ANÁLISIS ESTRUCTURAL

TALLER 2. Matriz de Rigidez Global (de la estructura) – 2017-2

Nombre:			

1. Determinar para la cercha de acero que se muestra a continuación su matriz de rigidez global. Los elementos internos de la cercha tienen un área transversal de 550 mm² y los elementos externos tienen un área transversal de 700 mm².

PROCEDIMIENTO:

a)	Determinar el número	de nodos y el nú	úmero de elementos	que conforman la cercha:

Número de nodos (Nn): ______ Número de elementos (Ne): _____

- b) Enumerar los nodos y los elementos de la cercha. Dibujarlos en el esquema (los números de los elementos enciérrelos en cuadrado para diferenciarlos de los de los nodos).
- c) ¿Cuántos grados de libertad tiene cada nodo?, ¿Cuántos tiene toda la estructura?

Número de grados de libertad de cada elemento: _____

Número de grados de libertad de toda la estructura (NGL): _____

d) Enumerar los grados de libertad de cada nodo, teniendo en cuenta como sugerencia que los últimos grados de libertad enumerados corresponden a los desplazamientos conocidos (donde hay restricciones de desplazamiento).

e) Escribir la matriz de grados de libertad iniciales y finales de cada elemento (MGL):

f) Propiedades de cada elemento:

MA: Matriz con áreas

MC: matriz con coordenadas iniciales y finales de cada elemento

ML: matriz con longitudes de cada elemento

$$ML \leftarrow ceros(Ne, 1)$$

$$para \ i \leftarrow 1 \ hasta \ Ne \ hacer:$$

$$ML(i, 1) \leftarrow \sqrt{[(MC(i, 3) - MC(i, 1)]^2 + [(MC(i, 4) - MC(i, 2)]^2}$$

$$fin$$

$$L = \sqrt{(X_f - X_i)^2 + (Y_f - Y_i)^2}$$

g) Matriz de rigidez local

MAL: Matriz tridimensional de matrices de rigidez local de cada elemento.

$$\begin{array}{l} \mathit{MAL} \leftarrow \mathit{ceros} \; (4,4,\mathit{Ne}) \\ \mathit{para} \; i \; \leftarrow \; 1 \; \mathit{hasta} \; \mathit{Ne} \; \mathit{hacer} \colon \\ \mathit{MAL}(1,1,i) \; \leftarrow \; [\mathit{MA}(i,1) * \mathit{ME}(i,1)] \; / \mathit{ML}(i,1) \\ \mathit{MAL}(1,3,i) \; \leftarrow \; - \mathit{MAL}(1,1,i) \\ \mathit{MAL}(3,1,i) \; \leftarrow \; - \mathit{MAL}(1,1,i) \\ \mathit{MAL}(3,3,i) \; \leftarrow \; \mathit{MAL}(1,1,i) \\ \mathit{fin} \end{array} \qquad \qquad k = \begin{bmatrix} \frac{\mathit{AE}}{\mathit{L}} & 0 \; - \frac{\mathit{AE}}{\mathit{L}} & 0 \\ 0 & 0 & 0 & 0 \\ - \frac{\mathit{AE}}{\mathit{L}} & 0 & \frac{\mathit{AE}}{\mathit{L}} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$k_{AB} = egin{bmatrix} k_{AD} = egin{bmatrix} k_{EB} = egin{bmatrix} k_{E$$

Unidades: kN/mm

h) Matriz de transformación

MAT: Matriz tridimensional de matrices de transformación de cada elemento.

$$\begin{array}{l} \mathit{MAT} \leftarrow \mathit{ceros} \ (4,4,Ne) \\ \mathit{para} \ i \leftarrow 1 \ \mathit{hasta} \ \mathit{Ne} \ \mathit{hacer} \colon \\ \mathit{MAT} (1,1,i) \leftarrow \left[\mathit{MC} (i,3) - \mathit{MC} (i,1) \right] / \mathit{ML} (i,1) \\ \mathit{MAT} (2,1,i) \leftarrow \left[\mathit{MC} (i,4) - \mathit{MC} (i,2) \right] / \mathit{ML} (i,1) \\ \mathit{MAT} (3,3,i) \leftarrow \mathit{MAT} (1,1,i) \\ \mathit{MAT} (4,3,i) \leftarrow \mathit{MAT} (2,1,i) \\ \mathit{fin} \end{array} \right. \\ T = \begin{bmatrix} \mathit{CX} & 0 & 0 & 0 \\ \mathit{CY} & 0 & 0 & 0 \\ 0 & 0 & \mathit{CX} & 0 \\ 0 & 0 & \mathit{CX} & 0 \\ 0 & 0 & \mathit{CX} & 0 \\ 0 & 0 & \mathit{CY} & 0 \end{bmatrix} \\ \mathit{CX} = \frac{X_f - X_i}{L} \quad \mathit{CY} = \frac{Y_f - Y_i}{L}$$

