Calculation of $\alpha_{\mu}^{(\pi^+\pi^-,LO)}$ with the use of a phenomenological dispersive method

Eirini Lymperiadou

HISKP (Theory), Universität Bonn

October 31, 2024

Table of contents

- Motivation
- ② Dispersive method
- 3 Phenomenological model
- Fits & Results
- 6 Branching ratios
- Summary & Conclusions
- References

Motivation

1: Motivation

- Tension between experiment SM theory
- Improve errors for α_μ^{had}-result
 ⇒ HVP-term: α_μ^{ππ,LO} (~ 60%)
- . In SM theory: higher CMD3 result

Primary topic:

- Use standard dispersion method for $\alpha_{\mu}^{\pi\pi,LO}$ calculation
- Use of phenomenological F^ν_π(s) functions to test/reproduce this deviation
- · Comparison of BaBar CMD3 data results
- Use fit parameters for $\mathcal{B}(\omega \to \pi\pi)$ and $\mathcal{B}(\phi \to \pi\pi)$ calculation

[Aguillard D.P. et al., 2023]

[Ignatov F.V. et al., 2023]

Dispersive method

2.1: Dispersive method for α_{II}^{HVP}

• Use of cross section data for calculation [De Troconiz J.F. & Ynduráin F.J., 2002]:

(LO) HVP Anomalous magnetic moment contribution

$$\alpha_{\mu}^{\rm HVP, LO} = \frac{1}{4\pi^3} \int_{s_{lh}}^{\infty} {\rm d}s \, \sigma_{(e^+e^- \to \gamma^* \to hadrons)} \cdot {\rm K}(s)$$

\rightarrow Analytical kernel function K(s):

$$\begin{split} K(s) = & \frac{\left(1 + x^2\right)(1 + x)^2}{x^2} \left(\log(1 + x) - x + \frac{x^2}{2} \right) \\ & + \frac{x^2}{2} \left(2 - x^2\right) + \frac{1 + x}{1 - x} x^2 \log(x) \\ x = & \frac{1 - \sigma_{\mu}(s)}{1 + \sigma_{\nu}(s)} \quad , \quad \sigma_{\mu}(s) = \sqrt{1 - \frac{4m_{\mu}^2}{s}} \end{split}$$

• With respect to the 2-pion vector form factor (VFF):

$$lpha_{\mu}^{\pi\pi, LO} = rac{lpha^2}{12\pi^2} \int_{4M_\pi^2}^{\infty} ds rac{eta_\pi^3 \cdot \mathrm{K}(s) \cdot |F_\pi^{\mathrm{v}}(s)|^2}{s}$$

ightarrow Pion velocity : $ho_{\pi}=\sqrt{1-4rac{m_{\pi}^{2}}{s}}$, lpha : fine-structure constant [Review of Particle Physics, 2022]

• Due to the analytic structure of $F_{\pi}^{v}(s) \to \text{Dispersion representation of VFF}$

$$F_{\pi}^{\mathrm{v}}(s) = rac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} rac{ds'}{s'-s} \cdot \mathrm{Im} F_{\pi}^{\mathrm{v}}(s')$$

2.2: Omnès function

• Solution constructed analytically \rightarrow Consider special solution: Omnès function $\Omega(s)$

$$F_{\pi}^{\nu}(s) = \Omega(s)$$
 with $\Omega(0) = 1$

Then:

$$\begin{split} \Omega(s+i\epsilon) &= \left|\Omega(s)\right| e^{i\delta(s)} \\ \Omega(s-i\epsilon) &= \left|\Omega(s)\right| e^{-i\delta(s)} \\ \Rightarrow \operatorname{disc} \log \Omega(s) &= \log \Omega(s+i\epsilon) - \log \Omega(s-i\epsilon) = 2i\delta(s) \end{split}$$

for $\delta(s \to \infty) \to constant$, the once-subtracted dispersion relation for $\log \Omega(s)$:

$$\log \Omega(s) = \log \Omega(0) + \frac{s}{\pi} \int_{4M_\pi^2}^{\infty} ds' \frac{\delta(s')}{s'(s'-s)} \Rightarrow \Omega(s) = \exp\left\{\frac{s}{\pi} \int_{4M_\pi^2}^{\infty} ds' \frac{\delta(s')}{s'(s'-s)}\right\}$$

$$\Omega(s) = \exp\left\{\frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} dx \frac{\delta(x)}{x(x-s)}\right\} = \exp\left\{\frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} dx \frac{\delta(x) - \delta(s)}{x(x-s)} + i\delta(s) - \frac{\delta(s)}{\pi} \log\left(\frac{4M_{\pi}^2 - s}{4M_{\pi}^2}\right)\right\}$$

where $\delta(s)$: the (elastic) phase shift

Phenomenological model

• In this project:

$$F_{\pi}^{v}(s) = P(s) \cdot \Omega(s)$$

for the "polynomial" P(s): 1

• FF1-type:
$$F_{\pi}^{\mathbf{v}}(\mathbf{s}) = \left(1 + \frac{\epsilon_{\rho\omega} \cdot \mathbf{s}}{M_{\omega}^{2} - \mathbf{s} - iM_{\omega}\Gamma_{\omega}^{tot}}\right) \cdot \Omega(\mathbf{s})$$

¹marked are the fit parameters in each case

• In this project:

$$F_{\pi}^{\nu}(s) = P(s) \cdot \Omega(s)$$

for the "polynomial" P(s): 1

• FF1-type:
$$F_{\pi}^{V}(s) = \left(1 + \frac{\epsilon_{\rho\omega} \cdot s}{M_{\omega}^{2} - s - iM_{\omega}\Gamma_{\omega}^{tot}}\right) \cdot \Omega(s)$$

• FF2-type:
$$F_{\pi}^{V}(s) = \left(1 + \frac{\epsilon_{\rho\omega} \cdot s}{M_{\omega}^{2} - s - iM_{\omega}\Gamma_{\omega}^{tot}}\right) \cdot \Omega(s)$$

¹marked are the fit parameters in each case

• In this project:

$$F_{\pi}^{\mathsf{v}}(s) = P(s) \cdot \Omega(s)$$

for the "polynomial" P(s): 1

• FF1-type:
$$F_{\pi}^{V}(s) = \left(1 + \frac{\epsilon_{\rho\omega} \cdot s}{M_{\omega}^{2} - s - iM_{\omega}\Gamma_{\omega}^{tot}}\right) \cdot \Omega(s)$$

• FF2-type:
$$F_{\pi}^{\nu}(s) = \left(1 + \alpha \cdot s + \frac{\epsilon_{\rho\omega} \cdot s}{M_{\omega}^2 - s - iM_{\omega}\Gamma_{\omega}^{tot}}\right) \cdot \Omega(s)$$

• FF3-type:
$$F_{\pi}^{\mathbf{v}}(s) = \left(1 + \frac{\epsilon_{\rho\omega} \cdot s}{M_{\omega}^{2} - s - iM_{\omega}\Gamma_{\omega}^{tot}} + \frac{\epsilon_{\phi} \cdot s}{M_{\phi}^{2} - s - iM_{\phi}\Gamma_{\phi}^{tot}}\right) \cdot \Omega(s)$$

ı

¹marked are the fit parameters in each case

• In this project:

$$F_{\pi}^{\mathsf{v}}(s) = P(s) \cdot \Omega(s)$$

for the "polynomial" P(s): 1

• FF1-type:
$$F_{\pi}^{V}(s) = \left(1 + \frac{\epsilon_{\rho\omega} \cdot s}{M_{\omega}^{2} - s - iM_{\omega}\Gamma_{\omega}^{tot}}\right) \cdot \Omega(s)$$

