Synthesis of Digital Systems COL 719

Part 4: Retiming

Instructor: Preeti Ranjan Panda

Department of Computer Science and Engineering

Indian Institute of Technology Delhi

Optimising Sequential Circuits

- Minimise area and cycle time
 - Optimise combinational parts independently
 - Retiming by moving registers

combinational logic stages

Reducing Cycle Time by Retiming

Reducing Area by Retiming

Graph Representation of Sequential Circuits for Retiming

- Nodes = Gates
 - weight = gate delay
- Edges = Registers
 - weight = #Registers between gates

Path Delay between Nodes

- Sum of propagation delays of nodes along path (including end-points)
- Let d_k be path delay of node v_k
- For path (v_i,...,v_i), path delay:

$$d(v_i,...,v_j) = \sum_{vk \in (vi,...,vj)} d_k$$

$$\begin{pmatrix} 2 \\ x \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ y \end{pmatrix} \begin{pmatrix} 4 \\ z \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ w \end{pmatrix}$$

d (x,...,w) = 2+3+4+3 = 12

Path delay is
independent of registers

Path Weight between Nodes

- Register count along path (including end-points)
- Let w_{kl} be weight of edge $v_k \rightarrow v_l$
- For path (v_i,...,v_i), path weight:

$$w(v_i,...,v_j) = \Sigma_{vk \rightarrow vl \in (vi,...,vj)} w_{kl}$$

$$a \xrightarrow{1} b \xrightarrow{0} c \xrightarrow{2} d$$

$$w(a,...,d) = 1+0+2 = 3$$

Path weight is independent of node delays

Retiming a Node

- Moving registers from outputs to inputs
 - or vice versa
 - amount of synchronous delay moved past node
 - "register" = "flip flop"
- Positive or negative value

Retiming the Graph

- Graph transformation: G(V,E,W) to G'(V,E,W')
- Integer vector r:V→Z
- For all edges v_i→v_j

$$w'_{ij} = w_{ij} + r_j - r_i$$
 r_j registers added to edge
 r_i registers removed from edge

Path Weights after Retiming

· Path weight depends on retiming of extreme nodes only

$$w'(v_{i},...,v_{j}) = w(v_{i},...,v_{j}) + r_{j} - r_{i}$$

Weight of cycle is invariant on retiming

Definitions

 $W_{ij} = min w(v_i,...,v_j)$ for all paths $(v_i,...,v_j)$

$$W_{ae} = w(a,b,e) = w(a,c,e) = 4$$

 $D_{ij} = \max d(v_i,...,v_j)$ for all paths $(v_i,...,v_j)$ with weight W_{ij}

$$d(a,b,e) = 1+3+2=6$$

 $d(a,c,e) = 1+2+2=5$ $D_{ae} = d(a,b,e) = 6$

Legality and Timing Feasibility

Legality

No negative edge weights (number of registers ≥ 0)

Timing Feasibility

- given clock period ∮
- Path delay larger than φ should be broken by at least one register

$$W'_{ij} \ge 1 \text{ if } D_{ij} > \phi$$

Infeasible for $\phi = 5$ Feasible for $\phi = 6$

Feasibility of Retiming

- Retiming is feasible if
 - legal
 - retimed graph is timing feasible
- Retiming r is feasible if

$$\forall \ (v_i, v_j) \in E$$
 Legality Check
$$w'_{ij} \ge 0 \Rightarrow w_{ij} + r_j - r_i \ge 0 \Rightarrow r_i - r_j \le w_{ij}$$

$$\forall \ v_i, v_j : D(v_i, v_j) > \varphi$$
 Timing Check
$$w'_{ij} \ge 1 \Rightarrow W_{ij} + r_j - r_i \ge 1 \Rightarrow r_i - r_j \le W_{ij} - 1$$

System of Linear Inequalities

- Compute W and D matrices
- Build set of linear inequalities
 - Upto 2 inequalities for every pair of nodes
- Solve for vector r

$$\forall (v_i, v_j) \in E$$

$$r_i - r_j \le w_{ij}$$

$$\forall v_i, v_j : D(v_i, v_j) > \phi$$

$$r_i - r_j \le W_{ij} - 1$$

Remove Redundant Inequations and Solve

Retain one equation per $(r_{i,}r_{j})$ pair Solve for $r_{1,}r_{2,}r_{3,}r_{4}$

How do we Solve System of Inequalities?

