CS133 Parallel & Distributed Computing

Introduction to Convolutional Neural Networks

Instructor: Jason Cong cong@cs.ucla.edu

1

Correction from Last Lecture -- Thread Structure

- □ Work-items can uniquely identify themselves based on:
 - A global id (unique within the index space)
 - A work-group ID and a local ID within the work-group

P. Mistry & D. Schaa (Northeastern Univ.), with B. Gaster (AMD), AMD © 2011

3

3

_

Computation & Storage Analysis

	CONV	POOL	ReLU	Fully connect
Computation Complexity(10 ⁶)	30600	6.12	13.5	122.7
Percentage	99.5%	0.0%	0.1%	0.4%
Storage Complexity (MB)	113	0	0	471.6
Percentage	19.3%	0.0%	0.0%	80.6%
Time% in pure software	96.3%	0.0%	0.0%	3.7%

An example of VGG-16 network

A Lot of Interest in Hardware Acceleration!

11

11

Feedforward Computation on FPGA

```
1 for(row=0; row<R; row+=Tr) {
2  for(col=0; col<C; col+=Tc) {
3  for(to=0; to<M; to+=Tm) {
4  for(ti=0; ti<N; ti+=Tn) {
    (Tile loop)
    (Tile loop)
```

Off-chip Data Transfer: Memory Access Optimization

On-chip Data: Computation Optimization for(trr=row; trr<min(row+Tr, R); trr++) {</pre> (Point loop for(tcc=col; tcc<min(tcc+Tc, C); tcc++) { (Point loop for(too=to; too<min(to+Tm, M); too++) { (Point loop for(tii=ti; tii<(ti+Tn, N); tii++) { 8 (Point loop for(i=0; i<K; i++) { (Point loop) 10 for(j=0; j<K; j++) { (Point loop output_fm[to][row][col] += $weights[to][ti][i][j]*input_fm[ti][S*row+i][S*col+j];\\$ **}}}**} 17 **}}}**

17

CS 133 Worksheet

- Given that L1 cache is 32KB and L2 cache is 1MB on your machine, please analyze if each of the following set of matrices in your Lab 3 can fit into L1 or L2 cache.
 - All input feature maps
 - All output feature maps
 - All weight matrices

Acknowledgements

☐ Some slides on CNN are compiled with help of Chen Zhang, a visiting PhD student from Peking Univ. , now at Microsoft Research Asia (MSRA)