

Clustering-Aided Approach for Predicting Patient Outcomes with Application to Elderly Healthcare in Ireland

Mahmoud Elbattah, Owen Molloy mahmoud.elbattah@nuigalway.ie

Challenge to Healthcare: Population Ageing

Our Focus: Hip Fracture Care in Ireland

- A good exemplar of elderly healthcare.
- Exponentially increasing with age.¹
- Identified as one of the most serious injuries resulting in lengthy hospital admissions and high costs.²
- High quality data available through the Irish Hip Fracture Database (IHFD).

Overview: Hip Fracture Care Scheme

Objectives

To predict the inpatient length of stay (LOS).

To predict the patient's discharge destination.

Importance of Predicting LOS and Discharge Destination

LOS:

- A significant measure of patient outcomes [1-3].
- A valid proxy to measure the consumption of hospital resources.
- Reported as the main component of the overall cost of hip fracture care [4].

Discharge Destination:

 Having a strategic importance to estimate the needed capacity of long-stay care facilities such as nursing homes.

Approach Overview

Data Description

- Irish Hip Fracture Database (IHFD).
- Patient records in the years 2013-2014.
- Patients aged 60 and over.
- 38 data fields such as gender, age, type of fracture, date of admission, and LOS.

K-Means Clustering Experiments

Learning Algorithm: Random Forests

$$p(c|v) = \frac{1}{T} \sum_{t=1}^{T} p_t(c|v)$$

, where $p_t(c|v)$ denotes the posterior distribution obtained by the t-th tree.

Learning Algorithm: Random Forests

Scholar

 \leftarrow

Export *

Leo Breiman 1928-2005

Random forests

[PDF] from univ-toulouse.fr

Authors Leo Breiman

Publication date 2001/10/1

Journal Machine learning

Volume 45

Issue 1

Pages 5-32

Publisher Springer Netherlands

Description Abstract Random forests are a combination of tree predictors such that each tree depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest. The generalization error for forests converges as to a limit as the number of trees in the forest becomes large. The generalization error of a forest of tree classifiers depends on the strength of the individual trees in the forest and the correlation

between them. Using a random selection of features to split each node yields error rates ...

Total citations Cited by 26024

Source: https://scholar.google.com/citations?user=mXSv_1UAAAAj

Paying Tribute to Leo Breiman (1928-2005)

Follow *

Leo Breiman 1928-2005

Professor of Statistics, UC Berkeley Data Analysis, Statistics, Machine Learning Verified email at stat.berkeley.edu - Homepage

Title 1–20	Cited by	Year
Classification and Regression Trees L Breiman, JH Friedman, RA Olshen, CJ Stone CRC Press, New York	31499 *	1999
Classification and regression trees L Breiman Chapman & Hall/CRC	31499	1984
Random forests L Breiman Machine learning 45 (1), 5-32	26024	2001
Bagging predictors L Breiman Machine learning 24 (2), 123-140	15844	1996
Estimating optimal transformations for multiple regression and correlation L Breiman, JH Friedman Journal of the American Statistical Association, 580-598	1743	1985
Statistical Modeling: The Two Cutures L Breiman	1566 *	2003
Statistical modeling: The two cultures (with comments and a rejoinder by the author) L Breiman Statistical Science 16 (3), 199-231	1562	2001
Prediction games and arcing classifiers L Breiman	1480 *	1997

Feature Selection & Extraction

LOS Regression Model:

- Age
- Patient Gender
- Fracture Type
- Hospital Admitted To
- ICD-10 Diagnosis
- Fragility History
- Time to Surgery

Discharge Destination Classifier:

- Age
- Patient Gender
- Fracture Type
- Hospital Admitted To
- ICD-10 Diagnosis
- LOS
- Fragility History
- Time to Surgery

Experimental Results: Regression Accuracy (10-Fold Cross-Validation)

LOS Predictors	Relative Absolute	Relative Squared	Coefficient of
	Error (≈)	Error (≈)	Determination (≈)
Cluster 1	0.24	0.14	0.86
Cluster 2	0.30	0.19	0.81
Cluster 3	0.28	0.18	0.82

Experimental Results: Classifier Accuracy (10-Fold Cross-Validation)

The Significance of Clustering

- (a) Relative Absolute Error
- (b) Relative Squared Error

(c) Coefficient of Determination

The Significance of Clustering (cont'd)

The Significance of Clustering (cont'd)

	Feature Importance Score (≈)			
Feature	Cluster1	Cluster2	Cluster3	
Age	0.84	0.49	0.61	
Patient Gender	0.14	0.23	0.18	
Fracture Type	0.38	0.44	0.21	
Hospital Admitted To	0.78	0.93	0.56	
ICD-10 Diagnosis	0.48	0.52	0.29	
Fragility History	0.44	0.10	0.09	
Time To Surgery	0.15	0.27	0.64	

^{*} The features were decided based on the permutation importance method [5]

More about Patient Clustering...

Data-driven patient segmentation using K-means clustering: the case of hip fracture care in Ireland

Full Text: PDF Set this Article

Authors: Mahmoud Elbattah National University of Ireland Galway

Owen Molloy National University of Ireland Galway

Published in:

Proceeding

<u>ACSW '17</u> Proceedings of the Australasian Computer Science Week Multiconference

Article No. 60

Geelong, Australia — January 30 - February 03, 2017

ACM New York, NY, USA @2017

table of contents ISBN: 978-1-4503-4768-6 doi>10.1145/3014812.3014874

- · Citation Count: 0
- Downloads (cumulative): 4
- · Downloads (12 Months): 4
- Downloads (6 Weeks): 4

Closing Thought

 "The key challenges facing healthcare providers in future years are perhaps more organisational and logistical than medical and scientific advances".

(Sally Brailsford & Jan Vissers 2011)

References

- 1. O'Keefe, G.E., Jurkovich, G.J. and Maier, R.V., 1999. Defining excess resource utilization and identifying associated factors for trauma victims. Journal of Trauma and Acute Care Surgery, 46(3), pp.473-478.
- 2. Englert, J., Davis, K.M. and Koch, K.E., 2001. Using clinical practice analysis to improve care. Joint Commission Journal on Quality and Patient Safety, 27(6), pp.291-301.
- 3. Guru, V., Anderson, G.M., Fremes, S.E., O'Connor, G.T., Grover, F.L., Tu, J.V. and Consensus, C.C.S.Q.I., 2005. The identification and development of Canadian coronary artery bypass graft surgery quality indicators. The Journal of thoracic and cardiovascular surgery, 130(5), pp.1257-e1.
- Johansen, A., Wakeman, R., Boulton, C., Plant, F., Roberts, J. and Williams, A.,
 2013. National Hip Fracture Database: National Report 2013. Clinical Effectiveness and Evaluation Unit at the Royal College of Physicians.
- 5. Altmann, A., Toloşi, L., Sander, O. and Lengauer, T., 2010. Permutation importance: a corrected feature importance measure. Bioinformatics, 26(10), pp.1340-1347.
- 6. Breiman, L., 2001. Random forests. *Machine learning*, 45(1), pp.5-32.
- 7. Brailsford, S. and Vissers, J., 2011. OR in healthcare: A European perspective. *European journal of operational research*, 212(2), pp.223-234.

THANK YOU!

mahmoud.elbattah@nuigalway.ie