

051705

(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION
EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété
Intellectuelle
Bureau international

(43) Date de la publication internationale
16 octobre 2003 (16.10.2003)

PCT

(10) Numéro de publication internationale
WO 03/084723 A2

- (51) Classification internationale des brevets⁷ : **B27K** Antoine [FR/FR]; 75, allée de Brienne, F-31000 Toulouse (FR).
- (21) Numéro de la demande internationale : PCT/FR03/01110 (74) Mandataire : SAINT-GOBAIN RECHERCHE; 39, quai Lucien Lefranc, F-93300 Aubervilliers (FR).
- (22) Date de dépôt international : 9 avril 2003 (09.04.2003)
- (25) Langue de dépôt : français (81) États désignés (*national*) : AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (26) Langue de publication : français
- (30) Données relatives à la priorité : 02/04448 10 avril 2002 (10.04.2002) FR (71) Déposant (*pour tous les États désignés sauf US*) : LAPEYRE [FR/FR]; 2, rue André Karman, F-93304 Aubervilliers (FR).
- (72) Inventeurs; et
- (75) Inventeurs/Déposants (*pour US seulement*) : MAGNE, Michel [FR/FR]; 6, place de la Paix, F-51530 Moussy (FR). EL KASMI, Silham [FR/FR]; 52, rue de Fagnières, F-51000 Chalons en Champagne (FR). DUPIRE, Maxime [FR/FR]; 18, rue Blanchard, F-31400 Toulouse (FR). MORAD, Marie [FR/FR]; 9, impasse Abbé Salvat, F-31100 Toulouse (FR). VACA-GARCIA, Carlos [MX/FR]; 134, avenue Jean Rieux, Bâtiment A, F-31500 Toulouse (FR). THIEBAUD-ROUX, Sophie [FR/FR]; 23, rue du Geai, F-31240 L'Union (FR). PEYDECAS-TAING, Jérôme [FR/FR]; 67, rue André Vasseur, F-31200 Toulouse (FR). BORREDON, Elisabeth [FR/FR]; 6, impasse de la Menthe, F-31170 Tournefeuille (FR). GASET, (84) États désignés (*régional*) : brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Publiée :

— sans rapport de recherche internationale, sera republiée dès réception de ce rapport

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

(54) Title: METHOD FOR TREATING LIGNOCELLULOSIC MATERIALS, IN PARTICULAR WOOD AND MATERIAL OBTAINED BY SAID METHOD

(54) Titre : PROCEDE DE TRAITEMENT DE MATERIES LIGNOCELLULOSES, NOTAMMENT DU BOIS AINSI QU'UN MATERIAU OBTENU PAR CE PROCEDE

(57) Abstract: The invention concerns a method for chemical treatment of lignocellulosic materials, in particular at least a piece of timber, characterized in that it consists in subjecting said materials to impregnation with a chemical agent comprising hydrocarbon chains, said agent being selected among mixed anhydrides, excluding acetic/benzoic acid mixed anhydride, said agent being adapted to ensure covalent bonding of a plurality of hydrocarbon chains on said materials.

(57) Abrégé : Procédé de traitement chimique de matières lignocellulosiques, notamment d'au moins une pièce de bois, caractérisé en ce que l'on soumet lesdites matières à une imprégnation par un agent chimique comportant des chaînes hydrocarbonées, cet agent étant choisi parmi les anhydrides mixtes, sauf l'anhydride mixte d'acide acétique/benzoïque, ledit agent étant adapté pour assurer un greffage par liaison covalente d'une pluralité de chaînes hydrocarbonées sur lesdites matières.

WO 03/084723 A2

Procédé de traitement de matières lignocellulosiques, notamment du bois ainsi qu'un matériau obtenu par ce procédé.

La présente invention est relative à un procédé de traitement de matières lignocellulosiques, notamment du bois ainsi qu'un matériau obtenu par ce procédé.

Elle vise plus particulièrement un procédé de protection du bois permettant de lui conférer un caractère hydrophobe, afin d'augmenter sa durabilité et sa stabilité dimensionnelle.

On sait qu'à l'état naturel le bois, ou plus précisément les fibres de bois qui sont en contact d'une atmosphère humide, ont tendance à se gorger d'eau. Cette absorption d'eau s'accompagne d'un gonflement.

Afin d'éliminer cette eau, on peut procéder à un séchage. Toutefois, bien que l'étape de séchage permette d'éliminer l'eau du bois, elle ne modifie en rien son caractère naturel hydrophile, si bien que la pièce de bois est de nouveau capable de réabsorber de l'eau éliminée lors du séchage lorsque cette pièce se trouve de nouveau dans un environnement humide.

Afin de diminuer, voire supprimer le caractère hydrophile du bois et lui conférer ainsi une stabilité dimensionnelle à long terme (classiquement une dizaine d'années), on a recherché des techniques de traitement.

Parmi celles-ci, on peut relever deux grandes familles qui se différencient en des procédés physiques de traitement thermique (généralement à des températures supérieures à 150°C) et des procédés de traitement physico-chimique, généralement à des températures inférieures à 120°C.

La présente invention s'intéresse aux procédés de traitement physico-chimique.

Parmi ces traitements physico-chimiques, on connaît notamment par plusieurs publications Arni et coll., (Arni, 1961) ; Matsuzaki et coll., des procédés permettant de synthétiser des esters mixtes à partir d'un milieu trifluoroacétique. Ces procédés ne sont pas viables industriellement en raison de l'utilisation de solvant et de catalyseur toxiques.

Des études complémentaires menées sur des sciures de bois ont démontré que l'estérification en présence d'une catalyse acide fort (se rajoutant à l'acidité intrinsèque du milieu) permettait de conférer à ces sciures un caractère

hydrophobe. Ces études ont fait l'objet de la publication suivante Vaca-Garcia C ;, Borredon M.E, 1999, Solvent-free fatty acylation of cellulose and lignocellulosic wastes. Part 2 : reactions with fatty acids, Bioresource Technology, 70, 135-142.

Les inconvénients majeurs ce procédé en présence d'une catalyse acide 5 résident dans la perte de masse de la sciure de bois, cette perte de masse résultant d'une dégradation des biopolymères constituant la sciure. On peut remarquer également un changement de couleur de la sciure après traitement.

Une technique similaire à la précédente n'est pas transposable sur une 10 pièce de bois. En effet, on a constaté que les molécules d'hémicelluloses et la cellulose sont hydrolysées partiellement, ce qui entraîne une diminution du poids moléculaire par la formation d'oligomères ainsi qu'une diminution des propriétés mécaniques, ainsi qu'une dégradation esthétique de la pièce de bois traitée.

La présente invention vise à pallier ces inconvénients en proposant un 15 procédé qui confère au bois massif un caractère hydrophobe, tout en garantissant une stabilité dimensionnelle dans le temps, sans provoquer la création de gerces, de craquellements, de fendillements, ni changement de couleur.

La présente invention a ainsi pour objet un procédé de traitement chimique 20 de matières lignocellulosiques, notamment d'au moins une pièce de bois, qui se caractérise en ce que l'on soumet lesdites matières à une imprégnation par un agent chimique comportant des chaînes hydrocarbonées, cet agent étant choisi parmi les anhydrides mixtes, sauf l'anhydride mixte d'acide acétique/benzoïque, ledit agent étant adapté pour assurer un greffage par liaison covalente d'une pluralité de chaînes hydrocarbonées sur lesdites matières.

Grâce à ces dispositions, on améliore la protection en surface et à 25 cœur de la matière lignocellulosique, notamment du bois, par modification de ses fonctions hydroxyles.

Dans des modes de réalisation préférés de l'invention, on peut éventuellement avoir recours en outre à l'une et/ou à l'autre des dispositions suivantes :

- 30 - le greffage s'effectue par un processus d'estérification desdites matières lignocellulosiques à l'aide d'un agent chimique choisi parmi les anhydrides organiques,
- le traitement s'effectue à une température comprise entre la température ambiante et 150 °C, et de préférentiellement entre 100 et 140 °C,

- l'anhydride organique est un anhydride mixte,
- l'anhydride mixte comporte une première chaîne hydrocarbonée R et une seconde chaîne hydrocarbonée R₁,
- R représente un acide carboxylique de C₂ à C₄ et R₁ est un acide gras de C₆ à C₂₄ saturés ou insaturés,
- R₁ représente un acide carboxylique de C₂ à C₄ et R est un acide gras de C₆ à C₂₄ saturés ou insaturés,
- l'anhydride mixte est l'anhydride mixte d'acides acétique/octanoïque,
- l'imprégnation s'effectue en présence d'un catalyseur basique,
- l'imprégnation s'effectue en présence d'un catalyseur neutre,
- l'imprégnation s'effectue en présence d'un catalyseur acide faible,
- l'imprégnation s'effectue sans présence de catalyseur,
- l'imprégnation des matières lignocellulosiques est réalisée par un procédé de trempage,
- l'imprégnation des matières lignocellulosiques est réalisée par un procédé d'aspersion,
- l'imprégnation des matières lignocellulosiques est réalisée au sein d'un autoclave,
- le procédé de traitement est réalisé sur une pièce de bois, dont l'essence est choisie parmi notamment le chêne, le pin, le sapin, le curupixa, l'eucalyptus,

Selon un autre aspect de l'invention, celle-ci vise également une pièce de bois traité selon le procédé visé précédemment qui se caractérise en ce que les fibres ligno-cellulosiques sont homogènes et présentent un aspect lissé.

Dans des modes de réalisation préférés de l'invention, on peut éventuellement avoir recours en outre à l'une et/ou à l'autre des dispositions suivantes :

- le taux d'absorption des fibres lignocellulosiques traitées est sensiblement voisin de 3.5 %,
- le taux de gonflement des fibres lignocellulosiques traitées est sensiblement voisin de 3.5 %.

D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description suivante d'une de ses formes de réalisation, donnée à titre d'exemple non limitatif, en regard des dessins joints.

Sur les dessins :

- La figure 1 est une vue prise au microscope à balayage (MEB) d'un échantillon de bois non traité, il peut servir de référence.
- La figure 2 est une vue prise au microscope à balayage (MEB) d'un échantillon 5 de bois ayant subi le procédé objet de l'invention, en présence d'un catalyseur acide fort.
- La figure 3 est une autre vue prise au microscope à balayage (MEB) d'un échantillon de bois ayant subi le procédé objet de l'invention, en présence d'un catalyseur acide fort.

10 Selon un mode préféré de réalisation du procédé objet de l'invention, celui-ci consiste à imprégner des matières lignocellulosiques, telles que notamment au moins une pièce de bois par un agent chimique comportant des chaînes hydrocarbonées, ledit agent étant adapté pour assurer un greffage par liaison covalente d'une pluralité de chaînes hydrocarbonées sur lesdites matières.

15 On entend par chaîne hydrocarbonée toute chaîne hétéro aliphatique, hétéro aromatique, aliphatique, ou aromatique.

Cette imprégnation est réalisée à une température comprise entre la température ambiante et 150°C et préférentiellement entre 100 et 140°C.

20 Cet agent chimique est choisi parmi les anhydrides organiques, et préférentiellement parmi les anhydrides mixtes.

Préalablement à la phase d'imprégnation par l'agent chimique desdites matières lignocellulosiques (par exemple au moins une pièce de bois), on procède à une étape de préparation de l'anhydride mixte.

25 Selon une première méthode : à partir d'un chlorure d'acide et d'un ester carboxylique selon la réaction suivante :

30 Selon une variante de la première méthode, consistant à échanger la position de R et de R₁

Selon une deuxième méthode : à partir d'un chlorure d'acide et d'un sel d'acide carboxylique selon la réaction suivante :

Selon une troisième méthode : à partir d'un anhydride d'acide carboxylique linéaire et d'un acide gras, selon la réaction suivante.

Les radicaux R, R₁ sont des chaînes aliphatiques de longueurs différentes. A titre d'exemple non limitatif, on pose que R est de longueur plus petite que R₁.

15 R représente par un exemple un acide carboxylique de C2 à C4 (acétique, propionique ou butyrique tandis que R₁ est un acide gras de C6 à C24 saturés ou insaturés (hexylique, octanoïque ou oléique par exemple).

20 Les anhydrides mixtes peuvent être utilisés purs ou en mélange, et dans ce cas provenir être issus d'un mélange de différents carboxyliques, à partir desquels on réalise la synthèse de l'anhydride mixte recherché.

A partir de l'anhydride mixte obtenu par l'une au moins des méthodes mentionnées précédemment, on procède alors à l'imprégnation d'une pièce de bois, de manière à greffer l'anhydride mixte (par exemple de l'anhydride acétique/octanoïque) sur ladite pièce de bois, ce greffage consistant en une 25 estérification du bois selon la réaction suivante :

Ou inversement au niveau du rôle entre R et R₁

D'autres méthodes d'estérification peuvent être également utilisées selon les réactions envisagées ci-après :

A partir d'un chlorure d'acide, cette réaction est rapide mais le dégagement de HCl constitue un inconvénient majeur.

5

A titre d'exemple, le chlorure d'acide est choisi parmi le chlorure d'octanoyle, le chlorure d'acétoyle.

• A partir d'un cétène, les réactifs sont cependant chers, ce qui limite l'intérêt industriel.

10

A titre d'exemple, cette réaction peut être associée avec par exemple le chlorure d'octanoyle.

A partir d'acides carboxyliques, cette réaction présente néanmoins une faible réactivité et nécessite l'utilisation de co-réactifs : Pyridine, DCC, TsCl, TFAA (DCC : N,N-dicyclohexylcarbodiimide ; TsCl : Chlorure de p-tolènesulfonyle ; 15 TFAA : Anhydride trifluoroacétique)

A titre d'exemples, les acides carboxyliques utilisés sont choisis parmi l'acide acétique, l'acide octanoïque.

20 A partir d'esters d'acides carboxyliques (par exemple de l'octanoate de méthyle, de l'acétate de méthyle), on peut remarquer cependant que si R consiste en du CH₃, il se produit un dégagement de méthanol (toxique).

Les esters mixtes de bois peuvent être obtenus soit

25 • en une seule étape par un mélange des réactifs choisis parmi ceux présentés précédemment .

- ou bien en 2 étapes et ce,
 - soit en utilisant deux fois le même type de réaction
 - soit avec deux réactions de deux familles différentes.

En outre, selon une caractéristique de l'invention, ces réactions d'estérification peuvent avoir lieu sans présence de catalyseur, ou avec présence de catalyseur basique ou neutre (tel que par exemple du carbonate de calcium, carbonate de sodium, carbonate de potassium, sel d'acide gras...) ou bien avec un catalyseur acide faible ou encore avec un catalyseur acide fort dont les effets néfastes sur le bois sont minimisés par l'utilisation de concentrations très diluées.

On donnera ci-après un exemple de mise en œuvre du procédé selon l'invention :

Exemple 1 : Une mole d'anhydride acétique a été ajoutée à une mole d'acide octanoïque. Le mélange a été chauffé sous agitation à 140°C pendant 30 minutes. Une pièce de bois de dimensions 10*10*10 cm a été ensuite plongée dans le mélange réactionnel et le tout a été chauffé à 140°C pendant 1 heure. La pièce de bois est ensuite égouttée et mise à sécher dans un four ventilé.

Exemple 2 : Une mole d'anhydride acétique a été ajoutée à une mole d'acide octanoïque. Le mélange a agité à température ambiante pendant 60 minutes. Une pièce de bois de dimensions 10*10*10 cm a été ensuite plongée dans le mélange réactionnel pendant 5 minutes puis égouttée. La pièce de bois a été introduite dans un four à 120°C pendant 1 heure.

Un avantage majeur de la présente invention consiste dans le recours en un anhydride mixte d'origine végétale, non toxique, par opposition à des composés d'origine pétrochimique.

Ce choix particulier favorise la mise en œuvre industrielle de l'invention, car il simplifie les traitements qui visent à préserver l'environnement.

Quel que soit le procédé de traitement utilisé, il convient de pouvoir retrouver a posteriori la signature de ce traitement sur la matière lignocellulosique (dans notre cas d'espèce une pièce de bois).

Differentes méthodes sont envisagées permettant de caractériser le traitement qu'a subi la matière lignocellulosique, à savoir la détermination de la présence de chaînes hydrocarbonées différentes liées par des fonctions esters ainsi que de la présence ou non d'un catalyseur (et son type).

