Almanaque de Códigos pra Maratona de Programação

BRUTE UDESC

4 de junho de 2024

Índice

	$\mathbf{C}+$		8
		Compilador	
	1.2	STL (Standard Template Library)	
		1.2.1 Vector	8
		1.2.2 Pair	
		1.2.3 Set	
		1.2.4 Multiset	
		1.2.5 Map	9
		1.2.6 Queue	
		1.2.7 Priority Queue	10
		1.2.8 Stack	
		1.2.9 Funções úteis	
		1.2.10 Funções úteis para vetores	10
		Pragmas	
	1.4	Constantes em C $++$	12
2	Teó	orico	13

2.1	Defini	ições	13
	2.1.1	Funções	13
	2.1.2	Grafos	13
2.2	Núme	eros primos	13
	2.2.1	Primos com truncamento à esquerda	13
	2.2.2	Primos gêmeos (Twin Primes)	
	2.2.3	Números primos de Mersenne	14
2.3	-	adores lineares	
	2.3.1	Rotação no sentido anti-horário por θ°	14
	2.3.2	Reflexão em relação à reta $y=mx$	14
	2.3.3	Inversa de uma matriz 2x2 A	14
	2.3.4	Cisalhamento horizontal por K	14
	2.3.5	Cisalhamento vertical por K	14
	2.3.6	Mudança de base	14
	2.3.7	Propriedades das operações de matriz	15
2.4	Sequê	ncias numéricas	15
	2.4.1	Sequência de Fibonacci	15
	2.4.2	Sequência de Catalan	15
2.5	Anális	se combinatória	16
	2.5.1	Fatorial	16
	2.5.2	Combinação	
	2.5.3	Arranjo	16
	2.5.4	Estrelas e barras	16
	2.5.5	Princípio da inclusão-exclusão	16
	2.5.6	Princípio da casa dos pombos	16

	2.6	Teoria dos números	16
		2.6.1 Pequeno teorema de Fermat	16
		2.6.2 Teorema de Euler	16
3	Ext	ora	17
	3.1	CPP	17
	3.2	Debug	17
	3.3	Random	18
	3.4	Run	18
	3.5	Stress Test	18
	3.6	Unordered Custom Hash	19
	3.7	Vim	19
4	Est	ruturas de Dados	20
	4.1	Disjoint Set Union	20
		4.1.1 DSU	20
		4.1.2 DSU Bipartido	20
		4.1.3 DSU Rollback	21
		4.1.4 DSU Rollback Bipartido	21
		4.1.5 Offline DSU	22
	4.2	Fenwick Tree	23
		4.2.1 Fenwick	23
		4.2.2 Kd Fenwick Tree	24
	4.3	Interval Tree	24
	4.4	LiChao Tree	25
	4.5	Merge Sort Tree	26

	4.5.1 Merge Sort Tree	. 26
	4.5.2 Merge Sort Tree Update	. 27
4.6	Operation Queue	. 28
4.7	Operation Stack	. 28
4.8	Ordered Set	. 29
4.9	Segment Tree	. 30
	4.9.1 Segment Tree	. 30
	4.9.2 Segment Tree 2D	. 31
	4.9.3 Segment Tree Beats Max And Sum Update	. 32
	4.9.4 Segment Tree Beats Max Update	. 34
	4.9.5 Segment Tree Esparsa	. 35
	4.9.6 Segment Tree Kadane	. 36
	4.9.7 Segment Tree Lazy	. 37
	4.9.8 Segment Tree Lazy Esparsa	. 38
	4.9.9 Segment Tree Persisente	. 39
4.10	0 Sparse Table	. 40
	4.10.1 Disjoint Sparse Table	. 40
	4.10.2 Sparse Table	. 41
Gra	\mathbf{r} afos	42
5.1	2 SAT	. 42
5.2	Binary Lifting	. 43
	5.2.1 Binary Lifting LCA	. 43
	5.2.2 Binary Lifting Query	
	5.2.3 Binary Lifting Query 2	
	5 2 4 Binary Lifting Query Aresta	46

5.3	Centro e Diametro	47
5.4	Centroids	48
	5.4.1 Centroid	48
	5.4.2 Centroid Decomposition	48
5.5	Fluxo	49
	HLD	
5.7	Inverse Graph	54
5.8		
	LCA	
5.10	Matching	
	5.10.1 Hungaro	
	1 Pontes	
5.12	2 Pontos de Articulação	57
5.13	3 Shortest Paths	
	5.13.1 01 BFS	58
	5.13.2 BFS	
	5.13.3 Bellman Ford	
	5.13.4 Dijkstra	
	5.13.5 Floyd Warshall	59
	5.13.6 SPFA	60
5.14	4 Stoer-Wagner Min Cut	60
Str	\mathbf{i} ng	62
	Aho Corasick	
	Hashing	
	6.2.1 Hashing	63

		6.2.2 Hashing Dinâmico	64
	<i>c</i> 2	Lyndon	
		Manacher	
	6.5	Patricia Tree	66
	6.6	Prefix Function KMP	66
		6.6.1 Automato KMP	66
		6.6.2 KMP	67
	6.7	Suffix Array	67
	6.8	Trie	69
	6.9	Z function	69
7	Par	adigmas	71
	7.1	All Submasks	71
	7.2	Busca Binaria Paralela	71
	7.3	Busca Ternaria	72
	7.4	Convex Hull Trick	73
	7.5	DP de Permutacao	73
	7.6	Divide and Conquer	74
	7.7	Exponenciação de Matriz	76
	7.8	Mo	77
		7.8.1 Mo Normal	77
		7.8.2 Mo Update	78
8	Pri	mitivas	80
	8.1	Modular Int	80
	8.9	Ponto 2D	Q1

ÍNDICE		7
ÍNDICE		

9 (Geometria	82
9	0.1 Convex Hull	82
10 N	Matemática	83
1	.0.1 Eliminação Gaussiana	83
	10.1.1 Gauss	83
	10.1.2 Gauss Mod 2	84
1	.0.2 Exponenciação Modular Rápida	84
1	0.3 FFT	85
1	0.4 Fatoração	86
1	0.5 GCD	87
1	0.6 Inverso Modular	88
	0.7 NTT	
1	0.8 Primos	90
1	0.9 Sum of floor (n div i)	92
1	0.10Teorema do Resto Chinês	92
1	.0.11Totiente de Euler	92

Capítulo 1

C++

1.1 Compilador

Para compilar um arquivo .cpp com o compilador g++, usar o comando:

g++ -std=c++20 -02 arquivo.cpp

Obs: a flag -std=c++20 é para usar a versão 20 do C++, os códigos desse Almanaque são testados com essa versão.

Algumas flags úteis para o g++ são:

- -02: Otimizações de compilação
- -Wall: Mostra todos os warnings
- -Wextra: Mostra mais warnings
- $\bullet\,$ -W
conversion: Mostra warnings para conversões implícitas
- -fsanitize=address: Habilita o AddressSanitizer
- -fsanitize=undefined: Habilita o UndefinedBehaviorSanitizer

1.2 STL (Standard Template Library)

Os templates da STL são estruturas de dados e algoritmos já implementadas em C++ que facilitam as implementações, além de serem muito eficients. Em geral, todas estão

incluídas no cabeçalho

bits/stdc++.h>. As estruturas são templates genéricos, podem ser usadas com qualquer tipo, todos os exemplos a seguir são com int apenas por motivos de simplicidade.

1.2.1 Vector

Um vetor dinâmico (que pode crescer e diminuir de tamanho).

- vector<int> v(n, x): Cria um vetor de inteiros com n elementos, todos inicializados com x $\mathcal{O}(n)$
- v.push_back(x): Adiciona o elemento x no final do vetor $\mathcal{O}(1)$
- v.pop_back(): Remove o último elemento do vetor $\mathcal{O}(1)$
- v.size(): Retorna o tamanho do vetor $\mathcal{O}(1)$
- v.empty(): Retorna true se o vetor estiver vazio $\mathcal{O}(1)$
- v.clear(): Remove todos os elementos do vetor $\mathcal{O}(n)$
- v.front(): Retorna o primeiro elemento do vetor $\mathcal{O}(1)$
- v.back(): Retorna o último elemento do vetor $\mathcal{O}(1)$
- v.begin(): Retorna um iterador para o primeiro elemento do vetor $\mathcal{O}(1)$

- v.end(): Retorna um iterador para o elemento seguinte ao último do vetor $\mathcal{O}(1)$
- v.insert(it, x): Insere o elemento x na posição apontada pelo iterador it $\mathcal{O}(n)$
- v.erase(it): Remove o elemento apontado pelo iterador it $\mathcal{O}(n)$
- v.erase(it1, it2): Remove os elementos no intervalo [it1, it2) $\mathcal{O}(n)$
- v.resize(n): Redimensiona o vetor para n elementos $\mathcal{O}(n)$
- v.resize(n, x): Redimensiona o vetor para n elementos, todos inicializados com x - O(n)

1.2.2 Pair

Um par de elementos (de tipos possivelmente diferentes).

- pair<int, int> p: Cria um par de inteiros $\mathcal{O}(1)$
- p.first: Retorna o primeiro elemento do par $\mathcal{O}(1)$
- p.second: Retorna o segundo elemento do par $\mathcal{O}(1)$

1.2.3 Set

Um conjunto de elementos únicos. Por baixo, é uma árvore de busca binária balanceada.

- set<int> s: Cria um conjunto de inteiros $\mathcal{O}(1)$
- s.insert(x): Insere o elemento x no conjunto $\mathcal{O}(\log n)$
- s.erase(x): Remove o elemento x do conjunto $\mathcal{O}(\log n)$
- s.find(x): Retorna um iterador para o elemento x no conjunto, ou s.end() se não existir $\mathcal{O}(\log n)$
- s.size(): Retorna o tamanho do conjunto $\mathcal{O}(1)$
- s.empty(): Retorna true se o conjunto estiver vazio $\mathcal{O}(1)$

- s.clear(): Remove todos os elementos do conjunto $\mathcal{O}(n)$
- s.begin(): Retorna um iterador para o primeiro elemento do conjunto $\mathcal{O}(1)$
- s.end(): Retorna um iterador para o elemento seguinte ao último do conjunto $\mathcal{O}(1)$

1.2.4 Multiset

Basicamente um set, mas permite elementos repetidos. Possui todos os métodos de um set.

Declaração: multiset<int> ms.

Um detalhe é que, ao usar o método erase, ele remove todas as ocorrências do elemento. Para remover apenas uma ocorrência, usar ms.erase(ms.find(x)).

1.2.5 Map

Um conjunto de pares chave-valor, onde as chaves são únicas. Por baixo, é uma árvore de busca binária balanceada.

- map<int, int> m: Cria um mapa de inteiros para inteiros $\mathcal{O}(1)$
- m[key]: Retorna o valor associado à chave key $\mathcal{O}(\log n)$
- m[key] = value: Associa o valor value à chave key $\mathcal{O}(\log n)$
- m.erase(key): Remove a chave key do mapa $\mathcal{O}(\log n)$
- m.find(key): Retorna um iterador para o par chave-valor com chave key, ou m.end() se não existir $\mathcal{O}(\log n)$
- m.size(): Retorna o tamanho do mapa $\mathcal{O}(1)$
- m.empty(): Retorna true se o mapa estiver vazio $\mathcal{O}(1)$
- m.clear(): Remove todos os pares chave-valor do mapa $\mathcal{O}(n)$
- m.begin(): Retorna um iterador para o primeiro par chave-valor do mapa $\mathcal{O}(1)$

• m.end(): Retorna um iterador para o par chave-valor seguinte ao último do mapa - $\mathcal{O}(1)$

1.2.6 Queue

Uma fila (primeiro a entrar, primeiro a sair).

- queue<int> q: Cria uma fila de inteiros $\mathcal{O}(1)$
- q.push(x): Adiciona o elemento x no final da fila $\mathcal{O}(1)$
- q.pop(): Remove o primeiro elemento da fila $\mathcal{O}(1)$
- q.front(): Retorna o primeiro elemento da fila $\mathcal{O}(1)$
- q.size(): Retorna o tamanho da fila $\mathcal{O}(1)$
- q.empty(): Retorna true se a fila estiver vazia $\mathcal{O}(1)$

1.2.7 Priority Queue

Uma fila de prioridade (o maior elemento é o primeiro a sair).

- \bullet priority_queue<int> pq: Cria uma fila de prioridade de inteiros $\mathcal{O}(1)$
- pq.push(x): Adiciona o elemento x na fila de prioridade $\mathcal{O}(\log n)$
- pq.pop(): Remove o maior elemento da fila de prioridade $\mathcal{O}(\log n)$
- pq.top(): Retorna o maior elemento da fila de prioridade $\mathcal{O}(1)$
- pq.size(): Retorna o tamanho da fila de prioridade $\mathcal{O}(1)$
- pq.empty(): Retorna true se a fila de prioridade estiver vazia $\mathcal{O}(1)$

Para fazer uma fila de prioridade que o menor elemento é o primeiro a sair, usar priority_queue< int, vector<int>, greater<> > pq.

1.2.8 Stack

Uma pilha (último a entrar, primeiro a sair).

- stack<int> s: Cria uma pilha de inteiros $\mathcal{O}(1)$
- s.push(x): Adiciona o elemento x no topo da pilha $\mathcal{O}(1)$
- s.pop(): Remove o elemento do topo da pilha $\mathcal{O}(1)$
- s.top(): Retorna o elemento do topo da pilha $\mathcal{O}(1)$
- s.size(): Retorna o tamanho da pilha $\mathcal{O}(1)$
- s.empty(): Retorna true se a pilha estiver vazia $\mathcal{O}(1)$

1.2.9 Funções úteis

- min(a, b): Retorna o menor entre a e b $\mathcal{O}(1)$
- max(a, b): Retorna o maior entre a e b $\mathcal{O}(1)$
- abs(a): Retorna o valor absoluto de a $\mathcal{O}(1)$
- swap(a, b): Troca os valores de a e b $\mathcal{O}(1)$
- sqrt(a): Retorna a raiz quadrada de a $\mathcal{O}(\log a)$
- ceil(a): Retorna o menor inteiro maior ou igual a a $\mathcal{O}(1)$
- floor(a): Retorna o maior inteiro menor ou igual a a $\mathcal{O}(1)$
- round(a): Retorna o inteiro mais próximo de a $\mathcal{O}(1)$

1.2.10 Funções úteis para vetores

Para usar em std::vector, sempre passar v.begin() e v.end() como argumentos pra essas funções.

Se for um vetor estilo C, usar v e v + n. Exemplo:

1.3. PRAGMAS

```
int v[10];
sort(v, v + 10);
```

Lembrete: v.end() é um iterador para o elemento seguinte ao último do vetor, então não é um iterador válido.

As funções de vetor em geral são da forma [L, R), ou seja, L é incluso e R é excluso.

- fill(v.begin(), v.end(), x): Preenche o vetor v com o valor x $\mathcal{O}(n)$
- sort(v.begin(), v.end()): Ordena o vetor v $\mathcal{O}(n \log n)$
- reverse(v.begin(), v.end()): Inverte o vetor v $\mathcal{O}(n)$
- accumulate(v.begin(), v.end(), 0): Soma todos os elementos do vetor v $\mathcal{O}(n)$
- max_element(v.begin(), v.end()): Retorna um iterador para o maior elemento do vetor v $\mathcal{O}(n)$
- min_element(v.begin(), v.end()): Retorna um iterador para o menor elemento do vetor v $\mathcal{O}(n)$
- count(v.begin(), v.end(), x): Retorna o número de ocorrências do elemento x no vetor v $\mathcal{O}(n)$
- find(v.begin(), v.end(), x): Retorna um iterador para a primeira ocorrência do elemento x no vetor v, ou v.end() se não existir $\mathcal{O}(n)$ I
- lower_bound(v.begin(), v.end(), x): Retorna um iterador para o primeiro elemento maior ou igual a x no vetor v (o vetor deve estar ordenado) $\mathcal{O}(\log n)$
- upper_bound(v.begin(), v.end(), x): Retorna um iterador para o primeiro elemento estritamente maior que x no vetor v (o vetor deve estar ordenado) $\mathcal{O}(\log n)$
- next_permutation(a.begin(), a.end()): Rearranja os elementos do vetor a para a próxima permutação lexicograficamente maior $\mathcal{O}(n)$

1.3 Pragmas

Os pragmas são diretivas para o compilador, que podem ser usadas para otimizar o código.

Temos os pragmas de otimização, como por exemplo:

- #pragma GCC optimize("02"): Otimizações de nível 2 (padrão de competições)
- #pragma GCC optimize("03"): Otimizações de nível 3 (seguro para usar)
- #pragma GCC optimize("Ofast"): Otimizações agressivas (perigoso!)
- #pragma GCC optimize("unroll-loops"): Otimiza os loops mas pode levar a cache misses

E também os pragmas de target, que são usados para otimizar o código para um certo processador:

- #pragma GCC target("avx2"): Otimiza instruções para processadores com suporte a AVX2
- #pragma GCC target("sse4"): Parecido com o de cima, mas mais antigo
- #pragma GCC target("popcnt"): Otimiza o popcount em processadores que suportam
- #pragma GCC target("lzcnt"): Otimiza o leading zero count em processadores que suportam
- #pragma GCC target("bmi"): Otimiza instruções de bit manipulation em processadores que suportam
- #pragma GCC target("bmi2"): Mesmo que o de cima, mas mais recente

Em geral, esses pragmas são usados para otimizar o código em competições, mas é importante usálos com certa sabedoria, em alguns casos eles podem piorar o desempenho do código.

Uma opção relativamente segura de se usar é a seguinte:

- #pragma GCC optimize("03,unroll-loops")
- #pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt")

1.4. CONSTANTES EM C++

1.4 Constantes em C++

Constante	Nome em C++	Valor
π	M_PI	3.141592
$\pi/2$	M_PI_2	1.570796
$\pi/4$	M_PI_4	0.785398
$1/\pi$	M_1_PI	0.318309
$2/\pi$	M_2_PI	0.636619
$2/\sqrt{\pi}$	M_2_SQRTPI	1.128379
$\sqrt{2}$	M_SQRT2	1.414213
$1/\sqrt{2}$	M_SQRT1_2	0.707106
e	M_E	2.718281
$\log_2 e$	M_LOG2E	1.442695
$\log_{10} e$	M_LOG10E	0.434294
$\ln 2$	M_LN2	0.693147
ln 10	M_LN10	2.302585

Capítulo 2

Teórico

2.1 Definições

Algumas definições e termos importantes:

2.1.1 Funções

- Comutativa: Uma função f(x,y) é comutativa se f(x,y) = f(y,x).
- Associativa: Uma função f(x,y) é associativa se f(x,f(y,z))=f(f(x,y),z).
- Idempotente: Uma função f(x,y) é idempotente se f(x,x)=x.

2.1.2 **Grafos**

- Grafo: Um grafo é um conjunto de vértices e um conjunto de arestas que conectam os vértices.
- Grafo Conexo: Um grafo é conexo se existe um caminho entre todos os pares de vértices.
- Grafo Bipartido: Um grafo é bipartido se é possível dividir os vértices em dois conjuntos disjuntos de forma que todas as arestas conectem um vértice de um conjunto com um vértice do outro conjunto, ou seja, não existem arestas que conectem vértices do mesmo conjunto.

- Árvore: Um grafo é uma árvore se ele é conexo e não possui ciclos.
- Árvore Geradora Mínima (AGM): Uma árvore geradora mínima é uma árvore que conecta todos os vértices de um grafo e possui o menor custo possível, também conhecido como *Minimum Spanning Tree (MST)*.

2.2 Números primos

Números primos são muito úteis para funções de hashing (dentre outras coisas). Aqui vão vários números primos interessantes:

2.2.1 Primos com truncamento à esquerda

Números primos tais que qualquer sufixo deles é um número primo:

33,333,31 357,686,312,646,216,567,629,137

2.2.2 Primos gêmeos (Twin Primes)

Pares de primos da forma (p, p+2) (aqui tem só alguns pares aleatórios, existem muitos outros).

Primo	$\mathbf{Primo} + 2$	Ordem
5	7	10^{0}
17	19	10^{1}
461	463	10^{2}
3461	3463	10^{3}
34499	34501	10^{4}
487829	487831	10^{5}
5111999	5112001	10^{6}
30684887	30684889	10^{7}
361290539	361290541	10^{8}
1000000007	1000000009	10^{9}
1005599459	1005599461	10^{9}

2.2.3 Números primos de Mersenne

São os números primos da forma 2^m-1 , onde m é um número inteiro positivo.

Expoente (m)	Representação Decimal
2	3
3	7
5	31
7	127
13	8,191
17	131,071
19	524,287
31	2,147,483,647
61	$2,3*10^{18}$
89	$6,1*10^{26}$
107	$1,6*10^{32}$
127	$1,7*10^{38}$

2.3 Operadores lineares

2.3.1 Rotação no sentido anti-horário por θ°

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

2.3.2 Reflexão em relação à reta y = mx

$$\frac{1}{m^2+1} \begin{bmatrix} 1-m^2 & 2m \\ 2m & m^2-1 \end{bmatrix}$$

2.3.3 Inversa de uma matriz 2x2 A

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

2.3.4 Cisalhamento horizontal por K

$$\begin{bmatrix} 1 & K \\ 0 & 1 \end{bmatrix}$$

2.3.5 Cisalhamento vertical por K

$$\begin{bmatrix} 1 & 0 \\ K & 1 \end{bmatrix}$$

2.3.6 Mudança de base

 \vec{a}_{β} são as coordenadas do vetor \vec{a} na base β . \vec{a} são as coordenadas do vetor \vec{a} na base canônica.

15

 $\vec{b1}$ e $\vec{b2}$ são os vetores de base para $\beta.$ Cé uma matriz que muda da base β para a base canônica.

$$C\vec{a}_{\beta} = \vec{a}$$

$$C^{-1}\vec{a} = \vec{a}_{\beta}$$

$$C = \begin{bmatrix} b1_x & b2_x \\ b1_y & b2_y \end{bmatrix}$$

2.3.7 Propriedades das operações de matriz

$$(AB)^{-1} = A^{-1}B^{-1}$$
$$(AB)^{T} = B^{T}A^{T}$$
$$(A^{-1})^{T} = (A^{T})^{-1}$$
$$(A+B)^{T} = A^{T} + B^{T}$$
$$\det(A) = \det(A^{T})$$
$$\det(AB) = \det(A)\det(B)$$

Seja A uma matriz NxN:

$$\det(kA) = K^N \det(A)$$

2.4 Sequências numéricas

2.4.1 Sequência de Fibonacci

Primeiros termos: 1, 1, 2, 3, 5, 8, 13, 21, 34, ... Definição:

$$F_0 = F_1 = 1$$

$$F_n = F_{n-1} + F_{n-2}$$

Matriz de recorrência:

$$\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} F_{n-2} \\ F_{n-1} \end{bmatrix} = \begin{bmatrix} F_{n-1} \\ F_n \end{bmatrix}$$

2.4.2 Sequência de Catalan

Primeiros termos: 1, 1, 2, 5, 14, 42, 132, 429, 1430, . . .

Definição:

$$C_0 = C_1 = 1$$

$$C_n = \sum_{i=0}^{n-1} C_i \cdot C_{n-1-i}$$

Definição analítica:

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

Propriedades úteis:

- C_n é o número de árvores binárias com n+1 folhas.
- C_n é o número de sequências de parênteses bem formadas com n pares de parênteses.

2.5. ANÁLISE COMBINATÓRIA

2.5 Análise combinatória

2.5.1 Fatorial

O fatorial de um número n é o produto de todos os inteiros positivos menores ou iguais a n.

O fatorial conta o número de permutações de n elementos.

$$n! = n \cdot (n-1)!$$

Em particular, 0! = 1.

2.5.2 Combinação

Conta o número de maneiras de escolher k elementos de um conjunto de n elementos.

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

2.5.3 Arranjo

Conta o número de maneiras de escolher k elementos de um conjunto de n elementos, onde a ordem importa.

$$P(n,k) = \frac{n!}{(n-k)!}$$

2.5.4 Estrelas e barras

Conta o número de maneiras de distribuir n elementos idênticos em k recipientes distintos.

$$\binom{n+k-1}{k-1}$$

2.5.5 Princípio da inclusão-exclusão

O princípio da inclusão-exclusão é uma técnica para contar o número de elementos em uma união de conjuntos.

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{k=1}^{n} (-1)^{k+1} \left(\sum_{1 \le i_1 < i_2 < \dots < i_k \le n} |A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}| \right)$$

2.5.6 Princípio da casa dos pombos

Se n pombos são colocados em m casas, então pelo menos uma casa terá $\lceil \frac{n}{m} \rceil$ pombos ou mais.

2.6 Teoria dos números

2.6.1 Pequeno teorema de Fermat

Se p é um número primo e a é um inteiro não divisível por p, então $a^{p-1} \equiv 1 \pmod{p}$.

2.6.2 Teorema de Euler

Se m e a são inteiros positivos coprimos, então $a^{\phi(m)} \equiv 1 \pmod m$, onde $\phi(m)$ é a função totiente de Euler.

Capítulo 3

Extra

3.1 CPP

Template de C++ para usar na Maratona.

Codigo: template.cpp

```
1 #include <bits/stdc++.h>
2 #define endl '\n'
3 using namespace std;
4 using 11 = long long;
5
6 void solve() { }
7
8 signed main() {
9 cin.tie(0)->sync_with_stdio(0);
10 solve();
11 }
```

3.2 Debug

Template para debugar variáveis em C++. Até a linha 17 é opcional, é pra permitir que seja possível debugar std::pair e std::vector.

Para usar, basta compilar com a flag -DBRUTE (o template run já tem essa flag). E no código usar debug(x, y, z) para debugar as variáveis x, y e z.

```
Codigo: debug.cpp
 1 template <typename T, typename U>
2 ostream &operator<<(ostream &os, const pair<T, U> &p) { // opcional
      os << "(" << p.first << ", " << p.second << ")";
 6 template <typename T> ostream &operator<<(ostream &os, const vector<T> &v) { //
       opcional
       os << "{";
      int n = (int)v.size();
      for (int i = 0; i < n; i++) {</pre>
          os << v[i];
          if (i < n - 1)</pre>
              os << ", ";
13
      os << "}";
       return os;
15
16 }
18 void _print() { }
19 template <typename T, typename... U> void _print(T a, U... b) {
      if (sizeof...(b)) {
21
          cerr << a << ", ";
          _print(b...);
22
      } else
23
          cerr << a;
24
26 #ifdef BRUTE
27 #define debug(x...) cerr << "[" << #x << "] = [", _print(x), cerr << "]" << endl
```

3.3. RANDOM

```
29 #define debug(...)
30 #endif
```

3.3 Random

É possível usar a função rand() para gerar números aleatórios em C++.

