Inference Overview

michaels

October 10, 2017

Contents

1	Inference for a population mean when the population variance is "known"11.11.1Statistical Model1.2Hypothesis test1.3Confidence intervals
1	Inference for a population mean when the population variance is "known"
1.	1 Statistical Model
	• Data x_1, \ldots, x_n modelled as "observed values" or "realisations" of iid random variables X_1, \ldots, X_n with $E(X_1) = \mu$ unknown and $Var(X_1) = \sigma_0^2$ known.
	– We call μ and σ_0^2 the "population mean and variance".
	• Under the model, the sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is our estimator (i.e. a random variable whose "observed value" or "realisation" is to be used as an <i>estimate</i> of the unknown parameter). We can say that (again, under the model)
	$- E(\bar{X}) = \mu$ $- Var(\bar{X}) = \frac{\sigma_0^2}{n}, \text{ so}$ $- SD(\bar{X}) = \sqrt{Var(\bar{X})} = \frac{\sigma_0}{\sqrt{n}}. \text{ This is the (true) standard error.}$

• Furthermore, we require that \bar{X} is (at least approximately) normally distributed. Then whatever be the true value of μ , the **pivot**

$$\frac{\bar{X} - \mu}{\sigma_0 / \sqrt{n}} \sim N(0, 1) \,,$$

(at least approximately):

- this follows immediately if the X_i 's themselves are **exactly** normally distributed;
- this also follows if the sample size is "large enough" so that the Central Limit Theorem applies:
 - * remember "large enough" is a subtle issue, it depends how "non-normal" the X_i 's actually are.
- The first step is to provide an estimate $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ and quote an associated standard error σ_0/\sqrt{n} . From here we can think of there being two "different" approaches:
 - Hypothesis test
 - Confidence interval

1.2 Hypothesis test

Is a useful option where there is a known "baseline" or "default" value μ_0 of the parameter, and the scientific question is looking to find evidence that something **different** to the baseline is going on. We formulate a **null hypothesis** H_0 : $\mu = \mu_0$ which corresponds to "parameter is equal to the baseline value".

- We identify a **test statistic** which is a random variable under the model
 - whose distribution is known when H_0 is true;
 - which helps us measure evidence against H_0 .
- The test statistic may equivalently be identified as either
 - the sample mean $\bar{X} \sim N\left(\mu_0, \frac{\sigma_0^2}{n}\right)$ under H_0 ;
 - the "Z-statistic", obtained by plugging the hypothesised value μ_0 into the pivot above, giving

$$Z = \frac{\bar{X} - \mu_0}{\sigma_0 / \sqrt{n}} \sim N(0, 1) \text{ under } H_0.$$

• We compute a **p-value** which is the probability, under the model, of a certain event. This event is

"Getting a result which constitutes at least as much evidence against H_0 as was observed."

- Deciding what constitutes "at least as much evidence against H_0 " depends on the context. We can identify a few different possibilities:
 - One-sided In this case deviations in a particular direction are anticipated before the data is observed. We express this in terms of an alternative hypothesis. There are two sub-cases:
 - * H_1 : $\mu > \mu_0$. This would be appropriate if it was anticipated that if any deviations from H_0 occur, they would result in a larger sample mean; thus larger values of the sample mean constitute more evidence against H_0 . In this case the p-value is

$$P(\bar{X} \ge \bar{x})$$
 where $\bar{X} \sim N\left(\mu_0, \frac{\sigma_0^2}{n}\right)$

or equivalently,

$$P(Z \ge z)$$

where

- $\cdot Z \sim N(0,1);$
- $z = \frac{\bar{x} \mu_0}{\sigma_0 / \sqrt{n}}$ is the observed value of the Z-statistic.
- * H_1 : $\mu < \mu_0$. This would be appropriate if it was anticipated that if any deviations from H_0 occur, they would result in a smaller sample mean; thus smaller values of the sample mean constitute more evidence against H_0 . In this case the p-value is

$$P(\bar{X} \leq \bar{x})$$
 where $\bar{X} \sim N\left(\mu_0, \frac{\sigma_0^2}{n}\right)$

or equivalently,

$$P(Z \leq z)$$
.

- **Two-sided** In this case deviations in either direction are equally "interesting". Since the test statistic(s) have *symmetric* distributions under H_0 "at least as much evidence against H_0 " can sensibly be translated as either
 - * " \bar{X} takes a value at least as far away from μ_0 as was observed" or
 - * "the Z-statistic is at least as large in absolute value as was observed".
- We formulate the alternative hypothesis as $H_1: \mu \neq \mu_0$.
 - * The p-value is computed as

$$P(|\bar{X} - \mu_0| \ge |\bar{x} - \mu_0|) = \begin{cases} 2P(\bar{X} \ge \bar{x}) & \text{if } \bar{x} > \mu_0; \\ 2P(\bar{X} \le \bar{x}) & \text{if } \bar{x} < \mu_0. \end{cases}$$

Equivalently,

$$P(|Z| \ge |z|) = 2P(Z \ge |z|)$$

where $Z \sim N(0, 1)$.

- The smaller the p-value, the more evidence against H_0 , and thus (indirectly) the stronger the suggestion that "something interesting is going on".
- If the p-value is **not small** we say that "the data is consistent with H_0 ". This does not mean H_0 is true; maybe we just didn't collect enough data.

1.3 Confidence intervals

These provide an alternative way of indicating which parameter values might be considered "consistent with the data".

- A confidence interval is the "realisation" of a random set which, under the model, contains the true parameter value with a fixed, known, (usually high) probability. We also make the distinction between **one-sided** and **two-sided** intervals.
 - Two-sided intervals are of the form $\bar{x} \pm c \frac{\sigma_0}{\sqrt{n}}$, where c is chosen so that the random set this is a realisation of covers μ with probability equal to the given "confidence level" $100(1-\alpha)$ %:

* the "multiplier" c satisfies

$$P(-c \le Z \le c) = 1 - \alpha$$

where $Z \sim N(0, 1)$.

- One sided intervals are of the form
 - $\begin{array}{l} * \ (-\infty, \bar{x} + c \frac{\sigma_0}{\sqrt{n}}] \ \text{or} \\ * \ [\bar{x} c \frac{\sigma_0}{\sqrt{n}}, \infty) \end{array}$

depending on the context.

- * The (finite) endpoints are also called "upper" or "lower" (respectively) confidence limits.
- * The upper confidence limit $\bar{x}+c\frac{\sigma_0}{\sqrt{n}}$ may be interpreted as "the largest parameter value consistent with the data" in some sense, and is often associated with the one-sided alternative hypothesis $H_1: \mu < \mu_0$, where it is suspected that the true value is *less* than hypothesised.
- Connection between the two approaches Careful consideration of how both confidence intervals and p-values are obtained shows a strong connection between them:

 μ_0 is in the 100(1 – α)% C.I. iff p-value of H_0 : $\mu = \mu_0 > \alpha$.

e.g. when $\alpha = 0.05$, both occur in the two-sided case iff

$$\frac{|\bar{x} - \mu_0|}{\sigma_0/\sqrt{n}} \le 1.96.$$