

功率管的研究过程

哈尔滨工业大学空间控制与惯性技术研究中心解伟男

見 录

- 1 功率管的开关过程
 - 1.1 电阻负载开关过程
 - 1.2 电阻和电感负载开关过程
 - 1.3 有续流回路的电阻和电感负载开关过程
- 2 开关器件的发热与散热
 - 2.1 开关器件的发热计算
 - 2.2 开关器件的散热计算
- 3 开关器件的驱动
- 4 开关器件的保护
 - 4.1 关断缓冲电路
 - 4.2 开通缓冲电路

○ 晶体管+电阻负载

○ 晶体管+电阻负载

开通时间

 $\{$ 延迟时间 $t_d = t_1 - t_0$ 上升时间 $t_r = t_2 - t_1$

关断时间

{存储时间t_s =t₄-t₃ 下降时间t_f =t₅-t₄

o 晶体管+电阻负载

开通时间

′延迟时间t_d =t₁-t₀:A->B 上升时间t_r =t₂-t₁:B->C

关断时间

存储时间t_s =t₄-t₃:D->C 下降时间t_f =t₅-t₄:C->B

○ 晶体管+电阻负载

- 晶体管+电阻和电感负载
 - \mathbf{n} 假设控制信号周期变化, \mathbf{T} 为周期,电路时间常数为 $\mathbf{T}_{c} = \mathbf{L}_{c} / \mathbf{R}_{c}$
 - n 当T较大时,负载电流断续

o 当负载电流断续时

1. $\mathbf{u}_{\mathbf{B}}$ 使晶体管开通, $\mathbf{u}_{\mathbf{CE}}$ 迅速下降,但由于电感的存在 $\mathbf{i}_{\mathbf{C}}$ 缓慢上升

$$L_C \frac{di_C}{dt} + R_C i_C = U_D - u_{CE}$$

ic按指数曲线增加,晶体管工作点沿MaN移动

- 当负载电流断续时
 - $\mathbf{2.}\ \mathbf{u_B}$ 使晶体管关断,由于电感的存在, $\mathbf{i_c}$ 减小产生的自感电动势使 $\mathbf{u_{CF}}$ 迅速升高,达到击穿区

9

$$u_{CE} = U_D + e_2 - i_C R_C$$

晶体管工作点沿Nb移动

- o 当负载电流断续时
 - 3. 晶体管击穿后,等效一个理想的放电电阻, \mathbf{u}_{CE} 保持在击穿电压,电流指数关系下降

晶体管工作点沿bc移动

- o 当负载电流断续时
 - **4.** 当电流下降为0后,晶体管击穿后 \mathbf{u}_{CE} 由击穿电压下降为 \mathbf{u}_{D} ,晶体管关断

晶体管工作点沿cdM移动

- 晶体管+电阻和电感负载
 - n 当T较小时,负载电流连续

- 晶体管+电阻和电感负载
 - n 无论电流连续还是电流断续,晶体管的工作区都进入了击穿区

公司省フ書大学 EARBIN INSTITUTE OF TECHNOLOGY

○ 晶体管+续流回路电阻和电感负载

n 电流也分为连续和断续,但大多数情况是连续的

○ 晶体管+续流回路电阻和电感负载

1. $0 < t < t_1$,晶体管处于通态,负载电流按指数增加由i'到i'',感应电动势为 e_1 ,二极管截止

晶体管工作点从1移动到2

○ 晶体管+续流回路电阻和电感负载

 $2. t=t_1$,晶体管关断过程中,电流减小微弱,感应电动势为 e_2 , u_{CE} 升高,二极管截止

晶体管工作点从2移动到3

○ 晶体管+续流回路电阻和电感负载

3. 当 \mathbf{u}_{C} > \mathbf{U}_{D} +0.7 \mathbf{V} 时, \mathbf{D} 开通, \mathbf{u}_{C} 被钳制 在 \mathbf{U}_{D} +0.7 \mathbf{V} , \mathbf{i}_{D} 增加, \mathbf{i}_{C} 减小到 $\mathbf{0}$,晶体管 关断

