```
In [1]: ## import library
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
```

In [2]: ## Load data set
ST = pd.read_csv('shopping_trends.csv')
ST

Out[2]:

	Customer ID	Age	Gender	Item Purchased	Category	Purchase Amount (USD)	Location	Size	Color
0	1	55	Male	Blouse	Clothing	53	Kentucky	L	Gray
1	2	19	Male	Sweater	Clothing	64	Maine	L	Maroon
2	3	50	Male	Jeans	Clothing	73	Massachusetts	S	Maroon
3	4	21	Male	Sandals	Footwear	90	Rhode Island	М	Maroon
4	5	45	Male	Blouse	Clothing	49	Oregon	М	Turquoise
3895	3896	40	Female	Hoodie	Clothing	28	Virginia	L	Turquoise
3896	3897	52	Female	Backpack	Accessories	49	lowa	L	White
3897	3898	46	Female	Belt	Accessories	33	New Jersey	L	Green
3898	3899	44	Female	Shoes	Footwear	77	Minnesota	S	Brown
3899	3900	52	Female	Handbag	Accessories	81	California	М	Beige

3900 rows × 19 columns

RangeIndex: 3900 entries, 0 to 3899 Data columns (total 19 columns): Customer ID 3900 non-null int64 Age 3900 non-null int64 Gender 3900 non-null object 3900 non-null object Item Purchased Category 3900 non-null object 3900 non-null int64 Purchase Amount (USD) Location 3900 non-null object 3900 non-null object Size Color 3900 non-null object Season 3900 non-null object 3900 non-null float64 Review Rating Subscription Status 3900 non-null object Payment Method 3900 non-null object Shipping Type 3900 non-null object Discount Applied 3900 non-null object 3900 non-null object

Promo Code Used 3900 non-null object
Previous Purchases 3900 non-null int64
Preferred Payment Method 3900 non-null object

Frequency of Purchases 3900 non-null object

dtypes: float64(1), int64(4), object(14)

memory usage: 579.0+ KB

```
In [4]: ##Count NaN values of whole DataFrame
ST.isnull().sum()
```

```
Out[4]: Customer ID
                                      0
                                      0
        Age
        Gender
                                      0
        Item Purchased
                                      0
                                      0
        Category
        Purchase Amount (USD)
                                      0
        Location
                                      0
        Size
                                      0
        Color
                                      0
        Season
                                      0
        Review Rating
                                      0
        Subscription Status
                                      0
        Payment Method
                                      0
        Shipping Type
                                      0
        Discount Applied
                                      0
        Promo Code Used
                                      0
        Previous Purchases
                                      0
        Preferred Payment Method
                                      0
```

dtype: int64

Frequency of Purchases

0

```
In [5]: ST.describe()
```

Out[5]:

	Customer ID	Age	Purchase Amount (USD)	Review Rating	Previous Purchases
count	3900.000000	3900.000000	3900.000000	3900.000000	3900.000000
mean	1950.500000	44.068462	59.764359	3.749949	25.351538
std	1125.977353	15.207589	23.685392	0.716223	14.447125
min	1.000000	18.000000	20.000000	2.500000	1.000000
25%	975.750000	31.000000	39.000000	3.100000	13.000000
50%	1950.500000	44.000000	60.000000	3.700000	25.000000
75%	2925.250000	57.000000	81.000000	4.400000	38.000000
max	3900.000000	70.000000	100.000000	5.000000	50.000000

```
In [6]: plt.figure(figsize=(10,6))
    A = ST['Gender'].value_counts()
    bars = plt.bar(A.index, A.values, color='Blue')

plt.xlabel('Gender')
    plt.ylabel('Total Number')
    plt.title('Gender Distribution')

plt.show()
```



```
In [7]: ##kernel density estimate (KDE) plot is a method for visualizing the distribut
    ion of observations in a dataset, analogous to a histogram
    plt.figure(figsize=(10, 6))
    plt.hist(ST['Age'],edgecolor = 'black',alpha=0.7,bins=25,color = 'skyblue',den
    sity=True)
    ST['Age'].plot(kind='kde', color = 'red')

    plt.xlabel('Age')
    plt.ylabel('Count / Density')
    plt.title('Age Distribution with density curve')
    plt.legend(['Density Curve', 'Histogram'])
```



```
In [8]: # Category
ST["Category"].value_counts()
```

