In [8]:

```
import numpy as np
import pandas as pd
import scipy.stats as sp
import seaborn as sns
import matplotlib.pyplot as plt
from pandas.plotting import register_matplotlib_converters
from sklearn.linear_model import LinearRegression as lm
import statsmodels.api as sm
```

In [9]:

```
def difference(dataset,interval=1):
    diff=[]
    for i in range(interval,len(dataset)):
        value=dataset[i]-dataset[i-interval]
        diff.append(value)
    return diff
```

In [10]:

```
def runMyAR1(yin):
    tlen = len(yin)
    y = np.array(yin[2:tlen])
    x = np.array(yin[1:(tlen-1)])
    X = x
    X = sm.add_constant(X)
    regr2 = sm.OLS(y,X)
    model = regr2.fit()
    print(model.summary())
    ypred = model.predict()
    plt.plot((y-ypred))
```

In [11]:

```
# Create Large images!
register_matplotlib_converters()
sns.set_style("darkgrid")
plt.rc("figure", figsize=(14, 8)) # was 16,12
plt.rc("font", size=13)
```

In [12]:

```
dfo = pd.read_csv("Cali Emissions.csv")
#dfo.columns = ['Month','Price']
dfo.head()
```

Out[12]:

	Unnamed: 0	Total carbon dioxide emissions from all sectors, all fuels, California (million metric tons CO2)
0	1980	346.183721
1	1981	334.381538
2	1982	298.004398
3	1983	293.436371
4	1984	315.858105

In [13]:

```
dfo.rename(columns={"Unnamed: 0":"Year","Total carbon dioxide emissions from all sect
```

In [14]:

```
dfo.head()
```

Out[14]:

	Year	Co2 Emission
0	1980	346.183721
1	1981	334.381538
2	1982	298.004398
3	1983	293.436371
4	1984	315.858105

In [16]:

```
df = dfo['Co2 Emission']
print(len(df))
```

38

In [17]:

```
df.plot()
```

Out[17]:

<AxesSubplot:>

In [18]:

```
#import chart_studio.plotly as py
import plotly.graph_objs as go
# Offline mode
import plotly.io as pio
#from plotly.offline import init_notebook_mode, iplot
#init_notebook_mode(connected=True)
```

In [20]:

```
#pltobj = go.Scatter(y=dfo['Price'], x=dfo['Month'])
pltobj = go.Scatter(y=dfo['Co2 Emission'])
```

In [21]:

```
fig = go.Figure(data=pltobj)
pio.show(fig)
```

In [22]:

```
sm.tsa.stattools.adfuller(df)
```

Out[22]:

```
(-1.6043819955568746,

0.4813919056220212,

0,

37,

{'1%': -3.6209175221605827,

'5%': -2.9435394610388332,

'10%': -2.6104002410518627},

198.68496233324055)
```

In [23]:

```
sm.tsa.stattools.kpss(df)
```

Out[23]:

```
(0.5128755053070844,
0.03876677808399001,
4,
{'10%': 0.347, '5%': 0.463, '2.5%': 0.574, '1%': 0.739})
```

In [24]:

```
# detrend, if required, and plot
dtrend = difference(np.array(df),1)
#dtrend = df
plt.plot(dtrend)
```

Out[24]:

[<matplotlib.lines.Line2D at 0x205db91d000>]

In [25]:

```
sm.tsa.stattools.adfuller(dtrend)
```

Out[25]:

```
(-5.7487623008790685,
6.034785265900349e-07,
0,
36,
{'1%': -3.626651907578875,
'5%': -2.9459512825788754,
'10%': -2.6116707716049383},
192.82497907755067)
```

In [26]:

```
sm.tsa.stattools.kpss(dtrend)
```

C:\Users\HP\AppData\Local\Programs\Python\Python310\lib\site-packages\s
tatsmodels\tsa\stattools.py:2022: InterpolationWarning:

The test statistic is outside of the range of p-values available in the look-up table. The actual p-value is greater than the p-value returned.

Out[26]:

```
(0.07569986853366702,
0.1,
1,
{'10%': 0.347, '5%': 0.463, '2.5%': 0.574, '1%': 0.739})
```

In [27]:

```
from statsmodels.tsa.seasonal import STL
```

In [32]:

```
stl = STL(df, period=12)
#stl = STL(df)
```

In [33]:

```
res = stl.fit()
fig = res.plot()
```


MANNUAL ARIMA

In [34]:

```
import statsmodels.api as sm
from statsmodels.tsa.stattools import acf
from statsmodels.tsa.stattools import pacf
```

In [37]:

```
fig = plt.figure(figsize=(14, 8))
ax1 = fig.add_subplot(211)
fig = sm.graphics.tsa.plot_acf(dtrend, lags=17, ax=ax1)
ax2 = fig.add_subplot(212)
fig = sm.graphics.tsa.plot_pacf(dtrend, lags=17, ax=ax2)
```


In [38]:

```
sm.tsa.stattools.arma_order_select_ic(dtrend)
```

C:\Users\HP\AppData\Local\Programs\Python\Python310\lib\site-packages\s
tatsmodels\tsa\statespace\sarimax.py:966: UserWarning:

Non-stationary starting autoregressive parameters found. Using zeros as starting parameters.

C:\Users\HP\AppData\Local\Programs\Python\Python310\lib\site-packages\s
tatsmodels\tsa\statespace\sarimax.py:978: UserWarning:

Non-invertible starting MA parameters found. Using zeros as starting parameters.

C:\Users\HP\AppData\Local\Programs\Python\Python310\lib\site-packages\s
tatsmodels\base\model.py:604: ConvergenceWarning:

Maximum Likelihood optimization failed to converge. Check mle_retvals

C:\Users\HP\AppData\Local\Programs\Python\Python310\lib\site-packages\s
tatsmodels\base\model.py:604: ConvergenceWarning:

Maximum Likelihood optimization failed to converge. Check mle_retvals

C:\Users\HP\AppData\Local\Programs\Python\Python310\lib\site-packages\s
tatsmodels\base\model.py:604: ConvergenceWarning:

Maximum Likelihood optimization failed to converge. Check mle retvals

C:\Users\HP\AppData\Local\Programs\Python\Python310\lib\site-packages\s
tatsmodels\base\model.py:604: ConvergenceWarning:

Maximum Likelihood optimization failed to converge. Check mle_retvals

C:\Users\HP\AppData\Local\Programs\Python\Python310\lib\site-packages\s
tatsmodels\base\model.py:604: ConvergenceWarning:

Maximum Likelihood optimization failed to converge. Check mle_retvals

Out[38]:

```
{'bic': 0 1 2
0 299.240133 302.819466 306.243512
1 302.823386 304.076837 307.096634
2 306.244060 307.041606 309.283533
3 309.827442 310.573480 314.136055
4 313.426623 313.697105 317.605123,
'bic_min_order': (0, 0)}
```

In [39]:

from statsmodels.tsa.arima.model import ARIMA

In [41]:

```
my_model = sm.tsa.arima.ARIMA(df,order=(0,1,0),seasonal_order=(0,1,0,12))
my_model_res = my_model.fit()
print(my_model_res.summary())
```

```
SARIMAX Results
______
===========
                         Co2 Emission No. Observations:
Dep. Variable:
38
             ARIMA(0, 1, 0)x(0, 1, 0, 12)
Model:
                                   Log Likelihood
-106.421
                      Mon, 20 Feb 2023
Date:
                                   AIC
214.842
Time:
                            11:53:26
                                    BIC
216.061
Sample:
                                 0
                                   HQIC
215.180
                               - 38
Covariance Type:
                               opg
______
            coef
                 std err
                                   P>|z|
                                           [0.025
                              Z
0.975]
sigma2
                  62.928
                           4.635
                                   0.000
                                          168.346
         291.6823
415.018
______
Ljung-Box (L1) (Q):
                           0.38
                                Jarque-Bera (JB):
8.20
Prob(Q):
                           0.53
                                Prob(JB):
0.02
Heteroskedasticity (H):
                           0.28
                                Skew:
1.12
Prob(H) (two-sided):
                           0.09
                                Kurtosis:
4.70
______
=========
Warnings:
[1] Covariance matrix calculated using the outer product of gradients
(complex-step).
```

