නව නිර්දේශය / புதிய பாடத்திட்டம் / New Syllabus

සහතික පතු උසස්පෙළ විභාගය - අනුරාධ පෙරේරා The General Certificate of Education Advanced Level - Anuradha Perera பொதத் தராதரப் பத்திர (உயர்தர)ப் ப teral Certificate of Education Advanced Level - Anuradha Perera பொதுத் தராதரப் பத்திர (உயர்தர)ப் பரீட்சடை அனராதா பரெரோ சூலிக்கை පොදු සහ கக்கேடு **றெல்க - අනු**ටාධ **පෙරේ**ටා The General Certificate of Education Advanced Level - Anuradha Perera பௌதத் தராத்ரப் பத்திர (உயர்**ந்**ர)ப் பரீ eneral Certificate of Education Advanced Level - Anuradha Perera பொதுத் தராதரப் பத்திர (உயர்தர)ப் பரீட்சை அனராதா பரெரோ අධ්නයන පොදු සහ විහාගය - අනුරාධ පෙරෙරා The General Certificate of Education Advanced Level - Anuradha Perera பரெதுத் தராதரப் பத்திர (உயர்தர)ப் பரீட்சை - அனராதா பரெநே

අධෳයන පොදු සහතික පතු උසස්පෙළ විභාගය - අනුරාධ පෙරේරා

பொதத் தராதரப் பத்திர (உயர்தர)ப் பரீட்சை - அனராதா பரெரோ

The General Certificate of Education Advanced Level - Anuradha Perera

භෞතික විදුනාව I பளெதிகவியல் **Physics** I

පැය දෙකයි. Two hours.

GUESS PAPER 02- MCQ

උපදෙස් :

- * මෙම පුශ්න පතුයේ පුශ්න 50කින් සමන්විත වේ.
- * සියලුම පුශ්නවලට පිළිතුරු සපයන්න.
- * පිළිතුරු පතුයේ නියමිත ස්ථානයේ ඔබේ විභාග අංකය ලියන්න.
- * පිළිතුරු පතුයේ පිටුපස දී ඇති උපදෙස් සැලකිලිමත්ව කියවන්න.
- * 1 සිට 50 දක්වා තෙක් වූ එක් එක් පුශ්නය සදහා දී ඇති (1), (2), (3), (4), (5) යන පිළිතුරු වලින් නිවැරදි හෝ ඉතාමත් ගැලපෙන හෝ පිළිතුර තෝරා ගෙන , එය, පිළිතුරු පතුයේ පිටුපස දැක්වෙන උපදෙස් පරිදි කතිරයකින් (X) ලකුණු කරන්න.

ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ. (ගුරුත්වජ ත්වරණය, $g = 10 \text{ ms}^{-2}$ ලෙස සලකන්න.)

- 1. A- සා)පේක්ෂ ඝනත්වය
 - B- සාාපේක්ෂ පුවේගය
 - C- සාාපේක්ෂ පාරවේද පතාවය
 - D- සාාපේක්ෂ ආර්දුතාවය
 - E- කාර්යක්ෂමතාව

ඉහත රාශින් අතුරින් ඒකක හා මාන යන දෙකම ඇත්තේ

- (1)B.E පමණි
- (2)B පමණි

- (3)C,E පමණි (4)A,B,E පමණි (5)B,C,E පමණි
- $\mathbf{2}$. V = A (t + 2Bs) සමීකරණයේ <math>V පුවේගය, t කාලය ද s විස්ථාපනය ද වේ. A හා B රාශි වල මාන වනුයේ,
 - (1)LT⁻¹, L
- $(2)LT^{-1}$, LT^{-2} $(3)LT^{-2}$, LT^{-1} $(4)LT^{-2}$, $L^{-1}T$ $(5)LT^{-2}$, $L^{-2}T$

- භාවිතයෙන් ලබා ගන්නා ලද පාඨාංක යුගල් දෙක පහත පරිදි වේ. පහත පාඨාංක වලට අනුව මුස්ම කෝණයේ අගය වනුයේ,
 - (1) පරිමාණය 29708^{1} හා 117010^{1}
 - (2) පරිමාණය $58^{0}12^{1}$ හා $238^{0}14^{1}$

- $(1)60^{0}$
- $(2)60^0 4^1$
- $(3)60^{0} 12^{1}$ $(4)60^{0} 30^{1}$ $(5)60^{0} 32^{1}$

- 4. මේ අතරින් අපුතුස්ථ ගැටුමකට යෙදිය නොහැකි වන්නේ
 - (1) ගමුුනා සංස්ටීති නියමය

- (2) නිව්ටන්ගේ තුන්වන නියමය
- (3) යාන්තික ශක්ති සංස්ටීති නියමය
- (4) ස්කන්ධ සංස්ටීති නියමය

(5)ශක්ති සංස්ටීති නියමය

5.	ළමයෙක් පන්දුවක් තිරසට 30° ආනතව පුක්ෂේපණය කරයි. පන්දුව තිරසට 15° ක් ආනත වන මොහොතේ වස්තුව ලක්වන ත්වරණයේ දිශාව,							
	(1) තිරසට 15º අ)නතව	(2)තිරසට 75º e	ආනතව	(3) සිරස්ව පහළට			
	(4) සිරස්ව ඉහළට		(5)ත්වරණය ශුන		()			
6.	 බ'නුලි මුලධර්මය ආශිතව දී ඇති පහත පුකාශනයක් සලකා බලන්න. (A)තරලයක් අනවරත වීමට නම් එය අනිවාර්යයෙන්ම අනකුල විය යුතුය. (B) වායුගෝලය තුලින් ගලන දුව පුවාහයක් ලෙස, කරාමයකින් අනාකුලව වැස්සෙන දුවයක් සලකියහැකි අතර එය ගලන විට පුවාහයේ හරස්කඩ වර්ගඵලය කුමයෙන් අඩුවන අතර පුවාහයේ පිඩනයද කුමයෙන් අඩු වේ. (C)වාත පුතිරෝධය නොසැලකු විට ගුවන් යානයක් ගුවන් ගත කිරීමට වඩාත් පහසුවන්නේ සුළග හමන දිශාවටම ගුවන් යානය ත්වරණය කිරීමෙනි. මින් නිවැරදි වන්නේ, 							
	(1) A,C පමණි		(2) A,B,C පමණි	(3) A,	B,D පමණි			
	(4) B පමණි		(4) B,D පමණි					
7	ස්කන්ධය m වන වස්	තවන (ඛමනතාව [2 නම් එහි වාලන ලක්	තිය විය නැන්නේ				
/•		-	•		p^2			
	(1) 2Pm	$(2)\sqrt{2Pm}$	$(3)\frac{P}{2m}$	$(4) \frac{r}{2m}$	$(5)\frac{r}{m}$			
 8. වීදුරු රසදිය උෂ්ණත්වමාන සම්බන්ධ පහත පකාශ සලකන්න. (A) වීදුරු-රසදිය උෂ්ණත්වමානයක උෂ්ණත්වය සමග රසදිය කද ඉහල යාමට හේතු වන්නේ, රසදිය වල විශිෂ්ඨ තාප ධාරිතාව වීදුරු වල එම අගයට වඩා අඩු වීමය. (B) සර්වසම උෂ්ණත්වමාන දෙකක බල්බවල පරිමා සමාන වන අතර ඒකක බල්බය ගෝලාකාර වන අතර අනෙකෙහි බල්බය සිලින්ඩරාකාර වේ. සිලින්ඩරාකාර බල්බය සහිත උෂ්ණත්වමානය වඩා ඉක්මනින් පාඨාංක පෙන්වයි. (C) මෙවැනි උෂ්ණත්වමානයක බල්බයේ පරිමාව අඩු කිරීමෙන් එහි නිරවද අතාව වැඩි කළ හැකිය. මින් සතු වනුයේ, 								
	(1) A පමණි	(2	2) C පමණි	(3) A හා) B පමණි			
	(4) B හා C පමණි	(.	5) A, B, C සියල්ලම					
9.	(C) භූමකම්පාවකින් සි	දිගේ වනප්ත වේ තරංගවල සංඛප දුවන වැඩි විනාශ (7	ා තරංග ගැන සදහන් බතයට වඩා අඩු සංඛප බයට පෘෂ්ඨිය තරංගව 2) A,B හා C සතප වේ 5) A පමණක් සතප වේ	ාතයන්ගෙන් යුක්ත වේ ලින් බලපැමක් නොමැ (3) B				
10. ගුහ වස්තුවක් මතුපිට නිදහසේ වැටෙන වස්තුවක් තත්පර 2ක කාලයක් තුළදී 8m දුරක් ගෙවා යයි.								
10.	-	_	හ වස්තුව මතුපිට එල්		_			
			(3) 6.28 S					
11. X බඳුනක වායු පීඩනය P ද පරිමාව V ද උෂ්ණත්වය T (°C) ද වේ. Y නම් බඳුනක ඇති වායුවක පීඩනය 2P ද පරිමාව V/4 ද උෂ්ණත්වය 2T (°C) ද වේ. X හා Y බඳුන්වල වායු අණු සංඛනවේ අනුපාතය සමාන වනුයේ, $(1)\frac{T+273}{2T+273} \qquad \qquad (2)\frac{T}{2T+273} \qquad \qquad (3)\frac{2T}{T+273} \qquad \qquad (4)\frac{2(2T+273)}{T+273} \qquad \qquad (5)\frac{4(T+273)}{2T}$								

- 12. කර්මාන්ත ශාලාවක භාවිතා කරන ඇඹරුම් යන්තුයක තිවුතා මට්ටම $70~{
 m dB}$ වන අතර එම කර්මාන්ත ශාලාවේම ඇති තවත් ඇඹරුම් යන්තුයක තීවුතා මට්ටම 80 dB වේ. මෙම යන්තු දෙක එකවර කුියාකරන විට ඇතිවන තීවුතාව වන්නේ,
 - (1) 71 dB
- (2) 75 dB
- (3) 70.4 dB
- (4) 80.4 dB
- (5) 78.1 dB

13. ටුාන්ස්සිස්ටරයක නිවැරදි සංකුමණ ලාක්ෂනිකය වන්නේ කුමක්ද?

(3)ක්රියාකාරී කපාහැරී

14. බාහිර පරිසරය සමග තාප හුවමාරුවක් සිදු නොවන සේ රූපයේ පරිදි වෙනස් දූවප වලින් සෑදු ඉනක 3ක් එකිනෙක හොඳින් ස්පර්ශව පවතී. ඒවායේ අවසන් උෂ්ණත්වය කුමක් වේද?

(A හා C හි වී.තා.ඛා. = 520 Jkg⁻¹K⁻¹, B හි වී.තා.ඛා. = 130 Jkg⁻¹K⁻¹)

- (1) 35°C
- $(2) 39^{\circ}C$
- (3) 43°C

- (4) 48°C
- (5) 54°C

15. ඒකාකාර සුමට ආනත තලයක් මත ටොලිය තබා අතහරී. එය ආනත තලය දිගේ පැමිණ දුන්නේ කෙලවර සමග ගැටී සම්පීඩනය වී පසුව දුන්න දිග හැරේ. මේ නිසා ටොලිය Q වටා දෝලනය වේ. Q සිට P දක්වා වම් අත පැත්තටත් Q සිට R දක්වා ආනත තලය දිගේත් ගමන් කරයි. කාලය සමග ටොලියේ තිරස් පවේග ෂංරවකය වෙනස් වීම නිවැරදිව නිරූපණය වන්නේ,

Α

(01)(04)

- **16.** විභවමාන කම්බියක දිග 10m ද පුතිරෝධය $20~\Omega$ ද වේ. විද*ු*ත් ගාමක බලය 2.5V හා අභපන්තර පුතිරෝධය නොගිනිය හැකි ඇකියුම්ලේටරයක් හා $80~\Omega$ ක පුතිරෝධයක් විභවමාන කම්බිය සමඟ ශේුණිගතව සම්බන්ධ කර ඇත. කම්බිය දිගේ විභව අනුකුමණය වන්නේ,
 - (1) 2x10⁻³Vcm⁻¹

(2) 2.5x10⁻⁴Vcm⁻¹

(3) 1x10⁻⁴Vmm⁻¹

 $(4) 5x10^{-5} Vmm^{-1}$

- (5) 6.25x10⁻⁴Vcm⁻¹
- 17. පරිපූර්ණ වායු ස්කන්ධයක් සදහා තාප ගතික කියාවලියක් P-V වකුයෙන් දැක්වේ. මේ හා සම්බන්ධව පහත පුකාශ වලින් අසතය පුකාශය වන්නේ,
 - (1) $A \rightarrow B$ වකුය යට ක්ෂේතුඵලයෙන් වායුව මගින් කළ කාර්යය ලැබේ.
 - (2) B හි දී වායුවේ උෂ්ණත්වය A හි දී අගයට වඩා වැඩිය.
 - (3) A \rightarrow B කියාවලියේ දී අවශෝෂණය කළ තාප පුමාණය B \rightarrow A කියාවලියේ දී පිටකළ තාප පුමාණයට සමානය.
 - (4) වකු දෙකෙන් මායිම් වන ක්ෂේතුඵලයෙන් වායුව මගින් කළ සඵල කාර්යය ලැබේ.
 - (5) මළු චකිය කියාවලිය සදහා අභපන්තර ශක්ති වෙනස ශූනප වේ.

- 18. දුනු නියතය $1200~{
 m Nm}^{-1}$ වන දුනු $8~{
 m m}$ ගේුණිගතව සම්බන්ධ කර ඇත. එම දුනු පද්ධතිය වෙනුවට යෙදිය හැකි තනි දුන්නක දුනු නියතය කොපමණ ද?
 - (1) 150 Nm⁻¹

(2) 350 Nm⁻¹

(3) 1500 Nm⁻¹

(4) 500 Nm⁻¹

- (5) 600 Nm ⁻¹
- 19. පෘටීවියේ සිට R උසකින් පිහිටි කක්ෂයක, කක්ෂගත කර ඇති චන්දුිකාවක වේගය V වේ. මෙහි R යනු පෘටීවියේ අරයයි. පෘටීවියේ සිට 2R උසක කක්ෂගත කර ඇති චන්දිකාවක වේගය වන්නේ,
 - (1) $V\sqrt{\frac{3}{2}}$
- (2) $V_{\sqrt{\frac{2}{3}}}$
- $(3)\frac{3V}{2}$
- $(4) \frac{2V}{3}$
- (5) V
- 20. පහත පරිපථ වලින් ඩයෝඩය ඉදිරි නැඹුරු කර ඇත්තේ කුමන පරිපථයේ ද?

- 21. රික්ත ප්ලාස්කුවක පුරවා ඇති කෝපිවල උෂ්ණත්වය පැය 2 ක දී 90° C සිට 80° C දක්වා අඩු වේ. එවිට පරිසර උෂ්ණත්වය 18° C කි. මෙම පරිසරයේම තබා ඇති සමාන ප්ලාස්කුවක පුරවා ඇති තේ වල උෂ්ණත්වය 54° C කි. පැය 2 කට පසු එහි උෂ්ණත්වය වන්නේ කුමක්ද?
 - $(1) 45^{\circ}C$
- $(2) 48^{\circ}C$
- $(3) 49^{\circ}C$
- $(4) 50^{\circ} C$
- $(5) 51.5^{\circ}C$

22. දක්වා ඇති රුප සයහනේ m ස්කන්ධය දුනුනියතය C වූ තනි දුන්නක් මගින් සම්භන්ධ කර අවර්ත කාලය ගණනය කල විට T = 2s විය. එසේ දක්වා ඇති පද්ධතියේ ආවර්ත කාලය කුමක්ද?

- (1) $T = \frac{2\sqrt{5}}{\sqrt{11}}$ (2) $T = \frac{2\sqrt{4}}{\sqrt{12}}$ (3) $T = \frac{2\sqrt{5}}{\sqrt{12}}$
- (4) $T = \frac{2\sqrt{6}}{\sqrt{11}}$ (5) $T = \frac{2\sqrt{3}}{\sqrt{11}}$
- 23. ගැල්වනෝමීටරයක පුතිරෝධය $9.9~\Omega$ කි. පරිමාණය සමාන කොටස් 10 කට බෙදා තිබේ. මෙහි සංවේදිතාව කොටසකට 10µA බැගින් වේ. මෙම ගැල්වනෝමීටරයේ සංවේදිතාව කොටසකට 1mA දක්වා වැඩිකර ගැනීමට සමාන්තරගතව සම්බන්ධ කළ යුතු පුතිරෝධය,
 - (1) 0.01Ω
- (2) 0.09Ω
- (3) 0.1Ω
- $(4) 0.9 \Omega$
- $(5) 1.0 \Omega$
- 24. A ලක්ෂපයේ මුළු පීඩනය (P), X උස අනුව වෙනස් වන අයුරු දැක්වෙන නිවැරදි පුස්තාරය වන්නේ,

- 25. පහත පරිපත සටහන් සකලන්න. I_1 හා I_2 ඇමීටර පාඨාංක වන අතර V_1 හා V_2 වොල්ට්මීටර පාඨාංක වේ. මෙම උපකරණ පරිපූර්ණ යයි සැලකු විට,
 - $(1) V_1 < V_2, I_1 > I_2$
 - $(2) V_1 < V_2, I_2 > I_1$
 - $(3) V_1 = V_2, I_1 < I_2$
 - $(4) V_1 = V_2, I_2 < I_1$
 - $(5) V_1 < V_2$, $I_1 = I_2$

- 26. ධ්වනිමාන කම්බියක මුලික සංඛපාතය n වේ. ආතතිය, දිග හා විෂ්කම්භය තෙගුණයක් කළ විට නව සංඛපාතය වන්නේ,
 - (1) $n/3\sqrt{3}$
- (2) 3n
- (3) $\sqrt{3}$ n (4) $n/\sqrt{3}$
- (5) n/3

27. සමාන සකන්ධ හා මාන සහිත සමවතුරසුාකාර තහඩු 5ක් පහත දක්වා ඇත.G කේන්දුය හරහා තලය තුලට ගමන් කරන තිරස් අක්ෂයක් වටා වීම අවස්ටීති සූර්ණයක් පවතින අවස්ථාව වන්නේ

(1)

(2)

(3)

(4)

(5)

- 28. අරය R වූ අර්ධ ගෝලාකාර පෘෂ්ඨයක අක්ෂය, විදයුත් ක්ෂේතු තිවුතාව E වූ ඵ්කාකාර විදයුත් ක්ෂේතුයකට සමාන්තර වන පරිදි තැබූ විට, එහි වකු පෘෂ්ඨය හරහා මුළු විදයුත් සුාවය වන්නේ,
 - (1) $\pi R^2 E$
- (2) $2\pi R^2 E$
- $(3) \pi RE$
- (4) $3\pi R^2 E$
- $(5) 2\pi R^3 E$
- 29. වි.තා.ධා. $25 \times 10^3 \ \mathrm{Jkg^{-1}K^{-1}}$ වූ විද,පූත් පරිචාරක දුවයකින් $2 \mathrm{kg}$ ස්කන්ධයක් බඳුනක් තුළ ඇත. ඒ තුළ වූ 50Ω පුතිරෝධයක් හරහා $20 \mathrm{A}$ ධාරාවක් ගමන් කරයි. යම් අවස්ථාවක දුවයේ උෂ්ණත්වය $102^{\circ}\mathrm{C}$ වේ නම්, ඒ වන විට ධාරාව ගැලීම අරඹා කොපමණ කාලයක් ගත වී ඇත්ද? (කාමර උෂ්ණත්වය $30^{\circ}\mathrm{C}$ වන අතර පරිපථ කොටසේ තාප ධාරිතාව නොගිණිය හැකි තරම් කුඩා වේ.)

(1) 1min

- (2) 2min
- (3) 3min
- (4) 4min
- (5) 5min

- 30. ස්ටීති විදුපුතය සම්භන්ධව පහත පුකාශ අතරින් නිවැරදි මොනවාද?
 - (A) සමවිතව පෘෂ්ඨයක් මත සියලු ලක්ෂවල විද*පු*ත් ක්ෂේතු තිවුතා සැමවිටම සමානය.
 - (B) කබොලක් තුල විභවය භාහිර ගෝල පෘෂ්ඨයේ විභවයට සෑමවිටම සමානය.
 - (C) අරය R තුනි සන්නායක කුතර ගෝලයකට $+Q_2$ අරෝපනයක් ලබා දී කේන්දුයට $+Q_1$ ලබා දුන් විට එහි විභවය අරය සමග විචලනය

ලෙස වේ.

(1) A පමණි

(2) B පමණි

(3) B හා C පමණි

(4) A හා B පමණි

(5) C පමණි

31. වර්තනාංක 2ක් වන මාධපයකින් තනා ඇති පිස්මයක් වර්තනාංක 1.5 වන දුවයක් තුල තබා ඒකවර්ණ ආලෝක කිරණයක් පිස්මයට වෙනම එවනු ලබයි. කිරණයේ අවම අපගමනය වන්නේ $(\sin 42^0 = 0.67, A=60^0)$

 $(1) 24.12^0$

 $(2) 48.24^{\circ}$

 $(3)12.06^{0}$

 $(4) 18.12^0$

- $(5) 32.08^{0}$
- 32. තාප පුචාරණ සම්බන්ධයෙන් ඉදිරිපත් කර ඇති පහත සඳහන් පුකාශ සලකන්න.
 - (A) සන දුවප තුලින් තාපය පුචාරණය සන්නයනය මගින් පමණක්ම සිදු වේ.
 - (B) තරලයක් තුළ සංවහනයේ පුචාරණය වන තාප පුමාණය සන්නයනය හා විකිරණය යන කුම දෙකෙන්ම පුචාරණය වන තාප පුමාණයට සාපේක්ෂව කුඩාය.
 - (C) තාප විකිරණ පුචාරණය මාධපයක් පවතින ස්ථාන වල සිදු නොවේ. මින් අසතප වන්නේ,
 - (1) A හා B

(2) B හා C

(3) C පමණි.

(4) කිසිවක් නොවේ.

(5) සියල්ලම.

33. දිගින් සමාන වූ A හා B කම්බි දෙකක A හි විෂ්කම්භය B හි විෂ්කම්භය මෙන් තුන් ගුණයක් වේ. A හි යංමාපාංකය B හි යං මාපාංකය මෙන් 1/2 කි. A හා B යන කම්බි දෙක එකක් අනෙකට සමාන්තරවද වකු පෘෂ්ඨ ස්පර්ශ වන සේද තබා සංයුක්ත කම්බියක් සාදා එක් කෙළවරක් අවල ආධාරකයකට සවිකර අනෙක් කෙලවරින් භාරයක් එල්ලනු ලැබේ.

A හි ඇතිවන විතතිය B හි ඇතිවන විතතිය අනුපාතය වන්නේ

- (1) 1:3
- (2) 2:3
- (3) 2:9
- (4) 9:2
- (5) 1:1
- 34. 50 Hz සංඥාවක් සහ සංඛනාතය f (>50 Hz) වූ වෙනත් සංඥාවක් එක විට ලබා ගන්නා මයිකුෝෆෝනයක් දෝලනේක්ෂයකට සම්බන්ධ කර ඇත. 3.63(A) රූප සටහනේ 50 Hz සංඥාවේ පමණක් අනුරේඛනය ද 3.62(B) රූප සටහනේ සංඥාවල එකතුවේ අනුරේඛනය ද පෙන්වා ඇත. f හි අග ය වන්නේ,

- (1) 50Hz
- (2) 55Hz
- (3) 60Hz
- (4) 65Hz

කළ නොහැක.

- (5) 70Hz
- **35.** දිග 5m සහ හරස්කඩ $2.5 \times 10^{-7} \text{m}^2$ වන කම්බියක් හරහා 1.5 V විභව අන්තරයක් ඇති කළ විට 0.75 A ධාරාවක් ගලා යයි. කම්බියේ පුතිරෝධකතාව වන්නේ,
 - (1) 1x10⁻⁷ Ωm

(d)

- (2) 1.1x10⁻⁷ Ωm
- (3) $2x10^{-7} \Omega m$
- (4) 2.1x10⁻⁷ Ωm
- $(5) 2.5 \times 10^{-7} \Omega \text{m}$
- 36. ධ්වනි පුභවයක් හා නිරීක්ෂකයකු ගමන් ගන්නා දිශාවන් දැක්වෙන අවස්ථා 4 ක් පහත දැක්වේ.

	පුතවය (S)	නිරීක්ෂකයා (O)
(a)	\rightarrow	\rightarrow
(b)	\leftarrow	\leftarrow
(c)	\rightarrow	\leftarrow

නිරීක්ෂිත සංඛනතය (f_1), පුභවයේ සංඛනතය (f_0) වඩා අඩු, වැඩි හෝ නිගමනයක් කළ නොහැකි අවස්ථා නිවැරදිව දැක්වෙනුයේ,

	$f_1>f_0$	$f_1 < f_0$	නිගමනයක්
(1) c &	න d	a	b
(2) a &	නා b	С	d
(3) d		С	a හා b
(4) c		d	a හා b
(5) c		а	d නා b

37. රුපයේ දක්වා ඇති පද්ධතියේ A හා B අතර සමක ධාරිතාවය සොයන්න.

- (1) 4C/11
- (2) 4C/3
- (3) 9C
- (4) 4C/5
- (5) 11C/4
- 38. සර්වසම ක්ෂුදු ගුහයන් දෙ.දෙ.නෙකුගේ ස්කන්ධයන් m හා අරයන් r බැගින් වේ. එක් ක්ෂුදු ග්රහයකු අවලව ඇති අතර අනෙක් ක්ෂූදු ගුහයා අනන්තයේ සිට (වලිතය ආරම්භ කිරීමට අමතර කාර්යයකින් තොරව) ගූහයන් අතර දුර $R \ (R > r)$ ලක්ෂයක් දක්වා වලිතයේ දී ලබාගන්නා වේගය වන්නේ, (වෙනත් ගුහ වස්තුවල බලපෑමක් නැත.)
- (2) $\sqrt{2GMR}$
- $(3) \sqrt{\frac{2GM}{R}} \qquad (4) \frac{GM}{r}$
- (5) $\sqrt{\frac{2GM}{r}}$
- 39. මධ්යහනේ සිරස්ව පෘථිවි පෘෂ්ධය මතට පතිත වන විකිරණ තිවුතාව , සූර්යයාගෙන් නිකුත්වන 1600wm^{-2} තිවුතාවයෙන් 80% කි. ගොඩනැගිල්ලක වහලයේ පවතින 5m^2 ක සූර්යය පැනලයක් තිරසට 30° ක අනතියකින් පිහිටයි නම්, පෘෂ්ඨික අවශෝෂකතාව 0.4 වන පැනලයේ විකිරණ අවශෝෂණ සිෂුතාවය කොපමණද?
 - (1) 2771 W
- (2) 1280 W
- (3) 2217 W
- (4) 2200 W
- (5) 2127 W
- 40. තිරස් සුමට තලයක් මත ස්කන්ධයන් පිළිවෙලින් 2kg හා 3kg බැගින් වන A හා B වස්තු දෙකක් එකිනෙකට ස්පර්ශව තබා ඇත. 20N ක බලයක් A හා B මත තිරස්ව එකිනෙකට විරුද්ධ දිශා වලට අවස්ථා දෙකකදී යෙදු විට, ඒ ඒ අවස්ථා වලදී A මගින් 3kg මත යෙදෙන පුතිකිුයා අතර වෙනස කොපමණද?
 - (1) 24N
- (2) 20N
- (3) 12N
- (4) 8N
- (5) 4N
- 41. ගණකම 12cm යි වන වීදුරු කුටියක් වර්තනාංකය 1.2 සහ 1.5 වන Y සහ Z වීදුරු වර්ග දෙකකින් සාදා ඇත. ඔයා ඇති පරිදි ඒකවර්ණ ආලෝකය පතිත වු විට Y සහ Z තුළ 8:5 අනුපාතයෙන් තරංග ආයාම සංඛපාවක් ඇති කරයි. ශිෂපයෙක් කුටිය තුල ඇති P වායු බුබුලක් දෙස A මුහුණතින් බැලුවිට එය 5cm දුරකින් ඇති බව පෙනේ. ඔහු B මුහුණතින් බැලුවිට එහි දෘශප විස්ථාපනය වන්නේ?

(2) 6/5 cm

(3) 3 cm

(4) 5/3 cm

(5) 3/2 cm

42. එක කේන්දුක ගෝලාකාර සන්නායක කබොල් දෙකක බාහිර ගෝලය භූගත කර ඇති

අතර අභපන්තර ගෝලයට +Q ආරෝපණයක් ලබා දී ඇත. X, Y, Z යනු පිළිවෙලින් O කේන්දුයේ සිට x, y, z දුරින් වූ ලක්ෂප තුනකි. X, Y, Z ලක්ෂප වල විදයුත් ක්ෂේතු තීවුතා පිළිවෙලින්,

(1) 0,
$$\frac{1}{4\pi\epsilon_0 y^2}$$
, $\frac{1}{4\pi\epsilon_0}$. $\frac{Q}{z^2}$

(2) 0, 0,
$$\frac{1}{4\pi\epsilon_0}$$
. $\frac{Q}{z^2}$

$$(3)\,\frac{1}{4\pi\varepsilon_0}\,\cdot\frac{Q}{x^2},\,\frac{1}{4\pi\varepsilon_0}\,\cdot\frac{Q}{y^2}\,\,,\frac{1}{4\pi\varepsilon_0}\,\cdot\frac{Q}{z^2}$$

(4)
$$0, \frac{1}{4\pi\epsilon_0} \cdot \frac{Q}{v^2}$$
, 0

$$(5)$$
 $\frac{1}{4\pi\varepsilon_0}$ $\cdot \frac{Q}{x^2}$, 0 , $\frac{1}{4\pi\varepsilon_0}$ $\cdot \frac{Q}{z^2}$

- 43. A හා B අතර සමක පුතිරෝධය වන්නේ,
 - $(1)\frac{4}{3}\Omega$
- (2) (2) $\frac{3}{2}\Omega$
- $(5) (5) \frac{2}{3} \Omega$
- (3) 7Ω

44. පහත කුමන සිලිකන් ටුන්සිස්ටරය කියාකාරී කලාපයේ පවති ද?

(4)

Exit of the blow-hole

(In storm conditions water may be forced out here)

- 45. ගාලු දිස්තික්කයෙහි පිහිටි හුම්මානයේ දල ආකෘතියක් රූපයේ දැක්වේ. මුහුදු ජලය දුස්සුාවී නොවන තරලයක්ද උමගතුලින් ජලය ආකුලව නොගලන බවද , මුහුදු ජලය V₀ පුවේගයකින් උමගට අතුලූ වන්නේ යැයිද , සලකා පහත පුකාශ අතුරින් සතු පක්ශය හෝ පුකාශ තෝරන්න, වාත පුතිරෝධය නොසලකා හරින්න.
 - (A) හුම්මානයේ විවරයේ සිට ඉහලට නගින ජල බිදුවක් පොලව මට්ටමේ සිට ඉහලට නගින උපරිම උස $(h-H)+V_0^2$ මගින් ලැබේ.
 - ${
 m (B)}$ හුම්මාන විවරයේදී, තරල පුවාහය ඉවතට විදින පුවේගය, 2g(h H) + ${V_0}^2$ වේ.
 - $({
 m C})$ නුම්මාන විවරයේ සිට ඉහලට නගින ජල බිදුවක් පොලව මට්ටමේ සිට ඉහල නගින උපරිම උස සෑම විටම $V_0{}^2$ ට වඩා අඩු අගයක් ගනියි.
 - (1) A පමණි.
- (2) A හා B පමණි.
- (3) B හා C පමණි.
- (4) A හා C පමණි.
- (5) A, B, C සියල්ලම අසත වේ.

- 46. රුපයේ දැක්වෙන පරිපථයේ A ලක්ෂපයේ විභවය කුමක් වේද?
 - (1) 1V

(2) - 2V

(3) 3V

(4) 3.6 V

- (5) 4V
- 47. ටාන්සිස්ටර පරිපථයේ T යනු තමිස්ටරයකි. එහි විදයුත් පුතිරෝධය උෂ්ණත්වය වැඩි වීමත් සමඟ අඩු වේ. උෂ්ණත්වය වැඩිවන විට, +VCC
 - (A) L ලාම්පුවේ දීප්තිය වැඩි වේ.
 - (B) සංගුාතක ධාරාව අඩු වේ.
 - (C) පාදුම ධාරාව අඩු වේ.
 - මින් සතප වන්නේ,
 - (1) C පමණි.
- (2) A හා B පමණි.
- (3) B හා C පමණි.

- (4) A පමණි.
- (5) A, B, C සියල්ලම.

48. කෘෂ්ණ වස්තුවක විකිරණවල තරංග ආයාමයට එදිරිව විකිර්ණයේ තිවුතා පුස්ථරයක් රූපයේ දැක්වේ. පහත පුකාශන සලකන්න.(කොළ පැහැයට අදාල තරංග ආයාමය 500nm වේ)

49. අරය 5cm රීලයක් සහිත බිලි කොක්කක් මගින් ධීවරයකු මාළු ඛාමින් සිටින අතර එම අවස්ථාවේ කොක්කට මාලුවෙකු අසුවේ. මාලවා කොක්ක සමගින් වේගයෙන් පිහිනා යන අතර රීලයේ කෝණික ත්වරණය $2 \operatorname{rads}^{-2}$ ආරම්භයේ නිශ්චලතාවයේ පවතින අතර විනාඩි පහකට පසු රීලයේ අල්ලව තද කිරීමෙන් එය නිශ්චල කිරීමට ධීවරයා උත්සාහ කරයි. එහිදි, රීලය නිශ්චල කිරීමට 5min ගත වුණි. ධීවරයා අල්ලුවට 400N ලම්බකව බලයක් යෙදුවේ නම් අල්ලූව හා රීලය අතර සර්ෂණ සංගුණකය කුමක්ද? (රීලයේ අවස්ට්ති කූර්ණය 5kgm²) අල්ලව රීලයේ පරිධියට සම්බන්ධව ඇති බව උපකල්පනය කරන්න

500nm

 $I = (Wm^{-2})$

(1)
$$\mu = 0.5$$

(2)
$$\mu = 0.75$$
 (3) $\mu = 0.6$ (4) $\mu = 0.25$ (5) $\mu =$

(3)
$$\mu = 0.6$$

(4)
$$\mu = 0.25$$

$$(5) \mu =$$

0.54

 ${f 50.}$ කේන්දුය වටා හුමණය කල හැකි මේසයක අක්ෂයේ සිට $40{
m cm}$ දුටින් දූව බදුනක් තබා ඇත. දූව බදුනේ උස $10\mathrm{cm}$ වන අතර මේසය $40\mathrm{ms}^{-1}$ පුවේගයෙන් භූමණය කරන විට ජලය ඉවතට නොසැලි පැවතිමට වීදුරුව තුල ආරම්භයේදී ජලය පැවතිය හැකි උපරිම උස වන්නේ,

(5) 8cm

