PTP* Introduction

 Part of workshop** on "HSR/PRP and PTP: Network Redundancy and Time Clock Synchronization"

> 기안도 adki@future-ds.com

주최/주관: 한국통신학회 군통신연구회 / 명지대학교 장소: 숭실대학교 조만식기념관 427호 일자: 2019년6월7일

- * PTP: Precision Time Protocol
- ** 이중화네트워크와 시각동기화 워크샵

Table of Contents

- Background
- IEEE 1588 PTP
- IEEE 1588 PTPv2 messages

- Background
 - Clocks on the network
 - Distributed ideal clocks
 - Distributed clocks with variable delay network
 - Clock synchronization algorithms
 - ▶ PTP in short
 - PTP examples
 - PTP mathematics
 - ► Clock
 - ▶ Terminologies
 - Adjustment
 - ► Time transfer technologies
 - PTP related standards

Copyright (c) 2019 by Ando Ki

IEEE 1588 PTPv2

Clocks on the network

Objective

- Synchronize wall clocks, which are connected over packet-based network.
 - ⇒ 패킷망에 연결된 시계들의 시간을 맞춘다
- Implications
 - 'Wall clock' means <u>real-time</u> in nano/micro/milli second accuracy.
 - ⇒ 실시간 정확도
 - 'Wall clocks over network' mean a distributed system.
 - ⇒ 분산시스템
 - 'Packet-based network' means network delay varies.
 - ⇒ 메시지(정보)를 주고 받음
 - ⇒ 가변적 네트웍 지연

Copyright (c) 2019 by Ando Ki

IEEE 1588 PTPv2

Distributed ideal clocks (1/2)

- Identical clocks with the same starting time.
 - There is nothing to do with synchronization.
 - ⇒ 동일한 시작 시점을 갖는 '완전히 동일한 시계' 등
 - 므 ● 동기화가 필요치 않음
- Identical clock with different starting time.
 - There should be a mechanism to adjust offset.
 - One time synchronization is sufficient.
 - 시작 시점이 다른 '완전히 동일한 시계'들
 - 한 번만 시간을 맞추면 됨
 - 정확한 통신 지연 파악이 필요

Copyright (c) 2019 by Ando Ki

IEEE 1588 PTPv2

Distributed ideal clocks (2/2)

- Distributed clock can be synchronized by communication.
 - For identical clocks with different starting time
 - ▶ Need something about communication.
 - What if communication delay is not deterministic? → Need mechanism to measure communication delay.
 - ⇒ 시작 시점이 다른 '완전히 동일한 시계'들
 - 한 번만 시간을 맞추면 됨
 - ❖ 정확한 통신 지연 파악이 필요
- What if clocks are not the same?
 - ► Each clock has different frequency and starting point
 - ▶ 만약 각 시계가 동일하지 않다면?⇒ 각 시계가 주파수와 시작 시점이 다르다면?

Copyright (c) 2019 by Ando Ki

IEEE 1588 PTPv2

Distributed clocks with variable delay network

- Actual (i.e., non-ideal) clocks
 - Phases differ
 - ▶ Frequencies differ
 - 실제 시계들은 위상과 주파수가 다름
 - ⇒ 위상: 24시간 중 몇 시; 서기 몇년 몇월
 - ⇒ 주파수: 1초에 해당하는 시간

- Variable-delay network based clock synchronization
 - Due to temperature, acceleration, aging and so on
 - 온도, 가속, 노화 등으로 네트웍 지연이 변함
- In addition to frequency calibration/correction of clocks, networkdelay measurement is required.
 - 시계의 주파수 교정과 보정 뿐만 아니라 네트워크 지연도 측정해야 됨
- Delay and frequency should be measured periodically, since they are time-varying.
 - ▶ 네트워크 지연과 주파수는 주기적으로 측정하고 교정/보정 해야 됨

Copyright (c) 2019 by Ando Ki

IEEE 1588 PTPv2

Clock synchronization algorithms (1/2)

- Cristian Algorithm
 - synchronization with a time server

$$\begin{split} & \mathsf{Tdelay} = (\mathsf{T4} - \mathsf{T1} - \mathsf{Tp}) \: / \: 2 \\ & \mathsf{T2} = \mathsf{T1} + \mathsf{Toffset} + \mathsf{Tdelay} \\ & \mathsf{T4} = \mathsf{T3} - \mathsf{Toffset} + \mathsf{Tdelay} \\ & \mathsf{Toffset} = \left[(\mathsf{T2} - \mathsf{T1}) + (\mathsf{T3} - \mathsf{T4}) \right] / \: 2 \\ & \mathsf{Tdelay} = \left[(\mathsf{T4} - \mathsf{T1}) - (\mathsf{T3} - \mathsf{T2}) \right] / \: 2 \end{split}$$

F. Cristian, Probabilistic clock synchronization, Distributed Computing, Vol. 3, Issue 3, pp.146-158, Springer, 1989

Copyright (c) 2019 by Ando Ki

IEEE 1588 PTPv

Clock synchronization algorithms (2/2)

Berkeley Algorithm

synchronization without a time server

R. Gusella and S. Zatti, The accuracy of the clock synchronization achieved by TEMPO in Berkeley UNIX 4.3.BSD, IEEE Trans. on Software Engineering, Vol. 15, No. 7, pp.847-853, July 1989.

Copyright (c) 2019 by Ando Ki

IEEE 1588 PTPv2

PTP in short (1/2)

Slave clock runs Toffset ahead

- 마스터와 슬레이브가 동일한 시계를 갖는다면 단순하게 통신지연만을 이용하여 동기 시킬 수 있다.
- 그러나 실제로는 시계가 차이가 나고, 이때 슬레이브 시계가 얼마나 빠른가를 Toffset이라 하며,
- Sync와 Delay_Req/Resp 패킷을 주고 받아서, 얻는 정보를 이용하여 통신지연과 Toffset을 유추해 낸다.
- 이때 통신지연은 양방향이 동일하다고 가정한다.
- 슬레이브 입장에서 T1' (즉, T1 + Toffset) 시점에 Sync가 네트웍에 전송되고, 슬레이브 시간 T2에 도착한다.
- 슬레이브는 역방향 통신지연을 측정하기 위해, T3에 Delay_Req를 전송하고, 마스터 입장에서 T4에 받아
- T4 정보를 담아서 Delay_Resp를 보낸다.
- 이렇게 되면 T1, T2, T3, T4 정보를 슬레이브가 갖게 되므로, 이들을 이용하여 Toffset과 Tdelay를 계산한다.

Copyright (c) 2019 by Ando K

IEEE 1588 PTPv

PTP in short (2/2)

T1' is T1+Toffset; T2 is T2m+Toffset; T3 is T3m+Toffset;

 $\begin{aligned} &[ms_delay] \ Tms = T2m - T1 = T2 - Tdfset - T1 \\ &= \Delta Tms - Toffset \\ &[sm_delay] \ Tsm = T4 - T3m = T4 - (T3 - Tdfset) \\ &= \Delta Tsm + Toffset \end{aligned}$

Assume that Tms == Tsm,

One-way delay Tdelay = [(T2 - T1) + (T4 - T3)]/2T offset = [(T2 - T1) - (T4 - T3)]/2 = (T2 - T1) - Tdelay

Copyright (c) 2019 by Ando Ki IEEE 1588 PTPv2

PTP examples

Offset: Slave clock runs ahead of the master

Copyright (c) 2019 by Ando Ki

IEEE 1588 PTPv

11

PTP mathematics

- ΔT_s Slave interval ΔT_f Forward delay
- ΔT_h Backward delay

Delay
$$(T_d) = \frac{\Delta T_f + \Delta T_b}{2}$$

Offset
$$(T_o) = \frac{\Delta T_f - \Delta T_b}{2} = \Delta T_f - T_d$$

Drift (
$$\lambda$$
) = $\frac{\Delta T_m - \Delta T_s}{\Delta T_s}$

- Offset: clock shift
 - ► 두 시계의 시점이 얼마나 다른가 (12시 ← →12시1분)
- Drift: clock period difference
 - ▶ 시계가 빠르고 느린 정도
- Slave clock is ahead of the master clock by the Offset (To).
 - decrease To
- Slave clock is slower than the master clock by the Drift (λ) per second
 - ▶ 슬레이브 클럭이 마스트 클럭보다 얼마만큼 느린가 (초당 몇 초 느린가)

Copyright (c) 2019 by Ando Ki

IEEE 1588 PTPv2

Clock

Clock is a counter of periodic events.

VCO-based (Voltage Controlled Oscillator)

Counter-based clock

- Offset/phase can be adjusted by updating value of counter
 - ▶ 오프셋/위상은 카운트의 값을 변화시켜서 조 정 가능
- Drifting/frequency can be adjusted by varying the amount of increment.
 - ► 드리프팅/주파수는 증가하는 값을 변화시켜 서 조정가능

Copyright (c) 2019 by Ando Ki

▶ Rare implementation

IEEE 1588 PTPv.

