于是,

$$Y(\Omega) = X(\Omega)H(\Omega)$$
 (5.89)

式中 $X(\Omega)$, $H(\Omega)$ 和 $Y(\Omega)$ 是 x[n], h[n] 和 y[n] 的傅里叶变换,这种推导完全类似于 4.7节中式(4.112)~(4.116)所进行的推导。如同连续时间情况一样,可以把 x[n] 的 傅星叶综合方程(5.43)理解为将 x[n] 分解成与 $X(\Omega)$ 成正比的无限小幅度的复指数 的 线 性 组合。每一个指数即是系统的特征函数,而式(5.89)本质上说明了这样的事实,即通过系统的各个复指数所得到的复数幅度的改变为 $H(\Omega)$ 。如前所述,通常把 $H(\Omega)$ 称为系统的频率响应。为了说明卷积性质的应用,让我们研究以下几个例子。

例5.12 研究一LTI 系统, 其冲激响应为

$$h[n] = \delta[n - n_0]$$

对应的频率响应是

$$H(\Omega) = \sum_{n=-\infty}^{+\infty} \delta[n - n_0] e^{-j\Omega n} = e^{-j\Omega n}$$

因此,对于任何傅里叶变换为 $X(\Omega)$ 的输入信号x[n],其输出的傅里叶变换为

$$Y(\Omega) = e^{-j\Omega n_0} X(\Omega)$$
 (5.90)

注意,对于这个例子, $y[n]=x[n-n_0]$,并且式(5.90)与式(5.75)的时间移位 性质 是一致的。

例5.13 令

$$h[n] = \alpha^n u[n]$$
$$x[n] = \beta^n u[n]$$

www.blogoil.com

计算 h[n] 和 x[n] 的傅里叶变换,则有

$$H(\Omega) = \frac{1}{1 - \alpha e^{-j\Omega}} \tag{5.91}$$

$$X(\Omega) = \frac{1}{1 - \beta e^{-j\Omega}} \tag{5.92}$$

因此,

$$Y(\Omega) = H(\Omega)X(\Omega) = \frac{1}{(1 - \alpha e^{-i\Omega})(1 - \beta e^{-i\Omega})}$$
(5.93)

如同例4.20一样,用部分分式展开 $Y(\Omega)$,可以非常方便地确定 $Y(\Omega)$ 的逆变换。具体说, $Y(\Omega)$ 是一个 $e^{-i\Omega}$ 幂的多项式之比,并且我们总是把它表示为这种形式的比较简单项之和, 以便通过观察(多数同时用到5.5.7节中的频率微分性质)就能识别每一项的逆变换。在5.11节和附录中,我们还要详细讨论这些内容,现在结合这个例子对它进行些说明。

如果 $\alpha \neq \beta$,则 $Y(\Omega)$ 的部分分式展开式具有如下形式

$$Y(\Omega) = \frac{A}{1 - \alpha e^{-j\Omega}} + \frac{B}{1 - \beta e^{-j\Omega}}$$
 (5.94)

使式(5.93)和(5.94)的右边相等,就可得出常数 A和 B的正确信为

$$A = \frac{\alpha}{\alpha - \beta}, B = -\frac{\beta}{\alpha - \beta}$$

因此,根据式(5.91)和(5.92),通过观察就可得到式(5.94)的逆变换。

$$y[n] = \frac{\alpha}{\alpha - \beta} \alpha^{n} u[n] - \frac{\beta}{\alpha - \beta} \beta^{n} u[n]$$

$$= \frac{1}{\alpha - \beta} \{\alpha^{n+1} u[n] - \beta^{n+1} u[n]\}$$
(5.95)

当 $\alpha = \beta$ 时,式(5.94)的部分分式展开式是无效的,然而,在此情况下,

$$Y(\Omega) = \left(\frac{1}{1 - \alpha e^{-j\Omega}}\right)^2$$

它可以表示为

$$Y(\Omega) = \frac{\mathbf{j}}{\alpha} e^{i\Omega} \frac{d}{d\Omega} \left(\frac{1}{1 - \alpha e^{-i\Omega}} \right) \tag{5.96}$$

正如我们在例4.20中所分析的那样,可以利用式(5.86)的频率微分性质,连同傅里叶变换对

$$a^n u[n] \stackrel{\text{F}}{\longleftrightarrow} \frac{1}{1 - \alpha e^{-j\Omega}}$$

导出

$$n\alpha^n u[n] \stackrel{\text{F}}{\longleftrightarrow} j \frac{d}{d\Omega} \left(\frac{1}{1 - \alpha e^{-j\Omega}} \right)$$

为说明因子 ein 的作用,我们利用式(5.75)的移位性质,得到

$$(n+1)\alpha^{n+1}u[n+1] \stackrel{\text{F}}{\longleftrightarrow} je^{j\Omega} \frac{d}{d\Omega} \left(\frac{1}{1-\alpha e^{-j\Omega}}\right)$$

最后,考虑到因子 $1/\alpha$,

$$y[n] = (n+1)\alpha^{n}u[n+1] \stackrel{F}{\longleftrightarrow} \frac{j}{\alpha}e^{j\Omega} \frac{d}{d\Omega} \left(\frac{1}{1-\alpha e^{-j\Omega}}\right) = \left(\frac{1}{1-\alpha e^{-j\Omega}}\right)^{2} \quad (5.97)$$

值得指出的是,虽然上式左边乘了一个从n=-1 开始的阶跃,但由于n=-1 时,因子(n+1)等于零,所以在n=0 以前,序列 (n+1) $\alpha^n u[n+1]$ 仍然等于零。因此,我们可以按另一种方式把 y[n] 表示为

$$y[n] = (n+1)\alpha^n u[n] \tag{5.98}$$

频率响应 $H(\Omega)$ 对离散时间 LTI 系统所起的作用,和连续时间 LTI 系统的频率响应所起的作用是相同的。例如,两个级联的离散时间 LTI 系统的频率响应,就是这两个系统的频率响应的乘积。还要明确指出的是,正如连续时间情况一样,不是所有的离散时间 LTI 系统都具有频率响应。例如,具有冲激响应 h[n]=2"u[n] 的 LTI 系统,对于正弦输入就没有有限的响应,这反映在 h[n] 的傅里叶变换是发散的这一事实。然而,如果一个 LTI 系统是稳定的,那么由3.4.4节知道,它的冲激响应是绝对可和的,即

$$\sum_{n=-\infty}^{+\infty} |h[n]| < \infty \tag{5.99}$$

参考5.3节,特别是参考式(5.45)和有关的讨论,就可看出式(5.99)保证 h[n] 的傅里 叶 变换的收敛。因此,一个稳定的 LTI 系统具有意义明确的频率响应 $H(\Omega)$ 。对于以上论述 的 说明和更进一步的解释,见习题5.27。

5.6.1 周期卷积

如4.7节那样,迄今所研究的卷积性质不能直接应用于两个周期性序列,因为在这种情况下卷积和将不收敛。但是,我们可以研究两个具有共同周期N的周期序列 $\tilde{x}_1[n]$ 和 $\tilde{x}_2[n]$ 的

周期卷积。这种周期卷积 [[n] 通常用 [[n] 图 [2[n] 表示, 并定义为

$$\widetilde{y}[n] = \widetilde{x}_1[n] \bigoplus \widetilde{x}_2[n] = \sum_{m=\langle N \rangle} \widetilde{x}_1[m] \widetilde{x}_2[n-m]$$
 (5.100)

这是式(4.132)的离散时间的对应式。式(5.100)表明, $\tilde{y}[n]$ 是由 $\tilde{x}_1[n]$ 和 $\tilde{x}_2[n]$ 以一般 的 序列卷积方式组合而得到的,这种一般的序列卷积往往称为非周期卷积,以便把它与周期卷积区别开来。图5.22说明了计算周期卷积的过程。正如非周期卷积一样,信号 $\tilde{x}_1[m]$ 和 $\tilde{x}_2[n-m]$ 是相乘的。要注意的是,这两个信号关于 m 都是周期性的,周期为 N,因此,它 们 的乘积也是周期性的。并且,其求和仅在一个周期内进行。为了对 n 个连续值 计 算 $\tilde{y}[n]$,必须移动 $\tilde{x}_2[n-m]$,随着求和区间的一个周期的移出,次一个周期就移入。因此,如 果 n 增加了 N, $\tilde{x}_2[n-m]$ 就移动一个整周期,据此,我们可以导出 $\tilde{y}[n+N]=\tilde{y}[n]$ (即, $\tilde{y}[n]$ 是周期性的,其周期为 N)。而且,由简单的计算可证明,对于式(5.100)求和间隔的任何选择,都可得到同样的结果。

图5.22 两个周期序列组成周期卷积的过程

对于周期卷积,卷积〔式(5.89)〕的对应性质可以直接用傅里叶级数的系数表示。用 $\{a_k\}$, $\{b_k\}$ 和 $\{c_k\}$ 分别表示 $\tilde{x}_1[n]$, $\tilde{x}_2[n]$ 和 $\tilde{y}[n]$ 的傅里叶级数的系数,则

 $c_k = Na_k b_k \tag{5.101}$

它直接类似于式(4.133)。

式(5.101)的最重要的用途,是和DFT一起用于两个有限时宽序列的非周期卷积的高效计算中。设 $x_1[n]$ 和 $x_2[n]$ 是两个这样的序列,并假定

$$x_1[n] = 0$$
,在区间 $0 \le n \le N_1 - 1$ 之外 $x_2[n] = 0$,在区间 $0 \le n \le N_2 - 1$ 之外 (5.102)

令 y[n] 是 $x_1[n]$ 和 $x_2[n]$ 的非周期卷积,那么式(5.102)意味着

$$y[n] = x_1[n] * x_2[n] = 0$$
,在区间 $0 \le n \le N_1 + N_2 - 2$ 之外 (5.103)

(参阅习题3.11)。假定我们选择任一整数 $N(\geqslant N_1+N_2-1)$,并规定信号 $\tilde{x}_1[n]$ 和 $\tilde{x}_2[n]$ 是 周期性的,周期为N,因此,

$$\widetilde{x}_1[n] = x_1[n], \quad 0 \leqslant n \leqslant N - 1$$

$$\widetilde{x}_2[n] = x_2[n], \quad 0 \leqslant n \leqslant N - 1$$

$$(5.104)$$

设 ỹ[n] 是 x̃₁[n] 和 x̃₂[n] 的周期卷积,

$$\widetilde{y}[n] = \sum_{m=-N} \widetilde{x}_1[n] \widetilde{x}_2[n-m]$$
 (5.105)

则,如习题5.12所表明的那样,

$$y[n] = \widetilde{y}[n], \ 0 \leqslant n \leqslant N - 1 \tag{5.106}$$

通过研究图5.23可以获得式(5.106)的直观认识。实质上,我们已经给 $\tilde{x}_1[n]$ 和 $\tilde{x}_2[n]$ 添补了足够的零(即,在式(5.104)中已选取足够长的N),以便周期卷积 $\tilde{y}[n]$ 在一个周期内等于非周期卷积y[n]。如果把N选得太小,就达不到以上所述的情况。还要注意,根据式(5.103)和 $N \geqslant N_1 + N_2 - 1$ 这一事实,在区间 $0 \leqslant n \leqslant N - 1$ 以外 y[n] 等于零。因此, $x_1[n]$ 和 $x_2[n]$ 的 非 周期卷积 y[n]完全可以由 $\tilde{x}_1[n]$ 和 $\tilde{x}_2[n]$ 的周期卷积求出。并且,根据式(5.101),可以把 $\tilde{y}[n]$

www.blogoil.com

图5.23 两个有限时宽信号的非周期卷积的计算,可看作两个周期信号在一个周期上的周期卷积,每个周期信号在一个周期内等于原始信号: (a) 原始信号; (b) $x_1[n]$ 和 $x_2[n]$ 的非周期卷积, (c) 周期卷积,其中N选择得足够大,以便 $x_1[n]$ 和 $x_2[n]$ 的复制品之间补进足够的零,这样, $0 \le n \le N-1$ 时,由(c)计算周期卷积得出的值与由(b)计算周期卷积得出的值是完全相同的

