

VILNIAUS UNIVERSITETAS

MATEMATIKOS IR INFORMATIKOS FAKULTETAS

Tiesiniai modeliai

Laboratorinis darbas

Atliko: 3 kurso 2 grupės studentai:

Matas Amšiejus

Salvija Račkauskaitė

Sandra Macijauskaitė

Darbo vadovė: doc. dr. Rūta Levulienė

TURINYS

ĮVADAS	
1. DUOMENYS	
1.1.Duomenys	
1.2.Duomenų aprašymas	
2. ATLIKTAS TYRIMAS	
2.1.Bendra tiesinės regresijos eiga	
IŠVADOS	
ŠALTINIAI	

ĮVADAS

Šiame laboratoriniame darbe analizuosime drabužių siuvyklos duomenis. Taikant tiesinės regresijos modelį bandysime nustatyti kaip priklauso gamyklos produktyvumas nuo įvairių faktorių. Laboratorinio darbo uždavinį įgyvendinti pasitelksime R ir SAS programavimo kalbas.

1. DUOMENYS

1.1.Duomenys

Duomenų rinkinį pasirinkome iš viešai prieinamo duomenų šaltinio "UCI Machine Learning Repository" (nuoroda šaltiniuose). Duomenyse yra žymimi įvairūs drabužių gamyklos ir jos darbuotojų rodikliai.

1.2.Duomenų aprašymas

Duomenų rinkinį sudarė 1197 stebėjimai su 15 atributų. Modelyje naudosime šiuos:

- 1. Targeted_productivity gamyklos valdžios nustatyti produktyvumo tikslai;
- 2. Smv užduočiai skiriamas laikas minutėmis;
- 3. Wip kiekis trukstamų dalių produktui;
- 4. Over_time viršvalandžiai;
- 5. Incentive piniginė paskata (BDT (Bangladesh taka) valiuta);
- 6. No_of_workers darbuotojų skaičius;
- 7. Day savaitės diena;
- 8. Actual_productivity tikrasis produktyvumas ta dieną.

2. ATLIKTAS TYRIMAS

Atlikome daugelio kintamųjų tiesinę regresiją su SAS ir R programavimo kalbomis. Priklausomą kintamąjį pasirenkame Actual_productivity (darbuotojų produktyvumas). Tyrime naudosime reikšmingumo lygmenį alpha = 0,05.

2.1.Bendra tiesinės regresijos eiga

Pirmiausia nuskaitome duomenis ir atrenkame mus dominančius stulpelius. Tada tikriname visų kintamųjų sklaidos diagramas. Pagal jas atsifiltruojame dalį duomenų. Taip pat, kad išvengtume daugiau išskirčių, pasirenkame tik tuos įrašus, kur darbuotojų produktyvumas stipriai nesiskyrė nuo vadovų iškelto tikslo (tenkino bent 90 %).

Tikriname, kaip priklausomas kintamasis (darbuotojų produktyvumas) koreliuoja su kovariantėmis.

	Pearson Correlation Coefficients, N = 536 Prob > r under H0: Rho=0													
	over_time	no_of_workers												
actual_productivity	1.00000	0.85139 <.0001	0.02225 0.6073	0.82689 <.0001	0.17035 <.0001	-0.04349 0.3149	0.07628 0.0777							
targeted_productivity	0.85139 <.0001	1.00000	-0.05425 0.2098	0.52616 <.0001	-0.01047 0.8090	-0.10338 0.0167	-0.08960 0.0381							
smv	0.02225 0.6073	-0.05425 0.2098	1.00000	0.06576 0.1283	0.02102 0.6273	0.29594 <.0001	0.69916 <.0001							
incentive	0.82689 <.0001	0.52616 <.0001	0.06576 0.1283	1.00000	0.28742 <.0001	0.08898 0.0395	0.19152 <.0001							
wip	0.17035 <.0001	-0.01047 0.8090	0.02102 0.6273	0.28742 <.0001	1.00000	0.17337 <.0001	0.07974 0.0651							
over_time	-0.04349 0.3149	-0.10338 0.0167	0.29594 <.0001	0.08898 0.0395	0.17337 <.0001	1.00000	0.37285 <.0001							
no_of_workers	0.07628 0.0777	-0.08960 0.0381	0.69916 <.0001	0.19152 <.0001	0.07974 0.0651	0.37285 <.0001	1.00000							

Matome, kad koreliacija pakankamai stipri su parinktomis kovariantėmis, todėl galime bandyti nustatyti tiesinės regresijos modelį.

Sukuriame tiesinės regresijos modelį. Tikriname išskirtis pagal Kuko (Cook's D) ir stjudentizuotų paklaidų (R student) kriterijus.

Matome, kad pagal Kuko kriterijų išskirčių nėra. Tačiau pagal Rstudent jų turime nemažai. Šaliname išskirtis. Pastaba: šalinsime ne visas iš karto, o atsižvelgiant į tai, kaip modelis kis po individualios išskirties pašalinimo.

Pašalinus visas išskirtis, gauname labai gerą R square reikšmę.

	The REG Procedure Model: MODEL1 Dependent Variable: actual_productivity													
Number of Observations Read 524														
Number of Observations Used 524														
	Analysis of Variance													
Source	Sum of Mean													
Model		11	6.	18686		0.56244	97	2.00	<.0001					
Error		512	0.	29627	0.	00057865								
Correct	ed Total	523	6.	48312										
	Root MS	SE		0.024	06	R-Square	0.	9543						
	Depend	ent Me	an	0.768	58	Adj R-Sq	0.	9533						
	Coeff Va	ar		3.129	81									

Tikriname, kad paklaidos pasiskirsčiusios pagal normalųjį skirstinį. Tam naudosime Shapiro – Wilk normalumo testą.

1	Tests for Normality												
Test Statistic p Value													
Shapiro-Wilk	W	0.995692	Pr < W	0.1597									
Kolmogorov-Smirnov	D	0.038551	Pr > D	0.0576									
Cramer-von Mises	W-Sq	0.109628	Pr > W-Sq	0.0870									
Anderson-Darling	A-Sq	0.761857	Pr > A-Sq	0.0477									

Gauname, kad p reikšmė daugiau už reikšmingumo lygmenį alpha = 0,05, todėl nulinės hipotezės atmesti negalime. Paklaidos tenkina normalumo prielaidą.

Dabar tikrinsime homoskedastiškumo prielaidą (paklaidų dispersijos lygios). Tam naudosime Breusch – Pagan homoskedastiškumo testą.

	Heteroscedasticity Test												
Equation	Test	Statistic	DF	Pr > ChiSq	Variables								
actual_productivity	White's Test	131.1	62	<.0001	Cross of all vars								
	Breusch-Pagan	45.24	11	<.0001	1, targeted_productivity, smv, wip, over_time, incentive, no_of_workers, day1, day2, day3, day4, day5								

Gauname, kad p reikšmė yra mažiau už reikšmingumo lygmenį, todėl nulinę hipotezę atmetame. Paklaidų dispersijos yra nevienodos (heteroskedastiškos), todėl naudosime HC₀ korekciją. Gauname naujas pataisytas standartines paklaidas bei stulpelių reikšmingumo p reikšmes.

						Root MSE		0.02406	R-Square	0.954	3					
						Dependent	Mean	0.76858	Adj R-Sq	0.953	3					
						Coeff Var		3.12981								
							Parar	neter Esti	mates							
						Heteroscedas	sticity C	onsistent			Squared					
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t				Standard Estin		Partial Corr Type II	Variance Inflation	95% Confid	ence Limits	Heterosco Consist Confiden	ent 95%
Intercept	1	0.04672	0.01297	3.60	0.0003	0.01542	3.03	0.0026		0		0	0.02123	0.07220	0.01643	0.07701
targeted_productivity	1	0.74896	0.01461	51.28	<.0001	0.01860	40.27	<.0001	0.60	053	0.83703	1.53651	0.72027	0.77765	0.71242	0.78550
smv	1	0.00038473	0.00025694	1.50	0.1349	0.00023090	1.67	0.0963	0.02	013	0.00436	2.02426	-0.00012006	0.00088951	-0.00006891	0.00083836
wip	1	0.00001644	0.00000356	4.62	<.0001	0.00000349	4.71	<.0001	0.04	722	0.04006	1.16948	0.00000945	0.00002343	0.00000958	0.00002330
over_time	1	-0.00000204	4.068033E-7	-5.01	<.0001	4.172976E-7	-4.88	<.0001	-0.05	238	0.04669	1.22569	-0.00000284	-0.00000124	-0.00000286	-0.00000122
incentive	1	0.00261	0.00006442	40.57	<.0001	0.00007109	36.76	<.0001	0.50	654	0.76272	1.74671	0.00249	0.00274	0.00247	0.00275
no_of_workers	1	0.00034689	0.00016225	2.14	0.0330	0.00014176	2.45	0.0147	0.03	050	0.00885	2.27995	0.00002813	0.00066566	0.00006840	0.00062539
day1	1	0.00191	0.00377	0.51	0.6134	0.00379	0.50	0.6153	0.00	629	0.00049880	1.73600	-0.00551	0.00932	-0.00555	0.00936
day2	1	0.00011521	0.00364	0.03	0.9748	0.00350	0.03	0.9737	0.00040	387	0.00000195	1.82744	-0.00704	0.00727	-0.00676	0.00699
day3	1	0.00079117	0.00369	0.21	0.8305	0.00388	0.20	0.8384	0.00	271	0.00008954	1.78959	-0.00647	0.00805	-0.00683	0.00841
day4	1	-0.00207	0.00375	-0.55	0.5810	0.00363	-0.57	0.5682	-0.00	692	0.00059523	1.76183	-0.00943	0.00529	-0.00919	0.00505
day5	1	-0.00671	0.00378	-1.77	0.0766	0.00361	-1.86	0.0637	-0.02	202	0.00611	1.72542	-0.01413	0.00071981	-0.01380	0.00038252

