Sekante und Sekantensteigung

Sekante und Sekantensteigung

Sind $A(a\mid f(a))$ und $B(b\mid f(b))$ Punkte auf dem Graphen der Funktion f, dann ist die Gerade, die den Graphen von f in den Punkten A und B schneidet die **Sekante des Graphen von** f **durch die Punkte** A **und** B.

Die Steigung m der Sekante bezeichnet man als **mittlere Änderungsrate** der Funktion f zwischen A und B.

$$m=rac{f(b)-f(a)}{b-a}$$

Diesen Quotienten nennt man auch **Differenzenquotient** auf dem Intervall [a,b].

Beispiel

Gegeben ist die Funktoin $f(x) = 0.5x^2$.

Zeichnen Sie die Sekante durch die Punkte A und B ein und berechnen Sie den Differenzenquotienten auf dem Intervall [-1;3].

Übungsaufgaben

 ${\mathbb 1}$ Entscheiden Sie, zu welchem Graphen der Differenzenquotient passt. Begründen Sie.

a)
$$\frac{1,5-3}{1-(-2)} = -\frac{1}{2}$$

b)
$$\frac{3-1}{2-0} = 1$$

c)
$$\frac{-1-1}{1-(-1)} = -1$$

d)
$$\frac{4-(-1)}{2-1}=5$$

2 \square Gegeben sind die Funktionen f und g mit $f(x) = 0.5x^2$ und $g(x) = 3x^3 + 1$. Berechnen Sie für die Funktionen f und g jeweils den Differenzenquotienten im Intervall I.

c)
$$I = [-1; 1]$$

d)
$$I = [-2; -1]$$

Gegeben ist eine Funktion f. Bestimmen Sie die Gleichung der jeweiligen Sekante im gegebenen Intervall. Zeichnen Sie die Sekanten und den Funktionsgraphen.

a)
$$f(x) = x^2$$

2
$$[-2,5;-1]$$
 b) $f(x) = x^3 - 2x^2$

- 7 Gegeben ist die Funktion f mit $f(x) = x^2 3x + 1$.
 - a) Berechnen Sie den Differenzenquotienten von f in den folgenden Intervallen.

$$1 | | = [-3; -1]$$

$$| 2 | | = [-1; 1]$$

$$3 I = [0; 3]$$

- b) Entscheiden Sie begründet mit dem Ergebnis aus a) 2, in welche Richtung die Parabel der Funktion f im Vergleich zur Normalparabel mit $y = x^2$ verschoben ist.
- c) Geben Sie begründet mit Hilfe Ihres Ergebnisses von a) 3 die Stelle des Scheitelpunktes an.
- 11 Geben Sie zum rechts abgebildeten Graphen je zwei Intervalle an, in denen der Differenzenquotient ...
 - a) positiv ist.
 - b) negativ ist.
 - c) null ist.

Erläutern Sie jeweils Ihre Überlegungen.

Mittlere Änderungsrate im Kontext

Durschnittliche Änderungsrate ist ein anderer Begriff für mittlere Änderungsrate.

Übungsaufgaben

- 10 Erklären Sie die Bedeutung der durchschnittlichen Änderungsrate einer Funktion f, wenn ...
 - a) f(t) die bis zum Zeitpunkt t zurückgelegte Strecke (in m) ist.
 - b) f(t) die Bevölkerungszahl in einem Land zum Zeitpunkt t angibt.
 - c) f(t) die Höhe einer Pflanze (in cm) zum Zeitpunkt t angibt.
 - d) f(x) den Inhalt des Benzintanks (in I) eines Autos nach x km Fahrstrecke seit dem letz-
- 12 In einer Bakterienkultur verdoppelt sich die Anzahl der Bakterien nach jeder Stunde. Zu Beginn der Beobachtung waren 1905 Bakterien vorhanden. Das Wachstum der Bakterien lässt sich durch die Funktion f mit $f(t) = 1905 \cdot 2^t$ modellieren, wobei t die Zeit in Stunden angibt.
 - a) Berechnen Sie die mittlere Änderungsrate der Bakterienkultur in den folgenden Zeitintervallen I.

1
$$I = [3; 5]$$
 2 $I = [1; 9]$ 3 $I = [0,5; 2]$

b) Interpretieren Sie Ihre Ergebnisse aus a) im Sachzusammenhang.

Mathematik Seite 2/8

Die momentane Änderungsrate

Erarbeitung

Eine Seifenkiste fährt eine Straße hinunter. Der dabei zurückgelegte Weg kann anfangs näherungsweise durch die Funktionsgleichung s (t) = $\frac{1}{4}$ t² modelliert werden. Dabei steht t für die Zeit in Sekunden nach dem Start und s gibt die zurückgelegte Strecke in Metern an.

