实变函数

乐绎华

学号: 23363017

2025年5月21日

Exercice 1

- 1. (1) 设 f, g 分别在可测集 $E \subset \mathbb{R}^n$ 上可积, 且在 E 的任意可测子集 A 上有 $\int_A f(x) \, \mathrm{d}x \leqslant \int_A g(x) \, \mathrm{d}x, \text{证明 } f \leqslant g \text{ a. e. } \mp E.$
 - (2) 设 f, g 分别在可测集 $E \subset \mathbb{R}^n$ 上可积, 且在 E 的任意可测子集 A 上有 $\int_A f(x) \, \mathrm{d}x = \int_A g(x) \, \mathrm{d}x,$ 证明 f = g a. e. 于 E.
 - (3) 教材第四章习题第 17 题。

17. 若f在E上可积,并且在E上任意可测子集A上有 $\int_A f(x) dx = 0$,证明:f(x) = 0 a. e. 于E.

(1) If f > g on A, mA > 0, then

$$\int_A f \, \mathrm{d}x > \int_A g \, \mathrm{d}x$$

Contradiction!

- (2) Apply (1). $f \ge g$ a.e. on E, $f \le g$ a.e. on E; thus f = g a.e. on E.
- (3) Put $g \equiv 0$ in (2), then f(x) = 0 a.e. on E.

Exercice 2

5. 设 $f \in L[0,1]$,证明对任意正整数 $k \neq x^k f(x) \in L[0,1]$,并且

$$\lim_{k\to\infty}\int_{\{0,1\}}x^kf(x)\,\mathrm{d}x=0.$$

 $f \in L[0,1]$ iff $f^+, f^- \in L[0,1]$. As $(x^k f(x))^+ = x^k f^+(x), (x^k f(x))^- = x^k f^-(x),$

$$\int_{[0,1]} |x^k f^+(x)| \, \mathrm{d}x \le \int_{[0,1]} |f^+(x)| \, \mathrm{d}x < \infty$$

$$\int_{[0,1]} |x^k f^-(x)| \, \mathrm{d}x \le \int_{[0,1]} |f^-(x)| \, \mathrm{d}x < \infty$$

 $x^k f^+, x^k f^- \in L[0, 1]$, then $x^k f \in L[0, 1]$.

$$\lim_{k \to \infty} x^k f(x) = \begin{cases} 0 & x \in [0, 1) \\ f(1) & x = 1 \end{cases}$$

By DCT,

$$\lim_{k \to \infty} \int_{[0,1]} x^k f(x) \, \mathrm{d}x = \int_{[0,1]} \lim_{k \to \infty} x^k f(x) \, \mathrm{d}x = \int_{\{1\}} f(1) \, \mathrm{d}x = 0$$

Exercice 3

- 3. Fatou 引理的推广.
 - (1) 设 $\{f_k\}$ 是可测集 $E \subset \mathbb{R}^n$ 上的可测函数列. 若存在 $g \in L(E)$, 使得对 $\forall k \in \mathbb{N}_+$, 有 $f_k \geqslant g$ a. e. 于 E, 试证 f_k 和 $\varprojlim_{E \to \infty} f_k$ 在 E 上的积分有意义, 且有

$$\int_{E} \underline{\lim}_{k \to \infty} f_k(x) \, \mathrm{d}x \leqslant \underline{\lim}_{k \to \infty} \int_{E} f_k(x) \, \mathrm{d}x.$$

(2) 设 $\{f_k\}$ 是可测集 $E \subset \mathbb{R}^n$ 上的可测函数列. 若存在 $h \in L(E)$, 使得对 $\forall k \in \mathbb{N}_+$, 有 $f_k \leqslant h$ a. e. 于 E, 试证 f_k 和 \varlimsup f_k 在 E 上的积分有意义, 且有

$$\int_{F} \overline{\lim}_{k \to \infty} f_k(x) \, \mathrm{d}x \geqslant \overline{\lim}_{k \to \infty} \int_{F} f_k(x) \, \mathrm{d}x.$$

- (3) 教材第四章习题第 27 题
- 27. 设 $\{f_a\}$ 是可测集 E 上的可测函数列,并且对所有的 k 有 $\{f_a(x)\}$ $\{s\in E\}$ 及 $F\in L(E)$,证明:

$$\int_{\mathcal{E}} \underbrace{\lim_{k \to \infty}}_{f_{k}}(x) \, \mathrm{d}x \leqslant \underbrace{\lim_{k \to \infty}}_{f_{k}} \int_{\mathcal{E}} f_{k}(x) \, \mathrm{d}x \leqslant \underbrace{\lim_{k \to \infty}}_{f_{k}} \int_{\mathcal{E}} f_{k}(x) \, \mathrm{d}x.$$

因此 f_k^+, f_k^- 不同时为 ∞ , $(\overline{\lim}_{k\to\infty} f_k)^+$, $(\overline{\lim}_{k\to\infty} f_k)^-$ 不同时为 ∞ , 故 $\int_E f_k$, $\int_E \overline{\lim}_{k\to\infty} f_k$ 有意义. 由 (1) 可知 $\int_E \underline{\lim}_{k\to\infty} (-f_k) \le \overline{\lim}_{k\to\infty} \int_E (-f_k)$. 故 $\int_E \overline{\lim}_{k\to\infty} f_k \ge \overline{\lim}_{k\to\infty} \int_E f_k$.

