Measuring human Pavlovian reward conditioning and memory retention after consolidation

5	Yanfang Xia ^{1-4*}
6	Huaiyu Liu ^{5*}
7	Oliver K. Kälin ¹
8	Samuel Gerster ¹
9	Dominik R. Bach ^{1,2,5}
10 11 12	¹ Computational Psychiatry Research, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
13 14	² University of Bonn, Transdisciplinary Research Area Life and Health, Hertz Chair for Artificial Intelligence and Neuroscience, University of Bonn, Germany
15 16	³ Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, the Netherlands;
17	⁴ Department of Psychiatry, Radboud University Medical Centre, Netherlands
18 19	⁵ Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, United Kingdom;
20	*These authors contributed equally.
21	Corresponding author: Dominik R. Bach; d.bach@uni-bonn.de
22	
23	
24	

26

27

28

47

48

49

50

psychophysiological measure

Abstract

29 While a body of literature has addressed quantification of aversive conditioning, 30 fewer studies have compared different conditioned response types during human 31 reward learning and its retention after overnight consolidation. In consequence, it 32 is unclear how to best quantify reward conditioning in humans. Here, we sought to 33 fill this gap by investigating heart period response (HPR), skin conductance 34 response (SCR), pupil size (PSR), and respiration amplitude response (RAR) during 35 Pavlovian reward conditioning with a primary reinforcer. We conducted two 36 independent experiments ($N_1 = 37$, $N_2 = 34$) with a learning phase and a recall 37 phase 7 days later. A visual conditioned stimulus (CS+) predicted fruit juice 38 reward (unconditioned stimulus, US), while a second CS- predicted US absence. In 39 experiment 1, model-based analysis of HPR distinguished CS+/CS-, both during 40 learning (Hedge's g = 0.56) and recall (g = 0.40). Furthermore, model-based 41 analysis of PSR distinguished CS+/CS- in early trials during recall (q = 0.69). As an 42 out-of-sample generalisation test, experiment 2 confirmed the result for HPR 43 during learning (q = 0.78) and recall (q = 0.55), as well as for PSR during recall (q = 0.58) 44 = .41). We conclude that in our Pavlovian reward conditioning paradigm, HPR is a 45 robust measure of reward learning, while both HPR and PSR robustly index the 46 retention of reward memory.

Keywords: Pavlovian reward conditioning, reward, associative learning,

51 1. Introduction

- 52 Learning to predict reward events plays an important role for many biological
- 53 organisms. A quintessential paradigm to study this in the laboratory is Pavlovian
- reward conditioning (Martin-Soelch et al., 2007; Pavlov, 1927). Here, an initially
- 55 neutral stimulus (conditioned stimulus, CS) is repeatedly paired with a naturally
- 56 appetitive stimulus (unconditioned stimulus, US, e.g., primary vs. secondary
- 57 reinforcers), and comes to elicit some behavioral or physiological responses
- 58 (conditioned response, CR). In turn, this CR is taken to indicate learning the
- 59 association, and when it is elicited after a delay, it is taken as indicative of reward
- 60 memory. In human conditioning research, including reward and aversive
- 61 conditioning (Lonsdorf et al., 2017), learning is usually indexed by the difference
- 62 between responses elicited by CS+ with those elicited by a CS-, which predicts the
- 63 absence of the US, in a paradigm known as differential learning.
- 64 Several psychophysiological CRs have been suggested to reflect human reward
- 65 learning. Specifically, quantification of human reward conditioning has been based
- on skin conductance responses (SCR) (Exner et al., 2021; Klucken et al., 2019),
- 67 cardiac responses (Ebrahimi et al., 2019, 2019; Hermann et al., 2000; Pietrock et
- 68 al., 2019; Sayão et al., 2021; Wardle et al., 2018), startle-eyeblink (Andreatta &
- 69 Pauli, 2015; Hermann et al., 2000; Stussi et al., 2018), postauricular reflex
- 70 (Ebrahimi et al., 2019; Pietrock et al., 2019; Stussi et al., 2018), and pupil dilation
- 71 (Bray et al., 2008; Pietrock et al., 2019; Pool et al., 2019; Prévost et al., 2013;
- 72 Reinhard & Lachnit, 2002; Schad et al., 2020; Seymour et al., 2007). Notably,
- 73 however, evidence for CS+/CS- differences in these observables is inconsistent
- between studies; but experimental protocols are also heterogenous and differ by
- 75 the type of paradigm (delay or trace conditioning), the type of CS and US,
- 76 including primary and secondary reinforcers, CS-US intervals, and reinforcement
- 77 schedule (Exner et al., 2021; O'Doherty et al., 2003; Wardle et al., 2018).
- 78 Consequently, interpretation of diverging results is difficult, which raises the
- 79 question of what constitutes the most sensitive measure(s) to capture reward
- 80 learning. Some previous work has directly compared different CRs, again with
- 81 heterogeneous results. One study reported similarly small effect sizes in
- 82 corrugator EMG, zygomaticus EMG, and SCR (Wardle et al., 2018); another one
- 83 showed a large effect in HPR and smaller effects in pupil dilation, gaze patterns,

- 84 with no effect in SCR or startle eyeblink (Pietrock et al., 2019); and a third one a
- 85 larger effect in SCR than in startle eyeblink (Andreatta & Pauli, 2019).
- 86 Furthermore, it is unclear whether any of these results would generalise to the
- 87 assessment of memory retention after overnight consolidation. This question is
- 88 relevant in the context of pharmacological and non-invasive intervention studies
- 89 (Ojala et al., 2022; Wehrli et al., 2023, 2024; Xia et al., 2024). It also holds
- 90 significant importance for pre-clinical studies in the context of experimental
- 91 psychopathology. Here, reward learning is often taken as a model of addiction
- 92 symptoms, such as cue-induced drug craving (Keiflin & Janak, 2015).
- 93 Thus, the present work aimed to identify the most sensitive psychophysiological CR
- 94 to quantify reward learning and retention after overnight consolidation. We
- 95 employed a Pavlovian reward conditioning paradigm with primary reinforcer, in
- 96 which participants gradually learned CS-US contingencies, and retention was
- 97 tested after seven days. Our outcome variables were based on four observables:
- 98 skin conductance response (SCR), pupil size responses (PSR), heart period
- 99 response (HPR), and respiratory amplitude response (RAR).
- 100 To determine the most sensitive CR, we used a calibration approach. Put simply,
- this assumes a priori that participants do acquire a CS-US association, and
- 102 evaluates different putative CR by their ability to reproduce this learning, as
- indexed by retrodictive validity (Bach, 2023; Bach et al., 2020). In our case,
- 104 retrodictive validity can be expressed as the effect size to distinguish CS+/CS-. To
- protect ourselves against overfitting to peculiarities of small samples, we employed
- an exploration-confirmation approach as in previous work on these observables
- 107 (Castegnetti et al., 2016, 2017; Korn et al., 2017; Xia et al., 2022). Specifically, in
- 108 experiment 1 we explored different CR indices derived from all four
- 109 psychophysiological observables (i.e., HPR, SCR, PSR, and RAR) in their sensitivity
- 110 to distinguish CS+/CS-. We retained all indices that yielded an effect size of
- Hedge's q > 0.5, and confirmed them in experiment 2. This effect size was chosen
- a priori to be large enough to be usable in intervention studies, where the
- 113 maximum achievable effect size is constrained by the effect size in the control
- 114 group. In addition, we heuristically report smaller effect sizes in conjunction with
- significant *p*-values (without correction for multiple comparison).

116 2. Method

117 2.1. Sample size and participants

- Power analysis for experiments 1 and 2 were performed using G*Power 3.1.9.7
- 119 (Faul et al., 2007). We analysed a one-sided paired *t*-test, which is appropriate
- 120 since our study design involves repeated measures on the same subjects under
- 121 different conditions. In result, 34 participants were needed to achieve our a priori
- 122 chosen effect size of Cohen's d > 0.5 (which approximates Hedge's g) with 80%
- power and an alpha level at 0.05. We recruited 37 participants in experiment 1 to
- allow for drop-outs due to early termination and data exclusion. For experiment 2,
- power analysis showed that 32 participants were needed based on the HPR effect
- size reported in experiment 1 with 80% power. We recruited 34 participants in
- 127 experiment 2 to allow for drop-out.
- Healthy participants were recruited from the student and general population in
- 129 Zurich. The governmental ethics committee approved the study (KEK-ZH-2013-
- 130 0118). All participants provided informed consensus using a form approved by the
- 131 ethics committee, and received monetary compensation based on experiment
- duration. See Table 1 for details of demographics and general information.

