#importing libraries import
pandas as pd import numpy as
np import matplotlib.pyplot as
plt

from google.colab import drive
drive.mount('/content/drive')

→ Mounted at /content/drive

data= pd.read_csv("/content/dataset_traffic_accident_prediction1.csv")

data.	hoad	(15)
uala.	neau	(TD)

								(15)	nead
Road_Condi	Accident_Severity	Driver_Alcohol	Number_of_Vehicles	Speed_Limit	Traffic_Density	Time_of_Day	Road_Type	Weather	
	NaN	0.0	5.0	100.0	1.0	Morning	City Road	Rainy	0
	Moderate	0.0	3.0	120.0	NaN	Night	Rural Road	Clear	1
	Low	0.0	4.0	60.0	1.0	Evening	Highway	Rainy	2
U Constru	Low	0.0	3.0	60.0	2.0	Afternoon	City Road	Clear	3
	Low	0.0	11.0	195.0	1.0	Morning	Highway	Rainy	4
	Moderate	0.0	3.0	120.0	0.0	Night	Rural Road	Clear	5
	Low	0.0	4.0	60.0	0.0	Afternoon	Highway	Foggy	6
	Low	0.0	4.0	60.0	0.0	Afternoon	City Road	Rainy	7
	High	0.0	2.0	60.0	1.0	Morning	Highway	Stormy	8
	Low	0.0	2.0	30.0	2.0	Afternoon	City Road	Rainy	9
	Moderate	0.0	2.0	60.0	NaN	Evening	NaN	Foggy	10
	Low	0.0	5.0	100.0	2.0	Night	Mountain Road	Clear	11
	NaN	0.0	4.0	60.0	0.0	Afternoon	Rural Road	NaN	12
	Moderate	1.0	1.0	30.0	0.0	Night	City Road	Rainy	13
	Low	0.0	1.0	NaN	0.0	Morning	Rural Road	Clear	14

data.drop_duplicates(inplace=True)

data										
→		Weather	Road_Type	Time_of_Day	Traffic_Density	Speed_Limit	Number_of_Vehicles	Driver_Alcohol	Accident_Severity	Road_Cond
	0	Rainy	City Road	Morning	1.0	100.0	5.0	0.0	NaN	
			Rural							
	1	Clear	Road	Night	NaN	120.0	3.0	0.0	Moderate	
	2	Rainy	Highway	Evening	1.0	60.0	4.0	0.0	Low	
	3	Clear	City Road	Afternoon	2.0	60.0	3.0	0.0	Low	
	4	Rainy	Highway	Morning	1.0	195.0	11.0	0.0	Low	Constr
	835	Clear	Highway	Night	2.0	30.0	4.0	0.0	Low	
	836	Rainy	Rural	Evening	2.0	60.0	4.0	0.0	Low	
	837	Foggy	Road Highway	Evening	NaN	30.0	4.0	1.0	High	
	838	Foggy	Highway	Afternoon	2.0	60.0	3.0	0.0	Low	

0 Weather 42 Road_Type 42 Time_of_Day 41 Traffic_Density 42 Speed_Limit 42 Number_of_Vehicles 42 Driver_Alcohol Accident_Severity 41 Road_Condition 42 Vehicle_Type 42 Driver_Age 42 Driver_Experience 42 Road_Light_Condition 42 Accident 42

np.int64(0)

#dropping missing values

data.dropna()

--

	Weather	Road_Type	Time_of_Day	Traffic_Density	Speed_Limit	Number_of_Vehicles	Driver_Alcohol	Accident_Severity	Road_Cond
2	Rainy	Highway	Evening	1.0	60.0	4.0	0.0	Low	
3	Clear	City Road	Afternoon	2.0	60.0	3.0	0.0	Low	Constr
4	Rainy	Highway	Morning	1.0	195.0	11.0	0.0	Low	Consti
6	Foggy	Highway	Afternoon	0.0	60.0	4.0	0.0	Low	

Low	0.0	4.0	60.0	0.0	Afternoon	City Road	Rainy	7
Moderate	0.0	2.0	100.0	1.0	Morning	Highway	Clear	830
Low	0.0	4.0	30.0	2.0	Night	Highway	Clear	835
Low	0.0	4.0	60.0	2.0	Evening	Rural Road	Rainy	836
Low	0.0	3.0	60.0	2.0	Afternoon	Highway	Foggy	838
Low	0.0	4.0	60.0	1.0	Afternoon	Highway	Clear	839

