STATISTICS DEPARTMENT M.S. EXAMINATION

PART I CLOSED BOOK

Friday, May 14, 2004

9:00 a.m. - 1:00 p.m.

Biella Room (Library, First Floor)

Instructions: Complete all four problems. Each problem counts 25 points. Unless otherwise noted, points are allocated approximately equally to lettered parts of a problem. Spend your time accordingly.

Begin each problem on a new page. Write the problem number and the page number in the specified locations at the top of each page. Also write your chosen ID code number on every page. Please write only within the black borderlines, leaving at least 1" margins on both sides, top and bottom of each page. Write on one side of the page only.

At the end of this part of the exam you will turn in your answers sheets, but you will keep the question sheets and your scratch paper.

Tables of some distributions are provided. Use them as appropriate.

1. Cars enter a certain stretch of the freeway at an average rate of $1/\beta$ per minute, according to a Poisson distribution. Starting from a fixed point of time, let Y be the time (in minutes) until the entrance of the α^{th} car ($\alpha = 1, 2, 3, ...$) into this stretch of freeway. It can be shown that

$$P(Y > y) = P(X \le \alpha - 1), \tag{*}$$

where X is a Poisson random variable with mean = $\lambda = y/\beta$. In working the parts below, suppose $\beta = .1$.

- a) Let Y_1 be the time (in minutes) until the entrance of the 1^{st} car into this stretch of freeway. Write down the probability density function f(y) of Y_1 .
- b) Write down the moment generating function of Y_1 .
- c) Write down the mean of Y_1 .
- d) Let Y_2 be the time (in minutes) until the entrance of the 2^{nd} car into this stretch of freeway. Obtain $P(Y_2 > .3)$ and $P(Y_2 > .6 \mid Y_2 > .3)$.
- e) Explain the reason for the equality (*) displayed in the statement of the problem.

2. Let X and Y have the joint probability density function

$$f_{x,y}(x,y) = \begin{cases} x^2 y e^{-sy} & \text{for } 1 \le x \le 2 \text{ and } 0 < y < \infty, \\ 0 & \text{elsewhere.} \end{cases}$$

- (a) Find the probability density function $f_X(x)$ of X.
- (b) Find cov(X,Y).
- (c) Are X and Y independent?
- (d) Let U = XY and V = X. Find the joint probability density function $f_{U,V}(u,v)$ of U and V.
- (e) Are U and V independent?

- 3. If X is a random variable whose logarithm is normally distributed (that is, $log(X) \sim N(\mu, \sigma^2)$), then X is said to have a lognormal distribution.
 - (a) Let $Y \sim N(\mu, \sigma^2)$. Derive the pdf of $X = e^Y$.
 - (b) Compute the expected value and variance of X using properties of the Normal distribution. (Hint: Use the mgf of Y. No integration is required.)
 - (c) This distribution is popular in modeling applications, when the random variable is skewed to the right. Suppose the random variable X is income in dollars. Then log(X) is a normal random variable. Fit the lognormal distribution to data from n=5 employees in a company: 10,000, 25,000, 30,000, 70,000, 100,250.
 - i. For these data describe how you would estimate the mean and variance of the random variable X using the lognormal distribution. Give specific formulas for estimating μ and σ^2 . Compute estimates of E[X], Var(X), and SD(X).
 - ii. What is the numerical difference between using estimators \bar{x} and $\bar{E}[X]$?
 - iii. Find an estimate of the 95th percentile of incomes from this company. Explain any properties of estimators you have used in developing your estimator. Does your numerical estimate seem reasonable?

4. The following sample of n = 25 observations was taken from an exponential distribution with unknown rate τ . That is, the population density function is $f(x) = \tau e^{-\tau x}$, for x > 0.

```
0.105, 0.145, 0.134, 0.023, 0.104, 0.074, 0.417, 0.097, 0.125, 0.346, 0.056, 0.559, 0.026, 0.494, 0.044, 0.051, 0.595, 0.098, 0.048, 0.571, 0.092, 0.064, 0.193, 0.250, 0.042.
```

The mean of these data is 0.19012, and their standard deviation is 0.18850.

