НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ імені ІГОРЯ СІКОРСЬКОГО»

Факультет інформатики та обчислювальної техніки

Звіт

з дисципліни

"Моделювання систем"

Виконав: Перевірив:

Студент групи ЗПІ-зп01 д.т.н., проф. кафедри ІПІ

Дишкант Л. Л. Стеценко І. В.

КОМП'ЮТЕРНИЙ ПРАКТИКУМ 2

ОБ'ЄКТНО-ОРІЄНТОВАНИЙ ПІДХІД ДО ПОБУДОВИ ІМІТАЦІЙНИХ МОДЕЛЕЙ ДИСКРЕТНО-ПОДІЙНИХ СИСТЕМ

- 2.1 Завдання до практичної роботи
- 1. Реалізувати алгоритм імітації простої моделі обслуговування одним пристроєм з використанням об'єктно-орієнтованого підходу.
- 2. Модифікувати алгоритм, додавши обчислення середнього завантаження пристрою.
- 3. Створити модель за схемою
- 4. Виконати верифікацію моделі, змінюючи значення вхідних змінних та параметрів моделі. Навести результати верифікації у таблиці.
- 5. Модифікувати клас PROCESS, щоб можна було його використовувати для моделювання процесу обслуговування кількома ідентичними пристроями.
- 6. Модифікувати клас PROCESS, щоб можна було організовувати вихід в два і більше наступних блоків, в тому числі з поверненням у попередні блоки.

Завдання виконано в програмі Simio.

1. Реалізуємо алгоритм імітації простої моделі обслуговування одним пристроєм з використання об'єктно-орієнтованого підходу. Для прикладу розглянемо задачу: каса в продуктовому магазині, де касир в середньому витрачає на обслуговування 1 покупця — 2 хвилини. Касир заступає на зміну в 9.00 та працює 1 годину. Надходження до магазину 60 клієнтів за годину. Наша імітаційна модель на рис.1

Рис.1

2. Модифікуємо алгоритм, додаємо обчислення середнього завантаження пристрою (нашої каси) результати на рис.2

Рис.2

3. Створюємо модель за схемою результат на рис.3

Рис.3

Для виконання завдання надамо постановку задачі:

Сервісний центр МВС працює з 9.00 до 17.00. Пройшовши теоретичне навчання в автошколі, слухачі можуть прийти в сервісний центр та скласти іспит. Для складання іспиту, слухач повинен оплатити послугу в терміналі, обслуговування однієї людини складатиме в середньому 1.5хв, далі скласти іспит за комп'ютером, де витрати в часі максимум 20хв, мін - 4 хв, та після перейти до оператора, обслуговування оператором займатиме — 2хв. Робочий час складає 8 годин, надходження слухачів 20 за годину.

Запустимо нашу імітаційну модель рис.4 результати рис.5 де бачимо завантаженість пристроїв.

рис.4

Object Type ▲ ▼	Object Name 🔺	Data Source 🔺	Category 🔺	Data Item 🔺 🔻	Statistic 🔺 🔻	Average	Minimum	Maximum	Half Width
ModelEntity	Costumers	[Population]	Content	NumberInSystem	Average	60,9679	42,4342	81,5568	1,6302
					Maximum	119,8100	85,0000	152,0000	2,6684
			FlowTime	TimeInSystem	Average (Hou	2,9887	2,3943	3,5789	0,0482
					Maximum (Ho	5,7640	4,9232	6,7390	0,0700
Server	Computer	[Resource]	Capacity	ScheduledUtilization	Percent	99,6690	98,6183	99,9990	0,0651
Operator	Operator	[Resource]	Capacity	ScheduledUtilization	Percent	18,7637	12,6385	26,0772	0,5394
	Terminal	[Resource]	Capacity	ScheduledUtilization	Percent	51,1909	35,0949	65,3311	1,1981

Рис.5

- 4. Виконаємо верифікацію моделі, проведемо експерименти, змінюючи значення вхідних змінних та параметрів моделі.
 - 1) збільшимо надходження слухачів до 60 за хв, рис.6, де спостерігатимемо за чергами, та рис 7- результат завантаженості пристроїв

рис.6

				Scenario 1					
Object Type ▲ ▼	Object Name 🔺	Data Source 🔺	Category A	Data Item 🔺 🍍	Statistic 🔺 🍈	Average	Minimum	Maximum	Half Width
Server	Computer	[Resource]	Capacity	ScheduledUtilization	Percent	99,6993	98,6183	99,9990	0,0568
	Operator	[Resource]	Capacity	ScheduledUtilization	Percent	18,3070	11,3483	27,1746	0,5993
	Terminal	[Resource]	Capacity	ScheduledUtilization	Percent	99,5815	97,2847	100,0000	0,1153

рис.7

2) збільшимо надходження слухачів до 100 за годину рис.8, та рис.9 завантаженість пристроїв

рис.8

рис.9

	20 сл. (%)	60сл. (%)	100сл.(%)
Terminal	51,1909	99, 5815	99,91
Computer	99,6690	99,6993	99,7021
Operator	18,7637	18,3070	18,6558

Як бачимо модель коректно працює, при більшому надходженні слухачів Terminal стає сильно завантажений, що і є правильним, а також зменшується черга до оператора, тому що поки не пройдуть слухачі екзамен на Computer до оператора не переходять.

5. Модифікуємо клас PROCESS, щоб можна було його використовувати для моделювання процесу обслуговування кількома ідентичними пристроями. Дана модель складатиметься з 2-х терміналів, 5-ти - комп'ютерів та 2-х операторів. Результати на рис.10, рис.11 та рис.12

Рис.10

Рис.11

						Scenario 1
Object Type ▲ ▼	Object Name 🔺	Data Source 🔺	Category A	Data Item 🔺 🔻	Statistic 🔺 🍈	Average
ModelEntity	Costumers	[Population]	Content	NumberInSystem	Average	5,3544
					Maximum	12,6200
			FlowTime	TimeInSystem	Average (Hou	0,2669
					Maximum (Ho	0,5261
Server	Computer	[Resource]	Capacity	ScheduledUtilization	Percent	70,7707
	Operator	[Resource]	Capacity	ScheduledUtilization	Percent	33,2753
	Terminal	[Resource]	Capacity	ScheduledUtilization	Percent	25,3311

Рис.12

	по 1 пристрою(%)	модифікація: 2t, 5c,2o(%)
--	------------------	------------------------------

Terminal	51,1909	25,3311
Computer	99,6690	70,7707
Operator	18,7637	33,2753

Як бачимо все коректно працює, термінал та комп'ютер розвантажилися, а оператор відповідно більш завантажився тому що швидше відпрацьовує комп'ютер.

6. Модифікуємо клас PROCESS, щоб можна організувати вихід в два і більше наступних блоків, в тому числі з поверненням у попередні блоки. Так як теоретичний іспит з першого разу здають не всі слухачі автошколи, ми додали повернення після оператора на термінал, а також вказали ваги повернення з ймовірністю в 0.6 (Рис.13) та можливість після термінала піти на іспит, або до оператора. Чергу слухачі можуть залишити з ймовірністю 0.3.Результати роботи моделі -(Рис.14)

Рис.13

Рис.11

Висновок: На практикумі створила імітацію простої моделі обслуговування одним пристроєм та модель за схемою, а також виконала верифікацію моделі, змінюючи значення вхідних змінних та параметрів, та модифікацію класу PROCESS.