Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

учебный центр общей физики фТФ

Группа Р3110	К работе допущен
Студент Лебедев Вадим Антонович	Работа выполнена
Преподаватель Коробков Максим Пет	рович_Отчет принят

Рабочий протокол и отчет по лабораторной работе № 3.05

Температурная зависимость электрического сопротивления металла и полупроводника.

- 1. Цель работы.
 - 1. Получить зависимость электрического сопротивления металлического и полупроводникового образцов в диапазоне температур от комнатной до 75 \circ C.
 - 2. По результатам п.1 вычислить температурный коэффициент сопротивления металла и ширину запрещенной зоны полупроводника.
- 2. Задачи, решаемые при выполнении работы.
 - 1. Произвести необходимые измерения.
 - 2. По полученным данным вычислить температурный коэффициент сопротивления металла и ширину запрещенной зоны.
 - 3. Построить графики зависимости $\ln(R) = \ln(R) \left(\frac{1}{T}\right)$ и Rm = Rm(t) и качественно оценить линейность полученных графиков.
 - 4. Сформулировать выводы.
- 3. Объект исследования.

Электрическое сопротивление.

4. Метод экспериментального исследования.

Who was producted the second

openhie who to upathble uzmepenue

5. Рабочие формулы и исходные данные.

1.
$$I = \frac{U}{R}$$

2. $K = C + 273$
3. $a_{ij} = \frac{R_i - R_j}{R_j * t_i - R_i * t_j}$
4. $E_{g_{ij}} = 2k * \frac{T_i * T_j}{T_j - T_i} * \ln(\frac{R_i}{R_j})$
5. $k = 1,380649 * 10^{-23} Дж/К \approx 8,61733 * 10^{-5} эВ/К$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Вольтметр	Цифровой	0-2B	0,01B
2	Амперметр	Цифровой	0 — 2000 мкА	0,01 A
			200-400 1/	(1/

3 Tepmomemp ynoppobon 200-400 K 1K

7. Схема установки (перечень схем, которые составляют приложение 1).

(npu nyu nuanbhal An-as exema yemanobuu)

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

1) wxA → A: 1264 · 0,000001 = 0,001264(A)

3) t = T- 273 = 353 - 273 = 60°C

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

$$Q_{15} = \frac{R_1 - R_6}{R_6 \cdot t_1 - R_1 \cdot t_6} = \frac{I_1 \cdot 32 - I_1 \cdot 11}{I_1 \cdot 11 \cdot 11 \cdot 11} = 0.00345 \text{ fe}$$

$$R = \frac{V}{I} = \frac{0.845}{0.001115} = 464.80 \text{ fm}$$

$$E_{9.6} = 2 \cdot I_1 \cdot 38 \cdot 10^{-23} \cdot \frac{298 - 322}{322 - 298} \cdot \ln\left(\frac{454.8}{306.25}\right) = 0.0098 \cdot 10^{-14} \text{ Dm}$$

$$E_{9.6} = 2 \cdot 8.614 \cdot 10^{-5} \cdot \frac{298 - 322}{322 - 298} \cdot \ln\left(\frac{454.8}{306.25}\right) = 0.616 \text{ DB}$$

$$\angle E_{9.5} > = 0.65438 \cdot (42) = 0.0039 \text{ M/s}$$

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

$$\Delta E_g = t_{u,ss} \cdot \sqrt{\frac{1}{n(n-1)}} \sum_{i=1}^{N} (a_i - 2a_i)^2 = 0,00019 \frac{1}{N} \cdot 29.10^{-5} \frac{1}{N}$$

$$\Delta E_g = t_{u,ss} \cdot \sqrt{\frac{1}{n(n-1)}} \sum_{i=1}^{N} (E_{gi} - 2E_g)^2 = 9,65.10^{-21} \rho_{in} = 0,0698$$

11. Графики (перечень графиков, которые составляют Приложение 2).

1)
$$en(R) = en(R)(\frac{1}{T})$$

12. Окончательные результаты.

13. Выводы и анализ результатов работы.

В резуль тате выполнения лабороморной работы были получены значения температурного ногорорицента сопро тивления для металлического образула и ширины запрещенной зоны для полупроводникового образулы. Из полученных данных можно определить, что шеталлическим образуры является алючиний, а полу-проводниковым образуры является алючиний, а полу-проводниковым образуры является германий $\frac{1}{1}$ такие были получены графии зависимо отей $\frac{1}{1}$ и $\frac{1}{1}$ $\frac{1}{1}$ и $\frac{1}{1}$ $\frac{1}{$

Таблица 1: Полупроводниковый образец

Прихомение 1.

Nο	<i>T</i> , K	I, MKA	<i>U</i> , B	R, OM	In R	$\frac{10^3}{T}, \frac{1}{K}$
1	298	1115	0,845	7,57,8	6,63	3,35
2	302	1185	0,443	652,3	6,48	3,31
3	307	1294	0,400	540,95	6,29	3,25
4	312	1397	0,624	448,8	6,1	3,2
5	314	1493	0,256	372,4	5,92	3,15
6	322	1600	0,480	306,25	5,72	3,1
7	327	1682	0,424	252,36	6,53	3,05
8	333	1483	0,343	209,2	5,34	3
9	338	1853	0.217	170,6	5,14	2,95
10	343	1924	0,243	141,9	4,85	2,91

Eso in Co

Таблица 2: Металлический образец.

Nο	<i>T</i> , K	I, MKA	<i>U</i> , B	R, кОм	t, C
1	353	1264	1,680	1,32	80
2	344	1246	1,640	1,3	44
3	341	1289	1,622	1,28	60
4	335	1305	1,637	1,25	62
5	328	1318	1,627	1,23	56
6	323	1331	1, 612	1,21	50
7	314	1344	1,588	1,18	44
8	311	1362	1,580	1,16	38
9	305	1376	1,564	1,1888 14	32
10	288	1380	1,552	٨,١١	26

Para Contraction of the Contract

