ZETTLER DISPLAYS AQM1602XA-RN-GBW

I 2 C接続*薄型* 1 6 文字× 2 行液晶 Sitronix ST7032 CONTROLED

- ◆66mm×27. 7mm×2. 0mmの薄型サイズです。
- (画面54.7mmX10.8mm)
- ◆画面コントラストはコマンドで設定しますので、外付けVRが不要です。
- ◆電源電圧は3. 1 V~5. 5 Vで、A r d u i n o 等との接続が可能です。
- ◆接続に便利な2.54mmピッチへの変換基板付きです。
 - (セットによっては、変換基板は付属しない場合があります)
- ◆低消費電流です:1mA@3.3V
 - (液晶本体のみの消費電流 変換基板使用時のプルアップ 抵抗消費分を除く)

●LCDモジュールのピンを上側にして、左から1~9ピンになります。

PIN ASSIGNMENT

Pin No.	Symbol	Function
1	/RES	Reset signal
2	SCL	Clock input
3	SDA	Data input
4	VSS	Ground
5	VDD	Power Supply
6	VOUT	Voltage converter input/output pin
7	CAP1P	Capacitor 1 positive connection pin for voltage converter
8	CAP1N	Capacitor 1 negative connection pin for voltage converter
9	V0	Power supply for LCD drive

GENERAL SPECS

Display Format	16*2 Character
Power Supply	3.3V
Overall Module Size	66.0mm(VV) x 27.7mm(H) x max 2.0mm(D)
4. Viewing Area(W*H)	61.0mm(VV) x 15.7mm(H)
5. Dot Size (W*H)	0.55mm(W) x 0.60mm(H)
6. Dot Pitch (W*H)	0.60mm(VV) x 0.65mm(H)
7. Character Size (W*H)	2.95mm(VV) x 5.15mm(H)
8. Character Pitch (W*H)	3.45mm(VV) x 5.65mm(H)
9. Viewing Direction	6:00 O'Clock
10. Driving Method	1/16Duty,1/5Bias
11. Controller IC	ST7032I-0D or compatible
12. LC Fluid Options	STN(GRAY)/Positive/Reflective
13. Backlight Options	NA
14. Operating temperature	-20°C ~ 60°C
15. Storage temperature	-30°C ~70°C
16. RoHS	RoHS compliant

ABSOLUTE MAXIMUM RATINGS

ltem	Symbol	Min	Тур	Max	Unit
Operating temperature	Тор	-20	-	60	°C
Storage temperature	Tst	-30	-	70	°C
Input voltage	Vin	0.3		Vdd+0.3	>
Supply voltage for logic	Vdd- Vss	-0.3	-	6.0	>
Supply voltage for LCD driving	V0-Vss	Vss-0.3	-	7.0-Vss	>

Electrical Characteristics Of LCM

ltem	Symbol	Condition	Min	Тур	Мах	Unit
Power Supply Voltage	Vdd	25°C	3.1	3.3	3.5	>
Power Supply Current	ldd	Vdd=3.3V		0.5	1.0	mA
Input voltage (high)	Vih	Pins(SDA,SCL,RST)	1.9		Vdd	V
Input voltage (low)	Vil	Vdd=3.3V	-0.3		0.8	V
		-20°C				
Recommended LC Driving Voltage	V0-Vss	25℃	4.3	4.5	4.7	V
		70℃				

CHARACTER PATTERNS

CHA	RAC	IER	K PA	116	RNS											
67-64 63-60	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000																
0001																
0010																
0011	RAM															
0 100	ဗ္ဗ															
0101																
0110																
0111	•															
1000																
1001																
1010																
1011																
1100																
1101																
1110																
1111																

							30°C to 8	50)
	<u>.</u> .			VDD=2.7 Rati		VDD=4.5 Rati		
Item	Signal	Symbol	Condition	Min.	Max.	Min.	Max.	Units
SCL clock frequency		f _{SCLK}		DC	400	DC	400	KHz
SCL clock low period	SCL	t _{LOW}	1 —	1.3	_	1.3	_	
SCL clock high period] [t _{HIGH}		0.6	-	0.6	_	us
Data set-up time	SI	t _{SU;DAT}		180	_	100	_	ns
Data hold time		t _{HD:DAT}	1 -	0	0.9	0	0.9	us
SCL,SDA rise time	SCL,	t _r		20+0.1C _b	300	20+0.1C _o	300	ns
SCL,SDA fall time	SDA	t _f	1 - 1	20+0.1C ₅	300	20+0.1C _b	300	1115
Capacitive load represent by each bus line		Cb	_	_	400	-	400	pf
Setup time for a repeated START condition	SI	t _{SU;STA}	_	0.6	-	0.6	-	us
Start condition hold time		t _{HD;STA}	_	0.6	-	0.6	_	us
Setup time for STOP condition		t _{su;sto}	_	0.6	-	0.6	-	us
Bus free time between a Stop and START condition	SCL	t _{BUF}	_	1.3	-	1.3	-	us

DISPLAY INSTRUCTION TABLE

Instruction			lr	nstr	ucti	on	Coc	le			B		nstruction ecution T	
instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	OSC= 380KHz	OSC= 540kHz	OSC= 700KHz
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "20H" to DDRAM, and set DDRAM address to "00H" from AC	1.08 ms	0.76 ms	0.59 ms
Return Home	0	0	o	o	0	0	0	0	1	×	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.08 ms	0.76 ms	0.59 ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	s	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.	26.3 us	18.5 us	14.3 us
Display ON/OFF	0	0	0	o	o	0	1	D	С	В	D=1:entire display on C=1:cursor on B=1:cursor position on	26.3 us	18.5 us	14.3 us
Function Set	0	0	0	0	1	DL	N	DH	*0	ıs	DL: interface data is 8/4 bits N: number of line is 2/1 DH: double height font IS: instruction table select	26.3 us	18.5 us	14.3 us
Set DDRAM address	0	0	1	AC6	AC5	AC4	АСЗ	AC2	AC1	AC0	Set DDRAM address in address counter	26.3 us	18.5 us	14.3 us
Read Busy flag and address	0	1	BF	AC6	AC5	AC4	АСЗ	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0	o	0
Write data to RAM	1	0	D7	D6	D5	D4	DЗ	D2	D1	DO	Write data into internal RAM (DDRAM/CGRAM/ICONRAM)	26.3 us	18.5 us	14.3 us
Read data from RAM Note *: this b	1	1	D7	D6	D5	D4	DЗ	D2	D1	DO	Read data from internal RAM (DDRAM/CGRAM/ICONRAM)	26.3 us	18.5 us	14.3 us

							Ins	tru	ctio	n ta	ble 0(IS=0)			
Cursor or	_										S/C and R/L: Set cursor moving and display shift	00.0	40.5	44.2
Display Shift	0	0	0	0	0	1	S/C	R/L	×		control bit, and the direction, without changing DDRAM data.	26.3 us	18.5 us	14.5 us
Set CGRAM	0	0	0	1	AC5	AC4	АСЗ	AC2	AC1	ACO	Set CGRAM address in address	26.3 us	18.5 us	14.3 us

			I							l	counter			
							Ins	tru	ctio	n ta	ible 1(IS=1)			
Internal OSC frequency	uency 00000				0	1	BS	F2	F1	FO	BS=1:1/4 bias BS=0:1/5 bias F2~0: adjust internal OSC frequency for FR frequency.	26.3 us	18.5 us	14.3 us
Set ICON address	0	0	0	1	0	0	АСЗ	AC2	AC1	AC0	Set ICON address in address counter.	26.3 us	18.5 us	14.3 us
Power/ICON control/Contr ast set	0	0	o	1	0	1	Ion	Bon	C5	C4	lon: ICON display on/off Bon: set booster circuit on/off C5,C4: Contrast set for internal follower mode.	26.3 us	18.5 us	14.3 us
Follower control	0	0	0	1	1	0	Fon	Rab 2	Rab 1	_	Fon: set follower circuit on/off Rab2~0: select follower amplified ratio.	26.3 us	18.5 us	14.3 us
Contrast set	0	0	0	1	1	1	СЗ	C2	C1	CO	Contrast set for internal follower mode.	26.3 us	18.5 us	14.3 us

-タとコマンドのWR I T E方法

- LCDに対しては、書き込み(WRITE)のみが出来ます。読み込み(READ)はできません。 (I2CのACKはあります)
- ・READが不可なのでBusyフラグ、内部のDDRAMアドレスカウンタは読み取る事ができません。 ・スレープアドレスは $0 \times 7C$ (7bitアドレス)です。「アドレス0111110+0(RW)」
- (READが不可なので、RWは常にOになります) Arduino表現ではOx3Eになります。 スレーブアドレスに続くコマンドワードは「コントロールバイト+データバイト」で構成され、複数のコ
- マンドワードが送られる場合のCo=1で、最終コマンドワードのCo=Oです。
 ・コントロールバイトで「Co(連続コマンドワード/最終コマンドワードの指定)」と「RS(液晶のインストラクションコード/液晶のデータ指定)」を送信します。
 ・コントロールバイトの後に続くデータバイトが「液晶のインストラクションコード」の場合RS=O、
- 「液晶の表示データ」あるいは「CGRAMのデータ」の場合はRS=1になります。

Figure 5. 2-line Interface protocol

Last control byte to be sent. Only a stream of data bytes is allow
This stream may only be terminated by a STOP condition.

RS	R/W	Operation
L		Instruction Write operation (MPU writes Instruction code into IR)
H	L	Data Write operation (MPU writes data into DR)

◆使い方

- 接続はI2C接続です。SDA、SCLをマイコン等と接続してください。
- (VDDは3. 1V~5. 5Vです。SDA、SCLはVDD以下の電圧でご使用ください) 基本的なコマンドは、一般的なパラレル接続のSC1602と同じです。
- Arduinoでお使いの場合は、Wireコマンドをお使いください。
- コントラストは、外付けVRではなく、拡張コマンドで設定します。設定前は表示が出ません。 (パラレル接続のSC1602の様な■の連続も出ません)
- コントラスト調整などの拡張コマンド(前掲 DISPLAY INSTRUCTION TABLE の I S=1の表) が追加されています。

拡張コマンドを使用する場合は「Function Set」で「IS=1」に指定します。拡張コマンド使用後は 「Function Set」で「IS=0」に戻します。

- I2C端子のSDA、SCLはブルアップする必要があります。変換基板をお使いの場合はソルダジャンパーを使用してブルアップしていただくか、あるいは基板外部にブルアップ抵抗を接続してください。
- ・変換基板を使用しない場合は接続回路例に示すようにVOUT(6番ピン)、CAP1N、CAP1P (7,8番ピン)には、コンデンサを付ける必要があります。
- コントラスト調整は、拡張コマンド「Power/ICONcontrol/Contrast set」のC5、C4と 「Contrast set」のC3~C0を使用し、64段階で設定します。VDD=5Vの場合、C5=1、C4=0、C3=0、C2=0、C1=1、C0=1で少し濃い目ぐらいです。
- 拡張コマンド「Power/ICONcontrol/Contrast set」の「I o n」ビットはアンテナやバッテリ ーなど のアイコン表示の為のビットです。この液晶にはアイコンがありませんので、〇に設定してください。
- ・拡張コマンド「Power/ICONcontrol/Contrast set」の「Bon」ビットはVDD=3. 3Vの場合1 VDD=5Vの場合Oに設定してください。

◆液晶表示 DDRAMアドレス(液晶画面の表示アドレスです) 16進表記 1 行目 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F | <u>2行目|40|41|42|43|44|45|46|47|48|49|4A|4B|4C|4D|4E|4F|</u>

◆変換基板外形図(セットによっては基板は付属しておりません) 六径0. 9mm、LCDモジュールピン穴径0. 6 mm

◆変換基板裏面

ハンダジャンパーパッドの説明

ハンダジャンパーは不要です。

★液晶に内蔵のコントロール I C 「ST7032 i 」の詳しい資料は、弊社 ホームページのAQM1602のページに参考pdf資料がございます。

◆インストラクション(液晶への命令)

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO
О	0	0	0	0	0	0	0	0	1

Clear all the display data by writing "20H" (space code) to all DDRAM address, and set DDRAM address to "00H" into AC (address counter). Return cursor to the original status, namely, bring the cursor to the left edge on first line of the display. Make entry mode increment (I/D = "1").

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO
О	0	0	0	0	0	0	О	1	×

Return cursor to its original site and return display to its original status, if shifted. Contents of DDRAM do not

RS	R/W	DB7	DB6	DB5	DB4	DВЗ	DB2	DB1	DВО
0	0	0	0	0	0	0	1	I/D	S

I/D: Increment / decrement of DDRAM address (cursor or blink) When I/D = "High", cursor/blink moves to right and DDRAM address is increased by 1 When I/D = "Low", cursor/blink moves to left and DDRAM address is decreased by 1.

CGRAM operates the same as DDRAM, when read from or write to CGRAM.