晶体管工作点从3移动到4

○ 晶体管+续流回路电阻和电感负载

4. t=T,晶体管开通过程中,D电流减小, i_C 电流增加, u_C 依旧被钳制在 $U_D+0.7V$

晶体管工作点从4移动到5

○ 晶体管+续流回路电阻和电感负载

5. 当 $\mathbf{i}_{\mathbf{C}}$ = \mathbf{i}' 时, $\mathbf{i}_{\mathbf{D}}$ = $\mathbf{0}$,二极管反向过冲电流也流入晶体管

晶体管工作点从5移动到5′,又返回至5

 $i_{\rm C}^{"}$

晶体管+续流回路电阻和电感负载

6. 二极管反向过冲结束后, 无二极管电压钳 制,**u**_{CE}下降

晶体管工作点从5移动到1

○ 晶体管+续流回路电阻和电感负载

2 开关器件的发热与散热

- 发热与散热是功率放大器件必须考虑的问题
- 散热的重要性
 - n PN结特性受温度影响

GTO中PN结击穿示意图

GTO平均阳极电流与结温关系

2 开关器件的发热与散热

o 散热的重要性

13:39:49

n PN结特性受温度影响

23

- 开关器件的总功率损耗
 - n 通态损耗
 - n 断态损耗
 - n 开通损耗
 - n 关断损耗
 - n 驱动损耗
- 除驱动损耗外,总的平均损耗

$$P_d = f \int_0^{1/f} u(t)i(t)dt$$

f--开关频率

u(t)——每周期内电压瞬时值

i(t)——每周期内电流瞬时值

- 电阻负载时的开关损耗
 - n 开通功耗

$$W_{on} = \int_0^{t_{on}} V_{cc} (1 - \frac{t}{t_{on}}) I_m \frac{t}{t_{on}} dt = \frac{1}{6} V_{cc} I_m t_{on}$$

n 开通损耗(功率)

$$P_{on} = fW_{on} = \frac{1}{6} fV_{cc} I_m t_{on}$$

n 关断功耗

$$W_{off} = \int_{0}^{t_{off}} V_{cc} \frac{t}{t_{off}} I_{m} (1 - \frac{t}{t_{off}}) dt = \frac{1}{6} V_{cc} I_{m} t_{off}$$

n 关断损耗(功率)

$$P_{off} = fW_{off} = \frac{1}{6} fV_{cc} I_m t_{off}$$

- 电阻负载时的开关损耗
 - n 通态损耗(功率)

$$P_{\mathbb{H}} = V_F I_m d$$

 δ ——控制信号的占空比

n 断态损耗(功率)

$$P_{\mathbb{M}} = V_{CC}I_L(1-\boldsymbol{d})$$

n 驱动损耗(功率)

$$P_{\text{MSD}} = V_{BE}I_{B}d$$

 I_B ——基极驱动电流 V_{BE} ——基射极电压

- 电阻电感负载时的开关损耗
 - n 开通功耗

$$W_{on} = \int_0^{t_1} V_{CC} I_m \frac{t}{t_1} dt + \int_0^{t_2} V_{CC} (1 - \frac{t}{t_2}) I_m dt = \frac{1}{2} V_{CC} I_m t_{on}$$

n 开通损耗(功率)

$$P_{on} = fW_{on} = \frac{1}{2} fV_{cc} I_m t_{on}$$

- 电阻电感负载时的开关损耗
 - n 关断功耗

$$W_{off} = \int_0^{t_3} V_{CC} \frac{t}{t_3} I_m dt + \int_0^{t_4} V_{CC} I_m (1 - \frac{t}{t_4}) dt = \frac{1}{2} V_{CC} I_m t_{off}$$

n 关断损耗(功率)

