2020 第七屆來恩盃全國高中職程式能力競賽

試題本封面

編號:		學校	:		姓名	:	
		竹	F答完成之題	夏 目請參賽選	基手打勾		
題號	Durch Law 4	Dunchlam 2	Dunchlam 2	Duckie 4	Problem 5	Problem 6	答題統計
短弧	Problem 1	Problem 2	Problem 3	Problem 4	PLODIEM 3		(選手填寫)
完成							
打勾							
	評分 - 考場教室號碼: <u>C30</u> 答對題數&最						
		(下列村	欄位由 <u>評審</u>	<u>老師</u> 填寫)			末「修改」時間
正確							
打勾							
時:分:秒							

說明

- 1. 競賽開始前請勿翻開試題本。競賽開始後,請務必先於競賽試題本封面簽名。
- 2. 當每一題解題完成時,請**儘速**將解題完成的**程式專案**,複製到下列指定目錄,作為**該題** 完成時間之評分依據:

D:\LionCup\Problem#

其中,"#"表示題目編號。例如,若解出第 3 題,則在 "D:\"建立目錄,並將程式專案複製到 D:\LionCup\Problem3 裡頭,並須於封面之**作答題號處打勾**。

- 3. 程式競賽以答對的**題數與解題時間**計分,當答對的題數相同時,以**完成該題數的最末時** 間作為排名依據 (以 .exe 檔的時間記錄為主)。
- 4. 解題程式**執行時間限制為 10 秒內**,若執行超過時限,則判定為解題錯誤。
- 5. 禁止任何形式作弊;**勿自行攜帶手機、計算機、參考資料**入場;競賽時,切斷連外網路。
- 6. 參賽者「可以」使用電腦內安裝之軟體(如小算盤等)協助解題。
- 7. 鼓勵以 Console Mode 解題。
- 8. 評分時,除題目所列的範例測資外,另有額外測資,必須所有測資皆解答正確才算答對。
- 9. 競賽時間內,除經監考人員許可如廁外,不得提前離場。競賽結束後,**12:00 準時開始** 評分,評分時,請參賽同學留在座位上,雙手離開桌面。當評審老師走到同學處進行評 分時,才可依評審指示操作電腦;評分完成後,請同學離場。

第1題 三角波波形

問題描述

在此問題中,您將根據一組指定的振幅和頻率生成三角波波形。

輸入說明

輸入一組資料集,將包含兩個正整數,每個整數在單獨的行上;第一個整數是振幅;第 二個整數是頻率。

輸出說明

對於程式的輸出,您將印出波形圖,每個波形圖用空白行分隔。波形圖的個數等於頻率,每個波形的水平"長度"等於振幅。

振幅不會大於九。頻率不會大於五。波形本身應在每行上填入整數,以表示該行的"長度"。

注意:每個單獨的波形之後都有一個空行,最後一個除外。

節例

輸入	輸出
1	1
1	
3	1
1	22
	333
	22
	1
2	1
3	22
	1
	1
	22
	1
	1
	22
	1

第2題 位移加密法

問題描述

「位移加密法」是古典密碼器中常用的加密法,此處假設加密的對象侷限於 26 個英文字母。其原理如下:先對 26 個字母進行編碼,A->0、B->1、C->2、D->3、…、Y->24、Z->25。接著,當要對明文(加密前的資料)每一個字母加密時,採用 c=(p+key)mod26 進行計算,可獲得對應之密文(加密後的資料)字母,上式中,p表示明文某一字母的編碼,c表示所得到的對應之密文字母的編碼,key是金鑰,mod是取餘數運算。舉例:現要對一明文字串「HELLO」進行位移加密法,假設金鑰 key=15,首先對其明文每一字母進行編碼 H->07、E->04、L->11、L->11、O->14,接著對每一字母的編碼,採用 c=(p+key)mod26 進行計算,可獲得對應之密文字母的編碼,最後進行解碼,即可得到密文字串:(07+15)mod26=22->W 、 (04+15)mod=19->T 、 (11+15)mod26=0->A 、(11+15)mod26=0->A、(11+15)mod26=0->A、(14+15)mod26=3->D,最後得到密文字串為「WTAAD」。

[注意]:規定明文字串及密文字串一律以大寫字母顯示。

輸入說明

輸入一個不定長度(**最多 64 個字母**)的明文字串及金鑰 key(小於 65536 的正整數)。輸入格式如下:

第一行輸入明文字串。

第二行輸入加密金鑰。

輸出說明

依照位移加密法及金鑰 key,輸出加密後的密文字串。

輸入格式	輸出格式
SECURE	ZLJBYL
7	
HACKING	TMOWUZS
12	

第3題 以遞增取數由一亂數數列取出最多個整數

問題描述

唐才子原本是一個家境窮苦,但卻敦品上進的青年。當地員外的掌上明珠因欣賞唐才子的人品與才華,竊與之相戀。一對才子佳人相互愛戀,情深意濃,嘆謂之「只羨鴛鴦不羨仙」!可惜,好景不常!這段才子佳人的戀曲很快地就被勢利的員外所得知。員外欲為掌上明珠媒配門當戶對的姻緣,因而對唐才子百般刁難。

一日,員外將唐才子招來,心下暗自忖度:該出個難題將眼下這個不知天高地厚的小子難倒,藉機阻其與愛女的姻緣。員外上下打量唐才子半晌,開口言道:「汝知吾家業大,小女卻為獨生掌上明珠。為保吾之家業得傳賢永續,今提一問,若汝能答出,我便將小女委嫁於汝;若汝無能答之,便請高抬貴手,另覓良緣。」

隨即,員外取出大小不一的碎金子,問道:「此有碎金若干塊,大小隨意,依序排之為一列。汝需由左而右取之,後取之碎金需較前一取之為大,如何才能取得最多塊之碎金塊」 現在,為了才子佳人的幸福未來,我們一起來幫唐才子想想,如何才能抱得美人歸吧!!

輸入說明

第一行輸入的是一個整數 N (0 < N < 30),表示接下來員外將排出 N 塊碎金塊。下一行有 N 個整數,依序為每塊碎金塊的重量 W (0 < W < 100)。

輸出說明

輸出1個整數值,代表能讓唐才子取出最多碎金塊的個數。

輸入	輸出
5	4
1 2 3 4 3	
20	11
10 12 30 14 36 18 20 25 48 32 79 21 49 78	
98 22 1 99 97 2	

第 4 題 - 資料傳輸編碼

問題描述

現代網路通訊時代,資料通訊傳輸時為了節省寶貴的儲存空間,以及縮短資訊傳遞的時間,我們希望能將這串資料以新的方式表示,讓它的容量能接近它真正承載的資訊量,而將不必要的冗餘碼去除。所以去除多餘的編碼,以最節省空間的方式表達特定的資訊,就是所有資料壓縮法的共通目的。

在數據壓縮的領域裡, Shannon Fano coding 是一種基於一組符號集及其符號出現機率

- 1. 對於給定的符號,建立一組符號與符號的出現機率。
- 2. 依符號出現機率多寡進行排序,出現機率最多的符號排在最上面。
- 3. 將這個表格分為兩部分,依次序,符號出現機率比較多的上半部符號和下半部分開。
- 給定上半部的符號一個二進位數字 0,下半部則給定 1。這個數字做為這些符號的新編碼的第一碼。
- 5. 對兩部分的表格遞迴地重複實行步驟 3 和 4,也就是繼續分割表格並且給定數字,直到 分割到剩下單一符號為止。到此每一個符號都會有一個相對應的碼,就是它的新編碼。 舉例說明:
 - A. 假設使用者輸入一組 5 個符號「ABCDE」和符號的出現機率分別為(0.17,0.38,0.16,0.15,0.14),要產生新的編碼。所有的符號以它們出現的機率排序再劃分成上下兩部份。如下表,可在字母 A 與 C 之間劃定分割線,得到了上下兩部份,總出現機率分別為 0.38+0.17=0.55,0.16+0.15+0.14=0.45。這樣就在排序好的符號把上下兩部份的差別降到最小。通過這樣的分割, A 與 B 同時擁有了一個以 0 為開頭的編碼, C,D,E的編碼則為 1。接著,在 A,B 間建立新的分割線,這樣 A 就成為了編碼為 00,B的編碼 01。經過四次分割,得到了一個新的編碼。

