数字逻辑电路 (2020级本科生课程)

清华大学计算机系

陶品

taopin@tsinghua.edu.cn

办公室: FIT 3-531 (13717813059)

3.3 常用的中规模组合逻辑电路

- 3.3.1 译码器
- 3.3.2 数据选择器
- ⇒ 3.3.3 编码器
 - 3.3.4 数据比较器
 - 3.3.5 奇偶校验器
 - 3.3.6 可编程逻辑器件
 - 3.3.7 运算器 (算数逻辑单元 ALU)

3.3.3 编码器 (0)

■如果给出一个这样的逻辑图,同学 们能不能分析出逻辑功能?

3.3.3 编码器 (1)

- ■編码器(Encoder)
 - □编码器原理
 - 口优先编码器(Priority Encoder)
 - □8-3优先编码器
 - □扩展应用: 16-4 优先编码器

3.3.3 编码器 (2)

- ■编码器(Encoder)原理
 - □功能: 将译码器反过来,对应输入的每 一个状态,输出一个编码。
 - □常用编码器
 - 4-2编码,将输入的4个状态编成2位二进制数码;
 - 8-3编码,将输入的8个状态编成3位二进制数码;
 - BCD编码,将10个输入编成BCD码。

3.3.3 编码器 (3)

■为什么要用编码器?

3.3.3 编码器 (4)

● 4-2编码器:将输入的4个状态编成2位二进制数码

功能表

I_0	I_1	I_2	I_3	A_0	A_1
0	1	1	1	0	0
1	0	1	1	1	0
1	1	0	1	0	1
1	1	1	0	1	1

$$\begin{cases}
A_0 = I_0 \overline{I_1} I_2 I_3 + I_0 I_1 I_2 \overline{I_3} = \overline{\overline{I_0} I_1 I_2 I_3 + I_0 I_1 \overline{I_2} I_3} \\
A_1 = I_0 I_1 \overline{I_2} I_3 + I_0 I_1 I_2 \overline{I_3} = \overline{\overline{I_0} I_1 I_2 I_3 + I_0 \overline{I_1} I_2 I_3}
\end{cases}$$

3.3.3 编码器 (5)

$$\begin{cases} A_0 = I_0 \overline{I_1} I_2 I_3 + I_0 I_1 I_2 \overline{I_3} = \overline{I_0} I_1 I_2 I_3 + I_0 I_1 \overline{I_2} I_3 \\ A_1 = I_0 I_1 \overline{I_2} I_3 + I_0 I_1 I_2 \overline{I_3} = \overline{I_0} I_1 I_2 I_3 + I_0 \overline{I_1} I_2 I_3 \end{cases}$$

3.3.3 编码器 (6)

■如果给出一个这样的逻辑图,同学 们能不能分析出逻辑功能?

- 3.3.3 编码器 (7)
- ■8-3编码器的设计与4-2编码器类似,课堂上不在讲解,希望同学们自己课后练习。

3.3.3 编码器 (8)

- ■8421码编码器
 - □功能:将输入信号编码成8421码。
 - □输入: X₀~X₉
 - □输出:Y₀~Y₃

3.3.3 编码器 (9)

■8421码编码器功能表及输出表达式

X ₉	X ₈	X ₇	X ₆	X ₅	X ₄	X ₃	X ₂	X_1	Y_3	Y_2	Y_1	Y_0
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	0	0	1	0	0	0	0	1	1
0	0	0	0	0	1	0	0	0	0	1	0	0
0	0	0	0	1	0	0	0	0	0	1	0	1
0	0	0	1	0	0	0	0	0	0	1	1	0
0	0	1	0	0	0	0	0	0	0	1	1	1
0	1	0	0	0	0	0	0	0	1	0	0	0
1	0	0	0	0	0	0	0	0	1	0	0	1

$$\begin{array}{l} Y_3 \; = \; X_8 \; + \; X_9 \\ Y_2 \; = \; X_4 \; + \; X_5 \; + \; X_6 \; + \; X_7 \\ Y_1 \; = \; X_2 \; + \; X_3 \; + \; X_6 \; + \; X_7 \\ Y_0 \; = \; X_1 \; + \; X_3 \; + \; X_5 \; + \; X_7 \; + \; X_9 \\ \end{array}$$

3.3.3 编码器 (10)

■根据8421码编码器输出表达式画出逻辑图 Y₃ Y₂ Y₁

$$\begin{aligned} Y_3 &= X_8 + X_9 \\ Y_2 &= X_4 + X_5 + X_6 + X_7 \\ Y_1 &= X_2 + X_3 + X_6 + X_7 \\ Y_0 &= X_1 + X_3 + X_5 + X_7 + X_9 \end{aligned}$$

- 3.3.3 编码器 (11)
- ■前面设计的编码器存在的问题
 - □4-2编码器
 - □8421码编码器

3.3.3 编码器 (12)