的傅里叶级数的系数作为 $\tilde{x}_1[n]$ 和 $\tilde{x}_2[n]$ 的傅里叶级数系数的 乘 积。由于 $\tilde{y}[n]$, $\tilde{x}_1[n]$ 和 $\tilde{x}_2[n]$ 在 $0 \le n \le N-1$ 时分别和 y[n], $x_1[n]$ 和 $x_2[n]$ 是相等的,所以我们可以从式 (5.72a) 看出,上述三个周期信号的傅里叶级数的系数就等于 y[n], $x_1[n]$ 和 $x_2[n]$ 的 DFT, $\tilde{Y}(k)$, $\tilde{Y}_1(k)$ 和 $\tilde{X}_2(k)$ 。因此,综合以上所述,可以得到计算 $x_1[n]$ 和 $x_2[n]$ 的非周期卷 积 的 算 法。

- 1. 根据式(5.72a), 计算 $x_1[n]$ 和 $x_2[n]$ 的 DFT $\widetilde{X}(k)$ 和 $\widetilde{X}_2(k)$ WWW. $b \log i 1$. Com
- 2. 将上面求得的两个 DFT 相乘,得到 y[n]的 DFT:

$$\widetilde{Y}(k) = \widetilde{X}_{1}(k) \widetilde{X}_{2}(k) \tag{5.107}$$

3. 根据式 (5.72b),计算 Y(k) 的逆 DFT,结果即是所要求的卷积 y[n]。

上述算法的唯一限制是用N点 DFT 时,其中 $N \ge N_1 + N_2 - 1$ 。由于以上第 1 和第 3 步可以利用快速傅里叶变换算法高效地实现,同时由于式 (5.101) 在计算上十分简单,所以第 $1 \sim 3$ 步整个算法提供了计算有限时宽信号卷积的非常有效的方法。

5.7 调制性质

在4.8 节中, 我们已介绍过连续时间信号的调制性质, 并且通过几个例子描述了它的某些应用。对于离散时间信号存在着类似的性质, 并在应用中起着类似的作用。在本节, 我们直接推导这一结果, 并以一例说明之, 并且提出可能的应用。

为了推导调制性质,设 y[n] 等于 $x_1[n]$ 和 $x_2[n]$ 的乘积,用 $Y(\Omega)$, $X_1(\Omega)$ 和 $X_2(\Omega)$ 表示相应的傅里叶变换,则

$$Y(\Omega) = \sum_{n=-\infty}^{+\infty} y[n]e^{-j\Omega n} = \sum_{n=-\infty}^{+\infty} x_1[n]x_2[n]e^{-j\Omega n}$$

因为,

$$\mathbf{x_1[n]} = \frac{1}{2\pi} \int_{2\pi} X_1(\theta) e^{i\theta n} d\theta \qquad (5.108)$$

则

$$Y(\Omega) = \sum_{n=-\infty}^{+\infty} x_2 [n] \left\{ \frac{1}{2\pi} \int_{2\pi} X_1(\theta) e^{i\theta n} d\theta \right\} e^{-i\Omega n}$$
 (5.109)

变换求和与积分的次序,则得

$$Y(\Omega) = \frac{1}{2\pi} \int_{2\pi} X_1(\theta) \left[\sum_{n=-\infty}^{+\infty} x_2 [n] e^{-j(\Omega-\theta)n} \right] d\theta$$
 (5.110)

方括号中的求和式为 $X_2(\Omega-\theta)$,,因此式(5.110)变为

$$Y(\Omega) = \frac{1}{2\pi} \int_{2\pi} X_1(\theta) X_2(\Omega - \theta) d\theta$$
 (5.111)

式(5.111)与式(4.132)具有相同的形式,并且相当于 $X_1(\Omega)$ 和 $X_1(\Omega)$ 的周期卷积。

在第7和第8章中讨论调制和抽样性质时,还要较详细地讨论调制性质。现在我们用一个例子说明式(5.111)的应用,这个例子在第7章中还会见到。

例5.14 令 $x_1[n]$ 是周期序列

$$x_1[n] = e^{j\pi n} = (-1)^n \tag{5.112}$$

其周期为 2。由式(5.60)我们得到 $x_1[n]$ 的傅里叶变换为

$$X_1(\Omega) = 2\pi \sum_{r=-\infty}^{+\infty} \delta\{\Omega - (2r+1)\pi\}$$
 (5.113)

如图5.24(a)所描述。假定 $X_2(\Omega)$ 具有图5.24(b) 所示的波形,我们就可以用图解法 实 现式 (5.111)的卷积。在图5.24(c)中,我们描绘了 $X_1(\theta)$ 和 $X_2(\Omega-\theta)$ 。在表式 (5.111)的 结果] 时,可在 θ 的任何 2π 区间内进行积分,这里选定 $0<\theta<2\pi$ 。因此,在这 种 积 分 区 间 内,

$$X_1(\theta)X_2(\Omega-\theta) = 2\pi X_2(\Omega-\theta)\delta(\theta-\pi) = 2\pi X_2(\Omega-\pi)\delta(\theta-\pi)$$

于是,

$$Y(\Omega) = \int_0^{2\pi} x_2(\Omega - \pi) \delta(\theta - \pi) d\theta = X_2(\Omega - \pi)$$
 (5.114)

对应图5.24(b)中的 $X_2(\Omega)$, $Y(\Omega)$ 具有图 5.24(d) 所描绘的波形。需要指出,我们可以直接由频率移位特性[即式(5.76), 其中 $\Omega_0 = \pi$] 得到式(5.114)。

以(-1)"调制的任意序列 $x_2[n]$,具有改变所有奇数序列值代数符号的效果。由图5.24 (d) 或更一般地由式(5.114)表明,在频域中的效果是将周期频谱 $X_2(\Omega)$ 移位半个周期(即移位 π)。由于频谱的周期性,这就使得频谱的高频和低频区域具有互换的作用。由于这个原因,如第 7 章中更详细介绍的那样,以(-1)"调制的序列具有许多有益的应用。

5.8 傅里叶性质及基本傅里叶变换和傅里叶级数对的列表

在表5.1中,总结了离散时间傅里叶变换的若干重要性质。如在5.5节中所指出的,许多性质与离散时间傅里叶级数的性质相对应,并在表5.2中列出了这些对应的离散时间傅里叶级数的性质。在习题5.4和5.6中,研究了若干性质的推导。最后,在表5.3中汇集了若干基本和最重要的离散时间傅里叶变换对。将这些表与表4.1~4.3相比较,就可得到连续时间与离散时间傅里叶变换之间的某些类似和差别的简明概念。

图5.24 离散时间调制性质: (a) $x[n]=(-1)^n$ 的傅里叶变换; (b) $x_2[n]$ 的傅里叶变换; (c) 计算式(5.111)周期卷积的过程; (d) $y[n]=x_1[n]x_2[n]=(-1)^nx_2[n]$ 的傅里叶变换

(d)

表5.1 离散时间傅里叶变换的性质

非 周期 信号	傅 里 叶 变 换
x[n] y[n]	$X(\Omega)$ $Y(\Omega)$ 具有周期性,周期为 2π
ax[n]+by[n]	$aX(\Omega)+bY(\Omega)$
$x[n-n_0]$	$e^{-i\Omega n_0}X(\Omega)$
$e^{j\Omega_o n}x[n]$	$X(\Omega - \Omega_0)$
x*[n]	$X^*(-\Omega)$
x[-n]	$X(-\Omega)$
$x_k[n] = \begin{cases} x[n/k], & n \in k \text{ 的倍数} \\ 0, & n \in k \text{ 的倍数} \end{cases}$	$X(k\Omega)$
x[n] * y[n]	$X(\Omega)Y(\Omega)$
x[n]y[n]	$-\frac{1}{2\pi}\int_{2\pi}X(\theta)Y(\Omega-\theta)d\theta$
x[n]-x[n-1]	$(1-e^{-j\Omega})X(\Omega)$
$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-e^{-iQ}}X(\Omega) + \pi x(0) \sum_{k=0}^{+\infty} \delta(\Omega - 2\pi k)$
nx[n]	$j \frac{dX(\Omega)}{d\Omega}$
x[n]实数	$\begin{cases} X(\Omega) = X^*(-\Omega) \\ R_e\{X(\Omega)\} = R_e\{X(-\Omega)\} \\ I_m\{X(\Omega)\} = -I_m\{X(-\Omega)\} \\ X(\Omega) = X(-\Omega) \\ \angle X(\Omega) = -\angle X(-\Omega) \end{cases}$
$x_e[n] = E_v\{x[n]\} \{x[n] $	$R_{\mathfrak{o}}\{X(\Omega)\}$
$x_o[n] = O_a\{x[n]\}$ $\{x[n]$ 实数}	$j\operatorname{I}_m\{X(\Omega)\}$

非周期信号的帕斯维尔关系式

$$\sum_{n=-\infty}^{+\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{2n} |X(\Omega)|^2 d\Omega$$

表5.2 离散时间傅里叶级数的性质

周 期 信 号	傅 里 叶 级 数 的 系 数	
x[n] $y[n]$ $y[n]$	$\left. egin{aligned} a_k \ b_k \end{aligned} ight.$ 具有周期性,周期为 N	
Ax[n]+By[n]	$Aa_k + Bb_k$	
$x[n-n_o]$	$a_k e^{-jk(2\pi/N)n_0}$	
$e^{jM\cdot(2\pi/N)n}x[n]$	G _{kM}	•
x*[n]	a*_k	•
x[-n]	a_{-k}	•
$x_{(m)}[n] = \left\{ egin{array}{ll} x[n/m], & n 是 m 的倍数 \ 0, & n 不是 m 的倍数 \ & (具有周期性,周期为 mN) \end{array} ight.$	$rac{1}{m}a_{k}$ (视为周期性,周期为 mN)	
$\sum_{r=\langle N\rangle} x[r]y[n-r]$	Na_kb_k	
x[n]y[n]	$\sum_{l=\langle N\rangle} a_l b_{k-l}$	
x[n]-x[n-1]	$(1-e^{-jk(\pi \pi/N)})a_k$	
$\sum_{k=-\infty}^{n} x[k]$ (仅当 a_0 =0时,才是有限值和周期性的)	$\left(\frac{1}{1-e^{-jk(2\pi/N)}}\right)a_k$	
x[n] 实数	$\begin{cases} a_k = a^*_{-k} & \text{WWW.} \\ R_e \{a_k\} = R_e \{a_{-k}\} \\ I_m \{a_k\} = -I_m \{a_{-k}\} \\ a_k = a_{-k} \\ \angle a_k = -\angle a_{-k} \end{cases}$	oil.com
$x_{\bullet}[n]$ = $\mathbb{E}_{\forall}\{x[n]\}$ $\{x[n]$ 实数}	$R_{o}\{a_{k}\}$	
$x_0[n] = O_d\{x[n]\} \{x[n] 实数\}$	$j\mathbf{I}_{\mathbf{m}}\{a_k\}$	

周期性信号的帕斯维尔关系式

$$\frac{1}{N} \sum_{n=\langle N \rangle} |x[n]|^2 = \sum_{k=\langle N \rangle} |a_k|^2$$

		表 5.3 基本的离散	时间傅里叶变换和傅里叶级数对
信	号	傅 里 叶 变 换	傅里叶级数的系数(周期性的)
$\sum_{k=\langle N\rangle} a_k e^{jk(2)}$	π/W)n	$2\pi\sum_{k=-\infty}^{+\infty}a_k\delta(\Omega-\frac{2\pi k}{N}) \qquad .$	a_k
es Qon (1)			$(a) \ \Omega_0 = \frac{2\pi m}{N}$
		$2\pi\sum_{l=-\infty}^{+\infty}\delta(\Omega-\Omega_0-2\pi l)$	$a_k = \begin{cases} 1, k = m, m \pm N, m \pm 2N, \dots \\ 0, 其他 \end{cases}$ (b) $\frac{\Omega_0}{2\pi}$ 无理数 \Longrightarrow 信号是非周期性的

