

AUDIO GENRE CLASSIFICATION

Guided By:

Dr. Nizar Banu

Presented By:

Himanshu Gulechha (2348520)

Manashwy Padhi (2348528)

Purusharth Mallik (2348542)

2 MSAIM

MISSION

CHRIST is a nurturing ground for an individual's holistic development to make effective contribution to the society in a dynamic environment

VISION

Excellence and Service

CORE VALUES

Faith in God | Moral Uprightness Love of Fellow Beings Social Responsibility | Pursuit of Excellence

Agenda

- Introduction to Audio Genre Classification
- Dataset
- Features
- Algorithms Implemented
- Comparing Results
- Conclusion

Introduction to Audio Genre Classification

What is it?

Audio genre classification uses machine learning to automatically categorize music based on its sonic characteristics.

- How does it work?
 - 1. Feature extraction: Audio signals are converted into numerical data describing rhythm, tempo, timbre, and other musical elements.
 - 2. Model training: Machine learning algorithms learn patterns from labeled audio samples across various genres.
 - 3. Prediction: New audio is analyzed, and its genre is predicted based on the trained model.

Dataset - GTZAN

 The GTZAN dataset is the most-used public dataset for evaluation in machine listening research for music genre recognition (MGR).

The dataset has the following types of data:

- genres original A collection of 10 genres with 100 audio files each.
- images original A visual representation (Mel Spectrograms) for each audio file.
- **2 CSV files** Containing features of the audio files. One file has features of 30 sec clips, the other has features of 3 sec clips (i.e., the second CSV has 10 times more data than the first)

Features

- Chroma Frequencies

It is an effective method for analyzing music where pitch can be adequately categorized (generally into twelve categories) and whose intonation approximates the equitable scale.

Mel Frequency Cepstral Coefficients

The mel frequency cepstral coefficients (MFCCs) of an audio signal are a small set of features (usually about 10–20) which describe the overall shape of the spectral envelope.

- Spectral Rolloff

The spectral rolloff is a parameter that describes the characteristics of a signal's shape. It indicates the frequency at which the high frequencies start to diminish and eventually reach zero.

- Spectral Bandwidth

Spectral bandwidth is a measure of the range of frequencies present in a signal.

- Zero Crossing Rate

The term refers to the speed at which a signal transitions from a positive value to zero, then to a negative value, or from a negative value to zero, and then to a positive value.

Algorithms Implemented

- Unsupervised Learning

- Dimensionality Reduction

Supervised Learning

- Deep Learning

Comparing Results

Conclusion

The models that performed the best included Support Vector Classifier, K-Nearest Neighbours, and Fully Connected Network.

Moreover, the models can be fine-tuned if one has access to higher computational power to yield results that are state-of-the-art.

Audio Genre Classification is a sub-problem that occurs while performing various different tasks. With the help of machine learning, we can now classify songs as belonging to a particular genre without the need of human interruption.