ΠΡΟΤΑΣΙΑΚΟΙ ΤΥΠΟΙ

ΠΡΟΤΑΣΙΑΚΗ ΛΟΓΙΚΗ www.psounis.gr

IIPOTAZIAKOI TYTIOI

Πίνακας Αλήθειας Λογικών Συνδέσμων:

ϕ	Ψ	$\neg \phi$	$\phi \lor \psi$	$\phi \wedge \psi$	$\phi \rightarrow \psi$	$\phi \leftrightarrow \psi$
A	A	Ψ	A	A	A	A
A	Ψ	Ψ	A	Ψ	Ψ	Ψ
Ψ	A	A	A	Ψ	A	Ψ
Ψ	Ψ	A	Ψ	Ψ	A	A

Ταυτολογία: είναι τύπος που είναι Α για όλες τις αποτιμήσεις

Παράδειγμα: Ο τύπος $p \land \neg p \rightarrow q$ είναι ταυτολογία

Λύση:

p	\overline{q}	$(p \land \neg p) \rightarrow q$
A	A	$(A \land \neg A) \to A = \Psi \to A = A$
A	Ψ	$(A \land \neg A) \rightarrow \Psi = \Psi \rightarrow \Psi = A$
Ψ	A	$(\Psi \land \neg \Psi) \rightarrow A = \Psi \rightarrow A = A$
Ψ	Ψ	$(\Psi \land \neg \Psi) \rightarrow \Psi = \Psi \rightarrow \Psi = A$

Γνωστες Ταυτολογίες είναι οι μορφές τύπων:

- 1. φ ∨ ¬φ όπου φ οποιοσδήποτε προτασιακός τύπος
- 2. $\varphi \to \psi$ όπου φ=Αντίφαση (Μορφή $\Psi \to \cdots$) ή ψ=Ταυτολογία (Μορφή ... \to **A**)
- **3.** $\phi \to \phi$ όπου φ οποιοσδήποτε προτασιακός τύπος
- 4. $\phi \leftrightarrow \phi$ όπου ϕ οποιοσδήποτε προτασιακός τύπος
- 5. Όλες οι μορφές τύπων νόμων της προτασιακής λογικής
- 6. Όλες οι μορφές τύπων συντακτικών αντικατάσεων στα αξιωματικά σχήματα του προτασιακού λογισμού

Προτεραιότητα λογικών συνδέσμων:

 $(1) \neg \qquad (2) \lor, \land \qquad (3) \to, \leftrightarrow$

Αντίφαση: είναι τύπος που είναι Ψ για όλες τις αποτιμήσεις

Λύση:

p	q	$p \land \neg (q \rightarrow p)$
A	A	$A \land \neg (A \rightarrow A) = A \land \neg A = \Psi$
A	Ψ	$A \land \neg (\Psi \rightarrow A) = A \land \neg A = \Psi$
Ψ	A	$\Psi \land \neg (A \rightarrow \Psi) = \Psi \land \neg \Psi = \Psi$
Ψ	Ψ	$\Psi \land \neg (\Psi \rightarrow \Psi) = \Psi \land \neg A = \Psi$

Γνωστές Αντιφάσεις είναι οι μορφές τύπων

- φ ∧ ¬φ όπου φ οποιοσδήποτε προτασιακός τύπος
- $arphi o arphi o \psi$ όπου φ=Ταυτολογία και ψ=Αντίφαση (Μορφή $\mathbf{A} o \mathbf{\Psi}$)
- ¬φ όπου φ=Ταυτολογία
- $\varphi \leftrightarrow \neg \varphi$ όπου φ οποιοσδήποτε προτασιακός τύπος

Ικανοποιήσιμος: είναι τύπος που είναι Α σε τουλάχιστον μία αποτίμηση

Παράδειγμα: Ο τύπος $p \land \neg (q \rightarrow p)$ είναι ικανοποιήσιμος

Λύση:

p	q	$p \to (p \to q)$
A	A	$p \to (p \to q) = A \to (A \to A) = A \to A = A$
A	Ψ	$p \to (p \to q) = A \to (A \to \Psi) = A \to \Psi = \Psi$
Ψ	A	$p \to (p \to q) = \Psi \to (\Psi \to A) = \Psi \to A = A$
Ψ	Ψ	$p \rightarrow (p \rightarrow q) = \Psi \rightarrow (\Psi \rightarrow \Psi) = \Psi \rightarrow A = A$

