Computer Organization and Architecture COSC 2425

Lecture – 6

Sept 7th, 2022

Acknowledgement: Slides from Edgar Gabriel & Kevin Long

UNIVERSITY of HOUSTON

Chapter 2

Instructions: Language of the Computer

Instruction Set

- Add
- Multiply
- Divide
- Load Data

Instruction Set

Computer 1

ISA1

Computer 2

ISA2

A manual to instruct he computer.

The ARMv8 Instruction Set

- A subset, called LEGv8, used as the example throughout the book
- Commercialized by ARM Holdings (<u>www.arm.com</u>)
- Large share of embedded core market
 - Applications in consumer electronics, network/storage equipment, cameras, printers, ...
- Typical of many modern ISAs
 - See ARM Reference Data tear-out card

Operations of Computer Hardware

- 1. Has multiple registers, and logic gates to perform operations. E.g. add
- 2. Registers contain/store data.
- 3. Operators (like Add), can only access data in the registers.
- 1. To instruct computer to
 - **1.** Add (operation)
 - **2.** Values in register b and c (Source Variables)
 - 3. Store the **result in a** (Destination Variable)

LEGv8 Instruction: ADD a, b, c

Operations of Computer Hardware

- 1. To instruct computer to
 - 1. Add (operation)
 - 2. Values in register b and c (Source Variables)
 - 3. Store the **result in a** (Destination Variable)

LEGv8 Instruction:

One operation

Has three variables

Design Principle 1: Simplicity favors regularity

All LEGv8 **Arithmetic Instructions** perform only one operation and always has exactly three variables

SUB a, b, c // subtract instrcution (a = b - c) MUL a, b, c // multiply instruction (a = b * c)

Example - 1

$$a = b + c + d + e$$

$$ADD \ a, b, c //a = b + c$$

$$ADD \ a, a, d //a = a + d$$

$$ADD \ a, a, e //a = a + e$$

3 instruction to sum 4 variables

Example - 3

$$f = (g+h) - (i+j)$$

ADD
$$t0$$
, g , h // $t0 = g + h$
ADD $t1$, i , j // $t1 = i + j$
SUB f , $t0$, $t1$ // $f = t0 - t1$

t0, t1: temporary variables created by the compiler

Example - 3

$$f = (g+h) - (i+j)$$

ADD
$$t0$$
, g , h // $t0 = g + h$
ADD $t1$, i , j // $t1 = i + j$
SUB f , $t0$, $t1$ // $f = t0 - t1$

Variables t0, t1, f, g, h, i, j

Stored in registers

Bits, Bytes, Words, and Double Words

For our course!!!

```
0 → 1 bit of data
```

 $1 \rightarrow 1$ bit of data

```
10011101 (8 bits) → 1 byte of data
```

Overtime this became a basic unit of data.

Older system represented letters using bytes
As a results most memory hardware

```
10011101 10010001 10010101 10010101 → 4 bytes is a word
1 byte 2 byte 3 byte 4 byte (32 bits)
```

```
10011101 10010001 10010101 ... 10010101 → 8 bytes is a Doubleword
1 byte 2 byte 3 byte 7 byte (64 bits)
```

Operands of the Computer Hardware

- LEGv8 Register size **64 Bits**
 - Double words

Operands of the Computer Hardware

- LEGv8 Register size 64 Bits
- Total of 32 registers (64-bit)
 Why only 32??

Design Principle 2: Smaller is faster

- Having more registers may increase the clock cycle time (longer for electronic signals to travel)
- Size of instructions (number of bits) is predefined and same for all instructions.
 More register requires more bits to specify registers.
 - 1. 32 registers require 5 bits max
 - 2. 64 registers may require 6 bits.

Operands of the Computer Hardware

- LEGv8 Register size 64 Bits
- Total of 32 registers (64-bit)
- Register name convention use
 X as prefix.
- Registers are names
 - -X0
 - -X1
 - **—** ...
 - X30
 - XZR(X31) (Exception, more on this later...!)

Example – 3 (Again)

$$f = (g + h) - (i + j)$$

 $f, ..., j$ store in registers X19, X20, ..., X23
Two temporary registers are availabe X9 & X10

$$ADD X9, X20, X21 // X9 = g + h$$

 $ADD X10, X22, X23 // X10 = i + j$
 $SUB X19, X9, X10 // f = X9 - X10$

Review: Half-Adder with manual input

Load Operation

Store Operation

Memory Operand, LOAD

a = b + c

Memory Operand, LOAD

$$a = b + c$$

Load Addr_3 (c) to register X19 Load Addr_2 (b) to register X20 ADD X21, X19, X20

For Load:

Need to specify the ram memory address, and the register to load the value into.

memory address-> also in bits, and needs to be stored in another register.

