Úvod

Zadání

- 1. Nalezněte rovnici roviny s normálovým vektorem (-1, 2, 1), která obsahuje bod (1, 2, 1).
- 2. Který z bodů $\boldsymbol{a}=(3,1,-2)$ a $\boldsymbol{b}=(2,3,1)$ je nejblíže rovině popsané rovnicí x-y=0?
- 3. Jsou dány vektory $\boldsymbol{a}=(2,3,0)$ a $\boldsymbol{b}=(1,0,3)$. Nalezněte $\boldsymbol{v}=\boldsymbol{a}\times\boldsymbol{b}, \|\boldsymbol{v}\|$ a ukažte, že $\boldsymbol{v}\perp\boldsymbol{a},\boldsymbol{b}.$
- 4. Ukažte, že neplatí $(\boldsymbol{u} \times \boldsymbol{v}) \times \boldsymbol{w} = \boldsymbol{u} \times (\boldsymbol{v} \times \boldsymbol{w})$ pro všechna $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^3$.
- 5. Ať $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$. Ukažte, že $|\|\boldsymbol{x}\| \|\boldsymbol{y}\|| \le \|\boldsymbol{x} \pm \boldsymbol{y}\|$.
- 6. V rovině jsou dány vektory $\boldsymbol{u}=(2,0)^T$ a $\boldsymbol{v}=(0,1)^T$ (v této úloze budeme psát vektory v \mathbb{R}^2 do sloupce). Ať $\boldsymbol{A}=\begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix}$. Nalezněte obsah S_1 rovnoběžníku daného vektory $\boldsymbol{u},\boldsymbol{v}$ a obsah S_2 rovnoběžníku daného vektory $\boldsymbol{A}\boldsymbol{u},\boldsymbol{A}\boldsymbol{v}$.
- 7. Načrtněte množinu $M = \{(x, y) \in \mathbb{R}^2 \mid |y| \le 1 x^2\}.$
- 8. Popište a načrtněte množinu $M \subseteq \mathbb{R}^3$, jestliže
 - (a) $M = \{(x, y, z) \in \mathbb{R}^3 \mid x \ge 0, y \ge 0, z \ge 0, x + y + z \le 1\};$
 - (b) $M = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 4y^2 z = 0\};$
 - (c) $M = \{(x, y, z) \in \mathbb{R}^3 \mid 4x^2 + y^2 + z^2 24x 8y + 4z + 55 = 0\}.$
 - (d) $M = \{(x, y, z) \in \mathbb{R}^3 \mid 1 \le x^2 + y^2 + z^2 \le 4\}.$
- 9. Nalezněte střed a poloměr sféry o rovnici

$$x^2 + y^2 + z^2 - 2x - 4y + 8z = 15.$$

- 10. Nalezněte, pokud existuje, limitu posloupnosti $(\boldsymbol{x}_k)_{k=1}^{+\infty}$, jestliže
 - (a) $\boldsymbol{x}_k = \left(\frac{1}{k}, \frac{k-3k^2}{k+k^2}\right);$
 - (b) $\mathbf{x}_k = (1, \sin(\pi k), k);$
 - (c) $\mathbf{x}_k = \left(k \sqrt{k^2 + k}, \sqrt[k]{k}, \frac{1}{k}\right);$
 - (d) $\boldsymbol{x}_k = \left(\frac{\sin k}{k}, k \sin \frac{1}{k}\right)$.
- 11. Rozhodněte, zda je množina *M* otevřená nebo uzavřená a nalezněte její vnitřek, hranici, uzávěr, hromadné body a izolované body, jestliže
 - (a) $M = \{(x, y) \in \mathbb{R}^2 \mid y > 1\};$
 - (b) M je přímka v rovině (např. $M = \{(x, x) \in \mathbb{R}^2 \mid x \in \mathbb{R}\}\)$;
 - (c) $M = \{ (\frac{1}{n}, 0) \mid n \in \mathbb{N} \};$
 - (d) $M = \{(x, y) \in \mathbb{R}^2 \mid 0 < x^2 + y^2 \le 1\} \cup \{(2, 0)\};$
 - (e) $M = \{(r\cos\varphi, r\sin\varphi, z) \in \mathbb{R}^3 \mid r \in (0, 1), \varphi \in [0, 2\pi], z \in (0, 1)\}.$

Výsledky

- 1. -x + 2y + z 4 = 0.
- 2. Bod **a**.
- 3. $v = (9, -6, -3), \|\boldsymbol{v}\| = \sqrt{126}$.
- 4. Stačí položit například $\boldsymbol{u} = \boldsymbol{v} = (1,0,0)$ a $\boldsymbol{w} = (0,1,0)$.
- 6. $S_1 = 2$ a $S_2 = 2 \det A = 4$.
- 7. Množina ležící mezi dvěma parabolami $y = 1 x^2$ a $y = x^2 1$.
- 8. (a) Čtyřstěn s vrcholy (0,0,0), (1,0,0), (0,1,0), (0,0,1).
 - (b) Hyperbolický paraboloid.
 - (c) Elipsoid.
 - (d) Množina ležící mezi dvěma sférami se středem v počátku. První sféra má poloměr 1 a druhá má poloměr 2.
- 9. S = (1, 2, -4) a R = 6.
- 10. (a) (0, -3).
 - (b) limita neexistuje.
 - (c) (-1,1,0).
 - (d) (0,1).
- 11. (a) Otevřená, int (M) = M,

$$\partial M = \left\{ (x, y) \in \mathbb{R}^2 \mid y = 1 \right\},$$
$$\overline{M} = \left\{ (x, y) \in \mathbb{R}^2 \mid y \ge 1 \right\},$$

hromadné body jsou všechny body množiny $\overline{M},\,M$ nemá žádné izolované body.

- (b) Uzavřená, int $(M) = \emptyset$, $\partial M = M$, $\overline{M} = M$, hromadné body jsou všechny body množiny M, M nemá žádné izolované body.
- (c) Není otevřená ani uzavřená, int $(M) = \emptyset$, $\partial M = \overline{M} = M \cup \{(0,0)\}$, jediný hromadný bod je (0,0), izolované body jsou všechny body množiny M.
- (d) Není otevřená ani uzavřená,

$$\operatorname{int}(M) = \{(x, y) \in \mathbb{R}^2 \mid 0 < x^2 + y^2 < 1\},\$$
$$\partial M = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\} \cup \{(0, 0), (2, 0)\},\$$

 $\overline{M} = M \cup \{(0,0)\}$, hromadné body jsou všechny body množiny

$$\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\},$$

jediný izolovaný bod je (2,0).

(e) Otevřená, int $(M)=M,\,\partial M=N_1\cup N_2,$ kde

$$N_{1} = \left\{ (r \cos \varphi, r \sin \varphi, z) \in \mathbb{R}^{3} \,\middle|\, r \in \{0, 1\}, \varphi \in [0, 2\pi], z \in (0, 1) \right\},$$

$$N_{2} = \left\{ (r \cos \varphi, r \sin \varphi, z) \in \mathbb{R}^{3} \,\middle|\, r \in [0, 1], \varphi \in [0, 2\pi], z \in \{0, 1\} \right\}.$$

Dále $\overline{M}=\{(r\cos\varphi,r\sin\varphi,z)\in\mathbb{R}^3\,|\,r\in[0,\underline{1}],\varphi\in[0,2\pi],z\in[0,1]\},$ hromadné body jsou všechny body množiny $\overline{M},\,M$ nemá žádné izolované body.