

Learning Deep Sigmoid Belief Networks with Data Augmentation

Zhe Gan, Ricardo Henao, David Carlson and Lawrence Carin Duke University, Durham NC 27708, USA

INTRODUCTION

Objective: Designing simple and efficient Bayesian inference algorithms for deep learning models.

Main idea:

- Deep directed generative models are developed by stacking sigmoid belief networks (SBN).
- Sparsity-encouraging priors are placed on model parameters.
- Learning and inference of layer-wise model parameters are implemented in a fully Bayesian setting, by exploring the idea of data augmentation.

MODEL FORMULATION

Sigmoid Belief Network: Assume we observe ${\bf v}\in\{0,1\}^J$, modeled using hidden variable ${\bf h}\in\{0,1\}^K$ and weights ${\bf W}\in\mathbb{R}^{J\times K}$ as

$$p(v_j = 1 | \boldsymbol{w}_j, \boldsymbol{h}, c_j) = \sigma(\boldsymbol{w}_j^{\mathsf{T}} \boldsymbol{h} + c_j),$$

 $p(h_k = 1 | b_k) = \sigma(b_k),$

where $\sigma(\cdot)$ is the logistic function, $\boldsymbol{v} = [v_1 \dots v_J]^{\top}$, $\mathbf{W} = [\boldsymbol{w}_1 \dots \boldsymbol{w}_J]^{\top}$, and $\boldsymbol{c} = [c_1 \dots c_J]^{\top}$ and $\boldsymbol{b} = [b_1 \dots b_K]^{\top}$ are bias terms.

Relationship with RBM: The energy function of an SBN is:

$$-E(\boldsymbol{v}, \boldsymbol{h}) = \boldsymbol{v}^{\mathsf{T}} \boldsymbol{c} + \boldsymbol{v}^{\mathsf{T}} \mathbf{W} \boldsymbol{h} + \boldsymbol{h}^{\mathsf{T}} \boldsymbol{b} - \sum_{j} \log(1 + \exp(\boldsymbol{w}_{j}^{\mathsf{T}} \boldsymbol{h} + c_{j})).$$

(In contrast) The energy function of an RBM is:

$$-E(\boldsymbol{v}, \boldsymbol{h}) = \boldsymbol{v}^{\mathsf{T}} \boldsymbol{c} + \boldsymbol{v}^{T} \mathbf{W} \boldsymbol{h} + \boldsymbol{h}^{\mathsf{T}} \boldsymbol{b}$$
.

Autoregressive Structure:

$$p(v_j = 1 | \boldsymbol{h}, \boldsymbol{v}_{< j}) = \sigma(\boldsymbol{w}_j^{\top} \boldsymbol{h} + \boldsymbol{s}_{j,< j}^{\top} \boldsymbol{v}_{< j} + c_j),$$

 $p(h_k = 1 | \boldsymbol{h}_{< k}) = \sigma(\boldsymbol{u}_{k,< k}^{\top} \boldsymbol{h}_{< k} + b_k).$

where $\mathbf{S} = [\boldsymbol{s}_1, \dots, \boldsymbol{s}_J]^{\top}$ and $\mathbf{U} = [\boldsymbol{u}_1, \dots, \boldsymbol{u}_K]^{\top}$ are a lower triangular matrix that contains the autoregressive weights within layers.

Deep Sigmoid Belief Networks:

$$p(oldsymbol{v},oldsymbol{h}) = p(oldsymbol{v}|oldsymbol{h}^{(1)})p(oldsymbol{h}^{(L)})\prod_{\ell=1}^{L-1}p(oldsymbol{h}^{(\ell)}|oldsymbol{h}^{(\ell+1)}) \ ,$$
 $p(h_k^{(\ell-1)}|oldsymbol{h}^{(\ell)}) = \sigma((oldsymbol{w}_k^{(\ell)})^{ op}oldsymbol{h}_n^{(\ell)} + c_k^{(\ell)}) \ .$

Bayesian Sparsity Shrinkage: Three Parameter Beta Normal (\mathcal{TPBN}) prior on $\mathbf{W}^{(\ell)}$

$$W_{jk}^{(\ell)} \sim \mathcal{N}(0, \zeta_{jk}),$$

 $\zeta_{jk} \sim \operatorname{Gamma}(a, \xi_{jk}),$
 $\xi_{jk} \sim \operatorname{Gamma}(b, \phi_k),$
 $\phi_k \sim \operatorname{Gamma}(1/2, \omega),$
 $\omega \sim \operatorname{Gamma}(1/2, 1).$

Graphical Model

Figure: Graphical model for the deep SBN with autoregressive structure.

