N.T. M. Ngọc

Chương 6 Kiểm định giả thuyết thống kê

Nguyễn Thị Mộng Ngọc University of Science, VNU - HCM ngtmngoc@hcmus.edu.vn

XSTK

N.T. M. Ngọc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và đố thuyết H_1 Các loại sai lầm

Kiểm định gi thuyết -Trường hợp

Kiểm định giả thuyế cho kỳ vọng Kiểm định giả thuyế cho tỷ lệ

Kiểm định g thuyết -Trường hợp

Kiểm định giả thuyế so sánh hai trung bình -Trường hợp ha mẫu độc lập

Kiểm định giả thuy so sánh hai trung bình -Trường hợp h mẫu phụ thuộc

mau phụ thuộc Kiểm định giả thuyế so sánh hai tỷ lệ Kiểm định giả thuyế

Kiểm đinh giả thuyết thống kê

Ví du 1

Trong một báo cáo nói rằng: thu nhập bình quân của những người làm trong ngành thư viện ở Việt Nam là 7 triệu đồng một tháng thì ta có thể coi đó là một giả thuyết thống kê, giả thuyết này nói về một tham số (kỳ vọng) của biến ngẫu nhiên X biểu thị mức lương của những người làm trong ngành thư viện. Dựa vào số liệu của một mẫu điều tra về thu nhập và quy tắc kiểm định để đưa một kết luận là bác bỏ hay chấp nhận giả thuyết nói trên.

XSTK

N.T. M. Ngoc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và đồ thuyết H_1 Các loại sai lầm

Kiểm định gi thuyết -Trường hợp

Kiểm định giả thuyết cho kỳ vọng Kiểm định giả thuyết cho tỷ lệ

Kiểm định giá thuyết -Trường hợp

> so sánh hai trung bình -Trường hợp hai mẫu độc lập Kiểm định giả thuyết

mẫu phụ thuộc Kiểm định giả thu so sánh hai tỷ lệ Kiểm định giả thu

Kiểm định giả thuyết thống kê

Đinh nghĩa 1

Giả thuyết thống kê là những giả thuyết nói về các tham số, dạng quy luật phân phối, hoặc tính độc lập của các biến ngẫu nhiên.

Việc tìm ra kết luận bác bỏ hay không bác bỏ một giả thuyết gọi là **kiểm định giả thuyết thống kê**.

Ví dụ: Một nhà sản xuất cho rằng khối lượng trung bình của 1 gói mì Omachi là 75 gam. Để kiểm tra ý kiến này là đúng hay sai, chọn ngẫu nhiên một số gói mì Omachi để tiến hành kiểm tra, tính toán, ...

XSTK

N.T. M. Ngọc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và đối thuyết H_1 Các loại sai lầm

Kiểm định giả :huyết -Trường hợp

Kiểm định giả thuyế cho kỳ vọng Kiểm định giả thuyế cho tỷ lê

Kiếm định gi thuyết -Trường hợp hai mẫu

so sánh hai trung bình -Trường hợp h mẫu độc lập

Kiểm định giả thuy so sánh hai trung bình -Trường hợp h mẫu phu thuộc

Kiểm định giả thu so sánh hai tỷ lệ Kiểm định giả thu

Giả thuyết H_0 và đối thuyết H_1

Trong bài toán kiểm định giả thuyết,

- giả thuyết cần được kiểm định gọi là giả thuyết không (null hypothesis), kí hiệu H₀;
- mệnh đề đối lập với H₀ gọi là đối thuyết (alternative hypothesis), kí hiệu H₁.

Khi xây dựng giả thuyết,

- Khi xây dựng H₀, trong cấu trúc của H₀ luôn luôn có dấu "=", có thể là dấu "=" hoặc "<" hoặc ">".
- Khi xây dựng H₁, trong cấu trúc của H₁ không được có dấu "=", có thể là dấu "≠" hoặc "<" hoặc ">" tùy bài toán.

N.T. M. Ngọc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và đối thuyết H_1

Các loại sai lầm

Kiêm định gi thuyết -Trường hợp

Kiểm định giả thuyế cho kỳ vọng Kiểm định giả thuyế

Kiếm định gi thuyết -Trường hợp hai mẫu

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

so sánh hai trung bình -Trường hợp mẫu phụ thuộc

so sánh hai tỷ lệ Kiểm định giả th

Giả thuyết H_0 và đối thuyết H_1

Ví du 2

1. Gọi μ là độ thay đổi trung bình trong huyết áp của một bệnh nhân sau khi dùng thuốc. Bác sĩ điều trị cần quan tâm đến giả thuyết sau:

 $egin{cases} H_0: \mu=0 & ext{Không có ảnh hưởng của thuốc lên huyết áp của bệnh nhân} \ H_1: \mu
eq 0 & ext{Có ảnh hưởng của thuốc lên huyết áp của bệnh nhân} \end{cases}$

2. Một khách hàng quan tâm đến tỷ lệ sản phẩm kém chất lượng trong một lô hàng mua của một nhà cung cấp. Giả sử tỷ lệ sản phấm kém tối đa được phép là 5%. Khách hàng cần quan tâm đến giả thuyết sau:

 $\begin{cases} H_0: p \leq 0.05 & \text{Tỷ lệ sản phẩm kém ở mức chấp nhận được} \\ H_1: p > 0.05 & \text{Tỷ lệ sản phẩm kém cao hơn mức cho phép} \end{cases}$

XSTK

N.T. M. Ngoc

Các khái niện trong kiểm định giả thuyết thống kê

Giả thuyết H_0 và đối thuyết H_1

Các loại sai lầr Giá trị p_{value}

thuyết -Trường hợp một mẫu

Kiểm định giả thuyế cho kỳ vọng Kiểm định giả thuyế cho tử là

Kiểm định g thuyết -Trường hợp

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp ha mẫu độc lập

Kiểm định giả thuyế so sánh hai trung bình -Trường hợp h mẫu phụ thuộc

Kiểm định giả thuy so sánh hai tỷ lệ Kiểm định giả thuy

Cách đặt giả thuyết

Phân biệt

Kiểm định hai phía	Kiểm định 1 phía bên trái	Kiểm định phía bên phải
$H_0: \theta = \theta_0$ $H_1: \theta \neq \theta_0$	$H_0: \theta \ge \theta_0$ $H_1: \theta < \theta_0$	$H_0: \theta \leq \theta_0$ $H_1: \theta > \theta_0$
1 - \alpha \alpha 2 \\ - \zeta_{1-\alpha 2} \\ \ z_{1-\alpha 2} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$z_{\alpha} = -z_{1-\alpha}$	1 -α Z _{1-α}

XSTK

N.T. M. Ngoc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và đối thuyết H_1

Các loại sai lầm Giá tri p_{value}

Kiểm định gi thuyết -

Kiểm định giả thuyế cho kỳ vọng

Kiểm định giá thuyết -Trường hợp

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

Kiểm định giả thuyế so sánh hai trung bình -Trường hợp h mẫu phụ thuộc

Kiểm định giả thuyệ so sánh hai tỷ lệ Kiểm định giả thuyệ về tính độc lận

Cách đặt giả thuyết

Tổng quát, một bài toán kiểm định giả thuyết cho tham số θ sẽ có một trong 3 dang dưới đây (θ_0 là giá trị kiểm định đã biết):

Hai phía:

$$\begin{cases} H_0: \theta = \theta_0 \\ H_1: \theta \neq \theta_0 \end{cases}$$

Một phía bên trái:

$$\begin{cases} H_0: \theta \ge \theta_0 \\ H_1: \theta < \theta_0 \end{cases}$$

Một phía bên phải:

$$\begin{cases} H_0: \theta \le \theta_0 \\ H_1: \theta > \theta_0 \end{cases}$$

XSTK

N.T. M. Ngoc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và đối thuyết H_1

Các loại sai lấm Giá trị p_{value}

Kiểm định giá thuyết -Trường hợp một mẫu

Kiểm định giả thuyế cho kỳ vọng Kiểm định giả thuyế cho tỷ lê

Kiểm định gi thuyết -Trường hợp hai mẫu

so sánh hai trung bình -Trường hợp hai mẫu độc lập Kiểm định giả thuyết

mẫu phụ thuộc Kiểm định giả thu so sánh hai tỷ lệ Kiểm định giả thụ

Cách đặt giả thuyết

Ví dụ 3: Trưởng phòng quản lý chất lượng sản phẩm của một công ty sản xuất bột dinh dưỡng trẻ em cho rằng trọng lượng của mỗi gói bột là 450g. Để kiểm tra lời tuyên bố này, ta có thể đặt giả thuyết: $H_0: \theta = 450$ vs $H_1: \theta \neq 450$.

Ví dụ 4: Một nhà xản suất nước giải khát tuyên bố rằng chai chứa nước loại 2 lít chứa trung bình ít nhất là 67,6 ounce nước giải khát. Một mẫu các chai nước chứa loại 2 lít sẽ được chọn ra, và lượng chứa bên trong sẽ được đo lường để kiểm định phát biểu của nhà sản xuất. Trong trường hợp này, ta có thể đặt giả thuyết: $H_0: \mu \geq 67, 6$ vs $H_1: \mu < 67, 6$.

N.T. M. Ngọc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H₀ và đ

Các loại sai lầm

Kiểm định gi thuyết -

Kiểm định giả thuyế cho kỳ vọng Kiểm định giả thuyế

Kiểm định g thuyết -Trường hợp

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

Kiếm định giả thuy so sánh hai trung bình -Trường hợp h mẫu phụ thuộc

so sánh hai tỷ lệ Kiểm định giả thu về tính độc lập

Sai lầm loai I và sai lầm loai II

Khi kiểm định giả thuyết thống kê,vì chỉ dựa trên những thông tin tử mẫu đang xét để đưa kết luận nên chúng ta có thể mắc phải một trong 2 loại sai lầm sau:

- Sai lầm loại I: là sai lầm mắc phải khi ta bác bỏ giả thuyết H₀ trong khi thực tế thì giả thuyết H₀ đúng.
- Sai lầm loại II: là sai lầm mắc phải khi ta không bác bỏ giả thuyết H_0 trong khi thực tế thì giả thuyết sai.

XSTK

N.T. M. Ngọc

Các khái niện trong kiểm định giả thuyết thống kê

Giả thuyết H_0 và c thuyết H_1 Các loại sai lầm

Giá trị p_{value}

thuyết -Trường hợp một mẫu

Kiểm định giả thuy cho kỳ vọng Kiểm định giả thuy cho từ là

Kiểm định g thuyết -Trường hợp

Kiểm định giả thuyế so sánh hai trung bình -Trường hợp ha mẫu độc lập

Kiểm định giả thuyế so sánh hai trung bình -Trường hợp h mẫu phụ thuộc

Kiểm định giả thuy so sánh hai tỷ lệ Kiểm định giả thuy

Giá trị p_{value} hay $p_{\text{giá trị}}$

- $p_{giá\ tri}$ là giá trị xác suất dùng làm thước đo cho bằng chứng thu được từ mẫu chống lai giả thuyết H_0 .
- Giá trị $p_{giá trị}$ càng nhỏ càng cho thấy bằng chứng chống lại H_0 .
- $p_{giá tri}$ là mức ý nghĩa nhỏ nhất dùng để bác bỏ giả thuyết H_0 .

Quy tắc bác bỏ giả thuyết H_0 khi sử dụng $p_{giá tri}$:

- bác bỏ giả thuyết H_0 khi $p_{\text{giá tri}} < \alpha$;
- không đủ cơ sở bác bỏ giả thuyết H_0 khi $p_{
 m giá~tri} \geq \alpha$;

XSTK

N.T. M. Ngoc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và đố thuyết H_1 Các loại sai lầm

Kiểm định gi thuyết -Trường hợp

> Kiểm định giả thuyế cho kỳ vọng Kiểm định giả thuyế cho tỷ lệ

Kiểm định gi thuyết -Trường hợp

so sánh hai trung bình -Trường hợp hai mẫu độc lập Kiểm định giả thuyết

bình -Trường hợp h mẫu phụ thuộc Kiểm định giả thuy so sánh hai tỷ lệ Kiểm định giả thuy

Sai lầm loai I và sai lầm loai II

Thực tế Quyết định	H₀ đúng	H_0 sai
Không bác bỏ H_0	Không có sai lầm $(1-lpha)$	Sai lầm loại II eta
Bác bỏ <i>H</i> ₀	Sai lầm loại I $lpha$	Không có sai lầm $(1-eta)$

Trong đó,

- $P(\text{sai låm loại l xảy ra}) = \alpha$, α chính là mức ý nghĩa của kiểm đinh và α thường được chon trong khoảng từ 1% đến 10%.
- $P(\text{sai lằm loai II xảy ra}) = \beta$.
- $(1-\beta)$ là độ mạnh của kiểm định .

XSTK

N.T. M. Ngọc

Các khái niệm trong kiểm định giả thuyết thống kê

Giả thuyết H_0 và thuyết H_1 Các loại sai lầm Giá trị p_{value}

Kiếm định giả huyết -Frường hợp

Kiểm định giả thuyết cho kỳ vọng Kiểm định giả thuyết cho tỷ lê

Kiểm định giả thuyết -Trường hợp

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

binh - I rương hợp h mẫu phụ thuộc Kiểm định giả thuy so sánh hai tỷ lệ

Ví dụ tính $p_{\rm giá\ trị}$

Phương pháp $p_{giá\ trị}$ sử dụng giá trị của đại lượng thống kê kiểm định (z hoặc t) để tính một giá trị xác suất gọi là $p_{giá\ tri}$ (hay giá trị p).

Trong kiểm định 1 phía bên phải, nếu giá trị thống kê của kiểm định z=1.5 thì $p_{\rm giá\ tri}=1-\Phi(z)=1-\Phi(1.5)=1-0,9332=0,0668.$

N.T. M. Ngoc

Giá trị p_{value}

Kiểm định giả thuyế so sánh hai trung bình -Trường hợp hai mẫu độc lập

Kiểm định giả thuyế

Ví dụ tính p_{giá tri}

Trong kiểm đinh hai phía, nếu giá tri thống kê của kiểm đinh z = 1.5 th

$$p_{\text{giá tr}} = 2(1 - \Phi(|z|)) = 2(1 - \Phi(1.5)) = 2(1 - 0.9332) = 0.1336.$$

XSTK

N.T. M. Ngoc

Kiểm định giả thuyết cho kỳ vọng

mẫu độc lập

Kiểm đinh giả thuyết về so sánh kỳ vong với 1 số

- Trường hợp biết phương sai,
- Trường hợp không biết phương sai, mẫu lớn
- Trường hợp không biết phương sai, mẫu nhỏ.

XSTK

N.T. M. Ngoc

Giá trị p_{value}

so sánh hai trung bình -Trường hợp hai mẫu độc lập

Các bước thực hiện trong một bài toán kiểm đinh giả thuyết

- B1: Thiết lập giả thuyết H_0 và đối thuyết H_1 .
- B2: Xác định tiêu chuẩn kiểm định: tính giá trị thống kê của kiểm đinh nhằm đánh giá dữ liêu mẫu có " thích hợp" với giả thuyết H_0 hay không.
- B3: Chon mức ý nghĩa α , và xác đinh miền bác bỏ giả thuyết H_0 . Nếu giá tri kiểm đinh nằm trong miền này thì giả thuyết H_0 sẽ bị bác bỏ với mứ ý nghĩa α .
- B4: Quyết đinh: rút ra kết luân về mặt thống kê: ở mức ý nghĩa α nào đó, bác bỏ hay không đủ cơ sở để bác bỏ gia thuyết H_0 .