Out[8]: Clothing 1737
Accessories 1240
Footwear 599
Outerwear 324

Name: Category, dtype: int64

```
In [9]: plt.figure(figsize=(10, 6))
    c = ST['Category'].value_counts()
    bar=plt.bar(c.index,c.values,color= 'gray')

plt.xlabel('Categories')
    plt.ylabel('Total Number')
    plt.title('Category Distribution')
```



```
In [10]: # Create a count plot to visualize the relationship
    plt.figure(figsize=(10, 6))
    sns.countplot(data=ST, x='Category', hue='Gender',palette='dark')
    plt.title('Product Category by Gender')
    plt.xlabel('Product Category')
    plt.ylabel('Count')
    plt.legend(title='Gender', labels=ST['Gender'].unique())

# Show the plot
    plt.show()
```



```
In [21]: # Create a count plot to visualize the relationship
    plt.figure(figsize=(20, 8))
    sns.countplot(data=ST, x='Item Purchased', hue='Gender',palette='dark')
    plt.title('Product Category by Gender')
    plt.xlabel('Product Category')
    plt.ylabel('Count')
    plt.legend(title='Gender', labels=ST['Gender'].unique())

# Show the plot
    plt.show()
```



```
In [24]: plt.figure(figsize=(20,5))
    sns.countplot(data=ST,x='Item Purchased' ,hue='Size')
    plt.title('Category distribution by Gender')
    plt.show()
```



```
In [25]: plt.figure(figsize=(10,4))
    sns.countplot(data=ST,x='Category',hue='Season')
```

Out[25]: <matplotlib.axes._subplots.AxesSubplot at 0x1bf9b151c88>

Subscription Status distribution


```
In [34]: plt.figure(figsize=(10, 6))
    c=ST['Shipping Type'].value_counts()
    bar=plt.bar(c.index,c.values)

plt.xlabel('Shipping Type')
    plt.ylabel('Total Number')
    plt.title('Shipping type Distribution')
```

Out[34]: Text(0.5, 1.0, 'Shipping type Distribution')


```
In [39]: plt.figure(figsize=(8,6))
    sns.countplot(data=ST,x='Category',hue='Promo Code Used')
```

Out[39]: <matplotlib.axes._subplots.AxesSubplot at 0x1bf9b141f48>


```
In [43]: #Average age of the customer
average_age = ST['Age'].mean()
print("Average Age:", average_age)
```

Average Age: 44.06846153846154

```
In [42]: #Total purchase amount for each category
```

TotalPur = ST.groupby('Category')['Purchase Amount (USD)'].sum()
print("Total purchases for each category:", TotalPur)

Total purchases for each category: Category

Accessories 74200 Clothing 104264 Footwear 36093 Outerwear 18524

Name: Purchase Amount (USD), dtype: int64

In [45]: #The most common payment method used by customers

most_common_payment_method = ST['Payment Method'].mode()[0]
print("Most Common Payment Method:", most_common_payment_method)

Most Common Payment Method: Credit Card

```
In [47]: # How many customers have opted for the Subscription
    subscription_count = ST[ST['Subscription Status'] == 'Yes']['Customer ID'].cou
    nt()
    print("Number of Customers with Subscription: ", subscription_count)
```

Number of Customers with Subscription: 1053

```
In [49]: # What is the most common season for purchases?
most_common_season = ST['Season'].mode()[0]
print("Most Common Season for Purchases:", most_common_season)
```

Most Common Season for Purchases: Spring

```
In [51]: #How many customers used a promo code for their purchase
    promo_code_count = ST[ST['Promo Code Used'] == 'Yes']['Customer ID'].count()
    print("Number of Customers who used Promo Code:", promo_code_count)
```

Number of Customers who used Promo Code: 1677

```
In [52]: #What is the maximum and minimum review rating in the dataset?
    max_review_rating = ST['Review Rating'].max()
    min_review_rating = ST['Review Rating'].min()
    print("Maximum Review Rating:", max_review_rating)
    print("Minimum Review Rating:", min_review_rating)
```

Maximum Review Rating: 5.0 Minimum Review Rating: 2.5

In [53]: # What is the most common shipping type for customers with a review rating abo
ve 4 ?
common_shipping_high_rating = ST[ST['Review Rating'] > 4]['Shipping Type'].mod
e()[0]
print("Most Common Shipping Type for High Review Ratings:", common_shipping_hi
gh_rating)

Most Common Shipping Type for High Review Ratings: Standard

```
In [54]: #How many customers have made more than 30 previous purchases ?
    customers_above_30_previous_purchases = ST[ST['Previous Purchases'] > 30]['Customer ID'].count()
    print("Number of Customers with more than 30 Previous Purchases:", customers_a bove_30_previous_purchases)
```

Number of Customers with more than 30 Previous Purchases: 1549