Final Examination for Regular Students

Final Examination of MA 106 for Regular Students

1.

Consider the 4×4 matrix A and the 4×1 column vectors ${\bf u}$ and ${\bf v}$ defined by

$$A = \begin{bmatrix} 2 & 0 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 3 & 0 & 0 & 3 \\ 0 & -1 & 0 & 2 \end{bmatrix}, \quad \mathbf{u} = \begin{bmatrix} 2 \\ 1 \\ 3 \\ 1 \end{bmatrix} \quad \text{and} \quad \mathbf{v} = \begin{bmatrix} 3 \\ 1 \\ 2 \\ 1 \end{bmatrix}.$$

Let C(A) denote the column space of A. Then which of the following options is correct?

Marks: 2

Type: SINGLE_CORRECT_ANSWER

Options:

0)
$$\mathbf{u} \in \mathcal{C}(A)$$
 and $\mathbf{v} \in \mathcal{C}(A)$

1)
$$\mathbf{u} \notin \mathcal{C}(A)$$
, but $\mathbf{v} \in \mathcal{C}(A)$.

2)
$$\mathbf{u} \in \mathcal{C}(A)$$
, but $\mathbf{v} \notin \mathcal{C}(A)$.

3)
$$\mathbf{u} \notin \mathcal{C}(A)$$
 and $\mathbf{v} \notin \mathcal{C}(A)$.

2. The value(s) of *k* for which the system

$$\begin{cases} y+3kz &= 0\\ x+2y+6z &= 2\\ kx+2ky+12z &= -4 \end{cases}$$

has no solution is (are)

0)
$$k = 2$$

1)
$$k = 4$$

2)
$$k = 2$$
 and $k = 4$

3)
$$k = 4$$
 and $k = 6$

Let e_1, e_2, e_3 denote the standard basic vectors in \mathbb{R}^3 and let $S: \mathbb{R}^3 \to \mathbb{R}^3$ and $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformations for which

$$S(\mathbf{e}_1) = \mathbf{e}_1 - \mathbf{e}_2, \quad S(\mathbf{e}_2) = \mathbf{e}_2 - \mathbf{e}_3, \quad S(\mathbf{e}_3) = \mathbf{e}_3 - \mathbf{e}_1$$

and

$$T(\mathbf{e}_1 + \mathbf{e}_2) = 2\mathbf{e}_1, \ T(\mathbf{e}_1 - \mathbf{e}_2) = 4\mathbf{e}_2, \ T(\mathbf{e}_3 - \mathbf{e}_2) = 2\mathbf{e}_1 - 4\mathbf{e}_2 - \mathbf{e}_3.$$

Suppose $C = \mathbf{M}_E^E(T \circ S)$ denotes the matrix of the composite linear map $T \circ S : \mathbb{R}^3 \to \mathbb{R}^3$ with respect to the standard ordered basis $E = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ of \mathbb{R}^3 . Then the sum of entries of the second column of C is equal to

Marks: 2

Type: SINGLE_CORRECT_ANSWER

Options:

- 0) 7
- -3
- 2) 3
- 3) None of the above

4.

Consider the 4×4 matrix A and the 4×1 column vectors ${\bf u}$ and ${\bf v}$ defined by

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 2 & 0 & 2 \\ 1 & 0 & 0 & 2 \end{bmatrix}, \quad \mathbf{u} = \begin{bmatrix} 3 \\ 1 \\ 2 \\ 1 \end{bmatrix} \quad \text{and} \quad \mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix}.$$

Let C(A) denote the column space of A. Then which of the following options is correct?

Marks: 2

Type: SINGLE CORRECT ANSWER

0)
$$\mathbf{u} \in \mathcal{C}(A)$$
 and $\mathbf{v} \in \mathcal{C}(A)$.

1)
$$\mathbf{u} \notin \mathcal{C}(A)$$
, but $\mathbf{v} \in \mathcal{C}(A)$

2)
$$\mathbf{u} \in \mathcal{C}(A)$$
, but $\mathbf{v} \notin \mathcal{C}(A)$.

3) $\mathbf{u} \notin \mathcal{C}(A)$ and $\mathbf{v} \notin \mathcal{C}(A)$.

5.

Let n be a positive integer and let \mathcal{P}_n denote the vector space over \mathbb{R} of all polynomials in one variable with real coefficients and of degree $\leq n$. Consider the linear map $T:\mathcal{P}_n\to\mathcal{P}_n$ defined by

$$T(p(t)) = p'(t)$$
 for $p(t) \in \mathcal{P}_n$,

where p'(t) denotes the derivative of p(t). Then which of the following options is correct?

Marks: 2

Type: SINGLE_CORRECT_ANSWER

Options:

- 0) $\operatorname{nullity}(T) = 0$ and $\operatorname{rank}(T) = n 1$.
- 1) $\operatorname{nullity}(T) = 0$ and $\operatorname{rank}(T) = n$.
- 2) $\operatorname{nullity}(T) = 1$ and $\operatorname{rank}(T) = n 1$.
- 3) nullity(T) = 1 and rank(T) = n.

6.

Let V be a finite dimensional inner product space over $\mathbb C$. For a subset S of V, denote by S^\perp the orthogonal complement of S defined by $S^\perp = \{v \in V : \langle v, u \rangle = 0 \text{ for all } u \in S\}$. Consider the following statements and then choose the correct option.

- 1. $S^{\perp} \subset S$ for every subspace S of V.
- 2. $S \cap S^{\perp} = \{0\}$ for every subspace S of V.
- 3. $S + S^{\perp} = V$ for every subspace S of V.
- 4. $\dim S = \dim S^{\perp}$ for every subspace S of V.

Marks: 2

Type: SINGLE_CORRECT_ANSWER

- 0) Statements 1 and 2 are true, but 3 and 4 are false.
- 1) Statements 2 and 3 are true, but 1 and 4 are false.

- 2) Statements 3 and 4 are true, but 1 and 2 are false.
- 3) Statements 1 and 4 are true, but 2 and 3 are false.

Let A be a 2×2 matrix with entries in \mathbb{R} such that $\det(A) < 0$ and let B be a 5×5 matrix with entries in \mathbb{R} such that $B^3 = \mathbf{0}$, but $B^2 \neq \mathbf{0}$, where $\mathbf{0}$ denotes the zero matrix of size 5×5 . Then which of the following options is correct?

Marks: 2

Type: SINGLE_CORRECT_ANSWER

Options:

- 0) Both A and B are diagonalisable.
- 1) A is diagonalisable, but B is not diagonalisable.
- 2) B is diagonalisable, but A is not diagonalisable.
- 3) It is possible that neither A nor B is diagonalisable.

8.

Consider the subset W of the vector space $\mathbb{R}^{2\times 2}$ of all 2×2 real matrices defined by

$$W = \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} : a, b \in \mathbb{R} \right\}.$$

Regard the set $\mathbb C$ of all complex numbers as a vector space over $\mathbb R$ and let $T:W\to\mathbb C$ be the map defined by

$$T\left(\begin{bmatrix} a & b \\ -b & a \end{bmatrix}\right) = a + ib.$$

Consider the the following statements and then choose the correct option.

- 1. W is a subspace of $\mathbb{R}^{2\times 2}$ and $T:W\to\mathbb{C}$ is a linear map of vector spaces over \mathbb{R} .
- 2. $T:W\to\mathbb{C}$ is one-one.
- 3. $T:W\to\mathbb{C}$ is onto.

4. $T: W \to \mathbb{C}$ preserves multiplication, that is, T(AB) = T(A)T(B) for all $A, B \in W$, where AB denotes the product of matrices A and B, while T(A)T(B) denotes the product of complex numbers T(A) and T(B).

Marks: 2

Type: SINGLE_CORRECT_ANSWER

Options:

- 0) Statement 1 is false.
- 1) Statements 1 and 2 are true, but 3 and 4 are false.
- 2) Statements 1, 2 and 3 are true, but 4 is false.
- 3) Statements 1, 2, 3 and 4 are true.

9.

Suppose the ternary quadratic form $3x^2 - 12xy + 12yz - 3z^2$ is transformed to $9(v^2 - w^2)$ by the transformation

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = C \begin{bmatrix} u \\ v \\ w \end{bmatrix},$$

where $C=[c_{jk}]$ is a 3×3 orthogonal matrix. Then the sum of the absolute values of the diagonal entries of C, that is, $|c_{11}|+|c_{22}|+|c_{33}|$, is equal to

Marks: 2

Type: SINGLE_CORRECT_ANSWER

Options:

- 0) ()
- 1) 2
- 2) 6
- 3) None of the above

10.

Let V denote the set of all 3×3 matrices A with entries in \mathbb{C} such that A is self-adjoint, i.e., $A^* = A$. Then which of the following options is correct?

Options:

- 0) V is a real vector space and the dimension of V over \mathbb{R} is 6.
- 1) V is a real vector space and the dimension of V over \mathbb{R} is 9.
- 2) V is a complex vector space and the dimension of V over $\mathbb C$ is 3.
- 3) V is a complex vector space and the dimension of V over \mathbb{C} is 6.

11.

For a positive integer n, let V_n and W_n denote the subspaces of the vector space $\mathbb{R}^{n\times n}$ of all $n\times n$ real matrices defined by

$$V_n = \{ A \in \mathbb{R}^{n \times n} : \operatorname{trace}(A) = 0 \}$$

and

$$W_n = \{A \in \mathbb{R}^{n \times n} : A \text{ is skew-symmetric}\}.$$

Then $\dim V_3 + \dim W_4$ is equal to

Marks: 2

 ${\it Type: SINGLE_CORRECT_ANSWER}$

Options:

- 0) 14
- 1) 15
- 2) 18
- 3) 19

12.

For a positive integer n, let V_n and W_n denote the subspaces of the vector space $\mathbb{R}^{n\times n}$ of all $n\times n$ real matrices defined by

$$V_n = \{ A \in \mathbb{R}^{n \times n} : \operatorname{trace}(A) = 0 \}$$

and

$$W_n = \{ A \in \mathbb{R}^{n \times n} : A \text{ is skew-symmetric} \}.$$

Then $\dim V_4 + \dim W_3$ is equal to

Options:

- 0) 14
- 1) 15
- 2) 18
- 3) 19

13.

Let A and B be the 4×4 matrices defined by

$$A = \begin{bmatrix} 2 & 3 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 2 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 2 & 4 & 0 & 0 \\ 0 & 2 & 3 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}.$$

Consider the following statements and then choose the correct option.

- 1. Both A and B have the same eigenvalues and their algebraic multiplicities are also the same.
- 2. Both A and B have the same eigenvalues and their geometric multiplicities are also the same.
 - 3. A is similar to B.
 - 4. A is not similar to B.

Marks: 2

Type: SINGLE_CORRECT_ANSWER

Options:

- 0) Statements 1, 2 and 3 are true, but 4 is false.
- 1) Statements 1, 2 and 4 are true, but 3 is false.
- 2) Statements 1 and 4 are true, but 2 and 3 are false.
- 3) Statements 2 and 4 are true, but 1 and 3 are false.

14.

Let A and B be the 4×4 matrices defined by

$$A = \begin{bmatrix} 3 & 4 & 0 & 0 \\ 0 & 3 & 3 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \quad \text{and.} \quad B = \begin{bmatrix} 3 & 3 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 3 \end{bmatrix}.$$

Consider the following statements and then choose the correct option.

- 1. Both A and B have the same eigenvalues and their algebraic multiplicities are also the same.
- 2. Both A and B have the same eigenvalues and their geometric multiplicities are also the same.
 - 3. A is similar to B.
 - 4. A is not similar to B.

Marks: 1
Type: SINGLE_CORRECT_ANSWER

Options:

- 0) Statements 1, 2 and 3 are true, but 4 is false.
- 1) Statements 1, 2 and 4 are true, but 3 is false.
- 2) Statements 1 and 4 are true, but 2 and 3 are false.
- 3) Statements 2 and 4 are true, but 1 and 3 are false.

15.

Let V be a finite dimensional vector space over \mathbb{R} and let $P:V\to V$ be a linear map such that P is not the zero map, P is not the identity map, and P satisfies $P^2=P$, that is, $P\circ P=P$. Consider the following statements and then choose the correct option.

- 1. P must be invertible.
- 2. P cannot be invertible.
- 3. The only possible eigenvalues of P are 0 and 1.
- 4. The null space of P and the image space of P have a nonzero vector in common.

Marks: 2

Type: SINGLE_CORRECT_ANSWER

- 0) Statements 1, 3 and 4 are true, but 2 is false.
- 1) Statements 2, 3 and 4 are true, but 1 is false.
- 2) Statements 1 and 3 are true, but 2 and 4 are false.
- 3) Statements 2 and 3 are true, but 1 and 4 are false.

Suppose a 3×3 matrix A with real entries satisfies $A^3 - 2A^2 = A - 2I$ and has the property that $\det(A) < 0$ and $\operatorname{trace}(A) > 2$. Then the characteristic polynomial $p_A(t) = \det(A - tI)$ of A is given by

Marks: 2

Type: SINGLE_CORRECT_ANSWER

Options:

0)
$$-t^3 + 2t^2 + t - 2$$

1)
$$-t^3 + 3t^2 - 4$$

2)
$$-t^3 + 3t^2 - 8t - 4$$

3)
$$-t^3 + t^2 + t - 1$$

17.

Consider the 3×2 matrix A and the 3×1 column vector \mathbf{b} given by

$$A = \begin{bmatrix} 3 & 6 \\ 4 & 8 \\ 0 & 3 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 5 \\ 5 \\ 4 \end{bmatrix}.$$

Then the best approximation to \mathbf{b} from the column space of A is given by

Marks: 2

Type: SINGLE_CORRECT_ANSWER

Options:

0)
$$\begin{bmatrix} 3/5 \\ 4/5 \\ 4 \end{bmatrix}$$

1)
$$\begin{bmatrix} 21/5 \\ 28/5 \\ 4 \end{bmatrix}$$

2)

$$\begin{bmatrix} 9 \\ 4 \\ 4 \end{bmatrix}$$
3)
$$\begin{bmatrix} 6 \\ 4 \end{bmatrix}$$

Let $C^1[-\pi,\pi]$ denote the vector space of continuously differentiable real valued functions defined on the interval $[-\pi,\pi]$, and let V denote the subspace of $C^1[-\pi,\pi]$ spanned by the functions f_0,f_1,f_2 , where

$$f_0(x) = 1$$
, $f_1(x) = \cos x$ and $f_2(x) = \sin x$ for all $x \in [-\pi, \pi]$.

Consider the linear map $T:V\to V$ defined by T(f)=f', where f' denotes the derivative of f. If $A=\mathbf{M}_E^E(T)$ denotes the matrix of T with respect to the ordered basis $E=(f_0,f_1,f_2)$ of V, then which of the following options is correct?

Marks: 2

Type: SINGLE_CORRECT_ANSWER

- 0) A is invertible.
- 1) A is orthogonal
- 2) A is symmetric
- 3) A is skew-symmetric.