Sau đó, rút kết luân cuối cùng về nội dung bài toán, nhằm trả lời một cách rõ ràng câu hỏi bài toán đặt ra.

XSTK

N.T. M. Ngoc

Kiểm định giả thuyết cho kỳ vọng

mẫu độc lập

Kiểm đinh giả thuyết về so sánh kỳ vong với 1 số

TH 1: biết σ^2

• Các giả đinh:

- Mẫu ngẫu nhiên X_1, \ldots, X_n được chon từ tổng thể có phân phối chuẩn $\mathcal{N}(\mu, \sigma^2)$ với kỳ vong μ chưa biết.
- Phương sai σ^2 đã biết.
- Cho trước giá tri μ_0 , cần so sánh kỳ vong μ với μ_0 .

• Bài toán kiểm đinh có 3 dang sau:

Hãy kiểm đinh một trong ba giả thuyết sau:

(a)
$$\begin{cases} H_0 : \mu = \mu_0 \\ H_1 : \mu \neq \mu_0 \end{cases}$$

$$(b) \begin{cases} H_0 : \mu = \mu \\ H_1 : \mu > \mu \end{cases}$$

(a)
$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases}$$
 (b)
$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu > \mu_0 \end{cases}$$
 (c)
$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu < \mu_0 \end{cases}$$

với mức ý nghĩa α cho trước.

N.T. M. Ngọc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và ở thuyết H_1 Các loại sai lầm Giá trị p_{value}

Kiêm định giá thuyết -Trường hợp một mẫu

Kiểm định giả thuyết cho kỳ vọng

Kiểm định giả thuy cho tỷ lệ

Kiểm định gi thuyết -Trường hợp hai mẫu

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

so sánh hai trung bình -Trường hợp hạ mẫu phụ thuộc Kiểm định giả thuyế

so sánh hai tỷ lệ

Kiểm định giả thuyế

về tính độc lập

TH 1: biết σ^2

Các bước kiểm định:

- B1: Phát biểu giả thuyết H_0 và đối thuyết H_1
- B2: Xác định tiêu chuẩn kiểm định: Chon thống kê

$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$

làm tiêu chuẩn kiểm định. Nếu giả thuyết H_0 đúng thì $Z \sim \mathcal{N}(0,1)$.

Từ mẫu thực nghiệm, tính giá tri thống kê kiểm đinh:

$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$

XSTK

N.T. M. Ngoc

Các khái niện trong kiểm định giả thuyết thống kê

Giả thuyết H_0 và c thuyết H_1 Các loại sai lầm

Kiểm định g thuyết -Trường hợp

Kiểm định giả thuyết cho kỳ vọng Kiểm định giả thuyết

cho tỷ lệ Kiểm định gi

Trường hợp hai mẫu Kiểm định giả thuyế

mẫu độc lập

Kiểm định giả thuy
so sánh hai trung
bình -Trường hợp h
mẫu nhụ thuộc

nau phụ thuọc Kiểm định giả thuyết o sánh hai tỷ lệ Kiểm định giả thuyết

TH 1: biết σ^2

Ví dụ 1: Một hãng sản xuất vỏ xe quảng cáo rằng sản phẩm loại X của hãng có thể sử dụng không dưới 100 ngàn km, độ lệch chuẩn bằng 12 ngàn km. Một công ty vận tải mua 64 vỏ xe loại X, sau một thời gian sử dụng kết quả cho thấy độ bền trung bình là 98,5 ngàn km. Dựa vào thông tin này, hãy kết luận về lời quảng cáo của công ty, với mức ý nghĩa $\alpha=5\%$.

XSTK

N.T. M. Ngọc

Các khái niệm trong kiểm định giả thuyết thống

> Giả thuyết H_0 và đố thuyết H_1 Các loại sai lầm

Kiểm định gi thuyết -Trường hợp

Kiểm định giả thuyết cho kỳ vọng

Kiểm định gi thuyết -Trường hợp

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

Kiểm định giả thuyế so sánh hai trung bình -Trường hợp hi mẫu phu thuôc

Kiểm định giả thuy so sánh hai tỷ lệ Kiểm định giả thuy về tính độc lập

TH 1: biết σ^2

Các bước kiểm định (tt):

B3: Với mức ý nghĩa α, xác định miền bác bỏ: Với mức ý nghĩa α và dựa vào đối thuyết H₁, xác định miền bác bỏ hoặc tính p-giá trị tương ứng:

Trường hợp	rường hợp bác bỏ H_0 nếu	
(a) $H_1 : \mu \neq \mu_0$	$ z >z_{1-\alpha/2}$	$2(1 - \Phi(z))$
(b) $H_1 : \mu > \mu_0$	$z>z_{1-\alpha}$	$1 - \Phi(z)$
(c) $H_1: \mu < \mu_0$	$z < -z_{1-\alpha}$	Φ(z)

Trong đó, $z_{1-?}$ được tìm từ bảng phân phối Gauss.

- B4 Kết luân:
 - Nếu bác bỏ giả thuyết H_0 , ta kết luận H_1 đúng với $(1-\alpha)100\%$ đô tin cây.
 - Ngược lại, ta kết luận chưa đủ cơ sở để bác bỏ giả thuyết H_0 với mức ý nghĩa α .

XSTK

N.T. M. Ngoc

Các khái niệm trong kiểm định giả thuyết thống kê

Giả thuyết H_0 và đị thuyết H_1 Các loại sai lầm

Kiểm định giả thuyết -Trường hợp một mẫu

Kiểm định giả thuyết cho kỳ vọng Kiểm định giả thuyết

Kiểm định gi thuyết -Trường hợp

so sánh hai trung bình -Trường hợp hai mẫu độc lập Kiểm định giả thuyết

mẫu phụ thuộc

Kiểm định giả thu
so sánh hai tỷ lệ

Kiểm định giả thu
về tính độc lập

TH 1: biết σ^2

Giải VD1: Theo đề ta có: n=64>30, $\sigma=12$, $\mu_0=100$, $\bar{x}=98,5$, $\alpha=0,05$. Gọi μ là độ bền trung bình của vỏ xe loại X ở hãng sản xuất này.

•
$$GT$$
: $\begin{cases} H_0 : \mu \geq 100 \\ H_1 : \mu < 100 \end{cases}$

• Giá trị thống kê của kiểm định là : $z=\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}}=\frac{98,5-100}{12/\sqrt{64}}=-1.$

- Với mức ý nghĩa $\alpha = 0,05$, tra bảng phân phối Gauss ta được $z_{\alpha} = -z_{1-\alpha} = z_{0.05} = -z_{0.95} = -1,645$.
- Ta thấy, $z=-1>-1,645=z_{\alpha}$ nên ta không đủ cơ sở bác bỏ giả thuyết H_0 với mức ý nghĩa $\alpha=0,05$.
- Ta có thể kết luận rằng tuổi thọ trung bình của vỏ xe loại X này không thấp hơn 100 ngàn km với mức ý nghĩa 5%.
 Như vây, lời quảng cáo của công ty là có thể tin.

N.T. M. Ngoc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và thuyết H_1 Các loại sai lầm

Kiểm định gi thuyết -Trường hợp một mẫu

Kiểm định giả thuyết cho kỳ vọng Kiểm định giả thuyết

Kiểm định gi thuyết -Trường hợp

Kiểm định giả thuyế so sánh hai trung bình -Trường hợp ha mẫu độc lập Kiểm định giả thuyế

Kiểm định gia thu so sánh hai tỷ lệ Kiểm định giả thu về tính độc lập

TH 1: biết σ^2

Ví dụ 2: Dây chuyền sản xuất kem đánh răng P/S được thiết kế để đóng hộp những tuýt kem có trọng lượng trung bình là 6 oz (1 oz = 28g). Một mẫu gồm 30 tuýt kem được chọn ngẫu nhiên để kiểm tra định kỳ. Bộ phận điều khiển dây chuyền phải đảm bảo để trọng lượng trung bình mỗi tuýt kem là 6 oz; nếu nhiều hơn hoặc ít hơn, dây chuyền phải được điều chỉnh lại. Giả sử trung bình mẫu của 30 tuýt kem là 6.1 oz và độ lệch tiêu chuẩn của tổng thể $\sigma=0.2$ oz.

Thực hiện kiểm định giả thuyết với mức ý nghĩa 3% để xác đinh xem dây chuyền sản xuất có vân hành tốt hay không?

XSTK

N.T. M. Ngoc

Các khái niện trong kiểm định giả thuyết thống kê

Giả thuyết H_0 và đồ thuyết H_1 Các loại sai lầm
Giá trị $\rho_{\rm value}$

Kiểm định g thuyết -Trường hợp một mẫu

Kiểm định giả thuyết cho kỳ vọng Kiểm định giả thuyết

Kiểm định g thuyết -Trường hợp

Kiểm định giả thuyế so sánh hai trung bình -Trường hợp ha mẫu độc lập

Kiểm định giả thuy so sánh hai trung bình -Trường hợp h mẫu nhụ thuộc

Kiểm định giả thuyế so sánh hai tỷ lệ Kiểm định giả thuyế

TH 1: biết σ^2

Ví dụ 3: **Metro EMS:** Một bệnh viện tại trung tâm thành phố cung cấp dịch vụ cấp cứu tại nhà. Với khoảng 20 xe cấp cứu, mục tiêu của trung tâm là cung cấp dịch vụ cấp cứu trong khoảng thời gian trung bình là 12 phút sau khi nhận được điện thoại yêu cầu. Một mẫu ngẫu nhiên gồm thời gian đáp ứng khi có yêu cầu của 40 ca cấp cứu được chọn. Trung bình mẫu là 13.25 phút. Biết rằng độ lệch tiêu chuẩn của tổng thể là $\sigma=3.2$ phút. Giám đốc EMS muốn thực hiện một kiểm định, với mức ý nghĩa 5%, để xác định xem liệu thời gian một ca cấp cứu có bé hơn hoặc bằng 12 phút hay không?

XSTK

N.T. M. Ngoc

Các khái niệm trong kiểm định giả thuyết thống

> Giả thuyết H₀ và đị thuyết H₁ Các loại sai lầm

Kiểm định giả thuyết -Trường hợp

Kiểm định giả thuyết cho kỳ vọng

Kiểm định giả thuy cho tỷ lệ

Kiểm định gi thuyết -Trường hợp

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

bình -Trường hợp h mẫu phụ thuộc Kiểm định giả thuyê so sánh hai tỷ lệ Kiểm định giả thuyê

TH 1: biết σ^2

TH 1: biết σ^2

Giải VD2: Gọi X là trọng lượng của một tuýt kem đánh răng, giả sử $X \sim \mathcal{N}(\mu, 0.2^2)$.

•
$$GT: \begin{cases} H_0: \mu = 6 \\ H_1: \mu \neq 6 \end{cases}$$

- Giá trị thống kê của kiểm định là : $z=\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}}=\frac{6.1-6.0}{0.2/\sqrt{30}}=2.74.$
- Với mức ý nghĩa $\alpha=0.03$, tra bảng phân phối Gauss ta được $z_{1-\alpha/2}=z_{0.985}=2.17$.
- Ta thấy, $|z| = 2.74 > 2.17 = z_{1-\alpha/2}$ nên ta bác bỏ giả thuyết H_0 với mức ý nghĩa $\alpha = 0.03$.
- Ta có thể kết luận với 97% độ tin cậy rằng trọng lượng trung bình mỗi tuýt kem không bằng 6 oz.

• Cách khác: sử dụng p-giá trị

p-giá trị = $2[1 - \Phi(|z|)] = 2[1 - \Phi(2.74)] = 2[1 - 0.9969] = 0.0062$. Với $\alpha = 0.03$, ta có p-giá trị = $0.0062 < 0.03 = \alpha$ nên bác bỏ H_0 . Ta kết luận với 97% độ tin cậy rằng trọng lượng trung bình mỗi tuýt kem không bằng 6 oz.

XSTK

N.T. M. Ngoc

Các khái niệm trong kiểm định giả thuyết thống kê

Giả thuyết H_0 và để thuyết H_1 Các loại sai lầm

Kiểm định giả thuyết -Trường hợp một mẫu

Kiểm định giả thuyết cho kỳ vọng Kiểm định giả thuyết

Kiêm định g thuyết -Trường hợp

so sánh hai trung bình -Trường hợp hai mẫu độc lập Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu phụ thuộc Kiểm định giả thuyết

Kiểm định giả thuyết

Giải VD3:

cần thay đối.

- GT: H_0 : $\mu = 12$: Thời gian đáp ứng của dịch vụ cấp cứu đạt yêu cầu, không cần phải thay đổi. H_1 : $\mu > 12$: Thời gian đáp ứng của dịch vụ không đạt yêu cầu,
- Giá trị thống kê của kiểm định là : $z = \frac{\bar{x}-12}{\sigma/\sqrt{n}} = \frac{13.25-12}{3.2/\sqrt{40}} = 2.47$.
- Với mức ý nghĩa $\alpha = 0.05$, tra bảng phân phối Gauss ta được $z_{1-\alpha} = z_{0.95} = 1.645$.
- Ta thấy, $z=2.47>1.645=z_{0.95}$ nên bác bỏ H_0 với $\alpha=0.05$. Ta kết luận rằng với 95% độ tin cậy, Mertro EMS không đáp ứng được mục tiêu thời gian phục vụ khách hàng từ 12 phút trở xuống.

• Cách khác: sử dung p-giá tri

p-giá trị = $1-\Phi(z)=1-\Phi(2.47)=1-0.9932=0.0068$. Với $\alpha=0.05$, ta có p-giá trị = $0.0068<0.05=\alpha$ nên bác bỏ H_0 . Ta kết luận với 95% độ tin cậy rằng Metro EMS không đáp ứng được mục tiêu thời gian phục vụ khách hàng từ 12 phút trở xuống.

N.T. M. Ngọc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và thuyết H_1 Các loại sai lầm

Kiểm định giá thuyết -Trường hợp một mẫu

Kiểm định giả thuyết cho kỳ vọng

Kiểm định giả thuy cho tỷ lệ

Kiểm định g thuyết -Trường hợp hai mẫu

Kiểm định giả thuyế so sánh hai trung bình -Trường hợp h mẫu độc lập

Kiếm định giả thu so sánh hai trung bình -Trường hợp mẫu phụ thuộc

so sánh hai tỷ lệ Kiểm định giả thư về tính độc lập

TH 1: biết σ^2

Ví dụ 4: Trong năm trước trọng lượng trung bình trước khi xuất chuồng của bò ở một trại chăn nuôi là 380 kg. Năm nay người ta áp dụng thử một chế độ chăn nuôi mới với hi vọng là bò sẽ tăng trọng nhanh hơn. Sau một thời gian áp dụng thử người ta lấy ngẫu nhiên 50 con bò trước khi xuất chuồng đem cân và tính được trọng lượng trung bình của chúng là 390 kg. Với mức ý nghĩa $\alpha=0.01$ có thể cho rằng trọng lượng trung bình của bò trước khi xuất chuồng đã tăng lên hay không? Giả thiết trọng lượng của bò là BNN có phân phối chuẩn với độ lệch chuẩn là 35.2 kg.

