MCQ Practice sheet

Unit 45

Set1

1. U=x+y, x=t, $y=t^2$, find dU/dt

+2 C. T

D. 2-t

a. 1+2t b. t+2 2. If $z=x^3+y^3$ -3axy, find $\frac{\partial z}{\partial x}$

a. $3x^2$ -3ay b. $3x^2$ +3ay c. x^2 -3ay d. none of these

3. If $u = \frac{x+y}{\sqrt{x}+\sqrt{y}}$, which of the following is correct

a. u is homogeneous function with degree 1/2

b. u is not homogeneous function

c. u is homogeneous function with degree 1

d. u is homogeneous function with degree -1/2

4. If $\log u = \frac{x+y}{\sqrt{x}+\sqrt{y}}$, which of the following is correct

a. log u is homogeneous function with degree 1/2

b. u is homogeneous function with degree 1/2

c. u is homogeneous function with degree -1/2

d. u is not homogeneous function

5. To find extreme value of $x^2+y^2+z^2$ such that Ax+By+Cz=D, which of the following is correct

a.
$$\frac{\partial F}{\partial x} = 0$$
, $\frac{\partial F}{\partial y} = 0$, $\frac{\partial F}{\partial z} = 0$ where $F = x^2 + y^2 + z^2 + \lambda (Ax + By + Cz - D)$
b. $\frac{\partial F}{\partial x} = 0$, $\frac{\partial F}{\partial y} = 0$, $\frac{\partial F}{\partial z} = 0$ where $F = x^2 + y^2 + z^2 + \lambda (Ax + By + Cz - D)$

b.
$$\frac{\partial F}{\partial x} = 0$$
, $\frac{\partial F}{\partial y} = 0$, $\frac{\partial F}{\partial z} = 0$ where $F = x^2 + y^2 + z^2 + \lambda (Ax + By + Cz = D)$

c.
$$\frac{\partial F}{\partial x} = 0$$
, $\frac{\partial F}{\partial y} = 0$, $\frac{\partial F}{\partial z} = 0$ where F= x²+y²+z²+Ax+By+Cz-D

d.
$$\frac{\partial F}{\partial x} = 0$$
, $\frac{\partial F}{\partial y} = 0$, $\frac{\partial F}{\partial z} = 0$ where F= (x²+y²+z²)(Ax+By+Cz=D)

6. The minimum value of the function $x^2+y^2+z^2$ subject to the condition $xyz=a^3$ if $|x^2 - y^2 - z^2|$ is obtained by Lagrange's method is

b. a² c. 6a² d. none of these

SET 2

If $u = \frac{y^3 - x^3}{y^2 + x^2}$ then $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$ is

(a) 3u (b) 2u (c) u (d) 0

2.If F(x,y) is a homogeneous function of degree n in x and y and has continuous first and second order partial derivatives then

a)
$$x^2 \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial x \partial y} + y^2 \frac{\partial^2 f}{\partial y^2} = n(n-1)f$$

b)
$$x^2 \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial x \partial y} + y^2 \frac{\partial^2 f}{\partial y^2} = nf$$

c)
$$x^2 \frac{\partial^2 f}{\partial x^2} + 2xy \frac{\partial^2 f}{\partial x \partial y} + y^2 \frac{\partial^2 f}{\partial y^2} = n(n-1)f$$

d)
$$x^2 \frac{\partial^2 f}{\partial x^2} + 2xy \frac{\partial^2 f}{\partial x \partial y} + \frac{\partial^2 f}{\partial y^2} = n(n-1)f$$

If $r = \frac{\partial^2 f}{\partial x^2}(a,b)$, $s = \frac{\partial^2 f}{\partial x \partial y}(a,b)$, $t = \frac{\partial^2 f}{\partial t^2}(a,b)$, then f(x,y) will have a maxima at(a,b) if b) $rt > s^2$, and r > 0

c)
$$rt = s^2$$
, and $r < 0$

d)
$$rt = s^2$$
, and $r > 0$

For the function $f(x,y) = 2(x^2 - y^2) - x^4 + y^4$ the critical point(1,0) is a point of c) saddle point d) None of these

5.

If $x = \cos \theta$, $y = \sin \theta$ then $\frac{\partial(x,y)}{\partial(x,\theta)}$ is (a) 0 (b) 1 (c) 2 (d) 3

6. If $f(x,y) = x^3 + y^3 + x$ then $\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y}$ is

a)
$$3x^2 + 3y^2 + 1$$
, $3y^2 + 1$ b) $3x^2 + 1$, $3y^2$ c) $x^2 + 1$, y^2 d) $3x^2$, y^2

b)
$$3x^2 + 1$$
, $3y^2$

$$c)x^2 + 1, y^2$$

d)
$$3x^2, y^2$$

7.

. Total derivative of $z = \tan^{-1}\left(\frac{x}{y}\right), (x, y) \neq (0, 0)$ is

a)
$$\frac{ydx+ydy}{x^2+y^2}$$

b)
$$\frac{ydx - xdy}{x^2 + y^2}$$
 c) $ydx - xdy$ d) $ydx + xdy$

c)
$$ydx - xdy$$

d)
$$ydx + xdy$$

If $w = x^2 + y^2$, $x = \frac{t^2 - 1}{t}$, $y = \frac{t}{t^2 + 1}$ then $\frac{dw}{dt}$ at t = 1 is (a) 0 (b) 1 (c) 2 (d) 3

9. If F $(x_1, x_2, x_3, \ldots, x_n, \lambda_1, \lambda_2, \lambda_3, \ldots, \lambda_k)$ = $f(x_1, x_2, x_3, \ldots, x_n) + \sum_{i=1}^k \lambda_i \phi_i(x_1, x_2, x_3, \ldots, x_n)$ The necessary conditions to determine the stationary points of F

(a)
$$\frac{\partial F}{\partial x_1} = 0 = \frac{\partial F}{\partial x_2} = \frac{\partial F}{\partial x_3} = \dots = \frac{\partial F}{\partial x_n}$$

(b)
$$\frac{\partial F}{\partial x_1} = \frac{\partial F}{\partial x_2} = \frac{\partial F}{\partial x_3} = \dots = \frac{\partial F}{\partial x_n}$$

(b)
$$\frac{\partial F}{\partial x_1} = \frac{\partial F}{\partial x_2} = \frac{\partial F}{\partial x_3} = \dots = \frac{\partial F}{\partial x_n}$$

(c) $\frac{\partial F}{\partial x_1} = 0 = -\frac{\partial F}{\partial x_2} = \frac{\partial F}{\partial x_3} = \dots = \frac{\partial F}{\partial x_n}$

(d)
$$\frac{\partial F}{\partial x_1} = 0 = \begin{vmatrix} \partial F \\ \partial x_2 \end{vmatrix} = \begin{vmatrix} \partial F \\ \partial x_3 \end{vmatrix} = \dots = -\frac{\partial F}{\partial x_n}$$

- 10. If $f(x,y) = \sqrt{a^2 x^2 y^2}$, critical point (x,y) is (0,0), this is a point of
 - (a) relative minimum (b) relative maximum (c) neither maximum or minimum (d) saddle point

11.If
$$z = f(x,y)$$
 where $x = g(t)$, $y = h(t)$ then $\frac{dz}{dt}$ is equal to (a) $\frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$ (b) $\frac{\partial z}{\partial x} \frac{\partial x}{\partial t} - \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$ (c) $\frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$ (d) $\frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$ 12.If $z = \sqrt{xy}$ then $\frac{\partial^2 z}{\partial x \partial y}$ is equal to (a) 4z (b) $\frac{4}{z}$ (c) $\frac{z}{4}$ (d) $\frac{1}{4z}$

13. The function
$$f(x,y) = \begin{cases} \frac{2x(x^2 - y^2)}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
 (a) continuous at(x,y) =(0,0) (b) not continuous at(x,y) =(0,0)

- (c) limit does not exist (d) none of these

14. The value of the
$$\lim_{(x,y)\to(0,0)}\frac{xy}{x^2+2y^2}$$
, $x\neq 0, y\neq 0$ is (a)0 (b)1 (c) limit does not exist (d) -1

15. If u = x(1+y), v = xy then value of Jacobian $\frac{\partial(u,v)}{\partial(x,v)}$ is

(a) (a)-x (b) x (c) y (d) -y

SET3

1.

If
$$f(x,y) = x^4 - x^2y^2 + y^4$$
 then $\frac{\partial f}{\partial x}$ at $(-1,1)$ is (a)-2 (b)2 (c)1(d)-1

If
$$z = \log \left[\frac{x^2 - y^2}{x^2 + y^2} \right]$$
, then $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}$ is

If
$$\cot^{-1}\left(\frac{x}{y}\right) + y^3 + 1 = 0, x > 0, y > 0$$
 then $\frac{dy}{dx}$ is

$$a) \frac{y}{x+3y^2(x^2+y^2)}$$

b)
$$\frac{x}{x+3y^2(x^2+y^2)}$$

c)
$$\frac{1}{x+3y^2}$$

a)
$$\frac{y}{x+3y^2(x^2+y^2)}$$
 b) $\frac{x}{x+3y^2(x^2+y^2)}$ c) $\frac{1}{x+3y^2}$ d) $\frac{y}{x+3x^2(x^2+y^2)}$

4. If $r = f_{xx}(u,v)$, $s = f_{xy}(u,v)$, $t = f_{yy}(u,v)$ then if r t $-s^2 < 0$ then f(x,y) has no Maximum or minimum at this point (u,v), then the point is called

(a) Saddle point (b) Maximum point (c) Minimum Point (d)none of these

5. If
$$x = r \cos\theta$$
, $y = r \sin\theta$ then $\frac{\partial(x,y)}{\partial(r,\theta)}$
(a) 1 (b) r (c) 0 (d) $\frac{1}{r}$

6. If
$$z = f(x,y)$$
, $x = x(r,s)$, $y = y(r,s)$ then $\frac{\partial z}{\partial x}$ is equal to

6. If
$$z = f(x,y)$$
, $x = x(r,s)$, $y = y(r,s)$ then $\begin{vmatrix} \partial z \\ \partial x \end{vmatrix}$ is equal to

(a) $\begin{vmatrix} \partial z \\ \partial x \end{vmatrix} \begin{vmatrix} \partial x \\ \partial y \end{vmatrix} + \begin{vmatrix} \partial z \\ \partial y \end{vmatrix} \begin{vmatrix} \partial y \\ \partial z \end{vmatrix}$ (b) $\begin{vmatrix} \partial z \\ \partial x \end{vmatrix} \begin{vmatrix} \partial x \\ \partial s \end{vmatrix} + \begin{vmatrix} \partial z \\ \partial y \end{vmatrix} \begin{vmatrix} \partial y \\ \partial s \end{vmatrix}$ (c) $\begin{vmatrix} \partial z \\ \partial x \end{vmatrix} \begin{vmatrix} \partial x \\ \partial y \end{vmatrix} + \begin{vmatrix} \partial z \\ \partial y \end{vmatrix} \begin{vmatrix} \partial y \\ \partial s \end{vmatrix}$ (d) $\begin{vmatrix} \partial z \\ \partial x \end{vmatrix} \begin{vmatrix} \partial x \\ \partial s \end{vmatrix} + \begin{vmatrix} \partial z \\ \partial y \end{vmatrix} \begin{vmatrix} \partial y \\ \partial r \end{vmatrix}$

7.If $f(x,y) = x^2 + y^2 + 2bxy$, the critical point (x,y) is (0, 0) is a point of minimum, so the minimum value at (0,0) is

(a) 0 if
$$\overline{|b|} = 1$$
 (b) 0 if $\overline{|b|} < 1$ (c) 0 if $\overline{|b|} > 1$ (d) 0 if $\overline{|b|} > 1$

8.If $f(x,y) = 4x^2 + 9y^2 - 8x - 12y + 4$, the critical point (x,y) is $(1,\frac{2}{3})$, this is a point of

(a) relative minimum (b) relative maximum (c) neither maximum or minimum (d) saddle point

9.

If
$$u=x^3+y^3$$
, then $\frac{\partial^2 u}{\partial x^2}$ is
a) $3x^2$ b) $6x$ c)6 d) 0

10.

If
$$u = \frac{x^3 + y^3}{x + y}$$
, $(x, y) \neq (0,0)$, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is (b) 3u (c) u (d) 0

11.

If
$$u = \cos^{-1}\left[\frac{x+y}{\sqrt{x}+\sqrt{y}}\right]$$
, $0 < x < 1$, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is

(a) 0

(b) $2u$

(c) $-\frac{1}{2}\cot u$

(d) None of these

12.If $f(x,y) = 3x^2 + y^2 - x$ then the critical point (x,y) is (a) $\left(-\frac{1}{6}, 0\right)$ (b) $\left(-\frac{1}{6}, 1\right)$

(a)
$$\left(-\frac{1}{6},0\right)$$
 (b) $\left(-\frac{1}{6},1\right)$

$$\text{(c)} \left(\frac{1}{6}, 1\right) \qquad \qquad \text{(d)} \left(\frac{1}{6}, 0\right)$$

13.If
$$x = r \cos\theta$$
, $y = r \sin\theta$ then $\frac{\partial (r,\theta)}{\partial (x,y)}$ (b) 1 (b) r (c) 0 (d) $\frac{1}{r}$

14. Which of the following is not homogeneous function

(a)
$$tan^{-1} \left[\frac{x}{y} \right]$$
 (b) $\frac{x^3 + y^3}{x - y}$ (c) $\frac{y^3 - x^3}{x^2 + y^2}$ (d) $\cos^{-1} \left[\frac{x + y}{x^2 + y^2} \right]$

15. If
$$u = x^2y + 2y^2x$$
 then the value of $\frac{\partial^2 u}{\partial x \partial y}$ is equal to

(a)
$$2x + y$$
 (b) $2x + 2y$ (c) $2x + 4y$ (d) $x + 4y$

$$f(x,y) = \frac{\sqrt{x^2 + y^2}}{x}$$
 is a homogeneous function of degree

If $u = cos^{-1} \left[\frac{x}{y}\right]$ then $\frac{\partial u}{\partial x}$ equals to

(a) $\frac{1}{\sqrt{y^2 - x^2}}$ (b) $\frac{-1}{\sqrt{y^2 - x^2}}$ (c) $\frac{1}{\sqrt{x^2 - y^2}}$ (d) none of these

(a)
$$\frac{1}{\sqrt{y^2-x^2}}$$
 (b) $\frac{dx}{\sqrt{y^2-x^2}}$ (c) $\frac{1}{\sqrt{x^2-y^2}}$ (d) none of these

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + 2y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

(a) continuous at (x,y) = (0,0) (b) not continuous at (x,y) = (0,0) (c) limit does not exist (d) none of these

19

The function

$$f(x,y) = \begin{cases} \frac{\sin^{-1}(x+2y)}{\tan^{-1}(2x+4y)'} & (x,y) \neq (0,0) \end{cases}$$
 is continuous at(x,y) =(0,0), the value of f(x,y) at (0,0) is

(a) 0 (b) -1 (c)
$$\frac{1}{2}$$
 (d) does not exist

Set4

1. The value of
$$\lim_{(x,y)\to(0,0)} \frac{x}{\sqrt{x^2+y^2}}$$
 is

(a)
$$\frac{1}{2}$$
 (b) does not exist (c) $\frac{1}{4}$ (d) none of these.

2. The value of
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}$$
 is

(a)
$$\frac{1}{2}$$
 (b) does not exist (c) $\frac{1}{4}$ (d) none of these.

3. The value of
$$\lim_{(x,y)\to(0,1)} \frac{(y-1)\sin x}{x\log y}$$
 is

(a) 1 (b)
$$\frac{1}{2}$$
 (c) does not exist (d) none of these.

4. If
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} &, (x,y) \neq (0,0) \\ 0 &, (x,y) = (0,0) \end{cases}$$
 then

(a)
$$f(x,y)$$
 is not continuous at (0,0) (b) $f(x,y)$ is not defined at (0,0) (c) $f(x,y)$ is continuous at (0,0) (d) none of these

5. If
$$f(x,y)=x^y$$
 then $f_y(x,y)$ is

(a) 0 (b)
$$yx^{y-1}$$
 (c) $x^y \log x$ (d) xy^{x-1}

7. If
$$w = xyz$$
 , $x = t$, $y = (t+1)$, $z = e^t \operatorname{hen} \frac{dw}{dt}$ at $t = 0$ is

8. If
$$f(x,y) = \frac{x}{\sqrt{x^2 + y^2}}$$
 then $f_x(1,1)$

(a) 4 (b)
$$\frac{1}{4}$$
 (c) 2 (d) $\frac{1}{2\sqrt{2}}$

9. If
$$u = \cos^{-1}\left(\frac{\sqrt{x^2 + y^2}}{x + y}\right)$$
 then $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}$ is

(a) 0 (b)
$$\frac{1}{2}$$
 (c) 1 (d) 2

10. If
$$r=f_{xx}(a,b)$$
 , $s=f_{xy}(a,b)$, $t=f_{yy}(a,b)$ then $f(x,y)$ will have the minimum value at (a,b) if

(a)
$$f_x = 0$$
, $f_y = 0$, $rt - s^2 < 0$ and $r < 0$

(b)
$$f_r = 0, f_v = 0, rt - s^2 > 0$$
 and $r > 0$

(c)
$$f_x = 0$$
, $f_y = 0$, $rt - s^2 > 0$ and $r < 0$

(d)
$$f_x = 0, f_y = 0, rt - s^2 < 0 \text{ and } r > 0$$

11. If
$$f(x,y) = y^2 e^{\frac{x}{y}}$$
 then $f_y(1,1)$ is

(a)
$$2e^{1/2}$$
 (b) e (c) $\frac{2}{e}$ (d) $\frac{4}{\sqrt{e}}$

12. If
$$f(x,y) = x^2 \cot^{-1} \left(\frac{y}{x}\right)$$
 then it is homogeneous function of degree

13. If
$$f(x, y, z) = e^{\frac{y}{x^2}} + \log\left(\frac{y}{z}\right)$$
 then $f_x(1,1,1)$ is

(a)
$$\frac{1}{2}$$
 (b) $\frac{1}{3}$ (c) 1 (d) none of these

14. If
$$x^3 + y^3 + 3xyz = 1$$
 then value of $\left(\frac{\partial y}{\partial x}\right)_z$ is

(a)
$$\frac{x^2 + yz}{y^2 + xz}$$
 (b) $-\frac{x^2 + yz}{y^2 + xz}$ (c) $\frac{x^2}{xz}$ (d) none of these

15. Which of the following function is a homogeneous function of degree = -2

(a)
$$\frac{1}{x^2 + y^2}$$
 (b) $x^2 + y^2$ (c) $\frac{1}{x - y^2}$ (d) $\frac{1}{xy + y}$

UNIT 6

Set1

1. Area enclosed by y=f1(x) and f2(x) and b $\leq x \leq a$ is given by a. $\int_{x=a}^{x=b} \int_{y=f1(x)}^{y=f2(x)} dx dy$ b. $\int_{x=a}^{x=b} \int_{y=f1(x)}^{y=f2(x)} z dx dy$ c. $\int_{x=a}^{x=b} \int_{y=a}^{y=b} dx dy$

a.
$$\int_{x=a}^{x=b} \int_{y=f1(x)}^{y=f2(x)} dx dy$$

b.
$$\int_{x=a}^{x=b} \int_{y=f1(x)}^{y=f2(x)} z dx dy$$

c.
$$\int_{x=a}^{x=b} \int_{y=a}^{y=b} dx dy$$

d. None of these

2. Evaluate
$$\int_{x=0}^{x=1} \int_{y=0}^{y=2} x dx dy$$

Evaluate
$$\int_{0}^{x=1} \int_{0}^{y=2} \int_{0}^{3} dz dx dy$$

ate
$$\int_{x=0}^{x=1} \int_{y=0}^{y=2} \int_{z=0}^{3} dz \, dx dy$$

4. Find area enclosed by
$$x^2+y^2=4, x \ge 0$$
, $y \ge 0$

4. Find area enclosed by
$$x^2+y^2=4, x \ge 0$$
, $y \ge 0$

a. 1 b. 2 c. 3

3. Evaluate
$$\int_{x=0}^{x=1} \int_{y=0}^{y=2} \int_{z=0}^{3} dz \, dx \, dy$$

a. 6 b. 3 c. 2

4. Find area enclosed by $x^2 + y^2 = 4, x \ge 0$, $y \ge 0$

a. π b. 2π c. 3π

5. Find volume of $x^2 + y^2 + z^2 = 1, x \ge 0$, $y \ge 0$, $z \ge 0$

Find volume of
$$x^2+y^2+z^2=1, x \ge 0$$
, $y \ge 0$, $z \ge 0$

b.
$$\pi/3$$

b.
$$2/3\pi$$

c.
$$3\pi/2$$

d.
$$4\pi/3$$

d. 4

d. 1

d. 4π

```
Which of the following is correct
                                                \iint dx dy = \iint r dr d\theta
                                   b. \iint dxdy = \iint 2rdrd\theta
                                  c. \iint dxdy = \iint r^2 drd\theta
                                  d. \iint dxdy = \iint rcos\theta drd\theta
                                  7. Change the order of \int_{x=0}^{x=a} \int_{y=\sqrt{ax}}^{y=a} dx dy
                                                a. \int_{y=0}^{y=a} \int_{x=0}^{x=y^2/a} dx dy
b. \int_{y=0}^{y=a} \int_{x=a}^{x=y^2/a} dx dy
c. \int_{y=0}^{y=1} \int_{x=0}^{x=y^2/a} dx dy
                                                  d. None of these
                                  8. Volume bounded by x^2+y^2=4 and y+z=4,z=0 is given by
                                                a. \int_{y=-2}^{y=2} \int_{x=-\sqrt{4-y^2}}^{x=\sqrt{4-y^2}} \int_{z=0}^{4-y} dz \, dx dy
b. \int_{y=0}^{y=2} \int_{x=-\sqrt{4-y^2}}^{x=\sqrt{4-y^2}} \int_{z=0}^{4-y} dz \, dx dy
c. \int_{y=-2}^{y=2} \int_{x=0}^{x=\sqrt{4-y^2}} \int_{z=0}^{4-y} dz \, dx dy
                                                  d. None of these
                                                  Set 2
1. The value of integral \int_{0}^{2} \int_{1}^{3} xy \, dy \, dx is (a) 2 (b) 4 (c) 8 (d) 0

2. \int_{0}^{1} \int_{0}^{y} e^{y} \, dx \, dy is (a) 1 (b) 0 (c) 2 (d) -1

3. \int_{1}^{2} \int_{0}^{1} 2x e^{x^{2}} \, dx \, dy is (a) e+1 (b) e (c) -e (d) e-1

4. \int_{0}^{1} \int_{0}^{y} e^{\frac{x}{y}} \, dx \, dy is (a) \frac{1}{2}[e+1] (b) \frac{1}{2}e (c) -\frac{1}{2}e (d) \frac{1}{2}[e-1]

5. The value of integral \int_{0}^{\frac{\pi}{2}} \int_{a}^{a(1+\cos\theta)} r \, dr \, d\theta

(a) (\pi+8) \frac{a^{2}}{4} (b) (\pi+8) \frac{a^{2}}{2} (c) -(\pi+8) \frac{a^{2}}{4} (d) -(\pi+8) \frac{a^{2}}{2}

6. \int_{0}^{1} \int_{0}^{x^{2}} x \, e^{y} \, dy \, dx is (a) e-1 (b) \frac{1}{2}e-1 (c) 1-e (d) \frac{1}{2}e
  7. To change Cartesian coordinates (x,y,z) to cylindrical coordinates (r,\theta,z) dxdydz is replaced (a) r \frac{d\theta}{dz} (b) r \frac{d\theta}{dz} (c) r \sin \frac{\theta}{dz} dr r \frac{d\theta}{dz} dz (d) r \sin \frac{\theta}{dz} dr r \cos \frac{\theta}{dz} dr r \cos \frac{\theta}{dz} dr r \cos \frac{\theta}{dz}
8. After changing the order of integration, the integral \int_{-a}^{a} \int_{0}^{\sqrt{a^2-y^2}} f(x,y) dx dy
(a) \int_{-a}^{a} \int_{-\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}} f(x,y) dy dx
(b) \int_{0}^{a} \int_{0}^{\sqrt{a^2-x^2}} f(x,y) dy dx
(c) \int_{-a}^{a} \int_{0}^{\sqrt{a^2-x^2}} f(x,y) dy dx
(d) \int_{0}^{a} \int_{-\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}} f(x,y) dy dx
9. After changing to polar coordinates, the integral \int_{0}^{2a} \int_{0}^{\sqrt{2ax-x^2}} dx dy
(a) \int_{0}^{\frac{\pi}{2}} \int_{0}^{2a \cos\theta} r d\theta dr
(b) \int_{0}^{\pi} \int_{0}^{a \cos\theta} r d\theta dr
```

(c)
$$\int_{\tilde{B}}^{\tilde{B}} \int_{0}^{\tilde{B}} a \cos \theta r d\theta dr$$
10. After changing the order of integration, the integral
$$\int_{0}^{\tilde{B}} \int_{\tilde{A}}^{\tilde{B}} f(x,y) dy dx$$
(c)
$$\int_{0}^{\tilde{B}} \int_{\tilde{A}}^{\tilde{B}} f(x,y) dy dx$$
(d)
$$\int_{0}^{\tilde{B}} \int_{\tilde{A}}^{\tilde{B}} f(x,y) dy dx$$
(e)
$$\int_{0}^{\tilde{B}} \int_{\tilde{A}}^{\tilde{B}} f(x,y) dy dx$$
(f)
$$\int_{0}^{\tilde{B}} \int_{\tilde{A}}^{\tilde{B}} f(x,y) dy dx$$
(g)
$$\int_{0}^{\tilde{B}} \int_{\tilde{A}}^{\tilde{B}} f(x,y) dy dx$$
(h)
$$\int_{0}^{\tilde{B}} \int_{\tilde{A}}^{\tilde{B}} f(x,y) dy dx$$
(g)
$$\int_{0}^{\tilde{B}} \int_{\tilde{A}}^{\tilde{B}} f(x,y) dy dx$$
(h)
$$\int_{0}^{\tilde{B}} \int_{\tilde{A}}^{\tilde{B}} f(x,y) dy dx$$
(l)
$$\int_{0}^{\tilde{B}} \int_{\tilde{A}}^{\tilde{B}} f(x,y) dy dx$$
(l)
$$\int_{0}^{\tilde{B}} \int_{\tilde{A}}^{\tilde{B}} f(x,y) dy dx$$
(l)
$$\int_{0}^{\tilde{B}} \int_{\tilde{A}}^{\tilde{B}} f(x,y) dx dy$$
(l)
$$\int_{0}^{\tilde{B}} \int_{\tilde{A}}^{\tilde{B}} f(x,y) dx dx$$
(l)
$$\int_{0}^{\tilde{B}} \int_{\tilde$$

(a)
$$\frac{abc}{3} [a^2+b^2+c^2]$$
 (b) $\frac{a^2b^2c^2}{27} [a^2+b^2+c^2]$ (c) $\frac{a^3b^3c^3}{27} [a^2+b^2+c^2]$ (d) $\frac{a^2b^2c^2}{9} [a^2+b^2+c^2]$ 13. $\int_0^2 \int_0^{\frac{x}{2}} e^{x^2} dy dx$ Is (a) $\frac{1}{4} [e^4+1]$ (b) $\frac{1}{2} [e^4-1]$ (c) $\frac{1}{4} [e^4-1]$ (d) none of these 14. The cylinder $\frac{x^2+z^2}{2}=1$ is cut by planes $z=0$, $y=0$, $x=y$. the volume of the region in first octant is (a) $\frac{1}{3}$ (b) $\frac{1}{3}$ (c) $-\frac{2}{6}$ (d) $\frac{2}{16}$ 15. Volume of sphere $\frac{x^2+y^2+z^2}{2}=1$ is given as (a) $8 \int_0^1 \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} r^2 \sin\theta dr d\theta d\phi$ (b) $8 \int_0^a \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} r^2 \sin\theta dr d\theta d\phi$ (d) none of these

unit 6 Fourier series practice problems

For the function $f(x)=x^2$, $-2 \le x \le 2$ the value of b_n in Fourier series expansion will be $(a) \frac{8}{3}$ (b)0 $(c) \frac{16}{3}$ (d)noneof these Ans-b

For the function $f(x) = x^3$, $-\pi \le x \le \pi$ the value of a_n in Fourier series expansion will be $(a)^{\frac{2}{\pi}}$ (b) 2π (c) 0 (d) none of these Ans-c

Fourier series what is the value of Fourier coefficient for a_0 on [-l,l] (a) $\frac{2}{l}\int_0^l f(x)dx$ (b) $\frac{1}{l}\int_{-l}^l f(x)dx$ (c) $\frac{2}{l}\int_{-l}^l f(x)dx$ $\frac{2}{l}\int_0^l f(x)\cos\left(\frac{n\pi x}{l}\right)dx$ Ans-

(a)
$$\frac{1}{l} \int_0^l f(x) dx$$

(b)
$$\frac{1}{l} \int_{-l}^{l} f(x) dx$$

(c)
$$\frac{2}{l} \int_{-l}^{l} f(x) dx$$

$$\frac{2}{l} \int_0^l f(x) \cos\left(\frac{n\pi x}{l}\right) dx$$
 Ans-