LEARNING & INFERENCE

Main idea: If $\gamma \sim PG(b,0)$ for b>0, then (PG denotes Pólya-Gamma distribution)

$$\frac{(e^{\psi})^a}{(1+e^{\psi})^b} = 2^{-b}e^{\kappa\psi} \int_0^\infty e^{-\gamma\psi^2/2} p(\gamma)d\gamma ,$$

where $\kappa = a - b/2$ and $\gamma | \psi \sim \mathrm{PG}(b, \psi)$.

Gibbs Sampling: We can write the likelihood function for ${f W}$ (omitting ${f c}$) and ${f h}$ as

$$L(\mathbf{W}, \boldsymbol{h}) \propto \exp \left\{ \sum_{j}^{J} \left(\boldsymbol{v}_{j} - \frac{1}{2} \right) \boldsymbol{w}_{j}^{\top} \boldsymbol{h} - \frac{1}{2} \gamma_{j} (\boldsymbol{h}^{\top} \boldsymbol{w}_{j} \boldsymbol{w}_{j}^{\top} \boldsymbol{h}) \right\}$$
$$\propto \exp \left\{ \left(\mathbf{v} - \frac{1}{2} \right)^{\top} \mathbf{W} \boldsymbol{h} - \frac{1}{2} \boldsymbol{h}^{\top} \mathbf{W}^{\top} \boldsymbol{\Gamma} \mathbf{W} \boldsymbol{h} \right\},$$

where $\Gamma = \text{diag}(\gamma_1, \dots, \gamma_J)$. Hence, $L(\mathbf{W}, \mathbf{h})$ is conjugate to Gaussian prior $p(w_{jk})$; $\mathbf{h}|\mathbf{v} \sim \text{Bernoulli}(\cdot)$; $\gamma_j|\mathbf{w}_j, \mathbf{h} \sim \text{PG}(1, \mathbf{w}_j^{\top}\mathbf{h})$.

Mean-field VB: Define $\psi_j = \boldsymbol{w}_j^{\mathsf{T}} \boldsymbol{h}$, then

$$q(\gamma_j) \propto \exp\left(-\frac{1}{2}\gamma_j\langle\psi_j^2\rangle\right) \cdot \mathsf{PG}(\gamma_j|1,0) = \mathsf{PG}\left(1,\sqrt{\langle\psi_j^2\rangle}\right).$$

EXPERIMENTS

I. MNIST: Generated Samples:

Figure: Performance on the MNIST dataset. (Left) Training data. (Middle) Averaged synthesized samples. (Right) Learned features at the bottom layer.

Figure: Missing data prediction. For each subfigure, (Top) Original data. (Middle) Hollowed region. (Bottom) Reconstructed data.

II. Caltech 101 Silhouettes: Generated Samples:

Figure: Performance on the Caltech 101 Silhouettes dataset. (Left) Training data. (Middle) Averaged synthesized samples. (Right) Learned features at the bottom layer.

Variational Lower Bound:

Table: Log pr	able: Log probability of test data.					
Model	Dim	Log-prob.	of test I			
SBN (VB)	200	-136.84) punoq			
SBN (VB)	200 - 200	-125.60				
FVSBN (VB)		-96.40	al lower			
ARSBN (VB)	200	-96.78	iational I			
ARSBN (VB)	200 - 200	-97.57	Je varia			
RBM*	500	-114.75	Average			
RRM^*	4000	_107 78	Ž –			

III. OCR letters: Variational Lower Bound:

Table: OCR letters.			Table: MNIST.			
Model	Dim	Log-prob.	Model	Dim	Log-prob.	
SBN (online)	200	-48.71	SBN (VB)	200	-116.96	
SBN (VB)	200	-48.20	FVSBN (VB)		-100.76	
SBN (VB)	200 - 200	-47.84	ARSBN (VB)	200	-102.11	
FVSBN (VB)		-39.71	ARSBN (VB)	200 - 200	-101.19	
ARSBN (VB)	200	-37.97	SBN ^o (NVIL)	200	-113.1	
ARSBN (VB)	200 - 200	-38.56	SBN ^o (NVIL)	200 - 200	-99.8	
SBN (Gibbs)	200	-40.95	DBN^*	500 - 2000	-86.22	
DBM^*	2000 - 2000	-34.24	DBM	500 - 1000	-84.62	

ACKNOWLEDGEMENTS

This research was supported by ARO, DARPA, DOE, NGA and ONR.