A Source Separation Approach to Temporal Graph Modelling for Computer Networks

Corentin Larroche
corentin.larroche@ssi.gouv.fr

French National Cybersecurity Agency (ANSSI), Paris, France

MLCS '23, Torino, Italy September 22nd, 2023

Context - Computer network monitoring

Network monitoring

- Traffic within an enterprise network analyzed to detect malicious activity
- Network traffic represented as a directed graph
- ► Goal: detect anomalous edges

Computer network monitoring – Temporal perspective

Definitions and problem statement

Definitions

- $(\mathcal{G}_t)_{t\geq 1}$ is a sequence of directed graphs with **shared node set** $\mathcal{V} = \{1, \dots, N\}$
- ▶ \mathbf{A}_t is the (binary, non-symmetric) adjacency matrix of \mathcal{G}_t

- **Problem:** given normal graphs G_1, \ldots, G_T , detect anomalous edges in new graphs G_t for t > T
- ► Equivalent to **temporal link prediction**: if we can predict normal edges, we can detect anomalous ones

Related work - Link prediction

Latent space models (aka MF, graph embedding, GNNs)

Workflow of most link prediction methods:

- Learn node embeddings $\{\mathbf{u}_i \in \mathbb{R}^K\}_{i \in \mathcal{V}}$ and link predictor $g: \mathbb{R}^K \times \mathbb{R}^K \to [0,1]$ that maximize the probability of observed edges, $p(i,j) = g(\mathbf{u}_i, \mathbf{u}_j)$
- ▶ Predict new edges (i', j') using $g(\mathbf{u}_{i'}, \mathbf{u}_{j'})$

Related work – Dynamic latent space models

Generalizing latent space models to temporal graphs

- lacksquare Just replace \mathbf{u}_i with a sequence $(\mathbf{u}_{i,t})_{t\geq 1}$
- Predict future embeddings using recursive Bayesian estimation [Lee et al., 2022] or RNNs [King and Huang, 2022]

The problem with dynamic latent space models

Dynamic LSM vs. network traffic dynamics

- ► In dynamic LSMs, temporal dynamics are **node-driven**: local, smooth evolution of the graph
- ► In enterprise networks, observed traffic undergoes **sharp**, **global variations**

Related work – Tensor factorization

Temporal graphs as tensors [Dunlavy et al., 2011]

The sequence $(\mathbf{A}_t)_{t=1,\dots,T}$ can be seen as a **3-mode tensor**, with modes standing for time step, origin and destination nodes.

CANDECOMP/PARAFAC 3-mode tensor factorization:

$$\hat{\mathbf{A}}_t = \sum_{k=1}^K w_{tk} \mathbf{U}_k \mathbf{V}_k^{\top},$$

with $\mathbf{U}_k, \mathbf{V}_k \in \mathbb{R}^{N \times 1}$ origin and destination embedding matrices.

Tensor factorization – Source separation interpretation

An improved source separation approach

Tensor factorization models each source as a rank-one matrix.

▶ Idea: use richer models for the activity sources

Our approach: Superposed Nonnegative Matrix Factorization (SNMF)

- For each of L activity sources, define origin and destination embedding matrices $\mathbf{U}_{\ell}, \mathbf{V}_{\ell} \in \mathbb{R}_{+}^{N \times K}$
- ▶ For each time step t, define mixing coefficients $w_{t\ell}$ such that $\mathbf{A}_t = \sum_{\ell=1}^L w_{t\ell} \mathbf{U}_\ell \mathbf{V}_\ell^\top$

Model inference: Given adjacency matrices $(\mathbf{A}_1,\ldots,\mathbf{A}_T)$, find $\mathbb{U}=(\mathbf{U}_\ell)_{\ell=1}^L, \mathbb{V}=(\mathbf{V}_\ell)_{\ell=1}^L, \mathbf{W}=(w_{t\ell})\in\mathbb{R}_+^{T\times L}$ minimizing

$$J(\mathbb{U}, \mathbb{V}, \mathbf{W}) = \frac{1}{2} \sum_{t=1}^{T} \left\| (\mathbf{1}_{N} - \mathbf{I}_{N}) \odot \left(\mathbf{A}_{t} - \sum_{\ell=1}^{L} w_{t\ell} \mathbf{U}_{\ell} \mathbf{V}_{\ell}^{\top} \right) \right\|_{F}^{2}$$
$$+ \lambda_{1} \left\| \mathbf{W} \right\|_{1} + \frac{\lambda_{2}}{2} \sum_{\ell=1}^{L} \left(\left\| \mathbf{U}_{\ell} \right\|_{F}^{2} + \left\| \mathbf{V}_{\ell} \right\|_{F}^{2} \right)$$

SNMF for temporal link prediction

After inference (t > T), given a new adjacency matrix \mathbf{A}_t :

