MATH2022 Linear and Abstract Algebra

Semester 1 Exercises for Week 9

Important Ideas and Useful Facts:

(i) Linear dependence and independence: Let V be a vector space over a field F, and $\mathbf{v}_1, \dots, \mathbf{v}_k \in V$ for some $k \geq 1$. We call the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ and the set $X = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ linearly independent if, for all $\lambda_1, \dots, \lambda_k \in F$,

$$\lambda_1 \mathbf{v}_1 + \ldots + \lambda_k \mathbf{v}_k = \mathbf{0}$$
 implies $\lambda_1 = \ldots = \lambda_k = 0$,

equivalently, in the case k > 1, no vector from X can be expressed as a linear combination of other vectors from X. We say that they are *linearly dependent* otherwise, that is, if $X = \{\mathbf{0}\}$ or at least one vector from X can be expressed as a linear combination of other vectors from X. In particular if $\mathbf{0} \in X$, then X is linearly dependent. If k = 1 then X is linearly independent if and only if \mathbf{v}_1 is nonzero. If k = 2 then K is linearly independent if and only if neither of \mathbf{v}_1 nor \mathbf{v}_2 is a scalar multiple of the other. The emptyset $\mathbb{0}$ is declared by definition to be *linearly independent*. If K is an infinite subset of K then we say that K is *linearly independent* if every finite subset is linearly independent, and otherwise *linearly dependent*.

- (ii) Basis and dimension of a vector space: A basis for a vector space V is a linearly independent subset B that spans V. In particular, the empty set is a basis for the trivial vector space. If follows, when B is nonempty, that every vector in V can be expressed uniquely (up to the order of the vectors) as a linear combination of elements of B. In applications, a basis B is typically a nonempty finite ordered list of vectors (and order is important with respect to building matrices, see later). It is an important theorem that every vector space V has a basis and every basis for V has the same size (even when the size is infinite). The size of any basis for V is called the dimension of the vector space and denoted by $\dim(V)$. It is another important theorem that every linearly independent subset can be extended to a basis, and every spanning set contains a basis. It follows that, if V is known to be finite dimensional of dimension n, then any linearly independent set or any spanning set of size n is automatically a basis for V.
- (iii) Standard bases: Let F be any field. If $n \ge 1$ then the standard basis for F^n is

$$B = \{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$$

where $\mathbf{e}_i = (0, \dots, 0, 1, 0, \dots, 0)$ with i in the ith place, for $i = 1, \dots, n$. In particular, F^n has dimension n. The empty set \emptyset is the basis for any trivial vector space (such as F^0), so the dimension of any trivial vector space is zero. Let \mathbb{P}_n denote the vector space of polynomials in x over F of degree at most n, where $n \geq 0$. Then the $standard\ basis$ for \mathbb{P}_n is

$$B = \{1, x, \dots, x^n\} .$$

In particular, \mathbb{P}_n has dimension n+1.

(iv) Coordinates of a vector with respect to a basis: Let V be a vector space over a field F of dimension n and let $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be an ordered basis for V. Let $\mathbf{v} \in V$. Then there are unique scalars $\lambda_1, \dots, \lambda_n \in F$ such that

$$\mathbf{v} = \lambda_1 \mathbf{b}_1 + \ldots + \lambda_n \mathbf{b}_n .$$

We define the *coordinate vector* (coordinates) of \mathbf{v} with respect to B to be the following column vector:

$$[\mathbf{v}]_B = \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{bmatrix}$$

If $V = F^n$ and B is the standard basis for V then $[\mathbf{v}]_B = \mathbf{v}^\top$, for all $\mathbf{v} \in V$.

- (v) Vector spaces with the same dimension are isomorphic: If V is a vector space over a field F having a basis B with $n \geq 1$ elements, so has dimension n, then V is isomorphic to F^n under the mapping $\mathbf{v} \mapsto [\mathbf{v}]_B^{\mathsf{T}}$ (for $\mathbf{v} \in V$), where the row vector $[\mathbf{v}]_B^{\mathsf{T}}$ is, as usual, identified with the n-tuple in F^n . Obviously, all trivial vector spaces, that is, vector spaces of dimension zero, are isomorphic to F^0 .
- (vi) Isomorphic vector spaces have the same dimension: If V and W are isomorphic vector spaces over a field F and B is a basis for V, then it follows that the image of B under the isomorphism is a basis for W, and so V and W have the same dimension.
- (vii) Nonzero rows of a matrix in row echelon form are linearly independent: The nonzero rows of a matrix M (over a field F) in row echelon form are linearly independent and therefore form a basis for the row space of any matrix over F that can be row reduced to yield the same nonzero rows as M.
- (viii) Rank of a matrix: It is an important theorem that the row and column spaces of a matrix M have the same dimension, called the rank of M, denoted by rank(M). The rank is the number of nonzero rows when M or M^{\top} is row reduced to row echelon form.
 - (ix) Nullity of a matrix: Let M be an $m \times n$ matrix over a field F. Recall that the *null space* of M may refer either to the vector space

{column vectors
$$\mathbf{v}$$
 of length $n \mid M\mathbf{v} = \mathbf{0}$ },

or the solution space of the associated homogeneous system of m equations in n variables:

$$\{\mathbf{x} \in F^n \mid M\mathbf{x}^\top = \mathbf{0}\}\ .$$

The dimension of the null space is called the *nullity* of M, denoted by nullity (M). The nullity of M is the number of parameters that need to be introduced to yield the solution of the associated homogeneous system of equations.

(x) Rank-Nullity Theorem for matrices: If M is an $m \times n$ matrix then $\operatorname{rank}(M) + \operatorname{nullity}(M) = n$.

2

Tutorial Exercises:

- **1.** Explain why $\{1, i\}$ is a basis for \mathbb{C} as a vector space over \mathbb{R} where $i = \sqrt{-1}$ (so that \mathbb{C} becomes two dimensional).
- **2.** Explain why $B = \{(1, 1, 1), (0, 1, 1), (0, 0, 1)\}$ is basis for \mathbb{R}^3 and find the coordinates of \mathbf{v} with respect to B in the following cases:

(a)
$$\mathbf{v} = (3, 1, -4)$$

(b)
$$\mathbf{v} = (1, 0, 0)$$

(c)
$$\mathbf{v} = (2, 1, 0)$$

3. Consider the following real matrices:

$$A \ = \ \left[\begin{array}{ccc} 1 & 2 & -3 \\ 4 & 0 & 1 \end{array} \right] \,, \quad B \ = \ \left[\begin{array}{ccc} 1 & 3 & -4 \\ 6 & 5 & 4 \end{array} \right] \,, \quad C \ = \ \left[\begin{array}{ccc} 3 & 8 & -11 \\ 16 & 10 & 9 \end{array} \right] \,,$$

$$M = \begin{bmatrix} 1 & 2 & -3 & 4 & 0 & 1 \\ 1 & 3 & -4 & 6 & 5 & 4 \\ 3 & 8 & -11 & 16 & 10 & 9 \end{bmatrix}.$$

Row reduce M and M^{\top} and observe that they have the same rank. Explain why A, B and C are linearly dependent. Express one of A, B, C as a linear combination of the other two.

4. Find a basis for the row space and a basis for the column space of the following real matrix:

$$M = \begin{bmatrix} 2 & 1 & 0 & -4 \\ 3 & 0 & -1 & 2 \\ 6 & -3 & -4 & 20 \end{bmatrix}$$

Verify that the row space and column space of M have the same dimension. Now find a basis for the null space of M. Verify that the Rank-Nullity Theorem holds in this case.

5. Decide whether the following sets of vectors from $\mathbb{R}^{\mathbb{R}}$ (denoted by the rule for their outputs given inputs $x \in \mathbb{R}$) are linearly independent:

(a)
$$\{1+x+x^2, 1-x, 2+x^2\}$$

(b)
$$\{1-x-x^2, 1+x^2, 1+x+x^2+x^3, 1-x^3\}$$

(c)
$$\{\sin x, \cos x\}$$

(d)
$$\{1, \cos 2x, \sin^2 x\}$$

6.* Recall that \mathbb{Q} is the field of rational numbers and that $\sqrt{2} \notin \mathbb{Q}$. Put

$$\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\} .$$

Prove that $\mathbb{Q}(\sqrt{2})$ is closed under addition and multiplication and taking inverses of nonzero elements. It follows that $\mathbb{Q}(\sqrt{2})$ is a field, and becomes a vector space over \mathbb{Q} by restricting scalar multiplication. Explain why $\{1, \sqrt{2}\}$ is a basis for $\mathbb{Q}(\sqrt{2})$ (so that $\mathbb{Q}(\sqrt{2})$ becomes two dimensional as a vector space over \mathbb{Q}).

