Analysis I

Thomas Fleming

October 7, 2021

Contents

1 Measurable Functions

3

Lecture 13: Negative Results (2) and Measurable Functions

Tue 05 Oct 2021 13:02

We construct a cantor set.

First, suppose the interval [0,1] and a series of sets C_0, C_1, \ldots where $C_i = C_{i-1} \setminus D_i$ where D_i is just the set consisting of the middle thirds of each interval of C_{i-1} . Then, we let $C = \bigcap_{k \in \mathbb{N}} C_k$. We then define the *n*th partition of $[0,1] \setminus C_k$ to be $J_{k,n}$. We define $\mathscr{O} = \bigcup_{k,n \in \mathbb{N}} J_{k,n}$ and $\xi : \mathscr{O} \to \mathbb{R}$, $x \in J_{k,n} \mapsto \frac{n}{2^k}$. We see this is well defined by an inductive argument.

Definition 0.1 (Cantor-Lebesque Function). We define

$$\varphi: [0,1] \longrightarrow \mathbb{R}$$

$$x \longmapsto \varphi(x) = \left\{ \begin{array}{cc} 0, & x = 0 \\ \xi(x), & x \in \mathscr{O} \\ \sup\{\xi(y): y \in \mathscr{O} \cap [0,x)\}, & x \in C \setminus \{0\} \end{array} \right.$$

to be the Cantor-Lebesque Function

Proposition 0.1. φ is a continuous increasing function such that $\varphi([0,1]) = [0,1]$.

Proof. It is clear ξ is and this guarantees φ to be increasing.

Next, note $\varphi(0)=0$ and $\varphi(1)=1$. Hence, we have the intermediate value theorem guaranteeing the image is [0,1] if φ is continuous.

We see φ is continuous on $\mathscr O$ since it is constant on each interval $J_{k,n}$. Now, we consider $x \in C \setminus \{0,1\}$. For a given ε , let $k \in \mathbb N$ such that $\frac{1}{2^k} < \varepsilon$. Then, there is $n \in \mathbb N$ such that $1 \le n \le 2^k - 2$ such that for all $u \in J_{k,n}$, $v \in J_{k,n+1}$ such that for all u, v we find u < x < v. Let $a_k \in J_{k,n}$ $b_k \in J_{k,n+1}$ then by monotinicity

of φ , for all $y \in [0,1]$ with $|x-y| < \delta = \min\{x - a_k, x + b_k\}$ we find

$$|\varphi(x) - \varphi(y)| \le \varphi(b_k) - \varphi(a_k)$$

$$= \frac{n+1}{2^k} - \frac{n}{2^k}$$

$$= \frac{1}{2^k}$$

$$< \varepsilon.$$

Finally, given $\varepsilon > 0$, we take $k \in \mathbb{N}$ such that $\frac{1}{2^k} < \varepsilon$ and let $c_k \in I_{k,1}$, $d_k \in I_{k,2^k-1}$. Then, for $o \leq y \leq c_k$, we find

$$\begin{aligned} |\varphi\left(0\right) - \varphi\left(y\right)| &= |\varphi\left(y\right)| \\ &\leq \varphi\left(c_{k}\right) \\ &= \frac{1}{2^{k}} \\ &< \varepsilon. \end{aligned}$$

Similarly, for $d_k < y \le 1$, we find

$$\begin{aligned} \left| \varphi \left(1 \right) - \varphi \left(y \right) \right| & \leq \left| 1 - \varphi \left(d_k \right) \right| \\ &= 1 - \frac{2^k - 1}{2^k} \\ &= \frac{1}{2^k} \\ &< \varepsilon. \end{aligned}$$

Definition 0.2 (Modified Cantor-Lebesque Function). Let $\psi = x + \varphi(x)$ be the **modified Cantor-Lebesque Function**. It is clear ψ is continuous, strictly increasing and has , $\psi([0,2]) = [0,2]$.

Proposition 0.2. The function ψ has the following properties

- 1. $\psi(C)$ is measurable with $\mu(\psi(C)) = 1$.
- 2. There is a measurable set $S \subseteq C$ such that $\psi(S)$ is not measurable.

