BODE DE FINALES

Final de Mica:

VERDADERO, si respondió FALSO, indique el VALOR CORRECTO y si de los valores propuestos ninguno corresponde a sus cálculos, elija NINGUNO.

$$F_{(P)} = \frac{35 * (P+60)^{2} * (P+850)^{2} (P+4500)}{P^{2} * (P+350) * (6P^{2}+10500 P+73500000)}$$

	taranga a managa	
CONSIGNAS	VERDADERO	VALOR
	Ó FALSO	CORRECTO
1) Si se realiza el escaleo de frecuencia, el		
diagrama de Bode de Módulo y de Fase, se	FALSO \$	NINGUNO \$
oodrá trazar correctamente con w _{MIN} = 1		*
[rad/seg] y w _{MAX} = 10000 [rad/seg].	•	
2) Si se realiza el escaleo de amplitud de la		
Fase, el diagrama de Bode de Fase, se	VERDADERO \$	VERDADERO + X
oodrá trazar correctamente con fase	×	VERDADERO -
nínima -90° y fase máxima +90°.		
B) El Diagrama de Bode de Módulo a bajas	FALSO •	
recuencias tendrá una pendiente de –40	FALSO T	-40 dB/dec
dB/octava.	~	
4) El Diagrama de Bode de Fase a bajas	FALSO ₽	
recuencias tendrá una pendiente de −180		0"/dec
ldécada.	~	
5) El Diagrama de Bode de Módulo a <u>altas</u>	VERDADERO ‡	
frecuencias tendrá una pendiente de 0	VERDADERO ¥	VERDADERO
dB/octava.	~	
5) El valor de la asíntota de la constante total	FALSO #	
(KTE _{TOTAL}) será de + 46,437 dB.		84,041 dB →
	*	
7) El diagrama Asintótico de Bode de Módulo tendrá una zona plana ó meseta con	VERDADERO \$	VERDADERO \$
pendiente de 0 dB/dec entre 60 < w < 350	VERDADERO +	VERDADERO
[rad/seg].	~	~
3) La función de 2º grado del denominador		
liene una pulsación natural ωο = 2750	FALSO •	3500 [rad/seg] 🛊 🗸
[rad/seg]	~	
2) La función de 2º grado del denominador	FALSO \$	
tiene un factor de amortiguamiento $\zeta = 1,5$		ζ = 0,25 ♦ ✔
ž	*	
10) En la función de 2º grado del	VEDDADEDO	
denominador, será necesario utilizar la tabla	VERDADERO \$	VERDADERO
o curvas de corrección de 2º al trazar al	✓	
fiagrama de Bode de módulo y de fase.		

Dado el siguiente diagrama de Bode de Módulo determine la función de transferencia F(P) y el valor del pedestal marcado .

B) Raíces del numerador :

C) Raíces del denominador :

D) Indique el valor en dB que tendrá el pedestal indicado = 28,943 ✓ [dB]

Dada la siguiente función de transferencia F_(P) , responda si las consignas son VERDADERAS o FALSAS, si respondió VERDADERO en VALOR CORRECTO elija VERDADERO, si respondió FALSO, indique el VALOR CORRECTO y si de los valores propuestos ninguno corresponde a sus cálculos, elija NINGUNO.

$$F_{(P)} = \frac{17.5 * (P+30)^{2} * (P+650)^{2} (P+3650)}{P^{2} * (P+425) * (5P^{2}+8250 P+70312500)}$$

CONSIGNAT	VERDADER	0	VALOR
CONSIGNAS	Ó FALSO		CORRECTO
1) Si se realiza el escaleo de frecuencia, el diagrama de Bode de Módulo y de Fase, se podrá trazar correctamente con w _{MIN} = 1 [rad/seg] y w _{MAX} = 10000 [rad/seg] .	FALSO	~	ωmin=0,1 y wmax=100000
2) Si se realiza el escaleo de amplitud de la Fase, el diagrama de Bode de Fase, se podrá trazar correctamente con fase mínima -90° y fase máxima +90°.	FALSO	~	-180° y +180° ✓
3) El Diagrama de Bode de Módulo a bajas frecuencias tendrá una pendiente de –40 dB/octava.	FALSO	•	-40 dB/dec ✔
4) El Diagrama de Bode de Fase a bajas frecuencias tendrá una pendiente de −180 °/década.	FALSO	~	0°/dec
5) El Diagrama de Bode de Módulo a <u>altas</u> f <u>recuencias</u> tendrá una pendiente de 0 dB/octava.	FALSO	×	NINGUNO
6) El valor de la asíntota de la constante total (KTE _{TOTAL}) será de + 76,437 dB.	FALSO	~	58,199 dB
7) El diagrama Asintótico de Bode de Módulo tendrá una zona plana ó meseta con pendiente de 0 dB/dec entre 30 < w < 425 [rad/seg].	VERDADERO	~	VERDADERO 🗸
8) La función de 2º grado del denominador tiene una pulsación natural ωο = 2750 [rad/seg]	FALSO	~	3750 [rad/seg]
9) La función de 2º grado del denominador tiene un factor de amortiguamiento ζ = 0,9	FALSO	~	ζ = 0,22
10) En la función de 2º grado del denominador, será necesario utilizar la tabla o curvas de corrección de 2º al trazar al diagrama de Bode de módulo y de fase.	VERDADERO	~	VERDADERO