1.

Terminologies

R: Resynchronization interval

- Terminologies
 - ► Resynchronization interval R
 - Drift rate ρ
 - Clock drift: Count at different rates. (Different frequency of the oscillator.)

$$1 - \rho \le \frac{dC}{dt} \le 1 + \rho$$

- ⇒ Ideal clock: drifting rate 0
- Clock skew δ
 - Clock skew (offset): Difference between time on two clocks.

Copyright (c) 2019 by Ando Ki

IEEE 1588 PTPv2

Time transfer technologies

	IRIG-B	(S)NTP	PTP	GPS
Accuracy (typical)	1-10µs	1ms – 10 ms	100ns-1μs	10ns
Transport media	Dedicated cables	Ethernet cable	Ethernet cables	Wireless
Protocol style	Master-slave	Client-server	Master-slave	
Built in latency correction	No	Yes	Yes	
Set-up	Configured	Configured	Self-organizing, or configured	
Update intervals	1 second	Minutes	1 second	
Specialized hardware	Required	No	Required	Required

IRIG: Inter-Range Instrumentation Group; (S)NTP: Simple Network Time Protocol; GPS: Global Positioning System

Copyright (c) 2019 by Ando Ki

IEEE 1588 PTPv

PTP related standards

- IEEE 1588-2008
 - ► IEC 61588 Ed.2
 - IEC International Electrotechnical Commission
 - Sub-microsecond synchronization
 - Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems
- IEEE 802.1AS
 - Standard for transport of precise timing and synchronization in Audio/Video Bridging (AVB) networks (AVB) networks.
 - It is based on IEEE 1588 V2, and includes a PTP profile.
 - It is also known as General Precision Time Protocol (gPTP).

- White Rabbit project
 - Sub-nanosecond synchronization
 - Utilizes Synchronous Ethernet (SyncE) to achieve syntonization and IEEE 1588 (1588) Precision Time Protocol (PTP) to communicate time
- (Not clear year)
 - ► IEEE 1588-2018 (?), PTPv2.1, PTPv3
 - Compatible with PTPv2
 - Security extensions
 - Sub-nanosecond accuracy

Copyright (c) 2019 by Ando K

IEEE 1588 PTPv

- 10

Table of Contents

- Background
- IEEE 1588 PTP
- IEEE 1588 PTPv2 messages

- IEEE 1588 PTP
 - ▶ IEEE 1588 PTP
 - ▶ PTP v1 & V2
 - PTP implementation
 - PTP messages
 - Mechanisms to measure offset, delay, and drift
 - ▶ PTP clocks
 - ▶ PTP best master clock algorithm
 - PTP profiles

Copyright (c) 2019 by Ando Ki

IEEE 1588 PTPv2

IEEE 1588 PTP

- IEEE 1588
 - (commonly known as Precision Time Protocol, PTP)
 - ▶ v1: 2002
 - v2: 2008 (IEC 61588 Ed.2)
- IEEE 1588 specifies "A protocol to synchronize independent clocks running on separate nodes of a distributed measurement or control system to a high accuracy and precision".
- IEEE 1588 is a protocol designed to synchronize real-time clocks in the nodes of a distributed system that communicate using a network.
 - ▶ IEEE 1588은 네트웍을 통해 통신하는 분산 시스템 의 각 노드에 있는 시계를 동기시키는 프로토콜

Precision Time Protocol (PTP) is a protocol to synchronize clocks throughout a network and it achieves clock accuracy in the sub-microsecond range on a local area network.

PTP는 네트웍을 통한 시간동기화 프로토콜이며, 로컬네트웍 에서 마이크로초 (10⁻⁶sec)이내의 정확도로 시간을 맞춘다.

