Análisis Matemático II - Tarea 3

Fecha límite: domingo 10 de octubre a las 23:59 horas Andrés Casillas García de Presno

1. Si $A: \mathbb{R}^n \to \mathbb{R}^n$ es una función lineal (no necesariamente un isomorfismo) y $\xi \in \mathbb{R}^n$, definimos $\varphi(x) := Ax + \xi$. Prueba que, para todo subconjunto compacto K de \mathbb{R}^n ,

$$\operatorname{vol}_n(\varphi(K)) = |\det A| \operatorname{vol}_n(K).$$

¿Es posible afirmar que, si U es un subconjunto abierto de \mathbb{R}^n , entonces

$$\operatorname{vol}_n(\varphi(U)) = |\det A| \operatorname{vol}_n(U) ?$$

Solución

Si $A \in GL(n,\mathbb{R})$, la proposición 12,20 (b) afirma el resultado. Así, supongamos $A \notin GL(n,\mathbb{R})$, $\phi(x) := Ax + \xi$.

En dado caso, |det A| = 0. Supongamos $A = (x_1, \dots, x_n)$ con $x_i \in \mathbb{R}^n$ para toda $i = 1, \dots, n$. Sabemos que |det A| = 0 si y solo si x_i y x_j son linealmente dependientes para algunas $i, j \in \{1, \dots, n\}$. Supongamos, sin pérdida de generalidad, que i = 1, j = 2, de forma que existe $\lambda \in \mathbb{R}$ tal que $x_2 = \lambda x_1$.

Veamos que, dado $y = (y_1, \dots, y_n) \in \mathbb{R}^n$

$$Ay + \xi = y_1(x_1) + y_2(x_2) + \dots + y_n(x_n) + \xi$$

= $y_1(x_1) + y_2\lambda(x_1) + \dots + y_n(x_n) + \xi$
= $(y_1 + \lambda y_2)(x_1) + \dots + y_n(x_n) + \xi$

de forma que $Ay + \xi$ esta contenido en el subespacio

$$< x_1, x_3, \ldots, x_n >$$

donde

$$dim(\langle x_1, x_3, \dots, x_n \rangle) \le (n-1)$$

Como $A: \mathbb{R}^n \to \mathbb{R}^n$, podemos pensar a $Ay + \xi$ como encajado en \mathbb{R}^n .

Como K es compacto y ϕ es lineal compuesta con traslación, entonces ϕ es continua, por lo que $\phi(K)$ es compacto. Sabemos que cualquier subespacio de dimensión n-m con $m \in \{1,\ldots,n\}$ es isomorfo a \mathbb{R}^{n-m} , por lo que existe un isomorfismo lineal ψ tal que $\psi(\phi(K)) \subseteq \mathbb{R}^{n-m} \times \{0\}^m$ y, por la proposición 12,20(b) sabemos que

$$vol_{n-1}\psi(\phi(K)) = |det\psi|vol_{n-1}(\phi(k))$$

de forma que, como $|det\psi| \neq 0$, basta con probar que $vol_{n-1}\psi(\phi(K)) = 0$.

Sea $H := \psi \circ \phi(K)$. Como ψ es lineal, en particular continua, y $\phi(K)$ es compacto, entonces H es compacto. Así, $\pi_{n-m}(H) \subseteq Q := [a_1, b_1] \times \cdots \times [a_{n-m}, b_{n-m}]$ donde π_{n-m} es la proyección en las n-m primeras entradas.

Por lo dicho anteriormente,

$$H \subseteq \mathbb{R}^{n-m} \times \{0\}^m$$

y como

$$H \subseteq Q \times [0,0]^m$$

por la proposición 12.20 (a) tenemos que

$$vol_n(H) \le vol_n(Q \times [0,0]^m)$$

y por el ejemplo (12.21)

$$vol_n(Q \times [0,0]^m) = \prod_{i=1}^n (b_i - a_i) = 0$$

entonces $vol_n(H) \leq 0$.

Como además, por definición

$$vol_n(H) = \int_{\mathbb{R}^n} 1_H$$

por monotonía de la integral

$$vol_n(H) \geq 0$$

de forma que $vol_n(H) \geq 0$.

Así, $vol_n(H) = 0$ lo cual implica que $vol_{n-1}\phi(K) = 0$.