S: Shift of entire display
When DDRAM read (CGRAM read/write) operation or S = "Low", shift of entire display is not performed.
S = "High" and DDRAM write operation, shift of entire display is performed according to I/D value (I/D = "

s	S I/D Description					
H	Н	Shift the display to the left				
н	L	Shift the display to the right				

Display ON/OFF

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO
0	0	О	0	0	0	1	D	С	В

C : Cursor ON/OFF control bit When C = "High", cursor is turned on

B: Cursor Blink ON/OFF control bit
When B = "High", cursor blink is on, that performs alternate between all the high data and displ

When B = "Low", blink is off.

Cursor or Display Shift

RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBO
О	0	0	0	0	1	S/C	R/L	×	×

S/C: Screen/Cursor select bit
When S/C="High", Screen is controlled by R/L bit
When S/C="Low", Cursor is controlled by R/L bit.

R/L: Right/Left
When R/L="High", set direction to right.

When R/L="Low", set direction to left.

When R/L="Low", set direction to left.

Without writing or reading of display data, shift right/left cursor position or display. This instruction is used correct or search display data. During 2-line mode display, cursor moves to the 2nd line after 40th digit of line. Note that display shift is performed simultaneously in all the line. When displayed data is shift repeatedly, each line shifted individually. When display shift is performed, the contents of address counter not changed.

S/C	R/L	Description	AC Value
∟	L	Shift cursor to the left	AC=AC-1
L	Н	Shift cursor to the right	AC=AC+1
I	L	Shift display to the left. Cursor follows the display shift	AC=AC
I	Ι	Shift display to the right. Cursor follows the display shift	AC=AC

RS	R/W	DB7	DB6	DB5	DB4	DВЗ	DB2	DB1	DBO
0	0	0	0	1	DL	Z	DH	0	IS

DL: Interface data length control bit
When DL = "High", it means 8-bit bus mode with MPU.
When DL = "Low", it means 4-bit bus mode with MPU. So to

N : Display line number control bit When N = "High", 2-line display mode is set

When N = "Low", it means 1-line display mode

DH: Double height font type control bit
When DH = "High" and N= "Low", display font is selected to double height mode(5x16 dot),RAM ac can only use 00H~27H.

When DH= "High" and N= "High", it is forbidden.

When DH= " Low ", display font is normal (5x8 dot).

When IS=" Low", display fortion select
When IS=" High", extension instruction be selected (refer extension instruction table)
When IS=" Low", normal instruction be selected (refer normal instruction table)

1	RS	R/W	DB7	DB6	DB5	DB4	DВЗ	DB2	DB1	DBC
	О	0	0	1	AC5	AC4	АСЗ	AC2	AC1	ACC

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
0 0 1 AC6 AC5 AC4 AC3 AC2 AC1 AC0

Set DDRAM address to AC.
This instruction makes DDRAM data available from MPU.
When 1-line display mode (N = 0), DDRAM address is from "00H" to "4FH".
In 2-line display mode (N = 1), DDRAM address is from "00H" to "27H", and
DDRAM address in the 2nd line is from "40H" to "67H".

◆Arduinoとの接続 (UNOの例。他機種はピン、VDDを確認してください) ・基本的なWireコマンドで制御できます。 • | 20アドレスは0x3Eです

・Arduino UNOのA4 (SDA)、A5 (SCL)、5V、GNDを、液晶のSDA、SCL、 VDD、GNDと接続します。

#include <Wire.h> ータ書き込み #define LCD_ADRS 0x3E char moji[] ="AQM1602XA-RN-GBW"; //SCL=A5=LCDNo2_SDA=A4=LCDNo3 void writeData(byte t_data) Wire.beginTransmission(LCD_ADRS); void setup() {
Wire.begin(); Wire.write(0x40); init_LCD(); Wire.write(t data); Wire.endTransmission(); delay(1); void loop() {
 for(int i = 0; i < 16; i++) { , //コマンド書き込み writeData(moji[i]); void writeCommand(byte t_command) for(int i = 0; i < 16; i++) { Wire.beginTransmission(LCD_ADRS); Wire.write(0x00); writeData(i+0xb1); Wire.write(t command); while(1){}//stop

//液晶初期化 void init_LCD() { delay(100); writeCommand(0x38); delay(20): writeCommand(0x39): delay(20); nand(0x14);delay(20); delay(20): writeCom delay(20); writeCommand(0x6C); delay(20): writeCommand(0x38): delay(20) delay(20); mand(0x0C): delay(20);