Optimization (168)

Lecture 3-4-5

Jesús De Loera

UC Davis, Mathematics

Wednesday, April 2, 2012

THE SIMPLEX METHOD

LINEAR PROGRAMS (LPs)

We wish to optimize subject to linear constraints (= or \geq is special case)

maximize (minimize)
$$C_1x_1 + C_2x_2 + \cdots + C_dx_d$$

among all $x_1, x_2, ..., x_d$, satisfying:

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,d}x_d \le b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,d}x_d \le b_2$$

$$\vdots$$

$$a_{k,1}x_1 + a_{k,2}x_2 + \dots + a_{k,d}x_d \le b_k$$

- A vector satisfying all constraints is called a **feasible solution**
- A feasible solution is **Optimal** if it attains a maximum or minimum.
- Some problems have no solutions, so they are called infeasible for example

max
$$5x_1 + 4x_2$$

s.t. $x_1 + x_2 \le 2$
 $-2x_1 - 2x_2 \le -9$
 $x_1, x_2 \ge 0$

 An LP can be unbounded when there are arbitrarily large feasible solutions (say in Euclidean norm).

max
$$x_1 - 4x_2$$

s.t. $-2x_1 + x_2 \le -1$
 $-x_1 - 2x_2 \le -2$
 $x_1, x_2 \ge 0$

• GOAL: Find optimal solution OR detect when LP infeasible or unbounded!

The simplex method

George Dantzig invented the SIMPLEX METHOD in the 1940's.

Lemma The set of all feasible solutions is a convex polyhedron. Let us use geometry!

LINEAR PROGRAMS (LPs)

The general LP problem can be reduced to the case

maximize (minimize)
$$C_1x_1 + C_2x_2 + \cdots + C_dx_d$$

subject to $x_1, x_2, ..., x_d$, satisfying:

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,d}x_d \le b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,d}x_d \le b_2$$

$$\vdots \qquad \vdots$$

$$a_{k,1}x_1 + a_{k,2}x_2 + \dots + a_{k,d}x_d \le b_k$$

with the condition $x_1, x_2, ..., x_d \ge 0$. WHY??

Replace a non-restricted x_i by $x_i = x_i^+ - x_i^-$, with $x_i^+ \ge 0, x_i^- \ge 0$.

Next we can rewrite this as

maximize (minimize)
$$C_1x_1 + C_2x_2 + \cdots + C_dx_d$$

subject to $x_1, x_2, ..., x_d$, satisfying:

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,d}x_d + s_1 = b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,d}x_d + s_2 = b_2$$

$$\vdots \qquad \vdots$$

$$a_{k,1}x_1 + a_{k,2}x_2 + \dots + a_{k,d}x_d + s_k = b_k$$
with the condition $x_1, x_2, \dots, x_d, s_1, s_2, \dots s_k \ge 0$.

WHY??

The variables s_i are capture the slack, **slack variables**. Original variables **decision variables**. Looks more like linear algebra.

From this form we follow an iterative procedure!

How the simplex Method works

max
$$5x_1 + 4x_2 + 3x_3$$

s.t. $2x_1 + 3x_2 + x_3 \le 5$
 $4x_1 + x_2 + 2x_3 \le 11$
 $3x_1 + 4x_2 + 2x_3 \le 8$
 $x_1, x_2, x_3 \ge 0$

Rewrite problem using the slack variables (we call them s_1, s_2, s_3

$$z = 5x_1 + 4x_2 + 3x_3$$

$$s_1 = 5 - 2x_1 - 3x_2 - x_3$$

$$s_2 = 11 - 4x_1 - x_2 - 2x_3$$

$$s_3 = 8 - 3x_1 - 4x_2 - 2x_3$$

$$x_1, x_2, x_3 \ge 0$$

The problem is now the same as max z subject to $x_1, x_2, x_3, s_1, s_2, s_3 \ge 0$.

