15.4.1 휘스톤 브리지의 원리

1. [그림 15-7]의 회로를 구성한 후, Vo=0[V]가 되도록 가변저항 R3를 조절한다. 이 R3를 회로에서 떼어낸 다음 멀티미터로 저항값을 측정하여 [표 15-1]에 기록하라. (Rx를 표에 주어진 다른 저항으로 바꾸면서 R3 저항값을 계산)

[그림 15-7] 실험 회로(휘스톤 브리지의 원리)

[표 15-1] 휘스톤 브리지의 원리

Rx	300 옴	470 옴	1K 옴	1.2K 옴
R3	150	235	500	600
Rx(계산값)	300	470	1K	1.2K

15.4.2 커패시턴스 측정

1. [그림 15-8]의 회로를 구성한 후, Vo=0[V]가 되도록 가변저항 R2를 조절한다. 이 R2를 회로에서 떼어낸 다음 멀티미터로 저항값을 측정하여 [표 15-2]에 기록하라. (Cx를 표에 주어진 다른 커패시터로 바꾸면서 R2 저항값을 계산)

[그림 15-8] 실험 회로(커패시턴스 측정)

$$R_1 = 1[k\Omega]$$
 $C_1 = 0.1[\mu F]$

[표 15-2] 커패시턴스 측정

Сх	0.22uF	0.33uF	0.47uF
R2	454	303	213
Cx(계산값)	0.22	0.33	0.47

15.4.3 인덕턴스 측정

1. [그림 15-9]의 회로를 구성한 후, V0=0[V]가 되도록 가변저항 R2를 조절한다. 이 R2를 회로에서 떼어낸 다음 멀티미터로 저항값을 측정하여 [표 15-3]에 기록하라. (Lx를 표에 주어진 다른 인덕터로 바꾸면서 R2 저항값을 계산)

[그림 15-9] 실험 회로(인덕턴스 측정)

[표 15-3] 인덕턴스 측정

Lx	4mH	10mH	20mH
R2	545	1363	2727
Lx(계산값)	4	10	20

15.4.4 휘스톤 브리지의 활용

1. [그림 15-10]의 회로를 구성한 후, RT를 바꾸면서 V0을 측정하여 [표 15-5]에 기록하라.

$$R_2=R_3=R_4=1[k\Omega]$$

[표 15-5] 휘스톤 브리지의 활용

RT	1K음	470 옴	680 <u>음</u>	1.2K 옴	1.5K 옴
Vo	3.5	5.2	4.3	2.9	1.85

: 저항이 커질수록 전압은 작아진다.

15.5.1 시뮬레이션 방법

시뮬레이션 목적		휘스톤 브리지의 활용(R_T 에 따른 V_o 의 변화) 확인하기
대상 회로		[그림 15-10]의 실험 회로, R_T 의 값을 변수로 설정
시뮬레이션 설정	Analysis type	Time Domain(Transient)
	Options	Parametric Sweep
	Run to time	2[ms]

15.5.2 시뮬레이션 결과

- OrCAD로 작성한 시뮬레이션 회로
 - \checkmark R_T 의 부품값을 변수 $\{R_{var}\}$ 로 설정
 - ✓ 변수 설절용 소자 'PARAM' 사용

[그림 15-11] 시뮬레이션 회로

• $R_T = 1 [K\Omega]$ 일 때 $V_0 = 0[V]$ 임을 확인

[그림 15-12] 시뮬레이션 결과

15.6 결과 검토

- (1) [표 15-1]에서 주어진 Rx의 값과 Rx(계산값)의 [%]오차를 계산하라. 또한 계산된 [%] 오차가 저항의 오차범위 이내인지 확인해보라.
- : Rx의 값과 Rx(계산값)의 값이 동일하다.
- (2) [표 15-2]에서 주어진 Cx의 값과 Cx(계산값)의 [%]오차를 계산하라.
- : Cx의 값과 Cx(계산값)의 값이 동일하다.
- (3) [표 15-3]에서 주어진 Lx의 값과 Lx(계산값)의 [%]오차를 계산하라.
- : Lx의 값과 Lx(계산값)의 값이 동일하다.
- (4) [표 15-5]에서 RT에 따라 Vo가 변하는지 확인하라. 만일 Vo의 값이 변한다면, 휘스톤 브리지를 어떻게 센서에 활용할 수 있는지 설명하라.
- : 값이 변한다. 휘스톤 브리지 회로는 미지의 저항값을 측정하는 용도로 많이 사용되는데, 저항성 센서의 저항값의 변화를 검출하고 그 변화값을 측정하는 용도로 사용하기에 적합하다.

(5) PSpice 시뮬레이션

- [그림 15-8]의 실험회로에서 Cx=0.22[uF]일 때, Vo가 0[v]가 되는 가변저항 R2의 값을 시뮬레이션하여 구하라.
- [표 15-2]에 기록한 R2의 실험 결과와 시뮬레이션 결과가 같은지확인하라.

[그림 15-8] 실험 회로(커패시턴스 측정)

셀프테스트

- (1) 휘스톤 브리지를 최초로 고안한 사람은 (휘스톤, 크리스티)이다.
- (2) 다음 중에서 휘스톤 브리지로 직접 측정할 수 없는 것은 무엇인가? 1. 저항 2. 리액턴스 3. 커패시턴스 4. 인덕턴스
- (3) 휘스톤 브리지로 커패시턴스를 측정할 때는 회로에 (직류전원, 교류전원)을 인가한다.
- (4) 일반적인 가변저항보다 저항값을 정밀하게 조절할 수 있는 가변저항을 (퍼텐쇼 미터)라고 한다.
- (5) 휘스톤 브리지를 센서에 활용할 때, 휘스톤 브리지는 주로 (평형상태, 불편형상태)에서 사용한다.