ECE430.217 Data Structures

Dijkstra's Algorithms

Textbook: Weiss Chapter 9.3

Byoungyoung Lee

https://compsec.snu.ac.kr

byoungyoung@snu.ac.kr

Shortest Path

Given the graph, suppose you wish to find the shortest path from vertex 1 to vertex 13

- Length of the path is the sum of edge weights
- The graph is directed acyclic graph

Shortest Path

The shortest path has length 14

Other paths exists, but they are longer

Dijkstra's algorithm

Dijkstra's algorithm solves the single-source shortest path problem

- It is very similar to Prim's algorithm
- Assumption: All the weights are positive

Suppose you are at vertex A

- You are aware of all adjacent vertices to A
- This information is either in an adjacency list or adjacency matrix

Strategy of Dijkstra's Algorithm

By looking at all the adjacent edges of A, what can you be sure?

Is 5 the shortest distance from A to B?

Is 15 the shorted distance from A to C?

Is 9 the shorted distance from A to D?

Strategy of Dijkstra's Algorithm

By looking at all the adjacent edges of A, what can you be sure?

Is 5 the shortest distance from A to B? (Yes)

Is 15 the shorted distance from A to C? (No)

Is 9 the shorted distance from A to D? (No)

Dijkstra's algorithm

Like Prim's algorithm, we initially don't know the distance to any vertex except vertices adjacent to the initial vertex

- We require an array of distances, all initialized to infinity except for the source vertex, which is initialized to 0
- Each time we visit a vertex, we will examine all adjacent vertices
 - We need to track visited vertices—a Boolean table of size |V|
- Do we need to track the shortest path to each vertex?
 - That is, do I have to store (A, B, F) as the shortest path to vertex F?

 We really only have to record that the shortest path to vertex F came from vertex B

 We would then determine that the shortest path to vertex B came from vertex A

 Thus, we need an array of previous vertices, all initialized to null

Dijkstra's algorithm

Thus, we will iterate |V| times:

- Find that unvisited vertex v that has a minimum distance to it
- Mark it as having been visited
- Consider every adjacent vertex w that is unvisited:
 - Is the distance to v plus the weight of the edge (v, w) less than our currently known shortest distance to w
 - If so, update the shortest distance to w and record v as the previous pointer
- Continue iterating until all vertices are visited or all remaining vertices have a distance to them of infinity

Let's take an example with this graph

We will find the shortest distance from the vertex K to every other vertices

We first set up the table.

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
E	F	∞	Ø
F	F	∞	Ø
G	F	∞	Ø
Н	F	∞	Ø
	F	∞	Ø
J	F	∞	Ø
K	F	0	Ø
L	F	∞	Ø

We visit vertex K.

- Which unvisited vertex has the minimum distance to the vertex k?

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
E	F	∞	Ø
F	F	∞	Ø
G	F	∞	Ø
Н	F	∞	Ø
I	F	∞	Ø
J	F	∞	Ø
K	T	0	Ø
L	F	∞	Ø

Vertex K has four neighbors: H, I, J and L

Vertex	Visited	Distance	Previous
A	F	00	Ø
В	F	00	Ø
С	F	00	Ø
D	F	00	Ø
Е	F	00	Ø
F	F	00	Ø
G	F	00	Ø
Н	F	∞	Ø
I	F	∞	Ø
J	F	∞	Ø
K	T	0	Ø
L	F	∞	Ø

We have now found at least one path to each of these vertices

Vertex	Visited	Distance	Previous
A	F	00	Ø
В	F	00	Ø
С	F	00	Ø
D	F	00	Ø
Е	F	00	Ø
F	F	00	Ø
G	F	00	Ø
Н	F	8	K
	F	12	K
J	F	17	K
K	T	0	Ø
L	F	16	K

We're finished with vertex K

To which vertex are we now guaranteed we have the shortest path?

