Signals and Systems

Chapter 6

- 6. Time and Frequency Characterization of Signals and Systems
- 6.1 The Magnitude-phase Representation of the Fourier Transform

For signal
$$x(t): x(t) \stackrel{F}{\longleftrightarrow} X(j\omega)$$

$$X(j\omega) = |X(j\omega)| e^{j\angle X(j\omega)}$$

$$|X(j\omega)|$$
 --- Magnitude Spectrum $\angle X(j\omega)$ --- Phase Spectrum

$$x(t) = 1 + \frac{1}{2}\cos(2\pi t + \Phi_1) + \cos(4\pi t + \Phi_2) + \frac{2}{3}\cos(6\pi t + \Phi_3)$$

Magnitude: $|P(j\omega_1, j\omega_2)|$ Phase: 0

(u)

Magnitude:1

Phase : $\angle P(j\omega_1, j\omega_2)$

6.2 The Magnitude-phase Representation of the Frequency Response of LTI System

System characterization:

Impulse response:

$$h(t) \stackrel{F}{\longleftrightarrow} H(j\omega)$$

Frequency response:

$$H(j\omega) = \frac{Y(j\omega)}{X(j\omega)}$$

$$H(j\omega) = |H(j\omega)| e^{j\angle H(j\omega)}$$

$$|H(j\omega)|$$
 --- Magnitude Response

$$e^{j\angle H(j\omega)}$$
 —— Phase Response

6.2.1 Linear and Nonlinear Phase

Linear phase: $\angle H(j\omega) = k\omega$

Nonlinear phase: $\angle H(j\omega) = Nonlinear function$

Example: $y(t) = x(t - t_0)$

 $H(j\omega) = e^{-j\omega t_0}$

 $\angle H(j\omega) = -\omega t_0$ (Linear phase)

Effect: Linear phase means non-distortion of signal transmission.

(Magnitude Response is constant)

6.2.2 Group Delay

Definition:
$$\tau(\omega) = -\frac{d}{d\omega} \angle H(j\omega)$$

Example: $y(t) = x(t-t_0)$
 $H(j\omega) = e^{-j\omega t_0}$
 $\angle H(j\omega) = -\omega t_0$
 $\tau(\omega) = t_0$ (signal delay)

Distortionless system : $\tau(\omega)$ is flat.

Phase Delay

Sinusoidal:
$$\sin(\omega_0 t - \Phi) = \sin[\omega_0 (t - \frac{\Phi}{\omega_0})]$$

Phase Delay
$$\Phi$$
Definition: ω_0

6.2.3 Log-Magnitude and Bode Plots

Magnitude spectrum:

$$|H(j\omega)| \sim \omega$$

 $20 \log_{10} |H(j\omega)| \sim \log_{10} \omega$ (Bode plots)

Phase spectrum:

$$\angle H(j\omega) \sim \omega$$

 $\angle H(j\omega) \sim \log_{10} \omega \ (Bode \ plots)$

6.3 Time-Domain Properties of Ideal Frequencyselective Filters

Lowpass filter:

(1) Continous time: $H(j\omega) = \begin{cases} 1, |\omega| \leq \omega_c \\ 0, |\omega| > \omega_c \end{cases}$

(2) Discrete time:

$$H(e^{j\omega}) = \begin{cases} 1, |\omega| \leq \omega_c \\ 0, |\omega| \leq \pi \end{cases}$$

6.4 Time-Domain and Frequency-domain Aspects of Non-ideal Filters

Basic parameter of lowpass filter:

Signals and Systems

Chapter 7

Sampling

7.1 Representation of a Continuous-time Signal by its Samples: The Sampling Theorem

7.1.1 Impulse-train Sampling

(1) Sampling

$$\begin{cases} x_p(t) = x(t)p(t) \\ X_p(j\omega) = \frac{1}{2\pi} [X(j\omega) * P(j\omega)] \end{cases}$$

where
$$p(t) = \delta_T(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT)$$

Time domain:

$$x_p(t) = x(t) \cdot \delta_T(t) = \sum_{n = -\infty}^{+\infty} x(nT)\delta(t - nT)$$

Frequency domain: $\chi(t) \longleftrightarrow X(j\omega)$

$$p(t) \stackrel{FT}{\longleftrightarrow} P(j\omega) = \sum_{k=-\infty}^{\infty} \frac{2\pi}{T} \delta(\omega - k \frac{2\pi}{T})$$
$$= \sum_{k=-\infty}^{+\infty} \omega_s \delta(\omega - k \omega_s)$$

$$x_{p}(t) \stackrel{F}{\longleftrightarrow} X_{p}(j\omega) = \frac{\omega_{s}}{2\pi} \sum_{k=-\infty}^{+\infty} X(j(\omega - k\omega_{s}))$$
$$= \frac{1}{T} \sum_{k=-\infty}^{+\infty} X(j(\omega - k\omega_{s}))$$

(2) Sampling theorem

Let x(t) be a band-limited signal with

 $X(j \omega)=0$ for $|\omega|>\omega_M$. Then x(t) is uniquely

determined by its samples $x(nT), n=0,\pm 1,\pm 2,...$

if $\omega_s > 2 \omega_M$, where $\omega_s = 2\pi/T$.

 $2\omega_{M}$ is called Nyquist Rate.