133 Table 1. Demographics and general information for experiments 1 and 2

	Phase	Experiment 1	Experiment 2
Participants completed per	Learning	37 (26 women)	34 (20 women)
protocol			
	Recall	37 (26 women)	33 (19 women)
Participants excluded per protocol	Learning	0	0
	Recall	0	1 ^a
Age (full sample)	Learning	24.19 (4.20)	24.91 (4.11)
	Recall	24.19 (4.20)	24.94 (4.17)
Drink fasting time (hours)	Learning	7.70 (3.69)	7.46 (3.73)
	Recall	5.18 (3.05)	6.52 (3.71)
Food fasting time (hours)	Learning	11.05 (3.89)	10.84 (3.12)

	Recall	11.23 (5.43)	11.79 (3.25)
Hunger (%)	Learning	67.64 (26.06)	67.86 (20.00)
	Recall	70.38 (28.25)	78.99 (20.56)
Thirst (%)	Learning	69.85 (20.23)	67.94 (19.75)
	Recall	70.92 (23.75)	75.92 (15.92)
Favorite juice rating (%)	Learning	89.42 (13.38)	93.08 (8.89)
Selection of apple juice	Learning	8	4
Selection of mango juice	Learning	10	13
Selection of multivitamin juice	Learning	14	10
Selection of orange juice	Learning	5	7
	Recall		
Trait anxiety (STAI-T)		36.59 (8.03)	38.82 (10.43)
State anxiety (STAI-S) before		33.05 (6.98)	34.94 (8.89)
learning			
State anxiety (STAI-S) before		31.84 (7.05)	34.00 (7.53)
recall test			

Note: In columns Experiment 1 and Experiment 2, numbers are mean values with

135 standard deviations inside parentheses, except the rows "Participants completed

per protocol" and "Participants excluded per protocol". aOne participant did not

137 return to the recall test due to illness.

138 2.2. Experimental procedure

139 2.2.1. Overview

140 Both experiments followed the same procedure. Before arrival, to enhance US

141 craving, participants were asked to fast from food for at least six hours and from

142 drinks for at least four hours before arrival (see Table 1 for a summary of fasting

statistics). Upon arrival, participants provided informed consent and were given

144 instructions about the entire experiment. Next, participants completed the State-

- 145 Trait-Anxiety-Inventory (STAI) and watched a 4-min priming video with
- presentation of delicious food and drink images. After the video, they reported
- their food- and drink-fasting duration (Table 1) and rated their hunger and thirst
- levels on a visual analogue scale (VAS) with endpoints 0-100. They chose their
- 149 favorite flavor among apple, orange, mango, and multivitamin juices, and then
- 150 rated all four juices on a VAS with endpoints 0-100, which was consistent with the
- 151 categorical selection for all participants. The chosen favorite juice was then used
- as US in the subsequent Pavlovian reward conditioning task (Figure 1). This
- 153 conditioning task was conducted in the morning between 8:00 a.m. to 12:00 p.m.
- 154 After conditioning, participants completed a computer-based questionnaire about
- awareness of CS-US contingency ("How likely were you to receive a sip of juice
- when looking at this triangle today", "How likely were you to receive a sip of juice
- when looking at this triangle last week?") as well as experienced arousal and
- 158 valence to all CS. Seven days later, participants came back for a recall test after
- 159 the same fasting procedure, and this recall test was conducted in the afternoon
- between 1:00 pm to 5:00 pm. They completed the state anxiety part of the STAI
- and watched the same priming video as describe earlier, followed by fasting time
- 162 reporting and ratings for hunger and thirst. Subsequently, they completed the
- 163 recall task with a follow-up computer-based questionnaire about CS-US
- 164 contingency ('How likely were you to receive a sip of juice when looking at this
- triangle last week?') and ratings on arousal and valence to all CS conditions.
- 166 2.2.2. Pavlovian reward conditioning task
- 167 All experiments were presented via MATLAB R2021a (The Math Works;
- 168 https://www.mathworks.com/products/matlab.html) using the Cogent 2000 toolbox
- 169 (http://www.vislab.ucl.ac.uk/Cogent). The reward conditioning task included two
- 170 blocks, with 24 CS+ and 24 CS- trials per block, resulting in 96 trials in total. Trial
- order was randomized with the constraint that were no more than three trials with
- the same CS, or more than three US, in a row. In the learning phase, the CS+ was
- 173 reinforced 50% of the time, whereas the CS- was never reinforced. The first CS+
- trial in each block was always reinforced. In the recall task, both CS conditions
- 175 were never reinforced. The instruction for the learning phase was "In this
- 176 experiment, you will see differently colored triangles and receive a sip of juice now
- and then. You will notice that depending on the triangle you will receive a sip of

juice more or less frequently"; the instruction for the recall phase was "Today the 178 179 same triangles will be presented again". In both phases, no explicit CS-US 180 contingency instructions were given to participants. Each trial started with a 6-s CS presentation, followed by an inter-trial interval 181 182 (ITI) during which a fixation cross was presented. ITI duration was a random 183 integer between 9-16 s. In reinforced CS+ trials, a sip of fruit juice was 184 automatically delivered into participants' mouth 5 s after CS+ onset. To avoid 185 artifacts in the psychophysiological recordings, participants were tasked to keep

the juice in their mouth and swallow during the ITI when signaled. This signal appeared at random between 2-5 s after CS offset for 2 s. In order to keep the participants attentive during the task, they were asked to press a specific key associated with each CS. If participants did not respond, or pressed the incorrect

190 key, error feedback was given during the first 2 s of the ITI.

191

192

193

Figure.1. (A) A sample trial of the reward conditioning paradigm, where participants learned to associate a colored triangle (CS+) with a fruit juice reward

- 194 (US). The reinforcement rate was 50% and another colored triangle was never
- reinforced (CS-). In each trial, participants had to press the right or left arrow key
- 196 to indicate the presented CS. Participants were informed about wrong or no key
- 197 presses during the first 2 s of the inter-trial interval (ITI). The signal to swallow
- 198 was presented at a random time between 2 5 s after CS offset for 2 s. The
- 199 duration of the ITI was randomly sampled between 9 16 s. (B) A sample trial of
- 200 the recall phase, which is identical to the learning phase except that there was no
- 201 US. In other words, the recall test was conducted under extinction learning.
- 202 2.2.4. Stimuli and apparatus
- 203 The 4-min priming video consisted of 63 appetitive food and drinks images; each
- 204 image was displayed for 4 s. All images were selected from an online image
- 205 repository (https://unsplash.com/t/food-drink) with a CC0 license.
- 206 Red and blue isoluminant triangles (RGB: [0.753, 0.894, 0.894], [1, 0.843, 0.776])
- 207 were randomly allocated to CS+ and CS- across participants. Both CS were
- 208 presented for 6 s at the center of an isoluminant grey computer screen (RGB: [175,
- 209 175, 175], screen size 318 mm x 256 mm) with a size of 3° visual angle at 67.2-cm
- 210 distance from the participant (figure 1), During the ITI, a white (RGB: [255, 255,
- 211 255]) fixation cross (0.8° visual angle) was presented at the center of the same
- 212 grey background screen.
- 213 An automatic pump (AL-8000 Syringe Pump, World Precision Instruments,
- 214 Sarasota FL, USA) dispensed US via a 5-m PVC tube (Faust Laborbedarf AG,
- 215 Schaffhausen, CH) with an inner diameter of 2 mm and an outer diameter of 4 mm.
- This tube was positioned in such a way that it sat easily within the participants'
- 217 mouths and was affixed to a chin rest, on which participants were asked to place
- 218 their chins throughout the tasks.
- 219 2.2.5 Recording of psychophysiological indices
- 220 We collected ECG data with three pre-gelled Ag/AgCl adhesive snap electrodes
- 221 (01-7500, TIGA-MED; FS-TC1, Skintact; and EL503, Biopac Systems Inc.) attaching
- 222 to the outsides of wrists and right ankle, respectively. For each participant, we
- 223 used and recorded the lead configuration that yielded the clearest R spikes
- 224 (ECG100C, Biopac Systems Inc.). To record skin conductance, two 8-mm disk
- 225 Ag/AgCl cup electrodes (EL258, Biopac, Goleta, CA) filled with 0.5% NaCl gel

