Практическое занятие 1 Оптимальные деревья двоичного поиска

Пусть в построении дерева участвуют n различных упорядоченных записей $k_1 < k_2 < ... < k_n$, Поставим задачу при фиксированных k_i , β_i и α_i построить двоичное дерево поиска, в котором среднее число сравнений при поиске будет минимальным. Обозначим узлы дерева, которые не хранят значений и соответствующие неудачному поиску (листья), через y_0 , y_1 , y_2 ,..., y_n . Тогда среднее число сравнений определяется следующим образом:

$$\sum_{i=1}^{n} \beta_i(yposehb(k_i)) + 1) + \sum_{i=0}^{n} \alpha_i yposehb(y_i).$$

<u>Определение 1</u>. Назовем среднее число сравнений *ценой дерева*, а дерево с минимальной ценой – *оптимальным*.

<u>Определение 2</u>. Пусть взвешенная длина пути в Т

$$\mid T \mid = \sum_{i=1}^{n} \beta_{i} \cdot yposehb(k_{i}) + \sum_{i=0}^{n} \alpha_{i} \cdot yposehb(y_{i}).$$

Таким образом, цена дерева T есть

$$\mid T \mid + \sum_{i=1}^{n} \beta_i$$

и поскольку $\sum_{i=1}^{n} \beta_i$ не зависит от структуры T, можно сосредоточить свое внимание на вели-

чине $\mid T \mid$.

Идея оптимальных деревьев была впервые развита Э.Н. Гильбертом и Э.Ф. Муром [10, 19, 40, 43], которые предложили метод их построения.

Отыщем оптимальное двоичное дерево поиска над множеством ключей с данными частотами. При данных весах узлов $\beta_i \ge 0$ $(1 \le i \le n)$ и весах листьев $\alpha_i \ge 0$, $(0 \le i \le n)$ необходимо построить двоичное дерево поиска T над упорядоченным множеством всех ключей $k_1 < k_2 < \ldots < k_n$, такое, что взвешенная длина пути дерева минимальна.

Эта задача дает яркий пример эффективности динамического программирования. Поиск оптимального дерева можно было бы осуществить перебором всех возможных деревьев из n элементов, однако их количество примерно равно $\frac{4^n}{n\sqrt{\pi n}}$. Метод динамического программирования

позволяет построить полиномиальный алгоритм, используя следующие факты:

- 1. Оптимальное двоичное дерево поиска T с весами α_0 , β_1 , α_1 , β_2 ,..., β_n , α_n имеет некоторый вес β_i в корне, левым поддеревом корня является оптимальное двоичное дерево поиска T_l с весами α_0 , β_1 , α_1 , β_2 ,..., β_{i-1} , α_{i-1} и правым поддеревом корня является оптимальное двоичное дерево поиска T_r с весами α_i , β_{i+1} , ..., β_n , α_n .
- 2. Цену дерева Tможно вычислить с помощью информации о двух поддеревьях T_l и T_r . В частности, $\mid T \mid$ можно вычислить по взвешенным длинам путей $\mid T_l \mid$ и $\mid T_r \mid$ и суммам всех их весов W_l и W_r соответственно:

$$\left| \begin{array}{c} T \end{array} \right| = \left| \begin{array}{c} T_l \end{array} \right| + \left| \begin{array}{c} T_r \end{array} \right| + W_l + W_r, \\ \\ \text{где } W_l = \sum_{j=1}^{i-1} \beta_j + \sum_{j=0}^{i-1} \alpha_j \ \text{ и} W_r = \sum_{j=i+1}^n \beta_j + \sum_{j=i}^n \alpha_j \ - \text{ суммы весов элементов, входящих в левое и} \end{array}$$

правое деревья, соответственно.

Принцип оптимальности гласит, что для того, чтобы выбрать корень оптимального дерева, нужно вычислить для каждого узла k_i с весом β_i взвешенную длину пути в предположении, что k_i является корнем T. Это требует знания оптимальных правого и левого поддеревьев k_i . Если эти вычисления проводятся по рекурсивной схеме сверху вниз, то одни и те же оптимальные деревья