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
Е	F	∞	Ø
F	F	∞	Ø
G	F	∞	Ø
Н	F	8	K
I	F	12	K
J	F	17	K
K	Т	0	Ø
L	F	16	K

We visit vertex H: the shortest path is (K, H) of length 8

Vertex H has four unvisited neighbors: E, G, I, L

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
E	F	∞	Ø
F	F	∞	Ø
G	F	∞	Ø
Н	T	8	K
	F	12	K
J	F	17	K
K	Т	0	Ø
L	F	16	K

Consider these paths:

(K, H, E) of length 8 + 6 = 14

(K, H, G) of length 8 + 11 = 19

(K, H, I) of length 8 + 2 = 10

(K, H, L) of length 8 + 9 = 17

Vertex	Visited	Distance	Previous
A	F	00	Ø
В	F	00	Ø
С	F	00	Ø
D	F	00	Ø
Е	F	∞	Ø
F	F	00	Ø
G	F	∞	Ø
Н	T	8	K
	F	12	K
J	F	17	K
K	Т	0	Ø
L	F	16	K

We already have a shorter path (K, L), so L is not updated. But the other three (e.g., E, G, and I) are updated.

Vertex	Visited	Distance	Previous
A	F	00	Ø
В	F	00	Ø
С	F	00	Ø
D	F	00	Ø
Е	F	14	Н
F	F	00	Ø
G	F	19	H
Н	T	8	K
I	F	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	K

We are finished with vertex H

– Which vertex do we visit next?

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
E	F	14	Н
F	F	∞	Ø
G	F	19	Н
Н	Т	8	K
ı	F	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	K

The path (K, H, I) is the shortest path from K to I of length 10

Vertex I has two unvisited neighbors: G and J

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
E	F	14	Н
F	F	∞	Ø
G	F	19	Н
Н	Т	8	K
I	T	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	K

Consider these paths:

$$(K, H, I, G)$$
 of length $10 + 3 = 13$
 (K, H, I, J) of length $10 + 18 = 28$

Vertex	Visited	Distance	Previous
Α	F	00	Ø
В	F	00	Ø
С	F	00	Ø
D	F	00	Ø
E	F	14	Н
F	F	00	Ø
G	F	19	Н
Н	Т	8	K
I	T	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	K

We have discovered a shorter path to vertex G, but (K, J) is still the shortest known path to vertex J

Vertex	Visited	Distance	Previous
А	F	00	Ø
В	F	00	Ø
С	F	00	Ø
D	F	00	Ø
E	F	14	Н
F	F	00	Ø
G	F	13	
Н	Т	8	K
	T	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	K

Which vertex can we visit next?

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
E	F	14	Н
F	F	∞	Ø
G	F	13	I
Н	Т	8	K
	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	K

The path (K, H, I, G) is the shortest path from K to G of length 13

Vertex G has three unvisited neighbors: E, F and J

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
E	F	14	Н
F	F	∞	Ø
G	T	13	
Н	Т	8	K
	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	K

Consider these paths:

(K, H, I, G, E) of length 13 + 15 = 28

(K, H, I, G, F) of length 13 + 4 = 17

(K, H, I, G, J) of length 13 + 19 = 32

Vertex	Visited	Distance	Previous
А	F	00	Ø
В	F	00	Ø
С	F	00	Ø
D	F	00	Ø
Е	F	14	Н
F	F	∞	Ø
G	T	13	
Н	Т	8	K
	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	K

We have now found a path to vertex F

Vertex	Visited	Distance	Previous
Α	F	00	Ø
В	F	00	Ø
С	F	00	Ø
D	F	00	Ø
Е	F	14	Н
F	F	17	G
G	T	13	
Н	Т	8	K
	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	K

Where do we visit next?

