Binomial Coefficients

Definition: The binomial coefficient $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ for all $n \ge k \ge 0$ (read "n choose k") where $n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 2 \cdot 1$ and, by definition, 0! = 1.

This counts the number of k-element subsets of an n-element set, or equivalently, the number of ways to choose a set of k elements, taken from a set of n elements.

Example 1: Calculate: $\binom{10}{3} = \frac{10!}{3! \ 7!} = \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = \frac{10!}{3! \ 7!} = \frac{10!}{3!} = \frac{10!}$

Example 2: How many 8-bit strings contain exactly 3 zeros?

Example 3: Use the definition to simplify each of the following:

$$\begin{pmatrix} n \\ 0 \end{pmatrix} = \begin{pmatrix} n \\ n \end{pmatrix} =$$

Example 4: Suppose a string of n characters contains only two possible characters: * and | Write an expression for the number of n-bit strings that contain exactly 2 *'s. Simplify your expression to be written as a polynomial.

Pascal's Identity: For all $n \ge k \ge 1$, $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$

Pascal's Triangle

(see https://brilliant.org/wiki/pascals-triangle/)

Logarithms

logs and exponents are inverse operations

- To "undo" multiplication, you divide.
- To "undo" addition, you subtract.
- To "undo" exponentiation, you hit it with a log.

Definition $y = \log_b x \iff b^y = x$ Notation: We use $\lg x$ to represent $\log_2 x$.

Powers of 2: $2^0 = 1$, $2^1 = 2$, $2^2 = 4$,

Example 1: Use the definition to determine each of the following:

$$1g 32 =$$

$$lg 1024 =$$

$$lg 1 =$$

$$log_381 =$$

$$\log 100,000 =$$

Graph of $y = \log_b x$

Note: $\log_b 1 = 0$ for any base b > 0 (since $b^0 = 1$).

The logarithm function has domain $\{x \mid x > 0\}$. The x-intercept is at x = 1.

The logarithm function is a strictly increasing and very slowly growing function.

Example 2: Use powers of 2 to calculate:

$$\lfloor \lg 70 \rfloor =$$

$$\lceil \lg 1100 \rceil =$$

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Change of Base Formula:

Example 3: Use a calculator and the change of base formula to calculate each of the following:

$$\log_3 687 =$$

$$\log_5 791 =$$

Properties of Logs:

$$\log_a(xy) = \log_a x + \log_a y$$

$$\log_a(x^r) = r \log_a x$$

Example 4: Use properties of logs to simplify each of the following:

lg(8*n*)

 $\lg(n^2)$

 $\lg(n^{10})$

 $\lg(\sqrt{n})$

 $\lg(n^n)$

Example 5: The algorithm binarySearch is used to find the index for a key value in a <u>sorted</u> array a of n items. Determine the number of times the while loop is executed in the worst case.

```
binarySearch(a, key)
{
  left = 1
  right = a.last
  while (left <= right)
  {
    mid = (left + right) / 2
    if (key < a[mid])
       right = mid - 1
    else if (key > a[mid])
       left = mid + 1
    else
       return mid // found
  }
  return -1 // not found
}
```

```
search 3770 student records => lg(3770) \approx 11.8
search 332,000,000 people in US => lg(332,000,000) \approx 28.3
```