Optimal Control: The Maximum Principle

• Presented for leading example: Problem of a social planner or representative household

Maximize
$$U = \int_{0}^{\infty} \{e^{-\rho t}u[C(t)]L(t)\}dt$$
 s.t. $\frac{dK}{dt} = F(K,AL) - CL - \delta K$

- Concise set of necessary conditions known as Maximum Principle. Here focus on application. For general analysis see Barro/Sala-i-Martin, App.A3; Acemoglu, ch.7, or math textbooks.
- 1. Setup: Define choice variables, state variables, and **costate** variables
 - Here: Choice = C. State = K. For each state variable define a costate variable (here: λ for K)
- 2. Define the **Hamiltonian**: (Time-t Objective) + (Costate variables) * (RHS of the constraints)
 - Here: $H(C,K,\lambda,t) = e^{-\rho t}u(C)L + \lambda \cdot [F(K,AL) CL \delta K]$
 - Intuition: Co-state is the shadow value of a marginal increase in the state variable.
- 3. Apply the **Maximum Principle**: Three first order conditions, which involve derivatives of the Hamiltonian with respect to choice variables, state variables, and costate variables:

(i)
$$\frac{\partial H}{\partial C} = 0$$
; (ii) $\frac{\partial H}{\partial K} = -\frac{d\lambda}{dt}$; (iii) $\frac{\partial H}{\partial \lambda} = \frac{dK}{dt}$. [Note: negative sign in (ii), not in (iii)]

4. Impose suitable boundary conditions: here initial condition that K(0) is given; terminal condition to formalize the intuition that no resources should be "left over" at the end.

Motivation for the Maximum Principle

- Problem: max $U = \int_{0}^{\infty} \{e^{-\rho t}u[C(t)]L(t)\}dt$ s.t. $\frac{dK}{dt} = F(K,AL) CL \delta K$ General format: $U = \int_{0}^{T} h[c(t),x(t),t]dt + V[x(T)]$ s.t. $\frac{dx(t)}{dt} = g[c(t),x(t),t]$

with control function c(t), state x(t), and time $t \in [0,T]$, and with $T \to \infty$ as limiting case.

- For finite T, include terminal value V(). Initial conditions $x(0) = x_0$.
- Assume h, g, and V are continuously differentiable. Time-dependence in h() and g() allows for discounting and known functions of time such as A(t), L(t).
- Controls and state may be scalars or vectors; use scalar notation here.
- Note that changing c(t) at isolated points would not change U. Motivates restricting attention to piecewise continuous functions c(t).
- Objective: Find necessary conditions for a control $\hat{c}(t)$ to be optimal within the space of piecewise continuous functions on [0,T].
- Apply Lagrangian idea: if $g[c(t), x(t), t] \frac{dx(t)}{dt} = 0$ for all t, then $\int_{0}^{T} \lambda(t) \{g[c(t), x(t), t] - \frac{dx(t)}{dt}\} dt = 0 \text{ for any function } \lambda(t). \text{ Write}$ $U = L = \int_{0}^{T} h[c(t), x(t), t] dt + \int_{0}^{T} \lambda(t) \{g[c(t), x(t), t] - \frac{dx(t)}{dt}\} dt + V[x(T)].$

• Rearrange and integrate by parts:

arrange and integrate by parts.
$$L = \int_{0}^{T} \left\{ h[c(t), x(t), t] + \lambda(t) \cdot g[c(t), x(t), t] \right\} dt - \int_{0}^{T} \lambda(t) \frac{dx(t)}{dt} dt + V[x(T)]$$

$$= \int_{0}^{T} \left\{ h[c(t), x(t), t] + \lambda(t) \cdot g[c(t), x(t), t] \right\} dt + \int_{0}^{T} \frac{d\lambda(t)}{dt} x(t) dt + \lambda(0) x(0) - \lambda(T) x(T) + V[x(T)].$$

$$= \int_{0}^{T} \left\{ H[c(t), x(t), \lambda(t), t] + \frac{d\lambda(t)}{dt} x(t) \right\} dt + \lambda(0) x_{0} - \lambda(T) x(T) + V[x(T)]$$

written in terms of the **Hamiltonian** $H[c(t), x(t), \lambda(t), t] = h[c(t), x(t), t] + \lambda(t) \cdot g[c(t), x(t), t]$ Result: for interior times $t \in (0,T)$, c(t) and x(t) influence L only through the $\{...\}$ -term