Une méthode permettant de déterminer la présence de chaînes hydrocarbonées consiste à traiter un échantillon provenant de la pièce de bois par une solution de NaOH afin d'hydrolyser les fonctions esters et transformer les chaînes hydrocarbonées en acide carboxylique. Ces derniers sont ensuite 5 identifiés par des méthodes classiques chromatographiques telles que HPLC, GC, etc...

Un exemple de ces méthodes peut consister à partir d'une pièce de bois ou d'un matériau lignocellulosique dont les fonctions hydroxyles ont été acylées par au moins deux agents hydrocarbonés différents donnant lieu à des mélanges 10 d'esters, par exemple des acétates et des octanoates de matière lignocellulosique.

Ce mélange d'esters peut être caractérisé de la façon suivante : un échantillon de bois ou de matière lignocellulosique traité par le procédé revendiqué est broyé jusqu'à une granulométrie d'au moins 80 mesh puis introduit dans une fiole contenant une solution aqueuse d'éthanol (70%). Après agitation 15 pendant au moins une heure, une quantité suffisante d'une solution aqueuse de NaOH (0,5 M) est ajoutée et l'agitation est poursuivie pendant 72 h pour effectuer une saponification totale des fonctions esters. Après filtration et séparation du résidu solide, le liquide est acidifié à pH 3 avec une solution aqueuse de HCl (1 M) afin de convertir les composés hydrocarbonés en acides carboxyliques 20 correspondants. Le liquide peut ensuite être analysé par chromatographie en phase gazeuse (CPG) ou bien par chromatographie liquide haute performance (HPLC) afin de séparer et identifier les différents acides carboxyliques correspondant aux fonctions esters présents dans le bois ou matériau lignocellulosique traité.

25 On donnera ci-après des méthodes permettant d'identifier le type de catalyseur.

Ainsi une première méthode consiste à procéder à une détermination de la quantité d'extractibles. Cette méthode permet d'observer l'influence des divers traitements sur les extractibles du bois (initialement présents, ou issus de la 30 dégradation du bois). On fait subir au bois traité puis micronisé des extractions avec plusieurs solvants, de polarités différentes : l'eau, l'éthanol, l'acétone, et le cyclohexane. Les extractions sont réalisées à l'aide d'appareil de Soxhlet

Dans le tableau ci-après sont regroupées les quantités d'extractibles des échantillons de bois traités, après extraction au Soxhlet avec divers solvants.

	PERTE de MASSE (%) APRES EXTRACTION			
	Eau	Ethanol	Acétone	Cyclohexane
Sans catalyse	14.8	11.9	12.2	6.3
Catalyse basique	17.1	16.2	10.6	1.8
Catalyse Acide fort	25.3	21.7	19.0	4.8

Comme on peut le voir, quel que soit le solvant d'extraction. Ces résultats 5 confirment les impressions visuelles : le traitement en catalyse acide fort (H_2S0_4 0.3% molaire) qui est le plus dégradant et qui conduit à la formation de la plus grande quantité de composés extractibles en fin de réaction. Pour des quantités d'acide fort importantes (0.3% molaire), la pièce de bois noircie et a tendance à se désagréger et à présenter des défauts d'aspect.

10 A l'échelle microscopique, la paroi cellulaire des fibres est abîmée du fait de la catalyse acide.

Ainsi, par rapport à la figure 1, et d'un point de vue qualitatif, on peut constater au niveau de la figure 2, on constate que la surface du bois semble avoir été lissée par le traitement, cette surface du bois est homogène. Les fibres 15 du bois (ligno-cellulosiques) visibles au microscope semblent intactes comparées à celles de la Figure 1. Le produit semble d'une part avoir une sorte d'action de décapage de la surface mais également permet une homogénéisation de la surface grâce au greffage. En effet, les chaînes greffées sont susceptibles de protéger les fibres ce qui les rend indiscernables au microscope.

20 De même au niveau de la figure 3, les fibres ligno-cellulosiques semblent être à nu. La présence de produit est beaucoup moins nette que précédemment (figure 2) ceci est logique car la photographie présente l'intérieur d'un bloc traité par le procédé d'invention. Le déchiquetage est dû soit au traitement, soit, probablement à l'arrachement des fibres lors de la découpe.