- General problem: Linear Programming (LP)
 - Maximise $\Sigma c_i x_i$ given $Ax \leq b$
 - Simplex method (Exponential time)
 - Ellipsoid/Karmakar (Polynomial time)
- Restricted version: Integer Linear Programming (ILP)
 - Variables restricted to be integers
 - NP-Complete!

$$r_1 - r_2 \le 1$$

 $r_1 - r_3 \le -1$
 $r_2 - r_4 \le -2$
 $r_2 - r_3 \le 1$
 $r_3 - r_4 \le -1$

```
\begin{aligned} &A_{11}x_1 + A_{12} x_2 \le b_1 \\ &A_{21}x_1 + A_{22} x_2 \le b_2 \\ &A_{31}x_1 + A_{32} x_2 \le b_3 \\ &A_{41}x_1 + A_{42} x_2 \le b_4 \\ &A_{51}x_1 + A_{52} x_2 \le b_5 \end{aligned}
```

Inequalities in Retiming Problem

- Restricted system of inequalities
 - Exactly 2 variables in each inequality
 - Coefficients are 1, -1
- Can be solved in Polynomial time!

```
r_1 - r_2 \le 1

r_1 - r_3 \le -1

r_2 - r_4 \le -2

r_2 - r_3 \le 1

r_3 - r_4 \le -1
```

Solution to System of Inequalities

- No solution
- System has infinite solutions.
 - if r is a solution, r+c is also a solution
- Let $r_1 = 0$
 - Can set arbitrary r_i to 0
 - For example:
 - if (2,3,-1,0) is one solution,
 (0,1,-3,-2) is also a solution

$$r_1 - r_2 \le 1$$

 $r_1 - r_3 \le -1$
 $r_2 - r_4 \le -2$
 $r_2 - r_3 \le 1$
 $r_3 - r_4 \le -1$

Build Constraint Graph

- One node n_i for each r_i
- Constraint $r_a r_b \le k$ implies Edge Weight $wt(n_b \rightarrow n_a) = k$
- Add auxiliary node t
 - zero-weight edges to all other nodes from t

Solution using Shortest Path Algorithm

- Find shortest path in graph from t to all other nodes
 - Polynomial time
 - Bellman-Ford algorithm
- This gives r_i values for other nodes!

Solution:
$$r_1 = -2$$
, $r_2 = -2$, $r_3 = -1$, $r_4 = 0$

Why does Shortest Path work?

Consider edge n_b→n_a sp $(t\rightarrow n_a) \le sp (t\rightarrow n_b) + wt (n_b\rightarrow n_a) -- by define of shortest path$ $sp(t\rightarrow n_a) - sp(t\rightarrow n_b) \leq wt(n_b\rightarrow n_a)$ Letting $r_a = sp (t \rightarrow n_a)$ $r_b = sp (t \rightarrow n_b)$ $r_a - r_b \le wt (n_b \rightarrow n_a)$ $r_a - r_b \le k$ Thus, choice of sp for r_i satisfies constraint represented by edge wt

What if Graph has Negative Cycle?

- Sum of edge wts in cycle is negative
- Bellman-Ford algorithm returns error
 - shortest path not defined

Negative Cycle Leads to Infeasible Constraints

```
r_2 - r_1 \le wt (n_1 \rightarrow n_2)

r_3 - r_2 \le wt (n_2 - n_3)

r_4 - r_3 \le wt (n_3 - n_4)

...

r_k - r_{k-1} \le wt (n_{k-1} - n_k)

r_1 - r_k \le wt (n_k - n_1)
```

Ref: Cormen, Leiserson, and Rivest, "Introduction to Algorithms"

Adding both sides:

 $0 \le wt (n_1 \rightarrow n_2) + wt (n_2 - n_3) + ... + wt (n_{k-1} - n_k) + wt (n_k - n_1)$ Impossible because RHS is negative i.e., Bellman-Ford algorithm can be used directly for our problem Now, we have Retiming values for all nodes (gates)

Retiming Strategy

- Compute D and W of original circuit

$$\forall (v_i, v_j) \in E \qquad r_i - r_j \le w_{ij}$$

$$\forall v_i, v_j : D(v_i, v_j) > \phi \qquad r_i - r_j \le W_{ij} - 1$$

- If solution exists reduce φ and solve again
- Until no more solution

- Optimal clock period has to be one of the D_{ii} values
 - otherwise, we could reduce φ to the nearest D_{ij} value without violating clock period
- First enumerate and sort all D_{ij} values in decreasing order
 - E.g.: 20, 16.5, 15, 13.2, 10, 8, 7, 5
- Use binary search