BECA / Dr. Huson / Regents Prep: Graphs 27 November 2024

First and last name: Section:

3.10 Do Now: Graphing 4th degree polynomials

- 1. On the grid below, graph the function $f(x) = x^3 6x^2 + 9x + 6$ on the domain $-1 \le x \le 4$.
 - (a) Mark and label the x-intercepts.
 - (b) Write the function in factored form.
 - (c) Characterize the end behavior of the function. Use the notation "as $x\to\pm\infty$ $y\to\pm\infty$ "
 - (d) Mark and label the relative minimum point as an ordered pair.

- 2. Circle the equations that are an identities.
 - (a) $x^2 y^2 = (x y)(x + y)$
- (b) $(x+y)^2 = x^2 + 2xy + y^2$
- (c) $x^3 y^3 = (x y)(x^2 xy + y^2)$ (d) $x^3 + y^3 = (x + y)(x^2 xy + y^2)$
- 3. Write a recursive definition of the sequence $a_1 = 10$, $a_2 = 1$, $a_3 = 0.1$, $a_4 = 0.01$, ...
- 4. Write down the solutions to the equation x(3x+4)(x+1)(x-5)=0
- 5. Graphed is y = f(x). Write the function in factored form.
 - (a) Is the leading coefficient positive or negative?

- (b) What is its end behavior?
- (c) What is the degree of the polynomial?
- 6. If the diameter of a storm is 30 miles, how long might it last in hours? Use the formula $D^3 = 216T^2$ where D is the diameter in miles and T is the duration in hours.