

Mathématiques

Classe: BAC Mathématiques

Chapitre : Identité de Bézout

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1:

(\$\) 35 min

6 pts

1) Soient a et b deux entiers non nuls , montrer que si a Λ b=1 alors pour tout entier naturel non nul m, on a :a $^m\Lambda$ b m =1 .

Pour tout entier naturel non nul n. On considère dans Z le système

$$(S_n):\begin{cases} x \equiv 0 \pmod{5^n} \\ x \equiv 1 \pmod{2^n} \end{cases}$$

- 2) Montrer que si x est solution de (Sn) alors :
 - a) x^2 est solution de (S_{n+1}) .
 - b) $x^2 \equiv x \pmod{10^n}$.
- 3) Soit $a_n = 5^{2^{n-1}}$. Montrer que pour tout $n \in \mathbb{N}^*$, a_n est solution de (S_n) .
- 4) Déterminer un entier naturel p tel que p et p² ont les mêmes chiffres respectifs des unités, des dizaines et des centaines.
- 5) Soit dans \mathbb{Z}^2 , l'équation (E): 125x-8y=1.
- a. Vérifier que (E) admet des solutions dans \mathbb{Z}^2 puis déterminer une solution particulière de (E).
- b. Résoudre l'équation (E).
- c. En déduire que x est solution de (S_3) si et seulement si $x \equiv 625 \pmod{10^3}$.

Exercice 2:

(5) 20 min

4 pts

Soit a un entier naturel tel que: a \land 10=1.

- 1)a. Montrer que : $a^4 \equiv 1 \pmod{2}$ et que $a^4 \equiv 1 \pmod{5}$.
 - b. En déduire que : $a^4 \equiv 1 \pmod{10}$.
- 2) Montrer, à l'aide d'un raisonnement par récurrence, que :

$$\forall k \in \mathbb{N}, a^{4 \times 10^k} \equiv 1 \pmod{10^{k+1}}$$

- 3) En déduire que : $\forall k \in \mathbb{N}$, $a^{8 \times 10^k + 1} \equiv a \pmod{10^{k+1}}$.
- 4) Trouver un entier naturel N tel que l'écriture décimale de N³ se termine par 123456789.

Exercice 3:

(S) 35 min

5 pts

- 1)a. Montrer que $6^{30} \equiv 1 [\text{mod} 55]$.
 - b. En déduire que le reste de la division euclidienne de 6³³ par 55.

- 2) On considère dans \mathbb{Z}^2 l'équation (E): 17x 40y = 1
 - a. Justifier que (E) admet au moins une solution.
 - b. Vérifier que le couple (33,14) est une solution particulière de (E).
 - c. résoudre dans \mathbb{Z}^2 l'équation (E).
 - d. Déterminer le plus petit entier naturel x_0 vérifiant $17x \equiv 1 [mod 40]$.
- 3) On considère dans \mathbb{Z} le système (S): $\begin{cases} x^{17} \equiv a [\text{mod}55] \\ x^{40} \equiv 1 [\text{mod}55] \end{cases} \text{ où } a \in \mathbb{N}.$

Montrer que si x est une solution de (S) alors $x \equiv a^{33} \lceil mod55 \rceil$.

- 4) On suppose dans cette question que a \land 55=1.
- a. Montrer que $a^{40} \equiv 1 [mod55]$.
- b. En déduire que $\left\{a^{33}+55k;\,k\in\mathbb{Z}\right\}$ est l'ensemble de solutions de (S).
- c. Déterminer l'ensemble de solutions de $\begin{cases} x^{17} \equiv 6 \big[mod55 \big] \\ x^{40} \equiv 1 \big[mod55 \big] \end{cases}.$

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000