Memory Operand, LOAD

$$a = b + c$$

Load Addr_3 (c) to register X19 Load Addr_2 (b) to register X20 ADD X21, X19, X20

Lets assume memory address is stored in X22

Memory Operand, LOAD

$$a = b + c$$

Load Addr_3 (c) to register X19 Load Addr_2 (b) to register X20 ADD X21, X19, X20

Lets assume memory address is stored in X22

The **LEGv8 instruction** to: Load Addr_2 (a) to register X19

 $LDUR\ X19, [X22, \#const]$

Destination register

Ram address

Memory Operand, LOAD

$$a = b + c$$

Assuming Addr_3 is store in X22 and Addr_2 is store in X23 Assembly code (LEGv8 instruction)

LDUR X19, [X22, #**0**] LDUR X20, [X23, #**0**] ADD X21, X19, X20

Arrays in RAM

$$int \ a[4] = \{5, 6, 7, 8\};$$

Arrays are stored in contiguous memory
 Let a start from Addr_2

$$a[0] \rightarrow Addr_2$$

$$a[1] \rightarrow Addr_3$$

$$a[2] \rightarrow Addr_4$$

$$a[3] \rightarrow Addr_5$$

To load a[1], we would have to specify where a starts in the memory, the offset (which is 1) and the destination register (d_register) to load it to.

Instruction

Load d_register, [addr_2, offset(1)]

A constant is needed to specify the offset to load arrays in the LDUR instruction

Bits, Bytes, Words, and Double Words

For our course!!!

```
0 → 1 bit of data
```

 $1 \rightarrow 1$ bit of data

```
10011101 (8 bits) → 1 byte of data
```

Overtime this became a **basic unit of data**.

Older system represented letters using bytes
As a results most memory hardware

```
10011101 10010001 10010101 10010101 → 4 bytes is a word
1 byte 2 byte 3 byte 4 byte (32 bits)
```

```
10011101 10010001 10010101 ... 10010101 → 8 bytes is a Doubleword
1 byte 2 byte 3 byte 7 byte (64 bits)
```

RAMS and Byte Addresses

- 1. Byte is considered a basic unit of data.
- 2. Most memory hardware store 1 byte of data at each address.
- 3. Each address is referred to as a **byte address**, as 8 bits are stores.

Memory Operand, LOAD

$$int \ a[4] = \{5, 6, 7, 8\};$$

Arrays are store in contiguous memory.

So

5 is stored using 64 bits 6 is stored using 64 bits

Let start address be Addr_2
Let Addr_2 be stored in register X22
What is the LEGv8 instruction to
load a[0] into register X19?

Memory Operand, LOAD

Memory Operand Example

• C code:

```
A[12] = h + A[8];
```

- h in X21, base address of A (i.e. A[0]) in X22
- LEGv8 code:

```
LDUR X9, [X22, #64]
```

ADD
$$X9, X21, X9$$

- Using a constant in operation.
- More than half of arithmetic instructions have constant (SPEC CPU2006).

$$x = x + 4$$

Let X be stored in register X22
If X20 is some base register,
and the number 4 is stored in
the memory at location
AddrConst4

- Using a constant in operation.
- More than half of arithmetic instructions have constant (SPEC CPU).

$$x = x + 4$$

Let X be stored in register X22
If X20 is some base register,
and the number 4 is stored in
the memory at location
AddrConst4

Load 4 into register Add

- Using a constant in operation.
- More than half of arithmetic instructions have constant (SPEC CPU2006).

Very common to use constants.

Too much time to load constants from memory.

Why not make a version of Add with one operand fixed to a specific value.

One operand is always 4.

x = x + 4

Let X be stored in register X22

If X20 is some base register, and the number 4 is stored in the memory at location AddrConst4 (offset from X20)

LEGv8 Instructions: LDUR X9, [X20, #AddrConst4] ADD X22, X22, X9

- Using a constant in operation.
- More than half of arithmetic instructions have constant (SPEC CPU2006).

Very common to use constants.

Too much time to load constants from memory.

Why not make a version of Add with one operand fixed to a specific value.