• FF2-type:
$$F_{\pi}^{V}(s) = \left(1 + \alpha \cdot s + \frac{\epsilon_{\rho\omega} \cdot s}{M_{\omega^{2}} - s - iM_{\omega}\Gamma_{\omega}^{tot}}\right) \cdot \Omega(s)$$

• FF3-type:
$$F_{\pi}^{\nu}(s) = \left(1 + \frac{\epsilon_{\rho\omega} \cdot s}{M_{\omega}^{2} - s - iM_{\omega}\Gamma_{\omega}^{tot}} + \frac{\epsilon_{\phi} \cdot s}{M_{\phi}^{2} - s - iM_{\phi}\Gamma_{\phi}^{tot}}\right) \cdot \Omega(s)$$

• FF4-type:
$$F_{\pi}^{\nu}(s) = \left(1 + \frac{\epsilon_{\rho\omega} \cdot s}{M_{\omega}^{2} - s - iM_{\omega}\Gamma_{\omega}^{tot}} + \frac{\epsilon_{\phi} \cdot s}{M_{\phi}^{2} - s - iM_{\phi}\Gamma_{\phi}^{tot}}\right) \cdot \Omega(s)$$

ı

¹marked are the fit parameters in each case

3.2: Phase shift function $\delta(s)$

$$\delta(s) = \begin{cases} \text{Interpolated function from isospin 1 P-wave} \\ \text{phase shift values (Bern)} \end{cases}, \text{ for } 4M_\pi^2 \leq s \leq s_0 \\ \pi + \left(\delta\left(s_0\right) - \pi\right) \left(\frac{\lambda_0^2 + s_0}{\lambda_0^2 + s}\right) \end{cases}, \text{ for } s \geq s_0 \end{cases}$$

with $s_0 = 25 \, (GeV)^2$ and $\lambda_0 = const.$

Fits & Results

4.1: BaBar data

• BaBar data from measurements of $e^+e^- \to \pi^+\pi^-(\gamma)$ cross section with the Initial-State Radiation (IRS) method [Lees J.P. et al., 2012]

BaBar data with zoom in the behaviour exhibited due to the ω , ρ -mixing.

BaBar data with zoom in the behaviour exhibited due to the ϕ -resonance.

4.2: BaBar fits

4.3: CMD3 data

• CMD3 data from measurements of $e^+e^- \to \pi^+\pi^-$ cross section with energy-scan measurement method [Ignatov F.V. et al., 2023]

CMD3 data with zoom in the behaviour exhibited due to the ω, ρ -mixing.

CMD3 data with zoom in the behaviour exhibited due to the ϕ -resonance.

4.4: CMD3 fits

4.5: Results for fit parameters

$F_{\pi}^{v}(s)$ type	Data set (≤1.2GeV²)	$\alpha \times 10^{-2}$	$\epsilon_{ ho\omega} imes 10^{-4}$	$\textit{M}_{\omega}(\text{MeV})$	$\epsilon_{\phi} imes 10^{-4}$	$\textit{M}_{\phi} \; (\text{MeV})$	χ^2_{red}
FF1-type	BaBar	7.38 (±0.08)	19.98 (±0.35)	-	-	-	1.68
	CMD3	10.54 (±0.09)	17.85 (±0.25)	-	-	-	1.92
FF2-type	BaBar	7.39 (±0.08)	20.39 (±0.36)	781.833 (±0.105)	-	-	1.45
	CMD3	10.72 (±0.09)	18.09 (±0.25)	782.188 (±0.058)	-	-	1.60
FF3-type	BaBar	7.19 (±0.09)	20.05 (±0.35)	-	5.82 (±1.03)	-	1.57
	CMD3	10.69 (±0.09)	17.82 (±0.25)	-	-4.16 (±0.34)	-	1.16
FF4-type	BaBar	7.2 (±0.10)	20.46 (±0.36)	781.832 (±0.104)	6.57 (±1.70)	1024.393 (±0.249)	1.38
	CMD3	10.97 (±0.10)	18.05 (±0.25)	782.168 (±0.058)	4.68 (±0.35)	1020.118 (±0.131)	0.76

