

Kraken2: Quick introduction

Dr. Natalia Zajac

Metagenomics,03.2023

Kraken2

- Building Kraken database
- Classification of reads
- Visualisation of results

SHORT REPORT

Open Access

Improved metagenomic analysis with Kraken 2

Derrick E. Wood^{1,2}, Jennifer Lu^{2,3} and Ben Langmead^{1,2*}

Abstract

Although Kraken's k-mer-based approach provides a fast taxonomic classification of metagenomic sequence data, its large memory requirements can be limiting for some applications. Kraken 2 improves upon Kraken 1 by reducing memory usage by 85%, allowing greater amounts of reference genomic data to be used, while maintaining high accuracy and increasing speed fivefold. Kraken 2 also introduces a translated search mode, providing increased sensitivity in viral metagenomics analysis.

Keywords: Metagenomics, Metagenomics classification, Microbiome, Probabilistic data structures, Alignment-free methods, Minimizers

Kraken2: Building database

Kraken2: Building database

- The complete Max database is 75Gb large and contains Archea, Bacteria and Viral genomes
- It can also have a version with Eukaryotes which is > 100Gb
- The Mini version is only 8Gb and contains a subset
- You can also build a custom database for things you are interested in and when you add something to the database it needs to be in the fasta format with an NCBI accession number or a taxonomic ID

Kraken2: Classification

Kraken2: Classification

Determine highest weighted root-to-leaf path

Sequence classified as belonging to leaf of classification (highest-weighted RTL) path

2. Number of reads covered by the clade rooted at this taxon

3. Number of reads assigned directly to this taxon

4.A rank code, indicating (U)nclassified, (D)omain, (K)ingdom, (P)hylum, (C)lass, (O)rder, (F)amily, (G)enus, or (S)pecies. All other ranks are simply '-'.

70.22	54418	54418	U	0	unclassified	5.NCBI taxonomy ID
	23073	0	R	1	root	• • • • • • • • • • • • • • • • • • •
29.78		0	D	10239	Viruses	6.indented scientific name
29.69		0	D1	2731342	Monodnaviria	
29.20		0	K	2732091	Sangervirae	
29.20	22625	0	Р	2732412	Phixviricota	3
29.20		0	C	2732413	Malgrandaviricetes	
29.20	22625	0	0	2732414	Petitvirales	
29.20	22625	0	F	10841	Microviridae	
29.20	22625	121	F1	1910950	Bullavirinae	
29.02	22491	0	G	1910954	S	insheimervirus
29.02	22491	22491	S	10847		Escherichia virus phiX174
0.01	9	2	G	1910952	Ge	equatrovirus
0.01	4	0	S	1986034		Escherichia virus G4
0.00	3	3	S1	489829		Enterobacteria phage ID18
sensu lato						
0.00	1	1	S1	10843		Escherichia phage G4
0.00	3	0	S	1910969		Escherichia virus Talmos
0.00	3	3	S1	511969		Escherichia phage ID2
Moscow/ID/2001						
0.01	4	1	G	1910951	A ¹	lphatrevirus
0.00	2	0	S	1945586		Escherichia virus NC29
0.00	2	2	S1	338110		Escherichia phage NC29
0.00	1	0	S	1945588		Escherichia virus ID62
0.00	1	1	S1	338107		Escherichia phage ID62
0.50	385	0	K	2732092	Shotokuvirae	
0.50	385	0	Р	2732415	Cossavirico	ta
0.50	385	0	C	2732421	Papovavir	icetes
0.50	385	0	0	2732532	Sepolyvirales	
0.50	385	4	F	151341		naviridae

Kraken2: Summary

- Chops all genomes into k-mers and links them to a taxonomic ID
- With your query you search for exacts hits in the database
- Searches for highest weighted root-to-leaf paths and assignes taxonomic IDs of the lowest node to read
- Tutorial: SUSHI: MetaAtlas_data which species do you find?