

MATEMATIKA+

MXMVD15C0T01

DIDAKTICKÝ TEST

Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 %

1 Základní informace k zadání zkoušky

- Didaktický test obsahuje 23 úloh.
- Časový limit pro řešení didaktického testu je uveden na záznamovém archu.
- Povolené pomůcky: psací a rýsovací potřeby, Matematické, fyzikální a chemické tabulky a kalkulátor bez grafického režimu, bez řešení rovnic a úprav algebraických výrazů.
- U každé úlohy je uveden maximální počet bodů.
- Odpovědi pište do záznamového archu.
- Nejednoznačný nebo nečitelný zápis odpovědi bude považován za chybné řešení.
- Poznámky si můžete dělat do testového sešitu, nebudou však předmětem hodnocení.
- První část didaktického testu (úlohy 1–12) tvoří úlohy otevřené.
- Ve druhé části didaktického testu (úlohy 13–23) jsou uzavřené úlohy, které obsahují nabídku odpovědí. U každé úlohy nebo podúlohy je právě jedna odpověď správná.
- Za nesprávnou nebo neuvedenou odpověď se neudělují záporné body.

Pravidla správného zápisu odpovědí

- Odpovědi zaznamenávejte modře nebo černě píšící propisovací tužkou, která píše dostatečně silně a nepřerušovaně.
- Budete-li rýsovat obyčejnou tužkou, následně obtáhněte čáry propisovací tužkou.
- Hodnoceny budou pouze odpovědi uvedené v záznamovém archu.

2.1 Pokyny k otevřeným úlohám

 Výsledky pište čitelně do vyznačených bílých polí.

- Je-li požadován celý postup řešení, uveďte jej do záznamového archu. Pokud uvedete pouze výsledek, nebudou vám přiděleny žádné body.
- Zápisy uvedené mimo vyznačená bílá pole nebudou hodnoceny.
- Chybný zápis přeškrtněte a nově zapište správné řešení.

2.2 Pokyny k uzavřeným úlohám

 Odpověď, kterou považujete za správnou, zřetelně zakřížkujte v příslušném bílém poli záznamového archu, a to přesně z rohu do rohu dle obrázku.

 Pokud budete chtít následně zvolit jinou odpověď, zabarvěte pečlivě původně zakřížkované pole a zvolenou odpověď vyznačte křížkem do nového pole.

- Jakýkoliv jiný způsob záznamu odpovědí a jejich oprav bude považován za nesprávnou odpověď.
- Pokud zakřížkujete více než jedno pole, bude vaše odpověď považována za nesprávnou.

TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

© Centrum pro zjišťování výsledků vzdělávání, 2015

Obsah testového sešitu je chráněn autorskými právy. Jakékoli jeho užití, jakož i užití jakékoli jeho části pro komerční účely či pro jejich přímou i nepřímou podporu bez předchozího explicitního písemného souhlasu CZVV bude ve smyslu obecně závazných právních norem považováno za porušení autorských práv.

1 Rozložte na součin:

$$(9x - 3) + (3x - 1)^2 =$$

1 bod

2 Pro $a \in \mathbb{R} \setminus \{1\}$ zjednodušte:

$$\frac{a^{222} - a^{20}}{a^{101} - 1} =$$

max. 2 body

Je dána rovnice $x^2 + 2 = p + 6x$ s neznámou $x \in \mathbf{R}$ a parametrem $p \in \mathbf{R}$.

Určete všechny hodnoty parametru p, pro něž má rovnice alespoň jeden reálný kořen.

VÝCHOZÍ TEXT K ÚLOZE 4

Aleš zaplatil za zlevněný zájezd 9 000 korun a z původní ceny zájezdu tak ušetřil čtvrtinu. Sleva se týkala jen dopravy, jejíž cena klesla na 40 % původní ceny. Ostatní náklady zůstaly v plné výši.

(CZVV)

max. 2 body

4 Vypočtěte původní cenu dopravy (d).

V záznamovém archu uveďte celý postup řešení.

VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 5

(CZVV)

max. 2 body

5 Určete délky hlavní i vedlejší poloosy elipsy.

Bod Y leží uvnitř úsečky CD.

Obsah trojúhelníku ABY je roven $\frac{5}{6}$ obsahu lichoběžníku ABCD (AB || CD).

DYC

A 15 cm

B

6 Vypočtěte délku strany CD lichoběžníku ABCD.

max. 2 body

VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 7

(CZVV)

max. 2 body

7 Sestrojte řez krychle *ABCDEFGH* **rovinou** σ **.**

V záznamovém archu obtáhněte všechny čáry propisovací tužkou.

(CZVV)

max. 3 body

- **8** Sestrojte rovnoramenný trojúhelník *ABC* se základnou *AB*, jehož osa souměrnosti prochází bodem *O* a rameno *BC* leží na přímce *p*.
- 8.1 Proveďte rozbor nebo popis konstrukce trojúhelníku ABC.

8.2 Proveďte konstrukci trojúhelníku *ABC*.

Najděte všechna řešení.

V záznamovém archu obtáhněte všechny čáry a křivky propisovací tužkou.

