Homotopy-coherent interchange and equivariant little disk operads

Natalie Stewart

Department of Mathematics Harvard University

INI Equivariant Homotopy Theory in Context

Queen's University Belfast, April 7 2025

A question you might happen upon

In trace methods for Real algebraic K-theory, THH has a Real analogue:¹

$$\begin{array}{ccc} \operatorname{Alg}_{\mathbb{E}_1}(\operatorname{Sp}) & \operatorname{Alg}_{\mathbb{E}_\sigma}(\operatorname{Sp}_{\operatorname{C}_2}) \\ & & & & & \downarrow \operatorname{Thr} \\ \operatorname{Sp} & & & & \operatorname{Sp}_{\operatorname{C}_2} \end{array}$$

In this, σ is the sign representation and \mathbb{E}_{σ} -algebras are a genuine-equivariant version of rings with anti-involution.

Question (c.f. Dotto-Moi-Patchkoria-Reeh² '17)

What algebraic structure does THR of highly structured C_2 -ring spectra have?

Interchange and little V-disks

Natalie Stewart

Cold open

Historical con

Preview of argument

G-∞-categorical

Equivariant arity

G-(pre) operads, algebr The structure spaces

BV-tensor products

he Dunn map

Little V-disk:

Little v-disks

nooth manifold

: strategy th tononntial

With tangential

 $^{^{1}} Emanuele \ Dotto. \ \textit{Stable real K-theory and real topological Hochschild homology}. \ 2012. \ arXiv: 1212.4310 \ [math.AT].$

² Emanuele Dotto, Kristian Moi, Irakli Patchkoria, and Sune Precht Reeh. Real topological Hochschild homology, 2017, arXiv: 1711, 10226 [math, AT].

How to construct structure on THH

Observation

THH can be given a symmetric monoidal structure, so we may lift

Theorem (Dunn³ '88, Lurie⁴ '09)

 $\mathbb{E}_n \simeq \mathbb{E}_{n-1} \otimes \mathbb{E}_1$; hence THH takes \mathbb{E}_n -rings to \mathbb{E}_{n-1} -rings.

Interchange and little V-disks

³ Gerald Dunn, "Tensor product of operads and iterated loop spaces", In: 1. Pure Appl. Algebra 50.3 (1988), pp. 237–258,

⁴ Jacob Lurie, Derived Algebraic Geometry VI: Ek Algebras, 2009, arXiv: 0911,0018 [math.AT].

How to construct structure on THR

Observation (S.⁵)

THR can be given a C2-symmetric monoidal structure, so we may lift

Conjecture

$$\mathbb{E}_{\mathsf{V}} \otimes \mathbb{E}_{\mathsf{W}} \simeq \mathbb{E}_{\mathsf{V} \oplus \mathsf{W}}$$

Interchange and little V-disks

Natalie Stewart

Cold open

Historical cont

Preview of argument

G-∞-categorical

Equivariant arity

(pre)operads, algebra

B\/-tensor products

BV-tensor products

me Dum ma

Little V-dis

Interlude: the homotopy type of a smooth manifold

he strategy

th tangential structi

⁵Natalie Stewart. On tensor products with equivariant commutative operads. 2025. arXiv: 2504.02143 [math.AT].

Statement of the additivity theorem

Interchange and little V-disks

Natalie Stewart

For this talk, all terms are defined ∞ -categorically.

Theorem (S.⁵)

Given V. W orthogonal G-representations, we have

$$\mathbb{E}_{V} \otimes \mathbb{E}_{W} \simeq \mathbb{E}_{V \oplus W};$$

hence there is an equivalence of ∞ -categories

$$\mathrm{Alg}_{\mathbb{E}_{V}} \underline{\mathrm{Alg}}_{\mathbb{E}_{W}}^{\otimes} (\mathrm{Sp}_{G}) \simeq \mathrm{Alg}_{\mathbb{E}_{V \oplus W}} (\mathrm{Sp}_{G}) .$$

Corollary

THR of $\mathbb{E}_{V \oplus \sigma}$ -rings has a natural \mathbb{E}_{V} -ring structure.

⁵ Natalie Stewart. On homotopical additivity of equivariant little disks operads (draft on website), 2025.

