Elementos activos

Teoría de Circuitos II

Autor: Luis Badesa Bernardo

(basado en las diapositivas de Óscar Perpiñán Lamigueiro)

Elementos activos (generadores) → motivan la circulación de corriente

Tipos:

- De tensión o de corriente
- Ideales o reales
- Dependientes o independientes

Generador ideal

Un **generador de tensión ideal** impone la tensión a la salida (*la corriente depende del circuito*)

Un **generador de corriente ideal** impone la corriente a la salida (*la tensión depende del circuito*)

Generador real CC

Real:

con pérdidas, modeladas mediante una resistencia **en serie**

$$U_{AB} = \epsilon_g - R_{\epsilon_g} \cdot I$$

Real:

con pérdidas, modeladas mediante una resistencia **en paralelo**

$$I = I_g - \frac{U_{AB}}{R_{I_g}}$$

Generador real CA

Real: con pérdidas, modeladas mediante

una impedancia **en serie**

$$\overline{U}_{AB} = \overline{\epsilon}_g - \overline{Z}_{\epsilon_g} \cdot \overline{I}$$

Real:

con pérdidas, modeladas mediante una impedancia **en paralelo**

$$ar{I} = ar{I}_g - rac{U_Z}{\overline{Z}}$$

Fuente de **tensión**

Fuente de corriente

$$u(t) = \epsilon_g - R_{\epsilon_g} \cdot i(t)$$
$$i(t) = \frac{\epsilon_g - u(t)}{R_{\epsilon_g}}$$

$$i(t) = I_g - \frac{u(t)}{R_{Ig}}$$
 $u(t) = R_{Ig} \cdot [I_g - i(t)]$

$$\frac{1}{R_{\epsilon_{\sigma}}}$$

Generadores dependientes

No tienen valores de ϵ_g o I_g fijos, sino que estos **dependen** de la **tensión** o **corriente** en **otros puntos** de la red:

- 1 Potencia
- 2 Transformación y asociación

Receptores y generadores

- Un circuito receptor <u>absorbe</u> potencia y la corriente *entra* por el terminal de mayor potencial
- Un circuito generador entrega potencia y la corriente sale por el terminal de mayor potencial

Potencia y rendimiento de una fuente CC

Potencia máxima entregada por la fuente:

Aplicando la condición de máximo:

$$\frac{\mathrm{d}P_L}{\mathrm{d}R_L} = 0 \quad \to \quad \boxed{R_L = R_{th}}$$

Potencia y rendimiento de una fuente CC

Suponiendo R_g constante, la potencia entregada por la fuente es máxima cuando $R_L = R_g$

$$P_L = \frac{\epsilon_g^2}{4 R_g}$$

El rendimiento es una función creciente $(\eta \to 1 \text{ para } R_L \gg R_g)$

Potencia de una fuente CA

Calculamos la potencia activa en la impedancia de carga Z_L :

Máxima potencia de una fuente CA

Suponiendo \overline{Z}_g constante, las condiciones de máximo son:

$$\frac{\partial P_L}{\partial X_L} = 0 , \qquad \frac{\partial P_L}{\partial R_L} = 0$$

Los resultados son:

$$\frac{\partial P_L}{\partial X_L} = 0 \Rightarrow \boxed{X_L = -X_g}$$

$$\frac{\partial P_L}{\partial R_L} = 0 \Rightarrow \boxed{R_L = R_g}$$

(deducción en Teoría de Circuitos I)

En estas condiciones, la **máxima potencia** disponible en la carga es:

$$egin{aligned} \overline{Z}_L &= \overline{Z}_g^* \ P_L &= rac{\epsilon_g^2}{|\overline{Z}_g + \overline{Z}_L|^2} \cdot R_L \end{aligned}
ight\}
ightarrow egin{aligned} P_L &= rac{\epsilon_g^2}{4 \, R_g} \end{aligned}$$

Si la impedancia de carga es resistiva pura, únicamente se puede cumplir la segunda

