



# 자바 프로그래밍 기초

파일 입출력

By SoonGu Hong





1. 입력 스트림과 출력 스트림

#### 1-1. 입력, 출력 스트림이란?

 프로그램이 데이터의 출발지인지 도착지인지에 따라 스트 림의 종류가 결정되는데, 프로그램이 도착지가 되면 입력 스트림(InputStream)이라 부르고, 프로그램이 출발지가 되 면 출력 스트림(OutputStream)이라고 부릅니다.



#### 1-2. 스트림의 종류

- · 자바는 기본적인 데이터 입출력을 위해 java.io패키지를 통해 API를 제 공하고 있습니다.
- 스트림 클래스는 크게 2종류로 구분되는데, 하나는 그림, 멀티미디어, 문자 등 모든 종류의 데이터를 주고 받을 수 있는 바이트 기반 스트림과 문자에만 특화된 문자 기반 스트림으로 나눌 수 있습니다.

| java.io 패키지의 주요 클래스                                                                                                                                                 | 설명                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| File                                                                                                                                                                | 파일 시스템의 파일 정보를 얻기 위한 클래스       |
| Console                                                                                                                                                             | 콘솔로부터 문자를 입출력하기 위한 클래스         |
| InputStream/OutputStream                                                                                                                                            | 바이트 단위 입출력을 위한 최상위 입출력 스트림 클래스 |
| FileInputStream / FileOutputStream DataInputStream / DataOutputStream ObjectInputStream / ObjectOutputStream PrintStream BufferedInputStream / BufferedOutputStream | 바이트 단위 입출력을 위한 하위 스트림 클래스      |
| Reader / Writer                                                                                                                                                     | 문자 단위 입출력을 위한 최상위 입출력 스트림 클래스  |
| FileReader / FileWriter InputStreamReader / OutputStreamWriter PrintWriter BufferedReader / BufferedWriter                                                          | 문자 단위 입출력을 위한 하위 스트림 클래스       |





2. File 클래스

#### 2-1. File 클래스

- io패키지에서 제공하는 File 클래스는 파일 크기, 파일 속성, 파일 이름 등의 정보를 얻어내는 기능과 파일 생성 및 삭제 기능을 제공하고 있습니다.
- 또한 디렉토리를 생성하고 디렉토리에 존재하는 파일 리스 트를 얻어내는 기능도 있습니다.

### 2-2. File 클래스 주요 메서드

| 기능                     | 메서드                     | 설명                                  |
|------------------------|-------------------------|-------------------------------------|
| 파일 및<br>디렉토리<br>생성, 삭제 | boolean createNewFile() | 새로운 파일을 생성                          |
|                        | boolean mkdir()         | 새로운 디렉토리를 생성                        |
|                        | boolean mkdirs()        | 경로상에 없는 모든<br>디렉토리를 생성              |
|                        | boolean delete()        | 파일 또는 디렉토리 삭제                       |
|                        | boolean exists()        | 해당 경로에 파일이나<br>디렉토리가 존재하는지<br>여부 확인 |

### 2-3. File 클래스 주요 메서드

| 기능                    | 메서드                   | 설명                                                |
|-----------------------|-----------------------|---------------------------------------------------|
| 파일 및<br>디렉토리<br>정보 얻기 | boolean canExecute()  | 실행할 수 있는 파일인지 여부                                  |
|                       | boolean canRead()     | 읽을 수 있는 파일인지 여부                                   |
|                       | boolean canWrite()    | 수정 및 저장할 수 있는<br>파일인지 여부                          |
|                       | String getName()      | 파일의 이름을 리턴                                        |
|                       | String getParent()    | 부모 디렉토리를 리턴                                       |
|                       | String getPath()      | 전체 경로를 리턴                                         |
|                       | boolean isDirectory() | 디렉토리인지 여부                                         |
|                       | boolean isFile()      | 파일인지 여부                                           |
|                       | long lastModified()   | 마지막 수정 날짜 및 시간 리턴                                 |
|                       | long length()         | 파일의 크기를 리턴                                        |
|                       | File[] listFiles()    | 디렉토리에 포함된 파일 및 서브<br>디렉토리 목록 전부를 File객체배<br>열로 리턴 |





3. FileInputStream과 FileOutputStream

#### 3-1. FileInputStream

- FileInputStream은 파일로부터 바이트 단위로 읽어들일 때 사용하는 바이트 기반 입력 스트림입니다.
- 바이트 단위로 읽기 때문에 그림, 오디오, 비디오, 텍스트 파일 등 모든 종류의 파일을 읽을 수 있습니다.
- 해당 객체가 생성될 때 파일과 직접 연결이 되는데, 이 때 파일이 존재하지 않으면 FileNotFoundException이 발생 하므로 try~ catch문으로 예외처리가 반드시 필요합니다.
- 또한 파일의 내용을 모두 읽은 후에는 close() 메서드를 호 출하여 스트림을 닫아줍니다.

#### 3-2. FileOutputStream

- FileOutputStream은 바이트 기반 출력 스트림입니다.
- 따라서 모든 형태의 파일들을 저장할 수 있습니다.
- 데이터를 저장할 때 write() 메서드를 사용하고, flush() 메서드로 출력 버퍼에 잔류하는 데이터를 완전히 내보낸 후 close() 메서드로 출력 스트림을 닫아줍니다.





### 4. FileReader와 FileWriter

#### 4-1. FileReader

- FileReader는 텍스트 파일로부터 문자 단위로 읽어들일 때 사용하는 텍스트 기반 입력 스트림입니다.
- 텍스트 단위로 읽기 때문에 그림, 오디오, 비디오 등의 파일은 읽을 수 없습니다.

#### 4-1. FileWriter

- FileWriter는 텍스트 데이터를 파일에 저장할 때 사용하는 텍스트 기반 출력 스트림입니다.
- 텍스트 단위로 저장하기 때문에 그림, 오디오, 비디오 등의 파일은 저장할 수 없습니다.





5. 성능 향상 보조스트림

#### 5-1. 성능 향상 보조 스트림

- 프로그램의 실행 성능은 입출력이 가장 늦은 장치를 따라 갑니다.
- CPU와 메모리가 아무리 좋아도 하드 디스크의 입출력이 느리면 프로그램의 성능은 하드 디스크의 처리 속도에 맞춰집니다.
- 프로그램이 입출력 장치와 직접 작업하지 않고 중간에 메
   모리 버퍼와 작업하면 실행 성능을 향상 시킬 수 있습니다.
- io패키지에서는 메모리 버퍼를 제공하는
  BufferedInputStream, BufferedOutputStream,
  BufferedReader, BufferedWriter를 제공합니다.

### 감사합니다 THANK YOU