

ГАЗОАНАЛИЗАТОР АГМ-501 РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ДКИН.413411.003 РЭ

г. Н. Новгород 2015 г.

СОДЕРЖАНИЕ

1 Основные сведения	4
2 Сведения о приемке	5
3 Описание и работа газоанализатора	6
3.1 Назначение	6
3.2 Технические характеристики	7
3.3. Комплектность	9
3.4 Устройство и работа	9
3.4.1 Принцип работы	9
3.4.2 Наименование узлов прибора	10
3.4.3 Особенности основных узлов прибора	11
3.5 Маркировка и пломбирование	12
4. Использование по назначению	13
4.1 Меры безопасности при работе с прибором	13
4.2 Общие сведения	13
4.3 Назначение клавиш	13
4.4 Обозначения анализируемых величин	14
4.5 Подготовка к измерению	14
4.6 Измерение содержания компонентов в газовой смеси	15
4.7 Просмотр памяти	16
4.8 Меню установок	17
4.8.1 Конфигурация прибора	17
4.8.2 Режим измерения	17
4.8.3 Каналы измерения	18
4.8.4 Сжигаемое топливо	18
4.8.4.1 Выбор сжигаемого топлива	18
4.8.4.2 Изменение параметров топлива	19
4.8.4.3 Редактирование текстовой строки	20
4.8.4.4 Ввод цифрового значения	20
4.8.5 Выбор единиц измерения	21
4.8.6 Основные установки	22
4.8.6.1 Установка даты и времени	22
4.8.6.2 Опции ЖК-дисплея	22
4.8.6.3 Параметры измерения	22
ДКИН.413411.003 РЭ А.01 ООО "НПЦ "АНАЛИТЕХ"	Страница 2

4.8.6.4 Установка порога оповещения	22
4.8.6.5 Адрес в сети Modbus	23
4.8.6.6 Установки интерфейса 4-20 мА	23
4.8.7 Сервис режим	23
4.9 Основные формулы для расчета	23
4.9.1 Избыток воздуха	23
4.14.2 Содержание СО₂ в отходящих газах	24
4.9.3 Теплопотери при сгорании	24
4.9.4 Пересчет результата измерения газов	25
4.10 Уход за газоанализатором при эксплуатации	26
4.11 Возможные ошибки в работе, неисправности и способы их устранения	27
5 Сведения об обслуживании и ремонте	28
6 Поверка	29
7 Утилизация	29
8 Правила хранения и транспортировки	29
9 Гарантийные обязательства	30
Приложение А. Указания по установке и проектной привязке	39
Приложение В. Реализация протокола Modbus RTU AГМ-501	31

Настоящее руководство содержит необходимые сведения и рекомендации для правильной эксплуатации газоанализатора AГМ-501 и краткое описание прибора.

Газоанализатор АГМ-501 соответствует требованиям стандартов:

ГОСТ 13320-81 "Газоанализаторы промышленные автоматические. Общие технические условия";

ГОСТ Р 50759-95 "Анализаторы газов для контроля транспортных и промышленных выбросов. Общие технические условия".

ГОСТ Р 52931-2008 "Приборы контроля и регулирования технологических процессов. Общие технические условия".

Руководство распространяется на все модификации газоанализаторов АГМ-501.

1. Основные сведения

Наименование изделия	Газоанализатор АГМ-501 ДКИН.413411.003		
Модификация			
Заводской номер			
Изготовитель:	ООО «НПЦ «Аналитех»		
Адрес изготовителя:	Россия, 603152 Нижний Новгород, ул. Нартова 2		

2. Сведения о приемке

Газоанализатор АГМ-501 соответствует ДКИН.413411.003ТУ и признан годным к эксплуатации.

Дата выпуска		
Исполнитель		
Упаковку произвел		
Руководитель		
	подпись	расшифровка подписи
	М.П.	
	ел первичную поверку согл пожении к РЭ, и признан год	
Поверитель		
	подпись	расшифровка подписи

A.01

3. Описание и работа газоанализатора

3.1. Назначение

Настоящие руководство распространяются на газоанализатор AГМ-501 (в дальнейшем газоанализатор). Газоанализатор предназначен для:

- измерения содержания кислорода (O_2) , оксида углерода (CO), оксида азота (NO), оксида азота (NO), диоксида азота (NO_2) , сернистого ангидрида (SO_2) , углекислого газа (CO_2) и углеводородов в отходящих газах топливосжигающих установок;
- измерения температуры в точке отбора пробы и температуры окружающей среды;
- измерения избыточного давления разрежения;
- определения расчетным методом содержания диоксида углерода (CO₂), в случае отсутствия канала измерения CO₂, и суммы оксидов азота (NO_X);
- определения расчетным методом технологических параметров топливосжигающих установок коэффициента избытка воздуха и коэффициента потерь тепла.

Основная область применения газоанализаторов – контроль содержания загрязняющих веществ в отходящих газах стационарных и передвижных источников промышленных выбросов в целях экологического контроля и оптимизации процесса горения топлива.

Условия эксплуатации газоанализатора:

- температура окружающей среды от 5 до 40 °C;
- относительная влажность окружающего воздуха не более 75% при 30°С и более низких температурах без конденсации влаги (группа В2 по ГОСТ Р 52931-2008);
- атмосферное давление от 91 до105 кПа (группа Р1 по ГОСТ Р 52931-2008);
- максимальная амплитуда вибрации (с частотой от 5 до 35 Γ ц) 0,35 мм (группа L1 по Γ OCT P 52931-2008).

Газоанализатор предназначен для работы в невзрывоопасных условиях.

3.2. Технические характеристики

Газоанализатор АГМ-501 производится в модификациях, отличающихся количеством измеряемых компонентов, диапазонами измерения. Перечень измеряемых и рассчитываемых параметров, диапазоны измерений и пределы допускаемой основной погрешности газоанализаторов в зависимости от модификации приведены в таблице 3.1.

Таблица 3.1.

Определяемый	Единица Диапазон		Участок диапазо- на измерений, в	Пределы допускаемой основной погрешности		Единица младшего	
компонент измерен			котором норми- руется основная погрешность	абсолют- ной	относи- тельной	разряда индикации	
		Модифика	ция АГМ-501.1				
Оксид углерода	Объемная	0 - 40000	0 – 1000	± 100	-	1	
(CO)	доля,	0 - 40000	1000 – 40000	-	± 10 %	ı	
Оксид азота	млн. ⁻¹	0 - 2000	0 – 250	± 25	-	1	
(NO) *	(ppm)	0 - 2000	250 – 2000	_	± 10 %	'	
		Модифика	ция АГМ-501.2				
Оксид углерода	Объемная	0 4000	0 – 100	± 10	_	4	
(CO)	доля,	0 - 4000	100 – 4000	-	± 10 %	1	
Оксид азота	млн. ⁻¹	0 - 400	0 – 50	± 5	_	1	
(NO) *	(ppm)	0 - 400	50 – 400	_	± 10 %	ı	
		Модифика	ция АГМ-501.3				
Оксид углерода	Объемная	0 - 400	0 – 10	±1	-	1	
(CO)	доля,	0 - 400	10 – 400	_	± 10 %	ı	
Оксид азота	млн. ⁻¹	0 - 100	0 – 10	±1	-	1	
(NO) *	(ppm)	0 - 100	10 – 100	_	± 10 %	'	
	Измеряемые	апараметры	общие для всех мо	дификаций			
Киадарад (О.)		0 - 21	0 – 4	± 0,2	-	0.1	
Кислород (O ₂)		0-21	4 – 21	_	±5%	0,1	
Углекислый газ (CO ₂) *	Объемная	0 - 20	0 – 6	± 0,3	-	0,01	
FILERICIBIN TAS (CO2)	доля, %	0 - 20	6 – 20	-	$\pm5~\%$	0,01	
Угарный газ (СО)*		0 - 10	0 – 0,4	\pm 0,02	_	0.001	
этарный газ (ОО)		0 - 10	0,4 – 10	-	±5 %	0,001	
Углеводороды (по C ₃ H ₈)*	(глеволороды (по СэН»)*		0 – 200	± 10	-	1	
этлеводороды (по озг ю)	Объемная	0 - 10000	200 – 10000	-	± 5 %		
Диоксид азота	доля, 0 - 400		0 –100	± 10	-	1	
(NO ₂) *	МЛН. ⁻¹	0 100	100 – 400	-	± 10 %	'	
Сернистый ангидрид	(ppm)	0 - 4000	0 – 250	± 25	_	1	
(SO ₂) *		1000	250 – 4000	-	± 10 %	'	

Продолжение таблицы 3.1.

Определяемый	Единица	Диапазон	Участок диапазо- на измерений, в	Пределы допускаемой основной погрешности		Единица младшего
компонент	измерений	измерений	котором норми- руется основная погрешность	абсолют- ной	относи- тельной	разряда индикации
Температура газового	°C	минус 20 –	минус 20 – 300	± 3	=	1
потока	°C	800	300 –800	-	±1%	'
Температура окружаю- щей среды	۰C	0 – 50	0 – 50	± 1	-	1
Избыточное давление /		минус 2,5 –	± (0 – 1)	\pm 0,05	-	0,001
разрежение *		2,5	± (1 – 2,5)	-	±5 %	0,001
Скорость потока *						
Углекислый газ (СО2) **	ислый газ (CO ₂) **					
Сумма оксидов азота	не нормированы (определение по расчету)					
Коэфф. избытка воздуха						
Коэфф. потерь тепла						

Примечание:

^{**} в случае отсутствия соответствующего канала измерения

п в случае отсутствия соответствующего канала измерения.	
 Предел допускаемой вариации показаний, в долях предела допускаемой основной погрешности 	0,5
 Предел допускаемой суммарной дополнительной погрешности от изменения содержания допустимых неизмеряемых компонентов анализируемой газовой смеси, в долях предела допускаемой основной погрешности 	1,0
 Предел допускаемой дополнительной погрешности при изменении температуры окружающей среды от 5 до 40 °C, в долях предела допускаемой основной погрешности 	0,5
 Предел допускаемой дополнительной погрешности измерительных каналов газоанализаторов от изменения относительной влажности анализируемой среды в диапазоне от 30 до 90 % от номинального значения влажности 65 % при температуре 40 °C, в долях предела допускаемой основной погрешности 	0,5
 Предел допускаемой дополнительной погрешности при воздействии вибрации частотой от 5 до 35 Гц, амплитудой до 0.35 мм, в долях предела допускаемой основной погрешности 	0,2
– Предел допускаемой дополнительной погрешности при изменении атмосферного давления в пределах от 84 до 106.7кПа, в долях предела допускаемой основной погрешности	0,2
- Температура газа на входе пробоотборного зонда, °С	-20 800
– Содержащие неизмеряемых компонентов в газовой смеси:	
сероводород (H ₂ S), ppm, не более	50
твердые частицы не более, г/м ³ , не более	1
влага не более, г/м³, не более	50
– Предельная перегрузка по входам канала избыточного давления / разрежения давления без разрушения датчика, кПа	20
– Максимальный расход анализируемой газовой смеси, л/мин, не более	1,5
– Время прогрева, мин, не более	5
– Время установления показаний без учета пробоотбора по уровню 0.9, с, не более	60

A.01

^{*} Поставляются по отдельному заказу;

– Интервал времени работы без корректировки показаний, ч, не менее	1000
– Напряжение питания, В	220 ± 22
– Частота сети, Гц	50 ±1
– Потребляемая мощность газоанализатора, Вт, не более	20
– Габаритные размеры, мм, не более	410x310x100
– Масса газоанализатора, кг, не более	3,6
– Средняя наработка на отказ, час, не менее	10000
– Средний срок службы, лет, не менее	8
– Межповерочный интервал, лет	1

3.3. Комплектность

Комплектность поставки газоанализатора "АГМ-501" приведена в таблице 3.2.