Vervollständigen Sie die zweite Zeile der Tabelle und zeichnen Sie den Graphen von s im Intervall I [0; 20] mit einem MMS.

t in s	0	2	4	8	10	12	16	19	19,9	19,99	19,999	20
s in m	0	1	4	16								
					Aittlere A	Änderun	asrate ir	[0. 20]	_			

 Berechnen Sie die mittleren
Änderungsraten für die in der Tabelle angegebenen Intervalle (Zeilen 3 bis 9).

in [16; 20] =

in [10; 20] =

in [19; 20] =

 Beschreiben Sie, wie sich die Intervalle ändern.
Erläutern Sie die damit verbundenen Veränderungen der mittleren Änderungsraten im Sachzusammenhang.

in [19,9; 20] = in [19,99; 20] =

■ Tobi behauptet: "Bei diesem Verfahren der veränderten Intervalle wird ja aus der Sekante eine Tangente." Nehmen Sie Stellung zu der Aussage von Tobi.

Tangente					
Die Tangente an den Graphen von $oldsymbol{f}$ an der Stelle x_0 ist eine Gerade , die den Gra-					
phen von f im Punkt $P(x_0 \mid f(x_0)$					
Die der Tangente ist gleich der der Funkitoin f im					
Punkt P .					

Momentane Änderungsrate

Die momentane Änderungsrate an der Stelle x_0 ist die Steigung der Tangente an den Graphen von f im Punkt $P(x_0 \mid f(x_0).$

Mathematik Seite 3/8

Idee zur näherungsweisen Bestimmung der momentanen Änderungsrate

Animation GeoGebra

Differenzenquotient mit h:

Beispiel: $f(x)=0.5x^2$, $x_0=2$

h	$rac{f(x_0+h)-f(x_0)}{h}$	h	$rac{f(x_0+h)-f(x_0)}{h}$
1		-1	
0,1		-0,1	
0,01		-0,01	
0,001		-0,001	

Mathematik Seite 4/8

Die h-Methode

Die näherungsweise Bestimmung der momentanen Änderungsrate durch eine Tabelle ist sehr aufwendig. Die h-Methode liefert ein anderes Vorgehen, den Grenzwert (Limes) des Differenzenquotienten zu bestimmen.

Ableitung & Differentialquotient

Die momentane Änderungsrate an der Stelle x_0 ist der Wert der Ableitung der Funktion f an der Stelle x_0 . Man schreibt $f'(x_0)$.

Den Grenzwert für h o 0 des Differenzenquotient wird als Differentialquotient bezeichnet.

Man schreibt:
$$\lim_{h o 0}rac{f(x_0+h)-f(x_0)}{h}=f'(x_0)$$

Beispiel:

$$\begin{split} f(x) &= 0.5x^2, x_0 = 2 \\ f'(2) &= \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} \\ &= \lim_{h \to 0} \frac{0.5 \cdot (2+h)^2 - 0.5 \cdot 2^2}{h} \\ &= \lim_{h \to 0} \frac{0.5 \cdot (4+4h+h^2) - 2}{h} \\ &= \lim_{h \to 0} \frac{2+2h+0.5h^2 - 2}{h} \\ &= \lim_{h \to 0} \frac{2h+0.5h^2}{h} \\ &= \lim_{h \to 0} 2 + 0.5h \\ &= 2 \end{split}$$

9 Arina hat Ableitungen berechnet. Geben Sie an, welche Fehler Arina gemacht hat, und korrigieren Sie diese.

Mathematik Seite 5/8

Die Ableitungsfunktion

M	Differenzierbarkeit
	Differ effzier bar keit

Eine Funktion f ist an der Stelle x **differenzierbar**, wenn der Graph von f an der Stelle \boldsymbol{x} eine Tangente besitzt und so die Ableitung bestimmt werden kann.

\square Die Ableitungsfunktion f'(x)

Wenn die Funktion f für alle x-Werte auf dem Definitionsbereich differenzierbar ist, so heißt die Funktion, die jeder Stelle x die Ableitung $f^\prime(x)$ zuordnet, Ableitungsfunktion f'(x) oder kurz Ableitung von f.

Die Ableitungsfunktion f'(x) ordnet jeder Stelle x das Folgende zu:

Strategie: Bestimmung der Ableitungsfunktion mit der h-Methode

Idee: Berechnung an einer allge-

meinen Stelle x_0 :

Beispiel: $f(x)=x^2$

$$f'(x_0) = \lim_{h o 0}rac{f(x_0+h)-f(x_0)}{h} \ = \lim_{h o 0}rac{(x_0+h)^2-x_0^2}{h}$$

Die Ableitungsfunktion von f lautet: $_$

Mathematik Seite 6/8

Höhere Ableitungen

Ist die erste Ableitungsfunktion f'(x) differenzierbar, so ist ihre Ableitung die zweite Ableitung der Funktion f und man schreibet f''(x).

