

Sistemas de comunicaciones inalámbricas

Curso de posgrado

Fernando Gregorio

• Contenido del curso

- Estructura de un transceiver inalámbrico elemental
 - Modulación / demodulación
 - Codificación de fuente
 - Codificación de canal
 - Ecualización de canal
 - Técnicas de acceso múltiple: sistemas multiportadora (OFDM) y espectro disperso.
- Sistemas de espectro disperso
 - Principios de las técnicas de espectro disperso
 - Sistema DSSS (Direct-sequence spread spectrum)
 - Códigos de spreading
 - Sistemas FHSS (frequency hopping)
 - Sistemas multiusuario: canales de subida y bajada, CDMA

Contenido del curso

- Sistemas de portadoras múltiples (OFDM)
 - Motivación
 - Representación dominio tiempo/frecuencia de un sistema OFDM ideal
 - Prefijo cíclico
 - Ventajas de OFDM sobre sistemas de portadora única
- Implementación "real" de sistemas OFDM
 - Implementación digital de OFDM
 - Sincronización
 - Estimación de canal
 - Codificación de canal
 - Constelaciones, mapeos y ecualización
 - Una introducción a MIMO-OFDM
 - Imperfecciones de RF y su efecto sobre el sistema.

Contenido del curso

- Detección multiusuario
 - Una introducción a las técnicas de detección multiusuario
 - Detector optimo
 - Detectores lineales
 - Detectores basado en decisiones (iterativos)
 - Implementación: Complejidad y desempeño
- OFDM en los sistemas estandarizados
 - Numerología: número de portadoras, ancho de banda, tiempo de símbolo
 - Aplicaciones de telefonía celular LTE versión 13: Parámetros de implementación, Detalles de la capa física,
 - Aplicación de elevada movilidad: HST (escalabilidad, efecto doppler)
 - Aplicación de muy bajo consumo: nodos NB-iOT
 - Comunicación máquina- máquina M2M: sistemas LTE-M
 - OFDM en aplicaciones futuras: tendencias en 5G

• • Contenido del curso

- Sistemas MIMO MASIVO
 - Introducción
 - Diseño de precodificadores: complejidad vs desempeño
 - Sistemas de celda única /multicelda
 - Características del canal mimo masivo
 - Implementación: complejidad vs costo vs consumo
 - OFDM y MIMO MASIVO en 5G

Bibliografía

Referencias

- Andrea Goldsmith, Wireless Communications, Cambridge University Press, 2005.
- K. Fazel, S. Kaiser, Multi-carrier and spread spectrum systems: from OFDM and MC-CDMA to LTE and WiMAX, 2nd ed., ISBN 978-0-470-99821-2, Wiley, 2008.
- Tao Jiang, Lingyang Song, and Yan Zhang, Orthogonal frequency division multiple access fundamentals and applications, ISBN 978-1-4200-8824-3, CRC Press, 2010.
- S. Verdu, Multiuser Detection, (first ed.), Cambridge University Press, UK, 1998.
- Andrea Molish, Wireless communications, 2da edition, Wiley, 2012.
- Harry Holma, LTE Small cell optimization, Wiley, 2016.
- Afif Osseiran, 5G mobile and wireless communication technology, Cambridge University Press, 2016.
- Marzetta, Larsson, Fundamentals of Massive MIMO, Cambridge University Press, 2016

Sistemas inalámbricos

Los sistemas inalámbricos han cambiado nuestros hábitos de vida

 El dispositivo mas conocido es el teléfono celular

 Sin embargo convivimos diariamente con otros dispositivos inalámbricos.

