CH. 22: ELECTRIC CHARGES AND FORCES

- Charging = transfer of electrons from one object to another
 - Charging caused by frictional forces (e.g. rubbing)
 - Transfer of charge requires contact
 - Charged objects are attracted to any neutral object
 - Because of charge polarization (doesn't require touching) = temporary separation of positive and negative charges in a neutral object. Leads to net attractive polarization force.
 - Charged object picks up small pieces of paper (which is an insulator)
 - Because of electric dipole effect = formed by two opposite charges with a slight separation between them
 - Causes neutral atom to be polarized by and attracted toward an external charge.
 - Charged rod polarizes atoms in the paper and then exerts an attractive polarization force on each atom.
 - Charging by induction
 - Friction isn't the only way an object can become charged
 - Two sphere system:
 - Take two metal spheres and have them touch each other so they become a single conductor.
 - Take a negatively charged rod and place it near the spheres.
 - The electrons in closer sphere will be repelled by the rod and move to the further sphere (polarization as if the two-sphere were a single conductor). So now, the closer sphere is positively charged, while the further sphere is negatively charged.
 - We can separate the spheres and then remove the rod and the spheres will keep their (equal and opposite) respective charges.
 - Discharging
 - Touching a charged metal discharges it (two conductors in contact "share" the charge that was originally on just one of them).
 - Grounding objects (connected with earth) prevents build-up of charge

Charge

- Glass rod + silk = rod positively charged
- Plastic rod + wool = rod negatively charged
- Charge caused by excess/lack of electrons. Removing electron from atom is called ionization. Ions are created when bonds in a large molecule is broken during a process like rubbing.

The Sub-atomic Particles					
Relative size	Name	Mass (Kg)	Charge (C)		
	Proton	1.67 x 10 ⁻²⁷	+1.602 x 10 ⁻¹⁹		
	Neutron	1.67 x 10 ⁻²⁷	0		
exaggerated	Electron	9.11 x 10 ⁻³¹	-1.602 x 10 ⁻¹⁹		

- Electrons and protons governed by Newton's laws
- Neutral object = no net charge
- Charge is conserved.
- Conductors = charge moves easily (metal); Insulators = charge immobile (glass/plastic)
 - Both can be charged. Differ in the mobility of the charge.
 - Electrons in insulator tightly bound to the positive nuclei and can't move around. When insulator is charged, molecular ions are created but they can't move anywhere.
 - Conductors = sea of electrons around array of positively charged ion cores.
 - Electrons (charge carriers) can move around easily and create current.
 - Good conductors: metals and ionic solutions (like salt water)
 - Metals can't usually be charged by rubbing, but contact works. So charge transferred with touch and then repulsive forces between like charges causes very fast spreading of electrons.
 - This is also how metal electroscopes are charged:

- Conductors are in electrostatic equilibrium = no net force on any charge.
 - Any excess charge is on surface of conductor
- Coulomb's Law
 - Quantitatively describes how electric force decreases with distance (inverse-square law)
 - Applies only to point charges
 - Input: two point charges
 - Output: electric force between them
 - F_{1} on 2} = F_{2} on 1} = $k|q_1||q_2|/r^2 \rightarrow only gives magnitude!$
 - Repulsive for two like charges, attractive for two opposite charges → gives direction of charge
 - k = 8.99 x 10⁹ Nm²/C² = 1/(4*pi*eps_0) where eps_0 = free space permittivity constant
 - Can be superimposed, so net electric force on charge i due to all others is:
 - $F_{net} = F_{1} on j + F_{2} on j + F_{3} on j + ...$

- Electric field

- Explains how **long-range forces** (like electric/magnetic forces) are transmitted between charges
 - Charged particles interact via fields
- In Faraday's view, particle A alters the space around it, then particle B responds to the altered space. This altered space is the agent that exerts the force on B. This altered space is a "field".
 - Fields exists simultaneously at all points in space.
- Source charges create field E. A separate probe charge q in E experiences force
 F = qE exerted by the field. Positive charge has force in direction of E. Negative charge has force in direction opposite to E.
- Electric field strength (magnitude) doesn't depend on probe charges, only source charges. A charge doesn't feel its own field.
- $E = kq/r^2$, away from q
- Electric field of negative point charge points towards charge. For positive point charge, points away.
- The force on a positive charge is in the direction of the field
- The force on a negative charge is opposite the direction of the field
- When we know the electric field, we can use it directly to find the force on a charge in the field using F = qE.

CH. 23: THE ELECTRIC FIELD

- Key electric field models
 - Electric field of a point charge (small charged objects)
 - Use superposition to find net electric field due to multiple point charges.
 - Electric field of an infinitely long line of charge (wires)
 - Electric field of a ring of charge
 - On-axis field only exists in the z-dimension
 - $(E_ring)_z = kzQ/(z^2 + r^2)^1.5$

- Electric field of a disk of charge
 - Divide into concentric rings of charge
 - $(E_disk)_z = eta/2*eps_0[1 -/sqrt(1 + R^2/z^2)]$
- Electric field of an infinitely wide plane of charge (capacitors)
 - Field strength directly proportional to eta
 - Field strength is the same at all points in space, independent of distance
 - Why? Distance from an infinite object means nothing; every point is "close to" infinite plane
- Electric field of a sphere of charge/spherical shell (electrodes)
 - Same as point charge Q at center of sphere
- Electric field of a dipole = formed by two equal but opposite charges separated by a small distance
 - Permanent = oppositely charged particles maintain small separation (like water molecule)
 - Induced = created by polarizing a neutral atom with an external electric field
 - Has zero net charge, but does have electric field.
 - Dipole moment *p* = vector pointing from the negative to the positive charge with magnitude qs, where s is distance between them
 - Electric field at a point on the axis of a dipole:
 - $E_{dipole} \sim 2 kp/r^3$ where r is the distance from the center of the dipole
 - Not a point charge! Field of dipole decreases more rapidly than point charge (inverse-cube instead of inverse-square)
- Electric field lines
 - Continuous curves tangent to the electric field vectors
 - Closely spaced = greater strength
 - Widely spaced = smaller strength
 - Start on positive charges and end on negative charges

-	Never cross	

- Continuous charge distributions (vs. discrete point charges)
 - Linear charge density lambda = Q/L, Q = uniform charge on object, L = length
 - Surface charge density eta = Q/A, A = area
 - We can sum infinitely many tiny pieces of charge using integration
 - Problem solving strategy:
 - Divide total charge Q into many small point-like charges dQ
 - Use knowledge of point charge electric field to find field of each dQ
 - Find E_net by summing all dQ's
 - All of these electric field models above help us compute continuous charge distributions
- Parallel-plate capacitor

- Net charge of capacitor is zero; plates are charged because of electron transfer
- Inner surfaces of the plates can be modeled as two planes of charge with equal but opposite surface charge densities

- Parallel-plate capacitor produces uniform electric field (same everywhere)

- Motion of charged particle in electric field
 - Source charges create fields, but other charges are affected by those fields. How so?
 - $F_{on q} = qE = ma$ where E is produced by some other source charges
 - q/m = charge to mass ratio; same ratio = same acceleration in E
 - Uniform electric field → particles will move with constant acceleration
 - Parabolic trajectories occur when there is constant acceleration. This requires a uniform electric force
 - Apply kinematics equations
- Motion of dipole in electric field
 - Field on axis: $E = 2kp/r^3$
 - Field in bisecting plane: $E = -kp/r^3$
 - No net force on a dipole in a uniform electric field

- The sample becomes polarized by rotating with these torques

- Torque = $pE\sin(theta)$, where p = qs; Torque = $p \times E$

- Torque greatest with p is perpendicular to E, and zero when p is parallel to E
- Since angular acceleration = torque/moment of inertia, we can find acceleration
- Dipoles in a nonuniform field
 - Net force towards point charge/direction of the strongest field is exerted on dipole by field

CH. 24: GAUSS'S LAW

- A charge distribution is symmetric if you can translate/rotate/reflect it and it doesn't cause any physical change.
 - Symmetry of the electric field must match the symmetry of the charge distribution
 - Electric field of a cylindrically symmetric charge distribution cannot have a component parallel to the cylinder axis or a component tangent to the circular cross section
 - Planar symmetry = field is perpendicular to the plane
 - Cylindrical symmetry = field is radial toward or away from the axis
 - Spherical symmetry = field radial toward or away from center
- Gaussian surface = closed 3D surface through which an electric field passes
 - A Gaussian surface is most useful when it matches the shape and symmetry of the field
- Electric flux = similar to "flow"; amount of electric field passing through a surface; scalar-valued!
 - Of a uniform electric field
 - Angle theta = angle between velocity vector and normal vector to the plane
 - Flux phi = EAcos(theta) = dot_product(E, A), where Ecos(theta) is the component of the electric field that passes through the surface
 - Area vector A = An is a vector perpendicular to the surface with magnitude equal to area of the surface
 - Of a nonuniform electric field
 - Compute by summing the fluxes through smaller pieces of the surface
 - Flux phi = integral over the surface of EdA
 - dA always points out of the surface

- Through a curved surface
 - If the electric field is tangent to the surface at all points, the flux = 0
 - If the electric field is perpendicular to the surface and has the same magnitude at every point, the flux = EA
- Through a closed surface
 - Include circle through surface integral, when over closed surface
 - Choose a Gaussian surface made up on pieces that are everywhere tangent to the electric field or everywhere perpendicular to the electric field

Gauss's Law

- Useful to finding electric fields in high-symmetry situations
- Equivalent to Coulomb's law for static charges, but also valid for moving charges
- Flux = Q_enclosed/eps_0 for a closed surface
- Flux through any closed surface surrounding a point charge q is q/eps_0
- Only applies to closed surfaces!
- Properties of conductors in electrostatic equilibrium
 - Any excess charge is on the surface
 - Interior electric field is zero since flux = 0
 - External field is perpendicular to surface
 - Flux = AE_{surface} = eta*A/eps_0
 - The electric field can be excluded from a region of space by surrounding it with a conducting box (called screening)

- The Faraday cage is a wire mesh used for screening
- A charge in the hole causes a net charge on the interior and exterior surfaces