I- Définition

Une suite (U_n) est dite géométrique lorsqu'on passe de chaque terme au suivant en multipliant toujours le même nombre q: $U_{n+1} = qU_n$ pour tout indice n.

Ce nombre $\ r$ s'appelle la raison de la suite $\ \left(U_{n}
ight)$.

M1 : comment vérifier qu'une suite (U_n) est géométrique ?

Après s'être assuré que (U_n) n'est jamais nul , on calcule, pour tout indice n , le rapport de deux termes consécutifs $\frac{U_{n+1}}{U_n}$.

- Si on obtient une quantité constante q, alors la suite est géométrique de raison q
- Si on obtient une quantité variable (dépendante de n), alors la suite n'est pas géométrique. Variante (permettant d'éviter de raisonner avec un rapport et rendant les calculs moins lourds) : on montre qu'il existe un réel q tel que, pour tout indice n , on ait $U_{n+1} = qU_n$.

Exemples : les suites suivantes sont elles géométriques ?

1)
$$U_n = 1,01^n$$
.

On a, pour tout indice
$$n : U_n \neq 0$$
 et $\frac{U_{n+1}}{U_n} = \frac{1,01^{n+1}}{1,01^n} = 1,01$

La suite (U_n) est une suite géométrique de raison r=1.01 et de premier $U_0=1$

Avec la variante de de M1, il suffit d'écrire que pour tout indice n:

$$U_{n+1} = 1,01^{n+1} = 1,01 \times 1,01^{n} = 1,01 U_{n}$$

2)
$$U_n = n^2$$
, pour tout $n \ge 1$

On a, pour tout indice
$$n \ge 1$$
 : $U_n \ne 0$ et $\frac{U_{n+1}}{U_n} = \frac{(n+1)^2}{n^2}$

La suite (U_n) n'est pas une suite géométrique

M2 : comment calculer un terme quelconque d'une suite géométrique ?

On utilise l'une des relations suivantes :

$$U_n = q^n U_0$$
 ou $U_n = q^{n-p} U_p$ (pour tous entiers p et n)

Exemples : Calculer $oldsymbol{U}_{7}$ dans les deux cas suivants :

1)
$$U_0 = \frac{1}{4} \text{ et } q = 2$$
 : $U_7 = U_0 q^7 = \frac{1}{4} \times 2^7 = \frac{2^7}{2^2} = 2^{7-2} = 2^5 = 32$ $U_7 = 32$

2)
$$U_4 = 81$$
 et $q = \frac{1}{3}$ $U_7 = U_p q^{7-4} = 81 \times (\frac{1}{3})^3 = \frac{3^4}{3^3} = 3^{4-3} = 3$ $U_7 = 3$

M3 : comment calculer la somme S de N termes consécutifs d'une suite géométrique ?

Si la raison $q \neq 1$, on utilise la relation suivante : $S = P \times \frac{1 - q^N}{1 - q}$ sinon $S = P \times N$

où $m{N}$ = nombre de termes de la somme, $m{P}$ = premier terme de la somme et $m{q}$ = raison de la suite.

Exemples : calculer les sommes suivantes :

1)
$$S=1+2+4+8+16+...+4096$$

C'est une suite géométrique de premier terme $U_0=1$ et de raison q=2.

Se pose encore le problème du nombre de termes de cette somme. Pour cela, il suffit d'écrire les termes de la somme S à l'aide d'exposants :

 $S=2^0+2^1+2^2+2^3+\ldots+2^{12}$ On en déduit que la somme S comporte 13 termes.

D'après M3, on obtient : $S=1 \times \frac{1-2^{13}}{1-2} = \frac{1-2^{13}}{-1} = 2^{13} - 1 = 8191$

S = 8191

2)
$$S=1+x+x^2+x^3+x^4+\ldots+x^n$$

C'est une suite géométrique de premier terme $U_0=1$ et de raison q=x.

 $S = x^0 + x + x^2 + x^3 + x^4 + \dots + x^n$ On en déduit que la somme S comporte n+1 termes.

$$S = \frac{1 - x^{n+1}}{1 - x} \text{ pour tout } x \neq 1 \text{ sinon } S = n + 1$$

Note : la formule de la somme de termes d'une suite géométrique (M3) prend parfois d'autres :

$$S=U_0+\ldots+U_n=U_0\times\frac{1-q^n}{1-q}$$
, $S=U_1+\ldots+U_n=U_1\times\frac{1-q^{n+1}}{1-q}$

ou plus généralement $S = U_p + ... + U_n = U_p \times \frac{1 - q^{n-p}}{1 - q}$

II- Représentation graphique d'une suite.

1. Définition

On se place dans un repère $(O; \vec{i}, \vec{j})$. La représentation graphique d'une suite (U_n) est l'ensemble des points de coordonnées $(n; U_n)$.

Exemple : Soit (U_n) la suite définie par $U_n = \frac{1}{n}$ pour tout n > 0

Sa représentation graphique est l'ensemble des points isolés

$$P_1(1;1)$$
, $P_2(2;\frac{1}{2})$, $P_3(3;\frac{1}{3})$,...,

2. Théorème

Si (U_n) est une suite arithmétique, alors sa représentation graphique est constituée de points alignés.

Exemple:

La représentation graphique de la suite arithmétique (U_n) de premier terme $U_0 = -5$ et de raison r = 2

La fonction associée à la suite (U_n) est une fonction affine définie par $f(n)=rn+U_0$ soit f(n)=2n-5 Ainsi les points de coordonnées $(n;U_n)$ sont situés sur la droite d'équation $U_n=rn+U_0$.

III- Sens de variation ou monotonie.

1. Définition

Soit (U_n) une suite de nombres réels. On dit que la suite (U_n) est :

- · croissante (à partir du rang n_0) lorsque $U_n \le U_{n+1}$ pour tout entier $n \ge n_0$.
- · décroissante (à partir du rang n_0) lorsque $U_n \ge U_{n+1}$ pour tout entier $n \ge n_0$
- · monotone (à partir du rang n_0) si elle est croissante ou décroissante (à partir du rang n_0)
- · stationnaire (à partir du rang n_0) lorsque $U_n = U_{n+1}$ pour tout $n \ge n_0$.
- · constante si stationnaire et définie à partir du rang n_0 .

On définit la stricte croissance (ou décroissance) à l'aide de l'inégalité stricte $U_n < U_{n+1}$ ($U_n > U_{n+1}$).

Notation : les intervalles d'entiers sont souvent notés à l'aide de crochets doubles.

Par exemple : $[2;5] = \{2;3;4;5\}$

Si bien qu'on pourra écrire, par exemple, qu'une suite est croissante sur $\left[U_0; +\infty\right[$.

M3: Comment vérifier qu'une suite est croissante (décroissante)?

On calcule, pour tout indice n, la différence de deux termes consécutifs $U_{n+1}-U_n$. Si on obtient une quantité positive, alors la suite (U_n) est croissante. Si on obtient une quantité négative, alors la suite (U_n) est décroissante.