Sprawozdanie 1 - Obliczenia Naukowe

Michał Kallas

9 listopada 2024

1 Zadanie 1

1.1 Opis problemu

Powtórzyć zadanie 5. z listy 1, ale usunąć ostatnią 9 z x_4 i ostatnią 7 z x_5 . Sprawdzić jaki wpływ na wyniki mają niewielkie zmiany danych.

Oryginalne wektory:

x = [2.718281828, -3.141592654, 1.414213562, 0.5772156649, 0.3010299957]

y = [1486.2497, 878366.9879, -22.37492, 4773714.647, 0.000185049]

Wektor x po zmianach:

x' = [2.718281828, -3.141592654, 1.414213562, 0.577215664, 0.301029995]

1.2 Wyniki

Poprawny wynik to $-1.00657107000000*10^{-11}.$ Poniżej otrzymane wyniki eksperymentalne:

Тур	Wektory	Metoda a	Metoda b	Metoda c	Metoda d
Float32	x, y	-0.4999443	-0.4543457	-0.5	-0.5
Float32	x', y	-0.4999443	-0.4543457	-0.5	-0.5
Float64	x, y	1.0251881368296672e-10	-1.5643308870494366e-10	0.0	0.0
Float64	x', y	-0.004296342739891585	-0.004296342998713953	-0.004296342842280865	-0.004296342842280865

Tabela 1: Porównanie wyników 4 algorytmów do obliczenia iloczynu skalarnego dla wektorów x i y oraz x' i y.

1.3 Obserwacje i wnioski

Wyniki dla typu Float32 są dokładnie takie same dla nowego wektoru x. Wiąże się to ze zbyt małą precyzją tej arytmetyki.

Z kolei dla bardziej precyzyjnego typu Float64 możemy zobaczyć dużą rozbieżność wyników pomiędzy starym, a nowym wektorem x, mimo małej różnicy danych. To oznacza, że zadanie jest źle uwarunkowane.

2 Zadanie 2

2.1 Opis problemu

Narysować wykres funkcji $f(x) = e^x \ln(1+e^{-x})$ w co najmniej dwóch dowolnych programach do wizualizacji. Następnie policzyć granicę funkcji $\lim_{x\to\infty} f(x)$. Porównać wykres funkcji z policzoną granicą. Wyjaśnić zjawisko.

2.2 Wyniki

Rysunek 1: Wykres $f(x) = e^x \ln(1 + e^{-x})$ w Desmos.

Rysunek 2: Wykres $f(x) = e^x \ln(1 + e^{-x})$ w GeoGebra.

Wyliczona granica:

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} e^x \ln(1 + e^{-x}) = 1$$

2.3 Obserwacje i wnioski

Wykresy od pewnego momentu nie zgadzają się z faktycznymi wartościami f(x). Zaczynają się nietypowo zachowywać dla x > 30, gdzie występują duże wahania wyników. Powodem takiego stanu rzeczy jest mnożenie e^x przez $\ln(1 + e^{-x})$, gdzie dla odpowiednio dużych x pierwszy czynnik staje się bardzo duży, a drugi bardzo mały. Tego typu operacje prowadzą do poważnych błędów.

Dla x w okoliach 36 wartość funkcji spada do zera. Wynika to z tego, że $\ln(1+e^{-x})\approx 0$, co zeruje całe wyrażenie. To nie pokrywa się z wyliczoną granicą funkcji, bo jej wartości powinny dążyć do 1.

Bardzo małe różnice w danych spowodowały duże różnice w wyniku, a więc zadanie jest źle uwarunkowane.

3 Zadanie 3

3.1 Opis problemu

Rozwiązać układ równań liniowych Ax = b dla danej macierzy współczynników $A \in \mathbb{R}^{n \times n}$ i wektora prawych stron $b \in \mathbb{R}^n$ Porównać zastosowane metody pod względem błędów względnych. Macierz A ma być tworzona na dwa sposoby:

- (a) $A={\cal H}_n,$ gdzie ${\cal H}_n$ jest macierzą Hilberta stopnia n
- (b) $A = R_n$, gdzie R_n jest losową macierzą stopnia n z zadanym wskaźnikiem uwarunkowania c

Wektor b zadany jest następująco: b = Ax, gdzie $x = (1, ..., 1)^T$. Dzięki temu znamy dokładne rozwiązanie dla A i b. Układ równań należy rozwiązać danymi metodami:

- (a) metodą eliminacji Gausa, czyli $x = A \setminus b$
- (b) metodą macierzy odwrotnej, czyli $x = A^{-1}b$

Eksperymenty wykonać dla macierzy Hilberta H_n z rosnącym stopniem n>1 oraz dla macierzy losowej $R_n, n=5,10,20$ z rosnącym wskaźnikiem uwarunkowania $c=1,10,10^3,10^7,10^{12},10^{16}$.

3.2 Wyniki

		1		
n	cond(A)	rank(A)	Błąd metody Gaussa	Błąd metody inwersji
1	1.0	1	0.0	0.0
2	19.28147006790397	2	5.661048867003676e-16	1.4043333874306803e-15
3	524.0567775860644	3	8.022593772267726e-15	0.0
4	15513.73873892924	4	4.137409622430382e-14	0.0
5	476607.2502425855	5	1.6828426299227195e-12	3.3544360584359632e-12
6	1.4951058642254734e7	6	2.618913302311624e-10	2.0163759404347654e-10
7	4.753673567446793e8	7	1.2606867224171548e-8	4.713280397232037e-9
8	1.5257575538060041e10	8	6.124089555723088e-8	3.07748390309622e-7
9	4.9315375594102344e11	9	3.8751634185032475e-6	4.541268303176643e-6
10	1.602441698742836e13	10	8.67039023709691e-5	0.0002501493411824886
1	5.222701316549833e14	10	0.00015827808158590435	0.007618304284315809
1:	2 1.7515952300879806e16	11	0.13396208372085344	0.258994120804705
1:	3.1883950689209334e18	11	0.11039701117868264	5.331275639426837
14	6.200786281355982e17	11	1.4554087127659643	8.71499275104814
1	3.67568286586649e17	12	4.696668350857427	7.344641453111494

Tabela 2: Wartości wskaźnika uwarunkowania i rzędu macierzy H_n oraz błędy względne rozwiązań układu równań metodami Gaussa i z macierzą odwrotną.

n	c	rank(A)	Błąd metody Gaussa	Błąd metody inwersji
5	1.0	5	3.0606736594252445e-16	2.275280134513746e-16
5	10.0	5	1.2161883888976237e-16	1.4895204919483638e-16
5	1000.0	5	6.8830246068992106e-15	1.1655121101003682e-14
5	1.0e7	5	1.8433912490050538e-10	1.4317191526598063e-10
5	1.0e12	5	4.0271506137124706e-5	4.0414925152527825e-5
5	1.0e16	4	1.1102230246251565e-16	0.02115773708005347
10	1.0	10	2.4575834280036907e-16	3.0606736594252445e-16
10	10.0	10	3.4932351950072765e-16	3.665417751368233e-16
10	1000.0	10	1.8392579358722525e-14	2.6731071956605676e-14
10	1.0e7	10	1.672423868802004e-10	1.332910952506047e-10
10	1.0e12	10	1.4391864685145854e-5	1.0065760097123466e-5
10	1.0e16	9	0.01264020487412138	0.03992264919036816
20	1.0	20	6.483170143248366e-16	5.159850341939109e-16
20	10.0	20	5.347542221830666e-16	2.9893669801409083e-16
20	1000.0	20	3.1243567653618664e-14	2.9734251634904414e-14
20	1.0e7	20	3.967040176688922e-10	3.761993759834402e-10
20	1.0e12	20	1.650912083708681e-5	1.6620959308749998e-5
20	1.0e16	19	0.06915639868517645	0.06664947595151573

Tabela 3: Wartości wskaźnika uwarunkowania c i rzędu macierzy R_n oraz błędy względne rozwiązań układu równań metodami Gaussa i z macierzą odwrotną.

