

第四章 组合逻辑电路设计

秦磊华 计算机学院

4.1 组合逻辑电路的基本概念

若逻辑电路在任何时刻产生的**稳定输出值**仅仅取决于该时刻**各输入值**的组合,而与**过去的输入值无关**,则称为组合逻辑电路。

$$F_{i} = f_{i}(X_{1}, X_{2}, \dots, X_{n}) \quad i = 1, 2, \dots, m$$

- •由逻辑门电路组成,不包含任何记忆(存储)元件
- •信号单向传输,不存在反馈回路

分析:

找出给定的逻辑电路输出与输入之间的逻辑关系;

目的:

得到给定逻辑电路功能,<mark>评价、</mark> 改进和完善不合理方案等

1.根据电路写出输出函数表达式

2.对函数表达式化简

3.列出函数真值表

4.功能评述与优化

例1 分析下图所示组合逻辑电路。

解 根据逻辑电路图写出输出函数表达式

$$\mathbf{F} = \overline{\mathbf{P_4P_5}} = \overline{\overline{\mathbf{A(B+C)}}} \overline{\overline{\mathbf{ABC}}}$$

(用代数法1)化简输出函数表达式F

$$F = \overline{A(B + C)} \overline{ABC}$$

$$= \overline{AB} + \overline{AC} + \overline{AB} + \overline{AC}$$

$$= A \oplus B + A \oplus C$$

真值表

A	В	С	F
0	0	0	0
0	0	1	1
0	1	0	1 1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

功能:不一致电路

\overline{A}	В	С	F
0	0	0	0
_	_	_	
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
_1	1	1	0

$$F = A \oplus B + A \oplus C$$

3级6门 到 2级3门

74LS04 TI DataSheet

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	Δ.	V	D = 0 k0 and 0 = 45 nF		9	15	
t _{PHL}	A	Ť	$R_L = 2 \text{ k}\Omega$ and $C_L = 15 \text{ pF}$		10	15	ns

74LS04(6-非门)

"Low to High Delay Time"

"High to Low Delay Time"

AC CHARACTERISTICS (T_A = 25°C)

		Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
^t PLH	Turn-Off Delay, Input to Output		14	22	ns	V _{CC} = 5.0 V
^t PHL	Turn-On Delay, Input to Output		14	22	ns	C _L = 15 pF

74LS32(4-2输入端或门)

 V_{CC} = 5 V, T_A = 25°C, and over operating free-air temperature range (unless otherwise noted). See Figure 2.

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	A or B	V	D = 2 k0 and C = 45 pF		9	15	
t _{PHL}	A or B	ı	$R_L = 2 \text{ k}\Omega$ and $C_L = 15 \text{ pF}$		10	15	ns

74LS00(4-2输入端与非门)

AC CHARACTERISTICS (T_A = 25°C)

		Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
tPLH tPHL	Propagation Delay, Other Input LOW		12 10	23 17	ns	V _{CC} = 5.0 V
tPLH tPHL	Propagation Delay, Other Input HIGH		20 13	30 22	ns	C _L = 15 pF

74LS86(4-2输入端异或门)

AC CHARACTERISTICS $(T_A = 25^{\circ}C)$

Limits						
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
t _{PLH}	Turn–Off Delay, Input to Output		8.0	15	ns	V _{CC} = 5.0 V
t _{PHL}	Turn–On Delay, Input to Output		10	20	ns	C _L = 15 pF

74LS08(4-2输入端与门)

型号	功能	PDT _{MAX}
74LS86	4-2异或	30ns
74LS32	4或门	22ns
74LS00	4-2与非门	15ns
74LS04	6-非门	15ns
74LS08	4-2与门	20ns

9

(用代数法2)化简输出函数表达式F

$$F = \overline{A(B + C)} \overline{ABC}$$

$$F = \overline{A}(B + C) + A\overline{BC}$$

$$= \overline{AB} + \overline{AC} + \overline{AB} + \overline{AC}$$

$$= \overline{AB} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{AC}$$

$$= \overline{AB} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{AC}$$

$$= \overline{A}B + \overline{B}C + \overline{A}C$$

型号	功能	PDT _{MAX}
74LS86	4-2异或	30ns
74LS32	4-2或门	22ns
74LS00	4-2与非门	15ns
74LS04	6-非门	15ns
74LS08	4-2与门	20ns

这说明传统的化简更多只是从器件或端口最少这个角度来考虑问题!

$$f = 1/(52 *10^{-9}s) = 19.2MHZ$$

$$f = 1/(57 *10^{-9}s) = 17.5MHZ$$

型号	功能	PDT _{MAX}	价格
74LS86	4-2异或	30ns	1.06
74LS32	4或门	22ns	2
74LS00	4-2与非门	15ns	1.06
74LS04	6-非门	15ns	2.5
74LS08	4-2与门	20ns	2.5

成本: 2.5+2+1.06 =5.56元

成本: 1.06+2 = 3.06元

成本: 2.5+2.5+2=7元

例2 分析下图所示逻辑电路。

解 写出输出函数表达式

$$S = \overline{\overline{AB} \cdot A} \cdot \overline{\overline{AB} \cdot B}$$

$$C = \overline{AB}$$

用代数法化简输出函数如下:

$$S = \overline{\overline{AB} \cdot A} \cdot \overline{\overline{AB} \cdot B} = \overline{AB} \cdot A + \overline{AB} \cdot B$$

$$= (\overline{A} + \overline{B}) \cdot A + (\overline{A} + \overline{B}) \cdot B$$

$$= A\overline{B} + \overline{AB}$$

$$= A \oplus B$$

		==		
C	=	AB	=	AB

型号	功能	PDT _{MAX}
74LS86	4-2异或	30ns
74LS32	4或门	22ns
74LS00	4-2与非门	15ns
74LS04	6-非门	15ns
74LS08	4-2与门	20ns

真值表

АВ	S C
0 0	0 0
0 1	1 0
1 0	1 0
1 1	0 1

时延!

不带反变量的逻辑函数化简

 $F=\Sigma m(4,5,6,7,8,9,10,11,12,13,14)$

CD	3 00	01	11	10
00	0	1	1	1
01	0	1	1	1
11	0	1	0	1
10	0	1	$\sqrt{1}$	1

$$F = \overline{A} B + B \overline{C} + A \overline{D} + A \overline{B}$$

型号	功能	PDT _{MAX}
74LS86	4-2异或	30ns
74LS32	4或门	22ns
74LS00	4-2与非门	15ns
74LS04	6-非门	15ns
74LS08	4-2与门	20ns

无反变量化简1

$$F = \overline{A} B + B \overline{C} + A \overline{D} + A \overline{B}$$

$$= \overline{A} B + A \overline{D} + B \overline{C} + A \overline{B}$$

$$= B(\overline{A} + \overline{C}) + A(\overline{D} + \overline{B})$$

$$=B\overline{AC} + A\overline{DB}$$

$$=\overline{\overline{BAC}\cdot\overline{ADB}}$$

型号	功能	PDT _{MAX}
74LS86	4-2异或	30ns
74LS32	4-2或门	22ns
74LS00	4-2与非门	15ns
74LS04	6-非门	15ns
74LS08	4-2与门	20ns

无反变量化简2

$$F = \overline{A} B + B \overline{C} + A \overline{D} + A \overline{B}$$

$$=\overline{A}B + A\overline{D} + B\overline{C} + A\overline{B}$$

$$=\overline{A}B + A\overline{D} + B\overline{D} + B\overline{C} + A\overline{B} + A\overline{C}$$

$$=\overline{A}B + B\overline{D} + B\overline{C} + A\overline{D} + A\overline{B} + A\overline{C}$$

$$=B(\overline{A} + \overline{D} + \overline{C}) + A(\overline{D} + \overline{B} + \overline{C})$$

 $=B\overline{ADC} + A\overline{DBC}$

 $=B\overline{A}\overline{B}\overline{C}\overline{D} + A\overline{A}\overline{B}\overline{C}\overline{D}$

=BABCD AABCD

型号	功能	PDT _{MAX}
74LS86	4-2异或	30ns
74LS32	4或门	22ns
74LS00	4-2与非门	15ns
74LS04	6-非门	15ns
74LS08	4-2与门	20ns

求出特定条件下实现给定功能的逻辑电路,也称为逻辑综合。

设计关键 → 将实际应用中的各种要求,包括逻辑问题 和非逻辑问题,抽象出问题的逻辑关系。

设计流程

1. 建立给定问题的逻辑描述?

