2. Première solution. Si $\dim_{\mathbb{Q}} \mathbb{R} = d < \infty$, alors $\mathbb{R} \simeq \mathbb{Q}^d$, mais \mathbb{Q}^d est un ensemble dénombrable tandis que \mathbb{R} a la puissance du continu.

Deuxième solution. Démontrons que pour tout $n \geq 1$ les nombres $\log p_1, \ldots, \log p_n$ sont linéairement indépandants sur \mathbb{Q} . On suppose qu'il existent $c_1, \ldots, c_n \in \mathbb{Q}$ tels que

$$c_1 \log p_1 + \dots + c_n \log p_n = 0.$$

Sans perte de généralité, nous supposons que $c_1, \ldots, c_n \in \mathbb{Z}$ (on peut toujours multiplier c_1, \ldots, c_n par leur PGCD). Il vient :

$$p_1^{c_1} p_2^{c_2} \dots p_n^{c_n} = 1.$$

On en déduit que $c_1 = \cdots c_n = 0$. Il en découle que $\log p_1, \ldots, \log p_n$ sont linéairement indépendants sur \mathbb{Q} pour tout n. Cela implique que $\dim_{\mathbb{Q}} \mathbb{R} = \infty$.

3. On rappelle que pour $x \in (0,1)$ on a

$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + \cdots$$

On peut verifier par calcul que

$$1 + \phi = \left(id_E + \frac{1}{2}\phi - \frac{1}{8}\phi^2\right)^2$$

car $\phi^k = 0$ pour tout $k \ge 3$. On pose $\psi = \frac{1}{2}\phi + \frac{1}{8}\phi^2$. Il vient donc $\mathrm{id}_E + \phi = (\mathrm{id}_E + \psi)^2$.

- 14. (b) On a $E_{ij} = E_{ii}E_{ij} E_{ij}E_{ii}$ pour $i \neq j$ ce qui conduit à $\phi(E_{ij}) = 0$. D'autre part, on a $E_{ii} E_{jj} = E_{ij}E_{ji} E_{ji}E_{ij}$ ce qui conduit à $\phi(E_{ii}) = \phi(E_{jj})$. On en déduit que $\phi(A) = \phi(E_{11}) \operatorname{tr}(A)$.
- 15. C'est facile.
- 16. Posons $[n] = n \mod 2$ pour tout entier n, où $n \mod 2$ désigne le reste de division de n par 2. Alors, [a+bc] = [[a] + [b][c]] pour tous entiers a, b, c. On en déduit que $[\det(a_{ij})] = [\det([a_{ij}])]$. En particulier, on voit que $[\det A] = 1$ ce qui implique que $\det A$ est un nombre impair, et donc $\det A \neq 0$.
- 17. (a) Soit $P \in SO(n)$ tel que $Pa = |a|^t (1, 0, ..., 0)$. On a

$$\det(I + a^t a) = \det(I + (PA)^t (PA)) = \det(I + |a|^2 E_{11}) = 1 + |a|^2.$$

18.

$$A^{2} + I = (A + iI)(A - iI),$$

$$\det(A^{2} + I) = \det(A + iI)\overline{\det(A + iI)} = |\det(A + iI)|^{2} \ge 0.$$

19. On pose

$$f(x) = \begin{vmatrix} 1 & x_0 & \cdots & x_0^n \\ 1 & x_1 & \cdots & x_1^n \\ \vdots & \vdots & & \vdots \\ 1 & x_{n-1} & \cdots & x_{n-1}^n \\ 1 & x & \cdots & x^n \end{vmatrix}.$$

En saisant un développement suivant la dernière ligne, on voit que f(x) est un polynôme de dégré n. On voit également que x_0, \ldots, x_{n-1} sont les racines de f(x) est donc

$$V[x_0, \dots, x_n] = f(x_n) = A(x_n - x_0)(x_n - x_1) \dots (x_n - x_{n-1}),$$

$$A = V[x_0, \dots, x_{n-1}].$$

On en déduit par induction que

$$V[x_0, \dots, x_n] = \prod_{i < j} (x_j - x_i).$$

20. On effectue un développement suivant la dernière colonne et on obtient

$$\det(zI - C) = c_0 + c_1 z + \dots + c_{n-1} z^{n-1} + z^n.$$