Myriad versions of this theorem

- May '72: 6 $C_n \otimes C_m$ and C_{n+m} agree on **connected spaces**.
- 1 Dunn '88: $^7C_1^{\otimes n} \simeq C_n$ w.r.t. a **point-set** tensor product.
- Brinkmeier '00: 8 $C_n \otimes C_m \simeq C_{n+m}$ w.r.t. a **point-set** tensor product.
- *Rourke-Sanderson* '00:9 $D_V \otimes D_W$ and $D_{V \oplus W}$ agree on *G*-connected *G*-spaces.
- 4 Lurie '09: $^{10}\mathbb{E}_{p}^{\otimes} \otimes \mathbb{E}_{p}^{\otimes} \simeq \mathbb{E}_{p+p}^{\otimes}$ with respect to a **homotopical** tensor product.
- *Fiedorowicz-Vogt '15:*¹¹ Dunn & Brinkmeier's result extends to **cofibrant** \mathbb{E}_n -operads.
- Szczesny '24: 12 $D_V \otimes D_W \simeq D_{V \oplus W}$ w.r.t. a **point-set** tensor product.
- S. '25: $\mathbb{E}_{V}^{\otimes} \otimes \mathbb{E}_{W}^{\otimes} \simeq \mathbb{E}_{V \oplus W}^{\otimes}$ with respect to a **homotopical** tensor product.

Interchange and little V-disks

^{61.} P. May. The geometry of iterated loop spaces. Vol. Vol. 271. Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1972, pp. viii+175.

Gerald Dunn, "Tensor product of operads and iterated loop spaces", In: J. Pure Appl. Algebra 50.3 (1988), pp. 237–258,

⁸ Michael Brinkmeier, On Operads, Thesis (Ph.D.)—Universitat Osnabrück, 2000.

⁹ Colin Rourke and Brian Sanderson, "Equivariant configuration spaces", In: 1, London Math. Soc. (2) 62.2 (2000), pp. 544–552.

¹⁰ Jacob Lurie, Derived Algebraic Geometry VI: Ek Algebras, 2009, arXiv: 0911,0018 [math, AT].

¹¹ Zbigniew Fiedorowicz and Rainer M. Vogt. An Additivity Theorem for the Interchange of En Structures, 2013, arXiv: 1102, 1311 [math, AT].

¹² Ben Szczesny, Equivariant Framed Little Disk Operads are Additive, 2024, arXiv: 2410, 20235 [math. AT].

A heavily abridged history of $G-\infty$ -categorical operads

Interchange and little V-disks Natalie Stewart

• Hill-Hopkins '16:¹³ G-commutative monoids are **semi-Mackey functors**.

- Nardin-Shah '22:¹⁴ G-operads are a type of fibration over a G-categorical version $\underline{\mathbb{F}}_{G,*}$ of Segal's category Γ^{op} .
- 2 Barkan-Haugseng-Steinebrunner '22: 15 G-operads are also **fibrations over the** effective Burnside 2-category Span(\mathbb{F}_C).
- S. '25:¹⁶ homotopy-coherent interchange is corepresented by **BV tensor products** and G-operads are monadic over G-symmetric sequences.
- 4 S. '25: 17 Algebras in (co)cartesian G-symmetric monoidal structures have concrete descriptions and $\mathcal{N}_{l\infty} \otimes \mathcal{N}_{l\infty} \simeq \mathcal{N}_{l \vee l \infty}$

¹³ Michael A. Hill and Michael J. Hopkins. Equivariant symmetric monoidal structures. 2016. arXiv: 1610.03114 [math. AT].

¹⁴ Denis Nardin and Jay Shah. Parametrized and equivariant higher algebra, 2022, arXiv: 2203, 00072 [math. AT].

¹⁵ Shaul Barkan, Rune Haugseng, and Jan Steinebrunner. Envelopes for Algebraic Patterns, 2022. arXiv: 2208.07183 [math.CT].

¹⁶ Natalie Stewart, Equivariant overads, symmetric sequences, and Boardman-Voat tensor products, 2025, arXiv: 2501,02129 [math,CT].

¹⁷ Natalie Stewart. On tensor products with equivariant commutative operads. 2025. arXiv: 2504.02143 [math.AT].

How to prove equivariant Dunn additivity

- Define "G-operads" as a localizing subcategory of "G-preoperads."
- 2 Define G-preoperad models \times and \wr for $\overset{\text{\tiny IN}}{\otimes}$, define Dunn map $\varphi_{\mathbb{E}}$, reduce to showing that $\varphi_{\mathbb{E}}$ is an L_{Op_c} -equivalence.
- Define "approximations" α , an approximated "surjection to image" $\widetilde{\varphi}_{\mathbb{P}}$ onto "decomposable little disks," verify that $\alpha_{V|W}$ is an approximation by lifting Dunn's argument about decomposability of little disks.
- **4** Use ∞-category theory to reduce to showing $\widetilde{\varphi}_{\mathbb{P}}$ is an L_{Op_c} -equivalence.
- Verify that $\widetilde{\varphi}_{\mathbb{P}}$ by lifting Dunn's argument about uniqueness of decompositions.

