- 1. (a) Ange en matris A vars nollrum spänns upp av vektorerna (2, -3, 1, 1, -1), (1, 0, -2, 1, 1), (2, -2, 1, 0, -1) och (-8, 3, 1, 1, 1) i \mathbb{R}^5 .
 - (b) Bestäm vidare dimensionen av nollrummet och dimensionen av bildrummet till A.

Lösningsförslag: Vi kan visa till exempel med Gauss elimination, att noll-rummet har dimension 3. Matrisen A kan vara t ex $\begin{pmatrix} 1 & 0 & 3 & 0 & 5 \\ 0 & 1 & -1 & 1 & -3 \end{pmatrix}$, vilket följs av satsen $\mathbb{R}^5 = \mathcal{N}(A) \oplus \mathcal{R}(A^t)$ och en bas till $\mathcal{R}(A^t)$ är t ex

$$(1,0,3,0,5), (0,1,-1,1,-3).$$

Enligt dimensionssatsen har bildrummet dimension 2.

2. Låt
$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 3 & 1 & 1 & 1 \end{pmatrix}$$
 och $b = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$.

- (a) Visa att b, Ab, A^2b, A^3b är linjärt oberoende i \mathbb{R}^4 .
- (b) Sätt nu matrisen $M = (b \ Ab \ A^2b \ A^3b)$ och låt r vara den sista raden

i M^{-1} . Visa, utan att beräkna inversen, att matrisen $\begin{pmatrix} r \\ rA \\ rA^2 \\ rA^3 \end{pmatrix}$ är inverterbar.

Lösningsförslag: Eftersom det(M) är nollskild där matrisen $(b, Ab, A^2b, A^3b) =$

boshingstorstag. Eftersom
$$\det(M)$$
 ar honsand dar matrisch $(b, 7b, 7b, 7b, 7b, 7b)$

$$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & * \\ 0 & 1 & * & * \\ 1 & * & * & * \end{pmatrix}$$
 och * är något tal, är kolonnerna b, Ab, A^2b, A^3b linjärt oberoende

Vi bevisar nu raderna i matrisen r, rA, rA^2, rA^3 är linjärt oberoende vilket är ekvivalent med att

$$\alpha_0 r + \alpha_1 r A + \alpha_2 r A^2 + \alpha_3 r A^3 = 0 \tag{*}$$

medför att $\alpha_i=0$ för i=0,1,2,3, vilket ska bevisas. Ekvationen (*) multipliceradmed b från höger ger

$$\alpha_0\underbrace{rb}_0 + \alpha_1\underbrace{rAb}_0 + \alpha_2\underbrace{rA^2b}_0 + \alpha_3\underbrace{rA^3b}_1 = 0$$

eftersom $M^{-1}M=I_4$, 4×4 -enhetsmatrisen. Dvs $rb=rAb=rA^2b=0$ och $rA^3b=1$. Då har vi $\alpha_3=0$. Då blir (*)

$$\alpha_0 r + \alpha_1 r A + \alpha_2 r A^2 = 0.$$

Multiplicera denna ekvation med Ab har vi

$$\alpha_0 \underbrace{rAb}_0 + \alpha_1 \underbrace{rA^2b}_0 + \alpha_2 \underbrace{rA^3b}_1 = 0. \Rightarrow \alpha_2 = 0 \Rightarrow \alpha_0 r + \alpha_1 rA = 0.$$
$$\Rightarrow \alpha_0 \underbrace{rA^2b}_0 + \alpha_1 \underbrace{rA^3b}_1 = 0 \Rightarrow \alpha_1 = 0.$$

Slutligen

$$\alpha_0 r = 0 \Leftrightarrow \alpha_0 = 0 \text{ eller } r = 0.$$

men $r \neq 0$ eftersom den är sista raden i M^{-1} . Då $\alpha_0 = 0$.

