Disciplina "Econometrie"

Recapitulare test EVP

- Modelul de regresie liniară simplă și multiplă -

I. Se consideră un model econometric care explică variația *Populației ocupate active* (mii persoane) înregistrată la nivelul județelor din România, în funcție de *Numărul de absolvenți de studii universitare* (persoane).

Model Summary

	Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
Γ	1			,919	43,5538

a Predictors: (Constant), Absolventi studii universitare

ANOVA(b)

Model		Sum of Squares	df	Mean Square	Se	Sig.
R	Regression Residual Total	878792,729 75877,470		878792,729 1896,937		,000(a)

a Predictors: (Constant), Absolventi studii universitare

Coefficients(a)

			dardized cients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	135,993	7,427		18,311	,000
	Absolventi studii universitare	,020	,001	,959	21,524	,000

a Dependent Variable: Populatia ocupata civila

b Dependent Variable: Populatia ocupata civila

Correlations

		Populatia ocupata civila	Absolventi studii universitare
Populatia ocupata civila	Pearson Correlation	1	,959**
	Sig. (2-tailed)		,000
	N	42	42
Absolventi studii	Pearson Correlation	,959**	1
universitare	Sig. (2-tailed)	,000	
	N	42	42

^{**} Correlation is significant at the 0.01 level (2-tailed).

Pe baza rezultatelor obținute în SPSS, se cere:

- 1. Să scrieți forma generală a modelului de regresie, ecuația estimată a modelului și să interpretați coeficienții de regresie.
- 2. Considerând un risc de 1%, estimați prin interval de încredere ordonata la origine a modelului și interpretați rezultatul.
- 3. Considerând un nivel de încredere de 95%, estimați prin interval de încredere panta dreptei de regresie și interpretați rezultatul.
- 4. Să se testeze dacă *Numărul de absolvenți de studii universitare* (persoane) are o influență semnificativă asupra *Populației ocupate active* (mii persoane), considerând un risc de 5%.
- 5. Interpretați probabilitatea asociată statisticii test pentru parametrul β_0 .
- 6. Interpretați valoarea estimată a coeficientului de corelație.
- 7. Testati dacă cele două variabile sunt corelate semnificativ.
- 8. Estimati punctual raportul de determinatie si interpretati rezultatul.
- 9. Calculati si interpretati valoarea estimată a raportului de corelatie.
- 10. Testați semnificația raportului de corelație, considerând un risc de 5%.
- 11. Interpretați probabilitatea asociată statisticii test folosită în testarea modelului de regresie.

II. În urma prelucrării datelor privind randamentul producției de cereale obținute (t/ha), cantitatea de îngrășăminte folosită (kg/ha) și cantitatea de precipitații (l/m²), s-au obținut următoarele rezultate:

Coefficientsa

			lardized cients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	28,095	2,491		11,277	,000
	Cant_ingrasam	,038	,006	,594	6,532	,003
	Precipitatii	,833	,154	,491	5,401	,006

a. Dependent Variable: Randament

Se cere:

- 1. Să se scrie ecuația estimată a legăturii dintre cele trei variabile.
- 2. Să se precizeze cu cât crește în medie randamentul producției dacă nivelul îngrășămintelor crește cu 100 kg/ha, considerând constantă influența precipitațiilor.
- 3. Să se precizeze cu cât crește în medie randamentul producției dacă nivelul precipitațiilor crește cu 3 l/m², considerând constantă influența îngrășămintelor.
- 4. Să se precizeze cu cât crește în medie randamentul producției dacă nivelul îngrășămintelor crește cu 100 kg/ha și cantitatea de precipitații crește cu 3 l/m².

III. În urma prelucrării datelor privind valoarea vânzărilor unor firme (mii euro), cheltuielile de publicitate (X_l , sute euro) și valoarea vânzărilor realizate de principalul concurent (X_2 , mii euro), s-au obținut următoarele rezultate:

	Coefficients									
				Standardized						
		Unstandardized	Coefficients	Coefficients			99.0% Confidence	e Interval for B		
		_		_						
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound		
1	(Constant)	118.440	22.976		5.155	.000	52.305	184.574		
	X1	45.637	11.322	.542	4.031	.001	13.046	78.228		
	X2	-2.896	.768	507	-3.769	.001	-5.108	684		

a. Dependent Variable: Y

Se cere să se interpreteze intervalul de încredere pentru parametrul β_1 .