- 226 (GEL101, Biopac; Hygge & Hugdahl, 1985) were applied to the thenar and
- 227 hypothenar eminence of the non-dominant hand and connected to a constant
- voltage coupler/amplifier (EDA100C, Biopac). We measured respiration using a
- 229 single-belt cushion system (RSP100C, Biopac). All data were amplified and
- 230 digitised (MP160, Biopac), and recorded with Acknowledge (version 5.0, Biopac).
- 231 Pupil size and gaze direction were recorded for both eyes with an Eyelink 1000
- 232 system (SR Research, Ottawa, ON, Canada) at a sampling rate of 500 Hz in a
- 233 distance of 52.2 cm, after gaze calibration using the manufacturer's 9-point
- 234 procedure.
- 2.3. Preprocessing and modeling of psychophysiological indices
- We analysed all data in the framework of psychophysiological modelling (PsPM).
- 237 Additionally, we report peak-scoring analyses of pupil size responses and grand
- 238 means of intra-trial time-courses.
- 239 2.3.1. Psychophysiological modelling
- 240 Psychophysiological (forward) models mathematically describe how a neural input
- 241 generates a peripheral physiological response (Bach et al., 2018). The amplitudes
- 242 of the input into this system are assumed to reflect the psychological latent
- 243 variable, which in the context of associative learning is the CS-US association.
- 244 Given a psychophysiological model, the latent variable can be estimated from
- 245 physiological data by means of model inversion (Bach et al., 2018). Similar to
- 246 previous work on these observables (Bach, Flandin, et al., 2010; Castegnetti et al.,
- 247 2016, 2017; Korn et al., 2017), we constructed our psychophysiological models as
- 248 linear time invariant systems (LTI), which are fully defined by their response
- 249 functions (RF). Two approaches are often used to construct the RF for an LTI. On
- 250 the one hand, one may formalize the RF from identified biophysical relations
- between inputs and outputs. This approach assumes that researchers already
- 252 understand the underlying (Friston et al., 2000). On the other hand, one may
- 253 construct a phenomenological RF from the empirical data, even if the underlying
- 254 biophysical systems are unknown (Castegnetti et al., 2016). In the present work,
- 255 we employed the second approach. For SCR, the existing phenomenological model
- 256 is split into an invariant peripheral system that does not depend on experimental
- 257 paradigm, and a flexible model of the neural input, which can be estimated from
- 258 data. The peripheral model has been validated by direct intraneural recordings

- 259 (Gerster et al., 2018), such that there was no need to develop a new RF for SCR.
- 260 On the other hand, existing RF for HPR, PSR, and RAR collapse paradigm-specific
- 261 central processes and the peripheral system, such that they are not necessarily
- applicable to the current experimental paradigm. Thus, we used data from
- 263 experiment 1 to develop RF for these modalities.
- Once the shape of the RF is defined, the next step is to estimate the system's input
- 265 to best explain data. To obtain input amplitude estimates, we inverted general
- 266 linear convolution models (GLM) to fit the predicted timeseries (obtained through
- 267 the convolution of the RF with a constant input shape) to the empirical data
- 268 timeseries (Bach et al., 2018). The GLMs are either trial-wise or condition-wise,
- 269 depending on the modality of the data. Trial-wise GLMs were used for PSR, which
- 270 have a time course that does not overlap between trials (Korn et al., 2017),
- 271 whereas condition-wise GLMs were used for HPR and RAR. For SCR, we
- 272 conducted trial-wise estimation using the non-linear model in PsPM (Bach,
- 273 Daunizeau, et al., 2010). See the section 2.3.3 below for details.
- 274 All preprocessing and modeling of psychophysiological data were conducted using
- 275 the PsPM toolbox 4.1.1 (https://bachlab.github.io/PsPM/) (Bach et al., 2018) in
- 276 MATLAB R2021a.
- 277 2.3.2. Heart period responses (HPR)
- 278 Heart beats were detected in ECG signal by a modified version of the Pan-
- 279 Tompkins algorithm (Pan & Tompkins, 1985) as implemented in PsPM (Paulus et
- 280 al., 2016). The presence of artefacts was further controlled by visually inspecting
- each participant's time-series, and removing artefacts due to clipping, movement,
- 282 or electrode detachment. For each detected heart beat, we computed the
- 283 preceding inter beat interval. Inter beat intervals corresponding to a heart rate
- outside 50-150 beats per minute were automatically excluded. In line with previous
- work (Paulus et al., 2016), our analyses were based on heart period rather than
- 286 heart rate, because heart period and autonomic input are linearly related in
- 287 stimulation studies (Cacioppo et al., 2007). The remaining data points were linearly
- 288 interpolated in chronological time at 100 Hz and filtered with a 4th-order
- 289 bidirectional band-pass Butterworth filter (cut-off frequencies: 0.015-0.5 Hz) as in
- 290 previous work (Castegnetti et al., 2016). To build the RF, we extracted trial-wise
- 291 segments, and baseline-corrected single-trial responses by subtracting the heart

- 292 period average during 5 s before the CS onset (Pollatos et al., 2007). Afterwards,
- 293 responses were averaged first within each condition, and then over participants. In
- 294 line with previous work (Castegnetti et al., 2016), we fitted the difference between
- 295 the mean over all CS+ and the mean over all CS- trials with a gamma probability
- 296 density function (= 1.72, $[s^{-1}] = 0.14$, = 60.10, [s] = -17.61). As the duration of
- 297 typical HPR is much longer than the CS-US interval, only CS+ trials not reinforced
- 298 by a US were considered for modelling and analysis.
- 299 2.3.3. Skin conductance responses (SCR)
- 300 SCR data quality was assessed by the SCR preprocessing function implemented in
- 301 PsPM. Raw data outside $0.05-100 \mu S$ or with an absolute slope over $10 \mu S$ /s were
- 302 automatically marked as missing data. The presence of artefacts was further
- 303 controlled by visually inspecting each participant's SCR time-series and removing
- 304 artefacts due to clipping, movement, or electrode detachment. All such missing
- data were linearly interpolated for filtering and removed from analysis. Data were
- 306 then filtered with a bidirectional 1st-order band-pass Butterworth filter with the
- 307 cut-off frequencies 0.0159-Hz and 5-Hz and downsampled to 10 Hz.
- 308 We then estimated conditioned and unconditioned responses using a non-linear
- 309 model implemented in PsPM (Bach, 2014; Bach & Melinscak, 2020). We modeled a
- 310 response evoked by CS onsets with fixed latency, and one evoked by US or US
- 311 omission. Amplitude estimates were normalized by dividing through the average of
- 312 all CS- trials from the corresponding participant.
- 313 2.3.4. Pupil diameter
- 314 Pupil diameter data were converted to metric units and pre-processed with the
- 315 algorithm implemented in PsPM (Kret & Sjak-Shie, 2019). This algorithm excludes
- 316 data points outside the biological range of pupil size and its time derivative.
- 317 Furthermore, it excludes isolated data points, outliers, and data points at the
- 318 beginning and the end of temporal gaps, interpolates the data, and combines data
- 319 from both pupils. Next, data points were excluded if gaze point deviated more than
- 320 5° visual angle from screen center (Korn et al., 2017). We then corrected for the
- 321 pupil foreshortening error (Hayes & Petrov, 2016) and downsampled to 100 Hz
- 322 after a low-pass filter with a cutoff of 50 Hz. We developed and tested several RF
- 323 (Table 2). For all models, pupil diameter time series for each participant and each

324 block were z-scored. Then, the first 3 (models 3, 4, and 5), 3.5 (models 2 and 6) or 325 15 (model 1) s of each trial were extracted, and each timepoint averaged first 326 within condition, then over all participants. In line with previous work (Korn et al., 327 2017), we fitted the difference between the mean over all CS+ and the mean over 328 all CS- trials. To avoid contamination of the PSR by overlapping US responses, we 329 only considered CS+ trials that were not reinforced by a US for RF1 that extended 330 beyond the CS-US interval. For RF2-6, we used all trials. At the request of an 331 anonymous reviewer, we compared this approach to standard peak-scoring 332 analysis. Specifically, we first extracted the preprocessed pupil size within each 333 trial from CS onset to US onset, which spans a duration of 5 seconds. Next, we 334 subtracted the baseline value from the pupil data. The baseline is defined as the 335 mean pupil size, excluding any missing values, during the 1-second period 336 preceding each CS onset. From this baseline-corrected pupil data we took the 337 maximum value as the peak-scored pupil dilation of a trial. Trials with unavailable 338 baseline (i.e., with all missing values during the 1-second pre-CS period) were 339 marked as missing data(Finke et al., 2021).