●4-2编码器的问题

功能表

I_0	I_1	I_2	I_3	A_0	A_1
0	1	1	1	0	0
1	0	1	1	1	0
1	1	0	1	0	1
1	1	1	0	1	1

假设
$$l_1 = "0", l_2 = "0",$$

从输出表达式中可以得到
$$A_0 = "1" A_1 = "1"$$

产生问题的原因是: 2-4编码器的功能表中没有完全包含输入的全部逻辑组合。

$$\begin{cases} A_0 = \frac{\overline{\overline{I_0}} I_1 I_2 I_3 + I_0 I_1 \overline{I_2} I_3}{\overline{\overline{I_0}} I_1 I_2 I_3 + I_0 \overline{\overline{I_1}} I_2 I_3} \\ A_1 = \overline{\overline{I_0}} I_1 I_2 I_3 + \overline{\overline{I_0}} \overline{\overline{I_1}} I_2 I_3 \end{cases}$$

- 3.3.3 编码器 (11)
- ■前面设计的编码器存在的问题
 - □只有互斥输入时,才能用这种编码器。即在任一时刻所有输入线中最多只允许有一个为"0" (4-2编码器器)或"1" (8421码编码器),否则编码器会发生混乱。
- ■解决办法:
 - □采用优先编码器。

- 3.3.3 编码器 (13)
- ■优先编码器
 - □当两条或两条以上线为"O"时,优先 接输入编号大的编码,称优先编码器 (Priority Encoder)。

□以8-3优先编码器为例

3.3.3 编码器 (14)

■8-3优先编码器

8键键盘优先编码器设计

- 1)需要对各键进行编码 A2,A1,A0
- 2)需要设定输入使能 Ei
- 3)需要设定输出的编码是否有效 指示Gs
- 4)需要设定是否允许编码级联输 出E₀

$\overline{E}i$	0	1	2	3	4	5	6	7	A_0	A_1	A_2	G_{S}	Ео
0	X	X	X	X	X	X	X	0	0	0	0_	_0_	1
0	X	X	X	X	X	X	0	11	1	0	0	_0_	1
0	X	X	X	X	X	0	1	1	0	_1_	0	0	1
0	X	X	X	X	0	_1_	1	11	_1_	_1_	0_	_0_	1
0	X	X	X	0	_1_	_1_	1	11	0	0	11	_0_	1
0	X	X	0	1_	_1_	_1_	1	11	1	0	1	_0_	1
0	X	0	1	1	_1_	_1_	1	1	0	_1_	1	_0_	1
0	0	1	1	1	1	1	1	1	1	1	1	0	1
0	1	1	1	1	_1_	_1_	1	1	1	11	1	11	0
1	X	X	X	X	X	X	X	X	1	1	1	1	1

 $(A_2,A_1,A_0$ 用反码编码,Gs为编码输出有效,<math>Ei为使能输入,Eo为允许级联输出)

$\overline{E}i$	0	1	2	3	4	5	6	7	A_0	A_1	A_2	G_{S}	Ео
0	X	X	X	X	X	X	X	0	0	0	0_	_0_	1
0	X	X	X	X	X	X	0	1	_1_	0	0	_0_	1
0	X	X	X	X	X	0	1	1	0	_1_	0	0	1
0	X	X	X	X	0	1	1	1	_1_	1	0	0	1
0	X	X	X	0	1	1	1	1	0	0	1	0	1
0	X	X	0	1	1	1	1	1	1	0	1	0	1
0	X	0	1	1	1	1	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	1	1	1	1	0	1
0	1	1	1	1	1	1	1	1	1	1	1	1	0
1	X	X	X	X	X	X	X	X	1	1	1	1	1

$$\overline{A_0} = \overline{7} + 76\overline{5} + 765\overline{43} + 765\overline{4321} = \overline{7} + 6\overline{5} + 6\overline{43} + 64\overline{21}$$

吸收率
$$(A + AB = A + B)$$

$\overline{E}i$	0	1	2	3	4	5	6	7	A_0	A_1	A_2	G_{S}	Ео
0	X	X	X	X	X	X	X	0	0	0	0_	_0_	1
0	X	X	X	X	X	X	0	1	_1_	0	0	_0_	1
0	X	X	X	X	X	0	1	1	0	_1_	0	_0_	1
0	X	X	X	X	0	1	1	1	_1_	_1_	0	0	1
0	X	X	X	0	1	1	1	1	0	0	1	0	1
0	X	X	0	1	1	1	1	1	_1_	0	1	_0_	1
0	X	0	1	1	_1	1	1	1	0	_1_	1	0	1
0	0	1	1	1	1	1	1	1	1	1	1	0	1
	1	1	1	1	1	1	1	1	1	1	1	11	0
1	X	X	X	X	X	X	X	X	1	1	1	1	1

$$\overline{A_1} = \overline{7} + 7\overline{6} + 7654\overline{3} + 7654\overline{3} = \overline{7} + \overline{6} + 54\overline{3} + 54\overline{2}$$

