Subject Index

A	Alkanes
Absorption spectra, mercury	cross-dimerization, 201
photosensitization, 199	dehydrogenation, 190–194
Acetaldehyde, 329	dimerization, mercury photosensitization,
Acetic acid	203–204
formation during catalysis, 330	functionalization, product volatility, 199
rate of dihydrogen evolution, 345	oxidative addition, catalytic organic
Acetic anhydride, commercial process,	synthesis, 182
377–378	oxidative addition process, 211
Acetyl complexes, 328–330	product ratio, 206-207
Acetyl iodide	productive functionalization, 183
activation, 389–390	reactivity, 181
reductive elimination, 330	selectivity, 203
Acetyl ligand, conversion to acetaldehyde,	types of activation, 222–223
329	Alkenamides, intramolecular
Acetylenes	amidocarbonylation, 283–289
C-H oxidative addition, 189	Alkenes
cycloisomerizations and macrocyclizations,	formed in alkane dimerization, 203 substrate reactivity pattern, 204–205
470–472	Alkenyl chain-growth reaction, tests of
N-Acetylglycine, synthesis, 236–237t	mechanism, 571–573
Acid-base properties, soluble ruthenium	Alkyl
hydrocarbonylation catalysts, 321 Acrylate dimerization studies, 484–487	migratory insertion into Co-CO bond,
Activation energy	81–85
calculation, 89	1,2 shift reaction, 83
hydroformylation process, 90	Alkyl complexes
olefin insertion, 90	isolation, 370
Acyl complexes	linear isomers, 371
decarbonylation process, 85	Alkyl sarcosinate, synthesis, 238–239f
oxidative addition to form dihydride, 87	Alkyldiarylphosphine complexes, steric
Acyl intermediates, interaction with	crowding, 398
incoming H ₂ molecule, 86-87	Alkyldiphenylphosphine-rhodium
Agglomeration, Pt particles, 546, 548f	complexes, rhodium hydroformylation
Agostic interaction, β-hydrogen and vacant	catalysts, 398 Alkylidenes, production, 599–601f
metal center, 80	Allyl oxides and aryl oxides, deoxygenation
Alcoholysis, silsesquioxanes in toluene	by CO, 515–528
reaction solution, 559-560f	Allyl systems, transition metal controlled
Aldehydes	behavior, 476
formation, 85	Allylation mechanism, proposed, 533-535
hydrogen-induced elimination, 85–89	Allylic alcohol derivatives, hydroboration,
product selectivity at increased CO partial	167–175
pressures, 412–417	Allylic alkylation, macrocyclization, 464–469
reaction with CoH(CO) ₄ , 303–305	Allylic amine derivatives, hydroboration,
reduction	175t
in the presence of CO, 373–374	Allylic and homoallylic alcohols, asymmetric
mechanism, 374–375 photoreduction, 193	hydrogenation, 131–133
supposed intermediates, 297	Allyloxycarbonyl complexes, β-allyl
selectivity	migration—decarboxylation, 520 Allylpalladium carboxylate, identification,
phosphite ester ligands, 414–415t	538
PPh ₃ -to-catalyst ratio, 357	Allylpalladium complexes, synthesis,
synthesis, 185–189	537–538
Aldehydic intermediate, amination of	Aluminum, Ziegler polymerization catalysts
ethylene glycol, 439	575–590

Aluminum halides, soluble promoters, Benzaldehyde O2 oxidation, 96-99 oscillations in redox potential, 97f Aluminum hydroxide, insoluble promoter, 313-314 stages in oxidation reaction, 97 Amido acids Benzene, carbonylation, 185–189 Benzoyl radicals, mechanism of from functionalized olefins, 246t from other olefins, 244t benzaldehyde oxidation, 98-99 Benzyne intermediate, deoxygenation of synthesis, 235-236, 239-240f phenols, 522-525 Amidocarbonylation advantages, 244-246 Bidentate phosphines, accelerating effect on N-alkenylamides, 278-283 hydroformylation, 368 applications, 242-243 Bifunctional catalyst species, cobalt, 273 Bimetallic catalyst catalyst, reaction scope, and industrial selectivity, 362 application, 235-247 steric and electronic factors, 363 rhodium-catalyzed sequential double carbonylation, 279-280 Bimetallic hydroformylation chemistry, 355-364 Amination of ethylene glycol proposed mechanism, 360, 361f selectivity control, 433-442 selectivity of ruthenium-phosphine selectivity, 361-362 Bimetallic rhodium-eLTTP complexes, catalyst, 439t synthesis, 354 Annulation method, hydrocarbonylation, 283 Anti selectivity, hydroborations, 174 Bimetallic system catalytic activity, 357 Antifragmentation, polyphosphine ligand, comparison to commercial rhodium 351 Antiphase polarization catalyst system, 357 Binap, structure, 124 multiplet effect, 49 ³¹P resonances, 67, 68f Binap-Ru(II) complexes Argon, dimerization reaction of rhodium(I) structural parameters, 126t phosphine intermediates, 108 synthesis and structures, 124-129 Binding energy, Hg*, 201 Aryloxycarbonyls, orthometallation, 521 Binucleating ligand system Asymmetric catalytic synthesis of C-C polyphosphine, 351 bonds, hydroformylation of olefins, 267 tetraphosphine, 352-353 Asymmetric hydrogenation catalytic, 123-142 Bis(aryloxycarbonyls), formation, 522 Bis(triarylphosphine) ligands, synthesis, catalyzed by cationic complexes, 135t 138-140 olefinic substrates, 129-133 stereoselectivities, 137t Bond angles, hyperconjugation, 578 Asymmetric induction, formation of Bond energies γ-lactones, 459 C-H oxidative addition, 213 Asymmetric synthesis, synthetic and ligand steric requirements, 258 Bond homolysis, low-energy pathway, 257 industrial chemistry, 141 Autocatalytic behavior, Co₂(CO)₈ Bond length, titanium-methylene, 587 Bond strength concentration, 301, 303 Autoclaves, CIR reactors, 4 catalyst systems containing dicarbonylhydridorhodium complex, Autoxidation cyclohexanone, 100 electronic and steric properties of the feedback, 96 halogen-free, 102-103 phosphorus ligand, 402f hydrocarbon, 95 organic compounds with functional groups, 207 oscillating behavior, 95-96 Branched-chain acyls, hydrosilation reactions, 493 B Bridging ligands, drawbacks, 351 Back bonding, coordination of an alkene to a Bromide ion in benzaldehyde oxidation transition metal, 170f reaction, 96-98 1-Butanol, carbonylation-homologation, Back donation, stability, 409 Back migration, methyl, 83

