Back-Prop

An artificial Neuron

Logistic activation function: $\varphi(x) = \frac{1}{1 + e^{-x}}$

Derivative: $\frac{d}{dx}\varphi(x) = \frac{e^{-x}}{\left(1 + e^{-x}\right)^2} = \varphi(x)\left(1 - \varphi(x)\right)$

Learning update of a single neuron

A source of data: $(\vec{x}_1, y_1), (\vec{x}_2, y_2), ...$ where $\vec{x}_t \in \mathbb{R}^n, y_t \in [0,1]$

A feed-forward Artificial Neural Network (ANN)

Based on "Introduction to the theory of Neural computation" Hertz, Krogh and Palmer

ANN loss function

Computing the gradient

- Forward pass: propagate activations.
- Backward pass: propagate errors.

Feedforward Input Data

Backward Error Propagation

Forward-Backward Update rules

Summary

- Most NN are feed-forward
 - There are NN with Feedback, we will not talk about them here.
- A Layered FF-NN has connection going from one layer to the next.
- The forward pass computes the activation level of all neurons/
- Given the output we compute the errors for output nodes.
- The backwards pass computes the effective error for each internal neuron.
- In the backward pass the weights are updated.