Практическое занятие 4: **BPMN**

ДИСЦИПЛИНА Архитектура индустриального программного обеспечения

ИНСТИТУТ Институт перспективных технологий и индустриального программирования

КАФЕДРА Кафедра индустриального программирования

ВИД УЧЕБНОГО

Практические занятия

МАТЕРИАЛА

ПРЕПОДАВАТЕЛЬ Зарипова Виктория Мадияровна

СЕМЕСТР 1 семестр, 2024-2025 гг.

Тема

Введение в BPMN (Business Process Model and Notation)

Цель

Ознакомление студентов с основными понятиями и терминами BPMN, а также практическое упражнение по моделированию простого бизнес-процесса с использованием базовых элементов BPMN.

Входные знания

Основы бизнес-процессов и их моделирования.

Итоги занятия

При успешном выполнении лабораторной работы студент должен получить следующие результаты:

- 1. Понимание основных понятий и терминов BPMN, включая элементы моделирования (задачи, события, шлюзы, потоки данных и документов), пулы и диаграммы плавления, аннотации и ассоциации.
- 2. Способность моделировать простой бизнес-процесс с использованием базовых элементов BPMN. Это включает описание сценария процесса, идентификацию активностей/задач, определение последовательности и условий выполнения задач с использованием событий, шлюзов и потоков данных и визуализацию процесса на диаграмме BPMN.
- 3. Понимание важности правильного описания и визуализации процессов для понимания и оптимизации бизнеспроцессов. Студент должен осознать, что BPMN является мощным инструментом в управлении бизнесом и разработке информационных систем.
- 4. Способность применять BPMN в практических задачах управления бизнесом и разработке информационных систем. Студент должен понимать, как использовать BPMN для моделирования и адаптации бизнес-процессов в различных проектах и задачах.
- 5. Знание о доступных на рынке инструментах работы с диаграммами BPMN

По окончании работы студент будет оценен по выполненному упражнению моделирования бизнес-процесса с использованием BPMN, а также по пониманию основных понятий и терминов BPMN.

План занятия

- с помощью онлайн инструмента bpmn.io создать BPMN схему для любого из своих бизнес-процессов
- сохранить схему в виде XML
- открыть схему с помощью инструмента https://stormbpmn.com/
- с помощью инструмента проверки ошибок исправьте ошибки в вашей схеме
- с помощью симулятора токена убедитесь, что ваша схема позволяет токену пройти основную логику и ее ответвления от начала до конца
- опишите вашу схему в соответствии с примером. Описание должно включать перечень основных ролей, шагов процесса и в случае необходимости дополнительную информацию, которая прямо не отражена на диаграмме, но необходима для разработки, например фильтры поиска, тексты сообщений об ошибках, узкие места процесса, которые могут иметь значение.

Обзор основных понятий и терминов ВРМN

Бизнес-процесс и его роль в организации

Бизнес-процесс - это последовательность взаимосвязанных действий или задач, выполняемых в организации для достижения определенной цели. Бизнес-процессы играют важную роль в организации, поскольку они определяют, как работа организации выполняется и какие ресурсы необходимы для достижения конечного результата.

Они могут быть описаны и представлены в виде диаграмм, что делает их более наглядными и понятными. Бизнеспроцессы помогают организации оптимизировать свою деятельность, улучшать эффективность и качество работы, а также управлять изменениями и инновациями. Они также позволяют организации лучше понять своих клиентов и поставить себя на место потребителей услуг или товаров.

Эффективное управление бизнес-процессами помогает организации достигать своих стратегических целей, быть более гибкой и адаптивной к переменам на рынке. Бизнес-процессы также позволяют выявлять узкие места, бутылочные горлышки и проблемные зоны, что позволяет организации улучшить свою деятельность и снизить издержки. Все это делает бизнес-процессы важным инструментом управления и развития организации.

Элементы модели ВРМN: задачи, события, шлюзы, потоки данных и документов

Элементы модели BPMN представляют основные конструктивные элементы, которые используются для моделирования бизнес-процессов. Они включают в себя задачи, события, шлюзы, потоки данных и документов.

- 1. Задачи: В BPMN задача представляет собой конкретную работу или действие, которое выполняется в рамках бизнес-процесса. Задачи могут быть автоматизированы или выполняться вручную. Они могут иметь различные типы, такие как обработка документов, выполнение операции или принятие решения.
- 2. События: События представляют определенные моменты или условия, которые происходят во время выполнения бизнес-процесса. События могут быть стартовыми (начало процесса), промежуточными (важные этапы процесса) или конечными (завершение процесса). Они могут быть событиями сообщения, время, условиями или сигналами.
- 3. Шлюзы: Шлюзы используются для принятия решений и направления потока выполнения бизнес-процесса в различные направления. Шлюзы классифицируются на три типа: эксклюзивные, параллельные и включающие. Шлюзы могут определять условиями, по которым будет выбрано определенное направление выполнения.
- 4. Потоки данных и документов: Потоки данных представляют передачу информации между различными задачами или действиями в бизнес-процессе. Они помогают определить, как и в каком формате данные переходят от одной

задачи к другой. Потоки документов представляют передачу документов или файлов между различными задачами процесса.

