1 Длина кривой. Определение криволинейных интегралов первого и второго рода по параметризованной гладкой прямой.

1. Теорема о длине кривой:

Если функция $\overline{\gamma}$ имеет на отрезке [a,b] непрерывную производную $\overline{\gamma}'=(\gamma_1^{'},\gamma_2^{'}),$ то кривая $L=L_{\overline{\gamma}}$ спрямляема и её длина S выражается равенством

$$S = \int_{a}^{b} |\overline{\gamma}'(t)| dt.$$

Доказательство:

Для любого разбиения $a = t_0 < t_1 < \ldots < t_n = b$ отрезка [a, b] имеем

$$\sum_{i=1}^{n} |\overline{\gamma}(t_i) - \overline{\gamma}(t_{i-1})| = \sum_{i=1}^{n} \left| \int_{t_{i-1}}^{t_i} \overline{\gamma}'(t) dt \right| \le \sum_{i=1}^{n} \int_{t_{i-1}}^{t_i} |\overline{\gamma}'(t)| dt = \int_{a}^{b} |\overline{\gamma}'(t)| dt.$$

Переходя к верхней грани по всевозможным разбиениям отрезка, получим неравенство

$$S \le \int_a^b |\overline{\gamma}'(t)| dt.$$

Докажем справедливость неравентсва противоположного. Пусть $\epsilon>0$. В силу равномерной непрерывности функции $\overline{\gamma}'$ $\exists \delta>0$ $(|s-t|<\delta\Rightarrow|\overline{\gamma}'(s)-\overline{\gamma}'(t)|<\epsilon)$. Возьмём разбиение отрезка с диамотром меньшим δ . Тогда $\forall t\in [t_{i-1},t_i]$ имеем

$$|\overline{\gamma}'(t)| = |(\overline{\gamma}'(t) - \overline{\gamma}'(t_i)) + \overline{\gamma}'(t_i)| \le |\overline{\gamma}'(t) - \overline{\gamma}'(t_i)| + |\overline{\gamma}'(t_i)| \le |\overline{\gamma}'(t_i)| + \epsilon.$$

Далее получим

$$\int_{t_{i-1}}^{t_i} |\overline{\gamma}'(t)| dt - \epsilon \Delta t_i \le |\overline{\gamma}'(t_i)| \Delta t_i = |\int_{t_{i-1}}^{t_i} (\overline{\gamma}'(t) + \overline{\gamma}'(t_i) - \overline{\gamma}'(t)) dt| \le$$

$$\leq |\int_{t_{i-1}}^{t_i} \overline{\gamma}'(t)dt| + |\int_{t_{i-1}}^{t_i} (\overline{\gamma}')(t_i) - \overline{\gamma}'(t)dt| \leq |\overline{\gamma}(t_i) - \overline{\gamma}(t_{i-1})| + \epsilon \Delta t_i$$

И

$$\int_a^b |\overline{\gamma}'(t)| dt = \sum_{i=1}^n \int_{t_{i-1}}^{t_i} |\overline{\gamma}'(t)| dt \leq \sum_{i=1}^n |\overline{\gamma}(t_i) - \overline{\gamma}(t_{i-1})| + 2\epsilon(b-a) \leq S + 2\epsilon(b-a)$$

Тогда в силу произвольности $\epsilon > 0$ имеем неравенство

$$\int_{a}^{b} |\overline{\gamma}'(t)| dt \le S.$$

2-3. Определение криволинейных интегралов первого и второго рода по параметризованной гладкой прямой:

Пусть $L=L_{\overline{\gamma}}$ — гладкая кривая, а функции $f(x,y), \quad P(x,y), \quad Q(x,y)$ определены на L. Пусть $a=t_0< t_1<\ldots< t_n=b$ — разбиение отрезка $[a,b], \quad M_k=(x_k,y_k)=(\gamma_1(t_k),\gamma_2(t_k)), \quad k=0,\ldots,n,$ и l_k — дуга $M_{k-1}M_k$ кривой $L, \quad k=1,\ldots,n.$

На каждой дуге $M_{k-1}M_k$ выберем произвольную точку $N_k(\xi_k,\eta_k)$, соответсвующую некоторому значению $\tau_k\in[t_{k-1},t_k]$ параметра t.

Обозначим длину дуги $M_{k-1}M_k$ через

$$\Delta s_k = \int_{t_{k-1}}^{t_k} |\overline{\gamma}'(t)| dt = \int_{t_{k-1}}^{t_k} \sqrt{(\gamma_1'(t))^2 + (\gamma_2'(t))^2} dt$$

и диаметром разбиения кривой L назовём число $\Delta = \max_{1 \le k \le n} \Delta s_k$. Определи интегральные суммы

$$\sigma_1 = \sum_{k=1}^n f(\xi_k, \eta_k) \Delta s_k.$$

$$\sigma_2 = \sum_{k=1}^n P(\xi_k, \eta_k) \Delta x_k.$$

$$\sigma_3 = \sum_{k=1}^n Q(\xi_k, \eta_k) \Delta y_k,$$

где $\Delta x_k = x_k - x_{k-1}, \quad \Delta y_k = y_k - y_{k-1}.$

Определение криволинейного интеграла первого рода:

Назовём число I_m пределом интегральных сумм σ_m (m=1,2,3) при стремлении диаметра Δ к нулю, если

$$\forall \epsilon > 0 \quad \exists \delta > 0 \quad (\Delta < \delta \Rightarrow |\sigma - I_m| < \epsilon)$$
 (независимо от выбора точек N_k).

