VE INTEGRAL KURAMI

Dicle Üniversitesi Fen Fakültesi Matematik Bölümü

Uzaktan Eğitim

Mayıs 2021

Sınırsız Aralıklarda ya da Kümelerde Lebesgue İntegrali

Şimdiye kadar sınırlı kümeler üzerinde Lebesgue integralini göz önüne aldık. (a, ∞) , $(-\infty, b)$ ya da $(-\infty, \infty)$ gibi sınırsız aralıklara Lebesgue integralinin tanımını genişletmek için sınırlı aralıkların uygun bir limit durumunu kullanacağız.

Sınırsız Aralıklarda ya da Kümelerde Lebesgue İntegrali

Şimdiye kadar sınırlı kümeler üzerinde Lebesgue integralini göz önüne aldık. (a,∞) , $(-\infty,b)$ ya da $(-\infty,\infty)$ gibi sınırsız aralıklara Lebesgue integralinin tanımını genişletmek için sınırlı aralıkların uygun bir limit durumunu kullanacağız.

 (a,∞) sınırsız aralığı için Lebesgue integrallenebilirliği tanımlayarak başlayalım. $\forall x \in (a,\infty)$ için $f(x) \geq 0$ ve $\forall b \in (a,\infty)$ için f fonksiyonu (a,b) aralığında Lebesgue integrallenebilir olsun. Bu durumda (a,∞) aralığı üzerindeki Lebesgue integrali

$$\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx$$
 (1)

şeklinde tanımlanır ve eğer limit varsa f fonksiyonu (a, ∞) aralığı üzerinde Lebesgue integrallenebilirdir denir. (Bu tanımı has olmayan integralin tanımı ile karşılaştırınız.)

Eğer f fonksiyonu hem pozitif hem de negatif değerler alan bir fonksiyon ise negatif olmayan f^+ ve f^- fonksiyonları yardımıyla

$$\int_{a}^{\infty} f(x)dx = \int_{a}^{\infty} f^{+}(x)dx - \int_{a}^{\infty} f^{-}(x)dx$$
 (2)

şeklinde tanımlarız. (2) eşitliğinin sağ tarafındaki her bir integral (1) eşitliğindeki tanıma göre var ise bu durumda f fonksiyonu (a, ∞) aralığı üzerinde Lebesgue integrallenebilirdir denir.

Eğer f fonksiyonu hem pozitif hem de negatif değerler alan bir fonksiyon ise negatif olmayan f^+ ve f^- fonksiyonları yardımıyla

$$\int_{a}^{\infty} f(x)dx = \int_{a}^{\infty} f^{+}(x)dx - \int_{a}^{\infty} f^{-}(x)dx$$
 (2)

şeklinde tanımlarız. (2) eşitliğinin sağ tarafındaki her bir integral (1) eşitliğindeki tanıma göre var ise bu durumda f fonksiyonu (a, ∞) aralığı üzerinde Lebesgue integrallenebilirdir denir.

 $(-\infty,b)$ ve $(-\infty,\infty)$ aralıkları için benzer tanımlar yapılabilir. $(-\infty,\infty)$ aralığı için (a,b) aralığını göz önüne alarak $a\to -\infty$ ve $b\to \infty$ limitini alacağız. Eğer E kümesi sınırsız bir küme fakat aralık değil ise bu durumda

$$\int_{E} f(x)dx = \lim_{\substack{a \to -\infty \\ b \to \infty}} \int_{E \cap (a,b)} f(x)dx$$

şeklinde tanımlanır.

Sınırsız Kümeler Üzerinde Lebesgue İntegralleri için Teoremler

Sınırlı kümeler üzerinde daha önce gösterilen teoremlerin çoğu sınırsız kümeler için de geçerlidir. Örneğin;

Sınırsız Kümeler Üzerinde Lebesgue İntegralleri için Teoremler

Sınırlı kümeler üzerinde daha önce gösterilen teoremlerin çoğu sınırsız kümeler için de geçerlidir. Örneğin;

Teorem

E kümesinin sınırlı ya da sınırsız olduğunu göz önüne almadan, bir f fonksiyonunun E kümesi üzerinde Lebesgue integrallenebilir olması için gerek ve yeter koşul |f| fonksiyonunun E kümesi üzerinde integralenebilir olmasıdır ve böyle bir durumda

$$\left| \int\limits_{E} f(x) dx \right| \leq \int\limits_{E} |f(x)| dx$$

eşitsizliği geçerlidir. Yani f fonksiyonunun E kümesi üzerinde integrallenebilir olması için gerek ve yeter koşul f fonksiyonunun E üzerinde mutlak integrallenebilir olmasıdır.

Teorem (Lebesgue Baskın Yakınsaklık)

E (sınırlı ya da sınırsız) ölçülebilir bir küme olmak üzere (f_n) fonksiyon dizisi E kümesi üzerinde ölçülebilir fonksiyonların bir dizisi olsun.

