# CSE214 – Analysis of Algorithms

PhD Furkan Gözükara, Toros University

https://github.com/FurkanGozukara/Analysis-of-Algorithms-2019

# Lecture 1 Introduction to Analysis of Algorithms

Based on Cevdet Aykanat's and Mustafa Ozdal's Lecture Notes - Bilkent

#### Logaritma Nedir? Logaritma Formülleri Özellikleri

Logaritma Tanımı: a, b ∈ R<sup>+</sup> ve a≠1 olmak üzere a<sup>x</sup>= b denklemini sağlayan x sayısına log<sub>a</sub>b denir ve b'nin a tabanında logaritması diye okunur.

1) 
$$\log_{a}x = b$$
 ise  $x = a^b$   $\log_2 8 = 3 \mid 8 = 2^3$ 

2) 
$$\log_a(A.B) = \log_a A + \log_a B$$
  $\log_2(4 * 8) = \log_2(32) = 5 = \log_2(4) + \log_2(8) = 2 + 3$ 

3) 
$$\log_a(A/B) = \log_a A - \log_a B$$
  $\log_2(16/4) = \log_2(4) = 2 = \log_2(16) - \log_2(4) = 4 - 2 = 2$ 

4) 
$$\log_a A^n = n \cdot \log_a A$$
  $\log_2 8^2 = \log_2 64 = 6 = 2 * \log_2 8 = 2 * 3 = 6$ 

5) 
$$\log_{a} A^n = \frac{n}{m} \log_a A \quad \log_2 B^2 = \log_8 64 = 2 = (2/3) * \log_2 B = 2/3 * 3 = 2$$

6) 
$$\log_{(a^n)} x = \frac{1}{n} . \log_{a^n} \log_{a^n} 8 = \log_{8} 8 = 1 = (1/3) * \log_{2} 8 = 1/3 * 3 = 1$$

7) 
$$\log_a x = (\log_b x)/(\log_b a)$$
 [taban değiştirme]  $\log_4 16 = 2 = \log_2 16 - \log_2 4 = 4 - 2 = 2$ 

8) 
$$a^{\log_2 x} = 2^{\log_2 8} = 2^3 = 8 = 8$$

9) 
$$\log_a \sqrt[n]{A} = \frac{1}{n} \log_a A$$
  $\log_2 \sqrt[3]{8} = \log_2 2 = 1 = \left(\frac{1}{3}\right) * \log_2 8 = \frac{1}{3} * 3 = 1$ 

10) 
$$log_{1/a}x = -log_ax$$

$$log_{1/2}8 = -log_28 = -3 \mid 8 = \left(\frac{1}{2}\right)^{-3}$$

11) 
$$\log_a b \cdot \log_b c \cdot \log_c d = \log_a d$$
  $\log_2 4 * \log_4 16 * \log_{16} 256 = 2 * 2 * 2 = 8 = \log_2 256$ 

12) log<sub>a</sub>b=1/log<sub>b</sub>a veya log<sub>a</sub>b.log<sub>b</sub>a=1

## Algorithm Definition

- □ <u>Algorithm</u>: A sequence of computational steps that transform the input to the desired output
- □ Procedure vs. algorithm
  - ☐ An algorithm **must halt within finite time** with the right output meanwhile procedure may not halt
- □ Example:

a sequence of n numbers

Sorting
Algorithm

sorted order of input sequence

## Many Real World Applications

- Bioinformatics
  - □ Determine/compare DNA sequences
- Internet
  - Manage/manipulate/route data
- □ Information retrieval
  - Search and access information in large data
- Security
  - ☐ Encode & decode personal/financial/confidential data
- □ Electronic design automation
  - Minimize human effort in chip-design process

## Course Objectives

- Learn basic algorithms
- □ Gain skills to design new algorithms

- □ Focus on <u>efficient</u> algorithms
- Design algorithms that
  - > are fast
  - > use as little memory as possible
  - > are correct!

