19. fejezet

Logika

Az ítéletlogika és a predikátumkalkulus szintaxisa és szemantikája. A szemantikus következményfogalom. Alapvető módszerek a szemantikus következmény bizonyítására az ítéletlogikában – igazságtábla, szemantikus fa, rezolúció.

19.1. Alapfogalmak

A logika tárgya (elvileg) az emberi gondolkodási folyamat vizsgálata és helyes gondolkodási formák keresése, illetve létrehozása.

- **19.1.1. Definíció (Állítás).** Olyan kijelentés, melynek logikai értéke (igaz volta) eldönthető.
- 19.1.2. Definíció (Gondolkodási forma). Gondolkodásforma altt egy olyan (F, A) párt értünk, ahol A állítás, $F = \{A_1, \ldots, A_n\}$ pedig állítások egy véges (?) halmaza.

 $A\ gondolkodásforma$ helyes, ha minden esetben, amikor $F\ minden$ állítása igaz, akkor A is igaz.

19.1.3. Definíció (Igazságértékek). Legyen $\mathbb{L} = \{igaz, hamis\}$ az igazságértékek halmaza.

A logikai műveletek igazságtáblája.

Χ	Y	$\neg X$	$X \wedge Y$	$X \vee Y$	$X\supset Y$
i	i	h	i	i	i
i	h	h	h	i	h
h	i	i	h	i	i
h	h	i	h	h	i

Ítéletlogika 19.2.

19.2.1. Definíció (Az ítéletlogika szintaxisa). Az ítéletlogika ábécéje (V_0) :

- $itéletváltozók (V_v)$,
- zárójelek ((,)),
- $logikai \ m \'{u}veleti \ jelek \ (\neg, \land, \lor, \supset).$
- 1. Minden ítéletváltozó ítéletlogikai formula (ezek a prímformulák).
- 2. Ha A és B ítéletlogikai formulák, akkor $\neg A$, $\neg B$, $(A \land B)$, $(A \lor B)$ és $(A \supset B)$ is itéletlogikai formulák.
- 3. Minden ítéletlogikai formula előáll a fenti szabályok véges sokszori alkalmazásával.

Megjegyzés. Precedenciák bevezetése mellett a zárójelek egy része elhagyható, ami javíthatja a formulák olvashatóságát.

19.2.2. Definíció (Literál). Ha X ítéletváltozó, akkor az X és $\neg X$ formulákat literáloknak nevezzük, melyeknek alapja X.

19.2.3. Definíció (Részformula, közvetlen részformula).

- 1. Prímformulának nincs közvetlen részformulája.
- 2. ¬A közvetlen részformulája A.
- 3. $A \circ B$ közvetlen részformulája A (bal oldali) és B (jobb oldali).
- 1. Egy formulának részformulája a közvetlen részformulája.
- 2. Egy formulának részformulái minden részformulájának közvetlen részformulái is.
- 19.2.4. Definíció (Művelet hatásköre). A formula részformulái közül az a legkisebb logikai összetettségű, melyben a művelet előfordul.

19.2.1. Az ítéletlogika szemantikája

- 19.2.5. Definíció (Interpretáció). Interpretációnak nevezünk egy $I: V_v \to \mathbb{L}$ függvényt, mely tehát minden ítéletváltozóhoz egyértelműen hozzárendel egy igazságértéket.
- 19.2.6. Definíció (Bázis). Kiértékelés egy bázisának nevezzük a kiértékelt formulában szereplő ítéletleváltozók egy sorrendjét.
- 19.2.7. Definíció (Formula logikai jelentése). A formula logikai jelentése egy $B_I : \mathcal{F} \to \mathbb{L}$ függvény, ahol I egy interpretáció, \mathcal{F} pedig az összes formulák halmaza.
 - 1. Ha X ítéletváltozó, akkor $B_I(X) = I(X)$.
 - 2. Ha $X = \neg Y$ negációs formula, akkor $B_I(X) = \neg I(Y)$.
 - 3. Ha $X = (Y \circ Z)$ alakú, akkor $B_I(X) = B_I(Y) \circ B_I(Z)$.
- 19.2.8. Definíció (Igazhalmaz, hamishalmaz). Egy formula igazhalmaza azon interpretációk halmaza, melyen a formula igazságértékelése igaz. A formula hamishalmaza az interpretációk "másik fele", tehát azon interpretációk halmaza, melyekre a formula igazságértékelése hamis.

Igazságtáblázat

Az összes interpretáció és a hozzájuk kapcsolódó logikai jelentések megadásának egyik módja az igazságtáblázat (ld. például a fejezet elején).

Az igazságtáblázatban felsoroljuk az összes ítéletváltozó minden kiértékelési kombinációját. Ez alapján már tetszőleges formula igazságértékelése kiszámítható a logikai műveletek igazságtáblázatából.

Szemantikus fa

19.2.9. Definíció. Egy n változós szemantikus fa egy n szintű bináris fa, ahol a szintek a bázisbeli változóknak felelnek meg. Minden csúcsból kivezető egyik él az X, a másik a $\neg X$ értékkel címkézett, ahol X a kiinduló csúcs szintjéhez rendelt változó.

Egy szemantikus fa minden levele egy-egy interpretációt reprezentál. Ha egy levéltől felfelé haladunk a fában, akkor X jelentse azt, hogy I(X) = igaz, $\neg X$ pedig, hogy I(X) = hamis.

Szemantikai fogalmak

19.2.10. Definíció (Kielégíthető és kielégíthetetlen formula). Egy formula kielégíthető, ha van olyan interpretáció, melyben igazságértéke igaz (Ezt $I \models_0 F$ -fel jelöljük és úgy olvassuk, hogy I az F formula modellje).

Kielégíthetetlen egy formula, ha nem kielégíthető, azaz igazságértékelése minden interpretációban hamis.

- 19.2.11. Definíció (Tautológia (logikai törvény)). A tautológia olyan formula, mely minden interpretációban igaz értékű.
- 19.2.12. Definíció (Tautologikus következmény). G formula tautologikus következménye \mathcal{F} formulahalmaznak, ha minden interpretációban

$$I \models_0 \mathcal{F} \Rightarrow I \models_0 G.$$

19.2.2. Az eldöntésproblémák

Elöntésproblémának nevezzük a következő feladatokat:

- 1. döntsük el tetszőleges formuláról, hogy tautológia-e!
- 2. döntsük el tetszőleges formuláról, hogy kielégíthetetlen-e!
- 19.2.13. Tétel (A kielégíthetetlenségről). $Ha \mathcal{F} \models_0 G$, $akkor \mathcal{F} \cup \{\neg G\}$ kielégíthetetlen.
- 19.2.14. Tétel (Dedukció). $\mathcal{F} \models_0 G \Leftrightarrow \mathcal{F} \setminus \{F_n\} \models_0 (F_n \supset G)$.
- 19.2.15. Tétel (A tautológiáról). $\mathcal{F} \models_0 G \Leftrightarrow \models_0 F_1 \supset (F_2 \supset (\dots \supset (F_n \supset G)\dots)).$

Megjegyzés. A fenti tétel alapján tehát az egyik eldöntésprobléma visszavezethető a másikra, így elég egy kérdést vizsgálunk.

Megoldás igazságtáblázattal

Az ítéletlogikában a tautológiák megkeresésének legegyszerűbb módszere az igazságtáblázat.

Készítsük el a formula igazságtáblázatát: ha a formula minden interpretációban igaz, akkor tautológia, ha pedig mindenhol hamis, akkor kielégíthetetlen.

