Numerične metode - preizkusi iz teorije

Ladisk

30. januar 2019

Kazalo

1	Datum: 11.1.2019	2
2	Datum: 28.1.2019	4

1 Datum: 11.1.2019

1. vprašanje

Podano tabelo podatkov: x = (0, 1, 2), y = (1, 4, 2) je potrebno interpolirati. Najprej predstavite interpolacijo podane tabele kot problem reševanja sistema linearnih enačb, nato predstavite Lagrangevo interpolacijsko metodo in jo uporabite na tabeli podatkov. Pojasnite razlike med obema pristopoma. Ali je rezultat enak? (35 %)

Okviren odgovor (skice tukaj niso podane; študente pa vzpodbujamo, da jih uporabljajo, saj lahko bistveno pripomorejo k jasnosti odgovora)

Polinomska interpolacija: podane imamo 3 točke, zato uporabimo interpolacijo s polinomom 2. stopnje:

$$y = a_2 \cdot x^2 + a_1 \cdot x + a_0. \tag{1}$$

Nastavimo sistem enačb oblike $A \cdot x = b$:

Točk: 5

$$\begin{bmatrix} 4 & 2 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 1 \end{bmatrix}$$
 (2)

Določimo neznanke (tukaj samo nakažemo rešitev, numerično pravilen postopek je z uporabo Gaussove eliminacije):

Točk: 5

Lagrangeva metoda: enačbi Lagrangeve interpolacijske metode:

$$l_i(x) = \prod_{j=0, j \neq i}^{n-1} \frac{x - x_j}{x_i - x_i},\tag{4}$$

$$P(x) = \sum_{i=0}^{n-1} y_i \cdot l_i(x).$$
 (5)

Točk: 5

Najprej definiramo Lagrangeve polinome:

$$l_0(x) = \frac{x-1}{0-1} \cdot \frac{x-2}{0-2}$$

$$l_1(x) = \frac{x-0}{1-0} \cdot \frac{x-2}{1-2}$$

$$l_2(x) = \frac{x-0}{2-0} \cdot \frac{x-1}{2-1}$$
(6)

Definiramo Lagrangev interpolacijski polinom:

Točk: 5

$$P(x) = 1 \cdot l_0(x) + 4 \cdot l_1(x) + 2 \cdot l_2(x). \tag{7}$$

Točk: 5

2. vprašanje

Za drugi odvod izpeljite: centralno diferenčno shemo 2. reda natančnost in diferenčno shemo naprej 1. reda natančnosti. (35 %)

Okviren odgovor (skice tukaj niso podane; študente pa vzpodbujamo, da jih uporabljajo, saj lahko bistveno pripomorejo k jasnosti odgovora)

Centralna diferenčna shema za 2. odvod: razvijemo Taylorjevo vrsto naprej in nazaj do 3. odvoda:

$$f(x+h) = f(x) + h f'(x) + \frac{h^2}{2} f''(x) + \frac{h^3}{6} f'''(x) + \mathcal{O}(h^4)$$
 (1)

$$f(x-h) = f(x) - h f'(x) + \frac{h^2}{2} f''(x) - \frac{h^3}{6} f'''(x) + \mathcal{O}(h^4)$$
 (2)

Enačbi seštejemo:

$$f(x+h) + f(x-h) = 2f(x) + h^2 f''(x) + \mathcal{O}(h^4)$$
(3)

in izrazimo drugi odvod:

$$f''(x) = \frac{f(x-h) - 2f(x) + f(x+h)}{h^2} + \mathcal{O}(h^2)$$
(4)

_____ Točk: 5

Pomembno je, da Taylorjevo vrsto razvijemo do vključno 3. odvoda, saj tako dobimo končno napako 2. reda (po deljenju s h^2). Tretji odvod se nato ob seštevanju enačb izniči. V primeru, da bi vrsto razvili le do 2. odvoda, bi dobili končno napako 1. reda. Točk: 5