Table 2. Pupil size response functions

Model	Type	Specification
RF1	Gamma	= 3.534 , [s ⁻¹] = 1.946 , = -1.183 , [s] = 1.712
RF2	Gamma	= 30.781 , $[s^{-1}] = 0.042$, = 0.033 , $[s] = 0.506$
RF3	Gaussian	[s] = 1.784, = 0.246, = 0.035
RF4	Low-Pass Filtered	Bidirectional Butterworth 2 Hz Low-Pass Filter of the first 2.88 seconds of the mean difference of CS+ and CS-
RF5	Mixture of two Gammas	= 12.998, = 1.355, = 0.750, = 0.059, = 0.178, = 2.715, = 0.439

CS+:

Difference of the mean

Difference of the mean

Matern kernel: = 1.5, = 1.031 (sd = 0.000),

prediction of 20

White noise kernel: 0.922(sd = 0.005)

RF6 Gaussian Processes fit

to all CS+ and CS-

CS-:

trials separately

Matern kernel: = 1.5, = 1.031 (sd = 0.000),

White noise kernel: 0.903 (sd = 0.007)

- 341 Note: RF refers to response function.
- 342 2.3.5. Respiration amplitude (RAR)
- 343 To extract respiration amplitude from the raw time series, we used an established
- 344 algorithm implemented in PsPM which automatically detects respiration cycles
- 345 (Bach et al., 2016). The respiration amplitude values were interpolated at 10 Hz,
- and band-pass filtered with a bidirectional Butterworth filter, with 2-Hz low-pass
- and 0.01-Hz high-pass cutoffs. As for the other modalities, and in line with previous
- 348 work (Castegnetti et al., 2017), we fitted the difference between the mean over all
- 349 CS+ and the mean over all CS- trials with a gamma pdf (= 40.87, [s⁻¹] = 0.29, =
- 350 0.14, [s] = 2.09).
- 351 2.4. Statistical analysis
- 352 All data analysis was conducted in MATLAB R2021a (The Math Works,
- 353 https://www.mathworks.com/products/matlab.html) and statistical software R 4.2.1
- 354 (Ihaka & Gentleman, 1996).
- 355 2.4.1. Exclusion criteria
- 356 For SCR, HPR, and RAR, we excluded participants if their estimated data were
- outside three standard deviations around the corresponding condition group mean.
- 358 For PSR, trials with unreasonable pupil dilation estimates (estimates exceeding ±6
- 359 mm) (Spector, 1990) or with more than 50% missing values were excluded, and
- 360 participants were excluded if they had more than 50% trials removed. Please see
- 361 supplemental materials (Table S1) for a summary of number of excluded trials and
- 362 participants for each measure in each phase for each experiment.

363 2.4.2. Data analysis 364 For all models in which the RF overlapped with the US presentation (HPR, HPR, 365 RAR, PSR RF1), we retained data from CS- trials and non-reinforced CS+ trials 366 only (to avoid biasing the estimated CRs by the US response). Next, we obtained 367 condition-wise estimates by averaging data across all trials within each CS 368 condition. Finally, we performed pairwise t-tests to examine the CS+/CSdifference. 369 370 As the recall test was done without US reinforcement, CS+/CS- differences are 371 likely to extinguish over the course of the recall test. Thus, including all trials into 372 the analysis might reduce a CS+/CS- difference seen in early trials. On the other 373 hand, including fewer trials might increase the impact of trial-by-trial variation due 374 to experiment-unrelated factors, and the optimal balance is difficult to intuit. 375 Hence, for data available on a trial-by-trial basis, we approached this in a data-376 driven way by analysing the condition average over 1...n trials, with n ranging from 377 1 to the number of trials per condition. Similarly, at least for some observables, it 378 is speculated that CS-US association is learned relatively quickly, but that the 379 CS+/CS- differences might decay over time (Tzovara et al., 2018). Hence, we did a 380 similar analysis for the learning phase, excluding the first pair of trials. For SCR 381 and PSR BF1, where we retained only non-reinforced CS+ trials, we would average 382 over 1..n CS+ trials and 2..2n CS- trials, where n ranges from 1 to the number of 383 non-reinforced CS+ trials. For PSR (with the exception of BF1), CS+ refers to both 384 reinforced and non-reinforced CS+ trials, for which the estimated CR do not 385 overlap with US presentation. Finally, for observables unavailable on a trial-by-trial 386 basis, we analysed the first and the second half of the phases separately. 387 We computed effect sizes to compare and find the optimal psychophysiological 388 measure(s) for reward learning. For all models the Hedge's g was computed using 389 the following formula (Lakens, 2013).

391 2.5. Data and code accessibility

390

392 Anonymised data, experimental materials (stimuli and MATLAB scripts), and

393 scripts of data-analysis will be made available (on Zenodo and Open Science

394 Framework) for a revision, and will be made publicly available upon acceptance of

- 395 the manuscript. An updated heart period response function, fitted on data from
- 396 both experiments, is available in the PsPM toolbox from version 7 onwards as
- 397 pspm bf hprf rew (https://bachlab.github.io/pspm).

398 3. Results

399 3.1. Experiment 1

- 400 Grand means for the intra-trial time course, as well as the two relevant RF, are
- 401 shown in figure 2. In the learning phase, the condition difference between CS+ and
- 402 CS- exceeded our a priori effect-size threshold (Hedge's q > 0.5) for the HPR index
- 403 only (Table 3, figure 3). For PSR, indices from RF4 and RF5 were close to the
- 404 threshold with g-values around 0.4, while there was no apparent CS+/CS-
- 405 difference for SCR and RAR (Table 3). Notably, this analysis is biased for HPR, PSR
- and RAR because it is based on RF fitted to the same data sets. Finally, there was
- 407 no CS+/CS- difference in peak-scoring analysis of PSR. Analysis of trial-by-trial
- 408 responses revealed no subsets of trials that exceeded the threshold in any PSR
- 409 metric or SCR, and there were no additional insights from analysing first and
- 410 second half of the learning phase for HPR and SCR.
- 411 For the recall phase, we found an above-threshold condition difference between
- 412 CS+ and CS- for HPR (Table 3, figure 3). Because the RF was fit on data from the
- learning phase only, this was an unbiased analysis and therefore suggests that
- 414 participants indeed retained reward memory. When averaging over all trials, there
- 415 were no CS+/CS- differences in any other metric. However, trial-by-trial analysis of
- 416 PSR revealed large effects in the first part of the recall phase. The largest effect
- 417 size was achieved by PSR RF5 for the first 7 CS+ and CS- trials (g = 0.68) (figure
- 418 3). In SCR, effect sizes up to around q = 0.35 were observed in the first 3-4 CS+
- and CS- trials. See supplementary material for trial-by-trial results for all metrics
- 420 from the recall phase.
- 421 Table 3. Results of pairwise *t*-tests for HPR, SCR, PSR, and RAR

Phase	Condition Comparis on	HPR	SCR	PSR RF1	PSR RF2	PSR RF3	PSR RF
Learnin	CS+	7.69 (26.17)	0.96 (0.15)	0.01 (0.08)	0.05 (0.16)	0.05 (0.16)	0.10 (0.17)
g (Exp1)	CS-	-9.34 (16.73)	0.95 (0.11)	-0.02 (0.07)	0.02 (0.14)	0.03 (0.14)	0.05 (0.15)
	CS+ vs. CS-	t(36) = 3.51, p = .001**, q = 0.56	t(36) = 0.42, p = .68, q = 0.07		t(33) = 1.53,	<i>t</i> (33) = 1.19,	t(33) = 2.24, p = .03
		g – 0.50	g – 0.07	g = 0.27	g = 0.26	g = 0.20	g = 0.3
Recall (Exp1)	CS+	-6.42 (15.47)	0.93 (0.21)	-0.03 (0.07)	0.04 (0.14)	0.04 (0.15)	0.11 (0.16)
(LVh1)	CS-	-14.07 (14.51)	0.92 (0.18)	-0.03 (0.08)	0.14) 0.03 (0.10)	0.13) 0.03 (0.10)	0.16) 0.09 (0.15)
	CS+ vs. CS-	t(36) = 2.48, p = .02*, g = 0.40	t(36) = 0.50, p = .62, g = 0.08	` '	t(34) = 0.19,	t(34) = 0.24, p = .81, g = 0.04	t(34) = 0.91, p = .37, g = 0.1
Learnin g	CS+	16.57 (22.90)	0.97 (0.11)	0.02 (0.11)	0.03 (0.14)	0.03 (0.14)	0.06 (0.19)
(Exp2)	CS-	-3.29 (11.26)	0.99 (0.03)	0.01 (0.07)	0.01 (0.10)	0.01 (0.10)	0.04 (0.13)
	CS+ vs. CS-	t(32) = 4.56, p < .001***, g = 0.78	t(33) = -0.84, $p = .41$, $g = -0.14$	t(31) = 0.41, p = .68, g = 0.07	t(30) = 0.83,	t(30) = 1.23	t(31) = 0.76, p = .45 g = 0.1
Recall (Exp2)	CS+	1.66 (16.31)	0.93 (0.14)	-0.02 (0.06)	0.02 (0.12)	0.02 (0.12)	0.04 (0.14)

CS-	-7.96	0.97 (0.08)	-0.03	0.02	0.02	0.04
	(13.55)		(0.08)	(0.11)	(0.11)	(0.14)
CS+ vs.	t(32) =	t(32) =	t(31) =	t(31) =	t(31) =	t(31) =
CS-	3.26,	-1.67,	0.58,	0.08,	0.25,	0.13,
	p = .002**	p = .10,	p = .57,	p = .93,	p = .81,	p = .90
	g = 0.55	g = -0.28	g = 0.10	g = 0.01	g = 0.04	g = 0.0

Notes: In the Measure column, RF refers to response function; The numbers in the columns CS+ and CS- are group means with standard deviations inside the parentheses; In the t-value column, the numbers inside the parentheses are degrees of freedom; CS+ refers to both reinforced and non-reinforced CS+ trials in columns PSR RF2-7 only. *p < .05; **p < .01; ***p < .001. P-values are uncorrected and presented for illustration only; our a priori decision criterion to retain an index was the effect size Hedge's g value as shown above.

