Chapter 6 Boolean Algebra

- 6.1 Introduction
- 6.2 Operations on Boolean Algebra
- 6.3 Boolean Function
- 6.4 Minimal Sums of Products: Karnaugh Map (*K*-map)

6.1 Introduction

Boolean algebra is a branch of mathematics concerned with a logical calculus in which structures and rules are applied to logical symbols in the same way that ordinary algebra is applied to symbols representing numerical quantities.

6.1 Introduction (cont)

- Boolean variables are the variables that can take only value 0 or 1.
- The simplest Boolean algebra consists of set {0, 1} together with the operations of disjunction (∨), conjunction (∧), and negation (′).

Disjunction

V	0	1
0		
1		

Conjunction

^	0	1
0		
1		

Negation

$$0' = 1$$

$$\Box$$
 1' = 0

For Boolean variables *x* and *y*, the operations conjunction, disjunction, and negation can be represented in a table similar to the truth table, where the truth values F and T are replaced by 0 and 1, not *x* by *x'*, *x* and *y* by *x* ∧ *y* (*xy*), *x* or *y* by

$$X \vee y (X + y)$$
.

X	X
0	1
1	0

X	У	$X \wedge y$	$X \vee Y$
0	0		
0	1		
1	0		
1	1		

- Boolean expression is an expression composed of Boolean variables and the operators ∨, ∧, and '.
- Two Boolean expressions are equivalent if they have the same truth table.

Laws of Boolean algebra

1. $(x')' = x$	Involution Property
2. $(x \wedge y)' = x' \vee y'$ $(x \vee y)' = x' \wedge y'$	De Morgan's Laws
3. $x \wedge y = y \wedge x$ $x \vee y = y \vee x$	Commutative Laws

4.
$$(x \wedge y) \wedge z = x \wedge (y \wedge z)$$
 Associative Laws

5. $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$ Distributive $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$ Laws

6. $x \wedge x = x$ Idempotent Laws

7. $x \wedge (x \vee y) \equiv x$ $x \vee (x \wedge y) = x$	Absorption Laws
8. $x \wedge x' = 0$ $x \vee x' = 1$	Inverse Laws
9. $x \wedge 0 = 0$ $x \vee 1 = 1$	Dominance Laws
$10.x \wedge 1 = x$ $x \vee 0 = x$	Identity Laws

The following table summarises the correspondence between Boolean operations, the logical operators in propositional calculus and set operations:

Logical Operation	Set Operation	Boolean Operation		
not, ~		,		
or, ∨	\subset	V		
and, ^	\cap			

E.g.1

Show that $(x' \wedge y)' \wedge (x \vee y) = x$.

6.3 Boolean Function

- A Boolean function of the n Boolean variables, x_1 , x_2 , ..., x_n , is a function $f: B^n \to B$ such that $f(x_1, x_2, ..., x_n)$ is a Boolean expression.
- Boolean function can be expressed in an equivalent standard form, called the disjunctive normal form (sum of products) (refer Chapter 2).

E.g.2

Construct a truth table for the Boolean function $f: B^3 \to B$ where

$$f(x, y, z) = (x \wedge y) \vee (x' \wedge z).$$

Then write the disjunctive normal form for f(x, y, z).

X	У	Z	$X \wedge y$	X	X' ∧ Z	$(x \wedge y) \vee (x' \wedge z)$
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

- To find a 'simpler' equivalent equation, i.e. use fewer symbols than the original expression.
- Applied to disjunctive normal form of the given expression.

E.g.

$$(x' \wedge y' \wedge z) \vee (x' \wedge y \wedge z) \vee (x \wedge y' \wedge z)$$

$$= x'y'z + x'yz + xy'z$$

$$=$$

A Karnaugh map is a device invented as an aid to logical circuit design that uses a visual display to simplify a sum-of-product Boolean expression by indicating which pairs of minterms can be brought together and merged into a single simpler expression.

- Given a sum-of-product Boolean expression.
 - If two variables x and y are involved, a Karnaugh map consists of a table with two rows and two columns. Each cell corresponds to a minterm.

