שעור 11 משפט הפירוק הפרימרי

11.1 הגדרה של חיתוך וסכום של תתי מרחבים

משפט 11.1 חיתוך של תת מרחב

 $V_1\cap V_2$ נניח ש $V_1\cap V_2$ מרחב וקטורי מעל שדה \mathbb{F}_1 , או ערחבים של $V_1\cap V_2$ היא תת מרחב של

הוכחה:

 $ar{.0} \in V_1 \cap V_2 \Leftarrow ar{0} \in V_2$ וגם $ar{0} \in V_1 \Leftarrow V_2$ תת מרחבים על , V_1 (1

$$v_1,v_2\in V_1\cap V_2$$
 נניח (2 $v_1,v_2\in V_2$ וגם $v_1,v_2\in V_1$ אז $v_1,v_2\in V_1$ תת מרחב $v_1+v_2\in V_1$ תת מרחב $v_1+v_2\in V_2$ תת מרחב $v_1+v_2\in V_1$ תייא $v_1+v_2\in V_1\cap V_2$

כניח
$$k\in\mathbb F$$
 ו ${
m v}\in V_1\cap V_2$ סקלר. ${
m v}\in V_2$ ו ${
m v}\in V_1$ אז ${
m v}\in V_1$ תת מרחב לכן ${
m v}\in V_1$ תת מרחב לכן ${
m v}\in V_2$ תת מרחב לכן ${
m v}\in V_1$

דוגמה 11.1

V עבור $V_1 \cup V_2$ תתי מרחבים של מרחב ווקטורי V מעל שדה \mathbb{F} , האם עבור מרחבים של מרחב של

פתרון:

$$V_1=\left\{egin{pmatrix}x\\0\end{pmatrix}\Big|x\in\mathbb{R}
ight\}\ ,\qquad V_2=\left\{egin{pmatrix}0\\x\end{pmatrix}\Big|x\in\mathbb{R}
ight\}\ . \ v_1+v_2\notin V_1\cup V_2\ .$$
 אנ $v_1+v_2\notin V_1\cup V_2$, אבל $v_2=egin{pmatrix}0\\1\end{pmatrix}\in V_2$, $v_1=egin{pmatrix}1\\0\end{pmatrix}\in V_1$ אנ איז $v_1+v_2\notin V_1\cup V_2$.

משפט 11.2 תת מרחב הקטן ביותר

נניח שV מרחב וקטורי מעל שדה \mathbb{F}_1 , \mathbb{F}_1 , תתי מרחבים של

$$W = \{ \mathbf{v}_1 + \mathbf{v}_2 | \mathbf{v}_1 \in V_1, \mathbf{v}_2 \in V_2 \}$$

 V_2 ו V_1 ו ביותר שמכיל ביותר היא היא תת מרחב הקטן ביותר שמכיל את ארכל תת מרחב $W \subseteq W'$ שמכיל את ארכל תת מרחב שמכיל את V_1 ו

הוכחה:

\underline{N} נוכיח שW תת מרחב של (1

אט.
$$ar{0} \in V_2$$
 וגם $ar{0} \in V_1$ (א

$$\bar{0} = \bar{0} + \bar{0} \in W$$
.

$$w_2 = {
m v}_1 + {
m v}_2 \in W$$
 , $w_1 = u_1 + u_2 \in W$ ב) נניח

$$.u_2, \mathrm{v}_2 \in V_2$$
 וגם $u_1, \mathrm{v}_1 \in V_1$ אז א

.תני מרחבים V_2 , V_1

$$.u_2+{
m v}_2\in V_2$$
 גם , $u_1+{
m v}_1\in V_1$ לכן

מכאן

$$w_1 + w_2 = (u_1 + u_2) + (v_1 + v_2) = (u_1 + v_1) + (u_2 + v_2) \in W$$
.

