Operator sumowania

$$x_1 + x_2 + x_3 + \dots + x_n = \sum_{i=1}^n x_i$$

$$\sum_{i=1}^{n} x_i = \sum_{j=1}^{n} x_j = \cdots$$

$$\begin{cases} \sum_{i=1}^{n} x = x + x + x + x + \dots + x = n \\ \sum_{i=1}^{n} x_k = n \\ x_k \end{cases}$$

$$\sum_{i=1}^{n} x_{i+k} = x_{1+k} + x_{2+k} + x_{3+k} + \dots + x_{n+k} = \sum_{\substack{i+k=j\\ i=1 \implies j=1+k\\ i=n \implies j=n+k}}^{n+k} x_j$$

$$\sum_{i=1}^{n} ax_i = ax_1 + ax_2 + ax_3 + \dots + ax_n = a (x_1 + x_2 + x_3 + \dots + x_n) = a \sum_{i=1}^{n} x_i$$

$$\sum_{i=1}^{n} (x_i + y_i) = \underbrace{x_1 + y_1}_{i=1} + \underbrace{x_2 + y_2}_{i=2} + \underbrace{x_3 + y_3}_{i=3} + \dots + \underbrace{x_n + y_n}_{i=n} =$$

$$= x_1 + x_2 + x_3 + \dots + x_n + y_1 + y_2 + y_3 + \dots + y_n = \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} y_i$$

$$\sum_{i=1}^{n} x_i + y_i = x_1 + x_2 + x_3 + \dots + x_n + y_i$$

$$\sum_{i=1}^{n} (ax_i + b) = a \sum_{i=1}^{n} x_i + n b$$

Niech dany będzie zbiór obserwacji zebranych w m seriach po n pomiarów i niech x_{ij} oznacza j-tą obserwację, w i-tej serii.

								Sumy wierszowe
	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃		x_{1j}		x_{1n}	$\sum_{j=1}^{n} x_{1j}$
	<i>x</i> ₂₁	x ₂₂	x ₂₃		x_{2j}		x_{2n}	$\sum_{j=1}^{n} x_{2j}$
	:	:	:	:	:	:	:	:
	x_{i1}	x_{i2}	x_{i3}		x_{ij}		x_{in}	$\sum_{j=1}^{n} x_{ij}$
	:	:	:	:	:	:	:	:
	x_{m1}	x_{m2}	<i>x</i> _{m3}		x_{mj}		x_{mn}	$\sum_{j=1}^{n} x_{mj}$
Sumy kolumnowe	$\sum_{i=1}^{m} x_{i1}$	$\sum_{i=1}^{m} x_{i2}$	$\sum_{i=1}^{m} x_{i3}$		$\sum_{i=1}^{m} x_{ij}$		$\sum_{i=1}^{m} x_{in}$	

Suma obserwacji danych w powyższej tablicy

$$\sum_{i=1}^{m} x_{i1} + \sum_{i=1}^{m} x_{i2} + \sum_{i=1}^{m} x_{i3} + \dots + \sum_{i=1}^{m} x_{ij} + \dots + \sum_{i=1}^{m} x_{in} = \sum_{j=1}^{n} \left(\sum_{i=1}^{m} x_{ij} \right)$$
 suma sum kolumnowych
$$a_1 + a_2 + a_3 + \dots + a_j + \dots + a_n$$

$$\sum_{j=1}^{n} x_{1j} + \sum_{j=1}^{n} x_{2j} + \sum_{j=1}^{n} x_{3j} + \dots + \sum_{j=1}^{n} x_{ij} + \dots + \sum_{j=1}^{n} x_{mj} = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} x_{ij} \right)$$
 suma sum wierszowych
$$b_1 + b_2 + b_3 + \dots + b_j + \dots + b_m$$

