香港考試局 HONG KONG EXAMINATIONS AUTHORITY

一九八八年香港中學會考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1988

> 數學 Mathematics

評卷参考 Marking Scheme

這份內部文件,只限閱卷員參閱,不得以任何形式翻印。 This is a restricted document. It is meant for use by markers of this paper for marking purposes only. Reproduction in any form is strictly prohibited.

請在學校任教之閱卷員特別留意

本評卷參考並非標準答案,故極不宜 辖於學生手中,以免引起誤會。

遇有學生求取此文件時,閱卷員應嚴 予拒絕。閱卷員在任何情況下披露本 評卷參考内容,均有違閱卷員守則及 「一九七七年香港考試局法例」。

Special Notes for Teacher Markers

It is highly undesirable that this marking scheme should fall into the hands of students. They are likely to regard it as a set of model answers, which it certainly is not.

Markers should therefore resist pleas from their students to have access to this document. Making it available would constitute misconduct on the part of the marker and is, moreover in breach of the 1977 Hong Kong Examinations Authority Ordinance.

© 香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 1988

GA 29

MESTRICIED PARP,	~11	
Solutions $a^2 - a - 6 = (a + 2)(a - 3)$	Marks	Remarks
$a^3 + 8 = (a + 2)(a^2 - 2a + 4)$	2A+1A	2A for first correct part
Their L.C.M. = $(a + 2)(a - 3)(a^2 - 2a + 4)$ $(= a^4 - 3a^2 + 8a - 24)$	1M+1A	Both exp. must first be factorized.
(= a - 3a ² + 8a - 24)	5	PP-1 at most 1 per paper at most 1 for the same type of 19.
(a) $\frac{\sin(180^{\circ} - \theta)}{\sin(90^{\circ} + \theta)} = \frac{\sin\theta}{\cos\theta}$ must be shown	1A 1A	at most 1 for the same type of 19.
$= \tan\theta$ (b) $\sin^2(\sqrt{1} - \emptyset) + \sin^2(\frac{3\pi}{2} + \emptyset)$	1A	EXC
$= \sin^2 \theta + \cos^2 \theta \qquad \text{sift} \phi - \cos^2 \phi \cdots \circ A$	1A K	For $\sin(\frac{3\pi}{2} + \emptyset) = -\cos\emptyset$
= 1	1A 5	
. 2x² > 5x		With hold 1 mark if '=' omitted. If solved by
$2x^2 - 5x \ge 0$ $x(2x - 5) \ge 0$	1A 1A	equation, no marks awarded unless answer
Case (1) $x \geqslant 0$ and $2x - 5 \geqslant 0$	IA	correct.
i.e. $x \gg \frac{5}{2}$		Optional without = , without I mank
Case (ii) $x \le 0$ and $2x - 5 \le 0$		Withhold I mank
i.e. x ≤ 0		5
Combining the two parts, we have $x \le 0$ or $x > \frac{5}{2}$.	3A	For $x \le 0$, $x \gg \frac{5}{2}$, 2
		$x \le 0 \text{ and } x > \frac{5}{2}$
(a) If $9x^2 - (k + 1)x + 1 = 0$ has equal roots,		Alt. Solution:
$(k+1)^2 - 36 = 0$	1A	$(k+1)^2 - 36 = 0$ 1A
$k^2 + 2k - 35 = 0$	1A	$k + 1 = \pm 6$ 1A+1A
(k-5)(k+7) = 0	1A	$k = 5 \text{ or } -7$ $k_{+1} = 6 1A$
k = 5 or -7 both correct (b) Putting $k = -7$ in (*)	1A	sub.
(b) Putting $k = -7$ in (*) $9x^2 + 6x + 1 = 0$	1M	For negative value of k
$(3x+1)^2=0$		L.S. = $(3x + 1)^2$
$x = -\frac{1}{3}$ Subs. both for k=7 and k=5 no	1A 6	
RESTRICTED 内部3	文件	p