Эти элементы модели BPMN помогают создать наглядное представление бизнес-процессов и упростить их анализ, оптимизацию и автоматизацию.

Пулы и дорожки

Диаграммы BPMN состоят из элементов процесса, графически отображенных в рамках пулов. Элементы процесса представляют собой различные задачи, события, шлюзы и потоки управления, которые описывают последовательность шагов в бизнес-процессе. Эти элементы соединяются с помощью стрелок, которые отображают потоки данных или управления между элементами.

Пулы и дорожки являются элементами для группировки и структурирования элементов процесса, однако они имеют различные цели и использование.

Пул (Pool) используется для представления уровня взаимодействия между различными участниками или организациями в рамках бизнес-процесса. Пулы отображают, какие участники участвуют в процессе, без углубления в подробности их действий. Диаграмма с пулами позволяет визуализировать иерархическую структуру процесса и отражает общие взаимодействия и потоки между участниками.

Дорожка (Lane) используется для группировки элементов процесса внутри одного участника или организации. Дорожка демонстрирует последовательность и взаимосвязь шагов, выполняемых конкретным участником в процессе. В отличие от пулов, дорожки служат детализации конкретных действий. Дорожки могут быть расположены вертикально или горизонтально внутри пула.

Важно использовать диаграммы пулов и дорожек с учетом целей и потребностей моделирования процесса. Вот несколько рекомендаций:

- Используйте пулы, когда вам необходимо представить отношения и взаимодействия между различными участниками или организациями в рамках процесса. Это особенно полезно при моделировании межорганизационных бизнес-процессов, где разные организации или отделы взаимодействуют друг с другом.
- Используйте дорожки, когда вам нужно показать последовательность передачи данных или ответственности за выполнение задач между различными подразделениями, исполнителями внутри одной организации/отдела. Это может быть полезно, когда несколько ролей или отделов участвуют в конкретном шаге процесса или когда необходимо визуально разграничить задачи и обязанности внутри организации.

Также можно представлять в виде пулов отдельные процессы.

Аннотации

Аннотации в BPMN используются для включения дополнительной текстовой информации на диаграмме процесса. Они помогают описать, объяснить или уточнить определенные аспекты процесса, например, задачи, делегирование,

ожидание, условия, правила и т.д. Аннотации представляют собой облако с текстом, которое можно связать с элементами процесса, чтобы указать соответствующую информацию.

Анализ и оптимизация процессов. Механизмы поиска ошибок в BPMN

Механизмы поиска ошибок в BPMN

В моделях бизнес-процессов с использованием нотации BPMN существуют различные механизмы поиска ошибок. Некоторые из них включают:

- 1. Правильность синтаксиса: Этот механизм проверяет соответствие модели бизнес-процесса правилам синтаксиса нотации BPMN. Он может включать проверку наличия обязательных элементов, правильное соединение элементов и точное выполнение синтаксических правил.
- 2. Проверка правильности потока процесса: Этот механизм обнаруживает потенциальные проблемы в последовательности действий в модели бизнес-процесса. Он может включать проверку наличия зависимостей между элементами, отсутствие зацикливаний, правильный порядок выполнения задач и т.д.
- 3. Проверка наличия неоднозначности: Этот механизм проверяет модель на наличие двусмысленности или неоднозначности в описании процесса. Он может включать проверку наличия нескольких выходов из задачи, неоднозначного использования шлюзов и других потенциальных источников путаницы.
- 4. Проверка соответствия бизнес-правилам: Этот механизм проверяет, соответствует ли модель бизнес-процесса установленным бизнес-правилам и требованиям. Он может включать проверку правильности назначения исполнителей, правильного ввода данных, соответствия временным ограничениям и другим бизнес-правилам.
- 5. Проверка производительности и оптимизации: Этот механизм анализирует модель бизнес-процесса на предмет потенциальных проблем с производительностью и возможностей оптимизации. Он может включать проверку задержек в процессе, лишних шагов, неэффективного использования ресурсов и других факторов, влияющих на производительность и оптимизацию процесса.

Это лишь некоторые из механизмов поиска ошибок в моделях бизнес-процессов, использующих нотацию BPMN. В зависимости от инструментов и методик анализа, механизмы могут быть более детализированными или разнообразными.

