머신러닝의 기초

프로그래밍이란

입력값(X)에 대해 원하는 출력값(Y)가 나오도록 컴퓨터 명령어를 구성하는 것

프로그래밍의 두가지 방법

1. 명시적 프로그래밍

개발자가 입력조건과 프로그램 상태 조건에 따라 프로그램이 동작하는 방식을 직접 구현

2. 머신러닝 프로그래밍

프로그램이 데이터를 보고 스스로가 학습하여 동작방식을 결정하는 프로그래밍

머신러닝 프로그래밍이 적합한 문제

머신러닝이 적합한 문제 = 규칙이 모호한 문제

Q) 이미지 정보를 통해 사과를 분류하는 문제

머신러닝의 기초 : 선형회귀

<u>문제</u> 왓챠에서 제공하는 "보고싶어요" 수와 관객 수 간의 관계를 바탕으로, 영화 "옥자"의 예상 관객 수 예측하기

데이터

	보고싶어요 수(명)	총 관객 수 (만명)
마션	8759	487
킹스맨	10132	612
캡틴아메리카	12078	866
인터스텔라	16430	1030
옥자	12,008	?

머신러닝의 기초 : 선형회귀

<u>문제</u> 왓챠에서 제공하는 "보고싶어요" 수와 관객 수 간의 관계를 바탕으로, 영화 "옥자"의 예상 관객 수 예측하기

데이터

	보고싶어요 수(명)	총 관객 수 (만명)
마션	8759	487
킹스맨	10132	612
캡틴아메리카	12078	866
인터스텔라	16430	1030
옥자	12,008	?

"보고싶어요" 수와 "총 관객 " 수와의 관계를 파악

머신러닝의 기초 : 선형회귀

<u>문제</u> 왓챠에서 제공하는 "보고싶어요" 수와 관객 수 간의 관계를 바탕으로, 영화 "옥자"의 예상 관객 수 예측하기

데이터

	보고싶어요 수(명)	총 관객 수 (만명)
마션	8759	487
킹스맨	10132	612
캡틴아메리카	12078	866
인터스텔라	16430	1030
옥자	12,008	?

"보고싶어요" 수와 "총 관객 " 수와의 관계를 파악

(1) 입력값과 출력값 정의

• **입력값(X)**: "보고싶어요" 수

• **출력값(Y)** : 총 관객 수

(1) 입력값과 출력값 정의

• **입력값(X)**: "보고싶어요" 수

• **출력값(Y)** : 총 관객 수

(2) 입력값과 출력값 관계 정의

(1) 입력값과 출력값 정의

• **입력값(X)**: "보고싶어요" 수

• **출력값(Y)** : 총 관객 수

(2) 입력값과 출력값 관계 정의

보고싶어요 수와 총 관객 수 : 직선의 방정식 관계

$$Y = aX + b$$

가중치 : 우리가 찾아야할 값

가중치 조합에 따른 예측값

모델링에 따른 다양한 가능한 가중치의 조합이 존재

$$Y = aX + b$$

가중치 조합에 따른 예측값

모델링에 따른 다양한 가능한 가중치의 조합이 존재

$oldsymbol{V}$	_	$\alpha \mathbf{Y}$	+	h
I		$u\Lambda$	T	IJ

모델	예측값
파란색 예측선	700.4만명
초록색 예측선	720.64만명
빨간색 예측선	840.96만명

손실함수란 **예측값과 정답값과의 차이**를 계산하는 함수

	총 관객수	붉은색 예측	초록색 예측	파란색 예측
마션	487	537.95	460.72	451.08
킹스맨	612	606.6	570.56	615.84
캡틴아메리 카	866	703.9	726.24	849.36
인터스텔라	1030	921.5	1074.4	1371.6

손실함수란 **예측값과 정답값과의 차이**를 계산하는 함수

	총 관객수	붉은색 예측	초록색 예측	파란색 예측
마션	487	537.95	460.72	451.08
킹스맨	612	606.6	570.56	615.84
캡틴아메리 카	866	703.9	726.24	849.36
인터스텔라	1030	921.5	1074.4	1371.6

예측값과 정답값과의 차이

손실함수란 **예측값과 정답값과의 차이**를 계산하는 함수

	총 관객수	붉은색 예측	초록색 예측	파란색 예측
마션	487	537.95	460.72	451.08
킹스맨	612	606.6	570.56	615.84
캡틴아메리 카	866	703.9	726.24	849.36
인터스텔라	1030	921.5	1074.4	1371.6

예측값과 정답값과의 차이

$$Loss = \sum_{\substack{\text{모든 영화}}} (\text{예측값} - \text{정답값})^2$$

손실함수란 **예측값과 정답값과의 차이**를 계산하는 함수

	총 관객수	붉은색 예측	초록색 예측	파란색 예측
마션	487	537.95	460.72	451.08
킹스맨	612	606.6	570.56	615.84
캡틴아메리 카	866	703.9	726.24	849.36
인터스텔라	1030	921.5	1074.4	1371.6

예측값과 정답값과의 차이

붉은색 =
$$(487 - 537.95)^2 + (612 - 606.6)^2 + (866 - 703.9)^2 + (1030 - 921.5)^2$$

초록색 =
$$(487 - 460.72)^2 + (612 - 570.56)^2 + (866 - 726.24)^2 + (1030 - 1074.4)^2$$

파란색 =
$$(487 - 451.08)^2 + (612 - 615.84)^2 + (866 - 849.36)^2 + (1030 - 1371.6)^2$$

