Information Set Decoding

https://youtu.be/g-J9RzLKqzI

장경배

코드기반암호

• 코드기반암호의 안전성은 아래 신드롬 디코딩 문제에기반함

Challenge

$$C_0 = He^{\tau}$$

암호문과 공개키는 알려진 정보 : \mathcal{C}_0 , H

특정 무게 조건의 벡터 e 를 찾아내는 문제 \rightarrow NP-hard

• H 생성에 대한 비밀정보(개인키)를 가지고 있다면 암호문 \mathcal{C}_0 로부터 원본 벡터 e 를 복구할 수 있음

코드기반암호

공개키를 생성행렬 G 를 사용하면 McEliece 버전 $\rightarrow C = mG' + e$

Weight (e) = t

패리티체크 행렬 H 를 사용하면 Niederreiter 버전 $\rightarrow C = He$

Information Set Decoding(ISD)

• 코드기반 암호에 대해 가장 효율적인 공격법

$$C_0 = He^{\mathsf{T}}$$

- 공개키 H 와 암호문 C_0 만을 가지고 원본 메세지를 복구함
 - 개인키를 찾아내진 않음
- 다른 공격법인 구조 공격(Structure attack)도 존재
 - 공개키 H 로부터 구조적 결함을 찾아 개인키를 복구하는 공격 방법
 - ISD 보다 성능이 좋지 않아 잘 연구되지는 않음

Information Set Decoding(ISD)

- Prange의 기본적인 ISD 부터 시작하여 이를 개선시키는 다양한 ISD 가 연구되고 있음
 - 획기적인 성능 향상을 보여주진 않으며 복잡도를 아주 조금씩 줄이는 정도

Information Set Decoding(ISD)

- Information Set Decoding
 - Gaussian elimination (1) + Brute force (2) 의 구조 → 1. Gaussian elimination을 통해 문제를 변형시킨 뒤,
 - 2. 해당 문제에서특정 조건을 만족하는 벡터를 찾을 때까지 반복

- Quantum 버전은 Brute force (2)부분의 복잡도를 절반으로 줄임
 - Grover search 알고리즘 사용하여..

Prange's Algorithm (McEliece 버전)

• Brute force 만이 존재, Gaussian elimination X

$$C = mG' + e$$
, Weight $(e) = t$

- 1. n bit 의 길이 암호문 C 에서 k bit 의 벡터 C_k 를 랜덤하게 선택 $(k \times n)$ 행렬
 - \rightarrow 오류 위치를 모르는 상태에서 자신이 선택한 k bit 벡터에 오류가 포함되지 않아야 함
- 2. 선택한 열의 index에 맞춰 G' 으로부터 G'_k 를 뽑아낸다. 이때, G'_k 는 invertible
- 3. $C_k G'_k^{-1} = (mG' + e)_k G'_k^{-1} = m + e_k G'_k^{-1}$ 만약 e_k 가 0이라면 ((1번에서 조건), $e_k G'_k^{-1} = 0$ \rightarrow 이에 대한 확인은 Weight $(C + C_k G'_k^{-1} G') <= t$ $(mG' + e)_k G'_k^{-1} = C_k G'_k^{-1}$ 이며,

mG' + e = C 이기 때문에, $C_k {G'}_k^{-1} = m$, 쉽게 원본 메시지를 찾을 수 있음

Information Set Decoding (ISD) (Niederreiter 버전)

Gaussian elimination + Brute force

- Gaussian elimination를 통해 패리티 체크 행렬을 아래와 같이 Systematic form으로 변경 가능함
 - Classic McEliece 의 경우, 이를 공개키로 사용

Gaussian elimination 적용

Identity matrix Information set

→ 오른쪽이 Identity matrix, 왼쪽을 information set으로도 가능

Lee-Brickell's Information Set Decoding (Niederreiter 버전)

