speciation event if a molecular clock is used

Lineage sorting:

Coalescence

- The most recent common ancestor:
 - Coalescent point
 - Coalescent time the time at which the most recent common ancestor occurs
- Does not necessarily coincide with speciation

Historical associations

Parasites and hosts

 Some hosts & their parasites (including viruses) may have a long evolutionary history of close association reflected in their evolutionary trees

Historical associations

Organisms and areas

- On the larger scale, organisms may track ecological events or geological history
 - Such as continental breakup & drift

Cladistics & classification

- Phylogenetics forms the basis of taxonomy
 - The formal naming of groups of organisms

 Cladistic classification recognize only monophyletic groups ...

Monophyly

 A clade –all the sequences descended from a common ancestral sequence or node

Monophyletic clade –
 when all members of a
 clade belong to the same
 taxon

 In a non-monophyletic group, one or more descendants are not included

Non-monophyletic groups

 Paraphyletic group – a group of sequences or taxa that excludes some members of a clade (one ancestor)

 Polyphyletic group – a group of sequences that derive from two or more distinct ancestral sequences

Paraphyly

Crocodiles

'Reptiles'

Lizards

Turtles

Non-monophyletic groups: Paraphyly

- Groupings are based on shared primitive characters (plesiomorphies and exclude members that have autapomorphies
- 'Reptiles' exclude birds because of their novel anatomy

Non-monophyletic groups: Polyphyly

- Groupings are typically assemblages of taxa that have been erroneously grouped on the basis of convergent characters
- 'Vultures' are a polyphyletic grouping comprising two groups of birds that have independently evolved similar morphology and habits from different ancestors

Homology & Homoplasy

Examples

Page, Holmes
Molecular Evolution

- Homologous (on the left): because inherited it directly from the ancestor that also had a "shaded" allele
 - Homoplasious (on the right): where "shaded" allele evolved independently from two ancestors that had "unshaded" alleles

Birds & Bats

- Homology can depend on the aspect of the feature:
 - Yes: Both birds & bats inherited forearms from the last common ancestor (so forearms are homologous)
 - No: In both groups the forearms have been modified for flight independently (so wings are not homologous)

Homology

Structure vs. functionality

- Yes: Two proteins in two different organisms may be encoded by the same gene
- Yes: These two genes may share amino acids in common and even have similar function

 No: But if the functionality is acquired independently, then the functionality is homoplasious

Homology

At the molecular level

 Parallel evolution of amino acids in lysozyme enzyme sequence of langur monkeys & cows

Basic types of homology

- Orthology homology that arises via speciation
- Paralogy homology that arises via gene duplication

 Xenology – gene owes its presence from the transfer from another organism

Genetic distance

- DNA segments are not very informative about their evolutionary history
 - Sequences are either similar or not
 - For any given site, maximum number of differences detectable is one
 - There are only four states: A,G,C and T
- However there are other complications:
 - What if there were more than one event at the same site?
 - What if there are different frequencies for different events?

Types of substitutions

1 change, 1 difference

(b) Multiple substitution

2 changes, 1 difference

(c) Coincidental substitution

2 changes, 1 difference

(d) Parallel substitution

2 changes, no difference

(e) Convergent substitution

3 changes, no difference

(f) Back substitution

2 changes, no difference

Page, Holmes
Molecular Evolution

Types of substitutions Homoplasious similarity

- In these three cases nucleotides are identical in both descendant sequences, but the resulting alleles are not inherited from the ancestral sequence
- Potentially, these have much more serious implications:
 - Homoplasy can obscure the actual number of evolutionary events

Distance measures

Observed distances

- The simplest measure of distance between two nucleotide sequences
- However, for all but very similar sequences this is a poor measure:
 - Since the same site can undergo multiple substitutions
 - As time goes by, the number of differences becomes less and less of an accurate estimator

Observed distances

Example

- Number of nucleotide differences between mammalian (bovid) mitochondrial sequences vs. time of divergence
- Note: the observed number of substitutions is not linear

- As more substitutions accumulate they become saturated
 - Most of the sites that are changing have changed before
- The goal of distance correction methods is to recover the "overprinted" amount of evolutionary changes

Best model

- Observed and expected numbers of nucleotide pairs between human and chimp mtDNA sequences for three different models
 - As the models add parameters they start resembling the observed pattern closer and closer

 How can we evaluate the best fit between each model and the data?

