# ASHR SVAR Models

## Contents

| Setup                                 | <b>2</b> |
|---------------------------------------|----------|
| Load packages & functions             | 2        |
| Load Data                             | 3        |
| Some SVAR estimations                 | 3        |
| Dummy variable                        | 3        |
| Number of Post                        | 6        |
| Tariff                                | 9        |
| Trade                                 | 12       |
| China                                 | 14       |
| Interaction number of post and tariff | 17       |
| Terms                                 | 20       |
| First mandate                         | 20       |
| second mandate                        | 23       |

### Setup

#### Load packages & functions

```
rm(list=ls())
require(tinytex) #LaTeX
require(ggplot2) #plots
require(AEC) #JP-Renne functions
require(AER) #NW formula
require(forecast) #time series stuff
require(expm) #matrix exponents
require(here) #directory finder
require(stringr) # analysis of strings, important for the detection in tweets
require(dplyr) #data management
require(lubridate) #data dates management
require(zoo) #for lagging
require(jtools) #tables
require(huxtable) #tables
require(lmtest) #reg tests
require(vroom) #for loading data
require(data.table) #for data filtering
require(sysid) #for ARMA-X modeling
require(sandwhich) #regression errors
require(stargazer) #nice req tables
require(tidytext) #text mining
require(textstem) #lemmatization
require(quanteda) #tokenization
require(texreg) #arima tables
require(vars) #VAR models
require(xts) #time series objects
require(tseries) #includes adf test
require(quantmod)
require(TSA)
require(aTSA)
require(tibble)
require(FinTS)
require(kableExtra)
require(writexl)
require(purrr)
getwd()
#setwd("...") -> set wd at base repo folder
#load helper functions
source(here("helperfunctions/data loaders.R"))
source(here("helperfunctions/date_selector.R"))
source(here("helperfunctions/plotters.R"))
source(here("helperfunctions/quick_arma.R"))
source(here("helperfunctions/r.vol_calculators.R"))
source(here("helperfunctions/truths cleaning function.R"))
source(here("helperfunctions/armax_functions.R"))
source(here("helperfunctions/var_irf.R"))
```

#### Load Data

```
#load final dataset
source(here("helperfunctions/full_data.R"))

#select timeframe
Vdata = filter(data,between(timestamp, as.Date('2014-01-01'), as.Date('2025-05-07')))
```

#### Some SVAR estimations

Note that this is not an exhaustive list of our VAR estimations, you can find more by going on /modeling/VAR/VAR\_SPY\_TRUE or VAR\_ASHR\_TRUE or VAR\_VGK\_TRUE).

### Dummy variable

Here we use a dummy variable which equal to one if Trump has made a post or 0 otherwise, taking into account the closed hour market posts.

```
y = cbind(Vdata$dummy, Vdata$ASHR_vol)
colnames(y)[1:2] <- c("dummy", "vol")
est.VAR <- VAR(y,p=6)
mod_vol <- est.VAR$varresult$vol
texreg(mod_vol, digits = 6)</pre>
```

```
Omega <- var(residuals(est.VAR))

#make the B matrix
loss <- function(param){
    #Define the restriction
    B <- matrix(c(param[1], param[2], 0, param[3]), ncol = 2)

    #Make BB' approximatively equal to omega
    X <- Omega - B %*% t(B)

    #loss function
    loss <- sum(X^2)
    return(loss)
}

res.opt <- optim(c(1, 0, 1), loss, method = "BFGS")
B.hat <- matrix(c(res.opt$par[1], res.opt$par[2], 0, res.opt$par[3]), ncol = 2)

print(cbind(Omega,B.hat %*% t(B.hat)))</pre>
```