$\overline{E}i$	0	1	2	3	4	5	6	7	A_0	A_1	A_2	G_{S}	Ео
0	X	X	X	X	X	X	X	0	0	0	0	_0_	1
0	X	X	X	X	X	X	0	1	_1_	0	0	_0_	1
0	X	X	X	X	X	0	1	1	0	1	0	_0_	1
0	X	X	X	X	0	1	1	1	_1_	_1_	0	_0_	1
0	X	X	X	0	_1_	11	11	1	_0_	0	1	_0_	1
0	X	X	0	1	_1_	11	11	1	_1_	0	1	_0_	1
0	X	0	1	1	_1_	11	1	1	0	_1_	1	0	1
0	0	1	1	1	1	1	1	1	1	1	1	0	1
0	1	1	1	1	_1_	1	1	1	1	1	1	11	0
1	X	X	X	X	X	X	X	X	1	1	1	1	1

$$\overline{A_2} = \overline{7} + 7\overline{6} + 76\overline{5} + 765\overline{4} = \overline{7} + \overline{6} + \overline{5} + \overline{4}$$

$\overline{E_i}$	0	1	2	3	4	5	6	7	A_0	A_1	A_2	G_{S}	E_0
0	X	X	X	X	X	X	X	0	_0_	0	0_	_0_	_1_
0	X	X	X	X	X	X	0	_1_	_1_	0	0_	0	1
0	X	X	X	X	X	0	1	1	0	_1_	0	0	1
0	X	X	X	X	0	11	1	1	_1_	_1_	0	0	1
0	X	X	X	0	_1_	11	1_	1	_0_	0	_1_	_0_	1
0	X	X	0	1	_1_	1_	1_	_1_	_1_	0	_1_	_0_	1
0	X	0	1	1	1	11	1	1	0	_1_	_1_	0	1
0	0	1	1	1	1	1	1	1	1	1	1	0	1
0	1	1_1_	11	1	_1_	1_1_	1_	11	_1_	_1_	11	11	0
1	X	X	X	X	X	X	X	X	1	1	1	1	1

$$E_0 = E_i \bullet 76543210$$

$$G_{s} = E_{0} \bullet \overline{E_{i}}$$

优先编码功能表

$\overline{E}i$	0	1	2	3	4	5	6	7	A_0	A_1	A_2	G_{S}	Ео
0	X	X	X	X	X	X	X	0	0	0	0_	0	1
0	X	X	X	X	X	X	0_	_1_	_1_	0	0_	_0_	1
0	X	X	X	X	X	0_	1	_1_	_0_	_1_	0_	_0_	1
0	X	X	X	X	0	1	1	_1_	_1_	_1_	0_	0	1
0	X	X	X	0_	_1_	1	1	_1_	_0_	0	1	_0_	1
0	X	X	_0_	1	_1_	1	1	_1_	_1_	0_	1	_0_	1
	X	0	_1_	1	_1_	1	1	_1_	_0_	_1_	1	_0_	1
0	0	1	1	1	1	1	1	1	1	1	1	0	1
0	_1_	1	11	1	1	1	1	1_1_	11	1	_1_	11	
1	X	X	X	X	X	X	X	X	1	1	1	1	1

 $(A_2,A_1,A_0$ 用反码编码, E_i 为使能输入, G_S 为编码输出有效, E_O 为允许级联输出)

$\overline{E}i$	0	1	2	3	4	5	6	7	A_0	A_1	A_2	G_{S}	Ео
0	X	X	X	X	X	X	X	0	_0_	0	0_	_0_	1
0	X	X	X	X	X	X	0	1	1	0	0	0	1
0	X	X	X	X	X	0	1	_1_	_0_	_1_	0	_0_	1
0	X	X	X	X	0	_1_	1	_1	_1_	_1_	0	0	1
0	X	X	X	0	_1_	1	1	_1_	_0_	0	1	_0_	1
0	X	X	0	1	1	1	1	1	_1_	0	1	0	1
0	X	0	1	1	_1_	1	1	_1_	_0_	_1_	1	_0_	1
0	0	1	1	1	1	1	1	1	1	1	1	0	1
0	_1_	1	1	1	1	1	1	1	1	_1_	11	1	
1	X	X	X	X	X	X	X	X	1	1	1	1	1

ullet 如果Ei=0,输入有"0",则Gs="0",Eo="1"编码有效,级联禁止

ullet 如果 $E_i=0$,输入全为"1",则 $G_s=$ "1", $E_0=$ "0"编码无效,级联有效

ullet 如果Ei=1,无论输入为何值,Gs="1",EO="1"编码无效,级联禁止

●输出编码为反码,即用"000"表示7,用"111"表示0

3.3.3 编码器 (15)

●将8-3优先编码器扩展为16-4优先编码器

3.3.3 编码器 (16)

■将8-3优先编码器扩展为16-4优先编码器

3.3.3 编码器 (16)

■ 将8-3优先编码器扩展为16-4优先编码器

3.3.3 编码器 (18)

- ■优先编码器在计算机中的应用
 - □设备按照优先等级编码,用于中断响应
 - □键盘输入的读取

3.3 常用的中规模组合逻辑电路

- 3.3.1 译码器
- 3.3.2 数据选择器
- 3.3.3 编码器
- ⇒ 3.3.4 数据比较器
 - 3.3.5 奇偶校验器
 - 3.3.X 可编程逻辑器件
 - 3.3.6 运算器 (算数逻辑单元 ALU)

3.3.4 数据比较器(1)

- ■3.3.4 数据比较器
 - □定义: 数字系统中能够完成数据比较功能 的部件
 - □功能: 比較A、B两数, 判断A>B、A<B、 A=B。
 - □基本运算:以四位比较为例说明。