Ist die zweite Ableitung von f differenzierbar, so ist ihre Ableitung die dritte Ableitung der Funktion f und man schreibt f'''(x).

Übungsaufgabe

Bestimmen Sie die Funktionsgleichung von f'.

a)
$$f(x) = 3x^2$$

b)
$$f(x) = 4x^2$$

c)
$$f(x) = 5x^2$$

d)
$$f(x) = -3x^2 - x$$

e)
$$f(x) = -4x^2 + 2x$$

f)
$$f(x) = -5x - 2x$$

Bestimmung der Ableitung mit Ableitungsregeln

Gerade für längere und komplexere Funktionen ist es sehr aufwendig, die Ableitungsfunktion mit Hilfe der h-Methode zu bestimmen.

Stattdessen kommen Ableitungsregeln zum Einsatz.

Sie lernen im Folgenden drei Ableitungsregeln kennen. Diese werden selbstverständlich auch in Kombinatnion angewendet.

Die Potenzregel

Für jede natürliche Zahl n als Exponent ist die Potenfunktion $f(x)=x^n$ differenzierbar und die Ableitung ist $f'(x) = n \cdot x^{n-1}$.

Beispiele:

$$-f(x)=x^3$$
: $f'(x)=$

$$-f(x)=x$$
: $f'(x)=$ _______

$$-f(x) = 5$$
: $f'(x) =$ ______

Merke: Die Ableitung einer **Konstanten** ist immer _____

Mathematik Seite 7/8

Die Faktorregel

Für jede natürliche Zahl n ist die Funktion $f(x) = a \cdot x^n$ differenzierbar und für die Ableitung f' gilt: $f'(x) = a \cdot n \cdot x^{n-1}$.

Der konstante Faktor a bleibt also beim Ableiten erhalten.

Alternative Formulierung: Für $f(x) = a \cdot g(x)$ gilt $f'(x) = a \cdot g'(x)$

Beispiele:

$$-f(x)=3\cdot x^{12}$$
: $f'(x)=$ _______

$$-f(x) = -2 \cdot x^3$$
: $f'(x) =$

$$-f(x)=4x$$
: $f'(x)=$ _______

Die Summenregel

Sind die ganzrationalen Funktionen g und h differenzierbare Funktionen, so ist auch die Funktion f mit f(x)=g(x)+h(x) differenzierbar und es gilt:

$$f'(x) = g'(x) + h'(x).$$

Eine ganzrationale Funktion wird also **summandenweise** abgeleitet.

Die Ableitungen der einzelnen Summanden werden dabei mit der Potenz- und Faktorregel bestimmt.

Beispiele:

$$f(x) = x^3 - x^2$$
: $f'(x) =$

$$f(x) = 2x^5 + 7x^4$$
: $f'(x) =$ _______

•
$$f(x) = 8x^3 - 4x^2 + 3x - 9$$
: $f'(x) =$

Berechnen Sie den Wert der Ableitung an der Stelle x₀.

a)
$$f(x) = x^5; x_0 = 2$$

a)
$$f(x) = x^5$$
; $x_0 = 2$
b) $f(x) = 4x^{10}$; $x_0 = \frac{1}{2}$
c) $f(x) = -6x^6$; $x_0 = -1$
d) $f(x) = \frac{1}{4}x$; $x_0 = 1$
e) $f(x) = \frac{1}{2}x^4$; $x_0 = \frac{3}{2}$
f) $f(x) = \frac{3}{8}x^8$; $x_0 = 1$

c)
$$f(x) = -6x^6$$
; $x_0 = -1$

d)
$$f(x) = \frac{1}{4}x$$
; $x_0 = 1$

e)
$$f(x) = \frac{1}{2}x^4$$
; $x_0 = \frac{3}{2}$

f)
$$f(x) = \frac{3}{8}x^8$$
; $x_0 = 1$

6 Bestimmen Sie alle Stellen, an denen die Funktion f die Steigung m hat.

a)
$$f(x) = \frac{1}{5}x^2$$
; $m = 10$ b) $f(x) = 8x$; $m = 8$ c) $f(x) = 4x^3$; $m = 12$

b)
$$f(x) = 8x; m = 8$$

c)
$$f(x) = 4x^3$$
; $m = 12$

d)
$$f(x) = \frac{3}{2}x^4$$
; $m = 48$ e) $f(x) = \frac{1}{2}x^5$; $m = \frac{5}{2}$ f) $f(x) = x$; $m = 1$

e)
$$f(x) = \frac{1}{2}x^5$$
; $m = \frac{5}{2}$

f)
$$f(x) = x; m = 1$$