

Ayudantía 6 - Relaciones

26 de abril de 2024

Martín Atria, Paula Grune, Caetano Borges

Resumen

Relación Binaria

Una relación binaria es un conjunto de pares ordenados que establece una conexión o asociación entre elementos de dos conjuntos distintos.

R es una relación binaria entre A y B si $R \subseteq A \times B$.

Propiedades de una Relación Binaria

Refleja

Una relación R es refleja si para todo elemento x en el conjunto, el par (x, x) está en R.

$$\forall x \in A, (x, x) \in R$$

Irrefleja

Una relación R es irrefleja si ningún par (x, x) está en R para cualquier x en el conjunto.

$$\forall x \in A, (x, x) \notin R$$

Simétrica

Una relación R es simétrica si para cada par (x, y) en R, también está presente el par (y, x).

$$\forall x, y \in A, (x, y) \in R \to (y, x) \in R$$

Antisimétrica

Una relación R es antisimétrica si para cualquier par (x,y) en R, si $x \neq y$, entonces el par (y,x) no está en R.

$$\forall x, y \in A, (x, y) \in R \land x \neq y \rightarrow (y, x) \notin R$$

Transitiva

Una relación R es transitiva si para cada par (x, y) y (y, z) en R, el par (x, z) también está en R.

$$\forall x, y, z \in A, (x, y) \in R \land (y, z) \in R \rightarrow (x, z) \in R$$

Conexidad

Una relación R es conexa si para cada par de elementos x,y podemos encontar a (x, y) en R, o a (y, x) en R.

$$\forall x, y \in A, (x, y) \in R \lor (y, x) \in R$$

Relación de Equivalencia

Una relación de equivalencia es una relación binaria que cumple **reflexividad**, **simetría** y **transitividad**.

A la relación se le denota como $x \sim y$.

Orden Parcial

Una relación R sobre un conjunto A es un orden parcial si es **reflexiva**, **antisimétrica** y **transitiva**.

A la relación se le denota como $x \leq y$. Y diremos que el par (A, \leq) es un **orden parcial**.

Orden Total

Una relación \leq sobre un conjunto A es un orden total si es una relación de orden parcial y además es conexa.

Elemento mínimo y máximo

Sean (A, \preceq) un orden parcial, $S \subseteq A$ y $x \in A$. Diremos que:

- 1. x es una **cota inferior** de S si para todo $y \in S$ se cumple que $x \leq y$.
- 2. x es un **elemento minimal** de S si $x \in S$ y para todo $y \in S$ se cumple que $y \leq x \Rightarrow y = x$.
- 3. x es un **mínimo** en S si $x \in S$ y es cota inferior de S.

Análogamente, se definen los conceptos de cota superior, elemento maximal y máximo.

Sea (A, \preceq) un orden parcial, y sean $S \subseteq A, x \in A$.

Ínfimo y supremo

Sea (A, \preceq) un orden parcial y $S \subseteq A$. Diremos que s es un ínfimo de S si es una cota inferior, y para cualquier otra cota inferior s' se tiene que $s' \preceq s$. Es decir, el ínfimo es la mayor cota inferior. Análogamente se define el supremo de un conjunto.

1. Relaciones

Decimos que un conjunto $X \subseteq \mathbb{R}$ es **bueno para la suma** si satisface las siguientes condiciones:

- 1. $0 \in X$
- 2. $\forall x, y \in X, x + y \in X$.

Dado un conjunto $X \subseteq \mathbb{R}$, se define en \mathbb{R} la relación \mathcal{R}_X como:

$$x\mathcal{R}_X y \leftrightarrow (x-y) \in X$$

Demuestre que si X es bueno para la suma, entonces \mathcal{R}_X es una relación refleja y transitiva.

Solución

1. Refleja:

Para que la relación sea refleja, se debe cumplir que para todo $x \in X, x\mathcal{R}_X x$. Se tiene que X es bueno para la suma, por lo que $0 \in X$. Luego, $0 = x - x \in X$, por lo que $x\mathcal{R}_X x$, y concluímos que la relación es refleja.

