Supplementary Materials for "Reduction of bias due to misclassified exposures using instrumental variables"

CHRISTOPHER MANUEL, SAMIRAN SINHA[†] AND SUOJIN WANG

Department of Statistics, Texas A&M University, College Station, Texas 77843-3143 † sinha@stat.tamu.edu

Table 1: Results of the simulation study using MCMC method for three categories, two strongly associated instruments (scenario Ia). MT: method, B: median bias $\times 100$, SD: median of posterior standard deviation $\times 100$, CI: 95% credible interval, CI-W: Median width of 95% credible interval, RMSE: Root mean squared error×100, $\operatorname{pr}(Y=1|X,Z)=H\{\beta_0+\beta_{x,2}(X=2)+\beta_{x,3}I(X=3)+\beta_zZ\},\ \beta_0=-2,\beta_{x,2}=1,\beta_{x,3}=0.5,\ S1:\ \sigma=2,\ S2:\ \sigma=5.200 \text{ replications were used.}$

β_z	-0.65 6.05 (0.37, 0.60) 0.24 5.99	-0.52 6.02 (0.37, 0.60) 0.24 5.93	-0.63 4.26 42, 0.57) 0.17 4.10	-0.44 4.26 42, 0.57) 0.17 4.06 0.53 2.99 44, 0.56)	0.12 2.98 0.61 2.9 (0.45, 0.57) 0.12 2.98
$\beta_{x,3}$	2.61 24.52 (0.34, 1.24) (0. 0.96 24.72	5.78 27.81 (0.35, 1.53) (0. 1.09 34.15	-1.01 17.29 .41, 1.10) (0. 0.68 17.46	1.25 18.98 18.98 0.74 19.78 -1.63 12.35 12.35 12.35	0.48 11.83 -0.81 13.02 (0.43, 0.97) (0. 0.51
$\begin{array}{c} \text{M3} \\ \beta_{x,2} \end{array}$	3.63 24.27 (0.67, 1.59) (0 0.95 25.47	4.89 27.81 (0.62, 1.87) (0 1.09 34.81	0.15 17.20 0.71, 1.38) (0 0.67 17.49	0.68 19.26 (0.68, 1.45) (0 0.76 20.18 -1.21 12.51 (0.79, 1.24) (0	0.49 12.14 -1.03 13.20 (0.74, 1.29) (0 0.52 13.53
β_0	$ \begin{array}{c} -1.30 \\ 22.97 \\ 2.55, -1.66) \\ 0.90 \\ 23.14 \end{array} $	$ \begin{array}{c} -2.54 \\ 26.70 \\ 2.78, -1.64 \end{array} $ $ \begin{array}{c} 1.05 \\ 33.19 \end{array} $	1.69 16.32 2.36, -1.72) (0.64 16.23	-	0.46 11.86 12.59 12.59 0.49 13.12
β_z	$ \begin{array}{c c} 0.54 \\ 6.09 \\ (0.38, 0.61) \\ 0.24 \\ 5.81 \end{array} $	$ \begin{array}{c} 0.52 \\ 6.09 \\ (0.38, 0.61) \\ 0.24 \\ 5.81 \end{array} $	$ \begin{array}{c} -0.11 \\ 4.29 \\ (0.43, 0.58) \\ 0.17 \\ 3.98 \end{array} $	-0.14 4.29 60.43, 0.58) (-0.17 3.98 1.13 3.04 (0.45, 0.57) (-	$\begin{array}{c} 0.12\\ 3.06\\ 1.14\\ 3.04\\ 3.04\\ 0.12\\ 3.07 \end{array}$
$\beta_{x,3}$	-46.09 9.28 (0.06, 0.39) (0.36 47.59	-45.95 9.28 (0.06, 0.40) (0.36 47.59	-46.14 6.51 (0.13, 0.37) (0.26 46.24	-46.07 6.53 (0.13, 0.37) 0.26 46.27 -46.52 4.62 (0.15, 0.31)	0.18 46.75 -46.54 4.64 (0.15, 0.31) (0.18 46.75