Dla macierzy Hilberta wskaźniki uwarunkowania i błędy względne dla obu metod szybko osiągają wysokie wartości. Widać, że im większy wskaźnik uwarunkowania, tym większy błąd. W tym przypadku metoda Gaussa okazała się bardziej skuteczna - w większości przypadków pozwoliła osiągnąć dokładniejsze wyniki.

W przypadku macierzy losowych o ustalonym wskaźniku uwarunkowania, błędy dla obu metod są mniejsze. Są na tyle zbliżone, że ciężko jest wyłonić faworyta. Ponownie możemy zauważyć, że im większy wskaźnik uwarunkowania, tym większy błąd. Widać, że błędy są podobnego rzędu dla macierzy o tych samych wskaźnikach uwarunkowania, ale różnych rozmiarach.

Możemy wywnioskować, że zadanie obliczenia układu równań Ax = b dla macierzy Hilberta jest źle uwarunkowane. Zadanie pokazuje nam to jak istotny jest wskaźnik uwarunkowania i że bezpośrednio przekłada się on na błędy.

4 Zadanie 4

4.1 Opis problemu

Dany jest "złośliwy wielomian" Wilkinsona:

$$p(x) = \prod_{i=1}^{20}$$

P jest postacią naturalną wielomianu Wilkinsona p. Należy:

- (a) Obliczyć pierwiastki wielomianu P. Następnie sprawdzić obliczone pierwiastki z_k , $1 \le k \le 20$, obliczając $|P(z_k)|$, $|p(z_k)|$ i $|z_k k|$. Wyjaśnić rozbieżności.
- (b) Powtórzyć eksperyment Wilsona marginalnie zaburzając jeden ze współczynników wielomianu. Odejmiemy od $a_{19}=-210$ wartość 2^{-23} .

4.2 Wyniki

k	z_k	$ P(z_k) $	$ p(z_k) $	$ z_k - k $
1	0.999999999996989	35696.50964788257	5.518479490350445e6	3.0109248427834245e-13
2	2.0000000000283182	176252.60026668405	7.37869762990174e19	2.8318236644508943e-11
3	2.9999999995920965	279157.6968824087	3.3204139316875795e20	4.0790348876384996e-10
4	3.9999999837375317	3.0271092988991085e6	8.854437035384718e20	1.626246826091915e-8
5	5.000000665769791	2.2917473756567076e7	1.8446752056545688e21	6.657697912970661e-7
6	5.999989245824773	1.2902417284205095e8	3.320394888870117e21	1.0754175226779239e-5
7	7.000102002793008	4.805112754602064e8	5.423593016891273e21	0.00010200279300764947
8	7.999355829607762	1.6379520218961136e9	8.262050140110275e21	0.0006441703922384079
9	9.002915294362053	4.877071372550003e9	1.196559421646277e22	0.002915294362052734
10	9.990413042481725	1.3638638195458128e10	1.655260133520688e22	0.009586957518274986
11	11.025022932909318	3.585631295130865e10	2.24783329792479e22	0.025022932909317674
12	11.953283253846857	7.533332360358197e10	2.886944688412679e22	0.04671674615314281
13	13.07431403244734	1.9605988124330817e11	3.807325552826988e22	0.07431403244734014
14	13.914755591802127	3.5751347823104315e11	4.612719853150334e22	0.08524440819787316
15	15.075493799699476	8.21627123645597e11	5.901011420218566e22	0.07549379969947623
16	15.946286716607972	1.5514978880494067e12	7.010874106897764e22	0.05371328339202819
17	17.025427146237412	3.694735918486229e12	8.568905825736165e22	0.025427146237412046
18	17.99092135271648	7.650109016515867e12	1.0144799361044434e23	0.009078647283519814
19	19.00190981829944	$1.1435273749721195\mathrm{e}{13}$	1.1990376202371257e23	0.0019098182994383706
20	19.999809291236637	$2.7924106393680727\mathrm{e}{13}$	1.4019117414318134e23	0.00019070876336257925

Tabela 4: Wyniki eksperymentu dla oryginalnego wielomianu.

k	z_k	$ P(z_k) $	$ p(z_k) $	$ z_k - k $
1	0.999999999998357 + 0.0im	20259.872313418207	19987.872313406842	1.6431300764452317e-13
1	0.999999999998357 + 0.0im	20259.872313418207	3.0131001276845885e6	1.6431300764452317e-13
2	2.0000000000550373 + 0.0im	346541.4137593836	7.37869763029606e19	5.503730804434781e-11
3	2.9999999660342 + 0.0im	2.2580597001197007e6	3.320413920110016e20	3.3965799062229962e-9
4	4.000000089724362 + 0.0im	1.0542631790395478e7	8.854437817429642e20	8.972436216225788e-8
5	4.99999857388791 + 0.0im	3.757830916585153e7	1.844672697408419e21	1.4261120897529622e-6
6	6.000020476673031 + 0.0im	1.3140943325569446e8	3.320450195282313e21	2.0476673030955794e-5
7	6.99960207042242 + 0.0im	3.939355874647618e8	5.422366528916004e21	0.00039792957757978087
8	8.007772029099446 + 0.0im	1.184986961371896e9	8.289399860984408e21	0.007772029099445632
9	8.915816367932559 + 0.0im	2.2255221233077707e9	1.160747250177049e22	0.0841836320674414
10	10.095455630535774 - 0.6449328236240688im	$1.0677921232930157\mathrm{e}{10}$	1.7212892853670706e22	0.6519586830380407
11	10.095455630535774 + 0.6449328236240688im	$1.0677921232930157\mathrm{e}{10}$	1.7212892853670706e22	1.1109180272716561
12	11.793890586174369 - 1.6524771364075785im	3.1401962344429485e10	2.8568401004080956e22	1.665281290598479
13	11.793890586174369 + 1.6524771364075785im	3.1401962344429485e10	2.8568401004080956e22	2.0458202766784277
14	13.992406684487216 - 2.5188244257108443im	2.157665405951858e11	4.934647147686795e22	2.518835871190904
15	13.992406684487216 + 2.5188244257108443im	2.157665405951858e11	4.934647147686795e22	2.7128805312847097
16	16.73074487979267 - 2.812624896721978im	4.850110893921027e11	8.484694713563005e22	2.9060018735375106
17	16.73074487979267 + 2.812624896721978im	4.850110893921027e11	8.484694713563005e22	2.825483521349608
18	19.5024423688181 - 1.940331978642903im	$4.557199223869993\mathrm{e}{12}$	1.3181947820607215e23	2.4540214463129764
19	19.5024423688181 + 1.940331978642903im	$4.557199223869993\mathrm{e}{12}$	1.3181947820607215e23	2.0043294443099486
20	20.84691021519479 + 0.0im	8.756386551865696e12	1.5911084081430876e23	0.8469102151947894

Tabela 5: Wyniki eksperymentu dla marginalnie zaburzonego wielomianu.

k	P(k)	p(k)
1	0.0	0
2	8192.0	0
3	27648.0	0
4	622592.0	0
5	2.176e6	0
6	8.84736e6	0
7	2.4410624e7	0
8	5.89824e7	0
9	1.45753344e8	0
10	2.27328e8	0
11	4.79074816e8	0
12	8.75003904e8	0
13	1.483133184e9	0
14	2.457219072e9	0
15	3.905712e9	0
16	6.029312e9	0
17	9.116641408e9	0
18	1.333988352e10	0
19	1.9213101568e10	0
20	2.7193344e10	0

Tabela 6: Wyniki wielomianów P(niezaburzony) i p dla dokładnych pierwiastków.

Wyliczone wartości pierwiastków dla niezaburzonego wielomianu nie pokrywają się z tymi dokładnymi, jednak są bardzo zbliżone. Każdy błąd bezwględny $|z_k - k| < 0.1$. Mimo tego, wartości wielomianów dla niedokładnie wyliczonych pierwiastków są ogromne. Wskazuje to na to, że zadanie wyznaczenia pierwiastków dla wielomianu Wilkinsona jest źle uwarunkowane.

Arytmetyka Float64 nie pozwala nam dokładnie przechować P ze względu na ograniczoną precyzję. Niemożliwe do dokładnego przechowania są te największe współczynniki. Z tego względu, nawet dla dokładnych pierwiastków P(k) nie zwraca 0, w przeciwieństwie do p(k).

