Here is a necessary condition for a function to have a local minimum with respect to a convex subset U.

Theorem 40.9. (Necessary condition for a local minimum on a convex subset) Let $J: \Omega \to \mathbb{R}$ be a function defined on some open subset Ω of a normed vector space E and let $U \subseteq \Omega$ be a nonempty convex subset. Given any $u \in U$, if dJ(u) exists and if J has a local minimum in u with respect to U, then

$$dJ(u)(v-u) \ge 0$$
 for all $v \in U$.

Proof. Let v = u + w be an arbitrary point in U. Since U is convex, we have $u + tw \in U$ for all t such that $0 \le t \le 1$. Since dJ(u) exists, we can write

$$J(u + tw) - J(u) = dJ(u)(tw) + ||tw|| \epsilon(tw)$$

with $\lim_{t\to 0} \epsilon(tw) = 0$. However, because $0 \le t$,

$$J(u + tw) - J(u) = t(dJ(u)(w) + ||w|| \epsilon(tw))$$

and since u is a local minimum with respect to U, we have $J(u+tw)-J(u)\geq 0$, so we get

$$t(dJ(u)(w) + ||w|| \epsilon(tw)) \ge 0.$$

The above implies that $dJ(u)(w) \ge 0$, because otherwise we could pick t > 0 small enough so that

$$dJ(u)(w) + ||w|| \epsilon(tw) < 0,$$

a contradiction. Since the argument holds for all $v = u + w \in U$, the theorem is proven. \square

Observe that the convexity of U is a substitute for the use of Lagrange multipliers, but we now have to deal with an *inequality* instead of an equality.

In the special case where U is a subspace of E we have the following result.

Corollary 40.10. With the same assumptions as in Theorem 40.9, if U is a subspace of E, if dJ(u) exists and if J has a local minimum in u with respect to U, then

$$dJ(u)(w) = 0$$
 for all $w \in U$.

Proof. In this case since $u \in U$ we have $2u \in U$, and for any $u + w \in U$, we must have $2u - (u + w) = u - w \in U$. The previous theorem implies that $dJ(u)(w) \ge 0$ and $dJ(u)(-w) \ge 0$, that is, $dJ(u)(w) \le 0$, so dJ(u) = 0. Since the argument holds for $w \in U$ (because U is a subspace, if $u, w \in U$, then $u + w \in U$), we conclude that

$$dJ(u)(w) = 0$$
 for all $w \in U$.

We will now characterize convex functions when they have a first derivative or a second derivative.