

12/04/2022

Performance Modeling of Computer Systems and Networks

Prof. Vittoria de Nitto Personè

Abstract Priority

Università degli studi di Roma Tor Vergata

Department of Civil Engineering and Computer Science Engineering

Copyright © Vittoria de Nitto Personè, 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/

Analytical models

1

abstract priority

QoS management

- Service provider
- Traffic flows with different QoS
- QoS: mean response time

prof. Vittoria de Nitto Personè

In queste prime slide rivediamo le "formule" da usare, e relative condizioni.

Come sappiamo, a seconda della classe, abbiamo E(Tq) diversi, calcolati cosi:

 λ_1 λ_2 λ_3 λ_4 λ_4 λ_3 λ_4 λ_4 λ_5 λ_6 λ_7 λ_8 λ_8

27/04/21

=> rondo in 1ª lone 26%.

Se QoS =033 (20.4) ottergo: 1.25-1.0266 × 0,22 -> 22%.

Analytical models priority scheduling E(S) = 0.4 s Low load medium load high load $\rho = 0.4 \quad 0.6 \quad 0.8$ $treve: \lambda = 1 \quad 1.5 \quad 2 \text{ job/s}$ $E(T_Q) = 0.26 \quad 0.6 \quad 1.6 \text{ job/s} \quad \text{without priority classes} \quad \text{(unica coda)}$ $data \quad E(S), tisse <math>\beta_1 \Rightarrow \sum_{E(S)} \sum_{e} \lambda_{e} = \lambda_$

9 Se uso closi astratte davrei calcolore Mandows y clone

Ricordiano che E(SI) = 1-1-1=0.8 = 2.5 > 1 Se size x=0.2 | 7E(sd (0.21)=2,714) clarez (0.21)=2,714) | 1-1-1=0.8 | (Semptre) | nipartito nelle z llani = (3.61) = 2.857

high load $\rho = 0.8$

not penalties if $T_Q \le 0.45$

gain revenue if $T_Q < 0.4$

 $p_1 = 0.36, p_2 = 0.64$

 $p_1 = 0.22, p_2 = 0.78$

 $E(T_{Ql}) = 0.4494 \text{ s} (\angle 0.45)$

 $E(T_{Ql}) = 0.3883 \text{ s}$

 $E(T_{O2}) = 2.2472 \text{ s}$

 $E(T_{O2}) = 1.9417 \text{ s}$

 $E(T_Q)_{glob} = E(T_Q)_{KP} = 1.6$

prof. Vittoria de Nitto Personè

Se (30,70)/ No) E (sd casse) - 2.4635 E(sd clarar) = 4.6585 Se (70,70)/. ho (E(sd2) = 3.068965 E(sd2) = 6.1729 Se size-bosed no

dove sto quella size,

qui e' solo indicativo.

10

10

Con le priortor olune clori miglionero, altre no, pon dire a priori quante clorde ci gnodognamo/perolono rispetto codo singula?

Altero Godo
$$k = \frac{E(S_{nem})}{(1 - \sum_{i=1}^{K-1} P_i)(1 - \sum_{i=1}^{K-1} P_i)} \leq \frac{E(S_{nem})}{1 - P} \leq \frac{27/04/21}{(1 - \sum_{i=1}^{K-1} P_i)(1 - \sum_{i=1}^{K-1} P_i)} = \frac{27/04/21}{1 - P}$$

dopo — z eremplo sopra spilyalo questo

Euristica per la ripartizione in classi di priorità astratta

$$\rho = 0.92, \ E(S) = 1 \text{ j/s} \quad E(T_Q) = 11.5 \text{ s}, \ E(T_S) = 12.5 \text{ s} \quad \text{(No Close) priority)}$$

$$E(T_{SI}) = 3.05357 \text{ s}$$
 $E(T_{SI}) = 2.067285 \text{ s}$ $E(T_{S2}) = 10.42005 \text{ s}$ $E(T_{S2}) = 2.688743 \text{ s}$ $E(T_{S3}) = 53.75229 \text{ s}$ $E(T_{S3}) = 19.196203 \text{ s}$

prof. Vittoria de Nitto Personè

11

preemption vs no-preemption

$$E(T_S)^{P_-priority} = E(T_Q)^{P_-priority} + \sum_{k=1}^r p_k E(S_{virt-k})$$

$$E\left(T_{S}\right)^{NP_priority} = E\left(T_{Q}\right)^{NP_priority} + E\left(S\right) = E\left(T_{S}\right)^{KP}$$

In general

$$E(T_S)^P$$
 - priority ? $E(T_S)^{KP}$

For exponential service time

$$E(T_S)^P - priority = E(T_S)^{KP}$$

prof. Vittoria de Nitto Personè

12

	Ities if $T_S \le 4$; nue if $T_S < 2$	M/M/1		Analytical models abstract priority	
	NP	P	NP	P	
class	$E(T_Q)$		E(T _S) < 4		
1 - 20%	0.9523809523809524	0.19047619047619052	1.9523809523809526	1.1904761904761905	
2 - 30%	1.5873015873015874	0.7936507936507937	2.5873015873015874	1.9841269841269842	
3 - 50%	6.66666666666669	6.66666666666669	7.666666666666669	8.3333333333333	
global	4.0000000000000001	3.6095238095238105	5.0000000000000001	5.000000000000001	
due cla	assi, ma guad elazione il gu	dagno SOLO d	o a rispettarlo con la prima c enta, essendo	lasse (caso NF	
		prof. Vittoria de Nitto	Personè	14	

Analytical models abstract priority M/M/1 Not penalties if $T_S \le 4$; gain revenue if $T_S < 2$ NP NP $E(T_S)$ class $E(T_Q)$ 1 - 20% 0.9523809523809524 0.190476190476190521.9523809523809526 1.1904761904761905 0.7936507936507937 2.5873015873015874 1.9841269841269842 2 - 30% 1.5873015873015874 8.33333333333333 3 - 50% 6.666666666666696.666666666666697.666666666666694.00000000000000013.6095238095238105 5.0000000000000001 5.0000000000000001global prof. Vittoria de Nitto Personè 15

15

	Ilties if $T_S \le 4$; nue if $T_S \le 2$	M/M/1		
	NP	P	NP	P
class	$E(T_Q)$		$E(T_S)$	
1 - 20%	0.9523809523809524	0.19047619047619052	1.9523809523809526	1.1904761904761905
2 - 30%	1.5873015873015874	0.7936507936507937	2.5873015873015874	1.9841269841269842
3 - 50%	6.6666666666666	6.6666666666666	7.6666666666666	8.33333333333333
global	4.0000000000000001	3.6095238095238105	5.0000000000000001	5.0000000000000001

Poichè il testo recitava 'abbastanza variabile', posso parlare anche di IPERESPONENZIALE.

17

altro esercizio:

18

Osservazione: globalmente E(Ts) è uguale sia per KP che per P_priority, ma come abbiamo detto, se usiamo P_priority è perchè ci interessa rispettare Qos o simili, non l'andamento generale.

assunt:
$$E(S) = 0.4 \text{ s, } \lambda = 0.8 \text{ j/s, } \rho = 0.32$$

$$\sqrt{NNODO} \quad E(T_{OL}) = \frac{P_1 E(S)}{1 - P_1} \leq 0.4 = \frac{P_1}{1 - P_1} \leq \frac{0.1}{0.4} = 0.28$$

$$(10.03) \quad \frac{P_1}{1 - P_1}$$

$$p_1 = 0.6, p_2 = 0.4, c_1 = 5, c_2 = 3 \rightarrow \text{R} = 2.2$$

$$E(T_{Q1}) = 0.095 \text{ s, } E(T_{S1}) = 0.495 \text{ s}$$

$$E(T_{Q2}) = 0.233 \text{ s, } E(T_{S2}) = 0.728 \text{ s}$$

$$E(T_{Q2}) = 0.233 \text{ s, } E(T_{S2}) = 0.728 \text{ s}$$

$$e \text{ trovo } P_1 \leq \frac{0.25}{1.25} = 0.2$$

$$\text{Inoltre} \quad P_1 = \frac{0.25}{1.25} = 0.2$$

$$\text{Inoltre} \quad P_2 = \frac{0.25}{1.25} = 0.2$$

$$\text{Inoltre} \quad P_3 = \frac{0.25}{1.25} = 0.2$$

$$\text{Inoltre} \quad P_4 =$$

Qui, come nei compiti, spesso conviene partire dalle formule con requisito e prendendo la probabilità.

prof. Vittoria de Nitto Personè

19

VERIFICA:
$$\frac{P_1 E(S)}{1-P_1} = \frac{0.2 \cdot 0.4}{0.2} = E(T_a)$$
 (KP M/H/L)