EL 34

OUTPUT PENTODE PENTHODE DE SORTIE ENDPENTODE

Heizung:

Heating: indirect by A.C. or D.C.;

parallel supply

Chauffage: indirect par C.A. ou C.C.;

alimentation en parallèle vf = indirekt durch Wechsel- If =

oder Gleichstrom; Parallelspeisung

Dimensions in mm Dimensions en mm Abmessungen in mm

Base Culot OCTAL Sockel

Capacitances Capacités Kapazitäten

Socket Support 5903/13 Fassung

Cg1 = 15,2 pF Ca = 8,4 pF Cag1 < 1,1 pF Cg1f < 1,0 pF Ckf = 10 pF

 $\frac{\text{Remark}}{\text{should be taken not to exceed}} \quad \text{ When using a sinusoidal input signal care should be taken not to exceed the maximum admissible W_{g2}.}$

Observation En cas d'un signal d'entrée sinusoïdal

Il faut faire attention à ne pas dépasser
la valeur maximum admissible de Wg/2.

Bemerkung Bei Verwendung eines sinusförmigen Eingangssignales muss darauf geachtet werden dass der maximal zulässige Wert von Wg2 nicht überschritten wird.

EL 34

OUTPUT PENTODE PENTHODE DE SORTIE ENDPENTODE

Heating: indirect by A.C. or D.C.:

parallel supply

Chauffage: indirect par C.A. ou C.C.: alimentation en parallèle Vf = indirekt durch Wechsel- If =

Heizung: oder Gleichstrom; $V_f = 6.3 V$

Parallelspeisung

Dimensions in mm Dimensions en mm Abmessungen in mm

Base Culot OCTAL Sockel.

max 33.3

Socket Support 5903/13 Fassung

Capacitances Capacités Kapazitäten

 $C_{E1} = 15.2 pF$ Ca 8,4 pF Cag1 < 1,1 pF Cg1f (1,0 pF Ckf = 10 pF

When using a sinusoidal input signal care should be taken not to exceed the maximum Remark admissible Wg2.

Observation En cas d'un signal d'entrée sinusoïdal Il faut faire attention à ne pas d la valeur maximum admissible de Wg2. dépasser

Bemerkung Bei Verwendung eines sinusförmigen gangssignales muss darauf geachtet werden dass der maximal zulässige Wert von nicht überschritten wird.

PHILIPS

Operating characteristics class A Caractéristiques d'utilisation classe A Betriebsdaten Klasse A

Vb	=	265	265	V
Va	=	250	250	V
Rg2	=	2	0	kΩ
Vg3	=	0	0	V
Vg1	=	-14,5	-13,5	٧
Ia	=	70	100	mA
Ig2	=	10	14,9	mA
S	=	9,0	11	mA/V
μ g2g1	=	11	11	
Ri	=	18	15	kΩ
Ra.	=	3,0	2,0	kΩ
٧i	=	9,3	8,7	${\tt v_{eff}}$
Wo	=	8	11	₩
dtot	=	10	10	%
$V_i (W_0 = 50 \text{ mW})$	2	0,65	5 و ٥	$v_{\tt eff}$

Operating characteristics class B Caractéristiques d'utilisation classe B Betriebsdaten Klasse B

Rg2	=		1000			470		Ω^{-1})
Vg1	=		-38			- 32		V
Vg3	=		, 0			۰,0		V
٧i	=	<u> </u>	27	27	0	22,7	22,7	$v_{\tt eff}$
Raa	=	-	3,4	4,0	-	2,8	3,8	kΩ
٧b	=	425	425	400	375	375	350	٧
Va.	=	420	400	375	370	350	325	V
Ia	=	2x30	2 x 120	2x100	2 x35	2x120	2 x 93	mA
Ig2	=	2 x 4,4	2x25	2x25	2x4,7	2 x 25	2x25	mA.
Wo	=	0	55	45	0	44	36	W
dtot	=	_	5	6	-	5	6	%

Common screen grid resistor; non decoupled Résistance de grille-écran commune; ne pas découplée Gemeinsamer Schirmgitterwiderstand; nicht entkoppelt

