## Hypothesis Testing Two Sample Sets

#### Dr. Supaporn Erjongmanee

Department of Computer Engineering Kasetsart University fengspe@ku.ac.th

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 1



1

#### Outline

- Population Mean Test
  - Normal and Known variance
  - Large sample size
  - Normal and Small sample size

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 2



#### Hypothesis Test: General Idea • Let $\theta$ be parameter Standard Normal $N (\mu=0, \sigma^2=1)$ • Let $\hat{\theta}$ be estimate • Let $\theta_0$ be null value To find where test statistic • Test statistic = $\frac{\widehat{\theta} - \theta_0}{\sigma_{\widehat{\alpha}}}$ lies on standard normal Hypothesis • Null hypothesis (H<sub>0</sub>): $\hat{\theta} = \theta_0$ Alternative hypothesis (H<sub>a</sub>): $\hat{\theta} > \theta_0$ $\hat{\theta} < \theta_0$ $\hat{\theta} \neq \theta_0$ Supaporn Erjongmanee **Statistics in Computer Engineering** Department of Computer Engineering fengspe@ku.ac.th Kasetsart University



Δ

#### Inferences with Two Samples

- Assume we have two sample data sets: X and Y
- **Basic assumptions:**
- 1.  $\{X_1, X_2, ..., X_m\}$  = set of m random samples with population mean =  $\mu_1$ , standard deviation =  $\sigma_1$
- 2.  $\{Y_1, Y_2, ..., Y_n\}$  = set of n random samples with population mean =  $\mu_2$ , standard deviation =  $\sigma_2$
- 3. X and Y are independent of each other

$$E(\bar{X}) = \mu_1$$

$$V(\bar{X}) = \frac{\sigma_1^2}{m}$$

$$E(\bar{Y}) = \mu_2$$

$$V(\bar{Y}) = \frac{\sigma_2^2}{n}$$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering



Kasetsart University

5

#### Mean Difference

- The sample statistic (estimator) for  $\mu_1 \mu_2 = \bar{X}_1 \bar{Y}_2$
- The standard deviation of  $\mu_1 \mu_2 = \sigma_{\bar{X} \bar{Y}} = \sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}$
- Proof Since X and Y are independent,

Proof Since X and Y are independent, 
$$E(\bar{X} - \bar{Y}) = E(\bar{X}) - E(\bar{Y}) = \mu_1 - \mu_2$$
 
$$\sigma_{\bar{X} - \bar{Y}}^2 = E[(\bar{X} - \bar{Y})^2] - (E[\bar{X} - \bar{Y}])^2$$
 
$$= E[\bar{X}^2 - 2\bar{X}\bar{Y} + \bar{Y}^2] - [(E(\bar{X}))^2 - 2E(\bar{X})E(\bar{Y}) + (E(\bar{Y}))^2]$$
 
$$= E[\bar{X}^2] - 2E[\bar{X}]E[\bar{Y}] + E[\bar{Y}^2] - (E(\bar{X}))^2 + 2E(\bar{X})E(\bar{Y}) - (E(\bar{Y}))^2$$
 
$$= (E[\bar{X}^2] - (E(\bar{X}))^2) + (E[\bar{Y}^2] - (E(\bar{Y}))^2)$$
 
$$= V(\bar{X}) + V(\bar{Y})$$
 
$$= \frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}$$
 
$$\sigma_{\bar{X} - \bar{Y}} = \sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}$$
 Supaporn Erjongmanee Statistics in Computer Engineering

Slide 6

6

fengspe@ku.ac.th







## Example

- Assume GPAs for all students are normally distributed with population standard deviation of GPAs for all students = 0.6
- Two groups of students
  - One group of 10 students who studied less than 10 hours/week

$$\bar{x} = 2.97$$

• Other group of 11 students who studied more than or at least 10 hours/week

$$\bar{y} = 3.06$$

 Using 0.05 significance level, is there difference in average GPAs between these two groups of students?

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 10



- Our goal is to check difference of average GPAs for these two groups
  - $\mu_1 \mu_2$  = average GPA difference
  - $\Delta_0 = 0$
  - $H_0$ :  $\mu_1 \mu_2 = 0$
  - $H_a$ :  $\mu_1 \mu_2 \neq 0$
- Compute test statistic

$$Z = \frac{\bar{x} - \bar{y} - \Delta_0}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}} = \frac{2.97 - 3.06 - 0}{\sqrt{\frac{0.6^2}{10} + \frac{0.6^2}{11}}} = -0.34$$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 11



11

## Example (cont.)

$$Z = \frac{\bar{x} - \bar{y} - \Delta_0}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}} = \frac{2.97 - 3.06 - 0}{\sqrt{\frac{0.6^2}{10} + \frac{0.6^2}{11}}} = -0.34$$