- a. Point estimates. (i) For general n, derive the maximum likelihood estimator (MLE) of τ.
 (ii) Show that multiplying the MLE by (n-1)/n gives an unbiased estimator of τ. (iii) Briefly explain why this multiple of the MLE is uniformly minimum variance unbiased (UMVUE) for τ.
 (iv) For the data provided, compute the numerical values of the MLE and the UMVUE.
- b. Interval estimates. (i) For general n, using the pivotal method and the sufficient statistic S for τ, find a 90% confidence interval for τ; give the general formula and (based on the data provided) the numerical limits. What is the pivotal quantity and what is its distribution? [Hint: Recall that if X is gamma with shape parameter κ and scale parameter 1, then 2X is chi-squared with 2κ degrees of freedom.] (ii) Briefly describe how to find a 90% parametric bootstrap confidence interval for τ, based on the UMVUE.
- c. Hypothesis test. In terms of the sufficient statistic S, state the rejection region of a most powerful size $\alpha = 5\%$ test of the hypothesis H₀: $\tau = 5$ against H₁: $\tau = 10$. Do you reject H₀ for the data provided? How would you find the power of this test?
- d. Some computations. Below is an S-Plus program (left panel) and some output from it (right).
 (i) Some of the code is directly relevant to earlier parts of this question. Specifically identify these lines of code and explain briefly. (ii) Some of the code explores alternate procedures. Explain.

```
m <- 10000; n <- 25; tau <- 5
                                            > round(c(mean(t1), mean((t1 - 5)^2)), 3)
x <- rexp(m*n, rate=tau)</pre>
                                            [1] 5.204 1.222
DTA <- matrix(x, prow=m)
                                            > round(c(mean(t2), mean((t2 - 5)^2)), 3)
x.mean <- rowMeans(DTA)
                                            [1] 4.996 1.088
x.sd <- sqrt(rowVars(DTA))</pre>
                                            > round(c(mean(t3), mean((t3 - 5)^2)), 3)
tl <- l/x.mean
                                            [1] 4.788 1.045
t2 <- (n-1)/(n*x.mean); mean(t2)
                                            > round(c(mean(t4), mean((t4 - 5)^2)), 3)
t3 <- (n-2)/(n*x.mean)
                                            [1] 4.885 1.820
t4 <- (n-3)/(n \neq x.sd)
                                            > s < -n = 0.19012
round(c(mean(t1), mean((t1-5)^2)), 3)
                                            > adj <- ((1/tau) * (n - 1))/s</pre>
round(c(mean(t2), mean((t2-5)^2)), 3)
                                            > round(adj * quantile(t2, c(0.05, 0.95)), 2)
round(c(mean(c3), mean((c3-5)^2)), 3)
                                              5% 95%
round(c(mean(t4), mean((t4-5)^2)), 3)
                                             3.61 6.95
s <- n*0.19012
adj <- (1/tau)*(n-1)/s
                                            > round(qgamma(c(0.05, 0.95), n, 1)/s, 2)
round(adj*quantile(t2, c(.05, .95)), 2)
                                            [1] 3.66 7.10
round(qgamma(c(.05,.95), n, 1)/s, 2)
```

