IT3051 – Fundamentals of Data Mining

Data Science

Faculty of Computing

Sri Lanka Institute of Information Technology

Practical 10

(01) Create the following data frame in R

Name	Age	Gender	Marks
Sam	23	Male	78
Kane	21	Male	58
Jane	24	Female	30
Anne	25	Female	85
Sammie	20	Female	90

- a) Remove the Primary Key column in the dataset.
- b) Change the categorical variables to factors.
- c) Find the average mark for a student.
- d) Add 5 marks for each student and find the average mark again.
- e) Change the Age of Jane (3rd Row) to 22.
- f) Create a new column for results such that,
 - a. If mark \geq 50 ---> Pass
 - b. If mark < 50 ---> Fail
- g) Get the overall summary of the data frame.
- h) Separate the data frame to two data frames based on Gender (df_Male & df_Female)
- i) Get statistical summary for each df_Female & df_Male data frames.

- (02) Import the Boston inbuilt dataset to the R environment and do the following tasks.
 - a) Fit a simple linear regression model for the response variable **medv** using **lstat** independent variable and save as **fit1**.
 - b) Fit a simple linear regression model for the response variable **medv** using **lstat** & **black** independent variables and save as **fit2**.
 - c) Fit a multiple linear regression model for the response variable **medv** using all other independent variables and save as **fit3**.
 - d) Fit a multiple linear regression model for the response variable **medv** using all other independent variables except **indus** variable and save as **fit4**.
 - e) Consider the **fit3** and get the following charts
 - a. Residuals VS Fitted Value
 - b. Normality plot of Standard Residuals
 - c. Standardized Residuals VS Fitted Value
 - d. Residuals VS Leverage
 - f) Check the Variance Inflation Factor (VIF) and discuss the multicollinearity among the independent variables.
 - g) Split the data into train & test such that 80% will be the training data.
 - a. Fit the full model to the train data and discuss the significance of variables.
 - b. Get the predictions to the test data.
 - c. Find the Mean Squared Error and then find the Root Mean Squared Error