Interchange and little V-disks

Natalie Stewart

old open

Historical cont

Preview of argumer

operads

Equivariant arity

The structure space

BV-tensor produc

ittle V-disk.

Interlude: the homotopy type or a smooth manifold

Vith tangential st

Sidebar: S-ary spaces in Mike's G-operads

When considering the homotopy theory of Mike's G-operads, we usually define graph subgroups: given $(H) \subset G$ and $S \in \mathbb{F}_H$ define

$$\Gamma_{S} = \{(h, \rho_{S}(h)) \mid h \in H, \ \rho_{S} \colon H \to \Sigma_{|S|}\} \subset G \times \Sigma_{S}.$$

(these are transitive $G \times \Sigma_n$ -sets with free underlying Σ_n -sets).

Definition

The S-ary structure space of \mathcal{O} is the fixed points

$$\mathcal{O}(S) = \mathcal{O}(|S|)^{\Gamma_S}.$$

A map of Mike's G-operads $\varphi \colon \mathcal{O} \to \mathcal{P}$ is a weak equivalence if $\mathcal{O}(S) \to \mathcal{P}(S)$ is an equivalence for all $(H) \subset G$ and $S \in \mathbb{F}_H$.

Interchange and little V-disks

Natalie Stewart

Cold open

Historical cont

Preview of argumen

G- ∞ -categoric operads

Equivariant arity

The structure spaces

BV-tensor products

The Dunn ma

Little V-disk

Interlude: the homotopy type of a smooth manifold

The strategy

With tangential s

Sidebar: operads on the other side of Elmendorf's theorem

Interchange and little V-disks

Natalie Stewart

Cold open

Historical co

Preview of argumen

G- ∞ -categorical operads

Equivariant arity

G-(pre)operads, algebr

. 3V-tensor product

The Dunn map

The Dunn m

ittle V-disks

Interlude: the homotopy typ a smooth manifold

he strategy

Vith tangential st

eferences

Given \mathcal{O} a Mike's G-operad, we have operadic composition maps¹⁸

$$\gamma \colon \mathcal{O}(S) \otimes \bigotimes_{[H/K_i] \in \operatorname{Orb}(S)} \mathcal{O}(T_i) \to \mathcal{O}\left(\coprod_{[H/K_i] \in \operatorname{Orb}(S)} \operatorname{Ind}_{K_i}^H T_i\right),$$

operadic restriction maps

Res:
$$\mathcal{O}(S) \to \mathcal{O}\left(Res_K^H S\right)$$
,

and equivariant symmetric group action

$$\rho \colon \operatorname{Aut}_{H}(S) \times \mathcal{O}(S) \to \mathcal{O}(S).$$

¹⁸ Peter Bonventre and Luís A. Pereira. "Genuine equivariant operads". In: Adv. Math. 381 (2021), Paper No. 107502, 133.

A quasi-definition of G-operads

Definition

- A *G*-preoperad is a functor $\mathcal{O}^{\otimes} \to \operatorname{Span}(\mathbb{F}_G)$ with cocartesian lifts over backwards maps.
- A G-operad is required to satisfy "Segal conditions."
- An \mathcal{O} -algebra in \mathcal{C}^{\otimes} is a functor preserving cocartesian arrows :

Interchange and little *V*-disks

Natalie Stewart

Cold open

Historical cont

Preview of argument

G- ∞ -categorica operads

Equivariant arity

G-(pre)operads, algebra

BV-tensor products

The Dunn m

Little V-disks

Interlude: the homotopy type of a smooth manifold

The strategy

With tangential str

The underlying G-symmetric sequence

Interchange and little V-disks

Natalie Stewart

Construction

Given $\mathcal{O}^{\otimes} \in \operatorname{Op}_{C}$, $H \subset G$, and $S \in \mathbb{F}_{G}$, define the **structure space**

$$\begin{array}{ccc} \mathcal{O}(S) & \longrightarrow & Mor\left(\mathcal{O}^{\otimes}\right) \\ & \downarrow & & \downarrow \\ \left\{Ind_{H}^{G}S = Ind_{H}^{G}S \rightarrow [G/H]\right\} & \longrightarrow & Mor\left(Span(\mathbb{F}_{G})\right) \end{array}$$

Proposition (S.¹⁹)

If \mathcal{O}^{\otimes} has "one color" then is it conservatively identified by $(\mathcal{O}(S))_{\substack{H \subset G \\ S \in \mathbb{F}_H}}$

¹⁹ Natalie Stewart. Equivariant operads, symmetric sequences, and Boardman-Vogt tensor products. 2025. arXiv: 2501.02129 [math.CT].

