Blatt 0

Aufgabe 1

Abbildung 1: b),c) zeigen stark schwankende Abweichungen durch unzureichende Maschienengenauigkeit.

a) ist am genausten, da $(1-x)^6$ numerisch stabiler ist (eine Addition, sonst nur Multiplikationen). b) ist am schlechtesten konditioniert, da maximal oft addiert wird. c) liegt dazwischen, nahe Null treten trotzdem Probleme auf.

Aufgabe 2

a)

Nach $L'H\hat{o}pital$ ergibt sich der Grenzwert zu -1/6.

b)

Ab $< 10^{-15}$ ist die double-Genauigkeit unterschritten; die Größenordnungen von 9 und 10^{-16} im Radikanten unterscheiden sich zu stark.

Davor treten Rundungsfehler beim Wurzelziehen auf, dies erklärt den "Peak" bei 10^{-15} .

Abbildung 2: Grenzwert

Aufgabe 3

a)

Analytisch ergibt sich $f(x)=2/3\,\forall x.$ Eine $\leq 1\%$ -ge Abweichung für Werte $x\leq 4\cdot 10^4$