Число I_1 называют криволинейным интегралом первого рода от функции f по кривой L и обозначают символом

$$\int_{L} f(x,y)ds.$$

Число I_2 называют криволинейным интегралом второго рода от функции P по кривой L (в направлении от A до B) и обозначают символом

$$\int_{L} P(x,y)dx.$$

2 Условия существования криволинейных интегралов.

Условия существования криволинейных интегралов:

Если кривая $L=L_{\overline{\gamma}}$ является гладкой и функции f,P,Q непрерывны вдоль этой кривой, то все три криволинейные интегралы существуют и могут быть вычислены по формулам

$$\int_{L} f(x,y)dx = \int_{a}^{b} f(\gamma_{1}(t), \gamma_{2}(t)) \sqrt{(\gamma'_{1}(t))^{2} + (\gamma'_{2}(t))^{2}} dt, \qquad (1)$$

$$\int_{L} P(x,y)dx = \int_{a}^{b} P(\gamma_1(t), \gamma_2(t))\gamma_1'(t)dt, \qquad (2)$$

$$\int_{L} Q(x,y)dy = \int_{a}^{b} Q(\gamma_1(t), \gamma_2(t))\gamma_2'(t)dt \qquad (3)$$

Доказательство:

Прежде всего отметим, что определенные интегралы, стоящие в правых частях формул, существуют, так как их подынтегральные функции непрерывны на отрезке [a,b]/

Докажем первое равенство. Обозначим

$$I_1 = \int_a^b f(\gamma_1(t), \gamma_2(t)) \sqrt{(\gamma_1'(t))^2 + (\gamma_2'(t))^2} dt$$

и оценим разность

$$\sigma_1 - I_1 = \sum_{k=1}^n f(\xi_k, \eta_k) \Delta l_k - \int_a^b f(\gamma_1(t), \gamma_2(t)) \sqrt{(\gamma_1'(t))^2 + (\gamma_2'(t))^2} dt =$$

$$= \sum_{k=1}^{n} \int_{t_{k-1}}^{t_k} (f(\gamma_1(\tau_k), \gamma_2(\tau_k)) - f(\gamma_1(t), \gamma_2(t))) \sqrt{(\gamma_1'(t))^2 + (\gamma_2'(t))^2} dt$$

Так как функции $\gamma_1'(t)$ и $\gamma_2'(t)$ непрерывны на [a,b] и одновременно не обращаются в нуль, то

$$m = \min_{a \le t \le b} \sqrt{(\gamma_1'(t))^2 + (\gamma_2'(t))^2} > 0$$
 и $\Delta s_k \ge m \int_{t_{k-1}}^{t_k} dt = m \Delta t_k$.

Следовательно

$$\Delta t_k \le \frac{1}{m} \Delta s_k$$

и при стримлении к нулю диаметра разбиения Δ кривой L стемится к нулю и наибольшая из разностей $\Delta t_k = t_k - t_{k-1}$.

Поскольку функция $f(\gamma_1(t),\gamma_2(t))$ равномерно непрерывна на отрезке [a,b], то $\forall \epsilon>0 \quad \exists \delta>0 \quad : \quad \Delta<\delta \Rightarrow$

$$|f(\gamma_1(\tau_k), \gamma_2(\tau_k)) - f(\gamma_1(t), \gamma_2(t))| < \frac{\epsilon}{S},$$

где S — длина кривой L.

Тогда

$$|\sigma_1 - I_1| \le \frac{\epsilon}{S} \sum_{k=1}^n \int_{t_{k-1}}^{t_k} \sqrt{(\gamma_1'(t)) + (\gamma_2'(t))^2} dt = \frac{\epsilon}{S} \sum_{k=1}^n \Delta s_k = \epsilon.$$

Таким образом мы доказали, что интегральные суммы σ_1 стемятся к числу I_1 при $\Delta \to 0$, то есть мы доказали первое равенство.

