NP Completeness

Yong Wen Chua

https://github.com/lawliet89/np-complete

Content

- 1. Decision Problems
- 2. What is the Computational complexity theory?
- 3. Turing Machine model of computation
- 4. Complexity Hierarchy
- 5. P
- 6. NP
- 7. Reduction
- 8. NP-Complete
- 9. P = NP?

Decision Problems

Reachability

RCH : Given a directed graph $\ G$ and nodes $\ x$, $\ y$, is there a path from $\ x$ to $\ y$?

RCH Algorithm

Let s be a set of nodes to process. There are n nodes in the graph.

Initially, $S = \{x\}$.

At each stage, for some $z \in S$:

- remove z from s
- mark z
- Find all unmarked "successors" of z and add them to s

Until y is found or s is empty.

Worst case: each edge is examined once. There are at most n^2 edges.

So $O(n^2)$.

(Formal) Big Oh Notation

Let $f, g : \mathbb{N} \to \mathbb{N}$.

Definition

$$f(n) = O(g(n))$$
 if $\exists c, n_0 \in \mathbb{Z}_+$ such that $\forall n \geq n_0 \ f(n) \leq c.g(n)$.

The time or space required is bounded by this function.

Computation Complexity Theory

- More than Big Oh Notation
- Classifying computational problems according to their inherent difficulty into different classes
- Relation between the different *classes*

Decidable vs Undecidable

RCH: Decidable

HALT: Given the description of an *arbitrary* program and a finite input, decide whether the program finishes running or will run forever.

This is undecidable over Turing Machines.

Proceedings of the London Mathematical Society, Volume s2-42, Issue 1, 1 January 1937, Pages 230–265, https://doi.org/10.1112/plms/s2-42.1.230

HALT

Consider an Oracle H(p,x) which decides that if some program p will halt for some input x. (i.e. a black box that solves HALT)

Then, we construct program P:

```
program P(y):
   if H(y,y) = halt then
   loop forever
   else:
     return
```

- If H(P,P) = halt then P(P) runs forever.
- If H(P,P) = loop then P(P) halts.

H always gives the wrong answer. Generalized H cannot exst.

â^Ž Contradiction

Tractable vs Intractable

• Tractable problems can be solved in a *feasible* or *practical* amount of time

Cook-Karp Thesis: Tractable = polynomial time (P)

but... is n^{100} or $2^{n/100}$ more practical?

(Deterministic) Turing Machine

- Read/Write head over a tape. Can move right or left. The head stores the current state of the machine
- Symbols on tape
- A table of instructions where given the current state, and the symbol on the tape, decide whether to write to the tape, move left/right, or transition into a new state.

Turing Machine - Binary Successor

State Machine:

Universal Turing Machine (UTM)

- A Turing Machine that can take in an arbitrary program as input and run that program.
- "Stored-program computer"
- The basis of modern computing
- A multi-tape UTM is only slower by a logarithmic factor compared to the machine it simulates.

Invariance Thesis

(similar to Church-Turing Thesis)

All *reasonable* sequential models of computation have the same time complexity as Deterministic Turing Machines (DTM) up to a polynomial.

e.g. RAMs, 1-tape DTM, k-tape DTM

Complexity Hierarchy

(Formal) Languages

Formally, a language L is a set of strings over a given alphabet Σ .

Then let $L\subseteq (\Sigma-\{B\})^*$ and M be a DTM with alphabet Σ such that for any $w\in (\Sigma-\{B\})^*$:

- ullet if $w\in L$ then M(w) terminates with yes
- ullet if w
 otin L then M(w) terminates with ${ t no}$

Then we can say M decides L and L is recursive because it is decided by some DTM.

Then iff for any length n=|w| of $w\in (\Sigma-\{B\})^*$, M operates within the time bound f(n) , we say

$$L \in TIME(f(n))$$

Polynomial Time (P)

$$P = \bigcup_k TIME(n^k)$$

That is P is the set of decision problems which can be decided by a DTM in polynomial time for all inputs.

The function analogue to P is FP.

Known Problems in P

- Greatest Common Denominator (GCD)
- PRIMES whether a number is prime
 (https://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.
 pdf)

Non-deterministic Turing Machines (NDTM)

A NDTM M has many possible computation for some input w that is chosen at random.

M(w) represents the tree, with some depth.

NDTM is not practical.

(Formal) Nondeterministic Acceptance and Time

For some language L, if M returns $\log M$ on some input M, then we say M accetps L. (i.e. it can reject, or never terminate).

A NDTM M operates within time f(n) if M(w) has depth $\leq f(|w|)$.

Then we can say NDTM M decides a language L within time f(n)

- M operates within time f(n)
- ullet M accepts L

 $L \in NTIME(f(n))$ iff L is decided by some MDTM operating within time f(n).

$$L \in NTIME(f(n))$$

Non-deterministic Polynomial Time (NP)

$$NP = \bigcup_k NTIME(n^k)$$

That is NP is the set of decision problems that can be decided by a NDTM in polynomial time for all inputs.

More usefully: you can "guess" a solution to a NP problem in polynomial time and *verify* that it is a solution in polynomial time.

Simulating a NDTM

Suppose L is decided by some NDTM N in time f(n). Then it can be simulated by a DTM M in time $O(c^{f(n)})$ for some constant C>1.

We don't know if the simulation can be improved. (i.e. We don't know if P=NP.)

NP Problems

- ullet All problems in P
- Integer factorization (most likely in NP)
- Graph Isomorphism
- SAT: Given a set of logic clauses with variables, is there an assignment of boolean values to the variables that will satisfy the clauses?
- Hamiltonian Path (HP): Given an undirected graph, is there a path visiting each node exactly once?
- Decision version of Travelling Salesman (TSP(D)): Is there a route visiting all cities with total distance less than some k?

Reduction

- ullet Let some problem L_1 be *less hard* than some problem L_2 .
- ullet We can say $L_1 \leq L_2$
- Two ways: Karp (or many-one) reduction or Cook (or Turing) reduction

(Formal) Karp Reduction

 L_1 is Karp reducible to L_2 ($L_1 \leq L_2$) if there is a map f such that

- ullet $x\in L_1$ iff $f(x)\in L_2$ and
- f is in P

Let M_1 decide L_1 , M_2 decide L_2 and M computer f(x). Then

Properties of Reduction

If $L_1 \leq L_2$

- ullet if L_2 is in P, then L_1 in P
- ullet if L_2 is in NP, then L_1 in NP
- $\bullet \le$ is transitive

NP-complete (NPC)

L is NP-hard if for some L' in NP, $L' \leq L$.

Then

L is NP-complete if

- L is in NP
- ullet L is NP-hard

That is NPC problems are the "hardest" in NP

NPC Relation

NPC Problems

- SAT: Proved by Cook-Levin Theorem
- TSP(D)
- ullet Knapsack problem: Can a value of at least V be achieved without exceeding the weight W?
- HP
- K-Graph colouring

Huge list of NPC problems

NPC Reduction

P = NP?

- P problems can be solved efficiently.
- NP problems have no known efficient algorithms to solve.

Consequences in Public Key Cryptrography

- Depend on "difficulty" of problems like Discrete logarithm and integer factorization that are known to be neither in P nor NPcomplete to create "one-way" functions.
- If P=NP, then we can find an effective solution to some NP-complete problem and reduce the rest to that problem to solve them.
- ullet If P
 eq NP then we can show that one-way functions exist.

Consequences in Operation

ullet If P=NP Efficient solution to Integer Linear Programming (for optimization under constraints) and Travelling Salesman