$$\bar{I}_t = rI_t + (1 - r)\bar{I}_{t+1}$$
 (4)

$$\bar{S} = \begin{cases}
0 & \bar{I} < i_t \\
m\hat{S} & \bar{I} > i_t \\
\frac{m\hat{S}}{i_t - i_l} (\bar{I} - i_l) & \text{otherwise}
\end{cases}$$
(5)

$$\bar{C} = min(\bar{S}\bar{I}, u) \tag{6}$$

$$C_{t+1} = \bar{C}_{\phi} \tag{7}$$

$$\phi \sim LN(1,) \tag{8}$$

Table 1: iRate tunable parameters

Parameter	Symbol	Description	Example
Reference years	r	Years used when computing refer-	0.5
		ence values	
Responsiveness	m	Target harvest rate relative to his-	0.9
		toric levels Target harvest i.e $0.9 =$	
		90% of historic average	
Threshold index	i_t	Index at which the harvest rate is	0.7
		reduced relative to historic levels i.e.	
		0.7 = reduce harvest rate when the	
		biomas index is at 70% of historic	
		levels	
Limit index	i_l	Index at which harvest rate is zero	0.2
		relative to historic levels i.e. $0.2 =$	
		close the fishery when the biomas in-	
		dex is at 20historic levels	
Maximum change	f	Maximum allowable percenatge	0.4
		change in effort	
Maximum TAC	u	Maximum total allowable catch	1000