2. Transitiva:

Para que la relación sea transitiva, se debe cumplir que $(x\mathcal{R}_Xy \wedge y\mathcal{R}_Xz) \to x\mathcal{R}_Xz$. Supongamos que $x\mathcal{R}_Xy \wedge y\mathcal{R}_Xz$. Luego, por definición de \mathcal{R}_X , se tiene que $x-y \in X$, $y-z \in X$. Por la segunda propiedad de un conjunto bueno para la suma, se tiene que para cualquier par de elementos $a, b \in X$, $a+b \in X$. Como $x-y \in X \wedge y-z \in X$, se tiene que $(x-y)+(y-z)=x-z \in X$, con lo que $x\mathcal{R}_Xz$, y concluímos que la relación es transitiva.

2. Conjuntos & Relaciones de equivalencia

Sea A un conjunto cualquiera, y sean R_1 y R_2 relaciones de equivalencia sobre A. Demuestre que $R_1 \cup R_2$ es una relación de equivalencia si y solo si $R_1 \cup R_2 = R_1 \circ R_2$.

Nota: La composición de dos relaciones definidas sobre un conjunto A, denotada por $R_1 \circ R_2$, es una relación definida como

$$R_1 \circ R_2 = \{(a_1, a_2) \in A^2 \mid \exists a' \in A \text{ tal que } a_1 R_2 a' \land a' R_1 a_2 \}$$

Solución

- (⇒) Supongamos que $R_1 \cup R_2$ es una relación de equivalencia. Demostraremos que $R_1 \cup R_2 = R_1 \circ R_2$ haciendo la contención en ambas direcciones:
 - (\subseteq) Sea $(x,y) \in R_1 \cup R_2$. Tenemos dos casos:

- o $(x,y) \in R_1$: Como R_2 es una relación de equivalencia, es refleja, y entonces $(x,x) \in R_2$. Luego, por definición de composición, tenemos que $(x,y) \in R_1 \circ R_2$.
- \circ $(x,y) \in R_2$: Como R_1 es una relación de equivalencia, es refleja, y entonces $(y,y) \in R_1$. Luego, por definición de composición, tenemos que $(x,y) \in R_1 \circ R_2$.
- (⊇) Sea $(x,y) \in R_1 \circ R_2$. Por definición de composición, $\exists z \in A.(x,z) \in R_2 \land (z,y) \in R_1$. Luego, tenemos que $(x,z) \in R_1 \cup R_2 \land (z,y) \in R_1 \cup R_2$. Como $R_1 \cup R_2$ es una relación de equivalencia, es transitiva, por lo que $(x,y) \in R_1 \cup R_2$.
- (\Leftarrow) Supongamos que $R_1 \cup R_2 = R_1 \circ R_2$. Para demostrar que $R_1 \cup R_2$ es una relación de equivalencia debemos demostrar que es refleja, simétreica y transitiva:
 - Refleja: Sea $x \in A$. Como R_1 es refleja por ser relación de equivalencia, tenemos que $(x, x) \in R_1$, y entonces $(x, x) \in R_1 \cup R_2$.
 - Simétrica: Sean $x, y \in A$ tales que $(x, y) \in R_1 \cup R_2$. Se debe tener que $(x, y) \in R_1 \vee (x, y) \in R_2$. SPDG, supongamos que $(x, y) \in R_1$, como R_1 es una relación de equivalencia, se tiene que $(y, x) \in R_1$, por lo que $(y, x) \in R_1 \cup R_2$.
 - Transitiva: Sean $x, y, z \in A$ tales que $(x, y) \in R_1 \cup R_2 \land (y, z) \in R_1 \cup R_2$. Debemos demostrar que $(x, z) \in R_1 \cup R_2$. Tenemos 4 casos en cuanto a la pertenencia de cada par a R_1 o a R_2 :
 - o $(x,y) \in R_1 \land (y,z) \in R_1$: Como ambas relaciones perteneces a R_1 y esta es una relación transitiva $(R_1$ es relación de equivalencia), $(x,z) \in R_1$, por lo que $(x,z) \in R_1 \cup R_2$.
 - $\circ (x,y) \in R_2 \land (y,z) \in R_2$: Análogo al anterior.
 - \circ $(x,y) \in R_2 \land (y,z) \in R_1$: Por definición de composición, tenemos que $(x,z) \in R_1 \circ R_2$, como $R_1 \circ R_2 = R_1 \cup R_2$, se cumple que $(x,z) \in R_1 \cup R_2$.
 - o $(x,y) \in R_1 \land (y,z) \in R_2$: Como R_1 y R_2 son relaciones simétricas (son relaciones de equivalencia), se tiene que $(y,x) \in R_1 \land (z,y) \in R_2$, luego por definición de composición se tiene $(z,x) \in R_1 \circ R_2$ y como $R_1 \circ R_2 = R_1 \cup R_2$, $(z,x) \in R_1 \cup R_2$. Por último, como $R_1 \cup R_2$ es una relación simétrica, se tiene que $(x,z) \in R_1 \cup R_2$.

