МОДЕЛИРОВАНИЕ КОЛЕБАНИЙ ПЛАСТИНЧАТОГО РЕЗОНАТОРА ДЛЯ ОПРЕДЕЛЕНИЯ ВЯЗКОСТИ И ПЛОТНОСТИ ЖИДКОСТИ

Выполнили студенты гр. 5030103/90301

Бенюх М.А. Блащук О.Д.

Задача:

Исследуя колебания пластины, помещенной в вязкую жидкость, определить плотность и вязкость жидкости.

Проблема:

Пластина, помещенная в вязкую жидкость – пластинчатый резонатор – является системой с распределенными параметрами, точное решение которой вызывает затруднение.

Предположения:

При перенесении резонатора из вакуума в жидкость форма его колебаний не меняется.

Рассмотреть влияние жидкости на колебания как действие массы, добавляемой к массе самого резонатора.

Этапы исследования:

- 1. Стационарное уравнение колебаний пластинчатого резонатора
- 2. Нестационарное уравнение колебаний пластинчатого резонатора
- 3. Упрощение нестационарной модели

Рассмотрим стационарные колебания плоской круглой мембраны:

$$\Delta U = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial U}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 U}{\partial \varphi^2}$$
 - оператор Лапласа в полярных координатах (1.1)

 $U(r, \varphi) = U(r) \cos(m\varphi)$ – разделение переменных m – число волн по окружности m=0 – осесимметричные колебания

Граничные условия:

$$U(R) = 0$$
, $U(0) - \text{orp.}$

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial U}{\partial r}\right) + \frac{m^2}{r^2}U + \alpha^2 U = 0, \qquad \alpha = \frac{SE}{F}$$
(1.2)

$$r^2 \frac{\partial^2 U}{\partial r^2} + r \frac{\partial U}{\partial r} + (\alpha^2 r^2 - m^2)U = 0$$
 – уравнение Бесселя (1.3)

Замена переменных: $x = \alpha r$

$$x^2 \frac{\partial^2 U}{\partial x^2} + x \frac{\partial U}{\partial x} + (x^2 - m^2)U = 0$$
 (1.4)

Ищем решение в виде: $U(x) = CJ_m(x) + DY_m(x)$ (1.5)

Граничные условия:

$$x = 0$$
: $Y_m(0) \rightarrow \infty \rightarrow D = 0 \rightarrow U(r) = CJ_m(\alpha r)$

$$U(R) = 0$$
: $J_m(\alpha R) = 0$

$$U(r,\varphi) = J_m(\alpha r)\cos(m\varphi) \tag{1.7}$$

В таб. 1 приведены первые n корней J_m

Таблица 1

	m = 0	m = 1	m=2	m=3
n = 1	2.405	3.832	5.136	6.380
n=2	5.520	7.016	8.417	9.761
n=3	8.654	10.173	11.620	13.015

Таким образом, формы колебаний имеют вид:

$$U(r,\varphi) = J_m(\alpha r)(C\cos(m\varphi) + D\sin(m\varphi))$$
 (1.8)

Частоты будут кратными для всех форм колебаний, кроме осесимметричных (m=0)— корни функции Бесселя

	m = 0	m = 1	m = 2
n = 1			\bigotimes
n = 2			
n = 3			

Рис. 23. Узловые линии на круглой мембране

Явная конечно-разностная схема:

$$\frac{1}{ih} \left(\frac{U_{i+1}^k - U_i^k}{h} \right) + \left(\frac{U_{i+1}^k + U_{i-1}^k - 2U_i^k}{h^2} \right) = \frac{\rho}{E} \left(\frac{U_i^{k+1} + U_i^{k-1} - 2U_i^k}{\Delta t^2} \right) + (k_1 + k_2 \eta) \left(\frac{U_i^{k+1} - U_i^k}{\Delta t} \right)$$
(1.9)

Рис. I. Узловые линии при m=0, n=3

Рис.4. Разрез ω (r) при m=0, n=3

Рис.2. Узловые линии при m=1, n=3

Рис.5. Разрез ω (r) при m=1, n=3

Рис.3. Узловые линии при m=2, n=3

Рис.6. Разрез ω (r) при m=2, n=3

$$ES\frac{\partial^2 U}{\partial x^2} = (m+M)\frac{\partial^2 U}{\partial t^2}$$
 — нестационарное уравнение колебаний струны под действием силы F (2.1)

Зададим влияние вязкой силы на смещение:

$$ES\frac{\partial^2 U}{\partial x^2} = (m+M)\frac{\partial^2 U}{\partial t^2} + (k_1 + k_2 \eta)\frac{\partial U}{\partial x}$$
(2.2)

 k_1 - коэффициент собственного трения $k_2\,\eta$ - коэффициент вязкого трения в среде

Явная конечно-разностная схема:

$$ES\left(\frac{U_{i+1}^{k} + U_{i-1}^{k} - 2U_{i}^{k}}{h^{2}}\right) = (m+M)\left(\frac{U_{i}^{k+1} + U_{i}^{k-1} - 2U_{i}^{k}}{\Delta t^{2}}\right) + (k_{1} + k_{2}\eta)\left(\frac{U_{i}^{k+1} - U_{i}^{k}}{\Delta t}\right)$$
(2.3)

Симметрично отразим результаты, выполненные для колебаний струны для $\varphi \in [0, 2\pi]$

Рис.7. Узловые линии при m=0, n=3

Рис.8. Колебание струны при x=[0, L/2]

В полученной модели нельзя явно оценить влияние параметров жидкости на колебания пластины в виду неточности в вычислении массы системы и действующих сил .

Колебания пластинного резонатора являются гармоническими. Рассмотрим колебания пластины как системы с сосредоточенными параметрами.

$$F_{\text{ин}} + F_{\text{упр}} + R = 0$$
 – уравнение динамики, где (3.1)

Формулы для сил:

$$F_{
m ин} = (M+m)\ddot{x}$$
 $F_{
m ин}$ - Сила инерции (3.2) $F_{
m ynp} = kx$ $F_{
m ynp}$ - Сила упругости (3.3) $R = (k_1 + k_2 \eta) \dot{x}$, где R - Сила вязкого трения (3.4)

k - модуль упругости пластины k_1 - коэффициент собственного трения k_2 η - коэффициент вязкого трения в среде

 k_1 и k_2 - параметры прибора

 $m = \rho Sd$ - масса присоединенной жидкости, где (3.5)

 ρ - ПЛОТНОСТЬ ЖИДКОСТИ

S- ПЛОЩАДЬ ПЛАСТИНЫ

d- ТОЛЩИНО СЛОЯ ЖИДКОСТИ

Сравним уравнения:

$$\ddot{x} + \frac{k_1 + k_2 \eta}{M + \rho S d} \dot{x} + \frac{k}{M + \rho S d} x = 0$$
 — уравнение затухающих колебаний пластины (3.6)

$$\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = 0$$
 — уравнение свободных затухающих колебаний (3.7)

$$\omega = \sqrt{\omega_0^2 - \beta^2} = \sqrt{\frac{k}{M + \rho S d} - (\frac{k_1 + k_2 \eta}{2(M + \rho S d)})^2} - \text{собственная циклическая частота колебаний с учетом трения}$$
(3.8)

$$\omega_0 = \frac{k}{M + \rho S d}$$
 — собственная циклическая частота колебаний в отсутствии трения (3.9)

$$\beta = \frac{k_1 + k_2 \eta}{2(M + \rho Sd)} -$$
коэффициент затухания (3.10)

При
$$\beta < \omega_0$$
 решение: $x(t) = e^{-\beta t} (C_1 e^{\sqrt{\omega_0^2 - \beta^2} t} + C_2 e^{-\sqrt{\omega_0^2 - \beta^2} t}) = A e^{-\beta t} \cos(\sqrt{\omega_0^2 - \beta^2} t + \alpha)$ (3.11)

$$A = \sqrt{x_0^2 + \left(\frac{v_0 + \beta x_0}{\omega}\right)^2} - \text{начальная амплитуда}$$
 (3.12)

$$\alpha = -argtg(\frac{v_0}{\omega x_0} + \frac{\beta}{\omega})$$
 — начальная фаза (3.13)

Решение:
$$x(t) = Ae^{-\beta t}\cos\left(\sqrt{\omega_0^2 - \beta^2} \ t + \alpha\right)$$
, где

Для исследования взяты разные величины ho, η :

Рис.9. Зависимость x(t) для ацетона при $x_0 = 1$, $\dot{x_0} = 0$

$$\rho = \frac{800 \text{K}\Gamma}{\text{M}^3}$$
, $\eta = 0.0003$

Рис.10. Зависимость x(t) для воды при $x_0 = 1$, $\dot{x_0} = 0$

$$\rho = \frac{1000 \text{K}\Gamma}{\text{M}^3}$$
, $\eta = 0.001$

Принцип нахождения вязкости и плотности присоединенной жидкости:

- 1) Определить и задать параметры k_1 и k_2 прибора
- 2) Посчитать массу присоединенной жидкостью ho и найти ω_0
- 3) С помощью частотомера измерить частоту колебаний ω для системы с присоединенной жидкостью и найти η

Спасибо за внимание!