Results for the fit parameters for each form factor function and data set

Ref.2023 BaBar, CMD3 values: [Colangelo G., Hoferichter M. & Stoffer P., 2023]

Result comparison for the fit parameter M_{ω} .

ref.2, Average value 2023: [Colangelo G., Hoferichter M. & Stoffer P., 2023]

Review of Particle Physics, Average value (2022): [Review of Particle Physics, 2022]

ref.1, CMD3 value: [Ignatov F.V. et al., 2023] ref.2 BaBar, CMD3 values 2023: [Colangelo G., Hoferichter M. & Stoffer P.,

2023]

Result comparison for the fit parameter M_{ϕ} .

PDG Average value (2022): [Review of Particle Physics, 2022)]

Ref.2023 CMD3 value: [Ignatov F.V. et al., 2023]

4.6: Results for $\alpha_{\mu}^{(\pi^+\pi^-,LO)}$

$\alpha_{\mu}^{\pi\pi,LO} \times 10^{-10}$								
	BaBar			CMD3				
$F_{\pi}^{\nu}(s)$ type	$(2M_{\pi} - 1) \text{ GeV}$	(0.6 – 0.88) GeV	(0.327 – 1.2) GeV	$(2M_{\pi} - 1) \text{ GeV}$	(0.6 – 0.88) GeV	(0.327 - 1.2) GeV		
FF1-type	505.58±0.41	372.15±0.34	509.38±0.43	520.23±0.44	383.99±0.36	524.50±0.45		
FF2-type	505.67±0.41	372.23±0.34	509.47±0.43	521.11±0.46	384.72±0.37	525.41±0.47		
FF3-type	505.39±0.46	371.94±0.37	509.13±0.43	520.45±0.45	384.22±0.37	524.78±0.45		
FF4-type	504.06±0.52	371.69±0.42	509.27±0.43	520.32±0.47	384.94±0.38	526.09±0.48		

Results for the HVP contribution of the $(2\pi,LO)$ to the anomalous magnetic moment of the muon

• The result comparison ² for $\sqrt{s} \in [2M_{\pi}, 1]$ GeV :

²BaBar ref.2, CMD3 ref.2: 2023 value: [Colangelo G., Hoferichter M. & Stoffer P., 2023]

• The result comparison ^{3 4} for $\sqrt{s} \in [0.6, 0.88]$ GeV:

• The result comparison for $\sqrt{s} \in [0.327, 1.2]$ GeV:

³BaBar ref.1, CMD3 ref.1: 2023 values: [Ignatov F.V. et al., 2023]

⁴CMD3 ref.2: 2023 value [Colangelo G., Hoferichter M., & Stoffer P., 2023]

Branching ratios

5: Branching ratio results

$$\kappa_1 = g_{\gamma^*\omega} \cdot g_{\omega\pi\pi} = \epsilon_{
ho\omega}$$
 $\kappa_2 = g_{\gamma^*\phi} \cdot g_{\phi\pi\pi} = \epsilon_{\phi}$

 \bullet Use of known decay widths a to calculate $g_{\gamma^*\omega}$ and $g_{\gamma^*\phi}$:

$$\Gamma(\omega
ightarrow \mathrm{e}^{+}\mathrm{e}^{-}) = rac{4\pilpha_{em}^{2}}{3}\,g_{\gamma^{*}\omega}^{2}M_{\omega} \ \Gamma(\phi
ightarrow \mathrm{e}^{+}\mathrm{e}^{-}) = rac{4\pilpha_{em}^{2}}{3}\,g_{\gamma^{*}\phi}^{2}M_{\phi}$$

^a[Hanhart C. et al., 2018]

