CS 353 Fall 2022 Homework 5 Solutions

Q.1 [10 pts]

a, c, e, f

Q.2 [20 pts, 10 pts each]

(a)

The decomposition is lossless. AB \cap AC = A is the key of R1.

(b)

The decomposition is not lossless (it is lossy). AB \cap BC = B is not a key for R1 or R2. This can be shown through an example instance of R:

R: <u>A B C</u>	R1: <u>A B</u>	R2: <u>B</u> C
a1 b1 c1	a1 b1	b1 c1
a2 b1 c2	a2 b1	b1 c2

So, $R \neq R1 \bowtie R2$

Q.3 [24 pts, 8 pts each]

(a)

CA and CD

Since attribute C is not determined by any other attribute it must be a part of any candidate keys. First check whether C is a candidate key.

C+=C, it is not a super key, thus it cannot be a candidate key.

Add one more attribute to C and check whether it is a candidate key.

CA + = ABCDE

CB+=BCE

CD+ = ABCDE

CE+=CE

CA and CD are super keys (unique) and they are also minimal. Therefore, CA and CD are candidate keys.

(b)

It is not in BCNF. For A \rightarrow D, A is not a super key.

(c)

It is not in 3NF. For BC \rightarrow E, BC is not a super key and E is not part of any candidate key.

Q.4 [22 pts]

(a) [10 pts]

For A \rightarrow B in F, we compute A+ in G.

A+ in G is ABC which includes B. So, A \rightarrow B is inferred from G.

For AB \rightarrow C in F, we compute AB+ in G.

AB+ in G is ABC which includes C. So, AB \rightarrow C is inferred from G.

For D \rightarrow AC in F, we compute D+ in G.

D+ in G is ABCDE which includes AC. So, D \rightarrow AC is inferred from G.

For D \rightarrow E in F, we compute D+ in G.

D+ in G is ABCDE which includes E. So, D \rightarrow E is inferred from G.

(b) [6 pts]

No. E \rightarrow B is not inferred from F. E+ in F is E which does not include B.

(c) [6 pts]

No. In order to be equivalent, each set must cover the other one. Since F does not cover G, these two functional dependency sets are not equivalent.

Q.5 [24 pts, 12 pts each]

(a)

D is extraneous in CD \rightarrow B, since B is in (C)⁺, we replace CD \rightarrow B by C \rightarrow B:

 $\{A \rightarrow BD, C \rightarrow B, C \rightarrow D, B \rightarrow D\}$

 $C \rightarrow B$ and $C \rightarrow D$ are combined into $C \rightarrow BD$: $\{A \rightarrow BD, C \rightarrow BD, B \rightarrow D\}$

D is extraneous in A \rightarrow BD, since A+ under {A \rightarrow B, C \rightarrow BD, B \rightarrow D} includes D.

We replace $A \rightarrow BD$ by $A \rightarrow B$: $\{A \rightarrow B, C \rightarrow BD, B \rightarrow D\}$

D is extraneous in C \rightarrow BD, since C+ under {A \rightarrow B, C \rightarrow B, B \rightarrow D} includes D.

We replace $C \rightarrow BD$ by $C \rightarrow B$: $\{A \rightarrow B, C \rightarrow B, B \rightarrow D\}$

No other extraneous attributes. As a result, $Fc = \{A \rightarrow B, C \rightarrow B, B \rightarrow D\}$

(b)

We first find the candidate key(s) of R.

AC must be part of any candidate key since A and C do not appear on the right hand side of any FD.

AC+ = ABCD. AC is both unique and minimal. Therefore, AC is the only candidate key.

We now check if R is in 3NF.

For $A \rightarrow B$, A is not a super key and B is not part of a candidate key. Therefore, R is not in 3NF.

Using the lossless and dependency preserving 3NF decomposition algorithm, we add one relation for each FD in Fc: AB, CB, BD.

Since the candidate key AC is not included any of these 3 relations, we add relation AC as

There is no redundant relations.

As a result, R is decomposed into 4 3NF relations: AB, CB, BD and AC.