 $A_3 A_2 A_1 A_0$ 从高位开始比较, $A_3 > B_3 MA > B_3$ $B_3 B_2 B_1 B_0$ $A_3 < B_3 MA < B_3$ $A_3 < B_3 MA < B_3$ $A_3 = B_3 MA < B_3$ 从再比较低位

3.3.4 数据比较器(2)

- ■3.3.4 数据比较器
 - □广义的比较条件

```
A_i > B_i的条件: A_i = 1, B_i = 0; 即 A_i \bullet \overline{B_i} = 1或Z = A_i \bullet \overline{A_i}B_i = 1 A_i < B_i的条件: A_i = 0, B_i = 1; 即 \overline{A_i} \bullet B_i = 1或W = B_i \bullet \overline{A_i}B_i = 1 A_i = B_i的条件: \overline{A_i \oplus B_i} = 1或\overline{Y} = \overline{(A_i \cdot \overline{A_i \cdot B_i}) + (\overline{A_i \cdot B_i} \cdot \overline{B_i})} = 1
```

3.3.4 数据比较器(3)

数据比较器功能表

A ₃ B ₃	A ₂ B ₂	$A_1 B_1$	A ₀ B ₀	A>B	A <b< th=""><th>A=B</th></b<>	A=B
A ₃ > B ₃	X	X	X	1	0	0
A ₃ < B ₃	X	X	X	0	1	0
$A_3 = B_3$	$A_2 > B_2$	X	X	1	0	0
A3= B3	A2 <b2< td=""><td>X</td><td>X</td><td>0</td><td>1</td><td>0</td></b2<>	X	X	0	1	0
$A_3 = B_3$	$A_2 = B_2$	$A_1>B_1$	X	1	0	0
$A_3 = B_3$	$A_2 = B_2$	$A_1 < B_1$	X	0	1	0
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 > B_0$	1	0	0
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 < B_0$	0	1	0
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	0	0	1

表达式: 教材P128

3.3.4 数据比较器(3)

$$W_{i} = "A_{i} < B_{i}" = B_{i} \cdot \overline{A_{i} \cdot B_{i}}$$

$$Y_{i} = "A_{i} = B_{i}" = \overline{(A_{i} \cdot \overline{A_{i} \cdot B_{i}}) + (\overline{A_{i} \cdot B_{i}} \cdot B_{i})}$$

$$Z_{i} = "A_{i} > B_{i}" = A_{i} \cdot \overline{A_{i} \cdot B_{i}}$$

3.3.4 数据比较器(4)

- 3.3.4 数据比较器
 - □分段比较:多片比较器构成更长位数的方法
 - □比较器不仅输出比较结果,还要能接受其它 片输出的结果。

3.3.4 数据比较器(5)

- ■3.3.4 数据比较器
 - □应用举例:用两片4位数字比较器构成 一个8位的数字比较器

3.3 常用的中规模组合逻辑电路

- 3.3.1 译码器
- 3.3.2 数据选择器
- 3.3.3 编码器
- 3.3.4 数据比较器
- ⇒ 3.3.5 奇偶校验器
 - 3.3.X 可编程逻辑器件
 - 3.3.6 运算器 (算数逻辑单元 ALU)

3.3.5 奇偶校验器

- 3.3.5 奇偶校验器
 - □ "奇偶检测"是检测数据中包含奇数个"1", 还是偶数个"1"。
 - □奇偶校验:发送或存储时产生奇偶校验码,在 接收方或读出时进行奇偶校验,判断是否出错
 - □ 采用奇偶校验方法,去检查数据传输和记录中 是否产生了错误
 - □但是只能发现"1位错",而且不能纠错
 - □要产生更强的检错和纠错能力,要增加校验位 数

奇偶校验器逻辑结构图

用于发送和接收的奇偶校验逻辑结构图

异或门构成八位奇偶校验位产生电路

九位奇偶检验电路

3.3 常用的中规模组合逻辑电路小 结

- 3.3.1 译码器
- 3.3.2 数据选择器
- 3.3.3 编码器
- 3.3.4 数据比较器
- 3.3.5 奇偶校验器
- 3.3.X 可编程逻辑器件
- 3.3.6 运算器 (算数逻辑单元 ALU)

重提延时问题

延肘导致了尖峰与零重叠,被称为组合逻辑电路的竞争与冒险。

3.3.1 译码器 (25)

■ 当AB从"11"变到"00"时,输出应从Y₃=0变成Y₀=0。 假设AB不能同时到来,存在偏移(Skew),导致尖峰信号更宽。

a)除了加使能端 (\overline{E}),还有别的办法吗? b)组合逻辑电路中的延时一定会导致错误吗?

3.3.1 译码器 (27)

使用E来抑制零重叠和尖峰,译码器的输出波形变窄了.