|                | Model 1           |
|----------------|-------------------|
| dummy.l1       | -0.000006***      |
| J              | (0.000001)        |
| vol.l1         | 0.282482***       |
|                | (0.007140)        |
| dummy.l2       | $-0.000005^{***}$ |
| v              | (0.000001)        |
| vol.l2         | 0.072926***       |
|                | (0.007410)        |
| dummy.l3       | $-0.000006^{***}$ |
| v              | (0.000001)        |
| vol.l3         | 0.047892***       |
|                | (0.007418)        |
| dummy.l4       | $-0.000004^{***}$ |
| · ·            | (0.000001)        |
| vol.l4         | 0.056084***       |
|                | (0.007416)        |
| dummy.l5       | $-0.000006^{***}$ |
|                | (0.000001)        |
| vol.l5         | 0.059763***       |
|                | (0.007410)        |
| dummy.l6       | -0.000005***      |
|                | (0.000001)        |
| vol.l6         | $0.109466^{***}$  |
|                | (0.007136)        |
| const          | 0.000095***       |
|                | (0.000005)        |
| $\mathbb{R}^2$ | 0.178208          |
| $Adj. R^2$     | 0.177714          |
| Num. obs.      | 19965             |
|                |                   |

\*\*\*p < 0.001; \*\*p < 0.01; \*p < 0.05

Table 1: Statistical models

```
#the plot
single_varirf <- extract_varirf(irf_res)

#the plot
single_varirf %>%
    ggplot(aes(x=period, y=irf_dummy_vol, ymin=lower_dummy_vol, ymax=upper_dummy_vol)) +
    geom_hline(yintercept = 0, color="red") +
    geom_ribbon(fill="grey", alpha=0.2) +
    geom_line() +
    theme_light() +
    ggtitle("IRF Dummy on Volatility")+
    ylab("") +
    xlab("") +
    theme_minimal()
```

### IRF Dummy on Volatility



```
#does volatility Granger cause dummy mentions
grangertest(y[,c("vol","dummy")], order = 6)
```

| Res.Df  | $\mathbf{Df}$ | ${f F}$ | $\Pr(>F)$ |
|---------|---------------|---------|-----------|
| 2e + 04 |               |         |           |
| 2e + 04 | -6            | 4.06    | 0.000446  |

```
#does dummy mentions Granger cause volatility
grangertest(y[,c("dummy", "vol")], order = 6)
```

| Res.Df | Df | F    | Pr(>F)   |
|--------|----|------|----------|
| 2e+04  |    |      |          |
| 2e+04  | -6 | 22.2 | 3.64e-26 |

#### Number of Post

```
y2 = cbind(Vdata$N , Vdata$ASHR_vol)
colnames(y2)[1:2] <- c("N", "vol")
est.VAR2 <- VAR(y2,p=6)
mod_vol2 <- est.VAR2$varresult$vol
texreg(mod_vol2, digits = 6)</pre>
```

```
Omega2 <- var(residuals(est.VAR2))

#make the B matrix
loss2 <- function(param2){
    #Define the restriction
    B2 <- matrix(c(param2[1], param2[2], 0, param2[3]), ncol = 2)

    #Make BB' approximatively equal to omega
    X2 <- Omega2 - B2 %*% t(B2)

    #loss function
    loss2 <- sum(X2^2)
    return(loss2)
}

res.opt2 <- optim(c(1, 0, 1), loss2, method = "BFGS")
B.hat2 <- matrix(c(res.opt2$par[1], res.opt2$par[2], 0, res.opt2$par[3]), ncol = 2)

print(cbind(Omega2,B.hat2 %*% t(B.hat2)))</pre>
```

|                | Model 1           |
|----------------|-------------------|
| N.l1           | $-0.000001^{***}$ |
|                | (0.000000)        |
| vol.l1         | $0.282497^{***}$  |
|                | (0.007132)        |
| N.12           | $-0.000001^{***}$ |
|                | (0.000000)        |
| vol.l2         | $0.072640^{***}$  |
|                | (0.007403)        |
| N.13           | $-0.000002^{***}$ |
|                | (0.000000)        |
| vol.l3         | $0.047738^{***}$  |
|                | (0.007409)        |
| N.14           | $-0.000001^{**}$  |
|                | (0.000000)        |
| vol.l4         | $0.056237^{***}$  |
|                | (0.007408)        |
| N.l5           | $-0.000002^{***}$ |
|                | (0.000000)        |
| vol.l5         | 0.059528***       |
|                | (0.007403)        |
| N.16           | $-0.000001^{***}$ |
|                | (0.000000)        |
| vol.l6         | $0.109380^{***}$  |
|                | (0.007128)        |
| const          | $0.000081^{***}$  |
|                | (0.000004)        |
| $\mathbb{R}^2$ | 0.176168          |
| $Adj. R^2$     | 0.175673          |
| Num. obs.      | 19965             |
|                |                   |

\*\*\*p < 0.001; \*\*p < 0.01; \*p < 0.05

Table 2: Statistical models

```
geom_ribbon(fill="grey", alpha=0.2) +
geom_line() +
theme_light() +
ggtitle("IRF Number of Posts on Volatility")+
ylab("")+
xlab("") +
theme_minimal()
```

## IRF Number of Posts on Volatility



```
#does volatility Granger cause N mentions
grangertest(y2[,c("vol","N")], order = 6)
```

| Res.Df | $\mathbf{Df}$ | $\mathbf{F}$ | $\Pr(>F)$ |
|--------|---------------|--------------|-----------|
| 2e+04  |               |              |           |
| 2e+04  | -6            | 3.17         | 0.00413   |

```
#does N mentions Granger cause volatility
grangertest(y2[,c("N", "vol")], order = 6)
```

| Res.Df | Df | $\mathbf{F}$ | $\Pr(>F)$ |
|--------|----|--------------|-----------|
| 2e+04  |    |              |           |
| 2e+04  | -6 | 13.9         | 8.02e-16  |

#### Tariff

```
y3 = cbind(Vdata$tariff , Vdata$ASHR_vol)
colnames(y3)[1:2] <- c("tariff", "vol")
est.VAR3 <- VAR(y3,p=6)
mod_vol3 <- est.VAR3$varresult$vol
texreg(mod_vol3, digits = 6)</pre>
```

```
Omega3 <- var(residuals(est.VAR3))

#make the B matrix
loss3 <- function(param3){
    #Define the restriction
    B3 <- matrix(c(param3[1], param3[2], 0, param3[3]), ncol = 2)

    #Make BB' approximatively equal to omega
    X3 <- Omega3 - B3 %*% t(B3)

    #loss function
    loss3 <- sum(X3^2)
    return(loss3)
}

res.opt3 <- optim(c(1, 0, 1), loss3, method = "BFGS")
B.hat3 <- matrix(c(res.opt3$par[1], res.opt3$par[2], 0, res.opt3$par[3]), ncol = 2)

print(cbind(Omega3,B.hat3 %*% t(B.hat3)))</pre>
```

|                | Model 1          |
|----------------|------------------|
| tariff.l1      | 0.000002         |
|                | (0.000008)       |
| vol.l1         | 0.280773***      |
|                | (0.007038)       |
| tariff.l2      | -0.000000        |
|                | (0.000008)       |
| vol.l2         | $0.072461^{***}$ |
|                | (0.007302)       |
| tariff.l3      | -0.000010        |
|                | (0.000008)       |
| vol.l3         | $0.045252^{***}$ |
|                | (0.007309)       |
| tariff.l4      | -0.000005        |
|                | (0.000008)       |
| vol.l4         | $0.056243^{***}$ |
|                | (0.007309)       |
| tariff.l5      | -0.000005        |
|                | (0.000008)       |
| vol.l5         | $0.056910^{***}$ |
|                | (0.007302)       |
| tariff.l6      | -0.000008        |
|                | (0.000008)       |
| vol.l6         | $0.109191^{***}$ |
|                | (0.007037)       |
| const          | $0.000061^{***}$ |
|                | (0.000003)       |
| $\mathbb{R}^2$ | 0.172906         |
| $Adj. R^2$     | 0.172409         |
| Num. obs.      | 19965            |
|                |                  |

