Syntax and Parsing

PCL-II May 18, 2016 Mark Fishel, Uni. Tartu, Estonia

Structure in language

- Sentences can be grouped into bigger sentences, e.g.
 - S and S
 - S but S
 - S but S, when S, even though S
- Phrases also consist of words and phrases
 - big table
 - big and walrus-like table
 - not so big, but nevertheless quite impressive table

Syntax

- The study of sentence structure
- Why should we be concerned with it?
 - sentence structure prediction
 - structure-based NLP applications
 - summarization
 - machine translation

Syntax for statistical machine translation: pre-reordering

- Input: Ich werde Ihnen die entsprechenden Anmerkungen aushändigen, damit Sie das eventuell bei der Abstimmung übernehmen können.
- Gloss: I will to you the corresponding comments pass on, so that you them perhaps in the vote adopt can.

Syntax for statistical machine translation: pre-reordering

- Input: Ich werde Ihnen die entsprechenden Anmerkungen aushändigen, damit Sie das eventuell bei der Abstimmung übernehmen können.
- Gloss: I will to you the corresponding comments pass on, so that you them perhaps in the vote adopt can.

Syntax for statistical machine translation: pre-reordering

- Reordered input: Ich werde <u>aushändigen</u>
 Ihnen die entsprechenden Anmerkungen,
 damit Sie <u>können übernehmen</u> das eventuell
 bei der Abstimmung.
- Gloss: I will pass on to you the corresponding comments, so that you can adopt them perhaps in the vote.

- A sentence has no limited length:
 - Mark gave a lecture
 - The students realized that Mark gave a lecture
 - Despite all Mark's efforts the students realized that Mark gave a lecture
 - According to the local news, despite all Mark's efforts the students realized that Mark gave a lecture
 - Laura was happy to announce that according to the local news, despite all Mark's efforts the students realized that Mark gave a lecture
 - Potentially an infinite set of sentences
- that we want to handle using a finite model

- Ambiguity:
 - The viking killed the pirate with a sword

Ambiguity:

- (The viking) <u>killed</u> (the pirate) (with a sword)
 vs
- (The viking) <u>killed</u> (the pirate (with a sword))

 Can we ignore structure and handle it on the word sequence level?

- Can we ignore structure and handle it on the word sequence level?
 - o e.g. "The girl with the flowers is cute"

- Can we ignore structure and handle it on the word sequence level?
 - e.g. "The girl with the flowers is cute"
 - A 3-gram-based spellchecker will likely suggest:
 "did you mean 'the flowers are' "

- Can we ignore structure and handle it on the word sequence level?
 - e.g. "The girl with the flowers is cute"
 - A 3-gram-based spellchecker will likely suggest:
 "did you mean 'the flowers are' "
 - e.g. translating "Legen sie noch etwas zu":
 - Legen = lay? lie? put?...
 - Zulegen = add

- Can we ignore structure and handle it on the word sequence level?
 - e.g. "The girl with the flowers is cute"
 - A 3-gram-based spellchecker will likely suggest:
 "did you mean 'the flowers are' "
 - e.g. translating "Legen sie noch etwas zu":
 - Legen = lay? lie? put?...
 - Zulegen = add

- Constituency structure:
 - sentence-phrase-word hierarchy
 - each phrase labelled with its type

- Dependency structure:
 - every word has a "parent" / head-word
 - every word-parent relation labelled with a type

 $(((\mathsf{The}_{\mathsf{DT}} \, \mathsf{girl}_{\mathsf{NN}})_{\mathsf{NP}} \, (\mathsf{with}_{\mathsf{IN}} \, (\mathsf{the}_{\mathsf{DT}} \, \mathsf{flowers}_{\mathsf{NN}})_{\mathsf{NP}})_{\mathsf{PP}})_{\mathsf{NP}} \, (\mathsf{is}_{\mathsf{VBZ}} \, (\mathsf{very}_{\mathsf{RB}} \, \mathsf{cute}_{\mathsf{JJ}})_{\mathsf{AdjP}})_{\mathsf{VP}})_{\mathsf{S}})_{\mathsf{NP}} \, (\mathsf{Is}_{\mathsf{NP}} \, \mathsf{In})_{\mathsf{NP}} \, (\mathsf{Is}_{\mathsf{NP}} \, \mathsf{In})_{\mathsf{NP}} \, (\mathsf{In})_{\mathsf{NP}} \, (\mathsf{I$

 $(((\mathsf{The}_{\mathsf{DT}} \, \mathsf{girl}_{\mathsf{NN}})_{\mathsf{NP}} \, (\mathsf{with}_{\mathsf{IN}} \, (\mathsf{the}_{\mathsf{DT}} \, \mathsf{flowers}_{\mathsf{NN}})_{\mathsf{NP}})_{\mathsf{PP}})_{\mathsf{NP}} \, (\mathsf{is}_{\mathsf{VBZ}} \, (\mathsf{very}_{\mathsf{RB}} \, \mathsf{cute}_{\mathsf{JJ}})_{\mathsf{AdjP}})_{\mathsf{VP}})_{\mathsf{S}})_{\mathsf{NP}} \, (\mathsf{Is}_{\mathsf{NP}} \, \mathsf{In}_{\mathsf{NP}} \, \mathsf{In}_{\mathsf{$

