Симулирование случайных процессов с использованием сигнатурных методов

Мащенко Кирилл

Московский государственный университет им. М.В. Ломоносова, механико-математический факультет, кафедра теории вероятностей

Научный руководитель: к.ф.-м.н., Житлухин М.В.

Москва 2022 год

Определения

Путь

Путь в \mathbb{R}^d – это непрерывное отображение X из некоторого интервала [a,b] в \mathbb{R}^d . Чтобы подчеркнуть зависимость от времени будем использовать обозначение $X_t = X(t) : [a,b] \mapsto \mathbb{R}^d$.

Повторный интеграл от пути X

Для любого $k \geq 1$ и набора индексов $i_1,...,i_k \in \{1,...,d\}$ определим

$$S(X)_{a,t}^{i_1,...,i_k} = \int_{a < s < t} S(X)_{a,s}^{i_1,...,i_{k-1}} dX_s^{i_k} = \int_{a < t_k < t} ... \int_{a < t_1 < t_2} dX_{t_1}^{i_1} ... dX_{t_k}^{i_k}.$$

Величина $S(X)_{a,t}^{i_1,...,i_k}$ называется k-кратным повторным интегралом от пути X по индексам $i_1,...,i_k$.

Определения

Сигнатура пути

Сигнатурой пути $X:[a,b]\mapsto \mathbb{R}^d$ называется бесконечный набор $S(X)_{a,b}$ всех повторных интегралов от X:

$$S(X)_{a,b} = (1, S(X)_{a,b}^{1}, \ldots, S(X)_{a,b}^{d}, S(X)_{a,b}^{1,1}, S(X)_{a,b}^{1,2}, \ldots),$$

где первый элемент сигнатуры (соответствующий пустому индексу) по определению считается равным 1, а верхние индексы остальных элементов пробегают набор всевозможных мульти-индексов

$$W = \{(i_1, ..., i_k) \mid k \geq 1, i_1, ..., i_k \in \{1, ..., d\}\}.$$

00000

Теорема о шафл-произведении

Для любого пути $X:[a,b]\mapsto \mathbb{R}^d$ и мульти-индексов $I=(i_1,...,i_k)$ и $J=(j_1,...,j_m)$, $i_1,...,i_k,j_1,...,j_m\in\{1,...,d\}$ верно равенство

$$S(X)_{a,b}^I S(X)_{a,b}^J = \sum_{K \in I \coprod J} S(X)_{a,b}^K.$$

Тождество Чена

Пусть a < b < c и $X: [a,c] \mapsto \mathbb{R}^d$. Тогда для любых $i_1,...,i_k \in W$ выполнено равенство

$$S(X)_{a,c}^{i_1,\ldots,i_k} = \sum_{m=0}^k S(X)_{a,b}^{i_1,\ldots,i_m} S(X)_{b,c}^{i_{m+1},\ldots,i_k}.$$

Независимость от начальной точки

Рассмотрим путь $X:[a,b]\mapsto \mathbb{R}^d$ и $h\in \mathbb{R}^d$. Пусть путь $Y:[x,y]\mapsto \mathbb{R}^d$ имеет вид $Y_t=X_t+h$. Тогда

$$S(X)_{a,b} = S(Y)_{a,b}.$$

Независимость от репараметризации времени

Рассмотрим путь $X:[a,b]\mapsto \mathbb{R}^d$ и биективную непрерывную неубывающую функцию $\psi:[x,y]\mapsto [a,b]$. Пусть путь $Y:[x,y]\mapsto \mathbb{R}^d$ имеет вид $Y_t=X_{\psi_t}$. Тогда

$$S(X)_{a,b} = S(Y)_{x,y}$$

Однозначное определение пути по его сигнатуре

Для непересекающихся путей по сигнатуре можно полностью определить все точки, через которые пройдёт путь, и порядок их обхода.

Логарифмические сигнатуры

Связь сигнатур и формальных степенных рядов

Сигнатура может быть "закодирована" как элемент пространства формальных степенных рядов:

$$S(X)_{a,b} = \sum_{k=0}^{\infty} \sum_{i_1,\ldots,i_k=1}^{d} S(X)_{a,b}^{i_1,\ldots,i_k} e_{i_1} \ldots e_{i_k}.$$

Определение логарифмической сигнатуры

Логарифмической сигнатурой пути $X:[a,b]\mapsto \mathbb{R}^d$ называется формальный степенной ряд

$$\log S(X)_{a,b} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} (1 - S(X)_{a,b})^{\otimes n}.$$

Сферы применения генеративных моделей

- Анонимизация данных (финансовые и медицинские данные).
- Заведомо маленькое количество данных (ограничение доступа к данным).
- Тестирование стратегий (необходимы другие данные во избежание переобучения модели).

Работа Buhler, Horvath, Lyons, Arribas, Wood (2020)

- Разработана генеративная модель для финансовых временных рядов, основанная на сигнатурах и стабильно работающая на маленьком количестве данных.
- Показывается различие между классическими подходами и подходом машинного обучения.
- Предложен тест для проверки схожести распределения сгенерированных и исходных путей, основанный на сигнатурных методах.
- Предложен алгоритм обращения логарифмической сигнатуры.

Алгоритм обращения логарифмической сигнатуры

- Ищем произвольный путь $X:[a,b]\mapsto \mathbb{R}^d$, соответствующий известной логарифмической сигнатуре.
- Требуется найти кусочно-линейный путь \widehat{X} , наилучшим образом приближающий путь X, с фиксированным шагом Δt и значениями приращений каждой координаты из множества $\{-n_i \cdot h_i, \ldots, n_i \cdot h_i\}$ с шагом h_i .

Алгоритм обращения логарифмической сигнатуры

Теорема

Пусть даны фиксированные числа $h_i \in \mathbb{R}_+, n_i \in \mathbb{N}, \Delta t \in \mathbb{R}_+$. Пусть $X:[a,b]\mapsto \mathbb{R}^d$ - непрерывный и кусочно-дифференцируемый путь, у которого $\forall i:|X_i'(t)|\leq \frac{h_i\cdot n_i}{\Delta t}$. Тогда существует кусочно-линейный путь $\widehat{X}:[a,b]\mapsto \mathbb{R}^d$ с приращениями по каждой координате i со значениями из множества $\{-n_i\cdot h_i,\ldots,0,\ldots,n_i\cdot h_i\}$ и "изломами" в точках $k\cdot \Delta t,\ k\in \mathbb{Z}$ такой, что $\forall i:\sup_{t\in \mathbb{R}_+}|X_i(t)-\widehat{X}_i(t)|\leq h_i\cdot (2n_i+\frac{1}{2}).$

Замечание

Если провести достаточное количество итераций генерирования приращений каждой координаты пути \widehat{X}_i из арифметического распределения со значениями из соответствующего множества $\{-n_i\cdot h_i,\ldots,n_i\cdot h_i\}$, то с вероятностью, равной единице, будет получен оптимальный путь \widehat{X}

Алгоритм обращения логарифмической сигнатуры

Сравнение оригинального пути и пути, восстановленного по его логарифмической сигнатуре.

Генерация рынка

Приведём пример симуляции совместных траекторий процессов цен акций компании ПАО "Газпром" (код GAZP) и отраслевого индекса нефти и газа Московской биржи (код MOEXOG): красным цветом нарисованы сгенерированные пути, синим - исходные.

Оригинальные и сгенерированные совместные траектории процессов цен активов GAZP и MOEXOG. Спасибо за внимание!