عر GRAPHICS AND MULTIMEDIA TECHNOLOGY FORMULAS عرد

IMAGE EXERCISES

Size of Image = $\frac{\text{no. of pixels (w)}}{\text{no. of pixels per inch}} * \frac{\text{no. of pixels (l)}}{\text{no. of pixels per inch}}$

Resolution of Image = $\frac{\text{total no. of pixels}}{\text{inches}}$

Height of Resized Image = $\frac{H1}{W1}$ (W2)

Width of Image = $\frac{H}{AR}$ // given Aspect Ratio = $\frac{H}{W}$

Amount of Memory

= total pixels * requirement of each pixel //always 24 bits (to bytes \rightarrow bits/8 | to KB \rightarrow bytes/1024 | to MB \rightarrow KB/1024)

Refresh Rate (given batch)

= no. of groups * access time

where: no. of groups = $\frac{\text{total no. of pixels}}{\text{no. of pixels per group}}$ (to seconds \rightarrow ns/10° | to Hz \rightarrow reciprocal of seconds)

Number of Colors produced by frame buffer

= R * G * B = 256 * 256 * 256

DIFFERENTIAL DIGITAL ANALYZER (DDA)

Slope (m) =
$$\frac{y2 - y1}{x2 - x1}$$

Cases:

- 1.1: |m| < 1 and m is positive, solve for y:
- 1.2: |m| < 1 and m is negative, solve for y:

• 2.1: |m| > 1 and m is positive, solve for x:

• 2.2: |m| > 1 and m is negative, solve for x:

$$\circ x_{k+1} = x_k - 1/m$$

| x | y | y (round) | Of | x (round) | x | y |

MIDPOINT CIRCLE ALGORITHM

Initial Decision parameter

• $r_0 = (5/4) - r$

For each position thereafter starting at p=0:

- if $r_p < 0$
 - $r_{p+1} = r_p + 2x_{p+1} + 1$ $r_{p+1} = r_p + 2x_{p+1} + 1$ $r_{p+1} = r_p + 2x_{p+1} + 1$
- if $r_p \ge 0$
 - constant or in the constant of the constant of the constant or constant or

X and Y based on given Center at (x_c, y_c)

- $\bullet \quad X = X_p + X_c$
- $\bullet \quad Y = y_p + y_c$

 $| \mathbf{r_p} | \mathbf{x} | \mathbf{y} | \mathbf{X} | \mathbf{Y} |$

BRESENHAM'S LINE ALGORITHM

Slope (m) =
$$\frac{\Delta y}{\Delta x} = \frac{y2 - y1}{x2 - x1}$$

for |m| < 1 (case 1):

- initial
 - $\circ \quad r_0 = 2 \triangle y \triangle x$
- if previous rp < 0 (negative)

$$\circ \quad \mathbf{r}_{\mathsf{p}+1} = \mathbf{r}_{\mathsf{p}} + \ 2 \triangle \mathbf{y}$$

$$\circ$$
 (x_{p+1}, y) // retain y

• if previous $rp \ge 0$ (positive)

$$\circ \quad r_{p+1} = r_p + 2\triangle y - 2\triangle x$$

$$\circ$$
 (x_{p+1}, y_{p+1}) // increase y

For |m| > 1 (case 2):

- initial
 - \circ $r_0 = 2 \triangle x \triangle y$
- if previous rp < 0
 - $\circ \quad \mathbf{r}_{\mathsf{p}+1} = \mathbf{r}_{\mathsf{p}} + \ 2 \triangle \mathbf{x}$
 - \circ (x, y_{p+1}) // retain x
- if previous $rp \ge 0$
 - $\circ \quad \mathbf{r}_{\mathsf{p}+1} = \mathbf{r}_{\mathsf{p}} + 2\triangle \mathbf{x} 2\triangle \mathbf{y}$
 - \circ (x_{p+1}, y_{p+1}) // increase x

 $|\mathbf{r}_{\mathbf{p}}| |x| |y|$

CIRCLE GENERATING ALGORITHM

Solve for:

• $d\theta = 45/r$

Formulas: $\theta = 0$

- $x_1 = r\cos\theta$
- $y_1 = r \sin \theta$
- $x_2 = r\cos(\theta + d\theta)$
- $y_2 = r\sin(\theta + d\theta)$
- $x_3 = x_2 \cos(d\theta) y_2 \sin(d\theta)$
- $y_3 = y_2 \cos(d\theta) + x_2 \sin(d\theta)$
- $x_n = x_{n-1} \cos(d\theta) y_{n-1} \sin(d\theta)$
- $y_n = y_{n-1} \cos(d\theta) + x_{n-1} \sin(d\theta)$

| x | y | X | Y |

GEOMETRIC TRANSFORMATIONS

Scaling

$$\left(\begin{array}{c} x' \\ y' \end{array}\right) = \left(\begin{array}{c} s_x \cdot x \\ s_y \cdot y \end{array}\right) = \left(\begin{array}{cc} s_x & 0 \\ 0 & s_y \end{array}\right) \cdot \left(\begin{array}{c} x \\ y \end{array}\right)$$

Rotation

$$\left(\begin{array}{c} x'\\y'\end{array}\right) \ = \ \left(\begin{array}{c} x\cdot\cos(\theta)-y\cdot\sin(\theta)\\x\cdot\sin(\theta)+y\cdot\cos(\theta)\end{array}\right) \ = \ \left(\begin{array}{cc} \cos(\theta)&-\sin(\theta)\\\sin(\theta)&\cos(\theta)\end{array}\right) \cdot \left(\begin{array}{c} x\\y\end{array}\right)$$

Shearing

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x + s_x \cdot y \\ y + s_y \cdot x \end{pmatrix} = \begin{pmatrix} 1 & s_x \\ s_y & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

Translation

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x + d_x \\ y + d_y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} d_x \\ d_y \end{pmatrix}$$