Assembly

JOHNSON COUNTER

Manoj Chavva- FWC22055

CONTENTS

I	Components	1
II	Introduction	1
III	Circuit Diagram	1
IV	Procedure	1
V	Truth Table	2

Abstract—This Manual shows the design and Implementation of four bit Johnson counter.

I. COMPONENTS

S.No	Component	Number		
1.	Arduino	1		
2.	Bread Board	1		
3.	Jumper Wires(M-M)	6		
4.	LED	4		

II. INTRODUCTION

- 1) Johnson counters are used to store or process or count the number of events occurred within the circuit.
- 2) It is designed with a group of flip-flops, where the inverted output from the last flip-flop is connected to the input of the first flip-flop.
- 3) In Johnson counter
 No. of states = No. of flip-flop used
 Number of used states=2n
 Number of unused states=2n 2*n
- 4) Here, the functionality of D flip flop is used for the program.

III. CIRCUIT DIAGRAM

1

- 1) The inverted output of the last flip-flop 'Qn' is fed back to the first flip-flop in the sequence bit pattern.
- 2) The counter registers cycles in a closed-loop i.e circulates within the circuit.

Fig. 1: Four bit Johnson Counter

- Reset pin acts as an on/off switch. So, the flip-flops can be enabled by clicking the Reset switch.
- 4) CLK pin is used to observe the changes in the output of the flip-flops.

IV. PROCEDURE

- 1) Connect the 4 LED's and Aurdino according to table I
- 2) Observe the states of LED and verify the truth table using the code from the link.

Arduino	D2	D3	D4	D5	GND
LED's	LED1	LED2	LED3	LED4	

TABLE I: Connection Table

URL – https://github.com/ManojChavva/FWC/blob/main/Assembly/john.asm

Fig: 2 Sequential Circuit

V. TRUTH TABLE

CLK	D1	D2	D3	D4	Q1	Q2	Q3	Q4
0	0	0	0	0	0	0	0	0
1	1	0	0	0	1	0	0	0
2	1	1	0	0	1	1	0	0
3	1	1	1	0	1	1	1	0
4	1	1	1	1	1	1	1	1
5	0	1	1	1	0	1	1	1
6	0	0	1	1	0	0	1	1
7	0	0	0	1	0	0	0	1

Table II: Truth Table.

- The above table state that
- 1) The counter produces the output 0000 when there is no clock input passed(0).
- 2) The counter produces the output 1000 when the 1st clock pulse is passed to the flip flops.
- 3) The counter produces the output 1100 when the 2nd clock pulse is passed to the flip flops.
- 4) The counter produces the output 1110 when the 3rd clock pulse is passed to the flip flops.
- 5) The counter produces the output 1111 when the 4th clock pulse is passed to the flip flops.
- 6) The counter produces the output 0111 when the 5th clock pulse is passed to the flip flops.
- 7) The counter produces the output 0011 when the 6th clock pulse is passed to the flip flops.
- 8) The counter produces the output 0001 when the 7th clock pulse is passed to the flip flops.

CONCLUSION

Thus the Johnson counter designed and Implemented.