

Разработка приложений

Основы алгоритмизации

План занятия

- Критерии сложности алгоритмов
- Уровни алгоритмической сложности
- Оценка времени работы алгоритма
- Примеры алгоритмов

Как работает интернет?

Как работает интернет?

«Граф Интернета»

Вершины:

- компьютеры;
- роутеры;

Связи:

• соединения (провода, WiFi, ...)

Типовые алгоритмы:

- поиск в ширину;
- алгоритм Дейкстры;
- алгоритм Форда-Беллмана

• ...

Сложность алгоритмов

- Сложность восприятия
- Алгоритмическая сложность
- Временные затраты

Сложность восприятия

```
// Пример 1
int tmp = x;
x = y;
y = tmp;
// Пример 2
x += y;
y = x - y;
x = y;
// Пример 3
x = x ^ y;
y = x ^ y;
x = x ^ y;
```

Какой из примеров проще для восприятия?

- const
- lacksquare $\log(n)$
- n
- $n \cdot \log(n)$
- пчисло
- числоⁿ
- *n*!

- const
- lacksquare $\log(n)$
- \blacksquare n
- $n \cdot \log(n)$
- пчисло
- числоⁿ
- *n*!

- const
- lacksquare $\log(n)$
- \blacksquare n
- $n \cdot \log(n)$
- пчисло
- числоⁿ
- *n*!

- const
- lacksquare $\log(n)$
- \blacksquare n
- $n \cdot \log(n)$
- nчисло
- числоⁿ
- *n*!

- const
- lacksquare $\log(n)$
- \blacksquare n
- $n \cdot \log(n)$
- $lue{}$ nчисло
- \blacksquare число n
- *n*!

- const
- $\log(n)$
- n
- $n \cdot \log(n)$
- пчисло
- числоⁿ
- \square n!

Оценка реального времени работы

```
var sw = new Stopwatch();
sw.Start();
int sum = 0;
for (int i = 1; i < 100; i++)
   sum += i;
sw.Stop();
Console.WriteLine(sw.ElapsedMilliseconds);
Console.WriteLine(sw.Elapsed.TotalMilliseconds);
Console.WriteLine(sw.ElapsedTicks);
```

Проблемы реальной оценки времени

1 Сторонние процессы

2 Компиляция на лету

3 Отладчик

4 Исходные данные

5 Случайность процесса

Программа — это не только ваш алгоритм

Оценка реального времени работы

Оценка реального времени работы

Симметричный алгоритм

Асимметричный алгоритм

Решение конкретной задачи

```
public int MaximumGrowth(int[] array)
    int max = 0;
    for (int i = 0; i < array.Length; i++)
        if (max < array[i])</pre>
            max = array[i];
    return max;
```

Поиск максимума

```
public int Maximum(int[] array)
    int max = array[0];
    for (int i = 1; i < array.Length; i++)
        if (max < array[i])</pre>
            max = array[i];
    return max;
```

Типонезависимый метод

```
public T Maximum<T>(T[] array)
     T \max = array[0];
     for (int i = 1; i < array.Length; i++)
           if (max < array[i])</pre>
                                           (parameter) T[] array
                                           Error:
                                            Operator '<' cannot be applied to operands of type 'T' and 'T'
                max = array[i];
     return max;
```

Работающий типонезависимый метод

```
public T Maximum<T>(T[] array) where T : IComparable<T>
    T \max = array[0];
    for (int i = 1; i < array.Length; i++)
        if (max.CompareTo(array[i]) < 0)</pre>
            max = array[i];
    return max;
```

Спасибо за внимание!

Контактная информация:

Дмитрий Верескун

Инструктор

EPAM Systems, Inc.

Адрес: Саратов, Рахова, 181

Email: Dmitry_Vereskun@epam.com

http://www.epam.com