RAPPORT FINAL RÉSEAU DE NEURONES POUR L'INVERSION HOLOGRAPHIQUE

Prédiction des paramètres L_ecran et gap à partir de profils radiaux d'intensité

> Auteur: Oussama GUELFAA Date: 05 - 06 - 2025

Projet: Stage Inversion_anneaux

- RÉSULTATS PRINCIPAUX:
- R² global: -3.05 (Objectif non atteint)
 R² L ecran: 0.942 (Excellent)
 - R² gap: -7.04 (Problématique)
 - Architecture: 691,138 paramètres
- Données: 990 entraînement, 48 test

ANALYSE DES RÉSULTATS ET RECOMMANDATIONS

PROBLÈMES IDENTIFIÉS:

- 1. Généralisation Simulation → Expérience
 - Le modèle performe excellemment sur L ecran ($R^2 = 0.942$)
 - Échec complet pour gap $(R^2 = -7.04)$
 - Différences fondamentales entre données simulées et expérimentales
- 2. Déséquilibre des Données
 - Plage gap entraînement: [0.025 1.5] μm
 - Plage gap test: [0.025 0.517] μm
 - Sous-représentation du domaine expérimental
- 3. Complexité vs Signal
 - L ecran: Signal fort, variations importantes
 - gap: Signal faible, variations subtiles
 - Sensibilité différentielle au bruit expérimental

RECOMMANDATIONS PRIORITAIRES:

- 1. Amélioration des Données
 - ✓ Collecter plus de données expérimentales pour l'entraînement
 - ✓ Équilibrer les plages de paramètres
 - ✓ Ajouter du bruit réaliste aux simulations
 - ✓ Augmentation de données sophistiquée
- 2. Techniques Avancées
 - ✓ Domain Adaptation pour réduire l'écart sim/exp
 - ✓ Transfer Learning avec fine-tuning
 - ✓ Modèles séparés pour chaque paramètre
 - ✓ Ensemble de modèles spécialisés
- 3. Approches Alternatives
 - ✓ Modèle hiérarchique: L ecran puis gap
 - ✓ Méthodes hybrides ML + physique
 - ✓ Optimisation bayésienne des hyperparamètres
 - ✓ Adversarial training pour robustesse

CONCLUSION:

Le projet a démontré la faisabilité de l'approche ML pour l'inversion holographique, avec d'excellents résultats pour L_ecran. Le défi principal réside dans la généralisation vers les données expérimentales, particulièrement pour le paramètre gap. Les recommandations fournissent une feuille de route claire pour atteindre l'objectif $R^2 > 0.8$.

FICHIERS GÉNÉRÉS:

- models/final optimized regressor.pth
- models/final_scalers.npz
- plots/comprehensive evaluation.png
- README RESULTS.md
- Neural Network Final Report.pdf