FFianl Rojas:

-II

'.p

el

Dada la siguiente función de transferencia F_{IP)} , responda si las consignas son VERDADERAS o FALSAS, si respondió VERDADERO en VALOR CORRECTO elija VERDADERO, si respondió FALSO, indique el VALOR CORRECTO y si de los valores propuestos ninguno corresponde a sus cálculos, elija NINGUNO.

$$F_{(P)} = \frac{75*(P+65)^2*(P+820)^2(P+5400)}{P^2*(P+610)^*(5P^2+4575P+70312500)}$$

CONSIGNAS	VERDADERO Ó FALSO	VALOR CORRECTO
1) Si se realiza el escaleo de frecuencia, el diagrama de Bode de Módulo y de Fase, se podrá trazar correctamente con w _{MIN} = 1 [rad/seg] y w _{MIX} = 10000 [rad/seg] .	FALSO # •	wmin=0.1 y wmun=100000 *
2) Si se realiza el escaleo de amplitud de la Fase, el diagrama de Bode de Fase, se podrá trazar correctamente con fase mínima -90° y fase máxima +90°.	FALSO +	-180° y +180° *
3) El Diagrama de Bode de Módulo a bajas frecuencias tendrá una pendiente de −40 dB/octava.	FALSO #	-40 dB/dec
4) El Diagrama de Bode de Fase a bajas frecuencias tendrá una pendiente de −180 °/década.	FALSO :	0"/dec +
5) El Diagrama de Bode de Módulo a <u>altas</u> fr <u>ecuencias</u> tendrá una pendiente de 0 dB/octava.	FALSO # X	NINGUNO * x
6) El valor de la asintota de la constante total (KTE _{TOTAL}) será de + 76,437 dB.	FALSO ± 🗸	88,570 cm ± 🗸
 El diagrama Asintótico de Bode de Módulo tendrá una zona plana ó meseta con pendiente de 0 dB/dec entre 65 < w < 610 (rad/seg). 	MERDADERO *	VERDAGERO +
8) La función de 2º grado del denominador tiene una pulsación natural wo = 2750 (rad/seg)	FALSO # -	3750 [rad/heg] # 🗸
9) La función de 2º grado del denominador tiene un factor de amortiguamiento ζ = 0,61	FALSO =	€ = 0,122 + 🗸
10) En la función de 2º grado del denominador, será necesario utilizar la tabla o curvas de corrección de 2º al trazar al diagrama de Bode de módulo y de fase.	VERDADERO + -	VERDADERO + ✓

Examen Final Modelo 1:

TEMA 3: Dado el siguiente diagrama de Bode de Módulo determine la funcion de transferencia.

P	P2	P3	P+1	P+2	P+4	P+8	P+10	
P+20	P-40	P+80	P+100	P-200	P+400	P-800	P+1000	
P-200	P-400	P+800	P-1000	P-2000	P+4000	P-8000	P+10000	
P	P2	P ³	P+1	P-2	P+4	P+8	P-10	
P+20	P+40	P+80	P+100	P+200	P+400	P+800	P-1000	
P+200	P-400	P+800	P+1000	P+2000	P+4000	P+8000	P-10000	
_		10	20	30	45	70	100	150
	P+200 P P+20	P+20 P+40 P+200 P+400 P P+20 P+40	P+20 P+40 P+80 P+200 P+400 P+800 P P+2 P*80 P+20 P+40 P+80 P+20 P+40 P+80 P+200 P+400 P+800	P+20 P+40 P+80 P-100 P+200 P+400 P+800 P-1000 P P+800 P-1000 P P*800 P+1000 P+20 P+40 P+80 P+100 P+200 P+400 P+800 P+1000	P+20 P+40 P+80 P+100 P-200 P+200 P+400 P+800 P-1000 P-2000 P P² P³ P+10 P-2000 P+20 P+40 P+80 P+10 P+200 P+20 P+400 P+80 P+100 P+200 P+200 P+400 P+800 P+1000 P+2000	P+20 P+40 P+80 P+100 P+200 P+400 P+200 P+400 P+800 P-1000 P-2000 P+4000 P P+400 P+800 P+1000 P+2000 P+4000 P+20 P+40 P+80 P+100 P+200 P+400 P+200 P+400 P+800 P+1000 P+2000 P+4000	P+20	P+20