VÝCHOZÍ TEXT K ÚLOZE 9

Pětimístné číslo má ve svém zápise čtyřikrát stejnou **nenulovou** číslici a jednu větší číslici. Těmto podmínkám vyhovují např. čísla 31 111, 22 922 apod.

(CZVV)

max. 2 body

9

9.1 Určete, kolik čísel vyhovujících podmínkám zadání má ve svém zápise číslici 1.

9.2 Určete počet všech čísel vyhovujících podmínkám zadání.

VÝCHOZÍ TEXT A GRAFY K ÚLOZE 10

V kartézské soustavě souřadnic 0xy je sestrojen graf funkce $f: y = (x-1)^2$ pro $x \in \mathbf{R}$. Posunutím grafu funkce f nebo posunutím a sjednocením jeho částí byly vytvořeny grafy funkcí f_1 a f_2 .

(CZVV)

max. 3 body

10

- 10.1 Zapište předpis funkce f_1 .
- 10.2 Zapište předpis funkce f_2 .
- 10.3 Sestrojte graf funkce f_3 : $y = |(x + 2)^2 1|$, $x \in \mathbf{R}$. Průsečíky s osami i lokální extrémy zaznamenejte přesně.

V záznamovém archu obtáhněte graf propisovací tužkou.

11 Pro $n \in \mathbb{N}$ řešte rovnici:

$$\frac{1}{2} + \left(\frac{1}{2}\right)^2 + \dots + \left(\frac{1}{2}\right)^n = \frac{4080}{2^{n+4}}$$

V záznamovém archu uveďte celý postup řešení.

V Kocourkově vydláždili cestu od radnice kulatými dlaždicemi.

První den položili jednu dlaždici s průměrem 51 cm, druhý den dvě dlaždice s průměrem 52 cm, další den tři dlaždice s průměrem 53 cm atd.

Až do konce pokračovali podle stejného pravidla. Každý den položili o 1 dlaždici více než v předešlém dni a zároveň se průměr dlaždic zvětšil o 1 cm.

Poslední den položili největší počet dlaždic, a to s průměrem 130 cm.

(CZVV)

max. 3 body

12

- 12.1 Vypočtěte, kolik dlaždic na cestě mělo průměr 130 cm.
- 12.2 Vypočtěte, kolika dlaždicemi v Kocourkově vydláždili celou cestu.
- 12.3 Vypočtěte průměr dlaždice, která byla položena na cestě jako tisící v pořadí.

Ve všech částech úlohy 12 uveďte v záznamovém archu celý postup řešení.

13 Rovnice (13.1–13.3) řešte v oboru R a každé z nich přiřaďte pravdivé tvrzení z nabídky A–E.

13.1
$$\log(x-2) = \log(2-x)$$

13.2
$$\log(1-x) + \log(-x) = \log(4-x)$$

13.3
$$\log(x+2) = 0$$

- A) Rovnice nemá řešení.
- B) Rovnice má právě jedno řešení, kořen je -2.
- C) Rovnice má právě jedno řešení, kořen je 2.
- D) Rovnice má právě jedno řešení, kořen není -2 ani 2.
- E) Rovnice má právě dvě různá řešení.

14 Přiřaďte každé nerovnici (14.1–14.3) její řešení (A–E) v oboru R.

14.1
$$\frac{2}{1-x} > 0$$

14.2
$$\frac{2x}{1-x} > 0$$

14.3
$$\frac{2x}{1-x} > -1$$

- A) (0; 1)
- B) (-1;1)
- C) $(-\infty; 1)$
- D) $(0; \infty)$
- E) jiné řešení

VÝCHOZÍ TEXT K ÚLOZE 15

Pro $x \in \mathbf{R}$ platí:

$$A = (2x+1)^2$$

$$B = (2x)^2$$

$$C = (2x - 1)^2$$

(CZVV)

2 body

15 Který z následujících výrazů je ekvivalentní s výrazem $(A - B) \cdot (B - C)$?

A)
$$4B - 1$$

B)
$$8B - 1$$

C)
$$B^2 - 1$$

E) žádný z uvedených

VÝCHOZÍ TEXT K ÚLOZE 16

Jsou dány dvě rovnice:

- 1. tg 3x = 0
- II. $tg 2x = \sqrt{3}$

Množinu všech řešení první rovnice v intervalu $\langle 0; 2\pi \rangle$ označme K_I , množinu všech řešení druhé rovnice v intervalu $\langle 0; 2\pi \rangle$ označme K_{II} .

(CZVV)

2 body

16 Kolik prvků obsahuje průnik $K_I \cap K_{II}$?

(Tj. počet společných kořenů obou rovnic v intervalu $(0; 2\pi)$.)

- A) 0
- B) 1
- C) 2
- D) 3
- E) jiný počet

2 body

17 Existuje takové $x \in \mathbf{R}$, že čísla $x - \sqrt{6}$; \sqrt{x} ; $x + \sqrt{6}$ tvoří tři po sobě jdoucí členy geometrické posloupnosti.

Jaký je kvocient této posloupnosti?

