

Ranking and unranking Dyck paths

Contents

1	Ranking and unranking Dyck paths					
	1.1 Dyck paths to words	1				
	1.2 Counting suffixes of Dyck paths	2				
	1.3 Ranking and unranking	3				

1 Ranking and unranking Dyck paths

1.1 Dyck paths to words

Recall from Lecture 5 that a Dyck path of lengh 2n is a lattice walk from (0,0) to (2n,0) using up-steps $\nearrow = (1,1)$ and down-steps $\searrow = (1,-1)$. We can represent a Dyck path as a binary string of length 2n by writing \nearrow as 0 and \searrow as 1.

Example.

Which binary strings do we get?

Definition. A binary string of length 2n is totally balanced if

- The string contains *n* zeros and *n* ones.
- For T1 < i < 2n, the first i elements of the string include at least as many zeros and ones.

Dyck paths correspond to totally balanced binary strings. The first condition ensures that a Dyck path finishes on the *x*-axis. The second condition ensures that it never goes strictly below the *x*-axis.

Viewing Dyck paths as binary strings gives them a natural lexicographic order. In this lecture, we find how to lexicographically rank and unrank Dyck paths (i.e. totally balanced binary words).

Example. When n=3, the five Dyck paths of length 6 correspond to balanced binary words lexicographically ordered as follows. In particular, we have $Rank(\nearrow,\nearrow,\searrow,\nearrow,\searrow)=3$.

$$(0,0,0,1,1,1),\ (0,0,1,0,1,1),\ (0,0,1,0,1,1),\ (0,0,1,1,0,1),\ (0,1,0,1,0,1)$$

We can rank Dyck paths by using the general lexicographic ranking formula from Lecture 8. This formula requires that, for any totally balanced word $W=(w_1,w_2,\ldots,w_{2n})$, any index $1\leq i\leq 2n$ and any entry a with $0\leq a\leq w_i-1$, we know to compute the number P(W;i,a) of totally balanced words that lexicographically precede W and begin with the sequence $(w_1,w_2,\ldots,w_{i-1},a)$. The condition $0\leq a< w_i\leq 1$ implies a=0 and $w_i=1$, so we can simplify the inner sum of the general ranking formula.

$$Rank(W) = \sum_{i=1}^{2n} \sum_{a=0}^{w_i - 1} P(W; i, a) = \sum_{i=1}^{2n} w_i P(W; i, 0).$$
(1)

We turn to the problem of evaluating P(W;i,0). We must count the Dyck paths p that correspond to a totally balanced word of the form $(w_1,w_2,\ldots,w_{i-1},0,*,*,\ldots,*)$. The first i steps of p will bring us to a lattice point (x,y) where x=i. We need to be able to count the paths from (x,y) to (2n,0) that do not go strictly below the x-axis.

1.2 Counting suffixes of Dyck paths

Definition. Let $\mathcal{D}_{2n}(x,y)$ be the set of paths from (x,y) to (2n,0) using the steps (1,1) and (1,-1) and which never go strictly below the x-axis.

Let
$$d_{2n}(x, y) = |\mathcal{D}_{2n}(x, y)|$$
.

Such paths are ends (suffixes if you think of them as words) of Dyck paths.

Proposition. Let x, y, and n be integers with x + y even and $x + y \le 2n$. Then

$$d_{2n}(x,y) = \binom{2n-x}{n-\frac{x+y}{2}} - \binom{2n-x}{n-1-\frac{x+y}{2}}$$

Proof. Let $\mathcal{P}_{2n}(x,y)$ be the set of all paths from (x,y) to (2n,0) that use steps (1,1) and (1,-1), including those that go below the x-axis. Let \mathcal{B}_{2n} be the set of paths in $\mathcal{P}_{2n}(x,y)$ be the set of paths in $\mathcal{P}_{2n}(x,y)$ that go strictly below the x-axis. Then

$$\mathcal{D}_{2n}(x,y) = \mathcal{P}_{2n}(x,y) - \mathcal{B}_{2n}(x,y).$$

We aim to count the paths in $\mathcal{P}_{2n}(x,y)$ and the paths in $\mathcal{B}_{2n}(x,y)$.

We start with $\mathcal{P}_{2n}(x,y)$. Consider a path $p \in \mathcal{P}_{2n}(x,y)$ go from (x,y) to (2n,0). Let u be the number of up-steps in p, and let d be the number of down-steps in p. Since p goes from (x,y) to (2n,0) we must have

$$d+u=2n-x$$
 and $d-u=y$.

Solving these two equations, we find that

$$u = n - \frac{x+y}{2}$$
 and $d = n - \frac{x-y}{2}$.

Every path in $\mathcal{P}_{2n}(x,y)$ corresponds bijectively to a sequence of length 2n-x containing exactly u up-steps (the remaining steps are down-steps). There are $\binom{2n-x}{u}$ ways to choose the locations of the up-steps. Therefore

$$\mathcal{P}_{2n}(x,y) = \binom{2n-x}{u} = \binom{2n-x}{n-\frac{x+y}{2}}.$$
 (2)

We now count $\mathcal{B}_{2n}(x,y)$. To determine $d_{2n}(x,y)$ we just need to subtract from (2) the number paths which do go strictly below the x axis. Let w be such a path, and let (a,-1) be the first point along w which touches the line y=-1. We reflect the portion of w before (a,-1) across the line y=-1, as illustrated, to obtain a new path w'.

Note that w' goes from (x, -y - 2) to (2n, 0). Note also that the construction $w \mapsto w'$ is reversible. That is, for every path w' from (x, -y - 2) to (2n, 0) there is a unique path w which produces w' in this way. Specifically, there is a unique point where it may have been flipped according to this rule: namely the first place where the path reaches (a, -1) for some a.

