Classifying toxic memes with Al

Group 4: Nesara Eranna Bethur, Janak Sharda, James Read, Nicholas Zhang

Modern communication through memes

Toxic memes can influence the masses

From [2] From [4]

Classifying toxic memes can combat hate speech and improve mental health

Input data is Multimodal

Both text and image are necessary to classify

Various fusion techniques like early and late fusion can be used.

Feature extraction through Pre-trained models

[5] ResNet

[6] BERT

Unsupervised Learning

BERT Layer	Homogeneity score
Layer-1	0.0056
Layer-7	0.0078
Layer-11	0.0169
Layer-12	0.0147

	Text only	Image Only	Fusion
FC,Layer11	0.0169	0.016	0.022

Unsupervised Learning

	Early(Layer-1)	Middle(Layer-7)	Late(Layer-11)
Early(Layer -2)	2.38e-5	2.1e-5	2.91e-6
Late(Layer-10, FC)	0.0070	0.0103	0.022

Layers	Homogeneity score
11	0.0169
11,12,13	0.0157
11,12	0.0167

Visualization

Supervised Learning

Layer (type)	Output Shape	Param #
dense_40 (Dense)	(None, 256)	452608
leaky_re_lu_32 (LeakyReLU)	(None, 256)	0
dense_41 (Dense)	(None, 256)	65792
leaky_re_lu_33 (LeakyReLU)	(None, 256)	0
dense_42 (Dense)	(None, 256)	65792
leaky_re_lu_34 (LeakyReLU)	(None, 256)	0
dense_43 (Dense)	(None, 256)	65792
leaky_re_lu_35 (LeakyReLU)	(None, 256)	0
dense_44 (Dense)	(None, 256)	65792
leaky_re_lu_36 (LeakyReLU)	(None, 256)	0
dense_45 (Dense)	(None, 1)	257

Total params: 716,033

Trainable params: 716,033 Non-trainable params: 0

Best AUROC Score: 0.706

Regularization

Layer (type)	Output	1.50	Param #
dense_46 (Dense)	(None,		452608
leaky_re_lu_37 (LeakyReLU)	(None,	256)	0
dropout_15 (Dropout)	(None,	256)	0
dense_47 (Dense)	(None,	256)	65792
leaky_re_lu_38 (LeakyReLU)	(None,	256)	0
dropout_16 (Dropout)	(None,	256)	0
dense_48 (Dense)	(None,	256)	65792
leaky_re_lu_39 (LeakyReLU)	(None,	256)	0
dropout_17 (Dropout)	(None,	256)	0
dense_49 (Dense)	(None,	256)	65792
leaky_re_lu_40 (LeakyReLU)	(None,	256)	0
dropout_18 (Dropout)	(None,	256)	0
dense_50 (Dense)	(None,	256)	65792
leaky_re_lu_41 (LeakyReLU)	(None,	256)	0
dense_51 (Dense)	(None,	1)	257
Fotal params: 716,033	======		=======

Non-trainable params: 0

Best AUROC Score: 0.7174

Skip connections

	Output Shape	Param #	Connected to
input_13 (InputLayer)	[(None, 1767)]	0	[]
dense_64 (Dense)	(None, 256)	452608	['input_13[0][0]']
leaky_re_lu_52 (LeakyReLU)	(None, 256)	0	['dense_64[0][0]']
dropout_27 (Dropout)	(None, 256)	0	['leaky_re_lu_52[0][0]']
dense_65 (Dense)	(None, 256)	65792	['dropout_27[0][0]']
leaky_re_lu_53 (LeakyReLU)	(None, 256)	0	['dense_65[0][0]']
dropout_28 (Dropout)	(None, 256)	0	['leaky_re_lu_53[0][0]']
add (Add)	(None, 256)	θ	['dropout_27[0][0]', 'dropout_28[0][0]']
dense_66 (Dense)	(None, 256)	65792	['add[0][0]']
leaky_re_lu_54 (LeakyReLU)	(None, 256)	0	['dense_66[0][0]']
dropout_29 (Dropout)	(None, 256)	0	['leaky_re_lu_54[0][0]']
add_1 (Add)	(None, 256)	0	['dropout_27[0][0]', 'dropout_29[0][0]']
dense_67 (Dense)	(None, 256)	65792	['add_1[0][0]']
leaky_re_lu_55 (LeakyReLU)	(None, 256)	0	['dense_67[0][0]']
dropout_30 (Dropout)	(None, 256)	θ	['leaky_re_lu_55[0][0]']
add_2 (Add)	(None, 256)	0	['dropout_27[0][0]', 'dropout_30[0][0]']
dense_68 (Dense)	(None, 256)	65792	['add_2[0][0]']
leaky_re_lu_56 (LeakyReLU)	(None, 256)	0	['dense_68[0][0]']
dropout_31 (Dropout)	(None, 256)	0	['leaky_re_lu_56[0][0]']
add_3 (Add)	(None, 256)	0	['dropout_27[0][0]', 'dropout_31[0][0]']
dense_70 (Dense)	(None, 256)	65792	['add_3[0][0]']
leaky_re_lu_58 (LeakyReLU)	(None, 256)	0	['dense_70[0][0]']
dense 71 (Dense)	(None, 1)	257	['leaky_re_lu_58[0][0]']

