Lecture 15

▶ Continuous-time Fourier Transform

► Transforms of Some Useful Functions

Continuous-time Fourier Transform

From Fourier Series to Fourier Transform

Objective: To have Fourier representation of continuous-time aperiodic signals.

An aperiodic signal can be viewed as a periodic signal with an infinite period. Let x(t) be a non-periodic signal of finite duration; that is,

$$x(t) = 0 \quad \text{ for } |t_1| \ge T_1.$$

Let x_T be a periodic signal formed by repeating x(t) with fundamental period T. We have

$$\lim_{T \to \infty} x_T(t) = x(t)$$

EE322M IIT Guwahati Kuntal Deka

The complex exponential Fourier series of $x_T(t)$ is given by

$$x_T(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$
 $\omega_0 = \frac{2\pi}{T}$

where,

Thus we have,

EE322M IIT Guwahati

Let us define $X(j\omega)$ as

From (1) and (2), it can be seen that

 $a_k = \frac{1}{T} \int_{-T}^{T/2} x_T(t) e^{-jk\omega_0 t} dt = \frac{1}{T} \int_{-T}^{T/2} x(t) e^{-jk\omega_0 t} dt = \frac{1}{T} \int_{-T}^{\infty} x(t) e^{-jk\omega_0 t} dt.$

 $X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt.$

 $a_k = \frac{1}{T} X \left(jk\omega_0 \right).$

 $x_T(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{\infty} \frac{1}{T} X(jk\omega_0) e^{jk\omega_0 t} = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} X(jk\omega_0) e^{jk\omega_0 t} \omega_0.$

Kuntal Deka

(1)

(2)

As $T \to \infty$, $\omega_0 = 2\pi/T$ becomes infinitesimal $(\omega_0 \to 0)$. Thus, let $\omega_0 = \triangle \omega$. Then we have

$$x(t) = \lim_{T \to \infty} x_T(t) = \lim_{\Delta \omega \to 0} \frac{1}{2\pi} \sum_{k = -\infty}^{\infty} X(jk\Delta\omega) e^{jk\Delta\omega t} \Delta\omega$$

$$X(j\omega) e^{jk\Delta\omega} \Delta\omega$$
Area= $X(jk\Delta\omega_0) e^{jk\Delta\omega_0 t} \Delta\omega$

As $\Delta\omega \rightarrow 0$, x(t) can be written as

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

0

which is the Fourier representation of a nonperiodic signal x(t)

Fourier transform pair
$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j\omega)$$

$$x(t) = \frac{1}{2\pi} \int\limits_{-\infty}^{\infty} X\left(j\omega\right) e^{j\omega t} d\omega \qquad \qquad \mathcal{F}[x(t)] = X\left(j\omega\right) = \int\limits_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

 $k\Delta\omega_0$

► Rectangular Function

The Fourier transform of the rectangular function is given by:

$$X\left(j\omega\right) = \int\limits_{-\infty}^{\infty} \mathrm{rect}\left(\frac{t}{\tau}\right) e^{-j\omega t} dt = \int\limits_{-\tau/2}^{\tau/2} e^{-j\omega t} dt = \frac{e^{j\omega\tau/2} - e^{-j\omega\tau/2}}{j\omega} = \tau \frac{\sin\left(\frac{\omega\tau}{2}\right)}{\left(\frac{\omega\tau}{2}\right)}$$
$$= \tau \mathrm{sinc}\left(\frac{\omega\tau}{2}\right)$$
$$= \tau \mathrm{sinc}\left(\frac{\omega\tau}{2}\right)$$

► Dirac Delta Function:

Inverse Fourier Transform of the Dirac Delta Function:

$$\mathcal{F}^{-1}\left[\delta\left(\omega\right)\right] = \frac{1}{2\pi} \int_{-\infty}^{\infty} \delta\left(\omega\right) e^{j\omega t} d\omega = \frac{1}{2\pi}$$

Inverse Fourier Transform of a Shifted Dirac Delta Function

$$\mathcal{F}^{-1}\left[\delta\left(\omega - \omega_{0}\right)\right] = \frac{1}{2\pi} \int_{-\infty}^{\infty} \delta\left(\omega - \omega_{0}\right) e^{j\omega t} d\omega = \frac{1}{2\pi} e^{j\omega_{0}t}$$
$$\mathcal{F}\left[e^{j\omega_{0}t}\right] = 2\pi\delta\left(\omega - \omega_{0}\right)$$

