ETSETB Curso 2003-04 Otoño EXAMEN DE TRANSMISIÓN DE DATOS

13 de enero de 2004

Publicación de notas provisionales: 20/01/04

FECHA LÍMITE PARA LAS ALEGACIONES: 23/01/04 22 04/04 Publicación de notas definitivas:

NOTAS IMPORTANTES:

Toda hoja de respuestas que no esté completamente identificada será anulada.

La numeración en la hoja de respuestas es la de la izquierda (correlativas)

No se responderá a ninguna pregunta sobre el enunciado. El alumno responderá según su criterio pudiendo realizar las alegaciones que considere oportunas por escrito en la secretaría de la ETSETB a partir de la publicación de las calificaciones provisionales y hasta el plazo arriba indicado. En ellas debe consignarse OBLIGATORIAMENTE el DNI y el código de la prueba.

Queda expresamente prohibido el uso de cualquier dispositivo de comunicación. El incumplimiento de esta norma supondrá la expulsión del examen.

CÓDIGO DE LA PRUEBA: 230 11510 00 0

I. Sea un LFSR caracterizado por
$$c(D) = D^4 + D^3 + D^2 + D + 1$$
 y estado inicial $S(D) = D^2 + D$. El estado al cabo de 17 iteraciones vale:

(a)
$$D^2 + D + 1$$

(b)
$$D^3 + D^2$$

(c)
$$D+1$$

$$b_{(2)}(0) = b_{5} + D = b_{(0)}(0) = 0 | \Gamma = 2$$

$$b_{(4)}(0) = b_{4} + b_{3} \mod b_{4} + b_{3} + b_{5} + D + 1 = D + 1$$

$$b_{(5)}(0) = b_{4} + b_{3} \mod b_{4} + b_{3} + b_{5} + D + 1 = D + 1$$

$$b_{(5)}(0) = b_{5} + D$$

$$b_{(6)}(0) = b_{5} + D$$

$$P^{(17)}(0) = P^{(15+2)}(0) = P^{(5\cdot3+2)}(0) = P^{(2)}(0) = D^2 + D + 1$$

- 2. Se define el radio de recubrimiento de un código como el mínimo radio que han de tener las bolas centradas en palabras código para que se recubra todo el espacio de las n-plas. ¿Cuál es el radio de recubrimiento para un código binario perfecto con distancia 7?
 - (a) 7
 - (b) 5
 - (c) 3
 - (d) Ninguna de las anteriores

Así quedan todas las n-plas cubiertas. Si el código no fuera perfecto, las bolas no serían dísjuntas, tendrían intersecciones.

- 3. El número medio de mensajes aleatorios que son necesarios para que, con una probabilidad de 0.5, al menos dos de ellos generen el mismo hash de 160 bits es, aproximadamente:
 - (a) 2^{160}

D

- (b) 2159
- (c) 2⁸⁰
- (d) Ninguno de los anteriores

de rardus.

5. Indique la respuesta FALSA:

- (a) Si la memoria de un codificador convolucional se dobla, la complejidad computacional de la decodificación se eleva al cuadrado.
- (b) Si la longitud de la secuencia codificada mediante un código convolucional se dobla, la complejidad computacional de la decodificación también se dobla.
- El número de estados de un codificador convolucional crece exponencialmente con la tasa de codificación.
- (d) Alguna de las anteriores es falsa.

M=2 Nº de estados = KM = 4

El nº de operaciones a hacer (sumar, comparar) es líneal con el numero de estados.

a) S: H'=8M, n^2 de estados = $K^{2M} = [K^M]^2 = 4^2 = 16$ Cierta El n^2 de estados se eleva al cuadrad El n^2 de operaciones se eleva al cuadr

- Para una semencia el doble de larga, pres el doble de o percisones se harán.
- () N^2 de estados = K^M } no se observa tell relación! tasa codif. = $\frac{K}{m}$

- 6. Dado un código convolucional de tasa 1/3, memoria L=2 y conexiones según la Figura A, indicar cuál es la respuesta correcta:
 - (a) La distancia libre del código es 6
 - (b) Es una codificación sistemática
 - (c) La secuencia de salida del codificador para la entrada (1101) es 111100100000
 - (d) Ninguna de las anteriores

DIAGRAMA DE ESTADOS :

a) DISTANTIA LIBRE (df):

$$\bigotimes_{w=3} \xrightarrow{a_0} \xrightarrow{a_0} \bigotimes_{z=3} \xrightarrow{a_1} \bigotimes_{z=3} a_1 = 8$$

20 df=8

- b) Por inspección de las mansiciones de los estados (1) y (1) se tiene una cocifiación no sistemática. (4)
- c) X = (1/01) $00 \rightarrow 10 \rightarrow 10$ 000 000 000
 - (3) Seria vz = uz en caso de ser sistemático. Y es vz = uz +mz.

