5.5.4. AUTOMAT DE RĂSPUNS LA TELEFON

5.5.4. Enunţul problemei

- Să se realizeze sinteza unui automat (circuit secvențial sincron) de răspuns la telefon
 - Se poate programa numărul de apeluri sonore ale soneriei telefonului după care începe să funcționeze automatul
 - Se comandă redarea unui mesaj înregistrat
 - Se comandă înregistrarea mesajului apelantului
 - Programul automatului se încheie în condițiile:
 - După preluarea (înregistrarea) mesajului
 - Dacă apelantul închide
 - Dacă destinatarul răspunde la telefon

- Se stabileşte schema bloc a automatului, cu componentele periferice adiţionale necesare
- Componentele adiţionale:
 - TEL telefon propriu-zis
 - NRT numărător pentru numărul apelurilor sonore ale soneriei telefonului
 - PLAY casetofon pentru redarea mesajului de întâmpinare înregistrat
 - REC casetofon pentru înregistrarea mesajului apelantului

- Se stabilesc variabilele de intrare şi ieşire şi caracterul lor sincron sau asincron
- Variabilele folosite:
 - Sonerie
 - Fiecare apel al soneriei telefonului provoacă decrementarea numărătorului NRT până se ajunge la valoarea 0
 - Nu este variabilă a automatului!!!
 - Start
 - Variabilă de intrare asincronă, de la numărător
 - Determină începerea funcționării automatului, dacă numărătorul a ajuns la valoarea 0
 - SP (StartPlay), SR (StartRecord)
 - Variabile de ieşire spre casetofon
 - **EP** (EndOfPlay), **ER** (EndOfRecord)
 - Variabile de intrare asincrone, de la casetofon

Variabilele folosite:

- AS (ApelantStop)
 - Variabilă de intrare asincronă de la telefon (apelantul poate închide oricând telefonul)
- DPU (DestinatarPick-Up)
 - Variabilă de intrare asincronă de la telefon
 - Apare când destinatarul răspunde la telefon

Init

- Variabilă de ieşire spre numărător
- Încarcă paralel numărătorul cu valoarea stabilită pentru numărul de apeluri ale soneriei telefonului până la intrarea în funcțiune a automatului

Observaţie:

 Variabilele de intrare asincrone AS şi DPU generează semnalul de Reset pentru bistabilii interni ai automatului şi opresc înregistrarea pe casetofon

Schema bloc

Organigrama funcționării

5.5.4.2. Codificarea stărilor

- Deoarece variabilele de intrare sunt asincrone ⇒ pot apărea tranziții false între stări ⇒ pentru evitarea lor este nevoie de o codificare adiacentă a stărilor automatului: (A,B), (C,D) şi (E,A)
- Trebuie codificate 5 stări \Rightarrow 3 variabile de stare
- Se alege următoarea codificare, care respectă condițiile de adiacență impuse:
 - A = 000; B = 001; C = 011; D = 010; E = 100
- Nu se poate reduce numărul de stări

5.5.4.2. Codificarea stărilor

 Pe baza codificării făcute se construiește diagrama Karnaugh pentru stări

Q_2 Q_1Q_0	00	01	11	10
$\widetilde{0}$	A	В	С	D
1	Е			

- Plecând de la această diagramă a stărilor trebuie obținute cele 3 diagrame pentru stările următoare
- Vom suprapune diagramele pentru starea următoare şi vom desena o singură diagramă, înglobând în ea şi variabilele de intrare

5.5.4.2. Codificarea stărilor

- Completarea se face urmărind tranzițiile din organigramă şi completând în compartimentul fiecărei stări codul stării următoare
- Locațiile necompletate vor fi indiferente, deoarece conținutul lor nu poate fi atins prin funcționare
- Diagramele pentru stările următoare:

Q_2 Q_1Q_0	00	01	11	10
$\stackrel{\frown}{0}$	<mark>0</mark> 0Start	<mark>0</mark> 11	0 <mark>1EP</mark>	<mark>100</mark>
1	ER <mark>0</mark> 0	XXX	XXX	XXX

5.5.4.3. Registrul de stări

- Implementarea registrului de stări se face cu bistabile D
- Generatorul noii stări se realizează cu porți logice
- Diagramele Karnaugh ne dau funcțiile pentru intrările bistabilelor D

Q_2 Q_1Q_0	00	01	11	10
$\widetilde{0}$	0	0	0	$\bigcirc 1$
1	ŒR	X	X	X

$$D_2 = \overline{ER} \cdot Q_2 + \overline{Q_1} \cdot \overline{\overline{Q_0}}$$

$$D_1:$$

Q_2 Q_1Q_0	00	01	11	10
$\widetilde{0}$	0	1	1	0
1	0	X	X	X

$$D_1 = Q_0$$

 D_0 :

Q_2 Q_1Q_0	00	01	11	10
$\widetilde{0}$	Start	1	EP	0
1	0	X	X	X

$$D_0 = Start \cdot \overline{Q}_2 \cdot \overline{Q}_1 + \overline{EP} \cdot Q_0 + \overline{Q}_1 \cdot Q_0$$

5.5.4.4. leşirile

 Diagramele Karnaugh pentru ieşiri se completează ţinând cont de organigramă şi de diagrama Karnaugh pentru stări

Init:

Init = $\overline{Q}_2 \cdot \overline{Q}_1 \cdot \overline{Q}_0$

SP:

Q_2 Q_1Q_0	00	01	11	10
$\widetilde{0}$		1		
1		X	X	X

$$SP = \overline{Q}_1 \cdot Q_0$$

SR:

$$Q_2 ext{ } Q_1 Q_0 ext{ } 00 ext{ } 01 ext{ } 11 ext{ } 10 ext{ } 0 ext{ } 1 ext{ } x ext{ } x ext{ } x ext{ } x ext{ }$$

$$SR = Q_1 \cdot \overline{Q}_0$$

5.5.4.4. Schema circuitului

- Registrul de stări este cu bistabile de tip D
- Funcţiile de excitaţie secundare D se implementează cu porţi logice
- Generarea semnalului de Reset, activ pe 0 logic, necesar pentru iniţializarea bistabililor registrului de stări, se realizează cu o poartă logică SAU-NU

5.5.4.4. Schema circuitului

 Ieşirile se realizează cu porți logice de tip ŞI

5.5.4.5. Generatorul noii stări cu multiplexoare

- Se poate realiza NUMAI cu multiplexoare dacă numărul intrărilor de selecție a multiplexorului este egal cu numărul variabilelor de stare
- Dacă numărul intrărilor de selecție este mai mic decât cel al variabilelor de stare, la intrările selectate se vor conecta circuite realizate cu porți logice
- Pentru excitaţiile secundare se scriu termenii canonici care în diagrama Karnaugh sunt 1 sau conţin variabile înglobate

5.5.4.5. Generatorul noii stări cu multiplexoare

- Implementare cu MUX 8:1
- Implementarea cu MUX 4:1 \Rightarrow pe unele intrări ale multiplexorului am avea ieşiri din porți logice (de exemplu, pentru intrarea D_0)

5.5.4.6. Generatorul noii stări cu decodificatoare

- La intrarea decodificatorului se aplică variabilele de stare
- La ieşirile decodificatorului se obţin stările interne individualizate
- Utilizăm diagrama pentru stări şi cele pentru stările următoare
- Pentru obţinerea funcţiilor de excitaţie se vor utiliza porţi logice de tip ŞI, SAU şi NU

Q_2 Q_1Q_0	00	01	11	10
$\widetilde{0}$	A	В	C	D
1	Е			

Q_2 Q_1Q_0	00	01	11	10
$\stackrel{\frown}{0}$	00Start	011	01 EP	100
1	ER00	XXX	XXX	XXX

$$D_{2} = D + \overline{ER} \cdot E$$

$$D_{1} = B + C$$

$$D_{0} = Start \cdot A + B + \overline{EP} \cdot C$$

5.5.4.6. Generatorul noii stări cu decodificatoare

Decodificatorul utilizat va fi de tip zecimal

5.5.4.7. Generatorul noii stări cu memorii și MUX

Utilizarea memoriilor permite simplificarea logicii generării

noii stări

$A_3A_2A_1A_0$	y ₃ y ₂ y ₁ y ₀	$Q_2Q_1Q_0$	$A_3A_2A_1A_0$	$y_3y_2y_1y_0$		
		$(s_2s_1s_0)$				
0000	0000	000	1000	0001		
0001	0011	001	1001	0000		
0010	0100	010	1010	0000		
0011	0010	011	1011	0011		
0100	0000	100	1100	0100		
0101	0000	101	1101	0000		
0110	0000	110	1110	0000		
0111	0000	111	1111	0000		
	'	Curs 11 P	Proiectare Logic	a		20
	0000 0001 0010 0011 0100 0101 0110	0000 0000 0001 0011 0010 0100 0011 0010 0100 0000 0101 0000 0110 0000 0110 0000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

- Numărătorul va fi utilizat pentru funcția de memorare și parțial pentru efectuarea tranzițiilor
- Vom utiliza pentru implementare un numărător sincron (de exemplu, numărătorul zecimal 74162) - acesta poate memora starea circuitului
- Codificarea stărilor se face ținând cont de ordinea de numărare a numărătorului: A = 000; B = 001; C = 010; D = 011; E = 100
- Cu această codificare diagrama Karnaugh pentru stări este:

$Q_2 Q_1 Q_0$	00	01	11	10
$\widetilde{0}$	A	В	D	C
1	Е			

- Determinăm funcțiile de numărare f_N și de încărcare (ramificare) f_R și realizăm implementarea lor cu multiplexoare 8:1 (de tipul 74151)
- Intrările de selecție ale MUX vor fi ieșirile numărătorului, $Q_2Q_1Q_0$
- Urmărind organigrama de funcționare, diagramele
 Karnaugh pentru cele 2 funcții vor fi:

f_N :	\mathcal{L}	1			
11	Q_2 Q_1Q_0	00	01	11	10
	$\widetilde{0}$	Start	1	1	EP
	1				
f _R :					
	Q_2 Q_1Q_0	00	01	11	10
	$\widetilde{0}$				
	1	ER			
2 2019	a				Cur

- Stările următoare ale numărătorului trebuie specificate numai pentru stările din care au loc ramificări
- Din starea E se face salt la starea A, deci de la codul 100 (E) se trece la codul 000 (A)
- Pentru a obține pe ieșire codul lui A (000) se modifică doar intrarea D_2 de date paralele a numărătorului: $D_2 = \overline{Q}_2$; $D_1 = Q_1$; $D_0 = Q_0$ și se utilizează încărcarea paralelă a numărătorului (obținem un numărător modulo 5)

- Schema circuitului trebuie completată şi cu logica pentru determinarea ieşirilor
- Ieşirile Init, SP şi SR corespund stărilor A, B, D
- Funcțiile de ieșire sunt:

$$Init = \overline{Q}_2 \cdot \overline{Q}_1 \cdot \overline{Q}_0$$

$$SP = \overline{Q}_1 \cdot Q_0$$

$$SR = Q_1 \cdot Q_0$$

 Implementarea funcţiilor de ieşire se poate realiza cu porţi logice de tip ŞI sau cu un decodificator zecimal

Automatul de răspuns la telefon are următoarea implementare:

13.12.2019