3. Relaciones

Considere el conjunto $\mathcal{Q} = \mathbb{Z} \times (\mathbb{Z} \setminus 0)$, y la relación \uparrow sobre \mathcal{Q} definida como:

$$(a,b)\uparrow(c,d)\leftrightarrow a\cdot d=b\cdot c$$

1. Demuestre que \uparrow es una relación de equivalencia sobre \mathcal{Q}

- 2. Nombre a los elementos del conjunto cuociente $Q \setminus \uparrow$ de tal forma que este represente al conjunto de todos los racionales. Esto es, tal que $Q \setminus \uparrow = \mathbb{Q}$.
- 3. Defina la operación $+_{\uparrow}$ sobre un par de elementos de $Q \setminus \uparrow$ de tal forma que esta se comporte como la suma de numeros racionales. Dé un ejemplo de suma que compruebe que su definción es correcta.
- 4. Defina la operación \cdot_{\uparrow} sobre un par de elementos de $\mathcal{Q}\setminus \uparrow$ de tal forma que esta se comporte como la multiplicación de números racionales. Dé un ejemplo de multiplicación que compruebe que su definición es correcta.

Solución

1. Reflexividad:

Dado un par $(m, n) \in \mathcal{Q}$ es claro que $m \cdot n = m \cdot n$, y luego por definición de \uparrow se cumple que $(m, n) \uparrow (m, n)$

Simetría:

Dados dos pares tales que $(m, n) \uparrow (r, s)$, por definición de \uparrow se tiene que $m \cdot s = n \cdot r$ Es claro que $r \cdot n = s \cdot m$ y luego por definición de \uparrow se cumple que $(r, s) \uparrow (m, n)$

Transitividad:

Dado tres pares tales que $(m,n) \uparrow (r,s)$ y $(r,s) \uparrow (t,u)$, debemos demostrar que $(m,n) \uparrow (t,u)$.

Por definición de \uparrow , tenemos que $(m,n) \uparrow (r,s)$ (1) y $(r,s) \uparrow (t,u)$ (2). Dado que $u \neq 0$, podemos despejar r en (2), y obtenemos que $r = \frac{n \cdot s \cdot t}{u}$. Dado que $s \neq 0$, podemos reordenar y obtener que (m,u) = (n,t). Por definición de \uparrow , concluimos entonces que $(m,n) \uparrow (t,u)$ y por lo tanto, la relación es transitiva.

- 2. Notemos que al reordenar la definición de \uparrow , obtenemos que $(a,b) \uparrow (c,d)$ si, y solo si, $\frac{a}{b} = \frac{c}{d}$. Por esto, podemos conlcuir que $[(a,b)]_{\uparrow}$ contiene a exactamente todos los pares que representan a una fracción que tiene el mismo valor que $\frac{a}{b}$. Por lo anterior definimos que $\frac{a}{b}$ sera el racional $\frac{a}{b}$.
- 3. Se define el operador $+_{\uparrow}$ tal que:

$$[(a,b)]_{\uparrow} +_{\uparrow} [(c,d)]_{\uparrow} = [(a \cdot d + b \cdot c, b \cdot d)]$$

Por ejemplo, calculamos 4, 2 + 1, -3, 5:

$$= [(21,5)] +_{\uparrow} [(-7,2)]$$

$$= [(21 \cdot 2 + 5 \cdot -7, 5 \cdot 2)]$$

$$= [(42 - 35, 10)]$$

$$= [(7,10)]$$

$$= 0.7$$

4. Se define el operador \cdot_{\uparrow} tal que:

$$[(a,b)]_{\uparrow} \cdot_{\uparrow} [(c,d)]_{\uparrow} = [(a \cdot b, c \cdot d)]$$

Como ejemplo calcularemos $4,2\cdot_{\uparrow}-3,5$

$$= [(21,5)] \cdot_{\uparrow} [(-7,2)]$$

$$= [(21 \cdot -7, 5 \cdot 2)]$$

$$= [(-147,10)] = -14,7$$