Seminar 4 — Supliment Densitatea lui \mathbb{Q} în \mathbb{R}

1 Principiul lui Arhimede

Vom aborda problema densității lui Q în R pas cu pas:

Lemă 1.1: Fie $S \subseteq \mathbb{Z}$ o submulțime nevidă. Presupunem că S este mărginită superior. Atunci S are un cel mai mare element.

Demonstrație. Deoarece S este nevidă și mărginită superior, rezultă că există $w = \sup S$. Arătăm că $w \in S$.

Dacă o mulțime conține supremumul, acela este și cel mai mare element al său, evident. Ne vom baza pe această observație pentru a demonstra. Presupunem că $w \notin S$. Deoarece w-1 < 2, rezultă că există $m \in S$, cu $w-1 < m \le w$. Cum $w \notin S$, inegalitățile pot fi ambele luate ca stricte.

Continuăm, putînd găsi $n \in S$, cu m < n < w. Deci:

$$w - 1 < m < n < w$$
.

Dar, din n < w, avem -w < -n, pe care o putem aduna cu cea de mai sus și obținem -1 < m - n. Deoarece m < n, avem n - m > 0, deci 0 < n - m < 1. Cum $m, n \in S$, sînt numere întregi, deci $n - m \in \mathbb{Z}$, contradicție.

Concluzia este că $w \in S$.

Observație 1.1: De remarcat este faptul că acest argument nu poate funcționa pentru o mulțime continuă. În demonstrație, am folosit în mod esențial faptul că orice număr întreg are un predecesor și un succesor, lucru care nu este adevărat pentru \mathbb{R} , de exemplu.

Similar se demonstrează și:

Lemă 1.2: Fie $S \subseteq \mathbb{Z}$ și presupunem $S \neq \emptyset$ și S mărginită inferior. Atunci S are un cel mai mic element.

Din aceste rezultate, avem:

Teoremă 1.1: \mathbb{Z} este nemărginită și superior, și inferior.

Demonstrație. Rezultatul reiese imediat din cele două leme de mai sus, deoarece \mathbb{Z} nu are nici un cel mai mare element, nici un cel mai mic element.

Teoremă 1.2 (Principiul lui Arhimede): *Fie* $x \in \mathbb{R}$ *și* x > 0. *Atunci există un întreg pozitiv* n*, astfel încît* $\frac{1}{n} < x$.

Demonstrație. Fie x ca în teoremă. Atunci $\frac{1}{x}$ nu poate fi o margine superioară pentru \mathbb{Z} , deoarece \mathbb{Z} nu este mărginită superior. Așadar, putem găsi $n \in \mathbb{Z}$, chiar n > 0, cu $\frac{1}{x} < n$.

Rezultă
$$\frac{1}{n} < x$$
.

Această teoremă ne arată că, alegînd n suficient de mare, putem face $\frac{1}{n}$ cît de aproape de 0 dorim.

2 Densitatea lui Q în R

Definiție 2.1: O submulțime $S \subseteq \mathbb{R}$ se numește *densă în* \mathbb{R} dacă între oricare două numere reale există un element al lui S.

Echivalent, $\forall a < b \in \mathbb{R}$, $S \cap (a, b) \neq \emptyset$.

Rezultatul principal este următorul:

Teoremă 2.1: \mathbb{Q} este densă în \mathbb{R} . Cu alte cuvinte, între oricare două numere reale există un număr rațional.

Demonstrație. Fie a < b două numere reale. Atunci b - a > 0, iar din principiul lui Arhimede, putem alege $n \in \mathbb{Z}$, astfel încît:

$$0 < \frac{1}{n} < b - a \Leftrightarrow a < a + \frac{1}{b} < b.$$

Demonstrația se încheie dacă arătăm că există $\mathfrak{m} \in \mathbb{Z}$, cu $\mathfrak{a} < \frac{\mathfrak{m}}{\mathfrak{n}} < \mathfrak{b}$.

Definim:

$$S = \{x \in \mathbb{Z} \mid \frac{x}{n} > \alpha\} = \{x \in \mathbb{Z} \mid x > n\alpha, n > 0\}.$$

Această mulțime este mărginită inferior de na și este nevidă, deoarece \mathbb{Z} nu este mărginită superior. Așadar, S are un cel mai mic element, m. Arătăm că m este întregul căutat.

Cum $\frac{m}{n} > a$, dar $\frac{m-1}{n} \le a$, putem scrie:

$$\frac{\mathfrak{m}}{\mathfrak{n}} = \frac{\mathfrak{m}-1}{\mathfrak{n}} + \frac{1}{\mathfrak{n}} \Rightarrow \mathfrak{a} < \frac{\mathfrak{m}}{\mathfrak{n}} = \frac{\mathfrak{m}-1}{\mathfrak{n}} + \frac{1}{\mathfrak{n}}.$$

Totodată, avem și $a < \frac{m}{n} \leqslant a + \frac{1}{n} < b$, ceea ce încheie demonstrația.

3 Mulțimi complete

Definiție 3.1: O submulțime $S \subseteq \mathbb{R}$ se numește *completă* dacă satisface proprietatea supremumului (implicit, și pe cea a infimumului).

Cu alte cuvinte, S este completă dacă orice submulțime nevidă și mărginită a lui S are și un supremum, si un infimum $\hat{i}n$ S.

De exemplu, [0,1] este completă, (0,1) nu este completă, iar \mathbb{R} este completă.

Propoziție 3.1: Q nu este completă.

Demonstrație. Fie $S = \{x \in \mathbb{Q} \mid 0 < x < \sqrt{2}\} \subseteq \mathbb{Q}$.

Arătăm că Q nu este completă, deoarece S nu satisface proprietatea supremumului.

Cum $\sqrt{2}$ este o margine superioară pentru S, avem sup $S \leqslant \sqrt{2}$. Presupunem inegalitatea strictă. Din densitatea lui Q în \mathbb{R} , găsim $q \in \mathbb{Q}$ cu sup $S < q < \sqrt{2}$. Atunci $q \in S$ și rezultă $q \leqslant \sup S$, iar nu sup $S < q < \sqrt{2}$.

Aşadar, sup $S = \sqrt{2} \notin \mathbb{Q}$, iar demonstrația este încheiată.