AM5630: Foundations of Computational Fluid Dynamics Computer Assignment 3 Lid Driven Cavity

Vamsi Sai Krishna Malineni OE20S302

May 18,2021

Contents

1	Sim	ulate Lid Driven Cavity Problem using Navier Stokes Equation	3				
	1.1	Problem Definition	3				
	1.2	Numerical Formulation	4				
	1.3	Boundary conditions:	4				
		1.3.1 Velocity Boundary conditions:	4				
		1.3.2 Pressure Boundary Conditions:	5				
	1.4	Discretisation	6				
	1.5	Pseudo-code	7				
	1.6	Results	8				
	1.7	Plots and Distributions	9				
	1.8	Additional Results	12				
2 References:							
Li	st o	f Tables					
	1	Performance of code (rough estimate) Time step $\triangle t = 0.001$	8				
	2	Performance of code (rough estimate) Time step $\triangle t=0.0001$	8				
Li	st o	f Figures					
	1	Computational domain of Lid Driven Cavity Problem	3				
	2	Plots at 51 Grid points Time step : $\triangle t = 0.001 \dots \dots \dots \dots$	9				
	3	Plots at 101 Grid points Time step : $\triangle t = 0.001$	10				
	4	Plots at 51 and 101 Grid points Time step : $\triangle t = 0.0001$	11				
	5	Results from Stream Function-Vorticity Approach dt=0.001 nx=ny=51	12				
	6	Ansys-Fluent Results	13				

1 Simulate Lid Driven Cavity Problem using Navier Stokes Equation

1.1 Problem Definition

Dimensions:

Number of X grid points: 51 Number of Y grid points: 51

Velocity of lid: 1 m/s

Length (l): 1m Width (w): 1m

Figure 1: Computational domain of Lid Driven Cavity Problem

The given Lid Driven Cavity Problem is a 2 Dimensional Problem.

The Governing Navier-Stokes equations are for 2D problem are:

u momentum equation:

$$\frac{\partial u}{\partial t} + u * \frac{\partial u}{\partial x} + v * \frac{\partial u}{\partial y} = -\frac{\partial P}{\rho \partial x} + \nu * \nabla^2 u \tag{1}$$

v momentum equation:

$$\frac{\partial v}{\partial t} + u * \frac{\partial v}{\partial x} + v * \frac{\partial v}{\partial y} = -\frac{\partial P}{\rho \partial y} + \nu * \nabla^2 v$$
 (2)

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{3}$$

Using the given dimensions of the cavity and properties of the fluid we can write:

$$\nu = \frac{1}{Re}$$

1.2 Numerical Formulation

The Lid Driven Cavity Problem is solved using Stream Function - Vorticity Approach

The Governing Navier-Stokes equations are used to derive the appropriate equations for the Stream function-Vorticity Approach

• Voriticity transport equation :

$$\frac{\partial \omega}{\partial t} + u \frac{\partial \omega}{\partial x} + v \frac{\partial \omega}{\partial y} = \nu \nabla^2 \omega \tag{4}$$

• Velocities in terms of Stream Function:

$$u = \frac{\partial \psi}{\partial y} \tag{5}$$

$$v = -\frac{\partial \psi}{\partial x} \tag{6}$$

• Stream Function- Voriticity Relationship:

$$\nabla^2 \psi = -\omega \tag{7}$$

• Pressure Poisson Equation:

$$\nabla^2 p = 2 * \rho * \left[\frac{\partial u}{\partial x} * \frac{\partial v}{\partial y} - \frac{\partial v}{\partial x} * \frac{\partial u}{\partial y} \right]$$
 (8)

1.3 Boundary conditions:

1.3.1 Velocity Boundary conditions:

The Boundary Conditions are as follows:

$$u(x,0) = 0$$
 $u(x,1) = 1$ $u(0,y) = 0$ $u(1,y) = 0$

$$v(x,0) = 0$$
 $v(x,1) = 1$ $v(0,y) = 0$ $v(1,y) = 0$

Since the flow is parallel to walls of the cavity, walls may be considered as streamlines. Thus $\psi = c$, where c is an arbitrary constant, which may be set equal to zero.

Since the Stream Function is constant along the wall, all the derivatives of stream function *along* the wall will vanish.

The stream function-vorticity relationship reduces to:

$$\frac{\partial^2 \psi}{\partial^2 n_{wall}} = -\omega_{wall}$$

where n is the normal direction.

The Discretized form of Boundary conditions for the Lid Driven Cavity Problem are:

· Left Wall:

$$\omega_{1,j} = -2(\frac{\partial^2 \psi}{\partial x^2})_{1,j}$$

Using Taylor Series Expansion:

$$\psi_{2,j} = \psi_{1,j} + \frac{\partial \psi}{\partial x_{1,j}} Ah + \frac{\partial^2 \psi}{\partial x_{1,j}^2} \frac{Ah^2}{2!} + \dots$$

Along left wall its known:

$$\frac{\partial \psi}{\partial x}_{1,j} = -v_{1,j}$$

Therefore the taylor series can be rearranged as:

$$\frac{\partial^2 \psi}{\partial x^2}_{1,j} = \frac{2(\psi_{2,j} - \psi_{1,j})}{Ah^2} + \frac{2v_{1,j}}{Ah}$$

$$\omega_{1,j} = \frac{2(\psi_{1,j} - \psi_{2,j})}{Ah^2} - \frac{2v_{1,j}}{Ah}$$

Applying the Velocity boundary condition we can obtain:

$$\omega_{1,j} = -2\frac{(\psi_{2,j})}{Ah^2}$$

Similarly we can find the other boundary conditions as well:

• Top Wall:

$$\omega_{i,ny} = -2\frac{\psi i, ny - 1}{h^2} - 2\frac{u_{wall}}{h}$$

Bottom Wall:

$$\omega_{i,1} = -2\frac{\psi_{i,2}}{h^2}$$

• Right Wall:

$$\omega_{nx,j} = -2\frac{\psi_{nx-1,j}}{h^2}$$

1.3.2 Pressure Boundary Conditions:

$$\frac{\partial P}{\partial n} = 0$$

Where n is the direction normal to the wall.

The above equation can be discretized using backward differencing method and the boundary condidion can be incorporated into the algorithm.

1.4 Discretisation

• Vorticity Transport Equation:

Substitute the equations (5) and (6) in (4)

$$\frac{\partial \omega}{\partial t} = -\frac{\partial \psi}{\partial y}\frac{\partial \omega}{\partial x} + \frac{\partial \psi}{\partial x}\frac{\partial \omega}{\partial y} + \frac{1}{Re}\left[\frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2}\right]$$

Assumption: The spatial spacing in both directions is same i.e., dx=dy=h

The above equation can be discretized as follows:

$$\omega_{i,j}^{n+1} = \omega_{i,j}^{n} + \frac{dt}{h^{2}} \left[-\frac{(\psi_{i,j+1}^{n} - \psi_{i,j-1}^{n})(\omega_{i+1,j}^{n} - \omega_{i-1,j}^{n})}{4} - \frac{(\psi_{i+1,j}^{n} - \psi_{i-1,j}^{n})(\omega_{i,j+1}^{n} - \omega_{i,j-1}^{n})}{4} + \frac{\omega_{i+1,j}^{n} + \omega_{i-1,j}^{n} + \omega_{i,j+1}^{n} + \omega_{i,j-1}^{n} - 4\omega_{i,j}^{n}}{Re} \right]$$

$$(9)$$

where dt is the time spacing

• Stream Function-Vorticity Relationship:

$$-\omega_{i,j}^n = \frac{\psi_{i+1,j}^n + \psi_{i-1,j}^n + \psi_{i,j+1}^n + \psi_{i,j-1}^n - 4\psi_{i,j}^n}{h^2}$$

The stream function values can be found out as follows:

$$\psi_{i,j}^{n+1} = \frac{\psi_{i+1,j}^n + \psi_{i-1,j}^n + \psi_{i,j+1}^n + \psi_{i,j-1}^n + h^2 \omega_{i,j}^n}{4}$$
(10)

• Pressure Poisson Equation:

The RHS of the Pressure poisson equation is discretized as follows

$$RHS_{i,j} = \frac{2\rho}{4h^2} * [((u_{i+1,j} - u_{i-1,j}) * (v_{i,j+1} - v_{i,j-1})) - ((v_{i+1,j} - v_{i-1,j}) * (u_{i,j+1} - u_{i,j-1}))]$$
(11)

The LHS of the Pressure poisson equation is discretized as follows

$$LHS = \frac{p_{i+1,j} - 2p_{i,j} + p_{i-1,j}}{h^2} + \frac{p_{i,j+1} - 2p_{i,j} + p_{i,j-1}}{h^2}$$
(12)

$$p_{i,j} = 0.25 * (p_{i+1,j} + p_{i-1,j} + p_{i,j+1} + p_{i,j-1}) - (0.25 * RHS * h^2)$$
(13)

The Pressure poisson equation hence can be solved iteratively to find the value of Pressure at each nodes.

1.5 Pseudo-code

1.6 Results

- As we increase the grid points from 51 grid points to 101 grid points, the Streamlines depicting the recirculation at the bottom of the cavity become prominent.
- As we increase the grid points from 51 grid points to 101 grid points, the Vorticity countours are more prominent.
- The Centerline u-velocity and Centerline v-velocity plots are in good agreement with data from Ghia-et al (reference data).
- The pressure distribution plot reveals a low pressure region in the center of the major vortex which is expected.
- The top right corner is a stagnation point for x component of velocity(u-velocity) and is characterized by significant pressure buildup.
- The number of iterations to reach steady state and time elapsed for 51 and 101 grid points is tabulated below

Number of Grid points	Number of Iterations to Steady State	Time Elapsed
51	16326	11.82s
101	22709	40.52s

Table 1: Performance of code (rough estimate) Time step $\triangle t$ =0.001

- The maximum iterations for a time step of dt=0.0001 is set to 1000000.
- The streamlines depicting the minor vortex became even more prominent with reduced time step and increased number of iterations.

Number of Grid points	Number of Iterations to Steady State	Time Elapsed
51	13305	81.00s
101	134012	394.20s

Table 2: Performance of code (rough estimate)
Time step $\triangle t$ =0.0001

1.7 Plots and Distributions

Figure 2: Plots at 51 Grid points Time step : $\triangle t$ =0.001

Figure 3: Plots at 101 Grid points Time step : $\triangle t {=}\, 0.001$

(a) Pressure Distribution 51 grid points

(c) Stream lines 51 grid points

(b) Pressure Distribution 101 grid points

(d) Stream lines 101 grid points

Figure 4: Plots at 51 and 101 Grid points Time step : $\triangle t$ =0.0001

1.8 Additional Results

- The Lid Driven Cavity Problem is simulated in Ansys-Fluent using SIMPLE Algorithm for the same boundary conditions.
- It can be seen that velocity contours and Stream lines obtained from Stream Function-Vorticity Approach and Ansys-Fluent Results are identical.

Figure 5: Results from Stream Function-Vorticity Approach dt=0.001 nx=ny=51

Figure 6: Ansys-Fluent Results

2 References:

Ghia, U., Ghia, K.N. and Shin, C.T. (1982) High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method. Journal of Computational Physics, 48, 387-411. http://dx.doi.org/10.1016/0021-9991(82)90058-4