XSTK

N.T. M. Ngoc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và đ thuyết H_1 Các loại sai lầm Giá trị p_{value}

Kiêm định g thuyết -Trường hợp một mẫu

Kiểm định giả thuyết cho kỳ vọng Kiểm định giả thuyết

Kiểm định giả thuy cho tỷ lệ

Kiểm định g thuyết -Trường hợp hai mẫu

Kiểm định giả thuyế so sánh hai trung bình -Trường hợp ha mẫu độc lập Kiểm định giả thuyế

Kiem định gia thuy so sánh hai trung bình -Trường hợp h mẫu phụ thuộc

Kiểm định giả thuyế: so sánh hai tỷ lệ Kiểm định giả thuyế: về tính độc lận

TH 2: không biết σ^2 , $n \ge 30$

• **Ví dụ:** Trạm cảnh sát giao thông trên đường cao tốc sẽ thực hiện việc bắn tốc độ định kỳ tại các địa điểm khác nhau để kiểm tra tốc độ của các phương tiện giao thông. Một mẫu về tốc độ của các loại xe được chon để thực hiện kiểm định giả thuyết sau

$$\begin{cases}
H_0: \mu = 65 \\
H_1: \mu > 65
\end{cases}$$

Những vị trí mà bác bỏ H_0 là những vị trí tốt nhất được chọn để đặt radar kiểm soát tốc độ.

Tại địa điểm F, một mẫu gồm tốc độ của 64 phương tiện được bắn tốc độ ngẫu nhiên có trung bình là 66.2 mph và độ lệch tiêu chuẩn 4.2 mph. Sử dung $\alpha=5\%$ để kiểm đinh giả thuyết.

XSTK

N.T. M. Ngọc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và để thuyết H_1 Các loại sai lầm
Giá trị P_{nobin}

Kiểm định giá thuyết -Trường hợp

Kiểm định giả thuyết cho kỳ vọng

Kiểm định giả thuy

Kiểm định gi thuyết -Trường hợp

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

so sánh hai trung bình -Trường hợp ha mẫu phụ thuộc Kiểm định giả thuyết

Kiểm định giả thuyết về so sánh kỳ vong với 1 số

TH 2: không biết σ^2 , n > 30

• Các giả định:

- Mẫu ngẫu nhiên X₁,..., X_n được chọn từ tổng thể có kỳ vọng μ và phương sai σ² không biết.
- Sử dung ước lương không chệch S thay cho σ .
- Cỡ mẫu lớn: n > 30.
- Khi cỡ mẫu lớn biến ngẫu nhiên

$$Z = \frac{\bar{X} - \mu_0}{S / \sqrt{n}}$$

sẽ hội tụ về phân phối chuẩn hóa $Z \sim \mathcal{N}(0,1)$. Khi đó, với mức ý nghĩa α , miền bác bỏ hoặc p-giá trị sẽ được tính tương tự như trường hợp biết phương sai, chỉ thay thế σ bằng s khi tính giá trị thống kê kiểm định.

XSTK

N.T. M. Ngoc

Các khái niệm trong kiểm định giả thuyết thống kê

Siả thuyết H₀ và đối huyết H₁ Các loại sai lầm Siá trị p_{nobe}

Kiểm định gi thuyết -Trường hợp

Kiểm định giả thuyết cho kỳ vọng Kiểm định giả thuyết

Kiểm định gi thuyết -Trường hợp

so sánh hai trung bình -Trường hợp hai mẫu độc lập Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu phụ thuộc

mẫu phụ thuộc Kiểm định giả thu so sánh hai tỷ lệ Kiểm định giả thu

TH 2: không biết σ^2 , $n \ge 30$

Giải VD:

•
$$GT$$
: $\begin{cases} H_0: \mu = 65 \\ H_1: \mu > 65 \end{cases}$

- Giá trị thống kê của kiểm định là : Vì σ^2 không biết và cỡ mẫu n = 64 (lớn) nên $z=\frac{\bar{x}-\mu_0}{s/\sqrt{n}}=\frac{66.2-65}{4.2/\sqrt{64}}=2.286$.
- Với mức ý nghĩa $\alpha=0.05$, tra bảng phân phối Gauss ta được $z_{1-\alpha}=z_{0.95}=1.645$.
- Ta thấy, z=2.286>1.645 nên ta bác bỏ giả thuyết H_0 với mức ý nghĩa $\alpha=0.05$.
- Ta có thể kết luận với 95% độ tin cậy rằng tốc độ trung bình tại địa điểm F lớn hơn 65 mph. Địa điểm F là địa điểm tốt để đặt radar kiểm soát tốc đô.

N.T. M. Ngoc

Kiểm định giả thuyết cho kỳ vọng

Trường hợp

so sánh hai trung bình -Trường hợp h mẫu độc lập

TH 2: không biết σ^2 , n > 30

Ví du: Môt nghiên cứu được thực hiện để xác định mức đô hài lòng của khách hàng sau khi công ty điện thoai thay đổi, cải tiến 1 số dịch vu khách hàng. Trước khi thay đối, mức đô hài lòng của khách hàng tính trung bình là 77, theo thang điểm từ 0 dên 100. 350 khách hàng được chon ngẫu nhiên để gửi bảng điều tra xin ý kiến sau khi các thay đổi được thực hiện, mức đô hài lòng trung bình tình được là 84, với đô lệch chuẩn là 28. Với mức ý nghĩa $\alpha = 5\%$, có thể kết luân khách hàng đã được làm hài lòng ở mức đô cao hơn được không?

XSTK

N.T. M. Ngọc

Kiểm định giả thuyết cho kỳ vọng

mẫu độc lập

TH 2: không biết σ^2 , n > 30

Ví du khác:

Đo đường kính của 36 chi tiết máy ta được bảng số liệu sau:

Độ dài đường kính	10.10	10.12	10.20	10.25	10.30
Số chi tiết	3	15	14	2	2

Với mức ý nghĩa $\alpha = 0.05$ hãy cho kết luận về ý kiến: "Trung bình đường kính là 10.20"

XSTK

N.T. M. Ngọc

Kiểm định giả thuyết cho kỳ vọng

so sánh hai trung bình -Trường hợp hai mẫu độc lập

TH 2: không biết σ^2 , n > 30

Giải: Theo đề ta có: n = 350 > 30, $\mu_0 = 77$, $\bar{x} = 84$, s = 28 và $\alpha = 0,05$. Rõ ràng bài toán rơi vào trường hợp 2. Gọi μ là mức đô hài lòng trung bình của khách hàng ở công ty điện thoại sau khi thay đối.

- *GT*: H_0 : μ < 77 vs H_1 : μ > 77
- Giá tri thống kê của kiểm đinh là : $z = \frac{\bar{x} - \mu_0}{s / \sqrt{n}} = \frac{84 - 77}{28 / \sqrt{350}} = 4,677.$
- Với mức ý nghĩa $\alpha = 0.05$, tra bảng phân phối chuẩn hóa $\mathcal{N}(0,1)$ ta được $z_{1-\alpha} = z_{0.95} = 1,645$.
- Ta thấy, $z = 4,677 > 1,645 = z_{1-\alpha}$ nên ta bác bỏ giả thuyết H_0 với mức ý nghĩa $\alpha = 0,05$.
- Như vây, với mức ý nghĩa 5%, ta có thể kết luân rằng với các thay đổi, cải tiến của công ty điện thoại khách hàng đẫ được thỏa mãn, hài lòng ở mức đô cao hơn so với trước.

XSTK

N.T. M. Ngọc

Kiểm định giả thuyết cho kỳ vọng

mẫu độc lập

Kiểm đinh giả thuyết về so sánh kỳ vong với 1 số

TH 3: không biết σ^2 , n < 30

• Các giả định:

- Mẫu ngẫu nhiên X₁,..., X_n được chon từ tổng thể có phân phối chuẩn $\mathcal{N}(\mu, \sigma^2)$ với kỳ vong μ và phương sai σ^2 không biết.
- Sử dụng ước lương S thay cho σ .
- Cỡ mẫu nhỏ: n < 30.
- Bài toán kiểm đinh có 3 trường hợp:

(a)
$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases}$$
 (b)
$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu > \mu_0 \end{cases}$$
 (c)
$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu < \mu_0 \end{cases}$$

(c)
$$\begin{cases} H_0 : \mu = \mu_0 \\ H_1 : \mu < \mu_0 \end{cases}$$

với mức ý nghĩa α cho trước.

N.T. M. Ngọc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và thuyết H_1 Các loại sai lầm
Giá trị p_{value}

Kiêm định giá thuyết -Trường hợp một mẫu

Kiểm định giả thuyết cho kỳ vong

Kiểm định giả thuy cho tỷ lệ

Kiểm định g thuyết -Trường hợp hai mẫu

Kiệm định giả thuyết so sánh hai trung bình -Trường hợp ha mẫu độc lập Kiểm định giả thuyết

Kiểm định giả thuyế so sánh hai tỷ lệ Kiểm định giả thuyế và tính độc lận

TH 3: không biết σ^2 , n < 30

Các bước kiểm định:

- B1: Phát biểu giả thuyết H_0 và đối thuyết H_1
- B2: Xác định tiêu chuẩn kiểm định: Chon thống kê

$$T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}}$$

làm tiêu chuẩn kiểm định.

Nếu giả thuyết H_0 đúng thì T tuân theo phân phối Student với bâc tư do n-1.

Từ mẫu thực nghiêm, tính giá tri thống kê kiểm đinh:

$$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$

XSTK

N.T. M. Ngoc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và đ thuyết H_1 Các loại sai lầm

Kiểm định g thuyết -Trường hợp một mẫu

Kiểm định giả thuyết cho kỳ vọng Kiểm định giả thuyết

cho tỷ lệ

Kiểm định gi

thuyết -Trường hợp hai mẫu

Kiểm định giả thuyế so sánh hai trung bình -Trường hợp h mẫu độc lập

Kiểm định gia thuyế so sánh hai trung bình -Trường hợp ha mẫu phụ thuộc

Kiểm định giả thuyết o sánh hai tỷ lệ Kiểm định giả thuyết

TH 3: không biết σ^2 , n < 30

Ví dụ:

Một loại đèn chiếu sáng được nhà sản xuất cho biết có tuổi thọ trung bình thấp nhất là 65 giờ. Kết quả kiểm tra từ mẫu ngẫu nhiên 21 bóng đèn cho thấy tuổi thọ trung bình là 62,5 giờ, với độ lệch chuẩn là 3. Với $\alpha=0,01$, có thể kết luận gì về lời tuyên bố của nhà sản xuất?

XSTK

N.T. M. Ngoc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và đố thuyết H_1 Các loại sai lầm

Kiểm định giá thuyết -Trường hợp

Kiểm định giả thuyết cho kỳ vọng

Kiểm định giả thuyế

Kiểm định gi thuyết -Trường hợp

so sánh hai trung bình -Trưởng hợp hai mẫu độc lập Kiểm định giả thuyết so sánh hai trung bình -Trưởng hợp hai mẫu phụ thuộc Kiểm định giả thuyết so sánh hai tỷ lệ

TH 3: không biết σ^2 , n < 30

Các bước kiểm định (tt):

B3: Với mức ý nghĩa α, xác định miền bác bỏ: Với mức ý nghĩa α và dựa vào đối thuyết H₁, xác định miền bác bỏ hoặc tính p-giá trị tương ứng:

Trường hợp	bác bỏ H_0 nếu	<i>p</i> -giá trị	
(a) $H_1 : \mu \neq \mu_0$	$ t > t_{1-lpha/2}^{(n-1)}$	$2\mathbb{P}(T_{(n-1)}\geq t)$	
(b) $H_1: \mu > \mu_0$	$t > t_{1-\alpha}^{(n-1)}$	$\mathbb{P}(T_{(n_1)} \geq t)$	
(c) $H_1: \mu < \mu_0$	$t<-t_{1-\alpha}^{(n-1)}$	$\mathbb{P}(T_{(n-1)} \leq t)$	

Trong đó,

- $T_{(n-1)}$ là biến ngẫu nhiên tuân theo phân phối Student với bậc tự do (n-1);
- $t_{1-2}^{(n-1)}$ có được bằng cách tra bảng phân phối Student.
- B4 Kết luân:

XSTK

N.T. M. Ngoc

Các khái niệm trong kiểm định giả thuyết thống kê

Giả thuyết H_0 và đổ thuyết H_1 Các loại sai lầm Giá trị $p_{\rm value}$

Kiểm định gi thuyết -Trường hợp

Kiểm định giả thuyết cho kỳ vọng Kiểm định giả thuyết

Kiểm định giả thuyết -Trường hợp

mẫu độc lập Kiểm định giả thuy so sánh hai trung bình -Trường hợp h mẫu phụ thuộc Kiểm định giả thuy

so sánh hai trung bình -Trường hợp hai TH 3: không biết σ^2 , n < 30

Giải : Theo đề ta có: n=21<30, $\mu_0=65$, $\bar{x}=62,5$, s=3, $\alpha=0,01$. Rỗ ràng bài toán rơi vào trường hợp 3. Gọi μ là tuổi thọ trung bình của loại đèn này.

- *GT*: H_0 : $\mu \ge 65$ vs H_1 : $\mu < 65$
- Giá trị thống kê của kiểm định là : $t = \frac{\bar{x} \mu_0}{s/\sqrt{n}} = \frac{62.5 65}{3/\sqrt{21}} = -3,82.$
- Với mức ý nghĩa $\alpha = 0,01$, tra bảng phân phối Student ta được $t_{\alpha}^{n-1} = t_{0,01}^{20} = -t_{0,00}^{20} = -2,528$.
- Ta thấy, $t=-3,82<-2,528=t_{\alpha}^{n-1}$ nên ta bác bỏ giả thuyết H_0 với mức ý nghĩa $\alpha=0,01$.
- Như vậy, ta có thể kết luận rằng tuổi thọ trung bình của loại đèn này là thấp hơn 65 giờ với mức ý nghĩa $\alpha = 0,01$.

N.T. M. Ngọc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và đ thuyết H_1

Kiểm định gi thuyết -

Một mau Kiểm định giả thuyết

cho kỳ vọng Kiểm định giả thuy cho tỷ lệ

Kiểm định g thuyết -Trường hợp

Kiểm định giả thuy so sánh hai trung bình -Trường hợp h mẫu độc lập

Kiểm định giả thuyế so sánh hai trung bình -Trường hợp h mẫu phụ thuộc

so sánh hai tỷ lệ Kiểm định giả thi về tính độc lập

TH 3: không biết σ^2 , n < 30

Ví dụ

Cho 8 kết quả đo đạc về một đại lượng bởi cùng một máy đo không có sai lầm hệ thống:

369, 378, 315, 420, 385, 401, 372, 383

Với mức ý nghĩa $\alpha=0.05$, hãy cho kết luận về ý kiến: "Giá trị trung bình là 380". Biết rằng đại lượng được đo có phân phối chuẩn.

XSTK

N.T. M. Ngọc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và đồ thuyết H_1

Kiểm định g thuyết -Trường hợp

Kiểm định giả thuyết cho kỳ vọng Kiểm định giả thuyết

Kiểm định g thuyết -Trường hợp

hai mâu Kiểm định giả thư so sánh hai trung bình -Trường hợp mẫu độc lập

Kiểm định giả thuy so sánh hai trung bình -Trường hợp mẫu phụ thuộc

Kiểm định giả thuyế so sánh hai tỷ lệ Kiểm định giả thuyế và tính độc lận

Kiểm định giả thuyết cho tỷ lệ p

• Quan sát sự xuất hiện của biến cố "phần tử mang đặc tính A" trong n phép thử độc lập. Gọi Y là số lần xuất hiện biến cố trên thì $Y \sim B(n,p)$. Và

$$\hat{P} = \frac{Y}{n}$$

là một ước lượng không chệch cho p.