393 rows × 14 columns

```
#filling the null values data["Traffic_Density"].fillna(data["Traffic_Density"].mean(),
inplace=True) data["Speed_Limit"].fillna(data["Speed_Limit"].mean(), inplace=True)
data["Number_of_Vehicles"].fillna(data["Number_of_Vehicles"].mean(), inplace=True)
data["Driver_Alcohol"].fillna(data["Driver_Alcohol"].mean(), inplace=True)
data["Accident_Severity"].fillna(data["Accident_Severity"].mode()[0], inplace=True)
data["Road_Condition"].fillna(data["Road_Condition"].mode()[0], inplace=True)
data["Vehicle_Type"].fillna(data["Vehicle_Type"].mode()[0], inplace=True)
data["Driver_Age"].fillna(data["Driver_Age"].mean(), inplace=True)
data["Driver_Experience"].fillna(data["Driver_Experience"].mean(), inplace=True)
data["Road_Light_Condition"].fillna(data["Road_Light_Condition"].mode()[0],
inplace=True) data["Accident"].fillna(data["Weather"].mode()[0], inplace=True)
data["Road_Type"].fillna(data["Road_Type"].mode()[0], inplace=True)
data["Time_of_Day"].fillna(data["Time_of_Day"].mode()[0], inplace=True)
```

🔁 <ipython-input-24-230c89790859>:2: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setti For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[data["Traffic_Density"].fillna(data["Traffic_Density"].mean(), inplace=True) <ipython-input-24-230c89790859>:3: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setti For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[data["Speed_Limit"].fillna(data["Speed_Limit"].mean(), inplace=True) <ipython-input-24-230c89790859>:4: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setti For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[data["Number of Vehicles"].fillna(data["Number of Vehicles"].mean(), inplace=True) <ipython-input-24-230c89790859>:5: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setti For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[data["Driver_Alcohol"].fillna(data["Driver_Alcohol"].mean(), inplace=True)

<ipython-input-24-230c89790859>:6: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setti
For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[

or example, when doing discollimethod value, inplace-frue), try using dismethod (tol. value), inplace-frue) or discolling discolling

data["Accident_Severity"].fillna(data["Accident_Severity"].mode()[0], inplace=True)
<ipython-input-24-230c89790859>:7: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setti

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[

data["Driver_Age"].fillna(data["Driver_Age"].mean(), inplace=True)

data

	Weather	Road_Type	Time_of_Day	Traffic_Density	Speed_Limit	Number_of_Vehicles	Driver_Alcohol	Accident_Severity	Road_Cond
0	Rainy	City Road	Morning	1.000000	100.0	5.0	0.0	Low	
1	Clear	Rural Road	Night	0.998724	120.0	3.0	0.0	Moderate	- 1
2	Rainy	Highway	Evening	1.000000	60.0	4.0	0.0	Low	_
3	Clear	City Road	Afternoon	2.000000	60.0	3.0	0.0	Low	Consti
4	Rainy	Highway	Morning	1.000000	195.0	11.0	0.0	Low	_
835	Clear	Highway	Night	2.000000	30.0	4.0	0.0	Low	_
836	Rainy	Rural Road	Evening	2.000000	60.0	4.0	0.0	Low	
837	Foggy	Highway	Evening	0.998724	30.0	4.0	1.0	High	
838	Foggy	Highway	Afternoon	2.000000	60.0	3.0	0.0	Low	
839	Clear	Highway	Afternoon	1.000000	60.0	4.0	0.0	Low	

data.isnull().sum()

#categorical data
data["Road_Light_Condition"].fillna(data["Road_Light_Condition"].mode()[0], inplace = True)