In [42]:

```
type(my_model_res)
```

Out[42]:

statsmodels.tsa.arima.model.ARIMAResultsWrapper

In [43]:

```
pred = my_model_res.plot_diagnostics()
```


In [44]:

```
tforecast = my_model_res.forecast(24)
tforecast2 = my_model_res.get_forecast(24)
confint = np.array(tforecast2.conf_int())
```

In [45]:

type(confint)

Out[45]:

numpy.ndarray

In [47]:

```
plt.plot(df)
plt.plot(tforecast)
```

Out[47]:

[<matplotlib.lines.Line2D at 0x205dbd749d0>]

In [56]:

```
fig,ax = plt.subplots(figsize=(10,5))
ax.plot(df.index, df, label='data')
ax.plot(tforecast2.predicted_mean.index, tforecast2.predicted_mean, label='forecast')
ax.fill_between(tforecast2.predicted_mean.index, confint[:,0], confint[:,1],color='gr
ax.legend()
```

Out[56]:

<matplotlib.legend.Legend at 0x205df8016f0>

AUTO ARIMA

In [57]:

import pmdarima as pm

In [58]:

```
Performing stepwise search to minimize aic
ARIMA(0,1,0)(0,1,1)[12]
                                     : AIC=216.763, Time=0.12 sec
                                     : AIC=214.842, Time=0.03 sec
ARIMA(0,1,0)(0,1,0)[12]
                                     : AIC=218.512, Time=0.17 sec
ARIMA(1,1,0)(1,1,0)[12]
                                     : AIC=218.441, Time=0.22 sec
ARIMA(0,1,1)(0,1,1)[12]
ARIMA(0,1,0)(1,1,0)[12]
                                     : AIC=216.763, Time=0.18 sec
                                     : AIC=inf, Time=0.68 sec
ARIMA(0,1,0)(1,1,1)[12]
                                     : AIC=216.534, Time=0.05 sec
ARIMA(1,1,0)(0,1,0)[12]
                                    : AIC=216.453, Time=0.05 sec
ARIMA(0,1,1)(0,1,0)[12]
                                     : AIC=inf, Time=0.30 sec
ARIMA(1,1,1)(0,1,0)[12]
ARIMA(0,1,0)(0,1,0)[12] intercept : AIC=216.763, Time=0.02 sec
```

Best model: ARIMA(0,1,0)(0,1,0)[12]

Total fit time: 1.832 seconds

WINTER-HOLTS MODEL

In [67]:

```
rolling = dfo['Co2 Emission'].rolling(3)
type(rolling)
```

Out[67]:

pandas.core.window.rolling.Rolling

In [68]:

```
mav = rolling.mean()
plt.plot(dfo['Co2 Emission'])
plt.plot(mav)
```

Out[68]:

[<matplotlib.lines.Line2D at 0x205df867910>]

In [69]:

```
type(mav)
```

Out[69]:

pandas.core.series.Series

In [78]:

```
# Try out the following with various values of 'alpha' and evaluate the results
ewma = dfo['Co2 Emission'].ewm(alpha=0.5, adjust=False).mean()
plt.plot(dfo['Co2 Emission'])
plt.plot(ewma)
```

Out[78]:

[<matplotlib.lines.Line2D at 0x205e0977f70>]

In [79]:

```
plt.plot(dfo['Co2 Emission']-ewma)
```

Out[79]:

[<matplotlib.lines.Line2D at 0x205e0a461a0>]

In [80]:

from statsmodels.tsa.holtwinters import SimpleExpSmoothing

In [81]:

ses = SimpleExpSmoothing(df)

