MACHINE LEARNING BASED MULTIVARIATE TIME SERIES FORE-CASTING OF ISO NEW ENGLAND ELECTRICITY DEMAND

Breakdown

What has been revised

Level of achievement of project	Poor	The approach and results produced need to be explained in greater detail and linked to the application much more.	I will focus on the improvement of chapter 4 and 5, so the results can be explained and linked to the applications
Identification and Analysis of Problem	Marginal Fail	The student sets out a reasonable set of aims for the project, but the results do not meet these aims.	I will improve the results interpretation so it can meet the criteria
Related Work	_	The Related work section contains a lot of information about forecasting generally and applications to various areas, but only a small amount is relevant to predicting energy usage.	done
Design and Justification		The overall approach is broadly acceptable, but, in Chapter 4, there needs to be more detail on why the respective plots were chosen, what they find and how it relates to the overall problem. Just doing a set of exploratory data analysis plots, with little justification for why these ones were chosen, is not appropriate. More significantly, beyond some vague statements at the start of Chapter 5, on how Machine Learning is supposedly wonderful, there is no discussion of the application (energy use) nor attempt to justify the approaches taken.	I will update the chapter 4 and 5, so their results can be clearly explained and their impact on the energy forecasting or what insights they provide will be discussed.
Critical Evaluation		like "on Thursday, the average recorded electricity demand was higher" should be backed up with evidence	I will modify the chapter 4 in a way so its is presented with critical evaluation. Moreover, in chapter 5 I will link it to the application along with the description of other datasets and how those are connected to this. Moreover, I will include the explanation of taken models, stationary concepts and energy prediction examples.
References	Pass	[Quality and quantity of referencing.]	
Presentation	_	The presentation is acceptable in Chapters 1-4, but the layout of Chapter 5 is not appropriate for the aim of the work.	I will improve the captions and labels. Along with improving the layout of chapter 5.
Overall Mark [0-100]		The overall aim of the prioject is acceptable, but the stduent needs to show more evidence of a understanding of the results in terms of the application, and a mucg deeper understanding of the Machine Learning approach and output.	I will improve the indicated issues and problems.

Introduction

- Significance of Electric Load Forecasting (ELF) in Energy Market
- Compromised Forecasting Since Decades
 - Example: Under developing has no proper data set
 - Example: Lack of input parameters i.e., Humidity, Temperature etc.
- Compromised Energy Trends
- Need of effective prediction tools

Research Objectives

- To conduct a thorough exploratory data analysis to learn more about the traits, trends, and connections found in the ME Zone electricity demand dataset.
- To successfully explain the results and offer insightful context for the patterns of electricity demand, use narrative and visualizations.
- To utilize the Random Forest, XGBoost, CatBoost, and Prophet algorithms to anticipate power consumption using multivariate time series forecasting approaches.
- To use measures like RMSE (Root Mean Square Error), MAPE (Mean Absolute Percentage Error), R2 Score, MAE (Mean Absolute Error), and computational complexity analysis to assess and compare the performance of the suggested algorithms.

Machine Learning Algorithms Used

Algorithm	Random Forest	CatBoost	XGBoost	Prophet
Tuno	Encomble (Pagging)	Encomble (Peacting)	Encomble (Poosting)	Time Series Foreseting
Туре	Ensemble (Bagging)	Ensemble (Boosting)	Ensemble (Boosting)	Time Series Forecasting
Architecture	Collection of decision trees	Collection of decision trees	Collection of decision trees	Trend, seasonality, holiday components
Categorical Handling	No special handling	Automatic handling	No	N/A
Tree Construction	Recursive feature selection (information gain/Gini)	Specialized algorithm, ordered boosting	Gradient-based optimization	N/A
Parallelism	Can be parallelized	Supports multicore & GPU	Can be parallelized	N/A
Feature Importance	Yes	Yes	Yes	No
Missing Data Handling	Yes	Yes	Yes	No

Research Methodology

Results Interpretation

Exploratory Data Analysis

Augmented Dicky Fuller Test

Main Dataset

Attributes		Feature Variable	Target Variable 1	Target Variable 2
1	ADF Value	-19.6346	-9.8057	-11.6349
set	p-value	0.0000	0.0000	0.0000
Dataset	Critical Value 1%	-3.4304	-3.4304	-3.4304
ă	Critical Value 5%	-2.8616	-2.8616	-2.8616

