Topología, curso 2019-20

Ноја 3

- 1. Demuestra que si $A \subset X$ y $B \subset Y$ entonces en el espacio topológico producto $X \times Y$ se cumple $\overline{A \times B} = \overline{A} \times \overline{B}$.
- **2.** Demuestra que X es Hausdorff si y sólo si el conjunto $\Delta = \{(x, x) \mid \in X\}$ es un subconjunto cerrado de $X \times X$. (Se conoce a Δ como la diagonal de $X \times X$).
- **3.** Sea $X = [0,1] \times [0,1]$ con la topología del orden del diccionario. Determina los cierres de los siguientes subconjuntos de X:

$$\begin{array}{rcl} A & = & \{(1/n,0): \ n \in \mathbb{N}\} \\ B & = & \{(1-1/n,1/2): \ n \in \mathbb{N}\} \\ C & = & \{(x,0): \ 0 < x < 1\} \\ D & = & \{(x,1/2): \ 0 < x < 1\} \\ E & = & \{(1/2,y): \ 0 < y < 1\} \end{array}$$

- **4.** Sea X un espacio topológico. Sea $\{A_i : i \in I\}$ una familia de subconjuntos de X.
- i) Demuestra que $\bigcup_{i \in I} \overline{A_i} \subset \overline{\bigcup_{i \in I} A_i}$.
- ii) Demuestra que si I es finito, entonces $\bigcup_{i \in I} \overline{A_i} = \overline{\bigcup_{i \in I} A_i}$.
- iii) Halla un contraejemplo que muestre que, en general, no es cierto que $\overline{\bigcup_{i\in I} A_i} \subset \bigcup_{i\in I} \overline{A_i}$.
- iv) Busca un fallo en la siguiente demostración —falsa— de la inclusión anterior: Si $x \in \overline{\bigcup_{i \in I} A_i}$ entonces, para todo entorno U de x, $U \cap (\bigcup_{i \in I} A_i) \neq \emptyset$. Por tanto, $U \cap A_{i_0} \neq \emptyset$ para algún $i_0 \in I$ y se tiene $x \in \overline{A_{i_0}}$ y $x \in \bigcup_{i \in I} \overline{A_i}$.
- **5.** Comprueba que $\mathcal{T} = \{\emptyset\} \cup \{E_n \mid n \in \mathbb{N}\}$ es una topología de $\mathbb{N} = \mathbb{Z}_+$, donde $E_n = \{n, n+1, n+2, \ldots\}$.
- i) Halla todos los conjuntos cerrados en la topología \mathcal{T} .
- ii) Describe todos los entornos abiertos del punto $m \in \mathbb{N}$ en la topología \mathcal{T} .
- iii) Determina la clausura de los siguientes conjuntos A y D: $A = \{9, 13, 48, 96\}, D = \{3, 6, 9, 12, 15, \ldots\}.$
- **6.** Determina los conjuntos A' y \overline{A} para $A = \{(0,2)\} \cup ([0,1] \times [0,1)) \subset \mathbb{R}^2$.
- 7. Sean A y B subconjuntos de \mathbb{R}^2 dotado de la métrica euclídea. Sea x un punto de acumulación de $A \cup B$. ¿Se puede concluir que x es un punto de acumulación de A o de B?
- **8.** Se considera el siguiente subconjunto de \mathbb{R} : $A = \left(-\infty, -\sqrt{2}\right) \cup \left[\sqrt{2}, 3\right) \cup \left\{\frac{3n+10}{n+3} : n \in \mathbb{N}\right\} \cup \{0\}$. Halla $\overset{\circ}{\mathsf{A}}$, $\overline{\mathsf{A}}$ y A' en las siguientes topologías de \mathbb{R} :
- i) La cofinita.
- ii) La topología $\mathcal{T}_{[\)}$ de Sorgenfrey (la que tiene como base $\mathcal{B}=\{[a,b):a,b\in\mathbb{R}\}$).
- iii) La que tiene como base $\mathcal{B} = \{[a, b) : a, b \in \mathbb{Q}\}.$
- iv) \mathcal{T}_{\leftarrow} (la que tiene como base $\mathcal{B} = \{(-\infty, a) : a \in \mathbb{R}\}$).
- **9.** Si $A \subset X$, definimos la frontera de A como el conjunto $\partial A = \overline{A} \cap \overline{X \setminus A}$.
- i) Demuestra que $\overset{\circ}{A} \cap \partial A = \emptyset$ y que $\overline{A} = \overset{\circ}{A} \cup \partial A$.
- ii) Demuestra que $\partial A = \emptyset$ si y sólo si A es abierto y cerrado.
- iii) Demuestra que U es abierto si y sólo si $\partial U = \overline{U} \setminus U$.
- iv) Si U es abierto, ¿es verdad que $U = \frac{\circ}{\overline{U}}$?
- v) Demuestra que $\partial \overset{\circ}{A} \subset \partial A$ y que $\partial \overline{A} \subset \partial A$. Da un ejemplo en que estos tres conjuntos sean diferentes entre sí.
- vi) Si $A, B \subset X$, demuestra que $\partial(A \cup B) \subset \partial A \cup \partial B$, y da un ejemplo en el que no se de la igualdad.
- vii) Comprueba que si $\overline{A} \cap \overline{B} = \emptyset$, entonces $\partial (A \cup B) = \partial A \cup \partial B$.

- 10. Sea X un espacio topológico y sean A, D \subset X. Demuestra que:
- i) Si A es abierto, entonces $A \cap \overline{D} \subset \overline{A \cap D}$. ¿Se satisface esta inclusión si A no es abierto?
- ii) Si $A \cup D = X$, entonces $\overline{A} \cup \overset{\circ}{D} = Int(A \cup \overline{D}) = X$.
- 11. Encuentra el cierre, el interior y la frontera de cada uno de los siguientes subconjuntos de \mathbb{R}^2 :

$$\begin{array}{lcl} A & = & \{(x,y): \ y=0\} \\ B & = & \{((x,y): x>0 \ \mathrm{e} \ y \neq 0\} \\ C & = & A \cup B \\ D & = & \{(x,y): \ x,y \in \mathbb{Q}\} \\ E & = & \{(x,y): \ 0 < x^2 + y^2 \leq 1\} \\ F & = & \{.(x,y) \ | \ x \neq 0 \ \mathrm{e} \ y \leq 1/x\} \end{array}$$

- 12. i) Demuestra que $[0,1] \times [0,1]$ es la frontera de algún subconjunto de \mathbb{R}^2 .
- ii) Demuestra que cualquier cerrado de \mathbb{R}^2 es la frontera de algún subconjunto de \mathbb{R}^2 .
- 13. Halla un subconjunto $A \subset \mathbb{R}$ que, con la métrica usual de \mathbb{R} , tenga como frontera el conjunto dado:

$$\partial A = [1, 2] \cup \{0\} \cup \{1/n \mid n \in \mathbb{N}\}.$$

- **14.** Halla dos subconjuntos A, D abiertos de la topología usual de \mathbb{R} para los que los cuatro subconjuntos $A \cap \overline{D}$, $\overline{A} \cap D$, $\overline{A} \cap \overline{D}$ y $\overline{A} \cap \overline{D}$ sean distintos.
- 15. Indica razonadamente si las siguientes afirmaciones son verdaderas o falsas.
- i) Para cada $A \subset X$, $Int(\partial A) = \emptyset$.
- ii) Si $A \neq \emptyset$ es cerrado y $\overset{\circ}{A} = \emptyset$, existe D tal que $A = \partial D$.
- iii) Para cada $A \subset X$, $\overline{A} = \overline{Int A}$.
- iv) Si $A \cap \partial A = \emptyset$ entonces A es abierto.
- v) Para cada $A \subset X$, el conjunto A' es cerrado.
- vi) Si $x \notin A'$, entonces $x \notin (\overline{A})'$.
- **16.** Demuestra que la función identidad: i(x) = x, es continua de (X, \mathcal{T}) en (X, \mathcal{T}^*) si y sólo si la topología \mathcal{T} es más fina que \mathcal{T}^* .
- 17. Sea X un espacio topológico. Demuestra que la función diagonal $d: X \to X \times X$ dada por d(x) = (x, x) es continua para la topología producto de $X \times X$.
- 18. Sean X e Y espacios topológicos.
- i) Demuestra que se cumple el siguiente resultado: Si $f: X \longrightarrow Y$ es continua e Y es un espacio de Hausdorff, entonces el conjunto $K = \{(x_1, x_2) : f(x_1) = f(x_2)\}$ es cerrado en el espacio producto $X \times X$.
- ii) Demuestra que, con las mismas hipótesis del punto anterior, el conjunto

$$\Gamma_f = \{(x, y) \in X \times Y : y = f(x)\},\$$

es decir, la «gráfica» de la aplicación f, es un conjunto cerrado de $X \times Y$ con la topología producto.