- 3. Låt $V = M_{n \times n}(\mathbb{F})$. Definiera $\langle A, B \rangle = \operatorname{tr}(B^*A)$ för $A, B \in V$.
 - (a) Visa att V är ett inre produkt rum.
 - (b) Låt n=2. Beräkna avståndet mellan $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ och $\begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$.

lösningsförslag: Det enklaste är att identifiera $M_{n\times n}(\mathbb{F})$ med \mathbb{F}^{n^2} genom att stapla kolonner på varandra dvs

$$A = (a_1, a_2, ..., a_n) \in M_{n \times n}(\mathbb{F}) \leftrightarrow a = \begin{pmatrix} a_1 \\ \cdots \\ a_n \end{pmatrix} \in \mathbb{F}^{n^2}$$

där a_i , i=1,...,n är kolonnerna till A. Det är lätt inse att för $A=(a_1,...,a_n)$ och $B=(b_1,...b_n)$ tr $(A^*B)=a^*b$, vilket är standard inre produkt på \mathbb{F}^{n^2} .

Avståndet mellan givna matriser i inre produktrummet (\mathbb{F}^{n^2} är 3.

- 4. Låt $q(s)=s^4-s^3-7s^2+s+6$. Betrakta vektorrummet $X_q=\{\pi_q(f):f\in P(R)\}$, där $\pi_q(f)$ är resten vid polynomdivision f med q.
 - (a) Bestäm matrisen för den linjära avbildning S_q på X_q som definieras genom $S_q(f) = \pi_q(sf)$ för $f \in X_q$ i basen $\mathcal{B} = \{1, s, s^2, s^3\}$.
 - (b) Är S_q diagonaliserbar?

lösningsförslag: (a) Basbilderna fås genom polynomdivision. Då $S_q(1)=\pi_q(s\cdot 1)=0\cdot q+s,\, S_q(s)=\pi_q(s\cdot s)=0\cdot q+s^2,\, S_q(s^2)=\pi_q(s\cdot s^2)=0\cdot q+s^3,\, S_q(s^3)=\pi_q(s\cdot s^3)=1\cdot q+s^3+7s^2-s-6.$ Alltså $S_q(1)=s,\, S_q(s)=s^2,\, S_q(s^2)=s^3$ och $S_q(s^3)=s^3+7s^2-s-6.$ Då är avbildningsmatrisen

$$[S_q]_{\mathcal{B}} = \begin{pmatrix} 0 & 0 & 0 & -6\\ 1 & 0 & 0 & -1\\ 0 & 1 & 0 & 7\\ 0 & 0 & 1 & 1 \end{pmatrix}.$$

- (b) Utveckling av determinant visar $\chi_{[S_q]_{\mathcal{B}}}(s) = q(s) = (s+2)(s+1)(s-1)(s-3)$
- 5. Vad är determinanterna till följande matriser?
 - (a) $A \in M_{(2k-1)\times(2k-1)}(\mathbb{F})$ och $A^t = -A$, där k är ett positivt heltal;
 - (b) $M = BC \operatorname{där} B \in M_{n \times k}(\mathbb{F}), C \in M_{k \times n}(\mathbb{F}) \operatorname{och} k < n.$

lösningsförslag: (a) Om $A^t = -A$ gäller att $\det(A^t) = \det(-A) \Leftrightarrow \det(A) = -\det(A)$ då 2k-1 är udda. Så $\det(A) = 0$.

- (b) $\det(M)=0$ eftersom $\mathrm{rang}(M)\leq \min\{\mathrm{rang}(B),\mathrm{rang}(C)\}\leq k< n.$ Då har S_q fyra olika egenvärden. Därför är S_q diagonaliserbar.
- 6. (a) Visa att $(2x-y+4z)^2 \le 21(x^2+y^2+z^2)$. (Ledtråd: Betrakta 2x-y+4z som inre produkt av två lämpliga vektorer i standardbasen i \mathbb{R}^3 .)
 - (b) Bestäm maximum av 2x y + 4z då $x^2 + y^2 + z^2 = 1$;

lösningsförslag: (a) Betrakta u=(2,-1,4) och v=(x,y,z). Standard inre produkten $\langle u,v\rangle=2x-y+4z\leq \sqrt{2^2+(-1)^2+4^2}\sqrt{x^2+y^2+z^2}$ enligt Cauchy-Schwarz' olikhet.

(b) Av (a) får vi att $2x-y+4z \le \sqrt{2^2+(-1)^2+4^2}\sqrt{x^2+y^2+z^2} = \sqrt{21}$. Nu är 2x-y+4z kontinuerlig på en kompakt mängden (enhetssfär) så är maximum $\sqrt{21}$.