Short-term Hands-on Supplementary Course on C programming

Session 9: Pointers

Nandakishor. V Nitheesh Kumar. N Sanjay Rojar U

Agenda

- 1. What are pointers?
- 2. Declaring and using pointers
- 3. Pointer arithmetic
- 4. Double Pointers
- 5. Pointers and Arrays
- 6. Static vs Dynamic Memory Allocation
- 7. Dynamic Memory Allocation in C
 - a. Primitive Types
 - b. Arrays and Strings
 - c. Functions
- 8. Tutorial: Arrays and Pointers

Pointers

Pointers in C language is a variable which stores the address of another variable.

Declaring and using Pointers

Computer		Programmers		5
Address	Content	Name	Туре	Value
90000000	00	1)		
90000001	00	sum	sum int 00 (4 bytes)	000000FF(255 ₁₀)
90000002	00			
90000003	FF			
90000004	FF	age	short (2 bytes)	FFFF(-1 ₁₀)
90000005	FF			
90000006	1F			
90000007	FF			
90000008	FF			
90000009	FF	averge	double (8 bytes)	1FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
9000000A	FF			
9000000B	FF			
9000000C	FF			
9000000D	FF			
900000E	90			
9000000F	00	ptrSum	int* (4 bytes)	90000000
90000010	00			
90000011	00	J	(4 bytes)	
Note: All num	bers in hexadecir	mal		-

```
type *ptr;
// or
type* ptr;
// or
type * ptr;
```

```
1 #include <stdio.h>
2
3 v int main(void) {
4    int sum = 255;
5    short age = -1;
6    double average =
4.45015E-308;
7    int* ptrSum = &sum;
8 }
```

Double Pointers

The first pointer is used to store the address of the variable. And the second pointer is used to store the address of the first pointer.

Pointers & Arrays

Memory Allocation in C

Static vs. Dynamic Memory Allocation

Dynamic Memory	Static Memory		
Allocated at run time	Allocated at compile time		
Memory can be altered during program execution	Memory cannot be altered during program execution		
Example: Linked list	Example: Array		

• The heap is often called unnamed variable space

Dynamic Memory Allocation in C

Syntax:

- void *malloc(size_t size);
- void *calloc(size_t num, size_t size);
- void *realloc(void *ptr, size_t new_size);
- void free(void* ptr);

Any Queries!?

Thank You for attending!

Contact us regarding any questions through email nandakishor2010608@ssn.edu.in
nitheesh2010343@ssn.edu.in
sanjayrojar2010085@ssn.edu.in