组合逻辑电路的竞争与冒险

竞争:由于延迟时间的影响,使得输入信号经过不同路径到达输出端的时间有先有后,这一现象称为竞争。

冒险:由竞争导致输出错误信号。

注意! 组合电路中的险象是一种瞬态现象, 它表现为在输出端产生不应有的尖脉冲, 暂时地破坏正常逻辑关系。一旦瞬态过程结束即可恢复正常逻辑关系。

例如,如下图所示是由与非门构成的组合电路,该电路有3个输入变量,1个输出函数。

根据逻辑电路图可写出输出函数表达式为

$$F = \overline{AB \cdot AC} = AB + \overline{AC}$$

假设输入变量B=C=1,将B、C的值代入上述函数表达式,可得 $F=A+\overline{A}$

由互补律可知,函数 F = A + A的值应恒为1,即B = C = 1时,无论A怎样变化,输出F的值都应保持1不变。

当考虑电路中存在的时间延迟时,该电路的实际输入、输出关系又将怎样呢?

当B=C=1时,假定每个门的延迟时间为t_{pd},则实际输入、输出关系可用如下所示的时间图来说明。

$$F = AB + \overline{AC}$$

如果某种组合下函数同时存在A和 \overline{A} ,会出现冒险。

险象的判断

判断电路是否可能产生险象的方法有代数法和卡诺图法。

代数法:

- 检查函数表达式中是否存在具备竞争条件的变量,即是否有某个变量X同时以原变量和反变量的形式出现在函数表达式中。
- 若存在具备竞争条件的变量X,则_尝试消去函数式中的其他变量,看函数表达式是否会变为 X+X 或者 X·X 的形式。 若会,则说明对应的逻辑电路可能产生险象。

例 已知描述某组合电路的逻辑函数表达式为 F=AC+AB+AC, 试判断该逻辑电路是否可能产生险象。

解 由表达式可知,变量A和C均具备竞争条件,所以,应对这两个变量分别进行分析。先考察变量A,为此将B和C的各种取值组合分别代入函数表达式中,可得到如下结果:

BC=00
$$F = \overline{A}$$

BC=01 $F = A$
BC=10 $F = \overline{A}$
BC=11 $F = A + \overline{A}$

可见, 当B=C=1时, A的变化可能使电路产生险象。类似地,将A和B的各种取值组合分别代入函数表达式中,可由代入结果判断出变量C发生变化时不会产生险象。

险象的判断

当描述电路的逻辑函数为"与-或"表达式时,采用卡诺图判断险象比代数法更为直观、方便。

卡诺图法:作出函数卡诺图,并画出和函数表达式中各"与"项对应的卡诺图。若卡诺图之间存在"相切"关系,即两卡诺图之间存在不被同一卡诺图包含的相邻最小项,则该电路可能产生险象。

例 已知某逻辑电路对应的函数表达式为 F=AD+AC+ABC 试判断该电路是否可能产生险象。

解 作出给定函数的卡诺图,如下图所示。

由卡诺图可知,卡诺图 1 和卡诺图 2 之间存在相邻最小项m₁₀和m₁₁,且m₁₀和m₁₁不被同一卡诺图所包含,所以这两个卡诺图"相切"。这说明相应电路可能产生险象。

所得结论可用代数法进行验证,假定 B=D=1, C=0,代入函数表达式F之后可得 $F=A+\overline{A}$,可见相应电路可能由于A的变化而产生险象。

险象的消除

如何消除或避开电路中可能出现的险象?

有如下几种常用的方法。

一、用增加冗余项的方法消除险象

增加冗余项的方法是,通过在函数表达式中"或"上冗余的"与"项或者"与"上冗余的"或"项,消除可能产生的险象。

冗余项的选择可以采用代数法或者卡诺图法确定。

消除尖峰的方法:增加冗余项

$$\mathbf{5B} = \mathbf{C} = \mathbf{1H} \ F = A + A$$
 卡诺图相切

增加冗余项后的逻辑电路如下图所示。

当只有一个输入变量发生变化时,该组合逻辑电路不再产生险象。

冗余项的选择也可以通过在函数卡诺图上增加多余的卡 诺图来实现。

具体方法: 若卡诺图上某两个卡诺图 "相切",则用一个多余的卡诺图将它们之间的相邻最小项图起来,与多余卡诺图对应的"与"项即为要加入函数表达式中的冗余项。

二、电容滤波法

消除险象的另一种方法是在组合电路输出端连接一个惯性延时环节。通常采用RC电路作惯性延时环节,如图所示。

图中的RC电路实际上是一个低通滤波器。由于竞争引起的险象都是一些频率很高的尖脉冲信号,因此,险象在通过RC电路后能基本被滤掉,保留下来的仅仅是一些幅度极小的毛刺,它们不再对电路的可靠性产生影响

输出信号经滤波后的效果如下图所示。

注意: 采用这种方法时,必须适当选择惯性环节的时间常数(τ=RC),一般要求τ大于尖脉冲的宽度,以便能将尖脉冲"削平";但也不能太大,否则将使正常输出信号产生不允许的畸变。

三、选通法

选通法不必增加任何器件, 仅仅是利用选通脉冲的作用, 从时间上加以控制, 使输出避开险象脉冲。

例如,下图所示与非门电路的输出函数表达式为

该电路当A发生变化时,可能产生"O"型险象。但通过选通脉冲对电路的输出门加以控制,令选通脉冲在电路稳定后出现,则可使输出避开险象脉冲,送出稳定输出信号。

组合逻辑电路的竞争与冒险

- ■消除竞争与冒险的方法
 - 1. 增加冗余项
 - ✓ 利用卡诺图相切
 - ✓ 该方法只适用于只有一个输入变量发生变化的情况
 - 2. 电容滤波法
 - 3. 选通法

3.3 常用的中规模组合逻辑电路

- 3.3.1 译码器
- 3.3.2 数据选择器
- 3.3.3 编码器
- 3.3.4 数据比较器
- 3.3.5 奇偶校验器
- ⇒ 3.3.6 可编程逻辑器件
 - 3.3.7 运算器 (算数逻辑单元 ALU)

第五章可编程逻辑电路

- ■"软件固化","以存代算"思想的体现
- ■用软件设计硬件:硬件描述语言(HDL)
- ■硬件设计的进步:方便、灵活、可修改设计
 - □用户可编程
 - □设计方便
 - □易于实现

中小规模可编程逻辑器件

可编程逻辑器件PLD (Programmable Logic Device) 是一大类器件的总称,包括:

- □ ROM (Read-Only Memory) 只读存储器
- □ PLA (Programmable Logic Array) 可编程逻辑阵列
- □ PAL (Programmable Array Logic) 可编程阵列逻辑
- □ GAL (General Array Logic) 通用阵列逻辑

第五章 可编程逻辑电路

- ■中小规模可编程逻辑器件
- ⇒ □只读存储器 (ROM)
 - □可编程逻辑阵列 (PLA)
 - □可编程阵列逻辑 (PAL)
 - □通用阵列逻辑 (GAL)

§ 1. ROM(只读存储器)

- 两大类存储器 (Memory)
 - □ ROM (Read-Only Memory)
 - 一旦信息写入,在机器上只读
 - □ RAM (Random-Access Memory)
 - 随机存储器,在运行状态可读可写
- ROM 功能
 - □ 存放固定信息
 - 程序,常数,指令,.....
- ROM的优点
 - □ 信息非"易失"(Nonvolatile)
 - □ 结构简单,规律性强,容量大

§ 1. ROM

- ■三种ROM
 - □掩模型ROM (Mask ROM) (工厂编程)
 - 用户提交码点,在工厂编程
 - □可编程ROM (PROM) (用户一次编程)
 - 出厂保留全部熔丝,用户可编程但不可改写
 - □可改写ROM (EPROM) (用户多次编程)
 - 光可改写 (UV EPROM)
 - 电可改写 (E²PROM)

ROM分类

§ 1. ROM

地址译码: 与阵列

ROM存储器逻辑结构

PROM的结构

与阵列固定、或阵列可编程

可编程连接

已编程连接

不连接

§ 1. ROM

例: 8x4 ROM

§ 1. ROM的应用

- ■码制变换
 - □8421→典型的Gray Code

十进制数	8421码	典型格雷码
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
••••	••••	••••
15	1111	1000

与阵列8×16=128, 或阵列4×16=64, 总点数192

推荐ROM中与阵列的画法

用4位二进制计数器+ROM实现 典型格雷码计数器

循环计数的典型格雷码

ROM实现--三位二进制数的平方

- ROM是用与门构成的变量译码器及或门组合而成
- 将真值表存储在ROM里实现组合函数的功能
- 可以用软件方式来建立布尔函数的信息

	Input	s		Outputs					
A_2	A ₁	A ₀	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀	Decimal
0	0	0	0	0	0	0	\bigcirc	0	0
0	0	1	0	0	0	0	0	1	1 BO与AO相同
0	1	0	0	0	0	1	0	0	4
0	1	1	0	0	1	0	0	1	9 B1为恒"O"
1	0	0	0	1	0	0	0	0	16
1	0	1	0	1	1	0	0	1	25 可选择8×4bit
1	1	0	1	0	0	1	0	0	36 的ROM
1	1	1	1	1	0	0	$\setminus 0$	1	49

ROM真值表---三位二进制平方

选择8×4bit的ROM

函数输入对应ROM的地址

ROM输出对应平方的输出值

■ROM真值表

A_2	A_1	A_0	B_5	B_4	B_3	B_2
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	1
0	1	1	0	0	1	0
1	0	0	0	1	0	0
1	0	1	0	1	1	0
1	1	0	1	0	0	1
1	1	1	1	1	0	0

用ROM存储计算机程序

第五章 可编程逻辑电路

- ■中小规模可编程逻辑器件
 - □只读存储器(ROM)
- 古 🗆 可编程逻辑阵列 (PLA)
 - □可编程阵列逻辑 (PAL)
 - □通用整列逻辑 (GAL)
 - ■大规模可编程逻辑电路

§ 2.可编程逻辑阵列 (PLA)

- ROM的特点
 - □ 输入地址和存储信息一一对应。
 - □ 与阵列是译码器,包括全部最小项,信息表完全
- PLA针对ROM这一特点
 - □ 逻辑压缩
- ●从逻辑设计的角度
 - >ROM与阵列产生的全部最小项 (2n个)
 - ▶不管实际的逻辑函数需要多少个最小项,这2ⁿ个最小项都存在与ROM芯片中。
 - 一为了提高芯片的利用率,与阵列不一定产生所有的最小项,只需产生逻辑函数所需的乘积项即可。

