Prueba de evaluación continua de Geometrías Lineales Curso 2020/21

Sea E un espacio euclidiano de dimensión 4 y \mathcal{R} un sistema de referencia euclidiano de E.

Consideremos dos planos M y N en E cuyas ecuaciones respecto al sistema de referencia \mathcal{R} son:

$$M: \begin{cases} x_2 = 0 \\ x_3 - x_4 = 0 \end{cases}, N: \begin{cases} x_1 - x_2 = 0 \\ x_3 - x_4 = -1 \end{cases}$$

- 1. Obtener una base para el subespacio vectorial de \overrightarrow{E} : $(\overrightarrow{M} + \overrightarrow{N})^{\perp}$.
- 2. Calcular d(M, N).
- 3. Encontrar una matriz de una isometría $f: E \to E$ tal que f(M) = Ny f(N) = M. Indicación: usar

$$\overrightarrow{f}((\overrightarrow{M}+\overrightarrow{N})^{\perp}+(\overrightarrow{M}\cap\overrightarrow{N}))=(\overrightarrow{M}+\overrightarrow{N})^{\perp}+(\overrightarrow{M}\cap\overrightarrow{N})).$$

Solución.

1. Por un lado, \overrightarrow{M} : $x_2 = 0 \\ x_3 - x_4 = 0$ con base ((1,0,0,0),(0,0,1,1)) y entonces $\overrightarrow{M}^{\perp}$ tiene por base: ((0,1,0,0),(0,0,1,-1)).

Para \overrightarrow{N} : $\begin{cases} x_1 - x_2 = 0 \\ x_3 - x_4 = 0 \end{cases}$ con base ((1, 1, 0, 0), (0, 0, 1, -1)), entonces $\overrightarrow{N}^{\perp}$ tiene por base: ((1,-1,0,0),(0,0,1,-1)). Como $(\overrightarrow{M}+\overrightarrow{N})^{\perp}=\overrightarrow{M}^{\perp}\cap\overrightarrow{N}^{\perp}$ una base es ((0,0,1,-1)).

Otro método: Las ecuaciones de $\overrightarrow{M} \cap \overrightarrow{N}$ son $x_1 = x_2 = 0 \\ x_3 - x_4 = 0$, luego $\dim \overrightarrow{M} \cap \overrightarrow{N} = 1$. Por tanto $\dim \overrightarrow{M} + \overrightarrow{N} = \dim \overrightarrow{M} + \dim \overrightarrow{N} - \dim \overrightarrow{M} \cap \overrightarrow{N} = 3$, es decir un hiperplano. Una ecuación de $\overrightarrow{M} + \overrightarrow{N}$ es $x_3 - x_4 = 0$ (pues es común a las ecuación se de \overrightarrow{M} y \overrightarrow{N}). Como dim $(\overrightarrow{M} + \overrightarrow{N})^{\perp} = 4 - \dim \overrightarrow{M} + \overrightarrow{N} = 1$ y de la ecuación $x_3 - x_4 = 0$ se tiene $(0, 0, 1, -1) \in (\overrightarrow{M} + \overrightarrow{N})^{\perp}$, luego ((0, 0, 1, -1))es una base.

2. Por la Proposición 9.3 del texto base, para calcular la distancia entre M y N hemos de encontrar $p \in M$ y $q \in N$ tal que $\overrightarrow{pq} \in (\overrightarrow{M} + \overrightarrow{N})^{\perp}$.

Para ello tomamos un punto genérico de M: $p = (\alpha, 0, \beta, \beta)$ y ahora tenemos que exigir que p sea tal que $p + (\overrightarrow{M} + \overrightarrow{N})^{\perp}$ corte a N. En nuestro caso hemos de exigir: $q = p + \lambda(0, 0, 1, -1) \in N$. Como

$$q = p + \lambda(0, 0, 1, -1) = (\alpha, 0, \beta + \lambda, \beta - \lambda)$$

Para que $q \in N$ debe ser: $\begin{cases} x_1 - x_2 = 0 \\ x_3 - x_4 = -1 \end{cases}$; luego: $\begin{cases} \alpha = 0 \\ 2\lambda = -1 \end{cases}$, por tanto $\lambda = -\frac{1}{2}$ y como $\overrightarrow{pq} = \lambda(0,0,1,-1) = -\frac{1}{2}(0,0,1,-1)$, tenemos que:

$$d(M,N) = d(p,q) = \|\overrightarrow{pq}\| = \frac{\sqrt{2}}{2}$$

3. Por una parte $\overrightarrow{M} \cap \overrightarrow{N}$ tiene por ecuaciones: $\begin{cases} x_1 = x_2 = 0 \\ x_3 - x_4 = 0 \end{cases}$ y por otra $(\overrightarrow{M} + \overrightarrow{N})^{\perp}$ tiene por ecuaciones $\begin{cases} x_1 = x_2 = 0 \\ x_3 + x_4 = 0 \end{cases}$, de donde $(\overrightarrow{M} + \overrightarrow{N})^{\perp} + (\overrightarrow{M} \cap \overrightarrow{M})^{\perp}$ \overrightarrow{N}) es $x_1 = x_2 = 0$.