Copyright (c) 2019 by Ando K

IEEE 1588 PTPv2

10

PTP v1 & v2

Criteria	PTPv1	PTPv2
clock types	Ordinary Clock (OC) Boundary Clock (BC)	Ordinary Clock (OC) Boundary Clock (BC) end-to-end Transparent Clock (e2e TC) peer-to-peer Transparent Clock (p2p TC) Management Node
time representation	epoc number (16 bit) seconds (32 bit) nanoseconds (32 bit)	seconds (48 bit) nanoseconds (32 bit)
time interval resolution	1 ns	2 ⁻¹⁶ ns (15.26 fs)
message types	Sync Follow_Up	Announce Sync Follow_Up
	Delay_Req Delay_Resp	Delay_Req Delay_Resp
	Management	Management
		Pdelay_Req Pdelay_Resp Pdelay_Resp_Follow_Up
		Signaling
message rates	small choice	bigger range and selectable per message type
addressing	multicast	multicast unicast
mappings	UDP/IPv4 over IEEE 802.3	UDP/IPv4 over IEEE 802.3 UDP/IPv6 over IEEE 802.3 directly over IEEE 802.3 PROFINET DeviceNet/ControlNet
extensions	none	by Type/Length/Value (TLV)
redundancy	BMC	BMC, Alternate Master, Master Cluster
	no	yes
multiple domains	by 4 multicast addresses	by Domain Number (8 bit)
What else?		profiles
		unicast message negotiation
		security protocol (experimental)

- V1 and V2 cannot directly synchronize to each other because they use different message format.
- V2
 - ▶ Transparent clock
 - ► More accurate clock (48-bit sec & 32-bit nsec)
 - Starts 1970.Jan.1: echo == 0
 - 48-bit second: up to 8_925_512 years
 - Peer-to-peer messages
 - ▶ UDP/IPv6 (layer 3) & Raw Ethernet (layer 2) packet
- Standard protocol only, but nothing about how to correct the slave.

Hans Weibel, Technology Update on IEEE 1599: The Second Edition of the High Precision Clock Synchronization Protocol, 2009.

Copyright (c) 2019 by Ando Ki

IEEE 1588 PTPv2

PTPv2 messages (1/3)

Message type	Message	Note
Event	Sync	master to slave (to adjust offset)
message	Delay_Req	slave to master (to measure propagation delay)
	Pdelay_Req	port to port (to measure link delay)
	Pdelay_Resp	port to port (to measure link delay)
General	Announce	
message	Follow_Up	master to slave (to adjust offset)
	Delay_Resp	master to slave (to measure propagation delay)
	Pdelay_Resp_Follow_Up	port to port (to measure link delay)
	Management	
	Signaling	

Copyright (c) 2019 by Ando Ki

IEEE 1588 PTPv2

PTPv2 messages (2/3)

PTP header (34 octets) PTP body PTP suffix PTP message Ether header (Ehernet psyload) Figure 1 octets (1.e., 8-bit) 6 octets 6 octets 2 octets (0.88F7) 4 octets 12 octets Ethernet trame header

Raw Ethernet

- ► Ref: IEEE 1588-2008 Annex F
- ► Ethernet type field: 0x88F7.
- Destination MAC address
 - 01-1B-19-00-00-00 (delay message)
 - Sync, Announce
 - 1-80-C2-00-00-0E (peer delay message)
 - Pdelay_Req

Copyright (c) 2019 by Ando K

IEEE 1588 PTPv

2:

PTPv2 messages (3/3)

UDP/IP over Ethernet

- ▶ Ref: IEEE 1588-2008 Annex D and E
- ► Ethernet type field: 0x0800 (IP)
- ▶ UDP port: 319 or 320
 - 319 for even messages: Sync, Delay_Req
 - ⇒ 320 for general message: Follow_Up, Delay_Resp
- Destination IP address (multicast)
 - ⊃ IPv4
 - 224.0.1.129 (delay message) 0xE0.00.01.81
 - * MAC: 01-00-5E-00-01-81
 - 224.0.0.107 (peer delay message) 0xE0.00.00.6B
 - ❖ MAC: 01-00-5E-00-00-6B
 - ⇒ IPv6
 - FF0x::181 (delay message)
 - FF02::6B (peer delay message)

Copyright (c) 2019 by Ando Ki

IEEE 1588 PTPv2

Mechanisms to measure offset

- Under the assumption of symmetric link
 - propagation time from master to slave equals to the propagation time from slave to master
 - offset = (Slave Time) (Master Time) = [(T2-T1)-(T4-T3)]/2
- For one-step, the 'Sync' message carries time-stamp, while 'Follow_Up' carries timestamp for two-step.

Copyright (c) 2019 by Ando K

IEEE 1588 PTPv2

2

Mechanisms to measure delay (1/2)

- Delay request-response mechanism
 - to generate and communicate the timing information needed to synchronize ordinary and boundary clocks
 - ► 1-step clock
 - Sync, Delay_Req, Delay_Resp
 - **⊃** [(T2-T1)+(T4-T3)]/2
 - 2-step clock
 - Sync, <u>Follow Up</u>, Delay_Req, Delay_Resp
- For one-step, the 'Sync' message carries time-stamp, while 'Follow_Up' carries timestamp for two-step.