Figure 2. Responses to four modalities and relevant response functions. All panels show the condition differences between CS+ and CS- trials during learning for experiments 1 (pink) and 2 (blue). (A) HPR and corresponding RF (non-reinforced CS+ trials). (B) PSR (non-reinforced CS+ trials, used for RF1). (C) PSR (all CS+ trials, used for RF2-6 and peak scoring) and RF5. (D) SCR (non-reinforced CS+ trials), and (E) RAR (non-reinforced CS+ trials). Solid lines indicate mean and dotted lines represent ± SEM. Data from experiment 2 are shown for illustration only. The start of the X-axis represents trial onset (i.e., CS onset); US onset is after 5 s.

Figure 3. Condition-wise mean heart period responses for learning phase (A) and recall phase (B) in experiment 1, and learning phase (C) and recall phase (D) in experiment 2; condition-wise mean PSR (RF5) for recall phase (C) in experiment 1 with a subset of 7 trials, and recall phase (F) in experiment 2 with a subset of 7 trials. Note that CS+ refers to non-reinforced CS+ trials without US presence. The statistical test in A is biased (RF generated from the same data), but tests in B, D, and E are unbiased (RF generated from learning data in experiment 1). Dots represent individual condition-wise mean HPR (A, B, D, and D) and condition-wise mean PSR (C and F). Black crosses represent condition mean \pm SEM. *p < .05; **p < .01; ***p < .01 (uncorrected).

3.2. Experiment 2

We analysed experiment 2 with RF developed in experiment 1, so this represents an unbiased out-of-sample generalisation analysis. For HPR, the condition differences between CS+ and CS- were significant for learning and recall after Holm-Bonferroni correction for multiple comparison across two tests (learning and retention), see Table 3 and Figure 3 for details. For PSR, the effects observed in the learning phase of experiment 1 in RF4/5 were not replicated; effect sizes were g < 0.15 when averaging over all trials. The trial-by-trial analysis that yielded the largest effect size in experiment 1 (PSR RF5 for the first 7 CS+ and CS- trials) also yielded the largest effect size in experiment 2 (g = 0.41, p < .05, figure 3, see also

supplementary material for details. Trial-by-trial results observed for SCR in experiment 1 were not replicated in experiment 2.

3.3. Subjective ratings

475

Tables 4 displays the summary statistics for post-experiment questionnaire data in experiments 1 and 2. Overall, the data patterns are consistent across these two experiments. The contingency awareness and valence were higher for CS+ (vs. CS-) in both learning and recall phases, the arousal was larger for CS+ (vs. CS-) in the learning phase only.

Table 4. Summary statistics and results of paired *t*-tests for questionnaire data in experiments 1 and 2

Experiment	Phase	Condition Compariso n	Contingenc y Awareness (%)	Arousal Rating (%)	Valence Rating (%)
1	Learning	CS+	45.92 (32.66)	54.36 (29.41)	58.59 (22.38)
		CS-	10.85 (21.99)	26.12 (23.55)	38.80 (19.18)
		CS+ vs. CS-	t(36) = 17.50, p < .001***	t(36) = 10.36, p < .001****	t(36) = 3.28, $p < .01**$
1	Recall	CS+	48.18 (33.47)	2.99 (7.62)	35.28 (26.12)
		CS-	13.73 (19.44)	1.33 (4.53)	12.60 (14.75)
		CS+ vs. CS-	t(36) = $9.86,$ $p < .001***$	t(36) = 2.01, p = .05	t(36) = 4.59 , $p < .001**$
2	Learning	CS+	42.73	50.88	59.69

			(33.70)	(29.83)	(21.26)
		CS-	6.37 (11.42)	21.39 (14.35)	32.85 (18.05)
		CS+ vs. CS-	t(33) = $16.48,$ $p < .001***$	t(33) = 11.08, p < .001****	t(33) = 4.69, p < .001***
2	Recall	CS+	44.71 (33.61	1.12 (3.13)	31.35 (27.89)
		CS-	9.41 (24.08)	4.24 (12.87)	25.17 (21.84)
		CS+ vs. CS-	t(32) = 12.55, $p < .001****$	t(32) =82, $p = .42$	t(32) = 6.30, $p <$.001***

Notes: The numbers in the columns Contingency Awareness, Arousal Rating, and 483

484 Valence Rating are condition means and standard deviations inside the

parentheses. *p < .05; **p < .01; ***p < .001 (uncorrected). 485

4. Discussion

486

487

497

498

488 optimal quantification in humans remains unclear, in particular for recall after 489 overnight consolidation. Here, we pitched different CR against each other in the 490 same experimental paradigm. We used a rigorous exploration-confirmation 491 approach to establish the best psychophysiological indices for measuring reward 492 learning and memory retention over seven days. Our key finding is that among 493 candidate psychophysiological indices (based on HPR, SCR, PSR, and RAR), model-494 based HPR analysis distinguished CS+/CS- in the learning phase across both 495 experiments, with Hedge's g = 0.56 in experiment 1 and g = 0.78 in experiment 2. 496 It also distinguished CS+/CS- in the recall test after 7 days, with q = 0.40 in

Pavlovian reward conditioning is an important basic learning paradigm but its

experiment 1 and g = 0.55 in experiment 2. Furthermore, model-based PSR

analysis distinguished CS+/CS- in the recall phase with largest effect size when

- 499 averaging over 7 trials in experiment 1 (g = 0.69) and experiment 2 (g = 0.41).
- 500 Thus, HPR and PSR as analysed with our new response functions appear to be
- 501 replicable measures of classical reward conditioning and memory retention over 7
- 502 days.
- 503 4.1.1. HPR discriminated CS+/CS- difference in learning and recall
- 504 HPR has been examined in previous reward conditioning work, however with
- 505 conflicting results. Our present observation of reward-conditioned bradycardia
- replicates a previous study (Pietrock et al. 2019). This work employed a highly
- 507 similar Pavlovian reward conditioning paradigm, and analyzed HPR using PsPM's
- 508 general linear convolution model (GLM). In contrast, in other previous work,
- 509 cardiac responses did not discriminate CS+/CS- (Ebrahimi et al., 2019; Exner et al.,
- 510 2021; Hermann et al., 2000; Sayão et al., 2021; Wardle et al., 2018). There appear
- 511 two main differences between these studies and ours. First, these studies used
- 512 heart rate as the CR and/or analyzed HPR using different approaches (e.g., mean
- 513 change, heart index, and mean level) (Ebrahimi et al., 2019; Sayão et al., 2021;
- 514 Wardle et al., 2018). Compared to heart rate, HPR has been shown to linearly
- 515 relate to neural input into the heart and is therefore more likely to linearly relate
- 516 to psychological variables (Bach & Melinscak, 2020; Berntson et al., 1995). Also,
- 517 work on fear conditioning suggests that a model-based approach might be more
- 518 sensitive to discriminate CS+/CS- differences based on HPR than peak-scoring
- analysis (Castegnetti et al., 2016; Paulus et al., 2016). Hence, the observed null
- 520 results in these studies may be due to the selection of CR index. Second, in some
- 521 studies using odor as the US, a conditioning effect was not only absent for the
- 522 HPR, but also for any other psychophysiological measures (Exner et al., 2021;
- 523 Hermann et al., 2000). A potential interpretation is that participants simply did not
- learn, possibly due to reduced associability of CS and odour (Kokkola et al., 2019).
- 525 Another interesting question is whether reward and fear conditioning affect HPR
- 526 differently. Descriptively, the effect size for reward-conditioned HPR (Cohen's d =
- 527 0.79 in learning phase of experiment 2) is smaller than that of fear-conditioned
- 528 HPR (Cohen's d = 0.97) (Bach & Melinscak, 2020). Also, the response functions of
- 529 these two differ from one another (RF for reward conditioning: = 1.72, $[s^{-1}] = 0.14$,
- = 60.10, [s] = -17.61; RF for fear conditioning: = 48.5, $[s^{-1}] = 0.182$, = 1, [s] = 0.182
- 531 -7.36) (Figure 4). Compared to reward conditioning, the fear-conditioned responses

appear narrower and returns to baseline more quickly. This could suggest a more vigilant preparatory reaction to successive behavioral response, which might be evolutionarily adaptive (Andreatta & Pauli, 2015). Finally, there is evidence that fear-conditioned bradycardia is time-locked to US onset, that is, the onset of fear-conditioned bradycardia moves as the time point of possible US delivery changes after CS onset (Castegnetti et al., 2016). In the present work, CS-US interval was not varied, such that we could not investigate this question for reward conditioning. Overall, it remains unclear whether reward- and fear-conditioned HPR operate through different mechanisms. Fear-conditioned bradycardia has been linked to behavioural freezing (immobility), which might have adaptive value in certain defensive situations (Roelofs & Dayan, 2022), although we note other work has demonstrated that freezing can co-occur with tachycardia as well as with bradycardia (Signoret-Genest et al., 2023), such that this link remains speculative.

Figure 4. Heart period response function (normalised) with the same SOA (5 s) for reward and fear conditioning, respectively.

- 548 Our recall test after 7 days revealed retention of the conditioned HPR in both
- 549 experiments. To our best knowledge, no prior studies have assessed the retention
- of human reward learning memory after a delay of several days. The recall phase
- 551 can be viewed as an extinction training due to the lack of reinforcers. Hence, it is
- interesting that there appears to be only limited extinction for reward learning.
- 553 Several reasons might be plausible. First, previous research on fear learning found
- 554 that HPR is more resistant to extinction compared to SCR and saccadic scanpath
- length (Xia et al., 2021). It is possible that in the current paradigm, the number of
- 556 trials (96) is not sufficient to extinguish reward conditioning. Another potential
- 557 explanation is that HPR becomes habitual during learning and looses its
- 558 dependence on US outcome predictions (Pool et al., 2019).

559 4.1.2. SCR did not discriminate CS+/CS- difference in learning

- 560 Interestingly, we did not find evidence that SCR discriminated CS+/CS- difference
- during the learning phase, although this measure was indeed sensitive to reward
- 562 conditioning in most previous work (Andreatta & Pauli, 2015, 2019; Ebrahimi et al.,
- 563 2019; Klucken et al., 2019; Kruse et al., 2017, 2020; Tapia León et al., 2018; van
- den Akker et al., 2017; Wardle et al., 2018). Upon a closer look, it seems that the
- 565 US type and response quantification approach influenced whether SCR discerned
- 566 CS+/CS- difference. There were two main US types (primary reinforcers such as
- snacks, fruit juice; secondary reinforcers such as monetary reward) and two
- response quantification approaches (model-based approach such as
- 569 psychophysiological models, non-model-based approach such as through-to-peak
- approach) in previous work (Andreatta & Pauli, 2019; Ebrahimi et al., 2019; Kruse
- et al., 2020; van den Akker et al., 2017). All previous work employing non-model-
- 572 based approaches, particularly the through-to-peak and baseline-to-peak methods,
- 573 have found CS+/CS- difference in SCR, regardless of the US type (Andreatta &
- 574 Pauli, 2015, 2019; Klucken et al., 2019; Kruse et al., 2017, 2020; Tapia León et al.,
- 575 2018; Wardle et al., 2018). In contrast, research utilizing model-based approaches
- 576 (PsPM GLM and Ledalab), with primary and secondary reinforcers, presents mixed
- 577 evidence. Among these, only one study out of five (including the present work) has
- 578 found a difference in SCR between CS+ and CS- (Ebrahimi et al., 2017, 2019;
- 579 Pietrock et al., 2019; van den Akker et al., 2017). Collectively, these findings could
- suggest that model-based approaches may be less effective in detecting CS+/CS-

- 581 differences in SCR, for example because they did not assume the correct
- 582 underlying model of SCR generation. However, the heterogeneity of peak-scoring
- 583 schemes in previous work and the limited number of studies warrant caution.
- 584 Another interpretation is that different primary reinforcers (fruit juice in the
- 585 present work, snacks in some previous work) elicit different CR, potentially due to
- 586 differences in arousal elicited by the US.
- 587 4.1.3. PSR discriminates CS+/CS- difference in recall but not during
- 588 learning
- 589 Unexpectedly, we did not find replicable CS+/CS- difference based on PSR during
- 590 learning (Bray et al., 2008; Pietrock et al., 2019; Pool et al., 2019; Prévost et al.,
- 591 2013; Seymour et al., 2007), despite our reward-conditioning paradigm being
- 592 closely modelled on Pietrock et al. (2019), who did report a difference. There are
- 593 two main differences between our study and theirs. One is the trial-by-trial
- 594 collection of US expectancy ratings in their study. This might strengthen
- 595 contingency awareness, which in turn could affect PSR (Van Dessel et al., 2019).
- 596 The second is the CS sensory modality. Pietrock et al. (2019) used compound CS
- 597 (i.e., visual and auditory stimuli presented simultaneously). Finally, other previous
- 598 reward-conditioning studies that revealed CS+/CS- difference for PSR employed a
- reinforcement rate larger than the 50% used here (O'Doherty et al., 2003; Pool et
- 600 al., 2019; Prévost et al., 2013; Reinhard & Lachnit, 2002; Schad et al., 2020). On the
- other hand, PSR distinguished CS+/CS- early during recall, with the largest effect
- size in both experiments when averaging over 7 CS+ and 7 CS- trials. How this
- discrepancy between initial learning and recall can be reconciled is unclear at this
- 604 point.
- 605 4.2. Future directions
- 606 The present work raises several important questions. First, it remains unclear how
- 607 reward and fear conditioned HPR differ from each other, and what their adaptive
- 608 value might be. Second, variability of paradigm characteristics may influence the
- 609 reliability of measurement. Future work may systematically examine the roles of
- 610 these characteristics (e.g., reinforcement rate, US expectancy, type of CS and US
- 611 stimuli, SOA, etc.) in reward learning. Third, in both our experiments, the effect
- 612 size of the HPR largely decreased from the learning to the memory retention

613614615	phase. On the other hand, PSR robustly differentiated CS+/CS- during recall but not early learning. Hence future research could investigate the temporal dynamics of PSR and HPR as markers of reward learning.
616	4.3. Conclusion
617618619	In conclusion, the current study explored and validated a human Pavlovian reward conditioning paradigm and HPR as a robust marker of reward learning and retention of reward memory, as well as PSR as a robust marker of reward memory
620	only. These findings may be beneficial for studies that involve reward learning and
621	memory processes. Our work may also facilitate the identification of individual's
622	exhibiting atypical reward learning patterns, thereby enabling the development of
623	targeted treatment strategies.
624	Acknowledgements
625	This work was supported by the Clinical Research Priority Program of the
626	University of Zurich for the CRPP "Synapse & Trauma" and the Economic and
627	Social Research Council (ES/W000776/1). Dominik R. Bach receives funding from
628	the European Research Council (ERC) under the European Union's Horizon 2020
629	research and innovation programme (ERC-2018 CoG-816564 ActionContraThreat).
630	The Wellcome Centre for Human Neuroimaging is funded by core funding from the
631	Wellcome (203147/Z/16/Z). The Hertz Chair for Artificial Intelligence and
632 633	Neuroscience in the Transdisciplinary Research Area Life and Health, Bonn University, is funded as part of the Excellence Strategy of the German federal and
634	state governments.
001	State governments.
635	ORCID
636	Yanfang Xia, https://orcid.org/0000-0002-9885-1748
637	Huaiyu Liu, https://orcid.org/0009-0006-5314-7008
638	Dominik R. Bach, https://orcid.org/0000-0003-3717-2036

- Reference 639 Andreatta, M., & Pauli, P. (2015). Appetitive vs. Aversive conditioning in humans. 640 641 Frontiers in Behavioral Neuroscience, 9. 642 https://www.frontiersin.org/articles/10.3389/fnbeh.2015.00128 643 Andreatta, M., & Pauli, P. (2019). Generalization of appetitive conditioned 644 responses. Psychophysiology, 56(9), e13397. 645 https://doi.org/10.1111/psyp.13397 646 Bach, D. R. (2014). A head-to-head comparison of SCRalyze and Ledalab, two 647 model-based methods for skin conductance analysis. Biological Psychology, 648 103, 63-68. https://doi.org/10.1016/j.biopsycho.2014.08.006 649 Bach, D. R. (2023). Psychometrics in experimental psychology: A case for 650 calibration. Psychonomic Bulletin & Review. https://doi.org/10.3758/s13423-651 023-02421-z 652 Bach, D. R., Castegnetti, G., Korn, C. W., Gerster, S., Melinscak, F., & Moser, T.
- (2018). Psychophysiological modeling: Current state and future directions. *Psychophysiology*, 55(11), e13214. https://doi.org/10.1111/psyp.13209
 Bach, D. R., Daunizeau, J., Friston, K. J., & Dolan, R. J. (2010). Dynamic causal modelling of anticipatory skin conductance responses. *Biological Psychology*, 85(1), 163–170. https://doi.org/10.1016/j.biopsycho.2010.06.007
 Bach, D. R., Flandin, G., Friston, K. J., & Dolan, R. J. (2010). Modelling event-related skin conductance responses. *International Journal of*

Psychophysiology, 75(3), 349-356.

https://doi.org/10.1016/j.ijpsycho.2010.01.005

660

- Bach, D. R., Gerster, S., Tzovara, A., & Castegnetti, G. (2016). A linear model for
- 663 event-related respiration responses. Journal of Neuroscience Methods, 270,
- 664 147-155. https://doi.org/10.1016/j.jneumeth.2016.06.001
- Bach, D. R., & Melinscak, F. (2020). Psychophysiological modelling and the
- measurement of fear conditioning. Behaviour Research and Therapy, 127,
- 667 103576. https://doi.org/10.1016/j.brat.2020.103576
- Bach, D. R., Melinščak, F., Fleming, S. M., & Voelkle, M. C. (2020). Calibrating the
- experimental measurement of psychological attributes. *Nature Human*
- 670 Behaviour, 4(12), Article 12. https://doi.org/10.1038/s41562-020-00976-8
- 671 Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1995). The metrics of cardiac
- chronotropism: Biometric perspectives. *Psychophysiology*, 32(2), 162–171.
- 673 https://doi.org/10.1111/j.1469-8986.1995.tb03308.x
- Bray, S., Rangel, A., Shimojo, S., Balleine, B., & O'Doherty, J. P. (2008). The Neural
- Mechanisms Underlying the Influence of Pavlovian Cues on Human Decision
- 676 Making. *Journal of Neuroscience*, 28(22), 5861–5866.
- 677 https://doi.org/10.1523/JNEUROSCI.0897-08.2008
- 678 Cacioppo, J. T., Tassinary, L. G., & Berntson, G. (2007). Handbook of
- 679 *Psychophysiology*. Cambridge University Press.
- 680 Castegnetti, G., Tzovara, A., Staib, M., Gerster, S., & Bach, D. R. (2017). Assessing
- fear learning via conditioned respiratory amplitude responses.
- 682 *Psychophysiology*, *54*(2), 215–223. https://doi.org/10.1111/psyp.12778
- 683 Castegnetti, G., Tzovara, A., Staib, M., Paulus, P. C., Hofer, N., & Bach, D. R.
- 684 (2016). Modeling fear-conditioned bradycardia in humans.
- 685 *Psychophysiology*, *53*(6), 930–939. https://doi.org/10.1111/psyp.12637

- 686 Ebrahimi, C., Koch, S. P., Friedel, E., Crespo, I., Fydrich, T., Ströhle, A., Heinz, A.,
- & Schlagenhauf, F. (2017). Combining D-cycloserine with appetitive
- extinction learning modulates amygdala activity during recall. *Neurobiology*
- 689 of Learning and Memory, 142, 209–217.
- 690 https://doi.org/10.1016/j.nlm.2017.05.008
- 691 Ebrahimi, C., Koch, S. P., Pietrock, C., Fydrich, T., Heinz, A., & Schlagenhauf, F.
- 692 (2019). Opposing roles for amygdala and vmPFC in the return of appetitive
- 693 conditioned responses in humans. *Translational Psychiatry*, 9(1), Article 1.
- 694 https://doi.org/10.1038/s41398-019-0482-x
- 695 Exner, A., Tapia León, I., Mueller, E. M., & Klucken, T. (2021). Cardiac response in
- aversive and appetitive olfactory conditioning: Evidence for a valence-
- independent CS-elicited bradycardia. *Psychophysiology*, *58*(11), e13912.
- 698 https://doi.org/10.1111/psyp.13912
- 699 Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible
- statistical power analysis program for the social, behavioral, and biomedical
- sciences. Behavior Research Methods, 39(2), 175-191.
- 702 https://doi.org/10.3758/BF03193146
- 703 Finke, J. B., Roesmann, K., Stalder, T., & Klucken, T. (2021). Pupil dilation as an
- index of Pavlovian conditioning. A systematic review and meta-analysis.
- 705 Neuroscience & Biobehavioral Reviews, 130, 351-368.
- 706 https://doi.org/10.1016/j.neubiorev.2021.09.005
- 707 Friston, K. J., Mechelli, A., Turner, R., & Price, C. J. (2000). Nonlinear Responses in
- 708 fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics.
- 709 NeuroImage, 12(4), 466-477. https://doi.org/10.1006/nimg.2000.0630

- 710 Gerster, S., Namer, B., Elam, M., & Bach, D. R. (2018). Testing a linear time
- invariant model for skin conductance responses by intraneural recording
- and stimulation. *Psychophysiology*, *55*(2), e12986.
- 713 https://doi.org/10.1111/psyp.12986
- 714 Hayes, T. R., & Petrov, A. A. (2016). Mapping and correcting the influence of gaze
- position on pupil size measurements. *Behavior Research Methods, 48*(2),
- 716 510–527. https://doi.org/10.3758/s13428-015-0588-x
- 717 Hermann, C., Ziegler, S., Birbaumer, N., & Flor, H. (2000). Pavlovian aversive and
- appetitive odor conditioning in humans: Subjective, peripheral, and
- 719 electrocortical changes. *Experimental Brain Research*, 132(2), 203-215.
- 720 https://doi.org/10.1007/s002210000343
- 721 Ihaka, R., & Gentleman, R. (1996). R: A Language for Data Analysis and Graphics.
- 722 Journal of Computational and Graphical Statistics, 5(3), 299–314.
- 723 https://doi.org/10.1080/10618600.1996.10474713
- 724 Keiflin, R., & Janak, P. H. (2015). Dopamine Prediction Errors in Reward Learning
- and Addiction: From Theory to Neural Circuitry. *Neuron*, 88(2), 247–263.
- 726 https://doi.org/10.1016/j.neuron.2015.08.037
- 727 Klucken, T., Kruse, O., Klein, S., Kampa, M., Tapia León, I., & Stark, R. (2019). The
- relationship between neuroticism and appetitive conditioning. *Neurobiology*
- 729 of Learning and Memory, 164, 107068.
- 730 https://doi.org/10.1016/j.nlm.2019.107068
- 731 Kokkola, N. H., Mondragón, E., & Alonso, E. (2019). A double error dynamic
- asymptote model of associative learning. *Psychological Review*, 126(4), 506-
- 733 549. https://doi.org/10.1037/rev0000147

- 734 Korn, C. W., Staib, M., Tzovara, A., Castegnetti, G., & Bach, D. R. (2017). A pupil
- size response model to assess fear learning. *Psychophysiology*, 54(3), 330-
- 736 343. https://doi.org/10.1111/psyp.12801
- 737 Kret, M. E., & Sjak-Shie, E. E. (2019). Preprocessing pupil size data: Guidelines
- and code. Behavior Research Methods, 51(3), 1336-1342.
- 739 https://doi.org/10.3758/s13428-018-1075-y
- 740 Kruse, O., Klein, S., Tapia León, I., Stark, R., & Klucken, T. (2020). Amygdala and
- nucleus accumbens involvement in appetitive extinction. *Human Brain*
- 742 *Mapping*, 41(7), 1833–1841. https://doi.org/10.1002/hbm.24915
- 743 Kruse, O., Tapia León, I., Stark, R., & Klucken, T. (2017). Neural correlates of
- appetitive extinction in humans. Social Cognitive and Affective
- 745 Neuroscience, 12(1), 106-115. https://doi.org/10.1093/scan/nsw157
- 746 Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative
- science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology,
- 748 *4*.
- 749 https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2013.
- 750 00863
- 751 Lonsdorf, T. B., Menz, M. M., Andreatta, M., Fullana, M. A., Golkar, A., Haaker, J.,
- Heitland, I., Hermann, A., Kuhn, M., Kruse, O., Meir Drexler, S., Meulders,
- A., Nees, F., Pittig, A., Richter, J., Römer, S., Shiban, Y., Schmitz, A.,
- 754 Straube, B., ... Merz, C. J. (2017). Don't fear 'fear conditioning':
- 755 Methodological considerations for the design and analysis of studies on
- human fear acquisition, extinction, and return of fear. *Neuroscience &*
- 757 Biobehavioral Reviews, 77, 247-285.
- 758 https://doi.org/10.1016/j.neubiorev.2017.02.026