· · · · · · · · · · · · · · · · · · ·		1	
信 号	傅 里 叶 变 换	傅里叶级数的系数(周期性的)	
× *		$(a) \ \Omega_0 = \frac{2\pi m}{N}$	
$\cos\Omega_{0}n^{m{arphi}}$	$\pi \sum_{l=-\infty}^{+\infty} \{\delta(\Omega - \Omega_0 - 2\pi l) + \delta(\Omega + \Omega_0 - 2\pi l)\}$	$a_k = \begin{cases} \frac{1}{2}, k = \pm m, \pm m \pm N, \pm m \pm 2N, \dots \\ 0, \pm m \end{cases}$ $(b) \frac{\Omega_0}{2\pi} $ 无 $\frac{\Omega_0}{2\pi}$ 无 $\frac{1}{2\pi}$ $\frac{1}{2\pi}$ $\frac{1}{2\pi}$ $\frac{1}{2\pi}$ $\frac{1}{2\pi}$ $\frac{1}{2\pi}$ $\frac{1}{2\pi}$ $\frac{1}{2\pi}$	
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\sin\Omega_0 n^{ ext{@}}$	$\frac{\pi \sum_{j=-\infty}^{+\infty} \{\delta(\Omega - \Omega_0 - 2\pi l) - \delta(\Omega + \Omega_0 - 2\pi l)\}}{\Omega_0 - 2\pi l\}$	$\begin{cases} \frac{1}{2j}, k = r, r \pm N, r \pm 2N, \dots \\ a_k = -\frac{1}{2j}, k = -r, -r \pm N, -r \pm 2N, \dots \end{cases}$!
		(b) $\frac{\Omega_o}{2\pi}$ 无理数=⇒信号是非周期性的	
x[n]=1	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\Omega - 2\pi l)$	$a_k = \begin{cases} 1, & k = 0, \pm N, \pm 2N, \dots \\ 0, & \text{if } \end{cases}$	
$\sum_{k=-\infty}^{+\infty} \delta[n-kN]$	$\frac{2\pi}{N} \sum_{k=-\infty}^{+\infty} \delta(Q - \frac{2\pi k}{N})$	$a_k = \frac{1}{N}$, 对所有的 k	
周期矩形波		$\sin(2\pi k/N)(N,+\frac{1}{2})$	
$x[n] = \begin{cases} 1, n \leq N_1 \\ 0, N_1 < n \leq \frac{N}{2} \end{cases}$	$\frac{\sqrt{1}}{2\pi\sum_{k=-\infty}^{+\infty}a_k\delta(\Omega-\frac{2\pi k}{N})}$	$a_k = \frac{\sin[2\pi k/N)(N_1 + \frac{1}{2})]}{N\sin[2\pi k/2N]}, k = 0, \pm N, \\ \pm 2N, \cdots$	
并且x[n+N]==x[n]		$a_k = \frac{2N_1 + 1}{N}, k = 0, \pm N, \pm 2N, \dots$	1. cc
$a^nu[n], a < 1$	$\frac{1}{1-ae^{-j\Omega}}$, -	
$x[n] = \begin{cases} 1, & n \leq N_1 \\ 0, & n > N_1 \end{cases}$	$\frac{\sin[\Omega(N_1 + \frac{1}{2})]}{\sin(\frac{\Omega}{2})}$		
$\frac{\sin W n}{\pi n} = \frac{W}{\pi} \sin c \left(\frac{W n}{\pi}\right)$ $0 < W < \pi$	$X(\Omega) = \begin{cases} 1, & 0 \leq \Omega \leq W \\ 0, & W \leq \Omega \leq \pi \end{cases}$ $X(\Omega)$ 具有周期性,周期为2 π		
δ[n]	1		
u(n)	$\frac{1}{1-e^{-j\Omega}} + \sum_{k=-\infty}^{+\infty} \pi \delta(\Omega - 2\pi k)$		
$\delta[n-n_0]$	$e^{-j\Omega n_0}$		
$(n+1)a^nu[n], a <1$	$\frac{1}{(1-ae^{-j\Omega})^2}$		
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n],$ $ a < 1$	1 (1		
①②③原著中这三个 11 均	THE RESERVE OF THE PERSON NAMED OF TAXABLE PARTY OF THE PERSON NAMED OF TAXABLE PARTY OF TA	And the second s	

5.9 对偶性

5.9.1 离散时间傅里叶级数

在研究连续时间傅里叶变换时,我们曾观察到分析方程(4.61)和综合方程(4.60)之间的对称性或对偶性。对于离散时间傅里叶变换来说,其分析方程(5.44)和综合方程(5.43)之间不存在相应的对偶性。然而,在离散时间傅里叶级数方程式(5.18)和(5.19)中却存在着对偶性。更具体说,研究两个具有周期为N的周期性序列,它们通过如下求和相联系

$$f[m] = \frac{1}{N} \sum_{r=0,N} g[r] e^{-jr(2\pi/N)m}$$
 (5.115)

如果令 m=k,r=n,则式(5.115)变为

$$f[k] = \frac{1}{N} \sum_{n=\langle N \rangle} g[n] e^{-jk(2\pi/N)n}$$

将该式与式(5.19)比较即可看出,序列 f[k] 相当于信号 g[n] 的傅里叶级数的系数。即,如果我们对一个离散时间周期信号及其傅里叶系数集采用如下符号

$$x [n] \stackrel{\mathsf{F}}{\longleftrightarrow} a_k$$

那么,通过式(5.115)相联系的两个周期序列就满足下式

$$g[n] \stackrel{\text{F}}{\longleftrightarrow} f[k] \qquad (5.116)$$

另一方面,如果令 m=n,r=-k,则式(5.115)变为

$$f[n] = \sum_{k=\leq N > 1} \frac{1}{N} g[-k] e^{jk[2\pi/N)n}$$

www.blogoil.com

与式(5.18)比较就可得出,(1/N)g[-k]相当于f[n]的傅里叶级数的系数序列。即

$$f[n] \stackrel{\mathsf{F}}{\longleftrightarrow} \frac{1}{N} g[-k] \tag{5.117}$$

换句话说,一个周期信号 x[n] 的傅里叶级数的系数 a_k 本 身就是一个周期序列,因为我们可以把 a_k 展开为傅里叶级数。上面叙述的对偶性表明,周期序列 a_k 的 傅里叶级数的系数就等于(1/N)x[-n](即与时间反转的原始信号值成比例)。

如同连续时间情况一样,这种对偶性意味着离散时间傅里叶级数的每一个性质都有一个 对偶的性质。例如,参照表5.2,其中的一对性质

$$x[n-n_0] \stackrel{\text{F}}{\longleftrightarrow} a_k e^{-jk(2\pi/N)n_0}$$
 (5.118)

$$e^{j\mathbf{M}\cdot(2\pi/N)n}x[n] \stackrel{\mathbf{F}}{\longleftrightarrow} a_{k-\mathbf{M}} \tag{5.119}$$

是对偶的。类似地,从这个表可以引出另一对对偶性质。

$$\sum_{r=\langle N\rangle} x[r]y[n-r] \stackrel{\text{F}}{\longleftrightarrow} Na_k b_k \tag{5.120}$$

$$x[n]y[n] \stackrel{\mathrm{F}}{\longleftrightarrow} \sum_{l=\langle N \rangle} a_l b_{k-l} \tag{5.121}$$

对偶性除了影响离散时间傅里叶级数的性质以外,常常还可以有效地简化在求取傅里叶级数表达式时的复杂计算。具体说,式(5.115)的一次计算即可求得两个周期序列的傅里

叶级数表达式。下面举例说明这一计算过程。

例5.15 分析周期序列

$$x[n] = \frac{1}{N} \frac{\sin\left[(2\pi n/N)\left(N_1 + \frac{1}{2}\right)\right]}{\sin\left(2\pi n/2N\right)}$$
 (5.122)

根据例5.3,可把上式 视 为 图 5.5 的离散时间矩形波的傅里叶级数系数的序列。因此,式 (5.122)中 x[n]的傅里叶级数的系数就是图5.5中序列依次反转后的序列的1/N倍(不过对于本例,这种反转没有效,因为 x[n]是偶函数)。因此,式 (5.122)的傅里叶级数的系数就如图5.25中所表明的那样。

图5.25 式(5.122)给出的周期序列的傅里叶级数的系数

5.9.2 离散时间傅里叶变换和连续时间傅里叶级数

除了离散时间傅里叶级数的对偶性之外,在离散时间傅里叶变换和连续时间傅里叶级数之间也存在着对偶性。具体说,可以比较连续时间傅里叶级数方程(4.34)、(4.35)和离散时间傅里叶变换方程(5.43)、(5.44)。为了方便起见,将这些方程重写如下:

[式(5.43)]
$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(\Omega) e^{j\Omega n} d\Omega$$
 (5.123)
[式(5.44)] $X(\Omega) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\Omega n}$ WWW.(如124) goil. Com
[式(4.34)] $x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$ (5.125)
[式(4.35)] $a_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\omega_0 t} dt$ (5.126)

现在设f(u) 表示一个连续变量的周期函数,周期为 2π ,并令g[m]是一与f(u) 有关的离散序列,可表示为:

$$f(u) = \sum_{m=-\infty}^{+\infty} g[m]e^{-jum}$$
 (5.127)

那么,当 $u=\Omega$ 和 m=n 时,由式 (5.124) 可看出, $f(\Omega)$ 是 g[n] 的离散时间傅里叶变换。即,

$$g[n] \stackrel{\mathsf{F}}{\longleftrightarrow} f(\Omega) \tag{5.128}$$

同时,根据这一事实并从式(5.123)看出,我们可以根据关系式

$$g \left[m \right] = \frac{1}{2\pi} \int_{2\pi} f(u)e^{jum} du \qquad (5.129)$$

从 f(u) 恢复 g[m]。另一方面,如果在式 (5.127) 中令 u=t 和 m=-k,那么, f(t) 是周期性的,周期 $T_0=2\pi$,频率 $\omega_0=2\pi/T_0=1$ 。并且由式 (5.125) 和 (5.127) 看 出, g[-k] 是 f(t) 的傅里叶级数系数的序列。即

$$f(t) \stackrel{\mathsf{F}}{\longleftrightarrow} g[-k] \tag{5.130}$$

这里,对连续时间周期序列及其傅里叶级数的系数再次采用记号

$$x(t) \stackrel{\mathrm{F}}{\longleftrightarrow} a_k$$

式(5.128)和(5.130)表明了如下叙述。假定 x[n]是具有傅里叶变换为 $X(\Omega)$ 的离散时间信号,那么,因为这一变换是连续变量的周期函数,我们可以利用式(5.125),在 $\omega_0=1$ 和 Ω (而不是 t)作为连续变量时把它展开为傅里叶级数。根据对偶性关系可以断定, $X(\Omega)$ 的傅里叶级数的系数就是原序列 x[n] 的依次反转。

如同对偶性的其他形式一样,可以利用刚才讨论的关系,把连续时间,傅里叶级数的性质转换为离散时间傅里叶变换的对偶性质。例如,在4.7节中,我们曾分析过两个周期信号的周期卷积。在这些信号具有周期 $T_0=2\pi$ 的情况下,式(4.132)和(4.133)成为

$$\int_{2\pi} x_1(\tau) x_2(t-\tau) d\tau \stackrel{\text{F}}{\longleftrightarrow} 2\pi a_k b_k$$

式中 a_k 和 b_k 分别是 $x_1(t)$ 和 $x_2(t)$ 的傅里 叶 级 数的系数。这种性质的对偶就是离散时间信号的调制性质

$$x[n]y[n] \stackrel{\mathsf{F}}{\longleftrightarrow} \frac{1}{2\pi} \int_{2\pi} X_1(\theta) X_2(\Omega - \theta) d\theta$$

在下面的例子中,我们将说明在计算信号的傅里叶表达式中,对偶关系是多么有用。 例5.16 研究周期为 2π 的连续时间周期信号 x(t) ,其傅里叶级 数的系数为

$$a_k = \begin{cases} 1, & |k| \leqslant N_1 \\ 0, & 其他 \end{cases}$$

$$x(t) = \frac{\sin\left(N_1 + \frac{1}{2}\right)t}{\sin(t/2)}$$

按照类似方法,研究周期在 $-\pi \leqslant \Omega \leqslant \pi$ 内的离散时间傅里叶变换 $X(\Omega)$,它可表示为

$$X(\Omega) = \begin{cases} 1, & |\Omega| \leqslant W \\ 0, & W < |\Omega| \leqslant \pi \end{cases}$$
 (5.131)