Final 2:

Trazar diagrama de Bode de magnitud y de fase, de la siguiente función de transferencia.

$$F_{(P)} = \frac{(P+3)^3 * (P+10) * (P+2000) * (P+50000)}{P^2 * (P+100)^2 * (P^2+200P+1000000)}$$

Final Modelo 4:

- 4. DIAGRAMA DE BODE.
 - a. Trazar diagrama de Bode de módulo y fase.
 - b. Determinar el valor en dB de la constante total y para w infinito.

$$gl(s) = \frac{20(s^2 + 2s + 1)(s^2 + 1000s + 2,5e+05)(s^2 + 1010s + 1e+04)}{s^2(s+50)(s^2 + 60s + 1e+04)(s+5000)}$$

FINAL 6:/

FINAL 22/09/2010

atrasa la tase de la tensión de salida B_{OUT} con respecto a la tensión de entrada E_{IN}. Marque con X donde corresponda.

ATENÚA_{∞→0} [🎾] NO ATENÚA_{∞→0} []

ATRASA[] ADELANTA

TEMA 2: Para la siguiente función de transferencia, indique: pendientes del diagrama asintótico de Bode de Módulo y de Fase para frecuencias bajas y altas.

 $F_{(P)} = \frac{20*(P+2)^2*(P+300)^2}{P^3*(P+20)*(P^2+8000P+20000)} < \frac{1}{\sqrt{N}}$

	MÓDULO	Pendiente de la Asintota en [dB/ década]								1-1/41-
1	Bajas frecuencias	-40	-20	-10	0	+10	+20	+40	WHITE COME	به مسما
١	Altas frecuencias		-20	-15	0	+15	+20	+40	-40	
,							·			1

 PASE
 Pendiente de la Asintota (°/década)

 Bajas frecuencias
 -90
 -50
 -45
 +45
 +50
 +90

 Altas frecuencias
 -180
 -90
 -45
 +45
 +90
 +180

TEMA 3: En la siguiente funcion $\mathbb{F}_{(l')}$, indique el valor del factor de amortiguamiento y de la puisación natural o de resonancia que corresponde a la función de 2^{DO} grado del denominador. Indique si se deberá

 $F_{(P)} = \frac{25 * (P + 3500) * (P + 5500)}{30(P^2 + 18900 P + 58.8 * 10)}$

usar la tabla de corrección, si se traza el diagrama de Bode asintótico de Módulo y de Fase. Indique el valor en dB que tendrá la asíntota de la constante total, al trazar el diagrama asintótico de Módulo.

	ξ	6,750	1,255	0,325	0,455	0,525	1	0,875	0,225	7
	დ _ე	1350,34	2449,99	3500,05	7668,11	2850,00	100:000	8854,99		1,~
	CORRIGE OTABLA	441214	·ИО	N/S		`.	4-1			_1
	YF				·					
i	Rte _{TOTAL} [dB]	17,348	19,438	18/3/2011	-21,468	15,318	-8,184	17,987] ~

TEMA 4: Dada la siguiente gráfica incompleta de Nyquist que corresponde a la parte de frecuencias positivas, de una función $G_{(n)}^*H_{(n)}$, complete el diagrama para las frecuencias negativas y cierre la curva sabiendo que la función tiene 3 polos en el origen. Indique Numero y Signo de los rodeos a (-1 + j0) y si la función sera estable, inestable o no se sabe por método de Nyquist.

US 1500 5500

	ALUMNO :	PREN	MA,	sebastian	
CONSIGNAS	· /1,	V	F	Valor correcto?	١.
Si se realiza el escaleo de amplitud de la Fase, el diagrama de Bode trazar correctamente con fase mínima -90° y fase máxima +90°.	de Fase, se podrá		×	-150/490	/
El Diagrama de Bode de Módulo a <u>bajas (recuencias</u> tendrá una pe —40 dB/octava.			X	Light Herelo	-
El Diagrama de Bode de Faso a <u>bajas frecuencias</u> tendrá una pend ~180 %década.		W	X	O Tolecodo.	
El Diagrama de Bode de Médulo a <u>altas frecuencias</u> tendrá una pe 0 dB/década y um vator de 23,5218 dB.	endiente de (X	X	\$,46 dB	12
El Dingrama de Bode de Fase a <u>altas frecuencias</u> tendrá valor de -	4.1.1		K	63	
El valor de la asintota de la constante total (KTE _{TOTAL}) será de		K	×	79537dB	12
El diagrama Asintótico de Bode de Médulo tendrá una zona plana c 0 dB/dec entre 15 < ω < 150 [rad/seg].	on pendiente de	X			/
La función de 2º grado del denominador tiene un factor de amortigu			×	0.02.5	-
En la función de 2º grado del denominador, <u>no será necesario utili</u> de corrección de 2º al trazar al diagrama de Bode de módulo y de fa	zar la tabla o curvas se.	X	×	Debe	F

FINAL 22/09/2010

TEMA 2: Para la siguiente función de transferencia, indique: pendientes del diagrama asintótico de Bode de Módulo y de Fase para frecuencias bajas y altas.

$$F_{(P)} = \frac{20 * (P+2)^2 * (P+300)^2}{P^3 * (P+20) * (P^2+8000P+20000)}$$

		····						
MODULO								
Bajas frecuencias	-40	-20	-10	0	+10	+20	+40	with the second
Altas frecuencias	-3 <i>5</i>	-20	-15	0	+15		+40	-40
		•••••••••••••••••••••••••••••••••••••••	·					

FASE		Pendiente de la Asintota [º/década]							
Bajas frecuencias	-90	-50	-45	3666621	+45	+50	+90		
Altas frecuencias	-180	-90	-45	1770777	+45	+90	+180		,
v.								ار,ا	

 $\underline{\mathbf{TEMA~3:}}$ En la siguiente funcion $F_{(P)}$, indique el valor del factor de amortiguamiento y de la pulsación natural o de resonancia que corresponde a la función de 2^{DO} grado del denominador. Indique si se deberá

 $F_{(P)} = \frac{25 * (P + 3500) * (P + 5500)}{30 (P^2 + 18900 P + 58.8 * 10)}$

usar la tabla de corrección, si se traza el diagrama de Bode asintótico de Módulo y de Fase. Indique en dB que tendrá la asíntota de la constante total, al trazar el diagrama asintótico de Módulo.

			,,				<u> 1945 - John Start</u>		
ξ	6,750	1,255	0,325	0.455	0.525	1	0.875	0,225	
Ø0	1350.34	2449 99	3500,05	7668 11	2850.00	100,000	0964.00		
CORRIGE 6/TABLA	WANTEN IV	310		7009,11	2000,00	Track Ashor	0834,99		
COLGGEOTABLA	M. HOXXXX	-140	N/S						
Kteroral [dB]	17,348	19 438	1202821	-21 468	15 318	0 104	17 007		^
102170 1232	1.2.32.10	~~,	(AA)555/A	-2,1,400	12,210	1-0,104	17,987	Ĺ *	

FINAL 16/12/09

TEMA 4: Dada la siguiente función de transferencia $F_{(P)}$, responda si las consignas son Verdaderas (V) o Falsas (F), si respondió Falso, cuando sea posible indique al Valor Correcto.

F'	$55*(P+35)^2*(P+800)$) ²
$P^{2} * (P)$	$+300)*(4P^2+2500P+$	6250000)

	cuando sea posible, indique el Valor Correcto.	<u> </u>		001 10230000)	T V
	CONSIGNAS	. v	Ϋ́	Valor correcto?	• •
1	Si se realiza el escaleo de frecuencia, el diagrama de Bode de Módulo y de Fase, se		100	·	alian esta
į	podrá trazar correctamente con ω _{Min} = 0,1 [rad/seg] y ω _{MAX} = 1000 [rad/seg].	١.	X	WHAR = 10000	Woman

CONSIGNAS	l v	1 100		4
Si se realiza el escaleo de amplitud de la Fase, el diagrama de Bode de Fase, se podrá trazar correctamente con fase mínima -180° y fase máxima 180°.	T V	X	Valor correcto?	P2-180°
El Diagrama de Bode de Módulo a <u>bajas frecuencias</u> tendrá una pendiente de —40 dB/octava.	X	X	-402B/ec	
El Diagrama de Bode de Fase a <u>bajas frecuencias</u> tendrá una pendiente de -180 °/década.	1	X	6°/04c	
El Diagrama de Bode de módulo a <u>altas frecuencias</u> tendrá una pendiente de —40 dB/década.		X	ZON BYAL	
El Diagrama de Bode de Fase a <u>altas frecuencias</u> tendrá valor de ~90°.		X	-180°(-270)	Mul.
El valor de la asintota de la constante total (KTE _{TOTAL}) será de +34,807 dB.		X	27,23 JB	3
El diagrama Asintótico de Bode de Módulo tendrá una zona plana con pendiente de 0 dB/dec entre 35 < ω > 300 [rad/seg].	X	7 .	140	
La función de 2° grado del denominador tiene un factor de amortiguamiento ξ =0,5	-	X	0.25	50.Jer
En la función de 2º grado del denominador, no será necesario utilizar la tabla o curvas de corrección de 2º al trazar al diagrama de Bode de módulo y de fase.	 	X		6/