Relatório KNN - Bernardo Leris & Pedro Martins

Com o objetivo de explorar e entender o desempenho de diferentes algoritmos de classificação, foi desenvolvida uma aplicação que utiliza o algoritmo Perceptron, que foi comparada com a aplicação desenvolvida no trabalho 01- KNN.

Métricas de Av	aliacão para	o coniun	to de dados	: Iris:	Iris Datase	et			
	precision		f1-score	support	Metrics for the	e best k (1):		
					Classification	Report:			
setosa	1.00	1.00	1.00	10	F	recision	recall	f1-score	support
versicolor	0.82	1.00	0.90	9		4 00	4 00	4 00	40
virginica	1.00	0.82	0.90	11	0 1	1.00 1.00	1.00 1.00	1.00 1.00	10 9
					2	1.00	1.00	1.00	11
accuracy			0.93	30					
macro avg	0.94	0.94	0.93	30	accuracy			1.00	30
_			0.93	30	macro avg	1.00	1.00	1.00	30
weighted avg	0.95	0.93	0.95	שכ	weighted avg	1.00	1.00	1.00	30
Métricas de Av	aliação para	o conjun	to de dados	Wine:	Wine Datase	t			
	precision	recall	f1-score	support					
					Metrics for the	e best k (3):		
class_0	1.00	1.00	1.00	14	Classification	Report:			
class 1	1.00	1.00	1.00	14		recision	recall	f1-score	support
class 2	1.00	1.00	1.00	8	·				
01033_2	1.00	1.00	1.00		0	0.86	0.86	0.86	14
			1 00	36	1	0.92	0.79	0.85	14
accuracy			1.00	36	2	0.60	0.75	0.67	8
macro avg	1.00	1.00	1.00	36	accuracy			0.81	36
weighted avg	1.00	1.00	1.00	36	macro ave	0.79	0.80	0.79	36
					weighted avg	0.82	0.81	0.81	36
Tanna da ausan	-~- +-+-10	01500024	222252006						
Tempo de execu	ção total: 0	. 01500034	3322753906	segundos	Tempo de execuç		0.000076	2544657745	

As imagens acima representam as saídas geradas ao executar as aplicações com Perceptron e KNN, respectivamente, utilizando os conjuntos de dados Iris e Wine. Além disso, foi configurado o tamanho de teste de 20% e uma semente aleatória de 42. No caso do KNN, foram atribuídos os valores de k como 1, 3, 5 e 7.

O Perceptron demonstrou uma alta consistência nos resultados, mantendo uma acurácia elevada para todos os conjuntos de dados testados, tanto para Iris quanto para Wine. No conjunto de dados Iris, o Perceptron obteve uma acurácia de 93%, enquanto no conjunto de dados Wine alcançou uma acurácia de 100% para todas as classes.

Ao observar o KNN, houve uma variação nos resultados quando k=7 no conjunto de dados Iris, com uma diminuição na acurácia, precisão e revocação. Para os outros valores de k no conjunto de dados Iris, assim como para todos os valores de k no conjunto de dados Wine, foram obtidos resultados com 100% de acurácia, precisão e revocação.

Comparando os dois algoritmos, fica claro o melhor desempenho da aplicação que utiliza a biblioteca sklearn para o KNN. Isso é validado pelas métricas de avaliação, onde essa implementação supera a aplicação do Perceptron em 75% dos casos. Além disso, o tempo de execução da aplicação KNN é aproximadamente três vezes mais rápido do que a implementação Perceptron.

Após observar os dados obtidos conclui-se que, embora o Perceptron mantenha uma consistência nos resultados, o KNN implementado com a biblioteca sklearn oferece um desempenho superior em termos de precisão, revocação, tempo de execução e eficiência computacional. Essa diferença destaca a importância de escolher o algoritmo adequado para cada problema de classificação, levando em consideração não apenas a acurácia, mas também o desempenho em termos de tempo de execução e uso de memória.