

第三单元 层次存储器系统

第一讲 层次存储器系统 动态存储器

刘 卫 东 计算机科学与技术系

本单元内容提要

⇔第一讲 层次

层次存储器系统概述及动态存储器

♥ 第二讲

静态存储器及高速缓冲存储器

● 第三讲

高速缓冲存储器的组成与运行原理

● 第四讲

虚拟存储器的运行原理

⇔ 第五讲

磁表面存储设备的存储原理与组成

⇔ 第六讲

MIPS系统异常处理和响应

本讲概要

- 帶存储器系统功能
- ⇔存储器系统的设计目标
- ⇔需要解决的问题
- ⇔层次存储器系统
- ⇔动态存储器的组成与原理

计算机硬件系统

存储器地位和作用

- **存储程序使计算机走向通用。
- ⇒计算机中用来存放程序和数据的部件,是Von Neumann结构计算机的重要组成,是计算机的中心。
- ⇔程序和数据的特点
 - ■源程序、汇编程序、机器语言程序
 - ■各种类型的数据
 - ₩共同点: 二进制数据

对存储介质的基本要求

- ₩能够有两个稳定状态来表示二进制中的"0"和"1"
- *容易识别
- ⇔两个状态能方便地进行转换
- ⇔几种常用的存储方式
 - ■磁颗粒、半导体(电平/电容)、光

早期存储器

消華大学 Tsinghua University

- ⇔水银延迟线存储器
 - **EDSAC**,1949
 - Maurice Wilkes
 - ₩1967年 Turing 奖
 - ₩存储原理
 - ◈水波

磁芯存储器

- ♥圆柱型陶瓷上涂磁粉
- ⇔手工穿线, 水手结
- ⇔消磁后重写

半导体存储器

- ⇔存储原理
 - ™MOS管寄生电容
 - 触发器
- ⇔访问机制
 - 随机访问
- ⇔分类
 - ROM, RAM
 - SRAM, DRAM

按访问方式分类

消華大学 Tsinghua University

- ♥ 随机访问存储器 (RAM)
 - ☆访问时间与存放位置无关
 - 半导体存储器
- ♥顺序访问存储器 (SAM)
 - 按照存储位置依次访问
 - ₩磁带存储器
- ●直接访问存储器 (DAM)
 - ₩随机+顺序
 - 磁盘存储器
- ♥ 关联访问存储器 (CAM)
 - ₩ 根据内容访问
 - Cache和TLB

存储器系统设计目标

- ⇔尽可能快的存取速度
 - ☆应能基本满足CPU对数据的访问要求
- ⇔尽可能大的存储空间
 - □可以满足程序对存储空间的要求
- ♥尽可能低的单位成本(价格/位)
 - ■用户能够承受的范围内
- ⇔较高的可靠性

摩尔定律

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Date of introduction

Moore定律

- ◆1965年, Intel公司创始人之一Gordon Moore提出
- ◆ 芯片上集成的晶体管数量每18个月翻一番

计算机科学与技术系 计算机组成原理

Moore定律

年代	容量	价格	总访问时间 (新行/列)	列访问时间 (现访问行)	
		(\$/MB)	(941137 > 37	(50,031,313)	
1980	64 Kbit	1500	250 ns	150 ns	
1983	256 Kbit	500	185 ns	100 ns	
1985	1 Mbit	200	135 ns	40 ns	
1989	4 Mbit	50	110 ns	40 ns	
1992	16 Mbit	15	90 ns	30 ns	
1996	64 Mbit	10	60 ns	20 ns	
1998	128 Mbit	4	60 ns	10 ns	
2000	256 Mbit	1	55 ns	7 ns	
2004	512 Mbit	0.25	50 ns	5 ns	
2007	1 Gbit	0.05	40 ns	1.25 ns	

存储器对性能的影响

- ♥ 假定某台计算机的处理器工作在:
 - 章 主频 = 1GHz (机器周期为1 ns)
 - **©** CPI = 1.1
 - ₩ 50% 算逻指令, 30% 存取指令, 20% 转移指令
- ◆ 再假定其中10%的存取指令会发生数据缺失,需要50个 周期的延迟。
- ◆ CPI = 理想 CPI + 每条指令的平均延迟
 = 1.1 + (0.30 x 0.10 x 50)
 = 1.1 cycle + 1.5 cycle = 2.6 CPI!
- ◆也就是说,处理器58%的时间花在等待存储器给出数据上面!
- ◆ 每 1% 的指令的数据缺失将给CPI附加 0.5个周期!

