Probabilistic Artificial Intelligence

Reasoning over time

Approximate Inference

Recap

- Probability: useful for representing beliefs of our agents
 - Bayes' rule to update beliefs
- Compactly representing
 - Bayesian networks
 - exploits conditional independence
- Inference intractable in general...
 - → approximate inference

It allows to maintain a belief

- Given conditional independent observations $P(o_1, o_2 | State) = P(o_1 | State)P(o_2 | State)$
- ...we can also sequentially update:

$$P'(State) := P(o_1 | State)P(State) / P(o_1)$$

 $P''(State) := P(o_2 | State)P'(State) / P(o_2)$

- $\vdash \text{ then } \mathbf{P''}(State) = \mathbf{P}(State \mid o_1, o_2)$
- Exercise...?
- "We will see later how to incorporate robot movement over time"
 - → the time has come!

It allows to maintain a belief

- Given conditional independent observations $P(o_1, o_2 | State) = P(o_1 | State)P(o_2 | State)$
- ...we can also sequentially update:

$$P'(State) := P(o_1 | State)P(State) / P(o_1)$$

 $P''(State) := P(o_2 | State)P'(State) / P(o_2)$

- \triangleright then **P"**(State)=**P**(State $\mid o_1, o_2 \rangle$
- ▷ Exercise...?

with

$$P(S|o_{1}, o_{2}) = \frac{P(o_{1}, o_{2}|S)P(S)}{\sum_{s} P(o_{1}, o_{2}|s)P(s)}$$
{conditional independence}
$$= \frac{P(o_{2}|S)P(o_{1}|S)P(S)}{\sum_{s} P(o_{2}|s)P(o_{1}|s)P(s)}$$
{multiply with 1}
$$= \frac{1/P(o_{1})}{1/P(o_{1})} \times \frac{P(o_{2}|S)P(o_{1}|S)P(S)}{\sum_{s} P(o_{2}|s)P(o_{1}|s)P(s)}$$
{push inward}
$$= \frac{P(o_{2}|S)\frac{P(o_{1}|S)P(S)}{P(o_{1})}}{\sum_{s} P(o_{2}|s)\frac{P(o_{1}|s)P(s)}{P(o_{1})}}$$

$$= \frac{P(o_{2}|S)P'(S)}{\sum_{s} P(o_{2}|s)P'(s)} = P''(\text{state})$$

$$P'(S) \triangleq \frac{P(o_1|S)P(S)}{P(o_1)}$$

the updated belief after observing o_1 .

Warm Up Exercise

- Assume the history is: (see nothing, move right, see door, move right, see door)
 - where are we now?
 - where did we start?

ℱ TUDelft

Motivation

Why do we need special methods for time?

- Bayes rule is awesome...
 - but perhaps not (directly) sufficient to deal with time...?
 - \triangleright **P**(State $|o_1\rangle :=$ **P**($o_1|State$)**P**(State) / P($o_1\rangle$
- Problems?

Why do we need special methods for time?

- Bayes rule is awesome...
 - but perhaps not (directly) sufficient to deal with time...?
 - \triangleright **P**(State $|o_1\rangle :=$ **P**($o_1|State$)**P**(State) / P($o_1\rangle$

Problems?

E.g.: a self-built drone that determines its position based on images it takes with its camera...

- to make it easier the designers place a landmark
- accuracy is important... the measurement is noisy... so designers decide to average all measurements over the course of 20s...

Will it work?

TUDelft

■ ... position could vary substantially over 20s interval

- ... position could vary substantially over 20s interval
- Another example: treating a diabetic patient
 - need to decide on food intake and insulin dose
 - need to estimate: current blood sugar and insulin levels these can vary quickly

- ... position could vary substantially over 20s interval
- Another example: treating a diabetic patient
 - need to decide on food intake and insulin dose
 - need to estimate: current blood sugar and insulin levels these can vary quickly

Upshot:

- ▶ need not only consider "sensor model" $P(o_1 | State)$
- but also a "transition model" that predicts how the state changes over time.

Upshot:

- ▷ need not only consider "sensor model" $P(o_1 | State)$
- but also a "transition model" that predicts how the state changes over time.

■ Upshot:

- ▷ need not only consider "sensor model" P(o₁ | State)
- but also a "transition model" that predicts how the state changes over time.

Representing Time

Representing Time

Basic idea: copy state and evidence variables for each time step

 $\mathbf{X}_t = \text{set of unobservable state variables at time } t$ e.g., $BloodSugar_t$, $StomachContents_t$, etc.

 $\mathbf{E}_t = \text{set of observable evidence variables at time } t$ e.g., $MeasuredBloodSugar_t$, $PulseRate_t$, $FoodEaten_t$

This assumes discrete time; step size depends on problem

Notation: $\mathbf{X}_{a:b} = \mathbf{X}_a, \mathbf{X}_{a+1}, \dots, \mathbf{X}_{b-1}, \mathbf{X}_b$

Representing Time

Basic idea: copy state and evidence variables for each time step

- $\mathbf{X}_t = \text{set of unobservable state variables at time } t$ e.g., $BloodSugar_t$, $StomachContents_t$, etc.
- $\mathbf{E}_t = \text{set of observable evidence variables at time } t$ e.g., $MeasuredBloodSugar_t$, $PulseRate_t$, $FoodEaten_t$

This assumes discrete time; step size depends on problem

Notation: $\mathbf{X}_{a:b} = \mathbf{X}_a, \mathbf{X}_{a+1}, \dots, \mathbf{X}_{b-1}, \mathbf{X}_b$

Question:

How can we compactly represent a probability distribution over the evolution of state X_{i} ?

TUDelft

Construct a Bayes net from these variables: parents?

Construct a Bayes net from these variables: parents?

Markov assumption: X_t depends on **bounded** subset of $X_{0:t-1}$

First-order Markov process: $\mathbf{P}(\mathbf{X}_t|\mathbf{X}_{0:t-1}) = \mathbf{P}(\mathbf{X}_t|\mathbf{X}_{t-1})$ "transition model"

First-order X_{t-2} X_{t-1} X_{t} X_{t+1} X_{t+2}

Construct a Bayes net from these variables: parents?

Markov assumption: X_t depends on **bounded** subset of $X_{0:t-1}$

First-order Markov process: $\mathbf{P}(\mathbf{X}_t|\mathbf{X}_{0:t-1}) = \mathbf{P}(\mathbf{X}_t|\mathbf{X}_{t-1})$ "transition Second-order Markov process: $\mathbf{P}(\mathbf{X}_t|\mathbf{X}_{0:t-1}) = \mathbf{P}(\mathbf{X}_t|\mathbf{X}_{t-2},\mathbf{X}_{t-1})$ "model"

Construct a Bayes net from these variables: parents?

Markov assumption: X_t depends on **bounded** subset of $X_{0:t-1}$

'transition First-order Markov process: $P(\mathbf{X}_t|\mathbf{X}_{0:t-1}) = P(\mathbf{X}_t|\mathbf{X}_{t-1})$ model' Second-order Markov process: $P(\mathbf{X}_t|\mathbf{X}_{0:t-1}) = P(\mathbf{X}_t|\mathbf{X}_{t-2},\mathbf{X}_{t-1})$

Sensor Markov assumption: $P(\mathbf{E}_t|\mathbf{X}_{0:t},\mathbf{E}_{0:t-1}) = P(\mathbf{E}_t|\mathbf{X}_t)$ 'observation

model'

Stationary process: transition model $P(\mathbf{X}_t|\mathbf{X}_{t-1})$ and sensor model $P(\mathbf{E}_t|\mathbf{X}_t)$ fixed for all t

Example

Example

This is called a hidden Markov model (HMM)

• state consists of a single discrete variable

Semantics of Markov Chains

■ Transition model + observation model + initial state distribution $P(X_0)$ = joint PD

$$P(X_{0:t}, E_{1:t}) = P(X_0) \prod_{i=1:t} P(X_i | X_{i-1}) P(E_i | X_i)$$

"Unrolled over time" it is just a Bayesian network

▶ note: we typically assume that $P(X_0)$ captures all our knowledge at t=0, and hence there is no observation E_0 (as a convention)

The Markov Assumption...?

Is it appropriate?

The Markov Assumption...?

First-order Markov assumption not exactly true in real world!

Possible fixes:

- 1. Increase order of Markov process
- 2. Augment state, e.g., add $Temp_t$, $Pressure_t$

Markov Assumption - 2

- Or how about "Spatial Task Allocation Problems"?
 - Need to decide where we go to clean...
 - How will the state change?
 - What information do we need?

2023-2024 27

Inference in Hidden Markov Models

Inference on Markov Chains

- Unrolled we have a BN...
 - So we can use VE, rejection sampling, likelihood weighting etc...
- ...but what can we ask?

Filtering: $\mathbf{P}(\mathbf{X}_t|\mathbf{e}_{1:t})$ belief state—input to the decision process of a rational agent

Filtering: $\mathbf{P}(\mathbf{X}_t|\mathbf{e}_{1:t})$

belief state—input to the decision process of a rational agent

Prediction: $P(\mathbf{X}_{t+k}|\mathbf{e}_{1:t})$ for k>0

evaluation of possible action sequences;

like filtering without the evidence

ダ TUDelft

Filtering: $P(\mathbf{X}_t|\mathbf{e}_{1:t})$

belief state—input to the decision process of a rational agent

Prediction: $P(\mathbf{X}_{t+k}|\mathbf{e}_{1:t})$ for k>0

evaluation of possible action sequences;

like filtering without the evidence

Smoothing: $P(\mathbf{X}_k | \mathbf{e}_{1:t})$ for $0 \le k < t$

better estimate of past states, essential for learning

Filtering: $P(X_t|e_{1:t})$ belief state—input to the decision process of a rational agent

Prediction: $P(X_{t+k}|e_{1:t})$ for k > 0 evaluation of possible action sequences; like filtering without the evidence

Smoothing: $\mathbf{P}(\mathbf{X}_k|\mathbf{e}_{1:t})$ for $0 \le k < t$ better estimate of past states, essential for learning

Most likely explanation: $\arg \max_{\mathbf{x}_{1:t}} P(\mathbf{x}_{1:t}|\mathbf{e}_{1:t})$ speech recognition, decoding with a noisy channel

Filtering: $P(X_t|e_{1:t})$ belief state—input to the decision process of a rational agent

Prediction: $P(\mathbf{X}_{t+k}|\mathbf{e}_{1:t})$ for k > 0 evaluation of possible action sequences; like filtering without the evidence

Smoothing: $\mathbf{P}(\mathbf{X}_k|\mathbf{e}_{1:t})$ for $0 \le k < t$ better estimate of past states, essential for learning

Most likely explanation: $\arg \max_{\mathbf{x}_{1:t}} P(\mathbf{x}_{1:t}|\mathbf{e}_{1:t})$ speech recognition, decoding with a noisy channel

many names: belief tracking, state estimation, recursive Bayesian estimation, etc.

Focus: Inference in HMMs

- We focus on HMMs, but...
 - ...can be generalized (cf. R&N)
 - ▷ e.g., continuous states: Kalman filter

- **Inference in HMMs**: answering queries *given* the HMM parameters
 - If we are trying to infer those parameters themselves: learning HMMs

グ T∪Delft

35

Filtering: $b_t(X_t) = P(X_t|e_{1:t})$

■ Ideal: a recursive way to compute

- \triangleright new belief $\mathbf{b}_{t+1}(X_{t+1})$

 X_0 X_1 X_2 X_2 X_2 X_3 X_4 X_2 X_4 X_5 X_5

the term 'belief' and notation b(X)

(or b(s)) is very common in
reinforcement learning and
planning under uncertainty

TUDelft

- Ideal: a recursive way to compute
 - \triangleright new belief $\mathbf{b}_{t+1}(X_{t+1})$

Why?

ダ TUDelft

- Ideal: a recursive way to compute
 - \triangleright new belief $\mathbf{b}_{t+1}(X_{t+1})$
 - from old belief **b**_t(X_t)

■ How?

ℱ TUDelft

38

- Ideal: a recursive way to compute
 - \triangleright new belief $\mathbf{b}_{t+1}(X_{t+1})$
 - from old belief **b**_t(X_t)

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t},\mathbf{e}_{t+1})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1},\mathbf{e}_{1:t})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

グ TUDelft

- Ideal: a recursive way to compute
 - \triangleright new belief $\mathbf{b}_{t+1}(X_{t+1})$
 - from old belief **b**_t(X_t)

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t},\mathbf{e}_{t+1})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1},\mathbf{e}_{1:t}) \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

4

- Ideal: a recursive way to compute
 - \triangleright new belief $\mathbf{b}_{t+1}(X_{t+1})$

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}, \mathbf{e}_{t+1}) = \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}, \mathbf{e}_{1:t}) \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}) = \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}, \mathbf{e}_{1:t}) \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}) = \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}, \mathbf{e}_{1:t}) \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

- Ideal: a recursive way to compute
 - \triangleright new belief $\mathbf{b}_{t+1}(X_{t+1})$
 - from old belief **b**_t(X_t)

$$X_0 \longrightarrow X_1 \longrightarrow X_2$$

$$E_1 \qquad E_2$$

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t},\mathbf{e}_{t+1})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1},\mathbf{e}_{1:t})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$
?

グ TUDelft

- Ideal: a recursive way to compute
 - \triangleright new belief $\mathbf{b}_{t+1}(X_{t+1})$
 - from old belief **b**_t(X_t)

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t},\mathbf{e}_{t+1})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1},\mathbf{e}_{1:t})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$
 sensor Markov assumption!

- Ideal: a recursive way to compute
 - \triangleright new belief $\mathbf{b}_{t+1}(X_{t+1})$
 - from old belief **b**_t(X_t)

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t},\mathbf{e}_{t+1})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1},\mathbf{e}_{1:t})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

I.e., prediction + estimation.

- Ideal: a recursive way to compute
 - \triangleright new belief $\mathbf{b}_{t+1}(X_{t+1})$
 - from old belief **b**_t(X_t)

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t},\mathbf{e}_{t+1})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1},\mathbf{e}_{1:t})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

I.e., prediction + estimation.

ℱ TUDelft

45

I.e., prediction + estimation.

ℱ TUDelft

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

I.e., prediction + estimation.

ℱ TUDelft

- Ideal: a recursive way to compute
 - \triangleright new belief $\mathbf{b}_{t+1}(X_{t+1})$
 - from old belief **b**_t(X_t)

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t},\mathbf{e}_{t+1})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1},\mathbf{e}_{1:t})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

I.e., prediction + estimation. Prediction by summing out X_t :

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \Sigma_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t, \mathbf{e}_{1:t}) P(\mathbf{x}_t|\mathbf{e}_{1:t})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \Sigma_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t})$$
?

ℱ TUDelft

- Ideal: a recursive way to compute
 - \triangleright new belief $\mathbf{b}_{t+1}(X_{t+1})$
 - from old belief **b**_t(X_t)

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t},\mathbf{e}_{t+1})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1},\mathbf{e}_{1:t})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

I.e., prediction + estimation. Prediction by summing out X_t :

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \Sigma_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t, \mathbf{e}_{1:t}) P(\mathbf{x}_t|\mathbf{e}_{1:t})$$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \Sigma_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t})$$

Markov assumption

■ Ideal: a recursive way to compute

 $X_0 \longrightarrow X_1 \longrightarrow X_2$

$$\triangleright$$
 new belief $\mathbf{b}_{t+1}(X_{t+1})$

So now, we have this expression of the form

$$\boldsymbol{b}_{t+1}(X_{t+1}) = \alpha \, \boldsymbol{P}(e_{t+1} | X_{t+1}) \, \Sigma_{x} \, \boldsymbol{P}(X_{t+1} | X_{t}) \, \boldsymbol{b}_{t}(X_{t})$$
$$= \alpha \, \text{Forward}(\boldsymbol{b}_{t}(X_{t}), e_{t+1})$$

- the $b_t(X_t)$ are also called **forward messages**, $f_{1:t}$
- initialize: $\mathbf{f}_{1:0} = P(X_0)$

$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \Sigma_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t})$$

ℱ TUDelft

Filtering Example

Numbers?

→ Exercise!

Prediction

■ Query: $P(X_{t+K} | e_{1:t})$?

Prediction

$$\mathbf{b}_{t+1}(X_{t+1}) = \alpha P(e_{t+1} | X_{t+1}) \Sigma_{x} P(X_{t+1} | X_{t}) \mathbf{b}_{t}(X_{t})$$

■ Query: $P(X_{t+K} | e_{1:t})$?

Prediction... limits?

■ How well can we predict "Rain" 10 steps into the future...?

Prediction... limits?

- How well can we predict "Rain" 10 steps into the future...?
- Belief will converge to <0.5, 0.5> quite fast...
 - called the stationary distribution
 - the more stochastic the process, the shorter the mixing time
 - predicting beyond a fraction of the mixing time will not work

M TUDAlft

'Smoothing'

■ Query: $P(X_t | e_{1:t+K})$

- Now: also need to take into account information (passed back) from the future... forward-backward algorithm

TUDelft

Smoothing: Approach

$$\mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:t}) = \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k}, \mathbf{e}_{k+1:t})$$

$$= \alpha \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k}) \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_{k}, \mathbf{e}_{1:k})$$

$$= \alpha \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k}) \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_{k})$$

$$= \alpha \mathbf{f}_{1:k} \mathbf{b}_{k+1:t}$$

Smoothing: Approach

$$\mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:t}) = \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k},\mathbf{e}_{k+1:t})$$

$$= \alpha \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k})\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_{k},\mathbf{e}_{1:k})$$

$$= \alpha \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k})\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_{k})$$

$$= \alpha \mathbf{f}_{1:k}\mathbf{b}_{k+1:t}$$

product of forward and backward messages

$$\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k) = \sum_{\mathbf{x}_{k+1}} \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k, \mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k)$$

$$\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k) = \sum_{\mathbf{x}_{k+1}} \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k, \mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k)$$
$$= \sum_{\mathbf{x}_{k+1}} P(\mathbf{e}_{k+1:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k)$$

$$\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k) = \sum_{\mathbf{x}_{k+1}} \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k, \mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k)$$

$$= \sum_{\mathbf{x}_{k+1}} P(\mathbf{e}_{k+1:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k)$$

$$= \sum_{\mathbf{x}_{k+1}} P(\mathbf{e}_{k+1}|\mathbf{x}_{k+1}) P(\mathbf{e}_{k+2:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k)$$

2023-2024

$$\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k) = \sum_{\mathbf{x}_{k+1}} \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k, \mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k)$$

$$= \sum_{\mathbf{x}_{k+1}} P(\mathbf{e}_{k+1:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k)$$

$$= \sum_{\mathbf{x}_{k+1}} P(\mathbf{e}_{k+1}|\mathbf{x}_{k+1}) P(\mathbf{e}_{k+2:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k)$$

2023-2024

$$\begin{aligned} \mathbf{b}_{k+1:t}(\mathbf{X}_{k}) &= \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_{k}) = \sum_{\mathbf{x}_{k+1}} \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_{k}, \mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_{k}) \\ &= \sum_{\mathbf{x}_{k+1}} P(\mathbf{e}_{k+1:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_{k}) \\ &= \sum_{\mathbf{x}_{k+1}} P(\mathbf{e}_{k+1}|\mathbf{x}_{k+1}) P(\mathbf{e}_{k+2:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_{k}) \end{aligned}$$

initialize: $\mathbf{b}_{t+1:t} = \mathbf{1}$ (i.e., vector)

 $\mathbf{b}_{k+2:t}(\mathbf{x}_{k+1})$

Forward-Backward Illustrated

Smoothing vs most-likely sequences

- Smoothing can compute $\{P(X_0 | E_{1:t}), P(X_1 | E_{1:t}), ..., P(X_t | E_{1:t})\}$
- But does not give most likely sequence! $\max_{(x_0,x_1,...,x_t)} P(x_0,x_1,...,x_t | E_{1:t})$!= $\{\max_{x_0} P(x_0 | E_{1:t}), \max_{x_1} P(x_1 | E_{1:t}), ..., \max_{x_t} P(x_t | E_{1:t}) \}$
- (Need a different algo: Viterby see book)

グ TUDelft

Dynamic Bayesian Networks

Complex worlds

BOUTILIER, DEAN, & HANKS

E.g., the world has many aspects

Figure 1: A decision-theoretic planning problem

Complex worlds

BOUTILIER, DEAN, & HANKS

E.g., the world has many aspects

Features	Denoted	Description
Location	Loc(M), etc.	Location of robot. Five possible locations: mailroom (M), coffee room
		(C), user's office (O), hallway (H), laboratory (L)
Tidiness	T(0), etc.	Degree of lab tidiness. Five possible values: from 0 (messiest) to 4
		(tidiest)
Mail present	M,\overline{M}	Is there mail is user's mail box? True (M) or False (\overline{M})
Robot has mail	RHM, \overline{RHM}	Does the robot have mail in its possession?
Coffee request	CR, \overline{CR}	Is there an outstanding (unfulfilled) request for coffee by the user?
Robot has coffee	RHC, \overline{RHC}	Does the robot have coffee in its possession?