$M2$ $\beta_{x,2}$	$ \begin{array}{c} -51.88 \\ 9.14 \\ (0.28, 0.64) \\ 0.36 \\ 53.33 \end{array} $	$ \begin{array}{c} -51.89 \\ 9.15 \\ (0.28, 0.64) \\ 0.36 \\ 53.34 \end{array} $	$-52.81 \\ 6.44 \\ (0.37, 0.61) \\ 0.25 \\ 52.77$	-52.79 6.45 (0.37, 0.61) 0.25 52.79 -52.37 4.56 (0.38, 0.56)	0.18 52.52 -52.37 4.57 (0.38, 0.56) 0.18 52.51
β_0	46.94 7.36 (-1.66, -1.37) 0.29 48.05	46.88 7.37 (-1.66, -1.37) 0.29 48.06	47.39 5.19 (-1.64, -1.44) 0.20 47.40	47.24 5.19 (-1.64, -1.44) 0.20 47.42 47.65 3.68 (-1.60, -1.45)	0.14 47.62 47.52 3.70 (-1.60, -1.44) 0.15 47.61
β_z	0.01 6.09 (0.37, 0.60) (0.24 5.85	0.06 6.10 (0.37, 0.61) (0.24 5.85	$\begin{pmatrix} -0.49 \\ 4.30 \\ 0.43, 0.57 \end{pmatrix} (0.43, 0.57) $	0.43, 0.57) (0.43, 0.57) (0.43, 0.57) (0.47) (0.45, 0.56) (0.45, 0.56)	0.12 2.94 0.44 3.06 (0.45, 0.56) (0.22 2.94
$\beta_{x,3}$	$ \begin{array}{c} -0.03 \\ 13.46 \\ (0.44, 0.95) \\ 0.53 \\ 13.70 \end{array} $	$0.42 \\ 13.65 \\ (0.44, 0.96) \\ 0.53 \\ 13.79$	0.95 9.63 (0.54, 0.90) 0.38 9.82	0.55, C	0.26 6.64 -0.31 6.66 (0.59, 0.82) 0.26 6.60
$M1 \\ \beta_{x,2}$	1 0.71 9 13.66) (0.69, 1.26) 9 0.54 6 14.17	$0.40 \\ 13.86 \\ (0.70, 1.28) \\ 0.54 \\ 14.27$	$0.98 \\ 9.76 \\ (0.85, 1.20) \\ 0.38 \\ 9.41$	1.50 9.87 (0.85,1.21) 0.39 9.51 -0.11 6.73 (0.88,1.16)	0.26 7.30 0.16 6.77 (0.88, 1.16) 7.30
β_0	$\begin{array}{c} 0.21 \\ 12.59 \\ (-2.25, -1.75) \\ 0.49 \\ 12.66 \end{array}$	$\begin{array}{ccc} -0.41 & 0.40 \\ 12.78 & 13.86 \\ (-2.27, -1.75) & (0.70, 1.28) & (0.50 & 0.54 \\ 12.77 & 14.27 \end{array}$	$\begin{array}{c} -1.30 \\ 9.02 \\ (-2.19, -1.85) \\ 0.35 \\ 8.95 \end{array}$	-1.29 1.50 9.09 9.87 (-2.19, -1.85) (0.85, 1.21) (0.36 9.00 9.51 -0.33 -0.11 6.19 6.73 (-2.13, -1.89) (0.88, 1.16) (0.88, 1.16)	$\begin{array}{c} 0.24 \\ 6.52 \\ -0.52 \\ 6.23 \\ (-2.13, -1.89) \\ 0.24 \\ 6.50 \end{array}$
ال ال	n = 5,000 B SD $S1 CI$ $CI-W$ $RMSE$	B SD CI CI-W RMSE	= 10,000 $= B$ SD CI $CI-W$ $RMSE$	B SD CI CI-W RMSE = 20,000 B SD CI	CI-W RMSE B SD CI CI-W RMSE
LW	S_1	82	a S1	$\frac{n}{n}$	$_{ m S5}$