存储器设计目标

- ♥目标
 - □ 大容量、高速度、低成本、高可靠性
- ◆目前现实
 - □ 大容量存储器速度慢
 - ₩ 快速存储器容量小
- ⇔如何实现我们的目标呢?
 - □ 层次存储器系统

问题

CPU clock rates ~0.33ns – 2ns (3GHz-500MHz)

Memory technology	Access time in nanosecs (ns)	Access time in cycles	\$ per GB in 2012	Capacity
SRAM (on chip)	0.5-2.5 ns	1-3 cycles	\$4k	256 KB
SRAM (off chip)	1.5-30 ns	5-15 cycles	\$4k	32 MB
DRAM	50-70 ns	150-200 cycles	\$10-\$20	8 GB
SSD (Flash)	5k-50k ns	Tens of thousands	\$0.75-\$1	512 GB
Disk	5M-20M ns	Millions	\$0.05-\$0.1	4 TB

计算机科学与技术系 计算机组成原理

层次存储器系统

- ⇔高速度
 - 静态存储器速度高
 - ₩ 设置较小容量的高速缓冲存储器
- ♥大容量
 - □ 动态存储器价格适中,速度适中
 - ■可作为主存储器
- ♥低成本
 - ■磁盘存储器价格低廉
 - 作为辅助存储器,暂存CPU访问频率不高的数据和程序
 - 作为虚拟存储器的载体

程序运行的局部性原理

程序运行时的局部性原理表现在:

在一小段时间内,最近被访问过的程序和数据很可能再次被访问

在空间上

这些被访问的程序和数据

往往集中在一小片存储区

在访问顺序上,

指令顺序执行比转移执行

的可能性大(大约 5:1)

合理地把程序和数据分配在不同存储介质中

层次之间应满足的原则

2.0

- (1). 一致性原则: 处在不同层次存储器中的同一个信息应保持相同的值。
- (2). 包含性原则: 处在内层的信息一定被包含在其外层的存储器中, 反之则不成立, 即内层存储器中的全部信息, 是其相邻外层存储器中一部分信息的复制品。

计算机科学与技术系 计算机组成原理

层次存储器系统

♥利用程序的局部性原理:

₩ 以最低廉的价格提供尽可能大的存储空间

以最快速的技术实现高速存储访问

Speed (ns): 1ns

Size (bytes): 100s

10ns

KB-MB

50-100ns MB-GB Milliseconds GB Seconds Terabytes

现代计算机存储器系统

寄存器 Register

高速缓存 Cache

主存储器 Main Memory

磁盘 Disk

磁带 Tape

光盘 Compact Disc

主存储器

辅助存储器

不同类型存储器比较

23

计算机科学与技术系 计算机组成原理

并行技术

- ⇔主存的一体多字
 - □一个读写体,每次多个字
- ♥单字多体
 - ■多个读写体, 交叉编址

●多端口存储器

主存储器的作用和连接

存储正处在运行中的程序和数据(或一部分)的部件, 通过地址 数据 控制 三类总线与 CPU、与其它部件连通

计算机科学与技术系 计算机组成原理

地址总线

地址总线用于选择主存储器的一个存储单元(字或字节),其位数决定了能够访问的存储单元的最大数目,称为最大可可的存储单元的最大数目,称为最大可寻址空间。例如,当按字节寻址时,20位的地址可以访问1MB的存储空间,32位的地址可以访问4GB的存储空间。