\*\*\*p < 0.001; \*\*p < 0.01; \*p < 0.05

Table 3: Statistical models

```
xlab("") +
theme_minimal()
```





#does volatility Granger cause tariff mentions
grangertest(y3[,c("vol","tariff")], order = 6)

| Res.Df | Df | $\mathbf{F}$ | $\Pr(>F)$ |
|--------|----|--------------|-----------|
| 2e+04  |    |              |           |
| 2e+04  | -6 | 0.722        | 0.632     |

#does tariff mentions Granger cause volatility
grangertest(y3[,c("tariff", "vol")], order = 6)

| Res.Df | Df | F     | Pr(>F) |
|--------|----|-------|--------|
| 2e+04  |    |       |        |
| 2e+04  | -6 | 0.715 | 0.638  |

|                     | Model 1                |
|---------------------|------------------------|
| trade.l1            | $-0.000025^*$          |
|                     | (0.000010)             |
| vol.l1              | $0.281371^{***}$       |
|                     | (0.007039)             |
| trade.l2            | 0.000012               |
|                     | (0.000010)             |
| vol.l2              | $0.071544^{***}$       |
|                     | (0.007306)             |
| trade.l3            | -0.000019              |
|                     | (0.000010)             |
| vol.l3              | $0.045746^{***}$       |
|                     | (0.007312)             |
| trade.l4            | -0.000009              |
|                     | (0.000010)             |
| vol.l4              | $0.056738^{***}$       |
|                     | (0.007316)             |
| trade.l5            | -0.000013              |
|                     | (0.000010)             |
| vol.l5              | $0.056226^{***}$       |
|                     | (0.007311)             |
| trade.l6            | -0.000013              |
|                     | (0.000010)             |
| vol.l6              | $0.109845^{***}$       |
|                     | (0.007043)             |
| const               | $0.000062^{***}$       |
|                     | (0.000003)             |
| $\mathbb{R}^2$      | 0.173422               |
| $Adj. R^2$          | 0.172925               |
| Num. obs.           | 19965                  |
| *** p < 0.001: ** p | p < 0.01: * $p < 0.05$ |

 $^{***}p < 0.001; \ ^{**}p < 0.01; \ ^*p < 0.05$ 

Table 4: Statistical models

#### Trade

```
y4 = cbind(Vdata$trade , Vdata$ASHR_vol)
colnames(y4)[1:2] <- c("trade", "vol")
est.VAR4 <- VAR(y4,p=6)
mod_vol4 <- est.VAR4$varresult$vol
texreg(mod_vol4, digits = 6)</pre>
```

```
Omega4 <- var(residuals(est.VAR4))

#make the B matrix
loss4 <- function(param4){
    #Define the restriction
    B4 <- matrix(c(param4[1], param4[2], 0, param4[3]), ncol = 2)

#Make BB' approximatively equal to omega
X4 <- Omega4 - B4 %*% t(B4)</pre>
```

IRF Trade on Volatility



#does volatility Granger cause trade mentions
grangertest(y4[,c("vol","trade")], order = 6)

| Res.Df | $\mathbf{Df}$ | $\mathbf{F}$ | $\Pr(>F)$ |
|--------|---------------|--------------|-----------|
| 2e+04  |               |              |           |
| 2e+04  | -6            | 5.36         | 1.55e-05  |

#does trade mentions Granger cause volatility
grangertest(y4[,c("trade", "vol")], order = 6)

| Res.Df | $\mathbf{Df}$ | $\mathbf{F}$ | $\Pr(>F)$ |
|--------|---------------|--------------|-----------|
| 2e+04  |               |              |           |
| 2e+04  | -6            | 2.79         | 0.0103    |

## China

|                       | Model 1           |
|-----------------------|-------------------|
| china.l1              | -0.000005         |
|                       | (0.000006)        |
| vol.l1                | $0.280637^{***}$  |
|                       | (0.007040)        |
| china.l2              | -0.000004         |
|                       | (0.000006)        |
| vol.l2                | $0.072261^{***}$  |
|                       | (0.007305)        |
| china.l3              | -0.000011         |
|                       | (0.000006)        |
| vol.l3                | $0.045298^{***}$  |
|                       | (0.007312)        |
| china.l4              | -0.000007         |
|                       | (0.000006)        |
| vol.l4                | $0.056264^{***}$  |
|                       | (0.007312)        |
| china.l5              | -0.000007         |
|                       | (0.000006)        |
| vol.l5                | $0.056857^{***}$  |
|                       | (0.007305)        |
| china.l6              | -0.000010         |
|                       | (0.000006)        |
| vol.l6                | $0.109272^{***}$  |
|                       | (0.007040)        |
| const                 | $0.000063^{***}$  |
|                       | (0.000003)        |
| $\mathbb{R}^2$        | 0.173206          |
| $Adj. R^2$            | 0.172709          |
| Num. obs.             | 19965             |
| **** n < 0.001. *** n | < 0.01· *n < 0.05 |

 $^{***}p < 0.001; \ ^{**}p < 0.01; \ ^*p < 0.05$ 

Table 5: Statistical models

```
y5 = cbind(Vdata$china , Vdata$ASHR_vol)
colnames(y5)[1:2] <- c("china", "vol")
est.VAR5 <- VAR(y5,p=6)
mod_vol5 <- est.VAR5$varresult$vol
texreg(mod_vol5, digits = 6)</pre>
```

```
Omega5 <- var(residuals(est.VAR5))

#make the B matrix
loss5 <- function(param5){
    #Define the restriction
    B5 <- matrix(c(param5[1], param5[2], 0, param5[3]), ncol = 2)

#Make BB' approximatively equal to omega
X5 <- Omega5 - B5 %*% t(B5)

#loss function</pre>
```

```
loss5 <- sum(X5^2)
  return(loss5)
}
res.opt5 <- optim(c(1, 0, 1), loss5, method = "BFGS")
B.hat5 \leftarrow matrix(c(res.opt5$par[1], res.opt5$par[2], 0, res.opt5$par[3]), ncol = 2)
print(cbind(Omega5,B.hat5 %*% t(B.hat5)))
#irf creation
irf_res5 <- irf(est.VAR5, impulse = "china", response = "vol",</pre>
                  bmat=b.hat5, n.ahead = 7 * 7, boot = TRUE, ci = 0.95)
#function to extract relevant objects for plotting
single_varirf5 <- extract_varirf(irf_res5)</pre>
#the plot
single_varirf5 %>%
  ggplot(aes(x=period, y=irf_china_vol, ymin=lower_china_vol, ymax=upper_china_vol)) +
  geom_hline(yintercept = 0, color="red") +
  geom_ribbon(fill="grey", alpha=0.2) +
  geom_line() +
  theme_light() +
  ggtitle("IRF China on Volatility")+
  ylab("")+
```

xlab("") +
theme\_minimal()

### IRF China on Volatility



#does volatility Granger cause china mentions
grangertest(y5[,c("vol","china")], order = 6)

| Res.Df | $\mathbf{Df}$ | ${f F}$ | $\Pr(>F)$ |
|--------|---------------|---------|-----------|
| 2e+04  |               |         |           |
| 2e+04  | -6            | 1.08    | 0.372     |

#does china mentions Granger cause volatility
grangertest(y5[,c("china", "vol")], order = 6)

| Res.Df | $\mathbf{Df}$ | $\mathbf{F}$ | $\Pr(>F)$ |
|--------|---------------|--------------|-----------|
| 2e+04  |               |              |           |
| 2e+04  | -6            | 1.92         | 0.0733    |