- Key idea 1 There is a one-to-one correspondence of the feasible solutions of the original LP to the feasible solutions of the LP with slacks (canonical form)!
- Key idea 2 Carry on successive improvements, starting with a feasible of LP in canonical form proceed to a better feasible solution, one with better value of z.
- Given

$$z = 5x_1 + 4x_2 + 3x_3$$

$$s_1 = 5 - 2x_1 - 3x_2 - x_3$$

$$s_2 = 11 - 4x_1 - x_2 - 2x_3$$

$$s_3 = 8 - 3x_1 - 4x_2 - 2x_3$$

$$x_1, x_2, x_3, s_1, s_2, s_3 \ge 0$$

Set $x_1 = x_2 = x_3$ so we have a solution but z = 0.

- NOTE: if we keep $x_2 = x_3 = 0$ but increase x_1 we increase z.
- Just how much do we increase x_1 (while keeping $x_2 = x_3 = 0$) and still maintain feasibility?

- Look at first equation! $s_1 = 5 2x_1 3x_2 x_3$, s_1 must be non-negative! Thus $x_1 \le 5/2$.
- From second equation $s_2 = 11 4x_1 x_2 2x_3 \ge 0$ Thus $x_1 \le 11/4$.
- From third equation $s_3 \ge 0$ implies $x_1 \le 8/3$.
- Of these 3 bounds which is more restrictive? The first is the most restrictive!!
- Keep $x_2 = x_3 = 0$ but increase x_1 we increase to $\frac{5}{2}$, thus now $s_1 = 0$, $s_2 = 1$, $s_3 = \frac{1}{2}$. Now $z = \frac{25}{2}$
- Need to rewrite the system in such a way that variables that are positive are given in term of those that are zero, rewrite
- $x_1 = \frac{5}{2} \frac{3}{2}x_2 \frac{1}{2}x_3 \frac{1}{2}s_1$, use it to rewrite the system!!! Replace x_1 everywhere in

$$z = 5x_1 + 4x_2 + 3x_3$$

$$s_1 = 5 - 2x_1 - 3x_2 - x_3$$

$$s_2 = 11 - 4x_1 - x_2 - 2x_3$$

$$s_3 = 8 - 3x_1 - 4x_2 - 2x_3$$

$$x_1, x_2, x_3, s_1, s_2, s_3 \ge 0$$

From

$$z = 5x_1 + 4x_2 + 3x_3 \qquad \to \qquad z \qquad = 5\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}s_1\right) + 4x_2 + 3x_3$$

$$s_1 = 5 - 2x_1 - 3x_2 - x_3 \qquad \to \qquad x_1 \qquad \qquad = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}s_1$$

$$s_2 = 11 - 4x_1 - x_2 - 2x_3 \qquad \to \qquad s_2 \qquad = 11 - 4\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}s_1\right) - x_2 - 2x_3$$

$$s_3 = 8 - 3x_1 - 4x_2 - 2x_3 \qquad \to \qquad s_3 \qquad = 8 - 3\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}s_1\right) - 4x_2 - 2x_3$$

$$x_1, x_2, x_3, s_1, s_2, s_3 \ge 0$$

We get a new system is

$$z = \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}x_3 - \frac{5}{2}s_1$$

$$x_1 = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}s_1$$

$$s_2 = 1 + 5x_2 + 2s_1$$

$$s_3 = \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}s_1$$

$$x_1, x_2, x_3, s_1, s_2, s_3 \ge 0$$

$$z = \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}x_3 - \frac{5}{2}s_1$$

$$x_1 = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}s_1$$

$$s_2 = 1 + 5x_2 + 2s_1$$

$$s_3 = \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}s_1$$

$$x_1, x_2, x_3, s_1, s_2, s_3 \ge 0$$

- We shall again increase value of z by increasing the value of a variable on the right side, while keeping at zero the others.
- NOTE: increasing x₂ or s₁ would give a decrease!. Thus we must increase x₃!
 How much?
- Read answer from new system: While $x_2 = s_1 = 0$ we have $x_3 \le 1$ is the most we can increase!!! (WHY?? Which equation says that?).
- Rewrite the system so that the positive value variables are on the left (x_1, x_3, s_2) and the right-side has only zero-valued variables (x_2, s_1, s_3) .
- From third equation we have $x_3 = 1 + x_2 + 3s_1 2s_3$. Substitute in the system again. We get new system!!!!