Marginalna zmiana w P doprowadziła do większego błędu i pojawienia się rozwiązań zespolonych. To po raz kolejny pokazuje, że zadanie wyznaczenia pierwiastków dla wielomianu Wilkinsona jest źle uwarunkowane.

5 Zadanie 5

5.1 Opis problemu

Rozważmy równanie rekurencyjne, reprezentujące model wzrostu populacji:

$$p_{n+1} := p_n + rp_n(1 - p_n)$$

Należy wyznaczyć 40 wyrazów tego równania dla $p_0=0.01$ i r=3na 3 sposoby:

- 1. Dla typu Float32
- 2. Dla typu Float
32, obcinając wartość p_{10} do 3 miejsc po przecinku i następnie kontynu
ując iteracje
- 3. Dla typu Float64

Wyniki 5.2

n	Float32 p_n	Float32 z obcięciem p_n	Float64 p_n
0	0.01	0.01	0.01
1	0.0397	0.0397	0.0397
2	0.15407173	0.15407173	0.15407173000000002
3	0.5450726	0.5450726	0.5450726260444213
4	1.2889781	1.2889781	1.2889780011888006
5	0.1715188	0.1715188	0.17151914210917552
6	0.5978191	0.5978191	0.5978201201070994
7	1.3191134	1.3191134	1.3191137924137974
8	0.056273222	0.056273222	0.056271577646256565
9	0.21559286	0.21559286	0.21558683923263022
10	0.7229306	0.722	0.722914301179573
11	1.3238364	1.3241479	1.3238419441684408
12	0.037716985	0.036488414	0.03769529725473175
13	0.14660022	0.14195944	0.14651838271355924
14	0.521926	0.50738037	0.521670621435246
15	1.2704837	1.2572169	1.2702617739350768
16	0.2395482	0.28708452	0.24035217277824272
17	0.7860428	0.9010855	0.7881011902353041
18	1.2905813	1.1684768	1.2890943027903075
19	0.16552472	0.577893	0.17108484670194324
20	0.5799036	1.3096911	0.5965293124946907
21	1.3107498	0.09289217	1.3185755879825978
22	0.088804245	0.34568182	0.058377608259430724
23	0.3315584	1.0242395	0.22328659759944824
24	0.9964407	0.94975823	0.7435756763951792
25	1.0070806	1.0929108	1.315588346001072
26	0.9856885	0.7882812	0.07003529560277899
27	1.0280086	1.2889631	0.26542635452061003
28	0.9416294	0.17157483	0.8503519690601384
29	1.1065198	0.59798557	1.2321124623871897
30	0.7529209	1.3191822	0.37414648963928676
31	1.3110139	0.05600393	1.0766291714289444
32	0.0877831	0.21460639	0.8291255674004515
33	0.3280148	0.7202578	1.2541546500504441
34	0.9892781	1.3247173	0.29790694147232066
35	1.021099	0.034241438	0.9253821285571046
36	0.95646656	0.13344833	1.1325322626697856
37	1.0813814	0.48036796	0.6822410727153098
38	0.81736827	1.2292118	1.3326056469620293
39	1.2652004	0.3839622	0.0029091569028512065
40	0.25860548	1.093568	0.011611238029748606

Tabela 7: Numer iteracji noraz wartości p_n dla wszystkich typów eksperymentu. $10\,$

Na początku obie arytmetyki generują zbliżone do siebie wyniki. W iteracji 19, 9 iteracji po obcięciu, wyniki otrzymane dla eksperymentu z Float32 z obcięciem zaczynają zauważalnie odbiegać od reszty. Kilka iteracji później, większą różnicę widać także pomiędzy typami Float32 i Float64. Po 40 iteracjach otrzymujemy 3 kompletnie inne wyniki.

Mimo tego że pierwsze wyrazy wyliczane są precyzyjnie, przy coraz to wyższych iteracjach błędy są zauważalnie większe. Wynika to z tego, że błędy się kumulują. Jednym z powodów takiego stanu rzeczy jest podnoszenie wyrazów do kwadratu, które prowadzi do dużych błędów.

