Dilip Venkatesan Sankar Student ID 22225743 MS5105 Individual Assignment 1

In submitting this work, I confirm that it is entirely my own. I acknowledge that I may be invited to an online interview if there is any concern in relation to the integrity of my submission, and I am aware that any breach will be subject to the University's Procedures for dealing with breaches of Exam Regulations. I am aware of what the NUI Galway plagiarism policy entails.

Question 1: Is the continuous variable Total Life Satisfaction distributed normally?

Statistical Test: Here, to verify the **Normality**, we will use a continuous variable called overall life satisfaction and map it to a label ID and show the results using

1. Histogram 2. Boxplot 3. Kolmogorov-Smirnov and Q-Q plot.

Fig 1.1 Histogram, Normal Q-Q plot, and Box plot of Total like Satisfaction

- The histogram is shaped nearly like a bell-shaped figure with a few dips in the center.
- The Q-Q plot of total life satisfaction demonstrates that there is no huge difference between the expected value and the observed value, demonstrating that it is normally distributed.
- The box plot shows a low value of around 5 and a high value of around 35 without any IDs present so there is no need to perform further analysis.

Fig 1.2 Shows the mean and 5% trimmed mean

	Descriptiv	es		
			Statistic	Std. Error
Total life satisfaction	Mean		22.38	.324
	95% Confidence Interval	Lower Bound	21.74	
	for Mean	Upper Bound	23.02	
	5% Trimmed Mean		22.52	
	Median		23.00	
	Variance	45.827		
	Std. Deviation	6.770		
	Minimum	5		
	Maximum	35		
	Range	30		
	Interquartile Range		9	
	Skewness	323	.117	
	Kurtosis	450	.233	

Fig 1.3 Kolmogorov-Smirnov Test of Normality

Tests of Normality										
	Kolm	Shapiro-Wilk								
•	Statistic	Statistic df Sig.	Sig.	Statistic	df	Sig.				
Total life satisfaction .087 436 .000 .982 436 .00										
a. Lilliefors Significance Correction										

- The Kolmogorov-Smirnov test has a significance=.000 that is less than 0.05 which shows this statistic is significant.
- Even though the Kolmogorov-Smirnov test is not satisfied, we still treat this continuous variable as having a normal

distribution because the other tests has succeeded.

From Fig 1.2 we can see that the mean for total life satisfaction=22.38 and the 5% trimmed=22.52 which seems fairly close. The 5% trimmed implied that we cut off 2.5% from the left and right side of the histogram and we have the mean for the remaining 95%. When we extract the very low and high answers, we get an average of 22.52. We can also see Skewness=-.323 which implies it is skewed toward the right and Kurtosis=-.450 which implies it is a flat curve. **Final thoughts:** Given that the majority of the results support this, we are assuming that total life satisfaction is normally distributed.

Question2: Are the Perceived Stress Scale items correlated with each other and are they reliable?

Statistical Test: Here, to test if that items are reliable and can be constructed together, we are using **Reliability Analysis** which should show **Cronbach's Alpha** value of at least 0.7

Fig 2.1 Reliability Stats with Cronbach's Alpha

Reliability Statistics

Cronbach's
Alpha Based
on
Cronbach's
Standardized
Alpha Items N of Items
.360 .287 10

Fig 2.2 Item Stats table

	Item Statistics									
	Mean	Std. Deviation	N							
pss1	2.84	.876	433							
pss2	2.74	.959	433							
pss3	3.16	.926	433							
pss4	3.80	.783	433							
pss5	3.47	.805	433							
pss6	2.77	.957	433							
pss7	3.54	.751	433							
pss8	3.54	.805	433							
pss9	3.05	.992	433							
pss10	2.51	1.014	433							

The item statistics show all ten items of the perceived stress scale along with mean and Standard deviation and we can see that Cronbach's alpha=0.360 which is < 0.7 indicating the items don't have good reliability and correlation.