代数法

真值表法

2. 求出逻辑函数的最简表达式

3. 选择器件并对表达式变换

4. 画出逻辑电路图

分析流程

1.根据电路写出输出函数表达式

2.对函数表达式化简

3.列出函数真值表

4.功能评述与优化

例1 设计一个三变量"多数表决电路"

1)建立给定问题的逻辑描述

A B C	F
0 0 0	0
0 0 1	0
0 1 0	0
0 1 1	1
1 0 0	0
1 0 1	1
1 1 0	1
1 1 1	1

$$\searrow$$

$$F(A,B,C) = \sum m (3,5,6,7)$$

2)求出逻辑函数的最简表达式

$$F(A,B,C) = \sum m (3,5,6,7)$$

$$F(A, B, C) = AB + AC + BC$$

- 3)选择逻辑门类型实现电路
 - ●与门+或门
 - ●与非门

例1 设计一个三变量"多数表决电路"

能直接用代数法吗?

例2 设计一个比较两个三位二进制数是否相等的数值比较器。 (两个3位二进制数分别为 $A = a_3 a_2 a_1$, $B = b_3 b_2 b_1$)

1)建立给定问题的逻辑描述

尝试用真值表法描述该逻辑问题

$$F = (\overline{a_3} \cdot \overline{b_3} + a_3b_3) \cdot (\overline{a_2} \cdot \overline{b_2} + a_2b_2) \cdot (\overline{a_1} \cdot \overline{b_1} + a_1b_1)$$

2)求出逻辑函数最简表达式

$$F = (\overline{a_3} \cdot \overline{b_3} + a_3 b_3) \cdot (\overline{a_2} \cdot \overline{b_2} + a_2 b_2) \cdot (\overline{a_1} \cdot \overline{b_1} + a_1 b_1)$$

3)选择逻辑门类型并进行逻辑函数变换(分析采用何种门最简单)

$$F = (\overline{a_3} \cdot \overline{b_3} + a_3b_3) \cdot (\overline{a_2} \cdot \overline{b_2} + a_2b_2) \cdot (\overline{a_1} \cdot \overline{b_1} + a_1b_1)$$

$$= \overline{a_3 \oplus b_3} \cdot \overline{a_2 \oplus b_2} \cdot \overline{a_1 \oplus b_1}$$

$$= \overline{(a_3 \oplus b_3) + (a_2 \oplus b_2) + (a_1 \oplus b_1)}$$

在理解的基础上写出 F_{A>B}的表达式

$$F = A_3\overline{B}_3 + (\overline{A}_3\overline{B}_3 + A_3B_3)A_2\overline{B}_2 + (\overline{A}_3\overline{B}_3 + A_3B_3)(\overline{A}_2\overline{B}_2 + A_2B_2)A_1\overline{B}_1$$

如何实现 FA<B的功能?

例3 设计组合逻辑电路实现下列真值表的功能(包含无关项)

ABCD	F	ABCD	F
0000	d	1000	0
0001	d	1001	1
0010	d	1010	0
0011	0	1011	1
0100	0	1100	1
0101	0	1101	d
0110	0	1110	d
0111	1	1111	d

 $F(A,B,C,D) = \sum m(7,9,11,12) + \sum d(0,1,2,13,14,15)$

 $F(A,B,C,D) = \sum m(7,9,11,12) + \sum d(0,1,2,13,14,15)$

(A)	В			
CD	00	01	11	10
00	d	0		0
01	d	0	d	$\begin{bmatrix} \overline{1} \end{bmatrix}$
11	0	$\begin{bmatrix} 1 \end{bmatrix}$	d	
10	d	0	d	0

(A)	В			
CD	00	01	11	10
00	d	0		0
01	d	0	ii d	1
11	0	[1]	$\mathbb{L}_{\mathbf{d}}$	1
10	d	0	$\begin{bmatrix} d \end{bmatrix}$	0

$$F(A, B, C, D) = \overline{ABD} + \overline{ABCD} + \overline{ABCD}$$

$$F(A, B, C, D) = AB + AD + BCD$$

使用无关项会带来问题吗? 如何处理?

1.竞争

- 1)信号经过任何部件都会产生时延,导致输入稳定时输出并不立即达到稳定
- 2)时延长短与信号经过门的级数、逻辑门的时延及导线长短等因数有关;
- 3)时延的危害:速度下降,信号波形参数变坏,产生竞争险象等;
- 4)竞争:组合电路中,信号经不同途径达到某一会合点时存在时差的现象。

常见的逻辑门时延

PARAMETER	FROM (INPUT)	то (оитрит)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	A D	V D 01	R_L = 2 k Ω and C_L = 15 pF		9	15	
t _{PHL}	A or B	Y			10	15	ns

2输入与非 74LS00

fA的范围?

