





Let's develop a bit the intuition....

#### No association





For a given value of one variable, the values of the other vary widely

In other words, large conditional variance

#### **Associated variables**





For a given value of one variable, the values of the other vary little

In other words, low conditional variance

#### Positively and negatively associated variables





Positive association: when one variable take on a large value, the other does as well

Negative association: when one variable take on a large value, the other takes on a low value

## Pearson correlation coefficient is the standard tool to measure association between continuous variables.

#### **Built on the "covariance"**

$$cov_{XY} = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{N}$$



$$cov(xy) = 26$$

Problem: interpretability of covariance

- Variables have potentially different scales (mean)
- Variables have potentially different dispersion (sd)

## Pearson correlation coefficient is the standard tool to measure association between continuous variables

$$cov_{XY} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})$$

$$\rho_{XY} = \frac{1}{N} \sum_{i=1}^{N} \left( \frac{x_i - \bar{x}}{\sigma_x} \right) \left( \frac{y_i - \bar{y}}{\sigma_y} \right) \equiv \frac{cov_{xy}}{\sigma_x \sigma_y}$$



$$\rho_{XY} = 0.61$$



$$\rho_{XY} = -0.54$$

ho is bounded between **-1** and **1**.

Sign indicates the direction of the association:

• Si  $\rho$  > **0** indicates positive association

• Si  $\rho$  < 0 indicates negative association

It's a measure of LINEAR association



# Say 10 men and 15 women flip a coin once. These are the results:

#### **Contingency table:**

| Δ | ٦ | 7 | Ζ |
|---|---|---|---|
|   | ١ | 7 |   |
|   |   |   |   |

|      | Men | Women |    |        |
|------|-----|-------|----|--------|
| Head | 3   | 8     | 11 | N=25   |
| Tail | 7   | 7     | 14 | 11-2-5 |
|      | 10  | 15    |    |        |

Is there an association between gender and the outcomes of the flipping coin game?

#### **Contingency table:**

Y

| (i,j) | Men        | Women |
|-------|------------|-------|
| Head  | 3/25= 0.12 | 0.32  |
| Tail  | 0.28       | 0.28  |

$$11/25 = 0.44$$

0.56

N=25

0.4 0.6

The contingency table contains information about the "joint distribution" of X and Y

$$P[X = Head, Y = Men] = 0.12$$

.....

#### **Contingency table:**

Y

| (i,j) | Men        | Women |
|-------|------------|-------|
| Head  | 3/25= 0.12 | 0.32  |
| Tail  | 0.28       | 0.28  |

$$11/25 = 0.44$$

0.56

N=25

0.4

0.6

### Also contain the "marginal distributions"

$$P[X = Head] = 0.44$$

$$P[Y = Men] = 0.4$$

.....

### Contingency table:

| (i,j) | Men        | Women |
|-------|------------|-------|
| Head  | 3/25= 0.12 | 0.32  |
| Tail  | 0.28       | 0.28  |

$$11/25 = 0.44$$

0.56

N=25

0.4

Also, the conditional distribution of X and Y

$$P[X = x \mid Y = y] \quad \text{And} \quad$$

$$P[Y = |X = x]$$

0.6

**Example:** 
$$P[X = Head | Y = Men]$$

| 7 |    |
|---|----|
|   | Α. |
|   |    |
| 1 | ì  |

|      | Men | Women |
|------|-----|-------|
| Head | 3   | 8     |
| Tail | 7   | 7     |

N=25

$$P[X|Y] = \frac{P[X,Y]}{P[Y]}$$

$$P[Head | Men] = \frac{3}{10}$$

$$P[Head | Men] = \frac{3/25}{10/25} = \frac{P[Head, Men]}{P[Men]}$$
 Joint Marginal

**Conditional** 

Is there an association between gender and the outcomes of the flipping coin game?

#### If X and Y are independent (not associated), then:

$$P[X|Y] = P[X] \qquad < -> \qquad P[Y|X] = P[Y]$$

P[X|Y]

P[X]

|      | Men | Women |
|------|-----|-------|
| Head | 0.3 | 0.53  |
| Tail | 0.7 | 0.47  |

0.44

 $P[Y|X] \neq P[Y]$ 

I

ď

H

0.66

### Also, If X and Y are independent (not associated), then:

$$P[X, Y] = P[X]P[Y]$$

### If X ind of Y, joint should be:

Y

|      | Men  | Women |    |
|------|------|-------|----|
| Head | 0.18 | 0.26  | 0. |
| Tail | 0.22 | 0.34  | 0. |

0.4

0.6