CMSC 207- Lecture 18 CHAPTER 7: Functions (7.1 & 7.2)

Dr. Ahmed Tarek

Arrow Diagrams

If X and Y are finite sets, you can define a function f from X to Y by drawing an arrow diagram.

You make a list of elements in X and a list of elements in Y, and draw an arrow from each element in X to the corresponding element in Y,

as shown

Arrow Diagrams

This arrow diagram defines a function, because:

- 1. Every element of *X* has an arrow coming out of it.
- 2. No element of *X* has two arrows coming out of it that point to two different elements of *Y*.

Example 2 – A Function Defined by an Arrow Diagram

Let $X = \{a, b, c\}$ and $Y = \{1, 2, 3, 4\}$. Define a function f from X to Y by the arrow diagram in Figure 7.1.3.

- **a.** Write the domain and co-domain of *f*.
- **b.** Find f(a), f(b), and f(c).
- **c.** What is the range of *f*?
- **d.** Is *c* an inverse image of 2? Is *b* an inverse image of 3?

- e. Find the inverse images of 2, 4, and 1.
- **f.** Represent *f* as a set of ordered pairs.

Example 2 – Solution

a. domain of $f = \{a, b, c\}$, co-domain of $f = \{1, 2, 3, 4\}$

b.
$$f(a) = 2$$
, $f(b) = 4$, $f(c) = 2$

- **c.** range of $f = \{2, 4\}$
- d. Yes, No
- **e.** inverse image $2 = \{a, c\}$ inverse image of $4 = \{b\}$ inverse image of $1 = \emptyset$ (since no arrows point to 1)

$$\{(a,2),(b,4),(c,2)\}$$

Arrow Diagrams

Theorem 7.1.1 A Test for Function Equality

If $F: X \to Y$ and $G: X \to Y$ are functions, then F = G if, and only if, F(x) = G(x) for all $x \in X$.

Example 3 – Equality of Functions

a. Let $J_3 = \{0, 1, 2\}$, and define functions f and g from J_3 to J_3 as follows: For all x in J_3 ,

$$f(x) = (x^2 + x + 1) \mod 3$$
 and $g(x) = (x + 2)^2 \mod 3$.

Does
$$f = g$$
?

b. Let $F: \mathbb{R} \to \mathbb{R}$ and $G: \mathbb{R} \to \mathbb{R}$ be functions.

Define new functions $F + G: \mathbf{R} \rightarrow \mathbf{R}$ and G + F:

 $\mathbf{R} \rightarrow \mathbf{R}$ as follows: For all $x \in \mathbf{R}$,

$$(F+G)(x) = F(x) + G(x)$$
 and $(G+F)(x) = G(x) + F(x)$.

Does
$$F + G = G + F$$
?

Example 3 – Solution

a. Yes, the table of values shows that f(x) = g(x) for all x in J_3 .

x	$x^2 + x + 1$	$f(x) = (x^2 + x + 1) \bmod 3$	$(x + 2)^2$	$g(x) = (x+2)^2 \bmod 3$
0	1	$1 \ mod \ 3 = 1$	4	$4 \ mod \ 3 = 1$
1	3	$3 \ mod \ 3 = 0$	9	$9 \ mod \ 3 = 0$
2	7	$7 \ mod \ 3 = 1$	16	$16 \ mod \ 3 = 1$

b. Again the answer is yes. For all real numbers x,

$$(F+G)(x)=F(x)+G(x)$$
 by definition of $F+G$
$$=G(x)+F(x)$$
 by the commutative law for addition of real numbers
$$=(G+F)(x)$$
 by definition of $G+F$

Hence F + G = G + F.

Example 4 – The Identity Function on a Set

Given a set X, define a function I_X from X to X by

$$I_X(x) = x$$

for all x in X.

The function I_X is called the **identity function on** X because it sends each element of X to the element that is identical to it. Thus the identity function can be pictured as a machine that sends each piece of input directly to the output chute without changing it in any way.

Examples of Functions

Definition Logarithms and Logarithmic Functions

Let b be a positive real number with $b \neq 1$. For each positive real number x, the **logarithm with base** b of x, written $\log_b x$, is the exponent to which b must be raised to obtain x. Symbolically,

$$\log_b x = y \quad \Leftrightarrow \quad b^y = x.$$

The **logarithmic function with base** b is the function from \mathbf{R}^+ to \mathbf{R} that takes each positive real number x to $\log_b x$.

Examples of Functions

We have known that if *S* is a nonempty, finite set of characters, then a **string over** *S* is a finite sequence of elements of *S*.

The number of characters in a string is called the **length** of the string. The **null string over** *S* is the "string" with no characters.

It is usually denoted \in and is said to have length 0.

Boolean Functions

Definition

An (*n*-place) Boolean function f is a function whose domain is the set of all ordered n-tuples of 0's and 1's and whose co-domain is the set $\{0, 1\}$. More formally, the domain of a Boolean function can be described as the Cartesian product of n copies of the set $\{0, 1\}$, which is denoted $\{0, 1\}^n$. Thus $f: \{0, 1\}^n \to \{0, 1\}$.

In-class Assignment #1

Functions Acting on Sets

Given a function from a set *X* to a set *Y*, you can consider the set of images in *Y* of all the elements in a subset of *X* and the set of inverse images in *X* of all the elements in a subset of *Y*.

Definition

If $f: X \to Y$ is a function and $A \subseteq X$ and $C \subseteq Y$, then

$$f(A) = \{ y \in Y \mid y = f(x) \text{ for some } x \text{ in } A \}$$

and

$$f^{-1}(C) = \{ x \in X \mid f(x) \in C \}.$$

f(A) is called the **image of** A, and $f^{-1}(C)$ is called the **inverse image of** C.

Example 13 – The Action of a Function on Subsets of a Set

Let $X = \{1, 2, 3, 4\}$ and $Y = \{a, b, c, d, e\}$, and define:

 $F: X \rightarrow Y$ by the following arrow diagram:

Let $A = \{1, 4\}, C = \{a, b\}, \text{ and } D = \{c, e\}. \text{ Find } F(A), F(X), F^{-1}(C), \text{ and } F^{-1}(D).$

Example 13 – Solution

$$F(A) = \{b\}$$

$$F(X) = \{a, b, d\}$$

$$F^{-1}(C) = \{1, 2, 4\}$$

$$F^{-1}(D) = \emptyset$$

One-to-One and Onto, Inverse Functions Two important properties that functions may satisfy are: the property of being *one-to-one*and the property of being *onto*.

Functions that satisfy both properties are called **one-to-one correspondences** or **one-to-one onto** functions.

When a function is a one-to-one correspondence, the elements of its domain and co-domain match up perfectly, and we can define an *inverse function* from the co-domain to the domain that "undoes" the action of the function.

A function may send several elements of its domain to the same element of its co-domain.

In terms of arrow diagrams, this means that two or more arrows that start in the domain can point to the same element in the co-domain.

On the other hand, if no two arrows that start in the domain point to the same element of the co-domain then the function is called **one-toone** or **injective**.

For a one-to-one function, each element of the range is the image of at most one element of the domain.

• Definition

```
Let F be a function from a set X to a set Y. F is one-to-one (or injective) if, and only if, for all elements x_1 and x_2 in X,  \text{if } F(x_1) = F(x_2), \text{ then } x_1 = x_2, \\  \text{or, equivalently,} \qquad \text{if } x_1 \neq x_2, \text{ then } F(x_1) \neq F(x_2). \\  \text{Symbolically,} \\  F: X \to Y \text{ is one-to-one} \quad \Leftrightarrow \quad \forall x_1, x_2 \in X, \text{ if } F(x_1) = F(x_2) \text{ then } x_1 = x_2. \\  \end{cases}
```

To obtain a precise statement of what it means for a function *not* to be one-to-one, take the negation of one of the equivalent versions of the definition above.

Thus:

A function $F: X \to Y$ is *not* one-to-one $\Leftrightarrow \exists$ elements x_1 and x_2 in X with $F(x_1) = F(x_2)$ and $x_1 \neq x_2$.

That is, if elements x_1 and x_2 can be found that have the same function value but are not equal, then F is not one-to-one.

In terms of arrow diagrams, a one-to-one function can be thought of as a function that separates points. That is, it takes distinct points of the domain to distinct points of the codomain.

A function that is not one-to-one fails to separate points. That is, at least two points of the domain are taken to the same point of the co-domain.

A One-to-One Function Separates Points

Figure 7.2.1 (a)

A Function That Is Not One-to-One Collapses Points Together

Figure 7.2.1 (b)

One-to-One Functions on Infinite Sets

Now suppose f is a function defined on an infinite set X. By definition, f is one-to-one if, and only if, the following universal statement is true:

$$\forall x_1, x_2 \in X$$
, if $f(x_1) = f(x_2)$ then $x_1 = x_2$.

Thus, to prove f is one-to-one, you will generally use the method of direct proof: **suppose** x_1 and x_2 are elements of X such that

$$f(x_1) = f(x_2)$$
 and **show** that $x_1 = x_2$.

One-to-One Functions on Infinite Sets

To show that f is *not* one-to-one, you will ordinarily **find** elements x_1 and x_2 in X so that $f(x_1) = f(x_2)$ but $x_1 \neq x_2$.

In-class Assignment #2

Onto Functions

We have noted that there may be an element of the co-domain of a function that is not the image of any element in the domain.

On the other hand, every element of a function's co-domain may be the image of some element of its domain. Such a function is called **onto** or **surjective**. When a function is onto, its range is equal to its co-domain.

Definition

Let F be a function from a set X to a set Y. F is **onto** (or **surjective**) if, and only if, given any element y in Y, it is possible to find an element x in X with the property that y = F(x).

Symbolically:

 $F: X \to Y \text{ is onto } \Leftrightarrow \forall y \in Y, \exists x \in X \text{ such that } F(x) = y.$

Onto Functions

To obtain a precise statement of what it means for a function **not** to be onto, take the negation of the definition of onto:

 $F: X \to Y \text{ is } not \text{ onto } \Leftrightarrow \exists y \text{ in } Y \text{ such that } \forall x \in X, F(x) \neq y.$

There is some element in Y that is *not* the image of *any* element in X. In terms of arrow diagrams, a function is onto if each element of the codomain has an arrow pointing to it from some element of the domain.

A function is not onto if at least one element in its co-domain does not have an arrow pointing to it.

25

Onto Functions

This is illustrated in Figure 7.2.3.

A Function That Is Onto

Figure 7.2.3 (a)

A Function That Is Not Onto

Figure 7.2.3 (b)

Relations between Exponential and Logarithmic Functions

Equivalently, for each positive real number x and real number y, $\log_b x = y \Leftrightarrow b^y = x$.

It can be shown using calculus that both the exponential and logarithmic functions are one-to-one and onto.

Therefore, by definition of one-to-one, the following properties hold true:

For any positive real number b with $b \neq 1$,

if
$$b^u = b^v$$
 then $u = v$ for all real numbers u and v , 7.2.5

and

if
$$\log_b u = \log_b v$$
 then $u = v$ for all positive real numbers u and v . 7.2.6

One-to-One Correspondences

Consider a function $F: X \to Y$ that is both one-to-one and onto. Given any element x in X, there is a unique corresponding element y = F(x) in Y (since F is a function).

Also given any element y in Y, there is an element x in X such that F(x) = y (since F is onto) and there is only one such x (since F is one-to-one).

One-to-One Correspondences

Thus, a function that is one-to-one and onto sets up a pairing between the elements of X and the elements of Y that matches each element of X with exactly one element of Y and each element of Y with exactly one element of X.

Such a pairing is called a *one-to-one* correspondence or bijection and is illustrated by the arrow diagram in X = domain of F Y = co-domain of F Figure 7.2.5.

An Arrow Diagram for a One-to-One Correspondence

CMSC 207 Figure 7.2.5

One-to-One Correspondences

One-to-one correspondences are often used as aids to counting.

Definition

A **one-to-one correspondence** (or **bijection**) from a set X to a set Y is a function $F: X \to Y$ that is both one-to-one and onto.

Example 10 – A Function of Two Variables Define a function:

F:
$$\mathbf{R} \times \mathbf{R} \to \mathbf{R} \times \mathbf{R}$$
 as follows: For all $(x, y) \in \mathbf{R} \times \mathbf{R}$, $F(x, y) = (x + y, x - y)$.

Is F a one-to-one correspondence from $\mathbf{R} \times \mathbf{R}$ to itself?

Solution:

The answer is yes. To show that *F* is a one-to-one correspondence, you need to show both that *F* is one-to-one and that *F* is onto.

Example 10 – Solution

Proof that *F* is one-to-one:

Suppose that (x_1, y_1) and (x_2, y_2) are any ordered pairs in $\mathbf{R} \times \mathbf{R}$ such that

$$(x_1 + y_1, x_1 - y_1) = (x_2 + y_2, x_2 - y_2).$$

[We must show that $(x_1, y_1) = (x_2, y_2)$.] By definition of F, $F(x_1, y_1) = F(x_2, y_2)$.

For two ordered pairs to be equal, both the first and second components must be equal. Thus x_1 , y_1 , x_2 , and y_2 satisfy the following system of

equations:
$$x_1 + y_1 = x_2 + y_2$$
 (1)

$$x_1 - y_1 = x_2 - y_2 (2)$$

3.

Example 10 – Solution

Adding equations (1) and (2) gives that

$$2x_1 = 2x_2$$
, and so $x_1 = x_2$.

Substituting $x_1 = x_2$ into equation (1) yields

$$x_1 + y_1 = x_1 + y_2$$
, and so $y_1 = y_2$.

Thus, by definition of equality of ordered pairs, $(x_1, y_1) = (x_2, y_2)$. [as was to be shown].

If *F* is a one-to-one correspondence from a set *X* to a set *Y*, then there is a function from *Y* to *X* that "undoes" the action of *F*; that is, it sends each element of *Y* back to the element of *X* that it came from. This function is called the *inverse* function for *F*.

Theorem 7.2.2

Suppose $F: X \to Y$ is a one-to-one correspondence; that is, suppose F is one-to-one and onto. Then there is a function $F^{-1}: Y \to X$ that is defined as follows: Given any element Y in Y,

 $F^{-1}(y)$ = that unique element x in X such that F(x) equals y.

In other words,

$$F^{-1}(y) = x \Leftrightarrow y = F(x).$$

Given an element y in Y, there is an element x in X with F(x) = y because F is onto; x is unique because F is one-to-one.

Definition

The function F^{-1} of Theorem 7.2.2 is called the **inverse function** for F.

The diagram that follows illustrates the fact that an inverse function sends each element back to where it came from.

Example 13 – Finding an Inverse Function for a Function Given by a Formula

The function $f: \mathbf{R} \to \mathbf{R}$ defined by the formula

f(x) = 4x - 1 for all real numbers x

Find its inverse function.

Solution:

For any [particular but arbitrarily chosen] y in \mathbb{R} , by definition of f^{-1} , $f^{-1}(y) = \text{that unique real number } x$ such that f(x) = y.

Example 13 – Solution

But

$$f(x) = y$$

$$\Leftrightarrow$$
 $4x - 1 = y$ by definition of f

$$\Leftrightarrow$$

$$\Leftrightarrow \qquad x = \frac{y+1}{4} \quad \text{by algebra.}$$

Hence

$$f^{-1}(y) = \frac{y+1}{4}.$$

The following theorem follows easily from the definitions.

Theorem 7.2.3

If X and Y are sets and $F: X \to Y$ is one-to-one and onto, then $F^{-1}: Y \to X$ is also one-to-one and onto.