Statistical Machine Learning GU4241/GR5241

Spring 2019

https://courseworks.columbia.edu/

Homework 1

Due: Thursday, Jan. 31st, 2019

Homework submission: Please submit your homework electronically through Gradescope by 11:59pm on the due date.

Problem 1 (Bayesian inference and online learning, 10 points)

Suppose observations X_1, X_2, \ldots are recorded. We assume these to be conditionally independent and exponentially distributed given a parameter θ :

$$X_i \sim \text{Exponential}(\theta),$$

for all $i=1,\ldots,n$. The exponential distribution is controlled by one rate parameter $\theta>0$, and its density is

$$p(x;\theta) = \theta e^{-\theta x}$$

for $x \in \mathbb{R}_+$.

- 1. Plot the graph of $p(x;\theta)$ for $\theta=1$ in the interval $x \in [0,4]$.
- 2. What is the visual representation of the likelihood of individual data points? Draw it on the graph above for the samples in a toy dataset $\mathcal{X} = \{1, 2, 4\}$ and $\theta = 1$.
- 3. Would a higher rate (e.g. $\theta = 2$) increase or decrease the likelihood of each sample in this toy data set?

We introduce a prior distribution $q(\theta)$ for the parameter. Our objective is to compute the posterior. In general, that requires computation of the evidence as the integral

$$p(x_1,\ldots,x_n) = \int_{\mathbb{R}_+} \left(\prod_{i=1}^n p(x_i|\theta)\right) q(\theta) d\theta$$
.

We will not have to compute the integral in the following, since we choose a prior that is conjugate to the exponential.

The natural conjugate prior for the exponential distribution is the gamma distribution:

$$q(\theta|\alpha,\beta) = \theta^{\alpha-1} \frac{\beta^{\alpha} e^{-\beta\theta}}{\Gamma(\alpha)}$$

for $\theta \ge 0$ and $\alpha, \beta > 0$. We have already encountered this distribution in an earlier homework problem (where we computed its maximum likelihood estimator), and you will notice that we are using a different parametrization of the gamma density here.

Question 1. Take a moment to convince yourself that the exponential and gamma distributions are exponential family models. Show that, if the data is exponentially distributed as above with a gamma prior

$$q(\theta) = \text{Gamma}(\alpha_0, \beta_0)$$
,

the posterior is again a gamma, and find the formula for the posterior parameters. (In other words, adapt the computation we performed in class for general exponential families to the specific case of the exponential/gamma model.) In detail:

- Ignore multiplicative constants and normalization terms, such as the evidence term in Bayes' formula.
- Show that the posterior is proportional to a gamma distribution.
- Deduce the parameters by comparing your result for the posterior to the definition of the gamma distribution.

Machine learning problems are often *online problems*, where each data point has to be processed immediately when it is recorded (as opposed to *batch problems*, where the entire data set is recorded first and then processed as a whole). Conjugate priors are particularly useful for online problems, since, roughly speaking, the posterior given the first (n-1) observations can be used as a prior for processing the nth observation:

Question 2.

- a. Show that, for the exponential model with gamma prior, the posterior $\Pi(\theta|x_{1:n})$ under n observations can be computed as the posterior given a single observation x_n using the prior $\tilde{q}(\theta) := \Pi(\theta|x_{1:n-1})$. Give the formula for the parameters (α_n, β_n) of the posterior $\Pi(\theta|x_{1:n}, \alpha_0, \beta_0)$ as a function of $(\alpha_{n-1}, \beta_{n-1})$.
- b. Visualize the gradual change of shape of the posterior $\Pi(\theta|x_{1:n},\alpha_0,\beta_0)$ with increasing n:
 - Generate n=256 exponentially distributed samples with parameter $\theta=1$.
 - Use the values $\alpha_0=2, \beta_0=0.2$ for the hyperparameters of the prior.
 - Visualize the updated posterior distribution after $n=\{4,8,16,256\}$, in the range $\theta\in[0,4]$. Plot all curves into the same figure and label each curve.

Hint: The gamma function Γ , which occurs in the definition of the gamma density, is implemented in R as gamma. When you have to compute a product over several data points, you might run into numerical problems with this function. One possible workaround to first compute the log-likelihood and then take its exponential $\exp(\log(p(x_{1:n};\alpha,\beta)))$. The logarithm of the gamma function is implemented in R as a separate function 1gamma.

Comment on the behavior of the posterior distribution as n increases.

Problem 2 (Posterior distribution, 10 points)

Suppose two treatments will be given to n patients, randomly sampled from a population. Let

$$T_i = \left\{ \begin{array}{ll} 1 & \text{if treatment one is given to patient } i, \\ 2 & \text{otherwise.} \end{array} \right.$$

Let the response be

$$Y_i^t = \left\{ \begin{array}{ll} 1 & \text{if treatment t cure patient } i, \\ 0 & \text{otherwise.} \end{array} \right.$$

Here the chance of patient i being given $T_i=1$ is 0.5. We want to estimate $\pi^t=\mathbb{P}(Y_1^t=1)$ for t=1,2. Assume that $(Y_i^{T_i},T_i);\ i=1,\cdots,n$, are independent and identically distributed, and the prior distribution on (π^1,π^2) is uniform on $[0,1]\times[0,1]$. Calculate the posterior density of $\mathbb{P}((\pi^1,\pi^2)|(Y_1^{T_1},\cdots,Y_n^{T_n},T_1,\cdots,T_n))$.

Problem 3 (Maximum Likelihood Estimation, 8 extra points)

Suppose X_1, \dots, X_n are iid Poisson(λ) random variables. Show by direct calculation without using any theorem in mathematical statistics, that

- (a) $\bar{X} = \sum_{i=1}^{n} X_i/n$ is an unbiased estimator for λ .
- (b) \bar{X} is optimal in MSE among all unbiased estimators. This is to say, let T_n be another unbiased estimator, then $E_{\lambda}(\bar{X}-\lambda)^2 \leq E_{\lambda}(T_n-\lambda)^2$.