Basic FIR Digital Filter Structures

• A causal FIR filter of order N is characterized by a transfer function H(z) given by

$$H(z) = \sum_{n=0}^{N} h[n]z^{-n}$$
 which is a polynomial in z^{-1}

• In the time-domain the input-output relation of the above FIR filter is given by

$$y[n] = \sum_{k=0}^{N} h[k]x[n-k]$$

- An FIR filter of order N is characterized by N+1 coefficients and, in general, require N+1 multipliers and N two-input adders
- Structures in which the multiplier coefficients are precisely the coefficients of the transfer function are called **direct form** structures

• A direct form realization of an FIR filter can be readily developed from the convolution sum description as indicated below for N = 4

An analysis of this structure yields

$$y[n] = h[0]x[n] + h[1]x[n-1] + h[2]x[n-2] + h[3]x[n-3] + h[4]x[n-4]$$

which is precisely of the form of the convolution sum description

 The direct form structure shown on the previous slide is also known as a transversal filter

• The transpose of the direct form structure shown earlier is indicated below

 Both direct form structures are canonic with respect to delays

Cascade Form FIR Digital Filter Structures

- A higher-order FIR transfer function can also be realized as a cascade of secondorder FIR sections and possibly a first-order section
- To this end we express H(z) as $H(z) = h[0] \prod_{k=1}^{K} (1 + \beta_{1k} z^{-1} + \beta_{2k} z^{-2})$ where $K = \frac{N}{2}$ if N is even, and $K = \frac{N+1}{2}$ if N is odd, with $\beta_{2K} = 0$

Cascade Form FIR Digital Filter Structures

• A cascade realization for N = 6 is shown below

• Each second-order section in the above structure can also be realized in the transposed direct form

- The polyphase decomposition of H(z) leads to a parallel form structure
- To illustrate this approach, consider a causal FIR transfer function H(z) with N=8:

$$H(z) = h[0] + h[1]z^{-1} + h[2]z^{-2} + h[3]z^{-3} + h[4]z^{-4}$$
$$+ h[5]z^{-5} + h[6]z^{-6} + h[7]z^{-7} + h[8]z^{-8}$$

• *H*(*z*) can be expressed as a sum of two terms, with one term containing the even-indexed coefficients and the other containing the odd-indexed coefficients:

$$H(z) = (h[0] + h[2]z^{-2} + h[4]z^{-4} + h[6]z^{-6} + h[8]z^{-8})$$

$$+ (h[1]z^{-1} + h[3]z^{-3} + h[5]z^{-5} + h[7]z^{-7})$$

$$= (h[0] + h[2]z^{-2} + h[4]z^{-4} + h[6]z^{-6} + h[8]z^{-8})$$

$$+ z^{-1}(h[1] + h[3]z^{-2} + h[5]z^{-4} + h[7]z^{-6})$$

• By using the notation

$$E_0(z) = h[0] + h[2]z^{-1} + h[4]z^{-2} + h[6]z^{-3} + h[8]z^{-4}$$

$$E_1(z) = h[1] + h[3]z^{-1} + h[5]z^{-2} + h[7]z^{-3}$$
we can express $H(z)$ as

$$H(z) = E_0(z^2) + z^{-1}E_1(z^2)$$

 The above decomposition is more commonly known as the 2-branch polyphase decomposition

• A realization of H(z) based on the 2-branch polyphase decomposition is thus as shown below

• In a similar manner, by grouping the terms in the original expression for H(z), we can reexpress it in the form

$$H(z) = E_0(z^3) + z^{-1}E_1(z^3) + z^{-2}E_2(z^3)$$

where now

$$E_0(z) = h[0] + h[3]z^{-1} + h[6]z^{-2}$$

$$E_1(z) = h[1] + h[4]z^{-1} + h[7]z^{-2}$$

$$E_2(z) = h[2] + h[5]z^{-1} + h[8]z^{-2}$$

• The decomposition of H(z) in the form

$$H(z) = E_0(z^2) + z^{-1}E_1(z^2)$$

or

$$H(z) = E_0(z^3) + z^{-1}E_1(z^3) + z^{-2}E_2(z^3)$$

is more commonly known as the 3-branch polyphase decomposition

• A realization of H(z) based on the 3-branch polyphase decomposition is thus as shown below

• In the general case, an *L*-branch polyphase decomposition of an FIR transfer function of order *N* is of the form

$$H(z) = \sum_{m=0}^{L-1} z^{-m} E_m(z^L)$$

where

$$E_m(z) = \sum_{n=0}^{\lfloor (N+1)/\underline{L} \rfloor} h[Ln+m]z^{-m}$$

with h[n]=0 for n > N

- The subfilters $E_m(z^L)$ in the polyphase realization of an FIR transfer function are also FIR filters and can be realized using any methods described so far
- However, to obtain a canonic realization of the overall structure, the delays in all subfilters must be shared

• Figure below shows a canonic realization of a length-9 FIR transfer function obtained using delay sharing

- The symmetry (or antisymmetry) property of a linear-phase FIR filter can be exploited to reduce the number of multipliers into almost half of that in the direct form implementations
- Consider a length-7 Type 1 FIR transfer function with a symmetric impulse response:

$$H(z) = h[0] + h[1]z^{-1} + h[2]z^{-2} + h[3]z^{-3}$$
$$+ h[2]z^{-4} + h[1]z^{-5} + h[0]z^{-6}$$

• Rewriting H(z) in the form

$$H(z) = h[0](1+z^{-6}) + h[1](z^{-1}+z^{-5})$$
$$+ h[2](z^{-2}+z^{-4}) + h[3]z^{-3}$$

we obtain the realization shown below

- A similar decomposition can be applied to a Type 2 FIR transfer function
- For example, a length-8 Type 2 FIR transfer function can be expressed as

$$H(z) = h[0](1+z^{-7}) + h[1](z^{-1}+z^{-6})$$
$$+ h[2](z^{-2}+z^{-5}) + h[3](z^{-3}+z^{-4})$$

• The corresponding realization is shown on the next slide

• Note: The Type 1 linear-phase structure for a length-7 FIR filter requires 4 multipliers, whereas a direct form realization requires 7 multipliers

- Note: The Type 2 linear-phase structure for a length-8 FIR filter requires 4 multipliers, whereas a direct form realization requires 8 multipliers
- Similar savings occurs in the realization of Type 3 and Type 4 linear-phase FIR filters with antisymmetric impulse responses

Tapped Delay Line

 In some applications, such as musical and sound processing, FIR filter structures of the form shown below are employed

Tapped Delay Line

- The structure consists of a chain of $M_1 + M_2 + M_3$ unit delays with taps at the input, at the end of first M_1 delays, at the end of next M_2 delays, and at the output
- Signals at these taps are then multiplied by constants α_0 , α_1 , α_2 , and α_3 and added to form the output

Tapped Delay Line

- Such a structure is usually referred to as the tapped delay line
- The direct form FIR structure in slide no. 37 is seen to be a special case of the tapped delay line, where there is a tap after each unit delay