Chapitre 5 Primitives

I. Primitive d'une fonction

1) Notion

Définition:

Une primitive d'une fonction f, définie sur un intervalle I, est une fonction F, dérivable sur l'intervalle I, telle que la dérivée de F est f:

$$F'(x) = f(x) \operatorname{sur} I$$

Remarque:

Une fonction étant notée par une lettre minuscule, l'usage est de noter une primitive par la lettre majuscule correspondante.

Exemples:

- La fonction $F: x \mapsto 3x+4$ est une primitive sur \mathbb{R} de $f: x \mapsto 3$.
- La fonction $G: x \mapsto x^2 + 3x$ est une primitive sur \mathbb{R} de $g: x \mapsto 2x + 3$
- La fonction $K: x \mapsto x^2 + 3x + 5$ est aussi une primitive sur \mathbb{R} de $g: x \mapsto 2x + 3$

Théorème (admis):

Toute fonction **continue** sur un intervalle *I* admet une primitive sur *I*.

2) Ensemble des primitives d'une fonction

Théorème:

Si F est **une** primitive d'une fonction f sur un intervalle I, alors toutes les primitives de f sur I sont les fonctions G définies sur I par :

$$G(x)=F(x)+k \text{ avec } k \in \mathbb{R}$$

Démonstration:

- Si G(x)=F(x)+k, alors G'(x)=F'(x)+0=F'(x)=f(x). Donc G est une primitive de f.
- Si G est une primitive de f autre que F, alors (G-F)(x)=G(x)-F(x). Sa dérivée est (G-F)'(x)=G'(x)-F'(x)=f(x)-f(x)=0. Donc la fonction G-F, dont la dérivée est constamment nulle, est une constante k. Ainsi G(x)=F(x)+k pour tout x de l'intervalle I.

Remarque:

Sur un intervalle, deux primitives d'une même fonction diffèrent d'une constante.

3) Primitive prenant une valeur donnée en x_0 de l

Théorème:

f est une fonction continue sur un intervalle I.

 x_0 est un réel donné de I et y_0 est un réel donné.

Alors, il existe une primitive G de f sur I, et une seule, telle que :

$$G(x_0) = y_0$$

Démonstration :

Soit F une primitive de f sur I: toute autre primitive G est définie par G(x)=F(x)+k, avec k réel. Pour obtenir l'égalité $G(x_0)=y_0$, c'est-à-dire $F(x_0)+k=y_0$, il est nécessaire et suffisant de choisir $k=y_0-F(x_0)$, et ce choix est unique.

Remarque:

On dit que G est la primitive de f sur I qui prend la valeur y_0 en x_0 .

Exemple:

La fonction $f: x \mapsto 2x$ admet comme primitive sur \mathbb{R} la fonction $F: x \mapsto x^2$. Elle admet aussi comme primitive la fonction :

$$x \mapsto x^2 + 15$$
 ou $x \mapsto x^2 + \pi$ ou $x \mapsto x^2 + \frac{\sqrt{3}}{2}$.

Cette fonction f n'admet qu'une seule primitive G telle que G(2) = -3.

En effet, on sait que $G(x)=x^2+k$, où k est une constante réelle ;

or
$$G(2)=-3$$
 équivaut à $4+k=-3$ c'est-à-dire $k=-7$.

Donc l'unique primitive de f telle que G(2)=-3 est la fonction $G: x \mapsto x^2-7$.

4) Interprétation graphique

F étant une primitive de f sur I, les courbes de toutes les primitives de f sur I se déduisent de **la courbe de** F par **translation** de vecteur $k \vec{j}$, où k est un réel quelconque.

Un point $M(x_0; y_0)$ étant donné, il n'existe qu'une **seule courbe** \mathcal{C}_g de la famille passant par ce point.

Pour la trouver, il suffit de translater la courbe \mathcal{C}_f jusqu'à ce qu'elle passe par M.

II. <u>Détermination de primitives</u>

1) Propriété de linéarité

Propriété:

Soit α un réel, F une primitive de f sur I et G une primitive de g sur I.

- Une primitive de la somme f+g est la somme des primitives F+G.
- Une primitive de αf est αF .

Démonstration :

- Comme la dérivée d'une somme est la somme des dérivées : (F+G)'(x)=F'(x)+G'(x)=f(x)+g(x)=(f+g)(x). Donc F+G est une primitive de f+g sur I.
- La dérivée du produit d'une fonction par un nombre est le produit de la dérivée par ce nombre, donc :
 (α F) '(x)=α F '(x)=α f (x)=(α f)(x)

2) Primitives des fonctions usuelles

c désigne un réel quelconque.

Fonction définie par :	Primitives définies par $F(x)=$	Sur $I = \dots$
f(x)=k (constante)	F(x)=k x+c	IR
f(x)=x	$F(x) = \frac{1}{2}x^2 + c$	IR
$f(x) = x^n \text{ (avec } n \in \mathbb{N})$	$F(x) = \frac{1}{n+1} x^{n+1} + c$	IR
$f(x) = \frac{1}{x^2}$	$F(x) = -\frac{1}{x} + c$] $-\infty$;0[ou]0;+ ∞ [
$f(x) = \frac{1}{x^n} \text{ (avec } n \in \mathbb{N}, \ n \ge 2 \text{)}$	$F(x) = -\frac{1}{(n-1)x^{n-1}} + c$] $-\infty$;0[ou]0;+ ∞ [
$f(x) = \frac{1}{\sqrt{x}}$	$F(x)=2\sqrt{x}+c$]0;+∞[

Remarques:

On peut utiliser la formule : Pour $n \in \mathbb{Z}$, $n \le -2$ ou $n \ge 1$, les primitives de $f(x) = x^n$ sur $I(I = \mathbb{R} \text{ si } n \ge 1 \text{ et } I =]-\infty;0[\text{ ou }]0;+\infty[\text{ si } n \le -2)$ sont les fonctions $F(x) = \frac{x^{n+1}}{n+1} + c$.

3

• Ce tableau ne fournit pas de primitive de $f(x) = \frac{1}{x}$.

Exemple:

Soit f définie sur
$$]0;+\infty[$$
 par $f(x)=\frac{-x^3+3x^2+2}{x^2}$.

D'après la linéarité des primitives, on cherche à écrire f(x) sous la forme d'une somme :

$$f(x) = \frac{-x^3}{x^2} + \frac{3x^2}{x^2} + \frac{2}{x^2} = -x + 3 + \frac{2}{x^2} = -x + 3 + 2 \times \frac{1}{x^2}.$$

Donc une primitive de f sur $]0;+\infty[$ est donnée par :

$$F(x) = -\frac{x^2}{2} + 3x + 2 \times \frac{-1}{x} + c = -\frac{x^2}{2} + 3x - \frac{2}{x} + c.$$

3)Primitives des formes usuelles

u désigne une fonction continue sur un intervalle I.

Fonction	Primitives	Conditions
$f = u'u^n$	$F = \frac{1}{n+1}u^{n+1} + c$	Pour <i>n</i> ∈lN
$f = \frac{u'}{u^2}$	$F = -\frac{1}{u} + c$	Pour tout x de I , $u(x) \neq 0$
$f = \frac{u'}{u^n}$	$F = \frac{-1}{(n-1)u^{n-1}} + c$	Pour $n \in \mathbb{N}$ et $n > 1$. Pour tout x de I , $u(x) \neq 0$.
$f = \frac{u'}{\sqrt{u}}$	$F = 2\sqrt{u} + c$	Pour tout x de I , $u(x) > 0$.

Remarques:

- Ces formules se retrouvent à partir des formules de dérivation des fonctions composées.
- On peut utiliser la formule : Pour $n \in \mathbb{N}$, $n \le -2$ ou $n \ge 1$, les primitives de $f = u'u^n$ pour tout x de I (si $n \le -2$ pour tout x de I où $u(x) \ne 0$) sont les fonctions $F = \frac{u^{n+1}}{n+1} + c$.

Exemples:

• Soit f définie sur]-1;1[par $f(x)=\frac{2x}{(x^2-1)^2}$. f est de la forme $\frac{u'}{u^2}$, où $u(x)=x^2-1$. Donc f admet comme primitives sur]-1;1[les fonctions:

$$F(x) = -\frac{1}{x^2 - 1} + c$$
 avec c constante réelle quelconque.

• Soit g définie sur \mathbb{R} par $g(x) = \frac{4x^3}{\sqrt{x^4 + 1}}$.

g est de la forme $\frac{u'}{\sqrt{u}}$, où $u(x)=x^4+1$. Donc g admet comme primitives sur $\mathbb R$ les fonctions :

 $G(x)=2\sqrt{x^4+1}+c$ avec c constante réelle quelconque.