Pore Water Microbiome Characterization using Ribosome Profiling

Yochen Zhong

Objectives

- 1) Assign and validate taxonomic identity of individual Ribo-ITP reads from pore water sample
- 2) Identify functional capabilities of the microbiome

Part 1: Taxonomic Classification

rRNA separation

- SortMeRNA (Kopylova et al., 2012)
- 7219457 raw reads:
 - 1333887 (18.48%)
 classified as rRNA
 - 5885570 (81.52%) retained for downstream classification

Classifiers and databases used for initial read assignments

- Nucleotide matching
 - Kraken2 (Wood et al., 2014)
 - NCBI RefSeq Bacteria/Human complete genomes (O'Leary et al., 2016)
 - Centrifuger (Song & Langmead, 2024)
 - NCBI RefSeq Bacteria/Human/Virus/Archea, GenBank SARS-CoV2
 - GTDB r226 + RefSeq Human/Virus/Fungi/Contaminants
 - NCBI nt
- Protein matching
 - DIAMOND (Buchfink et al. 2021)
 - NCBI nr
 - UniRef100

Individual classifiers identify a moderate amount of reads

Initial classifier results, genera

Aggregated classifier results

- Aggregated classifier information by combining single hits and unanimous hits
- 1095115/5885570 (18.6%)
 of raw reads classified

Second classification round

Final taxonomic results

2430207/5885570 (41.3%)
 of raw reads classified

Part 2: Functional Analysis

Functional Relatedness: KEGG Pathways

- Related species show similar functional roles
- X. szentirmaii reads returned zero functional terms; dropped from analysis

Aggregate community **functions**

populate top

terms

KEGG Pathway

Top 30 Aggregate Enriched Pathways, KEGG Pathway

Pseudomonas putida

Sphingopyxis sp. FD7

Summary

- A multi-classifier approach is effective in characterizing environmental microbiome ribosome profiling data
- The microbial community translational activity is dominated by a few bacteria, particularly S. stutzeri, P. aeruginosa, and S. chloriditismutans
- Key community functions can be identified from ribosome profiling data

Limitations/Next Steps

- Ribo-seq is not suited for taxonomic abundance estimation
 - Integration with metagenomics data
- Ribo-seq only describes a portion of bacterial activity
 - Integration with metatranscriptomics data
- Many unmapped reads; only proceeded with taxa >4000 raw aggregate reads
- Pangenomes only partially describe a species
- Comparison is needed for significant conclusions
 - Differential analysis
 - Correlation with geochemical/environmental data

Questions

- Environmental sample results or expectations?
- Any specific bacterial processes of interest?