Таблица 3.2.

№ п/п	Наименование, тип	Кол-во
1	Газоанализатор «АГМ-501» с кабелем питания	1 шт.
2	Руководство по эксплуатации	1 экз.
3	Пробоотборный зонд с монтажным комплектом *	1 шт.
4	Программа обмена с АГМ-501 в комплекте с кабелем для ПК *	1 шт.

Примечания: * Поставляются по отдельному заказу.

3.4. Устройство и работа

3.4.1. Принцип работы

Принцип действия газоанализатора основан на применении электрохимических измерительных датчиков для измерения содержания O₂, CO, NO, NO₂, SO₂, инфракрасного оптического блока для измерения содержания углеводородов, диоксида углерода (CO2) и дополнительного канала оксида углерода (CO), термоэлектрического преобразователя для измерения температуры газового потока, полупроводникового датчика (NTC термистора) для измерения температуры окружающей среды, полупроводникового датчика для измерения избыточного давления - разрежения.

Сигналы, поступающие с датчиков, подаются на нормирующие усилители, после чего преобразуются в цифровой вид на аналого-цифровом преобразователе и поступают на обработку в цифровом виде на микропроцессорный контроллер.

Микропроцессор выполняет температурную компенсацию, устранение перекрестных влияний одного измеряемого газа на другой, перечет сигнала в соответствующую измеряемую величину с учетом единиц измерения и выводит результат измерения на дисплей и внешние интерфейсы. Память программ и данных микропроцессора недоступна для считывания внешними устройствами путем активирования строенных в микропроцессор защитных аппаратных средств.

3.4.2. Наименование узлов прибора

Внешний вод прибора приведен в приложении А рис А.1.

Газоанализатор АГМ-501 состоит из следующих основных составных частей:

- 1. Корпуса с защитными панелями.
- 2. Двух печатных плат, на которых установлены:
- графический жидкокристаллический дисплей с подсветкой;
- кнопочная клавиатура;
- микропроцессорный контроллер, осуществляющий основные расчеты и управление работой прибора с функциями аналогового коммутатора, аналого-цифрового и цифро-аналогового преобразователя;
- нормирующие усилители сигналов;
- датчик температуры прибора;
- датчик разности давлений:
- внешние интерфейсы (4-20 мА, RS-485).
- 3. Насоса газовой пробы;
- 4. Насоса удаления конденсата;
- 5. Газовых электромагнитных клапанов;
- 6. Сенсорной камеры с установленными датчиками;
- 7. Инфракрасного измерительного блока;
- 8. Конденсатосборника с фильтром.
- 9. Фильтра поглотителя кислых газов датчика СО;
- 10. Фильтра чистого воздуха;
- 11. Источника питания.

3.4.3. Особенности основных узлов прибора

В приборе применяется жидкокристаллический графический дисплей с подсветкой. Контрастность изображения может индивидуально настраиваться пользователем. При хранении прибора и его транспортировании следует иметь ввиду, что при температуре окружающего воздуха ниже минус 35°C дисплей может выйти из строя.

Принцип анализа газовой смеси основан на использовании электрохимических датчиков и NDIR блока. Используются 2^x и 3^x электродные датчики. Они установлены в сенсорной камере, на которую подается измеряемая газовая проба. Большую роль на точность измерения электрохимическими датчиками оказывает скорость поступления газа в сенсорную камеру и давление в сенсорной камере, поэтому необходимо обеспечить:

- поступление измеряемой газовой смеси без избыточного давления, только за счет встроенного насоса с требуемым расходом, при необходимости анализа газов, находящихся под давлением (например, в баллоне или технологической магистрали), необходимо выполнить сброс лишнего газа, например через ротаметр, как показано на рис. Б.1. Приложения Б РЭ «Газоанализатор АГМ-501. Методика поверки».
- отсутствие избыточного давления в сенсорной камере, которое может возникнуть при закрытии выходных отверстий в нижней части корпуса прибора.

Принцип измерения NDIR блока – оптический инфракрасный метод. Сенсор датчика работает по принципу поглощения ИК излучения. Чувствительный элемент сенсора состоит из нерассеивающего источника ИК излучения, активного широкополосного пироэлектрического детектора и контрольного пироэлектрического детектора. Активный детектор покрыт фильтром, пропускающим поглощаемую углеводородами часть ИК спектра, а контрольный детектор покрыт фильтром, пропускающим не поглощаемую углеводородами часть ИК спектра. Метод измерения основан на соотношении сигналов активного и контрольного детектора в момент облучения лампой целевого газа в оптической камере для расчета концентрации газов. Технология измерения СО и СО2 сходна с вышеуказанной, за исключением того, что датчик выдает избирательный отклик на СО или СО2.

Для гарантии точных измерений нужно всегда обращать внимание на то, чтобы в измерительную камеру не попали пыль, сажа и конденсат, поэтому необходимо своевременно заменять фильтры и следить за удалением жидкости из конденсатосборника.

Срок службы для электрохимических датчиков до 5 лет. Работоспособность датчика кислорода слабо зависит от интенсивности использования прибора, ресурс остальных датчиков уменьшается от времени и концентраций газов, измеряемых прибором при эксплуатации.

Сенсорная камера выполнена из литьевого полиметилметакрилата. Газовый тракт и тракт измерения давления должен быть герметичен.

В газоанализаторе установлен устойчивый к агрессивным средам дымового газа мембранный насос. Он предназначен для отбора пробы с места измерения с разрежением до 20 кПа. Насос приводит в движение коллекторный двигатель постоянного тока.

Газоанализатор может быть оснащен 2-х канальным аналоговым интерфейсом 4-20мA с возможностью переопределения выходных каналов / диапазонов и цифровым интерфейсом RS-485 с протоколом обмена Modbus RTU.

3.5. Маркировка и пломбирование

На передней панели газоанализатора нанесено наименование и условное обозначение газоанализатора, товарный знак предприятия – изготовителя. На этикетке нанесены сведения о предприятии - изготовителе, товарный знак, обозначение ТУ, заводской номер, год изготовления, знак утверждения типа, степень защиты прибора, знак соответствия типа СИ. На стенках прибора возле разъемов и гнезд нанесена соответствующая им маркировка.

Предусмотрено пломбирование газоанализатора после его калибровки и поверки, для этого пломбируется винт, находящийся на нижней стенке газоанализатора.

4. ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

4.1. Меры безопасности при работе с прибором

К работе с газоанализатором допускаются лица, имеющие квалификационную группу по электробезопасности не ниже 1-й, прошедшие обучение и инструктаж по технике безопасности при работах с радиоизмерительными приборами, ознакомившиеся с настоящим РЭ. Для выполнения работ по установке и поверке газоанализатора допускаются лица, имеющие квалификационную группу по электробезопасности не ниже 3-й усвоившие безопасные приемы и методы работы.

Все подключения кабелей и жгутов разрешается производить только при отключенном питании подключаемого оборудования.

4.2. Общие сведения

Приступая к работе с газоанализатором необходимо тщательно изучить все разделы настоящего руководства. При работе необходимо строго выполнять порядок операций, указанных в настоящем РЭ.

После пребывания газоанализатора при пониженной температуре, необходимо выдержать прибор не менее 2х часов, после чего приступать к эксплуатации.

4.3. Назначение клавиш

Внешний вид прибора показан в приложении А.

Клавишей «МЕНЮ» выводятся подменю в измерительных режимах, открываются для редактирования справочники объектов измерения и типов сжигаемого топлива.

Клавишей «ПАМЯТЬ / ОТМЕНА» осуществляется выход из текущего режима, меню, отказ от редактирования без сохранения изменений, просмотр памяти и выход из режима просмотра памяти, запись в память.

Клавишей «СТАРТ» производится запуск измерения, перемещение маркера вправо.

Клавишей «СТОП» производится остановка измерения, перемещение маркера влево.

Клавишами ▼ и ▲ производится выбор пункта меню, ввод числового значения при редактировании, переключение экранов вывода информации.

4.4. Обозначения анализируемых величин

Обозначения измеряемых и рассчитываемых величин в таблице 4.1.

Таблица 4.1.

O ₂	содержание кислорода
CO	содержание угарного газа
CO ₂	содержание углекислого газа
NO	содержание окиси азота
NO ₂	содержание двуокиси азота
NOx	суммарное содержание окислов азота
SO ₂	содержание двуокиси серы
CH	содержание углеводородов
Qa	суммарный коэффициент потерь
Q_2	коэффициент потерь, обусловленный разностью температур между
	смеси топлива с воздухом и отходящими газами
Q_3	коэффициент потерь от химической неполноты сгорания
Alfa	коэффициент избытка воздуха
Pr	разность давлений, избыточное давление / разрежение.
Tg	температура газа в точке отбора пробы
Та	температура окружающего воздуха

4.5. Подготовка к измерению

Включение и выключение газоанализатора производится нажатием клавиши «I/O», которая расположена на сетевом блоке вместе с сетевым разъемом и отсеком предохранителей.

Перед началом измерения необходимо выбрать требуемый режим работы в меню настроек из следующих вариантов: однократный, циклический или непрерывный (см. п.п. 4.8.1). Для конкретного объекта измерения экспериментальным образом необходимо определить и установить в меню настроек в пункте «ПАРА-МЕТРЫ ИЗМЕРЕНИЯ» каналы измерения и временные характеристики измерений: периодичность измерения, время установки '0', время измерения, время продувки, время слива конденсата (см. п.п. 4.8.6.3).

