INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4027B flip-flops Dual JK flip-flop

Product specification
File under Integrated Circuits, IC04

January 1995

Dual JK flip-flop

HEF4027B flip-flops

DESCRIPTION

The HEF4027B is a dual JK flip-flop which is edge-triggered and features independent set direct (S_D) , clear direct (C_D) , clock (CP) inputs and outputs (O,\overline{O}) . Data is accepted when CP is LOW, and transferred to the output on the positive-going edge of the clock. The active HIGH asynchronous clear-direct (C_D) and set-direct (S_D) are independent and override the J, K, and CP inputs. The outputs are buffered for best system performance. Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

FUNCTION TABLES

	II	NPUTS	OUTPUTS			
S _D	CD	СР	J	K	0	0
Н	L	Х	Х	Х	Н	L
L	Н	Х	Х	X	L	Н
Н	Н	Х	Х	Х	Н	Н

	I	NPUTS	OUTPUTS				
S _D	CD	СР	J	K	O _{n + 1}	\overline{O}_{n+1}	
L	L		L	L	no change		
L	L		Н	L	Н	L	
L	L		L	Н	L	Н	
L	L		н	Н	\overline{O}_n	On	

Notes

1. H = HIGH state (the more positive voltage)

L = LOW state (the less positive voltage)

X = state is immaterial

 O_{n+1} = state after clock positive transition

PINNING

J,K synchronous inputs

CP clock input (L to H edge-triggered)

 $S_{D} \quad \ \ asynchronous \ set\mbox{-direct input (active HIGH)}$

C_D asynchronous clear-direct input (active HIGH)

O true output

O complement output

HEF4027BP(N): 16-lead DIL; plastic (SOT38-1)

HEF4027BD(F): 16-lead DIL; ceramic (cerdip) (SOT74)

HEF4027BT(D): 16-lead SO; plastic (SOT109-1)

(): Package Designator North America

FAMILY DATA, I_{DD} LIMITS category FLIP-FLOPS

See Family Specifications

Philips Semiconductors Product specification

Dual JK flip-flop

HEF4027B flip-flops

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
$CP \rightarrow O, \overline{O}$	5			105	210	ns	78 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		40	80	ns	29 ns + (0,23 ns/pF) C _L
	15			30	60	ns	22 ns + (0,16 ns/pF) C _L
	5			85	170	ns	58 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		35	70	ns	27 ns + (0,23 ns/pF) C _L
	15			30	60	ns	22 ns + (0,16 ns/pF) C _L
$S_D \to O$	5			70	140	ns	43 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		30	60	ns	19 ns + (0,23 ns/pF) C _L
	15			25	50	ns	17 ns + (0,16 ns/pF) C _L
$C_D \rightarrow O$	5			120	240	ns	93 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		45	90	ns	33 ns + (0,23 ns/pF) C _L
	15			35	70	ns	27 ns + (0,16 ns/pF) C _L
$S_D \rightarrow \overline{O}$	5			140	280	ns	113 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		55	110	ns	44 ns + (0,23 ns/pF) C _L
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L

Philips Semiconductors Product specification

Dual JK flip-flop

HEF4027B flip-flops

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
$C_D o \overline{O}$	5			75	150	ns	48 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		35	70	ns	24 ns + $(0,23 \text{ ns/pF}) C_L$
	15			25	50	ns	17 ns + (0,16 ns/pF) C_L
Output transition times	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}		30	60	ns	9 ns $+$ (0,42 ns/pF) C_L
	15			20	40	ns	6 ns $+$ (0,28 ns/pF) C_L
	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns $+$ (0,42 ns/pF) C_L
	15			20	40	ns	6 ns $+$ (0,28 ns/pF) C_L
Set-up time	5		50	25		ns	
$J,\!K\toCP$	10	t _{su}	30	10		ns	
	15		20	5		ns	
Hold time	5		25	0		ns	
$J,\!K\toCP$	10	t _{hold}	20	0		ns	
	15		15	5		ns	
Minimum clock	5		80	40		ns	
pulse width; LOW	10	t _{WCPL}	30	15		ns	see also waveforms Figs 4 and 5
	15		24	12		ns	rigs + and 5
Minimum S _D , C _D	5		90	45		ns	
pulse width; HIGH	10	twspH,	40	20		ns	
	15	t _{WCDH}	30	15		ns	
Recovery time	5		20	-15		ns	
for S_D , C_D	10	t _{RSD} ,	15	-10		ns	
	15	t _{RCD}	10	-5		ns	
Maximum clock	5		4	8		MHz	. ,
pulse frequency	10	f _{max}	12	25		MHz	see also waveforms Fig.4
J = K = HIGH	15		15	30		MHz	i ig. 4

	V _{DD} V	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	900 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	4 500 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	13 200 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_0C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

Philips Semiconductors Product specification

Dual JK flip-flop

HEF4027B flip-flops

APPLICATION INFORMATION

Some examples of applications for the HEF4027B are:

- Registers
- Counters
- · Control circuits

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.