ENG2009 – Modelling of Engineering Systems

Tutorial 7

ODE - Euler and Runge Kutta 2nd and 4th order

Example

A ball at 1200K is allowed to cool down in air at an ambient temperature of 300K. (Thermal system)

Assuming heat is lost only due to radiation, the differential equation for the temperature of the ball is given by

$$\frac{d\theta}{dt} = -2.2067 \times 10^{-12} (\theta^4 - 81 \times 10^8), \theta(0) = 1200K$$

Find the temperature at t = 480 sec using Euler's method.

Assume a step size of h = 240 sec

Solution

Step 2: For

$$i = 1, t_1 = 240, \theta_1 = 106.09$$

Therefore

$$\theta_2 = \theta_1 + f(t_1, \theta_1)h$$

$$= 106.09 + f(240,106.09)240$$

$$= 106.09 + (-2.2067 \times 10^{-12}(106.09^4 - 81 \times 10^8))240$$

$$= 106.09 + (0.017595)240$$

$$= 110.32K$$

where θ_2 is the approximate temperature at

$$t = t_2 = t_1 + h = 240 + 240 = 480$$

Therefore

$$\theta(480)\approx\theta_2=110.32K$$

Exact vs Numerical Solutions

Figure 3. Comparing exact and Euler's method

Solution

Step 1:

$$\frac{d\theta}{dt} = -2.2067 \times 10^{-12} (\theta^4 - 81 \times 10^8)$$

where

$$f(t,\theta) = -2.2067 \times 10^{-12} (\theta^4 - 81 \times 10^8)$$

Therefore

$$\theta_{i+1} = \theta_i + f(t_i, \theta_i)h$$

$$\theta_1 = \theta_0 + f(t_0, \theta_0)h$$

$$= 1200 + f(0.1200)240$$

$$= 1200 + (-2.2067 \times 10^{-12}(1200^4 - 81 \times 10^8))240$$

$$= 1200 + (-4.5579)240$$

$$= 106.09K$$

where θ_1 is the approximate temperature at

$$t = t_1 = t_0 + h = 0 + 240 = 240$$

Therefore

$$\theta(240) \approx \theta_1 = 106.09K$$

Solution continued...

Note that the exact solution of the ordinary differential equation is given

$$\begin{aligned} 0.92593 \ln \frac{\theta - 300}{\theta + 300} - 1.8519 \tan^{-1}(0.00333\theta) \\ = -0.22067 \times 10^{-3}t - 2.9282 \end{aligned}$$

The solution to this nonlinear equation at $t=480~{\rm sec}$ is: $\theta_{exact}(480)=647.57K$

Figure 2. General graphical interpretation of Euler's method

Effect of step size, h

Table 1. Temperature at 480 seconds as a function of step size, h

Step, h	No of sim. data	$\theta(480)$	E_t (error)	$ \epsilon_t \%$
480	1	-987.81	1635.4	252.54
240	2	110.32	537.26	82.964
120	3	546.77	100.80	15.566
60	4	614.97	32.607	5.0352
30	5	632.77	14.806	2.2864

exact solution: $\theta(480) = 647.57K$

Example calculation:

E_t = 647.57 - 110.32 = 537.26

$$|\epsilon_t|$$
% = $\left|\frac{E_t}{exact\ solution} \times 100\right|$
= $\left|\frac{537.26}{647.57} \times 100\right|$ = 82.964

Comparison with exact results

Figure 4. Comparison of Euler's method with exact solution for different step sizes

The smaller the step size h, the closer to the numerical solution to the exact solution

Example

A ball at 1200K is allowed to cool down in air at an ambient temperature of 300K.

Assuming heat is lost only due to radiation, the differential equation for the temperature of the ball is given by

$$\frac{d\theta}{dt} = -2.2067 \times 10^{-12} (\theta^4 - 81 \times 10^8), \theta(0) = 1200K$$

Find the temperature at t = 480 sec using Heun's method.

Assume step size of h = 240 sec.