根据例4.5,我们把它视为一周期矩形波,其傅里叶级数的系数 由式(4.40)给 出。其中 $T_1=W$, $\omega_0=1$ 。利用对偶性,则式(5.131)的反变换为

$$x[n] = \frac{\sin Wn}{\pi n} = \frac{W}{\pi} \sin c \left(\frac{Wn}{\pi}\right)$$
 (5.132)

在表5.4中,列出了连续时间和离散时间两种信号的傅里叶级数和傅里叶变换表达式的一览表,同时还指明了适用于每种情况的对偶关系。

5.10 离散时间傅里叶变换的极坐标表示

假定 x[n]是一离散时间信号,其傅里叶变换 为 $X(\Omega)$ 。正如我们在4.10节中所阐述的那样,通过研究离散时间傅里叶变换的极坐标表示式

$$X(\Omega) = |X(\Omega)| e^{j \mathcal{L}X(\Omega)}$$
 (5.133)

表5.4 傅里叶级数和傅里叶变换表达式及对侧性

$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\omega) e^{j\omega t} d\omega$ $X(\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt$ $x[n] = \frac{1}{2\pi} \int_{2\pi} X(\Omega) e^{j\Omega n} d\Omega$ $X(\Omega) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\Omega n}$ 所候注 休日 に は は は は は は は は は は は は は は は は は は	$a_k = \frac{1}{T_0} \int_{T_0} x \left(t \right) e^{-jk\omega_0 t} dt$ ① $x \left[n \right] = \sum_{k=\zeta, k > 0} e^{jk(k)}$ 格特斯特特河南部共	时域 頻域 財域 頻域	连续时间	连续时间 $a_k = \frac{1}{D} \int_{T_0} x \ (t) e^{-ik\omega_0 t} \frac{dt}{dt}$ 时域高散时间周期性 $x(u) = \int_{T_0}^{+\infty} (t) e^{-i\omega_0 t} \frac{dt}{dt}$
--	---	-------------	------	--

www.blogoil.com

①原著中丢了dt。——译者注 ②原著中丢了dΩ。——译者注 可以更深入地理解它的性质。与连续时间情况不同的 是,此处 $|X(\Omega)|$ 和 $e^{itX(\Omega)}$ 都是周期性的,其周期为 2π 。但是,这些参量的解释却完全类似于它们的连续时间对应参量的解释。具体说, $|X(\Omega)|$ 包含了形成 x[n] 的各复指数的相对幅度的信息,而相位函数 $\angle X(\Omega)$ 提供了 x[n] 的 傅里 叶表达式中的不同复指数相对相位的描述。对于一个给定的幅度函数 $|X(\Omega)|$,由相位函数 $\angle X(\Omega)$ 的不同选择,我们可能得到形式非常不同的 信号。因此, $X(\Omega)$ 的相位函数 的 变 化 将导致信号 x(t) 的失真。如同连续时间情况那样,线性相位尤其重要。具体说,假定我们通过增加 $m\Omega$ (其中 m 是一整数)来改变 $\angle X(\Omega)$,那么最后所得到的变换为

$$X(\Omega)e^{jm\Omega}$$

并且根据时间移位性质〔式(5.75)〕,可知所得的信号为 x[n+m],它 仅是原信号的时间移位形式。

傅里叶变换的极坐标表示,对于LTI系统的研究常常是很方便的。尤其是,根据卷积性质,频率响应为 $H(\Omega)$ 的 LTI 系统的输出和输入的变换关系可由下式描述

$$Y(\Omega) = H(\Omega)X(\Omega)$$

它也可以写成

$$|Y(\Omega)| = |H(\Omega)| |X(\Omega)|$$

$$\angle Y(\Omega) = \angle H(\Omega) + \angle X(\Omega)$$
(5.134)
$$(5.135)$$

由于式(5.134)具有乘法形式, 所以LTI系统的频率响应幅度往往称做系统的增益。

图5.26 离散时间傅里叶变换 $H(\Omega)$ 的幅度和相位的典型图解表示

在本章的余下各节中和第 6 章离散时间滤波的讨论中,我们将发现用图解法表示傅里叶变换往往是有效的。正如连续时间情况那样,式 (5.134) 和 (5.135) 表明,对于LTI 系统的分析,用作图法把 $\angle X(\Omega)$ 和 $|X(\Omega)|$ 的对数幅度表示为 Ω 的函数是很方便的。用这种方法, $\angle Y(\Omega)$ 和 $|Y(\Omega)|$ 的对数幅度可以由相应的 $X(\Omega)$ 和 $H(\Omega)$ 的曲线之和获得。图 5.26 是这种方法的典型图解表示。图中以弧度和分贝 [即 20 lg $|H(\Omega)|$] 把 $\angle H(\Omega)$ 和 $H(\Omega)$ 绘制为 Ω 的函数。注意,如果 h[n] 是实数,实际上仅需画出 $0 \leqslant \Omega \leqslant \pi$ 区间内的 $H(\Omega)$,因为在这种情况下,傅里叶变换的对称性表明,利用关系式 $|H(\Omega)|=|H(-\Omega)|$ 和 $\angle H(-\Omega)=-\angle H(\Omega)$,即可求出 $-\pi \leqslant \Omega \leqslant 0$ 区间内的 $H(\Omega)$ 。而且,由于 $H(\Omega)$ 的周期性,不需要考虑大于 π 的 $|\Omega|$ 值。

回顾连续时间 情况,我们曾利用对数频率刻度画出了作为 ω 函数的 $ZH(\omega)$ 和 20 $\lg|H(\omega)|$ 。这不仅使我们能对较宽的频率范围进行研究,而且对于绘制由微分方程表示的连续时间LTI 系统的频率响应 也提供了某些有效的简化。然而,在离散时间情况下,被研究的频率范围是有限的,并且微分方程所具有的优点(即线性渐近线),对于差分方程已不复存在(参见5.11节)。因此,在图5.26中我们对 Ω 取线性刻度。最后,正如连续时间情况一样,在某些情况下,绘制 $H(\Omega)$ |而不绘制它的对数幅度反而显得更方便,尤其在 Ω 值的某一范围,对 $H(\Omega)$ =0 的变换来说更是如此。因此,本书的剩余篇幅中,对于傅里叶变换的幅度,我们既采用对数刻度画法,也采用线性刻度画法,而在任何特殊场合中,将采用更适合的一种。

5.11 用线性常系数差分方程表征的系统频率响应

www.blogoil.com

5.11.1 由差分方程表征的 LTI 系统的频率响应和冲激响应的计算

如在第3章中所定义的,对于输入为x[n],输出为y[n]的LTI系统,其线性常系数差分方程一般具有如下形式

$$\sum_{k=0}^{N} a_k y [n-k] = \sum_{k=0}^{M} b_k x [n-k]$$
 (5.136)

在本节,我们利用离散时间傅里叶变换的性质来得到由式(5.136)描述的 LTI 系统的频率响应表示式。有了这个表示式,就可利用部分分式展开的方法求出冲激响应。这种方法极类似于4.11节中连续时间系统所用的方法,它提供了一种非常有效的用来分析由差分方程描述的离散时间LTI 系统的方法。

作为求取式(5.136)表示的LTI系统的频率响应的第一步,假定 x[n], y[n] 的傅里叶变换以及系统的冲激响应 h[n] 都存在,并用 $X(\Omega)$ 、 $Y(\Omega)$ 和 $H(\Omega)$ 分别表示它们的傅里叶变换。那么,由离散时间傅里叶变换的卷积特性〔式(5.89)〕可得

$$H(\Omega) = \frac{Y(\Omega)}{X(\Omega)}$$

把傅里叶变换应用于式(5.136)的两边,并且利用傅里叶变换的线性和时间移位特性(式(5.75)),就可得到表示式

$$\sum_{k=0}^{N} a_k e^{-jk\Omega} Y(\Omega) = \sum_{k=0}^{M} b_k e^{-jk\Omega} X(\Omega)$$

或等效地,

$$H(\Omega) = \frac{Y(\Omega)}{X(\Omega)} = \frac{\sum_{k=0}^{W} b_k e^{-jk\Omega}}{\sum_{k=0}^{N} a_k e^{-jk\Omega}}$$
(5.137)

比较式(5.137)和式(4.145)可看出,如同连续时间情况一样, $H(\Omega)$ 是一个多项式之比,但在这种情况下,它们是变量 $e^{-i\Omega}$ 的多项式。如同式(4.145)一样,分子多项式的系数与式(5.136)右边的系数是同样的,而分母多项式的系数与式(5.136)左边的系数是同样的。因此,通过观察就可写出由式(5.136)确定的LTI系统的频率响应。

例5.17 研究由下式表征的初始状态为静止的 LTI系统

$$y[n] = ay[n-1] = x[n]$$
 (5.138)

其中 |a| < 1。根据式 (5.137),该系统的频率响应为

$$H(\Omega) = \frac{1}{1 - ae^{-i\Omega}} \tag{5.139}$$

与例5.5 比较,可把上式视为序列 $a^nu[n]$ 的傅里叶变换。因此,系统的冲激响应为

$$h[n] = a^n u[n] \tag{5.140}$$

例5.18 分析一个由差分方程表征的初始状态为静止的 LTI系统

$$y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = 2x[n]$$
 (5.141)

由式(5.137)可知,其频率响应是

$$H(\Omega) = \frac{2}{1 - \frac{3}{4}e^{-j\Omega} + \frac{1}{8}e^{-j2\Omega}}$$
 (5.142)

$$H(\Omega) = \frac{2}{\left(1 - \frac{1}{2}e^{-j\Omega}\right)\left(1 - \frac{1}{4}e^{-j\Omega}\right)}$$

$$(5.143)$$

将式(5.143)作部分分式展开,得到

$$H(\Omega) = \frac{4}{1 - \frac{1}{2}e^{-j\Omega}} - \frac{2}{1 - \frac{1}{4}e^{-j\Omega}}$$
 (5.144)

通过观察可以辨出上式每一项的逆变换, 其结果是

$$h[n] = 4\left(\frac{1}{2}\right)^n u[n] - 2\left(\frac{1}{4}\right)^n u[n]$$
 (5.145)

例5.18中所采用的方法,在形式上和连续时间情况下所用的方法是相同的。特别是,将 $H(\Omega)$ 展开为部分分式之后,就可通过观察来辨别每一项的逆变换。这样,就可利用这种方法求任何由线性常系数差分方程描述的LTI 系统的频率响应的逆变换。同时,如下面例子中所说明的,如果上述系统输入的傅里叶变换 $X(\Omega)$ 是 $e^{-i\Omega}$ 的多项式之比,那么 $Y(\Omega)$ 也是如此。在这种情况下,可用同样的方法求输入 x[n] 的响应 y[n]。

例5.19 研究例5.18的 LTI系统,设该系统的输入是

$$x[n] = \left(\frac{1}{4}\right)^n u[n]$$

那么, 利用式 (5.137) 和例5.5 或例5.17, 得到

$$Y(\Omega) = H(\Omega)X(\Omega) = \left[\frac{2}{\left(1 - \frac{1}{2}e^{-j\Omega}\right)\left(1 - \frac{1}{4}e^{-j\Omega}\right)}\right] \left[\frac{1}{1 - \frac{1}{4}e^{-j\Omega}}\right]$$

$$= \frac{2}{\left(1 - \frac{1}{2}e^{-j\Omega}\right)\left(1 - \frac{1}{4}e^{-j\Omega}\right)^{2}}$$
(5.146)

如附录中所描述的,上式的部分分式展开式具有如下形式,

$$Y(\Omega) = \frac{B_{11}}{1 - \frac{1}{4}e^{-j\Omega}} + \frac{B_{12}}{\left(1 - \frac{1}{4}e^{-j\Omega}\right)^2} + \frac{B_{21}}{1 - \frac{1}{2}e^{-j\Omega}}$$
(5.147)

