MATEMÁTICA DISCRETA II

Correcção do Exame da Primeira Chamada - Época Normal

CURSO: Engenharia de Sistemas e Informática

Duração: 2h

1. Considere o conjunto X das palavras sobre o alfabeto $\{a, b, +\}$ definido indutivamente pelas regras:

$$\frac{a \in X}{a \in X} \ a \qquad \frac{u \in X}{u + u \in X} \ f \qquad \frac{u \in X \quad t \in X}{u + t + u \in X} \ g$$

(a) Apresente uma árvore de formação de a + a + a + a + a + a.

$$\frac{\overline{a \in X} \ a}{a+a \in X} f \quad \overline{a \in X} a$$

$$a+a+a+a+a \in X$$

(b) Prove que a definição indutiva de X é não determinista.

Uma definição indutiva de um conjunto é determinista se e só se os elementos desse conjunto admitem exactamente uma árvore de formação. Relativamente ao conjunto X, o elemento considerado na alínea anterior também admite a árvore de formação

$$\underbrace{\frac{a \in X}{a \in X} a \quad \overline{a \in X} g}_{a+a+a \in A} a \underbrace{\frac{a \in X}{a+a+a \in X} g}_{g}$$

o que nos permite concluir que a definição indutiva de X não é determinista.

(c) Enuncie o Teorema de Indução Estrutural para X.

Seja P uma propriedade sobre X. Se:

- i) P(a);
- ii) P(b);
- iii) $P(u) \Rightarrow P(u+u)$, para todo $u \in X$;
- iv) $P(u) \in P(t) \Rightarrow P(u+t+u)$, para todo $u, t \in X$;

então P(x), para todo $x \in X$.

(d) Prove que, para todo o $x \in X$, o primeiro e o último símbolo de x são iguais.

Vamos fazer a demonstração por indução estrutural.

Sejam $x \in X$ e a propriedade

P(x): o primeiro e o último símbolo de x são iguais .

i) P(a)

a é o primeiro e último símbolo de a. Portanto, P(a).

P(h)

b é o primeiro e último símbolo de b. Portanto, P(b) .

iii) $P(u) \Rightarrow P(u+u)$, para todo $u \in X$

Seja $u \in X$.

Suponhamos P(u) i.e. o primeiro e o último símbolo de u são iguais.

Temos que o primeiro símbolo de u+u é o primeiro símbolo de u e o último símbolo de u+u é o último símbolo de u. Consequentemente , por hipótese de indução, o primeiro e o último símbolo de u+u são iguais.

Portanto, $P(u) \Rightarrow P(u+u)$.

iv) $P(u) \in P(t) \Rightarrow P(u+t+u)$, para todo $u, t \in X$;

Sejam $u, t \in X$.

Suponhamos P(u) e P(t) i.e. o primeiro e o último símbolo de u são iguais e o primeiro e o último símbolo de t são iguais.

Temos que o primeiro símbolo de u+t+u é o primeiro símbolo de u e o último símbolo de u+t+u é o último símbolo de u. Consequentemente , por hipótese de indução, o primeiro e o último símbolo de u+t+u são iguais.

Portanto, $P(u) \in P(t) \Rightarrow P(u+t+u)$.

Pelo Teorema da Indução Estrutural para X, podemos concluir P(x) para todo o $x \in X$, ou seja,o primeiro e o último símbolo de x são iguais.

2. Sejam φ e ψ as seguintes fórmulas de \mathcal{F}^{CP} :

$$\varphi = \neg (p_1 \lor p_2) \to p_3$$

$$\psi = (p_1 \land p_2) \lor p_3$$

(a) Diga, justificando, se φ ter valor lógico 1 é condição suficiente para ψ ter valor lógico 1.

Consideremos a tabela de verdade de φ e ψ :

p_1	p_2	p_3	φ	ψ
1	1	1	1	1
1	1	0	1	1
1	0	1	1	1
1	0	0	1	0
0	1	1	1	1
0	1	0	1	0
0	0	1	1	1
0	0	0	0	0

Sendo v uma valoração tal que $v(p_1)=1$ e $v(p_2)=v(p_3)=0$, temos que $v(\varphi)=1$ mas $v(\psi)=0$. Logo, φ ter valor lógico 1 não é condição suficiente para ψ ter valor lógico 1.

(b) Seja Γ um conjunto de fórmulas de \mathcal{F}^{CP} . Diga, justificando, se é verdadeira ou falsa a seguinte afirmação: "Se $\Gamma \models \neg \varphi$ e $\Gamma \models \psi$ então Γ é inconsistente."