Veamos que no es posible afirmar que si U es un subconjunto abierto de $\mathbb{R}^n,$ entonces

$$\operatorname{vol}_n(\varphi(U)) = |\det A| \operatorname{vol}_n(U)$$

dado que, si U es un subconjunto abierto no acotado de \mathbb{R}^n y $|\det A|=0$, entonces no es posible afrimar que

$$\infty = 0\infty$$

dado que esto es una indeterminación. Véamoslo en dos ejemplos:

$$U = \mathbb{R}$$

$$vol(U) = \infty$$

$$\phi(x) = 0$$

$$|\det A| = 0$$

$$\phi(U) = 0$$

$$vol(\phi(U)) = 0$$

entonces diríamos que $0 = 0\infty$, pero por otro lado, si

$$U = \mathbb{R}^2$$

$$vol(U) = \infty$$

$$A = (e_1, e_1)$$

$$|\det A| = 0$$

$$\phi(U) = \mathbb{R} \times \{0\}$$

$$vol(\phi(U)) = \infty$$

entonces diríamos que $\infty = 0\infty$.

De esta forma, no podemos 0∞ está indeterminado, por lo que no podemos hacer dicha afrimación.

2. Sean $\xi_0, \xi_1, \dots, \xi_n \in \mathbb{R}^n$. Prueba que el paralelogramo

$$P := \{ \xi_0 + t_1 \xi_1 + \dots + t_n \xi_n : t_i \in [0, 1] \ \forall i = 1, \dots, n \}$$

es un subconjunto compacto de \mathbb{R}^n y que

$$\operatorname{vol}_n(P) = |\det(\xi_1 \cdots \xi_n)|.$$

Solución

Sean $\xi_0, \xi_1, \dots, \xi_n \in \mathbb{R}^n$ fijos. Sea $f : [0,1]^n \to \mathbb{R}^n$ dada por $f(t_1, \dots, t_n) = t_1\xi_1 + \dots + t_n\xi_n$ y sea $g : \mathbb{R}^n \to \mathbb{R}^n$ dada por $g(x) = \xi_0 + x$. Veamos que f es una función lineal de \mathbb{R}^n a \mathbb{R}^n , por lo que es continua, y g también es claramente continua. Así, $g \circ f : [0,1]^n \to \mathbb{R}^n$ es continua. Como $g \circ f$ es continua, entonces manda compactos en compactos, y como $[0,1]^n$ es compacto por ser producto cartesiano finito de compactos, entonces $Im(g \circ f) = P$ es un conjunto compacto.

$$\underline{\operatorname{caso } 1:} \mid \det(\xi_1 \cdots \xi_n) \mid = 0.$$

Sabemos que $|\det(\xi_1 \cdots \xi_n)| = 0$ si y solo si x_i y x_j son linealmente dependientes para algunas $i, j \in \{1, \dots, n\}$. Probemos por inducción sobre n, usando el principio de Cavalieri, que $\operatorname{vol}_n(P) = 0$.

Caso base: n=1

Sean $\xi_0, \xi_1 \in \mathbb{R}$, $P := \{\xi_0 + t_1 \xi_1 : t_1 \in [0,1]\}$. Como $|\det(\xi_1)| = 0$ entonces $\xi_1 = 0$ de forma que $P = \{\xi_0\}$ que claramente es compacto. Sabemos por el ejemplo 12,21 que

$$vol_1(P) = vol_1([\xi_0, \xi_0]) = (\xi_0 - \xi_0) = 0 = |\det(\xi_1)|$$

Hipótesis de inducción:

Sean $\xi_0, \xi_1, \dots, \xi_n \in \mathbb{R}^n$,

$$P := \{ \xi_0 + t_1 \xi_1 + \dots + t_n \xi_n : t_i \in [0, 1] \ \forall i = 1, \dots, n \}$$

que es un subconjunto compacto de \mathbb{R}^n . Supongamos que

$$\operatorname{vol}_n(P) = |\det(\xi_1 \cdots \xi_n)| = 0.$$

Paso inductivo:

Sean $\xi_0, \xi_1, \dots, \xi_n \in \mathbb{R}^{n+1}$, $P := \{\xi_0 + t_1\xi_1 + \dots + t_{n+1}\xi_{n+1} : t_i \in [0,1] \ \forall i=1,\dots,(n+1)\}$. Como $|\det(\xi_1\dots\xi_{n+1})| = 0$ entonces existe $\lambda \in \mathbb{R}$ tal que $x_i = \lambda x_j$ para algunas $i,j \in \{1,\dots,(n+1)\}$. Sin pérdida de generalidad, supongamos i=2,j=1.

