Paul Gustafson

Texas A&M University - Math 607 Instructor: Thomas Schlumprecht

HW₃

1 Problem 8/Page 27. If (X, \mathcal{M}, μ) is a measure space and $(E_j)_{j=1}^{\infty} \subset \mathcal{M}$, then $\mu(\liminf E_j) \leq \liminf \mu(E_j)$. Also, $\mu(\limsup E_j) \geq \limsup \mu(E_j)$ provided that $\mu(\bigcup_i E_i) < \infty$.

Proof. Let $F_k := \bigcap_{j \geq k} E_j$. Then (F_k) is an ascending sequence, so $\mu(\liminf E_j) = \mu(\bigcup_k F_k) = \lim_k \mu(F_k)$. For all k, we have $F_k \subset E_k$, so $\mu(F_k) \leq \mu(E_k)$. Hence $\mu(\liminf E_j) = \lim_k \mu(F_k) \leq \liminf \mu(E_k)$.

For the other part, suppose $\mu(\bigcup_j E_j) < \infty$. Let $G_k = \bigcup_{j \geq k} E_j$. Then G_k is a descending sequence and $\mu(G_1) < \infty$, so $\mu(\bigcap_k G_k) = \lim_k \mu(G_k)$. Since $E_k \subset G_k$ for all k, we have $\mu(G_k) \geq \mu(E_k)$. Hence $\mu(\limsup E_j) = \mu(\bigcap_k G_k) = \lim_k \mu(G_k) \geq \limsup \mu(E_k)$.

2 Assume μ is finitely additive on a sigma algebra \mathcal{M}

- a) μ is σ -additive $\equiv \mu$ is continuous from below.
- b) Assume $\mu(X) < \infty$. Then μ is σ -additive $\equiv \mu$ is continuous from above.

Proof. Suppose μ is σ -additive. Let $(E_n) \subset \mathcal{M}$ be an ascending sequence of sets. Let $F_1 = E_1$, and for each n > 1, let $F_n = E_n \setminus E_{n-1}$. Then F_n are disjoint, and $\bigcup_{n=1}^N F_n = E_N$. Hence $\mu(\bigcup_n E_n) = \mu(\bigcup_n F_n) = \sum_n \mu(F_n) = \lim_{N \to \infty} \sum_{n=1}^N \mu(F_n) = \lim_{N \to \infty} \mu(\bigcup_{n=1}^N F_n) = \lim_{N \to \infty} E_N$. For the converse, suppose μ is continuous from below. Let $(F_n) \subset \mathcal{M}$ be a

For the converse, suppose μ is continuous from below. Let $(F_n) \subset \mathcal{M}$ be a sequence of disjoint sets. Let $E_n = \bigcup_{k=1}^n F_k$ for each n. Then (E_n) is an ascending sequence, so $\mu(\bigcup_n E_n) = \lim_{n \to \infty} \mu(E_n)$. Thus, $\mu(\bigcup_n F_n) = \mu(\bigcup_n E_n) = \lim_{n \to \infty} \mu(E_n) = \lim_{n \to \infty} \sum_{k=1}^n \mu(F_n) = \sum_{k=1}^\infty \mu(F_n)$.

For (b), assume $\mu(X) < \infty$. Since $\mu(X) < \infty$, for any set $E \in \mathcal{M}$ we have $\mu(E^c) \leq \mu(X) < \infty$, so $\mu(E) = \mu(X) - \mu(E^c)$.

Suppose μ is σ -additive. Let $(E_n) \subset \mathcal{M}$ be a descending sequence of sets. Then (E_n^c) is a ascending sequence, so part (a) implies that $\mu(\bigcup_n E_n^c) = \lim_{n \to \infty} \mu(E_n^c)$. Hence, $\mu(\bigcap_n E_n) = \mu(X) - \mu((\bigcap_n E_n)^c) = \mu(X) - \mu(\bigcup_n E_n^c) = \mu(X) - \lim_{n \to \infty} \mu(E_n^c) = \mu(X) - \lim_{n \to \infty} \mu(E_n^c) = \mu(X) - \lim_{n \to \infty} \mu(E_n^c) = \mu(X) - \lim_{n \to \infty} \mu(E_n^c)$.

For the converse, suppose μ is continuous from above. By part (a), it suffices to show that μ is continuous from below. Let $(E_n) \subset \mathcal{M}$ be an ascending sequence of sets. Then (E_n^c) is descending. Hence, $\mu(\bigcup_n E_n) = \mu(X) - \mu(\bigcap_n E_n^c) = \mu(X) - \lim_{n \to \infty} X - \mu(E_n) = \lim_{n \to \infty} \mu(E_n)$.

