The Derivation of EM alogrithm

The model is

$$Y = X\gamma + G_A + G_B + e$$

Y: $N \times 1$ matrix, records trait value.

X: $N \times p$ matrix, records the covariant.

 γ : $p \times 1$, the effect of covariant.

 G_A : the gene effect for Gene A, treated as an random effect. $G_A \sim N(0, \tau_A S_A)$, S_A is the similarity matrix which records the genetic similarity between individuals.

 G_B : the gene effect for Gene B, also treated as an random effect. G_A and G_B are assumed to be independent.

e: $N \times 1$ matrix, the error term. $e \sim N(0, \sigma I)$.

Define $U = A^T Y$ with the restriction that $A^T A = I_{N-p}$ and $AA^T = I - P_X$.

It is easy to find out that : E(U) = 0 and $Var(U) = A^TVA$ where $V = Var(Y) = \tau_A S_A + \tau_B S_B + \sigma I$.

$$Cov(U, G_A) = Cov(A^T X \gamma + A^T G_A + A^T G_B + A^T e, G_A)$$

$$= Cov(A^T G_A, G_A)$$

$$= A^T Cov(G_A, G_A)$$

$$= \tau_A A^T S_A$$

In the same way, we have $Cov(U, G_B) = \tau_B A^T S_B$ and $Cov(G_A, G_B) = 0$ since they are independent.

Therefore, the joint distribution of $(U, G_A, G_B)^T$ is

$$\begin{pmatrix} U \\ G_A \\ G_B \end{pmatrix} \sim MN \left(\mu = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} A^TVA & \tau_A A^TS_A & \tau_B A^TS_B \\ \tau_A S_A A & \tau_A S_A & 0 \\ \tau_B S_B A & 0 & \tau_B S_B \end{pmatrix} \right)$$

so we can have the following conditional mean and variance,

1. the conditional mean and variance for U are

$$E(U|G_A, G_B) = A^T(G_A + G_B)$$
$$Var(U|G_A, G_B) = \sigma I_{N-p}$$

2. the conditional mean and variance for G_A , since $Cov(G_A, G_B) = 0$

$$E(G_A|G_B, U) = E(G_A|U)$$

$$= \tau_A S_A A (A^T V A)^{-1} A^T Y$$

$$Var(G_A|G_B, U) = Var(G_A|U)$$

$$= \tau_A S_A - \tau_A^2 S_A A (A^T V A)^{-1} A^T S_A$$

Simple algebra shows that $A(A^TVA)^{-1}A^T = P = V^{-1} - V^{-1}X(X^TV^{-1}X)^{-1}X^TV^{-1}$, so that

$$E(G_A|G_B, U) = \tau_A S_A P Y = g_A$$
$$Var(G_A|G_B, U) = \tau_A S_A - \tau_A^2 S_A P S_A = v_A$$

3. Similarly, the conditional mean and variance for G_B are

$$E(G_B|G_A, U) = \tau_B S_B P Y = g_B$$
$$Var(G_B|G_A, U) = \tau_B S_B - \tau_B^2 S_B P S_B = v_B$$

Define $\theta = \{\sigma, \tau_A, \tau_B\}$, according to the EM algorithm, we need to first compute the log $L(\theta^{(t)}|U, G_A, G_B)$,

$$\log L(\theta^{(t)}|U, G_A, G_B) = f(U, G_A, G_B|\theta^{(t)})$$

$$= \log f(U|G_A, G_B, \theta^{(t)}) + \log f(G_A|\theta^{(t)}) + \log f(G_B|\theta^{(t)})$$

