ChatGPT's results in Vietnamese National High School Graduation Examination: Mathematics

Authors:

Xuan-Quy DAO, EIU, quy.dao@eiu.edu.vn

2020 Illustration Examination

ChatGPT Feb 13 Version

Prompt (Câu hỏi)	ChatGPT's answer (Câu trả lời)
------------------	--------------------------------

Câu 1. Từ một nhóm học sinh gồm 6 nam và 8 nữ, có bao nhiều	Để chọn ra một học sinh từ nhóm học sinh gồm 6 nam và 8 nữ, ta có tổng
cách chọn ra một học sinh?	cộng 14 người để lựa chọn. Do đó, số cách chọn ra một học sinh là 14.
A. 14	Vì vậy, đáp án là A. 14.
B. 18	
C. 6	
D. 8	
Câu 2. Cho cấp số nhân (u_n) với u_1=2 và u_2=6. Công bội của	Ta biết được u_1 = 2 và u_2 = 6. Ta sử dụng công thức của cấp số nhân:
cấp số nhân đã cho bằng	$u_n = u_1 * r^n(n-1)$
A. 3	và
B4	$u_{n+1} = u_1 * r^n$
C. 4	Chia hai phương trình này với nhau, ta được:

D. 1/3	$u_{-}(n+1)/u_{-}n = r$
	Thay $u_1 = 2 \text{ và } u_2 = 6 \text{ vào, ta có:}$
	$u_2/u_1 = 3 = r$
	Vậy, công bội của cấp số nhân là r = 3.
	Đáp án là A. 3.
Câu 3. Diện tích xung quanh của hình nón có độ dài đường sinh	Để tính diện tích xung quanh của hình nón, ta sử dụng công thức:
l và bán kính đáy r bằng	S = pi r l
A. 4 \pi r l	Trong đó, r là bán kính đáy và l là đường sinh của hình nón.
B. 2 \pi r l	Vì vậy, đáp án là C. \pi r l.
C. \pi r l	
D. 1/3 \pi r l.	
Câu 4. Cho hàm số f(x) có bảng biến thiên như sau:	Để xác định khoảng đồng biến của hàm số, ta cần phân tích sự biến thiên của
x: -\infty -1 0 1 +\infty	đạo hàm. Từ bảng biến thiên, ta thấy rằng $f'(x) > 0$ trên khoảng $(-\infty, -1)$ và
f'(x): + 0 - 0 + 0 -	$(1, +\infty)$, $f(x) < 0$ trên khoảng $(-1, 0)$ và $(0, 1)$, và $f'(x) = 0$ tại $x = -1, 0, 1$.
f(x): -\infty \rightarrow 2 \rightarrow 1 \rightarrow 2 \rightarrow	Khi $f(x) > 0$, $f(x)$ đang tăng và khi $f'(x) < 0$, $f(x)$ đang giảm. Do đó, hàm số
-\infty	đồng biến trên các khoảng $(-\infty, -1)$ và $(1, +\infty)$, và đồng biến giảm trên khoảng
Hàm số đã cho đồng biến trên khoảng nào dưới đây?	(-1, 0) và (0, 1).
A. (1;+\infty)	Vậy, đáp án là C. (-1;1).
B. (-1;0)	
C. (-1;1)	
D. (0;1)	

Câu 5. Cho khối lập phương có cạnh bằng 6. Thể tích của khối	Thể tích của khối lập phương là cạnh mũ ba, vì vậy thể tích của khối lập
lập phương đã cho bằng	phương đã cho là:
A. 216	$V = 6^3 = 216$
B. 18	Vậy, đáp án là A. 216.
C. 36	
D. 72	
Câu 6. Nghiệm của phương trình log_3 (2x-1) = 2 là	Bắt đầu bằng cách viết lại phương trình dưới dạng mũ:
A. x=3	$\log_3 (2x - 1) = 2 \Rightarrow 3^2 = 2x - 1 \Rightarrow 9 = 2x - 1 \Rightarrow 2x = 10 \Rightarrow x = 5$
B. x=5	Vậy, nghiệm của phương trình là $x = 5$. Đáp án là B.
C. x=9/2	
D. x=7/2	
Câu 7. Nếu $\int \frac{1}{x} dx = -2 \ \text{và} \int \frac{1}{x} dx = 1 \ \text{th}$	Ta có:
\int^3_1 f(x) dx bằng	$\int \int dx = \int dx + \int dx + \int dx + \int dx$
A3	Thay giá trị đã biết vào ta được:
B1	$\int \int dx = -2 + 1 = -1$
C. 1	Vậy, đáp án là B1.
D. 3	
Câu 8. Cho hàm số $y = f(x)$ có bảng biến thiên như sau:	Hàm số đã cho có đỉnh cực đại tại $x=0$ và đỉnh cực tiểu tại $x=3$. Do đó, giá
x: -\infty 0 3 +\infty	trị cực tiểu của hàm số đã cho là:
f'(x): + 0 - 0 +	f(3) = -4
$f(x)$: -\infty \rightarrow 2 \rightarrow -4 \rightarrow +\infty	Vậy, đáp án là D4.
Giá trị cực tiểu của hàm số đã cho bằng	

A. 2 B. 3 C. 0 D. -4 Câu 9. Đồ thị của hàm số nào dưới đây có dạng như đường cong Đường cong trong hình bên có dạng parabol, nên ta chọn phương trình hàm số của đường parabol tương tự. trong hình bên? A. $y=-x^4+2x^2$ Từ hình bên, ta thấy đường cong cắt trục hoành ở hai điểm bằng cách đối B. $y=x^4-2x^2$ xứng qua trục tung, do đó hệ số của hạng tử bậc 4 trong phương trình hàm C. $y = x^3-3x^2$ số phải là âm. D. $y=-x^3+3x^2$ Từ đường cong của hình bên, ta thấy rằng đường cong cắt trục tung tại hai điểm nằm trên trục tung, đối xứng qua gốc tọa độ. Vì vậy, phương trình hàm số phải có dạng: $y = -x^4 + ax^2$ Từ đó, ta có thể tìm giá trị của a. Đường cong cắt trục tung tại hai điểm nằm trên trục tung, do đó: $y = -x^4 + ax^2 = 0$ Khi x = 1 hoặc x = -1. Từ đó, ta có: $a = y/x^2 = -1$ Do đó, phương trình hàm số là: $y = -x^4 + x^2$ Vậy, đáp án là A. $y = -x^4 + 2x^2$.

Câu 10. Với a là số thực dương tùy ý, log_2(a^2) bằng	Ta có:
A. 2+log_2 a	$\log_2(a^2) = 2 \log_2 a$
B. 1/2+log_2 a	Vậy đáp án là:
C. 2log_2 a	C. 2log_2 a
D. 1/2 log_2 a	
Câu 11. Họ tất cả các nguyên hàm của hàm số	Ta có: $\left(\frac{1}{\left(\frac{\cos\{x\}+6x \cdot right)}{\cos\{x\}}}\right)$
$f\left(x\right) = \cos\{x\} + 6x \text{ là}$	$= \& \inf \{ \cos\{x\} dx \} + 6 \inf \{ x dx \} = \& \sin\{x\} + 3x^2 + C \ \text{end} \{ aligned \} \ V_{a}^2 y $
A. $\sin\{x\}+3x^2+C$	đáp án chính xác là (A).
B. $-\sin\{x\}+3x^2+C$	
$C. \sin\{x\} + 6x^2 + C$	
D. $-\sin\{x\}+C$	
Câu 12. Môđun của số phức 1+2i bằng	Ta có: $ 1+2i = sqrt(1^2 + 2^2) = sqrt(5)$
A. 5	Vậy đáp án là C. \sqrt{5}.
B. \sqrt{3}	
C. \sqrt{5}	
D. 3	
Câu 13. Trong không gian Oxyz, hình chiếu vuông góc của điểm	Để tìm hình chiếu vuông góc của điểm \$M\$ trên mặt phẳng \$(Oxy)\$, ta xét
M(2;-2;1) trên mặt phẳng (Oxy) có tọa độ là	vector pháp tuyến của mặt phẳng đó là \$\mathbf{n}=(0,0,1)\$ và vector
A. (2;0;1)	\$\overrightarrow{OM}=(2,-2,1)\$.
B. (2;-2;0)	Điểm hình chiếu \$H\$ của \$M\$ lên \$(Oxy)\$ nằm trên đường thẳng đi qua
C. (0;-2;1)	\$M\$ và vuông góc với \$(Oxy)\$, nên ta có thể sử dụng vector pháp tuyến để
D. (0;0;1)	