- Given  $\alpha = 0.05$ ,  $z_{\alpha/2} = z_{0.025} = 1.96$ 
  - Rejection region:  $z \ge 1.96$  or  $z \le -1.96$
- Test statistic z falls outside rejection region
  - Null hypothesis is not rejected
  - There is no difference in average GPAs between 2 groups of students





Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 12 Department of Computer Engineering Kasetsart University

| H <sub>o</sub> : | μ1 –             | · µ <sub>2</sub> = | : 0 |
|------------------|------------------|--------------------|-----|
| H <sub>a</sub> : | μ <sub>1</sub> – | · μ <sub>2</sub> ≠ | 0   |

| Alternative<br>Hypothesis           | P-value                                  |  |
|-------------------------------------|------------------------------------------|--|
| H <sub>a</sub> : μ > μ <sub>0</sub> | 1- Φ(z)                                  |  |
| H <sub>a</sub> : μ < μ <sub>0</sub> | $\Phi(z)$                                |  |
| H <sub>a</sub> :μ≠μ <sub>0</sub>    | $2(1-\Phi( z ) \text{ or } 2(\Phi(- z )$ |  |
|                                     |                                          |  |

 $2(1-\Phi(|z|)$ 

$$Z = \frac{\bar{x} - \bar{y} - \Delta_0}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}} = \frac{2.97 - 3.06 - 0}{\sqrt{\frac{0.6^2}{10} + \frac{0.6^2}{11}}} = -0.34$$

• When z is negative

P-value = 
$$2 * (\Phi (-0.34))$$
  
=  $2 * (0.3669) = 0.7338$ 



- Test statistic falls outside rejection region
- We do not reject null hypothesis
- No difference between two groups of students



Or using formula from the table. For two-tailed test:

P-value =  $2 * (1 - \Phi(|z|))$ =  $2 * (1 - \Phi(|-0.34|))$ 

= 2\*(1-0.6331)=0.7338

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 13



13

#### Outline

- Population Mean Test
  - Normal and Known variance
  - Large sample size
  - Normal and Small sample size

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 14 Department of Computer Engineering
Kasetsart University

#### Population Mean Test: Large Samples

- · When sample sizes are large, CLT states that
  - $\bar{X} \bar{Y}$  has normal distribution
  - $S_1$  and  $S_2$  are close to  $\sigma_1$  and  $\sigma_2$  respectively
- Therefore, Z =  $\frac{\bar{X} \bar{Y} (\mu_1 \mu_2)}{\sqrt{\frac{S_1^2}{m} + \frac{S_2^2}{n}}}$  is approximately standard normal
- Follow test like normal with known variance, but use  $S_1$  and  $S_2$  instead of  $\sigma_1$  and  $\sigma_2$
- Test statistics = Z =  $\frac{\bar{x} \bar{y} \Delta_0}{\sqrt{\frac{S_1^2}{m} + \frac{S_2^2}{n}}}$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering



15

#### Example

- Two groups of students with different teaching styles
  - One group of 79 students with traditional style
  - Other group of 85 students with experimental style (allow students more involved: more homework, more quizzes)
- Statistics of both groups' scores are :
  - 79 students:  $\bar{X} = 23.87$ ,  $S_1 = 11.60$
  - 85 Students:  $\bar{Y} = 27.34$ ,  $S_2 = 8.85$
- Using 0.05 significance level, is there any suggestion the new style improves more than the traditional?

Let group 1 = group with traditional style (79 students) group 2 = group with experimental style (85 students)

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering
Slide 16



group 1 = group with traditional style (79 students) group 2 = group with experimental style (85 students)

- Our goal is to check the new style improves more than the traditional?
  - $\mu_1 \mu_2$  = average test scores
  - $\Delta_0 = 0$
  - $H_0$ :  $\mu_1 \mu_2 = 0$

Second group get better scores

- $H_a$ :  $\mu_1 \mu_2 < 0$
- Sample statistics
  - $\bar{X} = 23.87$ ,  $S_1 = 11.60$ ,  $\bar{Y} = 27.34$ ,  $S_2 = 8.85$
  - m = 79, n = 85
- Compute test statistic

$$Z = \frac{\bar{x} - \bar{y} - \Delta_0}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}} = \frac{23.87 - 27.34 - 0}{\sqrt{\frac{11.60^2}{79} + \frac{8.85^2}{85}}} = \frac{-3.47}{1.620} = -2.14$$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering



17

## Example (cont.)

 $H_0$ :  $\mu_1 - \mu_2 = 0$  $H_a$ :  $\mu_1 - \mu_2 < 0$ 

**Lower-tailed Test** 

Compute test statistic

$$Z = \frac{\bar{x} - \bar{y} - \Delta_0}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}} = \frac{23.87 - 27.34 - 0}{\sqrt{\frac{11.60^2}{79} + \frac{8.85^2}{85}}} = -2.14$$

- Given  $\alpha = 0.05$ :
  - $-z_{\alpha} = -z_{0.05} = -1.645$
  - Rejection region:  $z \le -1.645$
- Test statistic z falls inside rejection region
  - · Null hypothesis is rejected
  - Test scores were improved with new teaching style