 $(((\mathsf{The}_{\mathsf{DET}}\,\mathsf{girl}_{\mathsf{NN}})\,(\mathsf{with}_{\mathsf{IN}}\,(\mathsf{the}_{\mathsf{DET}}\,\mathsf{flowers}_{\mathsf{NN}})_{\mathsf{POBJ}})_{\mathsf{PREP}}\,)_{\mathsf{N-SUBJ}}\,\mathsf{is}_{\mathsf{VBZ}}\,(\mathsf{very}_{\mathsf{ADVMOD}}\,\mathsf{cute}_{\mathsf{JJ}}\,)_{\mathsf{OBJ}})_{\mathsf{ROOT}}$

The viking killed the pirate with a sword

The viking killed the pirate with a sword

The viking killed the pirate with a sword

The viking killed the pirate with a sword

The viking killed the pirate with a sword

The viking killed the pirate with a cord

The viking killed the pirate with a sword

It villing tilled the pirate. the a sword

The viking killed the pirate with swo

Next

- Grammars
 - describing structures
- CYK parsing
 - analyzing sentence structure
- Probabilistic grammars
 - structure + probabilities
- Grammar acquisition
 - from treebanks to grammars, automatically

Grammar

- A set of rules describing which sentences are acceptable for a particular language
- Context-free grammars (CFG): classical approach to consistency syntax
 - even though dependency syntax can also be described with the same kind of grammar
- Key point: describe the permitted structures one sub-tree at a time

Example:

- $S \rightarrow NP VP$
- $NP \rightarrow N$
- $NP \rightarrow JJ NP$
- $VP \rightarrow V NP$
- \bullet VP \rightarrow V
- $N \rightarrow dogs$
- $N \rightarrow cats$
- $N \rightarrow stuff$
- $JJ \rightarrow big$
- JJ → black
- V → chase
- $V \rightarrow eat$
- $V \rightarrow sleep$

Example:

- $S \rightarrow NP VP$
- NP → N
- $NP \rightarrow JJ NP$
- $VP \rightarrow V NP$
- $VP \rightarrow V$
- N → dogs
- $N \rightarrow cats$
- $N \rightarrow stuff$
- $JJ \rightarrow big$
- JJ → black
- V → chase
- $V \rightarrow eat$
- V → sleep

Sentences:

- dogs chase cats
- cats eat
- big cats eat big dogs
- big black dogs sleep

Example:

- $S \rightarrow NP VP$
- $NP \rightarrow N$
- $NP \rightarrow JJ NP$
- $VP \rightarrow V NP$
- \bullet VP \rightarrow V
- $N \rightarrow dogs$
- $N \rightarrow cats$
- $N \rightarrow stuff$
- $JJ \rightarrow big$
- JJ → black
- V → chase
- V → eat
- V → sleep

Sentences:

- dogs chase cats
- cats eat
- big cats eat big dogs
- big black dogs sleep

But also

- black dogs sleep big cats
- black black big black dogs eat

Example:

- $S \rightarrow NP VP$
- $NP \rightarrow N$
- NP → JJ NP
- $VP \rightarrow V NP$
- \bullet VP \rightarrow V
- $N \rightarrow dogs$
- N → cats
- $N \rightarrow stuff$
- $JJ \rightarrow big$
- JJ → black
- V → chase
- $V \rightarrow eat$
- V → sleep

Sentences:

- dogs chase cats
- cats eat
- big cats eat big dogs
- big black dogs sleep

But also

- black dogs sleep big cats
- black black big black dogs eat

Grammar:

- a set of terminal symbols (dogs, stuff, big, ...)
- a set of non-terminal symbols (N, JJ, NP, ...)
- a set of rules to turn non-terminals into terminals and other non-terminals
- a (set of) starting symbol(s)

Grammatical sentences

- Sentence form of a grammar:
 - S is a sentence form
 - \circ $\alpha\gamma\beta$ is a sentence form if
 - there is a sentence form $\alpha B\beta$
 - there is a rule $B \rightarrow \gamma$ within the grammar
- Grammatical sentence = a sentence form with only terminal symbols in it

Parsing

Task: given a grammar and a sentence:

- is the sentence part of the given grammar?
- what is its structure/rule sequence that would generate it starting from S?

Parsing

- Is the sentence parseable with the given grammar, a naive solution:
 - generate all trees that the grammar can generate
 - check if given sentence is among them
- Why naive?

