

Europäisches Patentamt **European Patent Office** Office européen des brevets

EP 0 617 602 B1 (11)

(12)**EUROPEAN PATENT SPECIFICATION**

(45) Date of publication and mention of the grant of the patent: 26.03.1997 Bulletin 1997/13

(21) Application number: 92925155.1

(22) Date of filing: 06.11.1992

(51) Int. Cl.6: A61F 13/15

(86) International application number: PCT/US92/09716

(87) International publication number: WO 93/11725 (24.06.1993 Gazette 1993/15)

(54) ABSORBENT ARTICLE HAVING FUSED LAYERS

ABSORBIERENDER ARTIKEL MIT VERSCHMOLZENEN SCHICHTEN ARTICLE ABSORBANT COMPORTANT DES COUCHES REUNIES PAR FUSION

(84) Designated Contracting States: AT BE CH DE DK ES FR GB GR IE IT LI LU NL SE

(30) Priority: 17.12.1991 US 810774

(43) Date of publication of application: 05.10.1994 Bulletin 1994/40

- (73) Proprietor: THE PROCTER & GAMBLE COMPANY Cincinnati, Ohio 45202 (US)
- (72) Inventors:
 - · CREE, James, William Cincinnati, OH 45206 (US)
 - · MILLS, Sue, Ann Cincinnati, OH 45243 (US)
 - · TWOHY, Elizabeth, Bilyeu Cincinnati, OH 45209 (US)
 - · BUELL, Kenneth, Barclay Cincinnati, OH 45215 (US)
 - · DAGHER, Kamal, Joseph Cincinnati, OH 45202 (US)

- CARRIER, Michael, Edward Cincinnati, OH 45241 (US)
- OSBORN, Thomas, Ward Cincinnati, OH 45224 (US)
- · AHR, Nicholas, Albert Cincinnati, OH 45247 (US)
- NOEL, John, Richard Cincinnati, OH 45237 (US)
- · REISING, George, Stephen Batavia, OH 45103 (US)
- · RUUSKA, Robert, William Cincinnati, OH 45248 (US)
- (74) Representative: Hirsch, Uwe Thomas et al Procter & Gamble European Service GmbH, Sulzbacher Strasse 40-50 65824 Schwalbach am Taunus (DE)
- (56) References cited:

US-A- 4 333 979
US-A- 4 761 322
US-A- 4 981 747

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

25

35

40

45

Description

FIELD OF THE INVENTION

The present invention relates to absorbent articles such as diapers, sanitary napkins, adult incontinence devices, and the like which have fused layers.

BACKGROUND OF THE INVENTION

All manner and variety of absorbent articles configured for the absorption of body fluids such as menses, urine, and feces are, of course, well known. Absorbent articles are typically comprised of a number of layers of material. These generally include, from top to bottom, a liquid pervious layer, an absorbent layer, and a liquid impervious layer. Additional layers may also be interposed between any of these layers. Such additional layers may serve various different purposes.

These layers are generally held together around their peripheries by some conventional means, such as adhesives, crimping, fusing, and other methods known in the art. The absorbent articles can have, and in many cases preferably will have, a liquid impermeable bond around their periphery. This will not interfere with the function of the absorbent article. However, it is frequently also desirable to bond the layers together at their faces. The attachment of the faces of these layers presents certain technical problems. This is particularly the case when it is desired to attach the upper liquid pervious layers and absorbent layers. The same means used for attaching the layers at their peripheries cannot be used because they will tend to block the flow of liquids to the absorbent layer.

A number of attempts have been made to deal with this problem. These have included utilizing hot melt adhesives, and other non-water based adhesives. Such adhesives will be less likely to dissolve when contacted by body liquids. Other attempts have been directed at applying adhesives in very thin layers or in particular patterns to attempt to minimize the interference with the flow of liquids to the underlying layers. U.S. Patent 4,573,986 issued to Minetola, et al. on March 4, 1986 discloses one preferred way of applying adhesives. Although the application of adhesives in the manner described in the Minetola, et al. patent works quite well, the search for improved ways of securing the faces of the layers of absorbent products has continued.

The main reason for searching for improved ways of securing the faces of such layers is that in many cases, adhesives which initially function adequately, may eventually fail and cause the liquid pervious layer to become unattached. This problem is particularly apparent during prolonged use of an absorbent article. This problem is often heightened when the liquid pervious layer is an apertured plastic film. While apertured plastic films made according to the patents owned by the assignee of the present invention perform very well, certain problems can occur when they separate from their underly-

ing layers. The plastic films are sufficiently thin that they can move well into the crevices of the wearer's body (such as the space between the wearer's buttocks) when they become unattached. This can be extremely uncomfortable and irritating. Because of its plastic composition, in some of these instances, the liquid pervious layer may even stick to the skin of the wearer. The adhesives may cause the film to present a sticky surface near the body of the wearer which aids in causing the liquid pervious layer to stick to the skin of the wearer.

The separation of the formed film from the absorbent layers also often causes exudates to run off the top of the product along the longitudinal edges. The exudates will not penetrate the film since there is no longer an underlying absorbent layer in contact with the film for the exudates to wick into. This is particularly true in the case of thick pads having airfelt batts for their absorbent cores. The absorbent core of such thick pads tends to collapse and bunch or gather in transversely in the center of the product upon the first incidence of wetting. This gathering in, combined with the separation of the formed film, leaves the portion of the pad adjacent its longitudinal edges without any underlying absorbent material, thereby increasing the possibility of runoff or leakage on top of the product along the longitudinal edges.

Several patents describe absorbent products having layers held together in alternative manners for various different purposes. Such efforts are described in U.S. Patents 3,965,906 and 4,184,902 issued to Karami, U.S. Patent 4,391,861 issued to Butterworth, et al., U.S. Patent 4,397,644 issued to Matthews, et al., U.S. Patent 4,475,911 issued to Gellert, U.S. Patent 4,726,976 issued to Karami, et al., U.S. Patent 4,752,349 issued to Gebel, U.S. Patent 4,753,840 issued to Van Gompel, U.S. Patent 4,823,783 issued to Willhite, Jr., et al., U.S. Patent 4,844,965 issued to Foxman, and U.S. Patent 4,908,026 issued to Sukiennick, et al. The majority of these patents, however, do not disclose fusing an apertured formed film on top of a nonwoven material. It is believed that those and any others are not directed to the use of fusion to create bond sites that do not interfere with the acquisition of liquids into the absorbent layer.

Thus, a need exists for absorbent articles having improved bonding between their layers, particularly between the uppermost fluid pervious layers.

Therefore, it is an object of the present invention to provide absorbent articles having bonding between their layers, particularly the uppermost liquid pervious layers, that maintain sustained attachment even under prolonged use.

It is another object of the present invention to provide absorbent articles having liquid pervious layers bonded at bond sites that provide structures that do not interfere with the acquisition of liquids into the absorbent layer.

It is still another object of the present invention to provide an absorbent article that can be visually

20

30

35

40

observed by the wearer as having the potential for aiding in the absorption of liquids.

These and other objects of the present invention will be more readily apparent when considered in reference to the following description and when taken in conjunction with the accompanying drawings.

SUMMARY OF THE INVENTION

In accordance with the present invention, an absorbent article, such as a diaper, a sanitary napkin, or an adult incontinence device, or the like which has fused layers is provided.

The absorbent article preferably comprises a liquid pervious apertured thermoplastic film topsheet, a liquid impervious backsheet joined to the topsheet, an absorbent core, and an acquisition layer.

The absorbent core is positioned between the top-sheet and the backsheet. The acquisition layer preferably comprises a fibrous web of spunlaced nonwoven fibers. The acquisition layer may either be a separate web positioned between the topsheet and the absorbent core, or it may comprise part of the topsheet or part of the core (or other element). The topsheet and backsheet are joined together along at least a portion of the periphery of the absorbent article. The topsheet and the acquisition layer (or other underlying layer) are placed in a face-to-face relationship. The topsheet is secured to such an underlying layer (or layers) at discrete bonded areas. At least some of the bonded areas provide structures with drainage passageways for liquids to pass through to the absorbent core.

The fusion of the faces of the topsheet and the acquisition layer maintains these layers in an attached condition, even under prolonged use. The attachment is believed to accomplish the objects set forth above, among others. The attachment is also believed to create bond sites that provide structures which do not interfere with the acquisition of liquids into the absorbent core. The sustained attachment also facilitates absorption of liquids into the absorbent core by maintaining an underlying absorbent layer in constant contact with the apertured film topsheet.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a top plan view of a preferred sanitary napkin embodiment of the present invention.

Figure 2 is a simplified transverse cross-sectional view taken along line 2-2 of Figure 1.

Figure 3 is a simplified transverse cross-sectional view similar to that of Figure 2, showing an alternative arrangement of the components of the sanitary napkin.

Figures 4-6 are top plan and simplified cross-sectional views along lines 5-5 and 6-6, respectively, of a thick sanitary napkin with a profiled shape.

Figures 7 and 7A are a simplified schematic view and a greatly enlarged bottom plan view photograph of a topsheet material which comprises an apertured film with entangled nonwoven fibers.

Figure 8 is a simplified and greatly enlarged schematic cross-sectional view of a bond site where the topsheet of the sanitary napkin is fused to an underlying fibrous acquisition layer.

Figure 8A is a schematic side view of part of a device that could be used to create a fusion bond.

Figures 9 and 10 are greatly enlarged top and bottom plan view photographs of the fused layers in the area of typical bond sites.

Figures 11 and 12 are simplified schematic views showing the difference between the disposition of the topsheet when relatively deep and relatively shallow bonds are used.

Figure 13A is a plan view of a sanitary napkin provided with an alternative bond pattern.

Figures 13B-13D are top and bottom plan views and a perspective view photograph of a sanitary napkin provided with another alternative bond pattern.

Figure 14 is a photograph showing a cross-sectional view of an embodiment in which the underlying fibrous layer has been stretched prior to fusing it the apertured film.

Figure 15 is an exploded perspective view showing the assembly of a sanitary napkin which contains a preferred absorbent core and panty fastening adhesive for use in the present invention.

Figure 16 is an edge view of an alternative topsheet that comprises a nonwoven material and a formed film.

Figure 17 is a perspective view of an alternative type bond structure.

Figure 18 is a simplified schematic view of one process that could be used to make the topsheet shown in Figures 7 and 7A.

Figure 19 is a perspective view of the formed film supplied to the process shown in Figure 18.

DETAILED DESCRIPTION OF PREFERRED EMBOD-IMENTS

1. Introduction.

The present invention relates to absorbent articles such as diapers, sanitary napkins, adult incontinence devices, and the like, which have fused layers.

The term "absorbent article", as used herein, refers to articles which absorb and contain body exudates. More specifically, the term refers to articles which are placed against or in proximity to the body of the wearer to absorb and contain the various exudates discharged from the body. The term "absorbent article" is intended to include diapers, sanitary napkins, pantiliners, and incontinent pads, and the like. The term "disposable" refers to articles which are intended to be discarded after a single use and preferably recycled, composted, or otherwise disposed of in an environmentally compatible manner. (That is, they are not intended to be laundered or otherwise restored or reused as an absorbent article.) In the preferred embodiment illustrated, the

20

25

35

40

45

absorbent article is a sanitary napkin designated 20.

The term "sanitary napkin", as used herein, refers to an article which is worn by females adjacent to the pudendal region that is intended to absorb and contain the various exudates which are discharged from the body (e.g., blood, menses, and urine). The present invention, however, is not limited to the particular types or configurations of absorbent articles shown in the drawings.

The sanitary napkin 20 has two surfaces, a body-contacting surface or "body surface" 20a and a garment surface 20b. The sanitary napkin 20 is shown in FIG. 1 as viewed from its body surface 20a. The body surface 20a is intended to be worn adjacent to the body of the wearer. The garment surface 20b of the sanitary napkin 20 (shown in FIG. 2) is on the opposite side and is intended to be placed adjacent to the wearer's undergarments when the sanitary napkin 20 is worn.

The sanitary napkin 20 has two centerlines, a longitudinal centerline I and a transverse centerline t. The term "longitudinal", as used herein, refers to a line, axis or direction in the plane of the sanitary napkin 20 that is generally aligned with (e.g., approximately parallel to) a vertical plane which bisects a standing wearer into left and right body halves when the sanitary napkin 20 is worn. The terms "transverse" or "lateral" used herein, are interchangeable, and refer to a line, axis or direction which lies within the plane of the sanitary napkin 20 that is generally perpendicular to the longitudinal direction. FIG. 1 shows that the sanitary napkin 20 also has two spaced apart longitudinal or side edges 22 and two spaced apart transverse or end edges (or "ends") 24, which together form the periphery 26 of the sanitary napkin 20.

The sanitary napkin 20 can be of any thickness, including relatively thick or relatively thin. The embodiment of the sanitary napkin 20 shown in Figures 1-3 of the drawings is intended to be an example of a relatively thin sanitary napkin. It should be understood, however, when viewing these figures the number of layers of material shown cause the sanitary napkin 20 to appear much thicker than it actually is. A "thin" sanitary napkin 20 preferably has a caliper of less than about 3 millimeters. The thin sanitary napkin 20 shown should also be preferably relatively flexible, so that it is comfortable for the wearer.

FIG. 2 shows the individual components of the sanitary napkin. The sanitary napkin 20 of the present invention generally comprises at least three primary components. These include a liquid pervious topsheet 28, a liquid impervious backsheet (or "barrier means") 30, and an absorbent core 32. The absorbent core 32 is positioned between the topsheet 28 and the backsheet 30. The sanitary napkin 20 also comprises a liquid pervious acquisition layer (or acquisition sheet) 34. The acquisition layer 34 may be a separate element positioned between the topsheet 28 and the absorbent core 32, or it may comprise part of the topsheet 28 or part of the core 32. The sanitary napkin 20 preferably also

includes optional side flaps or "wings" 36 that are folded around the crotch portion of the wearer's panties. The sanitary napkin 20 shown also has an adhesive fastening means 38 for attaching the sanitary napkin 20 to the undergarment of the wearer. Removable release liners 40 cover the adhesive fastening means 38 to keep the adhesive from sticking to a surface other than the crotch portion of the undergarment prior to use.

Individual Components of the Absorbent Article.

The individual components of the sanitary napkin 20 will now be looked at in greater detail.

A. The Topsheet.

The topsheet 28 comprises a first liquid pervious component. When the sanitary napkin 20 is in use, the topsheet 28 is in close proximity to the skin of the user. The topsheet 28 is preferably as compliant, soft feeling, and non-irritating to the user's skin as possible. The topsheet 28 should further exhibit good strikethrough and a reduced tendency to rewet, permitting bodily discharges to rapidly penetrate it and flow toward the core 32, but not allowing such discharges to flow back through the topsheet 28 to the skin of the wearer.

The topsheet 28 has two sides (or faces or surfaces), including a body-facing side 28a and a garmentfacing side (or core-facing side) 28b. The body-facing side 28a of the topsheet 28 generally forms at least a portion of the body-contacting surface ("body surface") 20a of the sanitary napkin 20. The topsheet 28 has two longitudinal edges 28c and two end edges 28d. (A similar numbering system will be used for the other components of the sanitary napkin. That is, the side of the component facing the wearer's body will be designated by the number of the component and a reference letter "a". The side facing the wearer's undergarments will be designated by the number of the component and the letter "b". The side and end edges will be designated by the number of the component and the reference letters "c" and "d" respectively.)

A suitable topsheet 28 may be manufactured from a wide range of materials including, but not limited to woven and nonwoven materials, apertured formed thermoplastic films, apertured plastic films, hydro-formed films, porous foams, reticulated foams, reticulated thermoplastic films, and thermoplastic scrims. Suitable woven and nonwoven materials can be comprised of natural fibers (e.g., wood or cotton fibers), synthetic fibers (e.g., polymeric fibers, such as polyester, polypropylene fibers, and polyethylene, or polyvinylalcohol, starch base resins, polyurethanes, cellulose esters, nylon, and rayon fibers) or from a combination of natural and synthetic fibers. Apertured formed films are generally preferred for the topsheet 28 because they are pervious to liquids and, if properly apertured, have a reduced tendency to allow liquids to pass back through and rewet the wearer's skin.

20

25

40

Figure 1 shows that the formed film topsheet 28 is provided with a multiplicity of apertures 29. The apertures 29 are shown only in portions of the topsheet 28 overlying the flaps 36 for clarity of illustration of the fusion bonds 44. It is understood, however, that the apertures 29 will ordinarily at least be distributed over the main body portion (or "central absorbent pad") 21 of the sanitary napkin 20.

The topsheet 28 preferably has a caliper of between about 0.001-0.002 inches (0.025-0.05 mm) prior to any aperturing. The topsheet 28 preferably has a greater caliper (of between about 0.02-0.03 inches) after aperturing. This is due to the formation of the tapered capillary structures (shown in Figure 7) created when the topsheet is formed according to several of the processes described herein.

Suitable formed films are described in U.S. Patent 3,929,135 issued to Thompson on December 30, 1975, U.S. Patent 4,324,426 issued to Mullane et al. on April 13, 1982, U.S. Patent 4,342,314 issued to Radel et al. on August 3, 1982, U.S. Patent 4,463,045 issued to Ahr, et al. on July 31, 1984, and U.S. Patent 5,006,394 issued to Baird on April 9, 1991. Additional suitable formed and hydro-formed films are described in U.S. Patents 4,609,518, 4,629,643, 4,695,422, 4,772,444, 4,778,644, and 4,839,216 issued to Curro, et al., U.S. Patent 4,637,819 issued to Ouellette, et al. In another embodiment, the topsheet 28 comprises a nonwoven material 25 and a plastic film 27 shown in Figure 16 and described in greater detail in U.S. Patent Application Serial No. 07/794,745 filed by Aziz, et al. on November 19, 1991. Still other materials suitable for use as a topsheet are described in U.S. Patent 4,775,579 issued to Hagy, et al. on October 4, 1988, U.S. Patent 5,023,124 issued to Kobayashi on June 11, 1991 and in European Patent Application 0 304 617 A2 published March 1, 1989 in the name of Suda, et al.

In one particularly preferred embodiment, the topsheet 28 comprises fiber-entangled film. The term "fiber-entangled film" refers to apertured films having fibers entangled in and around their apertures. The apertured film of such a topsheet could comprise any of the films or scrims described above. The film has nonwoven fibers loosely mechanically or thermo-mechanically entangled therewith. The fibers are preferably entangled along or from the direction of the core-facing side 28b. Figure 7 shows an example of such a fiberentangled topsheet material. Figure 7 shows a topsheet 28 created by attaching hydrophilic (or hydrophobic) fibers 42' to an apertured film. The fibers 42' used could be of any polyolefin nature. The fibers 42' can be used in conjunction with the acquisition layer 34, or to replace the acquisition layer 34.

The primary objective of entangling the fibers is to drain the plastic film of any surface fluids. More specifically, the entangled fibers 42' are in much closer contact with the bottom opening 29b of the apertures 29 than is possible by simply placing a nonwoven material adjacent the film. This close contact prevents any gaps from

forming between the nonwoven and the film at the bottom opening 29b. The elimination of gaps allows the fibers 42' to drain liquids through the film 27 and prevents a meniscus from forming at the bottom opening 29b. Otherwise, liquids may pool at this location and subsequently rewet the wearer's skin.

The fibers could be mechanically or thermomechanically entangled with the film by any suitable process. For instance, the fibers could be meltblown onto the film, spunbonded onto the film, carded onto the film, thermo-mechanically entangled with the film such as being flocked or meltblown on the plastic film while the film is still in its molten state, or hydro-entangled with the film.

The preferred method for attaching fibers to the film is via a process that uses either air attentuation or mechanical drawing combined with air lay-down. Figure 18 shows a preferred way of obtaining such topsheet structure. In this case, a synthetic thermoplastic polymeric hydrophilic material is extruded in the form of a fiber. The fibers are subjected to attenuation by directing a stream of air on the fibers once they exit the die 102. This process is known as a meltblowing process and is disclosed in Exxon patent U.S. 3,978,185 to Buntin, et al. Suitable hydrophilic fibers may be formed from, intrinsically wettable fibers such as nylon co-polymers comprising a nylon component and a hydrophilizing component. Such a material is commercially available from Allied Signal Inc. under the trade designation Hydrofil SCFX. The core-facing 27b side of the film 27 should be facing the meltblowing die 102 head. The film 27 preferably has a multiplicity of cone-like projections (or "cones") 23 which define tapered capillaries. The processes of making this type of film 27 may form cones 23 that have outside surfaces that form shredded or jagged edges. One particularly suitable apertured film 27 is disclosed in U.S. Patent 4,463,045 and ring-rolled as described below to provide it with a degree of extensibility.

The fibers 42' are ejected from the die 102 and attach to the core-facing side 27b of the plastic film 27. The molten fibers 42' and the cones 23 of the film 27 tend to melt and fuse. This causes the fibers 42' to permanently attach to the film as shown in Figure 7A. It is believed that the attachment occurs primarily between the partially molten fibers 42' and the partially shredded edges formed on the outside surfaces of the cones 23 that form of the capillaries of the apertured film 27.

In another preferred embodiment the fibers 42' are of a thermoplastic synthetic nature but hydrophobic. Hydrophobic fibers such as polyethylene can be available from the Dow Chemical Company under the trade designation ASPUN, or as polypropylene from the Exxon Corporation under the trade name ESCORENE 3,400 and 3,500 series. Once formed, the entire web is treated by any known methods (described in greater detail below) to render it hydrophilic. Such process will allow the apertures to better handle fluid. It is also possible to ring-roll the entire web after these treatment

25

40

processes.

The fiber-entangled topsheet 28 material provides more intimate contact between the apertured film 27 and the nonwoven fibers 42'. This can create advantages of improved liquid transport through the film to the fibers 42' and the underlying layers such as the absorbent core 32 or the acquisition layer 34. It may also provide improved comfort since the film 27 will be less likely to separate from the underlying entangled fibers 42'. This will prevent the topsheet 28 from moving into the crevices of the wearer's body.

In still another preferred embodiment (shown in Figure 15), the sanitary napkin 20 is comprised of components that are extensible (i.e., capable of stretching, particularly in the longitudinal direction) when the sanitary napkin is worn. Preferably, the sanitary napkin 20 is capable of elongating between about 15% and about 40% of its unstretched length. This extensibility provides better in-use fit, attachment to the wearer's undergarments, comfort, and decreased staining. In other embodiments, only limited portions of the components of the sanitary napkin 20 need be capable of stretching.

One type of topsheet 28 for use in the embodiment shown in Figure 15 can be made in accordance with U.S. Patent 4,463,045 and ring rolled to provide it with a degree of longitudinal extensibility. Suitable processes for ring rolling or "pre-corrugating" are described in U.S. Patent 4,107,364 issued to Sisson on August 15, 1978, U.S. Patent 4,834,741 issued to Sabee on May 30, 1989 and in co-pending, commonly assigned U.S. Patent Application Serial Nos. 07/662,536 filed by Gerald M. Weber et al., 07/662,537 filed by Kenneth B. Buell et al. and 07/662,543 filed by Gerald M. Weber et al. on February 28, 1991, all filed February 28, 1991. The fold lines in the corrugations of the topsheet should run in the transverse direction so the topsheet is longitudinally extensible. Such a topsheet is described in greater detail in the following U.S. patent applications which were filed on June 23, 1991: Serial No. 07/734,404 filed in the names of Thompson, et al.; U.S. Patent Application Serial No. 07/734,392 filed in the names of Thompson, et al.; and, Serial No. 07/734,405 filed in the names of Buenger, et al. These latter three patent applications may be referred to collectively as the "Capillary Channel Fiber" patent applications.

In addition, in preferred embodiments of the present invention, at least a portion of the topsheet 28 is treated with a surfactant. This can be accomplished by any of the common techniques well known to those skilled in the art. Suitable methods for treating the topsheet with a surfactant are described in a number of references, including U.S. Patents 4,950,264 and 5,009,653 issued to Osborn, and in U.S. Patent Application Serial No. 07/794,745 filed by Aziz, et al. on November 19, 1991. The latter patent application teaches treating the apertured film component of a non-woven/apertured thermoplastic formed film topsheet with a surfactant. The surfactant is preferably incorporated into the resin used to make the thermoplastic

formed film.

Treating the topsheet 28 with a surfactant renders the surface of the topsheet 28 more hydrophilic. This results in liquid penetrating the topsheet 28 faster than it would if the surface were not treated. This diminishes the likelihood that body fluids will flow off topsheet 28 rather than being drained through the topsheet 28.

B. The Acquisition Layer.

The acquisition layer (or "acquisition/distribution layer", or acquisition sheet") 34 is shown in Figure 2. It is positioned between the topsheet 28 and (at least a portion of) the absorbent core 32.

In the embodiment shown in Figure 2, the acquisition layer 34 is a folded sheet of nonwoven material. It should be understood, however, that the acquisition layer 34 need not be a folded sheet. The terms "layer" or "web", as used herein, include, but are not limited to single unfolded sheets, folded sheets, strips of material, loose or bonded fibers, multiple layers or laminates of material, or other combinations of such materials. These two terms are thus, not limited to single unfolded layers or sheets of material.

In Figure 2, the acquisition layer 34 is a "double" zfolded sheet. The sheet 34, is more specifically folded so that when the sanitary napkin is cut along the transverse line, the left half of the folded sheet appears as a reverse "z" in cross section and the right half appears as a "z". The sheet 34 is preferably folded so that it has an upper portion 54 that appears as a rectangular strip in plan view. The upper portion 54 of the acquisition layer 34 is preferably about 227 mm long, and between about 25 and about 38 mm wide. The upper portion 54 preferably has a caliper of from about 0.5 mm up to about 4 mm (the higher end of this range creates thicker products). Such a folded arrangement is described in greater detail in U.S. Patent Application Serial No. 07/605,583 filed on October 29, 1990 in the name of Visscher, et al.

Figure 3 is a simplified cross-sectional view similar to that of Figure 2, showing an alternative arrangement of the components of the sanitary napkin 20. In Figure 3, rather than being a separate layer that is located on top of the core 32, the acquisition layer 34 is an integral layer (or component) that comprises the top layer of a laminated absorbent core 32 structure.

In still other alternative embodiments, the acquisition layer 34 may be omitted entirely. In embodiments without an acquisition layer 34, the absorbent core 32 should be comprised of at least some types of fibers (preferably synthetic fibers) that the topsheet 28 can be fused to. A sufficient amount of these fibers are preferably located near the body-facing surface 32a of the absorbent core 32 to facilitate the fusion.

It is possible to create a bond with natural fibers, such as cellulose by melting a film topsheet around cellulose fibers. Better bonds are typically formed with synthetic fibers, however. Cellulose fibers are rather short.

25

35

40

When the fusion bonds are spaced apart, some cellulose fibers may be unbonded or only bonded in one place. This can result in these fibers pulling loose from the bonded structure. Synthetic fibers can be made longer than cellulose fibers.

The topsheet 28 is generally described herein as being fused to the acquisition layer 34. This has been done for simplicity of description. (It is easier to discuss one preferred embodiment then it is to simultaneously describe all possible embodiments.) The topsheet 28 may be fused directly (or indirectly) to (one or more) other underlying components. In the broadest sense, the topsheet 28 comprises a first component that is fused to an underlying second component. The second component may be a separate component. Alternatively, the second component could be part of another component, such as part of the topsheet, part of the core, or part of some other component.