- 7. Sea el polinomio $D^5+D^4+D^2+1,\, i$ qué afirmación es correcta?
 - (a) Genera un código polinómico (15,10)
 - (b) Es apropiado para un LFSR de máximo período (MLSR)
 - (c) El código polinómico que genera es capaz de corregir 2 errores
 - (d) Ninguna de las anteriores

$$g(b) = D^5 + D^4 + D^2 + 1$$
 tiene un número par le términos $\rightarrow (D+1)$ es un factor $D^5 + D^4 + D^2 + 1$ D^{+1} $\rightarrow g(D) = (D+1)(D^4 + D+1)$
 $D^{+} + D^{+} + D^{+} + D^{-} + D^{+} + D^{-} + D^{-$

a) (D+1) divide a D'S+1 on 15 el más pequeño } por tanto genera un codij poliusurios cidios.

5) No es aguspiado puesto que g(D) no es primitivo

c) (omo ga) tiene pero 4 la drin 64 - D no puede conegir 2 envies cre necestaria ma drin 25).

(ordición para que gos) que códiso polinómico <u>CICLICO</u>
gos) divida a D"+1.

Para un código binario lineal NO se puede afirmar que:

(a) Si el producto escalar de dos palabras código es cero, entonces son ortogonales -> Gerta

(b) Si el producto escalar de dos palabras código es cero, entonces son linealmente independientes

(c) Una palabra código NO NULA puede ser ortogonal a ella misma. -> Gerta

(d) Alguna de las anteriores es falsa

- Lamentablemente en un sistema RSA se ha filtrado cierta información, los números x1 = 11710301 = pq y x2 = 11700000 primos entre sí. Con respecto estos números:
 - (a) Si el módulo es x1 entonces $\phi(x1) = x2$
 - (b) x2 podría utilizarse como el módulo del RSA
 - (c) Se puede comprobar que la inversa de x2 mod x1 es -320299
 - (d) Ninguna de las anteriores

a)
$$n = 11710301$$

9(n)= 11700000 ?

- Saberus que
$$\varphi(n) = (p-1)(q-1) = n - (p+q) + 1 \rightarrow (p+q) = n - (p+q) + 4$$
.

- 6 ms
$$(p+q)^2 = p^2 + 2pq + q^2 = p^2 - 2pq + q^2 + 4pq = (p-q)^2 + 4n$$
, x

$$(p-q)^2 = 59290000 \rightarrow (p-q) = 7700$$

9= 1301. 2 valores enteros que notisfacen

las emaciones n=pg = 117/0301 P(n)=1170000

congulate con 11700000 mod x1.

- 10. Un codificador aritmético de una fuente cuyo alfabeto es {A, B, C} envía el valor 0.34 correspondiente a la codificación de un mensaje de 4 caracteres. Sabiendo que la codificación aritmética emplea valores crecientes según el orden {A, B, C} y que las probabilidades de estos símbolos son respectivamente 0.5, 0.3 y 0.2, indique el valor del mensaje descodificado:
 - (a) ABBB
 - (b) ACBA
 - (c) CBBA
 - (d) Ninguno de los anteriores

Definitions by interroles
$$\frac{T_A}{T_B} = \frac{T_B}{T_B} = \frac$$

Aplicande recursivamente:

$$X_{0} = 0^{1}34$$

$$X_{n+1} = \frac{X_{n} - ij}{\Delta j} \quad donk \quad X_{n} \in \pm j$$

$$X_{0} = 0^{1}34 \quad \in \pm_{A} = 0 \quad \text{A}$$

$$X_{1} = \frac{X_{0} - iA}{\Delta A} = \frac{0^{1}34 - 8}{0^{1}5} = 0^{1}68 \quad \in \pm_{B} = 0 \quad \text{B}$$

