Московский Физико-Технический Институт (государственный университет)

Работа 3.4.2 Закон Кюри-Вейсса

Содержание

1	Теоретическая часть	2
2	Экспериментальная установка	2
3	Экспериментальные данные	3
4	Ход работы	3 4
5	Вывод	5

Цель работы:

Изучение температурной зависимости магнитной воприимчивости ферромагнетика выше точки Кюри.

В работе используются:

Катушка самоиндукции с образцом из гадолиния, термостат, частотометр, цифровой вольтметр, LC-автогенератор, термопара медь-константан.

1 Теоретическая часть

Вещества с отличными от нуля атомными магнитными моментами обладают парамагнитными свойствами. Внешнее магнитное поле оринетирует магнитные моменты, которые в отсуствие поля располагались в пространстве хаотическим образом. Однако при $T\to 0$ тепловое движение всё меньше препятствует магнитным моментам атомов оринетироваться в одном направлении при сколь угодно слабом внешнем поле. В ферромагнетиках – под влиянием обменных сил – это происходит при понижении температуры не до абсолютного нуля, а до температуры Кюри Θ . Оказывается, что у ферромагнетиков магнитная восприимчивость должна удовлетворять закону Кюри-Вейсса:

$$\chi \propto \frac{1}{T - \Theta_p},\tag{1}$$

где Θ_p — температура, близкая к температуре Кюри, так как при $T \approx \Theta$ формула (1) недостаточна точна.

2 Экспериментальная установка

Схема установки для проверки закона Кюри-Вейсса показана на рис. ??. Исследуемый ферромагнитный образец (гадолиний) расположен внутри пустотелой катушки самоиндукции, которая служит инудктивностью колебательного конутра, входящего в состав LC-автогенератора. Автогенератор собран на полевом транзисторе КП-103 и смонитрован в виде отдельного блока.

Магнитная воосприимчивость образца χ определяется по изменению самоиндукции катушки. Обозначив через L самоиндукцию катушки с образцом и через L_0 – её самоиндукцию в отсутствие образца, получим

$$(L-L_0) \propto \chi$$

При изменении самоиндукции образца меняется период колебаний автогенератора:

$$\tau = 2\pi\sqrt{LC}$$

где C – ёмкость конутра автогенератора. Период колебаний в отсуствие образца опредлеяется самоиндукцией пустой катушки:

$$\tau_0 = 2\pi \sqrt{L_0 C}$$

m Pa foota 3.4.2 m 4 $m Xog \ pa footb$

Отсюда находим:

$$(L-L_0) \propto \tau^2 - \tau_0^2$$

и,следовательно,

$$\chi \propto \tau^2 - \tau_0^2$$

Итак, закон Кюри-Вейсса справедлив, если выполнено соотношение:

$$\frac{1}{\chi} \propto (T - \Theta_p) \propto \frac{1}{\tau^2 - \tau_0^2}$$

3 Экспериментальные данные

Константа термопары k=24 град/мв $au_0=6,9092$ мкс - период колебаний в отсутствие образца.

4 Ход работы

4.1 Измерение величин, необходимых для вычисления температуры Кюри

17.11.21 Лаба огонь. точнее лед Сенсей

Константа термопары k=24 град/мв, поэтому ЭДС при допустимой $\triangle T=0,5$ градусов Цельсия не должна превышать $\frac{\triangle T}{k}\approx 0,021$ мВ.

Исследуем зависимость периода колебаний τ по частотометру, а температуру T - по показаниям дисплея и цифровому вольтметру ($T = T_{display} + k \times \Delta U$), учитывая знак ЭДС (термопара подключена так, что при знаке "+"на табло вольтметра температура образца выше температуры рабочей жидкости). Диапазон измерений $13 \div 41$ градусов цельсия;

Данные измерений приведены в таблице:

$T_{display}$	au	$\triangle U$	$\tau^2 - \tau_0^2$	T	$\frac{1}{\tau^2 - \tau_0^2}$
$\sigma_T = 0,01$	$\sigma_{ au}=0,0005$ MKC	$\sigma_{\triangle U} = 0,0005 \text{ MB}$	$\sigma_{ au^2- au_0^2} = 0,007$ MKC	$\sigma_T \approx 0,84$ г.Ц	$\sigma \frac{1}{\tau^2 - \tau_0^2} = 0,0047$
13,08	7,968	-0,016	15,7519	12,696	0,0634
15,05	7,934	-0,018	15,2113	14,618	0,0657
17,04	7,863	-0,017	14,0897	16,632	0,0709
19,06	7,735	-0,015	12,0931	18,7	0,0827
21,08	7,54	-0,014	9,1145	20,744	0,1097
23,04	7,369	-0,018	6,5661	22,608	0,1523
25,03	7,207	-0,019	4,2038	25,486	0,2379
27,04	7,139	-0,018	3,2283	26,608	0,3098
29,05	7,1	-0,017	2,6729	28,642	0,3741
31,05	7,075	-0,015	2,3186	30,69	0,4313
33,04	7,058	-0,014	2,0783	32,704	0,4811
35,02	7,045	-0,017	1,8949	34,612	0,5277
37,01	7,036	-0,017	1,7682	36,602	0,5655
39,01	7,028	-0,016	1,6557	38,626	0,6039
41,04	7,022	-0,014	1,5714	40,704	0,6363

4.2Расчёт погрешностей

Приведем расчёт погрешностей вычисления последних трёх величин:

1)
$$T = T_{display} + k \times \triangle U$$

$$(\frac{\sigma_T}{T})^2 = (\frac{\sigma_{T_{display}}}{T_{display}})^2 + (k \times \frac{\sigma_{\triangle U}}{\triangle U})^2$$

Суммируем и усредняем каждую переменную, чтобы найти среднее значение: $(\frac{\sigma_T}{T})^2=(\frac{0.01}{27.04})^2+(\frac{0.0005}{-0.016})^2\approx 1,367\cdot 10^{-7}+0,097\approx 0,00097$

$$\left(\frac{\sigma_T}{T}\right)^2 = \left(\frac{0.01}{27.04}\right)^2 + \left(\frac{0.0005}{-0.016}\right)^2 \approx 1,367 \cdot 10^{-7} + 0,097 \approx 0,00097$$

 $\sigma_T \approx 0.03 \cdot 27,04 \approx 0.84$

$$\sigma_T pprox 0,84$$
 г.Ц

2)
$$\sigma_{\tau^2 - \tau_0^2} = \frac{d(\tau^2 - \tau_0^2)}{d\tau} \sigma_{\tau} = 2\tau \sigma_{\tau}$$

$$\sigma_{\tau^2 - \tau_0^2} = 0,007 \text{ MKC}$$

$$\frac{d(\frac{1}{\tau^2 - \tau^2})}{d\tau} \sigma_{\tau} = 2\tau \sigma_{\tau}$$

$$\sigma_{ au^2- au_0^2} = 0,007$$
 MKC

3)
$$\sigma \frac{1}{\tau^2 - \tau_0^2} = \frac{d(\frac{1}{\tau^2 - \tau_0^2})}{d\tau} \sigma_\tau = \frac{2\tau\sigma_\tau}{(\tau^2 - \tau_0^2)^2}$$

$$\sigma_{\frac{1}{\tau^2 - \tau_0^2}} = 0,0047$$

4.3График экспериментальной зависимости

Экстраполируя полученную прямую к оси абсцисс, определим парамагнитную точку Кюри θ_p для гадолиния.

$$hilde{\theta}_p = 19, 1$$
 г.Ц

Расчёт и построение прямой:

$$y = a + bx$$

$$0,1523 = a + 22,608b$$

$$0,2378 = a + 24,574b$$

Таким образом, коэффициенты прямой:

 Работа 3.4.2
 5
 Вывод

a	b
-0,8311	0,0435
$\sigma_a = 0.09$	$\sigma_b = 0,005$

Погрешность полученной величины:

$$\sigma_{\theta_p} = \theta_p \sqrt{(\frac{\sigma_a}{a})^2 + (\frac{\sigma_b}{b})^2} \approx 19, 1\sqrt{0,0117 + 0,0132} \approx 3,1178 \approx 3,1$$

Тогда
$$\theta_p=19,1\pm3,1$$
 г.Ц

Табличное значение для гадолиния: $\theta_t = 20, 2$ г.Ц

Поэтому полученный экспериментально результат имеет погрешность 5%

5 Вывод

По результатам проделанной работы мы получили парамагнитную точку Кюри для гадолиния. Её значение $\theta_p=19,1\pm3,1$ г.Ц. Расхождение с теоретическим значением - $\theta_t=20,2$ - составило 5%.

Как и предполагалось в теоретическом сведении, эта точка выше обычной точки Кюри, которая равна примерно 16 - 17 градусов.

Оценить обычную точку Кюри не удалось из-за специфики графика.