· · · —	`	Table	NIT	1 • 2
_	····	Solutions	Marks	Remarks
5	. (a)	Area of OABC = $7710^2 \times \frac{100^{\circ}}{360^{\circ}}$	1M	
		= 87.27 (corr. to 2 d.p.) (or \$7.28)	1A	
	(b)	Area of \triangle OAC = $\frac{1}{2}$ X 10 X 10 X sin100°	1M 7	$\Delta = \frac{1}{2}AC \times OM$
		= 49.24 (corr. to 2 d.p.)	1A	$= \frac{1}{2} \times 15.3209 \times 6.4279$
	(c)	Area of minor segment ABC		= 49.24 1M
		= 87.27 - 49.24	1M	
		= 38.03 (corr. to 2 d.p.) (or 38.04)	1 <u>A</u>	
				100° 10
				A M C
6.	1092	= r , log3 = s .		. В
,	1062			
	(a)	$\log 18 = \log 2X3^2$	1A	For $18 = 2 \times 3^2$
		$= \log 2 + \log 3^{2}) \cdots $ $= \log 2 + 2\log 3)$	1M) logab = loga+logb or
		= r + 2s	1A) $\log a^2 = 2\log a$
	(Ъ)	$\log 15 = \log 3X5$		
		$= \log 3 + \log 5$		
		$= \log 3 + \left(\log \frac{10}{2}\right)^{1/2}$	1A	For $5 = \frac{10}{2}$ or $15 = \frac{30}{2}$
		$= \log 3 + \log 10 - \log 2$ $= 1 - r + s$	1A	- 2
		- I - I + S	1A 6	
7.	(a)	The coordinates of the centre are given by		
uly answ correct	e~	$x = -(-\frac{4}{2}), y = -\frac{10}{2}$	1M	$(x-2)^{\frac{1}{2}}+(y+5)^{\frac{1}{2}}=\frac{2.5}{1}$ k+4
correct 2A	-	i.e. $x = 2$, $y = -5$	1A	
	(b)	As C touches the y-axis, bracket		OR
		its radius = 2	1M+1A	Subs. (0, -5) 1M
		$4 + 25 - k = 2^2$	1M	25 - 50 + k = 0 k = 25 1A
		k = 25		$r = \sqrt{4 + 25 - 25}$ 1M
		R - 25	1A	= 2 1A OR
				Put $x = 0$, $y^2 + 10y + k = 0$
				has equal roots. 1M
				100 - 4k = 0 k = 25 1A
		-	6	r = etc.
			1	

NLS I NIC I LD 内面)	人打	r.5
Solutions	Marks	Remarks
8. (a) (i) A B D Q C	1	ABCD in order For P For Q (between D, C)
(ii) Since \triangle PBC is equilateral, \angle PBC = 60° angles withting day. ABP = 90° - 60° = 30°	1A	Follow through even if diagram not accurate
\rightarrow no method marks As BA = BP, \angle PAB = $\frac{1}{2}$ (180° - 30°)	1M	or equivalent
= 75°	1A	OR
Since AB // DC, L PQC = 180° - 75° = 105°	1M }	$\angle PAD = 15^{\circ}$ $\angle PQC = 90^{\circ} + 15^{\circ}$ 1M = 105° 1A
(b) (i) \triangle TCB is similar to \triangle ACT because both \triangle C is common. i more \triangle BTC = \triangle BAT (angle in alternate segment) \triangle T no mark	1	≈ ≃ } PP-1 Indication of 2 pairs
ATCB ~ AACT (AATA) no mark		of equal angles. With- held if proving con- gruence.
(ii) $\frac{AC}{CT} = \frac{CT}{BC}$	1A	Follow through even if (b)(i) wrong.
$AC = \frac{6^2}{5} = 7.2 \text{correct substitution}$ $\therefore AB = 7.2 - 5$	1A	
$= 2.2 (= \frac{11}{5}) \dots$	1A 5	
A B 5		

8 Ma	ths	E RESTRICTED 内部	文件		P.4
		Solutions	Marks	Remarks	
•	(a)	Between 100 and 999,		Actual Res	
		the smallest multiple of 7 is 105,	1A		
		the largest is 994.	1A 2		
((b)	The number of multiples is $\frac{994-105}{7}+1$ must	2M	<u>OR</u> 994= 105 +	(n-1) X 7
		= 128	1A		
		The sum of these multiples			
		= 105 + 112 + + 994			
		$= \frac{128}{2} [105 + 994]$	2M	*	
		= 70336	1A 6		
(c)	The sum of all positive 3-digit integers	ı		
		= 100 + 101 + + 999	+A-		
		$= 100 + 101 + + 999$ $= \frac{900}{2} [100 + 999]$ or au correct			
		= 494,550	1A	•	
		The required sum = 494,550 - 70,336	1M		
		= 424,214	1A 4		
					===
				Ì	

