(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出版公開番号 特開2001-142469 (P2001-142469A)

最終頁に続く

(43)公開日 平成13年5月25日(2001.5.25)

(51) Int.Cl.'		識別記号	FΙ			デーマコート*(参考)	
G10K			B60R 1	11/02	В	3 D 0 2 0	
B60R			H03H 1	17/00	601M	5D061	
H03H		6 0 1	2	21/00		5 J O 2 3	
	21/00		G10K 1	11/16	н	Н	
			審査請求	未請求	請求項の数13 (DL (全 12 頁)	
(21)出願番号		特顧平11-324633	(71)出顧人	I顧人 000006781			
	•			ヤンマー	ーディーゼル株式会	社	
(22)出顧日		平成11年11月15日(1999.11.15)			大阪市北区茶屋町1		
			(72)発明者	小泉 多	E 知		
				大阪府力	大阪市北区茶屋町1	番32号 ヤンマ	
				ーディー	ゼル株式会社内		
			(72)発明者	大久保	稔		
				大阪府人	大阪市北区茶屋町1	番32号 ヤンマ	
				ーディー	-ゼル株式会社内		
			(74)代理人	1000806	21		
				弁理士	矢野 寿一郎		

(54) 【発明の名称】 アクティブ消音装置

(57)【要約】

【課題】 従来のアクティブ消音装置においては、エラーマイクの検出信号が最小となるように制御していたが、エラーマイクを受聴者の耳元に配置することが困難で、耳元から離れた位置に配置していたため、受聴者の耳元では騒音が必ずしも最小とはなっていなかった。

【解決手段】 信号音を出力するスピーカ4と受聴者の耳元との間の音場特性を、該スピーカ4と誤差検出を行うエラーマイク2との間の適応フィルタC1^と、エラーマイク2で検出したスピーカ出力音を受聴者の耳元位置でのスピーカ出力音に変換するフィルタVC^とを用いて求めるように構成した適応フィルタC2^を組み込み、該スピーカ4とエラーマイク2との間の音場特性を表す適応フィルタC1^を同定可能とした。

1

【特許請求の範囲】

【請求項1】 騒音を打ち消すための信号音を出力する スピーカと受聴者の耳元との間の音場特性を、該スピー カと誤差検出を行うエラーマイクとの間の音場特性を表 すフィルタと、エラーマイクで検出したスピーカ出力音 を受聴者の耳元位置でのスピーカ出力音に変換するフィ ルタとを用いて求めるように構成したフィルタを組み込 んだことを特徴とするアクティブ消音装置。

【請求項2】 スピーカとエラーマイクとの間の音場特性を表すフィルタをオンライン同定可能な適応フィルタとしたことを特徴とする請求項1に記載のアクティブ消音装置。

【請求項3】 エラーマイクで検出したスピーカ出力音を受聴者の耳元位置でのスピーカ出力音に変換するフィルタを予め同定したことを特徴とする請求項1に記載のアクティブ消音装置。

【請求項4】 エラーマイクで検出したスピーカ出力音を受聴者の耳元位置でのスピーカ出力音に変換するフィルタを同定する際に、受聴者の耳元位置で検出した信号を遅延させる構成としたことを特徴とする請求項3に記 20 載のアクティブ消音装置。

【請求項5】 スピーカから出力される信号の受聴者の 耳元位置での検出が、スピーカから出力される信号のエ ラーマイクによる検出よりも早く行われる場合、スピー カと受聴者の耳元との間の検出信号を時間的に遅延させ て、スピーカとエラーマイクとの間の音場特性を表すフィルタと、スピーカと受聴者の耳元との間の音場特性を 表すフィルタとにより、エラーマイクで検出したスピー カ出力音を受聴者の耳元位置でのスピーカ出力音に変換 するフィルタを同定することを特徴とする請求項1乃至 30 請求項3の何れかに記載のアクティブ消音装置。

【請求項6】 受聴者の耳元とスピーカとの間の距離が、スピーカとエラーマイクとの間の距離に対して等しいか大きくなる位置にエラーマイクを配置したことを特徴とする請求項1乃至請求項3の何れかに記載のアクティブ消音装置。

【請求項7】 騒音を検出するリファレンスセンサと受聴者の耳元との間の音場特性を、該リファレンスセンサと誤差検出を行うエラーマイクとの間の音場特性を表すフィルタと、エラーマイクで検出した騒音を受聴者の耳 40元位置での騒音に変換するフィルタとを用いて求めるように構成したフィルタを組み込んだことを特徴とするアクティブ消音装置。

【請求項8】 エラーマイクで検出した騒音を受聴者の 耳元位置での騒音に変換するフィルタを予め同定したこ とを特徴とする請求項7に記載のアクティブ消音装置。

【請求項9】 エラーマイクで検出した騒音を受聴者の 耳元位置での騒音に変換するフィルタを同定する際に、 受聴者の耳元位置で検出した信号を遅延させる構成とし たことを特徴とする請求項7に記載のアクティブ消音装 50 2

置。

【請求項10】 リファレンスセンサ位置からの信号の受聴者の耳元位置での検出が、リファレンスセンサ位置からの信号のエラーマイクによる検出よりも早く行われる場合、リファレンスセンサ位置からの受聴者の耳元位置での検出信号を時間的に遅延させて、リファレンスセンサと五ラーマイクとの間の音場特性を表すフィルタと、リファレンスセンサと受聴者の耳元との間の音場特性を表すフィルタとにより、エラーマイクで検出した騒音を受聴者の耳元位置での騒音に変換するフィルタを同定することを特徴とする請求項7乃至請求項9の何れかに記載のアクティブ消音装置。

