KDT 자율주행트랙

실습에서 사용되는 개념 정리

[참고 자료]

Encoder-Decoder 구조란?

하나의 입력을 받아 요약(인코딩)하고, 그 요약을 기반으로 새로운 출력을 생성(디코딩)하는 구조

RNN 이란?

Recurrent Neural Network

- 시퀀스 데이터를 처리하는 신경망
- SimpleRNN은 그 중 가장 기본적인 RNN 구조로, 연속된 데이터를 처리함
 - 예: 단어 시퀀스, 시간 데이터 등

Embedding

단어(또는 정수)를 고정된 크기의 dense vector로 변환해주는 레이어

구성 요소	설명
input_dim	단어 집합 크기 사용할 단어의 개수
output_dim	임베딩 차원 출력 벡터의 차원
input_length	입력 시퀀스의 길이

Embedding Layer 예시 코드

- 원-핫 인코딩은 희소(sparse)하고 차원이 커져 계산 비효율적임
- Embedding은 각 단어를 **의미 기반 벡터로 압축**해서 표현
- 학습 과정에서 벡터의 의미가 자동으로 학습됨

• 모델 구성 예시

- input_dim : 1000 (0부터 999까지 총 1000개의 인덱스 사용)
- output_dim : 64 (각 단어를 64차원 벡터로 변환)
- input_length : 10 (각 문장은 10개의 정수로 구성됨)

```
# 라이브러리 import
import tensorflow as tf
from tensorflow.keras.layers import Embedding
# 모델 구성
embedding_layer = Embedding(
    input_dim = 1000,
    output_dim = 64
    input_length = 10
```

SimpleRNN

TensorFlow(Keras)에서 제공하는 Vanilla RNN의 구현 클래스 이름

구성 요소	설명
units	RNN 셀의 은닉 상태(hidden state) 크기 출력 차원
activation	RNN 내부에서 사용하는 상태 벡터의 크기(기본 : tahn)
use_bias	bias 사용 여부 (기본 : True)
dropout	입력에 적용할 드롭아웃 비율
input_shape	(timesteps, features) 형태의 전체 입력 구조
return_state	마지막 hidden state 반환 여부 True이면 (출력, 상태) 형태로 반환 Encoder에서 주로 사용
return_sequences	전체 시퀀스 출력 여부 True면 모든 시점 출력, False면 마지막 시점만 Decoder에서 주로 사용

SimpleRNN을 활용한 모델 구성

- model=Sequential()을 통해
 내부적으로 **빈 레이어 리스트를 가진 모델**을 생성
- 그 다음 model.add(...)를 통해 순서대로 Layer 하나씩 추가
- 모델 구성
 - units (hidden state의 크기): 16
 - input_shape : (10, 1)

```
# 라이브러리 import
import tensorflow as tf
from tensorflow.keras import Sequential
from tensorflow.keras.layers import SimpleRNN
# 모델 구성
model = Sequential()
model.add(SimpleRNN(16, input_shape = (10, 1)))
```

Dense

모든 입력 노드가 모든 출력 노드와 연결되는 신경망의 기본 구조

구성 요소	설명
units	출력 뉴런(노드)의 수
activation	출력에 적용할 활성화 함수
use_bias	bias 사용 여부 (기본 : True)
kernel_initializer	가중치 초기화 방식
bias_initializer	bias 초기화 방식
input_shape	입력 형태 (Sequential 모델의 첫 층일 때 필요)

Dense Layer 활용 예시

- model=Sequential()을 통해 내부적으로 **빈 레이어 리스트를 가진 모델**을 생성
- 그 다음 model.add(...)를 통해 순서대로 Layer 하나씩 추가
- SimpleRNN 구성
 - units (hidden state의 크기): 16
 - input_shape : (10, 1)
- Dense 구성
 - 출력 노드 개수 : 1
 - activation (활성화 함수) : softmax

```
# 라이브러리 import
import tensorflow as tf
from tensorflow.keras import Sequential
from tensorflow.keras.layers import SimpleRNN, Dense
#모델 구성
model = Sequential()
model.add(SimpleRNN(16, input_shape = (10, 1)))
model.add(Dense(1, activation = "softmax"))
```

Encoder-Decoder 구현

• Encoder 구성

• units (hidden state의 크기): 16

• return_state : True

• input_shape : (10, 1)

• Decoder 구성

• units (hidden state의 크기): 16

• return_sequences : True

input_shape : (30, 1)

• Dense 구성

• 출력 노드 개수 : 5

• activation (활성화 함수) : softmax

```
# 라이브러리 import
import tensorflow as tf
from tensorflow.keras import Sequential
from tensorflow.keras.layers import SimpleRNN, Dense
class myModel(Model) :
      def __init__(self) :
           super.__init__()
           # Encoder 구성
            self.encoder = SimpleRNN(
                 16, return_state = True, input_shape=(10, 1))
           # Decoder 구성
            self.decoder = SimpleRNN(
                 16, return_sequences = True, input_shape=(30, 1)))
           # Dense 구성
           self.dense = Dense(5, activation = "softmax")
```

Encoder-Decoder 구현

call 메서드 구현

- encoder_input : 인코더에 들어가는 입력
- decoder_input : 디코더에 들어가는 입력
- Encoder 실행
 - 반환값: 전체 출력 시퀀스, 마지막 hidden state
 - → encoder의 return_state=True로 설정했기 때문
- Decoder 실행
 - initial_state : hidden_state
 - → encoder의 마지막 hidden state를 사용
 - → initial_state는 list 형식으로 전달되어야 함

```
# call 메서드 구현
def call(self, encoder_input, decoder_input):
    # Encoder 실행
    _, hidden_state = self.encoder(encoder_input)
    # Decoder 실행
    decoder_output = self.decoder(
         decoder_input, initial_state=[hidden_state])
    # 단어 예측, 분류, 회귀 등 최종 출력이 필요한 경우
    # Dense Layer 필요
    outputs = self.dense(decoder_output)
    return outputs
```

compile()

모델을 학습시키기 위해 최적화 방법, 손실 함수, 평가지표 등을 설정하는 함수

구성 요소	설명
optimizer	최적화 방법 가중치를 업데이트하는 방법 (학습 방식)
loss	손실 함수 모델이 얼마나 틀렸는지 계산하는 함수
metrics	평가 지표 입력 형태 (Sequential 모델의 첫 층일 때 필요)
(optimizer 설정) learning_rate	학습률 가중치를 얼마나 빠르게 업데이트할지를 결정

모델 학습 세팅 예시

• optimizer : Adam

• learning_rate : 0.005

• loss: Mean Squared Error (MSE)

• metrics : accuracy (정확도)

```
# 라이브러리 import
import tensorflow as tf
from tensorflow.keras.optimizers import Adam
# 모델 학습 세팅
model.compile(
    optimizer = Adam(0.005),
   loss = 'mse',
   metrics = ['accuracy']
```

fit() 입력 데이터와 정답을 주고, 설정한 epoch 수만큼 모델을 반복 학습시킴

구성 요소	설명
X	입력 데이터 (features)
y	정답 데이터 (labels)
batch_size	몇 개씩 데이터를 묶어 학습할지
epochs	전체 데이터셋을 몇 번 반복 학습할지
shuffle	매 epoch마다 데이터를 섞을지
validation_data	검증 데이터 (x_val, y_val)
verbose	출력 로그 형태 (0 : 출력 X, 1 : 진행 바 형태로 출력, 2 : epoch별 간략한 로그 출력)

모델 학습 실행 예시

• 학습 데이터 : x_train, y_train

• batch_size : 32 (데이터를 32개씩 묶어서 학습)

• epochs : 20 (총 20번 학습)

validation_data

• (x_val, y_val) : 검증 데이터로 x_val과 y_val을 사용

• **shuffle**: True (매 epoch마다 데이터를 섞음)

• verbose : 1 (출력을 진행 바 형태로 출력)

```
# 모델 학습 실행
model.fit(
    x_train, y_train,
    batch_size = 32,
    epochs = 20,
    validation_data = (x_val, y_val),
    shuffle = True,
    verbose = 1
```