INTRODUCTION TO MACHINE LEARNING

GRADIENT DESCENT

Elisa Ricci

MODELS AND ALGORITHMS

MACHINE LEARNING IDEA

- ML allows computers to acquire knowledge.
- Knowledge is acquired through algorithms by learning and inferring from data.
- Knowledge is represented by a model.
- The model is used on future data.

LINEAR MODELS

A **linear model** is a model assumes that the data are linearly separable

Assume a specific hypothesis space, i.e. linear functions

LINEAR MODELS

A linear model in n-dimensional space (i.e. n features) is defined by n+1 weights.

In two dimensions, we have a line:

$$0 = w_1 f_1 + w_2 f_2 + b$$

In three dimensions, a plane:

$$0 = w_1 f_1 + w_2 f_2 + w_3 f_3 + b$$

In *n*-dimensions, a hyperplane

$$0 = b + \sum_{i=1}^{n} w_i f_i$$

PERCEPTRON LEARNING ALGORITHM

```
repeat until convergence (or for some # of iterations):
 for each training example (f_1, f_2, ..., f_n, label):
       prediction = b + \sum_{i=1}^{n} w_i f_i
    if prediction * label ≤ 0: // they don't agree
      for each w;:
       w_i = w_i + f_i^* \text{label}
      b = b + label
```

WHICH LINE WILL THE PERCEPTRON FIND?

Only guaranteed to find some line that separates the data!

LINEAR MODELS

Perceptron algorithm is one example of a linear classifier

Many, many other algorithms learn a line (i.e. a setting of a linear combination of weights)

Goals:

- Explore a number of linear training algorithms
- Understand why these algorithms work

PERCEPTRON LEARNING ALGORITHM

```
repeat until convergence (or for some # of iterations):
 for each training example (f_1, f_2, ..., f_n, label):
       prediction = b + \sum_{i=1}^{n} w_i f_i
    if prediction * label ≤ 0: // they don't agree
      for each w;:
       w_i = w_i + f_i^* \text{label}
      b = b + label
```

A CLOSER LOOK AT WHY WE GOT IT WRONG

A CLOSER LOOK AT WHY WE GOT IT WRONG

- Pick a model
 - e.g. a hyperplane, a decision tree,...
 - A model is defined by a collection of parameters

What are the parameters for DT? Perceptron?

1. Pick a model

- e.g. a hyperplane, a decision tree,...
- A model is defined by a collection of parameters

DT: the structure of the tree, which features each node splits on, the predictions at the leaves

Perceptron: the weights and the b value

- 1. Pick a model
 - e.g. a hyperplane, a decision tree,...
 - A model is defined by a collection of parameters
- 2. Pick a criterion to optimize (aka objective function)

What criteria do decision tree learning and perceptron learning optimize?

- 1. Pick a **model**
 - e.g. a hyperplane, a decision tree,...
 - A model is defined by a collection of parameters
- 2. Pick a criterion to optimize (aka objective function)
 - e.g. training error
- 3. Develop a learning algorithm
 - the algorithm should try and minimize the criteria,
 sometimes in a heuristic way (i.e. non-optimally), sometimes exactly

LINEAR MODELS IN GENERAL

1. Pick a model

$$0 = b + \sum_{i=1}^{n} w_i f_i$$

These are the parameters we want to learn

2. Pick a criterion to optimize (aka objective function)

SOME NOTATION: INDICATOR FUNCTION

Convenient notation for turning True and False answers into numbers/counts:

$$1[x] = \begin{cases} 1 & if \ x = True \\ 0 & if \ x = False \end{cases}$$

SOME NOTATION: DOT-PRODUCT

We use a vector notation

We represent an example $f_1, f_2, ..., f_m$ as a single vector, \mathbf{x}

- \circ j subscript will indicate feature indexing, i.e., x_1
- \circ i subscript will indicate examples indexing over a dataset, i.e., x_i or sometimes x_{ij}

Similarly, we can represent the weight $w_1, w_2, ..., w_m$ as a single vector, \mathbf{w} . The dot-product between two vectors \mathbf{a} and \mathbf{b} is defined as:

$$a \cdot b = \sum_{i=1}^{m} a_i b_i$$

LINEAR MODELS

1. Pick a model

$$0
left(b)
left(b)$$

These are the parameters we want to learn

2. Pick a criterion to optimize (aka objective function)

$$\sum_{i=1}^{n} 1 \left[y_i(w \cdot x_i + b) \le 0 \right]$$

What does this equation say?

