Introduction

GENERALIZED QUANTIFIERS AND TEAM SEMANTICS

WORKSHOP ON LOGIC AND ALGORITHMS IN COMPUTATIONAL LINGUISTICS 2017 STOCKHOLM

Fredrik Engström

August 16, 2017

Introduction

•00000

$\forall x \exists y \forall z \exists w Rxyzw$

Introduction

000000

$$\begin{pmatrix} \forall x \exists y \\ \forall z \exists w \end{pmatrix} Rxyzw$$

$$\begin{array}{ccc}
\forall z & \forall x \\
\downarrow & \downarrow \\
\exists w & \exists y
\end{array}$$

Domain $\{0,1\}$. $\forall x \exists y \forall z \exists w Rxyzw$

Introduction

000000

Domain $\{0,1\}$. $\begin{pmatrix} \forall x \exists y \\ \forall z \exists w \end{pmatrix}$ Rxyzw

Introduction

000000

$$\begin{pmatrix} \forall x \exists y \\ \forall z \exists w \end{pmatrix} Rxyzw \equiv \forall x \exists y \forall z \exists w (D(z, w) \land Rxyzw)$$

DEFINITION

Introduction

000000

A **team** *X* is a set of variable assignments (with the

TEAM SEMANTICS

- Team semantics: Lifts semantic values (of formulas) from sets of assignment to sets of sets of assignments (or sets of teams).
- Flatness for FO: A first-order formula is satisfied by a team iff all assignments in the team satisfy the formula.

TEAM LOGIC

DEPENDENCE LOGIC

$$\phi ::= At \mid \neg At \mid D(\bar{x}; y) \mid \phi \land \phi \mid \phi \lor \phi \mid \exists x \phi \mid \forall x \phi$$

- $M, X \models \gamma$ if for all $s \in X$: $M, s \models \gamma$, where γ is a literal.
- $M, X \models D(\bar{x}; y)$ if for all $s, s' \in X$ if $s(\bar{x}) = s'(\bar{x})$ then s(y) = s'(y).
- $M, X \models \phi \land \psi$ if $M, X \models \phi$ and $M, X \models \psi$.
- $M, X \models \phi \lor \psi$ if there are $Y \cup Z = X$ s.t. $M, Y \models \phi$ and $M, Z \models \psi$.
- $M, X \models \exists x \phi \text{ if there is } f: X \to M \text{ s.t. } M, X[f/x] \models \phi.$
- $M, X \models \forall x \phi \text{ if } M, X[M/x] \models \phi.$
- \bullet $X[f/x] = \{ s[f(s)/x] \mid s \in X \} (s[a/x] = s \cup \langle x, a \rangle)$
- \bullet $X[M/x] = \{ s[a/x] \mid s \in X \text{ and } a \in M \}$

$$M \models \sigma \text{ iff } M, \{\emptyset\} \models \sigma.$$

Dependence Logic, quantifiers

Introduction

• $M, X \models \exists x \phi \text{ if there is } f: X \to M \text{ s.t. } M, X[f/x] \models \phi.$

•
$$X[f/x] = \{ s[f(s)/x] \mid s \in X \}$$

Example: M, $\{s_0, s_1\} \models \exists z Rxyz$

DEPENDENCE LOGIC, QUANTIFIERS

Introduction

- $M, X \models \forall x \phi \text{ if } M, X[M/x] \models \phi.$
- $X[M/x] = \{ s[a/x] \mid s \in X \text{ and } a \in M \}$

Example: M, $\{s_0, s_1\} \models \forall z Rxyz$

EXAMPLES

Introduction

$$\forall x \exists y \forall z \exists w (D(z; w) \land \phi)$$

Inouisitive semantics

$$\exists u \forall x \exists y \forall z \exists w \big(D(z; w) \land \neg u = y \land (x = z \leftrightarrow y = w) \big)$$

PROPERTIES

- Empty team property: $M, \emptyset \models \phi$
- ▶ **Downwards closure**: If $Y \subseteq X$ and $M, X \models \phi$ then $M, Y \models \phi$.
- ▶ Dependence logic (DL) \equiv Existential Second Order logic (ESO)
- For formulas the situation is slightly different: Only a fragment of ESO is expressible in DL.
- Extra special feature of DL: Truth is definable.

Some relative of each villager and some relative of each townsmen hate each other. (Hintikka, 1974)

$$\begin{pmatrix} \forall x \exists y \\ \forall z \exists w \end{pmatrix} (V(x) \land T(z) \rightarrow (R(x, y) \land R(z, w) \land H(y, w)))$$

Most of the dots and most of the stars are all connected by lines. (Barwise, 1979)

$$\begin{pmatrix} Q_1 x \\ Q_2 y \end{pmatrix} C(x, y)$$

Two examiners marked six scripts. (Davies, 1989)

$$\begin{pmatrix} \exists^{\geq 2} x \\ \exists^{\geq 6} y \end{pmatrix} E(x) \wedge S(y) \wedge M(x, y)$$

GENERALIZED QUANTIFIERS

Introduction

A generalized quantifier Q is a class of structures closed under isomorphisms.

