Hybridization

Predicting type of hybridisation & The shape of the molecule:

Number of electron pairs in central atom = $\frac{\text{Group number of central atom} + \text{number of bonded pairs}}{2}$ BeCl₂ number of e⁻ pairs = $\frac{2+2}{2} = 2$ sp linear

BCl₃ number of e⁻ pairs = $\frac{3+3}{2} = 3$ sp² Trigonal planar

SO₂ number of e⁻ pairs = $\frac{6+0}{2} = 3$ sp² (2b.p + 1*l.p*) Angular

SO₃ number of e⁻ pairs = $\frac{6+0}{2} = 3$ sp² (3b.p + O *l.p*) Trigonal planar

NH₃ number of e⁻ pairs = $\frac{5+3}{2} = 4$ sp³ (3b.p + I *l.p*) Pyramidal

H₃O⁺ number of e⁻ pairs = $\frac{6+3-1}{2} = 4$ sp³ Pyramidal

No. of electro n pairs	Bond pairs	lone pairs	Hybridi- sation	Shape	Angle	Examples
2	2	-	sp	Linear	180 ⁰	BeCl ₂ , CO ₂ , HCN
3	3	-	sp ²	Trigonal planar	120 ⁰	BCl ₃ ,BF ₃ , SO ₂
	2	1	sp ²	Angular	-	SO ₂ , SnCl ₂
4	4	-	sp ³	Tetrahedral	109 ⁰	CH4, CCl4,CF4
	3	1	sp³	Pyramidal	107 ⁰	NH₃, H₃O⁺ (Hydronium ion)
	2	2	sp ³	Angular	-	H ₂ O, H ₂ S, Cl ₂ O, OF ₂
5	5	-	sp³d	Trigonal bipyramidal	90°, 120° 180°	PCl ₅ , PF ₅
	4	1	sp³d	Distorted tetrahedral	-	SCl ₄ , SF ₄
	3	2	sp³ d	Т	90º, 180º	CIF ₃ , BrF ₃ ,ICl ₃
	2	3	sp³ d	Linear	180 ⁰	XeF ₂ , ICl ₂ ²
	6	-	sp³d²	Octahedral	90 ⁰	SF ₆
6	5	1	sp³ d²	Distorted octahedral	-	CIF ₅ , IF _s
	4	2	sp³ d²	Square planar	90 ⁰	XeF ₄
7	7	-	sp³ d³	Pertagonal bipyramidal	72º, 90º	IF ₇
	6	1	sp ³ d ³	Distorted octahedral	-	XeF ₆

CCI ₄	number of e pairs	$=\frac{4+4}{2}=4$	tetrahedral				
PCI ₅	number of e pairs	$=\frac{5+5}{2}=5$	sp ³ d	trigonal			
bipyramidal							
SF_6	number of e pairs	$=\frac{6+6}{2}=6$	$sp^3 d^2$	octahedral			
IF ₇	number of e pairs	$=\frac{7+7}{2}=7$	sp^3d^3	pentagonal			
bipyramidal							

H ₂ O	number of e pairs=	$\frac{6+2}{2} = 4$	$(2 b.p + 2 l.p) sp^3$	Angular		
NH ₃	number of e pairs	$=\frac{5+3}{3}=4$	$(3 b.p + 1 l.p) sp^3$	Pyramidal		
NF ₃	number of e pairs	$=\frac{5+3}{4}=4$	sp ³ (3b.p + 1l.p)	Pyramidal		
PCl ₃	number of e pairs	$=\frac{5+3}{2}=4$	sp ³ (3b.p + 1 l.p)	Pyramidal		
POCl ₃	number of e pairs	$=\frac{5+3}{3}=4$	sp ³ (4b.p + o l.p)	Tetrahedral		
SOCl ₂	number of e pairs	$=\frac{6+2}{2}=4$	sp ³ (3b.p + 1 l.p)	Pyramidal		
XeF ₂	number of e pairs	$=\frac{8+2}{2}=5$	sp ³ d (2b.p + 3 l.p)	Linear		
XeF ₄	number of e pairs	$=\frac{8+4}{2}=6$	sp^3d^2 (4b.p + 2 l.p)	Square planar		
XeF ₆	number of e pairs	$=\frac{8+6}{2}=7$	$sp^3d^3(6b.p + 1 l.p)$	distorted		
octah	edral	7.1.2				
CIF ₃	number of e pairs	$=\frac{7+3}{2}=5$	sp ³ d (3b.p + 2 l.p)	T shape		
ICl ₃	number of e pairs	$=\frac{7+3}{2}=5$	sp^3d (3 b.p + 2 l.p)	T shape		
ICI ₅	number of e pairs	$=\frac{7+5}{2}=6$	$sp^3d^2(5 b.p + 1 l.p)$	Square pyramidd		
NO_2^-	number of e pairs	$=\frac{5+1}{2}=3$	$sp^2(2 b.p + 1l.p)$	Angular		
NO_3^-	number of e pairs	$=\frac{5+1}{2}=3$	$sp^2(3b.p+0l.p)$	Triagonal planar		
BrF ₅	number of e pairs	$=\frac{7+5}{2}=6$	$sp^3d^2(5 b.p + 1l.p)$	Square pyramidal		
SO_3^{2-}	number of e pairs	$=\frac{6+2}{2}=4$	$sp^3(3 b.p + 1l.p)$	Pyramidal		
SO_4^{2-}	number of e pairs	$=\frac{6+0+2}{2}=4$	sp ³ (4 b.p + 0 l.p)	Tetrahedral		
ClO ⁻	number of e pairs	$=\frac{7+1}{2}=4$	sp ³ (1b.p + 3l.p)	Linear		
ClO_2^-	number of e pairs	$=\frac{7+1}{2}=4$	sp ³ (2 b.p + 2l.p)	Angular		
ClO ₃	number of e pairs	$=\frac{7+1}{2}=4$	sp ³ (3 b.p + 1l.p)	Pyramidal		
ClO_4^-	number of e pairs	$=\frac{7+1}{2}=4$	sp^{3} (4 b.p + 0l.p)	Tetrahedral		
NH ₄ +	number of e pairs	$=\frac{5+4-1}{2}=4$	$sp^{3} (4 b.p + 0l.p)$	Tetrahedral		
CH_3^+	number of e pairs	$=\frac{4+3-1}{2}=3$	$sp^{2}(3 b.p + 0l.p)$	Trigonal planar		
NH_2^-	number of e pairs	$=\frac{5+2+1}{2}=4$	$sp^{3}(2 b.p + 2l.p)$	Angular		
I_3^-	number of e pairs	$=\frac{7+2+1}{5}=5$	sp ³ d (2 b.p + 3l.p)	Linear		
OF ₂	number of e pairs	$=\frac{6+2}{2}=4$	sp ³ (2b.p + 2l.p)	Angular		
Cl ₂ O	number of e pairs	$=\frac{6+2}{2}=4$	sp ³ (2b.p + 2l.p)	Angular		
SnCl ₂	number of e pairs	$=\frac{4+2}{2}=3$	$sp^{2}(2b.p + 1l.p)$	Angular		
SnCl ₄	number of e pairs	$=\frac{4+4}{2}=4$	sp ³ (4 b.p + 0l.p)	Tetrahedral		
SCl ₂		$=\frac{6+2}{2}=4$	sp ³ (2b.p + 2l.p)	Angular		
SCI ₄		$=\frac{6+4}{2}=5$	sp³d (4b.p + 1l.p)	Distorted		
tetrahedral						

SF₄ number of e pairs
$$=\frac{6+4}{2} = 5$$
 sp³d (4b.p + 1l.p) Distorted tetrahedral

The above formula to calculate e^- pairs is applicable only for simple molecules or ions mentioned above.

It is not applicable for

- Polycentred molecules like C₂H₆, C₂H₄, C₂H₂, etc
- Polymeric substances like diamond (SP³) graphite (SP²); polyethene (SP²); SiC (SP³), It is also not applicable for odd electronic species like NO, NO₂, ClO₂, etc.