Copyright (c) 2019 by Ando Ki

IEEE 1588 PTPv2

Mechanisms to measure delay (2/2)

Peer delay mechanism

- to measure the link delay between two clock ports
- ► 1-step clock
 - Pdelay_Req, Pdelay_Resp
 - **○** [(T4-T1)-(T3-T2)]/2
- 2-step clock
 - Pdelay_Req, Pdelay_Resp, Pdelay Resp Follow Up

Copyright (c) 2019 by Ando K

IEEE 1588 PTPv

2

Mechanisms to measure drift

- Drift_Rate
 - ► [(T2'-T1')/(T2-T1)] 1
 - ► TB/TA 1 = (TB TA) / TA
- If Slave clock increments its frequency with Fs, it should be adjusted as follows.
 - ► Fs' = Fs (Fs * Drift_Rate)

Copyright (c) 2019 by Ando Ki

IEEE 1588 PTPv2

PTP clocks (1/2)

PTP devices (clock and node)	Remark	
OC: Ordinary clock	A single port device that can be a Master or Slave clock.	
GMC: grandmaster clock		
SC: Slave clock		
CC: Connection clock	A multi port device	
BC: Boundary clock	A multi port device that can be a Master or Slave clock. It has a built-in Slave clock that recovers a clock. This clock is then used to drive the built-in Master, which supplies the clock to the next node.	
TC: Transparent clock	A multi-port device that is not a master or slave clock but a bridge between the two.	
E2E TC: End-to-End TC	Forwards and modifies all PTP Messages to compensate for residence time. Compensation is achieved by addition of the bridge residence time into a correction field within the header of the message.	
P2P TC: Peer-to-Peer TC	Forwards and modifies Sync and Follow_Up messages only to compensate for residence time. Compensation is achieved by addition of the bridge residence time + the peer-to-peer link delay, into a correction field within the header of the message.	
Management node	A device that configures and monitors clocks.	

Copyright (c) 2019 by Ando K

IEEE 1588 PTPv

20

PTP clocks (2/2)

- BC (Boundary Clock) extends synchronization across an intermediate network element
 - A boundary clock contains more than one PTP port:
 - a slave port that is synchronized with a remote master, and
 - a master port that synchronizes other slaves downstream
 - Synchronization messages are terminated at each port and not forwarded
 - TC (Transparent Clock) is a switch that adjusts a PTP message's timestamp to compensate for its own queuing delays
 - Timestamp in incoming message is modified before sending the message out
 - Creates security issues, since original crypto checksum is not valid anymore

Copyright (c) 2019 by Ando Ki

IEEE 1588 PTPv2

PTP best master clock algorithm

- The best master clock (BMC) algorithm performs a distributed selection of the best candidate clock based on the clock properties.
 - Any ordinary clock can be grand master clock.
- Clock properties are broadcasted via 'Sync' (PTPv1) or 'Announce' (PTPv2) message. (lower has higher priority)
 - ▶ 1. priority (0-255): user configurable
 - ▶ 2. class (0-255): got GPS
 - ▶ 3. accuracy: 100ns
 - ▶ 4. variance: frequency stability
 - ▶ 5. priority (0-255): user configurable
 - ► 6. unique identifier (clock id)

Copyright (c) 2019 by Ando K

IEEE 1588 PTPv

3

PTP profiles

- The set of allowed PTP features applicable to a device. (more restrictive set of rules for specific application)
 - Specifies
 - Required options
 - Allowed options
 - Forbidden options
 - Network topology limitations
 - Performance requirements

- Default profile
 - Defined by IEEE 1588 (it only defines this default profile)
- Power plant profile
 - ▶ IEEE C37.238-2011/2017 Standard
- Telecom profile for frequency transfer
 - ► ITU-T G.8265, G.8275
- Audio & video application profile
 - ▶ IEEE 802.1AS
- Enterprise profile

Profiles are a set of rules which place restrictions on PTP, intended to meet the needs of a specific application or set of similar applications.