Parsing

- Is the sentence parseable with the given grammar, a naive solution:
 - generate all trees that the grammar can generate
 - check if given sentence is among them
- Why naive?
 - the set of sentences that the grammar accepts is in general exponential
 - due to recursion it can also be infinite

Chart parsing

- A solution: dynamic programming
- Find partial trees only once, store in a chart and reuse
- Cocke-Younger-Kasami (CYK) algorithm:
 - also called CKY algorithm
 - bottom-up parsing
 - list of chart entries per word subsequence

CYK parsing

- Requirement: the grammar must be in the "Chomsky normal form" (CNF), which allows only 2 kinds of rules:
 - A → a (a non-terminal into a terminal)
 - A → BC (a non-terminal into 2 non-terminals)

CYK parsing

- Requirement: the grammar must be in the "Chomsky normal form" (CNF), which allows only 2 kinds of rules:
 - \circ A \rightarrow a (a non-terminal into a terminal)
 - \circ A \rightarrow BC (a non-terminal into 2 non-terminals)
- Any grammar can be put into CNF, e.g.
 - o original rule: CNF rules:

$$VP \rightarrow V NP PP$$
 $VP \rightarrow V VP_1$ $VP_1 \rightarrow NP PP$

$$NP \rightarrow Iittle N$$
 $NP \rightarrow ADJ_1 N$ $ADJ_1 \rightarrow Iittle$

CYK parsing

5	big dogs chase black cats				N JJ NP VP NP	$N \rightarrow dogs$ $N \rightarrow cats$ $N \rightarrow stuff$ $JJ \rightarrow big$ $JJ \rightarrow black$ $V \rightarrow chase$
4	big dogs chase black	dogs chase black cats			•	V → eat V → sleep
						·
3	big dogs chase	dogs chase black	chase black cats			
2	big dogs	dogs chase	chase black	black cats		
1	big	dogs	chase	black	cats	

• A cell for every subsequence (total num: len^2)

CYK parsing

5	big dogs chase black cats			 NP → NP → 	JJ NP VP NP	1.1
4	big dogs chase black	dogs chase black cats		1	•	V → chase V → eat V → sleep
3	big dogs chase	dogs chase black	chase black cats		•	$\begin{array}{l} NP \to dogs \\ NP \to cats \\ NP \to stuff \end{array}$
2	big dogs	dogs chase	chase black	black cats	•	$\begin{array}{c} VP \to chase \\ VP \to eat \\ VP \to sleep \end{array}$
1	big	dogs	chase	black	cats	

• A cell for every subsequence (total num: len²)

CYK parsing

5	big dogs chase black cats		1		JJ NP VP NP	•	$N \rightarrow dogs$ $N \rightarrow cats$ $N \rightarrow stuff$ JJ $\rightarrow big$
4	big dogs chase black	dogs chase black cats		1		•	$JJ \rightarrow black$ $V \rightarrow chase$ $V \rightarrow eat$ $V \rightarrow sleep$
3	big dogs chase	dogs chase black	chase black cats		1	•	$\begin{array}{c} NP \to dogs \\ NP \to cats \\ NP \to stuff \end{array}$
2	big dogs	dogs chase	chase black	black cats		•	$VP \rightarrow chase$ $VP \rightarrow eat$ $VP \rightarrow sleep$
1	big	dogs	chase	black	cats		

• A cell for every subsequence (total num: len^2)

5	big dogs chase black cats		1	• NP →	JJ NP VP NP	$N \rightarrow dogs$ $N \rightarrow cats$ $N \rightarrow stuff$ $JJ \rightarrow big$ $JJ \rightarrow black$
4	big dogs chase black	dogs chase black cats		1	•	V → chase V → eat V → sleep
3	big dogs chase	dogs chase black	chase black cats		•	$\begin{array}{l} \text{NP} \rightarrow \text{dogs} \\ \text{NP} \rightarrow \text{cats} \\ \text{NP} \rightarrow \text{stuff} \end{array}$
2	big dogs	dogs chase	chase black	black cats	•	$VP \rightarrow chase$ $VP \rightarrow eat$ $VP \rightarrow sleep$
1	big	dogs	chase	black	cats	

5	big dogs chase black cats		1	• NP →	JJ NP VP NP	$N \rightarrow dogs$ $N \rightarrow cats$ $N \rightarrow stuff$ $JJ \rightarrow big$
4	big dogs chase black	dogs chase black cats		1	•	$JJ \rightarrow black$ $V \rightarrow chase$ $V \rightarrow eat$ $V \rightarrow sleep$
3	big dogs chase	dogs chase black	chase black cats		•	$\begin{array}{l} NP \to dogs \\ NP \to cats \\ NP \to stuff \end{array}$
2	big dogs	dogs chase	chase black	black cats	•	$VP \rightarrow chase$ $VP \rightarrow eat$ $VP \rightarrow sleep$
1	JJ big	dogs	chase	black	cats	

5	big dogs chase black cats		1	• NP →	JJ NP VP NP	$N \rightarrow dogs$ $N \rightarrow cats$ $N \rightarrow stuff$ $JJ \rightarrow big$ $JJ \rightarrow black$
4	big dogs chase black	dogs chase black cats		1	•	V → chase V → eat V → sleep
3	big dogs chase	dogs chase black	chase black cats		•	$\begin{array}{l} \text{NP} \rightarrow \text{dogs} \\ \text{NP} \rightarrow \text{cats} \\ \text{NP} \rightarrow \text{stuff} \end{array}$
2	big dogs	dogs chase	chase black	black cats	•	$VP \rightarrow chase$ $VP \rightarrow eat$ $VP \rightarrow sleep$
	JJ	N, NP				
1	big	dogs	chase	black	cats	

