Signals & Systems

Spring 2019

https://sites.google.com/site/ntusands/

https://ceiba.ntu.edu.tw/1072EE2011_04

Yu-Chiang Frank Wang 王鈺強, Associate Professor Dept. Electrical Engineering, National Taiwan University

Ch. 6 Time & Frequency Characterization of Signals and Systems

- Sec. 6.1 The Magnitude-phase Representation of the Fourier Transform
- Sec. 6.2 The Magnitude-phase Rep. of Frequency Response of LTI Systems
- Sec. 6.3 Time-domain Properties of Ideal Frequency-selective Filters
- Sec. 6.4 Time-domain and Frequency-domain Aspects of Nonideal Filters
- Sec. 6.5* Time and Frequency Characterization for Some Well-known Filters (*: not in the original 2nd edition)
- Sec. 6.6 First-order and Second-order Continuous-time Systems
- Sec. 6.7 First-order and Second-order Discrete-time Systems
- Sec. 6.8 Examples of Time- and Frequency-domain Analysis of Systems

magnitude-phase representation

characters for filters

characters for systems

Magnitude-Phase Representation

$$a+jb \Longrightarrow \begin{cases} r = \sqrt{a^2 + b^2} \\ \tan(\theta) = \frac{b}{a} \end{cases}$$

$$\Rightarrow a + jb = re^{j\theta}$$

$$X(j\omega) = \operatorname{Re}\left\{X(j\omega)\right\} + j\operatorname{Im}\left\{X(j\omega)\right\} = \left|X(j\omega)\right|e^{j \not X(j\omega)}$$
$$X(e^{j\omega}) = \operatorname{Re}\left\{X(e^{j\omega})\right\} + j\operatorname{Im}\left\{X(e^{j\omega})\right\} = \left|X(e^{j\omega})\right|e^{j \not X(e^{j\omega})}$$

$$|X(j\omega)|$$
, $|X(e^{j\omega})|$: magnitude

 $\angle X(j\omega)$, $\angle X(e^{j\omega})$: phase angle

Magnitude-Phase Representation

The magnitude-phase representation of the continuous-time Fourier transform $X(j\omega)$ is

$$X(j\omega) = |X(j\omega)|e^{j \leq X(j\omega)}.$$
(6.1)

Similarly the magnitude-phase representation of the discrete-time Fourier transform $X(e^{j\omega})$ is

$$X(e^{j\omega}) = |X(e^{j\omega})|e^{j \not < X(e^{j\omega})}.$$
(6.2)

• Fig. 6.1 Impact of Phase on Signals

$$x(t) = 1 + \frac{1}{2}\cos(2\pi t + \phi_1) + \cos(4\pi t + \phi_2) + \frac{2}{3}\cos(6\pi t + \phi_3)$$

$$\begin{cases} \phi_1 = 0 & (rad) \\ \phi_2 = 0 & (rad) \\ \phi_3 = 0 & (rad) \end{cases}$$

• Fig. 6.1 Impact of Phase on Signals (cont'd)

$$x(t) = 1 + \frac{1}{2}\cos(2\pi t + \phi_1) + \cos(4\pi t + \phi_2) + \frac{2}{3}\cos(6\pi t + \phi_3)$$

$$\begin{cases} \phi_1 = 4 & (rad) \\ \phi_2 = 8 & (rad) \\ \phi_3 = 12 & (rad) \end{cases}$$

• Fig. 6.1 Impact of Phase on Signals (cont'd)

$$x(t) = 1 + \frac{1}{2}\cos(2\pi t + \phi_1) + \cos(4\pi t + \phi_2) + \frac{2}{3}\cos(6\pi t + \phi_3)$$

$$\begin{cases} \phi_1 = 0 & (rad) \\ \phi_2 = 0 & (rad) \\ \phi_3 = 0 & (rad) \end{cases}$$

$$\begin{cases} \phi_1 = 4 & (rad) \\ \phi_2 = 8 & (rad) \\ \phi_3 = 12 & (rad) \end{cases}$$

$$\begin{cases} \phi_1 = 6 & (rad) \\ \phi_2 = -2.7 & (rad) \\ \phi_3 = 0.93 & (rad) \end{cases}$$

$$\begin{cases} \phi_1 = 1.2 & (rad) \\ \phi_2 = 4.1 & (rad) \\ \phi_3 = -7.02 & (rad) \end{cases}$$

• Example 2 Impact of Phase on *Images*

magnitude + zero phase

unit magnitude + phase

magnitude of a new image + phase

An all-pass system is the system whose frequency-response magnitude is

$$|H(j\omega)| = 1$$
 for all ω .

An *all-pass system* is the system whose frequency-response magnitude is $|X(j\omega)| = 1$ for all ω .