After substitution

$$z = \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}x_3 - \frac{5}{2}s_1$$

$$x_1 = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}s_1$$

$$s_2 = 1 + 5x_2 + 2s_1$$

$$s_3 = \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}s_1$$

$$x_1, x_2, x_3, s_1, s_2, s_3 \ge 0$$

turns into

$$z = 13 - 3x_2 - s_1 - s_3$$

$$x_1 = 2 - 2x_2 - 2s_1 + s_3$$

$$s_2 = 1 + 5x_2 + 2s_1$$

$$x_3 = 1 + x_2 + 3s_1 - 2s_3$$

$$x_1, x_2, x_3, s_1, s_2, s_3 \ge 0$$

$$z = 13 - 3x_2 - s_1 - s_3$$

$$x_1 = 2 - 2x_2 - 2s_1 + s_3$$

$$s_2 = 1 + 5x_2 + 2s_1$$

$$x_3 = 1 + x_2 + 3s_1 - 2s_3$$

$$x_1, x_2, x_3, s_1, s_2, s_3 > 0$$

- To repeat the process we need to find a variable from the right side to go to the left!!! One that when we increase it will increase z!!!
- BUT if we increase either x_2, s_1, s_3 we will **decrease** z!!!!
- We have reached a stand-still. Claim: the answer we have now is OPTIMAL!!
- Why Look at the first row. Setting $x_2 = s_1 = s_3 = 0$, yields z = 13, but since all feasible solutions MUST satisfy $x_2, s_1, s_3 \ge 0$ this must be the best possible value!!

General Description

We start with a problem in the form

$$\max \sum_{j=1}^{n} c_{j} x_{j}$$
s.t.
$$\sum_{j=1}^{n} a_{ij} x_{j} \le b_{i} \quad i = 1 \dots m$$

$$x_{j} \ge 0$$

Turn it into a DICTIONARY by adding slack variables (for each inequality).

$$z = \sum_{j=1}^{n} c_j x_j$$

$$s_i = b_i - \sum_{j=1}^{n} a_{ij} x_j \quad \text{for} \quad i = 1 \dots m$$

$$x_j, s_j \ge 0$$

The simplex method moves from one dictionary to the next.

- We call the variables in the left BASIC variables and the variables in the right NON-BASIC variables.
- If N denotes the NON-BASIC variables, B denotes the basic variables

$$z = \bar{z} + \sum_{j \in N} \bar{c}_j x_j$$

 $x_i = \bar{b}_i - \sum_{j \in N} \bar{a}_{ij} x_j$ for $i \in B$
 $x_j, s_j \ge 0$

- The current solution when we set the non-basic variables to zero is a BASIC FEASIBLE SOLUTION.
- Exactly one variable goes from NON-BASIC to become BASIC (moves from RIGHT to LEFT) and vice versa.
- Pick a non-basic variable whose coefficient in the objective function is > 0. Candidates are $\{j \in N, \bar{c}_i > 0\}$.
- If Candidate set is empty, the we have an OPTIMAL SOLUTION!!!! WHY? Current basic feasible solution is best possible.
- Otherwise if Candidates has more than one element, choose one. HOW? Many options!!!

• Say x_k is chosen to leave (currently non-basic, turned into basic). We require $\bar{b}_i - \bar{a}_{ik} x_k \geq 0$. This implies

$$x_k \leq rac{ar{b}_i}{ar{a}_{ik}}$$

Pick index / where $\frac{\bar{b}_l}{\bar{a}_{lk}}$ is smallest possible (NOTE: book talks about maximum reciprocal).

Next, pivot, using the equation

$$x_l = \bar{b}_l - \sum_{j \in N} \bar{a}_{lj} x_j$$

we rewrite, put x_k in the left, x_l in the right.

REPEAT!!!

BUT there are several questions? What if the initial b_i are not all positive? How to recognize unboundedness? How do I know that the process will terminate?

Initialization: PHASE I

- Suppose the original b_i are not all non-negative. Then we cannot right away find a feasible solution!!!!
- Consider instead of the original problem:

$$\max - x_0$$
s.t.
$$\sum_{j=1}^{n} a_{ij} x_j - x_0 \le b_i \quad i = 1 \dots m$$

$$x_j \ge 0$$

- **Lemma** Easy to find a feasible solution: Set $x_j = 0$ for j = 1,...,n and set x_0 large enough positive.
- Lemma Original problem has a feasible solution if and only if an optimal solution of the auxiliar problem has objective value ZERO.

max
$$x_1 - x_2 + x_3$$

s.t. $2x_1 - x_2 + 2x_3 \le 4$
 $2x_1 - 3x_2 + x_3 \le -5$
 $-x_1 + x_2 - 2x_3 \le -1$
 $x_1, x_2, x_3 > 0$

We need to put it in the auxiliary form, where a feasible solution is easy to find:

max
$$-x_0$$

s.t. $2x_1 - x_2 + 2x_3 - x_0 \le 4$
 $2x_1 - 3x_2 + x_3 - x_0 \le -5$
 $-x_1 + x_2 - 2x_3 - x_0 \le -1$
 $x_1, x_2, x_3, x_0 \ge 0$

We put it in dictionary form by adding slacks.

$$z = -x_0$$

$$x_4 = 4 - 2x_1 + x_2 - 2x_3 + x_0$$

$$x_5 = -5 - 2x_1 + 3x_2 - x_3 + x_0$$

$$x_6 = -1 + x_1 - x_2 + 2x_3 + x_0$$

$$x_1, x_2, x_3, x_4, x_5, x_6, x_0 \ge 0$$

With a single pivot, x_0 enters basics, x_5 leaves basics, we get

$$z = -5 - 2x_1 + 3x_2 - x_3 - x_5$$

$$x_4 = 9 - 2x_2 - x_3 + x_5$$

$$x_0 = 5 + 2x_1 - 3x_2 + x_3 + x_5$$

$$x_6 = 4 + 3x_1 - 4x_2 + 3x_3 + x_5$$

$$x_1, x_2, x_3, x_4, x_5, x_6, x_0 \ge 0$$

Starts normal pivoting!!!

$$z = -2 + 0.25x_1 + 1.25x_3 - 0.25x_5 - 0.75x_6$$

$$x_2 = 1 + 0.75x_1 + 0.75x_3 + 0.25x_5 - 0.25x_6$$

$$x_0 = 2 - 0.25x_1 - 1.25x_3 + 0.25x_5 + 0.75x_6$$

$$x_4 = 7 - 1.5x_1 - 2.5x_3 + 0.5x_5 + 0.5x_6$$

$$x_1, x_2, x_3, x_4, x_5, x_6, x_0 \ge 0$$

Pivot again!? x_3 enters basics, x_0 leaves.

$$z = -x_0$$

$$x_3 = 1.6 - 0.2x_1 + 0.2x_5 + 0.6x_6 - 0.8x_0$$

$$x_2 = 2.2 + 0.6x_1 + 0.4x_5 + 0.2x_6 - 0.6x_0$$

$$x_4 = 3 - x_1 - x_6 + 2x_0$$

$$x_1, x_2, x_3, x_4, x_5, x_6, x_0 \ge 0$$

WE have an optimal dictionary!! and $x_0 = 0$. We are (almost) ready to solve the original problem!!!

$$z = x_1 - x_2 + x_3$$

$$x_3 = 1.6 - 0.2x_1 + 0.2x_5 + 0.6x_6$$

$$x_2 = 2.2 + 0.6x_1 + 0.4x_5 + 0.2x_6$$

$$x_4 = 3 - x_1 - x_6$$

$$x_1, x_2, x_3, x_4, x_5, x_6, x_0 > 0$$

WHAT IS THE PROBLEM NOW? WHY CAN'T WE START?

