Indian Institute of Space Science and Technology Signal and Systems (AV242/AV223)

Class Test on Laplace and Z transforms 19th April 2024 (4th Semester)

Marks: 15

Time: 45 Mins

Each question carries 1 mark. For each wrong answer 0.25 mark will be deducted. Put a $\sqrt{}$ for the correct answer. All your rough work should be in the provided sheet.

1. If
$$X(s) = L[x(t)] = \frac{k}{(s+1)(s^2+4)}$$
 then the final value $x(\infty)$

$$\bigwedge$$
 A. $k/4$.

 \bigwedge Zero.

C. infinit

D. undefined.

2. The inverse Laplace transform of the function $\frac{s+5}{(s+1)(s+3)}$

B.
$$2e^{-t} - e^{-3t}$$
C. $e^{-t} - 2e^{-3t}$
D. $e^{-t} + 2e^{-3t}$

3. A LTI system has a impulse response $h(t) = e^{2t}$, for t > 0. If initial conditions are zero and the input $x(t) = e^{-3t}$, the output for t > 0 is

A. None of these
B.
$$e^{3t} - e^{2t}$$
C. e^{5t}
D. $e^{3t} + e^{2t}$

4. The impulse response of a system is h(t) = tu(t). For an input u(t-1), the out output is

A.
$$\frac{t^2}{2}u(t)$$
B. $\frac{t(t-1)}{2}u(t-1)$
 \emptyset . $\frac{(t-1)^2}{2}u(t-1)$
D. $\frac{t^2-1}{2}u(t-1)$

5. The input x(t) and output y(t) of an LTI system are related by the differential equation $\frac{d^2y(t)}{dt} - \frac{dy}{dt} - 6y(t) = x(t)$. If the system is neither causal nor stable, the impulse response h(t) of the system is

A.
$$\frac{1}{5}e^{3t}u(-t) + \frac{1}{5}e^{-2t}u(-t)$$

D. $-\frac{1}{5}e^{3t}u(-t) + \frac{1}{5}e^{-2t}u(-t)$
C. $\frac{1}{5}e^{3t}u(-t) - \frac{1}{5}e^{-3t}u(-t)$
D. $-\frac{1}{5}e^{3t}u(-t) - \frac{1}{5}e^{-2t}u(-t)$

6. The Laplace transform of a function $x(t) = \begin{cases} 1 & if a \le t \le b \\ 0 & otherwise \end{cases}$ where a, b > 0

$$X(s) = \frac{e^{-as} - e^{bs}}{s}$$

$$B. X(s) = \frac{e^{(a-b)}}{s}$$

$$C. X(s) = \frac{e^{-as} - e^{-bs}}{s}$$

$$D. X(s) = \frac{a-b}{s^2}$$

- 7. If $X(s) = \frac{2(s+1)}{s^2+4s+7}$ then the initial and final values of x(t) are respectively
 - A. 0, 2
 - B. 2,0

1

- C. 0, 2/7
- D. 2/7,0
- 8. A sequence x(n) with z- transform $X(z) = z^4 + z^2 2z + 2 3z^{-4}$ is applied as an input to a linear time invariant system with impulse response $h(n) = 2\delta(n-3)$. The output at n=4 is
 - A. -6
 - B. 2
 - Q. zero
- 9. Consider a signal $x(t) = e^{-7t}u(t) + e^{-\beta t}u(t)$ and its Laplace transform is denoted by X(s). The ROC of X(s) is $Re\{s\} > -5$. Find the value of β ?
 - A. 7
 - B. 5
 - C. -5
 - D. none of the above
- 10. The z- transform of a signal is given by $X(z) = \frac{1}{(1-2z^{-1})^2}$ then ROC |z| > 2, then x[2] is
- A. 0 B. 1 C. 12
- 11. A causal LTI system is given by the transfer function $H(z) = \frac{2z^2+3}{(z+\frac{1}{3})(z-\frac{1}{3})}$ which of the following statement is/are true
 - A. The system is stable
 - B. Final value of the impulse response is 0
 - C. The initial value of the impulse response is 2
 - . all the above
- 12. A causal LTI system is described by the difference equation $2y[n] = \alpha y[n-2] 2x[n] + \beta x[n-1]$. The system is stable only if
 - A. $|\alpha| = 2, |\beta| < 2$

B.
$$|\alpha| > 2, |\beta| > 2$$
 $|C| |\alpha| < 2, \text{ any value of } \beta$

D. $|\beta| < 2, \text{ any value of } \alpha$

13. The ROC of the Z-transform of a sequence $(5/6)^n u[n] - (6/5)^n u[-n-1]$

A. $|z| < 5/6$

B. $|z| > 5/6$

D. $|6/5 < |z| < \infty$

14. A discrete time signal $x[n] = \delta[n-3] + 2\delta[n-5]$ has z transform $X(z)$.

If $Y(z) = X(-z)$ is the z transform of another signal $y[n]$, then

A. $|y| = z[n]$

B. $|y| = x[-n]$

C. $|y| = -x[-n]$

D. $|y| = -x[-n]$

D. $|y| = -x[-n]$

15. The ROC of the given DT signal $x[n] = (2)^{[n]}, -\infty < n < \infty$ is $\frac{1}{12} \le \frac{1}{12} = \frac{1}{12} \le \frac{1$