$$P_{off} = fW_{off} = \frac{1}{2} fV_{cc} I_m t_{off}$$

- 电阻电感负载时的开关损耗
 - n 通态损耗、断态损耗、驱动损耗与电阻负载时相同

$$P_{\mathbb{H}} = V_F I_m d$$

$$P_{\mathbb{H}} = V_{CC}I_L(1-d)$$

$$P_{\text{MED}} = V_{BE}I_{B}d$$

o 总损功耗和总损耗(功率)

$$P_{\stackrel{.}{\boxtimes}}=P_{on}+P_{off}+P_{\stackrel{.}{\boxplus}}+P_{\stackrel{.}{\boxplus}}+P_{\stackrel{.}{\boxplus}}$$

$$W_{\stackrel{}{\boxtimes}} = P_{\stackrel{}{\boxtimes}} / f$$

- o 对开关器件来说, 散热途径主要采用热传导方式
- 稳态热路图与热阻
 - n 管芯内温度最高的部分在PN结上
 - n PN结的温度通过管壳、散热器传 至环境介质
 - n 当管芯上每秒消耗功率产生的热量 与每秒散发出去的热量相等时,管 芯的温度就达到**稳定状态**,结温不 再升高。
 - n 热阻指的是当有热量在物体上传输时,在物体两端温度差与热源功率之间的比值。单位为K/W或℃/W

○ 稳态热路图与热阻

 T_{I} ——PN结的结温

 T_c —一管外壳温度

 T_s ——散热片温度

 T_a ——环境温度

P--芯片的功率

 $R_{\theta,Ic}$ ——PN结和管外壳之间的热阻

 $R_{\theta cs}$ ——管外壳和散热器之间的热阻

 $R_{\theta sa}$ ——散热器和环境之间的热阻

- 稳态热路图与热阻
 - n 稳态等效热路图

 $R_{\theta Ja}$ ——PN结和环境之间的热阻 $R_{qJa} = R_{qJc} + R_{qcs} + R_{qsa}$

 ΔT ——PN结和环境之间的温度差

$$\Delta T = T_J - T_a$$

稳态时热阻的概念才适用!!!

- o 稳态热路图与热阻
 - n 稳态等效热路图与电路图的对应关系

电路		稳态等效热路	
电压差 AU	单位: 伏特(V)	温度差 ΔT 单位: 摄氏度(°C)	
电流 I	单位:安培(A)	热流(功率)P 单位: 瓦特(W)	
电阻 R	单位:欧姆(Ω)	热阻 R _θ 单位: 摄氏度/瓦(℃/ W)	
欧姆定律	ΔU=RI	$\Delta T = R_{\theta}P$	

如何才能减小PN结温度?

- 热阻的组成与分类
 - \mathbf{n} $\mathbf{R}_{\theta Ja}$ 为器件散热时的总热阻

$$R_{qJa} = R_{qJc} + R_{qcs} + R_{qsa}$$

n $R_{\theta Jc}$ 也称为内热阻; $R_{\theta cs}$ 称为接触热阻和 $R_{\theta sa}$ 称为散热器热阻

o 内热阻

- \mathbf{n} $R_{\theta,\mathbf{lc}}$ 也称为<mark>内热阻</mark>, $\mathbf{P}\mathbf{N}$ 结和管壳之间的热阻
- n 内热阻由器件的结构、工艺和材料决定
- n 减小内热阻是器件设计者的任务。当选定某器件后,内热阻无法改变
- n LM1875热阻数据

THERMAL DATA

DESCRIPTION	SYMBOL	RATING	UNIT
Thermal Resistance, Junction-case	θ JC	3	°C/W
Thermal Resistance, Junction-ambient	θЈΑ	73	°C/W

TO-220B

● 哈爾濱ノ葉大學 BARBIN INSTITUTE OF TECHNOLOGY

o 接触阻

- \mathbf{n} $R_{\theta cs}$ 也称为接触热阻,管壳和散热器之间的热阻
- n 接触热阻与器件的封装形式有关。与器件和散热器之间是否有垫圈,是 否涂有硅油有关

封装形式	绝缘垫 閱	$R_{\theta_{i,x}}(^{\circ}\mathbb{C}/\mathbf{W})$	
		有硅油	无矿油
TO-3	无绝缘垫圈	0.10	0.30
	聚四氟乙烯	0.700.80	1.25 1.45
	云母 (50-100μm)	0.50 0.70	1.20 1.50
TO-66	无绝缘垫圈	0.15 0.20	0.40 0.50
	云母(50-100μm)	0.60 0.80	1.20 2.00
	梁脂薄膜(50-100μm)	0.60 -0.80	1.20—1.40
TO-220AB	无绝缘垫图	0.30 - 0.50	1.50-2.00
	云母 (50-100μm)	2.00 2.50	4.0-6.0
TO-3P(L)	无绝缘垫阀	0.10.2	0.4—1.0
	云母 (50-100μm)	0.50.7	1.2—1.5

o 接触阻

n 接触热阻与器件的封装形式有关。与器件和散热器之间是否有垫圈,是 否涂有硅油有关

TO-3

TO-220

n 器件与散热器表面要平整、光洁

- o 接触阻
 - n 接触热阻与安装力有关

安装力或安装力矩 越大越好?

螺栓型器件接触热阻与锁紧力矩关系

- 散热器热阻
 - \mathbf{n} $R_{\theta sa}$ 也称为<mark>散热器热阻</mark>,散热器和环境之间的热阻
 - n 开关器件一般功率较大,都需要加散热器
 - n 散热器热阻与散热器的材质、结构、表面颜色、安装位置以及环境冷却 方式有关
 - n 散热器的材质有紫铜和工业铝

o 散热器热阻

- n 自冷散热器表面最好是黑色,借以提高辐射系数,黑色散热器比光亮散热器可减小10—15%的热阻
- n 散热器多为翼片形状以增加散热面积,因为气流向上流动,垂直位置比水平位置可减小热阻**15—20%**

- 散热器热阻
 - n 散热器的大小(长度)与热阻有关

- o 散热器热阻
 - n 散热器的冷却方式有四种:自冷、风冷、水冷、沸腾冷却
 - n 自冷是通过自然对流和辐射带 走热量,适用于小功率
 - n 风冷应用于额定电流50-500A, 散热效率为自冷的2-4倍
 - n 水冷应用于额定电流500A以上,散热效率为自冷的150倍以上
 - n 沸腾冷却通过冷却媒质(氟利昂、 液氮等)的挥发带走热量

例: 设GTR的工作条件: 开关电流为20A,工作电压为100V,工作频率为10kHz,占空比为90%,电阻电感负载,器件的内热阻 $R_{\theta Jc}$ 为0.7°C/W,通态电压箝位在1V,开通时间为1 μ s,关断时间为2 μ s,环境温度为35°C,结温不得超过125°C,封装形式为TO-3,并直接与散热器装配,涂有硅油。依据上述条件,设计所需最小散热器的尺寸。(忽略驱动损耗和断态损耗)

封装形式	绝缘 垫 閱	$R_{\theta_{i,z}}(^{\circ}C/W)$	
		有硅油	无矿油
ТО-3	无绝缘垫圈	0.10	0.30
	聚四闽乙烯	0.700.80	1.25 1.45
	云母 (50-100 µm)	0 50 0.70	1.20 1.50

例: 设GTR的工作条件: 开关电流为20A,工作电压为100V,工作频率为10kHz,占空比为90%,电阻电感负载,器件的内热阻 $R_{\theta Jc}$ 为0.7°C/W,通态电压箝位在1V,开通时间为1 μ s,关断时间为2 μ s,环境温度为35°C,结温不得超过125°C,封装形式为TO-3,并直接与散热器装配,涂有硅油。依据上述条件,设计所需最小散热器的尺寸。(忽略驱动损耗和断态损耗)

