2) Suponha uma entrada A de 1 bit e uma saída S de 3 bits. Se A=0, a saída gera o ciclo $0,3,2,4 \rightarrow 0,3,2,4 \dots$ Se A=1, a saída gera o ciclo $4,3,5,2 \rightarrow 4,3,5,2,\dots$ Matrícula em Octal: 92564 - 264624

Estados

 $q_0 = 2(010)$

 $q_2 = 6(110)$

 $q_3 = 4(100)$

 $q_4 = 7(111)$

 $q_5 = 3(011)$

Diagrama de Estados: Comentado no código.

A	Estado	Próximo	Saída	Dec
0	000	X	X	X
0	001	X	X	X
0	010 q ₀	q ₃ (100)	(010)	34
0	011 q ₅	q ₂ (110)	(011)	51
0	100 q ₃	q ₂ (110)	(100)	52
0	101	X	X	X
0	110 q ₂	q ₄ (111)	(110)	62
0	111 q ₄	q ₀ (010)	(111)	23
1	000	X	X	X
1	001	X	X	X
1	010 q ₀	q ₃ (100)	(010)	34
1	011 q ₅	q ₂ (110)	(011)	51
1	100 q ₃	q ₅ (011)	(100)	28
1	101	X	X	X
1	110 q ₂	q ₄ (111)	(110)	62
1	111 q ₄	q ₃ (100)	(111)	39

Usar a seguinte codificação em função da sua matricula. Primeiro converter em Octal sua matricula = 82322 decimal = 2 4 0 6 2 2 octal. Suponha que sua máquina tenha os estados 0,2,3,4 e 5. Então o código de estado 0 será 2, o codigo do estado 2 será 4, o codigo do estado 3 será 0, o código do estado 4 será 6 e como o código do estado 5 não pode ser 2 (próximo na sequencia de matricula), incrementar para 3. Voce deve entregar a três implementações no mesmo código, com estados e case, com memória e com portas lógicas. Medir quantos operadores AND, OR, NOT terão as equações para próximo estado e saídas. Por exemplo, S1 = a & b | ! c. Esta equação tem 3 operadores. S2 =a & b & ! c | b & !a, terá 6 operadores, S1 e S2 seriam 9 operadores. Medir o total gasto para todas as equações.