1 19	NESTRICTED 内部	又仟	P.5
, ,	Solutions	Marks	Remarks
lO. (a)	Let $y = k_1 x + k_2 x^2$, where k_1 and k_2 are		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	constants. for substitution	2	or $y = x+kx^2 \dots 1$
	Putting $x = 1$, $y = -5$; $x = 2$, $y = -8$, we have	1M	y=x+x2 romanks
	$k_1 + k_2 = -5 \qquad \dots$	1A	marks (y= kix y= kix
	$2k_1 + 4k_2 = -8$	1A	
	Solving, $k_1 = -6$, $k_2 = 1$	1A+1A	
	$y = -6x + x^2$		
	Putting $x = 6$, we have $y = 0$.	1A 8	
(b)	$y = -6x + x^2 = (x^2 - 6x + 9) - 9$		
	$= (x - 3)^2 - 9$	1M	Equality must hold.
		1A	Y=(x+3)=9 OA
	When $x = 3$, the value of y is least and the least value is -9 .	1M+1A 4	heast value of y is -9
. (a)	From the curve,		
	(i) the median is 70 marks.	1A	
	(ii) the 1st quartile is 50 marks.) the 3rd quartile is 86 marks.)	1A	for either
	the interquartile range = 86 - 50	1M	
	= 36 marks	1 <u>A</u>	
(b)	(i) From the curve, the number of prize- winners = 60.	1A	
	(ii) The probability that the student is a		
	prize-winner = $\frac{60^{1}}{600}$ (= $\frac{1}{10}$).	1M+1A	
	(iii) (1) The probability that both are prize-		Accept $\frac{1}{10} \times \frac{1}{10} = \frac{1}{100}$
	winners is $\frac{60}{600} \times \frac{59}{599} = \frac{59}{5990} \times (=0.01)$	1M+1A	Accept $\frac{1}{10} \times \frac{1}{10} = \frac{1}{100}$ IM for product rule
	(2) The probability that both are not prize-		
	winners = $\frac{540}{600} \times \frac{11}{599} = \frac{4851}{5990}$ (=0.81)	1A]	Accept $\frac{9}{10} \times \frac{9}{10}$
	. the probability that at least one		OR
	is a prize-winner = $1 - \frac{100}{5990}$	1M }	$\frac{9}{10} \times \frac{60}{599} + \frac{1}{10} \times \frac{540}{599}$
	$=\frac{1139}{5990}$ (=0.19)	1A / -	$+\frac{1}{10} \times \frac{59}{599}$ 1M+1A
	(2) The probability that both are not prize- winners = $\frac{540}{600} \times \frac{539}{599} = \frac{4851}{5990} = \frac{1139}{5990}$ (=0.81) the probability that at least one is a prize-winner = $1 - \frac{1}{5990} = \frac{1139}{5990} = 113$	8	$=\frac{1139}{5990}$ 1A

` ,			Solutions	Marks	Remarks
	12.	(a)	L ₃ is given by $\frac{x}{3} + \frac{y}{4} = 1$ $\frac{y-4}{x} = \frac{4}{3}$ slope	1M	or 2-pt form, etc.
			i.e. $4x + 3y = 12$ $\frac{1}{\frac{1}{4}} + \frac{y}{2} = 1$	1 <u>A</u>	Must be in this form.
		(b)	The three constraints are $y \leqslant 4$	1A	Withhold I mark if '='
			x ≤ 3	1A	omitted.
			$4x + 3y \geqslant 12$	1A 3	or $4x + 3y - 12 \ge 0$.
		(c)	The line $x + 4y = c$ drawn in the diagram.	1M+1A	AGICICIE
47a l			From the diagram, P is greatest when $x = 3$, $y = 4$ and least when $x = 3$, $y = 0$.		units for 10 hori- zontal units. OR Testing any vertices
only	2A		The greatest value of P = 19.,	1A	At $(3, 0)$, $P = 3$.
		(the least value = 3	1A	At $(0, 4)$, $P = 16$. At $(3, 4)$, $P = 19$. 1A
				4	test 2 points only 1 M

1A ±1 unit at (1.5, 2), (3, 3).

