Cheat Sheet: Key Sum Operations in Probability & Analysis

1. Geometric Series

- Convergence Condition: Infinite geometric series converge only if $\left|r\right|<1.$
- Finite Geometric Series (for $|r| \neq 1$):

$$\sum_{k=0}^n r^k = rac{1-r^{n+1}}{1-r}$$

Infinite Geometric Series:

$$\sum_{k=0}^{\infty} r^k = rac{1}{1-r}$$

(e.g.,
$$\sum_{n=1}^{\infty} \frac{1}{3^n} = \frac{\frac{1}{3}}{1 - \frac{1}{3}} = \frac{1}{2}$$
)

- Variants:

 - $\begin{array}{ll} \circ & \text{Start at } k=m \text{: } \sum_{k=m}^{\infty} r^k = \frac{r^m}{1-r} \\ \circ & \text{Constant in numerator: } \sum_{n=1}^{\infty} ar^n = \frac{ar}{1-r} \text{ (for } |r| < 1) \end{array}$

2. Arithmetic Series

• Sum of First *n* Integers:

$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

Sum of Squares:

$$\sum_{k=1}^n k^2 = rac{n(n+1)(2n+1)}{6}$$

Sum of Cubes:

$$\sum_{k=1}^n k^3 = \left(\frac{n(n+1)}{2}\right)^2$$

3. Special Infinite Series (for ert r ert < 1)

Linear multiplier:

$$\sum_{k=1}^{\infty} k r^k = r rac{d}{dr} \left(\sum_{k=0}^{\infty} r^k
ight) = rac{r}{(1-r)^2}$$

Squared multiplier:

$$\sum_{k=1}^{\infty} k^2 r^k = rac{r(1+r)}{(1-r)^3}$$

• Exponential Series:

$$\sum_{k=0}^{\infty} \frac{x^k}{k!} = e^x$$

• Harmonic Series (divergent):

$$\sum_{k=1}^{\infty} \frac{1}{k} = \infty$$

4. p-Series & Convergence Tests

• p-Series Test:

$$\sum_{n=1}^{\infty} rac{1}{n^p}$$
 converges if $p>1$ (e.g., $\sum rac{1}{n^2}=rac{\pi^2}{6}$), diverges if $p\leq 1$.

• Integral Test:

If
$$f(n)>0$$
 and decreasing, $\sum_{n=1}^{\infty}f(n)$ converges $\iff \int_{1}^{\infty}f(x)dx$ converges.

5. Binomial & Taylor Series

Binomial Expansion:

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

For |x| < 1 and real lpha: $(1+x)^lpha = \sum_{k=0}^\infty inom{lpha}{k} x^k$.

Sum of Binomial Coefficients:

$$\sum_{k=0}^n inom{n}{k} = 2^n, \quad \sum_{k=0}^n inom{n}{k} r^k = (1+r)^n$$

6. Telescoping Series

- Key Trick: Partial fraction decomposition to cancel terms.
- Example:

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) = 1$$

Rules of Thumb:

- 1. Normalization Check: For probability, always verify $\sum_{\mathrm{all}\,\omega}P(\omega)=1.$
- 2. Convergence: For any series, confirm convergence before applying closed-form formulas.
- 3. **Shift Indices**: Adjust indices to match standard forms (e.g., shift n o n+1).
- 4. **Differentiation/Integration**: Useful to derive sums (e.g., differentiate $\sum r^k$ to get $\sum kr^{k-1}$).

Usage Example:

To compute $\sum_{n=1}^{\infty} n \left(\frac{1}{2}\right)^n$:

- Recognize $|r|=\frac{1}{2}<1$ \to series converges. Apply $\sum_{n=1}^{\infty}nr^n=\frac{r}{(1-r)^2}$ with $r=\frac{1}{2}$:

$$Sum = \frac{\frac{1}{2}}{\left(1 - \frac{1}{2}\right)^2} = \frac{\frac{1}{2}}{\frac{1}{4}} = 2$$

convergence checks!	

Keep this sheet handy for probability normalizations, expectation calculations, and series