G-∞-categorical operads

Equivariant arity

--(pre)operads, aige The structure spaces

BV-tensor product

The Dunn map

ittle V-disks

Interlude: the homotop

The strategy

With tangential

References

Example

The **little** *V***-disks** *G***-operad** has *S*-ary structure space given by *H***-equivariant configurations of** *S* **in** *V*:

$$\mathbb{E}_{V}(S) := Emb^{H,Affine} (S \cdot D(V), D(V)) \simeq Conf_{S}^{H}(V).$$

Example

Given a G-symmetric monoidal category $\mathcal{C}^\otimes\colon \operatorname{Span}(\mathbb{F}_G)\to\operatorname{Cat}_\infty$, its unstraightening is a G-operad. Given $X\in\mathcal{C}(G/G)$, there is an **endomorphism** G-operad with

$$\operatorname{End}_{X}(S) \simeq \operatorname{Map}_{\mathcal{C}(G/H)}\left(\left(\operatorname{Res}_{H}^{G}X\right)^{\otimes S}, \operatorname{Res}_{H}^{G}X\right)$$

Ur-examples

In particular, an \mathbb{E}_{V} -algebra in \mathcal{C} consists of an object $X \in \mathcal{C}_{C}$ and homotopy-coherently compatible maps

$$Conf_{S}^{H}(V) \rightarrow Map_{\mathcal{C}(G/H)}\left(\left(Res_{H}^{G}X\right)^{\otimes S}, Res_{H}^{G}X\right).$$

Example (Horev-Klang-Zou²⁰ '20)

Let $\mathcal{S}_G^{G-\times}$ be the *cartesian structure* on *G*-spaces. Then, for all $X \in \mathcal{S}_G$, we have $\Omega^{\mathsf{V}}\mathsf{X} \in \mathrm{Alg}_{\mathbb{F}_{\mathsf{V}}}(\mathcal{S}_{\mathsf{G}}).$

Example (loc. cit.)

Let Sp^\otimes_C be the HHR *G*-symmetric monoidal structure. If $f\colon \Omega^V X \to \underline{\mathrm{Pic}}(\mathrm{Sp}_C)$ is a V-loop map, then $Th(f) \in Alg_{\mathbb{R}_+}(Sp_C)$.

Interchange and little V-disks

²⁰ Jeremv Hahn. Asaf Horev. Inbar Klang, Dylan Wilson, and Foling Zou. Equivariant nonabelian Poincaré duality and equivariant factorization homology of Thom spectra. 2024. arXiv: 2006 13348 [math AT]

Modelling G-operadic constructions, two ways

Model categorist: (co)fibrantly replace, then apply a construction to monoids in G-symmetric sequences.

 ∞ -categorist: apply a *G*-preoperadic construction, then $L_{\rm On_2}$ -localize.

Shared goal: model corepresenting object for pairings (aka interchanging algebras, bifunctors, etc.) akin to May.²¹

$$\begin{array}{ccc} \mathcal{O}^{\otimes} \times \mathcal{P}^{\otimes} & \xrightarrow{\text{"pairing"}} & \mathcal{Q}^{\otimes} \\ \downarrow^{\pi} & & \downarrow^{\pi} \\ & \text{Span}(\mathbb{F}_{G}) \times \text{Span}(\mathbb{F}_{G}) & \xrightarrow{\wedge} & \text{Span}(\mathbb{F}_{G}) \end{array}$$

Today, we are ∞ -categorists.

Interchange and little V-disks

^{21].} P. May. "Pairings of categories and spectra", In: J. Pure Appl. Algebra 19 (1980), pp. 299-346.

The Boardman-Vogt tensor product

Definition

$$\mathcal{O}^{\otimes} \overset{\scriptscriptstyle{\mathsf{IN}}}{\otimes} \mathcal{P}^{\otimes} := \mathsf{L}_{\mathsf{Op}_{G}} \left(\mathcal{O}^{\otimes} \times \mathcal{P}^{\otimes} \longrightarrow \mathsf{Span}(\mathbb{F}_{G})^{2} \overset{\wedge}{\longrightarrow} \mathsf{Span}(\mathbb{F}_{G}) \right)$$

 $\operatorname{Alg}_{\mathcal{O}}(\mathcal{C})$ lifts to a "pointwise" G-symmetric monoidal category $\operatorname{Alg}_{\mathcal{O}}^{\otimes}(\mathcal{C})$.

