Paper Review

Bayesian neural networks become heavier-tailed with depth Mariia Vladimirova, Julyan Arbel, Pablo Mesejo

Marat Khusainov

September 2023

Outline

Motivation & Problem statement

2 Theory

3 Experiment

Motivation & Problem statement

 What are hidden units prior distributions in Bayesian neural networks under assumption of independent Gaussian weights?

$$\mathbf{g}^{(\ell)}(\mathbf{x}) = \mathbf{W}^{(\ell)} \mathbf{h}^{(\ell-1)}(\mathbf{x}), \quad \mathbf{h}^{(\ell)}(\mathbf{x}) = \phi\left(\mathbf{g}^{(\ell)}(\mathbf{x})\right).$$

Figure: Neural network architecture and characterization of the ℓ -layer units prior distribution as sub-Weibull distribution with tail parameter $\ell/2$.

Definitions & Assumption on neural network

Definition (Sub-Weibull random variable)

A random variable X, that satisfies

$$\mathbb{P}(|X| \ge x) \le \exp\left(-x^{1/\theta}/K\right)$$
 for all $x \ge 0$.

for K>0, is called a sub-Weibull random variable with the tail parameter $\theta>0$, which is denoted by $X\sim \mathrm{subW}(\theta)$.

Let all weights (including biases) be independent and have zero-mean normal distribution $W_{i,j}^{(\ell)} \sim \mathcal{N}\left(0,\sigma_w^2\right)$, for all $1 \leq \ell \leq L, 1 \leq i \leq H_{\ell-1}$ and $1 \leq j \leq H_{\ell}$.

Definition (Extended envelope property for nonlinearities)

A nonlinearity $\phi: \mathbb{R} \to \mathbb{R}$ is said to obey the extended envelope property if there exist $c_1, c_2, d_1, d_2 \geq 0$ such that the following inequalities hold

$$|\phi(u)| \ge c_1 + d_1|u|$$
 for all $u \in \mathbb{R}_+$ or $u \in \mathbb{R}_-$,
 $|\phi(u)| \le c_2 + d_2|u|$ for all $u \in \mathbb{R}$.

Main theorem

Theorem (Sub-Weibull units)

Consider a feed-forward Bayesian neural network with Gaussian priors with nonlinearity ϕ satisfying the extended envelope condition. Then conditional on the input \mathbf{x} , the marginal prior distribution induced by forward propagation on any unit (pre- or post-nonlinearity) of the ℓ -th hidden layer is sub-Weibull with optimal tail parameter $\theta = \ell/2$. That is for any $1 \le \ell \le L$, and for any $1 \le m \le H_\ell$,

$$U_m^{(\ell)} \sim \mathsf{subW}(\ell/2)$$

where $U_m^{(\ell)}$ is either a pre-nonlinearity $g_m^{(\ell)}$ or a post-nonlinearity $h_m^{(\ell)}$.

Experiment

Densities are obtained as kernel density estimators from a sample of size 10^5 from the prior on the pre-nonlinearities, which is itself obtained by sampling 10^5 sets of weights \boldsymbol{W} from the Gaussian prior and forward propagation.

- 3 hidden layers of NN have $H_1 = 25$, $H_2 = 24$ and $H_3 = 4$ hidden units
- ullet The nonlinearity ϕ is the ReLU function
- $oldsymbol{x} \in \mathbb{R}^{50}$ is sampled from a standard normal distribution.

Figure: Illustration of the first three layers hidden units marginal prior distributions.