Some Lessons from the Financial Flows of the Great Recession

Juliane Begenau (HBS & NBER) Saki Bigio (UCLA & NBER) Jeremy Majerovitz (MIT) Federal Reserve Board - June 2017

Introduction

Financial Crisis Narratives

- Demand channel: household wealth
- Credit-Supply channel two avenues
 - equity losses \rightarrow banking frictions \rightarrow credit crunch
 - \bullet absorption of shadow assets \to banking frictions \to credit crunch

• This paper: contrast supply narrative with data

- 1. scale of shadow asset inflow & equity losses?
- 2. frictions explain bank behavior?

Findings - Six Empirical Facts

- Between 2007Q1–2014Q4, shadow banks saw a net outflow of \$4.2 trillion. However, Fed issued reserves to buy most of these assets.
- Book values and market values diverged during the crisis.Market values capture information that book values do not.
- 3. Between 2007Q3–2014Q4, BHCs lost \$710 billion in market capitalization. At same time, slowdown in lending.
- 4. Neither regulatory nor market constraints strictly bind for most banks. But, may influence bank's decisions indirectly.
- 5. Banks appear to operate with a target leverage; only slowly readjust after shocks. Suggests banks face adjustment costs.
- 6. Prior to crisis, banks reasjusted primarily by reducing assets. Post-crisis, banks also raised equity through retained earnings and issuances.

Findings - Lessons for Modeling

- Should move away from constraints used in literature
- Acknowledge distinction between book and market values
- Introduce frictions that prevent quick leverage adjustment, richer form of constraints

(1) Shadow asset flows and banks

Modern Financial System

- Traditional banks (TB): Depository institutions
- Shadow assets (SAB): SBD, GSE, M-Pools, REITs, Fincos, ABSers
- Shadow liabilities (SLB): MMM funds + SBD Repo & Secloans + Pensions & Insurance & ROW (Repo)

House price shock

Supply story

Asset Outflow: (a) Size? (b) Direction?

Data

- 2007q1-2015q1
- Financial Accounts (Flow of Funds)
- Bank level data on commercial banks
 - Call reports to adjust trad. banks' assets for GS & MS
- Security broker-dealer level (FOCUS) / SEC filings
 - adjust SAB series for GS & MS
- Money market mutual funds (ICI)
 - use ICI data to find share of prime MMMF
- 10-Q SEC filings
 - From quarterly filings get (lower bound) losses BS, ML,GS,MS, L \$56 billion
- Morningstar Hedge Fund data
- Inflation adjusted (2009 \$)

Fed Shadow-Asset Absorption Intermediated by Banks

Figure 1:

Shadow Asset Absorption through Shadow Banks

Figure 2: Assets in the Financial System

Takeaway (1)

- Upper bound: FED absorbed most of shadow-asset outflow
 - increased reserves (liabilities) by \$1.7 trillion
 - increased MBS and treasuries (assets) by \$1.9 trillion
 - · unobserved losses in shadows

Traditional Banks

- accumulated reserves (\$1.7 trillion) + increased deposits (\$2 trillion)
- appear to have intermediated shadow asset purchase of FED

Lessons

- direct crowding-out story, unlikely
- perhaps, indirect effects through decline in securitization and fire-sales

Part (2): Bank losses & leverage

Quantify shock to traditional banks

- Data:
 - FR Y-9C filings for BHC
 - BHC consolidates banks' position across different subdivisions
 - Exclude new entrants (e.g. GS, MS, ...)
 - Merge with CRSP data

Equity Evolution

• Flexibility to delay losses, raise equity to compensate book

Quantify shock to traditional banks

	Real Change Since 2007 Q3				
	2008 Q4	2009 Q4	2010 Q4	2011 Q4	2013 Q4
Market	-54%	-39%	-29%	-48%	-10%
Cap.					
Book	-19%	7%	14%	19%	27%
Equity					
S&P 500	-42%	-29%	-21%	-23%	10%

Predictability: (ME/E) correlated with future ROE

Figure 3: Logged Tobin's Q and Return on Book Equity

Takeaway (2)

- Book and market value discrepancy
- Modest book losses, offset by issuances
 - both TARP and private
- Book leverage constraints appear not strictly binding
 - avoidable by delaying to acknowledge losses