Так же необходимо установить в соответствующих пунктах меню установок тип сжигаемого топлива, требуемые единицы измерения и пороги оповещения при превышении концентрации.

4.6. Измерение содержания компонентов в газовой смеси

При изменении состава газа на дисплее одновременно не могут разместиться все результаты измерения и расчета, поэтому их вывод производится поэкранно.

Tg	159∘	ВРЕМЯ 00 : 59
02	4.9%	РЕЖИМ
CO	54p	ЦИКЛ
Alfa	2,56	ВЫПЛ ИЗМЕР

Последовательное переключение экранов осуществляется клавишами ▼ и ▲. Информация на дисплей выводится в виде, показанном на рис. 4.1.

Запуска измерения производится клавишей «СТАРТ», остановка клавишей «СТОП».

В соответствии с выбранным режимом будет про-Рис. 4.1. изведено однократное измерение, периодическая серия замеров, либо непрерывное измерение (максимальное время замера 1 час).

В правой части экрана содержится дополнительная информация о состоянии прибора:

<ВРЕМЯ> - прямой или обратный отсчет времени продолжения режима или актуальности данных;

<РЕЖИМ> - текущий режим измерения (<ОДНОК>,<ЦИКЛ>,<НЕПР>),;

<ВЫПЛ> - индикация текущей фазы измерения (<ИНДИК>- индикация, <УСТ 0>- установка «0», <ИЗМЕР> - измерение, <ПРОД.> - продувка датчиков).

В случае одновременного измерения 2-х каналов измерения высота шрифт с результатами измерения уменьшается и одновременно выводится 2 результата: верхний от 1-го канала; нижний от 2-го канала измерения.

В режиме измерения, если текущее значение газового канала превышает верхний диапазон измерения или порог оповещения, происходит прерывание измерения с последующей продувкой датчиков. Затем происходит активация устройства, подключенного к разъему "Оповещение". Перевод устройства в неактивное состояние выполняется нажатием любой клавишей прибора. Следует устранить причину превышения газового канала и выполнить повторное измерение нажав клавишу «СТАРТ».

При индикации результатов измерения вместо цифровых данных могут выводиться специальные символы:

- --- датчик не установлен, неисправен, либо результат измерения не актуален;
- ▼▼▼ значение параметра ниже минимального значения диапазона измерения;
- **▲▲▲** значение параметра превышает верхний диапазон измерения или порог оповещения.

В случае запуска однократного или периодического режима измерения цикл измерения заканчивается записью результата измерения в память и выводом данных на аналоговый интерфейс 4-20 мА. Запись в память при непрерывном измерении производится при выполнении измерений клавишей «ПАМЯТЬ / ОТМЕНА». Максимальное количество записей 2700. В случае заполнения памяти, выводится запрос о необходимости удаления сохраненных данных. Рекомендуется удалять записанные данные в начале сезонного включения прибора в процесс мониторинга выбросов на объекте измерения.

Просмотр памяти производится из стартового меню, вызов режима клавиша «ПАМЯТЬ / ОТМЕНА». Последовательное переключение экранов осуществляется клавишами ▼ и ▲.

4.7. Просмотр памяти

Функция предназначена для работы с записанными в память прибора ре-

П	ПРОСМОТР ПАМЯТИ					
			COppm			
1046	22.11.09	10	:18:33			
Кан1	201	5.0	32			
Кан2	223	5.8	15			
1045	22.11.09	11	1:18:35			
Кан1	199	5.3	30			
Кан2						

Рис. 4.2.

зультатами измерений. После нажатия клавиши «ПА-МЯТЬ / ОТМЕНА» в основном измерительном меню на дисплей выводится записи в память начиная с последнего номера. В зависимости от количества каналов измерения и установленных датчиков объем выводимой информации может меняться. Например, при оснащении прибора датчиками О2 и СО и двухканальном исполнении с 2-мя результат записи в память показан

на рисунке 4.2. Переход на последующую или предыдущую запись производится клавишами и . Результаты измерения привязываются ко времени выполнения измерения.

Для гарантированной записи результатов измерения в будущем, после завершения просмотра и анализа записанных данных не забудьте очистить память прибора. Для удаления результатов измерения из памяти в режиме просмотра памяти нажмите клавишу «МЕНЮ» и подтвердите клавишей «СТАРТ».

Если информация, ввиду какого-либо сбоя в работе, была искажена только в одной ячейке памяти, выдается сообщение об ошибке и запрос на ее удаление.

4.8. Меню установок

В меню установок производится настройка и контроль прибора. Вызов производится клавишей «МЕНЮ» в основном измерительном меню (Рис.4.3).

4.8.1 Конфигурация прибора

КОНФИГУРАЦИЯ ПРИБОРА РЕЖИМ ИЗМЕРЕНИЯ КАНАЛЫ ИЗМЕРЕНИЯ СЖИГАЕМОЕ ТОПЛИВО ЕДИНИЦЫ ИЗМЕРЕНИЯ ОСНОВНЫЕ УСТАНОВКИ

Рис. 4.3.

Этот пункт меню выводит информацию о заводском номере прибора, данные идентификации программного обеспечения (номер версии и цифровой идентификатор ПО), установленных в приборе электрохимических датчиках в формате «газ – тип – дата установки – диапазон измерения» и диапазонах измерения каналов давления и температуры.

4.8.2. Режим измерения

Установка производится в пункте «РЕЖИМ ИЗМЕРЕНИЯ». Для перехода в меню настроек необходимо нажать клавишу «МЕНЮ», выбрать маркером в виде мигающей строки клавишами ▼ и ▲ соответствующий пункт меню и подтвердить выбор клавишей «СТАРТ». Аналогично выбирается и подтверждается режим работы: однократный, циклический или непрерывный.

При однократном режиме при нажатии на клавишу «СТАРТ» осуществляется однократное измерение активных каналов измерения, запись результатов в память и последующей неограниченной во времени индикацией результата на дисплее.

В циклическом режиме первое измерение осуществляется аналогично однократному режиму, в дальнейшем происходит автоматическое повторение измерений через интервал времени, установленный в меню параметры измерения. На дисплее отображается последний из выполненных результатов измерения. Остановка повторения измерений клавиша «СТОП».

При непрерывном режиме производится продолжительное измерение состава пробы с отображением результата на дисплее прибора (максимальное время замера 1 час). Остановка измерения - клавиша «СТОП».

4.8.3. Каналы измерения

При двухканальном исполнении газоанализатора этот пункт меню служит для определения активных каналов измерения: первый, второй или оба канала измерения. Режим выбирается строкой – маркером, затем подтверждается клавишей «СТАРТ».

4.8.4. Сжигаемое топливо

4.8.4.1. Выбор сжигаемого топлива

Выбор типа сжигаемого топлива необходим для правильного расчета величин CO_2 и коэффициентов потерь, и на остальные величины влияния не оказывает. При обращении к данной функции выводится справочник с 12 стандартными и 4 свободнопрограммируемыми типами топлива. Необходимо выбрать одно из предлагаемых видов топлива. Тип топлива и его характеристики выводятся при печати протокола. Используемые в приборе стандартные типы топлива и их характеристики приведены в таблице 4.2, а в таблице 4.3 приведены характеристики этих типов топлива, зависящих от температуры продуктов сгорания.

Таблица 4.2

Nº ⊓/⊓	Топливо	CO ₂ мах %	В	T'max, °C	Р, ккал/м ³	O2ref %
1	Природный газ	11.8	0.81	2010	1000	3
2	Сжиженный газ	14.0	0.85	2080	1000	3
3	Нефтепромыслов. газ	13.0	0.84	2050	1000	3
4	Коксовый газ	10.4	0.77	2090	1090	3
5	Сланцевый газ	16.2	0.82	1950	1000	3
6	Доменный газ	24.2	0.98	1470	620	3
7	Дизельное топливо	15.6	0.87	2098	975	3
8	Мазут	16.3	0.88	2115	965	3
9	Антрацит	20.2	0.95	2160	915	3
10	Каменный уголь	18.7	0.89	2050	940	3
11	Дрова сухие	20.5	0.75	1610	875	3
12	Торф	19.5	0.86	1970	930	3

где:

 $\mathsf{CO}_2\,\mathsf{max}$ - теоретическое максимальное содержание $\mathsf{CO}_2\,\mathsf{для}$ данного вида топлива;

Т'тах - жаропроизводительность топлива, с учетом содержания в воздухе влаги;

P - количество теплоты, выделяемое при полном сжигании 1м³ сухих продуктов сгорания при α =1;

В - соотношение объемов влажных и сухих продуктов сгорания;

A.01

 O_2 ref - стандарт O_2 для мг/м³.

Коэффициенты С' и К, приведенные в таблице 4.3 задаются для температуры уходящего газа 200°С и автоматически вычисляются в зависимости от измеренной величины Tq.

Таблица 4.3

Tg, °C	Топливо табл. 4.2 кроме до- менного газа, дров и торфа		Доменный газ, дрова и торф	
_	C'	K	C,	K
100	0.82	0.77	0.83	0.79
200	0.83	0.78	0.84	0.79
300	0.84	0.79	0.86	0.80
400	0.86	0.80	0.87	0.81
500	0.87	0.81	0.88	0.82
600	0.88	0.82	0.90	0.83
700	0.89	0.83	0.91	0.84
800	0.90	0.83	0.92	0.85
900	0.91	0.84	0.93	0.86
1000	0.92	0.85	0.94	0.87

где:

C' - отношение теплоемкостей продуктов полного сгорания при α =1 в интервале температур от 0 °C до Ті к их теплоемкости в интервале температур от 0 °C до Tmax:

K - отношение объемной теплоемкости воздуха в интервале температур от 0°C до Ti к объемной теплоемкости продуктов сгорания при коэффициенте избытка воздуха в интервале температур от 0°C до Tmax.

4.8.4.2 Изменение параметров топлива

A.01

Если оператора не устраивают параметры стандартных типов топлива, он может изменить их характеристики (включая название), либо запрограммировать один из свободнопрограммируемых типов топлива (четыре последние строки в списке типов топлива). Следует учесть, что изменения сделанные для стандартных типов топлива сохраняются только до следующего вызова функции "Сжигаемое топливо", а введенные параметры свободнопрограммируемых типов топлива записываются в энергонезависимую память и сохраняются при выключении питания.

Для изменения параметров топлива надо выбрать соответствующую строку в списке типов топлива и нажать клавишу "МЕНЮ", на дисплее отобразятся название топлива и его коэффициенты. Далее необходимо, выбирая мигающим маркером

изменяемые параметры топлива, ввести нужный текст и значения коэффициентов (см. пункты 4.8.4.3 и 4.8.4.4). Ввод изменений подтверждается клавишей «СТАРТ».

