## 18.06SC Unit 3 Exam



- 1 (34 pts.) (a) If a square matrix A has all n of its singular values equal to 1 in the SVD, what basic classes of matrices does A belong to? (Singular, symmetric, orthogonal, positive definite or semidefinite, diagonal)
  - (b) Suppose the (orthonormal) columns of H are eigenvectors of B:

$$H = \frac{1}{2} \begin{bmatrix} 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \end{bmatrix} \qquad H^{-1} = H^{T}$$

The eigenvalues of B are  $\lambda = 0, 1, 2, 3$ . Write B as the product of 3 specific matrices. Write  $C = (B + I)^{-1}$  as the product of 3 matrices.

(c) Using the list in question (a), which basic classes of matrices do B andC belong to? (Separate question for B and C)

a) SyD 
$$M = U \ge V$$
  $M^T = V^T U^T$ 
 $M = U V$   $M^T = V^T U^T U V$ 
 $= I$ 
 $\Rightarrow M \text{ is orthogonal.}$ 
 $C = (B+I)^{-1}$   $(B+I)^{-1} = (B+I)^{-1}$ 
 $C = (B+I)^{-1}$   $(B+I)^{-1} = (B+I)^{-1}$ 
 $C = (B+I)^{-1}$   $(B+I)^{-1} = \lambda \lambda$ 
 $C = (B+I)^{-1}$   $(B+I)^{-1} + \lambda \lambda$ 
 $C = (B+I)^{-1}$   $(B+I)^{-1}$   $(B$ 

C > symmotric positive definite.

2 (33 pts.) (a) Find three eigenvalues of A, and an eigenvector matrix S:

$$A = \begin{bmatrix} -1 & 2 & 4 \\ 0 & 0 & 5 \\ 0 & 0 & 1 \end{bmatrix}$$

- (b) Explain why  $A^{1001} = A$ . Is  $A^{1000} = I$ ? Find the three diagonal entries of  $e^{At}$ .
- (c) The matrix  $A^{T}A$  (for the same A) is

$$A^{\mathrm{T}}A = \begin{bmatrix} 1 & -2 & -4 \\ -2 & 4 & 8 \\ -4 & 8 & 42 \end{bmatrix}.$$

A= 000 T

How many eigenvalues of  $A^{T}A$  are positive? zero? negative? (Don't compute them but explain your answer.) Does  $A^{\mathrm{T}}A$  have the same eigenvectors as A?

eigenvectors as 
$$A$$
?

$$(A - \lambda \vec{J}) = \begin{bmatrix} -1 - \lambda & 2 & 4 \\ -\lambda & 5 & 1 \end{bmatrix} \qquad \text{det}(A - \lambda \vec{J}) = \lambda (1 + \lambda)(1 - \lambda)$$

$$\lambda_1 = 1, \lambda_2 = -1, \lambda_3 = 0$$

$$\lambda_1 = 1, \lambda_2 = -1, \lambda_3 = 0$$

$$\lambda_2 = \begin{bmatrix} -1 & 4 & 1 \\ 1 & 5 & 1 \end{bmatrix} \qquad N(A + \vec{I}) = \begin{bmatrix} 2 & 4 & 1 \\ 1 & 5 & 1 \end{bmatrix}$$

$$\lambda_2 = \begin{bmatrix} -1 & 4 & 1 \\ 1 & 5 & 1 \end{bmatrix} \qquad \lambda_3 = N(A) = \begin{bmatrix} 2 & 1 \\ 1 & 5 & 1 \end{bmatrix}$$

$$\lambda = \begin{bmatrix} -1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \qquad S = \begin{bmatrix} 7 & 1 & 2 \\ 5 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \qquad b) A^{1001} = \lambda_1 \lambda_1^{1001} = \lambda_1 \lambda_1^{1001} = \lambda_1^{1000} = \lambda$$

$$e^{kt} = \left[ e^t e^{-t} \right]$$

ATA= -2 4 8 7

ATA= QNQT

- **3 (33 pts.)** Suppose the n by n matrix A has n orthonormal eigenvectors  $q_1, \ldots, q_n$  and n positive eigenvalues  $\lambda_1, \ldots, \lambda_n$ . Thus  $Aq_j = \lambda_j q_j$ .
  - (a) What are the eigenvalues and eigenvectors of  $A^{-1}$ ? Prove that your answer is correct.
  - (b) Any vector b is a combination of the eigenvectors:

$$b = c_1 q_1 + c_2 q_2 + \dots + c_n q_n$$
.

What is a quick formula for  $c_1$  using orthogonality of the q's?

(c) The solution to Ax = b is also a combination of the eigenvectors:

$$A^{-1}b = d_1q_1 + d_2q_2 + \dots + d_nq_n.$$

What is a quick formula for  $d_1$ ? You can use the c's even if you didn't answer part (b).

$$A = QNQ^{T}$$
 $A^{-1} = (QNQ^{T})^{-1}$ 
 $= (Q^{T})^{-1} N^{1}Q^{-1}$ 
 $= QN^{-1}Q^{T}$ 

same eigenvectors. Eigenvalues of A-1: >-1= 1

b = 
$$c_1 q_1 + c_2 q_2 + ... + c_n q_n$$
 $q_1^T b = c_1 || q_1 ||^2$ 
 $c_1 = \frac{q_1^T b}{||q_1||^2}$ 
 $c_2 = \frac{q_1^T b}{||q_1||^2}$ 
 $e$ 

-5

C) 
$$A^{-1}b = d_1q_1 + d_2q_2 + \dots d_nq_n$$
 $QN^{-1}Q^{-1}b = d_1q_1 + \dots$ 
 $b = QC$ 
 $QN^{-1}Q^{-1}QC = d_1q_1 + \dots$ 
 $QN^{-1}C = q_1 + q_2q_2$ 
 $A^{-1}Q^{-1}QC = d_1q_1 + \dots$ 
 $A^{-1}Q^{-1}Q^{-1}QC = d_1q_1 + \dots$ 
 $A^{-1}Q^{-1}Q^{-1}Q^{-1}QC = d_1q_1 + \dots$ 

MIT OpenCourseWare <a href="http://ocw.mit.edu">http://ocw.mit.edu</a>

18.06SC Linear Algebra Fall 2011

For information about citing these materials or our Terms of Use, visit: <a href="http://ocw.mit.edu/terms">http://ocw.mit.edu/terms</a>.

MIT OpenCourseWare <a href="http://ocw.mit.edu">http://ocw.mit.edu</a>

18.06SC Linear Algebra Fall 2011

For information about citing these materials or our Terms of Use, visit: <a href="http://ocw.mit.edu/terms">http://ocw.mit.edu/terms</a>.