# Оглавление

| 0.1 | Введение?                                   | 1 |
|-----|---------------------------------------------|---|
| 0.2 | Архиектура фон-Нейнмана и устройство памяти | 1 |

## 0.1. Введение?

модель — метод — программа



Точность конечного результата не может превосходить точности исходных данных и точности вычислений.

**Определение 1.** Бесконечно сходящиеся итерационные процессы будем называть *вычислительными* алгоритмами. Основанные на них решения задач будем называть *численными методами*.

Символьные (аналитические) и численные вычисления.

Символьные вычисления реализованы в виде подпрограмм и не имеют аппаратной реализации.

При численных вычислениях получаемый результат всегда зависит от свойств конкретного компьютера. Все свойства, как правило, пользователю неизвестны. Поэтому, разработать алгоритм решения поставленной задачи не удастся.

**Определение 2.** Будем называть *псевдоалгоритмом* последовательность действий считая, что сами действия не обязательно имеют чёткое конструктивное определение.

Если все эти действия как-то уточнить, то можно построить *уточнение псевдоалгоритма*. Последнее уточнение будет иметь реализацию на конкретной платформе— это будет алгоритм реализации вычислений.

## 0.2. Архиектура фон-Нейнмана и устройство памяти

Другая архитектура— гарвардская. Принципы фон-Нейнмана:

#### 1. Принцип однородности памяти и её адресуемости.

Основная (оперативная) память состоит из однородных ячеек. Размер ячейки называется машинным словом. Каждая ячейка имеет уникальный адрес. Это называется RAM-память — память с произвольным доступом к ячейке по её адресу.

Эта память используется для записи как команд, так и данных. Они хранятся в двоичном коде и представляются одинаково. Тип данных (из языков высокого уровня) не является неотъемлемой частью ячейки.

#### 2. Принцип последовательного программного управления.

Управление машиной осуществляется по заранее подготовленной программе.

**Определение 3.** *Программа* — это последовательность команд, расположенных в памяти линейно в естественном порядке.

Команды, которые могут исполняться программой, составляют её *машинный язык*. Программа выполняется покомандно в порядке записи команд.

Естественный порядок моет быть нарушен командами перехода.

#### 3. Принцип запоминания программ.

При исполнении программу следует поместить в основную память машины и инициировать исполнение первой команды. Затем команды выбираются из основной памяти машины согласно принципу программного управления.

### 4. Принцип параллельной организации вычилений на аппаратном уровне.

Операции над машинными словами производятся аппаратурой над всеми разрядами одновременно.

Остальные принципы вызваны только техническими ограничениями:

#### 5. Принцип двоичной системы счисления.

#### 6. Принцип иерархичности запоминающих устройств.

Компромисс между ёмкостью, стоимостью и быстродействием памяти.

- (а) Процессор состоит из арифметико-логического устройства, устройства управления и регистров. Доступ к регистрам осуществляется не по адресу, а по имени.
- (b) Основная память: доступ по адресу.
- (с) Внещние устройства. У каждого есть свой контроллер.

Всё это находится на системной магистрали.

Иерархия памяти:

- L0. регистры;
- **L1.** кеш L1;
- **L2.** кеш L2;
- **L3.** кеш L3;
- **L4.** основная память;
- **L5.** локальные диски;
- L6. удалённые запоминающие устройства.

Уровни L0–L3 — статические (SRAM), L4 — динамический (DRAM). Основные характеристики:

- Латентность время доступа.
- $\mathcal{J}_{\Lambda}$ ительность цикла— минимальное время между двумя последовательными обращениями к памяти

**Определение 4.** *Локальность* — тенденция программ использовать данные и команды, находящиеся в ограниченных областях памяти.

 ${\it Временная}$  локальность — обращение к элементу имеет тенденцию повторяться.

Пространственная локальность — после обращения к элементу, скорее всего, произойдёт обращение к элементам поблизости.