GPU MEMORY CLOCK EXPLATORY DATA ANALYSIS (EDA)

GUARDIAN TRI ANGGORO

DATA SCIENTIST PORTOFOLIO

TABLE OF CONTENT

Dataset Information and Objective

Premilinery Look & Data Cleaning

Data Understanding

EDA Questions

Recommendations

DATASET INFORMATION

The dataset contains Graphics Card Memory NVIDIA and AMD. A Graphics Card is nothing more than another processor that is specially design and made to handle graphics. Adding one of these to your computer will take the load of processing graphics away from your CPU, allowing your CPU to handle other tasks.

source:

https://www.kaggle.com/datasets/alanjo/graphics-card-full-specs

OBJECTIVES

This project objectives:

- 1. Which brand dominates the most?
- 2. Top five product with the best GPU Memory Performance
- 3. Showing the correlation between variables

MISSING VALUES & DUPLICATED DATA

```
<class 'pandas.core.frame.DataFrame'>
   RangeIndex: 2889 entries, 0 to 2888
   Data columns (total 11 columns):
        Column
                Non-Null Count Dtype
        manufacturer 2889 non-null object
        productName 2889 non-null object
                2477 non-null
        memSize
                                    float64
        memBusWidth 2477 non-null float64
    4 gpuClock 2889 non-null int64
    5 memClock 2477 non-null float64
    6 unifiedShader 2065 non-null float64
    7 tmu 2889 non-null int64
8 rop 2889 non-null int64
9 bus 2889 non-null object
                                   object
                2889 non-null
       memType
                                     object
   dtypes: float64(4), int64(3), object(4)
   memory usage: 248.4+ KB
```

```
[ ] df.duplicated().sum()
```

- 1.There are 2889 rowss and 11 columns in dataset
- 2. There are four data that have a missing value. (memSize, memBusWidth, MemClock, and unifiedShader).
- 3. There are nine duplicated data

MISSING VALUES & DUPLICATED DATA

```
<class 'pandas.core.frame.DataFrame'>
   RangeIndex: 2889 entries, 0 to 2888
   Data columns (total 11 columns):
        Column
                Non-Null Count Dtype
        manufacturer 2889 non-null object
        productName 2889 non-null object
                2477 non-null
        memSize
                                    float64
        memBusWidth 2477 non-null float64
    4 gpuClock 2889 non-null int64
    5 memClock 2477 non-null float64
    6 unifiedShader 2065 non-null float64
    7 tmu 2889 non-null int64
8 rop 2889 non-null int64
9 bus 2889 non-null object
                                   object
                2889 non-null
       memType
                                     object
   dtypes: float64(4), int64(3), object(4)
   memory usage: 248.4+ KB
```

```
[ ] df.duplicated().sum()
```

9

- 1.There are 2889 rowss and 11 columns in dataset
- 2. There are four data that have a missing value. (memSize, memBusWidth, MemClock, and unifiedShader).
- 3. There are nine duplicated data

HANDLING MISSING VALUES

```
df['memSize'].fillna(df['memSize'].median)
 \Box
            0.016
            0.016
            0.032
              4.0
              8.0
     Name: memSize, Length: 2889, dtype: object
[ ] df['memBusWidth'].fillna(df['memBusWidth'].median)
            128.0
             64.0
            128.0
            128.0
            128.0
            128.0
            128.0
     Name: memBusWidth, Length: 2889, dtype: object
[ ] df['memClock'].fillna(df['memClock'].median)
            2250.0
            1500.0
            1500.0
            1500.0
            1500.0
             166.0
             166.0
             166.0
            2133.0
            2133.0
     Name: memClock, Length: 2889, dtype: object
```

```
df['unifiedShader'].fillna(df['unifiedShader'].median)
                                                          3840.0
                                                           768.0
                                                          1024.0
                                                          1024.0
                                                          2048.0
             <bound method NDFrame._add_numeric_operations....</pre>
             <bound method NDFrame._add_numeric_operations....</pre>
             <bound method NDFrame. add numeric operations....</p>
     2886
    2887
                                                           640.0
                                                           768.0
     2888
    Name: unifiedShader, Length: 2889, dtype: object
    df = df.dropna()
     df.isna().sum()
    manufacturer
    productName
    memSize
    memBusWidth
    gpuClock
    memClock
    unifiedShader
     tmu
    bus
    memType
    dtype: int64
There is no missing value
```

Observation:

fill in the values that have missing values with the median

HANDLING DUPLICATED VALUE

- 1. Check data location that have a duplicate value.
- 2. Drop data that have duplicated value

STATISTICAL SUMMARY

	memSize	memBusWidth	gpuClock	memClock	unifiedShader	tmu	rop
count	1738.000000	1738.000000	1738.000000	1738.000000	1738.000000	1738.000000	1738.000000
mean	4.366116	326.094361	862.724396	1103.786536	1182.071346	72.115075	27.642117
std	8.252672	763.899227	326.889643	409.809392	1771.561211	85.216487	28.855399
min	0.128000	32.000000	300.000000	266.000000	8.000000	4.000000	0.000000
25%	1.024000	128.000000	625.000000	800.000000	192.000000	20.000000	8.000000
50%	2.000000	128.000000	796.000000	1000.000000	496.000000	40.000000	16.000000
75%	4.000000	256.000000	1005.750000	1375.000000	1536.000000	96.000000	32.000000
max	128.000000	8192.000000	2331.000000	2257.000000	17408.000000	880.000000	256.000000

- 1. Overall the minimum and maximum values make sense for each column.
- 2. All variable has skewed distribution (mean>median)

STATISTICAL SUMMARY

	manufacturer	productName	bus	memType
count	1738	1738	1738	1738
unique	4	1618	21	15
top	NVIDIA	GeForce GT 555M	PCIe 2.0 x16	GDDR5
freq	906	5	547	721

- 1. For Manufacturer column there are 4 unique data from 1738 data with the top data is NVIDIA
- 2. For ProductName column there are 1618 unique data from 1738 data with the top data is GeForce GT 55M
- 3. For ProductName column there are 21 unique data from 1738 data with the top data is PCcle 2.0 x16
- 4. For MemType column there are 15 unique data from 1738 data with the top data is GDDR5

DETECT OUTLIERS VIA BOXPLOT

- 1. There are outliers for each variable
- 2. Handling Outliers with IQR

HANDLING OUTLIERS WITH IQR

```
# Detect Outliers Using IQR
Q1 = df[numericals].quantile(0.25)
Q3 = df[numericals].quantile(0.75)
iqr = Q3 - Q1
# Finding upper and lower limit
upper limit = 03 + 1.5 * igr
lower limit = 01 - 1.5 * igr
# Finding Outliers
df[df[numericals] > upper limit]
df[df[numericals] < lower limit]</pre>
# Trimming
new df = df[df[numericals] < upper limit]
new df.shape
(1738, 11)
```


After Handling outliers with IQR.

MemSize, MemBusWidth, gpuClock, memClock, and rop are handful from outliers.

HEATMAP CORRELATION

correlation = new_df.corr()
sns.heatmap(correlation, annot=True, fmt='.2f')

r→ <matplotlib.axes._subplots.AxesSubplot at 0x7f8f20f53510>

- 1. MemSize have strong correlation between tmu, unifiedshader, and rop
- 2.memClock have strong correlation between unifiedshader.
- 3. unifiedshader have strong correlation beetween tmu, rop, memSize, and memClock,

DATA VISUALIZASTION (RESULT)

Observation:

Nvidia is a dominating GPU in the market with 52.1% and AMD is the second dominating GPU in the market with 34.8%

DATA VISUALIZASTION (RESULT)

The top 10 Product with the Best GPU MemoryClock Performance are:

- 1. Radeon Instinct MI250
- 2. Radeon Instinct MI250X
- 3. A100 PCIe 80 GB
- 4.A100 SXM4 80 GB
- 5. H100 SXM5
- 6. Radeon Instinct MI210
- 7. RTX A6000
- 8.A40 PCIe
- 9. Quadro RTX 8000 Passive
- 10. Quadro RTX 8000

THANKYOU