Thus, for example, it is understood that in embodiments where the acquisition layer 34 is an integral layer of the core 32 (such as that shown in Figure 3) or omitted entirely, the topsheet 28 may be considered to be fused to part of the absorbent core 32.

The function of the acquisition layer 34 is generally described in relation to the absorbent core 32. It is understood that in embodiments in which the acquisition layer 34 comprises part of the core 32, the acquisition layer 34 will function in much the same way. However, it will function in the same way with respect to the remaining portions of the core 32 (rather than with the core per se).

The acquisition layer 34 serves to improve wicking of exudates over and into the absorbent core 32. There are several reasons why the improved wicking of exudates is important. This provides a more even distribution of the exudates throughout the absorbent core.

The improved wicking also allows the sanitary napkin 20 of the present invention to be made relatively thin. The acquisition layer 34 is capable of dispersing exudates over a large surface area of the absorbent core 32. The acquisition layer 34 thus allows the sanitary napkin 20 to absorb relatively large amounts of exudates. The bulky prior art sanitary napkins relied on a high degree of vertical absorption at the point where exudates are initially deposited. Because the absorbent cores of these prior napkins were fairly thick, they could absorb a large volume of exudates while utilizing only a small degree of the surface area or lateral absorption capacity. The sanitary napkins 20 of the present invention may absorb relatively large amounts of exudates because the wicking disperses the exudates over a large surface area of the absorbent core 32 where the exudates can better and faster be vertically absorbed into the absorbent core 32.

The acquisition layer 34 may have sufficient open spaces between its fibers to provide a fairly high degree of temporary liquid holding capacity. Temporary holding capacity is useful during the time interval between the time exudates are deposited onto the topsheet 28 and

the time they are absorbed by the absorbent core 32. This is particularly useful in diapers and incontinent articles. This allows the acquisition layer 34 to acquire and temporarily hold gushes of liquids (such as urine) in cases where the core 32 absorbs liquids at a slower rate than they are deposited onto the absorbent article.

The acquisition layer 34 may also be used to direct exudates toward the ends of the core 32d. Liquid exudates that are deposited on the core 32 will tend to be distributed radially outward from the place where they are deposited. Since the core 32 of the sanitary napkin 20 is relatively narrow in comparison to its length, liquid exudates will reach the longitudinal edges 32c of the core 32c much sooner than they will reach the ends 32d of the absorbent core. The acquisition layer 34 can be used to longitudinally wick and direct exudates toward the ends 32d of the core 32. This more effectively utilizes the capacity of the core, and reduces the possibility of leakage caused by exudates prematurely reaching the longitudinal edges 32c of the core.

The wicking referred to herein may (unless otherwise stated) encompass the transportation of liquids in both the "x-y" plane and in the z-direction. These directions are shown in Figures 1 and 2. The acquisition layer 34 preferably transports liquids well in both directions.

Ideally, liquids are transported in a pyramidal distribution pattern (or perhaps more accurately, a conical distribution pattern). The apex of the pyramid (or the cone) is the point where the liquid is deposited on the body-facing surface 34a of the acquisition layer 34. The liquids are then distributed down and outward to the base of the pyramid (or cone).

In one preferred embodiment, liquids are distributed to the core 32 by a cascading action. This type of distribution is described in greater detail in U.S. Patent Application Serial Nos. 07/637,090 and 07/637,571 filed by Noel, et al. and Feist, et al. It can be thought of as being analogous to the filling of an ice cube tray with water. Liquids are distributed so that after one section of the core 32 reaches capacity, liquids flow laterally then downward to fill up adjacent sections of the core 32.

The combination of the acquisition layer 34 and the topsheet 28 also provides the sanitary napkin with the enhanced gush acquisition and enhanced wipe acquisition described in greater detail in U.S. Patents 4,950,264 and 5,009,653 issued to Osborn. (Thus, the acquisition layer 34 may be referred to as a "wipe acquisition sheet".)

The characteristics of the acquisition layer 34 are as follows. The acquisition layer 34 should be liquid permeable. The acquisition layer 34 is also preferably compliant, soft feeling, and non-irritating to the user's skin. It can be made from any materials that are capable of dispersing exudates as described above. The materials are preferably also capable of having the topsheet 28 fused to them. The acquisition layer 34 may also be provided with stretch properties. The acquisition layer 34 has a body-facing face (or side) 34a, and a garment-facing face 34b.

25

40

45

The acquisition layer 34 should be hydrophilic. The fibers or yarns 42 comprising the acquisition layer 34 may be inherently hydrophilic. Alternatively, they may be treated to render them hydrophilic. Suitable methods for rendering fibers hydrophilic include treating them with a surfactant. The fibers can be treated by spraying the material comprising the acquisition layer with a surfactant or immersing the material into the surfactant. A more detailed discussion of such a treatment and hydrophilicity is contained in U.S. Patents 4,988,344 and 4,988,345 issued to Reising, et al. and to Reising, respectively. The hydrophilicity of these fibers allows the acquisition layer 34 to draw liquid exudates through the topsheet 28 from below.

The acquisition layer 34 may be comprised of woven or nonwoven materials. These materials may be synthetic, or partially synthetic and partially natural materials. Suitable synthetic fibers include polyester, polypropylene, polyethylene, nylon, viscous rayon fibers, or cellulose acetate, with polyester fibers being preferred. Suitable natural fibers include cotton, cellulose, or other natural fibers. The acquisition layer 34 may also be at least partially comprised of cross-linked cellulose fibers. Suitable cross-linked cellulose fibers are described in U.S. Patent 4,888,093, issued December 19, 1989 to Cook, et al.; U.S. Patent 4,822,543, issued April 18, 1989 to Dean, et al.; U.S. Patent 4,889,595, issued December 26, 1989 to Schoggen, et al.; U.S. Patent 4,898,642, issued February 6, 1990 to Moore, et al.; and U.S. Patent 4,935,022 issued June 19, 1990 to Lash et al. The quantity of such natural or modified fibers, however, should not be so great that the topsheet 28 cannot be adequately fused to the remaining synthetic fibers. The acquisition layer 34 may also be comprised of capillary channel fibers (that is, fibers having channels formed therein, preferably, on their exterior surfaces). Such fibers are described in greater detail in EPO Patent Application 0 391,814 published October 10, 1990, and in the Capillary Channel Fiber patent applications. The acquisition layer 34 can also be comprised of combinations of the above materials, such as blends of fibers similar to those described below for use in the absorbent core, or any equivalent material or combinations of materials.

The material comprising the acquisition layer 34 may have melting temperatures in different embodiments that are less than, equal to, or greater than that of the topsheet 28. The material comprising the acquisition layer 34 preferably has a melting temperature that is greater than or equal to that of the material comprising the topsheet 28. Polyester fibers are preferred because they have a high melting temperature (between about 375° and about 400°F). This quality makes them especially well-suited to spunlace processing. Spunlace processing utilizes a high temperature drying process. Polyester fibers are able to undergo spunlacing processes without being damaged.

The use of polyester fibers also has the advantage that such fibers are particularly suitable for use with the preferred types of topsheet materials. Polyester fibers will not melt at the typical melting temperature of the topsheet when the topsheet 28 is fused to the acquisition layer 34. This has the advantage that the fibers 42 will remain in their fibrous form after fusion. If the topsheet 28 comprises a polyethylene formed film, for example, it may have a melting temperature in the range of between about 165 and about 215°F. The present invention, thus, advantageously uses materials with dissimilar melting temperatures (as described below) to create structures that improve the acquisition through such layers after they are fused.

The fibers or yarns 42 comprising the acquisition layer 34 may be of any length, from staple length to continuous filaments. The length of the fibers 42 is preferably between about 1 inch and about 3 inches (between about 2.5 cm. and about 7.5 cm.), and most preferably is about 1.5 inches (about 3.8 cm.). The fibers 42 preferably have a denier per filament of between about 1 and about 3, most preferably about 1.5.

The fibers 42 of the acquisition layer 34 are preferably oriented primarily in a single direction. Typically, the acquisition layer 34 can be manufactured with its fibers oriented in the machine direction (MD). The acquisition layer 34 can be placed in the product with most of the fibers 42 oriented in the longitudinal direction. (That is, the fibers 42 are generally parallel to the longitudinal centerline I of the sanitary napkin 20). The phrase "generally parallel" to the longitudinal centerline (and similar phrases) as used herein, is intended to include fibers that angle away from the longitudinal centerline. These fibers are considered to be generally parallel as long as they are oriented more in the longitudinal direction than the transverse direction. The orientation of the fibers 42 of the acquisition layer 34 causes liquid exudates deposited on the acquisition layer 34 to preferentially wick and be distributed toward the ends 32d of the absorbent core 32.

The acquisition layer 34 may be any suitable size. The acquisition layer 34 need not extend the full width of the absorbent core 32. The acquisition layer 34 could, for instance, be in the form of a strip positioned similarly to (and of a size similar to) the upper portion 54 of the z-folded sheet shown in Figures 1 and 2.

The acquisition layer 34, if nonwoven, can be made by a number of different processes. These include, but are not limited to the following in order of preference from least to most preferred: meltblown, spunbonded, carded, the latter including, in order of preference, thermally-bonded, air-through bonded, powder bonded, latex bonded, solvent bonded, or most preferably, spunlaced. The latter processes are more preferred because it is easier to orient the fibers in a single direction in such processes.

Suitable commercially available products for use as the acquisition layer 34 include a 70%/30% rayon/polyester fabric known as SONTARA. The SONTARA fabric is described in greater detail in U.S. Patents 4,950,264 and 5,009,653 issued to Osborn.

35

40

In a particularly preferred embodiment, the acquisition layer 34 comprises a spunlace nonwoven web comprised of permanently wettable fibers. Preferably, the acquisition layer 34 is a 30 g/yard² (35 g/m²) polyethylene theraphtalate (or PET) spunlace nonwoven web. Spunlaced fabrics of this type are manufactured by the Veratec Company of Walpole, Massachusetts. The spunlace nonwoven web is formed in such a way that most of the fibers are oriented in a single direction.

15

The fibers of this particularly preferred acquisition layer 34 material are made of a PET resin and are coated with a proprietary permanently wettable finish known as CELWET. These fibers are available from the Hoechst Celanese Corporation of Charlotte, North Carolina. The term "permanently wettable", as used herein, refers to fibers that will sink in less than or equal to about 7 seconds when tested according to the ASTM D 1117-74 Basket Sink Method. The CELWET finish is particularly preferred for use in sanitary napkins having a topsheet 28 comprising an apertured film or scrim with hydro-entangled nonwoven fibers because fibers coated with it remain extremely hydrophilic after hydroentangling processes, and therefore, wick blood very well.

(1) Fusion of the Topsheet to the Acquisition Layer.

The topsheet 28 is secured in contact with an underlying layer. The underlying layer should either have some absorptive capacity, or be capable of transporting liquids to a layer with absorptive capacity. In the preferred embodiment shown in Figure 2, this is the acquisition layer 34. This relationship results in liquid penetrating topsheet 28 faster. In conventional products, the topsheet 28 is initially maintained in contact with the underlying layer by applying adhesive between the underlying layer and the topsheet 28.

In the present invention, the topsheet 28 is preferably joined in a face-to-face relationship with the underlying acquisition layer 34 by fusion bonding the topsheet 28 and the acquisition layer 34. The fusion of the faces of the topsheet 28 and the acquisition layer 34 of interest to the present invention is located on those portions of the respective faces that are inboard of any liquid impervious seam, such as around the periphery 26 of the sanitary napkin 20. (The term "inboard" means toward the intersection of the longitudinal and transverse centerlines.)

The term "fusion bonding", as used herein, is intended to include, but not be limited to: (1) true fusion in which both fused materials are melted together; as well as (2) attachments in which a first material is melted and the melting causes the first material to become attached to a second unmelted material by mechanical attachment.

The topsheet 28 and the acquisition layer 34 can be secured entirely by fusion bonding, or partially by fusion bonding and partially by other types of attachment means. The fusion can be accomplished by heat and/or

pressure bonds, ultrasonic bonds, dynamic mechanical bonds, and the like. Pressure can be applied in any suitable manner, such as by moving the two components between counter-rotating rolls, placing the materials on an anvil and forcing a platen down on the materials, applying vacuum pressure, and the like.

Suitable means that can be adapted for use in fusing the topsheet 28 to the acquisition layer 34 are described in at least some of the following patents: U.S. Patent 4,430,148 Schaefer, U.S. Patent 4,515,595 Kievit, et al., U.S. Patent 4,531,999 Persson, et al., U.S. Patents 4,710,189 and 4,808,252 issued to Lash, U.S. Patent 4,823,783 Willhite, Jr., et al. and U.S. Patents 4,854,984 and 4,919,756 issued to Ball, et al.

The two bonded layers, the topsheet 28 and the underlying acquisition layer 34, should preferably display an average peel strength of greater than or equal to about 50 g/inch, more preferably, greater than or equal to about 65 g/inch measured on a 1 inch x 6 inch (2.5 cm x 15 cm.) sample. These values are obtained by measurements made according to the 180° Peel Bond Strength Test described in Section 4 below entitled "Test Methods". It is recognized, however, that these are preferred values. There may be embodiments in which lesser bond strengths may be used (for instance, if the acquisition layer 34 is also partially mechanically entangled with the topsheet 28).

The fusion bonding preferably comprises a pattern of individual fusion bonds 44. The individual bonds 44 can be of any plan view shape. For instance, the bonds 44 can be in the form of straight or curved lines, geometric shapes such as circles, squares, rectangles, diamonds, and the like, or irregular shapes. The bonds 44 can be arranged in many different manners.

Figure 1 shows one particularly preferred bonding pattern. The fusion bonds 44 comprise discrete points of attachment which comprise circular bonds. The bonds 44 are arranged in a pattern that is preferably distributed over the entire body surface 20a of the sanitary napkin, less the flaps. (This is the portion of the sanitary napkin previously referred to as the "main body portion" 21.) The bonding pattern shown in Figure 1 comprises a plurality of larger bonds 44a and a plurality of small bonds 44b. The large bonds 44a are positioned in the longitudinal central region 46 of the sanitary napkin. The smaller bonds 44b are positioned in the longitudinal side regions 48 of the sanitary napkin.

In Figures 1 and 2, the large bonds 44a have a diameter of about 2 millimeters. The large bonds 44a preferably form a bonded area of about 4mm². The small bonds 44b have a diameter of about 0.5 millimeter. The small bonds 44b preferably form a bonded area of about 0.25 mm². The diameter of the bonds 44 in this bond pattern can range from about 0.5 millimeter to about 3 millimeters. The diameter of the bonds 44 preferably ranges between about 0.5 mm. and about 2 mm. The bonds 44 are typically larger than the apertures 29 in the topsheet 28. The bonds 44 form bonded areas 52 (which are described in greater detail below in conjunc-

25

35

40

45

tion with Figure 8) that preferably have a range of depths of between about 0.5 mm. and about 1.5 mm, and more preferably, between about 1 mm. and about 1.5 mm. (Thus, in the case of the z-folded acquisition layer 34, the larger bonds 44a penetrate the topsheet and only part of the caliper of upper portion 54 of the folded sheet that forms the acquisition layer 34.)

The bonds 44 are preferably in the form of a plurality of spaced apart diagonal lines. The lines of the preferred bonding pattern shown run in the same direction in the longitudinal central region 46 and the longitudinal side regions 48. The bonds 44 are preferably spaced between about 5 mm. and about 16 mm. apart, more preferably between about 5 mm. and about 8 mm. apart. This spacing is measured in the direction of the shortest distance between the bonds. The large bonds 44a are preferably distributed in a density of 18 bonds per square inch. The small bonds 44b are preferably distributed in a density of 25 bonds per square inch. It should be understood, however, that the bonding pattern shown is a preferred pattern, and that many other patterns are also suitable.

The bonds 44 are typically spaced further apart than the apertures 29 in the topsheet 28. Thus, the bonds 44 will occasionally be formed over one or more apertures 29, or parts of apertures 29. There is no need to attempt to align the bonds 44 and the apertures 29, however, because the bonds 44 do not interfere with the flow of exudates to the underlying layers.

The strength of the individual bonds 44 determines the strength of the bond between the layers. Typically, the strength of the bond is related to the area of the bond (i.e., the larger the area of the individual bond 44, the stronger the bond). A plurality of closely spaced weaker bonds may provide a large overall bonded area. However, the bonded layers will typically separate by applying the relatively low peel force required to separate each weaker bond. Further, if the bonds are too close together, the effect of the bonding will approach that created when using adhesives and a stiffer product will result. The present invention has the advantage that larger and generally stronger bonds can be used without interfering with acquisition of liquids. The present invention is believed to overcome the limitations that prevented larger bonds from effectively being used. This aspect of the invention, thus, avoids the undesirable problems caused by using closely-spaced small bonds.

Figure 8 is a close up schematic side view of a bond site. (The bond site shown is a greatly enlarged schematic view of the bond 44a shown to the left of the longitudinal centerline I in Figure 3.) The melting of the film topsheet 28 to the fibers 42 of the acquisition layer 34 as noted above, leaves the fibers 42 intact. Figures 9 and 10 show this feature. The bond site comprises a fused area (or bonded area) 50 where the topsheet 28 is melted to the fibers 42 of the acquisition layer 34. The regions of the topsheet 28 and acquisition layer 34 surrounding the bond site define a bond aperture 52 (an aperture formed by the bond). The bond aperture 52,

because it is within the range of depths specified above, penetrates the topsheet 28 and a portion of the caliper of the acquisition layer 34.

As Figure 8 illustrates, when the faces of the topsheet 28 and the underlying layer are described herein as being fused, it is understood that this refers to the overall relationship between these components. The components may be considered to be held together at their faces even though the bonds 44 may, and likely, will penetrate the face of the underlying layer at the interface between the topsheet 28 and the underlying layer.

The bonding forms a sink or reservoir structure which is bounded at the bottom by the fused area 50. In Figure 8, the sides 56 of the reservoir are formed partially by portions of the film topsheet 28 and partially by portions of the acquisition layer 34. The acquisition layer 34 is comprised of a plurality of fibers 42 with a plurality of open spaces (or void spaces) 58, between the fibers 42. The open spaces and the hydrophilic fibers of the acquisition layer 34, thus, provide a plurality of drainage passageways or drains 60 leading away from the reservoir. The drains 60 described above are located along the lower portion of the sides 56 of the reservoir around the periphery of the fused area 50.

In other embodiments, the sides 56 of the reservoir may be formed by different components. The bond 44a to the right of the longitudinal centerline I in Figure 3 shows an example of such a case. This bond 44a is formed all the way through the various components of the sanitary napkin 20 (other than the backsheet 30). The drains 60 leading away from the reservoir formed by this bond may be formed by portions of any of the different components or layers of the sanitary napkin 20 that the bond aperture 52 passes through.

It is understood that the bonds 44 described herein may be formed deep enough to go into part or all of any of the various components or layers of the sanitary napkin 20 as long as certain requirements are met. Preferably, as in the case of the first bond embodiment described above, the fused area 50 is located below the core-facing face 28b of the topsheet 28. This provides a bond structure that will not interfere with drainage to the underlying layers. The bonding should also preferably produce side walls 56 that are open into at least some of the layers beneath the topsheet 28. The side walls 56 formed by the layers that lie beneath the topsheet 28 need not all be open, however. For instance, every other layer, etc. could have side walls 56 that are sealed off.

The bonding should not produce side walls 56 that seal off any underlying layers that are supposed to remain open for transportation of liquids. This can be accomplished if the material(s) comprising these underlying layers have melting temperatures which are greater than that of the topsheet 28 material (or other layers to which they are fused). The material(s) comprising these layers must also have melting temperatures greater than that created in the fusion process. A final requirement is that the bonding should not create an aperture completely through any lower layer, such as

35

40

45

the backsheet 30, that is intended to be liquid impervious.

It is also possible that the drains 60 could be formed by structures other than the void spaces in adjacent layers. This may cause the drains 60 to be in locations other than those portions of the acquisition layer 34 that are located above the periphery of the fused area 50. For instance, as shown in Figure 8, the drains 60 could also be formed in the fused area 50. The drains 60 could be formed by cracks 70 in the fused area 50 at the bottom of the reservoir structure.

In other embodiments, holes 72 could be intentionally formed in the fused area 50. For instance, a device 74 used to create the fusion bonds 44 is shown in Figure 8A. The device 74 (part of which is shown) could have a head 76 equipped with one or more piercing elements 78 extending from its bonding surface 80. When the bond 44 is formed, the bonding surface 80 will form the fused area 50. The piercing elements 78 are used to leave holes 72 in the fused area sufficient to form drains 60. It is even possible that the piercing elements could pierce and/or break some of the fibers 42 of the underlying layer. This embodiment is significant in that it may provide a bond structure which is an exception to the general preference (described below) for deeper bonds. This structure will allow the transportation of liquids to underlying layers even though the bond 44 may be a relatively shallow bond that has a fused area 50 at the interface between the bonded layers.

In another example, shown in Figure 11 (and described in greater detail below), the apertures 29 in the topsheet 28 (or portion(s) of the apertures 29) could provide the drains 60 into the underlying layer. As shown in Figure 11, the sides 56 of the reservoir could be formed entirely by portions of the topsheet 28.

The absorption of body exudates at the bond sites has been observed as a rather unusual phenomenon. While not wishing to be bound by any particular theory, it is believed that the sanitary napkin 20 functions in the following manner. When liquids are placed on the topsheet 28, some of these liquids will flow into the bond apertures 52. This takes place rather quickly. The liquids may then be held momentarily in the bond apertures 52. This is believed to provide a benefit of removing them from contact with the wearer's skin. After the exudates are held for a short period, they are then suddenly drained into the acquisition layer 34. In other embodiments, the exudates may not be held even temporarily. In these latter embodiments, the exudates will immediately flow through the drains 60 and into the acquisition layer 34.

It is, thus, believed that the fused areas 50 which are formed where the topsheet 28 and acquisition layer 34 are bonded does not affect the passage of the liquids in any undesirable manner. Further, contrary to what one might think, instead of blocking transfer of liquids to the absorbent core 32, sanitary napkins with apertured film topsheets having bonds with larger surface areas (and, thus, larger fused areas) appear to perform no

worse than those with small bonds, provided the total bonded area does not become excessive.

The larger bonded areas 44a may, in fact, also create a visual impression of increased absorbency. The larger bonds 44a may, thus, be distributed as in the preferred embodiment shown in Figure 1 to create an impression of increased absorbency in the longitudinal central region 46. The visual impression has been found to be important among consumers because it is often difficult for them to believe a sanitary napkin will perform properly when it is made very thin.

While not wishing to be bound by any theory, it is also believed that when relatively deep bonds 44 are used the structure formed by the bonding has additional features. Figures 11 and 12 show these features schematically. As shown in Figure 11, the use of deep bonds is believed to cause the portions 28' of the topsheet 28 immediately adjacent the bonded areas 50 to curve in (or cave in) toward the bond aperture. This may have several effects.

The apertures formed by the deep bonds may form a cup-shaped depression. The cup-shaped depression may have a mouth opening 62 that is wider than the bonded area 50 that forms the base of the cup. In other words, the cup structure has tapered side walls 56. This is believed to be caused by the depth and penetration into the nonwoven acquisition layer 34. This stretches the topsheet material 28 over the portions of the nonwoven acquisition layer 34 material surrounding the bonds 44. This cup structure is believed to provide the advantage of good acquisition.

As shown in Figure 11, the stretching of the top-sheet material 28 in the area of the deep bonds 44 may cause the apertures 29 in the topsheet 28 to turn outward to the sides. The apertures 29 have axes designated by reference letter "a". These axes define the alignment of the apertures 29. The axes are ordinarily oriented in the z-direction. When the apertures 29 turn outward, their axes have a horizontal (i.e., x-y direction) component. This orients the apertures 29 toward the adjacent portions of the acquisition layer 34, rather than toward the fused area 50. This may provide the benefit of transfer of liquids through the apertures 29 into the acquisition layer 34.

The structure shown in Figure 12 provides a contrasting example of a shallow bond 44. The term "shallow bond", as used herein, refers to bonds that penetrate no deeper than the interface between the faces of the two materials when their faces are placed adjacent to each other. The shallow bonds, as shown in Figure 12, create flat fused areas 50. These flat fused areas 50 are similar to those previously formed when creating an impervious bond around the periphery of a sanitary napkin. The flat fused areas 50 provide no way for liquids to be transmitted into the underlying layer unless they are provided with holes or cracks as described above.

The bonding patterns can be in an infinite number of patterns such as any of a number of different shaped

15

25

30

35

40

45

bonds arranged in the form of rows, geometrical shapes, graphical patterns, curved or straight lines, intermittent lines, etc. Further, the pattern or the patterns do not have to be either uniformly distributed, or even in the same pattern over the sanitary napkin. It is also possible that different bonding patterns, etc. could be used between different components of the sanitary napkin 20. For example, the topsheet 28 and the immediately underlying layer could be bonded with one pattern, and the laminate formed thereby could be bonded to another layer using a different bonding pattern.

Figure 13A shows a bonding pattern in the form of wavy lines. The bonded pattern can even be used to direct liquids from one region of the sanitary napkin to another. For instance, liquids deposited in the area of these wavy lines will tend to flow along and within these lines. In still other alternative embodiments, a quilt pattern could be used to provide the sanitary napkin with a softer feel.

Figures 13B-13D show an example of the use of a bond pattern to at least partially aid the sanitary napkin 20 in assuming a particular shape during use. The sanitary napkin 20 shown has a bonding pattern in the form of an oval. This particular bonding pattern is used in conjunction with a flexure-resistant deformation element 82 located on the garment-facing side 20b of the sanitary napkin 20b. The flexure-resistant deformation element 82 comprises a sheet having ribs 84 and a channel 86 formed therein. Flexure-resistant deformation elements are described in greater detail in European Patent Application publication numbers 0 335 252 and 0 335 253 published October 4, 1989 in the name of Kenneth B. Buell. As shown in Figure 13D, when the sanitary napkin is subjected to laterally inward oriented compressed forces, it forms a structure of the type described in greater detail in the foregoing European patent applications. Another suitable bonding pattern that may assist in forming a particular structure, might be a pattern in the form of two longitudinally-oriented opposed concave inward lines disposed on opposite sides of the longitudinal centerline I.

The fusing of the topsheet 28 and acquisition layer 34 may also provide other advantages. For instance, it is believed that using fusion instead of adhesives may increase the overall flexibility of the product. While not wishing to be bound by any theory, it is believed that this may be attributed to several factors. The elimination of adhesives eliminates an additional layer of material. In particular, it eliminates a relatively stiff material (the adhesive layer). In addition, it is difficult to spot bond such materials with adhesives. Adhesives are typically applied in layers or lines. These are generally less flexible arrangements than a pattern of dots due to their tendency to unduly restrict portions of the bonded materials from sliding past or over one another.

The actual flexibility of the sanitary napkin will, however, depend on the particular bonding pattern used. For example, if a plurality of very small, closely-spaced dots are used, the flexibility may not be any better than in products having adhesively secured layers, because closely spaced bonded areas make the bonded areas cover the overall area similar to a layer of adhesive. The flexibility may, on the other hand, be enhanced if the bonding pattern is in the form of a continuous or intermittent line if the line is oriented to create an axis about which the sanitary napkin can be bent.

