

Group Members

- Shreyas Kottur Shivananda
- Pavan Kumar Sheshanarayana
- Muhammad Haseeb Javaid
- Usman Ashraf

Knowledge Graphs

Knowledge Graph: A knowledge graph acquires and integrates information into an ontology and applies a reasoner to derive new knowledge. (Ehrlinger et al., 2016)

Knowledge Graph Summarization

3

Problem Statement

- o **Problem:** Enormous amounts of data is available.
 - Unstructured data.
 - Structured data is presented in the form of Knowledge Graph (KG).
- Requirement: Reduction of KG size.
- Proposed Solution: KG summarization.
- End Goal
 - Creation of summarized KG.
 - Evaluation of summarized KG.
 - UI functionality implementation.

Summarization Algorithms

- KG summarization
 - Hyperlink-Induced Topic Search (HITS). (Kleinberg, 1999)
 - o Stochastic Approach for Link-Structure Analysis (SALSA).(Lampel et al., 2001)
- Entity summarization
 - o LinkSUM (Thalhammer et al., 2016)

HITS - Introduction

- Link Analysis Algorithm.
- Uses weights for assigning scores.
- Each node gets two scores: Authority score and Hub score.
- Authority scores represent number of links towards the respective node.
- Hub scores represent numbers of links from the respective node.

HITS (continued...)

SALSA - Introduction

- The Stochastic Approach for Link-Structure Analysis
- Root set.
- Base set.
- Authoritative nodes and Hub nodes are represented as Bipartite graph.
- Nodes with good authoritative scores and hub scores are visited often.
- o Computes on hubs and authority nodes separately.

SALSA (Continued....)

SALSA vs HITS

- Mutual reinforcement relationship.
- o Iterative computation of authority and hub scores.
- $_{\circ}\;$ SALSA not affected by TKC effect.

HITS and SALSA - Statistics

- O HITS
 - Original KG Resources 3,116,745
 - Summarized KG Resources 1,235,850
- SALSA
 - Original KG Resources 3,116,745
 - Summarized KG Resources 1,027,786

HITS and SALSA - Evaluation

- Evaluation was based on entity linking.
 - E.g.: Angelina and her ex-husband Brad never played together in movie with her father Jon.
- For evaluation purpose Indexes were created using summarized KG.
- AGDISTIS/MAG was used for purpose of our evaluation.
- We used original KG and summarized KG from SALSA, HITS as knowledge base and evaluated the results.
- Gerbil Evaluation Framework.

HITS and SALSA (Continued....)

Entity Summarization

- The Idea: There are thousands of triples describing many entities, many of which are not relevant.
- Solution: Summarization of those single entities (Target entity).
- Applications: Knowledge Graph Panels in Search Engines and Info boxes.
- Two variants Possible: Diversity-Centered and Relevance-Oriented.
- LinkSUM: a Relevance-Oriented link-based approach. (Thalhammer et al., 2016)

LinkSUM - Approach

- Stage 1: Resource Selection:
- Combination of Two link-measures:
 - PageRank: one that accounts for the importance of the connected resource.

$$pr(r_0) = (1 - d) + d \cdot \sum_{r_n \in \{r | link(r, r_0); r \in R\}} pr(r_n) / c(r_n)$$

• Backlink: one that accounts for the strength of the connection.

$$bl(e) = \{r|link(r,e) \land link(e,r) \land r \in res(e), r \in R\}$$

• Therefore, Combined Score:

$$score(e, r) = \alpha \cdot \frac{pr(r)}{max\{pr(a) : a \in res(e)\}} + (1 - \alpha) \cdot \mathbf{1}_{bl(e)}(r)$$

LinkSUM - Approach

Stage 2: Predicate Selection:

- In a KG, two resources can be linked through multiple semantic connections. However, in many cases, one relation is more relevant than others.
- Could have three factors:
 - FRQ: The relation that is used the most is selected.
 - **EXC**: For both resources, target entity e and related resource r, we add up the number of times the relation is used with each (N+M). We use the inverse of this number 1/(N + M), in order to get the exclusivity score (the more exclusive, the better).
 - **DSC**: The sum |labels|+|ranges|+|domains| forms a basic method for estimating the quality of the description of the predicate.