解: 器件的通态功率为

$$\overline{P_{\text{iff}}} = V_F I_m d = 1V \times 20A \times 0.9 = 18W$$

器件的开关功率为

$$P_{on+off} = P_{on} + P_{off} = \frac{1}{2}V_{CC}I_m(t_{on} + t_{off})f$$

$$= \frac{1}{2} \times 100V \times 20A \times (1 \text{ms} + 2 \text{ms}) \times 10kHz$$

$$= 30W$$

例: 设GTR的工作条件: 开关电流为20A,工作电压为100V,工作频率为10kHz,占空比为90%,电阻电感负载,器件的内热阻 $R_{\theta Jc}$ 为0.7°C/W,通态电压箝位在1V,开通时间为1 μ s,关断时间为2 μ s,环境温度为35°C,结温不得超过125°C,封装形式为TO-3,并直接与散热器装配,涂有硅油。依据上述条件,设计所需最小散热器的尺寸。(忽略驱动损耗和断态损耗)

解: 器件的总功率为

$$P_d = P_{\text{iff}} + P_{on+off} = 18W + 30W = 48W$$

系统要求的最大热阻为

$$R_{qJa} = \frac{\Delta T}{P} = \frac{125^{\circ}\text{C} - 35^{\circ}\text{C}}{48W} = 1.875^{\circ}\text{C/W}$$

封装形式为TO-3,并直接与散热器装配,涂有硅油,可得

$$R_{qcs} = 0.1^{\circ}\text{C}/W$$

例: 设GTR的工作条件: 开关电流为20A,工作电压为100V,工作频率为10kHz,占空比为90%,电阻电感负载,器件的内热阻 $R_{\theta Jc}$ 为0.7°C/W,通态电压箝位在1V,开通时间为1 μ s,关断时间为2 μ s,环境温度为35°C,结温不得超过125°C,封装形式为TO-3,并直接与散热器装配,涂有硅油。依据上述条件,设计所需最小散热器的尺寸。(忽略驱动损耗和断态损耗)

解: 器件的散热器热阻最大值为

$$\begin{split} R_{qsa} &= R_{qJa} - R_{qJc} - R_{qcs} \\ &= 1.875 ^{\circ} \text{C/W} - 0.7 ^{\circ} \text{C/W} - 0.1 ^{\circ} \text{C/W} = 1.075 ^{\circ} \text{C/W} \end{split}$$

根据图查得所需散热器长度为75mm

开关时间很短,但 开关功耗却不小, 为什么? 提高开关频率后会 有什么问题?

- 开关器件的驱动概述
 - n 驱动电路是主电路和控制电路的接口
 - n 目的:1信号的放大;2使器件工作在理想的开关状态;3缩短开关时间;4提供一定的保护措施
- o 隔离
 - n 驱动电路需要提供控制电路和主电路的电气隔离
 - n 主要采用光隔离和磁隔离
 - n 光隔离: 光耦(快速性较差)
 - n 磁隔离: 脉冲变压器(快速性较好)

- o隔离
 - n 光耦
 - n 输出特性和三极管相似,但有如下区别:
 - 1 传输比小:

$$\boldsymbol{b} = \frac{I_C}{I_D} \approx 0.1 \sim 0.3$$

2 传输速度慢 普通光耦响应时间约为10μs 高速光耦响应时间可达100ns

光耦——4N25

TEST CIRCUIT

 $V_{CC} = 10V$ **INPUT** OUTPUT R_{BE} Adjust IF to produce Ic = 2 mA

WAVE FORMS

当 I_F =2mA, V_{CC} =10V, R_L =100 Ω 时, t_{on} 为2 μ s, t_{off} 为2 μ s

o 理想晶闸管触发电流波形

- n t_1 - t_2 ——小于1 μ S
- n I_M——幅值为3I_{GT}-5I_{GT}
- n t_3 - t_4 ——保证晶闸管可靠导通
- n I——幅值为1.5I_{GT}-2I_{GT}