<ipython-input-26-8de2997c5d88>:2: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained ass
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col data["Road_Light_Condition"].fillna(data["Road_Light_Condition"].mode()[0], inplace = True)

	er y	/pe _	Day	fic_Density	Speed_Limit	Number_of_ ehicles	cohol	l Accident_So verity	Roa ond
0	Rain y	Road Rur	Mo rnin g	1.000000	100.0	5.0	0.0	Low	
1	Clea r	al Roa d	i g h t	0.998724	120.0	3.0	0.0	Moderate	
2	Rain I y	Highwa y	Ev eni ng	1.000000	60.0	4.0	0.0	Low	
3	Clea r	City Road	Afterno on	2.000000	60.0	3.0	0.0	Low	Co
4	Rain I	Highwa y	Mo rnin g	1.000000	195.0	11.0	0.0	Low	
	r	Highwa y	N i g h t	2.000000	30.0	4.0	0.0	Low	
3	Rain	Rur al Roa d	Ev eni ng	2.000000	60.0	4.0	0.0	Low	
3	gy	Highwa y	Ev eni ng	0.998724	30.0	4.0	1.0	High	
3	Fogl	Highwa y	Afterno on	2.000000	60.0	3.0	0.0	Low	
3	Clea l	у	Afterno on	1.000000	60.0	4.0	0.0	Low	

#removing
duplicates
data.drop_duplicates(inpl
ace=True)

data
from sklearn.preprocessing
import StandardScaler scaler =
StandardScaler() data_scaled =
data.copy()

data_scaled[["Traffic_Density", "Speed_Limit"]] =scaler.fit_transform(data[["Traffic_Density", "Speed_Limit"]])
data_scaled

	Road_Type T:	ime_of_Day Traf	fic_Density Spe	ed_Limit Number_	_of_Vehicles Driver_Alco	ohol Accident_	Severity	Road_0 ond
0 Rainy	City Road	Morning	0.001672	0.918165	5.0	0.0	Low	
1	Rural							
Clear	Road	Night	0.000002	1.555111	3.0	0.0	Moderate	
2 Rainy	Highway	Evening	0.001672	-0.355726	4.0	0.0	Low	
3 Clear	City Road	Afternoon	1.311322	-0.355726	3.0	0.0	Low	Const
4 Rainy	Highway	Morning	0.001672	3.943656	11.0	0.0	Low	Como
		•••	•••					
835 Clear	Highway	Night	1.311322	-1.311144	4.0	0.0	Low	

836	Rural		4.044000	0.055700	4.0	0.0	
Rainy	Road	Evening	1.311322	-0.355726	4.0	0.0	Low
837	Highway	Evenina	0.000002	-1.311144	4.0	1.0	High
Foggy	3 ,	3					3
838	Highway	Afternoon	1.311322	-0.355726	3.0	0.0	Low
Foggy							
839	Highway	Afternoon	0.001672	-0.355726	4.0	0.0	Low
Clear							

825 rows × 14 columns

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()

data_scaled[["Traffic_Density","Speed_Limit"]] =scaler.fit_transform(data[["Traffic_Density","Speed_Limit"]])
data_scaled

data_sca	led								
	Weather	Road_Type	Time_of_Day	Traffic_Density	Speed_Limit	Number_of_Vehicles	Driver_Alcohol	Accident_Severity	Road_Cond
0	Rainy	City Road	Morning	0.500000	0.382514	5.0	0.0	Low	
1	Clear	Rural Road	Night	0.499362	0.491803	3.0	0.0	Moderate	
2	Rainy	Highway	Evening	0.500000	0.163934	4.0	0.0	Low	
3	Clear	City Road	Afternoon	1.000000	0.163934	3.0	0.0	Low	Constr
4	Rainy	Highway	Morning	0.500000	0.901639	11.0	0.0	Low	00
						***		•••	
83	5 Clear	Highway	Night	1.000000	0.000000	4.0	0.0	Low	
83	6 Rainy	Rural Road	Evening	1.000000	0.163934	4.0	0.0	Low	
83	7 Foggy	Highway	Evening	0.499362	0.000000	4.0	1.0	High	
83	B Foggy	Highway	Afternoon	1.000000	0.163934	3.0	0.0	Low	
83	9 Clear	Highway	Afternoon	0.500000	0.163934	4.0	0.0	Low	

825 rows × 14 columns

data_encoded = pd.get_dummies(data, columns=["Road_Light_Condition"],drop_first=True)
print(data_encoded)

```
₹
               Road_Type Time_of_Day Traffic_Density Speed_Limit \
      Weather
    0
          Rainy
                 City Road
                               Morning
                                               1.000000
                                                                100.0
                 Rural Road
          Clear
                                 Night
                                                0.998724
    2
          Rainy
                   Highway
                                               1,000000
                                                                 60.0
                               Evening
    3
          Clear
                  City Road Afternoon
                                               2.000000
                                                                 60.0
          Rainy
                    Highway
                               Morning
                                               1.000000
                                                                195.0
    835
                                                2.000000
                                                                 30.0
          Clear
                    Highway
                                  Night
    836
          Rainy
                 Rural Road
                                Evening
                                                2.000000
                                                                 60.0
          Foggy
                   Highway
    837
                                                0.998724
                                                                 30.0
                                Evening
                             Afternoon
                                                                 60.0
    838
          Foggy
                    Highway
                                               2.000000
    839
                    Highway
                             Afternoon
                                                1.000000
         Number_of_Vehicles    Driver_Alcohol Accident_Severity
                                                                   Road_Condition
    0
                                       0.0
                       5.0
                                                         Low
                                                                              Wet
    1
                        3.0
                                        0.0
                                                     Moderate
                                                                              Wet
    2
                        4.0
                                        0.0
                                                                              Icy
    3
                        3.0
                                        0.0
                                                          Low Under Construction
    4
                        11.0
                                        0.0
                                                          Low
                                                                               Dry
                                        0.0
    835
                                                          Low
                                                                              Dry
    836
                        4.0
                                        0.0
                                                          Low
                                                                              Dry
    837
                        4.0
                                        1.0
                                                         High
                                                                              Dry
    838
                        3.0
                                        0.0
                                                          Low
                                                                              Dry
                                                                              Dry
    839
                        4.0
                                        0.0
                                                          Low
        Vehicle_Type Driver_Age Driver_Experience Accident \
    0
                 Car
                      51.000000
                                               48.0 0.000000
    1
                 Truck
                        49.000000
                                                43.0 0.000000
    2
                      54.000000
                                               52.0 0.000000
                 Car
    3
                 Bus
                      34.000000
                                               31.0 0.000000
                 Car
                       62.000000
                                               55.0
                                                    1.000000
                                                                             . . .
                                                                                         . . .
                                                                                                            . . .
    835
                      23.000000
                                               15.0 0.000000
                Car
    836
                 Motorcycle 52.000000
                                                      46.0 1.000000
    837
                       43.153061
                                               34.0 0.298469
```

```
838
                  Car
                       25.000000
                                                  19.0 0.000000
     839
                  Motorcycle 29.000000
                                                         21.0 0.000000
          {\tt Road\_Light\_Condition\_Daylight} \quad {\tt Road\_Light\_Condition\_No\ Light}
     0
                                    False
                                                                     False
     1
                                    False
                                                                     False
     2
                                    False
                                                                     False
     3
                                                                    False
                                    True
     4
                                    False
                                                                     False
                                    . . .
                                                                    False
     835
                                    True
    836
                                    True
                                                                    False
     837
                                    False
                                                                     False
     838
                                    False
                                                                     False
     839
                                    False
                                                                     False
     [825 rows x 15 columns]
from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder()
data["Road_Light_Condition"] =
encoder.fit_transform(data["Road_Light_Condition"])
def performance_category(Speed_Limit):
if Speed_Limit >= 10:
      return "High"
elif Speed_Limit >= 5:
return "Medium"
                    else:
return "Low"
data["Performance"] = data["Speed_Limit"].apply(performance_category)
print(data)
\overline{2}
       Weather
                  Road_Type Time_of_Day Traffic_Density Speed_Limit \
     0
                  City Road
                                                  1.000000
                                                                   100.0
           Rainy
                                  Morning
           Clear Rural Road
                                   Night
                                                   0.998724
     1
                                                                    120.0
     2
           Rainy
                     Highway
                                  Evening
                                                   1.000000
                                                                     60.0
                   City Road
                                                   2.000000
     3
           Clear
                                Afternoon
                                                                     60.0
                                                   1.000000
     4
           Rainy
                     Highway
                                  Morning
                                                                    195.0
                                                                                                 . . .
     835
                                                   2.000000
                                                                     30.0
           Clear
                     Highway
                                    Night
           Rainy Rural Road
                                                   2.000000
     836
                                                                     60.0
                                  Evening
     837
           Foggy
                     Highway
                                  Evening
                                                   0.998724
                                                                     30.0
                     Highway
                                                   2.000000
                                                                     60.0
     838
           Foggy
                                Afternoon
     839
                     Highway
                                                   1.000000
           Clear
                                Afternoon
                                                                     60.0
          Number_of_Vehicles    Driver_Alcohol Accident_Severity
                                                                       Road_Condition
     0
                         5.0
                                          0.0
                                                                                  Wet
     1
                         3.0
                                          0.0
                                                                                  Wet
                                                        Moderate
     2
                         4.0
                                          0.0
                                                             Low
                                                                                  Tcv
     3
                         3.0
                                          0.0
                                                             Low
                                                                  Under Construction
                         11.0
                                                                                   Dry
                                                              Low
     835
                         4.0
                                          0.0
                                                                                  Drv
                                                             Low
     836
                         4.0
                                          0.0
                                                             Low
                                                                                  Dry
                                                                                  Dry
     837
                         4.0
                                          1.0
                                                            High
    838
                                          0.0
                         3.0
                                                             Low
                                                                                  Dry
     839
                         4.0
                                          0.0
                                                             Low
         Vehicle_Type Driver_Age Driver_Experience Road_Light_Condition
     0
                        51.000000
                  Car
     1
                        49.000000
                                                   43.0
                                                                              0
                  Truck
                        54.000000
     2
                  Car
                                                  52.0
                                                                            0
     3
                  Bus
                        34.000000
                                                  31.0
                                                                            1
     4
                        62.000000
                                                  55.0
                                                                            0
                  Car
     835
                  Car
                        23.000000
                                                  15.0
                                                                            1
                  Motorcycle 52.000000
     837
                        43.153061
                                                  34.0
                                                                            0
                  Car
    838
                  Car
                        25.000000
                                                  19.0
                                                                            0
                  Motorcycle
                               29.000000
          Accident Performance
     a
          0.000000
                          High
     1
          0.000000
                           High
     2
          0.000000
                          High
     3
          0.000000
                          High
     4
          1.000000
                          High
          0.000000
                          High
                          High
     836
          1,000000
     837
          0.298469
                          High
     838
          0.000000
                          High
          0.000000
     839
                          High
```

data ∑ ▼		Weather	Road_Type	Time_of_Day	Traffic_Density	Speed_Limit	Number_of_Vehicles	Driver_Alcohol	Accident_Severity	Road_Cond
	0	Rainy	City Road	Morning	1.000000	100.0	5.0	0.0	Low	
	1	Clear	Rural Road	Night	0.998724	120.0	3.0	0.0	Moderate	
	2	Rainy	Highway	Evening	1.000000	60.0	4.0	0.0	Low	
	3	Clear	City Road	Afternoon	2.000000	60.0	3.0	0.0	Low	Constr
	4	Rainy	Highway	Morning	1.000000	195.0	11.0	0.0	Low	Consti
				•••						
	835	Clear	Highway	Night	2.000000	30.0	4.0	0.0	Low	
	836	Rainy	Rural Road	Evening	2.000000	60.0	4.0	0.0	Low	
	837	Foggy	Highway	Evening	0.998724	30.0	4.0	1.0	High	
	838	Foggy	Highway	Afternoon	2.000000	60.0	3.0	0.0	Low	
	839	Clear	Highway	Afternoon	1.000000	60.0	4.0	0.0	Low	

825 rows × 15 columns

print("y_pred",y_pred)

```
#scatter chart plt.scatter(data["Traffic_Density"],
data["Speed_Limit"]) plt.xlabel("Traffic_Density")
plt.ylabel("Speed_Limit") plt.show()
\overline{\mathbf{T}}
          200
          175
          150
       Speed Limit
          125
          100
            75
            50
                 0.00
                          0.25
                                  0.50
                                                    1.00
                                                                     1.50
                                                                                       2.00
                                           0.75
                                                             1.25
                                                                              1.75
                                              Traffic Density
```

```
from sklearn.preprocessing import LabelEncoder encoder = LabelEncoder()
data["Road_Light_Condition"] =
encoder.fit_transform(data["Road_Light_Condition"])
from sklearn.preprocessing import LabelEncoder encoder = LabelEncoder()
data["Accident"] = encoder.fit_transform(data["Accident"])
data["Accident_Severity"]=encoder.fit_transform(data["Accident_Severity"]
) data["Road_Condition"]=encoder.fit_transform(data["Road_Condition"])
data["Vehicle_Type"]=encoder.fit_transform(data["Vehicle_Type"])
data["Driver_Alcohol"]=encoder.fit_transform(data["Driver_Alcohol"])
data["Road_Type"]=encoder.fit_transform(data["Road_Type"])
data["Time_of_Day"]=encoder.fit_transform(data["Time_of_Day"])
data["Weather"]=encoder.fit_transform(data["Weather"])
data["Performance"]=encoder.fit_transform(data["Performance"])
#model building from sklearn.model_selection import train_test_split from
sklearn.linear_model import LogisticRegression from sklearn.metrics import
accuracy_score, classification_report, confusion_matrix
#random forest from sklearn.ensemble import
RandomForestClassifier from sklearn.metrics import
accuracy_score, classification_report
#select target data
X = data.drop("Accident", axis=1)
y = data["Accident"]
x_test,x_train,y_test,y_train = train_test_split(X,y,test_size=0.2,random_state=42)
#logistic regression model
= LogisticRegression()
model.fit(x_train,y_train)
🔁 /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_logistic.py:465: ConvergenceWarning: lbfgs failed to converge (status=
     STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max_iter) or scale the data as shown in:
     https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to
     the documentation for alternative solver options:
                                                           https://scikit
     learn.org/stable/modules/linear_model.html#logistic-regression
      _check_optimize_result(
      ▼ LogisticRegression ① ?
     LogisticRegression()
#prediction
y pred = model.predict(x test)
```

```
accuracy_random 0.646969696969697
    classification_rep_random
                                            precision
                                                         recall f1-score
                                                                            support
            0.67
                      0.95
                                0.78
                                           438
            0.00
                                0.00
                                                                                    0.08
    1
                      0.00
                                            37
                                                         2
                                                                 0.29
                                                                          0.05
            185
                                           0.65
        accuracy
                                                      660
    macro avg
                    0.32
                              0.33
                                        0.29
                                                   660
    weighted avg
                       0.52
                                 0.65
                                           0.54
                                                      660
    confusion_mat_random [[418
                                1 19]
     [ 34 0 3]
     [176
            0 9]]
```

#prediction analysis prediction_analysis =
pd.DataFrame({"Actual":y_test,"Predicted":y_pred})
print(prediction_analysis)

_		Actual	Predicted
	239	0	0
	701	0	0
	655	2	0
	345	0	0
	302	2	0
	71	2	0
	106	0	0
	272	0	0
	441	0	0
	102	0	0

[660 rows x 2 columns]

#visualization prediction and actual
value plt.scatter(y_test,y_pred)
plt.xlabel("Actual")
plt.ylabel("Predicted") plt.show()

#visualization an two models
plt.scatter(y_test,y_pred,label="Logistic Regression")
plt.scatter(y_test,y_pred_random,label="Random
Forest") plt.xlabel("Actual") plt.ylabel("Predicted")
plt.legend() plt.show()

#visualization on evaluation two models plt.bar(["Logistic
Regression", "Random Forest"],[accuracy,accuracy_random])
plt.xlabel("Models") plt.ylabel("Accuracy") plt.show()

#chart classification report
plt.scatter(classification_rep,classification_rep_random,color="Orange"
) plt.xlabel("Classification Report") plt.ylabel("Classification
_rep_random") plt.show()

#final output prediction final_output = pd.DataFrame({"Actual":y_test,"Logistic
Regression":y_pred,"Random Forest":y_pred_random}) print(final_output)

₹		Actual	Logistic	Regression	Random	Forest
	239	0		0		0
	701	0		0		0
	655	2		0		0
	345	0		0		0
	302	2		0		0
	71	2		0		0
	106	0		0		0
	272	0		0		2
	441	0		0		0
	102	0		0		0

[660 rows x 3 columns]

Start coding or $\underline{\text{generate}}$ with

AI.

Start coding or generate with AI.

Start coding or $\underline{\text{generate}}$ with AI.

Start coding or $\underline{\text{generate}}$ with AI.

Start coding or $\underline{\text{generate}}$ with AI.

Start coding or generate with AI.

Start coding or $\underline{\text{generate}}$ with AI.

Start coding or generate with AI.