Resolviendo $\frac{\partial P_L}{\partial R_T} = 0$, se obtendría:

$$R_L = |\overline{Z}_g| = \sqrt{R_g^2 + X_g^2}$$
 (luego $R_L > R_g$)
 $P_L = rac{\epsilon_g^2}{2(R_L + R_g)}$ (se omite la deducción)

- Potencia
- 2 Transformación y asociación

Equivalencia de fuentes

Sólo es posible establecer equivalencia entre fuentes reales

$$\overline{U}_{AB} = \overline{\epsilon}_g - \overline{Z}_{\epsilon_g} \cdot \overline{I}$$

$$\overline{Z}_g = \overline{Z}_{\epsilon_g} = \overline{Z}_{I_g}$$
 $\overline{\epsilon}_g = \overline{Z}_g \cdot \overline{I}_g$
 $\overline{I}_g = \frac{\overline{\epsilon}_g}{\overline{Z}_g}$

(demostración en Teoría de Circuitos I)

$$\bar{I} = \bar{I}_g - \frac{\overline{U}_{AB}}{\overline{Z}_{I_a}}$$

Transformación de fuentes dependientes

Si la variable de la que depende la fuente no "desaparece" en la transformación, la conversión es directa:

Si la **variable "desaparece"** en la transformación, hay que tener **mucho cuidado**: hay que hacer un **cambio de variable** por otra que se mantenga (siguiente diapositiva)

Transformación de fuentes dependientes: cambio de variable

Cualquiera de estos dos cambios de variable es válido:

$$I_z = \frac{-U_{AB}}{Z}$$
, $I_z = \frac{I}{1+\alpha}$

Dando lugar a estas expresiones igualmente válidas:

$$\epsilon_g = -\alpha \cdot U_{AB}$$
, $\epsilon_g = \frac{\alpha \cdot Z}{1+\alpha}I$

Transformación de fuentes dependientes: cambio de variable

Cualquiera de estos dos cambios de variable es válido:

$$U_z = \frac{U_{AB}}{\alpha - 1}$$
, $U_z = Z \cdot I$

Dando lugar a estas expresiones igualmente válidas:

$$I_g = \frac{\alpha \cdot U_z}{Z} = \frac{\alpha \cdot U_{AB}}{Z(\alpha - 1)}, \quad I_g = \alpha \cdot I$$

- Potencia
- 2 Transformación y asociación

Serie y paralelo

Fuentes dominantes

Movilidad

Conexión en serie de generadores

Generadores de tensión

Pueden conectarse en serie sin restricción (tanto generadores ideales como reales)

$$CC \to \begin{cases} \epsilon_T = \sum_{\forall i} \epsilon_i \\ R_{g_T} = \sum_{\forall i} R_{g_i} \end{cases} \qquad CA \to \begin{cases} \overline{\epsilon}_T = \sum_{\forall i} \overline{\epsilon}_i \\ \overline{Z}_{g_T} = \sum_{\forall i} \overline{Z}_{g_i} \end{cases}$$

Generadores de corriente

- ► Ideal: todas las fuentes deben ser idénticas (valor y sentido)
- ► Real: sin restricción
 - ► Transformación a fuentes de tensión para obtener la fuente equivalente

Ejemplo: fuentes de corriente reales en serie

Se transforman primero cada una de las fuentes de corriente en fuentes de tensión:

Ejemplo: fuentes de corriente reales en serie (continuación)

Las fuentes de tensión en serie se asocian en una fuente equivalente, y esta se transforma de vuelta en una fuente de corriente:

Donde:

$$\epsilon_T = \epsilon_1 + \epsilon_2 = I_{g_1} \cdot R_{I_{g_1}} + I_{g_2} \cdot R_{I_{g_2}}$$

$$R_{\epsilon_T} = R_{\epsilon_1} + R_{\epsilon_2} = R_{I_{g_1}} + R_{I_{g_2}}$$

Y finalmente:

$$\boxed{I_{g_T} = \frac{\epsilon_T}{R_{I_{g_T}}} = \frac{I_{g_1} \cdot R_{I_{g_1}} + I_{g_2} \cdot R_{I_{g_2}}}{R_{I_{g_1}} + R_{I_{g_2}}}}$$

$$R_{I_{g_T}} = R_{\epsilon_T} = R_{I_{g_1}} + R_{I_{g_2}}$$

Conexión en paralelo de generadores

Generadores de tensión

- ► Ideal: todas las fuentes deben ser idénticas (valor y polaridad)
- ► Real: sin restricción
 - ► Transformación a fuentes de corriente para obtener la fuente equivalente

