Übungsblatt 5 zur Kommutativen Algebra

Aufgabe 1. (2+m) Beispiele für gerichtete Limiten

- a) Sei A ein Ring. Zeige, dass A[X] als A-Modul kanonisch isomorph zum gerichteten Limes des Systems $A[X]_{\leq 0} \hookrightarrow A[X]_{\leq 1} \hookrightarrow A[X]_{\leq 2} \cdots$ ist. Dabei ist $A[X]_{\leq n}$ der Modul der Polynome vom Grad $\leq n$.
- b) Sei M ein A-Modul. Sei $f \in A$. Zeige, dass $M[f^{-1}]$ kanonisch isomorph zum gerichteten Limes des Systems $M \xrightarrow{f} M \xrightarrow{f} M \xrightarrow{f} \cdots$ ist.

Aufgabe 2. (2+m+2+2) Gesättigte multiplikativ abgeschlossene Mengen

Eine multiplikativ abgeschlossene Teilmenge S eines Rings A heißt genau dann gesättigt, wenn aus $xy \in S$ schon $x \in S$ und $y \in S$ folgt.

- a) Sei $f \in A$. Sei $\iota : A \to A[f^{-1}]$ der Lokalisierungsmorphismus. Zeige: Für $x \in A$ ist genau dann $\iota(x)$ invertierbar, wenn $f \in \sqrt{(x)}$.
- b) Sei $S \subseteq A$ eine gesättigte multiplikativ abgeschlossene Teilmenge und $\iota: A \to S^{-1}A$ die zugehörige Lokalisierung. Zeige: Für $x \in A$ ist genau dann $\iota(x)$ invertierbar, wenn x in S liegt. Folgere, dass $S^{-1}A$ genau dann ein lokaler Ring ist, wenn aus $x + y \in S$ schon $x \in S$ oder $y \in S$ folgt.
- c) Sei $S \subseteq A$ multiplikativ abgeschlossen. Zeige, dass es eine kleinste gesättigte, multiplikativ abgeschlossene und S umfassende Teilmenge gibt (die $S\ddot{a}ttigung$ von S).
- d) Seien S und T multiplikativ abgeschlossene Mengen mit $S \subseteq T$. Zeige, dass $S^{-1}A \to T^{-1}A$, $a/s \mapsto a/s$ genau dann bijektiv ist, wenn T in der Sättigung von S liegt.

Aufgabe 3. (2+m+2) Lokale Eigenschaften

- a) Zeige: Sind alle Halme eines Rings reduziert, so ist auch der Ring selbst reduziert.
- b) Zeige oder widerlege: Sind alle Halme Integritätsbereiche, so auch der Ring selbst.
- c) Sei M ein A-Modul. Gelte $M_{\mathfrak{m}}=0$ für all diejenigen maximalen Ideale \mathfrak{m} von A, die über einem bestimmten Ideal \mathfrak{a} liegen. Zeige: $M=\mathfrak{a}M$.

Aufgabe 4. (2+m) Injektivität von linearen Abbildungen

- a) Sei A ein lokaler Ring. Sei $A^m \to A^n$ eine lineare Injektion. Zeige, dass $m \le n$.
- b) Folgere die Behauptung für beliebige Ringe A mit $1 \neq 0$.

Aufgabe 5. (m) Topologischer Abschluss von Punkten

Sei \mathfrak{p} ein Primideal eines Rings A. Zeige, dass in Spec A gilt: $\overline{\{\mathfrak{p}\}} = \{\mathfrak{q} \in \operatorname{Spec} A \mid \mathfrak{p} \subseteq \mathfrak{q}\}.$