IoT Technologies

Low power: No Battery

Low cost: 10 cents

Low range: 10 – 15 meters

Low Data rates: 10Kbps – 640 Kbps

RFID: Radio Frequency IDentification

Active RFID

- Has battery
- Longer range
- Shorter life span
- Transmits its own signal using OOK

Battery Assisted RFID

- Has battery
- Battery used from computation & sensing but not communication
- Backscatters a reader's signal using OOK

Passive RFID

- No battery
- Short range
- Long life span
- Backscatters a reader's signal using OOK

RFID: Radio Frequency IDentification

RFID: Radio Frequency IDentification

Range: < 1cm

Data Rate: bps to few kbps

Technology: Backscatter over Inductive Coupling

Few meters

100s kbps

Backscatter over RF

A flashlight emits a beam of light

The light is reflected by the mirror

 The intensity of the reflected beam can be associated with a logical "0" or "1"

Tag reflects the reader's signal using ON-OFF keying

Reader shines an RF signal on nearby RFIDs

Reader Transmits Continuous Sine Wave

$$x(t) = \cos(2\pi f_c t)$$

Tag either reflect or doesn't reflect the signal

$$s(t) = \begin{cases} \alpha \cos(2\pi f_c t) & bit = 1\\ 0 & bit = 0 \end{cases}$$

- α is reflection coefficient $\alpha \ll 1$
- Reflection can be 70dB to 90dB weaker than transmitted signal.

Reader Receives

$$y(t) = h_s x(t) + h_t s(t)$$

- h_S is self-interference channel
- h_t is composite channel (Reader-to-Tag and back Tag-to-Reader)

$$y(t) = (h_s + b\alpha h_t)\cos(2\pi f_c t)$$

Reader Receives

$$y(t) = (h_s + b\alpha h_t)\cos(2\pi f_c t)$$

Reader Receives

$$y(t) = (h_s + b\alpha h_t)\cos(2\pi f_c t)$$

- Reflection can be 70dB to 90dB weaker than transmitted signal.
- Reader must cancel self-interference to be able to decode.
- Reader uses a full-duplex radio
 - Can transmit and receiver at the same time!
 - Cancels Self-Interference Signal

$$y'(t) = b\alpha h_t \cos(2\pi f_c t)$$

 Radios are typically half duplex: Cannot transmit and receive at the same time

What happens if we transmit and receiver at the same time?

 Radios are typically half duplex: Cannot transmit and receive at the same time

What happens if we transmit and receiver at the same time?

 Radios are typically half duplex: Cannot transmit and receive at the same time

- (1) Self-Interference saturates the Amplifiers & ADCs
- (2) Self-Interference results in negative SINR of RX signal

- (1) Self-Interference saturates the Amplifiers & ADCs
- (2) Self-Interference results in negative SINR of RX signal
 - Radio knows the self-interference signal → Can cancel it out

- (1) Self-Interference saturates the Amplifiers & ADCs
- (2) Self-Interference results in negative SINR of RX signal
 - Radio knows the self-interference signal → Can cancel it out
 - For RFIDs: self-interference is a single sine wave → Easy to filter
 - For Classical Radios: self-interference is wideband → Harder to cancel

- Both Reader and Tag Use ON-OFF Keying for modulation
- Bit Encoding, however, can differ.
- Reader-to-Tag Encoding: Pulse Interval Encoding (PIE)

Reader-to-Tag Encoding: Pulse Interval Encoding (PIE)

Reader-to-Tag Encoding: Pulse Interval Encoding (PIE)

Why use PIE encoding?

Signal is on for longer time

Maximize energy harvesting at the tag.

- Tag-to-Reader Encoding:
 - FM0
 - Miller Code (M=2, 4, 8)

Tag-to-Reader Encoding: FM0

Inverts the switch at every symbol

0 bits has extra switch mid-symbol

- Tag-to-Reader Encoding: Miller
- Inverts the switch between two consecutive 0 bit symbols
- Inverts the switch in the middle of 1 bit symbol
- Multiple by square wave of M times symbol rate for M=2,4,8

- Tag-to-Reader Encoding: Miller
- Inverts the switch between two consecutive 0 bit symbols
- Inverts the switch in the middle of 1 bit symbol
- Multiple by square wave of M times symbol rate for M=2,4,8

- Tag-to-Reader Encoding:
 - FM0: High Data Rate: 40 Kbps- 640 Kbps
 - Miller Code (M=2, 4, 8)
 - Multiple switches per bit.
 - Robust to Multi-Reader, Multi-Tag scenarios.
 - Robust to noise.
 - M=2, Data Rate: 20 Kbps 320 Kbps
 - M=4, Data Rate: 10 Kbps 160 Kbps
 - M=8, Data Rate: 5 Kbps 80 Kbps