Fig 2.3 Correlation matrix shows how the level of total perceived stress are correlated with each other

	Inter-Item Correlation Matrix											
	pss1	pss2	pss3	pss4	pss5	pss6	pss7	pss8	pss9	pss10		
pss1	1.000	.445	.409	189	289	.281	232	266	.430	.374		
pss2	.445	1.000	.485	343	388	.357	332	433	.363	.483		
pss3	.409	.485	1.000	307	288	.475	318	424	.405	.535		
pss4	189	343	307	1.000	.485	208	.466	.526	212	329		
pss5	289	388	288	.485	1.000	241	.361	.625	230	356		
pss6	.281	.357	.475	208	241	1.000	281	413	.277	.528		
pss7	232	332	318	.466	.361	281	1.000	.483	245	394		
pss8	266	433	424	.526	.625	413	.483	1.000	246	482		
pss9	.430	.363	.405	212	230	.277	245	246	1.000	.393		
pss10	.374	.483	.535	329	356	.528	394	482	.393	1.000		

From Correlation matrix we can see that each item completely corresponds with itself, as seen by the interitem correlation matrix. When we dig deeper, we find that pss1 and pss2 have a correlation of 0.445, which looks low and suggests that they are not related. According to statistics, if the value is higher than 0.5, we may say that the variables are related, but if it is lower than 0.5, they are not.

From the Item-total statistics when you look at the "Cronbach's alpha if the item deleted" column we can incur that since none of the item's values is greater than 0.7 then deleting them will not impact the overall Cronbach's alpha value.

Fig 2.4 Item total stats table

	Item-Total Statistics										
	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Squared Multiple Correlation	Cronbach's Alpha if Item Deleted						
pss1	28.58	9.032	.370	.316	.231						
pss2	28.67	9.193	.281	.399	.265						
pss3	28.25	8.720	.397	.435	.211						
pss4	27.61	11.697	105	.378	.420						
pss5	27.94	11.997	161	.447	.441						
pss6	28.64	9.037	.312	.356	.250						
pss7	27.87	12.208	195	.326	.445						
pss8	27.88	12.535	252	.559	.470						
pss9	28.36	8.718	.349	.280	.227						
pss10	28.90	8.786	.322	.477	.239						

For example, when we delete the value of pps1 then Cronbach's alpha value will drop down to 0.231 so there will not be any significant change. **Final thoughts:** Cronbach's alpha <0.7, the items are not correlated and cannot to folded together to form a single construct.

Question3: Do more men complete higher education than women and are there a significant difference between gender taking higher education?

Statistical Test: In this scenario, we are utilizing **Chi Square** since we are considering two categorical variables such as higher education completed and gender

Fig 3.1 Gender Vs Higher education completed summary

	Case Processing Summary								
	Cases								
	Va	lid	Miss	sing	Total				
	N	Percent	N	Percent	N	Percent			
sex * highest educ completed	439	100.0%	0	0.0%	439	100.0%			

There are no unsolved cases, and all of the questions have been addressed (439). The crosstab displays the proportion of men and women with higher education degrees (from primary – to Postgraduate)

Fig 3.2 Show Chi-square test with Pearson value as well as Phi and Cramer's V value

Chi-Square Tests										
	Value	df	Asymptotic Significance (2-sided)							
Pearson Chi-Square	15.361ª	5	.009							
Likelihood Ratio	16.647	5	.005							
Linear-by-Linear Association	9.933	1	.002							
N of Valid Cases	439									
N of Valid Cases	439									

a. 2 cells (16.7%) have expected count less than 5. The minimum expected count is .84.

Symmetric Measures

		Value	Approximate Significance
Nominal by Nominal	Phi	.187	.009
	Cramer's V	.187	.009
N of Valid Cases		439	

The value of chi-square=15.361 and the significance=0.009 which is lesser than p=0.05 which means its significant. We do not have yates' continuity as it's not a 2x2 table. Since p <0.05 it means the proportion of males who go to higher education is significantly different from the proportion of females who goes to higher education. The Phi and Cramer's V also support the point that the values are significant as we can see the approximate significance for both the tests are lesser than 0.05.