• Use of fit parameters $\epsilon_{\rho\omega}/\epsilon_{\phi}$ to calculate the couplings $g_{\omega\pi\pi}$ and $g_{\phi\pi\pi}$ and then the branching ratios 5 :

$$\begin{split} \mathcal{B}\left(\omega \to \pi^+\pi^-\right) &= \frac{\Gamma(\omega \to \pi^+\pi^-)}{\Gamma^{tot}} = \frac{g_{\omega\pi\pi^2}}{48\pi} \frac{\left(M_\omega^2 - 4M_\pi^2\right)^{3/2}}{M_\omega^2} \left|\Omega\left(M_\omega^2\right)\right|^2 \cdot \frac{1}{\Gamma^{tot}_\omega} \\ \mathcal{B}\left(\phi \to \pi^+\pi^-\right) &= \frac{\Gamma(\phi \to \pi^+\pi^-)}{\Gamma^{tot}_\phi} = \frac{g_{\phi\pi\pi^2}}{48\pi} \frac{\left(M_\phi^2 - 4M_\pi^2\right)^{3/2}}{M_\phi^2} \left|\Omega\left(M_\phi^2\right)\right|^2 \cdot \frac{1}{\Gamma^{tot}_\phi} \end{split}$$

$F_{\pi}(s)$ type	Data set	$ g_{\omega\pi\pi} \times 10^{-2}$	$ g_{\phi\pi\pi} imes 10^{-2}$	$\mathcal{B}(\omega \to \pi\pi) \times 10^{-2}$	$\mathcal{B}(\phi\to\pi\pi)\times10^{-2}$
FF0 1	BaBar	3.42 (±0.08)	0.78(±0.14)	1.96 (±0.90)	0.029 (±0.010)
FF3-type	CMD3	3.04 (±0.07)	0.56 (±0.05)	1.55 (±0.07)	0.015 (±0.003)
	BaBar	3.49 (±0.08)	0.88 (±0.23)	2.05 (±0.10)	0.036 (±0.019)
FF4-type	CMD3	3.08 (±0.07)	0.63 (±0.05)	1.60 (±0.07)	$0.019\ (\pm0.003\)$

⁵[Hanhart C. et al., 2018]

• The branching ratio result comparison for the mode $(\omega \to \pi\pi)^a$:

^aPDG Average value (2022): [Review of Particle Physics, 2022] Average value including corrected BaBar data: [Hanhart C. et al., 2018]

[Hanhart C. et al., 2018]

• The Branching ratio result comparison for the mode $(\phi o \pi\pi)^6$:

⁶PDG 2022 values: [Review of Particle Physis, 2022]

Summary & Conclusions

Summary of results

Fit of **four** phenomenological functions of $F_{\pi}^{v}(s)$ on data from BaBar and CMD-3:

- Calculated $\alpha_u^{\pi\pi,LO}$ for $\sqrt{s} \in [2M_\pi,1]$, [0.6, 0.88] and [0.327, 1.2]GeV
 - → Results within the limits for BaBar and in relative agreement for CMD-3
 - → Reproduced and confirm the deviation between the values for BaBar and CMD-3
- Used $\epsilon_{\rho\omega}$ and ϵ_{ϕ} for the isospin-breaking processes
 - \hookrightarrow Calculated branching ratios for $(\omega \to \pi^+\pi^-, \phi \to \pi^+\pi)$
 - → Values from CMD-3 data analysis closer or in agreement with reference values

Conclusions

Primary concerns:

- CMD-3 produce higher values than all previous experiments

 - \hookrightarrow add to the uncertainty for the α_u^{HVP}
- Using only CMD3 data for $\alpha_u^{e^+e^-, \text{HVP}}$
 - ⇔ eliminate large deviation from experiment

[Ignatov F. et al., 2023.]

Future goals:

- ► Further study of experimental & calculation methods → determine the source of discrepancy
- ▶ Results from future experiments → obtain more values for a more accurate picture

Thank you for your attention!

Any questions?