4.8.4.3. Редактирование текстовой строки

Активной для ввода или редактирования является мигающая строка. Для внесения изменений в эту текстовую строку надо нажать клавишу «МЕНЮ», после чего на дисплее остается редактируемая строка и появляется таблица, содержащая символы, которые может содержать строка. Редактирование производится вводом символов из таблицы в строку. Строка может содержать максимум 21 символ. Если при вводе количество символов превышает максимальное, последний символ отбрасывается. Маркер в строке обозначает позицию вводимого символа. Он перемещается клавишами «СТАРТ», и «СТОП». Удаление символа слева от маркера производится клавишей . если необходимо стереть всю строку, нужно переместить маркер в самый ее конец и последовательно удалить символы клавишей 📤. Маркер переводится из редактируемой строки в таблицу символов клавишей 🔽. Для выбора символа из таблицы надо установить на него маркер клавишами ♥. ▲.«СТАРТ», и «СТОП» и нажать «МЕНЮ».

Редактирование строки завершается нажатием клавиши «МЕНЮ». Выход без сохранения изменений – нажатием клавиши «ПАМЯТЬ / ОТМЕНА».

4.8.4.4. Ввод цифрового значения

Для ввода или редактирования числового значения, содержащегося в строке справочника, надо выделить строку, содержащую число, и нажать клавишу «МЕ-НЮ». Числовое значение редактируется последовательным изменением цифр в позиции, отмеченной мигающим маркером клавишами ▼ и ▲ с последующим подтверждением клавишей «СТАРТ». К завершению редактирования числа приводит последовательный ввод всех значащих цифр. Попытка ввода числа вне допустимого диапазона значений, обозначается звуковым сигналом, ввод числа повторяется заново.

От редактирования можно отказаться в любой момент без сохранения изменений нажатием клавиши «ПАМЯТЬ / ОТМЕНА».

4.8.5. Выбор единиц измерения

Результат измерения содержания газов может выводиться в объемных частях % и ppm (parts per million, 1/1000000 часть объема) или в миллиграммах на кубометр при нормальных условиях (давлении 101,3 кПа, температуре 273,15 К).

При необходимости можно привести результат измерения токсичных газов к стандартному содержанию кислорода и учитывать преобразование оксида азота в диоксид азота при выбросе отходящих газов топливосжигающих установок в атмосферу. Формулы пересчет результата измерения газов приведены в пункте 4.9.4.

Выбор единиц измерения и режимов пересчета результата измерения СО, NO и NOх производится в меню установок. У выбранной строки клавишей «МЕНЮ» можно установить один из вариантов в соответствии с таблицей 4.4. Сохранение изменений подтверждаются клавишей «СТАРТ». Отображение единиц измерения при выводе на дисплей и принтер производится согласно таблице 4.5.

Таблица 4.4

Изменяемый пара- метр	Варианты установки	
Единицы измерения	ppm	mg
Учет разбавления	да	нет
Пересч. NOх к NO2	да	нет

Таблица 4.5

. e.edee				
Единицы изме-	Учет разбавле-	Отображение единиц изме-		
рения	ния	рения *		
ppm	нет	Ppm		
ppm	да	pO2		
mg	нет	Mg		
mg	да	mO2		

^{*} При включенном пересчете NO_x к NO_2 <ПЕРЕСЧ. NOx к NO2 ДА>, в строке NO_x к обозначению единиц измерения добавляется символ <1>.

4.8.6. Основные установки

4.8.6.1. Установка даты и времени

УСТАНОВКА ДАТЫ/ВРЕМЯ ОПЦИИ ЖК-ДИСПЛЕЯ ПАРАМЕТРЫ ИЗМЕРЕНИЯ ПОРОГИ ОПОВЕЩЕНИЯ АДРЕС В СЕТИ MODBUS УСТАНОВКИ ИНТ.4-20 мА

Рис 43

Для синхронизации во времени результатов измерения прибор может быть оснащен встроенными часами с питанием от встроенного источника питания. Установка даты и времени производится в соответствии с пунктом 4.8.4.4. При полном разряде источника питания происходит сбой в работе часов, при включении автоматически запрашивается ввод даты/время.

4.8.6.2. Опции ЖК-дисплея

Опция служит для настройки контрастности дисплея газоанализатора. Установка производиться клавишами ▼ и ▲ в диапазоне ±5 от заводской установки. изменения сразу отображаются на ЖК-дисплее. Сохранение изменений подтверждаются клавишей «СТАРТ», отмена изменений – клавиша «ПАМЯТЬ / ОТМЕНА».

4.8.6.3. Параметры измерения

Этот пункт меню служит для определения временных интервалов процесса измерения. Данные характеристики цикла измерения устанавливают индивидуально для конкретного объекта измерения, определяются экспериментально. Следует учесть, что увеличение длительностей циклов изменения негативно сказывается на ресурсе газоанализатора. По умолчанию установлены параметры измерения для газового котла с пробоотборной магистралью около 5м. При изменении нужный параметр выбирается строкой- маркером, каналы измерения устанавливаются клавишей «МЕНЮ», временные интервалы изменяются в соответствии с п.4.8.4.4.

4.8.6.4. Установка порога оповещения

В приборе предусмотрена возможность изменения порога защиты датчиков СО и NO. Ввод значения порога защиты описан п.4.8.4.4.

4.8.6.5. Адрес в сети Modbus

В случае внешнего управления по интерфейсу RS-485 в соответствии с протоколом Modbus RTU (см. Приложение В) каждому устройству в рамках общей сети должен соответствовать свой уникальный номер в диапазоне от 001 до 247. По умолчанию установлен адрес 001. Ввод адреса в соответствии п.4.8.4.4.

4.8.6.6. Установки интерфейса 4-20 мА

Если газоанализатор оснащен 2-х канальным интерфейсом 4-20 мА, данное меню позволяет задать вывод нужной измеряемой величины на соответствующий выход интерфейса, а так же задать уровни сигнала соответствующие максимальному и минимальному току интерфейса. Изменяемый параметр выбирается маркером в виде мигающей строки клавишами ▼ и ▲, клавиша «МЕНЮ» циклически меняет выводимые каналы или позволяет установить уровни сигнала в соответствии п.4.8.4.4.

4.8.7. Сервис режим

Прибор переходит в сервис режим при нажатии клавиши «СТОП» из меню установок. В этом режиме на дисплей выводится значения нормированных сигналов поступающих с датчиков газоанализатора. Показания, представленные в данном виде, служат для проверки технического состояния и настройки газоанализатора. Ввиду того, что диагностика и настройка прибора возможна только квалифицированными специалистами при наличии специализированного оборудования, доступ к основным функциям данного режима при эксплуатации закрыт.

4.9 Основные формулы для расчета

4.9.1. Избыток воздуха

Отношение действительного количества воздуха к теоретически необходимому называют избытком воздуха. Избыток воздуха должен быть минимальным, но при этом должно обеспечиваться полное сгорание топлива. Он рассчитывается следующим образом:

Alf =
$$N_2 / [N_2 - 3.76 \bullet (O_2 - 0.5 \bullet CO)];$$
 (1)

где:

О2, СО - измеренное значение компонентов в процентах объема;

 N_2 - содержание азота в отходящих газах: $N_2 = 100 - CO_2 - O_2 - CO_3$

Расчет избытка воздуха начинается в случае, если величина O₂ меньше 20%. Если расчет избытка воздуха не ведется, тогда на дисплей вместо значения выводится "---".

4.9.2. Содержание CO₂ в отходящих газах

Содержание углекислого газа в отходящих газах зависит от доли углерода и водорода в топливе, количества воздуха поступающего на горение и режима сжигания топлива. Газоанализатор АГМ-501 непосредственного измерения СО₂ не производит, а вычисляет, исходя из содержания кислорода и угарного газа. Для правильного расчета необходимо чтобы тип топлива, выбранного до начала измерения соответствовал сжигаемому топливу, и не было разбавления продуктов сгорания воздухом. Если характеристики сжигаемого топлива отличаются от стандартных или сжигается смесь из нескольких топлив, необходимо изменить характеристики выбранного топлива, руководствуясь пунктом 4.8.4.2 настоящего РЭ. Содержание СО₂ рассчитывается следующим образом:

$$CO_2 = CO_2$$
 макс.топ. • ($100 - 4.76$ • (O_2 изм. - 0.4 • CO изм.)) / 100 - CO изм. (2) где:

СО2 макс.- теоретическое максимальное содержание СО2 при стехиометрическом горении топлива;

О2 изм. - жаропроизводительность топлива;

СО изм. - отношение теплоемкостей продуктов полного сгорания *.

4.9.3. Теплопотери при сгорании

При сжигании топлива в энергосистемах существует следующие виды потерь:

- Потери с отходящими газами, возникающие из-за разницы между температурой смеси топлива с воздухом, поступающей на горение и температурой отходящих газов. Чем больше избыток воздуха и, следовательно, объем отходящих дымовых газов и чем выше температура отходящих газов, тем выше потери тепла. Прибор АГМ-501 производит расчет потерь теплоты с уходящими газами в соответствии с формулой:

$$Q_2 = \frac{(Tg-Ti) \bullet [C' + (h-1) \bullet B \bullet K] \bullet 100}{T'max} \qquad h = \frac{CO_{2max}}{(CO_2 + CO)};$$
 (3)

где:

CO₂ max - теоретическое максимальное содержание CO₂:

Т'max - жаропроизводительность топлива;

- С' отношение теплоемкостей продуктов полного сгорания *;
- К отношение объемной теплоемкости воздуха и продуктов сгорания *;
- В соотношение объемов влажных и сухих продуктов сгорания;
- Tg измеренная температура уходящих газов;
- Ті температура поступающего в топку воздуха.
- * зависят от температуры уходящих газов и находятся табличным способом для стандартных видов топлива или вычисляются для свободнопрограммируемых видов топлива исходя из значений С' и К при 200 °C, которые вводятся при установке топливных коэффициентов (см. п.п. установка параметров топлива).
- Потери тепла, связанные с химической неполнотой сгорания топлива (Q3), обусловленные содержанием в продуктах сгорания горючих компонентов (окиси углерода). Химическая неполнота сгорания наблюдается при недостаточном количестве воздуха, участвующего в горении, или плохом его перемешивании с топливом. Прибор производит расчет по формуле:

$$Q_3 = (30.2 \bullet CO \bullet 100 \bullet h) / P;$$
 (4)

где:

- СО содержание оксида углерода в уходящих газах в объемных процентах;
- P количество теплоты, выделяемое при полном сжигании 1м³ сухих продуктов сгорания.
- Общие потери тепла (Qa) рассчитываются как сумма предыдущих потерь:

$$Qa = Q_2 + Q_3.$$
 (5)

Расчет потерь начинается в случае, если величина CO_2 больше 1.0 % и разность между температурой газа и температурой воздуха больше 20°С. Если расчет потерь не ведется, то на дисплей вместо значений выводится "——". Более подробно познакомиться с использованной методикой теплотехнических расчетов можно в книге «Эффективность использования топлива», Равич М. Б., изд. «Наука», г. Москва, 1977 г.

