

> Конспект > 6 урок > Сравнение методологий проектирования

- > OLAP vs OLTP
- > Аналитическое хранилище данных

Сравнение

Что выбрать?

- > Аналитическое хранилище данных и Озеро данных
- > Lambda-архитектура
- > Нормализация

1НФ, 2НФ и 3НФ

- > Витрина
- > Трудоемкость развития хранилища данных
- > Общее сравнение подходов к проектированию
- > Дополнительные материалы

> OLAP vs OLTP

OLAP-системы должны быть организованы иначе, чем OLTP-системы.

 Для выполнения аналитических запросов необходима обработка информации из разных источников.

- Для выполнения запросов, связанных с прогнозированием, анализом тенденций, необходимы исторические данные, накопленные за достаточно длительный период, что не всегда обеспечивается OLTP-системами
- Данные, используемые для целей анализа данных обслуживания аналитических запросов, отличаются от используемых в OLTP-системах. При аналитической нагрузке можно пользоваться не детальными, а предагрегированными данными.

<u>Aa</u> Property	≡ OLAP	■ OLTP
<u>Степень</u> д <u>етализации</u>	Хранение детализированных и обобщенных данных	Хранение обобщенных данных
<u>Формат</u> хранения	Единый согласованный	Варьируется от задач
<u>Допущение</u> <u>избыточности</u>	Контролируемая избыточность	Максимальная нормализация
<u>Управление</u> данными	Периодическое добавление данных	Добавление/удаление/изменение в любое время
Количество хранимых данных	Должны быть доступны все оперативные данныые	Должны быть доступны все данные, в том числе исторические
Характер запросов к данным	Произвольные запросы (анализ данных)	Заранее составленные запросы

Понимание различий этих систем понадобится, когда вам, как дата-инженеру, нужно будет разговаривать с backend-разработчиками, которые, как правило, имеют профессиональный уклон в сторону OLTP-систем. Вам нужно уметь объяснить, чем системы отличаются, почему ваша система работает именно так, характер нагрузки этой системы и другие многие аспекты.

> Аналитическое хранилище данных

Схема слоев данных

Слои данных позволяют снизить градус сложности и изолировать каждый следующий слой. Без них наше хранилище это как один большой черный ящик, с которым очень сложно работать.

В зависимости от наличия центрального слоя (Core Layer) разделяются подходы – по Кимбаллу и по Инмону.

Сравнение

Кимбалл

Инмон и Data Vault 1.0

Data Vault 2.0

По Кимбаллу мы имеет только Stage-слой (первичный), в котором мы захватываем данные из источника, и сразу по этим данным мы строим витрины.

Инмон, DV 1.0 и Якорное моделирование предполагают наличие центрального слоя, в который мы проецируем бизнес на сущности, и уже поверх этих сущностей строим витрины.

B DV 2.0 так же присутствует центральный слой, отличается он тем, что разделяется еще на два дочерних слоя: Raw Data Vault и Business Data Vault.

Что выбрать?

Сроки. Нужно помнить, что на проектирование по Инмону требуется больше времени, чем на реализацию подхода Кимбалла. В условиях сжатых временных рамок следует строить XД по Кимбаллу.

Требования заказчика.

- Если требования заказчика носят более общий, стратегический характер, если необходимо показывать состояние бизнеса в целом, отслеживать взаимосвязи между бизнес-сущностями, следует выбрать Инмона.
- Если поставлены конкретные цели и нужны определенные отчеты по ограниченному множеству процессов и с ними связанных сущностей, следует выбрать Кимбалла.

Частота изменений. В условиях развивающегося бизнеса, когда постоянно добавляются новые и изменяются старые сущности, следует выбрать Инмона.

> Аналитическое хранилище данных и Озеро данных

Схема использования OLTP-систем с Data Lake и DWH

На схеме выше мы имеем и Озеро данных, и DWH – оба этих подхода могут быть использованы вместе. При этом может не быть как Озера (останется только DWH), так и наборот.

Сравнение

<u>Аа</u> Аналитическое хранилище	■ Озеро данных
<u>Хранятся только полезные</u> <u>данные, актуальные в текущем</u> <u>периоде времени</u>	Хранятся все данные, в том числе и «бесполезные», которые могут пригодиться в будущем или же не понадобиться никогда
<u>Четко структурированные данные</u> одного формата	Структурированные, полуструктурированные и неструктурированные разнородные данные любых форматов: от мультимедиа файлов до текстовых и бинарных из разных источников
Низкая гибкость: структура и типы данных продумываются заранее и не подлежат изменению в процессе эксплуатации	Высокая гибкость, которая позволяет в процессе эксплуатации добавлять новые типы и структуры данных
Благодаря четкой структуре данных процесс их извлечения и обработки происходит быстро	Из-за отсутствия четкой структуры необходима дополнительная обработка данных для их практического использования
Достаточно высокая стоимость проектирования из-за сложности	Озеро данных дешевле DWH с точки зрения проетирования

Озеро данных позволяет быстрее проводить необходимые эксперименты (так как дешево обходится в проектировании). При этом на Озере данных можно построить подобие аналитического хранилища, однако не стоит реализовывать на Озере данных что-то, обильно использующее join'ы вроде (DV/AM). Озера данных, как правило, построены на подходе Мар-Reduce, который не позволяет эффективно делать join'ы.

В аналитическом храналище, напротив, не стоит хранить неструктурированные данные – ваша реляционная СУБД, скорее всего, плохо к этому отнесется.

Поэтому полезно иметь как Аналитическое хранилище (для структурированных данных), так и Озеро данных (для неструктурированных).

