CLASE 07 - PRUEBAS DE CONTRASTE DE HIPÓTESIS

OCE 313 - Técnicas de análisis no paramétricos.

Dr. José Gallardo Matus

Pontificia Universidad Católica de Valparaíso

01 May 2022

PLAN DE LA CLASE

1.- Introducción

- Comparación de 2 muestras independientes.
- Comparación de muestras independientes pareadas.
- Comparación de múltiples muestras independientes.
- Interpretación test no paramétricos con R.

2). Práctica con R y Rstudio cloud.

- Prácticas pruebas de contraste de hipótesis no paramétricas.
- Realizar gráficas avanzadas con ggplot2.

COMPARACIÓN DE DOS MUESTRAS INDEPENDIENTES

¿Para qué sirve?

Para comparar dos muestras con idéntica distribución, con diferentes medianas y sin normalidad.

Usualmente para variables discretas.

PRUEBA DE MANN-WHITNEY (W)

Estudio de caso: Comparación del reclutamiento de ostras en el intermareal entre dos sitios (S1 y S2) **Adaptado de Deck, 2007**.

Nº ostras S1	Nº ostras S2
9	0
12	4
13	6

CÁCULO DE ESTADÍSTICO MANN-WHITNEY (W)

¿Cómo se calcula el estadístico W?

Como la diferencia de los ranking entre tratamiento y control

S1	S2	Ranking S1	Ranking S2
9	0	4	1
12	4	5	2
13	6	6	3
		$\sum = 15$	$\sum = 6$

$$W = 15 - 6 = 9$$

Máxima diferencia posible entre S1 y S2.

¿CUÁNTAS COMBINACIONES SON POSIBLES?

¿Cuántas combinaciones son posibles?

S1	S 2
1	4
2	5
3	6
6	15
W =	- 9

S1	S2
2	1
5	3
6	4
13	8
W =	5

DISTRIBUCIÓN MUESTRAL DE W

PRUEBA DE HIPÓTESIS DE MANN-WHITNEY

Hipótesis

 H_0 : S1 = S2 H_1 : S1 > S2

Resultado obtenido W=9.

p = 1/20

p = 0.05

No se rechaza H_0 porque p = 0.05

PRIJEBA DE MANN-WHITNEY CON R

Crea objetos tratamiento y control

```
t \leftarrow c(9, 12, 13)
c \leftarrow c(0, 4, 6)
# Realiza prueba de Mann-Whitney
wilcox.test(t, c, alternative = "g",
            paired = FALSE)
##
   Wilcoxon rank sum exact test
##
##
## data: t and c
## W = 9, p-value = 0.05
## alternative hypothesis: true location shift is greater
```

COMPARACIÓN DE MUESTRAS PAREADAS

¿Para que sirve?

Para comparar dos muestras *pareadas* con idéntica distribución, con diferentes medianas y sin normalidad.

PRUEBA DE WILCOXON MUESTRAS PAREADAS

Estudio de caso: Comparación de productividad béntica (Coral Path Reef) entre dos tiempos. **Adaptado de Toro-Farmer et al. 2016**

DATOS SIMULADOS DE PRODUCTIVIDAD

¿Aumenta la productividad?

Arrecife de coral	Mes 1	Mes 2	d	Ranking con signo
1	45	49	4	2
2	41	50	9	4
3	47	52	5	3
4	52	50	2	-1

W = suma de los ranking = 8

V = suma de casos positivos (aumenta) = 9

DISTRIBUCIÓN MUESTRAL DE W

¿Cuántas combinaciones de signos (+ o -) son posibles? $2^4 = 16$

PRUEBA DE HIPÓTESIS DE WILCOXON

Hipótesis

 H_0 : d = 0 H_1 : d > 0

$$p = 2/16$$

 $p = 0.125$

No se rechaza $\mathbf{H_0}$ porque p=0,125 es mayor a 0,05

PRUEBA DE WILCOXON PAREADAS CON R

```
# Crea objetos pre y post
pre \leftarrow c(45, 41, 47, 52)
post \leftarrow c(49, 50, 52, 50)
# Realiza prueba de Wilcoxon
wilcox.test(post - pre, alternative = "greater")
##
    Wilcoxon signed rank exact test
##
##
## data: post - pre
## V = 9, p-value = 0.125
## alternative hypothesis: true location is greater than 0
# no es necesario indicar muestras pareadas
# pues estamos haciendo la resta en la función.
```

COMPARACIÓN DE MÚLTIPLES MUESTRAS INDEPENDIENTES

¿Para que sirve?

Para comparar múltiples muestras con idéntica distribución, con diferentes medianas y sin normalidad.

PRUEBA DE KRUSKAL - WALLIS

Estudio de caso: Comparación de abundancia de zooplancton entre estaciones Adaptado de Torreblanca et al. 2016.

Verano	Otoño	Invierno	Primavera
900	600	500	50
800	650	450	40
700	550	400	75
750	500	475	100

Hipótesis

 H_0 : La distribución de los k grupos son iguales. **H**₁: Al menos 2 grupos son distintos.

PRUEBA DE KRUSKAL - WALLIS CON R

```
V <- c(900,800,700,750) # Verano
0 < c(600,650,550,500) # Otoño
I \leftarrow c(500, 450, 400, 475) \# Invierno
P \leftarrow c(50,40,75,100) \# Primavera
kt <- kruskal.test(list(V, 0, I,P))</pre>
kt[["statistic"]]
## Kruskal-Wallis chi-squared
                       13.96723
##
kt[["parameter"]]
## df
## 3
kt[["p.value"]]
   [1] 0.002950098
```

RESUMEN DE LA CLASE

- ► Comparación de 2 muestras independientes.
- Comparación de muestras independientes pareadas.
- omparación de múltiples muestras independientes.
- Interpretación test no paramétricos con R.