Object Detection in Aerial Drone Videos

Soumyadeep Banik

Instructor: Sujoy Kumar Biswas

Machine Learning Systems, 2021

RKMVERI, Belur

Problem Statement and Related works on Object Detection:

To detect and recognize the visible objects in a particular instance of a video captured from drone/UAV.

Dataset used: Stanford Drone Dataset (can be found here)

Other detectors:

Source: J. Redmon, A. Farhadi YOLOv3: An Incremental Improvement

- YOLOv3 at 320 × 320, 3 times faster than SSD
- compared to 57.5 AP₅₀ in 198 ms by RetinaNet, similar performance but 3.8× faster

Dataset Description:

- 60 videos(70 GB) from Stanford university campus captured from UAV/drone.
- Categorized into 8 unique scenes. Each video contains pedestrians, bicyclists, skateboarders, cars, buses, and golf carts.
- Ground Truth:

2 million+ annotations in text format consisting:

[track id, xmin, ymin, xmax, ymax, frame, lost, occluded, appeared, class]

- Training data: 17 videos chosen from all 8 different locations.
- Converted into PASCAL-VOC format. 1 in every 30 frames and corresponding labels are selected and put into the new dataset. [class_ID_1 X_CENTER_NORM Y_CENTER_NORM WIDTH_NORM HEIGHT_NORM]

Analysis of the Dataset

Analysis of the Dataset

Analysis of the Dataset

Data Preprocessing & Preparation

Flip: Horizontal

Rotation: Between -15° and +15° Shear: ±15° Horizontal, ±15° Vertical

Resize: Stretch to 416x416

Grayscale: Applied

Dataset	No of images	Labels
Train set	4563	50,000+
Validation Set	1543	-
Test Set	1510	-
Total	7486 images	2,08000+

Network Architecture

Workflow

Loss and Other Maths

4 Losses:

- 1. MSE of center X, center Y, Width and Height of bounding box
- 2. BCE of objectness score of a bounding box
- 3. BCE of no objectness score of a bounding box
- 4. BCE of multi-class predictions of a bounding box

Experiments & Results

YOLO-V4 Pytorch Implementation (Training Loss)

Learning rate	epochs	mAP	Batch size
5e-3	60/250	0.0000	4
1e-4	61/250	0.0000	8

In DarkNet Framework (Training Loss)

Learning rate	iterations	mAP	Train Set	Test Set
1e-3	2000	26.07%	1000+	200+

Visualization of Output(Demo)

To Dos

- ✓ Clean and Get the new Video data
- ✓ Convert into frames and take frames in 1 sec interval
- ✓ Get labels of each frames
- ✓ Split into train, test, validation
- ✓ Define the anchor values
- ***** Train Yolo V3 network on it
- ✓ Train on DarkNet Framework
- ✓ Evaluation

References:

- 1. A. Robicquet, A. Sadeghian, A. Alahi, S. Savarese, Learning Social Etiquette: HumanTrajectory Prediction In Crowded Scenes in European Conference on Computer Vision(ECCV), 2016.
- 2. Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi You Only Look Once: Unified, Real-Time Object

 Detection
- 3. Joseph Redmon, Ali Farhadi YOLOv3: An Incremental Improvement
- 4. Alexey Bochkovskiy, Chien-Yao Wang, Hong-Yuan Mark Liao <u>YOLOv4: Optimal Speed and Accuracy of Object</u>

 <u>Detection</u>