Introduction

- Name- Ravi Shankar Prasad
- Nationality-Indian
- **Department** Electronic and Computer Science
- Bachelor in Electronics and Communication
- Interest- Wireless Communication
- Hobbies- Playing Badminton, Hiking, Soccer.

Schedule-

Week 4

- Review research paper and understand methodologies.
- Set up NS-3 simulator environment.
- Explore sample simulations and configure environment.

Week 6

- Analyze preliminary results.
- Checking results on wireshark and NetAnim.
- Optimize simulation code for accuracy and performance.

Week 5

- Identify key simulation parameters.
- Draft simulation plan.
- Begin coding initial framework for NS-3 simulation.
- Initialization of p2pnodes,csmanodes and wifi nodes.

Week 7

- Document simulation process and results.
- Prepare presentation slides summarizing findings.
- Finalize presentation slides and practice delivery.

Topics Covered Sofar

- Multimedia Applications
- QoS Fundamentals
- QoS Mechanisms
- Classification
- Channel Access Mechanism
- Packet Scheduling Mechanisms
- Traffic Policing Mechanism
- Resource Reservation Signaling Mechanisms
- Admission Control
- QoS Architecture

QoS Mechanism

Traffic Handling Mechanism

Bandwidth Management Mechanism

QoS Architecture

Applications may require different combinations of QoS mechanisms.

QoS Architecture for Infrastructure Wireless Networks

- Resource Reservation
 - Classification
 - Traffic Policing
 - Packet Scheduling
 - Channel Access
- Wireless Medium

Out of Traffic Mechanism-Resource reservation

RSVP operates on top of IP, in the transport layer

- -Resource Reservation Protocol (RSVP)
- Supports Per class and Per flow reservation

Resource reservation signaling **Delivery QoS** requirements to admission controller Notification of the admission result. Resource Reservation

Admission Control

- Explicit admission control
 - decision is based on QoS requirements, available
 - resources, performance criteria, and network policy
- Implicit admission control
 - relies on bandwidth over-provisioning and traffic control

In Traffic Mechanism- Classification

Can be per-user, per-flow, or per-class depending on the type of QoS services provided

OSI Layer	Classification Techniques
Application	User/Application Identification
Transport	Flow (5-tuplet IP Address)
Network	IPTOS, DSCP
Data Link	802.1p/Q Classification
Physical Layer	

Research Paper

```
Wifi 10.1.3.0
    AP
n5 n6 n7 n0 ----- n1 n2 n3 n4
                 LAN 10.1.2.0
```

Wifi Hidden Nodes-

Topology-

RTS and CTS

• Request to send (RTS) and Clear to send (CTS) procedure.

Analyzing wireless Network 802.11 Using NS-3

ET5907701-MULTIMEDIA WIRELESS NETWORKS RAVI SHANKAR PRASAD

Main Objective

Number of Nodes

Implementation of RTS/CTS

Distance between Nodes.

Tools Used

- Ubuntu 22.04
- NS-3.41
- Wireshark
- NetAnim
- ASCII

Throughput Calculation

- Thoughput = (Total number of Packets * Packet size)/Total Time
- First Simulation Results

```
u2024@Ubuntu2024:~/ns-allinone-3.41/ns-3.41$ ./ns3 run scratch/wifi-hidden-terminal
[0/2] Re-checking globbed directories...
[2/2] Linking CXX executable ../build/...ch/ns3.41-wifi-hidden-terminal-default
Hidden station experiment with RTS/CTS disabled:
Flow 1 (10.0.0.1 -> 10.0.0.2)
 Tx Packets: 2410
 Tx Bytes: 3441480
 TxOffered: 3.05909 Mbps
 Rx Packets: 93
 Rx Bytes: 132804
 Throughput: 0.118048 Mbps
 low 2 (10.0.0.3 -> 10.0.0.2)
  Tx Packets: 2411
  Tx Bytes: 3442908
  TxOffered: 3.06036 Mbps
 Rx Packets: 113
 Rx Bytes: 161364
 lidden station experiment with RTS/CTS enabled:
Flow 1 (10.0.0.1 -> 10.0.0.2)
 Tx Packets: 2410
 Tx Bytes: 3441480
 TxOffered: 3.05909 Mbps
 Rx Packets: 572
 Rx Bytes: 816816
 Throughput: 0.726059 Mbps
 low 2 (10.0.0.3 -> 10.0.0.2)
 Tx Packets: 2411
 Tx Bytes: 3442908
  TxOffered: 3.06036 Mbps
 Rx Packets: 474
 Rx Bytes: 676872
 Throughput: 0.601664 Mbps
 ountu2024@Ubuntu2024:~/ns-allinone-3.41/ns-3.41$
```

2nd Simulation Throughput

ubuntu2024@Ubuntu2024: ~/ns-allinone-3.41/ns-3.41


```
ntu2024:~/ns-allinone-3.41/ns-3.41$ ./ns3 run scratch/wifi-hidden
ing globbed directories...
CXX executable ../build/scratch/ns3.41-wifi-hidden-terminal-defau
 experiment with RTS/CTS disabled:
.1 -> 10.0.0.2)
2410
3441480
3.05909 Mbps
132804
0.118048 Mbps
.3 \rightarrow 10.0.0.2
2411
3442908
3.06036 Mbps
113
161364
0.143435 Mbps
 experiment with RTS/CTS enabled:
.1 \rightarrow 10.0.0.2
2410
3441480
3.05909 Mbps
452
645456
0.573739 Mbps
.3 \rightarrow 10.0.0.2
2411
3442908
3.06036 Mbps
626
893928
0.794603 Mbps
ntu2024:~/ns-allinone-3.41/ns-3.41$
```

Wireshark output

Wireshark I/O graph