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
E	F	14	Н
F	F	17	G
G	Т	13	
Н	Т	8	K
	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	K

The path (K, H, E) is the shortest path from K to E of length 14

Vertex G has four unvisited neighbors: B, C, D and F

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
E	T	14	Н
F	F	17	G
G	Т	13	
Н	Т	8	K
	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	K

The path (K, H, E) is the shortest path from K to E of length 14

Vertex G has four unvisited neighbors: B, C, D and F

Vertex	Visited	Distance	Previous
A	F	00	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
E	T	14	Н
F	F	17	G
G	Т	13	
Н	Т	8	K
	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	K

Consider these paths:

(K, H, E, B) of length 14 + 5 = 19

(K, H, E, C) of length 14 + 1 = 15

(K, H, E, D) of length 14 + 10 = 24

(K, H, E, F) of length 14 + 22 = 36

Vertex	Visited	Distance	Previous
A	F	00	Ø
В	F	∞	Ø
С	F	∞	Ø
D	F	∞	Ø
E	T	14	Н
F	F	17	G
G	Т	13	
Н	Т	8	K
	Т	10	Н
J	F	17	K
K	T	0	Ø
L	F	16	K

We've discovered paths to vertices B, C, D

Vertex	Visited	Distance	Previous
A	F	00	Ø
В	F	19	E
С	F	15	E
D	F	24	E
E	T	14	Н
F	F	17	G
G	Т	13	
Н	Т	8	K
	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	K

Which vertex is next?

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	19	E
С	F	15	E
D	F	24	E
Е	Т	14	Н
F	F	17	G
G	Т	13	
Н	Т	8	K
	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	K

We've found that the path (K, H, E, C) of length 15 is the shortest path from K to C

Vertex C has one unvisited neighbor, B

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	19	E
С	T	15	E
D	F	24	E
Е	Т	14	Н
F	F	17	G
G	Т	13	
Н	Т	8	K
	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	K

The path (K, H, E, C, B) is of length 15 + 7 = 22

We have already discovered a shorter path through vertex E

Vertex	Visited	Distance	Previous
Α	F	00	Ø
В	F	19	Е
C	T	15	E
D	F	24	E
E	Т	14	Н
F/	F	17	G
G	Т	13	
Н	Т	8	K
/	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	K

Where to next?

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	19	E
С	Т	15	Е
D	F	24	E
Е	Т	14	Н
F	F	17	G
G	Т	13	
Н	Т	8	K
	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	F	16	K

We now know that (K, L) is the shortest path between these two points

Vertex L has no unvisited neighbors

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	19	E
С	Т	15	Е
D	F	24	E
Е	Т	14	Н
F	F	17	G
G	Т	13	
Н	Т	8	K
	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	T	16	K

Where to next?

– Does it matter if we visit vertex F first or vertex J first?

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	19	E
С	Т	15	E
D	F	24	E
Е	Т	14	Н
F	F	17	G
G	Т	13	
Н	Т	8	K
	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	Т	16	K

Let's visit vertex F first

It has one unvisited neighbor, vertex D

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	19	E
С	Т	15	Е
D	F	24	Е
Е	Т	14	Н
F	T	17	G
G	Т	13	
Н	Т	8	K
	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	Т	16	K

The path (K, H, I, G, F, D) is of length 17 + 14 = 31

This is longer than the path we've already discovered

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	19	E
С	Т	15	Е
D	F	24	Е
Е	Т	14	Н
F	T	17	G
G	Т	13	
Н	Т	8	K
	Т	10	Н
J	F	17	K
K	Т	0	Ø
L	Т	16	K

Now we visit vertex J

It has no unvisited neighbors

Vertex	Visited	Distance	Previous
Α	F	∞	Ø
В	F	19	E
С	Т	15	Е
D	F	24	E
Е	Т	14	Н
F	Т	17	G
G	Т	13	
Н	Т	8	K
	Т	10	Н
J	T	17	K
K	Т	0	Ø
L	Т	16	K

Next we visit vertex B, which has two unvisited neighbors:

(K, H, E, B, A) of length 19 + 20 = 39 (K, H, E, B, D) of length 19 + 13 = 32

We update the path length to A

Vertex	Visited	Distance	Previous
Α	F	39	В
В	T	19	E
С	Т	15	Е
D	F	24	Е
Е	Т	14	Н
F	Т	17	G
G	Т	13	
Н	Т	8	K
	Т	10	Н
J	Т	17	K
K	Т	0	Ø
L	Т	16	K

Next we visit vertex D

- The path (K, H, E, D, A) is of length 24 + 21 = 45

We don't update A

Vertex	Visited	Distance	Previous
Α	F	39	В
В	Т	19	Е
С	Т	15	Е
D	T	24	E
Е	Т	14	Н
F	Т	17	G
G	Т	13	
Н	Т	8	K
	Т	10	Н
J	Т	17	K
K	Т	0	Ø
L	Т	16	K

Finally, we visit vertex A

It has no unvisited neighbors and there are no unvisited vertices left

Vertex	Visited	Distance	Previous
A	T	39	В
В	Т	19	Е
С	Т	15	Е
D	Т	24	Е
Е	Т	14	Н
F	Т	17	G
G	Т	13	
Н	Т	8	K
	Т	10	Н
J	Т	17	K
K	Т	0	Ø
L	Т	16	K

Thus, we have found the shortest path from vertex K to each of the other vertices

Vertex	Visited	Distance	Previous
Α	Т	39	В
В	Т	19	E
С	Т	15	E
D	Т	24	E
E	T	14	Н
F	Т	17	G
G	T	13	
Н	Т	8	K
I	T	10	Н
J	Т	17	K
K	Т	0	Ø
L	Т	16	K

Using the *previous* pointers, we can reconstruct the paths

Vertex	Visited	Distance	Previous
Α	Т	39	В
В	T	19	Е
С	Т	15	Е
D	Т	24	Е
E	Т	14	Н
F	Т	17	G
G	Т	13	
Н	Т	8	K
	Т	10	Н
J	Т	17	K
K	T	0	Ø
L	T	16	K

Comments on Dijkstra's algorithm

Questions:

- Q1. What if at some point, all unvisited vertices have a distance ∞?
- Q2. What if we just want to find the shortest path from v_i to v_k ?
- Q3. Does the algorithm change if we have a directed graph?

Runtime Analysis

The runtime of Dijkstra's algorithm is the same as Prim's algorithm

- With an adjacency matrix, the run time is $\Theta(|V|(|V|+|V|)) = \Theta(|V|^2)$
- With an adjacency list, the run time is $\Theta(|V|^2 + |E|) = \Theta(|V|^2)$ as $|E| = O(|V|^2)$

```
for _ in range(|V|-1): // until visiting all vertices
    // visit the closest vertex
    v = table.find_min_dist_vertex()
    table.mark_visit(v)

    // update the shortest path if needed
    for j in graph.get_adj_vertices(v):
        if (table.get_dist(v) + graph.get_dist(v, j) < table.get_dist(j)):
            new_dist = table.get_dist(v) + graph.get_dist(v, j)
            table.set_dist(j, new_dist)</pre>
```

Again, using the binary heap may show the better runtime

```
- O(|V| \ln(|V|) + |E| \ln(|V|)) = O(|E| \ln(|V|))
```

Summary

We have seen an algorithm for finding single-source shortest paths

- Start with the initial vertex
- Continue finding the next vertex that is closest

Dijkstra's algorithm always finds the next closest vertex

- It solves the problem in $O(|E| \ln(|V|))$ time

References

Cormen, Leiserson, Rivest and Stein, *Introduction to Algorithms*, The MIT Press, 2001, §25.2, pp.629-35.

Mark A. Weiss, Data Structures and Algorithm Analysis in C++, 3rd Ed., Addison Wesley, 2006, Ch.?, p.?.

Joh Kleinberg and Eva Tardos, *Algorithm Design*, Pearson, 2006.

Elliot B. Koffman and Paul A.T. Wolfgang,

Objects, Abstractions, Data Structures and Design using C++, Wiley, 2006.