The Theoretical Minimum Classical Mechanics - Solutions L02E06

M. Bivert

October 13, 2022

Exercise 1. How long does it take for the oscillating particle to go through one full cycle of motion?

We're in the case of a particle oscillating in one dimension. Its motion, known as the *simple harmonic motion*, is described by:

$$x(t) = \sin(\omega t)$$

Essentially, x(t) will correspond to the vertical component of a point moving on the unit circle, located by an angle ωt .

To fix things, consider the case of a particle starting at an extreme position, say x=1 (at the top of the north hemisphere of the unit circle). It will need to go down to x=-1, and then back up to x=1. In the mean time, the corresponding point on the unit circle would have walked a full circle, or 2π radians.

So we're looking for the time T that it will take for us to move by an angle 2π , knowing that we move at a speed of ω radians per unit of time (i.e. $\omega_{t=0}=0,\,\omega_{t=1}=\omega,\,\omega_{t=2}=2\omega,\,\ldots$):

$$\omega T = 2\pi \Leftrightarrow \boxed{T = \frac{2\pi}{\omega}}$$

Remark 1. T is commonly called the period of motion.