3 Suppose (X, \mathcal{M}, μ) is a measure space. We call

$$\mathcal{N} = \{ A \subset X : \exists B \in \mathcal{M} \ A \subset B \text{ and } \mu(B) = 0 \}$$

the *nullsets* of $(X\mathcal{M}, \mu)$.

a) Show that

$$\overline{\mathcal{M}} = \{ A \cup N : A \in \mathcal{M} \text{ and } N \in \mathcal{N} \}$$

is a σ -algebra.

b) Show that

$$\overline{\mu}: \overline{\mathcal{M}} \to [0,\infty], \ A \cup N \mapsto \mu(A), \ \text{if } A \in \mathcal{M}, N \in \mathcal{N}$$

is well-defined and a measure.

Proof. For (a), note that $\emptyset \in \overline{\mathcal{M}}$ since $\emptyset \in \mathcal{M} \cap \mathcal{N}$. For closure under complements, let $E \in \overline{\mathcal{M}}$. Then $E = F \cup N$ for some $F \in \mathcal{M}$ and $n \in \mathcal{N}$. Then there exists $B \in \mathcal{M}$ with $N \subset B$ and $\mu(B) = 0$. Let $M = B \setminus N$. Hence $E^c = F^c \cap N^c = F^c \cap (B \setminus M)^c = F^c \cap (B^c \cup M) = (F^c \cap B^c) \cup (F^c \cap M)$, which is in $\overline{\mathcal{M}}$ since $F^c \cap B^c \in \mathcal{M}$ and $F^c \cap M \subset B$.

For closure under countable unions, suppose $(E_n) \subset \overline{\mathcal{M}}$. Then each $E_n = F_n \cup N_n$ for some $F_n \in \mathcal{M}$ and $N_n \in \mathcal{N}$. For each n, pick $B_n \in \mathcal{M}$ with $N_n \subset B_n$ and $\mu(B_n) = 0$. We have $\bigcup_n E_n = (\bigcup_n F_n) \cup (\bigcup_n N_n)$. Further, $\bigcup_n F_n \in \mathcal{M}$ and $\bigcup_n N_n \subset \bigcup_n B_n$ and $\mu(\bigcup_n B_n) \leq \sum_n \mu(B_n) = 0$. Hence, $\bigcup_n E_n \in \overline{\mathcal{M}}$. For (b), suppose $M \in \overline{\mathcal{M}}$ with $M = A \cup N = A' \cup N'$ for $A, A' \in \mathcal{M}$ and

For (b), suppose $M \in \overline{\mathcal{M}}$ with $M = A \cup N = A' \cup N'$ for $A, A' \in \mathcal{M}$ and $N, N' \in \mathcal{N}$. We need to show that $\mu(A) = \mu(A')$. By the definition of \mathcal{N} , we can pick $B \in \mathcal{M}$ with $\mu(B) = 0$ and $N \subset B$. Thus $A' \subset M \subset (A \cup B)$ implies that $\mu(A') \leq \mu(A \cup B) \leq \mu(A) + \mu(B) = \mu(A)$. The same argument will imply $\mu(A) \leq \mu(A')$, so $\mu(A) = \mu(A')$. Hence, $\overline{\mu}$ is well defined.

Since $\mu(\emptyset) = 0$, we have $\overline{\mu}(\emptyset) = 0$. Suppose $(E_n) \subset \overline{\mathcal{M}}$ is a disjoint sequence of sets with $E_n = A_n \cup N_n$ for $A_n \in \mathcal{M}$ and $N_n \in \mathcal{N}$. Then $\overline{\mu}(\bigcup_n E_n) = \overline{\mu}(\bigcup_n A_n \cup \bigcup_n N_n)$. As we mentioned before, $\bigcup_n N_n \in \mathcal{N}$. Hence, $\overline{\mu}(\bigcup_n E_n) = \mu(\bigcup_n A_n) = \sum_n \overline{\mu}(E_n)$.

- **4** Let (X, \mathcal{M}, μ) be a finite measure space.
 - a) If $E, F \in \mathcal{M}$ and $\mu(E\Delta F) = 0$ then $\mu(E) = \mu(F)$.
- b) We say that $E \sim F$ if $\mu(E\Delta F) = 0$. Show that \sim is an equivalence relation.
- c) For $E, F \in \mathcal{M}$ put $\rho(E, F) = \mu(E\Delta F)$, show that ρ induces a metric on \mathcal{M}/\sim .

Proof. For (a), we have $\mu(E) + \mu(F \setminus E) = \mu(E \cup F) = \mu(F) + \mu(E \setminus F)$. Thus $\mu(E\Delta F) = 0$ implies $\mu(E) = \mu(E \cup F) = \mu(F)$ since $(E \setminus F) \cup (F \setminus E) = E\Delta F$.

For (b), we need to show transitivity (reflexivity and symmetry are obvious). Suppose $\mu(E\Delta F)=0$ and $\mu(F\Delta G)=0$. Then $\mu(E\Delta G)=\mu(E\cap G^c)+\mu(E^c\cap G)\leq \mu((E\cup F)\cap G^c)+\mu(E^c\cap (F\cup G))=\mu((E\setminus F)\cap G^c)+\mu(F\cap G^c)+\mu(E^c\cap F)+\mu(E^c\cap (G\setminus F))=0$.

