ИІТМО

НИУ ИТМО

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ N2

По дисциплине "Теория автоматического управления"

"Модальные регуляторы и наблюдатели"

Вариант 30

Выполнил:

Александр Иванов, R3338

Преподаватели:

Перегудин А.А.

Пашенко А.В.

Санкт-Петербург, 2025

Содержание

1.	Mo	Модальный регулятор										
	1.1.	1. Управляемость собственных чисел										
	1.2.	Модальный регулятор	4									
		1.2.1. Подбор спектра модального регулятора	5									
		1.2.2. Моделирование	7									
		1.2.3. Выводы	11									
2.	блюдатель полного порядка	11										
	2.1.	Наблюдаемость собственных чисел	11									
	2.2.	Наблюдатель полного порядка	12									
		2.2.1. Подбор спектра нааблюдателя	12									
	2.3.	Моделирование	14									
	2.4.	Выводы	21									
3.	Mo	дальное управление по выходу	21									
	3.1.	Система с регулятором и наблюдателем	21									
	3.2.	Управляемость и наблюдаемость	22									
	3.3.	Регулятор	23									
	3.4.	Наблюдатель	23									
	3.5.	Моделирование	24									
	3.6.	Выводы	27									
4.	Наблюдатель пониженного порядка											
	4.1.	Наблюдатель пониженного порядка	28									
	4.2.	Моделирование	28									

4.3.	выводы	 	 	 	 34
5. Вы	вод				34

1. Модальный регулятор

Рассмотрим систему:

$$\dot{x} = Ax + Bu \tag{1}$$

где

$$A = \begin{bmatrix} 8 & 1 & 11 \\ 4 & 0 & 4 \\ -4 & -3 & -7 \end{bmatrix}, \quad B = \begin{bmatrix} -1 \\ -3 \\ 3 \end{bmatrix}$$
 (2)

1.1. Управляемость собственных чисел

Для определения управляемости собственных чисел рассмотрим вещественную Жорданову форму системы:

$$\dot{\hat{x}} = P^{-1}AP\hat{x} + P^{-1}Bu \tag{3}$$

Где P – матрица собственных векторов матрицы A, а $\hat{x} = P^{-1}x$.

$$A_{j} = \begin{bmatrix} -3 & 0 & 0 \\ 0 & 2 & -2 \\ 0 & 2 & 2 \end{bmatrix} \quad P = \begin{bmatrix} -1 & -2.12 & 0.71 \\ 0 & -1.41 & 0 \\ 1 & 1.41 & 0 \end{bmatrix} \quad B_{j} = \begin{bmatrix} 0 \\ 2.12 \\ 4.95 \end{bmatrix}$$
(4)

Таким образом, последнее собственное число $\lambda_3 = -3$ не является управляемым. Соответственно, система не является полностью управляемой. Но, так как данное собственное число располагается в левой полуплоскости, то есть является устойчивым, то система является стабилизируемой.

1.2. Модальный регулятор

Замкнем систему обратной связью с модальным регулятором u = -Kx. Тогда уравнение состояния системы примет вид:

$$\dot{x} = Ax - BKx = (A - BK)x \tag{5}$$

Моделировать данную данную систему будем с помощью среды моделирования Simulink. Схема моделирования представлена на рисунке 1.

Рис. 1: Схема моделирования системы с модальным регулятором

1.2.1. Подбор спектра модального регулятора

Рассмотрим следующие варианты спектра модального регулятора:

- 1. $\sigma_1 = \{-1, -1, -1\}$
- 2. $\sigma_2 = \{-3, -3, -3\}$
- 3. $\sigma_3 = \{-1, -10, -100\}$
- 4. $\sigma_4 = \{-3, -30, -300\}$
- 5. $\sigma_5 = \{-1, -1 \pm 3i\}$
- 6. $\sigma_6 = \{-3, -3 \pm 9i\}$

Так как одно из собственных чисел матрицы A не является управляемым, то есть ни одно входное воздействие, а значит и ни один регулятор не может управлять данным собственным числом, то спектр замкнутой системы не может не содержать данное собственное число. Следовательно, спектры σ_1 , σ_3 , σ_5 не являются допустимыми.

