

Seminario

Hidráulica

Presentaciones
Horario
Contenido
Objetivo

Instructor: Luciano Nadal

¿Qué es la Hidráulica?

"Se entiende por hidráulica a la transmisión y el control de fuerzas y movimientos mediante líquidos sometidos a presión."

HI

Excelente posicionamiento y control. Cambios en el sentido del movimiento

Grandes fuerzas con elementos pequeños

Movimientos constantes independientemente de la carga

HI

Fácil movilidad frente a grandes cargas

Buena disipación del calor y pequeñas vibraciones

Ventajas de la Hidráulica:

- Transmisión de fuerzas considerables con elementos de pequeño tamaño.
- Posicionamiento exacto (0.01 mm).
- Arranque con carga máxima.
- Movimientos independientes de las variaciones de carga.
- Conmutaciones suaves.
- Buenas características de regulación.

Desventajas de la Hidráulica:

- Sensible a los cambios de temperatura y a la contaminación.
- Peligro a las altas presiones.
- Almacenamiento limitado de la energía.
- Línea de retorno a tanque.
- Cavitación y otros fenómenos físicos.

•

н

HI

RMACION Ofesional Mata

FUERZA

VELOCIDAD

HIDRAULICA

PRESION

CAUDAL

Presión hidrostática:

Es la presión que surge en un liquido por efecto de la masa liquida y su altura

$$P = \rho \times g \times h$$

Pág.. B1

PRESION

es una **FUERZA**

Actuando sobre un **AREA**

¿PRESION?

Fuerza [N]

$$1 \text{ Pa} = 1 \text{ N/m}^2$$

1 bar =
$$100,000 \text{ N/m}^2 = 10^5 \text{ Pa}$$

 $1 \text{ bar} = 1 \text{ kgf} / \text{cm}^2$

HI

Baja Presión

Alta Presión

11

Ley de Pascal:

HI 12

Caudal Volumétrico

Ecuación de Continuidad

Tipos de Flujo:

• Flujo Laminar

•Flujo Turbulento

Circulación del Fluido Hidraulico

Laminar

Turbulento

Laminar Flow

Turbulent Flow

Re < 2300

Re > 2300

Numero de Reynolds

En mecánica de fluidos, Reynolds es un numero adimensional, que brinda información acerca de la relación entre las fuerzas internas y viscosas.

v: velocidad del fluido

d: diámetro de la tubería

9: viscosidad cinemática

$$Re = \frac{v \times d}{\vartheta}$$

Cuando el numero de Reynolds es menor que 2300, el flujo es laminar. A medida que el numero se incrementa, el flujo se torna turbulento. Mas allá de los 4000, el flujo es completamente turbulento.

Principio de Venturi

"Punto de Estancamiento"

Hidraulica estacionaria: Inyectora

Hidraulica movil:

Excavadora

Dicho fluído hidráulico sometido a un valor de presion debe cumplir las siguientes Características:

- Transmitir presión
- Lubricar
- Refrigerar
- Amortiguar vibraciones
- Proteger contra corrosión
- Eliminar partículas abrasivas
- Transmitir señales

03:45

НІ 22

Aceites Hidráulicos para Sistemas Hidráulicos

Denominacion	Caracteristicas especiales	Campos de aplicación
HL	Protección anticorrosiva y aumento de la resistencia al envejecimiento	Equipos en los que surgen considerables esfuerzos termicos o en los que es posible la corrosion por entradas de agua
HLP	Mayor resistencia al desgaste	Igual que los aceites HL y, además, para equipos en los que por su estructura o modo de operación hay mas fricciones
HV	Viscosidad menos afectatada por la temperatura	Igual que los aceites HLP; se utiliza en equipos sometidos a oscilaciones considerables de la temperatura o que trabajan en temperaturas ambientes bajas.

A las siglas se le agrega un coeficiente de viscosidad según DIN 51517

Mandos de un Sistema Hidráulico

Flujo de Energía:

Sección de accionamiento

Sección de control de la potencia

Sección de control de la alimentación

14:12

Suministro de energia

15:05

Suministro de energía: Tanque

Bombas hidrodinámicas

BOMBAS

Bombas de desplazamiento positivo

Bomba Hidrodinámica: Centrifuga

Solo empleada en circuitos de recirculación debido a que trabajan bajas presiones

Presión Nominal (Kpa)

Desplazamiento (cm³/rev)

Caudal Nominal (litros/min)

Rendimiento Volumétrico (%)

Bombas de desplazamiento positivo

- Bomba de engranajes externos
- Bomba de engranajes internos
- Bomba de paletas
- Bomba de pistones

Bomba de engranajes externos

PROFESIONAL SMATA

Bomba de engranajes internos

INLET

ні 36

INTERNAL SEAL HERE

Bomba de paletas

CEP No.8

Bomba: Curva Característica

¿Cuánto caudal me entrega una bomba?

$$Q = n.V$$

Bomba: Simbología

Desplazamiento fijo

Desplazamiento variable

Doble sentido de giro y desplazamiento fijo

Doble sentido de giro y desplazamiento variable

НІ 44

1er. Regla de Oro de La Hidráulica

Las Bombas NO GENERAN presión, solo imponen su caudal.