Final thoughts: Based on the significance value in Pearson chi-square and Phi and Cramer's V we can conclude that there is significant difference in gender taking higher education

Fig 3.2 Crosstab of Gender Vs Higher education completed

sex * highest educ completed Crosstabulation

					highest e	duc completed			
			PRIMARY	SOME SECONDARY	COMPLETED HIGHSCHOO L	SOME ADDITIONAL TRAINING	COMPLETED UNDERGRA DUATE	POSTGRADU ATE COMPLETED	Total
sex	MALES	Count	<3	12	38	49	54	32	185
		% within sex	n<3	6.5%	20.5%	26.5%	29.2%	17.3%	100.0%
		% within highest educ completed	n<3	22.6%	44.7%	40.8%	43.9%	57.1%	42.1%
		% of Total	n<3	2.7%	8.7%	11.2%	12.3%	7.3%	42.1%
	FEMALES	Count	<3	41	47	71	69	24	254
		% within sex	n<3	16.1%	18.5%	28.0%	27.2%	9.4%	100.0%
		% within highest educ completed	n<3	77.4%	55.3%	59.2%	56.1%	42.9%	57.9%
		% of Total	n<3	9.3%	10.7%	16.2%	15.7%	5.5%	57.9%
Total		Count	<3	53	85	120	123	56	439
		% within sex	n<3	12.1%	19.4%	27.3%	28.0%	12.8%	100.0%
		% within highest educ completed	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%
		% of Total	n<3	12.1%	19.4%	27.3%	28.0%	12.8%	100.0%

The degree of freedom shows each person could have completed five levels of higher education or vice versa. This means males/females can complete either high school or training or both.

Question4: How does two continuous independent variable total life satisfaction and total optimism measure one dependent variable total self-esteem and which IV has more influence on DV?

Statistical Test: We are using **multiple regression** to determine which of the two independent variables, total life satisfaction, and total optimism, contributes more towards the dependent variable total self-esteem. Based on the correlation table we can see the two IVs correlate with the DV in a very fair manner with 0.488 and 0.565 respectively which is not very high.

Fig 4.1 Correlation table

Correlations										
		Total Self esteem	Total Optimism	Total life satisfaction						
Pearson Correlation	Total Self esteem	1.000	.565	.488						
	Total Optimism	.565	1.000	.483						
	Total life satisfaction	.488	.483	1.000						
Sig. (1-tailed)	Total Self esteem		.000	.000						
	Total Optimism	.000		.000						
	Total life satisfaction	.000	.000							
N	Total Self esteem	436	433	434						
	Total Optimism	433	435	435						
	Total life satisfaction	434	435	436						

In the coefficients table, we are looking for the tolerance and VIF where tolerance is 0.767 which is >0.1 and VIF is 1.304 which is <10 in turn suggests that the variables do not have multi-linearity.

Fig 4.2 Coefficients table shows the tolerance and VIF of the two independent variables

	Coefficients*												
Unstandardized Coefficients				Standardized Coefficients			95.0% Confidence Interval for B		Correlations			Collinearity Statistics	
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound	Zero-order	Partial	Part	Tolerance	VIF
1	(Constant)	16.958	1.064		15.934	.000	14.866	19.050					
	Total Optimism	.523	.053	.429	9.895	.000	.419	.627	.565	.431	.376	.767	1.304
	Total life satisfaction	.224	.035	.281	6.475	.000	.156	.292	.488	.298	.246	.767	1.304

a. Dependent Variable: Total Self esteem

Fig 4.4 Scatterplot

The normal probability method between the observed cumulative probability vs expected cumulative probability plot demonstrates that it is extremely well aligned in a straight line and the scatterplot demonstrates that there are clusters created around the zero mark.