5	big dogs chase black cats		1	• NP →	JJ NP VP NP	$N \rightarrow dogs$ $N \rightarrow cats$ $N \rightarrow stuff$ $JJ \rightarrow big$ $JJ \rightarrow black$
4	big dogs chase black	dogs chase black cats		1	•	V → chase V → eat V → sleep
3	big dogs chase	dogs chase black	chase black cats		•	$\begin{array}{l} \text{NP} \rightarrow \text{dogs} \\ \text{NP} \rightarrow \text{cats} \\ \text{NP} \rightarrow \text{stuff} \end{array}$
2	big dogs	dogs chase	chase black	black cats	•	VP → chase VP → eat VP → sleep
	JJ	N, NP	V, VP			
1	big	dogs	chase	black	cats	

5	big dogs chase black cats		1	• NP →	JJ NP VP NP	$N \rightarrow dogs$ $N \rightarrow cats$ $N \rightarrow stuff$ $JJ \rightarrow big$
4	big dogs chase black	dogs chase black cats		1	•	$JJ \rightarrow black$ $V \rightarrow chase$ $V \rightarrow eat$ $V \rightarrow sleep$
3	big dogs chase	dogs chase black	chase black cats		•	$\begin{array}{l} NP \to dogs \\ NP \to cats \\ NP \to stuff \end{array}$
2	big dogs	dogs chase	chase black	black cats	•	VP → chase VP → eat VP → sleep
	JJ	N, NP	V, VP	JJ		
1	big	dogs	chase	black	cats	

5	big dogs chase black cats		1		JJ NP VP NP	$N \rightarrow dogs$ $N \rightarrow cats$ $N \rightarrow stuff$ $JJ \rightarrow big$ $JJ \rightarrow black$
4	big dogs chase black	dogs chase black cats		1	•	$V \rightarrow \text{chase}$ $V \rightarrow \text{eat}$ $V \rightarrow \text{sleep}$
3	big dogs chase	dogs chase black	chase black cats		•	$\begin{array}{c} \text{NP} \rightarrow \text{dogs} \\ \text{NP} \rightarrow \text{cats} \\ \text{NP} \rightarrow \text{stuff} \end{array}$
2	big dogs	dogs chase	chase black	black cats	•	$VP \rightarrow chase$ $VP \rightarrow eat$ $VP \rightarrow sleep$
	JJ	N, NP	V, VP	JJ	N, NP	
1	big	dogs	chase	black	cats	

5	big dogs chase black cats		1		JJ NP VP NP	$N \rightarrow dogs$ $N \rightarrow cats$ $N \rightarrow stuff$ $JJ \rightarrow big$ $JJ \rightarrow black$
4	big dogs chase black	dogs chase black cats		1	•	$V \rightarrow \text{chase}$ $V \rightarrow \text{eat}$ $V \rightarrow \text{sleep}$
3	big dogs chase	dogs chase black	chase black cats		•	$\begin{array}{l} \text{NP} \rightarrow \text{dogs} \\ \text{NP} \rightarrow \text{cats} \\ \text{NP} \rightarrow \text{stuff} \end{array}$
2	big dogs	dogs chase	chase black	black cats	•	$VP \rightarrow chase$ $VP \rightarrow eat$ $VP \rightarrow sleep$
	JJ	N, NP	V, VP	JJ	N, NP	
1	big	dogs	chase	black	cats	

- for i in 2..N: try splitting each i-word sequence into two sub-sequences (i-1 different ways)
- check if both sub-sequences have at least 1 parse available in the table

5	big dogs chase black cats		1	• NP →	JJ NP VP NP	$N \rightarrow dogs$ $N \rightarrow cats$ $N \rightarrow stuff$ $JJ \rightarrow big$ $JJ \rightarrow black$
4	big dogs chase black	dogs chase black cats		1	•	V → chase V → eat V → sleep
3	big dogs chase	dogs chase black	chase black cats		•	$\begin{array}{c} \text{NP} \rightarrow \text{dogs} \\ \text{NP} \rightarrow \text{cats} \\ \text{NP} \rightarrow \text{stuff} \end{array}$
	NP				•	$\begin{array}{c} \text{VP} \rightarrow \text{chase} \\ \text{VP} \rightarrow \text{eat} \end{array}$
2	big dogs	dogs chase	chase black	black cats	•	VP → sleep
	JJ	N, NP	V, VP	JJ	N, NP	
1	big	dogs	chase	black	cats	

- for i in 2..N: try splitting each i-word sequence into two sub-sequences (i-1 different ways)
- check if both sub-sequences have at least 1 parse available in the table

5	big dogs chase black cats		1		JJ NP VP NP	$N \rightarrow dogs$ $N \rightarrow cats$ $N \rightarrow stuff$ $JJ \rightarrow big$ $JJ \rightarrow black$
4	big dogs chase black	dogs chase black cats		1	•	V → chase V → eat V → sleep
3	big dogs chase	dogs chase black	chase black cats		•	$\begin{array}{l} \text{NP} \rightarrow \text{dogs} \\ \text{NP} \rightarrow \text{cats} \\ \text{NP} \rightarrow \text{stuff} \end{array}$
2	NP big dogs	dogs chase	chase black	black cats	•	$VP \rightarrow chase$ $VP \rightarrow eat$ $VP \rightarrow sleep$
	JJ	N, NP	V, VP	JJ	N, NP	
1	big	dogs	chase	black	cats	

