Основы теории графов

осень 2013

Александр Дайняк

www.dainiak.com

Укладки графов

Укладкой графа на поверхности называется сопоставление

- вершинам графа точек поверхности
- рёбрам графа гладких кривых без самопересечений

так, чтобы кривые, соответствующие рёбрам, не пересекались (за исключением, быть может, своих концов).

По умолчанию в качестве поверхности рассматривается плоскость.

Укладки графов

Пример:

• Укладка графа K_4 :

• Изображение графа K_4 , не являющееся укладкой:

Планарные графы

Планарный граф — это граф, для которого существует плоская укладка.

Например, граф

Планарные графы

Грань плоской укладки — это область плоскости, отделяемая укладкой.

Пример:

Формула Эйлера.

Для любого связного планарного графа #вершин — #рёбер + #граней = 2

Формула Эйлера.

```
Для любого связного планарного графа
#вершин — #рёбер + #граней = 2
```

Доказательство:

<u>индукция по величине (#рёбер — #вершин)</u>

Если (#рёбер — #вершин) = -1, то наш граф является деревом, и грань в его укладке ровно одна.

Индуктивный переход:

Если (#рёбер — #вершин) = $t \ge 0$, то в нашем графе G есть цикл. Удаление любого ребра из этого цикла приводит к связному графу G', для которого

(#рёбер в
$$G'$$
 — #вершин в G') = $t-1$

И

#граней в
$$G' =$$
#граней в $G - 1$

(т.к. удаление ребра из G привело к «слиянию» двух граней).


```
Итак, (\# \text{рёбер в } G - \# \text{вершин в } G) = t (\# \text{рёбер в } G' - \# \text{вершин в } G') = t - 1 \# \text{граней в } G' = \# \text{граней в } G - 1 По предположению индукции, для G' имеем \# \text{вершин в } G' - \# \text{рёбер в } G' + \# \text{граней в } G' = 2 Отсюда (\# \text{вершин в } G - \# \text{рёбер в } G) + 1 + (\# \text{граней в } G - 1) = 2,
```

что и требовалось.

Планарные графы на сферах

Утверждение. Граф планарен т. и т.т., когда его можно уложить на сфере.

Идея доказательства.

Используем стереографическую проекцию.

Единственное требование — чтобы центр проекции

не совпадал с вершиной графа

и не лежал на ребре.

Циклы в планарных графах

Утверждение. Пусть в некоторой укладке планарного графа внутри некоторого цикла C лежит множество рёбер E_{int} , а снаружи множество рёбер E_{ext} . Тогда существует и укладка этого графа, в которой внутри C лежат рёбра E_{ext} , а снаружи рёбра E_{int} .

Пример:

Циклы в планарных графах

Идея доказательства.

Сначала деформируем изображение графа, так, чтобы изображение цикла $\mathcal C$ стало окружностью, и при этом через центр окружности не проходили никакие рёбра.

Затем выполняем инверсию плоскости относительно этой окружности.

Циклы в планарных графах

Утверждение. Пусть в некоторой укладке планарного графа внутри некоторого цикла C лежит множество рёбер E_{int} , а снаружи множество рёбер E_{ext} . Тогда существует и укладка этого графа, в которой внутри C лежат рёбра E_{ext} , а снаружи рёбра E_{int} .

Следствие. Если некоторый цикл графа ограничивает грань в некоторой укладке, то существует укладка, в которой этот цикл ограничивает внешнюю грань.

Планарность и двусвязность

Утверждение. Если каждый блок графа планарен, то и сам граф планарен.

Доказательство. Индукция по числу блоков.

Если в графе один блок, то утверждение тривиально.

Пусть в графе n блоков, и для графов с (n-1) блоками утверждение выполнено.

Пусть каждый из блоков планарен. Докажем, что и граф планарен.

Планарность и двусвязность

Рассмотрим концевой блок B. Этот блок прикреплён к остальной части G' графа G точкой сочленения v.

Существуют укладки графов B и G', в которых точка v лежит на границе внешней грани.

Из этих укладок легко строится укладка G.

Рёбра и грани

Утверждение.

Для любого планарного графа, в котором минимальная длина циклов равна t, выполнено неравенство

#рёбер
$$\geq \frac{t}{2} \cdot$$
#граней

Доказательство:

Для i-й грани рассмотрим величину n_i — количество рёбер, отделяющих её от других граней. Тогда

$$\sum_i n_i \geq t \cdot \#$$
граней

При этом в сумме слева каждое ребро графа посчитано максимум дважды.

