Convergence and Linear Speed-Up in Stochastic Federated Learning

Paul Mangold
Workshop Fondation Mathématiques de l'IA

March 25th, 2025

Optimisation collaborative

$$\min_{x \in \mathbb{R}^d} \frac{1}{N} \sum_{c=1}^N f_c(x) , \quad f_c(x) = \mathbb{E}_Z[F_c(x; Z)]$$

Optimisation collaborative

$$\min_{\mathbf{x} \in \mathbb{R}^d} \frac{1}{N} \sum_{c=1}^N f_c(\mathbf{x}) , \quad f_c(\mathbf{x}) = \mathbb{E}_Z[F_c(\mathbf{x}; Z)]$$

Difficultés centrales : hétérogénéité des données et des moyens de calcul + communication lente et difficile à établir

$$x^* \in \operatorname{arg\,min}_{x \in \mathbb{R}^d} \frac{1}{N} \sum_{c=1}^N \mathbb{E}_Z[F_c(x; Z)]$$

Federated Averaging¹ (FedAvg)

À chaque itération globale :

- Pour c=1 à N en parallèle
 - Recevoir $x^{(t)}$, initialiser $x_c^{(t,0)} = x^{(t)}$
 - Pour h = 0 à H 1

$$x_c^{(t,h+1)} = x_c^{(t,h)} - \gamma \nabla F_c(x_c^{(t,h)}; Z_c^{(t,h+1)})$$

Agrégation des modèles

$$x^{(t+1)} = \frac{1}{N} \sum_{c=1}^{N} x_c^{(t,H)}$$

¹B. McMahan et al. "Communication-efficient learning of deep networks from decentralized data". In: AISTATS. 2017.

Federated Averaging¹ (FedAvg)

À chaque itération globale :

- Pour c=1 à N en parallèle
 - Recevoir $x^{(t)}$, initialiser $x_c^{(t,0)} = x^{(t)}$
 - Pour h = 0 à H 1

$$x_c^{(t,h+1)} = x_c^{(t,h)} - \gamma \nabla F_c(x_c^{(t,h)}; Z_c^{(t,h+1)})$$

Agrégation des modèles

$$x^{(t+1)} = \frac{1}{N} \sum_{c=1}^{N} x_c^{(t,H)}$$

$x^* \in \operatorname{arg\,min}_{x \in \mathbb{R}^d} \frac{1}{N} \sum_{c=1}^N \mathbb{E}_Z[F_c(x; Z)]$

Plus d'itérations locales

- ✓ convergence plus rapide
- biais plus grand

¹B. McMahan et al. "Communication-efficient learning of deep networks from decentralized data". In: AISTATS. 2017.

Si f_c trois fois dérivable, μ -fortement convexe, ∇f_c est L-Lipschitz, et $\gamma \leq 1/L$

• FedAvg converge en Wasserstein vers une distribution $\pi^{(\gamma,H)}$

¹P. Mangold et al. "Refined Analysis of Federated Averaging's Bias and Federated Richardson-Romberg Extrapolation". In: AISTATS. 2025.

Si f_c trois fois dérivable, μ -fortement convexe, ∇f_c est L-Lipschitz, et $\gamma \leq 1/L$

- FedAvg converge en Wasserstein vers une distribution $\pi^{(\gamma,H)}$
 - et si $x^{(t)} \sim \psi_{x^{(t)}}$,

$$\mathcal{W}_2(\psi_{\mathsf{x}^{(t)}};\pi^{(\gamma,H)}) \leq (1-\gamma\mu)^{Ht}\mathcal{W}_2(\psi_{\mathsf{x}^{(0)}};\pi^{(\gamma,H)})$$

- où W_2 est la distance de Wasserstein d'ordre 2

¹P. Mangold et al. "Refined Analysis of Federated Averaging's Bias and Federated Richardson-Romberg Extrapolation". In: AISTATS. 2025.

Si f_c trois fois dérivable, μ -fortement convexe, ∇f_c est L-Lipschitz, et $\gamma \leq 1/L$

- FedAvg converge en Wasserstein vers une distribution $\pi^{(\gamma,H)}$
- Biais de FedAvg (pour γ , H petits)

$$\int x \pi^{(\gamma,H)}(dx) = x^* + \frac{\gamma(H-1)}{2N} \sum_{c=1}^N \nabla^2 f(x^*)^{-1} (\nabla^2 f_c(x^*) - \nabla^2 f(x^*)) \nabla f_c(x^*)$$
$$- \frac{\gamma}{2N} \nabla^2 f(x^*)^{-1} \nabla^3 f(x^*) A^{-1} C(x^*) + O(\gamma^2 H^2)$$

¹P. Mangold et al. "Refined Analysis of Federated Averaging's Bias and Federated Richardson-Romberg Extrapolation". In: AISTATS. 2025.

exe.

Biais d'hétérogénéité

Disparaît quand $abla^2 f_c(x^\star) =
abla^2 f(x^\star)$ ou quand $abla f_c(x^\star) =
abla f(x^\star)$

Biais de stochasticité

A est un opérateur linéaire $C(x^*)$ est la covariance de ∇f en x^*

• Biais de FedAvg (pour γ, H petits)

$$\int x \pi^{(\gamma,H)}(\mathrm{d}x) = x^* + \frac{\gamma(H-1)}{2N} \sum_{c=1}^{N} \nabla^2 f(x^*)^{-1} (\nabla^2 f_c(x^*) - \nabla^2 f(x^*)) \nabla f_c(x^*)$$
$$- \frac{\gamma}{2N} \nabla^2 f(x^*)^{-1} \nabla^3 f(x^*) A^{-1} C(x^*) + O(\gamma^2 H^2)$$

¹P. Mangold et al. "Refined Analysis of Federated Averaging's Bias and Federated Richardson-Romberg Extrapolation". In: AISTATS. 2025.

Si f_c trois fois dérivable, μ -fortement convexe, ∇f_c est L-Lipschitz, et $\gamma \leq 1/L$

- FedAvg converge en Wasserstein vers une distribution $\pi^{(\gamma,H)}$
- Biais de FedAvg (pour γ , H petits)
- Variance de FedAvg (pour γ , H petits)

$$\int (x-x^*)(x-x^*)^{\top} \pi^{(\gamma,H)}(\mathrm{d}x) = \frac{\gamma}{N} C(x^*) + O(\gamma^2 H^2)$$

¹P. Mangold et al. "Refined Analysis of Federated Averaging's Bias and Federated Richardson-Romberg Extrapolation". In: AISTATS. 2025.

Si f_c trois fois dérivable u-fortement convexe ∇f_c est L-Lipschitz, et $\gamma \leq 1/L$

Linear speed-up!

FedAvg conver

variance decreases in 1/N• Biais de FedAv variance scales in γ

• Variance de Feurarg (pour y, 11 pents)

$$\int (x-x^*)(x-x^*)^{\top} \pi^{(\gamma,H)}(\mathrm{d}x) = \left| \frac{\gamma}{N} C(x^*) \right| + O(\gamma^2 H^2)$$

istribution $\pi^{(\gamma,H)}$

¹P. Mangold et al. "Refined Analysis of Federated Averaging's Bias and Federated Richardson-Romberg Extrapolation". In: AISTATS. 2025.

Scaffold

$$x^* \in \operatorname{arg\,min}_{x \in \mathbb{R}^d} \frac{1}{N} \sum_{c=1}^N \mathbb{E}_Z[F_c(x; Z)]$$

À chaque itération globale :

- Pour c=1 à N en parallèle
 - Recevoir $x^{(t)}$, initialiser $x_c^{(t,0)} = x^{(t)}$
 - Pour h = 0 à H 1

$$x_c^{(t,h+1)} = x_c^{(t,h)} - \gamma \left(\nabla F_c(x_c^{(t,h)}; Z_c^{(t,h+1)}) + \xi_c^{(t)} \right)$$

Agrégation des modèles

$$x^{(t+1)} = \frac{1}{N} \sum_{c=1}^{N} x_c^{(t,H)}$$

$$\xi_c^{(t+1)} = \xi_c^{(t)} + \frac{1}{\gamma H} (\theta_c^{t,H} - \theta^{(t+1)})$$

Scaffold

$$x^* \in \operatorname{arg\,min}_{x \in \mathbb{R}^d} \frac{1}{N} \sum_{c=1}^N \mathbb{E}_Z[F_c(x; Z)]$$

À chaque itération globale :

- Pour c = 1 à N en parallèle
 - Recevoir $x^{(t)}$, initialiser $x_c^{(t,0)} = x^{(t)}$
 - Pour h = 0 à H 1

$$x_c^{(t,h+1)} = x_c^{(t,h)} - \gamma \left(\nabla F_c(x_c^{(t,h)}; Z_c^{(t,h+1)}) + \xi_c^{(t)} \right)$$

Agrégation des modèles

$$x^{(t+1)} = \frac{1}{N} \sum_{c=1}^{N} x_c^{(t,H)}$$

$$\xi_c^{(t+1)} = \xi_c^{(t)} + \frac{1}{\gamma H} (\theta_c^{t,H} - \theta^{(t+1)})$$

ightarrow No more heterogeneity bias!