The topsheet 28 and acquisition laver 34 may also be secured at least partially by any other suitable attachment means or combinations of such other means and the above attachment means. The topsheet 28 and the acquisition layer 34 can be at least partially attached by any means known in the art, such as by adhesives. If adhesives are used, the adhesives can be applied in a uniform continuous layer, a patterned layer, or an array of separate lines, spirals, or spots of adhesive. The adhesive attachment preferably comprises an open pattern network of filaments of adhesive as is disclosed in U.S. Patent 4,573,986 issued to Minetola, et al. on March 4, 1986, or an open pattern network of filaments comprising several lines of adhesive filaments swirled into a spiral pattern as illustrated by the apparatus and method shown in U.S. Patent 3,911,173 issued to Sprague, Jr. on October 7, 1975; U.S. Patent 4,785,996 issued to Zieker, et al. on November 22, 1978; and U.S. Patent 4,842,666 issued to Werenicz on June 27, 1989. Suitable adhesives are manufactured by the Findley Adhesives Incorporated of Elm Grove, Wisconsin and marketed as H-1077 or H-1137.

In still other embodiments, the topsheet 28 and acquisition layer 34 may be at least partially attached by mechanical and thermo-mechanical entanglement. The fibers of the acquisition layer 34 may be entangled in any of the manners specified above in forming the fiberentangled film topsheet.

C. The Absorbent Core.

The absorbent core 32 is positioned between the topsheet 28 and the backsheet 30. The absorbent core 32 provides the means for absorbing menstrual fluid and other body exudates. The absorbent core 32 is generally compressible, conformable, and non-irritating to the user's skin.

The absorbent core 32 can comprise any material used in the art for such purpose. Examples include natural materials such as cotton, comminuted wood pulp which is generally referred to as airfelt, creped cellulose wadding, peat moss, cross-linked cellulose fibers, absorbent foams, absorbent sponges, synthetic staple fibers, polymeric fibers, hydrogel-forming polymer gelling agents, or any equivalent material or combinations of materials.

In the embodiment shown in Figures 1-3, the absorbent core 32 is a laminate comprised of a layer of superabsorbent polymer material, such as in the form of particles, disposed between two air-laid tissues, first and second tissue layers (or "upper" and "lower" tissue layers). The first and second tissue layers provide con-

25

35

tainment of the superabsorbent polymer material, improve lateral wicking of the absorbed exudates throughout the absorbent core 32 and provide a degree of absorbency. A suitable laminate is the superabsorbent laminate WATER-LOCK L-535 available from the Grain Processing Corporation of Muscatine, lowa (WATER-LOCK registered TM by Grain Processing Corporation). Such superabsorbent laminates are disclosed in U.S. Patent 4,467,012 issued to Pedersen et al. on August 21, 1984, and U.S. Patent 4,260,443 issued to Lindsay et al. on April 7, 1981.

The polymeric gelling agent which is employed in the absorbent core 32 will generally comprise particles of a hydrogel-forming polymer material. The term "particles", as used herein, can refer to particles in any form, such as in the form of pellets, flakes, or fibers. The characteristics of the absorbent core 32 (including, but not limited to the preferred types of polymer materials used therein, and types of methods which can be used for preparing these polymer particles) are described in greater detail in U.S. Patent 4,673,402 issued to Weisman, et al, U.S. Patent 5,009,653 issued to Osborn and the patents incorporated by reference in that patent, the disclosures of which are all incorporated by reference herein.

In a preferred version of the above embodiment, the absorbent core 32 is a laminate as described above which is slitted or partially slitted for longitudinal extensibility as shown in FIG. 15 on the accompanying drawing figures. This slitted or partially slitted core is described in greater detail in the Capillary Channel Fiber patent applications.

Figures 4-6 show one particularly preferred absorbent core 32 that will be referred to as a "blended" core. This particular core arrangement is shown in a relatively thick sanitary napkin 20. It can, however, also be formed into a thin web for use in thin products.

The blended absorbent core 32 comprises a batt of fibers, preferably in the form of a homogeneous blend of fibers. The blended core 32 is comprised of at least two groups (or types) of fibers. These include a first group (or type) of low denier, relatively short, hydrophilic fibers, and from about 5%, preferably at least about 10 or 20% to about 90% of higher denier, longer synthetic fibers that comprise a second group (or type) of fibers. The blend ratio of the two groups of fibers can be varied to produce the properties desired for different types of absorbent articles. (All percentages specified in this description are by weight unless stated otherwise.)

The first group of fibers can comprise natural fibers such as cotton, cellulose, or other natural fibers. The first group of fibers can alternatively or additionally comprise synthetic fibers, including but not limited to, rayon, chemical thermal mechanical pulp (or "CTMP" or TMP"), ground wood, or chemically modified fibers, such as cross-linked cellulose fibers. For one embodiment, the first group of fibers comprises comminuted wood pulp fibers known as airfelt. The fibers in the first group of fibers are either inherently hydrophilic, or they

may be rendered hydrophilic by treating them in any of the manners described previously to render them hydrophilic.

Performance is improved by selecting a relatively stiff fiber which maintains a substantial portion of its compression resistance when wetted. (That is, the fibers should have a high compressive modulus.) Preferably, the fibers selected are both compression resistant and wet and dry resilient (i.e., they tend to both resist compression and to spring back when compressed). Cross-linked cellulose fibers are especially preferred for these criteria. (It is understood, however, that cross-linked cellulose fibers are sufficiently modified that they may no longer be considered as either cellulosic, or as natural fibers, per se.)

The second group of fibers should also be of high compressive modulus and should maintain a relatively high modulus when wetted. The second group of fibers should also preferably be wet and dry resilient. Suitable fibers include, but are not limited to synthetic fibers comprised of any of those materials specified above as being suitable for use as the fibers of the acquisition layer 34. (Fiber lengths, denier, etc. are, however, not necessarily the same. Some preferred fiber lengths, etc. are described below.)

The fibers in the second group of fibers are preferably longer than the fibers in the first group of fibers. Preferably, the fibers in the second group of fibers are greater than or equal to about 1/4 inch (about 0.6 cm.) long, and are more preferably greater than or equal to about 1/2 inch (about 1.3 cm.) long. The denier of the fibers in the second group of fibers are preferably greater than the denier of the fibers in the first group of fibers. The fibers in the second group of fibers preferably have a denier per filament of between about 6 and about 40. More preferably, the denier is between about 15 and about 30, and most preferably between about 15 and about 25.

The fibers in the second group of fibers may be hydrophilic, hydrophobic, or partially hydrophilic and partially hydrophobic. The fibers in the second group of fibers preferably have at least some hydrophilic component (preferably a cellulosic component). The fibers in the second group of fibers can be provided with a hydrophilic component in a number of suitable ways. These include, but are not limited to coating or treating the fibers to render them, or at least their surfaces, hydrophilic.

One suitable type of synthetic fibers for use in the second group of fibers are crimped polyester fibers. Suitable synthetic fibers are available from Eastman Kodak Textile Fibers Division Kingsport, TN as the KODEL 200 and 400 Series. One suitable type of synthetic fiber is the KODEL 410 fiber. A suitable polyester fiber is the KODEL 431 fiber. These KODEL fibers are preferably crimped at a crimping frequency of between about 5 and 7, preferably about 6, more preferably 6.3 crimps per linear inch (i.e., per 2.5 cm.). The fibers are preferably crimped at a crimping angle of between

20

25

30

40

45

about 70° to about 91°, preferably about 88°. Crimping provides the fibers with improved resilience, among other desired properties. The fibers have a denier of 15 per filament and a length of about 0.5 inch (about 1.3 cm.). They may be coated with a hydrophilic or hydrophobic finish by any suitable method known in the art.

In an alternative embodiment, it is possible to replace the cellulose fibers in the first group of fibers with very short, low denier, synthetic fibers (with hydrophilic surfaces). The blended core 32 in this situation would consist of short, low denier, hydrophilic first group of synthetic fibers (such as polyester fibers with a CELWET finish) and long, high denier second group of synthetic fibers.

Such a blended core may also contain particles of hydrogel-forming polymer gelling agents to increase the absorptive capacity of the core.

In one preferred embodiment, the hydrogel-forming polymer gelling agents comprise "high-speed" absorbent gelling materials. The term "high-speed" absorbent gelling materials, as used herein, means those absorbent gelling materials that are capable of absorbing exudates at such a rate that they reach at least about 40%, preferably at least about 50%, and most preferably at least about 90% of their capacity in less than or equal to about 10 seconds. A suitable method for the percent rate of capacity is described in U.S. Patent Application Serial Nos. 07/637,090 and 07/637,571 filed by Noel, et al. and Feist, et al. In alternative embodiments, it is also possible for the high-speed absorbent gelling materials to be mixed with other types (or ordinary speed) absorbent gelling materials.

Preferably, in the embodiment described immediately above, the high-speed absorbent gelling materials are in fibrous form. Such fibers (though not necessarily high-speed fibrous absorbent gelling materials) are discussed more fully in U.S. Patent 4,855,179, issued August 8, 1989, to Bourland, et al. The term "fibrous absorbent gelling materials", as used herein, is intended to include absorbent gelling materials in the form of fibers that are comprised entirely of absorbent gelling material and bi-component fibers that are comprised at least partially of other materials which have their surfaces coated with absorbent gelling materials. A suitable fibrous high speed absorbent gelling material is known as FIBERSORB SA7000 formerly manufactured by Arco Chemical Company of Newton Square, Pennsylvania.

The effective utilization of hydrogel-forming polymer gelling agents is believed to be improved in such a blended core. The use of higher concentrations of hydrogel-forming polymer gelling agents may also be possible.

The blended absorbent core 32 is preferably compressed to a density of at least about 1.5 g/cubic inch (about 0.09 g/cm³). The blended core 32 may be compressed to densities at least as high as about 4.0 g/cubic inch (about 0.25 g/cm³) to improve fluid wicking while still maintaining good softness and flexibility. (The

density values specified above do not include the weight of any particles of absorbent gelling material.) Densification may be applied to the entire absorbent core 32 or only to selected portions. Patterned densification allows tailoring of the fluid handling properties to a specific need. For example, the density may be very low in the fluid target area to maximize fluid acquisition speed, and density may be very high near the core edges to maximize fluid wicking.

In one particularly preferred embodiment, the improved absorbent core 32 is an air-laid blend comprised of approximately 15% of 0.5 inch long, 15 denier per filament crimped polyester fibers and approximately 85% of cross-linked cellulose fibers compressed to a density of about 1 g/cubic inch (about 0.06 g/cm³).

The blended absorbent core 32 can be used as the entire core or it can be used as one or more layers in a layered construction. The blended absorbent core 32 can be used with or without the acquisition layer 34.

Figures 4-6 show an example of a core 32 in which layers of core material are used to produce a "profiled" sanitary napkin 20. The profiled sanitary napkin 20 is thicker in the center of the sanitary napkin and tapers so it becomes thinner toward the edges 22 and 24. Figures 5 and 6 show that such a profiled sanitary napkin 20 can be made by stacking layers having relatively large length and width dimensions on top of those with smaller length and widths (or vice versa).

In a layered construction, one or more layers can consist of all cellulose or cellulose/hydrogel-forming polymer material blends. The layers could also have differing fiber and/or absorbent gelling material content. For example, a higher percentage of absorbent gelling material could be provided in the lower layers to provide additional liquid storage capacity.

The blended absorbent core 32 is believed to provide enhanced performance. The blended absorbent core is believed to provide improved fluid acquisition speed and absorptive capacity. These improvements are believed to result in reduced leakage. The absorbent core can also be made smaller and thinner to make the article more comfortable and discrete to wear. The strength of the core is also believed to be improved because of the synthetic fiber content. These improved characteristics are believed to be due to a number of factors.

Absorbent cores of the subject composition have a lower wet density than cores composed entirely of cellulose. The lower wet density results from the presence of the synthetic fibers. Water is not absorbed into the synthetic fibers, therefore, the modulus of the fibers does not change when wetted and they do not collapse. The lower wet density provides the blended absorbent core with improved fluid acquisition speed and higher absorptive capacity. The lower wet density allows any hydrogel-forming polymer materials included in the fiber matrix to absorb a higher quantity of liquids since there is more room for the polymer materials to swell.

The first group of fibers is believed to aid in reduc-

25

40

ing leakage. The blended core provides a quantity of small capillaries which a core comprised of 100% large synthetic fibers would not have. These smaller capillaries allow the core to pull liquids through the topsheet and away from the wearer's skin. This improves leakage performance due to a reduction in the volume of fluid which can exit the product by running along the skin surface.

The first group of fibers of the blended core also provides a wicking capability. This capability results from the small capillaries mentioned above. This capillarity can be enhanced by densification of the core. The cellulose allows the core to be maintained at a high density when dry that is generally not achievable with pure synthetics. The presence of the synthetic fibers allows the portions of the core that are wetted to expand and this reduces the density of these portions. The neighboring densified areas which are still dry have a high density and provide small capillaries. The liquids will, as a result, tend to wick into these neighboring areas. This maintains absorptive capacity and acquisition speed.

The crimped synthetic fibers are believed to provide the core with improved compression resistance and resiliency. The resiliency maintains the void space in the core even after liquids are absorbed into the core and pressure is applied to the core. The void space provides additional storage space for absorbed liquids. It also provides additional space in which the absorbent gelling materials can swell after taking in liquids.