- Radio
- TV
- Acceso a Internet (WIFI)

Redes de sensores, IoT

Requerimientos de las comunicaciones

- Tasa de transferencia
- Dependiendo de las aplicaciones diferentes velocidades son requeridas
- Desde 64 Kb/s
 (voz) hasta
 cientos/miles de
 Mb/s (datos)

Requerimientos de las comunicaciones

- Rango de <u>cobertura</u> y movilidad
 - Body-area-networks

UN EJEMPLO: Cuidado de la salud

Application	Target data rate	No. of nodes	Topology	Setup time	P2P latency	BER	Duty cycle	Desired bat- tery lifetime
Deep brain stimulation	1 Mb/s	2	P2P	<3s	< 250 ms	< 10-3	< 50%	>3 years
Hearing aid	200 kb/s	3	Star	< 3 s	< 250 ms	< 10 ⁻¹⁰	< 10%	>40 hours
apsule endoscope 1 Mb/s		2	P2P	<3s	< 250 ms	< 10 ⁻¹⁰	< 50%	>24 hours
Drug dosage	< 1 kb/s	2	P2P	< 3 \$	< 250 ms	< 10 ⁻¹⁰	< 1%	>24 hours
ECG	72 kb/s (500 Hz sample, 12-bit ADC, 12 channels)	< 6	Star	<35	< 250 ms	< 10 ⁻¹⁰	< 10%	>1 week
EEG	86.4 kb/s (300 Hz sample, 12-bit ADC, 24 channels)	< 6	Star	<3s	< 250 ms	< 10 ⁻¹⁰	< 10%	>1 week
MG 1.536 Mb/s (8 kHz sample, 16-bit ADC, 12 channels)		< 6	Star	<3s	< 250 ms	< 10 ⁻¹⁰	< 10%	>1 week
O2/CO2/BP/ temp/respiration/ glucose monitoring, accelerometer	< 10 kb/s	< 12	Star	<35	< 250 ms	< 10 ⁻¹⁰	< 1%	>1 week
Audio	1 Mb/s	3	Star	< 3 s	< 100 ms	< 10-5	< 50%	>24 hours
Video/med imaging	< 10 Mb/s	2	P2P	<35	< 100 ms	< 10-3	< 50%	>12 hours

equerimient network: B are

Characteristic Requirement Desired Range Operating space In, on or around the body Typically 0-3 m and extendable up to 5 m. Network siz Modest < 64 Devices per BAN Data rate Scalable 5 From sub kb/s up to 10 Mb/s Ultra-long for implants Up to 5 year for implants Target Lifetime Long for wearable Up to 1 week for wearable Target frequency bands Global Unlicensed and Medical bands MedRadio, ISM, WMTS, UWB e.g., Between 0.001-0.1mW in stand-by mode up to Peak Power consumption Scalable: 30mW in fully active mode Low power listening, wake up, turn-around and MAC Scalable, reliable, versatile, self-forming synchronization Topology Star, Mesh or Tree Self-forming, distributed with multi-hop support Device duty cycle Adaptive, Scalable From 0.001% up to 100% Coexistence with legacy devices and self-Simultaneous co-located operation of up to 10 Coexistence coexistence independent BANs Real-time waveform data, periodic para- BER: from 10⁻¹⁰ to 10⁻³ QoS support and differentiation metric data, episodic data and emergency PZP latency: from 10ms – 250ms alarms · Reservation and prioritization Ability to isolate and recover from failures. Self-heal-No single point of failure Fault tolerance ing capability Body shadowing (twisting, turning, run-Seamless operation of multiple nodes moving in and Dynamic Environment ning), attenuation out of range of each other Many levels, long term, short term, light Authentication, Authorization, Privacy, Confidentiali-Security weight ty, Encryption, Message integrity No harmful effects of long term continu-Meet regulatory requirements, e.g., FDA, SAR and Safety/Biocompatibility ous use Setup time and procedure Not to be perceived as a slow or tedious Up to 3 sec Size, shape, weight and form factor Non-invasive, unobtrusive, small size, weight and Ergonomic consideration form-factor restricted by location and organ Personalized, integrated, configurable and Ability to reprogram, recalibrate, tune and configure Reprogramming, Calibration, Customization context aware services devices wirelessly