4.9.4. Пересчет результата измерения газов

Сигналы о величине концентрации измеряемых газов, поступающие с датчиков, пропорциональны объемным долям измеряемых компонентов. В зависимости от выбранных единиц измерения и режимов расчета измеренное в объемных долях содержание газов в пробе Em(ppm) пересчитывается согласно формулам, приведенным в таблице 4.6, и выводится как результат измерения. Коэффициенты пересчета от объемных долей (ppm) в весовые концентрации (mg на м³ при нормальных условиях 101,3 кПа и температуре 273,15 K) приведены в таблице 4.7.

Таблица 4.6

Единицы измерения	Учет разбавления	Результат измерения
ppm	Нет	Em (ppm)
ppm	Да	Kdil • Em (ppm)
mg	Нет	Kmv • Em (ppm)
mg	Да	Kdil • Kmv • Em (ppm)

Таблица 4.7

Измеряемый газ, хим. формула	Kmv, mg/ppm
CO	1.26
NO	1.34
NO*	2.05
NO ₂	2.05
SO ₂	2.93

Примечание: * если при выборе единиц измерения выбран пересчет NOx κ NO₂ <ПЕРЕСЧ. NOx κ NO2 ДА>, то Kmv для NO будет 2.05.

Коэффициент разбавления относительно образцовой концентрации кислорода рассчитывается по формуле: Kdil = $(20.9 - O_2 ref) / (20.9 - O_2 m)$; (6)

где: O_2 ref - значение образцового содержания кислорода в объемных процентах см. п. 4.8.4.1; O_2 m - измеренное значение содержания кислорода в объемных процентах.

4.10. Уход за газоанализатором при эксплуатации

При эксплуатации пользователь регулярно должен выполнять следующее:

- В случае если газоанализатор оснащен фильтром-поглотителем поз.7 рис.А.1 прил. А, необходимо проверять его состояние (цветовую окраску). В начальном состоянии шихта фильтра имеет цвет от розового до темно-бордового. По мере вырабатывания ресурса цвет шихты меняется от белого до темно-серого. Признак вырабатывания ресурса фильтра появление постоянной фоновой концентрации по каналу СО. Возможно производить замену либо шихты либо фильтра целиком.
- Своевременно заменять фильтр чистого воздуха поз. 8 рис.А.1 по мере загрязнения:
- Следить за удалением жидкости из конденсатосборника поз. 4 рис.А.1. Один раз в 3 месяца проверять состояние фильтра газовой пробы установленного внутри конденсатосборника. При наличии загрязнений необходимо промыть его в бензине и продуть сжатым воздухом.
- При загрязнении чистить прибор влажной тряпкой, не применяя растворители и моющие средства.

4.11. Возможные ошибки в работе, неисправности и способы их устранения

Перечень наиболее часто встречающихся ошибок в работе с прибором, неисправностей и способов их устранения приведены в табл.4.8.

Таблица 4.8

Наименование неисправности, внешнее проявление, сообщение	Возможная причина неисправности	Метод устранения
самодиагностики Прибор не включается	Отсутствие питания	Проверьте сетевую розетку,
приоор не включается	Неисправны предохранители	напряжение Заменить предохранители
	Неисправна термопара	Замените термопару
Температура Тg ▼▼▼	Обрыв термокомпенсацион- ного кабеля	Найдите и устраните обрыв
	Засорился фильтр грубой очистки	Замените фильтр
Расход газа вне допуска (зонд подключен)	Перегиб пробоотборной ма- гистрали	Проверьте трассу пробоотборной магистрали
	Неправильное подключение зонда	Проверьте правильность под- ключения зонда
Расход газа вне допуска (зонд не подключен)	Неисправен насос	Чистка или замена насоса
Неисправность насоса	Неисправен насос	Замена насоса
Не изменяются показания на дис- плее.	Не включено измерение	Нажмите на кнопку СТАРТ
Температура газа Тg соответству- ет действительности и изменяет-	Газовая магистраль не под- ключена к ниппелю "ГАЗ"	Выполните правильное под- ключение
ет деиствительности и изменяет- ся, а O2≈20.9, CONO=0	Негерметичный пробоотбор- ный тракт	Проверьте герметичность про- боотборного тракта
Температура газа Тg соответствует действительности, О2 выше ожидаемых значений, СО ниже ожидаемых значений	Негерметичный пробоотбор- ный тракт	Проверьте герметичность про- боотборного тракта
Измеренные параметры соответ- ствуют ожидаемым, расчетные параметры (CO2, Qa, Alf) не соот- ветствуют ожидаемым	Неправильно выбран тип топлива или введены харак- теристики топлива	Выберите правильный вид топлива и введите характери- стики выбранного типа топли- ва
При измерении состава газа при- бор индицирует перегрузку датчи- ков СОNО не достигнув верхнего предела измерения	Установлен порог защиты датчиков ниже измеряемой величины	Измените порог защиты датчи- ков выше измеряемого значе- ния
При измерении состава газа пока- зания датчика СО не опускается до «0»	Фильтр-поглотитель исчер- пал свой ресурс.	Необходимо заменить фильтр- поглотитель или его шихту.
XX - датчик неисправен	Неправильный отбор "чисто- го воздуха" при проведении установки "нуля"	Смените место установки "ну- ля"
	Неисправность датчика	Обратитесь в службу сервиса для замены датчика

5. Сведения об обслуживании и ремонте

Газоанализатор АГМ-501 является специализированным прибором. Его техническое обслуживание требует специализированного оборудования и должно производиться квалифицированными специалистами. Техническое обслуживание производится на предприятии изготовителе и его филиалах. В межповерочный интервал прибор не требует технического обслуживания. Сведения о техническом обслуживании и ремонте вносятся в таблицу 5.1.

Таблица 5.1.

Дата	Наименование технического обслуживания и ремонта

6. Поверка

Поверка газоанализатора должна производиться лицами с квалификацией государственного поверителя в соответствии с документом «Методика поверки газоанализатора АГМ-501» (Приложение Б РЭ на газоанализатор АГМ-501), утвержденной ГЦИ СИ «Нижегородский ЦСМ», с межповерочным интервалом 12 месяцев.

7. Утилизация

Утилизация не требует специальных мер безопасности и производится обычным способом.

8. Правила хранения и транспортировки

Газоанализатор должен храниться в заводской упаковке в закрытых помещениях с температурой от 5 до 40°С и относительной влажностью до 80% при температуре 25°С (условия хранения 2 по ГОСТ 15150). Данные условия хранения относятся к хранилищам изготовителя и потребителя. В помещении для хранения не должно быть пыли, паров кислот и щелочей, агрессивных газов и других вредных примесей, вызывающих коррозию.

Газоанализатор транспортируются в заводской упаковке любым видом крытого транспорта и в отапливаемых герметизированных отсеках самолетов без ограничения скорости на любые расстояния при температуре от минус 20 до 50°С и относительной влажности воздуха до 95% при температуре 35°С. При транспортировке тара должна быть надежно закреплена и защищена от воздействия солнечных лучей, осадков, пыли и химических веществ, уровень вибрации группа L1 по ГОСТ 12997-84.

9. Гарантийные обязательства

- 1. Гарантия предусматривает бесплатный ремонт или замену запчастей, комплектующих в течение 12 месяцев, начиная со дня отгрузки прибора потребитепю
- 2. Изготовитель гарантирует соответствие характеристик изделия требованиям, изложенным в разделе «Технические характеристики», в течение гарантийного срока при соблюдении условий эксплуатации, изложенных в настоящем руководстве.
- 3. Гарантийное обслуживание выполняется на территории предприятияизготовителя. Доставка неисправного прибора выполняется за счет и силами потребителя, если в договоре на поставку не указано иное.
- 4. Замененные (сломанные) запасные части и комплектующие являются собственностью изготовителя. Для всех частей, которые устанавливаются в течении гарантийного срока, гарантия заканчивается вместе с гарантией прибора.
 - 5. Гарантия действительна в том случае, если:
- прибор используется строго в соответствии с руководством по эксплуатации;
- не нарушена заводская пломбировка прибора;
- если дефекты не связаны с внешними воздействиями;
- ремонт производился уполномоченными представителями предприятияизготовителя.

По вопросам гарантийного обслуживания обращайтесь по адресу: Россия, 603057, г. Н. Новгород, ул. Нартова, 2, ООО "НПЦ "Аналитех" тел. 831-4120494 / 18, факс 8312-4120670, e-mail: info@analitech, http://www.analitech.ru.

Приложение А. Методика поверки газоанализатора

			РЖДАЮ:
		Зам. ді	иректора
	ΦБ	У "Нижего	родский ЦСМ"
_			А.Н.Лахонин
	,,		2015 г.
	«	>>	20151.

ГАЗОАНАЛИЗАТОР АГМ-501

МЕТОДИКА ПОВЕРКИ

ДКИН.413411.003 МП

Технический директор
ООО "НПЦ "Аналитех
В. Л. Жигалог

Настоящая методика поверки (МП) распространяется на все модификации газоанализатора AГМ-501. Периодичность поверки - 12 месяцев.

А.1 Операции поверки

1.1 При проведении поверки должны быть выполнены операции согласно таблице А.1.

Таблица А.1

Наименование операции	Номер пункта	Обязательность проведения операции при:	
Паименование операции	МΠ	первичной поверке	периодической поверке
1. Внешний осмотр	7.1	да	да
2. Определение электрической прочно-	7.2	ПО.	нет
сти изоляции	1.2	да	псі
3. Опробование	7.3	да	да
4. Определение основной погрешности	7.4	да	да
5. Оформление результатов поверки	8	да	да

^{1.2} Если при проведении той или иной операции поверки получен отрицательный результат, поверка прекращается.

А.2 Средства поверки

2.1 При проведении поверки должны быть применены средства, указанные в таблице А.2.