Число рёбер в планарных графах

Утверждение.

Если в планарном графе минимальная длина циклов равняется t, то

#рёбер
$$\leq \frac{t}{t-2} \cdot ($$
#вершин — 2)

Доказательство. Считаем, что граф связен.

Из формулы Эйлера и предыдущего утверждения получаем:

$$2 = \#вершин - \#рёбер + \#граней \le$$
 $\le \#вершин - \#рёбер + \frac{2}{t} \cdot \#рёбер$

Отсюда легко следует доказываемое неравенство.

Непланарные графы

Утверждение.

Если в планарном графе минимальная длина циклов равняется t, то

#рёбер
$$\leq \frac{t}{t-2} \cdot ($$
#вершин $-2)$

Следствие. Графы K_5 и $K_{3,3}$ непланарны.

Доказательство:

В графе K_5 всего 5 вершин и 10 рёбер, так что неравенство не выполнено даже при t=3.

В графе $K_{3,3}$ нет циклов длины меньше четырёх, при этом 6 вершин и 9 рёбер, поэтому и для него неравенство не выполняется.

Непланарные графы

Утверждение.

Если в планарном графе минимальная длина циклов равняется t, то

#рёбер
$$\leq \frac{t}{t-2} \cdot ($$
#вершин $-2)$

Следствие. В любом планарном графе на $n \ (n \ge 3)$ вершинах число рёбер не превосходит (3n-6).

Гомеоморфизм графов

• Гомеоморфные графы — это графы, которые можно сделать изоморфными, удаляя/добавляя проходные вершины

• Если два графа гомеоморфны, то они либо оба планарны, либо оба непланарны

Стягивание рёбер

Стягивание ребра e в графе G — это операция, результатом которой является граф G/e, получаемый из G удалением e и отождествлением его концов. Если при этом образуются кратные рёбра, оставляем из них только одно.

Стягивание рёбер

• Граф G является cmягиваемым к графу <math>G', если G' можно получить из G, применив некоторое количество раз операцию стягивания ребра

• Если граф G планарен, то и граф G' планарен:

Стягивание рёбер

• Граф G является стягиваемым к графу G', если вершины графа G можно разбить на связные множества, каждое из которых соответствует одной вершине графа G', и при этом $(u,v) \in E(G')$, если между соответствующими множествами в G есть ребро.

Топологические миноры

• Граф H является топологическим минором графа G, если в G есть подграф H', который может быть получен из H добавлением проходных вершин

Миноры

• Граф H является минором графа G, если в G есть подграф H', который можно стянуть к H

• Любой топологический минор является минором. Обратное верно не всегда.

Планарные графы и миноры

• Если G планарен и G' — подграф графа G, то и G' также планарен (поскольку любая укладка графа G содержит некоторую укладку графа G')

- Аналогично, любой минор планарного графа также планарен
- Следовательно, если у графа есть непланарный минор, то и сам граф непланарен

Планарные графы и миноры

- Если у графа есть непланарный минор, то и сам граф непланарен
- Графы K_5 и $K_{3,3}$ непланарны
- Следовательно, если в графе есть минор, изоморфный K_5 или $K_{3,3}$, то граф непланарен

• Оказывается, K_5 и $K_{3,3}$, по сути, единственные «запрещённые» миноры для планарных графов

Критерий Куратовского. Граф планарен тогда и только тогда, когда K_5 и $K_{3,3}$ не являются его топологическими минорами.

Критерий Вагнера. Граф планарен тогда и только тогда, когда K_5 и $K_{3,3}$ не являются его минорами.

Необходимость условий Вагнера и Куратовского очевидна. Достаточность в теореме Вагнера сразу следует из теоремы Куратовского.

Утверждение. Если (хотя бы) один из графов K_5 или $K_{3,3}$ является минором графа G, то (хотя бы) один из графов K_5 или $K_{3,3}$ является топологическим минором графа G.

Доказательство. Достаточно доказать следующее: если G' получен из G стягиванием одного ребра и в G' есть топол. минор K_5 или $K_{3,3}$, то и в G есть топол. минор K_5 или $K_{3,3}$. (Отсюда по индукции будет следовать доказываемое утверждение.)

Пусть G' получен из G стягиванием ребра uv (из которого в G' образуется вершина w). Если вершина w не входит в минор в графе G' или лежит внутри одной из его цепей, то всё просто, т.к. при «растягивании» вершины w в ребро uv минор «не испортится»:

Также «безопасен» случай, когда w является вершиной степени 3 в $K_{3,3}$ в G^{\prime} .

