ECON550: Problem Set 10

Nicholas Wu

Fall 2020

Problem 1

4.5.1 From the book, the power function is

$$\Phi\left(-z_{1-\alpha} - \frac{\sqrt{n}(\mu_0 - \mu)}{\sigma}\right)$$

Note that the expression inside the Φ function has a positive coefficient on μ , and hence is increasing. Since Φ is an increasing transformation, this is an increasing transformation of an increasing function, and hence the power function is increasing in μ . Therefore, the sup of the power function just occurs at μ_0 , and hence the size is

$$\Phi(-z_{1-\alpha}) = \alpha$$

4.6.4 The critical region for the one-sided test is

$$C_1 = \left\{ \frac{\sqrt{n}(\bar{x} - \mu)}{s} \ge t_{n-1, 1-\alpha} \right\}$$

Note that by Neyman-Pearson, this is equivalent to a likelihood ratio test $\mathcal{L}(\theta_0, x)/\mathcal{L}(\theta_1, x) \leq k_{\alpha}$.

For the two-sided test:

$$C_2 = \left\{ \left| \frac{\sqrt{n}(\bar{x} - \mu)}{s} \right| \ge t_{n-1, 1-\alpha/2} \right\}$$

Let γ_1 denote the power of the one-sided test, γ_2 the power of the two-sided test. Then we have

$$\gamma_1 - \gamma_2 = \int_{C_1} \mathcal{L}(\theta_1, x) \ dx - \int_{C_2} \mathcal{L}(\theta_1, x) \ dx$$

$$= \int_{C_1 \cap C_2^c} \mathcal{L}(\theta_1, x) \ dx - \int_{C_2 \cap C_1^c} \mathcal{L}(\theta_1, x) \ dx$$

Applying $\mathcal{L}(\theta_0, x)/\mathcal{L}(\theta_1, x) \leq k_{\alpha}$, we get

$$\gamma_1 - \gamma_2 > \frac{1}{k_{\alpha}} \left(\int_{C_1 \cap C_2^c} \mathcal{L}(\theta_0, x) \ dx - \int_{C_2 \cap C_1^c} \mathcal{L}(\theta_0, x) \ dx \right) = \frac{1}{k_{\alpha}} \left(\int_{C_1} \mathcal{L}(\theta_0, x) \ dx - \int_{C_2} \mathcal{L}(\theta_0, x) \ dx \right) = \frac{1}{k_{\alpha}} (\alpha - \alpha) = 0$$

(strict inequality because the measure on the desired regions are positive). So for $\mu > \mu_0$, the one-sided test

has larger power.

- **4.6.8** Let p' denote the proportion of drivers who wear seatbelts after the ad campaign.
 - (a) The null hypothesis: p' = p = 0.14. Alternative hypothesis: p' > 0.14.
 - (b) Let \hat{p} be the proportion of the drivers sampled wearing a seat belt. Assuming uniformly random sampling, by the CLT, $\sqrt{n}(\hat{p}-p')/\sqrt{p'(1-p')} \to N(0,1)$. So we take the test statistic:

$$T = \frac{\sqrt{n}(\hat{p} - 0.14)}{\sqrt{0.14(0.86)}} \approx 2.539$$

The critical region for $\alpha = 0.01$ of this statistic is $\{T : T \ge z_{0.99} = 2.32635\}$

(c) We reject at the $\alpha = 0.01$ level, and the *p*-value is approximately 0.005558. It is likely the campaign was successful.

4.6.5

- (a) The test statistic is $\sqrt{16}(10.4 10.1)/(0.4) = 3 > 1.753$. So we reject at the 5% significance level.
- (b) The p-value is approximately 0.0045.

Problem 2

Let the observed statistic value be T.

- (a) For the two-tailed test, we find p such that $z_{1-p/2} = |T| = 2.6$. Using a computational aid, p = 0.009322.
- (b) This time, we take p such that $z_{1-p/2} = |T| = 1.96$. p = 0.05
- (c) If we only use the one-tailed test, we need to find p such that $z_{1-p} = T$. For T = -2.6, p = 0.995. For T = 1.96, p = 0.025.

Problem 3

(a) Note that g is one-to-one and onto from (-1,1) and \mathbb{R} , so $\rho = \rho_0$ is an equivalent statement to $g(\rho) = g(\rho_0)$. Then from the previous problem set, we know

$$\sqrt{n}(g(\hat{\rho}) - g(\rho_0)) \rightarrow N(0,1)$$

So our test statistic is $T = \sqrt{n}(g(\hat{\rho}) - g(\rho_0))$ and we reject if $|T| > z_{1-\alpha/2}$.

(b) We know then that

$$\left[g(\hat{\rho}) - \frac{z_{1-\alpha/2}}{\sqrt{n}}, g(\hat{\rho}) + \frac{z_{1-\alpha/2}}{\sqrt{n}}\right]$$

is a $1 - \alpha$ confidence interval for $g(\rho)$. Using the bijective property of g, we can recover a $1 - \alpha$ confidence interval for ρ :

$$\left[g^{-1}\left(g(\hat{\rho}) - \frac{z_{1-\alpha/2}}{\sqrt{n}}\right), g^{-1}\left(g(\hat{\rho}) + \frac{z_{1-\alpha/2}}{\sqrt{n}}\right)\right]$$

Problem 4

8.1.2 The UMP test is the likelihood ratio test by Neyman-Pearson. The likelihood ratio condition for the critical region is given by

$$\frac{\frac{1}{4}e^{-(x_1+x_2)/2}}{\frac{1}{16}e^{-(x_1+x_2)/4}} \le k$$

$$e^{-(x_1+x_2)/4} \le \frac{k}{4}$$

$$-(x_1+x_2)/4 \le \ln\left(\frac{k}{4}\right)$$

$$x_1+x_2 \ge -4\ln\left(\frac{k}{4}\right)$$

So the UMP test just uses $x_1 + x_2$.

8.1.5 By Neyman-Pearson, the UMP is the likelihood ratio test with critical region:

$$\left\{ \{x_i\}, \frac{1}{2^n \prod_i x_i} \le k_n \right\}$$

Equivalently, the condition is

$$\prod_{i} x_i \ge \frac{1}{2^n k_n}$$

as desired.

8.1.7 We again invoke Neyman-Pearson and consider the likelihood ratio test with critical region given by the condition:

$$\frac{\exp\left(-\frac{1}{200}\sum_{i}(x_{i}-75)^{2}\right)}{\exp\left(-\frac{1}{200}\sum_{i}(x_{i}-78)^{2}\right)} \le k_{n}$$

$$\exp\left(-\frac{1}{200}\sum_{i}(x_{i}-75)^{2} + \frac{1}{200}\sum_{i}(x_{i}-78)^{2}\right) \le k_{n}$$

$$\sum_{i}(x_{i}-78)^{2} - (x_{i}-75)^{2} \le 200 \ln k_{n}$$

$$\sum_{i}(2x_{i}-153)(-3) \le 200 \ln k_{n}$$

$$\sum_{i}x_{i} \ge \frac{153n}{2} - \frac{100}{3} \ln k_{n}$$

$$\bar{x} \ge \frac{153}{2} - \frac{100}{3n} \ln k_n$$

as desired.

8.2.3

$$\gamma(\theta) = P_{\theta}(\bar{X}_n \ge 3/5)$$

$$= P_{\theta}(\sum X_i \ge 3n/5)$$

$$= P_{\theta}(N(n\theta, 4n) \ge 3n/5)$$

$$= P_{\theta}\left(N(0, 1) \ge \frac{3\sqrt{n}}{10} - \frac{\theta\sqrt{n}}{2}\right)$$

$$= 1 - \Phi\left(\frac{3\sqrt{n}}{10} - \frac{\theta\sqrt{n}}{2}\right)$$

$$= 1 - \Phi\left(\frac{3-5\theta}{2}\right)$$

8.2.4 Since x, y are independent, $\bar{x} - \bar{y} \sim N(\theta, 625/n)$. Take the test cutoff value as k. The power function is then

$$\gamma(\theta) = 1 - \Phi\left(\frac{k - \theta}{25/\sqrt{n}}\right)$$
$$\gamma(0) = 1 - \Phi\left(\frac{k\sqrt{n}}{25}\right) = 0.05$$
$$\gamma(10) = 1 - \Phi\left(\frac{k - 10}{25/\sqrt{n}}\right) = 0.9$$

Solving, $n \approx 54$ and k = 5.60.

- **8.2.7** \bar{X}_n is distributed as $N(\theta,4)$. Then $(\bar{X}_n-75)/2 \geq 1.28155$ is the desired critical region.
- **8.3.5** The Neyman-Pearson test critical region is

$$C_1 = \left\{ (x_1, ... x_n) : \frac{\mathcal{L}(\theta_0; x_1, ... x_n)}{\mathcal{L}(\theta_1; x_1, ... x_n)} \le k_{\alpha, 1} \right\}$$

The likelihood ratio principle critical region is

$$C_2 = \left\{ (x_1, ... x_n) : \frac{\mathcal{L}(\theta_0; x_1, ... x_n)}{\max(\mathcal{L}(\theta_0; x_1, ... x_n), \mathcal{L}(\theta_1; x_1, ... x_n))} \le k_{\alpha, 2} \right\}$$

However, $k_{\alpha,2} < 1$, which implies that

$$\mathcal{L}(\theta_0; x_1, ... x_n) < \max \left(\mathcal{L}(\theta_0; x_1, ... x_n), \mathcal{L}(\theta_1; x_1, ... x_n) \right)$$

which implies that $\mathcal{L}(\theta_1; x_1, ... x_n) > \mathcal{L}(\theta_0; x_1, ... x_n)$, so

$$\max \left(\mathcal{L}(\theta_0; x_1, ... x_n), \mathcal{L}(\theta_1; x_1, ... x_n) \right) = \mathcal{L}(\theta_1; x_1, ... x_n)$$

Hence

$$C_2 = \left\{ (x_1, ... x_n) : \frac{\mathcal{L}(\theta_0; x_1, ... x_n)}{\mathcal{L}(\theta_1; x_1, ... x_n)} \le k_{\alpha, 2} \right\}$$

Taking $k_{\alpha,2}=k_{\alpha_1}$ to match size, we have $C_1=C_2$.

8.3.7 Since θ_1 is unspecified, the likelihood maximizing estimate for θ_1 is \bar{X}_n . The likelihood maximizing estimate for θ_2 is $n^{-1} \sum (X_i - \bar{X}_n)^2$. So the likelihood decision rule is given by

$$\frac{\mathcal{L}(\bar{X}_n, \theta_2; x_1...x_n)}{\mathcal{L}(\bar{X}_n, n^{-1} \sum (X_i - \bar{X}_n)^2; x_1, ...x_n)} \le k_{\alpha}$$

$$\frac{\theta_2^{-n/2} \exp\left(-\frac{\sum (X_i - \bar{X}_n)^2}{2\theta_2}\right)}{\left(n^{-1} \sum (X_i - \bar{X}_n)^2\right)^{-n/2} \exp\left(-\frac{\sum (X_i - \bar{X}_n)^2}{2n^{-1} \sum (X_i - \bar{X}_n)^2}\right)} \le k_{\alpha}$$

Denote $\hat{\theta}_2 = n^{-1} \sum (X_i - \bar{X}_n)^2$. Then the condition becomes

$$\left(\frac{\theta_2}{\hat{\theta}_2}\right)^{-n/2} \exp\left(\frac{n}{2}\left(1 - \frac{\hat{\theta}_2}{\theta_2}\right)\right) \le k_{\alpha}$$
$$-\frac{n}{2}\ln\left(\frac{\theta_2}{\hat{\theta}_2}\right) + \frac{n}{2}\left(1 - \frac{\hat{\theta}_2}{\theta_2}\right) \le \ln k_{\alpha}$$
$$\ln\left(\hat{\theta}_2\right) - \frac{\hat{\theta}_2}{\theta_2} \le \frac{2}{n}\ln k_{\alpha} + \ln \theta_2 - 1$$

At a fixed k_{α} , the LHS is concave in $\hat{\theta}_2$, with a maximum at θ_2 , so there will be some $k_1 < k_2$, such that for $\hat{\theta}_2 < k_1$ the condition fails and we reject, or $\hat{\theta}_2 > k_2$ the condition also fails and we reject. Taking $c_1 = nk_1$, $c_2 = nk_2$ gives us the desired test condition.