Por el argumento dado al principio de la solución (adaptando las funciones f y g) sabemos que P es compacto. Por el principio de Cavalieri sabemos que

$$vol_{n+1}(P) = \int_{\mathbb{R}} vol_n(K_t)dt$$

donde, para cada $t \in \mathbb{R}$,

$$K_t := \{ y \in \mathbb{R}^n : (y, t) \in P \}$$

Por definición, para cada $t \in \mathbb{R}$, $K_t = \emptyset$ o $K_t = \{\pi_n(\xi_0) + t_1\pi_n(\xi_1) + \cdots + t_{n+1}\pi_{n+1}(\xi_{n+1}) : t_i \in [0,1] \ \forall i=1,\ldots,(n+1)\}$ donde π_n denota la proyección en las primeras n coordenadas. Es claro que $\pi_n(x_2) = \lambda \pi_n(x_1)$ (pues $x_2 = \lambda x_1$), por lo que $|\det(\pi_n(\xi_1) \cdots \pi_n(\xi_{n+1}))| = 0$. Como las proyecciones son continuas y P es compacto, entonces K_t es compacto para toda $t \in \mathbb{R}$. Como $\pi_n(\xi_j) \in \mathbb{R}^n$ para toda $i \in \{0, \ldots, (n+1)\}$, entonces K_t cumple la hipótesis de inducción, de forma que, para toda $t \in \mathbb{R}$

$$vol_n(K_t) = 0$$

lo cual implica que $vol_{\mathbb{R}^{n+1}}(P) = \int_{\mathbb{R}} 0 dt = 0 = |\det(\xi_1 \cdots \xi_{n+1})|$ <u>caso 2:</u> $|\det(\xi_1 \cdots \xi_n)| \neq 0$.

En dado caso, $(\xi_1 \cdots \xi_n) \in GL(n, \mathbb{R})$. Sea $\phi(x) = (\xi_1 \cdots \xi_n)x + \xi_0$ y sea e_i el *i*-ésimo vector canónico de \mathbb{R}^n . Consideremos el conjunto

$$X = \{t_1e_1 + \dots + t_ne_n : t_i \in [0,1] \ \forall i = 1,\dots,n\} = [0,1]^n$$

que es compacto por ser producto cartesiano finito de compactos.

Como ϕ es lineal afín y $(\xi_1 \cdots \xi_n)e_i = \xi_i$ entonces $\phi(X) = P$ y como se cumplen las hipótesis de la proposición 12.20(b) entonces

$$vol_n(\phi(X)) = |\det(\xi_1 \cdots \xi_n)| vol_n(X)$$

pero como $X = [0,1]^n$, entonces por el ejemplo 12.21 sabemos que

$$vol_n(X) = \prod_{i=1}^n (1-0) = 1$$

lo cual implica que

$$vol_n(P) = vol_n(\phi(X)) = |\det(\xi_1 \cdots \xi_n)|$$

Así, en ambos casos, $vol_n(P) = |\det(\xi_1 \cdots \xi_n)|$.

3. Calcula el volumen de la esfera $\mathbb{S}_r^{n-1}:=\{x\in\mathbb{R}^n:\|x\|=r\}$ en $\mathbb{R}^n,$ r>0.

Solución

Veamos, por inducción sobre n, que $vol_n(\mathbb{S}_r^{n-1})=0$ para toda $n\in\mathbb{N}$.

Caso base: n = 1

Sea r > 0. $\mathbb{S}_r^0 = \{x \in \mathbb{R} : ||x|| = r\} = \{-r, r\}$. Como claramente \mathbb{S}_r^0 es compacto entonces

$$vol_1(\mathbb{S}_r^0) = \int_{\{-r,r\}} 1_{\mathbb{S}_r^0}$$

Sea (f_k) la sucesión de funciones siguente:

$$f_k(x) = \begin{cases} k(x + (r + \frac{1}{k})) & si \quad x \in [-r - \frac{1}{k}, -r] \\ -k(x + (r - \frac{1}{k})) & si \quad x \in [-r, -r + \frac{1}{k}] \\ k(x - (r - \frac{1}{k})) & si \quad x \in [r - \frac{1}{k}, r] \\ -k(x - (r + \frac{1}{k})) & si \quad x \in [r, r + \frac{1}{k}] \\ 0 & \text{en otro caso} \end{cases}$$

Es claro que f_k es continua, con soporte compacto y $f_k \ge f_{(k+1)}$ para toda $k \in \mathbb{N}$. Además,

$$inf_{k\in\mathbb{N}}f_k = \begin{cases} 1 & si & x \in \{-r, r\} \\ 0 & si & x \notin \{-r, r\} \end{cases}$$

pues si $x_0 \in V_{\epsilon}(r)$, entonces

$$f_k(x_0) = \begin{cases} 1 - k\epsilon & si \quad k \le \frac{1}{\epsilon} \\ 0 & si \quad k > \frac{1}{\epsilon} \end{cases}$$

Como el caso es análogo para -r, y para el resto del dominio la función es la constante cero, se sigue la afirmación. Como la función descrita en (1) es igual a $1_{\mathbb{S}_r^0}$ y como $\{-r,r\}$ es compacto, sabemos que $1_{\mathbb{S}_r^0} \in \mathbf{S}^*(\mathbb{R}^n)$, y por definición

$$\int_{\mathbb{R}^n} 1_{\mathbb{S}^0_r} = \int_{\{-r,r\}} 1_{\mathbb{S}^0_r} = \lim_{k \to \infty} \int_{\mathbb{R}^n} f_k = \lim_{k \to \infty} \frac{2}{k} = 0$$

de forma que

$$vol_1(\mathbb{S}_r^0) = 0$$

Hipótesis de inducción:

Supongamos que para cualquier r>0, $vol_n(\mathbb{S}^{n-1}_r)=0$

Paso inductivo:

Veamos que $vol_{n+1}(\mathbb{S}_r^n) = 0$. Sea

$$(\mathbb{S}_r^n)_t = \{ y \in \mathbb{R}^n : (y, t) \in \mathbb{S}_r^n \}$$

$$= \{ (x_1, \dots, x_n) \in \mathbb{R}^n : x_1^2 + \dots + x_n^2 = r^2 - t^2 \}$$

$$= \{ (x_1, \dots, x_n) \in \mathbb{R}^n : x_1^2 + \dots + x_n^2 = R^2 \}$$

$$= \mathbb{S}_R^{n-1}$$

Es claro que si $|t| \notin [0, r]$ entonces $(\mathbb{S}_r^n)_t = \emptyset$ y que en caso contrario $(\mathbb{S}_r^n)_t = \mathbb{S}_R^{n-1}$, de forma que

$$\int_{\mathbb{R}} vol_n(K_t) = \int_{\{t \in \mathbb{R}: |t| \in [0,r]\}} vol_n(K_t)$$

Así, como \mathbb{S}^n_R es compacto (análisis 1) y por hipótesis de inducción tenemos que

$$vol_{n+1}(\mathbb{S}_R^n) = \int_{\mathbb{R}} vol_n((\mathbb{S}_r^{n-1})_t) dt = \int_{\mathbb{R}} 0 dt = 0$$

4. Sean K un subconjunto compacto de \mathbb{R}^n y $f:K\to\mathbb{R}$ una función continua tal que $f\geq 0.$ Prueba que

$$G^f := \{(x, t) \in \mathbb{R}^n \times \mathbb{R} : x \in K, \ 0 < t < f(x)\}$$

es compacto y que

$$\operatorname{vol}_{n+1}(G^f) = \int_{\mathbb{R}^n} \bar{f},$$

donde \bar{f} es la extensión trivial de f

Solución

Primero veamos que G^f está contenido en un compacto.

Como f es continua y K es compacto, entonces f alcanza su máximo en K, digamos $x_{max} \in K$ es tal que $f(x_{max}) \geq f(x)$ para toda $x \in K$. Así, por definición, $G^f \subseteq K \times [0, f(x_{max})]$. Como K y $[0, f(x_{max})]$ son compactos, entonces $K \times [0, f(x_{max})]$ también lo es, por lo que G^f está contenido en un compacto. Así, basta con que G^f sea cerrado para que sea compacto.