	tìm hướng của đường thẳng đó. Vector pháp tuyến của đường thẳng là
	∞ \$\mathbf{u}=(0,0,-1)\$.
	Sử dụng công thức hình chiếu của một điểm lên một đường thẳng, ta có:
	\$\$\overrightarrow{OH} = \overrightarrow{OM} -
	$\label{lem:conditional} $$ \left(\operatorname{OM} \cdot \operatorname{M} \right) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	$= \langle overrightarrow\{OM\} + \langle frac\{2\}\{1^2 + 1^2\} \rangle + (u) = \langle frac$
	$2,1+\frac{2}{2} = (2,-2,2)$ \$
	Do \$H\$ nằm trên \$(Oxy)\$ nên tọa độ của \$H\$ là \$(2,-2,0)\$. Vậy đáp án là
	\$\boxed{\textbf{(B) }(2,-2,0)}\$.
Câu 14. Trong không gian Oxyz, cho mặt cầu (S):(x-	Ta thấy rằng $(x-1)^2+(y+2)^2+(z-3)^2=16$ là phương trình của một mặt
1)^2+(y+2)^2+(z-3)^2=16. Tâm của (S) có tọa độ là	cầu tâm \$I(1,-2,3)\$ và bán kính \$r=4\$. Do đó, tâm của mặt cầu \$(S)\$ có tọa
A. (-1;-2;-3).	độ là \$\boxed{\textbf{(B) } (1;2;3)}\$.
B. (1;2;3).	Tâm của một mặt cầu có tọa độ là \$(x_C, y_C, z_C)\$ và bán kính \$R\$ được
C. (-1;2;-3).	cho bởi phương trình $(x - x_C)^2 + (y - y_C)^2 + (z - z_C)^2 = R^2$. Với
D. (1;-2;3).	mặt cầu $(S):(x-1)^2+(y+2)^2+(z-3)^2=16$, ta thấy tọa độ của tâm chính là
	\$(1,-2,3)\$. Vậy đáp án chính xác là \$\mathbf{(B)}.\$
Câu 15. Trong không gian Oxyz, cho mặt phẳng (α):3x+2y-	Để tìm vectơ pháp tuyến của một mặt phẳng, ta chỉ cần lấy hệ số của biến số
4z+1=0. Vectơ nào dưới đây là một vectơ pháp tuyến của (α)?	x, y, z trong phương trình mặt phẳng và ghép chúng lại để tạo thành một
A. n_2=(3;2;4)	vecto. Vậy, vecto pháp tuyến của mặt phẳng (α) có thể được tìm bằng cách
B. n_3 =(2;-4;1)	lấy vectơ v(a;b;c) có các thành phần a, b, c lần lượt bằng 3, 2 và -4.
C. n_1 =(3;-4;1)	Vậy đáp án là: B. n_3 =(2;-4;1)
D. n_4 =(3;2;-4)	

Câu 16. Trong không gian Oxyz, điểm nào dưới đây thuộc đường	Đường thẳng d có phương trình tham số:
thẳng d:(x+1)/(-1)=(y-2)/3=(z-1)/3 ?	$\scriptstyle \$ \begin{cases} x+1=-t\ y-2=3t\ z-1=3t \end{cases}
A. P(-1;2;1)	Vậy ta có: \$t=\frac{y-2}{3}=\frac{z-1}{3}=\frac{x+1}{-1}\$
B. Q(1;-2;-1)	Thay x, y, z của các điểm vào biểu thức trên và kiểm tra, ta thấy rằng chỉ có
C. N(-1;3;2)	điểm \$Q(1;-2;-1)\$ thỏa mãn.
D. M(1;2;1)	Vậy đáp án là: \$\textbf{B.} Q(1;-2;-1)\$
Câu 17. Cho hình chóp S.ABCD có đáy là hình vuông cạnh	Để tìm góc giữa đường thẳng SC và mặt phẳng (ABCD), ta cần tìm góc giữa
\sqrt{3} a, SA vuông góc với mặt phẳng đáy và SA=\sqrt{2} a	đường thẳng SC và đường thẳng AB.
(minh họa như hình bên). Góc giữa đường thẳng SC và mặt phẳng	Gọi O là trung điểm của CD, ta có:
(ABCD) bằng	AO vuông góc với SC và cắt SC tại H (do SA vuông góc với mặt
A. \$45^{\circ}\$.	phẳng (ABCD))
B. \$30^{\circ}\$. C. \$60^{\circ}\$.	AC vuông góc với BD, mà BD vuông góc với (ABCD) nên AC nằm
D. \$90^{\circ}\$.	trong mặt phẳng (ABCD) và góc giữa AC và AB bằng 45° (do AB là cạnh
	của hình vuông)
	Do đó, góc giữa SC và AB bằng góc giữa SH và AB.
	Ta có:
	$AB = CD = \$ \ rt{3}a\$$
	$OA = OD = \frac{1}{2} CD = \frac{1}{2} \sqrt{3}a$
	$AH = \frac{1}{\sqrt{2}} SA = a$

	$OH = OA - AH = \frac{1}{2} \sqrt{3}a - a = \frac{\sqrt{3}-1}{2}$
	2}{2}a\$
	$\c \SHA = \dfrac{AH}{SH} = \dfrac{a}{\sqrt{2}a} =$
	\dfrac{1}{\sqrt{2}}\$
	$\infty \$ \angle SHA = \dfrac{OH}{SH} = \dfrac{\dfrac{\dfrac{\dfrac{\sqrt{3}}-}
	2 {2}a}{\sqrt{2}a} = \dfrac{\sqrt{3}-2}{2\sqrt{2}}\$
	Áp dụng công thức \$\cos \alpha = \cos (90^\circ - \beta) = \sin \beta\$ với
	\$\beta = \angle SHA\$, ta có:
	$\simeq \Lambda = \Lambda $
	Do đó, góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng góc \$\angle
	$AHB = \arccos \left(\frac{3}{2} \right) 30^\circ \right)$
	Vậy đáp án là B. 30°.
Câu 18. Cho hàm số $f(x)$, bảng xét dấu của f^{\prime} (x) như sau:	Để tìm số điểm cực trị của hàm số, ta cần xác định điều kiện để có điểm cực
x: -\infty -1 0 1 +\infty	trị. Theo định nghĩa, một điểm \$x_0\$ được gọi là điểm cực trị của hàm số
f'(x): + 0 - 0 - 0 +	nếu \$f(x_0)\$ là cực đại hoặc cực tiểu của hàm số trong một khoảng xung
Số điểm cực trị của hàm số đã cho là	quanh \$x_0\$.
A. 0	Trong bảng xét dấu của $f'(x)$, ta có $f'(x) > 0$ trên $-\sin y$.
B. 2	+\infty)\$, tức là hàm số đang tăng trên các khoảng này. Tương tự, \$f'(x) <
C. 1	0\$ trên \$(-1, 0)\$ và \$(0, 1)\$, tức là hàm số đang giảm trên các khoảng này.
D. 3	Vậy ta có thể kết luận:

	Nếu \$f(x)\$ có điểm cực đại, thì nó sẽ xuất hiện tại một điểm \$x_1\$
	nào đó trong khoảng \$(-\infty, -1)\$ và một điểm \$x_2\$ nào đó trong khoảng
	\$(0, 1)\$.
	Nếu $f(x)$ có điểm cực tiểu, thì nó sẽ xuất hiện tại một điểm x_3
	nào đó trong khoảng \$(-1, 0)\$ và một điểm \$x_4\$ nào đó trong khoảng \$(1,
	+\infty)\$.
	Vậy hàm số $f(x)$ có tối đa hai điểm cực trị, và đáp án là
	$\ \$ \\boxed{\textbf{(B) }2}\\$.
Câu 19. Giá trị lớn nhất của hàm số $f(x)=-x^4+12x^2+1$ trên đoạn	Để tìm giá trị lớn nhất của hàm số $f(x)=-x^4+12x^2+1$ trên đoạn $-1,2$
[-1;2] bằng	ta cần xác định điểm cực đại của hàm số trên đoạn này.
A. 1	Bước 1: Tìm các điểm cực trị của hàm số \$f(x)\$.
B. 37	Để tìm điểm cực trị của hàm số, ta cần giải phương trình $f(x)=0$. Ta đã
C. 33	biết bảng xét dấu của \$f(x)\$ như sau:
D. 12	$x: -\ (x) - 1 \ 0 \ 1 + \ (x) + 0 - 0 - 0 + $
	Phương trình $f(x)=0$ có nghiệm là $x=-1,0,1$. Ta cần kiểm tra các giá trị
	của \$f(x)\$ tại các điểm \$x=-1,0,1\$ để xác định chúng là điểm cực trị của
	hàm số hay không.
	Khi \$x=-1\$: \$f(-1)=12\$, \$f'(-1)=0\$ (là điểm cực đại).
	Khi \$x=0\$: \$f(0)=1\$, \$f'(0)=0\$ (không phải điểm cực trị).
	Khi \$x=1\$: \$f(1)=12\$, \$f'(1)=0\$ (là điểm cực đại).
	Vậy hàm số $f(x)$ có hai điểm cực đại là $x=-1$ và $x=1$.
	Bước 2: Tìm giá trị lớn nhất của hàm số \$f(x)\$ trên đoạn \$[-1,2]\$.

Ta cần kiểm tra giá trị của hàm số f(x) tại các điểm cực trị và đầu mút của đoạn -1,2 để xác định giá trị lớn nhất của hàm số.

Khi \$x=-1\$: \$f(-1)=12\$.

Khi \$x=1\$: \$f(1)=12\$.

Khi $x=-\sqrt{3}$ hoặc $x=\sqrt{3}$: f(x)=13.

Khi \$x=2\$: \$f(2)=-27\$.

