

(51) Internationale Patentklassifikation 7 :

C07D 249/12, 239/10, 231/20, 253/08, 285/12, 263/58, 233/30, 237/32, A01N (11) Internationale Veröffentlichungsnummer:

WO 00/05221 not. sit

A1

(43) Internationales Veröffentlichungsdatum: 3. Februar 2000 (03.02.00)

(21) Internationales Aktenzeichen:

PCT/EP99/04929

(22) Internationales Anmeldedatum:

13. Juli 1999 (13.07.99)

(30) Prioritätsdaten:

198 33 360.9 199 21 732.7 24. Juli 1998 (24.07.98)

DE. DE 11. Mai 1999 (11.05.99)

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BAYER AKTIENGESELLSCHAFT [DE/DE]; D-51368 Leverkusen (DE).

(75) Erfinder/Anmelder (nur für US): SCHWARZ, Hans-Georg [DE/DE]; Stettiner Strasse 7a, D-40764 Langenfeld (72) Erfinder; und (DE). MÜLLER, Klaus-Helmut [AT/DE]; Solfstrasse 19. D-40593 Düsseldorf (DE). LEHR, Stefan [DE/DE]; Ricarda-Huch-Strasse 38, D-40764 Langenfeld (DE). SCHALLNER, Otto [DE/DE]; Noldeweg 22, D-40789 Monheim (DE). DREWES, Mark, Wilhelm [DE/DE]; Goethestrasse 38, D-40764 Langenfeld (DE). FEUCHT, Dieter [DE/DE]; Ackerweg 9, D-40789 Monheim (DE). PONTZEN, Rolf [DE/DE]: Am Kloster 69, D-42799 Leichlingen (DE). WETCHOLOWSKY, Ingo [DE/BR]; Cond. Estancia Marambaia, Rua Avare, 500, CEP-13280-000

Vinhedo, SP (BR). WROBLOWSKY, Heinz-Jürgen [DE/DE]; Virneburgstrasse 73, D-40764 Langenfeld (DE).

(81) Bestimmungsstaaten: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht.

Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Anderungen eintreffen.

- (54) Title: SUBSTITUTED BENZOYLCYCLOHEXANDIONES
- (54) Bezeichnung: SUBSTITUIERTE BENZOYLCYCLOHEXANDIONE

$$(R^2)_m \xrightarrow{Q} Q \qquad \qquad (R^4)_n \qquad \qquad (1)$$

The invention relates to substituted benzoylcyclohexandiones of general formula (I), wherein A represents a single bond or alkane (57) Abstract diyl (alkene) and Z represents an optionally substituted 4-12 membered, saturated on unsaturated, monocylic or bicyclic, heterocyclic group containing 1-4 heteroatoms (up to 4 nitrogen atoms and optionally - alternatively or additively - an oxygen atom or a sulphur atom, or an SO group or an SO₂ group) and which additionally contains one to three oxo groups (C=O) and/or thioxo groups as constituents of the heterocycle. The invention also relates to a method for producing said substituted benzoylcyclohexandiones and to the use thereof as herbicides.

(57) Zusammenfassung

Substituierte Benzoylcyclohexandione der allgemeinen Formel (I), in welcher A für eine Einfachbindung oder für Alkandiyl (Alkylen) steht, Z für eine gegebenenfalls substituierte 4- bis 12-gliedrige, gesättigte oder ungesättigte, monocyclische oder bicyclische, heterocyclische Gruppierung steht, welche 1 bis 4 Heteroatome (bis zu 4 Stickstoffatome und gegebenenfalls – alternativ oder additiv – ein Sauerstoffatom oder ein Schwefelatom, oder eine SO-Gruppierung oder eine SO2-Gruppierung) enthält, und welche zusätzlich ein bis drei Oxo-Gruppen (C=O) und/oder Thioxo-Gruppen (C=S) als Bestandteile des Heterocyclus enthält, Verfahren zu ihrer Herstellung und ihre Verwendung als Herbizide.

Le P1 3315

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungam	ML	Mali	TT	Trinidad und Tobago
*	Benin	1E	Irland	MN	Mongolei	UA	Ukraine
	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
	Kanada	IT	Italien	MX	Mexiko		Amerika
	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
_	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	ZW	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dānemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

PCT/EP99/04929

WO 00/05221 - 1 -

Substituierte Benzoylcyclohexandione

Die Erfindung betrifft neue substituierte Benzoylcyclohexandione. Verfahren zu ihrer Herstellung und ihre Verwendung als Herbizide.

Es ist bereits bekannt, daß bestimmte substituierte Benzoylcyclohexandione herbizide Eigenschaften aufweisen (vgl. EP-A-090262, EP-A-135191, EP-A-186118, EP-A-186119, EP-A-186120, EP-A-319075, WO-A-96/26200, WO-A-97/46530, WO-A-99/07688). Die Wirkung dieser Verbindungen ist jedoch nicht in allen Belangen zufriedenstellend.

Es wurden nun die neuen substituierten Benzoyleyelohexandione der allgemeinen Formel (I),

$$(R^2)_m \xrightarrow{Q} Q \qquad (R^4)_n \qquad (I)$$

$$R^1 \qquad Q \qquad (R^3)_m \qquad (I)$$

in welcher

5

10

15

20

m für die Zahlen 0, 1, 2 oder 3 steht,

n für die Zahlen 0, 1, 2 oder 3 steht,

A für eine Einfachbindung oder für Alkandiyl (Alkylen) steht,

25 R¹ für Wasserstoff oder für jeweils gegebenenfalls substituiertes Alkyl oder Alkoxycarbonyl steht,

10

15

20

30

R² für gegebenenfalls substituiertes Alkyl steht, oder zusammen mit R¹ für Alkandiyl (Alkylen) steht, wobei in diesem Fall m für 1 steht und R¹ und R² am gleichen Kohlenstoffatom ("geminal") oder an zwei benachbarten Kohlenstoffatomen ("vicinal") stehen,

R³ für Wasserstoff, Nitro, Cyano, Carboxy, Carbamoyl, Thiocarbamoyl, Halogen, oder für jeweils gegebenenfalls substituiertes Alkyl, Alkoxy, Alkylthio, Alkylsulfinyl, Alkylsulfonyl, Alkylamino, Dialkylamino oder Dialkylaminosulfonyl steht,

- R⁴ Nitro, Cyano, Carboxy, Carbamoyl, Thiocarbamoyl, Halogen, oder für jeweils gegebenenfalls substituiertes Alkyl, Alkoxy, Alkylthio, Alkylsulfinyl, Alkylsulfonyl, Alkylamino, Dialkylamino oder Dialkylaminosulfonyl steht, und
- für eine gegebenenfalls substituierte 4- bis 12-gliedrige, gesättigte oder ungesättigte, monocyclische oder bicyclische, heterocyclische Gruppierung steht, welche 1 bis 4 Heteroatome (bis zu 4 Stickstoffatome und gegebenenfalls alternativ oder additiv ein Sauerstoffatom oder ein Schwefelatom, oder eine SO-Gruppierung oder eine SO2-Gruppierung) enthält, und welche zusätzlich ein bis drei Oxo-Gruppen (C=O) und/oder Thioxo-Gruppen (C=S) als Bestandteile des Heterocyclus enthält,
- einschließlich aller möglichen tautomeren Formen der Verbindungen der allgemeinen Formel (I) und der möglichen Salze der Verbindungen der allgemeinen Formel (I) -gefunden.

In den Definitionen sind die Kohlenwasserstoffketten, wie Alkyl oder Alkandiyl - auch in Verbindung mit Heteroatomen, wie in Alkoxy - jeweils geradkettig oder verzweigt.

20

25

Neben den Verbindungen der allgemeinen Formel (I) - oben - können immer auch die entsprechenden tautomeren Formen - nachstehend beispielhaft dargestellt - vorliegen.

$$(R^2)_{m} \xrightarrow{Q} Q \qquad (R^4)_{n}$$

$$R^1 \qquad Q \qquad R^3$$

$$(R^2)_m$$
 $(R^4)_n$
 $A - Z$

Bevorzugte Substituenten der in den vorstehend gezeigten Formeln aufgeführten Reste werden im folgenden erläutert:

- 10 m steht bevorzugt für die Zahlen 0, 1 oder 2.
 - n steht bevorzugt für die Zahlen 0, 1 oder 2.
- A steht bevorzugt für eine Einfachbindung oder für Alkandiyl (Alkylen) mit 1

 bis 4 Kohlenstoffatomen.
 - steht bevorzugt für Wasserstoff, für gegebenenfalls durch Halogen, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfinyl oder C₁-C₄-Alkylsulfonyl substituiertes Alkyl mit 1 bis 6 Kohlenstoffatomen oder für Alkoxycarbonyl mit bis zu 6 Kohlenstoffatomen.
 - steht bevorzugt für gegebenenfalls durch Halogen substituiertes Alkyl mit 1 bis 6 Kohlenstoffatomen, oder zusammen mit R¹ für Alkandiyl (Alkylen) mit 2 bis 5 Kohlenstoffatomen, wobei in diesem Fall m für 1 steht und R¹ und R² am gleichen Kohlenstoffatom ("geminal") oder an zwei benachbarten Kohlenstoffatomen ("vicinal") stehen.

20

- steht bevorzugt für Wasserstoff, Nitro, Cyano, Carboxy, Carbamoyl, Thiocarbamoyl, Halogen, für jeweils gegebenenfalls durch Halogen, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfinyl oder C₁-C₄-Alkylsulfonyl substituiertes Alkyl, Alkoxy, Alkylthio, Alkylsulfinyl oder Alkylsulfonyl mit jeweils bis zu 4 Kohlenstoffatomen in den Alkylgruppen, oder für Alkylamino, Dialkylamino oder Dialkylaminosulfonyl mit jeweils bis zu 4 Kohlenstoffatomen in den Alkylgruppen.
- steht bevorzugt für Nitro, Cyano, Carboxy, Carbamoyl, Thiocarbamoyl,
 Halogen, für jeweils gegebenenfalls durch Halogen, C₁-C₄-Alkoxy, C₁-C₄Alkylthio, C₁-C₄-Alkylsulfinyl oder C₁-C₄-Alkylsulfonyl substituiertes
 Alkyl, Alkoxy, Alkylthio, Alkylsulfinyl oder Alkylsulfonyl mit jeweils bis zu
 4 Kohlenstoffatomen in den Alkylgruppen, oder für Alkylamino, Dialkylamino oder Dialkylaminosulfonyl mit jeweils bis zu 4 Kohlenstoffatomen in
 den Alkylgruppen.

Z steht bevorzugt für eine der nachstehenden heterocyclischen Gruppierungen

R⁵ R⁵

Q N Q R 6

 \mathbb{R}^{5} \mathbb{R}^{5} \mathbb{R}^{5}

worin jeweils die gestrichelt gezeichnete Bindung eine Einfachbindung oder eine Doppelbindung ist,

5

10

15

20

25

30

 R^{5}

Q für Sauerstoff oder Schwefel steht.

für Wasserstoff, Hydroxy, Mercapto. Cyano. Halogen, für jeweils gegebenenfalls durch Cyano, Halogen, C1-C4-Alkoxy, C1-C4-Alkylthio, C1-C4-Alkylsulfinyl oder C1-C4-Alkylsulfonyl substituiertes Alkyl, Alkylcarbonyl, Alkoxy, Alkoxycarbonyl, Alkylthio, Alkylsulfinyl oder Alkylsulfonyl mit jeweils bis zu 6 Kohlenstoffatomen in den Alkylgruppen, für Propadienylthio, für jeweils gegebenenfalls durch Halogen substituiertes Alkylamino oder Dialkylamino mit jeweils bis zu 6 Kohlenstoffatomen in den Alkylgruppen, für jeweils gegebenenfalls durch Halogen substituiertes Alkenyl, Alkinyl, Alkenyloxy, Alkenylthio oder Alkenylamino mit jeweils bis zu 6 Kohlenstoffatomen in den Alkenyl- bzw. Alkinylgruppen, für jeweils gegebenenfalls durch Halogen substituiertes Cycloalkyl, Cycloalkyloxy, Cycloalkylthio, Cycloalkylamino, Cycloalkylalkyl, Cycloalkylalkoxy, Cycloalkylalkylthio oder Cycloalkylalkylamino mit jeweils 3 bis 6 Kohlenstoffatomen in den Cycloalkylgruppen und gegebenenfalls bis zu 4 Kohlenstoffatomen im Alkylteil, oder für jeweils gegebenenfalls durch Halogen, C1-C4-Alkyl oder C1-C4-Alkoxy substituiertes Phenyl, Phenyloxy, Phenylthio, Phenylamino, Benzyl, Benzyloxy, Benzylthio oder Benzylamino steht, für Pyrrolidino, Piperidino oder Morpholino steht, oder - für den Fall, daß zwei benachbarte Reste R⁵ und R⁵ sich an einer Doppelbindung befinden zusammen mit dem benachbarten Rest R⁵ auch für eine Benzogruppierung steht, und

R6 für Wasserstoff, Hydroxy, Amino, Alkylidenamino mit bis zu 4 Kohlenstoffatomen, für jeweils gegebenenfalls durch Halogen oder C₁-C₄-Alkoxy substituiertes Alkyl, Alkoxy, Alkylamino, Dialkylamino oder Alkanoylamino mit jeweils bis zu 6 Kohlenstoffatomen in den Alkylgruppen, für jeweils gegebenenfalls durch Halogen sub-

Kohlenstoffatomen in den Alkenyl- bzw. Alkinylgruppen, für jeweils gegebenenfalls durch Halogen substituiertes Cycloalkyl, Cycloalkylalkyl oder Cycloalkylamino mit jeweils 3 bis 6 Kohlenstoffatomen in den Cycloalkylgruppen und gegebenenfalls bis zu 3 Kohlenstoffatomen in Alkylteil, oder für jeweils gegebenenfalls durch Halogen, C1-C4-Alkyl oder C1-C4-Alkoxy substituiertes Phenyl oder Benzyl steht, oder zusammen mit einem benachbarten Rest R⁵ oder R⁶ für gegebenenfalls durch Halogen oder C1-C4-Alkyl substituiertes Alkandiyl mit 3 bis 5 Kohlenstoffatomen steht,

wobei die einzelnen Reste R⁵ und R⁶ – soweit mehrere davon an gleiche heterocyclische Gruppierungen gebunden sind, gleiche oder verschiedene Bedeutungen im Rahmen der obigen Definition haben können.

15

5

10

A steht besonders bevorzugt für eine Einfachbindung, Methylen, Ethyliden (Ethan-1,1-diyl) oder Dimethylen (Ethan-1,2-diyl).

20

Rl steht besonders bevorzugt für Wasserstoff, für jeweils gegebenenfalls durch Fluor, Chlor, Methoxy, Ethoxy, n- oder i-Propoxy, Methylthio, Ethylthio, n- oder i-Propylthio, Methylsulfinyl, Ethylsulfinyl, n- oder i-Propylsulfinyl, Methylsulfonyl, Ethylsulfonyl, n- oder i-Propylsulfonyl substituiertes Methyl, Ethyl, n- oder i-Propyl, n-, i- oder s-Butyl, oder für Methoxycarbonyl, Ethoxycarbonyl, n- oder i-Propoxycarbonyl.

25

30

steht besonders bevorzugt für Methyl, Ethyl, n- oder i-Propyl, oder zusammen mit R¹ für Methylen, Ethan-1,1-diyl (Ethyliden, -CH(CH₃)-), Ethan-1,2-diyl (Dimethylen, -CH₂CH₂-), Propan-1,3-diyl (Trimethylen, -CH₂CH₂CH₂-), Butan-1,4-diyl (Tetramethylen, -CH₂CH₂CH₂CH₂-) oder Pentan-1,5-diyl (Pentamethylen, -CH₂CH₂CH₂CH₂CH₂-), wobei in diesem Fall m für 1

10

15

20

25

30

Ζ

 R^4

steht und R¹ und R² am gleichen Kohlenstoffatom ("geminal") oder an zwei benachbarten Kohlenstoffatomen ("vicinal") stehen.

steht besonders bevorzugt für Wasserstoff, Nitro, Cyano, Carboxy, Carbamoyl, Thiocarbamoyl, Fluor, Chlor, Brom, Iod, für jeweils gegebenenfalls durch Fluor und/oder Chlor, Methoxy, Ethoxy, n- oder i-Propoxy, Methylthio, Ethylthio, n- oder i-Propylthio, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl oder Ethylsulfonyl substituiertes Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, für jeweils gegebenenfalls durch Fluor und/oder Chlor, Methoxy, Ethoxy, n- oder i-Propoxy substituiertes Methoxy, Ethoxy, n- oder i-Propoxy, für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes Methylthio, Ethylthio, n- oder i-Propylthio, Methylsulfinyl, Ethylsulfinyl, n- oder i-Propylsulfinyl, Methylsulfonyl, Ethylsulfonyl, n- oder i-Propylsulfonyl, oder für Methylamino, Ethylamino, n- oder i-Propylamino, Dimethylamino, Diethylamino, Dimethylaminosulfonyl oder Diethylaminosulfonyl.

steht besonders bevorzugt für Nitro, Cyano, Carboxy, Carbamoyl, Thiocarbamoyl, Fluor, Chlor, Brom, für jeweils gegebenenfalls durch Fluor und/oder Chlor, Methoxy, Ethoxy, n- oder i-Propoxy, Methylthio, Ethylthio, n- oder i-Propylthio, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl oder Ethylsulfonyl substituiertes Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, für jeweils gegebenenfalls durch Fluor und/oder Chlor, Methoxy, Ethoxy, n- oder i-Propoxy substituiertes Methoxy, Ethoxy, n- oder i-Propoxy, für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes Methylthio, Ethylthio, n- oder i-Propylthio, Methylsulfinyl, Ethylsulfinyl, n- oder i-Propylsulfinyl, Methylsulfonyl, Ethylsulfonyl, n- oder i-Propylsulfonyl, oder für Methylamino, Ethylamino, n- oder i-Propylamino. Dimethylamino, Diethylamino, Dimethylaminosulfonyl oder Diethylaminosulfonyl.

steht besonders bevorzugt für die nachstehende heterocyclische Gruppierung

R5

5

10

15

20

25

$$N$$
 N
 R^6

steht besonders bevorzugt für Wasserstoff, Hydroxy, Mercapto, Cyano, Fluor, Chlor, Brom, Iod, für jeweils gegebenenfalls durch Fluor, Chlor, Methoxy, Ethoxy, n- oder i-Propoxy, n-, i-, s- oder t-Butoxy, Methylthio, Ethylthio, noder i-Propylthio, n-, i-, s- oder t-Butylthio, Methylsulfinyl, Ethylsulfinyl, noder i-Propylsulfinyl, Methylsulfonyl, Ethylsulfonyl, n- oder i-Propylsulfonyl substituiertes Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Methoxy, Ethoxy, n- oder i-Propoxy, n-, i-, s- oder t-Butoxy, Methylthio, Ethylthio, noder i-Propylthio, n-, i-, s- oder t-Butylthio, Methylsulfinyl, Ethylsulfinyl, noder i-Propylsulfinyl, Methylsulfonyl, Ethylsulfonyl, n- oder i-Propylsulfonyl, für Methylamino, Ethylamino, n- oder i-Propylamino, n-, i-, s- oder t-Butylamino, Dimethylamino, Diethylamino, Di-n-propylamino oder Di-ipropylamino, für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes Ethenyl, Propenyl, Butenenyl, Ethinyl, Propinyl, Butinyl, Propenyloxy, Butenyloxy, Propenylthio, Butenylthio, Propenylamino oder Butenylamino, für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cyclopropyloxy, Cyclobutyloxy, Cyclopentyloxy, Cyclohexyloxy, Cyclopropylthio, Cyclobutylthio, Cyclopentylthio, Cyclohexylthio, Cyclopropylamino, Cyclobutylamino, Cyclopentylamino, Cyclohexylamino, Cyclopropylmethyl, Cyclobutylmethyl, Cyclopentylmethyl, Cyclohexylmethyl, Cyclopropylmethoxy, Cyclobutylmethoxy, Cyclopentylmethoxy, Cyclohexylmethoxy, Cyclopropylmethylthio, Cyclobutylmethylthio, Cyclopentylmethylthio, Cyclohexylmethylthio, Cyclopropylmethylamino, Cyclobutylmethylamino, Cyclopentylmethylamino oder Cyclohexylmethylamino, oder für jeweils gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Methoxy, Ethoxy, noder i-Propoxy substituiertes Phenyl, Phenyloxy, Phenylthio, Phenylamino, Benzyl, Benzyloxy, Benzylthio oder Benzylamino, oder - für den Fall, daß

10

15

20

zwei benachbarte Reste R^5 und R^5 sich an einer Doppelbindung befinden - zusammen mit dem benachbarten Rest R^5 auch für eine Benzogruppierung.

steht besonders bevorzugt für Wasserstoff, Hydroxy, Amino, für jeweils gegebenenfalls durch Fluor und/oder Chlor, Methoxy oder Ethoxy substituiertes Methyl, Ethyl, n- oder i-Propyl, n-, i- oder s-Butyl, Methoxy, Ethoxy, n- oder i-Propoxy. Methylamino, Ethylamino oder Dimethylamino, für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes Ethenyl, Propenyl, Ethinyl, Propinyl oder Propenyloxy, für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cyclopropylmethyl, Cyclobutylmethyl, Cyclopentylmethyl oder Cyclohexylmethyl, oder für jeweils gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Methoxy, Ethoxy, n-oder i-Propoxy substituiertes Phenyl oder Benzyl, oder zusammen mit einem benachbarten Rest R⁵ oder R⁶ für jeweils gegebenenfalls durch Methyl und/oder Ethyl substituiertes Propan-1,3-diyl (Trimethylen), Butan-1,4-diyl (Tetramethylen) oder Pentan-1-5-diyl (Pentamethylen).

wobei die einzelnen Reste R⁵ und R⁶ – soweit mehrere davon an gleiche heterocyclische Gruppierungen gebunden sind, gleiche oder verschiedene Bedeutungen im Rahmen der obigen Definition haben können.

- A steht ganz besonders bevorzugt für eine Einfachbindung oder für Methylen.
- 25 R¹ steht ganz besonders bevorzugt für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl.
 - R² steht ganz besonders bevorzugt für Methyl.
- 30 R³ steht ganz besonders bevorzugt für Wasserstoff, Nitro, Cyano, Fluor, Chlor, Brom, Iod, Methyl, Ethyl, Trifluormethyl, Methoxymethyl, Methylthio-

methyl, Methylsulfinylmethyl, Methylsulfonylmethyl, Methoxy, Ethoxy, Difluormethoxy, Trifluormethoxy, Methylthio, Ethylthio, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl, Ethylsulfonyl oder Dimethylaminosulfonyl.

steht ganz besonders bevorzugt für Nitro, Cyano, Fluor, Chlor, Brom. Methyl, Ethyl, Trifluormethyl, Methoxymethyl, Methylthiomethyl, Methylsulfinylmethyl, Methylsulfonylmethyl, Methoxy, Ethoxy, Difluormethoxy, Trifluormethoxy, Methylthio, Ethylthio, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl, Ethylsulfonyl oder Dimethylaminosulfonyl.

10

15

20

 R^5

steht ganz besonders bevorzugt für Wasserstoff, Hydroxy, Chlor. Brom, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Difluormethyl, Dichlormethyl, Trifluormethyl, Trichlormethyl, Chlordifluormethyl, Fluordichlormethyl, Fluorethyl, Difluorethyl, Dichlorethyl, Fluorn-propyl, Fluor-i-propyl, Chlor-n-propyl, Chlor-i-propyl, Methoxymethyl, Ethoxymethyl, Methoxyethyl, Ethoxyethyl, Methoxy, Ethoxy, n- oder i-Propoxy, n-, i-, s- oder t-Butoxy, Fluorethoxy, Chlorethoxy, Difluorethoxy, Dichlorethoxy, Trifluorethoxy, Trichlorethoxy, Chlorfluorethoxy, Chlordifluorethoxy, Fluordichlorethoxy, Methylthio, Ethylthio, n- oder i-Propylthio, Fluorethylthio, Chlorethylthio, Difluorethylthio, Dichlorethylthio. Chlorfluorethylthio, Chlordifluorethylthio, Fluordichlorethylthio, Methylsulfinyl, Ethylsulfinyl, n- oder i-Propylsulfinyl, Methylsulfonyl, Ethylsulfonyl, Dimethylamino, Propenylthio, Butenylthio, Propinylthio, Butinylthio, Cyclopropyl, Cyclopropylmethyl, Cyclopropylmethoxy, Phenyl oder Phenoxy.

25

30

steht ganz besonders bevorzugt für Amino, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Methoxy, Ethoxy, Methylamino, Dimethylamino, Cyclopropyl oder Cyclopropylmethyl steht, oder zusammen mit R⁵ für Propan-1,3-diyl (Trimethylen), Butan-1,4-diyl (Tetramethylen) oder Pentan-1,5-diyl (Pentamethylen).

10

15

20

A steht am meisten bevorzugt für Methylen.

Gegenstand der Erfindung sind vorzugsweise die Natrium-, Kalium-, Magnesium-, Calcium-, Ammonium-, C_1 - C_4 -Alkyl-ammonium-, Di-(C_1 - C_4 -alkyl)-ammonium-, Tri-(C_1 - C_4 -alkyl)-ammonium. Tri-(C_1 - C_4 -alkyl)-sulfonium-, C_5 - oder C_6 -Cycloalkyl-ammonium- und Di-(C_1 - C_2 -alkyl)-benzyl-ammonium-Salze der Verbindungen der Formel (I), in welcher m, n, A, R^1 , R^2 , R^3 , R^4 und Z die oben angegebenen Bedeutungen haben.

Erfindungsgemäß bevorzugt sind die Verbindungen der Formel (I), in welchen eine Kombination der vorstehend als bevorzugt aufgeführten Bedeutungen vorliegt.

Erfindungsgemäß besonders bevorzugt sind die Verbindungen der Formel (I) in welchen eine Kombination der vorstehend als besonders bevorzugt aufgeführten Bedeutungen vorliegt.

Erfindungsgemäß ganz besonders bevorzugt sind die Verbindungen der Formel (I), in welchen eine Kombination der vorstehend als ganz besonders bevorzugt aufgeführten Bedeutungen vorliegt.

Verbindungen der folgenden allgemeinen Formeln (IA), (IB) und (IC) werden insbesondere als erfindungsgemäß hervorgehoben:

$$(R^2)_m$$
 R^1
 $(R^4)_n$
 $(R^4)_n$
 $(R^5)_m$
 $(R^6)_m$
 $(R^8)_m$
 $(R^8)_m$

$$(R^{2})_{m} \xrightarrow{Q} (IB)$$

$$R^{1} \xrightarrow{Q} (R^{4})_{n}$$

$$(IB)$$

$$(R^{2})_{m}$$

$$R^{1}$$

$$R^{3}$$

$$R^{5}$$
(IC)

in welchen

5

- m für die Zahlen 0, 1 oder 2 steht,
- n für die Zahlen 0, 1 oder 2 steht,
- 10 A steht besonders bevorzugt für eine Einfachbindung oder für Methylen.
 - Q für Sauerstoff oder Schwefel steht,
 - R1 für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl steht.