• Chọn thống kê

$$Z = \frac{\hat{P} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$$

làm tiêu chuẩn kiểm định. Nếu H_0 đúng, $Z \sim \mathcal{N}(0,1)$ với điều kiên $n\hat{p} > 5$ và $n(1-\hat{p}) > 5$.

XSTK

N.T. M. Ngoc

Các khái niệm trong kiểm định giả thuyết thống

> Giả thuyết H_0 và để thuyết H_1 Các loại sai lầm Giá trị $\rho_{\rm tobs}$

Kiểm định giá thuyết -Trường hợp

Kiểm định giả thuyết cho kỳ vọng Kiểm định giả thuyết cho tỷ lễ

Kiểm định giá thuyết -Trường hợp

> Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

Kiểm định giả thuyế so sánh hai trung bình -Trường hợp h mẫu phụ thuộc

Kiểm định giả thuyế so sánh hai tỷ lệ Kiểm định giả thuyế và tính độc lận

Kiểm định giả thuyết về so sánh tỉ lê tổng thể với 1 số

• Bài toán:

Cho tổng thể X, trong đó tỷ lệ phần tử mang đặc tính A nào đó trong tổng thể là p (p chưa biết). Từ mẫu ngẫu nhiên ($X_1, X_2, ..., X_n$) hãy kiểm định

(a)
$$\begin{cases} H_0: p = p_0 \\ H_1: p \neq p_0 \end{cases}$$
 (b) $\begin{cases} H_0: p = p_0 \\ H_1: p > p_0 \end{cases}$ (c) $\begin{cases} H_0: p = p_0 \\ H_1: p > p_0 \end{cases}$

với mức ý nghĩa α ; với p_0 là giá trị cho trước.

XSTK

N.T. M. Ngoc

Các khái niệm trong kiểm định giả thuyết thống kê

Giả thuyết H_0 và đối thuyết H_1 Các loại sai lầm

Kiểm định giả thuyết -Trường hợp

Kiểm định giả thuyết cho kỳ vọng Kiểm định giả thuyết cho tỷ lệ

Kiểm định gi thuyết -Trường hợp

so sánh hai trung bình -Trường hợp ha mẫu độc lập

so sánh hai trung bình -Trường hợp ha mẫu phụ thuộc

Kiểm định giả thu so sánh hai tỷ lệ Kiểm định giả thu

Kiểm định giả thuyết cho tỷ lệ p

- B1: Phát biểu giả thuyết H_0 và đối thuyết H_1
- B2: Xác định tiêu chuẩn kiểm định:

Thống kê

$$Z = \frac{\hat{P} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$$

là tiêu chuẩn kiểm định. Nếu H_0 đúng, $Z \sim \mathcal{N}(0,1)$ với điều kiện $n\hat{p} \geq 5$ và $n(1-\hat{p}) \geq 5$.

Từ mẫu thực nghiệm, tính giá tri thống kê kiểm đinh:

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$$

N.T. M. Ngọc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và c thuyết H_1 Các loại sai lầm

Kiểm định gi thuyết -Trường hợp

cho kỳ vọng

Kiểm định giả thuyết
cho tỷ lệ

Kiêm định g thuyết -Trường hợp hai mẫu

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập Kiểm định giả thuyết

Kiểm định giả thuyế so sánh hai tỷ lệ Kiểm định giả thuyế về tính độc lập

Kiểm định giả thuyết cho tỷ lệ p

Các bước kiểm định (tt):

B3: Với mức ý nghĩa α, xác định miền bác bỏ: Với mức ý nghĩa α và dựa vào đối thuyết H₁, xác định miền bác bỏ hoặc tính p-giá trị tương ứng:

Trường hợp	bác bỏ <i>H</i> ₀ nếu	<i>p</i> -giá trị
(a) $H_1 : p \neq p_0$	$ z >z_{1-\alpha/2}$	$2(1-\Phi(z))$
(b) $H_1: p > p_0$	$z > z_{1-\alpha}$	$1-\Phi(z)$
(c) $H_1: p < p_0$	$z < -z_{1-\alpha}$	Φ(z)

Trong đó, $z_{1-?}$ được tìm từ bảng phân phối Gauss.

- B4 Kết luân:
 - Nếu bác bỏ giả thuyết H_0 , ta kết luận H_1 đúng với $(1-\alpha)100\%$ độ tin cậy.
 - Ngược lại, ta kết luận chưa đủ cơ sở để bác bỏ giả thuyết H_0 với mức ý nghĩa α .

XSTK

N.T. M. Ngọc

Các khái niệr trong kiểm định giả thuyết thống

Giả thuyết H_0 và thuyết H_1 Các loại sai lầm
Giá trị p_{value}

Kiểm định g thuyết -Trường hợp

Kiểm định giả thuyết cho kỳ vọng Kiểm định giả thuyết cho tỷ lệ

Kiếm định g thuyết -Trường hợp hai mẫu

Kiếm định giả thu so sánh hai trung bình -Trường hợp mẫu độc lập Kiểm định giả thu so sánh hai trung

so sánh hai trung bình -Trường hợp h mẫu phụ thuộc Kiểm định giả thuy

Kiểm định giả thuyế: so sánh hai tỷ lệ Kiểm định giả thuyế: về tính độc lận Giải: Theo đề ta có: n=550, $p_0=42\%$, $\alpha=0,1$. Gọi p là thị phần công ty ở hiện tại. Ta tính được $\hat{p}=\frac{219}{550}$. Kiểm tra điều kiện: $n\hat{p}=550\times\frac{219}{550}=219>5$ và $n(1-\hat{p})=550(1-\frac{219}{550})=331>5$.

- $GT: H_0: p \ge 0,42 \text{ vs } H_1: p < 0,42.$
- Giá trị thống kê của kiểm định là : $z = \frac{(\hat{p} p_0)\sqrt{n}}{\sqrt{p_0(1 p_0)}} = \frac{(\frac{219}{550} 0.42)\sqrt{550}}{\sqrt{0.42(1 0.42)}} = -1,037.$
- Với mức ý nghĩa $\alpha=0,10$, tra bảng phân phối chuẩn hóa $\mathcal{N}(0,1)$ ta được $z_{\alpha}=-z_{1-\alpha}=z_{0,10}=-z_{0,90}=-1,28$.
- Ta thấy, $z=-1,037>-1,28=z_{\alpha}$ nên ta không đủ cơ sở bác bỏ giả thuyết H_0 với mức ý nghĩa $\alpha=0,10$.
- Với mức ý nghĩa 10%, ta có thể kết luận rằng hiện tại công ty chiếm ít nhất 42% thi trường về vỏ xe ô tô.

XSTK

N.T. M. Ngọc

Các khái niệm trong kiểm định giả thuyết thống

> Giả thuyết H_0 và đ thuyết H_1 Các loại sai lầm

Kiểm định gi thuyết -Trường hợp

Kiểm định giả thuyết cho kỳ vọng Kiểm định giả thuyết cho tỷ lậ

Kiểm định gi thuyết -Trường hợp hai mẫu

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

Kiểm định giả thuyế so sánh hai trung bình -Trường hợp ha

Kiểm định giả thu so sánh hai tỷ lệ Kiểm định giả thu về tính độc lận

Kiểm định giả thuyết về tỉ lệ p

Ví dụ: Giả sử sản phẩm của một công ty sản xuất vỏ xe ô tô đã chiếm 42% thị trường. Hiện tại, trước sự cạnh tranh của đối thủ và những điều kiện thay đổi của môi trường kinh doanh, ban lãnh đạo muốn kiểm tra lại xem thị phần công ty có còn là 42% hay không. Chọn ngẫu nhiên 550 ô tô trên đường, kết quả cho thấy có 219 xe sử dụng vỏ xe của công ty. Có thể kết luân gì với mức ý nghĩa $\alpha=0,1$?

XSTK

N.T. M. Ngoc

Các khái niệi trong kiểm định giả thuyết thống

Giả thuyết H_0 và thuyết H_1 Các loại sai lầm

Kiểm định gi thuyết -Trường hợp

Kiểm định giả thuyết cho kỳ vọng Kiểm định giả thuyết cho tỷ lệ

Kiểm định giả thuyết -Trường hợp hai mẫu

so sánh hai trung bình -Trường hợp ha mẫu độc lập Kiểm định giả thuyế so sánh hai trung bình -Trường hợp ha

mâu phụ thuộc Kiểm định giả thu so sánh hai tỷ lệ Kiểm định giả thu

Tính $p_{giá trị}$

Ví dụ: Trong ví dụ về kiểm định giả thuyết tỉ lệ trong tổng thể trên, ta kết luận không thể bác bỏ giả thuyết H_0 với mức ý nghĩa $\alpha=10\%$.

Tất nhiên, ta cũng không thể bác bỏ giả thuyết H_0 với mức ý nghĩa $\alpha < 10\%$.

Vậy, ở mức ý nghĩa $\alpha>10\%$, liệu có thể bác bỏ giả thuyết H_0 ? Nói cách khác, vấn đề là xác định mức ý nghĩa nhỏ nhất mà ở đó giả thuyết H_0 có thể bị bác bỏ. Mức ý nghĩa nhỏ nhất đó gọi là $p_{\rm giá}$ trị ($p_{\rm value}$).

Trong ví dụ trên, giá trị thống kê kiểm định tính được là z=-1,037 và kiểm định bên trái nên $p_{\text{giá tri}}=\phi(-1,037)=1-\phi(1,037)=0,1499.$

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và thuyết H_1 Các loại sai lầm

Kiểm định gi thuyết -Trường hợp một mẫu

Kiểm định giả thuyết cho kỳ vọng Kiểm định giả thuyết cho tỷ lệ

Kiểm định g thuyết -Trường hợp hai mẫu

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

Kiém định giả thuy so sánh hai trung bình -Trường hợp l mẫu phụ thuộc Kiểm định giả thuy

N.T. M. Ngọc

Kiểm định giả thuyết cho tỷ lệ p

Ví dụ khác: Trong kỳ nghỉ giáng sinh và đầu năm mới, Cục An toàn giao thông đã thống kê được rằng có 500 người chết và 25000 người bị thương do các vụ tại nạn giao thông trên toàn quốc. Theo thông cáo của Cục ATGT thì khoảng 50% số vụ tai nạn có liên quan đến rượu bia. Khảo sát ngẫu nhiên 120 vụ tai nạn thấy có 67 vụ do ảnh hưởng của rượu bia. Sử dụng số liệu trên để kiểm định lời khẳng định của Cục An toàn giao thông với mức ý nghĩa $\alpha=5\%$.

Các bước kiểm định:

• Phát biểu giả thuyết:

$$\begin{cases} H_0: p = 0.5 \\ H_1: p \neq 0.5 \end{cases}$$

• Xác định mức ý nghĩa: $\alpha = 0.05$

XSTK

N.T. M. Ngoc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và đ thuyết H_1 Các loại sai lầm Giá trị $p_{\rm value}$

thuyết -Trường hợp một mẫu

Kiểm định giả thuyết cho kỳ vọng Kiểm định giả thuyết cho tỷ lệ

Kiểm định ; thuyết -Trường hợp hại mẫu

Kiểm định giả thuy so sánh hai trung bình -Trường hợp h mẫu độc lập

Kiểm định giả thuy so sánh hai trung bình -Trường hợp h mẫu phụ thuộc

Kiểm định giả thuyế so sánh hai tỷ lệ Kiểm định giả thuyế:

Kiểm định giả thuyết cho tỷ lệ p

Ví dụ khác:

Một nhà máy sản xuất sản phẩm với tỉ lệ loại một lúc đầu là 20%. Sau khi áp dụng phương pháp sản xuất mới, kiểm tra ngẫu nhiên 500 sản phẩm thấy có 150 sản phẩm loại một. Cho kết luận về tác dụng của phương pháp sản xuất với mức ý nghĩa 1%.

DS: phương pháp sản xuất mới làm tăng tỉ lệ sản phẩm loại một với mức ý nghĩa 1%

XSTK

N.T. M. Ngọc

Các khái niệm trong kiểm định giả thuyết thống

> Gia thuyết H_0 và đ thuyết H_1 Các loại sai lầm

Kiểm định giá thuyết -

> Kiểm định giả thuyết cho kỳ vọng Kiểm định giả thuyết cho tỷ lệ

Kiểm định gi thuyết -Trường hợp hai mẫu

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

Kiểm định giả thuyế so sánh hai trung bình -Trường hợp ha mẫu phụ thuộc

Kiểm định giả thi so sánh hai tỷ lệ Kiểm định giả thi về tính độc lận Kiểm định giả thuyết cho tỷ lệ p

• Tính giá tri thống kê kiểm đinh

$$\sigma_{\hat{p}} = \sqrt{\frac{p_0(1 - p_0)}{n}} = \sqrt{\frac{0.5(1 - 0.5)}{120}} = 0.045644$$

$$z = \frac{\hat{p} - p_0}{\sigma_{\hat{p}}} = \frac{(67/120) - 0.5}{0.045644} = 1.28$$

• Xác định miền bác bỏ: bác bỏ H_0 khi $|z_0| > z_{0.975} = 1.96$ hoặc tính p-giá trị

$$p = [(1-\Phi(z)] = 2[1-\Phi(1.28)] = 2(1-0.8977) = 0.2006$$

• Kết luận: do z=1.28<1.96 (hoặc p=0.2006>0.05) nên kết luận chưa đủ cơ sở để bác bỏ giả thuyết H_0 .

XSTK

N.T. M. Ngoc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và đổ thuyết H_1 Các loại sai lầm

Kiểm định giả thuyết -Trường hợp một mẫu

Kiểm định giả thuyết cho kỳ vọng Kiểm định giả thuyết

Kiểm định giả thuyết -Trường hợp

Kiểm định giả thuyế so sánh hai trung bình -Trường hợp ha mẫu độc lập

oình -Trường hợp l mẫu phụ thuộc Kiểm định giả thuị so sánh hai tỷ lệ Kiểm định giả thuy Nội dung: Kiểm định giả thuyết cho trường hợp 2 mẫu

Kiểm định giả thuyết cho trường hợp hai mẫu độc lập

- So sánh hai kỳ vọng
 - Trường hợp biết phương sai
 - Trường hợp không biết phương sai, mẫu lớn
 - Trường hợp không biết phương sai, mẫu nhỏ
 - Trường hợp σ₁² = σ₂² = σ²
 Trường hợp σ₁² ≠ σ₂²
- So sánh hai tỉ lê
- So sánh hai phương sai

Kiểm định giả thuyết cho trường hợp hai mẫu phụ thuộc

So sánh hai kỳ vong

N.T. M. Ngọc

Các khái niện trong kiểm định giả thuyết thống

Giả thuyết H_0 và ở thuyết H_1 Các loại sai lầm

Kiểm định gi thuyết -Trường hợp một mẫu

Kiểm định giả thuy cho kỳ vọng Kiểm định giả thuy cho tỷ lê

Kiểm định gi thuyết -Trường hợp hai mẫu

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

Kiểm định giả thuy so sánh hai trung bình -Trường hợp h mẫu phụ thuộc

Kiểm định giả thu so sánh hai tỷ lệ Kiểm định giả thu về tính độc lập TH 1: đã biết σ_1^2 , σ_2^2

Các giả đinh:

Quan sát X trên hai mẫu ngẫu nhiên lấy từ hai tổng thể 1 và 2 độc lập nhau.

- Trên tổng thể 1: $X \sim \mathcal{N}(\mu_1, \sigma_1^2)$, lấy mẫu ngẫu nhiên cỡ n_1 có trung bình mẫu \bar{X}_1 .
- Trên tổng thể 2: $X \sim \mathcal{N}(\mu_2, \sigma_2^2)$, lấy mẫu ngẫu nhiên cỡ n_2 trung bình mẫu \bar{X}_2 .
- Các phương sai σ_1^2 và σ_2^2 đã biết.

Bài toán kiểm định gồm các dạng sau:

Hãy kiểm định một trong những giả thuyết sau:

(a)
$$\begin{cases} H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 \neq \mu_2 \end{cases}$$
 (b)
$$\begin{cases} H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 > \mu_2 \end{cases}$$
 (c)
$$\begin{cases} H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 < \mu_2 \end{cases}$$

với mức ý nghĩa α cho trước.

XSTK

N.T. M. Ngọc

Các khái niệr trong kiểm định giả thuyết thống

Giả thuyết H_0 và đồ thuyết H_1 Các loại sai lầm

Kiểm định g thuyết -Trường hợp

Kiểm định giả thuy cho kỳ vọng Kiểm định giả thuy

Kiểm định g thuyết -Trường hợp

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

Kiểm định giả thuyế so sánh hai trung bình -Trường hợp ha mẫu phụ thuộc Kiểm định giả thuyế

Kiểm định giả thuyế so sánh hai tỷ lệ Kiểm định giả thuyế về tính độc lập

Các bước kiểm định: (tt)

• B3: Với mức ý nghĩa α , xác đinh miền bác bỏ:

Với mức ý nghĩa α và dựa vào đối thuyết H_1 , xác định miền bác bỏ hoặc tính p-giá trị tương ứng:

Trường hợp	bác bỏ H_0 nếu	<i>p</i> -giá trị
(a) $H_1: \mu_1 \neq \mu_2$	$ z >z_{1-\alpha/2}$	$2(1 - \Phi(z))$
(b) $H_1: \mu_1 > \mu_2$	$z>z_{1-\alpha}$	$1-\Phi(z)$
(c) $H_1: \mu_1 < \mu_2$	$z < -z_{1-\alpha}$	Φ(z)

Trong đó, z_{1-2} được tìm từ bảng phân phối Gauss.

Lưu ý: Nếu p-giá trị $< \alpha$ thì ta bác bỏ giả thuyết H_0 với mức ý nghĩa α .

- B4: Kết luân:
 - Nếu bác bỏ giả thuyết H_0 , ta kết luận H_1 đúng với $(1-\alpha)100\%$ độ tin cậy.
 - Ngược lại, ta kết luận chưa đủ cơ sở để bác bỏ giả thuyết H_0 với mức ý nghĩa α .

XSTK

N.T. M. Ngọc

Các khái niệm trong kiểm định giả thuyết thống

> Giả thuyết H_0 và đổ thuyết H_1 Các loại sai lầm

Kiểm định gi thuyết -Trường hợp

Kiểm định giả thu cho kỳ vọng Kiểm định giả thu

Kiểm định giá thuyết -Trường hợp

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

so sánh hai trung bình -Trường hợp ha mẫu phụ thuộc Kiểm định giả thuyế so sánh hai tỷ lệ

Các bước kiểm đinh:

- B1: Phát biểu giả thuyết H_0 và đối thuyết H_1
- B2: Xác định tiêu chuẩn kiểm định:

Chọn thống kê

$$Z = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

làm tiêu chuẩn kiểm định. Nếu giả thuyết H_0 đúng thì $Z \sim \mathcal{N}(0,1).$

Từ mẫu thực nghiệm, tính giá trị thống kê kiểm định:

$$z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

XSTK

N.T. M. Ngoc

Các khái niện trong kiểm định giả thuyết thống kê

> Giả thuyết H_0 và đị thuyết H_1 Các loại sai lầm

Kiểm định giả thuyết -Trường hợp một mẫu

Kiểm định giả thuyế cho kỳ vọng Kiểm định giả thuyế

Kiểm định gi thuyết -Trường hợp

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

bình -Trường hợp h mẫu phụ thuộc Kiểm định giả thuyệ so sánh hai tử lê Ví dụ

Một công ty sản xuất sơn nghiên cứu về một loại phụ gia làm giảm thời gian khô của sơn. Thực hiện thí nghiệm trên 2 mẫu : mẫu 1 gồm 10 mẫu vật được sơn bằng loại sơn bình thường; mẫu 2 gồm 10 mẫu vật được sơn bằng loại sơn có chất phụ gia mới. Trong những nghiên cứu trước, biết rằng độ lệch chuẩn của thời gian khô sau khi quét sơn là 8 phút và không thay đổi khi thêm phụ gia vào. Thời gian khô trung bình của mẫu 1 và 2 lần lượt là $\bar{x}_1 = 121$ phút và $\bar{x}_2 = 112$ phút. Với mức ý nghĩa 5%, hãy cho kết luân về loại sơn với chất phụ gia mới.

N.T. M. Ngọc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và đ thuyết H_1 Các loại sai lầm

Kiếm định giá thuyết -Trường hợp

Kiểm định giả thuyế cho kỳ vọng Kiểm định giả thuyế

Kiểm định giá thuyết -Trường hợp hai mẫu

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

Kiếm định giả thuyế so sánh hai trung bình -Trường hợp h mẫu phụ thuộc

so sánh hai tỷ lệ Kiểm định giả thuy về tính độc lập

Giải ví du:

B1: Phát biểu giả thuyết H₀ và đối thuyết H₁

 $\begin{cases} H_0: \mu_1=\mu_2, & (H_0: ext{chất phụ gia mới không có hiệu quả)} \ H_1: \mu_1>\mu_2, & (H_1: ext{chất phụ gia mới có hiệu quả)} \end{cases}$

• B2: Xác định tiêu chuẩn kiểm định: Từ mẫu thực nghiệm, tính giá trị thống kê kiểm định, với $\bar{x_1}=121, \, \bar{x_2}=112$ và $\sigma_1=\sigma_2=8$ ta có:

$$z = \frac{\bar{x_1} - \bar{x_2}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} = \frac{121 - 112}{\sqrt{\frac{8^2}{10} + \frac{8^2}{10}}} = 2.52$$

- B3: Xác định miễn bác bỏ: Với mức ý nghĩa $\alpha=5\%$, bác bỏ H_0 khi $z>z_{1-\alpha}=z_{0.95}=1.645$ (tra bảng phân phối chuẩn tắc).
- B4: Kết luận: Ta thấy $z=2.52>1.645=z_{1-\alpha}$ nên bác bỏ H_0 với mức ý nghĩa $\alpha=5\%$. Ta kết luận rằng với 95% độ tin cậy, chất phụ gia có hiệu quả làm giảm thời gian khô sau khi sơn.
- Cách khác : Sử dụng p-giá trị: Ta có p-giá trị = $1 \Phi(z) = 1 \Phi(2.52) = 0.0059 < 0.05 = <math>\alpha$ nên bác bỏ H_0 với mức ý nghĩa $\alpha = 5\%$. Ta kết luận rằng ...

XSTK

N.T. M. Ngoc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và để thuyết H_1 Các loại sai lầm

Kiểm định g thuyết -Trường hợp một mẫu

Kiểm định giả thuyế cho kỳ vọng Kiểm định giả thuyế cho tỷ lệ

Kiểm định g thuyết -Trường hợp hai mẫu

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

Kiểm định giá thuy so sánh hai trung bình -Trường hợp h mẫu phụ thuộc

Kiểm định giả thuyế so sánh hai tỷ lệ Kiểm định giả thuyế và tính độc lận

TH 1: đã biết σ_1^2 , σ_2^2

Ví du khác

Arnold Palmer và Tiger Woods là hai golf thủ giỏi nhất từ trước đến nay. Để so sánh hai người nếu cả hai đều đang chơi ở đỉnh cao, dữ liệu mẫu sau đây cho biết kết quả điểm thi đấu golf 18 lỗ trong giải PGA. Điểm của Palmer từ mùa giải 1960, trong khi của Woods từ mùa giải 1999 (theo Golf Magazine, tháng 2, 2020).

Arnold Palmer , 1960	Tiger Woods, 1999
$n_1 = 112$	$n_2 = 84$
$\bar{x}_1 = 69,95$	$\bar{x}_2 = 69,56$

Giả sử độ lệch chuẩn tổng thể là 2,5 cho cả hai golf thủ. Có thể cho rằng không có chênh lệch trung bình tổng thể về điểm thi đấu golf 8 lỗ của hai golf thủ với mức ý nghĩa 1%?

XSTK

N.T. M. Ngọc

Các khái niệm trong kiểm định giả thuyết thống

> Giả thuyết H_0 và đố thuyết H_1 Các loại sai lầm

Kiểm định gi thuyết -Trường hợp

Kiểm định giả thuyết cho kỳ vọng Kiểm định giả thuyết cho tỷ lệ

Kiểm định gi thuyết -Trường hợp hai mẫu

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp ha mẫu phụ thuộc Kiểm định giả thuyết so sánh hai tỷ lệ Kiểm định giả thuyết về tính độc lập

TH 1: đã biết σ_1^2 , σ_2^2

Ví du khác

Hai công thức khác nhau của nhiên liệu động cơ ôxy hóa đang được thử nghiệm để nghiên cứu chỉ số octane của chúng. Phương sai chỉ số octane của công thức thứ nhất là $\sigma_1^2=1,5$ và công thức thứ hai là $\sigma_2^2=1,2.$ Hai mẫu ngẫu nhiên có cỡ mẫu $n_1=15$ và $n_2=20$ được nghiên cứu có chỉ số octane trung bình lần lượt là $\overline{x}_1=89,6$ và $\overline{x}_2=92,5.$ Giả sử chỉ số octane có phân phối chuẩn. Nếu công thức 2 tạo ra chỉ số octane cao hơn so với công thức 1, thì nhà sản xuất muốn phát hiện nó. Hãy xây dựng và kiểm định giả thuyết thích hợp sử dụng $\alpha=0,05$ và tính p-giá trị.

XSTK

N.T. M. Ngoc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và đ thuyết H_1

Kiểm định giả thuyết -Trường hợp một mẫu

Kiểm định giả thuyế cho kỳ vọng Kiểm định giả thuyế cho tỷ lệ

Kiểm định gi thuyết -Trường hợp

Kiếm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

so sánh hai trung bình -Trường hợp ha mẫu phụ thuộc TH 2: chưa biết σ_1^2 , σ_2^2 , mẫu lớn

Các giả đinh:

Quan sát X trên hai mẫu ngẫu nhiên lấy từ hai tổng thể 1 và 2 đôc lập nhau.

- Trên tổng thể 1: $X \sim \mathcal{N}(\mu_1, \sigma_1^2)$, lấy mẫu ngẫu nhiên cỡ n_1 có trung bình mẫu \bar{X}_1 .
- Trên tổng thể 2: $X \sim \mathcal{N}(\mu_2, \sigma_2^2)$, lấy mẫu ngẫu nhiên cỡ n_2 trung bình mẫu \bar{X}_2 .
- Các phương sai σ_1^2 và σ_2^2 chưa biết.
- Cỡ mẫu lớn: $n_1 \ge 30$ và $n_2 \ge 30$.

N.T. M. Ngọc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và c thuyết H_1 Các loại sai lầm

Kiểm định gi thuyết -

một mẫu Kiểm định giả thu cho kỳ vọng

cho tỷ lệ

Kiểm định gi

Trường hợp hai mẫu Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai

mẫu độc lập Kiểm định giả thuy so sánh hai trung bình -Trường hợp h

Kiểm định giả thu so sánh hai tỷ lệ Kiểm định giả thu về tính độc lập

TH 2: chưa biết σ_1^2 , σ_2^2 , mẫu lớn

- Đối với trường hợp mẫu lớn, khi phương sai tổng thể σ_1^2 và σ_2^2 không biết, ta thay thế bằng các phương sai mẫu S_1^2 và S_2^2 mà không tao ra nhiều khác biết.
- Khi $n_1 \ge 30$ và $n_2 \ge 30$, dưới giả thuyết H_0

$$Z = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

sẽ xấp xỉ phân phối chuẩn hóa $\mathcal{N}(0,1)$.

Từ mẫu thực nghiệm, tính giá trị thống kê kiểm định:

$$z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

 Miền bác bỏ (hoặc p - giá trị) trong trường hợp này được tính tương tự như trường hợp biết phương sai.

XSTK

N.T. M. Ngọc

Các khái niện trong kiểm định giả thuyết thống

Giả thuyết H_0 và đ thuyết H_1 Các loại sai lầm

Kiểm định g thuyết -Trường hợp

Kiểm định giả thuy cho kỳ vọng Kiểm định giả thuy cho tỷ lê

Kiểm định g thuyết -Trường hợp hai mẫu

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

Kiểm định giả thuyế so sánh hai trung bình -Trường hợp ha mẫu phụ thuộc

Kiểm định giả thuyế: so sánh hai tỷ lệ Kiểm định giả thuyế: về tính độc lận Gọi μ_1 , μ_2 lần lượt là số chu kỳ trung bình hoạt động của máy phát ngẫu nhiên ứng với mức điện áp nhiễu 100 mV và 150 mV.

• B1: Phát biểu giả thuyết H_0 và đối thuyết H_1

$$\begin{cases} H_0: \mu_1 = \mu_2, \\ H_1: \mu_1 > \mu_2, \end{cases}$$

• B2: Xác định tiêu chuẩn kiểm định:

Từ mẫu thực nghiệm, tính giá trị thống kê kiểm định :

$$z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{7,9 - 6,9}{\sqrt{\frac{2,6^2}{100} + \frac{2,4^2}{100}}} = 2,8262$$

• B3: Xác định miền bác bỏ:

Với mức ý nghĩa $\alpha=5\%$, bác bỏ H_0 khi $z>z_{1-\alpha}=z_{0,95}=1,645$. Ta có: $z=2,8262>1,645=z_{1-\alpha}$ nên bác bỏ H_0 với mức ý nghĩa $\alpha=5\%$.

B4: Kết luân:

Với 95% độ tin cậy thì việc tăng điện áp nhiễu sẽ làm giảm số chu kỳ trung bình.

o Tính *p*-giá trị: *p*-giá trị = $1-\Phi(z)=1-\Phi(2,8262)=1-0,9976=0,0024$. Ta thấy rằng *p*-giá trị = $0,0024<0.05=\alpha$ nên bác bỏ H_0 với mức ý nghĩa $\alpha=5\%$.

XSTK

N.T. M. Ngọc

Các khái niện trong kiểm định giả thuyết thống

Giả thuyết H_0 và đố thuyết H_1 Các loại sai lầm Giá trị Popho

Kiểm định giá thuyết -Trường hợp một mẫu

> Kiểm định giả thuyế cho kỳ vọng Kiểm định giả thuyế cho tỷ là

Kiểm định giá thuyết -Trường hợp hai mẫu

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

Kiểm định giá thuyế so sánh hai trung bình -Trường hợp ha mẫu phụ thuộc

Kiểm định giả th so sánh hai tỷ lệ Kiểm định giả th về tính độc lập

TH 2: chưa biết σ_1^2 , σ_2^2 , mẫu lớn

Ví du

Một bài báo về Kỹ thuật Radio và Vật lý điện tử (1984) đã nghiên cứu hoạt động của một máy phát ngẫu nhiên khi có tiếng ồn bên ngoài. Số chu kỳ được đo trong một mẫu là 100 lần với hai mức điện áp nhiễu khác nhau, 100 mV và 150 mV. Với mức điện áp nhiễu 100 mV, số chu kì trung bình là 7,9 và độ lệch chuẩn $s_1=2,6$. Với điện áp nhiễu mức 150 mV, số chu kì trung bình là 6,9 và độ lệch chuẩn $s_2=2,4$.

Ban đầu, người ta nghi ngờ rằng việc tăng điện áp, tiếng ồn sẽ làm giảm số chu kỳ trung bình. Dữ liệu có hỗ trợ xác nhận này không? Sử dụng $\alpha=0,05$ và giả định rằng hai tổng thể có phân phối chuẩn. Tính p-giá trị của kiểm định?

XSTK

N.T. M. Ngoc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và đồ thuyết H_1 Các loại sai lầm

Kiểm định gi thuyết -Trường hợp một mẫu

Kiểm định giả thuyế cho kỳ vọng Kiểm định giả thuyế

Kiểm định gi thuyết -Trường hợp

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

Kiểm định giả thu so sánh hai trung bình -Trường hợp mẫu phu thuộc

> Kiểm định giả thuyế so sánh hai tỷ lệ Kiểm định giả thuyế

TH 2: chưa biết σ_1^2 , σ_2^2 , mẫu lớn

Ví du khác

Một trại chăn nuôi chọn một giống gà để tiến hành nghiên cứu hiệu quả của hai loại thức ăn A và B. Sau một thời gian nuôi thử nghiệm trong cùng điều kiện bằng hai loại thức ăn này, người ta chọn 50 con gà nuôi bằng thức ăn A thấy khối lượng trung bình là 2,2 kg, độ lệch chuẩn mẫu hiệu chỉnh là 1,25 kg. Chọn 40 con gà nuôi bằng thức ăn B thấy khối lượng trung bình là 1,2 kg, độ lệch chuẩn mẫu hiệu chỉnh là 1,02 kg. Hãy đánh giá hiệu quả của hai loại thức ăn trên với mức ý nghĩa 1%.

N.T. M. Ngọc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và đ thuyết H_1 Các loại sai lầm

Kiếm định giá thuyết -Trường hợp

Kiểm định giả thuyết cho kỳ vọng Kiểm định giả thuyết cho tỷ lê

Kiểm định giá thuyết -Trường hợp hai mẫu

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp ha mẫu độc lập

Kiếm định giả thuyế so sánh hai trung bình -Trường hợp h mẫu phụ thuộc

Kiếm định giả thuy so sánh hai tỷ lệ Kiểm định giả thuy về tính độc lập

TH 3: chưa biết σ_1^2 , σ_2^2 , mẫu nhỏ

Các giả định:

Quan sát X trên hai mẫu ngẫu nhiên lấy từ hai tổng thể 1 và 2 độc lập nhau.

- Trên tổng thể 1: $X\sim \mathcal{N}(\mu_1,\sigma_1^2)$, lấy mẫu ngẫu nhiên cỡ n_1 có trung bình mẫu \bar{X}_1 .
- Trên tổng thể 2: $X\sim \mathcal{N}(\mu_2,\sigma_2^2)$, lấy mẫu ngẫu nhiên cỡ n_2 trung bình mẫu \bar{X}_2 .
- Các phương sai σ_1^2 và σ_2^2 chưa biết.
- Cỡ mẫu nhỏ: $n_1 < 30$ và $n_2 < 30$.

Ta xét hai trường hợp:

- 1 Trường hợp phương sai bằng nhau $\sigma_1^2 = \sigma_2^2$,
- **2** Trường hợp phương sai khác nhau $\sigma_1^2 \neq \sigma_2^2$.

Bài toán kiểm định gồm các dạng sau:

Hãy kiểm định một trong những giả thuyết sau:

(a)
$$\begin{cases} H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 \neq \mu_2 \end{cases}$$
 (b)
$$\begin{cases} H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 > \mu_2 \end{cases}$$
 (c)
$$\begin{cases} H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 < \mu_2 \end{cases}$$

với mức ý nghĩa α cho trước.

XSTK

N.T. M. Ngoc

Các khái niện trong kiểm định giả thuyết thống

Giả thuyết H_0 và đồ thuyết H_1 Các loại sai lầm

Kiếm định g thuyết -Trường hợp

Kiểm định giả thuyế cho kỳ vọng Kiểm định giả thuyế cho tử là

Kiểm định g thuyết -Trường hợp

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

Kiểm định giả thuyế so sánh hai trung bình -Trường hợp h mẫu phụ thuộc

Kiểm định giả thuyết so sánh hai tỷ lệ Kiểm định giả thuyết

Các bước kiểm định: (tt)

• B3: Với mức ý nghĩa α , xác định miền bác bỏ:

Với mức ý nghĩa α và dựa vào đối thuyết H_1 , xác định miền bác bỏ hoặc tính p-giá trị tương ứng:

 Đặt df = n₁ + n₂ - 2, miền bác bỏ và p - giá trị trong trường hợp này có dạng:

Trường hợp	bác bỏ H_0 nếu	<i>p</i> -giá trị
(a) $H_1 : \mu_1 \neq \mu_2$	$ t > t_{1-\alpha/2}^{df}$	$2\mathbb{P}(T_{(df)} \geq t)$
(b) $H_1: \mu_1 > \mu_2$	$t > t_{1-lpha}^{df}$	$\mathbb{P}(T_{(df)} \geq t)$
(c) $H_1: \mu_1 < \mu_2$	$t<-t_{1-lpha}^{df}$	$\mathbb{P}(T_{(df)} \leq t)$

Trong đó,

- $T_{(df)}$ là biến ngẫu nhiên tuân theo phân phối Student với bâc tư do df:
- t_{1-7}^{df} có được bằng cách tra bảng phân phối Student.

Lưu ý: Nếu p-giá trị $\leq \alpha$ thì ta bác bỏ giả thuyết H_0 với mức ý nghĩa α .

- B4: Kết luận:
 - Nếu bác bỏ giả thuyết H_0 , ta kết luận H_1 đúng với $(1-\alpha)100\%$ độ tin cậy.
 - Ngược lại, ta kết luận chưa đủ cơ sở để bác bỏ giả thuyết
 H₀ với mức ý nghĩa α.

XSTK

N.T. M. Ngoc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và đổ thuyết H_1 Các loại sai lầm

Kiểm định gi thuyết -

Kiểm định giả thuyết cho kỳ vọng Kiểm định giả thuyết cho tỷ lệ

Kiểm định gia thuyết -Trường hợp

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

so sánh hai trung bình -Trường hợp ha mẫu phụ thuộc Kiểm định giả thuyế so sánh hai tỷ lệ

TH 3a: $\sigma_1^2 = \sigma_2^2$ chưa biết, mẫu nhỏ

Các bước kiểm định:

- B1: Phát biểu giả thuyết H_0 và đối thuyết H_1
- B2: Xác đinh tiêu chuẩn kiểm đinh:
 - Trường hợp $\sigma_1^2 = \sigma_2^2 = \sigma^2$, ta sử dụng một ước lượng chung cho cả σ_1^2 và σ_2^2 là S_n^2 gọi là phương sai mẫu chung

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}.$$

• Dưới giả thuyết H_0 , thống kê

$$T = rac{ar{X_1 - ar{X_2}}}{\sqrt{S_p^2 \left(rac{1}{n_1} + rac{1}{n_2}
ight)}}$$

sẽ xấp xỉ phân phối Student với $n_1 + n_2 - 2$ bậc tự do.

• Từ mẫu thực nghiệm, tính giá trị thống kê kiểm định:

$$t = rac{ar{x_1} - ar{x_2}}{\sqrt{s_p^2 \left(rac{1}{n_1} + rac{1}{n_2}
ight)}}.$$

XSTK

N.T. M. Ngoc

Các khái niệm trong kiểm định giả thuyết thống

> Giả thuyết H_0 và đối thuyết H_1 Các loại sai lầm

Kiêm định giá thuyết -Trường hợp

Kiểm định giả thuyế cho kỳ vọng Kiểm định giả thuyế

Kiểm định giả thuyết -Trường hợp

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

so sánh hai trung bình -Trường hợp h mẫu phụ thuộc Kiểm định giả thuyế

Kiểm định giả thu so sánh hai tỷ lệ Kiểm định giả thu

TH 3b: $\sigma_1^2 \neq \sigma_2^2$ chưa biết, mẫu nhỏ

Các bước kiểm định:

- B1: Phát biểu giả thuyết H_0 và đối thuyết H_1
- B2: Xác định tiêu chuẩn kiểm định:
 - Trường hợp $\sigma_1^2 \neq \sigma_2^2$, dưới giả thuyết H_0 , thống kê

$$T = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

sẽ xấp xỉ phân phối Student với bậc tự do *df* được xác đinh như sau

$$df = \frac{\left[(s_1^2/n_1) + (s_2^2/n_2) \right]^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}$$
(1)

• Từ mẫu thực nghiệm, tính giá trị thống kê kiểm định:

$$t = \frac{\bar{x_1} - \bar{x_2}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2^2}}}$$

N.T. M. Ngọc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và đ thuyết H_1 Các loại sai lầm

Kiểm định g thuyết -Trường hợp

Kiểm định giả thuy cho kỳ vọng Kiểm định giả thuy

Kiếm định g thuyết -Trường hợp hai mẫu

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

so sánh hai trung bình -Trường hợp h mẫu phụ thuộc Kiểm định giả thuy

so sánh hai tỷ lệ Kiểm định giả thuy về tính độc lập

TH 3b: $\sigma_1^2 \neq \sigma_2^2$ chưa biết, mẫu nhỏ

Các bước kiểm định: (tt)

• B3: Với mức ý nghĩa α , xác định miền bác bỏ:

Miền bác bỏ (hay p-giá trị tương ứng) trong trường hợp này được xác định giống như trường hợp phương sai bằng nhau, chỉ thay bậc tự do df cho bởi phương trình (1).

- B4: Kết luân:
 - Nếu bác bỏ giả thuyết H_0 , ta kết luận H_1 đúng với $(1-\alpha)100\%$ đô tin cây.
 - Ngược lại, ta kết luận chưa đủ cơ sở để bác bỏ giả thuyết H_0 với mức ý nghĩa α .

XSTK

N.T. M. Ngoc

Các khái niện trong kiểm định giả thuyết thống

Giả thuyết H_0 và đồ thuyết H_1 Các loại sai lầm

Kiếm định g thuyết -Trường hợp

Kiểm định giả thuy cho kỳ vọng Kiểm định giả thuy

Kiểm định g thuyết -Trường hợp

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

Kiểm định giả thuyế so sánh hai trung bình -Trường hợp ha mẫu phụ thuộc

Ciểm định giả thuyết o sánh hai tỷ lệ Ciểm định giả thuyết ể tính độc lập

Giải ví dụ:

Gọi X_1 , X_2 lần lượt là tỷ lệ ăn mòn (etch) của hai phương pháp khắc 1 và 2. Theo dề ta có: σ_1 và σ_2 chưa biết; $n_1=n_2=10<30$. và tính được: $\bar{x}_1=9.97; \ \bar{x}_2=10.4; \ s_1^2=0.1779$ và $s_2^2=0.0533$.

• B1: Phát biểu giả thuyết H_0 và đối thuyết H_1 :

$$\begin{cases} H_0: \mu_1 = \mu_2, \\ H_1: \mu_1 \neq \mu_2. \end{cases}$$

• B2: Xác định tiêu chuẩn kiểm định:

Từ mẫu thực nghiệm, tính

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} = \frac{(10 - 1).0,1779 + (10 - 1).0,0533}{10 + 10 - 2} = 0,1156.$$

Khi đó, giá trị thống kê kiểm định :

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{9,97 - 10,4}{\sqrt{0,1156\left(\frac{1}{10} + \frac{1}{10}\right)}} = -2,82796.$$

XSTK

N.T. M. Ngọc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và c thuyết H_1 Các loại sai lầm Giá tri p_{obs}

Kiểm định gi thuyết -Trường hợp

Kiểm định giả thuyế cho kỳ vọng Kiểm định giả thuyế

Kiểm định gi thuyết -Trường hợp

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lào

so sánh hai trung bình -Trường hợp ha mẫu phụ thuộc Kiểm định giả thuyết so sánh hai tỷ lệ Kiểm định giả thuyết về tính độc lận

Ví du:

Trong sản xuất chất bán dẫn, khắc hóa chất ướt thường được sử dụng để loại bỏ silic từ mặt sau của tấm wafer trước khi kim loại hóa. Tỷ lệ ăn mòn (etch) là một đặc tính quan trọng trong quá trình này và được biết là tuân theo phân phối chuẩn. Hai phương pháp khắc khác nhau đã được so sánh bằng cách sử dụng hai mẫu ngẫu nhiên gồm 10 tấm wafer cho mỗi dung dịch. Tỷ lệ ăn mòn quan sát được như sau:

Mẫu 1: 9,9 10,6 9,4 10,3 9,3 10,0 9,6 10,3 10,2 10,1 Mẫu 2: 10,2 10,0 10,6 10,2 10,7 10,7 10,4 10,4 10,5 10,3

- a) Dữ liệu trên có hỗ trợ tuyên bố rằng tỷ lệ ăn mòn trung bình là giống nhau cho cả hai phương pháp không, giả sử hai phương sai tổng thể bằng nhau?
- b) Thực hiện lại kiểm định trên câu a) với giả thiết hai phương sai tổng thể khác nhau?

XSTK

N.T. M. Ngoc

Các khái niệm trong kiểm định giả thuyết thống kê

Giả thuyết H_0 và đố thuyết H_1 Các loại sai lắm

Trương nọp một mẫu Kiểm định giả thuyế cho kỳ vọng

Kiểm định giả thuyết -Trường hợp

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

so sánh hai trung bình -Trường hợp h mẫu phụ thuộc

Kiểm định giả thị so sánh hai tỷ lệ Kiểm định giả thị

Giải ví dụ (tt):

• B3: Xác đinh miền bác bỏ:

Với mức ý nghĩa
$$\alpha=5\%$$
, bác bỏ H_0 khi $|t|>t_{1-\alpha/2;n_1+n_2-2}=t_{0.975;18}=2,1009.$

Ta có: $|t|=|-2,82796|=2,82796>2,1009=t_{1-\alpha/2;n_1+n_2-2}$ nên bác bỏ H_0 với mức ý nghĩa $\alpha=5\%$.

• B4: Kết luận:

Với 95% độ tin cậy, ta kết luận rằng tỷ lệ ăn mòn (etch) của hai phương pháp khắc là khác nhau.

• Cách khác:

Tính *p*-giá trị: *p*-giá trị =
$$2\mathbb{P}(T(10+10-2) \ge |t|) = 2\mathbb{P}(T(18) > 2.828796) \approx 0.01115.$$

Ta thấy rằng p-giá trị = 0.01115 < 0.05 = α nên bác bỏ H_0 với mức ý nghĩa α = 5%.

Ta kết luận rằng tỷ lệ ăn mòn (etch) của hai phương pháp khắc là khác nhau với 95% đô tin câv.

