

Instituto Tecnológico y de Estudios Superiores de Monterrey

Escuela de Negocios

Campus Puebla

Gestión de proyectos de plataformas tecnológicas (Gpo 201)

Actividad 1 (Regresión Lineal Simple y Múltiple)

Isaac Miguel Barrón Portillo

A01737199

Docente: PhD Alfredo García

Fecha: 4 de octubre de 2025

Análisis diagnóstico Madrid

Análisis por Room Type

Entire Home/Apt

Palanca primaria: elevar host_response_rate; el r \approx 0.68 con aceptación indica que SLAs de respuesta (\leq 1h) pueden traducirse en más reservas y volumen de reseñas ($r\approx$ 0.17).

Gestión de inventario: la correlación negativa (r≈-0.06) entre disponibilidad anual y reseñas sugiere que los listados con buena conversión pasan más días ocupados; conviene pricing dinámico y mínimos de noches para capturar demanda pico sin erosionar ADR.

Precio apenas se asocia con aceptación (r≈0.09): el valor percibido se mueve más por tiempo de respuesta, limpieza y ubicación que por tarifa.

Private Room

Relación operativa fuerte: $r\approx0.53$ entre respuesta y aceptación; la disciplina en mensajería y preaprobaciones impulsa conversión y reseñas ($r\approx0.21$).

Precio con aceptación es muy débil ($r\approx0.07$): competir por rapidez, claridad de reglas y seguridad más que por tarifa pura.

Estrategia: fences por ocupación (1–2 vs. 3–5), check-in flexible y transparencia en normas para capitalizar el perfil de viajero solo/pareja.

Hotel Room

Operativo: respuesta-aceptación ($r\approx0.37$), aceptación-precio ($r\approx0.20$) y disponibilidad-reseñas ($r\approx0.36$). Señala un circuito donde operación consistente \rightarrow aceptación alta \rightarrow mayor producción \rightarrow capacidad para sostener precio.

Advertencia de calidad: review_scores_rating vs total listings ($r\approx$ -0.21) sugiere que expandir cartera sin control puede degradar puntuaciones; priorizar estándares y auditorías por propiedad.

Shared Room

Correlaciones muy débiles en todas las combinaciones (respuesta–aceptación r≈0.06, aceptación–precio r≈-0.10): el desempeño depende de otras palancas (ubicación ultra céntrica, comunidad, reglas de convivencia). Enfocar pruebas A/B en amenities básicos, seguridad y normas claras.

Lectura del heatmap (agrupamientos y alertas de modelado). Se ven clusters claros: (a) demanda/producción: $num_resenas$ con $num_resenas_30d$ y ocupación estimada; (b) calendario: $disponibilidad_30d_90d$ asociadas entre sí y con ocupación en sentido opuesto según segmento; (c) tamaño del alojamiento: camas, baños y capacidad correlacionan moderadamente; (d) estancia: $noches_minimas$ con $promedio_min_noches$. En contraste, host_response_rate y los review_scores tienen correlaciones bajas con el resto, por lo que funcionan como señales independientes de experiencia/operación. Para decisiones: i) enfocar palancas en respuesta (Entire/Private) y calidad + aceptación (Hotel) evitar combinar en un

mismo modelo variables muy colineales del mismo cluster (p. ej., *num_resenas* vs *num_resenas_30d* o *noches_mínimas* vs *promedio_min_noches*), y iii) diseñar pricing y mínimos de noches a partir del binomio disponibilidad–reseñas/ocupación por zona y temporada.