- for i in 2..N: try splitting each i-word sequence into two sub-sequences (i-1 different ways)
- check if both sub-sequences have at least 1 parse available in the table

5	big dogs chase black cats				JJ NP VP NP	$N \rightarrow dogs$ $N \rightarrow cats$ $N \rightarrow stuff$ $JJ \rightarrow big$
4	big dogs chase black	dogs chase black cats		1	•	$JJ \rightarrow black$ $V \rightarrow chase$ $V \rightarrow eat$ $V \rightarrow sleep$
3	big dogs chase	dogs chase black	chase black cats		•	$\begin{array}{l} NP \to dogs \\ NP \to cats \\ NP \to stuff \end{array}$
2	NP big dogs	S dogs chase	chase black	black cats	•	VP → chase VP → eat VP → sleep
	JJ	N, NP	V, VP	JJ	N, NP	
1	big	dogs	chase	black	cats	

- for i in 2..N: try splitting each i-word sequence into two sub-sequences (i-1 different ways)
- check if both sub-sequences have at least 1 parse available in the table

5	big dogs chase black cats		1		JJ NP VP NP	$N \rightarrow dogs$ $N \rightarrow cats$ $N \rightarrow stuff$ $JJ \rightarrow big$
4	big dogs chase black	dogs chase black cats		1	•	$JJ \rightarrow black$ $V \rightarrow chase$ $V \rightarrow eat$ $V \rightarrow sleep$
3	big dogs chase	dogs chase black	chase black cats		•	$\begin{array}{l} \text{NP} \rightarrow \text{dogs} \\ \text{NP} \rightarrow \text{cats} \\ \text{NP} \rightarrow \text{stuff} \end{array}$
2	NP big dogs	S dogs chase	chase black	black cats	•	$VP \rightarrow chase$ $VP \rightarrow eat$ $VP \rightarrow sleep$
	JJ	N, NP	V, VP	JJ	N, NP	
1	big	dogs	chase	black	cats	

- for i in 2..N: try splitting each i-word sequence into two sub-sequences (i-1 different ways)
- check if both sub-sequences have at least 1 parse available in the table

5	big dogs chase black cats		1		JJ NP VP NP	$N \rightarrow dogs$ $N \rightarrow cats$ $N \rightarrow stuff$ $JJ \rightarrow big$ $JJ \rightarrow black$
4	big dogs chase black	dogs chase black cats		1	•	V → chase V → eat V → sleep
3	big dogs chase	dogs chase black	chase black cats		•	$\begin{array}{l} \text{NP} \rightarrow \text{dogs} \\ \text{NP} \rightarrow \text{cats} \\ \text{NP} \rightarrow \text{stuff} \end{array}$
2	NP big dogs	S dogs chase	- chase black	black cats	•	VP → chase VP → eat VP → sleep
	JJ	N, NP	V, VP	JJ	N, NP	
1	big	dogs	chase	black	cats	

- for i in 2..N: try splitting each i-word sequence into two sub-sequences (i-1 different ways)
- check if both sub-sequences have at least 1 parse available in the table

2	NP big dogs	S dogs chase	chase black	NP black cats	•	VP → eat VP → sleep
3	big dogs chase	dogs chase black	chase black cats	NID	•	$NP \rightarrow dogs$ $NP \rightarrow cats$ $NP \rightarrow stuff$ $VP \rightarrow chase$
4	big dogs chase black	dogs chase black cats			•	$\begin{array}{l} V \to chase \\ V \to eat \\ V \to sleep \end{array}$
5	big dogs chase black cats		1	• NP →	JJ NP VP NP	$N \rightarrow dogs$ $N \rightarrow cats$ $N \rightarrow stuff$ $JJ \rightarrow big$ $JJ \rightarrow black$

- for i in 2..N: try splitting each i-word sequence into two sub-sequences (i-1 different ways)
- check if both sub-sequences have at least 1 parse available in the table

5	big dogs chase black cats				JJ NP VP NP	$N \rightarrow dogs$ $N \rightarrow cats$ $N \rightarrow stuff$ $JJ \rightarrow big$
4	big dogs chase black	dogs chase black cats		1	•	$JJ \rightarrow black$ $V \rightarrow chase$ $V \rightarrow eat$ $V \rightarrow sleep$
3	big dogs chase	dogs chase black	chase black cats		•	$\begin{array}{l} NP \to dogs \\ NP \to cats \\ NP \to stuff \end{array}$
2	NP big dogs	S dogs chase	- chase black	NP black cats	•	VP → chase VP → eat VP → sleep
1	JJ big	N, NP	V, VP	JJ black	N, NP	

- for i in 2..N: try splitting each i-word sequence into two sub-sequences (i-1 different ways)
- check if both sub-sequences have at least 1 parse available in the table

5	big dogs chase black cats			• NP →	JJ NP VP NP	$N \rightarrow dogs$ $N \rightarrow cats$ $N \rightarrow stuff$ $JJ \rightarrow big$
4	big dogs chase black	dogs chase black cats			•	JJ → black V → chase V → eat
4	big dogs chase black	dogs chase black cats			•	$V \rightarrow sleep$ $NP \rightarrow dogs$ $NP \rightarrow cats$
3	big dogs chase	dogs chase black	chase black cats		•	$NP \rightarrow Cals$ $NP \rightarrow stuff$
	NP	S	_	NP	•	VP → chase VP → eat
2	big dogs	dogs chase	chase black	black cats	•	VP → sleep
	JJ	N, NP	V, VP	JJ	N, NP	
1	big	dogs	chase	black	cats	

- for i in 2..N: try splitting each i-word sequence into two sub-sequences (i-1 different ways)
- check if both sub-sequences have at least 1 parse available in the table

5	big dogs chase black cats				JJ NP VP NP	$N \rightarrow dogs$ $N \rightarrow cats$ $N \rightarrow stuff$
	sig dege chase sident eate				•	JJ → big JJ → black
4	big dogs chase black	dogs chase black cats		1	•	$V \rightarrow \text{chase}$ $V \rightarrow \text{eat}$ $V \rightarrow \text{sleep}$
3	S big dogs + shase	dogs chase black	chase black cats		•	$\begin{array}{l} NP \to dogs \\ NP \to cats \\ NP \to stuff \end{array}$
	NP	S	_	NP	•	VP → chase
2	big dogs	dogs chase	chase black	black cats	•	VP → eat VP → sleep
	JJ	N, NP	V, VP	JJ	N, NP	
1	big	dogs	chase	black	cats	

- for i in 2..N: try splitting each i-word sequence into two sub-sequences (i-1 different ways)
- check if both sub-sequences have at least 1 parse available in the table

5	his dage shoot block outs				JJ NP VP NP	$\begin{array}{l} N \to dogs \\ N \to cats \\ N \to stuff \end{array}$
5	big dogs chase black cats			V1 /	•	JJ → big JJ → black
4	big dogs chase black	dogs chase black cats		1	•	$V \rightarrow \text{chase}$ $V \rightarrow \text{eat}$ $V \rightarrow \text{sleep}$
3	S big dogs tehase	dogs chase black	chase black cats		•	$\begin{array}{c} NP \to dogs \\ NP \to cats \\ NP \to stuff \end{array}$
	NP	S	-	NP	•	VP → chase VP → eat
2	big dogs	dogs chase	chase black	black cats	•	VP → sleep
	JJ	N, NP	V, VP	JJ	N, NP	
1	big	dogs	chase	black	cats	

- for i in 2..N: try splitting each i-word sequence into two sub-sequences (i-1 different ways)
- check if both sub-sequences have at least 1 parse available in the table

5	big dogs chase black cats				JJ NP VP NP	$N \rightarrow dogs$ $N \rightarrow cats$ $N \rightarrow stuff$ $JJ \rightarrow big$
					•	JJ → black V → chase V → eat
4	big dogs chase black	dogs chase black cats	VP		•	$V \rightarrow cat$ $V \rightarrow sleep$ $NP \rightarrow dogs$
3	big dogs tehase	dogs chase black	chase black cats	*	•	$\begin{array}{c} NP \to cats \\ NP \to stuff \end{array}$
2	NP big dogs	S dogs chase	- chase black	NP black cats	•	VP → chase VP → eat VP → sleep
	JJ	N, NP	V, VP	JJ	N, NP	
1	big	dogs	chase	black	cats	

- for i in 2..N: try splitting each i-word sequence into two sub-sequences (i-1 different ways)
- check if both sub-sequences have at least 1 parse available in the table

5	big dogs chase black cats				JJ NP VP NP	$\begin{array}{l} N \rightarrow dogs \\ N \rightarrow cats \\ N \rightarrow stuff \end{array}$
5	big dogs chase black cats			• • • •	•	JJ → big JJ → black
4	big dogs chase black	dogs chase black cats		1	•	$V \rightarrow \text{chase}$ $V \rightarrow \text{eat}$ $V \rightarrow \text{sleep}$
	S	-	VP		•	$NP \rightarrow dogs$
3	big dogs thase	dogs chase black	chase black cats		•	NP → cats NP → stuff
	NP	S	-	NP	•	VP → chase VP → eat
2	big dogs	doge chase	chase black	black cats	•	$VP \rightarrow eat$ $VP \rightarrow sleep$
	JJ	N, NP	V, VP	JJ	N, NP	
1	big	dogs	chase	black	cats	

- for i in 2..N: try splitting each i-word sequence into two sub-sequences (i-1 different ways)
- check if both sub-sequences have at least 1 parse available in the table

5	big dogs chase black cats				JJ NP VP NP	$\begin{array}{l} N \rightarrow dogs \\ N \rightarrow cats \\ N \rightarrow stuff \\ JJ \rightarrow big \end{array}$
4	big dogs chase black	dogs chase black cats		1	•	$JJ \rightarrow black$ $V \rightarrow chase$ $V \rightarrow eat$ $V \rightarrow sleep$
3	S big dogs tebase	dogs chase black	VP chase black cats		•	$\begin{array}{l} \text{NP} \rightarrow \text{dogs} \\ \text{NP} \rightarrow \text{cats} \\ \text{NP} \rightarrow \text{stuff} \end{array}$
2	NP big dogs	S dogs chase	- chase black	NP black cats	•	$VP \rightarrow chase$ $VP \rightarrow eat$ $VP \rightarrow sleep$
	JJ	N, NP	V, VP	JJ	N, NP	
1	big	dogs	chase	black	cats	