Total params: 781,825 Trainable params: 781,825 Non-trainable params: 0

Best AUROC Score: 0.7460

Fusion results

Metric\Model Late-Early		Late-Middle	Late-Late	
Max AUROC score	0.7172	0.7172	0.7460	
Precision	0.6068	0.5882	0.6319	
Recall	0.5504	0.5943	0.5633	

Bagging

- 1. 10 models, 3 layers text features + last layer image features.
- 2. Improvement in total score.
- 3. Improvement quantifies the relevant new information added by other layers
- 4. Best AUROC Score: 0.7624

tSNE plot of features

CLIP

[7] Summary of CLIP approach

CLIP

Text-Only	Text-Only
Accuracy (%)	AUROC
50.3	0.49

Internal Image Encoder	Image-Only Accuracy	Image-Only AUROC
Modified ResNet-50	51.1	0.29
Custom Vision Transformer	51.6	0.20

CLIP classification on Hateful Memes dataset

Bagging results on CLIP

- 1. 10 models, 3 layers text features + last layer image features from both networks.
- 2. Decrease in total score.
- 3. Degradation quantifies the new unimportant information added by other layers
- 4. Best AUROC Score: 0.7638 with bagging vs 0.7744 with just one good combination.

tSNE plot of features

Conclusion

- Using one set of features is insufficient for hateful meme classification
- Fusing encoded text and image features can solve this problem
- Training a dense neural network with late-late fusion provides best results
- Employing bagging like technique for choosing feature embeddings can provide relevance of features from different layers.
- With further fine-tuning, such a network could assist moderators to filter out hateful content on social media websites

Leaderboard

Hateful Memes: Phase 2

HOSTED BY FACEBOOK

	(a)	Muennighoff	2	0.8310	0.6950	2020-10-31 23:34:40	1
	-0-	HateDetectron	3	0.8108	0.7650	2020-10-16 23:02:31	1
	:0:	kingsterdam	4	0.8053	0.7385	2020-10-31 23:20:27	3
	(ab)	burebista	5	0.7943	0.7430	2020-10-30 09:38:08	3
		naoki	6	0.7886	0.7305	2020-10-31 04:43:28	3
		MemeLords	7	0.7884	0.7450	2020-10-31 23:39:13	3
	(ab)	AiTingting	8	0.7848	0.7295	2020-10-31 12:56:43	3
	(B)	mobot	9	0.7832	0.7320	2020-10-28 02:46:48	3
		james005	10	0.7814	0.7280	2020-10-31 20:28:47	3
		hate-alert	11	0.7808	0.7270	2020-10-26 13:13:22	3
	(B)	mrsio	12	0.7806	0.7430	2020-10-20 16:30:18	3
	(B)	letsgo	13	0.7801	0.7285	2020-10-28 12:51:03	3
	÷	QMUL-NUAA	14	0.7784	0.7300	2020-10-28 05:46:55	3
	(B)	хухуххху	15	0.7780	0.7270	2020-10-28 05:17:36	3
_	(T)	slawekbiel	16	0.7767	0.7320	2020-10-31 20:21:56	-2
\	101	curvefitters	17	0.7731	0.7285	2020-10-31 00:59:48	-2
	(B)	nickyi	18	0.7654	0.7195	2020-10-31 22:50:22	3

References

- [1] Pramanick, S., et al. "MOMENTA: A Multimodal Framework for Detecting Harmful Memes and Their Targets." arXiv preprint arXiv:2109.05184 (2021).
- [2] Dimitrov, D., et al. "Detecting propaganda techniques in memes." arXiv preprint arXiv:2109.08013 (2021).
- [3] Kiela, D., et al. "The hateful memes challenge: Detecting hate speech in multimodal memes." Advances in Neural Information Processing Systems 33 (2020): 2611-2624.
- [4] Sharma, S., et al. "Detecting and Understanding Harmful Memes: A Survey." arXiv preprint arXiv:2205.04274 (2022).
- [5]He, K., et. al. "Deep Residual Learning for Image Recognition", arXiv preprint arXiv: 1512:03385
- [6] Devlin, J., et. al. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", arXiv preprint arXiv: 1810:04805
- [7] Redford, A., et. al. "Learning Transferable Visual Models From Natural Language Supervision" arXiv preprint, arXiv:2103.00020
- [8] Mogadala, A. et al. "Trends in integration of vision and language research: A survey of tasks, datasets, and methods." Journal of Artificial Intelligence Research 71 (2021): 1183-1317.
- [9] Radford et al. "Learning Transferable Visual Models From Natural Language Supervision." International Conference on Machine Learning (2021).