N.T. M. Ngọc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và chuyết H_1 Các loại sai lầm

Kiểm định gi thuyết -Trường hợp một mẫu

Kiểm định giả thuy cho kỳ vọng Kiểm định giả thuy

Kiểm định gi thuyết -Trường hợp hai mẫu

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

Kiểm định gia thuyế so sánh hai trung bình -Trường hợp hạ mẫu phụ thuộc

so sánh hai tỷ lệ Kiểm định giả thuy về tính độc lập

Giải ví dụ (tt):

- b) Trường hợp $\sigma_1^2 \neq \sigma_2^2$.
 - B1: Phát biểu giả thuyết H_0 và đối thuyết H_1 : giống câu a)
 - B2: Xác định tiêu chuẩn kiểm định:

Từ mẫu thực nghiệm, tính giá tri thống kê kiểm đinh :

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{9,97 - 10,4}{\sqrt{\frac{0,1779}{10} + \frac{0,0533}{10}}} \approx -2,828017.$$

và

$$df = \frac{\left[(s_1^2/n_1) + (s_2^2/n_2) \right]^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}} \approx 13,9483 \approx 14.$$

XSTK

N.T. M. Ngoc

Các khái niện trong kiểm định giả thuyết thống kê

Giả thuyết H_0 và c thuyết H_1 Các loại sai lầm Giá trị p_{value}

Kiểm định g thuyết -Trường hợp một mẫu

kiểm định giả thuy cho kỳ vọng Kiểm định giả thuy cho tỷ lệ

Kiểm định gi thuyết -Trường hợp

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

Kiểm định giả thuyế so sánh hai trung bình -Trường hợp ha mẫu phụ thuộc

Kiểm định giả thuyết o sánh hai tỷ lệ Kiểm định giả thuyết

Ví dụ khác

Ban lãnh đạo công ty cho rằng doanh số bán hàng tăng lên sau khi thực hiện các biện pháp khuyến mãi. Chọn ngẫu nhiên 13 tuần trước đợt khuyến mãi có được doanh số trung bình là 1234 triệu đồng và độ lêch chuẩn mẫu là 324 triệu đồng. Và chon ngẫu nhiên 14 tuần sau đợt khuyến mãi có được doanh số trung bình là 1864 triệu đồng và độ lêch chuẩn mẫu là 289 triệu đồng. Hãy kiểm định ý kiến trên với $\alpha=5\%$

XSTK

N.T. M. Ngọc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và thuyết H_1 Các loại sai lầm

Kiểm định giả thuyết -

Kiểm định giả thu cho kỳ vọng Kiểm định giả thu

Kiểm định gi thuyết -Trường hợp

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp ha mẫu nhụ thuộc

Kiểm định giả thi so sánh hai tỷ lệ Kiểm định giả thi

Giải ví du (tt):

b) Trường hợp $\sigma_1^2 \neq \sigma_2^2$.

• B3: Xác định miền bác bỏ:

Với mức ý nghĩa
$$\alpha = 5\%$$
, bác bỏ H_0 khi $|t| > t_{1-\alpha/2;df} = t_{0.975;14} = 2,1448$.

Ta có: $|t|=2,\!828017>2,\!1448=t_{1-\alpha/2;14}$ nên bác bỏ H_0 với mức ý nghĩa $\alpha=5\%$.

- B4: Kết luận: Với 95% độ tin cậy, ta kết luận rằng tỷ lệ ăn mòn (etch) của hai phương pháp khắc là khác nhau.
- Cách khác: Tính p-giá trị: p-giá trị = $2\mathbb{P}\left(T(df) \ge |t|\right) = 2\mathbb{P}\left(T(14) \ge 2,8280\right) \approx 0.01115$.

Ta thấy rằng p-giá trị = 0.01115 < 0.05 = α nên bác bỏ H_0 với mức ý nghĩa α = 5%.

Ta kết luận rằng tỷ lệ ăn mòn (etch) của hai phương pháp khắc là khác nhau với 95% đô tin cây.

XSTK

N.T. M. Ngoc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và đổ thuyết H_1 Các loại sai lầm

thuyết -Trường hợp một mẫu

Kiểm định giả thuyế cho kỳ vọng Kiểm định giả thuyế cho tỷ lệ

Kiểm định gi thuyết -Trường hợp

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

Kiệm định giá thuyệ so sánh hai trung bình -Trường hợp ha mẫu phụ thuộc

Kiểm định giả thu so sánh hai tỷ lệ Kiểm định giả thu

Ví dụ khác

Xét hai chất xúc tác có thể được sử dụng trong một phản ứng hóa học hàng loạt. Mười hai lô được sử dụng chất xúc tác 1, dẫn đến năng suất trung bình là 86 và độ lệch chuẩn mẫu là 3. Mười lăm lô được sử dụng chất xúc tác 2, và kết quả là năng suất trung bình 89 với độ lệch chuẩn là 2. Giả sử năng suất các phép đo xấp xỉ phân phối chuẩn với cùng độ lệch chuẩn. Với mức ý nghĩa 1%, có bằng chứng để khẳng định rằng chất xúc tác 2 tạo ra năng suất trung bình cao hơn chất xúc tác 1 không?

N.T. M. Ngọc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và đ thuyết H_1 Các loại sai lầm

Kiểm định g thuyết -Trường hợp

Kiểm định giả thuyết cho kỳ vọng Kiểm định giả thuyết cho tỷ lệ

Kiểm định g thuyết -Trường hợp hai mẫu

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp ha mẫu độc lập

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu phụ thuộc

so sánh hai tỷ lệ Kiểm định giả thu về tính độc lập

So sánh hai mẫu không độc lập (paired t - test)

- Khi hai mẫu không độc lập thì mỗi giá trị quan trắc được trong một mẫu có mỗi liên hệ tương ứng với một giá trị quan trắc ở mẫu thứ hai. Như vậy, ta có thể ghép cặp từng giá trị trong hai mẫu với nhau.
- Việc ghép cặp là kết quả của việc
 - quan trắc giá trị trước và sau khi thực hiện 1 thí nghiệm.
 Chẳng hạn như đo trọng lượng trước và sau khi thực hiện một chế đô ăn kiêng.
 - so sánh cùng 1 đặc tính.
 - thí nghiệm trên cùng 1 địa điểm.
 - thí nghiệm với cùng thời gian.

XSTK

N.T. M. Ngoc

Các khái niệr trong kiểm định giả thuyết thống

Giả thuyết H_0 và đ thuyết H_1 Các loại sai lầm

Kiểm định g thuyết -Trường hợp một mẫu

Kiếm định giả thuyế cho kỳ vọng Kiểm định giả thuyế sho tử là

Kiểm định g thuyết -Trường hợp hai mẫu

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu phụ thuộc

Kiểm định giả thuyết so sánh hai tỷ lệ Kiểm định giả thuyết về tính độc lần

So sánh hai mẫu không độc lập (paired t - test)

• Goi $\mu_D = E(D_i)$, bởi vì D_1, \ldots, D_n là những biến ngẫu nhiên độc lập và có cùng phân phối, nếu d_1, \ldots, d_n là những giá trị của D_1, \ldots, D_n , ta định nghĩa

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i \tag{3}$$

$$s_d^2 = \frac{1}{n-1} \sum_{i=1}^n (d_i - \bar{d})^2 = \frac{1}{n-1} \sum_{i=1}^n d_i^2 - \frac{n}{n-1} (\bar{d})^2$$
 (4)

• Ta cần kiểm định các giả thuyết và đối thuyết sau

(a)
$$\begin{cases} H_0: \mu_D = D_0 \\ H_1: \mu_D \neq D_0 \end{cases}$$
 (b)
$$\begin{cases} H_0: \mu_D = D_0 \\ H_1: \mu_D < D_0 \end{cases}$$
 (c)
$$\begin{cases} H_0: \mu_D = D_0 \\ H_1: \mu_D > D_0 \end{cases}$$

XSTK

N.T. M. Ngọc

Các khái niện trong kiểm định giả thuyết thống

Giả thuyết H_0 và thuyết H_1 Các loại sai lầm

Kiểm định giá thuyết -Trường hợp

Kiểm định giả thuyết cho kỳ vọng Kiểm định giả thuyết

Kiểm định gi thuyết -Trường hợp

Kiểm định giả thuyế so sánh hai trung bình -Trường hợp ha mẫu độc lập

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu phu thuộc

Kiểm định giả thuy so sánh hai tỷ lệ Kiểm định giả thuy về tính độc lập

So sánh hai mẫu không độc lập (paired t - test)

- Xét (X_{1i}, X_{2i}) , với $i=1,2,\ldots,n$, là tập gồm n cặp giá trị quan trắc với giả sử rằng kỳ vọng và phương sai của tổng thể đại diện bởi X_1 là μ_1 và σ_1^2 và kỳ vọng và phương sai của tổng thể đại diện bởi X_2 là μ_2 và σ_2^2 . X_{1i} và X_{2i} ($i \neq j$) độc lập.
- Định nghĩa độ sai khác giữa mỗi cặp trong tập hợp các giá trị quan trắc là

$$D_i = X_{1i} - X_{2i}, \ i = 1, \dots, n \tag{2}$$

- Các D_i , i = 1, ..., n được giả sử có phân phối chuẩn.
- Goi $\mu_D = E(D_i)$, bởi vì D_1, \ldots, D_n là những biến ngẫu nhiên độc lập và có cùng phân phối, nếu d_1, \ldots, d_n là những giá trị của D_1, \ldots, D_n , ta đinh nghĩa

XSTK

N.T. M. Ngoc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và đối huyết H_1 Các loại sai lầm

Kiểm định giả thuyết -Trường hợp một mẫu

Kiểm định giả thuyế cho kỳ vọng Kiểm định giả thuyế cho tỷ lệ

Kiểm định gi thuyết -Trường hợp

Kiểm định giả thuyế so sánh hai trung bình -Trường hợp ha mẫu độc lập

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu phụ thuộc

Kiểm định giả thu so sánh hai tỷ lệ Kiểm định giả thu

So sánh hai mẫu không độc lập (paired t - test)

Các bước kiểm định

- 1 Phát biểu giả thuyết H_0 và đối thuyết H_1
- 2 Tính thống kê kiểm đinh

$$T = \frac{\bar{D} - D_0}{S_D / \sqrt{n}} \tag{5}$$

thống kê T có phân phối Student với n-1 bậc tự do.

3 Xác định miền bác bỏ với mức ý nghĩa α %,

N.T. M. Ngọc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và thuyết H_1 Các loại sai lầm

Kiểm định gi thuyết -Trường hợp một mẫu

Kiểm định giả thuyế cho kỳ vọng Kiểm định giả thuyế cho tỷ lệ

Kiêm định gi thuyết -Trường hợp

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp ha mẫu độc lập

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu phụ thuộc

so sánh hai tỷ lệ Kiểm định giả thuy về tính độc lập

So sánh hai mẫu không độc lập (paired t - test)

• Miền bác bỏ và p - giá tri trong trường hợp này có dang

Đối thuyết	<u>Miền bác bỏ</u>	p - giá trị
$H_1: \mu_D \neq D_0$	$ t >t_{1-\alpha/2}^{n-1}$	$ ho=2\mathbb{P}(T_{n-1}\geq t)$
$H_1: \mu_D < D_0$	$t<-t_{1-\alpha}^{n-1}$	$p = \mathbb{P}(T_{n-1} \leq t)$
$H_1: \mu_D > D_0$	$t > t_{1-\alpha}^{n-1}$	$p=\mathbb{P}(T_{n-1}\geq t)$

- Kết luận: Nếu bác bỏ H_0 , ta kết luận H_1 đúng với $(1-\alpha)*100\%$ độ tin cậy. Ngược lại kết luận chưa đủ cơ sở để bác bỏ H_0 .
- Trường hợp cỡ mẫu n > 30, bài toán kiểm định hai mẫu phụ thuộc thực hiện tương tự như trường hợp một mẫu dựa trên mẫu ngẫu nhiên (D_1, \ldots, D_n) .

XSTK

N.T. M. Ngoc

Các khái niện trong kiểm định giả thuyết thống

Giả thuyết H_0 và đ thuyết H_1 Các loại sai lầm Giá trị p_{Value}

thuyết -Trường hợp một mẫu

Kiểm định giả thuyế cho kỳ vọng Kiểm định giả thuyế cho tỷ lệ

thuyết -Trường hợp hai mẫu

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu phụ thuộc

Kiểm định giả thuyết so sánh hai tỷ lệ Kiểm định giả thuyết về tính độc lận

Ví dụ khác

5 nhân viên bán hàng được cho đi học lớp huấn luyện. Lớp huấn luyện có tác dụng không?

Nhân viên	Số lần bị khách hàng phàn nàn				
	Trước khi học Sau khi học				
Α	6	4			
В	20	6			
C	3	2			
D	0	0			
Е	4	0			

XSTK

N.T. M. Ngọc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và ở thuyết H_1 Các loại sai lầm

Giá tri p_{value}

Kiểm định giá thuyết -Trường hợp

Kiểm định giả thuyết cho kỳ vọng Kiểm định giả thuyết

Kiểm định giả thuyết -Trường hợp hai mẫu

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu phu thuộc

Kiểm định giả thuyệ so sánh hai tỷ lệ Kiểm định giả thuyệ về tính độc lập

Ví du khác

Một bác sĩ dinh dưỡng nghiên cứu một chế độ ăn kiêng và tập thể dục mới để làm giảm lượng đường trong máu của các bệnh nhân bị bệnh tiểu đường. 10 bệnh nhân bị bệnh tiểu đường được chọn để thử nghiệm chương trình này, bảng kết quả bên dưới cho biết lượng đường trong máu trước và sau khi các bệnh nhân tham gia chương trình

Trước		ı		1					l	
Sau	106	186	223	110	203	101	211	176	194	203

Số liệu được cung cấp có đủ bằng chứng để kết luận rằng chế độ ăn kiêng và tập thể dục có tác dụng làm giảm lượng đường trong máu không? $\alpha=0.05$.

XSTK

N.T. M. Ngoc

Các khái niệm trong kiểm định giả thuyết thống kê

Giả thuyết H_0 và đố thuyết H_1 Các loại sai lầm Giá trị p_{value}

:huyết -Frường hợp nột mẫu

Kiểm định giả thuyết cho kỳ vọng Kiểm định giả thuyết cho tỷ lệ

Kiểm định giả :huyết -Trường hợp nai mẫu

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

Kiểm định giả thuyế so sánh hai trung bình -Trường hợp h mẫu phụ thuộc

Kiểm định giả thuyết so sánh hai tỷ lệ Kiểm định giả thuyết

Kiểm định giả thuyết so sánh hai tỷ lệ

- Khảo sát những phần tử thỏa một tính chất A nào đó trên hai tổng thể độc lập với tỷ lệ tương ứng là p_1 và p_2 ; từ hai tổng thể chọn ra hai mẫu với cỡ lần lượt là n và m. Gọi X và Y là số phần tử thỏa tính chất A trong mẫu 1 và mẫu 2. Khi đó, ta có $X \sim B(n, p_1)$ và $Y \sim B(m, p_2)$.
- Bài toán: so sánh tỷ lệ p_1 và p_2 .
- Bài toán kiểm đinh giả thuyết gồm các trường hợp sau:

(a)
$$\begin{cases} H_0: p_1 = p_2 \\ H_1: p_1 \neq p_2 \end{cases}$$
 (b)
$$\begin{cases} H_0: p_1 = p_2 \\ H_1: p_1 < p_2 \end{cases}$$
 (c)
$$\begin{cases} H_0: p_1 = p_2 \\ H_1: p_1 > p_2 \end{cases}$$

- Các giả đinh
 - Hai mẫu đôc lập,
 - Cỡ mẫu lớn và $np_1 > 5$; $n(1 p_1) > 5$ và $mp_2 > 5$; $m(1 p_2) > 5$.