будут вычисляться повторно. Следовательно, алгоритм построения оптимального дерева лучше всего организовать снизу вверх. При этом для $1 \le i \le n$ строитсяn+i-1 оптимальное дерево на i последовательных узлах (и смежных с ним листьях), используя построенные перед этим оптимальные деревья на i-1 или меньшем количестве последовательных узлов. Построение осуществляется перебором всех возможных вариантов корней. Пересчитываются взвешенные длины путей, и выбирается дерево с минимальной взвешенной длиной пути. Таким образом, каждое оптимальное поддерево на последовательных весах строится ровно один раз. Начало построения при i=1 тривиально, поскольку на одном узле существует только одно дерево. Когда процесс заканчивается при i=n, получено искомое оптимальное дерево. Поясним, почему поддеревья, содержащие не последовательно идущие узлы, не рассматриваются. Пусть поддерево содержит узлы $k_i < k_{i+1} < \ldots < k_{j-1} < k_{j+1} < \ldots < k_m$ и не содержит k_j . Тогда все элементы данного поддерева больше или меньше k_j одновременно, а это невозможно, так как $k_1 < k_2 < \ldots < k_n$.

Подробно рассмотрим работу алгоритма при построении оптимального дерева на четырех ключах A, B, C, D с весами узлов 6, 2, 8, 7, соответственно, и весами листьев, равными нулю.

Заметим, что пустые поддеревья и поддеревья, содержащие один узел, являются оптимальными.

На первом этапе строятся все оптимальные деревья, содержащие два узла. Рассматриваются попарно все подряд стоящие узлы и строятся поддеревья перебором возможных корней. Подсчитываются взвешенные длины путей, и выбирается дерево с минимальной взвешенной длиной пути для каждой пары узлов. Построение оптимальных поддеревьев на двух узлах приведено в табл. 1.1.

Узлы	Корень	Вид дерева	Взвешенная длина пути	Примечание
A D	A	(A)	2	оптимально
A,B	В	(A)	6	
D.C.	В	B	8	
В,С	С	B	2	оптимально
C,D	С	© D	7	оптимально
	D	(D)	8	

Табл. 1.1 Построение оптимальных поддеревьев на двух узлах

На втором этапе строятся оптимальные поддеревья, содержащие три узла. Рассматриваются теперь уже три подряд стоящих узла, и строятся оптимальные поддеревья перебором возможных корней и с учётом уже имеющихся оптимальных поддеревьев размерами 1 и 2, поскольку поддеревья оптимального дерева должны быть оптимальными (табл. 1.2).

Табл. 1.2 Построение оптимальных поддеревьев на трёх узлах

Узлы	Корень	Вид дерева	Взвешенная длина пути	Примечание
	A	(A) (C) (B)	12	
A,B,C	В	(A) (C)	14	
	С		10	оптимально
	В	B C D	22	
B,C,D	С	(B) (D)	9	оптимально
	D	D C B	12	

На итоговом 3 этапе в нашем примере строится искомое оптимальное дерево из 4-х узлов. Аналогично предыдущему шагу перебираются все возможные корни и используются все имеющиеся оптимальные деревья размерами 1, 2 и 3.

Табл. 1.3 Построение оптимальных поддеревьев на четырёх узлах

Узлы	Корень	Вид дерева	Взвешенная длина пути	Примечание
	A		26	
A,B,C, D	В		28	
	С		17	оптимально

Приведённый пример иллюстрирует работу алгоритма, показывая, что оптимальное дерево из 4-х элементов строится на основе построенных оптимальных поддеревьев для одного, двух и трех элементов. Хотя в этом примере имеется единственное оптимальное дерево, в общем случае единственность не имеет места.

Когда веса листьев α_i не равны нулю, удобно рассматривать верхний треугольник в $(n+1)\times(n+1)$ -матрице. Каждый элемент матрицы содержит три величины. Для $0\le i\le j\le n$ имеем

 $extbf{\emph{R}}_{ij}$ – номер корня оптимального дерева на последовательности весов $lpha_i,\ eta_{i+1},\ lpha_{i+1},\ \ldots,eta_j,\ lpha_j,$

 W_{ij} – сумма весов $\alpha_i + \beta_{i+1} + \ldots + \beta_j + \alpha_j$,

 P_{ij} — взвешенная длина пути оптимального дерева на последовательности весов α_i , β_{i+1} , α_{i+1} , ..., β_i , α_i (когда i=j, дерево состоит из одного листа и эта величина равна нулю).

Заметим, что для вычисления элемента этой матрицы с номером і, јнам нужны элементы с номерами u=i, $v\le ju$ v=j, $u\ge i$. Поэтому структура алгоритма проста. Два внешних цикла просматривают все элементы над диагональю $(n+1)\times (n+1)$ -матрицы. Присваивающее предложение

 R_{ij} – любое значение k, $i < k \le j$, минимизирующее сумму $P_{i,k-1} + P_{k,j} + W_{i,k-1} + W_{k,j}$

приводит к еще одному вложенному циклу, который в общем случае выполняется јіраз. Число операций алгоритма равно поэтому $\frac{1}{6}n^3 + O(n^2)$. Таким образом, для алгоритма построения дерева снизу вверх основанного на принципе оптимальности, требуется $O(n^3)$ операций и память размера $O(n^2)$.

