

Álgebra Linear LISTA 1 MATRIZES 3ALGAM

- · Matrizes: definição
- · Tipos de Matriz
- · Igualdade de Matrizes
- · Operações com Matrizes
- · Matriz Inversa

Professor Cláudio Bispo

- **1.** Escreva a matriz $A = [a_{ij}]$ do tipo 3×4 sabendo que $a_{ij} = 2i 3j$.
- **2.** Escreva a matriz $A = [a_{ij}]$ do tipo 3×4 sabendo que $a_{ij} = \left\{ \begin{array}{ll} 2i 3j, & \text{se} & i = j \\ 3i 2j, & \text{se} & i \neq j \end{array} \right.$
- **3.** Determine a matriz $A=[a_{ij}]$ do tipo 3×2 sabendo que o termo geral de sua transposta é dado por $a_{ij}=\frac{i^2-3j}{2}$.
- **4.** Determine a matriz diagonal de ordem 5 tal que $a_{ij} = i 3$.
- **5.** Determine a matriz quadrada de ordem 4 tal que $a_{ij} = \begin{cases} 0, & \text{se} \quad i \neq j \\ \frac{i}{j}, & \text{se} \quad i = j \end{cases}$. De que tipo é a matriz encontrada?
- **6.** Construa a matriz $A=(\alpha_{ij})_{2\times 3}$ de modo que $\alpha_{ij}=3i^2-j.$
- 7. Construa a matriz $C=(c_{ij})_{3\times 3}$ tal que $c_{ij}=$ $\left\{\begin{array}{ccc} i+j, & \text{se} & i=j\\ -i-j, & \text{se} & i\neq j \end{array}\right.$
- **8.** Calcule o valor de x para que sejam iguais as duas matrizes: $A = \begin{bmatrix} 3x^2 4x & 3x \\ 5 & 0 \end{bmatrix}$ e $B = \begin{bmatrix} -1 & 1 \\ 5 & 0 \end{bmatrix}$.
- **9.** Calcule o valor de x para que sejam iguais as duas matrizes: $A = \begin{bmatrix} 3x^2 4x & 1 \\ 5 & 0 \end{bmatrix}$ e $B = \begin{bmatrix} -1 & 1 \\ 5 & 0 \end{bmatrix}$.

- **10.** Calcule o valor de x, y e z de modo que as matrizes $A = \begin{bmatrix} 2x 3y & 1 & -\frac{1}{2} \\ 0 & 4 & 0 \end{bmatrix} e B = \begin{bmatrix} 4 & 1 & -\frac{1}{2} \\ y 2z & 4 & x + z \end{bmatrix}$ sejam iguais.
- **11.** Sejam $M = \begin{bmatrix} -\frac{1}{2} & -\frac{1}{3} \\ -\frac{1}{3} & -6 \\ -0,7 & -\sqrt{9} \end{bmatrix}$ e k $M = \begin{bmatrix} -\frac{3}{2} & -1 \\ -1 & -18 \\ -2,1 & -9 \end{bmatrix}$, calcule o valor de k.
- **12.** Determine x e y sabendo que:

a)
$$\begin{bmatrix} x^2 & -1 \\ 4 & 0 \end{bmatrix} = \begin{bmatrix} 9 & -1 \\ 2x - y & 0 \end{bmatrix}$$

b)
$$\begin{bmatrix} x+y & 2 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 4 & x-y \\ 3 & 1 \end{bmatrix}$$

c)
$$\begin{bmatrix} 0 & x+3y \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 8 \\ 2 & y^2-1 \end{bmatrix}$$

13. Sendo $A = \begin{bmatrix} 1 & 3 & 5 \\ 7 & 9 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 6 & 7 & 0 \\ -1 & -3 & -1 \end{bmatrix}$ e $C = \begin{bmatrix} 4 & 5 & 2 \\ -1 & 0 & -4 \end{bmatrix}$. Resolva as equações matrici-

ais abaixo, determinando o valor da matriz x.

