Aprendizaje Automático

Based on material by Andrew Ng from Stanford University (Machine Learning course)

Dimensionality Reduction

Máster en Bioinformática y Biología Computacional

Dimensionality Reduction

Dimensionality Reduction algorithms:

- Map high-dimensional data to a lower dimension
- While preserving structure

They are used for:

- Visualization
- Performance
- Curse of dimensionality

A ton of algorithms exist:

- t-SNE is specialised for visualization
- ... and has gained a lot of popularity

From 2D to 1D

From 2D to 1D

Reduce correlation of feats

From 2D to 1D

$$\mathbf{x}^{(1)} \in \mathbb{R}^2 \to z^{(1)} \in \mathbb{R}$$

 $\mathbf{x}^{(2)} \in \mathbb{R}^2 \to z^{(2)} \in \mathbb{R}$
 \vdots
 $\mathbf{x}^{(N)} \in \mathbb{R}^2 \to z^{(N)} \in \mathbb{R}$

From 3D to 2D

Original dataset

Projected dataset

Reduce data from 3D to 2D

$$\mathbf{x}^{(i)} \in \mathbb{R}^3 \to \mathbf{z}^{(i)} \in \mathbb{R}^2$$

Data Visualization

	x_1	x_2	x_3	x_4	x_5	x_6	x_{2000}
Sub_ID	rs307377	rs7366653	rs41307846	rs3753242	rs35082957	rs34154371	
HG00001	1	0	1	1	0	0	•••
HG00002	0	0	1	1	1	0	
HG00003	1	1	0	0	0	1	
HG00004	0	0	0	1	0	1	
HG00005	0	0	1	1	1	1	

$$\mathbf{x}^{(i)} \in \mathbb{B}^{2000}$$

How can we understand our data better? How can we reduce from 2000D to 2D

Data Visualization

Drawback, the new axes do not have any physical meaning

Projection to a line

PCA tries to minimize the projection "error"

PCA tries to minimize the projection "error"

• Reduce from 2-D to 1-D: Find a direction (a vector $u^{(1)} \in \Re$) onto which to project the data so as to minimize the projection error.

Reduce from n-dimension to k-dimension: Find k vectors u⁽¹⁾, u⁽²⁾, u⁽³⁾,.... u^(k) onto which to project the data, so as to minimize the projection error.

PCA: Algorithm

Reduce data from 2D to 1D

$$\mathbf{x}^{(i)} \in \Re^2 \rightarrow z^{(i)} \in \Re$$

$$Z^{(1)}$$
 $Z^{(2)}$
 X
 X
 Z_1

Reduce data from 3D to 2D

$$\mathbf{x}^{(i)} \in \mathbb{R}^3 \to \mathbf{z}^{(i)} \in \mathbb{R}^2$$

$$\mathbf{z} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$

- Training set: $x^{(1)}, x^{(2)}, ..., x^{(M)}$
- Data Preprocessing (feature scaling/mean normalization):

$$\mu_j = \frac{1}{M} \sum_{i=1}^M x_j^{(i)}$$

• If different features on different scales (e.g., x_1 = area, x_2 = growth rate), scale features to have comparable range of values.

$$x_j^{(i)} = \frac{x_j^{(i)} - \mu_j}{\sigma_i}$$

Where, the standard deviation:

$$\sigma_j = \sqrt{\frac{1}{M} \sum_{i=1}^{M} (x_j^{(i)} - \mu_j)^2}$$

Compute "covariance matrix" of x:

$$\Sigma = \frac{1}{M} \sum_{i=1}^{M} (\mathbf{x}^{(i)}) (\mathbf{x}^{(i)})^{T} \in \Re^{n \times n}$$

Implementation. If we have the X matrix defined as:

$$\mathbf{X} = \begin{bmatrix} - & \left(\mathbf{x}^{(1)}\right)^T & - \\ & \vdots & \\ - & \left(\mathbf{x}^{(M)}\right)^T & - \end{bmatrix} \in \Re^{M \times n} \to \Sigma = \left(\frac{1}{M}\right) \times \mathbf{X}^T \times \mathbf{X}$$

