A Graphical Framework for Cryptographic Games

Lúcás Críostóir Meier lucas@cronokirby.com

2023-08-01

Abstract

Ahoy

1 Introduction

1.1 Outline

2 An Informal Framework

3 A Formal Framework

3.1 Stacks

Definition 3.1: Stacks

A stack S consists of:

- a set $O \subseteq [n]$,
- types $T_1, ..., T_n$,
- types = $\sigma_1, \sigma_2, ..., \sigma_{n+1} = \emptyset$,
- functions $f_1, ..., f_n$, each of which is:
 - of type $f_i: \sigma_i \to \sigma_{i+1} \times T_i$ when $i \in O$,
 - of type $f_i:\sigma_i\times T_i\to\sigma_{i+1}$, when $i\notin O$.

Definition 3.2: Games

A *game G* consists of:

- a list of stacks $S_1, ..., S_m$,
- a set *W*,
- a function $\varphi:\bigsqcup_{i\in[m]}[n_i]^1\to W$ whose restriction to the set $\bigsqcup_{i\in[m]}O_i$ is injective.

 $^{^{1}}$ By this, we mean that the domain of φ is the *disjoint* union of the individual index sets.

- 3.2 Diagrams
- 3.3 Efficient Diagrams
- 3.4 Randomized Diagrams
- **4 Some Basic Theory**
- 5 Examples
- **5.1 Encryption from Pseudorandom Functions**
- 5.2 The KEM-DEM Paradigm
- **5.3 IND-CPA Secure KEMs from Group Assumptions**
- 6 Further Work
- **6.1 A Framework for Protocols**
- **6.2 Categorical Structure**
- **6.3 Alternative Interpretations**
- 7 Conclusion