In [82]:

type(ses)

Out[82]:

statsmodels.tsa.holtwinters.model.SimpleExpSmoothing

In [83]:

result = ses.fit(smoothing_level=0.1, optimized=False)

In [84]:

result.summary()

Out[84]:

SimpleExpSmoothing Model Results

riable:	Co2 Emission	No. Observations:	38
Model:	SimpleExpSmoothing	SSE	15706.520
mized:	False	AIC	232.921
Trend:	None	BIC	236.196
sonal:	None	AICC	234.133
eriods:	None	Date:	Mon, 20 Feb 2023
x-Cox:	False	Time:	12:06:34

Box-Cox Coeff.: None

coeff code optimized

smoothing_level 0.1000000 alpha False
initial_level 346.18372 I.0 False

In [85]:

```
mypred = result.predict(start=1, end=160)
```

In [86]:

```
plt.plot(df)
plt.plot(mypred)
```

Out[86]:

[<matplotlib.lines.Line2D at 0x205e0adc940>]

In [87]:

```
result.params
```

Out[87]:

```
{'smoothing_level': 0.1,
  'smoothing_trend': None,
  'smoothing_seasonal': None,
  'damping_trend': nan,
  'initial_level': 346.183721,
  'initial_trend': nan,
  'initial_seasons': array([], dtype=float64),
  'use_boxcox': False,
  'lamda': None,
  'remove_bias': False}
```

In [88]:

```
plt.plot(df)
plt.plot(result.fittedvalues)
plt.plot(result.forecast(20))
```

Out[88]:

[<matplotlib.lines.Line2D at 0x205e0b48fa0>]

In [89]:

```
result2 = ses.fit() # optimize the values of alpha
```

In [90]:

```
plt.plot(df)
plt.plot(result2.fittedvalues)
plt.plot(result2.forecast(20))
```

Out[90]:

[<matplotlib.lines.Line2D at 0x205df7ba020>]

In [91]:

```
result2.params
```

Out[91]:

```
{'smoothing_level': 0.9999999850988388,
  'smoothing_trend': nan,
  'smoothing_seasonal': nan,
  'damping_trend': nan,
  'initial_level': 346.18372671219953,
  'initial_trend': nan,
  'initial_seasons': array([], dtype=float64),
  'use_boxcox': False,
  'lamda': None,
  'remove_bias': False}
```

In [92]:

```
from statsmodels.tsa.holtwinters import Holt
```

In [93]:

```
model = Holt(df, exponential=True)
result = model.fit()
result.params
```

Out[93]:

```
{'smoothing_level': 0.9999999850988388,
  'smoothing_trend': 0.0,
  'smoothing_seasonal': nan,
  'damping_trend': nan,
  'initial_level': 346.0103168251965,
  'initial_trend': 1.0005011818716572,
  'initial_seasons': array([], dtype=float64),
  'use_boxcox': False,
  'lamda': None,
  'remove_bias': False}
```

In [94]:

```
result.summary()
```

Out[94]:

Holt Model Results

Box-Cox Coeff.:

Dep. Variable: Co2 Emission No. Observations: 38 Model: Holt SSE 5803.630 199.089 Optimized: True AIC BIC Trend: Multiplicative 205.639 Seasonal: None **AICC** 201.798 **Seasonal Periods:** None Date: Mon, 20 Feb 2023 Box-Cox: False Time: 12:12:23

None

 coeff
 code
 optimized

 smoothing_level
 1.0000000
 alpha
 True

 smoothing_trend
 0.000000
 beta
 True

 initial_level
 346.01032
 1.0
 True

 initial_trend
 1.0005012
 b.0
 True

In [95]:

```
plt.plot(df)
plt.plot(result.fittedvalues)
plt.plot(result.forecast(20))
```

Out[95]:

[<matplotlib.lines.Line2D at 0x205e0bad990>]

