Investigation of a novel concept for carbothermic reduction of alumina

- Conventional Hall-Héroult process is one of the most energy and CO₂ intensive processes
- No alternative aluminium production process was able to prevail in industrial scale
- The most promising alternative is the carbothermic reduction of alumina in an EAF, which is characterized by high flexibility and power density as well as providing the required process temperatures
- A thermodynamic calculation indicates that the aluminium comproportionation reaction is preventing the complete alumina reduction in the liquid phase and leading to vapour losses $(T = 2250^{\circ}C; Al_2O_{3(1)} + 5Al_{(1)} = 3Al_2O_{(q)} + Al_{(q)})$
- \rightarrow Suppression of liquid metal formation \rightarrow Suppression of Al₂O_(g) formation \rightarrow higher alumina reduction yields → processing above 2500 °C → decreasing oxygen content of the system

Al generation over the gaseous phase under protective gas

condenser

using CFD

New water cooled copper

Design and calculation of the

optimal parameter and conditions

Very fast cooling of the gaseous

Feeding through rotary valve and hollow electrode

General Data:

- Power supply 25 kW
- Ar is used as protective gas
- Alumina + Carbon were pelletized in stoichiometric ratio (Al₂O₃ + 3C)
- Feeding speed was optimized
- Average duration of an experiment: 40 min preheating, 30 min experiment

- Optimization of the flow conditions of the gases at the interior of the EAF
 - 4 different gas inlets
 - Gas flow can be adjusted with the graphite base for rapid and homogeneous transition of the gaseous components to the condenser

- A special graphite felt for thermal isolation
 - Low thermal conductivity
 - High temperature resistance
 - High strength of shape
- Conical crucible design
 - Focusing to feed the initial material close to the arc

Condensed Aluminium

Progress in metal content

5 wt.-% Al

15 wt.-% AI

40 wt.-% AI

60 wt.-% AI

SEM Analysis

- Fast and clean physical vapour deposition
- Successive optimization of the specific parts led to increasing AI contents in the condensed material

>90 wt.-% Al

Successful generation of Al in a 25 kW lab-scale EAF ✓

processing and optimization steps: high amount of Al, no corundum, no graphite, no cubic Al₂O₃, minimal amounts of Al₂OC and

After realization of the aforementioned

Al₄C₃, traces of Al₄O₄C

Dipl.-Ing. Christoph Kemper **IME Process Metallurgy and Metal Recycling**

52056 Aachen, Germany ckemper@ime-aachen.de www.ime-aachen.de

RWHAACHEN

RWTH Aachen University

INVERSITY