One operand is always 4.

x = x + 4

Let X be stored in register X22

If X20 is some base register, and the number 4 is stored in the memory at location AddrConst4 (offset from X20)

LEGv8 Instructions:

LDUR X9, [X20, #AddrConst4] ADD X22, X22, X9

LEGv8 Instructions:

ADDI X22, X22, #4

Add immediate

Computer Architecture: Great Ideas

1. Use abstraction to simplify design

- 2. Make the common case faster
 - 1. Enhance performance than trying to optimize the rare case.
 - 2. Usually simpler and easier to enhance

COMMON CASE FAST

- Using a constant in operation.
- More than half of arithmetic instructions have constant (SPEC CPU2006).

Constant operands are common, Immediate versions make it faster, and use less energy. x = x + 4

Let X be stored in register X22

If X20 is some base register, and the number 4 is stored in the memory at location AddrConst4 (offset from X20)

LEGv8 Instructions: *ADDI X*22, *X*22, #4

Add immediate

Number System

- 1. Decimal System
 - 1. Integers
 - 2. Fractions
 - 3. Positional number system
- 2. Binary representation
 - 1. Integers
 - 2. Fractions
 - 3. Addition
- 3. Conversion
 - 1. Binary to Decimal
 - 2. Decimal to Binary
- 4. Hexadecimal
- 5. Signed Integers
 - 1. 2's complement representation

Decimal Numbers (Integers)

- System based on decimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) to represent numbers → 10 numbers (base 10, also called as radix)
- Represented using a positional number system
- Example 4728_{ten}

Position	3	2	1	0
	4 (digit)	7	2	8

The decimal system is said to have a **base**, or **radix**, of 10. This means that each digit in the number is multiplied by 10 raised to a power corresponding to that digit's position:

Decimal Numbers (Integers)

- System based on decimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) to represent numbers → 10 numbers (base 10, also called as radix)
- Represented using a positional number system
- Example 4728_{ten}

Position	3	2	1	0	
	4 (digit)	7	2	8	
$4728 = (4 * 10^3) +$					

Decimal Numbers (Integers)

- System based on decimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) to represent numbers → 10 numbers (base 10, also called as radix)
- Represented using a positional number system
- Example 4728_{ten}

Position	3	2	1	0
	4 (digit)	7	2	8

$$4728 = (4 * 10^3) + (7 * 10^2) + (2 * 10^1) + (8 * 10^0)$$

Generalizing, the value of i^{th} digit is $d \times \text{Base}^i$

Decimal Numbers (Integers)

- System based on decimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) to represent numbers → 10 numbers (base 10, also called as radix)
- Represented using a positional number system
- Example 4728_{ten}

Position	3	2	1	0
	4 (digit)	7	2	8

$$4728 = (4 * 10^3) + (7 * 10^2) + (2 * 10^1) + (8 * 10^0)$$

= $4000 + 700 + 20 + 9$

Decimal Numbers (Fractions)

- System based on decimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) to represent numbers \rightarrow 10 numbers (base 10, also called as radix)
- Represented using a positional number system
- The same principle holds for decimal fractions, but negative powers of 10 are used.
- Example decimal fraction 0.256_{ten} stands for

Decimal Numbers (Fractions)

- System based on decimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) to represent numbers \rightarrow 10 numbers (base 10, also called as radix)
- Represented using a positional number system
- The same principle holds for decimal fractions, but negative powers of 10 are used.
- Example decimal fraction 0.256_{ten} stands for

Position	-1	-2	-3
	2	5	6

Decimal Numbers (Fractions)

- System based on decimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) to represent numbers \rightarrow 10 numbers (base 10, also called as radix)
- Represented using a positional number system
- The same principle holds for decimal fractions, but negative powers of 10 are used.
- Example decimal fraction 0.256_{ten} stands for

Position	-1	-2	-3
	2	5	6

$$0.256 = 2 * 10^{-1} + 5 * 10^{-2} + 6 * 10^{-3}$$

Decimal Numbers

 A number with both an integer and fractional part has digits raised to both positive and negative powers of 10:

$$442.256 = (4 * 10^{2}) + (4 + 10^{1}) + (2 * 10^{0}) + (2 * 10^{-1}) + (5 * 10^{-2}) + (6 * 10^{-3})$$

- Most significant digit
 - The leftmost digit (carries the highest value)
- Least significant digit
 - The rightmost digit

Positional Number Systems

- Each number is represented by a string of digits in which each digit position *i* has an associated weight *rⁱ*, where *r* is the *radix*, or *base*, of the number system.
- The general form of a number in such a system with radix r is

$$(\ldots a_3 a_2 a_1 a_0 a_{-1} a_{-2} a_{-3} \ldots)_r$$

where the value of any digit a_i is an integer in the range $0 \le a_i < r$.

The dot between a_0 and a_{-1} is called the *radix point*.

Positional Interpretation of a Number in Base 7

 32621.5_{seven}

Position	4	3	2	1	0	-1
Value in exponential form	7 ⁴	7 ³	7 ²	7 ¹	7 ⁰	7-1
Decimal value	2401	343	49	7	1	1/7

Number System

- 1. Decimal System
 - 1. Integers
 - 2. Fractions
 - 3. Positional number system
- 2. Binary representation
 - 1. Integers
 - 2. Fractions
 - 3. Addition
- 3. Conversion
 - 1. Binary to Decimal
 - 2. Decimal to Binary
- 4. Hexadecimal
- 5. Signed Integers
 - 1. 2's complement representation

- Base 2: Only two digits (0 and 1)
- The digits 1 and 0 in binary notation have the same meaning as in decimal notation:

$$0_{\text{two}} = 0_{\text{ten}}$$

 $1_{\text{two}} = 1_{\text{ten}}$

 To represent larger numbers each digit in a binary number has a value depending on its position:

Position	1	0
10 _{two}	1	0

- Base 2: Only two digits (0 and 1)
- The digits 1 and 0 in binary notation have the same meaning as in decimal notation:

$$0_{\text{two}} = 0_{\text{ten}}$$

 $1_{\text{two}} = 1_{\text{ten}}$

 To represent larger numbers each digit in a binary number has a value depending on its position:

Position	1	0
$10_{\text{two}} = (1 * 2^1) + (0 * 2^0) = 2_{\text{ten}}$	1	0

- Base 2: Only two digits (0 and 1)
- The digits 1 and 0 in binary notation have the same meaning as in decimal notation:

$$0_{\text{two}} = 0_{\text{ten}}$$

 $1_{\text{two}} = 1_{\text{ten}}$

 To represent larger numbers each digit in a binary number has a value depending on its position:

$$10_{two} = (1 * 2^{1}) + (0 * 2^{0}) = 2_{ten}$$
 $11_{two} = ?$

UNIVERSITY of **HOUSTON**

- Base 2: Only two digits (0 and 1)
- The digits 1 and 0 in binary notation have the same meaning as in decimal notation:

$$0_{two} = 0_{ten}$$

 $1_{two} = 1_{ten}$

 To represent larger numbers each digit in a binary number has a value depending on its position:

$$10_{two} = (1 * 2^{1}) + (0 * 2^{0}) = 2_{ten}$$
 $11_{two} = (1 * 2^{1}) + (1 * 2^{0}) = 3_{ten}$
 $100_{two} = ?$

- Base 2: Only two digits (0 and 1)
- The digits 1 and 0 in binary notation have the same meaning as in decimal notation:

$$0_{two} = 0_{ten}$$

 $1_{two} = 1_{ten}$

 To represent larger numbers each digit in a binary number has a value depending on its position:

$$10_{two} = (1 * 2^{1}) + (0 * 2^{0}) = 2_{ten}$$

$$11_{two} = (1 * 2^{1}) + (1 * 2^{0}) = 3_{ten}$$

$$100_{two} = (1 * 2^{2}) + (0 * 2^{1}) + (0 * 2^{0}) = 4_{1ten}$$

The Binary System (Fractions)

- Base 2: Only two digits (0 and 1)
- Fractional values are represented with negative powers of the radix:

1001.101_{two}

The Binary System (Fractions)

- Base 2: Only two digits (0 and 1)
- Fractional values are represented with negative powers of the radix:

$$1001.101_{two} = 2^3 + 2^0 + 2^{-1} + 2^{-3} = 9.625_{10}$$

Number System

- 1. Decimal System
 - 1. Integers
 - 2. Fractions
 - 3. Positional number system
- 2. Binary representation
 - 1. Integers
 - 2. Fractions
 - 3. Addition
- 3. Conversion
 - 1. Binary to Decimal
 - 2. Decimal to Binary
- Hexadecimal
- 5. Signed Integers
 - 1. 2's complement representation

