11

9.17

Generate Bode magnitude and phase plots (straight-line approximations) for the following voltage transfer functions

a

$$\mathbf{H}(\omega)=rac{30(10+j\omega)}{(200+j2\omega)(1000+j2\omega)}$$

ω	$\log \omega$	M	$\frac{dM}{d\omega}^+ \frac{dB}{decade}$
0	$-\infty$	$20\log\left(\frac{3}{2000}\right)$	0
10	1	$20\log\left(\frac{3}{2000}\right)$	20
100	2	$20(\log\left(\frac{3}{2000}\right)+1)$	0
500	2.6990	$20(\log\left(\frac{3}{2000}\right)+1)$	-20

Component	$0.1\omega_c$	$10\omega_c$
$1+rac{1}{10}j\omega$	1	100

Component	$0.1\omega_c$	$10\omega_c$
$\left(1+rac{1}{100}j\omega ight)^{-1}$	10	1000
$\left(1+rac{1}{500}j\omega ight)^{-1}$	50	5000

ω	$\log \omega$	ϕ°	$\frac{d\phi}{d\omega}^{+}\frac{\circ}{decade}$
0	$-\infty$	0	0
1	0	0	45
10	1	45	0
50	1.6990	45	-45
100	2	$45(1-\log 2)$	-90
1000	3	$45(-1-\log 2)$	-45
5000	4.6990	-90	0

b

$$\mathbf{H}(\omega)=rac{j100\omega}{(100+j5\omega)(100+j\omega)^2}$$

$$imes$$
 Answer $\mathbf{H}(\omega) = rac{j100\omega}{(100+j5\omega)(100+j\omega)^2} = rac{1}{10000} rac{j\omega}{\left(1+rac{1}{20}j\omega
ight)\left(1+rac{1}{100}j\omega
ight)^2}$

ω	$\log \omega$	M	$\frac{dM}{d\omega}^+ \frac{dB}{decade}$
1	0	20(-4)	20
20	1.3010	$20\left(\log(2)-3\right)$	0
100	2	$20\left(\log(2)-3\right)$	-40

Component	$0.1\omega_c$	$10\omega_c$
$\left(1+rac{1}{20}j\omega ight)^{-1}$	2	200
$\left(1+rac{1}{100}j\omega ight)^{-1}$	10	1000

ω	$\log \omega$	ϕ $^{\circ}$	$rac{d\phi}{d\omega}^{+}rac{\circ}{decade}$
0	$-\infty$	90	0
2	0.3010	90	-45
10	1	$90-45\log(5)$	-90
200	2.3010	$90 - 45 \log(2000)$	-45
1000	3	-90	0

C

$$\mathbf{H}(\omega)=rac{(200+j2\omega)}{(50+j5\omega)(1000+j\omega)}$$

$$imes$$
 Answer $\mathbf{H}(\omega) = rac{(200+j2\omega)}{(50+j5\omega)(1000+j\omega)} = rac{1}{250} rac{1+rac{1}{100}j\omega}{(1+rac{1}{10}j\omega)(1+rac{1}{1000}j\omega)}$

ω	$\log \omega$	M	$\frac{dM}{d\omega}^+ \frac{dB}{decade}$
0	$-\infty$	$20\left(\log\left(\frac{1}{250}\right)\right)$	0
10	1	$20\left(\log\left(\frac{1}{250}\right)\right)$	-20
100	2	$20\left(\log\left(rac{1}{250} ight)-1 ight)$	0
1000	3	$20\left(\log\left(\frac{1}{250}\right)-1\right)$	-20

Component	$0.1\omega_c$	$10\omega_c$
$\left(1+rac{1}{10}j\omega ight)^{-1}$	1	100
$1+rac{1}{100}j\omega$	10	1000
$\left(1+rac{1}{1000}j\omega ight)^{-1}$	100	10000

ω	$\log \omega$	$\phi\degree$	$rac{d\phi}{d\omega}^{+}rac{\cdot}{decade}$
0	$-\infty$	0	0
1	0	0	-45
10	1	-45	0
100	2	-45	0
1000	3	-45	-45
10000	4	-90	0

9.23

Determine the voltage transfer function $\mathbf{H}(\omega)$ corresponding to the Bode magnitude plot shown in **Fig. P9.23**. The phase of $\mathbf{H}(\omega)$ is 180° at $\omega=0$.

$$m{\mathcal{M}}(\omega) = -20rac{(1+rac{1}{10}j\omega)(1+rac{1}{100}j\omega)}{j\omega}$$

9.35

For the circuit shown below

a

Obtain an expression for $\mathbf{H}(\omega) = rac{\mathbf{V}_0}{\mathbf{V}_i}$ in standard form

$$egin{aligned} \checkmark & \mathsf{Answer} \ egin{aligned} iL\omega + R & -iL\omega \ -iL\omega & iL\omega + R \end{bmatrix} egin{bmatrix} i_1 \ i_2 \end{bmatrix} = egin{bmatrix} v_i \ 0 \end{bmatrix} \ v_o &= i_2 R \ \mathbf{H}(\omega) &= rac{L\omega}{2L\omega - iR} = rac{L}{R} rac{i\omega}{1 + rac{2L}{R}i\omega} \end{aligned}$$

b

Generate spectral plots for the magnitude and phase of $\mathbf{H}(\omega)$, given that $R=50\Omega$ and L=2~mH.

C

Determine the cutoff frequency ω_c and the slope of the magnitude (in dB) when $\frac{\omega}{\omega_c} \ll 1$

$$\checkmark$$
 Answer $\omega_c = rac{2L}{R}$ $20 \; rac{dB}{decade}$

9.27

A series RLC circuit is drive by an ac source with a phasor voltage $V_s = 10 \angle 30^{\circ} V$. If the circuit resonates at $10^3 \ rad/s$ and the average power absorbed by the resistor at resonance is 2.5W, determine the values of R, L, and C, given that Q = 5

$$\checkmark$$
 Answer $2.5=rac{10^2}{2R} \Longrightarrow R=20$ $Q=rac{\omega_0 L}{R}=rac{1}{\omega_0 CR}=5$ $L=rac{1}{10}=0.1~H$ $C=10~\mu F$

9.37

For the op-amp circuit

a

Obtain an expression for $\mathbf{H}(\omega) = \mathbf{V}_0/\mathbf{V}_s$ in standard form

$$m{\mathcal{M}}(\omega)=rac{R_2+R_1-rac{i}{\omega C}}{R_1-rac{i}{\omega C}}=rac{1+C(R_2+R_1)i\omega}{1+R_1Ci\omega}$$

b

Generate spectral plots for the magnitude and phase of $\mathbf{H}(\omega)$, given that $R_1=1~k\Omega, R_2=4~k\Omega, C=1~\mu F$

```
egin{aligned} 	imes 	extsf{Answer} \ M(\omega) &= rac{\sqrt{1+C^2(R_2+R_1)^2\omega^2}}{\sqrt{1+R_1^2C^2\omega^2}} \ M(\omega)[dB] &= 10\left(\log(1+C^2(R_1+R_2)^2\omega^2) - \log(1+C^2R_1^2\omega^2)
ight) \end{aligned}
```


C

What type of filter is it? What is its maximum gain?

✓ Answer

This is a high-pass filter, as it boosts the high frequencies while doing nothing with the low frequencies.