Table of Contents

Problem 1

```
r=0.15; % interest rate
L=50000; % loan amount
N=[0.5:1/12:20]; % number of years
PN=(r*L*(1+r/12).^{(12*N)})./(12*((1+r/12).^{(12*N)}-1)) % monthly payment
% 2
plot(N, PN) % plot the monthly payment and the number of years
text(10,1000, "LiXin")
PN =
   1.0e+03 *
  Columns 1 through 7
    8.7017
              7.5044
                        6.6067
                                  5.9085
                                            5.3502
                                                       4.8934
                                                                 4.5129
  Columns 8 through 14
    4.1910
              3.9153
                        3.6763
                                  3.4673
                                             3.2830
                                                       3.1192
                                                                 2.9728
  Columns 15 through 21
    2.8410
                        2.6136
                                  2.5148
              2.7219
                                             2.4243
                                                       2.3411
                                                                 2.2644
  Columns 22 through 28
```

2.1933	2.1274	2.0661	2.0089	1.9555	1.9054	1.8584	
Columns 29	through 35	5					
1.8142	1.7726	1.7333	1.6961	1.6610	1.6277	1.5961	
Columns 36	through 42	2					
1.5660	1.5375	1.5102	1.4843	1.4595	1.4358	1.4132	
Columns 43	through 49	9					
1.3915	1.3708	1.3509	1.3318	1.3134	1.2958	1.2789	
Columns 50	through 56	5					
1.2626	1.2469	1.2317	1.2172	1.2031	1.1895	1.1764	
Columns 57	through 63	3					
1.1637	1.1515	1.1396	1.1281	1.1170	1.1063	1.0959	
Columns 64	through 70)					
1.0858	1.0760	1.0665	1.0573	1.0483	1.0396	1.0312	
Columns 71	through 77	7					
1.0230	1.0150	1.0072	0.9997	0.9923	0.9852	0.9782	
Columns 78	through 84	4					
0.9714	0.9648	0.9584	0.9521	0.9460	0.9401	0.9342	
Columns 85	through 91	1					
0.9286	0.9230	0.9176	0.9124	0.9072	0.9022	0.8973	
Columns 92	through 98	3					
0.8925	0.8878	0.8832	0.8787	0.8743	0.8700	0.8659	
Columns 99 through 105							
0.8618	0.8577	0.8538	0.8500	0.8462	0.8425	0.8389	
Columns 106 through 112							
0.8354	0.8319	0.8286	0.8252	0.8220	0.8188	0.8157	
Columns 113 through 119							
0.8126	0.8096	0.8067	0.8038	0.8010	0.7982	0.7955	

Columns 120	through	126				
0.7928	0.7902	0.7876	0.7851	0.7826	0.7802	0.7778
Columns 127	through	133				
0.7755	0.7732	0.7709	0.7687	0.7665	0.7644	0.7623
Columns 134	through	140				
0.7602	0.7582	0.7562	0.7542	0.7523	0.7504	0.7486
Columns 141	through	147				
0.7468	0.7450	0.7432	0.7415	0.7398	0.7381	0.7365
Columns 148	through	154				
0.7348	0.7332	0.7317	0.7301	0.7286	0.7271	0.7257
Columns 155	through	161				
0.7242	0.7228	0.7214	0.7201	0.7187	0.7174	0.7161
Columns 162	through	168				
0.7148	0.7135	0.7123	0.7110	0.7098	0.7087	0.7075
Columns 169	through	175				
0.7063	0.7052	0.7041	0.7030	0.7019	0.7008	0.6998
Columns 176	through	182				
0.6988	0.6977	0.6967	0.6958	0.6948	0.6938	0.6929
Columns 183	through	189				
0.6920	0.6910	0.6901	0.6893	0.6884	0.6875	0.6867
Columns 190	through	196				
0.6858	0.6850	0.6842	0.6834	0.6826	0.6818	0.6811
Columns 197	through	203				
0.6803	0.6796	0.6789	0.6781	0.6774	0.6767	0.6760
Columns 204	through	210				
0.6753	0.6747	0.6740	0.6734	0.6727	0.6721	0.6715
Columns 211	through	217				

