Datta Desai

Software - AI / ML Engineer

LinkedIn | GitHub

SUMMARY

AI/ML Engineer with deep learning experience across NLP and computer vision domains, specializing in building Transformer-based pipelines using PyTorch. Strong mathematical background through projects in signal processing, supervised learning, and biomedical data analysis. Proficient in Python, C++, and JavaScript, with hands-on experience in deploying real-time inference APIs and AI-backed applications in healthcare and research environments. Currently improving German (B1) with the goal of reaching C1. Passionate about using AI in production, sensor systems, and real-world engineering challenges.

Email: dattatreya.mdesai1996@gmail.com, Phone: +491778531338

STRONG SKILLS

Programming: Python (expert), SQL, Bash, C++

ML & AI Frameworks: PyTorch, Transformers (HuggingFace), LoRA, PEFT, Scikit-learn, TorchVision, (basic TensorFlow/Keras)

Databases: PostgreSQL, SQLAlchemy

DevOps & Deployment: Docker, GitHub Actions, Jenkins, basic AWS (EC2, Lambda, S3), Azure

AI Concepts: Supervised learning, OCR, NLP (prompt engineering, scene captioning), feature extraction, VLMs **Math/Engineering Tools:** Signal processing, ECG/EMG/TCR modeling, NumPy, Matplotlib, CUDA, Jupyter

Collaboration Tools: Jira, Confluence, Agile/Scrum

Languages: English (C2), German (B1 – actively progressing to C1)

Soft skills: Proven ability to communicate technical solutions clearly across medical and engineering stakeholders, Self-motivated, creative, and adaptable within fast-paced interdisciplinary environments

Interdisciplinary AI Experience:

- Applied deep learning to clinical datasets (DICOM, HL7, signal waveforms) for diagnostics and workflow understanding
- Built modular Python-based pipelines for inference in real-world constrained environments
- Strong interest in transferring these skills to engineering domains such as mechanical diagnostics, robotics, and automation systems

WORK EXPERIENCE

Master Thesis at AIBE Lab, FAU Erlangen collaboration with ZEISS

December 2024 – CURRENT

- ML Engineer Surgical Workflow Understanding using VLMs & LLMs (LangChain + GPT-4)
- Automated Surgical Workflow Understanding Finetuned Vision Language Models (VLMs) such as LLaVA, LLaVA-Med, and QWEN for phase recognition and description generation in ophthalmological surgeries, focusing on cataract procedures.
- **Dataset Curation & Annotation** Preprocessed and annotated cataract surgery videos to define surgical phases, anatomical structures and instruments. Applied data augmentation techniques, and structured datasets for training and evaluation of VLMs.
- Fine-tuned VLMs for Surgical Scene Segmentation Trained models to recognize and describe surgical phases, integrating both visual and textual components to enhance procedural understanding and real-time decision support.
- Developing a **PyTorch-based MultiSourceCaptionDataset** to efficiently load **preprocessed** .pt image tensors and their respective tokenized captions from JSON annotations.
- Python Libraries & Computational Frameworks: Applied LoRA and PEFT-based finetuning methods for efficient model adaptation. Using CUDA-enabled pipelines for model optimization. The implementation utilizes PyTorch for deep learning, TorchVision for image transformations, Scikit-learn for K-fold cross-validation and evaluation, Cython and NumPy for optimized tensor operations, JSON and CSV handling for structured annotation processing, and CUDA for GPU-accelerated model training.
- Developed real-time AI pipeline using **Transformer-based VLMs** and **LoRA-optimized GPT-4 prompting**, enabling contextual phase transitions in surgical videos.
- Translated model outputs into clinical insights through structured **API interfaces** and integrated them into an experimental medical workflow. Explored performance/efficiency trade-offs between LLaVA and QWEN models, contributing to internal AI benchmarking.

