Estructuras de Datos no Lineales 2.2. Caminos de coste mínimo

José Fidel Argudo Argudo José Antonio Alonso de la Huerta Mª Teresa García Horcajadas

Caminos de coste mínimo

Algoritmo de Dijkstra

```
template <typename tCoste>
vector<tCoste> Dijkstra(const GrafoP<tCoste>& G,
                        typename GrafoP<tCoste>::vertice origen,
                        vector<typename GrafoP<tCoste>::vertice>& P);
```

Calcula los caminos de coste mínimo entre origen y todos los vértices del grafo G.

Salida:

- Un vector de costes mínimos de tamaño G. numVert ().
- P, un vector de vértices de tamaño G. numVert (), tal que P[i] es el vértice anterior a i en el camino de coste mínimo desde origen hasta i.

```
// Suma de costes
template <typename tCoste>
tCoste suma(tCoste x, tCoste y)
{
   const tCoste INFINITO = GrafoP<tCoste>::INFINITO;
   if (x == INFINITO | | y == INFINITO)
      return INFINITO;
   else
      return x + y;
}
template <typename tCoste>
vector<tCoste> Dijkstra(const GrafoP<tCoste>& G,
                        typename GrafoP<tCoste>::vertice origen,
                        vector<typename GrafoP<tCoste>::vertice>& P)
   typedef typename GrafoP<tCoste>::vertice vertice;
   vertice v, w;
   const size t n = G.numVert();
   vector<bool> S(n, false);
                                            // Conjunto de vértices vacío.
   vector<tCoste> D;
                                            // Costes mínimos desde origen.
   // Iniciar D y P con caminos directos desde el vértice origen.
   D = G[origen];
   D[origen] = 0;
                                            // Coste origen-origen es 0.
   P = vector<vertice>(n, origen);
```

```
// Calcular caminos de coste mínimo hasta cada vértice.
S[origen] = true;
                                         // Incluir vértice origen en S.
for (size t i = 1; i \le n-2; i++)
{
   // Localizar vértice w no incluido en S con menor coste desde origen
   tCoste costeMin = GrafoP<tCoste>::INFINITO;
   for (v = 0; v \le n-1; v++)
      if (!S[v] \&\& D[v] \le costeMin)
      {
         costeMin = D[v];
         w = v;
                                              // Incluir vértice w en S.
   S[w] = true;
   // Recalcular coste hasta cada v no incluido en S, a través de w.
   for (v = 0; v \le n-1; v++)
      if (!S[v])
         tCoste Owv = suma(D[w], G[w][v]);
         if (Owv < D[v])
            D[v] = Owv;
            P[v] = w;
return D;
```

```
#include "listaenla.h"
template <typename T> class GrafoP {
public:
   typedef Lista<vertice> tCamino;
   // ...
};
template <typename tCoste> typename GrafoP<tCoste>::tCamino
camino(typename GrafoP<tCoste>::vertice orig,
       typename GrafoP<tCoste>::vertice v,
       const vector<typename GrafoP<tCoste>::vertice>& P)
// Devuelve el camino de orig a v a partir de un vector
// P obtenido mediante la función Dijkstra().
{
   typename GrafoP<tCoste>::tCamino C;
   C.insertar(v, C.primera());
   do {
      C.insertar(P[v], C.primera());
      v = P[v];
   } while (v != orig);
   return C;
 J. F. Argudo; J. A. Alonso; M. T. García
```

Ejemplo de Dijkstra

Matriz de Costes

	0	1	2	3	4
0	8	10	8	30	100
1	8	8	50	8	8
2	8	8	8	8	10
3	8	8	20	8	60
4	8	8	8	8	8

numVert = 5

Inicializamos tomando como origen el vértice 0

Hacemos las iteraciones

$$1^{a}$$
) i = 1

Min $\{D[1], D[2], D[3], D[4]\} = Min \{10, \infty, 30, 100\} = 10$

S

0	1	2	3	4
Т	Т	Ш	F	F

Recalculamos los costes a través

del nuevo vértice

$$D[2]=min\{D[2], D[1]+G->Costes[1,2]\}=$$
 $min\{\infty, 10+50\}=60$

	0	1	2	3	4
P	0	0	1	0	0

 $D[3]=min\{D[3], D[1]+G->Costes[1,3]\}=min\{30,10+\infty\}=30$ D y P siguen igual.

$$D[4]=min\{D[4], D[1]+G->Costes[1,4]\}=min\{100,10+\infty\}=100$$

D y P siguen igual

w = 3

Recalculamos las distancias a través del nuevo vértice

 $D[2]=min\{D[2], D[3]+G->Costes[3,2]\}=min\{60,30+20\}=50$

	0	1	2	3	4
D	0	10	50	30	100
	0	1	2	3	4
Р	0	0	3	0	0

 $D[4]=min\{D[4], D[3]+G->Costes[3,4]\}=min\{100,30+60\}=90$

P

$$3^{a}$$
) i = 3

Min
$$\{D[2], D[4]\} = Min \{50,90\} = 50$$
 $w = 2$

Recalculamos las distancias a través

del nuevo vértice

Resultado