•
$$Q_M := \{ R \mid (M, R) \in Q \}.$$

$$Q_M \subseteq \mathcal{P}(M)$$
.

$$M, s \models Qx \phi \text{ iff } \llbracket \phi \rrbracket^{M,s} \in Q_M$$

- $\rightarrow \forall_M = \{M\}$
- $\rightarrow \exists_M = \{ A \subseteq M \mid A \neq \emptyset \}$
- $(O_1)_M = \{ A \subseteq M \mid |A| \geqslant \aleph_1 \}$

Q is monotone increasing if $A \subseteq B$ and $A \in Q_M$ implies $B \in Q_M$.

GENERALIZED QUANTIFIERS IN DEPENDENCE LOGIC

(Engström, 2012)

Introduction

Works well only for monotone increasing generalized quantifiers.

• $M, X \models Qx \phi$ iff there is $F: X \to Q_M$ such that $M, X[F/x] \models \phi$.

$$X[F/x] = \{ s[a/x] \mid s \in X, a \in F(s) \}$$

Example: $M, \{s_0, s_1\} \models \exists^{\geq 2} z Rxyz$

ITERATION AND BRANCHING

ITERATION

$$(Q_1 \cdot Q_2)_M = \{ R \subseteq M^2 \mid \{ a \mid {}_aR \in (Q_2)_M \} \in (Q_1)_M \}$$

$$(Q_1 \cdot Q_2)xy\phi \equiv Q_1xQ_2y\phi$$

For monotone increasing quantifiers:

$$Br(Q_1, Q_2)_M = \left\{ R \subseteq M^2 \mid A \times B \subseteq R, A \in (Q_1)_M, B \in (Q_2)_M \right\}$$

$$Br(Q_1, Q_2)xy\phi \equiv \begin{pmatrix} Q_1x \\ Q_2y \end{pmatrix} \phi$$

Properties of DL(Q)

- Empty team property: $M, \emptyset \models \phi$
- ▶ Downwards closure: If $Y \subseteq X$ and $M, X \models \phi$ then $M, Y \models \phi$.

FLATNESS

$$M, X \models \phi$$
 iff for all $s \in X : M, s \models \phi$

for all FO(Q)-formulas ϕ .

ITERATION

$$M, X \models (Q_1 \cdot Q_2)xy\phi \text{ iff } M, X \models Q_1xQ_2x\phi$$

Branching

$$DL(Q) \equiv DL(Q, Br(Q, Q))$$

STRENGTH AND AXIOMATIZABILITY

Introduction

THEOREM (Engström and Kontinen, 2013)

$$DL(Q) \equiv ESO(Q)$$

Let $\Gamma \models_{w} \phi$ mean that $\Gamma \models \phi$ for any monotone increasing interpretation of Q.

THEOREM (Engström et al., 2017)

There are sound and complete inference systems wrt the following consequence relations:

- $\Gamma \models_{w} \phi$ where ϕ is FO(Q).
- $\Gamma \models \phi$ where ϕ is FO(Q_1).

Digression: Questions

"Who won Tour de France this year?" \models "This year's Tour de France has finished."

Inouisitive semantics

Inquisitive semantics (Ciardelli, 2016; Yang and Väänänen, 2016)

- ► Information states *X* are sets of models (together with variable assignments).
- $X \models \phi$ if for all $M \in X$, $M \models \phi$ (when ϕ first-order).
- $X \models \phi \lor \psi$ if $X \models \phi$ or $X \models \psi$
- \bullet ? $\phi := \phi \vee \neg \phi$

The inquisitive semantics is very close to the semantics of dependence logic, in fact:

$$D(x; y)$$
 is equivalent to $\lambda_x \to \lambda_y$.

 λ_x is the identity question about x, "What is the value of x?".

Non-monotone quantifiers

Introduction

$$M \models \exists^{=5} x Px$$

$$\exists F : \{ \varnothing \} \to \exists_M^{=5}, \text{ s.t. } M, \{ \varnothing \} [F/x] \models Px$$

$$\exists A \subseteq M, \text{ s.t. } |A| = 5 \text{ and } A \subseteq P^M$$

$$M \models \exists^{\geqslant 5} x P x$$

ϕ is satisfied by X if

- every assignment $s \in X$ satisfies ϕ .
- every assignment $s \in X$ satisfies ϕ .
- for every assignment $s: dom(X) \to M^k$, $s \in X$ iff s satisfies ϕ .