Diferenčna shema naprej: za diferenčno shemo naprej moramo razviti dve Taylorjevi vrsti:

$$f(x+h) = f(x) + h f'(x) + \frac{h^2}{2} f''(x) + \mathcal{O}(h^3)$$
 (5)

$$f(x+2h) = f(x) + 2h f'(x) + \frac{4h^2}{2} f''(x) + \mathcal{O}(h^3)$$
(6)

Točk: 5

Točk: 5

Enačbo (5) pomnožimo z 2 in ji odštejemo enačbo (6):

$$2f(x+h) - f(x+2h) = \begin{bmatrix} 2f(x) - f(x) \end{bmatrix} + \\ \begin{bmatrix} 2hf'(x) - 2hf'(x) \end{bmatrix} + \\ \begin{bmatrix} \frac{2h^2}{2}f''(x) - \frac{4h^2}{2}f''(x) \end{bmatrix} + \mathcal{O}(h^3)$$
 (7)

Izraz poenostavimo:

$$2f(x+h) - f(x+2h) = f(x) - h^2 f''(x) + \mathcal{O}(h^3)$$
(8)

Točk: 5

Izrazimo drugi odvod. Ker enačbo delimo s h^2 dobimo red napake 1:

$$f''(x) = \frac{f(x) - 2f(x+h) + f(x+2h)}{h^2} + \mathcal{O}(h)$$
(9)

Ker smo napako $\mathcal{O}(h^3)$ delili s h^2 , dobimo končno napako 1. reda.

<u>Točk: 5</u> Točk: 5

3. vprašanje

Zapišite uteži Simpsonove 1/3 metodo za numerično integriranje. Za tabelo podatkov $(x_0, x_1, ...), (y_0, y_1, ...)$ prikažite uporabo osnovnega in sestavljenega Simpsonovega pravila; komentirajte napako. Pokažite, kako lahko s pomočjo Richardsonove ekstrapolacije rezultata s korakom h in 2h izračunamo boljši približek. (30%)

Okviren odgovor (skice tukaj niso podane; študente pa vzpodbujamo, da jih uporabljajo, saj lahko bistveno pripomorejo k jasnosti odgovora)

Uteži Simpsonove 1/3 metode: $w = \begin{bmatrix} \frac{1}{3}, \frac{4}{3}, \frac{1}{3} \end{bmatrix} \cdot h$

Točk: 5

Za osnovno pravilo potrebujemo 3 ekvidistančne točke:

$$x = [x_0, x_1, ...]$$

 $y = [y_0, y_1, ...]$

Primer integrala:

$$I = \left(\frac{y_0}{3} + \frac{4 \cdot y_1}{3} + \frac{y_2}{3}\right) \cdot h \tag{1}$$

Točk: 5

Sestavljeno pravilo.

$$x = [x_0, x_1, ...]$$

 $y = [y_0, y_1, ...]$

Primer integrala:

$$I = \left(\frac{y_0}{3} + \frac{4 \cdot y_1}{3} + \frac{y_2}{3} + \frac{y_2}{3} + \frac{4 \cdot y_3}{3} + \frac{y_4}{3}\right) \cdot h \tag{2}$$

oziroma:

$$I = \left(\frac{y_0}{3} + \frac{4 \cdot y_1}{3} + \frac{2 \cdot y_2}{3} + \frac{4 \cdot y_3}{3} + \frac{y_4}{3}\right) \cdot h \tag{3}$$

Točk: 5

Pri sestavljenem 1/3 Simpsonovem pravilu je pomembno, da je število intervalov sodo. (Tukaj je priporočljiva **skica**) Točk: 5

Napaka sestavljene Simpsonove metod je 4. reda: $-\frac{b-a}{180} h^4 f^{(4)}(\eta)$. Točk: 5 Izračunamo integral s korakom 2h in korakom h:

$$I_{2h} = \left(\frac{y_0}{3} + \frac{4y_2}{3} + \frac{y_4}{3}\right) \cdot 2h \tag{4}$$

$$I_h = \left(\frac{y_0}{3} + \frac{4y_1}{3} + \frac{2y_2}{3} + \frac{4y_3}{3} + \frac{y_4}{3}\right) \cdot h \tag{5}$$

