

06-09-CV
HAMILTON, BROOK, SMITH & REYNOLDS, P.C.

PRO

PA

**UTILITY
PATENT APPLICATION
TRANSMITTAL**

(Only for new nonprovisional applications under
37 C.F.R. 1.53(b))

Attorney Docket No.	3028.1000-000
First Named Inventor or Application Identifier	Guy A. Rouleau
Express Mail Label No.	EL564265605US

JC 59/59021
U.S. PRO
6/08/00

Title of Invention

SHORT GCG EXPANSIONS IN THE PAB II GENE FOR OCULOPHARYNGEAL MUSCULAR DYSTROPHY AND DIAGNOSTIC THEREOF

APPLICATION ELEMENTS

See MPEP chapter 600 concerning utility patent application contents.

1. <input type="checkbox"/> Fee Transmittal Form <i>(Submit an original, and a duplicate for fee processing)</i>	6. <input type="checkbox"/> Microfiche Computer Program (<i>Appendix</i>)				
2. <input checked="" type="checkbox"/> Specification Total Pages 20 <i>(preferred arrangement set forth below)</i>	7. <input checked="" type="checkbox"/> Nucleotide and/or Amino Acid Sequence Submission (if applicable, all necessary)				
- Descriptive title of the invention	a. <input type="checkbox"/> Computer Readable Copy				
- Cross References to Related Applications	b. <input checked="" type="checkbox"/> Paper Copy (identical to computer copy) 3 Pages (1/3-3/3)				
- Statement Regarding Fed sponsored R & D	c. <input type="checkbox"/> Statement verifying identity of above copies				
- Reference to microfiche Appendix					
- Background of the Invention					
- Summary of the Invention					
- Brief Description of the Drawings					
- Detailed Description					
- Claim(s)					
- Abstract of the Disclosure					
3. <input checked="" type="checkbox"/> Drawing(s) (35 U.S.C. 113) Total Sheets 8 [] Formal <input checked="" type="checkbox"/> Informal	8. <input type="checkbox"/> Assignment Papers (cover sheet & documents)				
4. <input type="checkbox"/> Oath or Declaration/POA [Total Pages []]	9. <input type="checkbox"/> 37 C.F.R. 3.73(b) Statement <input type="checkbox"/> Power of Attorney <i>(when there is an assignee)</i>				
a. <input type="checkbox"/> Newly executed (original or copy)	10. <input type="checkbox"/> English Translation Document (<i>if applicable</i>)				
b. <input type="checkbox"/> Copy from a prior application (37 C.F.R. 1.63(d)) <i>(for continuation/divisional with Box 17 completed)</i> [NOTE Box 5 below]	11. <input type="checkbox"/> Information Disclosure Statement (IDS)/PTO-1449 <input type="checkbox"/> Copies of IDS Citations				
i. <input type="checkbox"/> <u>DELETION OF INVENTOR(S)</u> Signed statement attached deleting inventor(s) named in the prior application, see 37 C.F.R. 1.63(d)(2) and 1.33(b).	12. <input type="checkbox"/> Preliminary Amendment				
5. <input type="checkbox"/> Incorporation By Reference (<i>useable if Box 4b is checked</i>) The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein.	13. <input checked="" type="checkbox"/> Return Receipt Postcard (MPEP 503) <i>(Should be specifically itemized)</i>				
17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information: <input checked="" type="checkbox"/> Continuation <input type="checkbox"/> Divisional <input type="checkbox"/> Continuation-in-part (CIP) of prior application No.: PCT/CA98/01133 Prior application information: Examiner: Group Art Unit:	14. <input type="checkbox"/> Small Entity <input type="checkbox"/> Statement filed in prior application, status still proper and desired				
18. CORRESPONDENCE ADDRESS	15. <input type="checkbox"/> Certified Copy of Priority Document(s) <i>(if foreign priority is claimed)</i>				
NAME	David E. Brook, Esq. HAMILTON, BROOK, SMITH & REYNOLDS, P.C.				
ADDRESS	Two Militia Drive				
CITY	Lexington	STATE	MA	ZIP CODE	02421-4799
COUNTRY	USA	TELEPHONE	(781) 861-6240	FAX	(781) 861-9540

Signature	<i>David E. Brook, R.N. 22592 for Elizabeth W. Mata</i>	Date	<i>6/8/00</i>
Submitted by Typed or Printed Name	Elizabeth W. Mata	Reg. Number	38,236

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: Guy A. Rouleau and Bernard Brais

Continuation Application of International

Application No.: PCT/CA98/01133

Filed: December 7, 1998

For: SHORT GCG EXPANSIONS IN THE PAB II GENE FOR OCULOPHARYNGEAL
MUSCULAR DYSTROPHY AND DIAGNOSTIC THEREOF

Date: June 8, 2000

EXPRESS MAIL LABEL NO. EL564265605US

REMARKS

Box PATENT APPLICATION

Assistant Commissioner for Patents

Washington, D.C. 20231

Sir:

The referenced application is a Continuation application claiming priority to PCT International Application No. PCT/CA98/01133, filed 7 December 1998, which claimed priority to Canadian Patent No. 2,218,199.

The application has been amended as follows from the original PCT filing: a Related Applications paragraph has been added; the description of Fig. 4 has been changed to reflect the actual labeling of the figure as Figs. 4A-4E; the specification has been amended to correct a number of typographical and syntax mistakes or irregularities; information previously residing in the Background of the Invention has been transferred to the Summary of the Invention, where it properly belongs; a description of a reference cited in the International Search report (Brais *et al.*) has been added to the Description of the Prior Art in the Background of the Invention; proper units have been inserted (*e.g.*, “ μ ”) in the description of “PAB II mutation screening and

sequencing" in the Examples; and trademarks have been appropriately identified. No new matter has been added.

The claims in the Continuation application are based on the set of claims submitted with the Reply to the First Written Opinion with regard to the original PCT filing. The claims have been amended from those in the Reply to the First Written Opinion, in that multiple dependencies have been deleted, and the gene of Claims 1 and 31 has been specified to be an "isolated" gene.

To facilitate analysis of the claims and to emphasize that no new matter has been added, representative support in the original PCT filing is identified herein for the claims in the Continuation application. All support references pertain to pagination in the original PCT filing.

Support for Claims 1-12 and 31-32 can be found, for example, in Figure 2, at page 2, lines 12-1, at page 6, line 9, through page 7, line 6, and page 7, line 33 through page 8, line 19, and page 8, lines 26-31. Additional support for Claim 1 can also be found, for example at page 1, line 15; support for Claim 2, see Figure 2 and page 5, lines 24-30; support for Claims 5 and 6, see page 8, lines 11-12; support for Claims 7 and 8, see page 6, lines 9-17.

Support for Claim 13, can be found, for example, in Claim 6, at page 2, lines 17-31; support for Claims 14-18, which depend from Claim 13, can be found, for example, at page 7, line 33 through page 8, line 31. Support for Claims 19-24 can be found, for example, in old Claim 9, and at page 2, line 32, through page 3, line 3; support for Claims 25-27, see old Claim 10; support for Claim 28-30, see page 2, line 32, through page 3, line 3; support for Claim 33-36, see at page 7, line 33 through page 8, line 31.

If the Examiner believes that a telephone call would expedite prosecution of the application, the Examiner is invited to contact Elizabeth W. Mata at (915) 845-3558. If Elizabeth W. Mata cannot be reached, the Examiner is invited to contact David E. Brook at (781) 861-6240.

Respectfully submitted,

HAMILTON, BROOK, SMITH & REYNOLDS, P.C.

