

Computer Security

Cunsheng DING, HKUST

COMP4631

Lecture 03: Mathematical Foundations I

Outline of this Lecture

- 1. To recall sets.
- 2. To recall functions.
- 3. To explain why functions are important in security systems.

Definition of Sets

Definition: A set is a collection of (distinct) objects.

Example: $A = \{x, y, z\}$

Example: $B = \{1, 2\}.$

Example: $C = \{1, 2, x\}.$

Example: Z the set of all integers.

Example: $S = \{x \in Z : x > 0\}.$

Membership: We write $a \in A$ if a is an element of A.

The Number of Elements in a Set

Example: $|A| = |\{x, y, z\}| = 3$

Example: $|B| = |\{1, 2\}| = 2$.

Example: $|C| = |\{1, 2, x\}| = 3$.

Cartesian Product of Sets

Definition: The Cartesian product of two sets A and B is defined as

$$A \times B = \{(a, b) : a \in A, b \in B\}.$$

Example: Let $A = \{x, y, z\}$ and $B = \{1, 2\}$. Then

$$A \times B = \{(x,1), (x,2), (y,1), (y,2), (z,1), (z,2)\}.$$

Question: For the sets A and B above, what is $B \times A$?

**

Definition of Functions

Definition: A function f from A to B is a mapping such that f mapps every element $a \in A$ to a **unique** element, denoted f(a), in B.

Example: Let $A = \{x, y, z\}$ and $B = \{1, 2\}$. Is the mapping

$$x \mapsto 1, \ x \mapsto 2, \ y \mapsto 2, \ z \mapsto 2$$

a function from A to B?

Why?

Example: Let $A = \{x, y, z\}$ and $B = \{1, 2\}$. Is the mapping

$$x \mapsto 2, \ y \mapsto 2, \ z \mapsto 2$$

a function from A to B?

Why?

The Number of Functions from A to B

Question: Let |A| = m and |B| = n. What is the total number of functions from A to B?

**

How to Describe Functions

Formula Description: Let $A = \{0, 1, 2, 3, 4\}$ and $B = \{0, 1\}$. Define $f(x) = x \mod 2$

Pictorial Description: For the f above,

Remark: These are school approaches. There are other approaches.

*

Onto Functions

Definition: A function f from A to B is *onto* if there is at least one $a \in A$ such that f(a) = b for every $b \in B$.

Example: Let $A = \{0, 1, 2, 3, 4\}$ and $B = \{0, 1\}$. Is the function

$$f(x) = x \bmod 2$$

onto?

Why?

Example: Let $A = \{x, y, z\}$ and $B = \{1, 2\}$. Is the function

$$x \mapsto 2, \ y \mapsto 2, \ z \mapsto 2$$

onto?

Why?

Question: Let |A| = m and |B| = n, where $m \ge n$. What is the total number of onto functions from A to B?

Onto Functions

Question: Let |A| = m and |B| = n, where $m \ge n$. What is the total number of onto functions from A to B?

Solution: It is

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} (n-k)^m.$$

You need to use the Inclusion-Exclusion Principle to get this result.

One-to-one Functions

Definition: A function f from A to B is one-to-one if $f(a_1) \neq f(a_2)$ for every pair (a_1, a_2) of distinct elements in A.

Example: Let $A = \{0, 1, 2, 3, 4\}$ and $B = \{0, 1\}$. Is the function

$$f(x) = x \bmod 2$$

one-to-one?

Why?

Example: Let $A = \{x, y\}$ and $B = \{1, 2\}$. Is the function

$$x \mapsto 1, y \mapsto 2$$

one-to-one?

Why?

Question: Let |A| = m and |B| = n, where $m \le n$. What is the total number of one-to-one functions from A to B?

*

One-to-one Functions

Question: Let |A| = m and |B| = n, where $m \le n$. What is the total number of one-to-one functions from A to B?

Answer: It is

$$m! \binom{n}{m} = \frac{n!}{(n-m)!} = n(n-1)(n-2)\cdots(n-(m-1)).$$

**

One-to-one Correspondences

Definition: A function f from A to B is a *one-to-one correspondence* if it is both onto and one-to-one.