## Interaction number of post and tariff

here is an example of our interaction

|                | Model 1          |
|----------------|------------------|
| interaction.l1 | -0.000000        |
| interaction.11 |                  |
| 1.14           | (0.000000)       |
| vol.l1         | 0.280904***      |
|                | (0.007037)       |
| interaction.l2 | -0.000000        |
|                | (0.000000)       |
| vol.l2         | $0.072496^{***}$ |
|                | (0.007302)       |
| interaction.l3 | -0.000000        |
|                | (0.000000)       |
| vol.l3         | $0.045218^{***}$ |
|                | (0.007309)       |
| interaction.l4 | -0.000000        |
|                | (0.000000)       |
| vol.l4         | 0.056276***      |
|                | (0.007309)       |
| interaction.l5 | -0.000000        |
|                | (0.000000)       |
| vol.l5         | 0.056856***      |
|                | (0.007302)       |
| interaction.l6 | -0.000000        |
|                | (0.000000)       |
| vol.l6         | 0.109078***      |
|                | (0.007037)       |
| const          | 0.000060***      |
|                | (0.000003)       |
| $\mathbb{R}^2$ | 0.172766         |
| $Adj. R^2$     | 0.172269         |
| Num. obs.      | 19965            |
| *** .0.001 **  | 0.01 * .0.05     |

 $^{***}p < 0.001; \ ^{**}p < 0.01; \ ^*p < 0.05$ 

Table 6: Statistical models

```
#interaction
##N and tariff, 2 variables

int1 = Vdata$tariff * Vdata$N

y12 = cbind(int1, Vdata$ASHR_vol)
colnames(y12)[1:2] <- c("interaction", "vol")
est.VAR12 <- VAR(y12,p=6)
mod_vol12 <- est.VAR12$varresult$vol
texreg(mod_vol12, digits = 6)</pre>
```

```
Omega12 <- var(residuals(est.VAR12))
#make the B matrix
loss12 <- function(param12){
    #Define the restriction
    B12 <- matrix(c(param12[1], param12[2], 0, param12[3]), ncol = 2)</pre>
```

```
#Make BB' approximatively equal to omega
  X12 <- Omega12 - B12 %*% t(B12)</pre>
  #loss function
  loss12 <- sum(X12^2)
  return(loss12)
res.opt12 <- optim(c(1, 0, 1), loss12, method = "BFGS")
B.hat12 \leftarrow matrix(c(res.opt12\$par[1], res.opt12\$par[2], 0, res.opt12\$par[3]), ncol = 2)
print(cbind(Omega12,B.hat12 %*% t(B.hat12)))
#irf creation
irf_res12 <- irf(est.VAR12, impulse = "interaction", response = "vol",</pre>
                  bmat=b.hat12, n.ahead = 7 * 7, boot = TRUE, ci = 0.95)
#function to extract relevant objects for plotting
single_varirf12 <- extract_varirf(irf_res12)</pre>
#the plot
single_varirf12 %>%
  ggplot(aes(x=period, y=irf_interaction_vol, ymin=lower_interaction_vol, ymax=upper_interaction_vol))
  geom_hline(yintercept = 0, color="red") +
  geom_ribbon(fill="grey", alpha=0.2) +
  geom_line() +
  theme_light() +
  ggtitle("IRF Interaction on Volatility")+
  ylab("")+
  xlab("") +
  theme_minimal()
```





### Terms

Here we look for the first and second mandate effect of posts. We will use the tariff variable as a proxy for the posts

#### First mandate

```
# First and Second Mandate

#first term

Vdata_f = filter(data,between(timestamp, as.Date('2017-01-20'), as.Date('2021-01-20')))

#second term

Vdata_s = filter(data,between(timestamp, as.Date('2025-01-20'), as.Date('2025-05-07')))

y_f_d = cbind(Vdata_f$tariff, Vdata_f$ASHR_vol)

colnames(y_f_d)[1:2] <- c("tariff", "vol")

est.VAR_f_d <- VAR(y_f_d,p=6)

mod_vol_f_d <- est.VAR_f_d$varresult$vol

texreg(mod_vol_f_d, digits = 6)</pre>
```