A afirmação é verdadeira. Seja Γ um conjunto de fórmulas tal que $\Gamma \models \neg \varphi$ e $\Gamma \models \psi$. Tendo em vista uma contradição, suponhamos que Γ é consistente. Assim, existe uma valoração v_0 que satisfaz Γ . Como $\neg \varphi$ e ψ são consequência semântica de Γ , resulta que $v_0(\neg \varphi) = v_0(\psi) = 1$. Mas, por observação da tabela de verdade da alínea (a), concluimos que não é possível existir uma valoração que torne $\neg \varphi$ e ψ simultaneamente verdadeiras. Chegamos, assim, a uma contradição. Logo, Γ é inconsistente.

(c) Dê exemplo de uma forma normal conjuntiva e de uma forma normal disjuntiva que sejam ambas logicamente equivalentes a φ . Justifique.

Consideremos as seguintes equivalências lógicas:

$$\varphi = \neg (p_1 \lor p_2) \to p_3 \Leftrightarrow \neg \neg (p_1 \lor p_2) \lor p_3 \Leftrightarrow p_1 \lor p_2 \lor p_3.$$

Temos que φ é logicamente equivalente a $p_1 \lor p_2 \lor p_3$ que, sendo uma disjunção de três literais, é simultaneamente uma forma normal disjuntiva e uma forma normal conjuntiva.

Resolução alternativa: considerando os algoritmos estudados nas aulas e a tabela de verdade da alínea (a), podemos concluir que:

- $p_1 \lor p_2 \lor p_3$ é uma forma normal conjuntiva logicamente equivalente a φ .
- $(p_1 \wedge p_2 \wedge p_3) \vee (p_1 \wedge p_2 \wedge \neg p_3) \vee (p_1 \wedge \neg p_2 \wedge p_3) \vee (p_1 \wedge \neg p_2 \wedge \neg p_3) \vee (\neg p_1 \wedge p_2 \wedge p_3) \vee (\neg p_1 \wedge p_2 \wedge \neg p_3) \vee (\neg p_1 \wedge p_2 \wedge p_3) \vee (\neg p_2 \wedge p_3) \vee (\neg p_1 \wedge p_2 \wedge p_3) \vee$
- (d) Construa uma derivação em DNP da fórmula $\psi \to \varphi$.

$$\frac{\frac{p_{1} \not \langle p_{2}^{(1)}}{p_{1}} \wedge_{1} E}{\frac{p_{1} \not \langle p_{2} \rangle}{p_{1} \lor p_{2}} \vee_{1} I} \xrightarrow{\neg (p_{1} \not \langle p_{2} \rangle)^{(2)}} \neg E} \neg E}{\frac{\bot}{p_{3}} \xrightarrow{(\bot)} \xrightarrow{(\bot)} \qquad p_{3}^{(1)}} \lor E_{(1)}} \frac{\frac{p_{3}}{\neg (p_{1} \lor p_{2}) \to p_{3}} \to I_{(2)}}{\neg (p_{1} \lor p_{2}) \lor p_{3}) \to (\neg (p_{1} \lor p_{2}) \to p_{3})} \to I_{(3)}$$

3. Sejam σ e θ fórmulas proposicionais e seja Δ um conjunto de fórmulas proposicionais. Prove que se $\Delta \vdash \sigma \lor \theta$ e $\Delta \cup \{\sigma\}$ é inconsistente então $\Delta \vdash \theta$.

Sejam σ e θ fórmulas proposicionais e seja Δ um conjunto de fórmulas proposicionais. Suponhamos que:

- i) $\Delta \vdash \sigma \lor \theta$:
- ii) $\Delta \cup \{\sigma\}$ é inconsistente; i.e., não existe qualquer valoração que satisfaça $\Delta \cup \{\sigma\}$.

De i), e pelo Teorema da Adequação, resulta que:

iii) $\Delta \models \sigma \lor \theta$; i.e, para toda a valoração v, se v satisfaz Δ , então v satisfaz $\sigma \lor \theta$.

Pretendemos provar que $\Delta \vdash \theta$. Para tal, pelo Teorema da Adequação, basta provar $\Delta \models \theta$.

Para provar que $\Delta \models \theta$, temos de mostrar que, para toda a valoração v', se v' satisfaz Δ , então v' satisfaz θ . Consideremos que v' é uma valoração que satisfaz Δ . Então por iii) sabemos que v' satisfaz $\sigma \lor \theta$. Por outro lado, como v' satisfaz Δ , de ii) resulta que v' não satisfaz σ . Ora, como v' satisfaz $\sigma \lor \theta$ e não satisfaz σ , então v' satisfaz σ . Logo, toda a valoração v' que satisfaz σ também satisfaz σ e, portanto, σ is σ .

- 4. Sejam $L = (\{f\}), \{R\}, N)$ a linguagem onde N(f) = 1 e N(R) = 2 e φ_0 a L-fórmula $\exists x_1 R(f(x_1), x_2)$.
 - (a) Dê exemplo de uma variável x e de um L-termo t de tal modo que x não seja substituível por t em φ_0 . Justifique.

A variável x_2 tem uma ocorrência livre em φ_0 no alcance da quantificação $\exists x_1$ e, como tal, não será substituível por L-termos onde ocorra a variável x_1 . Assim, por exemplo, a variável x_2 não é substituível pelo L-termo x_1 em φ_0 .

(b) Indique, justificando, o número de L-estruturas de domínio $\{a,b\}$.

Numa L-estrutura de domínio $\{a, b\}$:

- a interpretação do símbolo de função unário f terá que ser uma função do tipo $\{a,b\} \longrightarrow \{a,b\}$;
- a interpretação do símbolo de relação binário R terá que ser uma relação binária em $\{a,b\}$, ou seja, R tem que ser um subconjunto de $\{a,b\}^2$.

Como existem 4 funções do tipo $\{a,b\} \longrightarrow \{a,b\}$ e 16 subconjuntos de $\{a,b\}^2$, o número de L-estruturas de domínio $\{a,b\}$ é 4×16 .

(c) Considere $E_0 = (\mathbb{N}_0, -)$ a L-estrutura onde \overline{R} é a relação de igualdade e \overline{f} é a função sucessor, isto é, a função tal que $\overline{f}(n) = n + 1$, para todo o $n \in \mathbb{N}_0$. Apresente, justificando, uma atribuição a_0 em E_0 tal que $E_0 \nvDash \varphi_0[a_0]$.

Aplicando a definição de valor lógico, temos que:

$$E_0 \nvDash \varphi_0[a_0]$$
 se e só se para qualquer $n \in \mathbb{N}_0$, $E_0 \nvDash R(f(x_1), x_2)[a_0 \binom{x_1}{n}]$ se e só se para qualquer $n \in \mathbb{N}_0$, $n+1 \neq a_0(x_2)$.

Esta última proposição é verdadeira se e só se $a_0(x_2)=0$. Assim, podemos, por exemplo, tomar $a_0: \mathcal{V} \longrightarrow \mathbb{N}_0$ como a função que a cada variável faz corresponder 0.

(d) A fórmula $\forall x_2 \exists x_1 R(f(x_1), x_2) \rightarrow \varphi_0$ é universalmente válida? Justifique.

Chamemos φ_1 a esta fórmula e chamemos φ_2 à fórmula $\forall x_2 \exists x_1 R(f(x_1), x_2)$. Dada uma L-estrutura E = (D, -) e dada uma atribuição a em E, segue da definição de valor lógico para uma implicação que:

$$E \models \varphi_1[a]$$
 se e só se $E \models \varphi_0[a]$ sempre que $E \models \varphi_2[a]$.

Da definição de valor lógico segue ainda que:

- (i) $E \models \varphi_0[a]$ se e só se existe $d \in D$ tal que $(\overline{f}(d), a(x_2)) \in \overline{R}$;
- (ii) $E \models \varphi_2[a]$ se e só se para qualquer $d_1 \in D$ existe $d \in D$ tal que $(\overline{f}(d), d_1) \in \overline{R}$.

Assim, assumindo que $E \models \varphi_2[a]$, de (ii), e como $a(x_2) \in D$, existe $d_2 \in D$ tal que $(\overline{f}(d_2), a(x_2)) \in \overline{R}$, o que por (i) garante $E \models \varphi_0[a]$.

Deste modo, mostramos que $E \models \varphi_1[a]$ para qualquer L-estrutura E e para qualquer atribuição a em E, pelo que φ_1 é universalmente válida.

Cotação:

```
1-a)
      1;
              1-b)
                      1:
                              1-c)
                                     1.5 \; ;
2-a)
      1.25;
              2-b)
                      1.75;
                              2-c)
                                     1.5;
                                             2-d)
3)
                      1.25; 4-c)
                                     1.75; 4-d) 1.75.
4-a)
      1.25;
              4-b)
```