David E. Brook RN 22542

By for Elizabeth W. Mata
Elizabeth W. Mata
Registration No. 38,236
Telephone: (915) 845-3558
Facsimile: (915) 845-3237

-1-

Date: June 8, 2000 Express Mail Label No. ELS642656054S

Inventors: Guy A. Rouleau and Bernard Brais
Attorney's Docket No.: 3028.1000-000

SHORT GCG EXPANSIONS IN THE PAB II GENE FOR OCULO- PHARYNGEAL MUSCULAR DYSTROPHY AND DIAGNOSTIC THEREOF

RELATED APPLICATION(S)

This application is a continuation claiming priority to International Application
5 No. PCT/CA98/01133, filed December 7, 1998 (designating the U.S.), which claims
priority to Canadian Patent No. 2,218,199, filed December 9, 1997, the entire teachings
of both of which are incorporated herein by reference.

BACKGROUND OF THE INVENTION

Field of the Invention

10 The invention relates to PAB II gene, and its uses thereof for the diagnosis,
prognosis and treatment of a disease related with protein accumulation in nucleus, such
as oculopharyngeal muscular dystrophy.

Description of Prior Art

Autosomal dominant oculopharyngeal muscular dys-rophy(OPMD) is an adult-onset disease with a world-wide distribution. It usually presents itself in the sixth decade with progressive swallowing difficulties (dys-phagia), eye lid drooping (ptosis) and proximal limb weakness. Unique nuclear filament inclusions in skeletal muscle fibers are its pathological hallmark (Tome, F.M.S. & Fardeau, Acta Neuropath. 49, 85-87 (1980)). Using the full power of linkage analysis in eleven French Canadian families,

the oculopharyngeal muscular dystrophy gene was fine mapped on human chromosome 14 (Brais et al., 1997, Neuromuscular Disorders 7 (Suppl.1):S70-74). A region of .75 cM was thereby identified as a region containing the potential and unknown OMPD gene (Brais et al., 1997, *supra*). Unfortunately, the OMPD gene has yet to be isolated 5 and its nucleic acid or protein sequence have yet to be cribbed.

It would be highly desirable to be provided with a tool for the diagnosis, prognosis and treatment of a disease related with polyalanine accumulation in the nucleus, such as observed in oculopharyngeal muscular dystrophy.

SUMMARY OF THE INVENTION

10 One aim of the present invention is to provide a tool for the diagnosis, prognosis and treatment of a disease related with polyalanine accumulation in nucleus, such as oculopharyngeal muscular dystrophy.

Herein, the poly(A) binding protein II (PAB II) gene was isolated from a 217 kb candidate interval in chromosome 14q11.A (GCG)6 repeat encoding a polyalanine tract 15 located at the N-terminus of the protein was expanded to (GCG)8-13 in the 144 OPMD families screened. More severe pheno-types were observed in compound heterozygotes for the (GCG)9 mutation and a (GCG)7 allele found in 2% of the population, whereas homozygosity for the (GCG)7 allele leads to autosomal recessive OPMD. Thus the (GCG)7 allele is an example of a polymorphism which can act as either a modifier of a 20 dominant phenotype or as a recessive mutation. Pathological expansions of the polyalanine tract may cause mutated PAB II oligomers to accumulate as filament inclusions in nuclei.

In accordance with the present invention there is provided a human PAB II gene containing a transcribed polymorphic GCG repeat, which comprises a sequence as set 25 forth in Fig. 4, which includes introns and flank-ing genomic sequence.

The allelic variants of GCG repeat of the human PAB II gene are associated with a disease related with protein accumulation in the nucleus, such as polyalanine

accumulation, or with a disease related with swallowing difficulties, such as oculopharyngeal muscular dystrophy.

In accordance with the present invention there is also provided a method for the diagnosis of a disease associated with protein accumulation in the nucleus, which
5 comprises the steps of:

- a) obtaining a nucleic acid sample of said patient; and
- b) determining allelic variants of a GCG repeat of the human PAB II gene; thereby long allelic variants are indicative of a disease related with protein accumulation in the nucleus, such as polyalanine accumulation and oculopharyngeal muscular
10 dystrophy.

The long allelic variants have from about 245 to about 263 bp in length.

In accordance with the present invention there is also provided a non-human mammal model for the human PAB II gene, whose germ cells and somatic cells are modified to express at least one allelic variant of the PAB II gene and wherein said
15 allelic variant of the PAB II is being introduced into the mammal, or an ancestor of the mammal, at an embryonic stage.

In accordance with the present invention there is also provided a method for the screening of therapeutic agents for the prevention and/or treatment of oculopharyngeal muscular dystrophy, which comprises the steps of:

- 20 a) administering the therapeutic agents to the non-human animal of the present invention or oculopharyngeal muscular dystrophy patients; and
- b) evaluating the prevention and/or treatment of development of oculopharyngeal muscular dystrophy in this animal (such as a mammal) or in patients.

In accordance with the present invention there is also provided a method to
25 identify genes-products thereof, or part thereof, which interact with a biochemical pathway affected by the PAB II gene, which comprises the steps of:

- a) designing probes and/or primers using the PAB II gene and screening oculopharyngeal muscular dystrophy patients samples with said probes and/or primers, and
- b) evaluating the role of the identified gene in oculopharyngeal muscular dystrophy patients.

BRIEF DESCRIPTION OF THE DRAWINGS

Figs. 1A-1B illustrate the positional cloning of the PAB II gene;

Figs. 2A-2G illustrate the OPMD (GCG)n expansion sizes and sequence of the mutation site (SEQ ID NOS:1-2);

Fig. 3 illustrates the age distribution of swallowing time (st) for French Canadian OPMD carriers of the (GCG)9 mutation; and

Figs. 4A-4E illustrate the nucleotide sequence of human poly(A) binding protein II (hPAB II)(SEQ ID NO:3).

DETAILED DESCRIPTION OF THE INVENTION

In order to identify the gene mutated in OPMD, a 350 kb cosmid contig was constructed between flanking markers D14S990 and D14S1457 (Fig. 1A). Positions of the PAB II-selected cDNA clones were determined in relation to the EcoRI restriction map and the Genealogy-based Estimate of Historical Meiosis (GEHM)-derived candidate interval (Rommens, J.M. et al., in Proceedings of the third international workshop on the identification of transcribed sequences (eds. Hochgeschwender, U. & Gardiner, K.) 65-79 (Plenum, New York, 1994)).

The human poly(A) binding protein II gene (PAB II) is encoded by the nucleotide sequence as set forth in Fig. 4.

Twenty-five cDNAs were isolated by cDNA selection from the candidate interval (Rommens, J.M. et al., in Proceedings of the third international workshop on the identification of transcribed sequences (eds. Hochgeschwender, U. & Gardiner, K.;

65-79; Plenum, New York, 1994). Three of these hybridized to a common 20 kb EcoRI restriction fragment and showed high sequence homology to the bovine poly(A) binding protein II gene(bPAB II) (Fig. 1A). The PAB II gene appeared to be a good candidate for OPMD because it mapped to the genetically defined 0.26 cM candidate interval in
5 14q11 (Fig. 1A), its mRNA showed a high level of expression in skeletal muscle, and the PAB II protein is exclusively localized to the nucleus (Krause, S. et al., Exp. Cell Res. 214, 75-82 (1994)) where it acts as a factor in mRNA polyadenylation (Whale, E., Cell 66, 759-768 (1991); Whale, E. et al., J. Biol. Chem. 268, 2937-2945 (1993); Bienroth, S. et al., EMBO J. 12, 585-594 (1993)).

10 A 8 kb HindIII genomic fragment containing the PAB II gene was subcloned and sequenced (6002 bp; GenBank: AF026029)(Nemeth, A. et al., Nucleic Acids Res. 23, 4034-4041 (1995)) (Fig. 1B). Genomic structure of the PAB II gene, and position of the OPMD (GCG)n expansions. Exons are numbered. Introns 1 and 6 are variably present in 60% of cDNA clones. ORF, open reading frame; cen, centromere and tel,
15 telomere.

