- Teoría de Números
 - Temas:
 - Algoritmo de la División
 - Demostración
 - Algoritmo de Euclides
 - Demostración
 - Ecuaciones Diofánticas
 - Demostración (mía)
 - Demostración (Recorrido por la Teoría de Números)
 - Mínimo Común Múltiplo
 - MCM de dos números
 - Demostración
 - Ejercicios
 - Problema 1
 - Solución
 - Problema 2
 - Solución
 - Problema 3
 - Problema 4
 - Solución
 - Problema 5
 - Solución (Abel)

Teoría de Números

Temas:

- 1. Algoritmo de la División
- 2. Algoritmo de Euclides
- 3. Ecuaciones Diofánticas
- 4. Mínimo Común Múltiplo
- 5. Ejercicios

Algoritmo de la División

Dados $a, b \in \mathbb{Z}$ con $b \ge 1$, existen $q, r \in \mathbb{Z}$ con $0 \le r \le b$ tales que:

$$a = bq + r$$

Demostración

Tomemos el conjunto $R=\{r\geq 0: r=a-bq\}$ con $q\in \mathbb{Z}$ y sea r_0 el elemento mínimo del conjunto, luego sabemos que $r_0\geq 0$ porque así construimos el conjunto, probemos ahora que $r_0< b$. Supongamos lo contrario, entonces $a=bq+r_0$, y como $r_0\geq b \implies r_0=b+t \implies a=b(q+1)+t$ contradicción porque encontramos un elemento menor que r_0 que pertenece al conjunto $R\implies 0\leq r_0< b$

Algoritmo de Euclides

Se basa en el hecho evidente de que, si a = bq + r, cualquier número que divida a a y b también divide a b y r (y viceversa); en consecuencia:

$$mcd(a,b) = mcd(b,r)$$

Demostración

Supongamos que $mcd(a,b)=d_1\geq mcd(b,r)=d_2$, como $d_1\div a$ y $d_1\div b$ \implies $d_1\div r$ \implies $d_1\div mcd(b,r)$ y como $d_1\geq d_2$ \implies $d_1=d_2$. Análogamente suponiendo que $d_2\geq d_1$

Ecuaciones Diofánticas

Sean a, b dos enteros no ambos nulos, d = mcd(a, b) y c otro entero. La ecuación diofántica es de la forma:

$$ax + by = c$$

Existen infinitos valores para x, y que la satisfacen $\iff d \div c$ y siendo x_0, y_0 solución, todas las soluciones tienen la forma:

$$x = x_0 + \frac{b}{d}k$$

$$y = y_0 - \frac{a}{d}k$$

Demostración (mía)

La primera parte es más sencilla, supongamos que d no divide a c, luego, si $a=da_0$ y $b=db_0 \implies ax+by=d(a_0x+b_0y)=c$ contradicción porque no existen valores de x,y que lo cumplan $\implies d \div c$

Demostración (Recorrido por la Teoría de Números)

Demostraremos por el libro por qué todas las soluciones tienen esa forma, sean x_1, y_1 otra solución de la ecuación, entonces se cumple que:

$$ax_0 + by_0 = ax_1 + by_1$$

Dividiendo por d y agrupando términos semejantes resulta en:

$$a_1(x_1 - x_0) = b_1(y_0 - y_1)$$

Como $mcd(a_1,b_1)=1 \implies a_1 \div (y_0-y_1)$ y $b_1 \div (x_1-x_0)$ de donde resulta que:

$$x_0 + \frac{b}{d}k = x_1$$

$$y_0 - \frac{a}{d}k = y_1$$

Mínimo Común Múltiplo

Se define el mínimo común múltiplo (mcm) de dos enteros a y b no nulos como:

$$mcm(a, b) = min\{m \in \mathbb{N} : a \div m, b \div m\}$$

MCM de dos números

Sean a, b enteros no nulos, y d = mcd(a, b) entonces se cumple que:

$$mcm(a,b) = \frac{ab}{d}$$

Demostración

Sea m múltiplo común de a,b, entonces $m=ak_1=bk_2 \implies a_1k_1=b_1k_2$ siendo $a_1=\frac{a}{d}$ y $b_1=\frac{b}{d}$, pero como $mcd(a_1,b_1)=1 \implies b_1 \div k_1$ de donde $k_1=b_1k_3$ y sustituyendo k_1 en $m=ak_1$ resulta en:

$$m = \frac{ab}{d}k_3$$

Luego, como todo múltiplo común de a,b podemos expresarlo como múltiplo común de $\frac{ab}{d}\implies$ ese es el mcm(a,b)

