Internet Firewall Dataset

Projekat za kurs Istraživanje podataka 1 Veljko Prodan

Sadržaj

1	Uvoc	I	2
2		iza skupa podataka	
3		orocesiranje	
4		fikacija	
	4.1	Stabla odlučivanja	
	4.1.1		
	4.1.2		
	4.2	Algoritam K-najbližih suseda	
	4.2.1		
	4.2.2		
5	Klast	erovanje	
	5.1	Algoritam K-sredina	
	5.1.1		
	5.2	Algoritam sakupljajućeg hijerarhijskog klasterovanja	
6	Pravi	la pridruživanja	
		1 3	

1 UVOD

Ovaj izveštaj se bavi analizom skupa podataka pod nazivom "Internet firewall data", koji je prikupljen iz zapisa o internet saobraćaju na univerzitetskom firewall-u. Prikazana je primena algoritama klasifikacije (Stabla odlučivanja, K-najbližih suseda), klasterovanja (Algoritam K-sredina, Algoritam hijerarhijskog sakupljajućeg klasterovanja) i pravila pridruživanja u SPSS-u (Apriori algoritam).

2 ANALIZA SKUPA PODATAKA

Ovaj skup podataka je kompletan, bez ikakvih nedostajućih vrednosti. Sadrži 65532 instance sa sledećim atributima:

- Source Port
- Destination Port
- NAT Source Port
- NAT Destination Port
- Action
- Bytes
- Bytes Sent
- Bytes Received
- Packets
- Elapsed Time (sec)
- Packets Sent
- Packets Received

Figure 1: data.info()

Prilikom klasifikacije cilj je da predvidimo atribut action, koji može imati vrednosti allow, deny, drop i reset-both.

Možemo da primetimo da je skup podataka nebalansiran. Instance u klasi *reset-both* čine svega 0.1% ukupnog broja instanci, pa će biti veoma teško predvideti tu klasu pri klasifikaciji.

Figure 2: Distribucija klasa

3 PRETPROCESIRANJE

Na Figure 3 možemo videti da su vrednosti atributa *Bytes* skoro uvek zbir vrednosti atributa *Bytes Sent* i *Bytes Received*. Zbog ove gotovo konstantne veze, odlučeno je da se ukloni kolona *Bytes* kako bi se izbegla suvišnost u podacima. Slično je urađeno za atribut *Packets* zbog korelacije sa *pkts_sent* i *pkts_received*.

Figure 3

U matrici korelacije se jasno uočava povezanost između atributa *pkts_sent* i *Bytes Sent*. S obzirom na ovu korelaciju, uklanjamo atribut *pkts_sent*. Slično, uklanjamo atribut *pkts_received* zbog uske povezanosti sa atributom *Bytes Received*. Ovakva korekcija će unaprediti interpretaciju podataka i omogućiti fokusiranje na ključne karakteristike.

Figure 4: Matrica korelacije numeričkih atributa

S obzirom na to da atributi *Source Port*, *Destination Port*, *NAT Source Port* i *NAT Destination Port* imaju i numeričke i kategoričke karakteristike, čuvamo dve verzije skupa podataka.

U prvoj verziji, portovi su zadržani kao celobrojne vrednosti, kako bi se sačuvala njihova numerička priroda.

U drugoj verziji, iskoristili smo činjenicu da se portovi mogu kategorizovati u tri osnovne grupe:

- 1. Dobro poznati portovi (Well-known Ports): Ovi portovi imaju vrednosti u opsegu od 0 do 1023 i rezervisani su za najpoznatije i najčešće korišćene servise, kao što su HTTP (port 80) i HTTPS (port 443).
- 2. Registrovani portovi (Registered Ports): Ovi portovi imaju vrednosti u opsegu od 1024 do 49151 i koriste se za specifične servise koji nisu deo dobro poznate kategorije.
- 3. Dinamički ili privatni portovi (Dynamic or Private Ports): Ovi portovi imaju vrednosti u opsegu od 49152 do 65535 i namenjeni su privremenim ili dinamičkim vezama koje uspostavljaju klijentske aplikacije.

NAT (Network Address Translation) portovi ne mogu biti jasno svrstani u prethodno pomenute kategorije, pa ćemo izbaciti atribute *NAT Source Port* i *NAT Destination Port* u verziji dataset-a u kojoj smo portove kategorizovali.

	Source Port	Destination Port	Action	Bytes Sent	Bytes Received	Elapsed Time (sec)
0	Private	Well known	allow	94	83	30
1	Private	Registered	allow	1600	3168	17
2	Registered	Private	allow	118	120	1199
3	Private	Registered	allow	1438	1889	17
4	Private	Well known	allow	6778	18580	16

Figure 5: data.head() nakon izbacivanja NAT Port atributa

Verziju sa kategorizovanim portovima smo transformisali primenom *one-hot encoding* tehnike. Ovim omogućavamo efikasno reprezentovanje kategoričkih podataka kao binarne vektore čime olakšavamo dalju analizu i obradu podataka.

	Action	Bytes Sent	Bytes Received	Elapsed Time (sec)	Source Port_Registered	Source Port_Well known	Destination Port_Registered	Destination Port_Well known
0	allow	94	83	30	0	0	0	1
1	allow	1600	3168	17	0	0	1	0
2	allow	118	120	1199	1	0	0	0
3	allow	1438	1889	17	0	0	1	0
4	allow	6778	18580	16	0	0	0	1

Figure 6: data.head() nakon one-hot encoding-a

Za svrhe klasterovanja, primenjujemo **Analizu glavnih komponenti** (PCA) nad skupom podataka. Ova tehnika nam omogućava da redukujemo dimenzionalnost podataka, zadržavajući ključne informacije relevantne za analizu i grupisanje. Pre primene PCA, primenili smo postupak standardizacije podataka korišćenjem *Standard Scaler*-a kako bismo obezbedili da atributi imaju srednju vrednost 0 i standardnu devijaciju 1.

Nakon standardizacije peimenjujemo PCA kako bismo izdvojili tri ključne komponente koje zajedno obuhvataju značajan deo varijabilnosti u početnim podacima. Ove tri komponente zahvataju 67% varijanse skupa podataka,

čime smo zadržali ključne informacije za dalju analizu i proces klasterovanja. Ovakav pristup nam omogućava da radimo sa smanjenim brojem dimenzija, čime se olakšava interpretacija rezultata klasterovanja i omogućava efikasnija analiza podataka.

Figure 7: Udeo objašnjene varijense komponenti pojedinačno

Figure 8: Kumulativna suma

4 KLASIFIKACIJA

U ovom poglavlju fokus je na algoritmima Stabla odlučivanja i K-najbližih suseda.

4.1 STABLA ODLUČIVANJA

Iz dataset-a izdvajamo ciljni atribut *action*, i delimo ga na trening i test skup. Za test ćemo koristiti 25% podataka. Prvo isprobavamo stablo odlučivanja bez ikakvog nameštanja hiperparametara.

Figure 9: Stablo odlučivanja bez nameštanja hiperparametara

Na Figure 10 možemo videti metrike i matricu konfuzije za evaluaciju nad trening skupom.

Classificati	ion rep	ort for	model	DecisionTree	Classifier	on training	g data
	prec	ision	recal	l f1-score	support		
allo	N	1.00	1.0	0 1.00	28227		
deny	/	1.00	1.0	0 1.00	11240		
dro	0	1.00	1.0	0 1.00	9638		
reset-both	1	1.00	1.0	0 1.00	41		
accuracy	/			1.00	49146		
macro av	3	1.00	1.0	0 1.00	49146		
weighted ave	3	1.00	1.0	0 1.00	49146		
Confusion ma	atrix f	or mode	l Decis	ionTreeClass	sifier on t	raining data	a
	allow	drop	deny	reset-both			
allow	28220	7	0	0			
drop	0	11240	0	0			
deny	0	6	9632	0			
reset-both	0	0	0	41			

Figure 10: Metrike i matrica konfuzije za evaluaciju nad trening skupom

Na Figure 11 možemo videti metrike i matricu konfuzije za evaluaciju nad test skupom. Definitivno se može reći da se model preprilagodio trening podacima, ali su rezultati zadovoljavajući. Za klasu *reset-both* su očekivano lošiji rezultati nego za ostale klase.

Classificat	ion rep	ort fo	r model	l Dec	isionTre	eClassi	fier o	n test	t data
	prec	ision	reca	11	f1-score	supp	ort		
allo	W	1.00	1.	.00	1.00	9	410		
den	у	0.99	1.	.00	1.00	3	747		
dro	р	1.00	1.	.00	1.00	3	213		
reset-bot	h	0.70	0.	.54	0.61		13		
accurac	у				1.00	16	383		
macro av	g	0.92	0.	.88	0.90	16	383		
weighted av	g	1.00	1.	.00	1.00	16	383		
Confusion m	atrix f	or mod	el Deci	ision	TreeClas	sifier	on tes	t data	а
	allow	drop	deny	rese	t-both				
allow	9406	3	ø		1				
drop	1	3737	7		2				
deny	0	12	3201		0				
reset-both	0	6	0		7				

Figure 11: Metrike i matrica konfuzije za evaluaciju nad test skupom

4.1.1 GridSearch

Za pretragu kombinacija hiperparametara koristimo *GridSearch*. Koristimo sledeće parametre:

1. Kriterijum podele (criterion):

- **Gini**: mera nečistoće čvora. Ovaj kriterijum teži da minimizuje broj pogrešno klasifikovanih instanci
- **Entropy**: Entropija je drugi kriterijum nečistoće. Koristi se kako bi se postigla ravnoteža između grananja i dubine stabla, i može rezultovati u bolje uravnoteženim stablima.

2. Maksimalna dubina (max_depth):

Ograničava maksimalnu dubinu stabla. Postavljanjem ove vrednosti, možete kontrolisati koliko
grananja će se dešavati u modelu. Ovo je važan parametar za kontrolu kompleksnosti modela i
prevenciju prenaučenosti (overfitting).

3. Minimalni broj instanci za grananje (min_samples_split):

- Ovaj parametar postavlja minimalni broj instanci koje su neophodne kako bi se vršila dalja podela čvora. Ukoliko je broj instanci u čvoru manji od ove vrednosti, dalje grananje se neće izvršiti.
- 4. Minimalni broj instanci u listu (min_samples_leaf):
- 5. Strategija podeljene tačke (splitter):
 - **Best**: Ova opcija bira najbolju podeonu tačku koristeći kriterijum podele.
 - Random: Nasumično bira podeljenu tačku. Ova strategija može doneti raznolikost u stablu i
 pomoći u prevenciji preprilagođavanja.

```
param_grid = {
    'criterion': ['gini', 'entropy'],
    'max_depth': [12,15,18,20,None],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4],
    'splitter': ['best', 'random']
}
```

Figure 12: GridSearch parametri

Decision tree of depth 20 with 149 nodes

Figure 13: Stablo odlučivanja nakon GridSearch-a

```
Parameters of model DecisionTreeClassifier ccp_alpha 0.0 class_weight balanced criterion gini max_depth 20 max_features None max_leaf_nodes None min_impurity_decrease 0.0 min_samples_leaf 2 min_samples_split 2 min_weight_fraction_leaf 0.0 random_state None splitter best
```

Figure 14: Parametri nakon GridSearch-a

Na Figure 15 možemo videti metrike i matricu konfuzije nad trening skupom nakon GridSearch-a.

	prec	ision	recall	f1-score	support	
allo	N .	1.00	1.00	1.00	28227	
deny	/	1.00	1.00	1.00	11240	
dro	5	1.00	1.00	1.00	9638	
reset-both	1	0.72	1.00	0.84	41	
accuracy	/			1.00	49146	
macro av	3	0.93	1.00	0.96	49146	
veighted av	3	1.00	1.00	1.00	49146	
	atrix f	or mode	l Decisio	nTreeClassi	ifier on trai	
				eset-both		
	allow	drop				
	allow 28217	drop 10	deny re 0	eset-both 0		
allow	allow 28217 0	drop 10 11194	deny re 0 30	eset-both 0 16		

Figure 15: Metrike i matrica konfuzije za evaluaciju nad trening skupom nakon GridSearch-a

Na Figure 16 možemo videti metrike i matricu konfuzije nad test skupom nakon GridSearch-a. Rezultati su skoro pa identični kao pre GridSearch-a.

