CIÊNCIA DE DADOS - 01

Prof. Júlio Cesar Nievola

PPGla – PUCPR

06/abril/2019

Termos relacionados

Por quê se preocupar com dados? Ponto de vista comercial

- Muitos dados são coletados e armazenados
 - Web data, e-commerce
 - Compras em departamentos/ supermercados
 - Bancos / Transações com cartão de crédito
- Computadores se tornaram baratos ε
- Pressão competitiva é forte
 - Fornecer serviços melhores e personalizados como um diferencial (e.g. em CRM)

Por quê se preocupar com dados? Ponto de vista científico

- Dados coletados a enormes velocidades (GB/hora)
 - Sensores remotos em satélites
 - Telescópios sondando o céu
 - Micro-arranjos gerando dados de expressão gênica
 - Simulações científicas gerando terabytes de dados
- Técnicas tradicionais inviáveis para dados brutos
- Mineração de dados pode ajudar cientistas
 - classificando e segmentando dados
 - na Formulação de Hipóteses

Trabalhando com Grandes Bases de Dados

- Frequentemente há informação "escondida" nos dados que não está prontamente evidente
- Analistas humanos podem levar semanas para descobrir informação útil
- Muito dos dados não é analisada nunca

Referência: R. Grossman, C. Kamath, V. Kumar, "Data Mining for Scientific and Engineering Applications"

Cadeia de Valores

Conhecimento

- · Uma quantidade Y do produto A é usado na região Z
- Clientes da classe Y usam x%
 de C no período D

Decisão

- · Promover produto A na região Z.
- Enviar propaganda para famílias de perfil P
- Vender serviço B para clientes C

Dados

- · Dados de clientes
- Dados armazenados
- Dados demográficos
- Dados geográficos

Informação

- · X vive em Z
- · S tem Y anos
- · X e S mudaram de local
- · W tem dinheiro em Z

Processo KDD

Referência: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R., Advances in Knowledge Discovery and Data Mining, 1996

Processo em Ciência de Dados

Tipos de Tarefas a partir dos Dados

- Tarefa Preditiva
 - Usa algumas variáveis para prever valores desconhecidos ou futuros de outras variáveis
- Tarefa Descritiva
 - Encontra padrões compreensíveis por humanos para descrever os dados

Detalhamento dos Tipos de Tarefas

- Classificação [Preditiva]
- Agrupamento [Descritiva]
- Descoberta de Regras de Associação [Descritiva]
- Descoberta de Padrões Seqüenciais [Descritiva]
- Regressão [Preditiva]
- Detecção de Desvios [Preditiva]

Classificação: Definição

- Dado um conjunto de registros (conjunto de treinamento)
 - Cada registro contém um conjunto de *atributos*, um dos atributos é a *classe*.
- Encontrar um *modelo* para o atributo classe como uma função dos valores dos outros atributos.
- Objetivo: a registros <u>previamente não-usados</u> deve ser assinalada uma classe tão precisamente quanto possível.
 - Um *conjunto de testes* é usado para determinar a precisão do modelo. Usualmente, o conjunto de dados é dividido em conjunto de treinamento e conjunto de testes, sendo o conjunto de treinamento usado para construir o modelo e o conjunto de testes usado para validá-lo.

Classificação: Exemplo

categórico categórico continuo

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Refund	Marital Status	Taxable Income	Cheat		
No	Single	75K	?		
Yes	Married	50K	?		
No	Married	150K	?	\	
Yes	Divorced	90K	?		
No	Single	40K	?	7	
No	Married	80K	?		Conj.
					Teste
onj. ein.		Classif		→	Modelo

- Marketing Direto
 - Objetivo: Reduzir custo de propaganda *escolhendo* um conjunto de clientes que provavelmente comprarão um novo produto celular.
 - Abordagem:
 - Usar os dados de maneira similar ao exemplo anterior.
 - Sabe-se quais clientes decidiram comprar o produto e quais não. Esta decisão {comprar, não-comprar} forma o atributo classe.
 - Coletar várias informações demográficas, de estilo de vida, e de interação com a empresa relacionadas a todos os clientes.
 - Tipo de negócio, onde eles ficam, quanto recebem, etc.
 - Usar esta informação como atributos de entrada para treinar um modelo de um classificador.

- Detecção de Fraude
 - Objetivo: Prever casos fraudulentos em transações de cartão de crédito.
 - Abordagem:
 - Usar transações de cartão de crédito e a informação sobre os clientes como atributos.
 - Quando um cliente compra, o que ele compra, quão frequentemente ele paga em dia, etc.
 - Rotular as transações passadas como transação do tipo fraude ou honesta. Isto forma o atributo classe.
 - Treinar um modelo para a classe das transações.
 - Usar este modelo para detectar fraude observando transações de cartão de crédito sobre uma conta.

- Insatisfação de clientes:
 - Objetivo: Prever se um cliente tem propensão a migrar para um competidor.
 - Abordagem:
 - Usar registros detalhados de transações de cada um dos clientes passados e atuais, para encontrar atributos.
 - Quão frequentemente o cliente liga, para que setor ele liga, em que horário do dia ele liga mais, seu estado financeiro, estado civil, etc.
 - Rotular o cliente como leal ou não-leal.
 - Encontrar um modelo para a lealdade.

- Catálogo de Pesquisa do Firmamento
 - Objetivo: Prever a classe (estrela ou galáxia) de objetos celestes, especialmente os visualmente muito fracos, baseado em imagens de pesquisa de telescópios (do Observatório Palomar).
 - 3000 imagens com 23,040 x 23,040 pixels por imagem.
 - Abordagem:
 - Segmentar a imagem.
 - Medir atributos da imagem (características) 40 delas por objeto.
 - Modelar a classe baseado nestas características.
 - História de Sucesso: Encontrou 16 novos high red-shift quasars, alguns dos objetos mais distantes que são difíceis de encontrar!

Classificando Galáxias

Inicial

Classe:

• Estágio de Formação

Intermediário

Quantidade de dados:

- 72 milhões de estrelas, 20 milhões de galáxias
- Catálogo de objetos: 9 GB
- Base de Dados das Imagens: 150 GB

Cortesia: http://aps.umn.edu

Atributos:

- Caract. da imagem,
- Características das ondas de luz recebidas, etc.

Final

Tarefa de Agrupamento ("Clustering")

- Dado um conjunto de pontos de dados, cada um tendo um conjunto de atributos, e uma medida de similaridade entre eles, encontrar agrupamentos tais que
 - Pontos de dados em um grupo são mais similares entre si.
 - Pontos de dados em grupos diferentes são menos similares entre si.
- Medidas de Similaridade:
 - Distância Euclidiana se os atributos são contínuos.
 - Outras medidas dependentes do problema.

Ilustrando Agrupamento

□Agrupamento baseado em distância Euclidiana no espaço 3-D.

Distâncias intra-grupos são minimizadas

Distâncias inter-grupos são maximizadas

Agrupamento: Aplicação 1

- Segmentação de Mercado:
 - Objetivo: subdividir um mercado em distintos subconjuntos de clientes em que cada subconjunto pode ser visto como um mercado-alvo a ser atingido com uma mistura de marketing distintos.
 - Abordagem:
 - Coletar diferentes atributos de clientes baseado em informação relacionada ao seu estilo e posição geográfica.
 - Encontrar grupos de clientes similares.
 - Medir a qualidade dos grupos observando padrões de compra dos clientes no mesmo grupo versus aqueles de diferentes grupos.

Agrupamento: Aplicação 2

- Agrupamento de Documentos:
 - Objetivo: Encontrar grupos de documentos que são similares entre si baseado nos termos importantes que aparecem neles.
 - Abordagem: Identificar termos que ocorrem com frequência em cada documento. Formar uma medida de similaridade baseada na frequência dos diferentes termos. Usá-la para agrupar.
 - Ganho: Recuperação de Informações pode utilizar os grupos para relacionar um novo documento ou termo de pesquisa aos documentos agrupados.

Ilustrando Agrupamento de Documentos

- Pontos de Agrupamento: 3204 Artigos do Los Angeles Times.
- Medida de Similaridade: Quantas palavras são comuns nestes documentos (após alguma filtragem das palavras).

Categoria	Total de Artigos	Corretamente colocados
Financeiro	555	364
Estrangeiro	341	260
Nacional	273	36
Metrô	943	746
Esportes	738	573
Lazer	354	278

Agrupamento dos dados S&P 500

- Observar Stock Movements diários.
- □ Pontos de agrupamento: Stock-{UP/DOWN}
- Medida de Similaridade: Dois pontos são mais similares se os eventos que descrevem aparecem frequentemente juntos nomesmo dia.
 - ☐ Usou-se regras de associação para quantificar a medida de similaridade.

	Grupos Descobertos	Grupo Industrial
1	Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, Sun-DOWN	Technology1-DOWN
2	Apple-Comp-DOWN, Autodesk-DOWN, DEC-DOWN, ADV-Micro-Device-DOWN, Andrew-Corp-DOWN, Computer-Assoc-DOWN, Circuit-City-DOWN, Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, Motorola-DOWN, Microsoft-DOWN, Scientific-Atl-DOWN	Technology2-DOWN
3	Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, MBNA-Corp-DOWN,Morgan-Stanley-DOWN	Financial-DOWN
4	Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, Schlumberger-UP	Oil-UP

Descoberta de Regras de Associação

 Dado um conjunto de registros, cada um dos quais contém certo número de itens de uma coleção;

• Produzir regras de dependência que predirão a ocorrência de um item baseado nas

ocorrências de outros itens.

ID	Items
1	Pão, Refri, Leite
2	Cerveja, Pão
3	Cerveja, Refri, Fralda, Leite
4	Cerveja, Pão, Fralda, Leite
5	Refri, Fralda, Leite

```
Regras Descobertas:
{Leite} --> {Refri}
{Fralda, Leite} --> {Cerveja}
```

Descoberta de Regras de Associação: Aplicação 1

- Marketing e Promoção de Vendas:
 - As regras descobertas tem o formato {Pão francês, ... } --> {Batata frita}
 - <u>Batata frita como consequente</u> => Pode ser usada para determinar o que deve ser feito para incrementar as vendas.
 - <u>Pão francês no antecedente</u> => Pode ser usado para determinar quais produtos seriam afetados se a empresa descontinuasse a venda de pão frances.
 - <u>Pão francês no antecedente E Batata frita no conseqüente</u> => Pode ser usado para determinar quais produtos devem ser vendidos com Pão francês para promover a venda de Batatas fritas!

Descoberta de Regras de Associação: Aplicação 2

- Gerenciamento de prateleira de Supermercado.
 - Objetivo: Identificar itens que são comprados juntos por um número suficiente de clientes.
 - Abordagem: Processar os dados coletados no ponto-de-venda com scanners de código de barras para encontrar dependências entre itens.
 - Um regra clássica --
 - Se um cliente compra fraldas e leite, então ele provavelmente comprará cerveja.
 - Portanto, não se surpreenda se você encontrar engradados de cerveja próximos às fraldas!

Descoberta de Regras de Associação: Aplicação 3

• Gerenciamento de Inventário:

- Objetivo: Uma companhia de reparos de aparelhos domésticos quer antecipar a natureza dos reparos nos produtos de seus clientes e manter os veículos de serviço equipados com as partes certas para reduzir o número de visitas às casas dos clientes.
- Abordagem: Processar os dados sobre ferramentas e partes necessárias em reparos prévios em diferentes localizações de clientes e descobrir os padrões de co-ocorrência.

Descoberta de Padrões Sequenciais: Definição

- Dado um conjunto de objetos, cada objeto associado com sua própria linha do tempo de eventos, encontrar regras que predigam fortes dependências sequenciais entre diferentes eventos.
- Regras são formadas descobrindo inicialmente padrões. As ocorrências de eventos nos padrões são governadas pelas restrições temporais.

Descoberta de Padrões Sequenciais: Exemplos

- Em logs de alarmes em telecomunicações,
 - (Inverter_Problem Excessive_Line_Current)(Rectifier_Alarm) ==> (Fire_Alarm)
- Em sequências de transações em pontos de venda,
 - Livrarias:

```
(Intro_To_Visual_C) (C++_Primer) ==>
(Perl_for_dummies,Tcl_Tk)
```

• Loja de equipamentos de atletismo:

```
(Shoes) (Racket, Racketball) ==> (Sports_Jacket)
```

Tarefa de Regressão

- Prevê um valor de uma dada variável continuamente valorada baseada nos valores de outras variáveis, assumindo um modelo de dependência linear ou não-linear.
- Muito estudado nos campos da estatística e redes neurais.
- Exemplos:
 - Prever quantidade de vendas de um novo produto baseado nos gastos de propaganda.
 - Prever velocidade dos ventos como uma função da temperatura, umidade, pressão do ar, etc.
 - Previsão de séries temporais de índices do mercado financeiro.

Detecção de Desvios / Anomalias

- Detectar desvios significantes do comportamento normal
- Aplicações:
 - Detecção de Fraudes em Cartões de Créditos
 - Detecção de Intrusão em Redes

Desafios em Mineração de Dados

- Escalabilidade
- Dimensionalidade
- Dados Complexos e Heterogêneos
- Qualidade dos Dados
- Propriedade e Distribuição dos Dados
- Preservação da Privacidade
- Fluxo de Dados

Bibliografia Básica

- Cohen, P., "Empirical Methods for Artificial Intelligence", The MIT Press, 1995.
- Pyle, D., "Data Preparation for Data Mining", Morgan Kaufmann Publishers, Inc., 1999.
- Witten, I.H., Frank, E., Hall, M.A. and Pal, C.J., "Data Mining Practical Machine Learning Tools and Techniques", Morgan Kaufmann Publishers, Inc., 4th Edition, 2017.
- Janert, P.K., "Data Analysis with Open Source Tools", O'Reilly Media, Inc., 2011.
- Milton, M., "Head First Data Analysis", O'Reilly Media, Inc., 2009.