Proof. • Note that $[0,1] = C \cup \mathscr{O}$ and ψ is injective and continuous. Hence, we have $[0,2] = \psi(C) \cup \psi(\mathscr{O})$ with $\psi(C) \cap \psi(\mathscr{O}) = \varnothing$. Since ψ is strictly increasing, we know ψ^{-1} is well-defined and continuous. Hence, ψ is an open map and we see $\psi(\mathscr{O})$ is open in [0,2], hence $\psi(C)$ is closed. Hence, both sets are measurable. We see $\psi(\mathscr{O})$ is the union of a countable collection of open disjoint intervals, $\{I_i : i \in \mathbb{N}\}$ such that $\varphi \mid J_i$ is constant by construction. Hence, we hve for each $i \in \mathbb{N}$ we find $\psi(I_n) = x_i + I_i$ where $x_i \in [0,1]$ is a constant. Since ψ is injective, we find it preserves

CONTENTS

disjointness, hence the collection $\{\psi(I_i): i \in \mathbb{N}\}$ is disjoint. Then, by countable additivity and translation invariance of μ we find

$$\mu(\psi(\mathcal{O})) = \mu\left(\bigcup_{i \in \mathbb{N}} I_i\right)$$

$$= \bigcup_{i \in \mathbb{N}} \psi(I_i)$$

$$= \sum_{i=1}^{\infty} \mu(\psi(I_i))$$

$$= \sum_{i=1}^{\infty} \ell(x_i + I_i)$$

$$= \sum_{i=1}^{\infty} \ell(I_i)$$

$$= \mu(\mathcal{O}).$$

Since, $\mu(C) = 0$, we find

$$\mu(\mathcal{O}) = \mu([0,1] \setminus C) = \mu([0,1]) = 1.$$

Consequently, $\mu(\psi(\mathcal{O})) = 1 = \mu(\mathcal{O})$. Hence, we find $\mu(\psi(C)) = 1$.

Since $\psi\left(C\right)$ has positive measure, it contains a nonmeasurable subset T, however, we see $S=\psi^{-1}\left(T\right)$ is measurable as $S\subseteq C$ and $\mu\left(C\right)=0$.

Corollary 1. There is a measurable set $S \subseteq C$ such that S is not borel.

Proof. Since ψ has a continuous inverse, we see it maps borel sets to borel sets. Let S be a subset of C such that $\psi(S)$ is not measurable. Since $\psi(S)$ is not measurable, it is not a borel set. Hence S is not borel, but it was measurable with measure 0.

1 Measurable Functions

Definition 1.1 (Measurable Functions). A function $f: S \to \overline{\mathbb{R}}$ is **Lebesque-measurable** on S if $S \subseteq \mathbb{R}$ is measurable and $f^{-1}((c, \infty])$ is a measurable set for every $c \in \mathbb{R}$. This is equivalent to the condition that $f^{-1}(B)$ is measurable for all $B \in \overline{\mathscr{B}}$, the extended borel σ -algebra.

Proposition 1.1. Let $S \subseteq \mathbb{R}$ be measurable, then a function $f: S \to \overline{\mathbb{R}}$ is measurable if and only if one of the following holds for all $c \in \mathbb{R}$:

- $f^{-1}([c,\infty])$ is measurable,
- $f^{-1}([-\infty,c])$ is measurable,
- $f^{-1}([-\infty,c))$ is measurable.

Definition 1.2. The extended Borel σ -algebra, $\overline{\mathscr{B}}$ consists of all subsets $B \subseteq \overline{\mathbb{R}}$ such that $B \setminus \{-\infty, \infty\} \in \mathscr{B}$.

Remark. It is clear $\overline{\mathscr{B}}$ is the smallest σ -algebra containing all open subsets of $\overline{\mathbb{R}}$

Lecture 14: Measurable Functions (2)

Thu 07 Oct 2021 12:58

Recall. A function $f: S \to \mathbb{R}$ was measurable if S is measurable and $f^{-1}((c, \infty])$ is measurable for all $c \in \mathbb{R}$. There was an equivalent definition using the extended borel σ -algebra that we will use occasionally.