Table 2: Results of the simulation study using MCMC method for three categories, two moderately associated instruments CI-W: Median width of 95% credible interval, RMSE: Root mean squared error×100, $\operatorname{pr}(Y=1|X,Z)=H\{\beta_0+\beta_{x,2}(X=2)+\beta_{x,3}I(X=3)+\beta_zZ\},\ \beta_0=-2,\beta_{x,2}=1,\beta_{x,3}=0.7,\beta_z=0.5,\ S1:\sigma=2,\ S2:\sigma=5.\ 200\ \text{replications were used}.$ (scenario Ib). MT: method, B: median bias ×100, SD: median of posterior standard deviation ×100, CI: 95% credible interval,

	_											
		β_0 $\beta_{x,2}$	$\beta_{x,3}$	β_z	β_0	$\beta_{x,2}$	$\beta_{x,3}$	β_z	β_0	$\beta_{x,2}$	$\beta_{x,3}$	β_z
n = 5,000	07.0		0.07	0.73	90 07	715 60	96 UF	000	С		70 60	0.07
a 5	-0.	'	19 10	27.0	40.90	-45.09	-40.38	0.00	-19.00		20.01	10:0-
Si Cl	(-2.22, -1.84)	(0.82.	(0.52, 0.95)	0.39, 0.63)	(-1.74, -1.44)	(0.34, 0.74)	(0.11, 0.50)	FI.0	(-2.89, -1.67)	(0.66, 2.03)	(0.38, 1.65)	0.24
M-ID	_		0.48	0.24	0.28	0.35	0.36	0.24	1.32	(2)	1.37	0.24
RMSE	,	9.9 10.75	11.31	5.8	41.02	46.68	40.71	5.92	39.19		42.89	6.04
В	-1.		0.13	0.72	40.77	-45.82	-40.35	0.81	-18.35	23.25	25.92	-0.02
SD	11.		12.18	6.16	7.06		9.2	6.13	40	40	41.05	6.2
S2 CI	(-2.22, -1.85) (0.82)	5) (0.82, 1.22)	(0.52, 0.95)	(0.39, 0.63)	(-1.73, -1.44)	(0.34, 0.74)	(0.12, 0.50)	(0.39, 0.63)	(-3.51, -1.58)	(0.58, 2.	(0.29, 2.23)	(0.37, 0.61)
CI-W			0.48	0.24	0.28		0.36	0.24	1.57		1.61	0.24
RMSE	10.04		11.46	.c.	41.03		40.71	5.92	59.74		61.42	6.01
n = 10,000												
В	-1:		1.17	0.22	41.11	-46.1	-40.13	0.63	-14.87		17.32	-0.07
$^{\mathrm{SD}}$	7.65		8.45	4.33	4.94	6.24	6.44	4.32	25.59		26.19	4.38
S1 CI	_	(0.83, 1	(0.55, 0.87)	0.43, 0.59	(-1.69, -1.49)	(0.40, 0.68)	(0.16, 0.43)	(0.43, 0.59)	(-2.65, -1.81)	(0.78,	(0.49, 1.40)	(0.42, 0.60)
CI-W		0.33	0.33	0.17	0.19	0.24	0.25	0.17	1.00		1.03	0.17
RMSE	3 7.76		8.45	4.3	41.24	46.61	40.47	4.3	29.61	30.81	31.32	4.39
ш	Ī		1.59	0.91	41 18	'	-40 07	0.65	-12 96		14 18	0.00
5	7 65		2 00	7 33	7 05	6.94	6.73	7 39	00.00	20.02	20.78	7.35
E E	(-9.17 - 1.87)	(0.83.1	(0.55.0.88)	0.43 0.59)	(-1.69 - 1.49)	(0.40	(0.17.0.43)	(0.43 0.59)	$(-2 \ 01 \ -1 \ 69)$	89 ()	(0.37 1.64)	(0.42 0.60)
	(,	(0.00)	(0.00, 0.00)	0.40, 0.09)	(-1.03, -1.43)	(0.40)	(0.11, 0.40)	(0.40,0.09)	(-2.91, -1.09)	(0.00)	(0.91, 1.04)	2
RMSE		7.83 8.75	× 5.50	4.31	0.13 41.23	46.59	40.45	4.3	37.36	37.02	38.08	4.34
n = 20,000				1								
n j			0.53	-0.22	40.53	-45.49	-39.96	0.07	-4.84		7.11	-0.23
$^{\mathrm{SD}}$	5.37		5.92	3.08	3.55		4.59	3.06	16.8		17.37	3.05
