Statisitcs

LLN

$$\lim_{n \to \infty} \left| \frac{1}{n} \sum_{i=1}^{n} x_i - \mathbb{E} \left[x \right] \right| = 0$$

Unbiasedness

$$\operatorname{Bias}_{\theta} = \mathbb{E}\left[\hat{\theta}\right] - \theta = \mathbb{E}\left[\hat{\theta} - \theta\right] = 0$$

Consistency

$$\lim_{n \to \infty} \mathbf{P}\left(\left| \widehat{X} - \frac{1}{n} \sum_{i=1}^{n} X_i \right| \le \epsilon \right) = 1$$

Properties of Gaussians

$$X \sim \mathcal{N}(\mu, \sigma^2) \implies Y = aX + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$$
$$X \sim \mathcal{N}(\mu_x, \sigma_x^2), \qquad Y \sim \mathcal{N}(\mu_y, \sigma_y^2), \qquad \implies Z = X + Y \sim \mathcal{N}(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)$$

Information Theory

Information

$$\mathbf{I}(S) = \log_2 \frac{1}{\mathbf{P}(S)}$$

Entropy

$$\mathbf{H}[S] = \sum_{s \in \{S\}} \mathbf{P}(S=s) \cdot \mathbf{I}(S=s) = \sum_{s \in \{S\}} \mathbf{P}(S=s) \log_2 \frac{1}{\mathbf{P}(S=s)}$$

$$= \mathbb{E}[\log_2 1/\mathbf{P}(S=s)] = -\mathbb{E}[\log_2 \mathbf{P}(S=s)]$$

$$= -\sum_{s \in \{S\}} \mathbf{P}(S=s) \log_2 \mathbf{P}(S=s)$$

Information Gain

$$\mathbf{I}(Y, X_i) = \mathbf{H}[Y] - \mathbf{H}[Y|X_i]$$

Learning Theory

PAC Learning

$$\mathbf{P}\left(\left|\hat{ heta} - heta^*\right| \le \epsilon\right) \ge 1 - \delta$$
 $\mathbf{P}\left(\left|\hat{ heta} - heta^*\right| > \epsilon\right) < \delta$

Decision Theory

Risk

$$Risk(f) = R(f) := \mathbb{E}_{(X,Y)}[loss(Y, f(X))]$$

Bayes Risk

$$R(f^*) \le R(f), \ \forall f$$

Bayes Optimal Rule

$$f^*(P) = \underset{f}{\arg\min} \mathbb{E}_{(X,Y) \sim P}[\log(Y, f(X))]$$

Emperical Risk Minimization

$$\hat{f}_n = \arg\min_{f} \frac{1}{n} \sum_{i=1}^{n} [loss(Y_i, f(x_i))] \quad \underset{n \to \infty}{\overset{\mathrm{LNN}}{\longrightarrow}} \quad \arg\min_{f} \mathbb{E}_{(X, Y)} [loss(Y, f(X))]$$

Risk

True Risk

$$R(f) := \mathbb{E}_{(X,Y)}[\ell(f(X), Y)]$$

Emperical Risk

$$\widehat{R}_{\mathcal{D}}(f) := \frac{1}{|\mathcal{D}|} \sum_{i \in \mathcal{D}} [\ell(f(X_i), Y_i)]$$

Excess Risk

$$\mathbb{E}\left[R(\hat{f}_n)\right] - R(f^*)$$

Structural Risk

$$\left|R(f)-\widehat{R}_n(f)\right| \leq C(f) \qquad \forall \, f \in \mathcal{F}$$

$$R(f) \leq \widehat{R}_n + C(f), \qquad \forall \, f \in \mathcal{F}$$
 Use $\widehat{R}_n(\widehat{f}_n) + C(\widehat{f}_n)$ as a $pessimistic$ estimate of true risk.
$$(f) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2} -$$