PHILIPS

Operating characteristics class A Caractéristiques d'utilisation classe A Betriebsdaten Klasse A

v_b	=	265	265	v
٧a	=	250	250	ν
Rg2	=	2	0	kΩ
Vg3	=	0	0	V
Vg1	=	-14,5	-13, 5	A
Ia	=	70	100	mA
Ig2	=	10	14,9	mA
S	=	11	12,5	mA/V
μg2g1	=	11	11	
Ri	=	20	17	$k\Omega$
$R_{\mathbf{a}_{\sim}}$	=	3,0	2,0	$\mathbf{k}\Omega$
٧i	=	9,3	8,7	$v_{\tt eff}$
Wo	=	8	11	₩
dtot	=	10	10	%
$V_i (W_0 = 50 \text{ mW})$	=	0,65	0,5	V_{eff}

Operating characteristics class B Caracteristiques d'utilisation classe B Betriebsdaten Klasse B

Rg2	=		1000			470		Ω^{-1})
₹g1	=		-38			- 32		٧
v_{g3}	=		, 0			. 0		V
٧i	=	0	27	27	0	22,7	22,7	$v_{\tt eff}$
Raa	<i>,</i> =	-	3,4	4,0	-	2,8	3,8	kΩ
٧b	=	425	425	400	375	375	350	V
٧a	=	420	400	375	370	350	325	V
Ia	=	2 x 30	2 x 120	2x100	2 x 35	2 x 120	2 x 93	mA
Ig2	=	2 x 4,4	2x25	2x25	2x4,7	2 x25	2 x 25	mA
Wo	=	0	55	45	0	44	36	W
dtot	=	_	5	6	-	5	6	%

¹)Common screen grid resistor; non decoupled Résistance de grille-écran commune; ne pas découplée Gemeinsamer Schirmgitterwiderstand; nicht entkoppelt

EL 34

R _{g2}	=		750			750		Ω ¹)
Vg1	=		-36			-39		V
V _{g3}	=		٥			. 0		V
Vi	=	0	25,8	25,8	0	23,4	23,4	$v_{\tt eff}$
Raa	=	-	4	5	-	11	11	kΩ
Vba	=	500	500	475	800	800	750	٧
٧a	=	4 9 5	475	450	7 95	775	725	٧
V _{bg2}	=	400	400	375	400	400	375	v
Ιa	=	2 x 30	2x125	2x102	2x25	2 x 91	2 x 84	mA
Ig2	=	2 x 4	2 x 25	2 x 25	2 x 3	2x19	2 x1 9	mΑ
Wo	=	0	70	58	0	100	90	W
dtot	=	-	5	6	-	5	6	%

Operating conditions class AB Caractéristiques d'utilisation classe AB Betriebsdaten Klasse AB

Raa	=		3,4		kΩ
Rg2	=		470		Ω^{-1})
$R_{\mathbf{k}}$	==		130		Ω
v_{g3}	=		, 0		V
Vi	=	C		21	$v_{\tt eff}$
٧b	=	375		375	V
$v_{a+v_{Rk}}$:=	355		350	V
Ia	=	2x75		2 x 95	m.A
Ig2	=	2x11,5	2	x22,5	mA
Wo	×	0		35	W
dtot	=	_		5	%

¹⁾Common screen grid resistor; non decoupled Résistance de grille-écran commune; ne pas découplée Gemeinsamer Schirmgitterwiderstand; nicht entkoppelt

EL 34

R _{g2}	=		750			750	Ω ¹)
Vg1	=		- 36			-39	v
v_{g3}	==		, 0			, 0	V
Vi	=	0	25,8	25,8	0	23,4	23,4 Veff
Raa	=	-	4	5	-	11	11 kΩ
Vba	=	500	500	475	800	800	750 V
٧a	=	495	475	450	7 95	775	725 V
V _{bg2}	=	400	400	375	400	400	375 V
$I_{\mathbf{a}}$	=	2 x 30	2 x1 25	2x102	2 x 25	2 x 91	2x84 mA
Ig2	=	2 x 4	2 x25	2x25	2x3	2 x 19	2x19 mA
₩o	=	0	70	58	0	100	90 W
dtot	=	-	5	6	-	5	6 %

