CSI - 3105 Design & Analysis of Algorithms Course 11

Jean-Lou De Carufel

Fall 2019

Minimum Spanning Tree

We are given a graph G = (V, E) that is undirected and connected. Each edge $\{u, v\} \in E$ has a weight wt(u, v).

We want to compute a subgraph G' of G such that

- The vertex set of G' is V,
- G' is connected,
- and weight(G') is minimum, where

weight(G') = sum of weights of edges in G'.

2 / 25

Minimum Spanning Tree

We are given a graph G = (V, E) that is undirected and connected. Each edge $\{u, v\} \in E$ has a weight wt(u, v).

We want to compute a subgraph G' of G such that

- The vertex set of G' is V,
- G' is connected,
- and weight(G') is minimum, where

$$weight(G') = sum of weights of edges in G'.$$

We can prove that G' must be a tree (connected and no cycles). Do you see why?

G' is called a *Minimum Spanning Tree of G* (MST of G).

Example:

Example:

- The vertex set of G' is V,
- *G'* is connected,
- and weight(G') is minimum, where

weight(G') = sum of weights of edges in G'.

◆ロト ◆問 > ◆注 > ◆注 > 注 り < ②</p>

Fundamental Lemma

Lemma

Let G = (V, E) be an undirected and connected graph, where each edge $\{u, v\} \in E$ has a weight wt(u, v).

Split V into A and B. Let $\{u,v\} \in E$ be a shortest edge connecting A and B. Then there is an MST of G that contains $\{u,v\}$.

Proof:

From the previous lemma, any algorithm that follows this greedy scheme is guaranteed to work:

- $X = \{ \}$ //edges picked so far
- Repeat until |X| = |V| 1
 - Pick a set S such that X has no edge between V and $V \setminus S$.
 - Let $e \in E$ be a minimum-weight edge between V and $V \setminus S$.
 - $X = X \cup \{e\}$

About the Union-Find Data Structure

Before presenting a first algorithm to compute an MST, we first open a parenthesis and study a data structure called *Union-find*.

Given *n* sets, each of size one,

$$A_1 = \{1\}, \quad A_2 = \{2\}, \quad \cdots \quad A_n = \{n\},$$

process a sequence of operations, where each operation is one of

Union(
$$A$$
, B , C):
Set $C = A \cup B$
 $A = \{ \}$
 $B = \{ \}$

Find(x):

Return the name of the set that contains x.

The sequence consists of

n-1 **Union** operations

m **Find** operations

which can be done in any arbitrary order.

We are interested in the total time to process any such sequence.

Store each set in a list:

- the list has a pointer to the head and a pointer to the tail
- the first node stores the name of the set
- each other node stores one element of the set
- each node u stores two pointers:
 next(u) the next node in the list
 back(u) first node in the list

$$A = \{1, 4, 5, 7, 9\}$$

Start: for each set $A = \{x\}$:

Union(*A*, *B*, *C*):

Append the list B at the end of the list A, do some pointer arithmetic, change the name in the head of the new list from A to C.

4D> 4A> 4B> 4B> B 990

Union(A, B, C):

Time = $O(\ell) = O(\text{size of } B)$

◆ロ → ← 同 → ← 三 → へ 三 → り へ ○

Find(x): follow the back pointer from the node storing x to the head of the list and return the name stored at the head.

$$\mathsf{Time} = O(1)$$

Example:

Union	Time
$\{2\}, \{1\}$	1
${3},{2,1}$	2
$\{4\}, \{3, 2, 1\}$	3
:	:
${n},{n-1,n-2,,2,1}$	n-1

Example:

Union	Time
$\{2\}, \{1\}$	1
${3},{2,1}$	2
$\{4\}, \{3, 2, 1\}$	3
<u>:</u>	:
${n},{n-1,n-2,,2,1}$	n-1

Total time = $1 + 2 + 3 + ... + n - 1 = O(n^2)$.

Better solution:

for each list, the head stores

- name of the set
- size of the set

Find(x) takes O(1) time, as before.

Union(A, B, C):

If $|A| \geq |B|$:

If |A| < |B|:

Time = $O(\min\{|A|, |B|\}) = O(\text{number of back-pointers that are changed})$

Total time = total number of back-pointer changes $= \sum_{n=0}^{n} total number of times that back(x) is changed$

Total time = total number of back-pointer changes $= \sum_{x=1}^{n} \text{total number of times that back}(x) \text{ is changed}$

Consider an element x. How many times do we change back(x)?

Total time = total number of back-pointer changes $=\sum$ total number of times that back(x) is changed

Consider an element x. How many times do we change back(x)?

Start: x is in a set of size 1.

Total time = total number of back-pointer changes

$$= \sum_{x=1}^{n} \text{total number of times that back}(x) \text{ is changed}$$

Consider an element x. How many times do we change back(x)?

Start: x is in a set of size 1.