Compute "eigenvalues" of matrix Σ:

$$\lambda = \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{bmatrix} \in \Re^{n \times 1}$$

Compute the "eigenvectors" of matrix Σ:

$$\mathbf{U} = \begin{bmatrix} | & & | \\ \mathbf{u}^{(1)} & \dots & \mathbf{u}^{(n)} \\ | & | \end{bmatrix} \in \Re^{n \times n}$$

 Order "eigenvectors" according to its "eigenvalues" from higher to lower values. It means higher significance to lower significance

$$\mathbf{U} = \begin{bmatrix} 1 & & & \\ \mathbf{u}^{(1)} & \dots & \mathbf{u}^{(n)} \end{bmatrix} \in \mathbb{R}^{n \times n}$$

$$\boldsymbol{\lambda}' = \begin{bmatrix} \lambda'_1 \\ \vdots \\ \lambda'_n \end{bmatrix} \in \mathbb{R}^{n \times 1} \qquad \lambda'_1 > \lambda'_2 > \dots > \lambda'_n$$

$$\mathbf{U}' = \begin{bmatrix} 1 & & & \\ (\mathbf{u}')^{(1)} & \dots & (\mathbf{u}')^{(n)} \end{bmatrix} \in \mathbb{R}^{n \times n}$$

Select the components with higher significance:

$$\mathbf{U}' = \begin{bmatrix} | & & | \\ (\mathbf{u}')^{(1)} & \dots & (\mathbf{u}')^{(n)} \end{bmatrix} \in \Re^{n \times n}$$
$$\mathbf{x} \in \Re^n \to \mathbf{z} \in \Re^k$$

$$\mathbf{z} = \begin{bmatrix} \mathbf{u}' \mathbf{u}' \mathbf{1} & \mathbf{u}' \mathbf{u}' \mathbf{k} \\ \mathbf{u}' \mathbf{1} & \mathbf{u}' \mathbf{1} \end{bmatrix}^{T} \mathbf{x} = \begin{bmatrix} - & \left((\mathbf{u}')^{(1)} \right)^{T} & - \\ \vdots & \vdots & \\ - & \left((\mathbf{u}')^{(k)} \right)^{T} & - \end{bmatrix} \mathbf{x} = \mathbf{z} \in \Re^{k}$$

$$\mathbf{x} = \mathbf{z} \in \Re^{k}$$

Reconstruction from compressed representation

Reconstruction from compressed representation

$$\mathbf{z} \in \Re \to \mathbf{x} \in \Re^2$$

$$\mathbf{x}_{projection} = \widecheck{\mathbf{U}} \ \mathbf{z} \approx \mathbf{x}$$

Reconstruction from compressed representation

$$\mathbf{z} \in \mathfrak{R} \to \mathbf{x} \in \mathfrak{R}^2$$

 x_1

$$\mathbf{x}_{projection} = \mathbf{\check{U}} \mathbf{z} \approx \mathbf{x}$$

$$n \times 1 \qquad n \times k \qquad k \times 1$$

Choosing the number of principal components

- Average squared projection error = $\frac{1}{M}\sum_{i=1}^{M} \left\| \mathbf{x}^{(i)} \mathbf{x}_{projection}^{(i)} \right\|^2$ (what PCA minimizes)

 Variance between data and projections
- Total variation in the data = $\frac{1}{M} \sum_{i=1}^{M} ||\mathbf{x}^{(i)}||^2$ (the average length squared of the examples)
- Typically, choose k to be smallest value so that:

$$\frac{\frac{1}{M} \sum_{i=1}^{M} \left\| \mathbf{x}^{(i)} - \mathbf{x}_{projection}^{(i)} \right\|^{2}}{\frac{1}{M} \sum_{i=1}^{M} \|\mathbf{x}^{(i)}\|^{2}} \le 0.01$$

"99% of variance is retained"

Choosing the number of principal components

- Using the eigenvalues to estimate the variance retained in each component:
- Variance explained by the component $j = \frac{\lambda_j}{\sum_{i=1}^n \lambda_i}$

 Plot the cumulative variance ratio:

Dimensionality Reduction: Other Methods

 Muldimensional Scaling (MDS): define low-dimension space that preserves the distance between cases in original high-dimension space.

