FUNDAMENTOS DE COMPUTADORES - Modelo A Examen - 31 de octubre de 2019

Nombre	DNI
1101110110	

- **1.** (2 puntos) Dados los números A = $(-53)_{10}$ y B = $(17)_{10}$.
 - a) Representarlos en C2 con 7 bits realizar la operación A-B y explicar el resultado.
 - b) Explicar si el resultado sería diferente si los representamos con 8 bits.
- **2.** (1,5 puntos) Obtenga una Suma de Productos simplificada (indique cada uno de los pasos realizados) equivalente a la siguiente expresión de conmutación:

$$f(a,b,c) = \overline{\overline{(\overline{b}+a)\cdot \overline{(\overline{b}+\overline{c})}}} \cdot \overline{(b\cdot \overline{a}\cdot c)}$$

Propiedad	Versión "+"	Versión "∙"
Conmutativa	A + B = B + A	$A \cdot B = B \cdot A$
Distributiva	$A + (B \cdot C) = (A + B) \cdot (A + C)$	$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$
Elemento neutro	0 + A = A	$1 \cdot A = A$
Elem. complementario	$A + \overline{A} = 1$	$A \cdot \overline{A} = 0$
Idempotencia	A + A = A	$A \cdot A = A$
Asociativa	A + (B + C) = (A + B) + C	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$
Elemento dominante	1 + A = 1	$0 \cdot A = 0$
Involución	$\overline{\overline{A}} = A$	
Absorción	$A + (A \cdot B) = A$	$A \cdot (A + B) = A$
Leyes de Morgan	$\overline{A+B} = \overline{A} \cdot \overline{B}$	$\overline{A \cdot B} = \overline{A} + \overline{B}$

- 3. (2 puntos) Un sistema combinacional tiene por entrada un número binario de 3 bits representado en complemento a 2, en el rango -3≤x≤3. La salida del sistema es también un número (z) en complemento a 2 de forma que z(x) = -2x. Determine el número de bits necesario para codificar la salida. Implemente el sistema usando el menor número de puertas.
- **4.** (2,5 puntos) Especifique como máquina de Moore un sistema secuencial con una entrada $E \in \{0, 1\}$ y una salida $z \in \{0, 1\}$, de forma que la salida toma el valor '1' si por la entrada se recibe la secuencia 011100.
 - a) Dibuje el diagrama de estados (0,5 puntos)
 - b) Haga la implementación del diagrama de estados anterior usando contadores y el menor número de puertas. (2 puntos)
- **5.** (2 puntos)
 - a) Explica qué es un registro e indica los diferentes tipos de registros que hemos estudiado.
 - b) Explica la diferencia entre máquina de Mealy y máquina de Moore.
 - c) Explica las ventajas y desventajas de la representación de enteros en Magnitud y Signo y Complemento a dos.
 - d) En sistemas combinacionales, ¿qué entendemos por suma de productos canónica?

FUNDAMENTOS DE COMPUTADORES - Modelo B Examen - 31 de octubre de 2019

Nombre	DNI

- **6.** (2 puntos) Dados los números A = $(-62)_{10}$ y B = $(9)_{10}$.
 - a) Representarlos en C2 con 7 bits realizar la operación A-B y explicar el resultado.
 - b) Explicar si el resultado sería diferente si los representamos con 8 bits.
- **7.** (1,5 puntos) Obtenga una Suma de Productos simplificada (indique cada uno de los pasos realizados) equivalente a la siguiente expresión de conmutación:

$$f(a,b,c) = \overline{(\overline{b}+a)} \cdot \overline{(\overline{b}+\overline{c})} \cdot \overline{(b \cdot \overline{a} \cdot c)}$$

Propiedad	Versión "+"	Versión "·"
Conmutativa	A + B = B + A	$A \cdot B = B \cdot A$
Distributiva	$A + (B \cdot C) = (A + B) \cdot (A + C)$	$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$
Elemento neutro	0 + A = A	$1 \cdot A = A$
Elem. complementario	$A + \overline{A} = 1$	$A \cdot \overline{A} = 0$
Idempotencia	A + A = A	$A \cdot A = A$
Asociativa	A + (B + C) = (A + B) + C	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$
Elemento dominante	1 + A = 1	$0 \cdot A = 0$
Involución	$\overline{\overline{A}} = A$	
Absorción	$A + (A \cdot B) = A$	$A \cdot (A + B) = A$
Leyes de Morgan	$\overline{A+B} = \overline{A} \cdot \overline{B}$	$\overline{A \cdot B} = \overline{A} + \overline{B}$

- 8. (2 puntos) Un sistema combinacional tiene por entrada un número binario de 3 bits representado en complemento a 2, en el rango -3≤x≤3. La salida del sistema es también un número (z) en complemento a 2 de forma que z(x) = -2x. Determine el número de bits necesario para codificar la salida. Implemente el sistema usando el menor número de puertas.
- **9.** (2,5 puntos) Especifique como máquina de Moore un sistema secuencial con una entrada $E \in \{0, 1\}$ y una salida $z \in \{0, 1\}$, de forma que la salida toma el valor '1' si por la entrada se recibe la secuencia 110011
 - a) Dibuje el diagrama de estados (0,5 puntos)
 - b) Haga la implementación del diagrama de estados anterior usando contadores y el menor número de puertas. (2 puntos)

10. (2 puntos)

- a) Explica la diferencia entre máquina de Mealy y máquina de Moore.
- b) Explica las ventajas y desventajas de la representación de enteros en Magnitud y Signo y Complemento a dos.
- c) Explica qué es un registro e indica los diferentes tipos de registros que hemos estudiado.
- d) En sistemas combinacionales, ¿qué entendemos por suma de productos canónica?