Proposition (S.²²)

$$(-)\overset{\scriptscriptstyle{\mathrm{INV}}}{\otimes}\mathcal{O}^{\otimes}$$
 is left adjoint to $\underline{\mathrm{Alg}}^{\otimes}_{\mathcal{O}}(-)$, so

$$Alg_{\mathcal{O}}\underline{Alg}_{\mathcal{P}}^{\otimes}(\mathcal{C}) \simeq Alg_{\mathcal{O}\otimes\mathcal{P}}(\mathcal{C}).$$

Also, have "wreath" operator $\$ and natural L_{Op_c} -equivalences

$$\mathcal{O}^{\otimes}\overset{\text{\tiny BV}}{\otimes}\mathcal{P}^{\otimes}\leftarrow\mathcal{O}^{\otimes}\times\mathcal{P}^{\otimes}\rightarrow\mathcal{O}^{\otimes}\wr\mathcal{P}^{\otimes}.$$

Interchange and little V-disks

²² Natalie Stewart. Equivariant operads, symmetric sequences, and Boardman-Vogt tensor products. 2025. arXiv: 2501.02129 [math.CT].

The Dunn map

Interchange and little *V*-disks

Natalie Stewart

Cold open

Historical cont

Preview of argumen

G-∞-categoric operads

Equivariant arity

The structure spaces

BV-tensor products

ittle V-disk.

a smooth manifold

The strategy

With tangential

Sidebar on G- ∞ -categories

Interchange and little V-disks

Need theory of "approximations." We use equivariant higher category theory.

Definition

A *G-category* is a coefficient system of ∞ -categories $\mathcal{C}: \mathcal{O}_G^{\mathrm{op}} \to \mathrm{Cat}$.

Example

The terminal *G*-category has $*_G(G/H) = *$.

Definition

A G-functor $\mathcal{C} \to \mathcal{D}$ is a natural transformation $F \colon \mathcal{C} \implies \mathcal{D}$. A G-object is a G-functor $X \colon *_G \to \mathcal{C}$.

The corresponding theory of *G*-(**co**)limits, *G*-adjunctions formalizes "*H*-set indexed (co)products." Moral for approximations: **model (reflective)** localizations of the underlying *G*-category.

Natalie Stewart

Cold open

Historical cont

. . .

G-∞-categorical operads

Equivariant arity

The structure spaces

BV-tensor products

Little V-disks

nterlude: the homotopy type a smooth manifold

he strategy /ith tangential s

With tangential st

Preoperad models for 1-colored G-operads

Given $\mathcal{P}^{\otimes} \in \operatorname{POp}_{\mathsf{C}}$, we let $\mathcal{P}^{\operatorname{act}}_{/P}$ be the ∞ -category of arrows $P' \to P$ projecting to a forward map $T = T \to S$.

Definition

A map of G-preoperads $\alpha\colon \mathcal{P}^\otimes\to\mathcal{O}^\otimes$ with \mathcal{O}^\otimes a "one color" G-operad is a **weak** approximation if

- **1** The *G*-category of colors UP has a terminal *G*-object, and
- **2** For all $P \in \mathcal{P}^{\otimes}$ and $T \to \pi(P)$, the map of spaces

$$B\left(\mathcal{P}_{/P}^{\text{act}} \times_{\mathbb{F}_{G,/\pi(P)}} \{T \to \pi(P)\}\right) \to \prod_{[H/K] \subset \pi(P)} \mathcal{O}\left(T \times_{\pi(P)} [H/K]\right)$$

is a weak equivalence.

Interchange and little V-disks

Natalie Stewart

Cold open

Historical cont

Preview of argument

G- ∞ -categorical operads

Equivariant arity

The structure spaces

BV-tensor product

Little V-disks

Interlude: the homotopy type of a smooth manifold

With tangential

- -

Preoperad models for 1-colored G-operads

Proposition (Harpaz²³ '19 + reinterpretation)

If $\alpha \colon \mathcal{P}^\otimes \to \mathcal{O}^\otimes$ is a weak approximation, pullback is fully faithful

$$Alg_{\mathcal{O}}(\mathcal{S}_G) \subset Alg_{\mathcal{P}}(\mathcal{S}_G)$$

with image the \mathcal{P} -monoids whose "color" G-functors $U\mathcal{P} \to \underline{\mathcal{S}}_G$ are constant.

Weak approximations can be made to have many colors; a weak approximation α is a **strong approximation** if $UP \to UO$ is an equivalence.

Proposition (S.²⁴)

 $\mathrm{Alg}_{(-)}(\mathcal{S}_G)$ detects L_{Op_G} -equivalences when $U\mathcal{P} \to U\mathcal{O}$ is an equivalence; in particular, **strong approximations are** L_{Op_G} -equivalences.