Proces wyznaczania kolejnych wartości równia rekurencyjnego p_n jest numerycznie niestabilny, dlatego że niewielkie błędy popełnione w początkowych iteracjach skumulowały się i doprowadziły do poważnej utraty dokładności obliczeń.

6 Zadanie 6

6.1 Opis problemu

Rozważmy równanie rekurencyjne:

$$x_{n+1} := x_n^2 + c$$
, dla $n = 0, 1, \dots$

Wykonać 40 iteracji dla danych:

1.
$$c = -2, x_0 = 1$$

2.
$$c = -2, x_0 = 2$$

4.
$$c = -1, x_0 = 1$$

5.
$$c = -1$$
, $x_0 = -1$

6.
$$c = -1$$
, $x_0 = 0.75$

7.
$$c = -1, x_0 = 0.25$$

Przeprowadzić iterację graficzną i zaobserwować zachowanie generowanych ciągów.

6.2Wyniki

				1,000,000,000
n	c	$x_n \ge x_0 = 1$	$x_n \ge x_0 = 2$	$x_n \ge x_0 = 1.99999999999999999999999999999999999$
0	-2	1.0	2.0	1.999999999999
1	-2	-1.0	2.0	1.999999999999
2	-2	-1.0	2.0	1.99999999998401
3	-2	-1.0	2.0	1.99999999993605
4	-2	-1.0	2.0	1.99999999997442
5	-2	-1.0	2.0	1.9999999999897682
6	-2	-1.0	2.0	1.999999999590727
7	-2	-1.0	2.0	1.99999999836291
8	-2	-1.0	2.0	1.999999993451638
9	-2	-1.0	2.0	1.9999999973806553
10	-2	-1.0	2.0	1.999999989522621
11	-2	-1.0	2.0	1.9999999580904841
12	-2	-1.0	2.0	1.9999998323619383
13	-2	-1.0	2.0	1.9999993294477814
14	-2	-1.0	2.0	1.9999973177915749
15	-2	-1.0	2.0	1.9999892711734937
16	-2	-1.0	2.0	1.9999570848090826
17	-2	-1.0	2.0	1.999828341078044
18	-2	-1.0	2.0	1.9993133937789613
19	-2	-1.0	2.0	1.9972540465439481
20	-2	-1.0	2.0	1.9890237264361752
21	-2	-1.0	2.0	1.9562153843260486
22	-2	-1.0	2.0	1.82677862987391
23	-2	-1.0	2.0	1.3371201625639997
24	-2	-1.0	2.0	-0.21210967086482313
25	-2	-1.0	2.0	-1.9550094875256163
26	-2	-1.0	2.0	1.822062096315173
27	-2	-1.0	2.0	1.319910282828443
28	-2	-1.0	2.0	-0.2578368452837396
29	-2	-1.0	2.0	-1.9335201612141288
30	-2	-1.0	2.0	1.7385002138215109
31	-2	-1.0	2.0	1.0223829934574389
32	-2	-1.0	2.0	-0.9547330146890065
33	-2	-1.0	2.0	-1.0884848706628412
34	-2	-1.0	2.0	-0.8152006863380978
35	-2	-1.0	2.0	-1.3354478409938944
36	-2	-1.0	2.0	-0.21657906398474625
37	-2	-1.0	2.0	-1.953093509043491
38	-2	-1.0	2.0	1.8145742550678174
39	-2	-1.0	2.0	1.2926797271549244
40	-2	-1.0	2.0	-0.3289791230026702

