Cours C

Questionnaire à choix multiples de traitement numérique du signal

Durée: 7 minutes et 30 secondes

Les documents et les calculatrices ne sont pas autorisés. Pour chaque question il y a une ou plusieurs affirmations vraies, il faut indiquer TOUTES les affirmations vraies. Chaque question compte pour 4 points.

Date : NOM : Prénom :

Question 1 On considère $s(t) = \cos(2\pi t)$.

- A. L'échantillonnage à 2Hz de s(t) est un signal temps-discret.
- ullet B. L'échantillonnage à 2 Hz de s(t) est un signal périodique.
- ullet C. Le critère de Shannon-Nyquist est respecté pour une fréquence d'échantillonnage qui vérifie $f_e < 2 {
 m Hz}$.
- $\bullet\,$ D. Le critère de Shannon-Nyquist est respecté pour une fréquence d'échantillonnage qui vérifie $f_e>0.5{\rm Hz}$.

Question 2 On calcule la série de Fourier de x(t).

- A. C'est parce que x(t) est non-périodique qu'on a raison de calculer la série de Fourier.
- B. C'est parce que x(t) est pérodique qu'on a raison de calculer la série de Fourier.
- C. Si x(t) était à temps discret, on pourrait quand même calculer la série de Fourier.
- D. Sachant que x(t) est T-périodique et connaissant cette période T, il est possible de reconstruire x(t) à partir des coefficients de la série de Fourier.

 ${\bf Question} \ {\bf 3} \ \ Soit \ x(t) \ un \ signal \ temps \ continu \ non-p\'eriodique.$

- A. La transformée de Fourier est définie par $\hat{X}(f) = \int_{-\infty}^{+\infty} x^2(t) e^{j2\pi ft} dt$
- B. La transformée de Fourier est une succession de raies.
- C. La transformée de Fourier est périodique.
- D. Si x(t) est multipliée par 2 alors la transformée de Fourier est multipliée par 2.

Question 4 Soit x(t) un signal temps continu non-périodique.

- ullet A. Si x(t) est retardé alors sa transformée de Fourier est aussi retardée.
- B. La transformée de Fourier de $x(t) = \mathbf{1}_{[-T/2, T/2]}$ est une sinusoïde.
- C. La transformée de Fourier de x(t) = 1 est $\delta(f)$.
- D. Si x(t) est dilatée alors $\hat{X}(f)$ est aussi dilatée.

Question 5 On considère le signal $s(t) = \mathbf{1}_{[-1/2,1/2]}(t)$

- A. L'outil à utiliser pour calculer la transformée de Fourier a pour formule $\hat{S}(f)=\int_{-\infty}^{+\infty}s(t)e^{-j2\pi ft}\,dt$
- ullet B. Si on dilate le signal s(t) alors la transformée de Fourier est décalée en fréquence.
- C. Si on multiplie par deux le signal alors la transformée de Fourier est divisée par deux.
- D. La transformée de Fourier de ce signal est à valeurs réelles.

Mettre des croix dans les cases qui vous semblent vraies.

	1	2	3	4	5
A					
В					
С					
D					