TOPOLOGIE ET CALCUL DIFFÉRENTIEL —

Exercices complémentaires – Feuille 2

1 Topologie des espaces vectoriels normés

Exercice 1. Soit $(E, || ||_E)$ un espace vectoriel normé et $A, B \subseteq E$.

- i) Montrer que
 - (a) $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$.
 - (b) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
 - (c) $(A \cap B) = \mathring{A} \cap \mathring{B}$.

et donner un exemple où la première inclusion soit stricte.

- ii) Que peut-on dire à propos de $(A \overset{\circ}{\cup} B)$ et $(A \overset{\circ}{\cap} B) = \mathring{A} \cap \mathring{B}$?
- iii) Soit $(F, \| \|_F)$ un espace vectoriel normé et $C \subseteq F$. On munit $E \times F$ de la norme $\| \|$ définie par $\|(x,y)\| = \max\{\|x\|_E, \|y\|_F\}$ où $(x,y) \in E \times F$. Montrer que $\overline{A \times C} = \overline{A} \times \overline{C}$ et $(A \times C) = \mathring{A} \times \mathring{C}$.

Exercice 2. Soit $(E, \| \|_E)$ un espace vectoriel normé. Pour $A \subseteq E$, on note $u(A) = \mathring{\overline{A}}$ et $v(A) = \overline{\mathring{A}}$.

- i) Supposons $E = \mathbb{R}$ avec la norme usuelle. Calculer u(A) et v(A) pour A = [0, 2] et $A = \mathbb{Q}$.
- ii) Comparer \overline{A} , \mathring{A} , u(A) et v(A).
- iii) Montrer que u(u(A)) = u(A) et v(v(A)) = v(A).

Exercice 3. Soit E un espace vectoriel normé et $f, g : E \to \mathbb{R}$ deux fonctions continues. Montrer que $A = \{x \in E \mid 1 < f(x) < 2\}$ est ouvert et que $B = \{x \in E \mid f(x) \leq g(x)\}$ est fermé.

Exercice 4. Soit \mathbb{R} muni de la norme usuelle. Calculer l'intérieur, l'adhérence de A où :

- i) $A = \mathbb{R} \setminus \mathbb{Z}$.
- ii) $A = \mathbb{Q}$.
- iii) $A = \{-2\} \cup [0, 1].$

Exercice 5. Si A est une partie d'un espace vectoriel normé E, la frontière de A, notée ∂A , est l'ensemble définie par $\partial A = \overline{A} \setminus \mathring{A}$.

- i) Montrer que $\partial A = \overline{A} \cap \overline{E \setminus A}$ et que ∂A est fermé.
- ii) Déterminer l'intérieur, l'adhérence et la frontière des sous-ensembles suivantes de \mathbb{R}^2 muni d'une norme usuelle :
 - (a) $A = \{(x, y) \in \mathbb{R}^2 \mid 0 < x^2 + y^2 < 2\}.$
- (d) $D = \{(x, x^2) \subseteq \mathbb{R}^2 \mid x \in \mathbb{R}\}.$

(b) $B = \mathbb{Q}^2$.

(e) $E = \mathbb{Q} \times \mathbb{R}$.

(c) $C =]-2,1[\times[0,1].$

(f) $F = [0, 1] \times [0, 1]$.

Exercice 6. Soit $E = \mathcal{C}([0,1],\mathbb{R})$ muni de la norme de convergence uniforme $||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$. Calculer l'intérieur, l'adhérence et la frontière de F où :

- i) $F = \{ f \in E \mid f \ge 0 \}.$
- ii) $F = \{ f \in E \mid f(0) = f(1) \}.$
- iii) Mêmes questions avec la norme $||f||_1 = \int_0^1 |f(t)| dt$.

2 Limites

Exercice 7. On munit le plan complexe \mathbb{C} avec une norme usuelle. Soit $(z_n)_{n\in\mathbb{N}^*}$ une suite dans \mathbb{C} .