Suppose that there is an all-pass system whose frequency-response amplitude is $A(j\omega) = 1$ and the unwrapped phase response is

$$\angle_A H(j\omega) = \begin{cases} -\phi_0 & \text{for } \omega > 0 \\ +\phi_0 & \text{for } \omega < 0 \end{cases}$$
(6.4)

as indicated in the right figure.

In this example, we consider x(t) to be of the form

$$x(t) = s(t)\cos(\omega_0 t), \quad \omega_0 > 0, \tag{6.5}$$

That is, an amplitude-modulated signal at a positive carrier frequency of ω_0 . Consequently, $X(j\omega)$ can be expressed as

$$X(j\omega) = \frac{1}{2}S(j\omega - j\omega_0) + \frac{1}{2}S(j\omega + j\omega_0)$$
(6.6)

where S($j\omega$) denotes the Fourier transform of s(t).

We also assume that S(j ω) is bandlimited to $|\omega| < \Delta$, with Δ sufficiently small so that the term S(j ω – j ω ₀) is zero for ω < 0 and the term S(j ω + j ω ₀) is zero for ω > 0. That is, we assume that (ω ₀ – Δ) > 0. Thus x(t) is characterized by a slowly varying modulation of its carrier.

With these assumptions on x(t), it is relatively straightforward to determine the output y(t). Specifically, the system frequency response $H(j\omega)$ is

$$H(j\omega) = \begin{cases} e^{-j\phi_0} & \omega > 0\\ e^{+j\phi_0} & \omega < 0. \end{cases}$$
 (6.7)

Since the term S($j\omega - j\omega_0$) in eq. (6.7) is nonzero only for $\omega > 0$, it is simply multiplied by $e^{-j\phi_0}$, and similarly the term S($j\omega + j\omega_0$) is multiplied only by $e^{+j\phi_0}$. Consequently, the output Fourier transform Y($j\omega$) is given by

$$Y(j\omega) = X(j\omega)H(j\omega)$$

$$= \frac{1}{2}S(j\omega - j\omega_0)e^{-j\phi_0} + \frac{1}{2}S(j\omega + j\omega_0)e^{+j\phi_0},$$
(6.8)

which we recognize as a simple phase shift by ϕ_0 of the carrier in eq. (6.5). Consequently,

$$y(t) = s(t)\cos(\omega_0 t - \phi_0). \tag{6.9}$$

This change in phase of the carrier can also be expressed in terms of a time delay for the carrier by rewriting eq. (6.9) as

$$y(t) = s(t)\cos\left[\omega_0\left(t - \frac{\phi_0}{\omega_0}\right)\right]$$
$$= s(t)\cos\left[\omega_0(t - \tau_p)\right]$$

$$y(t) = s(t)\cos\left[\omega_0\left(t - \frac{\phi_0}{\omega_0}\right)\right]$$
$$= s(t)\cos\left[\omega_0(t - \tau_p)\right]$$

where τ_p , the negative of the ratio of the phase at ω_0 , i.e., $(-\phi_0)$ to the frequency ω_0 , is referred to as the phase delay of the system at frequency ω_0 :

$$\tau_p = -\frac{\angle H(j\omega_0)}{\omega_0} = \frac{\phi_0}{\omega_0}.$$

• Effect of an LTI system on an input

$$Y(j\omega) = X(j\omega)H(j\omega)$$

 \Rightarrow The system changes the complex amplitude of each frequency component of x(t).

$$\begin{split} \left| Y(j\omega) \right| e^{j \lessdot Y(j\omega)} &= \left| X(j\omega) \right| e^{j \lessdot X(j\omega)} \left| H(j\omega) \right| e^{j \lessdot H(j\omega)} \\ &= \left| X(j\omega) \right| \left| H(j\omega) \right| e^{j (\lessdot X(j\omega) + \lessdot H(j\omega))} \end{split}$$

$$\Rightarrow \begin{cases} |H(j\omega)| : & \text{gain of the LTI system} \\ \not \prec H(j\omega) : & \text{phase shift of the LTI system} \end{cases}$$

If the input is changed in an unwanted manner, the effects are referred to as magnitude and phase *distortions*.

Linear vs. Non-linear Phases

When the phase shift is a linear function of ω , we call it a linear phase shift. For example, consider

$$H_1(j\omega) = e^{-j\omega t_0}$$
.

The system has unit gain and linear phase

In the time domain, the system introduces a constant time shift to the signal.

• Linear vs. Non-linear Phases (cont'd)

$$H_2(j\omega) = e^{j \ll H_2(j\omega)}$$

$$H_3(j\omega) = H_2(j\omega)H_1(j\omega)$$

Note:

- 1) Both systems have unit gain (that is, $|H_2(j\omega)| = |H_1(j\omega)| = 1$) and hence are all-pass filters.
- 2) The slope of the phase of each filter tells us the size of the time shift (delay).