- ■PLA实现组合逻辑
 - □PLA实现组合逻辑时,将逻辑表达式写成最简与-或表达式
 - □再用与项(乘积项:product)的"或"操作构成或阵列

- ■例:用PLA实现8421码到格雷码的转换
 - $lacksymbol{\square}$ 8421码表示为 $B_3B_2B_1B_0$,格雷码表示为 $G_3G_2G_1G_0$ 。
 - □格雷码和8421码的转换关系如下:

十进制数	8421码	典型格雷码
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
••••	••••	••••
15	1111	1000

- ■例:用PLA实现8421码到格雷码的转换
 - $lacksymbol{\square}$ 8421码表示为 $B_3B_2B_1B_0$,格雷码表示为 $G_3G_2G_1G_0$ 。
 - □格雷码和8421码的转换关系如下:

$$G_3 = B_3$$

 $G_2 = B_3 \oplus B_2 = \overline{B_3}B_2 + B_3\overline{B_2}$
 $G_1 = B_2 \oplus B_1 = \overline{B_2}B_1 + B_2\overline{B_1}$
 $G_0 = B_1 \oplus B_0 = \overline{B_1}B_0 + B_1\overline{B_0}$

将每个不同的与项用聚积项Pi表示

■将 G_i 用 P_i 表示,可得

$$G_3 = P_0$$
 $G_2 = P_1 + P_2$
 $G_1 = P_3 + P_4$
 $G_0 = P_5 + P_6$

P项用与阵列实现, Gi用或阵列实现

$$P_{0} = B_{3}$$

$$P_{1} = \overline{B_{3}}B_{2}$$

$$P_{2} = B_{3}\overline{B_{2}}$$

$$P_{3} = \overline{B_{2}}B_{1}$$

$$P_{4} = B_{2}\overline{B_{1}}$$

$$P_{5} = \overline{B_{1}}B_{0}$$

$$P_{6} = B_{1}\overline{B_{0}}$$

与阵列8×7=56, 或阵列4×7=28, 总点数84

例如:存储信息表

用16x8 ROM存储 与阵列 ?x?

或阵列 ?x?

	箱	<u> </u>					输	i出_			
I3	I 2	I 1	I0	F7	F6	F5	F4	F3	F2	F1	F0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0	0
0	0	1	1	0	0	0	0	1	0	0	1
0	1	0	0	0	0	0	1	0	0	0	0
0	1	0	1	0	0	1	1	1	0	0	1
0	1	1	0	0	0	0	0	0	1	0	0
0	1	1	1	0	0	1	1	0	0	0	1
1	0	0	0	0	1	0	0	0	0	0	0
1	0	0	1	0	1	0	1	0	0	0	1
1	0	1	0	0	1	0	0	0	1	0	0
1	0	1	1	0	1	0	1	1	0	0	1
1	1	0	0	0	0	0	1	0	0	0	0
1	1	0	1	0	0	0	0	1	0	0	1
1	1	1	0	1	1	1	0	0	1	0	0
1	1	1	1	1	1	1	0	0	0	0	1

ROM容量:与阵列8x16, 或阵列8x16

(注:只画了 F_0 , F_2 , F_7 很多省略)

将表达式逻辑压缩

$$F_{0} = I_{0}$$

$$F_{1} = 0$$

$$F_{2} = I_{1}\overline{I_{0}}$$

$$F_{3} = I_{2}\overline{I_{1}}I_{0} + \overline{I_{2}}I_{1}I_{0}$$

$$F_{4} = I_{2}\overline{I_{1}}I_{0} + \overline{I_{3}}I_{2}I_{0} + I_{3}\overline{I_{2}}I_{0}$$

$$F_{5} = \overline{I_{3}}I_{2}I_{0} + I_{3}I_{2}I_{1}$$

$$F_{6} = I_{3}\overline{I_{2}} + I_{3}I_{2}I_{1}$$

$$F_{7} = I_{3}I_{2}I_{1}$$

	输入						输	出			
I3	I2	I 1	I0	F7	F6	F5	F4	F3	F2	F1	F0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0	0
0	0	1	1	0	0	0	0	1	0	0	1
0	1	0	0	0	0	0	1	0	0	0	0
0	1	0	1	0	0	1	1	1	0	0	1
0	1	1	0	0	0	0	0	0	1	0	0
0	1	1	1	0	0	1	1	0	0	0	1
1	0	0	0	0	1	0	0	0	0	0	0
1	0	0	1	0	1	0	1	0	0	0	1
1	0	1	0	0	1	0	0	0	1	0	0
1	0	1	1	0	1	0	1	1	0	0	1
1	1	0	0	0	0	0	1	0	0	0	0
1	1	0	1	0	0	0	0	1	0	0	1
1	1	1	0	1	1	1	0	0	1	0	0
1	1	1	1	1	1	1	0	0	0	0	1

■ 表达式的或项转化为乘积项(product)