- Lee-Brickell은 Prange의 알고리즘을 개선
 - Gaussian elimination을 적용, 아래와 같이 Systematic form을 구성
 - Information Set의 index에 해당하는 벡터 Weight $(e_1) = p$ 를 허용, 최적의 파라미터 p는 행렬 크기에 따라 다름
 - 벡터 e의 무게 분포를 아래와 같이 설정, (information set 에는 p, identity matrix에는 t p)

$$He = C$$

Weight(e) = t

Lee-Brickell's Information Set Decoding (Niederreiter 버전)

- 이제 Q행렬에 대해 Brute force \rightarrow Weight (Q· $e_1 + C$) = t-p 를 만족하는 e_1 을 찾음
- 이를 만족한다면, e_2 는 $(Q \cdot e_1 + C)$ 값의 1 에 맞춰 벡터를 구성 가능, \rightarrow 무게, 신드롬 값도 일치 (오른쪽 그림 참고)
- 만족하는 벡터 e_1 를 찾지 못했다면 처음부터(Gaussian elimination) 다시 반복

Stern's Information Set Decoding (Niederreiter 버전)

- Information set에서 MITM(Meet In the Middle) 적용
 - Gaussian elimination을 적용, 아래와 같이 Systematic form을 구성
 - 벡터 e의 무게 분포를 아래와 같이 설정

Information set

Identity matrix

Stern's Information Set Decoding (Niederreiter 버전)

Step 1. $Q_l \cdot e_1 = C_l$ 인지 확인, C_l 은 C의 l 크기 부분 (위로부터 l 만큼), l 또한 p와 마찬가지로 파라미터임

Step 2. Weight $(Q \cdot e_1 + C) = t - p$ 라면 e_2 를 결과 값에 맞춰 구성 \rightarrow 신드롬 값, 무게 조건도 일치 (오른쪽 그림 참고) 아니라면 Gaussian elimination 부터 다시 돌아가 반복

Dumer's Information Set Decoding (Niederreiter 버전)

- Gaussian elimination을 통해 아래와 같이 Systematic form을 구성, (이렇게 생기게도 만들수 있는진 모르겠는데, 이렇게 하고 bruteforce를 시작)
- Stern 의 알고리즘을 조금 개선
 - information set 에 해당하는 부분(e')을 반으로 나누지 않아도 되므로 더 효율적

t - p	р
<i>e</i> "	e'

Dumer's Information Set Decoding (Niederreiter 버전)

Step 1. $e' \cdot H' = s'$ 을 만족하는 e'을 찾음

Step 2. Weight $(e' \cdot H'' + s'')$ 이 t - p 를 만족하는지 확인,

만족한다면 e'' 을 결과 값에 맞춰 구성 \rightarrow 신드롬 값, 무게도 일치

찾지 못하면 처음부터 다시 반복

Quantum ISD

Quantum ISD

Challenge

- $C_0=He^{^{\mathrm{T}}}$ 라는 신드롬 계산 식에서 C_0 와 H 가 주어진다 해도 low weight 벡터 e 를 찾아내기 매우 어려움o Finding low-weight codeword problem
- Challenge에 대한 답은 Oracle에서 찾음, Diffusion operator에서는 해답 관측 확률 증폭

< Grover search >

Grover Search Algorithm

• Grover 알고리즘의 oracle에서는 정답인 큐비트 상태의 부호를 반전 (Z 게이트)

- Diffusion operator는 반전 된 큐비트 상태의 amplitude를 증폭
 - (평균 amplitude) (해당 amplitude)

두 가지 과정을 반복한 뒤 관측

Grover Oracle Toy Example

- 간단한 Grover oracle
 - 4-Qubit Input일 때, 해답이 0 1 0 0 인 경우를 찾는 간단한 oracle

- Step 1. 0100 인 경우, X 게이트로 인해 1111
- Step 2. 따라서 Input이 0 1 0 0 인 경우에만, Controlled Z 게이트가 작동 → 부호 반전
- Step 3. Reverse 연산을 수행하여 원래 상태로 되돌림 (1111 → 0100)

• $C_0 = He$ 를 만족하는 벡터 e를 찾는 oracle

$$H = egin{array}{c} 1110 \\ 1100 \\ 1000 \\ 0101 \end{array} \qquad C_0 = 1101 \qquad {
m Weight}(e) = 1$$

- Syndrome값 *He* 계산
 - *e* 는 중첩 상태
 - *H* 는 고정
- Syndrome 값이 1101인 경우, Controlled Z 게이트 작동
- 벡터 e 의 Weight 확인 단계가 아직 남았음

• $C_0 = He$ 에 대한 oracle 설계는 완료, 남은 건 Weight (e) = 1 인지 확인

- Weight check에 가장 많은 양자 자원이 필요
 - 덧셈이 사용되며 Ripple-carry 회로 사용

• 4-Qubit의 Weight를 확인하는 법, (덧셈 시, 캐리 값을 저장하기 위한 추가 큐비트 필요)

• 4-Qubit의 최대 Weight = 4 (100)

Weight 가 1인경우(001), weight_result = 1

• 최종 Quantum ISD circuit

n번 반복하여 관측 확률 증가

• $C_0 = He$ 를 만족하는 벡터 e를 찾는 Quantum ISD

$$H = egin{array}{c} 1110 \\ 1100 \\ 1000 \\ 0101 \end{array} \qquad C_0 = 1101 \qquad {
m Weight}(e) = 1$$

• 3번 반복 뒤, 관측 결과

Quantum ISD (Lee-Brickell)

- 앞서 Quantum ISD 와는 다른 점, Weight 확인이 2번 수행 됨, \rightarrow Q· e_1 + C 그리고 e_1
- 회로에서 H에 대한 행렬을 구성할 때, Q 만 구성하면 됨, I_{n-k} 는 제외 \rightarrow 큐비트 감소

Quantum ISD (Lee-Brickell)

- Lee-Brickell Quantum ISD circuit (미니어처), oracle 부분
 - 앞선, Circuit과 크게 다르지 않음, (앞에 예제 회로로 설명)
 - Q· $e_1 + C$ 의 Weight를 확인해야 함
 - C가 만약 0 0 1 0 이라 하면, 3번째 큐빗 라인에 X게이트를 수행해주면 됨

진행 사항

- 실제 Goppa 코드에서 생성한 (8 x 16) 행렬 H에 대한 $C_0 = He$ 문제에 Quantum ISD 설계 (Lee-Brickell 버전으로)
 - 32 큐비트 사용 → 시뮬레이션 되지 않음 (약 5 큐빗 정도만 덜 썻어도..??), 더 작은 행렬로 시도해야 함
 - 사용 양자 자원 (반복횟수 n = 5)

Lee_brickell(CM_8x16) × /Users/kb/PycharmProjects/proj Gate class counts: AllocateQubitGate : 32 CCCCCCCCXGate : 10 CCCCCCCZGate : 5 CCCCCCZGate : 5 CCXGate : 360 CXGate : 1070 DeallocateQubitGate : 32 HGate : 88 MeasureGate : 8 XGate : 170

진행 사항

- Classic McEliece 가장 작은 파라미터 mceliece348864 를 타겟으로 Quantum ISD (Lee-Brickell) 구현
 - mceliece348864에서 사용하는 (768 X 3488) 의 행렬 H가 타겟
 - Weight를 확인하는 부분이 메인 > 대부분의 양자 자원이 여기서 사용
 - Weight 확인 모듈이 제대로 동작하는지 여부는 확인했지만(Classical simulator)
 - e1 > 2720-qubit 벡터 Weight 측정
 - Q·*e*1 + *C* → 768-qubit 벡터 Weight 측정
 - 실제 시뮬레이션은 불가, 양자 자원 측정 (반복 횟수 n=2로 확인) →