First time that back(x) is changed:

the set containing x is merged with a set of size ≥ 1 .

Hence, the new set containing x has size ≥ 2 .

the set containing x is merged with a set of size ≥ 2 .

Hence, the new set continuing x has size ≥ 4 .

the set containing x is merged with a set of size ≥ 2 .

Hence, the new set continuing x has size ≥ 4 .

Third time that back(x) is changed:

the set containing x is merged with a set of size ≥ 4 .

Hence, the new set continuing x has size ≥ 8 .

the set containing x is merged with a set of size ≥ 2 .

Hence, the new set continuing x has size ≥ 4 .

Third time that back(x) is changed:

the set containing x is merged with a set of size ≥ 4 .

Hence, the new set continuing x has size ≥ 8 .

etc.

the set containing x is merged with a set of size ≥ 2 .

Hence, the new set continuing x has size ≥ 4 .

Third time that back(x) is changed:

the set containing x is merged with a set of size ≥ 4 .

Hence, the new set continuing x has size ≥ 8 .

etc.

Since there are n elements, back(x) is changed $\leq log_2(n)$ times.

the set containing x is merged with a set of size ≥ 2 .

Hence, the new set continuing x has size ≥ 4 .

Third time that back(x) is changed:

the set containing x is merged with a set of size ≥ 4 .

Hence, the new set continuing x has size ≥ 8 .

etc.

Since there are n elements, back(x) is changed $\leq \log_2(n)$ times.

Therefore, the total time for n-1 **Union** operations = $O(n \log(n))$.

the set containing x is merged with a set of size ≥ 2 .

Hence, the new set continuing x has size ≥ 4 .

Third time that back(x) is changed:

the set containing x is merged with a set of size ≥ 4 .

Hence, the new set continuing x has size ≥ 8 .

etc.

Since there are n elements, back(x) is changed $\leq log_2(n)$ times.

Therefore, the total time for n-1 **Union** operations = $O(n \log(n))$.

Conclusion: Any sequence of n-1 **Union** and m **Find** operations takes $O(m+n\log(n))$ time.

Kruskal Algorithm (1956)

Approach: Maintain a forest. In each step, add an edge of minimum weight that does not create a cycle.

Start: At the beginning, each vertex is a (trivial) tree.

• • •

•

Kruskal Algorithm (1956)

Approach: Maintain a forest. In each step, add an edge of minimum weight that does not create a cycle.

Start: At the beginning, each vertex is a (trivial) tree.

One Iteration: Combine two trees using an edge of minimum weight.

4□ > 4□ > 4 = > 4 = > □
9

BC, BD, CD, CF, AD, DF, EF, AB, CE, AC

Total weight: 14

Algorithm Kruskal(G)

```
Input: G = (V, E), where V = \{x_1, x_2, ..., x_n\} and m = |E|.
```

Output: A minimum spanning tree of G.

- 1: Sort the edges of E by weight using Merge Sort: $e_1, e_2, ..., e_m$
- 2: **for** i = 1 to n **do**
- 3: $V_i = \{x_i\}$
- 4: end for
- 5: *X* = { }
- 6: **for** k = 1 to m **do**
- 7: let u_k and v_k be the vertices of e_k .
- 8: let *i* be the index such that $u_k \in V_i$
- 9: let j be the index such that $v_k \in V_j$
- 10: if $i \neq j$ then
- 11: $V_i = V_i \cup V_j$
- 12: $X = X \cup \{\{u_k, v_k\}\}$
- 13: end if
- 14: end for
- 15: **return** *X*

• Sorting: $O(m \log(m)) = O(m \log(n))$ time (do you see why?)

- Sorting: $O(m \log(m)) = O(m \log(n))$ time (do you see why?)
- First For-loop: O(n) time

- Sorting: $O(m \log(m)) = O(m \log(n))$ time (do you see why?)
- First For-loop: O(n) time
- Second For-loop:
 - Store X in a linked list. Total time to maintain this list: O(n) time
 - Store the sets V_i using the Union-Find data structure.

In this second For-Loop, we do

- 2m Find operations
- n-1 **Union** operations

So in total for the second For-Loop:

$$O(n) + O(m + n \log(n))$$
 time

- Sorting: $O(m \log(m)) = O(m \log(n))$ time (do you see why?)
- First For-loop: O(n) time
- Second For-loop:
 - Store X in a linked list. Total time to maintain this list: O(n) time
 - Store the sets V_i using the Union-Find data structure.

In this second For-Loop, we do

- 2m Find operations
- n-1 **Union** operations

So in total for the second For-Loop:

$$O(n) + O(m + n \log(n))$$
 time

So the total time is

$$O(m\log(n)) + O(n) + O(m+n\log(n)) = O(m\log(n))$$

Do you see why?

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 る の へ ○ < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回

Conclusion: Kruskal computes an MST in $O(m \log(n))$ time.