Need to rewrite the objective function in terms of the non-basic variables x_1, x_5, x_6 . The correct z is

$$z = -0.6 + 0.2x_1 - 0.2x_5 + 0.4x_6$$

$$x_3 = 1.6 - 0.2x_1 + 0.2x_5 + 0.6x_6$$

$$x_2 = 2.2 + 0.6x_1 + 0.4x_5 + 0.2x_6$$

$$x_4 = 3 - x_1 - x_6$$

$$x_1, x_2, x_3, x_4, x_5, x_6, x_0 > 0$$

PHASE I is finished!! Now we have a feasible solution for original problem! Starting from this feasible solution we find the optimum (PHASE II)

UNBOUNDEDNESS

- What if all the ratios we test are negative or there is division by zero?
- Sometimes the non-basic variable can be increased indefinitely!!! Producing an arbitrarily large objective value.
- EXAMPLE

$$z = 5 + x_3 - x_1$$

$$x_2 = 5 + 2x_3 - 3x_1$$

$$x_4 = 7 - 4x_1$$

$$x_5 = x_1$$

SUMMARY

- Given a feasible dictionary we have to select an entering variable, find a leaving variable and to construct the new dictionary by pivoting!!!
- Choosing an entering variable: The entering variable is a non-basic variable x_j with a positive coefficient in the objective function row.
- **NOTE:** The rule is ambiguous, we may have more than one candidate!!! (SO FAR we choose x_j with largest cofficient!).
- **Finding the leaving variable:** The leaving variable is that basic variable whose non-negativity imposes the most stringent upper bound on the increase of the entering variable.
- NOTE: Again the rule is ambiguous, we may have more than one candidate!!!
 This has VERY important consequences!!!
- If there is no candidate for leaving the basis, then we can make the value of the entering variable as large as we wish!! UNBOUNDED!

DEGENERACY

$$z = 2x_1 - x_2 + 8x_3$$

$$x_4 = 1 - 2x_3$$

$$x_5 = 3 - 2x_1 + 4x_2 - 6x_3$$

$$x_6 = 2 + x_1 - 3x_2 - 4x_3$$

$$x_1, x_2, x_3, x_4, x_5, x_6, x_0 \ge 0$$

Clearly x_3 enters the basis, but who leaves? All variables x_4, x_5, x_6 give the same increase! Choose any!! Say x_4 pivot.

$$z = 4 + 2x_1 - x_2 - 4x_4$$

$$x_3 = 0.5 - 0.5x_4$$

$$x_5 = -2x_1 + 4x_2 + 3x_4$$

$$x_6 = x_1 - 3x_2 - 2x_4$$

$$x_1, x_2, x_3, x_4, x_5, x_6, x_0 \ge 0$$

NOTE: x_5 , x_6 are basic, but they are also equal to ZERO! DEGENERATE PROBLEM!

This has some annoying consequences. For example if we pivot again, x_1 enters the basis and x_5 leaves (limit of increment is zero!).

$$z = 4 + 3x_2 - x_4 - x_5$$

$$x_1 = 2x_2 + 1.5x_4 - 0.5x_5$$

$$x_3 = 0.5 - 0.5x_4$$

$$x_6 = -x_2 + 3.5x_4 - 0.5x_5$$

$$x_1, x_2, x_3, x_4, x_5, x_6, x_0 \ge 0$$

This does not change the solution at all!!!

Sometimes the simplex method goes through a few degenerate iterations one after the other, sometimes CYCLING CAN HAPPEN!!