♦ Lycée de Dindéfélo ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦			A.S.: 2024/2025
Matière: Mathématiques	Niveau: TS2	Date: 19/03/2025	Durée : 4 heures
Devoir n° 1 Du 2 nd Semestre			

Exercice 1:6 points

A) Questions de cours

- Rappeler les formes algébrique, exponentielle et trigonométrique d'un nombre complexe z non nul. (0,75 pt)
- 2 Donner l'écriture complexe de la rotation r de centre $K(z_0)$, d'angle θ . (0,5 pt)

B)On donne $z_0 = 1 - i\sqrt{3}$.

- 1 Donner une écriture trigonométrique de z_0 . (0,5 pt)
- 2 Montrer que : $z_0^4 = -8 + 8i\sqrt{3}$. (0,25 pt)
- **3** Résoudre dans \mathbb{C} l'équation $Z^4 = 1$. (0,5 pt)
- 4 En déduire les solutions de (E) : $z^4 = -8 + 8i\sqrt{3}$ sous la forme algébrique et sous la forme trigonométrique. (1 pt)

On peut remarquer que (E) équivaut à : $\left(\frac{z}{1-i\sqrt{3}}\right)^4=1$

- 5 Dans le plan complexe muni d'un repère orthonormal direct (O, \vec{u}, \vec{v}) , unité graphique 2 cm, placer les points A, B, C et D d'affixes respectives $z_A = 1 i\sqrt{3}$, $z_B = -1 + i\sqrt{3}$, $z_C = \sqrt{3} + i$ et $z_D = -\sqrt{3} i$. (0,75 pt)
- 6 Donner une écriture complexe de la rotation r de centre O et d'angle $\frac{\pi}{2}$. (0,5 pt)
- 7 Vérifier que : r(A) = C ; r(C) = B et r(B) = D. (0,75 pt)
- 8 En déduire que les points A, B, C et D sont situés sur un même cercle dont on précisera le centre et le rayon. (0,5 pt)

Exercice 2: 2,25 points

Déterminer les limites suivantes :

$$\mathbf{1.} \lim_{x \to +\infty} \ln \left[\frac{x+1}{x^2+x+1} \right] \quad \mathbf{2.} \lim_{x \to +\infty} \frac{\ln(x+2)}{\ln(x+1)} \quad \mathbf{3.} \lim_{x \to 0^+} \frac{\ln x+2}{\ln x+1} \quad \mathbf{4.} \lim_{x \to +\infty} \frac{\ln x}{\sqrt{x}}$$

Problème: 11,75 points

<u>Partie A</u>: 2,75 pts

Soit $g(x) = 2x \ln(-x) + x + 1$.

1 Déterminer l'ensemble de définition D_g de g. (0,5 pt)

2 Calculer les limites aux bornes de D_q . (0,5 pt)

4 Calculer g(-1) puis en déduire le signe de g(x). (0,75 pt)

Partie B: 7 pts

On considère la fonction f définie par :

$$f(x) = \begin{cases} x^2 \ln(-x) + x + 1 & \text{si } x < 0 \\ x \ln(x)^2 + x + 1 & \text{si } x > 0 \\ 1 & \text{si } x = 0 \end{cases}$$

On note (C_f) sa courbe représentative dans un repère orthonormé.

1 Justifier que f est définie sur \mathbb{R} . (0,5 pt)

2 Étudier la continuité et la dérivabilité de f en 0. Interprétez graphiquement les résultats. (1,5 pt)

3 Donner le domaine de dérivabilité de f puis montrer que $f'(x) = \begin{cases} g(x) & \text{si } x < 0 \\ (1 + \ln x)^2 & \text{si } x > 0 \end{cases}$ (0,5×3 pts)

4 Calculer les limites de f aux bornes de son domaine de définition. (0,5 pt)

5 Étudier les branches infinies de (C_f) . (0,5 pt)

6 Dresser le tableau de variations de f. (1 pt)

7 Montrer que dans $]-\infty;-1[$, l'équation f(x)=1 admet une unique solution α puis vérifier que $-1,8<\alpha<-1,7.$ (0,75 pt)

8 Construire (C_f) (unité 2 cm) (on précisera la tangente au point d'abscisse e^{-1} et on placera le point d'abscisse 1). (0,75 pt)

Partie C: 2 pts

Soit h la restriction de f à $I =]0; +\infty[$.

1 Montrer que h admet une bijection réciproque h^{-1} définie sur un intervalle J à préciser. (0,5 pt)

2 Étudier la dérivabilité de h^{-1} sur J. (0,25 pt)

3 a Calculer h(1). (0,25 point)

b Calculer $(h^{-1})'(2)$. (0,5 pt)

4 Construire la courbe de h^{-1} . (0,5 pt)