式中常数 B_{11} , B_{12} 和 B_{21} 可以利用附录中描述的方法求得。在例 A. 4中,详细地算出了上述特殊例子,并且得到了如下具体数值:

$$B_{11} = -4$$
, $B_{12} = -2$, $B_{21} = 8$

因此,

$$Y(\Omega) = -\frac{4}{1 - \frac{1}{4}e^{-j\Omega}} - \frac{2}{\left(1 - \frac{1}{4}e^{-j\Omega}\right)^2} + \frac{8}{1 - \frac{1}{2}e^{-j\Omega}}$$
(5.148)

式中的第一和第三项和例5.18所见到的那些项具有同样的形式,而式中的第二项和例5.13的 1.00 1 . COM 所见到的项具有相同形式。根据这个例子,或者根据表5.3,可以求出这些项和这种形式的 高阶项的逆变换。因此,式(5.148)的逆变换为

$$y \lceil n \rceil = \left\{ -4 \left(\frac{1}{4} \right)^n - 2(n+1) \left(\frac{1}{4} \right)^n + 8 \left(\frac{1}{2} \right)^n \right\} u \lceil n \rceil$$
 (5.149)

5.11.2 级联和并联型结构

在4.11节中我们已看出,为了实现由微分方程表征的LTI系统,利用傅里叶变换使我们得以建立两种重要的结构,即级联和并联结构。按照类似方法,现在讨论由差分方程描述的离散时间LTI系统的级联和并联型结构。为了方便起见,在讨论中假定式(5.137)中的M=N。在某些 b_k 或 a_k 等于零时,总可以认为这是正确的。

通过把式 (5.137)的分子和分母分解为一阶项的乘积来获得级联结构, 所得到 的 $H(\Omega)$ 为

$$H(\Omega) = \frac{b_0 \prod_{k=1}^{N} (1 + \mu_k e^{-j\Omega})}{a_0 \prod_{k=1}^{N} (1 + \eta_k e^{-j\Omega})}$$
(5.150)

某些 μ_k 和 η_k 可 能是复数,但它们都以复数共轭对的形式出现。可以将每一个这样的共轭对相乘,而获得实系数的二阶项,然后,假定分子中有P个复数共轭对,分母中有Q个复数共轭对,就得到

$$H(\Omega) = \frac{b_0 \prod_{k=1}^{P} (1 + \beta_{1k} e^{-j\Omega} + \beta_{2k} e^{-j2\Omega}) \prod_{k=1}^{N-2P} (1 + \mu_k e^{-j\Omega})}{a_0 \prod_{k=1}^{Q} (1 + \alpha_{1k} e^{-j\Omega} + \alpha_{2k} e^{-j2\Omega}) \prod_{k=1}^{N-2Q} (1 + \eta_k e^{-j\Omega})}$$
(5.151)

式中已重编了余下的实数 μ_k 和 η_k 的序号,以便它们分别 从 1 到 N-2P 和 N-2Q 进 行 运 算。所以,任何由线性常系数差分方程描述的 LTI 系统的频率响应都可以写 成一阶 和二阶 项的乘积。因此,可以把这种 LTI 系统认为是一阶和二阶 LTI 系统的级联,而每一个一阶或二阶 LTI 系统由式(5.151)中的一项所描述。因而,正如连续时间情况一样,一阶和二阶系统在离散时间系统的分析与综合中起着非常重要的作用,在下一节还要进一步研究它们。

为了说明级联结构的一般形式,下面研究 $H(\Omega)$ 仅为二阶项乘积的情况:

$$H(\Omega) = \frac{b_0}{a_0} \prod_{k=1}^{N/2} \frac{1 + \beta_{1k} e^{-j\Omega} + \beta_{2k} e^{-j2\Omega}}{1 + \alpha_{1k} e^{-j\Omega} + \alpha_{2k} e^{-j2\Omega}}$$
(5.152)

这相当于式(5.151)中剩下的一阶项成对相乘,并假定N为偶数的情况。如果N不是偶数,我们可以把零系数项加到分子和分母。式(5.152)中 N/2 个二阶项中的每一个表示由下列 差 分方程描述的系统的频率响应

 $y[n]+\alpha_{1k}y[n-1]+\alpha_{2k}y[n-2]=x[n]+\beta_{1k}x[n-1]+\beta_{2k}x[n-2]$ (5.153) 图5.27中,绘出了 N=6 时式(5.152)中 $H(\Omega)$ 的结构图。

图5.27 每一个二阶子系统都用直接形式 【实现的级联结构

在此情况下, $H(\Omega)$ 是三个二阶项的乘积,因此,这个系统就是式(5.153)那样的三个子系统的级联。在该图中,我们已对每一个二阶子系统采用了直接形式 \mathbb{I} 实现(图3.32)。如同连续时间情况一样,级联结构并不是唯一的形式,因为我们是任意地配对了二阶分子和分母多项式,并且也任意选择了图5.27中二阶结构单元的次序。在本章末尾的一些习题中,还讨论了级联结构的其他一些例子。

按照连续时间的同样方法,通过部分分式展开式可以得到离散时间的并联形式结构。分析式(5.137)给出的 $H(\Omega)$,为了方便,这里再次假定该式中的 M=N。同时,为了简单起见,假定所有的 η_* 是不同的。在这样的情况下,部分分式展开得出

$$H(\Omega) = \frac{b_N}{a_N} + \sum_{k=1}^{N} \frac{A_k}{1 + \eta_k e^{-j\Omega}}$$
 (5.154)

如前所述,为了得到仅包括实系数的表示式,将 η_k 中包括复数共轭对的相加在一起,得出

$$H(\Omega) = \frac{b_N}{a_N} + \sum_{k=1}^{Q} \frac{\gamma_{0k} + \gamma_{1k}e^{-j\Omega}}{1 + \alpha_{1k}e^{-j\Omega} + \alpha_{2k}e^{-j2\Omega}} + \sum_{k=1}^{N-2Q} \frac{A_k}{1 + \eta_k e^{-j\Omega}}$$
(5.155)

于是利用式(5.155),就可用一些 LTI 子系统的并联连接来实现具有以上频率响应的 LTI 系统,而这些子系统的频率响应相应于式(5.155)中的每一项。为了说明并联形式结构,我们研

3

究当
$$N$$
等于偶数和 $H(\Omega)$ 仅表示为二阶项之和时的情况:
$$H(\Omega) = \frac{b_N}{a_N} + \sum_{k=1}^{N/2} \frac{\gamma_{0k} + \gamma_{1k}e^{-j\Omega}}{1 + \alpha_{1k}e^{-j\Omega} + \alpha_{2k}e^{-j2\Omega}}$$
(5.156)

为了做到这一点,我们把式(5.155)中余下的一阶项对相加在一起。图5.28说明了 N=6 时, 式(5.156)的并联实现,图中三个二阶项的每一个都采用直接形式【实现。

图5.28 各二阶子系统均采用直接形式 【实现的并联结构

如在连续时间情况中所看到的那样,为了实现由线性常系数差分方程描述的 离散时间 LTI 系统,可采用各种不同的结构。指出这些结构之间的差别,这在实际实现 一个 LTI 系统时相当重要。级联和并联的实现,可由那些仅在它们的系数值方面有所不同的二阶系统互连组成。由于这个特点,允许人们采用基本相同的结构模式以降低实现的成本。同时,这些结构提供了如何利用数字计算的方法实现系统的其他可能性。例如,在实现级联结构时,可以设想采用一个其系数可以改变的二阶数字系统。输入的每一个相继值,首先由这个数字系统进行处理,数字系统的系数集等于级联结构中第一个二阶系统的系数集,其结果再由同一数字系统进行处理,这时其系数集等于级联结构中第二个二阶系统的系数集,如此等等。这里仅需一个二阶数字系统,但是,产生下一个输出所需要的总的处理时间,等于级联结构中二阶系统的总数乘以单个二阶系统的处理时间。另一方面,可以用若干个二阶数字系统实现并联结构。这些系统将同时处理 x[n],因此,出现下一个输出的总的处理时间,就等于单个二阶系统的处理时间。

除了刚才叙述的那些问题之外,结构的选择还涉及到对于不同结构的实际实现不能同样处理的现实考虑。具体说,如果用数字计算法实现一离散时间系统,那么,将受到数字系统的有限寄存长度的限制,因此,就不能精确地得到所要求的 系 数 值。同时,像乘法和加法这样的数字运算还须经过舍入,这是一种非线性运算。一般,对于不同的结构,有限寄存长度的影响是不同的,在这里我们不打算进一步讨论这个课题,不过本章已讨论的方法为它的研究提供了基本内容①。

在本节已看出,离散时间傅里叶分析这一工具,在推动线性常系数差分方程表征的离散时间 LTI 系统的研究中起了巨大的作用。然而,正如连续时间情况一样,在研究任何特定的 LTI 系统,该系统必须具有频率响应。例如,如果 | a | > 1,并因此 没 有 频 率 响 应,则式 (5.138) 所描述的 LTI 系统是不稳定的。所以,每当我们应用本节所叙述的方法时,总是多 1 。 COM 蓄地假定所研究的 LTI 系统是稳定的,并因此具有频 率 响应。当然,这可以通过计算冲激响应并看看它是否绝对可和来加以检验。在第10章,我们还要叙述一种所谓广义的离散时间 傅里叶变换,它可用来分析稳定和不稳定的 LTI 系统。

5.12 一阶与二阶系统

在本节,我们用类似于4.12节的讨论来研究一阶和二阶系统的性质。如同连续时间情况那样,这些系统可以设想为一些结构单元,根据这些结构单元,我们就可构成高阶频率响应的系统。因此,通过对这些基本系统的一些了解,就能对由差分方程描述的一般LTI系统的状况建立更有效的深入理解。

5.12.1 一阶系统

研究由下列差分方程描述的一阶 LTI 因果系统

$$y[n]-ay[n-1]=x[n]$$
 (5.157)

式中|a|<1。根据例5.7,可得到该系统的频率响应为

$$H(\Omega) = \frac{1}{1 - ae^{-j\Omega}} \tag{5.158}$$

①有关寄存长度对离散时间 LTI 系统数字实现的影响的详细论述,请参阅书末参考书目中列出的数字信号处理方面的书籍。

h[n]

$$h[n] = a^n u[n] \tag{5.159}$$

 $a = +\frac{1}{2}$

图5.29画出了不同 a 值的冲激响应。并且,该系统的阶跃响应是

图5.29 一阶系统的冲激响应 $h[n]=a^nu[n]$: (a) $a=\pm 1/4$; (b) $a=\pm 1/2$; (c) $a=\pm 3/4$; (d) $a=\pm 7/8$

$$s[n] = h[n] * u[n] = \frac{1 - a^{n+1}}{1 - a} u[n]$$
 (5.160)

图5.30画出了相应的阶跃响应。

图5.30 一阶系统的阶跃响应 s[n]: (a) $a=\pm 1/4$; (b) $a=\pm 1/2$; (c) $a=\pm 2/4$; (d) $a=\pm 7/8$

参数 a 的大小起着类似于连续时间一阶系统中时间常数 τ 的作用。具体说,|a|决定了一阶系统响应的速度。例如,从式(5.159)和(5.160)以及图5.29和图5.30可看出,h[n]和 s[n] 按|a|" 收敛至零的速度收敛于它们的最终值。因此,在|a|比较小的情况下,冲 激响应急剧地衰减,而阶跃响应迅速地趋向稳定。当|a| 较接近于 1 时,这些响应 变化 就比较慢。值得注意的是,不同于它的连续时间类似情况,式(5.157)描述的一阶系统可以显 示振 荡的性能。这种振荡发生在 a<0 时,在这种情况下,阶跃响应呈现了过冲量和振铃现象。

图5.31(a)中画出了式(5.158)所示的若干个 a 值 (a>0) 的频率响应的对数幅度和相位。 1 1 . COM图5.31(b)说明了 a<0 的情况。由这些曲线图可看出,a>0 时,系统 衰 减了高频[即, Ω -

