KAIST, School of Computing, Spring 2024 Algorithms for NP-hard problems (CS492)		Scribed By: Eunjung KIM Lecture #9
Le	ecture: Eunjung KIM 26 March	
C	ontents	
1	Color-coding technique: k-PATH	2
2	Random Separation: SUBGRAPH ISOMORPHISM	4
3	Derandomization	5

We consider a parameterized version of the LONGEST PATH problem. The problem k-PATH is, give a graph G and an integer k, to find a simple path on k vertices, if one exists.

k-PATH

Instance: a graph G = (V, E), a positive integer k. **Question:** Does G have a path on k vertices?

This problem is NP-complete. We give a randomized FPT-algorithm for k-PATH. The underlying idea is to transform (in a randomized way) the given graph into a graph in which detecting a k-path becomes a simpler task. It is known that on a directed acyclic graph(DAG), finding a longest (directed) path can be solved in time O(|E|) using dynamic programming. So, we shall transform G into a DAG G so that a (directed) k-path in G corresponds to a k-path in G. A K-path in K does not necessarily yield a K-path in K. The hope is that if we perform the transformation sufficiently many times, but not too many times to stay within the running time bound of FPT-algorithm, we will hit on K which contains a K-path corresponding to a K-path in K.

Let $\pi:V(G)\to [n]$ be a random permutation of V(G). A DAG \vec{G}_{π} can be defined from π : it has V(G) as the vertex set, and

(u, v) is an arc of \vec{G}_{π} if and only if $\pi(u) < \pi(v)$.

Notice that if G contains a k-path P, and π happens to order the vertices of P in an orderly manner (two possible ways), then P can be detected by a longest path algorithm on \vec{G}_{π} . If G does not contain a k-path, then no permutation π will allow \vec{G}_{π} to contain a k-path.

The probability that a random permutation π turns a k-path into a directed k-path in \vec{G} is $\frac{2}{k!}$. Therefore, the expected number of random permutations to hit a successful \vec{G} is $\frac{k!}{2}$. For each random permutation π , we test¹ whether \vec{G}_{π} contains a k-path in time O(|E|). Therefore, the expected running time of to detect k-path in G, if G contains one, is $O(k! \cdot |E|)$.

1 Color-coding technique: k-PATH

We can improve the running time of k-PATH from $O^*(k!)$ to $2^{O(k)}$ time using color coding introduced by Alon, Yuster and Zwick. Color coding is a technique to transform a problem of detecting an object in a graph into a problem of colored object in a colored graphs, which is hopefully an easier task. In color coding for the problem k-PATH, we randomly color the vertices of G with k colors and the hope is that in the colored graph, a k-path becomes colorful. We say that a path in a colored graph is colorful if all vertices have distinct colors.

One pass of our color coding algorithm consists of two steps:

- A. Color the vertices of G with $\{1,\ldots,k\}$ uniformly at random. Let $c:V(G)\to [k]$ be the coloring.
- B. Find a colorful k-path in G, if one exists. Otherwise, report that none was found.

¹The problem LONGEST PATH is in P on acyclic digraphs. First, we obtain a topological order of the vertex set of \vec{G}_{π} , then solve compute the length of a longest path to each vertex via dynamic programming over this ordering.

Step A. The probability that step A. make a k-path P colorful is

$$\frac{\text{\#of colorings in which }P\text{ becomes colorful}}{\text{\# of all possible colorings}} = \frac{k!}{k^k} \approx \frac{1}{e^k}$$

So, the expected number of runs of A. before a k-path P becomes colorful is e^k . Notice that any colorful k-path is also a k-path in G. Below, we provide an algorithm for B. running in time $O(2^k \cdot |E|)$.

Step B: Detecting a colorful k-path. Now we present an algorithm for detecting a colorful k-path given a vertex partition V_1, \ldots, V_k of V(G), where each V_i are the vertices colored in i. We aim to set the values of indicator variables P[C, u] for every color subset $C \subseteq \{1, \ldots, k\}$ and for every vertex $u \in V(G)$, so that

P[C, u] = 1 if there is a colorful path exactly consisting of colors in C and ending in u. P[C, u] = 0 otherwise.