$$T_{AB} = \left[egin{array}{c} T_{AD} = \left[egin{array}{c} T_{EB} = \left[egin{array}{c} T_{EB} \end{array}
ight]$$

i) Hallar la matriz de rigidez en coordenadas globales de cada elemento, teniendo en cuenta la nueva nomenclatura, expresar las matrices en [kN/mm].

3

MAG: matriz tridimensional de matrices de rigidez global de cada elemento.

 $MAG \leftarrow ceros(4,4,Ne)$ $para i \leftarrow 1 \ hasta \ Ne \ hacer:$ $MAG(i) \leftarrow MAT(i) * MAL(i) * transpuesta(MAT(i))$ fin

$$K_{1} = \begin{bmatrix} & & & \\ &$$

j) En el literal (i) asocie los grados de libertad de cada nodo con las matrices de rigidez en coordenadas globales de cada elemento.

k)	Teniendo en cuenta el número de grados de libertad de la estructura; ¿cuál será el tamaño de
	la matriz de rigidez global?

```
___ filas x ____ columnas
```

 Cada posición en la matriz de rigidez de cada elemento en coordenadas globales representa una posición en la matriz de rigidez de la estructura; de acuerdo a esto ensamble la matriz de rigidez global.

KG: Matriz de rigidez global de la estructura

```
KG \leftarrow ceros\ (NGL, NGL)
para\ i \leftarrow 1\ hasta\ Ne\ hacer:
para\ j \leftarrow 1\ hasta\ 4\ hacer:
para\ k \leftarrow 1\ hasta\ 4\ hacer:
KG\big(MGL(i,j), MGL(i,k)\big) = KG\big(MGL(i,j), MGL(i,k)\big) + MAG(k,j,i)
fin
fin
fin
```

 $\frac{kN}{mm}$

2. Determinar la matriz de rigidez global para el pórtico de concreto que se muestra en la figura. Las columnas tienen sección cuadrada de 200 mm de lado y las vigas tienen sección rectangular de 200 mm x 250 mm.

PROCEDIMIENTO:

a) Enumerar los nodos, elementos y grados de libertad del pórtico, recordando la sugerencia de que los últimos grados de libertad enumerados pertenecerán a los nodos donde el desplazamiento es conocido. ¿Cuáles son las dimensiones del pórtico?

Matriz de grados de libertad iniciales y finales de cada elemento (MGL)

b) Propiedades de la estructura: Matriz de áreas (MA), matriz de módulos de elasticidad (ME), Matriz de inercias (MI) y matriz con coordenadas iniciales y finales de cada elemento (MC).

$$MA = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix} m^2 \qquad ME = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix} MPa \qquad MI = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix} m^4$$