Остался случай, когда в G' есть топол. минор K_5 и вершина w является вершиной степени 4 в этом миноре.

Тогда, «растягивая» $w \to uv$, получаем, что в G должен найтись или $K_{3,3}$,

или *K*₅:

Пример. Рассмотрим граф Петерсена:

Для графа Петерсена граф K_5 является минором, но не топологическим минором!

Зато топологическим минором будет $K_{3,3}$:

Итак, теорема Куратовского, хотя формально более сильная, чем теорема Вагнера, нетрудно из неё выводится. Остаётся доказать теорему Вагнера.

Достаточно доказать

Утверждение. Если граф G непланарен, то стягиваниями и удалениями рёбер из G можно получить K_5 или $K_{3,3}$.

(Это и означает, что K_5 или $K_{3,3}$ является минором графа G.)

Доказательство теоремы Вагнера

Пусть G — произвольный непланарный граф.

Будем удалять и стягивать в G рёбра, так, чтобы непланарность сохранялась.

В итоге получим непланарный граф \tilde{G} , который становится планарным при стягивании или удалении любого ребра.

Достаточно доказать, что \tilde{G} — это K_5 или $K_{3,3}$.

Доказательство теоремы Вагнера: свойства графа \tilde{G}

Заметим, что $\delta(\tilde{G}) \geq 3$, поскольку иначе можно было бы стянуть некоторое ребро в \tilde{G} и получить по-прежнему непланарный граф.

Далее докажем два важных свойства графа $ilde{G}$:

Первое свойство. Для любого ребра $xy \in E(\tilde{G})$ выполнено неравенство $\delta(\tilde{G} - \{x,y\}) \ge 2$.

Второе свойство. Для любого ребра $xy \in E(\tilde{G})$ граф $(\tilde{G} - \{x, y\})$ не содержит θ -подграфа, то есть подграфа, гомеоморфного такому:

Доказательство теоремы Вагнера: первое свойство графа \tilde{G}

Первое свойство. Для любого ребра $xy \in E(\tilde{G})$ выполнено неравенство $\delta(\tilde{G} - \{x,y\}) \ge 2$.

Доказательство.

Обозначим $\hat{G} = (\tilde{G} - \{x, y\}).$

Пусть v — вершина минимальной степени в \widehat{G} .

Если $d_{\widehat{G}}(v)=0$, то $d_{\widetilde{G}}(v)\leq 2$, что противоречит неравенству $\delta\big(\widetilde{G}\big)\geq 3$.

Доказательство теоремы Вагнера: первое свойство графа \tilde{G}

Продолжение доказательства.

Если $d_{\widehat{G}}(v) = 1$, то $vx, vy \in E(\widetilde{G})$.

Тогда укладку графа \tilde{G} можно было бы получить из укладки графа $(\tilde{G}-xy)$, дорисовав xy вдоль vx и vy, что противоречит непланарности \tilde{G} .

Доказательство теоремы Вагнера: второе свойство графа $ilde{G}$

Второе свойство. Для любого ребра $xy \in E(\tilde{G})$ граф $(\tilde{G} - \{x,y\})$ не содержит θ -подграфа.

Доказательство.

Рассмотрим граф \tilde{G}/xy .

Пусть $z \in V(\tilde{G}/xy)$ — вершина, в которую слились x и y.

Очевидно, $(\tilde{G}/xy-z)=(\tilde{G}-\{x,y\}).$

Доказательство теоремы Вагнера: второе свойство графа \tilde{G}

Рассмотрим какую-нибудь укладку графа \tilde{G}/xy . Можно считать, что z лежит не во внешней грани.

Пусть B — граница грани, которая получится в укладке графа $(\tilde{G}/xy-z)$, если удалить z из укладки графа \tilde{G}/xy .

Докажем, что $(\tilde{G}/xy-z)=B$, то есть что в графе \tilde{G}/xy все рёбра, не выходящие из z, содержатся в B.

Доказываем от противного. Пусть в \tilde{G}/xy есть «плохие» рёбра, — не выходящие из z и не содержащиеся в B.

Можно считать, что есть плохие рёбра вне грани, ограниченной B. Обозначим множество этих рёбер R.

Тогда в B можно выделить цикл C, который отграничивает z от R.