- a) X + A = 2B C
- b) X C = 2A + 3B
- c) X + 2B = 3A C
- **14.** Sendo $A = \begin{bmatrix} 5 & 2 \\ 3 & 4 \end{bmatrix}$ e $B = \begin{bmatrix} 1 & 1 \\ 2 & 5 \end{bmatrix}$.
- a) Calcule AB
- b) Calcule BA
- c) Calcule A²
- d) Calcule B²

15. Determine as inversas das matrizes:

a)
$$P = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

b)
$$P = \begin{bmatrix} 2 & 3 \\ 1 & 0 \end{bmatrix}$$

c)
$$P = \begin{bmatrix} 2 & 3 \\ 1 & 5 \end{bmatrix}$$
 d) $P = \begin{bmatrix} 4 & 3 \\ 7 & 0 \end{bmatrix}$

16. Dada as matrizes $A = \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}$ e $B = \begin{bmatrix} -2 & 0 \\ 3 & 5 \end{bmatrix}$, determine a matriz X tal que $X = A^{-1} \cdot B$.

17. Se
$$A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$
, calcule $A^2 - 2A + 3I^2$.

- **18.** Se $A = \begin{bmatrix} 0 & 1 \\ 3 & 2 \end{bmatrix}$ e $B = \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix}$, verifique se $(AB)^{t} = (B^{t}) \cdot (A)^{t}$. Mostre que esta igualdade se verifica para quaisquer matrizes de ordem 2.
- **19.** Dada as matrizes: $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$ e $C = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$, teste as propriedades:

a)
$$A \cdot (B + C) = AB + AC$$

b)
$$A \cdot (BC) = (AB) \cdot C$$

GABARITO

1.
$$A = \begin{bmatrix} -1 & -4 & -7 & -10 \\ 1 & -2 & -5 & -8 \\ 3 & 0 & -3 & -6 \end{bmatrix}$$

2.
$$A = \begin{bmatrix} -1 & 1 & -3 & -5 \\ 4 & -2 & 0 & -2 \\ 7 & 5 & -3 & 1 \end{bmatrix}$$

3.
$$A = \begin{bmatrix} -1 & \frac{1}{2} \\ -\frac{5}{2} & -1 \\ -4 & -\frac{5}{2} \end{bmatrix}$$

$$\mathbf{5.} \quad \mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

6.
$$A = \begin{bmatrix} 2 & 1 & 0 \\ 11 & 10 & 9 \end{bmatrix}$$

7.
$$C = \begin{pmatrix} 2 & -3 & -4 \\ -3 & 4 & -5 \\ -4 & -5 & 6 \end{pmatrix}$$

8.
$$x = \frac{1}{2}$$

9.
$$x = \frac{1}{3}$$
 ou $x = 1$

10.
$$x = -1$$
, $y = 2$ e $z = 1$

11.
$$k = 3$$

12. a)
$$(x, y) = (3, 2)$$
 ou $(x, y) = (-3, -10)$ b) $x = 3$; $y = 1$ ou $(x, y) = (14, -2)$ ou $(x, y) = (14, -2)$

13. a)
$$X = \begin{bmatrix} 7 & 6 & 7 \\ -8 & -15 & 3 \end{bmatrix}$$
 b) $X = \begin{bmatrix} 24 & 32 & 12 \\ 10 & 9 & -9 \end{bmatrix}$ c) $X = \begin{bmatrix} -13 & -10 & 13 \\ 24 & 21 & 3 \end{bmatrix}$

14.
a)
$$AB = \begin{bmatrix} 9 & 19 \\ 11 & 23 \end{bmatrix}$$
b) $BA = \begin{bmatrix} 8 & 6 \\ 25 & 24 \end{bmatrix}$
c) $A^2 = \begin{bmatrix} 21 & 18 \\ 27 & 22 \end{bmatrix}$
d) $B^2 = \begin{bmatrix} 3 & 6 \\ 4 & 17 \end{bmatrix}$

15. a)
$$P^{-1} = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{bmatrix}$$
 b) $Q^{-1} = \begin{bmatrix} 0 & 1 \\ 1/3 & -2/3 \end{bmatrix}$ c) $R^{-1} = \begin{bmatrix} -5/13 & 3/13 \\ 1/13 & -2/13 \end{bmatrix}$ d) $S^{-1} = \begin{bmatrix} 0 & 1/7 \\ 1/3 & -4/21 \end{bmatrix}$

16.
$$X = \begin{bmatrix} -23 & -15 \\ 7 & 5 \end{bmatrix}$$