(a) E kümesi üzerinde h.h.h.y.
$$\lim_{n\to\infty} f_n(x) = f(x)$$

Teorem (Lebesgue Baskın Yakınsaklık)

E (sınırlı ya da sınırsız) ölçülebilir bir küme olmak üzere (f_n) fonksiyon dizisi E kümesi üzerinde ölçülebilir fonksiyonların bir dizisi olsun.

- (a) E kümesi üzerinde h.h.h.y. $\lim_{n\to\infty} f_n(x) = f(x)$
- (b) E kümesi üzerinde h.h.h.y. $\forall n \in \mathbb{N}$ için $|f_n(x)| \leq g(x)$

Teorem (Lebesgue Baskın Yakınsaklık)

E (sınırlı ya da sınırsız) ölçülebilir bir küme olmak üzere (f_n) fonksiyon dizisi E kümesi üzerinde ölçülebilir fonksiyonların bir dizisi olsun.

- (a) E kümesi üzerinde h.h.h.y. $\lim_{n\to\infty} f_n(x) = f(x)$
- (b) E kümesi üzerinde h.h.h.y. $\forall n \in \mathbb{N}$ için $|f_n(x)| \leq g(x)$
- $(c) g \in \mathcal{L}(E)$

Teorem (Lebesgue Baskın Yakınsaklık)

E (sınırlı ya da sınırsız) ölçülebilir bir küme olmak üzere (f_n) fonksiyon dizisi E kümesi üzerinde ölçülebilir fonksiyonların bir dizisi olsun.

- (a) E kümesi üzerinde h.h.h.y. $\lim_{n\to\infty} f_n(x) = f(x)$
- (b) E kümesi üzerinde h.h.h.y. $\forall n \in \mathbb{N}$ için $|f_n(x)| \leq g(x)$
- (c) $g \in \mathcal{L}(E)$

ise bu durumda $f\in\mathcal{L}\left(E\right)$ ve $\forall n\in\mathbb{N}$ için $f_{n}\in\mathcal{L}\left(E\right)$ dir ve

$$\lim_{n\to\infty}\int\limits_E f_n(x)dx = \int\limits_E \lim\limits_{n\to\infty} f_n(x)dx = \int\limits_E f(x)dx$$

eşitliği geçerlidir.

Lebesgue baskın yakınsaklık teoreminden yararlanarak

$$\lim_{n\to\infty}\int\limits_1^\infty\frac{e^{\frac{-x^2}{n}}}{n}dx=0$$

olduğunu gösteriniz.

Lebesgue baskın yakınsaklık teoreminden yararlanarak

$$\lim_{n\to\infty}\int\limits_1^\infty\frac{e^{\frac{-x^2}{n}}}{n}dx=0$$

olduğunu gösteriniz.

Çözüm

 $\forall n \in \mathbb{N} \text{ ve } \forall x \in [1, \infty) \text{ için } f_n(x) = n^{-1}e^{\frac{-x^2}{n}} \text{ olsun. } \forall n \in \mathbb{N} \text{ ve } \forall x \in [1, \infty) \text{ için } f_n \text{ fonksiyonları sürekli olduğundan } (f_n) \text{ dizisi ölçülebilir fonksiyonların bir dizisidir.}$

Lebesgue baskın yakınsaklık teoreminden yararlanarak

$$\lim_{n\to\infty}\int\limits_1^\infty\frac{e^{\frac{-x^2}{n}}}{n}dx=0$$

olduğunu gösteriniz.

Çözüm

 $\forall n \in \mathbb{N} \text{ ve } \forall x \in [1, \infty) \text{ için } f_n(x) = n^{-1}e^{\frac{-x^2}{n}} \text{ olsun. } \forall n \in \mathbb{N} \text{ ve } \forall x \in [1, \infty) \text{ için } f_n \text{ fonksiyonları sürekli olduğundan } (f_n) \text{ dizisi ölçülebilir fonksiyonların bir dizisidir.}$

(a)
$$\forall x \in [1, \infty)$$
 için $\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} n^{-1} e^{\frac{-x^2}{n}} = 0$,

Lebesgue baskın yakınsaklık teoreminden yararlanarak

$$\lim_{n\to\infty}\int\limits_1^\infty\frac{e^{\frac{-x^2}{n}}}{n}dx=0$$

olduğunu gösteriniz.

Çözüm

 $\forall n \in \mathbb{N} \text{ ve } \forall x \in [1, \infty) \text{ için } f_n(x) = n^{-1}e^{\frac{-x^2}{n}} \text{ olsun. } \forall n \in \mathbb{N} \text{ ve } \forall x \in [1, \infty) \text{ için } f_n \text{ fonksiyonları sürekli olduğundan } (f_n) \text{ dizisi ölçülebilir fonksiyonların bir dizisidir.}$

- (a) $\forall x \in [1, \infty)$ için $\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} n^{-1} e^{\frac{-x^2}{n}} = 0$,
- $(b)\ \forall x\in [1,\infty)$ için $x\leq e^x$ olduğundan $\forall n\in\mathbb{N}$ için

$$|f_n(x)| = n^{-1}e^{\frac{-x^2}{n}} \le x^{-2} = g(x)$$
 elde edilir.

(c)

$$\int_{1}^{\infty} g(x) dx = \lim_{b \to \infty} \int_{1}^{b} \frac{dx}{x^2}$$

(c)

$$\int_{1}^{\infty} g(x) dx = \lim_{b \to \infty} \int_{1}^{b} \frac{dx}{x^{2}}$$
$$= \lim_{b \to \infty} (\Re) \int_{1}^{b} \frac{dx}{x^{2}}$$

(c)

$$\begin{split} \int\limits_{1}^{\infty} g(x) dx &= \lim_{b \to \infty} \int\limits_{1}^{b} \frac{dx}{x^{2}} \\ &= \lim_{b \to \infty} (\Re) \int\limits_{1}^{b} \frac{dx}{x^{2}} \\ &= \lim_{b \to \infty} \left[-\frac{1}{x} \right]_{1}^{b} = \lim_{b \to \infty} \left(1 - \frac{1}{b} \right) = 1 < \infty \end{split}$$

olduğundan $g \in \mathcal{L}[1,\infty)$ dir.

(c)

$$\begin{split} \int\limits_{1}^{\infty} g(x) dx &= \lim_{b \to \infty} \int\limits_{1}^{b} \frac{dx}{x^{2}} \\ &= \lim_{b \to \infty} \left(\Re \right) \int\limits_{1}^{b} \frac{dx}{x^{2}} \\ &= \lim_{b \to \infty} \left[-\frac{1}{x} \right]_{1}^{b} = \lim_{b \to \infty} \left(1 - \frac{1}{b} \right) = 1 < \infty \end{split}$$

olduğundan $g \in \mathcal{L}[1,\infty)$ dir.Böylece Lebesgue baskın yakınsaklık teoreminden

$$\lim_{n\to\infty}\int_{1}^{\infty}\frac{e^{\frac{-x^{2}}{n}}}{n}dx=\int_{1}^{\infty}\lim_{n\to\infty}\frac{e^{\frac{-x^{2}}{n}}}{n}dx=0$$

elde edilir.

Lebesgue baskın yakınsaklık teoreminden yararlanarak

$$\lim_{n\to\infty}\int_{0}^{n}\left(1+\frac{x}{n}\right)^{n}e^{-2x}dx=1$$

olduğunu gösteriniz.

 $\forall n \in \mathbb{N} \text{ ve } \forall x \in [0, n] \text{ için } f_n(x) = \left(1 + \frac{x}{n}\right)^n e^{-2x} \text{ olsun. } \forall n \in \mathbb{N} \text{ ve } \forall x \in [0, n] \text{ için } f_n \text{ fonksiyonları sürekli olduğundan } (f_n) \text{ dizisi ölçülebilir fonksiyonların bir dizisidir.}$

 $\forall n \in \mathbb{N} \text{ ve } \forall x \in [0, n] \text{ için } f_n(x) = \left(1 + \frac{x}{n}\right)^n e^{-2x} \text{ olsun. } \forall n \in \mathbb{N} \text{ ve } \forall x \in [0, n] \text{ için } f_n \text{ fonksiyonları sürekli olduğundan } (f_n) \text{ dizisi ölçülebilir fonksiyonların bir dizisidir.}$

(a)
$$\forall x \in [0, n]$$
 için $\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n e^{-2x} = e^{-x}$

 $\forall n \in \mathbb{N} \text{ ve } \forall x \in [0, n] \text{ için } f_n(x) = \left(1 + \frac{x}{n}\right)^n e^{-2x} \text{ olsun. } \forall n \in \mathbb{N} \text{ ve } \forall x \in [0, n] \text{ için } f_n \text{ fonksiyonları sürekli olduğundan } (f_n) \text{ dizisi ölçülebilir fonksiyonların bir dizisidir.}$

(a)
$$\forall x \in [0, n] \text{ için } \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n e^{-2x} = e^{-x}$$

(b) $\forall n \in \mathbb{N}$ ve $\forall x \in [0, n]$ için

$$|f_n(x)| = \left(1 + \frac{x}{n}\right)^n e^{-2x} \chi_{[0,n]} < e^{-x} = g(x)$$
 elde edilir.