The coding sequence was based on the previously published bovine sequence (GenBank: X89969) and the sequence of 31 human cDNAs and ESTs. The gene is composed of 7 exons and is transcribed in the cen-qter orientation (Fig. 1B). Multiple splice variants are found in ESTs and on Northern blots (Nemeth, A. et al., Nucleic
20 Acids Res. 23, 4034-4041 (1995)). In particular, introns 1 and 6 are present in more than 60% of clones (Fig. 1B)(Nemeth, A. et al., Nucleic Acids Res. 23, 4034-4041 (1995)). The coding and protein sequences are highly conserved between human, bovine and mouse (GenBank: U93050). 93% of the PAB II sequence was readily amenable to RT-PCR- or genomic-SSCP screening. No mutations were uncovered
25 using both techniques. However, a 400 bp region of exon 1 containing the start codon could not be readily amplified. This region is 80% GC rich. It includes a (GCG)6 repeat which codes for the first six alanines of a homopolymeric stretch of 10 (Fig. 2G).
Nucleotide sequence of the mutated region of PAB II as well as the amino acid

sequences of the N-terminus polyalanine stretch and position of the OPMD alanine insertions is also shown in Fig. 2.

Special conditions were designed to amplify by PCR a 242 bp genomic fragment including this GCG-repeat. The (GCG)6 allele was found in 98% of French
5 Canadian non-OPMD control chromosomes, whereas 2% of chromosomes carried a (GCG)7 polymorphism (n=86) (Brais, B. et al., Hum. Mol. Genet. 4, 429-434 (1995)).

Screening OPMD cases belonging to 144 families showed in all cases a PCR product larger by 6 to 21 bp than that found in controls (Fig. 2A). (GCG)6 normal allele (N) and the six different (GCG)n expansions observed in 144 families.

10 Sequencing of these fragments revealed that the increased sizes were due to expansions of the GCG repeat (Fig. 2G). Fig. 2F shows the sequence of the (GCG)9 French Canadian expansion in a heterozygous parent and his homozygous child. Partial sequence of exon 1 in a normal (GCG)6 control (N), a heterozygote (ht.) and a homozygote (hrn.) for the (GCG)9-repeat mutation. The number of families sharing the
15 different (GCG)n-repeats expansions is shown in Table 1.

Table 1**Number of families sharing the different dominant (GCG)_n OPMD mutations**

5	Mutations	Polyalanine†	Families
10	(GCG)8	12	4
	(GCG)9	13	99
	(GCG)10	14	19
	(GCG)11	15	16
	(GCG)12	16	5
	(GCG)13	17	1
	Total		144

†, 10 alanine residues in normal PAB II.

15 The (GCG)9 expansion shared by 70 French Canadian families is the most frequent mutation we observed (Table 1). The (GCG)9 expansion is quite stable, with a single doubling observed in family F151 in an estimated 598 French Canadian meioses (Fig. 2C). The doubling of the French Canadian (GCG)9 expansion is demonstrated in Family F151.

20 This contrasts with the unstable nature of previously described disease-causing triplet-repeats (Rosenberg, R.N., New Eng. J. Med. 335, 1222-1224 (1996)).

Genotyping of all the participants in the clinical study of French Canadian OPMD provided molecular insights into the clinical variability observed in this condition. The genotypes for both copies of the PAB II mutated region were added to an 25 anonymous version of this clinical database of 176 (GCG)9 mutation carriers (Brais, B. et al., Hum. Mol. Genet. 4, 429-434 (1995)). Severity of the phenotype can be assessed by the swallowing time (st) in seconds taken to drink 80 cc of ice-cold water (Brais, B.

et al., Hum. Mol. Genet. 4, 429-434 (1995); Bouchard, J.-P. et al., Can. J. Neurol. Sci. 19, 296-297 (1992)). The late onset and progressive nature of the muscular dystrophy is clearly illustrated in heterozygous carriers of the (GCG)9 mutation (bold curve in Fig. 3) when compared to the average st of control (GCG)6 homozygous participants (n=76, thinner line in Fig. 3). The bold curve represents the average OPMD st for carriers of only one copy of the (GCG)9 mutation (n=169), while the thinner line corresponds to the average st for (GCG)6 homozygous normal controls (n=76). The black dot corresponds to the st value for individual VIII. Roman numerals refer to individual cases shown in Figs. 2B, 2D and discussed in the text. The genotype of a 10 homozygous (GCG)9 patient and her parents is shown in Fig. 2B. Independent segregation of the (GCG)7 allele is also shown. Of note, case V has a more severe OPMD phenotype (Fig. 2D).

Two groups of genotypically distinct OPMD cases have more severe swallowing difficulties. Individuals I, II, and III have an early-onset disease and are 15 homozygous for the (GCG)9 expansion ($P < 10^{-5}$) (Figs. 2B, F). Cases IV, V, VI and VII have more severe phenotypes and are compound heterozygotes for the (GCG)9 mutation and the (GCG)7 polymorphism ($P < 10^{-5}$). In Fig. 2D the independent segregation of the two alleles is shown. Case V, who inherited the French Canadian (GCG)9 mutation and the (GCG)7 polymorphism, is more symptomatic than his brother 20 VIII who carries the (GCG)9 mutation and a normal (GCG)6 allele (Figs. 2D and 3). The (GCG)7 polymorphism thus appears to be a modifier of severity of dominant OPMD. Furthermore, the (GCG)7 allele can act as a recessive mutation. This was documented in the French patient IX who inherited two copies of the (GCG)7 polymorphism and has a late-onset autosomal recessive form of OPMD (Fig. 2E). Case 25 IX, who has a recessive form of OPMD, is shown to have inherited two copies of the (GCG)7 polymorphism.

This is the first description of short trinucleotide repeat expansions causing a human disease. The addition of only two GCG repeats is sufficient to cause dominant

OPMD. OPMD expansions do not share the cardinal features of "dynamic mutations".

The GCG expansions are not only short they are also meiotically quite stable.

Furthermore, there is a clear cut-off between the normal and abnormal alleles, a single GCG expansion causing a recessive phenotype. The PAB II (GCG)7 allele is the first

5 example of a relatively frequent allele which can act as either a modifier of a dominant pheno-type or as a recessive mutation. This dosage effect is reminiscent of the one observed in a homozygote for two dominant synpolydactyly mutations. In this case, the patient had more severe deformities because she inherited two duplications causing an expansion in the polyalanine tract of the HOXD13 protein (Akarsu, A.N. et al., Hum. Mol. Genet. 5, 945-952 (1996)). A duplication causing a similar polyalanine expansion in the a subunit 1 gene of the core-binding transcription factor (CBF(1) has also been found to cause dominant cleido-cranial dysplasia (Mundlos, S. et al., Cell 89, 773-779 (1997)). The mutations in these two rare diseases are not triplet-repeats. They are duplications of "cryptic repeats" composed of mixed synonymous codons and are

10 thought to result from unequal crossing over (Warren, S.T., Science 275, 408-409 (1997)). In the case of OPMD, slippage during replication causing a reiteration of the GCG codon is a more likely mechanism (Wells, D.R., J. Biol. Chem. 271, 2875-2878 (1996)).