Regresión lineal múltiple

review_scores_rating ~ value + accuracy + cleanliness (R²=0.8206). La calificación global se explica muy bien por tres palancas: accuracy ($\beta \approx 0.392$) y value ($\beta \approx 0.389$) son casi equivalentes y dominan la percepción final; cleanliness ($\beta \approx 0.210$) también suma de forma significativa. Implicación: actualizar descripciones/fotos y gestionar expectativas (accuracy) junto con pricing justo y extras visibles (value) eleva el rating más rápido que invertir solo en limpieza; sin descuidarla, las primeras dos generan el mayor retorno marginal.

tasa_aceptacion_anfitrion \sim tasa_respuesta_anfitrion (R²=0.3803). Cada punto de respuesta se asocia con \approx 0.83 puntos de aceptación y existe un nivel base \approx 9.7%; es una palanca operativa clara. Establecer SLA de respuesta \leq 1 hora, plantillas de mensajes y alertas móviles debería traducirse en más solicitudes aceptadas y, por arrastre, mayor conversión a reserva.

es_superanfitrion ~ respuesta + aceptación + rating + ingresos (R²=0.0809). El estatus de superhost apenas se explica por estas variables: es un outcome discreto condicionado por reglas de Airbnb (cancelaciones, cumplimiento, periodos de evaluación) no capturadas aquí. Recomendación: no usar este modelo para decisión; priorizar features de proceso (cancelaciones, *on-time response*, disputas) y modelado no lineal/árboles.

total_anuncios_anfitrion \sim disp_365d + reseñas + ingresos (R²=0.0325). El tamaño de cartera del anfitrión es estructural y casi independiente del desempeño del listing: disponibilidad suma levemente ($\beta \approx 0.089$), reseñas restan marginalmente ($\beta \approx -0.111$, proxy de ocupación), e ingresos aportan poco. Implicación: segmentar hosts por arquetipo (profesionales vs. individuales) en lugar de intentar predecir su cartera con métricas de un anuncio.

capacidad ~ camas + habitaciones (R²=0.5899). La capacidad se ajusta bien con inventario: camas ($\beta \approx 0.882$) pesa más que habitaciones ($\beta \approx 0.534$). Útil para validación automática de

fichas (detección de outliers de capacidad) y para construir reglas de precio por huésped adicional consistentes con el equipamiento real.

habitaciones ~ camas + baños + capacidad (R²=0.4974). El número de baños ($\beta \approx 0.406$) es el predictor más informativo de dormitorios, seguido de camas ($\beta \approx 0.213$) y capacidad ($\beta \approx 0.136$); refleja que tipologías más amplias suelen incorporar más baños. Sirve para sanity checks de inventario y para planificar *bundles* (p. ej., familias) donde baños es un driver de conversión.

precio ~ camas + habitaciones + capacidad (R²=0.2612). El tamaño explica parte del precio (β_habitaciones≈21.0 el más alto), pero la varianza es grande: faltan ubicación, temporada, amenities premium y calidad. Usar este modelo como piso base y superponer capas de pricing dinámico (barrio/fecha/evento) para capturar disposición a pagar.

review_scores_value ~ accuracy + cleanliness (R²=0.7080). La percepción de valor está anclada en accuracy ($\beta \approx 0.717$) y reforzada por cleanliness ($\beta \approx 0.301$). Prioridades: descripciones precisas, fotos actuales y equipamiento realmente disponible; después, estándares de limpieza repetibles. Subir *value* tiende a mejorar el rating global (ver primer modelo).

baños ~ habitaciones + camas (R^2 =0.2536). Los baños crecen con habitaciones (β ≈0.235) más que con camas (β ≈0.072); la baja R^2 sugiere que depende de antigüedad/tipo de propiedad y normas de reforma. Úsese para detección de inconsistencias (p. ej., muchas habitaciones con muy pocos baños).

num_resenas_30d ~ num_resenas_12m + ocupación_365d + num_resenas_1y (R²=0.4836). La reciente generación de reseñas aumenta con el histórico 12m ($\beta \approx 0.0746$) y la ocupación estimada ($\beta \approx 0.0030$), mientras num_resenas_1y entra negativo ($\beta \approx -0.0271$) por solapamiento temporal/colinealidad. Insight: monitorear reseñas 12m + ocupación como nowcast de tracción; simplificar el feature set para evitar redundancias y ganar estabilidad.