Example: Let $A = \{0, 1, 2, 3, 4\}$ and $B = \{0, 1\}$. Is the function

$$f(x) = x \bmod 2$$

a one-to-one correspondence?

Why?

Example: Let $A = \{x, y\}$ and $B = \{1, 2\}$. Is the function

$$x \mapsto 1, \ y \mapsto 2$$

a one-to-one correspondence?

Why?

Inverse Functions

Definition: Let f be a one-to-one correspondence from A to B. The inverse of f, denoted by f^{-1} , is defined by

$$f^{-1}(b) = a$$
 if and only if $f(a) = b$.

Conclusion: f^{-1} is a one-to-one correspondence from B to A.

Example: Let $A = \{x, y\}$ and $B = \{1, 2\}$ and

$$f: x \mapsto 1, \ y \mapsto 2.$$

Then

$$f^{-1}: 1 \mapsto x, \ 2 \mapsto y.$$

The Identity Function

Definition: The *identity function* I_A from A to A is defined by

$$I_A(a) = a$$
 for every element $a \in A$.

Conclusion: I_A is a one-to-one correspondence from A to A.

Example: Let $A = \{x, y\}$.

$$I_A: x \mapsto x, \ y \mapsto y.$$

Conclusion: The inverse of I_A is itself.

**

Function Composition

Definition: Let f be a function from A to B, and g a function from B to C. The *composition* of f and g, denoted by $g \circ f$, is a function from A to C defined as

$$(g \circ f)(a) := g(f(a))$$

for all $a \in A$

Example: Let
$$A = \{x, y\}, B = \{1, 2\}, C = \{u, v\},$$
 $f: x \mapsto 1, \ y \mapsto 2$ $g: 1 \mapsto u, \ 2 \mapsto u.$

Then

$$g \circ f : x \mapsto u, \ y \mapsto u.$$

Function Composition - ctd.

Question: Let A = B = C, be the set of integers.

$$f(x) = x + 1 \text{ and } g(x) = x^2 + x.$$

What is $g \circ f$?

Conclusion: Let f be a one-to-one correspondence from A to B. Then

$$f^{-1} \circ f = I_A$$
.

This allows for correct decryption!

Permutations

Definition: A permutation f of A is a one-to-one correspondence from A to A.

Example: Let $A = \{0, 1, 2\}$ and $f(x) = (x + 1) \mod 3$.

Conclusion: Every permutation f of A has the inverse f^{-1} . Clearly f^{-1} is also a permutation of A.

Example: Let $A = \{0, 1, 2\}$ and f be the same as above. Then

$$f^{-1}(x) = (x+2) \bmod 3.$$

Question: What is the total number of permutations of A with n elements?

Permutations as One-dimensional Arrays

Conclusion: Any permutation of $A = \{1, 2, ..., n\}$ can be expressed as an array

$$f[1]f[2]\cdots f[n].$$

Example: Let $A = \{0, 1, 2\}$ and

$$f(x) = (x+1) \bmod 3.$$

Then f can be expressed as the array

120.

Permutations as Two-dimensional Arrays

Conclusion: Let $A = \{1, 2, \dots, n\}$. If n = lm, then a permutation f of A can also be defined as a two-dimensional array

$$f[1]$$
 $f[2]$ \cdots $f[l]$ $f[1+l]$ $f[2+l]$ \cdots $f[2l]$ $f[1+2l]$ $f[2+2l]$ \cdots $f[3l]$ \vdots \vdots \vdots $f[1+(m-1)l]$ $f[2+(m-1)l]$ \cdots $f[ml]$

Page 19 COMP4631

*

Permutations as Two-dimensional Arrays - ctd.

Example: Let $n = 6 = 3 \times 2$. Then the following two-dimensional array (table)

6 2 5

1 3 4

defines a permutation of $A = \{1, 2, 3, 4, 5, 6\}.$

Question: Find f^{-1} and express it in the same form.

*

The Importance of Functions in Security Systems

Summary: Almost every building block in a cryptographic system is a function.

Page 21 COMP4631