Proposition 1.2. Suppose $f:S\to\overline{\mathbb{R}}$ is continuous on the measurable set S, then f is measurable.

Proof. Let H be an extending function, then we must show $H \circ f$ is continuous. We see any subray, $f(X_0) = (c, \infty]$ will have $(H \circ f)(X_0) = (\hat{c}, 1]$. We know the preimage of this to be open in S, hence measurable.

Proposition 1.3. Let $S \subseteq \mathbb{R}$. Suppose $f: S \to \mathbb{R}$ is measurable. and let $g: B \to \mathbb{R}$ with $B \in \overline{\mathscr{B}}$ and $f(S) \subseteq B$. Then, $g \circ f: S \to \mathbb{R}$ is measurable.

Proof. For $c \in \mathbb{R}$, we note that $(g \circ f)^{-1}((c, \infty]) = f^{-1}(g^{-1}((c, \infty]))$. By continuity of g, we know $g^{-1}((c, \infty]) \in \overline{\mathscr{B}}$. And, since f is measurable, we find $f^{-1}(g^{-1}((c, \infty]))$.

Corollary 2. Let $S \subseteq \mathbb{R}$ and $f: S \to \mathbb{R}$ to be a measurable function. Then, for every $\alpha \in \mathbb{R}$ and $0 < \rho < \infty$, we find αf and $|f|^{\rho}$ are measurable.

Proof. We see the functions $g(u) = \alpha u$ on $\overline{\mathbb{R}}$ and $h(u) = |u|^{\rho}$ on $\overline{\mathbb{R}}$ to be the corresponding functions. We see the case h is clearly continuous and well defined. On the other hand g may be poorly defined if $\alpha = 0$ and $f(x) = \infty$. Recall, however, we had $0 \cdot \pm \infty = 0$ so g is just the zero functions and we see continuity holds.

Definition 1.3 (Almost-everywhere). Let S be measurable, then a property is said to hold true **almost everywhere** on S or **for almost all** $x \in S$ if there is a set T with $\mu(T) = 0$ and the property holds on all of $S \setminus T$.

Proposition 1.4. Let $S \subseteq \mathbb{R}$ and suppose $f, g : S \to \overline{\mathbb{R}}$ such that f is measurable and g = f almost everywhere on S, then g is measurable.

Proof. Let $T = \{x \in S : f(x) \neq g(x)\}$. Fix $c \in \mathbb{R}$ and let $F = f^{-1}((c, \infty]) \setminus T$ and $G = f^{-1}((c, \infty]) \cup T$. Clearly, both F and G are measurable. Furthermore, $F \subseteq G$ and $\mu(G \setminus F) = \mu(T) = 0$. Since, $F \subseteq g^{-1}((c, \infty]) \subseteq G$. And, by an earlier characterization we recall that a set X is measurable if and only if there were nested sets around it with a difference of measure G. Hence, G is measurable.

Remark. Suppose $f:S\to \overline{\mathbb{R}}$ is a measurable set and $S\subseteq X\subseteq \mathbb{R}$. If $\mu(X\setminus S)=0$ and $h:X\to \overline{\mathbb{R}}$ is any extension of f, then h is measurable since $h^{-1}\left((c,\infty]\right)=f^{-1}\left((c,\infty]\right)\cup\{x\in X\setminus S:h\left(x\right)\in(c,\infty]\}$. This is the union of a measurable set with a set of measure 0, so we see h is measurable.

Notation. Instead of saying that every extension of a measurable function $f: S \to \overline{\mathbb{R}}$ to a function $h: X \to \overline{\mathbb{R}}$, we often just say f is measurable on X as long as it is defined almost everywhere on X and is measurable on that set.

Proposition 1.5. Suppose $f: I \to \overline{\mathbb{R}}$ is monotone on $I \subseteq \mathbb{R}$. Then, the set of all points in I where f fails to be continuous is countable, hence measure 0. Another characterization is that f is continuous almost everywhere, hence f is measurable.