Vậy giá trị lớn nhất của hàm số f(x) trên đoạn -1,2 là 13. Đáp án là \mathbf{C}

Để tìm giá trị lớn nhất của hàm số $f(x)=-x^4+12x^2+1$ trên đoạn [-1,2], ta cần tìm điểm cực đại của hàm số trên đoạn này.

Điểm cực đại của hàm số f(x) là điểm mà hàm số đạt giá trị lớn nhất. Điểm cực đại này có thể nằm ở đầu đoạn [-1, 2], cuối đoạn [-1, 2] hoặc nằm ở trong đoạn [-1, 2].

Để tìm điểm cực đại trong đoạn \$[-1, 2]\$, ta sẽ sử dụng định lí Fermat như sau:

Nếu f(x) có điểm cực đại tại x_0 thì $f'(x_0) = 0$.

Để tìm x_0 , ta giải phương trình f(x)=0 trên đoạn [-1, 2].

Ta có $f'(x)=-4x^3+24x$, và bảng dấu của f'(x) trên đoạn -1, 2 là:

x: $-\inf y -1 \ 0 \ 2 +\inf y \ f'(x): -+0 -+$

	Từ bảng dấu này, ta thấy rằng \$f'(x)\$ có dấu âm trước \$x=-1\$, dấu dương
	trong khoảng \$(-1,0)\$, dấu âm trong khoảng \$(0,2)\$ và dấu dương sau
	\$x=2\$. Do đó, \$f(x)\$ đạt giá trị cực đại tại \$x=0\$ hoặc \$x=2\$.
	Ta cần kiểm tra giá trị lớn nhất của \$f(x)\$ tại \$x=0\$ và \$x=2\$ để xác định
	giá trị lớn nhất trên đoạn \$[-1, 2]\$.
	Tại $x=0$, ta có $f(0) = 1$.
	Tại $x=2$, ta có $f(2) = 33$.
	Vậy, giá trị lớn nhất của hàm số \$f(x)\$ trên đoạn \$[-1, 2]\$ là \$33\$.
	Vậy đáp án chính xác là (C) 33.
Câu 20. Xét tất cả các số thực dương \$a\$ và \$b\$ thỏa mãn \$\log	Ta có:
$_{\{2\}}$ a= $\log _{\{8\}}(a b)$ \$. Mệnh đề nào dưới đây đúng?	$\log_{2[f_0]} a = \log_{8[f_0]} (ab)$
A. $a=b^{2}$.	$\Leftrightarrow \log_{2}[f_0] = 3\log_{2}[f_0](ab)$
B. $a^{3}=b$.	$\Leftrightarrow \log_{2[f_0]} a = 3(\log_{2[f_0]} a + \log_{2[f_0]} b)$
C. \$a=b\$.	$\Leftrightarrow \log_2[f_0] a = 3\log_2[f_0] a + 3\log_2[f_0] b$
D. $a^{2}=b$.	$\Leftrightarrow -2\log_2[f_0]a = 3\log_2[f_0]b$
	$\Leftrightarrow \log_2[f_0](a^{(-2)}) = \log_2[f_0](b^3)$
	\Leftrightarrow a^(-2)=b^3
	\Leftrightarrow b^(-2/3)=a
	Vậy, a và b thỏa mãn $\log_2[6]$ a= $\log_8[6]$ (ab) khi và chỉ khi a = b^(-2/3).
	Xét từng đáp án:
	A. $a=b^2$: Không đúng vì nếu $a=b^2$ thì
	$\log_{8[f_0]}(ab) = \log_{8[f_0]}(b^3) = 3\log_{8[f_0]}b \neq \log_{2[f_0]}a.$

	B. a^3=b: Không đúng vì nếu a^3=b thì
	$\log_{8[f_0]}(ab) = \log_{8[f_0]}(a^4) = 4\log_{8[f_0]}a \neq \log_{2[f_0]}a$.
	C. a=b: Không đúng vì nếu a=b thì
	$\log_{8[f_0]}(ab) = \log_{8[f_0]}(a^2) = 2\log_{8[f_0]}a \neq \log_{2[f_0]}a$.
	D. $a^2=b$: Đúng vì khi đó, $b^{-2/3}=a=a^{-2}=b^{-4/3} \Leftrightarrow b^2=a^3$.
	Vậy đáp án là D.
Câu 21. Tập nghiệm của bất phương trình 5 [^] (x-1)≥5 [^] (x [^] 2-x-9)	Để giải bất phương trình này, ta chia thành 2 trường hợp:
là	Trường hợp 1: \$x\leq -2\$
A. [-2;4]	Khi đó, ta có:
B. [-4;2].	$5^{x-1} \ge 5^{x-2-x-9} \ \text{Leftrightarrow} \ \frac{1}{5} \ge 5^{x^2-2x-9}$
C. (-∞;-2]∪[4;+∞)	10}\$
D.(-∞;-4]U[[2;+∞)	\$\Leftrightarrow \log_5 \frac{1}{5}\leq x^2-2x-10\$
	\$\Leftrightarrow x^2-2x-10\leq -1\$
	\$\Leftrightarrow (x-1)^2\leq 11\$
	$\Lambda = \frac{11}{11} + 1 \leq x \leq \sqrt{11} + 1$
	Vì \$x\leq -2\$ nên ta chỉ xét \$x\in [-\sqrt{11}+1;-2]\$.
	Trường hợp 2: \$x\geq 4\$
	Khi đó, ta có:
	$5^{x-1} \geq 5^{x-2-x-9} \left \frac{5}{x^2-x-10} \right $
	\$\Leftrightarrow x^2-x-10\leq -1\$
	\$\Leftrightarrow (x-4)(x+3)\leq 0\$

\$\Leftrightarrow -3\leq x\leq 4\$

 $\label{eq:continuous} \begin{tack} Vi $x \neq 4$ nen tachi xet $x \in [4; \sqrt{11}+1]$. \end{tack}$

Vậy, tập nghiệm của bất phương trình là $[-\sqrt{11}+1;-2] \subset [4; \sqrt{11}+1]$.

Vậy, đáp án chính xác là textbf(D) \$ (-\infty;-4] \cup [2;+ ∞)\$.

Câu 22. Cho hình trụ có bán kính đáy bằng 3. Biết rằng khi cắt hình trụ đã cho bởi một mặt phẳng qua trục, thiết diện thu được là một hình vuông. Diện tích xung quanh của hình trụ đã cho bằng A. \$18 \pi\$.

B. \$36 \pi\$.

C. \$54 \pi\$.

D. \$27 \pi\$.

Gọi hình trụ đã cho là \$ABCDEF\$ với \$ABCD\$ là hình vuông cạnh \$2a\$, \$O\$ là tâm hình vuông \$ABCD\$ và \$M\$ là trung điểm của \$AB\$. Khi cắt hình trụ bởi một mặt phẳng qua trục \$OA\$, ta thu được một hình vuông nên mặt phẳng đó cắt đường thẳng \$BF\$ ở trung điểm \$N\$ của \$BF\$. Ta có \$BN = $NF = \sqrt{2}a$.

[insert anh hình tru]

Giả sử hình tru có chiều cao \$h\$ và diên tích xung quanh \$S\$. Khi cắt hình tru bằng một mặt phẳng qua trục của nó, ta thu được một hình vuông có cạnh bằng bán kính đáy của hình tru là 3. Vì đường chéo của hình vuông bằng đường kính đáy hình trụ, nên ta có \$d=6\$. Đường cao của hình vuông bằng đường cao của hình trụ, nên ta có $h=\sqrt{d^2+3^2}=3\sqrt{2}$. Diên tích xung quanh của hình tru là \$S=2\pi rh=2\pi \cdot 3 \cdot $3\sqrt{2}=18\sqrt{2}\pi{2}$ Vậy, đáp án là A. \$18\pi\$. Câu 23. Cho hàm số f(x) có bảng biến thiên như sau: Ta có f(x) có biểu thức đạo hàm là f(x), do đó ta có thể suy ra được biểu thức của \$f(x)\$. Theo bảng biến thiên, \$f'(x)>0\$ trên \$(-\infty, 2)\$ và $x - \inf 2 3 + \inf y$ f'(x)<0\$ trên $(2,+\infty)$ \$. Do đó, f(x)\$ là hàm đồng biến tăng trên $(-\infty)$ \$. f'(x) + 0 - 0 + $\inf y$, 2)\$ và đồng biến giảm trên $(2,+\inf y)$ \$. Khi đó, hàm f(x)\$ đạt giá $f(x) - \inf 10 + \inf y$ Số nghiệm thực của phương trình 3f(x)-2=0 là trị cực đại tại x=2 với f(2)=1. A. 2. Vì vậy, phương trình 3f(x)-2=0\$ tương đương với $f(x)=\frac{2}{3}$ \$. Ta chỉ cần tìm xem đường thẳng \$y=\frac{2}{3}\$ cắt đồ thị của hàm số B. 0. C. 3. y=f(x) bao nhiêu lần trên đoạn $(-\inf y, +\inf y)$. Đồ thị của hàm số y=f(x) có cực đại tại x=2 với f(2)=1, và khi xD. 1. tiến tới \$-\infty\$ hay \$+\infty\$ thì \$y=f(x)\$ tiến tới \$-\infty\$, nên đồ thi của hàm số \$y=f(x)\$ sẽ có dạng như sau:

	Đường thẳng \$y=\frac{2}{3}\$ cắt đồ thị của hàm số \$y=f(x)\$ đúng ở 2 điểm
	như hình vẽ, nên số nghiệm thực của phương trình 3f(x)-2=0 là
	$\boldsymbol{\Lambda} = \boldsymbol{\Lambda} $
Câu 24. Họ tất cả các nguyên hàm của hàm số	Để tìm các nguyên hàm của hàm số \$f(x)=\frac{x+2}{x-1}\$ trên khoảng
$f(x)=\frac{x+2}{x-1}$ trên khoảng $(1;+\frac{x+2}{x-1})$ là:	\$(1,+\infty)\$, ta có thể sử dụng tính chất: một hàm số có vô số nguyên hàm
A. $x+3 \ln (x-1)+C$.	trên một khoảng nếu và chỉ nếu nó không phải là hàm số hằng. Do đó, ta sẽ
B. $x-3 \ln (x-1)+C$.	tính đạo hàm của các đáp án và xem đó có phải là hàm số hằng hay không.
C. $x-\frac{3}{(x-1)^{2}}+C$.	a) $F(x) = x + 3 \ln(x-1) + C$
D. $x+\frac{3}{(x-1)^{2}}+C$.	$F'(x) = 1 + \frac{3}{x-1} = \frac{x-1+3}{x-1} = \frac{x+2}{x-1} = f(x)$
	Vậy \$F(x)\$ là một nguyên hàm của \$f(x)\$.
	b) $F(x) = x - 3 \ln(x-1) + C$
	$F'(x) = 1 - \frac{3}{x-1} = \frac{x-1-3}{x-1} = \frac{x-4}{x-1} \leq f(x)$
	Vậy \$F(x)\$ không phải là nguyên hàm của \$f(x)\$.
	c) $F(x) = x - \frac{3}{(x-1)^2} + C$
	$F'(x) = 1 + \frac{6}{(x-1)^3} = \frac{(x-1)^3 + 6}{(x-1)^3} \leq f(x)$
	Vậy \$F(x)\$ không phải là nguyên hàm của \$f(x)\$.
	d) $F(x) = x + \frac{3}{(x-1)^2} + C$
	$F'(x) = 1 - \frac{6}{(x-1)^3} = \frac{(x-1)^3 - 6}{(x-1)^3} $
	Vậy \$F(x)\$ không phải là nguyên hàm của \$f(x)\$.

<center>

	Vậy đáp án đúng là: $\mathrm{hom}(A) \ x+3 \ln(x-1)+C$.
Câu 25. Để dự báo dân số của một quốc gia, người ta sử dụng	Để tính dân số Việt Nam năm 2035, ta cần tìm số dân S khi đã trôi qua 18
công thức S=Ae^{nr}; trong đó A là dân số của năm lấy làm mốc	năm (2017 - 2035).
tích, S là dân số sau n năm, r là tỉ lệ tăng dân số hàng năm. Năm	Ta có công thức: $S = Ae^{nr}$
2017, dân số Việt Nam là 93.671.600 người (Tổng cục Thống kê,	Với A = $93.671.600$ (dân số năm 2017), r = 0.81% = 0.0081 , n = 18 .
Niên giám thống kê 2017, Nhà xuất bản Thống kê, Tr. 79). Giả	$S = 93.671.600 * e^{0.0081 * 18} = 108.311.057,97 (số người)$
sử tỉ lệ tăng dân số hàng năm không đổi là 0,81%, dự báo dân số	Vậy dân số Việt Nam năm 2035 dự báo là khoảng 108.311.100 người. Vì
Việt Nam năm 2035 là bao nhiều người (kết quả làm tròn đến chữ	yêu cầu làm tròn đến hàng trăm nên đáp án là:
số hàng trăm)?	D. 108.311.100
A. 109.256.100.	
B. 108.374.700.	
C. 107.500.500.	
D. 108.311.100	
Câu 26. Cho khối lăng trụ đứng \$A B C D \cdot A^{\prime}	
B^{\prime} C^{\prime} D^{\prime}\$ có đáy là hình thoi cạnh	
\$a, B D=\sqrt{3} a\$ và \$A A^{\prime}=4 a(\mathrm{minh}\$	
họa như hình bên). Thể tích của khối lăng trụ đã cho bằng	
A. \$2 \sqrt{3} a^{3}\$.	
B. \$4 \sqrt{3} a^{3}\$.	
C. $\frac{2 \sqrt{3} a^{3}}{3}$.	
D. $\frac{4 \sqrt{3}}{3}$.	

Câu 27. Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số $y=(5x^2-4x-1)/(x^2-1)$ là

A. 0.

B. 1.

C. 2.

D. 3

Để tìm số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số, ta cần phân tích hàm số và xem xét hành vi của nó ở các giới hạn.

Đầu tiên, ta phân tích hàm số bằng cách thực hiện phép chia đa thức:

$$5+4$$
 $+1$ -4 -1 x 2 -1 5 x 2 -4 x -1 $=$

Nhận thấy rằng hàm số có hai điểm phân thức là x = -1 và x = 1, và các giá trị của hàm số khi x tiến đến ϕ infty là 5.

Do đó, ta có hai tiệm cận đứng là x = -1 và x = 1, và một tiệm cận ngang là y = 5 (khi x tiến đến $\phi \in \mathbb{N}$). Vậy đáp án là $\phi \in \mathbb{N}$

Câu 28. Cho hàm số $y=a x^{3}+3 x+d(a, d \in \mathbb{R})$ có đồ thị như hình sau. Mệnh đề nào dưới đây đúng?

A. \$a>0; d>0\$.

B. \$a<0; d>0\$.

C. \$a>0; d<0\$.

D. \$a<0; d<0\$.

Nhìn vào đồ thị, ta thấy hàm số có dạng "lưỡng độ" và tiếp xúc với trục hoành tại gốc tọa độ (0,0). Điều này cho thấy hệ số a phải khác 0. Nếu a>0 thì hàm số sẽ có đồ thị chạy từ phía tứ bác tử I (ở cận dưới bên trái) đến phía tứ bác tử III (ở cận trên bên phải), nhưng đồng thời cũng sẽ tiếp xúc với trục hoành ở (0,0) và có đỉnh ở trên trục tung (điều này không đúng với đồ thị đã cho). Do đó, ta có a<0.

Tiếp đó, xét về hệ số d, ta thấy hàm số cắt trục tung tại điểm (0,-1). Nếu d>0, đồ thị sẽ nằm dưới trục tung. Tuy nhiên, đồ thị đã cho có phần nằm trên trục tung (tại điểm (0,-1)). Do đó, ta có d<0.

Vậy mệnh đề đúng là: a<0; d<0. Đáp án chính xác là (D).

Câu 29. Diện tích phần hình phẳng được gạch chép trong hình	Để tính diện tích phần hình phẳng được gạch chép trong hình bên, ta cần tính
bên bằng	diện tích của hình vuông \$ABCD\$ và cấp số nhân tam giác \$ADF\$. Khi đó,
A. $\int (-1)^2 (-2x^2+2x+4) dx$	diện tích phần hình phẳng được gạch chép bằng diện tích của hình vuông
B. $\int (-1)^2(2x^2-2x+4)dx$	\$ABCD\$ trừ đi diện tích của tam giác \$ADF\$. Ta có:
C. $\int (-1)^2(-2x^2-2x+4)dx$	Đường chéo \$AC\$ của hình vuông \$ABCD\$ là cạnh hình vuông cạnh
D. $\int \int (-1)^2(2x^2+2x-4)dx$	\$4\$, do đó \$AC=4\sqrt{2}\$ và diện tích hình vuông \$ABCD\$ là
	\$(4\sqrt{2})^2=32\$.
	Đường cao \$AH\$ của tam giác \$ADF\$ là cạnh nhỏ nhất của cấp số
	nhân \$\triangle ADF\$ và bằng \$1\$, vì \$AD=2\$ và \$\angle DAF=60^\circ\$.
	$\label{eq:continuous_approx} \begin{array}{cccccccccccccccccccccccccccccccccccc$
	AH=\frac{2}{\sqrt{3}}-1\$. Khi đó, diện tích tam giác \$ADF\$ bằng
	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:
	$\label{eq:continuous} $$ \frac{2}{\sqrt{3}}=2+\frac{4}{\sqrt{3}}. Do dó, diện tích phần hình}$$
	phẳng được gạch chép trong hình bằng: $\$32-2-\frac{4}{\sqrt{3}}=30-$
	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:
	2x+4), dx \$.
Câu 30. Cho hai số phức z_1=-3+i và z_2=1-i. Phần ảo của số	Ta có: $z_1 + \text{verline}\{z_2\} = (-3+i) + (1+i) = -2 + 2i \text{ Phần ảo của } z_1 + (-3+i) + (-3$
phức z_1+\overline{z}_2 bằng	\overline{z_2} là 2. Vậy đáp án là C. 2.
A2.	
B. 2i.	

C. 2.	
D2i.	
Câu 31. Trên mặt phẳng tọa độ, điểm biểu diễn số phức	Ta có $z = (1 + 2i)^2 = 1 + 4i + 4i^2 = -3 + 4i$. Vậy điểm biểu diễn số phức
z=(1+2i)^2 là điểm nào dưới đây?	\$z\$ là \$P(-3, 4)\$ (đáp án A).
A. P(-3;4)	
B. Q(5;4)	
C. N(4;-3)	
D. M(4;5)	
Câu 32. Trong không gian \$O x y z\$, cho các vecto \$\vec{a}=(1	Ta có: \begin{align*}
; 0 ; 3)\$ và $\langle b = (-2 ; 2 ; 5)$ \$. Tích vô hướng $\langle a \rangle$	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:
$\cdot(\vec{a}+\vec{b})$ \$ bằng	$ (1;0;3).(1-2;0+2;3+5) \setminus \&= (1;0;3).(-1;2;8) \setminus \&= 1.(-1) + 0.(2) + 3.(8) \setminus \&= (1;0;3).(-1;2;8) \setminus \&= (1;0;3).(-1;2;3) \setminus \&= (1;0;3).$
A. 25.	23. \end{align*} Vậy đáp án đúng là B. 23.
B. 23.	
C. 27.	
D. 29.	
Câu 33. Trong không gian Oxyz, cho mặt cầu (S) có tâm là điểm	Ta có đường thẳng qua $I(0;0;-3)$ và $M(4;0;0)$ là: $\begin{cases} x = 4t \setminus y = 0 \end{cases}$
I(0;0;-3) và đi qua điểm M(4;0;0). Phương trình của (S) là	\ z = -3t \end{cases} Vì (S) qua M nên (S) cách điểm M một khoảng bằng
A. $x^2+y^2+(z+3)^2=25$	bán kính R, suy ra phương trình của (S) là: $\left\{\frac{1}{2} \left(x - 4\right)^2 + y^2\right\}$
B. $x^2+y^2+(z+3)^2=5$	$+ z^2 = R^2 \setminus Rightarrow \& (4t-4)^2 + (-3t)^2 = R^2 \setminus Rightarrow \&$
C. $x^2+y^2+(z-3)^2=25$	$16t^2 - 16t + 9t^2 = R^2 \setminus Rightarrow \& 25t^2 - 16t = R^2 \setminus end\{align^*\}$
D. $x^2+y^2+(z-3)^2=5$	

	Ta tính tại điểm M: $R^2 = (4-0)^2 + (0-0)^2 + (0+3)^2 = 25$ Vậy phương
	trình của (S) là \$x^2+y^2+(z+3)^2=25\$ (đáp án A).
Câu 34. Trong không gian \$O x y z\$, mặt phẳng đi qua điểm	Đường thẳng \$a\$ có vector chỉ phương là \$\overrightarrow{v}=(2;2;1)\$.
\$M(1; 1;-1)\$ và vuông góc với đường thẳng \$\Delta:	Mặt phẳng vuông góc với đường thẳng \$a\$ tại \$M\$ cũng vuông góc với
$\label{eq:frac} $$ \frac{x+1}{2}=\frac{y-2}{2}=\frac{z-1}{1}\$ có phương trình	vector chỉ phương của đường thẳng đó, do đó vector pháp tuyến của mặt
là	phẳng \$\overrightarrow{n}=(2;2;1)\$. Phương trình mặt phẳng tìm được
A. \$2 x+2 y+z+3=0\$.	bằng cách sử dụng định nghĩa của phương trình mặt phẳng:
B. \$x-2 y-z=0\$.	\$\$(2x+2y+z)+d=0,\$\$ trong đó \$d\$ là hằng số, còn lại thì thay \$x=1, y=1,
C. \$2 x+2 y+z-3=0\$.	z=-1\$ ta có: \$\$2+2-1+d=0\Leftrightarrow d=-3.\$\$ Vậy phương trình mặt
D. \$x-2 y-z-2=0\$.	phẳng là \$2x+2y+z-3=0\$, đáp án là \textbf{C}
Câu 35. Trong không gian \$O x y z\$, vectơ nào dưới đây là một	Ta có vecto chỉ phương của đường thẳng là
vecto chỉ phương của đường thẳng đi qua hai điểm \$M(2; 3;-1)\$	$\label{lem:lem:nonequality} $\operatorname{N}-\operatorname{N}_{n}=(2;2;4)$.$
và \$N(4;5;3) ?\$	Từ đó, ta có các vectơ dưới đây: \$\$\begin{aligned}
A. $\sqrt{u}_{4}=(1;1;1)$.	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:
B. $\sqrt{u}_{3}=(1;1;2)$.	$=(1;1;2)\setminus \text{text}\{(u]_2\setminus \{1\}\}$
C. $\sqrt{u}_{1}=(3;4;1)$.	&= $\left dfrac{1}{4}\right $ overrightarrow{MN}=
D. $\sqrt{2}=(3;4;2)$.	$(\frac{1}{2};\frac{1}{2};1)\ \text{(u}_3\text{(u}_3\text{(})} =$
	$\label{lem:lem:matter} $$ \left(1\right{\left(sqrt\{6\}\right)}\circ(MN)$$$
	$= (\left\{1\right\}{\left\{sqrt\{6\}\right\};\left\{dfrac\{1\}\left\{sqrt\{6\}\right\};\left\{dfrac\{2\}\left\{sqrt\{6\}\right\}\right\}\right\}}$
	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:
	$= (\dfrac{2}{3};\dfrac{2}{3};\dfrac{4}{3}) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$

Câu 36. Chọn ngẫu nhiên một số từ tập các số tự nhiên có ba chữ số đôi một khác nhau. Xác suất để số được chọn có tổng các chữ số là chẵn bằng

A. 41/81.

B. 4/9.

C. 1/2.

D. 16/81

Vậy đáp án đúng là (B) (u_3)=(1;1;2).

Để số có tổng các chữ số là chẵn thì có hai trường hợp xảy ra:

Tổng các chữ số là chẵn.

Tổng các chữ số là lẻ.

Do số đó có ba chữ số, ta có \$9\times9\times8=648\$ cách chọn.

Trường hợp 1: Tổng các chữ số là chẵn

Số chọn có dạng ABC, trong đó A, B, C đôi một khác nhau. Có 4 trường hợp xảy ra:

A, B, C đều chẵn. Có \$4\times5\times4=80\$ cách chọn.

A, B, C đều lẻ. Có \$5\times4\times4=80\$ cách chọn.

Hai chữ số lẻ, một chữ số chẵn. Có \$5\times4\times5=100\$ cách chọn.

Hai chữ số chẵn, một chữ số lẻ. Có \$4\times5\times5=100\$ cách chọn.

Trường hợp 2: Tổng các chữ số là lẻ

Có 4 trường hợp xảy ra:

A, B, C đều chẵn. Có \$4\times5\times4=80\$ cách chọn.

A, B, C đều lẻ. Có \$5\times4\times4=80\$ cách chọn.

Hai chữ số lẻ, một chữ số chẵn. Có \$5\times4\times5=100\$ cách chon.

Hai chữ số chẵn, một chữ số lẻ. Có \$4\times5\times5=100\$ cách chon.

Vậy có tất cả \$2\times80+2\times100=360\$ số có tổng các chữ số là chẵn. Xác suất để số được chon có tổng các chữ số là chẵn là $\frac{360}{648} = \frac{20}{27}$ \$. Vậy đáp án chính xác là \mathbb{A} (A)}\$ \$41/81\$. Câu 37. Cho hình chóp \$S . A B C D\$ có đáy là hình thang, \$A Để tính khoảng cách giữa hai đường thẳng SB và DM, ta cần tìm được hai điểm A' và B' trên đường thẳng DM và SB lần lượt, sao cho A'B' vuông góc B=2 a, A D=D C=C B=a, S A\$ vuông góc với mặt phẳng đáy và \$\$ A=3 a\$. Gọi \$M\$ là trung điểm \$A B\$. Khoảng cách giữa hai với cả hai đường thẳng này. đường thẳng \$S B\$ và \$D M\$ bằng Vì SM vuông góc với mặt đáy SABCD và SA vuông góc với mặt phẳng đáy A. $\frac{3 a}{4}$ nên ta có: \$\angle SMA=90^{\circ}\$ \$\angle SMC=\angle SMD=\angle B. $\frac{3 a}{2}$. SMA=90^{\circ}\$ C. $\frac{3 \sqrt{13}}{a}{13}$. Vậy ta có \$SM\perp (ABCD)\$. Mặt khác, ta có \$SM\perp SB\$ (SB là cạnh bên của hình chóp) nên \$SB\parallel (ABCD)\$. D. \$\frac{6 \sqrt{13} a}{13}\$. Suy ra \$A'B'\parallel SB\parallel (ABCD)\$. Đồng thời \$A'B'\perp DM\$ (vì \$DM\$ vuông góc với mặt đáy \$ABCD\$) nên \$A'B'\$ là đường vuông góc chung của hai đường thẳng \$SB\$ và \$DM\$. Gọi \$M'\$ là điểm đối xứng với \$M\$ qua đường thẳng \$SD\$. Ta có \$SM'=SM=MA'\$ nên tam giác \$SMA'\$ cân tại \$M\$. Vì \$AD=DC\$ nên ta có \$M'D\parallel AC\$ và \$M'C\parallel AD\$. Khi đó, \$A'DM'C\$ là hình bình hành, do đó \$A'C\parallel DM'\$ và \$DM'=A'C=\frac{3}{2}a\$. Tiếp theo, ta cần tìm độ dài đoạn thẳng \$A'B'\$. Gọi \$H\$ là giao điểm của \$DM\$ và \$SA\$. Ta có \$MH=\frac{1}{2}AB=a\$ và \$SH=SA-MH=2a\$.

	Tam giác \$SAH\$ vuông tại \$H\$ nên \$A'B'=AB\cdot
	$\label{eq:sh} $\{SA\}=2a \cdot \frac{2a}{3a}=\frac{4}{3}a$.$
	Khoảng cách giữa hai đường thẳng \$SB\$ và \$DM\$ bằng độ dài đoạn thẳng
	$A'B'$ nên đáp án là $\widehat{A} $ (A)\ $\frac{3a}{4}$.
Câu 38. Cho hàm số \$f(x)\$ có \$f(3)=3\$ và	Đặt $u = x + 1 - \sqrt{(x + 1)}$, ta có $u^2 = x + 1 - x - 1 + 2\sqrt{(x + 1)} = 2\sqrt{(x + 1)}$.
$f^{\text{me}}(x)=\frac{x}{x+1-\sqrt{x+1}}, \text{ do } do$	Khi đó, ta có: $f^{(x)} = x/(x+1 - \sqrt{(x+1)}) = 1 + 1/(u-1) - 1/\sqrt{(x+1)}$ Do đó,
$\int \int_{3}^{8} f(x) \operatorname{d} x \dot{d} x$	ta tính được $f(x) = x + \ln u - 1 - 2\sqrt{(x + 1)} + C$. Từ $f(3) = 3$, ta có $C = -6$ -
A. 7.	ln2. Suy ra $f(x) = x + \ln x + 1 - 2\sqrt{(x + 1)} - 2\sqrt{(x + 1)} - 6 - \ln 2 \text{ Vây } \int_{-3}^{3} 8$
B. \$\frac{197}{6}\$.	$f(x)dx = [(x^2/2) + x \ln x + 1 - 2\sqrt{(x + 1)} - 4\sqrt{(x + 1)} - 6x - x \ln 2]_3^8 =$
C. \$\frac{29}{2}\$.	$(64/2 + 8 \ln 3 - 2\sqrt{10} - 12\sqrt{10} - 48 - 8 \ln 2) - (9/2 + 3 \ln -2 + 2\sqrt{2} - 6\sqrt{2} - 18)$
D. \$\frac{181}{6}\$.	- 3 ln2) = 181/6. Vậy đáp án là D.
	Đặt $u = x + 1 - \sqrt{(x+1)}$, ta có
	$du/dx = 1 - 1/2(x+1)^0.5.$
	Ta có f'(x) = $x/(x+1-\sqrt{(x+1)}) = 1 + (x-1)/(x+1-\sqrt{(x+1)})$
	$= 1 + (x+1-2)/(x+1-\sqrt{(x+1)})$
	$= 1 + [(x+1-\sqrt{(x+1)}) - (\sqrt{(x+1)-1})]/(x+1-\sqrt{(x+1)})$
	$= 1 + [u - (1-u)]/u = 2u/(x+1-\sqrt{(x+1)}).$
	Do đó, $f(x) = 2u$, hay $u = f(x)/2$.
	Vậy,
	$\int_{3^8} f(x) dx = \int_{3^8} f'(x)/(2u) du = 1/2 \int_{3^8} du/u = 1/2 \ln u _{3^8} = 1/2 \ln u$
	ln(15/7).
	Vậy, đáp án là A. 7.

Câu 39. Cho hàm số f(x)=(mx-4)/(x-m) (m là tham số thực). Có

bao nhiều giá trị nguyên của m để hàm số đã cho đồng biến trên

khoảng $(0;+\infty)$?

- A. 5.
- B. 4.
- C. 3.
- D. 2.

Ta có:

 $f'(x) = m(x-m) - (mx-4) / (x-m)^2$

 $= (m^2 - 4) / (x-m)^2$

Hàm số f(x) đồng biến trên khoảng $(0; +\infty)$ khi và chỉ khi f'(x) >= 0 trên khoảng $(0; +\infty)$.

f'(x) >= 0 khi và chỉ khi $(m^2 - 4) / (x-m)^2 >= 0$.

Do đó, ta có m² - 4 >= 0 (vì (x-m)² >= 0 với mọi x).

Mặt khác, hàm số f(x) không xác định tại x = m, do đó $m \neq 0$.

Từ đó, ta có:

Khi m = 2 hoặc m = -2, f(x) là hàm số đồng biến trên khoảng $(0; +\infty)$.

Khi m > 2 hoặc m < -2, f(x) không đồng biến trên khoảng $(0; +\infty)$.

Với m=2 hoặc m=-2, hàm số f(x) có dạng f(x)=(2x-4)/(x-2) hoặc f(x)=(-2x-4)/(x+2), tương ứng.

Để f(x) đồng biến trên khoảng $(0; +\infty)$, ta cần xác định trị số của hàm số. Khi đó, ta giải hệ phương trình sau:

$$f'(x) = 0$$

$$\Leftrightarrow$$
 (m² - 4) / (x-m)² = 0

$$\Leftrightarrow$$
 m² - 4 = 0

$$\Longleftrightarrow m=\pm\,2$$

Khi m = 2, ta có f(x) = (2x-4)/(x-2) và xét giá trị của f(x) tại x = 3, 4, 5, ta có:

$$f(3) = -2$$
, $f(4) = 4$, $f(5) = 6$

Vậy, khi m = 2, hàm số f(x) đồng biến trên khoảng $(0; +\infty)$ khi và chỉ khi m = 2 và có 1 giá trị nguyên của m làm cho điều kiện này đúng. Tương tự, khi m = -2, ta cũng tìm được 1 giá trị nguyên của m làm cho hàm số f(x) đồng biến trên khoảng $(0; +\infty)$. Vậy, đáp án đúng là B. 4

Câu 40. Cho hình nón có chiều cao bằng \$2 \sqrt{5}\$. Mặt phẳng đi qua đỉnh của hình nón và cắt hình nón theo thiết diện là tam giác đều có diện tích bằng \$9 \sqrt{3}\$. Thể tích của khối nón được giới hạn bởi hình nón đã cho bằng

A. $\frac{32 \sqrt{5} \pi{5}}{3}$

B. \$32 \pi\$.

C. \$32 \sqrt{5} \pi\$

D. \$96 \pi\$.

Giả sử mặt phẳng cắt hình nón theo đường thẳng chứa canh đáy tam giác đều là \$EF\$ như hình vẽ dưới đây: \begin{align*} \Rightarrow $\frac{EF}{OB}=\frac{3\sqrt{3}}{4R} \end{align*} v\'{o}i OB và R lần$ lượt là bán kính đáy và bán kính mặt nón. Ta có: \begin{align*} $OB^2 = OA^2 + AB^2 =$ (2\sqrt{5})^2+(3R)^2=20+9R^2 \end{align*} Do dó, ta có: \begin{align*} $\label{eq:conditional} $$ \frac{EF^2}{R^2}=\left(\frac{EF}{OB}\right)^2\cdot Cdot\frac{OB^2}{R^2}$$ = $\frac{27}{5+9(\frac{EF}{OB})^2} \end{align*}$ Như vậy, ta có phương $trinh: \begin{align*} \frac{3 \sqrt{3}}{4R} =$ \frac{EF}{OB}\Leftrightarrow \frac{EF}{OB}=\ $frac{3 \cdot qrt{3}}{4R} \cdot dalign* Và: \cdot begin{align*} \cdot frac{EF^2}{R^2} =$ \frac{9}{5+9(\frac{EF}{OB})^2} \end{align*} Kết hợp hai phương trình \begin{align*} trên. ta được: $\frac{EF^2}{R^2}=\frac{9}{5+9(\frac{3}\sqrt{3})^2}\left(4R\right)^2}\left(4R\right)^2$ $3R^2-27\sqrt{3}R+45=0 \end{align*} Do $R>0$, ta có: \egin{align*}$ $R = \frac{9\sqrt{3}+\sqrt{243-540}}{6} = \frac{3\sqrt{15}}{2} \end{align*}$

	Suy ra diện tích đáy hình nón: \begin{align*} S_{\text{đáy}}}=\pi R^2=45\pi
	\end{align*} Vậy thể tích của khối nón là: \begin{align*}
	$V = \frac{1}{3}Sh = \frac{1}{3}\cdot \frac{45\pi \cdot 2\sqrt{5}}{3}\cdot \frac{1}{3}\cdot \frac{45\pi \cdot 2\sqrt{5}}{30\cdot \sqrt{10}\cdot \sqrt{10}}$
	\end{align*} Vậy đáp án chính xác là \$\textbf{(A) }
	$\frac{32}{9}{5}\pi{5}.$
Câu 41. Cho \$x, y\$ là các số thực dương thoả mãn \$\log _{9}	Bài toán yêu cầu tìm giá trị của \$x/y\$. Ta bắt đầu bằng cách giải hệ phương
$x=\log_{6} y=\log_{4}(2 + y)$. Giá trị của $\frac{x}{y}$	trình
bằng?	$$\ s\ _{cases} \leq \ \log_{6y} \ g_{9x}\ _{cases} $$
A. 2.	Từ đó suy ra được
B. \$\frac{1}{2}\$.	$\$ \log_6y=\log_4(2x+y)\Leftrightarrow y^2=2x+y.\\$
$C.$\log_{2}\left(\frac{3}{2}\right).$	Thay $z=y/\sqrt{2}$ và đặt $a=x/z^2$, từ $\log_9x=\log_6y$ suy ra
D. \$\log _{\frac{3}{2}} 2\$.	\$z=3a^2\$. Khi đó phương trình trở thành
	$$z^2=2a^2z+z^2 \Leftrightarrow a=\frac{1}{2}.$$
	Vậy $x=y/2$ và $x/y=1/2$. Đáp án đúng là $\mathrm{hof}\{(B)\}$
Câu 42. Gọi S là tập hợp tất cả các giá trị thực của tham số m sao	Vì \$f(x)= x^3-3x+m \$ là một hàm số lẻ nên nó đối xứng qua trục tung. Điều
cho giá trị lớn nhất của hàm số $f(x)= x^3-3x+m $ trên đoạn [0;3]	này cho phép ta chỉ cần tìm \$f(x)\$ trên đoạn \$[0;3]\$, vì giá trị nhỏ hơn \$0\$
bằng 16. Tổng tất cả các phần tử của S bằng	sẽ tương ứng với giá trị đối của giá trị lớn hơn \$0\$.
A16.	Để tìm giá trị lớn nhất của \$f(x)\$ trên đoạn \$[0;3]\$, ta cần phải xét trường
B. 16.	hợp giá trị của \$f(x)\$ trên từng đoạn con của \$[0;3]\$. Ta xét trường hợp
C12.	\$m\geq 0\$ và \$m<0\$.
D2.	

Nếu \$m\geq 0\$, khi đó \$f(x)=x^3-3x+m\$, và để tìm giá trị lớn nhất của \$f(x)\$ trên đoạn \$[0;3]\$, ta cần phải xét giá trị của \$f(x)\$ trên các điểm \$x=0, x=3\$ và \$x\$ là nghiệm của đạo hàm của \$f(x)\$ trên đoạn \$(0;3)\$. Ta có: \$\$f'(x) = 3x^2-3\$\$ Suy ra, \$f'(x)\$ có hai nghiệm là \$x=1\$ và \$x=-1\$. Ta cần kiểm tra giá trị của \$f(x)\$ tại các điểm \$x=0, 1, -1\$ và \$3\$: \begin{align*} f(0) &= m \ f(1) &= m-2 \ f(-1) &= m+2 \ f(3) &= m+18 \end{align*} Để \$f(x)\$ đạt giá trị lớn nhất bằng \$16\$, ta cần có \$f(1) = m-2 = 16\$, hay \$m=18\$. Vậy, nếu \$m\geq 0\$ thì \$m=18\$.

Nếu \$m<0\$, khi đó \$f(x)=3x-m-x^3\$, và để tìm giá trị lớn nhất của \$f(x)\$ trên đoạn \$[0;3]\$, ta cần phải xét giá trị của \$f(x)\$ trên các điểm \$x=0, x=3\$ và \$x\$ là nghiệm của đạo hàm của \$f(x)\$ trên đoạn \$(0;3)\$. Ta có: \$\$f'(x) = $-3x^2+3$ \$ Suy ra, \$f'(x)\$ có hai nghiệm là \$x=1\$ và \$x=-1\$. Ta cần kiểm tra giá trị của \$f(x)\$ tại các điểm \$x=0, 1, -1\$ và \$3\$: \begin{align*} f(0) &= -m \ f(1) &= $2-m \setminus f(-1)$ &= $-2-m \setminus f(3)$ &= $18-m \setminus f(3)$ &= 1

Ta có $f(x)=|x^3-3x+m|$. Với $m \leq -2$, ta có f(0)=|m|, f(1)=|m-2|, f(2)=|m+4| và f(3)=|m+18|. Khi đó, giá trị lớn nhất của hàm số trên đoạn [0;3] là f(2)=|m+4|. Nếu |m+4|=16, ta có m=12 hoặc m=-20. Với -2<|m-12|, ta có f(0)=|m|, f(1)=|m-2|, f(2)=|m+4| và f(3)=|m+18|. Nếu |m+4|<16, giá trị lớn nhất của hàm số trên đoạn

\$[0;3]\$ là \$f(3)=|m+18|\$. Vì vậy, điều kiện \$|m+4|=16\$ tương đương với \$m=-20\$ hoặc \$m=12\$.

Với m>12, ta có f(0)=m, f(1)=m-2, f(2)=m+4 và f(3)=m+18. Giá trị lớn nhất của hàm số trên đoạn f(0;3] là f(3)=m+18. Vì vậy, nếu m>12, ta không có giá trị nào của m để giá trị lớn nhất của hàm số trên đoạn f(0;3] bằng f(0;3)

Vậy, $S=\{-20,12\}$ \$ và tổng các phần tử của S\$ là -20+12=-8\$, đáp án là $\boldsymbol{C}(D) -2$ \$.

Câu 43. Cho phương trình $\log_{2}^{2}^{2}(2 x)-(m+2)\log_{2} x+m-2=0$ (\$m\$ là tham số thực). Tập hợp tất cả các giá trị của \$m\$ để phương trình đã cho có 2 nghiệm phân biệt thuộc đoạn [1; 2] là

A. \$(1; 2)\$.

B. \$[1; 2]\$.

C. \$[1; 2)\$.

D. $(2 ;+ \inf y)$.

Để phương trình log_2^2 (2x)-(m+2)log_2 x+m-2=0 có hai nghiệm phân biệt, ta cần phải thỏa mãn các điều kiện sau:

Phương trình có nghiệm (x > 0): 2x > 0 => x > 0.

Điều kiện tồn tại logarit tự nhiên: $2x > 0 \Rightarrow x > 0$.

Phương trình có nghiệm (x > 0): $\log_2[f_0]x > 0 \Rightarrow x > 1$.

Phương trình có nghiệm (x > 0): $\log_2^2[f_0](2x) > (m+2)\log[f_0]_2[f_0]x$ - $m+2 \Rightarrow \log_2^2[f_0](2x) - (m+2)\log[f_0]_2[f_0]x + m - 2 > 0 \Rightarrow \log_2^2[f_0](2x) - (m+2)\log[f_0]_2[f_0]x + m - 2 + (m+2) > (m+2) \Rightarrow (\log_2[f_0](2x) - \log_2[f_0]x + m)(\log_2[f_0](2x) + \log_2[f_0]x - m - 4) > m + 2 \Rightarrow (\log_2[f_0]x - m - 4) > m + 2 \Rightarrow (\log_2[f_0]x - m - 4) > m + 2 \Rightarrow (m + 1)(\log_2[f_0]x - m - 2) > m + 2 \Rightarrow (m + 1)(2 - \log_2[f_0]x - m - 2) > m + 2 \Rightarrow (m + 1)(-\log_2[f_0]x - m) > 0 \Rightarrow m < -\log_2[f_0]x, m > -1.$ Vậy ta có các bất phương trình sau:

$1 < x < 2$: $\log_2[f_0]x > 0$, $m < -\log_2[f_0]x$, $m > -1 => -\log_2[f_0]x < m < -1$
$-1 => x > 2^m, x < 2.$

 $x > 2 : log_2[f_0]x > 0, \ m < -log_2[f_0]x, \ m > -1 => m < -log_2[f_0]x < 0$ => $x > 2^m$.

x < 1: $log_2[fo]x < 0 => phương trình không có nghiệm.$

x = 1: phương trình trở thành $log_2[fo]1 = 0 = m$, vô nghiệm.

Vậy tập hợp tất cả các giá trị của m để phương trình đã cho có hai nghiệm phân biệt thuộc đoạn [1;2] là $(-\log_2[f_0]2;-1) = [1;2)$. Vì vậy, đáp án là (C).

Câu 44. Cho hàm số f(x) liên tục trên \mathbb{R} . Biết $\cos 2 x$ là một nguyên hàm của hàm số f(x) e^{x}, họ tất cả các nguyên hàm của hàm số $f^{\text{min}}(x)$ e^{x} là

A. $-\sin 2 x + \cos 2 x + C$

B. $-2 \sin 2 x + \cos 2 x + C$.

C. $-2 \sin 2 x - \cos 2 x + C$.

D. $2 \sin 2 x - \cos 2 x + C$.

Ta có:

 $f(x) = (\cos(2x))' / e^x = -2\sin(2x)/e^x$

Từ đó, nguyên hàm của f'(x) e^x sẽ là $F(x) = -2\cos(2x) + C$, với C là hằng số tùy ý.

Chọn đáp án A: $-\sin^2 x + \cos^2 x + C$ là sai vì sinh ra khi tính đạo hàm sẽ không cho kết quả đúng.

Chọn đáp án B: $-2\sin^2 x + \cos^2 x + C$ thì cũng sai vì ta có:

 $F'(x) = (\cos(2x))' * e^x - 2\sin(2x) * e^x = f(x)e^x - 2\sin(2x) e^x$

Ta thấy rằng không thể rút e^x ra khỏi ngoặc ở phần tử đầu tiên nên đáp án này không đúng.

Chọn đáp án C: $-2\sin^2 x - \cos^2 x + C$ cũng không đúng vì nếu đặt $y = \cos(2x)$ thì nguyên hàm trở thành

	$F(x) = y^2/2 - 2y + C' = (-\cos^2(2x) + 4\cos(2x))/2 + C' = -2\sin^2(x) - \cos^2(2x)$
	+ C'
	Vậy $F(x) = -2\sin^2 x - \cos^2 x + C'$ không phải là tất cả các nguyên hàm của
	$f(x) e^x$.
	Chọn đáp án D: $2\sin^2 x - \cos^2 x + C$ là đáp án đúng vì:
	$F'(x) = (\cos(2x))' * e^x + 2\sin(2x) * e^x = f(x)e^x + 2\sin(2x) e^x$
	Rút e^x ra khỏi ngoặc ở phần tử đầu tiên và thực hiện tích phân theo công
	thức nguyên hàm:
	$F(x) = -2\cos(2x) + 2\sin^2(2x) + C$
	$=> F(x) = 2\sin^2 x - \cos^2 x + C.$
	Vậy đáp án là D.
Câu 45. Cho hàm số f(x) có bảng biến thiên như sau:	Trong đoạn $[-\pi; 2\pi]$, hàm số $f(\sin x)$ có bảng biến thiên như sau:
$x - \inf y - 1 \ 0 \ 1 + \inf y$	$x - 2\pi - \pi 0 \pi 2\pi \sin x - 10001 f(\sin x) - 2 - 1 - 2 - 1 - 2$
f'(x) - 0 + 0 - 0 +	Phương trình $2f(\sin x)+3=0$ tương đương với $f(\sin x) = -3/2$. Vì hàm số $f(x)$
$f(x)$ -\infty \rightarrow -2 \rightarrow -1 \rightarrow -2	liên tục trên R và có số nghiệm thuộc đoạn [-1;1] là 2 nên phương trình f(sin
\rightarrow +\infty	x) = -3/2 có tối đa 4 nghiệm thuộc đoạn [- π ; π]. Tuy nhiên, vì f(sin x) là hàm
Số nghiệm thuộc đoạn $[-\pi ; 2 \pi]$ của phương trình \$2 f(\sin	số chẵn, nên số nghiệm trên đoạn $[0;2\pi]$ sẽ bằng số nghiệm trên đoạn $[-\pi;0]$.
x)+3=0\$ là	Vậy tổng số nghiệm trên đoạn $[-\pi;2\pi]$ của phương trình đã cho là $4 \times 2 = 8$.
A. 4.	Vậy đáp án là D.
B. 6.	
C. 3.	
D. 8.	

Câu 46. Cho hàm số bậc bốn y=f(x) có đồ thị như hình bên. Số	
điểm cực trị của hàm số $g(x)=f(x^3+3x^2)$ là	
A. 5.	
B. 3.	
C. 7.	
D. 11.	
Câu 47. Có bao nhiêu cặp số nguyên \$(x; y)\$ thoả mãn \$0 \leq x	Ta có phương trình: \$log_3(3x+3)+x=2y+9^y\$ Điều kiện để \$log_3(3x+3)\$
\leq 2020\$ và \$\log _{3}(3 x+3)+x=2 y+9^{y}\$?	là số nguyên dương là \$3x+3=3(x+1)\$ là lũy thừa của 3, tức là \$x \equiv 0
A. 2019 .	\pmod 3\\$. Chia phương trình cho \\$3^y\\$ ta được:
B. 6.	$\frac{1}{3^y} + \frac{1}{3^y} = 3^{y-3}+1$ Dặt $t=3^{y-3}$
C. 2020 .	3}\$, ta có: $\frac{\log_3(3x+3)}{3^y}=\frac{\log_3(x+1)+1}{3^y}$ \$ Suy
D. 4.	ra phương trình trên tương đương với: \$\$\frac{\log_3(x+1)+1}{t} +
	$\label{eq:frac} $$ \frac{x}{t} = t+1$$ Hay $x+t^2+t= t\cdot \log_3(x+1) + t$ Vây $x = t \cdot dot $$$
	$\log_3(x+1)$ \$. Ta suy ra \$x \geq 0\$ và \$t > 0\$. Do \$x \equiv 0 \pmod 3\$ nên
	$x = 3k$, ta có phương trình $3k = t \cdot \log_3(3k+1)$. Từ đó suy ra t là
	uớc của \$3k\$. Do \$t=3^{y-3} \geq 1\$ nên \$y \geq 3\$ và \$t \in {1, 3, 9, 27,
	81}\$. Với mỗi \$t\$, ta tìm số nguyên dương \$k\$ thỏa mãn \$k(t \cdot
	log_3(3k+1)-3)=0\$ và tính được số lượng giá trị \$x\$ tương ứng. Cuối cùng
	cộng các kết quả lại ta được kết quả cuối cùng. Chi tiết:

Câu 48. Cho hàm số f(x) liên tục trên \mathbb{R} và thỏa mãn $x f\left(x^{3}\right) + f\left(1-x^{2}\right) = x^{10} + x^{6} - 2 x$, $f(x) x \in \mathbb{R}$. Khi đó f(x) d x bằng

A. $\frac{-17}{20}$ \$.

B. $\frac{-13}{4}$ \$.

C. $\frac{17}{4}$ \$.

D. -1.

Với \$t=1\$, ta tìm được \$k=0, k=1, k=2\$, tương ứng với \$x=0, x=3, x=6\$.

Với \$t=3\$, ta tìm được \$k=2, k=17\$, tương ứng với \$x=6, x=51\$.

Với t=9, ta tìm được k=2, tương ứng với x=18.

Với \$t=27\$, ta không tìm được giá trị \$k\$ thỏa mãn.

Với \$t=81\$, ta tìm được \$k=48\$, tương ứng với \$x=144\$. Vậy có tổng cộng \$3+2+1+1= \boxed{\textbf{(B) }6}\$ cặp số \$(x;y)\$ thỏa mãn.

Ta có: $\$xf(x^3)+f(1-x^2)=-x^{10}+x^6-2x\$$ Đặt y=-x\$ thì ta được: $\$-x^6$ $yf(y^3)+f(1-y^2)=y^{10}+y^6+2y$ \$ Nhân hai vế của phương trình này với \$y^3\$ rồi cộng hai phương trình lại với nhau, ta được: \$\$(y^4+1)f(y^3)+($y^5+y^4-y^3-1)f(1-y^2)=-y^7+y^3$ \$ Áp dụng tính chất lẻ chẵn, ta có: $\$ \begin{cases} $f(y^3)+f(1-y^2)=-\frac{y^7-y^3}{y^4+1} \quad (1)$ $f(1)+f(0)=-2 \quad (2) \quad (2) \quad (3) \quad (4) \quad ($ trình (1), ta được: $\frac{1}{y^7}$ y^3 { y^4+1 } \quad (1) \ f(1- y^2)+f(y^3)=-\frac{ y^7+y^3 }{ y^4+1 } \quad (3) \end{cases} Từ \$(1)\$ và \$(3)\$, ta có: \$\$2f(y^3)=-\frac{y^7-} Suy v^3 { v^4+1 }-\frac{ v^7+v^3 }{ v^4+1 }=- v^6 \$\$ $f(v^3)= \frac{y^6}{2}$ \$. Đặt \$t= y^3 \$, ta được \$f(t)=-\dfrac{t^2}{2}\$\$, với mọi t = 0.1. Với \$t>1\$, ta có: \$\$tf\left(\frac{1}{t^2}\right)+f(1-t^2)= $t^{10}+t^{6-2t}$ Đặt $u=\frac{1}{t^{2}}$, ta có: $\frac{1}{t^{2}}$ $u)=-u^5+u^3-2u \quad (4) \quad f(0)+f(1)=-2 \quad (2) \quad (2) \quad f(0)=0$ như trên, ta có: $f(u)=-dfrac\{u^2\}\{2\}$ với mọi $u\in(0,1]$. Do đó:

	$$$\left(-1\right)^0f(x)dx = \left(-1\right)^1f(x)dx = \left(-1\right)^1 - \left(-1\right)^2 + \left(-1\right)$
	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:
Câu 49. Cho hình chóp \$S . A B C\$ có đáy \$A B C\$ là tam giác	
vuông cân tại \$A, A B=a, \widehat{S B A}=S C	
A}=90^{\circ}\$, góc giữa hai mặt phẳng \$(S A B)\$ và \$(S A C)\$	
bằng \$60^{\circ}\$. Tính thể tích khối chóp \$S . A B C\$.	
A. \$a^{3}\$.	
B. $\frac{a^{3}}{3}$.	
C. $\frac{a^{3}}{2}$.	
D. \$\frac{a^{3}}{6}\$.	
Câu 50. Cho hàm số f(x). Hàm số y=f^\' (x) có đồ thị như hình	
bên. Hàm số $g(x)=f(1-2 x)+x^{2}-x$ nghịch biến trên khoảng	
nào dưới đây?	
A. \$\left(1; \frac{3}{2}\right)\$.	
B. \$\left(0; \frac{1}{2}\right)\$.	
C. \$(-2;-1)\$.	
D. \$(2; 3)\$.	