【請求項11】 エラーマイクで検出した騒音を受聴者の耳元位置での騒音に変換するフィルタを予め同定する信号として、消音対象としている原音を用いたことを特徴とする請求項7乃至請求項10の何れかに記載のアクティブ消音装置。

【請求項12】 騒音源近傍からランダム信号を出力して、エラーマイクで検出した騒音を受聴者の耳元位置での騒音に変換するフィルタを予め同定することを特徴とする請求項7乃至請求項10に記載のアクティブ消音装置。

【請求項13】 受聴者の耳元とリファレンスセンサとの間の距離が、リファレンスセンサとエラーマイクとの間の距離に対して等しいか大きくなる位置にエラーマイクを配置したことを特徴とする請求項7又は請求項8に記載のアクティブ消音装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、能動的騒音制御を 用いたアクティブ消音装置に関し、特に受聴者の耳元で の消音効果を向上させたアクティブ消音装置に関する。 【0002】

【従来の技術】近年、車両の室内騒音等を、スピーカから制御音を出力することにより消音する能動的騒音制御を用いたアクティブ消音装置が提案されており、例えば、図12に示すように、マイクやエンジン回転数センサ等の信号検出器であるリファレンスセンサ1、誤差検出器であるエラーマイク2、制御音を出力するスピーカ4、伝達関数で表されるスピーカ4とエラーマイク2との間の音場特性を表すってルタC~、伝達関数で表されるリファレンスセンサ1とエラーマイク2との間の音場特性を表す適応フィルタW~、係数演算器であるLMS演算器8により構成されている。

【0003】このように構成されたアクティブ消音装置においては、騒音がリファレンスセンサ1で検出され、その検出信号がフィルタC ^ 及び適応フィルタW ^ に入力される。適応フィルタW ^ に入力された騒音信号は、該適応フィルタW ^ で信号処理されスピーカ4から出力される。そして、受聴者の近傍に配置されたエラーマイ

ク2では、スピーカ4からの再生音と騒音源からの騒音 とが干渉したものが検出され、これにより、適応フィル タW[^]の係数を変化させ、フィードバック信号であるエ ラーマイク2の検出信号が最小となるようにスピーカ4 の出力を調節して、騒音を減衰させるようにしている。 この場合、エラーマイク2の検出信号はLMS演算器8 に入力され、この検出信号とフィルタC ^ の出力とによ り、エラーマイク2の検出信号が最小となるようにLM S演算(最小二乗法)を行なっており、これにより、そ の時々の音場特性に適応するように、適応フィルタW^ の係数が変化され同定されている。

[0004]

【発明が解決しようとする課題】前述のように構成され たアクティブ消音装置においては、フィードバック信号 であるエラーマイク2の検出信号が最小となるように制 御が行われていたが、該エラーマイク2を消音対象空間 に位置する受聴者の耳元に配置することは困難であり、 耳元から離れた位置に配置していたため、受聴者の耳元 では騒音が必ずしも最小とはなっていなかった。そこ で、本発明においては、実際に受聴者の耳元での騒音が 20 最小となるような制御を可能とするアクティブ消音装置 を提供するものである。

[0005]

【課題を解決するための手段】本発明の解決しようとす る課題は以上の如くであり、次に該課題を解決する為の 手段を説明する。即ち、請求項1においては、騒音を打 ち消すための信号音を出力するスピーカと受聴者の耳元 との間の音場特性を、該スピーカと誤差検出を行うエラ ーマイクとの間の音場特性を表すフィルタと、エラーマ イクで検出したスピーカ出力音を受聴者の耳元位置での 30 スピーカ出力音に変換するフィルタとを用いて求めるよ うに構成したフィルタを組み込んだ。

【0006】また、請求項2においては、スピーカとエ ラーマイクとの間の音場特性を表すフィルタをオンライ ン同定可能な適応フィルタとした。

【0007】また、請求項3においては、エラーマイク で検出したスピーカ出力音を受聴者の耳元位置でのスピ ーカ出力音に変換するフィルタを予め同定した。

【0008】また、請求項4においては、エラーマイク で検出したスピーカ出力音を受聴者の耳元位置でのスピ 40 ーカ出力音に変換するフィルタを同定する際に、受聴者 の耳元位置で検出した信号を遅延させる構成とした。

【0009】また、請求項5においては、スピーカから 出力される信号の受聴者の耳元位置での検出が、スピー カから出力される信号のエラーマイクによる検出よりも 早く行われる場合、スピーカと受聴者の耳元との間の検 出信号を時間的に遅延させて、スピーカとエラーマイク との間の音場特性を表すフィルタと、スピーカと受聴者 の耳元との間の音場特性を表すフィルタとにより、エラ

でのスピーカ出力音に変換するフィルタを同定する。

【0010】また、請求項6においては、受聴者の耳元 とスピーカとの間の距離が、スピーカとエラーマイクと の間の距離に対して等しいか大きくなる位置にエラーマ イクを配置した。

【0011】また、請求項7においては、騒音を検出す るリファレンスセンサと受聴者の耳元との間の音場特件 を、該リファレンスセンサと誤差検出を行うエラーマイ クとの間の音場特性を表すフィルタと、エラーマイクで 検出した騒音を受聴者の耳元位置での騒音に変換するフ イルタとを用いて求めるように構成したフィルタを組み 込んだ。

【0012】また、請求項8においては、エラーマイク で検出した騒音を受聴者の耳元位置での騒音に変換する フィルタを予め同定した。

【0013】また、請求項9においては、エラーマイク で検出した騒音を受聴者の耳元位置での騒音に変換する フィルタを同定する際に、受聴者の耳元位置で検出した 信号を遅延させる構成とした。