- A) $\sqrt{6}$
- B) $\sqrt{3}$
- C) $\sqrt{6} \sqrt{3}$
- D) $\sqrt{6} \sqrt{2}$
- E) $\sqrt{3} + \sqrt{2}$

18 Jaká je velikost libovolného vektoru $\vec{v} = (3; y; y)$, který je kolmý

k vektoru $\vec{w} = (-3; -y; 2y)$ **?**

- A) $|\vec{v}| = 3\sqrt{3}$
- $B) \qquad |\vec{v}| = 3\sqrt{6}$
- C) $|\vec{v}| = 6\sqrt{3}$
- D) $|\vec{v}| = 9\sqrt{6}$
- E) nelze jednoznačně určit

VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 19

V krychli ABCDEFGH je bod L středem hrany BC a bod K leží ve čtvrtině hrany AB blíže k bodu A ($K \in AB \land |KB| = 3|AK|$).

Objem tělesa KBLH je 2 cm³.

(CZVV)

2 body

19 Jaký je objem krychle *ABCDEFGH***?**

- A) 8 cm³
- B) 12 cm³
- C) 24 cm³
- D) 32 cm³
- E) jiný objem

Dvě části střechy domu tvoří obdélníky, které spolu svírají úhel 105° . Střecha má z každé strany jiný sklon (z levé strany 30°).

(CZVV)

2 body

20 V jakém poměru jsou velikosti ploch obou částí střechy?

- A) 3:2
- B) $2:\sqrt{3}$
- C) $\sqrt{3}:\sqrt{2}$
- D) $\sqrt{3}:1$
- E) $\sqrt{2}:1$

Jaký je absolutní člen binomického rozvoje výrazu $\left(\frac{1}{\sqrt{x}} + x^2\right)^{15}$? 21

Poznámka: Absolutní člen neobsahuje proměnnou x.

- $\frac{15!}{10! \cdot 5!}$ A)
- B)
- C)
- D)
- žádný z uvedených E)

2 body

22 V osudí je 5 nenulových čísel a 3 nuly. Vylosovaná čísla se do osudí nevrací.

Jaká je pravděpodobnost, že v pětici tažených čísel budou právě dvě nuly?

- A)
- B)
- 15 28 C)
- D)
- E)

- Pro každé z následujících čísel $z \in \mathbb{C}$ (23.1–23.3) rozhodněte, je-li zápis $|z+3\mathrm{i}| \leq 4$ pravdivý (A), či nikoli (N).
- 23.1 z = -7i
- A N
- 23.2 z = -4
- 23.3 z = 3 5i

ZKONTROLUJTE, ZDA JSTE DO ZÁZNAMOVÉHO ARCHU UVEDL/A VŠECHNY ODPOVĚDI.

KLÍČ SPRÁVNÝCH ŘEŠENÍ

Matematika +

Kód testu: MXMVD15C0T01

	Celkem	Uzavřených	Otevřených
Počet úloh	23	11	12

Úloha	Správné řešení	Body
1	(3x-1)(3x+2)	1
2	$a^{121} + a^{20}$	1
3	$p \in \langle -7; \infty \rangle$	max. 2 b.
4	$d=5~000~\mathrm{korun}$	max. 2 b.
5	$a=4; b=2\sqrt{3}$	max. 2 b.
6	CD = 3 cm	max. 2 b.
7	A B	max. 2 b.
8		
8.1	rozbor nebo postup konstrukce, např. 1. k ; k (O ; $ OA $) 2. B ; $B \in k \cap p$ 3. S_{AB} ; $S_{AB} \in AB \wedge S_{AB}A = S_{AB}B $ 4. o ; $o \perp AB \wedge S_{AB} \in o$ 5. C ; $C \in o \cap p$ 6. $\triangle ABC$	
8.2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	max. 3 b.

Matematika+ jaro 2015

Úloha	Správné řešení	Body
9 9.1 9.2	40 180	max. 2 b.
10	C (1)? 1	
10.1	$f_1: y = (x-1)^2 - 1$	
10.2	$f_2: y = (x - 1)^2$	
10.3		max. 3 b.
11	n = 8	max. 2 b.
12		
12.1	80	max. 3 b.
12.2	3 240	
12.3	95 cm	
13	33 CIII	
13.1	A	max. 3 b.
13.2	В	
13.3	D	
14.1	С	max. 3 b.
14.2		
14.3	В	
15	A C	2
16	C	2 2 2
17	E	2
18	Α	2
19	<u>D</u>	2 2
20	E	2
20 21 22	В	2 2
22	С	2

Matematika+ jaro 2015

Úloha	Správné řešení	Body
23		
23.1	А	max. 3 b.
23.2	N	iliax. 3 D.
23.3	A	
CELKE	M	50 bodů

Všechna ekvivalentní vyjádření jsou možná.

Obsah klíče správných řešení je chráněn autorskými právy. Jakékoli jeho užití, jakož i užití jakékoli jeho části pro komerční účely či pro jejich přímou i nepřímou podporu bez předchozího explicitního písemného souhlasu CZVV bude ve smyslu obecně závazných právních norem považováno za porušení autorských práv.