Complejidad Computacional Tarea 2.1

Karla Adriana Esquivel Guzmán Andrea Itzel González Vargas Luis Pablo Mayo Vega Carlos Gerardo Acosta Hernández

Entrega: 03/04/17 Facultad de Ciencias UNAM

Ejercicios

- 1. Demuestra que el lenguaje $\Sigma_i SAT$ es completo para Σ_i^P bajo reducciones polinomiales temporales. Recuerda que SAT es NP-completo.
- 2. Demuestra que si 3SAT es temporalmente reductible polinomialmente a $\overline{3SAT}$ entonces PH=NP.

Sabemos que 3SAT es NP-completo, entonces $\overline{3SAT} \in coNP$. Supongamos que 3SAT es reductible a $\overline{3SAT}$, esto implica que NP=coNP. Como $\sum_1^p=NP$ y $\prod_1^p=coNP$, entonces $\sum_1^p=\prod_1^p$. Como vimos en clase, para toda $i\geq 1$ si $\sum_i^p=\prod_i^p$ entonces $PH=\sum_i^p$, o sea que la jerarquía se colapsa al nivel i. Como $\sum_1^p=\prod_1^p$ entonces $PH=\sum_1^p=NP$. Por lo tanto si 3SAT es reductible a $\overline{3SAT}$ (o sea NP=coNP), entonces PH=NP.

3. Demuestra que si $P^A=NP^A$ (para algún lenguaje A), entonces $PH^A\subseteq P^A$.

Tenemos que si $P^A = NP^A$ entonces P^A es cerrado bajo el complemento $=> P^A = coNP$, ahora de manera concisa tenemos que $P^A = \Sigma_1$ $P^A = \Gamma_1$ P^A .

Ahora Demostremos por Inducción que si $P^A = \Sigma_1$ $P^A = \Gamma_1$ $P^A = \sum_{i+1}$ $P^A = \Gamma_{i+1}$ P^A

- Consideremos una Σ_{i+1} P^A M \in TM, que consiste en una serie de ramificaciones seguidas por una serie de ramificaciones universales.
- Consideremos ahora los subarboles de la trayectoria de un calculo cuyas raices son el primer paso universal a lo largo del camino para cada uno de estos subarboles, M esta realizando un calculo \square_i .

Por Hipotesis $\sqcap_1 P^A = P^A$ así podemos reemplazar cada uno de estos subarboles de calculo por

un método determinista en calculo de tiempo polinomial para formar una nueva Maquina S.

- Si dejamos que a(n) sea el máximo número de pasos dados por la Maquina alterna antes de que comiencen las ramas universales y P(n) sea el numero de pasos dados por cualquiera de las maquinas P^A deterministas, que hemos sustituido por los calculos para \sqcap_i , entonces el tiempo en que corre S esta limitado por a(n) + $P^A(a(n))$.

Observemos que $P^A(\mathbf{a}(\mathbf{n}))$ es una composición de funciones, porque los subprocedimientos en P^A estan calculando entradas que pueden ser mas grandes que n (Pero deberían ser mas pequeñas o igual a $\mathbf{a}(\mathbf{n})$ ya que solo se han ejecutado $\mathbf{a}(\mathbf{n})$ pasos en el tiempo que se usan los subprocedimientos.

-Como a y p son polinomiales también lo es su composicion, Por lo tanto S esta en NP^A , por Hipotesis $P^A = NP^A =>$ S esta en P^A

-De forma similar puede ser usado para reducir una maquina $\sqcap_{i+1} P^A$ a una coNP M∈MT y Como $P^A = \Sigma_i P^A$, poniendolo asi en P^A también completamos el colapso de la jerarquía. Por lo tanto $PH^A \subset PH^A$

4. Demuestra que si $EXP \subseteq P/poli$, entonces $EXP = \Sigma_2^p$.

$\underline{Dem.}$

Sea $L \in EXP$, entonces existe una máquina de Turing $time-oblivious\ M$ que decide L en tiempo $2^{p(n)}\ p.a$. polinomio p. Sea $s \in \{0,1\}^n$ una cadena de entrada para M. Sabemos por la definición de M que para cada $i \in [2^{p(n)}]$ denotamos con z_i la codificación de la i-ésima "instantánea" de la ejecución de M con la entrada s. Como $EXP \subseteq P/poli$, entonces existe un circuito C de tamaño q(n) (p.a. polinomio q), tal que calcula z_i a partir de una i. La correctud de lo que calcula este circuito mencionado puede ser expresado como un predicado coNP. Así,

$$s \in L \iff \exists C \in \{0,1\}^{q(n)} \ \forall i, i1, ..., ik \in \{0,1\}^{p(n)} \ T(s, C(i), C(i_1), ..., C(i_k)) = 1$$
 (1)

donde T es una TM que verifica esas condiciones en tiempo polinomial. Se puede entonces concluir que $L \in \Sigma_2^P$, que es lo que queremos. Para probar esto, consideremos $p(n) = 2^{n^k}$. Consideremos cada entrada (i,t) en la tabla de M, codifica una cadena $z_{i,t}$, i.e., el contenido de la celda i, al momento t, siempre que la cabeza lectora esté en la entrada i al momento t, y de ser así, z almacena el estado interno de M. Ahora consideremos

$$L_M = \{ \langle s, i, t, z \rangle \mid con \ la \ entrada \ s \ tenemos \ z_{i,t} = z \ para \ M \}$$
 (2)

Simulando M tendremos que $L_M \in EXP \subseteq P/poli$. Utilizando circuitos de tamaño polinomial para L_M , podemos construir un circuito de tamaño polinomial C de múltiple salida, tal que $C(\langle s,i,t\rangle)=z$. Como buscábamos en (1), decimos entonces que:

$$s \in L \iff \exists C \ \forall i, t \ t.q. \ C(\langle s, i, t \rangle) \ acepta \ si$$
 $C(\langle s, i - t, t - 1 \rangle), \ C(\langle s, i, t - 1 \rangle), \ C(\langle s, i + 1, t - t1 \rangle) \ y \ C(\langle s, 1, 2^{n^k} \rangle) \ aceptan.$

Por lo tanto si $EXP \subseteq P/poli$, entonces $EXP = \Sigma_2^p$.