$$X_{2} = \frac{X_{1} - iB}{\Delta B} = \frac{0^{1}68 - 0^{1}5}{0^{1}3} = 0^{1}6 \quad \in \pm_{B} = 0 \quad \text{B}$$

$$X_{3} = \frac{X_{2} - iB}{\Delta B} = \frac{0^{1}6 - 0^{1}5}{0^{1}3} = 0^{1}3 \quad \in \pm_{A} = 0 \quad \text{A}$$

$$Description \quad ABBA = 0 \quad \text{A}$$

D=20

12. Un código polinómico emplea el polinomio generador g(D) = D + D + 1. Es FALSO que:

- (a) La palabra $D^3 + D^2 + D$ es palabra código
- (b) Si los mensajes de usuario son de 1 bit, la capacidad correctora del código es 1
- (c) Si los mensajes de usuario son de 2 bits, se detectan todos los errores dobles
- (d) Alguna de las anteriores es falsa

b)
$$k=1$$
 } $n=3 - cod(3,1)$

Palabras código { 200 = t dmn = 3 = De=1, cierto.

X(8)=1 =0 Y(6)=02+0+1 = 0111

No se detectan todos los errores dobles.

- 11. Se codifica el mensaje AABBABBCBBCDA generado por una fuente cuyo alfabeto es {A, B, C, D} utilizando la técnica LZ-77. La codificación aplicada es binaria con una capacidad en el búfer de almacenamiento de 3 posiciones. Para referenciar cadenas de símbolos se emplean 2 bits para la longitud y 2 bits para la posición relativa. Teniendo en cuenta que los símbolos de la fuente se codifican con dos bits según la asignación: A=00, B=01, C=10, D=11, indique cuál es el valor hexadecimal de la secuencia binaria enviada (mayor peso a la izquierda):
 - (a) 0025246AC6F0
 - (b) 015536FC0

F

- (c) 515D5697B
- (d) Ninguno de los anteriores

14. Sea un código codificador de canal de Hamming sistemático caracterizado por la matriz generadora G. Si se recibe la palabra 1011101, ¿qué afirmación es correcta?. Nota: Las posiciones de la palabra recibida se empiezan a numerar desde la izquierda, empezando por la posición 1.

- a) Si el código se usa como corrector, se estima el mensaje de usuario 1001.
- b) Si el código se usa como detector, no se detecta error en la palabra recibida.
- © Si el código se usa como corrector, suponiendo que hubo error en las posiciones 1 y 4 se confunde con un error simple en la posición 5.
- d) Ninguna de las anteriores frases es correcta.

Solución:

$$\mathbf{H}_{\mathrm{rxn}} = \mathbf{H}_{3\mathrm{x}7} = \left(-P^T \middle| I_r \right) = \begin{pmatrix} 0 & 1 & * & 1 & 1 & 0 & 0 \\ 1 & 1 & * & 1 & 0 & 1 & 0 \\ 1 & 0 & * & 1 & 0 & 0 & 1 \end{pmatrix} \rightarrow \mathbf{H}_{3\mathrm{x}7} = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

a)
$$s = Z \cdot H^T = (1011101) \cdot \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = (100) \rightarrow \vec{e} = (0000100) \rightarrow \hat{Y} = Z + \vec{e} = \underbrace{1011}_{\hat{X}} 001$$

- b) Si sólo detecta errores, como s= $Z \cdot H^T \neq 0$ sí que se detecta que ha habido error.
- c) Es cierto, Z= $\underline{1}01\underline{1}101$, Y=0010101, s= $Z \cdot H^T = 100 = 5^a$ fila de H^T , por lo que se confunde con un error simple en la 5^a posición.

- 13. Calcule la probabilidad de detección de error (p_d) para el código codificador de canal ternario 2-perfecto de menor redundancia posible cuando la probabilidad de error en el bit que introduce un canal binario simétrico es $p=10^{-4}$.