n	c	$x_n \ge x_0 = 1$	$x_n \ge x_0 = -1$	$x_n \ge x_0 = 0.75$	$x_n \ge x_0 = 0.25$
$\frac{n}{0}$	-1	$\frac{x_n \ z \ x_0 - 1}{1.0}$	$x_n \ z \ x_0 = -1$	$\frac{x_n \ z \ x_0 = 0.75}{0.75}$	$\frac{x_n \ z \ x_0 - 0.25}{0.25}$
1	-1	0.0	0.0	-0.4375	-0.9375
2	-1	-1.0	-1.0	-0.4373	-0.12109375
3	-1	0.0	0.0	-0.3461761474609375	-0.12109375
4	-1 -1	-1.0	-1.0	-0.8801620749291033	-0.029112368589267135
5	-1 -1	0.0	0.0	-0.2253147218564956	-0.9991524699951226
6	-1 -1	-1.0	-1.0	-0.9492332761147301	-0.0016943417026455965
7	-1 -1	0.0	0.0	-0.0989561875164966	-0.9999971292061947
8	-1 -1	-1.0	-1.0	-0.9902076729521999	-5.741579369278327e-6
9	-1 -1	0.0	0.0	-0.01948876442658909	-0.9999999999670343
	-1 -1		-1.0	-0.01948870442038909	-6.593148249578462e-11
10	-1 -1	-1.0			
11 12	-1 -1	0.0 -1.0	0.0 -1.0	-0.0007594796206411569 -0.9999994231907058	-1.0 0.0
13	-1	0.0	0.0	-0.9999994251907058 -1.1536182557003727e-6	-1.0
	-1 -1			-0.999999999986692	
14	-1 -1	-1.0	-1.0		0.0
15		0.0	0.0	-2.6616486792363503e-12	-1.0
16	-1	-1.0	-1.0	-1.0	0.0
17	-1	0.0	0.0	0.0	-1.0
18	-1	-1.0	-1.0	-1.0	0.0
19	-1	0.0	0.0	0.0	-1.0
20	-1	-1.0	-1.0	-1.0	0.0
21	-1	0.0	0.0	0.0	-1.0
22	-1	-1.0	-1.0	-1.0	0.0
23	-1	0.0	0.0	0.0	-1.0
24	-1	-1.0	-1.0	-1.0	0.0
25	-1	0.0	0.0	0.0	-1.0
26	-1	-1.0	-1.0	-1.0	0.0
27	-1	0.0	0.0	0.0	-1.0
28	-1	-1.0	-1.0	-1.0	0.0
29	-1	0.0	0.0	0.0	-1.0
30	-1	-1.0	-1.0	-1.0	0.0
31	-1	0.0	0.0	0.0	-1.0
32	-1	-1.0	-1.0	-1.0	0.0
33	-1	0.0	0.0	0.0	-1.0
34	-1	-1.0	-1.0	-1.0	0.0
35	-1	0.0	0.0	0.0	-1.0
36	-1	-1.0	-1.0	-1.0	0.0
37	-1	0.0	0.0	0.0	-1.0
38	-1	-1.0	-1.0	-1.0	0.0
39	-1	0.0	0.0	0.0	-1.0
40	-1	-1.0	-1.0	-1.0	0.0

Tabela 9: Wartości \boldsymbol{x}_n dla $\boldsymbol{c}=-1$ w kolejnych iteracjach.

Rysunek 3: Wykres $x_{n+1} = x_n^2 - 2$ z $x_0 = 1$.

Rysunek 4: Wykres $x_{n+1} = x_n^2 - 2$ z $x_0 = 2$.

Rysunek 6: Wykres $x_{n+1} = x_n^2 - 1$ z $x_0 = 1$.

Rysunek 7: Wykres $x_{n+1} = x_n^2 - 1$ z $x_0 = -1$.

Rysunek 8: Wykres $x_{n+1} = x_n^2 - 1$ z $x_0 = 0.75$.

Rysunek 9: Wykres $x_{n+1} = x_n^2 - 1$ z $x_0 = 0.25$.

W przypadku $x_{n+1}=x_n^2-1$ układy są stabilne dla każdego sprawdzonego x_0 , ale stabilizacja następuje po różnej ilości iteracji. Dla $x_0\in\{1,-1\}$ dzieje się to od razu. Dla $x_0=0.75$ stabilizacja następuje dopiero po 16 iteracjach, a dla $x_0=0.25$ po 11 iteracjach.

Widzimy, że dobór odpowiednich parametrów jest kluczowy w celu uzyskania zadowalająych wyników. Wpływają one na stabilność układu, a także na tempo jego w stabilizacji w przypadku układów stabilnych.