JELILAT OLUWATOSIN ABDULLATEEF

Data Analyst

<u>abdullateefjelilat25@gmail.com (mailto:abdullateefjelilat25@gmail.com)</u> / <u>www.linkedin.com/in/jelilat (http://www.linkedin.com/in/jelilat)</u>

DIABETES PATIENT PREDICTION ANALYSIS

This dataset is originally from the National Institute of Diabetes and Digestive and Kidney Diseases. The objective of the dataset is to diagnostically predict whether a patient has diabetes based on certain diagnostic measurements included in the dataset. Several constraints were placed on the selection of these instances from a larger dataset. In particular, all patients here are females at least 21 years old of Pima Indian heritage.

Importing Libraries

```
In [1]: #Importing Libraries:
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
```

Importing libraries for prediction

```
In [2]: from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import accuracy_score
    from sklearn.preprocessing import StandardScaler
```

loading the Dataset

```
In [3]: df = pd.read_csv("diabetes.csv")
```

Exploratory Data Analysis (EDA)

First five rows of the Dataset

In [4]: df.head()

Out[4]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
0	6	148	72	35	0	33.6	0.627
1	1	85	66	29	0	26.6	0.351
2	8	183	64	0	0	23.3	0.672
3	1	89	66	23	94	28.1	0.167
4	0	137	40	35	168	43.1	2.288
4							+

Last five rows of the dataset

In [5]: df.tail()

Out[5]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunctio
763	10	101	76	48	180	32.9	0.17
764	2	122	70	27	0	36.8	0.34
765	5	121	72	23	112	26.2	0.24
766	1	126	60	0	0	30.1	0.34
767	1	93	70	31	0	30.4	0.31
4							•

Overview of the dataset

In [6]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767

Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)
memory usage: 54.1 KB

Shape of the dataset

```
In [7]: df.shape
Out[7]: (768, 9)
```

Available Column names

Data type in each column

```
In [9]:
        df.dtypes
Out[9]: Pregnancies
                                        int64
        Glucose
                                        int64
        BloodPressure
                                        int64
        SkinThickness
                                        int64
        Insulin
                                        int64
        BMI
                                      float64
        DiabetesPedigreeFunction
                                      float64
                                        int64
        Outcome
                                        int64
        dtype: object
```

Checking for duplicate data

```
In [10]: df.duplicated().sum()
Out[10]: 0
```

Checking for missing values

```
In [11]: | df.isnull().sum()
Out[11]: Pregnancies
                                        0
          Glucose
                                        0
          BloodPressure
                                        0
          SkinThickness
                                        0
                                        0
          Insulin
          BMI
                                        0
         DiabetesPedigreeFunction
                                        0
                                        0
          Age
          Outcome
          dtype: int64
```

In [12]: sns.heatmap(df.isnull())

Out[12]: <Axes: >

Correlation Matrix

In [13]: correlation=df.corr()
print(correlation)

	Pregnanci	es	Glucos	se B	loodPressu	re Skin	Thickness
\							
Pregnancies	1.0000		0.12945		0.1412		-0.081672
Glucose	0.1294	59	1.00000	90	0.15259	90	0.057328
BloodPressure	0.1412	82	0.15259	90	1.0000	90	0.207371
SkinThickness	-0.0816	72	0.05732	28	0.2073	71	1.000000
Insulin	-0.0735	35	0.33135	57	0.0889	33	0.436783
BMI	0.0176	83	0.22107	71	0.2818	2 5	0.392573
DiabetesPedigreeFunction	-0.0335	23	0.13733	37	0.0412	65	0.183928
Age	0.5443	41	0.26351	14	0.2395	28	-0.113970
Outcome	0.2218	98	0.46658	31	0.0650	68	0.074752
	Insulin		BMI	Diab	etesPedigro	eeFuncti	on \
Pregnancies	-0.073535	0.6	717683			-0.0335	23
Glucose	0.331357	0.2	221071			0.1373	37
BloodPressure	0.088933	0.2	281805			0.0412	65
SkinThickness	0.436783	0.3	392573			0.1839	28
Insulin	1.000000	0.1	197859			0.1850	71
BMI	0.197859	1.6	000000			0.1406	47
DiabetesPedigreeFunction	0.185071	0.1	140647			1.0000	00
Age	-0.042163	0.6	36242			0.0335	61
Outcome	0.130548	0.2	292695			0.1738	44
	Age	Οι	utcome				
Pregnancies	0.544341	0.2	221898				
Glucose	0.263514	0.4	466581				
BloodPressure	0.239528	0.6	965068				
SkinThickness	-0.113970	0.6	74752				
Insulin	-0.042163	0.1	130548				
BMI	0.036242	0.2	292695				
DiabetesPedigreeFunction	0.033561	0.1	173844				
Age	1.000000	0.2	238356				
Outcome	0.238356	1.6	000000				

```
In [14]: plt.figure(figsize=(10,8))
    sns.heatmap(df.corr(),annot=True, cmap='coolwarm')
    plt.title('Correlation', color = 'blue',fontweight='bold',fontsize=18)
    plt.show
```

Out[14]: <function matplotlib.pyplot.show(close=None, block=None)>

Training the Model with Train Test Split

Train test split

Train-test split is a techniques used in machine learning to assess model performance. It divides the dataset into a training set and a testing set, with a 0.2 test size indicating that 20% of the data is used for testing and 80% for training.

```
In [15]: x=df.drop("Outcome",axis=1)
y=df['Outcome']
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.2, random_
```

In X all the imdependent variables are stored In Y the predictor variable ("Outcome") is stored.

```
In [16]: scaler = StandardScaler()
    x_train_scaler = scaler.fit_transform(x_train)
    x_test_scaler = scaler.transform(x_test)
    print(x_test_scaler.shape,x_train_scaler.shape)
    (154, 8) (614, 8)
```

Training the Model

Fitting the x train and y train data into the variable called model.

Making Prediction

After training the model, predictions are made using the data, which comprises 20% of the total datasets.

ACCURACY:- 75.32%

The model predicted the presence or absence of diabetes in approximately 75.32% of the cases