

妙享科技(深圳)有限公司

MX-02 模组 用户使用手册

Ver 1.1

Part Number: MX-02

万物智联新选择

Start the Wonderful Journey of IoT Intelligence

版本历史:

版本号	发布日期	修订人	说明
V1.0	2022-4-5	罗子裕	初始版本
V1. 1	2023-8-25	罗鑫	添加实物图,增加连接随机 MAC 地址指令描述

注:

由于随着产品的硬件及软件的不断改进,本文档可能会有所更改,恕不另行告知,最终应以最新版的文档为准。

最新资料请直接联系我司获取

目录

概述	1
模组特性	
硬件特性	
软件特性	1
模组出厂默认参数配置	2
封装尺寸脚位定义	2
模组封装尺寸	3
性能指标	2
数据传输速率	
功耗	
电气特性	5
AT 指令集	5
AT 指令详细说明	e
查询蓝牙模组地址码	
设置蓝牙模组 MAC 地址	6
设置设备名称	
查询设备名称	
设置广播状态	
查询广播状态	
设置串口波特率	
查询串口波特率	
断开蓝牙连接	
设置蓝牙扫描状态	
连接指定 MAC 地址设备	
查询当前已连接的设备	
保存设置自动重连 MAC 列表	
自动重连设置	
删除自动重连列表	10
设置 BLE 主服务通道	11
查询 BLE 主服务通道	
设置 BLE 读服务通道	
查询 BLE 读服务通道	
设置 BLE 写服务通道	
查询 BLE 写服务通道	
修改广播间隔	
查询广播间隔	
读取软件版本	
恢复出厂设置	
软件复位	
扫描蓝牙自定义广播数据	
修改模组的发射功率	
查询模组的发射功率	
设置自定义广播数据	
查询自定义广播数据	
BLE 协议说明(APP 接口)	

万物智联新选择

Start the Wonderful Journey of IoT Intelligence

模组布局参考建议	16
贴片生产注意事项	16
型 <u>多</u>	17

TEL:0755-23320814

概述

MX-02 模组是基于翱捷科技股份有限公司的 ASR5601 芯片设计, ASR5601 是一款高度集成 BLE 5.2 SoC 单芯片解决方案,集成了低功耗、高性能射频收发器、ARM®CortexM0+处理器、DCDC 电源管理模组、模拟音频输入通路及丰富的外设。它主要应用于智能穿戴式设备、便携式医疗设备、运动健身设备、智慧家庭、消费电子、工业控制等,可满足低功耗、低时延、近距离无线数据通信的要求。MX-02A 透传模组可以让开发者无须了解低功耗蓝牙协议,直接使用类似串口通信方式、开发支持低功耗蓝牙通信的智能产品。

本文档是 MX-02 透传模组的使用说明文档,包括模组的主要功能、应用场景、使用方法、逻辑结构、硬件接口及各项指标特性。

模组特性

硬件特性

- ▶ 模组封装: 12mm*16.2mm (邮票孔)-18PIN
- ➤ 工作频段: 2400MHz ~ 2483.5MHz
- ▶ 调制方式: GFSK
- ▶ 频偏: ±20kHz
- ➤ 发射功率: -30dbm ~ +10dbm
- ➤ 接收灵敏度: -98dBm@1Mbps, -107dBm@125Kbps
- ▶ 数据接口: Uart
- ▶ 支持内部 RTC 实时时钟
- ▶ 超低功耗:功耗测试
- ➤ 工作电压: 1.7V ~ 3.6V
- ▶ 工作温度: -40℃ ~ +85℃
- ➤ 天线类型: PCB 天线

软件特性

- ▶ 支持全功能 BT5.2 协议
- ▶ 串口透明传输,无需任何蓝牙协议栈应用经验;
- ▶ 支持配合客户需求,量身定制专属软件;CPU 主频高达 64MHz,接口资源丰富
- ▶ 支持 AT 指令,丰富的指令集用于配置模组参数。
- ▶ 支持 OTA 空中升级功能,方便维护
- ▶ 支持主从一体功能(模组被手机连接,同时连接其它蓝牙设备)
- ▶ 支持多达1主4的连接应用

模组出厂默认参数配置

参数	默认值
串口配置	115200bps
模组名称	NB-(MAC 地址)
广播间隔	200mS
连接参数	30mS
发射功率	Odbm
BLE 读写通道	FFF1/FFF2
上电串口响应	+READY <cr><lf></lf></cr>
连接串口响应	+CONNECTED: <type>, <mac><cr><lf> TYP=0 表示连接设备为主端连接设备 TYP=1 表示连接设备为从端连接设备 <mac>为连接设备对应的 MAC 地址 <cr><lf>为 ASCII 码 0x0d 及 0x0a</lf></cr></mac></lf></cr></mac></type>
断开连接串口响应	+DISCONN: <type>, <mac><cr><lf></lf></cr></mac></type>

封装尺寸脚位定义

MX-02 引脚定义

模组 引脚 序号	模组脚位名称	芯片 脚位 名称	输入/	功能说明
Pin1	ANT	ANT	-	外置天线引脚
Pin2	GND	GND	-	模组地 GND
Pin3	NC	P28	-	保留
Pin4	NC	P29	-	保留
Pin5	CDS	P08	Ι	低电平:不识别 AT 指令,所有数据都识别为透传数据; 高电平:自动识别 AT 指令及透传数据。
Pin6	LINK	P09	0	连接状态指示引脚 低电平: 蓝牙已连接,高电平: 蓝牙未连接 休眠状态下,此引脚失效。
Pin7	I05	P10	I/0	保留

Start the Wonderful Journey of IoT Intelligence

Pin8	RX	P03	Ι	UART 串口 RX 引脚
Pin9	TX	P02	0	UART 串口 TX 引脚
Pin10	VCC	VCC	-	模组电源引脚 3.3V
Pin11	GND	GND	_	模组地 GND
Pin12	烧录串 口	P05	I/0	烧录串口
Pin13	烧录串 口	P04	I/0	烧录串口
Pin14	复位引 脚	RST	Ι	模组复位,低电平有效
Pin15	烧录使 能引脚	SEL0	Ι	烧录使能引脚,低电平有效
Pin16	BRTS	P06	Ι	0: 主机有数据发送,模组将等待接收来自主机 的数据 1: 模组不再接收主机数据,此时可大大降低模组 待机功耗
Pin17	NC	NC	-	保留
Pin18	NC	NC	-	保留

模组封装尺寸

模组为邮票半孔封装,如图2为模组尺寸。

图 2-模组尺寸图

性能指标

数据传输速率

测试环境: 主从模组连接数据收发, PC 串口工具设置单包 1KB 数据, 间隔 10ms 发送, 波特率为 115200bps, 定时 1 分钟数据收发, 实测速率大于 10.5KB/S, 具体测试情况如下表,

序号	方向	发送总数据量	接收总数据量	丢包率	用时/秒	实测速率 KB/s
1	从向主发	648192	648192	0.0000%	60	10. 55
2	从向主发	655360	654848	0. 0781%	60	10. 65833333
3	从向主发	655360	655360	0.0000%	60	10. 66666667
4	从向主发	655360	654848	0. 0781%	60	10. 65833333
5	从向主发	648192	647680	0.0790%	60	10. 54166667
6	从向主发	656384	655872	0.0780%	60	10. 675
7	从向主发	657408	657408	0.0000%	60	10.7
8	从向主发	655360	655360	0.0000%	60	10.66666667
9	从向主发	655360	654848	0. 0781%	60	10. 65833333
10	从向主发	657408	657408	0.0000%	60	10.7
11	主向从发	657480	657480	0.0000%	60	10. 70117188
12	主向从发	654336	654336	0.0000%	60	10.65
13	主向从发	657408	656896	0. 0779%	60	10. 69166667
14	主向从发	656384	655872	0.0780%	60	10. 675
15	主向从发	640000	640000	0.0000%	60	10. 41666667
16	主向从发	655360	654848	0. 0781%	60	10. 65833333
17	主向从发	656384	655872	0.0780%	60	10. 675
18	主向从发	655360	655360	0.0000%	60	10.66666667
19	主向从发	655360	654848	0. 0781%	60	10. 65833333
20	主向从发	658432	658432	0.0000%	60	10. 71666667

功耗

下表为用电源实测的模组在各种状态下的功耗数据(供电电压 3.3V,发射功率 0dbm)

状态	广播/连接间隔(ms)	平均电流 (Ua)	
空闲	_	16Ua	
	20ms	1.19ma	
广播	200ms	170 . 51ua	
	500ms	82.3UA	
	1000ms	49. 94ua	

万物智联新选择

	5000ms	24. 42ua	
连接	30ms	317. 32Ua	

电气特性

绝对最大额定值

参数	最小值	最大值	单位
存储温度	-40	125	${\mathbb C}$
VDD	-0.3	3.9	V
其它管脚	-0.2	VDD+0.3≤3.9	V

推荐运行条件

参数	最小值	推荐值	最大值	单位
工作温度	-40	_	85	${\mathbb C}$
VDD	1.7	3.3	3.6	V

AT 指令集

指令	指令描述
AT+MAC? <cr><lf></lf></cr>	查询蓝牙 4.0 地址码
AT+MAC= <mac><cr><lf></lf></cr></mac>	设置模组 MAC 地址
<u>AT+NAME=<string><cr><lf></lf></cr></string></u>	设置设备名称
AT+NAME? <cr><lf></lf></cr>	查询设备名称
<u>AT+ADV=<num><cr><lf></lf></cr></num></u>	设置广播状态
AT+ADV? <cr><lf></lf></cr>	查询广播状态
<u>AT+UART=<num><cr><lf></lf></cr></num></u>	设置波特率
AT+UART? <cr><lf></lf></cr>	查询模组串口波特率
AT+DISCONN= <num><cr><lf></lf></cr></num>	断开蓝牙连接
<u>AT+SCAN=<num><cr><lf></lf></cr></num></u>	查询扫描蓝牙 4.0 BLE 设备
AT+CONN= <mac><cr><lf></lf></cr></mac>	主动连接查询到的蓝牙 4.0 BLE 设备
AT+DEV? <cr><lf></lf></cr>	查询当前已连接的设备
AT+AUTO MAC= <mac><cr><lf></lf></cr></mac>	保存设置自动重连 MAC 列表
AT+AUTO_CFG=X <cr><lf></lf></cr>	自动重连设置
AT+AUTO DEL <cr><lf></lf></cr>	删除自动重连列表
<u>AT+UUIDS=<uuid><cr><lf></lf></cr></uuid></u>	设置 BLE 主服务通道
AT+UUIDS? <cr><lf></lf></cr>	查询 BLE 主服务通道
<u>AT+UUIDN=<uuid><cr><lf></lf></cr></uuid></u>	设置 BLE 读服务通道

万物智联新选择

Start the Wonderful Journey of IoT Intelligence

AT+UUIDN? <cr><lf></lf></cr>	查询 BLE 读服务通道
<u>AT+UUIDW=<uuid><cr><lf></lf></cr></uuid></u>	设置 BLE 写服务通道
<u>AT+UUIDW?<cr><lf></lf></cr></u>	查询 BLE 写服务通道
<u>AT+AINTVL=<num><cr><lf></lf></cr></num></u>	修改广播间隔
AT+AINTVL? <cr><lf></lf></cr>	查询广播间隔
AT+VER? <cr><lf></lf></cr>	查询软件版本
<u>AT+REST=1<cr><lf></lf></cr></u>	恢复出厂设置
<u>AT+REBOOT=1<cr><lf></lf></cr></u>	设置模组重启
AT+SCAN MANU=1 <cr><lf></lf></cr>	扫描查询附近蓝牙设备的广播自定义数据
AT+TXPOWER=X <cr><lf></lf></cr>	设置模组发射功率
AT+TXPOWER?	查询模组当前发射功率
AT+AMDATA= <hex><cr><lf></lf></cr></hex>	设置自定义广播数据
<u>AT+AMDATA?<cr><lf></lf></cr></u>	查询自定义广播数据

备注: <CR><LF>为 ASCII 码 0x0d 及 0x0a;

上电或重启成功的串口提示(+READY<CR><LF>), HOST MCU 必须在收到此消息后,才能执行指令和数传的操作。

AT 指令详细说明

查询蓝牙模组地址码

指令描述: 查询蓝牙模组地址码

读/写: 只读

指令代码: AT+MAC?<CR><LF>

支持参数: N/A 设置/响应:

读/写	指令格式	响应	备注
R	AT+MAC? <cr><lf></lf></cr>	+MAC:000102030405 <cr><lf></lf></cr>	返回本机蓝牙地址码: 00:01:02:03:04:05。

设置蓝牙模组 MAC 地址

指令描述:设置蓝牙模组地址码,重启后生效。

读/写: 只写

指令代码: AT+MAC=<mac><CR><LF> 支持参数: 000000000000-FFFFFFFFFFF

设置/响应:

读/写	指令格式	响应	备注
W	AT+MAC= <mac><cr><lf></lf></cr></mac>	OK <cr><lf></lf></cr>	设置蓝牙 MAC 地址成功
W		ERROR <cr><lf></lf></cr>	设置蓝牙 MAC 地址失败

设置设备名称

指令描述:设置设备名称,立即生效。

读/写: 只写

指令代码: AT+NAME=<string><CR><LF>

支持参数: 用户自定义,总长度不超过20字节

设置/响应:

读/写	指令格式	响应	备注
W	AT+NAME= <string><cr><lf></lf></cr></string>	OK <cr><lf></lf></cr>	设置成功
W		ERROR <cr><lf></lf></cr>	设置失败

查询设备名称

指令描述:查询设备名称

读/写: 只读

指令代码: AT+NAME?<CR><LF>

支持参数: N/A 设置/响应:

读/写	指令格式	响应	备注
R	AT+NAME? <cr><lf></lf></cr>	+NAME: <string><cr><lf></lf></cr></string>	<string>为当前 BLE 设备名称</string>

设置广播状态

指令描述:设置设备蓝牙广播状态,立即生效,复位重启后恢复广播。

读/写: 只写

指令代码: AT+ADV=<num><CR><LF>支持参数: 0-关闭广播 1-开启广播

设置/响应:

读/写	指令格式	响应	备注
W	ATLANY () (CD) (LD)	OK <cr><lf></lf></cr>	设置成功
W	AT+ADV= <num><cr><lf></lf></cr></num>	ERROR <cr><lf></lf></cr>	设置失败

查询广播状态

指令描述:查询设备蓝牙广播状态.

读/写: 只读

指令代码: AT+ADV?<CR><LF>

支持参数: N/A 设置/响应:

读/写	指令格式	响应	备注

万物智联新选择

Start the Wonderful Journey of IoT Intelligence

R AT+ADV?<CR><LF>

+ADV: X<CR><LF>

X=0 设备广播已关闭 X=1 设备广播已开启

设置串口波特率

指令描述:设置设备波特率

读/写: 只写

指令代码: AT+UART=<num><CR><LF>

支持参数: 0:9600/ 1:14400/ 2:19200/ 3:38400/ 4:57600/ 5:115200/ 6:230400

设置/响应:

读/写	指令格式	响应	备注
W	ATT. HART () (OD) (LE)	OK <cr><lf></lf></cr>	设置成功
W	AT+UART= <num><cr><lf></lf></cr></num>	ERROR <cr><lf></lf></cr>	设置失败

查询串口波特率

指令描述:查询设备串口波特率。

读/写: 只读

指令代码: AT+UART?<CR><LF>

支持参数: N/A 设置/响应:

读/写	指令格式	响应	备泊	<u>:</u>
R	AT+UART? <cr><lf></lf></cr>	+UART: <num><cr><lf></lf></cr></num>	0:9600; 1:144 2:19200; 3:384 4:57600; 5:115 6:230400;	:00;

断开蓝牙连接

指令描述: 断开蓝牙连接

读/写: 只写

指令代码: AT+DISCONN=<num><CR><LF>

支持参数: 0-断开所有连接的从设备 1-主动断开与主机端设备的连接

设置/响应:

读/ 写	指令格式	响应	备注
W	AT+DISCONN= <num><cr><lf></lf></cr></num>	+DISCONN: <num>, <mac><cr><lf></lf></cr></mac></num>	本机与〈mac〉设备断开连接

设置蓝牙扫描状态

指令描述:设置蓝牙扫描状态

妙享科技 (深圳) 有限公司

读/写: 只写

指令代码: AT+SCAN=<num> <CR><LF>

支持参数: 0-立即关闭扫描功能 1-开启扫描功能(扫描持续时间为6S,6S后停止扫描)。

设置/响应:

读/写	指令格式	响应	备注
W	AT+SCAN=1 <cr><lf></lf></cr>	+SCAN: <cr><lf> <mac>空格<typ>空格<rssi>空格<device name=""><cr><lf> +SCAN END<cr><lf></lf></cr></lf></cr></device></rssi></typ></mac></lf></cr>	

备注:扫描附近蓝牙设备,返回数据以"+SCAN:<CR><LF>"开头,以"+SCAN END<CR><LF>"结尾;中间重复多条设备信息:〈mac〉空格<type〉空格<rssi〉空格[name]<CR><LF>,扫描设备信息包括: MAC 地址、地址类型、RSSI 值、广播名称。(有些设备没有广播名称,所以扫描信息可能只有 MAC 地址,地址类型和 RSSI 值)

返回: +SCAN: <CR><LF>,表示开启扫码。

返回: 001B10F4DA0B1-35 NBEE<CR><LF>, 获取到的设备信息为 MAC 地址为 00:1B:10:F4:DA:0B, 地址类型为 1, RSSI 为-35dbm, 设备名称为 NBEE。

返回: +SCAN END<CR><LF>,表示停止扫码。

连接指定 MAC 地址设备

指令描述: 设置蓝牙扫描状态

读/写: 只写

指令代码: AT+CONN=<MAC>, <MAC TYP><CR><LF>

支持参数: 0000000000-FFFFFFFFFFF

设置/响应:

读/写	指令格式	响应	备注
W	AT+CONN= <mac>, <typ><cr><lf></lf></cr></typ></mac>	+CONNECTED: <mac typ="">, <mac><cr><lf></lf></cr></mac></mac>	成功连接地址类型为 <mac typ="">的 <mac>目标设备, <mac typ="">地址类型,0-静态地址 1-随机地址, <mac typ="">值为0时,输入TYP参数 可缺省,即输入 AT+CONN=<mac><cr><lf>即可</lf></cr></mac></mac></mac></mac></mac>
		+CONNECT TIMEOUT <cr><lf></lf></cr>	连接超时
		ERROR <cr><lf></lf></cr>	MAC 地址格式有误,连接失败

查询当前已连接的设备

指令描述:查询当前已连接的设备

读/写: 只读

指令代码: AT+DEV?<CR><LF>

支持参数: N/A 设置/响应:

读/写 指令格式 响应 备注

万物智联新选择

Start the Wonderful Journey of IoT Intelligence

R

AT+DEV?<CR><LF>

+DEV:<TYP>, <MAC><CR><LF>

TYP=0表示连接设备为从端连接设备 TYP=1 表示连接设备为主端连接设备 <MAC>为连接设备对应的 MAC 地址

保存设置自动重连 MAC 列表

指令描述:保存设置自动重连 MAC 列表

读/写: 只写

指令代码: AT+AUTO MAC=<MAC>, <MAC TYP><CR><LF>

支持参数: 0000000000-FFFFFFFFFFF

设置/响应:

读/ 写	指令格式	响应	备注
W	AT+AUTO_MAC= <mac>, <mac TYP><cr><lf></lf></cr></mac </mac>	OK <cr><lf></lf></cr>	使用 MAC 地址方式自动连接一个从设备,并且保存(只设置保存,不发起连接), 《MAC TYP》地址类型,0-静态地址 1-随机地址, 《MAC TYP》值为 0 时,输入 TYP 参数可缺省,即输入 AT+AUTO_MAC= <mac><cr><lf>即可</lf></cr></mac>
		ERROR <cr><lf></lf></cr>	设置失败

自动重连设置

指令描述: 自动重连设置

读/写: 只写

指令代码: AT+AUTO CFG=<num><CR><LF>

支持参数: 0: 关闭自动重连

1: 开启自动重连

设置/响应:

读/写	指令格式	响应	备注
W	AT AUTO CEC-/num\/CD\/I E\	OK <cr><lf></lf></cr>	设置成功
W	AT+AUTO_CFG= <num><cr><lf></lf></cr></num>	ERROR <cr><lf></lf></cr>	设置失败

删除自动重连列表

指令描述: 删除自动重连列表

读/写: 只写

指令代码: AT+AUTO_DEL<CR><LF>

支持参数: N/A 设置/响应:

读/写	指令格式	响应	备注
W	AT+AUTO DEL <cr><lf></lf></cr>	OK <cr><lf></lf></cr>	删除自动连接保存的所有 MAC 地址
W	AT AUTO_DEL\CR/\LI'/	ERROR <cr><lf></lf></cr>	设置失败

设置 BLE 主服务通道

指令描述:设置 BLE 主服务通道,重启后生效。

读/写: 只写

指令代码: AT+UUIDS=<uuid><CR><LF>

支持参数: 16bit 格式或 128bit 格式的 UUID

设置/响应:

读/写	指令格式	响应	备注
W	AT+UUIDS= <uuid><cr><lf></lf></cr></uuid>	OK <cr><lf></lf></cr>	设置成功
VV	A1+001D3-\uu1U/\CK/\LF/	ERROR <cr><lf></lf></cr>	设置失败

备注: 16bit 格式 UUID 示例: FFF0

128bit 格式 UUID 示例: 11223344556677889900112233445566

查询 BLE 主服务通道

指令描述:查询 BLE 主服务通道

读/写: 只读

指令代码: AT+UUIDS?<CR><LF>

支持参数: N/A 设置/响应:

读/写	指令格式	响应	备注
D	AT LIHITDOO / CD\ / L F\	HILLDG	<uuid>取值,</uuid>
K	AT+UUIDS? <cr><lf></lf></cr>	+UUIDS: <uuid><cr><lf></lf></cr></uuid>	16bit 格式或 128bit 格式的 UUID

设置 BLE 读服务通道

指令描述:设置 BLE 读服务通道,重启后生效。

读/写: 只写

指令代码: AT+UUIDN=<uuid><CR><LF>

支持参数: 16bit 格式或 128bit 格式的 UUID

设置/响应:

读/写	指令格式	响应	备注
W	AT+UUIDN= <uuid><cr><lf></lf></cr></uuid>	OK <cr><lf></lf></cr>	设置成功
W	VI - OO IDM-/aaIa//CK//FI//	ERROR <cr><lf></lf></cr>	设置失败

备注: 16bit 格式 UUID 示例: FFF1

128bit 格式 UUID 示例: 11223344556677889900112233445566

查询 BLE 读服务通道

指令描述:查询 BLE 读服务通道

妙享科技 (深圳) 有限公司

读/写:只读

指令代码: AT+UUIDN?<CR><LF>

支持参数: N/A 设置/响应:

读/写	指令格式	响应	备注
D	AT LIHIT DNO ZOD ZI EX		<uuid>取值,</uuid>
K	AT+UUIDN? <cr><lf></lf></cr>	+UUIDN: <uuid><cr><lf></lf></cr></uuid>	16bit 格式或 128bit 格式的 UUID

设置 BLE 写服务通道

指令描述:设置 BLE 写服务通道,重启后生效。

读/写: 只写

指令代码: AT+UUIDW=<uuid><CR><LF>

支持参数: 16bit 格式或 128bit 格式的 UUID

设置/响应:

读/写	指令格式	响应	备注
W	W AT HILIDW-/; 1\/CD\/IE\	OK <cr><lf></lf></cr>	设置成功
W AT+UUIDW= <uuid><cr><lf></lf></cr></uuid>	ERROR <cr><lf></lf></cr>	设置失败	

备注: 16bit 格式 UUID 示例: FFF2

128bit 格式 UUID 示例: 11223344556677889900112233445566

查询 BLE 写服务通道

指令描述:查询 BLE 写服务通道

读/写: 只读

指令代码: AT+UUIDW?<CR><LF>

支持参数: N/A 设置/响应:

读/写	指令格式	响应	备注
D	AT HILLDWO (OD) (LD)	- HHIDW (- 1) (OD) (LD)	<uuid>取值,</uuid>
R	AT+UUIDW? <cr><lf></lf></cr>	+UUIDW: <uuid><cr><lf></lf></cr></uuid>	16bit 格式或 128bit 格式的 UUID

修改广播间隔

指令描述:修改广播间隔,重启后生效。

读/写: 只写

指令代码: AT+AINTVL=<num><CR><LF> 支持参数: 20-10240 单位毫秒

设置/响应:

读/写	指令格式	响应	备注
	76 (16)	,	,

万物智联新选择

OK<CR><LF> 设置成功 ERROR<CR><LF> 设置成功

查询广播间隔

指令描述:查询广播间隔

读/写: 只读

W

指令代码: AT+AINTVL?

支持参数: N/A 设置/响应:

读/写	指令格式	响应	备注
R	AT+AINTVL? <cr><lf></lf></cr>	+AINTVL: <num><cr><lf></lf></cr></num>	读取参数的单位为毫秒

读取软件版本

指令描述: 读取软件版本

读/写: 只读

指令代码: AT+VER?<CR><LF>

支持参数: N/A 设置/响应:

读/写	指令格式	响应	备注
R	AT+VER? <cr><lf></lf></cr>	+VER:V1.0.0 <cr><lf></lf></cr>	V1.0.0 是软件版本号

恢复出厂设置

指令描述:设置恢复出厂设置,该指令重启生效,MAC地址修改后不可恢复。

读/写: 只写

指令代码: AT+RESET=1<CR><LF>

支持参数: 1 设置/响应:

读/写	指令格式	响应	备注
W	AT+RESET=1 <cr><lf></lf></cr>	OK <cr><lf></lf></cr>	设置成功
W AITRESEI-INCRANLEA		ERROR <cr><lf></lf></cr>	设置失败

软件复位

指令描述:设置模组重启。

读/写: 只写

指令代码: AT+REBOOT=1<CR><LF>

万物智联新选择

支持参数: 1 设置/响应:

读/写	指令格式	响应	备注
W AT+REBOOT=1 <cr><lf></lf></cr>		OK <cr><lf> +READY<cr><lf></lf></cr></lf></cr>	设置成功
		ERROR <cr><lf></lf></cr>	设置失败

扫描蓝牙自定义广播数据

指令描述:扫描蓝牙自定义广播内容

读/写: 只写

指令代码: AT+SCAN MANU=1<CR><LF>

支持参数:1 设置/响应:

读/写	指令格式	响应	备注
W	AT+SCAN_MANU=1 <cr><lf></lf></cr>	+SCAN_MANU: <cr><lf> <mac>空格<typ>空格<rssi>空格 <manufacturer data="" specific=""><cr><lf> +SCAN END<cr><lf></lf></cr></lf></cr></manufacturer></rssi></typ></mac></lf></cr>	

备注:扫描蓝牙自定义广播内容,返回数据以"+SCAN_MANU:<CR><LF>"开头,以"+SCAN END<CR><LF>"结尾;中间重复多条设备信息:〈mac〉空格〈type〉空格〈rssi〉空格[Manufacturer Specific Data]〈CR><LF>,扫描设备信息包括: MAC 地址、地址类型、RSSI 值、设备自定义广播内容。(有些设备没有自定义广播内容,所以扫描信息可能只有 MAC 地址,地址类型和 RSSI 值)

修改模组的发射功率

指令描述:设置模组的发射功率,重启后生效。

读/写: 只写

指令代码: AT+TXPOWER=<num><CR><LF>

支持参数: -43/ -38/ -33/ -30/ -25/ -20/ -16/ -10/ -8/ -6/ -5/ -4/ -3/ -1/ 0/ 2/ 4/ 6/ 7/ 8/ 9/ 10

设置/响应:

读/写	指令格式	响应	备注
W	AT+TXPOWER= <num><cr><lf></lf></cr></num>	OK <cr><lf></lf></cr>	设置成功
VV	A1+1Af OWER-\HuIII/\CR/\LI'/	ERROR <cr><lf></lf></cr>	设置失败

查询模组的发射功率

指令描述: 查询当前发射功率

读/写: 只读

指令代码: AT+TXPOWER?

妙享科技 (深圳) 有限公司

万物智联新选择

支持参数: N/A 设置/响应:

读/写	指令格式	响应	备注
R	AT+TXPOWER L? <cr><lf></lf></cr>	+TXPOWER: <num><cr><lf></lf></cr></num>	读取参数的单位为 dBm

设置自定义广播数据

指令描述:设置自定义广播数据

读/写: 只写

指令代码: AT+AMDATA=<HEX><CR><LF>

支持参数:用户自定义,〈HEX〉为0-29字节长度的HEX数值,如设置广播数据为5个字节"12345",则对应格

为 "AT+AMDATA=3132333435\r\n"

设置/响应:

读/写	指令格式	响应	备注
W	AT+AMDATA= <hex><cr><lf></lf></cr></hex>	OK <cr><lf></lf></cr>	设置成功
VV	AI 'AMDAIA-\HEA/\CR/\LF/	ERROR <cr><lf></lf></cr>	设置失败

查询自定义广播数据

指令描述:查询自定义广播数据

读/写: 只读

指令代码: AT+AMDATA?<CR><LF>

支持参数: N/A 设置/响应:

读/写	指令格式	响应	备注
R	AT+AMDATA? <cr><lf></lf></cr>	+AMDATA: <hex><cr><lf></lf></cr></hex>	

备注: 自定义广播数据是存放在 BLE 广播协议里的 Manufacturer Specifc Data 字段内。默认的广播数据为 8 个字节,前两个字节固定为 00 00,后 6 个字节为模块的 MAC 地址 (高字节在前)。

BLE 协议说明(APP 接口)

透传数据通道【服务 UUID: 0xFFF0】

特征值 UUID	可执行的操作	默认值	备注
0xFFF2	Write	无	写入的数据将会从串口 TX 输出
0xFFF1	notify	无	从串口 RX 输入的数据将会在此 通道产生通知发给移动设备

说明: APP 通过 0xFFF2 通道 将数据发送给 MCU: MCU 通过 0xFFF1 通道将数据发送给 APP, 用户也可通过 AT 指令对读写通道进行自定义。

妙享科技 (深圳) 有限公司

15

TEL:0755-23320814

模组布局参考建议

Recommended location in Z plane

- ▶ 模组天线远离其他电路,下方不走线、不铺铜。
- ▶ 用户最终产品外壳靠近天线部分不能采用金属材质(包括含金属颗粒涂料的喷涂)。
- 模组的接入电源建议使用磁珠进行隔离。
- ▶ 请检查电源稳定性,电压不能大幅频繁波动。
- ▶ 器件接地要良好,减少寄生电感。

贴片生产注意事项

用户批量贴片时,回流焊温度不要超过245℃,请参考图4温度曲线。

图 4-部件的焊接耐热性温度曲线(焊接点)

模组原理图

联系我们

妙享科技 (深圳) 有限公司

Tel: 0755 - 2332 0814

地址:深圳市龙岗区环球物流中心 1612-1616

Add: Room1612- Room 1616, Global Logistics Center Building, Longgang Dist, Shenzhen