图5.31 式(5.158)表示的一阶系统频率响应的对数幅度和相位特性: (a) a>0 时若干个 a 值的曲线; (b) a<0 时若干个 a 值的曲线

接近 $\pm \pi$ 时的 $H(\Omega)$ 比 Ω 接近零时的小),而在 a < 0 时,系统放大高频并衰减低频。还 须注意的是, |a| 很小时, $|H(\Omega)|$ 的最大 和最 小 值 [1/(1+a) 和 1/(1-a)] 比 较 靠 近,并且 $|H(\Omega)|$ 的曲线图也比较平坦。另一方面, |a| 接近 1 时,这些量差别明显,因此, $|H(\Omega)|$ 较急剧地起峰。

5.12.2 二阶系统

分析由下式描述的二阶 LTI 因果系统

$$y[n]-2r\cos\theta y[n-1]+r^2y[n-2]=x[n]$$
 (5.161)

当 0<r<1 和 0≤ θ ≤ π 时,该系统的频率响应是

$$H(\Omega) = \frac{1}{1 - 2r\cos\theta e^{-j\Omega} + r^2 e^{-j2\Omega}}$$
 (5.162)

对 $H(\Omega)$ 的分母进行因式分解, 得

$$H(\Omega) = \frac{1}{[1 - (re^{i\theta})e^{-i\Omega}][1 - (re^{-i\theta})e^{-i\Omega}]}$$
 (5.163)

当 θ ≠0或 π 时, $H(\Omega)$ 分母的两个因式是不同的,部分分式展开得

$$H(\Omega) = \frac{A}{1 - (re^{i\theta})e^{-i\Omega}} + \frac{B}{1 - (re^{-i\theta})e^{-i\Omega}}$$
(5.164)

式中

$$A = \frac{e^{i\theta}}{2j\sin\theta}, \quad B = -\frac{e^{-i\theta}}{2j\sin\theta}$$
WWW. 0108011. Com

在此情况下,系统的冲激响应为

$$h[n] = [A(re^{i\theta})^n + B(re^{-i\theta})^n]u[n]$$

$$=r^{n}\frac{\sin[(n+1)\theta]}{\sin\theta}u[n]$$
 (5.166)

 $\theta=0$ 或 π 时,式(5 163)分母的两个因式是一样的。当 $\theta=0$ 时,

$$H(\Omega) = \frac{1}{(1 - re^{-j\Omega})^2}$$
 (5.167)

和

$$h[n] = (n+1)r^nu[n]$$
 (5.168)

如果 $\theta=\pi$,则

$$H(\Omega) = \frac{1}{(1 + re^{-/\Omega})^2}$$
 (5.169)

和

$$h[n] = (n+1)(-r)^n u[n]$$
 (5.170)

图5.32中画出了r 和 θ 值在一定范围内的二阶系统的冲激响应。由这个图和式(5.166)可看出,r 值控制着 h[n] 的衰减速度,即,r 越接近于 1 ,h[n] 衰减就越慢。类似 地, θ 值 决定了振荡的频率。例如, $\theta=0$ 时,h[n] 没有振荡,而 $\theta=\pi$ 时,振荡就加快。不同r 和 θ

图5.32 对应一定范围的r和 θ 值,式(5.161)所示二阶系统的冲激响应

值的影响,还可通过研究式(5.161)的阶跃响应看出。当 $\theta \neq 0$ 或 π 时,

$$s[n] = h[n] * u[n] = \left[A\left(\frac{1 - (re^{j\theta})^{n+1}}{1 - re^{j\theta}}\right) + B\left(\frac{1 - (re^{-j\theta})^{n+1}}{1 - re^{-j\theta}}\right) \right] u[n] \quad (5.171).$$

并且,利用习题3.19的结果,可得出 $\theta=0$ 时的

$$s[n] = \left[\frac{1}{(r-1)^2} - \frac{r}{(r-1)^2}r^n + \frac{r}{r-1}(n+1)r^n\right]u[n]$$
 (5.172)

而 θ =π 时,

$$s[n] = \left[\frac{1}{(r+1)^2} + \frac{r}{(r+1)^2} (-r)^n + \frac{r}{r+1} (n+1) (-r)^n \right] u[n]$$
 (5.173)

图5.33画出了与图5.32同样 r 和 θ 值的阶跃响应。

图5.33 对于一定范围的r和 θ 值,式(5.161)所示二阶系统的阶跃响应

式(5.161)给出的二阶系统对应于 连续时间二阶欠阻尼系统,而对于 $\theta=0$ 的 特殊情况是临界阻尼系统。也就是说,对于除零以外的任何 θ 值,冲激响应都具有阻尼振荡的特性,阶跃响应都呈现振铃和过冲现象。图5.34描述了这一系统对于不同的 r 和 θ 值的频率响应。从图 可 以 看 出,该系统放大了频带。并且应该注意, θ 基本上控制被放大的频带的位置,而 r 决定着尖峰响应在该频带内的变化程度。

www.blogoil.com

图5.34 式(5.161)所示二阶系统之频率响应的对数幅度和相位特性: (a) $\theta=0$; (b) $\theta=\pi/4$; (c) $\theta=\pi/2$; (d) $\theta=3\pi/4$; (e) $\theta=\pi$ 。每个图包括了对应于 $r=\frac{1}{4}$, $\frac{1}{2}$ 和 $\frac{3}{4}$ 的曲线

www.blogoil.com

· 283 ·

图5.34(续)

正如我们已看到的,式(5.163)所描述的二阶系统具有复数系数的因 子(除 $\theta=0$ 或 π 之 外)。所考虑的二阶系统也有可能具有实系数的因子。具体说,研究具有如下形式的 $H(\Omega)$

$$H(\Omega) = \frac{1}{(1 - d_1 e^{-j\Omega})(1 - d_2 e^{-j\Omega})}$$

www.5.1510goil.com

式中 d_1 和 d_2 是实数,且 $|d_1|$, $|d_2|$ <1。这一频率响应所对应的差分方程为

$$y[n] - (d_1 + d_2)y[n-1] + d_1d_2y[n-2] = x[n]$$
 (5 175)

在此情况下

$$H(\Omega) = \frac{A}{1 - d_1 e^{-i\Omega}} + \frac{B}{1 - d_2 e^{-i\Omega}}$$
 (5.176)

式中

$$A = \frac{d_1}{d_1 - d_2}, B = \frac{d_2}{d_2 - d_1}$$
 (5.177)

因此,

$$h[n] = [Ad_1^n + Bd_2^n]u[n]$$
 (5.178)

这是两个衰减的实指数之和。同样,

$$s[n] = \left[A\left(\frac{1 - d_1^{n+1}}{1 - d_1}\right) + B\left(\frac{1 - d_2^{n+1}}{1 - d_2}\right) \right] u[n]$$
 (5.179)

由式 (5.174) 给出频率响应的系统相当于两个一阶系统的级联,因此,根据我们所知一阶系统的概念就可导出该系统的大部分性质。例如,通过两个一阶系统的特性曲线相加,即可得到式(5.174)的对数幅度和相位曲线。并且,如我们在一阶系统所看到的那样,当 $|d_1|$ 和 $|d_2|$ 都比较小时,系统的响应就快,但是当它们任何一个的数值接近于 1 时,系统就会长时间趋向稳定。此外,如果 d_1 和 d_2 都是负值,则响应具有振荡。如果 d_1 和 d_2 都等于正值,则对应于连续时间的过阻尼情况,如同冲激和阶跃响应均为稳定而无振荡的情况。

最后,要指出的是,与我们在5.11节末尾的叙述一致,仅仅研究了稳定的(因此具有频率

响应的)一阶和二阶系统。特别是,当 $|a| \ge 1$ 时,式(5.157)所描述的系统是不稳定的; $r \ge 1$ 时,式(5.161)所示系统是不稳定的。而当 $|d_1|$ 或 $|d_2|$ 的任何一个超过 1 时,式(5.157)所述系统也是不稳定的。通过研究上述每种情况的冲激响应,可直接验证以上论述。

在本章中,我们类似于第4章研究了离散时间信号与系统的傅里叶分析方法。如同第4章那样,推动这种研究的主要动力是复指数信号为离散时间 LTI 系统的特征函数这一事实。由于这个原因,傅里叶级数和傅里叶变换表达式在离散时间信号与系统的研究中起着重要的作用。现在我们已导出了连续时间和离散时间两者的基本工具,在第6到第8章中,还要把这些结果应用于具有重要实际意义的三个课题:滤波,调制和抽样。

贯穿全章已看到,连续时间和离散时间傅里叶分析之间有许多类似点,也有一些重要的差别。例如,离散时间傅里叶级数和傅里叶变换之间的关系完全类似于连续时间的情况,而连续时间变换的许多性质也具有确定的离散时间的对应性质。另一方面,周期信号的离散时间傅里叶级数是有限级数,而非周期信号的离散时间傅里叶变换却总是具有周期为 2π的 周期性。除了这些类似和差别之外,我们还叙述了连续时间和离散时间信号的傅里叶表达式之间存在着明显的对偶性。

当然,连续时间和离散时间傅里叶分析之间最重要的相似点是它们在信号与LTI系统研究中的应用。具体说,卷积性质为我们提供了LTI系统的频域分析的基础。在由线性常系数微分或差分方程描述的系统研究中,我们已经看到了这种方法的某些效果。而在第6章集中讨论频率选择滤波时,我们会对它的效果获得更进一步的了解。此外,连续时间和离散时间的调制性质,是第7章研究调制系统时的关键。在第8章,我们将利用连续时间和离散时间的傅里叶分析去研究抽样系统和连续时间信号的离散时间处理。

习题

5.1. 试确定下列每个离散时间周期信号的傅里叶级数的系数,并画出每个系数集 ax的幅度和相位曲线:

(a)
$$x[n] = \sin\left[\frac{\pi(n-1)}{4}\right]$$
;

(b)
$$x[n] = \cos\left(\frac{2\pi n}{3}\right) + \sin\left(\frac{2\pi n}{7}\right)$$

(c)
$$x[n] = \cos\left(\frac{11\pi n}{4} - \frac{\pi}{3}\right);$$

(d) x[n] 是周期为 6 的周期信号和

$$x[n] = \left(\frac{1}{2}\right)^n - 2 \leqslant n \leqslant 3;$$

(e)
$$x[n] = \sin\left(\frac{2\pi n}{3}\right)\cos\left(\frac{\pi n}{2}\right);$$

(f) x[n]是周期为 4 的周期信号,并且

$$x[n]=1-\sin\left(\frac{\pi n}{4}\right) \qquad 0 \leqslant n \leqslant 3;$$

(g) x[n] 是周期为12的周期信号,并且

$$x[n]=1-\sin\left(\frac{\pi n}{4}\right) \qquad 0 \leqslant n \leqslant 11;$$

- (h) x[n] 如图 P5.1(a) 所示;
- (i) x[n] 如图 P5.1(b) 所示;
- (j) x[n] 如图 P5.1(c) 所示;
- (k) x[n] 如图 P5.1(d)所示;
- (1) x[n] 如图 P5.1(e) 所示。

5.2. 研究图 P 5.2 所示的周期信号 x[n],其周期 N=4。用离散时间傅里叶级数 可 把 信 号 x[n] 表 示 为:

$$x[n] = \sum_{k=0}^{3} a_k e^{jk} \left(\frac{2\pi}{4}\right)^n$$
 (P5.2-1)

如课文中所述,确定**傅里**叶级数系数的一种方法,是把式(P5.2-1)看作含四个未知数(a_0 , a_1 , a_2 和 a_8)的四方程的线性方程组[对应于式(P5.2-1)中的n=0, 1, 2, 3]。

- (a) 明确列出这四个方程式,并且直接利用任何常规的解四个未知数的方程组的方法 求 解 它 们 (首先必须使上述复指数化为最简单的形式);
- (b) 直接利用离散时间傅里叶级数分析方程

$$a_k = \frac{1}{4} \sum_{n=0}^{8} x[n] e^{-jk(\frac{2\pi}{4N})n}$$

计算出 a, 以核对上面解出的结果。

5.3. 下面给定了周期为 8 的周期信号的傅里叶级数的系数, 试确定每种情况下的信号 x[n]。

(a)
$$a_k = \cos\frac{k\pi}{4} + \sin\frac{3k\pi}{4}$$
;

