Probabilidad Parcial II

Rubén Pérez Palacios Lic. Computación Matemática Profesor: Dr. Ehyter Matías Martín González

19 de noviembre de 2020

Problemas

- 1. Sea $\gamma:I\subset\mathbb{R}\to\mathbb{R}$ diferenciable. Prueba las siguientes afirmaciones e interpreta geométricamente:
 - a) $\|\gamma(t)\|$ es constante si y sólo si $\langle \gamma(t), \gamma'(t) \rangle = 0$ para toda $t \in I$. Consideremos la función $s(t) = \|\gamma(t)\|^2 = \langle t, t \rangle$, entonces veamos que por linealidad del producto interior se cumple

$$\begin{split} \frac{s(t+h)-s(t)}{h} &= \frac{\langle \gamma(t+h), \gamma(t+h) \rangle - \langle \gamma(t), \gamma(t) \rangle}{h} \\ &= \frac{\langle \gamma(t+h), \gamma(t+h) \rangle - \langle \gamma(t), \gamma(t+h) \rangle + \langle \gamma(t+h), \gamma(t) \rangle - \langle \gamma(t), \gamma(t) \rangle}{h} \\ &= \frac{\langle \gamma(t+h) - \gamma(t), \gamma(t+h) \rangle + \langle \gamma(t+h) - \gamma(t), \gamma(t) \rangle}{h} \\ &= \frac{\langle \gamma(t+h) - \gamma(t), \gamma(t+h) + \gamma(t) \rangle}{h} \\ &= \left\langle \frac{\gamma(t+h) - \gamma(t)}{h}, \gamma(t+h) + \gamma(t) \right\rangle \end{split}$$

Entonces

$$\begin{split} \lim_{h \to 0} \frac{s(t+h) - s(t)}{h} &= \lim_{h \to 0} \left\langle \frac{\gamma(t+h) - \gamma(t)}{h}, \gamma(t+h) + \gamma(t) \right\rangle \\ &= \left\langle \lim_{h \to 0} \frac{\gamma(t+h) - \gamma(t)}{h}, \lim_{h \to 0} \gamma(t+h) + \gamma(t) \right\rangle = \left\langle \gamma'(t), 2\gamma(t) \right\rangle \\ &= 2 \left\langle \gamma'(t), \gamma(t) \right\rangle. \end{split}$$

Por lo tanto s'(t) = 0 si y sólo si $\langle \gamma(t), \gamma'(t) \rangle = 0$. Como $\|\gamma(t)\|$ es constante es si y sólo si s(t) es constante y s(t) es constante si y sólo si s'(t) = 0, entonces concluimos que $\|\gamma(t)\|$ es constante si y sólo si $\langle \gamma(t), \gamma'(t) \rangle = 0$ para toda $t \in I$.

b) Sea $r(t) = ||\gamma(t)||$. Si $r(t_0)$ es un máximo o un mínimo local de r, entonces $\langle \gamma(t), \gamma'(t) \rangle = 0$.

2. Sea $gamma:[a,b]\subset\mathbb{R}\to\mathbb{R}^m$ continua con $\gamma=(\gamma_1,\cdots,\gamma_n)$ y definamos:

$$\int_{a}^{b} \gamma(t)dt = \left(\int_{a}^{b} \gamma_{1}(t)dt, \cdots, \int_{a}^{b} \gamma_{m}(t)dt\right).$$

Prueba:

a) Si $c = (c_1, \dots, c_m)$ es un vector constante, entonces

$$\int_{a}^{b} \left\langle c, \gamma(t) \right\rangle dt = \left\langle c, \int_{a}^{b} \gamma(t) dt \right\rangle.$$

Demostración. Por definición de producto punto

$$\langle c, \gamma(t) \rangle = \sum_{i=1}^{m} c_i \gamma_i(t),$$

entonces

$$\int_{a}^{b} \langle c, \gamma(t) \rangle dt = \int_{a}^{b} \left(\sum_{i=1}^{m} c_{i} \gamma_{i}(t) \right) dt,$$

por linealidad de la integral obtenemos

$$\int_{a}^{b} \langle c, \gamma(t) \rangle dt = \sum_{i=1}^{m} c_{i} \int_{a}^{b} \gamma_{i}(t) dt,$$

por definición de producto punto concluimos

$$\int_{a}^{b} \langle c, \gamma(t) \rangle dt = \left\langle c, \int_{a}^{b} \gamma(t) dt \right\rangle.$$

b) H

$$\left\| \int_a^b \gamma(t)dt \right\| \le \int_a^b \|\gamma(t)\| dt,$$

Demostración. Sea $s \in [a, b]$ entonces por linealidad de la integral tenemos

$$\left\| \int_a^b \gamma(t) dt \right\| \left(\int_a^b \|\gamma(s)\| \, ds \right) = \int_a^b \left\| \int_a^b \gamma(t) dt \right\| \|\gamma(s)\| \, ds,$$