P-value =  $\Phi$  (-2.14) =

 $\alpha = 0.05 > p$ -value = 0.0162

Reject null hypothesis

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 18 Department of Computer Engineering
Kasetsart University

#### Outline

- Population Mean Test
  - Normal and Known variance
  - Large sample size
  - Normal and Small sample size

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 19



19

#### Population Mean Test: Normal and Small Samples

- X<sub>1</sub>, X<sub>2</sub>, ..., X<sub>m</sub> are m random samples from normal distribution
- Y<sub>1</sub>, Y<sub>2</sub>, ..., Y<sub>n</sub> are n random samples from normal distribution
- Variable  $T = \frac{\bar{X} \bar{Y} (\mu_1 \mu_2)}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}}$  has approximately t-distribution with degree of freedom =  $V^* = \frac{(\frac{S_1^2}{m} + \frac{S_2^2}{n})^2}{\frac{(S_1^2/m)^2}{m-1} + \frac{(S_2^2/n)^2}{n-1}}$
- Test statistic:  $t = \frac{\bar{x} \bar{y} \Delta_0}{\sqrt{\frac{S_1^2}{m} + \frac{S_2^2}{n}}}$
- \* Round v down in nearest integer. Proof of this requires lots of details

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 20





#### Example

- How to pour champagne: traditionally vertical or tilted to preserve gas bubbles?
- Assume CO<sub>2</sub> is dissolved with normal distribution
- Measure average dissolved CO<sub>2</sub> loss

|             | n | Sample Mean (g/L) | S   |
|-------------|---|-------------------|-----|
| Traditional | 4 | 4.0               | 0.5 |
| Tilted      | 4 | 3.7               | 0.3 |

Compute 0.01 significance level

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 22 Department of Computer Engineering
Kasetsart University

- How to pour champagne: traditionally vertical or tilted to preserve gas bubbles?
- · Solution.
  - Set up hypothesis
    - $\mu_1 \mu_2$  = difference of gas bubbles
    - Δ<sub>0</sub> = 0

Tilted preserves more gas bubbles

- $H_0$ :  $\mu_1 \mu_2 = 0$
- $H_a$ :  $\mu_1 \mu_2 < 0$
- Compute test statistic

|             | n | Sample Mean (g/L) | S   |
|-------------|---|-------------------|-----|
| Traditional | 4 | 4.0               | 0.5 |
| Tilted      | 4 | 3.7               | 0.3 |

**Lower-tailed Test** 

$$t = \frac{\bar{x} - \bar{y} - \Delta_0}{\sqrt{\frac{S_1^2}{m} + \frac{S_2^2}{n}}} = \frac{4.0 - 3.7 - 0}{\sqrt{\frac{0.5^2}{4} + \frac{0.3^2}{4}}} = \frac{0.30}{0.29} = 1.03$$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering



23

## Example (cont.)

Compute test statistic

$$t = \frac{\bar{x} - \bar{y} - \Delta_0}{\sqrt{\frac{S_1^2 + S_2^2}{1 + S_2^2}}} = \frac{4.0 - 3.7 - 0}{\sqrt{\frac{0.5^2 + 0.3^2}{1 + 0.5^2}}} = 1.03$$

- Find rejection region
  - Find degree of freedom v

$$V = \frac{\left(\frac{S_1^2}{m} + \frac{S_2^2}{n}\right)^2}{\frac{(S_1^2/m)^2}{m-1} + \frac{(S_2^2/n)^2}{n-1}} = \frac{\left(\frac{0.5^2}{4} + \frac{0.3^2}{4}\right)^2}{\frac{(0.5^2/4)^2}{3} + \frac{(0.3^2/4)^2}{3}} = \frac{0.0072}{0.00147} = 4.91 \sim 4$$

$$\alpha = \text{lower-tailed area}$$

• At  $\alpha = 0.01$ ,  $-t_{0.01,4} = -3.747$ 

Rejection region: t ≤ -3.747

• Test statistic falls outside rejection region

- We do not reject null hypothesis
- <u>Either traditional vertical or tilted pouring preserves same bubbles</u>

How about using p-value?

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 24



Compute test statistic

$$t = \frac{\bar{x} - \bar{y} - \Delta_0}{\sqrt{\frac{S_1^2}{m} + \frac{S_2^2}{n}}} = \frac{4.0 - 3.7 - 0}{\sqrt{\frac{0.5^2}{4} + \frac{0.3^2}{4}}} = 1.03$$

- P-value = (Left tailed area of t = 1.03) = 0.8194
- At  $\alpha = 0.01 < p$ -value = 0.8194
  - Test statistic falls outside rejection region
  - We do not reject null hypothesis
  - Either traditional vertical or tilted pouring preserves same bubbles

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 25



25



## References

1. J.L. Devore and K.N.Berk, Modern Mathematical Statistics with Applications, Springer, 2012.

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Slide 27

