07. Feature Selection

Network Data Analysis – NDA'21 Anastasios Giovanidis

Sorbonne-LIP6

October 27, 2021

Bibliography

- B.1 Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani. "An introduction to statistical learning: with applications in R". Springer Texts in Statistics. ISBN 978-1-4614-7137-0 Chapter 6 DOI 10.1007/978-1-4614-7138-7
- B.2 Giorgos Dimopoulos, Ilias Leontiadis, Pere Barlet-Ros, Konstantina Papagiannaki. "Measuring Video QoE from Encrypted Traffic", IMC '16 Proceedings of the 2016 Internet Measurement Conference Pages 513-526.

Intro

A. Giovanidis 2021

In the multiple-regression setting, we assumed that the linear model with additive noise:

$$Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \epsilon$$

describes the relationship between a response Y and a set of $p \ge 1$ predictor variables X_1, X_2, \dots, X_p .

- The model fit uses least squares (LSs) to estimate the $\hat{\beta}_i$'s.

But, is it always a good fit? Are there any ways to improve this fit?

Feature Selection and Regularization.

Main idea

A. Giovanidis 2021

Either shrink the coefficients for some feature variables or remove them completely!

Why?

- ▶ Prediction Accuracy: If n >> p then LSs do have low variance. But when e.g. $n \leq p$ the model is highly variable!
- Model Interpretability: Some variables used as predictors may not be relevant with the response. Better remove them to reduce model complexity.

Network example

A. Giovanidis 2021

In [B.2] the authors want to classify Video QoE from encrypted traffic. One of the questions is the quality of stalling.

There are potentially many available features to be used (around p = 70)

- Only 4-out-of-70 features are actually important factors that correlate with stalling:
 - BDP mean (related to throughput)
 - packet re-transmission max
 - chunk-size min
 - chunk size standard deviation.

• In fact chunk size is a very strong indicator, because at the event of stalling, the size of the chunks decrease so that they are reliably transmitting and start filling-up the buffer.

Methods

A. Giovanidis 2021

We will present two main methods that modify the LSs:

- ▶ Subset Selection: Identify a subset of the original p predictors to be relevant (say $p_s < p$). Then apply LSs fit.
- Shrinkage: Fit the model with all p features, but shrink some coefficients even to zero.
 - \rightarrow This method reduces variance.

Best subset selection

A. Giovanidis 2021

To find the best set we need to perform LSs for all possible combinations for the p predictors: (remember the F-score and p-value)

- ▶ All models with 1 predictor: p.
- ► All models with 2 predictors: $\begin{pmatrix} p \\ 2 \end{pmatrix} = \frac{p(p-1)}{2}$.
- etc.

In total 2^p possibilities.

Algorithm 6.1 Best subset selection

- 1. Let \mathcal{M}_0 denote the *null model*, which contains no predictors. This model simply predicts the sample mean for each observation.
- 2. For $k = 1, 2, \dots p$:
 - (a) Fit all $\binom{p}{k}$ models that contain exactly k predictors.
 - (b) Pick the best among these $\binom{p}{k}$ models, and call it \mathcal{M}_k . Here best is defined as having the smallest RSS, or equivalently largest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \dots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

Pick models with smallest Train RSS, Select with smallest Test RSS.

¹ Source [B.1]

Many possibilities to test...

A. Giovanidis 2021

The method needs to test too many feature combinations:

- for p = 10, approx 1,000 models,
- for p = 20, over 1,000,000 possibilities!
- etc.

The Best subset selection becomes computationally infeasible for large sets of features.

We need to find other ways to select good subsets stepwise.

Forward Stepwise Selection

A. Giovanidis 2021

The method:

- Begins with a model without predictors,
- adds predictors to the model one-at-a-time,
- until all predictors are in the model.

At each step the variable that gives the greatest additional improvement to the fit is added.

2

Algorithm 6.2 Forward stepwise selection

- 1. Let \mathcal{M}_0 denote the *null* model, which contains no predictors.
- 2. For $k = 0, \ldots, p 1$:
 - (a) Consider all p-k models that augment the predictors in \mathcal{M}_k with one additional predictor.
 - (b) Choose the *best* among these p k models, and call it \mathcal{M}_{k+1} . Here *best* is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

Pick models with smallest Train RSS, Select with smallest Test RSS.

²Source [B.1]

Advantages

A. Giovanidis 2021

The method is computationally advantageous compared to Best selection:

- Instead of 2^p fitting models, it needs to compute only $1 + \sum_{k=0}^{p-1} (p-k) = 1 + p(p+1)/2$ models.
- e.g. for p = 20, fit 211 models instead of 1,048,576!
- ▶ Can be used also when n < p (stops at n features)

It is not guaranteed to find the best possible model out of the 2^p .

3

# Variables	Best subset	Forward stepwise
One	rating	rating
Two	rating, income	rating, income
Three	rating, income, student	rating, income, student
Four	cards, income,	rating, income,
	student, limit	student, limit

Source [B.1]

Backward Stepwise Selection

٠

Algorithm 6.3 Backward stepwise selection

- 1. Let \mathcal{M}_p denote the full model, which contains all p predictors.
- 2. For $k = p, p 1, \dots, 1$:
 - (a) Consider all k models that contain all but one of the predictors in \mathcal{M}_k , for a total of k-1 predictors.
 - (b) Choose the *best* among these k models, and call it \mathcal{M}_{k-1} . Here *best* is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

⁴Source [B.1]

Choosing the Optimal Model

A. Giovanidis 2021

All methods hand-pick a small number of models based on a small value of Train RSS or high value of R^2 .

The model with all the predictors will have the smallest Train RSS.

- * To choose exactly one model among these, we need to find the one with smallest Test error. To do so we can:
 - Estimate the Test Error, by adjusting the Train Error to account for Bias.
 - Directly estimate the Test Error using a validation set or cross-validation.

Adjustment of the Train Error

A. Giovanidis 2021

The training RSS will decrease as more variables are included in the model, but **not the Test RSS** necessarily.

We cannot use Train error to select among models with different numbers of variables.

Adjust the Train error to select the model with best Test prediction:

- ▶ Mallow's C_p -estimate: $C_p = \frac{1}{n} \left(RSS + 2d\hat{\sigma}^2 \right)$.
- ► Akaike Information Criterion: $AIC = \frac{1}{n\hat{\sigma}^2}(RSS + 2d\hat{\sigma}^2)$.
- **Bayesian Information**: $BIC = \frac{1}{n\hat{\sigma}^2}(RSS + \log(n)d\hat{\sigma}^2)$.
- ▶ **Adjusted** $R^2 = 1 \frac{RSS/(n-d-1)}{TSS/(n-1)}$, where $TSS = \sum (y_i \bar{y})^2$.

Understanding Akaike I

A. Giovanidis 2021

The original definition of Akaike reads

$$AIC = \frac{1}{n} \left(2d - 2 \log(\hat{L}) \right)$$

where \hat{L} is the log-likelihood and $d \leq p$ is the number of predictors used. Akaike adds a cost which scales linearly with the number of used predictors.

If the model tested is

$$y = f(x) + \epsilon \Rightarrow \mathbb{E}[y] = f(x),$$

then, the error per data is

$$\epsilon_i = y_i - \mathbb{E}[f(x_i)]$$

Suppose the model describes well the data, so that $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$.

Understanding Akaike II

A. Giovanidis 2021

The log-likelihood of an error sample is

$$\hat{L}(\mathcal{D}_n) = -\frac{1}{2\sigma^2} \sum_{i=1}^n \epsilon_i^2 - \frac{n}{2} \log \sigma^2 - \frac{n}{2} \log(2\pi)$$

The second term changes slowly over σ^2 . The third term is constant. Altogether

$$AIC = \frac{1}{n} \left(2d + \frac{1}{\sigma^2} RSS \right)$$

* Note that C_p and AIC are proportional to each other!

To estimate the variance we will use (with $TSS = \sum_i (y_i - \bar{y})^2$ the total sum of squares for the response)

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2 = \frac{1}{n-1} TSS.$$

Understanding BIC

A. Giovanidis 2021

Similar to Akaike, but now the cost depends on the log(n) of the samples

$$BIC = \frac{1}{n} \left(\log(n)d - 2\log(\hat{L}) \right),$$

where \hat{L} is the log-likelihood and d is the number of predictors used.

As in AIC

$$BIC = \frac{1}{n} \left(\log(n)d + \frac{1}{\sigma^2}RSS \right).$$

Since log(n) > 2 for n > 7 the model places a heavier penalty on models with many features.

We choose the AIC, BIC, C_p model with the **lowest** value!

Understanding Adjusted R^2

A. Giovanidis 2021

Remember the usual definition of R^2

$$R^2 = 1 - \frac{RSS}{TSS} = \frac{Explained\ Variation}{Total\ Variation}.$$

The more we add predictors, the more the RSS decreases and the more the Train R^2 increases!

For a least squares model with d features the adjusted R^2 statistic is

Adjusted
$$R^2 = 1 - \frac{RSS/(n-d-1)}{TSS/(n-1)}$$
.

Unlike the other metrics, here a large value of Adjusted R^2 indicates a model with a small Test error.

Maximising the Adjusted R^2 is equivalent to minimizing $\frac{RSS}{n-d-1}$. This statistic also pays a price for inclusion of unnecessary variables.

Overview of adjustment metrics

Figure: Feature selection from different metrics.⁵

⁵Source [B.1]

Comparison with Validation and CV tests

Figure: CV used to be computationally expensive, not any more.⁶

⁶Source [B.1]

Shrinkage

A. Giovanidis 2021

We have seen methods to optimally select a subset of appropriate features, leaving the rest out.

As an alternative, we can keep all p features, but use a technique that constraints or regularizes the coefficient estimates.

Estimates can be shrunk towards zero! This technique can significantly reduce variance.

Ridge Regression and the Lasso.