Для того, чтобы проверить, может ли спектр системы, замкнутой модальным

регулятором, быть равен заданному спектру σ_i , нужно проверить, подобна ли матрица A+BK матрице Γ_i с заданным спектром σ_i . Матрицу Γ_i можно называть эталонной системой.

Для упрощения задачи подбора регулятора можно $co\kappa pamum b$ систему, убрав из нее неуправляемые собственные числа. Для этого уберем строку и столбец в диагональной форме, соответствующие неуправляемому собственному числу $\lambda_1 = -3$:

$$\dot{\hat{x}}' = \begin{bmatrix} 2 & -2 \\ 2 & 2 \end{bmatrix} \hat{x}' + \begin{bmatrix} 2.12 \\ 4.95 \end{bmatrix} u \tag{6}$$

Найдем вектор управления в Жордановой форме K_j с помощью метода Аккермана (с помощью одноименной функции в Matlab) для эталонной системы Γ_i :

$$K_j = \begin{bmatrix} -1.06 & 2.47 \end{bmatrix} \tag{7}$$

Теперь вернемся к полной системе, поставив в векторе K нулевое значение для неуправляемого собственного числа:

$$K_j = \begin{bmatrix} 0 & -1.06 & 2.47 \end{bmatrix} \tag{8}$$

Вернемся к исходному базису:

$$K = K_j P^{-1} = \begin{bmatrix} 3.48 & -1 & 3.48 \end{bmatrix} \tag{9}$$

В итоге получим систему:

$$\dot{x} = Ax - BKx = (A - BK)x = \begin{bmatrix} 11.48 & 0 & 14.48 \\ 14.44 & -3 & 14.44 \\ -14.44 & 0 & -17.44 \end{bmatrix} x \tag{10}$$

Можно проверить, найдя ее собственные числа. Спектр системы: $\sigma_2 = \{-3, -3, -3\}$.

1.2.2. Моделирование

Проведем моделирование системы с модальным регулятором, спектр которого равен σ_2 и начальными условиями $x(0) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$. Результаты моделирования представлены на рисунке 2 и 3.

Рис. 2: Управление системы со спектром σ_2

Аналогично найдем регулятор для спектра σ_4 :

$$K = \begin{bmatrix} 580.28 & 275.52 & 580.28 \end{bmatrix} \tag{11}$$

$$\dot{x} = Ax - BKx = (A - BK)x = \begin{bmatrix} 588.28 & 276.52 & 591.28 \\ 1744.83 & 826.55 & 1744.83 \\ -1744.83 & -829.55 & -1747.83 \end{bmatrix} x \tag{12}$$

Спектр системы: $\sigma_4 = \{-3, -30, -300\}$. Результаты моделирования представлены на рисунках 4 и 5.

Рис. 3: Состояние системы со спектром σ_2

И для спектра σ_6 :

$$K = \begin{bmatrix} 7.69 & 1.79 & 7.69 \end{bmatrix} \tag{13}$$

$$\dot{x} = Ax - BKx = (A - BK)x = \begin{bmatrix} 15.69 & 2.79 & 18.69 \\ 27.07 & 5.38 & 27.07 \\ -27.07 & -8.38 & -30.07 \end{bmatrix} x \tag{14}$$

Спектр системы: $\sigma_6 = \{-3, -3 \pm 9i\}$. Результаты моделирования представлены на рисунках 6 и 7.

Рис. 4: Управление системы со спектром σ_4

Рис. 5: Состояние системы со спектром σ_4

Рис. 6: Управление системы со спектром σ_6

Рис. 7: Состояние системы со спектром σ_6

1.2.3. Выводы

В задании было показано, что для всех достижимых спектров эталонной системы можно найти модальный регулятор, При этом, как и ожидалось на основании анализа спектра замкнутой системы, чем больше модуль собственного числа, тем быстрее система приходит в устойчивое состояние, но при этом управление становится более интенсивным. Комплексная составляющая собственного числа вносит колебательный характер в систему.