Suma nie zależy od kolejności sumowania,

$$\sum_{j=1}^{n} \sum_{i=1}^{m} x_{ij} = \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij}$$

$$\sum_{i=1}^{m} \sum_{j=1}^{n} x_j = m \sum_{j=1}^{n} x_j$$

$$\sum_{i=1}^{m} \sum_{j=1}^{n} x_i = n \sum_{j=1}^{n} x_i$$

Jeśli zakresy indeksów i,j są znane i ustalone, to na oznaczenie sumy wszystkich obserwacji w rozważanej tablicy stosowana jest również notacja $\sum_i \sum_j x_{ij}$

Alternatywna notacja dla sum wierszowych i sum kolumnowych

								Σ
	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃		x_{1j}		x_{1n}	<i>x</i> ₁ .
	<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	•••	x_{2j}		x_{2n}	<i>x</i> ₂ .
	:	:	:	÷	:	÷	:	
	x_{i1}	x_{i2}	x_{i3}		x_{ij}		x_{in}	x_{i} .
	:	:	:	÷	:		:	
	x_{m1}	x_{m2}	x_{m3}	•••	x_{mj}	•••	x_{mn}	x_m .
Σ	<i>x</i> . ₁	<i>x</i> . ₂	<i>x</i> . ₃		$x_{\cdot j}$		$x_{\cdot n}$	х

Suma elementów ponad przekątną główną (włącznie) dla tablicy kwadratowej

$$\sum_{i=1}^{n} \sum_{j=i}^{n} x_{ij}$$

<i>x</i> ₁₁	<i>x</i> ₁₂	•••	x_{1n}
<i>x</i> ₂₁	<i>x</i> ₂₂	•••	x_{2n}
:	:	:	:
x_{n1}	x_{n2}		x_{nn}

Suma elementów na przekątnej głównej tablicy kwadratowej

$$\sum_{i=1}^{n} x_{ii}$$

Centrum i rozproszenie danych;

(i) Wyrównywanie (uśrednianie) danych

$$x_{1}, x_{2}, x_{3}, \dots, x_{n} \longrightarrow \sum_{i=1}^{n} x_{i}$$

$$a, a, a, \dots, a \longrightarrow \sum_{i=1}^{n} a$$

$$\downarrow \qquad \qquad \downarrow$$

$$\sum_{i=1}^{n} x_{i} = n a$$

$$\downarrow \qquad \qquad \downarrow$$

$$a = \frac{\sum_{i=1}^{n} x_{i}}{n}$$

(ii) Wyznaczanie dla zbioru danych $\{x_1, x_2, x_3, \cdots, x_n\}$ "centrum", tj. wielkość b, dla której suma odchyleń obserwacji od b jest równa zero, tj.

$$\sum_{i=1}^n (x_i - b) = 0$$

$$\sum_{i=1}^{n} x_i - n \ b = 0$$

 \mathbb{I}

$$b = \frac{\sum_{i=1}^{n} x_i}{n}$$

Przyjmijmy oznaczać wielkość $\frac{\sum_{i=1}^{n} x_i}{n}$ symbolem \bar{x} .

(wielkość tę nazywa się średnią próbkową albo średnią z próby)

(iii) Rozproszenie danych

Obserwacje $x_1, x_2, x_3, \dots, x_n$

Odchylenia (od centrum) $x_1 - \bar{x}, \ x_2 - \bar{x}, \ x_3 - \bar{x}, \cdots, \ x_n - \bar{x}$ $\longrightarrow \sum_{i=1}^n (x_i - \bar{x}) = 0$

Odchylenia kwadratowe $(x_1 - \bar{x})^2$, $(x_2 - \bar{x})^2$, $(x_3 - \bar{x})^2$, \cdots , $(x_n - \bar{x})^2$ $\longrightarrow \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n}$

Średnie odchylenie kwadratowe Odchylenie średniokwadratowe Średni kwadrat odchyleń Wariancja z próby Wariancja próbkowa

Przyjmijmy oznaczać wielkość $\frac{\sum_{i=1}^{n}(x_i-\bar{x})^2}{n}$ symbolem s^2 .

(iv) Wyznaczanie dla zbioru danych $\{x_1, x_2, x_3, \cdots, x_n\}$ "centrum", tj. wielkość c, dla której suma kwadratów odchyleń obserwacji od c jest minimum.

