Homework 7

Topological Data Analysis with Persistent Homology

Lucas Emanuel Resck Domingues Professor: Raphaël Tinarrage

Escola de Matemática Aplicada Fundação Getulio Vargas

February 7, 2021

Exercise 37. Let X, Y be two closed and bounded subsets of \mathbb{R}^n . Show that, for every $t \geq 0$, the thickenings satisfy

$$d_H(X^t, Y^t) \le d_H(X, Y).$$

Give an example for which $d_H(X^t, Y^t) < d_H(X, Y)$.

Suppose, by contradiction, $d_H(X^t, Y^t) > d_H(X, Y)$. That is,

$$\max\{d_H(X^t; Y^t), d_H(Y^t; X^t)\} > \max\{d_H(X; Y), d_H(Y; X)\}$$

We will have

$$\max\{d_H(X^t; Y^t), d_H(Y^t; X^t)\} > d_H(X; Y), d_H(Y; X)$$

So, without loss of generality, we can consider $d_H(X^t; Y^t) > d_H(X; Y)$ is true. This is the same as

$$\begin{split} \sup_{z \in Y^t} \inf_{w \in X^t} & \|w - z\| > \sup_{y \in Y} \inf_{x \in X} \|x - y\| \\ & \geq \inf_{x \in X} \|x - y\|, \ \ \forall y \in Y \end{split}$$

Because the sets are closed, there must exist $z \in Y^t$ such that

$$\begin{split} \inf_{w \in X^t} & \|w - z\| = \sup_{z \in Y^t} \inf_{w \in X^t} \|w - z\| \\ &> \inf_{x \in X} \|x - y\|, \ \forall y \in Y \end{split}$$

Consider this $z \in Y^t$. So there must exist $y_0 \in Y$ such that $||z-y_0|| \le t$. This way, there exists $x_0 \in X$ which attains the infimum $\inf_{x \in X} ||x-y_0|| = ||x_0-y_0||$. Now, consider the convex combination between $x_0 \in X$ and $y_0 \in Y$ such that we

end up with the point $x_1 \in X^t$ with $||x_0-x_1||=t$, that is, $||x_1-y_0||=||x_0-y_0||-t$. This way,

$$||x_1 - z|| \le ||x_1 - y_0|| + ||y_0 - z||$$

$$\le ||x_1 - y_0|| + t$$

$$= ||x_0 - y_0||$$

We now can conclude that

$$\inf_{w \in X_t} ||w - z|| > \inf_{x \in X} ||x - y_0||$$

$$= ||x_0 - y_0||$$

$$\ge ||x_1 - z||$$

$$\ge \inf_{w \in X_t} ||w - z||$$

This is a contradiction. So

$$d_H(X^t, Y^t) \le d_H(X, Y).$$

As an example of $d_H(X^t,Y^t) < d_H(X,Y)$, let's consider the closed and bounded sets in \mathbb{R} $A = \{0\} \cup [4,5]$ and $B = [1,2] \cup \{6\}$. The Hausdorff distance between A,B can be calculated as 2. If t=1, the sets will be $A^1 = [-1,1] \cup [3,6]$ and $B^1 = [0,3] \cup [5,7]$, and the Hausdorff distance will be 1. So $d_H(A^1,B^1) < d_H(A,B)$.