Útil para gerar casos aleatórios em stress test, porém não é recomendado para usar em soluções.

rand() gera números entre 0 e RAND_MAX (que é pelo menos 32767), mas costuma ser 2147483647 (depende do sistema/arquitetura).

Para usar o rand(), recomenda-se no mínimo chamar a função srand(time(0)) no início da main() para inicializar a seed do gerador de números aleatórios.

Para usar números aleatórios em soluções, recomenda-se o uso do mt19937 que está no código abaixo.

A função rng() gera números entre 0 e UINT_MAX (que é 4294967295).

Para gerar números aleatórios de 64 bits, usar mt19937_64 como tipo do rng.

Recomenda-se o uso da função uniform(1, r) para gerar números aleatórios no intervalo fechado [l, r] usando o mt19937.

Codigo: rand.cpp

```
1 mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count());
2 
3 int uniform(int 1, int r) { return uniform_int_distribution<int>(1, r)(rng); }
```

3.4 Run

Arquivo útil para compilar e rodar um programa em $\mathtt{C++}$ com flags que ajudam a debugar.

Basta criar um arquivo chamado run, adicionar o código abaixo e dar permissão de execução com chmod +x run.

18

Para executar um arquivo a.cpp, basta rodar ./run a.cpp.

Codigo: run

3.5 Stress Test

Script muito útil para achar casos em que sua solução gera uma resposta incorreta.

Deve-se criar uma solução bruteforce (que garantidamente está correta, ainda que seja lenta) e um gerador de casos aleatórios para seu problema.

Codigo: stress.sh

```
1 #!/bin/bash
 2 set -e
 4 g++ -02 gen.cpp -o gen # pode fazer o gerador em python se preferir
5 g++ -02 brute.cpp -o brute
6 g++ -02 code.cpp -o code
8 for((i = 1; ; ++i)); do
      ./gen $i > in
      ./code < in > out
      ./brute < in > ok
      diff -w out ok || break
      echo "Passed test: " $i
14 done
16 echo "WA no seguinte teste:"
18 echo "Sua resposta eh:"
20 echo "A resposta correta eh:"
21 cat ok
```

3.6. UNORDERED CUSTOM HASH

3.6 Unordered Custom Hash

As funções de hash padrão do unordered_map e unordered_set são muito propícias a colisões (principalmente se o setter da questão criar casos de teste pensando nisso).

Para evitar isso, é possível criar uma função de hash customizada.

Entretanto, é bem raro ser necessário usar isso. Geralmente o fator $\mathcal{O}(\log n)$ de um map é suficiente.

Exemplo de uso: unordered_map<int, int, custom_hash> mp;

Codigo: custom hash.cpp

3.7 Vim

Template de arquivo .vimrc para configuração do Vim.

Codigo: vimrc

```
1 set nu ai si cindent et ts=4 sw=4 so=10 nosm
2
3 inoremap {} {} <\end{align* left > < return > < return > " remap pra chaves
4
5 au BufReadPost * if line("'\"") > 0 && line("'\"") <= line("$") | exe "normal! g'\"" |
endif " volta pro lugar onde estava quando saiu do arquivo</pre>
```

Capítulo 4

Estruturas de Dados

4.1 Disjoint Set Union

4.1.1 DSU

Estrutura que mantém uma coleção de conjuntos e permite as operações de unir dois conjuntos e verificar em qual conjunto um elemento está, ambas em $\mathcal{O}(1)$ amortizado. O método find retorna o representante do conjunto que contém o elemento, e o método unite une os conjuntos que contém os elementos dados, retornando true se eles estavam em conjuntos diferentes e false caso contrário.

```
Codigo: dsu.cpp
```

```
1 struct DSU {
      vector<int> par, sz;
      int number_of_sets;
      DSU(int n = 0) : par(n), sz(n, 1), number_of_sets(n) {
          iota(par.begin(), par.end(), 0);
      int find(int a) { return a == par[a] ? a : par[a] = find(par[a]); }
      bool unite(int a, int b) {
          a = find(a), b = find(b);
          if (a == b) {
10
              return false;
11
12
          number_of_sets--;
13
          if (sz[a] < sz[b]) {</pre>
14
              swap(a, b);
```

```
16 }
17 par[b] = a;
18 sz[a] += sz[b];
19 return true;
20 }
21 };
```

4.1.2 DSU Bipartido

DSU que mantém se um conjunto é bipartido (visualize os conjuntos como componentes conexas de um grafo e os elementos como vértices). O método unite adiciona uma aresta entre os dois elementos dados, e retorna true se os elementos estavam em conjuntos diferentes (componentes conexas diferentes) e false caso contrário. O método bipartite retorna true se o conjunto (componente conexa) que contém o elemento dado é bipartido e false caso contrário. Todas as operações são $\mathcal{O}(\log n)$.

4.1. DISJOINT SET UNION 21

```
int find(int a) { return a == par[a] ? a : find(par[a]); }
      int color(int a) { return a == par[a] ? c[a] : c[a] ^ color(par[a]); }
      bool bipartite(int a) { return bip[find(a)]; }
      bool unite(int a, int b) {
11
          bool equal_color = color(a) == color(b);
12
          a = find(a), b = find(b);
13
          if (a == b) {
              if (equal_color) {
                 bip[a] = 0;
                  all_bipartite = 0;
17
18
              return false;
          }
          if (sz[a] < sz[b]) {</pre>
21
              swap(a, b);
          number_of_sets--;
          par[b] = a:
          sz[a] += sz[b];
          if (equal_color) {
              c[b] = 1;
          bip[a] &= bip[b];
          all_bipartite &= bip[a];
31
          return true;
33
34 };
```

4.1.3 DSU Rollback

DSU que desfaz as últimas operações. O método checkpoint salva o estado atual da estrutura, e o método rollback desfaz as últimas operações até o último checkpoint. As operações de unir dois conjuntos e verificar em qual conjunto um elemento está são $\mathcal{O}(\log n)$, o rollback é $\mathcal{O}(k)$, onde k é o número de alterações a serem desfeitas e o checkpoint é $\mathcal{O}(1)$. Importante notar que o rollback não altera a complexidade de uma solução, uma vez que $\sum k = \mathcal{O}(q)$, onde q é o número de operações realizadas.

```
Codigo: rollback_dsu.cpp
    struct Rollback_DSU {
       vector<int> par, sz;
}
```

```
int number_of_sets;
       stack<stack<pair<int &, int>>> changes;
      Rollback_DSU(int n = 0) : par(n), sz(n, 1), number_of_sets(n) {
          iota(par.begin(), par.end(), 0);
          changes.emplace();
      int find(int a) { return a == par[a] ? a : find(par[a]); }
       void checkpoint() { changes.emplace(); }
       void change(int &a, int b) {
11
          changes.top().emplace(a, a);
12
          a = b;
13
14
      bool unite(int a, int b) {
          a = find(a), b = find(b);
16
          if (a == b) {
17
              return false;
18
19
          if (sz[a] < sz[b]) {
              swap(a, b);
21
22
          change(number_of_sets, number_of_sets - 1);
23
          change(par[b], a);
          change(sz[a], sz[a] + sz[b]);
          return true;
27
      void rollback() {
          while (changes.top().size()) {
29
              auto [a, b] = changes.top().top();
              a = b:
              changes.top().pop();
32
          }
33
          changes.pop();
34
36 };
```

4.1.4 DSU Rollback Bipartido

DSU com rollback e bipartido.

```
Codigo: bipartite_rollback_dsu.cpp

struct BipartiteRollback_DSU {

vector<int> par, sz, c, bip;
```

4.1. DISJOINT SET UNION 22

```
int number_of_sets, all_bipartite;
      stack<stack<pair<int &, int>>> changes;
      BipartiteRollback_DSU(int n = 0)
          : par(n), sz(n, 1), c(n), bip(n, 1), number_of_sets(n), all_bipartite(1) {
          iota(par.begin(), par.end(), 0);
          changes.emplace();
      int find(int a) { return a == par[a] ? a : find(par[a]); }
      int color(int a) { return a == par[a] ? c[a] : c[a] ^ color(par[a]); }
11
      bool bipartite(int a) { return bip[find(a)]: }
12
      void checkpoint() { changes.emplace(); }
      void change(int &a, int b) {
          changes.top().emplace(a, a);
15
          a = b:
16
17
      bool unite(int a, int b) {
          bool equal_color = color(a) == color(b);
19
          a = find(a), b = find(b):
20
         if (a == b) {
21
             if (equal_color) {
22
                 change(bip[a], 0);
23
                 change(all_bipartite, 0);
24
             }
             return false;
          if (sz[a] < sz[b]) {
             swap(a, b);
29
          change(number_of_sets, number_of_sets - 1);
          change(par[b], a);
32
          change(sz[a], sz[a] + sz[b]);
          change(bip[a], bip[a] && bip[b]);
34
          change(all_bipartite, all_bipartite && bip[a]);
          if (equal_color) {
             change(c[b], 1);
37
         }
          return true;
39
40
      void rollback() {
41
          while (changes.top().size()) {
42
             auto [a, b] = changes.top().top();
43
             a = b:
44
             changes.top().pop();
          changes.pop();
49 };
```

4.1.5 Offline DSU

Algoritmo que utiliza o DSU com Rollback e Bipartido que permite adição e **remoção** de arestas. O algoritmo funciona de maneira offline, recebendo previamente todas as operações de adição e remoção de arestas, bem como todas as perguntas (de qualquer tipo, conectividade, bipartição, etc), e retornando as respostas para cada pergunta no retorno do método solve. Complexidade total $\mathcal{O}(q \cdot (\log q + \log n))$, onde q é o número de operações realizadas e n é o número de nodos.

```
Codigo: offline dsu.cpp
 struct Offline_DSU : BipartiteRollback_DSU {
       Offline_DSU(int n = 0) : BipartiteRollback_DSU(n), time(0) { }
      struct query {
          int type, a, b;
      vector<query> queries;
      void askConnect(int a, int b) {
          if (a > b) {
              swap(a, b);
10
          queries.push_back({0, a, b});
12
          time++;
13
      }
14
       void askBipartite(int a) {
15
          queries.push_back({1, a, -1});
16
          time++:
17
      }
18
      void askAllBipartite() {
19
          queries.push_back({2, -1, -1});
20
          time++;
21
22
      void addEdge(int a, int b) {
23
          if (a > b) {
24
              swap(a, b);
25
26
          queries.push_back({3, a, b});
27
          time++:
28
      }
29
      void removeEdge(int a, int b) {
30
          if (a > b) {
31
32
              swap(a, b);
```

4.2. FENWICK TREE

```
queries.push_back({4, a, b});
34
          time++;
35
      }
36
      vector<vector<pair<int, int>>> lazy;
37
      void update(int 1, int r, pair<int, int> edge, int u, int L, int R) {
          if (R < 1 || L > r) {
39
              return:
         }
41
          if (L >= 1 && R <= r) {
42
              lazy[u].push_back(edge);
43
              return;
45
          int mid = (L + R) / 2;
          update(1, r, edge, 2 * u, L, mid);
47
          update(1, r, edge, 2 * u + 1, mid + 1, R);
49
      void dfs(int u, int L, int R, vector<int> &ans) {
50
          if (L > R) {
51
              return;
52
         }
53
          checkpoint();
54
          for (auto [a, b] : lazy[u]) {
55
              unite(a, b):
         }
57
          if (L == R) {
              auto [type, a, b] = queries[L];
59
              if (type == 0) {
60
                 ans.push_back(find(a) == find(b));
              } else if (type == 1) {
                  ans.push_back(bipartite(a));
              } else if (type == 2) {
                 ans.push_back(all_bipartite);
65
              }
          } else {
67
              int mid = (L + R) / 2;
68
              dfs(2 * u, L, mid, ans);
              dfs(2 * u + 1, mid + 1, R, ans);
70
         }
          rollback();
72
73
      vector<int> solve() {
74
          lazv.assign(4 * time, {}):
75
          map<pair<int, int>, int> edges;
76
          for (int i = 0; i < time; i++) {</pre>
77
              auto [type, a, b] = queries[i];
78
              if (type == 3) {
79
                  edges[{a, b}] = i;
80
```

```
} else if (type == 4) {
                 update(edges[{a, b}], i, {a, b}, 1, 0, time - 1);
82
                 edges.erase({a, b});
83
84
          }
85
          for (auto [k, v] : edges) {
              update(v. time - 1, k. 1, 0, time - 1):
          }
89
          vector<int> ans;
          dfs(1, 0, time - 1, ans);
          return ans;
92
93 };
```

4.2 Fenwick Tree

Codigo: fenwick tree.cpp

10

11

4.2.1 Fenwick

Árvore de Fenwick (ou BIT) é uma estrutura de dados que permite atualizações pontuais e consultas de prefixos em um vetor em $\mathcal{O}(\log n)$. A implementação abaixo é 0-indexada (é mais comum encontrar a implementação 1-indexada). A consulta em ranges arbitrários com o método query é possível para qualquer operação inversível, como soma, XOR, multiplicação, etc. A implementação abaixo é para soma, mas é fácil adaptar para outras operações. O método update soma d à posição i do vetor, enquanto o método updateSet substitue o valor da posição i do vetor por d.

```
template <typename T> struct FenwickTree {
   int n;
   vector<T> bit, arr;
   FenwickTree(int _n = 0) : n(_n), bit(n), arr(n) { }
   FenwickTree(vector<T> &v) : n(int(v.size())), bit(n), arr(v) {
      for (int i = 0; i < n; i++) {
        bit[i] = arr[i];
}</pre>
```

for (int i = 0: i < n: i++) {</pre>

int j = i | (i + 1);

if (j < n) {</pre>

4.3. INTERVAL TREE

```
bit[j] = bit[j] + bit[i];
12
13
         }
      T pref(int x) {
16
          T res = T();
17
          for (int i = x; i \ge 0; i = (i & (i + 1)) - 1) {
              res = res + bit[i];
20
          return res;
21
22
      T query(int 1, int r) {
23
          if (1 == 0) {
              return pref(r);
25
          return pref(r) - pref(l - 1);
      void update(int x, T d) {
          for (int i = x; i < n; i = i | (i + 1)) {
30
             bit[i] = bit[i] + d;
          arr[x] = arr[x] + d;
33
34
      void updateSet(int i, T d) {
          // funciona pra fenwick de soma
          update(i, d - arr[i]);
          arr[i] = d;
40 };
```

4.2.2 Kd Fenwick Tree

Fenwick Tree em k dimensões. Faz apenas queries de prefixo e updates pontuais em $\mathcal{O}(\log^k(n))$. Para queries em range, deve-se fazer inclusão-exclusão, porém a complexidade fica exponencial, para k dimensões a query em range é $\mathcal{O}(2^k \log^k(n))$.

```
Codigo: kd_fenwick_tree.cpp

1 const int MAX = 20;
2 long long tree[MAX][MAX][MAX][MAX]; // insira o numero de dimensoes aqui
3
4 long long query(vector<int> s, int pos = 0) { // s eh a coordenada
```

```
long long sum = 0;
       while (s[pos] >= 0) {
          if (pos < (int)s.size() - 1) {</pre>
               sum += query(s, pos + 1);
          } else {
               sum += tree[s[0]][s[1]][s[2]][s[3]];
10
              // atualizar se mexer no numero de dimensoes
          }
12
          s[pos] = (s[pos] & (s[pos] + 1)) - 1;
13
14
15
       return sum;
16 }
17
18 void update(vector<int> s, int v, int pos = 0) {
       while (s[pos] < MAX) {</pre>
          if (pos < (int)s.size() - 1) {</pre>
20
              update(s, v, pos + 1);
21
22
          } else {
              tree[s[0]][s[1]][s[2]][s[3]] += v;
23
              // atualizar se mexer no numero de dimensoes
24
25
          s[pos] \mid = s[pos] + 1;
26
27
28 }
```

4.3 Interval Tree

Por Rafael Granza de Mello

Estrutura que trata intersecções de intervalos.

Capaz de retornar todos os intervalos que intersectam [L,R]. Contém métodos insert(L, R, ID), erase(L, R, ID), overlaps(L, R) e find(L, R, ID). É necessário inserir e apagar indicando tanto os limites quanto o ID do intervalo. Todas as operações são $\mathcal{O}(\log n)$, exceto overlaps que é $\mathcal{O}(k + \log n)$, onde k é o número de intervalos que intersectam [L,R]. Também podem ser usadas as operações padrões de um std::set

```
Codigo: interval_tree.cpp

1 #include <ext/pb_ds/assoc_container.hpp>
2 #include <ext/pb_ds/tree_policy.hpp>
```

4.4. LICHAO TREE 25

```
3 using namespace __gnu_pbds;
 5 struct interval {
      long long lo, hi, id;
      bool operator<(const interval &i) const {</pre>
          return tuple(lo, hi, id) < tuple(i.lo, i.hi, i.id);</pre>
10 };
11
12 const long long INF = 1e18;
13
14 template <class CNI, class NI, class Cmp_Fn, class Allocator>
15 struct intervals_node_update {
       typedef long long metadata_type;
      int sz = 0:
      virtual CNI node_begin() const = 0;
      virtual CNI node_end() const = 0;
      inline vector<int> overlaps(const long long 1, const long long r) {
20
          queue<CNI> q;
21
          q.push(node_begin());
22
          vector<int> vec:
23
          while (!q.empty()) {
24
              CNI it = q.front();
25
              q.pop();
26
              if (it == node_end()) {
                  continue:
29
              if (r >= (*it)->lo && l <= (*it)->hi) {
                  vec.push_back((*it)->id);
32
              CNI l it = it.get l child():
33
              long long l_max = (l_it == node_end()) ? -INF : l_it.get_metadata();
34
              if (1_max >= 1) {
                  q.push(l_it);
37
              if ((*it)->lo <= r) {</pre>
                  q.push(it.get_r_child());
              }
          }
41
          return vec;
42
43
      inline void operator()(NI it, CNI end it) {
44
          const long long l_max =
45
              (it.get_l_child() == end_it) ? -INF : it.get_l_child().get_metadata();
46
          const long long r max =
47
              (it.get_r_child() == end_it) ? -INF : it.get_r_child().get_metadata();
          const_cast<long long &>(it.get_metadata()) = max((*it)->hi, max(l_max, r_max));
```

```
50  }
51 };
52 typedef tree<interval, null_type, less<interval>, rb_tree_tag, intervals_node_update>
53 interval_tree;
```

4.4 LiChao Tree

Uma árvore de funções. Retorna o f(x) máximo em um ponto x.

Para retornar o minimo deve-se inserir o negativo da função (g(x) = -ax - b) e pegar o negativo do resultado. Ou, alterar a função de comparação da árvore se souber mexer.

Funciona para funções com a seguinte propriedade, sejam duas funções f(x) e g(x), uma vez que f(x) passa a ganhar/perder pra g(x), f(x) nunca mais passa a perder/ganhar pra g(x). Em outras palavras, f(x) e g(x) se intersectam no máximo uma vez.

Essa implementação está pronta para usar função linear do tipo f(x) = ax + b.

Sendo L o tamanho do intervalo, a complexidade de consulta e inserção de funções é $\mathcal{O}(log(L))$.

Dica: No construtor da LiChao Tree, fazer tree.reserve(MAX); L.reserve(MAX); R.reserve(MAX); pode ajudar bastante no runtime, pois aloca espaço para os vetores e evita muitas realocações durante a execução. Nesse caso, MAX é geralmente $\mathcal{O}(Q \cdot log(L))$, onde Q é o número de queries e L é o tamanho do intervalo.

Codigo: lichao tree.cpp

```
1 template <11 MINL = 11(-1e9 - 5), 11 MAXR = 11(1e9 + 5)> struct LichaoTree {
       const 11 INF = 11(2e18) + 10;
       struct Line {
          ll a, b;
          Line(ll a_{-} = 0, ll b_{-} = -INF) : a(a_{-}), b(b_{-}) { }
          11 operator()(11 x) { return a * x + b; }
      };
       vector<Line> tree:
       vector<int> L. R:
10
       int newnode() {
12
          tree.push_back(Line());
          L.push_back(-1);
13
          R.push_back(-1);
```

26

4.5. MERGE SORT TREE

```
return int(tree.size()) - 1;
15
16
17
      LichaoTree() { newnode(); }
19
      int le(int u) {
20
          if (L[u] == -1) {
              L[u] = newnode();
23
          return L[u];
25
      int ri(int u) {
27
          if (R[u] == -1) {
28
              R[u] = newnode();
          return R[u];
31
      }
32
33
      void insert(Line line, int n = 0, ll l = MINL, ll r = MAXR) {
          11 \text{ mid} = (1 + r) / 2:
          bool bl = line(1) > tree[n](1);
          bool bm = line(mid) > tree[n](mid);
          bool br = line(r) > tree[n](r);
          if (bm) {
              swap(tree[n], line);
          if (line.b == -INF) {
              return;
44
          if (bl != bm) {
              insert(line, le(n), l, mid - 1);
          } else if (br != bm) {
              insert(line, ri(n), mid + 1, r);
49
      }
50
51
      ll query(int x, int n = 0, ll l = MINL, ll r = MAXR) {
52
          if (tree[n](x) == -INF || (1 > r))
              return -INF;
54
          if (1 == r) {
              return tree[n](x):
          11 \text{ mid} = (1 + r) / 2;
          if (x < mid) {
              return max(tree[n](x), query(x, le(n), 1, mid - 1));
          } else {
```

4.5 Merge Sort Tree

4.5.1 Merge Sort Tree

Árvore muito semelhante a uma Segment Tree, mas ao invés de armazenar um valor em cada nó, armazena um vetor ordenado. Permite realizar consultas do tipo: count(L, R, A, B) que retorna quantos elementos no intervalo [L, R] estão no intervalo [A, B] em $\mathcal{O}(\log^2 n)$. Em outras palavras, count(L, R, A, B) retorna quantos elementos x existem no intervalo [L, R] tal que $A \le x \le B$.

```
Codigo: mergesort tree.cpp
```

```
1 template <typename T = int> struct MergeSortTree {
       vector<vector<T>> tree:
       int le(int u) { return u << 1; }</pre>
       int ri(int u) { return u << 1 | 1; }</pre>
       void build(int u, int 1, int r, const vector<T> &a) {
          tree[u] = vectorT>(r - 1 + 1);
          if (1 == r) {
              tree[u][0] = a[1];
10
              return:
11
          int mid = (1 + r) >> 1;
          build(le(u), 1, mid, a);
          build(ri(u), mid + 1, r, a);
14
          merge(tree[le(u)].begin(),
                tree[le(u)].end(),
                tree[ri(u)].begin(),
                tree[ri(u)].end(),
19
                tree[u].begin());
20
21
       void build(const vector<T> &a) { // para construir com vector
22
          n = (int)a.size();
```

4.5. MERGE SORT TREE 27

```
tree.assign(4 * n, vector<T>());
24
          build(1, 0, n - 1, a);
25
      void build(T *bg, T *en) { // para construir com array de C
27
          build(vector<T>(bg, en));
29
      int count(int u, int l, int r, int L, int R, int a, int b) {
         if (1 > R || r < L || a > b)
32
             return 0:
33
          if (1 >= L && r <= R) {
             auto ub = upper_bound(tree[u].begin(), tree[u].end(), b);
             auto lb = upper_bound(tree[u].begin(), tree[u].end(), a - 1);
             return (int)(ub - lb);
         }
          int mid = (1 + r) >> 1;
          return count(le(u), l, mid, L, R, a, b) + count(ri(u), mid + 1, r, L, R, a, b);
41
      int count(int 1, int r, int a, int b) { return count(1, 0, n - 1, 1, r, a, b); }
42
      int less(int 1, int r, int k) { return count(1, r, tree[1][0], k - 1); }
      int kth(int 1, int r, int k) {
          int L = 0, R = n - 1;
          int ans = -1:
          while (L <= R) {
             int mid = (L + R) >> 1;
             if (count(1, r, tree[1][0], tree[1][mid]) > k) {
                 ans = mid;
                 R = mid - 1;
             } else {
                 L = mid + 1;
          return tree[1][ans];
57
58 };
```

4.5.2 Merge Sort Tree Update

Merge Sort Tree com updates pontuais. O update é $\mathcal{O}(\log^2 n)$ e a query é $\mathcal{O}(\log^2 n)$, ambos com constante alta.

Codigo: mergesort tree update.cpp

```
1 template <typename T = int> struct MergeSortTree {
      vector<ordered_set<pair<T, int>>> tree;
      vector<T> v;
      int n:
      int le(int u) { return u << 1: }</pre>
      int ri(int u) { return u << 1 | 1; }</pre>
       void build(int u, int 1, int r, const vector<T> &a) {
          if (1 == r) {
              tree[u].insert({a[1], 1});
10
11
          int mid = (1 + r) >> 1:
          build(le(u), 1, mid, a):
13
          build(ri(u), mid + 1, r, a);
          for (auto x : tree[le(u)]) {
              tree[u].insert(x);
          for (auto x : tree[ri(u)]) {
              tree[u].insert(x);
20
      }
21
22
       void build(const vector<T> &a) { // para construir com vector
          n = (int)a.size();
24
          v = a:
          tree.assign(4 * n, ordered_set<pair<T, int>>());
26
          build(1, 0, n - 1, a);
27
      void build(T *bg, T *en) { // para construir com array de C
29
          build(vector<T>(bg, en));
31
      int count(int u, int 1, int r, int L, int R, int a, int b) {
34
          if (1 > R || r < L || a > b)
             return 0;
35
          if (1 >= L \&\& r <= R) {
              int ub = (int)tree[u].order_of_key({b + 1, INT_MIN});
              int lb = (int)tree[u].order_of_key({a, INT_MIN});
             return (ub - lb);
          int mid = (1 + r) >> 1;
          return count(le(u), 1, mid, L, R, a, b) + count(ri(u), mid + 1, r, L, R, a, b);
      int count(int 1, int r, int a, int b) { return count(1, 0, n - 1, 1, r, a, b); }
      int less(int 1, int r, int k) { return count(1, r, tree[1].begin()->first. k - 1);
       void update(int u, int 1, int r, int i, T x) {
```

4.6. OPERATION QUEUE

```
tree[u].erase({v[i], i});
          if (1 == r) {
              v[i] = x;
49
          } else {
50
              int mid = (1 + r) >> 1;
51
              if (i <= mid) {</pre>
52
                  update(le(u), 1, mid, i, x);
              } else {
                  update(ri(u), mid + 1, r, i, x);
56
57
          tree[u].insert({v[i], i});
59
      void update(int i, T x) { update(1, 0, n - 1, i, x); }
60
61 };
```

4.6 Operation Queue

Fila que armazena o resultado do operatório dos itens (ou seja, dado uma fila, responde qual é o elemento mínimo, por exemplo). A fila possui a operação get que retorna o resultado do operatório dos itens da fila em $\mathcal{O}(1)$ amortizado. Chamar o método get em uma fila vazia é indefinido.