Interchange and little V-disks

Natalie Stewart

Cold open

Historical conte

Preview of argument

G-∞-categorical operads

Equivariant arity

C-(pre)operads, algebra The structure spaces

3V-tensor product

Little V-disk

Interlude: the homotopy type of a smooth manifold

ie strategy ith tangontial:

Vith tangential st

²³ Yonatan Harpaz. Little cubes algebras and factorization homology (course notes).

²⁴Natalie Stewart. On tensor products with equivariant commutative operads. 2025. arXiv: 2504.02143 [math.AT].

Proof sketch.

Examine the free \mathcal{O} -G-space monad:²⁵

$$\left(T_{\mathcal{O}}X\right)^{H}\simeq\coprod_{S\in\mathbb{F}_{H}}\left(\mathcal{O}(S)\times\left(X^{S}\right)^{H}\right)_{h\operatorname{Aut}_{H}S}.$$

The inclusion $\operatorname{Aut}_H(S) \subset \operatorname{End}_H(S) = \left(S^S\right)^H$ yields natural splitting

$$(T_{\mathcal{O}}S)^{H} \simeq \mathcal{O}(S) \sqcup Junk.$$

Use monadicity of $\mathrm{Alg}_{\mathcal{O}}(\mathcal{S}_G) o \mathcal{S}_G$ and conservativity of $(\mathcal{O}(S))_{H \subset G}$.

²⁵ Natalie Stewart, Equivariant operads, symmetric sequences, and Boardman-Voat tensor products, 2025, arXiv: 2501,02129 [math.CT].

Approximating manifolds

Interchange and little V-disks Natalie Stewart

coia open

Historical cont

Preview of argumen

G-∞-categorical operads

Equivariant arity

The structure spaces

BV-tensor products

The Dunn II

ittle V-disks

nterlude: the homotopy smooth manifold

he strategy

With tangential:

eferences

Proposition (Dugger-Isaksen²⁶ '01)

If X is a topological space and $\mathfrak{O}\subset \mathscr{P}(X)$ a basis of contractible open subsets, then we get a weak equivalence

$$B\mathfrak{O} \xrightarrow{\sim} X$$

Corollary

Let $\mathfrak{O}_S^H(V) \subset \operatorname{Conf}_S^H(V)$ be the basis of configurations in affinely $\coprod_S D(V)$ -shaped invariant subspaces of D(V). We get a weak equivalence

$$B\mathfrak{O}_S^H(V) \stackrel{\sim}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} Conf_S^H(V) \simeq \mathbb{E}_V(S).$$

²⁶ Daniel Dugger and Daniel C. Isaksen. "Topological hypercovers and A¹-realizations". In: Math. Z. 246.4 (2004), pp. 667–689.

We define a G-preoperad \mathbb{P}_V^{\otimes} such that $\mathbb{P}_{V,/P}^{\operatorname{act}} \simeq \mathfrak{O}_S^H(V)$, yielding a weak approximation $\alpha_V \colon \mathbb{P}_V^{\otimes} \to \mathbb{E}_V^{\otimes}$. Then, we define a \mathbb{P} -Dunn map fitting into the above diagram.

Here, $\mathbb{P}_{V|W}^{\otimes}$ is the "G-preoperadic image, i.e. "decomposed little disks."

We're tasked with verifying that $\varphi_{\mathbb{E}} \circ M_{\mathbb{E}}$ induces an equivalence

$$\mathrm{Alg}_{\mathbb{E}_{V \oplus W}}(\mathcal{S}_G) \xrightarrow{\sim} \mathrm{Alg}_{\mathbb{E}_{V} \times \mathrm{Alg}_{\mathbb{E}_{W}}}(\mathcal{S}_G) \xleftarrow{\sim} \mathrm{Alg}_{\mathbb{E}_{V} \otimes \mathbb{E}_{W}}(\mathcal{S}_G)$$

Interchange and little V-disks

Natalie Stewart

Cold open

Historical cont

Preview of argumen

G-∞-categorio operads

Equivariant arity

The structure spaces

BV-tensor product

Little V-dis

Little V-disk

Interlude: the homotopy type o a smooth manifold

he strategy

With tangentials

- **1** $L_{\mathbb{P}}$ and $L_{\mathbb{E}}$ are L_{Op_c} -equivalences by fiat.
- **2** A variant of Harpaz's strategy²⁷ shows that $M_{\mathbb{P}}$ and $M_{\mathbb{E}}$ are L_{Op_G} -equivalences.
- Simple ∞ -category theory shows that $\alpha_V \times \alpha_W$ is a weak approximation.
- 4 A variant of Dunn's strategy²⁸ shows that $\alpha_{V|W}$ is a weak approximation.
- **5** Explicit 1-category theory shows that $\widetilde{\varphi}_{\mathbb{P}}$ is a strong approximation.
- Routine bookkeeping then shows that $Alg_{\mathbb{E}_{V \times \mathbb{E}_W}}(\mathcal{S}_G) \xrightarrow{\sim} Alg_{\mathbb{E}_V \times \mathbb{E}_W}(\mathcal{S}_G)$.

