

Project Title: Multi-Bolt Looseness Classification on a Plate Structure Using Percussion and Supervised Learning Algorithms James Valentine, Undergraduate Student

Department of Mechanical Engineering, Cullen College of Engineering

Problem Statement

Bolted connections are exceptionally common, and they loosen over time. Failure to properly monitor these connections can lead to structure failure and death¹⁻⁶. The goal of this research is to examine the ability of supervised machine learning algorithms to classify multi-bolt looseness scenarios on a set of aluminum plates. Seven different algorithms and four different signal processing feature sets will be used in testing in two cases, making for a total of 56 different percent accuracy results in testing. This will be comprehensive look into the validity of percussion for multi-bolt monitoring.

Brief Literature Review

- Bolt looseness on plates has been researched with other monitoring methods, but there's not much with percussion¹
- Multi-bolt looseness monitoring with percussion has been with simple, unrealistic loosening scenarios^{4,5,6}
- Other monitoring on plates has also primarily concerned single-bolt looseness^{2,3}
- Finally, to my knowledge, there is not research that explicitly explores combining different feature sets into single matrices

Experimental Setup and Collection of Data

- All the bolts were numbered, and the center of each 4-bolt square was lettered to track tapping location
- All bolts were present and were tight (40 ft-lb) unless otherwise specified
- A set of two aluminum plates on a wooden cart was used to test two multi-bolt looseness cases: testing for number of bolts loose (Case 1) and presence of loose bolts (Case 2)
- 30 taps were used for training and testing while 10 were used in validation for both cases
- Case 1
 - To test for detecting number of loose bolts, there were three classes of data in Case 1: 2, 4, and 10 loose bolts
 - The tapping location in Case 1 did not change and was always in the middle of the plate
- Case 2
 - To test for detecting presence of loose bolts, there were two classes of data in Case 2: 0 and 2loose bolts
 - The tapping location of Case 2 was tested at points A, E, and I
- Tables 1 and 2 show in-depth properties for each audio file taken for this project, including which bolts were loose, tapping location, and number of taps for training, testing, and validation

)			0	
	00	O (3	O 5	
	(-())	(C)	(O)	
	ر ال	H		

Table 1: Case 1 Loose Bolt Scenarios							
Subcase #	Loose Bolts	Tapping	Training	Testing	Validation		
		Location	Taps	Taps	Taps		
1	1,2	Point E	30	30	10		
2	13,14	Point E	30	30	10		
3	15,16	Point E	30	30	10		
4	3,4	Point E	30	30	10		
5	5,6,7,8	Point E	30	30	10		
6	5,7,8,9	Point E	30	30	10		
7	9,10,11,12	Point E	30	30	10		
8	All Outer Bolts	Point E	30	30	10		

Table 2: Case 2 Loose Bolt Scenarios							
Subcase # L	Loose Bolts	Tapping Location	Training	Testing	Validation		
			Taps	Taps	Taps		
1	4, 15	Point A	30	30	10		
2	8, 11	Point A	30	30	10		
3	None	Point A	30	30	10		
4	13, 14	Point E	30	30	10		
5	15, 16	Point E	30	30	10		
6	None	Point E	30	30	10		
7	12, 7	Point I	30	30	10		
8	16, 3	Point I	30	30	10		
9	None	Point I	30	30	10		

Case E PSD

Ediag1

Eall1

- Ediag2

Methods

- Multiple feature matrices created: Power Spectral Density (PSD), Fast Fourier Transform (FFT), Mel-Frequency Cepstral Coefficients (MFCC) and combined PSD + FFT
- This is one of the first instances of combining audio feature sets to create a larger set for training and testing, using concatenation of the PSD and FFT matrices
- Seven algorithms used to classify data: K-Nearest Neighbors (KNN), Decision Tree (DT), Neural Network Logistic Regression, and Recurrent Neural Network

Validation

Audio Sets

Processed

Confusion

Two Bolts Data 1

Two Bolts Data 2

Four Bolts Data 1

Four Bolts Data 2

All Outer Bolts

Results, Analysis and Discussion

Between all four methods of feature extraction, FFT and the combined PSD + FFT feature sets generally performed the best and most consistently between testing and validation

Summary of Performance:

- Case 1
- KNN and NN algorithms performed the best
- FFT features performed the best in both testing and validation
- The MFCC features performed second best
- The major point of weakness was the intermediate "4 Loose Bolts" class
- Classifying the "10 Loose Bolts" class was almost always done perfectly
- Case 2
 - RNN and Logistic Regression performed the best
 - PSD + FFT features performed the best in testing and validation
 - FFT performed second best
- The major point of weakness was classifying "2 Loose Bolts" data as "O Bolts Loose"
- The combined feature set could perform up to 10% better than PSD or FFT individually in some cases
- Overall, work needs to be done to improve intermediate class identification for case 1 and improving classification of false negatives in class 2
- Further exploration of combining audio feature sets could make some features more flexible and help retain accuracy

Case 1 Charts of Note

Conclusion

- Overall, the results gained in this study are promising for multi-bolt looseness monitoring, with classification of number of loose bolts generally ranging about 70-80% accurate and classification of loose bolt presence being about 80-90% accurate
- Furthermore, the use of combined feature sets is especially promising for identifying the presence of loose bolts
- Future research could introduce intermediate classes into Case 2 to identify how loose the present loose bolts are
- Given the short scope of the project, supplying this data to graduate students for further examination could also improve results

Acknowledgements

The financial support from Midstream Integrity Services (MIS) and technical support from Smart Materials & Structures Lab (SMSL) and Artificial Intelligence Lab for Monitoring & Inspection (AILMI) at UH.

References

- Jiang, J., Chen, Y., Dai, J., & Liang, Y. (2022). Multi-bolt looseness state monitoring using the recursive analytic based active sensing technique. Measurement, 191, 110779. https://doi.org/10.1016/j.measurement.2022.110779
- Yang, Z., & Huo, L. (2022). Bolt preload monitoring based on percussion sound signal and Convolutional Neural Network (CNN). Nondestructive Testing and Evaluation, 37(4), 464–481. https://doi.org/10.1080/10589759.2022.2030735
- mes M., (2024) "Bolt Looseness Monitoring Using Percussion and Clustering Machine Learning Methods" [Undergraduate Thesis, University of Houston]. UH Campus Repository.
- Wang, F., & Song, G. (2021). A novel percussion-based method for multi-bolt looseness detection using one-dimensional memory augmented convolutional long short-term memory networks. Mechanical Systems and Signal Processing, 161, 107955. https://doi.org/10.1016/j.ymssp.2021.107955
- Valentine, James M., (2023) "Verification of Solenoid-Enabled Percussion to Monitor Bolted Structures with Neural Network and Support Vector Machine Classifiers," https://uh-ir.tdl.org/server/api/core/bitstreams/5a7d649c-

Du, C., Liu, J., Gong, H., Huang, J., & Zhang, W. (2023). Percussion-based loosening detection method for multi-bolt structure using convolutional neural network DenseNet-CBAM. Structural Health Monitoring.