|                | Model 1          |
|----------------|------------------|
| tariff.l1      | -0.000001        |
|                | (0.000008)       |
| vol.l1         | $0.245435^{***}$ |
|                | (0.011754)       |
| tariff.l2      | -0.000007        |
|                | (0.000008)       |
| vol.l2         | $0.075223^{***}$ |
|                | (0.012070)       |
| tariff.l3      | -0.000007        |
|                | (0.000008)       |
| vol.l3         | $0.060102^{***}$ |
|                | (0.012082)       |
| tariff.l4      | -0.000002        |
|                | (0.000008)       |
| vol.l4         | $0.060634^{***}$ |
|                | (0.012082)       |
| tariff.l5      | -0.000002        |
|                | (0.000008)       |
| vol.l5         | $0.085747^{***}$ |
|                | (0.012070)       |
| tariff.l6      | 0.000001         |
|                | (0.000008)       |
| vol.l6         | $0.173709^{***}$ |
|                | (0.011754)       |
| const          | $0.000033^{***}$ |
|                | (0.000003)       |
| $\mathbb{R}^2$ | 0.218236         |
| $Adj. R^2$     | 0.216900         |
| Num. obs.      | 7036             |
|                |                  |

\*\*\*p < 0.001; \*\*p < 0.01; \*p < 0.05

Table 7: Statistical models

```
Omega_f_d <- var(residuals(est.VAR_f_d))</pre>
#make the B matrix
loss_f_d <- function(param_f_d){</pre>
  #Define the restriction
 B_f_d \leftarrow matrix(c(param_f_d[1], param_f_d[2], 0, param_f_d[3]), ncol = 2)
  #Make BB' approximatively equal to omega
 X_f_d \leftarrow Omega_f_d - B_f_d %*% t(B_f_d)
 #loss function
 loss_f_d \leftarrow sum(X_f_d^2)
 return(loss_f_d)
}
res.opt_f_d \leftarrow optim(c(1, 0, 1), loss_f_d, method = "BFGS")
B.hat_f_d \leftarrow matrix(c(res.opt_f_dpar[1], res.opt_f_dpar[2], 0, res.opt_f_dpar[3]), ncol = 2)
print(cbind(Omega_f_d,B.hat_f_d %*% t(B.hat_f_d)))
#irf creation
irf_res_f_d <- irf(est.VAR_f_d, impulse = "tariff", response = "vol",</pre>
                   bmat=b.hat_f_d, n.ahead = 7 * 7, boot = TRUE, ci = 0.95)
#function to extract relevant objects for plotting
single_varirf_f_d <- extract_varirf(irf_res_f_d)</pre>
#the plot
single_varirf_f_d %>%
  ggplot(aes(x=period, y=irf_tariff_vol, ymin=lower_tariff_vol, ymax=upper_tariff_vol)) +
  geom_hline(yintercept = 0, color="red") +
  geom_ribbon(fill="grey", alpha=0.2) +
 geom_line() +
 theme_light() +
  ggtitle("IRF First Mandate tariff on Volatility")+
 vlab("")+
 xlab("") +
 theme_minimal()
```

IRF First Mandate tariff on Volatility



#does vol granger cause tariff
grangertest(y\_f\_d[,c("vol","tariff")], order = 6)

| Res.Df   | Df | $\mathbf{F}$ | $\Pr(>F)$ |
|----------|----|--------------|-----------|
| 7.02e+03 |    |              |           |
| 7.03e+03 | -6 | 0.384        | 0.889     |

#does tariff granger cause vol
grangertest(y\_f\_d[,c("tariff", "vol")], order = 6)

| Res.Df   | Df | $\mathbf{F}$ | $\Pr(>F)$ |
|----------|----|--------------|-----------|
| 7.02e+03 |    |              |           |
| 7.03e+03 | -6 | 0.346        | 0.912     |

