第一次作业

1.2 将下列各数转换为十进制数

$$(1) (1101011)_2 = 107$$

$$(2) (121.03)_3 = 16.1111$$

$$(3) (123.4)_5 = 38.8$$

$$(4) (67.24)_8 = 55.3125$$

$$(5) (2014.8)_9 = 1471.8889$$

(6)
$$(150.38)_{16} = 348.2188$$

1.3 完成下列数制转换

(1)
$$(1.234)_{10} = (1.0011)_B = (1.1676)_O = (1.3BE7)_H$$

(2)
$$73.4 = (1001001.001)_B = (111.31)_O = (49.67)_H$$

(3) $2014.8 = (11111011110.1100)_B = (3736.6314)_O = (7DE.CCCC)_H$

1.7 在字长5位的数字系统中,写出下列真值的定点纯小数的原码、反码和补码

用定点纯小数表示,提取比例因子2-4

真值	$\times 2^{-4}$	原码	反码	补码
+1111	0.1111	01111	01111	01111
-1111	-0.1111	11111	10000	10001
+0000	0.0000	00000	00000	00000
-0000	-0.0000	10000	11111	00000
+1010	0.1010	01010	01010	01010
-1010	-0.1010	11010	10101	10110

1.10 已知下列机器数为纯整数,写出它们的真值

	原码	真值
110111 (原)	110111	-10111
110111 (反)	数值位取反 101000	-01000
110111(补)	数值位减一 10111-1=10110 数值位取反 101001	-01001
000000 (原)	000000	+00000
011111 (反)	011111	+11111
010000 (补)	010000	+10000

1.10 将下列各数表示为定点纯小数的原码、反码和补码 (机器字长为9位)

真值	二进制	原码	反码	补码
$\frac{11}{64}$	0.00101100	000101100	000101100	000101100
$\frac{15}{256}$	0.00001111	000001111	000001111	000001111
$-\frac{13}{128}$	-0.00011010	100011010	111100101	111100110
$-\frac{15}{256}$	-0.00001111	100001111	111110000	111110001

BCD	1010111.01110101
10 进制	57.75
余3码	10001010.10101000
2421	10111101.11011011
2 进制	111001.11
典型格雷码	100101.00

BCD码 1010111.01110101

BCD码: B3B2B1B0表示的数为8B3+4B2+2B1+B0

01010111.01110101

十进制数: 57.75

BCD	1010111.01110101
10 进制	57.75
余 3 码	10001010.10101000
2421	10111101.11011011
2 进制	111001.11
典型格雷码	100101.00

BCD码 1010111.01110101

余3码: B3B2B1B0表示的数为8B3+4B2+2B1+B0-3,所以5=0101+0011=1000

01010111.01110101

余3码: 10001010.10101000

BCD	1010111.01110101
10 进制	57.75
余 3 码	10001010.10101000
2421	10111101.11011011
2 进制	111001.11
典型格雷码	100101.00

BCD码 1010111.01110101

2421: B3B2B1B0表示的数为2B3+4B2+2B1+B0

01010111.01110101

2421: 10111101.11011011

BCD	1010111.01110101
10 进制	57.75
余 3 码	10001010.10101000
2421	10111101.11011011
2 进制	111001.11
典型格雷码	100101.00

2进制 111001.11

典型格雷码: 二进制数 $B_{n-1}B_{n-2}\cdots B_{i+1}B_i\cdots B_1B_0$

典型格雷码 $G_{n-1}G_{n-2}\cdots G_{i+1}G_i\cdots G_1G_0$

 $G_0 = B_1 \oplus B_0$, $G_i = B_{i+1} \oplus B_i$, $G_{n-1} = 0 \oplus B_{n-1} = B_{n-1}$

典型格雷码: 100101.00

1.13 分别用奇校验、偶校验求下列校验编码(校验位置于最低位)

(1) 10101010

奇校验: 101010101

偶校验: 101010100

(2) 111111110

奇校验: 111111100

偶校验: 111111101

1.14 试判断得到的8421海明码0100101是否正确

8421海明码: 0100101

$$B_4B_3B_2P_3B_1P_2P_1$$

$$S_3 = B_4 \oplus B_3 \oplus B_2 \oplus P_3 = 0 \oplus 1 \oplus 0 \oplus 0 = 1$$

$$S_2 = B_4 \oplus B_3 \oplus B_1 \oplus P_2 = 0 \oplus 1 \oplus 1 \oplus 0 = 0$$

$$S_1 = B_4 \oplus B_2 \oplus B_1 \oplus P_1 = 0 \oplus 0 \oplus 1 \oplus 1 = 0$$

 $S_3S_2S_1$ 的校验和为4,接收到的第4位 P_3 出错

正确的海明码应为0101101

1.17 用反演法求下列函数的反函数,用対偶法则求下列函数的对偶式

(1)
$$F = AB + (\bar{A} + B)(C+D+E)$$
 (2) $F = (A + B\bar{C})(\bar{A} + \bar{D}E)$ $\bar{F} = (\bar{A} + \bar{B})(A\bar{B} + \bar{C}\bar{D}\bar{E})$ $\bar{F} = \bar{A}(\bar{B} + C) + \bar{A}(\bar{D} + \bar{E})$ $F' = (A + B)(\bar{A}B + CDE)$ $F' = A(B + \bar{C}) + \bar{A}(\bar{D} + E)$

(3)
$$F = A \oplus \overline{B} \oplus 1$$

 $\overline{F} = \overline{A} \odot B \odot 0 = A \oplus \overline{B}$
 $F' = A \odot \overline{B} \odot 0 = \overline{A} \oplus B$

1.18 用代数法证明下列等式

(1)
$$AB + BC + CA = (A + B)(B + C)(C + A)$$

右式 = $(AB + B + AC + BC)(C + A)$
= $(B + AC + BC)(C + A)$
= $(B + AC)(C + A)$
= $BC + BA + AC$

$$(2) (X \oplus Y) \oplus Z = X \oplus (Y \oplus Z)$$