#### Outline of Lecture 1

- Study two sorting algorithms as examples
  - ☐ Insertion sort: *Incremental* algorithm
  - ☐ Merge sort: *Divide-and-conquer*

- □ Introduction to runtime analysis
  - ☐ Best vs. worst vs. average case
  - Asymptotic analysis

## Sorting Problem

**Input**: Sequence of numbers

$$\langle a_1, a_2, \ldots, a_n \rangle$$

Output: A sorted list

$$\Pi = \langle \Pi (1), \Pi (2), ..., \Pi (n) \rangle$$

such that

$$a_{\Pi(1)} \le a_{\Pi(2)} \le \ldots \le a_{\Pi(n)}$$

### **Insertion Sort**

Insertion sort is an incremental algorithm

An incremental algorithm is given a sequence of input, and finds a sequence of solutions that build incrementally while adapting to the changes in the input

Incremental computation, is a software feature which, whenever a piece of data changes, attempts to save time by only recomputing those outputs which depend on the changed data

#### Insertion Sort: Basic Idea

- □ Assume input array: A[1..n]
- □ Iterate j from 2 to n



#### Pseudo-code notation

 Objective: Express algorithms to humans in a clear and concise way

□ Liberal use of English

□ Indentation for block structures

Omission of error handling and other details

→ needed in real programs

```
1. for j \leftarrow 2 to n do
     \text{key} \leftarrow A[i];
3. i \leftarrow j - 1;
4. while i > 0 and A[i] > key
          do
5. A[i+1] \leftarrow A[i];
    i \leftarrow i - 1;
       endwhile
7. A[i+1] \leftarrow \text{key};
       endfor
```

#### <u>Insertion-Sort</u> (A)

```
1. for j \leftarrow 2 to n do
```

```
2. \text{key} \leftarrow A[j];
```

3. 
$$i \leftarrow j - 1$$
;

4. while i > 0 and A[i] > key do

```
5. A[i+1] \leftarrow A[i];
```

6.  $i \leftarrow i - 1$ ; endwhile

7.  $A[i+1] \leftarrow \text{key};$  endfor

Iterate over array

#### Loop invariant:

The subarray A[1..j-1] is always sorted



```
    for j ← 2 to n do
    key ← A[j];
```

- 3.  $i \leftarrow j 1$ ;
- **4. while** i > 0 **and** A[i] > key **do**
- 5.  $A[i+1] \leftarrow A[i];$
- 6.  $i \leftarrow i 1$ ; endwhile
- 7.  $A[i+1] \leftarrow \text{key};$  endfor



#### <u>Insertion-Sort</u> (A)

```
1. for j \leftarrow 2 to n do
```

- 2.  $\text{key} \leftarrow A[j]$ ;
- 3.  $i \leftarrow j 1$ ;
- 4. **while** i > 0 **and** A[i] > key **do**
- 5.  $A[i+1] \leftarrow A[i];$
- 6.  $i \leftarrow i 1$ ; endwhile
- 7.  $A[i+1] \leftarrow \text{key};$  endfor



Insert key to the correct location End of iter j: A[1..j] is sorted

## Insertion Sort - Example

#### <u>Insertion-Sort</u> (A)

- 1. for  $j \leftarrow 2$  to n do
- 2.  $\text{key} \leftarrow A[j]$ ;
- 3.  $i \leftarrow j 1$ ;
- 4. **while** i > 0 **and** A[i] > key **do**
- 5.  $A[i+1] \leftarrow A[i];$
- 6.  $i \leftarrow i 1;$

#### endwhile

7.  $A[i+1] \leftarrow \text{key};$  endfor



- 1. for  $j \leftarrow 2$  to n do
- 2.  $\text{key} \leftarrow A[j]$ ;
- 3.  $i \leftarrow j 1$ ;
- 4. **while** i > 0 **and** A[i] > key **do**
- 5.  $A[i+1] \leftarrow A[i];$
- 6.  $i \leftarrow i 1;$ 
  - endwhile
- 7.  $A[i+1] \leftarrow \text{key};$  endfor



#### <u>Insertion-Sort</u> (A)

- 1. for  $j \leftarrow 2$  to n do
- 2.  $\text{key} \leftarrow A[j]$ ;
- 3.  $i \leftarrow j 1$ ;
- 4. while i > 0 and A[i] > key do
- 5.  $A[i+1] \leftarrow A[i];$
- 6.  $i \leftarrow i 1$ ; endwhile
- 7.  $A[i+1] \leftarrow \text{key};$  endfor



What are the entries at the end of iteration j=3?