 - a) $p_d \le 10^{-5}$ b) $10^{-5} < p_d \le 10^{-2}$
 - c) $10^{-2} < p_d \le 10^{-1}$
 - (d) $10^{-1} < p_d \le 1$

$$\overline{q' = \binom{n}{0}} + \binom{n}{1} \cdot (q-1) + \binom{n}{2} \cdot (q-1)^2 + \dots + \binom{n}{e} \cdot (q-1)^e$$

ternario: q = 3; 2-perfecto: e = 2

$$3^r = 1 + n \cdot 2 + n \cdot (n-1) \cdot \frac{4}{2} = 1 + 2n + 2(n^2 - n) = 2n^2 + 1$$

$$r = 1 \rightarrow n = \sqrt{(3-1)/2} = 1 \rightarrow \text{No tiene sentido pues } k = n - r = 0$$

$$r=2 \rightarrow n=\sqrt{9-1/2}=2 \rightarrow \text{No tiene sentido pues } k=n-r=0$$

$$r = 3 \rightarrow n = \sqrt{\frac{(27-1)}{2}} = \sqrt{13} \rightarrow \text{No tiene sentido}$$

$$r = 4 \rightarrow n = \sqrt{\frac{81-1}{2}} = \sqrt{40} \rightarrow \text{No tiene sentido}$$

$$r = 5 \rightarrow n = \sqrt{\frac{(243 - 1)}{2}} = 11 \rightarrow OK! \rightarrow k = n - r = 6$$

Código (11, 6) ternario, 2-perfecto (además, es un código de Golay)

$$Prob_error_bloque = \sum_{i=n+1}^{n} {n \choose i} \cdot p^{i} \cdot (1-p)^{n-i}$$

 $e=2 \Rightarrow$ Capacidad detectora de errores = $d=2 \cdot e=4$ errores

Error:

Prob detección error=Prob(#errores≤4)= Prob(#errores=1) + Prob(#errores=2) + Prob(#errores=3) + Prob(#errores=1) \approx Prob(#errores=1) \approx n·p=11·10⁻⁴=1'1·10⁻³

Error: Decir que Prob_detección_error
$$\approx$$
 Prob(#errores=4) = $\binom{11}{4}$ · p^4 · $(1-p)^7 \approx 330$ · p^4 =

$$= 330*(10^{-4})^4 = 3.3*10^{-14}$$

Prob_detección_error=Prob(#errores≤4)= Prob(#errores=0) Prob(#errores=1) Prob(#errores=2) + Prob(#errores=3) + Prob(#errores=4) ≈ Prob(#errores=0) + Prob(#errores=1) =

$$\binom{11}{0} \cdot p^{0} \cdot (1-p)^{11} + 1' \cdot 1 \cdot 10^{-3} = (1-10^{-4})^{11} + 1' \cdot 1 \cdot 10^{-3} = 0.9989 + 1' \cdot 1 \cdot 10^{-3} \approx 1$$

Prob_detección error=1-Prob no detección error 1-Prob(#errores=5)=1- $\binom{11}{5}$ · p^5 · $(1-p)^6 = 1-462*10^{-20} = 1-4.62*10^{-18} \approx 1$

- 15. Se dispone de dos fuentes A y B cada una con un alfabeto de 4 símbolos. ¿Qué afirmación es correcta?
 - a) Es imposible un valor de H(A, B) = 2,4 bits/símbolo
 - **b** Si $H(A \setminus B) = 2$ bits/símbolo, entonces $H(B) \le H(A)$
 - c) Se puede afirmar que H(A, B) = 4 bits/símbolo
 - d) Ninguna de las anteriores frases es correcta

Solución:

$$H(A) = \sum_{i=1}^{F} p_i \cdot \log_q \frac{1}{p_i}$$
 unidades de información q - arias/símbolo

Alfabeto fuente de F = 4 símbolos, alfabeto del código de q = 3 símbolos.

$$H(A) = \sum_{i=1}^{F} p_i \cdot \log_2 \frac{1}{p_i}$$
 bits/símbolo

 $H(A) \le \log_q F$, cota que se alcanza cuando los símbolos son equiprobables, $p_i = 1/F$.

$$H(A) \le \log_2 F = \log_2 4 = 2$$
 bits/símbolo

$$H(A, B) = H(B) + H(A \backslash B)$$

 $H(A \setminus B) \le H(A)$, pues disminuye la información media de la fuente A al conocer datos de la fuente B.

$$H(A, B) \le H(B) + H(A) = 2 \cdot H(A) = 2*log_2F = 2*2= 4 \text{ bits/símbolo.}$$

- a) H(A, B) ≤ 4 bits/símbolo, por lo que ese valor sí que es posible. Es falso.
- b) Como $H(A) \le \log_a F$ bits/símbolo= $\log_2 4$ =2 bits/símbolo. Entonces:
 - Como $H(A\backslash B) \leq H(A)$,
 - Si H(A\B)=2=log₂4, como H(A\B)=2 \leq H(A) y H(A) \leq 2=log₂4 \Rightarrow H(A)=2 bits/símbolo
 - Como $H(B) \le \log_2 4 = 2 \text{ bits/simbolo } \rightarrow H(B) \le H(A)$
- c) No, lo que se puede afirmar es que $H(A, B) \le 4$ bits/símbolo. Se cumpliría la igualdad si ambas fuentes fueran independientes y emitieran símbolos equiprobables.