$$\overrightarrow{f}((\overrightarrow{M}+\overrightarrow{N})^{\perp}+(\overrightarrow{M}\cap\overrightarrow{N}))=(\overrightarrow{M}+\overrightarrow{N})^{\perp}+(\overrightarrow{M}\cap\overrightarrow{N})).$$

se tiene que $\overrightarrow{f}(0,0,x_3,x_4) = (0,0,x_3',x_4')$, con lo cual la matriz de \overrightarrow{f} tiene la forma: $\begin{bmatrix} *&*&0&0\\ *&*&0&0\\ *&*&*&* \end{bmatrix}$, y por ser matriz ortogonal: $\begin{bmatrix} *&*&0&0\\ *&*&0&0\\ 0&0&*&* \end{bmatrix}$.

Sea la siguiente matriz la de una isometría como la bus

$$\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
x & a & b & 0 & 0 \\
y & c & d & 0 & 0 \\
z & 0 & 0 & a' & b' \\
t & 0 & 0 & c' & d'
\end{array}\right]$$

Por la condición f(M) = N, se tiene:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ x & a & b & 0 & 0 \\ y & c & d & 0 & 0 \\ z & 0 & 0 & a' & b' \\ t & 0 & 0 & c' & d' \end{bmatrix} \begin{bmatrix} 1 \\ \alpha \\ 0 \\ \beta \\ \beta \end{bmatrix} \in N$$

de donde tenemos:

$$\left. \begin{array}{l} x + a\alpha - (y + c\alpha) = x - y + (a - c)\alpha = 0 \\ z + a'\beta + b'\beta - (t + c'\beta + d'\beta) = z - t + [a' + b' - (c' + d')]\beta = -1 \end{array} \right\}$$

para todo $\alpha, \beta \in \mathbb{R}$. Luego:

$$x - y = 0, \ a - c = 0$$

 $z - t = -1, \ a' + b' - (c' + d') = 0$

Vamos ahora a imponer f(N) = M:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ x & a & b & 0 & 0 \\ x & a & d & 0 & 0 \\ z & 0 & 0 & a' & b' \\ z + 1 & 0 & 0 & c' & d' \end{bmatrix} \begin{bmatrix} 1 \\ \alpha \\ \alpha \\ \beta \\ \beta + 1 \end{bmatrix} \in M$$

Luego:

$$x + a\alpha + d\alpha = 0 z + a'\beta + b'(\beta + 1) - (z + 1 + c'\beta + d'(\beta + 1)) = 0$$

para todo $\alpha, \beta \in \mathbb{R}$. Entonces:

$$x = 0, d = -a$$

$$b' - d' - 1 = 0, a' + b' - (c' + d') = 0$$

De donde tenemos que la matriz tiene la forma:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & a & b & 0 & 0 \\ 0 & a & -a & 0 & 0 \\ z & 0 & 0 & a' & b' \\ z+1 & 0 & 0 & c' & b'-1 \end{bmatrix}$$

Como las columnas de la matriz de \overrightarrow{f} son las coordenadas de una base ortonormal, se tiene que $a=\pm\frac{\sqrt{2}}{2},\ b=a=\pm\frac{\sqrt{2}}{2}.$ Además (0,0,b',b'-1), tiene módulo 1, de donde b'=1 o b'=0. Si b'=1, como a'+b'-(c'+d')=0y al ser (a',c') ortogonal a (0,1), a'=0 y c'=1. Finalmente si b'=0, se tiene a' = -1, c' = 0.

Por tanto las (infinitas) soluciones posibles son:

$$\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & a & a & 0 & 0 \\
0 & a & -a & 0 & 0 \\
z & 0 & 0 & 0 & 1 \\
z+1 & 0 & 0 & 1 & 0
\end{bmatrix}$$

$$\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 \\
0 & a & a & 0 & 0 \\
0 & a & -a & 0 & 0 \\
z & 0 & 0 & -1 & 0 \\
z+1 & 0 & 0 & 0 & -1
\end{array}\right]$$

donde $a=\pm\frac{\sqrt{2}}{2}$ y z es un número real. Nota: No se pedían todas las soluciones, bastaba con obtener una.