Ridge Regression

Similar to LSs fit, the Ridge Regression solves

$$\min_{\beta} \qquad \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

where the lefthand side is just the RSS, and $\lambda \geq 0$ is a tuning parameter, to be determined.

The second term is called shrinkage penalty.

Properties

- ▶ When $\lambda = 0$: it is just the Least-Squares fit.
- ▶ When $\lambda \to \infty$ β 's will approach zero.
- ▶ Find the "best" set of parameters β .

 \blacksquare Each choice of λ produces a different set of estimates $\hat{\beta}_{\lambda}$.

Note 1: The shrinkage penalty is **not** applied to the intercept β_0 . **Note 2:** Best apply ridge-regression after standardizing the predictors (all on the same scale / standard deviation 1)

$$\tilde{x}_{ij} = \frac{x_{ij}}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \bar{x}_j)^2}}.$$

Ridge Example

Figure: Change of Ridge Regression coefficients vs λ .⁷

⁷Source [B.1]

Improvement over LSs

A. Giovanidis 2021

As λ increases, the flexibility of the ridge regression fit decreases: decreased variance but increased Bias.

Figure: Bias vs Variance tradeoff and Test MSE.⁸

⁸Source [B.1]

The Lasso

A. Giovanidis 2021

Similar to Ridge Regression, the Lasso solves a different problem

$$\min_{\beta} \qquad \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

where the lefthand side is just the RSS, and $\lambda \geq 0$ is again a tuning parameter, to be determined.

The second term is the lasso penalty (uses ℓ_1 -norm instead of ℓ_2).

Advantages

A. Giovanidis 2021

As formulation, the Lasso is similar to Ridge Regression, with a penalty that uses a different norm.

What is new here?

- ► The Lasso penalty can force some estimates to be exactly zero
 → performs Variable Selection.
- Lasso's models are sparse involving a subset of variables.
- Simple, more interpretable models.

Example Lasso

Figure: Change of Lasso coefficients vs λ .

⁹ Source [B.1]

Equivalent Problems

A. Giovanidis 2021

The Ridge, Lasso, and Best subset selection are each equivalent to:

$$\begin{split} &\min_{\beta} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \quad \textit{s.t.} \quad \sum_{j=1}^{p} \beta_j^2 \leq \textit{s} \quad (\textit{Ridge}) \\ &\min_{\beta} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \quad \textit{s.t.} \quad \sum_{j=1}^{p} |\beta_j| \leq \textit{s} \quad (\textit{Lasso}) \\ &\min_{\beta} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \quad \textit{s.t.} \quad \sum_{j=1}^{p} \mathbf{1} \left(\beta_j \neq 0 \right) \leq \textit{s} \quad (\textit{Best}). \end{split}$$

Illustrative Explanation

Figure: Why does Lasso lead to estimates equal to 0?¹⁰

¹⁰Source [B.1]

Ridge > Lasso

A. Giovanidis 2021

Here: Ridge needs all 45 coefficients \neq 0. Lasso chose 2-out-of-45 features. 11

¹¹Source [B.1]

Ridge < Lasso

A. Giovanidis 2021

Here: True response is a function of only 2 predictors and the rest are irrelevant. Ridge needs again all 45 coefficients \neq 0. Lasso chose 2-out-of-45 features. ¹²

¹²Source [B.1]

Special Case n = p

A. Giovanidis 2021

 \square Data centred around \bar{x} , no need for intercept.

▶ Least Squares: min $\sum_{j=1}^{p} (y_j - \beta_j)^2$. Solution:

$$\hat{\beta}_j = y_j.$$

► Ridge Regression: min $\sum_{j=1}^{\rho} (y_j - \beta_j)^2 + \lambda \sum_{j=1}^{\rho} \beta_j^2$. Solution:

$$\hat{\beta}_j^{(R)} = y_j/(1+\lambda).$$

▶ Lasso: min $\sum_{j=1}^{p} (y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$. Solution:

$$\hat{\beta}_{j}^{(L)} = \begin{cases} y_{j} - \lambda/2, & \text{if } y_{j} > \lambda/2 \\ y_{j} + \lambda/2, & \text{if } y_{j} < -\lambda/2 \\ 0, & \text{if } |y_{j}| \leq \lambda/2 \end{cases}$$

Figure: Ridge and Lasso coefficients over λ , compared to LSs.¹³

¹³Source [B.1]

How to select parameter λ ?

A. Giovanidis 2021

For both Ridge and Lasso the tuning parameter λ (equivalently s) needs to be determined.

Again find the minimum Test MSE using Cross-Validation!

- Choose a grid of λ values.
- ▶ Compute the cross-validation error for each value of λ .
- Select the tuning parameter value with minimum CV error.
- ▶ Finally, re-fit the model using all observations and the chosen λ .

Figure: Ridge parameter tuning and comparison with LSs. 14

¹⁴Source [B.1]

Figure: Lasso parameter tuning and comparison with LSs. 15

¹⁵Source [B.1]

END