Теория параллелизма

Отчет

Уравнение теплопроводности (Разностная схема)

Выполнила Рубан Василина Александровна, 22930 31.05.2024

Цель работы:

- Ознакомиться с OpenACC.
- Реализовать решение уравнения теплопроводности на C++ с использованием разностной схемы (пятиточечный шаблон).
- Изучить методы линейной интерполяции для задания граничных условий.
- Оптимизировать программу для работы на CPU и GPU.
- Сравнить производительность программы на CPU и GPU.
- Провести профилирование программы с использованием Nsight Systems.

Используемый компилятор: pgc++.

Используемый профилировщик: "Nsight Systems".

Как производились замеры времени работы: для измерения времени выполнения программы была использована библиотека std::chrono.

Выполнение на CPU

CPU-onecore

Размер сетки	Время выполнения, в секундах	Точность	Количество итераций
128x128	1.812	1e-6	36700
256x256	26.105	1e-6	125000
512x512	356.595	1e-6	409700

CPU-multicore

Размер сетки	Время выполнения, в секундах	Точность	Количество итераций
128x128	0.331	1e-6	18700
256x256	2.209	1e-6	52700
512x512	17.773	1e-6	121700

Диаграмма сравнения время работы CPU-one и CPU-multi

CPU-multicore и CPU-onecore

Выполнение на GPU

Размер сетки	Время выполнения, в секундах	Точность	Количество итераций
128x128	0.384	1e-6	36700
256x256	1.400	1e-6	125000
512x512	5.367	1e-6	409800
1024x1024	42.845	1e-6	1274200

Оптимизации:

Оптимизация цикла с использованием директивы collapse(2):

Использование директивы collapse(2) в OpenACC позволяет обрабатывать два вложенных цикла как один, что увеличивает количество доступных параллельных итераций и улучшает балансировку нагрузки на устройствах с большим количеством потоков.

Оптимизация вычисления ошибки с помощью reduction(max:err):

Использование директивы reduction(max:err) для вычисления максимальной ошибки позволяет эффективно параллелизовать операцию редукции, что ускоряет вычисление максимального значения ошибки.

Инициализация массивов с использованием memset.

GPU, CPU-multicore и CPU-onecore

400

300

100

128x128

256x256

512x512

1024x1024

Вывод:

Размер сетки

Наибольшее время, как и ожидалось, занимает выполнение на CPU-onecore, а наименьшее - на GPU.