- 1. for  $j \leftarrow 2$  to n do
- 2.  $\text{key} \leftarrow A[j]$ ;
- 3.  $i \leftarrow j 1$ ;
- 4. **while** i > 0 **and** A[i] > key **do**
- 5.  $A[i+1] \leftarrow A[i];$
- 6.  $i \leftarrow i 1;$ 
  - endwhile
- 7.  $A[i+1] \leftarrow \text{key};$  endfor



- 1. for  $j \leftarrow 2$  to n do
- 2.  $\text{key} \leftarrow A[j]$ ;
- 3.  $i \leftarrow j 1$ ;
- 4. **while** i > 0 **and** A[i] > key **do**
- 5.  $A[i+1] \leftarrow A[i];$
- 6.  $i \leftarrow i 1$ ; endwhile
- 7.  $A[i+1] \leftarrow \text{key};$  endfor







#### <u>Insertion-Sort</u> (A)

- 1. for  $j \leftarrow 2$  to n do
- 2.  $\text{key} \leftarrow A[j]$ ;
- 3.  $i \leftarrow j 1$ ;
- 4. while i > 0 and A[i] > key do
- 5.  $A[i+1] \leftarrow A[i];$
- 6.  $i \leftarrow i 1$ ; endwhile
- 7.  $A[i+1] \leftarrow \text{key};$  endfor



What are the entries at the end of iteration j=5?



- 1. for  $j \leftarrow 2$  to n do
- 2.  $\text{key} \leftarrow A[j]$ ;
- 3.  $i \leftarrow j 1$ ;
- 4. **while** i > 0 **and** A[i] > key **do**
- 5.  $A[i+1] \leftarrow A[i];$
- 6.  $i \leftarrow i 1;$ 
  - endwhile
- 7.  $A[i+1] \leftarrow \text{key};$  endfor



#### <u>Insertion-Sort</u> (A)

- 1. for  $j \leftarrow 2$  to n do
- 2.  $\text{key} \leftarrow A[j]$ ;
- 3.  $i \leftarrow j 1$ ;
- 4. **while** i > 0 **and** A[i] > key **do**
- 5.  $A[i+1] \leftarrow A[i];$
- 6.  $i \leftarrow i 1$ ; endwhile
- 7.  $A[i+1] \leftarrow \text{key};$ 
  - endfor



key

## Insertion Sort Algorithm - Notes

- □ Items sorted in-place
  - □ Elements rearranged within array
  - At most constant number of items stored outside the array at any time (e.g. the variable *key*)
  - ☐ Input arrayA contains sorted output sequence when the algorithm ends

- □ Incremental approach
  - □ Having sorted A[1..j-1], place A[j] correctly so that A[1..j] is sorted

## Running Time

- Depends on:
  - □ Input size (e.g., 6 elements vs 6,000,000 elements)
  - □ Input itself (e.g., partially sorted)
- □ Usually want *upper bound*

## Kinds of running time analysis

- Worst Case (*Usually*)
   T(n) = max time on any input of size n
   Average Case (*Sometimes*)
   T(n) = average time over all inputs of size n
   Assumes statistical distribution of inputs

   Best Case (*Rarely*)
   T(n) = min time on any input of size n
   BAD\*: Cheat with slow algorithm that works fast on some inputs
   GOOD: Only for showing bad lower bound
- \*Can modify any algorithm (almost) to have a low best-case running time
  - > Check whether input constitutes an output at the very beginning of the algorithm

## Running Time

- □ For <u>Insertion-Sort</u>, what is its worst-case time?
  - Depends on speed of primitive operations
    - Relative speed (on same machine)
    - Absolute speed (on different machines)

- □ Asymptotic analysis
  - ☐ Ignore machine-dependent constants
  - $\Box$  Look at growth of T(n) as  $n \rightarrow \infty$

#### **O**Notation

- □ Drop low order terms
- Ignore leading constantse.g.

$$2n^2 + 5n + 3 = \Theta(n^2)$$

$$3n^3 + 90n^2 - 2n + 5 = \Theta(n^3)$$

□ Formal explanations in the next lecture.