 $,\!ku_1\in V_1$ גט מרחבים, לכן תתי מרחבים, עו $u_1\in V_1$ אז אז או $w=u_1+u_2\in W$ גט נניח גט נניח $w=u_1+u_2\in W$ מכאן מכאן מכאן מכאן

$$kw = k(u_1 + u_2) = ku_1 + ku_2 \in W$$

ביותר הקטן התת מרחב הקטן כיותר (2

ברור כי V_2 ו מכיל את V_1 ני

$$u=u+ar{0}\in W$$
 , $u\in V_1$ לכל

$$.u=ar{0}+u\in W$$
 , $u\in V_2$ וגם לכל

 V_2 ו ו את שמכיל את נוכיח ביותר מרחב הקטן הוא תת מרחב נוכיח ש

 V_2 ו V_1 איזשהו תת מרחב שמכיל את W' ו

 $W \subseteq W'$ נוכיח כי

 $u_2 \in V_2$, $u_1 \in V_1$ כאשר , $w = u_1 + u_2$ אז $w \in W$ נקח וקטור

$$.u_1 \in W' \Leftarrow V_1 \in W'$$

$$.u_2 \in W' \Leftarrow V_2 \in W'$$

 $w=u_1+u_2\in W'$ תת מרחב, לכן W'

מש"ל.

למה 11.1

 V_1+V_2 ב ומסומן ב V_1 ו למרחב למרחב (המשפט הקודם) נקרא של של של W

משפט 11.3 סכום של תת מרחב שווה לפרישה של האיחוד

$$V_1 + V_2 = \text{span}(V_1 \cup V_2)$$
.

$:V_1+V_2\subseteq \mathrm{span}\,(V_1\cup V_2)$ נוכיח כי :הובחה:

$$V_1, V_2 \subseteq \operatorname{span}(V_1 \cup V_2)$$

לכן, לפי משפט 11.2

$$V_1 + V_2 \subseteq \operatorname{span}(V_1 \cup V_2)$$
.

$$\operatorname{span}\left(V_1\cup V_2
ight)\subseteq V_1+V_2$$
 נוכיח כי

 $egin{array}{lll} m{,}lpha_1,\dots,lpha_k\in\mathbb{F}$ וטקלרים $\mathbf{v}_1,\dots,\mathbf{v}_n\in V_2$ ו $u_1,\dots,u_k\in V_1$ אז קיימים $w\in\mathrm{span}\,(V_1\cup V_2)$ וטקלרים $eta_1,\dots,eta_n\in\mathbb{F}$

$$w = \alpha_1 u_1 + \dots + \alpha_k u_k + \beta_1 v_1 + \dots + \beta_n v_n.$$

$$.eta_1\mathbf{v}_1+\cdots+eta_n\mathbf{v}_n\in V_2$$
 וגם $lpha_1u_1+\cdots+lpha_ku_k\in V_1$ אז $w\in V_1+V_2$ לכן

 \Leftarrow span $(V_1 \cup V_2) \subseteq V_1 + V_2$ וגם $V_1 + V_2 \subseteq \operatorname{span}(V_1 \cup V_2)$ הוכחנו כי

$$V_1 + V_2 = \operatorname{span}\left(V_1 \cup V_2\right) .$$

דוגמה 11.2

$$V_2=$$
ו , $V_1=\left\{egin{pmatrix}x\\0\\0\end{pmatrix}igg|x\in\mathbb{R}
ight\}$: \mathbb{R}^3 נקח את המרחב ווקטורי . $V=\mathbb{R}^3$ נקח את המרחב ווקטורי

, קווים ישרים ב \mathbb{R}^3 אז הסכום שלהם הינו , $\left\{egin{pmatrix} 0\\y\\0 \end{pmatrix} \middle| y \in \mathbb{R} \right\}$

$$V_1 + V_2 = \left\{ \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} \middle| x, y \in \mathbb{R} \right\} ,$$

 \mathbb{R}^3 ב z=0 ומהווה את המישור

11.2 משפט המימדים של סכום וחיתוך

משפט המימדים

V מרחב וקטורי מעל שדה V_2 , V_1 , $\mathbb F$ מרחב וקטורי מעל

$$\dim(V_1 + V_2) = \dim(V_1) + \dim(V_2) - \dim(V_1 \cap V_2)$$

$$:V_1+V_2={
m span}\,(u_1,\ldots,u_m,a_1,\ldots,a_{k-m},b_1,\ldots,b_{n-m}.)$$
 נוכיח כי

$$w = v_1 + v_2 \in V_1 + V_2$$
 נניח

$$\mathbf{v}_{1} = \alpha_{1}u_{1} + \ldots + \alpha_{m}u_{m} + \beta_{1}a_{1} + \ldots + \beta_{k-m}a_{k-m} \in V_{1} ,$$

$$\mathbf{v}_{2} = \alpha'_{1}u_{1} + \ldots + \alpha'_{m}u_{m} + \gamma_{1}b_{1} + \ldots + \gamma_{n-m}b_{n-m} \in V_{2} .$$