15

R² für Methyl steht,

für Wasserstoff, Nitro, Cyano, Fluor, Chlor, Brom, Iod, Methyl, Ethyl, Trifluormethyl, Methoxymethyl, Methylthiomethyl, Methylsulfinylmethyl,
Methylsulfonylmethyl, Methoxy, Ethoxy, Difluormethoxy, Trifluormethoxy,
Methylthio, Ethylthio, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl, Ethylsulfonyl oder Dimethylaminosulfonyl steht,

10

15

20

25

- für Nitro, Cyano, Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Methoxymethyl, Methylthiomethyl, Methylsulfinylmethyl, Methylsulfonylmethyl, Methoxy, Ethoxy, Difluormethoxy, Trifluormethoxy, Methylthio, Ethylthio, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl, Ethylsulfonyl oder Dimethylaminosulfonyl steht,
- für Wasserstoff, Hydroxy, Chlor, Brom, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Difluormethyl, Dichlormethyl, Trifluormethyl, Trichlormethyl, Chlordifluormethyl, Fluordichlormethyl, Fluorethyl, Chlorethyl, Difluorethyl, Dichlorethyl, Fluor-n-propyl, Fluor-i-propyl, Chlor-n-propyl, Chlor-i-propyl, Methoxymethyl, Ethoxymethyl, Methoxyethyl, Ethoxyethyl, Methoxy, Ethoxy, n- oder i-Propoxy, n-, i-, s- oder t-Butoxy, Fluorethoxy, Chlorethoxy, Difluorethoxy, Dichlorethoxy, Trifluorethoxy, Trichlorethoxy, Chlorfluorethoxy, Chlordifluorethoxy, Fluordichlorethoxy, Methylthio, Ethylthio, n- oder i-Propylthio, Fluorethylthio, Chlordifluorethylthio, Difluorethylthio, Dichlorethylthio, Chlorfluorethylthio, Chlordifluorethylthio, Fluordichlorethylthio, Methylsulfinyl, Ethylsulfinyl, n- oder i-Propylsulfinyl, Methylsulfonyl, Ethylsulfonyl, n- oder i-Propylsulfonyl, Dimethylamino, Propenylthio, Butenylthio, Propinylthio, Butinylthio, Cyclopropyl, Cyclopropylmethyl, Cyclopropylmethoxy, Phenyl oder Phenoxy steht, und
- für Amino, Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, Methoxy, Ethoxy, Methylamino, Dimethylamino, Cycloproypyl oder Cyclopropylmethyl steht, oder zusammen mit R⁵ für Propan-1,3-diyl (Trimethylen), Butan-1,4-diyl (Tetramethylen) oder Pentan-1,5-diyl (Pentamethylen) steht.

Die Verbindungen der Formel (IA), bei welchen A für Methylen steht, werden hierbei ganz besonders hervorgehoben.

Die oben aufgeführten allgemeinen oder in Vorzugsbereichen aufgeführten Restedefinitionen gelten sowohl für die Endprodukte der Formel (I) als auch entsprechend für die jeweils zur Herstellung benötigten Ausgangs- oder Zwischenprodukte. Diese Restedefinitionen können untereinander, also auch zwischen den angegebenen bevorzugten Bereichen beliebig kombiniert werden.

Beispiele für die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) sind in den nachstehenden Gruppen aufgeführt.

Gruppe 1

$$(R^4)_n$$
 R^5
(IA-1)

10

R³, (R⁴)_n, R⁵ und R⁶ haben hierbei beispielhaft die in der nachstehenden Tabelle angegebenen Bedeutungen:

R ³	(Position-)(R ⁴) _n	R ⁵	R ⁶
Н	-	CF ₃	CH ₃
F	-	CF ₃	CH ₃
Cl	-	CF,	CH ₃
Br	-	CF,	CH,
I	-	CF ₃	CH ₃
NO ₂	-	CF ₃	CH ₃
CN	-	CF ₃	CH ₃
CH ₃		CF ₃	CH ₃
OCH,	-	CF ₃	CH ₃
CF ₃	-	CF ₃	CH ₃
OCHF ₂	-	CF ₃	CH,
OCF ₃	-	CF ₃	CH ₃
SO ₂ CH ₃	-	CF ₃	CH,

R ³	(Position-)(R ⁴) _n	R ⁵	R ⁶
Н	-	OCH,	CH ₃
F	-	OCH ₃	CH ₃
Cl		OCH ₃	CH ₃
Br	-	OCH ₃	CH ₃
I	-	ОСН,	CH ₃
NO ₂	-	OCH,	CH ₃
CN	-	OCH ₃	CH ₃
CH ₃	_	OCH ₃	
OCH ₃	-	OCH ₃	CH ₃
CF ₃	_	OCH ₃	CH ₃
OCHF ₂	-	OCH ₃	CH ₃
OCF ₃	_	OCH ₃	CH ₃
SO ₂ CH ₃	-	OCH ₃	CH ₃
H	-	SCH ₃	CH ₃
F	-	SCH ₃	CH ₃
Cl	-	SCH ₃	CH ₃
Br	_	SCH ₃	CH ₃
I	_	SCH ₃	CH ₃
NO ₂	-	SCH ₃	CH ₃
CN	-	SCH ₃	CH ₃
CH ₃	_	SCH ₃	CH ₃
OCH ₃	_		CH ₃
CF,		SCH ₃	CH ₃
OCHF ₂			CH ₃
OCF ₃	_	SCH ₃	CH ₃
SO ₂ CH ₃	_	SCH ₃	CH ₃
H	_	SCH ₃	CH ₃
F	_	OC.H.	CH ₃
Cl	_	OC ₂ H ₅	CH ₃
Br	_	OC.H.	CH ₃
I		OC H	CH ₃
NO ₂		OC ₂ H ₅	CH ₃
CN		OC ₂ H ₅	CH ₃
CH ₃	-	OC ₂ H ₅	CH,
		OC ₂ H ₅	CH ₃

R ³	(Position-)(R ⁴) _n	R ⁵	R ⁶
OCH ₃	-	OC ₂ H ₅	CH ₃
CF ₃	-	OC ₂ H ₅	CH ₃
OCHF ₂	-	OC ₂ H ₅	CH ₃
OCF ₃		OC_2H_5	CH ₃
SO ₂ CH ₃	-	OC ₂ H ₅	CH ₃
Н	-	$N(CH_3)_2$	CH ₃
F	_	$N(CH_3)_2$	CH ₃
Cl	-	$N(CH_3)_2$	CH ₃
Br	-	$N(CH_3)_2$	CH ₃
I	-	$N(CH_3)_2$	CH ₃
NO ₂	-	$N(CH_3)_2$	CH ₃
CN	-	$N(CH_3)_2$	CH ₃
CH ₃	-	$N(CH_3)_2$	CH ₃
OCH ₃	-	$N(CH_3)_2$	CH ₃
CF ₃	-	$N(CH_3)_2$	CH ₃
OCHF ₂	-	$N(CH_3)_2$	CH ₃
OCF ₃	-	$N(CH_3)_2$	CH ₃
SO ₂ CH ₃	-	$N(CH_3)_2$	CH ₃
Н	-	OCH ₃	\triangle
F	-	OCH ₃	\triangle
Cl	-	OCH ₃	
Вг	-	OCH ₃	\triangle
I	-	OCH ₃	\triangle
NO ₂	-	OCH ₃	\triangle
CN	-	OCH ₃	\triangle
CH ₃	-	OCH ₃	\triangle

R ³	(Position-)(R ⁴) _n	R5	R ⁶
OCH ₃	-	OCH ₃	\triangle
CF ₃	-	OCH ₃	
OCHF ₂	-	OCH ₃	
OCF ₃	-	OCH ₃	\triangle
SO ₂ CH ₃	-	OCH ₃	\triangle
Н	(3-) Cl	CF ₃	CH ₃
F	(3-) CI	CH ₃	CH ₃
CI	(3-) Cl	OCH ₃	CH ₃
Br	(3-) Cl	Br	\triangle
Cl	(3-) Cl	CF ₃	CH ₃
NO ₂	(3-) Cl	CH ₃	CH ₃
Cl	(3-) Cl	SCH ₃	CH ₃
CH ₃	(3-) Cl	Cl	CH ₃
OCH ₃	(3-) Cl	OCH ₃	CH ₃
CF ₃	(3-) Cl	CF ₃	CH ₃
OCHF ₂	(3-) Cl	СН,	CH ₃
OCF ₃	(3-) Cl	CH ₃	CH ₃
SO ₂ CH ₃	(3-) Cl	OCH ₃	CH ₃

Gruppe 2

 R^3 . $(R^4)_n$, R^5 und R^6 haben hierbei beispielhaft die in der nachstehenden Tabelle angegebenen Bedeutungen:

R ³	(Position-)(R ⁴) _n	R ⁵	R ⁶
Cl	(2-) Cl	CF ₃	CH ₃
Cl	(2-) Cl	SCH ₃	CH ₃
Cl	(2-) Cl	SC ₂ H ₅	CH ₃
Cl	(2-) Cl	SC₃H₁	CH,
Cl	(2-) Cl	SC ₃ H ₇ -i	CH ₃
Cl	(2-) Cl	s	CH ₃
Cl	(2-) Cl	S	CH ₃
Cl	(2-) Cl	S CH ₃	CH ₃
Cl	(2-) CI	S	CH ₃
Cl	(2-) Cl	S	СН3
Cl	(2-) Cl	SCH=C=CH ₂	CH ₃
Cl	(2-) Cl	SCH ₂ CN	CH ₃
Cl	(2-) Cl	SCH ₂ CH ₂ CN	CH ₃
Cl	(2-) Cl	OCH ₃	CH ₃
Cl	(2-) CI	OC ₂ H ₅	CH ₃
Cl	(2-) Cl	OC ₃ H ₇	CH ₃
Cl	(2-) Cl	OC ₃ H ₇ -i	CH ₃
Cl	(2-) Cl	OC ₄ H ₉	CH ₃
Cl	(2-) Cl	OCH ₂ CF ₃	CH ₃

R ³	$(Position-)(R^4)_n$	R ⁵	R ⁶
CI	(2-) Cl	∇	CH ₃
		Ĭ	
		0	
Cl	(2-) C1	OC ₆ H ₅	CH ₃
Cl	(2-) Cl	Н	CH ₃
Cl	(2-) Cl	CH ₃	CH ₃
Cl	(2-) CI	C ₂ H ₅	CH ₃
Cl	(2-) Cl	C_3H_7	CH ₃
Cl	(2-) Cl	C_3H_7 -i	CH ₃
Cl	(2-) Cl	C₄H ₉	CH ₃
Cl	(2-) Cl	C₄H ₉ -i	CH ₃
Cl	(2-) Cl	C₄H ₉ -s	CH ₃
Cl	(2-) Cl	C₄H ₉ -t	CH ₃
Cl	(2-) Cl	\triangle	CH ₃
Cl	(2-) CI	\bigcirc	CH ₃
Cl	(2-) CI	CH=CHCH ₃	CH ₃
Cl	(2-) CI		CH ₃
Cl	(2-) Cl	CI	СН3
Cl	(2-) Cl		СН3
CI	(2-) Cl	$N(CH_3)_2$	CH ₃
Cl	(2-) Cl	N	CH ₃
Cl	(2-) Cl	Cl	CH ₃
Cl	(2-) Cl	Br	CH ₃
SO ₂ CH ₃	(2-) Cl	CF ₃	CH ₃
SO ₂ CH ₃	(2-) Cl	SCH ₃	CH ₃
SO ₂ CH ₃	(2-) Cl	SC ₂ H ₅	CH ₃

R ³	(Position-)(R ⁴) _n	R ⁵	R ⁶
SO ₂ CH ₃	(2-) Cl	SC ₃ H ₇	CH ₃
SO ₂ CH ₃	(2-) CI	SC ₃ H ₇ -i	CH ₃
SO ₂ CH ₃	(2-) Cl	s	CH ₃
SO ₂ CH ₃	(2-) C1	S	СН,
SO ₂ CH ₃	(2-) Cl	S CH ₃	CH₃
SO ₂ CH ₃	(2-) Cl	s	CH₃
SO₂CH₃	(2-) Cl	\$	СН,
SO ₂ CH ₃	(2-) Cl	SCH=C=CH ₂	CH ₃
SO ₂ CH ₃	(2-) Cl	SCH ₂ CN	CH ₃
SO ₂ CH ₃	(2-) Cl	SCH ₂ CH ₂ CN	CH ₃
SO ₂ CH ₃	(2-) Cl	OCH ₃	CH ₃
SO ₂ CH ₃	(2-) Cl	OC ₂ H ₅	CH ₃
SO ₂ CH ₃	(2-) Cl	OC ₃ H ₇	CH ₃
SO ₂ CH ₃	(2-) Cl	OC ₃ H ₇ -i	CH ₃
SO ₂ CH ₃	(2-) Cl	OC₄H ₉	CH ₃
SO ₂ CH ₃	(2-) Cl	OCH ₂ CF ₃	CH ₃
SO ₂ CH ₃	(2-) Cl		СН,
SO ₂ CH ₃	(2-) Cl	OC ₆ H ₅	CH ₃
SO ₂ CH ₃	(2-) Cl	Н	CH ₃
SO ₂ CH ₃	(2-) Cl	CH ₃	CH ₃
SO ₂ CH ₃	(2-) Cl	C ₂ H ₅	CH ₃
SO ₂ CH ₃	(2-) Cl	C ₃ H ₇	CH ₃

$ \mathbb{R}^3$	(Position-)(R ⁴) _n	R ⁵	R ⁶
SO ₂ CH ₃	(2-) Cl	C ₃ H ₂ -i	CH,
SO ₂ CH ₃	(2-) C1	C ₄ H ₉	CH,
SO ₂ CH ₃	(2-) Cl	C ₄ H ₉ -i	CH ₃
SO ₂ CH ₃	(2-) Cl	C₄H ₉ -s	CH ₃
SO ₂ CH ₃	(2-) Cl	C ₄ H ₉ -t	CH ₃
SO ₂ CH ₃	(2-) Cl	\triangle	CH ₃
SO ₂ CH ₃	(2-) Cl	\triangle	CH ₃
SO ₂ CH ₃	(2-) C1	CH=CHCH ₃	CH ₃
SO ₂ CH ₃	(2-) C1		CH ₃
SO ₂ CH ₃	(2-) CI	CI	CH ₃
SO ₂ CH ₃	(2-) Cl		CH ₃
SO ₂ CH ₃	(2-) Cl	N(CH ₃) ₂	CH ₃
SO ₂ CH ₃	(2-) Cl	N	CH ₃
SO ₂ CH ₃	(2-) Cl	Cl	CH ₃
SO ₂ CH ₃	(2-) Cl	Br	CH ₃
Cl	(2-) SO ₂ CH ₃	CF ₃	CH ₃
C1	(2-) SO ₂ CH ₃	SCH ₃	CH ₃
Cl	(2-) SO ₂ CH ₃	SC ₂ H ₅	CH,
Cl	(2-) SO ₂ CH ₃	SC ₃ H ₇	CH ₃
Cl	(2-) SO ₂ CH ₃	SC ₃ H ₇ -i	CH ₃
Cl	(2-) SO ₂ CH ₃	s	СН,
CI	(2-) SO ₂ CH ₃	s	CH ₃

CI	(2-) SO ₂ CH ₃ (2-) SO ₂ CH ₃	S CH ₃	CH ₃
		S	CH ₃
		S	СН,
		s	CH ₃
Cl	(2-) SO ₂ CH ₃	s	
Cl	(2-) SO ₂ CH ₃	3	i
	(= / 5 5 2 5 1 1 3		CH ₃
1		Y	C11 ₃
		s	
Cl	(2-) SO ₂ CH ₃	SCH=C=CH ₂	CH ₃
Cl	(2-) SO ₂ CH ₃	SCH ₂ CN	CH ₃
Cl	(2-) SO ₂ CH ₃	SCH ₂ CH ₂ CN	CH ₃
Cl	(2-) SO ₂ CH ₃	OCH ₃	CH ₃
Cl	(2-) SO ₂ CH ₃	OC ₂ H ₅	CH ₃
Cl	(2-) SO ₂ CH ₃	OC ₃ H ₇	CH ₃
Cl	(2-) SO ₂ CH ₃	OC ₃ H ₇ -i	CH ₃
Cl	(2-) SO ₂ CH ₃	OC₄H ₉	CH ₃
Cl	(2-) SO ₂ CH ₃	OCH ₂ CF ₃	CH ₃
Cl	(2-) SO ₂ CH ₃	∇	CH ₃
		Y	
		0	
Cl	(2-) SO ₂ CH ₃	OC ₆ H ₅	CH ₃
Cl	(2-) SO ₂ CH ₃	Н	CH;
Cl	(2-) SO ₂ CH ₃	CH ₃	CH ₃
Cl	(2-) SO ₂ CH ₃	C ₂ H ₅	CH ₃
CI	(2-) SO ₂ CH ₃	C ₃ H ₇	CH ₃
Cl	(2-) SO ₂ CH ₃	C ₃ H ₇ -i	CH ₃
C1	(2-) SO ₂ CH ₃	C ₄ H ₉	CH ₃
Cl	(2-) SO ₂ CH ₃	C₄H ₉ -i	CH ₃
Cl	(2-) SO ₂ CH ₃	C₄H ₉ -s	CH ₃
Cl	(2-) SO ₂ CH ₃	C₄H ₉ -t	CH ₃
Cl	(2-) SO ₂ CH ₃	\triangle	CH ₃

R ³	(Position-)(R ⁴) _n	R ⁵	R ⁶
Cl	(2-) SO ₂ CH ₃		CH ₃
Cl	(2-) SO ₂ CH ₃	CH=CHCH ₃	CH ₃
Cl	(2-) SO ₂ CH ₃		CH ₃
Cl	(2-) SO ₂ CH ₃	CI	CH ₃
Cl	(2-) SO ₂ CH ₃		CH ₃
Cl	(2-) SO ₂ CH ₃	$N(CH_3)_2$	CH ₃
Cl	(2-) SO ₂ CH ₃	N	СН,
Cl	(2-) SO ₂ CH ₃	Cl	CH ₃
Cl	(2-) SO ₂ CH ₃	Br	СН3
Cl	(2-) CI	CF ₃	\triangle
Cl	(2-) Cl	SCH ₃	\triangle
Cl	(2-) Cl	SC ₂ H ₅	\triangle
Cl	(2-) Cl	SC₃H₁	
Cl	(2-) Cl	SC ₃ H ₇ -i	

R ³	(Position-)(R ⁴) _n	R ⁵	R ⁶
Cl	(2-) Cl	s	\triangle
Cl	(2-) C1	s	\triangle
Cl	(2-) CI	S CH ₃	\triangle
CI	(2-) Cl	s	\triangle
Cl	(2-) Cl	s	\wedge
Cl	(2-) CI	SCH=C=CH ₂	\triangle
Cl	(2-) Cl	SCH₂CN	\triangle
Cl	(2-) Cl	SCH ₂ CH ₂ CN	\triangle
CI	(2-) Cl	OCH ₃	\triangle
CI	(2-) Cl	OC ₂ H ₅	\triangle
Cl	(2-) Cl	OC ₃ H ₇	
Cl	(2-) Cl	OC₃H ₇ -i	\triangle

R ³	(Position-)(R ⁴) _n	R ⁵	R ⁶
CI	(2-) Cl	OC₄H₀	
CI	(2-) CI	OCH ₂ CF ₃	
Cl	(2-) Cl		
CI	(2-) CI	OC ₆ H ₅	
Cl	(2-) Cl	Н	\triangle
Cl	(2-) Cl	CH ₃	\triangle
Cl	(2-) Cl	C ₂ H ₅	
Cl	(2-) Cl	C ₃ H ₇	\triangle
Cl	(2-) CI	C ₃ H ₇ -i	\triangle
Cl	(2-) Cl	C₄H ₉	\triangle
Cl	(2-) Cl	C₄H ₉ -i	\triangle
Cl	(2-) Cl	C₄H₀-s	\triangle

PCT/EP99/04929

R^3	(Position-)(R ⁴) _n	R ⁵	R ⁶
CI	(2-) Cl	C₄H ₉ -t	
CI	(2-) Cl	\triangle	
Cl	(2-) Cl		\triangle
Cl	(2-) Cl	CH=CHCH ₃	\triangle
Cl	(2-) Cl		\triangle
Cl	(2-) Cl	CI	\triangle
Cl	(2-) Cl		\triangle
Cl	(2-) CI	N(CH ₃) ₂	\triangle
Cl	(2-) Cl	N	\triangle
Cl	(2-) CI	Cl	\triangle
Cl	(2-) Cl	Br	\triangle
SO ₂ CH ₃	(2-) Cl	CF ₃	\triangle

R ³	(Position-)(R ⁴) _n	R ⁵	R ⁶
SO ₂ CH ₃	(2-) Cl	SCH ₃	
SO ₂ CH ₃	(2-) C!	SC ₂ H,	
SO₂CH₃	(2-) Cl	SC ₃ H ₇	\triangle
SO ₂ CH ₃	(2-) Cl	SC ₃ H ₇ -i	\triangle
SO₂CH₃	(2-) Cl	s	\triangle
SO ₂ CH ₃	(2-) Cl	s	\triangle
SO₂CH₃	(2-) Cl	S CH3	\triangle
SO ₂ CH ₃	(2-) Cl	s	\triangle
SO ₂ CH ₃	(2-) Cl	\$	\triangle
SO ₂ CH ₃	(2-) Cl	SCH=C=CH ₂	\triangle
SO ₂ CH ₃	(2-) CI	SCH₂CN	\triangle
SO ₂ CH ₃	(2-) CI	SCH ₂ CH ₂ CN	\triangle

R ³	(Position-)(R ⁴) _n	R ⁵	R ⁶
SO ₂ CH ₃	(2-) Cl	OCH ₃	
SO ₂ CH ₃	(2-) Cl	OC₂H,	
SO₂CH₃	(2-) Cl	OC ₃ H ₇	
SO ₂ CH ₃	(2-) Cl	OC₃H₁-i	
SO ₂ CH ₃	(2-) Cl	OC₄H ₉	\triangle
SO ₂ CH ₃	(2-) Cl	OCH ₂ CF ₃	\triangle
SO ₂ CH ₃	(2-) Cl		\triangle
SO ₂ CH ₃	(2-) CI	OC ₆ H ₅	\triangle
SO ₂ CH ₃	(2-) CI	Н	\triangle
SO ₂ CH ₃	(2-) CI	СН,	\triangle
SO ₂ CH ₃	(2-) Cl	C ₂ H ₅	
SO ₂ CH ₃	(2-) Cl	C ₃ H ₇	

R ³	(Position-)(R ⁴) _n	R ⁵	R ⁶
SO ₂ CH ₃	(2-) Cl	C ₃ H ₇ -i	\triangle
SO ₂ CH ₃	(2-) CI	C ₄ H ₉	
SO₂CH₃	(2-) CI	C,H,-i	
SO ₂ CH ₃	(2-) CI	C₄H ₉ -s	
SO ₂ CH ₃	(2-) Cl	C₄H ₉ -t	
SO ₂ CH ₃	(2-) Cl	\triangle	\triangle
SO ₂ CH ₃	(2-) CI		\triangle
SO ₂ CH ₃	(2-) Cl	СН=СНСН3	\triangle
SO ₂ CH ₃	(2-) CI		\triangle
SO₂CH₃	(2-) Cl	CI	\triangle
SO₂CH₃	(2-) Cl		\triangle
SO₂CH₃	(2-) CI	N(CH ₃) ₂	\triangle

R ³	(Position-)(R ⁴) _n	R ⁵	R ⁶
SO ₂ CH ₃	(2-) Cl	N	
SO ₂ CH ₃	(2-) Cl	Cl	\triangle
SO ₂ CH ₃	(2-) Cl	Br	
CI	(2-) SO ₂ CH ₃	CF ₃	\triangle
Cl	(2-) SO ₂ CH ₃	SCH ₃	\triangle
Cl	(2-) SO ₂ CH ₃	SC₂H₅	\triangle
Cl	(2-) SO ₂ CH ₃	SC ₃ H ₇	\triangle
Cl	(2-) SO ₂ CH ₃	SC₃H₁-i	\triangle
Cl	(2-) SO ₂ CH ₂	s	\triangle
Cl	(2-) SO ₂ CH ₃	s	\triangle
Cl	(2-) SO ₂ CH ₃	S CH3	\triangle
CI	(2-) SO ₂ CH ₃	s	\triangle

R ³	(Position-)(R ⁴) _n	R ⁵	R ⁶
Cl	(2-) SO ₂ CH ₃	s	
CI	(2-) SO ₂ CH ₃	SCH=C=CH ₂	\triangle
CI	(2-) SO ₂ CH ₃	SCH₂CN	\triangle
Cl	(2-) SO ₂ CH ₃	SCH ₂ CH ₂ CN	\triangle
Cl	(2-) SO ₂ CH ₃	OCH ₃	\triangle
Cl	(2-) SO ₂ CH ₃	OC₂H₅	\triangle
Cl	(2-) SO ₂ CH ₃	OC ₃ H ₇	\triangle
Cl	(2-) SO ₂ CH ₃	OC ₃ H ₇ -i	\triangle
Cl	(2-) SO ₂ CH ₃	OC₄H,	\triangle
Cl	(2-) SO ₂ CH ₃	OCH ₂ CF ₃	\triangle
Cl	(2-) SO ₂ CH ₃		\triangle
Cl	(2-) SO ₂ CH ₃	OC ₆ H ₅	\triangle

R ³	(Position-)(R ⁴) _n	R ⁵	R ⁶
Cl	(2-) SO ₂ CH ₃	Н	
Cl	(2-) SO ₂ CH ₃	CH ₃	
Cl	(2-) SO ₂ CH ₃	C ₂ H ₅	
Cl	(2-) SO ₂ CH ₃	C ₃ H ₇	\triangle
Cl	(2-) SO ₂ CH ₃	C ₃ H ₇ -i	\triangle
Cl	(2-) SO ₂ CH ₃	C ₄ H ₉	\triangle
Cl	(2-) SO ₂ CH ₃	C ₄ H ₉ -i	
Cl	(2-) SO ₂ CH ₃	C₄H ₉ -s	\triangle
Cl	(2-) SO ₂ CH ₃	C₄H ₉ -t	\triangle
Cl	(2-) SO ₂ CH ₃		
Cl	(2-) SO ₂ CH ₃		
Cl	(2-) SO ₂ CH ₃	CH=CHCH ₃	

. R ³	(Position-)(R ⁴) _n	R ⁵	R ⁶
Cl	(2-) SO_2CH_3	K	R
	(=) = 0.25113		
Cl	(2-) SO ₂ CH ₃	CI	
Cl	(2-) SO ₂ CH ₃		
01			
Cl	(2-) SO_2CH_3	$N(CH_3)_2$	
Cl	(2-) SO ₂ CH ₃		^
		N.	
Cl	(2-) SO ₂ CH ₃		
	(2-) 3O ₂ CH ₃	Cl	\triangle
**			
Cl	(2-) SO ₂ CH ₃	Br	\wedge
Cl	(2-) Cl	CF ₃	NICITA
	(2) 61	CF ₃	$N(CH_3)_2$
Cl	(2-) Cl	SCH ₃	$N(CH_3)_2$
Cl	(2-) CI	SC ₂ H ₅	$N(CH_3)_2$
			11(C113)2
Cl	(2-) Cl	SC₃H ₇	$N(CH_3)_2$
Cl	(2-) CI	SC ₃ H ₇ -i	$N(CH_3)_2$
Cl	(2.) (1.)		
	(2-) C1		$N(CH_3)_2$
		s	
Cl	(2-) Cl	[]]	N(CH ₃) ₂
		[] [
		s	