Generadores de corriente

Pueden conectarse en paralelo sin restricción (tanto generadores ideales como reales)

$$\mathsf{CC} \to \begin{cases} I_{g_T} = \sum_{\forall i} I_{g_i} \\ G_{g_T} = \sum_{\forall i} G_{g_i} \end{cases} \qquad \mathsf{CA} \to \begin{cases} \overline{I}_{g_T} = \sum_{\forall i} \overline{I}_{g_i} \\ \overline{Y}_{g_T} = \sum_{\forall i} \overline{Y}_{g_i} \end{cases}$$

Ejemplo: fuentes de tensión reales en paralelo

Se transforman primero cada una de las fuentes de tensión en fuentes de corriente:

Donde:

$$I_{g_1} = \frac{\epsilon_1}{R_{c_1}}$$
 $I_{g_2} = \frac{\epsilon_2}{R_{c_2}}$ $R_{I_{g_1}} = R_{\epsilon_1}$ $R_{I_{g_2}} = R_{\epsilon_2}$

(continúa en la siguiente diapositiva)

Ejemplo: fuentes de tensión reales en paralelo (continuación)

Las fuentes de corriente en paralelo se asocian en una fuente equivalente, y esta se transforma de vuelta en una fuente de tensión:

$$\begin{split} I_{g_T} &= I_{g_1} + I_{g_2} = \frac{\epsilon_1}{R_{\epsilon_1}} + \frac{\epsilon_2}{R_{\epsilon_2}} \\ R_{I_{g_T}} &= R_{I_{g_1}} \parallel R_{I_{g_2}} = R_{\epsilon_1} \parallel R_{\epsilon_2} \end{split}$$

$$R_{\epsilon_T} = R_{I_{g_T}} = R_{\epsilon_1} \parallel R_{\epsilon_2}$$

- Potencia
- 2 Transformación y asociación

Serie y paralelo

Fuentes dominantes

Movilidad

Fuentes dominantes

Una fuente de **tensión** ideal es **dominante** sobre las ramas conectadas en **paralelo** (se puede **prescindir** de **estas ramas** si solo nos interesa la salida en A-B)

Fuentes dominantes

Una fuente de **corriente** ideal es **dominante** sobre los elementos conectados en **serie** (se puede **prescindir** de **estos elementos** si solo nos interesa la salida en A-B)

- Potencia
- 2 Transformación y asociación

Serie y paralelo

Fuentes dominantes

Movilidad

Modificación de la geometría de un circuito: movilidad de fuentes

Recordatorio de Teoría de Circuitos I:

- ▶ Método de las mallas: únicamente aplicable con fuentes de tensión
- ▶ Método de los nudos: únicamente aplicable con fuentes de corriente

¿Qué hacer si hay generadores ideales, y no es posible transformación?

Una posibilidad \rightarrow **movilidad de generadores**

- ► La movilidad de fuentes nos permite transformar un generador ideal en un conjunto de generadores reales
- Será necesaria una modificación de la geometría del circuito

Movilidad de fuentes de corriente

Puede comprobarse que el balance de corrientes en cada nudo es el mismo en ambos

Movilidad de fuentes de tensión: paso a paso

Generador **ideal** de **tensión**

Desdoblamos en dos generadores en paralelo

Los extremos del cable están al mismo potencial, luego no circula corriente

Movilidad de fuentes de tensión:

Los **extremos del cable** están al **mismo potencial**, luego no circula corriente

paso a paso

Podemos por lo tanto **prescindir** del cable

Movilidad de fuentes de tensión: proceso directo

Puede comprobarse que los elementos pasivos están sometidos a las mismas tensiones

Movilidad de fuentes de tensión: proceso directo

Puede comprobarse que los elementos pasivos están sometidos a las mismas tensiones