Teorías previas

- En 1915 **Alfred Wegener** expone que hace unos 300 m.a. todos los continentes formaban un único continente llamado **Pangea**.
- La teoría de Wegener, llamada teoría de la deriva continental es la primera teoría movilista de la Tierra.
- Las teorías movilistas postulan que la Tierra ha cambiado a lo largo de su historia, frente a las **teorías fijistas**, que suponen que nuestro planeta ha tenido una historia estática.

Métodos directos y métodos indirectos

- Métodos directos:
 - Observación de la superficie terrestre.
 - Sondeos y minas.
 - o Erupciones volcánicas.
- Métodos indirectos. Están basados en cálculos y deducciones:
 - Magnetismo.
 - Meteroitos.
 - o Gravedad.
 - Radioisótopos.

El método sísmico

- Es un método indirecto que destaca por su importancia.
- Se basa en el estudio de la propagación de las vibraciones causadas por los terremotos.
 - Ondas P (principales). Son ondas longitudinales, que se pueden propagar a través de cualquier medio.
 - Ondas S (secundarias). Son ondas transversales, por lo no pueden viajar a través de un medio líquido.

METODO SÍSMICO

Tectónica de placas

• Es la gran teoría unificadora que explica la gran variedad de acontecimientos y características de la Tierra.

Asunciones:

- La capa exterior o litosfera es rígida y se encuentra fragmentada.
- La litosfera descansa sobre la astenosfera, que es semiplástica, más caliente y débil.
- Las placas litosféricas se desplazan sobre la astenosfera, debido a la presencia de unas corrietes de convección.

- Los movimientos de las placas son los responsables de la aparición de montañas, volcanes, sismos, plegamientos y fallas.
- También dan lugar a la expansión de los océanos y el desplazamiento de los continentes.
- Las principales placas son: Africana, Antártica, Arábiga, Caribe, Cocos,
 Euroasiática, Filipina, Indoaustraliana, Norteamericana, Sudamericana y del Pacífico.

Tipos de borde entre placas

Bordes destructivos

- Las placas colisionan y se destruye la litosfera.
- Reciben el nombre de zonas de subducción, o fosas.
- Se producen terremotos profundos y vulcanismo.
- Da lugar a arcos de islas y cordilleras.

Bordes constructivos

- Los placas se separan y se produce un ascenso de material.
- Da lugar a las dorsales oceánicas.

Bordes pasivos

- Las placas se mueven lateralmente una respecto a la otra.
- Se producen terremotos superficiales.
- Da lugar a fallas transformantes.

Figura 1.10 Mosaico de las placas rígidas que constituyen la envuelta externa de la Tierra. (Tomado de W. B. Hamilton, U.S. Geological Survey).

Atmósfera e hidrosfera

Atmósfera

- La atmósfera es la capa gaseosa que rodea la tierra.
- Composición:
 - ∘ *N*₂: 78%.
 - ∘ *O*₂: 21%.
 - Argón: 0,93%.
 - ∘ *CO*₂: 0,04%.
- La atmósfera está compuesta por una serie de capas. Destacamos:
 - o Troposfera. Donde se producen los fenómenos meteororológicos.
 - Estratosfera. Donde se encuentra la ozonosfera.
 - Mesosfera.

Hidrosfera

- Está formada por todo el agua de la Tierra, ya sea en estado líquido, sólido o gaseoso.
- El ciclo del agua puede verse como una máquina que funciona con energía solar y que realiza erosión, movilización de materiales y modelado del relieve.

El suelo

Edafogénesis

- Es el proceso mediante el cual se forma a partir de las rocas el suelo.
- Etapas:
 - Alteración de la roca madre. Debido a los procesos de meteorización, tanto física como química.
 - Instalación de los seres vivos.
 - Mezcla de los componentes.

Factores que influyen en la edafogénesis

- La pendiente del terreno. La inclinación dificulta la formación del suelo.
- El clima. La humedad y la temperatura facilitan la edafogénesis.
- El tiempo. La formación del suelo es un proceso largo (hasta miles de años).

Tipos de suelo

- Arenosos. Son los más extendidos del mundo. Se encuentran en las zonas áridas y semiáridas. Poca capacidad de retener el agua. Sostiene herbáceas y bosques ligeros.
- Limosos. Capacidad intermedia de retener el agua.
- Arcillosos. Tienen una gran capacidad de retener el agua.
- **Francos**. Tiene mezcla de arenas, limos y arcillas. Son ideales para los cultivos. Tienen buen drenaje y buena capacidad para retener el agua.
- Calcáreos. En regiones áridas. Vegetación escasa.
- Congelados.
- Volcánicos. Suelen ser muy fértiles.
- Pedregosos. Típicos de las zonas montañosas.

Riesgos naturales

• Se puede definir como la vulnerabilidad de una población o región a una amenaza o un peligro natural.

Clasificación

- Geológicos:
 - Vulcanismo
 - Terremotos
 - Tsunamis
 - Deslizamientos, aludes...
- Meteorológicos, climatológicos e hidrológicos:
 - Nieve y hielo
 - Lluvias intensas, granizo y tormentas
 - Inundaciones
 - Olas de frío y de calor
 - Vientos fuertes
- Biológicos: plagas y epidemias

Predicción y prevención

- **Predecir** es anunciar con anticipación. Una de las medidas más comunes es la realización de *mapas de riesgo*.
- **Prevención**. Consiste en la aplicación de una serie de medidas adecuadas para mitigar los daños. Pueden ser de dos tipos:
 - Medidas estructurales. Se modifican las estructuras geológicas o las construcciones.
 - Medidas no estructurales:
 - Ordenación del territorio
 - Protección civil
 - Educación

Minerales y rocas

• Un mineral es una sustancia natural, de composición química definida, normalmente sólido e inorgánico y que tiene una cierta estructura cristalina (sus átomos se disponen de manera ordenada, en figuras geométricas).

Clasificación de los minerales

Los minerales se dividen en clases según el grupo con carga negativa predominante:

- Elementos nativos. Están formados por una única especie de átomos. Ejemplos: oro, plata, cobre, diamante, grafito...
- Sulfuros y sulfosales. Son combinaciones del azufre con metales o semimetales. Ejemplos: Galena (PbS) y Pirita (FeS_2)
- ullet Halogenuros. Combinación de halógeno con metal. Ejemplo: halita (NaCl)
- Carbonatos y nitratos. Entre los nitratos destacan la calcita, la dolomita y el aragonito.
- Sulfatos. Destacamos el yeso.
- Fosfatos.
- Silicatos. Básicamente están constituidos por silicio y oxígeno. Suponen alrededor de un tercio de los minerales conocidos. Por regla general son duros y difícilmente alterables. Destacamos el olivino, los granates, micas, minerales arcillosos, cuarzo...

Propiedades de los minerales

Color

- Los minerales que poseen un color característico y constante se denominan idiocromáticos. Ejemplos: malaquita (verde), azurita (azul), pirita (amarilla)...
- Sin embargo la mayoría de los minerales son **alocromáticos**. Es decir, su color es muy variable, por lo que no sirve como carácterística distintiva.

- Se denomina dureza de una mineral a su resistencia al ser rayado.
- Es de gran importancia para el reconocimiento rápido de una mineral, pues se puede determinar fácilmente.
- Se indica de manera relativa con **la escala de Mohs**, que comprende diez minerals en orden, de mayor a menor, según su dureza:
 - i. Talco
 - ii. Yeso
 - iii. Calcita
 - iv. Fluorita
 - v. Apatito
 - vi. Feldespato
 - vii. Cuarzo
 - viii. Topacio
 - ix. Corindón

Brillo

- Es la apariencia de la superficie de un mineral cuando se refleja la luz en él. Existen dos tipos principales:
 - i. Metálico
 - ii. No metálico. A su vez se distinguen subtipos: vitreo, mate, graso...

Clasificación de las rocas

Las rocas se clasifican según su modo de formación u origen en tres grupos:

- Ígneas
- Sedimentarias
- Metamórficas

Rocas igneas

- Las rocas ígneas, también conocidas como magmáticas son todas aquellas que se han formado por la solidificación de un material rocos, caliente y fluido denominado magma.
- Cuando la solidificación que se produce dentro de la litosfera, la roca resultante se denomina **plutónica**.
- Cuando la solidificación se produce en la superficie, la roca resultante se denomina volcánica.
- Debido a que el enfriamiento en el interior de la Tierra ocurre más lentamente, los cristales de las rocas plutónicas están más desarrollados (son más grandes) que los de las rocas volcánicas.

Rocas metamórficas

- Las rocas metamórficas resultan de la transformación de rocas preexistentes que han sufrido ajustes estructurales y de composición bajo ciertas condiciones físicas o químicas, principalmente la presión y la temperatura.
- La roca original se transforma sin que pierda su estado sólido.
- Se clasifican según el tipo de metamorfismo.

Metamorfismo regional

- Es el mayoritario
- Ocurre en áreas muy grandes que están sometidas a temperaturas, presiones y deformaciones extremas.
- Característico de zonas de convergencia entre placas.

Metamorfismo de contacto

• Se da cuando el calor y los fluidos magmáticos actúan para producir el cambio.

Metamorfismo dinámico

- Se origina debido a la presión.
- Se asocia con zonas de fallas.

Rocas sedimentarias

- Son aquellas que han sido formadas debido a al acumulación de sedimentos.
- Constituyen el 75% de las rocas de la superfice terrestre.
- Se pueden clasficar según su:
 - o Formación.
 - Composición