Obs: usa a estrutura Operation Stack (também descrita nesse Almanaque).

```
Codigo: op_queue.cpp
```

```
1 template <typename T, auto OP> struct op_queue {
      op_stack<T, OP> in, out;
      void push(T x) { in.push(x); }
      void pop() {
          if (out.empty()) {
             while (!in.empty()) {
                 out.push(in.top());
                 in.pop();
             }
         }
10
          out.pop();
11
12
      T get() {
13
          if (out.empty()) {
14
```

```
return in.get();
          if (in.empty()) {
              return out.get();
19
          return OP(in.get(), out.get());
20
21
      T front() {
22
          if (out.empty()) {
23
              return in.bottom();
24
25
          return out.top();
27
      }
      T back() {
28
          if (in.empty()) {
              return out.bottom();
30
31
          return in.top();
33
      }
34 };
```

4.7 Operation Stack

Pilha que armazena o resultado do operatório dos itens (ou seja, dado uma pilha, responde qual é o elemento mínimo, por exemplo). A pilha possui a operação get que retorna o resultado do operatório dos itens da pilha em $\mathcal{O}(1)$ amortizado. Chamar o método get em uma pilha vazia é indefinido.

A pilha é um template e recebe como argumentos o tipo dos itens e a função operatória. A função operatória deve receber dois argumentos do tipo dos itens e retornar um valor do mesmo tipo.

Exemplo de como passar a função operatória para a pilha:

```
int f(int a, int b) { return a + b; }

void test() {
   auto g = [](int a, int b) { return a ^ b; };

   op_stack<int, f> st;
   op_stack<int, g> st2;
}
```

4.8. ORDERED SET

```
9    st.push(1);
10    st.push(1);
11    st2.push(1);
12    st2.push(1);
13    cout << st.get() << endl; // 2
14    cout << st2.get() << endl; // 0
15 }</pre>
```

Pode ser tanto função normal quanto lambda.

Codigo: op stack.cpp

```
template <typename T, auto OP> struct op_stack {
    vector<pair<T, T>> st;
    T get() { return st.back().second; }
    T top() { return st.back().first; }
    T bottom() { return st.front().first; }
    void push(T x) {
        auto snd = st.empty() ? x : OP(st.back().second, x);
        st.push_back({x, snd});
    }
    void pop() { st.pop_back(); }
    bool empty() { return st.empty(); }
    int size() { return (int)st.size(); }
}
```

4.8 Ordered Set

Set com operações de busca por ordem e índice.

Pode ser usado como um std::set normal, a principal diferença são duas novas operações possíveis:

- find_by_order(k): retorna um iterador para o k-ésimo menor elemento no set (indexado em 0).
- order_of_key(k): retorna o número de elementos menores que k. (ou seja, o índice de k no set)

Ambas as operações são $\mathcal{O}(\log(n))$.

Também é possível criar um ordered_map, funciona como um std::map, mas com as operações de busca por ordem e índice. find_by_order(k) retorna um iterador para a k-ésima menor key no mapa (indexado em 0). order_of_key(k) retorna o número de keys no mapa menores que k. (ou seja, o índice de k no map).

Para simular um std::multiset, há várias formas:

- Usar um std::pair como elemento do set, com o primeiro elemento sendo o valor e o segundo sendo um identificador único para cada elemento. Para saber o número de elementos menores que k no multiset, basta usar order_of_key(k, -INF).
- Usar um ordered_map com a key sendo o valor e o value sendo o número de ocorrências do valor no multiset. Para saber o número de elementos menores que k no multiset, basta usar order_of_key(k).
- Criar o set trocando o parâmetro less<T> por less_equal<T>. Isso faz com que o set aceite elementos repetidos, e order_of_key(k) retorna o número de elementos menores ou iguais a k no multiset. Porém esse método não é recomendado pois gera algumas inconsistências, como por exemplo: upper_bound funciona como lower_bound e vice-versa, find sempre retorna end() e erase por valor não funciona, só por iterador. Dá pra usar se souber o que está fazendo.

Exemplo de uso do ordered_set:

```
1 ordered_set<int> X;
2 X.insert(1);
3 X.insert(2);
4 X.insert(4);
5 X.insert(8);
6 X.insert(16);
7 cout << *X.find_by_order(1) << endl; // 2
8 cout << *X.find_by_order(2) << endl; // 4
9 cout << *X.find_by_order(4) << endl; // 16
10 cout << (end(X) == X.find_by_order(5)) << endl; // true
11 cout << X.order_of_key(-5) << endl; // 0
12 cout << X.order_of_key(1) << endl; // 0
13 cout << X.order_of_key(3) << endl; // 2
14 cout << X.order_of_key(4) << endl; // 2
15 cout << X.order_of_key(400) << endl; // 5</pre>
```

Exemplo de uso do ordered_map:

```
1 ordered_map<int, int> Y;
_{2} Y[1] = 10;
_{3} Y[2] = 20;
_{4} Y[4] = 40;
5 Y[8] = 80;
6 Y[16] = 160;
7 cout << Y.find_by_order(1)->first << endl; // 2</pre>
8 cout << Y.find_by_order(1)->second << endl; // 20</pre>
9 cout << Y.order_of_key(5) << endl; // 3</pre>
10 cout << Y.order_of_key(10) << endl; // 4</pre>
11 cout << Y.order_of_key(4) << endl; // 2</pre>
Codigo: ordered set.cpp
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
4 using namespace __gnu_pbds;
6 template <typename T>
7 using ordered_set =
      tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
10 template <typename T, typename U>
using ordered_map = tree<T, U, less<T>, rb_tree_tag,
       tree order statistics node update>:
```

4.9 Segment Tree

4.9.1 Segment Tree

Implementação padrão de Segment Tree, suporta operações de consulta em intervalo e update pontual. Está implementada para soma, mas pode ser facilmente modificada para outras operações. A construção é $\mathcal{O}(n)$ e as operações de consulta e update são $\mathcal{O}(\log(n))$.

Dica: A Seg Tree usa $4 \cdot n$ de memória pois cada nodo p tem seus filhos $2 \cdot p$ (filho esquerdo) e $2 \cdot p + 1$ (filho direito). Há uma forma de indexar os nodos que usa $2 \cdot n$ de memória. Dado um nodo p que representa o intervalo [l, r], seu filho esquerdo é p + 1 (e

representa o intervalo [l, mid]) e seu filho direito é $p + 2 \cdot (mid - l + 1)$ (e representa o intervalo [mid + 1, r]), onde mid = (l + r)/2.

```
Codigo: seg tree.cpp
 struct SegTree {
      ll merge(ll a, ll b) { return a + b; }
      const 11 neutral = 0:
      int n;
      vector<ll> t:
      void build(int p, int l, int r, const vector<11> &v) {
          if (1 == r) {
              t[p] = v[1];
10
          } else {
              int mid = (1 + r) / 2;
              build(p * 2, 1, mid, v);
13
              build(p * 2 + 1, mid + 1, r, v);
              t[p] = merge(t[p * 2], t[p * 2 + 1]);
          }
      }
17
18
      void build(int _n) { // pra construir com tamanho, mas vazia
19
          t.assign(n * 4, neutral);
21
22
23
      void build(const vector<11> &v) { // pra construir com vector
24
          n = int(v.size());
25
          t.assign(n * 4, neutral);
26
27
          build(1, 0, n - 1, v);
28
      void build(ll *bg, ll *en) { // pra construir com array de C
29
          build(vector<11>(bg, en));
30
31
      }
      11 query(int p, int 1, int r, int L, int R) {
          if (1 > R || r < L) {
34
35
             return neutral:
          if (1 >= L && r <= R) {
              return t[p]:
          int mid = (1 + r) / 2;
          11 \ ql = query(p * 2, 1, mid, L, R);
          11 qr = query(p * 2 + 1, mid + 1, r, L, R);
          return merge(ql, qr);
```

```
11 query(int 1, int r) { return query(1, 0, n - 1, 1, r); }
      void update(int p, int l, int r, int i, ll x) {
         if (1 == r) {
             t[p] += x; // soma
49
             // t[p] = x; // substitui
         } else {
             int mid = (1 + r) / 2;
             if (i <= mid) {</pre>
53
                 update(p * 2, 1, mid, i, x);
             } else {
                 update(p * 2 + 1, mid + 1, r, i, x);
             t[p] = merge(t[p * 2], t[p * 2 + 1]);
59
60
      void update(int i, ll x) { update(1, 0, n - 1, i, x); }
61
62 };
```

4.9.2 Segment Tree 2D

Segment Tree em 2 dimensões, suporta operações de update pontual e consulta em intervalo. A construção é $\mathcal{O}(n \cdot m)$ e as operações de consulta e update são $\mathcal{O}(\log(n) \cdot \log(m))$.

```
Codigo: seg tree 2d.cpp
1 const int MAX = 2505;
3 int n, m, mat[MAX][MAX], tree[4 * MAX][4 * MAX];
5 int le(int x) { return 2 * x + 1: }
 6 int ri(int x) { return 2 * x + 2; }
8 void build_y(int nx, int lx, int rx, int ny, int ly, int ry) {
      if (ly == ry) {
          if (lx == rx) {
10
             tree[nx][ny] = mat[lx][ly];
11
             tree[nx][ny] = tree[le(nx)][ny] + tree[ri(nx)][ny];
13
14
      } else {
15
          int my = (ly + ry) / 2;
```

```
build_y(nx, lx, rx, le(ny), ly, my);
          build_y(nx, lx, rx, ri(ny), my + 1, ry);
          tree[nx][ny] = tree[nx][le(ny)] + tree[nx][ri(ny)];
20
21 }
22 void build_x(int nx, int lx, int rx) {
      if (lx != rx) {
          int mx = (1x + rx) / 2;
          build_x(le(nx), lx, mx);
25
          build_x(ri(nx), mx + 1, rx);
      build_y(nx, lx, rx, 0, 0, m - 1);
28
29 }
30 void build() { build_x(0, 0, n - 1); }
32 void update_y(int nx, int lx, int rx, int ny, int ly, int ry, int x, int y, int v) {
      if (ly == ry) {
          if (lx == rx) {
34
             tree[nx][ny] = v;
         } else {
              tree[nx][ny] = tree[le(nx)][ny] + tree[ri(nx)][ny];
37
      } else {
          int my = (ly + ry) / 2;
          if (y <= my) {
41
             update_y(nx, lx, rx, le(ny), ly, my, x, y, v);
42
             update_y(nx, lx, rx, ri(ny), my + 1, ry, x, y, v);
          tree[nx][ny] = tree[nx][le(ny)] + tree[nx][ri(ny)];
47
49 void update_x(int nx, int lx, int rx, int x, int y, int v) {
      if (lx != rx) {
          int mx = (1x + rx) / 2;
51
          if (x \le mx) {
              update_x(le(nx), lx, mx, x, y, v);
             update_x(ri(nx), mx + 1, rx, x, y, v);
55
      update_y(nx, lx, rx, 0, 0, m - 1, x, y, v);
60 void update(int x, int y, int v) { update_x(0, 0, n - 1, x, y, v); }
61
62 int sum_y(int nx, int ny, int ly, int ry, int qly, int qry) {
      if (ry < qly || ly > qry) {
```

```
return 0:
64
      if (qly <= ly && ry <= qry) {</pre>
          return tree[nx][ny];
      int my = (ly + ry) / 2;
      return sum_y(nx, le(ny), ly, my, qly, qry) + sum_y(nx, ri(ny), my + 1, ry, qly,
           qry);
71 }
72 int sum_x(int nx, int lx, int rx, int qlx, int qrx, int qly, int qry) {
      if (rx < qlx || lx > qrx) {
          return 0:
74
75
      if (qlx <= lx && rx <= qrx) {</pre>
76
          return sum_y(nx, 0, 0, m - 1, qly, qry);
      int mx = (1x + rx) / 2;
      return sum_x(le(nx), lx, mx, qlx, qrx, qly, qry) +
             sum_x(ri(nx), mx + 1, rx, qlx, qrx, qly, qry);
81
82 }
83 int sum(int lx, int rx, int ly, int ry) { return sum_x(0, 0, n - 1, lx, rx, ly, ry); }
```

4.9.3 Segment Tree Beats Max And Sum Update

Segment Tree que suporta update de maximo, update de soma e query de soma. Utiliza uma fila de lazy para diferenciar os updates. A construção é $\mathcal{O}(n)$ e as operações de consulta e update são $\mathcal{O}(\log(n))$.

Codigo: seg tree beats max and sum update.cpp

```
1 #include <bits/stdc++.h>
2 using namespace std;
3
4 #define ll long long
5 #define INF 1e9
6 #define fi first
7 #define se second
8
9 typedef pair<int, int> ii;
10
11 struct Node {
12   int m1 = INF, m2 = INF, cont = 0;
13   ll soma = 0;
14   queue<ii> lazy;
```

```
void set(int v) {
17
          m1 = v;
          cont = 1;
18
19
          soma = v:
20
21
       void merge(Node a, Node b) {
          m1 = min(a.m1, b.m1);
23
          m2 = INF:
24
          if (a.m1 != b.m1) {
              m2 = min(m2, max(a.m1, b.m1));
27
          }
          if (a.m2 != m1) {
28
              m2 = min(m2, a.m2);
30
          if (b.m2 != m1) {
31
32
              m2 = min(m2, b.m2):
          cont = (a.m1 == m1 ? a.cont : 0) + (b.m1 == m1 ? b.cont : 0);
          soma = a.soma + b.soma;
35
37
       void print() { printf("%d %d %d %lld\n", m1, m2, cont, soma); }
39 };
41 int n, q;
42 vector<Node> tree;
44 int le(int n) { return 2 * n + 1; }
45 int ri(int n) { return 2 * n + 2: }
47 void push(int n, int esq, int dir) {
       while (!tree[n].lazy.empty()) {
          ii p = tree[n].lazy.front();
          tree[n].lazy.pop();
          int op = p.fi, v = p.se;
          if (op == 0) {
              if (v <= tree[n].m1) {</pre>
                  continue;
              tree[n].soma += (ll)abs(tree[n].m1 - v) * tree[n].cont;
              tree[n].m1 = v;
57
              if (esq != dir) {
58
                  tree[le(n)].lazy.push({0, v});
59
                  tree[ri(n)].lazy.push({0, v});
```

33

4.9. SEGMENT TREE

```
} else if (op == 1) {
 62
               tree[n].soma += v * (dir - esq + 1);
 63
               tree[n].m1 += v;
 64
               tree[n].m2 += v;
 65
               if (esa != dir) {
                  tree[le(n)].lazy.push({1, v});
 67
                  tree[ri(n)].lazy.push({1, v});
              }
 70
 71
72 }
 73
 74 void build(int n, int esq, int dir, vector<int> &v) {
       if (esa == dir) {
           tree[n].set(v[esq]);
       } else {
           int mid = (esq + dir) / 2;
           build(le(n), esa, mid, v):
 79
          build(ri(n), mid + 1, dir, v);
           tree[n].merge(tree[le(n)], tree[ri(n)]);
 82
 83 }
 84 void build(vector<int> &v) { build(0, 0, n - 1, v); }
 86 // ai = max(ai, mi) em [1, r]
 87 void update(int n, int esq, int dir, int l, int r, int mi) {
       push(n, esq, dir);
       if (esq > r || dir < l || mi <= tree[n].m1) {</pre>
           return:
 91
       if (1 <= esa && dir <= r && mi < tree[n].m2) {</pre>
 92
           tree[n].soma += (ll)abs(tree[n].m1 - mi) * tree[n].cont;
 93
           tree[n].m1 = mi;
           if (esq != dir) {
               tree[le(n)].lazy.push({0, mi});
               tree[ri(n)].lazy.push({0, mi});
 97
          }
       } else {
           int mid = (esq + dir) / 2;
100
           update(le(n), esq, mid, l, r, mi);
101
           update(ri(n), mid + 1, dir, 1, r, mi);
102
           tree[n].merge(tree[le(n)], tree[ri(n)]);
103
104
105 }
106 void update(int 1, int r, int mi) { update(0, 0, n - 1, 1, r, mi); }
108 // soma v em [1, r]
```

```
109 void upsoma(int n, int esq, int dir, int l, int r, int v) {
       push(n, esq, dir);
       if (esq > r || dir < 1) {
111
112
           return:
113
       }
       if (1 <= esq && dir <= r) {</pre>
114
           tree[n].soma += v * (dir - esq + 1):
115
           tree[n].m1 += v;
116
           tree[n].m2 += v;
117
           if (esa != dir) {
118
               tree[le(n)].lazy.push({1, v});
119
               tree[ri(n)].lazy.push({1, v});
120
           }
121
       } else {
122
           int mid = (esq + dir) / 2;
123
           upsoma(le(n), esq, mid, l, r, v);
124
125
           upsoma(ri(n), mid + 1, dir, l, r, v);
           tree[n].merge(tree[le(n)], tree[ri(n)]);
126
127
128 }
129 void upsoma(int 1, int r, int v) { upsoma(0, 0, n - 1, 1, r, v); }
131 // soma de [1, r]
132 int query(int n, int esq, int dir, int l, int r) {
       push(n, esq, dir);
       if (esq > r || dir < 1) {</pre>
134
           return 0;
135
       }
136
       if (1 <= esq && dir <= r) {</pre>
137
           return tree[n].soma;
138
139
       int mid = (esq + dir) / 2;
140
       return query(le(n), esq, mid, 1, r) + query(ri(n), mid + 1, dir, 1, r);
141
142 }
int query(int 1, int r) { return query(0, 0, n - 1, 1, r); }
144
145 int main() {
       cin >> n:
       tree.assign(4 * n, Node());
147
       build(v);
149 }
```

4.9.4 Segment Tree Beats Max Update

Segment Tree que suporta update de maximo e query de soma. A construção é $\mathcal{O}(n)$ e as operações de consulta e update são $\mathcal{O}(\log(n))$.

```
Codigo: seg tree beats.cpp
#include <bits/stdc++.h>
2 using namespace std;
4 #define 11 long long
5 #define INF 1e9
 7 struct Node {
      int m1 = INF, m2 = INF, cont = 0, lazy = 0;
      11 \text{ soma} = 0:
      void set(int v) {
11
          m1 = v;
          cont = 1;
          soma = v;
15
16
      void merge(Node a, Node b) {
17
          m1 = min(a.m1, b.m1):
18
          m2 = INF:
19
          if (a.m1 != b.m1) {
              m2 = min(m2, max(a.m1, b.m1));
          if (a.m2 != m1) {
              m2 = min(m2, a.m2);
24
          if (b.m2 != m1) {
              m2 = min(m2, b.m2);
27
          cont = (a.m1 == m1 ? a.cont : 0) + (b.m1 == m1 ? b.cont : 0);
          soma = a.soma + b.soma;
31
32
      void print() { printf("%d %d %d %lld %d\n", m1, m2, cont, soma, lazy); }
33
34 };
36 int n, q;
37 vector<Node> tree;
```

```
39 int le(int n) { return 2 * n + 1; }
40 int ri(int n) { return 2 * n + 2; }
42 void push(int n, int esq, int dir) {
      if (tree[n].lazv <= tree[n].m1) {</pre>
45
      tree[n].soma += (ll)abs(tree[n].m1 - tree[n].lazy) * tree[n].cont;
      tree[n].m1 = tree[n].lazy;
      if (esq != dir) {
48
          tree[le(n)].lazy = max(tree[le(n)].lazy, tree[n].lazy);
          tree[ri(n)].lazy = max(tree[ri(n)].lazy, tree[n].lazy);
51
      tree[n].lazy = 0;
52
53 }
55 void build(int n, int esq, int dir, vector<int> &v) {
      if (esa == dir) {
          tree[n].set(v[esq]);
57
      } else {
          int mid = (esq + dir) / 2;
59
          build(le(n), esq, mid, v);
          build(ri(n), mid + 1, dir, v);
          tree[n].merge(tree[le(n)], tree[ri(n)]);
      }
64 }
65 void build(vector<int> &v) { build(0, 0, n - 1, v); }
67 // ai = max(ai, mi) em [1, r]
68 void update(int n, int esq, int dir, int l, int r, int mi) {
      push(n. esq. dir):
      if (esq > r || dir < l || mi <= tree[n].m1) {</pre>
71
          return;
      if (1 <= esq && dir <= r && mi < tree[n].m2) {</pre>
73
          tree[n].lazv = mi:
74
          push(n, esq, dir);
75
      } else {
          int mid = (esq + dir) / 2;
77
78
          update(le(n), esq, mid, l, r, mi);
          update(ri(n), mid + 1, dir, 1, r, mi);
          tree[n].merge(tree[le(n)], tree[ri(n)]);
81
83 void update(int 1, int r, int mi) { update(0, 0, n - 1, 1, r, mi); }
85 // soma de [1, r]
```

```
86 int query(int n, int esq, int dir, int l, int r) {
        push(n, esq, dir);
       if (esq > r || dir < 1) {</pre>
           return 0:
       if (1 <= esq && dir <= r) {</pre>
 91
           return tree[n].soma:
 93
       int mid = (esq + dir) / 2;
 94
       return query(le(n), esq, mid, 1, r) + query(ri(n), mid + 1, dir, 1, r);
 95
 97 int query(int 1, int r) { return query(0, 0, n - 1, 1, r); }
99 int main() {
        cin >> n:
       tree.assign(4 * n, Node());
101
102 }
```

4.9.5 Segment Tree Esparsa

Segment Tree Esparsa, ou seja, não armazena todos os nós da árvore, apenas os necessários, dessa forma ela suporta operações em intervalos arbitrários. A construção é $\mathcal{O}(1)$ e as operações de consulta e update são $\mathcal{O}(log(L))$, onde L é o tamanho do intervalo. A implementação suporta operações de consulta em intervalo e update pontual. Está implementada para soma, mas pode ser facilmente modificada para outras operações.

Para usar, declarar SegTree<L, R> st para suportar updates e queries em posições de L a R. L e R podem inclusive ser negativos.

Dica: No construtor da Seg Tree, fazer t.reserve (MAX); Lc.reserve (MAX); Rc.reserve (MAX); pode ajudar bastante no runtime, pois aloca espaço para os vetores e evita muitas realocações durante a execução. Nesse caso, MAX é geralmente $\mathcal{O}(Q \cdot log(L))$, onde Q é o número de queries e L é o tamanho do intervalo.

```
Codigo: seg_tree_sparse.cpp
```

```
template <11 MINL = (11)-1e9 - 5, 11 MAXR = (11)1e9 + 5> struct SegTree {
    ll merge(1l a, ll b) { return a + b; }
    const ll neutral = 0;

    vector<1l> t;
    vector<int> Lc, Rc;
```

```
inline int newnode() {
          t.push_back(neutral);
          Lc.push_back(-1);
10
          Rc.push_back(-1);
11
          return (int)t.size() - 1:
12
13
14
       inline int le(int p) {
15
          if (Lc[p] == -1) {
16
              Lc[p] = newnode();
17
          return Lc[p];
19
      }
20
21
       inline int ri(int p) {
22
          if (Rc[p] == -1) {
23
              Rc[p] = newnode();
24
25
          return Rc[p];
26
      }
27
28
       SegTree() { newnode(); }
29
      11 query(int p, 11 1, 11 r, 11 L, 11 R) {
          if (1 > R || r < L) {
32
33
              return neutral;
34
          if (1 >= L && r <= R) {
              return t[p];
37
          11 \text{ mid} = 1 + (r - 1) / 2:
38
          11 ql = query(le(p), 1, mid, L, R);
          ll qr = query(ri(p), mid + 1, r, L, R);
40
          return merge(ql, qr);
      11 query(11 1, 11 r) { return query(0, MINL, MAXR, 1, r); }
44
       void update(int p, 11 1, 11 r, 11 i, 11 x) {
45
          if (1 == r) {
46
47
              t[p] += x; // soma
              // t[p] = x; // substitui
48
49
50
          11 \text{ mid} = 1 + (r - 1) / 2;
51
          if (i <= mid) {</pre>
52
              update(le(p), l, mid, i, x);
53
          } else {
```

4.9.6 Segment Tree Kadane

Implementação de uma Segment Tree que suporta update pontual e query de soma máxima de um subarray em um intervalo. A construção é $\mathcal{O}(n)$ e as operações de consulta e update são $\mathcal{O}(\log(n))$.

É uma Seg Tree normal, a magia está na função merge que é a função que computa a resposta do nodo atual. A ideia do merge da Seg Tree de Kadane de combinar respostas e informações já computadas dos filhos é muito útil e pode ser aplicada em muitos problemas.

Obs: não considera o subarray vazio como resposta.

Dica: A Seg Tree usa $4 \cdot n$ de memória pois cada nodo p tem seus filhos $2 \cdot p$ (filho esquerdo) e $2 \cdot p + 1$ (filho direito). Há uma forma de indexar os nodos que usa $2 \cdot n$ de memória. Dado um nodo p que representa o intervalo [l, r], seu filho esquerdo é p + 1 (e representa o intervalo [l, mid]) e seu filho direito é $p + 2 \cdot (mid - l + 1)$ (e representa o intervalo [mid + 1, r]), onde mid = (l + r)/2.

 ${\bf Codigo: seg_tree_kadane.cpp}$

```
void build(int p, int l, int r, const vector<11> &v) {
          if (1 == r) {
17
              t[p] = \{v[1], v[1], v[1], v[1]\};
18
19
              int mid = (1 + r) / 2;
20
              build(p * 2, 1, mid, v):
21
              build(p * 2 + 1, mid + 1, r, v);
              t[p] = merge(t[p * 2], t[p * 2 + 1]);
23
          }
24
      }
25
26
       void build(int _n) { // pra construir com tamanho, mas vazia
27
28
          t.assign(n * 4, neutral);
29
30
31
       void build(const vector<11> &v) { // pra construir com vector
33
          n = int(v.size());
          t.assign(n * 4, neutral);
34
35
          build(1, 0, n - 1, v);
36
      void build(ll *bg, ll *en) { // pra construir com array de C
37
          build(vector<11>(bg, en));
      }
39
       node query(int p, int 1, int r, int L, int R) {
41
          if (1 > R | | r < L) {
42
              return neutral:
          }
44
          if (1 >= L && r <= R) {
45
              return t[p];
          int mid = (1 + r) / 2:
          node ql = query(p * 2, 1, mid, L, R);
          node qr = query(p * 2 + 1, mid + 1, r, L, R);
          return merge(ql, qr);
51
52
      11 query(int 1, int r) { return query(1, 0, n - 1, 1, r).ans; }
53
54
      void update(int p, int 1, int r, int i, ll x) {
55
          if (1 == r) {
              t[p] = \{x, x, x, x\};
57
              int mid = (1 + r) / 2:
              if (i <= mid) {</pre>
                  update(p * 2, 1, mid, i, x);
```

4.9.7 Segment Tree Lazy

Lazy Propagation é uma técnica para updatar a Segment Tree que te permite fazer updates em intervalos, não necessariamente pontuais. Esta implementação responde consultas de soma em intervalo e updates de soma ou atribuição em intervalo, veja o método update.

A construção é $\mathcal{O}(n)$ e as operações de consulta e update são $\mathcal{O}(\log(n))$.

Dica: A Seg Tree usa $4 \cdot n$ de memória pois cada nodo p tem seus filhos $2 \cdot p$ (filho esquerdo) e $2 \cdot p + 1$ (filho direito). Há uma forma de indexar os nodos que usa $2 \cdot n$ de memória. Dado um nodo p que representa o intervalo [l, r], seu filho esquerdo é p + 1 (e representa o intervalo [l, mid]) e seu filho direito é $p + 2 \cdot (mid - l + 1)$ (e representa o intervalo [mid + 1, r]), onde mid = (l + r)/2.

Codigo: seg tree lazy.cpp

```
struct SegTree {
      11 merge(11 a, 11 b) { return a + b; }
      const 11 neutral = 0;
      int n:
      vector<ll> t, lazy;
      vector<bool> replace;
      void push(int p, int 1, int r) {
         if (replace[p]) {
10
             t[p] = lazy[p] * (r - l + 1);
11
             if (1 != r) {
12
                 lazy[p * 2] = lazy[p];
13
                 lazy[p * 2 + 1] = lazy[p];
14
                 replace[p * 2] = replace[p];
                 replace[p * 2 + 1] = replace[p];
16
```

```
} else if (lazy[p] != 0) {
              t[p] += lazy[p] * (r - l + 1);
              if (1 != r) {
20
21
                 lazy[p * 2] += lazy[p];
22
                 lazy[p * 2 + 1] += lazy[p];
23
24
          replace[p] = false;
25
          lazy[p] = 0;
26
27
28
      void build(int p, int l, int r, const vector<11> &v) {
29
          if (1 == r) {
30
              t[p] = v[1];
31
          } else {
              int mid = (1 + r) / 2;
33
34
              build(p * 2, 1, mid, v);
35
              build(p * 2 + 1, mid + 1, r, v);
              t[p] = merge(t[p * 2], t[p * 2 + 1]);
36
          }
37
38
      }
39
       void build(int _n) { // pra construir com tamanho, mas vazia
41
          t.assign(n * 4, neutral);
42
          lazy.assign(n * 4, 0);
43
          replace.assign(n * 4, false);
44
      }
45
46
       void build(const vector<1l> &v) { // pra construir com vector
47
          n = (int)v.size();
48
          t.assign(n * 4, neutral);
49
          lazy.assign(n * 4, 0);
51
          replace.assign(n * 4, false);
          build(1, 0, n - 1, v);
52
53
      void build(ll *bg, ll *en) { // pra construir com array de C
55
          build(vector<11>(bg, en));
56
57
      11 query(int p, int 1, int r, int L, int R) {
58
          push(p, 1, r);
59
          if (1 > R || r < L) {</pre>
60
              return neutral;
61
62
          if (1 >= L && r <= R) {
              return t[p];
64
```

```
int mid = (1 + r) / 2;
         11 \ ql = query(p * 2, 1, mid, L, R);
         11 qr = query(p * 2 + 1, mid + 1, r, L, R);
          return merge(ql, qr);
70
      ll querv(int 1, int r) { return querv(1, 0, n - 1, 1, r); }
71
      void update(int p, int l, int r, int L, int R, ll val, bool repl) {
73
          push(p, 1, r):
74
          if (1 > R || r < L) {
75
             return:
         }
          if (1 >= L && r <= R) {
             lazy[p] = val;
             replace[p] = repl;
             push(p, 1, r);
         } else {
82
             int mid = (1 + r) / 2;
83
             update(p * 2, 1, mid, L, R, val, repl);
             update(p * 2 + 1, mid + 1, r, L, R, val, repl);
             t[p] = merge(t[p * 2], t[p * 2 + 1]);
87
      void update(int 1, int r, 11 val, bool repl = false) {
          update(1, 0, n - 1, 1, r, val, repl);
90
91
92 };
```

4.9.8 Segment Tree Lazy Esparsa

Segment Tree com Lazy Propagation e Esparsa. Está implementada com update de soma em range e atribuição em range, e query de soma em range. Construção em $\mathcal{O}(1)$ e operações de update e query em $\mathcal{O}(\log(L))$, onde L é o tamanho do intervalo.

Dica: No construtor da Seg Tree, fazer t.reserve (MAX); lazy.reserve (MAX); replace.reserve (MAX); Rc.reserve (MAX); pode ajudar bastante no runtime, pois aloca espaço para os vetores e evita muitas realocações durante a execução. Nesse caso, MAX é geralmente $\mathcal{O}(Q \cdot log(L))$, onde Q é o número de queries e L é o tamanho do intervalo.

```
Codigo: seg_tree_sparse_lazy.cpp

1 template <11 MINL = (11)-1e9 - 5, 11 MAXR = (11)1e9 + 5> struct SegTree {
```

```
ll merge(ll a, ll b) { return a + b; }
       const ll neutral = 0;
      vector<ll> t, lazy;
      vector<int> Lc. Rc:
      vector<bool> replace;
       inline int newnode() {
          t.push_back(neutral);
10
          Lc.push back(-1):
11
          Rc.push_back(-1);
12
13
          lazy.push_back(0);
          replace.push_back(false);
14
          return (int)t.size() - 1;
15
      }
16
17
      inline int le(int p) {
18
19
          if (Lc[p] == -1) {
              Lc[p] = newnode();
20
          }
21
22
          return Lc[p];
23
24
      inline int ri(int p) {
25
          if (Rc[p] == -1) {
26
              Rc[p] = newnode();
27
28
          return Rc[p];
29
      }
30
31
      SegTree() { newnode(): }
32
33
       void push(int p, 11 1, 11 r) {
34
35
          if (replace[p]) {
              t[p] = lazy[p] * (r - 1 + 1);
36
              if (1 != r) {
37
                  lazy[le(p)] = lazy[p];
38
39
                  lazy[ri(p)] = lazy[p];
                  replace[le(p)] = replace[p];
                  replace[ri(p)] = replace[p];
          } else if (lazy[p] != 0) {
43
              t[p] += lazy[p] * (r - 1 + 1);
44
              if (1 != r) {
                  lazy[le(p)] += lazy[p];
                  lazv[ri(p)] += lazv[p];
47
48
```

```
39
```

```
replace[p] = false;
50
          lazy[p] = 0;
51
52
53
      11 query(int p, 11 1, 11 r, 11 L, 11 R) {
54
          push(p, 1, r);
          if (1 > R || r < L) {</pre>
              return neutral;
57
          if (1 >= L && r <= R) {
              return t[p];
          }
          11 \text{ mid} = 1 + (r - 1) / 2;
          11 ql = query(le(p), 1, mid, L, R);
          11 qr = query(ri(p), mid + 1, r, L, R);
          return merge(ql, qr);
      11 query(11 1, 11 r) { return query(0, MINL, MAXR, 1, r); }
67
      void update(int p, 11 1, 11 r, 11 L, 11 R, 11 val, bool repl) {
69
          push(p, 1, r);
70
          if (1 > R | | r < L) {
71
              return;
72
          }
          if (1 >= L && r <= R) {
74
              lazv[p] = val;
              replace[p] = repl;
              push(p, 1, r);
          } else {
              11 \text{ mid} = 1 + (r - 1) / 2:
              update(le(p), 1, mid, L, R, val, repl);
              update(ri(p), mid + 1, r, L, R, val, repl);
              t[p] = merge(t[le(p)], t[ri(p)]);
83
84
      void update(ll 1, ll r, ll val, bool repl = false) {
85
          update(0, MINL, MAXR, 1, r, val, repl);
87
88 };
```

4.9.9 Segment Tree Persisente

vector<int> Lc. Rc. roots:

28

Uma Seg Tree Esparsa, só que com persistência, ou seja, pode voltar para qualquer estado anterior da árvore, antes de qualquer modificação.

Os métodos query e update agora recebem um parâmetro a mais, que é a root (versão da árvore) que se deja modificar.

O vetor roots guarda na posição i a root da árvore após o i-ésimo update.

Dica: No construtor da Seg Tree, fazer t.reserve (MAX); Lc.reserve (MAX); Rc.reserve (MAX) roots.reserve (Q); pode ajudar bastante no runtime, pois aloca espaço para os vetores e evita muitas realocações durante a execução. Nesse caso, MAX é geralmente $\mathcal{O}(Q \cdot log(L))$, onde Q é o número de queries e L é o tamanho do intervalo.

```
Codigo: seg_tree_persistent.cpp

1 template <11 MINL = (11)-1e9 - 5, 11 MAXR = (11)1e9 + 5> struct SegTree {
2    11 merge(11 a, 11 b) { return a + b; }
3    const 11 neutral = 0;
4
5    vector<11> t;
```

```
inline int newnode() {
          t.push_back(neutral);
10
          Lc.push_back(-1);
          Rc.push_back(-1);
11
          return (int)t.size() - 1;
12
13
14
      inline int le(int p) {
15
          if (Lc[p] == -1) {
              Lc[p] = newnode();
17
          }
18
          return Lc[p]:
19
      }
20
21
      inline int ri(int p) {
22
          if (Rc[p] == -1) {
23
              Rc[p] = newnode();
24
          return Rc[p];
27
```

SegTree() { roots.push_back(newnode()); }

4.10. SPARSE TABLE 40

```
30
      11 query(int p, 11 1, 11 r, 11 L, 11 R) {
31
          if (1 > R || r < L) {
              return neutral:
33
          }
34
          if (1 >= L && r <= R) {
35
              return t[p];
          }
          11 \text{ mid} = 1 + (r - 1) / 2;
          11 ql = query(le(p), 1, mid, L, R);
          ll qr = query(ri(p), mid + 1, r, L, R);
          return merge(ql, qr);
41
42
      11 query(11 1, 11 r, int root = -1) {
43
          if (root == -1)
              root = roots.back();
          debug(root, MINL, MAXR, 1, r);
          return query(root, MINL, MAXR, 1, r);
48
49
      void update(int p, int old, ll l, ll r, ll i, ll x) {
50
          if (1 == r) {
51
              t[p] = x; // substitui
52
              // t[p] += x; // soma
53
              return;
          11 \text{ mid} = 1 + (r - 1) / 2;
          if (i <= mid) {</pre>
              Rc[p] = ri(old);
              update(le(p), le(old), l, mid, i, x);
          } else {
              Lc[p] = le(old);
61
              update(ri(p), ri(old), mid + 1, r, i, x);
          }
63
          t[p] = merge(t[le(p)], t[ri(p)]);
64
65
       int update(ll i, ll x, int root = -1) {
66
          int new_root = newnode();
          if (root == -1)
              root = roots.back();
69
          update(new_root, root, MINL, MAXR, i, x);
          roots.push_back(new_root);
          return roots.back();
72
73
       int copy_root(int root) {
74
          int new_root = newnode();
75
          Lc[new_root] = le(root);
76
```

```
77 Rc[new_root] = ri(root);
78 roots.push_back(new_root);
79 return roots.back();
80 }
81 };
```

4.10 Sparse Table

4.10.1 Disjoint Sparse Table

Uma Sparse Table melhorada, construção ainda em $\mathcal{O}(n \log n)$, mas agora suporta queries de **qualquer** operação associativa em $\mathcal{O}(1)$, não precisando mais ser idempotente.

Codigo: dst.cpp

```
struct DisjointSparseTable {
      int n. LG:
       vector<vector<ll>> st;
      ll merge(ll a, ll b) { return a + b; }
       const ll neutral = 0;
       void build(const vector<ll> &v) {
          int sz = (int)v.size();
          n = 1, LG = 1;
          while (n < sz) {</pre>
10
             n <<= 1. LG++:
11
          st = vector<vector<ll>>(LG, vector<ll>(n));
12
          for (int i = 0; i < n; i++) {</pre>
14
              st[0][i] = i < sz ? v[i] : neutral;
          }
15
          for (int i = 1; i < LG - 1; i++) {</pre>
             for (int j = (1 << i); j < n; j += (1 << (i + 1))) {
17
                 st[i][j] = st[0][j];
19
                 st[i][i-1] = st[0][i-1];
                 for (int k = 1; k < (1 << i); k++) {
                     st[i][j + k] = merge(st[i][j + k - 1], st[0][j + k]);
21
                     st[i][j-1-k] = merge(st[0][j-k-1], st[i][j-k]);
22
23
             }
24
25
```

4.10. SPARSE TABLE

```
void build(l1 *bg, l1 *en) { build(vector<l1>(bg, en)); }
ll query(int l, int r) {
    if (1 == r) {
        return st[0][1];
}
int i = 31 - __builtin_clz(1 ^ r);
return merge(st[i][1], st[i][r]);
}
}
dst;
```

4.10.2 Sparse Table

Precomputa em $\mathcal{O}(n \log n)$ uma tabela que permite responder consultas de mínimo/máximo em intervalos em $\mathcal{O}(1)$.

A implementação atual é para mínimo, mas pode ser facilmente modificada para máximo ou outras operações.

A restrição é de que a operação deve ser associativa e idempotente (ou seja, f(x,x) = x).

Exemplos de operações idempotentes: min, max, gcd, lcm.

Exemplos de operações não idempotentes: soma, xor, produto.

Obs: não suporta updates.

 ${\bf Codigo: sparse_table.cpp}$

```
1 struct SparseTable {
      int n, LG;
      vector<vector<ll>> st:
      ll merge(ll a, ll b) { return min(a, b); }
      const ll neutral = 1e18;
      void build(const vector<1l> &v) {
         n = (int)v.size();
         LG = 32 - \_builtin\_clz(n);
          st = vector<vector<ll>>(LG, vector<ll>(n));
          for (int i = 0; i < n; i++) {</pre>
              st[0][i] = v[i];
11
12
          for (int i = 0; i < LG - 1; i++) {</pre>
13
              for (int j = 0; j + (1 << i) < n; j++) {
```

Capítulo 5

Grafos

5.1 2 SAT

Algoritmo que resolve problema do 2-SAT. No 2-SAT, temos um conjunto de variáveis booleanas e cláusulas lógicas, onde cada cláusula é composta por duas variáveis. O problema é determinar se existe uma configuração das variáveis que satisfaça todas as cláusulas. O problema se transforma em um problema de encontrar as componentes fortemente conexas de um grafo direcionado, que resolvemos em $\mathcal{O}(N+M)$ com o algoritmo de Kosaraju. Onde N é o número de variáveis e M é o número de cláusulas.

A configuração da solução fica guardada no vetor assignment.

Em relação ao sinal, tanto faz se 0 liga ou desliga, apenas siga o mesmo padrão.

```
Codigo: 2_sat.cpp

1    struct sat2 {
2       int n;
3       vector<vector<int>> g, rg;
4       vector<bool> vis, assignment;
5       vector<int> topo, comp;

6
7       sat2(int _n) {
8            n = (2 * _n) + 2;
9            // a true = 2 * a
10            // a false = 2 * a + 1
11            g.assign(n, vector<int>());
12       rg.assign(n, vector<int>());
```

```
int get(int u) {
15
16
          if (u < 0) {
              return 2 * (~u) + 1;
17
          } else {
              return 2 * u;
19
20
21
22
       void add_impl(int u, int v) {
23
          u = get(u), v = get(v);
24
          g[u].push_back(v);
25
          rg[v].push_back(u);
          g[v ^ 1].push_back(u ^ 1);
27
28
          rg[u ^ 1].push_back(v ^ 1);
29
30
       void add_or(int u, int v) { add_impl(~u, v); }
31
32
       void add_and(int u, int v) {
33
34
          add_or(u, u);
          add_or(v, v);
35
36
37
       void add_xor(int u, int v) {
          add_impl(u, ~v);
          add_impl(~u, v);
40
41
42
       void add_equals(int u, int v) {
43
          add_impl(u, v);
```

43

5.2. BINARY LIFTING

```
add_impl(~u, ~v);
45
46
47
      void toposort(int u) {
          vis[u] = true:
49
          for (int v : g[u]) {
50
              if (!vis[v]) {
                 toposort(v);
53
54
55
          topo.push_back(u);
56
57
      void dfs(int u, int cc) {
58
          comp[u] = cc;
59
          for (int v : rg[u]) {
              if (comp[v] == -1) {
61
                 dfs(v, cc);
62
63
          }
      }
65
66
      pair<bool>> solve() {
67
          topo.clear();
68
          vis.assign(n, false);
70
          for (int i = 0; i < n; i++) {</pre>
71
              if (!vis[i]) {
                 toposort(i);
             }
74
          reverse(topo.begin(), topo.end());
76
          comp.assign(n, -1);
          int cc = 0;
79
          for (auto u : topo) {
              if (comp[u] == -1) {
81
                 dfs(u, cc++);
             }
          }
84
          assignment.assign(n / 2, false);
          for (int i = 0; i < n; i += 2) {
              if (comp[i] == comp[i + 1]) {
                 return {false, {}};
89
              assignment[i / 2] = comp[i] > comp[i + 1];
```

```
92    }
93
94         return {true, assignment};
95    }
96 };
```

5.2 Binary Lifting

5.2.1 Binary Lifting LCA

Usa uma matriz para precomputar os ancestrais de um nodo, em que up[u][i] é o 2^i -ésimo ancestral de u. A construção é $\mathcal{O}(n \log n)$, e é possível consultar pelo k-ésimo ancestral de um nodo e pelo **LCA** de dois nodos em $\mathcal{O}(\log n)$.

 \mathbf{LCA} : Lowest Common Ancestor, o LCA de dois nodos u e v é o nodo mais profundo que é ancestral de ambos.

```
Codigo: binary lifting lca.cpp
 1 const int N = 3e5 + 5, LG = 20;
 vector<int> adj[N];
 4 namespace bl {
      int t, up[N][LG], tin[N], tout[N];
       void dfs(int u, int p = -1) {
          tin[u] = t++;
          for (int i = 0; i < LG - 1; i++) {</pre>
              up[u][i + 1] = up[up[u][i]][i];
10
11
          for (int v : adj[u])
              if (v != p) {
                 up[v][0] = u;
14
                 dfs(v, u);
          tout[u] = t++;
17
18
19
      void build(int root) {
20
          t = 1;
```

5.2. BINARY LIFTING 44

38

41

42

43

```
up[root][0] = root;
22
          dfs(root);
23
      }
24
25
      bool ancestor(int u. int v) { return tin[u] <= tin[v] && tout[u] >= tout[v]; }
26
27
      int lca(int u. int v) {
          if (ancestor(u, v))
29
              return u;
30
          if (ancestor(v, u))
31
32
              return v;
          for (int i = LG - 1; i >= 0; i--) {
33
              if (!ancestor(up[u][i], v)) {
                  u = up[u][i];
              }
          }
          return up[u][0];
39
40
      int kth(int u, int k) {
41
          for (int i = 0: i < LG: i++) {</pre>
42
              if (k & (1 << i)) {</pre>
43
                  u = up[u][i]:
              }
          }
          return u;
48
49
50 }
```

5.2.2 Binary Lifting Query

Binary Lifting em que, além de queries de ancestrais, podemos fazer queries em caminhos. Seja f(u,v) uma função que retorna algo sobre o caminho entre u e v, como a soma dos valores dos nodos ou máximo valor do caminho, st[u][i] é o valor de f(par[u], up[u][i]), em que up[u][i] é o 2^i -ésimo ancestral de u e par[u] é o pai de u. A função f deve ser associativa e comutativa.

A construção é $\mathcal{O}(n \log n)$, e é possível consultar em $\mathcal{O}(\log n)$ pelo valor de f(u, v), em que u e v são nodos do grafo, através do método query. Também computa LCA e k-ésimo ancestral em $\mathcal{O}(\log n)$.

Obs: os valores precisam estar nos nodos e não nas arestas, para valores nas arestas

```
verificar o Binary Lifting Query Aresta.
Codigo: binary lifting query nodo.cpp
 1 const int N = 3e5 + 5, LG = 20:
 vector<int> adj[N];
 4 namespace bl {
      int t, up[N][LG], st[N][LG], tin[N], tout[N], val[N];
      const int neutral = 0;
      int merge(int 1, int r) { return 1 + r: }
      void dfs(int u, int p = -1) {
          tin[u] = t++;
11
          for (int i = 0; i < LG - 1; i++) {
12
             up[u][i + 1] = up[up[u][i]][i];
              st[u][i + 1] = merge(st[u][i], st[up[u][i]][i]);
15
          for (int v : adj[u])
17
             if (v != p) {
                 up[v][0] = u, st[v][0] = val[u];
19
                 dfs(v. u):
20
          tout[u] = t++;
21
22
23
      void build(int root) {
24
25
          t. = 1:
          up[root][0] = root;
26
          st[root][0] = neutral;
          dfs(root);
28
29
30
      bool ancestor(int u, int v) { return tin[u] <= tin[v] && tout[u] >= tout[v]; }
31
32
      int query2(int u, int v, bool include_lca) {
33
          if (ancestor(u, v))
34
             return include lca ? val[u] : neutral:
35
          int ans = val[u];
```

for (int i = LG - 1; i >= 0; i--) {

u = up[u][i];

if (!ancestor(up[u][i], v)) {

ans = merge(ans, st[u][i]);

return include lca ? merge(ans, st[u][0]) : ans:

5.2. BINARY LIFTING 45

```
int query(int u, int v) {
          if (u == v) {
              return val[u]:
          return merge(query2(u, v, 1), query2(v, u, 0));
50
      int lca(int u, int v) {
53
          if (ancestor(u, v))
54
              return u;
          if (ancestor(v, u))
              return v;
          for (int i = LG - 1; i >= 0; i--) {
              if (!ancestor(up[u][i], v)) {
                 u = up[u][i];
              }
62
          return up[u][0];
63
65
      int kth(int u, int k) {
          for (int i = 0; i < LG; i++) {
67
              if (k & (1 << i)) {</pre>
                 u = up[u][i];
          }
71
          return u;
74
75 }
```

5.2.3 Binary Lifting Query 2

Basicamente o mesmo que o anterior, mas esse resolve queries em que o merge não é necessariamente **comutativo**. Para fins de exemplo, o código está implementado para resolver queries de Kadane (máximo subarray sum) em caminhos.

Foi usado para passar esse problema:

https://codeforces.com/contest/1843/problem/F2

 $Codigo: binary_lifting_query_nodo2.cpp$

```
1 struct node {
       int pref, suff, sum, best;
      node() : pref(0), suff(0), sum(0), best(0) { }
      node(int x) : pref(x), suff(x), sum(x), best(x) { }
      node(int a, int b, int c, int d) : pref(a), suff(b), sum(c), best(d) { }
 6 };
 8 node merge(node 1, node r) {
       int pref = max(1.pref, 1.sum + r.pref);
      int suff = max(r.suff, r.sum + 1.suff);
      int sum = 1.sum + r.sum;
      int best = max(1.suff + r.pref, max(1.best, r.best));
      return node(pref, suff, sum, best);
14 }
15
16 struct BinaryLifting {
      vector<vector<int>> adj, up;
      vector<int> val. tin. tout:
      vector<vector<node>> st, st2;
      int N, LG, t;
20
21
      void build(int u, int p = -1) {
22
          tin[u] = t++:
23
          for (int i = 0; i < LG - 1; i++) {
              up[u][i + 1] = up[up[u][i]][i];
              st[u][i + 1] = merge(st[u][i], st[up[u][i]][i]);
26
              st2[u][i + 1] = merge(st2[up[u][i]][i], st2[u][i]);
27
          for (int v : adj[u])
29
              if (v != p) {
                 up[v][0] = u;
31
                 st[v][0] = node(val[u]);
                 st2[v][0] = node(val[u]);
34
                 build(v, u);
35
          tout[u] = t++:
36
37
       void build(int root, vector<vector<int>> adj2, vector<int> v) {
          t = 1;
          N = (int)adj2.size();
41
          LG = 32 - __builtin_clz(N);
42
          adj = adj2;
44
          tin = tout = vector<int>(N):
          up = vector(N, vector<int>(LG));
          st = st2 = vector(N. vector<node>(LG)):
```

5.2. BINARY LIFTING 46

```
up[root][0] = root;
          st[root][0] = node(val[root]);
          st2[root][0] = node(val[root]);
50
          build(root):
51
      }
52
53
      bool ancestor(int u. int v) { return tin[u] <= tin[v] && tout[u] >= tout[v]: }
54
      node query2(int u, int v, bool include_lca, bool invert) {
56
          if (ancestor(u, v)) {
57
             return include_lca ? node(val[u]) : node();
58
59
         node ans = node(val[u]);
          for (int i = LG - 1; i >= 0; i--) {
61
             if (!ancestor(up[u][i], v)) {
                 if (invert) {
                     ans = merge(st2[u][i], ans);
                 } else {
                     ans = merge(ans, st[u][i]);
                 u = up[u][i];
70
          return include_lca ? merge(ans, st[u][0]) : ans;
71
72
73
      node query(int u, int v) {
74
          if (u == v) {
             return node(val[u]);
76
         node l = query2(u, v, 1, 0);
         node r = query2(v, u, 0, 1);
79
          return merge(1, r);
      }
82
      int lca(int u, int v) {
83
          if (ancestor(u, v)) {
84
             return u;
          if (ancestor(v, u)) {
             return v;
          for (int i = LG - 1; i >= 0; i--) {
             if (!ancestor(up[u][i], v)) {
91
                 u = up[u][i];
92
             }
93
         }
94
```

5.2.4 Binary Lifting Query Aresta

O mesmo Binary Lifting de query em nodos, porém agora com os valores nas arestas. As complexidades são as mesmas.

```
Codigo: binary lifting query aresta.cpp
 1 const int N = 3e5 + 5, LG = 20;
 vector<pair<int, int>> adj[N];
 4 namespace bl {
      int t, up[N][LG], st[N][LG], tin[N], tout[N], val[N];
       const int neutral = 0:
      int merge(int 1, int r) { return 1 + r; }
      void dfs(int u, int p = -1) {
11
          tin[u] = t++;
          for (int i = 0; i < LG - 1; i++) {</pre>
              up[u][i + 1] = up[up[u][i]][i];
              st[u][i + 1] = merge(st[u][i], st[up[u][i]][i]);
14
          for (auto [w, v] : adj[u])
16
             if (v != p) {
                 up[v][0] = u, st[v][0] = w;
                 dfs(v, u);
19
20
          tout[u] = t++;
21
      }
22
23
       void build(int root) {
24
          t = 1:
25
          up[root][0] = root;
          st[root][0] = neutral;
28
          dfs(root):
29
30
```

5.3. CENTRO E DIAMETRO 47

```
bool ancestor(int u, int v) { return tin[u] <= tin[v] && tout[u] >= tout[v]; }
31
32
      int query2(int u, int v) {
33
          if (ancestor(u, v))
34
              return neutral:
          int ans = neutral;
36
          for (int i = LG - 1: i >= 0: i--) {
              if (!ancestor(up[u][i], v)) {
                  ans = merge(ans, st[u][i]);
                  u = up[u][i];
              }
41
          }
42
          return merge(ans, st[u][0]);
43
44
45
      int query(int u, int v) {
46
          if (u == v) {
              return neutral:
   #warning TRATAR ESSE CASO ACIMA
49
50
          return merge(query2(u, v), query2(v, u));
51
52
53
      int lca(int u, int v) {
54
          if (ancestor(u, v))
              return u;
56
          if (ancestor(v, u))
57
              return v;
          for (int i = LG - 1; i >= 0; i--) {
              if (!ancestor(up[u][i], v)) {
                  u = up[u][i];
              }
62
          }
          return up[u][0];
64
65
66
      int kth(int u, int k) {
67
          for (int i = 0; i < LG; i++) {</pre>
              if (k & (1 << i)) {</pre>
69
                  u = up[u][i];
70
              }
71
          }
          return u;
      }
74
75 }
```

5.3 Centro e Diametro

Algoritmo que encontra o centro e o diâmetro de um grafo em $\mathcal{O}(N+M)$ com duas BFS.

Definição: O centro de um grafo é igual ao subconjunto de vértices com excentricidade mínima. A excentricidade de um vértice é a maior distância dele para qualquer outro vértice. Em outras palavras, pra um vértice ser centro do grafo, ele deve minimizar a maior distância para qualquer outro vértice.

O diâmetro de um grafo é a maior distância entre dois vértices quaisquer.

```
Codigo: graph center.cpp
 1 const int INF = 1e9 + 9;
 3 vector<vector<int>> adj;
 5 struct GraphCenter {
      int n, diam = 0;
      vector<int> centros, dist, pai;
      int bfs(int s) {
          queue<int> q;
10
          q.push(s);
          dist.assign(n + 5, INF);
11
          pai.assign(n + 5, -1);
12
          dist[s] = 0;
13
14
          int maxidist = 0, maxinode = 0;
          while (!q.empty()) {
15
              int u = q.front();
              q.pop();
17
              if (dist[u] >= maxidist) {
18
                  maxidist = dist[u], maxinode = u;
19
20
              for (int v : adj[u]) {
21
                 if (dist[u] + 1 < dist[v]) {</pre>
22
                     dist[v] = dist[u] + 1;
23
                     pai[v] = u;
24
25
                     q.push(v);
                 }
26
              }
27
28
          diam = max(diam, maxidist);
29
          return maxinode;
30
31
      GraphCenter(int st = 0) : n(adj.size()) {
```

5.4. CENTROIDS 48

```
int d1 = bfs(st);
          int d2 = bfs(d1);
34
          vector<int> path;
          for (int u = d2; u != -1; u = pai[u]) {
              path.push_back(u);
          int len = path.size();
          if (len % 2 == 1) {
              centros.push_back(path[len / 2]);
41
42
              centros.push_back(path[len / 2]);
              centros.push_back(path[len / 2 - 1]);
          }
46
47 };
```

5.4 Centroids

5.4.1 Centroid

Algoritmo que encontra os dois centróides de uma árvore em $\mathcal{O}(N)$.

Definição: O centróide de uma árvore é o vértice tal que, ao ser removido, divide a árvore em subárvores com no máximo metade dos vértices da árvore original. Em outras palavras, se a árvore tem tamanho N, todas as subárvores geradas pela remoção do centróide têm tamanho no máximo $\frac{N}{2}$. Uma árvore pode ter até dois centróides.

Codigo: find centroid.cpp

```
15
int centroid(int u, int p, int n) {
      for (int v : adj[u]) {
          if (v != p && sz[v] > n / 2) {
18
              return centroid(v, u, n);
19
          }
      }
21
22
       return u;
23 }
24
25 pair<int, int> centroids(int u) {
       dfs_sz(u, u);
      int c = centroid(u, u, sz[u]);
      int c2 = -1;
      for (int v : adj[c]) {
          if (sz[u] == sz[v] * 2) {
              c2 = v:
31
32
      }
      return {c, c2};
34
35 }
```

5.4.2 Centroid Decomposition

Algoritmo que constrói a decomposição por centróides de uma árvore em $\mathcal{O}(N \log N)$.

Basicamente, a decomposição consiste em, repetidamente:

- Encontrar o centróide da árvore atual.
- Remover o centróide e decompor as subárvores restantes.

A decomposição vai gerar uma nova árvore (chamada comumente de "Centroid Tree") onde cada vértice é um centróide da árvore original e as arestas representam a relação de pai-filho entre os centróides. A árvore tem altura $\log N$.

No código, $\mathtt{dis}[\mathtt{u}][\mathtt{j}]$ é a distância entre o vértice u e seu j-ésimo ancestral na Centroid Tree.

 ${\bf Codigo:\ centroid_decomposition.cpp}$

```
1 const int N = 3e5 + 5;
3 int sz[N], par[N];
4 bool rem[N];
5 vector<int> dis[N];
6 vector<int> adj[N];
 8 int dfs_sz(int u, int p) {
      sz[u] = 1;
      for (int v : adj[u]) {
         if (v != p && !rem[v]) {
11
             sz[u] += dfs_sz(v, u);
          }
14
      return sz[u];
15
16 }
18 int centroid(int u, int p, int szn) {
      for (int v : adj[u]) {
19
          if (v != p && !rem[v] && sz[v] > szn / 2) {
              return centroid(v, u, szn);
21
         }
22
      }
23
24
      return u;
25 }
27 void dfs_dis(int u, int p, int d = 0) {
      dis[u].push_back(d);
      for (int v : adj[u]) {
          if (v != p && !rem[v]) {
              dfs_dis(v, u, d + 1);
31
32
33
34 }
35
36 void decomp(int u, int p) {
      int c = centroid(u, u, dfs_sz(u, u));
37
      rem[c] = true;
      par[c] = p;
40
41
      dfs_dis(c, c);
42
43
      // Faz algo na subárvore de c
44
45
      for (int v : adj[c]) {
46
          if (!rem[v]) {
```

5.5 Fluxo

Conjunto de algoritmos para calcular o fluxo máximo em redes de fluxo.

Muito útil para grafos bipartidos e para grafos com muitas arestas

Complexidade de tempo: $\mathcal{O}(V*E)$, mas em grafo bipartido a complexidade é $\mathcal{O}(sqrt(V)*E)$

Útil para grafos com poucas arestas

Complexidade de tempo: $\mathcal{O}(V * E)$

Computa o fluxo máximo com custo mínimo

Complexidade de tempo: $\mathcal{O}(V * E)$

Codigo: EdmondsKarp.cpp

```
1 const long long INF = 1e18;
```

```
3 struct FlowEdge {
      int u, v;
      long long cap, flow = 0;
      FlowEdge(int u, int v, long long cap) : u(u), v(v), cap(cap) { }
7 };
9 struct EdmondsKarp {
      int n, s, t, m = 0, vistoken = 0;
      vector<FlowEdge> edges;
11
      vector<vector<int>> adj;
12
      vector<int> visto;
13
14
      EdmondsKarp(int n, int s, int t) : n(n), s(s), t(t) {
15
          adj.resize(n);
16
          visto.resize(n);
17
18
19
      void add_edge(int u, int v, long long cap) {
20
          edges.emplace_back(u, v, cap);
21
          edges.emplace_back(v, u, 0);
22
          adj[u].push_back(m);
23
          adj[v].push_back(m + 1);
24
          m += 2;
25
      }
27
      int bfs() {
28
          vistoken++;
29
          queue<int> fila;
30
          fila.push(s);
31
          vector<int> pego(n, -1);
32
          while (!fila.empty()) {
33
              int u = fila.front();
34
              if (u == t) {
35
                  break;
36
37
              fila.pop();
38
              visto[u] = vistoken;
              for (int id : adj[u]) {
                  if (edges[id].cap - edges[id].flow < 1) {</pre>
41
                     continue;
42
                 }
43
                  int v = edges[id].v;
44
                  if (visto[v] == -1) {
45
                     continue;
46
                  fila.push(v);
```

```
pego[v] = id;
          }
51
52
          if (pego[t] == -1) {
53
              return 0:
54
          long long f = INF;
55
          for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
              f = min(f, edges[id].cap - edges[id].flow);
57
          }
58
          for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
59
              edges[id].flow += f;
              edges[id ^ 1].flow -= f;
61
          }
62
63
          return f;
      }
64
65
      long long flow() {
66
67
          long long maxflow = 0;
          while (long long f = bfs()) {
68
              maxflow += f;
69
          }
70
          return maxflow:
      }
72
73 };
Codigo: MinCostMaxFlow.cpp
 1 struct MinCostMaxFlow {
      int n, s, t, m = 0;
      11 maxflow = 0. mincost = 0:
      vector<FlowEdge> edges;
      vector<vector<int>> adj;
       MinCostMaxFlow(int n, int s, int t) : n(n), s(s), t(t) { adj.resize(n); }
       void add_edge(int u, int v, ll cap, ll cost) {
          edges.emplace_back(u, v, cap, cost);
10
          edges.emplace_back(v, u, 0, -cost);
11
          adj[u].push_back(m);
12
          adj[v].push_back(m + 1);
          m += 2:
      }
15
16
       bool spfa() {
17
          vector<int> pego(n, -1);
18
          vector<ll> dis(n, INF);
```

```
vector<bool> inq(n, false);
20
          queue<int> fila;
21
          fila.push(s);
22
          dis[s] = 0;
23
          inq[s] = 1;
24
          while (!fila.empty()) {
25
              int u = fila.front();
26
              fila.pop();
              inq[u] = false;
28
              for (int id : adj[u]) {
29
                  if (edges[id].cap - edges[id].flow < 1) {</pre>
30
                      continue:
31
                 }
                  int v = edges[id].v;
33
                  if (dis[v] > dis[u] + edges[id].cost) {
34
                     dis[v] = dis[u] + edges[id].cost;
                      pego[v] = id;
36
                     if (!inq[v]) {
37
                         inq[v] = true;
38
                         fila.push(v);
                     }
40
                 }
41
              }
42
          }
43
44
          if (pego[t] == -1) {
45
              return 0;
46
          }
47
          11 f = INF:
          for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
              f = min(f, edges[id].cap - edges[id].flow);
50
              mincost += edges[id].cost;
51
          }
52
          for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
53
              edges[id].flow += f;
54
              edges[id ^ 1].flow -= f:
55
          }
56
          maxflow += f;
57
          return 1;
58
      }
59
60
      11 flow() {
61
          while (spfa())
62
63
          return maxflow;
64
65
66 };
```

```
Codigo: Dinic.cpp
1 typedef long long 11;
3 const ll INF = 1e18;
5 struct FlowEdge {
      int u. v:
      11 cap, flow = 0;
      FlowEdge(int u, int v, ll cap) : u(u), v(v), cap(cap) { }
9 };
10
11 struct Dinic {
      vector<FlowEdge> edges;
13
      vector<vector<int>> adj;
      int n, s, t, m = 0;
      vector<int> level, ptr;
15
      queue<int> q;
16
17
      Dinic(int n, int s, int t) : n(n), s(s), t(t) {
18
          adi.resize(n):
19
          level.resize(n);
20
          ptr.resize(n);
21
22
23
      void add_edge(int u, int v, ll cap) {
24
          edges.emplace_back(u, v, cap);
25
          edges.emplace_back(v, u, 0);
26
          adj[u].push_back(m);
27
          adj[v].push_back(m + 1);
28
          m += 2;
29
      }
30
31
      bool bfs() {
32
          while (!q.empty()) {
33
34
              int u = q.front();
35
             q.pop();
              for (int id : adj[u]) {
36
                 if (edges[id].cap - edges[id].flow < 1) {</pre>
37
38
                     continue;
                 }
39
                 int v = edges[id].v;
                 if (level[v] != -1) {
41
                     continue;
42
43
                 level[v] = level[u] + 1;
44
                 q.push(v);
45
```

```
47
          return level[t] != -1;
      }
49
50
      11 dfs(int u, 11 f) {
51
          if (f == 0) {
52
              return 0:
53
          }
54
          if (u == t) {
55
              return f:
56
57
          for (int &cid = ptr[u]; cid < (int)adj[u].size(); cid++) {</pre>
58
              int id = adj[u][cid];
59
              int v = edges[id].v;
60
              if (level[u] + 1 != level[v] || edges[id].cap - edges[id].flow < 1) {</pre>
61
                  continue;
              }
              11 tr = dfs(v, min(f, edges[id].cap - edges[id].flow));
              if (tr == 0) {
65
                  continue;
              edges[id].flow += tr;
              edges[id ^ 1].flow -= tr;
              return tr;
70
          }
          return 0;
72
73
74
      ll flow() {
75
          11 maxflow = 0;
76
          while (true) {
77
              fill(level.begin(), level.end(), -1);
78
              level[s] = 0;
79
              q.push(s);
              if (!bfs()) {
81
82
                  break:
83
              fill(ptr.begin(), ptr.end(), 0);
              while (11 f = dfs(s, INF)) {
                  maxflow += f;
              }
87
          }
          return maxflow;
90
91 };
```

5.6 HLD

Técnica utilizada para decompor uma árvore em cadeias, e assim realizar operações de caminho e subárvore em $\mathcal{O}(\log N \cdot g(N))$, onde g(N) é a complexidade da operação. Esta implementação suporta queries de soma e update de soma/atribuição, pois usa a estrutura de dados Segment Tree Lazy desse almanaque, fazendo assim com que updates e consultas sejam $\mathcal{O}(\log^2 N)$. A estrutura (bem como a operação feita nela) pode ser facilmente trocada, basta alterar o código da Segment Tree Lazy, ou ainda, utilizar outra estrutura de dados, como uma Sparse Table, caso você tenha queries de mínimo/máximo sem updates, por exemplo. Ao mudar a estrutura, pode ser necessário adaptar os métodos query e update da HLD.

A HLD pode ser feita com os valores estando tanto nos vértices quanto nas arestas, consulte os métodos build do código para mais detalhes.

A construção da HLD é feita em $\mathcal{O}(N+b(N))$, onde b(N) é a complexidade de construir a estrutura de dados utilizada.

```
Codigo: HLD.cpp
 1 const int N = 3e5 + 5:
 3 vector<int> adj[N];
 4 int sz[N], pos[N], par[N], head[N];
 6 namespace HLD {
      int t;
      bool e = 0; // flag pra dizer se eh de aresta ou nao
       SegTree ds; // pode usar qualquer estrutura de dados aqui
       void dfs_sz(int u, int p = -1) {
11
          sz[u] = 1:
12
          for (int &v : adj[u]) {
13
              if (v != p) {
14
                 dfs sz(v, u):
                 sz[u] += sz[v];
                 if (sz[v] > sz[adj[u][0]] || adj[u][0] == p) {
                     swap(v, adj[u][0]);
19
20
          }
21
22
       void dfs hld(int u. int p = -1) {
23
          pos[u] = t++;
24
```

```
for (int v : adj[u]) {
25
              if (v != p) {
26
                 par[v] = u;
27
                 head[v] = (v == adj[u][0] ? head[u] : v);
                 dfs hld(v. u):
              }
30
          }
31
32
      void build_hld(int u) {
33
          dfs sz(u):
34
          t = 0;
          par[u] = u;
          head[u] = u;
37
          dfs_hld(u);
38
      }
39
40
      void build(int root, vector<ll> v) {
41
          // usar esse build pra iniciar com valores nos nodos
42
          // (para iniciar vazia, passar o vetor com valores neutros)
43
          build_hld(root);
44
          vector<ll> aux(v.size());
45
          for (int i = 0; i < (int)v.size(); i++) {</pre>
              aux[pos[i]] = v[i];
47
         }
          ds.build(aux);
50
51
      void build(int root, vector<tuple<int, int, ll>> edges) {
52
          // usar esse build se os valores estiverem nas arestas
53
          for (auto [u, v, w] : edges) {
54
              adi[u].push back(v):
55
              adj[v].push_back(u);
56
          build_hld(root);
          e = 1:
          assert(edges.size() >= 1):
          vector<ll> aux(edges.size() - 1);
          for (auto [u, v, w] : edges) {
              if (pos[u] > pos[v]) {
                  swap(u, v);
64
              aux[pos[v]] = w;
67
          ds.build(aux);
68
      }
69
70
      11 query(int u, int v) {
71
```

```
if (e && u == v) {
 72
               return ds.neutral;
 73
 74
           if (pos[u] > pos[v]) {
 75
 76
               swap(u, v);
 77
           if (head[u] == head[v]) {
               return ds.query(pos[u] + e, pos[v]);
 79
 80
               11 qv = ds.query(pos[head[v]], pos[v]);
 81
               11 qu = query(u, par[head[v]]);
 82
               return ds.merge(qu, qv);
 83
           }
 84
 85
       11 query_subtree(int u) {
           if (e && sz[u] == 1) {
 87
               return ds.neutral;
 88
 89
 90
           return ds.query(pos[u] + e, pos[u] + sz[u] - 1);
 91
 92
       void update(int u, int v, ll k, bool replace = false) {
 93
 94
           if (e && u == v) {
               return;
 95
           }
           if (pos[u] > pos[v]) {
 97
 98
               swap(u, v);
           if (head[u] == head[v]) {
100
               ds.update(pos[u] + e, pos[v], k, replace);
101
102
               ds.update(pos[head[v]], pos[v], k, replace);
103
               update(u, par[head[v]], k, replace);
104
           }
105
106
        void update subtree(int u, ll k, bool replace = false) {
107
           if (e && sz[u] == 1) {
108
               return;
109
110
111
           ds.update(pos[u] + e, pos[u] + sz[u] - 1, k, replace);
       }
112
113
       int lca(int u, int v) {
114
           if (pos[u] > pos[v]) {
115
116
               swap(u, v);
117
           return (head[u] == head[v] ? u : lca(u, par[head[v]]));
118
```

5.7. INVERSE GRAPH 54

```
119 ]
120 }
```

5.7 Inverse Graph

Algoritmo que encontra as componentes conexas quando se é dado o grafo complemento.

Resolve problemas em que se deseja encontrar as componentes conexas quando são dadas as arestas que não pertencem ao grafo, em $\mathcal{O}(NlogN + NlogM)$.

Codigo: inverse graph.cpp

```
1 set<int> nodes;
 vector<set<int>> adj;
 4 void bfs(int s) {
      queue<int> f;
      f.push(s);
      nodes.erase(s):
      set<int> aux;
      while (!f.empty()) {
          int x = f.front();
10
          f.pop();
11
          for (int y : nodes) {
              if (adj[x].count(y) == 0) {
                  aux.insert(y);
              }
15
          }
16
          for (int y : aux) {
17
              f.push(y);
              nodes.erase(y);
19
          }
          aux.clear();
21
22
23 }
```

5.8 Kruskal

Algoritimo que utiliza DSU (Disjoint Set Union, descrita na seção de Estrutura de Dados) para encontrar a MST (Minimum Spanning Tree) de um grafo em $\mathcal{O}(E \log E)$.

A Minimum Spanning Tree é a árvore geradora mínima de um grafo, ou seja, um conjunto de arestas que conecta todos os vértices do grafo com o menor custo possível.

Propriedades importantes da MST:

- É uma árvore! :O
- ullet Entre quaisquer dois nodos u e v do grafo, a MST minimiza a maior aresta no caminho de u a v.

Ideia do Kruskal: ordenar as arestas do grafo por peso e, para cada aresta, adicionar ela à MST se ela não forma um ciclo com as arestas já adicionadas.

Codigo: kruskal.cpp

```
vector<tuple<int, int, int>> edges; // {u, v, w}

void kruskal(int n) {
   DSU dsu(n); // DSU da seção Estruturas de Dados

sort(edges.begin(), edges.end(), [](auto a, auto b) {
   return get<2>(a) < get<2>(b);
});

for (auto [u, v, w] : edges) {
   if (dsu.unite(u, v)) {
        // edge u-v is in the MST
}
}

// by

// comparison of the match of th
```

5.9 LCA

Algoritmo para computar Lowest Common Ancestor usando Euler Tour e Sparse Table (descrita na seção Estruturas de Dados), com pré-processamento em $\mathcal{O}(N \log N)$ e consulta em $\mathcal{O}(1)$.

5.10. MATCHING

```
Codigo: lca.cpp
 1 const int N = 5e5 + 5:
2 int timer, tin[N];
3 vector<int> adj[N];
4 vector<pair<int, int>> prof;
6 struct SparseTable {
      int n, LG;
      using T = pair<int, int>;
      vector<vector<T>> st;
      T merge(T a, T b) { return min(a, b); }
      const T neutral = {INT_MAX, -1};
      void build(const vector<T> &v) {
          n = (int)v.size();
13
          LG = 32 - builtin clz(n):
          st = vector<vector<T>>(LG, vector<T>(n));
          for (int i = 0; i < n; i++) {</pre>
              st[0][i] = v[i];
         }
18
          for (int i = 0; i < LG - 1; i++) {</pre>
             for (int j = 0; j + (1 << i) < n; j++) {
                 st[i + 1][j] = merge(st[i][j], st[i][j + (1 << i)]);
             }
         }
23
24
      T query(int 1, int r) {
25
          if (1 > r)
26
              return neutral;
27
          int i = 31 - __builtin_clz(r - 1 + 1);
          return merge(st[i][1], st[i][r - (1 << i) + 1]);</pre>
      }
30
31 } st_lca;
33 void et_dfs(int u, int p, int h) {
      tin[u] = timer++;
      prof.emplace_back(h, u);
36
      for (int v : adj[u]) {
          if (v != p) {
37
              et_dfs(v, u, h + 1);
              prof.emplace_back(h, u);
39
         }
      timer++;
42
43 }
44
```

```
45 int lca(int u, int v) {
46    int l = tin[u], r = tin[v];
47    if (l > r) {
48        swap(l, r);
49    }
50    return st_lca.query(l, r).second;
51 }
52
53 void build() {
54    timer = 0;
55    prof.clear();
66    et_dfs(0, -1, 0);
57    st_lca.build(prof);
58 }
```

5.10 Matching

5.10.1 Hungaro

Resolve o problema de Matching para uma matriz A[n][m], onde $n \leq m$.

A implementação minimiza os custos, para maximizar basta multiplicar os pesos por -1.

55

A matriz de entrada precisa ser indexada em 1

O vetor result guarda os pares do matching.

Complexidade de tempo: $\mathcal{O}(n^2 * m)$

Codigo: hungarian.cpp

```
const ll INF = 1e18 + 18;

vector<pair<int, int>> result;

lungarian(int n, int m, vector<vector<int>> &A) {
    vector<int>> u(n + 1), v(m + 1), p(m + 1), way(m + 1);
    for (int i = 1; i <= n; i++) {
        p[0] = i;
        int j0 = 0;
}</pre>
```

5.11. PONTES 56

```
vector<int> minv(m + 1, INF);
10
          vector<char> used(m + 1, false);
11
          do {
12
              used[j0] = true;
13
              11 i0 = p[j0], delta = INF, j1;
14
              for (int j = 1; j <= m; j++) {</pre>
15
                  if (!used[j]) {
                      int cur = A[i0][j] - u[i0] - v[j];
                      if (cur < minv[j]) {</pre>
                          minv[j] = cur, way[j] = j0;
19
20
                      if (minv[j] < delta) {</pre>
21
                          delta = minv[j], j1 = j;
23
                  }
              }
              for (int j = 0; j \le m; j++) {
                  if (used[i]) {
27
                      u[p[j]] += delta, v[j] -= delta;
28
                  } else {
                      minv[j] -= delta;
31
32
              i0 = i1;
33
          } while (p[j0] != 0);
          do {
35
              int j1 = way[j0];
36
              p[j0] = p[j1];
37
              j0 = j1;
          } while (j0);
40
      for (int i = 1; i <= m; i++) {</pre>
41
          result.emplace_back(p[i], i);
42
43
      return -v[0];
44
45 }
```

5.11 Pontes

Algoritmo que acha pontes em um grafo utilizando DFS. $\mathcal{O}(V+E)$. Pontes são aresta cuja remoção aumenta o número de componentes conexas do grafo.

Nesse código também há uma função que acha componentes aresta-biconexas, que são

componentes que para se desconectar é necessário remover pelo menos duas arestas. Para obter essas componentes, basta achar as pontes e contrair o resto do grafo, o resultado é uma árvore.

```
Codigo: find bridges.cpp
1 const int N = 3e5 + 5;
2 int n, timer;
3 vector<int> adj[N];
4 int tin[N], low[N];
6 void dfs(int u, int p = -1) {
      low[u] = tin[u] = ++timer;
      for (int v : adj[u]) {
          if (tin[v] != 0 && v != p) {
              low[u] = min(low[u], tin[v]);
10
          } else if (v != p) {
11
              dfs(v, u);
12
              low[u] = min(low[u], low[v]);
13
          }
14
15
      if (p != -1 && low[u] == tin[u]) {
16
          // edge (p, u) is a bridge
17
18
19 }
20
21 void find_bridges() {
       timer = 0:
      for (int i = 0; i < n; i++) {</pre>
23
          tin[i] = low[i] = 0;
24
25
26
      for (int i = 0; i < n; i++) {</pre>
          if (tin[i] == 0) {
27
              dfs(i);
28
29
      }
30
31 }
33 // Edge Biconnected Components (requer todo o código acima)
34
35 int ebcc[N], ncc = 0;
  vector<int> adjbcc[N];
38 void dfs_ebcc(int u, int p, int cc) {
      if (p != -1 && low[u] == tin[u]) {
40
          cc = ++ncc:
41
```

5.12. PONTOS DE ARTICULAÇÃO

```
ebcc[u] = cc;
      for (int v : adj[u]) {
          if (ebcc[v] == -1) {
              dfs_ebcc(v, u, cc);
47
48 }
50 void build_ebcc_graph() {
      find_bridges();
      for (int i = 0; i < n; i++) {</pre>
52
          ebcc[i] = -1:
53
54
      for (int i = 0; i < n; i++) { // should follow the same order of find_bridges dfs
55
          if (ebcc[i] == -1) {
              dfs_ebcc(i, -1, ncc);
              ++ncc;
         }
59
60
      // Opcao 1 - constroi o grafo comprimido passando por todas as edges
      for (int u = 0; u < n; u++) {</pre>
62
          for (auto v : adj[u]) {
63
              if (ebcc[u] != ebcc[v]) {
64
                  adjbcc[ebcc[u]].emplace_back(ebcc[v]);
65
             } else {
                 // faz algo
68
         }
70
      // Opcao 2 - constroi o grafo comprimido passando so pelas pontes
      // for (auto [u, v] : bridges) {
      // adjbcc[ebcc[u]].emplace_back(ebcc[v]);
73
      // adjbcc[ebcc[v]].emplace_back(ebcc[u]);
74
75
      // }
76 }
```

5.12 Pontos de Articulação

Algoritmo que acha pontos de articulação em um grafo utilizando DFS. $\mathcal{O}(V+E)$. Pontos de articulação são vértices cuja remoção aumenta o número de componentes conexas do grafo.