$$MC = \begin{bmatrix} & & & & \\ & & & & \\ & & & & \end{bmatrix} m$$

c) Matriz de rigidez local

MAL: Matriz tridimensional de matrices de rigidez local de cada elemento.

```
MAL \leftarrow ceros(6,6,Ne)
para i \leftarrow 1 hasta Ne hacer:
           MAL(1,1,i) \leftarrow [MA(i,1) * ME(i,1)] / ML(i,1)
           MAL(1,4,i) \leftarrow -MAL(1,1,i)
          MAL(4,1,i) \leftarrow -MAL(1,1,i)
           MAL(4,4,i) \leftarrow MAL(1,1,i)
           MAL(2,2,i) \leftarrow [12 * ME(i,1) * MI(i,1)] / ML(i,1)^3
          MAL(2,5,i) \leftarrow -MAL(2,2,i)
           MAL(5,2,i) \leftarrow -MAL(2,2,i)
                                                                                                                         6EI_z
           MAL(5,5,i) \leftarrow MAL(2,2,i)
          MAL(2,3,i) \leftarrow \left[6*ME(i,1)*MI(i,1)\right]/ML(i,1)^2
           MAL(3,2,i) \leftarrow MAL(2,3,i)
           MAL(2,6,i) \leftarrow MAL(2,3,i)
                                                                                          \frac{12EI_z}{6EI_z}
           MAL(3,5,i) \leftarrow -MAL(2,3,i)
           MAL(5,3,i) \leftarrow -MAL(2,3,i)
           MAL(6,2,i) \leftarrow MAL(2,3,i)
           MAL(5,6,i) \leftarrow -MAL(2,3,i)
           MAL(6,5,i) \leftarrow -MAL(2,3,i)
           MAL(3,3,i) \leftarrow [4 * ME(i,1) * MI(i,1)] / ML(i,1)
           MAL(6,6,i) \leftarrow MAL(3,3,i)
           MAL(6,3,i) \leftarrow [2 * ME(i,1) * MI(i,1)] / ML(i,1)
           MAL(3,6,i) \leftarrow MAL(6,3,i)
fin
```

d) Matriz de transformación

MAT: Matriz tridimensional de matrices de transformación de cada elemento.

$$\begin{array}{l} \mathit{MAT} \leftarrow \mathit{ceros} \ (6,6,\mathit{Ne}) \\ \mathit{para} \ i \leftarrow 1 \ \mathit{hasta} \ \mathit{Ne} \ \mathit{hacer} \colon \\ \mathit{MAT} (1,1,i) \leftarrow [\mathit{MC}(i,3) - \mathit{MC}(i,1)] \ / \mathit{ML}(i,1) \\ \mathit{MAT} (2,1,i) \leftarrow [\mathit{MC}(i,4) - \mathit{MC}(i,2)] \ / \mathit{ML}(i,1) \\ \mathit{MAT} (2,2,i) \leftarrow \mathit{MAT} (1,1,i) \\ \mathit{MAT} (1,2,i) \leftarrow - \mathit{MAT} (2,1,i) \\ \mathit{MAT} (3,3,i) \leftarrow 1 \\ \mathit{MAT} (4,4,i) \leftarrow \mathit{MAT} (1,1,i) \\ \mathit{MAT} (4,5,i) \leftarrow - \mathit{MAT} (2,1,i) \\ \mathit{MAT} (5,5,i) \leftarrow \mathit{MAT} (1,1,i) \\ \mathit{MAT} (5,4,i) \leftarrow \mathit{MAT} (2,1,i) \\ \mathit{MAT} (6,6,i) \leftarrow 1 \end{array} \right)$$

$$CX = \frac{X_f - X_i}{L} \qquad CY = \frac{Y_f - Y_i}{L}$$

e) Hallar la matriz de rigidez en coordenadas globales (MAG) para cada elemento en [MN y m].

$$MAG \leftarrow ceros (6,6,Ne)$$
 $para i \leftarrow 1 \ hasta \ Ne \ hacer:$
 $MAG(i) \leftarrow MAT(i) * MAL(i) * Inversa(MAT(i))$
 fin

$$K_1 = \left[\frac{MN}{m} \right]$$

$$K_2 = \begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \end{bmatrix} \frac{MN}{m}$$

$$K_3 = \boxed{\frac{MN}{m}}$$

$$K_4 = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix} \frac{MN}{m}$$

$$K_5 =$$

$$\frac{MN}{m}$$

- f) ¿De qué tamaño es la matriz de rigidez global de la estructura?
 - ____ filas x ____ columnas
- g) Ensamble la matriz de rigidez global, KG, de la estructura.

```
KG \leftarrow ceros \ (NGL, NGL)
para \ i \leftarrow 1 \ hasta \ Ne \ hacer:
para \ j \leftarrow 1 \ hasta \ 6 \ hacer:
para \ k \leftarrow 1 \ hasta \ 6 \ hacer:
KG \big( MGL(i,j), MGL(i,k) \big) = KG \big( MGL(i,j), MGL(i,k) \big) + MAG(k,j,i)
fin
fin
fin
```