Megoldás szemantikus fával

19.2.16. Definíció (φ igazságértékelés).

- 1. Ha A prímformula, akkor a φA^i feltételt pontosan azok az interpretációk elégítik ki, melyekben I(A) = igaz, φA^h feltételt pedig azok, ahol I(A) = hamis.
- 2. $A \varphi(\neg A)^i$ feltétel pontosan akkor teljesül, ha teljesül a φA^h fetétel.
- 3. $A \varphi(A \wedge B)^i$ feltétel pontosan akkor teljesül, ha egyszerre teljesülnek a φA^i és φB^i feltételek.
- 4. $A \varphi(A \lor B)^i$ feltétel pontosan akkor teljesül, ha vagy a φA^i , vagy a φB^i feltétel teljesül.
- 5. $A \varphi(A \supset B)^i$ feltétel pontosan akkor teljesül, ha teljesül a φA^h vagy φB^i feltétel.

(A hamis esetek is könnyen adódnak.)

A fenti definíció alapján felépíthetjük egy formula igazságértékelés-fáját, melyből megkapjuk a formula igaz-, vagy hamishalmazát.

Tegyük fel, hogy az igazhalmazt keressük F formulára. Az igazságértékelésfa gyökerében φF^i áll, az alatta lévő szinteken pedig mindig a fenti feltételek szerint bonjuk fel a feltételt, amíg csak prímformulák igazságértékeléséhez nem jutunk.

19.1. ábra. Igazságértékelés szemantikus fával

Szemantikus fára illesztés

19.2.17. Definíció (Klóz). Klóznak nevezzük különböző literálok diszjunkcióját.

19.2.18. Tétel. Az eldöntésprobléma visszavezethető klózhalmaz kielégíthetetlenségére.

A tétel szernt tehát elegendő klózhalmazokat vizsgálnunk, a továbbiakban ezt tesszük.

Egy k klóz akkor hamis egy interpretációban, ha minden literálja hamis. Egy L literál hamis abban az interpretációban, ahol a szemantikus fában a literálnak megfelelő címke $\neg L$. Egy klóz illesztése a szemantikus fára az olyan ágak kiválasztása amelyeken a klóz minden literálja negálva szerepel. Ezekben az interpretációkban ez a klóz hamis. Cáfoló csúcsnak nevezzük a szemantikus fa azon csúcsát, amelyiket elérve egy klóz (amely azt megelőzően még nem volt hamis) hamissá válik. Levezető csúcsaz a csúcs, amelyiket két cáfoló csúcs követ. A szemantikus fa egy ága zárt, ha cáfoló csúcsban végződik. A szemantikus fa zárt, ha minden ága zárt.

Hatékonyság növelése. A módszer hatékonysága növelhető, ha nem akarunk minden levelet illeszteni, hanem a biztosan illeszthető ágakat azonnal illesztettnek vesszük. Ezt ügyes bázisválasztással kombinálva jelentősen csökkenthetjük az illesztési időt.

Rezolúció

A rezolúció módszere is klózhalmaz kielégíthetetlenségét vizsgálja.

19.2.19. Definíció (Rezolvens). Két klóz (C_1 és C_2) rezolválhatók, ha pontosan egy komplemens literálpárt tartalmaznak.

 $Ha\ C_1 = X \lor C_1'$ és $C_2 = \neg X \lor C_2'$, akkor rezolvensük $\rho(C_1, C_2) = C_1' \lor C_2'$. $Ha\ C_1'$ és C_2' üresek, akkor a fenti rezolvenst üres klóznak nevezzük és \square jellel jelöljük.

19.2.20. Definíció (Rezolúciós levezetés). S klózhalmaz rezolúciós levezetése olyan véges $C_1, C_2, \ldots C_n$ klózsorozat, ahol $\forall i = 1, \ldots, n$:

- $C_i \in S$, vagy
- $\exists 1 \leq s, t \leq i, hogy \ \rho(C_s, C_t) = C_i.$

19.2.21. Tétel (A rezolúció helyessége és teljessége). Egy klózhalmazból rezolúciós levezetéssel akkor és csak akkor állítható elő az üres klóz, ha a klózhalmaz kielégíthetetlen.

A rezolúciós levezetések előállítására különböző stratégiák léteznek, melyeknek egy része megőrzi a teljességet, míg mások nem.

