Compositional generalization through metal sequence-to-sequence learning Brenden M. Lake, NYU

Rafael Elberg

Departamento de Ciencias de la Computación, PUC Chile

September 26, 2023

Contenidos

- Composicionalidad
- 2 Método
- 3 Experimentos
- 4 Conclusiones
- 6 Críticas

Composicionalidad

- Composicionalidad: "The meaning of an expression is a function of the meanings of its parts and of the way they are syntactically combined." (Partee, 2004)
- "If I told you that a schmister was a sister over the age of 10 but under the age of 21, perhaps giving you a single example, you could immediately infer whether you had any schmisters, whether your best friend had a schmister, whether your children or parents had any schmisters, and so forth." (Marcus, 2018).
- Es muy complejo de obtener este tipo de razonamiento con modelos de DL.Lake, 2019

- Idea: Usar memoria externa y meta-training para aprender templates y variables.
- Transformar el problema a templates y variables, recordando la información útil del espacio de soporte.

Figure: Modelo Meta seq2seq Learner

Figure: Memory module

- BiLSTM encoder f_{ie} transforma support input a embeddings en Keys y query input a embeddings en Query.
- BiLSTM encoder f_{io} transforma support output a embeddings en Values.
- LSTM decoder f_{do} transforma Contexto a espacio de outputs, con información recibida de f_{ie} con un mecanismo de atención.
- Framework de entrenamiento meta-training con support loss.

Experimentos

Exclusividad mutua

Figure: Problema de concatenación y razonamiento por exclusividad mutua.

Exclusividad mutua

- Cada episodio consiste en un mapeo aleatorio de cuatro pseudo palabras a cuatro colores.
- El set de soporte contiene el mapeo de tres de estas palabras.
- El set de queries contiene concatenaciones aleatorias de las cuatro palabras.
- El modelo obtiene un 100% de accuracy.

Exclusividad mutua

Figure: Mapas de atención ME.

SCAN add jump

jump	\Rightarrow	JUMP
jump left	\Rightarrow	LTURN JUMP
jump around right	\Rightarrow	RTURN JUMP RTURN JUMP RTURN JUMP RTURN JUMP
turn left twice	\Rightarrow	LTURN LTURN
jump thrice	\Rightarrow	JUMP JUMP JUMP
jump opposite left and walk thrice	\Rightarrow	LTURN LTURN JUMP WALK WALK WALK
jump opposite left after walk around left	\Rightarrow	LTURN WALK LTURN WALK LTURN WALK LTURN WALK
		LTURN LTURN JUMP

Figure: SCAN add jump test cases

SCAN add jump

- El objetivo es aprender el uso de la palabra jump.
- Seq2Seq clásico: Ve traducción jump JUMP y frases con los otros verbos.
- Seq2Seq meta train: Entrenamiento con permutaciones aleatorias de ('jump', 'run', 'walk', 'look') y ('JUMP', 'RUN', 'WALK', 'LOOK').
- Seq2Seq meta test: De soporte recibe sólo la permutación correcta de ('jump', 'run', 'walk', 'look') y ('JUMP', 'RUN', 'WALK', 'LOOK'), y debe predecir un query de SCAN.
- Se hace el mismo experimento aumentando los datos con 20 nuevos priors y acciones.

SCAN add jump

Model	standard training	permutation meta-training	augmentation meta-training
meta seq2seq learning	_	99.95%	98.71%
-without support loss	_	5.43%	99.48%
-without decoder attention	_	10.32%	9.29%
standard seq2seq	0.03%	_	12.26%
syntactic attention [30]	78.4%	_	_

Figure: Resultados del test SCAN

SCAN length and around right

Model	around right	length
meta seq2seq learning standard seq2seq	99.96%	16.64% 7.71%
syntactic attention [30]	28.9%	15.2%

Figure: Resultados de tests largos y around right

Conclusiones

- Mediante meta training y testing, se el modelo logra generalizar composicionalmente, empleando lógica "algebraica" sobre el dominio.
- El método logra resolver problemas que anteriormente no eran atacables por métodos de NLP (Como la composicionalidad en SCAN), pero no logra generalizar sobre secuencias más largas.
- El método de memoria externa requiere conocimiento del dominio y recorrido, por lo que no logra extrapolar fuera del espacio de entrenamiento.

Críticas

- ✓ Una idea brillante y bien explicada.
- X Habla muy poco del SOTA.
- X No hay comparación en el problema de ME.
- × Poco contexto lingüístico, a diferencia de Russin et al., 2019.

- Lake, B. M. (2019). Compositional generalization through meta sequence-to-sequence learning. CoRR, abs/1906.05381. http://arxiv.org/abs/1906.05381
- Marcus, G. F. (2018). Deep learning: A critical appraisal. ArXiv, abs/1801.00631. https://api.semanticscholar.org/CorpusID:1872638
- Partee, B. H. (2004). Compositionality in formal semantics. Blackwell Publishing Ltd. https://web.mit.edu/jda/www/teaching/6.884/ readings/partee_1984.pdf
- Russin, J., Jo, J., O'Reilly, R. C., & Bengio, Y. (2019). Compositional generalization in a deep seg2seg model by separating syntax and semantics. CoRR, abs/1904.09708. http://arxiv.org/abs/1904.09708