符號	出現機率	編码	溤		
В	0.38	0	0		
A	0.17	0	1		
С	0.16	1		0	
D	0.15	1		1	0
Е	0.14	1		1	1

B. 新編碼為

符號	編碼
В	0 0
A	0 1
С	1 0
D	1 1 0
Е	111

輸入說明

- 1. 第一行:輸入符號之數量,一個範圍在3~10之間的整數。
- 2. 第二行:輸入所有符號之名稱(每個符號名稱的長度小於10個字元),以空格分開
- 3. 第三行:輸入每個符號出現的機率(每個符號的機率>=0 且<=1。並且,所有符號的機率加總<=1),以空格分開

輸出說明

輸出每一個符號與編碼,格式是 符號:編碼

輸入的機率出現問題(正常的機率:每個符號的機率>=0 且<=1。並且,所有符號的機率 加總<=1),則輸出-1

輸入	輸出
5	D: 00
ABCDE	B: 01
0.22 0.28 0.15 0.30 0.05	A: 10
	C:110
	E:111
3	a2:0
a1 a2 a3	a1:10
0.1 0.88 0.02	a3:11
3	-1
a1 a2 a3	
0.1 0.9 0.2	

第5題 找出可能的鈍角三角形的最長周長

問題描述

三角形內角若有大於直角 90 度,稱此三角形為鈍角三角形。三角形的周長則是三角形三邊長度的總和。

給予一組 N 個正整數的數列,數列裡每個數字代表線段長度。挑選此正整數數列裡任意 三個線段數字,試著組成鈍角三角形,請找出具有最長周長的鈍角三角形,計算其周長。

輸入說明

首先輸入正整數 N (範圍: $3\sim30$),再輸入 N 個正整數 (範圍: $1\sim999$) 以組成數列,數字間以空格隔開。舉例說明:若是 4 個正整數組成的數列 56,112,84,70,第一行請先輸入 "4",第二行再輸入 "56 112 84 137" 4 個正整數,以組成數列。

輸出說明

若鈍角三角形存在,輸出具有最長周長的鈍角三角形的周長值;若鈍角三角形不存在,輸出數字 0。

輸入	輸出
4	305
56 112 84 137	
5	0
56 57 55 58 56	

第6題 解密運算

問題描述

假設 Alice 要傳送一份機密訊息 P 給 Bob,為了避免機密訊息曝光,Alice 打算使用一種加密換位技術來保護此機密訊息。加密換位的過程是先輸入一個大於 1 的數字 K 當作金 鑰及一串機密訊息,金鑰值為列數、機密訊息長度為行數,然後將機密訊息依照順序以鋸齒狀的方式進行排列,排列完成後,從左至右、由上到下讀取,即可得到密文 C。

舉例 1:若輸入 K=3,機密訊息 P="university",則加密運算如下圖:

u				е				t	
	n		v		r		i		Y
		i				s			

密文 C="uetnvriyis"

舉例 2: 若輸入 K=2,機密訊息 P="university",則加密運算如下圖:

u		i		е		Ø		t	
	n		v		r		i		У

密文 C="uiestnvriy"

Alice 運算得到密文 C 後,再將密文 C 傳送給 Bob, Bob 收到密文 C 後,擬輸入相同金鑰 K 及密文 C,透過解密運算,還原回原來的機密訊息 P。

輸入說明

輸入一個大於 1 的正整數 K(K<100),例如: 3,再輸入一個密文 C(C) 的字母數<100),例如: uetnvriyis。

輸出說明

輸出答案為機密訊息 P,例如: university。

輸入	輸出
3	saveyourself
sysaeorefvul	
2	computer
cmueoptr	

Memo