Interchange and little *V*-disks

Natalie Stewart

Cold open

Historical cont

Preview of argument

G- ∞ -categori operads

Equivariant arity

-(pre)operads, algebras

The structure space

BV-tensor products

Little V-disl

Interlude: the homotopy type o a smooth manifold

The strategy

With tangential

²⁷ Yonatan Harpaz, Little cubes glaebras and factorization homology (course notes).

²⁸ Gerald Dunn, "Tensor product of operads and iterated loop spaces", In: 1, Pure Appl. Algebra 50.3 (1988), pp. 237–258.

Stalkwise-linearizable tangential structures

Define $\mathbb{E}_{B_G^{\text{lin}}\text{Top}(n)}^{\otimes}$ to have colors the linearizable *G*-actions on \mathbb{R}^n and operations the *topological* embeddings.

Given a *G*-space *X* with stalkwise-linearizable equivariant \mathbb{R}^n -bundle $T_{\bullet} \colon X \to \mathcal{B}_G^{\text{lin}} \text{Top}(n)$, we define the assembly

$$\mathbb{E}_X^{\otimes} := L_{\operatorname{Op}_G} \left(\mathbb{E}_{B_G^{\operatorname{lin}} \operatorname{Top}(n)}^{\otimes} \times_{B_G^{\operatorname{lin}} \operatorname{Top}(n)^{G-\sqcup}} X^{G-\sqcup} \right).$$

Theorem (S.²⁹)

There is a natural equivariant colimit expression of operads

$$\underline{\text{colim}}_{x \in X} \mathbb{E}_{T_x}^{\otimes} \overset{\sim}{-\!\!\!-\!\!\!\!-\!\!\!\!-}} \mathbb{E}_X^{\otimes}$$

Interchange and little V-disks

Natalie Stewart

Cold open

Historical con

Preview of argumen

G- ∞ -categorica operads

quivariant arity

(pre)operads, algeb

BV-tensor products

/-tensor products

ittle V-disk

Little V-disks

nterlude: the homotopy type i smooth manifold The strategy

resuategy

with tangential:

²⁹ Natalie Stewart. On homotopical additivity of equivariant little disks operads (draft on website). 2025.

Stalkwise-linearizable tangential structures

Interchange and little V-disks

Natalie Stewart

Cold open

Historical con

Preview of argumen

G- ∞ -categorica operads

Equivariant arity

(pre)operads, algebra

BV-tensor products

The Dunn man

The Dunn

Interlude: the homotony to

he strategy

With tangential:

References

Corollary (S.)

Given stalkwise-linearizable equivariant \mathbb{R}^k -bundles $X \to B_C^{\text{lin}} \mathbf{Top}(n)$ and $Y \to B_C^{\text{lin}} \mathbf{Top}(m)$, fixing the direct sum structure

$$X \times Y \longrightarrow B_G^{\text{lin}} \text{Top}(n) \times B_G^{\text{lin}} \text{Top}(m) \stackrel{\oplus}{\longrightarrow} B_G^{\text{lin}} \text{Top}(n+m),$$

there is an equivalence.

$$\mathbb{E}_X^{\otimes} \overset{\scriptscriptstyle{\mathrm{BV}}}{\otimes} \mathbb{E}_Y^{\otimes} \overset{\scriptscriptstyle{\sim}}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-} \mathbb{E}_{X\times Y}^{\otimes}.$$

Other cases that are covered by the original argument:

- (Equivariant) swiss cheese
- Stratified little disks

A curious corollary about algebraic topology

Interchange and little V-disks

Natalie Stewart

Let $\operatorname{Disk}_{C}^{X-\operatorname{fr},\sqcup} \subset \operatorname{Mfld}_{C}^{X-\operatorname{fr},\sqcup}$ be the G-symmetric monoidal full category whose objects are disjoint unions of X-framed G-disks and whose mapping spaces are X-framed equivariant disk embeddings.