TODO: Block cut tree.

```
Codigo: articulation points.cpp
 1 const int N = 3e5 + 5;
 2 int n, timer;
 3 vector<int> adj[N];
 4 int tin[N], low[N];
 6 void dfs(int u, int p = -1) {
      low[u] = tin[u] = ++timer;
      int child = 0;
      for (int v : adj[u]) {
          if (tin[v] != 0 && v != p) {
              low[u] = min(low[u], tin[v]);
11
          } else if (v != p) {
13
              dfs(v, u);
              low[u] = min(low[u], low[v]);
              if (p != -1 && low[v] >= tin[u]) {
15
                  // vertex u is an articulation point
16
17
              child++;
18
          }
19
      }
20
      if (p == -1 && child > 1) {
21
          // vertex u is an articulation point
22
23
24 }
25
26 void find_articulation_points() {
       timer = 0:
      for (int i = 0; i < n; i++) {</pre>
          tin[i] = low[i] = 0;
29
      }
30
       for (int i = 0; i < n; i++) {</pre>
31
32
          if (tin[i] == 0) {
              dfs(i);
33
34
          }
35
36 }
```

5.13. SHORTEST PATHS 58

5.13 Shortest Paths

5.13.1 01 BFS

Computa o menor caminho entre nós de um grafo com arestas de peso 0 ou 1.

Dado um nó s, computa o menor caminho de s para todos os outros nós em $\mathcal{O}(V+E)$.

Muito semelhante a uma BFS, mas usa uma deque (fila dupla) ao invés de uma fila comum.

Importante: As arestas só podem ter peso 0 ou 1.

```
Codigo: bfs01.cpp
```

```
1 const int N = 3e5 + 5;
2 const int INF = 1e9;
4 int n;
5 vector<pair<int, int>> adj[N];
7 vector<int> bfs01(int s) {
      vector<int> dist(n, INF);
      deque<int> q;
      dist[s] = 0;
      q.emplace_back(s);
11
      while (!q.empty()) {
12
          int u = q.front();
          q.pop_front();
          for (auto [w, v] : adj[u]) {
15
              if (dist[u] + w < dist[v]) {</pre>
16
                  dist[v] = dist[u] + w;
17
                  if (w == 0) {
                     q.push_front(v);
                  } else {
20
                     q.push_back(v);
21
25
      return dist;
27 }
```

5.13.2 BFS

Computa o menor caminho entre nós de um grafo com arestas de peso 1.

Dado um nó s, computa o menor caminho de s para todos os outros nós em $\mathcal{O}(V+E)$.

Importante: Todas arestas do grafo devem ter peso 1.

Codigo: bfs.cpp

```
1 const int N = 3e5 + 5:
 3 int n;
 4 vector<int> adj[N];
 6 vector<int> bfs(int s) {
       vector<int> dist(n, -1):
       queue<int> q;
      dist[s] = 0;
      q.emplace(s);
      while (!q.empty()) {
11
          int u = q.front();
13
          q.pop();
          for (auto v : adj[u]) {
14
              if (dist[v] == -1) {
15
                 dist[v] = dist[u] + 1;
16
17
                  q.emplace(v);
18
          }
19
      }
20
       return dist;
21
22 }
```

5.13.3 Bellman Ford

Encontra o caminho mais curto entre um vértice e todos os outros vértices de um grafo em $\mathcal{O}(|V|*|E|)$.

Importante: Detecta ciclos negativos.

Codigo: bellman_ford.cpp

5.13. SHORTEST PATHS 59

```
const ll INF = 1e18;
3 int n;
4 vector<tuple<int, int, int>> edges;
6 vector<ll> bellman_ford(int s) {
       vector<ll> dist(n. INF);
      dist[s] = 0;
      for (int i = 0; i < n; i++) {</pre>
          for (auto [u, v, w] : edges) {
10
              if (dist[u] < INF) {</pre>
11
                  dist[v] = min(dist[v], dist[u] + w);
              }
          }
14
      }
15
      for (int i = 0; i < n; i++) {</pre>
          for (auto [u, v, w] : edges) {
              if (dist[u] < INF && dist[u] + w < dist[v]) {</pre>
                  dist[v] = -INF;
19
          }
      // dist[u] = -INF se tem um ciclo negativo que chega em u
      return dist;
24
25 }
```

5.13.4 Dijkstra

Computa o menor caminho entre nós de um grafo com pesos quaisquer nas arestas.

Dado um nó s, computa o menor caminho de s para todos os outros nós em $\mathcal{O}((V + E) * log(E))$.

Muito semelhante a uma BFS, mas usa uma fila de prioridade ao invés de uma fila comum.

Importante: O grafo não pode conter ciclos de peso negativo.

Codigo: dijkstra.cpp

```
1 const int N = 3e5 + 5;
2 const 11 INF = 1e18;
3
4 int n;
```

```
5 vector<pair<int, int>> adj[N];
 7 vector<ll> dijkstra(int s) {
      vector<ll> dist(n, INF);
      using T = pair<ll, int>;
      priority_queue<T, vector<T>, greater<>> pq;
      dist[s] = 0;
      pq.emplace(dist[s], s);
      while (!pq.empty()) {
          auto [d, u] = pq.top();
14
          pq.pop();
          if (d != dist[u]) {
              continue;
18
          for (auto [w, v] : adj[u]) {
              if (dist[v] > d + w) {
                 dist[v] = d + w;
21
                 pq.emplace(dist[v], v);
22
23
          }
24
      }
25
      return dist;
27 }
```

5.13.5 Floyd Warshall

Algoritmo que encontra o menor caminho entre todos os pares de vértices de um grafo com pesos em $\mathcal{O}(N^3)$.

A ideia do algoritmos é: para cada vértice k, passamos por todos os pares de vértices (i, j) e verificamos se é mais curto passar por k para ir de i a j do que o caminho atual de i a j. Se for, atualizamos o caminho.

Codigo: floyd_warshall.cpp

```
1 const int N = 3e3 + 5;
2 const ll INF = 1e18;
3 int n;
4
5 ll adj[N][N]; // adj[u][v] = peso da aresta u-v, INF se não existe
6 ll dist[N][N];
7
8 void floydwarshall() {
9    for (int u = 0; u < n; u++) {</pre>
```

5.14. STOER-WAGNER MIN CUT 60

```
for (int v = 0; v < n; v++) {
10
              dist[u][v] = adj[u][v];
11
          }
13
       for (int k = 0: k < n: k++) {
14
          for (int i = 0; i < n; i++) {</pre>
15
              for (int j = 0; j < n; j++) {</pre>
                  dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]);
          }
19
20
21 }
```

5.13.6 SPFA

Encontra o caminho mais curto entre um vértice e todos os outros vértices de um grafo em $\mathcal{O}(|V|*|E|)$. Na prática, é bem mais rápido que o Bellman-Ford.

Detecta ciclos negativos.

Codigo: spfa.cpp

```
1 const int N = 1e4 + 5:
2 const 11 INF = 1e18;
4 int n;
5 vector<pair<int, int>> adj[N];
7 vector<ll> spfa(int s) {
      vector<ll> dist(n, INF);
      vector<int> cnt(n, 0);
      vector<bool> inq(n, false);
      queue<int> q;
      q.push(s);
      inq[s] = true;
      dist[s] = 0;
14
      while (!q.empty()) {
          int u = q.front();
16
          q.pop();
17
          inq[u] = false;
18
          for (auto [w, v] : adj[u]) {
19
              11 newd = (dist[u] == -INF ? -INF : max(w + dist[u], -INF));
20
              if (newd < dist[v]) {</pre>
21
                 dist[v] = newd;
```

5.14 Stoer-Wagner Min Cut

Algortimo de Stoer-Wagner para encontrar o corte mínimo de um grafo.

O algoritmo de Stoer-Wagner é um algoritmo para resolver o problema de corte mínimo em grafos não direcionados com pesos não negativos. A ideia essencial deste algoritmo é encolher o grafo mesclando os vértices mais intensos até que o grafo contenha apenas dois conjuntos de vértices combinados

Complexidade de tempo: $\mathcal{O}(V^3)$

```
Codigo: stoer wagner.cpp
 1 const int MAXN = 555, INF = 1e9 + 7;
 3 int n, e, adj[MAXN][MAXN];
 4 vector<int> bestCut;
 6 int mincut() {
       int bestCost = INF;
      vector<int> v[MAXN];
      for (int i = 0; i < n; i++) {</pre>
          v[i].assign(1, i);
10
11
12
      int w[MAXN], sel;
13
      bool exist[MAXN], added[MAXN];
       memset(exist, true, sizeof(exist));
```

5.14. STOER-WAGNER MIN CUT

```
for (int phase = 0; phase < n - 1; phase++) {</pre>
15
          memset(added, false, sizeof(added));
16
          memset(w, 0, sizeof(w));
17
          for (int j = 0, prev; j < n - phase; j++) {</pre>
18
              sel = -1;
19
              for (int i = 0; i < n; i++) {</pre>
20
                  if (exist[i] && !added[i] && (sel == -1 || w[i] > w[sel])) {
21
                      sel = i;
                  }
23
              }
24
              if (j == n - phase - 1) {
25
                  if (w[sel] < bestCost) {</pre>
26
                     bestCost = w[sel];
                      bestCut = v[sel];
                  v[prev].insert(v[prev].end(), v[sel].begin(), v[sel].end());
                  for (int i = 0; i < n; i++) {</pre>
                      adj[prev][i] = adj[i][prev] += adj[sel][i];
33
                  exist[sel] = false;
              } else {
35
                  added[sel] = true;
36
                  for (int i = 0; i < n; i++) {</pre>
37
                      w[i] += adj[sel][i];
                  prev = sel;
41
42
43
      return bestCost;
44
45 }
```

Capítulo 6

String

6.1 Aho Corasick

Muito parecido com uma Trie, porém muito mais poderoso. O autômato de Aho-Corasick é um autômato finito determinístico que pode ser construído a partir de um conjunto de padrões. Nesse autômato, para qualquer nodo u do autômato e qualquer caractere c do alfabeto, é possível transicionar de u usando o caractere c.

A transição é feita por uma aresta direta de u pra v, se a aresta de u pra v estiver marcada com o caractere c. Se não, a transição de u com o caractere c é a transição de link(u) com o caractere c.

Definição: link(u) é um nodo v, tal que o prefixo do autômato ate v é sufixo de u, e esse prefixo é o maior possível. Ou seja, link(u) é o maior prefixo do autômato que é sufixo de u. Com apenas um padrão inserido, o autômato de Aho-Corasick é a Prefix Function (KMP).

No código, cur é o próximo nodo a ser criado. A root é o nodo 1.

Codigo: aho corasick.cpp

```
1 namespace aho {
2    const int M = 3e5 + 1;
3    const int K = 26;
4
5    const char norm = 'a';
6    inline int get(int c) { return c - norm; }
7
8    int next[M][K], link[M], out_link[M], par[M], cur = 2;
```

```
char pch[M];
      bool out[M];
      vector<int> output[M];
13
      int node(int p, char c) {
          link[cur] = out_link[cur] = 0;
14
15
          par[cur] = p;
          pch[cur] = c;
16
          return cur++:
17
18
19
      int T = 0;
20
21
      int insert(const string &s) {
23
          int u = 1;
          for (int i = 0; i < (int)s.size(); i++) {</pre>
24
              auto v = next[u][get(s[i])];
25
26
              if (v == 0) {
                  next[u][get(s[i])] = v = node(u, s[i]);
28
29
30
          out[u] = true;
          output[u].emplace_back(T);
32
          return T++;
33
34
35
      int go(int u, char c);
37
      int get_link(int u) {
```

6.2. HASHING 63

```
if (link[u] == 0) {
              link[u] = par[u] > 1 ? go(get_link(par[u]), pch[u]) : 1;
         }
          return link[u];
42
      }
43
44
      int go(int u, char c) {
          if (next[u][get(c)] == 0) {
              next[u][get(c)] = u > 1 ? go(get_link(u), c) : 1;
47
48
          return next[u][get(c)];
49
50
51
      int exit(int u) {
52
          if (out_link[u] == 0) {
53
              int v = get_link(u);
              out_link[u] = (out[v] || v == 1) ? v : exit(v);
         }
          return out_link[u];
57
59
      bool matched(int u) { return out[u] || exit(u) > 1; }
60
61
62 }
```

6.2 Hashing

6.2.1 Hashing

Hashing polinomial para testar igualdade de strings (ou de vetores). Requer precomputar as potências de um primo, como indicado na função precalc. A implementação está com dois MODS e usa a primitiva Mint, a escolha de usar apenas um MOD ou não usar o Mint vai da sua preferência ou necessidade, se não usar o Mint, trate adequadamente as operações com aritmética modular. A construção é $\mathcal{O}(n)$ e a consulta é $\mathcal{O}(1)$.

Obs: lembrar de chamar a função precalc!

Exemplo de uso:

```
1 string s = "abacabab";
2 Hashing a(s);
3 cout << (a(0, 1) == a(2, 3)) << endl; // 0</pre>
```

```
4 \text{ cout} << (a(0, 1) == a(4, 5)) << \text{endl}; // 1
 5 \text{ cout} << (a(0, 2) == a(4, 6)) << endl; // 1
6 cout << (a(0, 3) == a(4, 7)) << endl; // 0
Codigo: hashing.cpp
 1 const int MOD1 = 998244353;
 2 const int MOD2 = 1e9 + 7;
 3 using mint1 = Mint<MOD1>:
 4 using mint2 = Mint<MOD2>;
 6 struct Hash {
       mint1 h1;
      mint2 h2;
      Hash() { }
      Hash(mint1 _h1, mint2 _h2) : h1(_h1), h2(_h2) { }
      bool operator == (Hash o) const { return h1 == o.h1 && h2 == o.h2; }
      bool operator!=(Hash o) const { return h1 != o.h1 || h2 != o.h2; }
      bool operator<(Hash o) const { return h1 == o.h1 ? h2 < o.h2 : h1 < o.h1; }
      Hash operator+(Hash o) const { return {h1 + o.h1, h2 + o.h2}; }
      Hash operator-(Hash o) const { return {h1 - o.h1, h2 - o.h2}; }
15
      Hash operator*(Hash o) const { return {h1 * o.h1, h2 * o.h2}; }
      Hash operator/(Hash o) const { return {h1 / o.h1, h2 / o.h2}; }
18 };
20 const int PRIME = 1001003; // qualquer primo na ordem do alfabeto
21 const int MAXN = 1e6 + 5;
22 Hash PR = {PRIME, PRIME};
23 Hash invPR = {mint1(1) / PRIME, mint2(1) / PRIME};
24 Hash pot[MAXN], invpot[MAXN];
25 void precalc() {
      pot[0] = invpot[0] = Hash(1, 1);
      for (int i = 1; i < MAXN; i++) {</pre>
          pot[i] = pot[i - 1] * PR;
28
          invpot[i] = invpot[i - 1] * invPR;
29
30
31 }
33 struct Hashing {
      vector<Hash> hsh;
      Hashing() { }
      Hashing(string s) : N(int(s.size())), hsh(N + 1) {
37
38
          for (int i = 0: i < N: i++) {
              int c = int(s[i] - 'a' + 1);
```

6.2.2 Hashing Dinâmico

Hashing polinomial para testar igualdade de strings (ou de vetores). Requer precomputar as potências de um primo, como indicado na função precalc. A implementação está com dois MODS e usa a primitiva Mint, a escolha de usar apenas um MOD ou não usar o Mint vai da sua preferência ou necessidade, se não usar o Mint, trate adequadamente as operações com aritmética modular.

Essa implementação suporta updates pontuais, utilizando-se de uma Fenwick Tree para isso. A construção é $\mathcal{O}(n)$, consultas e updates são $\mathcal{O}(\log n)$.

Obs: lembrar de chamar a função precalc!

Exemplo de uso:

```
string s = "abacabab";
2 DynamicHashing a(s);
_3 cout << (a(0, 1) == a(2, 3)) << end1: // 0
4 \text{ cout} << (a(0, 1) == a(4, 5)) << \text{endl}; // 1
5 a.update(0, 'c');
6 cout << (a(0, 1) == a(4, 5)) << endl; // 0
Codigo: dynamic hashing.cpp
1 const int MOD1 = 998244353;
2 const int MOD2 = 1e9 + 7;
3 using mint1 = Mint<MOD1>;
4 using mint2 = Mint<MOD2>;
6 struct Hash {
      mint1 h1:
      mint2 h2;
      Hash() { }
      Hash(mint1 _h1, mint2 _h2) : h1(_h1), h2(_h2) { }
      bool operator == (Hash o) const { return h1 == o.h1 && h2 == o.h2; }
```

```
bool operator!=(Hash o) const { return h1 != o.h1 || h2 != o.h2; }
      bool operator<(Hash o) const { return h1 == o.h1 ? h2 < o.h2 : h1 < o.h1; }</pre>
      Hash operator+(Hash o) const { return {h1 + o.h1, h2 + o.h2}; }
      Hash operator-(Hash o) const { return {h1 - o.h1, h2 - o.h2}; }
      Hash operator*(Hash o) const { return {h1 * o.h1, h2 * o.h2}; }
      Hash operator/(Hash o) const { return {h1 / o.h1, h2 / o.h2}; }
17
18 }:
19
20 const int PRIME = 1001003; // qualquer primo na ordem do alfabeto
21 const int MAXN = 1e6 + 5:
22 Hash PR = {PRIME, PRIME};
23 Hash invPR = {mint1(1) / PRIME, mint2(1) / PRIME};
24 Hash pot[MAXN], invpot[MAXN];
25 void precalc() {
      pot[0] = invpot[0] = Hash(1, 1);
      for (int i = 1; i < MAXN; i++) {</pre>
          pot[i] = pot[i - 1] * PR;
          invpot[i] = invpot[i - 1] * invPR:
30
31 }
33 struct DynamicHashing {
      FenwickTree<Hash> hsh;
      DynamicHashing() { }
      DynamicHashing(string s) : N(int(s.size())) {
          vector<Hash> v(N);
          for (int i = 0; i < N; i++) {</pre>
              int c = int(s[i] - 'a' + 1):
              v[i] = pot[i + 1] * Hash(c, c);
41
42
          hsh = FenwickTree<Hash>(v);
      Hash operator()(int 1, int r) { return hsh.query(1, r) * invpot[1]; }
      void update(int i, char ch) {
          int c = int(ch - 'a' + 1):
          hsh.updateSet(i, pot[i + 1] * Hash(c, c));
50 };
```

6.3. LYNDON 65

6.3 Lyndon

Strings em decomposição única em subcadeias que são ordenadas lexicograficamente e não podem ser mais reduzidas.

Duval

Gera a Lyndon Factorization de uma string

* Complexidade de tempo: $\mathcal{O}(N)$

Min Cyclic Shift

Gera a menor rotação circular da string original que pode ser obtida por meio de deslocamentos cíclicos dos caracteres.

```
* Complexidade de tempo: \mathcal{O}(N)
Codigo: min cyclic shift.cpp
 string min_cyclic_shift(string s) {
      s += s:
      int n = s.size();
      int i = 0, ans = 0:
      while (i < n / 2) {
          ans = i;
          int j = i + 1, k = i;
          while (j < n \&\& s[k] <= s[j]) {
              if (s[k] < s[j]) {
                 k = i;
              } else {
11
                 k++;
14
              j++;
          while (i <= k) {</pre>
              i += j - k;
19
20
      return s.substr(ans, n / 2);
21 }
Codigo: duval.cpp
 vector<string> duval(string const &s) {
      int n = s.size();
```

```
int i = 0;
       vector<string> factorization;
      while (i < n) {
          int j = i + 1, k = i;
          while (j < n \&\& s[k] <= s[j]) {
              if (s[k] < s[j]) {</pre>
              } else {
10
11
12
13
              j++;
          while (i <= k) {</pre>
              factorization.push_back(s.substr(i, j - k));
          }
18
19
      return factorization:
21 }
```

6.4 Manacher

O algoritmo de manacher encontra todos os palíndromos de uma string em $\mathcal{O}(n)$. Para cada centro, ele conta quantos palíndromos de tamanho ímpar e par existem (nos vetores d1 e d2 respectivamente). O método solve computa os palíndromos e retorna o número de substrings palíndromas. O método query retorna se a substring s[i...j] é palíndroma em $\mathcal{O}(1)$.

```
Codigo: manacher.cpp
 1 struct Manacher {
      int n:
      11 count;
      vector<int> d1, d2, man;
      11 solve(const string &s) {
          n = int(s.size()), count = 0;
          solve_odd(s);
          solve_even(s);
          man.assign(2 * n - 1, 0);
          for (int i = 0; i < n; i++) {</pre>
              man[2 * i] = 2 * d1[i] - 1;
11
          }
12
          for (int i = 0; i < n - 1; i++) {</pre>
```

6.5. PATRICIA TREE

```
man[2 * i + 1] = 2 * d2[i + 1];
14
15
16
          return count;
17
      void solve odd(const string &s) {
18
          d1.assign(n, 0);
19
          for (int i = 0, l = 0, r = -1; i < n; i++) {
              int k = (i > r) ? 1 : min(d1[1 + r - i], r - i + 1);
              while (0 \le i - k \&\& i + k \le n \&\& s[i - k] == s[i + k]) {
24
              count += d1[i] = k--;
              if (i + k > r) {
                 1 = i - k, r = i + k;
          }
30
      void solve even(const string &s) {
31
          d2.assign(n, 0);
32
          for (int i = 0, l = 0, r = -1; i < n; i++) {
              int k = (i > r) ? 0 : min(d2[1 + r - i + 1], r - i + 1);
              while (0 \le i - k - 1 \&\& i + k \le n \&\& s[i - k - 1] == s[i + k]) {
                  k++:
              }
37
              count += d2[i] = k--;
              if (i + k > r) {
                 1 = i - k - 1, r = i + k;
          }
43
      bool querv(int i, int i) {
44
          assert(man.size());
45
          return man[i + j] >= j - i + 1;
48 } mana;
```

6.5 Patricia Tree

Estrutura de dados que armazena strings e permite consultas por prefixo, muito similar a uma Trie. Todas as operações são $\mathcal{O}(|s|)$.

Obs: Não aceita elementos repetidos.

Implementação PB-DS, extremamente curta e confusa:

Exemplo de uso:

```
patricia_tree pat;
pat.insert("exemplo");
pat.erase("exemplo");
pat.find("exemplo") != pat.end(); // verifica existência
auto match = pat.prefix_range("ex"); // pega palavras que começam com "ex"
for (auto it = match.first; it != match.second; ++it); // percorre match
pat.lower_bound("ex"); // menor elemento lexicográfico maior ou igual a "ex"
pat.upper_bound("ex"); // menor elemento lexicográfico maior que "ex"

Codigo: patricia_tree.cpp

#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/trie_policy.hpp>

using namespace __gnu_pbds;
typedef trie<string, null_type, trie_string_access_traits<>, pat_trie_tag,
trie_prefix_search_node_update>
patricia_tree;
```

6.6 Prefix Function KMP

6.6.1 Automato KMP

O autômato de KMP computa em $\mathcal{O}(|s|\cdot\Sigma)$ a função de transição de uma string, que é definida por:

$$nxt[i][c] = max\{k \mid s[0,k) = s(i-k,i-1]c\}$$

Em outras palavras, nxt[i][c] é o tamanho do maior prefixo de s que é sufixo de s[0, i-1]c.

O autômato de KMP é útil para mútiplos pattern matchings, ou seja, dado um padrão t, encontrar todas as ocorrências de t em várias strings s_1, s_2, \ldots, s_k , em $\mathcal{O}(|t| + \sum |s_i|)$. O método matching faz isso.

Obs: utiliza o código do KMP.

6.7. SUFFIX ARRAY

```
Codigo: aut kmp.cpp
 1 struct AutKMP {
       vector<vector<int>> nxt;
      void setString(string s) {
          s += '#':
          nxt.assign(s.size(), vector<int>(26));
          vector<int> p = pi(s);
          for (int c = 0; c < 26; c++) {</pre>
              nxt[0][c] = ('a' + c == s[0]);
          for (int i = 1; i < int(s.size()); i++) {</pre>
              for (int c = 0; c < 26; c++) {</pre>
11
                  nxt[i][c] = ('a' + c == s[i]) ? i + 1 : nxt[p[i - 1]][c];
12
              }
          }
14
15
      vector<int> matching(string &s, string &t) {
16
          vector<int> match:
17
          for (int i = 0, j = 0; i < int(s.size()); i++) {</pre>
18
              j = nxt[j][s[i] - 'a'];
              if (j == int(t.size())) {
                  match.push_back(i - j + 1);
22
          }
          return match;
26 } aut;
```

6.6.2 KMP

O algoritmo de Knuth-Morris-Pratt (KMP) computa em $\mathcal{O}(|s|)$ a Prefix Function de uma string, cuja definição é dada por:

$$p[i] = \max\{k \mid s[0,k) = s(i-k,i]\}$$

Em outras palavras, p[i] é o tamanho do maior prefixo de s que é sufixo próprio de s[0, i].

O KMP é útil para pattern matching, ou seja, encontrar todas as ocorrências de uma string t em uma string s, como faz a função matching em O(|s| + |t|).

Codigo: kmp.cpp

```
vector<int> pi(string &s) {
       vector<int> p(s.size());
      for (int i = 1, j = 0; i < int(s.size()); i++) {</pre>
          while (j > 0 \&\& s[i] != s[j]) {
              j = p[j - 1];
          if (s[i] == s[j]) {
              j++;
          }
          p[i] = j;
10
11
      return p;
12
13 }
14
15 vector<int> matching(string &s, string &t) { // s = texto, t = padrao
       vector<int> p = pi(t), match;
       for (int i = 0, j = 0; i < (int)s.size(); i++) {</pre>
          while (j > 0 \&\& s[i] != t[j]) {
18
              j = p[j - 1];
19
20
          if (s[i] == t[j]) {
21
22
23
          if (j == (int)t.size()) {
              match.push_back(i - j + 1);
              j = p[j - 1];
          }
27
       return match;
30 }
```

6.7 Suffix Array

Estrutura que conterá inteiros que representam os índices iniciais de todos os sufixos ordenados de uma determinada string.

Também constrói a tabela LCP (Longest Common Prefix).

