Introducción a la Lógica y la Computación - Examen Final 06/12/2016

Apellido y Nombre:

(1) (a) Para cada uno de los posets P_1 , P_2 y P_3 indique si son o no reticulados y en caso afirmativo indique si son o no distributivos. Justifique su respuesta.

- (b) Dé el diagrama de Hasse de todos los reticulados finitos distributivos con exactamente dos átomos y tres irreducibles. Justifique.
- (2) El teorema de coincidencia establece que si $f p_i = g p_i$ para todo p_i que ocurre en P, entonces $[\![P]\!]_f = [\![P]\!]_g$. Demuestre el teorema de coincidencia utilizando inducción en sub-fórmulas.
- (3) Construya una derivación sin usar (RAA) que muestre:

$$\{P \lor \neg P\} \vdash ((P \to Q) \to P) \to P$$

- (4) Sea Δ un conjunto consistente maximal tal que $p_i \in \Delta$ para todo i. Decida si las siguientes proposiciones están en Δ :
 - (a) $p_1 \wedge (p_2 \vee \neg \bot)$
 - (b) $\perp \leftrightarrow \neg (p_0 \to \neg p_3)$
- (5) Determinar si los siguientes lenguajes son regulares y/o libres de contexto. Justificar ambas respuestas.
 - (a) Palabras en el alfabeto $\{a,b\}$ que tengan el doble de a's que de b's.
 - (b) Palabras en el alfabeto $\{a, b\}$ que tengan una cantidad par de a's e impar de b's.
 - (c) $L = \{(babb)^j : j \ge 0\}.$

Ejercicios para alumnos libres:

(1) Sea L un reticulado distributivo finito. Determinar cuáles de las siguientes propiedades son válidas. Si lo son, demostrarlas, sino dar un contraejemplo.

1

- (a) $x \land (y \lor z) \le (x \land y) \lor (x \land z)$
- (b) Todo elemento tiene complemento
- (c) No hay ningún elemento con dos complementos