The amount of variance in the DV predicted by the individual variables can be found in the adjusted R-square table,

Fig 4.4 Show Adjusted R square value to determine the dependency

Model Summary^b

						Change Statistics					
М	odel	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change	
1		.616ª	.380	.377	4.259	.380	131.582	2	430	.000	

a. Predictors: (Constant), Total life satisfaction, Total Optimism

b. Dependent Variable: Total Self esteem

The adjusted R-square shows a value of 0.337, indicating that the two independent variables, total life satisfaction, and total optimization, account for 37.7% of the variance in the variable total self-esteem, leaving the remaining 42.3% reliant on other variables. **Final thoughts:** The ANOVA tables below show significance =0.000 which is less than p=0.05 which means the IVs are good predictors. The coefficient table shows the beta values, with total optimism equaling 0.429 and total life satisfaction equaling 0.281. Both values are statistically significant, however, total optimism has a 42.9% contribution that is more favorable to total self-esteem.

Question5: How do multiple variables in the perceived stress associated with each other based on correlation?

Statistical Test: Since the perceived stress scale comprises more than five items, **factor analysis** is being used to do the study.

The correlation matrix shows that each item correlates with itself, and we have many correlations>0.3. The Kaiser-Meyer Olkin measure is 0.881 which is> 0.6 and Bartlett's test shows that these values are significant.

Fig 5.1 Correlation matrix of perceived stress

Fig 5.2 Kaiser-Meyer-Olkin and Bartlett's Test

	Correlation Matrix										
		pss1	pss2	pss3	pss4	pss5	pss6	pss7	pss8	pss9	pss10
Correlation	pss1	1.000	.445	.409	189	289	.281	232	266	.430	.374
	pss2	.445	1.000	.485	343	388	.357	332	433	.363	.483
	pss3	.409	.485	1.000	307	288	.475	318	424	.405	.535
	pss4	189	343	307	1.000	.485	208	.466	.526	212	329
	pss5	289	388	288	.485	1.000	241	.361	.625	230	356
	pss6	.281	.357	.475	208	241	1.000	281	413	.277	.528
	pss7	232	332	318	.466	.361	281	1.000	.483	245	394
	pss8	266	433	424	.526	.625	413	.483	1.000	246	482
	pss9	.430	.363	.405	212	230	.277	245	246	1.000	.393
	pss10	.374	.483	.535	329	356	.528	394	482	.393	1.000

KMO and Bartlett's Test					
Kaiser-Meyer-Olkin Mea	sure of Sampling Adequacy.	.881			
Bartlett's Test of	Approx. Chi-Square	1480.357			
Sphericity	df	45			
	Sig.	.000			

Two items with eigenvalues greater than one and percentages of 43.65% and 12.70%, respectively, may be seen when we look at the principal component analysis. In contrast, there is just one primary component when examining the scree plot, and other components are grouped.

Fig 5.3 Tables shows Eigen values and variance

Total Variance Explained Rotation Sums of Squared Initial Eigenvalues Extraction Sums of Squared Loadings Total % of Variance Cumulative % Total % of Variance Cumulative % Total Component 4.365 43.650 4.365 43.650 43.650 43.650 3.686 1.271 12.709 56.358 1.271 12.709 56.358 3.395 861 8 612 64 970 .687 6.869 71.839 .588 5.877 77.717 547 5.472 83.189 .488 4.884 88.073 .447 4.472 92.544 .424 4.240 96.785 .322 3.215 100.000 Extraction Method: Principal Component Analysis

Fig 5.4 Scree plot

Fig 5.5 Shows stress levels of different components

Component Matrix ^a						
	Comp	onent				
	1	2				
pss8	757	.379				
pss10	.752					
pss3	.712	.303				
pss2	.709					
pss5	650	.435				
pss7	621	.334				
pss6	.618					
pss4	615	.515				
pss1	.580	.414				
pss9	.558	.422				
Extraction Method: Principal Component Analysis.						
a. 2 c	omponents					

Final thoughts: All of the objects in the component matrix load onto component 1, which has two components. As a result, we may say that there is just one construct for the perceived stress scale.

traction Method: Principal Component Analysis. a. When components are correlated, sums of squared loadings cannot be added to obtain a total variance.

Question6: Is there any significant difference in total life satisfaction based on gender?

Statistical Test: We will use the **T-test** as a statistical tool for our study to determine how total life satisfaction, which is a continuous variable vs. categorical variable, differs for males and females. Levene's test in the independent samples test shows a significance of 0.401 which is > 0.05 which shows Levene's test is insignificant.