- (c) a, 如图 P5.3(a) 所示;
- (d) a_a如图 P5.3(b)所示。

www.blogoil.com

5.4. 假定 x[n] 是一周期序列,周期为N,其傅里叶级数表达式为

$$x[n] = \sum_{k=(N)} a_k e^{jk(\frac{2\pi}{N})n}$$
 (P5.4-1)

- (a) 下列每一个信号的傅里叶级数的系数可以用式(P5.4-1)中的 a, 表示。 试导出这些信号的傅里叶级数表达式。
 - (i) $x[n-n_0]_3$
 - (ii) x[n]-x[n-1];

(iii)
$$x[n]-x\left[n-\frac{N}{2}\right]$$
, (假定 N 为偶数);

(iv)
$$x[n]+x\left[n+\frac{N}{2}\right]$$
 (假定 N 为偶数; 并注意这个信号是周期的,周期为 $\frac{N}{2}$)

 $(v) x^*[n];$

$$(vi) x_{(m)}[n] = \begin{cases} x \left[\frac{n}{m} \right], & n \neq m \text{ in } \text{ in$$

 $(x_{(m)}[n]$ 具有周期性,周期为 mN)

(vii) $(-)^n x [n]$,

(假定N为偶数);

(viii) $(-)^n x[n]$,

(假定N为奇数;注意该信号具有周期性,周期为 2N)

(ix)
$$y[n] = \begin{cases} x[n], & n$$
 为偶数, (必须分别研究 N 为偶数和奇数的情况) n 为奇数;

(b) 假定N为偶数,并且设式($P5.4 \sim 1$)中的 x[n]满足

$$x[n] = -x\left[n + \frac{N}{2}\right]$$
, 对所有的 n ,

试证明对所有偶整数 k, $a_k=0$ 。

(c) 假定N是可用 4 除尽的数。如果

$$x[n] = -x\left[n + \frac{N}{4}\right]$$
, 对所有的 n ,

那么证明对每一个 4 的整数倍的 k 值, $a_k=0$ 。

 $oxedsymbol{1}$ $oldsymbol{d}$) 更一般地说,假定N是一个可用整数M除尽的数。如果

试证明对每一个M的整数倍的k值,有 $a_k=0$ 。

5.5. 本习题中,我们要研究习题4.7和4.8中所介绍的各种概念的离散时间的对应概念。与连续时间情况〇11. COM相类似,如果

$$\sum_{n=N_1}^{N_2} \phi_k \lceil n \rceil \phi_m \lceil n \rceil = \begin{cases} A_k, & k=m, \\ 0, & k \neq m, \end{cases}$$
 (P5.5-1)

那么就认为两个离散时间信号 $\phi_k[n]$ 和 $\phi_m[n]$ 在区间 (N_1, N_2) 上 是 正 交 的。如果 常 数 A_k 和 A_m 的值都等于 1 ,那么,这两个信号被认为是规一化的正交。

(a) 研究信号

$$\phi_k[n] = \delta[n-k], k=0, \pm 1, \pm 2, \dots, \pm N,$$

试证明这些信号在区隔(-N,N)上是规一化的正交。

(b) 试证明信号

$$\phi_k[n] = e^{jk(2\pi/N)n}, k=0, 1, \dots, N-1$$

在长度为N的任何间隔上是正交的。

(c) 试证明: 如果

$$x[n] = \sum_{i=1}^{M} a_i \phi_i[n]$$

式中 $\phi[n]$ 在问隔 (N_1, N_2) 上是正交的,那么,

$$\sum_{n=N_1}^{N_2} |x[n]|^2 = \sum_{i=1}^{M} |a_i|^2 A_i$$

(d) 假定在区间 (N_1, N_2) 上, $\phi_i[n](i=0, 1, ..., M)$ 是一正交函数集,并且令 x[n] 是一给定信号。假若希望把 x[n] 近似为 $\phi_i[n]$ 的线性组合,即,

$$\hat{x}[n] = \sum_{i=0}^{M} a_i \phi_i[n]$$

式中 a, 是恒定系数。设 试证明如果希望

$$e[n] = x[n] - \hat{x}[n],$$

 $E = \sum_{n=N_1}^{N_0} |e[n]|^2$

成为最小,则01应为

$$a_{i} = \frac{1}{A_{i}} \sum_{n=K_{1}}^{N_{2}} x[n] \phi_{i}^{*}[n]$$
 (P5.5-2)

提示: 像习题4.8那样,用 a_i , ϕ_i [n], A_i 和 x[n] 表示E, 写出 a_i = b_i + jc_i ,并且证明用式(P5.5-2) 给出的 a_i 满足下列方程

$$\frac{\partial E}{\partial b_i} = 0$$
 $\pi \frac{\partial E}{\partial c_i} = 0$

注意, 当 ϕ [n] 如(b)中所示时, 应用上述结果就可得出对应 α 的公式(5.19)。

- (e) 当 $\phi[n]$ 如(a)中所示时,应用(d)的结果确定用 x[n] 表示的系数 a_{i}
- 5.6. (a) 假定 x[n] 和 y[n] 是周期信号,

$$x[n] = \sum_{k=(N)} a_k e^{jk(2\pi/N)n}$$
 (P5.6-1)

和

$$y[n] = \sum_{k=(N)} b_k e^{jk(2\pi/N)n}$$

试推导离散时间调制性质。即,证明

$$x[n]y[n] = \sum_{k=(N)} c_k e^{jk(2\pi/N)n}$$

式中

$$c_k = \sum_{i=(N)} a_i b_{k-i} = \sum_{i=(N)} a_{k-i} b_i$$

(b) 利用(a)的结果求下列各信号的傅里叶级数表达表,其中 x[n]由式(P5.6-1)给定。

(i)
$$x[n] \cos\left(\frac{6\pi n}{N}\right)$$
;

(ii)
$$x[n] \sum_{r=-\infty}^{+\infty} \delta[n-rN];$$

www.blogoil.com

(iii) $x[n] \left(\sum_{r=-\infty}^{+\infty} \delta \left[n - \frac{rN}{3}\right]\right)$ (假定N是用 3 除得尽的整数)。

(c) 试求信号 x[n]y[n] 的傅里叶级数表达式,其中

$$x[n]=\cos\frac{\pi n}{3}$$

y[n] 是周期性的, 周期为12,

$$y[n] = \begin{cases} 1, & |n| \leq 3, \\ 0, & 4 \leq |n| \leq 6. \end{cases}$$

(d)利用(a)的结果证明

$$\sum_{n=(N)} x[n]y[n] = N \sum_{i=(N)} a_i b_{-i}$$

并且根据这个表示式导出离散时间周期信号的帕斯维尔关系式。

5.7. 假定 x[n] 是一实数周期信号,周期为N,其复数傅里叶级数的系数为 a_* 。设 a_* 的笛卡尔 坐 标形式由下列表示

$$a_k = b_k + jc_k$$

式中 b_k 和 c_k 都是实数。

- (a)证明 $a_{-k}=a^*$ _k。试问 b_* 和 b_{-k} 之间的关系是什么? c_k 和 c_{-k} 之间的关系是什么?
- (b) 假设N为偶数, 试证明 $a_N/2$ 为实数。
- (c)证明 x[n] 也可以表示为三角傅里叶级数的形式。如果N为奇数,则

$$x[n] = a_0 + 2 \sum_{k=1}^{(N-1)/2} b_k \cos \frac{2\pi kn}{N} - c_k \sin \frac{2\pi kn}{N}$$

或者,如果N为偶数,则

$$x[n] = [a_0 + a_{N/2}(-1)^n] + 2\sum_{k=1}^{(N-1)/2} b_k \cos \frac{2\pi kn}{N} - c_k \sin \frac{2\pi kn}{N}$$

(d) 试证明如果 a_k 的极坐标形式为 $A_k e^{j\theta k}$, N为奇数,则 x[n]的傅里叶级数表达式也可写为

$$x[n] = a_0 + 2 \sum_{k=1}^{(N-1)/2} A_k \cos\left(\frac{2\pi kn}{N} + \theta_k\right)$$

或者,如果N为偶数,则

$$x[n] = [a_0 + a_{N/2}(-1)^{n}] + 2\sum_{k=1}^{(N/2)} A_k \cos\left(\frac{2\pi kn}{N} + \theta_k\right)$$

(e) 假定 x[n] 和 z[n] 如图 P 5.7所示,具有正弦一余弦级数表示式

$$x[n] = a_0 + 2\sum_{k=1}^{9} \left\{ b_k \cos \frac{2\pi kn}{7} - c_k \sin \frac{2\pi kn}{7} \right\}$$

$$z[n] = d_0 + 2\sum_{k=1}^{9} \left\{ d_k \cos \frac{2\pi kn}{7} - f_k \sin \frac{2\pi kn}{7} \right\}$$

试画出下列信号的略图。

$$y[n] = a_0 - d_0 + 2\sum_{k=1}^{s} \left\{ d_k \cos \frac{2\pi kn}{7} + (f_k - c_k) \sin \frac{2\pi kn}{7} \right\}$$

5.8. (a) 图 $P_{5.8}(a)$ 所示三角形序列 $x_a[n]$ 是周期性的,周期 N=6,因此具有离散时间傅里叶级数 表示式为

 $x_{\bullet}[n] = \sum_{k=0}^{5} a_k e^{jk(2\pi/6)n}$

试求出其傅里叶级数的系数 ax, 并画出简图。

(b) 图 P5.8(b) 所示的序列 $x_b[n]$ 也是周期性的,周期为 8 ,并且它是通过在 $x_a[n]$ 的 三 角脉 冲序列之间插入零而形成的。如果 $x_b[n]$ 的离散时间傅里叶级数表达式为

$$x_b[n] = \sum_{k=0}^{7} b_k e^{jk(2\pi/8)n}$$

试求傅里叶级数的系数 b_* , 并画出其简图。

- (c) 图 P 5.8(c) 所示的非周期三角形序列 x_e[n] 相当于周期 序 列 x_e[n](或 x_e[n])的 一 ↑ 周 期。试确定 $x_c[n]$ 的离散时间傅里叶变换 $X(\Omega)$,并画出它的简图。
- (d) 试证明何里叶级数的系数 a_k 和 b_k 就是 $X_{c}(\Omega)$ 的等间隔抽样:

$$a_k = c_1 X_o(k\Omega_1)$$

$$b_k = c_2 X_o(k\Omega_2)$$
(P5.8-1)
(P5.8-2)

并确定常数 c_1 , c_2 , Ω_1 和 Ω_2 的值。

(e) 研究图 P5.8(d)中的非周期信号 $x_o[n]$ 。该信号等于 0≤n≤5 时的 $x_o[n]$,试计算 $X_o(\Omega)$ 并 证明 $a_k = c_1 X_d(k\Omega_1)$

图 P 5.8

式中 c_1 和 Ω_1 具有和(d)中完全同样的数值。

5.9. (a) 分析 -LTI 系统, 其冲激响应为

$$h[n] = \left(\frac{1}{2}\right)^{int}$$

试求对应下列每一个输入信号的输出 y[n] 的傅里叶级数表达式。

(i)
$$x[n] = \sin \frac{3\pi n}{4}$$
,

(ii)
$$x[n] = \sum_{k=-\infty}^{+\infty} \delta[n-4k];$$

(iii) x[n] 是周期为 6 的周期信号,并且

$$x[n] = \begin{cases} 1, & n=0, \pm 1, \\ 0, & n=\pm 2, \pm 3; \end{cases}$$

(iv) $x[n] = j^n + (-1)^n$

$$h[n] = \begin{cases} 1, & 0 \le n \le 2, \\ -1, & -2 \le n \le -1, \\ 0, & \text{iden}, \end{cases}$$