Since S_A and S_B are singular, we have,

$$f(G_A) = \frac{1}{((2\pi)^{rank(S_A)}|\tau_A S_A|_+)^{\frac{1}{2}}} \exp\left(-\frac{1}{2}G_A^T(\tau_A S_A)^-G_A\right)$$

where $|\tau_A S_A|_+$ is the Pseudo-Determinant, and $(\tau_A S_A)^-$ is the Generalized inverse. Define $rank(S_A) = q_A$, $rank(S_B) = q_B$, we have,

$$f(G_A) = \frac{1}{((2\pi)^{q_A} \tau_A^{q_A} |S_A|_+)^{\frac{1}{2}}} \exp\left(-\frac{1}{2\tau_A} G_A^T (S_A)^- G_A\right)$$
$$f(G_B) = \frac{1}{((2\pi)^{q_B} \tau_B^{q_B} |S_B|_+)^{\frac{1}{2}}} \exp\left(-\frac{1}{2\tau_B} G_B^T (S_B)^- G_B\right)$$

therefore,

$$\log f(G_A) = constant - \frac{q_A}{2} \log \tau_A - \frac{1}{2} \log(|S_A|_+) - \frac{1}{2\tau_A} G_A^T S_A^- G_A$$

$$\log f(G_B) = constant - \frac{q_B}{2} \log \tau_B - \frac{1}{2} \log(|S_B|_+) - \frac{1}{2\tau_B} G_B^T S_B^- G_B$$

$$\log f(U|G_A, G_B) = constant - \frac{N-p}{2} \log \sigma - \frac{1}{2\sigma} \left[(Y - G_A - G_B)^T (I - P_X)(Y - G_A - G_B) \right]$$

EM algorithm treats G_A and G_B as missing values. So instead of estimating G_A and G_B and then plugging them into the log L, EM algorithm calculate the expectation of log L given U and $\theta^{(t-1)}$, then based on $E(\log L|U,\theta^{(t-1)})$, $\theta^{(t)}$ are calculated by taking partial derivative.

$$E\left(\log L \middle| U, \theta^{(t-1)}\right) = E\left(\log f(G_A) \middle| U, \theta^{(t-1)}\right) + E\left(\log f(G_B) \middle| U, \theta^{(t-1)}\right) + E\left(\log f(U|G_A, G_B) \middle| \theta^{(t-1)}\right)$$

It is easy to find out that to estimate $\tau_A^{(t)}$, we just need to consider $E\left(\log f(G_A)\middle|U,\theta^{(t-1)}\right)$, so let

$$\frac{\partial E\left(\log f(G_A)\middle|U,\theta^{(t-1)}\right)}{\partial \tau} = 0$$

we have,

$$-\frac{q_A}{2\tau_A} + \frac{1}{2\tau_A^2} E\left(G_A^T S_A^- G_A \middle| U, \theta^{(t-1)}\right) = 0$$

$$E\left(G_A^T S_A^- G_A \middle| U, \theta^{(t-1)}\right) = \left(g_A^{(t-1)}\right)^T S_A^- g_A^{(t-1)} + tr(S_A^- v_A^{(t-1)})$$

plugging the expression of $g_A^{(t-1)}$ and $v_A^{(t-1)}$, finally we have

$$\tau_A^{(t)} = \tau_A^{(t-1)} + \frac{[\tau_A^{t-1}]^2}{q_A} \left[Y^T P S_A P Y - tr(S_A P) \right]$$

In the same way, we can estimate $\tau_B^{(t)}$ by

$$\tau_B^{(t)} = \tau_B^{(t-1)} + \frac{[\tau_B^{t-1}]^2}{q_B} \left[Y^T P S_B P Y - tr(S_B P) \right]$$

To estimate $\sigma^{(t)}$, we just need to consider $E\left(\log f(U|G_A,G_B)\middle|\theta^{(t-1)}\right)$, so the final expression of $\sigma^{(t)}$ is

$$\sigma^{(t)} = \frac{1}{N-p} \Big\{ \Big[(Y^*)^T (I - P_X) Y^* \Big] + tr \Big[(I - P_X) \Big(\tau_A^{(t-1)} S_A - (\tau_A^{(t-1)})^2 S_A P S_A + \tau_B^{(t-1)} S_B - (\tau_B^{(t-1)})^2 S_B P S_B \Big) \Big] \Big\}$$

where
$$Y^* = Y - \tau_A^{(t-1)} S_A P Y - \tau_B^{(t-1)} S_B P Y$$