Economics 103 – Statistics for Economists

Minsu Chang

University of Pennsylvania

Lecture 24

Regression - Part II

Recall: "Best Fitting" Line Through Cloud of Points

Recall: Regression as a Data Summary

Linear Model

$$\hat{y} = a + bx$$

Choose a, b to Minimize Sum of Squared Vertical Deviations

$$\sum_{i=1}^{n} d_i^2 = \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

The Prediction

Predict score $\hat{y} = a + bx$ on second midterm for someone with score x on first.

Recall: Regression as a Data Summary

Problem

$$\min_{a,b} \sum_{i=1}^n (y_i - a - bx_i)^2$$

Solution

$$b = \frac{\sum_{i=1}^{n} (y_i - \bar{y}) (x_i - \bar{x})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = \frac{s_{xy}}{s_x^2} = r \frac{s_y}{s_x}$$
$$a = \bar{y} - b\bar{x}$$

Beyond Regression as a Data Summary

Based on a sample of Econ 103 students, we made the following graph of handspan against height, and fitted a linear regression:

The estimated slope was about 1.4 inches/cm and the estimated intercept was about 40 inches.

What if anything does this tell us about the relationship between height and handspan in the population?

The Population Regression Model

How is Y (height) related to X (handspan) in the population?

Assumption I: Linearity

The random variable Y is linearly related to X according to

$$Y = \beta_0 + \beta_1 X + \epsilon$$

 β_0, β_1 are two unknown population parameters (constants).

Assumption II: Error Term ϵ

 $E[\epsilon]=0$, $Var(\epsilon)=\sigma^2$ and ϵ is indpendent of X. The error term ϵ measures the unpredictability of Y after controlling for X

Predictive Interpretation of Regression

Under Assumptions I and II

$$E[Y|X] = \beta_0 + \beta_1 X$$

- ▶ "Best guess" of Y having observed X = x is $\beta_0 + \beta_1 x$
- ▶ If X = 0, we predict $Y = \beta_0$
- If two people differ by one unit in X, we predict that they will differ by β_1 units in Y.

The only problem is, we don't know $\beta_0, \beta_1...$

Estimating β_0, β_1

Suppose we observe an iid sample $(Y_1, X_1), \ldots, (Y_n, X_n)$ from the population: $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$. Then we can *estimate* β_0, β_1 :

$$\widehat{\beta}_1 = \frac{\sum_{i=1}^n (X_i - \bar{X}_n)(Y_i - \bar{Y}_n)}{\sum_{i=1}^n (X_i - \bar{X}_n)^2}$$

$$\widehat{\beta}_0 = \bar{Y}_n - \widehat{\beta}_1 \bar{X}_n$$

Once we have estimators, we can think about sampling uncertainty...

Sampling Uncertainty: Pretend the Class is our Population

Figure: Estimated Slope = 1.4, Estimated Intercept = 40

Sampling Distribution of Regression Coefficients \widehat{eta}_0 and \widehat{eta}_1

Repeat 1000 times \rightarrow get 1000 different pairs of estimates Sampling Distribution: long-run relative frequencies

1000 Replications, n = 25

Population: Intercept = 40, Slope = 1.4

Inference for Linear Regression

Central Limit Theorem

$$rac{\widehat{eta}-eta}{\widehat{\mathit{SE}}(\widehat{eta})}pprox \mathit{N}(0,1)$$

How to calculate \widehat{SE} ?

- Complicated
 - ightharpoonup Depends on variance of errors ϵ and all predictors in regression.
 - We'll look at a few simple examples
 - R does this calculation for us
- ightharpoonup Requires assumptions about population errors ϵ_i
 - ▶ Simplest (and R default) is to assume $\epsilon_i \sim iid(0, \sigma^2)$
 - Weaker assumptions in Econ 104

Intuition for What Effects $SE(\widehat{\beta}_1)$ for Simple Regression

$$SE(\widehat{\beta}_1) \approx \frac{\sigma}{\sqrt{n}} \cdot \frac{1}{s_X}$$

- $\sigma = SD(\epsilon)$ inherent variability of the Y, even after controlling for X
- n is the sample size
- \triangleright s_X is the sampling variability of the X observations.

I treated the class as our population for the purposes of the simulation experiment but it makes more sense to think of the class as a sample from some population. We'll take this perspective now and think about various inferences we can draw from the height and handspan data using regression.

$\mathsf{Height} = \beta_0 + \epsilon$

$\mathsf{Height} = \beta_0 + \epsilon$

$\mathsf{Height} = \beta_0 + \epsilon$

```
lm(formula = height ~ 1, data = student.data)
            coef.est coef.se
(Intercept) 67.74 0.51
n = 80, k = 1
> mean(student.data$height)
[1] 67.7375
> sd(student.data$height)/sqrt(length(student.data$height))
[1] 0.5080814
```

Dummy Variable (aka Binary Variable)

A predictor variable that takes on only two values: 0 or 1. Used to represent two categories, e.g. Male/Female.