Таблица А.2

Номер пункта методики	Наименование и основные технические характеристики образцовых средств измерений или вспомогательного оборудования
5.1	Барометр-анероид М-67, диапазон измерения от 610 до 790 мм. рт.ст., ТУ-25-04-1797 Гигрометр психометрический ВИТ-1, диапазон измерения от 20 до 90 % Термометр ртутный лабораторный по ГОСТ 215-73, диапазон измерений лот 0 до 55°C, погрешность ± 0,2°C.
7.2	Универсальная пробойно-испытательная установка УПУ-10М ОН 097 2029-80.
	ГСО – ПГС в баллонах под давлением. Ротаметр РМФ2-0,063ГУЗ-К с верхним пределом измерения 0,063 м³/ч.
7.4.2	Помпа ручная пневматическая «П-0,25», диапазон задаваемых давлений от минус 63 до 250 кПа. Калибратор давления DPI-705-0.07-ДД, предел измерения 7 кПа, измерение разницы давления, предел основной погрешности 0,1%.
7.4.3	Горизонтальная трубчатая печь УТТ-6В с блоком выравнивания температуры, рабочий диапазон от 300 до 1200°С, Термопары и термоэлектрические термометры, диапазон измерений от минус 20 до 800°С, класс точности 0.5.

Примечание: Параметры ПГС приведены в таблице А.3 приложения.

Допускается применять другие средства поверки, удовлетворяющие условиям проведения поверки.

А.3 Требования к квалификации поверителей

Поверку газоанализаторов должны проводить лица, аттестованные Госстандартом России на право поверки. Все действия по проведению измерений при поверке газоанализатора и обработке результатов измерений должны проводить лица, изучившие настоящую методику и руководство по эксплуатации.

А.4 Требования безопасности

- 4.1 При поверке газоанализаторов должны выполняться требования техники безопасности в соответствии с "Правилами устройства и безопасной эксплуатации сосудов, работающих под давлением", утвержденными Госгортехнадзором 25.12.78 г. и правила безопасной работы с электрооборудованием.
- 4.2 Помещение, в котором проводится поверка, должно быть оборудовано приточновытяжной вентиляцией. Не допускается сбрасывать поверочные газовые смеси (в дальнейшем ПГС) в атмосферу рабочих помещений.

А.5 Условия поверки

- 5.1. При проведении поверки должны быть соблюдены следующие условия:
- температура окружающего воздуха 20 ±5°C;
- относительная влажность окружающего воздуха от 45 до 75%;
- атмосферное давление от 86 до 106 кПа;
- механические воздействия и внешние электрические и магнитные поля должны находиться в пределах, не влияющих на работу газоанализатора;
- баллоны с ПГС должны быть выдержаны при температуре (20 ± 5) $^{\circ}$ С не менее 24 ч.

А.6 Подготовка к поверке

- 6.1. Перед началом поверки должны быть выполнены следующие подготовительные работы:
- газоанализатор установить в рабочее положение и подготовить к работе в соответствии с руководством по эксплуатации:
- выдержать прибор при температуре поверки не менее 2-х часов;

A.01

- проверить средства измерений, поверочные газовые смеси и испытательное оборудование, применяемые при проведении поверки, на предмет действующих свидетельств о поверке, паспортов и отметки, подтверждающие их годность;
- включить приточно-вытяжную вентиляцию.

А.7 Проведение поверки

- 7.1. Внешний осмотр.
- 7.1.1 При внешнем осмотре должна быть проверена комплектность, наличие четкой маркировки заводского номера газоанализатора. Установлено отсутствие внешних повреждений, влияющих на работу газоанализатора. Газоанализатор считается выдержавшим внешний осмотр, если он соответствует перечисленным требованиям.
 - 7.2 Проверка электрической прочности изоляции.
 - 7.2.1 Проверку проводить на универсальной пробойно испытательной установке.
 - 7.2.2 Испытанию подвергается отключенный от сети и газоанализатора адаптер.
- 7.2.3 Испытательное синусоидальное напряжение 1500В с частотой 50Гц прикладывать между соединенными между собой сетевыми и заземляющим контактами. Испытательное напряжение изменять от нуля до заданного значения за время от 5 до 20 с, через одну минуту производить снижение испытательного напряжения от заданного значения до нуля в течение от 5 до 20 с.
- 7.2.4 Газоанализатор считается выдержавшим испытание, если за время испытания не возникали разряды или повторяющиеся поверхностные пробои, сопровождающиеся резким возрастанием тока в испытуемой цепи.
 - 7.3 Опробование.
 - 7.3.1 При проведении опробования должны быть выполнены следующие операции:
- проверка идентификации программного обеспечения;
- проверка общего функционирования газоанализатора.
- 7.3.2 Проверка идентификации программного обеспечения проводится в меню "Конфигурация прибора", п.4.8.1 настоящего руководства. Номер версии (идентификационный номер ПО) и цифровой идентификатор ПО должны соответствовать данным, приведенным в описании типа средства измерения.
- 7.3.2 Проверка общего функционирования газоанализатора производится после прогрева и автоматической установки нулевых показаний газоанализатора. Результаты опробования считаются удовлетворительными, если на дисплее газоанализатора устанавливаются следующие показания: по каналам CO, NO, NO2, SO2 от 0 до 1 ppm; по каналу O_2 от 20.8 до 21.0 об.%; по каналу CO_2 от 0.0 до 0.01 об.% и
 - 7.4 Определение метрологических характеристик.
 - 7.4.1 Определение основной погрешности каналов измерения газов.
 - 7.4.1.1 Подключить газоанализатор и испытательное оборудование в соответствии с рис. А.1.

Рис.А.1

- 1. Баллон ПГС;
- 2. Редуктор БАЗО-5МГ ТУ 3645-032-0022531-97 с давлением на выходе от 0,1 до 0,2 МПа;
- 3. Вентиль точной регулировки ВТР-4 Ду 3, Ру 6 атм.;
- 4. Ротаметр РМФ2-0,063ГУ3-К, поток от 0.2 до 0.5 лит/мин в установившемся режиме при отборе пробы газоанализатором;
- Тройник ГС-ТВ ГОСТ 25336-82.
- 6. Газоанализатор АГМ-501.
- 7. Трубка поливинилхлоридная гибкая ПВЧ 4x1,5 ТУ 6-01-2-120-73;
- 7.4.1.2 Подготовить газоанализатор к измерению содержания газов согласно п. 4.7.1 руководства по эксплуатации.
- 7.4.1.3 Подать на вход «ГАЗ» газоанализатора ПГС (таблица А.3 приложения) в последовательности: №№ 1-2-3-2-1-3. Подачу каждой ПГС производить в течение 5 минут, после чего фиксировать показания газоанализатора.
 - 7.4.1.4 Повторить операции по п.7.4.2 для каждого измеряемого компонента.
- 7.4.1.5 Значение основной погрешности (D), в зависимости от части диапазона, определять по формуле:

$$D = [A_i - A_0], \tag{7.1}$$

или D = $[A_i - A_o] / A_o \times 100 \%$, (7.2)

где: Аі - показания газоанализатора, %, (ррт);

A₀ - действительное значение концентрации измеряемого компонента в проверяемой точке, указанное в паспорте на ГСО-ПГС, %, (ppm).

Полученные значения основной погрешности для каждого определяемого компонента не должны превышать значения, указанные в таблице 3.1 РЭ.

- 7.4.2 Определение основной погрешности измерения избыточного давления / разрежения.
- 7.4.2.1 Подготовить газоанализатор к измерению давления согласно п. 4.8 руководства по эксплуатации.
 - 7.4.2.2 Изменение температуры в процессе проверки не должно превышать ±0,5°C.
- 7.4.2.3 Определение основной погрешности производить согласно методике поверки МИ 1997-89 «Преобразователи давления измерительные. Методика поверки».

Значения основной погрешности не должны превышать значений, указанных в таблице 3.1 РЭ

- 7.4.3 Определение основной погрешности измерения температуры.
- 7.4.3.1 Подготовить газоанализатор к измерению температуры согласно п. 4.7.1 руководства по эксплуатации.
- 7.4.3.2 Определение основной погрешности измерения температуры производится в соответствии с ГОСТ 8.338-78 «Термопреобразователи технических термоэлектрических термометров. Методы и средства поверки».

Значения основной погрешности не должны превышать значений, указанных в таблице 3.1 РЭ

А.8 Оформление результатов поверки.

8.1 Результаты поверки заносятся в протокол приведенной формы:

		Протокол	поверки г	газоанализатора		
Заводской но	мер:		-3-33			
Условия пове	рки:					
Средства пов						·
Наименован	ние проверяемого	параметра	: Допуска	емое значение:	Найденное значен	ие :Заключение
			: па	раметра :	параметра	:
1. Определен	ие электрической	прочности		- -		:
изоляции			:	:		
2. Опробован	ие		-			
		3. Определе	ение осно	вной погрешнос	ти	
Измеряемый:	Диапазон изме-:	Предел доп	устимой	Заданное зна-	: Измеренное	Основная
параметр	рения	основ. погре	ешности	чение	значение	погрешность
1.						
2.	:				:	
					:	
На основании результатов поверки выдано свидетельство №						
Извещение о непригодности №.						
Дата поверки						-
Поверитель						

- 8.2 Положительные результаты поверки оформляются свидетельством о поверке установленной формы, газоанализатор клеймят путем нанесения оттиска поверительного клейма на корпусе.
- 8.3 При отрицательных результатах поверки выпуск в обращение и применение газоанализатора запрещается и направляют в ремонт. В технической документации делают отметку о непригодности и выдается извещение о непригодности с указанием причин.

Таблица А.3 - Перечень поверочных газовых смесей, применяемых при поверке газоанализатора.