In [96]:

from statsmodels.tsa.holtwinters import ExponentialSmoothing

In [97]:

```
model = ExponentialSmoothing(df, trend='mul', seasonal='mul', seasonal_periods=12)
```

In [98]:

```
result3 = model.fit()
result3.params
```

Out[98]:

In [99]:

```
plt.plot(result3.level)
plt.plot(result3.trend)
plt.plot(result3.season)
```

Out[99]:

[<matplotlib.lines.Line2D at 0x205e0c14ca0>]

In [100]:

result3.summary()

Out[100]:

ExponentialSmoothing Model Results

Dep. Variable:	Co2 Emission	No. Observations:	38
Model:	ExponentialSmoothing	SSE	4781.401
Optimized:	True	AIC	215.726
Trend:	Multiplicative	BIC	241.928
Seasonal:	Multiplicative	AICC	251.726
Seasonal Periods:	12	Date:	Mon, 20 Feb 2023
Box-Cox:	False	Time:	12:13:36

Box-Cox Coeff.: None

	coeff	code	optimized
smoothing_level	0.9745042	alpha	True
smoothing_trend	4.0066e-06	beta	True
smoothing_seasonal	1.4492e-08	gamma	True
initial_level	353.30750	1.0	True
initial_trend	1.0010387	b.0	True
initial_seasons.0	0.9783168	s.0	True
initial_seasons.1	0.9618093	s.1	True
initial_seasons.2	0.9518043	s.2	True
initial_seasons.3	0.9424281	s.3	True
initial_seasons.4	0.9409664	s.4	True
initial_seasons.5	0.9320853	s.5	True
initial_seasons.6	0.9225683	s.6	True
initial_seasons.7	0.9360614	s.7	True
initial_seasons.8	0.9612752	s.8	True
initial_seasons.9	0.9796515	s.9	True
initial_seasons.10	0.9747226	s.10	True
initial_seasons.11	0.9594872	s.11	True

In [101]:

```
plt.plot(df)
plt.plot(result3.fittedvalues)
plt.plot(result3.forecast(24))
```

Out[101]:

[<matplotlib.lines.Line2D at 0x205e0c6afe0>]

In [102]:

model2 = ExponentialSmoothing(df, trend='add', seasonal='mul', seasonal_periods=12)

In [103]:

```
result4 = model2.fit()
result4.params
```

Out[103]:

In [104]:

result4.summary()

Out[104]:

ExponentialSmoothing Model Results

Dep. Variable:	Co2 Emission	No. Observations:	38
Model:	ExponentialSmoothing	SSE	4775.081
Optimized:	True	AIC	215.676
Trend:	Additive	BIC	241.877
Seasonal:	Multiplicative	AICC	251.676
Seasonal Periods:	12	Date:	Mon, 20 Feb 2023
Box-Cox:	False	Time:	12:14:27

Box-Cox Coeff.: None

	coeff	code	optimized
smoothing_level	0.9738882	alpha	True
smoothing_trend	1.8595e-07	beta	True
smoothing_seasonal	0.000000	gamma	True
initial_level	320.76651	1.0	True
initial_trend	0.5195289	b.0	True
initial_seasons.0	1.0769086	s.0	True
initial_seasons.1	1.0585940	s.1	True
initial_seasons.2	1.0475910	s.2	True
initial_seasons.3	1.0373024	s.3	True
initial_seasons.4	1.0357310	s.4	True
initial_seasons.5	1.0259913	s.5	True
initial_seasons.6	1.0155546	s.6	True
initial_seasons.7	1.0304431	s.7	True
initial_seasons.8	1.0581932	s.8	True
initial_seasons.9	1.0784005	s.9	True
initial_seasons.10	1.0729598	s.10	True
initial_seasons.11	1.0561905	s.11	True

In [105]:

```
plt.plot(df)
plt.plot(result4.fittedvalues)
plt.plot(result4.forecast(20))
```

Out[105]:

[<matplotlib.lines.Line2D at 0x205e0d01030>]

In []: