This is the Output file when Model E1 is used. That is, when the

forced (i.e., R1 = R2 = R3 = R4) and the value of the control

parameter *e* is set to be equal to 0.140.

data of the First Illustrative Example are used and Borda's result is

RESULTS

NEOS Server Version 6.0 Job# : 12760156 Password : VMCpQHFS

User :

Solver : go:BARON:GAMS

Start : 2023-02-15 17:07:58 End : 2023-02-15 17:08:14

Host : prod-sub-1.neos-server.org

Disclaimer:

This information is provided without any express or implied warranty. In particular, there is no warranty of any kind concerning the fitness of this information for any particular purpose.

Announcements:

Executed on prod-exec-5.neos-server.org

GAMS 41.4.0 caab8bc0 Dec 14, 2022 LEX-LEG x86 64bit/Linux - 02/15/23 17:08:13 Page 1

General Algebraic Modeling System

Compilation

COMPILATION TIME = 0.001 SECONDS 2 MB 41.4.0 caab8bc0 LEX-LEG

GAMS 41.4.0 caab8bc0 Dec 14, 2022 LEX-LEG x86 64bit/Linux - 02/15/23 17:08:13 Page 2

G e n e r a l A l g e b r a i c M o d e l i n g S y s t e m

Range Statistics SOLVE First_Illustrative_Example_Section_3_1 Using NLP From line 302

RANGE STATISTICS (ABSOLUTE NON-ZERO FINITE VALUES)

```
RHS [\min, \max] : [1.200E-01, 1.000E+00] - Zero values observed as well Bound [\min, \max] : [NA, NA] - Zero values observed as well Matrix [\min, \max] : [1.000E+00, 2.000E+00] - Zero values observed as well
```

GAMS 41.4.0 caab8bc0 Dec 14, 2022 LEX-LEG x86 64bit/Linux - 02/15/23 17:08:13 Page 3 G e n e r a l A l g e b r a i c M o d e l i n g S y s t e m

Model Statistics SOLVE First_Illustrative_Example_Section_3_1 Using NLP From line 302

MODEL STATISTICS

BLOCKS OF EQUATIONS	54	SINGLE EQUATIONS	54
BLOCKS OF VARIABLES	60	SINGLE VARIABLES	60
NON ZERO ELEMENTS	204	NON LINEAR N-Z	96
CODE LENGTH	318	CONSTANT POOL	16

GENERATION TIME = 0.004 SECONDS 3 MB 41.4.0 caab8bc0 LEX-LEG

GAMS 41.4.0 caab8bc0 Dec 14, 2022 LEX-LEG x86 64bit/Linux - 02/15/23 17:08:13 Page 4

General Algebraic Modeling System

Solution Report SOLVE First_Illustrative_Example_Section_3_1 Using NLP From line 302

SOLVE SUMMARY

MODEL First_Illustrative_Example_Section_3_1 OBJECTIVE Z
TYPE NLP DIRECTION MINIMIZE
SOLVER BARON FROM LINE 302

**** SOLVER STATUS 1 Normal Completion

**** MODEL STATUS 2 Locally Optimal

**** OBJECTIVE VALUE 6.9120

RESOURCE USAGE, LIMIT 0.120 1000000000.000 ITERATION COUNT, LIMIT 0 2147483647 EVALUATION ERRORS 0 0

GAMS/BARON 41.4.0 caab8bc0 Dec 14, 2022 LEG x86 64bit/Linux

BARON is a product of The Optimization Firm, LLC. http://www.minlp.com/Parts of the BARON software were created at the University of Illinois at Urbana-Champaign.

BARON version 22.9.30. Built: LNX-64 Fri Sep 30 09:06:37 EDT 2022

BARON is a product of The Optimization Firm. For information on BARON, see https://minlp.com/about-baron

If you use this software, please cite publications from https://minlp.com/baron-publications, such as:

Khajavirad, A. and N. V. Sahinidis, A hybrid LP/NLP paradigm for global optimization relaxations, Mathematical Programming Computation, 10, 383-421, 2018. ______

This BARON run may utilize the following subsolver(s)

For LP/MIP/QP: CLP/CBC, ILOG CPLEX

For NLP: MINOS, SNOPT, External NLP, IPOPT, FILTERSQP

Solution = 6.91199999999999 best solution found during preprocessing

Best possible = 6.91130886911

Absolute gap = 0.000691130889890701 optca = 1E-9 Relative gap = 9.99900014309479E-5 optcr = 0.0001

	LOWER	LEVEL	UPPER	MARGINAL
 EQU Equation2	0.120	0.120	0.120	115.200
 EQU Constrain∼	•	•	+INF	5.760
 EQU Constrain∼	•	•	+INF	7.680
 EQU Constrain∼	•	•	+INF	5.760
 EQU Constrain∼	•	•	+INF	5.760
 EQU Constrain∼	•	•	+INF	7.680
 EQU Constrain∼	•	•	+INF	5.760
 EQU Constrain∼	•	•	+INF	5.760
 EQU Constrain∼	•	•	+INF	7.680
 EQU Constrain∼	•	•	+INF	5.760
 EQU Constrain∼	•	•	+INF	5.760
 EQU Constrain∼	•	•	+INF	7.680
EQU Constrain∼	•	•	+INF	5.760
 EQU Constrain∼	•	•	+INF	5.760
 EQU Constrain∼	•	•	+INF	7.680
 EQU Constrain∼	•	•	+INF	5.760
 EQU Constrain∼	•	•	+INF	5.760
 EQU Constrain∼	•	•	+INF	7.680
 EQU Constrain∼	•	•	+INF	5.760
 EQU Equation1	1.000	1.000	1.000	-13.824
 EQU EQ_t1_1	•	•	•	1.000
 EQU EQ_t1_2	•	•	•	1.000
 EQU EQ_t1_3	•	•	•	1.000
 EQU EQ_t1_4	•	•	•	1.000
 EQU EQ_t2_1	•	•	•	1.000
 EQU EQ_t2_2	•	•	•	1.000
EQU EQ_t2_3	•	•	•	1.000
 EQU EQ_t2_4	•	•	•	1.000
 EQU EQ_t3_1	•	•	•	1.000
 EQU EQ_t3_2	•	•	•	1.000
EQU EQ_t3_3	•	•	•	1.000
 EQU EQ_t3_4	•	•	•	1.000
 EQU EQ_t4_1	•	•	•	1.000
 EQU EQ_t4_2	•	•	•	1.000
 EQU EQ_t4_3	•	•	•	1.000
 EQU EQ_t4_4	•	•	•	1.000

5011 50 15 4				4 000
EQU EQ_t5_1	•	•	•	1.000
EQU EQ_t5_2	•	•	•	1.000
EQU EQ_t5_3	•	•	•	1.000
EQU EQ_t5_4	•	•	•	1.000
EQU EQ_t6_1	•	-3.47E-14	ě	1.000
EQU EQ_t6_2		-3.49E-14	•	1.000
EQU EQ_t6_3		-3.49E-14		1.000
EQU EQ_t6_4	•	31.132 2.	•	1.000
EQU EQ_tt1	•	•	•	1.000
	•	•	•	•
EQU EQ_tt2	•	•	•	•
EQU EQ_tt3	•	•	•	•
EQU EQ_tt4	•	•	•	•
EQU EQ_tt5	•	•	•	•
EQU EQ_tt6	•	•	•	•
EQU Objective~	•	•	•	1.000
EQU eq1	•	•	•	-11.059
EQU eq2		•	•	-7.373
EQU eq3				-3.686
- 61-			-	
	LOWER	LEVEL	UPPER	MARGINAL
	LONLIN		011211	TUTTOTIVE
VAR Z	-INF	6.912	+INF	
VAR a1	1141	0.250	+INF	•
VAR a2	•	0.250		•
	•		+INF	•
VAR a3	•	0.250	+INF	•
VAR a4	•	0.250	+INF	•
VAR X1_1	•	1.720	+INF	•
VAR X1_2	•	1.240	+INF	•
VAR X1_3	•	0.760	+INF	•
VAR X1_4	•	0.280	+INF	•
VAR X2_1	•	1.720	+INF	•
VAR X2_2	•	0.280	+INF	•
VAR X2 3		1.240	+INF	•
VAR X2 4		0.760	+INF	•
VAR X3 1		1.720	+INF	
VAR X3 2		0.760	+INF	
VAR X3_3	•	0.280	+INF	· ·
VAR X3_4	•	1.240	+INF	•
VAR X5_4	•	0.280		•
-	•		+INF	•
VAR X4_2	•	1.720	+INF	•
VAR X4_3	•	1.240	+INF	•
VAR X4_4	•	0.760	+INF	•
VAR X5_1	•	0.280	+INF	•
VAR X5_2	•	0.760	+INF	•
VAR X5_3	•	1.720	+INF	•
VAR X5_4	•	1.240	+INF	•
VAR X6_1	•	0.280	+INF	•
VAR X6_2	•	1.240	+INF	•
VAR X6_3	•	0.760	+INF	•
<u>—</u>				

```
---- VAR X6 4
                                             +INF
                                   1.720
---- VAR t1 1
                                   0.518
                                             +INF
---- VAR t1 2
                                   0.058
                                             +INF
---- VAR t1 3
                                   0.058
                                             +INF
---- VAR t1 4
                                   0.518
                                             +INF
---- VAR t2 1
                                   0.518
                                             +INF
---- VAR t2 2
                                   0.518
                                             +INF
---- VAR t2 3
                                   0.058
                                             +INF
---- VAR t2 4
                                   0.058
                                             +INF
---- VAR t3 1
                                   0.518
                                             +INF
---- VAR t3 2
                                   0.058
                                             +INF
---- VAR t3 3
                                   0.518
                                             +INF
---- VAR t3 4
                                   0.058
                                             +INF
                                             +INF
---- VAR t4 1
                                   0.518
---- VAR t4 2
                                   0.518
                                             +INF
---- VAR t4 3
                                   0.058
                                             +INF
---- VAR t4 4
                                   0.058
                                             +INF
---- VAR t5 1
                                   0.518
                                             +INF
---- VAR t5 2
                                   0.058
                                             +INF
---- VAR t5_3
                                   0.518
                                             +INF
---- VAR t5 4
                                   0.058
                                             +INF
---- VAR t6 1
                                   0.518
                                             +INF
---- VAR t6 2
                                   0.058
                                             +INF
---- VAR t6 3
                                   0.058
                                             +INF
---- VAR t6_4
                                   0.518
                                             +INF
---- VAR ee
                         -INF
                                   0.120
                                             +INF
---- VAR tt1
                                   1.152
                                             +INF
---- VAR tt2
                                   1.152
                                             +INF
---- VAR tt3
                                   1.152
                                             +INF
---- VAR tt4
                                   1.152
                                             +INF
---- VAR tt5
                                   1.152
                                             +INF
---- VAR tt6
                                   1.152
                                             +INF
```

**** REPORT SUMMARY: 0 NONOPT
0 INFEASIBLE
0 UNBOUNDED
0 ERRORS

EXECUTION TIME = 0.161 SECONDS 3 MB 41.4.0 caab8bc0 LEX-LEG

**** FILE SUMMARY

Input /var/lib/condor/execute/dir_12971/gamsexec/MODEL.gms
Output /var/lib/condor/execute/dir_12971/gamsexec/solve.lst