- 759 Martin-Soelch, C., Linthicum, J., & Ernst, M. (2007). Appetitive conditioning:
- Neural bases and implications for psychopathology. *Neuroscience &*
- 761 *Biobehavioral Reviews, 31*(3), 426-440.
- 762 https://doi.org/10.1016/j.neubiorev.2006.11.002
- 763 O'Doherty, J. P., Dayan, P., Friston, K., Critchley, H., & Dolan, R. J. (2003).
- Temporal Difference Models and Reward-Related Learning in the Human
- 765 Brain. Neuron, 38(2), 329-337. https://doi.org/10.1016/S0896-
- 766 6273(03)00169-7
- 767 Ojala, K. E., Tzovara, A., Poser, B. A., Lutti, A., & Bach, D. R. (2022). Asymmetric
- representation of aversive prediction errors in Pavlovian threat conditioning.
- 769 *NeuroImage, 263,* 119579.
- 770 https://doi.org/10.1016/j.neuroimage.2022.119579
- 771 Pan, J., & Tompkins, W. J. (1985). A Real-Time QRS Detection Algorithm. IEEE
- 772 Transactions on Biomedical Engineering, BME-32(3), 230–236. IEEE
- 773 Transactions on Biomedical Engineering.
- 774 https://doi.org/10.1109/TBME.1985.325532
- Paulus, P. C., Castegnetti, G., & Bach, D. R. (2016). Modeling event-related heart
- period responses. *Psychophysiology*, *53*(6), 837–846.
- 777 https://doi.org/10.1111/psyp.12622
- 778 Pavlov, I. P. (1927). Conditioned reflexes: An investigation of the physiological
- 779 *activity of the cerebral cortex* (pp. xv, 430). Oxford Univ. Press.
- 780 Pietrock, C., Ebrahimi, C., Katthagen, T. M., Koch, S. P., Heinz, A., Rothkirch, M.,
- 581 & Schlagenhauf, F. (2019). Pupil dilation as an implicit measure of
- appetitive Pavlovian learning. *Psychophysiology*, *56*(12).
- 783 https://doi.org/10.1111/psyp.13463

- Pollatos, O., Herbert, B. M., Matthias, E., & Schandry, R. (2007). Heart rate
- response after emotional picture presentation is modulated by interoceptive
- awareness. *International Journal of Psychophysiology*, 63(1), 117–124.
- 787 https://doi.org/10.1016/j.ijpsycho.2006.09.003
- 788 Pool, E. R., Pauli, W. M., Kress, C. S., & O'Doherty, J. P. (2019). Behavioural
- evidence for parallel outcome-sensitive and outcome-insensitive Pavlovian
- learning systems in humans. *Nature Human Behaviour, 3*(3), Article 3.
- 791 https://doi.org/10.1038/s41562-018-0527-9
- 792 Prévost, C., McNamee, D., Jessup, R. K., Bossaerts, P., & O'Doherty, J. P. (2013).
- 793 Evidence for Model-based Computations in the Human Amygdala during
- Pavlovian Conditioning. *PLOS Computational Biology*, *9*(2), e1002918.
- 795 https://doi.org/10.1371/journal.pcbi.1002918
- 796 Reinhard, G., & Lachnit, H. (2002). Differential conditioning of anticipatory
- 797 pupillary dilation responses in humans. *Biological Psychology*, 60(1), 51-68.
- 798 https://doi.org/10.1016/S0301-0511(02)00011-X
- 799 Roelofs, K., & Dayan, P. (2022). Freezing revisited: Coordinated autonomic and
- central optimization of threat coping. *Nature Reviews Neuroscience*, 23(9),
- 801 Article 9. https://doi.org/10.1038/s41583-022-00608-2
- 802 Sayão, A., Alves, H., Furukawa, E., Schultz Wenk, T., Cagy, M., Gutierrez-Arango,
- 803 S., Tripp, G., & Caparelli-Dáquer, E. (2021). Development of a Classical
- Conditioning Task for Humans Examining Phasic Heart Rate Responses to
- Signaled Appetitive Stimuli: A Pilot Study. Frontiers in Behavioral
- 806 Neuroscience, 15.
- https://www.frontiersin.org/articles/10.3389/fnbeh.2021.639372

808 Schad, D. J., Rapp, M. A., Garbusow, M., Nebe, S., Sebold, M., Obst, E., Sommer, 809 C., Deserno, L., Rabovsky, M., Friedel, E., Romanczuk-Seiferth, N., 810 Wittchen, H.-U., Zimmermann, U. S., Walter, H., Sterzer, P., Smolka, M. N., 811 Schlagenhauf, F., Heinz, A., Dayan, P., & Huys, Q. J. M. (2020). Dissociating 812 neural learning signals in human sign- and goal-trackers. Nature Human 813 Behaviour, 4(2), Article 2. https://doi.org/10.1038/s41562-019-0765-5 Seymour, B., Daw, N., Dayan, P., Singer, T., & Dolan, R. (2007). Differential 814 815 Encoding of Losses and Gains in the Human Striatum. *Journal of* 816 Neuroscience, 27(18), 4826-4831. https://doi.org/10.1523/JNEUROSCI.0400-817 07.2007 818 Signoret-Genest, J., Schukraft, N., L. Reis, S., Segebarth, D., Deisseroth, K., & 819 Tovote, P. (2023). Integrated cardio-behavioral responses to threat define 820 defensive states. Nature Neuroscience, 26(3), 447-457. 821 https://doi.org/10.1038/s41593-022-01252-w 822 Spector, R. H. (1990). The Pupils. In H. K. Walker, W. D. Hall, & J. W. Hurst (Eds.), 823 Clinical Methods: The History, Physical, and Laboratory Examinations (3rd 824 ed.). Butterworths. http://www.ncbi.nlm.nih.gov/books/NBK381/ Stussi, Y., Delplangue, S., Coraj, S., Pourtois, G., & Sander, D. (2018). Measuring 825 826 Pavlovian appetitive conditioning in humans with the postauricular reflex. 827 Psychophysiology, 55(8), e13073. https://doi.org/10.1111/psyp.13073 828 Tapia León, I., Kruse, O., Stalder, T., Stark, R., & Klucken, T. (2018). Neural 829 correlates of subjective CS/UCS association in appetitive conditioning. 830 Human Brain Mapping, 39(4), 1637-1646. 831 https://doi.org/10.1002/hbm.23940

832	Tzovara, A., Korn, C. W., & Bach, D. R. (2018). Human Pavlovian fear conditioning
833	conforms to probabilistic learning. PLOS Computational Biology, 14(8),
834	e1006243. https://doi.org/10.1371/journal.pcbi.1006243
835	van den Akker, K., Nederkoorn, C., & Jansen, A. (2017). Electrodermal responses
836	during appetitive conditioning are sensitive to contingency instruction
837	ambiguity. International Journal of Psychophysiology, 118, 40-47.
838	https://doi.org/10.1016/j.ijpsycho.2017.06.004
839	Van Dessel, P., Hughes, S., & De Houwer, J. (2019). How Do Actions Influence
840	Attitudes? An Inferential Account of the Impact of Action Performance on
841	Stimulus Evaluation. Personality and Social Psychology Review, 23(3), 267-
842	284. https://doi.org/10.1177/1088868318795730
843	Wardle, M. C., Lopez-Gamundi, P., & Flagel, S. B. (2018). Measuring appetitive
844	conditioned responses in humans. Physiology & Behavior, 188, 140-150.
845	https://doi.org/10.1016/j.physbeh.2018.02.004
846	Wehrli, J. M., Xia, Y., Meister, L., Tursunova, S., Kleim, B., Bach, D. R., &
847	Quednow, B. B. (2024). Forget me not: The effect of doxycycline on human
848	declarative memory. European Neuropsychopharmacology, 89, 1-9.
849	https://doi.org/10.1016/j.euroneuro.2024.08.006
850	Wehrli, J. M., Xia, Y., Offenhammer, B., Kleim, B., Müller, D., & Bach, D. R. (2023).
851	Effect of the Matrix Metalloproteinase Inhibitor Doxycycline on Human
852	Trace Fear Memory. eNeuro, 10(2). https://doi.org/10.1523/ENEURO.0243-
853	22.2023
854	Xia, Y., Melinscak, F., & Bach, D. R. (2021). Saccadic scanpath length: An index for
855	human threat conditioning. Behavior Research Methods, 53(4), 1426-1439.
856	https://doi.org/10.3758/s13428-020-01490-5

857	Xia, Y., Wehrli, J., Abivardi, A., Hostiuc, M., Kleim, B., & Bach, D. R. (2024).
858	Attenuating human fear memory retention with minocycline: A randomized
859	placebo-controlled trial. Translational Psychiatry, 14(1), Article 1.
860	https://doi.org/10.1038/s41398-024-02732-2
861	Xia, Y., Wehrli, J., Gerster, S., Kroes, M., Houtekamer, M., & Bach, D. (2022).
862	Measuring human context fear conditioning and retention after
863	consolidation. PsyArXiv. https://doi.org/10.31234/osf.io/ypu4j
864	