

Movidius VOLA

HW Acceleration for Volumetric Applications

David Moloney PhD, CTO Movidius

Introduction

- •3D sensing becoming more and more pervasive
- Started with Kinect
- •3D mapping devices like Project Tango
- Next step from active to passive sensing
- From depth you can reconstruct volume
- And volumetric representations allow many applications

Memory Efficient Volumetric Data

SLAMbench (Platform-Independent Kfusion)

- Kfusion fuses depth frames (Kinect) into 3D geometric map
- Uses voxel grid of TSDFs to represent 3D surfaces
- 3D surfaces recovered by ray-casting at TSDF zero-crossings
- Localisation estimates location and pose

SLAMbench on Myriad2

	ICL-NUIM Living Room, traj2: synthetic (QVGA)								ASUS Xtion Pro - real (QVGA)							
	128^3				256^3				128^3				256^3			
energy/frame	CPP	ОМР	CUDA	OCL	CPP	ОМР	CUDA	OCL	CPP	ОМР	CUDA	OCL	CPP	ОМР	CUDA	OCL
TK1	4.36	2.01	0.28	0.00	6.21	3.12	0.44	0.00	3.27	1.71	0.22	0.00	4.37	3.08	0.33	0.00
TX1	3.10	1.52	0.17	0.00	4.53	2.47	0.24	0.00	2.29	1.23	0.17	0.00	3.14	1.77	0.21	0.00
XU4	3.43	2.72	0.00	0.48	5.38	5.19	0.00	0.76	2.54	2.50	0.00	0.45	3.74	3.23	0.00	0.65
MA2150	0.59	0.00	0.00	0.00	1.52	0.00	0.00	0.00	0.47	0.00	0.00	0.00	1.03	0.00	0.00	0.00

SLAMbench on Myriad2

SLAMbench on Myriad2

Dense vs Sparse Volumetric storage

Dense 512MB storage for 5^3 m volume in SLAMbench using 32-bit TSDF per voxel

Octree storage – only store 2.5D manifold (no empty space)

Sparse Voxel Tree LoD

Volumetric Data Sharing

Platin Cement works

Map

Movidius

https://goo.gl/iKXhQo 800 x 600m (0.5km^2) raw .obj file 32MB

SfM video

https://www.youtube.com/watch?v=MZ583jQZSR4

http://www.movidius.com

11

Volumetric Data Sharing

VOLA Volumetric CNN

- CNN to identify objects from their VOLA volumetric representation
- Allows objects to be located and marked in VOLA
- Proof of concept using 3D letters ala LeNet achieves 82% accuracy

CNN

81.85%

Average

VOLA JiT Audio Models for AR/MR

Crowd-Sourcing Volumetric Maps

SHAVE ISA Volumetric Data Accelerator

Voxel Insertion/Deletion Logic

Conclusions

- Volumetric applications can run efficiently on embedded platforms
- Optimal data-structures can allow 128x reduction in RAM requirements
- •Bit-per-voxel Octree allows compact interchangeable format for M2M
- •Two bit's per voxel allows colour and other information to be stored per sub-volume