 $\forall n \in \mathbb{N} \text{ ve } \forall x \in [0, n] \text{ için } f_n(x) = \left(1 + \frac{x}{n}\right)^n e^{-2x} \text{ olsun. } \forall n \in \mathbb{N} \text{ ve } \forall x \in [0, n] \text{ için } f_n \text{ fonksiyonları sürekli olduğundan } (f_n) \text{ dizisi ölçülebilir fonksiyonların bir dizisidir.}$

(a)
$$\forall x \in [0, n] \text{ için } \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n e^{-2x} = e^{-x}$$

(b) $\forall n \in \mathbb{N}$ ve $\forall x \in [0, n]$ için

$$|f_n(x)| = (1 + \frac{x}{n})^n e^{-2x} \chi_{[0,n]} < e^{-x} = g(x)$$
 elde edilir.

$$(c)\int\limits_0^\infty g(x)dx=\lim_{b\to\infty}\int\limits_0^b e^{-x}dx=1<\infty \text{ olduğundan }g\in\mathcal{L}[0,\infty)\text{ dir.}$$

 $\forall n \in \mathbb{N}$ ve $\forall x \in [0, n]$ için $f_n(x) = \left(1 + \frac{x}{n}\right)^n e^{-2x}$ olsun. $\forall n \in \mathbb{N}$ ve $\forall x \in [0, n]$ için f_n fonksiyonları sürekli olduğundan (f_n) dizisi ölçülebilir fonksiyonların bir dizisidir.

(a)
$$\forall x \in [0, n] \text{ için } \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n e^{-2x} = e^{-x}$$

(b) $\forall n \in \mathbb{N}$ ve $\forall x \in [0, n]$ için

$$|f_n(x)| = \left(1 + rac{x}{n}
ight)^n \mathrm{e}^{-2x} \chi_{[0,n]} < \mathrm{e}^{-x} = g(x)$$
 elde edilir.

$$(c)\int\limits_0^\infty g(x)dx=\lim_{b\to\infty}\int\limits_0^b e^{-x}dx=1<\infty \text{ olduğundan }g\in\mathcal{L}[0,\infty)\text{ dir.}$$

Böylece Lebesgue baskın yakınsaklık teoreminden

$$\lim_{n \to \infty} \int_{0}^{n} \left(1 + \frac{x}{n} \right)^{n} e^{-2x} dx = \int_{0}^{\infty} \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^{n} e^{-2x} dx = \int_{0}^{\infty} e^{-x} dx = 1$$

elde edilir.

1. Lebesgue baskın yakınsaklık teoreminden yararlanarak

$$\lim_{n\to\infty}\int\limits_0^n\left(1-\frac{x}{n}\right)^n\ln\left(2+\cos\frac{x}{n}\right)dx$$

ifadesini hesaplayınız.

1. Lebesgue baskın yakınsaklık teoreminden yararlanarak

$$\lim_{n\to\infty}\int\limits_0^n\left(1-\frac{x}{n}\right)^n\ln\left(2+\cos\frac{x}{n}\right)dx$$

ifadesini hesaplayınız.

2. Lebesgue baskın yakınsaklık teoreminden yararlanarak

$$\lim_{n\to\infty}\int_{-n}^{n}\frac{dx}{\left(1+x^2\right)^n}$$

ifadesini hesaplayınız.

3. Lebesgue baskın yakınsaklık teoreminden yararlanarak

$$\lim_{n\to\infty}\int\limits_0^\infty\frac{\sin x^n}{x^n}dx$$

ifadesini hesaplayınız.

3. Lebesgue baskın yakınsaklık teoreminden yararlanarak

$$\lim_{n\to\infty}\int\limits_0^\infty\frac{\sin x^n}{x^n}dx$$

ifadesini hesaplayınız.

4. Lebesgue baskın yakınsaklık teoremini kullanarak lpha>0 için

$$\lim_{n\to\infty}\int_{0}^{n}\left(1-\frac{x}{n}\right)^{n}x^{\alpha-1}dx=\lim_{n\to\infty}\frac{n!\,n^{\alpha}}{\alpha\left(\alpha+1\right)\cdots\left(\alpha+n-1\right)}=\Gamma(\alpha)$$

formülünü oluşturunuz.

5. a > 1 ise

$$\int_{0}^{\infty} \frac{x^{a-1}}{e^{x}-1} dx = \Gamma(a) \sum_{n=1}^{\infty} \frac{1}{n^{a}}$$

olduğunu gösteriniz.

5. a > 1 ise

$$\int\limits_{0}^{\infty}\frac{x^{a-1}}{\mathrm{e}^{x}-1}dx=\Gamma(a)\sum\limits_{n=1}^{\infty}\frac{1}{n^{a}}$$

olduğunu gösteriniz.

6.

$$\int_{0}^{\infty} \frac{\cos x}{e^{x} + 1} dx = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} n}{n^{2} + 1}$$

olduğunu gösteriniz.