The characteristics of other types of absorbent cores are described in greater detail in the patents and documents incorporated by reference herein. Additional characteristics are described in the patents and other documents incorporated by reference in those documents. The disclosure of all of these references are incorporated herein. In addition, other suitable absorbent core arrangements are described in U.S. Patents 4,988,344 and 4,988,345, and European Patent Application Publication No. 0 198 683, published October 22, 1986 in the name of Duenk, et al. Other possible core 32 materials are described in U.S. Patent 4,475,911 issued to Gellert on October 9, 1984.

The sanitary napkin (or other absorbent article) 20 could also include any additional layers or other components such as are described in the patents incorporated by reference. For example, the absorbent article may comprise an acquisition layer or patch of cross-linked cellulose fibers positioned between the topsheet 28 and the absorbent core 32.

D. The Backsheet

The backsheet 30 is impervious to liquids. The backsheet 30 serves to prevent menstrual fluid and other body exudates from soiling the clothing of the user. Any material used in the art for such purpose can be utilized herein. Suitable materials include embossed or nonembossed polyethylene films and laminated tissue. A suitable polyethylene film is manufactured by

Monsanto Chemical Corporation and marketed in the trade as Film No. 8020.

In one alternative embodiment of the sanitary napkin 20 (typically in which the topsheet 28 overlays only the main body portion 21 and does not extend out to form the top surface of the flaps 36), the backsheet 30 may be comprised of two layers. In such a case, the backsheet 30 may comprise a first layer of lofted material disposed on the core-facing side 30a of the backsheet. The purpose of the first layer is to provide a comfortable, non-irritating surface against the body of the wearer. The lofted layer may be comprised of any suitable material, such as a nonwoven material. Preferably, the lofted layer comprises a hydrophobic nonwoven material. The second layer may be disposed on the garment side 30b of the backsheet 30, and may comprise a fluid impervious film. A low density polyethylene material about 0.01 to about 0.05 millimeters in thickness, preferably about 0.02 millimeters in thickness, has been found to work well as this second layer. A polyethylene film, such as is sold by the Ethyl Corporation, Visqueen Division, under model XP-39385 has been found particularly well suited for this second layer. The backsheet 30 may also be made of a soft, cloth-like material which is hydrophobic relative to the topsheet 28. A polyester or polyolefinic fiber backsheet 30 has been found to work well. A particularly preferred soft, cloth-like backsheet 30 material is a laminate of a polyester nonwoven material and a film such as described in U.S. Patent 4,476,180 issued to Wnuk on October 9, 1984.

In other embodiments, the backsheet 30 is extensible. A particularly preferred extensible backsheet 30 is an extended adhesive film Formula #198-338 manufactured by the Findley Adhesives Company of Wauwatosa, Wisconsin which is described in greater detail in the Capillary Channel Fiber patent applications.

As shown in Figures 1 and 2, the topsheet 28 is preferably secured to the backsheet 30 along a seam 64 around the periphery 26 of the sanitary napkin 20. The seam 64 can be formed by any means commonly used in the art for this purpose such as by gluing, crimping, or fusing. This is a preferred embodiment for ease of construction. (Other means of uniting the various elements can be used.) For instance, other possible embodiments include one in which the absorbent core 32 is essentially completely wrapped with topsheet 28 before it is placed on the backsheet 30. The sanitary napkin 20 can also comprise an absorbent core which possesses sufficient integrity to stand alone and is liquid pervious on one surface while the other surface has been treated to render it liquid impervious.

Figures 1 and 2 also show the fasteners, such as adhesive fastening means 38, which are adapted to secure the sanitary napkin 20 to the crotch region of an undergarment. Suitable adhesive fasteners are described in greater detail in U.S. Patent 4,917,697. The fasteners used with the present invention are not limited to adhesive attachment means. Any type of fas-

25

30

40

45

tener used in the art can be used for such purpose. For example, the sanitary napkin 20 could be secured to the wearer's undergarment by the fastener described in U.S. Patent 4,946,527 entitled "Pressure-Sensitive Adhesive Fastener and Method of Making the Same" issued to Battrell on August 7, 1990.

The adhesive fastening means 38 are covered by removable release liners, designated 40. The pressure-sensitive adhesives should be covered with release liners 40 to keep the adhesives from sticking to extraneous surfaces prior to use. Suitable release liners are described in U.S. Patent 4,917,697. A suitable wrapper that both serves as a package for a sanitary napkin and as a cover for adhesives on the sanitary napkin is described in U.S. Patent 4,556,146 issued to Swanson, et al. on December 3, 1985.

3. Alternative Embodiments.

There are also a number of possible alternative embodiments of the embodiments described above. A non-limiting number of these alternative embodiments are described below.

Figure 14 shows one alternative embodiment in which the acquisition layer 34 is stretched before it is fused to the topsheet 28. The topsheet 28 and acquisition layer 34 form a laminate. When the stretched laminate is relaxed, the laminate has tufted areas 66 formed therein between bonded areas 44 and valleys 68 at the bonds.

The embodiment shown in Figure 14 provides a key advantage. It (and various alternative embodiments of that embodiment) allows a stretchable laminate to be formed from materials that are not ordinarily thought of as being stretchable. The apertured plastic film top-sheet 28, for instance, is not normally thought of as being extensible. However, the topsheet 28 is provided with a degree of extensibility when it is secured to a layer such as the acquisition layer 34 after the acquisition layer 34 has been extended and bonded, and the two component materials are thereafter relaxed.

The tufted areas 66 in such a laminate can also provide certain benefits. The tufted areas 66 are typically soft. They will also place the absorptive fibers of the acquisition layer 34 closer to the wearer's body than the nontufted bonded areas. While not wishing to be bound by any particular theory, it is believed that this construction may enhance absorption (particularly at the tufted areas 66). The absorption of liquids in the z-direction (i.e., into the plane of the sanitary napkin 20) as well as the wicking of fluids in the x-y plane (in the plane of the sanitary napkin 20) may be enhanced. There may be several reasons for this.

The enhanced z-direction absorption is believed to result from the stretching of the acquisition layer 34. The stretching of an acquisition layer 34 made of meltblown or spunlaced fibers in the x-y plane causes the spaces between the fibers as measured in the x-y plane to increase in size. When the stretching forces are

removed, the friction between the fibers makes it difficult for these types of fibers to return to their original position. The size of the spaces between the fibers are thus, permanently increased, making the acquisition layer 34 more permeable to liquids in the z-direction.

The wicking of liquids in the x-y plane is believed to be due to the provision of the valleys 68 formed between the tufted areas. In some embodiments, it may be desirable for the valleys 68 to run in the longitudinal direction so liquids will wick toward the ends of the sanitary napkin 20. In other embodiments, it may be desirable for the valleys 68 to run in the transverse direction so the laminate will be longitudinally extensible.

In other alternative embodiments, both the topsheet 28 and the acquisition layer 34 can be stretched prior to fusing the same together.

In another alternative embodiment, the fusion bonding may be used either as a primary means or a supplemental means of providing apertures 29 in the film topsheet 28. Prior to bonding, the topsheet 28 may be an unapertured film, or it may have less apertures than desired in the finished product. The apertures 29 could be formed by the device 74 shown in Figure 8A. The fusion may, in the first case, form all of the desired apertures 29 in the topsheet 28. In the second case, the fusion may provide a number of apertures that supplements the number originally in the topsheet 28 to provide a total desired number of apertures.

In still another alternative embodiment shown in Figure 17, the fusion could create a different type of bond structure.

Figure 17 shows an embodiment in which a portion of the topsheet 28 is heated to cause it to become soft and pliant. The heated area of the topsheet 28 is subjected to a reatively high pressure to create bonded areas 44. The topsheet 28 is not heated enough that these bonded areas 44 are melted during the process. The topsheet 28 material, thus, does not flow together to completely close the apertures 29 in the bonded areas. Thus, the bonding forms bonded areas 44 in which the original apertures 29 provide the drainage passageways. The heating does, however, cause the three-dimensional film to collapse into a virtually two dimensional structure in the area of the bond 44. The heating may also cause the apertures 29 in the film 28 to assume irregular shapes.

The bonds 44 in Figure 17 are formed when the pliant topsheet 28 material is forced into contact with the fibers 42 of the nonwoven. This causes the topsheet 28 material to become entangled around the fibers 42. As shown in Figure 17, this may cause some fibers 42 to extend into apertures 29 or outward from an aperture

A particularly preferred type of topsheet 28 material that can be used in the embodiment shown in Figure 17 is a heat seal able film. Heat sealable films can be used to create such a bond 44 at lower temperatures and pressures. Heat seal able films are available with a layer or side that is heat seal able and another that is not.

25

40

45

Such a film is useful in that it could be placed with the heat sealable side adjacent the nonwoven layer and then bonded. Suitable heat sealable films are commercially available.

The embodiment shown in Figure 17 is another example of a type of structure that will not interfere with the flow of liquids even though it may create a shallow bond having a fused area at the interface between the two bonded layers.

While several preferred sanitary napkin embodiments of the present invention have been described, numerous other types of sanitary napkins are available and are disclosed in the literature. These could be provided with the fused layers of the present invention. These sanitary napkins include those disclosed in U.S. Patent 4,285,343, issued to McNair on August 25, 1981; U.S. Patents 4,589,876 and 4,687,478, issued to Van Tilburg on May 20, 1986 and August 18, 1987 respectively; U.S. Patents 4,917,697 and 5,007,906 issued to Osborn, et al. on April 17, 1990 and April 16, 1991, respectively; and U.S. Patents 4,950,264 and 5,009,653 issued to Osborn on August 21, 1990 and April 23, 1991, respectively; and in U.S. Patent Application Serial No. 07/605,583 filed October 29, 1990 in the name of Visscher, et al.

The terms "pantiliner" or "panty liner" refer to absorbent articles that are less bulky than sanitary napkins which are generally worn by women between their menstrual periods. Suitable absorbent articles in the form of pantiliners that could be described with the used layers described herein are disclosed in U.S. Patent 4,738,676 entitled "Pantiliner" issued to Osborn on April 19. 1988.

The term "incontinent article" refers to pads, undergarments (pads held in place by a suspension system of same type, such as a belt, or the like), inserts for absorbent articles, capacity boosters for absorbent articles, briefs, bed pads, and the like, regardless of whether they are worn by adults or other incontinent persons. Suitable incontinent articles that can be provided with the fused layers described herein are disclosed in U.S. Patent 4,253,461 issued to Strickland, et al. on March 3, 1981; U.S. Patents 4,597,760 and 4,597,761 issued to Buell; the above-mentioned U.S. Patent 4,704,115; U.S. Patent 4,909,802 issued to Ahr, et al.; U.S. Patent 4,964,860 issued to Gipson, et al. on October 23, 1990; and in U.S. Patent Application Serial Numbers 07/637,090 and 07/637,571 filed respectively by Noel, et al. and Feist, et al. on January 3, 1991.

The term "diaper" refers to a garment generally worn by infants and incontinent persons which is drawn up between the legs and fastened about the waist of the wearer. Suitable absorbent articles at least some of which are in the form of diapers which could be provided with fused layers are disclosed in U.S. Patent Re. 26,152, issued to Duncan, et al. on January 31, 1967; U.S. Patent 3,860,003 issued to Buell on January 14, 1975; U.S. Patent 4,610,678 issued to Weisman, et al. on September 9, 1986; U.S. Patent 4,673,402 issued to

Weisman, et al. on June 16, 1987; U.S. Patent 4,695,278 issued to Lawson on September 22, 1987; U.S. Patent 4,704,115 issued to Buell on November 3, 1987; U.S. Patent 4,834,735 issued to Alemany, et al. on May 30, 1989; U.S. Patent 4,888,231 issued to Angstadt on December 19, 1989; and U.S. Patent 4,909,803 issued to Aziz, et al. on March 20, 1990.

The disclosures of all patents, patent applications (and any patents which issue thereon, as well as any corresponding published foreign patent applications), and publications mentioned throughout this description are hereby incorporated by reference herein. It is expressly not admitted, however, that any of the documents incorporated by reference herein teach or disclose the present invention. It is also expressly not admitted that any of the commercially available materials or products described herein teach or disclose the present invention.

The present invention, thus, provides absorbent articles having bonding between their layers, particularly their uppermost liquid pervious layers, that maintains sustained attachment even under prolonged use.

4. Test Methods.

Bond Strength 180° Peel Test

The 180° Peel Test described below is used to ensure that the bonding between the fused layers is sufficiently strong so that the topsheet 28 will not separate from the underlying layer.

The 180° Peel Test essentially involves placing the fused layers in a tensile tester and applying forces to pull the layers apart. The test is referred to as a "180° peel" test because of the direction in which the peeling forces are applied. The sample is partially peeled and oriented so that the unpeeled portion of the sample and the layers to be peeled apart form a configuration that resembles two uppercase letter "L's" placed back to back. The peeling forces are then applied in opposite directions on the partially peeled components.

PRINCIPLE

The tensile tester is a device constructed in such a way that gradually increasing extension is smoothly applied to a defined sample, separating the layers, until one of the components of the sample fails (breaks) or the components separate.

SCOPE

This procedure is applicable to layered materials.

<u>APPARATUS</u>

Conditioned Room

Controlled to 73 +/- 2°F, 50 +/- 2% relative humidity.

15

20

25

30

35

40

45

Oven

Cole Parmer model N05015-10. Cole-Parmer
International, 7425 North
Oak Park Avenue, Chicago, Illinois 60648 or 5

equivalent.

Holding Stand

An aluminum stand with 1 inch wide spring clamps.

J.D.C. Cutter

Double edge cutter, 1 inch (25.4 mm) wide, equipped with safety shield. Thwing-Albert Instruments Co., 10960 Dulton Rd., Philadelphia, Pa., 19154, or equivalent.

