

Programowanie komputerów I

Programowanie obiektowe

Willy Picard

Katedra Technologii Informacyjnych Akademia Ekonomiczna w Poznaniu <picard@kti.ae.poznan.pl>

Agenda

- Cel(e) wykładu
- Od Włoch do Indonezji
- Interfejsy, Klasy i Obiekty
- Atrybuty i metody
- Kapsułkowanie
- Dziedziczenie i polimorfizm
- Podsumowanie

Cel(e) wykładu

Przegląd wykładu

dstawowe pojęcia

- ▶ 1: Wprowadzenie
- 2: Podstawowe struktury danych & instrukcje
- 3: Programowanie obiektowe I
- ▶ 4: Programowanie obiektowe II
- 5: Programowanie obiektowe III
- ► 6: Zaawansowane struktury danych
- 7: Wątki & Wyjątki

Cel na dziś

Wprowadzić
programowanie obiektowe
(object-oriented
programming)

Od Włoch do Indonezji

Włochy

Programowanie Spaghetti

- Assembler, BASIC
- Instrukcje rozgałęzienia
- Dla miłośników goto
- Dane niestrukturyzowane

Łatwość utrzymania: *

Przykład w BASIC

```
PRINT "Wprowadź liczbę, zero żeby wyjść:";
20
   INPUT A
          O THEN GOTO 70
40 \text{ LET A} = A + 10
   PRINT "Wprowadzona liczba + 10 = "; A
60 GOTO 10
   STOP
```

PASCAL

- Modularność
 - Procedury
 - Funkcje
- Dany ustrukturyzowane
- Funkcje i procedury operują na ustrukturyzowanych danych

Łatwość utrzymania: **

Przykład rekordu w PASCAL

```
program RECORD INTRO (output);
           data = record
                   miesiąc, dzień, rok: integer
                   end;
           dziś : data;
     var
     begin
           dziś.dzień := 25;
           dziś.miesiąc := 09;
           dziś.rok := 1983;
           writeln('Dzisiaj: ',
                    dziś.dzień,':',
                    dziś.miesiąc, ':',
                    dziś.rok);
      end.
```

end.

Przykład procedury w PASCAL

```
program DODAJ LICZBY (input, output);
  procedure DODAJ ( pierwsza, druga : integer );
        wynik : integer;
    var
    begin
      wynik := pierwsza + druga;
      writeln('Wynik = ', wynik);
    end;
         liczba1, liczba2 : integer;
    var
    begin
      writeln('Wprowadź dwie liczby');
      readln(liczba1, liczba2);
      DODAJ (liczba1, liczba2);
```

Przykład funkcji w PASCAL

```
program DODAJ LICZBY (input, output):
  function DODAJ (pierwsza, druga: integer): integer;
    begin
      DODAJ := pierwsza + druga;
    end;
    var suma, liczba1, liczba2 : integer;
    begin
      writeln('Wprowadź dwie liczby');
      readln(liczba1, liczba2);
      suma := DODAJ( liczba1, liczba2)
      writeln('Suma = ', suma)
    end.
```

C

- Rozdzielenie
 - deklaracje
 - definicje
- Nagłówki
- Biblioteki

Łatwość utrzymania: ***

Przykład w C

```
W pliku "myMath.h"
  int dodaj(int i, int j);

W pliku "myMath.c"
  #include "myMath.h"
  int dodaj(int i, inj) { return i+j };
```

W pliku myProg.c

```
#include "myMath.h"
#include <iostream.h>
#include <cstdlib>

int main( int argc, char* argv[]) {
  int a = atoi(argv[1]);
  int b = atoi(argv[2]);
  int suma = dodaj(a, b);
  cout << a << "+" << b << "=" << suma;
}</pre>
```

Ograniczenia języka C

- Powiązanie między
 - Procedurami/funkcjami
 - Strukturami danych
- Kod rozproszony

Obiektowe języki programowania (OOPLs)

- Historia
 - Nygaard i Dahl, Norwegian Computer Center
 - Simula 67
- Obecne obiektowe języki programowania
 - ► C++
 - Objective C
 - Smalltalk
 - Eiffel
 - Common LISP Object System (CLOS)
 - Object Pascal
 - Ada
 - **>** ...

Indonezja

Interfejsy, Klasy i Obiekty

Definicja interfejsu

Interfejs jest definicją zachowania jako zbiór funkcji

© Willy Picard

20

Przykład interfejsu

- Interfejs Samochód
 - Wejdź do samochodu
 - Uruchom samochód
 - Przyspiesz
 - Zahamuj

- ▶ Skręć
- Zaparkuj samochód
- Zatrzymaj samochód
- Wyjdź z samochodu

Interfejsy w Javie

Składnia

```
interface <nazwa>{
    ...
}
```

Przykład

```
interface ISamochód {
    ...
}
```

Definicja klasy

Klasa jest definicją implementacji zachowania

23

Przykład klasy

- Klasa Samochód
 - ▶ np. Citroen C3
 - Wejdź do samochodu
 - Uruchom samochód
 - Przyspiesz
 - Zahamuj

- Skręć
- Zaparkuj samochód
- Zatrzymaj samochód
- Wyjdź z samochodu

Przykład implementacji samochodu

- Pedał gazu
- Kierownica
- Obecna prędkość

- Przyspiesz
 - Wciśnij pedał gazu

Klasy w Javie

Składnia

```
class <nazwa>{
    ...
}
```

Przykład

```
class CitroenC3 {
    ...
}
```

Klasyczna definicja klasy

Klasa jest zbiorem zmiennych i metod do ich obsługi

Definicja obiektu

Obiekt jest instancją klasy

Przykład obiektu

- Obiekt typu Samochód
 - Konkretny samochód
 - np. Citroen C3 z rejestracją "PO TATO"
 - np. kierownica skórzana
 - np. sportowy pedał gazu
 - ▶ np. 30km/h

Klasy i interfejsy

Klasa, która implementuje (implements) interfejs musi zdefiniować wszystkie metody zadeklarowane w interfejsie

Klasy i interfejsy w Javie

Składnia

```
class <nazwaKlasy> implements <nazwaInterfejsu>{
    ...
}
```

Przykład

```
class CitroenC3 implements ISamochód{
    ...
}
```

Podsumowanie

Podsumowanie

Podsumowanie

- ► Reguła 1
 - Używaj interfejsy
- Regula 2
 - Używaj interfejsy
- Regula 3
 - Używaj interfejsy

Język C vs. OOPLs

- Powiązanie między
 - Procedurami/funkcjami
 - Strukturami danych
- Ponowne wykorzystanie kodu
- Kod rozproszony
- Deklaracja vs. definicja

klasy

dziedziczenie

klasy, dziedziczenie

interfejsy, kapsułkowanie

Przykład

```
package pl.poznan.ae.compProg;
import java.util.*;
public class Sorter {
  private List words;
  public void sort(String[] words) {
    words = Arrays.asList(words);
    Collections.sort(words);
  public String getSortedWords() {
    String sortedString = "";
    for (int i = 0; i < words.size(); i++) {
      sortedString += _words.get(i);
    return sortedString;
 public static void main(String[] args) {
    Sorter sorter = new Sorter();
    sorter.sort(args);
    System.out.println(sorter.getSortedWords());
```

Do zobaczenia za tydzień

Programowanie obiektowe II Powrót