At each *i*-th iteration over $i=1,\ldots,k$, for all $u\in V(G)$ we set the value of P[C,u] for $C\subseteq [k]$ with |C|=i using dynamic programming. At i=1, P[C,u]=1 if and only if $C=\{c(u)\}$. At i+1-th iteration, for each $u\in V(G)$ and $C\subseteq \{1,\ldots,k\}$ of size i+1, we compute P[C,u] as:

- P[C, u] := 1 if $c(u) \in C$ and there is $v \in N(u)$ such that $P[C \setminus c(u), v] = 1$.
- P[C, u] := 0 otherwise.

This recurrence computes P[C,u] correctly indeed: if there is a colorful i+1-path Q using colors in C and ending at u, then for a neighbor v which is a neighbor of u in Q, Q-u is a colorful i-path using colors in $C\setminus\{c(u)\}$. Conversely, if for some neighbor v of u there is a colorful i-path using colors in $C\setminus\{c(u)\}$, such a path can be extended to a colorful i+1-path by adding u. The new path uses colors in C and ends at u. As the base case when i=1 trivially holds, the correctness of the above recurrence follows.

After finishing k-th iteration, there is a vertex u such that $P[\{1,\ldots,k\},u]=1$ if and only if there is a colorful k-path. This dynamic programming algorithm runs in time

$$O(\sum_{i=1}^{k} {k \choose i} \cdot |E|) = O(2^k \cdot |E|).$$

Lemma 1. One can detect a colorful k-path in time $O(2^k \cdot |E|)$, if one exists.

The following lemma summarizes the above analysis of Step A. and B.

Lemma 2. One can detect a simple k-path in $O((2e)^k \cdot |E|)$ expected running time, if one exists.

Lemma 3. One can detect a simple k-path with probability at least e^{-1} in time $O((2e)^k \cdot |E|)$, if one exists.

Proof: The probability that a coloring fails to turn a k-path P colorful is at most $1 - e^{-k}$. Therefore, the probability that all e^k colorings (each, independent at random) reports no colorful k-path is at most

$$(1 - \frac{1}{e^k})^{e^k} \approx e^{-1}.$$

Together with Lemma 1, the running time follows.

2 Random Separation: SUBGRAPH ISOMORPHISM

Another useful technique for designing a randomized algorithm is a *random separation* technique. Like color-coding, it is useful to design an algorithm to detect a small-sized substructure in a graph.

We exemplify this technique with the problem SUBGRAPH ISOMORPHISM: given an input graph G and a pattern graph H on k vertices, the task is to find a copy of H in G or correctly decide that G does not have H as a subgraph. We take the parameter k+d, where d is the maximum degree of G and present a randomized algorithm that runs in time $2^{dk+O(k\log k)} \cdot n^{O(1)}$ which detect H as a subgraph in G with high probability, if exists one².

The intuition behind is to color the edges of G in blue or red so that the edges of H are 'isolate' in this coloring, and thus this isolated copy of H is easy to detect. Fix a subgraph \tilde{H} of G which is isomorphic to H. A coloring $c:V(G)\to \{\text{red}, \text{blue}\}$ is successful if the next two conditions are satisfied:

- 1. all edges of \tilde{H} is colored blue, and
- 2. all edges of $E(G) \setminus E(\tilde{H})$ incident with a vertex of $V(\tilde{H})$ is colored blue.

On how many edges does a successful coloring requests a specific color? All edges incident with a vertex of \tilde{H} are requested to be either blue or red, depending on whether it belongs to $E(\tilde{H})$ or not. As there are at most $d \cdot V(\tilde{H}) = dk$ such edges, a random coloring c is successful with probability at least 2^{-dk} .

Now assume that the current coloring c is successful. Consider the subgraph G' of G consisting of the blue edges. Let us call a connected component in G' a blue component, and let \mathcal{B} be the set of all blue components. Now we have narrow down which part of G we need to match H. To begin with, any blue component having more than k vertices has no chance of being \tilde{H} (under a successful coloring).

Let H_1,\ldots,H_p be the connected components of H (possibly p=1). We make a bipartite graph W in which one part of the vertex bipartition is $\mathcal{H}=\{H_1,\ldots,H_p\}$ and the other part is \mathcal{B} , the set of all blue components. The bipartite graph W has an edge between $H\in\mathcal{H}$ and $B\in\mathcal{B}$ if H is isomorphic to B. As the isomorphism between H and B (on at most k vertices each) can be tested in time $k!\cdot k^{O(1)}=2^{O(k\log k)}$, the construction of W can be done in time $2^{O(k\log k)}\cdot n$. It remains to observe that if H exists and the current color is successful for H, this copy must be a disjoint union of H blue components each of which is isomorphic to H_1,\ldots,H_p respectively. We can decide whether such H blue components exist by examining whether a maximum matching on H0 exists saturating all vertices in H1. The latter problem is polynomial-time solvable.

To summarize, if G contains a copy of H (say \tilde{H}), then with probability at least 2^{-dk} a random coloring is successful for \tilde{H} . Given a successful coloring, \tilde{H} can be correctly retrieved from G in time $2^{O(k\log k)} \cdot n^{O(1)}$. Let us call this procedure \mathcal{A} . The probability that no copy of H is detected after 2^{dk} repetitions of \mathcal{A} while G contains a copy of H is at most

$$(1 - 2^{-dk})^{2^{dk}} = (1 - 2^{-dk})^{(-2^{dk}) \cdot (-1)} \approx e^{-1}$$

²Mind that if you parameterize by k only, then we cannot expect to have an fpt-algorithm: when H is a clique on k vertices, it is known that deciding if G contains H as a subgraph or not is known to be W[1]-hard (you will learn this notion in the next class) parameterized by k. This means that under a widely-accepted complexity assumption that $W[1] \neq FPT$, SUBGRAPH ISOMORPHISM is unlikely to be fixed-parameter tractable with respect to k only.

³We use the fact the natural log base e equals $\lim_{x\to 0} (1+x)^{\frac{1}{x}}$.

that is, with constant probability a copy of H is detected after 2^{dk} runs of A. This constant success probability can be boosted to an arbitrarily high constant probability by repetitions.

3 Derandomization

The randomization technique of color-coding and random separation can be derandomized. For derandomizing color-coding, we use a family of functions called an (n.k)-perfect hash family. A family $\mathcal F$ of functions $f:[n]\to [k]$ is an (n.k)-perfect hash family if for every subset $S\subseteq [n]$ of size k, there exists $f\in \mathcal F$ such that f assigns pairwise distinct values to the elements of S. Note that if S is the fixed object that we want to find, then such f will make S colorful. A repetition of random colorings in color-coding technique can be replaced by an (n,k)-perfect hash family with almost negligible computational overhead, due to the following theorem.

Theorem 1 (Naor, Schulman, Srinivasan 1995). For every $n, k \ge 1$, an (n, k)-perfect hash family of size $e^{k+o(k)} \cdot \log n$ can be constructed in time $e^{k+o(k)} \cdot n \log n$.

For random separation, we use a different method. An (n,k)-universal set $\mathcal U$ is a family of subsets of [n] such that for any $S\subseteq [n]$ of size k, all possible subsets of S appear in the projection of $\mathcal U$ on S, that is, $\{S\cap A:A\in\mathcal U\}=2^S$. In our application to Subgraph Isomorphism on graphs with maximum degree at most d, S will correspond to the set of edges incident with a vertex of $V(\tilde H)$, whose size is at most 2^{dk} , and with a successful coloring we are looking for a partition of these edges into edges in $\tilde H$ and the rest. Now repeated random colorings can be replaced by trying the colorings in $\mathcal U$, interpreting a set $A\in\mathcal U$ as blue edges. This strategy works with little overhead because of the following theorem

Theorem 2 (Naor, Schulman, Srinivasan 1995). For every $n, k \ge 1$, an (n, k)-universal set of size $2^{k+o(k)} \cdot \log n$ can be constructed in time $2^{k+o(k)} \cdot n \log n$.