Karnaugh MAP (K-Map)

Pokok Bahasan :

- 1. K-map 2 variabel
- 2. K-map 3 variabel
- 3. K-map 4 variabel
- 4. Penyederhanaan rangkaian dengan k-map

Tujuan Instruksional Khusus:

- 1.Mahasiswa dapat menerangkan dan memahami cara membuat k-map 2, 3, 4 variabel.
- 2.Mahasiswa dapat menerangkan dan memahami cara peng-cover-an minterm dalam sebuah k-map..
- 3.Mahasiswa dapat menyederhanakan persamaan logika melalui metode k-map.

Karnaugh Map (K-Map)

- •Suatu peralatan grafis yang digunakan untuk menyederhanakan persamaan logika atau mengkonversikan sebuah tabel kebenaran menjadi sebuah rangkaian logika.
- •Salah satu metode yang paling mudah untuk penyederhanaan Rangkaian Logika.

Karnaugh Map 2 Variabel : (A dan B)

Tabel Kebenaran

Map Value	Α	В	Υ
0	0	0	A'B'
1	0	1	A'B
2	1	0	AB'
3	1	1	AB

Desain Pemetaan K- Map 2 Variabel

Karnaugh Map 2 Variabel : dengan minterm-mintermnya

$$\begin{array}{c|cccc}
x & y & 0 & \hline
 & 0 & \hline
 & 0 & x'y' & x'y \\
x & 1 & xy' & xy
\end{array}$$

$$F = \Sigma(m_0, m_1) = x'y + x'y'$$

X	У	F
0	0	1
0	1	1
1	0	0
1	1	0

$$F=AB+A'B+AB'$$

$$A = \begin{bmatrix} B & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
 $F = AB + A'B + AB'$ $1 = A + B$

Contoh: 1

Та	abel K	ebena	ran		A	0	1
Map Value	Α	В	Y		0	1	0
0	0	0	1	A'B'	1	0	1
1	0	1	0		L	1	3
2	1	0	0			B 0	4
3	1	1	1	AB	A \ 0	A'B'	0
					→	0	1
	Jadi $Y = A'B' + AB$ 1 0 AB 2						

Contoh: 2

Tahai	Keber	
IANAI	NAUAI	าวเวก
IUDGI		ıaıaıı

Map Value	Α	В	Υ
0	0	0	1
1	0	1	1
2	1	0	0
3	1	1	0

A 0 1
0 1 1
0 1 0 1
A'B' 1 0 0
2 3

В

0

В

Jadi Y = A' 0 A'B' A'B 0 0 0 1 0 2 0 3 0

Α

Catatan untuk K-Map 2 Variabel

- 0 kotak terlingkupi = "0" (Low)
- 1 kotak terlingkupi = 2 variabel output
- 2 kotak terlingkupi = 1 variabel output
- 4 kotak terlingkupi = "1" (High)
- Melingkupinya harus posisi "Horisontal " atau "vertikal", yang dilingkupi digit "1" dan jumlah digit "1" yang dilingkupi 2ⁿ (1, 2,4,8,16, ...)

$$Y = AB + A'B'$$

$$Y = B' + A$$

Contoh 3:

Dari Tabel Kebenaran dibawah, tulis persamaan logikanya dengan menggunakan K-map :

Map Value	Α	В	Υ
0	0	0	1
1	0	1	1
2	1	0	0
3	1	1	1

Jadi Y = A' + B

Contoh 4:

Sederhanakan persamaan logika:

Y = A + AB' + A'B

Menggunakan K- map:

Jadi
$$Y = A + B$$

Tabel Kebenaran

Map Value	Α	В	С	Y
0	0	0	0	
1	0	0	1	
2	0	1	0	
3	0	1	1	
4	1	0	0	
5	1	0	1	
6	1	1	0	
7	1	1	1	

Karnaugh Map 3 Variabel : (A, B dan C)

Tabel Kebenaran

Map Value	Α	В	C	Y
0	0	0	0	
1	0	0	1	
2	0	1	0	
3	0	1	1	
4	1	0	0	
5	1	0	1	
6	1	1	0	
7	1	1	1	

Desain Pemetaan K- Map 3 Variabel

Catatan untuk K- Map 3 Variabel

- 0 kotak terlingkupi = "0" (Low)
- 1 kotak terlingkupi = 3 variabel output
- 2 kotak terlingkupi = 2 variabel output
- 4 kotak terlingkupi = 1 variabel output
- 8 kotak terlingkupi = "1" (High)
- Melingkupinya harus posisi "Horisontal "
 atau "vertikal", yang dilingkupi digit "1" dan
 jumlah digit "1" yang dilingkupi 2ⁿ (1, 2, 4,
 8, ...)

Contoh pengcoveran

$$G(A,B,C) = A$$

$$F(A,B,C) = \sum m(0,4,5,7) = AC + B'C'$$

$$F=AB'C'+AB'C+ABC+ABC'+A'B'C+A'BC'$$

$$F=A+B'C+BC'$$

$$F=AB'C'+AB'C+ABC+ABC'+A'B'C+A'BC'$$

Contoh 1:

Tabel Kebenaran

Map Value	Α	В	С	Y
0	0	0	0	1
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

Diketahui Tabel Kebenaran seperti disamping: Cari persamaan logikanya:

Jadi
$$Y = AC + AB + A'B'$$

Contoh 2:

Diketahui Persamaan Boolean : D = A'BC + A'BC' + ABC + AB'C Sederhanakan dengan metode K-map

Jadi D = B + AC

Karnaugh Map 4 Variabel:

(A, B, C dan D)

Map Valu e	Α	В	С	D	Υ
0	0	0	0	0	
1	0	0	0	1	
2	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	
5	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	
8	1	0	0	0	
9	1	0	0	1	
10	1	0	1	0	
11	1	0	1	1	
12	1	1	0	0	
13	1	1	0	1	
14	1	1	1	0	
15	1	1	1	1	

Tabel Kebenaran

('	٠, ۲	•	o dan		,					
		、C	D							
	AB		00		01		11		10	
	(00	A'B'C'D'		A'B'C'D		A'B'CD		A'B'C[)'
Model	1	01	A'BC'D'		A'BC'D		A'BCD		A'BCD)'
meder .	•	11	ABC'C)'	ABC'C)	ABCD 15		ABCD	,
	,	10	AB'C'D'		AB'C'D		AB'CD		AB'CD)'
`	$\setminus A$	B								
C	/	(00		01		11		10	_
	00	A' 0	A'B'C'D' A'B'C'D		A'BC'D' A'BC'D 5		ABC'D' ABC'D 13		3'C'D'	
	01								AB'C'D	
Model 2	11	A '	B'CD	A '	A'BCD		ABCD		3'CD	
	10	A '	B'CD'	A '	A'BCD'		ABCD'		3'CD'	
	•								20	•

Dengan wxyz input

Fig. 3-8 Four-variable Map

Desain Pemetaan K- Map 4 Variabel

Catatan untuk K-Map 4 Variabel

- 0 kotak terlingkupi = "0" (Low)
- 1 kotak terlingkupi = 4 variabel output
- 2 kotak terlingkupi = 3 variabel output
- 4 kotak terlingkupi = 2 variabel output
- 8 kotak terlingkupi = 1 variabel output
- 16 kotak terlingkupi = "1" (High)
- Melingkupinya harus posisi "Horisontal " atau "vertikal", yang dilingkupi digit "1" dan jumlah digit "1" yang dilingkupi 2ⁿ (1,2, 4, 8, 16, ...)