- for i in 2..N: try splitting each i-word sequence into two sub-sequences (i-1 different ways)
- check if both sub-sequences have at least 1 parse available in the table

5	big dogs chase black cats				JJ NP VP NP	$N \rightarrow dogs$ $N \rightarrow cats$ $N \rightarrow stuff$
3	big dogs chase black cats				•	JJ → big JJ → black
4	big dogs chase black	S dogs chase black cats		1	•	$V \rightarrow \text{chase}$ $V \rightarrow \text{eat}$ $V \rightarrow \text{sleep}$
3	S big dogs tehase	dogs chase black	VP chase black cats		•	$\begin{array}{l} NP \to dogs \\ NP \to cats \\ NP \to stuff \end{array}$
2	NP big dogs	S dogs chase	- chase black	NP black cats	•	$VP \rightarrow chase$ $VP \rightarrow eat$ $VP \rightarrow sleep$
	JJ	N, NP	V, VP	JJ	N, NP	
1	big	dogs	chase	black	cats	

- for i in 2..N: try splitting each i-word sequence into two sub-sequences (i-1 different ways)
- check if both sub-sequences have at least 1 parse available in the table

_					JJ NP VP NP	$\begin{array}{l} N \to dogs \\ N \to cats \\ N \to stuff \end{array}$
5	big dogs chase black cats		1	• VI →	•	JJ → big JJ → black
4	big dogs chase black	S dogs chase black cats		1	•	$V \rightarrow \text{chase}$ $V \rightarrow \text{eat}$ $V \rightarrow \text{sleep}$
3	S big dogs tebase	dogs chase black	VP chase black cats		•	$\begin{array}{l} NP \to dogs \\ NP \to cats \\ NP \to stuff \end{array}$
2	NP big dogs	S dogs chase	- chase black	NP black cats	•	$VP \rightarrow chase$ $VP \rightarrow eat$ $VP \rightarrow sleep$
	JJ	N, NP	V, VP	JJ	N, NP	
1	big	dogs	chase	black	cats	

- for i in 2..N: try splitting each i-word sequence into two sub-sequences (i-1 different ways)
- check if both sub-sequences have at least 1 parse available in the table

- for i in 2..N: try splitting each i-word sequence into two sub-sequences (i-1 different ways)
- check if both sub-sequences have at least 1 parse available in the table

CYK parsing: ready!

back-track the tree(s) starting from the top cell


```
def parse(grammar, sentence):
    cnfGrammar = getCNF(grammar)

memory = dict(subseq) of lists of subtrees
    # subtree: (
    # NonTerminal,
    # ( LeftSubSequence, LeftNonTerminal),
    # ( RightSubSequence, RightNonTerminal) )

for token in sentence:
    memory[token] = list of possible PoS tags for token
    # or PoS-tagging with 1 tag per token
```



```
def parse(grammar, sentence):
    ... (continued) ...
    for sequenceLen in (2, ..., len(sentence)):
        for subSequence in (subSequences of sentence with length sequenceLen):
             for splitPoint in (1, ..., sequenceLen - 1):
                  (leftSubSeq, rightSubSeq) = split subSequence on splitPoint
                 for LeftNT in memory[leftSubSeq] NonTerminals:
                      for RightNT in memory[rightSubSeq] NonTerminals:
                          if cnfGrammar has a rule X → LeftNT RightNT:
                               add it to the list under memory[subSequence]
    the result(s) are in memory[sentence]
```



```
def parse(grammar, sentence):
    ... (continued) ...
    for sequenceLen in (2, ..., len(sentence)):
        for subSequence in (subSequences of sentence with length sequenceLen):
             for splitPoint in (1, ..., sequenceLen - 1):
                  (leftSubSeq, rightSubSeq) = split subSequence on splitPoint
                 for LeftNT in memory[leftSubSeq] NonTerminals:
                      for RightNT in memory[rightSubSeq] NonTerminals:
                          if cnfGrammar has a rule X → LeftNT RightNT:
                               add it to the list under memory[subSequence]
    the result(s) are in memory[sentence]
```

Complexity?


```
def parse(grammar, sentence):
    ... (continued)...
    for sequenceLen in (2, ..., len(sentence)):
        for subSequence in (subSequences of sentence with length sequenceLen):
             for splitPoint in (1, ..., sequenceLen - 1):
                  (leftSubSeq, rightSubSeq) = split subSequence on splitPoint
                 for LeftNT in memory[leftSubSeq] NonTerminals:
                      for RightNT in memory[rightSubSeq] NonTerminals:
                          if cnfGrammar has a rule X → LeftNT RightNT:
                               add it to the list under memory[subSequence]
    the result(s) are in memory[sentence]
```

Complexity? $O(n^3)$

Parsing in NLTK


```
import nltk
grammar1 = nltk.CFG.fromstring("""
  S -> NP VP
  VP -> V NP | V NP PP
  PP \rightarrow P NP
  V -> "saw" | "ate" | "walked"
  NP -> "John" | "Mary" | "Bob" | Det N | Det N PP
  Det -> "a" | "an" | "the" | "my"
  N -> "man" | "dog" | "cat" | "telescope" | "park"
  P -> "in" | "on" | "by" | "with"
  """)
sent = "Mary saw Bob".split()
parser = nltk.parse.chart.BottomUpChartParser(grammar1)
for tree in parser.parse(sent):
   print tree
\#(S (NP Mary) (VP (V saw) (NP Bob)))
```


 How to decide between several possible parses?