- Suppose $\hat{c}(t)$ is candidate for optimal control and $\hat{c}(t)$ an arbitrary alternative
 - Define a parametric family of alternatives ("variations") by

$$c(t,\varepsilon) = \hat{c}(t) + \varepsilon \cdot \eta(t)$$
, where $\eta(t) = \hat{c}(t) - \hat{c}(t)$.

- Note: $c(t,\varepsilon)$ is piecewise continuous for any ε because $\hat{c}(t)$ and $\hat{c}(t)$ are.
- For given ε , let $x(t,\varepsilon)$ denote the solution to $\frac{dx(t,\varepsilon)}{dt} = g[c(t,\varepsilon),x(t,\varepsilon),t]$ with $x(0,\varepsilon) = x_0$.
- Define:

$$L(\varepsilon) = \int_{0}^{T} \left\{ H[c(t,\varepsilon), x(t,\varepsilon), \lambda(t), t] + \frac{d\lambda(t)}{dt} x(t,\varepsilon) \right\} dt + \lambda(0) x_{0} - \lambda(T) x(T,\varepsilon) + V[x(T,\varepsilon)]$$

- Necessary condition for optimal $\hat{c}(t)$ is that $dL(0)/d\varepsilon = 0$.

• Differentiate:

$$\frac{dL(\varepsilon)}{d\varepsilon} = \int_{0}^{T} \left\{ H_{c} \frac{dc(t,\varepsilon)}{d\varepsilon} + \left\{ H_{x} + \frac{d\lambda(t)}{dt} \right\} \frac{dx(t,\varepsilon)}{d\varepsilon} \right\} dt - \left\{ V_{x} - \lambda(T) \right\} \frac{dx(T,\varepsilon)}{d\varepsilon}, \text{ where } \frac{dc(t,\varepsilon)}{d\varepsilon} = \eta.$$

- Condition $dL(0)/d\varepsilon = 0$ must hold for any functions $\lambda(t)$ and $\eta(t)$.
- Convenient choice for $\lambda(t)$ to pick the solution to $\frac{d\lambda(t)}{dt} = -H_x[\hat{c}(t), x(t,0), \lambda(t), t]$ with boundary condition $\lambda(T) = V_x(x(T,0))$. Then

$$\frac{dL(0)}{d\varepsilon} = \int_{0}^{T} \left\{ H_{c}[\hat{c}(t), x(t, 0), \lambda(t), t] \cdot \eta(t) \right\} dt$$

- Suppose for contradiction that $H_c[\hat{c}(t), x(t,0), \lambda(t), t] \neq 0$ for any $t \in (0,T)$. Then continuity implies that $H_c \neq 0$ on a surrounding interval and $\frac{dL(0)}{d\varepsilon} \neq 0$ if on picks $\eta(t) \neq 0$ on this interval and zero elsewhere. Thus $H_c[\hat{c}(t), x(t,0), \lambda(t), t] = 0$ for all $t \in (0,T)$
- Summarize:

$$H_c[\hat{c}(t), x(t,0), \lambda(t), t] = 0$$
 for all $t \in (0,T)$ is necessary for optimality, if $\lambda(t)$ is picked to solve $\frac{d\lambda(t)}{dt} = -H_x[\hat{c}(t), x(t), \lambda(t), t]$ and $\frac{dx(t)}{dt} = g[\hat{c}(t), x(t), t] = H_\lambda[\hat{c}(t), x(t), \lambda(t), t]$

- Observation: The same system of differential equation can be obtained quickly by defining H, taking partial derivatives, and imposing: $H_c = 0$, $H_x = -\frac{d\lambda(t)}{dt}$ and $H_{\lambda} = \frac{dx(t)}{dt}$
 - Intuition: recall that L depends on c(t) and x(t) through $H[c(t),x(t),\lambda(t),t] + \frac{d\lambda(t)}{dt}x(t)$: maximizing point-wise would yield first order conditions $H_c = 0$ and $H_x + \frac{d\lambda(t)}{dt} = 0$.
 - Cannot literally choose (c,x) pointwise, but answers are correct if $\lambda(t)$ is set correctly.

Application of the Maximum Principle

- Hamiltonian: $H(C,K,\lambda,t) = e^{-\rho t}u(C)L + \lambda \cdot [F(K,AL) CL \delta K]$
- i. "Maximize the Hamiltonian w.r.t. each choice variable."
 - Apply to consumption:

$$\frac{\partial H}{\partial C} = e^{-\rho t} u'(C) \cdot L - \lambda L = 0 \quad \Longrightarrow \quad \lambda = e^{-\rho t} u'(C)$$

- Starting point for characterizing optimal consumption (rigorous derivation of the Euler equation).
- ii. "For each state variable, equate $-\partial H/\partial$ (state) to d(costate)/dt."
 - Apply to capital:

$$-\frac{\partial H}{\partial K} = \frac{d\lambda}{dt} \quad <=> \quad \frac{d\lambda}{dt} = -\lambda \cdot [F_K(K, AL) - \delta]$$

- Starting point for characterizing the optimal dynamics of the capital stock.
- iii. "For each costate variable, equate $\partial H/\partial$ (costate) to d(state)/dt."
 - Apply to the costate variable for capital:

$$\frac{\partial H}{\partial \lambda} = \frac{dK}{dt} \qquad <=> \quad \frac{dK}{dt} = F(K, AL) - CL - \delta K$$

- Formal way of recovering the constraints. Note the positive sign here, vs. the negative sign in Step (ii).
- Provides three equations for three variables (C,K,λ) . Two are differential equations.

Interpretation (I): Costate = Shadow Value of Capital

- Claim: The shadow value of capital declines over time at the rate of interest.
- Proof:
 - Step (ii) of the maximum principle implies

$$-\frac{\lambda}{\lambda} = F_K(K,AL) - \delta = f'(k) - \delta = r$$

- Conclude: $\lambda(t)$ is a decreasing function of time if and only if r > 0.
- Linear differential equation solved by: $\lambda(T) = \lambda(0)e^{-\int_0^T r(t)dt}$
- General lesson: In dynamic problems, part (ii) of the Maximum Principle implies that future resources (like assets or capital) are discounted at an appropriate rate of interest.
- Intuition: high (or low) return means: easy (or difficult) to shift current resources into the future => Future resources are discounted deeply (or not much)
- Intuition based on the Lagrangian: recall that L includes the term $\lambda(0)x_0$. Suggests that $dL/dx_0 = dU/dx_0 = \lambda(0)$ is the marginal value of varying initial conditions.

Interpretation (II): Optimal Consumption Growth

- Claim: The Maximum Principle implies the Euler equation $\dot{C}_C = \frac{1}{\theta(C)}(r \rho)$.
 - Idea: Express optimality in terms of observables (C,K) => eliminate λ and $d\lambda/dt$.
 - Proof: From step (i): $\lambda(t) = e^{-\rho t} u'(C(t))$

Differentiate: $\frac{d\lambda}{dt} = -\rho e^{-\rho t} \cdot u'(C(t)) + e^{-\rho t} \cdot u''(C(t)) \frac{dC}{dt}$

Divide: $\frac{d\lambda}{dt}/\lambda = -\rho + \frac{u''(C(t))}{u'(C(t))}\frac{dC}{dt} = -\rho + \frac{u''(C(t))C}{u'(C(t))}\left(\frac{1}{C}\frac{dC}{dt}\right) = -\rho - \theta(C)(\dot{C}/C)$

From step (ii): $\frac{d\lambda}{dt}/\lambda = -[F_K(K,AL) - \delta] = -r,$

Combine: $\rho + \theta(C)(\dot{C}/C) = r \implies \dot{C}/C = \frac{1}{\theta(C)}(r - \rho).$

- Result: Same Euler equation as in Romer's household problem:
 - 1. Per-capita consumption growth is proportional to the interest rate minus rate of time preference.
 - 2. Responsiveness to interest rate changes is $1/\theta$ = the elasticity of intertemporal substitution.
- Related definition: Current-value Hamiltonian (See Acemoglu ch.7.5; not required here)

$$\tilde{H}(C,K,\lambda,t) = u(C)L + \tilde{\lambda} \cdot [F(K,AL) - CL - \delta K]$$

- Modified form of Maximum principle:

(i) $\partial \tilde{H} / \partial C = 0$ and (ii) $\partial \tilde{H} / \partial K = -d\tilde{\lambda} / dt + \rho \tilde{\lambda}$

Step (i) simplifies: $\partial \tilde{H}/\partial C = u'(C)L + \tilde{\lambda}L = 0 \implies \tilde{\lambda} = u'(C)$

Step (ii): $\partial \tilde{H}/\partial K = \tilde{\lambda}[F_K(K,AL) - \delta] = -d\tilde{\lambda}/dt + \rho\tilde{\lambda} \Longrightarrow$ same Euler equation.

Transformation to Effective Units

• Differential equations in "natural" units:

$$\frac{dK}{dt} = F(K,AL) - CL - \delta K \qquad \text{and} \quad \dot{C}/C = \frac{1}{\theta(C)}(r - \rho)$$

- Transformation to effective units is convenient for steady state analysis:
 - $r = f'(k) \delta$ - Interest rate & return to capital:
 - Consumption: $c = \frac{C}{A} \implies \dot{c}/c = \frac{\dot{c}}{C} g$
 - Euler equation: $\dot{c}_c = \frac{1}{\theta(C)} [f'(k) \delta \rho] g$
 - Capital: $k = \frac{k}{AL} \implies \dot{k} = \frac{\dot{k}}{K} n g \implies \dot{k} = \frac{1}{AL}\dot{K} (n+g)k$
 - Dynamics of capital: $\dot{k} = f(k) c (n + g + \delta)k$
- Left as exercise: Consider problem with (c, k) as choice and state variables

Maximize
$$U = \int_{0}^{\infty} \{e^{-\rho t}u[c(t)\cdot A(t)]L(t)\}dt$$
 s.t. $\dot{k} = f(k) - c - (n+g+\delta)k$

Maximize $U = \int_{0}^{\infty} \{e^{-\rho t}u[c(t)\cdot A(t)]L(t)\}dt$ s.t. $\dot{k} = f(k) - c - (n+g+\delta)k$ Or maximize $\frac{1}{H}U = \int_{0}^{\infty} \{e^{-\rho t}u[c(t)\cdot A(t)]\frac{L(t)}{H}\}dt$ for household with population L/H.

Show that the solutions imply the same optimality conditions as above.

Another Example of Optimal Control

• Apply optimal control approach to Romer's household problem (population L/H):

Maximize
$$U = \int_{0}^{T} [e^{-\rho t} u(C(t)) \frac{L(t)}{H}] dt, \text{ with finite horizon T.}$$
Subject to
$$\dot{a}(t) = r(t) \cdot a(t) + W(t) \frac{L(t)}{H} - C(t) \frac{L(t)}{H}$$

- Hamiltonian: $H(C,a,\lambda,t) = e^{-\rho t}u(C)\frac{L}{H} + \lambda \cdot [r \cdot a + W \cdot \frac{L}{H} C \cdot \frac{L}{H}]$ where now λ = shadow value of household assets
- Maximum Principle:

i.
$$\frac{\partial H}{\partial C} = 0 \implies e^{-\rho t} u'(C) \cdot \frac{L}{H} - \lambda \cdot \frac{L}{H} = 0 \implies \lambda = e^{-\rho t} u'(C)$$
ii.
$$\frac{\partial H}{\partial a} = -\frac{d\lambda}{dt} = \lambda r \implies \frac{\lambda}{\lambda} = -r$$
iii.
$$\frac{\partial H}{\partial \lambda} = \frac{da}{dt} = r \cdot a + W \cdot \frac{L}{H} - C \cdot \frac{L}{H}$$

- Left as exercise: Show that $\dot{C}_C = \frac{1}{\theta(C)}(r \rho)$ holds.
- Conclude: Maximum Principle yields the same differential equations as Romer's solution.

 => A systematic and effective way of deriving necessary conditions.

Results and Open Questions

- Result: Key differential equations
 - 1. Euler equation: $\dot{C}_C = \frac{1}{\theta(C)} (f'(k) \delta \rho)$

or $\dot{c}_c' = \frac{1}{\theta(C)} [f'(k) - \delta - \rho] - g$

- 2. Dynamics of capital: $\dot{k} = f(k) c (n + g + \delta)k$
- Starting point for graphical analysis (phase diagrams).
- Math fact: Solving a pair of differential equations requires two boundary conditions.
 - 1. Initial capital K(0) is given. 2. Open question \Rightarrow *Not a complete solution*.
- Open Questions:
 - 1. What is the second boundary condition?
 Claim (to prove): A suitable terminal condition.
 - 2. Is optimal growth consistent with a steady state? With balanced growth? Claim (to prove): Not in general. Requires restrictions on preferences.
 - 3. How do we solve or characterize the optimal solution (the differential equations)? Several approaches. Here: Phase diagrams; linearization around a steady state.

The Terminal Condition (I): Concepts

- Setting: Maximize utility subject to resource constraints—on capital and/or financial assets.
 - More dependent on context than the Maximum Principle. Hence consider specific cases.
- Key concepts and arguments:
- 1. Transversality condition: Don't leave valuable resources unused.
 - <u>Finite</u> horizon problems: Rules out a strictly *positive* value <u>at the terminal date</u>.
 - <u>Infinite</u> horizon problems: Rules out a strictly *positive* present value <u>in the limit</u>.
 - Necessary condition for optimality. [Otherwise one could raise utility by spending the resource.]
- 2. No-Ponzi condition: Incentive to borrow if repayment is not required—must be prevented. [Named for Charles Ponzi, inventor of the chain letter.]
 - <u>Finite</u> horizon problems: Rules out positions with strictly *negative* value <u>at the terminal date</u>.
 - <u>Infinite</u> horizon problems: Rules out positions with strictly *negative* present value <u>in the limit</u>.
 - Property of the equilibrium: Must be justified in each application.
 - Common argument: An optimizing lender will not lend unless repayment is credibly promised.
 - => Borrowers must satisfy a No-Ponzi condition if all lenders satisfy transversality conditions.
 - Counter examples: Government credit. Speculative bubbles. Overlapping generations of lenders.
 - Ponzi problem does not arise if the resource is naturally non-negative, e.g., for real capital.

The Terminal Condition (II): Motivation

• Recall the Lagrangian for variation $c(t,\varepsilon) = \hat{c}(t) + \varepsilon \cdot \eta(t)$

$$L(\varepsilon) = \int_{0}^{T} \left\{ H[c(t,\varepsilon), x(t,\varepsilon), \lambda(t), t] + \frac{d\lambda(t)}{dt} x(t,\varepsilon) \right\} dt + \lambda(0) x_{0} - \lambda(T) x(T,\varepsilon) + V[x(T,\varepsilon)]$$
- For finite T, find variation with $\frac{dL(0)}{d\varepsilon} \neq 0$ unless $V_{x}[x(T)] - \lambda(T) = 0$

Not useful in economic application with V=0 because $\lambda(T)=0 \Rightarrow \lambda(t)=0$ for all t

- 1. Economic problems with endpoint constraint $x(T) \ge 0$ (e.g., $a(T) \ge 0$)
 - Impose $x(T) \ge 0$ with Kuhn-Tucker multiplier $\mu \ge 0$

$$L(\varepsilon) = \int_{0}^{T} \{...\} dt + \lambda(0)x_{0} - \lambda(T)x(T,\varepsilon) + \mu \cdot x(t,\varepsilon)$$

- Pick $\lambda(t)$ with boundary condition $\lambda(T) = \mu \ge 0$. Then Kuhn-Tucker conditions require x(T) = 0 for $\mu > 0$ or $\mu = 0$ for x(T) > 0. Often one can rule out $\mu = 0$.
- 2. Economic problems with **bounded domain** $x(t) \ge 0$ (e.g. $k(t) \ge 0$)
 - Often imposing $x(T) \ge 0$ is enough to obtain solutions that satisfy $x(t) \ge 0$ for all t.
- Intuition for limiting cases $T \rightarrow \infty$:
 - Note that $\lambda(T)x(T)$ enters negatively into L and that $\lambda(T)x(T) \ge 0$.
 - Suggests that candidate solutions with $\lim_{T\to\infty} \lambda(T)x(T) > 0$ can be improved on the margin.

The Terminal Condition (III): Results

- 1. Finite horizon problems with terminal date T:
 - Conditions usually reduce to k(T) = 0 or a(T) = 0.
- 2. Limit conditions for infinite horizons:
 - Conditions are: $\lambda(T) \cdot k(T) \to 0$ or $\lambda(T) \cdot a(T) \to 0$ as $T \to \infty$.
 - Usually find that $\lambda(T) \propto e^{-xt} \rightarrow 0$ for some limiting discount rate x>0.
 - => Condition limits the *growth rate* of asset positions (must be less than x).
- Note: Limit condition does **not** require zero assets/capital at any finite date.
 - Positive limit $k(T) \rightarrow k^* > 0$ is fine, provided $\lambda(T) \rightarrow 0$. [Common misperception!]
 - Perpetual growth, say at rate x/2, would also work, even though $k(T) \propto e^{(\frac{x}{2}) \cdot t} \rightarrow \infty$.
- Reconsider the Intertemporal budget constraint.
 - Recall the Maximum Principle in the Romer problem: $\lambda / \lambda = -r(t)$. Solve: $\lambda(T) = \lambda(0) \cdot e^{-\int_0^T r(v) dv}$.
 - Romer's IBC derivation assumed $a(T) \cdot e^{-\int_0^T r(v)dv} \to 0$. Equivalent to $\lambda(T)a(T) \to 0$.
- Insight: The IBC implicitly relies on the transversality and No-Ponzi conditions.

Conditions for Balanced Growth

- Claim: Balanced growth requires homothetic preferences: Power or logarithmic.
 - Proof: Balanced growth means convergence to a steady state in efficiency units.

$$k(t) \rightarrow k^*, \quad c(t) \rightarrow c^*, \quad r(t) \rightarrow r^* = f'(k^*) - \delta$$

- Dynamics: $\dot{k} = f(k) c (n + g + \delta)k$ and $\dot{c}/c = \dot{c}/c g = \frac{1}{\theta(C)}[f'(k) \delta \rho] g$.
- Two differential equations => Two steady state conditions: $\dot{k} = 0$ and $\dot{c} = 0$.

$$\dot{k} = 0 \iff f(k^*) - (n + g + \delta)k^* = c^*$$

 $\dot{c} = 0 \iff g \cdot \theta(C(t)) = f'(k^*) - \delta - \rho$, where $\theta(C(t)) = \theta[c^* \cdot A(t)]$.

- If A(t) grows, $\theta(C(t))$ varies unless EIS is constant.
- => Steady state requires preferences with constant $\theta(C(t)) = \theta(c^* \cdot A(t)) = \theta$.
- Fact from micro: Constant EIS requires power utility or log-utility (for time-separable preferences)

1. Power utility:
$$u(C) = \frac{C^{1-\theta}}{1-\theta}, u'(C) = C^{-\theta}, \theta \ge 0, \theta \ne 1.$$

2. Logarithmic:
$$u(C) = \ln(C), u'(C) = 1/C$$
 Limiting case of $\theta \rightarrow 1$.

- Sloppy language: *Marginal* utility must be homothetic of degree ($-\theta$) for some $\theta > 0$. Called homothetic utility.
- Proof: Define $z(\ln(C) = \ln(u'(e^{\ln C}))$. Constant $z' = u''c/u' = -\theta$ implies $z = \ln u'(C) = z_0 \theta \ln C \implies u'(C) = e^{z_0}C^{-\theta}$
- Empirical observation: Long-run macro data are roughly consistent with balanced growth.
 - => Makes sense to assume homothetic utility. *Motivates Romer's assumption*.
 - Note: No restrictions needed in models without growth. Then one may consider arbitrary utility.

Preferences in Effective Units

- Claim: If one assumes power utility, all relevant problems can be stated in efficiency units.
 - => Convenient to transform preferences and constraints into efficiency units at the outset.
 - Argument for constraints: Routine as practiced in the Solow model.
- Argument for Preferences:
 - Impose $u(C) = \frac{1}{1-\theta}C^{1-\theta}$ and invoke $C(t) = c(t) \cdot A(t)$:

$$U = \int_{0}^{\infty} e^{-\rho t} \left(\frac{C(t)^{1-\theta}}{1-\theta} \right) \frac{L(t)}{H} dt = \int_{0}^{\infty} e^{-\rho t} \left(\frac{c(t)^{1-\theta}}{1-\theta} \right) A(t)^{1-\theta} \frac{L(t)}{H} dt$$

- Invoke $L(t) = L(0) \cdot e^{nt}$, and $A(t) = A(0) \cdot e^{gt}$:

$$U = \int_{0}^{\infty} e^{-\rho t} \left(\frac{c(t)^{1-\theta}}{1-\theta} \right) \left(A(0)e^{gt} \right)^{1-\theta} \frac{L(0)e^{nt}}{H} dt = \frac{L(0)A(0)^{1-\theta}}{H} \cdot \int_{0}^{\infty} e^{-[\rho - n - g \cdot (1-\theta)]t} \left(\frac{c(t)^{1-\theta}}{1-\theta} \right) dt$$

- Scale factor is irrelevant: Normalize $A(0)^{1-\theta}L(0)/H=1$. Define $\beta=\rho-n-(1-\theta)g$.
- Result: Preferences in efficiency units:

$$U = \int_{0}^{\infty} e^{-\beta t} \frac{1}{1-\theta} c(t)^{1-\theta} dt$$

with growth-adjusted rate of time preference

$$\beta = \rho - n - (1 - \theta)g$$

Conditions for Finite Utility

- Observation #1: Finite utility along a balanced growth path requires $\beta > 0$.
 - Proof: If consumption converges to a steady state $c(t) \rightarrow c^*$, then

$$U = \int_{0}^{\infty} e^{-\beta t} \frac{c(t)^{1-\theta}}{1-\theta} dt$$
 is finite if and only if $\beta > 0$. Assumed in the following.

• Observation #2: The Euler equation can be written as $\dot{c}/c = \frac{1}{\theta}(r - n - g - \beta)$.

- Proof:
$$\dot{c}/c = \frac{1}{\theta}(r - \rho) - g = \frac{1}{\theta}[r - \{\rho + \theta \cdot g\}], \text{ where } \rho = \beta + n + (1 - \theta)g$$

=> $\dot{c}/c = \frac{1}{\theta}[r - \{\beta + n + (1 - \theta)g + \theta \cdot g\}] = \frac{1}{\theta}[r - \{\beta + n + g\}]$

- => Steady state condition $\dot{c} = 0$ implies $r^* = f'(k^*) \delta = \beta + n + g$.
- Recall from the Solow model: Dynamic efficiency $<=>r^*>n+g<=>f'(k)^*>n+g+\delta$
- Conclusion: Assumption $\beta>0$ ensures dynamic efficiency.
 - Implies capital stock strictly less than Golden Rule level.