Ejercicios

Problema 1

Sean $a_1, a_2, \ldots, a_n \in \mathbb{Z}$. Prueba que son coprimos dos a dos \iff $mcm(a_1, a_2, \ldots, a_n) = a_1 a_2 \cdots a_n$

Solución

Lema 1: Sea m múltiplo de los a_1, a_2, \ldots, a_n , entonces m es múltiplo del $mcm(a_1, a_2, \ldots, a_n)$. Demostrémoslo:

• m es múltiplo de los $a_i \implies \forall i = \{1, \ldots, n\} : a_i \div m$. Sea $t = mcm(a_1, a_2, \ldots, a_n)$, probemos que $t \div m$. Sea m = tq + r con $0 \le r < t$, entonces:

$$r = m - qt$$

Pero como tanto m como t son divisibles entre los a_i :

$$r = (a_i * h) - q(a_i * p)$$
$$r = a_i(h - qp)$$

En conclusión, hemos encontrado un r < t tal que es múltiplo común de todos los a_i menor que el mcm, lo cual solo es posible si r = 0, de donde $t \div m$

Lema 2:
$$mcm(a_1, a_2, ..., a_k) = mcm(a_1, mcm(a_2, ..., a_k))$$

 Para demostrar esto debemos analizar los múltiplos que genera cada miembro por separado, si demostramos que todo múltiplo del miembro izquierdo es múltiplo del miembro derecho y análogamente hacemos el análisis con el miembro derecho, habremos probado la igualdad.

Notemos que todo múltiplo de $mcm(a_1, a_2, ..., a_k)$ es múltiplo de todos los a_i y en particular de $a_2, ..., a_k \implies$ es múltiplo del $mcm(a_2, ..., a_k)$ por Lema 1 y como es múltiplo de $a_1 \implies$ es múltiplo del $mcm(a_1, mcm(a_2, ..., a_k))$

Similar se hace el análisis con el miembro derecho, todo múltiplo de $mcm(a_1, mcm(a_2, \dots, a_k))$ es múltiplo de a_1 y del $mcm(a_2, \dots, a_k) \implies$ es múltiplo de a_2, \dots, a_k , y por tanto múltiplo del $mcm(a_1, a_2, \dots, a_k)$

Probemos por induccion que si a_1, a_2, \ldots, a_n son coprimos dos a dos \implies $mcm(a_1, a_2, \ldots, a_n) = a_1 a_2 \cdots a_n$

• Caso base n=2: Si a y b son coprimos $\implies mcm(a,b)=ab$ porque $mcm(a,b)=\frac{ab}{mcd(a,b)}$ y como a,b son coprimos entonces mcd(a,b)=1 $\implies mcm(a,b)=ab$

Hipótesis de inducción: Supongamos que para n=k lo cumple, entonces $mcm(a_1,a_2,\ldots,a_k)=a_1a_2\cdots a_k$ siendo a_1,a_2,\cdots,a_k coprimos

Probemos que para n=k+1 se cumple: Para eso necesitamos una forma de descomponer el $mcm(a_1,a_2,\ldots,a_{k+1})$ en un mcm más pequeño, para lo cual utilizaremos el ya demostrado $Lema\ 2$, con lo cual $mcm(a_1,a_2,\ldots,a_{k+1})=mcm(a_1,mcm(a_2,\ldots,a_{k+1}))$

Luego, por hipótesis de inducción $mcm(a_2, \ldots, a_{k+1}) = a_2 \cdots a_{k+1}$ por lo que $mcm(a_1, a_2, \ldots, a_{k+1}) = mcm(a_1, a_2 \cdots a_{k+1})$ y como todos los a_i son primos relativos dos a dos, ambos términos dentro del mcm son coprimos y por tanto, por el caso base $mcm(a_1, a_2, \ldots, a_{k+1}) = a_1a_2 \cdots a_{k+1}$

Demostremos ahora la otra dirección del (\Leftrightarrow), si se cumple que $mcm(a_1, a_2, ..., a_n) = a_1 a_2 \cdots a_n$ entonces todos son coprimos dos a dos.