S1 CI	(-2.12, -1.9)	(0.89.1	(0.59, 0.81)	0.44, 0.56)	(-1.66, -1.52)	(0.47)	(0.22, 0.39)	(0.45, 0.57)	(-2.41, -1.81)	(0.83)	(0.51, 1.13)	(0.44, 0.56)
CI-W		,	0.23	0.12	0.14	0.17	0.18	0.12	990	(2)	0.68	0.12
RMSE	5.18	18 5.82	5.7	3.14	40.76	45.5	39.99	3.15	16.66	17.76	17.41	3.16
р			120	cc	1	74	00 00	o o	-		0	c n
a 5	-0.00 - 10.00	0.00	0.01	9 07	40.1	140.41	-09.69	90.0	10.1		10.01	60.6
S 55	0.	_	0.35	0.07	5.30	04.40	4.0	0.00	0 19	0 40	-	_
	(-2.11, -1.90) (0.09)	0) (0.09, 1.11) 21 0.24	(0.30, 0.01) (0.23	0.44, 0.57)	(-1.00, -1.32)	(0.44,0.04) 0.17	(0.22, 0.39)	0.45,0.57	(-2.43, -1.11)	(0.70, 1.40) 0.74	(0.41, 1.10)	(0.44, 0.50)
RMSE			1									

Table 3: Results of the simulation study mimicking the real dataset (scenario II) **using MCMC method**. MT: method, B: median bias ×100, SD: median of posterior standard deviation ×100, CI: 95% credible interval, CI-W: Median width of 95% credible interval, RMSE: Root mean squared error×100, pr(Y = 1|X,Z) = $H\{\beta_0 + \beta_{x,2}I(X=2) + \beta_{x,3}I(X=3) + \beta_{z_1}Z_1 + \beta_{z_2}Z_2\}$, $\beta_0 = 1.13, \beta_{x,2} = 0, \beta_{x,3} = 1.98, \beta_{z_1} = -0.5, \beta_{z_2} = -2, n = 10,000.$ 200 replications were used.

$\overline{\mathrm{MT}}$						
IVI I		β_0	β -	Q -	Q	R
		ρ_0	$\beta_{x,2}$	$\frac{\beta_{x,3}}{\mathrm{S1}}$	β_{z_1}	β_{z_2}
M1	В	0.11	0.2		0.46	8.12
IVI 1				-0.23	-0.46 5.6	
	$_{\text{CL}}$	5.09	5.91	7.37		6.54
	CI	(1.04, 1.24)	(-0.10, 0.10)	(1.83, 2.12)	(-0.61, -0.40)	(-2.13, -1.88)
	CI-W	0.2	0.23	0.29	0.22	0.26
1.10	RMSE	4.9	5.56	6.87	5.81	9.85
M2	В	9.08	0.21	-74.84	1.39	69.21
	SD	4.57	5.51	6.59	5.35	5.27
	CI	(1.14, 1.30)	(-0.10, 0.10)	(1.09, 1.36)	(-0.59, -0.39)	(-1.48, -1.28)
	CI-W	0.18	0.22	0.26	0.21	0.21
	RMSE	9.84	5.2	75.47	5.69	69.31
M3	В	-1.08	0.83	-0.16	1.68	2.83
	SD	6.88	9.77	12.53	6.72	11.02
	CI	(0.98, 1.25)	(-0.16, 0.22)	(1.78, 2.17)	(-0.64, -0.37)	(-2.26, -1.87)
	$\operatorname{CI-W}$	0.27	0.38	0.49	0.26	0.43
	RMSE	7.06	9.73	10.72	6.8	9.96
				S2		
M1	В	0.2	0.18	-0.06	-0.64	7.76
	SD	5.15	6	7.4	5.6	6.54
	CI	(1.04, 1.23)	(-0.10, 0.09)	(1.83, 2.12)	(-0.61, -0.41)	(-2.13, -1.88)
	$\operatorname{CI-W}$	0.2	0.24	0.29	0.22	0.26
	RMSE	4.91	5.53	6.9	5.83	9.61
M2	В	9.18	0.11	-74.49	1.24	68.86
	SD	4.71	5.56	6.43	5.24	5.39
	CI	(1.14, 1.30)	(-0.10, 0.10)	(1.09, 1.36)	(-0.59, -0.39)	(-1.48, -1.28)
