Komplex számok (megoldás)

(1a.)
$$-2j$$
 (1b.) $2+j$ (1c.) $-2+2j$ (1d.) $-\frac{2}{5}$ (1e.) $\frac{1+3j}{2}$ (1f.) 1

(2a.)
$$2^8 e^{j\frac{2\pi}{3}}$$
 (2b.) $\sqrt{2}^7 \left(\cos\frac{5\pi}{4} + j\sin\frac{5\pi}{4}\right) = -2^3 \left(1 + j\right)$ (2c.) 2^5 (2d.) $\sqrt{2}e^{j\left(\frac{\pi}{3} + k\pi\right)}$ ahol $k = 0, 1$

(2e.)
$$2e^{j\left(\frac{\pi}{4}+k\pi\right)}$$
 ahol $k=0,1$ (2f.) $e^{j\left(\frac{\pi}{4}+k\frac{\pi}{2}\right)}$ ahol $k=0,1,2,3$ (2g.) $\sqrt{2}e^{jk\frac{\pi}{3}}$ ahol $k=0,1,2,3,4,5$

(2h.)
$$\sqrt[5]{2}e^{j\left(\frac{\pi}{6}+k\frac{2\pi}{5}\right)}$$
 ahol $k = 0,1,2,3,4$

(3.)
$$z_0 = 1 - j$$
; $z_1 = 1 + j$; $z_2 = -1 + j$; $z_3 = -1 - j$

(4.)
$$z_1' = z_1 - z_0 = -j$$
; $z_2' = z_1' \cdot e^{j\frac{\pi}{3}}$; ...; $z_6' = z_1' \cdot e^{j\frac{5\pi}{3}}$

(5.) Igazolása a $\sqrt{2} \cdot \sqrt{x^2 + y^2} \ge |x| + |y|$ egyenlőtlenségnek.

(6a.)
$$z = 0 \lor z = \sqrt[4]{-16} = 2e^{j\left(\frac{\pi}{4} + k\frac{\pi}{2}\right)}$$
 ahol $k = 0, 1, 2, 3$

(6b.)
$$z_1 = 3(1+j)$$
; $z_2 = 1+3j$

(6c.)
$$z = 0 \lor z = \sqrt[4]{j} = e^{j\left(\frac{\pi}{8} + k\frac{\pi}{2}\right)}$$
 ahol $k = 0, 1, 2, 3$

(6d.)
$$z = x \lor z = iy$$

(7.)
$$e^{jx} = \cos x + j\sin x \Rightarrow e^{j6x} = \cos 6x + j\sin 6x = (\cos x + j\sin x)^6$$

Alkalmazva a binomiális tételt, a valós szám $\cos 6x$ és a képzetes szám $\sin 6x$.

(7a.)
$$\cos 6x = -\sin^6 x + 15\cos^2 x \sin^4 x - 15\cos^4 x \sin^2 x + \cos^6 x$$

(7b.)
$$\sin 6x = 6\cos x \sin^5 x - 20\cos^3 x \sin^3 x + 6\cos^5 x \sin x$$