Proof. It suffices to consider the case f is increasing and I open. Let E be the set of all $x \in I$ where f fails to be continuous. For $x \in E$ let $\alpha_x = \sup(\{f(z) : z < x\}z \in J)$ and $\beta_x = \inf(\{f(z) : z > x\}z \in J)$. Since f is not continuous at x, we find the interval $(\alpha_x, \beta_x) = I_x$ to be nonempty. Also, if $x, y \in E$ are distinct with x < y we find $\beta_x <= \alpha_y$. Hence, we find $I_x \cap I_y = \emptyset$. Since each interval I_x for $x \in E$ contains a rational number, we see E is countable. Hence, $\mu(E) = 0$ and we see $f|_{I \setminus E}$ is continuous on $I \setminus E$ which is measurable, hence the restriction is measurable and as f coincides with its restriction almost everywhere, we see f is measurable.

Definition 1.4 (Finite Functions). • Let $S \subseteq \mathbb{R}$. A function $f: S \to \overline{\mathbb{R}}$ is called **finite on** S if $|f(x)| < \infty$ for all $x \in S$.

- Let $f, g: S \to \overline{\mathbb{R}}$ Then we say f < g if f(x) < g(x) for all $x \in S$. Similarly for all other inequalities.
- f is called **nonnegative** if $f \ge 0$ and **positive** if the inequality is strict.

Proposition 1.6. Let $f,g:S\to\overline{\mathbb{R}}$ be measurable and finite almost everywhere. Then, $f+g,f-g,f\cdot g$ are measurable. If $g(x)\neq 0$ for almost every $x\in S$, then $\frac{f}{g}$ is measurable.

Proof. 1. First, we prove addition. We may assume f, g are finite on S. Then, h = f + g is well defined. Since for $x \in S$, we have h(x) > g for

 $c\in R$ if and only if there is a $q\in\mathbb{Q}$ such that $f\left(x\right) >q$ and $g\left(x\right) >c-q$, we have

$$\begin{split} h^{-1}\left((c,\infty]\right) &= h^{-1}\left((c,\infty)\right) \text{ by finiteness.} \\ &= \bigcup_{q \in \mathbb{Q}} f^{-1}\left((q,\infty)\right) \cup g^{-1}\left(c-q,\infty\right). \end{split}$$

Hence, h as measurable as these are all measurable sets. If f,g are measurable, then so are f,-g , hence f+(-g)=f-g

- 2. With addition, subtraction is completely trivial,
- 3. Now multiplication, Let h be any measurable finite function on S. Consider $(h)^2$. If $c \ge 0$, we have

$$\left(\left(h\right)^{2}\right)^{-1}\left(\left(c,\infty\right)\right) = h^{-1}\left(\left(-\infty,\sqrt{c}\right)\right) \cup h^{-1}\left(\left(\sqrt{c},\infty\right)\right).$$

If c < o, then

$$((h)^2)^{-1}((c,\infty)) = h^{-1}(\mathbb{R}) = S.$$

As in either case we had the preimage being measurable, we see $(h)^2$ is measurable. Since $f \cdot g = \frac{1}{2} \left(f + g \right)^2 - \frac{1}{2} \left(f \right)^2 - \frac{1}{2} \left(g^2 \right)$ being the sum, constant multiple and square of measurable functions yields $f \cdot g$ to be measurable.

4. Lastly, let $h=\frac{1}{g}$, and note we can assume g is nonzero for all S, hence h is well defined on S and h is finite. If c>0 we see $h^{-1}\left((c,\infty)\right)=g^{-1}\left(\left(0,\frac{1}{c}\right)\right)$. As this interval is open and borel, we see $g^{-1}\left(\left(0,\frac{1}{c}\right)\right)$ is borel, hence $h^{-1}\left((c,\infty)\right)$ is measurable.

Similarly, if c=0, we see $h^{-1}((0,\infty))=g^{-1}((0,\infty))$. Lastly, if c<0 we have $h^{-1}(c,\infty)=g^{-1}(\left(-\infty,\frac{1}{c}\right))\cup g^{-1}((0,\infty))=g^{-1}\left(\left(\frac{1}{c},0\right)^c\right)$ hence measurable. This completes the proof.