Density Ratio Estimation with Conditional Probability Paths

 $\mathbf{Hanlin} \ \mathbf{Yu}^1, \mathbf{Arto} \ \mathbf{Klami}^1, \mathbf{Aapo} \ \mathbf{Hyv\ddot{a}rinen}^1, \mathbf{Anna} \ \mathbf{Korba}^2, \mathbf{Omar} \ \mathbf{Chehab}^2$

1. University of Helsinki, Finland 2. ENSAE, CREST, IP Paris, France

Problem statement

Given samples from two distributions, $X_0 \sim p_0$ and $X_1 \sim p_1$, estimate the ratio $\frac{p_1(x)}{p_0(x)}$.

Algorithm [Choi et al., AISTATS 2022]

- 1. Interpolate samples: $X_t = \sqrt{1 t^2} X_0(x) + \sqrt{t^2} X_1(x)$. The law $p_t(x)$ is implicit.
- 2. Estimate the time score $\partial_t \log p_t(x)$.
- 3. Obtain the log ratio through numerical integration: $\log \frac{p_1(x)}{p_0(x)} = \int_0^1 \partial_t \log p_t(x) dt$

Learning objectives for the time score

Original regression

$$\mathcal{L}(\boldsymbol{\theta}) = \mathbb{E}_{p(\boldsymbol{x},t)} \left[\lambda(t) \left(\partial_t \log \boldsymbol{p_t}(\boldsymbol{x}) - s_{\boldsymbol{\theta}}(\boldsymbol{x},t) \right)^2 \right]$$

not explicit

Integrate by parts TSM

$$\begin{split} \mathcal{L}(\boldsymbol{\theta}) &= 2\mathbb{E}_{p_0(\boldsymbol{x})}[s_{\boldsymbol{\theta}}(\boldsymbol{x},0)] - 2\mathbb{E}_{p_1(\boldsymbol{x})}[s_{\boldsymbol{\theta}}(\boldsymbol{x},1)] \\ &+ \mathbb{E}_{p(t,\boldsymbol{x})}[2\partial_t s_{\boldsymbol{\theta}}(\boldsymbol{x},t) + 2\dot{\lambda}(t)s_{\boldsymbol{\theta}}(\boldsymbol{x},t) + \lambda(t)s_{\boldsymbol{\theta}}(\boldsymbol{x},t)^2] \end{split}$$
 slow to differentiate

Condition (**ours**)

CTSM

$$\mathcal{L}(\boldsymbol{\theta}) = \mathbb{E}_{p(\boldsymbol{x},\boldsymbol{z},t)} \left[\lambda(t) \left(\partial_t \log p_t(\boldsymbol{x} \,|\, \boldsymbol{z}) - s_{\boldsymbol{\theta}}(\boldsymbol{x},t) \right)^2 \right]$$
 explicit

Factorize (ours)

CTSM-v

$$\mathcal{L}(\boldsymbol{\theta}) = \mathbb{E}_{p(\boldsymbol{x}, \boldsymbol{z}, t)} \left[\lambda(t) \sum_{i=1}^{D} \left(\partial_{t} \log p_{t}(\boldsymbol{x}^{i} | \boldsymbol{x}^{< i}, \boldsymbol{z}) - s_{\boldsymbol{\theta}}^{i}(\boldsymbol{x}, t) \right)^{2} \right]$$

We also introduce the weighting function $\lambda(t) \propto 1/|\partial_t \log p_t(\mathbf{x}|\mathbf{z})|$.

Theoretical guarantees (modified): for K integration steps and N samples,

$$\mathbb{E}_{\hat{p}_1} \left\| \log \frac{p_1}{p_0} - \widehat{\log \frac{p_1}{p_0}} \right\|_{L^2(p_1)}^2 \le \frac{1}{2K^2} \mathbb{E}_{p_1(x)} [L(x)^2] + \frac{2}{N} e(\theta^*, \lambda, p_t) + o\left(\frac{1}{N}\right)$$

integral discretization error null if $t \to \partial_t \log p_t(x)$ constant, i.e. Lipschitz constant L(x) is null

score estimation error null if $\partial_t \log p_t(\mathbf{x} | \mathbf{z}) = \partial_t \log p_t(\mathbf{x})$

Applications of density-ratio estimation

Mutual information estimation

CTSM-v is faster and outperforms others especially in high dimensions.

Likelihood estimation (in bits per dimension, BPD). We use

$$\log p_1(x) = \underbrace{\log p_0(x)}_{Known} + \int_0^1 \underbrace{\partial_t \log p_t(x)}_{Estimated}$$

Sample generation. We convert the estimated time scores into space scores and plug them into popular score-based samplers.

$$\nabla \log p_t(\mathbf{x}) = \nabla \left(\underbrace{\log p_0(\mathbf{x})}_{Known} + \int_0^t \partial_s \underbrace{\log p_s(\mathbf{x})}_{Estimated} \right)$$

Space	Methods	Approx. BPD	Time per step
Latent space	TSM	1.30	347 ms
	Ours	1.26	58 ms
Pixel space	TSM	unstable	1103 ms
	Ours	1.03	142 ms

Annealed Langevin sampler

Probability flow ODE sampler