	ица / 1.0	epe .e	sopo misix racos	T				
Nº	Ком-	Модифика-	Диапазон	Номинальное значение	Абсолютная			
ПГС	понент	ция АГМ-510			измерения	объемной доли опреде-	погрешность,	№ ΓСО ΠΓС
111 C	понент	ция Ai ivi-5 i u	измерения	ляемого компонента*, %	%			
1.		Пестом		0,95	0,014	ΓCO 10253-2013		
2.	O_2	Для всех	0-21.0 об.%	10.0	0,11	100 10200-2010		
3.		модификаций		Воздух	-	-		
1.		Для всех	-	Азот нулевой	-	ΓΟCT 9293-74		
		AΓM-501.1	0 – 40000 ppm	2.0	0.029			
2.		AΓM-501.2	0 – 4000 ppm	0.2	0,0045			
		AΓM-501.3	0 – 400 ppm	0.018	0,00067			
	CO	AΓM-501.1	0 – 40000 ppm	3.8	0,051	ΓCO 10240-2013		
3.	CO	AΓM-501.2	0 – 4000 ppm	0.38	0,0068	100 10240-2013		
		AΓM-501.3	0 – 400 ppm	0.038	0,0013			
		AΓM-501.1	0 – 40000 ppm	6.0	0,075			
4.		AΓM-501.2	0 – 4000 ppm	0.6	0,009			
		AΓM-501.3	0 – 400 ppm	0.06	0,0019			
1.		Для всех	-	Азот нулевой	-	ΓΟCT 9293-74		
		AΓM-501.1	0 – 2000 ppm	0.1	0,002			
2.	NO	AΓM-501.2	0 – 400 ppm	0.02	0,0007			
		AΓM-501.3	0 – 100 ppm	0.005	0,0002	FOO 40000 0040		
		AΓM-501.1	0 – 2000 ppm	0.180	0,004	- ΓCO 10323-2013		
3.		AΓM-501.2	0 – 400 ppm	0.035	0,0012			
		AΓM-501.3	0 – 100 ppm	0.009	0,0003			
1.		П		Азот нулевой	-	ΓΟCT 9293-74		
2.	NO_2	Для всех модификаций	0– 100 ppm	0.01	0,0004	- ΓCO 10331-2013		
3.			''	0.018	0,0007	100 10331-2013		
1.		Пестом		Азот нулевой	-	ΓΟCT 9293-74		
2.	SO_2	Для всех	0- 4000 ppm	0.20	0,0045	ΓCO 10342-2013		
3.		модификаций		0.38	0,0013	100 10342-2013		
1.		П		Азот нулевой	-	ΓΟCT 9293-74		
2.	C ₃ H ₈	Для всех	0 – 1.0 % об.	0.5	0,0075	FOO 40200 0042		
3.		модификаций		0.9	0,013	ΓCO 10322-2013		
1.		Для всех		Азот нулевой	-	ΓΟCT 9293-74		
2.	CO			0 – 10 % об.	5.0	0,06	ГСО 10240-2013	
3.		модификаций		9.0	0,1	100 10240-2013		
1.		1 _		Азот нулевой	-	ΓΟCT 9293-74		
2.	CO ₂	Для всех	0 – 20 % об.	10.0	0,11	FOO 40044 0040		
3.		модификаций		18.0	0,13	ΓCO 10241-2013		
Неизмеряемые компоненты								
1	Воздух	Для всех	-		-	-		
2	N ₂	модификаций		99.995	-	ГОСТ 9293-74		

Примечание: * приводится концентрация газа в азоте.

Приложение Б.

Указания по установке и проектной привязке

Приведенные ниже рекомендации должны выполняться проектными организациями при привязке АГМ-501 к объекту контроля и подключении ее к автоматизированной системе контроля технологического оборудования.

Газоанализатор АГМ-501 должен располагаться в блок-боксе или помещении, обеспечивающем температуру окружающего воздуха во внутреннем объеме в пределах от 5 до 40°C, механическую защиту аппаратуры. Габаритно-установочные размеры приведены на рис. Б.1.

Рисунок Б.1 Внешний вид и габаритные размеры газоанализатора АГМ-501

- 1. Монтажные отверстия корпуса;
- 2. Жидкокристаллический дисплей;
- 3. Кнопочная клавиатура;
- 4. Конденсатосборник с фильтром;
- 5. Штуцер отбора пробы;
- 6. Штуцер слива конденсата;
- 7. Фильтр-поглотитель;
- 8. Фильтр чистого воздуха;
- 9. Сетевая розетка, блок предохранителя и выключатель;
- 10. Внешние интерфейсы.

Рисунок Б.2 Схема внешних подключений.

Место, предназначенное для установки АГМ-501, должно обеспечивать свободный доступ к газоанализатору для нормальной эксплуатации. Наличие сильных электромагнитных полей вблизи прибора может ухудшать его параметры, поэтому запрещается располагать прибор около трансформаторов, электрических машин и т.п. Для нормальной работы АГМ-501 не должен располагаться над тепловыделяющими устройствами и блоками.

Удаление места установки прибора от места отбора пробы должно быть минимальным и не более 25-ти м при использовании трубки из фторопласта, не более 15-ти м при использовании трубки из нержавеющей стали.

Отбор газовой пробы должен производиться либо с помощью пробоотборного зонда, вводимого в требуемую зону газохода, либо иным способом в соответствии с проектной привязкой. Расположение места установки и глубина погружения пробоотборного зонда на каждом конкретном агрегате должны соответствовать

отраслевой проектной документации объекта контроля. Зонды по длине могут поставляться с глубиной погружения в газоход в пределах от 300 мм до 605мм (пробоотборный зонд ДКИН.418311.003-01) и от 600 мм до 1010 мм (пробоотборный зонд ДКИН.418311.003).

Рисунок Б.3 Пример установки пробоотборного зонда ДКИН.418311.003

- 1. Термоэлектрический преобразовать;
- 2. Обжимной фитинг фиксации термопары;
- 3. Обжимной фитинг с резьбой 3/4" фиксации зонда;
- 4. Газоход топливосжигающей установки;
- 5. Место отбора пробы и измерения температуры;
- 6. Охладитель пробы;
- 7. Обжимной фитинг пробоотборной магистрали;

A.01

8. Кабель-канал, короб, лоток или труба для укладки пробоотборной магистрали и термокомпенсационного провода;

Пробоотборная магистраль выполняется из фторопластовой трубки типов РТЕГ (политетрафторэтилен Ф-4Д), РГА (перфторвинилэтер Ф-50) или ГЕР (тетрафторэтилен — гексафторпропилен Ф-4МБ), либо трубки из нержавеющей стали внешним диаметром от 4,0 до 8,0 мм толщиной стенки от 0,5 мм до 1,5 мм. Конструктивное исполнение и монтаж пробоотборной магистрали должны обеспечивать уклон в сторону установки АГМ-501 без прогибов, для предотвращения скапливания в них конденсата. Приемный и выходной конец пробоотборной магистрали подключается к зонду с помощью переходной силиконовой трубки или переходного обжимного фитинга из комплекта поставки.

Рисунок Б.4 Пример выполнения пробоотбора с использованием стандартных изделий

- 1. Кабель-канал, короб, лоток или труба для укладки пробоотборной магистрали и термокомпенсационного провода:
- 2. Термокомпенсационный провод;
- 3. Пробоотборная магистраль;
- 4. Клеммная головка термоэлектрического преобразователя;
- 5,7,8. Обжимные фитинги;
- 6,9. Установочные фланцы;
- 10. Пробоотборная трубка с внутренним диаметром от 3 до 6 мм;
- 11. Термоэлектрический преобразователь
- 12. Газоход топливосжигающей установки;

Подключение термоэлектрического преобразователя выполняется кабелем "Compensating Cable (Type K) WK-009" производства ф. LABFACILITY (Англия), поставщик - ОАО "Аргуссофт-Компани", г. Москва или аналогичным обязательно с соблюдением полярности (материала) всех соединений см. рис А.2. Пробоотборная магистраль и термокомпенсационный кабель термоэлектрического преобразователя должны быть закреплены и защищены от механических воздействий.

Для проведения профилактических работ необходимо обеспечить безопасный доступ оператора к месту установки пробоотборного зонда (лестница, трап и т.п.).

Подключение питания к однофазной сети переменного тока 220В осуществляется кабелем из комплекта поставки через автомат защиты питания «220В 50Гц», мощность потребления не более 20Вт.

Подключение прибора к ПЭВМ оператора должно производиться через последовательный интерфейс RS-485 (длина линии связи до 1 км). Линия связи выполняется проектным путем. Схема подключения приведена на рисунке A.2.

На плате контроллера АГМ-501 предусмотрена возможность установки 4 перемычек S1...S4, которые предназначены для конфигурации интерфейсов RS-485 и выхода "Оповещение". Перемычка S3 подключает нагрузочный резистор 120 Ом между линией A и B интерфейса RS-485, она должна быть установлена на последнем газоанализаторе на линии RS-485. Перемычки S1 и S2 подключает дополнительные резисторы защитного смещения порогового диапазона распознавания сигнала интерфейса RS-485, они должны быть установлены на одном устройстве на линии. Перемычка S4 служит для подключения контактов реле оповещения к внутреннему источнику питания =12B, максимальный ток нагрузки 0,1 A.

По умолчанию установлены все перемычки.

Примечание:

Поставка пробоотборного зонда, термоэлектрического преобразователя, пробоотборной магистрали, термокомпенсационного провода, интерфейсных жгутов, монтажных частей для установки изделия на объекте согласуется на этапе проектной привязки.

Для обеспечения информационного обмена AГМ-501 и APM оператора через интерфейс RS-485 ПЭВМ должна иметь отдельный порт RS-485.

Дистанционное управление осуществляется по протоколу Modbus RTU. Параметры обмена по интерфейсу, адреса устройств Modbus, модель данных и команды управления, описание работы и блок схема управления газоанализатором AГМ-501 приведены в приложении В настоящего руководства.

Приложение В.

Реализация протокола Modbus RTU AГМ-501.

В.1 Интерфейс

Газоанализатор AГМ-501 имеет последовательный интерфейс RS-485, который поддерживает протокол верхнего уровня Modbus с форматом пакета RTU в соответствии с документом «Modbus over Serial Line Specification & Implementation guide V1.0». Формат передачи данных фиксированный: скорость передачи 9600 бит/с, 8 бит, 2 стоп бита, без проверки на четность.

Б.2 Задержки между пакетами

Временные задержки между пакетами и символами пакетов соответствуют «Modbus over Serial Line Specification & Implementation guide V1.0». Между символами одного пакета может быть задержка длинной не более полутора символов. Между пакетами должна быть задержка не менее 3,5 символов. Рекомендуется начать передавать следующий пакет не ранее чем через 4,5 символа после получения последнего бита предыдущего пакета. Если в интервале между 1,5 символами и 3,5 символами после прихода последнего символа, приходит первый символ следующего пакета, сбрасываются оба пакета.

Примечание: задержка длинной в символ - это время необходимое, для того чтобы передать 8 бит данных при данной скорости передачи и параметрах соединения.

В.3 Адреса устройств Modbus

Газоанализатор АГМ-501 поддерживают команды Modbus в соответствии с синтаксисом запроса и ответа определенным в документе «Modbus Application Protocol Specification v1.1a». Адрес устройства может быть от 01h до 0F7h. Диапазон адресов 0F8h-0FFh зарезервирован в стандарте Modbus. Широковещательные запросы (адрес устройства 00h) не поддерживаются.

В.4 Модель данных и команды

В связи с организацией регистров памяти при отсутствии дискретных входов и выходов, фиксированном алгоритме работы, газоанализатор АГМ-501 поддерживают только следующие команды:

- 03h Чтение регистров (Read Holding Registers):
- 04h Чтение входных регистров (Read Input Registers); A.01

- 06h Запись регистра (Write Single Register).

Команды 01h, 02h, 05h, 07h, 08h, 0Bh, 0Ch, 0Fh, 10h, 11h, 14h, 15h, 16h, 17h, 18h, 2Bh не поддерживаются. Результаты измерения доступны только для чтения и рассматриваются как входные регистры.