Bandas de frecuencias para una BAN

Frequency (MHz)	Acronym	Suitability to BAN applications				
		Merits	Demerits			
401~406	MedRa- dio	Worldwide availability, good propagation characteristics, quiet channel, medical only	Secondary usage, body-worn applications not allowed in 402–405 MHz core band, large antenna size, limited bandwidth, stringent rules			
433.05~434.79	General Telemetry	Good propagation characteristics	EU/AU/NZ/SA only, crowded spectrum, large antenna, limited bandwidth			
608~614 1395~1400 1427~1432	WMTS	Good propagation characteristics, medical only	Licensed secondary use limited to healthcare pro- viders inside healthcare facilities in US, limited spectrum, heavily used			
868~870	General Telemetry	Good propagation characteristics	EU only, limited spectrum, heavily used			
902~928	ISM	Good propagation characteristics	US/Canada only, crowded spectrum			
2400~2483.5 (2400~2500)	ISM	Worldwide availability, small antenna, large bandwidth	Crowded spectrum, many standards and tech- nologies			
5725~5850	ISM	Worldwide availability, small antenna, large bandwidth	Existing standards and technologies, severe attenuation			
4200~4800 7250~8500	UWB	Worldwide availability, short range, low power, huge bandwidth	Coexistence with high data rate multimedia applications, severe attenuation			

Tachnology	Suitability for BAN						
Technology	Merits	Demerits					
Bluetooth dassic	Established standard, widespread adoption in cell phones and laptops, health device profile defined, sufficient data rate, low cost	Higher power, limited scalability, limited QoS, coexistence with ISM band technologies, limited security, on-body only					
Bluetooth Low Energy	Interoperable with Bluetooth, lower power than Bluetooth, leverage Bluetooth brand	Compatibility requirements limit design freedom, limited scalability, limited QoS, coexistence with ISM band technologies, on-body only					
ZigBee	Emerging standard, healthcare profile defined, lower power than Bluetooth, scalable, smaller memory footprint	Low data rate, limited QoS, coexistence with ISM band tech- nologies, on-body only					
ANT	Simple protocol, low power, healthcare device pro- files defined, smaller footprint	Proprietary, limited throughput, limited QoS, coexistence with ISM band technologies, general-purpose design, on-body only					
Sensium	Ultra-low-power, custom designed for BANs	Proprietary, low data rate, limited QoS, coexistence with ISM band technologies					
Zarlink ZL70101	Ultra-low power, MedRadio compliant, custom designed for implants	Proprietary, implants only					

Telefonía celular

Su evolución

• • Evolución telefonía celular

o 1G

- Modulación FM (analógica)
- Frecuencia: 800-900MHz
- Tamaños "gigantes"
- Elevado consumo
- Reducida eficiencia espectral

A fines de los 80, el tamaño y el consumo comienzan a reducirse.

Evolución telefonía celular

- o 2G
 - GSM
 - TDMA
 - Dual band 800-1800MHz"
 - Modulación digital
 - E-mails, SMS
 - IS-95 adopta CDMA

Evolución telefonía celular

o 3G

- UMTS (Europa-japon)
- Combinación de FDMA/CDMA
- Audio, video, imágenes con tasas máximas de 384kb/s (usuarios móviles) y 2 Mb/s (usuarios

4G

4G: Un servicio universal

Figure 1.17 4G, just around the corner

4G

Características principales

Data transfer capability 100 Mbps (wide coverage)

1 Gbps (local area)

Design targets representing overall cell throughput.

Networking All-IP network (access and core networks)

Plug & Access network architecture

An equal-opportunity network of networks

Connectivity Ubiquitous

Mobile

Seamless Continuous

Network capacity 10-fold that of 3G.

Latency Connection delay; 500 ms

Transmission delay; 50 ms

Cost per bit: 1/10-1/100 that of 3G

Infrastructure cost: 1/10 that of 3G

Connected entities Person-to-person

Person-to-machine

Machine-to-machine

4G Keywords Heterogeneity of networks, terminals and services

Convergence of networks, terminals and services

Harmonious wireless ecosystem

Perceptible simplicity, hidden complexity

Cooperation as one of its underlying principles.

4G

o ¿y el consumo?

