

Lab	Mar	26				
HW	Mar	29				

ปฏิบัติการ 10

Artificial Intelligence (Al search) (15 คะแนน)

ข้อกำหนด

การเรียกใช้ฟังก์ชันเพื่อการทดสอบ ต้องอยู่ภายใต้เงื่อนไข if __name__ == '__main__' : เพื่อความ
 สะดวกในการ import จาก Script อื่น ๆ

Hint ควรใช้ฟังก์ชัน assert() เพื่อทำการทดสอบฟังก์ชันที่เขียนกับข้อมูลทดสอบหลายๆ ชุดโดยอัตโนมัติ ตัวอย่างโปรแกรมสำหรับการสร้าง Graph

- 1. # Generate Graph
- 2. # create vertices and edges between vertices
- 3.
- 4. class Vertex:
- 5. def __init__(self,n):
- 6. self.name = n
- 7. self.neighbors = list()
- 8.
- 9. def add_neighbor(self,v):
- 10. vset = set(self.neighbors)
- 11. if v not in vset:
- 12. self.neighbors.append(v)
- 13. self.neighbors.sort()
- 14.
- 15. class Graph:
- 16. vertices = { }

```
17.
       time = 0
18.
19.
       def add_vertex(self,vertex):
20.
          if isinstance(vertex, Vertex) and vertex.name not in self.vertices:
21.
             self.vertices[vertex.name] = vertex
22.
             return True
23.
          else:
24.
             return False
25.
26.
       def add_edge(self,u,v):
27.
          if u in self.vertices and v in self.vertices:
28.
             for key, value in self.vertices.items():
                if key == u:
29.
30.
                    value.add_neighbor(v)
                if key == v:
31.
                    value.add_neighbor(u)
32.
33.
             return True
34.
          else:
35.
             return False
36.
37.
       def print_graph(self):
38.
          for key in sorted(list(self.vertices.keys())):
39.
              print(key+str(self.vertices[key].neighbors))
```

```
def main():
    g = Graph()
    a = Vertex('A')
    g.add_vertex(a)
    g.add_vertex(Vertex('B'))
    for i in range(ord('A'),ord('K')):
        g.add_vertex(Vertex(chr(i)))
    edges = ['AB','AE','BF','CD','ED','DH','FG','FI','FJ','EF']
    for edge in edges:
        g.add_edge(edge[:1],edge[1:])
        g.print_graph()
```

1) **5 คะแนน** (Lab10_1_5XXXXXXXX.py) ให้เขียนโปรแกรมเพื่อทำสร้าง graph ตามรหัส Dewey (ดิวอี้) ที่ กำหนดให้

2) **5 คะแนน** (HW10_1_5XXXXXXXX.py) ให้เขียนฟังก์ชัน bfs(graph, start) เพื่อทำการคันหาข้อมูลในกราฟโดยใช้วิธี breadth-first search แล้วแสดงผลลัพธ์ของเส้นทางการคันหาที่ได้

<u>Input</u>					Output	
1A	11B	12C	13D	111E	131F 132G 1321H	ABCDEFGH
1P	11Q	12R	1115	112T	113U 121V 122W 123X	PQRSTUVWX

3) **5 คะแนน** (HW10_2_5XXXXXXXX.py) ให้เขียนฟังก์ชัน dfs(graph, start) เพื่อทำการคันหาข้อมูลในกราฟโดยใช้วิธี depth-first search แล้วแสดงผลลัพธ์ของเส้นทางการคันหาที่ได้

<u>Input</u>	<u>Output</u>
1A 11B 12C 13D 111E 131F 132G 1321H	ABECDFGH
1P 11Q 12R 111S 112T 113U 121V 122W 123X	PQSTURVWX

การส่งงาน

- 1. ลักษณะ/ลำดับข้อความของการรับค่า/แสดงผล จะ<u>ต้องเป็นไปตามที่ระบ</u>ุในตัวอย่างการ run
- 2. ไฟล์งานที่ส่ง จะต้องมีการแทรก comment ที่ต้นไฟล์ตามข้อกำหนดใน website รายวิชา
- 3. ไฟล์งานโปรแกรมที่ส่ง จะต้องมีการแทรก pseudocode เป็น comment ในแต่ละขั้นตอน
- 4. Upload ไฟล์ source code ตามที่ระบุในแต่ละข้อ ไปยัง website ที่ใช้ส่งการบ้าน

 http://hw.cs.science.cmu.ac.th และทำตามไฟล์ขั้นตอนการเข้าใช้งานเว็บส่งการบ้าน ซึ่งมีรายละเอียดอยู่บน google classroom ของกระบวนวิชา