

DBSCAN

Projektowanie systemów i sieci komputerowych

Mateusz Śliwa Piotr Świder

Spis treści

1.	Wp	rowadzenie	3
	_	ırakterystyka	
		Parametry.	
		Główne założenia.	
	2.3.	Złożoność.	4
3.	Pod	sumowanie	4
	3.1.	Zalety	4
		Wady	
		Zastosowania.	

1. Wprowadzenie.

Algorytm DBSCAN (ang. Density-based spatial clustering of applications with noise) jest algorytmem klasteryzacji danych opartym na gęstości. Został on wymyślony w 1996 roku przez Martina Estera. Klastry utworzone za pomocą algorytmu charakteryzują się dużym zagęszczeniem punktów w stosunku do otoczenia. Algorytm umożliwia tworzenie klastrów o dowolnej wielkości oraz kształcie.

2. Charakterystyka.

2.1. Parametry.

Aby poprawnie opisać algorytm DBCAN niezbędne będzie użycie dwóch parametrów.

- ε (eps) będzie określać maksymalny promień sąsiedztwa między punktami.
- minPts oznaczający minimalną liczbę punktów (obiektów) w klastrze.

2.2. Główne założenia.

Zakładając pewny zbiór *X* punktów (obiektów), oraz dwa parametry z poprzedniego podpunktu, można utworzyć odpowiedni klaster. Należy jednak wcześniej wprowadzić pewne oznaczenia oraz nazewnictwo punktów, mianowicie: punkt centralny, punkt osiągalny (szczególnie punkt bezpośrednio osiągalny), punkt szumu (*noise*).

- Punkt $p \in X$ jest punktem centralnym, gdy w promieniu ε od punktu p znajduje się minPts punktów (wliczając w to punkt p.)
- Punkt $q \in X$ jest punktem bezpośrednio osiągalnym gdy znajduje się on w odległości ε od punktu p.
- Punkt $q \in X$ jest punktem osiągalnym gdy istnieje ścieżka prowadząca między punktami p oraz q.
- Punkty szumu, są to wszystkie pozostałe nieosiągalne punkty.

Zbiór wszystkich punktów osiągalnych oraz punktu p tworzą odpowiedni klaster, tak jak na poniższym przykładowym schemacie:

Zakładając, że *p1* jest punktem centralnym:

- *p2, p3, p4* są punktami bezpośrednio osiągalnymi
- p5, p6 są punktami osiągalnymi
- p7 jest punktem szumu

Utworzony klaster: p1, p2, p3, p4, p5, p6

2.3. Złożoność.

Ogólna średnia złożoność algorytmu DBSCAN wynosi $O(n \log n)$, a w najgorszym wypadku (przykładowo gdy wszystkie punkty znajdują się od siebie w większej odległości niż ε) wynosi ona $O(n^2)$.

3. Podsumowanie.

DBSCAN jest niezwykle użytecznym algorytmem, który swoje zastosowania odnalazł w wielu dziedzinach, jak choćby analiza danych czy też uczenie maszynowe. Jednak jak każde narzędzie posiada on swoje wady, zalety oraz praktyczne zastosowania.

3.1. Zalety.

DBCSAN nie potrzebuje wcześniejszego określenia wielkości klastra ani ilości klastrów co umożliwia dynamiczne ich tworzenie. Dodatkowo wykrywa szum (noise). Dzięki temu, że wymaga jedynie dwóch parametrów jest on stosunkowo prosty w zrozumieniu oraz implementacji.

3.2. Wady.

Algorytm DBSCAN nie jest tak optymalny w przypadku wysoce zróżnicowanych danych, gdzie także ciężko może być ustalić i wybrać odpowiednie wartości parametrów. Użyteczność i jego zastosowanie zależy w dużej mierze od wybrania parametru ε .

3.3. Zastosowania.

Z racji na specyficzne cechy algorytmu DBSCAN posiada on zróżnicowane zastosowania.

- Dzięki możliwości wykrywania punktów szumu algorytmu DBSCAN używa się do wykrywania anomalii w danych.
- DBSCAN można zastosować w marketingu do identyfikacji klastrów klientów o podobnych preferencjach.
- W wypadku uczenia maszynowego, algorytmu DBSCAN używa się do wizualizacji oraz znajdywania pewnych wzorców oraz struktur.
- Algorytm DBSCAN jest używany w analizie przestrzennej do identyfikacji podobnych regionów lub regionów o zbliżonych właściwościach.