Name of Experiment:-

Creating tables of "Banking Enterprise" Database.

Objectives:-

The objective is to creating tables of "Banking Enterprise" Database.

Theory:-

A database management system is a collection and a set of programs to access those data. The collection of , usually referred to as database.

Instances:

Database changes over time as information is inserted and deleted. The collection of information stored in the database at a particular moment in time as called an instance of the database, e.g., customer (customer_name, customer_street, customer_city) customer ('Hayes', 'Main', 'Harrison')

Kevs:

A key is a property of the entity set, rather than of the individual entities. It allows identifying a set of attributes that suffice to distinguish entities from each other. Keys are three types:

- ✓ Super key✓ Candidate Key
- ✓ Primary key

Super key:

Super Key is a set of one or more attributes that, taken collectively, allows us to identify uniquely an entity in the entity set.

Primary key:

A primary key is one or more column (s) in a table used to uniquely identify each row in the table.

Primary key Constraint:

- ✓ It defines the column, as a mandatory column, i.e., the column can't be left blank,
- ✓ The NOT NULL attribute is active.
- ✓ The data held across the column MUST be UNIQUE.

Candidate key:

A candidate Key is a combination of one or more columns, the values of which uniquely identify each row of a table.

Foreign Kev:

A foreign Key is a combination of columns with values based on the primary key from another table.

Foreign Key Constraint:

- ✓ Records can't be inserted into a detail table if corresponding records in the master table don't exist,
- ✓ Records of the master table can't be deleted if corresponding records in the detail table exist.

Schemas:

The overall design of the database is called the database Schema. A database schema is responsible for describing data in its various levels of abstraction.

For designing Banking Database the required Schemas becomes as follows:

```
Customer (customer name , customer_street , customer_city )
primary key(customer_name)

Branch (branch name , branch_city , assets )
primary key(branch_name)

Account (account no , branch_name , balance )
primary key(account_no)

Depositor (customer name , account no )
primary key(customer_name , account_no));

Loan (loan no , branch_name , amount)
primary key(loan_no)

Borrower (customer name , loan no )
primary key(customer_name, loan_no)
```

Procedure: Steps of Setting up a Database for a particular enterprise.

- 1. Define the high level requirements of the enterprise (this steps generates a document known as the system requirements specification).
- 2. Define a model containing all appropriate types of data and relationships.
- 3. Define the integrity constraints on the data.
- 4. Define the physical level.

5. For each known problem to be solved on a regular bases (e.g.tasks to be carried out by clerks or web users) define a user interface to carry out the task, and write the necessary application programs to implement the user interface.

SQL:

Now we create the tables in SQL for the above schemas

```
create table customer
(customer_name varchar(25),
customer_street varchar(25),
customer_city varchar(25),
primary key(customer_name));
```

sql> describe customer;

output

Field	Type	Null	Key	Default	Extra
customer_name	varchar(25)	NO	PRI		
customer_street	varchar(25)	YES		NULL	
customer_city	varchar(25)	YES		NULL	

```
create table branch
(branch_name varchar(25),
branch_city varchar(25),
assets numeric(15,4),
primary key(branch_name));
```

sql> describe branch;

output

Field	Туре	Null	Key	Default	Extra
branch_name	varchar(25)	NO	PRI		
brnanch_city	varchar(25)	YES		NULL	
assets	decimal(15,4)	YES		NULL	

```
create table account (account_no char(14), branch_name varchar(25), balance numeric(15,4), primary key(account_no));
```

sql> describe account;

<u>output</u>

Field	Туре	Null	Key	Default	Extra
account_no	char(14)	NO	PRI		
branch_name	varchar(25)	YES		NULL	
balance	decimal(15,4)	YES		NULL	

create table depositor
(customer_name varchar(25),
account_no char(14),
primary key(customer_name, account_no));
sql> describe depositor;

<u>output</u>

Field	Туре	Null	Key	Default	Extra
customer_name	varchar(25)	NO	PRI		
account_no	char(14)	NO	PRI		

create table loan
(loan_no char(14),
branch_name varchar(25),
ammount numeric(14),
primary key(loan_no));

output

Field	Туре	Null	Key	Default	Extra
loan_no	char(14)	NO	PRI		
branch_name	varchar(25)	YES		NULL	
ammount	decimal(14)	YES		NULL	

create table borrower
(customer_name varchar(25),
loan_no char(14),
primary key(customer_name,loan_no));
sql> describe borrower;

output

Field	Туре	Null	Key	Default	Extra
customer_name	varchar(25)	NO	PRI		
loan_no	char(14)	NO	PRI		

Discussion:- By this database query we can creating tables of "Banking Enterprise" Database.