Convergence of Fixed Point Methods

- Let g be continuous over interval [a, b],
- $g(x) \in [a, b]$ for all $x \in [a, b]$,
- x^* is a fixed point of $g \in [a, b]$,
- $\exists \delta \ s. \ t. \ g'(x)$ is continuous on $[x^* \delta, x^* + \delta]$
- Define $x_k = g(x_{k+1})$

Then

- If $|g'(x^*)| < 1$, $\exists \epsilon$ s.t. $\{x_k\}$ converges to x^* for $|x_0-x^*| < \epsilon$
- If $|g'(x^*)| > 1$ then $\{x_k\}$ diverges for any x_0 .

- Background: Suppose g is a real-valued function, defined and continuous on bounded, closed interval [a,b].
- g is a contraction on [a,b] if $\exists L \in (0,1)$, such that $|g(x) g(y)| \le L|x y|, \forall x, y \in [a,b]$.
- Note: g is a contraction →
 - Interval [a,b] is "contracted" to interval [g(a), g(b)]
 - Slope of secant line is bounded by L
 - -|g'(x)| is bounded by L

Contraction Mapping Theorem

Suppose:

- g is continuous over [a,b]
- $a \le g(x) \le b$ for all $x \le [a,b]$
- g is a contraction on [a,b]

Then

- g has a fixed point x* on [a,b]
- g has only one fixed point on [a,b]
- $\{x_k\} \rightarrow x^*$, where $x_{k+1}=g(x_k)$ and $x_0 \in [a,b]$

Our convergence result follows from the contraction mapping theorem

- Previous assumptions apply
- If $|g'(x^*)| < 1$, then g is a contraction

$$-|x_i - x^*| \le L|x_{i-1} - x^*| \text{ with } L < 1$$

$$\Rightarrow \frac{|x_i - x^*|}{|x_{i-1} - x^*|} = \frac{|e_i|}{|e_{i-1}|} \le L < 1$$

- Linear convergence
- If $|g'(x^*)| > 1$, then the errors are get larger, not smaller \rightarrow iterates diverge.
- What happens if $|g'(x^*)| = 1$?

Overview of root finding

Method	Converge?	Speed of conv.	Need f'?
Bisection	Yes	Linear	No
Regula Falsi	Yes	Linear	No
Newton	Depends on f and x ₀	Quadratic	Yes
Secant	Depends on f and x_0 and x_1	~1.6	No
Fixed point	Depends on g and x ₀	Linear	No