_	4	-
	1	

Curve
Normal
홒
₽
Area
het-ted
<u>a</u>

Ċ		the same and the same and the						İ				CITCHIMES TOTAL STREET STREET		-	٠
20.		69	9,	50.	&	-02	90.	60.	σř	1. = e	a ≈ .05	a ± .025	10. a.s	3 = .005	a = ,001
Ι΄		-	4840	4801	4761	.4721	4681	4641	-	3,078	6.314	12.706	31,821	63,657	316.309
٠		·	4443	4404	4364	.4325	4286	4247	. 7	1.886	2.920	4.303	6.965	9 925	22.327
•		•	.4052	.4013	3974	3936	3897	3889	m	1.638	2,353	3.182	4.541	5.841	10,215
•		•	3669	.3632	3594	.3557	3520	3463	4	1.533	2.132	2.776	3.747	409	7.173
3372		3336	3300	.3264	.3220	3192	3156	3121	w	1.476	2.015	2.571	3,365	4.032	5.893
5	÷	•	.2945	2912	.2877	7643	2810	7776			,				
									0 :	1.440	5,943	7.447	5,143	3.707	5.208
9/9	Ŧ	2643	.2611	2578	,2546	2514	.2483	.2451		1.415	.895	2.365	2.998	3.499	4,785
358	÷	2327	.1296	2266	.2236	2206	2177	.214B	80	1,397	1.860	2,306	2.896	3,355	4.501
190	-	2033	2005	.1977	1949	.1922	1894	1867	ው	1,383	1,833	2.262	2.821	3,250	4.297
1788	•	1762	1736	1711	1446	1660	1635	11611	2	1.372	1.812	2.228	2.764	3,169	4.144
Š	•	2	7.		-	<u>.</u>	-	•	=	1.363	1.796	2.201	2.718	3.106	4.025
717			1271	1251	1230	1210	1190	1170	7	1.356	1.782	2.179	2.681	3,055	3.930
=	•	5	1075	1056	1038	1020	100	0983	===	1,350	1.771	2.160	2.650	3.012	3,852
7			080	0895	0869	0853	0838	0823	7	1.345	1,761	2.145	2,624	2.977	3.787
778	•		0749	0735	.0721	0708	0.694	0683	5	1.341	1.753	2.131	2.602	2.947	3.733
543			8190	9090	950	.0582	1750	0559							
•	•								9	1.337	1.746	2.120	2.583	2,921	3.686
Š		0516	.0505	.0495	0485	.0475	.0465	0455	1	1.333	1,740	2.110	2,567	2.898	3.546
3		0418	.0409	040	.0392	0384	.0375	.0367	6	1,330	1,734	2.101	2.552	2.878	3.610
		0336	0329	.0322	0314	0307	1050	.0294	<u>c.</u>	1.328	1,729	2.093	2.539	2.861	3.579
0274	•	0268	.0262	.0256	.0250	0244	.0239	.0233	2	1.325	1,725	2.086	2.528	2.845	3.552
2	•	0212	.0207	.0202	.0197	.0192	.0188	.0183	ě			6		, ,	
1		;	;		;	,	;	;	7 5	.545	17/1	2.000	01070	4,63 1,610 1,610	3.327
Ē	•	0166	70167	9513	5 5	3.5	919	2.5	3 2	125.1	7.	200	002	2.012	0.00
=	-	0129	.0125	7210	5	9116	.013	5	3.5			2.003	7.300	7,00,7	0.400
묽		668	960 96	<u>§</u>	.009	989	0087	.0084	Ş	 318	Ę.,	7.0b4	7.437	767.7	5.457
8700	-	50075	0073	1,700	9900	9969	9900	96. 84.	27	1.316	1.708	2.060	2.485	2.787	3,450
								2	92	1,315	1.706	2.056	2.479	2,779	3.435
ğ		.0043	.004	08040	.0039	0038	.0037	.0036	23	1.314	1.703	2.052	2.473	2,771	3.421
: =		0032	8	0030	0029	0028	0027	0026	29	1.313	1.701	2.048	2.467	2.763	3.408
9		903	6	000	6	1200	0000	9	53	1.31	1,699	2.045	2.462	2.756	3,396
į		100	3 5	100	16	100	7100	3	S	1.310	1,697	2.042	2.457	2.750	3.385
38		202	0012	90	9	90	0000	100	2	2		:)	<u>.</u>	ì	
		!							\$	1,303	1.684	2.021	2.423	2.704	3.307
									\$	1,296	1.671	2.000	2.390	2.660	3.232
									120	1.289	1.658	1.980	2.358	2.617	3.150
.00023263									240	1,285	1,651	1.970	2.342	2,596	3.125
_									1			•	1	i	•
														763	

 $100\times \gamma th$ Percentiles $\chi^{a}_{r}(v)$ of the chi-square distribution with v degrees of freedom