- Division-remainder method
- Convert 104 to base 3

- Division-remainder method
- Convert 104 to base 3

$$\frac{104}{3}$$

- Division-remainder method
- Convert 104 to base 3

$$\frac{104}{3} = 34 \Rightarrow remainder 2$$

- Division-remainder method
- Convert 104 to base 3

$$\frac{104}{3} = 34 \Rightarrow remainder 2$$

$$\frac{34}{3} =$$

- Division-remainder method
- Convert 104 to base 3

$$\frac{104}{3} = 34 \Rightarrow remainder 2$$

$$\frac{34}{3} = 11 remainder 1$$

$$\frac{11}{3}$$

- Division-remainder method
- Convert 104 to base 3

- Division-remainder method
- Convert 104 to base 3

•
$$10212_3 = 1*3^4 + 0*3^3 + 2*3^2 + 1*3^1 + 2*3^0$$

= $1*81 + 0 + 2*9 + 1*3 + 2*1$
= $81+18+3+2 = 104_{10}$

Convert 11_{10} to Binary notation:

Convert 11_{10} to Binary notation:

11/2 = 5 → Remainder 1
5/2 = 2 → Remainder 1
2/2 = 1 → Remainder 0
1/2 = 0 → Remainder 1
Thus
$$11_{10} = 1011_2$$

$$0.375 \times 2 = 0.75 (0.75 + 0)$$

Thus
$$0.375_{10} = 0.0$$

$$0.375 \times 2 = 0.75 (0.75 + \mathbf{0})$$
Thus $0.375_{10} = 0.\mathbf{0}$

$$0.375 \times 2 = 0.75 (0.75 + 0)$$
 0.75×2

Thus
 $0.375_{10} = 0.01$

$$0.375 \times 2 = 0.75 (0.75 + \mathbf{0})$$

 $0.75 \times 2 = 1.50 (0.50 + \mathbf{1})$
Thus $0.375_{10} = 0.\mathbf{01}$

Convert 0.375₁₀ to Binary notation:

$$0.375 \times 2 = 0.75 (0.75 + 0)$$

 $0.75 \times 2 = 1.50 (0.50 + 1)$
 $0.50 \times 2 = 1.00 (\mathbf{0.00} + 1)$
Thus $0.375_{10} = 0.011_2$

Note: not every decimal number can be represented in binary with a finite number of digits

Convert 0.81_{10} to Binary notation:

$$0.81 \times 2 = 1.62$$
 $(0.62 + 1)$ $0.62 \times 2 = 1.24$ $(0.24 + 1)$ $0.24 \times 2 = 0.48$ $(0.48 + 0)$ $0.48 \times 2 = 0.96$ $(0.96 + 0)$ $0.96 \times 2 = 1.92$ $(0.92 + 1)$ and so on

Thus $0.81_{10} = 0.11001_2$

Note: not every decimal number can be represented in binary with a finite number of digits

Pay attention to the bit significance

Convert 0.375₁₀ to Binary notation:

$$0.375 \times 2 = 0.75 (0.75 + 0)$$
 $0.75 \times 2 = 1.50 (0.50 + 1)$
 $0.50 \times 2 = 1.00 (\mathbf{0.00} + 1)$
 $0.375_{10} = 0.011_{2}$

11/2 = 5
$$\rightarrow$$
 Remainder 1
5/2 = 2 \rightarrow Remainder 1
2/2 = 1 \rightarrow Remainder 0
1/2 = 0 \rightarrow Remainder 1
Thus $11_{10} = 1011_2$

Number System

- 1. Decimal System
 - 1. Integers
 - 2. Fractions
 - 3. Positional number system
- 2. Binary representation
 - 1. Integers
 - 2. Fractions
 - 3. Addition
- 3. Conversion
 - 1. Binary to Decimal
 - 2. Decimal to Binary
- 4. Hexadecimal
- 5. Signed Integers
 - 1. 2's complement representation

Hexadecimal Notation

- Easier to represent long binary data, by grouping them
- Binary digits are grouped into sets of four bits, called a *nibble*
- Double word → 64 bits, can be represented using 16 hexadecimal characters

Hexadecimal Notation

- Easier to represent long binary data
- Binary digits are grouped into sets of four bits, called a *nibble*
- Each possible combination of four binary digits is given a symbol, as follows:

$$0000 = 0$$
 $0100 = 4$ $1000 = 8$ $1100 = C (12_{ten})$
 $0001 = 1$ $0101 = 5$ $1001 = 9$ $1101 = D (13_{ten})$
 $0010 = 2$ $0110 = 6$ $1010 = A (10_{ten})$ $1110 = E (14_{ten})$
 $0011 = 3$ $0111 = 7$ $1011 = B (11_{ten})$ $1111 = F (15_{ten})$

