Jionghao Wang

Mail: shanemankiw@sjtu.edu.cn Website: shanemankiw.github.io G GitHub: shanemankiw Research Interests: Intersection of 3D Vision and Computer Graphics; 3D Assets Generation

Education

Shanghai Jiao Tong University

Information Engineering, EE, M.S.; Supervisor: Prof. Li Song

Graphics Courses: Introduction to Computer Graphics [&] [10], Fundamentals of Character Animation [A]

Shanghai Jiao Tong University Grades: 89.55/100 (Ranking: 17/142)

Information Engineering, EE, B.A.; Thesis: Free Viewpoint Image Synthesis

Sept. 2017 - Jun. 2021

Grades: 3.83/4 (Ranking: 6/70)

Sept. 2021 – Mar. 2024(expected)

Texas A&M University

Research Intern; Advisors: Prof. Wenping Wang and Prof. Xin Li

Remote Jun. 2023-Now

Leading a CVPR 2024 submission project on compositional text-to-3D avatar generation from 2D diffusion prior.

Network Platform Group(NPG), Intel Corporation

Media Graphics Software Engineering Intern

Shanghai, China Nov. 2020 - Jun. 2021

 Designed and developed a RGB-D pointcloud fusion pipeline with multiple Kinect Azure sensors. This project was published as an academic paper in DTTC (Intel's Design and Test Technology Conference).

Publications

360-Degree Panorama Generation from Few Unregistered NFoV Images

ACM MM 2023

Jionghao Wang*, Ziyu Chen*, Jun Ling, Rong Xie, Li Song

[Chinese]

- Proposed a 360-degree panoramas generation pipeline allowing one or few NFoV inputs with text-prompt editing.
- Achieved significantly better quality and diversity than previous SOTA methods published in CVPR and 3DV.

Efficient Human Rendering with Geometric and Semantic Priors

IEEE BMSB 2023

Jionghao Wang, Shuai Guo, Qiuwen Wang, Rong Xie, Li Song

- Proposed an efficient human rendering pipeline using geometric&semantic priors to improve speed and quality. **IEEE VCIP 2022**

RGBD-based Real-time Volumetric Reconstruction System

Kai Zhou, Shuai Guo, Jingchuan Hu, **Jionghao Wang**, Qiuwen Wang, Li Song

0

Ø

Developed a low-cost, real-time interactive 3D capture and rendering system with multiple RGB-D cameras.

A New Free Viewpoint Video Dataset and DIBR Benchmark

ACM MMSys 2022

Shuai Guo, Kai Zhou, Jingchuan Hu, **Jionghao Wang**, Jun Xu, Li Song

- Proposed a new RGB-D video dataset with up to 12 views, 13 groups sequences of synthesized high-quality depths.

Selected Projects

Depth Image-based Rendering

Feb. 2021 - Jun. 2021

- Designed and developed a novel view synthesis system based on Depth-Image Based Rendering(DIBR) algorithm.
- Optimized the system using CUDA kernels and pthreads and achieved a novel view synthesis framerate of 25 fps.

Learning-based Multiview Stereo

- Designed a patch-match-based deep learning multi-view stereo algorithm for efficient dense depth estimation.
- Achieved 50% lower depth MAE(Mean Average Error) in the estimated depth maps on VRU dataset.

曽 Skills

- English Proficiency: TOEFL 116 (Listening 30, Speaking 28), GRE 329+4.5
- **Programming Languages**: Python, C++, CUDA, Matlab, C#
- 🌣 Tools: OpenGL, Pytorch, Tensorflow, Keras, Kaolin, Nydiffrast, Trimesh, Blender, Unity

Awards & Scholarships

Tung OOCL Scholarship, granted by Hong Kong's Tung Foundation (Top 10%)

Outstanding Bachelor Graduate, awarded by SJTU (Top 10%)

Scholarship of Academic Excellence, granted by SJTU; 4 x recipient

Dec. 2018

Jun. 2021

2018-2020, 2022