Fig 6.1 Significance shown in the independent sample test table
Independent Samples Test

		Levene's Test Varia		t-test for Equality of Means							
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference Lower Upper		
Total life satisfaction	Equal variances assumed	.706	.401	-1.881	434	.061	-1.230	.654	-2.516	.055	
	Equal variances not assumed			-1.897	408.528	.059	-1.230	.648	-2.505	.044	

From the group statistics, we can see that the mean value and standard deviation of females (M=22.90, SD=6.91) are more than males (M=21.67, SD=6.52) but there is no significant difference in life satisfaction. **Final thoughts:** The t-test (434) =-1.881 and t(408.5)=-1.897 shows a significant value of 0.061 and 0.059 respectively which is >0.05 so it means there is no significant difference in total life satisfaction based on gender

Fig 6.2 Mean and Standard deviation of Male and female
Group Statistics

	sex	N	Mean	Std. Deviation	Std. Error Mean
Total life satisfaction	MALES	185	21.67	6.525	.480
	FEMALES	251	22.90	6.911	.436

Question7: Will there be any significant differences in the total life satisfaction if the person is a smoker or not?

Statistical Test: Here we are analyzing total life satisfaction based on if a person smoke or not which is a categorical variable (<=2 levels) vs a continuous variable. Hence, we will use the **T-test as a statistical tool** for our analysis.

In the independent sample test, Levene's test yields significance = 0.422, which is >0.05 and indicates that it is insignificant

Fig 7.1 Levene's test shows the significance

Independent Samples Test

		Levene's Test Varia	t-test for Equality of Means								
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference Lower Upper		
Total life satisfaction	Equal variances assumed	.646	.422	-1.252	431	.211	-1.028	.821	-2.641	.586	
	Equal variances not assumed			-1.234	126.095	.219	-1.028	.833	-2.675	.620	

Fig 7.2 Shows the mean and standard deviation of total life satisfaction

Group Statistics

	smoker	N	Mean	Std. Deviation	Std. Error Mean
Total life satisfaction	YES	85	21.55	6.912	.750
	NO	348	22.58	6.754	.362

According to the group statistics, there is a considerable difference in the mean total life satisfaction between smokers (M=21.58, SD=6.91) and nonsmokers (M=22.58, SD=6.74). **Final thoughts:** Additionally, the t-significant test's t (431) =-1.252 value is 0.211, which is greater than 0.05, demonstrating that the values are not significantly different.

Question8: How does total self-esteem differ based on different age groups?

Statistical Test: We are using **one-way ANOVA** as a statistical method for this research since there are numerous levels of a categorical independent variable (> 2 levels), where independent categorical variable, representing age groups, and a continuous dependent variable, representing self-esteem.

Fig 8.1 Levene's significance

Random Effects

Fig 8.2 ANOVA table shows significance < 0.05

Tests of Homogeneity of Variances							
		Levene Statistic	df1	df2	Sig.		
tal Self esteem	Based on Mean	1.303	2	433	.273		
	Based on Median	.975	2	433	.378		
	Based on Median and with adjusted df	.975	2	432.870	.378		
	Based on trimmed mean	1.444	2	433	.237		

ANOVA							
Total Self esteem							
	Sum of Squares	df	Mean Square	F	Sig.		
Between Groups	258.075	2	129.038	4.505	.012		
Within Groups	12402.475	433	28.643				
Total	12660.550	435					

The subjects are divided into 3 age groups: **GROUP1** contains people aged 29 and below, **GROUP2** contains people between the ages of 33 and 44, and finally, **GROUP3** contains people aged greater than 45. Levene's statistic is 0.237, which, as we can see across all the rows of mean and median, is not significant. Additionally, the ANOVA's F (2,435) =4.50 and significant value = 0.012 which is < 0.05 demonstrates that there are differences because the value is significant.