15

Different observations converge to suggest that a gain of function of PAB II

20 may cause the accumulation of nuclear filaments observed in OPMD (Tome, F.M.S. & Fardeau, Acta Neuropath. 49, 85-87 (1980)). PAB II is found mostly in dimeric and oligomeric forms (Nemeth, A. et al., Nucleic Acids Res. 23, 4034-4041 (1995)). It is possible that the polyalanine tract plays a role in polymerization. Polyalanine stretches have been found in many other nuclear proteins such as the HOX proteins, but their

25 function is still unknown (Davies, S.W. et al., Cell 90, 537-548 (1997)). Alanine is a highly hydrophobic amino acid present in the cores of proteins. In dragline spider silk, polyalanine stretches are thought to form B-sheet structures important in ensuring the fibers' strength (Simmons, A.H. et al., Science 271, 84-87 (1996)). Polyalanine

oligomers have also been shown to be extremely resistant to chemical denaturation and enzymatic degradation (Forood, B. et al., Bioch. and Biophys. Res. Com. 211, 7-13 (1995)). One can speculate that PAB II oligomers comprised of a sufficient number of mutated molecules might accumulate in the nuclei by forming undegradable polyalanine rich macromolecules. The rate of the accumulation would then depend on the ratio of mutated to non-mutated protein. The more severe phenotypes observed in homozygotes for the (GCG)9 mutations and compound heterozygotes for the (GCG)9 mutation and (GCG)7 allele may correspond to the fact that in these cases PAB II oligomers are composed only of mutated proteins. The ensuing faster filament accumulation could cause accelerated cell death. The recent description of nuclear filament inclusions in Huntington's disease, raises the possibility that "nuclear toxicity" caused by the accumulation of mutated homopolymeric domains is involved in the molecular pathophysiology of other triplet-repeat diseases (Davies, S.W. et al., Cell 90, 537-548 (1997); Scherzinger, E. et al., Cell 90, 549-558 (1997); DiFiglia, M. et al., Science 277, 1990-1993 (1997)). Future immunocytochemical and expression studies will be able to test this patho-physiological hypothesis and provide some insight into why certain muscle groups are more affected while all tissues express PAB II.

Methods

Contig and cDNA selection

The cosmid contig was constructed by standard cosmid walking techniques using a gridded chromosome 14-specific cosmid library (Evans, G.A. et al., Gene 79, 9-20 (1989)). The cDNA clones were isolated by cDNA selection as previously described (Rommens, J.M. et al., in Proceedings of the third international workshop on the identification of transcribed sequences (eds. Hochgeschwender, U. & Gardiner, K.) 65-79 (Plenum, New York, 1994)).

Cloning of the PAB II gene

Three cDNA clones corresponding to PAB II were sequenced (Sequenase, USB). Clones were verified to map to cosmids by South-ern hybridization. The 8 kb HindIII restriction frag-ment was subcloned from cosmid 166G8 into pBluescriptII (SK) 5 (Stratagene). The clone was sequenced using prim-ers derived from the bPABII gene and human EST sequences. Sequencing of the PAB II introns was done by primer walking.

PAB II mutation screening and sequencing

All cases were diagnosed as having OPMD on clinical grounds (Brais, B. et al.,
10 Hum. Mol. Genet. 4, 429-434 (1995)). RT-PCR- and genomic SSCP analyses were done using stan-dard protocols (Lafrenière, R.G. et al., Nat. Genet. 15, 298-302 (1997)). The primers used to amplify the PAB II mutated region were: 5'-
CGCAGTGCCCCGCCTAGA-3' (SEQ ID NO:4) and 5'-
ACAAGATGGCGCCGCCGCCGC-3' (SEQ ID NO:5). PCR reactions were
15 performed in a total volume of 15 µl containing: 40 ng of genomic DNA; 1.5 µg of BSA; 1 µM of each primer; 250 µM dCTP and dTTP; 25 µM dATP; 125 µM of dGTP and 125 µM of 7-deaza-dGTP (Pharmacia); 7.5% DMSO; 3.75 µCi [³⁵S]dATP, 1.5 unit of Taq DNA polymerase and 1.5 mM MgCl₂ (Perkin Elmer). For non-radioactive PCR reactions the [³⁵S]dATP was replaced by 225 µM of dATP. The amplification procedure
20 consisted of an initial denatuàration step at 95°C for five minutes, followed by 35 cycles of denaturation at 95°C for 15 s, annealing at 70°C for 30 s, elongation at 74°C for 30 s and a final elongation at 74°C for 7 min. Samples were loaded on 5% polyacrylamide denatur-ing gels. Following electrophoresis, gels were dried and autoradiographs were obtained. Sizes of the inserts were determined by comparing to a standard M13
25 sequence (Sequenase™, USB). Fragments used for sequencing were gel-purified. Sequencing of the mutated fragment using the Amplicycle kit™ (Perkin Elmer) was

done with the 5'-CGCAGTCCCCGCCTAGAGGTG-3' (SEQ ID NO:6) primer at an elongation temperature of 68°C.

Stability of (GCG)-repeat expansions

The meiotic stability of the (GCG)9-repeat was estimated based on a large French Canadian OPMD cohort. It had been previously established that a single ancestral OPMD carrier chro-mosome was introduced in the French Canadian population by three sisters in 1648. Seventy of the seventy one French Canadian OPMD families tested to date segregate a (GCG)9 expansion. However, in family F151, the affected brother and sister, despite sharing the French Canadian ancestral haplotype, carry a (GCG)12 expansion, twice the size of the ancestral (GCG)9 mutation (Fig. 2C). In this founder effect study, it is estimated that 450 (304-594) historical meioses shaped the 123 OPMD cases belonging to 42 of the 71 enrolled families. The screening of the full set of participants allowed an identification of another 148 (GCG)9 carrier chromosomes. Therefore, it is estimated that a single mutation of the (GCG)9 expansion has occurred in 598 (452-742) meioses.

Genotype-phenotype correlations

176 carriers of at least one copy of the (GCG)9 mutation were examined during the early stage of the linkage study. All were asked to swallow 80 cc of ice-cold water as rapidly as possible. Testing was stopped after 60 seconds. The swallowing time (st) was validated as a sensitive test to identify OPMD cases (Brais, B. et al., Hum. Mol. Genet. 4, 429-434 (1995); Bouchard, J.-P. et al., Can. J. Neurol. Sci. 19, 296-297 (1992)). The st values for 76 (GCG)6 homozygotes normal controls is illustrated in Fig. 3. Analyses of variance were computed by two-way ANOVA (SYSTAT package). For the (GCG)9 homozygotes their mean st value was compared to the mean value for all (GCG)9 heterozygotes aged 35-40 ($P < 10^{-5}$). For the (GCG)9 and (GCG)7 compound

heterozygotes their mean st value was compared to the mean value for all (GCG)9 heterozygotes aged 45-65 ($P < 10^{-5}$).

While the invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modifications 5 and this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains and as may be applied to the essential features hereinbefore set forth, and as follows in the scope of the appended claims.

CLAIMS

What is claimed is:

1. An isolated human PAB II gene comprising a polymorphic GCG repeat in exon I thereof wherein an allelic variant of said GCG repeat is indicative of a disease associated with protein accumulation in a cell nucleus, swallowing difficulty, and/or ptosis in a human patient.
5
2. The gene of claim 1, wherein said polymorphic GCG repeat has the sequence ATG (GCG)_{6+n} GCA,
wherein n is selected from 1 to 7.
- 10 3. The gene of claim 2, wherein n is selected from 2 to 7, and wherein said allelic variant is associated with an increased severity of the disease.
4. The gene of claim 3, wherein a phenotype associated with said allelic variant is dominant.
- 15 5. The gene of claim 2, wherein a first allele of said GCG repeat has an n which is equal to 1.
6. The gene of claim 5, wherein a second allele of said GCG repeat has an n selected from 2 to 7, and wherein said first allele is a modulator of the severity of the phenotype associated with said second allele.
- 20 7. The gene of claim 1, wherein said human patient is homozygous for said polymorphic GCG repeat.

8. The gene of claim 1, wherein said human patient is heterozygous for said polymorphic GCG repeat.

9. A nucleic acid sequence comprising a polymorphic GCG repeat of exon I of a human PAB II gene, wherein an allelic variant of said GCG repeat in a patient's human PAB II gene is indicative of a disease associated with protein accumulation in a cell nucleus, swallowing difficulty, and/or ptosis in said human patient.

10. The nucleic acid sequence of claim 9, wherein said polymorphic GCG repeat has the sequence
ATG (GCG)_{6+n} GCA,
wherein n is selected from 1 to 7.

11. The nucleic acid sequence of claim 10, wherein n is selected from 2 to 7, and wherein said allelic variant is associated with an increased severity of said disease.