Алгоритм использует немногие свойства оптимальных деревьев бинарного поиска: фактически только специальный вид выражений в правой части присваивающего предложения зависит от свойств деревьев.

1.1 Алгоритм построения оптимального дерева поиска снизу вверх при данных частотах успешного и безуспешного поиска:

```
[установить начальные данные (заполнить главную диагональ матрицы)] for i=0 to n do { R_{ii}:=i; W_{ii}:=\alpha_{i}; P_{ii}:=0; } [посетить каждую побочную диагональ, выше главной] for l=1 ton do [посетить каждый элемент на побочной диагонали] for i=0 to n-l do { j:=i+l; R_{ij}:=любое значение k, i < k \le j, минимизирующее сумму P_{i,k-1} + P_{k,j} + W_{i,k-1} + W_{k,j} W_{ij}:=W_{i,j-1} + \beta_j + \alpha_j P_{ij}:=\min_{i < k \le j} (P_{i,k-1} + P_{kj} + W_{i,k-1} + W_{kj}) }
```

Анализируя более тщательно специфические свойства оптимальных деревьев бинарного поиска, можно улучшить алгоритм так, чтобы он выполнялся за время $O(n^2)$ вместо $O(n^3)$. Ключом к такому улучшению является теорема:

Теорема. Пусть $R_{i,j-1}$ – корень оптимального дерева над α_i , $\beta_{i+1},\ldots,\beta_{j-1},\alpha_{j-1}$ и $R_{i+1,j}$ – корень оптимального дерева над $\alpha_{i+1},\beta_{i+2},\ldots,\beta_j,\alpha_j$, где i< j-1. Тогда над $\alpha_i,\beta_{i+1},\ldots,\beta_j,\alpha_j$ существует оптимальное дерево, корень которого R_{ij} удовлетворяет неравенствам

$$R_{i,j-1} \leq R_{ij} \leq R_{i+1,j}$$

Без доказательства.

Согласно этой теореме, самый внутренний цикл (по k) выполняется неj-iраз, а меньше.

Теорема позволяет уточнить предложение алгоритма так:

 $R_{i,j} :=$ любое значение $k, R_{i,j-1} \le k \le R_{i+1,j}$, минимизирующее сумму

 $P_{i,k-1} + P_{ij} + W_{i,k-1} + W_{kj}$

чтобы получить алгоритм построения оптимальных деревьев бинарного поиска с временем работы $O(n^2)$.

Задача: Построить оптимальное двоичное дерево поиска на ключах A(1), B(2), C(3), D(4) с весами узлов (успешный поиск) β_1 =5, β_2 =4, β_3 =1, β_4 =7 и листьев (безуспешный поиск) α_0 =3, α_1 =8, α_2 =2, α_3 =9, α_4 =6.

Решение: Воспользуемся алгоритмом, построим матрицу 5×5 (n+1=5)

Заполняем главную диагональ матрицы:

вную диагональ матрицы:						
	0	1	2	3	4	
0	$R_{00}=1$					
	$W_{00} = \alpha_0 = 3$					
	$P_{00}=0$					
1		$R_{11}=1$				
		$W_{11} = \alpha_1 = 8$				
		$P_{11}=0$				
2			R ₂₂ =2			
			$W_{22} = \alpha_2 = 2$			
			P ₂₂ =0			
3				R ₃₃ =3		
				$W_{33} = \alpha_3 = 9$		
				$P_{33}=0$		
4					R ₄₄ =4	
					$W_{44} = \alpha_4 = 6$ $P_{44} = 0$	
					P ₄₄ =0	

Заполняем диагонали выше главной диагонали.

l=1; i=0,1,2,3; j=i+l

Элемент M_{01} :

 $0 < k \le 1 \rightarrow k = 1$

 $R_{01}=1$; $W_{01}=W_{00}+\beta_1+\alpha_1=3+5+8=16$; $P_{01}=P_{00}+P_{11}+W_{00}+W_{11}=0+0+3+8=11$

ЭлементМ₁₂:

 $1 < k < 2 \rightarrow k = 2$

 $R_{12}=2$; $W_{12}=W_{11}+\beta_2+\alpha_2=8+4+2=14$; $P_{12}=P_{11}+P_{22}+W_{11}+W_{22}=0+0+8+2=10$