Base-catalyzed deuterium exchange,

kinetics, 338

310-321

414

Butene isomerization, triphenyl phosphite,

Index 609

C	Carbonyl complexes
¹³ C NMR studies	infrared spectroscopic data, 299f,t
carbonylhydridorhodium complexes, 408	spectral data, 300t
equilibrium at two CO pressures, 408f	Carbonyl compounds, reduction, 193t
Cage structure, polysilsesquioxanes, 554–555	Carbonyl dissociation, carbonyl-free
Carbene addition, aromatic ring, 450	rhodium hydrides, 406
	Carbonyl exchange
Carbene insertion, substitution by an ether	radical mechanism, 38
or ester oxygen, 457	rate constants, 37–39
Carbenoid intermediates, generation, 482	temperature stability under pressure, 38
Carbenoid reactions	Carbonyl ligands, catalyst function, 399-400
active intermediates, 444	Carbonyl photodissociation
insertion, conformational preferences, 451	laser flash photolysis, 113
Carbocyclic rings, regioselectivity, 467–468	methane matrix, 114
Carbon-carbon bonds, formation reactions,	Carbonyl stretching frequencies, rhodium
567	and cobalt complexes, 27-28
Carbon dioxide, reduction of methanol,	Carbonylation
507–513	benzene, 185–189
Carbon-hydrogen activation	C-H bond of hydrocarbons, 185-189
Rh(I) photocatalysis, 110f	catalyzed by transition metal complexes,
trimethylphosphine complex, 108	277–296
Carbon-hydrogen bond(s), activation in	diversion to reductive carbonylation, 324
alkanes and other organic molecules,	lithium-promoted, 384–390
211–220	mechanism, 325f
Carbon-hydrogen bond functionalization,	methanol, mechanism, 382f
mercury-photosensitized, 197-210	methyl acetate
Carbon-hydrogen insertion reactions	kinetics, 378–380f, 385–389
catalytic intramolecular, 443-461	rhodium-catalyzed, 377-394
cyclopentanones, 445-448	methyl acetate and methanol, parameters,
diastereoselectivity, 446	393t
lactams, 448-455	methyl acetate to acetic anhydride,
lactones, 455–458	proposed mechanism, 392f
regioselectivity, 446	reduction of CH ₃ OH by Co(CO) ₄ -, 509
Carbon-hydrogen oxidative addition	sodium-promoted, 390
homogeneous catalysis, 182	temperature dependence, 381 yields of secondary reactions of aldehydes,
preferred active species, 186	188t
Carbon monoxide	Carbonylation-homologation, 1-butanol and
activation by metalloradicals, 249-259	ethanol, 310–321
monomeric tetramesitylrhodium(II)	Carbonylmanganese compounds,
complex, 254	unsaturated mononuclear, 112–117
one-electron activation, 250	Carbonyl(methoxycarbonyl)cobalts,
problems with spectroscopy, 25	formation and thermal decomposition,
rhodium complexes, 25–28	510
Carbon-oxygen bonds	Carbonylrhodium, intensity of IR bands, 12
activation, 515–528	Carbonylruthenium species
bond energy, 516	CO stretching frequencies, 315f
methods for cleavage, 516	interaction of clusters with metal oxide
Carbonyl	surfaces, 313
decay kinetics, 115	oxides as heterogeneous promoters,
dissociation energies, 78	309–321
dissociation from HCo(CO) ₄ , 77–78	Carbonyltriruthenium clusters
energy of dissociation from CoH(CO)4,	infrared difference spectrum of transients,
305	111 <i>f</i>
energy profile for insertion into Co-CH ₃	laser flash photolysis, 110-112
bond, 84f	reactions, 113f
formation of basic magnesium iodides, 317	reactivities, 109–112
π-acceptor ligands, 87–88	Carboxylic acids
reversible migratory insertion into	asymmetric hydrogenation, 130-131
alkyl-metal bond, 112	role in catalytic reaction, 375

Catalysis	Ceramic yield, polysilazane oligomers, 560
electrogenerated species	Chaotic dynamics, O ₂ oxidations, 95–104
cobalt, 272–273	Chelate ring, puckering, 148–150
platinum, 262–266	Chelating ligands, diols, 439
rhodium, 266–272	Chelation control, hydrocarbons, 277–296
high-velocity, 529-540	Chemical shifts
selectivity of aldehydes, 412-417	function of donor or polar character of
triethylphosphine ligand concentrations,	solvent, 587
410–412	interaction of Cp ₂ Ti(Cl)CH ₂ SiMe ₃ with
Catalyst(s)	Me _n AlCl _{3-n} , 584t
composition, hydroformylation, 368-369t	ion-pair formation, 586
detection by CIR technique, 12	solvent dependence, 583t
function, carbonyl ligands, 399-400	solvent polarity, 581
performance, difficulties, 324	Chemical trapping, structure identification,
real-time observation, 17	576–577
regeneration, proposed mechanism, 360	Chiral allylic alcohol(s), anti selectivity, 174
Catalyst combinations, activity-selectivity	Chiral allylic alcohol derivatives,
behavior, 28	hydroboration, 167–175
Catalyst complexes	Chirality
NMR studies, 404–408	LTTP system, 352
synthesis, 403–404	optical isomers, 123
Catalyst precursor, palladium, 532-533	Chloride, suppression of Pt deposition, 226
Catalytic activity	Chloroplatinum salts, hydroxylation of
correlations with spectroscopic data, 29	water-soluble organic compounds,
hydrosilation, 497-499	221–232
nature of phosphine ligands, 190	Chromatographic procedures, siloxyalkyl
Catalytic cycle	complexes, 492
cytochrome P-450, 155f	Chromium, metal-metal bonds between
lithium-catalyzed conversion of acetyl	octahedral ions, 595
iodide to methyl iodide, 391–393	Chromium catalysts
reaction steps, 332–334	active oxidation state, 591, 598-599
schematic, 333f	cyclic voltammogram and molecular
silylformylation, 293	structure, 600f
turnovers, 202	homogeneous, 591-602
Catalytic reactions	molar magnetic susceptibility and effective
carbonylation, CO atmosphere, 330	magnetic moment, 594f
dimerization of methyl acrylate, synthesis	molecular structures, 596f
of fine chemicals, 479–480	presumed active site, 593f
hydroformylation reactions, 368–370	synthesis, 592–595
model systems, 565–574	unanswered questions, 592
synthesis of polymethylsilsesquioxanes,	Chromium-chromium pairs, cooperative
553–563	interactions between neighboring metal
transformations of diazoamides	atoms, 593
lactam products, 453	CIR, See Cylindrical internal-reflectance
manipulation of product distribution,	reactors
453	Classic process chemistry, new science and
Catalytically active intermediates,	new applications, 479–489
identification, 20	Cluster catalysts, advantages and problems,
Cation reactivity, water-gas shift, 340	350
Cationic promoters	Cluster species, hydrocarbonylation
carbonylation, 390	conditions, 321
catalyst activity, 384–385	Cobalt
comparison of rates, 385t	bifunctional catalyst species, 273
Ceramic crystal CIR reactors, 3	converting internal alkenes to terminal
fragility, 5–6	hydroformylation products, 367
Ceramic products, apparent compositions,	electrogenerated catalyst species, 272–273 rac- and meso-M ₂ (LTTP) binuclear
562	systems, 354
	0,000, 00.

Cobalt—Continued	Cyclizations, transition metal catalysts,
reduction of methanol, 507-513	463–478
role in oxidation of cyclohexanone,	Cyclohexane
100–102	carbonyl decay kinetics, 115f
uncontracted triple-\(\zeta \) Slater-type orbitals,	reactivities of rhodium(I) phosphine
basis set for shells, 76	intermediates, 108–109
Cobalt carbon bond, cleavage, 491	wavelength of irradiation, 189
Cobalt catalysis, reductive carbonylation of	Cyclohexanone
methanol, 323	kinetic model, 101–102
Cobalt-catalyzed hydroformylation	O ₂ oxidation, 99–103
mechanism, 75, 76f olefins, reaction mechanism, 13–15	oscillations in the absence of Br ⁻ ion, 102
product formation, 86	redox potential
Cobalt(II) porphyrin, reactions with CO,	dissolved O ₂ concentrations, 99–100
252–253	visible absorbance, 100f
Colloids	ring-opening reactions, 101f stages in oxidation reaction, 100
active catalyst precursors, 543	- • **
intermediacy in hydrosilation, 541–549	Cycloisomerizations acetylenes, 470–472
Competitive reactions	p-allylpalladium intermediates, 476–477
different substrates, 59	diynes, mechanistic rationale, 471f
epoxidation	special class of macrocyclizations, 466–467
olefin pairs, 157–161	vinyl epoxides, 473
picnic-basket porphyrins, 158f	Cyclooctane, dehydrogenation, 190
reactivity pattern, 161	Cyclopentanones
results, 160t	asymmetric hydrogenation, 138–140
H NMR spectra of hydrogenation, 59f	carbon-hydrogen insertion reactions,
polarization decay, 60	445–448
trapping, transient CO species, 116f	synthesis, 484–487
Conjugate addition-cyclization reactions,	Cyclopropanation studies, 482-484
485–486t	Cyclopropane, yield from olefins and ethyl
Construction material, high-pressure IR cells, 21	diazoacetate, 484t
Coordination compound, intermediate	Cylindrical internal-reflectance reactors
within the catalytic cycle, 8	(CIR)
Coordination geometries, M-M bonded	advantages and disadvantages, 5–6
dimer systems, 353-355	cross-sectional diagram, 5f
Coordination strength, σ donation and π	experimental procedure, 6–7
back donation, 395	photograph, 4f
Coordinatively unsaturated species,	reaction-monitoring techniques, 3–18
temperature dependence, 406	Cytochrome P-450
Cooxidant, coupling reactions of ligands, 572	catalytic cycle, 154-155
Copper	metalloporphyrin models, 156f
catalyst behavior on repeated use, 484	
catalytic activity, 483–484	D
Grignard reaction, 486 tandem conjugate addition—cyclization,	d electron vacancies platinum colloids 545
486	d-electron vacancies, platinum colloids, 545 DANTE pulse sequence, magnetization
Coupling constant, spin density, 254	transfer technique, 42
Covalent bonding, carbonyl carbon	Decomposition, prolonged
rehybridization, 253	hydroformylation, 372–373
Cross-dimerization, cyclohexane and	Dehydroamino acids, hydrogenation, 144
trioxane, 202	Dehydrodimer, saturated functionalized
Crystal(s)	substrates, 205
CIR reactors, 3	Dehydrogenation
fragility, 5-6	alkanes, 190–194
polishing, 6	driving force, 190
Crystallization, CIR reactor analyses, 12-13	rate-determining step, 191
Cubane reaction, oxidative addition at a	Density functional method, application to
tertiary C-H bond, 217	organometallic substances, 77