Thus the number of paths from (x, y) to (2n, 0) which go strictly below the x-axis is the same as the number of paths from (x, -y - 2) to (2n, 0) with no restrictions. This number is given by (2) with y replaced by -y - 2, we leave as a little exercise to show this equals

$$\binom{2n-x}{n-1-\frac{x+y}{2}}$$

Therefore the number of paths from (x,y) to (2n,0) which never go strictly below the x-axis is

$$\binom{2n-x}{n-\frac{x+y}{2}} - \binom{2n-x}{n-1-\frac{x+y}{2}}$$

Corollary. The number of Dyck paths of length 2n is the n-th Catalan number $\frac{1}{n+1} \binom{2n}{n}$.

Proof. By its definition, $\mathcal{D}_{2n}(0,0)$ is precisely the set of Dyck paths of length 2n, so the number of Dyck paths of length 2n is

$$d_{2n}(0,0) = \binom{2n}{n} - \binom{2n}{n-1} = \binom{2n}{n} - \frac{n}{n+1} \binom{2n}{n} = \left(1 - \frac{n}{n+1}\right) \binom{2n}{n}.$$

1.3 Ranking and unranking

The formula for counting suffixes tells us about the rank. Suppose $w=w_1w_2\cdots w_{2n}$ is a Dyck path represented as a totally balanced binary string. As discussed in Lecture 8, we step through $i=1,2,\ldots,2n$, each time accounting for those predecessors of begin with $w_1w_2\cdots w_{i-1}a$, where $a< w_i$. This only happens when a=0 and $w_i=1$. Suppose that after the first i steps the path is at the point (x_i,y_i) . Then $x_i=i$. If $w_i=0$, then no accounting is needed. If $w_i=1$, then the previous step was down, and there is exactly one totally balanced word which begins $w_1w_2\cdots w_{i-1}0$ for every path from (x_i,y_i+2) to (2n,0) which does not go below the x-axis. There are exactly $d_{2n}(i,y_i+2)$ such predecessors (the +2 comes because their ith step is an up step, instead of a down step). Thus we have

$$\operatorname{Rank}(w) = \sum_{i=1}^{2n} w_i d_{2n}(i, y_i + 2) = \sum_{i=1}^{2n} w_i \left(\binom{2n-i}{n-\frac{i+y_i+2}{2}} - \binom{2n-i}{n-1-\frac{i+y_i+2}{2}} \right)$$

In the following we keep track of the pair $(x, y) = (i, y_i)$.

```
Algorithm: RankDyck
input: n, w. w is a totally balanced word of length 2n

y = 0

r = 0

for x from 1 to 2n

y = y+1

if w(x) = 1

r = r + binom( 2n-x, n-(x+y)/2 ) - binom( 2n-x , n-1-(x+y+2)/2 )

y = y - 2

output: r
```

The following unranking algorithm is an adaptation of algorithm UnrankGeneral from Lecture 8.

```
Algorithm: UnrankDyck

input: n,r.

y = 0

R = 0

for x from 1 to 2n

w(x) = 0
```



```
y = y+1
P = binom( 2n-x, n-(x+y)/2 ) - binom( 2n-x, n-(x+y)/2 )
if R + P <= r
    w(x) = 1
    y = y - 2
    R = R + P
output: w</pre>
```

Here's an example of each algorithm which is adapted from Kreher and Stinson, *Combinatorial Algorithms*, Section 3.4.

Suppose we want to compute the rank of w = 0010110101. We calculate as follows.

x	w(x)	y	$d_{10}(x,y+2)$	r
1	0	1		0
2	0	2		0
3	1	1	$\binom{7}{2} - \binom{7}{1} = 14$	14
4	0	2		14
5	1	1	$\binom{5}{1} - \binom{5}{0} = 4$	18
6	1	0	$\binom{4}{1} - \binom{4}{0} = 3$	21
7	0	1		21
8	1	0	$\binom{2}{1} - \binom{2}{0} = 4$	22
9	0	1		22
10	1	0	$\binom{0}{-1} - \binom{0}{-2} = 0$	22

So the rank is 22. Notice that steps x=1 and x=2n can is always be omited. Now we calculate $\operatorname{Unrank}(22)$

$$r = 22$$

$$x \quad y \quad d_{10}(x, y) = P \quad R \quad w(x)$$

$$1 \quad 1 \quad \binom{9}{4} - \binom{9}{3} = 42 \quad 0 \quad 0$$

$$2 \quad 2 \quad \binom{8}{3} - \binom{8}{2} = 28 \quad 0 \quad 0$$

$$3 \quad 1 \quad \binom{7}{3} - \binom{7}{2} = 14 \quad 14 \quad 1$$

$$4 \quad 2 \quad \binom{6}{2} - \binom{6}{1} = 9 \quad 14 \quad 0$$

$$5 \quad 1 \quad \binom{5}{1} - \binom{5}{0} = 4 \quad 18 \quad 1$$

$$6 \quad 0 \quad \binom{4}{1} - \binom{4}{0} = 3 \quad 21 \quad 1$$

$$7 \quad 1 \quad \binom{3}{1} - \binom{3}{0} = 2 \quad 21 \quad 0$$

$$8 \quad 0 \quad \binom{2}{0} - \binom{2}{-1} = 1 \quad 22 \quad 1$$

$$9 \quad 1 \quad \binom{1}{0} - \binom{1}{-1} = 1 \quad 22 \quad 0$$

$$10 \quad 1 \quad \binom{1}{-1} - \binom{0}{-2} = 0 \quad 22 \quad 1$$

so Unrank(22) = 0010110101 as expected.