0/1 LOSS FUNCTION

total number of mistakes, aka 0/1 loss

Pick a model

$$0 = b + \sum_{j=1}^{m} w_j f_j$$

Pick a criteria to optimize (aka objective function)

$$\sum_{i=1}^{n} 1 \left[y_i(w \cdot x_i + b) \le 0 \right]$$

3. Develop a learning algorithm

$$\operatorname{argmin}_{w,b} \sum_{i=1}^{n} 1 [y_i(w \cdot x_i + b) \le 0]$$

Find w and b that minimize the 0/1 loss (i.e. training error)

LOSS FUNCTIONS

MINIMIZING 0/1 LOSS

$$\operatorname{argmin}_{w,b} \sum_{i=1}^{n} 1 [y_i(w \cdot x_i + b) \le 0]$$

Find w and b that minimize the 0/1 loss

How do we do this?
How do we *minimize* a function?
Why is it hard for this function?

MINIMIZING 0/1 IN ONE DIMENSION

Each time we change w such that the example is right/wrong the loss will increase/decrease

MINIMIZING 0/1 IN ONE DIMENSION

Each new feature we add (i.e. weights) adds another dimension to this space!

MINIMIZING 0/1 LOSS

Find w and b that minimize the 0/1 loss

$$\operatorname{argmin}_{w,b} \sum_{i=1}^{n} 1 [y_i(w \cdot x_i + b) \le 0]$$

This turns out to be hard (in fact, NP-HARD (1))

Challenge:

- Small changes in any w can have large changes in the loss (the change isn't continuous)
- There can be many, many local minima
- At any given point, we don't have much information to direct us towards any minima

MORE MANAGEABLE LOSS FUNCTIONS

What property/properties do we want from our loss function?

MORE MANAGEABLE LOSS FUNCTIONS

- Ideally, continuous (i.e. differentiable) so we get an indication of direction of minimization
- Only one minima

CONVEX FUNCTIONS

Convex functions look something like:

One definition: The line segment between any two points on the function is above the function

For many applications, we really would like to minimize the 0/1 loss

A surrogate loss function is a loss function that provides an upper bound on the actual loss function (in this case, 0/1)

We'd like to identify convex surrogate loss functions to make them easier to minimize

Key to a loss function: how it scores the difference between the actual label y and the predicted label y'

O/1 loss:
$$l(y, y') = 1[yy' \le 0]$$

Ideas?
Some function that is a proxy for error, but is continuous and convex

0/1 loss:

$$l(y,y') = 1[yy' \le 0]$$

Hinge:

$$l(y,y') = \max(0,1-yy')$$

Exponential:

$$l(y,y') = \exp(-yy')$$

Squared loss:

$$l(y, y') = (y - y')^2$$

Why do these work? What do they penalize?

 $0/1 \text{ loss: } l(y, y') = 1[yy' \le 0]$

Squared loss: $l(y, y') = (y - y')^2$

Hinge: $l(y, y') = \max(0, 1 - yy')$

Exponential: $l(y, y') = \exp(-yy')$

1. pick a model

$$0 = b + \sum_{j=1}^{m} w_j f_j$$

2. pick a criteria to optimize (aka objective function)

$$\sum_{i=1}^{n} \exp(-y_i(w \cdot x_i + b))$$

3. develop a learning algorithm

$$\operatorname{argmin}_{w,b} \sum_{i=1}^{n} \exp(-y_i(w \cdot x_i + b))$$

use a convex surrogate loss function

Find w and b that minimize the surrogate loss

GRADIENT DESCENT

FINDING THE MINIMUM

How do we do find the minimum for a function?

ONE APPROACH: GRADIENT DESCENT

Partial derivatives give us the slope (i.e. direction to move) in that dimension

ONE APPROACH: GRADIENT DESCENT

Approach:

- pick a starting point (w)
- o repeat:
 - pick a dimension
 - move a small amount in that dimension towards decreasing loss (using the derivative)

ONE APPROACH: GRADIENT DESCENT

Approach:

- pick a starting point (w)
- o repeat:
 - pick a dimension
 - move a small amount in that dimension towards decreasing loss (using the derivative)

- Pick a starting point (w)
- Repeat until loss doesn't decrease in any dimension:
 - pick a dimension
 - move a small amount in that dimension towards decreasing loss (using the derivative)

$$w_{j} = w_{j} - \frac{d}{dw_{i}}loss(w)$$
Why negative?

$$w_j = w_j - \eta \, \frac{d}{dw_i} loss(w)$$

Learning rate

How much we want to move in the error direction, often this will change over time

SOME MATH

$$\frac{d}{dw_j}loss = \frac{d}{dw_j} \sum_{i=1}^n \exp(-y_i(w \cdot x_i + b))$$
$$= \sum_{i=1}^n \exp(-y_i(w \cdot x_i + b)) \frac{d}{dw_j} - y_i(w \cdot x_i + b)$$

SOME MATH

$$-\frac{d}{dw_{i}}y_{i}(w \cdot x_{i} + b) = -\frac{d}{dw_{i}}y_{i}(\sum_{j=1}^{m} w_{j}x_{ij} + b)$$

$$= -\frac{d}{dw_{i}}y_{i}(w_{1}x_{i1} + w_{2}x_{i2} + \dots + w_{m}x_{im} + b)$$