Рассмотрим укладку графа $(\tilde{G}-R)$. Можно считать, что вершины x и y лежат внутри C.

Некоторые из компонент графа (B-C), которые были внутри C в укладке \tilde{G}/xy , могут теперь оказаться вне C.

Заметим, что каждая компонента графа (B-C) имеет с C не более одной общей вершины.

А значит, каждую компоненту (B-C) можно перенести обратно внутрь C (вместе с соответствующими рёбрами из $(\tilde{G}-R-B)$, если они есть).

В итоге мы получили укладку графа $(\tilde{G}-R)$, в которой всё лежит внутри C.

В итоге мы получили укладку графа $(\tilde{G}-R)$, в которой всё лежит внутри C.

Добавив к ней укладку R (взятую на основе укладки \tilde{G}/xy), получим укладку \tilde{G} . Противоречие.

Укладка \widetilde{G} ?!

Доказательство теоремы Вагнера: второе свойство графа \tilde{G}

Итак, мы доказали, что $(\tilde{G} - \{x,y\}) = B$, где B — граница грани некоторого планарного графа. Но граница грани не может содержать θ -подграфа (иначе, взяв точку внутри грани и соединив её с точками на «дугах» θ -подграфа, можно было бы получить плоское изображение $K_{3,3}$).

Доказательство теоремы Вагнера:

граф
$$(\tilde{G} - \{x, y\})$$
 — цикл

Мы доказали, что для любого $xy \in E(\tilde{G})$ граф $(\tilde{G} - \{x, y\})$ обладает двумя свойствами:

Первое свойство.

$$\delta(\tilde{G} - \{x, y\}) \ge 2.$$

Второе свойство.

$$\left(ilde{G} - \{x,y\}
ight)$$
 не содержит $heta$ -подграфа

Выведем отсюда, что для любого $xy \in E(\tilde{G})$ граф $(\tilde{G} - \{x,y\})$ является циклом.

Свойства
$$(\tilde{G} - \{x, y\})$$
: $\delta(\tilde{G} - \{x, y\}) \ge 2$, нет θ -подграфов

Из этих свойств следует, что каждый блок графа $(\tilde{G} - \{x,y\})$ является ребром или простым циклом. Т.к. висячих вершин в графе нет, то концевые блоки являются простыми циклами.

Рассмотрим произвольный концевой блок-цикл C графа $(\tilde{G} - \{x, y\})$.

У C с оставшейся частью графа не более одной общей вершины, значит найдутся две вершины p и q, принадлежащие mолько C:

Т.к. $d_{\tilde{G}}(p) \geq 3$ и $d_{\tilde{G}}(q) \geq 3$, то в графе \tilde{G} каждая из вершин p,q соединена с x или y.

Например, пусть px, $qy \in E(\tilde{G})$.

Тогда $C \cup \{px, xy, yq\} - \theta$ -подграф в \tilde{G} .

Тогда граф $(\tilde{G} - \{x, y\}) - C$ пустой.

В противном случае в нём нашлось бы ребро ab, где $a,b \notin C$, и в графе $(\tilde{G} - \{a,b\})$ оказался бы θ -подграф $(C \cup \{px,xy,yq\})$.

Выше мы доказали, что для любого $xy \in E(\tilde{G})$ граф $(\tilde{G} - \{x,y\})$ является простым циклом.

Если $\left| \tilde{G} \right| = 5$, то, очевидно, $\tilde{G} \simeq K_5$.

Пусть $|\tilde{G}| \ge 6$. Рассмотрим последовательные вершины a,b,c,d на цикле $(\tilde{G} - \{x,y\})$:

Т. к. граф $(\tilde{G} - \{b,c\})$ должен быть циклом, то из вершин a,d одна соединена с x и не соединена с y, а другая — наоборот. Можно считать, что $ax,dy \in E(\tilde{G})$.

При этом никакая вершина кроме a,b,c,d, не должна быть соединена ни с x, ни с y.

Если $|\tilde{G}| \geq 7$, то, рассмотрев соседнюю с d вершину цикла e, видим, что в графе $(\tilde{G} - \{d,y\})$ вершина e висячая, чего быть не может.

Остался случай n = 6.

Т.к. $(\tilde{G} - \{a, x\})$ и $(\tilde{G} - \{d, y\})$ — циклы, то $by, cx \in E(\tilde{G})$ и $bx, cy \notin E(\tilde{G})$. Получаем, что $\tilde{G} \simeq K_{3,3}$.