77

$$\mathbf{v}_{1} + \mathbf{v}_{2} = (\alpha_{1} + \alpha'_{1}) u_{1} + \ldots + (\alpha_{m} + \alpha'_{m}) u_{m} + \beta_{1} a_{1} + \ldots + \beta_{k-m} a_{k-m} + \gamma_{1} b_{1} + \ldots + \gamma_{n-m} b_{n-m}$$

א"ז

$$\mathbf{v}_1 + \mathbf{v}_2 \in \operatorname{span}\left(u_1, \dots, u_m, a_1, \dots, a_{k-m}, b_1, \dots, b_{n-m}\right)$$

$$(u_1,\ldots,u_m,a_1,\ldots,a_{k-m},b_1,\ldots,b_{n-m})\in V_1+V_2$$
 נוכיח את ההכלה ההפוכה, כלומר

נניח

$$w\in \mathrm{span}\,(u_1,\ldots,u_m,a_1,\ldots,a_{k-m},b_1,\ldots,b_{n-m})$$
אז קיימים סקלרים $\alpha_1,\ldots,\beta_k,\ldots,\beta_{k-m},\gamma_1,\ldots,\gamma_{n-m}$ כך ש

$$w = \alpha_1 u_1 + \dots + \alpha_m u_m + \beta_1 a_1 + \dots + \beta_{k-m} a_{k-m} + \gamma_1 b_1 + \dots + \gamma_{n-m} b_{n-m}$$

נסמן

$$\mathbf{v}_1 = \alpha_1 u_1 + \dots + \alpha_m u_m + \beta_1 a_1 + \dots + \beta_{k-m} a_{k-m}$$

 $\mathbf{v}_2 = \gamma_1 b_1 + \dots + \gamma_{n-m} b_{n-m}$

אז

$$v_1 \in V_1, \quad v_2 \in V_2, \quad w = v_1 + v_2$$

 $w \in V_1 + V_2$ כלומר

נשאר להוכיח שוקטורים $\{u_1,\dots,u_m,a_1,\dots,a_{k-m},b_1,\dots,b_{n-m}\}$ בת"ל:

נניח:

$$\alpha_1 u_1 + \dots + \alpha_m u_m + \beta_1 a_1 + \dots + \beta_{k-m} a_{k-m} + \gamma_1 b_1 + \dots + \gamma_{n-m} b_{n-m} = \bar{0}$$
 (*1)

X

$$\alpha_1 u_1 + \dots + \alpha_m u_m + \beta_1 a_1 + \dots + \beta_{k-m} a_{k-m} = -\gamma_1 b_1 - \dots - \gamma_{n-m} b_{n-m} := v.$$
 (*2)

 N_1 הוקטור באגף השמאל שייך ל

 $.V_2$ הוקטור באגף הימין שייך ל

לכן, לפי סקלרים סקלרים לכן (נתון) און בסיס של בסיס של בסיס עו u_1,\ldots,u_m ער כן לפי לכן, לפי $v=\delta_1u_1+\ldots+\delta_mu_m$.

לכן

$$\delta_1 u_1 + \ldots + \delta_m u_m + \gamma_1 b_1 + \ldots + \gamma_{n-m} b_{n-m} = \delta_1 u_1 + \ldots + \delta_m u_m - (-\gamma_1 b_1 - \ldots - \gamma_{n-m} b_{n-m})$$

$$= \mathbf{v} - \mathbf{v}$$

$$= \bar{\mathbf{0}} ,$$

א"ז

$$\delta_1 u_1 + \ldots + \delta_m u_m + \gamma_1 b_1 + \ldots + \gamma_{n-m} b_{n-m} = \bar{0}$$
 (*3)

אם אם (*3) מתקיים הם בת"ל. לכן (נתון) על בסיס של בסיס $u_1, \dots u_m, b_1, \dots, b_{n-m}$

$$\delta_1 = \ldots = \delta_m = \gamma_1 = \ldots = \gamma_{n-m} = 0$$
 (*4)

מכאן מקבלים מ (1*) כי

$$\alpha_1 u_1 + \dots + \alpha_m u_m + \beta_1 a_1 + \dots + \beta_{k-m} a_{k-m} = \bar{0}$$
 (*5)

ל. בת"ל. (נתון) על בסיס של $u_1, \ldots u_m, a_1, \ldots, a_{k-m}$

לכן (5*) מתקיים רק אם

$$\alpha_1 = \ldots = \alpha_m = \beta_1 = \ldots = \beta_{k-m} = 0.$$
 (*6)

לכן, בגלל שהמקדמים ב (*1) כולם שווים ל 0, כפי שהוכחנו ב (*4) ו (*6), אז הוקטורים לכן, בגלל שהמקדמים ב $u_1,\dots u_m,a_1,\dots,a_{k-m},b_1,\dots b_{n-m}$ מכאו

$$\dim(V_1+V_2) = m + (k-m) + (n-m) = k+n-m = \dim(V_1) + \dim(V_2) - \dim(V_1\cap V_2)$$

מש"ל.

מסקנה 11.1

 $\operatorname{dim}(V_1\cap V_2)>0$ גניח $V_1,V_2\subseteq\mathbb{R}^3$ תתי מרחבים ממימד עניח $V_1,V_2\subseteq\mathbb{R}^3$

,11.4 לפי משפט . $\dim(V_1+V_2) \leq 3$ לכן \mathbb{R}^3 לפי מרחבים על V_1,V_2 .

$$4 = \dim(V_1) + \dim(V_2) = \dim(V_1 + V_2) + \dim(V_1 \cap V_2) \leq 3 + \dim(V_1 \cap V_2)$$

11.3 סכום ישר

הגדרה 11.1 סכום ישר

 \mathbb{F} מעל שדה V מעל מרחב של מרחבים שני תת מרחבים שני ו U_1 ו ו U_1 יהיו יהיו שני מתחבים של מרחב וקטורי על נקרא מרחב של U_1 ו ו U_1 אם מתקיימים: V מרחב וקטורי של מרחב על מרחב וקטורי וקטורי על נקרא של מרחב וקטורי ו

$$W = U_1 + U_2$$
 (x

 U_2 בו U_1 ב וקטורים של וקטורים ב על יש הצגה יחידה כסכום של וקטורים ב U_1

:סימון

$$W = U_1 \oplus U_2$$

 $.U_2$, U_1 אישר של הסכום הישר

משפט 11.5

יהי $V=U\oplus W$ אז אז V=U ו U תת מרחבים של $V=U\oplus W$ אז אז ער ורק אם ורק אם ורק אם

$$V = U + W$$
 (x

$$.U\cap W=\{ar{0}\}$$
 (2

הוכחה:

 $U\cap W=\{ar{0}\}$ נניח כי $V=U\oplus W$. נשאר להוכיח ישר 11.1, סכום ישר ערשום אז לפי הגדרה $v\in U$ אז לפי הגדרה נניח ער ערשום $v\in U$ אז אז ער לערשום ניח אין אז ער אפער לרשום

$$\begin{array}{lll} & \in U & \in W \\ \mathbf{v} = & \mathbf{v} & + & \bar{\mathbf{0}} \\ & & & \\ & \in U & \in W \\ \mathbf{v} = & \bar{\mathbf{0}} & + & \mathbf{v} \end{array}$$

 $\mathbf{v}=ar{0}$ מכיוון שהסכום הוא ישר, יש רק דרך יחידה לרשום את יע כסכום של וקטורים של U ו

 $U\cap W=\{ar{0}\}$ נניח כי V=U+W נניח כי (2 $V=U\oplus W$ נוכיח כי

לפי הגדרת סכום ישר 11.1, נשאר להוכיח כי כל וקטור $\mathbf{v} \in V$ ניתן להציג בדרך יחידה כסכום של וקטורים של ט $\mathbf{v} \in V$ ו וUו של ט

 $.w_1,w_2\in W$, $u_1,u_2\in U$ כאשר $\mathbf{v}=u_2+\mathbf{w}_2$ וגם $\mathbf{v}=u_1+\mathbf{w}_1$ נניח כי $\mathbf{v}\in V$

111

$$u_1+w_1=u_2+w_2$$
 \Rightarrow $u_1-u_2=w_2-w_1$ כאשר $w_2-w_1\in W$ ו $u_1-u_2\in U$ לכן $u_1-u_2=w_2-w_1\in U\cap W=\{\bar 0\}$.

$$.w_2-w_1=ar{0}$$
 מכאן, $u_1-u_2=ar{0}$ אכ $u_1-u_2=u_2$ לכן $u_1=u_2$ וגם $u_1=u_2$