Cifratura CPA sicura da funzioni pseudocasuali

Paolo D'Arco pdarco@unisa.it

Università di Salerno

Elementi di Crittografia

Contenuti

Cifratura CPA sicura

2 Schema

Riduzione

Cifratura CPA sicura da funzioni pseudocasuali

Costruiremo uno schema di cifratura per messaggi di lunghezza fissa Ne possiamo ottenere facilmente uno per lunghezze arbitrarie applicando i risultati precedenti

Primo tentativo:

$$Enc_k(m) = F_k(m)$$

Deterministico ... non funziona ... (stesso messaggio ⇒ stesso cifrato)

Approccio giusto:

Applichiamo F_k ad una stringa casuale r per produrre un "pad" pseudocasuale.

Cifriamo calcolando l'xor tra il pad ed il messaggio m.

Specifica dello schema

CONSTRUCTION 3.30

Let F be a pseudorandom function. Define a private-key encryption scheme for messages of length n as follows:

- Gen: on input 1^n , choose uniform $k \in \{0,1\}^n$ and output it.
- Enc: on input a key $k \in \{0, 1\}^n$ and a message $m \in \{0, 1\}^n$, choose uniform $r \in \{0, 1\}^n$ and output the ciphertext

$$c := \langle r, F_k(r) \oplus m \rangle.$$

• Dec: on input a key $k \in \{0,1\}^n$ and a ciphertext $c = \langle r, s \rangle$, output the plaintext message

$$m := F_k(r) \oplus s$$
.

Proprietà

Teorema 3.31. Se F è pseudocasuale, allora la Costruzione 3.30 realizza uno schema di cifratura CPA-sicuro per messaggi di lunghezza n.

Dim. Nota preliminare: le prove di sicurezza per schemi basati su PRF procedono solitamente in due fasi

- Prima fase: consideriamo una versione "ipotetica" della costruzione in cui la funzione pseudocasuale viene sostituita da una funzione casuale. Mostriamo che questa modifica non influisce sulla probabilità di successo di Adv
- Seconda fase: analizziamo lo schema ipotetico che utilizza la funzione casuale

Dimostrazione

Sia $\stackrel{\sim}{\Pi}=$ ($\stackrel{\sim}{Gen}$, $\stackrel{\sim}{Enc}$, $\stackrel{\sim}{Dec}$) costruito a partire da $\Pi=$ (Gen,Enc,Dec), tale che

- Π usa $f \in Func_n$ scelta uniformemente a caso
- Π usa F_k , dove k è scelta uniformemente a caso

Ovviamente, $\stackrel{\sim}{\sqcap}$ non è efficiente: f richiede spazio esponenziale in n per la memorizzazione.

Per ogni Adv A PPT sia q(n) un limite superiore al numero di query che $A(1^n)$ rivolge al suo oracolo per la cifratura (q(n) deve essere un polinomio) Mostriamo che esiste una funzione trascurabile negl tale che

$$|Pr[PrivK_{A,\Pi}^{cpa}(n)=1]-Pr[PrivK_{A,\widetilde{\Pi}}^{cpa}(n)=1]| \leq negl(n).$$

Dimostrazione

Procediamo per riduzione: usiamo A per costruire un distinguisher D per la funzione pseudocasuale F

```
Se A ha successo contro \Pi (con prob. significativa) \Rightarrow D distingue (con prob. significativa)
```

Precisamente:

- D ha accesso all'oracolo $O(\cdot)$ ed il suo scopo è stabilire se la funzione è " F_k , per k uniforme in $\{0,1\}^n$ " oppure " $f \in Func_n$, uniforme".
- D emula l'esperimento $PrivK_{A,?}^{cpa}(n)$ per A ed osserva se A ha successo.

Distinguisher

Distinguisher D:

D is given input 1^n and access to an oracle $\mathcal{O}: \{0,1\}^n \to \{0,1\}^n$.

- 1. Run $\mathcal{A}(1^n)$. Whenever \mathcal{A} queries its encryption oracle on a message $m \in \{0,1\}^n$, answer this query in the following way:
 - (a) Choose uniform $r \in \{0, 1\}^n$.
 - (b) Query $\mathcal{O}(r)$ and obtain response y.
 - (c) Return the ciphertext $\langle r, y \oplus m \rangle$ to \mathcal{A} .
- 2. When \mathcal{A} outputs messages $m_0, m_1 \in \{0, 1\}^n$, choose a uniform bit $b \in \{0, 1\}$ and then:
 - (a) Choose uniform $r \in \{0, 1\}^n$.
 - (b) Query $\mathcal{O}(r)$ and obtain response y.
 - (c) Return the challenge ciphertext $\langle r, y \oplus m_b \rangle$ to \mathcal{A} .
- 3. Continue answering encryption-oracle queries of \mathcal{A} as before until \mathcal{A} outputs a bit b'. Output 1 if b' = b, and 0 otherwise.