Deoxygenation 510 521	Dimethyl carbonate, formation, 512
allyloxy groups, 519–521	Di-μ-methylenedirhodium complexes,
phenols	organic chemistry of dinuclear
benzyne intermediate, 522–525	complexes, 565
by CO, 515–528	Diols, chelating ligands, 439
experimental section, 516–519	Diphosphine ligands, hydroformylation of
metallolactone intermediate, 525–526	methanol to acetaldehyde, 326
Deuterium exchange, catalysis by bases, 338	Dipolar relaxation
Deuterium isotope effect, water-gas shift	para-enriched H ₂ , 72
reaction, 340, 345	PHIP decay, 52
Deuterium oxide, inverse kinetic isotope	polarization and signal enhancement,
effect in reaction of deuterated formate,	67–72
342	Disproportionation
Dialkyl fumarate, reaction with CoH(CO) ₄ ,	alkane dimerization, 203–204
301–303	dimerizations of light alcohols, 204
Diaryl esters, 525-526	selectivity for alkanes, 206
Diastereofacial selectivities, hydroborations,	Dissociation
173	CO ligand from HCo(CO) ₄ , 77–78
Diastereoselectivity	enthalpy profile, 256f
carbon-hydrogen insertion reactions, 446	expected C-C bond energy, 255
catalytic conditions, 136	Donor-acceptor characteristics, phosphine
frontier orbitals, 169	ligand, 409
substrate-controlled, 167-175	Dynamic nuclear polarization, transition
Diazo compounds	metal hydrides, 47–48
catalytic intramolecular carbon-hydrogen	-
insertion reactions, 443-463	E
reactions with rhodium acetate, 444-445	Early metal catalysts, heteroatom
Diazoesters, synthesis of lactones, 455	substituents of functionalized olefins,
Diethyl ether, carbonylation and	599
homologation reactions, 319-321	Electrochemical synthesis
Diethyl fumarate, effect of initial Co ₂ (CO) ₈	cobalt species, 273
concentration, 203f,t	platinum species, 262–266
Diethylene glycol, reactions with	Electrochemistry, selective catalysts, 273
morpholine and dimethylamine, 440t	Electrode potential, production of different
Dihydride, stability, 87	oxidation states, 261
Dihydrogen	Electron-donor properties, rhodium
characterization of complexes, 24	hydroformylation catalysts, 398–399
heterolytic cleavage, 337-338	Electronic and steric control, catalytic
proposed intermediate ion, 338-339	intramolecular carbon-hydrogen
rhodium complexes, 25–28	insertion reactions, 443–463
Dihydrogen evolution	Electronic effects, rhodium
acetic acid, 345f	hydroformylation catalysts, 395–418
effect of sodium formate concentration,	Electronic structure, resonance hybrid, 255
341f	Electrophilic addition, rate-limiting step in
formic acid, 343f	carbenoid reactions, 444
triethylene glycol solutions, 344f	Electroreduction, organometallic complex,
water-gas shift reaction, 340-343	262
Dihydrosilanes, reaction with manganese	eLTTP, See Ethyl-substituted linear
acyl compounds, 503	tetratertiary phosphine
Dimer(s), triphenylphosphine-	Enamides, asymmetric hydrogenation,
carbonylrhodium, 404	129–130
Dimer catalysts, advantages and problems,	Enantiomeric excesses, hydroformylation of
350	styrene, 267
Dimerization	Enantioselective processes
activation energy, 255	catalysis, transition metal compounds,
mercury photosensitization, 197	143–152
reversibility, 255	conjugate addition, palladium-catalyzed
Dimetal ketone, steric requirements of	allylation-type reactions, 529–530
tetramesitylporphyrin, 254	definition, 164

Enantioselective processes—Continued Flash kinetic studies, liquefied noble gases, hydroborations, feasibility, 165-167t 217-218 hydrogenation Flash photolysis formic acid, 145-147 picosecond laser excitation, 109 prochiral substrates, 131 reactive organometallic intermediates, optical induction, 146 105-119 Enantioselectivity short wavelength, 109-110 chloride anion, 268 Flow cells, advantages and disadvantages, EPHOS ligand, 272 Endoergonic reactions, photosensitization, Fluorinated hydrodimers, functionalization, Energy barrier, C-H oxidative addition, 213 Formic acid Enzyme, substrate specificity, 153 enantioselective hydrogenation, 145-147 Equilibrium rate of dihydrogen evolution, 345 cis and trans complexes, 43 Four-centered transition state, cleavage of Cp₂TiMeCl and AlCl₃, 585 dihydrogen, 338 Ethanol Fragmentation carbonylation-homologation, 310-321 carbonyltriruthenium clusters, 109-110 direct conversion to ethylene glycol, dimer and cluster systems, 350 221-232 Free-radical mechanism, manganese oxidation, 223-224, 226-228 acyl-catalyzed hydrosilation, 501 oxidation mechanisms Frontier orbitals, diastereoselectivities, 169 nature of active Pt complex, 228-230 Frozen-core approximation method, selectivity in C-H attack, 230 electrons in lower energy shells, 76 reaction sequence and rate of oxidation, Functional groups 229f C-H oxidative addition, 216 Ethyl-substituted linear tetratertiary H atom reaction, 205 phosphine (eLTTP) made from alkenes by H atom chemistry, bimetallic complexes, 353–355 206f bimetallic hydroformylation chemistry, Functionalization reactions 355-364 homogeneous catalysis, 181-196 diastereomer structure, 353f incompatibility with thermodynamics or future research, 363-364 catalyst stability, 221-222 Ethylene, catalyst system for Functionalized organic molecules, polymerization, 587 conversion of alkane oxidative addition Ethylene glycol products, 215 affinity for Ru(II) center, 440 Functionalized product, mercury selectivity control in amination, 433-442 photosensitization, 201-203 Ethylene polymerization chromium catalysts, 595-598 G rate, 595-597 Ziegler mechanism, 576-577 Geometry, steric hindrance, 362 Exchange broadening of resonances, Geraniol, asymmetric hydrogenation, 132t magnetization-transfer techniques, 37 Glass NMR tubes, limited pressure range, Exciplex formation between Hg* and substrate, Glutamic acid, synthesis, 245f Glycol(s), ligands, 439-441 mercury photosensitization, 198 Glycol aminations, control of selectivity, 434 Excitation sequence, frequency domain Grignard reagent, copper-catalyzed reaction, profile, 42 486

Н

Half neutralization potential, determination, 398 Haloalkanes, chemical shift, 588 Halocarbonylruthenium derivatives, reactivity on MgO surface, 317 Hemiamidals, formation, 283