R ³	(Position-)(R ⁴) _n	R ⁵	R ⁶
Cl	(2-) Cl	S CH3	N(CH ₃) ₂
Cl	(2-) CI	s	N(CH ₃) ₂
Cl	(2-) Cl	s	N(CH ₃) ₂
Cl	(2-) Cl	SCH=C=CH ₂	N(CH ₃) ₂
Cl	(2-) Cl	SCH ₂ CN	N(CH ₃) ₂
Cl	(2-) Cl	SCH ₂ CH ₂ CN	N(CH ₃) ₂
Cl	(2-) Cl	OCH ₃	N(CH ₃) ₂
Cl	(2-) Cl	OC ₂ H ₅	N(CH ₃) ₂
Cl	(2-) Cl	OC ₃ H ₇	N(CH ₃) ₂
Cl	(2-) Cl	OC ₃ H ₇ -i	N(CH ₃) ₂
Cl	(2-) Cl	OC₄H ₉	N(CH ₃) ₂
Cl	(2-) Cl	OCH ₂ CF ₃	N(CH ₃) ₂
Cl	(2-) Cl		N(CH ₃) ₂
Cl	(2-) Cl	OC ₆ H ₅	N(CH ₃) ₂
Cl	(2-) Cl	Н	N(CH ₃) ₂
Cl	(2-) Cl	CH ₃	N(CH ₃) ₂
Cl	(2-) Cl	C ₂ H ₅	N(CH ₃) ₂

R^3	(Position-)(R ⁴) _n	R ⁵	R ⁶
Cl	(2-) C1	C ₃ H ₇	N(CH ₃) ₂
Cl	(2-) C1	C ₃ H ₇ -i	$N(CH_3)_2$
Cl	(2-) C1	C₄H ₉	N(CH ₃) ₂
Cl	(2-) CI	C ₄ H ₉ -i	N(CH ₃) ₂
Cl	(2-) Cl	C ₄ H ₉ -s	N(CH ₃) ₂
Cl	(2-) Cl	C₄H ₉ -t	N(CH ₃) ₂
Cl	(2-) Cl	\triangle	N(CH ₃) ₂
Cl	(2-) Cl	\bigcirc	N(CH ₃) ₂
Cl	(2-) Cl	CH=CHCH ₃	N(CH ₃) ₂
Cl	(2-) CI		N(CH ₃) ₂
Cl	(2-) Cl	CI	N(CH ₃) ₂
Cl	(2-) Cl		N(CH ₃) ₂
Cl	(2-) Cl	N(CH ₃) ₂	N(CH ₃) ₂
CI	(2-) Cl	N O	N(CH ₃) ₂
Cl	(2-) Cl	Cl	$N(CH_3)_2$
Cl	(2-) Cl	Br	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	CF ₃	N(CH ₃) ₂
SO ₂ CH ₃	(2-) CI	SCH ₃	N(CH ₃) ₂

R³	(Position-)(R ⁴) _n	R ⁵	R ⁶
SO ₂ CH ₃	(2-) Cl	SC ₂ H ₅	$N(CH_3)_2$
SO ₂ CH ₃	(2-) Cl	SC ₃ H ₇	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	SC ₃ H ₇ -i	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	s	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	s	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	S WCH3	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	s	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	s	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	SCH=C=CH ₂	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	SCH ₂ CN	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	SCH ₂ CH ₂ CN	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	OCH ₃	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	OC ₂ H ₅	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	OC ₃ H ₇	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	OC ₃ H ₇ -i	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	OC₄H ₉	N(CH ₃) ₂

\mathbb{R}^3	(Position-)(R ⁴) _n	R ⁵	R ⁶
SO ₂ CH ₃	(2-) CI	OCH ₂ CF ₃	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	∇	$N(CH_3)_2$
SO ₂ CH ₃	(2-) Cl	OC ₆ H ₅	N(CH ₃) ₂
SO ₂ CH ₃	(2-) CI	Н	$N(CH_3)_2$
SO ₂ CH ₃	(2-) Cl	CH ₃	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	C ₂ H ₅	N(CH ₃) ₂
SO ₂ CH ₃	(2-) CI	C ₃ H ₇	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	C ₃ H ₇ -i	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	C ₄ H ₉	N(CH ₃) ₂
SO ₂ CH ₃	(2-) CI	C₄H ₉ -i	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	C₄H ₉ -s	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	C₄H ₉ -t	N(CH ₃) ₂
SO ₂ CH ₃	(2-) CI	\triangle	$N(CH_3)_2$
SO ₂ CH ₃	(2-) Cl	\triangle	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	CH=CHCH ₃	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl		N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	CI	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl		N(CH ₃) ₂

R ³	(Position-)(R ⁴) _n	R ⁵	R ⁶
SO ₂ CH ₃	(2-) CI	N(CH ₃) ₂	$N(CH_3)_2$
SO ₂ CH ₃	(2-) Cl	N	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	Cl	N(CH ₃) ₂
SO ₂ CH ₃	(2-) Cl	Br	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	CF ₃	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	SCH ₃	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	SC ₂ H ₅	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	SC ₃ H ₇	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	SC ₃ H ₇ -i	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	s	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	s	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	S Luch3	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	s	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	s	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	SCH=C=CH ₂	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	SCH₂CN	N(CH ₃) ₂

R ³	(Position-)(R ⁴) _n	R ⁵	R ⁶
Cl	(2-) SO ₂ CH ₃	SCH ₂ CH ₂ CN	N(CH ₂) ₂
CI	(2-) SO ₂ CH ₃	OCH ₃	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	OC ₂ H ₅	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	OC ₃ H ₇	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	OC ₃ H ₇ -i	N(CH ₃) ₂
CI	(2-) SO ₂ CH ₃	OC₄H ₉	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	OCH ₂ CF ₃	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃		N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	OC ₆ H ₅	$N(CH_3)_2$
Cl	(2-) SO ₂ CH ₃	Н	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	CH ₃	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	C ₂ H ₅	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	C_3H_7	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	C ₃ H ₇ -i	$N(CH_3)_2$
Cl	(2-) SO ₂ CH ₃	C ₄ H ₉	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	C ₄ H ₉ -i	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	C₄H ₉ -s	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	C₄H ₉ -t	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	\triangle	N(CH ₃) ₂

R³	(Position-)(R ⁴) _n	R ⁵	R ⁶
Cl	(2-) SO ₂ CH ₃		$N(CH_3)_2$
Cl	(2-) SO ₂ CH ₃	СН=СНСН3	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃		N(CH ₃) ₂
CI	(2-) SO ₂ CH ₃	CI	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃		N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	N(CH ₃) ₂	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	N O	N(CH ₂) ₂
Cl	(2-) SO ₂ CH ₃	Cl	N(CH ₃) ₂
Cl	(2-) SO ₂ CH ₃	Br	N(CH ₃) ₂
Cl	(2-) Cl	CH ₃	OCH ₃
Cl	(2-) Cl	C ₂ H ₅	OCH ₃
Cl	(2-) Cl	C ₃ H ₇	OCH ₃
Cl	(2-) Cl	SCH ₃	OCH ₃
Cl	(2-) Cl	SC ₂ H ₅	OCH ₃
Cl	(2-) Cl	OCH ₃	OCH ₃
Cl	(2-) C!	OC ₂ H ₅	OCH ₃
Cl	(2-) Cl	CH ₃	OC ₂ H ₅
Cl	(2-) Cl	C ₂ H ₅	OC ₂ H ₅

R ³	$(Position-)(R^4)_n$	R ⁵	R ⁶
Cl	(2-) Cl	C_3H_7	OC ₂ H ₅
CI	(2-) Cl	SCH ₃	OC ₂ H ₅
CI	(2-) CI	SC ₂ H ₅	OC ₂ H ₅
Cl	(2-) C1	OCH ₃	OC ₂ H ₅
Cl	(2-) CI	OC ₂ H ₅	OC ₂ H ₅
Cl	(2-) SO ₂ CH ₃	CH ₃	OCH ₃
Cl	(2-) SO ₂ CH ₃	C ₂ H ₅	OCH ₃
Cl	(2-) SO ₂ CH ₃	C ₃ H ₇	OCH ₃
Cl	(2-) SO ₂ CH ₃	SCH ₃	OCH ₃
Cl	(2-) SO ₂ CH ₃	SC ₂ H ₅	OCH ₃
Cl	(2-) SO ₂ CH ₃	OCH ₃	OCH ₃
Cl	(2-) SO ₂ CH ₃	OC ₂ H ₅	OCH ₃
Cl	(2-) SO ₂ CH ₃	CH ₃	OC ₂ H ₅
Cl	(2-) SO ₂ CH ₃	C ₂ H ₅	OC ₂ H ₅
Cl	(2-) SO ₂ CH ₃	C ₃ H ₇	OC ₂ H ₅
Cl	(2-) SO ₂ CH ₃	SCH ₃	OC ₂ H ₅
CI	(2-) SO ₂ CH ₃	SC₂H₅	OC ₂ H ₅
CI	(2-) SO ₂ CH ₃	OCH ₃	OC ₂ H ₅
Cl	(2-) SO ₂ CH ₃	OC ₂ H ₅	OC ₂ H ₅
SO ₂ CH ₃	(2-) Cl	Cl	OCH ₃
SO ₂ CH ₃	(2-) CI	Br	OCH ₃

R ³	(Position-)(R ⁴) _n	R⁵	R ⁶
SO ₂ CH ₃	(2-) CI	CH ₃	OCH,
SO ₂ CH ₃	(2-) Cl	C ₂ H ₅	OCH ₃
SO ₂ CH ₃	(2-) Cl	C ₃ H ₇	OCH ₃
SO ₂ CH ₃	(2-) CI	SCH ₃	OCH ₃
SO ₂ CH ₃	(2-) Cl	SC ₂ H ₅	OCH ₃
SO ₂ CH ₃	(2-) Cl	OCH ₃	OC ₂ H ₅
SO ₂ CH ₃	(2-) Cl	OC ₂ H ₅	OC ₂ H ₅
SO ₂ CH ₃	(2-) CI	CH ₃	OC ₂ H ₅
SO ₂ CH ₃	(2-) Cl	C ₂ H ₅	OC ₂ H ₅
SO ₂ CH ₃	(2-) Cl	C ₃ H ₇	OC ₂ H ₅
SO ₂ CH ₃	(2-) Cl	SCH ₃	OC ₂ H ₅
SO ₂ CH ₃	(2-) Cl	SC ₂ H ₅	OC ₂ H ₅
SO ₂ CH ₃	(2-) CI	OCH ₃	OC ₂ H ₅
CF ₃	(2-) Cl	Br	CH ₃
CF,	(2-) Cl	SCH ₃	CH ₃
CF ₃	(2-) Cl	OCH ₃	CH ₃
CF ₃	(2-) Cl	N(CH ₃) ₂	CH ₃
CF ₃	(2-) CI	CF ₃	CH ₃
CF ₃	(2-) NO ₂	Br	CH ₃
CF ₃	(2-) NO ₂	SCH ₃	CH ₃
CF ₃	(2-) NO ₂	OCH ₃	СН,

R ³	(Position-)(R ⁴) _n	R ⁵	R ⁶
CF ₃	(2-) NO ₂	N(CH ₃) ₂	CH,
CF ₃	(2-) NO ₂	CF,	СН,
CF ₃	(2-) CH ₃	Br	CH ₃
CF ₃	(2-) CH ₃	SCH ₃	CH ₃
CF ₃	(2-) CH ₃	OCH ₃	CH ₃
CF ₃	(2-) CH ₃	N(CH ₃) ₂	CH ₃
CF ₃	(2-) CH ₃	CF ₃	CH ₃
CF ₃	(2-) OCH ₃	Br	CH ₃
CF ₃	(2-) OCH ₃	SCH ₃	CH ₃
CF ₃	(2-) OCH ₃	OCH ₃	CH ₃
CF ₃	(2-) OCH ₃	N(CH ₃) ₂	CH ₃
CF ₃	(2-) OCH ₃	CF ₃	CH ₃
SO ₂ CH ₃	(2-) NO ₂	Br	CH ₃
SO ₂ CH ₃	(2-) NO ₂	SCH ₃	CH ₃
SO ₂ CH ₃	(2-) NO ₂	OCH ₃	CH ₃
SO ₂ CH ₃	(2-) NO ₂	N(CH ₃) ₂	CH ₃
SO ₂ CH ₃	(2-) NO ₂	CF ₃	CH ₃
SO ₂ CH ₃	(2-) CF ₃	Br	CH ₃
SO ₂ CH ₃	(2-) CF ₃	SCH ₃	CH ₃
SO ₂ CH ₃	(2-) CF ₃	OCH ₃	CH ₃
SO ₂ CH ₃	(2-) CF ₃	N(CH ₃) ₂	CH ₃

R ³	(Position-)(R ⁴) _n	R ^s	R ⁶
SO ₂ CH ₃	(2-) CF ₃	CF ₃	CH ₃
SO ₂ CH ₃	(2-) SO ₂ CH ₃	Br	CH ₃
SO ₂ CH ₃	(2-) SO ₂ CH ₃	SCH ₃	CH ₃
SO ₂ CH ₃	(2-) SO ₂ CH ₃	OCH ₃	CH ₃
SO ₂ CH ₃	(2-) SO ₂ CH ₃	N(CH ₃) ₂	CH ₃
SO ₂ CH ₃	(2-) SO ₂ CH ₃	CF ₃	CH ₃
CN	(2-) Cl	Br	CH ₃
CN	(2-) Cl	SCH ₃	CH ₃
CN	(2-) Cl	OCH ₃	CH ₃
CN	(2-) Cl	N(CH ₃) ₂	CH ₃
CN	(2-) Cl	CF ₃	CH ₃
CN	· (2-) NO ₂	Br	CH ₃
CN	(2-) NO ₂	SCH ₃	CH ₃
CN	(2-) NO ₂	OCH ₃	CH ₃
CN	(2-) NO ₂	N(CH ₃) ₂	CH ₃
CN	(2-) NO ₂	CF ₃	CH ₃
CN	(2-) CF ₃	Br	CH ₃
CN	(2-) CF ₃	SCH ₃	CH ₃
CN	(2-) CF ₃	OCH ₃	CH ₃
CN	(2-) CF ₃	N(CH ₃) ₂	CH ₃
CN	(2-) CF ₃	CF ₃	CH ₃

\mathbb{R}^3	(Position-)(R ⁴) _n	R ⁵	R ⁶
CN	(2-) SO ₂ CH ₃	Br	CH ₃
CN	(2-) SO ₂ CH ₃	SCH ₃	CH ₃
CN	(2-) SO ₂ CH ₃	OCH3	CH,
CN	(2-) SO ₂ CH ₃	N(CH ₃) ₂	CH ₃
CN	(2-) SO ₂ CH ₃	CF ₃	CH ₃
Br	(2-) NO ₂	Br	CH ₃
Br	(2-) NO ₂	SCH ₃	CH ₃
Br	(2-) NO ₂	OCH ₃	CH ₃
Br	(2-) NO ₂	$N(CH_3)_2$	CH ₃
Br	(2-) NO ₂	CF ₃	CH ₃
Br	(2-) CF ₃	Br	CH ₃
Br	(2-) CF ₃	SCH ₃	CH ₃
Br	(2-) CF ₃	OCH ₃	CH ₃
Br	(2-) CF ₃	N(CH ₃) ₂	CH ₃
Br	(2-) CF ₃	CF ₃	CH ₃
Br	(2-) SO ₂ CH ₃	Br	CH ₃
Br	(2-) SO ₂ CH ₃	SCH ₃	СН3
Br	(2-) SO ₂ CH ₃	OCH ₃	CH ₃
Br	(2-) SO ₂ CH ₃	N(CH ₃) ₂	CH ₃
Br	(2-) SO ₂ CH ₃	CF ₃	CH ₃
Br	(2-) CH ₃	Br	CH ₃

R ³	(Position-)(R ⁴) _n	R ⁵	R ⁶
Br	(2-) CH ₃	SCH ₃	CH ₃
Br	(2-) CH ₃	OCH ₃	CH ₃
Br	(2-) CH ₃	N(CH ₃) ₂	CH ₃
Br	(2-) CH ₃	CF ₃	CH ₃

Gruppe 3

$$(IA-2)$$

$$(R^4)_n$$

$$R^5$$

 R^3 , $(R^4)_n$, R^5 und R^6 haben hierbei beispielhaft die oben in Gruppe 1 angegebenen Bedeutungen.

10 Gruppe 4

5

$$(IC-1)$$

$$(R^4)_n$$

$$N = N$$

$$R^5$$

R³, (R⁴)_n, R⁵ und R⁶ haben hierbei beispielhaft die oben in Gruppe 2 angegebenen 15 Bedeutungen. Die neuen substituierten Benzoyleyelohexandione der allgemeinen Formel (I) zeichnen sich durch starke und selektive herbizide Wirksamkeit aus.

Man erhält die neuen substituierten Benzoylcyclohexandione der allgemeinen Formel (I), wenn man 1,3-Cyclohexandion oder dessen Derivate der allgemeinen Formel (II),

$$(R^2)_{m}$$
 (II)

in welcher

10

15

25

m, R¹ und R² die oben angegebene Bedeutung haben,

mit substituierten Benzoesäuren der allgemeinen Formel (III),

HO
$$(R^4)_n$$

$$A Z$$
(III)

in welcher

n, A, R³, R⁴ und Z die oben angegebene Bedeutung haben,

in Gegenwart eines Dehydratisierungsmittels, gegebenenfalls in Gegenwart eines oder mehrerer Reaktionshilfsmittel und gegebenenfalls in Gegenwart eines Verdünnungsmittels, umsetzt,

und gegebenenfalls im Anschluß daran an den so erhaltenen Verbindungen der Formel (I) im Rahmen der Substituentendefinition auf übliche Weise elektrophile

15

20

25

oder nucleophile bzw. Oxidations- oder Reduktionsreaktionen durchführt oder die Verbindungen der Formel (I) auf übliche Weise in Salze überführt.

Die Verbindungen der Formel (I) können nach üblichen Methoden in andere Verbindungen der Formel (I) gemäß obiger Definition umgewandelt werden, beispielsweise durch nucleophile Substitution (z.B. R^5 : $Cl \rightarrow OC_2H_5$, SCH_3) oder durch Oxidation (z.B. R^5 : $CH_2SCH_3 \rightarrow CH_2S(O)CH_3$).

Die Verbindungen der allgemeinen Formel (I) können prinzipiell auch wie im Folgenden schematisch dargestellt synthetisiert werden:

Umsetzung von 1,3-Cyclohexandion oder dessen Derivaten der allgemeinen Formel (II) - oben - mit reaktiven Derivaten der substituierten Benzoesäuren der allgemeinen Formel (III) - oben - insbesondere mit entsprechenden Carbonsäurechloriden, Carbonsäureanhydriden, Carbonsäure-cyaniden, Carbonsäure-methylestern oder -ethylestern - gegebenenfalls in Gegenwart von Reaktionshilfsmitteln, wie z.B. Triethylamin (und gegebenenfalls zusätzlich Zinkchlorid), und gegebenenfalls in Gegenwart eines Verdünnungsmittels, wie z.B. Methylenchlorid:

$$(R^{2})_{m}$$

$$R^{1}$$

$$O$$

$$R^{3}$$

$$(I)$$

(Yz.B. CN, Cl)

Bei den oben skizzierten Umsetzungen zur Herstellung der Verbindungen der allgemeinen Formel (I) kommt es im allgemeinen neben der erwünschten C-Benzoylierung am Cyclohexandion auch zu einer O-Benzoylierung - vgl. nachstehendes Formelschema (vgl. Synthesis 1978, 925-927; Tetrahedron Lett. 37 (1996), 1007-

10

15

1009, WO-A-91/05469). Die hierbei gebildeten O-Benzoyl-Verbindungen werden jedoch unter den Reaktionsbedingungen des erfindungsgemäßen Verfahrens zu den entsprechenden C-Benzoyl-Verbindungen der Formel (I) isomerisiert.

$$(R^{2})_{m}$$

$$R^{1}$$

$$(R^{2})_{m}$$

$$(R^{2})_{m}$$

$$(R^{2})_{m}$$

$$(R^{2})_{m}$$

$$(R^{3})_{m}$$

$$(R^{3})_{m}$$

$$(R^{3})_{m}$$

$$(R^{3})_{m}$$

$$(R^{3})_{m}$$

$$(R^{3})_{m}$$

$$(R^{3})_{m}$$

Verwendet man beispielsweise 1,3-Cyclohexandion und 2-(3-Carboxy-5-fluor-benzyl)-5-ethyl-4-methoxy-2,4-dihydro-3H-1,2,4-triazol-3-on als Ausgangsstoffe, so kann der Reaktionsablauf beim erfindungsgemäßen Verfahren durch das folgende Formelschema skizziert werden:

Die beim erfindungsgemäßen Verfahren zur Herstellung von Verbindungen der Formel (I) als Ausgangsstoffe zu verwendenden Cyclohexandione sind durch die Formel (II) allgemein definiert. In der Formel (II) haben m, R¹ und R² vorzugsweise diejenigen Bedeutungen, die bereits oben im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) als bevorzugt, besonders bevorzugt oder ganz besonders bevorzugt für m, R¹ und R² angegeben wurden.

20

25

Die Ausgangsstoffe der allgemeinen Formel (II) sind bekannt und/oder können nach an sich bekannten Verfahren hergestellt werden.

Die beim erfindungsgemäßen Verfahren zur Herstellung von Verbindungen der Formel (I) weiter als Ausgangsstoffe zu verwendenden substituierten Benzoesäuren sind durch die Formel (III) allgemein definiert. In der Formel (III) haben n, A, R³, R⁴ und Z vorzugsweise diejenigen Bedeutungen, die bereits oben im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) als bevorzugt, besonders bevorzugt, ganz besonders bevorzugt oder am meisten bevorzugt für n, A, R³, R⁴ und Z angegeben wurden.

Die Ausgangsstoffe der allgemeinen Formel (III) sind mit Ausnahme von 2-(5-Carboxy-2,4-dichlor-phenyl)-4-difluormethyl-5-methyl-2,4-dihydro-3H-1,2,4-tri-azol-3-on - alias 2,4-Dichlor-5-(4-difluormethyl-4,5-dihydro-3-methyl-5-oxo-1H-1,2,4-triazol-1-yl)-benzoesäure (CAS-Reg.-Nr. 90208-77-8) und 2-(5-Carboxy-2,4-dichlor-phenyl)-4,5-dimethyl-2,4-dihydro-3H-1,2,4-triazol-3-on - alias 2,4-Dichlor-5-(4,5-dihydro-3,4-dimethyl-5-oxo-1H-1,2,4-triazol-1-yl)-benzoesäure (CAS-Reg.-Nr. 90208-76-7) - noch nicht aus der Literatur bekannt. Sie sind unter Ausnahme von 2-(5-Carboxy-2,4-dichlor-phenyl)-4-difluormethyl-5-methyl-2,4-dihydro-3H-1,2,4-triazol-3-on und 2-(5-Carboxy-2,4-dichlor-phenyl)-4,5-dimethyl-2,4-dihydro-3H-1,2,4-triazol-3-on (vgl. JP-A-58225070 - zitiert in Chem. Abstracts 100:209881, JP-A-02015069 - zitiert in Chem. Abstracts 113:23929) als neue Stoffe auch Gegenstand der vorliegenden Anmeldung.

Man erhält die neuen substituierten Benzoesäuren der allgemeinen Formel (III), wenn man Benzoesäurederivate der allgemeinen Formel (IV),

in welcher

5

10

15

20

n, A, \mathbb{R}^3 und \mathbb{R}^4 und \mathbb{Z}^4 die oben angegebene Bedeutung haben, und

Y für Cyano, Carbamoyl, Halogencarbonyl oder Alkoxycarbonyl steht,

mit Wasser, gegebenenfalls in Gegenwart eines Hydrolysehilfsmittels, wie z.B. Schwefelsäure, bei Temperaturen zwischen 50°C und 120°C umsetzt (vgl. die Herstellungsbeispiele).

Die als Vorprodukte benötigten Benzoesäurederivate der allgemeinen Formel (IV) sind bekannt und/oder können nach an sich bekannten Verfahren hergestellt werden (vgl. DE-A-3839480, DE-A-4239296, EP-A-597360, EP-A-609734, DE-A-4303676, EP-A-617026, DE-A-4405614, US-A-5378681).

Man erhält die neuen substituierten Benzoesäuren der allgemeinen Formel (III) auch, wenn man Halogen(alkyl)benzoesäuren der allgemeinen Formel (V),

HO
$$(R^4)_n$$
 (V)

in welcher

 $n, A, R^3 \ und \ R^4 \ die oben angegebene Bedeutung haben und$

25 X für Halogen (insbesondere Fluor, Chlor oder Brom) steht.

mit Verbindungen der allgemeinen Formel (VI),

$$H_{Z}$$
 (VI)

5 in welcher

10

15

20

Z die oben angegebene Bedeutung hat,

gegebenenfalls in Gegenwart eines Reaktionshilfsmittel, wie z.B. Triethylamin oder Kaliumcarbonat, und gegebenenfalls in Gegenwart eines Verdünnungsmittels, wie z.B. Aceton, Acetonitril, N,N-Dimethyl-formamid oder N,N-Dimethyl-acetamid, bei Temperaturen zwischen 50°C und 200°C umsetzt (vgl. die Herstellungsbeispiele).

An Stelle der Halogen(alkyl)benzoesäuren der allgemeinen Formel (V) können analog zur oben beschriebenen Methodik auch entsprechende Nitrile, Amide und Ester - insbesondere die Methylester oder die Ethylester - mit Verbindungen der allgemeinen Formel (VI) umgesetzt werden. Durch anschließende Hydrolyse nach üblichen Methoden, beispielsweise durch Umsetzung mit wässrig-ethanolischer Kalilauge, können dann die entsprechenden substituierten Benzoesäuren erhalten werden.

Die als Vorprodukte benötigten Halogen(alkyl)benzoesäuren der Formel (V) - bzw. entsprechende Nitrile oder Ester - sind bekannt und/oder können nach an sich bekannten Verfahren hergestellt werden (vgl. EP-A-90369, EP-A-93488, EP-A-399732, EP-A-480641, EP-A-609798, EP-A-763524, DE-A-2126720, WO-A-93/03722, WO-A-97/38977, US-A-3978127, US-A-4837333).

Die weiter als Vorprodukte benötigten Verbindungen der allgemeinen Formel (VI) sind bekannt und/oder können nach an sich bekannten Verfahren hergestellt werden.

25

Das erfindungsgemäße Verfahren zur Herstellung der neuen substituierten Benzoylcyclohexandione der allgemeinen Formel (I) wird unter Verwendung eines Dehydratisierungsmittels durchgeführt. Es kommen hierbei die üblichen zur Bindung von Wasser geeigneten Chemikalien in Betracht.

5

Als Beispiele hierfür seien Dicyclohexylcarbodiimid und Carbonyl-bis-imidazol genannt.

Als besonders gut geeignetes Dehydratisierungsmittel sei Dicyclohexylcarbodiimid genannt.

Das erfindungsgemäße Verfahren zur Herstellung der neuen substituierten Benzoylcyclohexandione der allgemeinen Formel (I) wird gegebenenfalls unter Verwendung eines Reaktionshilfsmittels durchgeführt.

15

25

30

10

Als Beispiele hierfür seien Natriumcyanid, Kaliumcyanid, Acetoncyanhydrin, 2-Cyano-2-(trimethylsilyloxy)-propan und Trimethylsilylcyanid genannt.

Als besonders gut geeignetes weiteres Reaktionshilfsmittel sei Trimethylsilylcyanid genannt.

Das erfindungsgemäße Verfahren zur Herstellung der neuen substituierten Benzoylcyclohexandione der allgemeinen Formel (I) wird gegebenenfalls unter Verwendung eines weiteren Reaktionshilfsmittels durchgeführt. Als weitere Reaktionshilfsmittel für das erfindungsgemäße Verfahren kommen im allgemeinen basische organische Stickstoffverbindungen, wie beispielsweise Trimethylamin, Triethylamin, Tripropylamin, Tributylamin, Ethyl-diisopropylamin, N,N-Dimethyl-cyclohexylamin, Dicyclohexylamin, Ethyl-dicyclohexylamin, N,N-Dimethyl-anilin, N,N-Dimethyl-benzylamin, Pyridin, 2-Methyl-, 3-Methyl-, 4-Methyl-, 2,4-Dimethyl-, 2,6-Dimethyl-, 3,4-Dimethyl- und 3,5-Dimethyl-pyridin, 5-Ethyl-2-methyl-pyridin, 4-Dimethyl-amino-pyridin, N-Methyl-piperidin, 1,4-Diazabicyclo[2,2,2]-octan (DABCO), 1,5-

WO 00/05221 - 55 -

5

10

15

20

25

30

PCT/EP99/04929

Diazabicyclo[4,3,0]-non-5-en (DBN), oder 1,8-Diazabicyclo[5,4,0]-undec-7-en (DBU) in Betracht.

Als Verdünnungsmittel zur Durchführung des erfindungsgemäßen Verfahrens kommen vor allem inerte organische Lösungsmittel in Betracht. Hierzu gehören insbesondere aliphatische, alicyclische oder aromatische, gegebenenfalls halogenierte Kohlenwasserstoffe, wie beispielsweise Benzin, Benzol, Toluol, Xylol, Chlorbenzol, Dichlorbenzol, Petrolether, Hexan, Cyclohexan, Dichlormethan, Chloroform, Tetrachlormethan oder 1,2-Dichlor-ethan; Ether, wie Diethylether, Diisopropylether, Dioxan, Tetrahydrofuran, Ethylenglykoldimethyl- oder -diethylether; Ketone, wie Aceton, Butanon oder Methyl-isobutyl-keton; Nitrile, wie Acetonitril, Propionitril oder Butyronitril; Amide, wie N,N-Dimethylformamid, N,N-Dimethylacetamid, N-Methyl-formanilid, N-Methyl-pyrrolidon oder Hexamethylphosphorsäuretriamid; Ester wie Essigsäuremethylester oder Essigsäureethylester, Sulfoxide, wie Dimethyl-sulfoxid.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 150°C, vorzugsweise zwischen 10°C und 120°C.

Das erfindungsgemäße Verfahren wird im allgemeinen unter Normaldruck durchgeführt. Es ist jedoch auch möglich, das erfindungsgemäße Verfahren unter erhöhtem oder vermindertem Druck - im allgemeinen zwischen 0,1 bar und 10 bar - durchzuführen.

Zur Durchführung des erfindungsgemäßen Verfahrens werden die Ausgangsstoffe im allgemeinen in angenähert äquimolaren Mengen eingesetzt. Es ist jedoch auch möglich, eine der Komponenten in einem größeren Überschuß zu verwenden. Die Umsetzung wird im allgemeinen in einem geeigneten Verdünnungsmittel in Gegenwart eines Dehydratisierungsmittels durchgeführt und das Reaktionsgemisch wird im all-

gemeinen mehrere Stunden bei der erforderlichen Temperatur gerührt. Die Aufarbeitung wird nach üblichen Methoden durchgeführt (vgl. die Herstellungsbeispiele).

Die erfindungsgemäßen Wirkstoffe können als Defoliants, Desiccants, Krautabtötungsmittel und insbesondere als Unkrautvernichtungsmittel verwendet werden. Unter Unkraut im weitesten Sinne sind alle Pflanzen zu verstehen, die an Orten aufwachsen, wo sie unerwünscht sind. Ob die erfindungsgemäßen Stoffe als totale oder selektive Herbizide wirken, hängt im wesentlichen von der angewendeten Menge ab.

Die erfindungsgemäßen Wirkstoffe können z.B. bei den folgenden Pflanzen verwendet werden:

Dikotyle Unkräuter der Gattungen: Sinapis, Lepidium, Galium, Stellaria, Matricaria, Anthemis, Galinsoga, Chenopodium, Urtica, Senecio, Amaranthus, Portulaca, Xanthium, Convolvulus, Ipomoea, Polygonum, Sesbania, Ambrosia, Cirsium, Carduus, Sonchus, Solanum, Rorippa, Rotala, Lindernia, Lamium, Veronica, Abutilon, Emex, Datura, Viola, Galeopsis, Papaver, Centaurea, Trifolium, Ranunculus, Taraxacum.

<u>Dikotyle Kulturen der Gattungen:</u> Gossypium, Glycine, Beta, Daucus, Phaseolus, Pisum, Solanum, Linum, Ipomoea, Vicia, Nicotiana, Lycopersicon, Arachis, Brassica, Lactuca, Cucumis, Cucurbita.

Monokotyle Unkräuter der Gattungen: Echinochloa, Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cynodon, Monochoria, Fimbristylis, Sagittaria, Eleocharis, Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, Apera.

10

15

20

Monokotyle Kulturen der Gattungen: Oryza, Zea. Triticum. Hordeum, Avena. Secale, Sorghum, Panicum, Saccharum, Ananas, Asparagus, Allium.

Die Verwendung der erfindungsgemäßen Wirkstoffe ist jedoch keineswegs auf diese Gattungen beschränkt, sondern erstreckt sich in gleicher Weise auch auf andere Pflanzen.

Die Verbindungen eignen sich in Abhängigkeit von der Konzentration zur Totalunkrautbekämpfung z.B. auf Industrie- und Gleisanlagen und auf Wegen und Plätzen
mit und ohne Baumbewuchs. Ebenso können die Verbindungen zur Unkrautbekämpfung in Dauerkulturen, z.B. Forst, Ziergehölz-, Obst-, Wein-, Citrus-, Nuß-,
Bananen-, Kaffee-, Tee-, Gummi-, Ölpalm-, Kakao-, Beerenfrucht- und Hopfenanlagen, auf Zier- und Sportrasen und Weideflächen und zur selektiven Unkrautbekämpfung in einjährigen Kulturen eingesetzt werden.

15

5

10

Die erfindungsgemäßen Verbindungen der Formel (I) eignen sich insbesondere zur selektiven Bekämpfung von monokotylen und dikotylen Unkräutern in monokotylen Kulturen sowohl im Vorauflauf- als auch im Nachauflauf-Verfahren.

20

Die Wirkstoffe können in die üblichen Formulierungen übergeführt werden, wie Lösungen, Emulsionen, Spritzpulver, Suspensionen, Pulver, Stäubemittel, Pasten, lösliche Pulver, Granulate, Suspensions-Emulsions-Konzentrate. Wirkstoff-imprägnierte Natur- und synthetische Stoffe sowie Feinstverkapselungen in polymeren Stoffen.

25

Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln.

WO 00/05221 - 58 -

Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol, oder Alkylnaphthaline, chlorierte Aromaten und chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole, wie Butanol oder Glykol sowie deren Ether und Ester, Ketone wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser.

PCT/EP99/04929

10

15

20

5

Als feste Trägerstoffe kommen in Frage: z.B. Ammoniumsalze und natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate, als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnußschalen, Maiskolben und Tabakstengeln; als Emulgier- und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure-Ester, Polyoxyethylen-Fettalkohol-Ether, z.B. Alkylarylpolyglykolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate; als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulvrige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid. Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyanin-farbstoffe und Spurennährstoffe wie Salze von Eisen, Mangan. Bor, Kupfer. Kobalt. Molybdän und Zink verwendet werden.

5

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.

Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren Formulierungen auch in Mischung mit bekannten Herbiziden zur Unkrautbekämpfung Verwendung finden, wobei Fertigformulierungen oder Tankmischungen möglich sind.

Für die Mischungen kommen bekannte Herbizide infrage, beispielsweise

Acetochlor, Acifluorfen(-sodium), Aclonifen, Alachlor, Alloxydim(-sodium), 15 Ametryne, Amidochlor, Amidosulfuron, Anilofos, Asulam, Atrazine, Azafenidin, Azimsulfuron, Benazolin(-ethyl), Benfuresate, Bensulfuron(-methyl), Bentazon, Benzofenap, Benzoylprop(-ethyl), Bialaphos, Bifenox, Bispyribac(-sodium), Bromobutide, Bromofenoxim, Bromoxynil, Butachlor, Butroxydim, Butylate, Cafenstrole, Caloxydim, Carbetamide, Carfentrazone(-ethyl), Chlomethoxyfen, Chloramben, 20 Chloridazon, Chlorimuron(-ethyl), Chlornitrofen, Chlorsulfuron, Chlortoluron, Cini-Clodinafop(-propargyl), Cinmethylin, Cinosulfuron, Clethodim, don(-ethyl), Clomeprop, Clopyralid, Clopyrasulfuron(-methyl), Cloransulam(-Clomazone, methyl), Cumyluron, Cyanazine, Cybutryne, Cycloate, Cyclosulfamuron, Cycloxydim, Cyhalofop(-butyl), 2,4-D, 2,4-DB, 2,4-DP, Desmedipham, Diallate, Dicamba, 25 Diclofop(-methyl), Diclosulam, Diethatyl(-ethyl), Difenzoquat, Diflufenican, Diflufenzopyr, Dimefuron, Dimepiperate, Dimethachlor, Dimethametryn, Dimethenamid, Dimexyflam, Dinitramine, Diphenamid, Diquat, Dithiopyr, Diuron, Dymron, Epoprodan, EPTC, Esprocarb, Ethalfluralin, Ethametsulfuron(-methyl), Ethofumesate, Ethoxyfen, Ethoxysulfuron, Etobenzanid, Fenoxaprop(-P-ethyl), Flamprop(-iso-30 propyl), Flamprop(-isopropyl-L), Flamprop(-methyl), Flazasulfuron, Fluazifop(-P- butyl), Fluazolate, Flucarbazone, Flufenacet, Flumetsulam, Flumiclorac(-pentyl), Flumioxazin, Flumipropyn, Flumetsulam, Fluometuron, Fluorochloridone, Fluorogivcofen(-ethyl), Flupoxam, Flupropacil, Flurpyrsulfuron(-methyl, -sodium), Flurenol(-butyl), Fluridone, Fluroxypyr(-meptyl), Flurprimidol, Flurtamone, Fluthiacet(-methyl), Fluthiamide, Fomesafen, Glufosinate(-ammonium), Glyphosate(isopropylammonium), Halosafen, Haloxyfop(-ethoxyethyl), Haloxyfop(-P-methyl), Hexazinone, Imazamethabenz(-methyl), Imazamethapyr, Imazamox, Imazapic, Imazapyr, Imazaquin, Imazethapyr, Imazosulfuron, Iodosulfuron, Ioxynil, Isopropalin, Isoproturon, Isouron, Isoxaben, Isoxachlortole, Isoxaflutole, Isoxapyrifop, Lactofen, Lenacil, Linuron, MCPA, MCPP, Mefenacet, Mesotrione, Metamitron, Metazachlor, Methabenzthiazuron, Metobenzuron, Metobromuron, (alpha-)Metolachlor, Metosulam, Metoxuron, Metribuzin, Metsulfuron(-methyl), Molinate, Monolinuron, Naproanilide, Napropamide, Neburon, Nicosulfuron, Norflurazon, Orbencarb, Oryzalin, Oxadiargyl, Oxadiazon, Oxasulfuron, Oxaziclomefone, Oxyfluorfen, Paraquat, Pelargonsäure, Pendimethalin, Pentoxazone, Phenmedipham, Piperophos, Pretilachlor, Primisulfuron(-methyl), Procarbazone, Prometryn, Propachlor, Propanil, Propaquizafop, Propisochlor, Propyzamide, Prosulfocarb, Prosulfuron, Pyraflufen-(ethyl), Pyrazolate, Pyrazosulfuron(-ethyl), Pyrazoxyfen, Pyribenzoxim, Pyributicarb, Pyridate, Pyriminobac(-methyl), Pyrithiobac(-sodium), Quinchlorac, Quinmerac, Quinoclamine, Quizalofop(-P-ethyl), Quizalofop(-P-tefuryl), Rimsulfuron, Sethoxydim, Simazine, Simetryn, Sulcotrione, Sulfentrazone, Sulfometuron-(methyl), Sulfosate, Sulfosulfuron, Tebutam, Tebuthiuron, Tepraloxydim, Terbuthylazine, Terbutryn, Thenylchlor, Thiafluamide, Thiazopyr, Thidiazimin, Thifensulfuron(-methyl), Thiobencarb, Tiocarbazil, Tralkoxydim, Triallate, Triasulfuron, Tribenuron(-methyl), Triclopyr, Tridiphane, Trifluralin und Triflusulfuron.

Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Fungiziden, Insektiziden, Akariziden, Nematiziden, Schutzstoffen gegen Vogelfraß, Pflanzennährstoffen und Bodenstruktur-verbesserungsmitteln ist möglich.

5

10

15

20

25

10

15

Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus durch weiteres Verdünnen bereiteten Anwendungsformen, wie gebrauchsfertige Lösungen, Suspensionen, Emulsionen, Pulver, Pasten und Granulate angewandt werden. Die Anwendung geschieht in üblicher Weise, z.B. durch Gießen, Spritzen, Sprühen, Streuen.

Die erfindungsgemäßen Wirkstoffe können sowohl vor als auch nach dem Auflaufen der Pflanzen appliziert werden. Sie können auch vor der Saat in den Boden eingearbeitet werden.

Die angewandte Wirkstoffmenge kann in einem größeren Bereich schwanken. Sie hängt im wesentlichen von der Art des gewünschten Effektes ab. Im allgemeinen liegen die Aufwandmengen zwischen 1 g und 10 kg Wirkstoff pro Hektar Bodenfläche, vorzugsweise zwischen 5 g und 5 kg pro ha.

Die Herstellung und die Verwendung der erfindungsgemäßen Wirkstoffe geht aus den nachfolgenden Beispielen hervor.

Herstellungsbeispiele:

Beispiel 1

10

15

20

5

1,2 g (3,48 mMol) 5-Ethoxy-4-methyl-2-(2-carboxy-5-trifluormethyl-benzyl)-2,4-dihydro-3H-1,2,4-triazol-3-on werden in 30 ml Acetonitril suspendiert und mit 0,39 g (3,48 mMol) 1,3-Cyclohexandion und 0,76 g (3,7 mMol) Dicyclohexylcarbodiimid (DCC) bei Raumtemperatur (ca. 20°C) versetzt. Das Reaktionsgemisch wird über Nacht (ca. 15 Stunden) bei Raumtemperatur gerührt und dann mit 1,0 ml (7,0 mMol) Triethylamin und 0,10 ml (1,39 mMol) Trimethylsilylcyanid versetzt. Nach 3 Stunden bei Raumtemperatur wird mit 100 ml 5%iger wäßriger Natriumcarbonatlösung verrührt, der sich abscheidende Dicyclohexylharnstoff abgesaugt und die alkalische wäßrige Phase mehrfach mit Ethylacetat extrahiert. Dann wird die wäßrige Phase mit 35%iger Salzsäure auf pH 2 eingestellt und mehrfach mit Methylenchlorid extrahiert. Die Methylenchloridphasen werden über Natriumsulfat getrocknet und eingeengt.

Man erhält 0.8 g (52 % der Theorie) 5-Ethoxy-4-methyl-2-[2-(2.6-dioxo-cyclohexyl-carbonyl)-5-trifluormethyl-benzyl]-2,4-dihydro-3H-1,2,4-triazol-3-on als amorphen Rückstand.

5

logP (bei pH=2 bestimmt): 2,70.

10

Beispiel 2

15

20

25

Zu einer Suspension aus 2,15 g (6,5 mMol) 2-(4-Carboxy-3-chlor-phenyl)-4-methyl-5-trifluormethyl-2,4-dihydro-3H-1,2,4-triazol-3-on. 0,83 g (7.2 mMol) 1,3-Cyclo-hexandion und 40 ml Acetonitril wird eine Lösung von 1,5 g (7,2 mMol) Dicyclo-hexylcarbodiimid in 40 ml Acetonitril gegeben und die Reaktionsmischung wird 16 Stunden bei 20°C gerührt. Dann werden 1,3 g (13 mMol) Triethylamin und 0,26 g (2,6 mMol) Trimethylsilylcyanid dazu gegeben und das Reaktionsgemisch wird weitere 4 Stunden bei 20°C gerührt. Dann wird mit 180 ml 2%iger wässriger Sodalösung verrührt und abgesaugt. Die Mutterlauge wird mit Essigsäureethylester extrahiert. Dann wird die wässrige Phase mit 2N-Salzsäure angesäuert und mit Methylenchlorid extrahiert. Die organische Phase wird getrocknet, im Wasserstrahlvakuum eingeengt

und mit Diethylether/Petrolether digeriert. Das kristallin angefallene Produkt wird durch Absaugen isoliert.

5

Man erhält 1,6 g (59% der Theorie) 2-[4-(2,6-Dioxocyclohexylcarbonyl)-3-chlorphenyl]-4-methyl-5-trifluormethyl-2,4-dihydro-3H-1,2,4-triazol-3-on vom Schmelzpunkt 182°C.

10

logP (bei pH=2 bestimmt): 3,13.

15

Analog zu den Herstellungsbeispielen 1 und 2 sowie entsprechend der allgemeinen Beschreibung der erfindungsgemäßen Herstellungsverfahren können beispielsweise auch die in den nachstehenden Tabellen 1 und 2 aufgeführten Verbindungen der Formel (I) - bzw. der Formeln (IA-3), (IB-2), (IC-2) oder (ID) - hergestellt werden.

$$(R^4)_n = \begin{pmatrix} 0 & 0 & 0 \\ 1 & A & N & R^6 \\ R^3 & R^5 & R^5 \end{pmatrix}$$

$$(R^4)_n$$
 O
 A
 N
 R^6
 $(IC-2)$

$$R^{2}$$
) R^{1} R^{6} R^{4}) R^{4} R^{3} R^{3} R^{3} R^{4} (ID)

Tabelle 1: Beispiele für die Verbindungen der Formeln (IA-3), (IB-2), (IC-2)

Bsp		p3	(Position)	-		(Formel)
Nr.	A	R ³	$(R^4)_n$	R ⁵	R6	Physikal.
						Daten
3	-	Н	Н	CF ₃	CH ₃	(IC-2)
						$\log P = 2,41a)$
4	CH ₂	CF ₃	Н	\triangle		(IA-3)
						$\log P = 2,41a$
5	CH ₂	SO ₂ CH ₃	Н	\triangle		(IB-2)
	_					Fp.: 153°C
6	CH ₂	SO ₂ CH ₃	Н	CH ₃	CH ₃	(IA-3)
						Fp.: 162°C
7	CH ₂	Cl	Н	CH ₃	CH ₃	(IB-2)
						$\log P = 1,50^{a}$
8	CH ₂	Cl	Н	CF ₃	CH ₃	(IB-2)
						$\log P = 2,44a$
9	CH ₂	Cl	Н	\triangle	\triangle	(IB-2)
						$\log P = 2,23b)$
10	CH ₂	Br	Н	C ₂ H ₅	OC ₂ H ₅	(IA-3)
						$\log P = 2,68a$
11	CH ₂	F	Н	OC ₂ H ₅	CH ₃	(IA-3)
						$\log P = 1,73a$
12	CH ₂	F	Н	SCH ₃	CH ₃	(IA-3)
						$\log P = 1,99^{a}$
13	CH ₂	F	Н	SO ₂ CH ₃	CH ₃	(IA-3)
						$\log P = 1.83a)$

Bsp		_	(Position)	-		(Formel)
Nr.	A	R ³	$(R^4)_n$	R ⁵	R6	Physikal. Daten
14	CH ₂	Br	Н	СН3	СН3	(IB-2) $logP = 1,57a)$
15	СН2	Br	Н	OC ₂ H ₅	CH ₃	(IB-2) Fp.: 132°C
16	CH ₂	Br	Н	\triangle	\triangle	(IB-2) $logP = 2.31a$
17	CH ₂	Cl	Н	OC ₂ H ₅	\triangle	(1A-3) $logP = 3.03a$
18	СН2	Cl	Н	CF ₃	CH ₃	(IA-3) $logP = 2,75a$
19	CH ₂	Cl	Н	C ₂ H ₅	OC ₂ H ₅	(IA-3) $logP = 2,60a$
20	CH ₂	NO ₂	Н	SCH ₃	CH ₃	(IA-3) $logP = 2.04a$
21	CH ₂	CF3	Н	OC ₂ H ₅	\triangle	$\log P = 3.02^{a}$
22	CH ₂	CF ₃	Н	C ₂ H ₅	OC ₂ H ₅	(IA-3) $logP = 2,91a$
23	CH ₂	CF ₃	Н	SCH ₃	CH ₃	(IA-3) $logP = 2,59a$
24	CH ₂	OCH ₃	Н	OC ₂ H ₅	CH ₃	(IA-3) $logP = 1,994$
25	CH2	OCH ₃	Н	С2Н5	OC ₂ H ₅	(IA-3) $logP = 2,183$

Bsp			(Position)			(Formel)
Nr.	Α	\mathbb{R}^3	$(R^4)_n$	R ⁵	R ⁶	Physikal.
						Daten
26	CH ₂	Br	Н	OC ₂ H ₅	CH ₃	(lA-3)
						$\log P = 2,46a$
27	CH ₂	Br	Н	CF ₃	CH ₃	(IA-3)
						$\log P = 2,85a$
28	CH ₂	Н	Н	CF ₃	CH ₃	(IA-3)
						$\log P = 2,33a$
29	CH ₂	CF ₃	Н	OCH ₃	CH ₃	(IA-3)
						$\log P = 2,35a$
30	СН2	F	Н	CF ₃	CH ₃	(IA-3)
						logP = 2,47a
						-
31	CH ₂	F	Н	C ₂ H ₅	OC ₂ H ₅	(IA-3)
						$\log P = 2,28a$
32	CH ₂	F	Н	OCH ₃	CH ₃	(IA-3)
						$\log P = 1,76a$
33	CH ₂	Н	Н	OC ₂ H ₅	CH ₃	(IA-3)
						$\log P = 1,93a)$
34	CH ₂	Н	Н	OCH ₃	CH ₃	(IA-3)
						$\log P = 1.61^{a}$

Bsp			(Position)			(Formel)
Nr.	A	\mathbb{R}^3	$(R^4)_n$	R ⁵	R ⁶	Physikal.
						Daten
35		Н	(2) CF ₃	CF ₃	CH ₃	(IC-2)
						Fp.: 190°C
36	-	Н	Н	CF ₃	CH ₃	(IA-3)
				•		$\log P = 2,48^{a}$
37	-	Cl	Н	CF ₃	CH ₃	(IA-3)
						$logP = 2.83^{a}$
38	-	Н	(2) Cl	CH ₃	CH ₃	(IC-2)
						Fp.: 196°C
39	CH ₂	Cl	(2) Cl	CF ₃	CH ₃	(IB-2)
						$\log P = 2.79^{a}$
40	-	Br	Н	CF ₃	CH ₃	(IA-3)
						$logP = 2,90^{a}$
41	CH ₂	Cl	(2) CI	SCH ₃	CH ₃	(IB-2)
						$logP = 2.38^{a}$
42	CH ₂	Cl	(2) Cl	OC ₂ H ₅	CH ₃	(IB-2)
						$logP = 2.48^{a}$
43	CH ₂	Cl	(2) Cl	\wedge	\triangle	(IB-2)
						$logP = 2,62^{a}$
44	CH ₂	Cl	(2) Cl	OCH ₃	CH ₃	(IB-2)
						$logP = 2,14^{a}$
45	CH ₂	Cl	(2) Cl	OC ₃ H ₇ -i	CH ₃	(IB-2)
						$logP = 2,79^{a}$
46	CH ₂	Cl	(2) Cl	OCH ₂ CF ₃	CH ₃	(IB-2)
						$\log P = 2.84^{\circ}$

		T	T			
Bsp			(Position)			(Formel)
Nr.	A	R ³	$(R^4)_n$	R5	R ⁶	Physikal.
						Daten
47	CH ₂	Cl	(2) Cl	Br	CH ₃	(IB-2)
						$\log P = 2.26^{a}$
48	CH ₂	Cl	(2) Cl	Н	CH ₃	(IB-2)
						$\log P = 1.69^{a}$
49	CH ₂	Cl	(2) Cl		CH ₃	(IB-2)
						$\log P = 2.25^{a}$
50	CH ₂	Cl	(2) CI	$N(CH_3)_2$	CH ₃	(IB-2)
						$logP = 2.18^{a}$
51	CH ₂	Cl	(2) CI	CH ₃	CH ₃	(IB-2)
						$\log P = 1,79^{a}$
52	CH ₂	Cl	(2) CI	$R^5 + R^6$:	(CH ₂) ₄	(IB-2)
						$\log P = 1.98^{a}$
53	CH ₂	Cl	(2) CI	OCH ₃	\triangle	(IB-2)
						$\log P = 2,45^{a}$
54	CH ₂	CI	(2) Cl	OC_2H_5	\triangle	(IB-2)
				: :		$\log P = 2.79^{a}$
55	CH ₂	Cl	(2) Cl	OC_3H_7 -i	\triangle	(IB-2)
						$\log P = 3.14^{a}$
56	CH ₂	Cl	(2) CI	OCH ₂ CF ₃	\triangle	(IB-2)
						$\log P = 3.18^{a}$
57	CH ₂	Cl	(2) Cl	SCH ₃	\triangle	(IB-2)
						$\log P = 2.77^{a}$
58	CH ₂	Cl	(2) Cl	$N(CH_3)_2$	\triangle	(IB-2)
						$\log P = 2,49^{a}$