	0.6708	0.6702	0.6696	0.6691	0.6685	0.6679	0.6673
C	olumns 218	through 2	24				
	0.6668	0.6662	0.6657	0.6651	0.6646	0.6641	0.6636
C	olumns 225	through 2	31				
	0.6631	0.6626	0.6621	0.6616	0.6611	0.6607	0.6602
C	olumns 232	through 2	35				
	0.6597	0.6593	0.6588	0.6584			

Problem 2

clear all; close all; clc % erase all the workspace data, command
 window output, and close all figures
% a
A=[20 4 2 6; 6 37 2 3;8 5 9 9] % create the matrix
% b
x1=A(1,:) % assign the first row of A to a vector called x1
% c
y=A([end-1 end],:) % assign the last 2 rows of A to an array called y
% d

```
B=A(:,2:2:size(A,2)) % assign the even-numbered columns of A to an
 array called B
% e
C=A' % assign the transpose of A to C
reciprocal = 1./A % compute the reciprocal of each element of A
A(3, 2)=100 % change the number in column 2, row 3 of A to 100
A =
    20
                 2
          4
                       6
     6
          37
                 2
                       3
     8
           5
                 9
                       9
x1 =
    20
         4
               2
                       6
y =
          37
                 2
     6
                       3
          5
                 9
                       9
B =
           6
     4
    37
           3
     5
C =
    20
          6
                 8
          37
     4
                 5
     2
           2
                 9
           3
                 9
     6
reciprocal =
    0.0500
              0.2500
                        0.5000
                                  0.1667
    0.1667
              0.0270
                        0.5000
                                  0.3333
    0.1250
              0.2000
                        0.1111
                                  0.1111
A =
    20
                 2
          4
                       6
```

8 100 9 9

Problem 3

```
clear all; close all; clc % erase all the workspace data, command
 window output, and close all figures
% a
figure % create an empty figure
t=0:0.01:2*pi; % create a vector contains numbers range from 0 to 2*pi
y=sin(4*t).*cos(2*t); % calculate the result of the function according
to the scope
ax1=subplot(1,2,1);
plot(t,y) % normal plot
ax2=subplot(1,2,2);
polarplot(t,y) % polar plot
legend(ax1, y^k_{max}=sin(4t)cos(2t)) % put legend on the first
 subgraph
% d
grid(ax1, 'on') % grid on the first subgraph
% e
text(0,0,'Lixin') % text on the second subgraph
```


Problem 4

```
clear all; close all; clc % erase all the workspace data, command
window output, and close all figures
% a
num=input('Enter a number: ');
% b
num_cm=num * 2.54; % convert to cm
fprintf('%.2f inches is %.2f cm\n', num, num_cm)
% C
num\_mm=num\_cm * 10; % the number converted to mm
formatSpec='%.2f';
str = [num2str(num, formatSpec), ' is also ', num2str(num_mm,
formatSpec), 'mm'];
disp(str)
Error using input
Cannot call INPUT from EVALC.
Error in Homework_01 (line 64)
num=input('Enter a number: ');
```

Problem 5

```
clear all; close all; clc % erase all the workspace data, command
window output, and close all figures
Nr = logspace(4,8,100); % Reynolds number
for De = [20 100 1000 1000 100000] % D/epsilon
    f = 0.25./(log(1/(3.7*De)+5.74./Nr.^0.9)/log(10)).^2;
    loglog(Nr, f)
    hold on
end
grid on
grid minor
Nr=[1e2:0.2e4];
f = 64./Nr;
plot(Nr, f) % plot f = 64 / Nr
title('Moody''s Diagram')
ylabel('Friction Factor')
xlabel('Reynolds Number N_R')
legend('D/\epsilon = 20', 'D/\epsilon = 100', 'D/\epsilon = 1000', 'D/
\epsilon = 10000', 'D/\epsilon = 100000', 'Laminar flow',...
'Location','southwest')
text(1e7,0.08,'Lixin') % print my name
xlim([0.8e3 1e8])
ylim([0.8e-2 1e-1])% adjust axis limits
```

Problem 6

```
clear all; close all; clc % erase all the workspace data, command
  window output, and close all figures
[x, y]=meshgrid(-2:0.1:2);
f=50*y.^2.*exp(-x.^2-0.5*y.^2);
C=x.*y;
surf(x,y,f,C)
xlabel('x');
ylabel('y');
zlabel('f(x,y) = 50y^2e^{-x^2-0.5y^2}');
title('My Plot Title')
```

Published with MATLAB® R2021a