- * Complexidade de tempo (Pré-Processamento): $\mathcal{O}(|S| \cdot \log(|S|))$
- * Complexidade de tempo (Contar ocorrências de S em T): $\mathcal{O}(|S| \cdot \log(|T|))$

6.7. SUFFIX ARRAY

```
Codigo: suffix array busca.cpp
pair<int, int> busca(string &t, int i, pair<int, int> &range) {
       int esq = range.first, dir = range.second, L = -1, R = -1;
      while (esq <= dir) {</pre>
          int mid = (esq + dir) / 2;
          if (s[sa[mid] + i] == t[i]) {
              L = mid;
          if (s[sa[mid] + i] < t[i]) {</pre>
              esq = mid + 1;
          } else {
              dir = mid - 1;
11
12
13
      esq = range.first, dir = range.second;
14
      while (esq <= dir) {</pre>
          int mid = (esq + dir) / 2;
          if (s[sa[mid] + i] == t[i]) {
17
              R = mid;
          }
          if (s[sa[mid] + i] <= t[i]) {</pre>
              esq = mid + 1;
21
          } else {
22
              dir = mid - 1;
25
26
      return {L, R};
28 // count ocurences of s on t
29 int busca_string(string &t) {
      pair<int, int> range = \{0, n - 1\};
      for (int i = 0; i < t.size(); i++) {</pre>
31
          range = busca(t, i, range);
32
          if (range.first == -1) {
33
              return 0;
34
          }
35
      return range.second - range.first + 1;
37
38 }
Codigo: suffix array.cpp
1 const int MAX_N = 5e5 + 5;
3 struct suffix_array {
       string s;
```

```
int n, sum, r, ra[MAX_N], sa[MAX_N], auxra[MAX_N], auxsa[MAX_N], c[MAX_N],
           lcp[MAX_N];
       void counting_sort(int k) {
          memset(c, 0, sizeof(c));
          for (int i = 0: i < n: i++) {</pre>
              c[(i + k < n) ? ra[i + k] : 0]++;
10
          for (int i = sum = 0; i < max(256, n); i++) {</pre>
11
              sum += c[i], c[i] = sum - c[i];
12
          }
13
          for (int i = 0; i < n; i++) {</pre>
              auxsa[c[sa[i] + k < n ? ra[sa[i] + k] : 0]++] = sa[i];
          }
16
          for (int i = 0; i < n; i++) {</pre>
17
              sa[i] = auxsa[i];
          }
19
20
21
       void build sa() {
22
          for (int k = 1; k < n; k <<= 1) {
              counting_sort(k);
23
              counting_sort(0);
24
              auxra[sa[0]] = r = 0;
25
              for (int i = 1; i < n; i++) {
26
                  auxra[sa[i]] =
                      (ra[sa[i]] == ra[sa[i - 1]] \&\& ra[sa[i] + k] == ra[sa[i - 1] + k])
                          ? r
29
30
                          : ++r;
31
              for (int i = 0; i < n; i++) {</pre>
32
                  ra[i] = auxra[i];
33
34
              if (ra[sa[n - 1]] == n - 1) {
35
                  break:
              }
37
          }
38
      void build_lcp() {
          for (int i = 0, k = 0; i < n - 1; i++) {
41
              int j = sa[ra[i] - 1];
42
43
              while (s[i + k] == s[j + k]) {
44
                  k++;
45
              lcp[ra[i]] = k;
              if (k) {
47
                  k--;
48
49
          }
50
```

6.8. TRIE

```
69
```

```
51  }
52  void set_string(string _s) {
53     s = _s + '$';
54     n = s.size();
55     for (int i = 0; i < n; i++) {
56         ra[i] = s[i], sa[i] = i;
57     }
58     build_sa();
59     build_lcp();
60     // for (int i = 0; i < n; i++)
61     // printf("%2d: %s\n", sa[i], s.c_str() +
62     // sa[i]);
63    }
64    int operator[](int i) { return sa[i]; }
65 } sa;</pre>
```

6.8 Trie

Estrutura que guarda informações indexadas por palavra.

Útil encontrar todos os prefixos inseridos anteriormente de uma palavra específica.

- * Complexidade de tempo (Update): $\mathcal{O}(|S|)$
- * Complexidade de tempo (Consulta de palavra): $\mathcal{O}(|S|)$

Codigo: trie.cpp

```
int get_value(string &s) {
    int id = 0;
    for (char c : s) {
        if (!trie[id].count(c)) {
            return -1;
        }
        id = trie[id][c];
    }
    return value[id];
}
```

6.9 Z function

O algoritmo abaixo computa o vetor Z de uma string, definido por:

```
z[i] = \max\{k \mid s[0,k) = s[i,i+k)\}
```

Em outras palavras, z[i] é o tamanho do maior prefixo de s é prefixo de s[i,|s|-1].

 $\acute{\rm E}$ muito semelhante ao KMP em termos de aplicações. Usado principalmente para pattern matching.

Codigo: z.cpp

```
vector<int> get_z(string &s) {
      int n = (int)s.size();
      vector<int> z(n);
      for (int i = 1, l = 0, r = 0; i < n; i++) {
          if (i <= r) {</pre>
              z[i] = min(r - i + 1, z[i - 1]);
          while (i + z[i] < n \&\& s[i + z[i]] == s[z[i]]) {
              z[i]++;
10
          if (i + z[i] - 1 > r) {
              r = i + z[i] - 1;
13
              l = i;
          }
14
15
      return z;
```

6.9. Z FUNCTION 70

Capítulo 7

Paradigmas

7.1 All Submasks

Percorre todas as submáscaras de uma máscara.

* Complexidade de tempo: $\mathcal{O}(3^N)$

 ${\bf Codigo:\ all_submask.cpp}$

```
int mask;
for (int sub = mask; sub; sub = (sub - 1) & mask) { }
```

7.2 Busca Binaria Paralela

Faz a busca binária para múltiplas consultas quando a busca binária é muito pesada.

• Complexidade de tempo: $\mathcal{O}((N+Q)\log(N)\cdot\mathcal{O}(F))$, onde N é o tamanho do espaço de busca, Q é o número de consultas, e $\mathcal{O}(F)$ é o custo de avaliação da função.

 ${\bf Codigo:\ busca_binaria_paralela.cpp}$

```
2 namespace parallel_binary_search {
      typedef tuple<int, int, long long, long long> query; //{value, id, l, r}
      vector<query> queries[1123456]; // pode ser um mapa se
                                                       // for muito esparso
      long long ans[1123456]; // definir pro tamanho
                                                       // das queries
      long long 1, r, mid;
      int id = 0:
       void set_lim_search(long long n) {
          1 = 0:
          r = n;
          mid = (1 + r) / 2;
13
15
      void add_query(long long v) { queries[mid].push_back({v, id++, 1, r}); }
16
17
       void advance_search(long long v) {
18
          // advance search
19
20
21
      bool satisfies(long long mid, int v, long long l, long long r) {
22
          // implement the evaluation
23
      }
24
25
      bool get_ans() {
27
          // implement the get ans
29
      void parallel_binary_search(long long 1, long long r) {
```

7.3. BUSCA TERNARIA 72

```
31
          bool go = 1;
32
          while (go) {
              go = 0;
              int i = 0; // outra logica se for usar
                        // um mapa
              for (auto &vec : queries) {
                 advance_search(i++);
                 for (auto q : vec) {
                     auto [v, id, 1, r] = q;
                     if (1 > r) {
                         continue;
                     }
                     go = 1;
                     // return while satisfies
                     if (satisfies(i, v, l, r)) {
                         ans[i] = get_ans();
                        long long mid = (i + 1) / 2;
                         queries[mid] = query(v, id, 1, i - 1);
                    } else {
                        long long mid = (i + r) / 2;
                         queries[mid] = query(v, id, i + 1, r);
                     }
                 vec.clear();
57
58
60 } // namespace name
```

7.3 Busca Ternaria

Encontra um ponto ótimo em uma função que pode ser separada em duas funções estritamente monotônicas (por exemplo, parábolas).

• Complexidade de tempo: $\mathcal{O}(\log(N) \cdot \mathcal{O}(\text{eval}))$, onde N é o tamanho do espaço de busca e $\mathcal{O}(\text{eval})$ é o custo de avaliação da função.

Busca Ternária em Espaço Discreto

Encontra um ponto ótimo em uma função que pode ser separada em duas funções estritamente monotônicas (por exemplo, parábolas).

Versão para espaços discretos.

• Complexidade de tempo: $\mathcal{O}(\log(N) \cdot \mathcal{O}(\text{eval}))$, onde N é o tamanho do espaço de busca e $\mathcal{O}(\text{eval})$ é o custo de avaliação da função.

```
Codigo: busca ternaria.cpp
 2 double eval(double mid) {
       // implement the evaluation
 6 double ternary_search(double 1, double r) {
      int k = 100;
      while (k--) {
          double step = (1 + r) / 3;
          double mid_1 = 1 + step;
10
          double mid_2 = r - step;
          // minimizing. To maximize use >= to
13
          // compare
          if (eval(mid 1) <= eval(mid 2)) {</pre>
             r = mid_2;
17
          } else {
18
             l = mid_1;
19
20
      return 1;
Codigo: busca ternaria discreta.cpp
 2 long long eval(long long mid) {
      // implement the evaluation
 4 }
6 long long discrete_ternary_search(long long l, long long r) {
      long long ans = -1;
      r--; // to not space r
```

7.4. CONVEX HULL TRICK

```
9  while (1 <= r) {
10    long long mid = (1 + r) / 2;
11
12    // minimizing. To maximize use >= to
13    // compare
14    if (eval(mid) <= eval(mid + 1)) {
15         ans = mid;
16         r = mid - 1;
17    } else {
1 = mid + 1;
19    }
20    }
21    return ans;
22 }</pre>
```

7.4 Convex Hull Trick

Otimização de DP onde se mantém as retas que formam um Convex Hull em uma estrutura que permite consultar qual o melhor valor para um determinado x.

Só funciona quando as retas são monotônicas. Caso não sejam, usar LiChao Tree para guardar as retas.

Complexidade de tempo:

- Inserir reta: $\mathcal{O}(1)$ amortizado
- Consultar x: $\mathcal{O}(\log(N))$
- Consultar x quando x tem crescimento monotônico: $\mathcal{O}(1)$

Codigo: Convex Hull Trick.cpp

```
1 const ll INF = 1e18 + 18;
2 bool op(ll a, ll b) {
3    return a >= b; // either >= or <=
4 }
5 struct line {
6    ll a, b;</pre>
```

```
11 get(11 x) { return a * x + b; }
      11 intersect(line 1) {
          return (l.b - b + a - l.a) / (a - l.a); // rounds up for integer
                                               // only
11
13 deque<pair<line, ll>> fila;
14 void add_line(ll a, ll b) {
      line nova = {a, b};
      if (!fila.empty() && fila.back().first.a == a && fila.back().first.b == b) {
17
18
      while (!fila.empty() && op(fila.back().second, nova.intersect(fila.back().first)))
          fila.pop_back();
21
      11 x = fila.empty() ? -INF : nova.intersect(fila.back().first);
22
      fila.emplace back(nova. x):
23
25 ll get_binary_search(ll x) {
      int esq = 0, dir = fila.size() - 1, r = -1;
      while (esq <= dir) {</pre>
          int mid = (esq + dir) / 2;
          if (op(x, fila[mid].second)) {
              esq = mid + 1;
             r = mid;
31
32
          } else {
              dir = mid - 1;
34
      return fila[r].first.get(x);
38 // O(1), use only when QUERIES are monotonic!
39 11 get(11 x) {
       while (fila.size() >= 2 && op(x, fila[1].second)) {
          fila.pop_front();
41
42
      return fila.front().first.get(x);
44 }
```

7.5 DP de Permutacao

Otimização do problema do Caixeiro Viajante

7.6. DIVIDE AND CONQUER

* Complexidade de tempo: $\mathcal{O}(n^2 * 2^n)$

Para rodar a função basta setar a matriz de adjacência 'dist' e chamar solve(0,0,n).

```
Codigo: tsp dp.cpp
const int lim = 17; // setar para o maximo de itens
2 long double dist[lim][lim]; // eh preciso dar as
                             // distancias de n para n
4 long double dp[lim][1 << lim];</pre>
6 int limMask = (1 << lim) - 1: // 2**(maximo de itens) - 1
7 long double solve(int atual, int mask, int n) {
      if (dp[atual][mask] != 0) {
          return dp[atual][mask];
10
      if (mask == (1 << n) - 1) {
11
          return dp[atual][mask] = 0; // o que fazer quando
12
                                    // chega no final
13
      }
14
15
      long double res = 1e13; // pode ser maior se precisar
      for (int i = 0; i < n; i++) {</pre>
17
          if (!(mask & (1 << i))) {</pre>
18
              long double aux = solve(i, mask | (1 << i), n);</pre>
19
              if (mask) {
                  aux += dist[atual][i];
21
              res = min(res, aux);
23
24
25
      return dp[atual][mask] = res;
26
27 }
```

7.6 Divide and Conquer

Otimização para DP de prefixo quando se pretende separar o vetor em K subgrupos.

É preciso fazer a função query(i, j) que computa o custo do subgrupo

i, j

* Complexidade de tempo: $\mathcal{O}(n \cdot k \cdot \log(n) \cdot \mathcal{O}(\text{query}))$

Divide and Conquer com Query on demand

Usado para evitar queries pesadas ou o custo de pré-processamento.

É preciso fazer as funções da estrutura **janela**, eles adicionam e removem itens um a um como uma janela flutuante.

* Complexidade de tempo: $\mathcal{O}(n \cdot k \cdot \log(n) \cdot \mathcal{O}(\text{update da janela}))$

Codigo: dc.cpp

```
1 namespace DC {
       vi dp_before, dp_cur;
       void compute(int 1, int r, int optl, int optr) {
          if (1 > r) {
              return:
          int mid = (1 + r) >> 1:
          pair<11, int> best = {0, -1}; // {INF, -1} se quiser minimizar
          for (int i = optl; i <= min(mid, optr); i++) {</pre>
              best = max(best.
10
11
                        {(i ? dp_before[i - 1] : 0) + query(i, mid),
                         i}); // min() se quiser minimizar
12
13
          dp_cur[mid] = best.first;
14
          int opt = best.second;
          compute(l, mid - 1, optl, opt);
16
          compute(mid + 1, r, opt, optr);
17
18
19
      11 solve(int n. int k) {
20
          dp_before.assign(n + 5, 0);
21
          dp_cur.assign(n + 5, 0);
22
          for (int i = 0; i < n; i++) {</pre>
23
              dp_before[i] = query(0, i);
25
          for (int i = 1; i < k; i++) {</pre>
26
              compute(0, n - 1, 0, n - 1);
27
              dp_before = dp_cur;
          }
          return dp_before[n - 1];
30
31
32 };
```

```
Codigo: dc query on demand.cpp
1 namespace DC {
      struct range { // eh preciso definir a forma
                    // de calcular o range
          vi freq;
         11 sum = 0;
         int 1 = 0, r = -1:
          void back_l(int v) { // Mover o 'l' do range
                             // para a esquerda
             sum += freq[v];
             freq[v]++;
             1--:
11
12
          void advance_r(int v) { // Mover o 'r' do range
13
                                // para a direita
14
             sum += freq[v];
15
             freq[v]++;
16
             r++:
17
18
          void advance_l(int v) { // Mover o 'l' do range
19
                                // para a direita
20
             freq[v]--;
21
             sum -= freq[v];
22
             1++;
23
         }
24
          void back_r(int v) { // Mover o 'r' do range
25
                             // para a esquerda
26
             freq[v]--;
27
             sum -= freq[v];
             r--;
30
          void clear(int n) { // Limpar range
31
32
             1 = 0;
             r = -1:
33
             sum = 0;
34
             freq.assign(n + 5, 0);
35
      } s;
37
38
      vi dp_before, dp_cur;
39
      void compute(int 1, int r, int opt1, int optr) {
          if (1 > r) {
41
             return;
42
43
          int mid = (1 + r) >> 1;
44
          pair<11, int> best = {0, -1}; // {INF, -1} se quiser minimizar
45
46
```

```
while (s.1 < optl) {</pre>
47
              s.advance_l(v[s.1]);
48
          }
49
50
          while (s.1 > optl) {
              s.back_l(v[s.1 - 1]);
51
52
          while (s.r < mid) {</pre>
53
              s.advance_r(v[s.r + 1]);
54
55
          while (s.r > mid) {
56
              s.back_r(v[s.r]);
57
58
59
          vi removed;
60
          for (int i = optl; i <= min(mid, optr); i++) {</pre>
61
              best =
62
                  min(best,
63
                      {(i ? dp_before[i - 1] : 0) + s.sum, i}); // min() se quiser
64
                           minimizar
              removed.push_back(v[s.1]);
65
              s.advance_1(v[s.1]);
66
67
          for (int rem : removed) {
              s.back_1(v[s.1 - 1]);
69
          }
70
71
          dp_cur[mid] = best.first;
72
          int opt = best.second;
73
          compute(1, mid - 1, optl, opt);
74
          compute(mid + 1, r, opt, optr);
75
      }
76
77
      11 solve(int n, int k) {
78
79
          dp_before.assign(n, 0);
          dp_cur.assign(n, 0);
80
81
          s.clear(n):
          for (int i = 0; i < n; i++) {</pre>
82
              s.advance_r(v[i]);
83
              dp_before[i] = s.sum;
84
          }
85
          for (int i = 1; i < k; i++) {</pre>
86
              s.clear(n):
87
              compute(0, n - 1, 0, n - 1);
88
              dp_before = dp_cur;
89
          }
90
          return dp_before[n - 1];
91
92
```

93 };

7.7 Exponenciação de Matriz

Otimização para DP de prefixo quando o valor atual está em função dos últimos K valores já calculados.

* Complexidade de tempo: $\mathcal{O}(\log(n) * k^3)$

É preciso mapear a DP para uma exponenciação de matriz.

DP:

$$dp[n] = \sum_{i=1}^{k} c[i] \cdot dp[n-i]$$

Mapeamento:

$$\begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ c[k] & c[k-1] & c[k-2] & \dots & c[1] & 0 \end{pmatrix}^n \times \begin{pmatrix} dp[0] \\ dp[1] \\ dp[2] \\ \dots \\ dp[k-1] \end{pmatrix}$$

Exemplo de DP:

$$dp[i] = dp[i-1] + 2 \cdot i^2 + 3 \cdot i + 5$$

Nesses casos é preciso fazer uma linha para manter cada constante e potência do índice.

Mapeamento:

$$\begin{pmatrix} 1 & 5 & 3 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 2 & 1 \end{pmatrix}^n \times \begin{pmatrix} dp[0] \\ 1 \\ 1 \\ 1 \\ mant\'{e}m \ i \\ mant\'{e}m \ i^2 \end{pmatrix}$$
 mant\'{e}m i

Exemplo de DP:

$$dp[n] = c \times \prod_{i=1}^{k} dp[n-i]$$

Nesses casos é preciso trabalhar com o logaritmo e temos o caso padrão:

$$\log(dp[n]) = \log(c) + \sum_{i=1}^{k} \log(dp[n-i])$$

Se a resposta precisar ser inteira, deve-se fatorar a constante e os valores inicias e então fazer uma exponenciação para cada fator primo. Depois é só juntar a resposta no final.

```
return res;
17
18 }
19
20 mat operator^(mat a, ll k) {
      mat res(a.size(), vector<ll>(a.size()));
      for (int i = 0; i < a.size(); i++) {</pre>
22
          res[i][i] = 1:
      }
24
       while (k) {
25
          if (k & 1) {
27
              res = res * a;
          a = a * a;
          k >>= 1;
31
      return res;
33 }
35 // MUDA MUITO DE ACORDO COM O PROBLEMA
     LEIA COMO FAZER O MAPEAMENTO NO README
37 ll solve(ll exp, ll dim) {
       if (exp < dim) {</pre>
          return dp[exp];
39
      }
40
      T.assign(dim, vi(dim));
42
      // TO DO: Preencher a Matriz que vai ser
43
      // exponenciada T[0][1] = 1; T[1][0] = 1;
      // T[1][1] = 1;
      mat prod = T ^ exp;
47
       mat vec;
      vec.assign(dim, vi(1));
      for (int i = 0; i < dim; i++) {</pre>
51
          vec[i][0] = dp[i]; // Valores iniciais
52
53
      mat ans = prod * vec;
      return ans[0][0];
57 }
```

7.8 Mo

7.8.1 Mo Normal

Resolve queries complicadas Offline de forma rápida.

É preciso manter uma estrutura que adicione e remova elementos nas extremidades de um range (tipo janela).

A complexidade do run é $\mathcal{O}(Q*B+N^2/B)$, onde B é o tamanho do bloco.

Para $B = \sqrt{N}$, a complexidade é $\mathcal{O}((N+Q) * \sqrt{N})$.

Para $B = N/\sqrt{Q}$, a complexidade é $\mathcal{O}(N * \sqrt{Q})$.

```
Codigo: mo.cpp
```

```
1 typedef pair<int, int> ii;
 int block_sz; // Better if 'const';
 4 namespace mo {
      struct query {
          int 1, r, idx;
          bool operator<(query q) const {</pre>
              int _1 = 1 / block_sz;
              int _ql = q.l / block_sz;
              return ii(_1, (_1 & 1 ? -r : r)) < ii(_ql, (_ql & 1 ? -q.r : q.r));</pre>
          }
11
      };
12
      vector<query> queries;
14
       void build(int n) {
15
          block_sz = (int)sqrt(n);
16
          // TODO: initialize data structure
17
18
      inline void add_query(int 1, int r) {
19
          queries.push_back({1, r, (int)queries.size()});
20
21
      inline void remove(int idx) {
22
          // TODO: remove value at idx from data
23
          // structure
24
      }
25
      inline void add(int idx) {
          // TODO: add value at idx from data
```

```
// structure
20
      inline int get_answer() {
          // TODO: extract the current answer of the
31
          // data structure
          return 0;
33
34
      vector<int> run() {
36
          vector<int> answers(queries.size());
37
          sort(queries.begin(), queries.end());
          int L = 0:
          int R = -1;
          for (query q : queries) {
41
             while (L > q.1) {
                 add(--L);
             while (R < q.r) {
                 add(++R);
             while (L < q.1) {
                 remove(L++);
             while (R > q.r) {
                 remove(R--);
             answers[q.idx] = get_answer();
54
         }
          return answers;
57
58
59 };
```

7.8.2 Mo Update

Resolve queries complicadas Offline de forma rápida.

Permite que existam UPDATES PONTUAIS!

 $\acute{\rm E}$ preciso manter uma estrutura que adicione e remova elementos nas extremidades de um range (tipo janela).

• Complexidade de tempo: $\mathcal{O}(Q \cdot N^{2/3})$

```
Codigo: mo update.cpp
1 typedef pair<int, int> ii;
2 typedef tuple<int, int, int> iii;
3 int block sz: // Better if 'const':
4 vector<int> vec;
5 namespace mo {
      struct query {
          int 1, r, t, idx;
          bool operator<(query q) const {</pre>
              int _l = 1 / block_sz;
              int _r = r / block_sz;
              int _ql = q.1 / block_sz;
11
              int _qr = q.r / block_sz;
              return iii(_1, (_1 & 1 ? -_r : _r), (_r & 1 ? t : -t)) <
                    iii(_ql, (_ql & 1 ? -_qr : _qr), (_qr & 1 ? q.t : -q.t));
14
          }
15
      };
16
17
      vector<query> queries;
      vector<ii> updates;
18
19
      void build(int n) {
20
          block_sz = pow(1.4142 * n, 2.0 / 3);
21
          // TODO: initialize data structure
22
      }
23
      inline void add_query(int 1, int r) {
24
25
          queries.push_back({1, r, (int)updates.size(), (int)queries.size()});
26
      inline void add_update(int x, int v) { updates.push_back({x, v}); }
27
      inline void remove(int idx) {
          // TODO: remove value at idx from data
29
          // structure
30
31
      inline void add(int idx) {
32
          // TODO: add value at idx from data
33
          // structure
34
35
      inline void update(int 1, int r, int t) {
36
          auto &[x, v] = updates[t];
37
          if (1 <= x && x <= r) {</pre>
              remove(x);
          }
          swap(vec[x], v);
41
42
          if (1 <= x && x <= r) {</pre>
43
              add(x):
          }
```

```
45
      inline int get_answer() {
          // TODO: extract the current answer from
          // the data structure
          return 0;
49
      }
50
51
      vector<int> run() {
52
          vector<int> answers(queries.size());
53
          sort(queries.begin(), queries.end());
54
          int L = 0;
          int R = -1;
          int T = 0;
          for (query q : queries) {
             while (T < q.t) {</pre>
                 update(L, R, T++);
             while (T > q.t) {
                 update(L, R, --T);
63
              while (L > q.1) {
                 add(--L);
67
             while (R < q.r) {</pre>
                 add(++R);
             while (L < q.1) {
71
                 remove(L++);
              }
              while (R > q.r) {
74
                 remove(R--);
76
             answers[q.idx] = get_answer();
77
          }
          return answers;
79
81 };
```

Capítulo 8

Primitivas

8.1 Modular Int

O Mint é uma classe que representa um número inteiro módulo um **número primo**. Ela é útil para evitar overflow em operações de multiplicação e exponenciação, e também para facilitar a implementações.

Propriedades básicas de aritmética modular:

- $(a+b) \mod m \equiv (a \mod m + b \mod m) \mod m$
- $(a-b) \mod m \equiv (a \mod m b \mod m) \mod m$
- $(a \cdot b) \mod m \equiv (a \mod m \cdot b \mod m) \mod m$
- $a^b \mod m \equiv (a \mod m)^b \mod m$
- Adicionalmente, $a^b \mod m \equiv (a \mod m)^{b \mod \phi(m)} \mod m$, onde $\phi(m)$ é a função totiente de Euler.

Divisões funcionam um pouco diferente, para realizar a/b deve-se fazer $a \cdot b^{-1}$, onde b^{-1} é o **inverso multiplicativo** de b módulo m, tal que $b \cdot b^{-1} \equiv 1 \mod m$. No código, basta usar o operador de divisão normal pois a classe já está implementada com o inverso multiplicativo.

Para usar o Mint, basta declarar o tipo e usar como se fosse um inteiro normal. Exemplo:

```
1 const int MOD = 7; // MOD = 7 para fins de exemplo
Codigo: mint.cpp
1 template <int MOD> struct Mint {
      using m = Mint;
      Mint(): v(0) { }
      Mint(ll val) {
          v = (-MOD <= val && val < MOD) ? (int)val : (int)(val % MOD);</pre>
          v += (v < 0) * MOD:
      bool operator==(m &o) const { return v == o.v; }
      bool operator!=(m &o) const { return v != o.v; }
      bool operator<(m &o) const { return v < o.v; }</pre>
11
      m pwr(m b, ll e) {
          m res = 1;
13
14
          while (e > 0) {
              if (e & 1) {
                 res = res * b:
```

8.2. PONTO 2D 81

8.2 Ponto 2D

Estrutura que representa um ponto no plano cartesiano em duas dimensões. Suporta operações de soma, subtração, multiplicação por escalar, produto escalar, produto vetorial e distância euclidiana. Pode ser usado também para representar um vetor.