В.5 Адресация

Основным способом передачи данных газоанализатора АГМ-501 по протоколу Modbus RTU является чтение или запись регистров. Адреса запрашиваемых регистров и их назначение имеют однозначное табличное соответствие. Обращение возможно только к регистрам определенным в таблице В.1.

Таблица В.1

Наименование регистра	Относит. адрес регистра	Команда чтения/ записи	Примечание					
Регистры чтени	Регистры чтения параметров газоанализатора (Read Input Registers)							
Регистр статуса	0x0000	0x04/ —	Побитное распределение регистра 1510 Резерв 0908 Готовность результата измерения: 0x00 - данные измерения не готовы, 0x01 - данные непрерывного измерения, 0x02 - данные однократного измерения, 0x03 – пробоотбор к измерению готов. 0703 Резерв 0200 Текущий режим работы: 0x00- состояние "ожидание", 0x01- установка «нуля», 0x02- измерение, 0x03- продувка датчиков, 0x04- ручное управление на месте, 0x05 - подготовка пробоотбора к измерению					
Регистр ошибок	0x0001	0x04/ —	Побитное распределение регистра 15 ошибка проверки аппаратных средств, 14 резерв (сброс сторожевым таймером), 13 резерв (ошибка блока подготовки пробы), 12 резерв (ошибка герметичности газовых клапанов), 11 прекращение измерения при перегрузке, 10 резерв (недостаточное напряжение питания), 09 мала производительность насоса, 08 резерв (ошибка датчика давления), 07 резерв (ошибка датчика H ₂ S), 06 резерв (ошибка датчика SO ₂), 05 резерв (ошибка датчика NO ₂), 04 резерв (ошибка датчика NO), 03 ошибка датчика CO, 02 ошибка датчика O ₂ , 01 темп. прибора вне допустимого диапазона, 00 резерв (темп. воздуха вне диапазона измерения).					
Дата поверки	0x0002	0x04/—	Lo byte - число, Hi byte – месяц					

	0	16			
Наименование	Относит.	Команда	Пинтенти		
регистра	адрес регистра	чтения/ записи	Примечание		
Год поверки	0x0003	0x04/ —			
Наработка	0x0004	0x04/ —	Часов		
Результат Та	0x0005	0x04/ —			
Результат Тд 1-й канал	0x0006	0x04/ <i>—</i>	°C		
Результат Тg 2-й канал	0x0007	0x04/			
Результат О ₂ 1-й канал	0x0008	0x04/—			
Результат О ₂ 2-й канал	0x0009	0x04/—	· % oб.* 100		
Результат СО ₂ 1-й канал	0x000A	0x04/—	, , , , , , , , , , , , , , , , , , , ,		
Результат СО ₂ 2-й канал	0x000B	0x04/—			
Результат Q _A 1-й канал	0x000C		· % * 100		
Результат Q _А 2-й канал	0x000D		70 100		
Результат Alfa 1-й канал	0x000E		* 1000		
Результат Alfa 2-й канал	0x000F		1000		
Результат СО 1-й канал	0x0010	0x04/—	ppm или mg/m³ в зависимости от установленных единиц измере-		
Результат СО 2-й канал	0x0011	0x04/—	ния		
Результат NO 1-й канал	0x0012	0x04/—	ppm или mg/m³ в зависимости от установленных единиц измере-		
Результат NO 2-й канал	0x0013	0x04/—	ния		
Результат NO ₂ 1-й канал	UXUU 14	0x04/	ppm или mg/m³ в зависимости от установленных единиц измере-		
Результат NO ₂ 2-й канал	000015	0x04/	ния		
Результат SO ₂ 1-й канал	0x0016	0x04/	ppm или mg/m³ в зависимости от установленных единиц измере-		
Результат SO ₂ 2-й канал	0x0017	0x04/—	ния		
Результат СН 1-й канал	0x0018	0x04/—	ppm или mg/m³ в зависимости от установленных единиц измере-		
Результат СН 2-й канал	0x0019	0x04/—	РИН		
Регистры задан	Регистры задания параметров газоанализатора (Holding Registers)				
Регистр ко-	0x0000	0x03/	Старший байт – каналы измерения:		

Наименование регистра	Относит. адрес регистра	Команда чтения/ записи	Примечание
манд		0x06	0x01 – активен 1-й канал; 0x02 – активен 2-й канал; 0x03 – активны 1-й и 2-й каналы; Младший байт – команда: 0x01 - выполнить однократное измерение; 0x02 - начать непрерывное измерение; 0x03 - переход в состояние "ожидание"; 0x04 - "сброс" ответ на данную команду не высылается;
Регистр режи- ма измерения	0x0001	0x03/ 0x06	Побитное распределение регистра 1511 резерв; 10 - приведение NO>NO₂; 09 - приведение mg к O₂ref, 08 – пересчет - mg/nm3 0704 резерв 0300 – тип топлива, в соответствии с № топлива в табл. 4.3.

Примечание:

- 1. В регистры с результатами измерения (Read Input Registers 0002H..000AH) в случае отсутствия измеренных данных при перегрузке датчика записывается 0x8000, при неисправности датчика 0x8001, если измерение не проводились 0x8002, при отсутствии датчика 0x8003.
- 2. В регистре команд (Holding Registers 0000H) код команды сохраняется до конца выполнении записанной команды, затем сбрасывается в 0000H.

В.6 Управление газоанализатором AГМ-501 по протоколу Modbus

Блок схема работы газоанализатора AГМ-501 в режиме автоматического однократного и непрерывного измерения приведена на рис B.2.

Шаги со 2 по 11 (рис. В.2) — инициализация устройства. Не рекомендуется использование газоанализатора, если выявлена необходимость очередной поверки или интервал времени работы (измерений) без корректировки показаний составил более 1000 часов. В этих случаях нужно направить газоанализатор на обслуживание и поверку.

Важно учесть, что команды начала измерения и сброса должны подаваться только когда газоанализатор находиться в режиме "ожидание", поэтому перед проведением измерения необходимо проверить режим газоанализатора и если он будет отличный от режима "ожидание", перевести его в режим "ожидание". В противном случае команда игнорируется, а ответ газоанализатора содержит ошибку 06.

После записи команды автоматического однократного измерения (шаг со 26 рис. В.2) начинается полный цикл измерения, который включает в себя следующие этапы:

- установка нуля электрохимических датчиков;
- измерение пробы с последующим усреднением, после установления показаний;
- сохранение результата измерения;
- продувка электрохимических датчиков «чистым воздухом»;
- переход в состояние "ожидание".

Текущее состояние прибора можно узнать, прочитав регистр статуса. Чтение результата измерения должно выполняться после перехода газоанализатора в состояние "ожидание". Прервать цикл измерения можно командой перехода в состояние "ожидание". Команда прерывает цикл измерения, производится продувка электрохимических «чистым воздухом» с последующим переходом в состояние "ожидание".

Команда непрерывного измерения (шаг с 14 и далее рис. В.2) позволяет получать текущее содержание измеряемых компонентов в газовой смеси в точке отбора пробы. Цикл непрерывного измерения аналогичен однократному измерению за разницей того, что время измерения ограниченно 60 мин, а усреднение показаний производится за интервал времени 1 сек. с регулярным сохранением результата, без ожидания установления показаний. При считывании данных следует учитывать время транспортирования пробы от точки замера (производительность насоса около 1 лит./мин.) и постоянную времени по уровню 0.9, которая составляет около 1 мин.

Для прекращения измерения нужно воспользоваться командой перехода в состояние "ожидание" (шаг со 21 рис. Б.2). Продолжительность фазы измерения зависит от содержания токсичных измеряемых компонентов в пробе. Чем выше содержание токсичных газов, тем меньше доложено быть время непрерывного измерения. Рекомендуемая длительность измерения приведена в таблице В.2.

Таблица В.2

Измеряемая концентрация, % от диапазона измерения	5	10	25	50	75	100
Время измерения, мин.	60	50	30	20	10	5

Прерывание цикла измерения с переходом в режим продувки датчиков, а затем в состояние "ожидание" может произойти автоматически при превышении результата порога защиты или номинального диапазона измерения по одному из газовых каналов. В этом случае текущий результат отражается числом 8000H в соот-

ветствующем регистре и устанавливаются биты 11 (прекращение измерения при перегрузке) и 2..7 (ошибка соответствующего датчика).

Примеры формирования запросов и соответствующих им ответов приведены в таблице В.3.

Таблица В.3

№ п/п	Операция	Тип дан- ных	Данные	Примечание
1	Чтение регист-	Запрос	ADR-04h-00h-00h-00h-01h-CRC	чтение входного регистра по адр. 0000h
'	ра статуса	Ответ	ADR-04h-02h-00h-00h-CRC	данные не готовы, режим "ожидание"
E	Запись регистра	Запрос	ADR-06h-00h-00h-01h-01h-CRC	запись 0101h в регистр по адр. 0000h
5	команд	Ответ	ADR-06h-00h-00h-01h-01h-CRC	запуск однократ. измерения 1-го канала

Рисунок В.2. Блок - схема работы газоанализатора АГМ-501

В.7 Исключительные ситуации

Сообщения об исключительных ситуациях возникают только на запросы адресованные данному устройству с правильным значениями СRC пакета. Коды ошибок приведены в таблице В.4.

При обнаружении АГМ-501 одной из этих ошибок высылается ответное сообщение — уведомление об ошибке, в котором старший бит кода функции устанавливается в "1", затем следует код исключительной ситуации.

Таблица В.4

Код	Название	Описание
01	ILLEGAL FUNC- TION	Возникает только при запросе с номером команды, которую не поддерживает данное устройство.
02	ILLEGAL DATA ADDRESS	Адрес в запросе вне допустимого диапазона для данного подчиненного.
03	ILLEGAL DATA VALUE	Величина содержащаяся в поле данных запроса является не допустимой величиной для подчиненного.
04	SLAVE DEVICE FAILURE	Имела место невосстанавливаемая ошибка при выполнении затребованного действия.
06	SLAVE DEVICE BUSY	Подчиненный занят обработкой команды. Главный должен повторить сообщение позже, либо прервать выполнение текущей команды.

Пример формирования ответа на запрос чтения входного регистра с несуществующим адресом приведен в таблице В.5.

Таблица В.5

- 1	\ ⁰ ⊓/⊓	Операция	Тип данных	Данные	Примечание
	1	Чтение вход-	Запрос	ADR-04h-01h-00h-00h-01h-CRC	чтение входного регистра по адресу 0100h
	1	ного регистра	Ответ	ADR-84h-02h-CRC	адрес, указанный в запросе не досту- пен