Fig 8.3 Shows the mean and standard deviation of different age groups

Descriptives

Total Self esteem 95% Confidence Interval for Between-Mean Component Lower Bound Upper Bound Variance Mean Std. Deviation Std. Error Minimum Maximum 18 - 29 149 32.60 5.589 .458 31.69 33.50 40 18 30 - 44 152 33.59 5.288 .429 32.74 34.43 18 40 45+ 135 34.50 5.151 .443 33.63 35.38 20 40 Total 436 33.53 5.395 .258 33.02 34.04 18 40 Model Fixed Effects 5.352 .256 33.03 34.04

.545

31.19

35.88

692

The mean and standard deviation between the age groups don't differ much, therefore we will examine post hoc testing to determine where the difference is.

Fig 8.4 shows Tukey's post hoc test

Fig 8.5 Shows a measure of significant difference

Multiple Comparisons									
	ble: Total Selfestee	em							
Tukey HSD									
		Mean Difference (I-			95% Confid	ence Interval			
(I) age 3 groups	(J) age 3 groups	J)	Std. Error	Sig.	Lower Bound	Upper Bound			
18 - 29	30 - 44	988	.617	.246	-2.44	.46			
	45+	-1.906	.636	.008	-3.40	41			
30 - 44	18 - 29	.988	.617	.246	46	2.44			
	45+	918	.633	.316	-2.41	.57			
45+	18 - 29	1.906	.636	.008	.41	3.40			
	30 - 44	918	633	316	- 57	2 41			

		Point	95% Confide	ence Interval	
		Estimate	Lower	Upper	
Total Self esteem	Eta-squared	.020	.001	.051	
	Epsilon-squared	.016	004	.047	
	Omega-squared Fixed- effect	.016	004	.046	
	Omega-squared Random-effect	.008	002	.024	

ANOVA Effect Sizes a,b

*. The mean difference is significant at the 0.05 level.

When you look at the values with * in the mean difference column we can find the difference. There is a significant difference between GROUP1 (18-29 years) with M=32.60 and SD=5.586 and GROUP3 (45+ years) with M=34.50 and SD=5.15 where mean difference=1.906 and vice versa. But we can also see that GROUP2(33-44 years) doesn't have any significant difference with both group1 and group3. To measure how huge, the difference is we can analyze the ANOVA effect sizes and look at the eta squared. The point estimate=0.02 which means even though we have a significant difference based on the eta-squared value it's very minimum.

Question9: How do a person's marital status and smoking affect total life satisfaction and does a smoker moderate relationship between marital status and life satisfaction

Statistical Test: Here we have considered a dependent continuous variable total life satisfaction vs two independent categorical variables such as smoker and marital status with more than 2 levels. Hence, we are using 2-way ANOVA as a statistical tool for this analysis.

Fig 9.1 Shows Levene's significance value

Fig 9.2 Test between subjects shows interaction based on the significance

Levene's Test of Equality of Error Variances ^{a,b}									
		Levene Statistic	df1	df2	Sig.				
Total life satisfaction	Based on Mean	.870	15	417	.599				
	Based on Median	.705	15	417	.780				
	Based on Median and with adjusted df	.705	15	403.584	.780				
	Based on trimmed mean	.834	15	417	.639				

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Corrected Model	1670.412 ^a	15	111.361	2.545	.001	.08
Intercept	55483.192	1	55483.192	1268.067	.000	.75
marital	848.898	7	121.271	2.772	.008	.04
smoke	46.790	1	46.790	1.069	.302	.00
marital * smoke	155.529	7	22.218	.508	.829	.00
Error	18245.473	417	43.754			
Total	236766.000	433				

Tests of Between-Subjects Effects

Levene's test has a value of 0.870 which proves it is insignificant and the tests of between-subjects effects will show if there is any interaction. The significance of marital status*smoke F (7,433) =0.508 and p= 0.829 which is not significant hence we can move on to the main factors. Marital status F (7,433) =2.77 and p=0.008 which is significant and smoke F (1,433) =1.06 AND p=0.30 which is not significant. So, life satisfaction doesn't vary much based on whether the person is smoking or not. But surely there is a difference in life satisfaction based on marital status.

