ГУАП

КАФЕДРА № 42

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ							
ПРЕПОДАВАТЕЛЬ							
Доцент, канд. техн. наук		В.А. Миклуш					
должность, уч. степень, звание	подпись, дата	инициалы, фамилия					
ОТЧЕТ О Ј	ЛАБОРАТОРНОЙ РАБО	OTE №1					
Вычисление статистических характеристик текстовой информации							
по курсу: Теория информации, данные, знания							
РАБОТУ ВЫПОЛНИЛ							
СТУДЕНТ ГР. № 4329	подпись, дата	Д.С. Шаповалова инициалы, фамилия					

1. Цель работы:

Анализ текстовой информации. Применение статистики для анализа текстов.

2. Задание:

Постановка задачи.

- 1. Определить количество информации (по Хартли), содержащееся в заданном сообщении;
- 2. Построить таблицу распределения частот символов, характерных для заданного сообщения. Производится так называемая частотная селекция, текст сообщения анализируется как поток символов и высчитывается частота встречаемости каждого символа. Сравнить с частоты символов с эталонной, в зависимости от языка сообщения (таблица 1);
- 3. На основании полученных данных определить среднее и полное количество информации, содержащееся в заданном сообщении;
 - 4. Оценить избыточность сообщения.

3. Исходные данные

Исходный текст выбран под вариантом 17 и представлен на итальянском языке: «Chi ha i denti non ha il pane e chi ha il pane non ha i denti Chi tante male azioni fa, una grossa ne aspetta Dare a Cesare quel che è di Cesare, dare a Dio quel che è di Di»

Эталонная частота для европейских языков:

Таблица 1 – Таблица частот букв европейских языков

Буква	Французский	Немецкий	Английский	Испанский	Итальянский
алфавита	язык	язык	язык	язык	язык
A	7,68	5,52	7,96	12,90	11,12
В	0,80	1,56	1,60	1,03	1,07
C	3,32	2,94	2,84	4,42	4,11
D	3,60	4,91	4,01	4,67	3,54
E	17,76	19,18	12,86	14,15	11,63
F	1,06	1,96	2,62	0,70	1,15
G	1,10	3,60	1,99	1,00	1,73
Н	0,64	5,02	5,39	0,91	0,83
Ι	7,23	8,21	7,77	7,01	12,04
J	0,19	0,16	0,16	0,24	_
K	-	1,33	0,41		_
L	5,89	3,48	3,51	5,52	5,95
M	2,72	1,69	2,43	2,55	2,65
N	7,61	10,20	7,51	6,20	7,68
О	5,34	2,14	6,62	8,84	8,92
P	3,24	0,54	1,81	3,26	2,66

Буква	Французский	Немецкий	Английский	Испанский	Итальянский
алфавита	язык	язык	язык	язык	язык
Q	1,34	0,01	0,17	1,55	0,48
R	6,81	7,01	6,83	6,95	6,56
S	8,23	7,07	6,62	7,64	4,81
T	7,30	5,86	9,72	4,36	7,07
U	6,05	4,22	2,48	4,00	3,09
V	1,27	0,84	1,15	0,67	1,67
W	_	1,38	1,80	_	_
X	0,54	_	0,17	0,07	_
Y	0,21	_	1,52	1,05	_
Z	0,07	1,17	0,05	0,31	1,24

4. Теоретические сведения:

В основе работы лежат понятия из теории информации, разработанной Клодом Шенноном.

1. Количество информации по Хартли (для равновероятных событий)

$$I = n \cdot \log^2(m), \tag{1}$$

I — количество информации в сообщении (в битах).

n — количество символов в сообщении.

m — мощность алфавита (общее количество различных символов, которые могут появиться в сообщении).

Результат показывает, сколько бит информации несет один символ из данного алфавита, если все символы равновероятны.

Смысл: Эта формула работает в "идеальном" случае, когда никакие символы не имеют преимущества перед другими. Она отвечает на вопрос: "Сколько информации мы получили, узнав, что произошло одно из m равновероятных событий n раз подряд?".

2. Энтропия Шеннона (для не равновероятных событий)

$$H = -\sum (p_i * \log^2(p_i)), \tag{2}$$

Н — энтропия (среднее количество информации, приходящееся на один символ алфавита, в битах). Это более реальный показатель, чем формула Хартли, так как он учитывает разную частоту символов.

 p_i — вероятность появления i-го символа в сообщении. На практике она вычисляется как частота: $p_i = ($ количество раз, когда встретился символ i) / n.

 Σ — Нужно просуммировать выражение $p_i * \log^2(p_i)$ для всех уникальных символов алфавита, встречающихся в сообщении.

Минус перед суммой нужен, чтобы результат был положительным, так как $\log_2(p_i)$ для вероятностей (меньших 1) всегда отрицателен.

Смысл: Энтропия измеряет "степень неопределенности" или "информационную насыщенность" источника данных. Чем выше энтропия, тем больше информации несет каждый символ. Максимальна она тогда, когда все символы равновероятны (и тогда Н совпадает с $\log_2(m)$).

3. Максимальная энтропия

$$H_{max} = log_2(m), (3)$$

 H_{max} — максимально возможная энтропия для алфавита с мощностью m. Это частный случай формулы H, когда все p_i равны (т.е. $p_i=1/m$).

4. Полное количество информации в сообщении

$$I_{\text{общ}} = H_{max} \cdot n, \qquad (4)$$

I_общ — общее количество информации во всем сообщении с учетом реального распределения частот символов.

Н — энтропия, рассчитанная по формуле 3.

- n длина сообщения.
- 5. Избыточность алфавита / сообщения

$$D = 1 - (H - H_{max}), (5)$$

D — избыточность (безразмерная величина, обычно выражается в процентах).

Смысл: Избыточность показывает, какая часть "информационной емкости" алфавита не используется из-за неравномерного распределения символов. Высокая избыточность (например, в естественных языках, где 40-50%) связана с наличием правил (грамматика, синтаксис) и частотных закономерностей. Именно из-за избыточности возможны сжатие данных и исправление ошибок.

4. Ход работы:

Для выполнения работы был выбран Excell. По формулам (1) - (4) были посчитаны: количество информации, энтропия для каждого символа, суммарная энтропия, максимальная энтропия (обычная), полное количество информации, а также определена мощность алфавита. Результаты расчетов представлены на рисунке 1.

Рисунок 1 – Выполнение работы в Excel

Получив график частот появления символов, сравним их с данными из таблицы 1, построив такой же график.

Рисунок 2 – Сравнение полученной статистики и эталонной

Как мы можем видеть, если не учитывать символы пробел и запятую, некоторые буквы у нас в тексте отсутствуют (b, v, z), некоторые буквы отсутствуют в эталонной статистике в силу специфики итальянского языка (è), у некоторых частоты отличаются (с и d, е и a, l и h, n и o), а остальные примерно совпадают. Расхождение можно объяснить малым объёмом анализируемого текста.

5. Вывод:

В ходе выполнения лабораторной работы были успешно решены поставленные задачи по статистическому анализу текстовой информации. На примере заданного текста на итальянском языке были проведены следующие действия:

- 1. Определено количество информации по Хартли для алфавита, используемого в сообщении 4,459431619 бит. Это значение представляет собой максимально возможную энтропию для системы с данным количеством равновероятных символов.
- 2. Построена таблица распределения частот символов для конкретного текста. Проведенный частотный анализ показал, что распределение вероятностей появления букв в анализируемом сообщении является неравномерным, что характерно для естественных языков. Проведя сравнение с таблицей частоты букв в итальянском языке, можем понять, что в основном данные совпадают, но есть расхождение в некоторых буквах, некоторые же в полученной нами статистике вообще отсутствуют, что можно объяснить малым объёмом анализируемого текста.
- 3. Рассчитано среднее и полное количество информации в сообщении 648,1200362 бит и 771,48167 бит. Реальная энтропия (3,746358591 бит) оказалась ниже максимальной (4,459431619 бит) (по Хартли), что свидетельствует о наличии статистических связей между символами и их не равновероятном появлении.
- 4. Оценена избыточность сообщения. Расчет показал значительную избыточность 0,159902223 (доля) текста, которая является типичной для естественного языка. Высокая избыточность объясняется наличием устойчивых статистических закономерностей (частот букв, биграмм и т.д.) и необходима для обеспечения помехоустойчивости и надёжности восприятия информации.

Таким образом, работа подтвердила ключевые теоретические положения теории информации: реальные тексты обладают значительной избыточностью из-за неравномерного распределения вероятностей символов и статистических связей между ними. Это свойство естественных языков, обеспечивающее их устойчивость к ошибкам и помехам при передаче и хранении.