Leçon 108. Exemples de parties génératrices d'un groupe. Applications.

1. Générateurs d'un groupe, premiers exemples

1.1. Parties génératrices et groupes libres

1. DÉFINITION-PROPOSITION. Soient G un groupe et $S \subseteq G$ une partie. Alors il existe un plus petit sous-groupe de G contenant le partie S. Il s'agit du groupe

$$\langle S \rangle \coloneqq \bigcap_{H \in \mathscr{H}_S} H$$

où l'ensemble $\mathcal{H}_S \subset \mathcal{P}(G)$ est constitué des sous-groupes de G contenant la partie S. Le sous-groupe $\langle S \rangle$ est le sous-groupe de G enqendré par la partie S.

- 2. EXEMPLE. Le groupe additif ${\bf Z}$ est engendré par l'entier 1, c'est-à-dire ${\bf Z}=\langle 1\rangle$. L'égalité $G=\langle G\rangle$ est toujours vraie.
- 3. NOTATION. Si l'ensemble $S = \{x_1, \dots, x_n\}$ est fini, on notera $\langle S \rangle = \langle x_1, \dots, x_n \rangle$.
- 4. PROPOSITION. Soient G un groupe et $S \subseteq G$ une partie. Soient $x \in G$ un élément. Alors $x \in \langle S \rangle$ si et seulement s'il existe des éléments $x_1, \ldots, x_k \in S$ tels que
 - $-x=x_1\cdots x_k$;
 - $-x_i \in S$ ou $x_i^{-1} \in S$ pour tout indice $i \in [1, k]$.
- 5. EXEMPLE. Pour tout élément $x \in G$, on a $\langle x \rangle = \{x^k \mid n \in \mathbf{N}\}.$
- 6. DÉFINITION. Une partie $S \subseteq G$ génère un groupe G si $G = \langle S \rangle$. On dit que c'est une partie génératrice du groupe G.
- 7. EXEMPLE. Pour tout entier $n \ge 1$, la partie $\{1\}$ génère le groupe $\mathbb{Z}/n\mathbb{Z}$.
- 8. DÉFINITION. Le groupe dérivé d'un groupe G est le sous-groupe $\mathrm{D}(G)$ engendré par les commutateurs $[x,y]:=xyx^{-1}y^{-1}$ avec $x,y\in G$.
- 9. EXEMPLE. Le groupe dérivé d'un groupe abélien est trivial. On a $D(\mathfrak{A}_n)=\mathfrak{A}_n$.
- 10. Proposition. Le groupe quotient $G^{ab} := G/D(G)$ est abélien. Soit A un groupe abélien. Alors tout morphisme $G \longrightarrow A$ se factorise en un morphisme $G^{ab} \longrightarrow A$.
- 11. DÉFINITION. Soient A et A^{-1} deux ensembles de même cardinal. On les notes

$$A = \{x_i\}_{i \in I}$$
 et $A^{-1} = \{x_i^{-1}\}_{i \in I}$.

Soit $\mathcal{M}(A)$ l'ensemble des suites finies de l'ensemble $A \cup A^{-1}$. On le munit de l'opération \cdot définie par

$$(a_1, \ldots, a_m) \cdot (b_1, \ldots, b_m) = (a_1, \ldots, a_n, b_1, \ldots, b_m).$$

Alors le couple $(M(A),\cdot)$ est un monoïde. Deux éléments de l'ensemble M(A) sont $\acute{e}quivalents$ si l'un se transforme en l'entre en enlevant ou ajoutant des termes de la forme $x_i^{-1}x_i^{-1}$ avec $i\in I$. Alors l'opération \cdot induit une structure de groupe sur l'ensemble quotient $F(A):=M(A)/\sim$, appelé le groupe libre sur l'alphabet A, et le neutre est le mot vide $\varepsilon:=()$.

- 12. Exemple. Dans l'ensemble $F(\{x,y,z\})$, les mots $xyy^{-1}x$ et xx sont équivalents.
- 13. PROPOSITION. Soient A un ensemble et G un groupe. Alors toute application $A \longrightarrow G$ s'étend en un unique morphisme $F(A) \longrightarrow G$.
- 14. DÉFINITION. Soit $R \subseteq A$ un sous-ensemble. La présentation par générateur de l'ensemble A et relation de l'ensemble R est le groupe quotient $\langle A \mid R \rangle \coloneqq F(A)/\langle R \rangle$.