2. Наблюдатель полного порядка

Рассмотрим систему:

$$\dot{x} = Ax
y = Cx$$
(15)

где

$$A = \begin{bmatrix} -40 & 16 & 9 & 7 \\ -64 & 25 & 14 & 12 \\ -26 & 11 & 7 & 3 \\ -48 & 18 & 14 & 8 \end{bmatrix}, \quad C = \begin{bmatrix} -3 \\ 2 \\ -2 \\ 1 \end{bmatrix}^{T}$$

$$(16)$$

2.1. Наблюдаемость собственных чисел

Для определения наблюдаемости собственных чисел рассмотрим вещественную Жорданову форму системы:

$$\dot{\hat{x}} = P^{-1}AP\hat{x}
\hat{y} = C\hat{x}$$
(17)

Где P – матрица собственных векторов матрицы A, а $\hat{x} = P^{-1}x$.

$$\begin{bmatrix} -0.00 & -2.00 & 0.00 & 0.00 \\ 2.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & -0.00 & -3.00 \\ 0.00 & 0.00 & 3.00 & 0.00 \end{bmatrix}, P = \begin{bmatrix} 1.14 & -0.05 & 1.13 & 0.14 \\ 1.74 & -0.22 & 1.84 & 0.14 \\ 0.87 & -0.11 & 0.71 & 0.00 \\ 1.41 & 0.00 & 1.41 & 0.00 \end{bmatrix}, C_j = \begin{bmatrix} -0.27 \\ -0.05 \\ 0.28 \\ -0.14 \end{bmatrix}^T$$

$$(18)$$

Таким образом, система является полностью наблюдаемой.

2.2. Наблюдатель полного порядка

Рассмотрим наблюдатель полного порядка:

$$\dot{\hat{x}} = A\hat{x} + L(\hat{y} - y)
\hat{y} = C\hat{x}$$
(19)

И схему его моделирования в среде Simulink. Схема моделирования представлена на рисунке 8.

Рис. 8: Схема моделирования системы с наблюдателем полного порядка

2.2.1. Подбор спектра нааблюдателя

Рассмотрим следующие варианты спектра наблюдателя:

1.
$$\sigma_1 = \{-1, -1, -1, -1\}$$

2.
$$\sigma_2 = \{-1, -10, -100, -100\}$$

3.
$$\sigma_3 = \{-1 \pm 2j, -1 \pm 3j\}$$

Для каждого из спектров найдем вектор L_i такой, чтобы спектр наблюдателя $\sigma(A+L_iC)=\sigma_i$. Если такой вектор существует, то существует и матрица перехода V такая, что $A+L_iC=V^{-1}\Gamma_iV$, где Γ_i — матрица с нужным спектром. Зададимся матрицей Γ_1 со спектром σ_1 :

$$\Gamma_{1} = \begin{bmatrix}
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & 0 & -1
\end{bmatrix} \quad \sigma(\Gamma_{1}) = \{-1, -1, -1, -1\} \tag{20}$$

Запишем и решим уравнение Сильвестра с помощью покета сvx:

$$\Gamma_1 V - VA = YC$$

$$Y = VL_1$$
(21)

где Y – такая матрица, чтобы пара (Γ_1,Y) была наблюдаемой. Решив, получим матрицу L:

$$L_{1} = \begin{bmatrix} -33.23 \\ -53.40 \\ -22.57 \\ -42.03 \end{bmatrix}$$
 (22)

Спектр системы $A+L_1C$ при этом оказывается $\{-1.023, -1\pm0.0023j, -0.997\}$, что практически полностью совпадает с требуемым спектром.

