Digitaltechnik

4. Flipflops

Prof. Dr. Eckhard Kruse

DHBW Mannheim

Vorlesungsthemen (s. Studienplan)

Elektronische Realisierung

- Elektronikgrundlagen
- Elementare Gatter
- Technologien (TTL, CMOS)
- ...

Standardbaugruppen

- Flip-Flops
- Zähler
- Schieberegister
- ..

Schaltalgebra

- Logische Verknüpfungen
- Gatter + Schaltnetze
- Schaltungstransformation

Übungen

Zahlentheorie

- Binärcodierung
- Hexadezimal usw.
- Binäres Rechnen

00100110 11101101 11011010 11101101 11101101 01110110 11110110 01110110 01110110 01110110

Rückkopplung

Beispiel

Bisher: Schaltnetze, die gerichtet, ohne Zyklen durchlaufen werden. Was passiert, wenn man Ausgänge zu Eingängen rückkoppelt?

Rückkopplung

Übung

4.1 Rückkopplung

Untersuchen Sie die folgende Schaltung, zunächst durch Überlegung, dann mit Hilfe des Simulationswerkzeugs.

- a) Erstellen Sie eine Wahrheitstabelle. Wann spielen die Werte der Ausgänge für die Eingänge eine Rolle, wann nicht?
- b) Verändern Sie die Eingänge, was passiert an den Ausgängen?
- c) Verwenden Sie ggf. den Pegelschreiber.
- d) Welche Funktion könnte diese Schaltung haben?

Digitaltechnik: 4. Flipflops

Rückkopplung - Wahrheitstabelle

RS-Flipflop

Das **RS-Flipflop** ist ein 1-Bit-**Speicherbaustein**. Durch Anlegen von 1 an den Eingang S (Set) bzw. R (Reset) wird der Speicher auf 0 bzw. 1 gesetzt. Wenn kein Signal (= 0) an den Eingänge angelegt ist, behält es seinen Zustand (Speicherfunktion).

S	R	Q _{n+1}
0	0	Q_n
1	0	1
0	1	0
1	1	-

- Das RS-Flipflop ist die Grundform in einer großen Familie von Flipflop-Varianten.
- Set und Reset gleichzeitig ist "verboten", da es zu einem undefinierten Zustand führt.

Signalverlauf

Ein Impulsdiagramm / Zeitablaufdiagramm stellt Eingangs- und Ausgangssignale dar: Über der horizontalen Zeitachse wird auf der vertikalen Achse der Spannungspegel (high/low) verschiedener Signale in Beziehung gesetzt.

RS-Flipflop

Übung

4.2 RS-Flipflop

 a) Bauen Sie im Simulator ein RS-Flipflop aus NOR Gattern auf. (Verwenden Sie Taster für die Eingabe.)

S	R	Q _{n+1}
0	0	Q _n
1	0	1
0	1	0
1	1	-

- b) Untersuchen das Verhalten an Ein- und Ausgängen mit Hilfe des Pegelschreibers (→ rechter Mausklick auf Leitungen)
- c) Erweitern Sie die Schaltung, so dass die S, R Eingänge nicht sofort übernommen werden, sondern nur dann, wenn ein zusätzliches Signal (z.B. ein Taktgeber, der das Schreiben in den Speicher steuert) auf 1 liegt.
- d) Untersuchen Sie die erweiterte Schaltung mit dem Pegelschreiber.

Taktpegelgesteuertes RS-Flipflop

Taktpegelgesteuertes RS-Flipflop

Bei einem taktpegelgesteuerten RS-Flipflop kann der Zustand des Speichers nur geändert werden, wenn der Takt (Clock C) 1 ist.

Master-Slave RS Flipflop

Übung

4.3 Master-Slave RS Flipflop

Digitaltechnik: 4. Flipflops

- a) Bauen Sie im Simulator die folgende Schaltung auf und untersuchen Sie das Verhalten. (Falls Ihr Digitalsimulator keine taktpegelgesteuerten FFs hat, bitte ggf. aus einzelnen Gattern nachbauen!)
- b) Nehmen Sie die Pegel mit dem Pegelschreiber auf. Wann ändert sich der Ausgang?
- c) Reihen Sie mehrere dieser Schaltungen hintereinander.
- d) Worin könnten die Vorteile dieser Schaltung gegenüber einem einfachen RS-Flipflop liegen?

Master-Slave RS Flipflop

Ein Schaltelement ist **transparent**, wenn die Änderungen der Eingänge sofort (abgesehen von den Signallaufzeiten) an den Ausgängen sichtbar werden.

Das Master-Slave RS Flipflop ist nicht-transparent, d.h. nur zum Zeitpunkt, wenn der Taktpuls zu Ende ist, wird der Eingang an den Ausgang durchgeschaltet.

→ Prinzip/Wirkung einer Schleuse bzw. einer Doppeltür.

2 Master-Slave RS Flipflops

Taktflankensteuerung

Bei der **Taktflankensteuerung** wird der Eingangszustand übernommen, wenn der Takt von 0 auf 1 wechselt.

(Kennzeichnung durch Dreieck am Takteingang)

Taktflankengesteuerte Flipflops sind nicht-transparent.

Warum sind taktflankengesteuerte Flipflops nicht-transparent?

Taktflankensteuerung

Übung

4.4 Taktflankensteuerung

 a) Untersuchen Sie das Verhalten des taktflankengesteuerten RS-Flipflops mit dem Pegelschreiber des Simulators.

b) Mit der folgenden Schaltung lässt sich Taktflankensteuerung nachahmen*. Bauen Sie die Schaltung auf und untersuchen Sie ihr Verhalten im Zusammenspiel mit einem nicht-flankengesteuerten Flipflop.

c) Beschreiben Sie Ähnlichkeiten und Unterschiede von taktflankengesteuerten und Master-Slave RS-Flipflops.

^{*} die tatsächliche elektronische Realisierung erfolgt auf andere Weise

D-Flipflop

Das **D-Flipflop** hat nur einen Informationseingang (D = Delay) und einen Takteingang (pegel- oder flankengesteuert).

Funktionsweise:

Wie beurteilen Sie ein ungetaktetes D-Flipflop? Warum wird der Eingang mit D=Delay bezeichnet?

Schaltungen mit D-Flipflops

Übung

4.5 Schaltungen mit D-Flipflops

Betrachten Sie die folgenden Schaltungen: Wie verhalten sie sich? Wofür könnten sie verwendet werden? Versuchen Sie zunächst durch Überlegung zum Ergebnis zu kommen und testen Sie erst danach die Schaltungen am Simulator.

a)

c)

Schaltungen mit D-Flipflops (a)

Frequenzteiler: Halbiert die Eingangsfrequenz.

Was würde bei pegelgesteuertem Takt passieren?

Das **T-Flipflop** hat nur einen Takteingang und wechselt mit jedem Takt zwischen 0 und 1 (T=Toggle).

Funktionsweise:

