An interleaving approach to combinatorial testing and failure-inducing interaction identification*

Xintao Niu and Changhai Nie State Key Laboratory for Novel Software Technology Nanjing University China, 210023 changhainie@nju.edu.cn

Hareton Leung
Department of computing
Hong Kong Polytechnic
University
Kowloon, Hong Kong
hareton.leung@polyu.edu.hk

Jeff Lei
Department of Computer
Science and Engineering
The University of Texas at
Arlington
ylei@cse.uta.edu

JiaXi Xu and Yan Wang School of Information Engineering Nanjing Xiaozhuang University China, 211171 xujiaxi@njxzc.edu.cn Xiaoyin Wang
Department of Computer
Science
University of Texas at San
Antonio
Xiaoyin.Wang@utsa.edu

ABSTRACT

Combinatorial testing(CT) seeks to detect potential faults caused by various interactions of factors that can influence the software systems. When applying CT, it is a common practice to first generate a set of test cases to cover each possible interaction and then to identify the failure-inducing interaction after a failure is detected. Although this conventional procedure is simple and straightforward, we conjecture that it is not the ideal choice in practice. This is because 1) testers desire to identify the root cause of failures before all the needed test cases are generated and executed 2) the early identified failure-inducing interactions can guide the remaining test cases generation, such that many unnecessary and invalid test cases can be avoided. For these reasons, we propose a novel CT framework that allows both generation and identification process to interact with each other. As a result, both generation and identification stages will be done more effectively and efficiently. We conducted a series of empirical studies on several open-source software, the results of which show that our framework can identify the failure-inducing interactions more quickly than traditional approaches, while requiring fewer test cases.

*This work was supported by the National Natural Science Foundation of China (No. 61272079), the Research Fund for the Doctoral Program of Higher Education of China (No.20130091110032), the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No. 61321491), and the Major Program of National Natural Science Foundation of China (No. 91318301)

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

WOODSTOCK '97 El Paso, Texas USA Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...\$15.00.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and debugging— Debugging aids, testing tools

General Terms

Reliability, Verification

Keywords

Software Testing, Combinatorial Testing, Covering Array, Failure-inducing interactions

1. INTRODUCTION

Modern software is becoming more and more complex. To test such software is challenging, as the candidate factors that can influence the system's behaviour, e.g., configuration options, system inputs, message events, are enormous. Even worse, the interactions between these factors can also crash the system, e.g., the incompatibility problems. In consideration of the scale of the industrial software, to test all the possible interactions of all the factors (we call them the interaction space) is not feasible, and even if it is possible, it is not wise to test all the interactions because most of them do not provide any useful information.

Many empirical studies show that, in real software systems, the effective interaction space, i.e., targeting fault detection, makes up only a small proportion of the overall interaction space [20, 21]. What's more, the number of factors involved in these effective interactions is relatively small, of which 4 to 6 is usually the upper bounds[20]. With this observation, applying Combinatorial testing(CT) in practice is appealing, as it is proven to be effective to detect the interaction faults in the system.

CT tests software with a elaborate test suite which checks all the required parameter value combinations. A typical CT life-cycle is shown in Figure 1, which contains four main testing stages. At the very beginning of the testing, engineers should extract the specific model of the software under test (SUT). In detail, they should identify the factors, such

as user inputs, and configure options, that could affect the system's behavior. Further effort is needed to figure out the constraints and dependencies between each factor and corresponding values for valid testing. After the modeling stage, a set of test cases should be generated and executed to expose the potential faults in the system. In CT, each test case is a set of assignments of all the factors in the test model. Thus, when such a test case is executed, all the interactions contained in the test case are deemed to be checked. The main target of this stage is to design a relatively small set of test cases to achieve some specific coverage. The third testing stage in this cycle is the fault localization, which is responsible for identifying the failure-inducing interactions. To characterize the failure-inducing interactions of corresponding factors and values is important for future bug fixing, as it will reduce the scope of suspicious code to be inspected. The last testing stage of CT is evaluation. In this stage, testers will assess the quality of the previously conducted testing tasks. If the assessment result shows that the previous testing process does not fulfil the testing requirement, some testing stages should be improved, and sometimes, may even need to be re-conducted.