N.T. M. Ngoc

cho kỳ vọng

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

Kiểm định giả thuyết

Kiếm đinh so sánh sánh hai tỷ lê

Các bước kiểm đinh:

- B1: Phát biểu giả thuyết H_0 và đối thuyết H_1
- B2: Xác định tiêu chuẩn kiểm định: Dưới giả thuyết H_0 , thống kê

$$Z = \frac{\hat{P}_1 - \hat{P}_2}{\sqrt{\hat{P}(1-\hat{P})\left(\frac{1}{n} + \frac{1}{m}\right)}}$$

sẽ xấp xỉ phân phối $\mathcal{N}(0,1)$; với

$$\hat{P}_1 = \frac{X}{n}; \ \hat{P}_2 = \frac{Y}{m}; \ \hat{P} = \frac{X+Y}{n+m}$$

Từ mẫu thực nghiệm, tính giá tri thống kê kiểm đinh:

$$z=rac{\hat{
ho_1}-\hat{
ho_2}}{\sqrt{\hat{
ho}(1-\hat{
ho})\left(rac{1}{n}+rac{1}{m}
ight)}}$$

XSTK

N.T. M. Ngoc

cho kỳ vọng

Kiểm định giả thuyế mẫu độc lập

Kiểm định giả thuyết

Ví du

Môt công ty sản xuất thuốc cần kiểm tra một loại thuốc có tác dụng là giảm việc xuất hiện cơn đau ngực ở các bệnh nhân. Công ty thực hiện thí nghiệm trên 400 người, chia làm hai nhóm: nhóm 1 gồm 200 được uống thuốc và nhóm 2 gồm 200 người được uống giả dược. Theo dõi thấy ở nhóm 1 có 8 người lên cơn đau ngực và nhóm 2 có 25 người lên cơn đau ngưc. Với $\alpha = 0.05$, hay cho kết luân về hiệu quả của thuốc mới sản xuất.

XSTK

N.T. M. Ngoc

Trường hợp

Trường hợp

mẫu độc lập

Kiểm định giả thuyết

Các bước kiểm đinh (tt):

 B3: Với mức ý nghĩa α, xác định miền bác bỏ: Với mức ý nghĩa α và dưa vào đối thuyết H_1 , xác đinh miền bác bỏ hoặc tính p-giá tri tương ứng:

Đối thuyết	<u>Miền bác bỏ</u>	ρ - giá tr <u>i</u>
$H_1: p_1 \neq p_2$	$ z >z_{1-\alpha/2}$	$p=2[1-\Phi(z)]$
$H_1: p_1 < p_2$	$z<-z_{1-\alpha}$	$p = \Phi(z)$
$H_1: p_1 > p_2$	$z > z_{1-\alpha}$	$p=1-\Phi(z)$

- B4: Kết luân:
 - Nếu bác bỏ giả thuyết H_0 , ta kết luân H_1 đúng với $(1-\alpha)100\%$ đô tin cây.
 - Ngược lại, ta kết luận chưa đủ cơ sở để bác bỏ giả thuyết H_0 với mức ý nghĩa α .

XSTK

N.T. M. Ngoc

cho kỳ vọng

mẫu độc lập

Kiểm định giả thuyết

Kiểm đinh giả thuyết về tính độc lâp

• Bài toán:

 Giả sử mỗi phần tử trong một tổng thể có thể được phân loại theo hai đặc tính khác nhau, gọi là đặc tính X và đặc tính Y. X có r giá trị và Y có s giá trị. Gọi

$$P_{ij} = \mathbb{P}(X = x_i, Y = y_i)$$

với $i=1,\ldots,r$ và $j=1,\ldots,s$. P_{ij} là xác suất chọn được một phần tử trong tổng thể có đặc tính X bằng i và đặc tính Y bằng j.

Goi

$$p_i = \mathbb{P}(X = x_i) = \sum_{i=1}^s P_{ij}, \quad i = 1, \dots, r$$

$$q_j = \mathbb{P}(Y = y_j) = \sum_{i=1}^r P_{ij}, \quad j = 1, \dots, s$$

N.T. M. Ngọc

Các khái niện trong kiểm định giả thuyết thống

Giả thuyết H_0 và đ thuyết H_1

Giá trị p_{value}

Kiểm định g thuyết -Trường hợp

Kiểm định giả thuyết cho kỳ vọng Kiểm định giả thuyết cho tỷ lệ

Kiểm định g thuyết -Trường hợp hai mẫu

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

Kiểm định giả thuyế so sánh hai trung bình -Trường hợp h mẫu phụ thuộc

Kiểm định gia thuy so sánh hai tỷ lệ

Kiểm định giả thuyết về tính độc lập

Kiểm định giả thuyết về tính độc lập

 p_i là xác suất chọn được một phần tử của tổng thể có đặc tính X bằng x_i , q_j là xác suất chọn được một phần tử của tổng thể có đặc tính Y bằng y_i .

Ta cần kiểm định xem X có độc lập với Y hay không?
 Phát biểu giả thuyết

$$H_0: P_{ii} = p_i q_i \quad \forall i = 1, ..., r; \ j = 1, ..., s$$

và đối thuyết

 $H_1:\exists (i,j)$ sao cho $P_{ij}\neq p_iq_j$

XSTK

N.T. M. Ngọc

Các khái niệr trong kiểm định giả thuyết thống

Giả thuyết H_0 và đị thuyết H_1 Các loại sai lầm

Kiếm định g thuyết -Trường hợp

Kiếm định giả thuyế cho kỳ vọng Kiểm định giả thuyế sho tử là

Kiểm định g thuyết -Trường hợp hai mẫu

Kiểm định giả thuyế so sánh hai trung bình -Trường hợp ha mẫu độc lập

Kiểm định giả thuyế so sánh hai trung bình -Trường hợp h mẫu phụ thuộc

Kiểm định giả thuyết so sánh hai tỷ lệ Kiểm định giả thuyết

Kiểm định giả thuyết về tính độc lập

• Ước lượng của p_i và q_j lần lượt bằng

$$\hat{p}_i = rac{n_i}{N}, \quad i = 1, \dots, r$$
 $\hat{q}_j = rac{m_j}{N}, \quad j = 1, \dots, s$

 Gọi N_{ij} là số phần tử có đặc tính (x_i, y_j) trong N phần tử khảo sát, thì N_{ii} ~ B(N, P_{ii}). Khi đó,

$$\mathbb{E}(\mathit{N}_{ij}) = \mathit{NP}_{ij} = \mathit{Np}_i q_j$$
 khi H_0 đúng

Đăt

$$e_{ij} = N\hat{p}_i\hat{q}_j = \frac{n_i m_j}{N}$$

 e_{ij} gọi là tần số lý thuyết.

XSTK

N.T. M. Ngọc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H_0 và thuyết H_1 Các loại sai lầm

Kiểm định giá thuyết -Trường hợp

Kiểm định giả thuyết cho kỳ vọng Kiểm định giả thuyết

Kiểm định giả thuyết -Trường hợp

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

(iểm định giả thuyết o sánh hai trung ìình -Trường hợp hai nẫu phụ thuộc

so sánh hai tỷ lệ Kiểm định giả thuyết về tính độc lập

Kiểm định giả thuyết về tính độc lập

 Khảo sát N phần tử, ta được bảng kết quả, trong bài toán này gọi là bảng ngẫu nhiên (contingency table):

X	<i>y</i> 1	y 2		Уs	Tổng hàng
<i>x</i> ₁	n ₁₁	<i>n</i> ₁₂	• • • •	n_{1s}	n_1
<i>x</i> ₂	n ₂₁	n ₂₂	• • •	n _{2s}	n_2
:	:	:	:		•
X _r	n _{r1}	n_{r2}	• • • •	n _{rs}	n _r
Tổng cột	m_1	m_2		ms	Ν

Bång:

trong đó, các n_{ij} gọi là tần số thực nghiệm.

XSTK

N.T. M. Ngoc

Các khái niệm trong kiểm định giả thuyết thống

Giả thuyết H₀ và đ thuyết H₁ Các loại sai lầm

Kiếm định giả thuyết -Trường hợp một mẫu

Kiểm định giả thuyế cho kỳ vọng Kiểm định giả thuyế

Kiểm định giả thuyết -Trường hợp

so sánh hai trung bình -Trường hợp hai mẫu độc lập

so sanh hai trung bình -Trường hợp l mẫu phụ thuộc Kiểm định giả thuy

so sánh hai tỷ lệ Kiểm định giả thuyết về tính độc lập

Kiểm định giả thuyết về tính độc lập

[Pearson] Với N_{ij} và $E_{ij} = NP_{ij}$, biến ngẫu nhiên

$$\sum_{i=1}^{r} \sum_{j=1}^{s} \frac{(N_{ij} - E_{ij})^{2}}{E_{ij}}$$

sẽ hội tụ theo phân phối về biến ngẫu nhiên Chi bình phương $\chi^2_{(r-1)(s-1)}$ bậc tự do.

N.T. M. Ngoc

cho kỳ vọng

Trường hợp

so sánh hai trung bình -Trường hợp hai mẫu độc lập

Kiểm định giả thuyết

Kiểm đinh giả thuyết về tính độc

Các bước kiểm đinh

- 1 Phát biểu giả thuyết H_0 : X và Y đôc lập
- 2 Xác định tần số thực nghiệm n_{ii} và tần số lý thuyết

$$e_{ij} = \frac{n_i m_j}{N}$$

với n_i và m_i là tổng hàng i và tổng cột j tương ứng, Điều kiên: $e_{ii} > 5$.

XSTK

N.T. M. Ngoc

cho kỳ vọng

Trường hợp

Kiểm định giả thuyế mẫu độc lập

Kiểm định giả thuyết

Kiểm định giả thuyết về tính độc lâp

Một báo cáo khoa học trong y khoa tuyên bố rằng việc sở hữu một thú cưng trong nhà (chó hoặc mèo) sẽ làm tăng khả năng sống sót của những người chủ mà thường bi lên cơn đau tim. Một mẫu ngẫu nhiên gồm 95 người đã lên cơn đau tim được chon để khảo sát. Dữ liêu của mỗi người khảo sát được chia làm 2 loại:

- Những người sống sót/tử vong 1 năm sau khi lên cơn đau tim.
- Người sống sót/tử vong có nuôi thú cưng trong nhà hay không.

Kết quả cho bởi bảng sau

	Có nuôi thú cưng	Không nuôi thú cưng
Sống sót	28	44
Tử vong	8	15

XSTK

N.T. M. Ngoc

cho kỳ vọng

Trường hợp

so sánh hai trung bình -Trường hợp hai mẫu độc lập

Kiểm định giả thuyết

Kiểm định giả thuyết về tính độc

3. Tính thống kê kiểm định

$$Q^{2} = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{(n_{ij} - e_{ij})^{2}}{e_{ij}} = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{n_{ij}^{2}}{e_{ij}} - N$$
 (6)

Nếu H_0 đúng, thống kê Q^2 có phân phối Chi bình phương với (r-1)(s-1) bậc tự do

4. Bác bỏ H₀ khi

$$Q^2 > \chi^2_{(r-1)(s-1)}(\alpha) \tag{7}$$

4b. Sử dung *p*-giá tri:

$$p = \mathbb{P}\left(\chi_{(r-1)(s-1)}^2 \ge Q^2\right) \tag{8}$$

Bác bỏ H_0 khi: $p < \alpha$.

XSTK

N.T. M. Ngoc

trong kiểm

mẫu độc lập

Kiểm định giả thuyết

Kiểm định giả thuyết về tính độc lâp

Phát biểu giả thuyết:

 H_0 : Khả năng sống sót của bệnh nhân lên cơn đau tim độc lập với việc nuôi thú cưng.

 H_1 : Khả năng sống sót của bệnh nhân lên cơn đau tim phụ thuộc vào việc nuôi thú cưng.

2 Tính tần số thực nghiệm: với $n_1 = 72$, $n_2 = 23$, $m_1 = 36$, $m_2 = 59$

$$e_{11} = \frac{n_1 m_1}{N} = \frac{72 \times 36}{95} = 27.284;$$
 $e_{12} = \frac{n_1 m_2}{N} = \frac{72 \times 59}{95} = 44.716$
 $e_{21} = \frac{n_2 m_1}{N} = \frac{23 \times 36}{95} = 8.716;$ $e_{22} = \frac{n_2 m_2}{N} = \frac{23 \times 59}{95} = 14.284$

3 Tính giá tri thống kê Q^2

$$Q^{2} = \sum_{i=1}^{2} \sum_{i=1}^{2} \frac{n_{ij}^{2}}{e_{ij}} - n = \left(\frac{28^{2}}{27.284} + \frac{44^{2}}{44.716} + \frac{8^{2}}{8.716} + \frac{15^{2}}{15.284}\right) - 95 = 0.125$$

N.T. M. Ngọc

Các khái niện trong kiểm định giả thuyết thống kê

Giả thuyết H_0 và thuyết H_1

Kiểm định

thuyết -Trường hợp một mẫu

Kiêm định giả thuyệ cho kỳ vọng Kiểm định giả thuyệ

Kiểm định giả thuyết -Trường hợp

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu phụ thuộc

Kiểm định giả thu

Kiểm định giả thuyết về tính độc lập

Kiểm định giả thuyết về tính độc lập

4. Với mức ý nghĩa 5%, ta bác bỏ H_0 khi:

$$Q^2 > \chi^2_{(r-1)(s-1)}(\alpha) = \chi^2_1(0.05).$$

Tra bảng Chi-bình phương, ta được $\chi^2_1(0.05)=3.841$. $Q^2=0.125$, suy ra $Q^2<3.841$. Với mức ý nghĩa 5%, ta kết luận chưa đủ cơ sở để bác bỏ H_0 tức là khả năng sống sót của bệnh nhân lên cơn đau tim độc lập với việc nuôi thú cưng.

XSTK

N.T. M. Ngọc

Các khái niện trong kiểm định giả thuyết thống

Giả thuyết H_0 và đối thuyết H_1 Các loại sai lầm

Kiểm định gi thuyết -Trường hợp

Kiểm định giả thuyết cho kỳ vọng Kiểm định giả thuyết cho tỷ lệ

Kiểm định giả thuyết -Trường hợp hại mẫu

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu độc lập

Kiểm định giả thuyết so sánh hai trung bình -Trường hợp hai mẫu phụ thuộc

so sánh hai tỷ lệ Kiểm định giả thuyết về tính độc lập

Kiểm định giả thuyết về tính độc lập

Vé máy bay của hãng hàng không Việt Nam Airline được chia làm 3 loại: Hạng thường (C), hạng trung (B) và hạng doanh nhân (A). Hành khách đi máy bay của VN Airlines nằm trong 1 trong 2 dạng sau: bay nội địa hoặc quốc tế. Khảo sát 920 hành khách đã bay của hãng, cho kết quả sau:

	Loại chuyến bay		
Loại vé	Nội địa	Quốc tế	
Hạng thường	29	22	
Hạng trung	95	121	
Hạng doanh nhân	518	135	

Có ý kiến cho rằng hành khách mua loại vé nào (A, B, C) sẽ phụ thuộc vào việc người đó bay nội địa hay quốc tế. Với mức ý nghĩa 5%, hãy kiểm tra ý kiến trên.