

План занятия

- 1. Ансамбли моделей
- 2. Стэкинг
- 3. Бэггинг и бустинг
- 4. Random Forest
- 5. Gradient Boosting
- 6. Автоматический подбор параметров модели

О значимости ансамблей

Лучшие алгоритмы машинного обучения по точности:

- Градиентный бустинг для классических задач
- Искусственные нейронные сети для изображений, видео, звука

В соревнованиях kaggle всегда* побеждают ансамбли

Ансамбли моделей

Коллективное принятие решений как правило превосходит по качеству индивидуальное принятие решений

Простое голосование

Классификация: класс определяется большинством голосов или усреднением скоров

Регрессия: среднее значение

Взвешенное голосование

Классификация: класс определяется большинством голосов с учетом веса, или усреднением скоров с учетом веса

Регрессия: среднее взвешенное значение

Пример голосования

Недостатки голосования

- 1. Голосование не учитывает особенностей сампла
- 2. Голосование не учитывает особенностей поведения отдельных моделей
- 3. Голосование по сути является простой моделью

Стэкинг

Идея:

Построим модель, которая будет предсказывать правильный ответ на основе предсказаний других моделей

Стэкинг - преобразование Train

Стэкинг - преобразование Test

Вариант А:

- 1. Выполняем предсказание на Test каждой из К моделей кросс-валидационного предсказания
- 2. Усредняем К предсказаний

Вариант В:

- 1. Обучаем модель на полном датасете
- 2. Выполняем предсказание на Test

Стэкинг

Стэкинг

Кросс-валидационное предсказание будем называть **метапризнаком**.

Стэкинг можно делать как на наборе метапризнаков, так и на наборе метапризнаков + набор исходных признаков.

Стэкинг может быть многоуровневым.

Стэкинг реальный пример

Соревнование:

Homesite Quote Conversion

Задача:

Предсказать какие клиенты приобретут указанный страховой план на недвижимость

Пример:

Решение команды, занявшей 1 место

Стэкинг реальный пример

Бэггинг и Бустинг

Идея бэггинга:

- 1. Построим много слегка различающихся моделей
- 2. Методом усреднения выберем итоговый ответ

Идея бустинга:

Каждая следующая модель в ансамбле пытается предсказать ошибку всех предыдущих моделей ансамбля

Бутстрэп

Бутстрэп (bootstrap) – метод исследования распределения статистик вероятностных распределений, основанный на многократной генерации псевдовыборок на базе имеющейся выборки.

- 1. Из исходной выборки генерим псевдовыборки методом случайного выбора с возвращением.
- 2. На псевдовыборках считаем целевую статистику.
- 3. Анализируем распределение целевой статистики на псевдовыборках.

Бэггинг

Bagging – Bootstrap aggregating (Leo Breiman, 1994)

- Из Train генерим методом случайного выбора самплов с возвращением Train' ... Train'
- На каждом Train' строим модель
- Итоговое предсказание получаем усреднением предсказаний всех моделей или простым голосованием

RSM

RSM – Random Subspace Method или feature bagging

- Из Train генерим методом случайного выбора признаков без возвращения Train' ... Train'
- На каждом Train' строим модель
- Итоговое предсказание получаем усреднением предсказаний всех моделей

Random Forest

Алгоритм:

- 1. Выполняем N раз:
- 1.1. Бутстрэп самплов
- 1.2. Случайное подпространство признаков
- 1.3. Построение дерева решений
- 2. Выбираем ответ модели методом усреднения предсказаний или простого голосования

Random Forest

Decision Tree

Random Forest

Random Forest выдает качество лучше, чем единичное решающее дерево

Random Forest

Плюсы:

- 1. Алгоритм прост
- 2. Не переобучается
- 3. Хорошо параллелится
- 4. Не требует сложной настройки параметров
- 5. Не требует нормализации данных

Минусы:

- 1. Модели не интерпретируемые*
- 2. Плохо работает с полиномиальными зависимостями

Параметры Random Forest

RandomForestRegressor(n_estimators, criterion, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_features, max_leaf_nodes, min_impurity_decrease, min_impurity_split, bootstrap, oob_score, n_jobs, random_state, verbose, warm_start)

Параметры функции потерь

Параметры ансамбля

Параметры дерева

Параметры технические

Градиентный бустинг

Идея:

- 1. Представляем итоговую модель f(x) как сумму слабых моделей h(x) (обычно решающие деревья малой глубины).
- 2. Пусть задана дифференцируемая функция потерь L(y, f(x))
- 3. На каждом шаге мы ищем модель h(x), которая бы апроксимировала вектор антиградиента L

Градиентный бустинг

- 1. Инициализировать GBM константным значением $\hat{f}(x)=\hat{f}_0,\hat{f}_0=\gamma,\gamma\in\mathbb{R}$ $\hat{f}_0=rg\min_{\gamma}\sum_{i=1}^nL(y_i,\gamma)$
- 2. Для каждой итерации $t=1,\ldots,M$ повторять:
 - 1. Посчитать псевдо-остатки r_t

$$r_{it} = - \Big[rac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\Big]_{f(x) = \hat{f}\left(x
ight)}, \quad ext{for } i = 1, \dots, n$$

- 2. Построить новый базовый алгоритм $h_t(x)$ как регрессию на псевдо-остатках $\{(x_i,r_{it})\}_{i=1,\ldots,n}$
- 3. Найти оптимальный коэффициент ho_t при $h_t(x)$ относительно исходной функции потерь $ho_t = rg \min_{
 ho} \ \sum_{i=1}^n L(y_i, \hat{f}(x_i) +
 ho \cdot h(x_i, heta))$
- 4. Сохранить $\hat{f}_t(x) =
 ho_t \cdot h_t(x)$
- 5. Обновить текущее приближение $\hat{f}\left(x
 ight)$ $\hat{f}\left(x
 ight) \leftarrow \hat{f}\left(x
 ight) + \hat{f}_t(x) = \sum_{i=0}^t \hat{f}_i(x)$
- 3. Скомпоновать итоговую GBM модель $\hat{f}\left(x
 ight)$

$$\hat{f}(x) = \sum_{i=0}^{M} \hat{f}_i(x)$$

Визуализация алгоритма

http://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html

Регуляризация градиентного бустига

В алгоритме градиентного бустинга также применимы bagging и RSM

Переобучение градиентного бустига и early stopping

Градиентный бустинг почти не переобучается

Early stopping - техника подбора оптимального числа итераций с помощью оценки качества ансабля на валидационном датасете на каждой итерации

Открытые реализации градиентного бустинга

Параметры градиентного бустинга

GradientBoostingClassifier(loss, learning_rate, n_estimators, subsample, criterion, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_depth, min_impurity_decrease, min_impurity_split, init, random_state, max_features, verbose, max_leaf_nodes, warm_start, presort, validation_fraction, n_iter_no_change, tol)

Параметры функции потерь

Параметры ансамбля

Параметры дерева

Параметры технические

Интерактивный пример

Как параметры модели влияют на результат:

http://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html

Автоматический подбор гиперпараметров моделей

Модель(параметры) -> качество Задача - максимизировать качество

Grid Search

- 1. Перебираем параметры модели по решетке
- 2. Выбираем параметры, которые дают самое высокое качество

Random Search

- 1. Сэмплируем параметры модели
- 2. Выбираем параметры, которые дают самое высокое качество

Практические Рекомендации

- 1. С использованием "производительного" разбиения датасета находим где примерно находится максимум качества в пространстве гиперпараметров
- 2. С использованием "точного" разбиения подбираем оптимальные параметры в окрестности максимума качества

Продвинутые методы оптимизации

Идея:

На основании уже совершенных проб пытаемся предсказать где находится глобальный максимум качества

Плюсы:

Находит максимум за меньшее число проб

Минусы:

Сложен в настройке

Может упустить глобальный максимум

Exploitation vs Exploration

Exploitation

Exploration

Инструменты для оптимизации гиперпараметров

- sklearn
- Hyperopt
- BayesianOptimization
- Hyppopy
- Optunity
- Optuna

Соревнование "Property prices"

https://www.kaggle.com/c/introml2019-2

Домашнее задание №#5

- Сделать сабмит решения
- Выложить решение на github.com
- Прислать ссылку на код решения, свой профиль kaggle

Срок сдачи

10 ноября 2019

Евгений Некрасов

e.nekrasov@corp.mail.ru