Codigo: point2d.cpp

```
1 template <typename T> struct point {
      Тх, у;
      point(T_x = 0, T_y = 0) : x(x), y(y) { }
      using p = point;
      p operator*(const T o) { return p(o * x, o * y); }
      p operator-(const p o) { return p(x - o.x, y - o.y); }
      p operator+(const p o) { return p(x + o.x, y + o.y); }
      T operator*(const p o) { return x * o.x + y * o.y; }
      T operator^(const p o) { return x * o.y - y * o.x; }
      bool operator<(const p o) const { return (x == o.x) ? y < o.y : x < o.x; }</pre>
      bool operator==(const p o) const { return (x == o.x) and (y == o.y); }
      bool operator!=(const p o) const { return (x != o.x) or (y != o.y); }
14
15
      T dist2(const p o) {
16
         T dx = x - o.x, dy = y - o.y;
          return dx * dx + dy * dy;
19
20
      friend ostream &operator<<(ostream &out, const p &a) {</pre>
```

```
22     return out << "(" << a.x << "," << a.y << ")";
23     }
24     friend istream &operator>>(istream &in, p &a) { return in >> a.x >> a.y; }
25     };
26
27 using pt = point<11>;
```

Capítulo 9

Geometria

9.1 Convex Hull

Algoritmo Graham's Scan para encontrar o fecho convexo de um conjunto de pontos em $\mathcal{O}(n \log n)$. Retorna os pontos do fecho convexo em sentido horário.

Definição: o fecho convexo de um conjunto de pontos é o menor polígono convexo que contém todos os pontos do conjunto.

Obs: utiliza a primitiva Ponto 2D.

Codigo: convex hull.cpp

```
1 bool ccw(pt &p, pt &a, pt &b, bool include_collinear = 0) {
2     pt p1 = a - p;
3     pt p2 = b - p;
4     return include_collinear ? (p2 ^ p1) <= 0 : (p2 ^ p1) < 0;
5 }
6
7 void sort_by_angle(vector<pt> &v) { // sorta o vetor por angulo em relacao ao pivo
8     pt p0 = *min_element(begin(v), end(v));
9     sort(begin(v), end(v), [&](pt &l, pt &r) { // sorta clockwise
10         pt p1 = 1 - p0;
11         pt p2 = r - p0;
12         ll c1 = p1 ^ p2;
13         return c1 < 0 || ((c1 == 0) && p0.dist2(1) < p0.dist2(r));
14     });
15 }
16</pre>
```

```
17 vector<pt> convex_hull(vector<pt> v, bool include_collinear = 0) {
18
      int n = size(v);
19
       sort_by_angle(v);
20
21
      if (include_collinear) {
22
          for (int i = n - 2; i \ge 0; i - 1) { // reverte o ultimo lado do poligono
23
24
              if (ccw(v[0], v[n - 1], v[i])) {
                  reverse(begin(v) + i + 1, end(v));
25
26
                  break;
27
28
31
      vector<pt> ch{v[0], v[1]};
32
       for (int i = 2; i < n; i++) {</pre>
33
          while (ch.size() > 2 &&
                 (ccw(ch.end()[-2], ch.end()[-1], v[i], !include_collinear)))
34
              ch.pop_back();
35
          ch.emplace_back(v[i]);
36
37
       return ch;
40 }
```

Capítulo 10

Matemática

10.1 Eliminação Gaussiana

10.1.1 Gauss

Método de eliminação gaussiana para resolução de sistemas lineares com coeficientes reais.

• Complexidade de tempo: $\mathcal{O}(n^3)$

```
Codigo: gauss.cpp
 const double EPS = 1e-9;
2 const int INF = 2; // it doesn't actually have to
                    // be infinity or a big number
5 int gauss(vector<vector<double>> a, vector<double> &ans) {
      int n = (int)a.size();
      int m = (int)a[0].size() - 1;
      vector<int> where(m, -1);
      for (int col = 0, row = 0; col < m && row < n; ++col) {</pre>
          int sel = row;
          for (int i = row; i < n; ++i) {</pre>
12
             if (abs(a[i][col]) > abs(a[sel][col])) {
13
14
                 sel = i;
```

```
if (abs(a[sel][col]) < EPS) {</pre>
18
               continue;
19
          for (int i = col; i <= m; ++i) {</pre>
               swap(a[sel][i], a[row][i]);
           where[col] = row;
          for (int i = 0; i < n; ++i) {</pre>
              if (i != row) {
                  double c = a[i][col] / a[row][col];
                  for (int j = col; j <= m; ++j) {</pre>
                      a[i][j] -= a[row][j] * c;
31
          }
32
           ++row;
34
       ans.assign(m, 0);
       for (int i = 0; i < m; ++i) {</pre>
          if (where[i] != -1) {
               ans[i] = a[where[i]][m] / a[where[i]][i];
40
      for (int i = 0; i < n; ++i) {</pre>
          double sum = 0;
          for (int j = 0; j < m; ++j) {
44
               sum += ans[j] * a[i][j];
45
```

10.1.2 Gauss Mod 2

Método de eliminação gaussiana para resolução de sistemas lineares com coeficientes em \mathbb{Z}_2 (inteiros módulo 2).

• Complexidade de tempo: $\mathcal{O}(n^3/32)$

```
Codigo: gauss mod2.cpp
1 const int N = 105;
2 const int INF = 2; // tanto faz
4 // n -> numero de equacoes, m -> numero de
5 // variaveis a[i][j] para j em [0, m - 1] ->
6 // coeficiente da variavel j na iesima equacao
7 // a[i][j] para j == m -> resultado da equacao da
8 // iesima linha ans -> bitset vazio, que retornara
9 // a solucao do sistema (caso exista)
int gauss(vector<bitset<N>> a, int n, int m, bitset<N> &ans) {
      vector<int> where(m, -1);
12
13
      for (int col = 0, row = 0; col < m && row < n; col++) {</pre>
14
         for (int i = row; i < n; i++) {</pre>
15
             if (a[i][col]) {
16
                 swap(a[i], a[row]);
17
                 break;
18
```

```
19
          if (!a[row][col]) {
              continue;
22
23
          where[col] = row;
24
          for (int i = 0; i < n; i++) {</pre>
              if (i != row && a[i][col]) {
27
                  a[i] ^= a[row];
28
29
          }
30
31
          row++;
32
33
       for (int i = 0; i < m; i++) {</pre>
34
          if (where[i] != -1) {
35
              ans[i] = a[where[i]][m] / a[where[i]][i];
37
38
       for (int i = 0; i < n; i++) {</pre>
39
          int sum = 0;
          for (int j = 0; j < m; j++) {
41
              sum += ans[i] * a[i][i];
43
          if (abs(sum - a[i][m]) > 0) {
44
              return 0; // Sem solucao
45
          }
      }
47
       for (int i = 0: i < m: i++) {</pre>
49
          if (where[i] == -1) {
50
              return INF; // Infinitas solucoes
51
52
      }
53
       return 1: // Unica solucao (retornada no
                // bitset ans)
56 }
```

10.2 Exponenciação Modular Rápida

Computa $(base^{exp}) \mod MOD$.

- Complexidade de tempo: $\mathcal{O}(log(exp))$.
- Complexidade de espaço: $\mathcal{O}(1)$

```
Codigo: exp_mod.cpp

1 ll exp_mod(ll base, ll exp) {
2     ll b = base, res = 1;
3     while (exp) {
4         if (exp & 1) {
5            res = (res * b) % MOD;
6         }
7         b = (b * b) % MOD;
8         exp /= 2;
9     }
10     return res;
11 }
```

10.3 FFT

Algoritmo que computa a Transformada Rápida de Fourier para convolução de polinômios.

Computa convolução (multiplicação) de polinômios em $\mathcal{O}(n*log(n))$, sendo n a soma dos graus dos polinômios.

Testado e sem erros de precisão com polinômios de grau até $3*10^5$ e constantes até 10^6 . Para convolução de inteiros sem erro de precisão, consultar a seção de NTT.

${\bf Codigo:\ fft.cpp}$

```
struct base {
    double a, b;
    base(double _a = 0, double _b = 0) : a(_a), b(_b) { }

    const base operator+(const base &c) const { return base(a + c.a, b + c.b); }

    const base operator-(const base &c) const { return base(a - c.a, b - c.b); }

    const base operator*(const base &c) const {
        return base(a * c.a - b * c.b, a * c.b + b * c.a);
    }
}
```

```
9 };
10 typedef vector<base> poly;
11 const double PI = acos(-1);
13 void fft(poly &a, bool inv = 0) {
       int n = int(a.size());
15
      for (int i = 0; i < n; i++) {</pre>
          int bit = n >> 1;
17
          int j = 0, k = i;
18
          while (bit > 0) {
              if (k & 1)
21
                  j += bit;
              k >>= 1:
22
              bit >>= 1;
          }
24
          if (i < j) {</pre>
25
26
              swap(a[i], a[j]);
27
      }
28
29
      double angle = 2 * PI / n * (inv ? -1 : 1);
      poly wn(n / 2);
31
      for (int i = 0; i < n / 2; i++) {</pre>
          wn[i] = {cos(angle * i), sin(angle * i)};
33
34
35
       for (int len = 2; len <= n; len <<= 1) {</pre>
          int aux = len / 2:
37
          int step = n / len;
38
          for (int i = 0: i < n: i += len) {
39
              for (int j = 0; j < aux; j++) {</pre>
                  base v = a[i + j + aux] * wn[step * j];
41
42
                  a[i + j + aux] = a[i + j] - v;
                  a[i + j] = a[i + j] + v;
44
          }
45
      for (int i = 0; (inv) && i < n; i++) {</pre>
47
          a[i].a /= n;
          a[i].b /= n;
49
50
51 }
52
53 vector<ll> multiply(vector<ll> &ta, vector<ll> &tb) {
       int n = int(ta.size()), m = int(tb.size());
       int t = n + m - 1:
```

```
int sz = 1;
       while (sz < t) {</pre>
          sz <<= 1;
60
       poly a(sz), b(sz), c(sz);
61
       for (int i = 0; i < sz; i++) {</pre>
          a[i] = i < n ? base((double)ta[i]) : base(0);</pre>
64
          b[i] = i < m ? base((double)tb[i]) : base(0);</pre>
65
66
       fft(a, 0), fft(b, 0);
       for (int i = 0; i < sz; i++) {</pre>
          c[i] = a[i] * b[i];
71
       fft(c, 1);
       vector<ll> res(sz);
       for (int i = 0; i < sz; i++) {</pre>
          res[i] = ll(round(c[i].a));
77
78
       while (int(res.size()) > 1 && res.back() == 0) {
79
           res.pop_back();
81
82
       return res;
84 }
```

10.4 Fatoração

Algortimos para fatorar um número.

Fatoração Simples

Fatora um número N.

• Complexidade de tempo: $\mathcal{O}(\sqrt{n})$

Crivo Linear

Pré-computa todos os fatores primos até MAX.

Utilizado para fatorar um número N menor que MAX.

- Complexidade de tempo: Pré-processamento $\mathcal{O}(MAX)$
- Complexidade de tempo: Fatoraração $\mathcal{O}(quantidade de fatores de N)$
- Complexidade de espaço: $\mathcal{O}(MAX)$

Fatoração Rápida

Utiliza Pollar-Rho e Miller-Rabin (ver em Primos) para fatorar um número N.

• Complexidade de tempo: $\mathcal{O}(N^{1/4} \cdot log(N))$

Pollard-Rho

Descobre um divisor de um número N.

- Complexidade de tempo: $\mathcal{O}(N^{1/4} \cdot log(N))$
- Complexidade de espaço: $\mathcal{O}(N^{1/2})$

Codigo: naive factorize.cpp

```
Codigo: linear sieve factorize.cpp
1 namespace sieve {
      const int MAX = 1e4;
      int lp[MAX + 1], factor[MAX + 1];
      vector<int> pr;
      void build() {
          for (int i = 2; i <= MAX; ++i) {</pre>
             if (lp[i] == 0) {
                 lp[i] = i;
                 pr.push_back(i);
             }
10
             for (int j = 0; i * pr[j] <= MAX; ++j) {</pre>
11
                 lp[i * pr[j]] = pr[j];
                 factor[i * pr[j]] = i;
                 if (pr[j] == lp[i]) {
                     break;
17
18
19
      vector<int> factorize(int x) {
20
          if (x < 2) {
21
              return {};
22
         }
23
          vector<int> v;
          for (int lpx = lp[x]; x >= lpx; x = factor[x]) {
              v.emplace_back(lp[x]);
          }
27
          return v;
29
30 }
Codigo: pollard rho.cpp
1 long long mod_mul(long long a, long long b, long long m) { return (__int128)a * b % m;
3 long long pollard_rho(long long n) {
      auto f = [n](long long x) {
          return mod_mul(x, x, n) + 1;
      long long x = 0, y = 0, t = 30, prd = 2, i = 1, q;
      while (t++ % 40 || __gcd(prd, n) == 1) {
         if (x == v) {
             x = ++i, y = f(x);
10
         }
11
```

```
if ((q = mod_mul(prd, max(x, y) - min(x, y), n))) {
          }
          x = f(x), y = f(f(y));
15
16
      return __gcd(prd, n);
17
18 }
Codigo: fast factorize.cpp
 1 // usa miller_rabin.cpp!! olhar em
 2 // matematica/primos usa pollar_rho.cpp!! olhar em
 3 // matematica/fatoracao
 5 vector<long long> factorize(long long n) {
      if (n == 1) {
          return {};
      if (miller_rabin(n)) {
          return {n};
10
11
      long long x = pollard_rho(n);
      auto 1 = factorize(x), r = factorize(n / x);
      1.insert(l.end(), all(r));
15
      return 1;
16 }
```

10.5 GCD

Algoritmo Euclides para computar o Máximo Divisor Comum (MDC em português; GCD em inglês), e variações.

Read in [English](README.en.md)

Algoritmo de Euclides

Computa o Máximo Divisor Comum (MDC em português; GCD em inglês).

• Complexidade de tempo: $\mathcal{O}(log(n))$

Mais demorado que usar a função do compilador C++ __gcd(a,b).

10.6. INVERSO MODULAR

Algoritmo de Euclides Estendido

Algoritmo extendido de euclides que computa o Máximo Divisor Comum e os valores x e y tal que a * x + b * y = gcd(a, b).

• Complexidade de tempo: $\mathcal{O}(log(n))$

```
Codigo: gcd.cpp
 1 long long gcd(long long a, long long b) { return (b == 0) ? a : gcd(b, a % b); }
Codigo: extended gcd.cpp
 int extended_gcd(int a, int b, int &x, int &y) {
      x = 1, y = 0;
      int x1 = 0, y1 = 1;
      while (b) {
          int q = a / b;
          tie(x, x1) = make_tuple(x1, x - q * x1);
          tie(y, y1) = make_tuple(y1, y - q * y1);
         tie(a, b) = make_tuple(b, a - q * b);
      }
      return a;
11 }
Codigo: extended gcd recursive.cpp
 1 ll extended_gcd(ll a, ll b, ll &x, ll &y) {
      if (b == 0) {
         x = 1;
         y = 0;
          return a;
      } else {
         11 g = extended_gcd(b, a % b, y, x);
         y = a / b * x;
         return g;
     }
11 }
```

10.6 Inverso Modular

Algoritmos para calcular o inverso modular de um número. O inverso modular de um inteiro a é outro inteiro x tal que $a \cdot x \equiv 1 \pmod{MOD}$

O inverso modular de um inteiro a é outro inteiro x tal que a*x é congruente a 1 mod MOD.

Inverso Modular

Calcula o inverso modular de a.

Utiliza o algoritmo Exp Mod, portanto, espera-se que MOD seja um número primo.

- * Complexidade de tempo: $\mathcal{O}(\log(\text{MOD}))$.
- * Complexidade de espaço: $\mathcal{O}(1)$.

Inverso Modular por MDC Estendido

Calcula o inverso modular de a.

Utiliza o algoritmo Euclides Extendido, portanto, espera-se que MOD seja coprimo com a.

Retorna −1 se essa suposição for quebrada.

- * Complexidade de tempo: $\mathcal{O}(\log(\text{MOD}))$.
- * Complexidade de espaço: $\mathcal{O}(1)$.

Inverso Modular para 1 até MAX

Calcula o inverso modular para todos os números entre 1 e MAX.

Espera-se que MOD seja primo.

- * Complexidade de tempo: $\mathcal{O}(MAX)$.
- * Complexidade de espaço: $\mathcal{O}(\text{MAX})$.

Inverso Modular para todas as potências

Seja b um número inteiro qualquer.

Calcula o inverso modular para todas as potências de b entre b^0 e $b^M AX$.

if (g == 1) {

return (x % m + m) % m;

É necessário calcular antecipadamente o inverso modular de b, para 2 é sempre (MOD+1)/2.Espera-se que MOD seja coprimo com b. * Complexidade de tempo: $\mathcal{O}(MAX)$. * Complexidade de espaço: $\mathcal{O}(MAX)$. Codigo: modular inverse linear.cpp 1 ll inv[MAX]; 3 void compute_inv(const ll m = MOD) { inv[1] = 1;for (int i = 2; i < MAX; i++) {</pre> inv[i] = m - (m / i) * inv[m % i] % m; 8 } Codigo: modular inverse pow.cpp 1 const ll INVB = (MOD + 1) / 2; // Modular inverse of the base, // for 2 it is (MOD+1)/24 ll inv[MAX]; // Modular inverse of b^i 6 void compute_inv() { inv[0] = 1: for (int i = 1; i < MAX; i++) {</pre> inv[i] = inv[i - 1] * INVB % MOD; 11 } Codigo: modular inverse.cpp 1 ll inv(ll a) { return exp_mod(a, MOD - 2); } Codigo: modular inverse coprime.cpp int inv(int a) { int x, y; int g = extended_gcd(a, MOD, x, y);

```
7    return -1;
8 }
```

10.7 NTT

Computa a multiplicação de polinômios com coeficientes inteiros módulo um número primo.

Computa multiplicação de polinômios; Somente para inteiros.

• Complexidade de tempo: $\mathcal{O}(N \cdot \log(N))$

Constantes finais devem ser menores do que 10^9 .

Para constantes entre 10⁹ e 10¹⁸ é necessário codificar também [big_convolution](big_convoluti

```
Codigo: ntt.cpp
 1 typedef long long ll;
2 typedef vector<ll> poly;
 4 ll mod[3] = {998244353LL, 1004535809LL, 1092616193LL};
 5 11 root[3] = {102292LL, 12289LL, 23747LL};
 6 ll root_1[3] = {116744195LL, 313564925LL, 642907570LL};
 7 ll root_pw[3] = {1LL << 23, 1LL << 21, 1LL << 21};</pre>
 9 ll modInv(ll b, ll m) {
      11 e = m - 2;
      ll res = 1:
      while (e) {
          if (e & 1) {
             res = (res * b) % m;
15
          e /= 2;
          b = (b * b) \% m:
18
      return res;
20 }
22 void ntt(poly &a, bool invert, int id) {
```

```
ll n = (ll)a.size(), m = mod[id];
       for (11 i = 1, j = 0; i < n; ++i) {
          ll bit = n \gg 1;
          for (; j >= bit; bit >>= 1) {
              j -= bit;
28
          j += bit;
          if (i < j) {</pre>
              swap(a[i], a[j]);
31
32
33
      for (11 len = 2, wlen; len <= n; len <<= 1) {</pre>
34
          wlen = invert ? root_1[id] : root[id];
          for (ll i = len; i < root_pw[id]; i <<= 1) {</pre>
              wlen = (wlen * wlen) % m;
          for (ll i = 0; i < n; i += len) {</pre>
              11 w = 1:
              for (11 j = 0; j < len / 2; j++) {
41
                  ll u = a[i + j], v = (a[i + j + len / 2] * w) % m;
                  a[i + j] = (u + v) \% m;
                  a[i + j + len / 2] = (u - v + m) \% m;
                  w = (w * wlen) % m:
          }
      if (invert) {
          11 inv = modInv(n, m);
          for (11 i = 0: i < n: i++) {</pre>
              a[i] = (a[i] * inv) % m;
54
55 }
57 poly convolution(poly a, poly b, int id = 0) {
      11 n = 1LL, len = (1LL + a.size() + b.size());
      while (n < len) {</pre>
          n *= 2;
60
      }
61
      a.resize(n);
62
      b.resize(n);
      ntt(a, 0, id);
      ntt(b, 0, id);
      poly answer(n);
      for (11 i = 0; i < n; i++) {</pre>
67
          answer[i] = (a[i] * b[i]);
```

```
ntt(answer, 1, id);
      return answer;
71
72 }
Codigo: big convolution.cpp
2 11 mod_mul(11 a, 11 b, 11 m) { return (__int128)a * b % m; }
 3 ll ext_gcd(ll a, ll b, ll &x, ll &y) {
      if (!b) {
          x = 1;
          y = 0;
          return a;
      } else {
          ll g = ext_gcd(b, a \% b, y, x);
          y = a / b * x;
11
          return g;
12
13 }
14
15 // convolution mod 1.097.572.091.361.755.137
16 poly big_convolution(poly a, poly b) {
      poly r0, r1, answer;
      r0 = convolution(a, b, 1);
      r1 = convolution(a, b, 2);
19
      ll s. r. p = mod[1] * mod[2]:
21
      ext_gcd(mod[1], mod[2], r, s);
22
23
       answer.resize(r0.size());
24
      for (int i = 0; i < (int)answer.size(); i++) {</pre>
25
          answer[i] = (mod_mul((s * mod[2] + p) \% p, r0[i], p) +
26
                      mod_mul((r * mod[1] + p) % p, r1[i], p) + p) %
27
28
                     p;
      }
29
      return answer;
31 }
```

10.8 Primos

Algortimos relacionados a números primos.

Crivo de Eratóstenes

Computa a primalidade de todos os números até N, quase tão rápido quanto o crivo linear.

Demora 1 segundo para LIM igual a $3 * 10^7$.

Miller-Rabin

Teste de primalidade garantido para números até 10^24 .

• Complexidade de tempo: $\mathcal{O}(log(N))$

Teste Ingênuo

Computa a primalidade de um número N.

• Complexidade de tempo: $\mathcal{O}(\sqrt{N})$

Codigo: sieve.cpp

```
vector<bool> sieve(int n) {
      vector<bool> is_prime(n + 5, true);
      is_prime[0] = false;
      is_prime[1] = false;
      for (int i = 2; i * i <= n; i++) {</pre>
         if (is_prime[i]) {
             for (int j = i * i; j < n; j += i) {</pre>
                 is_prime[j] = false;
         }
10
11
      return is_prime;
13 }
Codigo: naive is prime.cpp
1 bool is_prime(int n) {
      for (int d = 2; d * d <= n; d++) {</pre>
         if (n % d == 0) {
```

```
return false;
      }
      return true;
 8 }
Codigo: miller rabin.cpp
 1 ll power(ll base, ll e, ll mod) {
      ll result = 1;
      base %= mod;
       while (e) {
          if (e & 1) {
              result = (__int128)result * base % mod;
          base = (__int128)base * base % mod;
          e >>= 1:
10
       return result;
11
12 }
13
14 bool is_composite(ll n, ll a, ll d, int s) {
      11 x = power(a, d, n);
      if (x == 1 || x == n - 1) {
          return false:
17
18
      for (int r = 1; r < s; r++) {
19
          x = (_int128)x * x % n;
          if (x == n - 1) {
21
              return false;
22
23
          }
24
25
      return true;
26 }
27
28 bool miller rabin(ll n) {
       if (n < 2) {
          return false;
31
      11 d = n - 1;
      while ((d \& 1) == 0) {
          d >>= 1, ++r;
35
36
      for (int a: {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41}) {
37
          if (n == a) {
              return true;
```

```
if (is_composite(n, a, d, r)) {
    return false;
}

return true;
}
```

10.9 Sum of floor (n div i)

Esse código computa, em $\mathcal{O}(\sqrt{n})$, o seguinte somatório:

$$\sum_{i=1}^{n} \left\lfloor \frac{n}{i} \right\rfloor$$

```
Codigo: sum_of_floor.cpp

1  const int MOD = 1e9 + 7;

2  
3  long long sumoffloor(long long n) {
4     long long answer = 0, i;
5     for (i = 1; i * i <= n; i++) {
6         answer += n / i;
7         answer %= MOD;
8     }
9     i--;
10     for (int j = 1; n / (j + 1) >= i; j++) {
11         answer += (((n / j - n / (j + 1)) % MOD) * j) % MOD;
12         answer %= MOD;
13     }
14     return answer;
15 }
```

10.10 Teorema do Resto Chinês

Algoritmo que resolve o sistema $x \equiv a_i \pmod{m_i}$, onde m_i são primos entre si.

Retorna -1 se a resposta não existir.

```
Codigo: crt.cpp
 1 ll extended_gcd(ll a, ll b, ll &x, ll &y) {
      if (b == 0) {
          return a;
          11 g = extended_gcd(b, a % b, y, x);
          y = a / b * x;
          return g;
10
11 }
13 ll crt(vector<ll> rem, vector<ll> mod) {
      int n = rem.size();
      if (n == 0) {
          return 0;
      __int128 ans = rem[0], m = mod[0];
      for (int i = 1; i < n; i++) {
          11 x, y;
          11 g = extended_gcd(mod[i], m, x, y);
          if ((ans - rem[i]) % g != 0) {
23
          ans = ans + (_int128)1 * (rem[i] - ans) * (m / g) * y;
          m = (_int128) (mod[i] / g) * (m / g) * g;
          ans = (ans \% m + m) \% m:
29
      return ans;
30 }
```

10.11 Totiente de Euler

Código para computar a função Totiente de Euler, que conta quantos números inteiros positivos menores que N são coprimos com N. A função é denotada por $\phi(N)$.

É possível computar o totiente de Euler para um único número em $\mathcal{O}(\sqrt{N})$ e para todos

10.11. TOTIENTE DE EULER

os números entre 1 e N em $\mathcal{O}(N\log(\log(N)))$.

```
Codigo: phi_1_to_n.cpp
vector<int> phi_1_to_n(int n) {
      vector<int> phi(n + 1);
      for (int i = 0; i <= n; i++) {</pre>
         phi[i] = i;
      for (int i = 2; i <= n; i++) {</pre>
          if (phi[i] == i) {
             for (int j = i; j <= n; j += i) {</pre>
                 phi[j] -= phi[j] / i;
         }
12
      return phi;
13
14 }
Codigo: phi.cpp
1 int phi(int n) {
      int result = n;
      for (int i = 2; i * i <= n; i++) {</pre>
         if (n % i == 0) {
             while (n % i == 0) {
                 n /= i;
             result -= result / i;
      if (n > 1) {
          result -= result / n;
13
14
      return result;
15 }
```