Za izboljšano aproksimacijo integrala uporabimo enačbo:

$$I = \frac{2^n I_h - I_{2h}}{2^n - 1} = \frac{16 I_h - I_{2h}}{15} \tag{6}$$

Točk: 5

2 Datum: 28.1.2019

1. vprašanje

Matriko:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 5 \\ 2 & 5 & 6 & 8 \end{bmatrix} \tag{1}$$

(1.) preoblikujte v Gaussovo eliminirano obliko. (2.) Kakšne oblike je matrika po preoblikovanju?

 $\tilde{C}e$ A predstavlja razširjeno matriko sistema linearnih enačb in je zadnji stolpec vektor konstant, določite

- (3.) rang osnovne in razširjene matrike. (4.) Kaj nam preoblikovana matrika lahko pove o sistemu enačb?
- (5.) Ali ima podani sistem enolično rešitev? (6.) Katero operacijo izvedemo, da po Gaussovi eliminaciji dobimo rešitev sistema?

Okviren odgovor (skice tukaj niso podane; študente pa vzpodbujamo, da jih uporabljajo, saj lahko bistveno pripomorejo k jasnosti odgovora)

(1.) Postopek preoblikovanja matrike A:

$$A_1 = A_1 - A_0 \rightarrow \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 0 & 1 \\ 2 & 5 & 6 & 8 \end{bmatrix}$$
 (2)

$$\mathbf{A}_{2} = \mathbf{A}_{2} - 2 \cdot \mathbf{A}_{0} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$
 (3)

$$\mathbf{A}_{2} = \mathbf{A}_{2} - 0.5 \cdot \mathbf{A}_{1} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & -0.5 \end{bmatrix}$$
 (4)

(5)

(2.) Matrika je zgornje trikotna.

Točk: 5

(3.) Rang razširjene matrike je enak 3. Rang osnovne matrike je enak 2.

Točk: 5

Točk: 10

- (4.) Preoblikovana matrika nam pove rang osnovne matrike in rang razširjene matrike. Posledično izvemo ali ima sistem rešitev ali ne.

 Točk: 5
- (5.) Tak sistem enačb **nima** enolične rešitve.

<u>Točk: 5</u>

(6.) Da dobimo rešitev sistema enačb moramo uporabiti obratno vstavljanje.

Točk: 5

2. vprašanje

Tabelo podatkov x_i , y_i želimo aproksimirati s funkcijo $f(x) = a x^{3/2} + b$. Za podano funkcijo pokažite, kako to izvedemo s pomočjo metode najmanjše kvadratične napake? Nastavite sistem enačb za določitev parametrov a in b! (30%)

Okviren odgovor (skice tukaj niso podane; študente pa vzpodbujamo, da jih uporabljajo, saj lahko bistveno pripomorejo k jasnosti odgovora)

Uporabimo enačbo za metodo najmanjših kvadratov:

$$S(a,b) = \sum_{i=0}^{n-1} (y_i - (ax_i^{3/2} + b))^2$$
(1)

Točk: 5

Vemo, da v stacionarni točki velja:

$$\frac{\partial S}{\partial a} = 0$$
 in $\frac{\partial S}{\partial b} = 0$. (2)

<u>Točk: 5</u>

Izvedemo odvajanje:

$$\frac{\partial S}{\partial a} = 2 \cdot \sum_{i=0}^{n-1} (y_i - (a x_i^{3/2} + b)) \cdot x_i^{3/2}, \tag{3}$$

sledi:

$$0 = \sum_{i=0}^{n-1} (a x_i^3 + b x_i^{3/2} - x_i^{3/2} y_i)$$
(4)