Analisi

D computa in tempo polinomiale poichè *A* computa in tempo polinomiale. Inoltre, si noti che:

Se l'oracolo di D contiene al suo interno una funzione pseudocasuale

Vista di A come subroutine di D = Vista di <math>A in $PrivK_{A,\Pi}^{cpa}(n)$

2 Se l'oracolo di *D* contiene al suo interno una funzione casuale

Vista di A come subroutine di D= Vista di A in $PrivK_{A,\overset{\sim}{\Pi}}^{cpa}(n)$

Pertanto, possiamo dire che:

Analisi

$$\bullet \hspace{0.1 cm} \Rightarrow Pr_{k \leftarrow \{0,1\}^n}[D^{F_k(\cdot)}(1^n) = 1] = Pr[PrivK^{\textit{cpa}}_{A,\Pi}(n) = 1]$$

Ma l'assunzione che F è pseudocasuale implica che \exists negl(n) tale che:

$$|Pr_{k\leftarrow\{0,1\}^n}[D^{F_k(\cdot)}(1^n)=1] - Pr_{f\leftarrow Func_n}[D^{f(\cdot)}(1^n)=1]| \leq negl(n)$$
 $$$$ |Pr[PrivK^{cpa}_{A,\Pi}(n)=1] - Pr[PrivK^{cpa}_{A,\Pi}(n)=1]| \leq negl(n)$

Pertanto possiamo analizzare lo schema ipotetico.

Mostriamo che

$$Pr[PrivK_{A,\widetilde{\square}}^{cpa}(n)=1] \leq 1/2 + q(n)/2^n.$$

Nota che, ogni volta che un messaggio m viene cifrato, in $PrivK^{cpa}_{A,\overset{\sim}{\Pi}}(n)$ viene scelto un $r\in\{0,1\}^n$ uniforme, ed il cifrato risulta

$$< r, f(r) \oplus m >$$

Sia r^* la stringa usata per produrre il cifrato di sfida, cioè

$$c^* := < r^*, f(r^*) \oplus m_b >$$

Possono verificarsi due casi:

• Il valore di r^* non è mai usato prima da $O(\cdot)$ per rispondere alle query di A

 \Rightarrow A non sa nulla circa $f(r^*)$, che risulta uniforme ed indipendentemente distribuito dal resto dell'esperimento

$$\Rightarrow Pr[PrivK_{A,\widetilde{\Pi}}^{cpa}(n)=1]=Pr[b'=b]=1/2$$

ullet Il valore di r^* è stato usato in precedenza

 \Rightarrow A può capire facilmente se è stato cifrato m_0 o m_1 . Infatti, disponendo di $f(r^*)$, poichè $c^* := < r^*, f(r^*) \oplus m_b >$, risulta

$$f(r^*) \oplus (f(r^*) \oplus m_b) = m_b.$$

Il valore $f(r^*)$ può essere recuperato dalla query in cui r^* è usato: se A ha ricevuto dall'oracolo, per qualche m, il cifrato $c := < r^*, s > = < r^*, f(r^*) \oplus m >$, allora

$$s \oplus m = f(r^*).$$

Tuttavia, poichè A effettua al più q(n) query all'oracolo, al più q(n) valori distinti di r vengono usati, scelti indip. e uniformemente in $\{0,1\}^n$.

Pertanto, la prob. che r^* , scelto uniformemente, sia uguale ad un r precedente è al più $q(n)/2^n$.

Indichiamo con Repeat l'evento che r^* sia uguale a qualche r scelto prima.

Risulta
$$Pr[PrivK^{cpa}_{A,\overset{\sim}{\Pi}}(n)=1]$$
 uguale a

$$Pr[PrivK_{A,\widetilde{\Pi}}^{cpa}(n) = 1 \land \mathbf{Repeat}] + Pr[PrivK_{A,\widetilde{\Pi}}^{cpa}(n) = 1 \land \overline{\mathbf{Repeat}}]$$

$$Pr[Papaat] + Pr[PrivK_{A,\widetilde{\Pi}}^{cpa}(n) = 1 | \overline{\mathbf{Papaat}}] Pr[\overline{\mathbf{Papaat}}]$$

$$\leq \quad \mathit{Pr}[\ \mathsf{Repeat}] + \mathit{Pr}[\mathit{Priv}\mathcal{K}^{\mathit{cpa}}_{A,\widetilde{\Pi}}(\mathit{n}) = 1 | \overline{\ \mathsf{Repeat}}] \cdot \mathit{Pr}[\overline{\ \mathsf{Repeat}}]$$

$$\leq Pr[| \mathbf{Repeat}] + Pr[PrivK_{A,\widetilde{\Pi}}^{cpa}(n) = 1 | \overline{| \mathbf{Repeat}|}]$$

$$\leq q(n)/2^n+1/2.$$

Poichè abbiamo mostrato che

$$|Pr[PrivK_{A,\Pi}^{cpa}(n)=1] - Pr[PrivK_{A,\widetilde{\Pi}}^{cpa}(n)=1]| \leq negl(n)$$

si ha:

$$\begin{array}{ll} Pr[Priv\mathcal{K}_{A,\Pi}^{cpa}(n)=1] & \leq & Pr[Priv\mathcal{K}_{A,\widetilde{\Pi}}^{cpa}(n)=1] + negl(n) \\ & \leq & q(n)/2^n + 1/2 + negl(n) \\ & \leq & 1/2 + q(n)/2^n + negl(n) \\ & \leq & 1/2 + negl'(n). \end{array}$$

Pertanto, Π è CPA-sicuro.