Corrected Total

a. Eta-squared and Epsilon-squared are estimated based on the fixed-effect model.

b. Negative but less biased estimates are retained, not rounded to zero

a. Dependent variable: Total life satisfaction

b. Design: Intercept + marital + smoke + marital * smoke

^{19915.885} a. R Squared = .084 (Adjusted R Squared = .051)

Fig 9.3 Tukey post hoc test

Dependent Variable: Total life satisfaction

(I) marital status	(J) marital status	Mean Difference (I- J)
SINGLE	STEADY RELATIONSHIP	-1.55
	LIVING WITH PARTNER	-1.92
	MARRIED FIRST TIME	-2.56
	REMARRIED	-3.91
	SEPARATED	5.13
	DIVORCED	1.87
	WIDOWED	-6.32
STEADY RELATIONSHIP	SINGLE	1.55
	LIVING WITH PARTNER	37
	MARRIED FIRST TIME	-1.01
	REMARRIED	-2.35
	SEPARATED	6.68
	DIVORCED	3.42
	WIDOWED	-4.76
LIVING WITH PARTNER	SINGLE	1.92
	STEADY RELATIONSHIP	.37
	MARRIED FIRST TIME	64
	REMARRIED	-1.98

SEPARATED

DIVORCED

MARRIED FIRST TIME	SINGLE	2.56
	STEADY RELATIONSHIP	1.01
	LIVING WITH PARTNER	.64
	REMARRIED	-1.35
	SEPARATED	7.69*
	DIVORCED	4.43
	WIDOWED	-3.76
REMARRIED	SINGLE	3.91
	STEADY RELATIONSHIP	2.35
	LIVING WITH PARTNER	1.98
	MARRIED FIRST TIME	1.35
	SEPARATED	9.03
	DIVORCED	5.78
	WIDOWED	-2.41
SEPARATED	SINGLE	-5.13
	STEADY RELATIONSHIP	-6.68
	LIVING WITH PARTNER	-7.05
	MARRIED FIRST TIME	-7.69 [*]
	REMARRIED	-9.03*
	DIVORCED	-3.26
	WIDOWED	-11.44

DIVORCED	SINGLE	-1.87
	STEADY RELATIONSHIP	-3.42
	LIVING WITH PARTNER	-3.79
	MARRIED FIRST TIME	-4.43
	REMARRIED	-5.78 [*]
	SEPARATED	3.26
	WIDOWED	-8.19
WIDOWED	SINGLE	6.32
	STEADY RELATIONSHIP	4.76
	LIVING WITH PARTNER	4.39
	MARRIED FIRST TIME	3.76
	REMARRIED	2.41
	SEPARATED	11.44
	DIVORCED	8.19

The Post-hoc test using Tukey's HSD shows the below,

7.05

3.79

- There is a significant difference in Life satisfaction of single and married first time with a mean difference of 2.56 where single has M=20.83 & SD=6.721 and married for the first time has M=23.39 & SD = 6.78
- 2. There is a significant difference in Life satisfaction of married first time with single & separated with a mean difference of 2.56 and 7.69 respectively where separated has M=15.70 & SD=5.79
- 3. There is a significant difference in Life satisfaction of **remarried** with **separated** and **divorced** with a mean difference of 9.03 and 5.78 respectively where remarried has M=24.73 & SD=6.03 and divorced has M=18.96 & SD=6.93
- 4. There is a significant difference in Life satisfaction of **separated** with the **married first time, remarried, and widowed** with a mean difference of 7.69, 9.03, and 11.44 respectively where widowed has M=27.14 and SD=5.33.

We were able to see a difference in total life satisfaction for a few groups but not for many hence the total life satisfaction does not have any significant difference based on gender and marital status

Question 10: Present graphically how Total life satisfaction differs between age groups and gender.

Statistical Test: We are going to use a **Bar Chart** to show how total life satisfaction differs between each age group and gender.

The graph shows mean total life satisfaction of male and female between 3 age groups. We can see that females between ages 18-29 and 45+ have the highest life satisfaction. Whereas women between ages of 30-44 shows a slight decrease in total life satisfaction compared to the other 2 age groups. And the men between all the 3 age groups share almost the same number and there is no big difference in them.