离散答案A卷

一、简答题(每小题5分,共20分)

1	2	3	4	5	6	7	8	9	10
C	В	A	В	C	В	В	D	A	D

二、简答题(每小题5分,共20分)

1. 参考答案:

根据 R 可以看到满足自反性,对称性,传递性,因此 R 是等价关系。等价类为[1]、[2]。

划分为{[1], [2]}

2. 参考答案:

$$f: \mathbb{Z} \to \mathbb{N}, \quad f(x) = \begin{cases} 2x & x \ge 0 \\ -2x - 1 & x < 0 \end{cases}$$

可以得到此函数为双射函数,因此 Z≈N.

3. 参考答案:

根据拉格朗日定理,一个有限群的任意子群的阶数整除群的阶数。现群的阶数为素数,它的因子只有1和这个素数,因此只有平凡子群。

4. 参考答案:

设<S, ≪>是偏序集,如果S的任意子集均有上确界(最小上界)和下确界(最大下界),则称S关于偏序≪作成一个偏序格.图不是格,因为b∨d的值不确定。

三、数理逻辑部分(共18分)

1. 判断题(3分)参考答案:

第 4 步应用全称推广规则有问题,不满足它的使用条件:在步骤 2 中使用 US 而引入的变元 c 是自由的,在后继的步骤 3 中用 ES 引入的变元 d 在公式中自由出现了,所以不能用 UG。

2. 演算题(5分)参考答案:

(b)
$$P \lor (P \to (Q \lor (Q \to R)))$$

 $\Leftrightarrow P \lor (P \lor (Q \lor (Q \lor R)))$
 $\Leftrightarrow P \lor Q \lor R$

所以主析取范式为:

 $(P \land Q \land \exists R) \lor (P \land \exists Q \land R) \lor (P \land \exists Q \land \exists R) \lor (\exists P \land Q \land R)$ $\lor (\exists P \land Q \land \exists R) \lor (\exists P \land \exists Q \land R) \lor (P \land Q \land R)$

主合取范式为:

 $P \lor Q \lor R$

3. 证明题(10分)参考答案:

(c) 用反证法证:

1	$\exists \forall x (\forall y (H(y) \land N(x, y)) \rightarrow \exists y (A(y) \land N(x, y)))$	P假设前提
2	$\exists x(\forall y(H(y) \land N(x, y)) \land \forall y \exists (A(y) \land N(x, y)))$	T, 1, \mathbf{Q}_3 , \mathbf{E}_{10}
3	$\exists x \forall y (H(y) \land N(x, y) \land (A(y) \lor N(x, y)))$	T, 2, \mathbf{Q}_{10}
4	$H(b) \land N(a, b) \land ($	T, 3, ES, US
5	$H(b) \wedge N(a, b) \wedge \neg A(b)$	T , 4, E_8 , E_{18}
6	$H(b) \wedge \overrightarrow{\uparrow} A(b)$	T, 5, I ₂
7	$\forall x(H(x) \rightarrow A(x))$	P

- 41 -

T, 7, US T, 6, I₂

T, 8, 9, I_a

T, 6, I_2

T, 10, 11, 矛盾

四、集合论部分(共12分)

1. 计算题(2 小题, 每题3分, 共6分)参考答案:

$$(1)$$
 ① $f(1)=1$ $f(2)=2$ $f(3)=2$

②
$$f(1)=2 f(2)=2 f(3)=3$$

$$f(x) = \begin{cases} 1 & \text{if } x = 1, \\ 2 & \text{otherwise.} \end{cases}$$

$$f(x) = \begin{cases} 2 & \text{if } x = 2, \\ 3 & \text{otherwise.} \end{cases}$$

$$f(x) = \begin{cases} 3 & \text{if } x = 3, \\ 1 & \text{otherwise.} \end{cases}$$

(2) 有。例如, $f: N \rightarrow N, f(x)=x+1$, N 为自然数集。

2. 证明题(6分)参考答案:

(1) 证明 $\bigcup_{i=1}^{\infty} R^i \subseteq t(R)$.

先用数学归纳法证明对任一 n>0 有 $R^n ⊆ t(R)$.

