Math 257-316 PDE Formula sheet - final exam

Trigonometric and Hyperbolic Function identities

$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \sin \beta \cos \alpha$	$\sin^2 t + \cos^2 t = 1$
$\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\beta \sin\alpha.$	$\sin^2 t = \frac{1}{2} \left(1 - \cos(2t) \right)$
$\sinh(\alpha \pm \beta) = \sinh\alpha \cosh\beta \pm \sinh\beta \cosh\alpha$	$\cosh^2 \bar{t} - \sinh^2 t = 1$
$\cosh(\alpha \pm \beta) = \cosh \alpha \cosh \beta \pm \sinh \beta \sinh \alpha.$	$\sinh^2 t = \frac{1}{2} \left(\cosh(2t) - 1 \right)$

Basic linear ODE's with real coefficients

	constant coefficients	Euler eq
ODE	ay'' + by' + cy = 0	$ax^2y'' + bxy' + cy = 0$
indicial eq.	$ar^2 + br + c = 0$	ar(r-1) + br + c = 0
$r_1 \neq r_2 \text{ real}$	$y = Ae^{r_1x} + Be^{r_2x}$	$y = Ax^{r_1} + Bx^{r_2}$
$r_1 = r_2 = r$	$y = Ae^{rx} + Bxe^{rx}$	$y = Ax^r + Bx^r \ln x $
$r = \lambda \pm i\mu$	$e^{\lambda x}[A\cos(\mu x) + B\sin(\mu x)]$	$x^{\lambda}[A\cos(\mu \ln x) + B\sin(\mu \ln x)]$

Series solutions for y'' + p(x)y' + q(x)y = 0 (*) around $x = x_0$.

Ordinary point x_0 : Two linearly independent solutions of the form:

$$y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

Regular singular point x_0 : Rearrange (\star) as:

$$(x-x_0)^2 y'' + [(x-x_0)p(x)](x-x_0)y' + [(x-x_0)^2q(x)]y = 0$$

If $r_1 > r_2$ are roots of the indicial equation: $r(r-1) + br + c = 0$ where $b = \lim_{x \to x_0} (x-x_0)p(x)$ and $c = \lim_{x \to x_0} (x-x_0)^2q(x)$ then a solution of (\star) is

$$y_1(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^{n+r_1}$$
 where $a_0 = 1$.

The second linerly independent solution y_2 is of the form:

Case 1: If $r_1 - r_2$ is neither 0 nor a positive integer:

$$y_2(x) = \sum_{n=0}^{\infty} b_n (x - x_0)^{n+r_2}$$
 where $b_0 = 1$.

Case 2: If $r_1 - r_2 = 0$:

$$y_2(x) = y_1(x) \ln(x - x_0) + \sum_{n=1}^{\infty} b_n(x - x_0)^{n+r_2}$$
 for some $b_1, b_2...$

Case 3: If $r_1 - r_2$ is a positive integer:

$$y_2(x) = ay_1(x)\ln(x-x_0) + \sum_{n=0}^{\infty} b_n(x-x_0)^{n+r_2}$$
 where $b_0 = 1$.

Fourier, sine and cosine series

Let f(x) be defined in [-L, L]then its Fourier series Ff(x) is a 2L-periodic function on \mathbf{R} : $Ff(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left\{ a_n \cos(\frac{n\pi x}{L}) + b_n \sin(\frac{n\pi x}{L}) \right\}$ where $a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos(\frac{n\pi x}{L}) dx$ and $b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin(\frac{n\pi x}{L}) dx$

Theorem (Pointwise convergence) If f(x) and f'(x) are piecewise continuous, then Ff(x) converges for every x to $\frac{1}{2}[f(x-)+f(x+)]$.

Parseval's indentity

$$\frac{1}{L} \int_{-L}^{L} |f(x)|^2 dx = \frac{|a_0|^2}{2} + \sum_{n=1}^{\infty} (|a_n|^2 + |b_n|^2).$$

For f(x) defined in [0, L], its cosine and sine series are

$$Cf(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(\frac{n\pi x}{L}), \quad a_n = \frac{2}{L} \int_0^L f(x) \cos(\frac{n\pi x}{L}) dx,$$

$$Sf(x) = \sum_{n=1}^{\infty} b_n \sin(\frac{n\pi x}{L}), \quad b_n = \frac{2}{L} \int_0^L f(x) \sin(\frac{n\pi x}{L}) dx.$$

D'Alembert's solution to the wave equation

PDE: $u_{tt} = c^2 u_{xx}$, $-\infty < x < \infty$, t > 0 **IC**: u(x,0) = f(x), $u_t(x,0) = g(x)$. **SOLUTION**: $u(x,t) = \frac{1}{2}[f(x+ct) + f(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(s) ds$

Sturm-Liouville Eigenvalue Problems

ODE: $[p(x)y']' - q(x)y + \lambda r(x)y = 0$, a < x < b.

BC: $\alpha_1 y(a) + \alpha_2 y'(a) = 0$, $\beta_1 y(b) + \beta_2 y'(b) = 0$.

Hypothesis: p, p', q, r continuous on [a, b]. p(x) > 0 and r(x) > 0 for $x \in [a, b]$. $\alpha_1^2 + \alpha_2^2 > 0$. $\beta_1^2 + \beta_2^2 > 0$.

Properties (1) The differential operator Ly = [p(x)y']' - q(x)y is symmetric in the sense that (f, Lg) = (Lf, g) for all f, g satisfying the BC, where $(f, g) = \int_a^b f(x)g(x) dx$. (2) All eigenvalues are real and can be ordered as $\lambda_1 < \lambda_2 < \cdots < \lambda_n < \cdots$ with $\lambda_n \to \infty$ as $n \to \infty$, and each eigenvalue admits a unique (up to a scalar factor) eigenfunction ϕ_n .

- (3) Orthogonality: $(\phi_m, r\phi_n) = \int_a^b \phi_m(x)\phi_n(x)r(x) dx = 0$ if $\lambda_m \neq \lambda_n$.
- (4) **Expansion**: If $f(x):[a,b]\to \mathbf{R}$ is square integrable, then

$$f(x) = \sum_{n=1}^{\infty} c_n \phi_n(x), \ a < x < b \ , \ c_n = \frac{\int_a^b f(x) \phi_n(x) r(x) \, dx}{\int_a^b \phi_n^2(x) r(x) \, dx}, \ n = 1, 2, \dots$$