EA-sindy

Alois D'uston, ald6fd

April 2, 2023

Model defenition:

Base Autoencoder Sindy begins with data matrixes $X, \dot{X} \in \mathbb{R}^{m \times D}$.

Each column $X_i \sim \mathcal{X}$. Derivatives \dot{X}_i in \dot{X} are computed numerically.

We fit model $\varphi^{-1}(\Theta(\varphi(x))\Xi)\approx \dot{x}$ using training data X,\dot{X} , where:

i.
$$\varphi: \mathbb{R}^D \to \mathbb{R}^d, \, \varphi^{-1}: \mathbb{R}^d \to \mathbb{R}^D$$
 are encoder decoder pair s.t $(\varphi^{-1} \circ \varphi)\big|_{\mathcal{X}} \approx I$

ii. $\Theta: \mathbb{R}^d \to \mathbb{R}^p$ evaluates function library (consisting of p funcs) on $\varphi(x)$.

iii. $\Xi \in \mathbb{R}^{d \times p}$ are linear coefficients associated to each term in $\Theta(\varphi(x))$.

We fit this model using gradient descent with loss function:

$$\mathcal{L}(\varphi, \varphi^{-1}, \Xi; x, \dot{x}) = \mathcal{L}_{\text{encode}}(\varphi, \varphi^{-1}; x) + \mathcal{L}_{\text{fit}}(\varphi, \varphi^{-1}, \Xi; x, \dot{x}) + \mathcal{L}_{\text{reg}}(\Xi)$$

 $\mathcal{L}_{\text{encode}}$ enforces that $(\varphi^{-1} \circ \varphi)|_{\mathcal{X}} \approx I$

$$\mathcal{L}_{\text{fit}}$$
 enforces that $\varphi^{-1}(\Theta(\varphi(x))\Xi) \approx \dot{x}$

 \mathcal{L}_{reg} promotes sparsity in coefficients Ξ . Usually use $\mathcal{L}_{reg}(\Xi) = \lambda_{reg} \|\Xi\|_1$

 L_1 regularization results in Ξ matrix where lots of coefficients are close to zero. Our prior assumption is that only a few coefficients are nonzero.

We use coefficient mask Λ to enforce coherence to this assumption.

At epoch
$$k$$
 of training we set $\Lambda_{ij}^{(k)} = \mathbb{1}\{(\Lambda^{(k-1)} \odot \Xi^{(k-1)})_{ij} \approx 0\}.$

In ensemble autoencoder sindy we split our training data X, \dot{X} into b bags $\{X^{(i)}, \dot{X}^{(i)}\}_{i=1}^b$ where $X^{(i)}, \dot{X}^{(i)} \in \mathbb{R}^{q \times D}$ are sampled from the training samples X, \dot{X} with replacement. We consider coefficient tensor $\Xi^{[1:b]} \in \mathbb{R}^{b \times d \times p}$, where $\Xi^{[1:b]}_{[i,:,:]} = \Xi^{(i)}$ corresponds to bag $X^{(i)}, \dot{X}^{(i)}$ of the data. In training, we fit model $\varphi^{-1}(\Theta(\varphi(x)) \sum_i \Xi^{(i)} \mathbb{1}\{x \in X^{(i)}\}) \approx \dot{x}$.

We do so via gradient descent using loss function:

$$\mathcal{L}(\varphi, \varphi^{-1}, \Xi^{[1:b]}; x, \dot{x}) = \mathcal{L}_{encode}(\varphi, \varphi^{-1}; x) + \mathcal{L}_{fit}(\varphi, \varphi^{-1}, \Xi^{[1:b]}; x, \dot{x}) + \mathcal{L}_{reg}(\Xi^{[1:b]})$$

 $\mathcal{L}_{\text{encode}}$ is unchanged, enforces that $(\varphi^{-1} \circ \varphi)|_{\mathcal{X}} \approx I$

 \mathcal{L}_{fit} enforces that $\varphi^{-1}(\Theta(\varphi(x))\sum_{i}\Xi^{(i)}\mathbb{1}\{x\in X^{(i)}\})\approx \dot{x}$.

 \mathcal{L}_{reg} promotes sparsity in the average of coefficients $\Xi^{(1)}, ... \Xi^{(n)}$

Ie it promotes sparsity in $\tilde{\Xi} = \frac{1}{b} \sum_{i} \Xi^{(i)}$. We use $\mathcal{L}_{\text{reg}}(\Xi^{[1:b]}) = \lambda_{\text{reg}} \|\frac{1}{b} \sum_{i} \Xi^{(i)}\|_{1}$

The final output of the model, used in testing, is the avg coefficient matrix $\tilde{\Xi} = \frac{1}{b} \sum_i \Xi^{(i)}$. We again use a coefficient mask Λ to enforce our prior assumption that only a few coefficients of $\tilde{\Xi}$ are nonzero. At epoch k of training we set $\Lambda^{(k)}_{ij} = \mathbb{1}\{\frac{1}{b}|\{h: (\Lambda^{(k-1)}\odot\Xi^{(h),(k-1)})_{ij}\approx 0\}| > p_{\text{tol}}\}$.

This procedure is known is stability selection. It works by finding all those coefficients Ξ_{ij} which aren't consistently activated (well separated from 0) across data bags $\{X^{(i)}, \dot{X}^{(i)}\}_{i=1}^b$, and setting these coefficients to 0.

Results:

Research directions:

Implementation details: