Soit A la matrice suivante : $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$

- 1. Déterminer les réels $\lambda \in \mathbb{R}$ pour lesquels la matrice $A \lambda \operatorname{Id}$ n'est pas inversible. On appelle ces réels les valeurs propres de A.
- 2. (a) Calculer A^2 et A^3 .
 - (b) Quelle est la dimension de $\mathcal{M}_3(\mathbb{R})$?
 - (c) Montrer que (Id_3, A, A^2) est une famille libre de l'espace vectoriel $\mathcal{M}_3(\mathbb{R})$.
 - (d) Est-ce une base?
- 3. On considère S l'ensemble des matrices $M \in \mathcal{M}_3(\mathbb{R})$ telles que AM = MA.
 - (a) Montrer que S est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.
 - (b) Soit α, β, γ trois réels et $M = \alpha \operatorname{Id}_3 + \beta A + \gamma A^2$. Vérifier que $M \in \mathcal{S}$
 - (c) Réciproquement, on considère a, b, c, d, e, f, g, h, et i des réels tel que M = (a, b, a, b, a)

$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \in \mathcal{S}$$
. Déterminer, en fonction des coefficients de M , trois réels

- α, β, γ tels que $M = \alpha \operatorname{Id}_3 + \beta A + \gamma A^2$
- (d) En déduire, une base de S.
- 4. On considère S' l'ensemble des matrices M de $\mathcal{M}_3(\mathbb{R})$ telles que $M^3=0$ et $M^2\neq 0$.
 - (a) Est ce que \mathcal{S}' est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$?
 - (b) Soit $P \in \mathcal{M}_3(\mathbb{R})$ une matrice inversible et $M = PAP^{-1}$. Vérifier que $M \in \mathcal{S}'$. Dans la suite, tout vecteur de \mathbb{R}^3 sera assimilé à une matrice colonne de $\mathcal{M}_{3,1}(\mathbb{R})$ de sorte que, pour tout vecteur $X \in \mathbb{R}^3$, le produit matriciel MX soit correctement défini.

(c) Soit
$$M = \begin{pmatrix} -1 & 1 & 1 \\ 1 & 1 & -1 \\ 0 & 2 & 0 \end{pmatrix}$$
..

- i. Vérifier que $M \in \mathcal{S}'$.
- ii. Prouver qu'il existe un vecteur $X \in \mathbb{R}^3$ tel que M^2X soit non nul.
- iii. Montrer que la famlille $B = (X, MX, M^2X)$ est une base de \mathbb{R}^3 .