Topics in Data Engineering

Session 5

Masaomi Kimura

Today's topic

- □ Decision tree
- □ The foundation of Artificial Neural Network

Decision trees

• The method to find conditions that purify target data after division

Want to buy?	ages						1	
Yes	21				Yes	3		
Yes	25				No	3		
Yes	30		age∫	≦30 ┌			□ age>	30
No	29] ′		Yes	3	Y		1
No	50]		No	1	N		
No	60			110	1	11		

A key concept of decision tree:

Find borders to separate reds and blues

A key concept of decision tree: Find borders to separate reds and blues

A key concept of decision tree: Find borders to separate reds and blues

A key concept of decision tree: Find borders to separate reds and blues

In summary,...

In summary,...

In reality,...

- □ It is usually difficult to distinguish 'blues' and 'reds' in reality,
 - especially, if the borders are not parallel to axes
- □ However! The idea to find borders is useful to get conditions to separate a target.

We need a method to find a border that gives biased separation into homogenous parts (red part/blue part in this case)

Homogeneity indices

□ Gini index

$$GINI = 1 - \sum_{i=1}^{C} p_i^2$$

□ Entolopy

$$S = -\sum_{i=1}^{C} p_i \log p_i$$

C: the number of category p_i: relative frequencies in the ith category

Gini index(1)

$$GINI = 1 - \sum_{i=1}^{C} p_i^2 = \sum_{i=1}^{C} \sum_{j \neq i} p_i p_j$$

If we interpret P_i as a probability, GINI index is a probability that two data belong to different categories.

Gini index(2)

$$GINI = 1 - \sum_{i=1}^{C} p_i^2 = 1 - (0^2 + 1^2 + 0^2) = 0$$

$$p_1 = 0, p_2 = 1, p_3 = 0$$

Gini index(3)

$$GINI = 1 - \sum_{i=1}^{C} p_i^2 = 1 - \left(\left(\frac{1}{4}\right)^2 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{4}\right)^2\right) = \frac{5}{8} > 0$$

$$p_1 = \frac{1}{4}, p_2 = \frac{1}{2}, p_3 = \frac{1}{4}$$

Find a condition based on Gini index

□ Choose a condition that gives the largest difference of original Gini from averaged Gini after separation

$$\Delta GINI = GINI - \sum_{j} \frac{n^{(j)}}{N} GINI^{(j)}$$

$$GINI = 1 - \sum_{i} p_{i}^{2}$$

$$GINI^{(j)} = 1 - \sum_{i} (p_{i}^{(j)})^{2}$$

$$n^{(1)}$$

$$p_{1}$$

$$p_{2}$$

$$p_{1}^{(i)}$$

$$p_{2}^{(i)}$$

$$p_{2}^{(i)}$$

$$p_{2}^{(i)}$$

$$p_{3}^{(i)}$$

$$p_{4}^{(i)}$$

$$p_{5}^{(i)}$$

$$p_{5}^{(i)}$$

$$p_{6}^{(i)}$$

$$p_{6}^{(i)}$$

Find a condition based on Gini index

□ Choose a condition that gives the largest difference of original Gini from averaged Gini after separation

Entropy (1)

$$S = -\sum_{i=1}^{C} p_i \log_2 p_i$$

Entropy: the average amount of information

C: the number of category p_i: relative frequencies in the ith category

Entropy (2)

$$S = -\sum_{i=1}^{C} p_i \log_2 p_i = -0\log_2 0 - 1\log_2 1 - 0\log_2 0 = 0$$

 $0\log 0$ is defined to be 0, because $x \log x \rightarrow 0 (x \rightarrow 0)$

$$p_1 = 0, p_2 = 1, p_3 = 0$$

Entropy (3)

$$S = -\sum_{i=1}^{C} p_i \log_2 p_i = \frac{1}{4} \log_2 4 + \frac{1}{2} \log_2 2 + \frac{1}{4} \log_2 4 = \frac{3}{2} > 0$$

$$p_1 = \frac{1}{4}, p_2 = \frac{1}{2}, p_3 = \frac{1}{4}$$
Category 1

Category 2

Category 3

Category 3

Find a condition based on entropy

□ Choose a condition that gives the largest difference of original entropy from averaged entropy after separation

$$\Delta S = S - \sum_{j} \frac{n^{(j)}}{N} S^{(j)}$$

$$S = -\sum_{i} p_{i} \log p_{i}$$

$$S^{(j)} = -\sum_{i} p_{i}^{(j)} \log p_{i}^{(j)}$$

$$N$$

$$n^{(1)}$$

$$n^{(2)}$$

$$p_{1} \quad p_{2}$$

$$p_{3} \quad p_{4}^{(1)} \quad p_{4}^{(1)}$$

$$p_{1} \quad p_{2}$$

CART(C&RT)

