Logic, First Course, Winter 2020. Week 6, Lecture 2, Handout.

Introduction rule for disjunction

The rule is: if you have ϕ on line ℓ_1 , then you may write $\phi \lor \psi$ on any subsequent line $\ell > \ell_1$. Likewise, if you have ϕ on line ℓ_1 , then you may write $\psi \lor \phi$ on any subsequent line $\ell > \ell_1$.

This rule is abbreviated as I_{\lor} , where the 'I' is for *introduction*.

In terms of a picture, the rule is either of the following:

- Li. 4
- l. q y : エソノ

0:11 -0:0

Note that the rule does **not** require that ψ appear on any previous line. In many ways, this is what gives $l \lor its$ strength.

Example of disjunction introduction

Another example of disjunction introduction

Elimination rule for disjunction

The rule is: if you have $\phi \lor \psi$ on line ℓ_1 , and you have $\phi \to \xi$ on line ℓ_2 , and you have $\psi \to \xi$ on line ℓ_3 , then you may write ξ on any subsequent line $\ell > \ell_1$, ℓ_2 , ℓ_3 .

Again, the order in which ℓ_1, ℓ_2, ℓ_3 occurs does not matter. All that matters is the all of three of these come before the ℓ , where we apply the rule.

This rule is abbreviated as E_{\lor} , where the 'E' is for *elimination*.

In terms of a picture, the rule is the following:

$$l_1$$
. $\Psi \circ \Psi$
 l_2 . $\Psi \rightarrow \mathcal{Z}$
 l_3 . $\Psi \rightarrow \mathcal{Z}$
 l_4 . \mathcal{Z} : \mathcal{Z} : \mathcal{Z} \mathcal{Z} \mathcal{Z}

Example of disjunction elimination

```
exercise

((c v d) ∧ a), (a ∧ (c → e)), ((d → e) ∧ b)

⊢ e

1.
```

Another example of disjunction elimination

These is a handout written for this course.¹

1. It is run on the Carnap software, which is ←

An **Open Tower** project. Copyright 2015–2019 G. Leach-Krouse <gleachkr@ksu.edu> and J. Ehrlich

Deriving commutativity of disjunction