Calc II Notes Pierson L

1 Absolute Convergence

10.5

1.1 Good Practice Problems

57

1.2 Ratio Test

The Ratio Test¹ states that

Suppose that
$$\sum_{n=1}^{\infty} a_n$$
 is any series, and that
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = r$$

Then:

The series converges absolutely if r < 1The series diverges if r > 1

1.2.1 "Keys"

$$\frac{a^{n+1}}{a^n} = a, \qquad \frac{a^n}{a^{n+1}} = \frac{1}{a}$$
$$\frac{(n+1)^a}{n^a} = \left(1 + \frac{1}{n}\right)^a$$
$$\frac{(n+1)!}{n!} = (n+1)$$

Note that these can be combined

Example
$$\frac{2^{n+1}(n+1)!}{2^n(n!)} = 2(n+1)$$

¹Very important regarding factorials

1.2.2 Examples

Example 1

Simplify
$$\frac{(n+2)!}{(n-1)!}$$

 $Ratio\ of\ factorials$

$$=\frac{(n+2)!}{(n-1)!}$$

$$= \frac{(n+1)(n+1)(n)(n-1)\cdots(1)}{(n-1)(n-2)(n-3)\cdots(1)}$$

$$= \frac{(n+1)(n+1)(n)(n-1)}{(n-1)}$$

$$= (n+1)(n+1)(n)$$

example 2

Problem 57 from book

$$\sum_{n=1}^{\infty} \frac{2^n (n!)^2}{2n!}$$

We apply the Ratio test

$$\lim_{n \to \infty} \frac{\frac{(2^{n+1})(n+1)!^2}{2(n+1)!}}{\frac{2^n n!^2}{2n!}}$$

$$\lim_{n \to \infty} \frac{2^{n+1}(n+1)^2}{2(n+1)} \times \frac{2n!}{2n(n!)^2}$$

$$\lim_{n \to \infty} \frac{2^{n+1}(n+1)^2}{2\mathbf{n}+2} \times \frac{2n!}{2n(n!)^2}, \text{ note the } +2$$

$$\lim_{n \to \infty} \frac{2(n+1)^2}{(2\mathbf{n}+2)(2\mathbf{n}+1)}$$

$$= \frac{1}{2} < 1$$

Hence, the series $\sum_{n=1}^{\infty} \frac{2^n (n!)^2}{2n!}$ converges

2 Alternating Series

Suppose $\sum_{n=1}^{\infty} (-1)^n a_n$ is an alternating series with

I) a_n eventually non-increasing II) a_n going to zero

Then, a_n must converge

2.1 Examples

Example 1
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
, Converge or diverge?

We apply the Alternating Series Test (AST)

$$a_n = \frac{1}{n}$$
1) $\frac{1}{n+1} < \frac{1}{n} \to Decreasing$
2) $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{n} = 0$

Hence, by AST, the series converges conditionally

3 Misc

3.1 Factorials

ex.1

$$4! = 4 \times 3! = 4x3x2! = 4x3x2x1! = 4x3x2x1x0!$$

$$0! = 1$$

$$4! = 24$$

ex. 2

Simplify
$$\frac{(n+2)!}{(n-1)!}$$

 $Ratio\ of\ factorials$

$$= \frac{(n+2)!}{(n-1)!}$$

$$=\frac{(n+1)(n+1)(n)(n-1)\cdots(1)}{(n-1)(n-2)(n-3)\cdots(1)}$$

$$= \frac{(n+1)(n+1)(n)(n-1)}{(n-1)}$$

$$= (n+1)(n+1)(n)$$