Part (3): Bank Portfolio Constraints

Possible bank constraints

• Shocks matter only when TB face constraints

Possible bank constraints

- Shocks matter only when TB face constraints
- 1. Book capital requirements
- 2. Market-based constraints
- 3. Target Leverage (e.g. trade-off theory) with adjustment costs
 - Equity issuance costs + non-negative dividends
 - Sticky balance sheet (e.g. fire-sale costs, no early liquidation)

Book vs. Market Leverage

- Book leverage fell whereas market leverage rose
- Pro-cyclical (book) vs counter-cyclical (market) leverage

Adjustments to Target Leverage

- Idea:
 - learn which constraints matter from IRF to return shocks
 - take advantage of fact that markets react faster

$$\Delta \log(y_{i,t}) = \alpha_t + \sum_{h=0}^k \beta_h \cdot \log(1 + r_{i,t-h}) + \gamma_h \cdot Post_t \log(1 + r_{i,t-h}) + \epsilon_{i,t}$$

• Time fixed effects control for aggregate shocks (e.g. demand)

Bank liabilities and negative return shocks

• Liabilities adjusts slower post-crisis vs pre-crisis

Market Equity and Negative Return Shocks

- Market cap adjusts faster post crisi vs pre-crisis
- Large part of adjustment comes from new issuance

Banks are constrained on how they adjust leverage

- 1. Target leverage ratio (but not a tight constraint)
- 2. Pre and pre-crisis: change in how leverage was adjusted
 - 2.1 pre-crisis = asset sales
 - 2.2 post-crisis = equity issuance

Why?

- Asymmetric information?
- Post-crisis resort to costly equity
- Deleveraging became harder
 - avoid regulation
 - lack of securitization

Model

Model Overview

Game, build simplest model to fit our six facts:

- 1. Fed purchase of shadow assets prevents crowding out
- 2. Discrepancies between books and market values
- 3. Traditional bank equity shock⇒Decline in lending
- 4. Bank leverage target with adjustment costs
- 5. Regulatory and market constraints do not bind, but influence bank behavior
- Post-crisis use retained earnings and equity issuances more intensely to target leverage

Environment I

- Partial Equilibrium
- Inside and Outside Investors of banks:
 - Inside investors: risk-averse agents, run banks
 - Outside investors: price strip of dividends
- Perfectly elastic supply of deposits at rate r^d
- Fixed loan at rate r^l
 - ullet maturity δ
 - bank specific loans p(I, b, I, m)

Environment II

- ullet Bank state: $ig\{b, I, m, ar{b}ig\}$ with real wealth: W=b+m-I
- Real leverage:

$$\lambda \equiv \frac{b}{W}$$

- Market Leverage Constraint: $\lambda > \bar{\lambda}$
- Regulatory constraint

$$x' > \kappa \left(\phi \bar{b}' - x' \right)$$

Violation of either constraint leads to bank liquidation

Bank's Problem

$$V\left(b,l,m,\bar{b}\right) = \max_{\{d,l,z\}} U\left(d\right) + \beta \mathbb{E}\left[\left(1-s\right)V\left(\varepsilon b',l',m',\bar{b}'\right) + \left(s\right)V\left(\varepsilon b',l',m',\varepsilon b'\right)\right]$$
 subject to:

$$\begin{array}{lll} \text{(loans)} \ b' & = & \left(1+r^b\right)\left(1-\delta\right)b+I \\ \text{(book loans)} \ \bar{b}' & = & \left(1+r^b\right)\left(1-\delta\right)\bar{b}+I \\ \text{(deposits)} \ l' & = & \left(1+r^d\right)I-\delta b+p\left(I,b,I,m\right)I+d-z \\ \text{(reserves)} \ m' & = & \left(1+r^d\right)m-z \\ \text{(regulation)} \ x' & \leq & \kappa\left(\phi\bar{b}'-x'\right) \end{array}$$

and

$$V\left(arepsilon b', l', m', ar{b}'
ight) = V^{\circ} \ \ ext{if} \ \left\{arepsilon b', l', m', ar{b}'
ight\} \in \Gamma^{ ext{liquidation}}.$$

