Operations Research Lecture 3: The Simplex Method

Instructor: Ling-Chieh Kung
Department of Information Management
National Taiwan University

1. Convert the following LP to its standard form:

min
$$3x_1 + x_2$$

s.t. $x_1 \ge 3$
 $x_1 + x_2 \ge -4$
 $2x_1 - x_2 = 3$
 $x_1 \ge 0, x_2$ urs.

2. Consider the following LP

min
$$6x_1 + 4x_2$$

s.t. $9x_1 + 4x_2 \ge 36$
 $2x_1 + 8x_2 \ge 24$
 $x_1 \ge 0, x_2 \ge 0$.

- (a) Find the standard form (with no artificial variable).
- (b) Find all the bfs.
- (c) Draw the feasible region, find all the extreme points, and show how each bfs corresponds to an extreme point.

3. Consider the following LP

max
$$3x_1 + 2x_2$$

s.t. $2x_1 + x_2 = 100$
 $x_1 + x_2 \le 70$
 $x_1 \ge 40$
 $x_1 \ge 0, x_2 \ge 0$.

- (a) How many bs and bfs do we have?
- (b) Show how each bfs corresponds to an extreme point.

4. Consider the LP

$$z^* = \max 2x_1 + 3x_2$$

s.t. $x_1 + 2x_2 \le 6$
 $2x_1 + x_2 \le 8$
 $x_i \ge 0 \quad \forall i = 1, 2$

that has been solved in the lecture videos.

- (a) Write down the initial tableau.
- (b) Instead of entering x_1 , enter x_2 to complete one iteration. Write down the tableau after one iteration.
- (c) Continue iterating to find an optimal solution.
- (d) Depict the route you go through in the above process.

5. When running the simplex method, the *smallest index rule* is a rule to select entering and leaving variables: When multiple variables may enter/leave, choose the one with the smallest index, i.e., choose x_i rather than x_j if i < j. Use the simplex method with the smallest index rule to solve the following LP

$$z^* = \min 4x_1 + x_2$$

s.t. $2x_1 - x_2 \le 8$
 $-x_2 \le 5$
 $x_1 + x_2 \le 4$
 $x_1 \ge 0, x_2 \le 0$.

- (a) Find an optimal solution $x^* = (x_1^*, x_2^*)$ and the associated objective value z^* . Write down the complete process.
- (b) Depict the route you go through in the above process.

6. When you use the simplex method to solve a maximization problem, suppose you get a tableau

at the end of an iteration. Give conditions on the unknowns c, a_1 , a_2 , and a_3 to make the following statements true:

- (a) The current bfs is optimal.
- (b) The current bfs is suboptimal, and we need to do some more iterations to solve this problem.
- (c) The problem is unbounded.

7. Suppose that when we run the simplex method for a given linear program with a maximization objective function, a tableau we get is

Answer the following questions with brief explanations.

- (a) Is this LP unbounded? Why?
- (b) Are there multiple optimal solutions? If no, explain why; if yes, write down two optimal solutions.

8. Consider two LPs

Prove or disprove the following statements regarding the two LPs.

- (a) If \bar{x} is a feasible bfs to (P), then $(x,y)=(\bar{x},0)$ is an optimal bfs to (Q).
- (b) If $(x, y) = (\bar{x}, 0)$ is an optimal bfs to (Q), then \bar{x} is a feasible bfs to (P).
- (c) If in (P) we are maximizing $c^{T}x$, what should be an appropriate (Q) that has the above properties?

9. Consider the following LP

max
$$3x_1 + x_2$$

s.t. $2x_1 + x_2 = 100$
 $x_1 \ge 40$
 $x_1 \ge 0, x_2 \ge 0$.

- (a) Find the Phase-I LP and its initial tableau.
- (b) Solve the Phase-I LP with the smallest index rule for an initial bfs to the standard form of the original LP.
- (c) Find the Phase-II LP and its initial tableau.
- (d) Solve the Phase-II LP with the smallest index rule for an optimal solution to the original LP.
- (e) Visualize the search path.

10. Use the simplex method with the smallest index rule to solve

$$z^* = \min \quad 3x_2$$

s.t. $x_1 + 2x_2 \ge 6$
 $2x_1 + 3x_2 = 4$
 $x_i \ge 0 \quad \forall i = 1, 2.$

Visualize the search path.

- 11. In general, as we need to choose m out of n variables to be basic, we have at most $\binom{n}{m}$ bases.
 - (a) Is it possible to have fewer than $\binom{n}{m}$ bases? Why?
 - (b) Suppose that we have k bases, is it possible to have fewer than k distinct basic solutions? Why?
 - (c) Suppose that we have k distinct basic solution, is it possible to have fewer than k distinct basic feasible solution? Why?