Iš lentelės matome, kad ne visos kovariantės yra reikšmingos. Svarbiausios yra targeted_productivity, wip, over_time ir incentive. Modelio R square reikšmė gaunasi labai gera (apie 95 %).

Pagal Rstudent kriterijų išskirčių nebeliko.

Tobuliname modelį. Atrenkame tik reikšmingas kovariantes. Tam naudosime pažingsninę regresiją (reikšmingumo lygmuo 0,05).

	Summary of Stepwise Selection														
Step	Variable Variable Number Partial Removed Vars In R-Square					C(p)	F Value	Pr > F							
1	targeted_productivity		1	0.7486	0.7486	2297.00	1554.13	<.0001							
2	incentive		2	0.2004	0.9490	53.5660	2046.78	<.0001							
3	wip		3	0.0014	0.9504	39.8520	14.70	0.0001							
4	over_time		4	0.0013	0.9517	27.0843	14.17	0.0002							
5	no_of_workers		5	0.0018	0.9535	9.1568	19.81	<.0001							
6	day5		6	0.0005	0.9540	5.5382	5.63	0.0180							

Nustatėme, kad smv yra nereikšminga. Išmetus smv matome, kad savaitės dienos irgi tampa nereikšmingos, todėl pašaliname jas iš modelio.

							Param	eter Estin	nates						
						Heteroscedasticity Consistent				Squared					
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Standard Error	t Value	Pr > t	Standardized Estimate	Partial Corr Type II	Variance Inflation	95% Confidence Limits		Heterosco Consist Confiden	
Intercept	1	0.04609	0.01298	3.55	0.0004	0.01567	2.94	0.0034	0		0	0.02058	0.07159	0.01529	0.07688
targeted_productivity	1	0.75049	0.01459	51.45	<.0001	0.01891	39.68	<.0001	0.60176	0.83766	1.52899	0.72183	0.77915	0.71334	0.78765
wip	1	0.00001629	0.00000356	4.58	<.0001	0.00000354	4.60	<.0001	0.04679	0.03923	1.16856	0.00000930	0.00002329	0.00000933	0.00002325
over_time	1	-0.00000199	4.062458E-7	-4.91	<.0001	4.141723E-7	-4.81	<.0001	-0.05125	0.04483	1.21938	-0.00000279	-0.00000120	-0.00000281	-0.00000118
incentive	1	0.00260	0.00006411	40.60	<.0001	0.00007066	36.84	<.0001	0.50450	0.76265	1.72579	0.00248	0.00273	0.00246	0.00274
no_of_workers	1	0.00050892	0.00012104	4.20	<.0001	0.00011185	4.55	<.0001	0.04474	0.03331	1.26587	0.00027112	0.00074673	0.00028918	0.00072867
day1	1	0.00201	0.00378	0.53	0.5943	0.00381	0.53	0.5976	0.00664	0.00055329	1.73540	-0.00541	0.00943	-0.00547	0.00950
day2	1	0.00022324	0.00365	0.06	0.9512	0.00349	0.06	0.9490	0.00078258	0.00000730	1.82672	-0.00694	0.00739	-0.00663	0.00708
day3	1	0.00093346	0.00370	0.25	0.8008	0.00387	0.24	0.8095	0.00319	0.00012417	1.78841	-0.00633	0.00820	-0.00667	0.00854
day4	1	-0.00205	0.00375	-0.55	0.5851	0.00361	-0.57	0.5706	-0.00686	0.00058155	1.76181	-0.00942	0.00532	-0.00915	0.00505
day5	1	-0.00668	0.00379	-1.76	0.0782	0.00361	-1.85	0.0652	-0.02192	0.00603	1.72537	-0.01412	0.00075721	-0.01378	0.00042191