1A Should be reasonably shaded.

At (3, 3), P = 15.

At (1.5, 2), P = 9.5.

		Solutions	Marks	Remarks
13.	(a)	$\frac{AB}{HB} = \tan\theta$ $HB = \frac{3}{\tan\theta} m$ $\frac{DC}{KC} = \tan\theta, KC = \frac{2}{\tan\theta} m$	1M 1A 3	any part in this guestion Wrong/no unit, pp-1. in the answer 2 + 1 in each text
	(b)	(i) $S_1 = \frac{6}{2} (3 + 2)$ = 15 m ²	1A 1A	÷
×	15 15 1000	$\frac{S_1}{S_2} = \frac{15}{\frac{15}{\tan \theta}} = \tan \theta$ $\frac{S_1}{\frac{15}{\tan \theta}} = \frac{15}{\frac{15}{\tan \theta}} = \tan \theta$ $\frac{S_1}{\frac{15}{\tan \theta}} = \tan \theta$ $\frac{S_2}{\frac{15}{\tan \theta}} = \tan \theta$ $\frac{S_1}{\frac{15}{\tan \theta}} = \tan \theta$ $\frac{S_1}{\frac{15}{\tan \theta}} = \tan \theta$ $\frac{S_2}{\frac{15}{\tan \theta}} = \tan \theta$	1A	Must show working. 15 15 tors tan a tan a 1A PP-1
	H	3 m	D 2 m	

(c) Let
$$KE \perp BH$$
.

$$EK = BC = 6(m)$$

$$HE = \frac{3}{\tan \theta} - \frac{2}{\tan \theta} = \left(\frac{3}{\tan 30^{\circ}} - \frac{2}{\tan 30^{\circ}}\right) \text{ m } (= \sqrt{3})$$

$$= \sqrt{(\sqrt{3})^2 + 6^2}$$

$$= \sqrt{39 \text{ m}}$$

$$IM = \sqrt{1M}$$
Construction of perpendicular line
$$IM = \sqrt{1M}$$

$$IM =$$

Solutions	<u> </u>	1.0
14. (a) (i) $x^3 - \frac{4}{3}x - 6 = 0$ can be written as	Marks	Remarks
3 A = 0 = 0 can be written as		
$x^3 = \frac{4}{3} x + 6 .$	1M	
Consider the line $y = \frac{4}{3}x + 6$	1A+1A	1A for equation
It cuts the curve $y = x^3$ at $x = r$,		lA for line drawn.
where r lies between 2.0 and 2.1.	1,,	±1 vertical division about (0, 6), (3, 10)
	1A	
(ii) Let $f(x) = x^3 - \frac{4}{3}x - 6$		₩
f(2) = -(= -0.67)		
f(2) = -(= -0.67) but $f(2.1) = +(=0.46)$		•
	. 1M	Correct change of sign.
Interval Mid-value x f(x)	1	
2.000 < r < 2.100 (2.050 M) (1A)	IM+1A	7 M. F 1
2 050 (= (= 0.1/)	IM	lM for choosing mid- value, lA for correct
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		sign.
2.057 < r < 2.063		Next correct step.
r = 2.06 (correct to 2 d.p.)	1A	
Alt. Solution:	9	
f(2) = -		•
f(2.5) = + $6,25 om + 0A$	1M	
Total		
The value X I(X)		
2.000 < r < 2.500 2.250 $+$ $2.000 < r < 2.225 + + + +$	1M+1A	
2.113	1M	
		\$ ·
		:
.'. r = 2.06 (correct to 2 d.p.)	1A	
(b) Put $x = t + 1$	1A	
The given equation can be written		
as $3x^3 - 4x - 18 = 0$		
or $x^3 - \frac{4}{3}x - 6 = 0$		
By (a), the solution is		
t = 2.06 - 1	1.4	
= 1.06 (correct to 2 d.p.)	1M 1A	
	3	
	1	

Solutions Marks Remarks

14.