por la desigualdad de Cauchy-Schwarz obtenemos

$$\left\| \int_a^b \gamma(t) dt \right\| \left(\int_a^b \|\gamma(s)\| \, ds \right) \geq \int_a^b \left\langle \int_a^b \gamma(t) dt, \gamma(s) \right\rangle ds,$$

por el inciso anterior se cumple

$$\left\| \int_a^b \gamma(t)dt \right\| \left(\int_a^b \|\gamma(s)\| \, ds \right) \ge \left\langle \int_a^b \gamma(t)dt, \int_a^b \gamma(s)ds \right\rangle,$$

por definición de norma esto es

$$\left\| \int_a^b \gamma(t) dt \right\| \left(\int_a^b \|\gamma(s)\| \, ds \right) \ge \left\| \int_a^b \gamma(t) dt \right\|^2,$$

por lo tanto concluimos

$$\int_{a}^{b} \|\gamma(s)\| \, ds \ge \left\| \int_{a}^{b} \gamma(t) dt \right\|$$

c) si γ es diferenciable entonces

$$\|\gamma(b) - \gamma(a)\| \le \int_a^b \|\gamma'(t)\| dt = \ell(\Gamma),$$

donde $\Gamma = \gamma([a, b]).$

Demostración. Por el inciso anterior tenemos

$$\int_{a}^{b} \|\gamma'(s)\| ds \ge \left\| \int_{a}^{b} \gamma'(t) dt \right\|,$$

por el Teorema fundamental del Cálculo concluimos

$$\int_{a}^{b} \|\gamma'(s)\| ds \ge \|\gamma(a) - \gamma(b)\|.$$

- 3. (Las líneas minimizan la distancia entre dos puntos) Sean $x,y\in\mathbb{R}^3$ y Γ una curva que los une con parametrización diferenciable regular $\gamma:[a,b]\to\mathbb{R}^3$, i.e. $\gamma(a)=x$ y $\gamma(b)=y$. Prueba:
 - a) Si $u \in \mathbb{R}^3$ es un vector unitario cualquiera, entonces

$$\langle \gamma'(t), u \rangle \le ||\gamma'(t)||, \quad (t \in [a, b]).$$

Demostración. Por la desigualdad de Cauchy-Schwarz tenemos

$$\langle \gamma'(t), u \rangle \leq \| \gamma'(t) \| \| u \|$$
,

al ser u un vector unitario concluimos

$$\langle \gamma'(t), u \rangle \le \|\gamma'(t)\|.$$

b) H

$$\langle y - x, u \rangle \le \int_a^b \|\gamma'(t)\| dt.$$

3

Demostración. Por el inciso anterior obtenemos

$$\int_{a}^{b} \langle \gamma'(t), u \rangle dt \le \int_{a}^{b} \|\gamma'(t)\| dt,$$

por el ejercicio 4.a obtenemos

$$\left\langle \int_{a}^{b} \gamma'(t)dt, u \right\rangle \leq \int_{a}^{b} \|\gamma'(t)\| dt,$$

por el teorema fundamental del cálculo concluimos

$$\langle y - x, u \rangle \le \int_a^b \|\gamma'(t)\| dt.$$

c) haciendo $u=\frac{y-x}{\|y-x\|}$ en el ejercicio anterior obtenemos

$$\left\langle y - x, \frac{y - x}{\|y - x\|} \right\rangle \le \int_a^b \|\gamma'(t)\| dt,$$

por linealidad del producto punto obtenemos

$$\frac{\langle y - x, y - x \rangle}{\|y - x\|} \le \int_a^b \|\gamma'(t)\| dt,$$

por definición de norma esto es

$$\frac{\|y - x\|^2}{\|y - x\|} \le \int_a^b \|\gamma'(t)\| \, dt,$$

por lo tanto

$$||y - x|| \le \int_a^b ||\gamma'(t)|| dt.$$

Esto es, la curva de longitud más corta que une a los puntos $\gamma(a)$ con $\gamma(b)$ es el segmento de línea recta que los une.

4. Prueba el teorema del valor intermedio para derivadas direccionales: Sean $a,b \in \Omega$ tales que el segmento $[a,b] \in \Omega$ y hagamos $u = \frac{b-a}{\|b-a\|} \in \mathbb{R}^n$. Si $D_u f(x)$ existe para toda $X \in [a,b]$ entonces existe $\xi \in (0,\|b-a\|)$ tales que si $\widehat{\xi} = a + \xi u$ entonces

$$f(b) - f(a) = ||b - a|| D_u f(\widehat{\xi}).$$

Demostración. Hola