FMRI – DIFFICULTIES IN MIND READING

- fMRI: functional (nuclear) magnetic resonance imaging
- Neuroimaging: get the structure of the brain
 - Want to know how it works: connection brain parts and brain functions
 - Aim: measure the local "thinking activity"
- Usage (criticism):
 - Lie detector
 - Neural- and psychological-modell checking (think/know experiment)

How we use it

- Human attempts frequent
- Well-planned tasks or questions
- Measures: order of minutes
 - One measure: order of 5 seconds
 - Measure with and without tasks or question, further investigation based on the difference
- Overlap the intensity map and brain image

The basics of fMRI

- MRI: interaction between spins and magnetic field
- QM based phenomena
 - Classical view is almost satisfactory
- Find a "think-activity"-sensitive MRI measureable quantity, measure it, and then reflect to think activity

Get the signal - BOLD

- Blood-oxygen-level dependence
- Hemoglobin: Fe²⁺ can absorb O₂
 - Hemoglobin + O₂ : diamagnetic molecule
 - Hemoglobin O₂ : paramagnetic (S=2)
- Measure the oxygen-flow differencies in vein
- Determine the connection between BOLD singal and toughts

Get the signal – O₂ flow

 The oxygen flow depends on the communicating intenstiy

- Communication needs energy
 - Neuron cells don't have repository
 - Increased activity needs more energy
 - BOLD signal decreasing and then increasing

Time, accuracy and resolution

- Time: depends on the BOLD signal, about less than half a minute
 - Do experiments with the same patient, same time
- Accuracy: easily detect maximum of BOLD
- Space: resolution: in order of mm×mm×mm
 - Problem: the motion of the patient

Increasing space resolution

- No new information with increasing resolution
 - Signal comes from multiple capillars
- Solution: BOLD signal minimum: more localised
 - Longer time or
 - Bigger magnetic field
- No (?) news: cerebral tasks are not well localised

Temporal resolution

- Increasing time resolution does count
- (more details) usable image
- Two tricks to improve:
 - Spin echo gradient echo
 - EPI: echo planar imaging

Measurement: EOM

- $oxed{\circ}$ First: apply $\mathbf{B}_0 = (0,0,B_{z,0}) \Rightarrow \mathbf{M} = (0,0,M_0)$
- Short RF pulse: $B(t) = B_1(\sin(\omega t), \cos(\omega t), 0)$
- $\frac{dM_z}{dt} = \gamma (\mathbf{M} \times \mathbf{B})_z + \frac{M_0 M_z}{T_1}$
- $\frac{dM_i}{dt} = \gamma \left(\mathbf{M} \times \mathbf{B} \right)_i M_i / T_2 \quad i \in \{x, y\}$

Measurement: relaxation and decoherence

Solutions after "excitation":

$$M_z = M_0 \left(1 - e^{-t/T_1}
ight)$$

 $\overline{M_{_{i}}}=\overline{M_{_{0}}\cdot e^{i\gamma B_{_{0}}t-t/T_{_{2}}}}=\overline{M_{_{0}}\cdot e^{i\omega_{_{L}}t-t/T_{_{2}}}}$

- \bullet We can measure M_i
- Important: $T_1 \neq T_2$ $T_2 > T_1$
- New rotating cylindrical coordinates with frequency: $\omega_L = \gamma B_0$

Measurement: spin-echo

Measurement: spin-echo

Measurement: spin-echo

Measurement: slice-excitation

$$\begin{split} &\frac{dM_{i}}{dt}(z,t) = \\ &= \gamma \left(\mathbf{M} \times \mathbf{B}^{*}(t) \right)_{i} \cdot e^{i\gamma(B_{0} + G_{z} \cdot z)} \\ &= \gamma M_{0} B_{1}^{*}(t) e^{i\gamma B_{0} - i\gamma G_{z} \cdot zt} \\ &\frac{dM_{r}}{dt}(z,t) = \\ &= \gamma M_{0} \cdot B_{1}^{*}(t) \cdot e^{-i\gamma G_{z} \cdot z \cdot t} \end{split}$$

Measurement: slice-excitation and spin-echo

• Find $B_1^*(t)$ for the desired excitation-distribution: $B_1^*(t) = B_1 \sin(x) / x$ $x = \gamma G_z d \cdot t$

Measurement: another way, the gradient echo

Measurement: EPI

Echo Planar Imaging: increase time resolution even more!

What we get: images

An experiment: caffeine

caffeine as a contrast booster

Limits

- We cannot answer any why question only answer the question where
- The brain is 3D the image is 2D, so more experiments needed
- We can measure only the neurons firing, but not the real actyvity (block or stimulate?)
- High degree of cerebral plasticity: places may vary

Mind reading

- The map of optic nerves to vissual cortex is so "localised", "continous"
- Training set: known videos and those fMRI signal
- Unknown video: fMRI signal → video images
- Ability to guess what patient think
- Numerical problem
- Further aim: movement of implants
- Success: camera-eye

