Titular: Lic. Rodolfo Marangunic JTP: Ing. Jorge A. Palombarini

NOMBRE FIRMA

- 1. Responda V o F. Si es F, justifique por qué. (2 pts. c/u)
 - 1. Las expresiones regulares (a+b)*a+a y a+(a+b)*+a denotan el mismo lenguaje regular
 - 2. Las expresiones regulares (a+b)*+a y (a+b)*+b son equivalentes.
 - 3. Existen lenguajes regulares que no pueden describirse mediante expresiones regulares.
 - 4. La expresión regular (a+b)*ab*+aba denota un lenguaje infinito que contiene la palabra vacía.
 - 5. Un lenguaje regular determinado sólo puede ser reconocido por una única expresión regular.
 - 6. Un lenguaje es regular, si es descripto por una expresión regular, aunque deja de serlo si esta ER no puede transformarse en un AFN-€.
 - 7. Las siguientes igualdades son falsas.

$$\emptyset^* = \emptyset \qquad (0 \cup \varepsilon)1^* = 01^* \cup 1^* \qquad (r+s)^* = (r^*s^*)$$

- 8. Las expresiones regulares (a+b)*y((a*b*)*)* son equivalentes.
- 9. La ER "ab", describe el lenguaje formado por dos cadenas: a y b.
- 10. La expresión €(🖟 +) describe un lenguaje regular que incluye la cadena vacía.
- 11. Las siguientes igualdades son verdaderas.

$$(r \cup s)* = (r* \cup s*)* \quad r(sr)* = (rs)*r \quad (r*s)* = \{ \cup (r \cup s)*s \}$$

12. Las siguientes igualdades son verdaderas:

a)
$$(r|s^*)(s|r)^*=(r|s)^*$$

b)
$$(r\Phi^*)^+ = (r\Phi^+)^*$$

- 13. El lenguaje representado por *M** contiene solamente una cadena: la cadena vacía.
- 14. Las siguientes igualdades son verdaderas:

a)
$$(r|s)*t=(r*t)|(s*t)$$

b)
$$r|(s|t) = (r|s)|t$$

c)
$$r(sr)^* = (rs)^*r$$

- 15. La cantidad de cadenas de longitud 6 que puede generar la ER a(bUc)a(aUbUc)*a es igual a 14.
- 2. Especifique las expresiones regulares que describen los siguientes lenguajes:
 - a. L(A)= $\{w|w \text{ contiene exactamente dos b consecutivas, pudiendo existir más de dos b en w}$ $\sum = \{a,b,c\} \text{ (12 pts.)}$
 - b. L(A)={w|w empieza en 0 y termina en 001, existiendo al menos un 1 entre ambas construcciones} $\Sigma = \{0,1\}(3 \text{ pts.})$
 - c. L(A)={w|w tiene una longitud que es como máximo 3} $\Sigma = \{a,b\}$ (5 pts.)
 - d. L(A)={w|w tiene una longitud que es múltiplo de 2 o múltiplo de 3} $\Sigma = \{a,b\}$ (5 pts.)
 - e. Para la expresión a, plantee el AFN-€ que reconoce las cadenas generadas por la ER (10 pts.)
- 3. Dados los lenguajes L1 y L2, definidos a continuación, escriba los resultados de las operaciones que se solicitan. $\Sigma(L1) = \{\epsilon, a, b, c, d\}, \Sigma(L2) = \{1,2,3,4\}, L1 = \{aa,bb,cd,ac\}, L2 = \{11,22,23,43\} (10 \text{ pts.})$

$$^{\circ}$$
 $\mathrm{L_{1}} \cup \mathrm{L_{2}}$ $^{\circ}$ $\mathrm{L_{1}} \cap \mathrm{L_{2}}$ $^{\circ}$ $\mathrm{L_{1}}
ot M^{*}$ $^{\circ}$ $^{\circ}$ $\mathrm{L_{2}} \cdot \mathrm{L_{1}}$

4. Convierta los siguientes autómatas en GNFA. (a: 10 pts, b:15 pts)

