Topic 14

I/Os and Their Interfaces

Introduction

- I/O devices can be characterized by
 - Behavior: input, output, storage
 - Partner: human or machine
 - Data rate: bytes/sec, transfers/sec
- I/O bus connections

Peripheral – Memory

- Volatile main memory
 - Loses instructions and data when power off
- Non-volatile secondary memory
 - Magnetic disk
 - Flash memory
 - Optical disk (CDROM, DVD)

Disk Storage

Nonvolatile, rotating magnetic storage

Disk Sectors and Access

- Each sector records
 - Sector ID
 - Data (512 bytes)
 - Error correcting code (ECC)
 - Used to hide defects and recording errors
 - Synchronization fields and gaps
- Access to a sector involves
 - Queuing delay if other accesses are pending
 - Seek: move the heads
 - Rotational latency
 - Data transfer
 - Controller overhead

Peripheral – Networks

- Communication and resource sharing
- Local area network (LAN): Ethernet
 - Within a building
- Wide area network (WAN): the Internet
- Wireless network: WiFi, Bluetooth

Peripheral – Many others

I/O System Characteristics

- Dependability
 - Very important
 - Particularly for storage devices
- Performance measures
 - Latency (response time)
 - Desktops & embedded systems mainly interested in response time & diversity of devices
 - Throughput (bandwidth)
 - Servers mainly interested in throughput & expandability of devices

I/O Management

- I/Os are managed by the Operating System (OS)
 - Multiple programs share I/O resources
 - Need protection and scheduling
 - Done by OS in supervisor mode
 - I/O causes asynchronous interrupts to communicate operation information with CPU
 - Same mechanism as exceptions
 - Interrupt service routine part of OS
 - I/O programming is non-trivial and sophisticated
 - OS provides abstractions (interfaces) to programs
 - API Application Programming Interface

I/O Control Register

- I/O devices are controlled by a set of registers
 - Control registers
 - Cause device to do something
 - Status registers
 - Indicate what the device is doing or has done and occurrence of errors
 - Data registers
 - Write: transfer data to an I/O device
 - Read: transfer data from an I/O device

OS (sw) & I/O (hw) Interface

- Memory mapped I/O
 - I/O registers are connected to memory locations
 - I/Os are accessed as regular memory locations
 - Accessible from software by virtual memory addresses
 - OS writes/reads memory to operate I/O devices
 - OS uses address translation mechanism to make them only accessible in kernel mode
 - Virtual address translation only accessible to OS
- I/O instructions
 - Separate instructions to access I/O registers
 - Can only be executed in kernel mode (by OS)

Memory Mapped I/O

I/O & Processor Communication – Polling

- Periodically check I/O status register
 - If device ready, do operation
 - If error, take action
- Common in small or low-performance realtime embedded systems
 - Predictable timing
 - Low hardware cost
- In other systems, wastes CPU time

I/O & Processor Communication – Interrupt

- When a device is ready or error occurs
 - Controller interrupts CPU by hardware
 - Will invoke handler between instructions
 - Not synchronized to instruction execution
- Interrupt Priority
 - Devices needing more urgent attention get higher priority
 - Higher priority interrupt can interrupt execution of a lower priority interrupt

Interconnecting Components

- Need interconnections between
 - CPU, memory, and I/O controllers
 - Using buses
- Bus: shared communication channel
- Parallel set of wires for data and synchronization of data transfer
 - Advantages:
 - Versatility various functions, easy to be added or removed
 - Low cost
 - Concerns: performance limited by physical factors
 - Bus speed can become a communication bottleneck
 - Wire length, number of connections
- More recent alternative: high-speed serial connections

Bus Types

- Processor-Memory buses (North connection)
 - Short, high speed
 - Designed to match memory organization
- I/O-Memory buses (South connection)
 - Longer, allowing multiple connections
 - Specified by standards for interoperability
 - Connected through a north bridge then to memory

Typical x86 PC I/O System