• Como $mcm(a_1, a_2, \ldots, a_n) = mcm(a_1, mcm(a_2, \ldots, a_n))$ por el Lema~2, entonces se cumple que $mcm(a_1, a_2, \ldots, a_n) = mcm(a_1, a_2 \cdots a_n) = a_1a_2 \cdots a_n$ y está demostrado en conferencia que $mcm(a, b) = \frac{ab}{mcd(a,b)}$, luego $mcd(a_1, a_2 \cdots a_n) = 1$ por lo que a_1 es primo relativo con $a_2 \cdots a_n$ de donde a_1 es primo relativo con cada a_i con $2 \le i \le n$.

Haciendo el análisis con cada a_i llegamos a la conclusión de que si se cumple la premisa entonces los a_i son coprimos dos a dos.

Problema 2

Prueba que $\sqrt[m]{n}$ es entera o irracional para m, n enteros positivos.

Solución

Supongamos que no se cumple que $\sqrt[m]{n}$ sea entera o irracional, entonces es de la forma $\frac{p}{q}$ con q=1 y $mcd(p,q)=1 \implies q\sqrt[m]{n}=p \implies q^m n=p^m$, pero como p y q son coprimos $\implies q^m$ y p^m tambien son coprimos, sin embargo $q^m \div p^m \implies q=1$

Probemos que si a,b enteros tal que mcd(a,b)=1 y $a^m \div b^m \implies a=1$. Como mcd(a,b)=1 entonces a es coprimo con cualquier potencia de b, y como b^m es coprimo con a, al elevar a m-veces también serán coprimos, y como $a^m \div b^m$ el único a que cumple es 1.

Acabamos de probar que si $\sqrt[m]{n}$ es racional entonces es entera, luego, se deduce que si no es entera no es racional y por tanto es irracional.

Problema 3

Resuelve: 188x + 508y = 1580

Problema 4

Sean a, b enteros positivos. Determine cuántos números entre $a, 2a, 3a, \ldots, ba$ son divisibes por b.

Solución

Sea d = mcd(a, b) y las descomposiciones:

$$a = a_1 d$$

$$b = b_1 d$$

De donde $mcd(a_1,b_1)=1$. Entonces debemos hallar cuantos k menores o iguales que b cumplen que $\frac{ak}{b}=n$ siendo n natural. Pero sustituyendo a y b por sus descomposiciones tenemos que $\frac{a_1dk}{b_1d}$ simplificando d resulta en $\frac{a_1k}{b_1}$, como $mcd(a_1,b_1)=1$ basta encontrar cuántos números de 1 a b son divisibles por b_1 , y esa cantidad es $\frac{b}{b_1}=mcd(a,b)=d$

Problema 5

Prueba que si a, b, c son enteros positivos $\implies mcm(a, b, c) = \frac{abc}{mcd(ab,bc,ca)}$

Solución (Abel)

Para hacer este ejercicio por esta vía solo es necesario saber tres cosas:

1.
$$mcm(a,b) = \frac{ab}{mcd(a,b)}$$

2.
$$mcm(a, b, c) = mcm(a, mcm(b, c))$$

3.
$$mcd(a, b, c) = mcd(a, mcd(b, c))$$

Procedamos con la demostración, partiendo del miembro izquierdo y utilizando (2) se cumple que mcm(a,b,c) = mcm(a,mcm(b,c)), luego, aplicando la propiedad (1) dos veces resulta en:

$$mcm(a, b, c) = \frac{abc}{mcd(b, c) * mcd(a, \frac{bc}{mcd(b, c)})}$$

Teniendo en cuenta lo demostrado en (Problema 5 clase 2) llegamos a que:

$$mcd(b,c) * mcd(a, \frac{bc}{mcd(b,c)}) = mcd(a * mcd(b,c),bc)$$

Y volviendo a aplicar la propiedad anterior en el último resultado resulta:

$$mcd(a * mcd(b, c), bc) = mcd(mcd(ab, ac), bc)$$

Y por la propiedad (3) concluimos que:

$$mcd(mcd(ab, ac), bc) = mcd(ab, ac, bc)$$