EJERCICIOS 3 TEMA 1

- 1. Efectúa los siguientes cambios de base:
- a) 10.357₁₀₎ a binario con 11 cifras decimales.

Parte entera binaria = 1010

$$0.357 * 2 = 0.714$$

$$0.714 * 2 = 1.428$$

$$0.428 * 2 = 0.856$$

$$0.856 * 2 = 1.712$$

$$0.712 * 2 = 1.424$$

$$0.424 * 2 = 0.848$$

$$0.848 * 2 = 1.696$$

$$0.696 * 2 = 1.392$$

$$0.392 * 2 = 0.784$$

$$0.784 * 2 = 1.568$$

$$0.568 * 2 = 1.136$$

Parte fraccionaria binaria = 0.01011011011

Solución: $10.357_{10} = 1010.01011011011_{2}$

b) 110001,001011₂₎ a hexadecimal sin pasar por base 10.

0011	0001	0010	1100
3	1	2	С

La solución es 31.2C₁₆)

c) 59026,F5₁₆₎ a decimal con todas las cifras decimales.

4	3	2	1	0	-1	-2
5	9	0	2	6	F	5
16 ⁴	16 ³	16 ²	16 ¹	16 ⁰	16 ⁻¹	16 ⁻²
65536	4096	256	16	1	0.0625	0.00390625

Autor: Antonio Gómez Pérez

$$(5 * 65536) + (9 * 4096) + (0 * 256) + (2 * 16) + (6 * 1) = 364582;$$

 $(15 * 0.0625) + (5 * 0.00390625) = 0.95703125;$

La solución es 364582.95703125₁₀₎

d) 77517,15₁₀₎ a octal con 5 cifras decimales.

$$18 / 8 = 2$$
 Resto = 2

Parte entera octal = 227315

$$0.15 * 8 = 1.2$$

$$0.20 * 8 = 1.6$$

$$0.60 * 8 = 4.8$$

$$0.80 * 8 = 6.4$$

$$0.40 * 8 = 3.2$$

Parte fraccionaria octal = 0.11463

Solución = 227315.11463_{8}

2. Escribe el número decimal 250,5 en las bases 3, 4, 7 y 16.

250.5₁₀₎ en base 3

$$83 / 3 = 27$$
 Resto = 2

$$27/3 = 9$$
 Resto = 0

$$9/3 = 3$$
 Resto = 0

$$3/3 = 1$$
 Resto = 0

Parte entera base 3 = 100021

$$0.5 * 3 = 1.5$$

$$0.5 * 3 = 1.5$$

$$0.5 * 3 = 1.5$$

Parte fraccionaria base 3 = 0.111...

Solución = 100021.111_{3}

250.5₁₀₎ en base 4

$$62 / 4 = 15$$
 Resto = 2

$$15/4 = 3$$
 Resto = 3

Parte entera base 4 = 3322

$$0.5 * 4 = 2.00$$

Parte fraccionaria base 4 = 2

Solución = 3322.2_{4}

250.5₁₀₎ en base 7

$$35 / 7 = 5$$
 Resto = 0

Parte entera base 7 = 505

$$0.5 * 7 = 3.5$$

$$0.5 * 7 = 3.5$$

$$0.5 * 7 = 3.5$$

Parte fraccionaria base 7 = 0.333...

Solución = 505.333_{7}

250.5₁₀₎ en base 16

Parte entera base 16 = FA

$$0.5 * 16 = 8.00$$

Parte fraccionaria base 16 = 0.8

Solución = FA.8₁₆)

- 3. Convierte los números a las bases que se indican:
- a) 225,225₁₀₎ a binario, octal y hexadecimal.

Pasar a binario:

$$225 / 2 = 112$$
 Resto = 1
 $112 / 2 = 56$ Resto = 0
 $56 / 2 = 28$ Resto = 0
 $28 / 2 = 14$ Resto = 0

$$14 / 2 = 7$$
 Resto = 0

$$7/2 = 3$$
 Resto = 1

3/2 = 1 Resto = 1

Parte entera = 11100001

- 0.225 * 2 = 0.45
- 0.45 * 2 = 0.90
- 0.90 * 2 = 1.80
- 0.80 * 2 = 1.60
- 0.60 * 2 = 1.20
- 0.20 * 2 = 0.40
- 0.40 * 2 = 0.80
- 0.80 * 2 = 1.60

Parte fraccionaria = 0.00111001

Solución = 11100001.00111001₂₎

Pasar a octal:

- 225 / 8 = 28 Resto = 1
- 28 / 8 = 3 Resto = 4

Parte entera = 341

- 0.225 * 8 = 1.8
- 0.8 * 8 = 6.4
- 0.4 * 8 = 3.2
- 0.2 * 8 = 1.6
- 0.6 * 8 = 4.8

Parte fraccionaria = 0.16314

Solución = 341.16314_{81}

Pasar a hexadecimal:

Parte entera = E1

$$0.225 * 16 = 3.6$$

Parte fraccionaria = 0.666...

Solución = E1.666₁₆₎

b) 11010111,110₂₎ a decimal, octal y hexadecimal.

Pasar a decimal:

7	6	5	4	3	2	1	0	-1	-2	-3
1	1	0	1	0	1	1	1	1	1	0
2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	2 ⁻¹	2 ⁻²	2 ⁻³
128	64	32	16	8	4	2	1	0.5	0.25	0.125

$$(1\ ^{*}\ 2^{7})+(1\ ^{*}\ 2^{6})+(1\ ^{*}\ 2^{4})+(1\ ^{*}\ 2^{2})+(1\ ^{*}\ 2^{1})+(1\ ^{*}\ 2^{-1})+(1\ ^{*}\ 2^{-2})\ ;$$

$$128 + 64 + 16 + 4 + 2 + 1 + 0 + 0.5 + 0.25 = 215.75$$

Solución = 215.75_{10}

Pasar a octal:

011	010	111	,	110
6	2	7	,	9

Solución = 627.6_{8}

Pasar a hexadecimal:

1101	0111	,	1100
D	7	,	C

Solución= D7.C₁₆₎

Autor: Antonio Gómez Pérez

c) 623,77₈₎ a binario, decimal y hexadecimal.

