• Common-Base (CB):

ac Low-Frequency Equivalent

- Note that the *alternate hybrid-\pi model* appropriate for *CB circuit* has been used
- $rac{1}{2}$ r₀ appears between input and output

- \triangleright For now, *neglect* r_0
- \triangleright Noting that $v_1 = -v_i$:

$$A_{v} = \frac{v_{0}}{v_{i}} = \frac{-g_{m}v_{1}R_{C}}{v_{i}} = +g_{m}R_{C} \simeq \frac{R_{C}}{r_{E}}$$

- ➤ Note that the *expression* for A_v is *identical* to that for the *CE stage*, *without the negative sign in front*
- > For this circuit, input and output are in phase
- $A_i = i_c/i_e = \alpha$
- $ightharpoonup R_i = r_E$

- $R_0 = R_{01} || R_C$ $R_{01} \to \infty (Why?)$ $R_0 = R_C$
- \triangleright **Ex.:** Find A_v and R_i with r_0 included
- With r_0 included, the circuit shows two different values of R_{01} :
 - When excited by a voltage source, $R_{01} = r_0$
 - When excited by a current source, $R_{01} = \beta r_0$ (Show) [Hint: For this derivation, need to use $g_m r_E = \alpha$]
 - Thus, possibility of huge R_0 under the second case, but R_C ruins it!

• Common-Gate (CG):

 $\begin{array}{c|c}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & \\
& & & \\
& & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & \\$

ac Schematic

ac Low-Frequency Model for M

Simplified ac Low-Frequency Model for M

Rerouting the current source between S and D to S to G and then from G to D

Final ac Low-Frequency Equivalent for CG Stage

> *G* and *B* both ground:

$$\Rightarrow v_{gs} = v_{bs} = -v_{i}$$

- \Rightarrow g_mv_{gs} and g_{mb}v_{bs} can be *combined to a* single current source (g_m + g_{mb})v_i, flowing from S to D
- ➤ Reroute this current source from S to G and then from G to D (the circuit remains invariant)
 - ⇒ Leads to the *final ac low-frequency* equivalent of the CG stage
- ➤ Note again that r₀ appears between input and output (similar to CB stage)