Dimensionality Reduction: Other Methods

• Discriminant Analysis (e.g., LDA): calculate a function that maximizes the ability to discriminate among 2 or more groups.

Dimensionality Reduction: Other Methods

• Manifold Learning (e.g., Isomap): discover low dimensional representations in locally Euclidean smooth manifolds.

t-SNE

t-SNE reduces
 dimensionality
 while preserving
 local similarity, has
 been build
 heuristically, and is
 commonly used to
 visualize
 representations.

Geoffrey Hinton

Emeritus Prof. Comp Sci, U.Toronto & Engineering Fellow, Google Dirección de correo verificada de cs.toronto.edu - <u>Página principal</u>

machine learning psychology artificial intelligence cognitive science computer science

ΤΊΤυLΟ	CITADO POR	AÑO
Learning internal representations by error-propagation DE Rumelhart, GE Hinton, RJ Williams Parallel Distributed Processing: Explorations in the Microstructure of	65178 *	1986
Imagenet classification with deep convolutional neural networks A Krizhevsky, I Sutskever, GE Hinton Advances in neural information processing systems, 1097-1105	57920	2012
Learning representations by back-propagating errors DE Rumelhart, GE Hinton, RJ Williams Nature 323, 533-536	44542 *	1986
Learning internal representations by error propagation DE Rumelhart, GE Hinton, RJ Williams CALIFORNIA UNIV SAN DIEGO LA JOLLA INST FOR	25340	1985
Deep learning Y LeCun, Y Benglo, G Hinton nature 521 (7553), 436-444	23304	2015
Learning representations by back-propagating errors DE Rumelhart, GE Hinton, RJ Williams nature 323 (6088), 533-536	20220	1986
Dropout: a simple way to prevent neural networks from overfitting N Srivastava, G Hinton, A Krizhevsky, I Sutskever, R Salakhutdinov The journal of machine learning research 15 (1), 1929-1958	18131	2014
A fast learning algorithm for deep belief nets GE Hinton, S Osindero, YW Teh Neural computation 18 (7), 1527-1554	12473	2006
Visualizing data using t-SNE L van der Maaten, G Hinton Journal of Machine Learning Research 9 (Nov), 2579-2605	12051	2008
Reducing the dimensionality of data with neural networks GE Hinton, RR Salakhutdinov science 313 (5786), 504-507	11566	2006

Citado	o por VER	TODO
	Total Desd	e 2015
Citas Índice Índice	h 157	232746 117 284
		74000
	- 11	55500
		37000
		18500
2013 2	014 2015 2016 2017 2018 2019 2020	0
Coau	tores	
	James L. McClelland Professor of Psychology, Stanfor	>
	Terrence Sejnowski Francis Crick Professor, Salk Ins	>
	George E. Dahl Google Brain	>
9	Abdelrahman Mohamed Research scientist, Facebook Al	>
1	Vinod Nair Research Scientist, DeepMind	>
0	Radford Neal Emeritus Professor, Dept. of Stat	>
	Sidney Fels Professor of Electrical and Comp	>
*	Chris Williams Professor of Machine Learning,	>
	David C. Plaut	

Professor of Psychology, Carneg.

✓ SEGUIR

AAAI 2020

Amy Greenwald Michael Bowling

Brown University

Murray Campbell IBM Research

History Panel: Advancing AI by Playing Games

Gary Kasparov Hiroaki Kitano Former world Sony Computer Science champion in chess Laboratories, Inc.

David Silver DeepMind

The Previous AAAI History Panel: Expert Systems (AAAI'17 in San Francisco)

Aude Billard

U. of Alberta

Abigail Zimmerman--Niefield

EAAI Invited Talk

David Cox IAAI Invited Talk

Henry Kautz NSF and U. Rochester AAAI/IAAI Robert S. **Engelmore Award**

Turing Award Winner Event!

Dawn Song **UC Berkeley** AAAI/IAAI Joint Invited Talk

Susan Athey Stanford U.

Stuart Russell **UC Berkeley**

Aprendizaje Automático

Based on material by Andrew Ng from Stanford University (Machine Learning course)

Dimensionality Reduction

Máster en Bioinformática y Biología Computacional