Homework 6

Elliott Pryor

19 March 2021

Problem 1 7.5.5 Problem 7

If f is C^1 on [a, b] prove that there exists a cubic polynomial P such that f - P and its first derivative vanish at the endpoints of the interval.

Problem 2 7.5.5 Problem 9

If f(c) = 0 for some $c \in (a, b)$ prove that the polynomials approximating f on [a, b] may be taken to vanish at c.

Hint: Here f(x) is a continuous function on [a, b]. Assume $f_n(x)$ is the sequence of polynomials approximating f(x) uniformly by WTA, consider $g_n(x) = f_n(x) - f_n(c)$

Problem 3 7.5.5 Problem 14

- (a) For $c_m = \int_{-1}^{1} (1-x^2)^m dx$ obtain the identity $c_m = c_{m-1} (1/2m)c_m$ by integration by parts.
- (b) Show that

$$c_m = 2 \frac{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2m}{3 \cdot 5 \cdot 7 \cdot \dots \cdot 2m + 1} = \frac{2(2^m m!)^2}{(2m+1)!}$$