TEAM LOGIC

$$\phi ::= \operatorname{At} | \neg \operatorname{At} | \top (\bar{x}) | \phi \otimes \phi | \phi \oplus \phi | \phi \wedge \phi | \phi \vee \phi | \exists x \phi | \forall x \phi$$

- $M, X \models \psi \text{ iff } \forall s : \text{dom}(X) \rightarrow M(s \in X \text{ iff } M, s \models \psi), \text{ for first-order atomic or negated atomic formulas } \psi.$
- $M, X \models \top(\bar{x}) \text{ iff } \exists \bar{x} X = \{ \epsilon \} [M^k/\text{dom}(X) \setminus \{ \bar{x} \}]$
- $M, X \models \phi \otimes \psi$ iff $\exists Y, Z$ s.t. $X = Y \cap Z; M, Y \models \phi$ and $M, Z \models \psi$
- $M, X \models \phi \oplus \psi$ iff $\exists Y, Z$ s.t. $X = Y \cup Z; M, Y \models \phi$ and $M, Z \models \psi$
- $M, X \models \phi \land \psi \text{ iff } M, X \models \phi \text{ and } M, X \models \psi$
- $M, X \models \phi \lor \psi \text{ iff } M, X \models \phi \text{ or } M, X \models \psi$
- $M, X \models \exists x \phi \text{ iff } \exists Y \text{ s.t. } x \in \text{dom}(Y), \exists x Y = \exists x X \text{ and } M, Y \models \phi$
- $M, X \models \forall x \phi \text{ iff } \exists Y \text{ s.t. } x \in \text{dom}(Y), \forall x Y = \exists x X \text{ and } M, Y \models \phi$

$$QxX = \{ s : \operatorname{dom}(X) \setminus \{ x \} \to M \mid \{ a \in M \mid s[a/x] \in X \} \in Q_M \}$$

Properties

BASIC PRINCIPLE

A formula ϕ is satisfied by a team X if for every assignment s: $dom(X) \to M^k$, $s \in X$ iff s satisfies ϕ , i.e.,

Inouisitive semantics

$$M, X \models \phi \text{ iff } X = \llbracket \phi \rrbracket_{\text{dom}(X)}^{M}.$$

A formula is untangled if no quantifier Qx appears in the scope of another quantifier Q'x and no variable is both free and bound.

THEOREM

For first-order untangled ϕ and teams X s.t. $dom(X) \cap bv(\phi) = \emptyset$:

$$M, X \models \phi \text{ iff } X = \llbracket \phi \rrbracket_{\text{dom}(X)}^M$$

RELATIONSHIP WITH DEPENDENCE LOGIC

$$X \models D(\bar{x}; y)$$
 iff

$$X \vDash \exists z \big(\forall \bar{w} (\top(\bar{x}, y) \otimes \top(\bar{x}, z)) \land (y = z \otimes \top(\bar{x}, \bar{w})) \big),$$

where *z* is not in \bar{x} , *y* and \bar{w} is dom(X)\ { \bar{x} , y, z }.

THEOREM

For every team X and formula ϕ of Dependence logic such that $dom(X) = fv(\phi)$ there is ϕ^+ of team logic:

$$M, X \models_{DL} \phi \text{ iff } M, X \models_{TL} \phi^+.$$

Team logic \equiv ESO

GENERALIZED QUANTIFIERS REVISITED

DEFINITION

Introduction

 $M, X \models Q\bar{x}\phi$ if there is Y such that $\bar{x} \in \text{dom}(Y), M, Y \models \phi$ and $\exists \bar{x}X = 0$ $Q\bar{x}Y$, where

$$Q\bar{x}Y = \{ s : dom(Y) \setminus \{ \bar{x} \} \rightarrow M \mid Y_s(\bar{x}) \in Q_M \}.$$

$$Y_s = \{ s' : \operatorname{dom}(Y) \backslash \operatorname{dom}(s) \to M \mid s \cup s' \in Y \}.$$

FLATNESS

For every untangled ϕ formula of FO(Q) and every team X such that $dom(X) \cap bv(\phi) = \emptyset$:

$$M, X \models \phi \text{ iff } X = \llbracket \phi \rrbracket_{\text{dom}(X)}^{M}.$$

ITERATION

$$M, X \models (Q_1 \cdot Q_2)xy\phi$$
 iff $M, X \models Q_1xQ_2x\phi$

TAKE HOME MESSAGE

Lifting from Tarskian semantics to team semantics makes it possible to logically analyse phenomena in natural languages such as branching, questions and dependence.

THAT'S ALL FOLKS!

Team logic 0000000

- Jon Barwise. On branching quantifiers in English. J. Philos. Logic, 8(1): 47-80, 1979. ISSN 0022-3611.
- Ivano Ciardelli. Dependency as question entailment. In Dependence Logic, pages 129-181. Springer, 2016.
- Martin Davies. 'two examiners marked six scripts.' interpretations of numerically quantified sentences. Linguistics and Philosophy, 12(3), 1989.
- Fredrik Engström. Generalized quantifiers in dependence logic. Journal of Logic, Language and Information, 21(3):299-324, 2012.
- Fredrik Engström and Juha Kontinen. Characterizing quantifier extensions of dependence logic. Journal of Symbolic Logic, 78(1):307–316, 2013.
- Fredrik Engström, Juha Kontinen, and Jouko Väänänen. Dependence logic with generalized quantifiers: Axiomatizations. Journal of Computer and System Sciences, 88:90 - 102, 2017. ISSN 0022-0000.
- Jaakko Hintikka. Quantifiers vs. quantification theory. Linguistic inquiry, 5(2):153-177, 1974.
- Fan Yang and Jouko Väänänen. Propositional logics of dependence. Annals of Pure and Applied Logic, 167(7):557-589, 2016.