【0014】また、請求項10においては、リファレン スセンサ位置からの信号の受聴者の耳元位置での検出 が、リファレンスセンサ位置からの信号のエラーマイク による検出よりも早く行われる場合、リファレンスセン サ位置からの受聴者の耳元位置での検出信号を時間的に 遅延させて、リファレンスセンサとエラーマイクとの間、 の音場特性を表すフィルタと、リファレンスセンサと受 聴者の耳元との間の音場特性を表すフィルタとにより、 エラーマイクで検出した騒音を受聴者の耳元位置での騒 音に変換するフィルタを同定する。

【0015】また、請求項11においては、エラーマイ クで検出した騒音を受聴者の耳元位置での騒音に変換す るフィルタを予め同定する信号として、消音対象として いる原音を用いた。

【0016】また、請求項12においては、騒音源近傍 からランダム信号を出力して、エラーマイクで検出した 騒音を受聴者の耳元位置での騒音に変換するフィルタを 予め同定する。

【0017】また、請求項13においては、受聴者の耳 元とリファレンスセンサとの間の距離が、リファレンス センサとエラーマイクとの間の距離に対して等しいか大 きくなる位置にエラーマイクを配置した。

[0018]

【発明の実施の形態】次に、本発明の実施の形態を、図 面に基づいて説明する。図1は本発明のアクティブ消音 装置を示すプロック図、図2はスピーカとエラーマイク との間の適応フィルタを同定するための構成を示すプロ ック図、図3はエラーマイクで検出したスピーカ出力音 を受聴者の耳元位置でのスピーカ出力音に変換するフィ ルタを同定するための構成を示すプロック図、図4はス ーマイクで検出したスピーカ出力音を受聴者の耳元位置 50 ピーカとエラーマイクとの間の距離が、スピーカと受聴

者の耳元位置に配置したマイクロフォンとの間の距離よ りも大きくなっている配置状態、及びこの状態でのスピ ーカの出力信号の受聴者の耳元位置に配置したマイクロ フォンによる検出信号及びエラーマイクによる検出信号 を示す図、図5は図4における状態にて受聴者の耳元位 置に配置したマイクロフォンの検出信号を遅延させた状 態、及びその状態でのスピーカの出力信号の受聴者の耳 元位置に配置したマイクロフォンによる検出信号及びエ ラーマイクによる検出信号を示す図、図6は受聴者の耳 元とスピーカとの間の距離がスピーカとエラーマイクと の間の距離に対して等しいか大きくなる位置にエラーマ イクを配置した状態を示す図、図7はエラーマイクで検 出した騒音を受聴者の耳元位置での騒音に変換するフィ ルタを同定するための構成を示すプロック図、図8はリ ファレンスセンサとエラーマイクとの間の距離がリファ レンスセンサと受聴者の耳元位置に配置したマイクロフ ォンとの間の距離よりも大きくなっている配置状態、及 びこの状態での騒音信号の受聴者の耳元位置に配置した マイクロフォンによる検出信号及びエラーマイクによる 検出信号を示す図、図9は図8における状態にて受聴者 の耳元位置に配置したマイクロフォンの検出信号を遅延 させた状態、及びその状態での騒音信号の受聴者の耳元 位置に配置したマイクロフォンによる検出信号及びエラ ーマイクによる検出信号を示す図、図10は受聴者の耳 元とリファレンスセンサとの間の距離がリファレンスセ ンサとエラーマイクとの間の距離に対して等しいか大き くなる位置にエラーマイクを配置した状態を示す図、図 11は騒音源の近傍からランダム信号を出力してエラー マイクで検出した騒音を受聴者の耳元位置での騒音に変 換するフィルタの同定を可能とした状態を示す図、図 1 2は従来のアクティブ消音装置を示すプロック図であ る。

【0019】まず、本発明のアクティブ消音装置の基本 構成について説明する。図1に示すように、アクティブ 消音装置は、騒音検出器であるリファレンスセンサー、 誤差検出器であるエラーマイク2、制御音を出力するス ピーカ4、伝達関数で表されるスピーカ4と消音対象空 間に位置する受聴者の耳元との間の音場特性を表す適応 フィルタC2~、伝達関数で表されるリファレンスセン サ1と消音対象空間に位置する受聴者の耳元との間の音 40 場特性を表す適応フィルタW2^、伝達関数で表される エラーマイク2と消音対象空間に位置する受聴者の耳元 との間の音場特性を表す適応フィルタVW^、係数演算 器であるLMS演算器8等により構成されている。ま た、適応フィルタC2 ~ は、伝達関数で表されるエラー マイク2とスピーカ4との間の音場特性を表す適応フィ ルタC1 へ、及び伝達関数で表されるエラーマイク2と 消音対象空間に位置する受聴者の耳元との間の音場特性 を表す適応フィルタVC^により構成されている。

【0020】このように構成されたアクティブ消音装置

6

における動作について説明する。まず、騒音源からの騒音がリファレンスセンサ1で検出され、その検出信号であるリファレンス信号が適応フィルタC2²及び適応フィルタW2²に入力される。本例においては、騒音源からの騒音を、例えばエンジン音としている。該リファレンスセンサ1は、例えばマイクに構成されているが、本例のように騒音源がエンジン音である場合にはエンジン回転数ピックアップ等を用いることもできる。

【0021】適応フィルタW2~に入力された騒音信号は、該適応フィルタW2~で信号処理された後、スピーカ4から出力されるとともに、適応フィルタC2~及び適応フィルタC1~に入力される。スピーカ4からの出力信号は、受聴者の耳元が位置する消音対象空間にて騒音源からの騒音と干渉し、これにより、消音対象空間における騒音が消音される。また、受聴者の耳元から離れた位置に設置されたエラーマイク2では、スピーカ4からの出力音と騒音源からの騒音とが干渉したものが検出されている。

【0022】エラーマイク2からの検出信号であるエラー信号は、減算器10において適応フィルタC1¹は、スピーカ4とエラーマイク2との間の伝達関数が係数として予め同定されている。この場合、減算器10からとして予め同定されている。この場合、減算器10からというされる信号は、エラーマイク2により、リファレンスセンサ1とエラーマイク2との間の音場を通じて検出されたスピーカ4とエラーマイク2との間の音場を通じて検出されたスピーカ4の出力信号にスピーカ4とエラーマイク2との間の音場特性を表す適応フィルタC1²の係数を掛け合わせたものを除去した信号である。

【0023】従って、減算器10からはエラーマイク2により検出された騒音信号のみが出力されることとなり、減算器10からの出力信号には前記適応フィルタVW[^]の係数が掛け合わされる。適応フィルタVW[^]は、エラーマイク2と受聴者の耳元が位置する消音対象空間との間の音場特性を表すので、適応フィルタVW[^]を掛け合わされた減算器10からの出力信号は、リファレンスセンサ1と受聴者の耳元との間の音場を通じて検出された騒音信号、即ち、あたかも受聴者の耳元に実際に設置したマイクロフォンにより検出した騒音信号と等しくなる。

【0024】このように、リファレンスセンサ1と受聴者の耳元との間の音場特性を、該リファレンスセンサ1とエラーマイク2との間の音場特性を表す適応フィルタW1²と、該エラーマイク1と受聴者の耳元との間の音場特性を表す適応フィルタVW²とを用いて求めるように構成しており、本アクティブ消音装置には、前述の如く求められたリファレンスセンサ1と受聴者の耳元との間の音場特性を伝達関数として表した適応フィルタW2

7

^が組み込まれている。

【0025】減算器10からの出力信号は、適応フィル タVW^を通じて加算器9へ入力され、また、スピーカ 4 からの出力信号が適応フィルタC2^を通じて加算器 9へ入力されている。適応フィルタC2~は、伝達関数 で表されるスピーカ4とエラーマイク2との間の音場特 性を表す適応フィルタC1~と、伝達関数で表されるエ ラーマイク2と受聴者の耳元との間の音場特性を表す適 応フィルタVC²とで構成されており、適応フィルタC 2 ~を通過したスピーカ4からの出力信号は、スピーカ 10 4と受聴者の耳元との間の音場を通じて検出された騒音 信号、即ち、あたかも受聴者の耳元に実際に設置したマ イクにより検出したスピーカ4の出力信号と等しくな る。このように、スピーカ4と受聴者の耳元との間の音 場特性を、スピーカ4とエラーマイク2との間の音場特 性を表す適応フィルタC1^と、該エラーマイク2と受 聴者の耳元との間の音場特性を表す適応フィルタVC^ とを用いて求めるように構成している

【0026】加算器9においては、入力された減算器10からの出力信号とスピーカ4からの出力信号とが加算されるが、両信号は逆位相の波形であるため互いに相殺される。そして、加算器9からの出力信号とともに、適応フィルタC2^{からの出力信号がLMS演算器8に入力され、該LMS演算器8により、加算器9からの出力信号が最小となるように適応フィルタW2^{の係数を調整する。即ち、受聴者の耳元での騒音が最小となるように適応フィルタW2⁰の同定を行うのである。}}

【0027】以上の如く、スピーカ4と受聴者の耳元との間の音場特性や、リファレンスセンサ1と受聴者の耳元との間の音場特性を考慮することにより、受聴者の耳元での騒音が最小となるようにアクティブ消音装置を構成することができ、受聴者の体感消音効果を向上することができる。

【0028】次に、その出力がLMS演算器8に入力される適応フィルタC2^{*}を構成する適応フィルタC1^{*}の係数を、その時々の音場特性に適応するように調整する、適応フィルタC1^{*}の同定方法について説明する。図2には適応フィルタC2^{*}を同定可能としたアクティブ消音器を示しており、エラーマイク2の下流側には信号処理器11が設けられ、エラーマイク2の検出信号で40あるエラー信号が該信号処理器11に入力されるように構成している。また、スピーカ4からは、適応フィルタW2^{*}で信号処理された騒音信号とともに、周波数帯域全般にランダムに出力されるM系列信号が出力されている。

【0029】そして、エラーマイク2においては、騒音源やスピーカ4からのエンジン音と、該スピーカ4からのM系列信号とが共に検出され、この検出信号がエラー信号として信号処理器11に入力される。信号処理器11は、例えば、信号を遅延させるディレイ21と、LM 50

8

S演算器22と、適応フィルタ23とで構成されており、信号処理器11に入力された検出信号が該ディレイ21により一定時間遅延されている。

【0030】ここで、エラー信号中に含まれるエンジン音と相関のある信号は、エンジン回転数に基づく一定の周期を有した周期信号であるため、エラー信号中のエンジン音と相関のある信号と、このエンジン音と相関のある信号を一定時間遅延させた信号とを重ね合わせると、互いに相殺されることとなる。また、スピーカ4から出力されるM系列信号は、周期性を有さないランダム信号であるので、検出信号中のM系列信号と、このM系列信号を一定時間遅延させた信号とを重ね合わせても、互いに相殺されることはない。

【0031】そして、信号処理器11においては、入力されたエラー信号から、このエラー信号をディレイ21により一定時間遅延させた信号を減算し、減算して得られた信号を出力するように構成している。このように、入力されたエラー信号から、ディレイ21により遅延されたエラー信号を減算することにより、周期信号であるエンジン音に相関のある信号が互いに相殺されて削除され、M系列信号に相関のある信号のみを分離信号として分離して出力することができる。