Corollary (S., c.f. Dwyer-Hess-Knudsen³⁰ '19)

There is a G-symmetric monoidal equivalence

$$\underline{\mathrm{Disk}}_{G}^{X-\mathrm{fr},\sqcup} \square \underline{\mathrm{Disk}}_{G}^{Y-\mathrm{fr},\sqcup} \simeq \underline{\mathrm{Disk}}_{G}^{X\times Y-\mathrm{fr},\sqcup}.$$

Here. \square is the box product of semi-Mackev functors valued in Cat ∞ .

³⁰ William Dwyer, Kathryn Hess, and Ben Knudsen. Configuration spaces of products. 2018. arXiv: 1710.05093 [math.AT].

References

Interchange and little V-disks

Natalie Stewart

Historical con

Preview of argumer

G-∞-categori operads

Equivariant arity

G-(pre)operads, algeb

he structure spaces

BV-tensor products

The Dunn man

Little V-dis

Interlude: the homotopy t a smooth manifold

The strategy

With tangentia

References

- [1] Shaul Barkan, Rune Haugseng, and Jan Steinebrunner. Envelopes for Algebraic Patterns. 2022. arXiv: 2208.07183 [math.CT].
- [2] Peter Bonventre and Luís A. Pereira. "Genuine equivariant operads". In: Adv. Math. 381 (2021), Paper No. 107502, 133.
- [3] Michael Brinkmeier. On Operads. Thesis (Ph.D.)—Universitat Osnabrück. 2000.
- [4] Emanuele Dotto. Stable real K-theory and real topological Hochschild homology. 2012. arXiv: 1212.4310 [math.AT].
- [5] Emanuele Dotto, Kristian Moi, Irakli Patchkoria, and Sune Precht Reeh. Real topological Hochschild homology. 2017. arXiv: 1711.10226 [math.AT].
- [6] Daniel Dugger. "An Atiyah-Hirzebruch spectral sequence for KR-theory". In: K-Theory 35.3-4 (2005), 213–256 (2006).
- [7] Daniel Dugger and Daniel C. Isaksen. "Topological hypercovers and A¹-realizations". In: Math. Z. 246.4 (2004), pp. 667–689.
- [8] Gerald Dunn. "Tensor product of operads and iterated loop spaces". In: J. Pure Appl. Algebra 50.3 (1988). pp. 237–258.
- [9] William Dwyer, Kathryn Hess, and Ben Knudsen. Configuration spaces of products. 2018. arXiv: 1710.05093 [math.AT].
- [10] Thigniew Fiedgrowicz and Rainer M. Vogt. An Additivity Theorem for the Interchange of En Structures. 2013. arXiv: 1102.1311. [math. AT]
- [11] Jeremy Hahn, Asaf Horev, Inbar Klang, Dylan Wilson, and Foling Zou. Equivariant nonabelian Poincaré duality and equivariant factorization homology of Thom spectra. 2024. arXiv: 2006.13348 [math.AT].
- [12] Yonatan Harnaz Little cubes glaebras and factorization homology (course notes)
- [13] Michael A. Hill and Michael J. Hopkins. Equivariant symmetric monoidal structures. 2016. arXiv: 1610.03114 [math.AT].
- [14] Jacob Lurie, Derived Algebraic Geometry VI: Ek Algebras, 2009, arXiv: 0911,0018 [math.AT]
- [15] 1. P. May, The geometry of iterated loop spaces, Vol. Vol. 271, Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York, 1972, pp. viii+175,
- [16] J. P. May. "Pairings of categories and spectra". In: J. Pure Appl. Algebra 19 (1980), pp. 299–346.
- [17] Denis Nardin and Jay Shah. Parametrized and equivariant higher algebra. 2022. arXiv: 2203.00072 [math.AT].
- [18] Colin Rourke and Brian Sanderson. "Equivariant configuration spaces". In: J. London Math. Soc. (2) 62.2 (2000), pp. 544–552.
- [19] Natalie Stewart. Equivariant operads, symmetric sequences, and Boardman-Vogt tensor products. 2025. arXiv: 2501.02129 [math.CT].
- [20] Natalie Stewart. On homotopical additivity of equivariant little disks operads (draft on website). 2025.
- $\textbf{[21]} \qquad \textbf{Natalie Stewart.} \textit{ On tensor products with equivariant commutative operads. 2025. arXiv: 2504.02143 \texttt{[}math.AT\texttt{]}. \\$
- [22] Ben Szczesny. Equivariant Framed Little Disk Operads are Additive. 2024. arXiv: 2410.20235 [math.AT].

This presentation was made in Beamer, with figures via tikz-cd and Inkscape, presented via Impressive. The tex is on my website. The title slide is $H_{C_2}^{\star}$ (* C_2 ; $\mathbb Z$) [6].