CS & IT

ENGINEERING

Combinational Circuit

Lecture No. - 01

By- CHANDAN SIR

01 Comparator

02 Question Practice

03 Discussion

combinational circuit

A circuit without (memory)

Tolp depends only on present state of input.

Designing

Comparator

MUX

JE-MUX

- Encoder

v Decoder

VHA

V FA

1 H.S.

J F.S.

V Serial adder

v parallel adder

LA(A

Multiplier

Designing of combinational circuit,

Stept. Find the no. of inputs and outputs.

Stepa. Write the touth table

step3. Write the Logical expression

Step4. Minimization

Step5: Hardware Implementation.

DESIGNING OF COMBINATIONAL CIRCUIT

- Step 1. Find the number of inputs and outputs.
- Step 2. Write the truth table.
- Step 3. Write the logical expression.
- Step 4. Minimize the logical expression.
- Step 5. Hardware implementation.

DESIGNING OF COMBINATIONAL CIRCUIT

Design a one-bit comparator

Step 1.

Step 2. Truth Table

Α	В	X (A70)	Y (AKB)	Z(A=B
0	0	0	0	1
0	1	0	1	0
1	0	1	0	0
1	0	0	0	1

DESIGNING OF COMBINATIONAL CIRCUIT

Step 3. Logical expression

$$X(A > B) = A \overline{R}$$

$$Y(A < B) = \overline{A} - B$$

$$Z(A = B) = \overline{AB} + AB = ABB$$

Step 4. Minimization

- Afready minimize

Step 5. Hardware implementation

$$X(A>B) = AB$$

 $Y(A
 $Z(A=B) = AOB$$

$$\frac{A}{B} = X(A7B)$$

$$A = D0 = AB = Y(A7B)$$

DESIGNING OF COMBINATIONAL CIRCUIT

2. Design a two-Bit comparator?

DESIGNING OF COMBINATIONAL CIRCUIT

Step 2. Truth table

		<u>A</u>		ß	A7B	AKB	A=
	A ₁	A ₀	B ₁	B ₀	x	у	2
0	0	. 0	0.	0	O	0	1
1	0	0	0	1	0	1	O
2	0	0	1	0	0	1_	O
3	0	0	1	1	0	1_	0
3	.0	1	0	0	1	0	0
2	0	1	0	1	0	0	1
6	0	1	1	0	0	1_	0
7	0	1	1	1	0	L	0
®	1	0	0	0	1	0	0
9	1	0	0	1	1	Ò	6
10	1	0	1	0	0	0	1
LL	1	0	1	1	0	1_	O
(1) (1) (1) (1) (1) (1) (1) (1)	1	1	0	0	1	O	Q
(3)	1	1	0	1	1	0	0
(9)	1	1	1	0	1	0	0
15	1	1	1	1	O	O	1

DESIGNING OF COMBINATIONAL CIRCUIT

Step 3. Logical expression

$$X(A > B) = \sum m(4,8,9,12,13,14)$$

 $Y(A < B) = \sum m(1,2,3,6,7,11)$
 $Z(A = B) = \sum m(0,5,10,15)$

DESIGNING OF COMBINATIONAL CIRCUIT

Step 4. Minimization

For Y

DESIGNING OF COMBINATIONAL CIRCUIT

Step 4. Minimization

For Z

FOR ONE BIT COMPARATOR

Total condition = 4

Equal condition = 2

Unequal condition = 2

Greater = Less condition = 1

FOR TWO BIT COMPARATOR

Total condition = 16

Equal condition = 4

Unequal condition = 12

Greater = Less condition = 6

FOR THREE BIT COMPARATOR

Total condition = 64

Equal condition = 8

Unequal condition = 56

Greater = Less condition = 281

'N' BIT COMPARATOR

Total condition = 2^{2n}

Equal condition = 2^n

Unequal condition = $2^{2n} - 2^n$

Greater = Less condition = $(2^{2n} - 2^n)/2$

SHORT TRICK TO USE SEMI MINIMIZED EXPRESSION

Thakyou