• Because 16 symbols are used, the notation is called hexadecimal and the 16 symbols are the hexadecimal digits

Hexadecimal Notation

- Easier to represent long binary data
- Binary digits are grouped into sets of four bits, called a *nibble*
- Each possible combination of four binary digits is given a symbol, as follows:

$$0000 = 0$$
 $0100 = 4$ $1000 = 8$ $1100 = C (12_{ten})$
 $0001 = 1$ $0101 = 5$ $1001 = 9$ $1101 = D (13_{ten})$
 $0010 = 2$ $0110 = 6$ $1010 = A (10_{ten})$ $1110 = E (14_{ten})$
 $0011 = 3$ $0111 = 7$ $1011 = B (11_{ten})$ $1111 = F (15_{ten})$

- Because 16 symbols are used, the notation is called hexadecimal and the 16 symbols are the hexadecimal digits
- Thus

$$2C_{16} = (2_{16} * 16^{1}) + (C_{16} * 16^{0})$$

= $(2_{10} * 16^{1}) + (12_{10} * 16^{0}) = 44$

Decimal vs. Binary vs. Hexadecimal

- Hexadecimal is more compact than binary or decimal
- Binary data occupies typically multiple of 4 bits, and hence some multiple of a single hexadecimal digit
- Easy to convert between binary and hexadecimal notation

Decimal	Binary	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
15	1110	Е
16	1111	F
17	0001 0000	10
18	0001 0001	11
19	0001 0010	12
31	0001 1111	1F
100	0110 0100	64
255	1111 1111	FF

Similar to Decimal System

0011010 + 001100

Number System

- 1. Decimal System
 - 1. Integers
 - 2. Fractions
 - 3. Positional number system
- 2. Binary representation
 - 1. Integers
 - 2. Fractions
 - 3. Addition
- 3. Conversion
 - 1. Binary to Decimal
 - 2. Decimal to Binary
- 4. Hexadecimal
- 5. Signed Integers
 - 1. 2's complement representation

```
0011010 + 001100
2610 1210
```

$$0011010 = 26_{10}$$

 $+0001100 = 12_{10}$

```
0011010 + 001100

26<sub>10</sub> 12<sub>10</sub> 0 0 1 1 0 1 0 = 26<sub>10</sub>

+ 0 0 0 1 1 0 0 = 12<sub>10</sub>
```

Similar to decimal system

Similar to decimal system

$$0011010 = 26_{10}$$

 $-0001100 = 12_{10}$

Similar to decimal system

Similar to decimal system

Similar to decimal system

Similar to decimal system

Similar to decimal system

0011010 - 001100 = 00001110

Binary Arithmetic: Multiplication

```
Example:

0011010 x 001100 = 100111000

0011010 = 2610

x0001100 = 1210

0000000

0011010

0011010

0100111000 = 31210
```

Signed integers

We have been dealing so far with unsigned integers

Slide based on a lecture at: http://people.sju.edu/~ggrevera/arch/slides/binary-arithmetic.ppt

Signed integers

We have been dealing so far with unsigned integers

- Multiple ways for representing signed integers:
 - 1. Sign and magnitude
 - 2. 2's complement

Slide based on a lecture at: http://people.sju.edu/~ggrevera/arch/slides/binary-arithmetic.ppt

- Lets consider three bits to represent numbers.
- Number from 0 − 7 can be represented

000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

- Lets consider three bits to represent numbers.
- Number from 0 7 can be represented
- Sign and magnitude: Uses **one additional bit** to represent positive/negative, called sign bit.
- 0 → positive number
- 1 → negative numbers

000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

- Lets consider three bits to represent numbers.
- Number from 0 7 can be represented
- Sign and magnitude: Uses one additional bit to represent positive/negative, called sign bit.
- 0 → positive number
- 1 → negative numbers

0	000	+0	1	000
0	001	+1	1	002
0	010	+2	1	010
0	011	+3	1	013
0	100	+4	1	100
0	101	+5	1	103
0	110	+6	1	110
0	111	+7	1	113

-1

-2

-3

-5

- Lets consider three bits to represent numbers.
- Number from 0 7 can be represented
- Sign and magnitude: Uses one additional bit to represent positive/negative, called sign bit.
- 0 → positive number
- 1 → negative numbers

