Applied Mathematics III: Homework 1

- 1. Find the derivative of the function $T(z) := \frac{az+b}{cz+d}$, where $a, b, c, d \in \mathbb{C}$ and $ad bc \neq 0$. When is T'(z) = 0?
- 2. Prove that is f(z) is given by a polynomial in z, then f(z) is entire (An *entire* function is a function that is analytic at each point in \mathbb{C} .).
- 3. If f(z) and $\overline{f(z)}$ are both holomorphic in region $S \subseteq \mathbb{C}$ then f(z) is constant in S.
- 4. Suppose that f(z = x + iy) = u(x, y) + iv(x, y) is holomorphic. Find v(x, y) given u(x, y):
 - (a) $u(x,y) = x^2 y^2$
 - (b) $u(x,y) = \cosh y \sin x$
 - (c) $u(x,y) = 2x^2 + x + 1 2y^2$
 - (d) $u(x,y) = \frac{x}{x^2 + y^2}$
- 5. Derive Cauchy-Riemann equation in polar coordinates $z=re^{i\theta}$.
- 6. Let $f(z = re^{i\theta}) = u(r, \theta) + iv(r, \theta)$ be analytic in a domain \mathcal{D} that excludes origin. Using the Cauchy-Riemann equation for polar coordinates and assuming the continuity of the partial derivatives, show that throughout \mathcal{D} , the function $u(r, \theta)$ satisfies the equation:

$$r^{2}\partial_{r}^{2}u(r,\theta) + r\partial_{r}u(r,\theta) + \partial_{\theta}^{2}u(r,\theta) = 0,$$

which is the polar form of Laplace's equation. Show that $v(r, \theta)$ also satisfies identical equation.

7. A linear fractional transformation is a function of the form:

$$f(z) = \frac{az+b}{cz+d},$$

where $a, b, c, d \in \mathbb{C}$. If $ad - bc \neq 0$ then f(z) is called a Möbius transformation. In question 2, we proved that any polynomial function in z is an entire function, we deduced that f(z) is holomorphic in $\mathbb{C}/\{-d/c\}$ (unless c = 0, in which case f(z) is entire.). Now show the followings:

- Möbius transformations f(z) are bijections, that is $f^{-1}(z)$ is also a Mobius transformation.
- Any Möbius transformation differing from the identity map can at most have two fixed points. (A fixed point z is that that f(z) = z)
- Any Mobius transformation can be generated by composition of translation: f(z) = z + b, dilatation: f(z) = az and inversion: f(z) = 1/z.
- Mobius transformations f(z = x + iy) map circles and lines into circles and lines. (Clues: Defining equation for *straight line*: ax + by = c, $a, b, c \in \mathbb{R}$ and for *circle*: $|z z_0| = r$, and translation and dilation act on them trivially.)

1

- Find the Möbius transformation f(z) that maps x-axis to y = x, y-axis to y = -x and the unit circle |z| = 1 to itself.
- 8. Using the definition of length to find the length of the following curves $\{\gamma(t)\}$:
 - $\gamma(t) = 3t + i \text{ for } -1 \le t \le 1.$
 - $\gamma(t) = i \sin t \text{ for } -\pi \le t \le \pi.$
- 9. Evaluate $\int_{\gamma} dz \ e^{3z}$ along each of the following three paths:
 - γ is the straight line segment from 0 to 1-i.
 - γ is the circle |z|=3.
 - γ is the parabola $y = x^2$ from x = 0 to x = 1.
- 10. Let f(z) and g(z) be holomorphic in $\mathbb C$ and suppose γ is a smooth curve $\mathbb C$ from point a to point b, show that:

$$\int_{\gamma} dz f(z) g'(z) = f(\gamma(b)) g(\gamma(b)) - f(\gamma(a)) g(\gamma(a)) - \int_{\gamma} dz f'(z) g(z),$$

this is the complex analogue of integration by parts.

11. Show that if p(z) is polynomial function and γ is a closed smooth path in \mathbb{C} ,

$$\int_{\gamma} dz \ p(z) = 0.$$

12. Let C_r be the counterclockwise circle centering at origin z = 0 with radius r, evaluate the integral:

$$\int_{\mathcal{C}_r} \frac{dz}{z^2 - 2z - 8}$$

for r = 1, r = 3 and r = 5.

13. Apply Cauchy's theorem to show that $\int_{|z|=1} dz f(z) = 0$ when

$$1.f(z) = ze^{-z}$$
, $2.f(z) = \tan z$, $3.f(z) = \frac{1}{z^2 + 2z + 2}$ $4.f(z) = \log(z + 2)$.

14. Evaluate the following integrals with $\gamma: |z| = 3$ and it is counterclockwise oriented:

1.
$$\int_{\gamma} \frac{dz}{z^2 - 4}$$
, 2. $\int_{\gamma} \frac{dze^z}{(z - 1)(z - 2)}$, 3. $\int_{\gamma} \frac{dz}{(z + 4)(z^2 + 1)}$, 4. $\int_{\gamma} dz i^{z - 3}$.

15. Show that the integral:

$$\int_{0}^{\pi} e^{a\cos\theta} \cos(a\sin\theta) d\theta = \pi.$$

Clue: Consider $z=e^{i\theta}$ on unit circle |z|=1, and the integral $\int_{|z|=1} dz \frac{e^{az}}{z}$.

2

16. Evaluate the integrals:

$$1. \int_{-\infty}^{\infty} dx \frac{\cos x}{x}, \quad 2. \int_{-\infty}^{\infty} dx \frac{\sin x}{x}$$
 (1)

17. Bonus question: Let p(z) be a polynomial of degree n>0. Prove that there exist complex numbers $c, z_1, z_2, \ldots z_k \in \mathbb{C}$, and positive integers $p_1, p_2, \ldots p_k$ such that:

$$p(z) = c(z - z_1)^{p_1} (z - z_2)^{p_2} \dots (z - z - z_k)^{p_k},$$
(2)

where $\sum_{i=1}^{k} p_i = n$. Clue: Repeated usage of fundamental theorem of algebra.