(Minimum distortionless sampling frequency)

(3) Recovery

System for sampling and reconstruction:

Normally,

$$\omega_c = \omega_s / 2$$

7.1.2 Sampling with a Zero-order Hold

Sampling system construction:

Key point: at a given instant and holds the value until the next instant of sample is taken.

$$H_0(j\omega) = \left(\frac{\sin(\omega T/2)}{\omega}\right) e^{-j\omega T/2} = TSa(\omega T/2)e^{-j\omega T/2}$$

$$x_{0}(t) \stackrel{F}{\longleftrightarrow} X_{0}(j\omega) = H_{0}(j\omega)X_{p}(j\omega)$$

$$= \frac{\omega_{s}}{2\pi} H_{0}(j\omega) \{ \sum_{k=-\infty}^{+\infty} X(\omega - k\omega_{s}) \}$$

7.3 The Effect of Undersampling: Aliasing

7.4 Discrete-Time Processing of Continuous-Time Signals (learn by yourself)

Relationship between Continuous-time and Discrete-time

Relationship between FT and DTFT

$$x_p(t) = \sum_{n=-\infty}^{\infty} x(nT)\delta(t-nT) \qquad x[n] = x(nT)$$

$$X_{p}(j\omega) = \sum_{n=-\infty}^{\infty} x(nT)e^{-j\omega Tn} \qquad X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$$
-----(1)

let
$$\Omega = \omega T$$

Then
$$X(e^{j\Omega}) = X_p(j\omega)$$

7 Sampling

Relationship between FT and DTFT

From 7.1, we know that

$$x(t) \stackrel{F}{\longleftrightarrow} X(j\omega)$$

$$X_{p}(j\omega) = \frac{1}{T} \sum_{m=-\infty}^{\infty} X(j\omega - jm\frac{2\pi}{T})$$
3

$$\therefore X(e^{j\Omega}) = \frac{1}{T} \sum_{m=-\infty}^{\infty} X(j\omega - jm \frac{2\pi}{T})$$

where

$$\Omega = \omega T$$

7 Sampling

Relationship between FT and DTFT

Poisson formula:

Compare ①and ③,we can get,

If
$$x(t) \stackrel{F}{\longleftrightarrow} X(j\omega)$$

Then

$$\frac{1}{T}\sum_{m=-\infty}^{\infty}X(j\omega-jm\frac{2\pi}{T})=\sum_{n=-\infty}^{\infty}x(nT)e^{-j\omega Tn}$$

$$\sum_{n=-\infty}^{\infty} x(t-nT) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X(jk\frac{2\pi}{T})e^{jk\frac{2\pi}{T}t}$$

Signals and Systems

Chapter 8

Communication Systems

- 8. Communication Systems
- 8.1 Complex Exponential and Sinusoidal

Amplitude Modulation

Modulating system model:

x(t) --- modulating signal

c(t) --- Carrier signal

8.1.1 Amplitude Modulation with Complex Exponential Carrier

(1) Modulation Theory

Exponential carrier:
$$c(t) = e^{j(\omega_c t + \theta_c)}$$

For convenience, let θ_c =0, so $c(t) = e^{j\omega_c t}$

Output signal(modulated signal): $y(t) = x(t)e^{j\omega_c t}$

$$Y(j\omega) = \frac{1}{2\pi} X(j\omega) * C(j\omega)$$

$$C(j\omega) = 2\pi\delta(\omega - \omega_c)$$

$$Y(j\omega) = X(j\omega - j\omega_c)$$

(1) Implementation

$$y(t) = x(t)e^{j\omega_c t}$$
$$= x(t)\cos\omega_c t + jx(t)\sin\omega_c t$$

8.1.2 Amplitude Modulation with Sinusoidal signal

For convenience, choose θ_c =0, so

$$Y(j\omega) = \frac{1}{2\pi} X(j\omega) * C(j\omega)$$

$$C(j\omega) = \pi \delta(\omega - \omega_c) + \pi \delta(\omega + \omega_c)$$

$$Y(j\omega) = \frac{1}{2} X(j\omega - j\omega_c) + \frac{1}{2} X(j\omega + j\omega_c)$$

SingleSide Band in Problem 8.28.

- 8.2 Demodulation for Sinusoidal AM
- 8.2.1 Synchronous demodulation
 - (1) Demodulation process

In time domain:
$$w(t) = y(t)c(t)$$

$$= x(t)\cos^2\omega_c t$$

$$= \frac{1}{2}x(t) + \frac{1}{2}x(t)\cos 2\omega_c t$$

In frequency domain:

$$W(j\omega) = \frac{1}{2}X(j\omega) + \frac{1}{4}X(j\omega - j2\omega_c) + \frac{1}{4}X(j\omega + 2j\omega_c)$$

Expected signal:

$$x(t)$$
 or $W(j\omega)$

(2) Synchronous problem

Time domain:

$$w(t) = y(t)\cos(\omega_c t + \phi_c)$$

$$= x(t)\cos(\omega_c t + \theta_c)\cos(\omega_c t + \phi_c)$$

$$= \frac{1}{2}x(t)\cos(\theta_c - \phi_c) + \frac{1}{2}x(t)\cos(2\omega_c t + \theta_c + \phi_c)$$

The output of lowpass filter: $x(t)\cos(\theta_c - \phi_c)$

Ideal output: x(t) $(\theta_c = \phi_c \text{ is desired})$

When $\theta_c = \phi_c$, it is referred to as synchronous demodulation.

8.2.2 Asynchronous demodulation Amplitude-modulated signal:

$$y(t) = [x(t) + A]\cos\omega_c t$$

Asynchronous demodulator

Homework for Chapters 6,7 & 8

Chapter 6 6.5, 6.23, **6.27**

Chapter 7 7.1, 7.2, **7.3,** 7.6, **7.9**

Chapter 8 8.1, 8.3, **8.22**, **8.28**