Table IX The statistics of operations for breaking cycles in DNS

SCC	$Edge'(C_i,C_j)$	$\omega(C_i,C_j)$	$Cycles_b$	$Cycles_a$	$\mathcal{R}(C_i)$	$SCplx(C_i,C_j)$	\hat{W}_{ij}	N_m	N_a
	21→11	10	16	6	0.1397	0.0410	15.77	1	0
$SCC_1 = \{8,11,21,25,$ $32,48,58\}$	21→8	1	6	5	0.1397	0.1399	1.06	3	1
	32 → 48	1	5	4	0.0849	0.1399	0.65	3	1
	32→58	1	4	3	0.0849	0.6077	0.22	2	9
$SCC_2 = \{33,38,52\}$	38→33	2	3	1	0.0232	0.2707	3.55	1	4
	52→33	1	1	0	0.0283	0.2707	0.16	1	4

Table X The statistics of operations for breaking cycles in ANT

SCC	$Edge'(C_i,C_j)$	$\omega(C_i,C_j)$	$Cycles_b$	$Cycles_a$	$\mathcal{R}(C_i)$	$SCplx(C_i,C_j)$	\hat{W}_{ij}	N_m	N_a
	20→24	214	654	440	0.0409	0.0851	4.52	1	3
	18→24	191	440	249	0.0317	0.1220	4.39	2	3
	18→22	39	249	210	0.0317	0.0554	3.90	1	1
	16→22	18	210	192	0.2826	0.0554	4.10	1	1
	2→20	79	192	113	0.0032	0.1575	3.46	1	7
CCC - (2.4.10.1)	19 → 18	50	113	63	0.0357	0.1942	3.01	3	6
$SCC_1 = \{2,4,10,16, 17,18,19,20,$	20→18	35	63	28	0.0409	0.1359	4.23	1	6
21,22,23,24}	20→23	4	28	24	0.0409	0.0554	3.90	1	1
21,22,20,24	2→21	10	24	14	0.0032	0.1401	3.53	2	6
	16→21	5	14	9	0.2826	0.2072	2.48	5	6
	16 → 17	1	9	8	0.2826	0.0554	2.04	1	1
	16→20	5	8	3	0.2826	1.0626	0.61	23	7
	2 → 16	2	3	1	0.0032	0.7089	0.85	1	31
	21→20	1	1	0	0.0334	0.1597	0.21	0	7

Table XI The statistics of operations for breaking cycles in BCEL

SCC	$Edge'(C_i,C_j)$	$\omega(C_i,C_j)$	$Cycles_b$	$Cycles_a$	$\mathcal{R}(C_i)$	$SCplx(C_i,C_j)$	\hat{W}_{ij}	N_m	N_a
	2→21	133674	416091	282417	0.0289	0.0979	9.62	1	1
	20→45	40096	282417	242321	0.0122	0.0884	6.37	1	0
$SCC_1 =$	18→10	17162	242321	225159	0.1080	0.0884	3.98	1	0
{2,4,5,6,	18→15	17162	225159	207997	0.1080	0.0884	4.20	1	0
7,8,9,10,	18→13	17092	207997	190905	0.1080	0.0884	4.41	1	0
11,12,13,14,	6→15	15020	190905	175885	0.0722	0.0884	3.75	1	0
15,1617,18,	6→13	14960	175885	160925	0.0722	0.0884	3.99	1	0
19,20,21,22,	16→45	16775	160925	144150	0.0086	0.0884	4.12	1	0
25,26,27,28,	14 → 45	16168	144150	127982	0.0092	0.0884	4.47	1	0
29,30,31,32,	12→45	16168	127982	111814	0.0092	0.0884	5.07	1	0
33,34,35,36,	11→45	16168	111814	95646	0.0092	0.0884	5.85	1	0
37,38,39,40,	9→45	16167	95646	79479	0.0072	0.0884	6.88	1	0
41,43,44,45}	7 → 45	15418	79479	64061	0.0078	0.0884	7.90	1	0
	19→45	15223	64061	48838	0.0124	0.0884	9.71	1	0
	6→45	11189	48838	37649	0.0722	0.0884	9.43	1	0