Although this conventional CT framework is simple and straightforward, in terms of the test cases generation and fault localization stages, we conjecture that first-generation-then-identification is not the proper choice in practice. The reasons are twofold. First, it is not realistic for testers to wait for all the needed test cases are generated before they can diagnose and fix the failures that have been detected [39]; Second, and the most important, utilizing the early determined failure-inducing interactions can guide the following test cases generations, such that many unnecessary and invalid test cases can be avoided. For this we get the key idea of this paper: Generation and Fault Localization process should be integrated.

Based on the idea, we propose a new CT framework, which instead of dividing the generation and identification into two independent stages, it integrates these two stages together. Specifically, we first execute one or more tests until a failure is observed. Next we immediately turn to the fault localization stage, i.e., identify failure-inducing interactions for that failure. These failure-inducing interactions are used to update the current coverage. In particular, interactions that are related to these failure-inducing interactions do not need to be covered in future executions. Then, we continue to perform regular combinatorial testing.

We remodel the test cases generation and failure-inducing interactions identification modules to make them better adapt to this new framework. Specifically, for the generation part of our framework, we augment it by forbidding the appearance of test cases which contain the identified failure-inducing interactions. This is because those test cases contain a failure-inducing interaction will fail as expected, so that it makes no sense for the further failure detection. For the failure-inducing identification module, we augment it by achieving higher coverage. More specifically, we refine the additional test cases generation in this module, so that it can not only help to identify the failure-inducing interactions, but also cover as many uncovered interactions as possible. As a result, our new CT framework needs fewer test cases than traditional CT.

We conducted a series of empirical studies on several opensource software to evaluate our new framework. Specifically,

Figure 1: The life cycle of CT

we performed two comparisons studies. The first one is to compare our new framework with the traditional one, which first generates a complete set of test cases and then performs the fault localization. The second one is to compare our framework with the Feedback-driven CT [11, 38], which also adapts an iterative framework to generate test cases and identifying failure-inducing interactions, but to address the problem of inadequate testing. The results show that, in terms of test case generation and failure-inducing interactions identification, our approach can significantly reduce the overall needed test cases and as a result it can more quickly identify the failure-inducing interactions of the system under test.

The main contributions of this paper are as follows.

- We propose a new CT framework which combines the test cases generation and fault localization more closely.
- 2. We augment the traditional CT test cases generation and failure-inducing interactions identification process to make them adapt to the new framework.
- We perform a series of comparisons with traditional C-T and Feedback-driven CT. The result of the empirical studies are discussed.

The rest of the paper is organised as follows: Section 2 presents the preliminary background of CT. Section 3 presents an motivating example. Section 4 describes our new framework and a simple case study is also given. Section 5 gives the limitation of our approach as well as some corresponding measures to handle it. Section 6 describes the experiment subjects and its input model. Section 7 presents the empirical studies and discusses the results. Section 8 shows the related works. Section 9 concludes the paper and proposes some further work.

2. BACKGROUND

This section presents some definitions and propositions to give a formal model for CT.

Assume that the Software Under Test (SUT) is influenced by n parameters, and each parameter p_i can take the values from the finite set V_i (i = 1,2,..n). The definitions below are originally defined in [27].

Definition 1. A test case of the SUT is a tuple of n values, one for each parameter of the SUT. It is denoted as $(v_1, v_2, ..., v_n)$, where $v_1 \in V_1, v_2 \in V_2 ... v_n \in V_n$.

In practice, these parameters in the test case can represent many factors, such as input variables, run-time options,

building options or various combination of them. We need to execute the SUT with these test cases to ensure the correctness of the behaviour of the SUT.

We consider any abnormally executing test case as a fault. It can be a thrown exception, compilation error, assertion failure or constraint violation. When faults are triggered by some test cases, it is desired to figure out the cause of these faults. Some subsets of these test cases should be analysed.

