DAA Tutoriol 6 Solution

4: We define f(b,i) to be the obtimum solution for the numbers $(a_{ai},...,a_{an})$ with b as the lower bound for the selected numbers. We make a table for all n^2 possibilities of f(b,i) and we the following recursion:

f(b,i) = f(b,i+) if $a_i < b$ otherwise

f(b,i)= mon { f(b,i+1), 1+f(ai,i+1)}

f(b,n)=1 if $a_n \geq b$

otherwise f(b,n) = 0 (5)

Our objective is to compute f (min {a;};=,,!).

LMS (a1, -.. an)

1. (a', ... a'n) = Sout (a1, ..., an) // Inversing ander

2. Let b[ai,--,a'm; 1--m] and c[ai,--a'm;1--m]

be new tobles

3. for i= 1 to n

4. if am Z a's

5. b# [a's, m] =1

6. else

7. 6\$ [as, n] = 0

```
8. for i = m-1 to 1
      for i = n to 1
              it and aid als
10.
                  b [ a's, i] ← b [ a's, i+1]
11.
                  ([a's, i] < a's, it)
12.
              else
13.
                  b[a's, i] < mon { b[a's, i+1,
14.
                  1+6[ai,i+1] )
                  c[a's, i] < (b, it) or
15.
                 (a;, i+1) 1/ whichever fives morimum
                 in (14)
   Return band c
     Print-LMS ( a,b,C,1,3)
     if i = m
         if b[a's, i] = 1
              hint a;
```

4. else

5.

if 6 [a's, i] > 6[c [a's, i])

6-

Print a;

7.

Print-LMS (a, b, c, C[a'j, i]) (3)

Complexity of LMS is D(n2) cheeto nested for loops in lines 8 and 9. Complexity of himt-LMS is D(n) be couse the recursive cold in line 5 is (2) colled on times.

						(-	1 /									
	a'j								ais								
il	ail	1	2	3	4	_	7 9		il ai	1		2	3	4	7	وہ	
1	9	4	3	13	3	12	- 2	-	1	9	1,2	2/2	3,2	4,2	9,2	9,2	
2	4	4	3	3	3		11	1	2	4	1,3	213	3,3			9,3	
3		4	3	>	2	1	1		3	1	1,4	2,4	3,4	4,4	7,4	34	
4	3	3	3	3	2	1	11		4	3	1,5	2,5	3,5	4,5	2,5	9,5	
5	4	3	3	2	2	1	11		5	4	1,6	2,6	3,6	46	7,6	9,6	
6	(2)	3	3	2	T	11	1		6	2	2,7	47	1	4,7	7,7	9,7	
7	و	2	12	2	1	1	1		7	9	1,8	2,8		4,8		9,8	
8	7	2	2	2)	1	0		8	7	1,9	2,9	3,9	4,9	7,9	9,9	
ہ ور	~ t	2	2	2	1	0	0	1	9	3	3,10	3,10	3,10	4,10	7,10	9,10	
	0 4		1	7	1	D	0		10	4					٨		
				1	-	-		_									

LMS = <1,2,3,4> having length 4, (5)

2: Verties are all pairs (i, i) such that $1 \le i \le j \le m$. Number of Verties = $\sum_{j=1}^{n} \sum_{j=i}^{n} (m-i+1)$ (2) $=\frac{2}{i'=1}i'=\frac{m(m+1)}{2}.$ (i,i) has intoming edges from (i,i+1), (i,i+2), -... (i,n); and from (1,i), (2,i),--, (i-1,i). (4) Total inlaming edges to (i,i) = (n-i)+(i-1) = (m-1) + (i-j).Total number of edges = $\sum_{i=1}^{n} \sum_{j=i}^{n} \left[(m-j)+(i-j) \right]$ $= \sum_{i=1}^{\infty} \left[(m-i)(m-i+i) + (m-i+i)i - (m(m+i) - (i-i)i) \right]$ $= m(m-1)(m+1) - \frac{(m-1)m(m+1)}{2} + \frac{(m+1)m(m+1)}{2}$ $\frac{n(n+1)(2n+1)}{6} - \frac{m^2(n+1)}{2} + \frac{n(n+1)(2n+1)}{12}$ $-\frac{n(n+1)}{4} = \frac{n(n+1)}{12} \left[6n-6+6n+6-2n-1 \right]$ $-(m-3) = \underline{m(m+0(4m-4))} = \underline{m(m+0(m-4))} = \underline{m(m+0(m+2))} = \underline{m(m+0(m+2$

Subproblem Groph for (A,B,C,D)