Pašalinus dienų faktorių (su visais pseudokintamaisiais) turime galutinį tiesinės regresijos modelį. VIF niekur nesiekia 4, todėl daugiau nieko nekeičiame. Galutinė Adjusted R Square reikšmė yra 95,3 % (tokia dalis duomenų paaiškinama tiesinės regresijos modeliu).

The REG Procedure Model: MODEL1 Dependent Variable: actual_productivity													
Number of Observations Read524Number of Observations Used524													
Analysis of Variance													
Source		DF	_	um of uares		Mean Square	F Valu	e Pr>F					
Model		5	6.	6.18156		1.23631	2123.6	2 <.0001					
Error		518	0.	30157	0.	00058217							
Corrected	Total	523	6.	48312									
F	Root MSE 0.02413 R-Square 0.9535												
	Depend	ent Me	an	0.768	58	Adj R-Sq	0.953	30					
-	oeff Va			3.13933									

							Paran	neter Esti	mates						
							scedastic nsistent	ity	Squared						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Standard Error t Value Pr > t		Standardized Estimate	Partial Corr Type II	Variance Inflation	95% Confid	ence Limits	Heteroscedasticity Consistent 95% Confidence Limits		
Intercept	1	0.04320	0.01263	3.42	0.0007	0.01539	2.81	0.0052	0		0	0.01840	0.06801	0.01296	0.07344
targeted_productivity	1	0.75301	0.01454	51.77	<.0001	0.01867	40.33	<.0001	0.60378	0.83804	1.51457	0.72444	0.78158	0.71633	0.78969
wip	1	0.00001675	0.00000355	4.72	<.0001	0.00000354	4.73	<.0001	0.04810	0.04119	1.15801	0.00000977	0.00002372	0.00000978	0.00002371
over_time	1	-0.00000208	4.042118E-7	-5.15	<.0001	4.16823E-7	-4.99	<.0001	-0.05349	0.04865	1.20279	-0.00000287	-0.00000129	-0.00000290	-0.00000126
incentive	1	0.00258	0.00006342	40.71	<.0001	0.00006915	37.33	<.0001	0.50039	0.76188	1.68242	0.00246	0.00271	0.00245	0.00272
no_of_workers	1	0.00053556	0.00012034	4.45	<.0001	0.00011088	4.83	<.0001	0.04709	0.03683	1.24656	0.00029915	0.00077197	0.00031774	0.00075338

Gauti galutiniai parametrų įvertiniai: $\beta_0 \approx 0,0432$, $\beta_1 \approx 0,753$, $\beta_2 \approx 0,000017$, $\beta_3 \approx -0,000002$, $\beta_4 \approx 0,00258$, $\beta_5 \approx 0,00054$. Didžiausią įtaką gamyklos produktyvumui daro vadovų tikslai ir piniginė paskata.

IŠVADOS

Atlikus pilną regresinę analizę sukūrėme gana tikslų modelį, pritaikytą nustatyti gamyklos produktyvumą pagal svarbiausias kovariantes. Didžiausią įtaką produktyvumui turėjo valdžios iškelti reikalavimai bei piniginė paskata. Įtakos nedarė savaitės diena ir užduočiai skiriamas laikas minutėmis.

ŠALTINIAI

- [1] "UCI Machine Learning Repository" tinklapis. Tema: Productivity Prediction of Garment Employees. Prieiga per internetą:

 https://archive.ics.uci.edu/ml/datasets/Productivity+Prediction+of+Garment+Employees
- [2] Heteroskedastiškumo pavyzdžiai su R. Prieiga per internetą: <u>Dealing with heteroskedasticity;</u> regression with robust standard errors using R (brodrigues.co)
- [3] "SAS Help Center" tinklapis. Prieiga per internetą: <u>SAS Help Center: SAS Help Center:</u> Welcome