			_			
0	000	+0		1	000	-0
0	001	+1		1	001	-1
0	010	+2		1	010	-2
0	011	+3		-1	011	-3
0	100	+4		1	100	-4
0	101	+5		1	101	-5
0	110	+6		1	110	-6
0	111	+7		1	111	-7

- Lets consider three bits to represent numbers.
- Number from 0 7 can be represented
- Sign and magnitude: Uses one additional bit to represent positive/negative, called sign bit.
- 0 → positive number
- 1 → negative numbers

0	000	+0	1	000	-0
0	001	+1	1	001	-1
0	010	+2	1	010	-2
0	011	+3	-1	011	-3
0	100	+4	1	100	-4
0	101	+5	1	101	-5
0	110	+6	1	110	-6
0	111	+7	1	111	-7

- Sign and magnitude: Uses one additional bit to represent positive/negative, called sign bit.
- Shortcomings:
 - Where to put the sign bit (left/right)
 - Adders may need extra step to set the sign bit

0	000	+0	1	000	-0
0	001	+1	1	001	-1
0	010	+2	1	010	-2
0	011	+3	1	011	-3
0	100	+4	1	100	-4
0	101	+5	1	101	-5
0	110	+6	1	110	-6
0	111	+7	1	111	-7

Addition w/ signed magnitude algorithm

- For A B, change the sign of B and perform addition of A + (-B) (as in the next step)
- For A + B:

```
if (A_{sign} = = B_{sign}) {

R = |A| + |B|; R_{sign} = A_{sign}; }

else if (|A| > |B|) {

R = |A| - |B|; R_{sign} = A_{sign}; }

else if (|A| = = |B|) {

R = 0; R_{sign} = 0; }

else {

R = |B| - |A|; R_{sign} = B_{sign}; }
```

Complicated???

- Sign and magnitude: Uses one additional bit to represent positive/negative, called sign bit.
- Shortcomings:
 - Where to put the sign bit (left/right)
 - Adders may need extra step to set the sign bit
 - Both a positive and negative zero

0	000	+0	1	000	-0
0	001	+1	1	001	-1
0	010	+2	1	010	-2
0	011	+3	1	011	-3
0	100	+4	1	100	-4
0	101	+5	1	101	-5
0	110	+6	1	110	-6
0	111	+7	1	111	-7

2's Complement

 Lets consider a 4-bit representation of numbers, 16 combinations are possible UNIVERSITY of **HOUSTON**

2's Complement

- Lets consider a 4-bit representation of numbers, 16 combinations are possible
- Split in to two halves
 - − First half → Positive
 - Second half → Negative

- Lets consider a 4-bit representation of numbers, 16 combinations are possible
- Split in to two halves
 - First half → Positive (same as before)
 - Second half → Negative

0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	
1000	
1001	
1001	
1001 1010 1011	
1001 1010 1011 1100	

- Lets consider a 4-bit representation of numbers, 16 combinations are possible
- Split in to two halves
 - First half → Positive (same as before)
 - Second half → Negative (declining order)

0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	-8
1000	-8 -7
1001	-7
1001	-7 -6
1001 1010 1011	-7 -6 -5
1001 1010 1011 1100	-7 -6 -5 -4

- Lets consider a 4-bit representation of numbers, 16 combinations are possible
- Split in to two halves
 - First half Positive (same as before)
 - Second half → Negative (declining order)

Most negative number

0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
0111	,
1000	-8
1000	-8
1000	-8 -7
1000 1001 1010	-8 -7 -6
1000 1001 1010 1011	-8 -7 -6 -5
1000 1001 1010 1011 1100	-8 -7 -6 -5 -4

- Lets consider a 4-bit representation of numbers, 16 combinations are possible
- Split in to two halves
 - First half → Positive (same as before)
 - Second half → Negative (declining order)
 - Range -8, -7 ... 6, 7

Most negative number

0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
0111	,
1000	-8
1000	-8
1000 1001	-8 -7
1000 1001 1010	-8 -7 -6
1000 1001 1010 1011	-8 -7 -6 -5
1000 1001 1010 1011 1100	-8 -7 -6 -5 -4

- Lets consider a 4-bit representation of numbers, 16 combinations are possible
- Split in to two halves
 - First half → Positive (same as before)
 - Second half → Negative (declining order)
- Many advantages:
 - Leading 0 → Positivé, Leading 1 → Negative

