SentiMeme

SENTIMENT IDENTIFICATION IN MEMES

CS541: Deep Learning Final Project

Group Members:

Mario Arduz Florina Asani Amisha Jindal Atifa Sarwar

Introduction

What are memes?

- "Units of culture". Shared ideas, beliefs, patterns of behavior.
- Ubiquitous growth on social media.

Why analyze internet memes?

- Analogous to text, memes can also convey hatred and disturb people.
- Hate speech is a great societal responsibility.
- Human intervention is not possible.

• Why it is difficult to identify meme sentiment?

- It includes visual cues and language understanding.
- Additional references: popular culture, current events.

Objective: Identify which Memes are classified as Negative, Neutral or Positive

631 instances (9.02%)

2198 instances (31.48%)

4153 instances (59.50%)

Methodology: Referential Architecture

Methodology: Proposed Architecture

BoTNet

ResNet Bottleneck

Experimental Setup & Results

Train/Test Split: 80 - 20

• Train/Validation Split: 85 - 15

Meta Cost Learning due to unbalanced training data.

Class Weights: {Positive: 0.56, Negative: 3.68, Neutral: 1.05}

Optimizer: Adam

Loss: Categorical Cross Entropy

Classes: {Positive: 1, Negative: -1, Neutral: 0}

Data	Macro F1-Score						
	Ours	Baseline	Best in Competition				
Text	0.49	0.21	-				
Image	0.48	0.18	-				
Text + Image	0.52	0.21	0.35				

Results of our Proposed Approach

Text					lmage				Text + Image				
	-1	0	1			-1	0	1			-1	0	1
-1	7	35	84		-1	5	19	102		-1	8	31	87
0	20	138	282		0	12	81	347		0	31	140	269
1	46	267	518		1	41	147	643		1	67	269	495

Confusion Matrix

Disclaimer

The labels in the dataset do not represent the view of the authors.

The authors sometimes agree with the model's wrong predictions more than the labeled "ground truths".

Sample Predictions

Correct

Negative

Incorrect

Fornite died in 10 months but Minecraft never died in 10 years

The best of #10YearChallenge! Completed in less the 4 years. Kudus to @narendramodi ji

1.0 0.8 0.6 0.6 0.2 0.2 0.0 negative neutral positive

Wrap-up / Conclusions

- Detection of hate speech on internet is a societal responsibility.
- "Internet Memes" has doubled the challenge.
- Memes are the combination of image and text, and conveys the meaning when both are considered together.
- We predicted the meme sentiment with a Macro-F1 Score of 0.52 (+0.31 in comparison with baseline).
- BoTNet improved the performance of image classification.
- Macro-F1 for Image classification increased to 0.48 in comparison to baseline (0.18).

References

- o Srinivas, A., Lin, T.Y., Parmar, N., Shlens, J., Abbeel, P., & Vaswani, A. (2021). Bottleneck transformers for visual recognition. *arXiv preprint arXiv:2101.11605*.
- Sharma, C., Bhageria, D., Scott, W., PYKL, S., Das, A., Chakraborty, T., Pulabaigari, V., & Gamback, B.
 (2020). SemEval-2020 Task 8: Memotion Analysis—The Visuo-Lingual Metaphor!. arXiv preprint arXiv:2008.03781.