Statistical Arbitrage on S&P 500 Components by Machine Learning Models

Springboard Data Science Career Track Capstone 1, April 27th 2020 Cohort

Jiaqi Xu

09/23/2020

The Next 20 minutes is dictated to

- Project Introduction
- Dataset Extract, Transform and Load (ETL)
- Exploration Data Analysis (EDA)
- Machine Learning Models, Parameters Tuning and Prediction Results
- Trading Results and Analysis
- Future Work

Why S&P 500 Components

 Attractive return - 9.8%/year, including dividends, since inception in 1926 (Wikipedia).

 Mr. Warren Buffet's recommendation in annual meeting 2020.

• A hot topic.

Source: Robinhood Learn

Previous Related Work

- Jegadeesh and Titman (1993) Early paper for momentum trading. Select stocks: past 6-month returns, holds: 6 months. Excess return: 12.01%/year (1965 1989).
- Krauss et al. (2017) A statistical arbitrage strategy: deep neural networks (DNN), gradient-boosted trees (GBT), random forests (RAF) S&P 500 (1992 2015). Return: 0.25%/day, Sharpe ratio: 1.81/year (no transaction cost).
- Fischer and Krauss (2018) Long short-term memory (LSTM) networks: S&P 500 constitutes. Return: 0.46%/day, Sharpe ratio: 5.8/year (no transaction cost).
- Fischer et al. (2019) Logistic regression (LG), RAF: 40 cryptocurrency coins minute (06/18/2018 to 09/17/2018). Return: 0.038%/round-trip trade (after transaction cost: 0.15%/half-turn).

Goal of This Project

 Optimal machine learning methods: one-step stock movement prediction, updated dataset (2005-01-01 to 2019-12-31).

• My machine learning methods vs Krauss et al. (2017) and Fischer and Krauss (2018).

• Check: "profits are declining in recent years and there is a severe challenge to the semi-strong form of market efficiency".

Dataset Extract, Transform and Load (ETL)

- List of historical S&P 500 components Wharton Research Data Services (<u>WRDS</u>) and <u>Wikipedia</u>.
- Daily data of historical S&P 500 components Python Yahoo finance module <u>yahoo-finance-1.0.4</u>.
- Missing Components Delisted from Yahoo finance.

Exploration Data Analysis (EDA)

Dataset: S&P 500 composites from 2005/01/01 to 2020/01/01 (15 years data).

• **Subsets**: Split dataset into 12 subsets - each subset, 750 days/250 days – formation/trading. Trading: non-overlapped. Formation: 80%/20% training (5 folder cv)/testing.

Subset	form_start	form_start	trad_end	Subset	form_start	form_start	trad_end
0	1-1-2005	1-1-2008	1-1-2009	6	1-1-2011	1-1-2014	1-1-2015
1	1-1-2006	1-1-2009	1-1-2010	7	1-1-2012	1-1-2015	1-1-2016
2	1-1-2007	1-1-2010	1-1-2011	8	1-1-2013	1-1-2016	1-1-2017
3	1-1-2008	1-1-2011	1-1-2012	9	1-1-2014	1-1-2017	1-1-2018
4	1-1-2009	1-1-2012	1-1-2013	10	1-1-2015	1-1-2018	1-1-2019
5	1-1-2010	1-1-2013	1-1-2014	11	1-1-2016	1-1-2019	1-1-2020

Table 1: Formation and Trading periods for 12 non-overlapping trading batches

Exploration Data Analysis (EDA)

Feature generation:

- Input: $P^s = (P_t^s)_{t \in T}$ price process of stock s, $s \in \{1, ..., n\}$. Simple return $R_{t,m}^s$ over m periods: $R_{t,m}^s = \frac{P_t^s}{P_{t-m}^s} 1$, Where $m \in \{\{1, ..., 20\} \cup \{40,60, ..., 240\}\}$.
- *Output:* A binary response variable $Y_{t+j,j}^s \in \{0,1\}$ for each stock s.

$$Y_{t+j,j}^{s} = \begin{cases} 1, & \text{if } R_{t+j,j}^{s} > \text{median return} \\ 0, & \text{otherwise} \end{cases}$$

j=1 for 1 period.

Feature Description:

Figure 1. Feature Correlation Heatmap from Formation Subset 10

Machine Learning Methods, Grid-search parameters, Results

Methods	Parameters to be tuned	Be selected values	Optimal values for Dataset											
	Parameters to be tuned		0	1	2	3	4	5	6	7	8	9	10	11
	Number of neighbors	{3,5,7,11}	11					5				3	5	11
knn	Weight function used in prediction	{'uniform','distance'}	'uniform' 'distance'			'unifor	iform'			'distance'				
	Metric	{'euclidean', 'manhattan'}	'manhattan' 'euclidean'			'manhat	attan' 'euclidean'		'euclidean'					
raf	The number of trees	{1500,2000,2500}	2500 2000					2500						
	The maximum depth of the tree	{20,25,30}	20			30		25 3		0 25			20	
	The number of features for the best split	{log2(n_features), sqrt(n_features)}	"sqrt" "log2"		"sqrt			"log2"						
	The number of samples to draw in bootstrap	{500, 700, 1000}	700 1000 700			700		1000						
lg	Inverse of regularization strength	{10^-3, 10^-2,,10^2,10^3}	0.01	0.01 0.1 0.001		1000	0.01	0.1	0.001			10	0.001	
	Penalization (learning rate)	{'I2'}	"12"											
	Optimization solver	{'newton-cg','lbfgs','sag'}	"sag"	"newton-cg"	"lbfgs"	"newton-cg"	"lgfgs"	"newton-cg"	"sag"	"new	ton-cg"	"sag"	"lbfgs"	"newton-cg"
	Maximum iterations	{10000,20000}		1000										
xgboost	Maximum depth of a tree	{3,5,7}	7											
	Minimum sum of instance weight needed in a child	{5,10}				5					10			5
	Number of trees	{500, 1000}	1000											
	Penalization (learning rate)	{0.01, 0.02, 0.05, 0.1}	0.01	0.02	2	0.05			0.02	0.01			0.02	
ensemble 1	Average of knn-xgboost	Average												
ensemble 2	ensemble 2 Stacking of knn-xgboost Meta-function													
mlp	structures, early stopping, activate function 31-10-5-1, 256-128-64-32-1			256-128-64-32-1										

Table 2: Grid-search parameters of machine learning methods with the optimal results

Result from Formation (Train/Test) Window

Figure 2. Train and Test Accuracy for machine learning methods with optimal parameters in all subsets

- Train subsets

- Best: stacking ensemble
- Xgboost: subset 0, 1, 3, 4 and 5; average ensemble: others

- Test subsets

- Best: stacking ensemble
- Xgboost: subset 0-4;average ensemble: subset 7; knn: others.

Trading window with Momentum

For each of trading dataset

- Sorting all stocks over the cross-section in descending order with the prediction probabilities (stacking ensemble, table 2).
- Long the highest ("expected winner") k probabilities, short the lowest ("expected loser") k probabilities simultaneously.

Trading Results of Momentum (3 stocks/pair)

Figure 3: Results of Momentum with 3 stock/pairs

Stocks K=3, 5, 10, 15, 20/pair vs S&P 500

Figure 4: Results of Momentum with 3,5,10,15,20 stock/pair

Conclusion

- 2008, 2009 and 2011: beat S&P 500.
- 2013, 2014, 2016, 2017 and 2019: worse than S&P 500.
- Krauss et al. (2017): 0.25% daily return, realized before year 2008 (year 1993 to 2000). In year 2010 to Oct 2015: loss over 50% (with transaction cost). My method: positive daily returns (without transaction cost).
- Confirms hypothesis: "profits are declining in recent years and there is a severe challenge to the semi-strong form of market efficiency."

Future Work

- Check the data quality: problem with Yahoo finance.
- Other models: recurrent neural network (RNN) and LSTM.
- Try multi-classification
- Use different datasets: Financial Times Stock Exchange (FTSE) 100 or Asian market.
- More criteria (e.g. maximum drawdown), reasons for bad performance years.
- Updated table 3 (tune parameters) and do the momentum trading again.

Reference

- Jegadeesh, N., & Titman, S. (1993). Returns to buying winners and selling losers: Implications for stock market efficiency. The Journal of finance, 48(1), 65-91.
- Krauss, C., Do, X. A., & Huck, N. (2017). Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500. European Journal of Operational Research, 259(2), 689-702.
- Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research, 270(2), 654-669.
- Fischer, T. G., Krauss, C., & Deinert, A. (2019). Statistical arbitrage in cryptocurrency markets. Journal of Risk and Financial Management, 12(1), 31.

Thank You!

Jiaqi Xu

Email: <u>jiaqiperson@gmail.com</u>

LinkedIn: https://www.linkedin.com/in/jiaqixu1

ResearchGate: https://www.researchgate.net/profile/Jiaqi Xu10

Project report: https://github.com/jiaqixu/Springboard/blob/master/Capstone1/Capstone1_Final_report.pdf