Multiples Antenas (MIMO)

Se incorporan múltiples antenas

Diversidad espacial:

Mejora la robustez del sistema frente al canal

Ganancia de array: Concentra la energía en una dirección especifica (beamforming)

Ganancia de multiplexado espacial: transmite múltiples señales ha un único usuario

Modulación

- o LTE:
 - Uplink: single-carrier FDMA
 - Downlink: OFDMA
- o WIMAX:
 - Uplink y downlink: OFDMA

De 1G a 4G

Nuevas demandas:IoT

¿Quién puede brindar una solución integral a IoT?

Nuevas demandas: IoT

- loT se trata de conectar miles de millones de dispositivos a Internet. Algunos ejemplos comunes son los dispositivos domésticos inteligentes.
- En aplicaciones industriales, iot puede brindar enormes beneficios mejorando la eficiencia operacional, reducir costos de implementación y reducir consumo de energía.
- El estudio de la información generado por los diversos dispositivos permitirá analizar el desempeño del sistema e implementar soluciones a medida.
- IoT impone requerimientos importantes:
 - amplio rango de cobertura
 - Vida de la batería
 - bajo costo
- Estos requerimientos NO son de fácil cumplimiento para la tecnología actual...

Diferentes escenarios para

Diferentes tecnologías a considerar

Demandas en función de la aplicación

Tasa de transmisión de datos, consumo, rango de cobertura

Tasa transmisión / consumo de potencia

cobertura

• • LPWAN

- LPWAN describe a una clase de protocolos de red diseñados para establecer conexiones entre dispositivos de baja energía con servidores de red.
- Esta diseñada para alcanzar:
- Gran rango de cobertura (5-15km)
- Muy bajo consumo de energía (duración de la batería > 10 años)
- Pequeño tamaño de paquetes
- Moderada/alta latencia

Una red de área amplia de baja potencia es un tipo de red telecomunicaciones inalámbricas diseñada para permitir comunicaciones de largo alcance a una tasa de bits baja entre otras cosas, como sensores operados en un batería. WIKIPEDIA

LPWAN

- Existe una relación de compromiso entre tasa de transmisión, consumo energético y área de cobertura.
- WLAN y LTE pueden brindar corto y largo rango de cobertura respectivamente con muy elevadas tasas de transmisión. ELEVADO CONSUMO DE ENERGÍA
- ZIGBEE, y Bluetooth pueden transmitir a una tasa moderado con bajo consumo de energía. BAJO RANGO DE COBERTURA
- LPWAN cumple los requerimientos de consumo y cobertura sacrificando velocidad de transmisión de datos.

Muchas de las aplicaciones de ciudades inteligentes como el alumbrado público inteligente, la medición inteligente y el estacionamiento inteligente requieren tasas de datos muy bajas, pero con áreas de cobertura extremadamente grandes \rightarrow LPWAN.

¿Quienes son los jugadores en este partido?

¿Quien es quien? – No-licenciadas

o Las tecnologías LPWAN con licencia y sin licencia comparten algunas características en común. Elevados niveles de cobertura y reducido consumo energético. Las diferencias clave están en términos de los ecosistemas que rodean estas tecnologías.

SIGFOX es un ecosistema multi-vendor y utiliza las bandas de frecuencia por debajo de GHz. Ofrece muy pequeño tamaño de paquetes (12 bytes) y dispositivos de muy bajo costo. SIGFOX fue uno de los primeros vendors para LPWAN.

LoRa es una tecnologia proprietaria (Semtech).

LoRaWAN es un protocolo de red que usa la tecnología LoRa para comunicar y administrar dispositivos LoRa.