【0032】この場合、ディレイ21により遅延されたエラー信号は、適応フィルタ23により、その遅延時間及び振幅の調節が行なわれた後に、信号処理器11へ力されたエラー信号から減算される。また、ディレイ21により遅延されたエラー信号、及び、信号処理器11に入力されたエラー信号からディレイ21により遅延されたエラー信号を減じて得られた分離信号が、LMS演算器22に入力され、これらの信号に基づいて該LMS演算器22によりLMS演算を行ない、該分離信号に残留する、エンジン音と相関のある信号が最小となるように適応フィルタ23の係数を調節している。

【0033】信号処理器11によりエンジン音に相関のある信号を分離して得られた分離信号は、減算器7にて、スピーカ4とエラーマイク2との間の音場特性を表す適応フィルタC1~を通過したM系列信号が減算された後、LMS演算器13に入力される。また、該LMS演算器13には、アクティブ消音装置から発せられる前記M系列信号が直接入力されている。そして、これらの信号に基づいて該LMS演算器13によりLMS演算を行ない、アクティブ消音装置から発せられるM系列信号と、減算器7からの出力信号との差が最小となるように適応フィルタC1~の係数を調節している。

【0034】以上の如く、信号処理器11において、入力したエラーマイク2の検出信号であるエラー信号から、該ディレイ21により遅延させたエラー信号に対して適応フィルタ23によりフィルタリング処理を施した信号を減算するといった信号処理を行なうことにより、エラー信号からエンジン音と相関のある信号を削除し

20

30

て、M系列信号に相関のある分離信号のみを残留させることが可能となる。これにより、この分離信号とアクティブ消音装置から発せられるM系列信号とが一致するように、LMS演算器13により演算を行なうことで、スピーカ4とエラーマイク2との間の音場特性の同定を行なうことが可能となる。

【0035】即ち、前述の如く適応フィルタC1~の係数を調節することにより、時々刻々と変化するスピーカ4とエラーマイク2との間の音場特性に適応するように適応フィルタC1~を同定することができるのである。これにより、スピーカ4とエラーマイク2との間の音場特性を正確に再現することができる。尚、上述の音との消音特性を向上させることができる。尚、上述の音とM系列信号とが混在する信号から、エンジン音と相関のある信号を削除する信号処理に、エラーマイク2により検出したエラー信号を利用している。

【0036】次に、エラーマイク2と受聴者の耳元との

間の適応フィルタVC^を予め同定可能に構成したアク ティブ消音装置について説明する。図3に示すように、 まず、受聴者の耳元にマイクロフォン5を設置し、該マ イクロフォン5の下流に信号処理器16を設ける。該信 号処理器16は、前記ディレイ21、LMS演算器2 2、及び適応フィルタVC ^ により構成されている。マ イクロフォン5により、スピーカ4からの出力信号がス ピーカ4と受聴者の耳元との間の音場を通じて検出さ れ、この検出信号が信号処理器16に入力される。ま た、エラーマイク2により、スピーカ4からの出力信号 がスピーカ4とエラーマイク2との間の音場を通じて検 出され、この検出信号が信号処理器16に入力される。 【0037】信号処理器16内においては、マイクロフ ォン5による検出信号が、ディレイ21により一定時間 遅延された後に滅算器6へ入力されるとともに、エラー マイク2による検出信号が適応フィルタVC^を通じて 滅算器6へ入力され、その後マイクロフォン5の検出信 号からエラーマイク2の検出信号が減算される。そし て、減算器6からの出力信号とエラーマイク2の検出信 号とをLMS演算器22へ入力して、該LMS演算器2 2により演算を行ない、減算器6からの出力信号が最小 となるように適応フィルタVC^の係数が調節される。 即ち、スピーカ4とエラーマイク2との間の音場を通じ て検出されたスピーカ4の出力信号であるエラーマイク 2による検出信号に、適応フィルタVC ^ を掛け合わせ た信号が、スピーカ4とマイクロフォン5との間の音場 を通じて検出されたスピーカ4の出力信号である該マイ クロフォン5による検出信号と等しくなるように適応フ ィルタVC^の同定を行うのである。

【0038】ここで、本例の場合、図4の左図に示すように、スピーカ4とエラーマイク2との間の距離L ciが、スピーカ4とマイクロフォン5との間の距離Lc2 10

よりも大きくなるように、スピーカ4、エラーマイク2、及びマイクロフォン5が設置されている。従って、スピーカ4の出力信号は、マイクロフォン5による検出の方が、エラーマイク2による検出よりもΔT1だけ早く行われる。このように、マイクロフォン5によるスピーカ4の出力信号の検出が、エラーマイク2による検出よりも早く行われる場合には、時間軸上でエラーマイク2の検出信号をマイクロフォン5の検出信号に変換する変換係数V0は存在しないため、減算器6により両信号の減算を行うことができなくなってしまう。

【0039】そこで、図5に示すように、マイクロフォン5の検出信号をディレイ21により Δ T dだけ遅延させることにより、マイクロフォン57の如く、仮想的にスピーカ4からの距離LC27を前記距離LC1よりも大きくして、スピーカ4の出力信号が、エラーマイク2による検出よりも Δ T 2だけ遅れてマイクロフォン5による検出が行われるようにしている。このように、エライク2によるスピーカ4の出力信号の検出が、マイクフォン5による検出よりも早く行われるように構成することで、時間軸上でエラーマイク2の検出信号を求め合ことが可能となる。これにより、減算器6による両信号の減算を行うことが可能となる。

【0040】以上の如く、エラーマイク2と受聴者の耳元との間の適応フィルタVC を同定する際に、マイクロフォン5を受聴者の耳元位置に設置して、該マイクロフォン5により検出したスピーカ4からの出力信号を遅延させるように構成することで、スピーカ4と受聴者の耳元との間の音場特性を考慮した同定を、例えば、車両の組立時や出荷時等に予め行うことができ、アクティブ消音装置の体感消音効果を向上することが可能となる。

