Machine Learning

6. andere modellen en ensemble learning

ML Actueel

https://openai.com/nl-NL/index/sora-2/

Classificatie van classificatie-algoritmen

- Linear classifiers
 - Fisher's linear discriminant
 - Logistic regression
 - Naive Bayes classifier
 - Perceptron
- Support vector machines
 - Least squares support vector machines
- Quadratic classifiers
- Kernel estimation
 - k-nearest neighbor
- Boosting (meta-algorithm)
- Decision trees
 - Random forests
- Neural networks
- Learning vector quantization
- Unsupervised clustering
 - k-means
 - DBSCAN

Onderwerp 1: andere (classificatie) modellen

- Naive Bayes
- Support Vector Classifiers/Machines
- Clustering
 - k-means
 - DBSCAN
- Decision trees

Bayes

$$P(A \mid B) = \frac{P(A)P(B \mid A)}{P(B)}$$

Naive Bayes

Aanname: alle features zijn even belangrijk en zijn onafhankelijk van elkaar

$$P(H \mid D) = \frac{P(H)P(D \mid H)}{P(D)}$$

$$P(y \mid x_1, ..., x_n) = \frac{P(y) \prod_{i=1}^n P(x_i \mid y)}{P(x_1, ..., x_n)}$$

Voorbeeld: kans dat iemand lenzen nodig heeft (y) gegeven een aantal eigenschappen (x1 t/m x4)

AGE			SPECTACLE PRESCRIPTION			ASTIGMATISM			TEAR PROD RATE			LENSES RECOMM	MENDED
	YES	NO		YES	NO		YES	NO		YES	NO	YES	NO
YOUNG	2	3	МҮОРЕ	2	2	WAAR	3	4	REDUCED	6	2	9	5
PREPRESBYOPIC	4	0	HYPERMETROPE	4	2	ONWAAR	6	1	NORMAL	3	3		
PRESBYOPIC	3	2	NORMAL	3	1								
YOUNG	2/9	3/5	МҮОРЕ	2/9	2/5	WAAR	3/9	4/5	REDUCED	6/9	2/5		
PREPRESBYOPIC	4/9	0/5	HYPERMETROPE	4/9	2/5	ONWAAR	0/9	1/5	NORMAL	3/9	3/5		
PRESBYOPIC	3/9	2/5	NORMAL	3/9	1/5								

AGE	SPECTACLE PRESCRIPTION	ASTIGMATISM	TEAR PROD RATE
YOUNG	NORMAL	WAAR	NORMAL
2/9	3/9	3/9	3/9

$$P(y \mid x_1, ..., x_n) = \frac{P(y) \prod_{i=1}^{n} P(x_i \mid y)}{P(x_1, ..., x_n)} \qquad p(Yes) = \frac{9}{14} \times \frac{2}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{3}{9} = 0,0053$$

$$p(No) = \frac{5}{14} \times \frac{3}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{3}{5} = 0,0206$$

$$p(Yes) = 0.0053/(0.0053 + 0.0206) = 0.205$$

 $p(No) = 0.0206/(0.0053 + 0.0206) = 0.795$

Naive Bayes in Code

```
from sklearn.datasets import load_iris
from sklearn.model_selection import train test split
from sklearn.naive_bayes import GaussianNB
X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y,
                            test_size=0.5,
                            random_state=0)
gnb = GaussianNB()
y_pred = gnb.fit(X_train, y_train).predict(X_test)
```

https://scikit-learn.org/stable/modules/naive bayes.html

NB: Gaussian wordt gebruikt als de features (ongeveer) normaal verdeeld zijn

Support Vector Classifiers (SVC)

 Doel: vinden van een optimale decision boundary tussen waarnemingen van verschillende klassen

- Lijn (2D)
- Vlak (3D)
- Hyperplane (nD)
- Kunnen goed omgaan met outliers (uitbijters)

svm:Large Margin Classifier

$$x_i \rightarrow$$

svm:Soft Margin Classifier

Soft Margin Classifier = Support Vector Classifier (SVC)

Soft Margin Classifier = Support Vector Classifier (SVC)

overfitting < --- > underfitting

svm:Kernels

 $x_i \rightarrow$

<u>Plan</u>

- 1. Start with low dimensionality
- 2. Introduce higher dimensionality for same data
 - 3. Train SVC to differentiate

sklearn.svm.SVC()

kernel: string, optional (default='rbf')

Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix from data matrices; that matrix should be an array of shape (n_samples, n_samples).

degree: int, optional (default=3)

Degree of the polynomial kernel function ('poly'). Ignored by all other kernels.

gamma{'scale', 'auto'} or float, default='scale'

Kernel coefficient for 'rbf', 'poly' and 'sigmoid'.

- if gamma='scale' (default) is passed then it uses 1 / (n_features * X.var()) as value of gamma,
- if 'auto', uses 1 / n_features
- if float, must be non-negative.

sklearn.svm.SVC()

C: float, optional (default=1.0)

Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. The penalty is a squared I2 penalty.

Hoe **lager C**, hoe zachter de marges => **meer bias**, richting **underfitting**

Hoe **hoger C**, hoe harder de marges => **minder bias**, richting **overfitting**

Voorbeelden

svm_clf = SVC(kernel="linear", C=float("inf"))
svm_clf.fit(X, y)

Clustering: algemeen

- Gelijksoortige observaties samen groeperen
 - Zonder te classificeren
- Voorbeeld van unsupervised learning

- Kies het gewenste aantal clusters
- Geef elk cluster een random centroid (middelpunt)
- Daarna afwisseling van twee stappen:
 - Assignmentstap: wijs elke observatie toe aan het cluster met de dichtstbijzijnde centroid
 - Updatestap: herbereken de centroids op basis van de aan elk cluster toegewezen observaties

Bron: researchgate.net

- Initialisatie van de centroids:
 - Random (niet zo handig)
 - Op basis van voorkennis
 - Kiezen uit meerdere *random* initialisaties
 - Metric: inertia (sum of squared distances to centroids)
 - k-means++
 - Bevorder dat de initiële centroids ver uit elkaar liggen

- Keuze van het aantal clusters:
 - "Elbow method"

Bron: researchgate.net

Clustering: DBSCAN

- Density-Based Spatial Clustering of Applications with Noise
- Twee parameters:
 - ε (eps)
 - minPts

Clustering: DBSCAN

- Het algoritme werkt als volgt:
 - Zoek de observaties in de straal ε van elk punt. Identificeer als **core points** de observaties met meer dan minPts buren.
 - Zoek de **connected components van de core points**, oftewel de core points die binnen straal ε van elkaar liggen. Deze vormen samen een cluster.
 - Wijs elk niet-core point toe aan een naburig cluster als dat cluster binnen straal ε ligt, zo niet dan is het ruis / een uitbijter (outlier).

Clustering: DBSCAN

Bron: miro.medium.com

Decision trees

Decision trees: decision boundaries

Bron: https://github.com/ageron/handson-ml3/blob/main/06_decision_trees.ipynb

Decision trees: gini-impurity

Live Notebooks

- Decision trees
- k-means
- DBSCAN

Ensemble Learning

Voting, bagging en pasting (1)

- Voting: verschillende soorten classifiers
 - Onafhankelijk en ongecorreleerd (voorzover mogelijk)
 - Elk met een eigen uitkomst
- Hard voting: de *vaakst* voorspelde uitkomst wint
- Soft voting: de uitkomst met de gemiddeld hoogste waarschijnlijkheid wint

Voting, bagging en pasting (2)

- Bagging = Bootstrap Aggregating
- Bagging en Pasting: meerdere keren dezelfde classifier
 - Elk getraind op een andere subset van de data
 - Met teruglegging: Bagging
 - Zonder teruglegging: Pasting
- Output: meest voorkomende classificatie (hard voting)

Voting, bagging en pasting (3)

Bron: medium.com

Voting in sklearn

sklearn.ensemble.VotingClassifier

```
class sklearn.ensemble.VotingClassifier(estimators)*(voting='hard', veights=None, n_jobs=None, flatten_transform=True, verbose=False) 1 [source]
```

```
Lijst van tuples: (naam, classifier) hard of soft Bijvoorbeeld:

('lr', LogisticRegression(random state=42))
```

Bagging in sklearn

sklearn.ensemble.BaggingClassifier

```
class sklearn.ensemble.BaggingClassifie (estimator=None n_estimators=10) (max_samples=1.0) max_features=1.0, bootstrap=True bootstrap_features=False, oob_score=False, warm_start=False, n_jobs=None, random_state=None, verbose=0, base_estimator='deprecated') 1 [source]
```

False => pasting

Bijvoorbeeld:

Intermezzo

Live Notebook over Voting classifiers

Reminder: Decision Trees

Random Forest

- Ensemble van Decision Trees
- Gebruikt bagging als aggregator
- Wat is er random aan?
 - Bij het splitsen op een node wordt er niet uit alle features gekozen...
 - ...maar uit een random subset
 - By default worden er \sqrt{n} features van de n overwogen
 - Gevolg: meer diversiteit in de bomen
 - Minder variantie, meer bias
 - Voorkomt overfitting van het model als geheel

RandomForest in sklearn

sklearn.ensemble.RandomForestClassifier

class sklearn.ensemble.RandomForestClassifie (n_estimators=100,), criterion='gini', max_depth=None,
min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='sqrt', max_leaf_nodes=None,
min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False,
class_weight=None, ccp_alpha=0.0, max_samples=None)

[source]

Boosting (1)

- Sequentieel trainen van classifiers
 - Nadeel: niet parallelliseerbaar
- Algoritmes:
 - AdaBoost
 - Fout geclassificeerde instances door het vorige model krijgen hoger gewicht in (de beoordeling van) het volgende model
 - Gradient Boosting
 - Volgende model wordt getraind op de error (y-y_pred) van het vorige
- Learning rate η

Boosting (2) - AdaBoost

AdaBoost met verschillende Learning Rates

Boosting (3) – gradient boosting

Stacking (1)

- Alternatief voor Voting en Bagging/Pasting
- Gebruik geen simpel algoritme zoals Voting...
- ...maar gebruik weer een Machine Learning-model!
- Dit model wordt gevoed door de onderliggende classifier-modellen
- Blender of Meta learner

Stacking (2)

Afsluiting

• Live Notebook over Random Forests