LinkSUM - Evaluation

- Evaluated against the work "ESBM Benchmark (v1.2)".
- Contained 125 Dbpedia entities over 6 different classes.
- 6 gold standard summarizations provided by the experts.
- Some Considerations done:
 - Changes from the work "LinkSUM":
 - only outgoing links were considered in LinkSUM, we consider incoming links as well.
 - relations such as "purl.org/dc/terms/subject" were not considered in LinkSUM.
 - Changes from the work "ESBM":
 - Relations such as the following which were included in significant numbers in ESBM, we thought otherwise:
 - http://xmlns.com/foaf/0.1/name
 - http://xmlns.com/foaf/0.1/homepage
 - http://xmlns.com/foaf/0.1/depiction
 - http://dbpedia.org/ontology/thumbnail
 - http://dbpedia.org/ontology/termPeriod

LinkSUM - Evaluation

		FRQ mode	EXC mode	DSC mode	RELIN (Cheng et.al, 2011)	DIVERSUM (Sydow et.al.,2013)	FACES-E (Gunaratna et al., 2016)	LinkSUM	BAFREC (Kroll, H et al., 2018)	KAFCA (Kim ,E.K., et al., 2018)	MPSUM (Wei,D., et al., 2011)
dia	K = 5	0.237*	0.230	0.220	0.242	0.249	0.280	0.287	0.335	0.314	0.314
Dbpedia	K = 10	0.377	0.369	0.355	0.455	0.507	0.488	0.486	0.503	0.509	0.512

^{*} Scores are F1 Measures

References:

- Thalhammer et al., 2016. LinkSUM: using link analysis to summarize entity data. A Thalhammer, N Lasierra, A Rettinger - International Conference on Web Engineering, 2016.
- Ehrlinger et al., 2016. Towards a Definition of Knowledge Graphs. L Ehrlinger, W Wöß SEMANTICS (Posters, Demos, SuCCESS), 2016.
- Cheng et al, 2011. Cheng, G., Tran, T., Qu, Y.: RELIN: relatedness and informativeness-based cen-trality for entity summarization. In: ISWC 2011, Part I. pp. 114–129 (2011).https://doi.org/10.1007/978-3-642-25073-68.
- Sydow et al, 2013. Sydow, M., Pikula, M., Schenkel, R.: The notion of diversity in graphical entity summarisation on semantic knowledge graphs. J. Intell. Inf. Syst. 41(2), 109–149 (2013).https://doi.org/10.1007/s10844-013-0239-6.
- Gunaratna et al., 2016. Gunaratna, K., Thirunarayan, K., Sheth, A.P., Cheng, G.: Gleaning types for literals in RDF triples with application to entity summarization. In: ESWC 2016.pp. 85–100 (2016). https://doi.org/10.1007/978-3-319-34129-3 6.

References:

- Kroll,H et al., 2018. Kroll, H., Nagel, D., Balke, W.T.: BAFREC: Balancing frequency and rarity for entity characterization in linked open data. In: EYRE 2018 (2018).
- Kim ,E.K., et al., 2018. Kim, E.K., Choi, K.S.: Entity summarization based on formal concept analysis. In: EYRE 2018 (2018).
- Wei,D., et al., 2011. Wei, D., Gao, S., Liu, Y., Liu, Z., Huang, L.: MPSUM: Entity summarization with predicate-based matching. In: EYRE 2018 (2018).
- Lempel, Ronny, and Shlomo Moran. "SALSA: the stochastic approach for link-structure analysis." ACM Transactions on Information Systems (TOIS) 19.2 (2001): 131-160.
- J. M. Kleinberg. Authoritative sources in ahyperlinked environment. Journal of the ACM,46(5):604–632, 1999.

20

Thank You!