AMENDMENTS TO THE CLAIMS:

Please amend claims 1 and 2, as follows. This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claim 1 (Currently amended): A thermoelectric element comprising:

a thin film of p-type thermoelectric material,

a thin film of n-type thermoelectric material, and

the thin film of p-type thermoelectric material and the thin film of n-type thermoelectric material being formed on the electrically insulating substrate and being electrically connected,

(i) the p-type thermoelectric material comprising at least one complex oxide selected from the group consisting of:

complex oxides represented by Formula (1): $Ca_aA^b_cCo_cA^2_dO_e$, wherein A^t is one or more elements selected from the group consisting of Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Sr, Ba, Al, Bi, Y, and lanthanoids; A^2 is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Ag, Mo, W, Nb, and Ta; $2.2 \le a \le 3.6$; $0 \le b \le 0.8$; $2.0 \le c \le 4.5$; $0 \le d \le 2.0$; and $8 \le c \le 10$, and

complex oxides represented by Formula (2): $Bi_fPb_gM^1_hCo_iM^2_jO_k$, wherein M^1 is one or more elements selected from the group consisting of Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Ca, Sr,

U.S. Patent Application Serial No. 10/593,644 Response filed April 7, 2008 Reply to OA dated January 9, 2008

Ba, Al, Y, and lanthanoids; M^2 is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Ag, Mo, W, Nb, and Ta; $1.8 \le f \le 2.2$; $0 \le g \le 0.4$; $1.8 \le h \le 2.2$; $1.6 \le i \le 2.2$; $0 \le j \le 0.5$; and $0 \le k \le 10$; and

(ii) the n-type thermoelectric material comprising at least one complex oxide selected from the group consisting of:

complex oxides represented by Formula (3): $\operatorname{Ln_m} R^1_n \operatorname{Ni_p} R^2_q O_r$, wherein Ln is one or more elements selected from the group consisting of lanthanoids; R^1 is one ore more elements selected from the group consisting of Na, K, Sr, Ca, and Bi; R^2 is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Cu, Mo, W, Nb, and Ta; $0.5 \le m \le 1.7$; $0 \le n \le 0.5$; $0.5 \le p \le 1.2$; $0 \le q \le 0.5$; and $2.7 \le r \le 3.3$;

complex oxides represented by Formula (4): $(Ln_sR^3,)_2Ni_uR^4$, Θ_w , wherein Ln is one or more elements selected from the group consisting of lanthanoids; R^3 is one or more elements selected from the group consisting of Na, K, Sr, Ca, and Bi; R^4 is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Cu, Mo, W, Nb, and Ta; $0.5 \le s \le 1.2$; $0 \le t \le 0.5$; $0.5 \le u \le 1.2$; $0 \le v \le 0.5$; and $0.5 \le v \le 0.5$;

complex oxides represented by Formula (5): $A_x Z n_y O_z$, wherein A is Ga or Al; $0 \le x \le 0.1$; $0.9 \le y \le 1$; and $0.9 \le z \le 1.1$; and

complex oxides represented by Formula (6): $Sn_{xx}In_{yy}O_{zz}$, wherein $0 \le xx \le 1$; $0 \le yy \le 2$; and $1.9 \le zz \le 3$.

Claim 2 (Currently amended): The thermoelectric element according to Claim 1, wherein the p-type thermoelectric material comprises at least one complex oxide selected from the group consisting of complex oxides represented by the formula: $Ca_aA^{\dagger}_bCo_4O_e$, wherein A^{\dagger} is one or more elements selected from the group consisting of Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Sr, Ba, Al, Bi, Y, and lanthanoids; $2.2 \le a \le 3.6$; $0 \le b \le 0.8$; and $8 \le e \le 10$, and complex oxides represented by the formula: $Bi_pPb_gM^1_hCo_2O_k$, wherein M^1 is one or more elements selected from the group consisting of Sr, Ca and Ba; $1.8 \le f \le 2.2$; $0 \le g \le 0.4$; $1.8 \le h \le 2.2$; and $8 \le k \le 10$;

the n-type thermoelectric material comprises at least one complex oxide selected from the group consisting of complex oxides represented by the formula: $Ln_mR^1{}_nNiO_r$, wherein Ln is lanthanoid; R^1 is one or more elements selected from the group consisting of Na, K, Sr, Ca, and Bi; $0.5 \le m \le 1.2$; $0 \le n \le 0.5$; and $2.7 \le r \le 3.3$, complex oxides represented by the formula: $(Ln_sR^3{}_t)_2NiO_w$, wherein Ln is lanthanoid; R^3 is one or more elements selected from the group consisting of Na, K, Sr, Ca, and Bi; $0.5 \le s \le 1.2$; $0 \le t \le 0.5$; and $3.6 \le w \le 4.4$; and complex oxides represented by the formula: $Ln_xR^5{}_yNi_pR^6{}_qO_r$, wherein Ln is lanthanoid; R^5 is one or more elements selected from the group consisting of Na, K, Sr, Ca, Bi, and Nd; and R^6 is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, and Cu; $0.5 \le x \le 1.2$; $0 \le y \le 0.5$; $0.5 \le p \le 1.2$; $0.01 \le q' \le 0.5$; and $2.8 \le r' \le 3.2$.

Claim 3 (Original): The thermoelectric element according to Claim 1, wherein the thin film

of p-type thermoelectric material and the thin film of n-type thermoelectric material are electrically

connected by one of the following methods:

bringing one end portion of the thin film of p-type thermoelectric material into direct contact

with one end portion of the thin film of n-type thermoelectric material;

bringing one end portion of the thin film of p-type thermoelectric material into contact with

one end portion of the thin film of n-type thermoelectric material via an electrically conductive

material;

bringing one end portion of the thin film of p-type thermoelectric material into direct contact

with one end portion of the thin film of n-type thermoelectric material and covering the contact

portion with an electrically conductive material.

Claim 4 (Original): The thermoelectric element according to Claim 1, wherein the thin film

of p-type thermoelectric material and the thin film of n-type thermoelectric material are formed on

the same surface or on different surfaces of the electrically insulating substrate.

Claim 5 (Original): The thermoelectric element according to Claim 1, wherein the electrically

insulating substrate is a substrate comprising a plastic material.

-5-

Claim 6 (Original): The thermoelectric element according to Claim 1, wherein

thermoelectromotive force is at least 60 μ V/K in a temperature range of 293 K to 1073K.

Claim 7 (Original): The thermoelectric element according to Claim 1, wherein electrical

resistance is 1 K Ω or lower in a temperature range of 293 K to 1073 K.

Claim 8 (Original): A thermoelectric module comprising a plurality of the thermoelectric

elements of Claim 1, wherein the thermoelectric elements are electrically connected in series such

that an unconnected end portion of a p-type thermoelectric material of one thermoelectric element

is electrically connected to an unconnected end portion of an n-type thermoelectric material of

another thermoelectric element.

Claim 9 (Original): A thermoelectric conversion method comprising positioning one end of

the thermoelectric module of Claim 8 at a high-temperature portion and positioning the other end

of the module at a low-temperature portion.

-6-