BENCHMARK PROBLEM

Identification: 11-A2 Source Situation ID.11

Date Submitted: June 1976 By: R. R. Lee (CE)

D. A. Meneley (Ontario Hydro)
B. Micheelsen (Risø-Denmark)

D. R. Vondy (ORNL)
M. R. Wagner (KWU)
W. Werner (GRS-Munich)

By: H. L. Dodds, Jr. (U. of Tenn.)
M. V. Gregory (SRL) Date Accepted: June 1977

Two-dimensional LWR Problem, Descriptive Title:

also 2D IAEA Benchmark Problem

Reduction of Source Situation

Two-group diffusion theory

Two-dimensional (x,y)-geometry

Two-Group Diffusion Equations:

$$- \nabla D_1 \nabla \Phi_1 + (\Sigma_{\alpha 1} + \Sigma_{1 \rightarrow 2} + D_1 B_{z1}^2) \Phi_1 = \frac{1}{\lambda} V \Sigma_{f2} \Phi_2$$

$$- \nabla D_2 \nabla \Phi_2 + (\Sigma_{\alpha 2} + D_2 B_{z2}^2) \Phi_2 = \Sigma_{1+2} \Phi_1$$

Data

Two-group Constants

Region	D,	D ₂	Σ _{1→2}	Σ_{α^1}	Σα2	νΣ _{f2}	Material
1	1.5 1.5	0.4	0.02	0.01	0.08 0.085	0.135 0.135	Fuel 1 Fuel 2
3 4	1.5	0.4	0.02 0.04	0.01	0.13 0.01	0.135 0	Fuel 1 Fuel 2 Fuel 2 + Rod Reflector

Axial buckling $B_{z,g}^2 = 0.8 \cdot 10^{-4}$ for all regions and energy groups.

Note: This 2D IAEA Benchmark Problem represents the midplane z = 190 cm of the 3D IAEA Benchmark Problem

Boundary Conditions:

 $J_q^{in} = 0$ No incoming current at external boundaries.

For finite difference diffusion theory codes the following form is considered equivalent

$$\frac{\partial \Phi_g}{\partial n} = -\frac{0.4692}{D_g} \Phi_g,$$

where n the outward directed normal to the surface. At symmetry boundaries:

$$\frac{\partial \Phi_g}{\partial D} = 0$$

Expected Primary Results:

- 1. Maximum eigenvalue
- 2. Fundamental flux distributions
 - 2.1 Radial flux traverses $\phi_{g}(x,0)$ and $\phi_{g}(x,x)$

Note: The fluxes shall be normalized such that

$$\frac{1}{V_{core}} \int_{V_{core}} \sum_{g} v \Sigma_{fg} \Phi_{g} dV = 1$$

2.2 Value and location of maximum power density. This corresponds to maximum of \emptyset_2 in the core. It is recommended that the maximum values of \emptyset_2 both in the inner core and at the core/reflector interface be given.

3. Average subassembly powers P_k

$$P_{k} = \frac{1}{V_{k}} \int_{V_{k}} \sum_{g} v \Sigma_{fg} \Phi_{g} dV$$

where V_k volume of the k-th subassembly and k designates the fuel subassemblies as shown in lower octant of Fig. 1

- 4. Number of unknowns in the problem, number of iterations, total and outer
- 5. Total computing time, iteration time, IO-time, computer used
- 6. Type and numerical values of convergence criteria
- 7. Table of average group fluxes for a square mesh grid of 20 x 20 cm
- 8. Dependence of results on mesh spacing

Best Solution Available: Extrapolated finite difference solution described in 11-A2-1

Solutions

1. Finite Difference Method: 11-A2-1

2. Finite Element Method: 11-A2-2

3. Nodal Expansion Method: 11-A2-3

4. Finite Difference Method: 11-A2-4

BENCHMARK PROBLEM SOLUTION

Identification: 11-A2-1 Benchmark Problem 11.A2

Date Submitted: June 1, 1976 By: D. R. Vondy, T. B. Fowler (ORNL)

Date Accepted: June 1, 1977 By: H. L. Dodds, Jr. (U. of Tenn.)

M. V. Gregory (SRL)

Descriptive Title: Two-dimensional PWR Problem (IAEA)

Mathematical Model: Diffusion theory, various difference formulations

Computer: IBM-369/91, 1973-76, ORNL

IBM-360/195, 1976 UC-CTC

Program: (1) VENTURE, ORNL-5062 Report

(2) EXTERMINATOR-2, ORNL-4078

(3) VANCER, to be documented (ORNL)

Note: To produce acceptable solutions for benchmarking, tighter convergence of the iterative process was required than is common practice in application, maximum relative flux change on outer iterations = 10^{-5} .

Primary Results:*

- a. Primary results obtained in 1973-74 are shown in Table 1. The larger problems were initialized with the flux solution from the smaller problems, and an early version of the VENTURE code used obsolete procedures, so compute times are not representative. Apparent finite-difference error in the multiplication factor is displayed in Fig. 1. Tables 2 and 3 present zone average flux values. Normalization is to one neutron produced for the problem.+
- b. Recent results with the VANCER code using the mesh-edge formulation parameterized to admit different approximations are shown in Table 4 from calculations on the IBM-360/91 done in 1976. These calculations were done with rather obsolete procedures oriented to use of an extended, slow memory, so representative computation times are not available.

Extrapolation of results is done on the basis of error dependence on the square of the mesh spacing.

To obtain the proper normalization, results in Tables 2 and 3 should be multiplied by 1.78.

ORNL-DWG 74-10811

Table 1

IAEA BENCHMARK PROBLEM

(Two-Group, Two-Dimensional, B2=8x10-5)

Meshpoints (Total Unknowns)	^k eff	Peak-to-Average Power Density	IBM-360/91 Processor Time (min)	
Old Code Extermina		sh-edge points, zero ternal boundary)	o flux	
16x16(512)	1.03651	2.2404	0.20	
33x33(2,178)	1.03065	1.6538	1.0	
67x67(8,978)	1.03033	1.5314	(10.)	
Extrapolated	1.03022	1.491		
VENTURE (mesh-ce		ts, non-return exte	rnal	
9x9 (162)	1.03208	1.5493	0.05	
17x17 (578)	1.02965	1.6486	0.06	
$34 \times 34 (2,312)$	1.02924	1.5985	0.32	
68x68(9,248)	1.02944	1.5442	3.4	
136x136(36,992)	1.02954	1.5217	13.5	
272x272(147,968)	1.02958	1.5149	80	
Extrapolated	1.02959	1.5126		

Figure 1. Two-Dimensional Finite-Difference Results

Two-Dimensional Finite-Difference Results.

Table 2. Zone Average Fast Group Flux - Mesh Centered VENTURE (Results below should be multiplied by 1.78 for proper normalization)

Location/						
<u>Intervals</u>	9x9	17x17	34x34	68x68	272x272	Extrapolated
1	17.35	19.28	19.37	18.77	18.37	18.34
2	25.20	26.42	25.30	24.27	23.71	23.67
3	27.12	28.43	27.46	26.49	25.96	25.92
4	23.48	23.87	23.06	22.30	21.89	21.86
5	13.14	14.92	15.32	15.16	15.02	15.01
6	17.53	17.09	17.01	16.95	16.92	16.92
7	16.19	15.80	16.15	16.45	16.61	16.62
8	11.55	10.37	10.76	11.21	11.47	11.49
9	0.954	1.202	1.531	1.772	1.898	1.906
10	27.14	28.46	27.28	26.23	25.65	25.61
11	27.61	28.87	27.90	26.94	26.42	26.39
12	24.73	25.45	24.63	23.90	23.49	23.46
13	19.56	20.39	19.96	19.56	19.35	19.34
14	18.77	18.62	18.54	18.51	18.49	18.49
15	16.45	15.98	16.34	16.67	16.85	16.86
16	11.23	10.06	10.46	10.93	11.20	11.22
17	0.921	1.144	1.458	1.690	1.813	1.821
18	27.28	28.38	27.53	26.99	26.23	26.18
19	24.82	25.59	24.96	24.35	24.01	23.99
20	21.14	21.77	21.50	21.20	21.04	21.03
21	19.02	18.85	18.93	19.00	19.03	19.03
22	16.96	15.53	15.80	16.19	16.42	16.43
23	9.222	8.176	8.616	9.114	9.394	9.413
24	0.733	0.856	1.088	1.272	1.373	1.380
25	22.21	22.50	22.00	21.55	21.30	21.28
26	17.86	17.97	17.75	17.57	17.46	17.45
27	16.14	15.70	15.83	16.00	16.09	16.10
28	12.77	11.62	12.01	12.48	12.74	12.76
29	1.682	2.104	2.686	3.115	3.346	3.361
30	0.188	0.239	0.3136	0.3704	0.4012	0.4033
31	9.374	10.79	11.32	11.48	11.52	11.52
32	12.26	11.18	11.31	11.57	11.72	11.73
33	8.075	7.136	7.482	7.903	8.141	8.157
34	0.712	0.849	1.080	1.263	1.362	1.369
35	8.206	7.071	7.320	7.690	7.904	7.918
36	1.217	1.417	1.789	2.083	2.244	2.255
37	0.150	0.190	0.2511	0.2975	0.3226	0.3243
38	0.190	0.221	0.2844	0.3343	0.3616	0.3634

Table 3. Zone Average Thermal Group Flux - Mesh Centered VENTURE (Results below should be multiplied by 1.78 for proper normalization)

Location/						
Intervals	9x9	17x17	34x34	68x68	272x272	Extrapolated
1	2.796	3.131	3.202	3.155	3.122	3.120
2	5.898	6.173	5.891	5.633	5.491	5.482
3	6.367	6.673	6.446	6.218	6.093	6.085
4	5.501	5.581	5.372	5.181	5.075	5.068
5	2.113	2.422	2.531	2.548	2.552	2.552
6	4.105	3.990	3.957	3.921	3.915	3.914
7	3.803	3.712	3.797	3.869	3.908	3.911
8	2.900	2.670	2.863	3.050	3.153	3.160
9	3.286	3.706	4.105	4.368	4.505	4.514
10	6.372	6.678	6.401	6.151	6.015	6.006
11	6.483	6.777	6.548	6.342	6.202	6.193
12	5.806	5.972	5.779	5.604	5.510	5.503
13	4.580	4.766	4.647	4.541	4.481	4.477
14	4.407	4.371	4.351	4.342	4.336	4.336
15	3.865	3.759	3.848	3.930	3.974	3.977
16	2.818	2.587	2.781	2.969	3.072	3.079
17	3.163	3.510	3.891	4.149	4.284	4.293
18	6.406	6.662	6.462	6.265	6.157	6.149
19	5,826	6.005	5.860	5.714	5.635	5.630
20	4.964	5.111	5.047	4.977	4.938	4.935
21	4.468	4.430	4.450	4.469	4.479	4.480
22	4.201	3.847	3.918	4.019	4.076	4.080
23	2.369	2.220	2.494	2.746	2.887	2.896
24	2.498	2.637	2.944	3.176	3.299	3.307
25	5.214	5.280	5.162	5.055	4.996	4.992
26	4.185	4.201	4.138	4.082	4.049	4.047
27	3.794	3.690	3.726	3.768	3.792	3.794
28	3.223	3.016	3.224	3.423	3.533	3.540
29	5.641	6.040	6.518	6.844	7.013	7.024
30	0.9503	1.122	1.336	1.497	1.584	1.590
31	1.506	1.755	1.878	1.937	1.967	1.969
32	3.031	2.756	2.780	2.836	2.867	2.869
33	2.071	1.930	2.156	2.371	2.490	2.498
34	2.543	2.724	3.041	3.280	3.406	3.414
35	2.115	1.929	2.129	2.327	2.440	2.448
36	4.045	4.038	4.330	4.570	4.698	4.707
37	0.7636	0,889	1.059	1.190	1.261	1.266
38	0.9518	1.045	1.222	1.364	1.443	1.448

Table 4. TWO-DIMENSIONAL, TWO-GROUP IAEA BENCHMARK PROBLEM RESULTS

	Mesh	7-	Peak Relat	ive Power Density
Formulation (Near Neighbors)	Intervals	k eff	Internal.	Near Reflector
Meshpoint Centered, VENTURE (4)	9 ²	1.03208	1.549	
nonpound democrat, ventrone (1)	172	1.02965	1.649	
	342	1.02909	1.599	
	68 ²	1.02944	1.544	
	136 ²	1.02954	1.522	
Extrapolated	272 ² (∞)	1.02958 1.02959	1.515 1.513	
-	• ,			
Mesh Edge, VANCER Usual Finite-Difference (4)	9 ²	1.07647	none	4.28
osual limite-billerence (4)	17 ²	1.03733	0.962	2.231
	34 ²			
		1.03077	1.364	1.660
	,68 ²	1.02983	1.475	1.546
(0)	(∞)	1.02952	1.512	1.508
Taylor Series (8)	3 ⁴ ²	1.03080	1.364	1.652
Higher Order Taylor Series (8)	172	1.03442	1.095	2.043
	34 ²	1 .0 3036	1.405	1.629
	68 ²	1.02975	1.485	1.544
	(∞)	1.02955	1.512	1.516
Linear Finite-Element (8)*	17 ²	1.03109	1.309	1.779
	34 ²	1.02985	1.462	1.605
	68 ²	1.02965	1.499	1.545
	(∞)	1.02958	1.511	1,525
Linear Finite-Difference (8)*	`17 ²	1.03236	1.214	1.887
Danielle Fairer enec (e)	34 ²	1.03006	1.437	1.614
	68 ²	1.02969	1.493	1.544
	(∞)	-		
Compromise (8)	172	1.02957	1.51.2	1.521
Compromise (O)		1.03390	1.123	2.009
	34 ²	1.03028	1.412	1.625
	68 ²	1.02973	1.487	1.544
	(∞)	1.02955	1.512	1.517
Simple Compromise (4)	342	1.03051	1.389	1.645
	,68 ²	1.02978	1.481	1.544
*	(∞)	1.02954	1.512	1.510
Compensated Difference (4)*	172	1.03206	1.228	1.900
	342	1.03002	1.438	1.628
	68 ²	1.02968	1.493	1.547
	(∞)	1.02957	1.511	1.520
Local Source				
H-O Taylor Series (8)	34 ²	1.03162	1.393	1.724
Linear Finite-Element (8)	342	1.03229	1.402	1.792
Linear Finite-Difference (8)	342	1.03280	1.422	1.860
Compromise (8)	34 ²	1.03178	1.387	1.737
Simple Compromise (4)	34 ²	1.03126	1.375	1.700
ompensated Difference (4)	34 ²	1.03120	1.403	1.700
•	5 4			
Apparent Solution		1.02958	1.51	1.52

^{*}Results for 9^2 mesh inadequate, resulting flux skewed; the only clue of inadequate solution is a neutron balance k.

BENCHMARK PROBLEM SOLUTION

Identification: 11-A2-2 Benchmark Problem ID.11-A2

Date Submitted: June 1976 By: Ib Misfeldt (Risø-Denmark)

Date Accepted: June 1977 By: H. L. Dodds, Jr. (U. of Tenn.)

M. V. Gregory (SRL)

Descriptive Title: Two-dimensional PWR Problem

Mathematical Model: FEM (2nd order Lagrange interpolation,

rectangular elements)

Pertinent Features of Solution Method: The grid had 36 \times 36 meshes and

 73×73 flux points.

Computer: B 6700 Date Solved: August 25, 1975

at: Risø, Denmark

Program: FEMB

References

- 1. Ib Misfeldt, "Solution of the multigroup neutron diffusion equations by the finite element method," Risø-M-1809 (1975).
- 2. G. K. Kristiansen, "Investigation of the accuracy of centerpoint-, cornerpoint-, and finite-element-methods for solution of the neutron diffusion equation," NEACRP-L-149 (1976).

Results

- 1. Maximum eigenvalue: $k_{eff} = 1.0296$
- 2. Fundamental flux distributions
 - 2.1. See Tables 2A and 2B of flux traverses.
 - 2.2. Maximum power density

Uninterpolated values are given

$$(\emptyset_2)_{\text{max,1}} = 11.31 \text{ at } (x,y) = (130,55)$$

$$(\emptyset_2)_{\text{max},2} = 11.18 \text{ at } (x,y) = (30,30)$$

3. Average subassembly powers

See Table 2C.

4. Number of unknowns and iteration number $73 \times 73 \times 2$ unknowns; 120 iterations.

- 5. Computing times
 - $2\frac{1}{2}$ hours cp=time; $\frac{1}{2}$ hour io-time, on B 6700.
- 6. Convergence criteria $\text{Maximal flux-error-estimate less than 0.01\% of } \emptyset_{\max} \text{ in each group.}$
- 7. Average group-fluxes for 20 x 20 cm grid See Table 2D.
- 8. Dependence of results on mesh spacing See Refs. 1 and 2.

Table 2A

m - 1 1 -	2.7	/ 1 1 3 3	
тарте	ZA	(cont'd)	

117.500	30.164	7.081
120.000	29.664	6.964
122.500	29.064	6.827
125.000	28.371	6.676
127.500	27.585	6.525
130.000	26.689	6.434
132.500	25.629	6.300
135.000	24.355	6.025
137.500	22.854	5.677
140.000	21.128	5.292
142.500	19.178	4.920
145.000	16.945	4.746
147.500	14.273	5.182
150.000	10.430	7.976
152.500	7.301	12.063
155.000	5.107	12.443
157.500	3.565	11.132
160.000	2.480	9.136
162.500	1.711	6.976
165.000	1.162	4.838
167.500	0.762	2.743
170.000	0.459	0.580
T/0.000		0.500

Table 2B

Table 2B	(cont	' d)
----------	-------	-------------

115.000 117.500	115.000 117.500	1.382 0.803 0.463	5.429 3.767 2.387
120.000 122.500 125.000	120.000 122.500 125.000	0.260 0.138	1.360 0.652
127.500 130.000 132.500	127.500 130.000 132.500	0.066 0.025 0.000	0.211 0.010 0.000

Table 2C

Average subassembly powers

170.00								
0.0000 150.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.7571	0.7379	0.6952	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
130.00								
0.9350	0.9512	0.9761	0.8485	0.5997	0.0000	0.0000	0.0000	0.0000
110.00								
0.9345	1.0359	1.0706	0.9068	0.6859	0.5874	0.0000	0.0000	0.0000
90.00								
0.6099	1.0684	1.1783	0.9661	0.4712	0.6860	0.5998	0.0000	0.0000
70.00								
1.2083	1.3128	1.3433	1.1916	0.9662	0.9070	0.8487	0.0000	0.0000
50.00								
1.4509	1.4772	1.4671	1.3434	1.1785	1.0708	0.9764	0.6954	0.0000
30.00								
1.3068	1.4323	1.4773	1.3130	1.0686	1.0362	0.9516	0.7382	0.0000
10.00								
0.7443	1.3068	1.4510	1.2084	0.6100	0.9348	0.9354	0.7574	0.0000
0.00 10	.00 30.	.00 50.	00 70.	00 90	.00 110.			00 170.00

Table 2D, group 1

Flux averages

Group 1

_								
170.00								
3.3944	3.2431	2.4578	0.7188	0.0215	0.0040	0.00.00	0.0000	0.000
150.00								
20.3675	19.8959	16.7075	5.9875	2.438 7	0.5778	0.0100	0.0000	0.0000
130.00								
29.4320	29.8661	29.1220	22.6278	14.4753	4.0186	0.6479	0.0100	0.0000
110.00								
29.9296	32.7203	33.6976	28.5075	20.7859	14.0517	4.0194	0.5781	0.0040
90.00								
26.5281	34.1781	37.1833	30.8752	20.3850	20.7890	14.4796	2.4397	0.0215
70.00								
38.6266	41.4685	42.3909	37.6359	30.8782	28.5131	22.6343	5.9895	0.7190
50.00								
45.7876	46.6162	46.2972	42.3941	37.1893	33.7055	29.1304	16.7128	2.4586
30.00								
41.8016	45.2435	46.6185	41.4731	34.1849	32.7299	29.8766	19.9035	3.2444
10.00								
	41.8032	45.7911	38.6309	26.5336	29.9397	29.4437	20.3760	3.3959
0.00 10.						.00 130	.00 150.	

Table 2D, group 2

Group	2

_									
170.00									
8.0138	7.6236	5.8770	2.8301	0.0293	0.0053	0.0000	0.0000	0.0000	
150.00									
5.6078	5.4661	5.1497	12.4623	6.0648	2.2525	0.0143	0.0000	0.0000	
130.00									
6.9263	7.0461	7.2307	6.2849	4.4419	8.3528	2.5767	0.0143	0.0000	
110.00									
6.9224	7.6736	7.9302	6.7171	5.0810	4.3515	8.3545	2.2534	0.0054	
90.00		1							
4.5176	7.9143	8.7280	7.1565	3.4904	5.0817	4.4432	6.0674	0.0293	
70.00									
8.9502	9.7246	9.9503	8.8264	7.1572	6.7184	6.2867	12.4665	2.8309	
50.00									
10.7476	10.9421	10.8673	9.9511	8.7293	7.9321	7.2328	5.1513	5.8789	
30.00									
9.6798	10.6093	10.9427	9.7256	7.9158	7.6758	7.0485	5.4682	7.6265	
10.00									
5.5137	9.6801	10.7484	8.9512	4.5185	6.9247	6.9290	5.6102	8.0174	
0.00 10	.00 30	.00 50	.00 70	.00 90	.00 110.	00 130	.00 150.	00 170.00	J