Те же самые вычисления проведем для спектра σ_2 :

$$L_2 = \begin{bmatrix} 161410.88 \\ 255685.22 \\ 116505.54 \\ 205662.28 \end{bmatrix}$$
 (23)

Спектр системы $A+L_2C$ при этом оказывается $\{-1, -10, -99.99, -100.0057\}$, что практически полностью совпадает с требуемым спектром.

И для спектра σ_3 :

$$L_3 = \begin{bmatrix} 11.93 \\ 16.80 \\ 7.67 \\ 13.53 \end{bmatrix} \tag{24}$$

Спектр системы $A + L_3C$ при этом оказывается полностью равен требуемому спектру σ_3 .

Таким образом, для всех трех спектров существует такая матрица L, что спектр системы A+LC совпадает с требуемым.

2.3. Моделирование

Проведем моделирование каждой из систем с наблюдателем полного порядка с начальными условиями $x(0)=\begin{bmatrix}1&1&1\end{bmatrix}^T$ для самой системы и $\hat{x}(0)=\begin{bmatrix}2&0&0&-1\end{bmatrix}^T$ для наблюдателя.

Результаты моделирования для первого спектра σ_1 представлены на рисунках 9, 10, 11 (состояния системы), и 12 (ошибка наблюдателя).

Результаты моделирования для второго спектра σ_2 представлены на рисунках 13, 14, 15 (состояния системы), и 16 (ошибка наблюдателя).

Результаты моделирования для третьего спектра σ_3 представлены на рисунках 17, 18, 19 (состояния системы), и 20 (ошибка наблюдателя).

Рис. 9: Состояние системы x_1 с наблюдателем полного порядка для спектра σ_1

Рис. 10: Состояние системы x_2 с наблюдателем полного порядка для спектра σ_1

Рис. 11: Состояние системы x_3 с наблюдателем полного порядка для спектра σ_1

Рис. 12: Ошибка наблюдателя полного порядка для спектра σ_1

Рис. 13: Состояние системы x_1 с наблюдателем полного порядка для спектра σ_2

Рис. 14: Состояние системы x_2 с наблюдателем полного порядка для спектра σ_2

Рис. 15: Состояние системы x_3 с наблюдателем полного порядка для спектра σ_2

Рис. 16: Ошибка наблюдателя полного порядка для спектра σ_2

Рис. 17: Состояние системы x_1 с наблюдателем полного порядка для спектра σ_3

Рис. 18: Состояние системы x_2 с наблюдателем полного порядка для спектра σ_3

Рис. 19: Состояние системы x_3 с наблюдателем полного порядка для спектра σ_3

Рис. 20: Ошибка наблюдателя полного порядка для спектра σ_3

2.4. Выводы

Во всех случаях коррекция наблюдателя помогла устремить ошибку к нулю. При этом, как и в прошлом задании, можно заметить закономерность. При больших значениях спектра наблюдателя ошибка устремляется к нулю быстрее, чем при малых, а при наличии комплексных собственных чисел ошибка наблюдателя приобретает колебательный характер.

3. Модальное управление по выходу

Рассмотрим систему:

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \tag{25}$$

где

$$A = \begin{bmatrix} 6 & 0 & -12 & 6 \\ 0 & 6 & -6 & 12 \\ -12 & -6 & 6 & 0 \\ 6 & 12 & 0 & 6 \end{bmatrix}, \quad B = \begin{bmatrix} 6 \\ 12 \\ 6 \\ 4 \end{bmatrix}, \quad C = \begin{bmatrix} -6 & 6 & 6 & 6 \\ 3 & 0 & 0 & 3 \end{bmatrix}, D = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$
 (26)

3.1. Система с регулятором и наблюдателем

Рассмотрим систему с регулятором и наблюдателем:

$$\hat{x} = A\hat{x} + (B + LD)u + L(C\hat{x} - y)$$

$$u = K\hat{x}$$
(27)

И составим ее схему моделирования (см. рисунок 21).

