ALGEBRA LINEARE E GEOMETRIA

$3^{\rm o}$ appello — 1 settembre 2020

Esercizio 1. Sia $S = \{(2t, -1, t, 2) \mid t \in \mathbb{R}\}$ e sia $U_k \subset \mathbb{R}^4$ il sottospazio di equazioni

$$U_k: \begin{cases} x_1 - 2x_3 - x_4 = 0\\ 2x_1 - x_2 + 2x_3 = 0\\ x_2 + kx_3 - 2x_4 = 0 \end{cases}$$

- (a) Determinare la dimensione di U_k al variare di $k \in \mathbb{R}$. Per il valore di k per cui U_k ha dimensione 2 scrivere una base di U_k .
- (b) Scrivere una base di U_k^{\perp} al variare di $k \in \mathbb{R}$.
- (c) Si ponga k=0. Determinare $S\cap U_0^{\perp}$.
- (d) Sia $W \subset \mathbb{R}^4$ il più piccolo sottospazio vettoriale che contiene l'insieme S. Trovare la dimensione e una base di W.

Soluzione. (a) Le tre equazioni che definiscono U_k sono linearmente indipendenti per $k \neq -6$ e in questo caso dim $U_k = 1$. Se invece k = -6 la terza equazione è combinazione lineare delle prime due, quindi U_{-6} è definito da due equazioni e quindi dim $U_{-6} = 2$. Per k = -6 si ha

$$U_{-6}: \begin{cases} x_1 - 2x_3 - x_4 = 0\\ 2x_1 - x_2 + 2x_3 = 0 \end{cases}$$

da cui si ricava

$$U_{-6}: \begin{cases} x_1 = 2x_3 + x_4 \\ x_2 = 6x_3 + 2x_4 \end{cases}$$

Da queste equazioni segue che una base di U_{-6} è formata dai vettori $u_1 = (2, 6, 1, 0)$ e $u_2 = (1, 2, 0, 1)$.

(b) I vettori che formano una base di U_k^{\perp} sono formati dai coefficienti delle equazioni di U_k . Quindi, per $k \neq -6$, una base di U_k^{\perp} è formata dai vettori $u_1^{\perp} = (1,0,-2,1), \ u_2^{\perp} = (2,-1,2,0)$ e $u_3^{\perp} = (0,1,k,-2)$.

Invece, per k=-6, una base di U_{-6}^{\perp} è formata dai vettori $u_1^{\perp}=(1,0,-2,1)$ e $u_2^{\perp}=(2,-1,2,0)$.

(c) Poniamo k=0. Una base di U_0^{\perp} è formata dai vettori $u_1^{\perp}=(1,0,-2,1),\ u_2^{\perp}=(2,-1,2,0)$ e $u_3^{\perp}=(0,1,0,-2)$. I vettori di S sono del tipo (2t,-1,t,2). Per vedere se questo vettore è linearmente dipendente dai vettori della base di U_0^{\perp} calcoliamo il rango della matrice

$$\begin{pmatrix} 1 & 0 & -2 & -1 \\ 2 & -1 & 2 & 0 \\ 0 & 1 & 0 & -2 \\ 2t & -1 & t & 2 \end{pmatrix}$$

Riducendo la matrice in forma a scala si trova che il rango è 3 solo se t=0, questo significa che l'unico vettore che appartiene a $S \cap U_0^{\perp}$ è il vettore che si ottiene per t=0, cioè il vettore (0,-1,0,2).

(d) I vettori di S si scrivono nella forma

$$(2t, -1, t, 2) = t(2, 0, 1, 0) + (0, -1, 0, 2)$$

Dato che W contiene S allora i vettori (2,0,1,0) e (0,-1,0,2) appartengono a W. Dato che questi due vettori sono linearmente indipendenti essi sono una base di W e quindi dim W=2.

Esercizio 2. Consideriamo la matrice $A = \begin{pmatrix} 2 & 4 & -2 \\ 1 & 3 & -2 \\ 3 & 8 & -5 \end{pmatrix}$

- (a) Sia B=(2,k,1). Usando il Teorema di Rouché-Capelli dire per quale valore di $k\in\mathbb{R}$ il sistema AX=B ha soluzioni.
- (b) Trovare gli autovalori di A e dire se A è diagonalizzabile.
- (c) Dire se A è simile alla matrice $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$
- (d) La matrice A è simile a A^2 ? La matrice A è simile a A^3 ? La matrice A è uguale a A^3 ? [le risposte devono essere motivate, non è necessario calcolare A^2 e A^3]

Soluzione. (a) Bisogna calcolare il rango della matrice

$$(A \mid B) = \begin{pmatrix} 2 & 4 & -2 & 2 \\ 1 & 3 & -2 & k \\ 3 & 8 & -5 & 1 \end{pmatrix}$$

Riducendo questa matrice in forma a scala si trova che A ha rango 2 mentre la matrice completa $(A \mid B)$ ha rango 2 solo se k = 0. Questo significa che il sistema AX = B ha soluzioni solo per k = 0.

(b) Si ha

$$\det \begin{pmatrix} 2-\lambda & 4 & -2\\ 1 & 3-\lambda & -2\\ 3 & 8 & -5-\lambda \end{pmatrix} = \lambda(1-\lambda)(1+\lambda)$$

quindi gli autovalori di A sono 0, 1 e -1. Dato che gli autovalori sono distinti la matrice è diagonalizzabile (si noti che il testo del problema non chiede di calcolare gli autovettori).

(c) Abbiamo visto che A è diagonalizzabile, quindi è simile alla matrice

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Anche la matrice

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$$

ha autovalori 0, 1 e - 1, quindi anche questa matrice è simile alla matrice D. Dato che le due matrici sono simili alla stessa matrice D, allora sono anche simili tra di loro.

(d) Abbiamo visto che A è simile alla matrice D, quindi si ha $A = PDP^{-1}$ (dove P è la matrice le cui colonne sono gli autovettori di A). Allora è

$$A^2 = PDP^{-1}PDP^{-1} = PD^2P^{-1}$$

ma

$$D^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

quindi gli autovalori di A^2 sono 0, 1 e 1 e quindi sono diversi da quelli di A. Questo significa che A e A^2 non sono simili, perché hanno autovalori diversi. Si ha poi

$$A^3 = PDP^{-1}PDP^{-1}PDP^{-1} = PD^3P^{-1}$$

е

$$D^3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = D$$

quindi $A^3 = PD^3P^{-1} = PDP^{-1} = A$. Le matrici A^3 e A sono uguali, quindi sono anche simili.

Esercizio 3. Nello spazio euclideo tridimensionale sono dati il punto P = (1, 3, 1) e la retta

$$r: \begin{cases} 2y + z - 2 = 0 \\ x - 2y - z = 0 \end{cases}$$

- (a) Si determini l'equazione del piano π contenente la retta r e passante per il punto P.
- (b) Si determini l'equazione del piano σ passante per il punto P e ortogonale alla retta r.
- (c) Si determini l'equazione della retta s passante per il punto P, perpendicolare alla retta r e contenuta nel piano π .
- (d) Si determini il punto R di intersezione delle rette r e s e la distanza del punto P dalla retta r.

Soluzione. (a) Il fascio di piani di asse r è

$$\lambda(2y + z - 2) + \mu(x - 2y - z) = 0.$$

Imponendo la condizione di passaggio per P si trova $5\lambda=6\mu$, e quindi $\lambda=6$ e $\mu=5$. L'equazione del piano π è quindi

$$\pi: 5x + 2y + z - 12 = 0.$$

(b) Un vettore direttore di r è $v_r=(0,1,-2)$ da cui si ricava che l'equazione del piano σ deve essere del tipo

$$\sigma: y - 2z + d = 0.$$

Imponendo la condizione di passaggio per P si trova d = -1, quindi si ha

$$\sigma: y - 2z - 1 = 0.$$

(c) Si ha $s = \pi \cap \sigma$, quindi le equazioni cartesiane di s sono

$$s: \begin{cases} 5x + 2y + z - 12 = 0\\ y - 2z - 1 = 0 \end{cases}$$

Oppure, se vogliamo calcolare le equazioni parametriche di s, basta trovare un vettore v_s che sia ortogonale ai vettori $v_r = (0, 1, -2)$ e $n_{\pi} = (5, 2, 1)$. Ad esempio, il vettore $v_s = (1, -2, -1)$. Le equazioni parametriche di s sono

$$s: \begin{cases} x = 1 + t \\ y = 3 - 2t \\ z = 1 - t \end{cases}$$

(d) Mettendo a sistema le equazioni di r con quelle di s si trova R=(2,1,0). Si ha poi

$$dist(P, r) = dist(P, R) = ||P - R|| = \sqrt{6}.$$

Oppure per calcolare la distanza di P da r si può usare la formula per la distanza di un punto da una retta.