

How to Think in Code

Workshop Lead: Larisa Morales Soto

Date: February 2, 2024

Mission statement: deliver quality workshops designed to help biomedical researchers develop the skills they need to succeed.

Location: 740 Dr. Penfield Avenue, Montreal, Quebec

Scan the QR code to sign up for our **mailing list**

Contact: workshop-micm@mcgill.ca

Winter 2024 MiCM Workshops Series Sign up for our mailing list for updates!

Workshop	Date	Location	Registration
How to think in Code	Feb. 2 9AM-11AM	McIntyre Room 325	<u>Open</u>
Intro to UNIX and HPC	Feb. 7 9AM-1PM	McIntyre Room 325	<u>Open</u>
Git and GitHub	Feb. 9 1PM-5PM	Arts Room 150	<u>Open</u>
Intro to R (Part 1)	Feb. 14 9AM-1PM	Macdonald Engineering Building Room 10	<u>Open</u>
Data Analysis in R (Part 2)	Feb. 16 9AM-1PM	McIntyre Room 325	TBA
Intro to Python (Part 1)	Feb. 21 1PM-5PM	TBA	ТВА
Data Analysis in Python (Part 2)	Feb. 23 1PM-5PM	Arts Room 150	TBA
Transcriptomics	TBA	TBA	TBA
Metagenomics	Mar. 13 10AM-12PM	TBA	TBA
WGS Data and Variant Calling	TBA	TBA	TBA
GWAS and PRS	ТВА	TBA	TBA

https://www.mcgill.ca/micm/training/workshops-series

What to expect today

- ✓ Practice structured thinking
- ✓ Become familiar with programming logic
- ✓ Learn about basic programming components (variables, algorithms, data structures)

We will NOT:

- Learn a specific programming language
- Perform data analysis
- · Learn about machine learning
- Write programs that generate visualizations

Contents

- Part 1 Programs
 - Instructions
 - Recognizing patterns
 - Pseudocode control structures
 - Algorithms
- Part 2 Coding fundamentals
 - Boolean logic
 - Conditional statements
 - Variables
 - Data structures
 - Programming languages

Exercises:

Create an account

https://brilliant.org

Part 1 Programs

What is a computer program?

Source code

Human readable

ExecutableMachine instructions

- Sequence of instructions for the computer to execute
- Translation of our thoughts into operations that the computer understands

Sequence of instructions

Repeating instructions

- Learn how to do it once
- Find the pattern
- Repeat it

Pseudocode

A high-level summary of a sequence of instructions

Build twin bed
Repeat

- Useful to visualize the order of steps
- Serves as the backbone of the code

Hands on 1

https://brilliant.org/courses/thinking-in-code/

Algorithms

Precise set of instructions used for solving a problem or performing a task.

- Tying your shoes
- Finding a book in the library
- Following a cooking recipe

- Finding the shortest path
- Sorting a list of numbers
- Recommending digital content

Part 2 Coding fundamentals

Boolean logic

A type of operation that can only have

two possible

outcomes:

TRUE or FALSE

Boolean expression	Result
2+2 == 5	FALSE
"dog"=="human"	FALSE
2*2 > 1	TRUE

Boolean operators

Shape==circle

AND

TRUE

When both expressions are TRUE

OR

TRUE

When either one or the other is true

NOT

TRUE

Checks if the expression if FALSE or not

Conditionals

Command used to make a decision and specify what to do in each case

```
If (boolean condition) Then
    (consequent)
Else
    (alternative)
End If
```


Variables

Container to store information needed in the program

shape = "circle"

Hands on 2

https://brilliant.org/courses/creative-coding/

Data types

Refers to the kind of information that can be stored in a variable

Data Type	Represents	Examples
integer	whole numbers	-5 , 0 , 123
floating point (real)	fractional numbers	-87.5 , 0.0 , 3.14159
string	A sequence of characters	"Hello world!"
Boolean	logical true or false	true, false
nothing	no data	null

Data structures

Specific storage formats designed for efficient data access and management

In summary

- ✓ Practice structured thinking
- ✓ Become familiar with programming logic
- ✓ Learn about basic programming components

Now you are ready to:

- Learn a specific programming language
- Perform data analysis
- Learn about machine learning
- Write programs that generate visualizations

But before coding...

Understand the problem

Recognize patterns

Think about the solution

Write a pseudocode

Make it work Make it right Make it fast

Kent Beck

Thank you for attending!

Scan the QR code to confirm you attended today's workshop.

Fill out the feedback survey in the next 72h.

Get recognition for this workshop on your co-curricular record.