Operating conditions class AB Caractéristiques d'utilisation classe AB Betriebsdaten Klasse AB

¹⁾Common screen grid resistor; non decoupled Résistance de grille-écran commune; ne pas découplée Gemeinsamer Schirmgitterwiderstand; nicht entkoppelt

```
Operating conditions in triode connection (g2 connected to anode) Caractéristiques d'utilisation en connexion triode (g2 relié à l'anode) Betriebsdaten in Triodenschaltung (g2 verbunden mit Anode)
```

	C:	lass A Lasse A Lasse A	Class Classe Klasse		
٧b	=	375	400		v
v_{g3}	=	0	0		٧
$R_{\mathbf{k}}$	=	370	220		Ω
Ra	=	3	-		$\mathbf{k}\Omega$
Raa	22	-	, 5		kΩ
٧i	=	18,9	0	22	$v_{\tt eff}$
Ξa.	=	70	2 x 65	2x71	mA
Wo	=	6	0	16,5	W
đ	==	8	-	3	%
V ₁ (W _o =50mW)	=	1,7			$v_{\tt eff}$

Limiting values Caractéristiques limites Grenzdaten

```
Vao
                       = max. 2000 V
                        = max. 800 V
Va.
W_{\mathbf{a}} (\mathbf{v}_1 = 0)
                       = max.
                                    25 W
W_{\mathbf{A}}(V_{\mathbf{1}} > 0)
                       = max. 27.5 W
Vg2o
                        = max. 800 V
                        = max. 425 V
Vg2
                                     8 W
Wg2
                        = max.
                        = max. 150 mA
Ιk
V_{g1} (I_{g1} = +0.3 \mu A) = max. -1.3 V
R_{g1} (A, AB)
                        = max. 0.7 M\Omega
Rg1 (B)
                        = max. 0.5 M\Omega
                        = max. 100 V
Vrk
                        = max. 20 \text{ k}\Omega
Rfk
```

PHILIPS

Operating conditions in triode connection (g2 connected to anode)
Caractéristiques d'utilisation en connexion triode (g2 relié à l'anode)
Betriebsdaten in Triodenschaltung (g2 verbunden mit Anode)

	C:	lass A lasse A lasse A	Class Classe Klasse		
Vρ	=	375	400		Λ
v_{g3}	=	0	0		Λ
$R_{\mathbf{k}}$	=	370	220		Ω
Ra∼	=	3	-		$k\Omega$
Raa ~	=	-	, 5		$k\Omega$
V <u>i</u>	=	18,9	0	22	$v_{ t eff}$
$I_{\mathbf{a}}$	=	70	2 x 65	2x71	mA
₩o	=	6	0	16,5	W
đ	=	8	-	3	%
Vi(Wo=50mW)	=	1,7			$v_{ t eff}$

Limiting values Caractéristiques limites Grenzdaten

```
Van
                      = max. 2000 V
٧a
                       = max.
                                800 V
W_{a} (v_{i} = 0)
                      = max.
                                  25 W
W_{\mathbf{a}} (V_i > 0)
                      = max. 27.5 W
                       = max. 800 V
Vg2n
Vg2
                       = max. 500 V
                                   8 W
Wg2
                       = max.
I_{k}
                       = max. 150 mA
V_{g1} (I_{g1} = +0.3 \mu A) = max. -1.3 V
R_{g1} (A, AB)
                       = max. 0.7 M\Omega
R_{g1} (B)
                       = max. 0.5 M\Omega
v_{fk}
                       = max. 100 V
R_{fk}
                      = max. 20 k\Omega
```


PHILIPS

J

EL34 sheet date page 1 1 1958.02.02 2 1 1959.07.07 3 2 3 3 1958.02.02 4 1959.07.07 5 1956.02.02 6 1959.07.07 7 4 1956.02.02 4 8 1959.07.07 Α 9 1949.10.10 В 10 1949.10.10 С 11 1952.02.02 12 D 1952.02.02 13 Е 1951.06.06 F 1951.06.06 14 G 15 1951.06.06 16 Н 1951.06.06 17 I 1951.06.06 18 J 1951.06.06 K 19 1951.06.06