Kuntal Deka

► Sinusoid

 $=\frac{1}{2}\left[\mathcal{F}\left[e^{j\omega_0t}\right]+\mathcal{F}\left[e^{-j\omega_0t}\right]\right]=\pi\left\{\delta\left(\omega-\omega_0\right)+\delta\left(\omega+\omega_0\right)\right\}$

► Unit Step Function:

$$U(j\omega) = \mathcal{F}[u(t)] = \lim_{a \to 0} \left[\mathcal{F}\left[e^{-at}u(t)\right]\right] = \lim_{a \to 0} \left[\int_{0}^{\infty} e^{-at}e^{-j\omega t}dt \right] = \lim_{a \to 0} \left[\frac{1}{a+j\omega} \right]$$
$$= \lim_{a \to 0} \left[\frac{a-j\omega}{a^2+\omega^2} \right] = \lim_{a \to 0} \left[\frac{a}{a^2+\omega^2} \right] + \frac{1}{j\omega}$$

The function $a/(a^2 + \omega^2)$ has interesting properties: 1. The area under this function is π regardless of the value of a:

1. The area under this function is
$$\pi$$
 regardless of the value of a

$$\int_{-\infty}^{\infty} \frac{a}{a^2 + \omega^2} d\omega = \tan^{-1} \frac{\omega}{a} \Big|_{-\infty}^{\infty} = \pi$$

2. When $a \to 0$, this function approaches zero for all $\omega \neq 0$ and all its area (π) is concentrated at a single point $\omega = 0$. Clearly, as $a \to 0$, this function approaches an impulse of strength π . Thus,

$$U\left(j\omega\right) = \pi\delta\left(\omega\right) + \frac{1}{j\omega}$$

Fourier Transform of a Periodic Signal: The Fourier series of a periodic signal x(t) with period T_0 is given by

 $X(j\omega) = 2\pi \sum_{k=0}^{\infty} a_k \delta(\omega - k\omega_0)$

$$x(t)=\sum_{k=-\infty}^\infty a_k e^{jk\omega_0t} \qquad \omega_0=\frac{2\pi}{T_0}$$
 Taking the Fourier transform of both sides, we obtain

EE322M IIT Guwahati

(3)

Kuntal Deka

▶ Dirac Delta Train:

Fourier coefficients a_k for $\delta_{T_0}(t)$ are constant:

$$a_k = rac{1}{T_0} \int\limits_{T_0/2}^{T_0/2} \delta_{T_0}(t) e^{-jk\omega_0 t} dt = rac{1}{T_0}$$

Thus from (3), we have

$$\mathcal{F}\left[\delta_{T_0}(t)\right] = 2\pi \sum_{k=-\infty}^{\infty} a_k \delta\left(\omega - k\omega_0\right) = \frac{2\pi}{T_0} \sum_{\substack{k=-\infty\\ \text{Pulse train with freq}, \omega_0}}^{\infty} \delta\left(\omega - k\omega_0\right) = \omega_0 \delta_{\omega_0}\left(\omega\right)$$

Important Fourier Transform Pairs

r(t)	$X(j\omega)$	
$e^{-at}u(t)$	$\frac{1}{a+j\omega}$	<i>a</i> > 0
$e^{at}u(-t)$	$\frac{1}{a-j\omega}$	<i>a</i> > 0
_e -a t	$\frac{2a}{a^2 + \omega^2}$	<i>a</i> > 0
$te^{-at}u(t)$	$\frac{1}{(a+j\omega)^2}$	<i>a</i> > 0
$e^{-at}u(t)$	$\frac{n!}{(a+j\omega)^{n+1}}$	<i>a</i> > 0
$\delta(t)$	1	
ı	$2\pi\delta(\omega)$	
ajw()t	$2\pi\delta(\omega-\omega_0)$	
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	
$\sin \omega_0 t$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$	
u(t)	$\pi \delta(\omega) + \frac{1}{j\omega}$	