I_{GT}为晶闸管额定直流触发电流

强脉冲保证晶闸管快速导通 宽脉冲保证晶闸管可靠导通

o 理想GTR驱动电流波形

- n 正尖脉冲减小GTR开通时间
- n 负尖脉冲减小GTR关断时间
- n GTR关断后要保证基极有一定的负偏压

- o 贝克箝位电路
 - n 为了减小GTR关断时间,应使GTR工作在临界饱和状态
 - n 对于GTR而言,当V_{CE}在0.7-3V范围内即为临界饱和状态

n 导通时

$$V_{BE} + V_{D2} + V_{D3} = V_{CE} + V_{D1}$$

若认为二极管压降均为0.7V,则有

$$V_{CE} = 1.4V$$

n 关断时,**D4**为反向抽走基极载流 子提供了电流通路

- 开关器件应采用合适的过电压保护、过电流保护、du/dt保护和di/dt保护
- 缓冲电路又称为吸收电路,其作用是抑制电力电子器件的内因过电压、du/dt或者过电流和di/dt,减小器件的开关损耗。
 - n 缓冲电路可分为关断缓冲电路和开通缓冲电路
 - n 关断缓冲电路用于抑制器件关断时的过电压和du/dt,减小器件的关断损耗。
 - n 开通缓冲电路用于抑制器件开通时的过电流和di/dt,减小器件的开通损耗

4.1 关断缓冲电路

- o 关断缓冲电路
 - n 无关断缓冲时

- (1) 开关管V关断过程中, $i_{ZL}=i_{C}$ 微弱减小,感应电动势使 u_{CE} 升高
- (2) 当 \mathbf{u}_{CE} 升高于 \mathbf{V}_{CC} +0.7V时,二极管D导通, \mathbf{u}_{CE} 被 钳制在 \mathbf{V}_{CC} +0.7V, \mathbf{i}_{ZL} = \mathbf{i}_{C} + \mathbf{i}_{D} , \mathbf{i}_{D} 增加, \mathbf{i}_{C} 减小为零时,器件V关断

4.1 关断缓冲电路

- o 关断缓冲电路
 - n 有关断缓冲时

 V_{CC} Z_L V R_s D_s C_s

- (1) 开关管V关断过程中, $i_{ZL}=i_{C}+i_{DS}$,由二极管 D_{s} 给电动 C_{S} 充电, i_{C} 减小, i_{DS} 增加,由于电容 C_{s} 两端电压不能突变, u_{CE} 被限制,电容越大,du/dt越小
- (2) 当i_C减小到零时,器件V关断
- (3) 当 u_{CE} 升高于 V_{CC} +0.7V时,二极管D导通, u_{CE} 被钳制在 V_{CC} +0.7V
- (4) 当开关管V导通后, C_s 充的电通过 R_s 释放掉

4.1 关断缓冲电路

o 关断缓冲电路

4.2 开通缓冲电路

- o 开通缓冲电路
 - n 无开通缓冲时

- (1) 开关管V开通过程中, $i_{ZL}=i_{C}+i_{D}$, i_{D} 减小, i_{C} 增大,由于二极管D导通, u_{CE} 被钳制在 $V_{CC}+0.7V$

4.2 开通缓冲电路

- o 开通缓冲电路
 - n 有开通缓冲时

- (1) 开关管V开通过程中, $i_{ZL}=i_{Li}+i_D$,由于流过电感 L_i 的电流不能突变, $i_{Li}=i_C$ 缓慢增加,电感越大,di/dt越小,由于电感 L_i 的存在,其两端有电压, u_{CE} 不能被钳制,逐渐减小
- (2) 当u_{CE}减小为零时,器件V开通
- (3) 当 i_{ZL} = i_{Li} 时, i_D =0,二极管D关断
- (4) 当开关V管关断后,Li充的电通过Ri释放掉

4.2 开通缓冲电路

- o 开通缓冲电路
 - n 有开通缓冲时

开关器件的能量损耗

60

减小的损耗哪里去了?

o 关断缓冲+开通缓冲

o 实际电路