Classificat:	ion rep	ort fo	r mode	l De	cisionTree	Classifie	er on	test	data
	prec	ision	rec	all	f1-score	support	:		
allo	N	1.00	1	.00	1.00	9410)		
den	/	1.00	1	.00	1.00	3747	7		
dro	0	1.00	1	.00	1.00	3213	3		
reset-both	1	0.35	0	.46	0.40	13	3		
accurac	/				1.00	16383	3		
macro av	3	0.84	0	.86	0.85	16383	3		
weighted av	3	1.00	1	.00	1.00	16383	3		
Confusion ma	atrix f	or mod	el Dec	isio		ifier on	test	data	
					et-both				
allow									
drop									
deny					0				
reset-both	0	7	0		6				

 $Figure\ 16:\ Metrike\ i\ matrica\ konfuzije\ nad\ test\ skupom\ nakon\ Grid Search-a.$

4.1.2 Random forest classifier

Random forest classifier je algoritam koji se zasniva na ansambliranju stabala odlučivanja. On kombinuje predikcije više stabala kako bi doneo konačnu odluku o klasifikaciji. Ovaj pristup često vodi preciznijim predviđanjima u poređenju sa pojedinačnim stablima odlučivanja. Random Forest je takođe otporniji na preprilagođavanje i ima visoku sposobnost generalizacije na različite setove podataka.

Po rezulatatima na Figure 17 i Figure 18, možemo da zaključimo da se model ipak preprilagodio trening podacima, ali su rezultati nad test skupom ipak zadovoljavajuci, osim za klasu *reset-both* kao što je i očekivano.

Classificat						lassifier		_	
						support			
allo	W	1.00	1.	00	1.00	28227			
den	у	1.00	1.	00	1.00	11240			
dro	р	1.00	1.	00	1.00	9638			
reset-bot	h	1.00	1.	00	1.00	41			
accurac	у				1.00	49146			
macro av	g	1.00	1.	00	1.00	49146			
weighted av	g	1.00	1.	00	1.00	49146			
- 6 .							 		
Confusion m							_		
		drop		reset-					
allow	28220	7	0		0				
drop	0	11234	6		0				
deny	0	0	9638		0				
reset-both	0	0	0		41				

Figure 17: Metrike i matrica konfuzije za evaluaciju nad trening skupom

Classificat	ion rep	ort fo	r mode	l Ra	ndomForest	Classifier	on test	data
	prec	ision	reca	311	f1-score	support		
allo	N	1.00	1	.00	1.00	9410		
den	y	0.99	1	.00	1.00	3747		
dro	p	1.00	1	.00	1.00	3213		
reset-both	h	0.75	0	.23	0.35	13		
accuracy	У				1.00	16383		
macro av	g	0.94	0.	.81	0.84	16383		
weighted av	- 5	1.00	1	.00	1.00	16383		
Confusion ma	atrix f	or mod	el Rand	domF	orestClass	ifier on te	est data	
	allow	drop	deny	res	et-both			
allow	9406	3	0		1			
drop	0	3740	7		0			
deny	0	11	3202		0			
reset-both	0	10	0		3			

Figure 18: Metrike i matrica konfuzije za evaluaciju nad test skupom

4.2 ALGORITAM K-NAJBLIŽIH SUSEDA

K-najbližih suseda (KNN) je jednostavan i intuitivan algoritam koji se koristi za klasifikaciju i regresiju. Osnovna ideja iza KNN algoritma je da se novi, nepoznati podaci klasifikuju ili predviđaju na osnovu sličnosti sa "k" najbližih podataka iz trening skupa.

Za primenu KNN-a ćemo koristiti dva skupa podataka. Prvi je skup gde su sačuvane numeričke vrednosti portova, a drugi je skup u kom smo podelili portove u tri različite kategorije i transformisali *one-hot encoding* tehnikom.

4.2.1 Prvi skup podataka

Iz skupa podataka izdvajamo *action* kolonu i delimo ga na trening i test skup u razmeri 3:1. Kako sve preostale atribute možemo da gledamo kao numeričke, podatke skaliramo *MinMaxScaler*-om, tako da su minimalne vrednosti atributa 0, a maksimalne 1. Skaliranje je ključno radi osiguravanja ravnomernog doprinosa svakog atributa u procesu donošenja odluke. Bez skaliranja, atributi sa većim vrednostima mogu dominirati u izračunavanjima udaljenosti, što može dovesti do netačnih rezultata.

Prvo primenjujemo KNN bez nameštanja hiperparametara. Na Figure 19 i Figure 20 možemo videti metrike i matrice konfuzije na trening i test skupu.

Classificat					eighborsCl				
					f1-score				
allo	W	1.00	1.	00	1.00	28227			
den	у	0.99	0.	99	0.99	11240			
dro	р	1.00	1.	00	1.00	9638			
reset-bot	h	1.00	0.	05	0.09	41			
accurac	у				1.00	49146			
macro av	g	1.00	0.	76	0.77	49146			
weighted av	g	1.00	1.	00	1.00	49146			
Confusion m	atrix f	or mode	l KNei	ghb.	orsClassif	ier on tr	aining	data	
	allow	drop	deny	re	set-both				
allow	28135	92	0		0				
drop	20	11183	37		0				
deny	0	3	9635		0				
reset-both	8	31	0		2				

Figure 19: Metrike i matrica konfuzije za evaluaciju nad trening skupom

Classificat					_	lassifier		data
						suppor		
allo	u	1.00	1	.00	1.00	941	9	
den	У	0.99	0	.99	0.99	374	7	
dro	р	1.00	1	.00	1.00	321	3	
reset-both	h	1.00	0	.00	0.00	1	3	
accurac	v				1.00	1638	3	
macro av	g	1.00	0	.75	0.75	1638	3	
weighted av	В	1.00	1	.00	1.00	1638	3	
Confusion ma	atrix f	or mod	el KNe	ighb	orsClassi		est d	
	allow	drop	deny	res	et-both			
allow	9380	29	1		0			
drop	12	3726	9		0			
deny	0	0	3213		0			
reset-both	3	10	0		0			

Figure 20: Metrike i matrica konfuzije za evaluaciju nad test skupom

4.2.1.1 GridSearch

Za podešavanje parametara ponovo koristimo *GridSearch*:

1. Broj suseda (n_neighbors):

• Ovaj parametar predstavlja broj najbližih suseda koje algoritam uzima u obzir

2. Težine (weights):

- Uniform: svi susedi imaju istu težinu i doprinose jednakom delu u odluci.
- Distance: težine su obrnuto proporcionalne udaljenosti od tačke koja se klasifikuje. Bliski susedi imaju veći uticaj na odluku.

3. Mera udaljenosti (p):

• Parametar p određuje koju meru udaljenosti će KNN koristiti. Obično se koristi 1 (*Manhattan* udaljenost) ili 2 (Euklidska udaljenost).

4. Algoritam za pronalaženje suseda (algorithm):

- auto: Algoritam će automatski odabrati najbolji algoritam na osnovu unetih podataka.
- ball_tree, kd_tree: Koristi se struktura drveta za pretragu suseda.
- brute: Koristi se brute-force pretraga

```
{'algorithm': 'auto', 'n_neighbors': 5, 'p': 1, 'weights': 'distance'}
```

Figure 21: Parametri odabrani GridSearch-om

Classificat				_		training da	ata
				f1-score			
allo	W	1.00	1.00	1.00	28227		
den	У	1.00	1.00	1.00	11240		
dro	p	1.00	1.00	1.00	9638		
reset-both	h	1.00	1.00	1.00	41		
accuracy	у			1.00	49146		
macro av	g	1.00	1.00	1.00	49146		
,	_						
weighted av	g 	1.00	1.00	1.00	49146	ning data	
weighted av	g atrix f	1.00	1.00 l KNeighb	1.00 porsClassifi	49146	ning data	
weighted ave	g atrix f allow	1.00 or mode drop	1.00 l KNeighb	1.00 porsClassifi	49146	ning data	
weighted ave	atrix f	1.00 for mode drop	1.00 L KNeighb deny re	1.00 porsClassifi eset-both 0	49146	ning data	
weighted ave	atrix f	1.00 or mode drop 7 11240	1.00 L KNeighb deny re	1.00 porsClassifi	49146	ning data	

Figure 22: Metrike i matrica konfuzije za evaluaciju nad trening skupom nakon GridSearch-a

	pred	ision	rec	all	f1-score	support	
allow	ı	1.00	1	.00	1.00	9410	
deny	,	0.99	1	.00	0.99	3747	
drop)	1.00	1	.00	1.00	3213	
reset-both	ı	0.50	0	.08	0.13	13	
accuracy	,				1.00	16383	
macro avg		0.87	0	.77	0.78	16383	
weighted avg		1.00	1	.00	1.00	16383	
Confusion ma				_	orsClassif		
	allow	drop	deny	res	et-both		
allow	9386	22	1		1		
drop	4	3733	10		0		
	0	3	3210		0		
deny	0						

Figure 23: Metrike i matrica konfuzije za evaluaciju nad test skupom nakon GridSearch-a

Na Figure 22 i Figure 23 možemo videti da smo dobili veoma slične rezultate kao pre GridSearch-a.

4.2.1.2 Bagging Classifier

Bagging Classifier za KNN je ansambl tehnika mašinskog učenja koja kombinuje više modela KNN kako bi poboljšala tačnost i stabilnost predviđanja. Ovaj pristup se oslanja na ideju da konsenzus više modela može doneti bolje rezultate od pojedinačnih modela. Konkretno, Bagging Classifier primenjuje KNN na različite podskupove trening podataka, omogućavajući svakom modelu da nauči specifične uzorke i odstupanja u podacima. Kombinovanjem ovih modela, Bagging Classifier postiže bolje generalizacije i smanjuje rizik od preprilagođavanja.

	prec	ision	recal	l f1-score	support	
allo	v	1.00	1.0	0 1.00	28227	
deny	/	0.99	1.0	0.99	11240	
dro)	1.00	1.0	0 1.00	9638	
reset-both	1	1.00	0.0	5 0.09	41	
accuracy	/			1.00	49146	
macro av	3	1.00	0.7	6 0.77	49146	
veighted av	3	1.00	1.0	0 1.00	49146	
Confusion ma	atrix f	or mode	l Baggi	ngClassifier	on training	data
	allow	drop	deny	reset-both		
allow	28137	90	0	0		
Irop	17	11186	37	0		
deny	0	1	9637	0		
reset-both	7	32	0	2		

Classificat	ion rep	ort fo	r mode	l Ba	ggingClass	ifier on t	test data			
	pred	ision	rec	all	f1-score	support				
allo	N	1.00	1	.00	1.00	9410				
deny	У	0.99	6	.99	0.99	3747				
dro	p	1.00	1	.00	1.00	3213				
reset-both	h	1.00	0	.00	0.00	13				
accuracy	y				1.00	16383				
macro av	3	1.00	6	.75	0.75	16383				
weighted av	3	1.00	1	.00	1.00	16383				
Confusion matrix for model BaggingClassifier on test data										
					et-both					
allow	9378	31	1		0					
drop	12	3725	10		0					
deny	0	0	3213		0					
reset-both	3	10	0		0					

Figure 25: Metrike i matrica konfuzije za evaluaciju nad test skupom

4.2.2 Drugi skup podataka

Za skup podataka sa portovima kao kategoričkim atributima je korišćen isti proces nalaska optimalnih hiperparametara. Nema drastične razlike u rezultatima u odnosu na prvi skup podataka.

Classificat:	ion rep			KNeighbors		on training data
	prec				e support	
allo	ıl	1.00	1.	00 1.0	0 28227	
den	y	1.00	1.	00 1.0	0 11240	
dro	, p	1.00	1.	00 1.0	0 9638	
reset-both	n	0.86	0.	15 0.2	5 41	
accurac	y			1.0	0 49146	
macro av	g	0.96	0.	79 0.8	1 49146	
weighted av	g	1.00	1.	00 1.0	0 49146	
Confusion ma	atrix f	or mode	l KNei	ghborsClass	ifier on tr	aining data
	allow	drop	deny	reset-both		
allow	28208	18	0	1		
drop	5	11195	40	0		
deny	0	0	9638	0		
reset-both	0	35	0	6		

Figure 26: Metrike i matrica konfuzije za evaluaciju nad trening skupom pre nameštanja parametara

	precision	recall	f1-score	support	
allow	1.00	1.00	1.00	9410	
deny	0.99	1.00	1.00	3747	
drop	1.00	1.00	1.00	3213	
reset-both	1.00	0.08	0.14	13	
accuracy			1.00	16383	
macro avg	1.00	0.77	0.78	16383	
weighted avg	1.00	1.00	1.00	16383	
	trix for mo	del KNeighl	oorsClassifi	ler on training d	ata
	allow drop	deny re	set-both		
		deny re: 0	set-both 0		
allow		ø			
allow	9403 7	0 12	0		

Figure 27: Metrike i matrica konfuzije za evaluaciju nad test skupom pre nameštanja parametara

Classificati					ghborsCl			,	_
					1-score				
allow	ı	1.00	1.	00	1.00	282	27		
deny	,	1.00	1.	00	1.00	112	40		
drop)	1.00	1.	00	1.00	96	38		
reset-both	1	1.00	0.	22	0.36		41		
accuracy	,				1.00	491	46		
macro avg	3	1.00	0.	80	0.84	491	46		
weighted avg	5	1.00	1.	00	1.00	491	46		
Confusion ma	itrix f	or mode	l KNei	ghbor	sClassif:	ier on	traini	ng data	а
	allow	drop	deny	rese	t-both				
allow	28220	7	0		0				
drop	1	11199	40		0				
deny	0	0	9638		0				
reset-both	0	32	0		9				

Figure 28: Metrike i matrica konfuzije za evaluaciju nad trening skupom nakon GridSearch-a

Classificati				NeighborsCla		
				f1-score		
allow		1.00	1.00	1.00	9410	
deny		1.00	1.00	1.00	3747	
drop		1.00	1.00	1.00	3213	
reset-both		1.00	0.23	0.38	13	
accuracy				1.00	16383	
macro avg		1.00	0.81	0.84	16383	
weighted avg		1.00	1.00	1.00	16383	
 Confusion ma	triv f	or mod	el KNeigh	horsClassif	ier on test	data
	allow	drop	deny re	set-both		
allow	9403	7	0	0		
drop	4	3731	12	0		
	0	0	3213	0		
deny	0	_				

Figure 29: Metrike i matrica konfuzije za evaluaciju nad test skupom nakon GridSearch-a

	nrec	icion	recall	f1-score	support	
	prec	151011	recarr	11-30016	suppor c	
allo	W	1.00	1.00	1.00	28227	
den	у	1.00	1.00	1.00	11240	
dro	р	1.00	1.00	1.00	9638	
reset-bot	h	0.86	0.15	0.25	41	
accurac	у			1.00	49146	
macro av	g	0.96	0.79	0.81	49146	
weighted av	g	1.00	1.00	1.00	49146	
 Confusion m				_	on training	
	allow	drop	deny n	eset-both		
			-	eset-both 1		
allow	28206	20	ø			
	28206 5	20 11195	9 40	1		

Figure 30: Metrike i matrica konfuzije za evaluaciju nad trening skupom nakon BaggingClassifier-a

Classificat	ion rep	ort fo	r mode	1 Ba	ggingClass	ifier on test	data
	pred	ision	rec	all	f1-score	support	
allo	W	1.00	1	.00	1.00	9410	
den	у	0.99	1	.00	1.00	3747	
dro	р	1.00	1	.00	1.00	3213	
reset-both	h	1.00	0	.08	0.14	13	
accuracy	у				1.00	16383	
macro av	macro avg		0	.77	0.78	16383	
weighted av	weighted avg		1	.00	1.00	16383	
			_		Classifier	on test data	
	allow	drop	deny	res	et-both		
allow	9403	7	0		0		
drop	5	3730	12		0		
deny	0	0	3213		0		
reset-both	0	12	0		1		

Figure 31:: Metrike i matrica konfuzije za evaluaciju nad test skupom nakon BeggingClassifier-a

5 KLASTEROVANJE

Klasterovanje je metoda nenadgledanog učenja koja ima za cilj grupisanje sličnih instanci u diskretne grupe, nazvane klasteri, na osnovu zajedničkih karakteristika. Ovaj proces omogućava otkrivanje prirodnih struktura u podacima i razumevanje odnosa među podacima.

Primenićemo dva algoritma klasterovanja: **Algoritam K-sredina** i **Algoritam sakupljajućeg hijerarhijskog klasterovanja**.

Za implementaciju ovih algoritama, koristimo dataset koji je prethodno podvrgnut analizi glavnih komponenti (PCA). Ovaj dataset sada poseduje tri ključna atributa, što će nam omogućiti dobru vizuelizaciju klasterovanja.

Figure 32: Vizuelizacija podataka pre klasterovanja

5.1 ALGORITAM K-SREDINA

K-means je iterativni algoritam klasterovanja koji počinje sa nasumičnim postavljanjem centroida klastera u prostoru podataka. Za svaku instancu, dodeljuje je klasteru čiji je centar najbliži, koristeći meru udaljenosti poput Euklidske. Centri klastera se zatim ažuriraju na osnovu novih grupacija, postavljajući ih u središta svih instanci dodeljenih tom klasteru. Ovaj proces se ponavlja dok se centri klastera ne stabilizuju, što ukazuje na konvergenciju algoritma.

Na narednim graficima prikazano je isprobavanje različitih vrednosti parametra k.

Dolazimo do zaključka da je najbolji sa parametrom k=2 jer je u tom slučaju *silhouette score* najveći.

Figure 33: Silhouette score u odnosu na broj klastera

5.1.1 Bisecting K-means

Bisecting K-means je algoritam za klasterovanje gde umesto da se počne sa jednim klasterom i podeli ga u više manjih, počinje se sa celim skupom podataka kao jednim klasterom. Zatim, iterativno deli taj klaster na dva manja klastera. Zatim se bira klaster sa najvećom inercijom koji će biti sledeći podeljen, sve dok se ne dođe do željenog broja klastera.

Na narednim graficima je prikazano isprobavanje različitih parametara k.

5.2 ALGORITAM SAKUPLJAJUĆEG HIJERARHIJSKOG KLASTEROVANJA

Agglomerative clustering je hijerarhijski algoritam klasterovanja koji počinje sa svakom instancom kao zasebnim klasterom, a zatim iterativno spaja najbliže klastera dok se ne formira jedan konačan klaster koji obuhvata sve podatke. Ovaj proces stvara drvo klastera, poznato kao dendrogram, koji pruža vizualnu reprezentaciju hijerarhijske strukture podataka.

Pored parametra k, testiracemo 3 razlicite vrednosti parametra *linkage*:

- 1. **single** (**minimalna udaljenost**): ova metoda koristi minimalnu udaljenost između svih tačaka u dva klastera kao meru udaljenosti između tih klastera. To znači da se uzima najmanja udaljenost između bilo koje dve tačke u različitim klasterima.
- complete (maksimalna udaljenost): koristi maksimalnu udaljenost između svih tačaka u dva klastera kao
 meru udaljenosti između tih klastera. To znači da se uzima najveća udaljenost između bilo koje dve tačke u
 različitim klasterima.
- 3. **average (prosečna udaljenost):** ova metoda koristi prosečnu udaljenost između svih tačaka u dva klastera kao meru udaljenosti između tih klastera. To znači da se uzima srednja vrednost udaljenosti između svih parova tačaka u različitim klasterima.

Na narednim graficima možemo videti vrednosti silhouette score u zavisnosti od k i linkage parametra

Na Figure 34 možemo videti tri dendrograma za tri različita atributa (PCA_1, PCA_2, PCA_3).

Figure 34

6 PRAVILA PRIDRUŽIVANJA

Korišćen je **Apriori algoritam** nad skupom podataka sa kategorizovanim *Source Port* i *Destination Port* atributima. Za sve atribute postavljena je uloga *both*, tako da se svaki atribut može biti i uzrok i posledica pravila.

Figure 35: SPSS dijagram

Figure 37

Na Figure 38 možemo videti tabelu podrške i pouzdanosti. *Support* se odnosi na učestalost pojavljivanja kombinacije atributa u skupu podataka, dok *confidence* predstavlja verovatnoću da će se ciljna klasa pojaviti kada su prisutni određeni atributi.

Figure 38