由传递闭包的定义可知 $R \subseteq t(R)$.假设 $R^n \subseteq t(R)$, $n \ge 1$.令 $(a,b) \in R^{n+1}$, 因为 $R^{n+1} = R^n \circ R$, 故至少存在一个 $c \in X$, 使 $(a,c) \in R^n$, $(c,b) \in R$. 由归纳假设, $R^n \subseteq t(R)$, $R \subseteq t(R)$, 故有 $(a,c) \in t(R)$, $(c,b) \in t(R)$.因为 t(R) 是传递的, 故 $(a,b) \in t(R)$.由此证得 $R^{n+1} \subseteq t(R)$.

由于对每个 n 均有 $R^n \subseteq t(R)$,故有 $\bigcup_{i=1}^{\infty} R^i \subseteq t(R)$.

(2) 证明 $t(R) \subseteq \bigcup_{i=1}^{\infty} R^{i}$.

先证明 $\bigcup_{i=1}^{\infty} R^i$ 是传递的.令(a,b),(b,c) 是 $\bigcup_{i=1}^{\infty} R^i$ 中的任意两个元素,则必存在 $s \ge 1$, $t \ge 1$, 使 $(a,b) \in R^i$, $(b,c) \in R^i$,从而 $(a,c) \in R^i$ 。 R^i .因为 R^i 。 $R^i = R^{s+i}$,所以 $(a,c) \in \bigcup_{i=1}^{\infty} R^i$,由此可见 $\bigcup_{i=1}^{\infty} R^i$ 是传递的.

由传递闭包的定义可知

$$t(R) \subseteq \bigcup_{i=1}^{\infty} R^{i}$$

由此定理得证.

五、代数系统部分(共18分)

(1)(10分)参考答案:

(本题有多种证明方法,只要逻辑清楚,结论正确即可)

答案示例一:

证明: 显然e ∈ H, 故 H 非空。

对任意 $x,y \in H, < x,e > \in R, < y,e > \in R$, 由 R 是 G 上的等价关系,由对称性得到< $e,y > \in R$,然后由传递性得< $x,y > \in R$

上式可改写为< x * e, $x * x^{-1} * y > \in R$

由题设条件可得 $< e, x^{-1} * v > \in R$

上式等价于 $< x^{-1} * y * (x^{-1} * y)^{-1}, x^{-1} * y * e > \in R$

再次运用题设条件,可得< $(x^{-1}*y)^{-1}$, $e > \in R$

即< $x * y^{-1}$, e > $\in R$

因而有 $x * v^{-1} \in H$

所以H是G的子群。

(2)(8分)参考答案:

由题意知, $< S_{30}$, |>和 $< S_{12}$, |>均是偏序集,其哈斯图分别如下图所示:

由布尔代数定义可知, $< S_{30}$, |>每对元素均存在最大下界和最小上界,故是格,又因为满足分配律,且每个元素都有补元,故是布尔代数。

而在 $< S_{12}$, |>中,元素 2 没有补元(或者指出 6 没有补元),所以肯定不是布尔代数。

六、图论部分(共12分)

(1)(6分)参考答案:

参考答案:

(1)

(2)图 $G=\langle V,E\rangle$, $V=\{a,b,c,d,e,f\}$, $E=\{(a,b),(a,c),(a,e),(b,d),(b,e),(c,e),(d,e),(d,f),(e,f)\}$,则邻接矩阵 $A=(a_{ij})_{6\times 6}$,其中

$$a_{ij} = \begin{cases} 1 & v_i \pi v_j 相邻 \\ 0 & v_i \pi v_j \pi 相邻 \end{cases}$$

则邻接矩阵

$$A = \begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

(1)权值从小到大排列是 1,1,2,2,3,5,6,8,9。

第一步: 选择(a,e), 添加(c,e)。或者选择(c,e)添加(a,e)。

第二步:添加(b,d),放弃(a,c).

第三步: 依次添加(d,f), (a,b)。生成最小生成树。

最小生成树的权值 W(T)=1+1+2+3+5=12。

(2)(6分)参考答案:

a---11 b---01 c---101 d---100 e---001 f---0000 g----0001

(2)(2*0.35 + 2*0.2 + 3*0.15 + 3*0.12 + 3*0.08 + 4*0.05 + 4*0.05)*100 = 255