Finite Volume Methods for Hyperbolic Problems

Derivation of Conservation Laws

- Integral form in one space dimension
- Advection
- Compressible gas mass and momentum
- Source terms
- Diffusion

First order hyperbolic PDE in 1 space dimension

Linear:
$$q_t + Aq_x = 0$$
, $q(x,t) \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times m}$

Conservation law:
$$q_t + f(q)_x = 0$$
, $f: \mathbb{R}^m \to \mathbb{R}^m$ (flux)

Quasilinear form:
$$q_t + f'(q)q_x = 0$$

Hyperbolic if A or f'(q) is diagonalizable with real eigenvalues.

Models wave motion or advective transport.

Eigenvalues are wave speeds.

Note: Second order wave equation $p_{tt}=c^2p_{xx}$ can be written as a first-order system (acoustics).

Derivation of Conservation Laws

q(x,t)= density function for some conserved quantity, so

$$\int_{x_1}^{x_2} q(x,t)\,dx = \text{total mass in interval}$$

changes only because of fluxes at left or right of interval.

Derivation of Conservation Laws

q(x,t) = density function for some conserved quantity.

Integral form:

$$\frac{d}{dt} \int_{x_1}^{x_2} q(x,t) \, dx = F_1(t) - F_2(t)$$

where

$$F_j = f(q(x_j, t)),$$
 $f(q) =$ flux function.

Derivation of Conservation Laws

If q is smooth enough, we can rewrite

$$\frac{d}{dt} \int_{x_1}^{x_2} q(x,t) \, dx = f(q(x_1,t)) - f(q(x_2,t))$$

as

$$\int_{x_1}^{x_2} q_t \, dx = -\int_{x_1}^{x_2} f(q)_x \, dx$$

or

$$\int_{x_1}^{x_2} (q_t + f(q)_x) \, dx = 0$$

True for all $x_1, x_2 \implies$ differential form:

$$q_t + f(q)_x = 0.$$

Advective flux

If $\rho(x,t)$ is the density (mass per unit length),

$$\int_{x_1}^{x_2} \rho(x,t)\,dx = \text{total mass in } \left[x_1,x_2\right]$$

and u(x,t) is the velocity, then the advective flux is

$$\rho(x,t)u(x,t)$$

Units: mass/length \times length/time = mass/time.

Advective flux

If $\rho(x,t)$ is the density (mass per unit length),

$$\int_{x_1}^{x_2} \rho(x,t)\,dx = \text{total mass in } \left[x_1,x_2\right]$$

and u(x,t) is the velocity, then the advective flux is

$$\rho(x,t)u(x,t)$$

Units: mass/length \times length/time = mass/time.

Continuity equation (conservation of mass):

$$\rho_t + (\rho u)_x = 0$$

Advection equation

Flow in a pipe at constant velocity

u = constant flow velocity

$$q(x,t)= {
m tracer \ concentration}, \quad f(q)=uq$$

$$\implies q_t + uq_x = 0$$
, with initial condition $q(x,0) = \overset{\circ}{q}(x)$.

True solution: $q(x,t) = q(x-ut,0) = \overset{\circ}{q}(x-ut)$

Advection equation

Flow in a pipe at constant velocity

u = constant flow velocity

$$q(x,t)= {
m tracer \ concentration}, \quad f(q)=uq$$

$$\implies q_t + uq_x = 0$$
, with initial condition $q(x,0) = \overset{\circ}{q}(x)$.

True solution: $q(x,t) = q(x-ut,0) = \overset{\circ}{q}(x-ut)$

Advection equation

Flow in a pipe at constant velocity

u = constant flow velocity

$$q(x,t)= {
m tracer \ concentration}, \quad f(q)=uq$$

$$\implies q_t + uq_x = 0$$
, with initial condition $q(x,0) = \overset{\circ}{q}(x)$.

True solution: $q(x,t) = q(x-ut,0) = \overset{\circ}{q}(x-ut)$

Compressible gas dynamics

In one space dimension (e.g. in a pipe).

$$\begin{array}{ll} \rho(x,t)=\text{density,} & u(x,t)=\text{velocity,} \\ p(x,t)=\text{pressure,} & \rho(x,t)u(x,t)=\text{momentum.} \end{array}$$

Conservation of:

$$\begin{array}{lll} \text{mass:} & \rho & \text{flux:} & \rho u \\ \text{momentum:} & \rho u & \text{flux:} & (\rho u)u + p \\ \text{(energy)} & & \end{array}$$

Conservation laws:

$$\rho_t + (\rho u)_x = 0$$
$$(\rho u)_t + (\rho u^2 + p)_x = 0$$

Equation of state:

$$p = P(\rho)$$
.

(Later: p may also depend on internal energy / temperature)

Compressible gas dynamics

Conservation laws:

Momentum flux:

$$\rho u^2 = (\rho u)u = \text{advective flux}$$

p term in flux?

- $-p_x$ = force in Newton's second law,
- as momentum flux: microscopic motion of gas molecules.

Momentum flux arising from pressure

Momentum flux arising from pressure

Note that:

- molecules with positive x-velocity crossing x_1 to right increase the momentum in $[x_1,x_2]$
- molecules with negative x-velocity crossing x_1 to left also increase the momentum in $[x_1,x_2]$

Hence momentum flux increases with pressure $p(x_1,t)$ even if macroscopic (average) velocity is zero.