References

References I

- Aguillard, D. P., et al. "Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm." arXiv preprint arXiv:2308.06230 (2023).
- [2] Ignatov, F. V., et al. "Measurement of the $e^+e^- \rightarrow \pi^+\pi^-$ cross section from threshold to 1.2 GeV with the CMD-3 detector." arXiv preprint arXiv:2302.08834 (2023).
- [3] Ignatov, F. V., et al. "Measurement of the pion formfactor with CMD-3 detector and its implication to the hadronic contribution to muon (g-2)." arXiv preprint arXiv:2309.12910 (2023).
- [4] Lees, J. P., et al. "Precise measurement of the $e^+e^- \to \pi^+\pi^-(\gamma)$ cross section with the initial-state radiation method at BABAR." Physical Review D 86.3 (2012): 032013.
- [5] De Troconiz, J. F., & Ynduráin, F. J. (2002). Precision determination of the pion form factor and calculation of the muon g 2. Physical Review D, 65(9), 093001.
- [6] Particle Data Group, et al. "Review of particle physics." Progress of theoretical and experimental physics 2022.8 (2022): 083C01.
- [7] Colangelo, G., Hoferichter, M., & Stoffer, P. (2023). Puzzles in the hadronic contributions to the muon anomalous magnetic moment. arXiv preprint arXiv:2308.04217.
- [8] Hanhart, C., et al. "The branching ratio $\omega \to \pi^+\pi^-\omega \to \pi + \pi^-$ revisited." The European Physical Journal C 77 (2017): 1-13.
- [9] Vasserman, I. B., et al. "Measurement of the \rightarrow + branching ratio." Physics Letters B 99.1 (1981): 62-65.
- [10] Achasov, M. N., et al. "Decay \rightarrow + ." Physics Letters B 474.1-2 (2000): 188-193.
- [11] Aoyama, Tatsumi, et al. "The anomalous magnetic moment of the muon in the Standard Model." Physics reports 887 (2020): 1-166.
- [12] Ignatov F., "Recent e⁺e⁻ → π⁺π⁻ measurement with the CMD-3 detector", The Sixth Plenary Workshop of the Muon g-2 Theory Initiative, Bern, 4 Sept. 2023.https://indico.cern.ch/event/1258310/contributions/ 5515288/attachments/2707763/4701189/pipiFinal_4Sept2023_TI.pdf

B.1: Alternative to error analysis

• Include the error-data of phase shift $\delta \pm \Delta \delta(s)$:

• Extrapolate the errors at higher energy so that it goes to 0:

$$\Delta\delta(s) = \left\{ \begin{array}{c} \text{Interpolated function from Bern error values} & \text{, for} \quad 4M_\pi^2 \leq s \leq s_0 \\ \\ \Delta\delta\left(s_0\right) \cdot \left(\frac{\lambda_0^2 + s_0^4}{\lambda_0^2 + s^4}\right) & \text{, for} \quad s \geq s_0 \end{array} \right.$$

with $s_0 = 2.25 \, (GeV)^2$.

• Use exponential form of $\Omega(s)$ and add another fit parameter:

$$\Omega[\delta \pm \Delta \delta] = \Omega[\delta] \cdot \Omega[\pm \Delta \delta] = \Omega[\delta] \cdot (\Omega[\Delta \delta])^{\mathbf{c}}$$

$$F_{\pi}^{\mathsf{v}}(s) = P(s) \cdot \Omega[\delta(s)] \cdot \Omega[\Delta\delta(s)]^{\mathsf{c}}$$

• Fit result comparison:

$\chi^2_{ m red}$							
	BaBa	ar	CMD3				
F-type	without $\Delta \delta$	with $\Delta \delta$	withoutwithout $\Delta \delta$	with $\Delta \delta$			
FF1	1.68	1.67	1.92	1.89			
FF2	1.45	1.44	1.60	1.49			
FF3	1.57	1.57	1.16	1.14			
FF4	1.38	1.37	0.72	0.65			

• Result comparison for BaBar:

• Result comparison for CMD-3:

