UAS Arsitektur & Organisasi Komputer

Disusun Oleh:

Prames Ray Lapian - 140810210059

PROGRAM STUDI S-1 TEKNIK INFORMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PADJADJARAN JATINANGOR

2022

- 1. CPMK3 [30] Suatu disk dengan *seek time* rata-rata 4 ms, kecepatan rotasi 18.000 rpm, dan sektor berisi 512-byte data dengan 500 sektor per track. Delay rotasi rata-rata1,5 ms. Akan dibaca file yang terdiri dari 3.000 sektor.
 - a. Hitung waktu yang diperlukan untuk membaca file tsb, dengan file disimpan pada sektor dalam track yang berurutan!

Waktu untuk membaca track pertama adalah sebagai berikut :

Pencarian rata-rata 4 ms Delay rotasi rata-rata 1.5 ms Membaca 500 sektor 3.3 ms = (60/18000) Jumlah = 8.8 ms

Misalkan track yang tersisa sekarang dapat dibaca tanpa pencarian waktu. Artinya, operasi I/O dapat mengikuti aliran dari disk. Lalu, biasanya kita perlu memperhatikan penundaan rotasi untuk 5 trek yang tersisa. Jadi masing-masing trek berturut-turut dibaca dalam 1.5 + 3.3 = 4.8 ms. Untuk membaca seluruh file:

Total waktu = 8.8 + (5*4.8) = 32.8 ms = 0.0328 detik

b. Hitung waktu yang diperlukan untuk membaca file, dengan file disimpan pada sektor secara acak!

Pencarian rata-rata 4 ms
Delay rotasi 1.5 ms
Membaca 1 sektor 0.0066 ms
Jumlah = 5.5066 ms

Total waktu = 3000 * 5.5066 = 16,519.8 ms = 16.5198 detik

c. Hitung besar file yang dibaca (dalam MegaByte)! total data yang akan dibaca = 512 * 3000 = 1,536,000 byte = 1.536 Mbyte

- 2. CPMK3 [30] Sebuah inputan bernilai biner 8 bit: 1101 1110. Data inputan tersebut setelah melalui memory menjadi: 1001 1110.
 - a. Tuliskan rumus metoda Hamming code yang digunakan untuk cek error bit data!

b. Cek kesalahan pada data menggunakan metoda *error detection* dari Hamming code! Tuliskan nilai yang diperoleh dari metoda *error detection*, dan bagaimana mengaitkan ke posisi bit data yag salah!

Posisi	12	11	10	9	8	7	6	5	4	3	2	1
data	1	1	0	<mark>1</mark>	XXX	<mark>1</mark>	1	<mark>1</mark>	XXX	0	XXX	Xxx
var	D8	D7	D6	D5	C8	D4	D3	D2	C4	D1	C2	C1

Cek Input: 1101 1110

 $C1 = 0 \oplus 1 \oplus 1 \oplus 1 \oplus 1 = 0$

 $C2 = 1 \oplus 1 \oplus 1 \oplus 0 \oplus 1 = 1$

 $C4 = 1 \oplus 1 \oplus 1 \oplus 1 = 0$

 $C8 = 1 \oplus 0 \oplus 1 \oplus 1 = 1$

Posisi data bit menjadi: 1001 1110

Posisi	12	11	10	9	8	7	6	5	4	3	2	1
data	<u>1</u>	0	0	1	XXX	<mark>1</mark>	1	<u>1</u>	XXX	0	XXX	Xxx
var	D8	D7	D6	D5	C8	D4	D3	D2	C4	D1	C2	C1

Cek input bit: 1001 1110

 $C1 = 0 \oplus 1 \oplus 1 \oplus 1 \oplus 0 = 1$

 $C2 = 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 = 0$

 $C4 = 1 \oplus 1 \oplus 1 \oplus 1 = 0$

 $C8 = 1 \oplus 0 \oplus 0 \oplus 1 = 0$

Perbandingan cek bit lama dan baru:

Sehingga terjadi error pada data di posisi ke-11 (D7)

c. Tuliskan nilai dari setiap variable (CETAK MERAH) yang ada pada di bawah!

3. CPMK2, CPMK3 [40] Perhatikan instruksi dalam Bahasa Assembly berikut:

MOV EAX, efa ;// isi register EAX dengan data yang ada di memori pada alamat efa

MOV EBX, EAX ;// isi register EBX dengan data pada register EAX

ADD BAX, EAX, EBX ;// register BAX \leftarrow EAX + EBX

MUL BBX, #2, EBX ;// BBX ← 2 * EBX

WRT ffa, BAX ;// simpan/tulis isi register BAX ke memori dengan alamat ffa

WRT ffb, BBX ;// simpan/tulis isi register BBX ke memori dengan alamat ffb

Setiap instruksi dijalankan melalui tahap: F (fetch); D (decode); E (execute), dan W (write). Data bisa diakses oleh instruksi lainya bila sudah melewati tahap E (execute), dan setiap tahap membutuhkan waktu eksekusi satu satuan waktu.

Hitung waktu yang diperlukan untuk mengeksekusi instruksi di atas secara sekuensial!

a. Buat proses eksekusi secara pipeline!

Proses/w	1	2	3	4	5	6	7	8	9	1	1	1	1	1	1	1	1	1	1	2	2	2
aktu										0	1	2	3	4	5	6	7	8	9	0	1	2
1	F	D	Ε	W																		
2					F	D	Е	V														
3									F	D	Е											
4												F	D	E								
5															F	D	Е	W				
6																			F	D	E	W

Jadi, dengan cara Sekuensial CPU akan selesai mengeksekui seluruh perintah dalam 22 Clock

b. Hitung waktu eksekusi secara pipeline!

Proses/waktu	1	2	3	4	5	6	7	8	9	10
1	F	D	E	W						
2		F	D	E	W					
3				F	D	E				
4					F	D	E			
5						F	D	E	W	

6				F	D	Ε	W

Jadi dengan pipeline, CPU akan selesai mengeksekusi seluruh perintah dalam 10 clock.

- c. Pada proses pipeline, apakah terjadi CONSTRAINTS? Sebutkan jenis CONSTRAINTSnya dan terjadi pada intruksi yang mana?
- d. Buat proses eksekusi secara superscalar dengan masing-masing tahap memiliki 2 unit fungsional! Apakah ada perbaikan waktu dibandingkan dengan proses pipeline, berapa perbedaanya?

Proses/waktu	1	2	3	4	5	6	7	8	9	10
1	F	D	E	W						
2	F	D	E	W						
3		F	D	E						
4		F	D	E						
5			F	D	E	W				
6			F	D	E	W				

Jadi dengan pipeline *superscalar*, CPU akan selesai mengeksekusi seluruh perintah dalam 6 clock. Superscalar