RKHS Notes

Kai Zhang

May 2018

1 Examples of Mercer's Theorem

1.1 R^d

Let $(R^d, <\cdot, \cdot>_E)$ be the Euclidean space. Let $\mathcal{D}=\{1,2,\ldots,d\}$. Given a symmetric positive definite matrix $K\in R^{d\times d}$, find the RKHS $(\mathcal{H}, <\cdot, \cdot>_{\mathcal{H}}, K)$ such that

- $\mathcal{H} \subset R^d$
- $K(\cdot, j) \in \mathcal{H}, \forall j \in \mathcal{D}$
- $<\theta, K(\cdot, j)>_{\mathcal{H}} = \theta_i, \forall \theta \in \mathcal{H}, j \in \mathcal{D}$

, where $K(\cdot, j)$ denotes the j^{th} column vector of the matrix K.

Note that **Moore-Aronszajn Theorem** guarantees the existence and uniqueness of such RKHS. It turns out that the RKHS associated with K is $\mathcal{H}=R^d, <\theta_1, \theta_2>_{\mathcal{H}}=\sum_{n=1}^d \frac{<\theta_1, e_n>_E <\theta_2, e_n>_E}{\lambda_n}$, in which $\{e_n\}_{n=1,2,...,n}$ is an orthonormal set of eigen-vectors of K and λ_n is the corresponding eigen-value. Check condition 3,

$$K = \sum_{n=1}^{d} \lambda_n e_n e_n^T \qquad (Spectral Theorem)$$

$$K(i,j) = \sum_{n=1}^{d} \lambda_n e_n(i) e_n^T(j)$$

$$K(\cdot,j) = \sum_{n=1}^{d} \lambda_n e_n(\cdot) e_n^T(j) = \sum_{n=1}^{d} \lambda_n e_n(j) \cdot e_n$$

$$\theta = \sum_{n=1}^{d} \langle \theta, e_n \rangle_E \cdot e_n$$

$$\langle \theta, K(\cdot,j) \rangle_{\mathcal{H}} = \sum_{n=1}^{d} \langle \theta, e_n \rangle_E \cdot e_n(j) = \theta_j$$

Let's compare the RKHS $(\mathcal{H}, <\cdot, \cdot>_{\mathcal{H}}, K)$ with the Eculidean space $(R^d, <\cdot, \cdot>_E)$ to get some intuition. First, $\mathcal{H}=R^d$ means they contain exactly the same set of vectors; the only difference lies in the inner product. Second, $<\theta,\theta>_{\mathcal{H}}\neq<\theta,\theta>_E$. This indicates that the underlying normed space is changed, which will affect the Tikhonov regularization term $\|\theta\|$ in optimization.

A very simple example is K = I.

1.2 $L_2([a,b])$

Let $(L_2([a,b]), <\cdot, \cdot>_{L_2})$ be the Hilbert space consisting of square-integrable functions $f:[a,b]\to R, \int_a^b f^2(x)dx <\infty$. Given a **continuous** symmetric positive definite function k(x,x'), find the RKHS $(\mathcal{H},<\cdot,\cdot>_{\mathcal{H}},k)$ such that

- $\mathcal{H} \subset L_2([a,b])$
- $k(\cdot, x) \in \mathcal{H}, \forall x \in [a, b]$
- $\langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x), \forall f \in \mathcal{H}, x \in [a, b]$

Since $k(\cdot,x) \in L_2([a,b])$, the integral operator associated with k is T: $f(\cdot) \to g(x) = \langle f(\cdot), k(\cdot,x) \rangle_{L_2}$. Clearly, $g(x) \in L_2([a,b])$. T is a self-adjoint $(\langle Tf, g \rangle_{L_2} = \langle f, Tg \rangle_{L_2})$, positive $(\langle f, Tf \rangle_{L_2} \geq 0)$, linear, continuous, bounded operator, thus by the **Spectral Theorem**, the eigen-values $\{\lambda_n\}_{n=1,2,\dots}$ forms a decreasing sequence with $\lambda_n > 0$, $\lim_{n\to\infty} \lambda_n = 0$ and the orthonormal set of **continuous** eigen-functions $\{e_n\}_{n=1,2,\dots}$ forms a complete basis of $L_2([a,b])$. This means,

- $\forall f \in L_2([a,b]), f = \sum_{n=1}^{\infty} \langle f, e_n \rangle_{L_2} \cdot e_n$; any functions that only differ at a zero-measure set have the same series expansion.
- $\forall f \in L_2([a,b])$, the function sequence $g_m = \sum_{n=1}^m \langle f, e_n \rangle_{L_2} \cdot e_n, m = 1, 2, \dots$ converges in norm to f, i.e., $\lim_{m \to \infty} \|g_m f\|_{L_2} = 0$
- if $f \in C([a,b]) \subset L_2([a,b])$, then $\{g_m\}_{m=1,2,...}$ also converges point-wise to f, i.e., $\forall x \in [a,b], \lim_{m \to \infty} |g_m(x) f(x)| = 0$

 $k(x, x') = \sum_{n=1}^{\infty} \lambda_n e_n(x) e_n(x'), \quad \forall x, x' \in [a, b]$ (Mercer's Theorem)

, where the right-hand side series converges absolutely, and the function represented by this series converges uniformly to the left-hand side function, i.e.,

$$\lim_{m \to \infty} \sup_{x, x' \in [a, b]} |k(x, x') - \sum_{n=1}^{m} \lambda_n e_n(x) e_n(x')| = 0$$

. The RKHS ${\mathcal H}$ associated with k(x,x') is

$$\mathcal{H} = \{ f \in C([a,b]) \big| f = \sum_{n=1}^{\infty} \langle f, e_n \rangle_{L_2} \cdot e_n, \sum_{n=1}^{\infty} (\frac{\langle f, e_n \rangle_{L_2}}{\sqrt{\lambda_n}})^2 < \infty \}$$

, with the inner product $< f, g>_{\mathcal{H}} = \sum_{n=1}^{\infty} \frac{< f, e_n>_{L_2}}{\sqrt{\lambda_n}} \cdot \frac{< g, e_n>_{L_2}}{\sqrt{\lambda_n}}$. Check condition 2,

$$\begin{split} k(\cdot,x) &= \sum_{n=1}^{\infty} \lambda_n e_n(\cdot) e_n(x) = \sum_{n=1}^{\infty} \lambda_n e_n(x) \cdot e_n \\ &< k(\cdot,x), e_n >_{L_2} = \lambda_n e_n(x) \\ \sum_{n=1}^{\infty} \frac{< k(\cdot,x), e_n >_{L_2}^2}{\lambda_n} = \sum_{n=1}^{\infty} \lambda_n e_n^2(x) = k(x,x) < \infty \\ k(\cdot,x) &= \sum_{n=1}^{\infty} < k(\cdot,x), e_n >_{L_2} \cdot e_n \in \mathcal{H} \end{split}$$

Check condition 3,

$$f(x) = \sum_{n=1}^{\infty} \langle f, e_n \rangle_{L_2} \cdot e_n(x)$$
 (point-wise convergence)
$$\langle f, k(\cdot, x) \rangle_{\mathcal{H}} = \sum_{n=1}^{\infty} \langle f, e_n \rangle_{L_2} \cdot e_n(x) = f(x)$$

Note that $\mathcal{H} \subset C([a,b])$.

A very simple example $k(x, x') = \mathbb{1}\{x = x'\}$