Fundamentals of Information & Network Security ECE 471/571

Lecture #13: Polynomial Arithmetic and Galois Field
Instructor: Ming Li
Dept of Electrical and Computer Engineering
University of Arizona

Figure 5.1 Groups, Rings, and Fields

Figure 5.2 Properties of Groups, Rings, and Fields

Fields

 A field F, sometimes denoted by {F, +,* }, is a set of elements with two binary operations, called addition and multiplication, such that for all a, b, c in F the following axioms are obeyed:

(A1-M6)

F is an integral domain; that is, F satisfies axioms A1 through A5 and M1 through M6

(M7) Multiplicative inverse:

For each a in F, except 0, there is an element a^{-1} in F such that $aa^{-1} = (a^{-1})a = 1$

In essence, a field is a set in which we can do addition, subtraction, multiplication, and division without leaving the set. Division is defined with the following rule: $a/b = a(b^{-1})$

Familiar examples of fields are the rational numbers, the real numbers, and the complex numbers. Note that the set of all integers is not a field, because not every element of the set has a multiplicative inverse.

Types of Fields

Figure 5.3 Types of Fields

Addition modulo 8

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

Multiplication modulo 8

×	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

Additive and multiplicative inverses modulo 8

w	-w	w^{-1}
0	0	_
1	7	1
2	6	_
3	5	3
4	4	_
5	3	5
6	2	_
7	1	7

Addition modulo 7

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

Multiplication modulo 7

×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Additive and multiplicative inverses modulo 7

w	-w	w^{-1}
0	0	
1	6	1
2	5	4
3	4	5
4	3	2
5	2	3
6	1	6

GF(p) is defined with the following properties

- 1. GF(p) consists of p elements
- 2. The binary operations + and * are defined over the set. The operations of addition, subtraction, multiplication, and division can be performed without leaving the set. Each element of the set other than 0 has a multiplicative inverse
- We have shown that the elements of GF(p) are the integers $\{0, 1, \ldots, p-1\}$ and that the arithmetic operations are addition and multiplication mod p

Treatment of Polynomials

Figure 5.4 Treatment of Polynomials

$$x^{3} + x^{2} + 2$$

$$+ (x^{2} - x + 1)$$

$$x^{3} + 2x^{2} - x + 3$$

(a) Addition

$$x^{3} + x^{2} + 2$$

$$- (x^{2} - x + 1)$$

$$x^{3} + x + 1$$

(b) Subtraction

(c) Multiplication

$$\begin{array}{r}
 x + 2 \\
 x^{2} - x + 1 \overline{\smash)x^{3} + x^{2}} + 2 \\
 \underline{x^{3} - x^{2} + x} \\
 \underline{2x^{2} - x + 2} \\
 \underline{2x^{2} - 2x + 2} \\
 x
 \end{array}$$

(d) Division

Figure 5.5 Examples of Polynomial Arithmetic

Polynomial Division

- Consider polynomials over the field F. The set of such polynomials is a ring (i.e., polynomial ring). Polynomial division is not necessarily exact
- We can write any polynomial in the form:

$$f(x) = q(x) g(x) + r(x)$$

- r(x) can be interpreted as being a remainder
- So $r(x) = f(x) \mod g(x)$
- If there is no remainder we can say g(x) divides f(x)
 - Written as g(x) / f(x)
 - We can say that g(x) is a **factor** of f(x)
 - Or g(x) is a **divisor** of f(x)
- A polynomial f(x) over a field F is called irreducible if and only if f(x) cannot be expressed as a product of two polynomials, both over F, and both of degree lower than that of f(x)
 - An irreducible polynomial is also called a prime polynomial

Example of Polynomial Arithmetic Over GF(2)

(Figure 5.6 can be found on page 137 in the textbook)

$$x^{7} + x^{5} + x^{4} + x^{3} + x + 1$$

$$+ (x^{3} + x + 1)$$

$$x^{7} + x^{5} + x^{4}$$

(a) Addition

$$x^{7} + x^{5} + x^{4} + x^{3} + x + 1$$

$$-(x^{3} + x + 1)$$

$$x^{7} + x^{5} + x^{4}$$

(b) Subtraction

(c) Multiplication

$$\begin{array}{r}
 x^{4} + 1 \\
 x^{7} + x^{5} + x^{4} + x^{3} + x + 1 \\
 \underline{x^{7} + x^{5} + x^{4}} \\
 \underline{x^{3} + x + 1} \\
 \underline{x^{3} + x + 1}
 \end{array}$$

(d) Division

Figure 5.6 Examples of Polynomial Arithmetic over GF(2)

Polynomial Arithmetic Modulo $(x^3 + x + 1)$

		000	001	010	011	100	101	110	111
	+	0	1	X	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
000	0	0	1	X	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
001	1	1	0	x + 1	X	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$
010	X	X	x + 1	0	1	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$
011	x + 1	x + 1	х	1	0	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2
100	x^2	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	х	x + 1
101	$x^2 + 1$	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$	1	0	x + 1	X
110	$x^2 + x$	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$	X	x + 1	0	1
111	$x^2 + x + 1$	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2	x + 1	х	1	0

(a) Addition

		000	001	010	011	100	101	110	111
	×	0	1	X	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
000	0	0	0	0	0	0	0	0	0
001	1	0	1	X	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
010	X	0	x	x^2	$x^2 + x$	x + 1	1	$x^2 + x + 1$	$x^2 + 1$
011	x + 1	0	x + 1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	x^2	1	х
100	x^2	0	x^2	x + 1	$x^2 + x + 1$	$x^2 + x$	х	$x^2 + 1$	1
101	$x^2 + 1$	0	$x^2 + 1$	1	x^2	X	$x^2 + x + 1$	x + 1	$x^2 + x$
110	$x^2 + x$	0	$x^2 + x$	$x^2 + x + 1$	1	$x^2 + 1$	x + 1	x	x^2
111	$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + 1$	х	1	$x^2 + x$	x^2	x + 1

(b) Multiplication

Arithmetic in GF(2³)

		000	001	010	011	100	101	110	111
	+	0	1	2	3	4	5	6	7
000	0	0	1	2	3	4	5	6	7
001	1	1	0	3	2	5	4	7	6
010	2	2	3	0	1	6	7	4	5
011	3	3	2	1	0	7	6	5	4
100	4	4	5	6	7	0	1	2	3
101	5	5	4	7	6	1	0	3	2
110	6	6	7	4	5	2	3	0	1
111	7	7	6	5	4	3	2	1	0

(a) Addition

Arithmetic in GF(2³)

		000	001	010	011	100	101	110	111
	×	0	1	2	3	4	5	6	7
000	0	0	0	0	0	0	0	0	0
001	1	0	1	2	3	4	5	6	7
010	2	0	2	4	6	3	1	7	5
011	3	0	3	6	5	7	4	1	2
100	4	0	4	3	7	6	2	5	1
101	5	0	5	1	4	2	7	3	6
110	6	0	6	7	1	5	3	2	4
111	7	0	7	5	2	1	6	4	3

(b) Multiplication

Arithmetic in GF(2³)

w	-w	w^{-1}
0	0	_
1	1	1
2	2	5
3	3	6
4	4	7
5	5	2
6	6	3
7	7	4

(c) Additive and multiplicative inverses

Computational Considerations

- Since coefficients are 0 or 1, they can represent any such polynomial as a bit string
- Addition becomes XOR of these bit strings
- Multiplication is shift and XOR
 - cf long-hand multiplication
- Modulo reduction is done by repeatedly substituting highest power with remainder of irreducible polynomial (also shift and XOR)