<u>Točk: 5</u>

Iz:

$$\frac{\partial S}{\partial b} = 2 \cdot \sum_{i=0}^{n-1} (y_i - (a x_i^{3/2} + b)) \cdot (-1), \tag{5}$$

sledi:

$$0 = \sum_{i=0}^{n-1} (a x_i^{3/2} + b - y_i).$$
 (6)

<u>Točk: 5</u>

Nastavimo lahko sistem enačb:

$$a\sum_{i=0}^{n-1} x_i^3 + b\sum_{i=1}^{n-1} x^{3/2} = \sum_{i=0}^{n-1} x_i^{3/2} y_i$$
(7)

in _____ Točk: 5

$$a\sum_{i=1}^{n-1} x^{3/2} + b\sum_{i=1}^{n-1} 1 = \sum_{i=1}^{n-1} y_i$$
(8)

Točk: 5

3. vprašanje

Kakšna je razlika med reševanjem diferencialnih enačb glede na začetne pogoje in reševanjem glede na robne pogoje? Zapišite centralno diferenčno shemo za odvoda \dot{x} in \ddot{x} . Pokažite, kako za robna pogoja: $x(t=0\,\mathrm{s})=1$ in $x(t=2\mathrm{s})=0$ rešite diferencialno enačbo: $\ddot{x}+c\,\dot{x}+kx=0$. Rešite s pomočjo centralne diferenčne sheme drugega reda. Uporabite fizikalne točke pri $t=[0,1,2]\,\mathrm{s}$.

Okviren odgovor (skice tukaj niso podane; študente pa vzpodbujamo, da jih uporabljajo, saj lahko bistveno pripomorejo k jasnosti odgovora)

Pri začetnem problemu pri sistemu d.e. poznamo vrednosti vseh dodatnih enačb pri isti vrednosti neodvisne spremenljivke in tako lahko začnemo numerično integracijo. Pri robnem problemu dodatne enačbe, potrebne za rešitev d.e., poznamo pri različnih vrednosti neodvisne spremenljivke.

Točk: 5

Centralna diferenčna shema za \dot{x} :

$$\dot{x}_i = \frac{x_{i+1} - x_{i-1}}{2h} \tag{1}$$

Točk: 5

Centralna diferenčna shema za \ddot{x} :

$$\ddot{x}_i = \frac{x_{i-1} - 2x_i + x_{i+1}}{h^2} \tag{2}$$

Točk: 5

Enačbo zapišemo s pomočjo centralne diferenčne sheme:

$$\ddot{x} = -c\,\dot{x} - k\,x\tag{3}$$

$$\frac{x_{i-1} - 2x_i + x_{i+1}}{h^2} = -c \frac{-x_{i-1} + x_{i+1}}{2h} - kx_i \tag{4}$$

Točk: 5

Ker vemo, da uporabljamo samo točke pri t = (0, 1, 2) sekund, lahko zapišemo $x_i = x_1$ samo pri 1 sekundi. To pomeni, da dobimo:

$$x_0 = x(0 s) \tag{5}$$

$$x_1 = x(1 s) \tag{6}$$

$$x_2 = x(2 s) \tag{7}$$

Točk: 5

Če te vrednosti vstavimo poznane vrednosti x(0) = 1 in x(2) = 0 v enačbo (4) dobimo:

$$\frac{1 - 2x_1 + 0}{h^2} = -c\frac{-1 + 0}{2h} - kx_1 \tag{8}$$

oziroma

$$\frac{-2x_1+1}{h^2} = \frac{c}{2h} - kx_1 \tag{9}$$

upoštevamo še, da je korak h enak 1 (točke (0, 1, 2) si sledijo s korakom 1):

$$-2x_1 + 1 = \frac{c}{2} - kx_1 \tag{10}$$

in izrazimo x_1 :

$$x_1 = \frac{c-2}{2(k-2)} \tag{11}$$

Točk: 5

Točk: 5