0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	-8
1000 1001	-8 -7
1001	-7
1001 1010	-7 -6
1001 1010 1011	-7 -6 -5
1001 1010 1011 1100	-7 -6 -5 -4

- Lets consider a 4-bit representation of numbers, 16 combinations are possible
- Split in to two halves
 - First half → Positive (same as before)
 - Second half → Negative (declining order)
- Many advantages:
 - Leading 0 → Positive, Leading 1 → Negative
 - Test only one bit to check positive/negative

0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	-8
1000	-8 -7
1001	-7
1001	-7 -6
1001 1010 1011	-7 -6 -5
1001 1010 1011 1100	-7 -6 -5 -4

- Lets consider a 4-bit representation of numbers, 16 combinations are possible
- Split in to two halves
 - First half → Positive (same as before)
 - Second half → Negative (declining order)
- Many advantages:
 - Leading 0 → Positive, Leading 1 → Negative
 - Test only one bit to check positive/negative
 - Made hardware implementation simple

0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	-8
1000	-8 -7
1001	-7
1001	-7 -6
1001 1010 1011	-7 -6 -5
1001 1010 1011 1100	-7 -6 -5 -4

1	0	1	1
	2 ²	2 ¹	20

0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	-8
1000 1001	-8 -7
1001	-7
1001 1010	-7 -6
1001 1010 1011	-7 -6 -5
1001 1010 1011 1100	-7 -6 -5 -4

1	0	1	1
-2^{3}	2 ²	2 ¹	2 ⁰

0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	-8
1000 1001	-8 -7
1001	-7
1001 1010	-7 -6
1001 1010 1011	-7 -6 -5
1001 1010 1011 1100	-7 -6 -5 -4

1	0	1	1
-2^{3}	2 ²	2 ¹	2 ⁰

$$= 1X(-2^{3}) + 0X(2^{2}) + 1X(2^{1}) + 1X(2^{0})$$

= -8 + 0 + 2 + 1 = -5

0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	-8
1000	-8 -7
1001	-7
1001	-7 -6
1001 1010 1011	-7 -6 -5
1001 1010 1011 1100	-7 -6 -5 -4

0	0	1	1
-2^{3}	2 ²	2 ¹	20

$$= 0X(-2^{3}) + 0X(2^{2}) + 1X(2^{1}) + 1X(2^{0})$$

= 0 + 0 + 2 + 1 = 3

0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	-8
1000	-8 -7
1001	-7
1001	-7 -6
1001 1010 1011	-7 -6 -5
1001 1010 1011 1100	-7 -6 -5 -4

• Determine the binary value of -27 in 2's complement representation using 8 bits

+27 in binary is: 0001 1011

• Determine the binary value of -27 in 2's complement representation using 8 bits

+27 in binary is: 0001 1011

Bitwise complement: 1110 0100

• Determine the binary value of -27 in 2's complement representation using 8 bits

+27 in binary is: 0001 1011

Bitwise complement: 1110 0100

Add 1: + 1

• Determine the binary value of -27 in 2's complement representation using 8 bits

```
+27 in binary is: 0001 1011
```

Bitwise complement: 1110 0100

Add 1: + 1

1110 0101

2's complement for -27

• Determine the binary value of -27 in 2's complement representation using 8 bits

+27 in binary is: 0001 1011

Bitwise complement: 1110 0100

Add 1: + 1

1110 0101

Verify:

 $= 1 X (-2^{7}) + 1X2^{6} + 1 X 2^{5} + 0 X2^{4}$ $+ 0 X 2^{3} + 1 X 2^{2} + 0 X 2^{1} + 1X 2^{0}$

2's complement for -27

$$= -128 + 64 + 32 + 0 + 0 + 4 + 0 + 1$$

 $= -27$

Negate -7

-7= 1001

Bitwise complement: 0110

Add 1: + 1

0111

0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	-8
1000 1001	-8 -7
	_
1001	-7
1001 1010	-7 -6
1001 1010 1011	-7 -6 -5
1001 1010 1011 1100	-7 -6 -5 -4

Range Extension

- Range of numbers that can be expressed is extended by increasing the bit length
- Sign extension shortcut
 - Rule is to move the sign bit to the new leftmost position and fill in with copies of the sign bit
 - For positive numbers, fill in with zeros, and for negative numbers, fill in with ones
 - This is called sign extension

Sign Extension

• Example: show the representation of +4 and -4 for 4 bits and 8 bits

+4: 0100 0000 0100

-4: 1100 1111 1100