Risk Estimation

Bias-Variance Tradeoff

K-Fold Cross-Validation

LOO Cross-Validation

Random Subsampling

Hold-out Method

$$\mathcal{D} = \left\{ (X_i, Y_i) \right\}_{i=1}^n$$
1. Split into two sets
$$\underbrace{\mathcal{D}_T = \left\{ (X_i, Y_i) \right\}_{i=1}^n}_{\text{training set}} \qquad \underbrace{\mathcal{D}_V = \left\{ (X_i, Y_i) \right\}_{i=m+1}^n}_{\text{holdout set}}$$
2. use \mathcal{D}_T to train a predictor $\hat{f}_{\mathcal{D}_T}$
3. use \mathcal{D}_V to evaluate the predictor $\hat{R}_{\mathcal{D}_V}(\hat{f}_{\mathcal{D}_T})$

Estimating True Risk

Risk Minimization

Emperical Risk Minimization

$$\widehat{f_n} = \underset{f}{\arg\min} \frac{1}{n} \sum_{i=1} n[loss(Y_i, f(x_i))]$$

Structural Risk Minimization

$$\hat{f}_n = \underset{f \in \mathcal{F}}{\arg \min} [\hat{R}_n(f) + \lambda C(f)]$$

Overfitting

Regularization

Complexity Regularization

$$\hat{f}_n = \arg\min_{f \in \mathcal{F}} \{ \hat{R}_n(f) + C(f) \}$$

Information Criteria

AIC (Akiake IC) C(f) = #parametersAllows # parameters to be infinite as # training data n becomes large

BIC (Bayesian IC) $C(f) = \#parameters * \log n$

Penalizes complex models more heavily – limits complexity of models as # training data n becomes large

Model Selection

- define a finite set of model classes
- estimate true risk for each model class
- $\bullet\,$ select model class with lowest estimated true risk

Model classes $\{\mathcal{F}_{\lambda}\}$ of increasing complexity $\mathcal{F}_1 < \mathcal{F}_2 < \dots$

$$\min_{\lambda} \min_{f \in \mathcal{F}_{\lambda}} J(f, \lambda)$$

- given λ estimate \hat{f}_{λ} using emperical / structural / complexity regularized risk minimization
- select λ for which \hat{f}_{λ} has minimum true risk estimated using cross-validation / hold-out / information criteria

Generalization Error

Terms

True Risk Decomposition

$$\mathbb{E}\left[R(\hat{f}_n)\right] - R^* = \underbrace{\left(\mathbb{E}\left[R(\hat{f}_n)\right] - \inf_{f \in \mathcal{F}} R(f)\right)}_{\text{ostimation error}} + \underbrace{\left(\inf_{f \in \mathcal{F}} R(f) - R^*\right)}_{\text{approximation error}}$$

 ${\it Estimation~Error}: \mbox{ due to randomness of training data } \mbox{\it Approximation~Error}: \mbox{ due to restriction of model class}$

Regression

Linear Regression

Ridge Regression

 $\hat{\theta}_{\text{MAP}} \operatorname*{arg\,min}_{\theta} \sum_{i=1}^{n} (Y_i - X_i \theta)^2 + \lambda \|\theta\|_2^2$

Lasso Regression

$$\hat{\theta}_{\text{MAP}} \arg\min_{\theta} \sum_{i=1}^{n} (Y_i - X_i \theta)^2 + \lambda \|\theta\|_1$$

Polynomial Regression

Tory normal regressive

Classification

Logistic Regression

Naive Bayes

Boosting

Decision Trees

$$\arg \max_{X_{i}} \left[\mathbf{H} [Y] - \mathbf{H} [Y | X_{i}] \right] = \arg \min_{X_{i}} \mathbf{H} [Y | X_{i}]$$

$$= \arg \min_{X_{i}} \sum_{x \in \{X_{i}\}} \left[\mathbf{P} (X_{i} = x) \mathbf{H} [Y | X_{i} = x] \right]$$

$$= \arg \min_{X_{i}} - \sum_{x \in \{X_{i}\}} \left[\mathbf{P} (X_{i} = x) \sum_{y \in \{Y\}} \left[\mathbf{P} (Y = | X_{i} = x) \log_{2} \mathbf{P} (Y = y | X_{i} = x) \right] \right]$$

Support Vector Machines

Deep Learning

Common Activation Functions

 ${\bf Back propagation}$

Gradient Descent

Perceptron

MLP

CNN

RNN

LSTM

KNN

Clustering

Kernel Regression

Kernel Trick