Characterization

- Value function: homothetic in W
- Relevant state is: (λ, q) where $q = \bar{b}/b$.
- Main feature:

$$V\left(b, l, m, \bar{b}\right) = \bar{V}\left(\lambda, q\right) W^{1-\gamma}$$

where

$$\bar{V}\left(\lambda,q\right) = \max_{\left\{c,\iota\right\}} U\left(c\right) + \beta \mathbb{E}\left[\bar{V}\left(\lambda'\left(\varepsilon,\lambda\right),q\right)\Omega^{1-\gamma}\left(\varepsilon,c,\iota;\lambda\right)\right]$$

subject to: (a) law of motion for leverage, (b) law of motion for books, (c) portfolio returns:

$$\Omega\left(\varepsilon,c,\iota;\lambda\right) = \left\lceil R^{\mathfrak{s}}\left(\varepsilon\right)\lambda - R^{d}\left(\lambda - 1\right) - c + \left(\varepsilon - \bar{p}\left(\iota,\lambda\right)\right)\iota\lambda\right\rceil.$$

(f) regulatory constraint, (g) liquidation

Outside Investor

• Value of representative outside investor:

$$S(b, l, m, \bar{b}) = d + \mu \mathbb{E} \left[S(\varepsilon b', l', m', \bar{b}') \right].$$

• Recusively:

$$s(\lambda, q) W = c(\lambda, q) W + \mu \mathbb{E} [s(\lambda', q') \Omega(\varepsilon', \lambda, q)] W.$$

Expected Return:

$$\bar{R} = \frac{c(\lambda, q) + \mathbb{E}\left[s(\lambda', q')\Omega(\varepsilon', \lambda, q)\right]}{s(\lambda, q)}.$$

Return shocks:

$$\Delta R\left(\varepsilon'\right) = R\left(\varepsilon'\right) - \bar{R} = \frac{s\left(\lambda', q'\right)}{s\left(\lambda, q\right)} \Omega\left(\varepsilon', \lambda, q\right) - \mathbb{E}\left[\frac{s\left(\lambda', q'\right)}{s\left(\lambda, q\right)} \Omega\left(\varepsilon', \lambda, q\right)\right].$$

Solution

Model Impulse Response I

Model Impulse Response II

Meets the facts?

- Facts 1 and 3
 - Even without crowding out from shadow outflows, traditional bank equity shock leads to a credit crunch
- Fact 2
 - Discrepancies between books and market values built into the model
 - Book vs. market have different impulse responses
 - Value function for market value captures info on λ and q

Meets the facts?

- Fact 4
 - Bank does have a target leverage
 - Impulse response shows slow response due to adjustment costs
- Fact 5
 - Regulatory and market constraints do not bind for most banks, but influence bank behavior
- Fact 6
 - Post-crisis impulse response use equity more to readjust leverage

Additional Lessons from the Model

- Amplification
 - Adjustment costs make losses even larger, worsening the crunch
- Contagion
 - In GE, we'd imagine that fire sales by one bank make the sale price worse for others
 - ⇒Adjustment costs get worse
- Persistence
 - Adjustment costs slow down the return to target leverage
 - Prolongs credit crunch

Summary of findings

1. Magnitudes

- Shadow industry flows:
- \$3.8 trillion outflow vs. \$2.6 trillion inflow to traditional banks
 - traditional banks: purchase with deposits
 - Fed bought inflow with reserves
- How big were direct losses of banks?
 - 7.5% book equity \rightarrow \$160 billion losses but entirely recap
 - Market value losses → \$710 billion

2. Why do these flows matter?

- Possible frictions:
 - Book-equity constraints (NO at least not in the short run)
 - Market-based constraints (unlikely)
 - Target leverage (YES)
 - Adjustment costs/ constraints needed (Equity and Assets)

Back-up slides

Quantify upper bound of asset flow to traditional banks

\$ Inflow Billion		\$ Outflow Billion	
TB - MS & GS	\$3,177 \$2,970	SBA - MS & GS	\$ 5, 049 \$ 3, 855
		Losses	- \$ 57
Inflow	\$2,970	Outflow	\$3,798

Issuances and Dividends

Book equity & market cap. of Top 4

Additional Findings on Frictions

- Equity frictions
 - External finance used more frequently
 - Internal finance many banks had zero dividends
- Balance-sheet frictions
 - Probably not illiquid liabilities (banks had plenty of liquid liabilities like REPO)
 - Could be illiquid assets