實驗六

NB-IoT 雙向控制智慧溫室實習

黃能富特聘教授 國立清華大學資訊工程系

E-mail: nfhuang@cs.nthu.edu.tw

All rights reserved. No part of this publication and file may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of Professor Nen-Fu Huang (E-mail: nfhuang@cs.nthu.edu.tw).

大綱

- 材料清點
- 原理與構造
- 實驗

材料清點

材料

NB-IoT 模組 4553 + 天線

土壤濕度感應器

光線感應器

溫溼度感測器

杜邦線、排針

風扇

LED 燈條、燈條轉接頭

繼電器

電源供應模組、電源供應器

溫室本體

材料清點:4553 & 天線

4553

NB-IoT 天線

材料清點:土壤溼度感測器

材料清點:光線感測器

材料清點:溫溼度感測器

材料清點:風扇

材料清點:LED 燈條 & 燈條轉接頭

材料清點:繼電器

材料清點:電源供應模組&電源供應器

電源供應模組

電源供應器

大綱

- 材料清點
- 原理與構造
 - 電源供應模組
 - 繼電器
 - 土壤溼度感測器
 - 光線感測器
 - 溫溼度感測器
- ●實驗

電源供應模組

電源供應器

上排: DC-IN / 12V 輸出

下排:對應的GND

(此次實驗供給**LED燈條**跟**風扇**)

上排: **3.3V** 輸出下排: 對應的**GND**

(此次實驗供給**光感、溫濕度、土壤溼度感測器**)

上排:5V輸出

下排:對應的GND

(此次實驗供給4553、繼電器)

繼電器(Relay)的原理

- 繼電器的主要功能是要讓小電力可以驅動大電力,並作為開關使用
- 什麼意思呢?

繼電器(Relay)的原理

- 而繼電器做的事情,就是把我們輸入的訊號當作開關的依據 (比如說,當我給高電位的時候,讓電路關閉,燈泡就會亮)
- 這樣我們就可以用程式來控制開關,而不是用手切換

• 繼電器構造(參考用)

- 主要構造有NO, NC, COM, Input
 - COM:公共端
 - NO:常開,平時為斷路,繼電器開啟時與COM相接
 - NC:常閉,平時與COM為通路,繼電器開啟時斷路
 - Input:控制開關
 - 可為高電位或低電位觸發
 - 本次提供的繼電器為低電位觸發

● 每個繼電模組會有一個對應的signal input

土壤溼度感測器

- 比較器 LM393
- 工作電壓3.3V-5V

光線感測器

- The resistance of photo-resistor decreases when the intensity of light increases
- A dual Op-Amp chip LM358 on board produces voltage corresponding to intensity of light(i.e. based on resistance value)
- The output signal is analog value, the brighter the light is, the larger the value.

Operating voltage	3~5V
Operating current	0.5~3 mA
Response time	20-30 milliseconds
Peak Wavelength	540 nm

溫溼度感測器

VCC	3.3	_	6	V
支持測量電流	1	_	1.5	mA
待機電流	40	_	50	uA
測量範圍 (濕度)	5%	_	99%	RH
測量範圍 (溫度)	-40	-	80	°C
精度 (濕度)	-	-	±2%	RH
精度 (温度)	_	-	±0.5	°C
解析度 (濕度)	_	-	0.1%	RH
解析度 (溫度)	_	-	0.1	°C
再現性 (濕度)	_	_	±0.3%	RH
再現性 (溫度)	_	_	±0.2	°C
長期穩定性	_	_	±0.5%	RH/year
訊號採集週期	_	2	_	S
反應時間1 / e (63%)	6	_	20	S

大綱

- 材料清點
- 原理與構造
- 實驗
 - 組裝智慧溫室及平台操作

大綱

- 組裝智慧溫室及平台操作
 - 新增感測器群組
 - 新增感測器
 - 新增控制器
 - 組裝及操作智慧溫室
 - 組裝智慧溫室
 - 手動控制開關
 - 查看感測器數據
 - 數據分析

組裝智慧溫室及平台操作

- 網址: https://smart-campus.kits.tw/
- 點選下方「登入」

組裝智慧溫室及平台操作

• 使用帳號密碼登入

—— User Login ———	
Account	Account
Password	Password
Log in	Log in
國立清華大學高速網路實驗室 TEL: 03-5715131#33564 任何第三者未經授權不得以任何方式使用本網站之系統設計 或網頁內容	TI

組裝智慧溫室及平台操作

• 登入成功, 進入平台

大綱

- 組裝智慧溫室及平台操作
 - 新增場域
 - 新增感測器群組
 - 新增感測器
 - 新增控制器
 - 組裝及操作智慧溫室
 - 組裝智慧溫室
 - 手動控制開關
 - 查看感測器數據
 - 數據分析

新增感測器群組

- 點選「場域空間」展開清單
- 點選指定場域,進入場域頁面

新增感測器群組

- 點選「場域空間」展開清單
- 點選指定場域,進入場域頁面

● 點選「+」建立新群組

新增感測器群組

- 輸入「感測器群組名稱」:第 _ 組智慧溫室
- 「MacAddress」請輸入4553的MacAddr (包裝外有標示)
 - macAddr為11:22:33:44的感測器,請輸入00000000aa223344
- 點選「Add」建立新群組

大綱

- 組裝智慧溫室及平台操作
 - 新增感測器群組
 - 新增感測器
 - 新增控制器
 - 組裝及操作智慧溫室
 - 組裝智慧溫室
 - 手動控制開關
 - 查看感測器數據
 - 數據分析

- 點選「場域空間」展開清單
- 點選指定場域,進入場域頁面

● 點選剛剛建立的感測器群組,進入群組頁面

● 點選「+新增感應器」増加感應器

第一組智慧溫室

感應器目前數值

- 「感測器種類」選擇「空氣溫度」
- 點選「Commit」建立新感應器

● 重複前頁步驟建立「空氣濕度」「土壤濕度」「光照度」

● 群組頁面可顯示歷史資料,也可將資料匯出成Excel檔供分析使用

大綱

- 組裝智慧溫室及平台操作
 - 新增感測器群組
 - 新增感測器
 - 新增控制器
 - 組裝及操作智慧溫室
 - 組裝智慧溫室
 - 手動控制開關
 - 查看感測器數據
 - 數據分析

- 點選「邏輯控制」展開清單
- 點選指定場域進入控制頁面

● 點選「新增控制器」註冊控制器

根據以下指示建立風扇控制器

- Name
 - 輸入「第 ___ 組風扇」
- Type
 - 選擇「風扇」
- Topic(傳輸協議)
 - 選擇「NBIOT-GW」
 - 並輸入「3bf90242ac110003」

• 根據以下指示建立風扇控制器

- MacAddr
 - 輸入4553的Mac Address
- Pin Number
 - 將GPIO Pin設為 0
- 按「確認」建立控制器

- 重複上述步驟建立「LED」
 - Type 及 Pin Number 需進行修改

P0_24 : 風扇 → GPIO Pin = 0
P0_27 : LED → GPIO Pin = 1

● 點選控制器 (e.g. 風扇) 進入控制中心

- 平台提供三種控制方法
 - 手動控制開關
 - 自動控制開關
 - 時間控制開關

大綱

- 組裝智慧溫室及平台操作
 - 新增感測器群組
 - 新增感測器
 - 新增控制器
 - 組裝及操作智慧溫室
 - 組裝智慧溫室
 - 手動控制開關
 - 查看感測器數據
 - 數據分析

4553 線路佈置

以正面觀看之各腳位 (請以實際標示為主)

翻面可看到各腳位說明

4553 線路佈置

• 4553

- 5V
- GND
- BC_TX_33--NRF_RX
- BC_RX_33--NRF_TX

GPIO

P0_24:風扇

● P0_27:LED 燈條

Analog Input

• P0_29:光線感測器

P0_30:土壤溼度感測器

Digital Input

P0_16:溫溼度感測器

推薦電源

- 5V
 - 繼電器
 - 4553
- 3.3V
 - 土壤溼度感測器
 - 光線感測器
 - 溫溼度感測器
- 12V
 - 風扇
 - LED燈條

Partial Circuit Diagram

實驗

• 組裝智慧溫室

步驟一:TX RX 線路佈置

步驟二:4553 線路佈置

● 步驟三:繼電器線路佈置

● 步驟四:風扇 線路佈置

● 步驟五:LED 線路佈置

● 步驟六:溫溼度感應器 線路佈置

● 步驟七:土壤濕度感應器 線路佈置

● 步驟八:光線感測器 線路佈置

步驟一:TX RX 線路佈置

以正面觀看之各腳位 (請注意4553版本)

- BC_TX_33--NRF_RX
- BC_RX_33--NRF_TX

接線前請關閉電源

步驟二:4553 線路佈置

以正面觀看之各腳位 (請以實際標示為主)

步驟三:繼電器線路佈置

接線前請關閉電源

步驟二、三:4553 繼電器 線路佈置

• 點選「風扇」進入控制中心

- 點選「手動控制」按鈕展開設定
- 輸入「啟動時間」並勾選左側方框
- 開啟電源供應器電源
- 按下「開關按鈕」發送指令
- 確認風扇是否有正常運作

• 點選「LED」進入控制中心

- 點選「手動控制」按鈕展開設定
- 輸入「啟動時間」並勾選左側方框
- 開啟電源供應器電源
- 按下「開關按鈕」發送指令
- 確認LED是否有正常運作

步驟六:溫溼度感測器 線路佈置

步驟七:土壤溼度感測器 線路佈置

步驟八:光線感測器 線路佈置

查看感測器數據

- 點選「場域空間」展開清單
- 點選指定場域,進入場域頁面

● 點選剛剛建立的感測器群組,進入群組頁面

查看感測器數據

確認感測器數據是否有正常上傳

組裝完成

組裝完成

大綱

- 組裝智慧溫室及平台操作
 - 新增感測器群組
 - 新增感測器
 - 新增控制器
 - 組裝及操作智慧溫室
 - 組裝智慧溫室
 - 手動控制開關
 - 查看感測器數據
 - 數據分析

- 點選「數據分析」展開清單
- 點選指定場域,進入比較頁面

● 點選「兩種感測器數據比較」

請選擇比較方式:

- 選取剛剛建立的感測器群組
- 點選「開始比較」

- 選取任兩種溫室上傳的數據
- 拉到頁面最下方,點選「確定」

• 可以比較數據間之相關性,分析作物生長環境

The End