STK1110 – Oblig 1

Jonas Gahr Sturtzel Lunde (jonass1)

September 28, 2018

Oppgave 2

a)

Ettersom ligning (1) fra oppgaven er en t-fordeling med n-1 frihetsgrader, vet vi at den følger

$$P\left(t_{\alpha/2, n-1} < \frac{\bar{X} - \mu}{S/\sqrt{n}} < t_{1-\alpha/2, n-1}\right) = 1 - \alpha \tag{1}$$

der $t_{\alpha/2,\,n-1}$ og $t_{1-\alpha/2,\,n-1}$ er $\alpha/2$ og $1-\alpha/2$ persentilene til en t-fordeling med n-1 frihetsgrader. Løser vi ulikheten inni parantesen for μ får vi at

$$\bar{X} - t_{\alpha/2, n-1} \cdot \frac{S}{\sqrt{n}} < \mu < \bar{X} + t_{1-\alpha/2, n-1} \cdot \frac{S}{\sqrt{n}}$$

som er $100(1-\alpha)\%$ konfidensintervallet til μ .

b

Ettersom ligning (1) fra oppgaven er kjikvadrat-fordelt med n-1 frihetsgrader, vet vi at den tilfredsstiller

$$P\left(\chi_{\alpha/2, n-1} < \frac{(n-1)}{\sigma^2} S^2 < \chi_{\alpha/2, n-1}\right) = 1 - \alpha \tag{2}$$

der $\chi_{\alpha/2, n-1}$ og $\chi_{1-\alpha/2, n-1}$ er $\alpha/2$ og $1-\alpha/2$ persentilene til en kjikvadrat-fordeling med n-1 frihetsgrader. Løser vi ulikheten inni parantesen for σ får vi at

$$\sqrt{\frac{(n-1)}{\chi_{\alpha/2,\,n-1}}}S < \sigma < \sqrt{\frac{(n-1)}{\chi_{1-\alpha/2,\,n-1}}}S \tag{3}$$