알파프로젝트 제안서

작품(과제)명 (Project Name)		국문명	전동화 차량의 에너지 효율적인 토크벡터링을 위한 모델 예측 제어					
		9문명	Model Predictive Control for Energy-Efficient Torque Vectoring in xEV					
팀명(Team Name)		e) 국문명	evMPC 영문명 evMPC					
작품제작기간			2025-여름학기		작품작동 여부	■ 작동 □ 비작동 □ 기타		
참 가 인 원(학생)								
No.	성명	소	속학과	학번	휴대전화	E-mail	역할	
1	도준형	스마트모	빌리티공학과	12214270	010-3518-1526	dohjh0219@gmail.com	팀장	
2	구경원	フブ	공학과	12210262	010-3262-9619	kkw9619@inha.edu	팀원	
3	전동재	전기전	전기전자공학부		010-4115-3348	jys486077@naver.com	팀원	
4								
5								
6								
7								
8								
9								
10								
<기업수요 프로젝트 교과목 제안서>를 작성함에 있어 제반사항을 준수할 것을 서약하며 신청합니다.								
2025년 06월 26일								
팀장명: 도준형 신청								
※ 프로젝트 제안 신청 과제별로 1건씩 작성 요망								

- ※ 팀원 중 팀장을 선정하고 각자 담당 역할을 역할 칸에 작성
- * 붙임. 프로젝트 요약 계획서 1부. (5page 이내로 작성 요망)

	2025-여름학기 프로젝트 요약 계획서				
팀명	evMPC				
작품(과제)명	전동화 차량의 에너지 효율적인 토크벡터링을 위한 모델 예측 제어				
1. 개발동기 및 목적, 필요성	전기차(EV)의 선회 성능 및 주행 안정성 향상을 위한 토크 벡터링(Torque Vectoring) 제어 기술은 국내외에서 활발히 연구되어 왔다. 특히 인휠 모터 기반 EV에서는 좌우 바퀴에 개별적인 토크를 인가함으로써, 차량의 선회 안정성과 조향 응답성을 효과적으로 개선할 수 있다. 그러나 이러한 주행 성능 향상을 위한 양쪽 모터 간 급격한 토크차는 각모터가 비효율 영역에서 작동될 수 있다는 단점을 가지고 있다. 전체 시스템의 에너지 효율이 떨어질 수 있으며 이것은 에너지 밀도가 낮은 EV 차량에 있어 치명적일 수 있다. 따라서 토크 벡터링 제어에서 에너지 효율을 고려한 최적화 접근은 반드시 필요하다. 이에 본 연구에서는 횡방향 주행 성능을 만족시키는 모델 예측 제어(Model Predictive Controller)를 설계하되, 비용 함수 내에 모터 효율 또는 에너지 소비 항목에 가중치를 부여하여 전체 주행 효율을 고려한 제어 전략을 제안하고자 한다.				
2. 과제 해결 방안 및 과정	 차량 동역학 모델 수립: 차량 동역학 모델을 수립하고, 차량의 횡방향 및 Yaw 운동을 반영한 차량 동역학 상태 방정식을 구성하여 제어 시스템의 기반을 마련한다. 제약 조건 정의: 토크 및 속도, 전력 제한 등 물리적, 안정성, 에너지 측면에서의 제약 조건을 정의한다. MPC 제어기 설계: 비용 함수를 Tracking 성능과 에너지 소비를 함께 고려하여 설계 하고, 제약 조건을 포함한 예측 기반 최적화 문제로 구성한다. Solver 기반 시뮬레이션 구현: MATLAB 환경에서 TinyMPC, FORCESPRO 등의 솔버를 사용하여 MPC 제어기를 구현하고, 다양한 시나리오에 대해 성능을 비교 검증한다. 임베디드 실시간 제어 구현(Processor-In-The-Loop): Teensy 4.1 보드를 이용하여 경량화된 MPC 알고리즘을 실제 임베디드 환경에서 실행하고, 실시간 제어 가능성을 확인한다. 스케일카 적용: 설계한 MPC 기반 토크 벡터링 제어 알고리즘을 실제 스케일카에 적용한다. 스케일카에 탑재된 센서와 임베디드 보드를 활용하여 실시간 데이터 수집 및 제어 피드백을 구현하며, 시스템 안정성과 에너지 효율을 실험적으로 분석한다. 				
3. 출품과제의 기술	본 과제에서는 Simulink 환경에서 차량 동역학을 선형 상태 공간 모델로 구성하고, 이를 바탕으로 MPC 제어기를 설계한 후, Embedded Coder를 통해 실시간 제어가 가능한 C 코드로 변환한다. 이 코드는 고속 연산이 가능한 Teensy 보드에 탑재되어 가상 시스템에서 토크 벡터링 제어를 수행함으로써 차량의 횡방향 안정성과 에너지 효율 확보를 검증한다.				
4. 개념설계 및 상세설계(계산)	Vehicle Dynamics] - 차량 동역학 모델 : 차량 횡방향 및 Yaw 운동을 설명하는 선형화된 Bicycle 모델 기반 - 상태 변수 : Yaw Rate, Side Slip Angle, 종방향 속도 - 토크 벡터링은 좌우 바퀴 간 토크 차이로 차량의 Yaw Moment에 영향을 주는 형태로 모델에 반영 [Model Predictive Control] - 제어 목적 : 차량의 횡방향 안정성 확보 및 에너지 소비 최적화 - 비용 함수 설계 : 주행 안정성 부분(Tracking Error), 에너지 최적화 부분(전력 소비)				

	=> Multi-objective Cost Function으로써 주행 상황에 맞게 두 제어 목적에 가중치를 결정하도록 함.
5. 기타	
6. 참고문헌	 김상혁(2022), "사륜 인휠모터 전동화 차량의 에너지 효율적인 토크 벡터링을 위한 모델 예측 제어", 인하대학교 전기컴퓨터공학과 석사학위논문. Cannon, M. (2023), Lecture Notes: Model Predictive Control(C21), Department of Engineering Science, University of Oxford.