Real Business Cycle (RBC) Theory ECON 30020: Intermediate Macroeconomics

Prof. Eric Sims

University of Notre Dame

Spring 2018

Readings

- ▶ GLS Ch. 17
- ▶ GLS Ch. 19

The Neoclassical Model and RBC Theory

- ▶ Real business cycle (RBC) theorists take the neoclassical model not just as an adequate description of an economy over the medium run (several years to a decade) but as a good description of the economy in the short run
- Implications of RBC theory:
 - 1. Money is neutral
 - Supply shocks (in particular, productivity shocks) drive everything
 - 3. No role for activist stabilization policies equilibrium is (approximately) efficient
- Question: do we want to take these implications seriously?
- Need to know whether model can fit the data

Measuring the Business Cycle

- We think of "the business cycle" as being measured by movements in real GDP (Y_t in the model) about some longer run trend
- Lots of statistical/econometric debates about how exactly to measure the trend and therefore how to extract the cyclical component
- But basically:

$$\ln Y_t = \ln Y_t^{\tau} + \ln Y_t^{c}$$

- ► The business cycle refers to how In Y^c_t (the cyclical/detrended component) moves around
- Periods of recession are periods in which this goes negative (i.e. output is below trend)

Cyclical/Detrended Component of GDP

The Business Cycle in the Neoclassical Model

- In our version of the neoclassical model, output only reacts to supply shocks (i.e. changes in A_t or θ_t)
- ► Demand shocks don't do anything to output; even in version of model where Y^s is non-vertical they won't do much
- Questions:
 - 1. How do other endogenous variables (e.g. C_t , r_t) co-move with output over the business cycle?
 - 2. Can model relying on exogenous changes in A_t or θ_t reproduce these co-movements?
 - 3. Is there any good evidence of changes in A_t or θ_t corresponding to observed changes in Y_t in the data?

Co-movements Over the Cycle

- ▶ Generally speaking, quantities (C_t, I_t, N_t) are very procycical (positively correlated with output)
- ► Real wage is *mildly* procyclical
- Real interest rate is acyclical (uncorrelated with output)
- Price level is countercyclical (negatively correlated with output)

Variable	Corr w/ Y_t in Data	Corr conditional on A_t	Corr conditional on θ_t
$\overline{C_t}$	0.88	+	+
I_t	0.91	+	+
N_t	0.87	+	+
w_t	0.20	+	-
r_t	0.10	-	-
P_t	-0.46	-	-

Co-Movements in the Model

- θ_t produces a conditionally *countercyclical* real wage in the model inconsistent with the data
- Observed cyclicality of real wage in data probably understates true cyclicality due to composition bias (Solon, Barsky, and Parker 1994)
- Fluctuations in A_t get all correlations right except perhaps r_t
- ▶ This is relatively easy to fix consider *persistent* changes in A_t (i.e. both A_t and A_{t+1} simultaneously go up)

Persistent Productivity Shock

Is There Evidence A_t Moves Around in Data in Same Way as Y_t ?

- ► Neoclassical model can do decent job matching empirical facts if it is driven by changes in *A*_t
- ▶ Is there evidence of large changes in A_t coinciding with observed changes in Y_t in short run?
 - ightharpoonup We already know from our study of the Solow model that differences in measured A_t seem to account for cross-country differences in Y_t
- ▶ As in Solow model, measure total factor productivity (TFP) by assuming Cobb-Douglas production function:

$$\ln TFP_t = \ln Y_t - \alpha \ln K_t - (1 - \alpha) \ln N_t$$

- ▶ TFP is a the "residual" in output that cannot be explained by observed capital and labor
- Correlation of cyclical components of TFP and GDP in data is high – 0.78

Cyclical/Detrended Components of TFP and GDP

Normative Implications of RBC Theory

- Neoclassical model can produce movements in endogenous variables which share similarity with what we observe in data
- ► There *is* some evidence that *A*^t moves around in a way consistent with what the model needs to match the data
- This might mean we want to take the model seriously in drawing policy implications
- Main implication: equilibrium of model is (approximately) efficient (GLS Ch. 14)
- ▶ Efficiency: you cannot change the equilibrium allocations (i.e. quantities like C_t and N_t) in order to improve welfare (lifetime utility) of representative household
- Recessions are efficient responses to exogenously lower productivity
- No justification for activist policies (monetary or fiscal) to try to combat recessions

Do We Really Buy This?

- ▶ Potential criticisms of RBC theory:
 - 1. What exactly are these productivity shocks? Why don't we read about them in the newspaper (Larry Summers quote)?
 - 2. To generate realistic movements in Y_t , model needs to rely on very elastic labor supply (i.e. labor supply curve flat) which seems at odds with micro data
 - 3. Other demand shocks don't matter money is neutral, and credit spread shocks don't affect output. Does this seem right?
 - 4. Is what we're measuring as TFP really measuring exogenous productivity in the model or something else?

Credit Spreads (empirical measure of f_t) are Counteryclical

Is TFP Appropriately Measured?

Suppose that the true production function is:

$$Y_t = A_t (u_t K_t)^{\alpha} N_t^{1-\alpha}$$

- ▶ u_t : capital utilization. Can't adjust K_t in short run, but can adjust u_t (i.e. how hard you work your capital)
- But TFP as typically measured isn't accounting for this not going to measure just A_t
- ▶ Demand shocks could be causing u_t to move, making it look like A_t is moving with Y_t even if it really isn't
- ▶ Basu, Fernald, and Kimball (2006): construct a "utilization-adjusted" measure of TFP and it is acyclical

Utilization-Adjusted TFP is Acyclical

Concluding Thoughts

- Each of these criticisms (and others) have merit
- Today, few economists really believe that short run fluctuations are efficient responses to changes in productivity
- Neoclassical model is a useful benchmark, particularly for the "medium run"
- But to think about short run business cycles and policy, need to modify the framework to allow for demand shocks to matter, money to be non-neutral, and equilibrium to be inefficient
- ▶ We do so next when we study the *New Keynesian Model*