To see that ρ defines a pseudometric on \mathcal{M} , we need to show that the triangle inequality holds (symmetry is obvious). Suppose $E, F, G \in \mathcal{M}$. Then, as in (b), $\rho(E,G) = \mu(E\Delta G) \leq \mu((E \setminus F) \cap G^c) + \mu(F \cap G^c) + \mu(E^c \cap F) + \mu(E^c \cap (G \setminus F)) \leq \mu(E \setminus F) + \mu(F \setminus G) + \mu(F \setminus E) + \mu(G \setminus F) = \rho(E,F) + \rho(F,G)$.

Define $\overline{\rho}$ on \mathcal{M}/\sim by $\overline{\rho}(\overline{E})=\rho(E)$ where $E\in\overline{E}$. To see why $\overline{\rho}$ is well-defined, suppose $E\sim E'$ and $F\sim F'$. Then by the triangle inequality,

 $\rho(E',F') \leq \rho(E,E') + \rho(E,F) + \rho(F,F') = \rho(E,F)$. Hence $\rho(E',F') = \rho(E,F)$. Thus $\overline{\rho}$ is well-defined.

To see that $\overline{\rho}$ is a metric, suppose $\overline{\rho}(\overline{E}, \overline{E'}) = 0$. Then if E is a representative of \overline{E} and E' is a representative for $\overline{E'}$, then $\rho(E, E') = 0$. Hence $E \sim E'$. The other properties of a metric follow by picking representatives similarly.

5 If $\mu*$ is an outer measure on X and $(A_j)_{j\in\mathbb{N}}$ a sequence of disjoint μ^* -measurable sets, then $\mu^*(E\cap(\bigcup_{j=1}^\infty A_j))=\sum_{j=1}^\infty \mu^*(E\cap A_j)$ for any $E\subset X$.

Proof. By the definition of outer measure, $\mu^*(E \cap \bigcup_j A_j) \leq \sum_j \mu^*(E \cap A_j)$. Suppose this inequality is strict. Then there exists an n such that $\mu^*(E \cap \bigcup_j A_j) < \sum_{j=1}^n \mu^*(E \cap A_j)$.

Now note that if A,B are disjoint sets such that A is μ^* -measurable, then $\mu^*(E\cap(A\cup B))=\mu^*(E\cap(A\cup B)\cap A)+\mu^*(E\cap(A\cup B)\cap A^c)=\mu^*(E\cap A)+\mu^*(E\cap B)$. By Caratheodory's theorem, $\bigcup_{j=1}^J A_j$ is μ^* -measurable for every J. Hence, $\mu^*(E\cap\bigcup_j A_j)=\mu^*(E\cap A_1)+\mu^*(E\cap\bigcup_{j=2}^\infty A_j)=\ldots=\sum_{j=1}^n\mu^*(E\cap A_j)+\mu^*(E\cap\bigcup_{j=n+1}^\infty A_j)\geq \sum_{j=1}^n\mu^*(E\cap A_j)>\mu^*(E\cap\bigcup_j A_j)$, a contradiction.

6 Assume that the algebra \mathcal{A} generates the σ -algebra \mathcal{M} and assume that μ is a finite measure on \mathcal{M} . Show that for any $\epsilon > 0$ and any $A \in \mathcal{M}$, there is an $\tilde{A} \in \mathcal{A}$ so that $\mu(A\Delta \tilde{A}) < \epsilon$.

Proof. Since μ is finite, the restriction of μ to \mathcal{A} is a finite premeasure. Hence Theorem 1.14 implies that if $E \in \mathcal{M}$ then $\mu(E) = \inf\{\mu(\bigcup_j A_j) : A_j \in \mathcal{A} \text{ and } E \subset \bigcup_j A_j\}$. Let $\epsilon > 0$, and pick $(A_j) \subset \mathcal{A}$ with $A \subset \bigcup_j A_j$ such that $\mu(A\Delta \bigcup_j A_j) = \mu(\bigcup_j A_j) - \mu(A) < \epsilon/2$. Let $B_j = (\bigcup_{k=1}^j A_j) \setminus (\bigcup_{k=1}^{j-1} A_j)$. Then $(B_j) \subset \mathcal{A}$ is a disjoint sequence of sets such that $\bigcup_{j=1}^n B_j = \bigcup_{j=1}^n A_j$ for all n. Since $\mu(\bigcup_j B_j)$ is finite, we can pick n such that, if $\tilde{A} = \bigcup_{j=1}^n B_j$ then $\mu(\tilde{A}\Delta \bigcup_{j=1}^\infty B_j) = \sum_{j=n+1}^\infty \mu(B_j) < \epsilon/2$. Thus $\mu(A\Delta \tilde{A}) \leq \mu(A\Delta \bigcup_j B_j) + \mu((\bigcup_j B_j)\Delta \tilde{A}) < \epsilon$.