tourd + 1 = with sirra + cosx = 1

2. kontrolna naloga 2. A, 8. 12. 2021

PRIS KEMICHIM

Ime in priimek: Liva Jurković

SYINCHIKOM!!! &

dosežene točke 23	možne točke	odstotki	ocena
	35	66	3

ČAS PISANJA: 45 minut

1. Naj boxkot, za katerega velja $0^{\circ} < x < 360^{\circ}.$ V enotskem krogu predstavi in nato izračunaj velikosti vseh kotov x, za katere velja $\cos x = -0, 8$. Velikosti kotov zapiši na minuto natančno.

$$\cos(180^{\circ}-36^{\circ}52^{\circ}) = -0.18$$
 $\cos(180^{\circ}-36^{\circ}52^{\circ}) = -0.18$
 $\cos(180^{\circ}+36^{\circ}52^{\circ}) = -0.18$
 $\cos(180^{\circ}+36^{\circ}52^{\circ}) = -0.18$
 $\cos(180^{\circ}+36^{\circ}52^{\circ}) = -0.18$

2. Dan je pravokotni trikotnik ABC s hipotenuzo AB. Izračunaj natančni dolžini [6t] 5t hipotenuze c in katete a, če je v=24 cm in $a_1:b_1=1:4$.

anibrenih

V2 = 1x. 4x 516= 4x2 XZ= Muh X= Man an= 12cm, by= 48cm

> C= an+bn= 60am 2= 0,0 a2 = 12cm. 60cm = 720cm

a=26,83an To je približek!

62 = b1C

3. Konstruiraj trapez ABCD z ostrima kotoma α in β s podatki: b=2,5 cm, d=3 cm, $\alpha=45^\circ$ in $\angle BDC=30^\circ$. Nato konstruiraj daljico A'C' (brez zapisa poteka konstrukcije), ki se s središčnim raztegom s središčem v razpolovišču osnovnice a trapeza in koeficientom raztega k=-2 preslika v diagonalo trapeza AC.

Dx -> A

D l(A, r=3cm) -> D

D lond. *ADB

-> 150°-x-30°

P(F, a) -> B

Cla, l(B, r=25cm)

-> C

Tropez ABCD

4. Konstruiraj trikotnik ABC s podatki: a-c=2 cm, $\beta=60^\circ$ in b=4 cm. Zapis poteka konstrukcije ni obvezen. [5t]

b=han

1 ABC

a-c=2cm

c 2 1 8

- 5. Na sliki je štirikotnik ABCD.
 - a) S kotom α izrazi kot $\angle SDB$.

[3t]0t

b) Nosilki stranic CD in AB se sekata v točki P. Zapiši podobna trikotnika in utemelji, zakaj sta si podobna (lahko s krajšimi zapisi ob sliki). Izrazi ploščino S trikotnika BPC s ploščino S_{ABCD} štirikotnika ABCD, če je |PA|=4 in |PC|=1.

30 1	45	60
- 1 3	22	之
7	12	NE 2
季	1	13
13	1	13/3

[3t]

tan=
$$\frac{\sin}{\cos}$$
 $\cot x + (\Lambda - 2(\Lambda + \tan^2 x)^{-\Lambda}) \cdot \sin^{-\Lambda} x \cdot \cos x =$
 $\cot x + (\Lambda - 2(\Lambda + \tan^2 x)^{-\Lambda}) \cdot \sin^{-\Lambda} x \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 $\cot x + (\Lambda - 2\cos^2 x) \cdot \frac{\Lambda}{\sin x} \cdot \cos x =$
 \cot

DODATNA NALOGA:

Dokaži, da so razpolovišča stranic poljubnega konveksnega štirikotnika ABCDoglišča paralelograma.