¿Quien es quien? – Nolicenciadas - LORA

- LoRa desarrollada por Semtech presenta las siguientes características:
- Alta tolerancia a las interferencias
- Alta sensibilidad para recibir datos (-168dB)
- Basado en modulación chirp
- Bajo Consumo (hasta 10 años con una batería)
- Largo alcance 10 a 20km
- Baja transferencia de datos (hasta 255 bytes)
- Conexión punto a punto
- Frecuencias de trabajo: 915Mhz América, 868 Europa, 433 Asia

¿Quien es quien? – No-licenciadas - Sigfox

Sigfox pros:

- Backend network de soporte
- Elevado rango de cobertura (algunos Km en ciudades, hasta 40km en zonas rurales)
- Muy baja potencia

Sigfox cons:

- Servicio de subscripcion
- Muy baja tasa: 100 bytes/sec
- No esta disponible en todos lados (se debe revisar que exista servicio en la zona de desarrollo)
- 140 x 12 byte upload and 4 x 8 byte download mensajes por dia
- Frecuencia fija en funcion de la localizacion

¿Quien es quien?licenciadas

NB-IoT, LTE Cat-M1 y EC-GPRS son estándares celulares de IoT. Son ecosistemas de varios proveedores

- LTE Cat-M1 se modifica a partir de las tecnologías LTE existentes lanzadas por 3GPP. Es una versión simplificada de la tecnología existente y hace uso de conjuntos de chips más simples y menos costosos. Ofrece velocidades de datos más rápidas que otras tecnologías LPWAN. Se puede admitir con una actualización de software a la infraestructura LTE existente.
- NB-IoT es una tecnología especifica lanzada por 3GPP. Se puede admitir con una actualización de software para LTE o infraestructura de RAN existente. Sus beneficios incluyen un costo de dispositivo relativamente bajo y muy buena calidad de enlace en comparación con otras tecnologías.
- EC-GPRS es la versión de cobertura extendida de GPRS. Se puede admitir con una actualización de software para la infraestructura GSM.

LTE: La herramienta de las TELCOS para IOT

En función de las aplicaciones, LTE puede ofrecer diferentes tipos de variantes

LTE: La herramienta de las TELCOS para IOT

En función de las aplicaciones, LTE puede ofrecer diferentes tipos de variantes

LTE: La herramienta de las TELCOS para IOT

LTE: LA HERRAMIENTA DE LAS TELCOS PARA IOT

	LTE Rel-8 Cat-1	LTE Rel-12 Cat-0	LTE Rel-13 Cat-M1	NB-IoT Rel-13	EC-GSM-IoT Rel-13		
DL peak rate	10 Mbps	1 Mbps	1 Mbps	~0.2 Mbps	^0.5 Mbps		
UL peak rate	5 Mbps	1 Mbps	1 Mbps	~0.2 Mbps	~0.5 Mbps		
Duplex mode	Full	Half or full	Half or full	Half	Half		
UE bandwidth	20 MHz	20 MHz	1.4 MHz	0.18 MHz	D.2 MHz		
Maximum transmit power	23 dBm	23 dBm	20 or 23 dBm	23 dBm	23 or 33 dBm		
Relative modem complexity	100%	50%	20-25%	10%	Not evaluated		
Note: peak data rates refer to full duplex operation for Cat-0 and cat-M1							
					/		

• • LORA vs NB-IOT VS Sigfox

El costo puede definir la solución a elegir!!!

	Spectrum cost	Deployment cost	End-device cost
Sigfox	Free	>4000€/base station	<2€
LoRa	Free	>100€/gateway >1000€/base station	3–5€
NB-IoT	>500 M€/MHz	>15 000€/base station	>20€

Valores año 2016

• • NB-IOT

3 modos de operacion

GSM

Standalone

200kHz

In-Band

Guard Band

200kHz

Frequency Spectrums Supported by NB IoT

Dispositivos conectados: evolución

 Las empresas de telefonía celular (licenciadas) desean quedarse con una porción importante de ese mercado

• • 4G y la historia continua

NOKIA

• • 5G: servicio a medida

• • 5G: servicio a medida

The exploration phase for a high performance 5G has started!

5G: diferentes escenarios/diferentes necesidades

LTE y su evolución

Network of Competence on Internet of Things

5G: en camino

LTE evolution: LTE evolucionará para brindar soporte a los nuevos servicios de 5G (frecuencias inferiores a 6GHz)

NR: es un nuevo paradigma. NO REQUIERE COMPATIBILIDAD <u>backward</u> CON LTE.

5G

NR puede soportar:

Reducidos valores de EVM son FRONT-END ANALOGICO requeridos!! Imperfecciones de RF 0.3 0.2 0.05 0.1 Ruido de fase oscilador -0.1 -0.05 -0.2 -0.3 -0. Mixer IQ desbalances -0.4 0.05 -0.4 o In-Phase 0.2 -0.1 • ADC In-Phase Required EVM for PDSCH **QPSK** 17.5 % 16QAM 12.5 % consumo 64QAM 8 % Costo 256QAM 3.5 % Figure 5: 3GPP TS 38.101-1 EVM requirements for different 5G modulation schemes IQ Magnitude Error-**Error Vector** IQ measured EVM [n] Q err Error Vector Phase Diseño del front-end IQ reference

1 . . . 1

WHAT IS 5G? CONTRIBUTION OF EU RESEARCH

What 5G will bring to you?	What's new with 5G?	EU projects	5G applications	Why not today?
amazing volume amazingly fast	spectrum extension; millimetre waves; cell densification; increase spectrum efficiency; advanced antennas; 3D beam-forming techniques; new electronic components; backhaul optimization; D2D; moving networks (vehicle based cells)	5GNOW (*HARP*) (**) duple M*WEBA MINGRES E'NET//YORK	hologram TV, immersive presence, augmented reality, ultra large volume transfers	spectrum saturation; limited spectrum aggregation; current hardware not able to function at high frequencies; expensive deployment & maintenance of small cells
always best connected	combination of 4G, 3G, Wi-Fi, & new radio access to create an integrated & dynamic radio access network; connectivity management mechanisms	MCN Tripic	staying connected everywhere including high-speed trains, planes, crowds	seamless handover (e.g. cellular to Wi-Fi) not supported
no perceived delay	ultra-low latency; software-defined networks; decoupling functional architecture from the underlying physical infrastructure; network intelligence closer to users; MEC (mobile edge computing), D2D	MON AND BUT HOUSE	tactile internet; reactive interfaces; electricity grid control, vehicle to vehicle, robot control; connected cars, remote surgery	4G latency ≥ 10ms
massive amount of connected things & people	new waveform; cell densification; much less signalling traffic & no synchronisation; RAN architecture	5GNOW	internet of things, smart cities, connected cars, e-health	current OFDM waveform limitations, interference prevents scaling up; 4G chipsets cost; energy consumption
energy efficiency	millimetre waves for front-haul & backhaul; new operation mechanisms for dense networks; pooling of base station processing; on-demand consumption; massive machine communications; power amplifiers; DSP (digital signal processing) – enabled optical transceivers; harvesting ambient energy; optimization of sleep mode switching	MCN CROWP	80% energy saving; deployment in developing countries	Base stations idle time not optimised; unused functions activated; air interface/hardware not energy optimized
flexible programmable networks	software-defined networks; network function virtualisation; decoupling functional architecture from the underlying physical infrastructure; APIs	TNOVA	new business models for innovative SMEs providing network functions; emergence of super MVNOs; pan European operators, faster innovation in network services	many various network management software, not interoperable; bundling of network functions in hardware boxes
secure networks	physical channel authentication; virtualised authentication	OFFITLAMS	networks for police & security professionals;	Security as add-on not by design fragmented approach

Herramientas/técnicas para responder a estos desafíos estudiaremos en este curso

5G

2G a 6G: la visión de Nokia

¿Qué mas puede ofrecer?

Even though there is still a lot of innovation in 5G with the <u>5G-Advanced</u> release of new standards, Nokia Bell Labs has already begun the research work on 6G to make it commercially available by 2030.

• • 5G avanzado

https://www.nokia.com/about-us/newsroom/articles/5g-advanced-explained/

• • 6G: Tecnologías claves

https://www.nokia.com/about-us/newsroom/articles/6g-explained/

Mas detalles

• • Temas en discusión

- Propagación multi-camino
- Ancho de banda de transmisión limitado
- Movilidad
- Consumo de energía

Durante el desarrollo del curso estudiaremos estos problemas y herramientas/tecnologías para su solución

