Simulation of dice rolls

Gabriele Bozzola¹

Universitá degli Studi di Milano

May 22, 2017

 $^{^{1}} bozzola.gabriele@gmail.com\\$

Abstract

In this work numerical simulation are used for verifying the law of large numbers [1] and the central limit theorem.

Contents

1	Ma	thematical Introduction	2		
	1.1	Definitions	2		
	1.2	Theorems	2		
2	2 Results				
	2.1	The law of large numbers	4		
	2.2	The central limit theorem	E		

Chapter 1

Mathematical Introduction

This is simple text. Multiple spaces are treated as only one.

A single empty line means nothing.

Two or more empty lines means newline.

graphs define scopes.

1.1 Definitions

Definition 1. A N-faced die is the set $\{n \in \mathbb{N} \text{ with } n \leq N\}$.

Please, typeset units with siunitx: $1.5 \times 10^4 \,\mathrm{m\,s^{-1}}$.

1.2 Theorems

Theorem 1. The **expected value** of a N-faced die is:

$$\operatorname{Exp}[N] = \frac{\sum_{i=1}^{N} i}{N} \tag{1.1}$$

Proof. Assuming that each face has the same probability the expected value is obtained with an arithmetic mean, which is exactly (1.1).

Theorem 2 (The law of large numbers). The average value of N die rolls goes to the expected value if $N \to \infty$.

Proof. The proof is left as useful exercise to the reader. \Box

Theorem 3 (The central limit theorem). If d1, d2 are two dice N-rolls	, and
s is the sum of the results of d1 and d2, then s is a Gaussian if $N \rightarrow \infty$	Ο.
Proof. Trivial.	

Chapter 2

Results

2.1 The law of large numbers

The law of large numbers is verified:

Large Xhas a powerful packages for drawing plots.

Figure 2.1: The law of large numbers

Figure 2.2: A simple die

2.2 The central limit theorem

Figure 2.3: The central limit theorem

Table 2.1: Some data

Roll number	Value
1	4
2	8
3	2

Bibliography

[1] Feller, W. *The Strong Law of Large Numbers*. 10.7 in An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd ed. New York: Wiley, pp. 243-245, 1968.