Pasar a binario:

6	2	3	,	7	7
110	010	011		111	111

Solución = 110010011 1111111₁₀)

Pasar a decimal:

8 ²	8 ¹	8 ⁰	8 ⁻¹	8 ⁻²
64	8	1	0.125	0,015625
6	2	3	7	7

$$(6 * 8^4) + (2 * 8^2) + (3 * 8^1) + (7 * 8^{-1}) + (7 * 8^{-2});$$

 $(6 * 64) + (2 * 8) + (3 * 1) + (7 * 0.125) + (7 * 0.015625);$
 $384 + 16 + 3 + 0.875 + 0.109375 = 403.984375$

Solución = $403,984375_{10}$

Pasar a hexadecimal:

* Para pasar a hexadecimal utilizaremos el número en binario

0001	1001	0011	,	1111	1100
1	9	3	,	F	С

Solución = $193.FC_{16}$

6. El número 543_x) se corresponde con el número 674 en base octal.

¿De qué base se trata x?

Como 543_{x}) es un número menor que 674_{8}) esto nos indica que 543_{x}) pertenece a una base mayor que la octal, por lo que para encontrar la base correspondiente he pasado el número octal a decimal:

$$Octal = 674$$

Decimal=
$$(6 * 8^2) + (7 * 8^1) + (4 * 8^0) = 444$$

Mediante este cálculo sabemos que $674_{8)}$ en base decimal es menor que $543_{x)}$ por lo que esto nos indica que $543_{x)}$ pertenece a una base menor que 10 y mayor que 8 por lo que la base debe de ser 9

Autor: Antonio Gómez Pérez

Solución: La base es 9

- 10. Comprueba si se pueden realizar, sin desbordamiento, las siguientes operaciones con el número de bits que se indican, trabajando en complemento a 2. En los casos en los que sí se pueda, realizar la operación y comprobar el resultado.
- a) 157 + 222 con 7 bits.

$$157 + 222 = 379_{10}$$

$$379_{10} = 101111011_{2}$$

n = 10

Solución: No se puede representar ya que se necesitan 9 bits

b) - 245 - 112 con 10 bits.

$$-245 - 112 = 133_{10}$$

$$133_{10)} = 10000101_{2)}$$

n=9

Solución: Se puede representar ya que se necesitan 8 bits

c) 344 + 134 con 10 bits.

$$344 + 134 = 478_{10}$$

$$178_{10} = 1110111110_{2}$$

n = 10

Solución: Se puede representar ya que se necesitan 9 bits

Autor: Antonio Gómez Pérez

d) 344 - 220 con 8 bits.

$$344 - 220 = 124_{10}$$

$$124_{10} = 1111100_{2}$$

$$n = 8$$

Solución: Se puede representar ya que se necesitan 7 bits

e) 344 - 569 con 6 bits.

$$344 - 569 = -225_{10}$$

$$-225_{10} = 100011111_{2}$$

$$n = 10$$

Solución: No se puede representar ya que se necesitan 9 bits

- 11. Indica la representación de los siguientes números, razonando su respuesta:
- a) -16 en complemento a 2 con 5 bits.

$$[-2^{n-1}, 2^{n-1}-1];$$

n = 5

$$[-2^4, 2^4-1] = [-16, 15]$$

Solución: $-16_{10} = 10000_{2}$

b) -16 en complemento a 1 con 5 bits.

$$[-2^{n-1}-1, 2^{n-1}-1]$$
:

n = 5

$$[-2^4-1, 2^4-1] = [-15, 15]$$

Solución: No se puede representar con 5 bits

c) +13 en signo magnitud con 5 bits.

$$[-2^{n-1}-1, 2^{n-1}];$$

 $n = 5$
 $[-2^4-1, 2^4-1] = [-15, 15]$

Solución: $13_{10} = 01010_{2}$

d) -14 en complemento a dos con 5 bits.

$$[-2^{n-1}-1, 2^{n-1}];$$

 $n = 5$
 $[-2^4-1, 2^4-1] = [-15, 15]$
Solución: -14₁₀₎ = 10010₂₎

- 12. Indica la representación de los siguientes números:
- a) -64 en complemento a uno con 7 bits.

$$[-2^{n-1}-1, 2^{n-1}-1]$$
;
 $n = 7$
 $[-2^6-1, 2^6-1] = [-63, 63]$

Solución: No se puede representar con 7 bits

b) -64 en complemento a dos con 7 bits.

$$[-2^{n-1}, 2^{n-1}-1];$$

 $n = 7$
 $[-2^6, 2^6-1] = [-64, 63]$

Solución: -64_{10} = 1000000_{2}

c) 12 en signo magnitud con 6 bits.

$$[-2^{n-1}-1, 2^{n-1}]$$
;
 $n = 6$
 $[-2^5-1, 2^5-1] = [-31, 31]$
Solución: $12_{10} = 001100_{2}$

d) 18 en complemento a dos con 5 bits.

$$[-2^{n-1}, 2^{n-1}-1];$$

 $n = 5$
 $[-2^4, 2^4-1] = [-16, 15]$

Solución: No se puede representar ya que necesita 6 bits.