	$\operatorname{CI-W}$	0.18	0.22	0.25	0.21	0.21
	RMSE	9.94	5.19	75.3	5.71	69.06
M3	В	-0.84	1.37	-2.45	1.36	4.6
	SD	6.85	9.68	12.61	6.72	11.06
	CI	(0.98, 1.25)	(-0.15, 0.23)	(1.75, 2.17)	(-0.65, -0.37)	(-2.23, -1.85)
	CI-W	0.27	0.38	0.49	0.26	0.43
	RMSE	7.01	10.02	11.45	6.93	10.95

How to perform the ADVI analysis using the R package rstan

- Step 0. Here we present the code for a simulation study.
- Step 1. First, data, parameter and likelihood must be written and saved in a file with extension .stan.
- Step 2. The above stan function (file) will be used by the R functions saved in .r file. Simulation results can be obtained when this .r file is run (r code is run).
- Step 3. Now, we show the content of the .stan file.

```
/start of the rstan file
data {
  //these were the data that was passed from R
  int<lower=1> N;
                             // Sample size
  vector[N] ms1;
  vector[N] ms2;
  vector[N] w1;
  vector[N] w2;
  vector[N] w3;
  vector[N] z;
  vector[N] y;
                            // Target variable
  //estimates of parameters for use as the mean in priors for gamma and beta
  //we use real since these are
  real wm2int;
  real wm2slop1;
  real wm2z;
  real wm2slop2;
  real wm3int;
  real wm3slop1;
  real wm3z;
  real wm3slop2;
  real ywint;
 real ywbeta1;
  real ywbeta2;
  real ywbeta3;
}
parameters {
  // Here we declare which variables will have priors
  // Coefficient vector
  real beta1;
  real beta2;
```

```
real beta3;
  real beta4;
  // Declare gammas parameter
  real gamma21;
  real gamma22;
  real gamma23;
  real gamma24;
  real gamma31;
  real gamma32;
  real gamma33;
  real gamma34;
  // Declare parameters for transformations of gamma and alpha parameters
  real eta1;
  real eta2;
  real eta3;
  real eta4;
 real eta5;
 real eta6;
}
model {
  // Here we define the model block
  //First we define misclassification probabilities in terms of the eta variables
  real alpha21=0.5/(1+exp(-eta1)+exp(eta2-eta1));
  real alpha31=0.5/(1+exp(-eta2)+exp(eta1-eta2));
  real alpha11=1-alpha21-alpha31;
  real alpha12=0.5/(1+exp(-eta3)+exp(eta4-eta3));
  real alpha32=0.5/(1+exp(-eta4)+exp(eta3-eta4));
  real alpha22=1-alpha12-alpha32;
  real alpha13=0.5/(1+exp(-eta5)+exp(eta6-eta5));
  real alpha23=0.5/(1+exp(-eta6)+exp(eta5-eta6));