Feature Variable: Demand

Target Variable 1: Temperature

Target Variable 2: Humidity

For Validation

Attributes		Feature Variable	Target Variable 1	Target Variable 2
2	ADF Value	-1.0177	-0.9152	-0.9817
	p-value	0.7467	0.7829	0.7599
Dataset	Critical Value 1%	-3.4395	-3.4394	-3.4393
۵	Critical Value 5%	-2.8656	-2.8655	-2.8655
m	ADF Value	-9.5118	-1.4996	-0.9447
	p-value	0.0000	0.5337	0.7729
Dataset	Critical Value 1%	-3.4486	-3.4487	-3.4490
۵	Critical Value 5%	-2.8696	-2.8696	-2.8698
et	ADF Value	-8.6222	-2.1543	-1.9100
set 4	p-value	0.0000	0.2232	0.3274
Dataset 4	Critical Value 1%	-3.4349	-3.4349	-3.4349
Δ	Critical Value 5%	-2.8635	-2.8635	-2.8635
гv	ADF Value	-0.8491	-0.7669	-0.8363
	p-value	0.8043	0.8287	0.8082
Dataset	Critical Value 1%	-3.4350	-3.4350	-3.4350
۵	Critical Value 5%	-2.8636	-2.8636	-2.8636

Model Evaluations

Main Dataset

Attributes		Random Forest	CatBoost	XGBoost	Prophet
Dataset 1	MSE	4614.47	3658.15	3633.99	4415.99
	RMSE	67.92	60.48	45.53	68.89
	MAE	50.77	45.89	60.28	50.78
	R ² Score	0.88	0.90	0.90	0.89

For Validation

Attribute	S	Random Forest	CatBoost	XGBoost	Prophet
~	MSE	19540.62	40768.26	21611.41	19440.32
set ?	RMSE	139.78	201.91	129.74	145.98
Dataset 2	MAE	121.49	189.71	147.00	122.07
Δ	R ² Score	-3.08	-7.53	-3.52	-2.89
m	MSE	5851.95	5615.39	6827.75	5721.68
	RMSE	76.49	74.93	56.78	74.98
Dataset	MAE	53.33	51.91	82.63	53.01
Δ	R ² Score	0.35	0.38	0.25	0.35
st	MSE	1149.27	1158.70	1128.25	1152.25
set 7	RMSE	33.90	34.03	18.25	34.56
Dataset 4	MAE	18.41	17.78	35.75	18.32
Δ	R ² Score	0.31	0.30	0.23	0.31
ю _	MSE	638.76	729.58	627.73	635.12
set [RMSE	25.27	27.01	17.62	24.12
Dataset 5	MAE	17.76	19.54	25.05	18.45
	R ² Score	-0.09	-0.24	-0.07	-0.09

Computational Complexity Analysis

Main Dataset

		Random Forest	CatBoost	XGBoost	Prophet
11	Training	20.9662	0.9093	1.2517	82.8203
Dataset	Prediction	0.9036	0.0040	0.0160	8.2750
Dat	Total Time	21.8698	0.9132	1.2676	91.0954

For Validation

		Random Forest	CatBoost	XGBoost	Prophet	
t 2	Training	0.1706	0.1452	0.0418	0.5186	
Dataset	Prediction	0.0080	0.0021	0.0020	0.0748	
Dai	Total Time	0.1785	0.1472	0.0438	0.5934	
£ 3	Training	0.1466	0.1305	0.0349	0.0841	
Dataset	Prediction	0.0080	0.0020	0.0020	0.0489	
Da	Total Time	0.1546	0.1325	0.0369	0.1330	
t 4	Training	0.4259	0.1616	0.0878	0.2762	
Dataset 4	Prediction	0.0150	0.0010	0.0030	0.1255	
Dai	Total Time	0.4408	0.1626	0.0908	0.4017	
5 7	Training	0.2952	0.1476	0.0788	1.0472	
Dataset	Prediction	0.0100	0.0010	0.0020	0.1137	
Dai	Total Time	0.3052	0.1486	0.0808	1.1609	

Computational Complexity Analysis (Cont.)

Best Performing Algorithm

Conclusion

- Electricity Consumption patterns are dependent on the weather parameters and consumer behaviors.
- Machine learning solution are easy, time efficient and require less-computing powers.
- Among decision tree-based architectures XGBoost provides effective results as compared to others.
- Effective predictions can be obtained through machine learning algorithms.
- Accuracy can be enhanced by using anomaly detection models.

THANK YOU