Si f_c trois fois dérivable, μ -fortement convexe, ∇f_c est L-Lipschitz, et $\gamma \leq 1/L$

• Scaffold converges if $\gamma HL \leq 1$ en Wasserstein vers une distribution $\pi^{(\gamma,H)}$

¹P. Mangold et al. "Refined Analysis of Federated Averaging's Bias and Federated Richardson-Romberg Extrapolation". In: AISTATS. 2025.

Si f_c trois fois dérivable, μ -fortement convexe, ∇f_c est L-Lipschitz, et $\gamma \leq 1/L$

- Scaffold converges if $\gamma HL \leq 1$ en Wasserstein vers une distribution $\pi^{(\gamma,H)}$
 - et si $\mathbf{x}^{(t)} \sim \psi_{\mathbf{x}^{(t)}}$,

$$\mathcal{W}_2(\psi_{\mathsf{x}^{(t)}};\pi^{(\gamma,H)}) \leq (1-\gamma\mu)^{\mathsf{Ht}}\mathcal{W}_2(\psi_{\mathsf{x}^{(0)}};\pi^{(\gamma,H)})$$

- où W_2 est la distance de Wasserstein d'ordre 2

¹P. Mangold et al. "Refined Analysis of Federated Averaging's Bias and Federated Richardson-Romberg Extrapolation". In: AISTATS. 2025.

Si f_c trois fois dérivable, μ -fortement convexe, ∇f_c est L-Lipschitz, et $\gamma \leq 1/L$

- Scaffold converges if $\gamma HL < 1$ en Wasserstein vers une distribution $\pi^{(\gamma,H)}$
- Biais de Scaffold (pour γ , H petits)

$$\int x \pi^{(\gamma,H)}(\mathrm{d}x) = x^* - \left[\frac{\gamma}{2N} \nabla^2 f(x^*)^{-1} \nabla^3 f(x^*) A^{-1} C(x^*) \right] + O(\gamma^2 H^2)$$

¹P. Mangold et al. "Refined Analysis of Federated Averaging's Bias and Federated Richardson-Romberg Extrapolation". In: AISTATS. 2025.

Biais de stochasticité

Scaffold also c A est un opérateur linéaire $C(x^*)$ est la covariance de ∇f en x^*

Si f_c trois fois dérivable, μ -fortement convexe, ∇f_c est L-Lips¢hitz, et $\gamma \leq 1/L$

- Scaffold converges if $\gamma HL \leq 1$ en Wasserstein vers une distribution $\pi^{(\gamma,H)}$
- Biais de Scaffold (pour γ , H petits)

$$\int x \pi^{(\gamma,H)}(\mathrm{d}x) = x^* - \left| \frac{\gamma}{2N} \nabla^2 f(x^*)^{-1} \nabla^3 f(x^*) A^{-1} C(x^*) \right| + O(\gamma^2 H^2)$$

¹P. Mangold et al. "Refined Analysis of Federated Averaging's Bias and Federated Richardson-Romberg Extrapolation". In: AISTATS. 2025.

Si f_c trois fois dérivable, μ -fortement convexe, ∇f_c est L-Lipschitz, et $\gamma \leq 1/L$

- Scaffold converges if $\gamma HL < 1$ en Wasserstein vers une distribution $\pi^{(\gamma,H)}$
- Biais de Scaffold (pour γ , H petits)
- Variance de FedAvg (pour γ , H petits)

$$\int (x-x^*)(x-x^*)^{\top} \pi^{(\gamma,H)}(\mathrm{d}x) = \frac{\gamma}{N} C(x^*) + O(\gamma^2 H^2)$$

¹P. Mangold et al. "Refined Analysis of Federated Averaging's Bias and Federated Richardson-Romberg Extrapolation". In: AISTATS. 2025.

Si f_c trois fois dérivable u-fortement convexe ∇f_c est L-Lipschitz, et $\gamma \leq 1/L$ Linear speed-up!

- Scaffold conve
- variance decreases in 1/N• Biais de Scaffo variance scales in γ
- Variance de Feurry (pour y, 11 pents)

$$\int (x-x^*)(x-x^*)^{\top}\pi^{(\gamma,H)}(\mathrm{d}x) = \left|\frac{\gamma}{N}C(x^*)\right| + O(\gamma^2H^2)$$

in vers une distribution $\pi^{(\gamma,H)}$

¹P. Mangold et al. "Refined Analysis of Federated Averaging's Bias and Federated Richardson-Romberg Extrapolation". In: AISTATS. 2025.

New Convergence Rate for Scaffold

Linear Speed-Up!

Numerical Illustrations

Conclusion