25 D'un point de vue quantitatif, on donne ci après un tableau qui exprime les valeurs d'absorption et de gonflement pour des fibres ligno-cellulosiques traitées et non traitées.

	Fibres non traitées	Fibres traitées
Absorption en %	16	3.5
Gonflement en %	6.5	3.5

Une seconde méthode consiste à une analyse des constituants du bois. Suivant le type de milieu dans lequel le bois est traité, les biopolymères du bois ne 5 subissent pas tous les mêmes dégradations. La composition du bois traité est donc susceptible de varier en fonction du traitement. Cette méthode est dite ADF-NDF, et elle permet de connaître les proportions de cellulose C, d'hémicelluloses H, de lignines L, de matière minérale MM

Dans le tableau ci-après sont regroupées les données relatives à l'analyse 10 de la composition du bois de chêne traité avec l'anhydride mixte acétique-octanoïque avec différents types de catalyseurs. Les échantillons estérifiés ont été saponifiés selon le protocole d'analyse des esters mixtes de bois puis lavés par extraction à l'eau à l'aide d'un appareil de Soxhlet avant d'être analysés par la technique ADF-NDF. Cette technique se trouve décrite dans la référence (Acid 15 Detergent Fiber, Neutral Detergent Fiber) VAN SOEST P.J. and WINE R.H. Determination of lignin and cellulose in acid-detergent fiber with permanganate. J. Ass. Offic. Anal. Chem. 51(4), 780-785 (1968).

Nature du traitement	Catalyseur	Extractibles (%)	Cellulose (%)	Hémicelluloses (%)	Lignine (%)	Divers (%)	Cendres (%)
Bois non traité	-	5.0	50.9	17.6	20.5	5.4	0.6
Catalyse acide fort	H ₂ SO ₄ 0.3 %mol	22.4	49.7	14.7	8.5	4.4	0.3
Catalyse Basique	Na ₂ CO ₃ 0.3 %mol	16.9	40.6	16.4	20.1	5.7	0.3
Sans catalyse	-	12.5	41.4	17.5	17.1	10.8	0.7

20 Cette analyse permet donc de distinguer un traitement avec catalyse acide fort des traitements revendiqués. En effet, on remarque une diminution importante et significative de la quantité de lignine et des hémicelluloses. De plus, la quantité d'extractibles au soxhlet à l'eau est la plus importante.

REVENDICATIONS

1. Procédé de traitement chimique de matières lignocellulosiques, 5 notamment d'au moins une pièce de bois, **caractérisé en ce que** l'on soumet lesdites matières à une imprégnation par un agent chimique comportant des chaînes hydrocarbonées, cet agent étant choisi parmi les anhydrides mixtes, sauf l'anhydride mixte d'acide acétique/benzoïque, ledit agent étant adapté pour assurer un greffage 10 par liaison covalente d'une pluralité de chaînes hydrocarbonées sur lesdites matières.
2. Procédé selon la revendication 1, **caractérisé en ce que** le greffage s'effectue par un processus d'estérification desdites matières lignocellulosiques à l'aide d'un agent chimique choisi parmi les anhydrides organiques. 15
3. Procédé selon les revendications 1 ou 2, **caractérisé en ce que** le traitement s'effectue à une température comprise entre la température ambiante et 150 °C, et de préférentiellement entre 100 et 140 °C.
4. Procédé selon la revendication 1, **caractérisé en ce que** l'anhydride mixte comporte une première chaîne hydrocarbonée R et une seconde chaîne hydrocarbonée R₁. 20
5. Procédé selon la revendication 4, **caractérisé en ce que** R représente un acide carboxylique de C2 à C4 et R₁ est un acide gras de C6 à C24 saturés ou insaturés.
6. Procédé selon la revendication 4, **caractérisé en ce que** R₁ représente un acide carboxylique de C2 à C4 et R est un acide gras de C6 à C24 saturés ou insaturés. 25
7. Procédé selon la revendication 1, **caractérisé en ce que** l'anhydride mixte est l'anhydride mixte d'acides acétique/octanoïque.
8. Procédé selon l'une des revendications 1 à 7, **caractérisé en ce que** l'imprégnation s'effectue en présence d'un catalyseur basique. 30
9. Procédé selon l'une des revendications 1 à 7, **caractérisé en ce que** l'imprégnation s'effectue en présence d'un catalyseur neutre.
10. Procédé selon l'une des revendications 1 à 7, **caractérisé en ce que**

l'imprégnation s'effectue en présence d'un catalyseur acide faible.