15. EXEMPLE. Le groupe $\langle 1 \mid n \cdot 1 \rangle$ est isomorphe au groupe $\mathbf{Z}/n\mathbf{Z}$. Le groupe diédral \mathbf{D}_n est isomorphe au groupe $\langle s, r \mid s^2, r^n, srsr \rangle$

1.2. Groupes cycliques et de type fini

- 16. DÉFINITION. Un groupe est *monogène* s'il admet une partie génératrice à un élément. Un *groupe cyclique* est un groupe fini monogène.
- 17. EXEMPLE. Le groupe ${\bf Z}/4{\bf Z}$ est cyclique et il est engendré par l'élément 1 ou 3. Le groupe ${\bf Z}$ est monogène mais non cyclique.
- 18. PROPOSITION. Soit $n \ge 1$ un entier. Alors le groupe $\mathbf{Z}/n\mathbf{Z}$ est cyclique. Plus précisément, un élément $k \in \mathbf{Z}/n\mathbf{Z}$ le génère si et seulement si $n \wedge k = 1$.
- 19. Théorème. Tout groupe cyclique d'ordre n est isomorphe au groupe $\mathbf{Z}/n\mathbf{Z}$.
- 20. COROLLAIRE. On considère l'indicatrice d'Euler $\varphi \colon \mathbf{N}^* \longrightarrow \mathbf{N}^*$. Alors un groupe cyclique d'ordre n possède exactement $\varphi(n)$ générateurs.
- 21. PROPOSITION. Pour deux entiers $m,n\in \mathbf{Z}$, le sous-groupe $\langle m,n\rangle\subset \mathbf{Z}$ est monogène de générateur $\operatorname{pgcd}(m,n)$.
- 22. Théorème. Soit k un corps. Alors tout sous-groupe fini du groupe multiplicatif k^{\times} est cyclique.
- 23. Exemple. Pour une puissance q d'un nombre premier, on a $\mathbf{F}_q^{\times} \simeq \mathbf{Z}/(q-1)\mathbf{Z}$.
- 24. DÉFINITION. Un groupe est de type fini s'il admet une partie génératrice finie.
- 25. Remarque. Un groupe fini est de type fini, mais la réciproque est fausse puisque le groupe $\mathbf{Z} = \langle 1 \rangle$ est de type fini bien qu'il soit infini.
- 26. Théorème (de structure des groupes abéliens de type fini). Soit G un groupe abélien de type fini. Alors il existe des uniques entiers $e_1, \ldots, e_n, r \ge 1$ tels que

$$G \simeq \mathbf{Z}/e_1\mathbf{Z} \times \cdots \times \mathbf{Z}/e_n\mathbf{Z} \times \mathbf{Z}^r$$
 et $d_1 \mid \cdots \mid d_n$.

2. Le groupe symétrique

2.1. Générateurs du groupe symétrique

- 27. Théorème. Soit $n \ge 1$ un entier. Alors toute permutation du groupe \mathfrak{S}_n s'écrit comme un produit de cycles à support disjoints. De plus, cette écriture est unique à l'ordre près des facteurs.
- 28. EXEMPLE. Dans le groupe \mathfrak{S}_5 , on peut écrire

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 2 & 5 & 1 \end{pmatrix} = (1 \ 4 \ 5)(2 \ 3).$$

- 29. COROLLAIRE. Deux permutations du groupe \mathfrak{S}_n sont conjuguées si et seulement si, dans leurs décomposition en cycles à supports disjoints, elles ont le même nombre de k-cycles pour tout entier $k \in [2, n]$.
- 30. LEMME. Tout cycle $(a_1 \cdots a_r) \in \mathfrak{S}_n$ est un produit de r-1-transpositions. Plus précisément, on a $(a_1 \cdots a_r) = (a_1 \ a_r)(a_1 \ a_{r-1}) \cdots (a_1 \ a_2)$.
- 31. COROLLAIRE. Le groupe \mathfrak{S}_n est engendré par les transpositions.
- 32. COROLLAIRE. Il est engendré par
 - ou bien les transpositions de la forme (1 i) avec $i \in [2, n]$;

33. APPLICATION. Les groupes des isométries positives du cube est isomorphe au groupe \mathfrak{S}_4 .

2.2. Le groupe alterné

34. LEMME. Le produit de deux transpositions est un produit de trois cycles. Plus précisément, pour tout entier $x, y, z, t \in [1, n]$ deux à deux distincts, on a

$$(x y)(x z) = (x z y)$$
 et $(x y)(z t) = (x y z)(y z t)$.

35. Théorème. Lorsque $n \ge 3$, le groupe \mathfrak{A}_n est engendré par les 3-cycles.

36. COROLLAIRE. On a $D(\mathfrak{A}_n) = \mathfrak{A}_n$ lorsque $n \ge 5$ et $D(\mathfrak{S}_n) = \mathfrak{A}_n$ lorsque $n \ge 2$.

