Problem 24

Let $f:[a,b] \to \mathbb{R}$ be monotone. This follows that when a < x < b then this implies that either $f(a) \le f(x) \le f(b)$ or $f(a) \ge f(x) \ge f(b)$ for all $x \in (a,b)$. This follows that either f(x) is increasing or decreasing.

Suppose that f is increasing. Let $A(a) = \inf\{f(y) : a < y\}$ and $B(b) = \sup\{f(y) : y < b\}$. Suppose that $\lim_{x\to a} f(x) = A(a)$ and $\lim_{x\to b} f(x) = B(b)$.

Let there be an $\epsilon > 0$. Since A(a) + ϵ is not a lower bound for $\{f(y) : a < y\}$, then there is a real number n_1 such that $n_1 \in [a, b]$ and $a < n_1$ such that $f(n_1) < A(a) + \epsilon$.

Let $\delta = n_1 - a$. Since by the definition of a limit, $0 < |x - a| < \delta, x_1 < n_1$, which follows that we have the following inequality: $A(a) - \epsilon < A(a) \le f(a) < f(x) < f(n_1) < A(a)$. Therefore, $\lim_{x\to a} f(x) \to A(a)$.

Furthermore, a similar proof can be constructed to see find that the $\lim_{x\to b} g(x)B(b)$. Hence, there exists a limit at both a and b.