Элемент M_{23} :

 $2 < k < 3 \rightarrow k = 3$

 $R_{23}=3$; $W_{23}=W_{22}+\beta_3+\alpha_3=2+1+9=12$; $P_{23}=P_{22}+P_{33}+W_{22}+W_{33}=0+0+2+9=11$

ЭлементМ₃₄:

 $3 < k \le 4 \rightarrow k = 4$

 $R_{34}=4$; $W_{34}=W_{33}+\beta_4+\alpha_4=9+7+6=22$; $P_{34}=P_{33}+P_{44}+W_{33}+W_{44}=0+0+9+6=15$

	0	1	2	3	4
0		$R_{01}=1$			
	$W_{00} = \alpha_0 = 3$	$W_{01}=16$			
	$P_{00}=0$	$P_{01}=11$			
1		$R_{11}=1$ $W_{11}=\alpha_1=8$ $P_{11}=0$	$R_{12}=2$		
		$W_{11} = \alpha_1 = 8$	$W_{12}=14$		
		$P_{11}=0$	P ₁₂ =10		

2		$R_{22}=2$ $W_{22}=\alpha_2=2$ $P_{22}=0$	$R_{23}=3$ $W_{23}=12$ $R_{23}=11$	
3				R ₃₄ =4 W ₃₄ =22
4			P ₃₃ =0	$\begin{array}{c} P_{34}=15 \\ R_{44}=4 \\ W_{44}=\alpha_4=6 \\ P_{44}=0 \end{array}$

l=2; i=0,1,2; j=i+l

Элемент M_{02} :

 $W_{02}=W_{01}+\beta_2+\alpha_2=16+4+2=22;$

 $0 \le k \le 2 \longrightarrow k = 1$ или k = 2

Если k=1

 $P_{02}=P_{00}+P_{12}+W_{00}+W_{12}=0+10+3+14=27$

Если k=2

 $P_{02}=P_{01}+P_{22}+W_{01}+W_{22}=11+0+16+2=29$

Т.к. 27<29, то берем k=1, $R_{02}=1$

Элемент M_{13} :

 $W_{13}=W_{12}+\beta_3+\alpha_3=14+1+9=24;$

 $1 < k \le 3 \rightarrow k = 2$ или k = 3

Если k=2

 $P_{13}=P_{11}+P_{23}+W_{11}+W_{23}=0+11+8+12=31$

Если k=3

 $P_{13} = P_{12} + P_{33} + W_{12} + W_{33} = 10 + 0 + 14 + 9 = 33$

Т.к. 31<33, то берем k=2, $R_{13}=$ 2

Элемент М₂₄:

 $W_{24}=W_{23}+\beta_4+\alpha_4=12+7+6=25;$

 $2 < k \le 4 \rightarrow k = 3$ или k = 4

Если к=3

 $P_{24} = P_{22} + P_{34} + W_{22} + W_{34} = 0 + 15 + 2 + 22 = 39$

Если k=4

 $P_{24} = P_{23} + P_{44} + W_{23} + W_{44} = 11 + 0 + 12 + 6 = 29$

Т.к. 29<39, то берем k=4, R₂₄=4

	0	1	2	3	4
0	$R_{00}=0$	$R_{01}=1$	$R_{02}=1$		
	$W_{00} = \alpha_0 = 3$	$W_{01}=16$	$W_{02}=22$		
	$P_{00}=0$	$P_{01}=11$	$P_{02}=27$		
1		$R_{11}=1$	$R_{12}=2$	$R_{13}=2$	
		$W_{11} = \alpha_1 = 8$	$W_{12}=14$	$W_{13}=24$	
		$P_{11}=0$	P ₁₂ =10	$P_{13}=31$	
2			$R_{22}=2$	$R_{23}=3$	$R_{24}=4$
			$W_{22} = \alpha_2 = 2$	$W_{23}=12$	$W_{24}=25$
			$P_{22}=0$	$P_{23}=11$	P ₂₄ =29
3				R ₃₃ =3	R ₃₄ =4
				$W_{33} = \alpha_3 = 9$	$W_{34}=22$
				P ₃₃ =0	P ₃₄ =15
4					R ₄₄ =4
					$W_{44} = \alpha_4 = 6$
					P ₄₄ =0

l=3; i=0,1; j=i+l

Элемент М₀₃:

 $W_{03}=W_{02}+\beta_3+\alpha_3=22+1+9=32;$

 $0 < k < 3 \rightarrow k = 1$ или k = 2 или k = 3

Если k=1

 $P_{03}=P_{00}+P_{13}+W_{00}+W_{13}=0+31+3+24=58$

Если k=2

 $P_{03} = P_{01} + P_{23} + W_{01} + W_{23} = 11 + 11 + 16 + 12 = 50$

Если k=3

 $P_{03}=P_{02}+P_{33}+W_{02}+W_{33}=27+0+22+9=58$

Т.к. min(58,50,58)=50, то берем k=2, $R_{03}=2$

Элемент М₁₄:

 $W_{14}=W_{13}+\beta_4+\alpha_4=24+7+6=37;$

 $1 < k \le 4 \rightarrow k = 2$ или k = 3или k = 4

Если k=2

 $P_{14}\!\!=\!\!P_{11}\!\!+\!\!P_{24}\!\!+\!\!W_{11}\!\!+\!\!W_{24}\!\!=\!\!0\!\!+\!\!29\!\!+\!\!8\!\!+\!\!25\!\!=\!\!62$

Если к=3

 $P_{14} = P_{12} + P_{34} + W_{12} + W_{34} = 10 + 15 + 14 + 22 = 61$

Если k=4

 $P_{14}\!\!=\!\!P_{13}\!\!+\!\!P_{44}\!\!+\!\!W_{13}\!\!+\!\!W_{44}\!\!=\!\!31\!\!+\!\!0\!\!+\!\!24\!\!+\!\!6\!\!=\!\!61$

Т.к. min(62,61,61)=61, то берем k=4, $R_{14}=4$

l=4; i=0; j=i+l

Элемент Мо4:

 $W_{04}=W_{03}+\beta_4+\alpha_4=32+7+6=45;$

 $0 < k \le 4 \rightarrow k = 1$ или k = 2 или k = 3 или k = 4

Еслиk=1

 $P_{04}=P_{00}+P_{14}+W_{00}+W_{14}=0+61+3+37=101$

Если k=2

 $P_{04}=P_{01}+P_{24}+W_{01}+W_{24}=11+29+16+25=81$

Если k=3

 $P_{04} = P_{02} + P_{34} + W_{02} + W_{34} = 27 + 15 + 22 + 22 = 86$

Если k=4

 $P_{04} = P_{03} + P_{44} + W_{03} + W_{44} = 50 + 0 + 32 + 6 = 88$

Т.к. min(101,81,86,88)=81, то берем k=2, $R_{04}=2$

	0	1	2	3	4
0	$R_{00}=0$	$R_{01}=1$	$R_{02}=1$	$R_{03}=2$	$R_{04}=2$
	$W_{00} = \alpha_0 = 3$	$W_{01}=16$	$W_{02}=22$	$W_{03}=32$	$W_{04}=45$
	$P_{00}=0$	$P_{01}=11$	$P_{02}=27$	$P_{03}=50$	$P_{04}=81$
1		$R_{11}=1$	$R_{12}=2$	$R_{13}=2$	$R_{14}=4$
		$W_{11} = \alpha_1 = 8$	$W_{12}=14$	$W_{13}=24$	$W_{14}=37$
		$P_{11}=0$	$P_{12}=10$	$P_{13}=31$	$P_{14}=61$
2			$R_{22}=2$	$R_{23}=3$	$R_{24}=4$
			$W_{22} = \alpha_2 = 2$	$W_{23}=12$	$W_{24}=25$
			P ₂₂ =0	$P_{23}=11$	P ₂₄ =29
3				R ₃₃ =3	R ₃₄ =4
				$W_{33} = \alpha_3 = 9$	$W_{34}=22$
				$P_{33}=0$	P ₃₄ =15
4					R ₄₄ =4
					$W_{44} = \alpha_4 = 6$
					P ₄₄ =0

Используя данную матрицу,построим оптимальное дерево поиска:

Так как R_{04} =2, то корнем оптимального дерева будет вершина B(2), вставляем этот узел двоичное дерево поиска. Оптимальным левым поддеревом будет поддерево с корнем в A(1) (т.к. R_{01} =1), вставляем этот узел в двоичное дерево поиска. А оптимальным правым поддеревом будет

поддерево с корнем в D(4) (т.к. R_{34} =4), вставляем этот узел в двоичное дерево поиска. У Dправого поддерева нет, а оптимальное левое поддерево имеет корень C, вставляем этот узел в дерево. Получили оптимальное двоичное дерево поиска:

Задание: Реализовать на языке C++ алгоритм построения оптимального дерева поиска снизу вверх при данных частотах успешного и безуспешного поиска.