Лекция 9

Хэш-таблицы

Хэш-функция

Хэш-функция

H: $K \rightarrow \{0, ..., m-1\}$

- > К множество ключей
- (например, множество номеров телефонов)
- ➤ H(K) хэш-код ключа К
- таблицытаблицы

Хэш-таблица

α = n / m - коэффициент заполнения хэш-таблицы.

n - количество ключей

m - количество ячеек в таблице

5			K	
0	1	2	h(K)	m-1

Коллизии

Коллизия - совпадение хэш-значений при разных ключах:

$$H(K_1) = H(K_2)$$
, при $K_1 != K_2$

Частые способы разрешения коллизий:

- > Цепочки
- > Открытая адресация

Методы разрешения коллизий. Цепочки

Методы разрешения коллизий. Открытая адресация

- Работает только в случае n ≤ m
- При вставке ключа выполняется проверка, свободна ли требуемая ячейка. Если ячейка свободна, выполняется вставка, иначе происходит поиск альтернативного места для вставки ключа.
- Самый простой подход последовательное исследование последовательный перебор всех ячеек таблицы.

Особенности реализации словарей в Python3.5 и <

- Словари реализованы как хэш-таблицы с открытой адресацией для разрешения коллизий.
- Ключи в словаре должны быть хэшируемы.
- При создании словаря создается хэш-таблица с 8 ячейками.
- Словарь увеличивается в два раза при заполнении более
 чем на ²/₃.

Полезные ссылки

- Хэш-таблицыhttps://ru.wikipedia.org/wiki/Xeш-таблица
- Лекции по алгоритмам и структурам данных <u>https://proglib.io/p/data-structure-algorithms/</u>
- Современные словари в Python:
 https://www.youtube.com/watch?v=37S53yFq9wc