Height = $\beta_0 + \beta_1$ Male $+\epsilon$

Height = $\beta_0 + \beta_1$ Male $+\epsilon$

```
lm(formula = height ~ sex, data = student.data)
           coef.est coef.se
(Intercept) 64.46 0.56
sexMale 6.10 0.76
n = 80, k = 2
residual sd = 3.38, R-Squared = 0.45
> mean(male$height) - mean(female$height)
[1] 6.09868
```

Height = $\beta_0 + \beta_1$ Male $+\epsilon$

```
lm(formula = height ~ sex, data = student.data)
           coef.est coef.se
(Intercept) 64.46 0.56
sexMale 6.10 0.76
n = 80, k = 2
residual sd = 3.38, R-Squared = 0.45
> mean(male$height) - mean(female$height)
[1] 6.09868
> sqrt(var(male$height)/length(male$height) +
  var(female$height)/length(female$height))
[1] 0.7463796
```


What is the ME for an approximate 95% confidence interval for the difference of population means of height: (men - women)?

$Height = \beta_0 + \beta_1 Handspan + \epsilon$

$\mathsf{Height} = \beta_0 + \beta_1 \; \mathsf{Handspan} \; + \epsilon$

What is the ME for an approximate 95% CI for β_1 ?

Simple vs. Multiple Regression

Terminology

Y is the "outcome" and X is the "predictor."

Simple Regression

One predictor variable: $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$

Multiple Regression

More than one predictor variable:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \ldots + \beta_k X_{ik} + \epsilon_i$$

- ▶ In both cases $\epsilon_1, \epsilon_2, \ldots, \epsilon_n \sim iid(0, \sigma^2)$
- ▶ Multiple regression coefficient estimates $\widehat{\beta}_1, \widehat{\beta}_1, \ldots, \widehat{\beta}_k$ calculated by minimizing sum of squared vertical deviations, but formula requires linear algebra so we won't cover it.

Interpreting Multiple Regression

Predictive Interpretation

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \ldots + \beta_k X_{ik} + \epsilon_i$$

 β_j is the difference in Y that we would predict between two individuals who differed by one unit in predictor X_j but who had the same values for the other X variables.

What About an Example?

In a few minutes, we'll work through an extended example of multiple regression using real data.

Inference for Multiple Regression

In addition to estimating the coefficients $\widehat{\beta}_0, \widehat{\beta}_1, \dots, \widehat{\beta}_k$ for us, R will calculate the corresponding standard errors. It turns out that

$$\frac{\widehat{eta}_j - eta_j}{\widehat{\mathit{SE}}(\widehat{eta})} pprox \mathit{N}(0,1)$$

for each of the $\widehat{\beta}_j$ by the CLT provided that the sample size is large.

$\mathsf{Height} = \beta_0 + \beta_1 \; \mathsf{Handspan} \; + \epsilon$

What are residual sd and R-squared?

Fitted Values and Residuals

Fitted Value \hat{y}_i

Predicted *y*-value for person *i* given her *x*-variables using estimated regression coefficients: $\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_{i1} + \ldots + \widehat{\beta}_k x_{ik}$

Residual $\widehat{\epsilon}_i$

Person i's vertical deviation from regression line: $\hat{\epsilon}_i = y_i - \hat{y}_i$.

The residuals are *stand-ins* for the unobserved errors ϵ_i .

Residual Standard Deviation: $\widehat{\sigma}$

▶ Idea: use residuals $\hat{\epsilon}_i$ to estimate σ

$$\widehat{\sigma} = \sqrt{\frac{\sum_{i=1}^{n} \widehat{\epsilon}_{i}^{2}}{n-k}}$$

- \triangleright Measures avg. distance of y_i from regression line.
 - ▶ E.g. if Y is points scored on a test and $\hat{\sigma} = 16$, the regression predicts to an accuracy of about 16 points.
- Same units as Y
- ▶ Denominator (n k) = (# Datapoints # of X variables)

Proportion of Variance Explained: R^2

aka Coefficient of Determination

$$R^2 \approx 1 - \frac{\widehat{\sigma^2}}{s_y^2}$$

- ▶ R^2 = proportion of Var(Y) "explained" by the regression.
 - ▶ Higher value ⇒ greater proportion explained
- Unitless, between 0 and 1
- Generally harder to interpret than $\widehat{\sigma}$, but...
- ► For simple linear regression $R^2 = (r_{xy})^2$ and this is where its name comes from!

$Height = \beta_0 + \beta_1 Handspan + \epsilon$

Which Gives Better Predictions: Sex (a) or Handspan (b)?

```
lm(formula = height ~ sex, data = student.data)
           coef.est coef.se
(Intercept) 64.46 0.56
sexMale 6.10 0.76
n = 80, k = 2
residual sd = 3.38, R-Squared = 0.45
lm(formula = height ~ handspan, data = student.data)
           coef.est coef.se
(Intercept) 39.60 3.96
handspan 1.36 0.19
n = 80, k = 2
residual sd = 3.56, R-Squared = 0.40
```