PUBLIC AI

손실함수란 **예측값과 정답값과의 차이**를 계산하는 함수

	총 관객수	붉은색 예측	초록색 예측	파란색 예측
마션	487	537.95	460.72	451.08
킹스맨	612	606.6	570.56	615.84
캡틴아메리 카	866	703.9	726.24	849.36
인터스텔라	1030	921.5	1074.4	1371.6

예측값과 정답값과의 차이

붉은색 = $(487 - 537.95)^2 + (612 - 606.6)^2 + (866 - 703.9)^2 + (1030 - 921.5)^2$

초록색 = $(487 - 460.72)^2 + (612 - 570.56)^2 + (866 - 726.24)^2 + (1030 - 1074.4)^2$

파란색 = $(487 - 451.08)^2 + (612 - 615.84)^2 + (866 - 849.36)^2 + (1030 - 1371.6)^2$

붉은색 = 10168.54

초록색 = 5978.03

파란색 = 29568.11

손실함수가 가장 적은 예측 함수가 가장 좋은 함수

손실함수란 **예측값과 정답값과의 차이**를 계산하는 함수

	총 관객수	붉은색 예측	초록색 예측	파란색 예측
마션	487	537.95	460.72	451.08
킹스맨	612	606.6	570.56	615.84
캡틴아메리 카	866	703.9	726.24	849.36
인터스텔라	1030	921.5	1074.4	1371.6

예측값과 정답값과의 차이

$$Loss = \sum_{\substack{\text{모든 영화}}} (\text{예측값} - \text{정답값})^2$$

손실함수가 가장 적은 예측 함수가 가장 좋은 함수

최적의 가중치를 찾는 방법

예측값과 정답값의 차이를 결정짓는 요인 : 가중치

$$Y = aX + b$$

최적의 가중치를 찾는 방법

예측값과 정답값의 차이를 결정짓는 요인 : 가중치

$$Y = aX + b$$

가중치의 조합 별로 손실함수를 각각 계산하자 -> Grid Search

최적의 가중치를 찾는 방법 (1): Grid Search

예측값과 정답값의 차이를 결정짓는 요인 : 가중치

Y = aX + b

가중치의 조합 별로 손실함수를 각각 계산하자

-> Grid Search

최적의 가중치를 찾는 방법 (1): Grid Search

예측값과 정답값의 차이를 결정짓는 요인 : 가중치

Y = aX + b

가중치의 조합 별로 손실함수를 각각 계산하자

-> Grid Search

가중치의 조합이 많아지면? -> 연산량이 지나치게 많아짐

모든 조합을 탐색하지 말고, **일부 조합만 탐색**해서 찾자

모든 조합을 탐색하지 말고, **일부 조합만 탐색**해서 찾자

1. 무작위로 가중치 조합 중에서 하나 선택

$$Y = aX + b$$

모든 조합을 탐색하지 말고, **일부 조합만 탐색**해서 찾자

1. 무작위로 가중치 조합 중에서 하나 선택

$$Y = aX + b$$

우리가 알 수 있는 것

1. 해당 가중치 조합의 손실함수 값

	보고싶어요 수	총 관객 수 (만명)	예측
마션	8759	487	-7069.25
킹스맨	10132	612	-8099.0
캡틴아메 리카	12078	866	-9558.5
인터스텔 라	16430	1030	-12822.5

모든 조합을 탐색하지 말고, **일부 조합만 탐색**해서 찾자

1. 무작위로 가중치 조합 중에서 하나 선택

$$Y = aX + b$$

우리가 알 수 있는 것

1. 해당 가중치 조합의 손실함수 값

$$Loss = (예측값 - 정답값)^2$$

2. 해당 가중치 조합에서의 기울기

모든 조합을 탐색하지 말고, **일부 조합만 탐색**해서 찾자

1. 무작위로 가중치 조합 중에서 하나 선택

$$Y = aX + b$$

우리가 알 수 있는 것

1. 해당 가중치 조합의 손실함수 값

$$Loss = (예측값 - 정답값)^2$$

2. 해당 가중치 조합에서의 기울기

$$\frac{\partial Loss}{\partial a} = \frac{\partial Loss}{\partial \text{예측값}} \frac{\partial \text{예측값}}{\partial a} = (\text{예측값} - \text{정답값})X$$

$$\frac{\partial Loss}{\partial b} = \frac{\partial Loss}{\partial \text{예측값}} \frac{\partial \text{예측값}}{\partial b} = (\text{예측값} - \text{정답값})$$

모든 조합을 탐색하지 말고, **일부 조합만 탐색**해서 찾자

$$\frac{\partial Loss}{\partial a} = \frac{\partial Loss}{\partial \mathbf{q}} \frac{\partial \mathbf{q} = \mathbf{q}}{\partial a} = (\mathbf{q} = \mathbf{q} = \mathbf{q} = \mathbf{q}) \mathbf{q}$$
$$\frac{\partial Loss}{\partial b} = \frac{\partial Loss}{\partial \mathbf{q}} \frac{\partial \mathbf{q} = \mathbf{q}}{\partial b} = (\mathbf{q} = \mathbf{q} = \mathbf{q} = \mathbf{q} = \mathbf{q} = \mathbf{q}$$

2. 손실함수가 줄어드는 방향으로 가중치 갱신

$$Y = aX + b$$

$$a \coloneqq a - \alpha \frac{\partial Loss}{\partial a}$$
$$b \coloneqq b - \alpha \frac{\partial Loss}{\partial b}$$

경사하강법: 손실함수가 줄어드는 방향으로 가중치 조합을 갱신하는 과정

3. 손실함수의 값이 충분히 작아질 때까지 반복

$$Y = aX + b$$

$$a \coloneqq a - \alpha \frac{\partial Loss}{\partial a}$$
$$b \coloneqq b - \alpha \frac{\partial Loss}{\partial b}$$

