МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Организация ЭВМ и систем»

ТЕМА: ПРЕДСТАВЛЕНИЕ И ОБРАБОТКА ЦЕЛЫХ ЧИСЕЛ. ОРГАНИЗАЦИЯ ВЕТВЯЩИХСЯ ПРОЦЕССОВ.

Студентка гр. 0383	Ханина М.И.
Преподаватель	 Ефремов М.А.

Санкт-Петербург

Цель работы.

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров a, b, i, k вычисляет: а) значения функций i1 = f1(a,b,i) и i2 = f2(a,b,i); b) значения результирующей функции res = f3(i1,i2,k), где вид функций f1 и f2 определяется из табл. 2, а функции f3 - из табл.3 по цифрам шифра индивидуального задания (n1,n2,n3), приведенным в табл.4. Значения a, b, i, k являются исходными данными, которые должны выбираться студентом самостоятельно и задаваться в процессе исполнения программы в режиме отладки. При этом следует рассмотреть всевозможные комбинации параметров a, b и k, позволяющие проверить различные маршруты выполнения программы, а также различные знаки параметров a и b.

Замечания:

- 1) при разработке программы нельзя использовать фрагменты, представленные на ЯВУ, в частности, для ввода-вывода данных. Исходные данные должны вводиться, а результаты контролироваться в режиме отладки;
- 2) при вычислении функций f1 и f2 вместо операции умножения следует использовать арифметический сдвиг и, возможно, сложение;
 - 3) при вычислении функций f1 и f2 нельзя использовать процедуры;
- 4) при разработке программы следует минимизировать длину кода, для чего, если надо, следует преобразовать исходные выражения для вычисления функций.

Вариант 18:

$$/7 - 4*i$$
, при a>b
 $i1 = f3 =$
 $/8 - 6*i$, при a<=b
 $/-(6*i+8)$, при a>b
 $i2 = f8 =$
 $/9 - 3*(i-1)$, при a<=b
 $/ |i1 - i2|$, при k<0
 $res = f6 =$
 $/ max(7, |i2|)$, при k>=0

Выполнение работы.

Числа для работы программы вводятся сразу в asm файл. Для реализации алгоритмов использовались команда сравнения стр и различные условные переходы. Для функций f3 и f8 условия одинаковы, поэтому их вычисление проходит в одном блоке. Сначала командой стр сверяются значения а и b. С помощью команды jle проверяется, что а <= b, и в зависимости от результата программа переходит к блоку, где рассчитываются соответствующие значения f3 и f8. Для операций умножения использовался битовый сдвиг влево(команда shl) и сложение (команда add).

Результаты тестирования представлены в табл. 1.

Тексты исходных файлов программ см. в приложении А.

Тексты файлов диагностических сообщений см. в приложении Б.

Таблица 1. Проверка работы программы.

№	Входные данные	Значение і1	Значение і2	Значение	Комментарий
				res	
1	a=2,	2	9	9	Программа
	b=3,				работает
	i=1,				корректно
	k = 4				
2	a=1,	-4	6	7	Программа
	b=4,				работает
	i=2,				корректно
	k = 0				
3	a=6,	-5	-26	21	Программа
	b=4,				работает
	i=3,				корректно
	k = -2				
4	a = 10,	3	-8	11	Программа
	b = -3,				работает
	i=0,				корректно
	k = -10				

Выводы.

В ходе выполнения данной лабораторной работы была изучена работа с целыми числами и условными переходами на языке Ассемблер.

ПРИЛОЖЕНИЕ А ТЕКСТЫ ИСХОДНЫХ ФАЙЛОВ ПРОГРАММ

Название файла: lr3.asm

; Стек программы

AStack SEGMENT STACK

DW 12 DUP(?)

AStack ENDS

;Данные программы

DATA SEGMENT

;Директивы описания данных

- a DW 6
- b DW 4
- i DW 3
- k DW -2
- il DW 0
- i2 DW 0
- T DW 0

DATA ENDS

; Код программы

CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:AStack

; Головная процедура

Main PROC FAR

push DS

sub AX,AX

```
push AX
 mov AX,DATA
 mov DS,AX
 mov CX, 0
 mov cx, i
 mov ax, cx
 shl cx, 1
 shl cx, 1; C = 4i
mov T, cx; T = 4i
add T, ax
 add T, ax; T = 6i
mov bx, b
 cmp a, bx
; a>b
jle f83less
  mov ax, cx
 mov cx, 7
 sub cx, ax
 mov i1, cx
  add T, 8
 neg T
  mov cx, T
 mov i2, cx
; a<b
f83less:
 mov ax, T
```

```
mov cx, 8
sub cx, ax
mov i1, cx
mov cx, i
add cx, -1
mov ax, cx
shl cx, 1
shl cx, 1
sub cx, ax
neg cx
add cx, 9
mov i2, cx
;рассчет f6
mov bx, k
cmp bx, 0
jl f6Second
mov bx, ax
cmp bx, 7
mov cx, i2
cmp cx, 0
jge skip2
neg cx
mov ax, cx
skip2:
jl max1
                  ; |i2| >= 7
mov cx, bx
jmp MainFinal
max1:
```

```
mov cx, 7 ; |i2| < 7
```

jmp MainFinal

f6Second:

mov cx, i1

sub cx, i2

cmp cx, 0

jge MainFinal

neg cx

jmp MainFinal

MainFinal:

ret

Main ENDP

CODE ENDS

END Main

приложение Б

ТЕКСТЫ ФАЙЛОВ ДИАГНОСТИЧЕСКИХ СООБЩЕНИЙ

Название файла: **LR3.lst**

Microsoft (R) Macro Assembler Version 5.10

11/11/21 14:56:5

Page 1-1

0000 0000 000C[????]		•	ограммы GMENT STACK DW 12 DUP(?)
0018			ack EN	5
				рограммы
0000		DAT	Ά	SEGMENT
		;Директивы описания данны		ы описания данны
		X		
0000 0006		a	DW	6
0002 0004		b	DW	4
0004 0003		i	DW	3
0006 FFFE		k	DW	-2
0008 0000		i1	DW	0
000A 0000		i2	DW	0
000C 0000		T	DW	0
000E		DAT	Ά	ENDS

; Код программы

CODE SEGMENT

ASSUME CS:CODE, DS:DATA, SS:AStack

•	Головная	процедура
,	1 0010 211001	

0000		Main	PROC FAR
0000	1E	push	DS
0001	2B C0		sub AX,AX
0003	50	push	AX
0004	B8 R	mov	AX,DATA
0007	8E D8		mov DS,AX
0009	B9 0000		mov CX, 0
000C	8B 0E 0004 R	2	mov cx, i
0010	8B C1		mov ax, cx
0012	D1 E1		shl cx, 1
0014	D1 E1		shl cx, 1; $C = 4i$
0016	89 0E 000C R		mov T, cx ; $T = 4i$
001A	01 06 000C R		add T, ax
001E	01 06 000C R		add T, ax; $T = 6i$
0022	8B 1E 0002 R		mov bx, b
0026	39 1E 0000 R		cmp a, bx
		; a>	·b
002A	7E 1C		jle f83less

002A 7E 1C	ıle f83less
002C 8B C1	mov ax, cx
002E B9 0007	mov cx, 7
0031 2B C8	sub cx, ax
0033 89 0E 0008 R	mov i1, cx
0037 83 06 000C R 08	add T. 8

003C F7 1E 000C R neg T

0040 8B 0E 000C R mov cx, T

0044 89 0E 000A R mov i2, cx

Microsoft (R) Macro Assembler Version 5.10 11/11/21 14:56:5

Page 1-2

; a<b

0048 f83less:

0048 A1 000C R mov ax, T

004B B9 0008 mov cx, 8

004E 2B C8 sub cx, ax

0050 89 0E 0008 R mov i1, cx

0054 8B 0E 0004 R mov cx, i

0058 83 C1 FF add cx, -1

005B 8B C1 mov ax, cx

005D D1 E1 shl cx, 1

005F D1 E1 shl cx, 1

0061 2B C8 sub cx, ax

0063 F7 D9 neg cx

0065 83 C1 09 add cx, 9

0068 89 0E 000A R mov i2, cx

;рассчет f6

006C 8B 1E 0006 R mov bx, k

0070 83 FB 00 cmp bx, 0

0073 7C 1F jl f6Second

0075 8B D8 mov bx, ax

0077 83 FB 07		cmp bx, 7
007A 8B 0E 000A	R	mov cx, i2
007E 83 F9 00		cmp cx, 0
0081 7D 04		jge skip2
0083 F7 D9		neg cx
0085 8B C1		mov ax, cx
0087	skip2	2:
0087 7C 05		jl max1
0089 8B CB		mov cx, bx ; i2 >= 7
008B EB 19 90		jmp MainFinal
008E	max	1:
008E B9 0007		mov cx, 7 ; $ i2 < 7$
0091 EB 13 90		jmp MainFinal
0094	f6Se	cond:
0094 8B 0E 0008 B	₹	mov ex, i1
0098 2B 0E 000A	R	sub cx, i2
009C 83 F9 00		cmp cx, 0
009F 7D 05		jge MainFinal
00A1 F7 D9		neg cx
00A3 EB 01 90		jmp MainFinal
00A6	Mair	nFinal:
00A6 CB	ret	
00A7	Main	ENDP
00A7	CODE	ENDS
	END Mair	1

Symbols-1

11/11/21 14:56:5

Microsoft (R) Macro Assembler Version 5.10

Segments and Groups:

N a m e	Length Align Combine Class
A STA CV	0018 PARA STACK
ASTACK	
CODE	00A7 PARA NONE
DATA	000E PARA NONE
Symbols:	
N a m e	Type Value Attr
A	L WORD 0000 DATA
В	L WORD 0002 DATA
F6SECOND	. L NEAR 0094 CODE
F83LESS	L NEAR 0048 CODE
I L WO	ORD 0004 DATA
I1	L WORD 0008 DATA
I2	L WORD 000A DATA
K	L WORD 0006 DATA
MAIN	F PROC 0000 CODE Length = 00A7
MAINFINAL	L NEAR 00A6 CODE
MAX1	L NEAR 008E CODE

SKIP2	L NEAR	0087	CODE
\bigcirc 1X11 \triangle		0007	CODL

T L WORD 000C DATA

@CPU TEXT 0101h

@FILENAME TEXT proba

@VERSION TEXT 510

97 Source Lines

97 Total Lines

21 Symbols

47976 + 461331 Bytes symbol space free

0 Warning Errors

0 Severe Errors