3

Further Exercises:

Explain why $B = \{1, x-1, (x-1)^2\}$ is a basis for the vector space \mathbb{P}_2 of real polynomials of degree at most 2. Find the coordinates of p(x) with respect to B in the following cases:

(a)
$$p(x) = 2x^2 - 5x + 6$$
 (b) $p(x) = x^2 + 1$

(b)
$$p(x) = x^2 + 1$$

(c)
$$p(x) = x^2 - 1$$

- 8. Let F be any field. Find a basis for $Mat_{2,3}$, the set of 2×3 matrices over F, regarded as a vector space over F with respect to usual matrix addition and scalar multiplication. More generally, explain why $Mat_{m,n}$ becomes an mn-dimensional vector space over F, for any $m, n \geq 1$.
- Find the rank and nullity of the following matrices, and a basis for the null space in each case:

(a)
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
 over \mathbb{R} , \mathbb{Z}_2 and \mathbb{Z}_3 . (b) $B = \begin{bmatrix} 1 & -1 & -1 \\ 0 & 3 & 4 \\ 1 & 0 & 2 \end{bmatrix}$ over \mathbb{R} and \mathbb{Z}_5 .

(c)
$$C = \begin{bmatrix} -1 & 0 & 3 & -2 \\ -1 & 1 & 0 & 3 \\ -1 & 0 & -2 & 3 \end{bmatrix}$$
 over \mathbb{R} and \mathbb{Z}_5 .

10. Use the previous exercise, or otherwise, to decide which of the following sets of vectors are linearly independent, as subsets of F^n for appropriate F and n:

(a)
$$X = \{(0,1,1), (1,0,1), (0,0,1)\}$$
 over \mathbb{R}, \mathbb{Z}_2 and \mathbb{Z}_3 .

(b)
$$X = \{(1, -1, -1), (0, 3, 4), (1, 0, 2)\}$$
 over \mathbb{R} and \mathbb{Z}_5 .

(c)
$$X = \{(1,0,1), (-1,3,0), (-1,4,2)\}$$
 over \mathbb{R} and \mathbb{Z}_5 .

(d)
$$X = \{(-1, 0, 3, -2), (-1, 1, 0, 3), (-1, 0, -2, 3)\}$$
 over \mathbb{R} and \mathbb{Z}_5 .

(e)
$$X = \{(-1, -1, -1), (0, 1, 0), (3, 0, -2), (-2, 3, 3)\}$$
 over \mathbb{R} and \mathbb{Z}_5 .

- Verify carefully, from the definition, that if \mathbf{v} and \mathbf{w} are vectors from a vector space V11. over a field F then \mathbf{v} and \mathbf{w} are linearly independent if and only if neither \mathbf{v} nor \mathbf{w} can be expressed as a scalar multiple of the other.
- Suppose that k > 1 and $\mathbf{v}_1, \dots, \mathbf{v}_k$ are vectors from a vector space. Verify carefully from the definition that $\mathbf{v}_1, \dots, \mathbf{v}_k$ are linearly independent if and only if no vector from this list can be expressed as a linear combination of other vectors from the list.
- Prove carefully that isomorphic vector spaces over the same field have the same dimension.
- 14.* Let v and w be eigenvectors for a square matrix M with respect to eigenvalues λ and μ respectively. Prove that is $\lambda \neq \mu$ then neither v nor w can be expressed as a scalar multiple of the other, and hence \mathbf{v} and \mathbf{w} are linearly independent.
- 15.* Let \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 be eigenvectors of a square matrix M with respect to eigenvalues λ_1 , λ_2 and λ_3 respectively, where λ_1 , λ_2 and λ_3 are distinct. Prove that \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 are linearly independent. (This exercise generalises to prove the theorem that any set of eigenvectors corresponding to distinct eigenvalues of a square matrix M is linearly independent.)