Для доказательства второго равенства оценим разность

$$\sigma_2 - I_2 = \sum_{k=1}^n \int_{t_{k-1}}^{t_k} \left(P(\gamma_1(\tau_k), \gamma_2(\tau_k)) - P(\gamma_1(t), \gamma_2(t)) \right) \gamma_1'(t) dt.$$

 $\forall \epsilon > 0 \quad \exists \delta > 0 \quad : \quad \Delta < \delta \Rightarrow$

$$P(\gamma_1(\tau_k), \gamma_2(\tau_k)) - P(\gamma_1(t), \gamma_2(t))| < \frac{\epsilon}{M(b-a)},$$

где $M = \max_{a \le t \le b} |\gamma_1'(t)|$. Тогда

$$|\sigma_2 - I_2| \le \frac{\epsilon}{M(b-a)} \sum_{k=1}^n \int_{t_{k-1}}^{t_k} |\gamma_1'(t)| dt \le \frac{\epsilon}{M(b-a)} M \sum_{k=1}^n \Delta t_k = \epsilon.$$

Это означает, что интегральные суммы $\sigma_2 \to I_2$ при $\Delta \to 0$, то есть мы доказали второе равенство.

Третье равенство доказывается аналогично.

3 Замена параметра в криволинейном интеграле первого рода.

Замена параметра в криволинейном интеграле первого рода:

ПУсть $L = L_{\gamma}$ — гладкая кривая, функция $\overline{\gamma}$ определена на отрезке [a,b], а функция ϕ определена на отрезке $[a_1,b_1]$, отображает его на отрезок [a,b], имеет непрерывную производную и $\phi'(u) \neq 0 \quad \forall u \in [a_1,b_1]$.

Тогда функция ϕ' сохраняет знак на отрезке $[a_1,b_1]$ и функция ϕ является возрастающей, если $\phi(u)>0$, и является убывающей, если $\phi(u)<0$. Согласно правилу замены переменной в интеграе Римана имеем

$$\int_{a}^{b} f(\gamma_{1}(t), \gamma_{2}(t)) \sqrt{(\gamma_{1}'(t))^{2} + (\gamma_{2}'(t))^{2}} dt = \int_{a}^{b} f(\overline{\gamma}(t)) |\overline{\gamma}'(t)| dt =$$

$$= \int^{\phi^{-1}(b)_{\phi^{-1}(a)}} f(\overline{\gamma}(\phi(u))) |\overline{\gamma}'(\phi(u))| \phi'(u) du.$$

Если
$$\phi'(u)>0$$
, то $|\overline{\gamma}'(\phi(u))\phi'(u)=|\overline{\gamma}'(\phi(u))\phi'(u)|=|(\overline{\gamma}\circ\phi)'(u)|, \quad \phi^{-1}(a)=a_1, \phi^{-1}(b)=b_1$

Если же $\phi'(u)<0$, то $|\overline{\gamma}'(\phi(u))|\phi'(u)=-|\overline{\gamma}'(\phi(u))\phi'(u)|=-|(\overline{\gamma}\circ\phi)',\quad \phi^{-1}(a)=b_1,phi^{-1}(b)=a_1.$

Тогда в любом случае

$$\int_{\phi^{-1}(a)}^{\phi^{-1}(b)} f(\overline{\gamma}(\phi(u))) |\overline{\gamma}'(\phi(u))| \phi'(u) du = \int_{a_1}^{b_1} f(\overline{\gamma}(\phi(u))) |(\overline{\gamma} \circ \phi)'(u) du$$

Обозначим $\overline{\gamma}^*(u) = (\overline{\gamma} \circ \phi)(u)$. чоевидно, что вектор-функция $\overline{\gamma}^*$ непрерывно диффиренцируема на отрезке $[a_1,b_1]$ и её производная ни в одной точке этого отрезка не равна вектору (0,0). Тогда вектор-функцию $\overline{\gamma}^*$ можно считать другим параметрическим представлением кривой L.

4 Ориентированная гладкая кривая и криволинейный интеграл второго рода по ней.

1. Понятие ориентированной гладкой кривой:

Пусть L - гладкая кривая. Две ее параметризации $L_{\overline{\gamma}}$, где $\overline{\gamma}$ определена на отрезке [a,b], и $L_{\overline{\gamma}^*}$, где $\overline{\gamma}^*$ определена на отрезке $[a_1,b_1]$, назовем положительно эквивалентными, если существует функция φ определеная на отрезке $[a_1,b_1]$, отображающая его на отрезок [a,b], имеющая непрерывную производную с условием $\varphi'(u) > 0$ при всех $u \in [a_1,b_1]$, такая, что $\overline{\gamma}^* = (\overline{\gamma} \circ \varphi)$.

Класс всех положительно эквивалентных друг другу параметризаций называют ориентированной гладкой кривой.

2. Понятие криволинейного интеграла второго рода по ориентированной гладкой кривой:

Криволинейный интеграл второго рода по ориетированной кривой определяют как интеграл по одной из ее параметризаций.

Пользуясь формулой замены переменной в интеграле Римана, легко показать, что данное определение корректно.

Обозначим одну из ориентаций гладкой кривой L через $L^+,$ а другую через $L^-.$ Тогда справедливо равенство

$$\int\limits_{L^+} P(x,y)dx + Q(x,y)dy = -\int\limits_{L^-} P(x,y)dx + Q(x,y)dy.$$