▶ Predict mixing coefficients $\hat{\mathbf{w}}_t$ using a **seasonal model**:

$$\hat{\mathbf{w}}_t = \text{Mean}(\mathbf{w}_{t'}; t' \in [t-1] : t \equiv t' \mod \tau),$$

with period $\tau > 0$ (one week here)

- Predict adjacency matrix $\hat{\bf A}_t$ using $\hat{\bf w}_t$ and compute anomaly score matrix ${\bf A}_t \hat{\bf A}_t$
- ightharpoonup Compute **true mixing coefficients** \mathbf{w}_t to update the seasonal model

Qualitative evaluation - Method

Dataset: VAST 2013 Mini-Challenge 3

- ► Simulated network traffic (enterprise network + external hosts)
- ▶ 1.4K hosts, 14 days
- Ground truth description of host roles and observed traffic

Goal: analyze the activity sources inferred by SNMF.

- ► For each source:
 - Cluster nodes based on their embeddings
 - Display predicted edges between clusters
- ▶ Plot mixing coefficients over time

Qualitative evaluation - Results

Quantitative evaluation - Method

Dataset: LANL CMSCSE

- Real-world enterprise network
- ▶ 12.7K hosts, 30 days
- ► Labelled malicious edges

Evaluation tasks

- Anomaly detection
- Temporal link prediction with sampled negative edges

Baseline methods

- Dynamic link predictors:
 - ► Tensor factorization (PTF [Eren et al., 2020])
 - Latent space model (BME [Lee et al., 2022])
- Static link predictors:
 - ▶ Matrix factorization (**HPF** [Sanna Passino et al., 2022])
 - ► Graph embedding (**GL-GV** [Bowman et al., 2020])
- ► Generic/naive baselines: EDGEBANK [Poursafaei et al., 2022], SEDANSPOT [Eswaran and Faloutsos, 2018]

Quantitative evaluation - Results

SNMF outperforms baselines in terms of AUC on anomaly detection and historical link prediction tasks.

Method	Anomaly	Random	Historical	Inductive
SNMF	99.1 \pm 0.1	98.4±0.0	$\textbf{76.9} {\pm} \textbf{0.2}$	98.2±0.1
PTF	97.6±0.9	98.6±0.0	68.5±0.2	96.7±0.3
BME	90.3±0.2	98.5±0.0	73.3±0.0	96.2±0.0
HPF	97.7±0.3	99.1 ± 0.0	69.6 ± 0.1	97.5±0.0
GL-GV	87.0±2.4	95.8±1.0	61.2 ± 0.5	74.6±1.9
SedanSpot	63.6±7.3	51.2±2.2	54.7±1.4	53.2±2.7
EdgeBank $_{\infty}$	96.2±0.0	97.2±0.0	56.0±0.0	98.3 ± 0.0
EdgeBank $_{w}$	96.0±0.0	97.0±0.0	58.0±0.0	98.1±0.0

Conclusion: The nature of temporal dynamics matters

Key takeaways

- Activity within enterprise networks has specific temporal dynamics
- Temporal graph models introduced in other domains are not well-suited to this context
- ► However, a **simple source separation approach** fits these dynamics rather well

Future research directions:

- Extension to more complex data representations than graphs
- Better prediction of the mixing coefficients
- ► Including **long-term dynamics** (concept drift, new nodes)

References

- [Bowman et al., 2020] Bowman, B., Laprade, C., Ji, Y., and Huang, H. H. (2020). Detecting lateral movement in enterprise computer networks with unsupervised graph Al. In *RAID*.
- [Dunlavy et al., 2011] Dunlavy, D. M., Kolda, T. G., and Acar, E. (2011). Temporal link prediction using matrix and tensor factorizations. ACM Trans. Knowl. Discov. Data, 5(2):1–27.
- [Eren et al., 2020] Eren, M. E., Moore, J. S., and Alexandro, B. S. (2020). Multi-dimensional anomalous entity detection via Poisson tensor factorization. In ISI.
- [Eswaran and Faloutsos, 2018] Eswaran, D. and Faloutsos, C. (2018). Sedanspot: Detecting anomalies in edge streams. In *ICDM*.
- [King and Huang, 2022] King, I. J. and Huang, H. H. (2022). EULER: Detecting network lateral movement via scalable temporal link prediction. In *NDSS*.

References (cont.)

- [Lee et al., 2022] Lee, W., McCormick, T. H., Neil, J., Sodja, C., and Cui, Y. (2022). Anomaly detection in large-scale networks with latent space models. Technometrics, 64(2):241–252.
- [Poursafaei et al., 2022] Poursafaei, F., Huang, S., Pelrine, K., and Rabbany, R. (2022). Towards better evaluation for dynamic link prediction. In *NeurIPS*.
- [Sanna Passino et al., 2022] Sanna Passino, F., Turcotte, M. J., and Heard, N. A. (2022). Graph link prediction in computer networks using Poisson matrix factorisation. *Ann. Appl. Stat.*, 16(3):1313–1332.