【0041】また、適応フィルタVC^を同定する際に、ディレイ21を用いないで、マイクロフォン5により検出したスピーカ4からの出力信号を遅延させないように構成することもできる。即ち、図6に示すように、スピーカ4とマイクロフォン5との間の距離Lc1に比べて、等しいか又は大きくなるように、スピーカ4、エラーマイク2、及びマイクロフォン5を設置するのである。

【0042】このように、距離Lc2を距離Lc1よりも大きくすることで、ディレイ21を用いなくても、スピーカ4の出力信号の、マイクロフォン5による検出を、エラーマイク2による検出よりも遅れて行うことができ、減算器6による両信号の減算を行うことが可能となる。これにより、アクティブ消音装置の構成を簡単にして、コストダウンを図ることができる。

【0043】また、リファレンスセンサ1と受聴者の耳 50 元との間の前記適応フィルタVW を予め同定可能に構

成したアクティブ消音装置について説明する。図7に示 す如く、前記適応フィルタVC^の同定を行う場合と同 様に、まず、受聴者の耳元にマイクロフォン5を設置 し、該マイクロフォン5の下流に信号処理器17を設け る。該信号処理器17は、前記ディレイ21、LMS演 算器22、及び適応フィルタVW^により構成されてい る。マイクロフォン5により、騒音源からの騒音信号が リファレンスセンサ1と受聴者の耳元との間の音場を通 じて検出され、この検出信号が信号処理器17に入力さ れる。また、エラーマイク2により、騒音源からの騒音 信号がリファレンスマイク1とエラーマイク2との間の 音場を通じて検出され、この検出信号が信号処理器17 に入力される。

【0044】信号処理器17内においては、マイクロフ ォン5による検出信号が、ディレイ21により一定時間 遅延された後に減算器6へ入力されるとともに、エラー マイク2による検出信号が適応フィルタVW^を通じて 滅算器6へ入力され、その後マイクロフォン5の検出信 号からエラーマイク2の検出信号が減算される。そし て、減算器6からの出力信号とエラーマイク2の検出信 号とをLMS演算器22へ入力して、該LMS演算器2 2により演算を行ない、減算器6からの出力信号が最小 となるように適応フィルタVW^の係数が調節される。 即ち、リファレンスセンサ1とエラーマイク2との間の 音場を通じて検出された騒音信号であるエラーマイク2 による検出信号に、適応フィルタVW^{*}を掛け合わせた 信号が、リファレンスセンサ1とマイクロフォン5との 間の音場を通じて検出された騒音信号である該マイクロ フォン5による検出信号と等しくなるように適応フィル タVW[^]の同定を行うのである。

【0045】ここで、本例の場合、図8の左図に示すよ うに、リファレンスセンサ1とエラーマイク2との間の 距離 Lwiが、リファレンスセンサ1とマイクロフォン5 との間の距離Lw2よりも大きくなるように、リファレン スセンサ1、エラーマイク2、及びマイクロフォン5が 設置されている。従って、騒音の検出は、マイクロフォ ン5による検出の方が、エラーマイク2による検出より もΔT'1だけ早く行われる。このように、マイクロフ ォン5による騒音の検出が、エラーマイク2による検出 よりも早く行われる場合には、時間軸上でエラーマイク 40 2の検出信号をマイクロフォン5の検出信号に変換する 変換係数V'0は存在しないため、減算器6により両信 号の減算を行うことができなくなってしまう。

【0046】そこで、図9に示すように、マイクロフォ ン5の検出信号をディレイ21によりAT'dだけ遅延 させることにより、マイクロフォン5'の如く、仮想的 にリファレンスセンサ 1 からの距離 L_{w2} 'を前記距離 Lwlよりも大きくして、騒音信号が、エラーマイク2によ る検出よりも AT' 2 だけ遅れてマイクロフォン5 によ

12

マイク2による騒音信号の検出が、マイクロフォン5に よる検出よりも早く行われるように構成することで、時 間軸上でエラーマイク2の検出信号をマイクロフォン5 の検出信号に変換する変換係数V' 1を求めることが可 能となる。これは、エラーマイク2の検出信号を、過去 のマイクロフォン5の検出信号に変換することと同等で あり、これにより、減算器6による両信号の減算を行う ことが可能となる。

【0047】以上の如く、エラーマイク2と受聴者の耳 元との間の適応フィルタVW ^ を同定する際に、マイク ロフォン5を受聴者の耳元位置に設置して、該マイクロ フォン5により検出した騒音信号を遅延させるように構 成することで、リファレンスセンサ1と受聴者の耳元と の間の音場特性を考慮した同定を、例えば、車両の組立 時や出荷時等に予め行うことができ、アクティブ消音装 置の体感消音効果を向上することが可能となる。

【0048】また、適応フィルタVW^を同定する際 に、ディレイ21を用いないで、マイクロフォン5によ り検出した騒音信号を遅延させないように構成すること もできる。即ち、図10に示すように、リファレンスセ ンサ1とマイクロフォン5との間の距離Lw2が、リファ レンスセンサ1とエラーマイク2との間の距離 Lwiに比 べて、等しいか又は大きくなるように、リファレンスセ ンサ1、エラーマイク2、及びマイクロフォン5を設置 するのである。

【0049】このように、距離Lw2を距離Lw1よりも大 きくすることで、ディレイ21を用いなくても、騒音信 号のマイクロフォン5による検出を、エラーマイク2に よる検出よりも遅れて行うことができ、減算器6による 両信号の減算を行うことが可能となる。これにより、ア クティブ消音装置の構成を簡単にして、コストダウンを 図ることができる。