  real alpha33=1-alpha13-alpha23;
```

```
//initialize probabilities for the true x
real lpm1;
real lpm2;
real 1pm3;
real pm1;
real pm2;
real pm3;
//initialize probabilities for y
real py11;
real py12;
real py13;
real py01;
real py02;
real py03;
//initialize probabilities for y conditional on misclassified w
real py1w1;
real py1w2;
real py1w3;
real py0w1;
real py0w2;
real py0w3;
real y1w;
real yOw;
// generate priors for the random variables
//gamma
gamma21 ~ normal(wm2int,2);
gamma22 ~ normal(wm2slop1,2);
gamma23 ~ normal(wm2z,2);
gamma24 ~ normal(wm2slop2,2);
gamma31 ~ normal(wm3int,2);
gamma32 ~ normal(wm3slop1,2);
gamma33 ~ normal(wm3z,2);
gamma34 ~ normal(wm3slop2,2);
eta1 ~ normal(0,2);
```

```
eta2 ~ normal(0,2);
eta3 ~ normal(0,2);
eta4 ~ normal(0,2);
eta5 \tilde{} normal(0,2);
eta6 ~ normal(0,2);
beta1 ~ normal(ywint,2);
beta2 ~ normal(ywbeta1,2);
beta3 ~ normal(ywbeta2,2);
beta4 ~ normal(ywbeta3,2);
 //likelihood
 for (i in 1:num_elements(ms1)){
 //generate probabilities for m=1 and m=0, we include z in the model for m but
 //not in data generation process
lpm2= gamma21+ms1[i]*gamma22+z[i]*gamma23+ms2[i]*gamma24;
lpm3= gamma31+ms1[i]*gamma32+z[i]*gamma33+ms2[i]*gamma34;
pm2 = 1/(1+exp(-lpm2)+exp(lpm3-lpm2));
pm3 = 1/(1+exp(1pm2-1pm3)+exp(-1pm3));
pm1 = 1-pm2-pm3;
//generate probabilities for y=1 and y=0 conditional on m
py11 = inv_logit(beta1+beta4*z[i]);
py12 = inv_logit(beta1+beta2+beta4*z[i]);
py13 = inv_logit(beta1+beta3+beta4*z[i]);
py01=1-py11;
py02=1-py12;
py03=1-py13;
py1w1=w1[i]*log(py11*alpha11*pm1+py12*alpha12*pm2+py13*alpha13*pm3);
py1w2=w2[i]*log(py11*alpha21*pm1+py12*alpha22*pm2+py13*alpha23*pm3);
py1w3=w3[i]*log(py11*alpha31*pm1+py12*alpha32*pm2+py13*alpha33*pm3);
//y1w=y[i]*(w1[i]*log(py11)+w2[i]*log(py12)+w3[i]*log(py13));
y1w=y[i]*(py1w1+py1w2+py1w3);
py0w1=w1[i]*log(py01*alpha11*pm1+py02*alpha12*pm2+py03*alpha13*pm3);
py0w2=w2[i]*log(py01*alpha21*pm1+py02*alpha22*pm2+py03*alpha23*pm3);
py0w3=w3[i]*log(py01*alpha31*pm1+py02*alpha32*pm2+py03*alpha33*pm3);
```

```
y0w=(1-y[i])*(py0w1+py0w2+py0w3);
  //y0w=(1-y[i])*(w1[i]*log(py01)+w2[i]*log(py02)+w3[i]*log(py03));
  //increment log likelihood for each observation
  target += y1w+y0w;
}
generated quantities { // Generated quantities block.
Step 4. Now, we show the content of the R file.
