MT251P - Lecture 9

Fiacre Ó Cairbre

Three-dimensional vectors.

Remark 6.

Suppose we are in three–dimensional space given by

$$\mathbb{R}^3 = \{(x, y, z) : x, y, z \in \mathbb{R}\}\$$

and suppose

$$A = (x_1, y_1, z_1), B = (x_2, y_2, z_2) \in \mathbb{R}^3$$

The vector $u = \overrightarrow{AB}$ can be written as

$$\underline{u} = u_1 i + u_2 j + u_3 k$$
, where $u_1 = x_2 - x_1$, $u_2 = y_2 - y_1$, $u_3 = z_2 - z_1$

 \underline{u} is called the displacement vector.

0i + 0j + 0k is called the zero vector.

Theorem 2.

Suppose $\underline{v} = v_1 i + v_2 j + v_3 k$, $\underline{w} = w_1 i + w_2 j + w_3 k$ and $t \in \mathbb{R}$.

(a)
$$\underline{v} + \underline{w} = (v_1 + w_1)i + (v_2 + w_2)j + (v_3 + w_3)k$$
.

- (b) $t\underline{v} = tv_1i + tv_2j + tv_3k$.
- (c) The magnitude (or length) of \underline{v} is denoted by $||\underline{v}||$ and satisfies

$$||\underline{v}|| = \sqrt{v_1^2 + v_2^2 + v_3^2}$$

(d) The dot (or scalar) product of \underline{v} and \underline{w} is denoted by $\underline{v}.\underline{w}$ and is defined by

$$\underline{v}.\underline{w} = v_1w_1 + v_2w_2 + v_3w_3$$

(e) Suppose neither \underline{v} nor \underline{w} is the zero vector. Then, $\underline{v}.\underline{v} = ||\underline{v}||||\underline{v}||\cos\theta$, where θ is the angle between \underline{v} and \underline{w} and $0 \le \theta \le \pi$.

Definition 2.

The non–zero vectors $\underline{v}, \underline{w}$ are said to be perpendicular if the angle between \underline{v} and \underline{w} is $\frac{\pi}{2}$. We also define the zero vector to be perpendicular to any vector.

Remark 7.

Two vectors \underline{v} , \underline{w} in \mathbb{R}^3 are perpendicular $\iff \underline{v}.\underline{w} = 0$

Definition 3.

Suppose $\underline{u} = u_1 i + u_2 j + u_3 k$ and $\underline{w} = w_1 i + w_2 j + w_3 k$. The cross product of \underline{u} and \underline{w} is denoted by $\underline{u} \times \underline{w}$ and is defined by

$$\underline{u} \times \underline{w} = (u_2w_3 - u_3w_2)i + (u_3w_1 - u_1w_3)j + (u_1w_2 - u_2w_1)k$$

Example 5.

Consider the vectors $\underline{u} = 3i - 2j + k$ and $\underline{w} = i + 3j + 3k$. Find

- (a) $\underline{u} + \underline{w}$
- (b) $||\underline{w}||$
- (c) $\underline{u}.\underline{w}$
- (d) $\underline{u} \times \underline{w}$

Solution.

- (a) $\underline{u} + \underline{w} = 4i + j + 4k$
- (b) $||\underline{w}|| = \sqrt{1+9+9} = \sqrt{19}$
- (c) u.w = 0

(d)
$$\underline{u} \times \underline{w} = ((-2)(3) - (1)(3))i + ((1)(1) - (3)(3))j + ((3)(3) - (-2)(1))k = -9i - 8j + 11k$$

Remark 8.

If \underline{u} and \underline{w} are vectors in \mathbb{R}^3 , then $\underline{u} \times \underline{w}$ gives a vector which is perpendicular to both \underline{u} and \underline{w} . In example 5, $\underline{m} = \underline{u} \times \underline{w}$ is perpendicular to both \underline{u} and \underline{w} because $\underline{m}.\underline{u} = 0$ and $\underline{m}.\underline{w} = 0$.

Example 6.

Consider the vectors $\underline{u} = i + 2j + k$ and $\underline{w} = 3i + j + 2k$. Find the angle θ between \underline{u} and \underline{w} .

Solution.

$$\underline{u}.\underline{w} = 7, \ ||\underline{u}|| = \sqrt{6}, ||\underline{w}|| = \sqrt{14} \text{ and so }$$

$$7 = \sqrt{6}\sqrt{14}\cos\theta \implies \cos\theta = \frac{7}{\sqrt{84}} \implies \theta = \arccos(\frac{7}{\sqrt{84}})$$

Remark 9.

Suppose $A = (0,0,0), B = (x_1,x_2,x_3)$. The vector $\underline{v} = \overrightarrow{AB}$ is called a position vector.

Section 3.2 – Vectors in \mathbb{R}^n .

Definition 4.

For $n \geq 1$ we define

$$\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) : x_i \in \mathbb{R} \text{ for } 1 \le i \le n\}$$

The vector with initial point at the origin, $(0, 0, \dots, 0)$, and terminal point (x_1, x_2, \dots, x_n) is called a position vector and is denoted by

$$\underline{x} = (x_1, x_2, \dots, x_n)$$

Theorem 3.

Suppose (x_1, x_2, \dots, x_n) and $(y_1, y_2, \dots, y_n) \in \mathbb{R}^n$ and $k \in \mathbb{R}$.

(a)
$$\underline{x} + y = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

(b)
$$k\underline{x} = (kx_1, kx_2, \dots, kx_n)$$

(c)
$$||\underline{x}|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

(d)
$$\underline{x}.y = x_1y_1 + x_2y_2 + \dots + x_ny_n$$

(e) $\underline{x}.\underline{y} = ||\underline{x}||||\underline{y}||\cos\theta$, where θ is the angle between \underline{x} and \underline{y} and $0 \le \theta \le \pi$ and neither \underline{x} nor \underline{y} is the zero vector $(0,0,\ldots,0)$