Homework 1

1. a.

b.

C.

d.

e.

- 2. a. *b***ab***ab**
 - b. $b\Sigma^*a$
 - c. $\Sigma^*bba\Sigma^*$
 - d. b^*a^*
 - e. $b^*a^* \cup \Sigma^*ba$

- 3. a. *a***ba**
 - b. $(a \cup ba*b)*$
 - c. $(\Sigma^2)^*$
 - d. Suppose L is regular and $A = \langle \Sigma, Q, q_0, F, \delta \rangle$ is its DFA. Consider a word $a^mba^n \in L$, where $m, n \in \mathbb{N}$, $m \le n$, and m > |Q|. Then, a^m can be divided into three parts $a^m = a^ua^va^w$, and m = u + v + w s.t. $a^u(a^v)^ka^wba^n \in L$ for every nonnegative integer $k \ge 0$. However, there is a contradiction because $a^u(a^v)^ka^wba^n \notin L$ when u + kv + w > n, or k > (n u w)/v. Therefore, L is not regular.
 - e. Suppose L is regular and $A = \langle \Sigma, Q, q_0, F, \delta \rangle$ is its DFA. Consider a word a^k , where k is a prime number, and k > |Q|. Then, a^k can be divided into three parts $a^k = a^u a^v a^w$, and k = u + v + w s.t. $a^u (a^v)^n a^w \in L$ for every nonnegative integer $n \ge 0$. However, there is a contradiction because $a^u (a^v)^n a^w \notin L$ when n = k + 1, u + vn + w = (v + 1)k, which is not a prime number. Therefore, L is not regular.

4. a.

- (1) Reflexivity. For every $w \in \Sigma^*$, $uw \in L$ if and only if $uw \in L$ always holds. Therefore, $u \sim_L u$ holds.
- (2) Symmetry. Suppose $u \sim_L v$ holds. Then, for every $w \in \Sigma^*$, $uw \in L$ if and only if $vw \in L$, and vice versa, $vw \in L$ if and only if $uw \in L$. Therefore, $v \sim_L u$ holds.
- (3) Transitivity. Suppose $t \sim_L u$ and $u \sim_L v$. Then, for every $w \in \Sigma^*$, $tw \in L$ if and only if $vw \in L$ and $uw \in L$ if and only if $vw \in L$ together imply $tw \in L$ if and only if $vw \in L$. Therefore, $t \sim_L v$ holds. To sum up, \sim_L is an equivalence relation.
- b. L is a regular language if and only if $\#(\sim_L)$ is finite.
- \Rightarrow . Suppose L is regular. Let $A = \langle \Sigma, Q, q_0, F, \delta \rangle$ be its DFA, where |Q| = k. If $\#(\sim_L) > k$, and there must exist two words u and v in two different equivalence classes, s.t. the run of A on u and the run of A on v end in the same state. Then, $\forall w \in \Sigma^*$, $uw \in L$ if and only if $vw \in L$, which is a contradiction to that u and v are from two different equivalence classes. Therefore, $\#(\sim_L) \leq k$, which is finite.
- \Leftarrow . Suppose $\#(\sim_L) = k$, which is finite. And the equivalence classes are L_1, L_2, \ldots, L_k , s.t. $\bigcup_i L_i = \Sigma^*$ and $L_i \cap L_j = \emptyset$ for $1 \le i \ne j \le k$. Then, a DFA $A = \langle \Sigma, Q, q_0, F, \delta \rangle$ can be constructed accordingly s.t. L is recognized by A.
 - $Q = \{q_1, q_2, \dots, q_k\}$ s.t. q_i corresponds to L_i , for $1 \le i \le k$.
 - $q_0 = q_i$ s.t. $\epsilon \in L_i$.
 - $\circ \ F = \{q_i | L_i \subseteq L\}.$
 - $\delta(q_i, a) = q_i \text{ s.t. } \forall w \in L_i, wa \in L_i$.

Given a word $w = a_1 a_2 ... a_n \in L$, and the run of A on w is $p_0 a_1 p_1 ... a_n p_n$. Since $w \in L_i$ if and only if the run of A on w ends at q_i , therefore, $w \in L_{p_n}$ (which is one of the equivalence classes). Altogether, $w \in L_{p_n}$ and $w \in L$ implies $L_{p_n} \subseteq L$ and $p_n \in F$. Any word $w \in L$ is accepted by A, and L is recognized by A.