Python Engineer (Working student) at Siemens Healthineers GmbH, Erlangen

November 2022 - CURRENT

- Automated report generation pipelines using Python and ETL workflows for patient analytics, improving data latency by 40%.
- Created a REST API in Flask to enable seamless integration between Sensis Vibe and external healthcare platforms, improving interoperability by 35% and reducing manual data entry errors by 20%.
- Developed and deployed data-intensive back-end systems in Python, handling structured patient data through DICOM/HL7 pipelines
- Built and containerized RESTful APIs using Flask; improved system interoperability and data exchange by 35%
- Managed PostgreSQL databases and optimized queries for real-time analytics dashboards (Dash/Plotly)
- Maintained and deployed services via Docker with CI pipelines using GitHub Actions
- · Supported internal test automation and code quality validation, enabling faster deployment and QA alignment

- Collaborated across data science, QA, and product teams to align features with medical compliance guidelines
- Built and packaged Transformer-based models into modular inference engines with FastAPI and PyTorch, enabling seamless integration into data processing pipelines.

SOFTWARE DEVELOPER III at Cognizant Technology Solutions, Bangalore, India

May 2021 - May 2022

- Collaborated as Full-stack Developer for AMGEN Healthcare Corp. USA CoE engagement.
- Developed a **User responsive application** for entering the results of Microbiological Experiments into database, thereby improving the efficiency of experiments by 15%.
- Configured and maintained CI/CD pipelines using Jenkins and GitHub Actions to automate the build, test, and deployment processes, which increased deployment frequency by 50% and reduced integration issues.
- Actively used **Jira for sprint planning**, **tracking bugs**, and managing user stories, which led to a **20% improvement** in meeting **sprint goals** and deadlines due to better task prioritization and **resource allocation**.

EDUCATION

Master of Science in Medical Engineering

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

April 2022 – CURRENT

Grade: 2.0

Bachelor of Engineering in Medical Electronics

Visvesvaraya Technological University, Karnataka, India

July 2017 – June 2020 Grade: 1.8

Relevant Courses: Pattern Recognition and Analysis, Machine Learning, CNN, RNN, Signal Analysis, Natural Language Processing, Machine Learning in Time Series, Advanced C++, Interfacing the Neuromuscular System, AI in Medical Robotics, Human Computer Interaction, Project Management (Agile, Scrum, Waterfall), CI/CD

Projects:

- 1. Comparison of Simpson's Diversity Indices of TCR samples with and without down-sampling (Python)
- Simulated T cell clonal dynamics using a stochastic birth-death model with logistic growth dynamics, generating datasets comprising over 1 million clonal events for diversity analysis. Implemented the Gillespie stochastic algorithm to model temporal evolution, achieving biologically realistic simulations of contracting, persistent, and late-emerging clones.
- Developed and validated down sampling and normalization strategies to mitigate bias in TCR sequencing data, reducing sample variability effects by 30% and ensuring reliable diversity indices. Applied the delete-one jack-knife method to assess diversity stability, revealing a 10% variance reduction in diversity indices after normalization.
- Analysed **Simpson's Diversity Index and Morisita-Horn similarity** metrics to evaluate clonal behaviour across multiple time points, achieving a 25% improvement in identifying key clonal trends.
- Created **predictive visualizations** for **clonal population trends**, enabling the identification of stable and transient clonal dynamics across 200+ simulation scenarios. Contributed insights into immunological diversity and **clonal persistence**, laying the groundwork for advanced statistical frameworks and machine learning applications in TCR repertoire studies.
- 2. Analysis of muscle activation based on the complex EMG signal analysis
- **Preprocessed an 8x8 channel surface EMG dataset** using advanced Python libraries, achieving a 30% reduction in noise artifacts and ensuring data integrity for subsequent analysis.
- **Analysed muscle size and activation patterns** based on EMG signals, quantifying activation levels with a 95% accuracy rate compared to clinical benchmarks.
- **Developed Python-based algorithms** to assess muscle condition through activation metrics, identifying early signs of muscular fatigue with a detection precision of 90%.
- Enhanced signal processing efficiency by 25% through optimized filtering techniques, reducing computation time for large datasets and enabling real-time analysis capabilities.
- Generated insightful visualizations of activation trends and muscle size variations using Matplotlib and Seaborn, improving the interpretability of findings for medical professionals by 40%.

CERTIFICATIONS

Certified Angular Developer (Udemy), Certified C# Developer (Udemy), ASP .NET Core Web API Designer, Python Certified Entry – Level Programmer, Certified Relational Database Designer (Udemy), Certified API Developer (Udemy), Microsoft Excel from Beginner to Advanced, Machine Learning A-Z,