CAS

Framework Type Data

framework viewed along [100]

Idealized cell data: orthorhombic, Cmcm, a = 5.3Å, b = 14.1Å, c = 17.2Å

Coordination sequences and vertex symbols:

$T_1(8,m)$	4	12	23	41	70	97	125	174	224	264	5.5.5.5.6.82
$T_2(8,m)$	4	12	26	43	64	101	138	165	215	284	$5.6.5.6.6_{2}.8_{2}$
T_3 (8, m)	4	12	23	43	72	95	128	177	225	259	5·6·5·6·5 ₂ ·6

Secondary building units: 5-1

Composite building units:

cas

Materials with this framework type:

*Cesium Aluminosilicate^(1,2)

EU-20b (CAS-NSI structural intermediate)⁽³⁾

Type Material: Cesium Aluminosilicate

CAS

Type Material Data

Crystal chemical data: $ICs_4I [Al_4Si_{20}O_{48}]$ -**CAS**

orthorhombic, Ama2, $a = 16.776\text{\AA}$, $b = 13.828\text{\AA}$, $c = 5.021\text{\AA}^{(1)}$

(Relationship to unit cell of Framework Type: a' = -c, b' = b, c' = a)

20.6 T/1000Å³ Framework density:

Channels: [001] **8** 2.4 x 4.7*

8-ring viewed along [001]

References:

- (1) Araki, T. Z. Kristallogr., 152, 207-213 (1980)
- (2) Hughes, R.W. and Weller, M.T. *Microporous Mesoporous Mat.*, 51, 189-196 (2002)
 (3) Marler, B., Camblor, M.A. and Gies, H. *Microporous Mesoporous Mat.*, 90, 87-101 (2006)