Narrowband vs. Broadband Signals

Suppose that $X(j\omega)$ is the Fourier transform of x(t). If $X(j\omega)$ is zero or negligibly small outside a very small band of frequencies centered at $\omega = \pm \omega_0$, then we call x(t) a narrowband signal. Otherwise, we call x(t) a broadband signal.

By taking the band to be very small, we can accurately approximate the phase of this system in the band with the linear approximation.

$$Y(j\omega) \simeq X(j\omega)|H(j\omega)|e^{-j\phi}e^{-j\omega\alpha}.$$
 (6.21)

- Group Delay
 - The phase slope tells us the size of the time shift.
 - Such a time shift can be considered as a time delay.
 - E.g., $x(t-t_0) \longleftrightarrow e^{-j\omega t_0} X(j\omega)$
 - The group delay at ω is calculated as the negative slope of the phase at that frequency, i.e., $\tau(\omega) = -\frac{d}{d\omega} [\angle H(j\omega)]$.

- Effects of LTI Systems on Narrowband Input Signals
- The concept of delay can be extended to include nonlinear phases.
- Consider a narrowband signal x(t) whose Fourier transform is zero or negligibly small outside a small band of frequencies centered at ω = ω₀.
- We can approximate the phase of the system in the band with a linear approximation centered at $\omega = \omega_0$:

$$\angle H(j\omega) \simeq -\phi - \omega\alpha$$

where ϕ is a constant, so that

$$Y(j\omega) = X(j\omega) |H(j\omega)| e^{-j\phi} e^{-j\omega\alpha}$$

Group Delay

$$\tau(\omega) = -\frac{d}{d\omega} \{ \not\prec H(j\omega) \}$$

This time delay of α seconds is referred to as the group delay at $\omega = \omega_0$.

• Example 6.1 $X \longrightarrow$ H1 \longrightarrow H2 \longrightarrow H3 \longrightarrow Y

An all-pass system with non-constant group delay that introduces the so-called dispersion effect where different frequencies in the input are delayed by different amounts

• Example 6.1 (cont'd) $X \longrightarrow H1 \longrightarrow H2 \longrightarrow H3 \longrightarrow Y$

An all-pass system with non-constant group delay that introduces the so-called dispersion effect where different frequencies in the input are delayed by different amounts

• Example 6.1 (cont'd)
$$X \longrightarrow H1 \longrightarrow H2 \longrightarrow H3 \longrightarrow Y$$

$$\begin{cases} \omega_1 = 315 & \text{rad/sec} \\ \omega_2 = 943 & \text{rad/sec} \\ \omega_3 = 1888 & \text{rad/sec} \end{cases} \begin{cases} \zeta_1 = 0.066 \\ \zeta_2 = 0.033 \\ \zeta_3 = 0.058 \end{cases}$$

• Example 6.1 (cont'd)
$$X \longrightarrow H1 \longrightarrow H2 \longrightarrow H3 \longrightarrow Y$$

$$\begin{cases} |H(j\omega)| = 1 \\ \not \propto H(j\omega) = \not \propto H_1(j\omega) + \not \propto H_2(j\omega) + \not \propto H_3(j\omega) \end{cases}$$

Unwrapped phase

• Example 6.1 (cont'd)

Group delay:

$$\tau(\omega) = -\frac{d}{d\omega} \{ \not\prec H(j\omega) \}$$

Dispersion:

The phenomenon that different frequencies in the input are delayed by different amounts.

6.2.3 Log-Magnitude & Bode Plots

- Decibel: 20log₁₀
 - 0dB: a frequency response with magnitude equal to 1
 - 20dB: equivalent to a gain of 10
 - -20dB: corresponds to an attenuation of 0.1
- Bode Plots:
 - plots of $20 \log_{10} |H(j\omega)| \& \not\prec H(j\omega)$ vs. $\log_{10} \omega$

6.2.3 Log-Magnitude & Bode Plots

Discrete-Time Bode plot

Ideal LPF

$$H(j\omega) = \begin{cases} 1, & |\omega| \le \omega_c \\ 0, & |\omega| > \omega_c \end{cases}$$

$$\Rightarrow h(t) = \frac{\sin \omega_c t}{\pi t}$$

unit gain, zero phase

Ideal LPF

$$H(e^{j\omega}) = \begin{cases} 1, & |\omega| \le \omega_c \\ 0, & \omega_c \le |\omega| \le \pi \end{cases}$$

$$\Rightarrow h[n] = \frac{\sin \omega_c n}{\pi n}$$

• Ideal LPF wit Linear Phase

Step Response of Ideal LPF