Comparison with exact results

Figure 2. Heun's method results for different step sizes

Euler vs Runge-Kutta 2nd Order Methods

Figure 4. Comparison of Euler and Runge Kutta $2^{\rm nd}$ order methods with exact results. ($h=120~{\rm sec}$)

Effects of step size h on Euler's Method

Figure 5. Effect of step size in Euler's method.

Temp θ at 480 sec i.e. $\theta(480)$ for various step size h

Solution

Given

$$\frac{d\theta}{dt} = -2.2067 \times 10^{-12} (\theta^4 - 81 \times 10^8)$$

therefore

$$f(t,\theta) = -2.2067 \times 10^{-12} (\theta^4 - 81 \times 10^8)$$

Heun's method:

$$\theta_{i+1} = \theta_i + \left(\frac{1}{2}k_1 + \frac{1}{2}k_2\right)h$$

where

$$k_1 = f(x_i, y_i)$$

 $k_2 = f(x_i + h, y_i + k_1 h)$

Euler vs Runge-Kutta 2nd Order Methods

Table 2. Comparison of Euler and the Runge-Kutta methods

	Step size,	$ \in_t \%$			
		Euler	Heun	Midpoint	Ralston
Ī	480	252.54	160.82	86.612	30.544
	240	82.964	9.7756	50.851	6.5537
	120	15.566	0.58313	6.5823	3.1092
	60	5.0352	0.36145	1.1239	0.72299
	30	2.2864	0.097625	0.22353	0.15940

$$\theta_{exact}(480) = 647.57K$$
 (exact)

Example

A ball at 1200K is allowed to cool down in air at an ambient temperature of 300K.

Assuming heat is lost only due to radiation, the differential equation for the temperature of the ball is given by

$$\frac{d\theta}{dt} = -2.2067 \times 10^{-12} (\theta^4 - 81 \times 10^8), \theta(0) = 1200K$$

Find the temperature at $t=480~{\rm sec}$ using Runge-Kutta 4th order method.

Assume step size of h = 240 sec.

Solution

Given

$$\frac{d\theta}{dt} = -2.2067 \times 10^{-12} (\theta^4 - 81 \times 10^8)$$

therefore

$$f(t,\theta) = -2.2067 \times 10^{-12} (\theta^4 - 81 \times 10^8)$$

Runge-Kutta 4th order method:

$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)h$$

$$k_1 = f(x_i, y_i)$$

$$k_2 = f\left(x_i + \frac{1}{2}h, y_i + \frac{1}{2}k_1h\right)$$

$$k_3 = f\left(x_i + \frac{1}{2}h, y_i + \frac{1}{2}k_2h\right)$$

$$k_4 = f(x_i + h, y_i + k_3h)$$

Comparison with exact results

Figure 1. Comparison of Runge-Kutta 4th order method with exact solution

Comparison of Euler and Runge-Kutta Methods

Figure 3. Comparison of Runge-Kutta methods of 1st, 2nd, and 4th order $(h=240~{\rm sec})$

Exact solution

The exact solution of the ordinary differential equation is given by the solution of a non-linear equation as

$$0.92593 \ln \frac{\theta - 300}{\theta + 300} - 1.8519 \tan^{-1}(0.0033333\theta)$$

= -0.22067 × 10⁻³t - 2.9282

The solution to this nonlinear equation at t = 480 sec is

$$\theta_{exact}(480) = 647.57K$$

Compared with Runge-Kutta 4th order method:

$$\theta_{RK4}(480) = 594.91K$$

Effects of h on Runge-Kutta 4th Order Method

Figure 2. Effect of step size in Runge-Kutta 4th order method

Exercises

Q1) Civil engineering example:

A polluted lake has an initial concentration of a bacteria of $10^7\,$ parts/m³, while the acceptable level is only $5\times 10^6 {\rm parts/m}^3$. The concentration of the bacteria will reduce as fresh water enters the lake. The differential equation that governs the concentration C of the pollutant as a function of time (in weeks) is given by

$$\frac{dC}{dt} + 0.06C = 0, \ C(0) = 10^7$$

Using a step size of 3.5 weeks, find the concentration of the pollutant after 7 weeks. Use the following methods

- (a) Euler's methods
- (b) Heun's method
- (c) Runge-Kutta 4th order methods