	<i>y</i> '	У
X'	$X' \wedge Y'$	<i>x</i> '∧ <i>y</i>
X	$X \wedge y'$	$X \wedge Y$

00	01
10	11

 \square A rectangle of size 2 \times 4 is used for three variables x, y, and z in a Boolean expression.

_	y'	y'	У	У	
<i>X</i> ' [$X' \wedge Y' \wedge Z'$	$X' \wedge Y' \wedge Z$	$X' \wedge Y \wedge Z$	$X' \wedge Y \wedge Z'$	
X	$X \wedge y' \wedge z'$	$X \wedge y' \wedge Z$	$X \wedge y \wedge Z$	$X \wedge Y \wedge Z'$	
	Z'	Z	Z	Z'	
	00	01	11	10	
0	000	001	011	010	
1	100	101	111	110	

□ *K*-map with four variables, *w*, *x*, *y*, and *z*.

			•				
X] y'	
χ'						_ y	
X						_ y	
X						<i>」y</i> ′	
	w'	V	V	W	W ³]	
	00		()1	1	1	10
00	000	0	00	001	00	11	0010
01	010	0	0101		01	11	0110
11	110	0	1101		11	11	1110
10	100	0	1(001	10	11	1010

- For a given Boolean expression in disjunctive normal form we write a one in each of the box representing minterms which appear.
- In a K-map, two cells are adjacent if their minterms differ in only one variable.
- The required simplification is to group the 1's in adjacent cells and the variable that appears in pair will be eliminated.

Steps:

- 1) Make rectangles around groups of one, two, four or eight 1s.
 - All of the 1s in the map should be included in at least one rectangle.
 - Do not include any of the 0s.

- 2) Each group corresponds to one product term. For the simplest result:
 - Make as few rectangles as possible, to minimize the number of products in the final expression.
 - Make each rectangle as large as possible, to minimize the number of literals in each term.
 - It's all right for rectangles to overlap, if that makes them larger.

May have more than one valid solution.

E.g.3

Simplify the following Boolean expressions using Karnaugh map.

i.
$$(x \wedge y) \vee (x' \wedge y) \vee (x' \wedge y')$$

E.g.3 (cont)

ii.
$$(x \wedge y \wedge z) \vee (x' \wedge y \wedge z') \vee (x \wedge y' \wedge z)$$

	У'	<u>y'</u>	<u></u>	<u> </u>
X'				
X				
	Z'	Z	Z	

E.g.3 (cont)

iii.
$$(x \wedge y \wedge z) \vee (x' \wedge y' \wedge z') \vee (x' \wedge y \wedge z)$$

 $\vee (x \wedge y \wedge z') \vee (x' \wedge y \wedge z')$

,	<i>y</i> '	<u>y</u> '	У	У
X'				
X				
I		Z	Z	

E.g.4

Simplify the Boolean expression

$$f(x, y, z) = [(x \vee y)' \wedge z] \vee (y \vee z)'.$$

X	У	Z	$X \vee Y$	$(x \vee y)$	$(x \vee y)' \wedge z$	$y \lor z$	$(y \vee z)$	f(x, y, z)
0	0	0						
0	0	1						
0	1	0						
0	1	1						
1	0	0						
1	0	1						
1	1	0						
1	1	1						

$$f(x, y, z) = (x' \wedge y' \wedge z') \vee (x' \wedge y' \wedge z) \vee (x \wedge y' \wedge z')$$

	y'	y'	У	У
X'				
X				
		Z	Z	Z'

E.g.5

Refer to the given Karnaugh maps, simplify the Boolean expressions.

ı	Z'	Z'	Z	Z	_
X'	1	0	0	1	y'
X'	0	1	1	0	У
X	0	1	1	0	У
X	1	0	0	1	y
	w'	W	W	w'	

E.g.5 (cont)

	Z'	Z'	Z	Z	_
X'	1	1	1	1	y'
X'	0	0	0	0	y
X	0	0	1	0	y y
X	1	1	0	0	<i>y</i>
	W'	W	W	W'	1