15 12. The nucleic acid sequence of claim 11, wherein a phenotype associated with said allelic variant is dominant.

13. A method for the diagnosis or prognosis of a disease associated with protein accumulation in a cell nucleus, and/or swallowing difficulty and/or ptosis in a human patient, which comprises:
a) obtaining a nucleic acid sample of said patient; and
b) determining allelic variants of a GCG repeat in exon I of the PAB II gene, said GCG repeat having the sequence

ATG (GCG)_{6+n} GCA,

wherein n is selected from 0 to 7, and
whereby at least one allele of said GCG repeat having an n equal to 1 to 7, is
indicative of a disease related with said protein accumulation in said nucleus,
and/or a swallowing difficulty and/or ptosis in said patient.

5 14. The method of claim 13, wherein n is selected from 2 to 7, and wherein said
allelic variant is associated with an increased severity of said disease.

15. The method of claim 14, wherein said phenotype associated with said allelic
variant is dominant.

16. The method of claim 13, wherein a first allele of said GCG repeat has an n
10 which is equal to 1.

17. The method of claim 16, wherein a second allele of said GCG repeat has an n
selected from 2 to 7, and wherein said first allele is a modulator of the severity
of the phenotype associated with said second allele.

18. The method of claim 13, wherein said disease is oculopharyngeal muscular
dystrophy.

19. A non-human transgenic animal whose germ cells and somatic cells are
modified to express at least one allelic variant of a polymorphic GCG repeat in
exon I of the PAB II gene, and wherein said transgenic animal shows a
phenotype of a disease associated with protein accumulation in a cell nucleus,
20 and/or a swallowing difficulty and/or ptosis.

20. The non-human transgenic animal of claim 19, wherein said polymorphic GCG repeat has the sequence

ATG (GCG)_{6+n} GCA,

wherein n is selected from 1 to 7.

5 21. The transgenic animal of claim 19, wherein said animal is a mammal.

22. The transgenic animal of claim 19, wherein said allelic variant of the PAB II gene is a human allelic variant.

23. The transgenic animal of claim 19, having cells which display a protein accumulation in their nucleus.

10 24. A cell isolated from said non-human transgenic animal according to claim 19.

25. A method for screening and identifying an agent for the prevention and/or treatment of a disease associated with protein accumulation in a cell nucleus and/or a swallowing difficulty, and/or ptosis, said method comprising:

a) exposing the transgenic animal of claim 19 to said agent; and
15 b) evaluating the prevention and/or treatment of development of said protein accumulation in a cell nucleus and/or a swallowing difficulty, and/or ptosis in said animal exposed to said agent as compared to a control animal not having been exposed to said agent.

26. A method for screening and identifying an agent which modulates protein 20 accumulation in the nucleus of a cell, said method comprising:

a) exposing a cell of claim 24 to said agent; and

b) evaluating said protein accumulation in said nucleus of said exposed cell as compared to a control cell not having been exposed to said agent.

27. The method of claim 25, wherein said protein accumulation is associated with oculopharyngeal muscular dystrophy.

5 28. A cell which has been modified to express at least one allelic variant of a human polymorphic GCG repeat of exon I of the PAB II gene, wherein said allelic variant is associated with protein accumulation in the nucleus of said cell.

10 29. The cell of claim 28, wherein said polymorphic GCG repeat has the sequence ATG (GCG)_{6+n} GCA, wherein n is selected from 1 to 7.

30. The cell of claim 28, wherein said cell is a mammalian cell.

15 31. An isolated human PAB II gene comprising a polymorphic GCG repeat in exon I thereof, wherein said repeat has the sequence ATG (GCG)_{6+n} GCA, wherein n is 0, and wherein said sequence is indicative of a non-disease phenotype associated with protein accumulation in a cell nucleus, swallowing difficulty, and/or ptosis in a human patient.

32. The human PAB II gene of claim 31, wherein said gene is as set forth in SEQ ID NO:3.

20 33. A method of diagnosing a disease in a human patient associated with a meiotically stable trinucleotide expansion in a coding sequence of a gene comprising:

5 a) obtaining a nucleic acid sample from said patient;

 b) determining whether said gene comprises at least one trinucleotide expansion, wherein the determination of one trinucleotide expansion in said coding region of said gene is indicative of a disease condition in said patient.

34. The method of claim 33, wherein said trinucleotide expansion has the sequence ATG(GCG)_{6+n}GCA,
wherein n is 1 to 7.

10 35. The method of claim 33, wherein said disease is associated with protein accumulation in a cell nucleus and/or a swallowing difficulty and/or ptosis.

 36. The method of claim 33, wherein said disease is oculopharyngeal muscular dystrophy.

SHORT GCG EXPANSIONS IN THE PAB II GENE FOR OCULO-
PHARYNGEAL MUSCULAR DYSTROPHY AND DIAGNOSTIC THEREOF

ABSTRACT OF THE DISCLOSURE

The present invention relates to a human PAB II gene containing transcribed
5 polymorphic GCG repeat, which comprises a sequence as set forth in SEQ ID NO:3,
which includes introns and flanking genomic sequence. The allelic variants of GCG
repeat of the human PAB II gene are associated with a disease related with protein
accumulation in nucleus, such as polyalanine accumulation, a disease related with
swallowing difficulties, such as oculopharyngeal muscular dystrophy. The present
10 invention also relates to a method for the diagnosis of a disease with protein
accumulation in nucleus, which comprises the steps of: a) obtaining a nucleic acid
sample of said patient; and b) determining allelic variants of GCG repeat of the gene of
claim 1, and wherein long allelic variants are indicative of a disease related with
protein accumulation in nucleus.

FIG. 1A

FIG. 1B

FIG. 2A

FIG. 2B

FIG. 2E

OPMD dominant mutations:

N: ATGGCGGCCGCCGCCGCCAGCA
ATGGCGGCCGCCGCCGCC(GCG)₂₋₇GCA

Polyalanine insertions:

N: MAAAAAAAAGAAGGRGS
MAAAAA(A)2-7AAAAGAAG

FIG. 2C

FIG. 2D

ATG

FIG. 3

1	aatgaaggtg	gacacccaaa	tagcccaat	acaaatgcct	gttcaatcaa	ccaaacatct
61	aaggcagcaca	tctatgtggt	agcatattgc	caggccgtga	gactgccaat	ataaataatgg
121	accggccctc	atctgcaggc	gctcacaaacc	tagttagcaa	acagtaaaac	aattaagcgc
181	gcccgtggaca	taggccact	tgtcctggga	aatggggga	agctggggtt	tgcagtgggt
241	tgatgtgaagg	gggactacat	gttagaggca	cagactgggt	gcaggtacac	ccaaaggAAC
301	gagaagagtg	gaagggaaaca	acatccacaa	agtaaccaca	tgcggcgta	tcgaaggccc
361	tgatttacgg	tttgagact	ttacctcgcc	agcaaagggg	ggccagtcg	ttagcggtgtc
421	agatgtgagg	ggtgacattg	gaaggtgtcc	agggaaaaga	aatggaaact	ggggaggcaga
481	aggcctacgc	aaggaggcg	gacagacagg	acttggact	agttagctctg	gactgaggaa
541	tcctccctgc	tttctgggtgc	gggagagcta	gtggatgtg	gtgccataaa	cctggatggg
601	gaaagtaagc	tccctccctgg	aatgcttcat	tcacaaccc	catttcagg	aacatcccat
661	ctacttgtgc	ttcctgggtcg	agatacaagt	ttcctgaaac	tgctgctctg	tttggggcct
721	caccggcca	acagctcaact	agctggcaag	cagtagtatac	aagatggcg	ccccctagga
781	ctggctagt	atgtgaccc	gggttccca	agtttgaagc	ccggcagtc	tttggggc
841	aagggttcacc	tgtcacgaaa	cagtggtcac	cccttcgact	ctcgcaagcc	aatcgccatc
901	tgagactggg	ccactgggt	gagggatcg	gaagatgtgt	cctttcaggt	cgcctagcta
961	gggccaatca	cggagcgtcc	catacttcgc	ggggccggcc	gtaggccgg	gagaaggcagg
1021	aatatcgtca	cagcqgtggcg	gtattattac	ctaaggactc	gataggaggt	gggacgcgtg
1081	ttgatgtgaca	ggcagatttc	cctaccggaa	tttggaaatt	tggcgcgtg	cccgcccttag
1141	aggtgtgcgtt	atttgtatgc	caagtaatat	tcccaatgg	agtactagct	catggtgacg

