Bijzonderde onbepaalde integralen

Iedere afgeleide van een bijzondere functie geeft aanleiding tot een bijzondere onbepaalde integraal.

Voorbeeld. $Omdat\ D(\sin x) = \cos x\ is\ \int \cos x dx = \sin x + C.$

Voorbeeld. Omdat $Dx^n = nx^{n-1}$ is $\int nx^{n-1}dx = x^n + C$. Als je dit wat herwerkt bekom je $D\left(\frac{x^{m+1}}{m+1}\right) = x^m$ en dus $\int x^m dx = \frac{x^{m+1}}{m+1} + C$. Deze onbepaalde integraal geldt voor alle $m \neq -1$. Die laatste voorwaarde komt door de noemer m+1 die niet 0 mag zijn.

Voorbeeld. Omdat $D(\ln|x|) = \frac{1}{x}$ is $\int \frac{dx}{x} = \ln|x| + C$. $Vanwege \frac{1}{x} = x^{-1}$ staat hier ook een uitkomst voor $\int x^m dx$ als m = -1, namelijk $\int x^{-1} dx = \ln|x| + C$.

Op deze wijze ontstaat de volgende lijst van bijzondere onbepaalde integralen. Hierop volgt de lijst uit de Actimath-cursus in 1.3.