Web Mining: Recommender Systems: Evaluation

Alípio Jorge, DCC-FC, Universidade do Porto amjorge@fc.up.pt

What is there to evaluate?

Quality dimensions

Predictive power

- Guess what users will like next
- ▶ Tendency to inertia
- Novelty
 - Things I didn't know about
- Serendipity
 - Things I would very hardly find

Quality dimensions

- Diversity
 - Not always the same artists!
- Safety / Robustness
 - No other users are tampering with the recommendations
- Privacy preserving
 - Can other users infer my preferences?

Quality dimensions – owner's view

- More sales
 - That's what really matters
- Better sales
 - Sell what you want to sell
- Loyalty
 - Abandon rate
 - Gone client buys no product
- Reputation
 - Clients value the recommendations and talk about them

Evaluating recommender models/systems

How can we measure the success of a recommender?

- Offline evaluation
 - Cheap, repeatable
 - Not the real thing, no user feedback

Evaluating recommender models/systems

Online evaluation

- User interacts
- More expensive, interferes with business, not repeatable

Evaluating recommender models/systems

User studies

- User behavior, qualitative feedback
- Expensive, limited samples

Offline Evaluation

Offline evaluation: All-but-one proc.

▶ Treino/teste e o protocolo "all-but-one"

Offline evaluation: All-but-one proc.

Measures for item recommendation (top-K)

Success measures

Recall: percentage of relevant items guessed

Recall =
$$\frac{\#(\text{Hidden} \cap \text{Recommended})}{\#\text{Hidden}}$$

Precision: average quality of each recommendation

$$Precision = \frac{\#(Hidden \cap Recommended)}{\#Recommended}$$

F1: combines recall and precision (harmonic mean)

$$F1 = \frac{2 \times recall \times precision}{recall + precision}$$

Other success measures – top K

Other measures

- Recall@K
- Precision@K
- ▶ MAP mean average precision
 - ▶ AP@K average of P@I, P@2 .. P@K
 - ▶ MAP average AP over N users
- NDCG Normalized Discounted Cumulative Gain
 - consider K recommendations
 - fading sum of relevance of recommendations DCG
 - divide by ideal DCG
- Any ranking measure
- **...**

Measures for rating predictions

Success measures (ratings)

RMSE: root mean squared error

RMSE =
$$\sqrt{\frac{1}{|\mathbf{T}|}} \sum_{(u,i) \in \mathbf{T}} (\hat{r}_{ui} - r_{ui})^2$$

MAE: mean average error

$$MAE = \frac{1}{|T|} \sum_{(u,i) \in T} |\hat{r}_{ui} - r_{ui}|$$

More info

Micro and macro averaging

Example

Hidden: ab, c, ac

Rec: ac, ac, a

▶ Calculate Recall, Precision, F1

- micro and macro averaging
 - Micro: average of small parts
 - Macro: average of large parts (each user has same weight)

Hid	Recs	#hits	#hid	#recs	Recall	Prec	F1
a,b	a,c	I	2	2	?	?	?
С	a,c	I	ſ	2	?	?	?
a,c	a	I	2	1	?	?	?

Micro and macro averaging

Example

Hidden: ab, c, ac

Rec: ac, ac, a

▶ Calculate Recall, Precision, F1

- micro and macro averaging
 - Micro: average of small parts
 - Macro: average of large parts

Hid	Recs	#hits	#hid	#recs	Recall	Prec	F1
a,b	a,c	1	2	2	?	?	?
С	a,c	1	1	2	?	?	?
a,c	a	I	2	1	?	?	?

Other evaluation procedures

What to guess

- Try to guess last item of each test session
- Try to guess each item in the session from previous ones

▶ Train / test

- older sessions to train, newer to test
- sliding window
- growing window

Resources

Articles

J. Breese, D. Heckerman, C. Kadie, and others, "Empirical analysis of predictive algorithms for collaborative filtering," Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, vol. 461, 1998.

Online Evaluation

Why?

- w.r.t. offline experiments
 - the real thing, the real time
 - automation interferes with the site
 - need to continuously monitor
- w.r.t. to the HIPPO (highest paid person's opinion)
 - listen to the users!
 - great ideas may not be so great

Controlled experiments (A/B tests)

Controlled experiments - verbum

Success metrics

overall evaluation criterion is a good idea

Factors / variables

- what we want to try
 - with / without "treatment"
 - number of items on the screen, etc.

Experimental Unit

- subjects of test: typically users
- what goes to control? What goes to treatment?

Controlled experiments - verbum

Null hypothesis H0

with treatment or without is the same

Confidence level

 Maximum admissible probability of observing extreme values of a given statistics when H0 is true - P(acc H0 | H0)

Power

▶ probability of correctly rejecting H0 − P(rej H0 | ~H0)

A/A test

- placebo
- ▶ H0 should be rejected 5% of the times if confidence level is 95%

Issues

- Sample size
- Proportion
 - typically 50-50
- Robots
- Treatment ramp-up
 - monotonic ramp-up
 - automatic
 - abort if bug
- Automation

Implementation

randomization

- each user is randomly assigned to one group
- once assigned should stick to that group (consistency)

time

- a new feature may fail because it is too slow
- where/how to split
 - proxy / server

Resources

Book

Web Data Mining, Bing Liu

Articles

- Non Kohavi, Roger Longbotham, Dan Sommerfield, Randal M. Henne: Controlled experiments on the web: survey and practical guide. Data Min. Knowl. Discov. 18(1): 140-181 (2009)
- Non Kohavi, Randal M. Henne, Dan Sommerfield: Practical guide to controlled experiments on the web: listen to your customers not to the hippo. KDD 2007: 959-967
- google "DBLP Ron Kohavi"