RAPPORT D'ANALYSE MÉTALLURGIQUE

DISQUES DE TURBINE

AIRBUS A320

Référence: RAM-A320-DT-2025-078

Classification: TECHNIQUE / USAGE INTERNE

Date d'analyse: 18 mai 2025

Échantillon: Disque de turbine haute pression #HPT-DK-45892

1. CONTEXTE ET OBJECTIFS

Ce rapport présente les résultats de l'analyse métallurgique effectuée sur un disque de turbine haute pression déposé lors de la maintenance programmée d'un Airbus A320-214 (MSN 3244). L'analyse a été réalisée suite à la détection d'indications lors de l'inspection par courants de Foucault.

Objectifs de l'analyse: - Identifier la nature et l'étendue des indications détectées - Déterminer les mécanismes de dégradation potentiels - Évaluer la conformité du matériau aux spécifications - Formuler des recommandations pour la maintenance de la flotte

Historique du composant: - Heures de vol: 12,450 - Cycles: 8,275 - Date de mise en service: Mars 2020 - Dernière inspection: Janvier 2025

2. MÉTHODOLOGIE ET RÉSULTATS

2.1 Examen visuel et macroscopique

L'inspection visuelle a révélé une surface généralement en bon état avec des signes d'utilisation normale. Une zone d'intérêt (ZI-1) a été identifiée sur le rayon de raccordement entre le disque et l'arbre, présentant une décoloration localisée.

Observations macroscopiques: - Absence de déformation plastique visible - Traces d'oxydation légère sur la périphérie (normal pour l'âge) - Zone de décoloration bleuâtre sur le rayon de raccordement (ZI-1) - Aucune fissure visible à l'œil nu

2.2 Analyse chimique

L'analyse par spectrométrie à émission optique a été réalisée sur trois zones distinctes du disque.

Élément	Spécification (%)	Zone standard (%)	Zone ZI-1 (%)	Conformité
Nickel (Ni)	Base	Base	Base	CONFORME
Chrome (Cr)	11,0-14,0	12,4	12,3	CONFORME
Cobalt (Co)	9,0-11,0	9,8	9,7	CONFORME
Molybdène (Mo)	1,5-2,5	2,1	2,0	CONFORME
Tungstène (W)	3,5-4,5	3,9	3,8	CONFORME
Aluminium (Al)	3,0-4,0	3,5	3,4	CONFORME
Titane (Ti)	3,0-4,0	3,6	3,5	CONFORME
Carbone (C)	0,13-0,17	0,15	0,15	CONFORME
Soufre (S)	<0,015	0,008	0,011	CONFORME

La composition chimique est conforme aux spécifications du matériau Inconel 718 modifié utilisé pour ce composant.

2.3 Analyse microstructurale

Des échantillons ont été prélevés dans la zone standard et la zone ZI-1 pour analyse métallographique.

Microstructure générale: - Structure dendritique typique des superalliages à base nickel - Taille de grain ASTM 8-9 (conforme aux spécifications) - Précipités γ' et γ'' uniformément distribués - Absence de phases TCP (Topologically Close-Packed) nocives

Zone ZI-1: - Légère augmentation de la densité de précipités aux joints de grains - Présence de micro-fissures intergranulaires (longueur max: 0,8 mm) - Signes de fluage localisé avec formation de cavités - Oxydation intergranulaire limitée

2.4 Propriétés mécaniques

Des essais mécaniques ont été réalisés sur des éprouvettes prélevées dans des zones représentatives.

Propriété	Spécification	Zone standard	Zone ZI-1	Conformité
Dureté (HRC)	38-44	41	39	CONFORME
Résistance traction (MPa)	>1240	1320	1275	CONFORME
Limite élastique (MPa)	>1000	1080	1040	CONFORME
Allongement (%)	>12	14,5	13,2	CONFORME
Résilience (J)	>45	52	47	CONFORME

Les propriétés mécaniques restent dans les limites acceptables, avec une légère diminution dans la zone ZI-1.

2.5 Analyse fractographique

L'examen au microscope électronique à balayage (MEB) des micro-fissures révèle: - Morphologie intergranulaire des fissures - Présence de facettes de fluage aux joints de grains - Absence de stries de fatigue - Traces d'oxydation sur les surfaces de rupture - Présence ponctuelle d'inclusions non métalliques (taille <10 μ m)

3. INTERPRÉTATION ET CONCLUSIONS

3.1 Mécanisme de dégradation

L'analyse indique que les indications détectées correspondent à des micro-fissures de fluage à haute température. Ce phénomène est caractérisé par: - Localisation dans une zone de concentration de contraintes (rayon de raccordement) - Morphologie intergranulaire des fissures - Présence de cavités caractéristiques du fluage - Absence de signes de fatigue mécanique cyclique

La décoloration observée est cohérente avec une exposition locale à une température supérieure à la normale, probablement due à un écoulement perturbé des gaz chauds.

3.2 Évaluation de la conformité

Le matériau du disque est conforme aux spécifications chimiques et mécaniques requises par: - EASA CS-E 515 (Matériaux des moteurs) - FAA 14 CFR Part 33.15 (Matériaux) - Spécification interne CFM-MAT-718M

Les micro-fissures détectées dépassent toutefois les critères d'acceptation définis dans le manuel de maintenance (limite: 0,5 mm).

3.3 Recommandations

Sur la base de cette analyse, les recommandations suivantes sont formulées:

1. Pour le composant analysé:

2. Retrait définitif du service (non réparable)

Conservation comme échantillon de référence pour formation

Pour la flotte:

- 5. Inspection renforcée des disques de turbine haute pression ayant accumulé >8000 cycles
- 6. Réduction de l'intervalle d'inspection par courants de Foucault de 4000 à 2000 cycles

Vérification du profil thermique des chambres de combustion lors des inspections boroscopiques

Pour la maintenance:

- 9. Mise à jour de la procédure d'inspection avec attention particulière aux rayons de raccordement
- 10. Formation spécifique des inspecteurs sur la détection des signes précoces de fluage
- 11. Révision des paramètres de surveillance en vol (FADEC) pour détecter les anomalies thermiques

Analyse réalisée par:

[Signature]
Dr. Sophie Martin
Ingénieur Métallurgiste Senior
Certification COFREND ET3 #12587

Approuvé par:

[Signature]
Philippe Renard
Responsable Laboratoire Matériaux
EASA Part-145 #FR.145.0721

Ce rapport est conforme aux exigences EASA Part-145.A.45 et FAA AC 43-210.