重复(a)。

5.10. 如课文中所述,通常感兴趣的是用数字计算机实现信号的傅里叶分析。由于计算机的离散和有限字长的特点,所以任何被处理的信号都必须是离散的, 并且还必须是有限时宽 的。设 x[n] 就 是 这种信号,即,

$$x[n]=0$$
, 在 $0 \le n \le N_1-1$ 间隔之外,

x[n] 的傅里叶变换 $X(\Omega)$ 是连续频率变量 Ω 的函数,然而,由于实际限制,只可能计算一组有限 Ω 值的 $X(\Omega)$ 。

假定在等间隔点上计算 $X(\Omega)$ 。具体说,假定选择一个整数N,并对下列各 Ω_{\bullet} 值计算 $X(\Omega_{\bullet})$

$$\Omega_k = \frac{2\pi k}{N}, k=0, 1, \dots, N-1$$

(a) 假设 $N \ge N_1$, 试证明

$$\widetilde{X}(k) = \frac{1}{N} X \left(\frac{2\pi k}{N} \right)$$

式中 $\widetilde{X}(k)$ 是 x[n] 的 DFT。由此,证明 x[n] 完全可以由它的傅里叶变换的抽样来确定,

$$X(\frac{2\pi k}{N}), k=0, 1, \dots, N-1$$

(b) 在(a)中我们已看出,只要 $N \ge N_1(x[n])$ 的时宽),x[n] 就可由 $X(\Omega)$ 的N 个 等 间 隔 的 抽样确定。为了说明 $N \ge N_1$ 这个条件的必要性,可以研究图 P 5.10所示的两个信号 $x_1[n]$ 和 $x_2[n]$ 。试证明如果取 N=4,则对所有的 k 值,有

$$X_{1}\left(\frac{2\pi k}{4}\right) = X_{2}\left(\frac{2\pi k}{4}\right)$$

图 P 5 10

5.11. 如课文中和习题5.10中所指出的那样,有许多实际意义的问题需要计算离散时间信号 的 DFT。通常,这些信号具有相当长的时宽,在这样的情况下,很重要的是要采用高效的算法程序。在课文中已谈到,在信号分析中计算技术的采用之所以明显增加,其原因之一是一种称为快速傅里 叶 变换 (FFT) 的高效算法的发展,这种高效算法可用来计算有限时宽序列的 DFT。在本题中,我们要研究 FFT 的基本原理。

设信号x[n] 在间隔 $0 \le n \le N_1 - 1$ 之外等于零。回顾5.4.3 节可知, $N \ge N_1$ 时,x[n] 的N点 DFT 为

$$\widetilde{X}(k) = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk(2\pi/N)n}, \ k=0, 1, \dots, N-1$$
 (P5.11-1)

为了方便起见,把式(P5.11-1)写成

$$\widetilde{X}(k) = \frac{1}{N} \sum_{k=0}^{N-1} x[n] W_N^{nk}$$
 (P5.11-2)

式中

$$W_{\pi} = e^{-j2\pi/N}$$

(a) 计算 $\widetilde{X}(k)$ 的一种方法是直接计算式 (P5.11-2), 估计这种算法复杂程度的有效 衡量 标 • 292 •

准是所需复数相乘的总次数。证明 k=0, 1, …, N-1 时,直接 计 算式 (P5.11-2)所需复数乘法次数为 N^2 。假设 x[n] 是复数,同时假定所需要的 W 增值已预先算好,并 存 放在一个表格里。为了简单起见,不利用这样的事实,即对于某些 n 和 k 值,W 等于 ± 1 或 $\pm j$ 。严格地说,因此就不需要一个全部用复数相乘。

- (b) 假定N为偶数。设 f[n]=x[2n] 表示 x[n] 的偶数编号抽样,并设 g[n]=x[2n-1] 表示 奇数编号抽样。
 - (i) 试证明在间隔 $0 \le n \le (N/2) 1$ 之外,f[n] 和 g[n] 都等于零。
 - (ii) 试证明 x[n] 的N点 $DFT \tilde{X}(k)$ 可表示为

$$\widetilde{X}(k) = \frac{1}{N} \sum_{n=0}^{(N/2)} f[n] W_{N/2}^{nk} + \frac{1}{N} W_{N}^{(N/2)} \sum_{n=0}^{-1} g[n] W_{N/2}^{nk}$$

$$= \frac{1}{2} \widetilde{F}(k) + \frac{1}{2} W_{N}^{k} \widetilde{G}(k), k=0, 1, \dots, N-1$$
(P5.11-3)

式中

$$\widetilde{F}(k) = \frac{2}{N} \sum_{n=0}^{(N/2)-1} f[n] W_{N/2}^{nk}$$

$$\widetilde{G}(k) = \frac{2}{N} \sum_{n=0}^{(N/2)-1} g[n] W_{N/2}^{nk}$$

(iii) 证明

$$\widetilde{F}\left(k+\frac{N}{2}\right) = \widetilde{F}(k)$$
 对所有的 k

请注意, $\widetilde{F}(k)(k=0, 1, ..., N/2-1)$ 和 $\widetilde{G}(k)(k=0, 1, ..., N/2-1)$ 分别是 f[n]和 g[n] 的 f[n] 的 f[n] 的 DFT。 因此,式 f[n] 的 f[n] 的 DFT。 因此,式 f[n] 的 f[n]

- (iv) 试确定根据式(P5.11-3)用 计 算 $\widetilde{F}(k)$ 和 $\widetilde{G}(k)$ 的方法来计算 $\widetilde{X}(k)(k=0.1,...N-1)$ 所需要的复数相乘的次数 (关于乘法的假定和 (b)中一样,并且不计入式 (P5.11-3)中与 1/2 的相乘的次数)。
- (c) 如果 N/2 还是偶数,那么 f[n] 和 g[n] 各自都可以分解为偶数和奇数编号抽样的序列,因此它们的 DFT 都 可以用和式(P5.11-3)同样 的方法计算。而且,如果N是一个 2 的整数幂,我们可以继续重复这一过程,这样就达到有效地节省计算时间的目的。利用这种方 法,试问: N=32,256,1024和4096时,所需要的复数相乘次数大致等于多少?并与(a)中的 直接计算进行比较
- (d) 虽然在实际应用中,N等于 2 的幂的情况无疑是最常用的,但是也有可能得到其他情况下的 FFT 算法。例如,假定N是可被 3 除尽的整数,即 N=3M。证明 可以由下列三个信号 的 长度为M的 DFT 来 计算X(k)。

$$f_1[n] = x[3n],$$

 $f_2[n] = x[3n+1],$
 $f_8[n] = x[3n+2].$

更一般的情况, 假定

$$N = p_1 p_2 \cdots p_R$$

式中每个 p_i 是质数(某些 p_i 可以是同样的)。试说明此种情况下计算 DFT 的高效算法。 (e) 研究信号 x[n] 的逆 DFT 的计算,即,

$$x[n] = \begin{cases} \sum_{k=(N)} \tilde{x}(k)e^{jk(2\pi/N)n}, & 0 \leq n \leq N-1, \\ 0, & \text{其他}. \end{cases}$$

假定N是2的整数冥, 试说明 FFT 算法怎样用于这种反变换计算。

- 5.12. 本习题中,说明并详述5.6节中关于周期卷积的讨论。
 - (a) $\Diamond \tilde{x}_1[n]$ 和 $\tilde{x}_2[n]$ 是周期信号,其共同的周期为N,并且令 $\Im[n]$ 是它们的周期卷积。

$$\mathfrak{F}[n] = \tilde{x}_1[n] \mathfrak{D} \tilde{x}_2[n]$$

试说明如果 a_k , b_k 和 c_k 分别是 $\tilde{x}_i[n]$, $\tilde{x}_o[n]$ 和 $\tilde{y}[n]$ 的傅里叶系数, 则

$$c_k = Na_k b_k$$

(b) 设 $\tilde{x}_1[n]$ 和 $\tilde{x}_2[n]$ 是周期都为8的两个周期信号,并由下列所确定

$$\tilde{x}_1[n] = \sin \frac{3\pi n}{4}$$

$$\tilde{x}_2[n] = \begin{cases} 1, & 0 \le n \le 3 \\ 0, & 4 \le n \le 7 \end{cases}$$

试求出这些信号的周期卷积之傅里叶级数表达式。

(c) 对下列两个周期都等于8的周期信号:

$$\tilde{x}_{1}[n] = \begin{cases} \sin \frac{3\pi n}{4}, & 0 \le n \le 3 \\ 0, & 4 \le n \le 7 \end{cases}$$

$$\tilde{x}_{2}[n] = \left(\frac{1}{2}\right)^{n}, & 0 \le n \le 7$$

重复(b)的计算。

(d) 令 $x_1[n]$ 和 $x_2[n]$ 是有限时宽序列,

 $x_1[n]=0$,对间隔 $0 \le n \le N_1-1$ 之外的 n, $x_2[n]=0$,对间隔 $0 \le n \le N_2-1$ 之外的 n。

www.P5b2bgoil.com

设N是任一整数,并至少和 N_2+N_1-1 同样大,同时设 $\tilde{x}_1[n]$ 和 $\tilde{x}_2[n]$ 是周期信号,周期为 N_2

$$\tilde{x}_1[n] = x_1[n], \ 0 \le n \le N-1,$$
 $\tilde{x}_2[n] = x_2[n], \ 0 \le n \le N-1,$

试证明

$$x_1[n] * x_2[n] =$$

$$\begin{cases} \tilde{x}_1[n] \otimes \tilde{x}_2[n], & 0 \leq n \leq N-1, \\ 0, & \text{其他}. \end{cases}$$

(e) 如(d)中一样,设 $x_1[n]$ 和 $x_2[n]$ 是有限时宽信号,它们都满 足式 (P5.12-1),且 $N_1 = N_2$ 。根据卷积和直接计算 $x_1[n] * x_2[n]$ 需要多少次相乘? 假定 $N \ge 2N_1-1$,且 N 是 2 的 数 聚。按照课文中介绍的步骤计算 $x_1[n] * x_2[n]$,首先利 用 FFT 算 法 (参见习题5.11) 计 算 $x_1[n]$ 和 $x_2[n]$ 的 DFT,其次将所求得的 DFT 相乘,最后利用 FFT 计 算 逆 变 换。对于这种算法需要多少次相乘? 当 $N_1 = 100$ 和 N = 256 时,比较上述两种 算 法 计 算 $x_1[n] * x_2[n]$ 的计算量。你可能发现下面的恒等式

$$\sum_{k=1}^{N_1} k = \frac{N_1(N_1+1)}{2}$$

是有用的。

5.13. 研究下列信号对 x[n] 和 y[n]。对于每一个信号对,确定是否有一个离散时间 LTI 系统,当相应的 x[n] 是其输入时,y[n] 就是它的输出。如果存在这样的系统,说明它是 不是唯一的(即,对于给的输入一输出对,是否有一个以上的 LTI 系统)。同时,确定具有所需特性 的 LTI 系统的 频率响应。如果对于给定的 x[n],y[n] 对不存在这样的系统,说明为什么。

(a)
$$x[n] = \left(\frac{1}{2}\right)^n$$
, $y[n] = \left(\frac{1}{4}\right)^n$,

(b)
$$x[n] = \left(\frac{1}{2}\right)^n u[n], y[n] = \left(\frac{1}{4}\right)^n u[n];$$

(c)
$$x[n] = \left(\frac{1}{2}\right)^n u[n], y[n] = 4^n u[-n]$$

(d)
$$x[n]=e^{jn/8}, y[n]=2e^{jn/8};$$

(e)
$$x[n]=e^{jn/8}u[n], y[n]=2e^{jn/8}u[n];$$

(f)
$$x[n]=j^n$$
, $y[n]=2j^n(1-j)$;

(g)
$$x[n] = \cos \frac{\pi n}{3}$$
, $y[u] = \cos \frac{\pi n}{3} + \sqrt{3} \sin \frac{\pi n}{3}$;

- (h) x[n]和 y₁[n]如图 P5.13所示;
- (i) x[n]和 y₂[n]如图 P5.13所示。

图 P 5.13

5.14. 计算下列每个信号的傅里叶变换:

(a) x[n] 如图 P5.14(a)所示;

图 P 5.14

(b)
$$2^{n}u[-n]$$
;
(c) $\left(\frac{1}{4}\right)^{n}u[n+2]$;