CPE301 – SPRING 2023

Design Assignment 3

Student Name: David Lenzin Student #: 2001654470

Student Email: lenzin@unlv.nevada.edu

Primary Github address: https://github.com/dlenzin15/submissions

Directory: submissions/DA3

Submit the following for all Labs:

1. In the document, for each task submit the modified or included code (only) with highlights and justifications of the modifications. Also, include the comments.

- 2. Use the previously create a Github repository with a random name (no CPE/301, Lastname, Firstname). Place all labs under the root folder ESD301/DA, sub-folder named LABXX, with one document and one video link file for each lab, place modified asm/c files named as LabXX-TYY.asm/c.
- 3. If multiple asm/c files or other libraries are used, create a folder LabXX-TYY and place these files inside the folder.
- 4. The folder should have a) Word document (see template), b) source code file(s) and other include files, c) text file with youtube video links (see template).

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

Atmega328PB board was used. Pins PB2, PB3, and PB4 were used. See schematic for pinout.

2. INITIAL/MODIFIED/DEVELOPED CODE OF TASK 1/A

```
* GccApplication1.c
 * Created: 3/10/2023 3:26:15 PM
 * Author : david
#define F_CPU 16000000UL //defines clock freq = 16 MHz
#include "util/delay.h"
#include <avr/io.h>
#define DELAY_TCNT_VALUE 20
                                 //TCNT = ((16 MHz / 256)*(1/3000)) - 1 = 19.83. Rounding up to 20.
#define DELAY_COUNTER 3125
                                  // Timer delay is 0.320 \text{ ms. } 1 \text{ second } / 0.320 \text{ ms} = 3125
int main(void)
{
       DDRB |= (1<<4);
                                   //Set PB4 to an output
       PORTB |= (1<<4);
                                  // Turn LED off initially
       TCCR0A = 0;
                                  // Set timer to Normal mode
       TCCR0B |= (1 << CS02);
                                 // set prescalar to 256
       TCNT0 = 0x00;
                                   //Initialize the TCNT register to start the timer
       int overflows = 0;
                                  //Counter to track the how many times the timer overflows
       while (1)
    {
              if (TCNT0 == DELAY_TCNT_VALUE) {
                     overflows++; //If the TCNT has overflown, increment the counter
             //If the timer has overflown enough times, reset the counter and toggle the LED
              if (overflows >= DELAY COUNTER) {
```

3. DEVELOPED MODIFIED CODE OF TASK 1B

```
* DA3 Task1B.c
* Created: 3/10/2023 5:15:19 PM
* Author : david
#define F CPU 16000000UL //defines clock freq = 16 MHz
#include "util/delay.h"
#include <avr/io.h>
#include <avr/interrupt.h>
/* Top value: ((16 MHz / 64) * 0.999 ms) - 1 = 248.75. Rounding up to 249 */
/* TCNT1 Value: (2^16 - 1) = 65535. 65535 - 249 = 65286, which is 0xFF06
#define TCNT1L VALUE 0x06
#define TCNT1H VALUE 0xFF
ISR (TIMER1 OVF vect)
{
     static int overflows = 0; //Counter to track to overflows
     overflows++;
     if (overflows >= 1000)
                                  //1000 overflows is approximately 1 second
           PORTB ^= (1<<3);
                                  //Toggle the LED
           overflows = 0;
                                   //Reset counter
      }
     TCNT1L = TCNT1L VALUE;
     TCNT1H = TCNT1H VALUE; //Load the TCNT1 Register with 0xFF06
int main(void)
{
     DDRB \mid = (1 << 3); //Set PB5 as an output
     PORTB |= (1<<3); //Turn off LED initially
     TCCR1B \mid = (1 << CS11) \mid (1 << CS10); //Set prescalar to 64. Mode is normal by default
     TCNT1L = TCNT1L VALUE;
     TCNT1H = TCNT1H VALUE; //Load the TCNT1 Register with 0xFF06
     TIMSK1 |= (1 << TOIE1); //Enable Timer1 overflow interrupt
     sei();
               //Enable global interrupts
               //Wait for interrupts
   while (1);
return 0;
```

