Chapitre 14. Espaces vectoriels, applications linéaires.

Première partie : espaces vectoriels

 \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

1 Espaces vectoriels

1.a Définition et vocabulaire

Définition:

Soit E un ensemble muni de deux lois :

• Une loi de composition interne notée $+: E \times E \rightarrow E$

 $(x,y) \mapsto x+y$

 $(\lambda, x) \mapsto \lambda.x$

On dit que (E, +, .) est un \mathbb{K} -espace vectoriel si

 \bullet (E,+) est un groupe commutatif, c'est-à-dire qu'on a les propriétés suivantes :

- la loi + est commutative :
- la loi + est associative :
- E admet un élément neutre pour +, unique, noté 0_E :
- Tout élément x de E admet un opposé pour +, noté -x:

 $oldsymbol{\circ}$ Les lois + et . vérifient aussi les 4 propriétés suivantes :

$$\forall (x, y) \in E^2, \forall (\lambda, \mu) \in \mathbb{K}^2,$$

- (i) $\lambda . (x+y) =$
- (ii) $(\lambda + \mu).x =$
- (iii) $(\lambda \times \mu).x =$
- (iv) 1.x =

Lorsqu'il n'y a pas d'ambiguïté sur les lois + et ., on dit juste "E est un \mathbb{K} -espace vectoriel".

On dit aussi que E est un espace vectoriel sur \mathbb{K} . Quand il n'y a pas d'ambiguïté sur \mathbb{K} , on dit juste "espace vectoriel".

Abréviation courante à l'oral et en TD : K-ev ou ev.

Vocabulaire:

- \bullet Les éléments de E sont appelés les vecteurs.
- $\bullet~$ Les éléments de $\mathbb K$ sont appelés les scalaires.
- 0_E est appelé le vecteur nul. Lorsqu'il n'y a pas d'ambiguïté sur E, on le note 0.

 $\underline{\wedge}$ Le scalaire est toujours devant le vecteur! Pour $x \in E$ et $\lambda \in \mathbb{K}$: $\lambda . x$ a un sens, pas $x . \lambda$

On abrège souvent en λx .

Premiers exemples de référence 1.b

 \bullet \mathbb{R} est un \mathbb{R} -espace vectoriel avec + l'addition naturelle sur \mathbb{R}

et .:
$$\mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

 $(\lambda, x) \mapsto \lambda \times x$

 $oldsymbol{\circ}$ De même, $\mathbb C$ est un $\mathbb C$ -espace vectoriel avec + l'addition naturelle sur $\mathbb C$

et .:
$$\mathbb{C} \times \mathbb{C} \to \mathbb{C}$$

 $(\lambda, z) \mapsto \lambda \times z$

 \bullet \mathbb{C} est aussi un \mathbb{R} -espace vectoriel!

 \bullet \mathbb{R}^2 , vu comme l'ensemble des vecteurs du plan muni de ses lois + et . naturelles, est un \mathbb{R} -espace

De même pour \mathbb{R}^3 vu comme l'ensemble des vecteurs de l'espace... Généralisons :

Définition:

Soit $n \in \mathbb{N}^*$. On muni \mathbb{K}^n d'une loi de composition interne + et d'une loi de composition externe . définies par :

Pour
$$x = (x_1, x_2, \dots, x_n) \in \mathbb{K}^n$$
 et $y = (y_1, y_2, \dots, y_n) \in \mathbb{K}^n$, pour $\lambda \in \mathbb{K}$, $x + y = \lambda . x = 0$

 $(\mathbb{K}^n,+,.)$ est un $\mathbb{K}\text{-espace}$ vectoriel.

Démonstration 1

 \bullet Soit Ω un ensemble quelconque (par exemple un intervalle I de \mathbb{R}).

On note $E = \mathcal{F}(\Omega, \mathbb{K})$ l'ensemble des fonctions de Ω dans \mathbb{K} (noté aussi \mathbb{K}^{Ω}).

On a des lois + et . naturelles : si f et g sont des éléments de E, autrement dit si ce sont des fonctions $f:\Omega\to\mathbb{K}$ et $g:\Omega\to\mathbb{K}$, on pose

 $(\mathcal{F}(\Omega,\mathbb{K}),+,.)$ est un $\mathbb{K}\text{-espace}$ vectoriel.

Démonstration 2

Remarque : lorsque $\Omega = \mathbb{N}$, on retrouve $\mathbb{R}^{\mathbb{N}}$ et $\mathbb{C}^{\mathbb{N}}$, l'ensemble des suites réelles et l'ensemble des suites complexes. Ainsi, munis des lois naturelles + et . sur les suites, ce sont des espaces vectoriels.

• Au chapitre 13, on a définit la somme de deux matrices de même format et la multiplication d'une matrice par un scalaire.

Muni de ces lois, $\mathcal{M}_{n,p}(\mathbb{K})$ est un \mathbb{K} -espace vectoriel.

Règles de calcul dans un K-espace vectoriel

Proposition:

Soit (E, +, .) un \mathbb{K} -espace vectoriel.

Pour tous vecteurs x et y de E et pour tous scalaires λ et μ :

a)
$$\lambda . x = 0_E \iff \lambda = 0$$
 ou $x = 0_E$

b)
$$(-\lambda).x = -(\lambda.x) = \lambda.(-x)$$

c)
$$\lambda . (x - y) = \lambda . x - \lambda . y$$

 $(\lambda - \mu) . x = \lambda . x - \mu . x$

Démonstration 3

 \bigwedge Que conclure lorsque $\lambda . x = \mu . x$?

De même, si $\lambda . x = \lambda . y$:

1.d Combinaisons linéaires

Définition:

Soit (E, +, .) un \mathbb{K} -espace vectoriel et $v_1, v_2, ..., v_p$ des vecteurs de E. On appelle <u>combinaison linéaires de $v_1, ..., v_p$ tout vecteur x tel que :</u>

Remarque: Certains λ_i peuvent être nuls (voire tous, auquel cas $x = 0_E$!).

Exemples:

- Avec p=1 vecteur : dire que x est combinaison linéaire de v_1 c'est dire que x s'écrit $x=\lambda.v_1$ avec $\lambda \in \mathbb{K}$. Cela se dit : x colinéaire à v_1 .
- Dans \mathbb{R}^3 , u=(1,1,2) est combinaison linéaire de v=(-1,-1,0) et w=(0,0,1) puisque
- Dans $\mathcal{M}_3(\mathbb{R})$,

$$M = \begin{pmatrix} a & 2c & b \\ 0 & a+b+c & 0 \\ b & 0 & a \end{pmatrix} =$$

• Dans \mathbb{R}^3 , soient u = (1, 1, 1), x = (1, 2, 3), y = (1, -1, 1). Le vecteur u est-il combinaison linéaire de x et de y?

Sous-espaces vectoriels 2

Définition, caractérisation, premières propriétés

Définition:

Soit (E, +, .) un \mathbb{K} -espace vectoriel.

On dit qu'un ensemble F est un sous-espace vectoriel de E si :

La dernière condition est la stabilité par combinaison linéaire ; cela revient à la stabilité par + et ., ou encore à :

Abréviation : sev.

Proposition:

Si F est un sous-espace vectoriel de E, alors

Démonstration 4

Lorsqu'on montre que F est un sev avec la méthode "vérification de la définition" 1 , pour montrer la deuxième condition $F \neq \emptyset$, on vérifie en général que $0_E \in F$.

Proposition:

Soit E un ev. E et $\{0_E\}$ sont des sev de E.

On les appelle "sev triviaux".

Proposition:

Soit E un K-ev et F un sev de E.

F est stable par combinaison linéaire d'un nombre quelconque de ses vecteurs, c'est-à-dire :

Démonstration 5

^{1.} On verra de nombreuses autres méthodes pour montrer qu'une partie de E est un sev.

2.b Exemples et contre-exemples

Pour savoir si une partie F d'un espace vectoriel E est un sev de E ou non, il est conseillé de commencer, au brouillon, par regarder si 0_E est dans F ou non :

$$\rightarrow \text{ Si } 0_E \notin F,$$

$$\rightarrow \text{ Si } 0_E \in F,$$

•
$$F = \{(x, y, z) \in \mathbb{R}^3 / x - y - z = 0\}$$

3
$$F = \{(x,y) \in \mathbb{R}^2 / y - 2x + 1 = 0\}$$

•
$$F = \{(x, y) \in \mathbb{R}^2 / y = \ln(1 + x^2)\}$$

$$F = \{(x, y, z) \in \mathbb{R}^3 / y - x^2 = 0\}$$

- \bullet L'ensemble F des suites convergentes de $\mathbb{K}^{\mathbb{N}}$ est un sev de $\mathbb{K}^{\mathbb{N}}$.
 - Démonstration 6

 \bullet Soit I un intervalle de \mathbb{R} . L'ensemble $\mathcal{C}^0(I,\mathbb{K})$ des fonctions définies et continues sur I à valeurs dans \mathbb{K} est un sev de $\mathcal{F}(I,\mathbb{K})$.

Démonstration 7

Idem pour $\mathcal{C}^{\infty}(I, \mathbb{K})$ et $\mathcal{C}^{n}(I, \mathbb{K})$ pour tout n.

• Au chapitre 13, on a vu que l'ensemble $D_n(\mathbb{K})$ des matrices diagonales de taille n à coefficients dans \mathbb{K} est stables par + et par .

Cela signifie que $D_n(\mathbb{K})$ est un sev de $\mathcal{M}_n(\mathbb{K})$.

Idem pour l'ensemble des matrices triangulaires supérieures de taille n à coefficients dans \mathbb{K} , l'ensemble des matrices symétriques de $\mathcal{M}_n(\mathbb{K})$, l'ensemble des matrices antisymétriques de $\mathcal{M}_n(\mathbb{K})$.

2.c Sous-espace vectoriel engendré

Proposition-définition:

Soit (E, +, .) un \mathbb{K} -espace vectoriel et $v_1, v_2, ..., v_p$ des vecteurs de E.

L'ensemble des combinaisons linéaires de v_1, v_2, \dots, v_p est noté $\text{Vect}(v_1, v_2, \dots, v_p)$:

$$Vect(v_1, v_2, \ldots, v_p) =$$

C'est un sev de E, appelé sev engendré par v_1, v_2, \ldots, v_p .

Démonstration 8

Exemples:

• On a une nouvelle preuve que $F = \{(x, y, z) \in \mathbb{R}^3 / x - y - z = 0\}$ est un sev de \mathbb{R}^3 :

Plus généralement, tout ensemble de la forme suivante sera un sev de \mathbb{K}^n :

7

•
$$F = \{(a+b, b, a-b) / (a, b) \in \mathbb{R}^2\}$$

•
$$F = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} / (a, b) \in \mathbb{C}^2 \right\}$$

• Soit $n \in \mathbb{N}^*$. L'ensemble des matrice diagonales de $\mathcal{M}_n(\mathbb{K})$ est

$$D_n(\mathbb{K}) = \left\{ \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix} \middle/ (\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{K}^n \right\}$$

_

On retrouve que $D_n(\mathbb{K})$ est un sev de $\mathcal{M}_n(\mathbb{K})$.

- Dans $\mathcal{F}(\mathbb{R}, \mathbb{R})$: au ch6, on a vu que les solutions de (E_1) : y' + xy = 0 sont les fonctions de la forme $x \mapsto \lambda e^{-\frac{x^2}{2}}$, avec $\lambda \in \mathbb{R}$.
- Dans $\mathcal{F}(\mathbb{R}, \mathbb{C})$: au ch6, on a vu que les solutions de (E_2) : y'' 2iy' y = 0 sont les fonctions de la forme $x \mapsto (\lambda x + \mu)e^{ix} = \lambda xe^{ix} + \mu e^{ix}$, avec $(\lambda, \mu) \in \mathbb{C}^2$.

Vocabulaire: Un sev engendré par un seul vecteur non nul s'appelle une <u>droite vectorielle</u>: Pour v_1 non nul, $\text{Vect}(v_1) = \{\lambda.v_1 \mid \lambda \in \mathbb{K}\}$, c'est l'ensemble des vecteurs <u>colinéaires</u> à v_1 . Cet ensemble est parfois $\mathbb{K}.v_1$.

8

Exemples:

- Dans $E = \mathbb{R}^3$, avec u = (1, 2, 3), Vect(u) =
- Dans $E = \mathbb{R}^{\mathbb{N}}$, et u la suite définie par : $\forall n \in \mathbb{N}, \ u_n = 2^n$

Définition:

Soit E un \mathbb{K} -ev et F un sev de F. On dit qu'une famille (v_1, v_2, \dots, v_p) de vecteurs de E est une famille génératrice de F si $F = Vect(v_1, v_2, \dots, v_p)$

Exemples:

- 1°) Pour $F = \{(x, y, z) \in \mathbb{R}^3 / x y z = 0\}$, on a trouvé F = Vect((1, 1, 0), (1, 0, 1)), donc que ((1,1,0),(1,0,1)) est une famille génératrice de F. Mais il y en a d'autres :
- 2°) Trouvons une famille génératrice de \mathbb{R}^2 :

 Λ Il y a des ev E sans famille génératrice finie, c'est-à-dire qu'on ne peut pas les écrire $\text{Vect}(v_1,\ldots,v_p)$ avec v_1, \ldots, v_p famille finie de vecteurs de E.

Par exemple, l'ensemble $\mathcal{F}(\mathbb{R},\mathbb{R})$ des fonctions de \mathbb{R} dans \mathbb{R} , l'ensemble des suites réelles...

Proposition:

Soit E un \mathbb{K} -ev, F un sev de E, et v_1, v_2, \ldots, v_p des vecteurs de F. Alors $Vect(v_1, v_2 \dots, v_p) \subset F$.

Démonstration 9

Intersections de sous-espaces vectoriels

Proposition:

Soit E un \mathbb{K} -ev et F, G des sev de E. Alors $F \cap G$ est un sev de E.

Démonstration 10

Ceci donne une ttroisième méthode pour montrer qu'une partie H de E est un sev de E: l'écrire sous la forme $H = F \cap G$ avec F et G deux sev connus de E.

 \triangle Cela ne marche pas, en général, pour $F \cup G$: ce n'est pas un sev de E en général! Contre-exemple : $E = \mathbb{R}^2$, F = Vect((1,0)), G = Vect((0,1)).

Une récurrence facile sur $n \in \mathbb{N}^*$ permet d'obtenir :

Proposition:

Soit
$$E$$
 un \mathbb{K} -ev et F_1, \ldots, F_n des sev de E .
Alors $F_1 \cap F_2 \cap \cdots \cap F_n$ (noté $\bigcap_{i=1}^n F_i$) est un sev de E .

Exemple d'application :

Notons F l'ensemble des solutions d'un système linéaire <u>homogène</u> $(S): \left\{ \begin{array}{l} a_{1,1}x_1+\cdots+a_{1,p}x_p=0\\ \vdots\\ a_{n,1}x_1+\cdots+a_{n,p}x_p=0 \end{array} \right.$

Notons F_i l'ensemble des solutions de la ième équation :

$$F_i = \{(x_1, \dots, x_n) \in \mathbb{K}^n / a_{i,1}x_1 + \dots + a_{i,p}x_p = 0\}$$

3 Sommes de sous-espaces vectoriels

3.a Somme de deux sous-espaces vectoriels

Proposition-définition:

Soient F et G deux sev d'un \mathbb{K} -ev E. On définit la somme F+G comme l'ensemble :

C'est un sev de E.

Démonstration 11

On définit plus généralement la somme $F_1+F_2+\cdots+F_n$ de n sev de E ; c'est un sev de E.

Exemple : Dans $E = \mathbb{R}^3$, on pose $F = \text{Vect}\,((0,1,0))$ et $G = \text{Vect}\,((0,3,1))$. Déterminons F + G :

Illustration:

Retenir: $Vect(v_1, ..., v_p) + Vect(w_1, ..., w_q) =$

Remarque : $F \subset F + G$ car

Somme directe et sous-espaces vectoriels supplémentaires **3.b**

Définition:

Soient F et G des sev d'un \mathbb{K} -ev E.

On dit que la somme F+G est directe, ou bien que F et G sont en somme directe, si la décomposition de tout vecteur de F+G comme somme d'un vecteur de F et d'un vecteur de G est unique, autrement dit si :

Si F et G sont en somme directe, lorsqu'on manipule la somme F+G, on la note $F\oplus G$.

Proposition:

Soient F et G des sev d'un \mathbb{K} -ev E.

F et G sont en somme directe si et seulement si

Démonstration 12

Par exemple, dans \mathbb{R}^3 , cherchons si les sev suivants sont en somme directe ou non :

• les droites F = Vect((0, 1, 0))et G = Vect((0, 3, 1))

• les plans $P = \{(x, y, z) \in \mathbb{R}^3 / x = 0\}$ et $Q = \{(x, y, z) \in \mathbb{R}^3 / x + y = 0\}$

Démonstration 13

Définition:

Soient F et G des sev d'un \mathbb{K} -ev E.

On dit que F et G sont supplémentaires dans E si

Reprise des exemples précédents :

- Cependant P et $\Delta = \text{Vect}((1,1,1))$ sont supplémentaires dans \mathbb{R}^3 .
- $D_1 = \text{Vect}((1,1))$ et $D_2 = \text{Vect}((0,1))$ sont supplémentaires dans \mathbb{R}^2 .

Démonstration 14

⚠ Ne pas confondre "supplémentaire" (algèbre linéaire) et "complémentaire" (théorie des ensembles). \bigwedge Ne pas croire qu'un sev F a un unique supplémentaire dans E; il en a en général une infinité! Nous verrons tout à l'heure un autre supplémentaire de P dans \mathbb{R}^3 .

Prouver que $F \cap G = \{0\}$ est quasiment toujours facile; et dans les exemples traités jusqu'à présent, prouver que F + G = E était relativement simple (et cela revient toujours à montrer que $E \subset F + G$, car l'autre inclusion est toujours vraie).

Comment faire quand montrer $E \subset F + G$ (c'est-à-dire décomposer un vecteur quelconque de E comme somme d'un vecteur de F et d'un vecteur de G) n'est pas évident? On ne cherchera pas à montrer $F \cap G = \{0\}$ et F + G = E, on fera plutôt une analyse-synthèse à la place, à l'aide du théorème de caractérisation suivant :

Théorème:

Soient F et G des sev d'un \mathbb{K} -ev E.

F et G sont supplémentaires dans E si et seulement si tout vecteur de E s'écrit de façon unique comme somme d'un vecteur de F et d'un vecteur de G. Autrement dit :

Démonstration 15

Exemples:

• Dans $E=\mathbb{R}^3$, montrer que $P=\left\{(x,y,z)\in\mathbb{R}^3\ /\ x=0\right\}$ et $D=\mathrm{Vect}\left((1,2,-1)\right)$ sont supplémentaires.

Démonstration 16

• Dans $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$, on pose F l'ensemble des fonctions de E constantes, et $G = \{ f \in \mathbb{E} \ / \ f(0) = 0 \}$. Montrer que F et G sont des sev supplémentaires dans E.

Démonstration 17

Plan du cours

1	Espaces vectoriels		1
	1.a	Définition et vocabulaire	1
	1.b	Premiers exemples de référence	2
	1.c	Règles de calcul dans un \mathbb{K} -espace vectoriel	3
	1.d	Combinaisons linéaires	4
2	Sous-espaces vectoriels		5
	2.a	Définition, caractérisation, premières propriétés	5
	2.b	Exemples et contre-exemples	6
	2.c	Sous-espace vectoriel engendré	7
	2.d	Intersections de sous-espaces vectoriels	9
3	Sommes de sous-espaces vectoriels		10
	3.a	Somme de deux sous-espaces vectoriels	10
	3.b	Somme directe et sous-espaces vectoriels supplémentaires	11