- 19. Con la notación del ejercicio anterior:
- i) Demuestra que el recíproco de la proposición del primer punto del ejercicio anterior no es cierto en general. Es decir, que K puede ser cerrado sin que Y sea Hausdorff.
- ii) Demuestra que, sin embargo, si $f: X \longrightarrow Y$ es una función abierta y suprayectiva, y el conjunto

$$K = \{(x_1, x_2) \in X \times X : f(x_1) = f(x_2)\}\$$

es cerrado en el espacio producto $X \times X$, entonces Y es Hausdorff.

- **20.** Sea X = [0,1] con la topología usual e $Y = [0,1] \times [0,1]$ con la topología del orden lexicográfico. Estudia si las siguientes funciones son continuas.
- i) $f: X \to Y$ dada por f(t) = (t, t)
- ii) $g: X \to Y$ dada por g(t) = (1/2, (2t+1)/4)
- iii) $h: X \to Y$ dada por h(t) = (t, 1).
- **21.** Sea Y un conjunto totalmente ordenado, con la topología del orden. Sean $f, g: X \to Y$ continuas, donde X es un espacio topológico.
- i) Demuestra que el conjunto $\{x \in X : | f(x) \le g(x)\}$ es cerrado en X.
- ii) Sea $h: X \to Y$ la aplicación $h(x) = \min\{f(x), g(x)\}$. Demuestra que h es continua.
- **22.** Sean $a, b \in \mathbb{R}$, considerando la topología usual.
- i) Demuestra que el subespacio $(a,b) \subset \mathbb{R}$ es homeomorfo al subespacio $(0,1) \subset \mathbb{R}$ (con las topologías relativas). Idem para [a,b] y [0,1].
- ii) Demuestra que cada uno de los subespacios $(-\infty, a)$ y $(a, +\infty)$, dotados de la topología relativa, son homeomorfos a \mathbb{R} , definiendo explícitamente los homeomorfismos correspondientes.
- iii) Demuestra que el disco unidad $\mathbb{D} = \{(x,y): x^2 + y^2 < 1\}$ (dotado de la topología relativa del plano) es homeomorfo al plano \mathbb{R}^2 , exhibiendo un homeomorfismo explícito. Indicación: Conviene usar las coordenadas polares.
- **23.** Estudia si \mathbb{R} con la topología $\mathcal{T}_{[\]}$ es homeomorfo a \mathbb{R} con la topología $\mathcal{T}_{(\]}$. ¿Es la identidad entre ambos espacios un homeomorfismo?
- **24.** Demuestra que los espacios $X = [0, 2) \cup [4, 5]$ e Y = [0, 3], ambos con la topología del orden, son homeomorfos.
- **25.** Sea $A = (-\infty, 0] \cup (2, +\infty)$ y $f : A \to \mathbb{R}$ dada por

$$f(x) = \begin{cases} -x^2 & \text{si} & x \le 0\\ x - 2 & \text{si} & x > 2. \end{cases}$$

Demuestra que f es continua si A tiene la topología del orden o la de subespacio, pero que es un homeomorfismo sólo con la primera de ellas.

26. Da un ejemplo de una función continua $f: X \to Y$ cuyo grafo $\{(x, f(x)) : x \in X\}$ no sea cerrado en $X \times Y$ y de una función no continua cuyo grafo sí lo sea.

Indicación: Piensa en la identidad de $\mathbb R$ en $\mathbb R$, poniendo topologías adecuadas en el espacio de salida y en el de llegada.

27. Prueba que existen funciones de $(\mathbb{R}, \mathcal{T}_{[\,)})$ en \mathbb{R} con la topología discreta que son sobreyectivas y continuas, pero que no existen funciones de $(\mathbb{R}, \mathcal{T}_{[\,)})$ en \mathbb{R} con la topología discreta que tengan tales propiedades.

Indicación: La imagen inversa de $\mathbb R$ sería una unión no numerable de abiertos disjuntos y [a,b) contiene siempre un número racional.