	TP1 Debit - Lothmann	Pt		A B C D	Note	
1	Préparation du travail					
1	Compléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.	2	Α		2	
2	Quel est le nom de la grandeur réglée ?	1	Α		0,5	
3	Quel est le principe utilisé pour mesurer la grandeur réglée ?	1	С		0,175	
4	Quelle est la grandeur réglante ?	1	С		0,175	
5	Donner une grandeur perturbatrice.	1	D		0,025	
6	Etablir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs, alimentations, générateurs nécessaires. Faire apparaître les polarités.	1	Α		1	
II.	Etude du procédé					
1	Paramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés.	1	В		0,75	Copies d'ecran de mauvaise qualité
2	Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de	1	В		0.75	Graphique inversé
_	température et niveau).	_			0,73	
3	En déduire le gain statique du procédé autour du point de fonctionnement.	1	Α		1	
4	En déduire le sens d'action à régler sur le régulateur.	1	Α		1	
5	Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.	3	D		0,15	Consigne à la place de commande !!!
III.	Etude du régulateur					
1	Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.	2	В		1,125	Il faut justifier
2	En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.	2	В		1,125	Manque Xp
IV.	Performances et optimisation					
1	Programmer votre régulateur pour assurer le fonctionnement de la régulation.	1	Χ		0	
2	Mesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de réponse à 10%, la valeur du premier dépassement et la précision relative.	2	С		0,525	Echelon de consigne mail choisi
3	Améliorer votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des paramètres modifiés.	1	D		0,05	
4	Mesurer à nouveau les performances de votre régulation, comparer les avec celles obtenues à la question précédente.	2	D		0,075	
			Note	sur : 20	10,4	

TP1 DEBIT

I-Préparation du travail

1)

- 2) La grandeur réglée est le débit d'eau en sortie
- 3) Pour mesurer la grandeur réglée on utilise un capteur de débit
- 4) La grandeur réglante est la vanne Ve
- 5) La grandeur perturbatrice est le débit en entrée Qe
- 6)

II-Etude du procédé

	1					
Tagillame	01M01_0C		LIN Name	01M01_0C		
Туре	AI_UIO		DBase	<local></local>		
Task	3 (110ms)		Rate	0		
**ODE	ALITA					
MODE	OTUA		Alarms			
Fallback	AUTO		Node	>00		
			SiteHo	1		
PV	0.8	%	Channel	1		
HR	1000	%	InType	n4		
LR	0.0	%	HR_in	20.00	mA	
			LR_in	4.00	mA	
HiHi	1000	%	Al	4.13	mA	
Hi	1000	%	Res	0.00.0	Ohms	
Lo	0.0	%				
LoLo	0.0	%	CJ_type	Auto		
Hyst	0.5200	%	CJ_temp	0.000	Deg C	
			LeadRes	C00.0	Ohms	
Filter	0.020	Secs	Emissiv	1.000		
Ob	1		D. L.	0.000	Con	
Char	Lnear		Delay	0.000	Secs	
UserChar						
			SBreak	Up		

TagHame	PID1		LIN Name	PID1	
Туре	PID		DBase	<local></local>	
Task	3 (110ms)		Rate	•	
Mode	АЛТО		Alarms		
FallBack	AUT0				
			HAA	100.0	5
PV	0.8	%	LAA	0.0	5
SP	0.0	%	HDA	100.0	
OP .	0.0	%	LDA	100.0	5
SL	0.0	%			
TrimSP	0.0	%	Time B ase	Secs	
RemoteSP	0.0	%	XP	100.0	5
Track	0.0	%	TI	0.00	
			TD	0.00	
HR_SP	100.0	%			
LR_SP	0.0	%	Options	00101100	
HL_SP	100.0	%	SelMode	00000000	
LL_SP	0.0	%			
			ModeSel	0001000°	
HR_OP	100.0	%	ModeAct	000100C1	
LR_OP	0.0	%			
HL_OP	100.0	%	FF_PID	0.0	5
LL_OP	0.0	%	FB_OP	0.0	5

kek: 0 2 P01_00 _{Do}	mment Connections				
Lagitame	02P01_0C		LIN Name	02P 01_ 0C	
Туре	A0_UI0		DBase	docal>	
Task	3 (110ms)		Rate	0	
MODE	ALTO CTUR		Alarms		
Fallback	CTUA		Node	>00	
→0P	0.0	%	Sitello Channel 02F	2 01_CC.Node	
HR	100.0	%	OutType	mA	
LR	0.0	%	HR_out	20 00	mβ
			I R_out	4 TN	m,A
Out	n-	%	A0	4.70	m,A
Track	0.0	%			
Trim	0.000	mA.	Options	>0000	
			Statue	>0000	

2)	
X	Y
32,1	30
50,2	60
60,5	90

3)gain statique $\Delta X/\Delta Y = (50,2-32,1)/(60-30) = 18,1/30 = 0,6$

4) quand on augmente la commande Y la mesure augmente aussi , Le procédé est direct donc le régulateur est réglé en sens inverse

5)

gain statique $\Delta X/\Delta Y=14/50=0,28$

III-Etude du régulateur

1)

La structure interne du pid est mixte.

IV-Performances et optimisation

Es= w-x=
$$90-63=27$$
 temps de réponse = $t1-t0=2s$

- 3) je sais pas
- 4) je sais pas