Electronic Tensile Tester

Universal constant rate of elongation tensile testing machine with strip chart recorder, having a full range of 1000 grams, with other ranges available as necessary. Instron 1122 or 4201, Instron Engineering Corp., Canton Mass., or Thwing-Albert Intellect 500 or 11, Thwing-Albert Instruments Co., 10960 Dulton Rd., Philadelphia, Pa., 19154 or equivalent.

Jaws

Light duty, with line contact faces (barline). Obtain from appropriate instrument manufacturer as listed above.

SAMPLE PREPARATION

Sample according to the Sampling Instructions. Condition the samples in a conditioned room at 73 +/- $2^{\circ}F$, 50 +/- 2° relative humidity for a minimum of 2 hours.

Label each sample in one corner for identification. Be sure not to label in such a way that the pen marks are in the area to be tested.

For samples to be tested in the Machine Direction (MD) 50

Using a J.D.C. cutter, cut four strips 1 inch (25.4 mm) in CD by approximately 6 inches (152.4 mm) in MD.

For samples to be tested in the Cross Machine Direction (CD)

Using a J.D.C. cutter, cut four strips 1 inch (25.4

mm) in MD by approximately 6 inches (152.4 mm) in

INSTRUMENT PREPARATION

Calibrate and zero the tensile tester according to the manufacturer's instructions. Choose a load cell so that tensile results for the strip tested will be between 25% and 75% of the capacity of the load cell or load range used. This range is initially set to 500 grams full-scale.

Set the gauge length at 1 inch.

Set the instrument crosshead to operate at 22 inches per minute (± 2 inches per minute).

Set the chart speed at 5 inches per minute.

Set the tensile tester so that the crosshead travels for a distance of 10.4 inches. This will allow the tensile tester to monitor the forces generated while peeling the sample a total of 7.3 inches.

Zero the instrument so that the pen rests on the vertical zero line (distance axis) of the chart. Revolve the chart so that the pen also rests on one of the heavy horizontal lines (load axis) of the chart. Label the chart paper with the sample code, direction tested (MD or CD), date the test is being performed, full-scale load value, chart speed, crosshead speed, gauge length, and name of test (Bond Strength).

TEST PROCEDURE

By hand, separate approximately 1.5 inches of the sample on one end of the sample strip. Place approximately 0.5 inch of the one layer of the sample into the upper jaw of the tensile tester. Close the jaw. Place the remaining layer(s) into the lower jaw with enough tension to eliminate any slack, but not enough to move the pen off the zero mark. Close this jaw.

Start the tensile tester and recorder simultaneously as described by the manufacturer's instructions.

After the sample components separate (or one of the components fails (breaks), stop the chart and return the tensile tester to its initial starting position. Remove the sample from the jaws and position the chart for the next sample.

Repeat the procedure for each remaining sample strips.

CALCULATIONS/REPORTING

The most common points of interest in the analysis are the loads (grams force) at separation and at failure.

A. Bond Strength Force at Separation

For those instruments that are not able to capture and report the average forces of the sample separation, use a ruler as a straight edge and physically determine the average force of separation on the chart to the nearest gram. For those instruments that are capable of cap-

20

25

30

35

40

45

turing and reporting forces, read the average force of separation from the digital display to the nearest gram.

B. Bond Strength Force at Failure

For those instruments that are not able to capture and report the peak force of the sample failure, physically determine the peak force of failure on the chart to the nearest gram. For those instruments that are capable of capturing and reporting forces, read the peak force of failure from the digital display to the nearest gram.

Average and report the four readings of average grams forces of the samples 1) separation and/or 2) peak force of the sample failure to the nearest gram. The bond strength force at separation is used to determine the average peel strength described above.

While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention.

Claims

1. An absorbent article (20) comprising a liquid pervious apertured thermoplastic film topsheet (28), a liquid impervious backsheet (30) having a garment-facing face and being joined to said topsheet (28), and an underlying layer (32, 34) having a thickness and preferably being liquid pervious, and more preferably also being absorbent, positioned between said topsheet (28) and said backsheet (30), said topsheet is fused to said underlying layer (32, 34) wherein said absorbent article (20) is characterized in that said

individual bonded areas (44) penetrate the topsheet (28) and at least part of the way into the thickness of said underlying layer (32, 34) without penetrating the garment-facing face of said backsheet (30), and at least some of said bonded areas (44) provide structures with drainage passageways for liquids to pass through to said underlying layer (34).

- 2. The absorbent article (20) of Claim 1 wherein said underlying layer (32, 34) comprises a component selected from the group consisting of: an absorbent core (32); a fibrous acquisition layer (34); an absorbent core (32) comprising an uppermost fibrous acquisition layer (34) wherein said acquisition layer (34) is comprised of at least some synthetic fibers; or, one of the foregoing components wherein said component is comprised of at least 55 some synthetic fibers.
- The absorbent article (20) of Claim 2 having a longitudinal centerline (I) wherein said underlying layer

(32, 34) comprises an acquisition layer (34), and said absorbent article (20) is additionally characterized by at least one of the following features:

a majority of said fibers of said acquisition layer (34) are oriented in the same general direction as the longitudinal centerline (I);

said acquisition layer (34) comprises a spunlaced nonwoven fabric; and,

said acquisition layer (34) is comprised of at least some fibers provided with a permanently wettable finish.

- 4. The absorbent article (20) of Claim 1 having a longitudinal centerline (I), a longitudinal central region (46) located along and being centered about said longitudinal centerline (I), and longitudinal side regions (48) laterally outboard of said longitudinal central region (46), wherein said bonded areas (44) have a circular plan view shape, and some of said bonded areas (44) being relatively large (44a), and some are relatively small (44), wherein said large bonded areas (44a) are located in said longitudinal central region (46) and said small bonded areas (44) are located in said longitudinal side regions (48).
- 5. The absorbent article (20) of Claim 1 wherein said topsheet (28) has a first melting temperature and said underlying layer (32, 34) comprises a web comprising fibers having a second melting temperature which is higher than said first melting temperature, and said topsheet (28) is fused to said underlying layer (32, 34) at discrete bonded areas (44), said fusion having taken place at a temperature below said second melting temperature so that said fibers remain in their original state, and said fusion defines apertures which extend through said topsheet (28) and at least part of the way into the thickness of said underlying layer (32, 34).
- 6. The absorbent article (20) of Claim 5 wherein said underlying layer (32, 34) has a body-facing face and a garment-facing face, and said bonded areas (44) comprise a base located between the body-facing face and the garment-facing face of said underlying layer, side walls comprised of an upper portion, and a lower portion, wherein at least one of said side walls or said base is provided with drainage passageways into said underlying layer.
- 7. An absorbent article according to claim 2 or 3 characterized in that said absorbent core comprises a homogeneous blend of fibers comprising a first group of short, low denier, hydrophilic fibers selected from a group comprising natural fibers, synthetic fibers or cross-linked cellulose fibers, and

10

15

20

40

45

a second group of longer, higher denier synthetic fibers, said second group of fibers comprising between 5 and 20% of said absorbent core, by weight, and said absorbent core has a density of at least 0.09 g/cm³.

 A liquid pervious topsheet (28) for an absorbent article (20), said topsheet (28) being selected from the group consisting of:

> an apertured film (23) having an underside and non-elastic hydrophilic nonwoven fibers 42' attached to the underside of said apertured film (23) by mechanical entanglement;

> an apertured film (23) having an underside and non-elastic hydrophilic nonwoven fibers 42' comprising synthetic polymeric, thermoplastic material melted onto the underside of film; or

an apertured film (23) having an underside and a nonwoven fibrous layer 42' fused to said apertured film (23) at discrete points of attachment when at least one of said film (23) or said fibrous layer (42') was in a contracted condition 25 to form an elastically extensible laminate.

- 9. The absorbent article (20) of Claim 1 wherein said topsheet (28) has a body-facing face and a corefacing face, and said topsheet (28) comprises a nonwoven material (42) forming at least part of said body-facing face of said topsheet (28) and an apertured plastic film (23) forming at least part of said core-facing face of said topsheet (20), wherein said film is treated with a surfactant to enhance the overall permeability of said topsheet (28).
- 10. A method of joining two liquid pervious components of an absorbent article (20) in a face-to-face relationship, wherein one of said components comprises a three-dimensional apertured thermoplastic film (23) that may serve as a topsheet (28) for said absorbent article (20), said method characterized in that it comprises the steps of:
 - (a) providing a first liquid pervious component comprising a three-dimensional apertured thermoplastic film topsheet (28) that is comprised of a first material which has a first melting temperature, said first component having a first surface and a second surface;
 - (b) providing a second liquid pervious component comprised of a fibrous second material which has a second melting temperature which is higher than said first melting temperature, said second component having a first surface and a second surface;

- (c) placing said topsheet (28) in a face-to-face relationship with said second component so that the second surface of said topsheet (28) is adjacent said first surface of said second component; and
- (d) fusing said topsheet (28) to said second component at discrete points (44), said fusion taking place at such a temperature that portions of said topsheet (28) become soft and compliant and at such a pressure that: (i) said portions of said three-dimensional topsheet (28) collapse and attach to some of the fibers of said fibrous second material; (ii) at least some of said apertures in said topsheet (28) remain at least partially open; and, (iii) said fibrous second material remains unmelted.

Patentansprüche

- 1. Ein absorbierender Artikel (20), welcher ein flüssigkeitsdurchlässiges mit Öffnungen versehenes Deckblatt (28) aus thermoplastischer Folie, ein flüssigkeitsundurchlässiges Rückenblatt (30), welches eine der Kleidung zugewandte Oberfläche aufweist und mit dem genannten Deckblatt (28) verbunden ist, und eine unterliegende Schichte (32, 34), welche eine Dicke aufweist und vorzugsweise flüssigkeitsdurchlässig ist, und bevorzugter, welche ebenso absorbierend ist, welche zwischen dem genannten Deckblatt (28) und dem genannten Rükkenblatt (30) positioniert ist, umfaßt, wobei das genannte Deckblatt mit der genannten unterliegenden Schichte (32, 34) verschmolzen ist, wobei der genannte absorbierende Artikel (20) dadurch gekennzeichnet ist, daß einzelne gebundene Zonen (44) das Deckblatt (28) penetrieren und mindestens einen Teil des Weges in die Dicke der genannten unterliegenden Schichte (32, 34) einragen, ohne die dem Kleidungsstück zugewandte Seite des genannten Rückenblattes (30) zu penetrieren, und mindestens einige der genannten gebundenen Zonen (44) Strukturen mit Drainagedurchgängen, damit Flüssigkeiten durch die genannte unterliegende Schichte (34) durchgehen, beistellen.
- 2. Der absorbierende Artikel (20) nach Anspruch 1, bei welchem die genannte unterliegende Schichte (32, 34) einen Bestandteil umfaßt, welcher aus der Gruppe bestehend aus: einem absorbierenden Kern (32); einer faserigen Erfassungsschichte (34); einem absorbierenden Kern (32), welcher eine oberste faserige Erfassungsschichte (34) umfaßt, bei welchem die genannte Erfassungsschichte (34) aus mindestens einigen synthetischen Fasern besteht; oder einem der vorhergehenden Bestandteile, bei welchem der genannte Bestandteil aus mindestens einigen synthetischen Fasern besteht,

35

40

45

ausgewählt ist.

3. Der absorbierende Artikel (20) nach Anspruch 2 mit einer Längsmittellinie (I), bei welchem die genannte unterliegende Schichte (32, 34) eine Erfassungs- 5 schichte (34) umfaßt und der genannte absorbierende Artikel (20) zusätzlich durch mindestens eines der folgenden Merkmale gekennzeichnet ist:

> eine Mehrzahl der genannten Fasern der genannten Erfassungsschichte (34) ist in der gleichen allgemeinen Richtung wie die Längsmittellinie (I) ausgerichtet;

die genannte Erfassungsschichte (34) umfaßt 15 ein spinngebundenes Faservlies-Textilerzeugnis; und

die genannte Erfassungsschichte (34) besteht aus mindestens einigen Fasern, welche mit 20 einem permanent benetzbaren Finish versehen sind.

- 4. Der absorbierende Artikel (20) nach Anspruch 1 mit einer Längsmittellinie (I), einem der Länge nach verlaufenden Mittelbereich (46), welcher entlang der genannten Längsmittellinie (I) angeordnet und um die genannte Längsmittellinie (I) zentriert ist, und Längsseitenbereichen (48), welche seitlich auswärts vom genannten längsverlaufenden Mittelbereich (46) sind, wobei die genannten gebundenen Zonen (44) in der Draufsicht eine kreisförmige Gestalt aufweisen und einige der genannten gebundenen Zonen (44) relativ groß sind (44a) und einige relativ klein sind (44), wobei die genannten großen gebundenen Zonen (44a) im genannten der Länge nach verlaufenden Mittelbereich (46) angeordnet sind und die genannten kleinen gebundenen Zonen (44) in den genannten Längsseitenbereichen (48) angeordnet sind.
- Der absorbierende Artikel (20) nach Anspruch 1, bei welchem das genannte Deckblatt (28) eine erste Schmelztemperatur aufweist und genannte unterliegende Schichte (32, 34) eine Bahn umfaßt, welche aus Fasern mit einer zweiten Schmelztemperatur besteht, welche höher ist als die genannte erste Schmelztemperatur, und das genannte Deckblatt (28) mit der genannten unterliegenden Schichte (32, 34) an diskreten gebundenen Zonen (44) verschmolzen ist, wobei die genannte Verschmelzung bei einer Temperatur unterhalb der genannten zweiten Schmelztemperatur stattgefunden hat, sodaß die genannten Fasern in ihrem Originalzustand verbleiben und die 55 genannte Verschmelzung Öffnungen definiert, welche sich durch das genannte Deckblatt (28) und mindestens einen Teil des Weges in die Dicke der genannten unterliegenden Schichte (32, 34)

erstrecken.