Zauważmy, że mamy

$$\sum_{i=1}^{n} (x_i - c)^2 = \sum_{i=1}^{n} (x_i - \bar{x} + \bar{x} - c)^2 = \sum_{i=1}^{n} [(x_i - \bar{x})^2 + 2(x_i - \bar{x})(\bar{x} - c) + (\bar{x} - c)^2] =$$

$$= \sum_{i=1}^{n} (x_i - \bar{x})^2 + \sum_{i=1}^{n} 2(x_i - \bar{x})(\bar{x} - c) + \sum_{i=1}^{n} (\bar{x} - c)^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 + 2(\bar{x} - c) \underbrace{\sum_{i=1}^{n} (x_i - \bar{x}) + n(\bar{x} - c)^2}_{=0}$$

A zatem

$$\sum_{i=1}^{n} (x_i - c)^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 + n(\bar{x} - c)^2$$

Stąd suma kwadratów odchyleń obserwacji od c jest minimum, gdy $c=\bar{x}$.

Własności średniej próbkowej \bar{x} :

$$\begin{cases} \sum_{i=1}^{n} (x_i - \bar{x}) = 0 & \sum_{i=1}^{n} x_i = n \, \bar{x} \\ \sum_{i=1}^{n} (x_i - \bar{x})^2 = \min_{c} \sum_{i=1}^{n} (x_i - c)^2 \end{cases}$$

Uwagi kalkulacyjne:

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} (x_i^2 - 2x_i \bar{x} + \bar{x}^2) = \sum_{i=1}^{n} x_i^2 + \sum_{i=1}^{n} (-2x_i \bar{x}) + \sum_{i=1}^{n} \bar{x}^2 = \sum_{i=1}^{n} x_i^2 - 2\bar{x} \sum_{i=1}^{n} x_i + n\bar{x}^2 = \sum_{i=1}^{n} x_i^2 - n\bar{x}^2$$

Stad

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = \begin{cases} \sum_{i=1}^{n} x_i^2 - n \, \bar{x}^2 \\ \sum_{i=1}^{n} x_i^2 - \frac{(\sum_{i=1}^{n} x_i)^2}{n} \end{cases}$$

Przykład

	x_i	$(x_i - \bar{x})^2$	x_i^2
	5	$(5-3,2)^2=3,24$	25
	4	$(4-3,2)^2=0,64$	16
	3	$(3 - 3,2)^2 = 0,04$	9
	1	$(1-3,2)^2=4,84$	1
	3	$(3 - 3,2)^2 = 0,04$	9
Σ	16	8,8	60

$$s^{2} = \begin{cases} \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{8.8}{5} \\ \frac{1}{n} (\sum_{i=1}^{n} x_{i}^{2} - n \, \bar{x}^{2}) = \frac{1}{5} (60 - 5 \cdot 3.2^{2}) \end{cases}$$

$$\hat{s}^{2} = \begin{cases} \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{8.8}{4} \\ \frac{1}{n-1} (\sum_{i=1}^{n} x_{i}^{2} - n \, \bar{x}^{2}) = \frac{1}{4} (60 - 5 \cdot 3.2^{2}) \\ \frac{1}{n} \left(\sum_{i=1}^{n} x_{i}^{2} - \frac{(\sum_{i=1}^{n} x_{i})^{2}}{n} \right) = \frac{1}{5} \left(8.8 - \frac{16^{2}}{5} \right) \end{cases}$$

(1) Przykład.
$$\{x_1, x_2, x_3, \dots, x_n\}$$

$$y_i = \overrightarrow{x_i} - m$$

$$\{y_1, y_2, y_3, \dots, y_n\}$$

Wykazać równości: $\bar{y} = \bar{x} - m$

$$s_y^2 = s_x^2$$

(2) Przykład.
$$\{x_1, x_2, x_3, \dots, x_n\}$$

$$\stackrel{\rightarrow}{k} x_i$$

$$\{y_1, y_2, y_3, \cdots, y_n\}$$

Wykazać równości: $\bar{y} = k \bar{x}$

$$s_y^2 = k^2 s_x^2$$