Source terms (balance laws)

$$q_t + f(q)_x = \psi(q)$$

Results from integral form

$$\frac{\partial}{\partial t} \int_{x_1}^{x_2} q(x,t) \, dx = f(q(x_1,t)) - f(q(x_2,t)) + \int_{x_1}^{x_2} \psi(q(x,t)) \, dx$$

Examples:

- · Reacting flow, e.g. combustion,
- · External forces such as gravity
- · Viscosity, drag
- Radiative heat transfer
- Geometric source terms (e.g., quasi-1d problems)
- Bottom topography in shallow water

 $q(x,t)={\sf mass}$ / unit length First suppose no advection, but at each point, exponential decay occurs:

$$q(x,t)_t = -\lambda q(x,t) \equiv \psi(q(x,t)).$$

 $q(x,t)={
m mass}$ / unit length First suppose no advection, but at each point, exponential decay occurs:

$$q(x,t)_t = -\lambda q(x,t) \equiv \psi(q(x,t)).$$

Hence integrating over an interval:

$$\frac{d}{dt} \int_{x_1}^{x_2} q(x,t) \, dx = \int_{x_1}^{x_2} \psi(q(x,t)) \, dx.$$

 $q(x,t)={\sf mass}$ / unit length First suppose no advection, but at each point, exponential decay occurs:

$$q(x,t)_t = -\lambda q(x,t) \equiv \psi(q(x,t)).$$

Hence integrating over an interval:

$$\frac{d}{dt} \int_{x_1}^{x_2} q(x,t) \, dx = \int_{x_1}^{x_2} \psi(q(x,t)) \, dx.$$

With advection:

$$\frac{d}{dt} \int_{x_1}^{x_2} q(x,t) \, dx = uq(x_1,t) - uq(x_2,t) + \int_{x_1}^{x_2} \psi(q(x,t)) \, dx.$$

 $q(x,t)={
m mass}$ / unit length First suppose no advection, but at each point, exponential decay occurs:

$$q(x,t)_t = -\lambda q(x,t) \equiv \psi(q(x,t)).$$

Hence integrating over an interval:

$$\frac{d}{dt} \int_{x_1}^{x_2} q(x,t) \, dx = \int_{x_1}^{x_2} \psi(q(x,t)) \, dx.$$

With advection:

$$\frac{d}{dt} \int_{x_1}^{x_2} q(x,t) \, dx = uq(x_1,t) - uq(x_2,t) + \int_{x_1}^{x_2} \psi(q(x,t)) \, dx.$$

$$\int_{x_1}^{x_2} q_t + (uq)_x - \psi(q) \, dx = 0 \quad \text{holds for all } x_1, \ x_2$$

Diffusive flux

```
q(x,t)= concentration \beta= diffusion coefficient (\beta>0) diffusive flux =-\beta q_x(x,t) q_t+f_x=0 \implies diffusion equation: q_t=(\beta q_x)_x=\beta q_{xx} (if \beta= const).
```

Diffusive flux

$$q(x,t)=$$
 concentration $eta=$ diffusion coefficient ($eta>0$) diffusive flux $=-eta q_x(x,t)$ $q_t+f_x=0 \implies$ diffusion equation: $q_t=(eta q_x)_x=eta q_{xx}$ (if $eta=$ const).

Heat equation: Same form, where

$$q(x,t)=$$
 density of thermal energy $=\kappa T(x,t),$ $T(x,t)=$ temperature, $\kappa=$ heat capacity, flux $=-\beta T(x,t)=-(\beta/\kappa)q(x,t)\Longrightarrow$ $q_t(x,t)=(\beta/\kappa)q_{xx}(x,t).$

Advection-diffusion

q(x,t)= concentration that advects with velocity u and diffuses with coefficient β :

$$flux = uq - \beta q_x.$$

Advection-diffusion equation:

$$q_t + uq_x = \beta q_{xx}.$$

If $\beta > 0$ then this is a parabolic equation.

Advection dominated if u/β (the Péclet number) is large.

Fluid dynamics: "parabolic terms" arise from

- thermal diffusion and
- diffusion of momentum, where the diffusion parameter is the viscosity.

Discontinuous solutions

Vanishing Viscosity solution: The Riemann solution q(x,t) is the limit as $\epsilon \to 0$ of the solution $q^\epsilon(x,t)$ of the parabolic advection-diffusion equation

$$q_t + uq_x = \epsilon q_{xx}.$$

For any $\epsilon > 0$ this has a classical smooth solution:

Discontinuous solutions

Vanishing Viscosity solution: The Riemann solution q(x,t) is the limit as $\epsilon \to 0$ of the solution $q^\epsilon(x,t)$ of the parabolic advection-diffusion equation

$$q_t + uq_x = \epsilon q_{xx}.$$

For any $\epsilon > 0$ this has a classical smooth solution:

Discontinuous solutions

Vanishing Viscosity solution: The Riemann solution q(x,t) is the limit as $\epsilon \to 0$ of the solution $q^\epsilon(x,t)$ of the parabolic advection-diffusion equation

$$q_t + uq_x = \epsilon q_{xx}.$$

For any $\epsilon > 0$ this has a classical smooth solution:

