Shcheniayev
DA 30112024-105858

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.322	-156.3	13.493	93.2	0.037	68.9	0.353	-56.5
1.5	0.339	-173.0	8.997	82.0	0.052	67.9	0.261	-65.7
2.0	0.354	177.1	6.620	74.5	0.066	66.1	0.207	-76.1
3.0	0.369	162.4	4.344	62.9	0.096	61.6	0.167	-95.0
5.5	0.398	137.8	2.371	38.3	0.168	46.2	0.121	-126.9
8.0	0.480	114.2	1.631	14.9	0.231	28.8	0.087	138.9

Найти точку (см. рисунок 1), соответствующую s_{11} на частоте 1.5 $\Gamma\Gamma$ ц.

Рисунок 1 – Кривые s_{11} и s_{22}

Варианты ОТВЕТА:

- 1) A
- 2) B

- 3) C 4) D

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.2	0.328	-164.0	11.236	88.0	0.043	68.4	0.309	-60.4
1.4	0.338	-169.8	9.669	84.3	0.049	68.2	0.276	-64.1
1.6	0.343	-174.9	8.358	80.5	0.055	67.5	0.248	-67.9
1.8	0.350	-179.0	7.456	77.7	0.060	67.1	0.225	-71.8
2.0	0.354	177.1	6.620	74.5	0.066	66.1	0.207	-76.1
2.4	0.359	170.7	5.465	69.5	0.078	64.4	0.185	-84.2
2.8	0.366	165.1	4.673	64.9	0.090	62.5	0.171	-91.5
3.5	0.375	156.7	3.707	57.7	0.110	58.9	0.159	-102.4
4.5	0.388	146.3	2.880	47.8	0.140	52.8	0.145	-114.6

и частоты $f_{\text{\tiny H}}=1.2$ ГГц, $f_{\text{\tiny B}}=4.5$ ГГц.

Найти обратные потери по выходу на $f_{\scriptscriptstyle \rm B}.$

Варианты ОТВЕТА:

- 1) 5.1 дБ
- 2) 10.2 дБ
- 3) 8.4 дБ
- 4) 16.8 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
5.8	0.500	155.8	4.794	43.2	0.081	46.9	0.209	-118.5
5.9	0.502	154.7	4.719	42.2	0.083	46.3	0.207	-119.8
6.0	0.504	153.6	4.645	41.1	0.084	45.8	0.205	-121.2
6.1	0.505	152.3	4.569	40.1	0.085	45.3	0.201	-122.8
6.2	0.507	151.1	4.495	39.1	0.086	44.8	0.198	-124.4
6.3	0.508	149.8	4.422	38.1	0.088	44.3	0.196	-126.0
6.4	0.510	148.5	4.351	37.0	0.089	43.9	0.193	-127.7
6.5	0.513	147.3	4.281	35.9	0.090	43.4	0.191	-129.5
6.6	0.515	146.1	4.212	34.9	0.091	43.0	0.186	-130.8
6.8	0.519	143.8	4.077	32.9	0.093	42.3	0.178	-133.4
7.0	0.525	141.5	3.947	30.8	0.096	41.6	0.169	-136.4

и частоты $f_{\scriptscriptstyle \rm H}=6.2~\Gamma\Gamma$ ц, $f_{\scriptscriptstyle \rm B}=7~\Gamma\Gamma$ ц. **Найти** модуль s_{21} в д ${\rm B}$ на частоте $f_{\scriptscriptstyle \rm H}$.

Варианты ОТВЕТА:

- 1) -21.3 дБ
- 2) 13.1 дБ
- 3) -14.1 дБ
- 4) -5.9 дБ

Задан двухполюсник на рисунке 2, причём R1 = 208.54 Ом.

Рисунок 2 – Двухполюсник

Найти полуокружность (см. рисунок 3), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 3 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать $unde\kappa c$ выбранной полуокружности.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
2.8	0.473	-168.0	10.058	75.0	0.043	51.9	0.278	-87.1
2.9	0.474	-169.7	9.714	73.8	0.045	51.9	0.274	-88.7
3.0	0.476	-171.3	9.374	72.5	0.046	51.9	0.271	-90.3
3.1	0.476	-172.8	9.096	71.5	0.047	51.9	0.268	-91.4
3.2	0.476	-174.4	8.821	70.4	0.048	52.0	0.266	-92.6
3.3	0.477	-175.9	8.549	69.3	0.049	52.0	0.263	-93.8
3.4	0.478	-177.4	8.281	68.1	0.050	52.1	0.261	-95.0
3.5	0.480	-178.9	8.017	66.8	0.051	52.1	0.259	-96.2
3.6	0.480	179.8	7.814	65.8	0.053	52.0	0.257	-97.0
3.7	0.481	178.5	7.614	64.8	0.054	52.0	0.255	-97.8
3.8	0.481	177.2	7.416	63.7	0.055	51.9	0.253	-98.7

и частоты $f_{\scriptscriptstyle \rm H}=2.9$ ГГц, $f_{\scriptscriptstyle \rm B}=3.7$ ГГц.

Найти неравномерность усиления в полосе $f_{\text{н}}...f_{\text{в}}$, используя рисунок 4.

Рисунок 4 – Частотная характеристика усиления

Варианты ОТВЕТА:

1) 2.6 дБ

- 2) 1.1 дБ 3) 2.1 дБ 4) 0.2 дБ

Найти точку (см. рисунок 5), соответствующую коэффициенту отражения от нормированного импеданса $z=0.49\text{-}0.41\mathrm{i}$.

Рисунок 5 – Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.