Choosing the model Models of evolution: Which model fits the data best? With the least number of parameters?

General framework

$$P_{t} = \begin{bmatrix} p_{AA} & p_{AC} & p_{AG} & p_{AT} \\ p_{CA} & p_{CC} & p_{CG} & p_{CT} \\ p_{GA} & p_{GC} & p_{GG} & p_{AA} \\ p_{TA} & p_{TC} & p_{TG} & p_{TT} \end{bmatrix}$$

- In the general framework:
 - Probability of a given nucleotide substitution remains constant over time
 - Base composition of sequences is at equilibrium
- p_{AC} the probability that A changed to C at a site during time t

Jukes-Cantor (JC)

$$f = [\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}]$$

- JC model assumes that the four bases have equal frequencies & all substitutions are equally likely
- Distance between two sequences is given as:

$$d = -\frac{3}{4}\ln(1 - \frac{4}{3})p$$

- p is proportion of nucleotides that are different in two sequences
- Very simple model, few parameters

Unequal substitution rates

$$S=(2\beta+\alpha)$$

- One may expect transversions to be more common than transitions
 - There is one possible transition per two possible transversions
- However, transitions are much more common, especially for mtDNA

Unequal substitution rates

Page, Holmes
Molecular Evolution

 Transitions accumulate faster than transversions & become saturated, whereas transversions accumulate more slowly & show no evidence of saturation

 Figure: The number of transitions and transversions in bovid mtDNA

Distance correction Kimura 2 Parameter (K2P)

$$P_{t} = \begin{bmatrix} \beta & \alpha & \beta \\ \beta & \lambda & \beta \\ \alpha & \beta & \lambda \\ \beta & \alpha & \beta \end{bmatrix}$$

 $f = [\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}]$

- K2P model corrects for the unequal rate of substitution
- Distance between two sequences is given as:

$$d = \frac{1}{2}\ln(\frac{1}{(1-2P-Q)}) + \frac{1}{4}\ln(\frac{1}{1-2Q})$$

 P & Q are the proportional differences between the two sequences due to transitions and transversions

General Reversible Model (REW)

$$P_t$$
 = $\begin{bmatrix} \pi_A & \pi_C & \pi_G & \pi_T & \pi_T \\ \pi_A & \pi_G & \pi_T & \pi_T \end{bmatrix}$ $\pi_A = \begin{bmatrix} \pi_A & \pi_C & \pi_G & \pi_T \end{bmatrix}$

- Allows all six pairs of substitutions to have different rates; nucleotide frequencies to be different
- More general than any model, and therefore can be reduced to any model
- Very complex model; many parameters

Best model

- Observed and expected numbers of nucleotide pairs between human and chimp mtDNA sequences for three different models
 - As the models add parameters they start resembling the observed pattern closer and closer

 How can we evaluate the best fit between each model and the data?

Molecular Evolution

Problem

Precision vs. accuracy

- Precision: how many alternatives are excluded:
 - A method that excludes all but one tree is very precise
- Accuracy: how close your tree is to the true tree
 - If the one tree found earlier is not the true tree, your method is inaccurate

More parameters: more accurate but less precise

Best model

Likelihood (e.g., *Modeltest* program)

- The probability of observing the data given a particular model
 - If you are flipping a coin and you get 1/100 as heads, that is a very unlikely outcome, since you expect about 50/50
- Given a model that specifies probabilities of observing various events, likelihood is

$$L = Pr(D|H)$$

- D = data & H=hypothesis
- Log likelihood: Usually since L is very small, likelihoods are expressed as ln(L)

Choosing the model

Likelihood

- Theoretical best = 2,064.80
- **JC** In L = -2,691.76

- **K2P** In L = 2,424.79
- HKY85 In L = -2,075.41*

