

GUÍA DOCENTE 2022-2023

DATOS GENERALES DE LA ASIGNATURA

ASIGNATURA: Ingenie		ería Química					
PLAN DE ESTUDIOS:			Grado en Ingeniería de Organización Industrial				
FACULTA	AD:	Escuela P	olitécnica Superior				
CARÁCTER DE LA Optativa							
ECTS:	6						
CURSO:	Cua	Cuarto					
SEMESTRE: Segundo)				
IDIOMA IMPARTI	EN E:	QUE	SE	Español			
PROFESORADO:			Dra. María del Pilar Mier López				
DIRECCIÓN DE ELECTRÓNICO:		CORREO		pilar.mier@uneatlantico.es			

DATOS ESPECÍFICOS DE LA ASIGNATURA

REQUISITOS PREVIOS:

Se recomienda que, para cursar la asignatura de Ingeniería Química, el alumno haya realizado previamente las asignaturas de Química y Termodinámica.

CONTENIDOS:

- TEMA 1. Ampliación de conocimientos sobre balances de materia y energía
- 1.1. Conservación de la materia y de la energía.
- 1.2. Balances de materia y energía con y sin reacción química.
- TEMA 2. Ampliación de conocimientos sobre transferencia de momento, calor y masa

- 1.1. Principio de Bernoulli
- 1.2. Ecuación de Fourier
- 1.3. Ley de Fick
- TEMA 3. Operaciones de transferencia de momento
- 1.1. Sedimentación
- 1.2. Centrifugación.
- 1.3. Fluidización.
- 1.4. Filtración.
- 1.5. Separación con membranas.
- 1.6. Mezclas y emulsificación.
- TEMA 4. Operaciones de transferencia de calor
- 1.1. Refrigeración.
- 1.2. Congelación.
- 1.3. Pasteurización
- 1.4. Esterilización.
- TEMA 5. Operaciones de transferencia de masa
- 1.1. Cristalización.
- 1.2. Psicrometría.
- 1.3. Secado.
- 1.4. Evaporación.
- 1.5. Destilación.
- 1.6. Extracción.
- 1.7. Lixiviación
- TEMA 6. Reactores químicos
- 1.1. Ingeniería de las reacciones químicas.
- 1.2. Tipos de reactores.
- 1.3. Cinética de reacción y diseño de reactores.

Programa de prácticas

Se llevarán a cabo 6 prácticas virtuales a realizar con ayuda del programa Excel y con datos de casos reales proporcionados por el profesor.

- Viscosidad
- Sólidos sedimentables, suspendidos y disueltos

- Psicrometría
- Secado
- Destilación: Método McCabe-Thiele
- Extracción Sólido Líquido

COMPETENCIAS

COMPETENCIAS GENERALES:

Que los estudiantes sean capaces de:

- CG1 Analizar resultados y sintetizar información en un contexto teórico y/o experimental relacionado con la ingeniería de la organización industrial
- CG2 Organizar y planificar de forma adecuada tareas en el ámbito de la ingeniería de la organización industrial
- CG3 Comunicar de manera adecuada y eficaz en lengua nativa, tanto de forma oral como escrita, ideas y resultados relacionados con la ingeniería de la organización industrial a audiencias formadas por público especializado y/o no especializado
- CG4 Analizar y buscar información en diversas fuentes sobre temas de la ingeniería de la organización industrial
- CG5 Resolver problemas relativos a la ingeniería de la organización industrial
- CG8 Ejercer la crítica y la autocrítica con fundamentos sólidos, teniendo en cuenta la diversidad y complejidad de las personas y de los procesos en el ámbito de la ingeniería de la organización industrial
- CG10 Aprender de forma autónoma conceptos relacionados en el ámbito de la ingeniería de la organización industrial
- CG12 Relacionar de forma creativa principios, conceptos y resultados en el ámbito de la ingeniería de la organización industrial

COMPETENCIAS PROPIAS DE LA ASIGNATURA:

Que los estudiantes sean capaces de:

- CEOP40: Capacidad para establecer las condiciones de diseño y operación de los principales procesos que implican transferencia de momento, calor y masa y su aplicación en el funcionamiento y diseño de los reactores químicos

RESULTADOS DE APRENDIZAJE:

En esta asignatura se espera que los alumnos alcancen los siguientes resultados de aprendizaje:

- Realizar con soltura balances de materia y energía (con y sin reacción química).
- Cuantificar un fenómeno de transferencia de momento, calor o masa.
- Identificar el proceso y condiciones adecuados para realizar la transformación de una materia prima en un producto.
- Identificar las características de la cinética de una reacción
- Establecer las bases de diseño de reactores químicos.