Contoh pengcoveran:

K-map untuk LT

K-map untuk EQ

K-map untuk GT

$$LT = A'B'D + A'C + B'CD$$

$$EQ = A'B'C'D' + A'BC'D + ABCD + AB'CD'$$

$$GT = BC'D' + AC' + ABD'$$

Contoh pengcoveran :

$$F=BC'+CD'+AC+AD'$$

Contoh 1

• $F(A,B,C,D) = \Sigma m(0,2,3,5,6,7,8,10,11,14,15)$

$$F = C + A'BD + B'D'$$

Kalau digambarkan dengan system coordinate

Jadi M = W'X'Y'Z' + WXZ' + WXX'Z + YZ

Physical Implementasi

- ° Step 1: Truth table
- ° Step 2: K-map
- Step 3: Minimized sum-ofproducts
- Step 4: Implementasi dengan gates

Poin-poin penggunaan K-map

- Buat persamaan ke bentuk SOP (melalui tabel kebenaran).
- Minterm-mintermnya masukkan ke k-map (sesuaikan jumlah kotak atau variabel input).
- Lingkari (pe-ngcoveran) yang benar.

 Tulis persamaan logika hasil pengcoveran.

Don't Care

- Kondisi don't care merupakan kondisi dimana ada beberapa kombinasi variable input yang tidak selalu dapat dinyatakan nilai outputnya.
- Keadaan dimana nilai outputnya tersebut bisa berlogic '1' atau berlogic '0' yang disimbulkan dengan "X" atau "d".
- Kegunaan dari kondisi don't care pada penyederhanaan fungsi dapat dinyatakan pada fakta bahwa dapat diset dengan logic '1' atau logic '0', berdasar kegunaannya untuk format kelompok logic '1' yang lebih besar.

Karnaugh maps: don't cares (cont'd)

f(A,B,C,D) = Σ m(1,3,5,7,9) + d(6,12,13)
 f = A'D + B'C'D tanpa don't cares
 f = A'D + C'D dengan don't cares

A B C D	f						
0 0 0 0	0						
0 0 0 1	1						
0 0 1 0	0					Δ	
0 0 1 1	1			Ι			
0 1 0 0	0		0	0	X	0	
0 1 0 1	1						
0 1 1 0	X		[1	1 1	X	1	
0 1 1 1	1					=	D
1 0 0 0	0		1	1	0	0	
1 0 0 1	1	C					
1 0 1 0	0		0	X	0	0	
1 0 1 1	0				3		
1 1 0 0	X			•			
1 1 0 1	X						
1 1 1 0	0						
1 1 1 1	0						

Pengcoveran dengan Don't Cares

Bentuk ilustrasi pengkoveran

minimum cover: ABC'+ACD+A'BC+A'C'D

Α	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Metode Aljabar Boole

$$= (A' + A)BCin + (B' + B)ACin + (Cin' + Cin)AB$$

Karnaugh Map for Cout

Karnaugh Map untuk S

A	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S = A'BCin' + A'B'Cin$$

Karnaugh Map untuk S

A	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

S = A'BCin' + A'B'Cin + ABCin

Karnaugh Map untuk S

Coba anda gambar rangkaian diagramnya?

Karnaugh	untuk	S
----------	-------	---

A	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Tidak bisa direduksi

Latihan Soal 1:

Gambarlah K-map untuk setiap ekspresi logika dibawah serta sederhanakan dengan pengcoveran yang benar :

- 1. AB + B'C + A'B'
- 2. AC + AC'B + BC + B'C'
- 3. XY + X'Z + Y'Z'
- 4. XY + YZ + XZ + X'Y'

Latihan Soal 2:

Gambarlah K-map untuk setiap ekspresi logika dibawah serta sederhanakan dengan pengcoveran yang benar :

- 1. A(BC' + C) + B(A + A'C)
- 2. (AC + AC'B). (BC + B'C')
- 3. Z(XY + X'Z) . Y'Z'(X + Z)

Catatan: cari minterm-mintermnya dulu (rubah kebentuk SOP)