- Der absorbierende Artikel (20) nach Anspruch 5. bei welchem die genannte unterliegende Schichte (32, 34) eine dem Körper zugewandte Oberfläche und eine der Kleidung zugewandte Oberfläche aufweist und die genannten gebundenen Zonen (44) eine Basis umfassen, welche zwischen der genannten dem Körper zugewandten Oberfläche und der der Kleidung zugewandten Oberfläche der genannten unterliegenden Schichte angeordnet ist, wobei Seitenwandungen aus einem oberen Abschnitt und einem unteren Abschnitt bestehen. bei welchem mindestens eine der genannten Seitenwandungen oder die genannte Basis mit Drainagedurchgängen in die genannte unterliegende Schichte versehen ist.
- Ein absorbierender Artikel nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß der genannte absorbierende Kern eine homogene Mischung aus Fasern umfaßt, welche eine erste Gruppe aus kurzen, hydrophilen Fasern mit geringer Denierzahl, ausgewählt aus einer Gruppe, welche natürliche Fasern, synthetische Fasern oder vernetzte Zellulosefasern umfaßt, und eine zweite Gruppe aus länsynthetischen Fasern mit höherer Denierzahl umfassen, wobei die genannte zweite Gruppe von Fasern zwischen 5 und 20 % des genannten absorbierenden Kerns, bezogen auf das Gewicht, umfaßt und der genannte absorbierende Kern eine Dichte von mindestens 0,09 g/cm³ aufweist.
- 8. Ein flüssigkeitsdurchlässiges Deckblatt (28) für einen absorbierenden Artikel (20), wobei das genannte Deckblatt (28) ausgewählt ist aus der Gruppe bestehend aus:

einer mit Öffnungen versehenen Folie (23) mit einer Unterseite und nicht-elastischen hydrophilen Faservlies-Fasern (42), welche an der Unterseite der genannten mit Öffnungen versehenen Folie (23) durch mechanische Verfilzung fixiert sind;

einer mit Öffnungen versehenen Folie (23) mit einer Unterseite und nicht-elastischen hydrophilen Faservlies-Fasern (42'), welche synthetisches polymeres, thermoplastisches Material auf die Unterseite der Folie aufgeschmolzen umfassen; oder

einer mit Öffnungen versehenen Folie (23) mit einer Unterseite und einer faserigen Faservlies-Schichte (42'), welche mit der genannten mit Öffnungen versehenen Folie (23) an diskreten Punkten zur Fixierung verschmolzen ist. wenn mindestens eine der genannten Folie (23) oder der genannten faserigen Schichte (32') in einem kontrahierten Zustand war, um

ein elastisch verlängerbares Laminat zu bilden.

- 9. Der absorbierende Artikel (20) nach Anspruch 1, bei welchem das genannte Deckblatt (28) eine dem Körper zugewandte Oberfläche und eine dem Kern zugewandte Oberfläche aufweist und das genannte Deckblatt (28) ein Faservliesmaterial (42), welches mindestens einen Teil der genannten dem Körper zugewandten Oberfläche des genannten Deckblattes (28) bildet, und eine mit Öffnungen versehene Kunststoffolie (23) umfaßt, welche mindestens einen Teil der genannten dem Kern zugewandten Oberfläche des genannten Deckblattes (28) bildet, bei welchem die genannte Folie mit einem Oberflächenveredelungsmittel behandelt ist, um die Gesamtdurchlässigkeit des genannten Deckblattes (28) zu erhöhen.
- 10. Ein Verfahren zum Aneinanderfügen zweier flüssigkeitsdurchlässiger Bestandteile eines absorbierenden Artikels (20) in einer gegenüberliegenden
 Seite-an-Seite-Beziehung, bei welchen einer der
 genannten Bestandteile eine dreidimensionale mit
 Öffnungen versehene thermoplastische Folie (23)
 umfaßt, welche als ein Deckblatt (28) für den
 genannten absorbierenden Artikel (20) dienen
 kann, wobei das genannte Verfahren dadurch
 gekennzeichnet ist, daß es folgende Schritte
 umfaßt:
 - a) Beistellen eines ersten flüssigkeitsdurchlässigen Bestandteiles, welcher ein Deckblatt (28) aus dreidimensionaler mit Öffnungen versehener thermoplastischer Folie umfaßt, welches aus einem ersten Material besteht, welches eine erste Schmelztemperatur aufweist, wobei der genannte erste Bestandteil eine erste Oberfläche und eine zweite Oberfläche umfaßt:
 - b) Beistellen eines zweiten flüssigkeitsdurchlässigen Bestandteils, welcher aus einem faserigen zweiten Material besteht, welches eine zweite Schmelztemperatur aufweist, welche höher ist als die genannte erste Schmelztemperatur, wobei der genannte zweite Bestandteil eine erste Oberfläche und eine zweite Oberfläche aufweist;
 - c) Anordnen des genannten Deckblattes (28) in 50 einer Seite-an-Seite-Beziehung mit dem genannten zweiten Bestandteil, sodaß die genannte zweite Oberfläche des genannten Deckblattes (28) anliegend an die genannte erste Oberfläche des genannten zweiten 55 Bestandteiles ist; und
 - d) Verschmelzen des genannten Deckblattes (28) mit dem genannten zweiten Bestandteil an

diskreten Punkten (44), wobei die genannte Verschmelzung bei einer derartigen Temperatur, daß Abschnitte des genannten Deckblattes (28) weich und biegsam werden, und bei einem derartigen Druck stattfindet, daß: i) die genannten Abschnitte des genannten dreidimensionalen Deckblattes (28) zusammenbrechen und an einigen der Fasern des genannten faserigen zweiten Materials haften; ii) mindestens einige der genannten Öffnungen im genannten Deckblatt (28) mindestens teilweise offen bleiben; und iii) das genannte faserige zweite Material ungeschmolzen verbleibt.

5 Revendications

- 1. Article absorbant (20) comportant une feuille de dessus perméable aux liquides, réalisée en un film thermoplastique perforé (28), une feuille de fond imperméable aux liquides (30) ayant une face tournée vers le vêtement et étant réunie à ladite feuille de dessus (28) et une couche sous-jacente (32, 34) ayant une épaisseur et étant, de préférence, perméable aux liquides, et mieux également absorbante, disposée entre ladite feuille de dessus (28) et ladite feuille de fond (30), ladite feuille de dessus étant reliée par fusion à ladite couche sous-jacente (32, 34), dans lequel ledit article absorbant (20) est caractérisé en ce que lesdites surfaces reliées individuelles (44) pénètrent dans la feuille de dessus (28) et au moins dans une partie de l'épaisseur de ladite couche sous-jacente (32, 34), sans pénétrer dans la face tournée vers le vêtement de ladite feuille de fond (30), et en ce que certaines, au moins, desdites surfaces reliées (44) ménagent des structures ayant des passages de drainage pour les liquides qui passent à travers ladite couche sous-jacente (34).
- Article absorbant (20), selon la revendication 1 dans lequel ladite couche sous-jacente (32, 34) comporte un élément choisi parmi le groupe constitué : d'une âme absorbante (32); d'une couche de recueil fibreuse (34); d'une âme absorbante (32) constituée d'une couche de recueil supérieure fibreuse (34), dans lequel ladite couche de recueil (34) est constituée d'au moins certaines fibres synthétiques; ou l'un des éléments précédents, dans lequel ledit élément est constitué d'au moins certaines fibres synthétiques.
 - 3. Article absorbant (20) selon la revendication 2 ayant une ligne médiane longitudinale (I), dans lequel ladite couche sous-jacente (32, 34) comporte une couche de recueil (34), et ledit article absorbant (20) est, en outre, caractérisé par au moins l'une des caractéristiques suivantes :

une majorité desdites fibres de ladite couche

35

de recueil (34) est orientée dans la même direction générale que la ligne médiane longitudinale (I),

ladite couche de recueil (34) est constituée 5 d'un tissu non tissé entrelacé par filage ; et

ladite couche de recueil (34) est constituée d'au moins certaines fibres ayant un fini susceptible d'être mouillé de façon permanente.

- 4. Article absorbant (20) selon la revendication 1 ayant une ligne médiane longitudinale (I), une zone centrale longitudinale (46) disposée le long de et centrée autour de ladite ligne médiane longitudinale (I), et des zones latérales longitudinales (48) situées à l'extérieur latéralement par rapport à ladite zone centrale longitudinale (46), dans lequel lesdites surfaces reliées (44) ont une forme, vue en plan, circulaire, et certaines desdites surfaces reliées (44), et certaines étant relativement grandes (44a), et certaines étant relativement petites (44), lesdites grandes surfaces reliées (44a) étant disposées dans ladite zone centrale longitudinale (46) et lesdites petites surfaces reliées (44) étant disposées dans lesdites zones latérales longitudinales (48).
- 5. Article absorbant (20) selon la revendication 1, dans lequel ladite feuille de dessus (28) a une première température de fusion et ladite couche sousjacente (32, 34) comprend une bande constituée de fibres ayant une seconde température de fusion qui est plus élevée que ladite première température de fusion et ladite feuille de dessus (28) est reliée par fusion à ladite couche sous-jacente (32, 34) dans des surfaces discrètes reliées (44), ladite fusion ayant lieu à une température située en dessous de ladite seconde température de fusion de telle sorte que lesdites fibres demeurent dans leur état initial, et ladite fusion définit des ouvertures qui s'étendent à travers ladite feuille de dessus (28) et au moins une partie de l'épaisseur de ladite couche sousjacente (32, 34).
- 6. Article absorbant (20) selon la revendication 5, dans lequel ladite couche sous-jacente (32, 34) a une face tournée vers le corps et une face tournée vers le vêtement et lesdites surfaces reliées (44) comportent une base disposée entre la face tournée vers le corps et la face tournée vers le vêtement de ladite couche sous-jacente, des parois latérales constituées d'une partie supérieure et d'une partie inférieure, dans lequel au moins l'une desdites parois latérales ou ladite base est munie de passages de drainage dans ladite couche sous-jacente.
- Article absorbant selon la revendication 2 ou 3, caractérisé en ce que ladite âme absorbante com-

porte un mélange homogène de fibres comportant un premier groupe de fibres courtes, de faible denier, hydrophiles, choisies à partir d'un groupe comprenant des fibres naturelles, des fibres synthétiques ou des fibres de cellulose réticulées, et un second groupe de fibres synthétiques plus longues, de denier plus élevé, ledit second groupe de fibres constituant entre 5 et 20% en poids, de ladite âme absorbante, et ladite âme absorbante ayant une densité d'au moins 0,09 g/cm³.

8. Une feuille de dessus perméable aux liquides (28) pour un article absorbant (20), ladite feuille de dessus (28) étant choisie dans le groupe constitué de :

un film perforé (23) ayant une face de dessous et des fibres non élastiques, hydrophiles non tissées (42') reliées à la face de dessous dudit film perforé (23) à l'aide d'un enchevêtrement mécanique;

un film perforé (23) ayant une face de dessous et des fibres non élastiques, hydrophiles, non tissées (42') constituées d'un matériau synthétique polymère, thermoplastique, fondu sur la face de dessous du film; ou

un film perforé (23) ayant une face de dessous et une couche non tissée, fibreuse (42') relié par fusion audit film perforé (23) en des points discrets de fixation lorsqu'au moins ledit film (23) ou ladite couche fibreuse (42') a été dans une condition contractée pour former un stratifié élastiquement extensible.

- 9. Article absorbant (20) selon la revendication 1 dans lequel ladite feuille de dessus (28) présente une face tournée vers le corps et une face tournée vers l'âme, et ladite feuille de dessus (28) est constituée d'un matériau non tissé (42) formant au moins une partie de ladite face tournée vers le corps de ladite feuille de dessus (28) et un film perforé en matière plastique (23) formant au moins une partie de ladite face tournée vers l'âme de ladite feuille de dessus (28), dans lequel ledit film est traité à l'aide d'un tensioactif pour favoriser la perméabilité globale de ladite feuille de dessus (28).
- 10. Un procédé de liaison de deux éléments perméables aux liquides d'un article absorbant (20) situés face à face, dans lequel l'un desdits éléments est constitué d'un film thermoplastique perforé, tridimensionnel (23) qui peut servir en tant que feuille de dessus (28) pour ledit article absorbant (20), ledit procédé étant caractérisé en ce qu'il comporte les étapes suivantes :
 - (a) on fournit un premier élément perméable aux liquides constitué d'une feuille de dessus

(28) réalisée en un film thermoplastique perforé tridimensionnel qui est constitué d'un premier matériau qui présente une première température de fusion, ledit premier élément ayant une première surface et une seconde 5 surface ;

(b) on fournit un second élément perméable aux liquides constitué d'un second matériau fibreux qui présente une seconde température de fusion qui est plus élevée que ladite première température de fusion, ledit second élément ayant une première surface et une seconde surface:

(c) on place ladite feuille de dessus (28) face à face avec ledit second élément de telle sorte que la seconde surface de ladite feuille de dessus (28) soit adjacente à ladite première surface dudit second élément ;et

(d) on relie par fusion ladite feuille de dessus (28) avec ledit second élément en des points discrets (44), ladite fusion ayant lieu à une température telle que des parties de ladite feuille 25 de dessus (28) deviennent molles et souples et à une pression telle que : (i) lesdites parties de ladite feuille de dessus tridimensionnelle (28) s'affaissent et viennent se fixer à certaines des fibres dudit second matériau fibreux ; (ii) au moins certaines desdites ouvertures ménagées dans ladite feuille de dessus (28) restent au moins partiellement ouvertes ; et (iii) ledit second matériau fibreux demeure non fondu.

15

20

35

40

45

50

Fig. 10

Fig. 12

Fig. 16

Fig. 17

Fig. 19