- □ A binary decision tree
 - At each junction, there are two branches.
 - A tree tends to be grown to leaves (downwards).
 - Because of a binary tree structure, if natural degree (=the number of branches) is more than two, the tree might have unnatural branches.
- □ Suitable for numerical data
- □ It uses Gini index

C5.0

- □ A decision tree suitable for categorical data
 - The degree of each node can be more than two.
 - A tree tends to be grown to width direction.
 - Because of the high degree at a node, the number of data corresponding to the node can decrease quickly.
 - □ Therefore, reliability of training/prediction can be low.
- □ It uses entropy.

Pruning

- □ Too many leaf nodes usually cause over-fit to training data
 - because of small number of training data in the leaf node
- Prune branches based on a standard
 - Minimize <u>error rate + the number of leaf nodes</u>
 - Minimize error rate for test data other than training data

Advantage/disadvantage

- □ Advantage
 - Easy to understand results and their reason
 - Applicable to both numerical variables and categorical variables
- Disadvantage
 - Has difficulty for data whose borders are not parallel to axes of explanatory variables
 - Gives low accuracy with too many leaf nodes

Perceptron

An introduction of artificial neural network

Neuron

- □ cells in nervous system
 - contains dendrites, a nucleus, an axon
 - Synapses at an axon terminal send a signal to dendrites in other neurons

Signal transfer

Signals from synapses of other neurons

Perceptron

If u is positive, the neuron is activated and returns 1 as output. Otherwise, it is not activated and returns 0.

$$z = f(u)$$

 θ is a threshold, f(u) is an activation function satisfying next conditions

$$\lim_{u\to-\infty}f(u)=0,$$

$$\lim_{u\to\infty} f(u) = 1.$$

Activation function f(u)

□ Step function

$$f(u) = \begin{cases} 0 & (u < 0) \\ 1 & (u \ge 0) \end{cases}$$

Sigmoid function

$$\sigma(u) = \frac{1}{1 + e^{-u}}$$

□ Hyperbolic tangent function

$$\tanh(u) = \frac{e^u - e^{-u}}{e^u + e^{-u}}$$

Exercise

- \Box Let's find the behavior of a sigmoid function $\sigma(x)$.
 - If we let x get larger $(x \to \infty)$, explain the behavior of $\sigma(x)$.
 - If we let x get smaller $(x \to -\infty)$, explain the behavior of $\sigma(x)$.
 - Write a graph of $\sigma(x)$ in the range -5 < x < 5.
- \square Calculate the derivative $\sigma'(x)$
 - Find the range of $\sigma'(x)$

Training of perceptrons

- □ A training set of an input vector $\{x_i\}$ and its expected output value z_i^* is used to determine weights $\{\omega_k\}$.
- adjust the weights $\{\omega_k\}$ in order to minimize the mean squared error R based on Gradient descent $(z_i \text{ is an output for the an input vector } x_i, z_i^* \text{ is a correct output, } \epsilon \text{ is a constant.})$

$$R = \frac{1}{2} \sum_{i} (z_{i} - z_{i}^{*})^{2}$$

$$\delta \omega_{i} = -\varepsilon \frac{\partial R}{\partial \omega_{i}} = \varepsilon \sum_{k} (z_{k}^{*} - z_{k}) \frac{\partial z_{k}}{\partial \omega_{i}} = \varepsilon \sum_{k} (z_{k}^{*} - z_{k}) x_{k}^{i} \frac{\partial f(u_{k})}{\partial u}$$

Exercise

- Let $w' = w \epsilon \frac{\partial}{\partial w} R(w)$, where ϵ is a small and positive constant.
- □ Which is larger, R(w) or R(w')?
 - Explain why?

Exercise

$$\Box \quad \text{Let } z(x_1, x_2) = \sigma(w_1 x_1 + w_2 x_2 - b).$$

□ Discuss whether we can make a perceptron which satisfies the following table:

x_1	x_2	Z
0.0	0.0	0.0
1.0	0.0	1.0
0.0	1.0	1.0
1.0	1.0	0.0