Digital Circuits and Systems

Introduction to State Machines

Shankar Balachandran*
Associate Professor, CSE Department
Indian Institute of Technology Madras

*Currently a Visiting Professor at IIT Bombay

Synchronous Sequential Circuits

- Realized using combinational logic and one or more flipflops
- Circuit has a set of primary inputs W
- It has a set of primary outputs Z
- The value of the flipflops at any point of time is called the state of the system

Canonical Sequential Circuit

Mealy Model

Sequential Logic – Moore Model

In a Moore model outputs of a circuit are function of the present state only.

Analysis of Sequential Logic Circuits

- Given a sequential circuit, what does it do? What do the state transitions look like?
- Analysis of sequential networks is done in three steps:
 - 1. **Logic Equations:** Determine the *flip-flop excitation* and sequential circuit *output logic equations*.
 - 2. **State Table:** State table is a tabular representation of the behavior of a sequential logic circuit. For a given input and present state of a circuit, it gives the output and the next state of the circuit. It is created using the characteristic table for the appropriate flip-flop.
 - 3. **State Diagram:** State diagram is a graphical depiction of a sequential logic circuit. Circles in this diagram depict the states and directed arcs depict the transitions.

Mealy Model

Moore Model

State Table and State Diagram

Present	Next	State	Output (z)				
State	x = 1	x = 0	x = 1	x = 0			
а	b	a	0	0			
b	C	a	0	0			
С	b	C	0	1			

Input	Present	Next	Output		
(x)	State	State	(z)		
0	а	a	0		
0	b	a	0		
0	С	C	1		
1	а	b	0		
1	b	C	0		
1	С	b	0		

Problem: What does the circuit do?

1. Determine the flip-flop excitation and sequential circuit output logic equations.

$$D_{0} = \overline{Q_{0}}$$

$$D_{1} = Q_{1}\overline{Q_{0}} + \overline{Q_{1}}Q_{0}$$

(there are no explicit outputs in the above circuit)

2. State Table: Use the characteristic table for D flip-flop

CLK	D	Q *
†	0	0
†	1	1

$$D_0 = \overline{Q_0}$$

$$D_1 = Q_1 \overline{Q_0} + \overline{Q_1} Q_0$$

Input	Prese	nt State	Flip-flop	o Inputs	Next	State	Output
(none)	Q_1	Q_{0}	D_1	D_0	Q ₁ *	Q ₀ *	(none)
	0	0	0	1	0	1	
	0	1	1	0 /	1	0	
	1	0	1	1	1	1	
	1	1	0 /	0	0	0	

3. State Diagram:

Problem: Detect two consecutive 1's

- A single input bit w is coming in one bit at a time.
- All changes must occur in the positive edge of the clock
- Detect two consecutive 1's. Output z must be 1 if for two immediately preceding cycles the input w was 1.

Clockcycle:	t_0	t_1	t_2	t ₃	t ₄	t ₅	t_6	t ₇	t ₈	t9	t ₁₀
											0
z:	0	0	0	0	1	0	0	1	1	0	0

Problem: Detect two consecutive 1's or 0's

- A single input bit w is coming in one bit at a time.
- All changes must occur in the positive edge of the clock
- Detect two consecutive 1's. Output z must be 1 if for two preceding cycles the input w had 1 in both cycles or 0 in both cycles.

Clockcycle: w:	t_0	t_1	t_2	t ₃	t ₄	t ₅	t ₆	t ₇	t ₈	t9	t ₁₀
w:	0	1	0	1	1	0	1	1	1	0	0
											1

Problem: Detect 011

- A single input bit w is coming in one bit at a time.
- All changes must occur in the positive edge of the clock
- Detect two consecutive 1's. Output z must be 1 if for three preceding cycles the input w had 011 as the input pattern.

Clockcycle: w:	t_0	t_1	t_2	t ₃	t ₄	t ₅	t_6	t ₇	t_8	t9	t ₁₀
w:	0	1	0	1	1	0	1	1	1	0	0
z:	0	0	0	0	1	0	0	1	0	0	0

End of Week 4: Module 27

Thank You