Chapter 8

Differential
and
Multistage
Amplifiers

PART A: MOS Diff Pair with Passive Load

Active-Loaded Differential Pair

Two Stage Op Amp (MOSFET)

Learning Objectives

1) MOS and the BJT differential amplifiers: how they reject common-mode noise or interference and amplify differential signals

2) The analysis and design of MOS and BJT differential amplifiers: utilizing passive (resistive) loads and active (current-source) loads

3) The structure, analysis, and design of amplifiers composed of two or more stages in cascade

Why Differential?

- What is a Differential Signal?
- Differential circuits are less sensitive to noise and interference
- Differential configuration enables biasing the amplifier and coupling of amplifier stages without bypass and coupling capacitors
- Useful in IC design because of good matching between the transistors

MOS Differential Pair

8.1. The MOS Differential Pair

MOS Differential Pair

• Two matched transistors (Q_1) and Q_2 joined and biased by a constant current source I which is implemented by current mirror

• Q_1 and Q_2 must stay in saturation

How does the diff. pair work?

Important Parameters and Characteristics

- 1) Input Common-mode Range
- 2) Differential Input Voltage
- 3) Large Signal Operation
- 4) Small Signal Operation
- 5) Common-mode Rejection Ratio (CMRR)
- 6) Input Offset Voltage

Input Common-Mode Range

DC Common-mode voltage (V_{CM})

Min voltage need to keep the current mirror in saturation

Differential Input Voltage

Differential Input Voltage (V_{id})

■ Both Q_1 and Q_2 in saturation

Large Signal Operation

Current Steering

• Where should we operate the diff pair?

Large Signal Operation

How to increase linear range?

- V_{OV} increases: Gain will decrease, Linearity will increase
- V_{OV} decreases: Gain will increase, Linearity will decrease
- Can increase the bias current to increase g_m and gain

Small-Signal Operation

Virtual ground at the source

- AC ground
- Q_1 and Q_2 are perfectly matched and are in saturation
- Truly differential input signal
- Eliminates need for large bypass capacitor

Differential Gain, A_d

Differential Gain= 2 x single stage gain

- If the input differential voltage = v_{id} $(-v_{id})=2v_{id}$ then
- Output voltages: $v_{o1} = -g_m R_D(v_{id})$, $v_{o2} = -g_m R_D(-v_{id}) = g_m R_D(v_{id})$
- Output differential voltage $v_{od} = v_{o2} v_{o1} = 2 v_{id} g_m R_D$
- Differential gain= A_d = $|v_{od}/v_{id}|$ = $2 g_m R_D$
- **Differential gain**= $A_d = |v_{od}/v_{id}| = g_m R_D$ (if input diff. voltage= $v_{id}/2$ -(- $v_{id}/2$)= v_{id} Note: book assumes this input diff. voltage)

Common-Mode Gain, A_{cm}

Mismatches amplify noise

• Mismatch in R_D

$$A_{cm} = \frac{v_{od}}{v_{icm}} = \frac{\Delta R_D}{-2R_{SS}}$$

• Mismatch in g_m

$$A_{cm} = \frac{v_{od}}{v_{icm}} = \frac{\Delta g_m R_D}{1 + 2g_m R_{SS}}$$

Common-mode gain $A_{\it cm}$ is unwanted and should be minimized

Common-Mode Rejection Ratio (CMRR)

CMRR: Figure-of-merit for noise rejection

$$CMRR(dB) = 20log_{10} \left| \frac{A_d}{A_{cm}} \right|$$

How to increase CMRR (or reduce noise amplification)?

- Increase R_{SS} (output resistance of Current Mirror)
- Q_1 and Q_2 should be perfectly matched (g_m values match)
- R_D values (or output resistances of the active load) should be perfectly matched

Input Offset Voltage

Device mismatches cause a finite dc voltage at the output

$$V_{OS} = \sqrt{\left(\frac{V_{OV}}{2} \frac{\Delta R_D}{R_D}\right)^2 + \left(\frac{V_{OV}}{2} \frac{\Delta (W/L)}{W/L}\right)^2 + (\Delta V_t)^2}$$

Apply a small voltage of opposite polarity to cancel the offset

MOS Diff Pair

p8.2: input common mode range of PMOS differential amplifier

ex8.4 MOS diff pair: differential gain

ex8.7 (simulate and verify) MOS diff pair: CMRR

p8.15: design of MOS differential amplifier