11. Procédé selon l'une des revendications 1 à 7, **caractérisé en ce que** l'imprégnation s'effectue sans présence de catalyseur.

5 12. Procédé selon l'une des revendications 1 à 7, **caractérisé en ce que** l'imprégnation des matières lignocellulosiques est réalisée par un procédé de trempage.

13. Procédé selon l'une des revendications 1 à 7, **caractérisé en ce que** l'imprégnation des matières lignocellulosiques est réalisée par un procédé d'aspersion.

10 14. Procédé selon l'une des revendications 1 à 7, **caractérisé en ce que** l'imprégnation des matières lignocellulosiques est réalisée au sein d'un autoclave.

15 15. Procédé selon l'une des revendications 1 à 14, **caractérisé en ce qu'il** est mis en œuvre sur une pièce de bois, dont l'essence est choisie parmi notamment le chêne, le pin, le sapin, le curupixa, l'eucalyptus,

16. Pièce à base de fibres en matière lignocellulosique, notamment une pièce de bois, obtenue par le procédé selon l'une quelconque des revendications précédentes, **caractérisée en ce que** les fibres lignocellulosiques sont homogènes et présentent un aspect lissé.

20 17. Pièce à base de fibres en matière lignocellulosique, notamment une pièce de bois, obtenue par le procédé selon l'une quelconque des revendications 1 à 15, **caractérisée en ce que** le taux d'absorption est sensiblement voisin de 3.5 %.

25 18. Pièce à base de fibres en matière lignocellulosique, notamment une pièce de bois, obtenue par le procédé selon l'une quelconque des revendications 1 à 15, **caractérisée en ce que** le taux de gonflement est sensiblement voisin de 3.5 %.

Figure 1

Figure 2

Figure 3

(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION
EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété
Intellectuelle
Bureau international

(43) Date de la publication internationale
16 octobre 2003 (16.10.2003)

PCT

(10) Numéro de publication internationale
WO 2003/084723 A3

(51) Classification internationale des brevets⁷ : **B27K 3/36**

Antoine [FR/FR]; 75, allée de Brienne, F-31000 Toulouse (FR).

(21) Numéro de la demande internationale :

PCT/FR2003/001110

(74) Mandataire : **SAINT-GOBAIN RECHERCHE**; 39, quai Lucien Lefranc, F-93300 Aubervilliers (FR).

(22) Date de dépôt international : 9 avril 2003 (09.04.2003)

(81) États désignés (*national*) : AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(25) Langue de dépôt :

français

(26) Langue de publication :

français

(30) Données relatives à la priorité :

02/04448 10 avril 2002 (10.04.2002) FR

(84) États désignés (*regional*) : brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Publiée :

— avec rapport de recherche internationale

(88) Date de publication du rapport de recherche internationale:

1 avril 2004

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

WO 2003/084723 A3
(54) Title: METHOD FOR TREATING LIGNOCELLULOSIC MATERIALS, IN PARTICULAR WOOD AND MATERIAL OBTAINED BY SAID METHOD

(54) Titre : PROCEDE DE TRAITEMENT DE MATIERES LIGNOCELLULOSES, NOTAMMENT DU BOIS AINSI QU'UN MATERIAU OBTENU PAR CE PROCEDE

(57) Abstract: The invention concerns a method for chemical treatment of lignocellulosic materials, in particular at least a piece of timber, characterized in that it consists in subjecting said materials to impregnation with a chemical agent comprising hydrocarbon chains, said agent being selected among mixed anhydrides, excluding acetic/benzoic acid mixed anhydride, said agent being adapted to ensure covalent bonding of a plurality of hydrocarbon chains on said materials.