 $\gamma = \int_0^{z_1^2(v)} h(y; v) \ dy$

							_	Y						
v	0.005	0.010	0.025	0.060	0.100	0.250	0.500	0.750	0.900	9.860	0.175	0.990	0.995	0.995
1					0.02	0.10	0.45	1.32	2.71	3.84	5.02	6.63	7.88	10.8
3	0.01	0.02	0.05	0.10	0.21	0.58	1.39	2.77	4.61	599	7.38	9,21	10.60	13.8
3	0.07	0.11	0.22	0.35	0.58	1.21	2.37	4.11	6.25	7.81	9.35	11.34	12.84	16.2
4	0.21	0.30	0.48	0.71	1.06	1.92	3.36	5.39	7.78	9.49	11.14	13.28	14.86	18.47
5	0.41	0.55	0.83	1.15	1.61	2.67	4.35	6.63	9.24	11.07	12.83	15.09	16.75	20.5
6	0.68	0.87	1.24	1.64	2.20	3.45	5.35	7.84	10.64	12.59	14.45	16.81	18.55	22.44
7	0.99	1.24	1.69	2.17	2.83	4.25	6.35	9.04	12.02	14-07	16.01	18.48	20.28	24.3
8	1.34	1.65	218	2.73	3.49	5.07	7.34	10.22	13.36	15.51	17.53	20.09	21.96	26.1
9	1.73	2.09	2.70	3.33	4.17	5.90	8.34	11.39	14.68	16.92	19.02	21.67	23.59	27.8
10	216	2.56	3.25	3.94	4.87	6.74	9.34	12.55	15.99	18.31	20.48	23.21	25.19	29.59
11	2.60	3.05	3.82	4.57	5.58	7.58	10.34	13.70	17-28	19.68	21.92	24.72	26.76	31.26
12	3.07	3.57	4.40	5.23	6.30	8.44	11.34	14.85	18.55	21.03	23.34	26.22	28.30	32.91
13	3.67	4.11	5.01	5.89	7.04	9.30	12.34	15.98	19.81	22.36	24.74	27.69	29.82	34.53
14	4.07	4.66	5.63	6.57	7.79	10.17	13.34	17.12	21.06	23.68	26.12	29.14	31.32	36.12
15	4.60	5.23	6.26	7.26	8.55	11.04	14.34	18.26	22.31	25.00	27.49	30.58	32.80	37.70
								,						
16	5.14	5.81	6.91	7.96	9.31	11.91	15.34	19.37	23.54 24.77	26.30 27.59	28.85 30.19	32.00 33.41	34.27 35.73	39.25 40.79
17	5.70	6.41	7.56	8.67	10.09	12.79	16.34 17.34	20.4 9 21.50	25.99	28.87	31.53	34.81	37.16	42.31
18	6.26	7.01	8.23	9.39	10.86	13.68	18.34	22.72	27.20	30.14	32.86	36.19	35.58	43.82
19	6.84	7.63	8.91	10.12	11.65	14.56 15.45	19.34	23.83	28.41	31.41	34.17	37.57	40.00	45.32
20	7.43 8.03	8.26 8.90	9.59 10.28	10.85 11.59	12.44 13.24	16.34	20.34	24.93	29.62	32.67	35.48	38.93	41.40	46.80
21	8.64	9.54	10.28	12.34	14.04	17.24	21.34	26.04	30.81	33.92	36.78	40.29	42.80	48.27
20 21 22 23 24	9.26	10.20	11.69	13.09	14.85	18.14	22.34	27.14	32.01	35.17	38.08	41.64	44.18	49.73
23	9.89	10.20	12.40	13.85	15.66	19.04	23.34	28.24	33.20	36.42	39.36	42.98	45.56	51.18
2 5	10.52	11.52	13.12	14.61	16.47	19.94	24.34	29.34	34.38	37.66	40.65	44.31	46.93	52.62
20	10.52	11.02	13.12	14.01	10.47	10.04	24.04	44.47		-	• •			
30	13.79	14.95	16.79	18.49	20.60	24 48	29.34	34.80	40.26	43.77	46.98	50.89	53.67	59.70
40	20.71	22.16	24.43	26.51	29.05	33.66	39.34	45.62	51.80	55.76	59.34	63.69	66.77	73.40
50	27.99	29.71		4 <u>34 76</u>	37.69	42.94	49.33	56.33	63.17 74.40	67.50 79.08	71.42 83.30	76.15 88.38	79.49 91.95	86.66 99.61
60	35.53	37.48	40.48	43.19	46.46	52.29	59.33	66.98	74.40 85.53					
70	43.28	45.44	48.76	51.74	55.33	61.70	69.33 79.33	77.58		90.53	95.02 106.63	100.42 112.33	104.22	112.32
80	51.17	53.54	57.15	60.39	64.28	71.14	79.33 89.33	88.13 98.64	96.58 107.56	101.88 113.14	118.14	132.33	116.32 128.30	124.84 137.21
90	59.20	61.75	65.65	69.13	73.28	80.62	99.33	109.14	118.50	124.34	129.56	135.81	140.17	149.45
100	67.33	70.06	74.22	77.93	82.36	90.13	33.35	100.14	110.00	124.34	1 48.00	130.0	140-17	143.40