BPMN токен

BPMN токен - это абстрактный элемент, который используется в нотации BPMN для представления передвижения и контроля потока процесса. Токен обычно представляет собой маркер или сигнал, который передается между элементами процесса и указывает на текущую позицию выполнения процесса.

Правила для проверки корректности диаграммы с помощью токенов включают следующие:

- 1. Начало процесса: Начальное событие формирует один токен.
- 2. Последовательность шагов: Токен может переходить от одного элемента процесса к другому только в соответствии с определенной последовательностью. Например, токен может перейти к следующему элементу после завершения текущего.
- 3. Параллельное выполнение: Если в процессе предусмотрено параллельное выполнение нескольких задач, токены могут перемещаться параллельно между соответствующими элементами.
- 4. Шлюзы: Токены должны соответствовать условиям шлюзов. Например, для шлюза XOR (исключающего ИЛИ) только один из выходов должен содержать токен после прохождения шлюза.
- 5. Завершение процесса: При завершении процесса все токены должны находиться в конечных элементах, указывающих на успешное или неуспешное завершение процесса.

Проверка корректности диаграммы с использованием токенов позволяет обнаружить потенциальные проблемы в потоке процесса, такие как зацикливания, отсутствие завершения или неправильный порядок выполнения задач.

Инструмент: http://stormbpmn.com/

Пример оформления диаграммы

Процесс назначения консультации

Основные участники процесса:

- 1. Неавторизованный пользователь (использующий личный кабинет)
- 2. Система (обеспечивает выполнение различных функций, включая генерацию списков и расписаний)
- 3. Оператор (помогает пациенту по телефону)

Шаги процесса через личный кабинет

1. Заполнение фильтров для поиска врачей: неавторизованный пользователь вводит параметры для поиска врача, такие как специализация, дата и время консультации и т.д.

Примечание команде разработки: в MVP реализовать только поиск по дате и врачу. По врачу пользователь может использовать фильтр "Специализация врача" и/или искать врача по ФИО. В случае если указана специализация список ФИО врачей должен показывать только врачей с этой специализацией. У врача может быть несколько специализаций, например травматолог и хирург.

2. Генерация списка врачей:

- Система обрабатывает введенные данные и формирует список доступных врачей.
- Если нет свободных врачей по заданным фильтрам, процесс завершается с ошибкой "Не смогли найти свободного врача по вашему запросу, пожалуйста поменяйте параметры поиска".
- 3. Выбор врача: пользователь выбирает врача из предложенного списка.
- 4. **Генерация расписания:** система генерирует расписание врача на указанную дату. Если дата не указана то на ближайшую неделю.
- 5. Выбор подходящего времени: пользователь выбирает подходящий слот времени.

6. Проверка авторизации:

- Система проверяет, авторизован ли пользователь.
- Если пользователь не авторизован, система проверяет, зарегистрирован ли пользователь.
 - Если не зарегистрирован, пользователь должен пройти процедуру регистрации и авторизации, после чего может продолжить запись.
 - Если зарегистрирован, пользователь должен пройти авторизоваться, после чего может продолжить запись.

7. Подтверждение записи:

- Пользователь подтверждает выбранное время, и система добавляет запись в расписание врача.
- Если врач не может провести консультацию в это время, запись удаляется из расписания врача, и система уведомляет пользователя об изменениях.

Шаги процесса через оператора:

Процесс начинается по факту получения звонка с просьбой о записи к врачу:

- 1. Заполнение фильтров для поиска врачей: оператор запрашивает у пациента необходимые параметры для поиска врача.
- 2. Генерация списка врачей: система формирует список доступных врачей на основе введенных данных.

3. Выбор врача:

- оператор помогает пациенту выбрать врача.
- оператор помогает пациенту выбрать время консультации

4. Проверка регистрации:

- Если пациент не зарегистрирован, оператор вводит первичные данные пациента в систему и регистрирует его. Первичные данные: ФИО и дата рождения. Если пациент с такой же ФИО и датой рождения есть в БД, то оператор должен запросить адрес регистрации или номер паспорта, или другой идентификатор для повторной идентификации учетной записи пациента при очном визите.
- Если пациент уже зарегистрирован, оператор выбирает пациента из базы данных.
- 5. **Выбор времени консультации:** оператор выбирает подходящее время для консультации, согласовав его с пациентом.

6. Подтверждение записи:

- Оператор подтверждает выбранное время, и система добавляет запись в расписание врача.
- Если врач не может провести консультацию в это время, запись удаляется из расписания врача, и система уведомляет пациента об изменениях.

Завершение процесса:

В случае любых изменений в расписании врачей система оповещает пациента через установленный процесс оповещения.