Learning with Gaussian Processes using GPy

Nishanth Koganti

April 3, 2017

Nishanth GPs with GPy April 3, 2017 0 / 15

Outline

- Introduction
 - GPy Library
- Gaussian Processes
 - Covariance Functions
 - Gaussian Process Regression
- 3 Dimensionality Reduction with GP

Nishanth GPs with GPy April 3, 2017 0 / 15

Resources

Gaussian Processes for Machine Learning 1

Gaussian Process Summer School ²

GPy

The Gaussian processes framework in Python.

- GPv homepage
- Tutorial notebooks
- User mailing-list
 Developer documentation
- Travis-Cl unit-tests
- build passing Codecov 48% Depsy 97th percentile health 74%

GPy Library 3

 $^{^{1}\}mathrm{Gaussian}$ Processes for Machine Learning, C. Williams, C. Rasmussen

²Gaussian Process Summer Schools, http://gpss.cc/

 $^{^3\}mathrm{GPy}$ Library, https://github.com/SheffieldML/GPy

Gaussian Processes: Extremely Short Overview

Generate functions

Nishanth GPs with GPy April 3, 2017 2 / 15

Gaussian Processes: Extremely Short Overview

Generate functions

Observe Data

Gaussian Processes: Extremely Short Overview

Observe Data

Remove invalid functions

What is a Gaussian Process?

Generalization of a multivariate Gaussian to infinitely many variables.

Definition: Gaussian Process is a collection of random variables, any finite collection of which are Gaussian Distributed.

Gaussian distribution: mean vector, μ , and covariance matrix Σ :

$$\mathbf{f} = (f_1, \dots, f_n)^T \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \text{ indices } i = 1, \dots, n$$

Gaussian process: mean function, m(x), and covariance function k(x, x'):

$$f(x) \sim \mathcal{GP}(m(x), k(x, x')), \text{ indices: } x$$

Nishanth GPs with GPy

Marginalization Property

How can we represent infinite mean vector and infinite covariance matrix?

...luckily saved by marginalization property:

$$p(\mathbf{x}) = \int p(\mathbf{x}, \mathbf{y}) d\mathbf{y}$$

For Gaussians:

$$p(\mathbf{x}, \mathbf{y}) = \mathcal{N} \begin{pmatrix} \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix}, \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^T & \mathbf{C} \end{bmatrix} \end{pmatrix}$$
$$p(\mathbf{x}) = \mathcal{N}(\mathbf{a}, \mathbf{A})$$

Nishanth GPs with GPy

Random sampling from Gaussian Process

Considering one dimensional Gaussian process:

$$p(f(x)) \sim \mathcal{GP}\left(m(x) = 0, k(x, x') = \exp\left(-\frac{1}{2}(x - x')^2\right)\right)$$

Sampling is done by focusing on subset $\mathbf{f} = (f(x_1), f(x_2), \dots, f(x_n))^T$:

$$\mathbf{f} \sim \mathcal{N}(0, \mathbf{\Sigma})$$
, where $\mathbf{\Sigma}_{ij} = k(x_i, x_j)$

Coordinates of \mathbf{f} are plot as a function of corresponding x

GPs with GPv April 3, 2017 5 / 15

Matern Covariance Function

$$k(x,x') = \frac{1}{\Gamma(\nu)2^{\nu-1}} \left[\frac{\sqrt{2\nu}}{l} |x - x'| \right]^{\nu} K_{\nu} \left(\frac{\sqrt{2\nu}l}{|x - x'|} \right)$$

where K_{ν} is a Bessel function of order ν , and l is the length scale.

Samples of Matern forms are $\lfloor \nu - 1 \rfloor$ times differentiable.

Nishanth GPs with GPy April 3, 2017 6 / 15

Squared Exponential Covariance Function

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|^2}{2l^2}\right)$$

where α is the variance and l is the length scale of the covariance function

Gaussian Process Regression

Parameters are replaced by "function" itself! Gaussian Likelihood:

$$\mathbf{y}|\mathbf{x}, f(x), M \sim \mathcal{N}(\mathbf{f}, \sigma_{noise}^2 I)$$

Gaussian Process Prior:

$$f(x)|M \sim \mathcal{GP}(m(x) = 0, k(x, x'))$$

Leading to Gaussian Process Posterior:

$$f(x)|\mathbf{x}, \mathbf{y}, M \sim \mathcal{GP}(m_{\text{post}}(x) = k(x, \mathbf{x})[K(\mathbf{x}, \mathbf{x}) + \sigma_{noise}^2 I]^{-1}\mathbf{y},$$

$$k_{\text{post}}(x, x') = k(x, x') - k(x, \mathbf{x})[K(\mathbf{x}, \mathbf{x}) + \sigma_{noise}^2 I]^{-1}k(\mathbf{x}, x'))$$