【0050】尚、本例においては、適応フィルタVW^ の同定に用いる騒音源からの騒音としてエンジン音を用 いており、特に、単一回転数での運転時におけるエンジ ン音やスイープ音を用いている。また、図11に示すよ うに、騒音源の近傍にスピーカ31を設置して、スピー カ31から広帯域に渡るランダム信号である前記M系列 信号を出力し、エンジン音等の騒音を用いた前述の場合 と同様に、このM系列信号を用いて適応フィルタVW[^] の同定を行うこともできる。

[0051]

【発明の効果】本発明は以上の如く構成したので、次の ような効果を奏するのである。即ち、請求項1の如く、 騒音を打ち消すための信号音を出力するスピーカと受聴 者の耳元との間の音場特性を、該スピーカと誤差検出を 行うエラーマイクとの間の音場特性を表すフィルタと、 エラーマイクで検出したスピーカ出力音を受聴者の耳元 位置でのスピーカ出力音に変換するフィルタとを用いて る検出が行われるようにしている。このように、エラー 50 求めるように構成したフィルタを組み込んだので、スピ ーカと受聴者の耳元との間の音場特性を考慮して、受聴者の耳元での騒音が最小となるようにアクティブ消音装置を構成することが可能となり、受聴者の体感消音効果を向上することができる。

【0052】更に、請求項2の如く、スピーカとエラーマイクとの間の音場特性を表すフィルタをオンライン同定可能な適応フィルタとしたので、スピーカと受聴者の耳元との間の音場特性を考慮しながら、スピーカとエラーマイクとの間の音場特性を正確に再現することができ、アクティブ消音装置の消音特性を向上させることができる。

【0053】更に、請求項3の如く、エラーマイクで検出したスピーカ出力音を受聴者の耳元位置でのスピーカ出力音に変換するフィルタを予め同定したので、スピーカと受聴者の耳元との間の音場特性を考慮した同定を、例えば、車両の組立時や出荷時等に予め行うことができ、アクティブ消音装置の体感消音効果を向上することが可能となる。

【0054】更に、請求項4の如く、エラーマイクで検出したスピーカ出力音を受聴者の耳元位置でのスピーカ出力音に変換するフィルタを同定する際に、受聴者の耳元位置で検出した信号を遅延させる構成としたので、スピーカとエラーマイクとの間の距離が、スピーカと受聴者の耳元に設置したマイクロフォンとの間の距離よりも大きくなるように、スピーカ、エラーマイク、及びマイクロフォンが設置されている場合でも、確実にスピーカと受聴者の耳元との間の音場特性を考慮した同定を行うことができ、アクティブ消音装置の体感消音効果を向上することが可能となる。

【0055】更に、請求項5の如く、スピーカから出力 される信号の受聴者の耳元位置での検出が、スピーカか ら出力される信号のエラーマイクによる検出よりも早く 行われる場合、スピーカと受聴者の耳元との間の検出信 号を時間的に遅延させて、スピーカとエラーマイクとの 間の音場特性を表すフィルタと、スピーカと受聴者の耳 元との間の音場特性を表すフィルタとにより、エラーマ イクで検出したスピーカ出力音を受聴者の耳元位置での スピーカ出力音に変換するフィルタを同定するので、ス ピーカとエラーマイクとの間の距離が、スピーカと受聴 者の耳元に設置したマイクロフォンとの間の距離よりも 大きくなるように、スピーカ、エラーマイク、及びマイ クロフォンが設置されている場合等でも、確実にスピー カと受聴者の耳元との間の音場特性を考慮した同定を行 うことができ、アクティブ消音装置の体感消音効果を向 上することが可能となる。

【0056】更に、請求項6の如く、受聴者の耳元とスピーカとの間の距離が、スピーカとエラーマイクとの間の距離に対して等しいか大きくなる位置にエラーマイクを配置したので、スピーカと受聴者の耳元との間の適応フィルタを時間的に遅延させることなくスピーカとエラ

1 /

ーマイクとの間の適応フィルタを同定することが可能となる。これにより、アクティブ消音装置の構成を簡単にして、コストダウンを図ることができる。

【0057】更に、請求項7の如く、騒音を検出するリファレンスセンサと受聴者の耳元との間の音場特性を、該リファレンスセンサと誤差検出を行うエラーマイクで検出した騒音を受聴者の耳元位置での騒音に変換するフィルタとを用いて求めるように構成したフィルタを組み込んだので、リファレンスセンサと受聴者の耳元との間の音場特性を考慮して、受聴者の耳元での騒音が最小となるようにアクティブ消音装置を構成することが可能となり、受聴者の体感消音効果を向上することができる。

【0058】更に、請求項8の如く、エラーマイクで検出した騒音を受聴者の耳元位置での騒音に変換するフィルタを予め同定したので、リファレンスセンサと受聴者の耳元との間の音場特性を考慮した同定を、例えば、車両の組立時や出荷時等に予め行うことができ、アクティブ消音装置の体感消音効果を向上することが可能となる。

【0059】更に、請求項9の如く、エラーマイクで検出した騒音を受聴者の耳元位置での騒音に変換するフィルタを同定する際に、受聴者の耳元位置で検出した信号を遅延させる構成としたので、リファレンスセンサと、受聴者の耳元に設置したマイクロフォンとの間の距離よりも大きくなるように、リファレンスセンサ、エラーマイク、及びマイクロフォンが設置されている場合でも、確実にリファレンスセンサと受聴者の耳元との間の音場特性を考慮した同定を行うことができ、アクティブ消音装置の体感消音効果を向上することが可能となる。

【0060】更に、請求項10の如く、リファレンスセ ンサ位置からの信号の受聴者の耳元位置での検出が、リ ファレンスセンサ位置からの信号のエラーマイクによる 検出よりも早く行われる場合、リファレンスセンサ位置 からの受聴者の耳元位置での検出信号を時間的に遅延さ せて、リファレンスセンサとエラーマイクとの間の音場 特性を表すフィルタと、リファレンスセンサと受聴者の 耳元との間の音場特性を表すフィルタとにより、エラー マイクで検出した騒音を受聴者の耳元位置での騒音に変 換するフィルタを同定するので、リファレンスセンサと エラーマイクとの間の距離が、リファレンスセンサと受 聴者の耳元に設置したマイクロフォンとの間の距離より も大きくなるように、リファレンスセンサ、エラーマイ ク、及びマイクロフォンが設置されている場合等でも、 確実にリファレンスセンサと受聴者の耳元との間の音場 特性を考慮した同定を行うことができ、アクティブ消音 装置の体感消音効果を向上することが可能となる。

【0061】更に、請求項11の如く、エラーマイクで検出した騒音を受聴者の耳元位置での騒音に変換するフ

イルタを予め同定する信号として、消音対象としている 原音を用いたので、信号発生源を特別に設けることな く、リファレンスセンサと受聴者の耳元との間の音場特 性を考慮して、受聴者の耳元での騒音が最小となるよう にアクティブ消音装置を構成することができ、受聴者の 体感消音効果を向上することができる。

【0062】更に、請求項12の如く、騒音源近傍からランダム信号を出力して、エラーマイクで検出した騒音を受聴者の耳元位置での騒音に変換するフィルタを予め同定するので、該適応フィルタを安定的且つ高精度に同10定することができ、リファレンスセンサと受聴者の耳元との間の音場特性を考慮して、受聴者の耳元での騒音が最小となるようにアクティブ消音装置を構成することが可能となって、受聴者の体感消音効果を向上することができる。

【0063】更に、請求項13の如く、受聴者の耳元とリファレンスセンサとの間の距離が、リファレンスセンサとエラーマイクとの間の距離に対して等しいか大きくなる位置にエラーマイクを配置したので、リファレンスセンサと受聴者の耳元との間の適応フィルタを時間的に 20遅延させることなく、リファレンスセンサとエラーマイクとの間の適応フィルタを同定することが可能となる。これにより、アクティブ消音装置の構成を簡単にして、コストダウンを図ることができる。

【図面の簡単な説明】

【図1】本発明のアクティブ消音装置を示すブロック図 である。

【図2】スピーカとエラーマイクとの間の適応フィルタを同定するための構成を示すプロック図である。

【図3】エラーマイクで検出したスピーカ出力音を受聴 30 者の耳元位置でのスピーカ出力音に変換するフィルタを 同定するための構成を示すブロック図である。

【図4】スピーカとエラーマイクとの間の距離が、スピーカと受聴者の耳元位置に配置したマイクロフォンとの間の距離よりも大きくなっている配置状態、及びこの状態でのスピーカの出力信号のマイクロフォンによる検出信号及びエラーマイクによる検出信号を示す図である。

【図5】図4における状態にて受聴者の耳元位置に配置したマイクロフォンの検出信号を遅延させた状態、及びその状態でのスピーカの出力信号の受聴者の耳元位置に 40配置したマイクロフォンによる検出信号及びエラーマイクによる検出信号を示す図である。

【図 6 】 受聴者の耳元とスピーカとの間の距離がスピーカとエラーマイクとの間の距離に対して等しいか大きくなる位置にエラーマイクを配置した状態を示す図であ

16

る。

【図7】エラーマイクで検出した騒音を受聴者の耳元位置での騒音に変換するフィルタを同定するための構成を示すブロック図である。

【図8】リファレンスセンサとエラーマイクとの間の距離がリファレンスセンサと受聴者の耳元位置に配置したマイクロフォンとの間の距離よりも大きくなっている配置状態、及びこの状態での騒音信号の受聴者の耳元位置に配置したマイクロフォンによる検出信号及びエラーマイクによる検出信号を示す図である。

【図9】図8における状態にて受聴者の耳元位置に配置したマイクロフォンの検出信号を遅延させた状態、及びその状態での騒音信号の受聴者の耳元位置に配置したマイクロフォンによる検出信号及びエラーマイクによる検出信号を示す図である。

【図10】受聴者の耳元とリファレンスセンサとの間の 距離がリファレンスセンサとエラーマイクとの間の距離 に対して等しいか大きくなる位置にエラーマイクを配置 した状態を示す図である。

「図11】騒音源の近傍からランダム信号を出力してエラーマイクで検出した騒音を受聴者の耳元位置での騒音に変換するフィルタの同定を可能とした状態を示す図である。

【図12】従来のアクティブ消音装置を示すブロック図 である

【符号の説明】

- 1 リファレンスセンサ
- 2 エラーマイク
- 4 スピーカ
- 8 · 1 3 LMS演算器
- 9 加算器
- 10 減算器
- 21 ディレイ
- C1 (スピーカとエラーマイクとの間の音場特性を表す) 適応フィルタ
- C 2 ^ (スピーカと受聴者の耳元との間の音場特性を表す) 適応フィルタ

W2 ^ (リファレンスセンサと受聴者の耳元との間の 音場特性を表す)適応フィルタ

VW ^ (エラーマイクで検出した騒音を受聴者の耳元 位置での騒音に変換する)フィルタ

【図1】

[図2]

【図4】

【図5】

【図3】

【図6】

【図8】

【図9】

[図10]

【図7】

【図11】

【図12】

フロントページの続き

(72)発明者 多田 茂樹

大阪府大阪市北区茶屋町1番32号 ヤンマーディーゼル株式会社内

Fターム(参考) 3D020 BA02 BC01 BD05 BE04

5D061 FF02

5J023 DA05 DB03 DC08 DD07