Fischer-Tropsch products, labeled vinyl,

571–572

model, 567-570

Fischer-Tropsch reactions

new mechanism, 565

over rhodium, products, 571t

procedures to test mechanism, 570

Heteroatom-substituted species Hydridosiloxanes effectiveness as substrate, 201 catalytic redistribution by transition mercury photosensitization, 200-201 metals, 558 Heterobimetallic homogeneous catalysts, cocatalyst, 562 effects on rate and selectivity of Hydroboration hydroformylation, 356 absolute and relative stereochemistry, 163 Heterobimetallic species, catalytic activity, allylic amine derivatives, 175t 364 catalyzed and uncatalyzed, 163-177 Heterogeneous activation, suppression of chiral allylic alcohol derivatives, 167–175 oxidation, 226 enantioselectivity, 164-167t Heterogeneous catalyzed reactions, phenyl-substituted allylic alcohols, 174t monitoring techniques, 7 prochiral alkenes, 264f High-pressure cylindrical internal-Hydrocarbon(s) reflectance reactors, reactionfunctionalization by homogeneous monitoring techniques, 3-18 catalysis, 181-196 High-pressure-high-temperature reactions, hydroxylation by platinum salts, 221–232 in situ measurement, 19-20 Hydrocarbon autoxidation, oscillatory High-pressure IR cells, types, 22-23 behavior, 95 High-pressure IR spectroscopy (HPIR) Hydrocarbon glasses, photolysis product, cell designs, 21-24 112 homogeneously catalyzed reactions, 20 Hydrocarbon transformation, solvent speed and high sensitivity, 20-24 stability, 191 High-pressure NMR spectroscopy Hydrocarbonylation CO dissociation from HCo(CO)₄, 39 N-allylacetamide, 278t techniques, 34-36 amide-directed, 283-289 High-velocity catalysis, palladium, 529-540 N-benzoyl-2-hydroxy-4-methylpyrrolidine, Homobimetallic cooperativity 282f catalytic process, 349 1-butanol, 312t hydroformylation catalyst system, 364 chelation control, 277-296 rate enhancement, 358 ethanol Homogeneous catalysis different promoter systems, 318f, 319f bimetallic hydroformylation, 349-366 oxides as promoters, 316t functionalization of hydrocarbons, 181-196 products formed, 313f in situ spectroscopic studies, 19-31 soluble or insoluble aluminum nuclear magnetic resonance spectroscopy, promoters, 311t 33 - 46methyl acetate in acetic acid solution, observation of reactive intermediates, 320t105-106 N-(2-methyl-2-propenyl)benzamide, 281t organometallic intermediates, 105-119 reaction products, 314 synthesis of fine chemicals, 479 Hydrocyanation studies, 480-482 Homogeneous catalysts, electrochemical vs. Hydrodeoxygenation of phenols, catalytic chemical synthesis, 261–275 methods, 516 Homogeneous metal-catalyzed reactions, Hydrodimerization products, 205 monitoring techniques, 7-8 Hydroformylation Homolysis of bonded dimers, reorganization activity and selectivity of eLTTP, 363 energies, 257t 1-alkenes catalyzed by rhodium Homolytic dissociation energies, bond complexes, 279 energy, 258 asymmetric, styrene with rhodium HPIR, See High-pressure IR spectroscopy catalysts, 168t, 269t, 270t Hydride 1-butene conversion to acyl complexes, 334 activity and selectivity of ion stabilization, 339, 346 triethylphosphite-rhodium catalyst, 1,2 shift reaction, 83 Hydride bridge, ruthenium compound products and byproducts, 410f crystal structure, 426 rhodium-phosphine catalysts, 405f Hydride ligand, dynamic site exchange, 427f triethylphosphine ligand concentration, Hydride resonance, catalytic hydrogenation 411tconditions, 61 catalyzed by trinuclear ruthenium cluster Hydridoalkyl complexes, alkene synthesis, anion, 422f 190 decomposition studies, 372-373

Hydroformylation—Continued electron-rich phosphine-rhodium catalyst	Hydrogenation—Continued parahydrogen-induced polarization, 62
systems, 362f Heck–Breslow mechanism, 355f	phenylacetylene, 64 platinum phosphinito complexes, 367–376
1-heptene, 369 <i>t</i>	rates with varying catalysts, 374t
1-hexene on rhodium catalysts, 267t	ruthenium complexes, 60–64
isolation of intermediates, 370-372	stereoselective, 123–142
linear internal and branched terminal	styrene-d ₈ , 57 <i>f</i> , 70
olefins, 396–397	Hydrogenolysis
mechanism, 400-403	catalytic reactions with rhodium, 334
olefins catalyzed by anionic ruthenium	M-C bond, 86
clusters, influence of	possible mechanisms, 334-335
organophosphines, 419-429	Hydrosilanes
platinum phosphinito complexes, 367-376	influence of structure, 290
proposed mechanism, 287f	reactions with 1-hexyne, 291t
rhodium-based catalysts, 356	Hydrosilation
silicon version, 289	active catalyst precursors, 543
solvent concentration, 265t	catalyst activity, 497-499
tricarbonylhydridocobalt-based, 75-93	catalyzed by colloids, 541-549
vs. hydrocarbonylation, 428t	changing the acyl ligand, 493
Hydroformylation and amidocarbonylation	¹ H NMR spectra, 498f, 500f
cocatalyst effect, 242t	intramolecular noncatalyzed, 504f
diolefins, 240	iron acyl compounds
functionalized olefins, 240, 242	drawbacks as synthetic procedure, 494
product selectivity, 241t	mechanism, 494-495f
reaction scope, 243t	isolable α-siloxyalkyl derivatives, 492
simple olefins, 240	manganese acyls, 496-505
Hydroformylation catalysis	organotransition metal acyl complexes,
electronic and steric effects on precursors,	491–506
402-403	Hydrosilylation
1-hexene, 356t	1-hexyne with triethylsilane, 289
homogeneous bimetallic, 349–366	ketones, 144–145
producing aldehydes or acetals, 262	Hyperconjugation
Rh₂(eLTTP)-type bimetallic complexes,	σ -bond
356	bond shortening, 581
Hydroformylation cocatalysts,	crystalline state, 587
organophosphines, 421-429	developing positive charge, 588
Hydroformylation cycle, alternative	Ti-C bond, shortening, 575
mechanism, 88-89	Hyperfine coupling constant, spin density,
Hydroformylation rates, temperature	252–253
dependence, 406	
Hydrogen, rate of formation of acetic	
anhydride, 381–384	7
Hydrogen activation, soluble metal oxide	I
complexes, 337–348	Ibuprofen, 480–481
Hydrogen atoms	In situ catalyst, optically active, 143
compounds made from saturated	In situ methods of measurement,
substrates, 207f	advantages, 19–20
reactions, 204–205	In situ spectroscopic studies, homogeneous
Hydrogen gas, quenching of Hg*, 204	catalysis, 19–31
Hydrogenation	Indenyl systems, oxidative
acrylic acid derivatives, 131	addition-migratory insertion processes,
asymmetric hydrogenation catalyst, 62	215
dehydroamino acids, 144	INEPT pulse sequence, generation of
mechanism for catalyst systems, 63–64	spectra, 68
organic substrates, 339	Inhibition of fragmentation, dimer and
oxidative addition reactions,	cluster systems, 350
parahydrogen-induced polarization	Initial gas uptake rate
and polarization transfer, 47–74	iodide concentration, 332f
pairwise hydrogen transfer, 61	rhodium concentration, 331f

Karstedt catalyst

Insertion reactions conformational influence on regioselectivities, 458 relative reactivities, 457 Intermediary position, 419–420 Intermolecular condensation, regioselectivity, 471 Intermolecular hydride transfer, cobaltcatalyzed hydroformylation, 355-356 Intermolecular hydroacylation, sapphire NMR tube, 39 Internal alkenes, conversion to linear products, 367 Intramolecular amidocarbonylation 3-butenamide, 286t new annulation method in organic synthesis, 283 4-pentenamide, 288t rhodium catalysts, 285 Intramolecular carbon-hydrogen insertion reactions, regio- and stereocontrol. 443-461 Intramolecular hydride transfer closed-mode conformation, 360 rate enhancement, 358 single-atom bridge in eLTTP, 361 Inverse deuterium kinetic isotope effect, water-gas shift, 345 Inversion transfer exchange broadening of resonances, 37 magnetization transfer technique, 41-42 quantitative analysis, 43 Iodide concentration, reaction rate variation, 331 improvements in cobalt-based catalysts, 324 Iodine, carbonylation reaction rate, 391, Iodine-promoted rhodium catalyst system, development, 378-393 Iodocarbonyl complexes of rhodium, water-gas shift reaction, 384 Iodocarbonylruthenium catalysts, oxides as heterogeneous promoters, 309-321 Iridium photochemical phosphine complexes, 197 selectivity of triphenylphosphine complexes, 434 Iridium-phosphine complexes, PHIP and polarization transfer, 64–70 Iridium(II) porphyrin, reactions with CO, 258 Iron electrochemical oxidation process, 268-269 regioselectivity, 265 Iron acyls, catalyzed hydrosilation, 492-496

Irradiation, C-H bonds, 212

Isomerization activity, platinum phosphinito catalysts, 370
Isonitriles, C-H oxidative addition, 189
Isoselectivity
1-alkenes, 279
amide-directed chelation control, 279
Isotopic labeling, ¹³C in Fischer-Tropsch reaction, 571–572
Isotopic tracer studies, reductive carbonylation products, 332

K

formation of colloidal platinum, 547
near-edge spectra, 545f
platinum colloids, 542-543
structure, 543f
Ketones
asymmetric hydrogenation, 133-138
hydrosilylation, 144-145
Kinetic studies, selectivity-determining step,
330
Krypton, inert solvent for irradiation of
rhodium dicarbonyl complex, 218

L

Labeling studies, iodide involvement in reductive carbonylation, 331-332 Lactams carbon-hydrogen insertion reactions, 448-455 catalytic transformations of diazoamides, 453 synthesis, 449 Lactones carbon-hydrogen insertion reactions, 455-458 strategy for macrolactonization, 465 Lanthanum oxide, catalytic activity, 317-319 Lead(II) oxide, water-gas shift, 347 Ligand(s) effect on reaction rate, 242t rapid ring rotation, 40 Ligand environment, reductive carbonylation, 324 Ligand exchange, saturation-transfer experiments, 40 Linear aldehydes, selectivity of rhodium hydroformylation catalysts, 396-397 Linear isomer, formation, 371 Linear tetratertiary phosphine (LTTP) chiral tetratertiary phosphine at the two internal phosphorus atoms, 352 synthetic route, 352 Liquid-phase hydrocarbonylation reactions,

oxides as heterogeneous promoters,

309-321

Lithium	Metal carbonyl stretching frequencies,
carbonylation reaction spectra, 389	rhodium and cobalt complexes, 27–28
methyl acetate and acetyl iodide activation, 389–390	Metal catalyst, role in oxidative addition, 64–67
tandem conjugate addition–cyclization, 486	Metal clusters, intermediary position, 419-420f
Lithium effect	Metal formyl complexes, decarbonylation
carbonylation catalytic cycle, 391–393	reaction, 83
potential mechanism, 391	Metal hydride bond, olefin insertion, 400
Lithium iodide	Metal oxide complexes, hydrogen activation,
complex role as promoter, 384-385	337–348
rate-determining factors, 385	Metal oxide systems, water-gas shift, 347
rate of carbonylation, 386f	Metal phosphine catalysts, selectivity, 203 Metallolactone(s)
M	formation of phenol groups, 526-527
M-M bonds, value as reaction sites, 350	formation pathways, 515
Macrocycle, C-C bond formation, 473	Metallolactone complex
Macrocycle applications, natural products, 472–476	deoxygenation of phenols, 525–526 source of benzyne, 523–524
Macrocyclization	structure, 523f
acetylenes, 470-472	Metalloradicals activation, structural and spin density
allylic alkylation, 464-469	changes, 252
Macrolide syntheses, exaltolide, 464	activation of CO, 249–259
Magnesium oxide, promoters, 314-317	definition, 250
Magnetization transfer	Metathesis catalysts, chromium(III)
advantages and disadvantages, 41	alkylidenes, 599
DANTE pulse sequence, 42	Methanol
examples, 43-45	Co ₂ (CO) ₈ solutions, reactions, 511f
exchange broadening of resonances, 37	reduction by tetracarbonylcobalt anion
inversion transfer, 41–42	assisted by carbon dioxide and cobalt
slow exchange in discrete equilibria,	cation, 507–513 rhodium-catalyzed reductive
41–45	carbonylation, 323–336
temperature range, 41	Methyl acetate
Manganese acyl catalysts	activation, 390
activity, 499t, 501t	homologation to ethyl acetate, 321
hydrosilation, 491 Manganese acyl-catalyzed hydrosilation,	rhodium-catalyzed carbonylation, 377-394
496–505	Methyl acrylate, catalytic tail-to-tail
Manganese picnic-basket porphyrin	dimerization, 485
catalysts, 153–162	Methyl iodide, rate dependence at two Li
Mechanistic studies, model substrate, 224	levels, 388f
Mercury photosensitization	Methyl migration, 83, 113
alkane dimerization, 203–204	Methylenes, coupling with vinyls in
C-H bond functionalization, 197–210	dirhodium complexes, 573 Methyltitanocene chloride, structure,
dimerization, 197	580–583
formation of H atoms, 204	Methyltitanocenium cation
functionalized product, 201-203	experimental details of formation, 579-580
heteroatom-substituted species, 200-201	soluble Ziegler catalyst system, 579
mechanism, 198–199	Migratory insertion
quenching by H ₂ gas, 204	activation barrier, 83
reaction rate, 206	alkyl into Co-CO bond, 81-85
vapor-phase selectivity, 199–200	functionalized molecules, 215
Meso and racemic diastereomers, eLTTP, 353	solvent effects, 113 transient complexes, 333–334
Metal carbenes	Mixed-metal catalyst
C–H insertion, 451	Co–Rh, 279, 289–294
comparative stability, 453	synergistic effects, 279–280, 290

Nucleophilic oxygen centers Model systems dihydrogen, 348 bimetallic ligand systems, 360-361 metal oxide systems, 338 catalytic reactions, 565-574 monometallic ligand analogs, 357-360 0 Monohydrosilanes, reactions with manganese benzoyl, 503-505 O-H bond activation, generation of Multimetallic systems, advantages, 349-350 intermediates, 507-508 ¹⁸O labeling, benzaldehyde oxidation, 97 Multiplet polarizations ¹H NMR spectrum, 54, 55f O2 oxidation PHIP due to hydrides, 65 benzaldehyde, 96-99 cyclohexanone, 99-103 reversibility of H₂ oxidative addition, 65 oscillations and chaos, 95-104 toluene, 103 N p-xylene, 103 OFCIR, See Optical-fiber coupled reactors Naproxen, 480-481 Olefin(s) Near-edge region, platinum colloids, complexation, 77 544-546f ethyl complex, 79 Nerol, asymmetric hydrogenation, 132t organophosphines, influence on Net polarization hydroformylation, 419–429 correlation diagram, 56f shape selectivity, 153–162 ¹H NMR spectrum, 54, 55f Olefin hydroformylation signal enhancements relative to multiplet reaction, 262 polarization, 58 regio- and enantioselectivity, 261-275 spin-lattice relaxation time, 58 supposed intermediates, 297 Neutralization, protonic species, 315–317 Olefin hydrogenation, ruthenium catalyst, 60 catalytic tetraphenylborate chemistry, Olefin insertion 536-537 Co-H bond, 79-81 degradation in HCN, 481 energy profile, 80f Nickel-catalyzed hydrocyanation magnetization transfer, 43 ethylene, magnetization transfer, 45 metal hydride bond, 400 synthesis of fine chemicals, 479-480 relative orientation of ethylene and Niobium pentoxide, Brönsted acidity hydride, 79 strength, 319 Olefin polymerization Nitrogen heterocycles, syntheses through comparison to metathesis catalysts, 599 amide-directed hydrocarbonylations, homogeneous chromium catalysts, 278-289 591-602 Noble gas, liquefied solvents, 216-220 Oligomerization Nonaxial symmetry, Rh(II) porphyrin, 254 mild cooxidizing site, 572 Norbornadiene rate of hydrocyanation, 481 homo-Diels-Alder reactions, 147-150 Oligonuclear species with intermetallic reaction with 1-hexyne, 148-149 bonds, intermediary position, 419-420f reaction with phenylacetylene, 148 Optical-fiber coupled reactors Norbornene, ring-opening metathesis construction, 6 polymerization, 591 reaction-monitoring techniques, 3-18 Nuclear magnetic resonance spectroscopy spectra of cobalt-catalyzed ¹³C technique to trace exchange of free hydroformylation, 16f CO, 37 Optical induction high-pressure techniques, 34-36 chemical yield, 148 reaction with acetylenes, 147 homogeneous catalysis, 20, 33-46 quantitative data, 21 Optical isomers, chirality, 123 structural information, 20-21 Optical yields, catalyst systems, 165 Nuclear Overhauser effect, enhanced NMR Optically active compounds, preparation, signals, 69-70 Nucleophiles, macrolide construction, 468 Organoaluminum Lewis acids, active sites in

575-590

Organoiron ligand reactions, 494

soluble Ziegler polymerization catalysts,

Nucleophilic dihydrogen activation

processes, synthesis gas

transformations, 339

Organometallic analog of formyl radical	Palladium
coupling, 255	access to macrocycles, 472
Organometallic intermediates	catalysis of neat methyl acrylate, 485–486
homogeneous catalysis, 105–119	catalyst for ring formation, 463–478
spectral properties, 108	catalyst precursor, 532–533
Organometallic reactions on clusters,	charge neutralization to facilitate ring
Fischer–Tropsch polymerization, 567	formation, 464 cycloisomerization followed by reductive
Organophosphines catalytic activity and selectivity, 421	desulfonylation, 475
hydroformylation cocatalysts, 421–429	cycloisomerization of acetylenes, 471–472
hydroformylation of olefins, 419–429	high-velocity catalysis, 529–540
Organotin coupling reactions	polyene macrolides, 475
palladium-catalyzed reactions, 536t	transmetallation, 534
soluble chloride anion source, 537	Palladium-catalyzed reactions
tetraphenylborate chemistry, 537	carbonylation of aryl halides
Organotransition metal complexes	difference spectrum, 11f
C-H activation, 211-220	reaction mechanism, 9-10
catalyzed and noncatalyzed hydrosilation,	steady-state in situ spectrum, 10f
491–506	conjugate addition reactions, overall
Orthometallation, aryloxycarbonyls, 521	chemistry, 531 <i>t</i>
Oscillating behavior, absence of Br ⁻ , 102	cyclizations, extension, 466 determination, 532–533
Oscillatory dynamics, O ₂ oxidations, 95–104 Oxidation	Parahydrogen-induced polarization (PHIP)
competition with H–D exchange, 224	ethane resonances, 53f
ethanol, 223–224, 226–228	experimental observations, 50–54
p-toluenesulfonic acid, 223–226	homogeneous hydrogenation chemistry,
Oxidative addition	47–74
activation energy, 88	multiplet and net effect, 72
catalytic activity, 186	observation, 48-49
characteristics, 212–213	polarized resonances in hydride spectra, 65
energy profile, 89f	reaction mechanism, 54
functionalized molecules, 215	spin system due to H-D coupling, 52
intermolecular oxidative addition, 212	Weitekamp proposal, 50
isomeric methyl complexes, 333	Paramagnetic chromium alkyls, synthesis,
liquid xenon as inert solvent, 217	characterization, and reactions with
methane, methanol, and ethanol, 217	olefins, 591–602 Partitioning of products, oxidation of ethanol,
para-enriched hydrogen, 72 photochemical and thermal reaction	228
mechanisms, 214–215	Pentacarbonyliron, water-gas shift catalyst,
rate of direct conversion, 218–220	340
role of the metal catalyst, 64–67	Pentacoordinate complexes, stability, 409
unanswered questions, 214-215	Perfluorinated ion-exchange polymer
Oxidative addition-reductive elimination	catalytic activity, 483-484
equilibrate ortho- and parahydrogen, 65-66	structure, 483
equilibrium rate, 66	synthesis of fine chemicals, 479-480
Oxidative decomposition, mechanism, 566	Periodic potentials, O2 oxidation of toluene,
Oxides	103
hydrogenating activity, 321	PFIEP, See Perfluorinated ion-exchange
liquid-phase hydrocarbonylation reactions, 309–321	polymer
Oxo products, platinum phosphinito catalysts,	Phenol(s) catalytic deoxygenation by CO, 515–528
370	regioselectivity of cyclization, 468
Oxo reaction, See Hydroformylation	Phenol deoxygenation
Oxo reaction, see Trydroiormyladion	benzyne intermediate, 522–525
P	metallolactone intermediate, 525–526
³¹ P NMR studies	L-Phenylalanine, synthesis, 236–239f
ligand exchange, 407f	PHIP, See Parahydrogen-induced polarization
trialkylphosphine complexes of rhodium,	Phosphido species, decomposition of
406-408	triarylphosphine, 372–373

m1 1. ()	
Phosphine(s)	Platinum—Continued
catalytic activity and selectivity for	procedures for analysis of colloids, 542-543
hydroformylation of olefins, 419-429	replacement with a cheaper oxidant, 230
selectivity control, 434–437	Platinum alkoxides, metathesis and catalytic
Phosphine complexes	reactions, 375
phosphine-rhodium complexes, selectivity	Platinum colloids from catalyzed reactions,
for linear aldehydes, 396–397	545–546
photocatalysts for benzene carbonylation,	Platinum electrode
107	dissolved O ₂ concentration
Phosphine dissociation, equilibrium constant,	benzaldehyde, 98f
106	
	cyclohexanone, 99f
Phosphine ligands	oxidation of <i>p</i> -xylene, 102 <i>f</i>
carbonylation of benzene, 186t	Platinum phosphinito complexes
catalyst stability, 357, 364	hydroformylation and hydrogenation,
catalytic effect, 186	367–376
dehydrogenation of cyclooctane, 190t	•
	platinum-tin systems, comparison, 370
donor-acceptor characteristics, 409	Platinum salts, hydroxylation of hydrocarbons,
rac- and meso-M ₂ (LTTP) binuclear systems,	221–232
354	Platinum–tin system, SnCl₂ cocatalyst,
selectivity, 357, 362, 438-439	262–266
Phosphine-modified rhodium-catalyzed	Polar aprotic solvents, accelerating effect on
hydrotormylation of olefins	polymerization, 577
reaction mechanism, 11-13	Polarity of solvent, chemical shifts, 581
steady-state in situ spectrum, 12f, 13f	Polarization
Phosphinite group, equatorial position in	¹³ C NMR spectrum of hydrogenation
pentacoordinate complex, 272	product, 70–72
Phosphinous carboxylic acid anhydrides,	energy-level diagrams, 68, 69f
formation, 373	influence of magnetic field, 56
Phosphorus, correlation of ligand bonding	magnitude of enhancement, 66-67
with catalyst activity and selectivity, 409t	Polarization transfer
Phosphorus ligands, rhodium complex	α- ¹³ C-ethylbenzene-d ₈ , 71
hydroformylation catalysts, 399	para-enriched H ₂ , 72
Phosphorus-proton coupling, resonances, 67,	polarization and signal enhancement, 67-72
68f	signal enhancement, 47
Photochemical reactions, colored impurities,	Polyethylene
202	characterization, 598t
Photoreactivity	
	properties, 587
carbonylmetal clusters, 109	Polymerization, ethylene with
reactive organometallic intermediates,	trimethylsilylmethyltitanocene chloride
105–119	and an aluminum chloride cocatalyst, 587
Photoreduction, aldehydes, 193	Polymerization catalysis, chromium catalysts,
Photosensitization, catalytic mechanism, 198	595–598
π back-donation, CO-Rh bond strength, 402	Polymethylsilsesquioxanes
Picnic-basket porphyrins	catalytic synthesis, 553–563
conformation, 155	
	ceramic compositions, 562t
shape selectivity, 153–162	chemical evolution during heating, 557f
substrate selectivity, 155	dilution with toluene, 556
system, 157 <i>f</i>	properties of thin films, 556
Platinum	structure and applications, 554
catalytic hydroformylation, 367-376	Polysilazane oligomers, thermogravimetric
conversion of internal alkenes, 367-368	analysis, 561f
crystallites, 546-548f	Polysilazane polymerizations, 560–562
deposition during reaction, 224–226	(Porphyrin)M(II) complexes, reactions with
effect of Cl on oxidation reaction, 230	CO, 252–258
electrochemical reduction of organometallic	Potassium, catalytic activity, 483–484
complexes, 261	Preceramic polymers, polysilazane oligomers,
hydroformylation into linear aldehydes, 274	560
orthometallation of aryloxycarbonyls, 521	Pressure probe, studies of homogeneous
oxidation mechanism 228-230	catalysts 34

Pressure stabilization, reactive species, 36-40 Reaction rates, effect of ligand, 11 Process chemistry, new science and new Reactive intermediates applications, 479-489 identification and characterization, 24–28 Product distribution, function of ruthenium oxidative addition, 213 Reactive species, pressure stabilization, 36-40 concentration, 327f Product flash-off Reactivity patterns, metalloradicals with small continuous hydroformylation processes, molecules, 250 414-417 Reactor geometry, mercury continuous hydroformylation unit, 416f photosensitization, 199-200 Promoters Reductive carbonylation carbonylruthenium iodide systems, 310 ligand environment, 324 comparison of rates, 385t methanol magnesium oxide, 314-317 experimental procedure, 325-326 selectivities, change with time, 319 rhodium-catalyzed reductive soluble and insoluble aluminum carbonylation, 323-336 compounds, 310-314 product distribution, 326t Propene-d₃, proposed mechanism for Reductive elimination formation, 566f acetyl iodide, 324 hydrogenolysis of Rh-carbon and formation cis-2-Propenyl-1,3-dioxolanone reaction, stereospecificity, 539 of Rh(I)-hydride, 334 Propylene carbonate, selectivities during Regiocontrol styrene hydroformylation, 265 bridging ligands of dirhodium(II) nucleus, Propylene hydride 458 ¹H NMR assignments, 44f electron-withdrawing groups, 447 magnetization transfer, 43-44 Regioselectivity Proton source, water-gas shift, 344-345 amide-directed chelation control, 279 Proton transfer, CH₃OH to Co(CO)₄-, 509 carbon-hydrogen insertion reactions, 446 Protonation, intermediate monohydride carbonylation of C-H bond, 187 species, 62 cycloisomerization, 467-468 Puckering, chelate ring, 148-150 dehydrogenative silylation and vinylation of Pyrrole ¹H line broadening, temperature toluene, 194 dependence, 255-256f effective control, 456 effects of phosphine ligands, 285 functionalized reactions, 222-223 1-heptanal with Pt-Sn system, 263 Quaternization, resistance of diphosphine complexes, 329 1-hexene with platinum, 261 ligand effect on linear aldehyde, 264t nature of solvent and ligand, 265 Racemization, chloride anion, 268 reaction temperature, 468 silylformylation and hydrosilylation, Radical(s), reaction of alkanes with Hg*, 208 Radical mechanism, carbonyl exchange, 38 290-291 wavelength of irradiation, 187 Radicallike pathway in benzene, metalloformyl complex, 253 Rehybridization carbonyl carbon, 254 Rate constants, carbonyl exchange, 37-39 formyl radical, 257 Reaction conditions, dependence on Relative reactivities, insertion reactions, 457 structures, 131 Remote sensing, optical-fiber coupled high-Reaction mechanism cobalt-catalyzed hydroformylation of olefins, pressure reactors, 3 Reorganization energy, rehybridization of 13 - 15carbonyl unit, 257 palladium-catalyzed carbonylation of aryl Reversibility, oxidative addition, 213 halides, 9-10 Reversible reduction wave, chromium phosphine-modified rhodium-catalyzed hydroformylation of olefins, 11-13 catalyst, 599

studies using CIR-FTIR reactors, 7

Reaction-monitoring techniques, OFCIR

Reaction order, method of initial rates,

Reaction parameters, variation, 8

reactors, 16-17

330-332

Rhodium

asymmetric hydroformylation, 274

carbonylation of benzene, 185-189

chemistry, 28-29

catalyst behavior on repeated use, 484

catalyst combinations in synthesis gas

Rhodium—Continued
catalyst for carbenoid reactions, 443–444
catalytic activity, 483–484
coupling of surface methylenes with surface
vinyls, 573
electrochemical reduction of organometallic
complexes, 261
eLTTP complex, rotational and
conformational flexibility, 358
formation of higher hydrocarbons, 571
functionalization of C-H bonds in carbenoid
reactions, 443-461
hydroformylation catalysts, 277-296
hydrosilation of iron acyls, 492-496
lithium effect on reaction rate, 389
olefin hydroformylation, 266–272
organic chemistry of di-μ-
methylenedirhodium complexes,
565–567
overall reaction selectivity, 327
performance as a catalyst, 324
potential role of dianions, 391
rate dependence at two Li levels, 387f
reductive carbonylation of methanol, 334
sterically hindered geometry, 362
water-gas shift reaction, 384
,
Rhodium catalysts, formation from bulky or
nonbulky phosphine ligands, 403f
Rhodium-catalyzed reactions
carbonylation
experimental procedures, 378–379
methyl acetate, 377–394
selectivity, 379
thermodynamic parameters, 379
hydroformylation reaction, mechanism,
400–403
oxo study, CIR in situ analyses, 11-13
reductive carbonylation of methanol,
323–336
Rhodium complex hydroformylation catalysts
generic formula, 400f
phosphorus ligands, 399
Rhodium concentration, reaction rate
variation, 331
Rhodium-containing species, reactions with
carbon monoxide and dihydrogen, 25–28
Rhodium hydroformylation
1-butene
phosphite ester ligands, 414-415t
triethylphosphine ligand, 413t
ligand effects, 399–400
mechanism, 400–403
spectra, 271f
Rhodium hydroformylation catalysts
alkyldiphenylphosphine-rhodium
complexes, 398
electron-donor properties, 398–399
electronic effects on synthesis, structure,
reactivity, and selectivity, 395-418
••

Rhodium hydroformylation catalysts— Continued selectivity for linear aldehydes, 396-397 stereochemical effects, 397-398 Rhodium(I) phosphine intermediates flash photolysis studies, 106-109 reaction dynamics, 107f Rhodium(II) porphyrin, reactions with CO, 253-258 Rhodium(II) porphyrin derivatives, carbon monoxide activation, 249 Ring construction, carbon-carbon bond formation, 463-478 Ring-opening metathesis polymerization, 591, 599-601 Ring oxidation, 226 Ring slippage, sapphire NMR tube, 40 Rotational flexibility eLTTP complex, 358 single-atom bridge in eLTTP, 361 Ruthenium addition to rhodium catalyst, 323 anionic clusters, 419-429 catalyst combinations in synthesis gas chemistry, 28-29 cycloisomerization followed by reductive desulfonylation, 475 homogeneous catalysts, 72 homologation of methanol to ethanol, 327 hydrogenation catalysts, 60-64 selectivity of triphenylphosphine complexes, 434 Ruthenium-catalyzed reactions ethylene glycol and secondary amines, 437f ethylene glycol with morpholine, effect of temperature on selectivity, 438t morpholine with ethylene glycol, effect of phosphines, 435t Ruthenium cluster anion, molecular structure, isolation, and characterization, 425-429 Ruthenium complexes, catalysis and selectivity, 436t Ruthenium-containing species, reaction with dihydrogen, 24-28

S

Safety
organic—O₂ oxidations, 95
sapphire NMR tubes, 36
Sapphire NMR tubes
catalytic reactions under moderate
pressure, 33–40
development, 35–36
intermolecular hydroacylation, 39
operation, 36
ring slippage, 40
safety, 36
Sarcosinate specialty surfactants, 238–239f

Index 623

Selective insertion, 1-alkynes to Rh–Si bond, Solvent polarity, chemical shifts, 581 Spacer groups, metal centers, 360 Selective inversion, exchange broadening of Spectroscopic data, correlation with catalytic resonances, 37 performance, 29 Selectivity Spectroscopic studies attack at the methyl position, 226 electroreduced rhodium complexes, bimetallic hydroformylation, 361-362 268-272 bridging ligands of dirhodium(II) nucleus, Pt(DIOP)Cl₂ electroreduced solution, 265-266 458 C-H attack, 230 Spin density, hyperfine coupling constant, C-H oxidative addition, 187 252-253 catalyst systems, 203 Spirocyclization of alkyl isocyanates in diphosphine ligand, 327, 328t tetrahydrofuran, 420f fragment geometry, 116-117 Stabilizing electronic effect, Me₃Si group, 578 functionalized reactions, 222-223 Stereochemical effects, rhodium high-temperature reactions, 438 hydroformylation catalysts, 397–398 hydrocarbonylation of ethanol, 312t Stereochemical relay, macrolide product hydrogenation and homologation products, synthesis, 472-473 Stereocomplementary behavior, insertion into C-H bond close to carbenoid hydroborations, 174 center, 450 Stereocontrol, catalyzed and uncatalyzed iridium and rhodium C-H oxidative hydroborations, 163-177 addition, 212 Stereoselectivity mixed-ligand systems, 438 asymmetric hydrogenation, 123-142 reaction products, 214 cuprate additions, 176 reactions of diethylene glycol, 438-439 hydrogenation, binap-Ru catalysts, 134 reductive carbonylation products, 332 orientations of adjacent chiral center, 169, rhodium cocatalyst, 240, 241f 171f Selectivity control, amination of ethylene palladium-catalyzed allyl acetate reactions, glycol, 433–442 Selectivity ratio, nature of phosphine ligand, preferential orientation in hydroborations, 434 172f Sequential double carbonylation, proposed reactive conformer, 171 mechanism, 280f silylformylation and hydrosilylation, Shape selectivity olefin epoxidation, metallo picnic-basket 290-291 Stereospecificity, cis-2-propenyl-1,3porphyrins, 153-162 dioxolanone reaction, 539 oxygenation catalysts, 155 Steric destabilization, caused by phosphines, Shunt pathway, oxygen-transfer agents, 155 437 Signal enhancements, calculation, 58 Steric effects Silicon crystal, corrosive acidic conditions, 6 catalyzed hydroborations, 171 Siloxyalkyl compounds, generation, 492 rhodium hydroformylation catalysts, Silsesquioxanes characterization of methoxy derivative, 395-396 Steric hindrance, structure identification, 559-560 structure and properties, 553–556, 558 576-577 Silyl ester derivative, 535, 536f Stirring, importance in cell design, 23 Silylformylation Stretching frequencies, carbonyl, 27–28 active catalyst species, 291-293 Styrene hydrocyanation, 481–482 1-alkyne, 289-294 Styrene hydroformylation, 263t catalytic cycles, 293 Substrate(s), relative reactivities, 207–208 description, 289 Substrate specificity, enzyme, 153 mechanism, 291, 295f Supported catalysts, yields, 483–484 Surface vinvl. metal surfaces, 567 mixed-metal version, 290 Sodium formate, water-gas shift reaction, Syn selectivities, hydroborations, 175 340-345 Syngas, See Synthesis gas Synthesis gas Sodium tetraphenylborate reactions, typical procedure, 532 amidocarbonylation, 235-247 Solid-state inorganic metal oxide formation, composite homogeneous catalysts, 28 monitoring techniques, 7 extreme reaction conditions, 28-29

Synthesis gas—Continued Titanocenium ion, active catalyst center, 577 reactions with a catalyst, 30f Titanocenium ion pair, generation, 589 synthesis of fuel alcohols, 324 Toluene transformations with metal oxide catalysts. aperiodic temporal oscillations, 103 339 O2 oxidation, 103 Synthetic catalysts, asymmetric p-Toluenesulfonic acid, oxidation, 223–226 hydrogenation, 124 Transfer hydrogenation t-butylethylene with alkanes, 183 chelate phosphines, 146 formic acid, 145 Temperature, effect on catalyzed yields, 484 Transient yields, photolysis, 116 Temperature dependence, carbonylation, 381 Transition metal(s), catalysts for deoxygenation Template, polyphosphine ligand, 351 of phenols by CO, 520–521 Terminal acetylenes, couplings, 470-472 Transition metal catalysts, cyclizations, Terminal alkenes, isomerization, 190 463-478 Tetracarbonylalkylcobalts Transition metal clusters, new generation of experimental details, 298–301 catalysts, 419 intermediate complex formation, 298 Transition metal complexes preparation from tetracarbonylhydridocobalt catalysis of carbonylations, 277–296 and dimethyl fumarate or aldehydes, enantioselective catalysis, 143-152 297-306 Transmetallation, palladium(0) species, 534 Tetracarbonylcobalt anion Transmission cells, monitoring of disproportionation, 508–509 homogeneous metal-catalyzed reactions, generation, 508 reduction of methanol, 507-513 Trapping radicals, Hg* attack, 208 Tetrahydrofuran Trialkylphosphine ligands, value in highcompetitive trapping, 112 temperature rhodium hydroformylation, rate-limiting dissociation, 110 417 Tetraphenylborate chemistry Tricarbonylhydridocobalt nickel chemistry as model, 537 formation, 77 organotin coupling reactions, 537 hydroformylation process, 75-93 reaction speed, 538-539 molecular conformation, 77-78 solvent, effect on reaction speed, 539 Trichlorostannate, platinum hydride activity as stereospecificity, 539 hydroformylation catalyst, 367 synthesis of allylpalladium complexes, Tricyclic nucleus, transannular cyclization, 475 537-538 Triethylphosphine ligand concentration, transmetallation step, 539 rhodium hydroformylation rate and Tetravinylsilane, Fischer-Tropsch products, selectivity, 410-412 571-572 Triethylphosphine-rhodium catalyst system Thermal decomposition, comparison with triphenylphosphine carbonyl(methoxycarbonyl)cobalts, 510 system, 412-414 Tin anode, generation of Pt-Sn couple, 263 hydroformylation of 1-butene, 410 Titanium Trimethylphosphine complex catalyst for silsesquioxanes, 559–562 activation of hydrocarbon C-H bonds, chemical shift, 587 107-108 σ-bond metathesis, 559 dehydrogenation of organic substrates, 107 Ziegler polymerization catalysts, 575–590 Trimethylphosphine intermediates, lifetimes, Titanium-alloy valve 109 hydrogen embrittlement, 39 Trimethylsilylmethyl ligands, 598 sapphire NMR tube, 35 Trimethylsilylmethyltitanocene chloride Titanium-chlorine bond bond angles and distances, 582f polarization, 588 interaction with aluminum chlorides. stretching and rupture, 588, 589 584-585 Titanium oxide, catalytic activity, 317-319 solvent dependence of chemical shifts, 583t Titanocene dichloride-methylaluminum space-filling molecular model, 583f

structure, 580-583

catalysts, 420

Trinuclear ruthenium cluster anions

chemo- and regioselectivity, 421t

dichloride system, interconversions,

Ziegler polymerization catalysts, 575-590

Titanocene halides, active sites in soluble

585-587

Triphenylphosphine

¹H NMR spectra, 423f
trinuclear ruthenium cluster anions,
reaction system, 424f

U

Unstable molecules, identification and characterization, 24–28

V

van der Waals energy map, SYBYL molecular-modeling program, 359f Vapor-phase selectivity, mercury photosensitization, 199–200 Vapor-pressure biasing, skewed product mix, 202 Vapor-selectivity effect, photochemical setup, 199–200 Vibrational spectroscopy, homogeneously catalyzed reactions, 20 Vinyl complexes from iron acetyl compounds, 493–494 Fischer–Tropsch products, 571–572 metal surfaces, 567

W

Water-gas shift activation barrier for catalysis, 339 catalysis, 337–348 cation reactivity, 340 equilibrium, 339 intermediate substances, 346 involvement of proton source, 344–345 iodocarbonyl complexes of rhodium, 384

Water-gas shift-Continued iron oxide, 340 kinetic order in sodium formate, 342f metal centers, 347 pentacarbonyliron, 340 Wavelength of irradiation cyclohexane, 189 methyl selectivity of alkanes, 189 regioselectivity, 187 Weitekamp proposal, parahydrogen-induced polarization, 50 White line, d-electron vacancies in platinum colloids, 544-545 Wilkinson's compound, hydrosilation of organoiron acetyl complexes, 491 Window materials, high-pressure IR cells, 22

X

Xenon, inert solvent, 217
p-Xylene
electrochemical oscillations, 103
O₂ oxidation, 103

Z

Zeolite(s), catalysts in the petroleum industry, 154
Zeolite formation, monitoring techniques, 7
Zeolite synthesis, corrosive acidic conditions, 6
Ziegler–Natta catalysis, molecular basis, 575–576
Ziegler polymerization catalysts, active sites, 575–590
Ziegler polymerization of ethylene, titanocenium cations, 589