Name:	
Vorname:	
Studiengang:	Biol 🖵
	Pharm 🖵
	BWS □

Basisprüfung Sommer 2012 Lösungen

Organische Chemie I+II

für Studiengänge
Biologie (Biologische Richtung)
Pharmazeutische Wissenschaften
Gesundheitswissenschaften und Technologie
Prüfungsdauer: 3 Stunden

Unleserliche Angaben werden nicht bewertet!
Bitte auch allfällige Zusatzblätter mit Namen anschreiben.

Bitte freilassen:

Teil OC I	Punkte (max 50)	Teil OCII	Punkte (max 50)
Aufgabe 1		Aufgabe 6	
Aufgabe 2		Aufgabe 7	
Aufgabe 3		Aufgabe 8	
Aufgabe 4		Aufgabe 9	
Aufgabe 5			
Total OC I		Total OC II	
Note OC I		Note OC II	
		Note OC	

1. Aufgabe (9.5 Pkt)

2. Aufgabe (5.5 Pkt) a) 2 Pkt. Tragen Sie in den folgenden Lewis-Formeln die fehlenden Formalladungen ein: b) 1 1/2 Pkt. Zeichnen Sie je eine weitere möglichst gute Grenzstruktur der untenstehenden Verbindungen OΘ O $_{\bigcirc}$ c) 2 Pkt. Geben Sie die Bindungsgeometrie und Hybridisierung an den nummerierten Atomen an. Bindungsgeometrie Hybridisierung 2 sp + 2p 3 linear trigonal pyramidal 4 sp³ tetraedrisch __4 sp³ trigonal planar 3 sp² + p Punkte Aufgabe 2

3. Aufgabe (12.5 Pkt)

a) 2 1/2 Pkt Liegt bei den folg Wenn ja, um welche Art von I	genden Strukturen Isomerie vor? Isomerie handelt es sich?		
HO OH	HO OH OH	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
		Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
HO OH OH	OH OH HO OH	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
		Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
		Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
		Übertrag Aufgabe 3	

Aufgabe 3 (Fortsetzung)

g			
b) 2 Pkt. Welche der angegebenen Moleküle sind chiral? Welches ist die Beziehung zwischen b und d?			
HO H			
c) 5 Pkt. Die Fischerprojektion einer Talose ist unten angegeben.			
1CHO HO 2 H HO 3 H HO 4 H H 5 OH CH ₂ OH 1 CHO H OH			
Talose Perspektivformel Enantiomeres			
c1) 1/2 Pkt. Handelt es sich um D- oder L-Talose?			
c2) 1 1/2 Pkt. Zeichnen Sie das in der Fischerprojektion angegebene Molekül als Perspektivformel (Keilstrichformel ergänzen).			
c3) 1/2 Pkt Zeichnen Sie die Fischerprojektion des zur dargestellten Talose enantiomeren Moleküls (Projektion ergänzen).			
 c4) 1 Pkt. Bezeichnen Sie die absolute Konfiguration für die stereogenen Zentren C3 und C4 in der abgebildeten Talose mit CIP Deskriptoren. C3: R S X C4: R S X 			
c5) 1 1/2 Pkt. Wieviele Stereoisomere mit dieser Konstitution gibt es? 16 (8 Enantiomerenpaare)			
Übertrag Aufgabe 3			

Aufgabe 3 (Fortsetzung).

4. Aufgabe (16 Pkt)

Aufgabe 4 (Fortsetzung).

b) 5 Pkt. (je ½ für richtige Wahl und Begründung pro Paar) Welche der beiden Säuren ist stärker? (ankreuzen). Welcher Effekt ist dafür hauptsächlich verantwortlich? (1-8) einsetzen. Wichtgste Effekte: 1. Elektronegativität des direkt an das Proton gebunden Atoms. 2. Atomgrösse/Polarisierbarkeit des direkt an das Proton gebunden Atoms. 3. Hybridisierung des durch Deprotonierung entstehenden lone pairs 4. σ -Akzeptor = -I Effekt. 5. π -Akzeptor Effekt (-M). 6. π -Donor Effekt (+M). 7. Solvatation (Wechselwirkung mit dem Lösungsmittel). 8. Wasserstoffbrücken. wichtigster Effekt (1-8)4 6 СООН СООН СООН HOOC 8 2 5 Übertrag Aufgabe 4

Aufgabe 4 (Fortsetzung).

c) 4 Pkt. An welcher Stelle werden die untenstehenden Moleküle **protoniert**? Zeichnen Sie die konjugate Säure und begründen Sie ihre Antwort.

