Mathématiques 1 Rappels d'arithmétique

Institut Paul Lambin

24 septembre 2021

Ensembles de nombres

Voici quelques ensembles de nombres avec lesquels nous allons travailler :

Ensemble	Description	Exemples
IN	ensemble des naturels	0, 1, 2, 3,
IN IN	(les entiers positifs)	0, 1, 2, 3,
77	ensemble des entiers relatifs	, -2, -1, 0, 1, 2,
72	(positifs et négatifs)	, -2, -1, 0, 1, 2,
Q	ensemble des nombres rationels	$-2, -\frac{1}{2}, 4, \frac{27}{5}, \frac{1}{3} = 0.33$
W.	(les entiers et les fractions)	
IR	ensemble des nombres réels	2 27 12
II t	(les rationels et les irrationnels)	$-5, -\frac{2}{3}, \pi, \frac{27}{5}, 12$

Ensembles de nombres

Remarques:

- L'entier 0 est positif et négatif → signe(0) = 0
- Deux écritures pour les rationnels :
 - Sous forme de fraction : $\frac{1}{6}$
 - Sous décimale illimitée périodique : 0.16666666666...
- Les réels qui ne peuvent pas être écrits sous forme de fraction sont appelés les nombres irrationnels

Exemple :
$$\sqrt{2}$$
, π , e , $\sqrt[3]{4}$

Ensembles N₀, Z₀, Q₀, R₀: ensembles décrits avant mais sans 0.

La relation divise, notée , sur Q

Définition

- a est un *multiple* de b
 b|a: b est un *diviseur* de a
 : le reste de la division entière de a par b égale 0. b divise a

Le reste de la division entière est noté " mod ".

Exemple:

14 mod 3 = 2 car $14 = 4 \cdot 3 + 2$: le reste de la division de 14 par 3 vaut 2.

- Exemples avec la relation :
 - 1) 5|15 a pour valeur: VRAI 5 divise $15 \to 15 = 3.5 \to 15 \mod 3 = 0$
 - 2) 2 15 a pour valeur : FAUX 2 ne divise pas 15 :

$$\rightarrow 15 = 7 \cdot 2 + 1 \rightarrow 15 \mod 2 = 1 \neq 0$$

Nombres Premiers

Définition:

Un nombre naturel non nul est **premier** si et seulement si il n'a **que 2 diviseurs naturels** différents (1 et lui-même).

Exemples:

- 1) 13 : nombre premier car n'a que 2 diviseurs différents : 1 et 13.
- 2) 15: pas un nombre premier: car a 4 diviseurs: 1, 3, 5 et 15.

Nombres premiers : test de primalité

Voici un algorithme permettant de déterminer si un naturel *n* est premier

- 1) Si *n* est égal à 0 ou 1 ce n'est pas un nombre premier
- 2) Si $n \ge 2$: On teste un par un les entiers entre 2 et \sqrt{n} :
 - S'il y a en un qui divise n alors n n'est pas premier.
 - Si aucun ne divise *n* alors *n* est un nombre premier.

Exemples:

- a) Testons si 13 est premier : On a que $\sqrt{13} = 3.6056$. Alors
 - 1) on teste 2: 2 ne divise pas 13
 - 2) on teste 3:3 ne divise pas 13
 - 3) 4 est plus grand que $\sqrt{13} \rightarrow$ on s'arrête

Le nombre 13 est premier car aucun entier entre 2 et $\sqrt{13}$ ne divise 13

- b) Testons si 51 est premier. On a que $\sqrt{51} = 7.1414$. Alors
 - 1) on teste 2: 2 ne divise pas 51
 - 2) on teste 3 : 3 divise 51 car $51/3 = 17 \rightarrow$ on s'arrête

Le nombre 51 n'est pas premier car on a trouvé un entier entre 2 et $\sqrt{51}$ qui divise 51.

Nombres premiers : test de primalité

Remarques:

Dans le cas de l'exemple b) : lorsque l'on trouve que 3 divise 51 on trouve aussi que 17 divise 51.

- \rightarrow pour un entier plus petit que $\sqrt{51}$ qui divise 51, on en a trouvé un plus grand que $\sqrt{51}$ qui divise 51.
- \rightarrow pour tester si un nombre n est premier, il suffit de tester s'il est divisible par un entier entre 2 et \sqrt{n} .

Nombres premiers : Crible d'Eratosthène

Méthode permettant de trouver tous les nombres premiers entre 2 et *n*.

Exemple : Recherche de tous les nombres premiers entre 2 et 22 :

1) On met tous les entiers entre 2 et 22 dans un tableau :

2	3	4	5	6	7	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22

- 2) L'élément dans la première case non vide est premier : c'est le nombre 2.
- 3) On garde 2 et on retire tous ses multiples du tableau :

2	3		5		7	
9		11		13		15
	17		19		21	

Nombres premiers : Crible d'Eratosthène

4) L'élément dans la case non vide suivante est premier 3 : c'est le nombre 3.

2	3		5		7	
9		11		13		15
	17		19		21	

5) On garde 3 et on retire tous ses multiples du tableau :

2	3		5		7	
		11		13		
	17		19			

6) On continue comme cela jusqu'à avoir parcouru tout le tableau et on obtient

2	3		5		7	
		11		13		
	17		19			

Conclusion:

Les nombres premiers entre 2 et 22 sont 2, 3, 5, 7, 11, 13, 17 et 19

Décomposition en nombres premiers

Un résultat très important et très utile en mathématique est le suivant

Tout nombre naturel (\geq 2) s'écrit, de manière unique, comme produit de nombres premiers.

Exemples:

- 1) 15 = 3.5
- 2) $24 = 2 \cdot 2 \cdot 2 \cdot 3 = 2^3 \cdot 3^1$
- 3) 37 = 37
- 4) $1040257 = 127 \cdot 8191$

PGCD

Deux entiers a et b ont toujours au moins 1 diviseur en commun à \rightarrow le nombre 1.

Le **PGCD** de *a* et *b* est **le Plus Grand Commun Diviseur** de *a* et *b* c.-à-d. le plus grand entier qui divise *a* et *b*.

Exemples:

- si a = 24 et b = 16 alors PGCD(a,b)= 8 car $24 = 3 \cdot 8$, $16 = 2 \cdot 8$ et il n'y a pas d'entier plus grand que 8 qui divise à la fois 24 et 16.
- si a = 980 et b = 1512 alors

$$\begin{cases} a = 980 = 2^2 \cdot 5 \cdot 7^2 \\ b = 1512 = 2^3 \cdot 3^3 \cdot 7 \end{cases} \rightarrow PGCD(a, b) = 2^2 \cdot 7 = 28$$

PGCD

Remarques:

- Pour trouver le PGCD d'entier :
 - → recourt à la décomposition en facteurs premiers
 - → méthode très lourde et très complexe
 - → il existe une méthode plus simple et nettement moins coûteuse.
- Pour calculer le PGCD de deux entiers, on a
 - o Factorisé a et b en nombres premiers.

0

PGCD

produit de tous les facteurs présent à la fois dans la factorisation de *a* et dans la factorisation de *b* avec pour exposant le plus petit parmi ceux des deux factorisations de *a* et *b*.

PPCM

Deux entiers a et b ont toujours au moins 1 multiple en commun à \rightarrow le nombre $a \cdot b$.

Le **PPCM** de *a* et *b* est **le Plus Petit Commun Multiple** de *a* et *b* c.-à-d. le plus petit entier qui est à la fois multiple de *a* et *b*.

Exemples:

• si a = 24 et b = 16 alors

$$\begin{cases} a = 24 = 2^3 \cdot 3 \\ b = 16 = 2^4 \end{cases} \to PPCM(a, b) = 2^4 \cdot 3 = 48$$

• si a = 980 et b = 1512 alors

$$\begin{cases} a = 980 = 2^2 \cdot 5 \cdot 7^2 \\ b = 1512 = 2^3 \cdot 3^3 \cdot 7 \end{cases} \rightarrow PPCM(a, b) = 2^3 \cdot 3^3 \cdot 5 \cdot 7^2 = 52920$$

PPCM

Remarques:

- Pour calculer le PPCM, on a
 - o Factorisé a et b en nombres premiers.

0

PPCM

produit de tous les facteurs présent soit dans la factorisation de *a* et soit dans la factorisation de *b* avec pour exposant le plus grand parmi ceux des deux factorisations de *a* et *b*.

Nombres premiers entre eux

Deux nombres naturels a et b sont premiers entre eux si PGCD(a,b) = 1.

Exemples:

1) a = 24 et b = 35 sont premiers entre eux car

$$\begin{cases} a = 24 = 2^3 \cdot 3 \\ b = 35 = 5 \cdot 7 \end{cases} \rightarrow PGCD(a, b) = 1$$

- 2) a = 91 et b = 35 ne sont pas premiers entre eux
 - \rightarrow a et b sont divisibles par 7.
 - $\rightarrow a = 91 = 13 \cdot 7 \text{ et } b = 35 = 5 \cdot 7.$
 - \rightarrow PGCD(a,b) = 7 \neq 1.