• As n gets large, a  $\Theta(n^2)$  algorithm runs faster than a  $\Theta(n^3)$  algorithm



## Insertion Sort – Runtime Analysis

```
<u>Insertion-Sort</u> (A)
Cost
  c_1 ...... 1. for j \leftarrow 2 to n do
  c_3 3. i \leftarrow j - 1; 4. while i >= 0 and A[i] > key
                   do
                                               t<sub>i</sub>: The number of
  c_5 — A[i+1] \leftarrow A[i];
                                                times while loop
  test is executed for j
                   endwhile
  C_7 ---- 7. A[i+1] \leftarrow \text{key};
                 endfor
```

## How many times is each line executed?

#### # times <u>Insertion-Sort</u> (A) n \_\_\_\_\_ 1. for $j \leftarrow 2$ to n do $k_4 = \sum_{i=1}^{n} t_i$ n-1 \_\_\_\_\_ 2. key $\leftarrow$ A[i]; n-1 3. $i \leftarrow j-1;$ $k_4$ ----- 4.while i >= 0 and A[i] > key $k_5 = \sum_{i=1}^{n} (t_i - 1)$ do $k_5$ $A[i+1] \leftarrow A[i];$ $k_6$ — 6. $i \leftarrow i - 1;$ $k_6 = \sum_{i=1}^{n} (t_i - 1)$ endwhile

endfor

## Insertion Sort – Runtime Analysis

□ Sum up costs:

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^{n} t_j + c_5 \sum_{j=2}^{n} (t_j - 1) + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 (n-1)$$

What is the best case runtime?

□ What is the worst case runtime?

## Question: If A[1...j] is already sorted, $t_i = ?$

- 1. for  $j \leftarrow 2$  to n do
- 2.  $\text{key} \leftarrow A[j]$ ;
- 3.  $i \leftarrow j 1$ ;
- 4. **while** i >= 0 **and** A[i] > key **do**
- 5.  $A[i+1] \leftarrow A[i];$
- 6.  $i \leftarrow i 1;$  endwhile
- 7.  $A[i+1] \leftarrow \text{key};$  endfor





$$t_i = 1$$

#### Insertion Sort – Best Case Runtime

Original function:

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^{n} t_j + c_5 \sum_{j=2}^{n} (t_j - 1) + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 (n-1)$$

Best-case: Input array is already sorted

$$t_j = 1$$
 for all j

$$T(n) = (c_1 + c_2 + c_3 + c_4 + c_7)n - (c_2 + c_3 + c_4 + c_7)$$

Q: If A[j] is smaller than every entry in A[1..j-1],  $t_i = ?$ 

- 1. for  $j \leftarrow 2$  to n do
- 2.  $\text{key} \leftarrow A[j]$ ;
- 3.  $i \leftarrow j 1$ ;
- 4. **while** i >= 0 **and** A[i] > key **do**
- 5.  $A[i+1] \leftarrow A[i];$
- 6.  $i \leftarrow i 1$ ; endwhile
- 7.  $A[i+1] \leftarrow \text{key};$  endfor



$$t_j = 1$$

#### Insertion Sort – Worst Case Runtime

□ Worst case: The input array is reverse sorted  $t_j = j$  for all j

□ After derivation, worst case runtime:

$$T(n) = \frac{1}{2}(c_4 + c_5 + c_6)n^2 + (c_1 + c_2 + c_3 + \frac{1}{2}(c_4 - c_5 - c_6) + c_7)n - (c_2 + c_3 + c_4 + c_7)$$

$$1 + 2 + 3 + \dots + n = \frac{\mathbf{n.(n + 1)}}{2}$$

## **Asymptotic Notation**

This will be explained in further lessons

Just for now, it simply means that how our algorithm's run time grows as the number of inputs grows to the infinity

#### Insertion Sort – Asymptotic Runtime Analysis

#### <u>Insertion-Sort</u> (A)

- 1. for  $j \leftarrow 2$  to n do
- 2.  $\text{key} \leftarrow A[j]$ ;
- 3.  $i \leftarrow j 1$ ;

$$\geq \Theta(1)$$

4. while  $i \ge 0$  and A[i] > key

do

- 5.  $A[i+1] \leftarrow A[i];$
- 6.  $i \leftarrow i 1$ ;

$$\sim \Theta(1)$$

endwhile

7. 
$$A[i+1] \leftarrow \text{key};$$
  $\Theta(1)$  endfor

#### Asymptotic Runtime Analysis of Insertion-Sort

- Worst-case (input reverse sorted)
  - Inner loop is  $\Theta(j)$

$$T(n) = \sum_{j=2}^{n} \Theta(j) = \Theta\left(\sum_{j=2}^{n} j\right) = \Theta(n^{2})$$

- Average case (all permutations equally likely)
  - Inner loop is  $\Theta(j/2)$

$$T(n) = \sum_{n} \Theta(j/2) = \sum_{n} \Theta(j) = \Theta(n^2)$$

$$j=2$$
  $j=2$ 

- Often, average case not much better than worst case
- Is this a fast sorting algorithm?
  - − Yes, for small *n*. No, for large *n*.