IV. În urma prelucrării datelor privind legătura dintre mai multe variabile, s-au obținut următoarele rezultate:

ANOVA

Model		Sum of Squares	df
1	Regression	17466.081	
	Residual	7544.277	18
	Total	25010.358	20

Se cere să se precizeze numărul de variabile independente.

V. În studiul legăturii dintre valoarea vânzărilor unei firme (Y, $mii\ euro$) și cheltuielile de publicitate (X_1 $sute\ euro$), cheltuielile ocazionate de diferite promoții (X_2 , $sute\ euro$) și vânzările anuale realizate de principalul concurent (X_3 $mii\ euro$), s-au obținut următoarele rezultate:

Coefficients^a

		Unstand Coeffi		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	65,705	27,731		2,369	,037
	X1	48,979	10,658	,581	4,596	,001
	X2	59,654	23,625	,359	2,525	,028
X3		-1,838	,814	-,324	-2,258	,045

a. Dependent Variable: Y

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	16997,537	3	5665,846	18,290	,000 ^a
	Residual	3407,473	11	309,770		
	Total	20405,009	14			

a. Predictors: (Constant), X3, X1, X2

Correlations

		Υ	X1	X2	Х3
Υ	Pearson Correlation	1	,708**	,612*	-,625*
	Sig. (2-tailed)		,003	,015	,013
	N	15	15	15	15
X1	Pearson Correlation	,708**	1	,161	-,213
	Sig. (2-tailed)	,003		,566	,446
	N	15	15	15	15
X2	Pearson Correlation	,612*	,161	1	-,494
	Sig. (2-tailed)	,015	,566		,061
	N	15	15	15	15
Х3	Pearson Correlation	-,625*	-,213	-,494	1
	Sig. (2-tailed)	,013	,446	,061	
	N	15	15	15	15

^{**} Correlation is significant at the 0.01 level (2-tailed).

b. Dependent Variable: Y

^{*-} Correlation is significant at the 0.05 level (2-tailed).

Correlations

Control Variab	les		Υ	X1
X2	Υ	Correlation	1,000	,780
		Significance (2-tailed)		,001
		df	0	12
	X1	Correlation	,780	1,000
		Significance (2-tailed)	,001	
		df	12	0

Se cere:

- 1. Să se scrie modelul legăturii dintre variabila Y și variabilele independente X_i .
- 2. Să se interpreteze valoarea parametrului care arată legătura dintre valoarea vânzărilor firmei și vânzările anuale realizate de principalul concurent.
- 3. Să se calculeze limitele intervalului de încredere pentru parametrul β_3 , pentru un risc de 5%
- 4. Să se testeze valoarea parametrului β_3 , considerând un risc de 0,05.
- 5. Să se estimeze raportul de determinație multiplă ajustat.
- 6. Să se estimeze și să se testeze coeficientul de corelație bivariată dintre *Vânzările firmei* și *Vânzările anuale realizate de principalul concurent*.
- 7. Să se estimeze și să se testeze coeficientul de corelație parțială dintre *Vânzările firmei* și *Cheltuielile de publicitate*, considerând constantă influența *Cheltuielilor ocazionate de diferite promoții*.
- 8. Să se identifice *ordinea* importanței factorilor care au o influență asupra *Vânzărilor firmei*.
- IV. În studiul legăturii dintre 2 variabile, s-au obținut următoarele rezultate:

Model Summary

					Change Statistics				
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change
Model	N N	r Square	N Square	the Estimate	Change	r Change	uri	uiz	Sig. F Change
1	.690 ^a	.476	.469	28.2360	.476	66.237	1	73	.000
2	.793 ^b	.629	.619	23.9049	.154	29.849	1	72	.000

a. Predictors: (Constant), PIB

Să se precizeze efectul influenței variabilei *Aportul de calorii* asupra capacității explicative a modelului.

b. Predictors: (Constant), PIB, Aportul de calorii