SCC	$Edge'(C_i,C_j)$	$\omega(C_i,C_j)$	$Cycles_b$	$Cycles_a$	$\mathcal{R}(C_i)$	$SCplx(C_i,C_j)$	Ŵij	N_m	N _a
	10→45	11178	37649	26471	0.0068	0.0884	8.80	1	0
	6→36	11189	26471	15282	0.0722	0.0884	6.67	1	0
	18→45	6950	15282	8332	0.1176	0.0884	13.67	1	0
	18→36	6950	8332	1382	0.1176	0.0884	10.53	1	0
	17 → 18	70	1382	1312	0.0086	0.0839	6.49	0	2
	6 → 7	12	1312	1300	0.0722	0.0979	5.17	1	1
	6 → 9	12	1300	1288	0.0722	0.0979	5.83	1	1
	6 → 11	12	1288	1276	0.0722	0.0979	6.72	1	1
	6 → 12	12	1276	1264	0.0722	0.0979	7.97	1	1
	6 → 14	12	1264	1252	0.0722	0.0979	9.84	1	1
	6 → 19	12	1252	1240	0.0722	0.0979	10.69	1	1
	6 → 16	12	1240	1228	0.0722	0.1218	6.76	1	2
	8→18	12	1228	1216	0.0106	0.1957	5.14	2	2
	6→20	1	1216	1215	0.0722	0.0979	1.23	1	1
	6 → 10	1	1215	1214	0.0722	0.3536	0.43	4	0
	18 → 7	1	1214	1213	0.1176	0.1817	1.26	2	1
	18→9	1	1213	1212	0.1176	0.1817	1.26	2	1
	18→11	1	1212	1211	0.1176	0.1817	1.26	2	1
	18→12	1	1211	1210	0.1176	0.1817	1.26	2	1
	18 → 14	1	1210	1209	0.1176	0.1817	1.26	2	1
	18→19	1	1209	1208	0.1176	0.1817	1.26	2	1
	18→16	1	1208	1207	0.1176	0.2781	0.78	3	2
	33→45	108	1207	1099	0.0115	0.0884	2.47	1	0
	45→26	91	1099	1008	0.0134	0.0884	2.51	1	0
	33→36	99	1008	909	0.0115	0.0884	2.57	1	0
	31→45	61	909	848	0.0240	0.0884	2.62	1	0
	34→45	60	848	788	0.0230	0.0884	2.65	1	0
	32→45	60	788	728	0.0176	0.0884	2.70	1	0
	41 → 45	37	728	691	0.0899	0.0884	2.74	1	0
	2→29	106	691	585	0.0670	0.0839	2.83	0	2
	31→36	61	585	524	0.0240	0.0884	2.89	1	0
	43→45	36	524	488	0.0091	0.0884	2.93	1	0
	40→45	36	488	452	0.0081	0.0884	2.98	1	0
	44→45	36	452	416	0.0074	0.0884	3.02	1	0
	25→45	36	416	380	0.0054	0.0884	3.06	1	0
	22 → 45	36	380	344	0.0014	0.0884	3.10	1	0
	2 → 37	37	344	307	0.0670	0.0420	3.16	0	1
	2→38	37	307	270	0.0670	0.0979	3.22	1	1
	2 → 36	36	270	234	0.0670	0.0884	3.28	1	0
	2→39	35	234	199	0.0670	0.0420	3.34	0	1
						0.0004	2.20		
	40→36	36	199	163	0.0081	0.0884	3.39	1	0
	40 → 36 5 → 36	36 31	199 163	163 132	0.0081	0.0884	3.45	1	0

SCC	Edge'(Ci,Cj)	$\omega(C_i,C_j)$	$Cycles_b$	$Cycles_a$	$\mathcal{R}(C_i)$	$SCplx(C_i,C_j)$	\hat{W}_{ij}	N_m	N_a
	2→4	45	105	60	0.0670	0.3469	3.95	1	8
	13→45	4	60	56	0.0073	0.0884	4.00	1	0
	30→45	1	56	55	0.1451	0.0884	4.04	1	0
	30→26	6	55	49	0.1451	0.1768	4.16	2	0
	30→36	1	49	48	0.1451	0.0884	4.22	1	0
	30→39	2	48	46	0.1451	0.0979	4.31	1	1
	45→29	4	46	42	0.0134	0.1218	4.41	1	2
	21→45	2	42	40	0.0235	0.0884	4.45	1	0
	45→39	2	40	38	0.0134	0.0979	4.51	1	1
	45→35	13	38	25	0.0134	0.0884	5.22	1	0
	45→4	5	25	20	0.0134	0.3469	5.55	1	8
	2→45	9	20	11	0.0670	0.0884	6.88	1	0
	2→22	1	11	10	0.0670	0.0979	6.94	1	1
	2→43	1	10	9	0.0670	0.0979	7.00	1	1
	2→25	1	9	8	0.0670	0.1218	7.09	1	2
	2→32	1	8	7	0.0670	0.1218	7.19	1	2
	2→34	1	7	6	0.0670	0.1218	7.28	1	2
	2→40	1	6	5	0.0670	0.1218	7.37	1	2
	2→44	1	5	4	0.0670	0.1537	7.50	1	3
	45→28	2	4	2	0.0134	0.1897	7.68	1	4
	45→15	1	2	1	0.0134	0.0884	7.72	1	0
	45→5	1	1	0	0.0134	0.1897	7.89	1	4

Here, $Edge'(C_i, C_j)$ represents the removed edge, $Cycles_b$ and $Cycles_b$ denote the number of cycles in the system before and after remove $< C_i, C_j >$.