Рис. 21: Схема моделирования системы с регулятором и наблюдателем

3.2. Управляемость и наблюдаемость

Для определения управляемости и наблюдаемость собственных чисел рассмотрим вещественную Жорданову форму системы:

$$\begin{cases} \dot{\hat{x}} = P^{-1}AP\hat{x} + P^{-1}Bu \\ \hat{y} = C\hat{x} + Du \end{cases}$$
(28)

$$A_{j} = \begin{bmatrix} 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 12.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & -12.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 24.00 \end{bmatrix}, \quad P = \begin{bmatrix} 1.00 & -1.00 & -1.00 & 1.00 \\ -1.00 & 1.00 & -1.00 & 1.00 \\ 1.00 & 1.00 & -1.00 & -1.00 \\ 1.00 & 1.00 & 1.00 & 1.00 \end{bmatrix},$$

$$B_{j} = \begin{bmatrix} 1.00 \\ 4.00 \\ -5.00 \\ 4.00 \end{bmatrix}, \quad C_{j} = \begin{bmatrix} 0.00 & 24.00 & 0.00 & 0.00 \\ 6.00 & 0.00 & 0.00 & 6.00 \end{bmatrix}$$

$$(29)$$

Можно сделать вывод, что система является полностью управляемой, а а собственное число $\lambda_3 = -12$ не является наблюдаемым. Соответственно, система не является полностью наблюдаемой, но, так как собственное число λ_3 располагается в левой полуплоскости, то система является обнаруживаемой.

3.3. Регулятор

Выберем спектр регулятора равным $\{-4, -1, -2, -3\}$. Данный спектр является достижимым, так как не содержит неуправляемых собственные чисел.

Аналогично первому заданию выберем матрицу K таким образом, чтобы спектр матрицы A-BK совпадал со спектром регулятора.

$$K = \begin{bmatrix} -3.72 & -2.13 & 3.79 & -2.21 \end{bmatrix} \tag{30}$$

При этом, как и ожидалось, спектр матрицы A-BK полностью совпадает с желаемым спектром регулятора.

3.4. Наблюдатель

Выберем спектр наблюдателя равным $\{-1,-2,-3,-12\}$. Данный спектр является достижимым, так как содержит не наблюдаемое собственное число $\lambda_3=-12$.

Аналогично второму заданию выберем матрицу L таким образом, чтобы спектр матрицы

A-LC совпадал со спектром наблюдателя.

$$L = \begin{bmatrix} -11.24 & -11.24 \\ -9.65 & -9.65 \\ 10.66 & 10.66 \\ -9.08 & -9.08 \end{bmatrix}$$

$$(31)$$

При этом спектр матрицы A-LC полностью совпадает с желаемым спектром наблюдателя.

3.5. Моделирование

Промоделируем систему с регулятором и наблюдателем с начальными условиями $x(0) = [1,1,1,1]^T$ и $\hat{x}(0) = [0,0,0,0]^T$. Результаты моделирования представлены на рисунках 22 (состояние системы) и 23 (оценка состояния системы) и 24 (управляющее воздействие). График ошибки оценки состояния представлен на рисунке 25.

Рис. 22: Состояние системы

Рис. 23: Оценка состояния системы

Рис. 24: Управляющее воздействие

Рис. 25: Ошибка оценки состояния

3.6. Выводы

В результате моделирования системы с регулятором и наблюдателем можно сделать вывод, что регулятор, основанный на оценке состояния системы, позволяет управлять системой так же, как и регулятор, основанный на реальном состоянии системы. При этом, ошибка оценки состояния системы быстро сходится к нулю.

