Questi criteri si applicano per determinare la convergenza o divergenza di $\int_I f(x), dx$ quando f è continua sull'intervallo I, che può essere limitato con una singolarità o illimitato. Spesso è richiesto che f(x) sia **positiva** sull'intervallo critico per l'applicazione dei criteri di confronto puntuale e asintotico.

1. Criterio del Confronto Puntuale

- Condizioni: $f, g: I \to \mathbb{R}$ continue e positive sull'intervallo I.
- **Regola:** Se $0 \le f(x) \le g(x)$ per ogni x in I (o vicino al punto critico):
 - Se $\int_I g(x), dx$ converge $\implies \int_I f(x), dx$ converge.
 - Se $\int_I f(x), dx$ diverge $\Longrightarrow \int_I g(x), dx$ diverge.

2. Criterio del Confronto Asintotico

- Condizioni: $f,g:I\to\mathbb{R}$ continue e positive vicino al punto critico (singolarità o infinito). Sia c il punto critico.
- **Regola:** Si calcola il limite $\lim_{x\to c} \frac{f(x)}{g(x)} = l$, dove c è il punto critico e $0 \le l \le +\infty$.
 - Se $0 < l < +\infty$ (limite finito e non nullo):
 - $\int_I f(x), dx$ e $\int_I g(x), dx$ hanno lo **stesso carattere** (entrambi convergono o entrambi divergono).
 - Se l = 0:
 - Se $\int_I g(x), dx$ converge $\implies \int_I f(x), dx$ converge.
 - Se $l = +\infty$:
 - Se $\int_I g(x), dx$ diverge $\implies \int_I f(x), dx$ diverge.
- Corollari del Confronto Asintotico (con integrali campione):
 - Singolarità in un estremo (es. in b su [a,b)): $f:[a,b)\to\mathbb{R}$ continua e positiva. Punto critico b. Si confronta con $g(x)=\frac{1}{(b-x)^{\alpha}}$. Si calcola $\lim_{x\to b^-}(b-x)^{\alpha}f(x)=l$.
 - $0 < l < +\infty$:
 - $\int_a^b f(x), dx$ converge se e solo se $\alpha < 1$, diverge se e solo se $\alpha \ge 1$. (f è un "infinito di ordine α " per $x \to b^-$).
 - l = 0
 - $\int_a^b f(x), dx$ converge se lpha < 1.
 - $l = +\infty$:
 - $\int_a^b f(x), dx$ diverge se $\alpha \geq 1$. (Integrale campione $\int_a^b \frac{1}{(x-a)^{\alpha}} dx$ converge per $\alpha < 1$, diverge per $\alpha \geq 1$).
 - Intervallo illimitato (es. $[a, +\infty)$): $f: [a, +\infty) \to \mathbb{R}$ continua e positiva. Punto critico $+\infty$. Si confronta con $g(x) = \frac{1}{x^{\alpha}}$. Si calcola $\lim_{x \to +\infty} x^{\alpha} f(x) = l$.
 - $0 < l < +\infty$:
 - $\int_a^{+\infty} f(x), dx$ converge se e solo se $\alpha > 1$, diverge se e solo se $\alpha \le 1$. (f è un "infinitesimo di ordine α " per $x \to +\infty$).
 - l = 0:
 - $\int_a^{+\infty} f(x), dx$ converge se $\alpha > 1$.
 - $l = +\infty$:
 - $\int_a^{+\infty} f(x), dx$ diverge se $\alpha \leq 1$. (Integrale campione $\int_1^{+\infty} \frac{1}{x^{\alpha}} dx$ converge per $\alpha > 1$, diverge per $\alpha \leq 1$).

3. Criterio della Convergenza Assoluta

- Condizioni: $f:I \to \mathbb{R}$ continua sull'intervallo I. Non richiede f positiva.
- Regola:
 - Se $\int_I |f(x)|, dx$ converge, allora $\int_I f(x), dx$ converge.
 - Se $\int_{I} |f(x)| dx$ diverge, **non si può concludere nulla** sull'integrale originale con questo criterio.

Questi criteri, in particolare quelli di confronto, sono fondamentali perché permettono di stabilire il carattere (convergenza/divergenza) di un integrale generalizzato confrontandolo con altri integrali di cui il carattere è noto, senza necessariamente dover calcolare esplicitamente l'integrale stesso. Il criterio della convergenza assoluta è utile quando la funzione integranda non ha segno costante.