Bsp			(Position)	_		(Formel)
Nr.	A	R ³	$(R^4)_n$	R ⁵	R ⁶	Physikal. Daten
59	CH ₂	Cl	(2) Cl	CH ₃	\triangle	(IB-2) $\log P = 2.09^{a}$
60	CH ₂	Cl	(2) Cl	C ₂ H ₅	OC ₂ H ₅	(IB-2) $logP = 2.65$ a)
61	CH ₂	CF ₃	Н	CF ₃	СН₃	(IA-3) $logP = 3.06^{a}$
62	CH ₂	Н	Н	C ₂ H ₅	OC ₂ H ₅	(IA-3) $logP = 2.10^{a}$
63	CH ₂	Н	Н	SCH ₃	CH ₃	$(IA-3)$ $logP = 1.85^{a}$
64	СН2	Н	Н	\triangle		$\log P = 2.09^{a}$
65	CH ₂	Cl	(5) Cl	CF ₃	CH ₃	$\log P = 3.24^{a}$
66	CH ₂	Н	Н	SO ₂ CH ₃	СН,	$(IA-3)$ $logP = 1.71^{a}$
67	CH ₂	SO ₂ CH ₃	Н	OC ₂ H ₅	CH ₃	$(IA-3)$ $logP = 1,64^{\circ}$
68	CH ₂	Br	Н	R ⁵ + R ⁶ :	(CH ₂) ₄	$\log P = 1,64^{\circ}$
69	CH ₂	Br	Н	OC ₃ H ₇ -n	СН,	$\log P = 2.82^{\circ}$
70	CH ₂	Br	Н	OC ₃ H ₇ -i	CH ₃	(IA-3) $logP = 2,84$

Bsp			(Position)		T	(Fa1)
Nr.	$oxed{A}$	\mathbb{R}^3	$(R^4)_n$	R5	R ⁶	(Formel)
			(IC)n	, Ro	R	Physikal.
						Daten
71	CH ₂	CF_3	Н	OC ₃ H ₇ -i	CH ₃	(IA-3)
						$\log P = 3.05^{a}$
72	CH ₂	CF ₃	Н	OC ₃ H ₇ -n	CH ₃	(IA-3)
						$\log P = 3.06^{a}$
73	CH ₂	Br	Н	Br	CH ₃	(IA-3)
_						$logP = 2.33^{a}$
74	CH ₂	CF ₃	Н	OC ₃ H ₇ -i	\wedge	(IA-3)
						$\log P = 3.38^{a}$
75	CH ₂	CF ₃	Н	CH ₂ OCH ₃		(IA-3)
						$\log P = 2.53^{a}$
76	CH ₂	CF ₃	Н	CH ₂ OCH ₃	CH ₃	(IA-3)
						$\log P = 2,26^{a}$
77	CH ₂	I	Н	CF ₃	CH ₃	(IA-3)
						$\log P = 2.98^{a}$
78	CH ₂	Br	Н	SCH ₃	CH ₃	(IA-3)
						$\log P = 2.36^{a}$
79	CH ₂	Cl	Н	SCH ₃	CH ₃	(IA-3)
						$\log P = 2.30^{a}$
80	CH ₂	CF ₃	Н	CH ₃	CH ₃	(IA-3)
						$\log P = 2.06^{a}$
81	CH ₂	CF ₃	Н	OC ₂ H ₅	C ₂ H ₅	(IA-3)
						$\log P = 3.01^{a}$
82	CH ₂	CF ₃	Н	$N(CH_3)_2$	CH ₃	(IA-3)
						$\log P = 2.40^{a}$

Bsp Nr.	A	R ³	(Position) (R ⁴) _n	R ⁵	R ⁶	(Formel) Physikal. Daten
83	CH ₂	CF ₃	Н	Br	CH ₃	$(IA-3)$ $logP = 2,54^{a}$
84	СН2	Н	(3) CH ₃	OC ₂ H ₅	CH ₃	(IA-3) $logP = 2,21^{a}$
85	СН2	Br	Н	\triangle	\triangle	$(IA-3)$ $logP = 2,62^{a}$
86	CH ₂	Br	Н	s	CH ₃	(IA-3) $logP = 2,99^{a}$
87	CH ₂	CF ₃	Н	SC ₂ H ₅	CH ₃	(IA-3) $logP = 2,94^{a}$
88	CH ₂	CF ₃	Н	SC ₃ H ₇ -i	CH₃	$(IA-3)$ $logP = 2,63^{a}$
89	CH ₂	CF ₃	Н	R ⁵ + R ⁶ :	(CH ₂) ₄	$(IA-3)$ $logP = 2,25^{a}$
90	CH ₂	CF ₃	Н	OCH ₃	\triangle	$(IA-3)$ $logP = 2.65^{a}$
91	CH ₂	CF ₃	Н	OCH ₂ CF ₃	CH ₃	$\log P = 3.06^{\circ}$
92	CH ₂	CN	Н	CF ₃	CH ₃	(IA-3) $logP = 2,29$
93	CH ₂	F	Н	N(CH ₃) ₂	CH ₃	$\log P = 1.81$
94	CH ₂	F	Н	OC ₃ H ₇ -n	CH ₃	$\log P = 2,44$

Bsp Nr.	A	R ³	(Position) (R ⁴) _n	R ⁵	R ⁶	(Formel) Physikal. Daten
95	CH ₂	F	Н	CH ₂ OCH ₃	CH ₃	$(IA-3)$ $logP = 1,69^{a}$
96	CH ₂	F	Н	OCH ₃	\triangle	(IA-3) $logP = 2,05$ a)
97	CH ₂	F	Н	OC ₂ H ₅	\triangle	$(IA-3)$ $logP = 2,39^{a}$
98	СН2	I	Н	OC ₂ H ₅	CH ₃	(IA-3) $logP = 2.59^{a}$
99	CH ₂	OCH ₃	(2) NO ₂	OC ₂ H ₅	CH ₃	$(IC-2)$ $logP = 2,24^{a}$
100	СН2	OCH ₃	(2) NO ₂	SCH ₃	CH ₃	(IC-2) $logP = 2.18 a)$

Tabelle 2: Beispiele für die Verbindungen der Formel (ID)

Bsp Nr.	A	(Position) R ¹	(Position) (R²) _m	(Position)	(Position) (R ⁴) _n	(Position) Z	Physikal. Daten
ID-1	CH ₂	Н	Н	(2) C1	(4) Cl	(3) CH ₃	logP = 4.26 a)
ID-2	CH ₂	(5) CH ₃	(5) CH ₃	(4) CF ₃	Н	(2) $N = CH_3$ CH_3	$\log P = 2,61^{a}$
ID-3	CH ₂	Н	Н	(4) CF ₃	Н	(2) N CH N C	
ID-4	CH ₂	Н	Н	(4) CF ₃	H	(2) O CH ₃ CH CH ₃	
ID-5	CH ₂	Н	Н	Н	Н	(2) N	logP = 2,35 a)
ID-6	СН	2 H	Н	(4) CF	3 H	(2) O S CF ₃	logP = 3,77 a)

•	
•	

Bsp	A	(Position)	(Posi-	(Posi-	(Posi-	(Position)	Physikal.
Nr.		\mathbb{R}^{1}	tion)	tion)	tion)	Z	Daten
100		1	$(\mathbf{R}^2)_{m}$	R ³	(R ⁴) _n		
ID-7	CH ₂	(5) CH ₃	(5) CH ₃	(4) CF ₃	Н	(2)	logP =
			i I			0	3.27 a)
						N CH ₃	
						N=	
10.0	CII	(5) 63				OC ₂ H ₅	
ID-8	CH ₂	(5) CH ₃	(5) CH ₃	(4) CF ₃	H	(2)	logP =
							3,18 a)
						N CH3	
					!	N=	
ID-9	CH	7.7	T. Y.	(4) 5		`SCH₃	
110-9	CH ₂	Н	Н	(4) Br	Н	(2)	logP =
						Ĭ	2,92 a)
						N N	
						N _N	
ID-10	CH ₂	Н	Н	(4) Br	Н	(2)	logP =
						\	3,04 a)
						N N	
ID-11	CH ₂	(5) CH ₃	(5) CH ₃	(2) Cl	(4) Cl	(3)	Fp.:
		_			` ' -	Q Q	140°C
						N CH3	
						N=(logP =
						OCH3	2.72 ^{a)}
ID-12	CH ₂	(5) CH ₃	(5) CH ₃	(2) Cl	(4) Cl	(3)	Fp.:
						O II	103°C
						N CH ₃	
						N=(logP =
		1				`OC₂H₅	3,08 a)
ID-13	CH ₂	(5) CH ₃	(5) CH ₃	(2) CI	(4) Cl	(3)	Fp.:
						0	118°C
						N CH3	
						$h = \langle$	$logP = 2,98^{a}$
	J					SCH ₃	4,70

Bsp Nr.	A	(Position) R¹	(Position) (R ²) _m	(Position)	(Position) (R ⁴) _n	(Position) Z	Physikal. Daten
ID-14	CH ₂	(5) CH ₃	(5) CH ₃	(2) Cl	(4) Cl	(3) O CH ₃	Fp.: 132°C
						CH ₃	logP = 2,32 a)
ID-15	CH ₂	(5) CH ₃	(5) CH ₃	(2) Cl	(4) Cl	(3) O CH ₃	Fp.: 170°C
						N=\Br	$\log P = 2,86^{a}$
ID-16	CH ₂	(4) CH ₃	(4) CH ₃	(2) Cl	(4) CI	(3)	$logP = 2,78^{a}$
						OCH ₃	
ID-17	CH ₂	(4) CH ₃	(4) CH ₃	(2) Cl	(4) Cl	Q	$\log P = 3.15^{a}$
						N=CH ₃	
ID-18	CH ₂	(4) CH ₃	(4) CH ₃	(2) Cl	(4) Cl	(3)	logP =
						N CH	
ID-1	9 CH	(4) CH ₂	(4) CH ₃	(2) Cl	(4) C	SCH ₃	logP =
						N CH	2,38 a)
						N=(CH ₃	

- ,4	
3	

-Bsp Nr.	A	(Position)	tion)	(Position)	(Position)	(Position) Z	Physikal. Daten
ID-20	CH ₂	(4) CH ₃	$(R^2)_{m}$ (4) CH ₃	R^3	$(R^4)_n$ (4) Cl	(3)	logD =
			(1) 0113	(2) (1	(4) CI	(3)	logP =
						N—CH ₃	2.94 ^{a)}
ID-21	CH ₂	(5) C_3H_7-i	Н	(2) Cl	(4) Cl	(3)	logP =
						OCH ₃	3,12 a)
ID-22	CH ₂	(5) C ₃ H ₇ -i	Н	(2) Cl	(4) Cl	(3)	logP =
						0	3,49 a)
						N CH ₃ N= OC ₂ H ₅	
						OC₂H₅	
ID-23	CH ₂	(5) C_3H_7 -i	Н	(2) Cl	(4) Cl	(3)	logP =
						O CH	3,39 a)
						N=CH ₃	-
ID-24	CH ₂	(5) C_3H_7 -i	Н	(2) Cl	(4) Cl	(3)	logP =
						N—CH ₃	2,70 a)
						CH3	
ID-25	CH ₂	(5) C ₃ H ₇ -i	Н	(2) Cl	(4) Cl	(3)	logP =
						N CH ₃	3,28 a)

1	
•	

Bsp Nr.	A	(Position) R ¹	(Position) (R ²) _m	(Position)	(Position) (R ⁴) _n	(Position) Z	Physikal. Daten
ID-26	CH ₂	(5) CH ₃	Н	(2) Cl	(4) Cl	(3) $ \begin{array}{c} $	
ID-27	CH ₂	(5) CH ₃	Н	(2) Cl	(4) Cl	(3) $ \begin{array}{c} O \\ N \\ OC_2H_5 \end{array} $	
ID-28	CH ₂	(5) CH ₃	Н	(2) Cl	(4) Cl	(3) N=CH ₃ SCH ₃	
ID-29	CH ₂	(5) CH ₃	Н	(2) Cl	(4) CI	(3) O N — CH ₃ CH ₃	-
ID-30	CH ₂	(5) CH,	Н	(2) Cl	(4) Cl	(3) N — CH ₃ Br	

Ausgangsstoffe der Formel (III):

Beispiel (III-1)

5

4,5 g (15 mMol) 2-(3-Chlor-4-cyano-phenyl)-4-methyl-5-trifluormethyl-2,4-dihydro-3H-1,2,4-triazol-3-on werden in 80 ml 60%iger Schwefelsäure aufgenommen und die Mischung wird 6 Stunden unter Rückfluß erhitzt. Nach Abkühlen auf Raumtemperatur wird das kristallin angefallene Produkt durch Absaugen isoliert.

10

Man erhält 4,5 g (91% der Theorie) 2-(3-Carboxy-4-chlor-phenyl)-4-methyl-5-trifluormethyl-2,4-dihydro-3H-1,2,4-triazol-3-on vom Schmelzpunkt 223°C.

Beispiel (III-2)

15

20

2 g (4,9 mMol) 5-Brom-4-methyl-2-(2-ethoxycarbonyl-5-trifluormethyl-benzyl)-2,4-dihydro-3H-1,2,4-triazol-3-on (vgl. Beispiel IV-1) werden in 30 ml 10%iger ethanolischer Kalilauge gelöst und 2 Stunden unter Rückfluß erhitzt. Das Reaktionsgemisch wird im Wasserstrahlvakuum eingeengt, in 20 ml Wasser aufgenommen und mit verdünnter Salzsäure angesäuert. Der ausfallende Feststoff wird filtriert und getrocknet.

5

10

15

Man erhält 1,2 g (71% der Theorie) 5-Ethoxy-4-methyl-2-(2-carboxy-5-trifluor-methyl-benzyl)-2,4-dihydro-3H-1,2,4-triazol-3-on als festes Produkt. logP: 2,18a)

Beispiel (III-3)

13,4 g (35 mMol) 4-Methyl-5-trifluormethyl-2-(2,6-dichlor-3-methoxycarbonyl-benzyl)-2,4-dihydro-3H-1,2,4-triazol-3-on werden in 60 ml 1,4-Dioxan vorgelegt und eine Lösung von 1,54 g (38,5 mMol) Natriumhydroxid in 20 ml Wasser wird bei Raumtemperatur langsam eindosiert. Die Reaktionsmischung wird 150 Minuten bei 60°C gerührt und anschließend im Wasserstrahlvakuum eingeengt. Der Rückstand wird in 100 ml Wasser gelöst und durch Zugabe von konz. Salzsäure wird der pH-Wert der Lösung auf 1 eingestellt. Das hierbei kristallin angefallene Produkt wird durch Absaugen isoliert.

Man erhält 11,7 g (90% der Theorie) 4-Methyl-5-trifluormethyl-2-(2,6-dichlor-3-carboxy-benzyl)-2,4-dihydro-3H-1,2,4-triazol-3-on vom Schmelzpunkt 207°C.

Analog zu den Beispielen (III-1) bis (III-3) können beispielsweise auch die in der nachstehenden Tabelle 2 aufgeführten Verbindungen der allgemeinen Formel (III) hergestellt werden.

HO
$$(R^4)_n$$
 (III)

Tabelle 2: Beispiele für die Verbindungen der Formel (III)

Bsp	(Position-)	(Position-)	(Position-)	Physikal. Daten
Nr.	\mathbb{R}^3	$(R^4)_n$	-A-Z	
III-4	(4-) Cl	Н	O N—CH ₃ CH ₃	logP = 1.39 °
III-5	(4-) SO ₂ CH ₃	Н	(3-)	$logP = 1,47^{a}$
III-6	(4-) F	Н	O N CH_3 OC_2H_5	logP = 1,73 ^{a)}
III-7	(4-) CF ₃	Н	(2-) Br	$logP = 1,65^{a}$
III-8	(4-) Br	Н	$(2-)$ $N = CH_3$ $N = CH_3$ $N(CH_3)_2$	logP = 1,74 a)
III-9	(4-) CF ₃	Н	$\begin{array}{c c} & & & \\ & & &$	$logP = 2,43^{a}$

4	

Bsp	(Position-)	(Position-)	(Position-)	Physikal. Daten
Nr.	\mathbb{R}^3	$(\mathbb{R}^4)_n$	-A-Z	
111-10	(4-) CF ₃	Н	N C ₂ H ₅	$logP = 2.12^{a}$
			(2-) OCH ₃	1 D 1 (1 2)
III-11	(4-) CF ₃	Н	N N N CH_3 CH_3	$logP = 1,61^{a}$
III-12	(4-) CF ₃	Н	(2-) N CH ₃ N(CH ₃) ₂	logP = 1,93 a)
III-13	(4-) CF ₃	Н	N CH ₃ N= (2-) Br	$logP = 2,01^{a}$
III-14	(4-) CF ₃	Н	(2-)	logP = 1,77 a)
III-15	(3-) CH ₃	Н	O N CH_3 OC_2H_5	$logP = 1,70^{a}$

Bsp	(Position-)	(Position-)	(Position-)	Physikal. Daten
Nr.	\mathbb{R}^3	$(R^4)_n$	-A-Z	i nysikai. Daten
III-16	(4-) SO ₂ CH ₃	Н	O N — CH ₃ SCH ₃	logP = 1.07 a
III-17	(4-) CF ₃	Н	$\begin{array}{c} O \\ N \\ N \end{array} \begin{array}{c} CH_3 \\ SC_2H_5 \end{array}$	$logP = 2.35^{-a}$
III-18	(4-) CF ₃	Н	$ \begin{array}{c} $	logP = 2.63 a)
III-19	(4-) CF ₃	Н	(2-) OCH ₃	$logP = 2.13^{a}$
III-20	(4-) CF ₃	Н	(2-) N=N	$logP = 1.82^{a}$
III-21	(4-) CF ₃	Н	OCH ₂ CF ₃	logP = 2,48 ^{a)}

- 1	

Bsp	(Position-)	(Position-)	(Position-)	Physikal. Daten
Nr.	\mathbb{R}^3	$(\mathbf{R}^4)_n$	-A-Z	
III-22	(4-) CF ₃	Н	N N N N N N N N N N	$logP = 1.73^{a}$
III-23	(4-) CF ₃	Н	N S CF ₃	logP = 3,11 a)
III-24	(4-) F	Н	(2-) N CH ₃ N(CH ₃) ₂	$\log P = 1,43^{a}$
III-25	(4-) F	Н	(2-) N CH ₃ N CC ₃ H ₇ -n	logP = 1,97 a)
III-26	(4-) F	Н	(2-) N—CH ₃ CH ₂ OCH ₃	logP = 1,30 a)
III-27	(4-) F	Н	$ \begin{array}{c c} & O \\ & N \\ & O \\$	logP = 1,63 ^{a)}

- Bsp	(Position-)	(Position-)	(Position-)	Physikal. Daten
Nr.	R³	$(R^4)_n$	-A-Z	<u>.</u>
III-28	(4-) F	Н	N N N N N N N N N N	$logP = 1.93^{a}$
III-29	(4-) CF ₃	Н	O CH ₃ CH ₃ CH ₃	$logP = 1.78^{a}$
III-30	(2-) Cl	(4-) CI	$(3-)$ $N \longrightarrow CH_3$ SCH_3	Fp.: 230°C logP = 1,63°
III-31	(2-) Cl	(4-) Cl	$(3-) \qquad \begin{matrix} O \\ N \end{matrix} \begin{matrix} CH_3 \\ OC_2H_5 \end{matrix}$	Fp.: 190°C logP = 1,73 a)
III-32	(2-) C1	(4-) CI	(3-) N N N N N N N N N N N N N N N N N N N	Fp.: 210°C logP = 1,87 a)
III-33	(2-) CI	(4-) Cl	$(3-) \qquad \begin{matrix} O \\ N \end{matrix} - CH_3 \\ OCH_3 \end{matrix}$	Fp.: 210°C logP = 1,43 a)

Fp.: 164°C logP = 2.01 a) Fp.: 168°C
logP = 2.01 a)
Fp.: 168°C
Fp.: 168°C
$logP = 2.04^{a}$
logP = 2,04
Fp.: 218°C
$logP = 1,53^{a}$
Fp.: 259°C
$logP = 0.98^{a}$
Fp.: 210°C
$logP = 1.56^{a}$
Fp.: 197°C
$logP = 1.51^{a}$
$logP = 1,51^{a}$
$logP = 1,51^{a}$

Bsp	(Position-)	(Position-)	(Position-)	Physikal. Daten
Nr.	R ³	$(R^4)_n$	-A-Z	
III-40	(2-) Cl	(4-) C1	0	Fp.: 262°C
			N N CH3	$\log P = 1.11^{a}$
			N= CH ₃	
III-41	(2-) Cl	(4-) Cl	0	Fp.: 249°C
			N N	$logP = 1.30^{a}$
			(3-)	
III-42	(2-) Cl	(4-) Cl	0	Fp.: 200°C
			N	$logP = 1,71^{a}$
			(3-) OCH ₃	
III-43	(2-) Cl	(4-) Cl	0	Fp.: 189°C
			N	$logP = 2,01^{a}$
			OC_2H_5	
III-44	(2-) Cl	(4-) Cl	0	Fp.: 178°C
	_		N	$logP = 2,28^{a}$
i i			(3-) OC ₃ H ₇ -i	
III-45	(2-) CI	(4-) Cl	(3-)	Fp.: 161°C
				$logP = 2,31^{a}$
			N N	
			OCH ₂ CF ₃	

Bsp	(Position-)	(Position-)	(Position-)	Physikal. Daten
Nr.	R ³	$(R^4)_n$	-A-Z	
III-46	(2-) Cl	(4-) Cl	0	Fp.: 200°C
			NNN	$logP = 1.98^{a}$
			N=(
			(3-) SCH ₃	_
III-47	(2-) Cl	(4-) Cl	0	Fp.: 201°C
			N N	$\log P = 1.39^{a}$
			(3-) CH ₃	
III-48	(2-) Cl	(4-) Cl	(3-)	Fp.: 207°C
				$\log P = 1,77^{a}$
			N	
			N(CH ₃) ₂	
III-49	(2-) Cl	(4-) Cl	(3-)	Fp.: 140°C
			0	$logP = 1,88^{a}$
			N OC ₂ H ₅	
			C ₂ H ₅	-
III-50	(4-)	Н	O	Fp.: 154°C
A CONTRACTOR OF THE CONTRACTOR	OCH ₂ CHF ₂		N CH ₃	$\log P = 2.14^{a}$
			(2-) CF ₃	
III-51	Н	Н	0	Fp.: 214°C
			N N	$logP = 1.87^{a}$
			(2-) N N	

Bsp	(Position-)	(Position-)	(Position-)	Discribed D
Nr.	\mathbb{R}^3	$(R^4)_n$	-A-Z	Physikal. Daten
III-52	Н	H		Fp.: 194°C
			N N	
			0=	$\log P = 2.07^{\text{a}}$
			(2-)	,
III-53	Н	Н	0:1	Fp.: 181°C
			N CI	$\log P = 1.97^{a}$
				1,5,
		<u> </u>	(2-)	
III-54	Н	Н	S	Fp.: 251°C
			\n\NH	$logP = 1,14^{a}$
			(2-)	
III-55	(2-) Cl	(4-) CI	O	$logP = 1,38^{a}$
			N CH3	
			(3-)	
III-56	(2-) Cl	(4-) CI	Q	$logP = 1.48^{a}$
			N CH3	
			(3-)	-
III-57	(2-) CI	(4-) Cl	0,	
			$(3-)$ SO_2	
TII 50	(4) 0:		(3-)	
III-58	(4-) Cl	Н	0	'H-NMR
İ			N N CH3	(DMSO-D6, δ):
			N=	5,42 ppm.
			(2-) CF ₃	
	<u></u>			

Bsp	(Position-)	(Position-)	(Position-)	Physikal. Daten
Nr.	R ³	$(\mathbf{R}^4)_{n}$	-A-Z	
III-59	$(4-) CF_3$	Н	O	'H-NMR
			N CH ₃	(DMSO-D6, δ):
			n=<	5,48 ppm.
			(2-) CH ₃	
III-60	(4-) CF ₃	Н	0	'H-NMR
			N CH ₃	(DMSO-D6, δ):
			N=<	5,60 ppm.
			(2-) CF ₃	$LogP = 2,47^{a}$
III-61	(4-) CF ₃	Н	0	$logP = 2,33^{a}$
			NNN	
			Ν=	
			(2-)	
III-62	(4-) SO ₂ CH ₃	Н	0	III NIMD
111-02	(4-) 3O ₂ CH ₃	n	Ĭ cu	'H-NMR
			N N CH ₃	(DMSO-D6, δ):
			CF ₃	5,14 ppm.
			(3-)	
III-63	(4-) SO ₂ CH ₃	Н	0	¹H-NMR
			N N CH ₃	(DMSO-D6, δ):
			N=	5,27 ppm.
			(2-) CH ₃	
III-64	(4-) Cl	Н	0	¹H-NMR (CDCl ₃ ,
			N CH ₃	δ): 5,12 ppm.
			N=(
			(3-) CH ₃	

Bsp	(Position-)	(Position-)	(Position-)	Physikal. Daten
Nr.	R³	$(R^4)_n$	-A-Z	!
III-65	(4-) Cl	Н	0	'H-NMR
			N N CH ₃	(DMSO-D6, δ):
			N=	5,20 ppm.
	<u> </u>	A	(3-) CF ₃	
III-66	(4-) Cl	Н	0	H-NMR
			N N N	(DMSO-D6, δ):
			N=<	5,03 ppm.
			(2-)	
III-67	(4-) Br	Н	(2-)	'H-NMR
			Q.	(DMSO-D6, δ):
			N-OC ₂ H ₅	5,24 ppm.
			N=(
			C ₂ H ₅	
III-68	(4-) Br	Н	0	'H-NMR
			N CH3	(DMSO-D6, δ):
			N=	5,39 ppm.
			(2-) CF ₃	-
III-69	(4-) F	Н	0	'H-NMR
			N CH3	(DMSO-D6, δ):
			N=(5,19 ppm.
			$(2-)$ OC_2H_5	
III-70	(4-) F	Н	O II	¹H-NMR
			N N CH3	(DMSO-D6, δ):
			N=	5,30 ppm.
			(2-) SCH ₃	
			L	·

Bsp	(Position-)	(Position-)	(Position-)	Physikal. Daten
Nr.	R ³	$(R^4)_n$	-A-Z	
III-71	(4-) F	Н	(2-)	'H-NMR
			O II	(DMSO-D6, δ):
			N CH ₃	5,43 ppm.
			SO ₂ CH ₃	
III-72	(4-) Br	Н	O	¹ H-NMR, (CDCl ₃
			N CH ₃	δ):
			N=(5,10 ppm.
			(3-) CH ₃	
III-73	(4-) Br	Н	O _{II}	'H-NMR
			N CH ₃	(DMSO-D6, δ):
			N=(5,03 ppm.
			(3-) OC ₂ H ₅	
III-74	(4-) Br	Н	0	'H-NMR
			N CH ₃	(DMSO-D6, δ):
			N=	5,19 ppm.
			(3-) CF ₃	
III-75	(4-) Br	Н	0	¹H-NMR
			\backslash	(DMSO-D6, δ):
			N=(5,01 ppm.
			(2-)	
III-76	(4-) Cl	Н	0	'H-NMR
			N	(DMSO-D6, δ):
			N=(5,14 ppm.
			(2-) OC ₂ H ₅	

Bsp	(Position-)	(Position-)	(Position-)	Physikal. Daten
Nr.	\mathbb{R}^3	$(R^4)_n$	-A-Z	i ilysikai. Dateij
III-77	(4-) Cl	Н	(2-)	H-NMR
			O	(DMSO-D6, δ):
		<u> </u>	N_OC ₂ H ₅	5.25 ppm.
			C ₂ H ₅	
III-78	$(4-) NO_2$	Н	0	¹H-NMR
			N N N	(DMSO-D6, δ):
			N=	5,23 ppm.
			(2-) OC ₂ H ₅	
III-79	$(4-) NO_2$	Н	O II	'H-NMR
			N CH3	(DMSO-D6, δ):
			N=<	5,37 ppm.
			(2-) SCH ₃	
III-80	(4-) CF ₃	Н	0	$logP = 2.46^{a}$
			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
			$N = \langle OC_2H_5 \rangle$	
			(2-)	
III-81	(4-) CF ₃	Н	(2-)	'H-NMR
			O II	(DMSO-D6, δ):
			N N OC_2H_5	5,31 ppm.
			$N = \langle C_2H_5 \rangle$	
III-82	(4-) CF ₃	Н	O	$logP = 2.08^{a}$
			N CH ₃	
			(2-) SCH ₃	
}		i i	(- ,	

Bsp	(Position-)	(Position-)	(Position-)	Physikal. Daten
Nr.	R ³	$(R^4)_n$	-A-Z	
III-83	(4-) OCH ₃	Н	0	'H-NMR (CDCl ₃ ,
			N CH ₃	δ): 5,38 ppm.
			N=(
			OC ₂ H ₅	
III-84	(4-) OCH ₃	H	(2-)	¹ H-NMR (CDCl ₃ ,
111-04	(4-) OCII ₃	11	(2-)	
				δ): 5,43 ppm.
			N OC ₂ H ₅	
			N=	
			C ₂ H ₅	
III-85	(4-) CF ₃	Н	(2-)	'H-NMR (CDCl ₃ ,
-			Q.	δ): 5,47 ppm.
			N CH ₃	
			N N	
			CH ₂ OCH ₃	
			, ,	
III-86	(4-) Br	Н		$logP = 1,44^{a}$
			N N N	
			N=	
			(2-)	
III-87	(4-) Br	Н	Q	$logP = 1,63^{a}$
			N N	
			$N=\langle \rangle$	
			(2-)	
III-88	(4-) Br	Н	0	$logP = 2.27^{a}$
111 00	(17)			105. 2.2.
			N CH ₃	
			$N = \langle OC_3H_7 - i \rangle$	
			(2-) $OO_3 N_7^{-1}$	
		 		

Harden Physikal Daten Physikal Dat	Bsp	(Position-)	(Position-)	(Position)	. DI
III-99 (4-) Br H (2-) logP = 2.31 3" N CH ₃ CC ₃ H ₇ -n III-90 H H O O O O O O O O O O O O O O O O O	1	!	1		Physikal. Daten
III-90	111-89			*	1 5 000
III-90	111 02	(1-) Di	11	(2-)	$\log P = 2.31^{-37}$
III-90				O II	
III-90				N CH ₃	
III-90				N	
III-90		i : 		OC ₂ H ₂ -n	
III-91				3 /	
III-91	III-90	Н	Н	O II	$logP = 1.82^{a}$
III-91				N CH ₃	
III-91 (4-) Br H O 'H-NMR (CDCl ₃ , δ): 5,32 ppm. III-92 (4-) Br H O 'H-NMR (CDCl ₃ , δ): 5,53 ppm. (2-) CF ₃ 'H-NMR (CDCl ₃ , δ): 5,53 ppm. III-93 (4-) F H O C ₂ H ₅ 'H-NMR (CDCl ₃ , δ): 5,53 ppm. III-94 (4-) F H O C ₂ H ₅ 'H-NMR (CDCl ₃ , δ): 5,39 ppm.					
III-91 (4-) Br H O 'H-NMR (CDCl ₃ , δ): 5,32 ppm. III-92 (4-) Br H O 'H-NMR (CDCl ₃ , δ): 5,53 ppm. (2-) CF ₃ 'H-NMR (CDCl ₃ , δ): 5,53 ppm. III-93 (4-) F H O C ₂ H ₅ 'H-NMR (CDCl ₃ , δ): 5,53 ppm. III-94 (4-) F H O C ₂ H ₅ 'H-NMR (CDCl ₃ , δ): 5,39 ppm.				CF.	
III-92				(2-)	
III-92 (4-) Br	III-91	(4-) Br	Н	Q	H-NMR (CDCl ₃ ,
III-92 (4-) Br H OC ₂ H ₅ (2-) OC ₂ H ₅ H-NMR (CDCl ₃ , δ): 5,53 ppm. H-NMR (CDCl ₃ , δ): 5,53 ppm. H-NMR (CDCl ₃ , δ): 5,39 ppm. OC ₂ H ₅ H-NMR (CDCl ₃ , δ): 5,39 ppm. OC ₂ H ₅ N-CH ₃ δ): 5,57 ppm.				~ CH	
III-92 (4-) Br H O H-NMR (CDCl ₃ , δ): 5,53 ppm. III-93 (4-) F H O H-NMR (CDCl ₃ , δ): 5,53 ppm. (2-) CF ₃ H-NMR (CDCl ₃ , δ): 5,39 ppm. III-94 (4-) F H O H-NMR (CDCl ₃ , δ): 5,39 ppm.				N N C 1 13	0). 5,52 ppm.
III-92 (4-) Br H O H-NMR (CDCl ₃ , δ): 5,53 ppm. III-93 (4-) F H O H-NMR (CDCl ₃ , δ): 5,53 ppm. (2-) CF ₃ H-NMR (CDCl ₃ , δ): 5,39 ppm. III-94 (4-) F H O H-NMR (CDCl ₃ , δ): 5,39 ppm.				N=	1
III-93				(2-) $0C_2H_5$	
III-93 (4-) F H O_{CF_3} δ): 5,53 ppm. δ): 5,53 ppm. δ): 5,53 ppm. δ): 5,39 ppm. δ): 5,39 ppm. δ 0 δ 1 δ 1 δ 2 δ 3 δ 3: 5,39 ppm. δ 4 δ 3: 5,39 ppm. δ 5 δ 3: 5,57 ppm. δ 6 δ 3: 5,57 ppm. δ 6 δ 5: 5,57 ppm. δ 6 δ 5: 5,57 ppm.	III-92	(4-) Br	Н	0	H-NMR (CDCL
III-93 (4-) F H O_{N} (CDCl ₃ , δ): 5,39 ppm. O_{2} (4-) F H O_{N} (CDCl ₃ , δ): 5,57 ppm. O_{N} (CE) O_{2} (CE) O_{2} (CE) O_{3} (CE) O_{4} (CDCl ₃ , δ): 5,57 ppm.		, ,		Į au	
III-93 (4-) F H O 'H-NMR (CDCl ₃ , δ): 5,39 ppm. III-94 (4-) F H O 'H-NMR (CDCl ₃ , δ): 5,57 ppm.				N CH ₃	6): 5,53 ppm.
III-93 (4-) F H O 'H-NMR (CDCl ₃ , δ): 5,39 ppm. III-94 (4-) F H O 'H-NMR (CDCl ₃ , δ): 5,57 ppm.				N=	
$N = \frac{1}{N} - CH_3$ δ): 5,39 ppm. OC_2H_5 δ): 5,39 ppm. $N = \frac{1}{N} - CH_3$ δ): 5,57 ppm. δ): 5,57 ppm.				(2-) CF ₃	
$N = \frac{1}{N} - CH_3$ δ): 5,39 ppm. OC_2H_5 δ): 5,39 ppm. $N = \frac{1}{N} - CH_3$ δ): 5,57 ppm. δ): 5,57 ppm.	III-93	(4-) F	н	0	III AD AD CODOL
III-94 (4-) F H OC ₂ H ₅ 'H-NMR (CDCl ₃ , δ): 5,57 ppm.		(,) ,	11	Ĭ	
III-94 (4-) F H O H_3 (CDCl ₃ , H_4) H_5 (CDCl ₃ , H_5): 5,57 ppm.				N CH3	δ): 5,39 ppm.
III-94 (4-) F H O H-NMR (CDCl ₃ , δ): 5,57 ppm.				$N = \langle$	
III-94 (4-) F H O H-NMR (CDCl ₃ , δ): 5,57 ppm.				$(2-)$ OC_2H_5	
$N = CH_3$ δ): 5,57 ppm.	III O4	(4) 5			
N=CE	111-94	(4-) F	Н	O II	'H-NMR (CDCl ₃ ,
N=CE				N CH3	δ): 5,57 ppm.
CF ₃				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
1 11/~1				CF ₃	
				(4-)	

Bsp	(Position-)	(Position-)	(Position-)	Physikal. Daten
Nr.	\mathbb{R}^3	$(R^4)_n$	-A-Z	
III-95	(4-) F	Н	(2-)	¹ H-NMR (CDCl ₃ ,
			0	δ): 5,44 ppm.
			$N - OC_2H_5$	
			N=	
			`C₂H₅	
III-96	(4-) F	Н	O	¹ H-NMR (CDCl ₃ ,
			N CH ₃	δ): 5,41 ppm.
			N=	
			(2-) OCH ₃	
III-97	Н	Н	0	¹H-NMR (CDCl ₃ ,
			N CH ₃	δ): 5,34 ppm.
			OC_2H_5	
			(2)	
III-98	Н	Н		H-NMR (CDCl ₃ ,
			N CH ₃	δ): 5,38 ppm.
			N=(
			(2-) OCH ₃	
III-99	Н	Н	0	¹ H-NMR (CDCl ₃ ,
			\sim N \sim N \sim	δ): 5,26 ppm.
			N=(
			(2-)	
III-100	Н	Н	O	'H-NMR (CDCl ₃ ,
			N CH ₃	δ): 5,43 ppm.
			N=	i
			(2-) SCH ₃	

BspNr. (Position-) R³ (Position-) (R⁴)n (Position-) -A-Z Physikal. D III-101 H H (2-) $\log P = 1.2$ III-102 (4-) SO ₂ CH ₃ H OC ₂ H ₃ $\log P = 1.14$ III-103 (4-) CF ₃ H OC ₂ H ₅ $\log P = 2.45$ III-104 (4-) CF ₃ H OC ₃ H ₇ -i $\log P = 2.48$	(a)
H H (2-) $\log P = 1.2$ $\log P = 1.12$	
III-102 (4-) SO ₂ CH ₃ H O $ OC_2H_3 $ H O $ OC_2H_3 $ $ OC_2H_3 $ $ OC_2H_3 $ $ OC_2H_3 $ $ OC_3H_3	a)
III-102 (4-) SO ₂ CH ₃ H O $ OC_2H_3 $ H O $ OC_2H_3 $ $ OC_2H_3 $ $ OC_2H_3 $ $ OC_2H_3 $ $ OC_3H_3	(a)
III-102 (4-) SO_2CH_3 H OC_2H_3 OC_2H_5 OC_2H_5 OC_2H_5 OC_3H_7-i	(a)
III-104 (4-) CF ₃ H (2-) $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(a)
III-103 (4-) CF ₃ H OC_2H_5 OC_2H_5 OC_2H_5 OC_3H_7 -i O	
III-103 (4-) CF ₃ H $ O_3 $	
$N = \frac{1}{N} - CH_3$ $N = 1$	
$N = \langle OC_3H_7^{-i} \rangle$ III-104 (4-) CF ₃ H (2-) $\log P = 2,48$	a)
III-104 (4-) CF ₃ H (2-) $\log P = 2,48$	
0	
	a)
N N CH_3	
$N = \langle OC_3H_7-n \rangle$	
III-105 (4-) Br H $O \log P = 1.85$	a)
N—(CH ₃	
(2-) Br	
III-106 (4-) CF ₃ H $\log P = 2.74$	a)
(3-) OC ₃ H ₇ -i	

Bsp Nr.	(Position-)	(Position-) (R ⁴) _n	(Position-) -A-Z	Physikal. Daten
III-107	(4-) CF ₃	H	(2-)	$logP = 2.01^{-a}$
111-107	(4-) 013		N CH ₂ OCH ₃	
III-108	(4-) CF ₃	H	(2-)	$logP = 1,79^{a}$
111-108	(4) 643		N CH ₃ CH ₂ OCH ₃	
III-109	(4-) CF ₃	Н	N CH	$\log P = 1,65^{a}$
			(2-) Br	
III-110	(4-) Br	Н	0 N N CH SCH	
III-11	1 (4-) C1	Н	0 N N C SCH	
III-11	2 (4-) I	Н	(2-) OC	$\log P = 2.06^{a}$ $2H_3$ $2H_5$

Bsp	(Position-)	(Position-)	(Position-)	Physikal. Daten
Nr.	R ³	$(\mathbb{R}^4)_n$	-A-Z	
III-113	(4-) I	Н	H_3C N N C_2H_5	
III-114	(4-) Br	Н	(2-) N (2-)	Fp.: 191°C
III-115	(4-) Br	Н	(2-) N N	Fp.: 213°C
III-116	Н	Н	(2-) O	
III-117	Н	Н	$ \begin{array}{c c} & O \\ & N - CH_3 \\ & CF_3 \end{array} $	Fp.: 112°C -
III-118	(4-) CF ₃	Н	O N—CH ₃ CF ₃	Fp.: 158°C

Bsp	(Position-)	(Position-)	(Position-)	Physikal. Daten
Nr.	R³	$(\mathbf{R}^4)_n$	-A-Z	
III-119	(4-) CF ₃	Н	(2-) N N N N N N N N N N N N N N N N N N N	Fp.: 162°C
III-120	(4-) Cl	(5-) Cl	O N CH ₃ CF ₃	Fp.: 167°C
III-121	Н	Н	OH OH	Fp.: 188°C
III-122	Н	Н	N N N N N N N N N N N N N N N N N N N	
III-123	Н	Н	N—CH ₃ CH ₃	Fp.: 131°C
III-124	(4-) Cl	Н	(2-) O N CH ₃ CF ₃	Fp.: 109°C

Bsp	(Position-)	(Position-)	(Position-)	Physikal. Daten
Nr.	R ³	$(R^4)_n$	-A-Z	
III-125	(4-) I	Н	$N = CH_3$ CF_3	Fp.: 104°C
III-126	(4-) Br	Н	N—CH ₃ CF ₃	Fp.: 99°C
III-127	(4-) Br	Н	N=N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	Fp.: 174°C
III-128	Н	Н	O N CH ₃ SCH ₃	Fp.: 122°C
III-129	(4-) Br		N N N N N N N N N N	Fp.: 164°C
III-130	Н	Н	O N CH_3 OC_3H_7 -i	Fp.: 154°C

Bsp	(Position-)	(Position-)	(Position-)	Physikal. Daten
Nr.	R ³	$(R^4)_n$	-A-Z	
III-131	(4-) Br	Н	$ \begin{array}{c} $	Fp.: 161°C
HII-132	(4-) CN	Н	0	Fp.: 196°C
			$N = CH_3$ CF_3	
III-133	Н	Н	(2-) N	Fp.: 192°C
III-134	Н	Н	O=N (2-) H	
III-135	(4-) Br	Н	(2) O	Fp.: 252°C
III-136	(2-) NO ₂	(3-) OCH ₃	N N N N N N N N N N	logP = 1.65 a)
III-137	(2-) NO ₂	(3-) OCH	N N N N N N N N N N	$\log P = 1,58^{a}$

Ausgangsstoffe der Formel (IV):

Beispiel (IV-1)

Stufe 1

5

10 g (49 mMol) 2-Methyl-4-trifluormethyl-benzoesäure werden in 150 ml Ethanol gelöst und mit 1 ml konz. Schwefelsäure versetzt. Nach 24 Stunden Erhitzen unter Rückfluß wird die Lösung eingeengt, in Methylenchlorid aufgenommen und mit gesättigter wäßriger Natriumhydrogencarbonat-Lösung extrahiert. Die Methylenchlorid-Phase wird über Natriumsulfat getrocknet und im Wasserstrahlvakuum eingeengt.

15

10

Man erhält 9 g (80% der Theorie) 2-Methyl-4-trifluormethyl-benzoesäure-ethylester als amorphen Rückstand.

Stufe 2

9 g (39 mMol) 2-Methyl-4-trifluormethyl-benzoesäure-ethylester werden in 200 ml Tetrachlormethan gelöst und mit 7 g (39 mMol) N-Brom-succinimid und 0,1 g Dibenzoylperoxid versetzt. Nach 6 Stunden Erhitzen unter Rückfluß wird das abgeschiedene Succinimid abfiltriert und das Filtrat im Wasserstrahlvakuum eingeengt.

Man erhält 12 g eines amorphen Rückstandes, der neben 2-Brommethyl-4-trifluormethyl-benzoesäure-ethylester noch 17% 2,2-Dibrommethyl-4-trifluormethyl-benzoesäure-ethylester und 12% 2-Methyl-4-trifluormethyl-benzoesäure-ethylester enthält.

Stufe 3

15

20

5

10

4 g 2-Brommethyl-4-trifluormethyl-benzoesäure-ethylester (ca. 70%ig) und 2.28 g (12,8 mMol) 5-Brom-4-methyl-2,4-dihydro-3H-1,2,4-triazol-3-on werden in 150 ml Acetonitril gelöst, mit 5,3 g (38,4 mMol) Kaliumcarbonat versetzt und unter kräftigem Rühren 2 Stunden zum Rückfluß erhitzt. Das Reaktionsgemisch wird in Wasser aufgenommen und mit Methylenchlorid mehrfach extrahiert. Die gesammelten Methylenchlorid-Phasen werden über Natriumsulfat getrocknet, im Wasserstrahlvakuum eingeengt und chromatographiert.

5

10

15

20

25

- Man erhält 2 g (38 % der Theorie) 5-Brom-4-methyl-2-(2-ethoxycarbonyl-5-trifluor-methyl-benzyl)-2,4-dihydro-3H-1,2,4-triazol-3-on als amorphes Produkt.

¹H-NMR (CDCl₃, δ): 5,46 ppm.

Beispiel (IV-2)

6,7 g (40 mMol) 4-Methyl-5-trifluormethyl-2,4-dihydro-3H-1,2,4-triazol-3-on werden in 150 ml Acetonitril vorgelegt und mit 11 g (80 mMol) Kaliumcarbonat verrührt. Nach Erwärmen der Mischung auf 50°C wird dann eine Lösung von 13,1 g (44 mMol) 3-Brommethyl-2,4-dichlor-benzoesäure-methylester in 20 ml Acetonitril unter Rühren tropfenweise dazu gegeben und die Reaktionsmischung wird noch 15 Stunden unter Rühren zum Rückfluß erhitzt. Anschließend wird im Wasserstrahlvakuum eingeengt, der Rückstand in Methylenchlorid aufgenommen, mit 1N-Salzsäure gewaschen, mit Natriumsulfat getrocknet und filtriert. Das Filtrat wird unter vermindertem Druck eingeengt, der Rückstand mit Petrolether digeriert und das kristallin angefallene Produkt durch Absaugen isoliert.

Man erhält 14,9 g (97% der Theorie) 4-Methyl-5-trifluormethyl-2-(2,6-dichlor-3-methoxycarbonyl-benzyl)-2,4-dihydro-3H-1,2,4-triazol-3-on vom Schmelzpunkt 109°C.

Analog zu den Beispielen (IV-1) und (IV-2) können beispielsweise auch die in der nachstehenden Tabelle 3 aufgeführten Verbindungen der allgemeinen Formel (IVa) hergestellt werden.

$$(R^4)_n$$

$$A - Z$$

$$(IVa)$$

Tabelle 3: Beispiele für die Verbindungen der Formel (IV)

Bsp	(Position-)	(Position-) (R ⁴) _n	(Position-) -A-Z	X	Physikal. Daten
IV-3	(2-) Cl	(4-) Cl	N CH ₃	OCH ₃	Fp.: 229°C logP = 2,27 a)
IV-4	(2-) Cl	(4-) Cl	(3-) SCH ₃	OCH ₃	Fp.: 120°C
1 4			N CH ₃ OC ₂ H ₅		$\log P = 2{,}38^{a}$
			(3-)	OCII	F 1279C
IV-5	(2-) Cl	(4-) Cl	(3-) N N	OCH ₃	Fp.: 127°C logP = 2,55 a)
IV-6	(2-) Cl	(4-) Cl	0 N CH OCH		Fp.: 121°C logP = 2,04 a

Bsp	(Position-)	(Position-)	(Position-)		DI 11 1
Nr.	\mathbb{R}^3	$(R^4)_n$	-A-Z	\mathbf{X}	Physikal. Daten
IV-7	(2-) Cl	(4-) C1	(3-)	OCH ₃	<u> </u>
			0		
			CH CH		$logP = 2.73^{-a}$
			N CH ₃		
	;		OC ₃ H ₂ -i		
IV-8	(2-) Cl	(4.) Cl	j ,		
1 4 - 6	(2-) (1	(4-) Cl	(3-)	OCH ₃	Fp.: 129°C
			0		$logP = 2,72^{a}$
			N N CH3		
			N=		
			OCH ₂ CF ₃		
IV-9	(2-) Cl	(4-) Cl	0	OCH ₃	Fp.: 164°C
			N CH ₃		$\log P = 2.18^{a}$
			N=(
			(3-) Br		
IV-10	(2-) Cl	(4-) Cl	0	OCH ₃	Fp.: 158°C
			N CH ₃		$\log P = 1,55^{a}$
			N=(1,00
			(3-) H		_
IV-11	(2-) Cl	(4-) Cl	0	OCH ₃	Fp.: 106°C
			N-CH ₃		$\log P = 2.16^{a}$
			N=		2,10
			(3-)		
IV-12	(2-) Cl	(4-) Cl	(3-)	OCH ₃	Fp.: 126°C
			O		$\log P = 2.11^{a}$
			N CH ₃		
- 7			N=(
			N(CH ₃) ₂		

Bsp	(Position-)	(Position-) (R ⁴) _n	(Position-) -A-Z	X	Physikal. Daten
IV-13	(2-) Cl	(4-) Cl	O N CH ₃ CH ₃	OCH,	Fp.: 146°C logP = 1,65 a)
IV-14	(2-) Cl	(4-) Cl	(3-) N N	OCH ₃	Fp.: 178°C logP = 1,86°
IV-15	(2-) Cl	(4-) Cl	(3-) N N OCH ₃	OCH ₃	Fp.: 97°C logP = 2,36 a)
IV-1	6 (2-) Cl	(4-) Cl	(3-) N N OC ₂ H ₅	OCH	Fp.: 99°C logP = 2,73 a)
IV-	17 (2-) CI	(4-) C1	(3-) N= OC ₃ H ₇ -i	OCH	Fp.: 56°C logP = 3.08 a
IV	-18 (2-) C	C1 (4-) C	1 (3-) N N OCH ₂ C	OC	H ₃ Fp.: 102°C logP = 3,05

Bsp	(Position-)	(Position-)	(Position-)	i	D1 11 1
Nr.	\mathbb{R}^3	$(R^4)_n$	-A-Z	X	Physikal. Daten
IV-19	(2-) CI	(4-) CI	(3-)	OCH ₃	Fp.: 131°C
1			0		
			Ĭ /		$logP = 2.70^{a}$
			N N		
			N=		
			SCH ₃	1	
IV-20	(2-) Cl	(4-) Cl	(3-)	OCH ₃	Fp.: 135°C
			O C		$\log P = 1.97^{a}$
			\sim N \sim N \sim		
			N=(
			CH ₃		
IV-21	(2-) CI	(4-) Cl	(3-)	OCH ₃	En : 142°C
		. /		OCH ₃	Fp.: 143°C
			Ĭ		$\log P = 2,42^{a}$
			N N		
			N=(N(CH ₃) ₂		
IV-22	(2-) Cl	(4-) Cl	(3-)	OCH ₃	Fp.: 85°C
			0		$logP = 2.58^{a}$
			N N OC ₂ H ₅		-
			, N=<		
			C ₂ H ₅		
IV-23	(2-) Cl	(4-) Cl	Q	OCH ₃	$logP = 1,98^{a}$
			N-CH ₃	,	1,70
			(3-)		
IV-24	(2-) Cl	(4-) Cl	(3-)	OCH ₃	$logP = 2.07^{a}$
			O II		
			N CH3		

Bsp	(Position-)	(Position-)	(Position-) -A-Z	X	Physikal. Daten
	(2-) Cl	$\frac{(R^4)_n}{(4-) Cl}$	0	OCH ₃	Fp.: 157°C
IV-25	(2-) C1	(+) (-)	(3-) SO ₂		$logP = 2,94^{a}$
IV-26	(4-) CF ₃	Н	(2-)	OC ₂ H ₅	¹H-NMR
1 V - 20	(4-) C1 3		0		$(CDCl_3, \delta)$:
			N CH ₃		5,53 ppm.
			SO ₂ CH ₃		
IV-27	(4-) NO ₂	Н	0	OC ₂ H ₅	1
			N N CH ₃		(CDCl ₃ , δ):
			N		5,48 ppm.
			(3-) CF ₃		
IV-28	3 (4-) NO ₂	Н	(3-)	OC ₂ H	h-NMR
			0		(CDCl ₃ , δ):
			N N		5,30 ppm.
					-
IV-2	.9 (4-)	Н	O	OC ₂ F	I ₅ H-NMR
	SO₂CH	3	N N CH	13	$(CDCl_3, \delta)$:
		3	N=CF ₃		5,61 ppm.
			(3-)		
IV-	30 (4-) C	l H	0	OC ₂	1
			N N-CI	H ₃	$(CDCl_3, \delta)$:
			CH ₃		5,08 ppm.
			(3-)		

Bsp	(Position-)	(Position-)	(Position-)		Physikal.
Nr.	R ³	$(R^4)_n$	-A-Z	X	Daten
IV-31	(4-) CI	Н	O	OC ₂ H ₅	'H-NMR
			N CH ₃		$(CDCl_3, \delta)$:
			N=(5,17 ppm.
			(3-) CF ₃		
IV-32	(4-) Cl	Н	(3-)	OC ₂ H ₅	'H-NMR
			O		$(CDCl_3, \delta)$:
			N		5,00 ppm
			N=(
777.00					
IV-33	(4-)	Н	0	OC ₂ H ₅	$logP = 1,53^{a}$
	SO ₂ CH ₃		\sim N \rightarrow		
			(2-)		
IV-34	(4-) Br	Н	(2-)	OC ₂ H ₅	$logP = 3,24^{a}$
			0		
			N-OC ₂ H ₅		
			"		
			`C₂H₅		-
IV-35	(4-) Br	Н	0	OC ₂ H ₅	$logP = 3.40^{a}$
			N N CH3		
			N=(
		,	(2-) CF ₃		
IV-36	(4-) F	Н	Q	OC ₂ H ₅	$logP = 2,41^{a}$
			N-CH3		-
			N=(
			(3-) Br		
Li	t				

Bsp Nr.	(Position-)	(Position-) (R ⁴) _n	(Position-) -A-Z	X	Physikal. Daten
IV-37	(4-) F	H	O N CH ₃ SCH ₃	OC ₂ H ₅	logP = 2,45 °)
IV-38	(4-) Br	Н	O N CH ₃ CH ₃		$logP = 2,06^{a}$
IV-39	(4-) Br	Н	0 N CH. Br	3	$\log P = 2,64^{a}$
IV-4	0 (4-) Br	Н	(3-) O N CH	3	$\log P = 3.23^{a}$
IV-4	(4-) Br	Н	(3-) N N	OC ₂ F	$H_5 logP = 3.02^{a}$
IV-	42 (4-) C	1 H	(2-) N= OC ₂ H ₅	OC ₂	$H_5 \log P = 3.23$

		(Position-)			Physikal.
Nr.	R^3	$(R^4)_n$	-A-Z	X	Daten
IV-43	(4-) Cl	Н	N N N CF_3	OC ₂ H ₅	logP = 3,31 a)
IV-44	(4-) Cl	H	$\begin{array}{c c} (2-) & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $	OC ₂ H ₅	logP = 3,14 a)
IV-45	(4-) NO ₂	Н	(2-) N OC ₂ H ₅	OC ₂ H ₅	$logP = 2,42^{a}$
IV-46	(4-) NO ₂	Н	N—N—CH ₃ SCH ₃	OC ₂ H ₅	$\log P = 2.82^{a}$
IV-47	(4-) CF ₃	H	(2-) N OC ₂ H ₅	OC ₂ H ₅	$logP = 3,48^{a}$
IV-48	(4-) CF ₃	Н	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	OC ₂ H ₅	$\log P = 3.38^{a}$

Bsp	(Position-)	(Position-)	(Position-)		Physikal.
Nr.	\mathbb{R}^3	$(R^4)_n$	-A-Z	X	Daten
IV-49	(4-) CF ₃	Н	N N N N N N N N N N	OC ₂ H ₅	$logP = 3.02^{a}$
IV-50	(4-) CF ₃	Н	(2-) N N OC ₂ H ₅	OC ₃ H ₇	$logP = 3,91^{a}$
IV-51	(4-) OCH ₃	Н	N CH ₃ Br	OC ₂ H ₅	
IV-52	2 (4-) OCH ₃	H	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	OC₂H,	
IV-5	3 (4-) CF ₃	Н	0 N CH OC ₂ H		5 H-NMR (CDCl ₃ , δ): 5,37 ppm.
IV-5	54 (4-) CF	, Н	0 N CH OCH		1 ₅ ¹ H-NMR (CDCl ₃ , δ): 5,37 ppm.

Bsp	(Position-)	(Position-)	(Position-)	<u> </u>	Physikal.
Nr.	R ³	$(R^4)_n$	-A-Z	X	Daten
IV-55	Н	Н	$ \begin{array}{c c} & O \\ & N - CH_3 \\ & OC_2H_5 \end{array} $	OC ₂ H ₅	
IV-56	Н	Н	N CH ₃	OC ₂ H ₅	'H-NMR (CDCl ₅ , δ): 5,37 ppm.
			(2-) OCH ₃		
IV-57	Н	Н	$(2-)$ $ \begin{array}{c} O\\ N\\ \end{array} $ $ \begin{array}{c} O\\ C_2H_5\\ \end{array} $	OC ₂ H ₅	¹ H-NMR (CDCl ₃ , δ): 5,40 ppm.
IV-58	(4-) Br	Н	$ \begin{array}{c c} & O \\ & N \\ & O \\$	OC₂H₅	$logP = 2,95^{a}$
IV-59	(4-) Br	Н	ON N CH ₃ OCH ₃	OC₂H₅	¹ H-NMR (CDCl ₃ , δ): 5,31 ppm.
IV-60	(4-) Br	Н	(2-) O	OC₂H,	$logP = 2,44^{a}$

Bsp	(Position-)	(Position-)	(Position-) -A-Z	X	Physikal. Daten
Nr.	R^3	(R ⁴) _n	0	OC_2H_5	'H-NMR
IV-61	(4-) F		N CH ₃		$(CDCl_3, \delta)$:
			$N = \begin{cases} N & N = N_3 \\ OC_2H_5 \end{cases}$		5,35 ppm.
IV-62	(4-) F	Н	O N—CH ₃ CF ₃	OC ₂ H ₅	¹ H-NMR (CDCl ₃ , δ): 5,53 ppm.
	(1) E	Н	(2-)	OC ₂ H ₅	'H-NMR
IV-63	(4-) F		0	23	$(CDCl_3, \delta)$:
			$N = \bigcup_{N=0}^{N} C_2H_5$		5,40 ppm.
137.6	1 (4-) F	Н	0	OC ₂ H	H-NMR
IV-64	(4-)1		N CH	1	$(CDCl_3, \delta)$:
			(2-) N= OCH ₃		5,36 ppm.
137.6	5 (4-) Br	Н	(2-)	OC ₂ H	$\log P = 3.34^{a}$
IV-6	J (4-) DI		OC ₃ H ₇ -i		
IV-6	66 (4-) Br	Н	V V V V V V V V V V		$I_5 \log P = 3.38^{\circ}$

_	
•	

Bsp	(Position-)	(Position-)	(Position-)		Physikal.
Nr.	R ³	$(R^4)_n$	-A-Z	X	Daten
IV-67	(4-) Br	Н	(2-) N CH ₃	OC ₂ H ₅	logP = 3,31 a)
IV-68	(4-) Br	Н	OCH ₂ CF ₃	OC ₂ H ₅	$logP = 2,16^{a}$
IV-69	(4-) Br	Н	(2-) N N N N N N N N N N N N N N N N N N N	OC ₂ H ₅	$logP = 2,41^{a}$
IV-70	(4-) CF ₃	Н	(2-) N CH ₃ OC ₃ H ₇ -i	OC₂H₅	logP = 3,51 a)
IV-71	(4-) CF ₃	Н	(2-) N CH ₃ OC ₃ H ₇ -n	OC ₂ H ₅	logP = 3,54 a)
IV-72	(4-) Br	Н	(2-) N O	OC ₂ H ₅	$logP = 2,36^{a}$

Bsp	(Position-)	(Position-)	(Position-)	X	Physikal. Daten
Nr.	R ³	$(\mathbb{R}^4)_n$	-A-Z	·	$\log P = 2.88^{a}$
IV-73	(4-) Br	H	N=O N=CH ₃		
IV-74	(4-) CF ₃	Н	(2-) N CH ₃		$\log P = 2.68^{a}$
IV-75	(4-) Br	Н	0 N—CH ₃ Br		$\log P = 2.80^{a}$
IV-70	6 (4-) CF ₃	Н	(3-) N N OCH ₃		$\log P = 3.87^{a}$
IV-7	(4-) CF	Н	(2-) N N CH ₂ OCH	3	$\log P = 2.88^{a}$
IV-	78 (4-) CF	F ₃ H	(2-) N CH ₂ CH ₂ OCH		$H_5 \log P = 2,60^{\circ}$

Bsp	(Position-)	(Position-)	(Dorition)		T
Nr.	R^3	$(R^4)_n$,		Physikal. Daten
IV-79	(4-) CF;	H	-A-Z	X	
	(1) (1)	11	(2-)	OC ₂ H ₅	$logP = 3.35^{n}$
			NNN		
			$N = \langle$		
			`Br		
IV-80	(4-) Br	Н	Q	OC,H,	$logP = 2.86^{a}$
			N N CH ₃	- 1	
			N N N N N N N N N N N N N N N N N N N		
			SCH ₃		
			(2-)		
IV-81	(4-) Cl	Н	O II	OC ₂ H ₅	$logP = 2.83^{a}$
			N CH3		
			N=		
			(2-) SCH ₃		
IV-82	(1) D=	7.7			
1 7 - 62	(4-) Br	Н	(2-)	OC ₂ H ₅	$\log P = 2,60^{a}$
			0		
			N CH ₃		
			N=<		
			N(CH ₃) ₂	,	-
IV-83	(4-) CF ₃	Н	(2-)	OC ₂ H ₅	'H-NMR
			0	_ ,	(CDCl ₃ , δ):
			N - C ₂ H ₅		5,36 ppm.
			N= OC₂H₅		
77.0					
IV-84	(4-) CF ₃	Н	(2-)	OC ₂ H ₅	'H-NMR
			0		(CDCl ₃ , δ):
			N N C_2H_5		5,37 ppm.
			N=(
			OCH3		
				1	

Bsp	(Position-)	(Position-) (R ⁴) _n	(Position-) -A-Z	X	Physikal. Daten
IV-85	(4-) CF ₃	H	(2-)	OC ₂ H ₅	$logP = 2.79^{a}$
[v -03	(1) 013		N CH ₃ N(CH ₃) ₂		
				l oc II	$\log P = 3.67^{a}$
IV-86	(4-) CF ₃	H	(2-) SO ₂		
IV-87	(4-) CF ₃	Н	(2-)	OC ₂ H ₃	$logP = 3.80^{a}$
77.7	2 (2) CH	Н	0	OC ₂ H	$\log P = 2.54^{a}$
IV-8	8 (3-) CH ₃		N CH N OC ₂ H	3 1 ₅	
IV-8	39 (4-)	Н	0	OC ₂ F	$\frac{1}{15} \log P = 1.82^{a}$
	SO ₂ CH ₂	3	(2-) N N CH	3	
IV-	90 (4-) CF	Н Н	(2-) O N N C CF ₃	OC ₂ :	$H_s \log P = 2.93$

Bsp	(Position-)	(Position-)	(Position-)	<u> </u>	Physikal.
Nr.	R ³	$(R^4)_n$	-A-Z	X	Daten
JV-91	(4-) CF ₃	Н	(2-)	OC ₂ H ₅	$\log P = 3.08^{a}$
			N N OCH ₃		
IV-92	(4-) CF ₃	Н		OC ₂ H ₅	$\log P = 3.04^{a}$
			(2-) CH ₃		
IV-93	(4-) CF ₃	Н	(2-)	OC ₂ H ₅	$logP = 3,45^{a}$
			N CH ₃ OCH ₂ CF ₃		
IV-94	(4-) F	Н	(2-)	OC ₂ H ₅	$logP = 2,21^{a}$
			N CH ₃ N(CH ₃) ₂		-
IV-95	(4-) F	Н	(2-) O N – CH ₃	OC ₂ H ₅	$logP = 2,96^{a}$
			OC ₃ H ₇ -n		

Bsp Nr.	(Position-)	(Position-) (R ⁴) _n	(Position-) -A-Z	X	Physikal. Daten
IV-96	(4-) F	Н	(2-)	OC ₂ H ₅	$log P = 2,05^{a}$
			N CH ₂ OCH ₃		
IV-97	(4-) F	Н	(2-)	OC ₂ H ₅	$logP = 2,50^{a}$
			OCH ₃	OC.H.	$\log P = 2.89^{a}$
IV-98	(4-) F	H	N N N N N N N N N N		
IV-99	9 (4-) CF ₃	Н	O CH ₃		$\log P = 2.91^{a}$
	(4.) (7.)	Н	(2-)	OC ₂ F	I ₅ 'H-NMR
100		11	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	H ₃	(CDCl ₃ , δ): 5,39 ppm.
IV 10		Н	N= CF.		H ₅ H-NMR (CDCl ₃ , δ): 5,50 ppm.

4	
•	

Bsp Nr.	(Position-)	(Position-) (R ⁴) _n	(Position-) -A-Z	X	Physikal. Daten
IV-	(4-) CI	H	(2-)	OC ₂ H ₅	H-NMR
102			0	0 0 21 15	(CDCl ₃ , δ):
			CH		1
			N CH ³		5,49 ppm.
			SO ₂ CH ₃		
IV-	(4-) CF ₃	Н	O	OC ₂ H ₅	¹H-NMR
103			N N CH ₃		$(CDCl_3, \delta)$:
			N=(5,29 ppm.
			(2-) CH ₃		
IV-	(4-) CF ₃	Н	O	OC ₂ H ₅	¹H-NMR
104			N CH ₃		$(CDCl_3, \delta)$:
			N=(5,53 ppm.
			(2-) CF ₃		
IV-	(4-) CF ₃	Н	(2-)	OC ₂ H ₅	'H-NMR
105			0		(CDCl ₃ , δ):
			N		5,34 ppm.
			N=(
					-
IV-	(4-)	Н	(2-)	OC ₂ H ₅	¹H-NMR
106	SO ₂ CH ₃		O		(CDCl ₃ , δ):
			N		5,39 ppm.
			N=(• •
			V		

Bsp Nr.	(Position-)	(Position-) (R ⁴) _n	(Position-) -A-Z	X	Physikal. Daten
IV-	(4-)	H	Q	OC ₂ H ₅	¹H-NMR
107	SO ₂ CH ₃		N CH ₃		(CDCl ₃ , δ):
	,		N=(CH-		5,43 ppm.
			(2-)		
IV-	(4-)	Н	(2-)	OC ₂ H ₅	'H-NMR
108	SO ₂ CH ₃		O II		(CDCl ₃ , δ):
			N CH ₃		5,40 ppm.
			N=\ N(CH ₃) ₂		
IV-	(4-)	Н	O _I	OC ₂ H ₅	¹H-NMR
109	SO ₂ CH ₃		N CH ₃		$(CDCl_3, \delta)$:
			N=(5,38 ppm.
			OC ₂ H ₅		
IV-	(4-) Br	Н	Q	OC ₂ H ₅	¹H-NMR
110			N CH ₃		$(CDCl_3, \delta)$:
			N=(5,49 ppm.
			(2-) CF ₃		
IV-	Н	Н	(2-)	OC ₂ H ₅	¹H-NMR
111			0		$(CDCl_3, \delta)$:
					5,3 ppm.
			N=(
IV-	Н	Н	O	OC ₂ H	5 H-NMR
112			N_CH	3	$(CDCl_3, \delta)$:
			N=(5,44 ppm.
			(2-) SCH ₃		

Bsp	(Position-)	(Position-)	(Position-)	1	Physikal.
Nr.	R ³	$(R^4)_n$	-A-Z	X	Daten
IV-	(4-) CF ₃	Н	Q		$\log P = 2.58^{\text{ab}}$
113			N CH ₃		
			N N N 3		
			(2-) H ₃ C		
			(2-)		
IV-	(4-)	Н	0	OCH ₃	$logP = 1.53^{a}$
114	SO ₂ CH ₃		N N-CH3		
			N=		
			(2-) SCH ₃		
IV-	(4-)	Н	0	OCH	T D 1 50 3)
115	SO ₂ CH ₃	11	Ĭ	OCH,	$logP = 1,59^{a}$
	5020113		N CH ₃		
			N=		
			$(2-) \qquad \qquad OC_2H_5$		
IV-	(4-) I	Н	0	OCH ₃	$logP = 2,68^{a}$
116			N CH3	_	
				į	
			$(2-)$ OC_2H_5		
IV-	(4) CF				
	$(4-) CF_3$	Н	0	OCH ₃	$\log P = 2.74^{a}$
117			N N-CH ₃		
			N=(
			$(2-) \qquad \qquad \bigcirc C_2H_5 \mid$		
IV-	(4-) CF ₃	Н	0	OCH ₃	$\log P = 2.65^{a}$
118			Cu		10g1 - 2,00
			N CH ₃		
			SCH ₃		
			(2-)		

Bsp Nr.	(Position-) R ³	(Position-) (R ⁴) _n	(Position-) -A-Z	X	Physikal. Daten
IV- 119	(4-) CF ₃	Н	N CH ₃ Br	OC ₂ H ₅	logP = 2.96 a)
IV- 120	Н	Н	N CH ₃ (2-)	OCH ₃	Fp.: 106°C
IV-	(2-) NO ₂	(3-) OCH ₃	N N N N N N N N N N	OCH ₃	$logP = 2,27^{a}$
IV- 122	(2-) NO ₂	(3-) OCH ₃	N CH ₃ SCH ₃	OCH ₃	logP = 2,19 a)

Die Bestimmung der in den Tabellen angegebenen logP-Werte erfolgte gemäß EEC-Directive 79/831 Annex V.A8 durch HPLC (High Performance Liquid Chromatography) an einer Phasenumkehrsäule (C 18). Temperatur: 43°C.

(a) Eluenten für die Bestimmung im sauren Bereich: 0,1 % wässrige Phosphorsäure, Acetonitril; linearer Gradient von 10 % Acetonitril bis 90 % Acetonitril - entsprechende Messergebnisse sind in den Tabellen mit a) markiert.

- (b) Eluenten für die Bestimmung im neutralen Bereich: 0.01-molare wässrige Phosphatpuffer-Lösung, Acetonitril; linearer Gradient von 10 % Acetonitril bis 90 % Acetonitril entsprechende Messergebnisse sind in den Tabellen mit b) markiert.
- Die Eichung erfolgte mit unverzweigten Alkan-2-onen (mit 3 bis 16 Kohlenstoffatomen), deren logP-Werte bekannt sind (Bestimmung der logP-Werte anhand der Retentionszeiten durch lineare Interpolation zwischen zwei aufeinanderfolgenden Alkanonen).
- Die lambda-max-Werte wurden an Hand der UV-Spektren von 200 nm bis 400 nm in den Maxima der chromatographischen Signale ermittelt.

-Anwendungsbeispiele:

Beispiel A

Pre-emergence-Test 5

Lösungsmittel: 5 Gewichtsteile Aceton

Emulgator:

1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Ge-10 wichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel, gibt die angegebene Menge Emulgator zu und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Samen der Testpflanzen werden in normalen Boden ausgesät. Nach ca. 24 Stunden 15 wird der Boden so mit der Wirkstoffzubereitung besprüht, daß die jeweils gewünschte Wirkstoffmenge pro Flächeneinheit ausgebracht wird. Die Konzentration der Spritzbrühe wird so gewählt, daß in 1000 Liter Wasser pro Hektar die jeweils gewünschte Wirkstoffmenge ausgebracht wird.

20

Nach drei Wochen wird der Schädigungsgrad der Pflanzen bonitiert in % Schädigung im Vergleich zur Entwicklung der unbehandelten Kontrolle.

Es bedeuten:

25

30

keine Wirkung (wie unbehandelte Kontrolle) 0% =

100 % = totale Vernichtung

In diesem Test zeigen beispielsweise die Verbindungen gemäß Herstellungsbeispiel 1 und 10 bei teilweise guter Verträglichkeit gegenüber Kulturpflanzen, wie z.B. Mais, starke Wirkung gegen Unkräuter.

Tabelle A: Pre en suce-Test/Gewächshaus							
Wirkstoff gemäß	Aufwand-	Mais	Cyperus	Abutilon	Cyperus Abutilon Amaranthus	Sinapis	
Herstellungsbeispiel-Nr.	menge (g ai./ha)						•
O C C C C C C C C C C C C C C C C C C C							
(I) O O C C C C C C C C C C C C C C C C C	1000	,	100	100	100	100	
(10)	200	0	100	06	100	06	

Beispiel B

Post-emergence-Test

5 Lösungsmittel:

10

15

5 Gewichtsteile Aceton

Emulgator:

1 Gewichtsteil Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel, gibt die angegebene Menge Emulgator zu und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Mit der Wirkstoffzubereitung spritzt man Testpflanzen, welche eine Höhe von 5 - 15 cm haben so, daß die jeweils gewünschten Wirkstoffmengen pro Flächeneinheit ausgebracht werden. Die Konzentration der Spritzbrühe wird so gewählt, daß in 1000 l Wasser/ha die jeweils gewünschten Wirkstoffmengen ausgebracht werden. Nach drei Wochen wird der Schädigungsgrad der Pflanzen bonitiert in % Schädigung im Vergleich zur Entwicklung der unbehandelten Kontrolle.

20 Es bedeuten:

0 % = keine Wirkung (wie unbehandelte Kontrolle)

100 % = totale Vernichtung

In diesem Test zeigen beispielsweise die Verbindungen gemäß Herstellungsbeispiel
10 und 15 bei teilweise guter Verträglichkeit gegenüber Kulturpflanzen, wie z.B.
Mais, starke Wirkung gegen Unkräuter.

	1		
Xanthium		95	90
Sinapis		08	80
Ama- ranthus		95	06
Mais		20	0
Aufwand- menge (g ai./ha)		200	1000
Tabelle B: Post emergence-Test/Gewächshaus Wirkstoff gemäß Herstellungsbeispiel-Nr.	D C C H S C C C C C C C C C C C C C C C C	$\begin{array}{c c} (10) \\ \hline \\ 0 \\ \hline \\ B_{r} \\ \end{array}$	(15)

Patentansprüche

1. Substituierte Benzoylcyclohexandione der allgemeinen Formel (I).

$$(R^{2})_{m} \xrightarrow{O} O \qquad (R^{4})_{n}$$

$$R^{1} \qquad O \qquad R^{3}$$

$$(I)$$

5

in welcher

m für die Zahlen 0, 1, 2 oder 3 steht,

10

n für die Zahlen 0, 1, 2 oder 3 steht,

A für eine Einfachbindung oder für Alkandiyl (Alkylen) steht,

15

R1 für Wasserstoff oder für jeweils gegebenenfalls substituiertes Alkyl oder Alkoxycarbonyl steht,

für gegebenenfalls substituiertes Alkyl steht, oder zusammen mit R¹ für Alkandiyl (Alkylen) steht, wobei in diesem Fall m für 1 steht und R¹ und R² am gleichen Kohlenstoffatom ("geminal") oder an zwei benachbarten Kohlenstoffatomen ("vicinal") stehen,

20

R³ für Wasserstoff, Nitro, Cyano, Carboxy, Carbamoyl, Thiocarbamoyl, Halogen, oder für jeweils gegebenenfalls substituiertes Alkyl, Alkoxy, Alkylthio, Alkylsulfinyl, Alkylsulfonyl, Alkylamino, Dialkylamino oder Dialkylaminosulfonyl steht,

 R^4 Nitro, Cyano, Carboxy, Carbamoyl, Thiocarbamoyl, Halogen, oder für jeweils gegebenenfalls substituiertes Alkyl, Alkoxy, Alkylthio, Alkylsulfinyl, Alkylsulfonyl, Alkylamino, Dialkylamino oder Dialkylaminosulfonyl steht, und 5 für eine gegebenenfalls substituierte 4- bis 12-gliedrige, gesättigte Ζ oder ungesättigte, monocyclische oder bicyclische, heterocyclische Gruppierung steht, welche 1 bis 4 Heteroatome (bis zu 4 Stickstoffatome und gegebenenfalls - alternativ oder additiv - ein Sauerstoffatom oder ein Schwefelatom, oder eine SO-Gruppierung oder eine 10 SO2-Gruppierung) enthält, und welche zusätzlich ein bis drei Oxo-Gruppen (C=O) und/oder Thioxo-Gruppen (C=S) als Bestandteile des Heterocyclus enthält, einschließlich aller möglichen tautomeren Formen der Verbindungen der all-15 gemeinen Formel (I) und der möglichen Salze der Verbindungen der allgemeinen Formel (I). Substituierte Benzoylcyclohexandione gemäß Anspruch 1, dadurch gekenn-2. 20 zeichnet, daß m für die Zahlen 0, 1 oder 2 steht, n für die Zahlen 0, 1 oder 2 steht, 25 für eine Einfachbindung oder für Alkandiyl (Alkylen) mit 1 bis 4 Koh-Α lenstoffatomen steht, R^{1} für Wasserstoff, für gegebenenfalls durch Halogen, C₁-C₄-Alkoxy,

 C_1 - C_4 -Alkylthio, C_1 - C_4 -Alkylsulfinyl oder C_1 - C_4 -Alkylsulfonyl

10

15

20

25

substituiertes Alkyl mit 1 bis 6 Kohlenstoffatomen oder für Alkoxycarbonyl mit bis zu 6 Kohlenstoffatomen steht.

- R² für gegebenenfalls durch Halogen substituiertes Alkyl mit 1 bis 6 Kohlenstoffatomen steht, oder zusammen mit R¹ für Alkandiyl (Alkylen) mit 2 bis 5 Kohlenstoffatomen steht, wobei in diesem Fall m für 1 steht und R¹ und R² am gleichen Kohlenstoffatom ("geminal") oder an zwei benachbarten Kohlenstoffatomen ("vicinal") stehen,
- für Wasserstoff, Nitro, Cyano, Carboxy, Carbamoyl, Thiocarbamoyl, Halogen, für jeweils gegebenenfalls durch Halogen, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfinyl oder C₁-C₄-Alkylsulfonyl substituiertes Alkyl, Alkoxy, Alkylthio, Alkylsulfinyl oder Alkylsulfonyl mit jeweils bis zu 4 Kohlenstoffatomen in den Alkylgruppen, oder für Alkylamino, Dialkylamino oder Dialkylaminosulfonyl mit jeweils bis zu 4 Kohlenstoffatomen in den Alkylgruppen steht,
- für Nitro, Cyano, Carboxy, Carbamoyl, Thiocarbamoyl, Halogen, für jeweils gegebenenfalls durch Halogen, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfinyl oder C₁-C₄-Alkylsulfonyl substituiertes Alkyl, Alkoxy, Alkylthio, Alkylsulfinyl oder Alkylsulfonyl mit jeweils bis zu 4 Kohlenstoffatomen in den Alkylgruppen, oder für Alkylamino, Dialkylamino oder Dialkylaminosulfonyl mit jeweils bis zu 4 Kohlenstoffatomen in den Alkylgruppen steht, und
 - Z für eine der nachstehenden heterocyclischen Gruppierungen steht

 $Q = \begin{pmatrix} P_{1} & P_{2} & P_{3} & P_{4} & P_{5}

worin jeweils die gestrichelt gezeichnete Bindung eine Einfachbindung oder eine Doppelbindung ist,

O für Sauerstoff oder Schwefel steht,

für Wasserstoff, Hydroxy, Mercapto, Cyano, Halogen, für je- R^5 weils gegebenenfalls durch Halogen, C1-C4-Alkoxy, C1-C4-Alkylthio, C₁-C₄-Alkylsulfinyl oder C₁-C₄-Alkylsulfonyl substituiertes Alkyl, Alkylcarbonyl, Alkoxy, Alkoxycarbonyl, Alkylthio, Alkylsulfinyl oder Alkylsulfonyl mit jeweils bis zu 6 Kohlenstoffatomen in den Alkylgruppen, für jeweils gegebenenfalls durch Halogen substituiertes Alkylamino oder Dialkylamino mit jeweils bis zu 6 Kohlenstoffatomen in den Alkylgruppen, für jeweils gegebenenfalls durch Halogen substituiertes Alkenyl, Alkinyl, Alkenyloxy, Alkenylthio oder Alkenylamino mit jeweils bis zu 6 Kohlenstoffatomen in den Alkenyl- bzw. Alkinylgruppen, für jeweils gegebenenfalls durch Halogen substituiertes Cycloalkyl, Cycloalkylalkyl, Cycloalkyloxy, Cycloalkylthio oder Cycloalkylamino mit jeweils 3 bis 6 Kohlenstoffatomen in den Cycloalkylgruppen und gegebenenfalls bis zu 4 Kohlenstoffatomen im Alkylteil, oder für jeweils gegebenenfalls durch Halogen, C1-C4-Alkyl oder C1-C4-Alkoxy substituiertes Phenyl, Phenyloxy. Phenylthio, Phenylamino, Benzyl, Benzyloxy, Benzylthio oder Benzylamino steht, und

5

10

15

20

R6

51015

25

für Wasserstoff, Hydroxy, Amino, Alkylidenamino mit bis zu 4 Kohlenstoffatomen, für jeweils gegebenenfalls durch Halogen oder C₁-C₄-Alkoxy substituiertes Alkyl, Alkoxy, Alkylamino, Dialkylamino oder Alkanoylamino mit jeweils bis zu 6 Kohlenstoffatomen in den Alkylgruppen, für jeweils gegebenenfalls durch Halogen substituiertes Alkenyl, Alkinyl oder Alkenyloxy mit jeweils bis zu 6 Kohlenstoffatomen in den Alkenyl- bzw. Alkinylgruppen, für jeweils gegebenenfalls durch Halogen substituiertes Cycloalkyl, Cycloalkylalkyl oder Cycloalkylamino mit jeweils 3 bis 6 Kohlenstoffatomen in den Cycloalkylgruppen und gegebenenfalls bis zu 3 Kohlenstoffatomen im Alkylteil, oder für jeweils gegebenenfalls durch Halogen, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes Phenyl oder Benzyl steht, oder zusammen mit einem benachbarten Rest \mathbb{R}^5 oder \mathbb{R}^6 für gegebenenfalls durch Halogen oder C₁-C₄-Alkyl substituiertes Alkandiyl mit 3 bis 5 Kohlenstoffatomen steht, oder - für den Fall, daß zwei benachbarte Reste ${\rm R}^5$ und ${\rm R}^5$ sich an einer Doppelbindung befinden - zusammen mit dem benachbarten Rest R⁵ auch für eine Benzogruppierung steht.

