Parameter Prediction for Unseen Deep Architectures

Докладчик: Медведев Антон

Рецензент: Семерова Елена

Исследователь: Морозов Никита

Хакер: Гришанин Виктор

Мотивация

Рассмотрим набор данных $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$.

$$\underset{\mathbf{w}}{\operatorname{arg\,min}} \sum_{i=1}^{N} \mathcal{L}(f(\mathbf{x}_i; a, \mathbf{w}), y_i)$$

С постоянно растущим размером нейронных сетей и необходимостью их многократного обучения этот способ становится вычислительно неустойчивым.

При оптимизации параметров для новой архитектуры хотим использовать опыт, полученный при оптимизации других нейронных сетей.

Предлагаемый метод

Пусть
$$\mathcal{F} = \{a_i\}_{i=1}^M$$
.

Основная идея: использовать парадигму мета-обучения.

$$\arg\min_{\theta} \ \sum_{j=1}^{N} \sum_{i=1}^{M} \mathcal{L}\Big(f\Big(\mathbf{x}_{j}; a_{i}, H_{\mathcal{D}}(a_{i}; \theta)\Big), y_{j}\Big)$$

DeepNets-1M

marker				•	•	A	•				•				
primitive	conv	BN	sum	bias	group	concat	dilated	LN	max	avg	MSA	SE	input	glob	pos
					conv		gr. conv		pool	pool				avg	enc
fraction in TRAIN (%)	36.3	25.5	11.1	6.5	5.1	3.8	2.5	2.5	1.8	1.7	1.2	1.0	0.5	0.5	0.2

ID & OOD architectures

Graph Hyper Network: GHN-1

$$\forall t \in [1,...,T]: \left[\forall \pi \in [\mathsf{fw},\mathsf{bw}]: \left(\forall v \in \pi: \mathbf{m}_v^t = \sum_{u \in \mathcal{N}_v^\pi} \mathsf{MLP}(\mathbf{h}_u^t), \ \mathbf{h}_v^t = \mathsf{GRU}(\mathbf{h}_v^t, \mathbf{m}_v^t) \right) \right]$$

GHN-2: Normalization

Table 2: Parameter normalizations.

Type of node v	Normalization					
Conv./fully-conn. Norm. weights Biases	$\hat{\mathbf{w}}_p^v \sqrt{eta/(C_{in}\mathcal{H}\mathcal{W})} \ 2 imes ext{sigmoid}(\hat{\mathbf{w}}_p^v/T) \ anh(\hat{\mathbf{w}}_p^v/T)$					

GHN-2: Virtual edges

$$\mathbf{m}_v^t = \sum_{u \in \mathcal{N}_v^\pi} ext{MLP}(\mathbf{h}_u^t) + \sum_{u \in \mathcal{N}_v^{(ext{sp})}} rac{1}{s_{vu}} ext{MLP}_{ ext{sp}}(\mathbf{h}_u^t)$$
 $1 < s_{vu} \le s^{(ext{max})}$

Figure 2: Virtual edges (in green) allow for better capture of global context.

GHM-2: Meta-batching

Пусть b_m — количество архитектур для каждого набора изображений.

$$\nabla_{\theta} \mathcal{L} = 1/b_m \sum_{i=1}^{b_m} \nabla_{\theta} \mathcal{L}_i$$