Formula Sheet EE2M11

MaybE_Tree

2022-09-07

Principal Argument	$-\pi < \operatorname{Arg}(z) \le \pi$	
Triangle Inequality	$\begin{cases} z_1 \pm z_2 \le z_1 + z_2 \\ z_1 \pm z_2 \ge z_1 - z_2 \end{cases}$	
Limits to Infinity	$\begin{cases} z_1 \pm z_2 \le z_1 + z_2 \\ z_1 \pm z_2 \ge z_1 - z_2 \end{cases}$ $\begin{cases} \lim_{z \to z_0} f(z) = \infty \iff \lim_{z \to z_0} \frac{1}{f(z)} = 0 \\ \lim_{z \to \infty} f(z) = L \iff \lim_{z \to 0} f\left(\frac{1}{z}\right) = L \end{cases}$	L must be finite, maybe??
Cauchy-Riemann	CR1 u v $x \frac{du}{dx} \underbrace{\frac{dv}{dx}}_{x} \frac{dv}{dx}$ $y \frac{du}{dy} \frac{dv}{dy}$	For $f(x,y) = u(x+y) + iv(x,y)$
Harmonic Check	$\frac{\delta^2 u}{\delta x^2} + \frac{\delta^2 u}{\delta y^2} = 0 \implies \frac{\iint\limits_D f(z)}{\operatorname{Area}(D)} = f(z_c)$	For $f(x,y) = u(x+y) + iv(x,y)$ Around a circular domain D with centerpointn z_c
Exponential Function	$e^z = e^x(\cos y + i\sin y)$	
Power Function	$z^w = e^{w \log(z)}$	
Complex Log	$\log(z) = \ln z + i\arg(z)$	$-\pi < Arg(z) < \pi$
Trig Functions	$\begin{cases} \sin z = \frac{1}{2i} (e^{iz} - e^{-iz}) \\ \cos z = \frac{1}{2} (e^{iz} + e^{-iz}) \end{cases}$	All the familiar identities apply, but range is no longer ± 1 .
Cauchy's First Formula Cauchy's Second Formula	$2\pi i f(z_0) = \int_C \frac{f(z)}{(z - z_0)}$ $\frac{2\pi i}{n!} f^n(z_0) = \int_C \frac{f(z)}{(z - z_0)^{n+1}}$ $\int_C f(z) dz = \int_a^b f(z(t)) z'(t) dt$	For $n = 0, 1, 2,$
Parama	$\int_{C} f(z)dz = \int_{a}^{b} f(z(t))z'(t)dt$	

	l .	$^{1}\!/_{\!6\pi}$			
sin	0	$\frac{1/2}{\sqrt{3}/2}$	$\sqrt{2}/2$	$\sqrt{3}/2$	1
\cos	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0
tan	0	$\sqrt{3}/3$	1	$\sqrt{3}$???