# Semana acadêmica da Engenharia Eletrônica Tecnologias Assistivas: Próteses e órteses

Delmar Carvalho de Souza Instituto Federal de Santa Catarina (IFSC)

#### Prótese x órtese

Prótese: tenta
substituir parte do
membro perdido

Órtese: tenta
corrigir uma
imperfeição de um
membro integro

# Prótese





### Próteses de mão eletromecânica





https://www.techshake.com/protese-bionica-equipada-com-ia-imita-80-dos-movimentos-da-mao/

## Próteses de mão eletromecânica



https://www.youtube.com/shorts/e07DN2lp9Q8

### Prótese estética





https://www.medicalexpo.com/pt/prod/boston-orthotics-prosthetics/product-74664-942407.html

### Órtese

Ortese: tenta
corrigir uma
imperfeição de um
membro integro



### Prótese e órtese funcionais e estéticas





#### Prótese x órtese

Podem ser mecânicas ou envolver diversas tecnologias:

Próteses ou **órteses híbridas** 

### Órtese de reciprocação mecânica

Ortese de reciprocação

RECIPROCATION GAIT ORTHOSES (RGO)



https://portuguese.alibaba.com/product-detail/Thoracolumbar-paraplegia-walking-brace-RGO-Rehabilitation-1600312240038.html

### Órtese de reciprocação mecânica

Paraplégico usando Ortese de reciprocação

RECIPROCATION GAIT ORTHOSES (RGO)



### Órtese acionada por motores elétricos



https://youtu.be/cBzwbbTPJg0

# As surpresas da vida



https://www.youtube.com/watch?v=PLk8Pm\_XBJE

#### Introdução

```
https://www.youtube.com/watch?
v=PLk8Pm XBJE
0:38 - pernas robóticas de Hugh
Herr
4:57 - como a amputação dever ser
feita para melhor uso de próteses
8:45 - controle da órtese
12:33 - exoesqueletos para força
extra
12:51 - membros extras
```

#### Grupos musculares agonistas / antagonistas

#### Grupos musculares estimulados





### Interdisciplinaridade

Diversas tecnologias e áreas do conhecimento estão envolvidas no desenvolvimento de órteses e próteses















### Quão complexa deve ser um prótese?



https://dowelldogood.com/the-untapped-potential-of-3d-printing-prostheses-for-bop-populations/

### Quão complexa deve ser um prótese?



https://www.youtube.com/watch?app=desktop&v=ROEmV3vz-2Y

#### Próteses: Criatividade

#### Criatividade

```
https://www.youtube.com/watch?v=ucikp4XqIIo
https://www.youtube.com/watch?v=sgf3dvJHR1o
https://www.youtube.com/watch?v=GeasEPzARAY
https://www.ufpb.br/ufpb/contents/noticias/projeto-da-ufpb-produz-protese-de-braco-funcional-de-baixo-custo
https://youtu.be/cBzwbbTPJg0
```

#### Tecnologias assistivas no IFSC

#### Próteses e órteses

```
Equipe de Engenharia eletrônica
Equipe de Estagiários Técnicos em Eletrônica
```

Fasel: pesquisa em tecnologias de próteses

Fase2: Prototipagem de próteses de braço e pernas

#### Próteses e órteses

Laboratórios equipados Impressoras 3D Softwares de desenvolvimento Equipe docente altamente qualificados Discentes: motivação e empreendedorismo

#### Estimulação elétrica funcional (FES)

### Benefícios da Estimulação Elétrica Funcional (FES)

Restaura os movimentos dos membros paralizados Melhora o controle muscular Modula a impedância das articulações



#### Estimulação elétrica funcional (FES)

### Benefícios da Estimulação Elétrica Funcional (FES)

Restaura os movimentos dos membros paralizados Melhora o controle muscular Modula a impedância das articulações



#### Estimulação Elétrica Funcional (FES)

#### Grupos musculares estimulados





#### Posição dos eletrodos sobre os pontos motores



Source: Fonseca (2015)

#### Posição dos eletrodos sobre os pontos motores



Músculo agonista



Músculo antagonista



Voluntário posicionado para a estimulação

#### Diagrama de blocos do sistema e suas conexões



Raspberry PI v3 single-board computer



#### Formas de ondas FES



833 Hz de frequência dos pulsos 50 Hz de frequência dos burst



#### Formas de ondas FES



Rampa de subida dos pulsos



Patamar da estimulação

## Dinâmica da estimulação FES



Source: Velloso (2005)

#### Participantes selecionados

```
Local da pesquisa: ADFP (Associação dos deficientes físicos do Paraná)

Voluntários: 4 homens (18 a 60 anos)

Lesão medular completa

Musculatura íntegra

Sem implantes metálicos nos membros inferiores

Sem dispositivos regulatórios funcionais implantados (ex.: marcapasso, etc)
```

## Voluntário 1: aplicação FES



| Stim. | Кс   | Tc   | ED(s) | OS(°)   | PTTE(s) | ST(s) |
|-------|------|------|-------|---------|---------|-------|
| 01    | 2.11 | 3.20 | 0.7   | 6/20.0% | 2.8     | 10.95 |
| 04    | 2.11 | 3.20 | 8.0   | 6/20.0% | 2.9     | 9.85  |
| 03    | 2.15 | 4.98 | 0.7   | 5/16.6% | 2.6     | 11.70 |
| 02    | 1.85 | 6.77 | 0.9   | 4/13.3% | 3.2     | 14.15 |

Stim.: stimulation; OS: overshoot; ST: settling time; ED: electromechanical delay (ED); PTTE: passing through the target extension

## Voluntário 2: aplicação FES



| Stim. | Кс   | Тс   | ED(s) | OS(°)   | PTTE(s) | ST(s) |
|-------|------|------|-------|---------|---------|-------|
| 05    | 2.13 | 1.65 | 0.8   | 8/26.6% | 2.2     | 7.2   |
| 06    | 2.14 | 2.62 | 0.6   | 3/10%   | 3.5     | 10.8  |
| 07    | 1.91 | 3.56 | 0.7   | 3/10%   | 2.6     | 11.0  |
| 80    | 1.59 | 2.21 | 0.7   | 1/3.3%  | 4.9     | 3.9   |
| 09    | 1.58 | 3.30 | 1.1   | 0       | 4.1     | 4.1   |
| 10    | 1.53 | 4.25 | 1.1   | 7/23.3% | 4.7     | *     |

Stim.: stimulation; OS: overshoot; ST: settling time; ED: electromechanical delay (ED); PTTE: passing through the target extension. \*: value was not obtained due to fluctuations

## Voluntário 3: aplicação FES



| Stim. | Кс   | Тс   | ED s) | OS(°)  | PTTE(s) | ST(s) | Muscles |
|-------|------|------|-------|--------|---------|-------|---------|
| 11    | 3.89 | 1.72 | 0.9   | 2/6.6% | 1.05    | 1.05  | Q       |
| 12    | 3.09 | 2.15 | 1.0   | 1/3.3% | 2.3     | 1.22  | Q+H     |
| 13    | 2.06 | 3.23 | 1.3   | 0      | 4.2     | 4.2   | Q+H     |
| 14    | 3.89 | 1.72 | 0.9   | 1/3.3% | 1.6     | 1.6   | Q+H     |

Stim.: stimulation; OS: overshoot; ST: settling time; ED: electromechanical delay (ED); PTTE: passing through the target extension; Q: quadriceps; Q+H: quadriceps + hamstrings

## Voluntário 4: aplicação FES



| Stim. | Кс   | Тс   | ED(s) | OS(°) | PTTE(s) | ST(s) | Muscles |
|-------|------|------|-------|-------|---------|-------|---------|
| 15    | 1.75 | 5.08 | 2.0   | 0     | 11.6    | 8.35  | Q       |
| 16    | 1.75 | 5.08 | 1.0   | 4     | 10.1    | 21.0  | Q + H   |

Stim.: stimulation; OS: overshoot; ST: settling time; ED: electromechanical delay (ED); PTTE: passing through the target extension; Q: quadriceps; Q+H: quadriceps + hamstrings

#### Conclusão

A estimulação combinada de quadríceps e isquiotibiais tem uma extensão mais precisa que a estimulação apenas de quadríceps

A escolha dos parâmetros estimulatórios melhor ajustados às características do voluntário faz com que o controle de posição do joelho atinja a meta com a rapidez necessária e não sofra muitas oscilações

#### Conclusão

Os resultados mostram que o estimulador pode ser ajustado às características dos voluntários testados e pode ser utilizado em aplicações de reabilitação

A estimulação FES pode ser aplicada apenas no quadríceps ou quadríceps e isquiotibiais

Parametros podem ser ajustados de acordo com o desempenho desejados

#### Conclusão

A sequência deste trabalho é combiná-lo a um exoesqueleto e a motores DC de forma a criar uma órtese híbrida que permita um paraplégico mover-se com auxílio de muletas



# Referências

FONSECA, L. O. Instrumentação e controle em ciclismo assistido por estimulação elétrica para indivíduos com lesão medular. 2015. 84 p. Dissertação (Mestrado em Engenharia Elétrica) - Universidade de Brasília, Brasília, 2015.

NOGUEIRA, R. R. Estimulador elétrico neuromuscular multicanal para prótese neural híbrida de membros inferiores.2016. 135 p. Dissertação (Mestrado em Tecnologia em Saúde) – Pontifícia Universidade Católica do Paraná, Curitiba, 2016.

SOUZA, D.C.; PALMA, J.C.; STARKE, R.A.; NOGUEIRA-NETO, G.N.; NOHAMA, P. Functional Electrical Stimulation Closed-loop Strategy Using Agonist-Antagonist Muscles for Controlling Lower Limb Movements. CBEB, 2020.

#### Autores

Delmar Carvalho de Souza delmar@ifsc.edu.br

Julio Cesar Palma julio1978@gmail.com

Guilherme Nogueira Nogueira.g@pucpr.br

Percy Nohama
percy.nohama@gmail.com

#### Instituições