4)竞争的类型

- •非临界竞争:不产生输出错误的竞争
- •临界竞争: 导致输出错误的竞争

2. 险象

1)险象的概念: 由竞争导至的错误输出信号

2)险象的特征

组合电路中的险象是一种瞬态现象,它表现为在输出端产生不应有的尖脉冲,暂时地破坏正常逻辑关系。一旦瞬态过程结束,即可恢复正常逻辑关系。

2. 险象

$$F = \overline{\overline{AB}} + \overline{\overline{AC}}$$

$$= A\overline{ABC}$$

$$= A\overline{A} (B=C=1)$$

$$= 0$$

A从0到1:发生了"1"型险像

A从1到0:不发生险像

2. 险象

$$F = \overline{\overline{AB}} \cdot \overline{\overline{AC}} = AB + \overline{AC}$$
$$= \overline{A} + \overline{A} (B = C = 1) = 1$$

A从0到1: 不发生险像

从1到0: "0"型险像

3) 0"型与"1"型险象

$$F = A + \overline{A}$$

$$F = A \overline{A}$$

险像演示

3. 险象的判断

$$F = A + \overline{A}$$
 $F = A \overline{A}$

- 1)当变量X同时以原变量和反变量的形式出现在函数表达式中;
- 2)在一定条件下该函数表达式可简化成 X + X 或 $X \cdot X$ 。
- 代数方法
- •卡诺图方法

例1 已知描述某组合电路的逻辑函数表达式为

$$F = \overline{AC} + \overline{AB} + AC$$

判断该逻辑电路是否可能产生险象。

解 由表达式知,变量A和C均具备竞争条件,对他们分别进行分析。 变量A:

BC=00
$$F = \overline{A}$$

BC=01 $F = A$
BC=10 $F = \overline{A}$
BC=11 $F = A + \overline{A}$

即: 当B=C=1时, A的变化可能使电路产生0型险象。

类似地分析变量C的竞争是否可能产生险象。

例2 判断函数 $F = (A + B) \cdot (\overline{A} + C) \cdot (\overline{B} + C)$ 逻辑电路中是否可能产生险象。

解 函数表达式可知,变量A和B均具备竞争条件。

考察变量B:

$$\begin{array}{ll} AC=00 & F=B\overline{B} \\ AC=01 & F=B \\ AC=10 & F=0 \\ AC=11 & F=1 \end{array}$$

可见, 当A=C=0时, B的变化可能使电路输出产生1型险象

类似地分析变量A的竞争是否可能产生险象。

例3 判断函数表达式 $F = \overline{AD} + \overline{AC} + AB\overline{C}$ 对应的电路是否可能产生险象。

解 作出函数的卡诺图

由图可知,卡诺圈 1 和卡诺圈 2 之间存在相邻最小项m₅和m₁₃,且m₅和m₁₃不被同一卡诺圈所包含,两个卡诺圈"相切"。

即 B=D=1, C=0, $F=A+\overline{A}$

5.险象的消除

1)增加冗余项

$$F = A \cdot \overline{A} \Longrightarrow$$
 与冗余"或项"

冗余项的选择可以采用代数法或卡诺图法确定。

例1 用增加冗余项的方法消除右图所示电路中可能产生的险象。

**$$\mathbf{M}$$
:** $\mathbf{F} = \mathbf{AB} + \overline{\mathbf{AC}}$

当B=C=1时, A的变化可能使输出产生"0"型险象。

若在函数表达式中增加冗余项BC:

基于简化后的表达式

可消除"0"型险象。

通过卡诺图法为该逻辑函数增加冗余项,消除险象(现场练习)

$$F = \overline{A}C + B\overline{C}D + A\overline{B}\overline{C}$$

2)增加惯性延时环节

图中RC电路是低通滤波器。由于竞争引起的险象是一些频率很高的尖脉冲信号,因此,险象在通过RC电路后能基本被滤掉.

3)选通法

利用选通脉冲从时间上使输出避开险象脉冲。

选通脉冲对电路的输出门加以控制,使输出避开险象脉冲,送出稳定输出信号。

第一部分完

44