(3) 对于数列 $\left\{\int_E f_k(x) \, \mathrm{d}x\right\}_{k \geq 1}$, 显然有 $\varliminf_{k \to \infty} \int_E f_k \leq \varlimsup_{k \to \infty} \int_E f_k$,根据 $-F \leq f_k \leq F$, $F \in L(E)$, $-F \in L(E)$, 结合 (1)(2) 可知

$$\int_{E} \underline{\lim}_{k \to \infty} f_k(x) \, \mathrm{d}x \le \underline{\lim}_{k \to \infty} \int_{E} f_k(x) \, \mathrm{d}x \le \overline{\lim}_{k \to \infty} \int_{E} f_k(x) \, \mathrm{d}x \le \int_{E} \overline{\lim}_{k \to \infty} f_k(x) \, \mathrm{d}x$$

Exercice 4

4. Levi **定理**的推广.* 设 $\{f_k\}$ 是可测集 $E \subset \mathbb{R}^n$ 上的可测函数的递增列, 记

$$f(x) = \lim_{k \to \infty} f_k(x), \quad x \in E.$$

若存在 $g \in L(E)$, 使得对 $\forall k \in \mathbb{N}_+$, 有 $f_k \geqslant g$ a. e. 于 E, 试证 f_k 和 f 在 E 上的积分 有意义, 且有

$$\lim_{k \to \infty} \int_E f_k(x) \, \mathrm{d}x = \int_E f(x) \, \mathrm{d}x.$$

类似 Exercice 3 中的讨论,可知 f_k , f 在 E 上积分有意义,对于非负递增可测函数列 $\{f_k-g\}_{k\geq 1}$,我们有 Levi 定理可知 $\lim_{k\to\infty}\int_E (f_k-g)=\int_E (f-g)$. 由积分的线性性可知

$$\lim_{k \to \infty} \int_E f_k(x) \, \mathrm{d}x = \int_E f(x) \, \mathrm{d}x$$

Exercice 5

5. Lebesgue **控制收敛定理**的推广. 设 $\{f_k\}$ 是可测集 $E \subset \mathbb{R}^n$ 上的可测函数列, 且在 E 上几乎处处收敛于 f. 若存在 E 上的几乎处处收敛的可积函数列 $\{g_k\}$, 使得 $|f_k| \leq g_k$ a. e. 于 E, $\forall k \in \mathbb{N}_+$, 且

$$\lim_{k \to \infty} \int_E g_k(x) \, \mathrm{d}x = \int_E \lim_{k \to \infty} g_k(x) \, \mathrm{d}x < \infty,$$

试证 f_k , $f \in L(E)$, 且

$$\lim_{k \to \infty} \int_E f_k(x) \, \mathrm{d}x = \int_E f(x) \, \mathrm{d}x.$$

若将条件改为 $\{f_k\}$ 或 $\{g_k\}$ 依测度收敛, 结论是否仍成立? 先判断, 再证明或举反例.

^{*}此题为教材第四章习题第8题的变形.

由比值判别法, f_k 可积. 记 g_k 几乎处处收敛于 g,则 $\int_E g = \int_E \varliminf_{k \to \infty} g_k \le \varliminf_{k \to \infty} \int_E g_k$,故 $g \in L(E)$. 令 $k \to \infty$,则 $|f| \le g$,由比值判别法, $g \in L(E)$. 考虑非负可测函数列 $\{g_k - f_k\}_{k \ge 1}$,它几乎处处收敛于 g - f. 利用 Fatou 引理, $\int_E (g - f) \le \varliminf_{k \to \infty} \int_E (g_k - f_k)$,于是

$$\int_{E} g - \int_{E} f = \int_{E} (g - f) \le \underline{\lim}_{k \to \infty} \int_{E} g_{k} - \overline{\lim}_{k \to \infty} \int_{E} f_{k} = \int_{E} g - \overline{\lim}_{k \to \infty} \int_{E} f_{k}$$

于是 $\overline{\lim}_{k\to\infty}\int_E f_k \leq \int_E f$. 再考虑非负可测函数列 $\{f_k+g_k\}$ 得到 $\int_E f \leq \underline{\lim}_{k\to\infty}\int_E f_k$. 因此 $\lim_{k\to\infty}\int_E f_k = \int_E f$.

若 $f_k \stackrel{m}{\to} f$, 对于任意子列 $\{f_{k_n}\}$, 存在子列 $\{f_{k_{n_m}}\} \to f$ a.e. 于 E. 从而 $f \in L(E)$, $\lim_{m \to \infty} \int_E f_{k_{n_m}} = \int_E f$. 对于数列 $\{\int_E f_k\}$, 它的任意子列 $\{\int_E f_{k_n}\}$ 都含有子列 $\{\int_E f_{k_{n_m}}\} \to \int_E f$, 不妨考虑 $\{\int_E f_k\}$ 的上下极限序列,它们都含有子列收敛于 $\int_E f$, 故 $\lim_{k \to \infty} \int_E f_k = \int_E f$.