METODOLOGÍAS DOCENTES Y ACTIVIDADES FORMATIVAS

METODOLOGÍAS DOCENTES:

En esta asignatura se ponen en práctica diferentes metodologías docentes con el objetivo de que los alumnos puedan obtener los resultados de aprendizaje definidos anteriormente:

- Método expositivo
- Estudio y análisis de casos
- Resolución de ejercicios
- Aprendizaje basado en problemas
- Aprendizaje cooperativo/trabajo en grupo
- Trabajo autónomo

ACTIVIDADES FORMATIVAS:

A partir de las metodologías docentes especificadas anteriormente, en esta asignatura, el alumno participará en las siguientes actividades formativas:

Actividades formativas		
	Clases expositivas	12
A atividadas divisidas	Clases prácticas	5,5
Actividades dirigidas	Seminarios y Talleres	7,5
	Clases Prácticas (laboratorio)	14
A atividadas sun auvisadas	Supervisión de actividades	7,5
Actividades supervisadas	Tutorías (individual / en grupo)	6
	Preparación de clases	15
A ativida das autánamas	Estudio personal y lecturas	37,5
Actividades autónomas	Elaboración de trabajos	22,5
	Trabajo individual en campus virtual	15
Actividades de evaluación	Actividades de evaluación	7,5

Al inicio del periodo de prácticas el tutor académico designado mantendrá una reunión con el alumnado donde se aportará información más detallada.

SISTEMA DE EVALUACIÓN

CONVOCATORIA ORDINARIA:

En la convocatoria ordinaria de esta asignatura se aplican los siguientes instrumentos de evaluación:

	Ponderación	
Evaluación continua	Actividades de evaluación continua y formativa: - Trabajo autónomo de análisis y procesamiento de información aprendida - Prácticas virtuales: simulación de casos reales de operación	35 %
Evaluación final	Examen Teórico-Práctico Final	65 %

La calificación del instrumento de la evaluación final (tanto de la convocatoria ordinaria como de la extraordinaria, según corresponda) **no podrá ser inferior, en ningún caso, a 4,0 puntos** (escala 0 a 10) para aprobar la asignatura y consecuentemente poder realizar el cálculo de porcentajes en la calificación final.

CONVOCATORIA EXTRAORDINARIA:

La convocatoria extraordinaria tendrá lugar durante el mes de julio (consúltese el calendario académico fijado por la universidad). Esta consistirá en la realización de un examen con un valor del 65% de la nota final de la asignatura. El resto de la nota se complementará con la calificación obtenida en la evaluación continua de la convocatoria ordinaria.

BIBLIOGRAFÍA Y RECURSOS DE REFERENCIA GENERALES

BIBLIOGRAFÍA BÁSICA:

Las siguientes referencias son de consulta obligatoria:

- Climent, M. J., Encinas, S., Ferrer, B. (2011). Química para Ingeniería. Universidad Politécnica de Valencia. Servicio de Publicación.
- Geankoplis, C., Hersel, A., y Lepek, D. (2018). Procesos de Transporte y Operaciones Unitarias. 5ª Ed. Pearson Education, Inc.
- McCabe, W. L. (2007). Operaciones Unitarias en Ingeniería Química. McGraw-Hill.
- Moran, M. J. y Shapiro, H. N. (2018). Fundamentos de Termodinámica Técnica, Reverté

- Smith, J.M., Van Ness, H.C., Abbott, M.M. (2020). Introducción a la Termodinámica en Ingeniería Química. Mcgraw-Hill.

BIBLIOGRAFÍA COMPLEMENTARIA:

Las siguientes referencias no se consideran de consulta obligatoria, pero su lectura es muy recomendable para aquellos estudiantes que quieran profundizar en los temas que se abordan en la asignatura.

- Albert, I. (2011). Operaciones Unitarias en la Ingeniería de Alimentos. Mundi-Prensa.
- Foust, A. S., Wenzel, L. A., Clump, C. W., Maus, L. y Andersen, L. B. (1980). Principles of Unit Operations. 2nd Edition. Wiley.
- Kern, D. Q. (1950). Process Heat Transfer. McGraw-Hill.
- Perry, R. H., Green, D.W. y Molony, J.D. (2018). Chemical Engineers' Handbook, 9th Edition, McGraw-Hill.
- Petrucci, R.H., Harwood, W.S. & Herring F.G. (2011). Química General (10ª ed.). Madrid: Pearson Educación.
- Treybal, R.E. (1987). Mass Transfer. 3rd Edition. McGraw-Hill.
- Welty, J., Rorrer, G. L. y Foster, D. G. (2019). Fundamentals of Momentum, Heat and Mass Transfer, 7th Edition. Wiley.

WEBS DE REFERENCIA:

- http://www.chemspider.com/
- http://www.nzifst.org.nz/unitoperations/index.htm

OTRAS FUENTES DE CONSULTA:

No Aplica