- 3. Substituierte Benzoylcyclohexandione gemäß Anspruch 1, dadurch gekennzeichnet, daß
 - m für die Zahlen 0, 1 oder 2 steht,
 - n für die Zahlen 0, 1 oder 2 steht,
- A für eine Einfachbindung, Methylen, Ethyliden (Ethan-1,1-diyl) oder Dimethylen (Ethan-1,2-diyl) steht,

10

15

20

25

30

 R^3

- R1 für Wasserstoff, für jeweils gegebenenfalls durch Fluor. Chlor, Methoxy, Ethoxy, n- oder i-Propoxy, Methylthio. Ethylthio. n- oder i-Propylthio, Methylsulfinyl, Ethylsulfinyl, n- oder i-Propylsulfinyl, Methylsulfonyl, Ethylsulfonyl, n- oder i-Propylsulfonyl substituiertes Methyl, Ethyl, n- oder i-Propyl, n-, i- oder s-Butyl, oder für Methoxycarbonyl, Ethoxycarbonyl, n- oder i-Propoxycarbonyl steht,
- für Methyl, Ethyl, n- oder i-Propyl, oder zusammen mit R¹ für R^2 Methylen, Ethan-1,1-diyl (Ethyliden, -CH(CH3)-), Ethan-1,2-diyl (Di-Propan-1,3-diyl (Trimethylen, -CH2CH2-), methylen. (Tetramethylen, -CH2CH2CH2.), Butan-1,4-diyl Pentan-1,5-diyl (Pentamethylen, -CH₂CH₂CH₂CH₂-) oder -CH2CH2CH2CH2CH2-) steht, wobei in diesem Fall m für 1 steht und R¹ und R² am gleichen Kohlenstoffatom ("geminal") oder an zwei benachbarten Kohlenstoffatomen ("vicinal") stehen,
 - für Wasserstoff, Nitro, Cyano, Carboxy, Carbamoyl, Thiocarbamoyl, Fluor, Chlor, Brom, für jeweils gegebenenfalls durch Fluor und/oder Chlor, Methoxy, Ethoxy, n- oder i-Propoxy, Methylthio, Ethylthio, n- oder i-Propylthio, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl oder Ethylsulfonyl substituiertes Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, für jeweils gegebenenfalls durch Fluor und/oder Chlor, Methoxy, Ethoxy, n- oder i-Propoxy substituiertes Methoxy, Ethoxy, n- oder i-Propoxy, für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes Methylthio, Ethylthio, n- oder i-Propylthio, Methylsulfinyl, Ethylsulfinyl, n- oder i-Propylsulfinyl, Methylsulfonyl, Ethylsulfonyl, n- oder i-Propylsulfonyl, oder für Methylamino, Ethylamino, n- oder i-Propylamino, Dimethylamino, Diethylamino, Dimethylaminosulfonyl oder Diethylaminosulfonyl steht.

10

15

für Nitro, Cyano, Carboxy, Carbamoyl, Thiocarbamoyl, Fluor, Chlor, Brom, für jeweils gegebenenfalls durch Fluor und/oder Chlor, Methoxy, Ethoxy, n- oder i-Propoxy, Methylthio, Ethylthio, n- oder i-Propylthio, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl oder Ethylsulfonyl substituiertes Methyl, Ethyl, n- oder i-Propyl, n-, i-, s- oder t-Butyl, für jeweils gegebenenfalls durch Fluor und/oder Chlor, Methoxy, Ethoxy, n- oder i-Propoxy substituiertes Methoxy, Ethoxy, n- oder i-Propoxy, für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes Methylthio, Ethylthio, n- oder i-Propylthio, Methylsulfinyl, Ethylsulfinyl, n- oder i-Propylsulfinyl, Methylsulfonyl, Ethylsulfonyl, n- oder i-Propylsulfonyl, oder für Methylamino, Ethylamino, n- oder i-Propylamino, Dimethylamino, Diethylamino, Dimethylaminosulfonyl oder Diethylaminosulfonyl steht, und

Z für eine der nachstehenden heterocyclischen Gruppierungen steht

worin jeweils die gestrichelt gezeichnete Bindung eine Einfachbindung oder eine Doppelbindung ist,

Q für Sauerstoff oder Schwefel steht,

R⁵ für Wasserstoff, Hydroxy, Mercapto, Cyano, Fluor, Chlor, Brom, Iod. für jeweils gegebenenfalls durch Fluor. Chlor. Methoxy, Ethoxy, n- oder i-Propoxy, n-, i-, s- oder t-Butoxy, Methylthio, Ethylthio, n- oder i-Propylthio, n-, i-, s- oder t-Butylthio, Methylsulfinyl, Ethylsulfinyl, n- oder i-Propylsulfinyl, Methylsulfonyl, Ethylsulfonyl, n- oder i-Propylsulfonyl substituiertes Methyl, Ethyl, n- oder i-Propyl, n-, i-, soder t-Butyl, Methoxy, Ethoxy, n- oder i-Propoxy, n-, i-, soder t-Butoxy, Methylthio, Ethylthio, n- oder i-Propylthio, n-, i-, s- oder t-Butylthio, Methylsulfinyl, Ethylsulfinyl, n- oder i-Propylsulfinyl, Methylsulfonyl, Ethylsulfonyl, n- oder i-Propylsulfonyl, für Methylamino, Ethylamino, n- oder i-Propylamino, n-, i-, s- oder t-Butylamino, Dimethylamino, Diethylamino, Di-n-propylamino oder Di-i-propylamino, für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes Ethenyl, Propenyl, Butenenyl, Ethinyl, Propinyl, Butinyl, Propenyloxy, Butenyloxy, Propenylthio, Butenylthio, Propenylamino oder Butenylamino, für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cyclopropylmethyl, Cyclobutylmethyl, Cyclopentylmethyl, Cyclohexylmethyl, Cyclopropyloxy, Cyclobutyloxy, Cyclopentyloxy, Cyclohexyloxy, Cyclopropylthio, Cyclobutylthio, Cyclopentylthio, Cyclohexylthio, Cyclopropylamino, Cyclobutylamino, Cyclopentylamino oder Cyclohexylamino, oder für jeweils gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, n- oder i-Propyl, n-, i-, soder t-Butyl, Methoxy, Ethoxy, n- oder i-Propoxy substituiertes Phenyl, Phenyloxy, Phenylthio, Phenylamino, Benzyl, Benzyloxy, Benzylthio oder Benzylamino steht, und

5

10

15

20

25

R6

PCT/EP99/04929

5

10

15

20

für Wasserstoff, Hydroxy, Amino, für jeweils gegebenenfalls durch Fluor und/oder Chlor, Methoxy oder Ethoxy substituiertes Methyl, Ethyl, n- oder i-Propyl, n-, i- oder s-Butyl, Methoxy, Ethoxy, n- oder i-Propoxy, Methylamino, Ethylamino oder Dimethylamino, für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes Ethenyl, Propenyl, Ethinyl, Propinyl oder Propenyloxy, für jeweils gegebenenfalls durch Fluor und/oder Chlor substituiertes Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cyclopropylmethyl, Cyclobutylmethyl, Cyclopentylmethyl, Cyclohexylmethyl, oder für jeweils gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, noder i-Propyl, n-, i-, s- oder t-Butyl, Methoxy, Ethoxy, n- oder i-Propoxy substituiertes Phenyl oder Benzyl steht, oder zusammen mit einem benachbarten Rest R⁵ oder R⁶ für jeweils gegebenenfalls durch Methyl und/oder Ethyl substituiertes Propan-1,3-diyl (Trimethylen) oder Butan-1,4-diyl (Tetramethylen) steht, oder - für den Fall, daß zwei benachbarte Reste R⁵ und R⁵ sich an einer Doppelbindung befinden - zusammen mit dem benachbarten Rest R⁵ auch für eine Benzogruppierung steht.

4. Substituierte Benzoylcyclohexandione gemäß Anspruch I, gekennzeichnet durch die allgemeine Formel (IA),

$$(R^2)_m$$
 R^1
 $(R^4)_n$
 R^3
 (IA)

5 in welcher

10

- m für die Zahlen 0, 1 oder 2 steht,
- n für die Zahlen 0, 1 oder 2 steht,

A für eine Einfachbindung oder für Methylen steht,

- Q für Sauerstoff oder Schwefel steht,
- 15 R¹ für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl steht,
 - R² für Methyl steht,
- R³ für Wasserstoff, Nitro, Cyano, Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Methoxymethyl, Methylthiomethyl, Methylsulfinylmethyl, Methylsulfonylmethyl, Methoxy, Ethoxy, Difluormethoxy,
 Trifluormethoxy, Methylthio, Ethylthio, Methylsulfinyl, Ethylsulfinyl,
 Methylsulfonyl, Ethylsulfonyl oder Dimethylaminosulfonyl steht,

10

- R4 für Nitro, Cyano, Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Methoxymethyl, Methylthiomethyl, Methylsulfinylmethyl, Methylsulfinylmethyl, Methylsulfinyl, Trifluormethoxy, Methylthio, Ethylthio, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl, Ethylsulfonyl oder Dimethylaminosulfonyl steht,
- R5 für Methyl, Ethyl, n- oder i-Propyl, Trifluormethyl, Methoxy, Ethoxy, n- oder i-Propoxy, Methylthio, Ethylthio, n- oder i-Propylthio, Methylsulfinyl, Ethylsulfinyl, n- oder i-Propylsulfinyl, Methylsulfonyl, Ethylsulfonyl, n- oder i-Propylsulfonyl, oder für Cyclopropyl steht, und
 - R6 für Methyl, Ethyl, Methoxy, Ethoxy oder Cycloproypyl steht.
- 5. Substituierte Benzoylcyclohexandione gemäß Anspruch 1, gekennzeichnet durch die allgemeine Formel (IB),

$$(R^{2})_{m}$$

$$R^{1}$$

$$(R^{4})_{n}$$

$$R^{3}$$

$$R^{5}$$

$$(IB)$$

in welcher

20

- m für die Zahlen 0, 1 oder 2 steht,
- n für die Zahlen 0, 1 oder 2 steht,
- 25 A für eine Einfachbindung oder für Methylen steht,
 - Q für Sauerstoff oder Schwefel steht,

 R^{1} für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl steht, R^2 für Methyl steht. 5 R^3 für Wasserstoff, Nitro, Cyano, Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Methoxymethyl, Methylthiomethyl, Methylsulfinylmethyl, Methylsulfonylmethyl, Methoxy, Ethoxy, Difluormethoxy, Trifluormethoxy, Methylthio, Ethylthio, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl, Ethylsulfonyl oder Dimethylaminosulfonyl steht, 10 R^4 für Nitro, Cyano, Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Methoxymethyl, Methylthiomethyl, Methylsulfinylmethyl, Methylsulfonylmethyl, Methoxy, Ethoxy, Difluormethoxy, Trifluormethoxy, Methylthio, Ethylthio, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl, 15 Ethylsulfonyl oder Dimethylaminosulfonyl steht, R^5 für Methyl, Ethyl, n- oder i-Propyl, Trifluormethyl, Methoxy, Ethoxy, n- oder i-Propoxy, Methylthio, Ethylthio, n- oder i-Propylthio, Methylsulfinyl, Ethylsulfinyl, n- oder i-Propylsulfinyl, Methyl-20 sulfonyl, Ethylsulfonyl, n- oder i-Propylsulfonyl, oder für Cyclopropyl steht, und R6 für Methyl, Ethyl, Methoxy, Ethoxy oder Cycloproypyl steht.

-6. Substituierte Benzoylcyclohexandione gemäß Anspruch 1, gekennzeichnet durch die allgemeine Formel (IC),

$$(R^{2})_{m}$$

$$R^{1}$$

$$Q$$

$$N$$

$$R^{3}$$

$$R^{5}$$
(IC)

5 in welcher

m für die Zahlen 0, 1 oder 2 steht,

n für die Zahlen 0, 1 oder 2 steht,

10

- A für eine Einfachbindung oder für Methylen steht,
- Q für Sauerstoff oder Schwefel steht,
- 15 R¹ für Wasserstoff, Methyl, Ethyl, n- oder i-Propyl steht,
 - R² für Methyl steht,

20

R³ für Wasserstoff, Nitro, Cyano, Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Methoxymethyl, Methylthiomethyl, Methylsulfinylmethyl, Methylsulfonylmethyl, Methoxy, Ethoxy, Difluormethoxy,
Trifluormethoxy, Methylthio, Ethylthio, Methylsulfinyl, Ethylsulfinyl,
Methylsulfonyl, Ethylsulfonyl oder Dimethylaminosulfonyl steht,

25

R⁴ für Nitro, Cyano, Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Methoxymethyl, Methylthiomethyl, Methylsulfinylmethyl, Methylsulfinylmethyl, Methylsulfinylmethyl, Methylsulfinylmethoxy, Trifluormethoxy,

- R⁵ für Methyl, Ethyl, n- oder i-Propyl, Trifluormethyl, Methoxy, Ethoxy, n- oder i-Propoxy, Methylthio, Ethylthio, n- oder i-Propylthio, Methylsulfinyl, Ethylsulfinyl, n- oder i-Propylsulfinyl, Methylsulfonyl, Ethylsulfonyl, n- oder i-Propylsulfonyl, oder für Cyclopropyl steht, und
- 10 R⁶ für Methyl, Ethyl, Methoxy, Ethoxy oder Cycloproypyl steht.
 - 7. Substituierte Benzoylcyclohexandione gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß es sich bei den Salzen um die Natrium-, Kalium-, Magnesium-, Calcium-, Ammonium-, C₁-C₄-Alkyl-ammonium-, Di-(C₁-C₄-alkyl)-ammonium-, Tri-(C₁-C₄-alkyl)-ammonium-, Tetra-(C₁-C₄-alkyl)-ammonium, Tri-(C₁-C₄-alkyl)-sulfonium-, C₅- oder C₆-Cyclo-alkyl-ammonium- und Di-(C₁-C₂-alkyl)-benzyl-ammonium-Salze handelt.
- 8. Verfahren zum Herstellen von substituierten Benzoylcyclohexandionen gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß man 1,3-Cyclohexandion oder dessen Derivate der allgemeinen Formel (II),

$$(R^2)_m$$
 (II)

in welcher

25

5

15

m, R¹ und R² die in einem der Ansprüche 1 bis 6 angegebene Bedeutung haben,

mit substituierten Benzoesäuren der allgemeinen Formel (III),

HO
$$(R^4)_n$$
 (III)

in welcher

5

n, A, R³, R⁴ und Z die in einem der Ansprüche 1 bis 6 angegebene Bedeutung haben,

10

in Gegenwart eines Dehydratisierungsmittels, gegebenenfalls in Gegenwart eines oder mehrerer Reaktionshilfsmittel und gegebenenfalls in Gegenwart eines Verdünnungsmittels, umsetzt,

15

und gegebenenfalls im Anschluß daran an den so erhaltenen Verbindungen der Formel (I) im Rahmen der Substituentendefinition auf übliche Weise elektrophile oder nucleophile bzw. Oxidations- oder Reduktionsreaktionen durchführt oder die Verbindungen der Formel (I) auf übliche Weise in Salze überführt.

20

9. Substituierte Benzoesäuren der allgemeinen Formel (III),

HO
$$(R^4)_n$$

$$A_Z$$
(III)

in welcher

10

- n, A, R³, R⁴ und Z die in einem der Ansprüche 1 bis 6 angegebene Bedeutung haben,
- ausgenommen die Verbindungen 2-(5-Carboxy-2,4-dichlor-phenyl)-4-difluor-methyl-5-methyl-2,4-dihydro-3H-1,2,4-triazol-3-on und 2-(5-Carboxy-2,4-di-chlor-phenyl)-4,5-dimethyl-2,4-dihydro-3H-1,2,4-triazol-3-on.
- 10. Verwendung von mindestens einem substituierten Benzoylcyclohexandion gemäß einem der Ansprüche 1 bis 6 zur Bekämpfung von unerwünschten Pflanzen.
 - 11. Herbizide Mittel, gekennzeichnet durch den Gehalt von mindestens einem substituierten Benzoylcyclohexandion gemäß einem der Ansprüche 1 bis 6 und üblichen Streckmitteln.

INTERNATIONAL SEARCH REPORT

Inter lication No PCT/EP 99/04929

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C07D249/12 C07D239/10 C07D263/58 C07D233/30

CO7D231/20 CO7D237/32 C07D253/08 A01N43/653 C07D285/12

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 CO7D A01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT				
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
Y	WO 96 26200 A (BASF AG ;DEYN WOLFGANG VON (DE); HILL REGINA LUISE (DE); KARDORFF) 29 August 1996 (1996-08-29) cited in the application claims	1-11		
Y	WO 97 46530 A (DU PONT ;TSENG CHI PING (US); PATEL KANU MAGANBHAI (US); RORER MOR) 11 December 1997 (1997-12-11) cited in the application claims	1-11		
Y	DE 44 05 614 A (BAYER AG) 24 August 1995 (1995-08-24) cited in the application claims/	9 -		

X Further documents are listed in the continuation of box C.	Patent family members are listed in annex.		
*Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance. "E" earlier document but published on or after the international filing date. "L" document which may throw doubts on pnority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified). "O" document referring to an oral disclosure, use, exhibition or other means. "P" document published prior to the international filing date but later than the pnority date claimed.	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention. "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone. "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "8" document member of the same patent family		
Date of the actual completion of the international search	Date of mailing of the international search report		
29 November 1999	14/12/1999		
Name and mailing address of the ISA	Authorized officer		
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Chouly, J		

INTERNATIONAL SEARCH REPORT

n tal Application No PCT/EP 99/04929

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT				
it passages Relevant to claim No				
9				
9				
9				
25, 9				
Oelta s as -				
HILL 1-11 CHIM				

INTERNATIONAL SEARCH REPORT

information patent family members

Intern Pilication No
PCT/EP 99/04929

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO 9626200	A	29-08-1996	EP HU	185139 T 703623 B 4875396 A 9607420 A 2213124 A 9702672 A 59603223 D 0811005 A 9901256 A 11501010 T 302651 A 321891 A	15-10-1999 25-03-1999 11-09-1996 23-06-1998 29-08-1996 13-05-1998 04-11-1999 10-12-1997 28-07-1999 26-01-1999 28-01-1999 22-12-1997
WO 9746530	A	11-12-1997	AU CA EP	3297397 A 2257196 A 0922032 A	05-01-1998 11-12-1997 16-06-1999
DE 4405614	Α	24-08-1995	AU BR CA CN WO EP JP PL	1808495 A 9506928 A 2183641 A 1150421 A 9522532 A 0746550 A 9509923 T 315970 A	04-09-1995 09-09-1997 24-08-1995 21-05-1997 24-08-1995 11-12-1996 07-10-1997 23-12-1996
EP 0617026	Α	28-09-1994	DE BR CA CN DE JP	4309966 A 9401300 A 2119673 A 1092770 A,B 59403503 D 6340639 A	29-09-1994 08-11-1994 27-09-1994 28-09-1994 04-09-1997 13-12-1994
EP 0597360	Α	18-05-1994	DE BR CA CN JP	4238125 A 9304702 A 2102750 A 1090847 A,B 7076578 A	19-05-1994 17-05-1994 13-05-1994 17-08-1994 20-03-1995
EP 0370332	A	30-05-1990	DE DD DE JP JP US US	3839480 A 297963 A 58907343 D 2184675 A 2735905 B 5006148 A 5554580 A	31-05-1990 30-01-1992 05-05-1994 19-07-1990 02-04-1998 09-04-1991
JP 58225070	A	27-12-1983	NON	E 	
JP 02015069	A	18-01-1990	NON 	E 	
W0 9907688	Α	18-02-1999	AU	9156198 A	01-03-1999

INTERNATIONALER REPHERCHENBERICHT

ktenzeichen PCT/EP 99/04929

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C07D249/12 C07D239/10 C07D285/12 C07D253/08 C07D231/20 A01N43/653 C07D237/32 C07D233/30 C07D263/58

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) $IPK\ 7\ CO7D\ A01N$

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Wanrend der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

(ategorie°	SENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.	
(WO 96 26200 A (BASF AG ;DEYN WOLFGANG VON (DE); HILL REGINA LUISE (DE); KARDORFF) 29. August 1996 (1996-08-29) in der Anmeldung erwähnt Ansprüche	1-11	
Y	WO 97 46530 A (DU PONT ;TSENG CHI PING (US); PATEL KANU MAGANBHAI (US); RORER MOR) 11. Dezember 1997 (1997-12-11) in der Anmeldung erwähnt Ansprüche	1-11	
Y	DE 44 05 614 A (BAYER AG) 24. August 1995 (1995-08-24) in der Anmeldung erwähnt Ansprüche	9 -	

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entrehmen	X Siehe Anhang Patentfamilie		
soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen beizieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Priontätsdatum veröffentlicht worden ist	"Y" Veröffentlichung von besonderer Bedeutung; die beansprüchte Erfindung kann nicht als auf erfinderischer Tätigkeit berunend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategone in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist. "&" Veröffentlichung, die Mitglied derseiben Patentfamilie ist.		
Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts		
29. November 1999	14/12/1999		
Name und Postanschnft der Internationalen Recherchenbehorde Europaisches Patentamt, P.B. 5818 Patentlaan 2	Bevolimachtigter Bediensteter		
NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Chouly, J		

INTERNATIONALER RECHERCHENBERICHT

err nales Aktenzeichen PCT/EP 99/04929

	9/04929				
- John Law Law Good of the Data and Administration (1986)	Betr Anspruch Nr				
EP 0 617 026 A (BAYER AG) 28. September 1994 (1994-09-28) in der Anmeldung erwähnt Ansprüche	9				
EP 0 597 360 A (BAYER AG) 18. Mai 1994 (1994-05-18) in der Anmeldung erwähnt Ansprüche	9				
EP 0 370 332 A (BAYER AG) 30. Mai 1990 (1990-05-30) Ansprüche & DE 38 39 480 A in der Anmeldung erwähnt	9				
CHEMICAL ABSTRACTS, vol. 100, no. 25, 18. Juni 1984 (1984-06-18) Columbus, Ohio, US; abstract no. 209881, NIHON NOHYAKU CO. LTD.: "1,2,4-Triazolin-5-one derivatives" XP002124210 in der Anmeldung erwähnt Zusammenfassung & JP 58 225070 A	9				
CHEMICAL ABSTRACTS, vol. 113, no. 3, 16. Juli 1990 (1990-07-16) Columbus, Ohio, US; abstract no. 23929, MURAI T. ET AL.: "Preparation of Delta 2-1,2,4-triazolin-5-one derivatives as antiinflammatory agents" XP002124211 in der Anmeldung erwähnt Zusammenfassung & JP 02 015069 A (KAKEN PHARMACEUTICAL CO LTD.)	9				
WO 99 07688 A (DEYN WOLFGANG VON ;HILL REGINA LUISE (DE); RHEINHEIMER JOACHIM (DE) 18. Februar 1999 (1999-02-18) in der Anmeldung erwähnt Ansprüche	1-11				
	Beze connung der Veroffentbonung, soweit enforcement unter Angabe der in Betrachtkommenden Teile EP 0 617 026 A (BAYER AG) 28. September 1994 (1994-09-28) in der Anmeldung erwähnt Ansprüche EP 0 597 360 A (BAYER AG) 18. Mai 1994 (1994-05-18) in der Anmeldung erwähnt Ansprüche EP 0 370 332 A (BAYER AG) 30. Mai 1990 (1990-05-30) Ansprüche & DE 38 39 480 A in der Anmeldung erwähnt CHEMICAL ABSTRACTS, vol. 100, no. 25, 18. Juni 1984 (1984-06-18) Columbus, Ohio, US; abstract no. 209881, NIHON NOHYAKU CO. LTD.: "1,2,4-Triazolin-5-one derivatives" XP002124210 in der Anmeldung erwähnt Zusammenfassung & JP 58 225070 A CHEMICAL ABSTRACTS, vol. 113, no. 3, 16. Juli 1990 (1990-07-16) Columbus, Ohio, US; abstract no. 23929, MURAI T. ET AL.: "Preparation of Delta 2-1,2,4-triazolin-5-one derivatives as antiinflammatory agents" XP002124211 in der Anmeldung erwähnt Zusammenfassung & JP 02 015069 A (KAKEN PHARMACEUTICAL CO., LTD.) WO 99 07688 A (DEYN WOLFGANG VON ;HILL REGINA LUISE (DE); RHEINHEIMER JOACHIM (DE) 18. Februar 1999 (1999-02-18) in der Anmeldung erwähnt				

INTERNATIONALER REPHERCHENBERICHT

Angaben zu Veroffentlichungen, die zur seie. Patentfamilie gehoren

Intern enzeichen PCT/EP 99/04929

Im Recherchenbericht ngeführtes Patentdokument		Datum der Veroffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 9626200	A	29-08-1996	AT 185139 T AU 703623 B AU 4875396 A BR 9607420 A CA 2213124 A CZ 9702672 A DE 59603223 D EP 0811005 A HU 9901256 A JP 11501010 T NZ 302651 A PL 321891 A	15-10-1999 25-03-1999 11-09-1996 23-06-1998 29-08-1996 13-05-1998 04-11-1999 10-12-1997 28-07-1999 26-01-1999 28-01-1999 22-12-1997
WO 9746530	Α	11-12-1997	AU 3297397 A CA 2257196 A EP 0922032 A	05-01-1998 11-12-1997 16-06-1999
DE 4405614	Α	24-08-1995	AU 1808495 A BR 9506928 A CA 2183641 A CN 1150421 A WO 9522532 A EP 0746550 A JP 9509923 T PL 315970 A	04-09-1995 09-09-1997 24-08-1995 21-05-1997 24-08-1995 11-12-1996 07-10-1997 23-12-1996
EP 0617026	A	28-09-1994	DE 4309966 A BR 9401300 A CA 2119673 A CN 1092770 A,B DE 59403503 D JP 6340639 A	29-09-1994 08-11-1994 27-09-1994 28-09-1994 04-09-1997 13-12-1994
EP 0597360	Α	18-05-1994	DE 4238125 A BR 9304702 A CA 2102750 A CN 1090847 A,B JP 7076578 A	19-05-1994 17-05-1994 13-05-1994 17-08-1994 20-03-1995
EP 0370332	A	30-05-1990	DE 3839480 A DD 297963 A DE 58907343 D JP 2184675 A JP 2735905 B US 5006148 A US 5554580 A	31-05-1990 30-01-1992 05-05-1994 19-07-1990 02-04-1998 09-04-1991 10-09-1996
JP 58225070	A	27-12-1983	KEINE	
JP 02015069	A	18-01-1990	KEINE	
WO 9907688	Α	18-02-1999	AU 9156198 A	01-03-1999

.