ΚΑΝΟΝΙΚΗ ΔΙΑΖΕΥΚΤΙΚΗ ΜΟΡΦΗ

ΠΡΟΤΑΣΙΑΚΗ ΛΟΓΙΚΗ www.psounis.gr

Κανονική Διαζευκτική Μορφή:

Ένας τύπος είναι σε <u>κανονική διαζευκτική μορφή (ΚΔΜ)</u>, αν είναι της μορφής:

$$\psi_1 \vee \psi_2 \vee ... \vee \psi_n$$

όπου κάθε ψι είναι της μορφής:

$$X_{i_1} \wedge X_{i_2} \wedge ... \wedge X_{i_s}$$

 $x_{i_1} \wedge x_{i_2} \wedge ... \wedge x_{i_m}$ Και τα x_{i_1} είναι μεταβλητές ή αρνήσεις προτασιακών μεταβλητών

Βήματα κατασκευής κανονικής διαζευκτικής μορφής

- Κατασκευάζουμε τον πίνακα αλήθειας του τύπου.
- Εκφράζουμε σαν σύζευξη (and) κάθε γραμμή που αληθεύει. Στην σύζευξη θέτουμε p αν $\alpha(p) = A$ και $\neg p \alpha \vee \alpha(p) = \Psi$.
- Ο τύπος είναι η διάζευξη (or) όλων των συζεύξεων. 3.

Παράδειγμα: Να βρεθεί η Κ.Δ.Μ. του τύπου: $p \rightarrow \neg (q \rightarrow r)$

Λύση:

Κατασκευάζουμε τον πίνακα αλήθειας του τύπου:

p	q	r	$p \to \neg (q \to r)$
A	A	A	$p \rightarrow \neg (q \rightarrow r) = A \rightarrow \neg (A \rightarrow A) = A \rightarrow \Psi = \Psi$
A	A	Ψ	$p \rightarrow \neg (q \rightarrow r) = A \rightarrow \neg (A \rightarrow \Psi) = A \rightarrow A = A$
A	Ψ	A	$p \rightarrow \neg (q \rightarrow r) = A \rightarrow \neg (\Psi \rightarrow A) = A \rightarrow \Psi = \Psi$
A	Ψ	Ψ	$p \rightarrow \neg (q \rightarrow r) = A \rightarrow \neg (\Psi \rightarrow \Psi) = A \rightarrow \Psi = \Psi$
Ψ	A	A	$p \rightarrow \neg (q \rightarrow r) = \Psi \rightarrow \neg (A \rightarrow A) = \Psi \rightarrow \Psi = A$
Ψ	A	Ψ	$p \rightarrow \neg (q \rightarrow r) = \Psi \rightarrow \neg (A \rightarrow \Psi) = \Psi \rightarrow A = A$
Ψ	Ψ	A	$p \rightarrow \neg (q \rightarrow r) = \Psi \rightarrow \neg (\Psi \rightarrow A) = \Psi \rightarrow \Psi = A$
Ψ	Ψ	Ψ	$p \rightarrow \neg (q \rightarrow r) = \Psi \rightarrow \neg (\Psi \rightarrow \Psi) = \Psi \rightarrow \Psi = A$

H 2^η γραμμή: $p \wedge q \wedge \neg r$

H 5^η γραμμή: $\neg p \land q \land r$

H 6^η γραμμή: $\neg p \land q \land \neg r$

H 7^{η} γραμμή: $\neg p \land \neg q \land r$

H 8^η γραμμή: $\neg p \land \neg q \land \neg r$

Άρα η Κανονική Διαζευκτική Μορφή του τύπου είναι:

$$(p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land \neg q \land r) \lor (\neg p \land \neg q \land \neg r)$$