Semaine 6

Pomme Bleue

17 janvier 2022

PIERRE-GABRIEL BERLUREAU

Congruences modulo un sous-groupe et Théorème de Lagrange

Soit *G* un groupe noté multiplicativement et *H* un sous-groupe de *G*.

Définition

- Les classes à droite modulo H sont les ensembles xH où x parcourt G, qui ne sont pas des groupes (sauf si $x \in H$).
- Les classes à gauche modulo H sont les ensembles Hx où x parcourt G, qui ne sont pas des groupes (sauf si $x \in H$).

Montrer les points suivants :

- i) Pour tout $x \in G$, |Hx| = |H|.
- ii) $\{Hx; x \in G\}$ est une partition de G.

On admettra qu'une propriété similaire est valable pour les classes à gauche.

On suppose à présent que G est fini. On appelle alors *ordre* de G son cardinal. Montrer alors le Théorème de Lagrande : i.e que l'ordre de H divise l'ordre de G.

MATTEO DELFOUR

Morphismes de $\mathbb Q$ dans $\mathbb Z$

Trouver tous les morphismes de groupes de $(\mathbb{Q}, +)$ dans $(\mathbb{Z}, +)$.

YANIS GRIGY

Petit Lemme

Soit G un groupe (multiplicatif) tel que pour tout $x \in G$, $x^2 = 1_G$. Montrer que G est abélien et que |G| est une puissance de 2.

LOUIS MARCHAL

Groupes dont l'ensemble des sous-groupes est fini

Caractériser les groupes dont l'ensemble des sous-groupes est fini.

LOUIS THEVENET

Cas particulier du Lemme de Cauchy

Soit G un groupe (multiplicatif) de neutre 1. Soit $g \in G$, l'ordre de g est par définition :

$$\operatorname{ord}(g) = \min\{n \in \mathbb{N}^* \mid x^n = 1\}$$

Cet ordre peut être $+\infty$ par convention si l'ensemble ci-dessus est vide.

On suppose que G est de cardinal 2p avec p premier et on admet le Théorème de Lagrange que Pierre-Gabriel doit démontrer dans son exercice et le Lemme que Yanis doit démontrer. Montrer alors que G contient un élément d'ordre p.

ARMAND SANS NOM DE FAMILLE

Existence d'un idempotent

Soit E un ensemble fini muni d'une loi de composition interne associative. Montrer que E contient un élément idempotent.

SHEMS

Neutre à droite et inverse à droite

Soit G un ensemble non vide muni d'une loi associative notée multiplicativement admettant un neutre à droite e:

$$\forall g \in G, ge = g$$

et telle que tout élément admette un inverse à droite :

$$\forall g \in G, \ \exists g' \in G, \ gg' = e$$

Montrer que cette loi définit une structure de groupe.

Indications

Pierre-Gabriel BERLUREAU Le point i) résulte de la bijection induite par la multiplication par *a*. Le point ii) nécessaite de vérifier que *Ha* est la classe de *a* pour la relation d'équivalence. Pour le Théorème de Lagrange, remarquer que les parts de la partition sont toutes de même taille.

Matteo DELFOUR Analyse-Synthèse où on utilisera à un moment le fait que les sous-groupes de $(\mathbb{Z}, +)$ sont les $n\mathbb{Z}$.

Yanis GRIGY La commutativité est simple à montrer. Pour ce qui est du reste, faire une récurrence sur |G|.

Louis MARCHAL Viens me voir.

Louis THEVENET Par l'absurde, montrer que pour tout $x \in G$, $x^2 = 1$, utiliser le Lemme de l'exercice de Yanis et en déduire une absurdité.

Armand sans nom de famille Considérer, pour $x \in G$, $f_x : n \in N \mapsto a^{2^n}$. Est-elle injective?

Shems Pour $g \in G$, il existe un inverse à droite pour g noté g' et un inverse à droite pour g' noté g''. Se débrouiller avec ça.