

# **StarDist**

# Object Detection with Star-convex Shapes



Uwe Schmidt, Martin Weigert, Coleman Broaddus, and Gene Myers.

Cell Detection with Star-convex Polygons.

International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Granada, Spain, September 2018.



Martin Weigert, Uwe Schmidt, Robert Haase, Ko Sugawara, and Gene Myers.

Star-convex Polyhedra for 3D Object Detection and Segmentation in Microscopy.

The IEEE Winter Conference on Applications of Computer Vision (WACV), Snowmass Village, Colorado, March 2020

# Motivation

& what to learn

- What is StarDist?
- The main idea
- Why to use StarDist
- How to use it in FIJI
- Other software plugins

### **What is StarDist?**

- Deep learning tool designed to localize cell nuclei.
- Available as:
  - Package for training custom prediction model (Python).
  - Pretrained model ready to use.
  - Plugin(s) using pre-trained models.







#### **How it works**

- Tool designed to localize cell nuclei via star-convex polygons.
- Similar to methods that directly predict shapes for each object of interest.





### **How it works**

- Segmentation based on Star-Convex objects.
- Capability to handle intersection/overlapping objects.



# Why to use StarDist

- Easy to use.
- Can detect overlapping objects.
- Robust to intensity changes.
- Usable for both 2D and 3D data.
- Available as plugin.
- Available models are widely usable.
- Possibility to retrain model for specific data.

### **Pretrained models**

Fluorescence Microscopy Single Channel



Data Science Bowl 2018
Caicedo et al. (2018)

- ~ 600 images (2D)
- ~ 20k annotations

Histopathology RGB H&E



MoNuSeg Kumar et al (2017)

- ~ 30 Images (2D)
- ~ 22k annotations

# **Examples**

- What is in Imagej/FIJI.
  - o 2 models
- Basic settings.
- Difference of overlap settings (synthetic images).

### **Examples - Overview**

Plugin currently supports only 2D images.

2 models: Versatile (fluorescent nuclei) Versatile (H&E nuclei)



# **Examples - Settings**



#### Preprocessing settings

- Normalization of image values.
- Correction of "underexposure".
- Correction of "overexposure".

#### StarDist settings

- Probability Threshold how sure we want to be in detection of object.
- Overlap Threshold how much overlap we want to allow.

## **Examples - Overlap**





## **Examples - Overlap**





# **Examples - Overlap + Probability**





# **Plugins**

#### ImageJ/Fiji

Scriptable ImageJ/Fiji plugin that can be used to run pretrained StarDist models on 2D or 2D+time images.

#### Napari

Plugin for the Python-based multi-dimensional image viewer napari. It directly uses the StarDist Python package and works for 2D and 3D images.

#### QuPath

Inspired by the Fiji plugin, Pete Bankhead made a custom implementation of StarDist 2D for QuPath to use pretrained models.

#### **Icy**

Based on the Fiji plugin, Deborah Schmidt made a StarDist 2D plugin for Icy to use pretrained models.

#### **KNIME**

Stefan Helfrich has modified the Fiji plugin to be compatible with KNIME.

### **Hands on**

- Get familiar with StarDist Plugin.
- Analyze synthetic data with 0.45 overlap.
- Analyze real data.





#### References

- Uwe Schmidt, Martin Weigert, Coleman Broaddus, and Gene Myers.
   Cell Detection with Star-convex Polygons.
   International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Granada, Spain, September 2018.
- Martin Weigert, Uwe Schmidt, Robert Haase, Ko Sugawara, and Gene Myers.
   Star-convex Polyhedra for 3D Object Detection and Segmentation in Microscopy.
   The IEEE Winter Conference on Applications of Computer Vision (WACV),
   Snowmass Village, Colorado, March 2020
- ImageJ/Fiji plugin for StarDist: <a href="https://imagej.net/plugins/stardist">https://imagej.net/plugins/stardist</a>