- i) Supposons que $z_n \in \mathbb{Z} + i\mathbb{Z} = \{z \in \mathbb{C} \mid \operatorname{Re} z, \operatorname{Im} z \in \mathbb{Z}\}, \forall n \in \mathbb{N}^*$. Montrer que $(z_n)_{n \in \mathbb{N}^*}$ converge si et seulement si $(z_n)_{n \in \mathbb{N}^*}$ est stationnaire.
- ii) Supposons que z_n non nul, $\forall n \in \mathbb{N}^*$.
 - (a) Si $(z_n)_{n\in\mathbb{N}^*}$ vérifie $\frac{z_{n+1}}{z_n}\to 0$. Est-elle convergente? Si oui, qu'elle est la limite?
 - (b) La même question si la suite vérifie $\frac{z_n}{z_{n+1}} \to 0$.

Exercice 8. Soit $E = \mathcal{C}([0,1],\mathbb{R})$ espace vectoriel normé.

- i) Soient $(f_n)_{n\in\mathbb{N}^*}$ une suite de fonctions dans E convergeant uniformément vers une fonction f et g une fonction uniformément continue. Montrer que $(g\circ f_n)_{n\in\mathbb{N}^*}$ converge uniformément.
- ii) Soient $(f_n)_{n\in\mathbb{N}^*}$ et $(g_n)_{n\in\mathbb{N}^*}$ sont des suites de fonctions dans E convergeant uniformément vers des fonctions f et g supposées bornées. Montrer $(f_ng_n)_{n\in\mathbb{N}^*}$ converge uniformément vers fg.
- iii) Soit $(f_n)_{n\in\mathbb{N}^*}$ une suite de fonctions dans E convergeant uniformément sur [0,1[. Montrer que $(f_n)_{n\in\mathbb{N}^*}$ converge uniformément sur [0,1].
- iv) Soit $(f_n)_{n\in\mathbb{N}^*}$ une suite de fonctions décroissantes dans E convergeant simplement vers la fonction nulle dans E, 0_E . Montrer que cette convergence est uniforme.

Exercice 9. Soient $f_n \in \mathcal{C}(\mathbb{R}, \mathbb{R})$ les fonctions définies par

$$f_n(x) = \sqrt{x^2 + 1/n}, \ \forall n \in \mathbb{N}^*.$$

Montrer que chaque f_n est \mathcal{C}^1 et que la suite $(f_n)_{n\in\mathbb{N}^*}$ converge uniformément sur \mathbb{R} vers une fonction f qui n'est pas de classe \mathcal{C}^1 .

Exercice 10. Soient $u_n \in \mathcal{C}([0,1],\mathbb{R})$ les fonctions définies par

$$u_n(x) = x^n \ln x, \ \forall n \in \mathbb{N}^*,$$

et on pose $u_n(0) = 0$. Étudier la convergence uniforme de la suite de fonctions $(f_n)_{n \in \mathbb{N}^*}$ sur [0,1].

Exercice 11. Soient $u_n \in \mathcal{C}(\mathbb{R}^+, \mathbb{R})$ les fonctions définies par

$$u_n(x) = e^{-nx} \sin(nx), \ \forall n \in \mathbb{N}^*.$$

Étudier :

- i) La convergence simple de la suite des fonctions $(u_n)_{n\in\mathbb{N}^*}$ sur $[0,+\infty[$.
- ii) La convergence uniforme sur $[a, +\infty[$, avec a > 0.
- iii) La convergence uniforme sur $[0, +\infty[$.

Exercice 12. Soient $f_n \in \mathcal{C}([0,1],\mathbb{R})$ les fonctions définies pour tout $n \in \mathbb{N}^*$ par

$$f_n(x) = \begin{cases} n^2 x (1 - nx) & \text{si } x \in [0, \frac{1}{n}] \\ 0 & \text{sinon} \end{cases}$$

- i) Étudier la limite simple de la suite $(f_n)_{n\in\mathbb{N}^*}$.
- ii) Calculer

$$\int_0^1 f_n(t)dt$$

Y a-t-il une convergence uniforme de la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$?

iii) Étudier la convergence uniforme sur [a, 1] avec a > 0.