- How to decide between several possible parses?
- One solution: probabilistic CFG (PCFG)

- How to decide between several possible parses?
- One solution: probabilistic CFG (PCFG)

CFG:

- $S \rightarrow NP VP$
- $NP \rightarrow N$
- NP → JJ NP
- $VP \rightarrow VP NP$
- \bullet VP \rightarrow V
- N → dogs
- NP \rightarrow dogs

...

- How to decide between several possible parses?
- One solution: probabilistic CFG (PCFG)

CFG:

- $S \rightarrow NP VP$
- $NP \rightarrow N$
- NP → JJ NP
- $VP \rightarrow VP NP$
- $VP \rightarrow V$
- N → dogs
- NP \rightarrow dogs

PCFG:

$$S \rightarrow NP VP$$
 $(p = 1)$

• NP
$$\rightarrow$$
 N $(p = 0.6)$
• NP \rightarrow JJ NP $(p = 0.4)$

• VP
$$\rightarrow$$
 VP NP ($p = 0.32$)
• VP \rightarrow V ($p = 0.68$)

• N
$$\rightarrow$$
 dogs (p = 0.17)

• NP
$$\rightarrow$$
 dogs (p = 0.17)

PCFG Parsing

Algorithm same as CKY, but with a Viterbi twist

- each possible parse 1 step down is kept with its probability
- probabilities are multiplied
- link to the likeliest predecessor is kept
- back-tracking follows the most likeliest predecessor links

PCFG Parsing in NLTK

 parsing = having a grammar, find a sentence structure

Q: where do we get a grammar from?

- Q: where do we get a grammar from?
- A: we learn it!
 - from a treebank = syntactically annotated corpus

The viking killed the pirate with a sword

- Q: where do we get a grammar from?
- A: we learn it!
 - from a treebank = syntactically annotated corpus
 - subtree = production


```
from nltk.corpus import treebank
treebank.sents()[314]
#['The', 'offer', 'is', 'being', 'launched', ...]
```



```
from nltk.corpus import treebank

treebank.sents()[314]

#['The', 'offer', 'is', 'being', 'launched', ...]

treebank.parsed_sents()[314]

#Tree('S', [Tree('NP-SBJ-45', [Tree('DT', ['The']), Tree
('NN', ['offer'])]), Tree('VP', [Tree('VBZ', ['is']), Tree
('VP', [Tree('VBG', ['being']), ...)
```



```
from nltk.corpus import treebank

treebank.sents()[314]
#['The', 'offer', 'is', 'being', 'launched', ...]

treebank.parsed_sents()[314]
#Tree('S', [Tree('NP-SBJ-45', [Tree('DT', ['The']), Tree
('NN', ['offer'])]), Tree('VP', [Tree('VBZ', ['is']), Tree
('VP', [Tree('VBG', ['being']), ...)

treebank.parsed_sents()[314].productions()[4]
#VP -> VBZ VP
```



```
from nltk.corpus import treebank
treebank.sents()[314]
#['The', 'offer', 'is', 'being', 'launched', ...]
treebank.parsed sents()[314]
#Tree('S', [Tree('NP-SBJ-45', [Tree('DT', ['The']), Tree
('NN', ['offer'])]), Tree('VP', [Tree('VBZ', ['is']), Tree
('VP', [Tree('VBG', ['being']), ...)
treebank.parsed sents()[314].productions()[4]
\#VP \longrightarrow VBZ VP
treebank.parsed sents()[314].productions()[0].lhs()
#VP
treebank.parsed sents()[0].productions()[0].rhs()
\#(VBZ, VP)
```


Weighed Grammar Learning

Learning the weights/probabilities:

- $p(A \rightarrow \gamma) = p(\gamma \mid A)$ (must sum to 1 over all γ for any A)
- $p(A \rightarrow \gamma) = \text{count}(A \rightarrow \gamma) / \text{count}(A)$

(γ : any sequence of terminals/non-terminals)

Weighed Grammar Learning

To play with:

- English: http://nlp.stanford.edu:8080/parser/
- German: http://kitt.cl.uzh.ch/kitt/parzu/

To play with:

- Train your own dependency parser: <u>http://www.maltparser.org/</u>
- Use MaltParser through NLTK:
 nltk.parse.malt.MaltParser
 (http://www.nltk.org/api/nltk.parse.html)

Further reading:

- NLTK book
 - ch. 8 "Analyzing Sentence Structure",
 ch. 9 "Building Feature Based Grammars"
- FSNLP, Manning&Schütze:
 - ch. 11 "Probabilistic CFGs",
 ch. 12 "Probabilistic parsing"
- Speech & Language Processing, Jurafsky & Martin (2nd edition):
 - part III: Syntax

Procrastinators, unite!

...tomorrow