Esto quiere decir que las bombas solo entregan un caudal constante, independiente de la instalación.

НІ 45

	Types of design	Speed range r.p.m.	Displacement volume (cm ³)	Nominal pressure (bar)	Total efficiency
	Gear pump, internally toothed	500 - 3500	1.2 - 250	63 - 160	0.8 - 0.91
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Gear pump, externally toothed	500 - 3500	4 - 250	160 - 250	0.8 - 0.91
	Screw pump	500 - 4000	4 - 630	25 - 160	0.7 - 0.84
	Rotary vane pump	960 - 3000	5 - 160	100 - 160	0.8 - 0.93
	Axial piston pump	3000 750 - 3000 750 - 3000	100 25 - 800 25 - 800	200 160 - 250 160 - 320	0.8 - 0.92 0.82 - 0.92 0.8 - 0.92
	Radial piston pump	960 - 3000	5 - 160	160 - 320	0.90

2da. Regla de Oro de La Hidráulica

Las presiones se generan como consecuencia a la resistencia al paso que encuentra el fluido, como estrangulaciones, cargas, formas, diámetros.

Presion debido a una carga

Presion debido a un gas

Presion debido a un resorte

Presion debido a una antirretorno

Presión debido a una estrangulación

Presión debido a un tapón

15:35

54

HI

Primer circuito de trabajo – Ensayo de una Bomba

НІ 55

Válvula de estrangulación:

Control de aguja

Control por hélice

Válvula Limitadora de Presión:

42:48

3er. Regla de Oro de La Hidráulica

El fluido sometido a presión, seguirá el conducto de paso que ofrezca o presente menor resistencia.

НІ 58

VLP: Curva Característica (ideal)

НІ 59

VLP: Curva Característica

Válvulas distribuidoras

Bajo esta denominación se encuentran todas las válvulas con las que se puede comandar el arranque, la parada y el cambio de sentido del caudal de un fluido hidráulico.

Válvulas: Tipos constructivos

Comparación entre válvulas de corredera y válvulas de asie

- Características constructivas: en ambos casos el montaje y la construcción es sencilla, aunque para mas de tres vías convienen utilizar las válvulas de corredera.
- Estanqueidad: las válvulas de asiento por su característica constructiva son mas estancas que las válvulas de corredera.
- Presiones de servicio: en las válvulas de corredera se puede llegar a trabajar hasta una presión de trabajo de 350 bar, mientras que en el caso de las válvulas de asiento se pueden encontrar presiones de hasta 1000 bar-

Válvula Distribuidora: 2/2

Válvula Distribuidora: 3/2

Válvula Distribuidora: 4/2

Válvulas Distribuidoras: 4/3

Centro cerrado

Centro en Bypass

Centro abierto

Centro flotante

Centro de regeneración

26:20

Válvulas de control de caudal: Válvula de estrangulación

Control de aguja

Control por hélice

Válvulas antiretorno

Velocidad de un actuador

La velocidad de un actuador se puede calcular mediante la siguiente fórmula

Caudal es volumen / tiempo:

Volumen es area x Carrera

$$=\frac{A*c}{t}$$

Velocidad es carrera / tiempo

$$Q = A * v$$

Q = caudal (lt/min)

V = volumen del cilindro

c = carrera del cilindro

v = velocidad del piston

Como se ve en la fórmula, la velocidad del actuador depende del caudal y el área del pistón. Y la velocidad se puede ajustar cambiando el caudal que entra en el actuador.

Velocidad de un actuador

Area del Piston

Como se ve en la fórmula, el retroceso de un cilindro será más rápido.

$$\alpha = \frac{A_1}{A_2}$$

Válvulas de control de caudal: Válvula de estrangulación con antirretorno:

Perfil con muescas axiales

<u>Antirretornos</u>

Desbloqueable

40:35

Cilindros

- Simple Efecto
- Simple Efecto con resorte
- Actuador de Doble Efecto
- Actuador de Doble Vastago
- Cilindro Telescopico
- Cilindro Tandem

Simple Efecto

Simple Efecto

Simple Efecto con resorte

Doble Efecto

Doble Efecto con amortiguación

Actuador doble vástago

Cilindro Diferencial

Cilindro en Tandem

Cilindros: Simbología

Simple efecto

Doble efecto

Doble vástago

Diferencial

Válvula reguladora de caudal

En una válvula de estrangulación, el caudal NO ES CONSTANTE, y depende de la presión de salida, es decir, depende de la carga.

En una válvula REGULADORA de caudal, el caudal ajustado permanece CONSTANTE, independientemente de la carga.

Válvula reguladora de caudal

Divisor de caudal:

Circuito de aplicación:

Válvulas de estrangulación en función de la presión de 2 vías - Curva característica:

Control de velocidad

Aplicación en módulo:

Aplicación en módulo:

Circuito de Graetz:

Circuito de Graetz:

Válvula reguladora de presión de 2 vías:

Aplicación clásica y en módulo:

Válvula reguladora de presión de 3 vías:

Circuitos de control básicos:

