位置の変化で微分を感じる

「傾き」としての微分は歩いているときにも感じる ことができる

まっすぐな坂道があって、坂道の出発点から水平 方向にxだけ進んだ地点の標高がf(x)だとする 標高f(x)はxの関数だと思うことができ、坂道を 真横から見ると、y = f(x)のグラフとみなせる

f(x+h) - f(x) は地点 x から水平に h だけ進んだときの標高の差となるので、 $\frac{f(x+h) - f(x)}{h}$ はこの地点のおおよその勾配となる

一方、f(x) が微分可能ならば、h が十分に小さいとき、この値は微分 f'(x) に近い値になっているだろう

つまり、坂道の勾配として、標高の「微分を感じて いる」ことになる

■微分を感じる例 坂道において、f(x)を出発点から水平にxだけ離れた地点の標高とすると、f'(x)はその地点における勾配を表す

* * *

坂道の勾配は、位置によって異なる

x座標が増える方向に歩いているとき、ある地点 x における勾配が f'(x) というのは、次のように感じることができる

- f'(x) > 0: 登り坂
- f'(x) < 0:下り坂
- |f'(x)| が大きい:急勾配

時間の変化で微分を感じる

時が経つにつれて変化する量は、時刻を変数とす る関数で表される

たとえば、時とともに何かものが動くときは、その 位置の座標は時刻を変数とする関数で記述できる

ここでは、このような時刻を変数として位置を表 す例を考える

位置の微分 数直線上で物体が動いていて、時刻 t におけるその位置をその座標 f(t) で表すとする

ここで、微分の定義において、極限を取る前の

$$\frac{f(t+h) - f(t)}{h}$$

という値の意味に注目する

分子は時刻tから時刻t+hの間に進んだ距離で、それをその間にかかった時間hで割っていることから、これは時間間隔hでの平均速度を表している

したがって、時間間隔hを0に近づけたときの極限、すなわち位置の微分f'(t)は、時刻tにおける(瞬間)速度を表していると理解できる

■微分を感じる例 位置の微分 f'(t) は、時刻 t に おける速度である

* * *

位置の2階微分 速度は、時刻とともに変わって いく

速度の時間変化を見るために、速度 f'(t) を時刻

tの関数とみなすと、これは位置 f(t) の導関数である

速度 f'(t) をさらに微分するということは、f(t) の 2 階微分 f''(t) を考えることになる これにも名前がついていて、加速度という 加速度 f''(t) は、速度の変化を表す量である

■微分を感じる例 位置の 2 階微分 f''(t) は、時刻 t における加速度である

* * *

運動の記述 運動という言葉は、物理学では「物体が時々刻々と位置を変える」という"motion"の意味で使われる

先ほどは、数直線上という1次元的な位置の変化 を考えたが、今度は次元を上げて、平面上あるい は空間の中における「運動」を考えてみる

そのために、座標を用いて時々刻々と変わる位置 を記述することにする

たとえば2次元の運動の場合、時刻tにおける位置を位置ベクトルとして、

とベクトルで表す

3次元空間の場合には、もう1つ z 座標を用いる

位置ベクトルのx成分、y成分をそれぞれ微分して得られるベクトル

$$(x'(t), y'(t)) = \left(\frac{dx}{dt}(t), \frac{dy}{dt}(t)\right)$$

を速度ベクトルという

速度ベクトルは大きさだけではなく、どちらの方 向に進んでいるかという向きの情報も持っている

これに対して、速度ベクトルの大きさを<mark>速さ</mark>といい、向きの情報を含む「速度」と区別した用語を使う

速さ =
$$\sqrt{x'(t)^2 + y'(t)^2}$$

加速度ベクトルは、速度ベクトルを微分した次のベクトルになる

$$(x''(t), y''(t)) = \left(\frac{d^2x}{dt^2}(t), \frac{d^2y}{dt^2}(t)\right)$$

* * *

物理法則は、座標とは無関係に成り立っている 一方、座標系を使うことで、次元が高い場合でも、 座標成分ごとに微分すれば速度ベクトルや加速度 ベクトルを求めることができるため、計算上の便 利さがある