

planetmath.org

Math for the people, by the people.

example of an Alexandroff space which cannot be turned into a topological group

 $Canonical\ name \qquad Example Of An Alexandroff Space Which Cannot Be Turned Into A Topological Ground States and Canada an$

Date of creation 2013-03-22 18:45:46 Last modified on 2013-03-22 18:45:46

Owner joking (16130) Last modified by joking (16130)

Numerical id 4

Author joking (16130) Entry type Example Classification msc 22A05 Let \mathbb{R} denote the set of real numbers and $\tau = \{[a, \infty) \mid a \in \mathbb{R}\} \cup \{(b, \infty) \mid b \in \mathbb{R}\}$. One can easily verify that (\mathbb{R}, τ) is an Alexandroff space.

Proposition. The Alexandroff space (\mathbb{R}, τ) cannot be turned into a topological group.

Proof. Assume that $\mathbb{R} = (\mathbb{R}, \tau, \circ)$ is a topological group. It is well known that this implies that there is $H \subseteq \mathbb{R}$ which is open, normal subgroup of \mathbb{R} . This subgroup "generates" the topology (see the parent object for more details). Thus $H \neq \mathbb{R}$ because τ is not antidiscrete. Let $g \in \mathbb{R}$ such that $g \notin H$ (and thus $gH \cap H = \emptyset$). Then gH is again open (because the mapping $f(x) = g \circ x$ is a homeomorphism). But since both H and gH are open, then $gH \cap H \neq \emptyset$. Indeed, every two open subsets in τ have nonempty intersection. Contradiction, because diffrent cosets are disjoint. \square