### second mandate

|                | N. 1.1.1         |
|----------------|------------------|
|                | Model 1          |
| tariff.l1      | 0.000008         |
|                | (0.000005)       |
| vol.l1         | $0.443019^{***}$ |
|                | (0.044731)       |
| tariff.l2      | 0.000006         |
|                | (0.000005)       |
| vol.l2         | 0.075886         |
|                | (0.049172)       |
| tariff.l3      | -0.000005        |
|                | (0.000005)       |
| vol.l3         | -0.062004        |
|                | (0.049326)       |
| tariff.l4      | -0.000001        |
|                | (0.000005)       |
| vol.l4         | 0.075354         |
|                | (0.049365)       |
| tariff.l5      | -0.000001        |
|                | (0.000005)       |
| vol.l5         | -0.003760        |
|                | (0.049339)       |
| tariff.l6      | -0.000006        |
|                | (0.000005)       |
| vol.16         | 0.123405**       |
|                | (0.044686)       |
| const          | 0.000033**       |
|                | (0.000011)       |
| $\mathbb{R}^2$ | 0.287673         |
| $Adj. R^2$     | 0.270543         |
| Num. obs.      | 512              |
|                | .0.01 * .0.05    |

 $^{***}p < 0.001; \ ^{**}p < 0.01; \ ^*p < 0.05$ 

Table 8: Statistical models

```
y_s_d = cbind(Vdata_s$tariff, Vdata_s$ASHR_vol)
colnames(y_s_d)[1:2] <- c("tariff", "vol")
est.VAR_s_d <- VAR(y_s_d,p=6)
mod_vol_s_d <- est.VAR_s_d$varresult$vol
texreg(mod_vol_s_d, digits = 6)</pre>
```

```
Omega_s_d <- var(residuals(est.VAR_s_d))
#make the B matrix
loss_s_d <- function(param_s_d){
    #Define the restriction
B_s_d <- matrix(c(param_s_d[1], param_s_d[2], 0, param_s_d[3]), ncol = 2)

#Make BB' approximatively equal to omega
X_s_d <- Omega_s_d - B_s_d %*% t(B_s_d)

#loss function
loss_s_d <- sum(X_s_d^2)</pre>
```

```
return(loss_s_d)
}
res.opt_s_d \leftarrow optim(c(1, 0, 1), loss_s_d, method = "BFGS")
B.hat_s_d \leftarrow matrix(c(res.opt_s_dpar[1], res.opt_s_dpar[2], 0, res.opt_s_dpar[3]), ncol = 2)
print(cbind(Omega_s_d,B.hat_s_d %*% t(B.hat_s_d)))
#irf creation
irf_res_s_d <- irf(est.VAR_s_d, impulse = "tariff", response = "vol",</pre>
                  bmat=b.hat_s_d, n.ahead = 7 * 7, boot = TRUE, ci = 0.95)
#function to extract relevant objects for plotting
single_varirf_s_d <- extract_varirf(irf_res_s_d)</pre>
#the plot
single_varirf_s_d %>%
  ggplot(aes(x=period, y=irf_tariff_vol, ymin=lower_tariff_vol, ymax=upper_tariff_vol)) +
  geom_hline(yintercept = 0, color="red") +
  geom_ribbon(fill="grey", alpha=0.2) +
  geom_line() +
  theme light() +
  ggtitle("IRF Second Mandate tariff on Volatility")+
  ylab("")+
  xlab("") +
  theme_minimal()
```

## IRF Second Mandate tariff on Volatility



#does vol granger cause tariff
grangertest(y\_s\_d[,c("vol","tariff")], order = 6)

| Res.Df | Df | ${f F}$ | $\Pr(>F)$ |
|--------|----|---------|-----------|
| 499    |    |         |           |
| 505    | -6 | 1.49    | 0.179     |

#does tariff granger cause vol
grangertest(y\_s\_d[,c("tariff", "vol")], order = 6)

| Res.Df | $\mathbf{Df}$ | $\mathbf{F}$ | $\Pr(>F)$ |
|--------|---------------|--------------|-----------|
| 499    |               |              |           |
| 505    | -6            | 1.18         | 0.313     |