◆ロ → ◆ 個 → ◆ 差 → ◆ 差 → りへ ②

Nishanth GPs with GPy

Prior and Posterior for \mathcal{GP} Learning

Gaussian Process Predictive Distribution:

Nishanth

$$p(y^*|x^*, \mathbf{x}, \mathbf{y}) \sim \mathcal{N}(k(x^*, \mathbf{x})[K + \sigma_{noise}^2]^{-1}\mathbf{y},$$

$$k(x^*, x^*) - k(x^*, \mathbf{x})[K + \sigma_{noise}^2 I]^{-1}k(\mathbf{x}, x^*))$$

4 □ ▷ 〈□ ▷ 〈필 ▷ 〈필 ▷ 〈필 ▷ ○ 필 ○ ♡Q ○

GPs with GPy April 3, 2017 9 / 15

Non-linear Dimensionality Reduction

UPSC Handwritten Digit Dataset

3648 dimensional space

Low-dimensional manifold for digit rotation

Random Image

Nishanth

Probabilistic Generative Model

- Observed (high-dimensional) data: $\mathbf{Y} = [y_1 \ y_2 \ \cdots \ y_N]^T \in \mathbb{R}^{N \times D}$
- Latent (low-dimensional) data: $\mathbf{X} = [x_1 \ x_2 \ \cdots \ x_N]^T \in \mathbb{R}^{N \times Q}, \ Q << D$
- Assume a relationship/mapping of the form:

$$y_i = \mathbf{W}x_i + \epsilon_i, \ \epsilon_i \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

 $y_i = f(x_i) = \epsilon_i$ (1)

• Resultant likelihood on the data:

$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^{N} \mathcal{N}(y_i|\mathbf{W}x_i, \sigma^2 \mathbf{I})$$
 (2)

◆ロ → ◆ 個 → ◆ 差 → ◆ 差 → りへ(?)

Probabilistic Generative Model

Probabilistic PCA

Places prior on latent space X and optimises linear mapping W

$$p(\mathbf{X}) = \prod_{i=1}^{N} \mathcal{N}(x_i | \mathbf{0}, \mathbf{I})$$

$p(\mathbf{Y}|\mathbf{W}, \sigma^2) = \int p(\mathbf{Y}|\mathbf{W}, \mathbf{X}, \sigma^2) \ p(\mathbf{X}) \quad p(\mathbf{Y}|\mathbf{X}, \sigma^2) = \int p(\mathbf{Y}|\mathbf{W}, \mathbf{X}, \sigma^2) \ p(\mathbf{W})$

Dual Probabilistic PCA

Places prior on linear mapping W and optimises latent space X

$$p(\mathbf{W}) = \prod_{i=1}^{D} \mathcal{N}(w_i | \mathbf{0}, \mathbf{I})$$

$$p(\mathbf{Y}|\mathbf{X}, \sigma^2) = \int p(\mathbf{Y}|\mathbf{W}, \mathbf{X}, \sigma^2) p(\mathbf{W})$$

GPs with GPv April 3, 2017 12 / 15

From Dual PPCA to GP-LVM

PPCA and Dual PPCA are equivalent eigenvalue problems with same Maximum Likelihood solution

- GP-LVM: Instead of placing prior $p(\mathbf{W})$ on the function parameters in Dual PPCA, we can place a prior p(f) directly on the mapping function i.e. \mathcal{GP} Prior
- A \mathcal{GP} Prior allows for non-linear mappings if the covariance function is non-linear. For example, the SE Covariance Function:

$$k(x, x') = \alpha \exp\left(-\frac{\gamma}{2}(x - x')^T(x - x')\right) \tag{4}$$

Nishanth GPs with GPy April 3, 2017 13 / 15

Linear vs. Non-linear Dimensionality Reduction

Extensions of GP-LVM

Back Constrained GP-LVM: Ensures points close in the observation space (Y) will be close in latent space by constraining back mapping $f': Y \to X$

GP-LVM with Dynamics Model: Computes latent space assuming that the latent positions (**X**) are sequential:

$$x_t = h(x_{t-1}) + \epsilon_{dyn}, \epsilon_{dyn} \sim \mathcal{N}(\mathbf{0}, \sigma_{dyn}^2 \mathbf{I})$$
 (5)

A \mathcal{GP} Prior is placed on the function h(x). The resultant optimization becomes:

$$\mathbf{X}, \theta, \theta_{dyn} = \operatorname{argmax}_{\mathbf{X}, \theta, \theta_{dyn}} p(\mathbf{Y}|\mathbf{X}, \theta) \ p(\mathbf{X}|\theta_{dyn})$$
 (6)

◆□▶ ◆□▶ ◆■▶ ■ めへ○