DEEP LEARNING

FOR COMPUTER VISION

Summer School at UPC TelecomBCN Barcelona. June 28-July 4, 2018

Instructors

Organized by

+ info: http://bit.ly/dlcv2018

Day 2 Lecture 3

Semantic Segmentation

Míriam Bellver miriam.bellver@bsc.edu

http://bit.ly/dlcv2018

Segmentation

Segmentation

Define the accurate boundaries of all objects in an image

Semantic Segmentation

Label every pixel!

Don't differentiate instances (cows)

Classic computer vision problem

Instance Segmentation

Detect instances, give category, label pixels

"simultaneous detection and segmentation" (SDS)

Label are class-aware and instance-aware

Outline

Segmentation Datasets Semantic Segmentation Methods

- Deconvolution (or transposed convolution)
- Dilated Convolution
- Skip Connections

Segmentation: Datasets

Pascal Visual Object Classes

- 20 categories
- +10,000 images
- Semantic segmentation GT
- Instance segmentation GT

Pascal Context

- Real indoor & outdoor scenes
- 540 categories
- +10,000 images
- Dense annotations
- Semantic segmentation GT
- Objects + stuff

Segmentation: Datasets

ADE20K

- Real general scenes
- +150 categories
- +22,000 images
- Semantic segmentation GT
- Instance + parts segmentation GT
- Objects and stuff

COCO Common Objects in Context

- Real indoor & outdoor scenes
- 80 categories
- +300,000 images
- 2M instances
- Partial annotations
- Semantic segmentation GT
- Instance segmentation GT
- Objects, but no stuff

Segmentation: Datasets

CityScapes

- Real driving scenes
- 30 categories
- +25,000 images
- 20,000 partial annotations
- 5,000 dense annotations
- Semantic segmentation GT
- Instance segmentation GT
- Depth, GPS and other metadata
- Objects and stuff

Mapillary Vistas Dataset

- Real driving scenes
- 100 categories
- 25,000 images
- Semantic segmentation GT
- Instance + parts segmentation GT
- Objects and stuff

Outline

Segmentation Datasets Semantic Segmentation Methods

- Deconvolution (or transposed convolution)
- Dilated Convolution
- Skip Connections

From Classification to Segmentation

From Classification to Segmentation

Run "fully convolutional" network to get all pixels at once

Semantic Segmentation

Problem 1:

Smaller output due to pooling

Learnable upsampling

Typical 3 x 3 convolution, stride 1 pad 1

Input: 4 x 4

Output: 4 x 4

Typical 3 x 3 convolution, stride 1 pad 1

Typical 3 x 3 convolution, stride 1 pad 1

Typical 3 x 3 convolution, stride 2 pad 1

Input: 4 x 4

Output: 2 x 2

Typical 3 x 3 convolution, stride 2 pad 1

Typical 3 x 3 convolution, stride 2 pad 1

3 x 3 "deconvolution", stride 2 pad 1

Input: 2 x 2

Output: 4 x 4

3 x 3 "deconvolution", stride 2 pad 1

Warning: Checkerboard effect when kernel size is not divisible by the stride

Source: distill.pub

Warning: Checkerboard effect when kernel size is not divisible by the stride

stride = 2, kernel_size = 3

Source: <u>distill.pub</u>

Warning: Checkerboard effect in images generated by neural networks

Noh et al. <u>Learning Deconvolution Network for Semantic Segmentation</u>. ICCV 2015

Semantic Segmentation

High-level features (e.g. conv5 layer) from a pretrained classification network are the input for the segmentation branch

Skip Connections

Recovering low level features from early layers

Skip connections = Better results

Dilated Convolutions

Structural change in convolutional layers for dense prediction problems (e.g. image segmentation)

- The receptive field grows exponentially as you add more layers → more context information in deeper layers wrt regular convolutions
- Number of parameters increases linearly as you add more layers

Dilated Convolutions

Source: https://github.com/vdumoulin/conv arithmetic

State-of-the-art models

- U-Net
 - Deconvolutions
 - skip connections

State-of-the-art models

PSPNet (dilated convolutions + pyramid pooling)

State-of-the-art models

DeepLab v2 (dilated convolutions + CRF)

DeepLab v3 (added pyramid pooling. Removed CRF)

Chen et al. <u>DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs</u>. TPAMI 2017

Chen et al. Rethinking Atrous Convolution for Semantic Image Segmentation. TPAMI 2017

Summary

Segmentation Datasets Semantic Segmentation Methods

- Deconvolution (or transposed convolution)
- Dilated Convolution
- Skip Connections

Questions?