

Generating Systems Biology Markup Language Models from the Synthetic Biology Open Language

Nicholas Roehner and Chris J. Myers IWBDA 2014

1 Introduction

- A recent proposal [4] for the next version of SBOL [1] enables its qualitative genetic designs to refer to mathematical models written in other standards such as SBML [2].
- To facilitate interdisciplinary collaboration, software tools are needed to help automate the process of creating quantitative models based on qualitative designs.

• The methodology presented here is implemented in the software tool **iBioSim** and enables generation of quantitative SBML models from qualitative SBOL modules.

2 SBOL for LacI Inverter

Under the proposed SBOL data model, the function of the LacI inverter can be described using a SBOL module that:

- Instantiates the DNA, protein, and small molecule components of the LacI inverter.
- Asserts the regulatory, gene expression, and general binding interactions between the component instantiations of the LacI inverter.

3 SBML for LacI Inverter

Under the data model for Level 3 Version 1 of SBML, the function of the LacI inverter can described using a SBML model that:

- Includes the chemical species and reactions of the LacI inverter.
- Supplies kinetic rate laws for these reactions to facilitate simulation and mathematical analysis of the LacI inverter.

4 Model Generation

- 1. For each protein, small molecule, and complex instantiated by the SBOL module:
- (a) Add a species, s, to the SBML model.
- (b) Add a degradation reaction, r_s , with a mass-action rate law of the form below to the SBML model.

$$rate(r_s) = k_d s$$

- 2. For each genetic production interaction with promoter p in the SBOL module:
- (a) Add a promoter species, p, to the SBML model.
- (b) Add a genetic production reaction, r_p , to the SBML model and p to the list of modifiers for r_p .
- (c) If the promoter is repressed or activated in a repression or activation interaction, add the corresponding set of repressor species, Rep(p), and the corresponding set of activator species, Act(p), to the list of modifiers for r_p .
- (d) If one or more proteins participate as products in the interaction, add the corrsponding species to the list of products for r_p .
- (e) Add a Hill function rate law of the form below to r_p .

$$rate(r_p) = \begin{cases} \frac{n_p k_o n_g K_o n_r}{1 + K_o n_r + \sum\limits_{s_r \in \text{Rep}(p)} (K_r s_r)^{n_c}} & \text{if } |\text{Act}(p)| = 0\\ \frac{n_p k_b n_g K_o n_r + n_p k_a n_g K_{oa} n_r \sum\limits_{s_a \in \text{Act}(p)} (K_a s_a)^{n_c}}{1 + K_o n_r + \sum\limits_{s_r \in \text{Rep}(p)} (K_r s_r)^{n_c} + K_{oa} n_r \sum\limits_{s_a \in \text{Act}(p)} (K_a s_a)^{n_c}} & \text{otherwise} \end{cases}$$

- 3. For each non-covalent binding interaction with product s in the SBOL module:
- (a) Add a reversible non-covalent binding reaction, r_s , with product species s to the SBML model.
- (b) Add the reactants of the interaction, React(s), to the list of reactants for r_s .
- (c) Add a mass-action rate law of the form below to r_s .

$$rate(r_s) = k_{c_f} K_c^{|React(s)|-2} \prod_{s' \in React(s)} s' - k_{c_r} s$$

The SBML models generated by this methodology are similar to the genetic circuit models generated in [3].

Default Parameters for SBML Kinetic Laws

Parameter	Symbol	Value	Units
Rate of degradation	k_d	0.0075	$\frac{1}{sec}$
Stoichiometry of production	n_p	10	unitless
Open complex production rate	k_o	0.05	$\frac{1}{sec}$
Basal production rate	k_b	0.0001	$\frac{1}{sec}$
Activated production rate	k_a	0.25	$\frac{1}{sec}$
Promoter count	n_g	2	molecule
RNApol binding equilibrium	K_o	0.033	$\frac{1}{molecule}$
Activated RNApol binding equilibrium	K_{oa}	1	$\frac{1}{molecule}$
RNApol count	n_r	30	molecule
Repression binding equilibrium	K_r	0.5	$\frac{1}{molecule}$
Activation binding equilibrium	K_a	0.0033	$\frac{1}{molecule}$
Stoichiometry of binding	n_c	2	unitless
Forward non-covalent binding rate	k_{c_f}	0.05	$\frac{1}{molecule*sec}$
Non-covalent binding equilibrium	K_c	0.05	$\frac{1}{molecule}$
Reverse non-covalent binding rate	k_{c_r}	1	$\frac{1}{sec}$

5 Discussion

- Other rule sets can be developed for generating a variety of models in different standards for different design tasks.
- SBML kinetic laws generated by this methodology are populated with default parameters—in the future, SBOL could store these parameters.

6 Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. CCF-1218095. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

References

- [1] M. Galdzicki et al. SBOL: A community standard for communicating designs in synthetic biology. *Nat. Biotechnol.*, 32(6), 2013.
- [2] M. Hucka et al. The Systems Biology Markup Language (SBML): a medium for representation and exchange of biochemical network models. *Bioinform.*, 19(4):524–531, 2003.
- [3] N. Nguyen, C. Myers, H. Kuwahara, C. Winstead, and J. Keener. Design and analysis of a robust genetic Muller C-element. *J. Theor. Biol.*, 264(2):174–187, 2010.
- [4] N. Roehner, E. Oberortner, M. Pocock, J. Beal, K. Clancy, C. Madsen, G. Misirli, A. Wipat, H. Sauro, and C. Myers. A proposed data model for the next version of the Synthetic Biology Open Language. *To appear in ACS Synth. Biol.*