MACHINE LEARNING

ML WORKFLOW - STEPS AND PROCEDURES

WHY?

REAL LIFE EXAMPLE

Data

Known data

Labels

Known data

Labels

New Data

Known data

New Data

IRON HACK

Known data, aka: Training Set Labeled data Etc

Labels

New Data, aka:
Test Set
Real world data
Etc

?

OFTEN WRONG
OFTEN WANTES

Known data, aka: Training Set Labeled data Etc

Labels

New Data, aka: Test Set Real world data Etc

?

HOW? MACHINE LEARNING PROCESS

CLASSIFICATION IN MACHINE LEARNING

HOW MANY QUESTIONS CAN WE PULL FROM THIS SCHEMA?

CLASSIFICATION IN MACHINE LEARNING

WHAT? MACHINE LEARNING PROCESS

K-fold cross validation

Mutual Information

Training Data

Cross validation

Test Set

Feature Selection

Mutual Information

MACHINE LEARNING PROCESS FEATURE SELECTION

MACHINE LEARNING WORKFLOW OPERATIONS – FEATURE ANALYSIS

WHAT IS EACH COLUMN?

MACHINE LEARNING WORKFLOW OPERATIONS – FEATURE ANALYSIS

MACHINE LEARNING WORKFLOW OPERATIONS – FEATURE ANALYSIS

FEATURE SELECTION...

... MORE ON THIS LATER ON

MACHINE LEARNING PROCESS TRAINING

MACHINE LEARNING WORKFLOW OPERATIONS – TRAINING

KNN

Decision Trees

Random Forest

M.L.P.

Expectation-Maximization

S.V.M.

Neural Networks

MACHINE LEARNING WORKFLOW OPERATIONS – TRAINING

MACHINE LEARNING WORKFLOW OPERATIONS – TRAINING

MACHINE LEARNING WORKFLOW OPERATIONS — TRAINING

Known data

MACHINE LEARNING PROCESS MODEL SELECTION

MACHINE LEARNING WORKFLOW OPERATIONS – MODEL SELECTION

MODEL SELECTION – WE CAN ONLY PICK ONE

MACHINE LEARNING WORKFLOW OPERATIONS – MODEL SELECTION

MACHINE LEARNING WORKFLOW OPERATIONS – MODEL SELECTION

MODEL SELECTION - WE CAN ONLY PICK ONE

ACTUALLY NO... BUT THAT IS A FAIRLY ADVANCED TOPIC WE WILL LEAVE FOR LATER

NOW, OUR MODEL IS TRAINED AND PICKED AND READY TO CLASSIFY NEW DATA. TRUE

NOW, OUR MODEL IS TRAINED AND PICKED AND READY TO CLASSIFY NEW DATA. TRUE

BUT CAN WE SAY HOW GOOD IT IS?

MACHINE LEARNING PROCESS TEST SET

MACHINE LEARNING WORKFLOW OPERATIONS – TEST SET

MACHINE LEARNING WORKFLOW OPERATIONS – LETS REVIEW

MACHINE LEARNING WORKFLOW OPERATIONS – LETS REVIEW

MACHINE LEARNING WORKFLOW OPERATIONS – LETS REVIEW

PERFORMANCE METRICS

LETS EVALUATE OUR MODEL

True Positive

Classes

Confusion Matrix

False Positive Rate

Specificity

Precision

F1 score

MACHINE LEARNING PROCESS ACCURACY

ACCURACY:

Labels

redict answer

ACCURACY:

Labels

Predict answers

ACCURACY:

Accuracy: (# grey cells / # total) - 90%

ACCURACY (FOR SEVERAL CLASSES):

Labels

Predicted Answers

0	1	2	1	2	0	1	2	1	0
0	1	0	1	2	0	0	2	1	2

ACCURACY (FOR SEVERAL CLASSES):

Labels
Predicted
Answers

Accuracy: (# grey cells / # total) - 70%

MACHINE LEARNING PROCESS CONFUSION MATRIX

MACHINE LEARNING WORKFLOW— CLASSIFICATION MATRIX

LETS SAY OUR TEST SET HAD 1000 ENTRIES...

MACHINE LEARNING WORKFLOW— CONFUSION MATRIX

LETS SAY OUR TEST SET HAD 1000 ENTRIES...

Predicted Labels (output of the model)

Correct Labels (provided in the data)		
C _c (provi		

MACHINE LEARNING WORKFLOW— CLASSIFICATION MATRIX

LETS SAY OUR TEST SET HAD 1000

ENTRIES...

Predicted Labels (output of the model)

bels ne data)	A		
Correct Labels (provided in the data)			
Co (provi			

LETS SAY OUR TEST SET HAD 1000 ENTRIES...

Predicted Labels (output of the model)

		Α	
oels ie data)	A		
Correct Labels (provided in the data)			
C _c (provi			

LETS SAY OUR TEST SET HAD 1000

ENTRIES...

Predicted Labels (output of the model)

Correct Labels

(provided in the data)

A

266

LETS SAY OUR TEST SET HAD 1000

ENTRIES...

Predicted Labels (output of the model)

		A	В	С
bels ne data)	A	266	21	30
Correct Labels (provided in the data)				
Cc (provi				

LETS SAY OUR TEST SET HAD 1000

ENTRIES...

Predicted Labels (output of the model)

30

B 289 S

LETS SAY OUR TEST SET HAD 1000

ENTRIES...

Predicted Labels (output of the model)

Correct Labels (provided in the data)

	Α	В	С
A	266	21	30
В		289	
C			300

LETS SAY OUR TEST SET HAD 1000

ENTRIES...

Predicted Labels (output of the model)

LETS SAY OUR TEST SET HAD 1000

ENTRIES...

Predicted Labels (output of the model)

Features	Correct Label	Predicted Label
Entry 1	0	0
Entry 2	1	1
Entry 3	1	0
Entry 4	0	1

Predicted Correct **Features** Label Label Entry 1 0 0 Entry 2 1 1 Entry 3 1 0 Entry 4 0 1

TN (True Negative)

Classification was **correct**: the entry was initially from class "0" or "Negative" and our classification model identified it as "Negative"

Features	Correct Label	Predicted Label
Entry 1	0	0
Entry 2	1	1
Entry 3	1	0
Entry 4	0	1

TP (True Positive)

Classification was **correct**: the entry was initially from class "1" or "Positive" and our classification model identified it as "Positive"

Features	Correct Label	Predicted Label
Entry 1	0	0
Entry 2	1	1
Entry 3	1	0
Entry 4	0	1

FN (False Negative)

Classification was **incorrect**: The entry was initially from class 1, but our model missclassified this entry, outputing a label of class 0.

This entry was incorrectly classified as a Negative entry, hence the name "False Negative"

Features	Correct Label	Predicted Label
Entry 1	0	0
Entry 2	1	1
Entry 3	1	0
Entry 4	0	1

FP (False Positive)

Classification was **incorrect**: The entry was initially from class 0, but our model missclassified this entry, outputing a label of class 1.

This entry was considered as a Positive by our model. This classification is incorrect, hence the name "False Positive"

LETS SAY OUR TEST SET HAD 1000 **ENTRIES...**

Predicted Labels (output of the model)

	A
A	266
В	18
C	16

For Class A:

Out of 300 entries classified as class A, 266 were in fact originally of class A. 34 (18+16) were of classes B and C, dispite the model's classification.

This is a rate of 266/300 = 88%

This rate is called $Precision_A = \frac{TP}{TP + FP}$

LETS USE THIS TO UNDERSTAND HOW GOOD THE MODEL IS FOR EACH CLASS

Predicted Labels (output of the model)

Correct Labe	ie datai	Α	В	С
(Provided	A	266	21	30

For Class A:

Out of 317 entries of class A, the model classified 266 correctly and 51 (21+30) incorrectly.

This is a rate of 266/317 = 83,9%

This rate is called
$$Recall_A = \frac{TP}{TP + FN}$$

317

LETS SAY OUR TEST SET HAD 1000

ENTRIES...

Predicted Labels (output of the model)

LETS IMAGINE THE EXAMPLE OF FRAUD DETECTION

A – Fraud B – Not Fraud

WHICH DO YOU THINK THE CLIENT WOULD PREFER?

Predicted Labels (output of the model)

TOTAL 1000 A B

A 21 1 8

Predicted Labels (output of the model)

A 927

Coutput of the model)

TOTAL A B

A 2 20

B 1 976

Predicted Labels

LETS IMAGINE THE EXAMPLE OF FRAUD DETECTION

A – Fraud B – Not Fraud

WHICH DO YOU THINK THE CLIENT WOULD PREFER?

Predicted Labels (output of the model)

TOTAL 1000 A B

A 2 20

B 1 976

Trade off between TP<->FN and even FP...

LETS IMAGINE THE EXAMPLE OF FRAUD DETECTION

A – Fraud B – Not Fraud

WE ALSO CANT HAVE TOO HIGH FP...

Predicted Labels (output of the model)

Correct Labels
1000

A

B

927

51

MACHINE LEARNING WORKFLOW

POINTS OF ATTENTION

In statistics, **overfitting** is "the production of an analysis that corresponds too closely or exactly to a particular set of data, and may therefore fail to fit additional data or predict future observations reliably"

Let's imagine that you need to build a place for a person to sleep...

Please use Machine Learning to come up with the best furniture shape for a human to sleep BASED ON THE DATA THAT YOU HAVE

Please use Machine Learning to come up with the best furniture shape for a human to sleep BASED ON THE DATA THAT YOU HAVE

Intuitively, which is best?

Please use Machine Learning to come up with the best furniture shape for a human to sleep BASED ON THE DATA THAT YOU HAVE

Intuitively, which is best?

How do we cause overfitting?

Well, it depends a lot on the model!!!

Hence your need to understand it and not just using "model".fit(X_train, y_train)

How do we identify overfitting

Comparing comparing the evaluation of your model between the training labels and the test labels

THANK YOU

SUPERVISED LEARNING

REVIEW AND APPLICATIONS

THERE ARE MANY MACHINE LEARNING MODELS...

THERE ARE MANY MACHINE LEARNING MODELS...

You DONT NEED TO KNOW

how to code/build them.

!BUT!

The more **UNDERSTAND THEM**, the better you will know

what "CHOICES" make sense

(e.g, Normalize or not, take care with overfit, etc)

LET'S SIMPLIFY

LET'S SIMPLIFY

MACHINE LEARNING WORKFLOW - CHOICES

MACHINE LEARNING WORKFLOW - CHOICES

MACHINE LEARNING WORKFLOW - CHOICES