> Lambda-архитектура

Схема Lambda-архитектуры

B Lambda-архитектуре мы имеем как потоковую обработку, так и пакетную. Аналитики же обращаются в оба слоя с помощью ВІ-инструментов.

Сравнение

<u>Аа</u> Потоковая обработка	■ Пакетная обработка	
Результат в режиме реального времени	Данные доставляются с задержкой	
<u>Сложная разработка и тестирование</u> (относительно)	Простая разработка и тестирование (относительно)	
<u>Низкая эффективность для OLAP-систем</u>	Высокая эффективность для OLAP-систем	
Равномерная нагрузка на железо	Пиковая нагрузка на железо	

В целом, сейчас потоковая обработка данных и Lambda-архитектура в целом – это современный стандарт построения хранилища данных.

> Нормализация

1НФ, 2НФ и 3НФ

Первая нормальная форма (1HФ) – это обычное отношение. Отношение в 1HФ обладает следующими свойствами: в отношении нет одинаковых

кортежей; кортежи не упорядочены; атрибуты не упорядочены; все значения атрибутов атомарны.

Отношение находится во второй нормальной форме (2НФ) тогда и только тогда, когда отношение находится в 1НФ и нет неключевых атрибутов, зависящих от части сложного ключа.

Отношение находится в третьей нормальной форме (ЗНФ) тогда и только тогда, когда отношение находится в 2НФ и все неключевые атрибуты взаимно независимы.

В целом, нормальные формы необходимы для устранения аномалий.

Сравнение нормальных форм

<u>Аа</u> Критерий		
<u>Адекватность базы данных</u> предметной области	хуже (-)	ЛУЧШЕ (+)
<u>Легкость разработки и</u> <u>сопровождения базы данных</u>	СЛОЖНЕЕ (-)	ЛЕГЧЕ (+)
Скорость выполнения вставки, обновления, удаления	МЕДЛЕННЕЕ (-)	БЫСТРЕЕ (+)
<u>Скорость выполнения</u> <u>выборки данных</u>	БЫСТРЕЕ (+)	МЕДЛЕННЕЕ (-)

Как слабая нормализация, так и сильная подходят для построения хранилища данных.

Если аналитики (или другие пользователи данных) менее квалифицированные специалисты и хуже разбираются в различных методологиях и написании сложных запросов, то лучше выбрать слабую нормализацию с большими плоскими таблицами.

Если аналитики имеют достаточную квалификацию, то лучше выбрать сильную нормализацию – ее проще обслуживать/пересчитывать.

Есть также гибридный подход – когда, например, мы делаем таблицы фактов и измерений, но какие-то таблицы или часто выполняемые запросы с join'ами мы материализуем в виде плоских витрин.

> Витрина

Витрина данных (Data Mart) представляет собой срез хранилища данных в виде массива тематической, узконаправленной информации, ориентированного, например, на пользователей одной рабочей группы или департамента.

Витрина данных, аналогично дашборду, позволяет аналитику увидеть агрегированную информацию в определенном временном или тематическом разрезе, а также сформировать отчетные данные в виде шаблонизированного документа.

Не все аналитики хорошо разбираются в хранилищах данных и понимают принципы их построения. Если аналитик не работал ранее с таблицей фактов и

измерений, вы, как дата-инженер, должны уметь объяснить ему смысл и принцип использования этих таблиц.

> Трудоемкость развития хранилища данных

Если идти по подходу Кимбалла, то каждую следующую витрину данных разрабатывать все сложнее.

Для решения этой проблемы существуют два подхода, которые мы рассматривали ранее – Data Vault и Anchor Modeling.

Сравние

Aa Data Vault	■ Anchor Modeling
На каждую сущность создается hub – таблица с бизнес-ключом и суррогатным ключом	На каждую сущность создается anchor – таблица только с суррогатным ключом
Атрибуты группируются в таблицы-сателлиты по принципам совместности: изменения и\или источника и\или использования	Один атрибут – одна таблица, да здравствует 6НФ

Aa Data Vault	■ Anchor Modeling
<u>Связи только через отдельные таблицы, на них</u> <u>можно навесить сателлит</u>	Связи только через отдельные таблицы, никаких атрибутов
Есть специальные таблицы Point-in-Time и Bridge	Есть специальная таблица knot – статический справочник

В любом новом хранилище лучше использовать Data Vault, так как это более простой для осмысления подход. Для использования якорной модели нужна хорошая автоматизация процессов.

Также можно комбинировать Data Vault и якорную модель. Так, например, сделали в Яндекс. Go – назвали этот подход **HNHM**.

> Общее сравнение подходов к проектированию

Чем строже нормализация, чем больше join'ов и сущностей – тем сложнее хранилище в эксплуатации. Но тем проще вносить изменения в хранилище.

Если вы строите хранилище с нуля, начинать стоить с сочетания Data Vault и звезды/снежинки. При этом звезда/снежинка (таблицы фактов и измерений)— это Кимбалловский подход, помогающий быстрее получить результат. Но при этом не стоит оставаться в Кимбалловском подходе надолго — нам все равно необходим соге-слой, который как раз таки можно строить на Data Vault.

Якорную модель стоит использовать только при наличии хорошей автоматизации или разработчиков, которые способны реализовать эту автоматизацию. А Data Vault можно поддерживать руками системных аналитиков и инженеров-данных.

> Дополнительные материалы

1. Комбинация подходов Data Vault и Anchor Modeling в Яндекс.GO – <u>HNHM</u>