

Centro de Ciências Exatas, Arquitetura e Engenharia

Professor:	Ciro Cirne Trindade
Disciplina:	Estruturas de Dados-I
Cursos:	Ciência da Computação/Sistemas de Informação
Data de entrega:	13/06/2016
Grupo:	3 alunos

2º Trabalho Prático – Bomba Recursiva

O exército tupiniquim desenvolveu um novo tipo de bomba, chamada de "Bomba Recursiva". A principal característica desta bomba é que ela destrói qualquer alvo recursivamente que tenha uma defesa com resistência inferior a potência da bomba. Ou seja, se a bomba é lançada em uma posição X, Y ela destrói essa posição caso sua defesa seja menor que a potência da bomba, bem como os seus vizinhos a esquerda, a direita, acima e abaixo que também tenham defesa com resistência menor que a potência da bomba. Esse processo se repete recursivamente nos vizinhos.

Por exemplo, considere o mapa abaixo (a) onde os valores de cada célula determinam o poder de resistência da defesa de cada posição (alvo). Se uma bomba recursiva com potência 3 for lançada na posição 2, 3, o mapa resultante é mostrado ao lado (b), onde as posições destruídas são marcadas com um 'X'. Neste caso, o poder de destruição da bomba foi 9, ou seja, ela destruiu 9 células do mapa.

Escreva um programa em C que dados o mapa e a potência da bomba recursiva, informe em que posição essa bomba deve ser lançada para causar o maior estrago (destruir o maior número de alvos).

Entrada

A primeira linha da entrada é composta por três inteiros, L, C e P ($2 \le L$, $C \le 50$, $1 \le P \le 5$), separados por um espaço em branco representando o número de linhas e colunas do mapa e a potência da bomba recursiva, respectivamente. As próximas L linhas contêm C inteiros R_{ij} ($0 \le R_{ij} \le 5$, para $0 \le i < L$, $0 \le j$

< C) separados por um espaço em branco, representado a resistência da posição i, j do mapa.

Saída

A saída contém três inteiros X, Y ($0 \le X < L$, $0 \le Y < C$) e D ($1 \le D \le L*C$) separados por um espaço em branco representando as coordenadas do alvo no mapa em que o maior número de células é destruído e o número de células destruídas, respectivamente. Se mais de um alvo causar a maior destruição, exiba aquele com o menor linha. Caso mais de um alvo cause a maior destruição na mesma linha, exiba aquele com menor coluna. Se nenhum alvo do mapa puder ser destruído, exiba -1 -1 0.

Exemplos

Entrada	Saída
4 5 3	0 3 9
3 2 3 0 0	
3 3 1 4 0	
0 3 3 2 2	
3 2 2 2 1	

Entrada	Saída
5 3 1	3 2 2
2 1 1	
4 1 5	
2 0 1	
0 2 0	
2 3 0	

Entrada	Saída
2 2 1	-1 -1 0
2 1	
4 1	

Observações:

- a) Enviar um arquivo compactado com todos os fontes do trabalho através do Moodle;
- b) Trabalhos entregues atrasados não serão aceitos;
- c) Trabalhos copiados terão a nota dividida pelo número de cópias;
- d) Trabalhos que não compilarem receberão nota ZERO;
- e) Critérios de avaliação: ___

Corretude	90%
Legibilidade	10%