Sea $(x,t) \in \overline{G^f}$. Por definición existe una sucesión (x_k,t_k) de elementos de G^f tal que $(x_k,t_k) \to (x,t)$. Sean $\pi_n,\pi_{(n+1)}$ las funciones proyección en las n primeras variables y en la (n+1)-ésima variable respectivamente. Sabemos que π_n,π_{n+1} son funciones continuas, por lo que, como $(x_k,t_k) \to (x,t)$ entonces $\pi_n(x_k,t_k) \to \pi_n(x,t), \, \pi_{(n+1)}(x_k,t_k) \to \pi_{(n+1)}(x,t)$. Por definición de G^f , sabemos que $\pi_n(x_k,t_k) \in K$ para toda $k \in \mathbb{N}$. Como k es compacto y $\pi_n(x_k,t_k) \to \pi_n(x,t)$, entonces $\pi_n(x,t) \in K$.

Supongamos, por reducción al absurdo, que $\pi_{(n+1)}(x,t) = t \notin [0, f(x)]$. caso 1: supongamos t > f(x)

Como $(x_k, t_k) \in G^f$, $(x_k) \to x$ y $f \ge 0$ es continua, entonces dada $\epsilon > 0$ existe $k_0 \in \mathbb{N}$ tal que para toda $k > k_0$, $|t_k - f(x)| < \frac{\epsilon}{2}$ y como $(t_k) \to t$ entonces existe $k_1 \in \mathbb{N}$ tal que para toda $k > k_1$, $|t_k - t| < \frac{\epsilon}{2}$. Así, tomando $k_2 = \max\{k_0, k_1\}$ tenemos que para toda $k > k_2$,

$$|f(x) - t| = |t_k - f(x)| + |t_k - t| < \epsilon$$

de forma que t es punto de contacto del conjunto [0, f(x)], pero como dicho conjunto es cerrado, entonces $t \in [0, f(x)]$.

caso 2: supongamos t < 0

Sea $d = \frac{|t|}{2}$. Por definción de G^f , $G^f \cap B_d(x,t) = \emptyset$ donde $B_d(x,t)$ es la bola de radio d centrada en (x,t), contradiciendo el hecho de que (x,t) es punto de contacto de G^f .

Así, G^f es cerrado y contenido en un compacto, por lo que es compacto. Veamos ahora que

$$vol_{n+1}(G^f) = \int_{\mathbb{R}^n} \bar{f}$$

Sea

$$g: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$$
$$g(t, x) := 1_{G^f}(x, t)$$

Veamos que, si $A: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ es la función lineal que permuta las primeras n variables con la última variable, tenemos que, por el corolario 11.18 y como $g = 1_{G^f} \circ A$, entonces

$$\int_{\mathbb{R}^{n+1}} g = \int_{\mathbb{R}^{n+1}} 1_{G^f}$$

Como G^f es compacto, $1_{G^f} \in \mathbb{S}^*(\mathbb{R}^{n+1})$ y como A es continua entonces $g \in \mathbb{S}^*(\mathbb{R}^{n+1})$. Aplicando el Teorema de Fubini con la función

$$g^{x}(t) : \mathbb{R} \to \mathbb{R}$$

$$g^{x}(t) := g(t, x) = \begin{cases} 1 & si \quad (x, t) \in G^{f} \\ 0 & si \quad (x, t) \notin G^{f} \end{cases}$$

У

$$F(x) = \int_{\mathbb{R}} g^x(t)$$

Sabemos que $g^x(t) \in \mathbb{S}^*(\mathbb{R}^{n+1})$ y que

$$\int_{\mathbb{R}^n} F = \int_{\mathbb{R}^{n+1}} g = \int_{\mathbb{R}^{n+1}} 1_{G^f} = vol_{n+1}(G^f)$$
 (1)

Pero por otro lado, por definición de $g^x(t)$, tenemos que

$$F(x) = \int_{\mathbb{R}} g^x(t) = \bar{f}(x)$$

de forma que, por (2), tenemos que

$$\int_{\mathbb{R}^n} \bar{f} = vol_{n+1}(G^f)$$

que es lo que se quería demostrar.