数据总线

2.7

数据总线用于在计算机各功能部件之间 传送数据,数据总线的位数(总线的宽 度)与总线时钟频率的乘积,与该总线 所支持的最高数据吞吐(输入/输出)能 力成正比。

控制总线

控制总线用于指明总线的工作周期类型和 本次入/出完成的时刻。总线的工作周期 可以包括主存储器读周期、主存储器写 周期、I/O设备读周期、I/O设备写周期、 即用不同的总线周期来区分要用哪个部 件(主存或I/O 设备)和操作的性质(读 或写);还有直接存储器访问(DMA) 总线周期等。

主存储器的读写过程

29

读过程:

给出地址 给出片选与读命令 保存读出内容

写过程:

给出地址 给出片选与数据 给出写命令

动态存储器的存储原理

30

◆动态存储器,是用金属氧化物半导体 (MOS)的单个MOS管来存储一个二进 制位(bit)信息的。信息被存储在MOS 管T的源极的寄生电容C_S中,例如,用C_S 中存储有电荷表示1、无电荷表示0。

计算机科学与技术系 计算机组成原理

写1: 使位线为低电平,

若 C_S 上无电荷,则 V_{DD} 向 C_S 充电; 把 1 信号写入了电容 C_S 中。

若 C_s 上有电荷,则 C_s 的电荷不变,保持原记忆的1信号不变。

写 1: 使位线为低电平, 若 C_S 上无电荷,则 V_{DD} 向 C_S 充电; 把 1 信号写入了电容 C_S 中。

若 C_S 上有电荷,则 C_S 的电荷不变,保持原有的内容 1 不变;

写 0: 使位线为高电平,若 C_S 上有电荷,则 C_S 通过 T 放电; 把 0 信号写入了电容 C_S 中。

若 C_S 上无电荷,则 C_S 无充放电动作,保持原记忆的0信号不变。

写 0: 使位线为高电平,若 C_S 上有电荷,则 C_S 通过 T 放电; 把 0 信号写入了电容 C_S 中。

若 C_S 上无电荷,则 C_S 无充放电动作,保持原记忆的0信号不变。

动态存储器的读过程

读操作: 首先使位线充电至高电平, 当字线来高电平后, T导通,

- $lackbox{0}$. 若 C_S 上无电荷,则位线上无电位变化 ,读出为 Q ;
- \mathbf{Q} . 若 $\mathbf{C}_{\mathbf{S}}$ 上有电荷, 则会放电,

并使位线电位由高变低,

接在位线上的读出放大器会感知这种变化,读出为1。

动态存储器工作特点

- ♥破坏性读出
 - ■读出时被强制清零
 - ₩ 预充电延迟
- ⇔需定期刷新
 - 算集中刷新
 - ◆停止读写,逐行刷新
 - 23分散刷新
 - ◆定时周期性刷新
- ⇔快速分页组织

动态存储器读写过程

动态存储器集 成度高,存储 容量大,为节 约管脚数,地 址分为行地址 和列地址

行地址和列地 址 片选 信号 /CS 读写信 号/WE

DRAM 写时序

消華大学 Tsinghua University

♦ DRAM 写访问开始于:

行地址

RAS L

CAS L

OE_L

WE L

- 🖪 RAS_L信号有效
- ™ 两种写方式: WE_L信号早和晚于 CAS_L信号有效

DRAM 写周期时间

Junk¹

列地址

写入数据

WE L在CAS L信号之前有效

写访问时间

WE_L 在CAS_L信号之后有效

Junk

DRAM 读时序

小结

- ♦ 程序的局部性原理:
 - 时间局部性:最近被访问过的程序和数据很可能再次被访问
 - 空间局部性: CPU很可能访问最近被访问过的地址单元附近的地址单元。
- ♦ 利用程序的局部性原理:
 - 使用尽可能大容量的廉价、低速存储器存放程序和数据。
 - ⊯使用高速存储器来满足CPU对速度的要求。
- ♦ 动态存储器DRAM
 - 电容充放电来存储数据
 - # 集成度高、容量大、能耗低、速度慢

阅读和思考

- ♥阅读
 - ₩ 教材7.1节
- ♥思考
 - ₩程序的局部性原理指什么?为什么层次存储 器系统能同时达到高性能/低成本/大容量的 指标?
- ⇔实践
 - ■继续完成大实验。