| Elettronica T<br>13-9-2022 | Ritirato  | A | В | D | Totale |
|----------------------------|-----------|---|---|---|--------|
| cognome                    | matricola |   |   |   |        |
| nome                       | firma     |   |   |   |        |

A Del seguente circuito si ricavi la relazione V<sub>OUT</sub>-I<sub>IN</sub>.
Si assuma l' OPAMP ideale e in alto guadagno. Esplicitare i passaggi.



$$v_O = \frac{9}{2}R \cdot i_{IN}$$

B (solo VO)

Del seguente circuito calcolare la tensione  $V_{\text{OUT}}\,.$  Esplicitare i passaggi.



$$V_{OUT}=2.8V$$

D

- 1) Del circuito in figura si determini l'espressione booleana al nodo O.
- 2) Dimensionare i transistori nMOS in modo che il tempo di discesa al nodo F sia inferiore o uguale a 85pS. Si ottimizzi il progetto per minimizzare l'area occupata da tutti i transistori. Si tenga conto che i transistori dell'inverter di uscita hanno le seguenti geometrie:  $S_P=120$ ,  $S_N=70$ .

## Parametri tecnologici:

Req p= 10Kohm Req n= 5Kohm Cox = 7 fF/ $\mu$ m<sup>2</sup> Lmin = 0,25 $\mu$ m Vdd = 3,3V