- 16. Una fuente F que emite dos símbolos según el diagrama de estados de la figura B (bit más antiguo a la izquierda) atraviesa un canal binario simétrico caracterizado por una probabilidad de error en el bit *p*=0.3. Sea F' la fuente resultante a la salida del canal. ¿Qué afirmación es FALSA?
- a) La fuente F tiene memoria 1.
- b) $0.93 \le H(F) \le 0.95 \text{ bits/símbolo}$
- c) $0.9906 \le H(F') \le 0.9918 \text{ bits/simbolo}$
- d Alguna de las anteriores es falsa.

Solución:

a) Es cierta. Se observa que no hay dependencia con el símbolo emitido hace 2 veces, y sí que depende del último símbolo enviado. La memoria es 1:

b) Es cierta. H(F)=H(F(0)*P(0)+H(F(1)*P(1)

 $\begin{array}{l} P(0) = P(0 \backslash 0) * P(0) + P(0 \backslash 1) * P(1) = 0.45 * P(0) + 0.77 * P(1) \\ P(0) + P(1) = 1 \rightarrow 0.55 * P(0) = 0.77 * P(1) = 0.77 * (1 - P(0)) \\ 1.25 * P(0) = 0.77 \rightarrow P(0) = 0.56, P(1) = 0.44 \end{array}$

 $\begin{array}{lll} H(F\backslash 0) &=& P(0\backslash 0)*log_2(1/P(0\backslash 0)) + P(1\backslash 0)*log_2(1/P(1\backslash 0)) = 0.45*log_2(1/0.45) + 0.55*log_2(1/0.55) = 0.5184+0.4744 = 0.9928 \ bits/simbolo \\ H(F\backslash 1) &=& P(0\backslash 1)*log_2(1/P(0\backslash 1)) + P(1\backslash 1)*log_2(1/P(1\backslash 1)) = 0.7*log_2(1/0.7) + 0.3*log_2(1/0.3) = 0.3602+0.5211 = 0.8813 \ bits/simbolo \\ \end{array}$

 $H(F)=H(F\setminus 0)*P(0)+H(F\setminus 1)*P(1)=0.9928*0.56+0.8813*0'44=0.9437$ bits/símbolo

c) Es cierta. (F_0 =0 indica que la fuente F parte del estado 0. F_1 =1 indica que ahora F emite 1) $H(F')=H(F'\setminus F_0=0)*P(F_0=0)+H(F'\setminus F_0=1)*P(F_0=1)=H(F'\setminus F_0=0)*0'56+H(F'\setminus F_0=1)*0'44$

$$\begin{split} &H(F'\backslash F_0=0) = P(F'=0\backslash F_0=0)*\log_2(1/P(F'=0\backslash F_0=0)) + P(F'=1\backslash F_0=0)*\log_2(1/P(F'=1\backslash F_0=0)) = 0.9989 \\ &H(F'\backslash F_0=1) = P(F'=0\backslash F_0=1)*\log_2(1/P(F'=0\backslash F_0=1)) + P(F'=1\backslash F_0=1)*\log_2(1/P(F'=1\backslash F_0=1)) = 0.9815 \end{split}$$

 $\begin{array}{ll} P(F'=0 \setminus F_0=0) = P(F_1=0 \setminus F_0=0)*(1-p) + P(F_1=1 \setminus F_0=0)*p &= 0.45*0.7 + 0.55*0.3 = 0.48 \\ P(F'=1 \setminus F_0=0) = P(F_1=0 \setminus F_0=0)*p &+ P(F_1=1 \setminus F_0=0)*(1-p) = 0.45*0.3 + 0.55*0.7 = 0.52 \\ P(F'=0 \setminus F_0=1) = P(F_1=0 \setminus F_0=1)*(1-p) + P(F_1=1 \setminus F_0=1)*p &= 0.7*0.7 + 0.3*0.3 = 0.58 \\ P(F'=1 \setminus F_0=1) = P(F_1=0 \setminus F_0=1)*p &+ P(F_1=1 \setminus F_0=1)*(1-p) = 0.7*0.3 + 0.3*0.7 = 0.42 \\ \end{array}$