Lineáris rezolúció. Olyan $q_1, p_1, q_2, p_2, \ldots, q_n, p_n$, klózsorozat, ahol $q_1, p_1 \in S$, és $i = 2, 3, \ldots, n$ esetben a p_i a p_{i-1}, q_{i-1} rezolvense, ahol $q_{i-1} \in S$, vagy egy korábban megkapott centrális klóz (rezolvense valamely $p_s, q_s(s < i)$ -nek).

19.2.22. Tétel. A lineáris rezolúció teljes rezolúciós stratégia.

Lineárisinput-rezolóció. Olyan $q_1, p_1, q_2, p_2, \ldots, q_n, p_n$, klózsorozat, ahol $q_1, p_1 \in S$, és $i = 2, 3, \ldots, n$ esetben a p_i a p_{i-1}, q_{i-1} rezolvense, illetve $q_i \in S$.

19.2.23. Definíció (Horn-klóz). Horn-klóznak nevezzük az olyan klózt, melyben legfeljebb egy nem negált literál van.

19.2.24. Tétel. A lineárisinput-rezolúció Horn-klózokon teljes.

19.3. Elsőrendű logika

19.3.1. Definíció (Elsőrendű állítás). Elemek egy halmazára megfogalmazott kijelentő mondat.

19.3.1. Az elsőrendű logika leíró nyelve

Nem logikai rész. Egy

$$\langle S, P, F, C \rangle$$

négyes, ahol S a fajtaszimbólumok nem üres halmaza, P a predikátumszimbólumok, F a függvényszimbólumok, C pedig a konstansszimbólumok halmaza.

Logikai rész.

- Individuumváltozók (minden fajtában legfeljebb megszámlálhatóan végtelen sok).
- Logikai műveletek (mint a nulladrendű logikánál).
- elválasztójelek ((,)),
- kvantorok (\exists, \forall) .

19.3.2. Az elsőrendű logika szintaxisa

19.3.2. Definíció (Term).

- 1. Minden π fajtájú individuumváltozó és konstansszimbólum π fajtájú term.
- 2. Ha $f(\pi_1, \ldots, \pi_k; \pi_f) \in F$ és t_1, \ldots, t_k rendre π_1, \ldots, π_k fajtájú termek, akkor $f(t_1, \ldots, t_k)$ egy π_f fajtájú term.
- 3. Minden term előáll a fenti szabályok véges sokszori alkalmazásával.

19.3.3. Definíció (Formula).

- 1. $Ha\ p(\pi_1, \ldots, \pi_k) \in P\ predikátumszimbólum és\ t_1, \ldots, t_k\ rendre\ \pi_1, \ldots, \pi_k$ fajtájú termek, akkor $p(t_1, \ldots, t_k)$ formula (atomi formula).
- 2. Ha A és B formulák, akkor $\neg A$, $\forall x A$, $\exists x A$, valamint $(A \circ B)$ is formulák.
- 3. Minden elsőrendű formula előáll a fenti lépések véges sokszori alkalmazásával.

Formulák részei. A részterm és részformula fogalmak könnyen definiálhatók.

- 19.3.4. Definíció (Prímformula). Az atomi formulákat és a kvantált formulákat prímformuláknak is nevezzük.
- 19.3.5. Definíció. Egy formula x változójának egy előfordulása:
 - szabad, ha nem esik x-re vonatkozó kvantor hatáskörébe,

9

• kötött, ha x-re vonatkozó kvantor hatáskörébe esik.

19.3.6. Definíció. Egy formula x változója

- kötött, ha minden előfordulása kötött,
- szabad, ha minden előfordulása szabad,
- egyébként vegyes.

19.3.7. Definíció. Egy formula

- zárt, ha minden változója kötött,
- nyitott, ha legalább egy változójának van legalább egy szabad előfordulása.
- kvantormentes, ha nincs benne kvantor.

Megjegyzés. A zárt formulák elsőrendű állításokat szimbolizálnak.

19.3.3. Az elsőrendű logika szemantikája

19.3.8. Definíció (Matematikai struktúra). Matematikai struktúra egy < U, R, M, K > négyes, ahol

- $U = \bigcup_{\pi} U_{\pi}$ nem üres alaphalmaz (univerzum),
- R az U-n értelmezett logikai függvények (relációk) halmaza,
- M az U-n értelmezett matematikai függvények (alapműveletek) halmaza,
- K az U kijelölt elemeinek (konstansainak) esetleg üres halmaza.

19.3.9. Definíció (Interpretáció). Az interpretáció egy $< u, R, M, K > matematikai struktúra és <math>I = < I_S, I_P, I_F, I_C > függvénynégyes, ahol$

- $I_S: \pi \to U_{\pi}$,
- $I_P: P \to P^I$,
- $I_F: F \to F^I$,
- $I_C: C \to C^I \ (C^I \subset U)$.

- 19.3.10. Definíció (Változókiértékelés). $Egy \ \kappa : V \to U \ leképezés.$
- **19.3.11.** Definíció (Elsőrendű formula logikai értéke). Egy elsőrendű formula logikai értéke I interpretációban, κ változókiértékelés mellett a következőképpen alakul:
 - 1. ha x individuumváltozó, akkor $|x|_{\kappa}^{I} = \kappa(x)$,
 - 2. ha c konstansszimbólum, akkor $|c|_{\kappa}^{I} = I_{C}(c)$,
 - 3. $|f(t_1,\ldots,t_n)|_{\kappa}^I = I_F(f)(|t_1|_{\kappa}^I,\ldots,|t_n|_{\kappa}^I),$
 - 4. $|p(t_1,\ldots,t_n)|_{\kappa}^I = I_P(p)(|t_1|_{\kappa}^I,\ldots,|t_n|_{\kappa}^I),$
 - 5. $|\neg A|^I_{\kappa} = \neg |A|^I_{\kappa}$
 - 6. $|A \wedge B|_{\kappa}^{I} = |A|_{\kappa}^{I} \wedge |B|_{\kappa}^{I}$
 - 7. $|A \vee B|_{\kappa}^{I} = |A|_{\kappa}^{I} \vee |B|_{\kappa}^{I}$
 - 8. $|A \supset B|_{\kappa}^{I} = |A|_{\kappa}^{I} \supset |B|_{\kappa}^{I}$
 - 9. $|\forall xA|^I_{\kappa}=igaz$, ha $|A|^I_{\kappa^*}=igaz$ a κ minden κ^* x-variánsára,
 - 10. $|\exists x A|_{\kappa}^{I} = igaz$, ha κ -nak van olyan κ^* x-variánsa, melyre $|A|_{\kappa^*}^{I} = igaz$.

19.3.4. A szemantikus következményfogalom

19.3.12. Definíció. Azt mondjuk, hogy G formula szemantikus következménye az \mathcal{F} formulahalmaznak, ha minden olyan I interpretációra, amelyre $I \models \mathcal{F}$, fennáll $I \models G$ is. (Jelölése $F \models G$.)

A következményfogalomhoz kapcsolódó definíciók és egyes tételek (eldöntésprobléma, dedukció) a nulladrendű logikához hasonló módon kimondhatók.

- 19.3.13. Tétel. Ha G tautológia, akkor G logikailag igaz.
- **19.3.14. Tétel** (**Gödel**). Az elsőrendű eldöntésprobléma nem oldható meg algoritmikusan.

Megjegyzés. Véges univerzum esetén létrehozható elsőrendű formula igazságtáblája, illetve szemantikus fája a kiértékelési szabályok alapján, de ezek még egyszerű formulák esetén is nehezen kezelhetők.

Rezolúció

Elsőrendű predikátumkalkulusban is végezhető rezolúció, ráadásul a módszer helyes és teljes is. Nehézséget a klózok kialakítása okozhat, amelyek $z\acute{a}rt$, $univerz\acute{a}lisan\ kvantált\ liter\'alok\ konjunkci\acute{o}j\acute{a}b\acute{o}l\ \acute{a}llnak$. Ehhez eszközeink a prenex-, illetve skolem-formák.