

X	
	The equivalence class
	[b] = {a+ G a~ b }
4	= fat G ab EH 3
	= (Hb) = right west
	118M 222
	It follows from the properties of equivolence relation that the right cosets give a
	distinct
	relation that the right cosets give a
	partition of G into disjoint subsets.
14	
	Def. The number of right cosets of H
V. W.	is alled the index of H in G (devoted
i.	Is colled bu malex of 17 in a capabled
	[e: H])
100g	
	TI C C : 1 1 5 2000 0 - 1 11 0
	The Suppose G is a finite group and H a substrap of G. Then:
	Subgroup of G. Then: (i) 1Hb1 = 1H1 for all be 6
	(L) ([G: H] X H = G
14 17 T	
*0.94	2 no fina 141 161
	I'm form mon,

15: We prime (1). (2) and (3) are then simple consequences of (1) and the previous observations. We prome (1) by giving a bijection between H and Hb. het f: H -> Hb olifined by f(h) = hb for all h + H. We prime that if is bijective by proving that it is surjective and injective (1) If is surjective. Given hb & Hb. clearly +(h) = hb. (e) of is injective; Suppose f(h) = f(h) for some h, h'tH. Then hb = h'b. Multiplying on the right by b we obtain hah. This shows that f is injective.