

Online End Semester Examinations (Spring 2021)

Course Code with Title	CS-319: Numerical Analysis		Program	BS (Computer Science)		
Instructor	Ovais Siraj Siddiqui Noman uddin Kahn		Semester	5 th		
Start date & Time	June 07, 2021 at 11:30 AM	Submission Deadline	June 07, 2021 at 4:30PM			
Maximum Marks	50					
Students must meet their submission deadline as there is no re-take or re-attempt after the deadline.						

IMPORTANT INSTRUCTIONS:

Read the following Instructions carefully:

- Attempt all (4) questions.
- Show decimal values at least 4 decimal places. Fix your calculator up 5 decimal places.
- Attempt All Questions on MS-Word. Font theme and size must be Times New Roman and 12 points respectively. Use line spacing 1.5. Convert file to PDF format before submitting.
- You may provide answers HANDWRITTEN. The scanned solution must be submitted in PDF file format (Use any suitable Mobile Application for Scanning)
- For Diagrams, you can use paper and share a clear visible snapshot in the same Answer Sheet.
- Arrange questions and their subsequent parts in sequence.
- Make sure that your answers are not plagiarized or copied from any other sources. In case of plagiarism, **ZERO** marks will be awarded.
- Provide relevant, original and conceptual answers, as this exam aims to test your ability to examine, explain, modify or develop concepts discussed during the course.
- Recheck your answer before the submission on VLE to correct any content or language related errors.
- You must upload your answers via the VLE platform ONLY.
- In questions,

You must follow general guideline for students before online examination and during online examination which had already shared by email and What Sapp.

This paper has a total of $\underline{03}$ pages including this title page

Sir Syed University of Engineering & Technology Faculty of Computing & Applied Sciences Department of ____COMPUTER SCIENCE and IT____

NOTE:

R Represents your roll number, Let suppose your roll number is 2019-CS-013, then R =13 will be taken.

Q.1. (a) (5 Marks)

Perform five iteration Using Bisection method of the equation $f(x) = x - (R+10)^{-x} [0,1]$

Q.1. (b) (5 Marks)

Perform five iteration Using Newton-Raphson Method, $x^3 - 4x^2 + x - 10 = 0$ Start from $x_0 = R - 10$.

Q.2. (12 Marks)

Consider the following function.

i).
$$cos(x)$$
 [2+R 3+R.]

ii).
$$Ln(x+2)$$
 [1.1+R 2+R.]

Integrate by Apply Quadrature formulas (using all four Formulae).

Q.3. (a) (6 Marks)

Find a polynomial whose values coincide with values of $y = \sqrt{x}$ at x = R, R+1, R+2.

Using Newton's divided difference formula.

Q.3. (b) (6 Marks)

Use Lagrange's formula to find f(1.5) from the given table.

X	0	1	2	3
у	0	5+R	12+R	15+R

Sir Syed University of Engineering & Technology Faculty of Computing & Applied Sciences Department of ____COMPUTER SCIENCE and IT_____

Q.4. (a) (10 Marks)

Consider y' = x + y, y(0) = 1.find y_1 and y_2 by using

(i) Euler's method and by

(ii) Heun's method.

Take step size $h = \frac{R+5}{10}$. Also, compare the results with the exact value, if $y(x) = 2e^x - x - 1$ is the exact solution of the given equation.

Q.4. (b) (6 Marks)

Apply R.K. method of order 4 to find y_1 for y' = y - xy; y(1) = 1 with step size $h = \frac{R}{100}$,