4. DEVELOPED MODIFIED CODE OF TASK 1C:

```
* DA3_Task1C.c
 * Created: 3/10/2023 6:07:02 PM
 * Author : david
#define F_CPU 16000000UL //defines clock freq = 16 MHz
#include "util/delay.h"
#include <avr/io.h>
#include <avr/interrupt.h>
/* 2/3000 = 0.666 ms. Target frequency = 3000/2 = 1500 Hz
/*
/* OCR2A = (16 MHz / (2*64*1500)) = 83.3 Rounding down to 83 */
/*
/* However, this generates a pulse every 0.333 ms to make
                                                             */
/*
                                                             */
      a period of 0.666 ms.
                                                             */
/*
/* 83*2 = 166.
                                                             */
#define OCR2A VALUE 166
#define OVERFLOW MAX 2001 // (1.333s / 0.666 ms) = 2001.5
ISR(TIMER2_COMPA_vect)
{
       static int overflows = 0; //Counter to track overflows
       overflows++;
                       //Increment the counter everytime the interrupt is triggered
       if (overflows == OVERFLOW_MAX) {
             PORTB ^= (1<<2); //Toggle the LED overflows = 0; //Reset the counter
       }
}
int main(void)
                               //Set PB2 to an output
      DDRB |= (1<<2);
PORTB |= (1<<2);
                                 //Initially turn LED off
      TCCR2A |= (1 << WGM21);  //Set Timer1 to CTC mode
TCCR2B |= (1 << CS22);  //Set prescalar to 64
OCR2A = OCR2A_VALUE;  //Load compare register value</pre>
      TIMSK2 |= (1 << OCIE2A); //Set interrupt on compare match
       sei();
                                 // enable interrupts
                                 //Wait for interrupts
    while (1);
       return 0;
}
```

5. DA3 Complete Code:

```
* DA3_Complete.c
 * Created: 3/14/2023 6:29:49 PM
 * Author : david
#define F CPU 16000000UL //defines clock freq = 16 MHz
#include "util/delay.h"
#include <avr/io.h>
#include <avr/interrupt.h>
#define DELAY TCNT VALUE 20
                                    //TCNT = ((16 \text{ MHz} / 256)*(1/3000)) - 1 = 19.83. Rounding up to 20. Results in a
delay of 0.320 ms
#define DELAY_COUNTER 3125
                                     // Timer delay is 0.320 ms. 1 second / 0.320 ms = 3125
#define TCNT1L VALUE 0x06
#define TCNT1H VALUE 0xFF
#define OCR2A VALUE 166
#define OVERFLOW_MAX 2001
                             // (1.333s / 0.666 ms) = 2001.5
ISR(TIMER1_OVF_vect)
{
       static int overflows = 0;
                                    //Counter to track to overflows
       overflows++;
                                            //1000 overflows is approximately 1 second
       if (overflows >= 1000)
       {
               PORTB ^= (1<<3);
                                            //Toggle the LED
               overflows = 0;
                                            //Reset counter
       }
       TCNT1L = TCNT1L_VALUE;
       TCNT1H = TCNT1H_VALUE;
                                    //Load the TCNT1 Register with 0xFF06
}
ISR(TIMER2_COMPA_vect)
{
       static int overflows = 0;
                                     //Counter to track overflows
                                            //Increment the counter everytime the interrupt is triggered
       overflows++;
       if (overflows == OVERFLOW MAX) {
              PORTB ^= (1<<2);
                                    //Toggle the LED
               overflows = 0;
                                     //Reset the counter
       }
}
int main(void)
       //Initialize Ports:
       DDRB |= (1 << 4) | (1 << 3) | (1 << 2); //Set PB4, PB3, and PB2 to output
       PORTB |= (1 << 4) | (1 << 3) | (1 << 2); // Turn LEDs off initially
       //Initialize Timers
       //Timer 0
       TCCR0A = 0;
                                            // Set timer to Normal mode
       TCCR0B |= (1 << CS02);
                                     // set prescalar to 256
       TCNT0 = 0x00;
                                     //Initialize the TCNT register to start the timer
```

```
//Timer 1
       TCCR1B |= (1 << CS11) | (1 << CS10); //Set prescalar to 64. Mode is normal by default
       TCNT1L = TCNT1L_VALUE;
       TCNT1H = TCNT1H_VALUE;
                                    //Load the TCNT1 Register with 0xFF06
       //Timer 2
                                    //Set Timer1 to CTC mode
       TCCR2A |= (1 << WGM21);
       TCCR2B |= (1 << CS22);
                                   //Set prescalar to 64
       OCR2A = OCR2A_VALUE; //Load compare register value
       //Initialize interrupts
       TIMSK1 |= (1 << TOIE1);
                                           //Enable Timer1 overflow interrupt
       TIMSK2 |= (1 << OCIE2A); //Set interrupt on compare match
                                                  // enable interrupts
       sei();
       int overflows = 0;
                                   //Counter to track the how many times the timer overflows
       while (1)
              if (TCNT0 == DELAY_TCNT_VALUE) {
                     overflows++; //If the TCNT has overflown, increment the counter
                     if (overflows >= DELAY_COUNTER) { //If the timer has overflown enough times, reset the counter
and toggle the LED
                             overflows = 0;
                             PORTB ^= (1<<4);
                     TCNT0 = 0;
                                                  //Reset the TCNT register
              }
       return 0;
}
```

6. SCHEMATICS

7. SCREENSHOT OF EACH DEMO (BOARD SETUP)

• The board uses no external hardware in this design assignment, so the output of all three tasks is to blink the D2, D3, and D4 LEDs.

8. VIDEO LINKS OF EACH DEMO

https://youtu.be/zyBwMltQe3I

9. GITHUB LINK OF THIS DA

https://github.com/dlenzin15/submissions/tree/main/DA3

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

David Lenzin