PAM

Melissa Ortega Galarza

2022-06-02

1. Replica

Librerias

```
install.packages("cluster")
library(cluster)
```

Cargar la matriz de datos.

```
X<-as.data.frame(state.x77)
colnames(X)

## [1] "Population" "Income" "Illiteracy" "Life Exp" "Murder"
## [6] "HS Grad" "Frost" "Area"</pre>
```

Transformación de datos

1.- Transformacion de las variables x1,x3 y x8 con la funcion de logaritmo.

```
X[,1]<-log(X[,1])
colnames(X)[1]<-"Log-Population"

X[,3]<-log(X[,3])
colnames(X)[3]<-"Log-Illiteracy"

X[,8]<-log(X[,8])
colnames(X)[8]<-"Log-Area"</pre>
```

Método PAM

1.- Separación de filas y columnas.

```
dim(X)
## [1] 50 8
n<-dim(X)[1]
p<-dim(X)[2]</pre>
```

2.- Estandarización univariante.

X.s<-scale(X)</pre>

3.- Aplicación del algoritmo

pam.3<-pam(X.s,3)

4.- Clusters

cl.pam<-pam.3\$clustering</pre>

cl.pam

##	Alabama	Alaska	Arizona	Arkansas	California
##	1	2	1	1	3
##	Colorado	Connecticut	Delaware	Florida	Georgia
##	2	2	3	1	1
##	Hawaii	Idaho	Illinois	Indiana	Iowa
##	2	2	3	3	2
##	Kansas	Kentucky	Louisiana	Maine	Maryland
##	2	1	1	2	3
##	Massachusetts	Michigan	Minnesota	Mississippi	Missouri
##	3	3	2	1	3
##	Montana	Nebraska	Nevada	New Hampshire	New Jersey
##	2	2	2	2	3
##	New Mexico	New York	North Carolina	North Dakota	Ohio
##	1	3	1	2	3
##	Oklahoma	Oregon	Pennsylvania	Rhode Island	South Carolina
##	3	2	3	2	1
##					
	South Dakota	Tennessee	Texas	Utah	Vermont
##	South Dakota 2	Tennessee 1	Texas 1	Utah 2	Vermont 2
		1	Texas 1 West Virginia	Utah 2 Wisconsin	Vermont 2 Wyoming

5.- Scatter plot de la matriz con los grupos

```
col.cluster<-c("blue","red","green")[cl.pam]
pairs(X.s, col=col.cluster, main="PAM", pch=19)</pre>
```

PAM

Visualización con Componentes Principales

CLUSPLOT(X.s)

These two components explain 62.5 % of the point variability.

Silhouette

Representación grafica de la eficacia de clasificacion de una observación dentro de un grupo.

1.- Generacion de los calculos

```
dist.Euc<-dist(X.s, method = "euclidean")
Sil.pam<-silhouette(cl.pam, dist.Euc)</pre>
```

2.- Generación del gráfico

Silhouette for PAM

Average silhouette width: 0.22

2. Cambiar el Número de Clusters.

Librerias

```
install.packages("cluster")
library(cluster)
```

Cargar la matriz de datos.

```
X<-as.data.frame(state.x77)
colnames(X)

## [1] "Population" "Income" "Illiteracy" "Life Exp" "Murder"
## [6] "HS Grad" "Frost" "Area"</pre>
```

Transformación de datos

1.- Transformacion de las variables x1,x3 y x8 con la funcion de logaritmo.

```
X[,1]<-log(X[,1])
colnames(X)[1]<-"Log-Population"

X[,3]<-log(X[,3])
colnames(X)[3]<-"Log-Illiteracy"

X[,8]<-log(X[,8])
colnames(X)[8]<-"Log-Area"</pre>
```

Método PAM

1.- Separación de filas y columnas.

```
dim(X)
## [1] 50 8
n<-dim(X)[1]
p<-dim(X)[2]

2.- Estandarización univariante.
X.s<-scale(X)
3.- Aplicación del algoritmo
pam.6<-pam(X.s,6)</pre>
```

4.- Clusters

cl.pam<-pam.6\$clustering</pre>

cl.pam

##	Alabama	Alaska	Arizona	Arkansas	California
##	1	2	3	1	3
##	Colorado	Connecticut	Delaware	Florida	Georgia
##	4	5	5	3	1
##	Hawaii	Idaho	Illinois	Indiana	Iowa
##	3	4	6	6	4
##	Kansas	Kentucky	Louisiana	Maine	Maryland
##	4	1	1	5	6
##	Massachusetts	Michigan	Minnesota	Mississippi	Missouri
##	6	6	4	1	6
##	Montana	Nebraska	Nevada	New Hampshire	New Jersey
##	2	4	2	5	6
##	New Mexico	New York	North Carolina	North Dakota	Ohio
##	1	3	1	4	6
##	Oklahoma	Oregon	Pennsylvania	Rhode Island	South Carolina
##	6	4	6	5	1
##	South Dakota	Tennessee	Texas	Utah	Vermont
##	4	1	3	4	5
##	Virginia	Washington	West Virginia	Wisconsin	Wyoming

5.- Scatter plot de la matriz con los grupos

col.cluster<-c("orange1","orchid3","purple2","royalblue4","seagreen","sienna2")[cl.pam]
pairs(X.s, col=col.cluster, main="PAM", pch=19)</pre>

PAM

Visualización con Componentes Principales

CLUSPLOT(X.s)

These two components explain 62.5 % of the point variability.

Silhouette

Representación grafica de la eficacia de clasificacion de una observación dentro de un grupo.

1.- Generacion de los calculos

```
dist.Euc<-dist(X.s, method = "euclidean")
Sil.pam<-silhouette(cl.pam, dist.Euc)</pre>
```

2.- Generación del gráfico

Silhouette for PAM

Average silhouette width: 0.27

Análisis

Como podemos observar obtenemos un grafico totalmente si ocupamos 6 clusters.