Vertex Cover and Independent Set

Vertex Cover

• A *vertex cover* of a graph G is a set $Q \subseteq V(G)$ that contains at least one endpoint of every edge. The vertices in Q cover E(G).

Minimum vertex cover $Q=\{3, a\}$ $M=\{(1,a),(3,c)\}$

Vertex Cover

- In a graph that represents a road network (with straight roads and no isolated vertices).
 - Finding a minimum vertex cover = Placing the minimum number of policemen to guard the entire road network.

Matchings and Vertex covers

- In the graph G1,
 - We mark a vertex cover of size 2 and show a matching of size 2 in bold.
 - |vertex cover| = | matching|
- As illustrated on the G2, the optimal values differ by 1 for an odd cycle. The difference can be arbitrarily large.
 - |vertex cover| ≥ | matching|

Konig's Theorem: If G is a bipartite graph, then the maximum size of a matching in G equals the minimum size of a vertex cover of G.

Proof : Let G be an X, Y-bigraph.

- Since distinct vertices must be used to cover the edges of a matching, $|Q| \ge |M|$ whenever Q is a vertex cover and M is a matching in G.
- Given a smallest vertex cover Q of G, we construct a matching of size |Q| to prove that equality can always be achieved.

Green: Vertex cover Red: Matching

 $|Q| \ge |M|$

- Partition Q by letting $R=Q\cap X$ and $T=Q\cap Y$.
 - Let H and H' be the subgraphs of G induced by $R \cup (Y-T)$ and $T \cup (X-R)$, respectively.
 - We use Hall's Theorem to show that *H* has a matching that saturates *R* into *Y-T* and *H'* has a matching that saturated *T*.
 - Since H and H' are disjoint, the two matchings together form a matching of size |Q| in G.

- Since $R \cup T$ is a vertex cover, G has no edge from Y-T to X-R.
 - Otherwise, an edge between Y-T to X-R is not covered
- For each $S \subseteq R$, we consider $N_H(S)$, which is contained in Y-T. If $|N_H(S)| < |S|$, then we can substitute $N_H(S)$ for S in Q to obtain a smaller vertex cover, since $N_H(S)$ cover all edges incident to Sthat are not covered by T.

 The minimality of Q thus yields Hall's Condition in H, and hence H has a matching that saturates R. Applying the same argument to H' yields the matching that saturates T.

Independent set

• An independent set $S \subseteq V(G)$ such that no two vertices in S are adjacent (i.e. no two vertices in S are connected by an edge).

Independent sets and covers

- The independence number of a graph is the maximum size of an independent set of vertices.
- The independence number of a bipartite graph does not always equal the size of a partite set.
 - In the graph bellow, both partite sets have size 3, but we have marked an independent set of size 4.

Edge cover

- An *edge cover* of *G* is a set *L* of edges such that every vertex of *G* is incident to some edge of *L*.
 - The four bold edges in the following graph form an edge cover.
 - Only graphs without isolated vertices have edge cove

Definitions

- For the optimal sizes of the sets of the independence and covering problems we have defined, we use the notation below.
 - Maximum size of independent set $\alpha(G)$
 - Maximum size of matching $\alpha'(G)$
 - Minimum size of vertex cover $\beta(G)$
 - Minimum size of edge cover $\beta'(G)$

Theorem: In a graph G, $S \subseteq V(G)$ is an independent set if and only if \overline{S} is a vertex cover, and hence $\alpha(G) + \beta(G) = n(G)$.

Proof: ==> If S is a maximum independent set, then every edge is incident to at most one vertex of S. This implies every edge is incident to at least one vertex of \overline{S} . So \overline{S} is cover all edges and \overline{S} is a vertex cover.

• <== if \bar{S} is am minimum vertex cover; \bar{S} covers all the edges, then there are no edges joining vertices of S . So S is an independent Set.

Theorem: In a graph G, $S \subseteq V(G)$ is an independent set if and only if \overline{S} is a vertex cover, and hence $\alpha(G) + \beta(G) = n(G)$.

Proof: continued

• Hence every maximum independent set is the complement of a minimum vertex cover, and $\alpha(G)+\beta(G)=n(G)$

Theorem: If G is a graph without isolated vertices, then $\alpha'(G) + \beta'(G) = n(G)$. $\alpha'(G)$: Maximum size of matching $\beta'(G)$: Minimum size of edge cover

Proof:

- From a maximum matching M, we will construct an edge cover of size n(G)-|M|. (see next page)
 - Since a smallest edge cover is no bigger than this cover, this will imply that $\beta'(G) \le n(G) \alpha'(G)$.
- Also, from a minimum edge cover L, we will construct a matching of size n(G)-|L|. (see next page)
 - Since a largest matching is no smaller than this matching, this will imply that $\alpha'(G) \ge n(G) \beta'(G)$.
- These two inequalities complete the proof. (detail)→

- Given M, we construct an edge cover of size n(G)-|M|.
 - Add one edge incident to each unsaturated vertex to M.
 - We have used one edge for each vertex, except that each edge of M takes care of two vertices,
 - So the total size of this edge cover is n(G)-|M|, as desired.

$$\Rightarrow \beta'(G) \le n(G) - \alpha'(G) \Rightarrow \beta'(G) + \alpha'(G) \le n(G).$$

- Given a minimum edge cover L, we construct a matching of size n(G)-|L|.
 - If both ends of an edge e belong to edges in L other than e, then e∉L, since L-{e} is also an edge cover.
 - Hence each component formed by edges of *L* has at most one vertex of degree exceeding 1 and is a star (a tree with at most one non-leaf).

Note: Theorem: In a forest with v vertices and k components, the number of edges are v-k

- Let *k* be the number of these components.
- Since L has one edge for each non-central vertex in each star, we have |L|=n(G)-k.
- We form a matching M of size k = n(G) |L| by choosing one edge from each star in $L = \alpha'(G) \ge n(G) \beta'(G)$.

Ex.

(König [1916] If G is a bipartite graph with no isolated vertices then $\alpha(G) = \beta'(G)$.

Proof?