#Set up
#Libraries
#rstan is used for implementing the ADVI approach
#nnet is used for modeling the multinomial probabilities for X
library(rstan)
library(nnet)
store=store1=store2=storesd=NULL;
current_directory=getwd()
#specify models for use in simulation
#run outside of loop to speed up
#you must set the location of the stan file
# Here we assume that the stan code is saved in a file
# named 3by3categoricaltest.stan
logreg_our_model=stan_model(file="3by3categoricaltest.stan")
##Data generation##########
#Simulation parameters
#n represents the sample size for the simulation
n=5000
##The function myfn1 is used to run the simulation
#nt represents the iteration
myfn1=function(nt){
  print(nt)
  set.seed(nt)
```

```
#generate prognostic factor z
z=runif(n,-1,1)
#generate instrumental variables xstar (xs)
#ms1 is a bernoulli random variable where n is the sample size, and p = P(ms1=1)
p = .55
xs1=rbinom(n,1,p)
#ms2 is a continuous random variable with sample size n and bounds from (-1,1)
xs2=runif(n,-1,1)
###################
#Generating the true X
##################
#gamma parameters used to model of X
g20=0.25
g21=2
g22=0.3
g23=1
g30=0.5
g31=2.5
g32 = -0.3
g33 = -1
#g2 is the function used in estimating Pr(X=2|XS1,XS2)
# while g3 is the function used to estimate Pr(X=3|XS1,XS2)
g2=g20+g21*xs1+g22*z+g23*xs2
g3=g30+g31*xs1+g32*z+g33*xs2
#Next we set probabilities for different categories of m
#px2 represents the conditional probability Pr(X=2|XS1,XS2)
#px3 represents the conditional probability Pr(X=3|XS1,XS2)
\#px1 = P(X=1|XS1,XS2)
px2=1/(1+exp(-g2)+exp(g3-g2))
px3=1/(1+exp(-g3)+exp(g2-g3))
px1=1-px2-px3
#next we combine the multinomial probabilities of Pr(X|XS1,XS2) then use that to
#generate X
px=cbind(px1,px2,px3)
x=matrix(,nrow=3,ncol=n,byrow=TRUE)
for (i in 1:n) {
x[,i]=rmultinom(1,1,as.numeric(px[i,]))
}
```

```
x1=x[1,]
x2=x[2,]
x3=x[3,]
x=colSums(x*c(1,2,3))
#generate misclassified W
##################
\#parameters for model of W - the alpha parameters
#which come from the misclassification matrix
#where a21 represents the misclassification probability Pr(W=2|X=1)
#and the diagonal element Pr(W=1|X=1)
#represents the non misclassified probability P(W=1|X=1)
\#w=., x=1
a21 = .025
a31 = .015
a11=1-a21-a31
\#w=., x=2
a22 = .85
a32 = .05
a12=1-a22-a32
\#w=.,x=3
a23=.1
a33=.70
a13=1-a23-a33
#generate w
#Following Hu 2008
# this is used as a threshold to determine what the value of w will be
# based on an observations true x and the misclassification matrix
etaw=runif(n,0,1)
alpha.1=c(0,rep(a11,2),rep(a11+a21,2),1)
alpha.2=c(0,rep(a12,2),rep(a12+a22,2),1)
alpha.3=c(0,rep(a13,2),rep(a13+a23,2),1)
a.1.mat=matrix(alpha.1,nrow=3,ncol=2,byrow=TRUE)
a.2.mat=matrix(alpha.2,nrow=3,ncol=2,byrow=TRUE)
a.3.mat=matrix(alpha.3,nrow=3,ncol=2,byrow=TRUE)
```

```
#a represents the misclassification thresholds
a.mat=array(cbind(a.1.mat,a.2.mat,a.3.mat),dim = c(3,2,3))
#w is the final misclassified values for each observation
w=matrix(,nrow=n,ncol=1)
for (i in 1:n){
w[i,]=sum((etaw[i]>a.mat[,1,m[i]] & etaw[i]<=a.mat[,2,x[i]])*c(1,2,3))
w1=as.numeric(w==1)
w2=as.numeric(w==2)
w3=as.numeric(w==3)
#Generate values of parameters for w~ms
wx.out = multinom(w ~ xs1+z+xs2)
#Save estimates from the wx.out object to use as initial estimates in rstan model
wx2int=as.numeric(wx.out$wts[7])
wx2slop1=as.numeric(wx.out$wts[8])
wx2z=as.numeric(wx.out$wts[9])
wx2slop2=as.numeric(wx.out$wts[8])
wx3int=as.numeric(wx.out$wts[12])
wx3slop1=as.numeric(wx.out$wts[13])
wx3z=as.numeric(wx.out$wts[14])
wx3slop2=as.numeric(wx.out$wts[15])
#parameters for model of y
beta0 = -2
beta1=1
beta2=0.7
beta3=0.5
py22=exp(beta0+beta1*x2+beta2*x3+beta3*z)/(1+exp(beta0+beta1*x2+beta2*x3+beta3*z))
y=rbinom(n,1,py22)
yw.out=glm(y~w2+w3+z,family=binomial)
#Save estimates to use as initial estimates in rstan model
# which are ywint, ywbeta1, ywbeta2, ywbeta3
yw.coef=yw.out$coef
ywint=as.numeric(yw.out$coef[1])
ywbeta1=as.numeric(yw.out$coef[2])
ywbeta2=as.numeric(yw.out$coef[3])
ywbeta3=as.numeric(yw.out$coef[4])
#Rstan models
#specify data for use in rstan
```

```
#by passing the starting values to a list that rstan uses
stan_data_our=list(N = n, w1=w1, w2=w2, w3=w3, ms1=xs1, ms2=xs2, y = y, z=z,
                 wm2int=wx2int,wm2slop1=wx2slop1, wm2z=wx2z, wm2slop2=wx2slop2,
                 wm3int=wx3int,wm3slop1=wx3slop1, wm3z=wx3z, wm3slop2=wx3slop2,
                 ywint=ywint,ywbeta1=ywbeta1,ywbeta2=ywbeta2,ywbeta3=ywbeta3)
#Run models
#generate starting values
#betas for x, w, and our method
#the initial values for eta are set using random uniform
eta_init=runif(6,-1,1)
init_fn2<- function() {</pre>
 list(beta1 = ywint,
      beta2 = ywbeta1,
      beta3 = ywbeta2,
      beta4 = ywbeta3,
      gamma21 = wx2int,
      gamma31 = wx3int,
      gamma22 = wx2slop1,
      gamma32 = wx3slop1,
      gamma23 = wx2z,
      gamma33 = wx3z,
      gamma24 = wx2slop2,
      gamma34 = wx3slop2,
      eta1 = eta_init[1] ,
      eta2 = eta_init[2],
      eta3 = eta_init[3],
      eta4 = eta_init[4],
      eta5 = eta_init[5],
      eta6 = eta_init[6]
 )
}
#Run models
#Model using our method
#vb is the function in rstan used to run advi
#the number of iterations is specified by iter option
```

#the initial values are set using the init option

```
#the stopping point based on the change of the relative norm is set using tol_rel_obj
logreg_our_out=vb(logreg_our_model, data=stan_data_our,
                  algorithm = c("fullrank"), iter=20000, seed=nt, init=init_fn2,
                  tol_rel_obj=0.00001,output_samples=10000,refresh=0)
#save posterior estimates of the model
#beta coefficients
ourcoef=c(as.numeric(summary(logreg_our_out)[[1]][1:4,1]))
oursd= c(as.numeric(summary(logreg_our_out)[[1]][1:4,2]))
#other parameters
othercoef=c(as.numeric(summary(logreg_our_out)[[1]][5:18,1]))
othersd= c(as.numeric(summary(logreg_our_out)[[1]][5:18,2]))
#Save results to a matrix
write.table(matrix(as.numeric(c(nt, ourcoef, oursd)), nrow=1),
'estimates_beta_parameters_n5000.txt', row.names=F, col.names=F, append=T)
write.table(matrix(as.numeric(c(nt, othercoef, othersd)), nrow=1),
'estimates_other_paramters_n5000.txt', row.names=F, col.names=F, append=T)
return(c(ourcoef, oursd))}
#nrepli represents the replication number
nrepli=200
start = Sys.time()
for (it in 1:nrepli){
 store = myfn1(nt = it)
end = Sys.time()
```