Problems for Number Theory Exam

Masum Billal

March 22, 2015

Problem 1 (Somewhat easy). An integer is *square-free* if it is not divisible by the square of a prime. Prove that, $a^{a-1} - 1$ is not square-free where a is an integer.

Solution. Let n be a divisor of a-1. We will show that $n^2|a^{a-1}-1$. Since n|a-1, assume that a-1=nk and $a^k=x$. Then we have n|x-1 and want to show that $n^2|x^n-1$. We are done if we can show $\frac{x^n-1}{x-1}$ is divisible by n. Remember the identity:

$$x^{n} - 1 = (x - 1)(x^{n-1} + x^{n-2} + \dots + 1)$$

Now, $x^{n-1} + x^{n-2} + \ldots + 1 \equiv 1 + 1 + \ldots + 1 \equiv n \equiv 0 \pmod{n}$.

Note. A similar problem was shown as an exercise in the class.

Problem 2 (Another give away). Decide(with proof) if $2^{2016} + 3^{2016} + 4^{2016} + 5^{2016}$ is a prime.

Solution. This is quite easy in fact. See that $2^{2016} + 3^{2016} + \equiv 4^{2016} \equiv 5^{2016} \equiv 1 + 0 + 1 + 1 \equiv 0 \pmod{3}$.

Problem 3 (Depends on the contestant if s/he remembers something special). For a prime p > 5, prove that $\binom{2p-1}{p-1} - 1$ is divisible by p^3 .

Solution. Wolstenholme's theorem was shown in the class too, which states:

$$\binom{ap}{bp} \equiv \binom{a}{b} \pmod{p^3}$$

for a prime p > 3. Now, setting a = 2, b = 1, we have

$$\binom{2p}{p} \equiv \binom{2}{1} \equiv 2 \pmod{p^3}$$

Next, the identity $\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$ was also shown. Using that,

$$\binom{2p}{p} = 2\binom{2p-1}{p-1}$$

Therefore, $p|2\binom{2p-1}{p-1} - 2 = 2\binom{2p-1}{p-1} - 1$. And since (p,2) = 1, we have the result.

Problem 4 (Give away). Prove that for integer a, b and a prime $p, a^p b - ab^p$ is divisible by p.

Solution. This should be fairly easy too if someone can write the expression as $a^pb - ab^p = ab(a^{p-1} - b^{p-1})$. Now, if p divides either of a or b, we are done. Otherwise, from Fermat's Little Theorem, we have $a^{p-1} \equiv 1 \equiv b^{p-1} \pmod{p}$ i.e. $p|a^{p-1} - b^{p-1}$.

Problem 5 (For making some contestants think and pass some time). Find the number of positive integers (with respect to n) d so that d divides $a^n - a$ for all integer a.

Solution. This problem uses the idea of primitive root. First we prove that d must be square-free. Let's say p is a prime divisor of d and $p^2|d$. Then $p^2|a^n - a$ for all a. Set a = p and we have $p^2|p(p^{n-1} - 1)$ which gives a contradiction $p|p^{n-1} - 1$ or p|1.

Say, \mathbb{P} is the set of primes. Now we have to find the condition for p to be a prime factor of d. Note that, for (a,p)=1, $p|a^{n-1}-1$. If we consider a primitive root g of p(which exists for each prime, as we know) we get $g^{p-1} \equiv 1 \pmod{p}$ and $g^{n-1} \equiv 1 \pmod{p}$. Combining these two, $g^{(n-1,p-1)} \equiv 1 \pmod{p}$. We see that p-1 must divide n. Otherwise, if n-1=(p-1)l+r with r< p-1, $g^r \equiv 1 \pmod{p}$ which contradicts the primitivity of g. Thus, p-1|n-1 and so the maximum positive integer for which $d|a^n-a$ for all a, we have

$$d = \prod_{\substack{p \in \mathbb{P} \\ p-1|n-1}} p$$

Every divisor of d satisfies the condition of the problem. Let, C(n) be the number of distinct prime p so that p-1|n-1. We know that d is square-free and it has C(n) prime factors. Thus, d has $2^{C(n)}$ divisors, which is the answer.

Problem 6 (Stopper). For a positive real number c > 0, call a positive integer c - good if for all positive integer m < n, $\frac{m}{n}$ can be represented as

$$\frac{m}{n} = \frac{a_0}{b_0} + \ldots + \frac{a_k}{b_k}$$

for some non-negative integers $k < \frac{n}{c}, 2b_i \le n$ and $0 \le a_i < b_j, 0 \le j \le k$. Show that, for any real c, there are infinite c - good positive integers.