(57) Abrégé : Procédé de traitement chimique de matières lignocellulosiques, notamment d'au moins une pièce de bois, caractérisé en ce que l'on soumet lesdites matières à une imprégnation par un agent chimique comportant des chaînes hydrocarbonées, cet agent étant choisi parmi les anhydrides mixtes, sauf l'anhydride mixte d'acide acétique/benzoïque, ledit agent étant adapté pour assurer un greffage par liaison covalente d'une pluralité de chaînes hydrocarbonées sur lesdites matières.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/FR 03/01110

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 B27K3/36

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 B27K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

CHEM ABS Data, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	<p>DATABASE CA 'Online!' CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; DAWSON, BERNARD S. W. ET AL: "Reactivity of radiata pine sapwood towards carboxylic acid anhydrides" retrieved from STN Database accession no. 130:268671 CA XP002222940 abstract & HOLZFORSCHUNG (1999), 53(2), 195-198 , 1999,</p> <p>---</p> <p>-/-</p>	1-18

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the International search

24 September 2003

Date of mailing of the International search report

09/10/2003

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Authorized officer

Dalkafouki, A

INTERNATIONAL SEARCH REPORT

International Application No
PCT/FR 03/01110

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	<p>DATABASE CA 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; VACA-GARCIA, C. ET AL: "Cellulose esterification with fatty acids and acetic anhydride in lithium chloride/N,N-dimethylacetamide medium" retrieved from STN Database accession no. 128:168867 CA XP002255518 abstract & JOURNAL OF THE AMERICAN OIL CHEMISTS' SOCIETY (1998), 75(2), 315-319 , 1998,</p> <p>-----</p>	1-18
Y	<p>DATABASE CA 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; SOC. ANON. DITE. PROGIL. PATENT NO. KIND DATE APPLICATION NO. DATE: "Coating composition containing phenolic resins" retrieved from STN Database accession no. 18:22009 CA XP002255519 abstract & GB 215 722 1 (SOC. ANON. DITE. PROGIL. PATENT NO. KIND DATE APPLICATION NO. DATE) 11 December 1924 (1924-12-11)</p> <p>-----</p>	1-18

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/FR 03/01110

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
GB 215722	1	NONE	

A. CLASSEMENT DE L'OBJET DE LA DEMANDE
CIB 7 B27K3/36

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)

CIB 7 B27K

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

CHEM ABS Data, WPI Data, PAJ

C. DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
Y	<p>DATABASE CA 'en ligne! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; DAWSON, BERNARD S. W. ET AL: "Reactivity of radiata pine sapwood towards carboxylic acid anhydrides" retrieved from STN Database accession no. 130:268671 CA XP002222940 abrégé & HOLZFORSCHUNG (1999), 53(2), 195-198 , 1999,</p> <p>--- -/-</p>	1-18

Voir la suite du cadre C pour la fin de la liste des documents

Les documents de familles de brevets sont indiqués en annexe

* Catégories spéciales de documents cités:

- "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- "E" document antérieur, mais publié à la date de dépôt international ou après cette date
- "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

- "T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention
- "X" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément
- "Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier
- "&" document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée

24 septembre 2003

Date d'expédition du présent rapport de recherche internationale

09/10/2003

Nom et adresse postale de l'administration chargée de la recherche internationale
Office Européen des Brevets, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax (+31-70) 340-3016

Fonctionnaire autorisé

Dalkafouki, A

C.(suite) DOCUMENTS CONSIDERES COMME PERTINENTS

Catégorie	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
Y	<p>DATABASE CA 'en ligne! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; VACA-GARCIA, C. ET AL: "Cellulose esterification with fatty acids and acetic anhydride in lithium chloride/N,N-dimethylacetamide medium" retrieved from STN Database accession no. 128:168867 CA XP002255518 abrégé & JOURNAL OF THE AMERICAN OIL CHEMISTS' SOCIETY (1998), 75(2), 315-319 , 1998,</p> <p>---</p>	1-18
Y	<p>DATABASE CA 'en ligne! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; SOC. ANON. DITE. PROGIL. PATENT NO. KIND DATE APPLICATION NO. DATE: "Coating composition containing phenolic resins" retrieved from STN Database accession no. 18:22009 CA XP002255519 abrégé & GB 215 722 1 (SOC. ANON. DITE. PROGIL. PATENT NO. KIND DATE APPLICATION NO. DATE) 11 décembre 1924 (1924-12-11)</p> <p>---</p>	1-18

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
GB 215722	1	AUCUN	