Copyright (c) 2019 by Ando Ki

IEEE 1588 PTPv2

Table of Contents

- Background
- IEEE 1588 PTP
- IEEE 1588 PTPv2 messages

- IEEE 1588 PTPv2 messages
 - ▶ PTPv2 message
 - ▶ PTPv2 message header
 - ▶ PTPv2 announce message
 - ▶ PTPv2 Sync & Follow_Up messages
 - ▶ PTPv2 Delay_Req & Delay_Resp messages
 - PTPv2 Pdelay_Req & Pdelay_Resp messages
 - PTPv2 signaling and management messages

Copyright (c) 2019 by Ando K

EEE 1588 PTDV

PTPv2 message header

- The header (34-byte) is common to all PTP message. (note that big-endian style for multibyte data)
 - transportSpecific: '0' or '1' depending on UDP payload 124-byte requirement
 - 1 for IEEE 802.1AS and 0 by default
 - messageType: Sync, Delay_Req, ...
 - versionPTP: PTP version of the originating node2 for PTPv2
 - messageLength: full length including header, body and suffix, but excluding any padding
 - domainNumber: domain this message belongs to
 domain: logical group of clocks to be synchronized
 - ▶ flags: status information
 - correctionField: correction value in nano-second
 - souceClockIdentity
 - sourcePortIdentity: originating port for this message
 - sequenceID: sequence number of each message types
 - controlField: backward compatibility
 - logMessageInterval: depends on type of message,

Announce message

Indicates the capabilities of a clock to the other clocks on the same domain.

Copyright (c) 2019 by Ando Ki

IEEE 1588 PTPv2

Sync & Follow_Up messages

- The 'Sync' message is sent by a master clock and contains the master time
 - If the master clock is a two-step, this timestamp will be zero value. Actual timestamp value will be sent afterwards in the associated 'Follow_Up' message.
- The 'Follow_Up' message is sent by master clock and contains the master time
 - lt is used when the master clock is a two-step.

Copyright (c) 2019 by Ando K

IEEE 1588 PTPv2

31

Delay_Req & Delay_Resp messages

- The 'Delay_Req' message is sent by a slave clock and contains the slave time
 - It is only used in the delay request-response mechanism.

- The 'Delay_Resp' message is sent by the master clock and contains the master time when the 'Delay_Req' message was received.
 - It is only used in the delay request-response mechanism.
 - 'requestingPortIdentity' contains the value of 'sourcePortIdentity' field of the associated 'Delay_Req' message.

Copyright (c) 2019 by Ando Ki

IEEE 1588 PTPv2

Pdelay_Req & Pdelay_Resp messages

- The 'Pdelay_Req' message is sent by 'delay requester' peer-to-peer clock and contains the 'delay requester' peer-to-peer clock time.
 - It is sent only in the peer delay mechanism.
 - reserved' filed is used to make the message length the same as the 'Pdelay_Resp' message.

Copyright (c) 2019 by Ando Ki

ieee 1588 Ptpv.

3

Pdelay_Req & Pdelay_Resp messages

- The 'Pdelay_Resp' message is sent by 'delay responder' peer-to-peer clock and contains the 'delay responder' peer-to-peer clock time.
 - lt is sent only in the peer delay mechanism.
 - 'requestingPortIdentity' contains the value of 'sourcePortIdentity' field of the associated 'Pdelay_Req' message.
 - ▶ If the clock is a two-step, this timestamp will be zero value. Actual timestamp value will be sent afterwards in the associated 'Pdelay_Resp_Follow_Up' message.
- The 'Pdelay_Resp_Follow_Up' message is sent by 'delay responder' peer-to-peer clock.

Copyright (c) 2019 by Ando Ki

IEEE 1588 PTPv2

Signaling and management messages

References

- IEEE 1588-2008, IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems.
- RFC 5905, Network Time Protocol Version 4: Protocol and Algorithms Specification, 2010.6.
- RFC 2030, Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI, 1996.10.
- J.C. Eidson, Measurement, Control and Communication Using IEEE 1588, Springer, 2010.
- D.L. Mills, Computer Network Time Synchronization, 2nd Edition, CRC Press, 2010.

Copyright (c) 2019 by Ando Ki

IEEE 1588 PTPv2

㈜퓨쳐디자인시스템 34051 대전광역시 유성구 문지로 193, KAIST 문지캠퍼스, F723호 (042) 864-0211~0212 / contact@future-ds.com / www.future-ds.com

Future Design Systems, Inc. Faculty Wing F723, KAIST Munji Campus, 193 Munji-ro, Yuseong-gu, Daejeon 34051, Korea +82-042-864-0211~0212 / contact@future-ds.com / www.future-ds.com