若 $g_k \stackrel{m}{\to} g$, 同样考虑 $\{f_k\}$ 的任意子列,再选取子列 k_n 使得 $g_{k_n} \to g$ a.e. 于 E, 重复上述论述即可得证.

Exercice 6

6. 设 $\{f_k\}$ 是可测集 $E \subset \mathbb{R}^n$ 上的非负可积函数列, 且在 E 上几乎处处或依测度收敛于 f. 又设

$$\lim_{k \to \infty} \int_E f_k(x) \, \mathrm{d}x = \int_E f(x) \, \mathrm{d}x < \infty.$$

证明: 对于 E 的任意可测子集 B, 有

$$\lim_{k \to \infty} \int_B f_k(x) \, \mathrm{d}x = \int_B f(x) \, \mathrm{d}x.$$

令 $g_k = f_k \chi_B$,于是 $|g_k| \leq f_k$,利用 Exercise 5 立得 $\lim_{k \to \infty} \int_E g_k \, \mathrm{d}x = \int_E g(x) \, \mathrm{d}x$,也就是 $\lim_{k \to \infty} \int_B f_k(x) \, \mathrm{d}x = \int_B f(x) \, \mathrm{d}x$.

Exercice 7

- 7. 设 $\{f_k\}$ 是可测集 $E \subset \mathbb{R}^n$ 上的可积函数列, 且在 E 上几乎处处或依测度收敛于 f. 试证以下两者等价:
 - (1) $\lim_{k \to \infty} \int_E |f_k(x)| \, \mathrm{d}x = \int_E |f(x)| \, \mathrm{d}x < \infty;$
 - (2) $\lim_{k \to \infty} \int_{E} |f_k(x) f(x)| dx = 0.$

若 $\lim_{k\to\infty} \int_E |f_k - f| = 0$,则 $\int_E ||f_k| - |f|| \le \int_E |f_k - f| \to 0$. 若 $\int_E |f_k| \to \int_E |f| < \infty$, 注意到 $|f_k - f| \le |f_k| + |f|$,由 DCT

$$\lim_{k \to \infty} \int_E |f_k - f| = \int_E \lim_{k \to \infty} |f_k - f| = \int_E 0 = 0$$

Exercice 8

$$\inf_{B \in \mathscr{S}} \int_{B} f(x) \, \mathrm{d}x > 0.^{\dagger}$$

考虑反证,假设 $\inf_{B\in\mathscr{S}}\int_{B}f=0$, 则存在 $\{B_{k}\}\subset\mathscr{S}$ 使得

- (1) $B_k \subset E$
- (2) $m(B_k) > q$
- (3) $\int_{B_h} f \to 0$

记 $F_j=E\left(f\leq \frac{1}{j}\right)$. 于是 $\lim_{j\to\infty}m(F_j)=m\left(\bigcap_{j=1}^\infty F_j\right)=m(E(f=0))=0$, 从而存在 J 使得 $m(F_J)<\frac{q}{2}$,故

$$\int_{B_k} f = \int_{B_k \cap F_J} f + \int_{B_k \cap F_J^c} f \ge \int_{B_k \cap F_J^c} f \ge \frac{1}{J} m(B_k \cap F_J^c)$$

 $\diamond k \to \infty$, 就有 $m(B_k \cap F_I^c) \to 0$, 存在 K 使得 $m(B_K \cap F_I^c) < \frac{q}{2}$, 故

$$m(B_K) = m(B_K \cap F_J) + m(B_K \cap F_J^c) \le m(B_K) + m(B_K \cap F_J^c) < \frac{q}{2} + \frac{q}{2} = q$$

矛盾!

Exercice 9

9. 设 f 是可测集 $E \subset \mathbb{R}^n$ 上的非负可测函数. 若存在 E 的可测子集列 $\{E_k\}$ 和常数 M,使得 $\lim_{k \to \infty} m(E \setminus E_k) = 0$,且 $\int_{E_k} f(x) \, \mathrm{d}x \leqslant M$, $\forall \, k \in \mathbb{N}_+$,试证 f 在 E 上可积.

 $f_k := f \cdot \chi_{E_k}$, then

$$E(f_k \not\to f) = E(f(\chi_{E_k} - 1) \not\to 0) \subset E(\chi_{E \setminus E_k} \not\to 0) = \bigcap_{k=1}^{\infty} (E \setminus E_k)$$

实变函数

Then $m(E(f_k \not\to f)) \le m(\bigcap_{k=1}^{\infty} (E \setminus E_k)) \le m(E \setminus E_k), \forall k$. Let $k \to \infty$, then

$$m(E(f_k \not\to f)) = 0$$

Thus $f_k \to f$ a.e. on E. As $\int_E f_k(x) dx \le M$, by BCT,

$$\int_E f = \lim_{k \to \infty} \int_E f_k \le M$$

Since f is nonnegative measurable, f is integrable.