2023-2024 69

m

Again: compact representations

E.g."move counter-clockwise"

Again: compact representations

Every HMM is a single-variable DBN; every discrete DBN is an HMM

Sparse dependencies \Rightarrow exponentially fewer parameters; e.g., 20 state variables, three parents each DBN has $20 \times 2^3 = 160$ parameters, HMM has $2^{20} \times 2^{20} \approx 10^{12}$

Example, dealing with failing sensors

 Can explicitly represent prob. of sensors failing

2023-2024

Example, dealing with failing

sensors

- battery meter was '5' for 20 steps
- complete discharge unlikely (according to transition model)
- meter can have fluke
- meter might be broken

Inference in DBNs...

Suggestions?

Difficulties?

Inference in DBNs...

Naive method: unroll the network and run any exact algorithm

Problem: inference cost for each update grows with t

Inference in DBNs...

Naive method: unroll the network and run any exact algorithm

Problem: inference cost for each update grows with t

■ But filtering can be done recursively...

$$\mathbf{b}_{t+1}(X_{t+1}) = \alpha \, \mathbf{P}(e_{t+1} \, | \, X_{t+1}) \, \Sigma_{x} \, \mathbf{P}(X_{t+1} \, | \, X_{t}) \, \mathbf{b}_{t}(X_{t})$$

... so perhaps can run variable elimination per time step?

グ TUDelft

Inference in DBNs

Naive method: unroll the network

Problem: inference cost for each u

Yes... but...

- for a DBN, the factors that you will construct will be huge.
- will include all variables that have parents in previous stage...
- → approximate inference

But filtering can be done recursively...

$$\mathbf{b}_{t+1}(X_{t+1}) = \alpha \, \mathbf{P}(e_{t+1} \, | \, X_{t+1}) \, \Sigma_{x} \, \mathbf{P}(X_{t+1} \, | \, X_{t}) \, \mathbf{b}_{t}(X_{t})$$

... so perhaps can run variable elimination per time step?

"entanglement"

- → try this!
- draw a simple DBN with 3 variables.
- try and compute b' assuming that b is completely factored:

$$\mathbf{b}(X_1, X_2, X_3) = b(X_1)b(X_2)b(X_3)$$

<u>Vs</u>

Yes... but...

- for a DBN, the factors that you will construct will be huge.
- will include all variables that have parents in previous stage...
- → approximate inference

recursively...

$$\mathbf{b}_{t+1}(X_{t+1}) = \alpha \, \mathbf{P}(e_{t+1} \, | \, X_{t+1}) \, \Sigma_{x} \, \mathbf{P}(X_{t+1} \, | \, X_{t}) \, \mathbf{b}_{t}(X_{t})$$

... so perhaps can run variable elimination per time step?

TUDelft

Particle Filters

Approximate inference for DBNs

- Why not Likelihood Weighting?
- For $P(X_2 | e_{1:2})$ this would be:
 - ▶ For i=1:num_samples
 - sample states x₀, x₁, and x₂
 (from transition model)
 - form data point $(x_0, x_1, x_2, e_{1:2})$
 - compute 'weight' w
 - set w[x₂] += w
 - renormalize weights
 - $P(x_2 | \mathbf{e}_{1:2}) = W[x_2]$

■ Two main problems....

- Two main problems....
- 1) running each sample from step 1 to t: time needed grows over time...

2)

- Two main problems....
- 1) running each sample from step 1 to t: time needed grows over time...
- 2) states are sampled **independently** of the evidence
 - most samples are completely wrong
 - \rightarrow very few data points data points $(x_0, x_1, x_2, \mathbf{e})$ will be likely
 - → get all the (renormalized) weight

2023-2024

, of the evidence

 $\langle x_1, x_2, \mathbf{e} \rangle$ will be likely

84

Fixing these: Particle Filtering

run all N samples at the same time

- → 'particles' themselves represent belief
- Two main problems....
- 1) running each sample from step 1 to t: time needed grows over time...

- 2) states are sampled **independently** of the evidence
 - most samples are completely wrong
 - \rightarrow very few data points data points (x_0, x_1, x_2, e) will be likely
 - → get all the (renormalized) weight

resampling

→ focus attention on parts of state space with large prob. under the evidence

Particle Filtering: Intuition

Basic idea: ensure that the population of samples ("particles") tracks the high-likelihood regions of the state-space

Replicate particles proportional to likelihood for e_t

Particle Filtering: Updates

Propagate forward: populations of \mathbf{x}_{t+1} are

$$N(\mathbf{x}_{t+1}|\mathbf{e}_{1:t}) = \sum_{\mathbf{x}_t} P(\mathbf{x}_{t+1}|\mathbf{x}_t) N(\mathbf{x}_t|\mathbf{e}_{1:t})$$

Weight samples by their likelihood for e_{t+1} :

$$W(\mathbf{x}_{t+1}|\mathbf{e}_{1:t+1}) = P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1})N(\mathbf{x}_{t+1}|\mathbf{e}_{1:t})$$

Resample to obtain populations proportional to W:

$$N(\mathbf{x}_{t+1}|\mathbf{e}_{1:t+1})/N = \alpha W(\mathbf{x}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1})N(\mathbf{x}_{t+1}|\mathbf{e}_{1:t})$$

$$= \alpha P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1})\sum_{\mathbf{x}_{t}}P(\mathbf{x}_{t+1}|\mathbf{x}_{t})N(\mathbf{x}_{t}|\mathbf{e}_{1:t})$$

$$= \alpha' P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1})\sum_{\mathbf{x}_{t}}P(\mathbf{x}_{t+1}|\mathbf{x}_{t})P(\mathbf{x}_{t}|\mathbf{e}_{1:t})$$

$$= P(\mathbf{x}_{t+1}|\mathbf{e}_{1:t+1})$$

Particle Filtering: Updates

Propagate forward: populations of \mathbf{x}_{t+1} are

$$N(\mathbf{x}_{t+1}|\mathbf{e}_{1:t}) = \sum_{\mathbf{x}_t} P(\mathbf{x}_{t+1}|\mathbf{x}_t) N(\mathbf{x}_t|\mathbf{e}_{1:t})$$

Weight samples by their likelihood for e_{t+1} :

assumption: consistent at stage t $N(\mathbf{x}_t|\mathbf{e}_{1:t})/N = P(\mathbf{x}_t|\mathbf{e}_{1:t})$

$$W(\mathbf{x}_{t+1}|\mathbf{e}_{1:t+1}) = P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1})N(\mathbf{x}_{t+1}|\mathbf{e}_{1:t})$$

Resample to obtain populations proportional to W:

$$N(\mathbf{x}_{t+1}|\mathbf{e}_{1:t+1})/N = \alpha W(\mathbf{x}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1})N(\mathbf{x}_{t+1}|\mathbf{e}_{1:t})$$

$$= \alpha P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1})\sum_{\mathbf{x}_{t}}P(\mathbf{x}_{t+1}|\mathbf{x}_{t})N(\mathbf{x}_{t}|\mathbf{e}_{1:t})$$

$$= \alpha' P(\mathbf{e}_{t+1}|\mathbf{x}_{t+1})\sum_{\mathbf{x}_{t}}P(\mathbf{x}_{t+1}|\mathbf{x}_{t})P(\mathbf{x}_{t}|\mathbf{e}_{1:t})$$

$$= P(\mathbf{x}_{t+1}|\mathbf{e}_{1:t+1})$$

Particle Filtering in Practice

In practice this works very well

- Many video explanations -E.g.,
 - https://www.youtube.com/watch?v=sz7cJuMgKFg
 - https://youtu.be/eAqAFSrTGGY?t=1117

- Many real world applications
 - http://stanford.edu/~cpiech/cs221/apps/driverlessCar.html

2023-2024 Stanley 89

Reasoning over Time: Summary

- Agents need to reason over time: time-slice based Bayesian networks
 - Hidden Markov Models HMMs 1 discrete state
 - Dynamic Bayesian networks DBNs
- Inference over time
 - Filtering, prediction, smoothing
 - Scaling to large DBNs: intractable
 - → approximate inference: particle filter