# Merge Sort

Merge Sort is a divide and conquer type algorithm

Divide and Conquer basically works in three steps:

- 1. **Divide** It first divides the problem into small chunks or subproblems
- 2. **Conquer** It then solve those sub-problems recursively so as to obtain a separate result for each sub-problem
- 3. **Combine** It then combine the results of those sub-problems to arrive at a final result of the main problem

## Merge Sort: Basic Idea



```
Merge-Sort (A, p, r)
         if p = r then return;
         else
            q \leftarrow \lfloor (p+r)/2 \rfloor;
                                                         (Divide)
             Merge-Sort (A, p, q);
                                                        (Conquer)
             Merge-Sort (A, q+1, r);
                                                        (Conquer)
                                                        (Combine)
             \underline{\text{Merge}} (A, p, q, r);
         endif
```

- Call Merge-Sort(A,1,n) to sort A[1..n]
- Recursion bottoms out when subsequences have length 1

## Merge Sort: Example

```
\underline{\text{Merge-Sort}} (A, p, r)
  if p = r then
        return
  else
        q \leftarrow \lfloor (p+r)/2 \rfloor
       Merge-Sort (A, p, q)
       Merge-Sort (A, q+1, r)
        \underline{\text{Merge}}(A, p, q, r)
   endif
```



# How to merge 2 sorted subarrays?



□ What is the complexity of this step?

 $\Theta(n)$ 

# Merge Sort: Complexity

Merge-Sort 
$$(A, p, r)$$
T(n)if  $p = r$  then  
return $\Theta(1)$ else  
 $q \leftarrow \lfloor (p+r)/2 \rfloor$  $\Theta(1)$ Merge-Sort  $(A, p, q)$  $T(n/2)$ Merge-Sort  $(A, q+1, r)$  $T(n/2)$ Merge(A, p, q, r)  
endif $\Theta(n)$ 

## Merge Sort – Recurrence

- Describe a function recursively in terms of itself
- □ To analyze the performance of recursive algorithms

□ For merge sort:

$$T(n) = \begin{cases} \Theta(1) & if n=1 \\ 2T(n/2) + \Theta(n) & otherwise \end{cases}$$

## How to solve for T(n)?

$$T(n) = \begin{cases} \Theta(1) & if n=1 \\ 2T(n/2) + \Theta(n) & otherwise \end{cases}$$

- $\Box$  Generally, we will assume  $T(n) = \Theta(1)$  for sufficiently small n
- □ The recurrence above can be rewritten as:

$$T(n) = 2 T(n/2) + \Theta(n)$$

How to solve this recurrence?

# Solve Recurrence: $T(n) = 2T(n/2) + \Theta(n)$



# Solve Recurrence: $T(n) = 2T(n/2) + \Theta(n)$



#### Solve Recurrence: $T(n) = 2T(n/2) + \Theta(n)$



# Merge Sort Complexity

#### □ Recurrence:

$$T(n) = 2T(n/2) + \Theta(n)$$

□ Solution to recurrence:

$$T(n) = \Theta(nlgn)$$



Total Runtime = Total time required in Divide + Total time required in Combine = 1 \* Log(n) + n \* Log(n) = n Log(n).

## Conclusions: Insertion Sort vs. Merge Sort

- $\square$   $\Theta(nlgn)$  grows more slowly than  $\Theta(n^2)$
- $\Box$  E.g.  $n=1,000 > Merge\ sort = 1000*log(1000) = 9,965$  $|Insertion\ Sort = 1000*1000 = 1,000,000$

□ Therefore Merge-Sort beats Insertion-Sort in the worst case

□ In practice, Merge-Sort beats Insertion-Sort for n>30 or so.