 $= -y_i x_{ii}$

 $= -\frac{a}{dw} y_i w_1 x_{i1} + y_i w_2 x_{i2} + ... + y_i w_m x_{im} + y_i b)$

SOME MATH

$$\frac{d}{dw_{j}}loss = \frac{d}{dw_{j}} \sum_{i=1}^{n} \exp(-y_{i}(w \cdot x_{i} + b))$$

$$= \sum_{i=1}^{n} \exp(-y_{i}(w \cdot x_{i} + b)) \frac{d}{dw_{j}} - y_{i}(w \cdot x_{i} + b)$$

$$= \sum_{i=1}^{n} -y_{i}x_{ij} \exp(-y_{i}(w \cdot x_{i} + b))$$

For our choice of the loss we have:

$$w_j = w_j - \eta \, \frac{d}{dw_i} loss(w)$$

$$w_{j} = w_{j} + \eta \sum_{i=1}^{n} y_{i} x_{ij} \exp(-y_{i}(w \cdot x_{i} + b))$$

What is this doing?

EXPONENTIAL UPDATE RULE

$$w_{j} = w_{j} + \eta \sum_{i=1}^{n} y_{i} x_{ij} \exp(-y_{i}(w \cdot x_{i} + b))$$

for each example x_i :

$$W_j = W_j + \eta y_i x_{ij} \exp(-y_i (w \cdot x_i + b))$$

Does this look familiar?

PERCEPTRON LEARNING ALGORITHM!

```
repeat until convergence (or for some # of iterations):
 for each training example (f_1, f_2, ..., f_n, label):
       prediction = b + \sum_{i=1}^{n} w_i f_i
    if prediction * label ≤ 0: // they don't agree
      for each w;:
       w_i = w_i + f_i^* \text{label}
      b = b + label
```

$$w_j = w_j + \eta y_i x_{ij} \exp(-y_i (w \cdot x_i + b))$$

In practice $w_j = w_j + x_{ij}y_ic$ where $c = \eta \exp(-y_i(w \cdot x_i + b))$

PERCEPTRON LEARNING ALGORITHM!

```
repeat until convergence (or for some # of iterations):
```

for each training example $(f_1, f_2, ..., f_n, label)$:

$$prediction = b + \sum_{i=1}^{n} w_i f_i$$

if prediction * label ≤ 0: // they don't agree

for each w;:

Note: for gradient descent, we always update

$$w_i = w_i + f_i^* \text{label}$$

$$b = b + label$$

$$w_j = w_j + \eta y_i x_{ij} \exp(-y_i (w \cdot x_i + b))$$

$$w_i = w_i + x_{ii} y_i c$$

In practice
$$w_i = w_i + x_{ii}y_ic$$
 where $c = \eta \exp(-y_i(w \cdot x_i + b))$

THE CONSTANT

When is this large/small?

THE CONSTANT

$$c = \eta \exp(-y_i(w \cdot x_i + b))$$
label prediction

- If they are the same sign, as the predicted gets larger there update gets smaller
- If they are different, the more different they are, the bigger the update

GRADIENT

 The gradient is the vector of partial derivatives wrt to all the coordinates of the weights:

$$\nabla_{\mathbf{w}} L = \left[\frac{\partial L}{\partial w_1} \ \frac{\partial L}{\partial w_2} \dots \frac{\partial L}{\partial w_N} \right]$$

-

- Each partial derivative measures how fast the gloss changes in one direction.
- When the gradient is zero, i.e. all the partials derivatives are zero, the loss is not changing in any direction.
- Note: the arrows (gradients) point out from a minimum toward a maximum.

Algorithm 21 GradientDescent($\mathcal{F}, K, \eta_1, \ldots$)

```
1: z^{(0)} \leftarrow \langle o, o, \ldots, o \rangle // initialize variable we are optimizing

2: for k = 1 \ldots K do

3: g^{(k)} \leftarrow \nabla_z \mathcal{F}|_{z^{(k-1)}} // compute gradient at current location

4: z^{(k)} \leftarrow z^{(k-1)} - \eta^{(k)} g^{(k)} // take a step down the gradient

5: end for

6: return z^{(K)}
```


- In problems where the optimization problem is non-convex, it probably has local minima.
- An example is neural network. For long time people did not use NN, because they prefer methods that are guarantees to find the optimal solution.

- Saddle point: Some directions curve upwards, and others curve downwards.
- At a saddle point, the gradient is 0 even if we are not at a minimum.
- If we are exactly on the saddle point, then we are stuck.
- If we are slightly to the side, then we can get unstuck.
- Saddle points very common in high dimensions!

LEARNING RATE

Very important hyper-parameter

SUMMARY

- Model-based machine learning:
 - define a model, objective function (i.e. loss function),
 minimization algorithm
- Gradient descent minimization algorithm
 - o so far we consider the case where the loss function is convex
 - make small updates towards lower losses
- Perceptron learning algorithm and gradient descent/exponential loss function (modulo a learning rate)
- Gradient descent in general

QUESTIONS?