Con ello, H(F')= 0'9912 bits/símbolo

- 9. Indique cuál de las siguientes afirmaciones es FALSA:
 - (a) La entropía de una fuente sin memoria sólo depende de la estadística de sus símbolos
 - (b) La entropía de una fuente es siempre menor o igual a la de otra fuente sin memoria con el mismo alfabeto y con símbolos equiprobables
 - (c) La entropía de una fuente es siempre menor o igual que la longitud media de la codificación, sin pérdidas, de la fuente
 - (d) Alguna de las anteriores es falsa

c)
$$\overline{L} > H$$
 $E = \frac{H}{L} \leq 1$ OK

D

- 17. Sean a, k, p números naturales, con p primo y sea mcd(a, p) = 1, a < p. El valor de $C = (a^{kp}) mod p$ es:
 - (a) 1
 - (b) a^kmodp
 - (c) $a^{(p-k)}modp$
 - (d) Ninguna de las anteriores

$$a^{kp} \mod p = \underbrace{a^{k \lfloor p-1 \rfloor}}_{1} \cdot a^{k} \mod p = a^{k \mod p}$$

$$p \text{ primo } \Rightarrow \phi(p) = p-1$$

FERMAT
$$\rightarrow a k \phi(p) \mod p = 1$$

- 18. Sea un código polinómico caracterizado por g(D) = (D+1)p(D), con p(D) un polinomio primitivo de grado 17. No puede asegurarase la detección de:
 - (a) $e(D) = D^{25} + D^{17} + D^{15} + D^8$
 - (b) $e(D) = D^{127} + D^{23} + D^2 + D + 1$
 - (c) $e(D) = D^{1024} + 1$
 - (d) Ninguna de las anteriores

6] # impor errores => (D+L) lo detecta

a) long rápaga = 25-8 = 17

grado (g(1)) = 18

long rápoga < grado (g(D)) > lo detecta

C) $\rho(0)$ primitivo $\Rightarrow D^{\lambda} + 1 \neq 0 \quad \forall \quad \lambda < 2^{17} - 1$

 \Rightarrow D¹⁰⁷⁴ + 1 mod p(D) \neq 0 lo detecta

- 19. Sea una fuente sin memoria con 3 símbolos {A, B, C}. Se sabe que p(A) = 0.5. La entropía máxima de una fuente extendida de orden 2 es:
 - (a) 2 bits
 - (b) 2.5 bits
 - (c) 3 bits
 - (d) Ninguna de las anteriores

$$\rho(A) = \frac{1}{2}$$
 $\rho(B) = \frac{1}{4}$ $\rho(c) = \frac{1}{4}$

$$H(F) = \frac{1}{2} \log_2 2 + \frac{1}{4} \log_2 4 + \frac{1}{4} \log_2 4 = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 15$$

- 20. Sea un usuario A de un sistema RSA con los siguientes parámetros: e = 723; $\phi(N) = 1012$. Decodifique C = 45, enviado por un usuario B de forma confidencial al usuario A.
 - (a) M = 436
 - (b) M = 234
 - (c) M = 45
 - (d) Ninguna de las anteriores

$$\Phi(N) = 2^3 \cdot 11 \cdot 23 = (p-1) \cdot (q-1) = 27 \cdot 46 = 1012$$

$$p=23 \quad Y = 1081$$

$$d = \frac{1 + K \cdot 1013}{723} = \frac{1 + K \cdot (723.1 + 289)}{723} = 1.K + \frac{289K + 1}{723}$$

$$\frac{1012 \ 1723}{289} = \frac{1}{1} \times \frac{1}{1}$$

$$723K_{1} = \frac{289K+1}{723}$$

$$K = \frac{723K_{1}-1}{289} = \frac{(2.289+145)K_{1}-1}{289}$$

$$= 3K_{1} + \frac{945K_{1}-1}{289}$$

$$K_{1} = 2 \implies K = S \implies |d = 7|$$