$P_0 P_1 P_2 P_3 P_4 P_5 P_6 P_7 P_8$	$P_0 = I_0$
$F_0 = I_0$	$P_1 = I_1 \overline{I_0}$
$F_1 = 0$	$P_2 = I_2 \overline{I_1} I_0$
$F_2 = I_1 \overline{I_0}$	$P_3 = \overline{I_2} I_1 I_0$
$F_3 = I_2 \overline{I_1} I_0 + \overline{I_2} I_1 I_0$	$P_4 = I_2 \overline{I_1} \overline{I_0}$
$F_4 = I_2 \overline{I_1} \overline{I_0} + \overline{I_3} V_2 \overline{I_0} + \overline{I_3} \overline{I_2} I_0$	$P_5 = \overline{I_3} I_2 I_0$
$F_5 = \overline{I_3} I_2 I_0 + I_3 I_2 I_1$	$P_6 = I_3 \overline{I_2} I_0$
$F_6 = I_3 I_2 + I_3 I_2 I_1$	$P_7 = I_3 I_2 I_1$
$F_{7} = I_{2}I_{1}I_{1}$	$P_8 = I_3 \overline{I_2}$

■ 表达式的或项转化为乘积项(product)

$$F_0 = P_0$$
 $F_1 = 0$
 $F_2 = P_1$
 $F_3 = P_2 + P_3$
 $F_4 = P_4 + P_5 + P_6$
 $F_5 = P_5 + P_7$
 $F_6 = P_7 + P_8$
 $F_7 = P_7$

■根据含有乘积项的表达式作图

§ 2.PLA小结

- ■PLA的特点
 - □与阵列可编:形成P项(不是最小项)
 - □或阵列可编
- •PLA的读出方式
 - >一组地址可选中多个P项
- PLA与ROM的区别
 - >ROM的信息表原封不动, 全译码
 - >PLA作了逻辑压缩,信息表改动很大,但逻辑上等价
- ●PLA的容量表示:

(输入数) X (P项数) X (输出数)

PROM,PLA,PAL对此

- PROM
 - □与阵列固定,或阵列可编程,实现组合逻辑
 - □实现肘序逻辑电路需要外加触发器
- PLA
 - □与或阵列均可编程,实现组合逻辑
 - □实现肘序逻辑电路需要外加触发器
- PAL
 - □与阵列可编程,或阵列固定
 - □不同的芯片可实现不同的逻辑,有些PAL只能实现组合逻辑电路,有些只能实现时序逻辑电路。
 - □一次性编程

PROM,PLA,PAL对比

- PROM、PLA、PAL共同存在的问题:
 - □不存在只用一种芯片,即可以实现组合逻辑 电路,又可以实现射序逻辑电路
- ■GAL是为解决这一问题而产生的芯片
 - □ GAL:通用阵列逻辑 (General Array Logic)

可编程器件工艺演化过程

- PROM → PLA
 - □ 或阵列可编程
 - □ 与、或阵列都可编程,灵活,节省码点
- \blacksquare PLA \rightarrow PAL
 - □工艺:简化工艺,降低成本(熔丝工艺,一次编程)
 - □ 结构:输入/输出公用
 - □ PAL是专用词,MMI公司的产品
- PAL → GAL
 - □ 工艺: 电可擦除,多次编程.(Lattice公司1985年专利)
 - □ 结构:输出宏单元,更通用,
 - □ 或阵列不可编程

作业: 4.12, 4.19, 4.20, 4.21, 7.5

- 4.12 设计一种称之为 4 位桶状移位器的组合逻辑电路,它可将 4 位输入数据 $D_0D_1D_2D_3$ 直接从输出端 $Y_0Y_1Y_2Y_3$ 输出(即 $Y_0Y_1Y_2Y_3=D_0D_1D_2D_3$),也可将输入数据左移 1 位输出(即 $Y_0Y_1Y_2Y_3=D_1D_2D_3D_0$)、左移 2 位及左移 3 位输出,要求:
 - (1) 列出功能表;
 - (2) 写出输出逻辑表达式;
 - (3) 画出逻辑图(用门电路实现);
 - (4) 为测试 S_1 至 Y_1 的传输延迟,应如何设置各输入端,并给出此时各输出端的状态或波形,画出此时输入输出时序图,给出传输延迟的定义表示。

4.19 用 BCD 译码器, 8 选 1 数据选择器及"与非"门组成能控制的 3 位并行等值比较器, 列其功能表(要求比较器禁止时输出为"1")。用上述电路的开关参数,写出此比较器的开关参数的表示式。

4.20 用"与非"门及8选1数据选择器,4选1数据选择器分别实现真值表所给出的函数, 画出逻辑图。

A	В	C	朝 差,否则	可 Town Fill	
0	0	0	G,	0 8	≯ G类
1	0	0	9	等 10 /8	
1	1	0	11/99	A 1	
0 8	0	1	9	8 0	
1 8A	0	1		BA 1	
1 0	1	1		0 0	

4.21 用 8 选 1 数据选择器实现下列函数:

$$(1) F = \overline{X} \overline{YZ} + (XZ + \overline{XZ})W + \overline{X}\overline{Y}\overline{W}$$

(2)
$$F = \sum m^4(0,1,2,3,8,9,10,11)$$

7.5 有一块 4×10×7 的 PLA 器件,由它来实现将 8421 码变换为 7 段显示译码的变换器。