1 TFB: Towards Comprehensive and Fair Benchmarking of Time Series Forecasting Methods

Тип	Модель	Сведения	Источники
Статистические модели		Предполагает линейную зависимость, поэтому	
	Linear Regression	может описывать только временные ряды, имеющие явно выраженный тренд и при этом линейный (если не делать большую работу над признаками и таргетом). Из плюсов очень прост в интерпретации прогноза.	https://scikit-learn.org/
	Vector Auto Regression (VAR)	Используется для анализа взаимозависимости множества временных рядов, прогноз основывается на основе собственных прошлых значений и прошлых значений других переменных. В статье хорошо работала на данных, которые имели	https://education.yandex.ru/handbook/ml https://otexts.com/fpp2/VAR.html
	Season Autoregressive Integrated Moving Average (SARIMA)	Может моделировать временные ряды с явными сезонными колебаниями, из-за чего её использовали для предсказывания спроса. Однако имеет очень много параметров, которые нужно тщательно настраивать. Предполагает зависимость текущего значения, не более чем от q последних: $y_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + + \theta_q \varepsilon_{t-q}$	https://ru.wikipedia.org/wiki/ARIMA https://education.yandex.ru/handbook/ml
ML	XGBoost	В статье обычно всегда работал хуже случайно леса для прогнозирования временных рядов, а также довольно долго занимает подбор гиперпараметров. Другие виды бустингов в статье не тестировались. Для интерпретации признаков обычно используют библиотеку SHAP.	https://xgboost.readthedocs.io
	Random Forest	Ансамблевый метод, в статье давал довольно хорошие результаты на разных видах сезонности, работая лучше других методов классического машинного обучения.	https://scikit-learn.org/
Глубинное обучение	Informer	Модель на основе трансформеров для временных рядов, которая уменьшает вычислительные затраты. Интерпретируемость низкая, поскольку внутренние механизмы трансформеров сложны для понимания.	https://arxiv.org/abs/2012.07436 https://github.com/zhouhaoyi/Informer2020
	FEDformer	Трансформер, оптимизированный для долгосрочных прогнозов за счёт частотного разложения. Интерпретируемость низкая из-за сложности архитектуры.	https://arxiv.org/abs/2201.12740 https://github.com/MAZiqing/FEDformer
	PatchTST	Новая архитектура (статья 2023 года) основаная на трансформерах, специально разработанная для работы с временными рядами, использует патчинг (разделение временного ряда на небольшие подотрезки) и показывает лучшие метрики на различных датасетах в статье. Интерпретируемость низкая, но патчинг облегчает понимание локальных связей.	https://github.com/yuqinie98/PatchTST https://arxiv.org/abs/2211.14730
	TimesNet	ТітевNet был разработан в 2017 году для решения проблемы моделирования зависимостей на разных временных разных временных рядах данные могут содержать как краткосрочные, так и долгосрочные зависимости, и архитектура TimesNet решает эту задачу через специальное внимание к различным масштабам. В статье имеет хорошие показатели, однако обычно ниже чем у PatchTST.	https://arxiv.org/pdf/2210.02186

Figure 2: Forecasting performance (MSE) with varying look-back windows on 3 large datasets: Electricity, Traffic, and Weather. The look-back windows are selected to be L=24,48,96,192,336,720, and the prediction horizons are T=96,720. We use supervised PatchTST/42 and other open-source Transformer-based baselines for this experiment.

Рис. 1: Сравнение PatchTST с другими трансформерами

2 Retail Demand Forecasting: A Comparative Study for Multivariate Time Series

Прогнозируется спрос товаров в Walmart. Использовались классические методы машинного обучения для прогноза, но мне кажется полезным почитать про Feature Engineering и их значимость.

3 Deep Learning for Demand Forecasting in the Fashion and Apparel Retail Industry

В статье упоминается, что ARIMA и экспоненциальное сглаживание широко использовались в задачах с временными рядами как для краткосрочных, так и для долгосрочных прогнозов, однако имеют много ограничений и на данный момент потеряли свою актуальность.

В статье прогнозируется спрос на одежду, однако слабо освещается вопрос о самом прогнозе количества и больше уделяется внимание на классификации и кластеризации фото изображений одежды.