37. LEMME. Le groupe \mathfrak{A}_5 est simple.

38. Théorème. Lorsque $n \ge 5$, le groupe \mathfrak{A}_n est simple.

39. COROLLAIRE. Lorsque $n \geqslant 5$, les seuls sous-groupes distingués du groupe \mathfrak{S}_n sont le groupe trivial, le groupe alterné \mathfrak{A}_n et lui-même.

3. Le groupe linéaire et ses sous-groupes

40. CADRE. On considère un corps k et un k-espace vectoriel E de dimension $n \ge 1$.

3.1. Générateurs du groupes linéaire et spécial linéaire

41. PROPOSITION. Soient $H \subset E$ un hyperplan et $u \in GL(E)$ un automorphisme tel que $u|_H = \mathrm{Id}_H$. Alors les points suivants sont équivalents :

 $-\det u \neq 1$;

– l'automorphisme u admet une valeur propre $\lambda \neq 1$ et il est diagonalisable;

- $\operatorname{Im}(u - \operatorname{Id}_E) \not\subset H$;

- dans une base convenable, la matrice de l'automorphisme u est diag $(1, \ldots, 1, \lambda)$ avec $\lambda \in k^{\times} \setminus \{1\}$.

42. DÉFINITION. Un automorphisme $u \in GL(E)$ vérifiant ces points est une dilatation d'hyperplan H, de droite $Im(u - Id_E)$ et de rapport λ .

43. PROPOSITION. Soient $H \subset E$ un hyperplan et $u \in GL(E) \setminus \{Id_E\}$ un automorphisme tel que $u|_H = Id_H$. Alors les points suivants sont équivalents :

 $- \det u = 1;$

- l'automorphisme u n'est pas diagonalisable;

- $\operatorname{Im}(u - \operatorname{Id}_E) \subset H$;

- l'automorphisme induit $\overline{u}: E/H \longrightarrow E/H$ est l'identité;

– il existe un vecteur $a \in H \setminus \{0\}$ et une forme linéaire $f \in E^*$ tels que

$$\forall x \in E, \qquad u(x) = x + f(x)a ;$$

- dans une base convenable, la matrice de l'automorphisme u est

$$\begin{pmatrix} 1 & & & (0) \\ & \ddots & & \\ & & 1 & 1 \\ (0) & & & 1 \end{pmatrix}.$$

44. DÉFINITION. Un automorphisme $u \in GL(E)$ vérifiant ces points est une transvection d'hyperplan H et de droite $Im(u - Id_E)$.

45. LEMME. Soient $u \in \mathrm{GL}(E) \setminus \{\mathrm{Id}_E\}$ un automorphisme et $D \subset E$ une droite. Alors les points suivants sont équivalents :

- l'automorphisme u est une transvection de droite D;

 $-u|_D=\mathrm{Id}_D$ et l'automorphisme induit $\overline{u}\colon E/D\longrightarrow E/D$ est l'identité.

46. Théorème. Le groupe SL(E) est engendré par les transvections.

47. COROLLAIRE. Le groupe GL(E) est engendré par les transvections et dilatations.

3.2. Les groupes d'isométries

48. Cadre. On suppose que le corps k est celui des réels et que l'espace E est euclidien de dimension $n \ge 1$.

49. DÉFINITION. Dans un espace vectoriel ou affine euclidien, une *réflexion* est une symétrie orthogonale par rapport à un hyperplan.

50. LEMME. Soit $F \subseteq E$ un sous-espace vectoriel stable par une isométrie $f \in \mathcal{O}(E)$. Alors son orthogonal F^{\perp} est également stable par l'isométrie u.

51. Théorème. Tout isométrie du groupe O(E) se décompose en un produit de p réflexions avec $p \leq n$.

52. COROLLAIRE. Soit $\mathscr E$ un espace affine euclidien de dimension n. Alors toute isométrie de $\mathscr E$ se décompose en un produit de p réflexions avec $p \le n+1$.

53. EXEMPLE. Le groupe des isométries positive du cube est engendré par les retournements d'axe [MN] comme indiqué par une figure (mais lol je pe pa fer de figur).

Michèle Audin. Géométrie. EDP Sciences, 2006.

Josette Calais. Éléments de théorie des groupes. 3° édition. Presses Universitaires de France, 1998.

Daniel Perrin. Cours d'algèbre. Ellipses, 1996.

^[4] Felix Ulmer. Théorie des groupes. 2e édition. Ellipses, 2021.