北京师范大学 2017 ~ 2018 学年第二学期期末考试试卷 (A卷)

课程名称:	呈名称: 复变函数			任课老师姓名:				
卷面总分:	_100 分	考试时长	€: <u>120</u> 分	钟 考证	式类别:	闭卷⊠	开卷口	其他口
院(系):	数学科学学	冷院	专业:	数学与应	用数学		年级:	2016级
姓名:			学号:					
题号	-	_	三	四四	五	7	× .	总分
得分								

一. (20分) (1) 函数 $f(z) = xy^2 - iyx^2$ 在何处(复)可微和解析? (2) 计算积分

(a)
$$\int_{|z|=4} \frac{z}{z^2+4} dz$$
; (b) $\int_{|z|=1} \frac{z-1}{(2z+1)(z+2)} dz$;

二. (20分) (1) 将函数 $\frac{z}{z^2-4z+5}$ 按z的幂展成Taylor级数, 并指出其收敛半径. (2) 将下列函数在指定圆环内展为罗朗级数:

(a)
$$\frac{5}{z^2(z^2-1)}$$
, $1 < |z| < +\infty$; (b) $\sin(\frac{z}{z-1})$, $0 < |z-1| < +\infty$.

三 (30分) (1)求下列各函数在复平面C(不含∞点) 中的孤立奇点, 孤立奇点各属于哪一种类型(极点要指明阶数).

(a)
$$\frac{1}{z(z^2+1)}$$
; (b) $\frac{1}{z\sin z}$; (c) $\frac{e^z-e^{-z}-2z}{z^2\sin z}$.

(2)求如上(a), (b)和(c)中函数在孤立奇点0点的留数.

四 (13分) (10分) (1) 设 $w_0 \in \mathbb{C}$, R > 0, 求将上半平面 $\mathbb{C}_+ = \{z : \text{Im} z > 0\}$ 保形映射成圆盘 $D(w_0, R) = \{w : |w - w_0| < R\}$ 的分式线性变换w = T(z), 使得T(z)满足 $T(i) = w_0$, T'(i) > 0.

五 (10分)计算积分

(1)
$$\int_{-\infty}^{+\infty} \frac{\cos x \, dx}{x^4 + 1} dx$$
; (2) $\int_{0}^{+\infty} \frac{x^{\alpha} dx}{(x+1)(x+2)}$ (-1 < \alpha < 1).

六(7分)设f 在区域 $D(0,2)=\{z:|z|<2\}$ 中解析,f(0)=0,0 是f(z)的4阶零点且f(z)和f'(z)在D(0,2)中除0外,没有其它零点. 对任意R>0,R<2,设 $\delta(R)=\min\{|f(z)|:|z|=R\}$,证明(1) $\delta(R)>0$;(2) 对满足 $0<|b|<\delta(R)$ 的每一个值b,函数f(z)-b 在圆盘 $D(0,R)=\{z:|z|< R\}$ 内恰好有4个不同的一阶零点.