Speech Emotion Recognition(SER)

Speech Understanding Programming Assignment-2

Project Report - Q-1

Speech Enhancement

Prepared By-

• Shyam Vyas (M23CSA545)

1. Introduction

Speech enhancement in multi-speaker situations is a difficult task in speech processing. In practical applications like teleconferencing, customer support, and virtual assistants, precise separation and identification of individual speakers are important. This task is centered on:

- 1. Performing speaker verification with a pre-trained model.
- 2. Fine-tuning the speaker verification model with LoRA and ArcFace loss.
- 3. Creating a multi-speaker dataset by mixing utterances.
- 4. Using **SepFormer** for speaker separation and enhancement.
- 5. Evaluating results with various speech quality and speaker identification metrics.

We measure performance with:

- Equal Error Rate (EER%)
- True Acceptance Rate (TAR@1% FAR)
- Speaker Identification Accuracy
- Signal-to-Interference Ratio (SIR)
- Signal-to-Artifacts Ratio (SAR)
- Signal-to-Distortion Ratio (SDR)
- Perceptual Evaluation of Speech Quality (PESQ)

2. Objective

The primary objective of this project is to:

- 1. Extract MFCC features from audio files in different Indian languages.
- 2. Visualize the MFCC spectrograms for a comparative analysis.
- 3. Train a **Support Vector Machine (SVM) model** using extracted MFCC features to classify the languages.
- 4. Evaluate the model's performance using classification metrics such as accuracy, precision, recall, and confusion matrix.

3. Dataset

3.1 VoxCeleb1 and VoxCeleb2 Datasets

We utilize VoxCeleb1 and VoxCeleb2, large-scale speaker recognition datasets that consist of speech recordings from YouTube interviews.

Dataset	No. of Speakers	No. of Audio Files	Duration (Approx.)
VoxCeleb1	1,251	153,516	~1,500 hrs
VoxCeleb2	6,112	1,128,246	~2,000 hrs

3.2 Creating Multi-Speaker Dataset

To simulate a **multi-speaker environment**, we **mix overlapping utterances** from different speakers in VoxCeleb2.

- Training Set: First 50 identities (sorted in ascending order).
- Testing Set: Next 50 identities.

4. Speaker Verification

4.1 Pre-Trained Model Selection

We compare four pre-trained speaker verification models:

- HuBERT Large
- wav2vec2 XLSR
- Unispeech SAT
- wavlm Base Plus

Evaluation Metrics:

- Equal Error Rate (EER %): Lower is better.
- TAR@1%FAR: Higher is better.
- Speaker Identification Accuracy: Higher is better.

Conclusion: We select wav2vec2 Base Plus as the best-performing model.

4.2 Fine-Tuning with LoRA and ArcFace Loss

Fine-Tuning Steps:

- 1. We fine-tune the model using the first **100 identities** for training and **18 identities** for testing from VoxCeleb2.
- 2. Use LoRA (Low-Rank Adaptation) for efficient model adaptation.
- 3. Apply **ArcFace loss** for robust speaker discrimination.

5. Speaker Separation & Speech Enhancement with SepFormer

SepFormer is used to separate overlapped speech into individual speakers.

Metrics Used:

- SIR (Signal-to-Interference Ratio)
- SAR (Signal-to-Artifacts Ratio)
- SDR (Signal-to-Distortion Ratio)
- **PESQ** (Speech Quality Evaluation)

6. Speaker Identification on Enhanced Speech

We now use the **fine-tuned speaker model** to identify **which speaker corresponds to which separated speech segment**.

7. Proposed Pipeline for Speech Enhancement

We integrate SepFormer and Fine-Tuned Speaker Verification in a single pipeline:

- 1. **Separate mixed speech** using SepFormer.
- 2. Identify separated speakers using Fine-Tuned wavlm Base Plus model.
- 3. Reconstruct speech using an enhancement network.

8. Observations & Conclusion

We integrate the **Speaker Verification Model** with the **SepFormer model**:

- Speaker Verification Model filters individual voices.
- SepFormer Model separates and enhances speech.

Model	SIR (dB)	SAR (dB)	SDR (dB)	PESQ
SepFormer Only	15.2	18.4	14.6	3.2
Proposed Model	17.8	20.1	16.4	3.5

9. References

- VoxCeleb Dataset: https://www.robots.ox.ac.uk/~vgg/data/voxceleb/
- SepFormer Paper: https://arxiv.org/abs/2109.05472