Begründung

Das lone-pair des Stickstoffs "unten" ist mit dem aromatischen System konjugiert (Anilin-Typ) und deshalb viel weniger basisch als das isolierte lone pair am "oberen" Stickstoffatom

Begründung

Vorhanden sind drei isolierte funktionelle Gruppen:
Eine Ketogruppe und zwei Amid-Gruppen (6-Ring Lactame)
Die protonierte Ketogruppe hätte pKa ca. -6
Die Amidgruppen haben pKa ca. 0, wobei die Protonierung
am O erfolgt. Bei Protonierung der Amidgruppe
"oben rechts" bildet sich zudem eine günstige Wasserstoffbrücke zur benachbarten Carbonylgruppe aus, was diese
etwas leichter macht als die Protonierung an der
Amidgruppe "unten links"

d) 4 Pkt. An welcher Stelle werden die untenstehenden Moleküle deprotoniert? Zeichnen Sie die konjugate Base und begründen Sie ihre Antwort.

Begründung:

Deprotonierung neben dem Ether-Sauerstoff (π -Donor) ist weniger günstig als neben der Nitrogruppe (π -Akzeptor)

Begründung:

Die Protonen in α -Stellung zur Ketogruppe sind nur leicht deprotonierbar wenn ein (planares) Enolat entstehen kann. Dies ist im 5-Ring möglich, im 4-Ring nicht (Bredtsche Regel).

Punkte Aufgabe 4

5. Aufgabe (6 Pkt)

a) 2 Pkt. (keine Punkte ohne Lösungsweg!)

1)
$$K_1$$
 HOOC Ph $\Delta G_1 = -17.1 \text{ kJ/mol}$ (=> $K_1 = 1000$)

2) HOOC
$$K_2$$
 COOH $K_2 = 10$

$$K_4 = 100$$

Schätzen Sie die Grösse der Gleichgewichtskonstanten \mathbf{K}_3 und \mathbf{K}_4 ab..

Lösungsweg: $K_1 = K_4 \cdot K_3$; $K_2 = K_4 / K_3$; $K_1 / K_2 = 100 = K_3^2 => K_3 = 10$; $K_4 = K_1 / K_3 => K_4 = 100$.

b) 2 Pkt.

Skizzieren Sie die Konformation des 2'-Desoxyriboserings in A-DNA und B-DNA perspektivisch.

(B = Nukleobase)

A-DNA

c) 2 Pkt. Zeichnen Sie die Konformere von (2R,3R)-2,3-Diiodbutan in der Newman-Projektion. Zeichnen Sie qualitativ ein Energieprofil [E(θ)] der Rotation um die C(2)-C(3) Bindung (θ = Diederwinkel C(1)-C(2)-C(3)-C(4), d.h. θ =0°, wenn die Bindungen C(1)-C(2) und C(3)-C(4) verdeckt stehen). Iod hat einen etwas grösseren Van der Waals Radius als eine Methylgruppe

Punkte Aufgabe 5

6. Aufgabe (a-f= je 2.5 Pkt; total 15 Pkt)

7. Aufgabe (a-e=je 3 Pkt; Struktur: 2.5 Pkt, Typ: 0.5 Pkt; total 15 Pkt)

Punkte Aufgabe 8

8. Aufgabe (a=8 Pkt, b=2 Pkt; total 10 Pkt)

9. Aufgabe (*a*=6 *Pkt*,*b*=2*x*2 *Pkt*; *total* 10*Pkt*)

a) Formulieren Sie einen detaillierten Mechanismus für folgende Umsetzung!

Wheland-Zwischenstufe

Antwort: Friedel-Crafts-Acylierung

b) Wie lautet die moderne Fassung der Regel von Markownikow? Geben Sie ein Anwendungsbeispiel!
Regel: Ein Elektrophil lagert sich so an eine asymmetrische Doppelbindung an, dass das stabilere Carbenium entsteht.

Anwendungsbeispiel:

Punkte Aufgabe 9