FIG. 4A

1201	ggcaggcagc	ttgagcta	gagtctccg	tggccggcg	agctccac	atgcggcg
1261	gcggccccca	gtctgagcg	cgtggcg	ggggcg	gcggcagc	cagggggc
1321	tgcggcggt	cgggctccg	ggggggcg	ggggccat	cttgtgccg	gggcgggtgg
1381	ggaggccgg	gaggggcc	ggggggcg	aggggactac	ggaacggcc	tggagtctga
1441	ggaactggag	cctgagggc	tgctgtgga	gcccggccg	gagccggagc	ccgaagagga
1501	gccggccgg	cccgccgccc	ccccgggagc	tccggccct	gggcctgggt	cggagcccc
1561	cggcagccaa	gagggaggagg	aggagccgg	actggtcgag	ggtgaccagg	cgcggccg
1621	catggaggac	cgggtgagga	aggagggcg	gctggcggcga	gctggggcgg	cggagccgg
1681	gagggccaga	gctcggcga	ggggatggcag	gctggggcag	gggttggcg	ggataaacg
1741	tggctgggc	gggtcggcc	ggggatgggt	cagcgatcac	tacaagggc	ccgactggct
1801	tgatctggc	gtcacgggtg	cctagtgttg	ttcttagagag	ggtagcttt	cttttatcac
1861	gaccctcgca	tggggagg	gaaatggccg	agcatggctg	aggcggctc	tggccagag
1921	caggcacag	ccctgcgtt	ggttcccttt	aagctgtctt	ccataccctc	cccacttata
1981	tttaggagctg	gaagctatca	aagctcgagt	caggagatg	gaggaagaag	ctgagaagct
2041	aaaggagcta	cagaacgagg	tagagaagca	gatgaatatg	agtccaccc	caggcaatgc
2101	ttagtaactg	gcgggtgcac	gcggagcccg	ggttctcggt	ttgaaagggt	tgtgggagg
2161	atgggaatg	tgggtttaga	tactggcac	cctggagctg	cttgtctgag	ctattatgac
2221	tgtggccgg	tcatatgtccg	ttgtgtgttc	ctctgacett	tgtgaggcag	aactgatatt
2281	ttgggtgg	tagccttgt	cctcactttg	tcctgttata	attgtgttgc	tctttattct
2341	tagtctacgt	ctatctttct	ttggtagagg	ttgcgtgtc	gcatttgacc	ttcaaata

FIG. 4B

2401	atagttttc	ctccaattgg	agacgctta	ggattctaag	agaaggaaag	ctggaaagggg
2461	tttccccttt	aaattctaga	aatgtggagt	ctcagccac	ttaattttgc	tcactcttaa
2521	aagcatttca	accaaaggca	ttcatttaggg	atttgatttgc	gagggcagga	gggattccta
2581	tactgtttta	agtgtgtatt	aattcttca	atttatcgaa	ttatttagtg	agtaaacctgc
2641	tatgcactag	gcactattct	cggcttgtgg	gtacagcagg	gaacagcaca	gaccaaaatc
2701	tttgcccttca	ctgagctt	gggatagtgc	tgggtgtga	agtgcacat	attggtaaag
2761	tagaaacaa	gtgtgtgtt	tttgtaaaaa	attattttt	cctgataagt	ggcccgggtga
2821	tcatgtccat	tgaggagaag	atggaggctg	atgccgttc	catctatgtt	ggcaatgtga
2881	cgtactgggg	ctctgactgg	ggttggggc	aagttcttct	tttggggaat	tattttatag
2941	tcctgaaaga	acatctccgg	gatagatgtg	gttttgggtg	tggaggagt	gtggaaagga
3001	ggttaaagg	aatggaatga	tcagtaatca	gcaaaggctc	tgggtttgga	agggaaaagag
3061	attaaattcct	caaattacca	gatttcatgt	gctttgggt	atgatggccc	agaccaaagg
3121	ctcgggagg	ttcttttag	acaggaattt	gcctgggtgc	tgtgaatttt	ttctccctctc
3181	atcagggtgga	ctatggtgc	acagcagaag	agctggaaagc	tcactttcat	ggctgtgggt
3241	cagtcaaccg	tgttaccata	ctgtgtgaca	aatttagtg	ccatcccaa	ggtaaagtaa
3301	aggggagtaa	gttgagataa	tttaaattac	agtgtacaa	tagataaatt	atgtttata
3361	ttgaggcagta	agttatttgg	tgttaacaca	ggtgatctgt	gtcatttaag	atcatggcat
3421	taatgtttgat	atatcaggag	ttgcacctaa	atgtttcag	aggccagata	acaaaatga
3481	aggctagatg	tgggtggat	tacgaactag	aaggggagg	gcagctcta	cttggcctat
3541	tatggcatat	ggaatttcag	gccctgtgtg	tcttatttt	acaatttca	aagagtagct

FIG. 4C

3601	ggaatttttta	aaatttaaat	gatttcaat	gatggaaatt	ttccatttag	aagaattttg
3661	acaatataaaa	aatataactg	cattgttagcc	caaacgaag	catgcctgca	ggtttgaattt
3721	gaccgtgttag	gtatttgtaa	cctcagagag	atacaatgac	aattcttttc	aggttgtcggt
3781	atataagagt	ctcagacaaa	gragtcaigtga	ggacttcctt	ggccttagat	gagtcgcctat
3841	tttagaggaag	gcaaatcaag	gtaagcctat	gtccattgt	gtcttagttg	tgtataaact
3901	ctccagggtt	cctttaaggc	tatcatttgt	tcatctctga	ctcagggtat	cccaaaacga
3961	accaacagac	caggcatcag	cacaacagac	cggggtttc	cacgagccg	ctacggccc
4021	cggaccacca	actacaacag	ctccccgtct	cgattctaca	gtgggtttaa	caggaggccc
4081	cgggggtcgcg	tctacaggtc	aggatagatg	ggctgctcct	ctttccccgg	cctcccggtga
4141	gcccccgtatg	cttcctcctc	tctggctctga	ggaacacctcc	tccccccacc	cctcccggtg
4201	gtcttcagga	actttgtctc	ctgcctgtgc	aggttgagga	aggttagttgc	aggccaggcc
4261	agaaggcagc	ctcatcatct	tttctgcagt	agaaatttgt	gataaggct	gcatccctcc
4321	cttgggttcaa	agaggctcc	accccccaggc	tttttttct	tggaggtgg	tggcatttga
4381	agggtgtttgc	ggacaact	gggaggaaca	gggcctccag	gaagttgaaa	gcactgcttg
4441	gacatttgtt	acttttcg	gagtttagga	gggattgaag	actgaaccc	ccttggaaaga
4501	ataccagagg	ctagcttagt	gatcctccca	acagccttgt	gggaggattt	tgagatactt
4561	attcttttatt	ttagccagtc	ttgcaagggtt	aacttctcac	tggccttagt	gtggtnccca
4621	ggtttttgcc	ttgcttcact	tctgtctcta	cattaaata	gacgggttag	gcatataaac
4681	cttggctttt	cataagctt	acctggctat	ccccaggagt	tagggaggt	ctattigtya
4741	aggcccttagg	gtttaaaac	tgtggaggac	tgaaaactg	gataaaaagg	gggtcccttt

FIG. 4D

4801	ccttgccct	gtctctact	cagatgcgt	tcttttgc	cactgttgg	caaagtttc
4861	tgttaagccc	ccctccccct	gcccgagtcc	tcccagggtc	gttactattt	ctgggatcat
4921	ggggtcgggt	tttagacact	tgaacacttc	ttttccccc	tcccttcac	agtaactggg
4981	gcaggggcct	acggggaggg	gcttgtactg	aactatctag	tgratcacgtt	aacacctaacc
5041	tctccttctt	tcttccaggg	gccgggctag	agcjacatca	tgttattccc	cttactaaaa
5101	aaagtgtgtta	tttaggaggag	agagaggaaa	aaaagggaa	agaaggaaa	aaaaagaat
5161	taaaaaaaa	aaaaagaaaa	acagaagatg	accttgtatgg	aaaaaaaata	ttttttaaaa
5221	aaaagatata	ctgtggaaagg	ggggagaatc	ccataactaa	ctgctgagga	gggactgtct
5281	ttggggagta	gggaaaggcc	cagggagtg	ggcaggggc	tgcttgccca	ctctgggat
5341	tgcggcatgga	cacgtctcaa	ctgcgcgaagc	tgcttgccca	tgttttattca	ctctgggat
5401	cccccggc	ctgctcaagg	gttaggtggc	gtgggtggta	ggagggttt	ttttacccag
5461	ggctctggaa	ggacacaaa	ctgttctgtct	tgttaccttc	cctccgtct	tctcctcgcc
5521	tttcacagtc	ccctcctgcc	tgctcctgtc	cagccaggtc	taccacccac	cccacccctc
5581	tttctccggc	tccctgccc	tccagatgc	ctggtgatct	atttgttcc	cttttgtgtt
5641	ttttttctg	ttttgagtgt	ctttctttgc	aggttctgt	agccggaa	tctccgttcc
5701	gtcggcagcg	gttcggatgt	aaatccctt	tcccctgg	gaatgcact	accttgtttt
5761	ggggggttta	gggggttttt	tgtttttcag	ttgtttttgtt	tttttgtttt	ttttttttcc
5821	tttgcctttt	ttccctttta	tttggagggaa	atggggggaa	gtgggaacag	ggaggtggaa
5881	ggtggttattt	gttttatttt	ttagctcatt	tccagggtgt	ggaatttttt	ttaatatgt
5941	gtcgtatgttt	aagtgtttt	tgaataaaa	aaaaaaa	aaaaaaa	aaaaaaa
6001	aa					

FIG. 4E

SEQUENCE LISTING

<110> MCGILL UNIVERSITY
 ROULEAU, Guy A.
 BRAIS, Bernard

<120> SHORT CCG EXPANSIONS IN THE PAG II GENE
 FOR OCULOPHARYNGEAL MUSCULAR DYSTROPHY AND DIAGNOSTIC
 THEREOF

<130> 3028.1C00-000

<150> CA 2,218,199
<151> 1997-12-09

<160> 6

<170> FastSEQ for Windows Version 3.0

<210> 1
<211> 57
<212> DNA
<213> Artificial Sequence

<400> 1

atggcggcgg	cggcggcggc	ggcagcagca	atggcggcgg	cggcggcggc	ggcggca	57
------------	------------	------------	------------	------------	---------	----

<210> 2
<211> 35
<212> DNA
<213> Artificial Sequence

<400> 2

maaaaaaaaaa	agaaggrcsm	aaaaaaaaaa	agaag		35
-------------	------------	------------	-------	--	----

<210> 3
<211> 6002
<212> DNA
<213> Artificial Sequence

<400> 3

aatgaaggta	gacacccaa	tagccccaa	acaaatgcct	gttcaatcaa	ccaaacatct	60
aagcagcaca	tctatgtgt	agcatattgc	caggccgtga	gactgcgaat	ataaaatagga	120
accggccctc	atctgcaggc	gctcacaacc	tagttagcaa	acagtaaaac	aattaagcgc	180
gccgtggaca	taggcccact	tgtcctggga	aatgaggggg	agctggggtt	tgcagtggtt	240
tgatttgaagg	gggactacat	gttagaggca	cagactgggt	gcaggtacac	ccaaaggaaac	300
gagaagagtg	gaaggaaaaca	acatccacaa	agtaaccaca	tgctggcgta	tgcaggccg	360
tgatttacgg	ttttgagact	ttacctcgcc	agcaaagggg	ggccagtctg	ttagcggtgc	420
agattggagg	ggtgacattg	gaagctgtcc	aggaaaaaga	aattgttgc	ggggagcaga	480
aggcctacgc	aagaggccgg	gacagacagg	acttgttgc	agttagctctg	gactgaggaa	540
tcctccctgc	tttctggc	gggagagcta	gtggatgtat	gtgccaataa	cctggatggg	600
gaaagtaagc	tcctcctgg	aatgttccat	tcacaacatc	cattttcagc	aacatccat	660
ctactggtgc	ttcctggc	agatacaagt	ttcctgaaac	tgctgctctg	ttttggcct	720
cacccggcca	acagctcaat	agctggcaag	cagttagtac	aagatggcg	cccccttagga	780
ctggctagtc	atgtgaccc	gggttccca	agtttgaagc	ccggcagtc	tttcgggggc	840
aaggttccacc	tgtcacgaaa	cgagtgtcac	cccttcgact	ctcgcaagcc	aatcggcatc	900
tgagactggg	ccactgcgg	gaggcgatcg	gaagattgtt	ctttccagt	cgcctagcta	960
ggccaatca	cggagcgtcc	cataacttcgc	gggccccccc	gtaggccggg	gagaagcagg	1020

aatatcggtca	cagcgtggcg	gtattattac	ctaaggactc	gataggaggt	gggacgcgtg	1080
ttgattgaca	ggcagatttc	cctaccggga	tttgagaatt	tggcgcagt	ccgcgccttag	1140
aggtgcgctt	atttgcatttgc	caagtaatat	tccccaatgg	agtaactagct	catggtgac	1200
ggcaggcagc	tttagctaat	gagtcctccg	tgccggcgc	agctctccac	atgccggcgc	1260
gcggggccca	gtctgagcgg	cgatggcgc	ggccggcgc	gcggcagcag	cagcggggc	1320
tgcgggcccgt	cggggctccg	ggccggggcg	gcccgcctat	cttgcgtcc	ggccgggtgg	1380
ggagggccggg	gagggggccc	cggggggcgc	aggggactac	ggaaacggcc	tgagactctga	1440
ggaactggag	cctgaggagc	tgctgttgc	gcccggagcc	gagcccgagc	ccgaagaggaa	1500
gccgccccgg	ccccgcgc	ccccgggagc	tccggggcc	gggcctgggt	cgggagcccc	1560
cggcagccaa	gaggaggagg	aggagccgg	actgggtcag	gtgaccgg	gggacggcgc	1620
cattgaggac	ccggtgagga	aggagggcga	gcccggcgc	cggcgctgg	cgcgtca	1680
gaggccccaga	gctcgggcga	gcccggcgc	gccccgggtt	gggttggcg	ggaaataaac	1740
tggctggggc	gggtcgggc	ggggatgggt	cagcgatcac	tacaaggggc	ccgactggct	1800
tgattcgggc	gtcacgggt	cctagtgttgc	ttctagagag	gttagctttt	cttttatcac	1860
gaccctcgca	tggggcgagg	gaaatggccg	agcatggctg	aggcgcgc	tggccgagag	1920
cagggcacac	ccccctgcgtt	ggttccctt	aaatgttcc	ccataccctc	ccacttata	1980
tttaggagctg	gaagctatca	aagctcgagt	cagggagatg	gaggaagaag	ctgagaagct	2040
aaaggagacta	cagaacgagg	tagagaagca	gatgaatatg	agtccaccc	caggcaatgc	2100
tgtagtaactg	gccccgtc	gccccggcc	ggttctcg	ttggaaagggt	tgtggggagg	2160
atggggaaatg	tggggttaga	tactcgac	cctggagctg	cttgcgtc	ctattatgac	2220
tgtcccgccg	tcatagtccg	ttgtgttgc	ctctgac	tgtgaggcag	aactgatatt	2280
ttgggttgtgg	tagccttgc	cctcccttgc	tcctgttata	attgtgttgc	tctttatct	2340
tagtctacgt	ctatcttct	ttggtagagg	ttgcgtgc	gcatttgacc	ttcaaataatcta	2400
atagttttc	ctccaatttgc	agacgc	ggattctaa	agaaagcaag	ctggaaagggg	2460
tttcccttt	aaattctaga	aatgtgggt	ctcagccac	ttaattttgc	tcactcttaa	2520
aagcatttca	accaaagcc	ttcatttagg	atttgcatttgc	gagggcagga	gggattccct	2580
tactgttttta	agtgtgtatt	aattcttca	atttgcatttgc	ttatttagt	agtaacactgc	2640
tatgcacttag	gcactatttct	cggtttgttgc	gtacagcagg	gaacagcaca	gaccaaaatc	2700
tttgccttca	ctgagcttat	gggatagtgc	tgtgttgc	agtcaacat	attgtcaag	2760
tagaaaacaa	gtgtgttgtt	tttgcatttttgc	attatttttgc	cctgatagct	ggcccggtga	2820
tcatgtccat	tgaggagaag	atggaggcgt	atggccgttgc	catctatgtt	gcataatgtga	2880
cgtactgggg	ctctgactcg	gggtggggc	aaatgttcttgc	tttgggaat	tatttaatag	2940
tcctgaaaga	acatctcccg	gatagatgt	gttttgggt	tggaggag	gtggaaagga	3000
ggttaaaggt	aatggaatca	tcaaatca	gcaaaaggctc	tgggttgg	aggaaaagag	3060
attaatttcc	caaatttacca	gatttcatgt	gttttgggt	atgtggccc	agaccaaagg	3120
ctcgggagg	ttcttttgc	acaggaattt	gcctggtgc	tgtgaaattt	ttctcctctc	3180
atcaggttgc	ctatgttgc	acagcagaag	agctggaa	tcacttcat	gtctgtgg	3240
cagtcaacc	tgttaccata	ctgtgttgc	aatttgcatttgc	ccatccaaa	gtaaagtaa	3300
agggggat	gttgagat	tttgcatttgc	agtgatc	tagataaatt	atgtttata	3360
tttgagcagta	atttgcatttgc	tttgcatttgc	gttgcatttgc	gtcatttaag	atcatggcat	3420
taatgttgc	atattcagg	tttgcatttgc	atgttgcatttgc	aggccagata	acaaaaatg	3480
aggcttagt	tgggtgggt	tacgaaactag	aaaggggaggg	gcagcttcta	cttggccat	3540
tatggcata	ggaaatttgc	ggccgttgc	tcttatttttgc	acaaatttca	aagagtagt	3600
ggaaatttta	aaattttaat	gatttgcatttgc	gatttgcatttgc	ttccatatttgc	agaatttttgc	3660
acaaataaaaa	aatataacttgc	cattgttagcc	caaaacgc	catgcctgca	gttgcatttgc	3720
gacctgttgc	gtatttgcatttgc	cctcagagag	atacaatgc	aatttgcatttgc	aggtttgcgt	3780
atataagat	ctcagacaaa	gagtcgttgc	ggacttgc	ggccttagat	gagtcgttgc	3840
tttagaggaag	gcaaatca	gttgcatttgc	gttgcatttgc	gttgcatttgc	tttgcatttgc	3900
ctccaggttgc	cctttaaggc	tatcatttgc	tcatttgc	tcaggttgc	cccaaaaac	3960
accaacagac	caggcatc	cacaacagac	cggggttttgc	cacgagcc	ctaccgcgc	4020
cgaccacca	actacaac	ctccgc	cgatttgc	gtggttttaa	cagcaggccc	4080
cggggtcg	tctacagg	aggatagat	ggctgc	cttcccc	cctccgt	4140
gccccgtat	cttcctc	tctggc	ggaaacctcc	tccccccacc	cctcccccgt	4200
gtttcagga	actttgttgc	ctggcgttgc	aggttgc	aggttagtgc	aggccaggcc	4260
agaaggcagc	ctcatcatct	tttgc	agaaatttgc	gataagggt	gatccctcc	4320
tttgcatttgc	agaaaggcttcc	accccagcc	tttttttgc	ttggagttgg	ttggcatttgc	4380

aggtgtttgc ggacaaaact gggaggaaca gggcctccag gaagtgtaaa gcactgcttg	4440
gacatttgc acttttttcg gagttaggaa gggattgaag actgaacctc ccttggaaaga	4500
ataccagagg ctatgttagt gatcctccca acagccttgtt gggaggatt tgagataactt	4560
attcttatt tgagccagtc ttgcaagggtt aacttctcac tggccctagt gtggtnccca	4620
gtttttgcc ttgcttcaact tctgtctcta catttaataa gacgggttag gcatataaac	4680
cttggctttt cataagctt acctgcctat ccccaggagt tagggaggat ctatgtga	4740
aggccctagg gttaaaaaac tgtggaggac tgaaaaactg gataaaaagg gggtccttt	4800
ccttgcctt gtctctcaact cagatgcgt tcttttcgc cactgtttgg caaagtttc	4860
tgttaagccc ccctccccct gccccagttc tcccagggtgc gttactattt ctgggatcat	4920
ggggtcgggtt ttaggacact tgaacacttc ttttcccccc ttccttcac agtaactggg	4980
gcaggggcct acggggagggg gcttgtactg aactatctag tgatcacgtt aacacctaacc	5040
tctccttctt tcttccagggg gccgggctag agcgacatca tggtattccc cttactaaaa	5100
aaagtgtgta ttaggaggag agagaggaaa aaaagaggaa agaaggaaaa aaaaagaat	5160
aaaaaaaaaaa aaaaagaaaaaa acagaagatg accttgatgg aaaaaaaaaata tttttaaaaa	5220
aaaagatata ctgtggaaagg ggggagaatc ccataactaa ctgctgagga gggacgtgct	5280
ttggggagta ggggaaggcc cagggagtgcc ggcagggggc tgcttattca ctctgggat	5340
tcgcacatggc cacgtctcaa ctgcgcgaagc tgctgcctca tgttccctg ccccttcac	5400
cccttgggc ctgctcaagg gtaggtgggc gtgggtgtta ggagggtttt ttttaccag	5460
ggctctggaa ggacaccaaa ctgttctgt tgttacctt cctccctgtct ttcctcgcc	5520
tttacacagtc ccctcctgccc tgctcctgtc cagccagtc taccacccac cccacccctc	5580
tttctccggc tccctgcccc tccagattgc ctggtgatct atttgtttc ttttgtgtt	5640
tcttttctg tttttagtct ctttcttgc aggtttctgt agccggaaga tctccgttcc	5700
gctcccgccg gctccagtc aaattccccct tccccctggg gaaatgcact accttgttt	5760
ggggggttta ggggtgttt tgttttcag ttgtttgtt ttttgggttt tttttttcc	5820
tttgccctttt ttcccttttta tttggaggaa atgggagaa gtgggaacag ggaggtggaa	5880
ggtggattttt gtttattttt tttagctcatt tccaggggtg ggaattttt tttaatatgt	5940
gtcatgaata aagttgtttt tgaaaaataaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa	6000
aa	6002

<210> 4
 <211> 19
 <212> DNA
 <213> Artificial Sequence

<400> 4
 cgcaagtgc cgccttaga

19

<210> 5
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<400> 5
 acaagatggc gccggccccc cggc

24

<210> 6
 <211> 23
 <212> DNA
 <213> Artificial Sequence

<400> 6
 cgcaagtgc cgccttagag gtg

23