4. Наблюдатель пониженного порядка

Рассмотрим систему:

$$\dot{x} = Ax + Bu$$

$$y = Cx + Du$$
(32)

где

$$A = \begin{bmatrix} 6 & 0 & -12 & 6 \\ 0 & 6 & -6 & 12 \\ -12 & -6 & 6 & 0 \\ 6 & 12 & 0 & 6 \end{bmatrix}, \quad B = \begin{bmatrix} 6 \\ 12 \\ 6 \\ 4 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, D = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$
(33)

В вещественной Жордановой форме имеем матрицы:

$$A_{j} = \begin{bmatrix} 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 12.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & -12.00 & 0.00 \\ 0.00 & 0.00 & 0.00 & 24.00 \end{bmatrix}, \quad P = \begin{bmatrix} 1.00 & -1.00 & -1.00 & 1.00 \\ -1.00 & 1.00 & -1.00 & 1.00 \\ 1.00 & 1.00 & -1.00 & -1.00 \\ 1.00 & 1.00 & 1.00 & 1.00 \end{bmatrix},$$

$$B_{j} = \begin{bmatrix} 1.00 \\ 4.00 \\ -5.00 \\ 4.00 \end{bmatrix}, \quad C_{j} = \begin{bmatrix} 1.00 & 1.00 & -1.00 & -1.00 \\ 1.00 & 1.00 & 1.00 & 1.00 \end{bmatrix}$$

$$(34)$$

Можно сделать вывод, что система является полностью управляемой и полностью наблюдаемой.

4.1. Наблюдатель пониженного порядка

Рассмотрим наблюдатель пониженного порядка:

$$\dot{\hat{z}} = \Gamma \hat{z} - Yy + (QB + YD)u$$

$$\dot{x} = \begin{bmatrix} C \\ Q \end{bmatrix}^{-1} \times \begin{bmatrix} y - Du \\ \hat{z} \end{bmatrix}$$
(35)

В качестве регулятора $u=K\hat{x}$ будем использовать регулятор, полученный в предыдущем задании:

$$K = \begin{bmatrix} -3.72 & -2.13 & 3.79 & -2.21 \end{bmatrix} \tag{36}$$

Зададим желаемый спектр наблюдателя пониженного порядка $\{-1,-2\}$.

Тогда матрица Q находится из решения уравнения Сильвестра:

$$\Gamma Q - QA = YC \tag{37}$$

где Г – матрица с желаемыми собственными числами.

Получаем матрицу Q:

$$Q = \begin{bmatrix} -0.46 & 0.46 & -0.54 & -0.54 \\ -0.21 & 0.21 & -0.29 & -0.29 \end{bmatrix}$$
(38)

4.2. Моделирование

Схема моделирования представлена на рисунке 26.

Проведем моделирование системы с начальными условиями $x(0) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ и $\hat{z}(0) = \begin{bmatrix} 0 & 0 \end{bmatrix}^T$.

Результаты моделирования представлены на рисунках 27, 28, 29, 30 (состояния системы), 31 (ошибка наблюдателя), рис. 32 (управляющее воздействие) и рис. 33 (вектор состояния наблюдателя \hat{z}).

Рис. 26: Схема моделирования наблюдателя пониженного порядка

Рис. 27: Состояние системы x_1 с наблюдателем пониженного порядка

Рис. 28: Состояние системы x_2 с наблюдателем пониженного порядка

Рис. 29: Состояние системы x_3 с наблюдателем пониженного порядка

Рис. 30: Состояние системы x_4 с наблюдателем пониженного порядка

Рис. 31: Ошибка наблюдателя пониженного порядка

Рис. 32: Управляющее воздействие

Рис. 33: Вектор \hat{z}

4.3. Выводы

Видно, что оценка состояний x_1 и x_2 сходится к реальным значениям очень быстро, а состояния x_3 и x_4 сразу же имеют верные значения, так как они измеряются напрямую. Система управляется и наблюдается корректно.

5. Вывод

В ходе выполнения лабораторной работы были исследованы системы с модальными регуляторами и наблюдателями. Были выбраны матрицы K и L таким образом, чтобы спектры матриц A-BK и A-LC совпадали с желаемыми спектрами регулятора и наблюдателя соответственно. Во всех случаях теоретические ожидания подтвердились результатами моделирования. В третьем задании был рассмотрен регулятор на основе оценки состояние системы наблюдателем. Данная архитектура позволяет управлять системой, не имея возможности измерить все состояния напрямую, что чаще всего является более реалистичной задачей.