Definition 2. For the SUT, the n-tuple $(-,v_{n_1},...,v_{n_k},...)$ is called a k-degree schema $(0 < k \le n)$ when some k parameters have fixed values and other irrelevant parameters are represented as "-".

In effect a test case itself is a k-degree schema, when k = n. Furthermore, if a test case contains a schema, i.e., every fixed value in the schema is in this test case, we say this test case contains the schema.

Note that the schema is a formal description of the interaction between parameter values we discussed before.

Definition 3. Let c_l be a l-degree schema, c_m be an m-degree schema in SUT and l < m. If all the fixed parameter values in c_l are also in c_m , then c_m subsumes c_l . In this case we can also say that c_l is a sub-schema of c_m and c_m is a super-schema of c_l , which can be denoted as $c_l \prec c_m$.

For example, the 2-degree schema (-, 4, 4, -) is a subschema of the 3-degree schema (-, 4, 4, 5), that is, (-,4,4,-) \prec (-,4,4,5).

Definition 4. If all test cases that contain a schema, say c, trigger a particular fault, say F, then we call this schema c the faulty schema for F. Additionally, if none of sub-schema of c is the faulty schema for F, we then call the schema c the minimal failure-causing schema (MFS) [27] for F.

Note that MFS is identical to the failure-inducing interaction discussed previously. In this paper, the terms failure-inducing interactions and MFS are used interchangeably. Figuring the MFS out helps to identify the root cause of a failure and thus facilitate the debugging process.

2.1 CT Test Case Generation

When applying CT, the most important work is to determine whether the SUT suffers from the interaction faults or not, i.e., to detect the existence of the MFS. Rather than impractically executing exhaustive test cases, CT commonly design a relatively small set of test cases to cover all the schemas with the degree no more than a prior fixed number, t. Such a set of test cases is called the covering array. If some test cases in the covering array failed in execution, then the interaction faults is regard to be detected. Let us formally define the covering array.

Definition 5. $MCA(N; t, k, (a_1, a_2, ..., a_k))$ is a t-way covering array in the form of $N \times k$ table, where each row represents a test case and each column represents a parameter. For any t columns, each possible t-degree interaction of the t parameters (schema) must appear at least once. When $a_1 = a_2 = ... = a_k = v$, a t-way covering array can be denoted as CA(N; t, k, v).

For example, Table 1 shows a 2-way covering array CA(5; 2, 4, 2) for the SUT with 4 boolean parameters. For any t-wo columns, any 2-degree schema is covered. Covering array

Table 1: A covering array

ID	Test case					
t_1	0	0	0	0		
t_2	0	1	1	1		
t_3	1	0	1	1		
t_4	1	1	0	1		
t_5	1	1	1	0		

has proven to be effective in detecting the failures caused by interactions of parameters of the SUT. Many existing algorithms focus on constructing covering arrays such that the number of test cases, i.e., N, can be as small as possible. In general, most of these studies can be classified into three categories according to the construction strategy of the covering array:

- 1) One test case one time: This strategy repeats generating one test case as one row of the covering array and counting the covered schemas achieved until all schemas are covered [4, 3, 35].
- 2) A set of test cases one time: This strategy generates a set of test cases at each iteration. Through mutating the values of some parameters of some test cases in this test set, it focuses on optimising the coverage. If the coverage is finally satisfied, it will reduce the size of the set to see if fewer test cases can still fulfil the coverage. Otherwise, it will increase the size of test set to cover all the schemas[5, 31].
- 3) IPO-like style: This strategy differentiates from the previous two strategies in that it does not firstly generate complete test cases [23]. Instead, it first focuses on assigning values to some part of the factors or parameters to cover the schemas that related to these factors, and then fills up the remaining part to form complete test cases.

In this paper, we focus on the first strategy: One test case one time as it immediately get a complete test case such that the testers can execute and diagnose in the early stage. As we will see later, with respect to the MFS identification, this strategy is the most flexible and efficient one comparing with the other two strategies.

2.2 Identify the failure-inducing interactions

To detect the existence of MFS in the SUT is still far from figuring out the root cause of the failure [10, 25, 26], as we do not know exactly which schemas in the failed test cases should be responsible for the failure. For example, if t_1 in Table 1 failed during testing, there are six 2-degree candidate failure-inducing schemas, which are (0, 0, -, -), (0, -, 0, -), (0, -, -, 0), (-, 0, 0, -), (-, 0, 0), respectively. Without additional information, it is difficult to figure out the specific schemas in this suspicious set that caused the failure. Considering that the failure can be triggered by schemas with other degrees, e.g., (0, -, -, -) or (0, 0, 0, -), the problem of MFS identification becomes more complicated.

In fact, for a failing test case $(v_1, v_2, ..., v_n)$, there can be at most $2^n - 1$ possible schemas for the MFS. Hence, more test cases should be generated to identify the MFS. In CT, the main work in fault localization is to identify the failure-inducing interactions. So in this paper we only focus on the MFS identification. Further works of fault localization such as isolating the specific defect source code will not be discussed.

A typical MFS identification process is shown in Table 2. This example assumes the SUT has 3 parameters, each can take on 2 values, and the test case (1, 1, 1) fails. Then in Table 2, as test case t failed, we mutate one factor of the t one time to generate new test cases: $t_1 - t_3$, It turns out that test case t_1 passed, which indicates that this test case break the MFS in the original test case t. So (1,-,-) should be a failure-causing factor, and as other mutating process all failed, which means no other failure-inducing factors were broken, therefore, the MFS in t is (1,-,-).

Table 2: OFOT example

	Origi	case Outcome		
\overline{t}	1	1	1	Fail
Ad	lditi	onal	test	cases
$\overline{t_1}$	0	1	1	Pass
t_2	1	0	1	Fail
t_3	1	1	0	Fail

This identification process mutate one factor of the original test case at a time to generate extra test cases. Then according to the outcome of the test cases execution result, it will identify the MFS of the original failing test cases. It is called the OFOT method [27], which is a well-known MFS identification method in CT. In this paper, we will focus on this identification method. It should be noted that the following proposed CT framework can be easily applied to other MFS identification methods.

3. MOTIVATING EXAMPLE

In this section, a motivating example is presented to show how traditional CT works as well as its limitations. This example is derived from our attempt to test a real-world software–HSQLDB, which is a pure-java relational database engine with large and complex configuration space. To extract and manipulate valid configurations of this highly-configurable system is important, as different configuration can result in significantly different behaviours of the system [16, 32, 34] (HSQLDB may normally works under some properly configurations, but crashes or throws exceptions under some other configurations).

Considering the large configuration space of HSQLDB, we firstly utilized CT to generate a relatively small set of test cases. Each of them is actually a set of specific assignments to those options we cared. For each configuration, HSQLDB is tested by sending prepared SQL commands. We recorded the output of each run, but unfortunately, about half of them produced exceptions or warnings. Following the schedule of traditional CT, we started the identification process to isolate the failure-inducing option interactions in those failing configurations. Each failing configuration should be individually handled, in principle, as there may exist distinct failure-inducing option interactions among them. However, this successively identification process, although appealing, was hardly ever followed for this case study. This is because there are too many failing configurations and most of them contain the same failure-inducing option interactions, based on which the MFS identification process is wasteful and inefficient.

For the sake of convenience, we provide a highly simplified scenario to illustrate the problems we encountered. Consider four options in HSQLDB – Server type, Scroll Type, Pa-

rameterised SQL and Statement Type. The possible values each option can take on are shown in Table 3. Based on the report in the bug tracker of HSQLDB ¹, an incompatible exception will be triggered if a parameterised sql is executed as prepared statement by HSQLDB. Hence, when option parameterisedSQL is set to be true and Statement to be preparedStatement, our testing will crash. Besides this failure, there exists another option value which can also crash this database engine. It is when Scroll Type is assigned to sensitive, as this feature is not supported by this version of HSQLDB ². Without these knowledge at prior, we needed to detect and isolate these two failure-inducing option interactions by CT.

Table 3: Highly simplified configuration of HSQLDB

	Option	Values
o_1	Server type	server, web-server, in-process
o_2	Scroll type	sensitive, insensitive, forward-only
03	parameterised SQL	true, false
o_4	Statement Type	statement, preparedStatement

Table 4 illustrates the process of traditional CT on this subject. For simplicity of notation, we use consecutive symbols 0, 1, 2 to represent different value of each option (For parameterisedSQL and Statement, the symbol is up to 1). According to Table 4, traditional CT first generated and executed the 2-way covering array ($t_1 - t_9$ in the generation part). Note that this covering array covered all the 2-degree schemas for the SUT.

After testing with the 9 test cases $(t_1 \text{ to } t_9)$, we found t_1 , t_4 , and t_7 failed. It is then desired to respectively identify the MFS of these failing test cases. For t_1 , OFOT method is used to generate four additional test cases $(t_{10} - t_{13})$, and the MFS (-, 0, -, -) of t_1 is identified $(Scroll\ Type)$ is assigned to sensitive, respectively). This is because only when changing the second factor of t_1 , the extra-generated test case will pass. Then the same process is applied on t_4 and t_7 . Finally, we found that the MFS of t_4 is (-, -, -, -), indicating that OFOT failed to determine the MFS (this will be discussed later), and the MFS of t_7 is the same as t_1 . Totally, for detecting and identifying the MFS in this example, we have generated 12 additional test cases(marked with star).

We refer to such traditional life-cycle as $Sequential\ CT$ (SCT). However, we believe this may not be the best choice in practice. The first reason is that the engineers normally do not want to wait for fault localization after all the test cases are executed. The early bug fixing is appealing and can give the engineers confidence to keep on improving the quality of the software. The second reason, which is also the most important, is such life-cycle can generate many redundant and unnecessary test cases, which negatively impacted on both test cases generation and MFS identification. The most obvious negative effect in this example is that we did not identify the expected failure-inducing interaction (-, -, 0, 1), which corresponds to option parameterisedSQL being set to true and Statmetent to preparedStatement. More shortcomings of the sequential CT are discussed as following:

¹details see: http://sourceforge.net/p/hsqldb/bugs/1173/ ²details see: http://hsqldb.org/doc/guide/guide.html

Table 4: Sequential CT process Generation (Execution)

	Outcome				
	o_1	o_2	o_3	o_4	
t_1	0	0	0	0	Fail
t_2	0	1	1	1	Pass
t_3	0	2	1	0	Pass
t_4	1	0	0	1	Fail
t_5	1	1	0	0	Pass
t_6	1	2	1	1	Fail
t_7	2	0	1	1	Pass
t_8	2	1	0	0	Pass
t_9	2	2	0	0	Fail

			Iden	tific	ation	ι
$\hat{\mathbf{c}}$	t_{10}^*	1	0	0	0	Fail
,0,	t_{11}^*	0	1	0	0	Pass
0,0	t_{12}^*	0	0	1	0	Fail
$t_{7} (2,0,1,1)$ $t_{4} (1,0,0,1)$ $t_{1} (0,0,0,0)$	$t_{10}^* \\ t_{11}^* \\ t_{12}^* \\ t_{13}^*$	0	0	0	1	Fail
+	\mathbf{MFS}			(-,	0, -,	-)
1	t_{14}^* t_{15}^* t_{16}^*	2	0	0	1	Fail
,0,	t_{15}^*	1	1	0	1	Fail
1,0	$t_{16}*$	1	0	1	1	Fail
. ·	t_{17}^*	1	0	0	0	Fail
t_{i}	MFS			(-,	-, -,	-)
$\overrightarrow{1}$	t_{18}^*	0	0	1	1	Fail
,1,	t_{19}^*	2	1	1	1	Pass
2,0	t_{20}^*	$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$	0	0	1	Fail
•••	t_{18}^* t_{19}^* t_{20}^* t_{21}^*	2	0	1	0	Fail
t_i	MFS			(-,	0, -,	-)

3.1 Redundant test cases

The first shortcoming of SCT is that it may generate redundant test cases, such that some of them do not cover as many uncovered schemas as possible. As a consequent, SCT may generate more test cases than actually needed. This can be reflected in the following two aspects:

1) The test cases generated in the identification stage can also contribute some coverage, i.e., the schemas appear in the passing test cases in the identification stage may have already been covered in the test cases generation stage. For example, when we identify the MFS of t_1 in Table 4, the schema (0, 1, -, -) contained in the extra passing test case $t_{11} - (0, 1, 0, 0)$ has already been appeared in the passing test case $t_2 - (0, 1, 1, 1)$. In other word, if we firstly identify the MFS of t_1 , then t_2 is not a good choice as it does not covered as many 2-degree schemas as possible. For example, (1, 1, 1, 1) is better than this test case at contributing more coverage.

2) The identified MFS should not appear in the following generated test cases. This is because according to the definition of MFS, each test case containing this schema will trigger a failure, i.e., to generate and execute more than one test case contained the MFS makes no sense for the failure detection. Take the example in Table 4, after identifying the MFS – (-, 0, -, -) of t_1 , we should not generate the test case t_4 and t_7 . This is because they also contain the identified MFS (-, 0, -, -), which will result in them failing as expected. Since the expected failure caused by MFS (-, 0, -, -) makes t_7 and t_9 superfluous for error-detection, the additional test cases $(t_{14}$ to $t_{21})$ generated for identifying the MFS in t_4 and

 t_7 are also not necessary.

3.2 Multiple MFS in the same test case

Multiple MFS will negatively affect the accuracy of MFS identification – and even make it hardly obtain a validate schema. For example, there are two MFS in t_4 in Table 4, i.e., (-, 0, -, -) and (-, -, 0, 1) (shown in bold). When we use OFOT method, we found all the extra-generated test cases $(t_{14}$ to $t_{17})$ failed. These outcomes give OFOT a false indication that all the failure-inducing factors are not broken by mutating those four parameter values. As a result, OFOT cannot determine which schemas are MFS, which is denoted as (-, -, -, -).

The reason why OFOT cannot properly work is that this approach can only break one MFS at a time. If there are multiple MFS in the same test case, the extra-generated test cases will always fail as they contain other non-broken MFS (see bold parts of t_{14} to t_{17}). Some approaches have been proposed to handle this problem, but they either can not handle multiple MFS that have overlapping parts [40], or consume too many extra-generated test cases [36, 30]. So in practice, to make MFS identification more effective and efficient, we need to avoid the appearance of multiple MFS in the same test case.

SCT, however, does not offer much support for this concern. This is mainly because it is essentially a post-analysis framework, i.e., the analysis for MFS comes after the completion of test case generation and execution. As a result, in the generation stage, testers have no knowledge of the possible MFS, and surely it has opportunities that multiple MFS appear in the same test case.

3.3 Masking effects

Traditional covering array usually offer an inadequate testing due to $Masking\ effects\ [11,\ 38]$. A masking effect [38] is an effect that some failures or exceptions prevent a test case from testing all valid schemas in that test case, which the test case is normally expected to test. For example in Table 4, t_1 is initially expected to cover all the 2-degree schemas (0,0,-,-),(0,-,0,-),(0,-,-,0),(-,0,0,-),(-,0,-,0),(-,-,0,0), but when we found that it failed during testing, this conclusion is not always true. This is because, the failing of $t_1\ (ScrollType\$ is set to be $sensitive\$) crashed HSQLDB, and as a result, it did not go on executing the remaining test code, which may affect the examination of some interactions of t_1 . Hence, we cannot ensure we thoroughly exercise all the interactions in this failing test case.

Since traditional covering array cannot reach a adequate testing, as an alternative, tested t-way interaction criterion as a more rigorous coverage standard is proposed [38]. According to this criterion, a t-degree schema is covered iff (1) it appears in a passing test case (2)it is identified as MFS or faulty schema. It is apparently that this criteria can not be satisfied with traditional covering array alone. Next let us examine whether this criterion can be satisfied with SCT, i.e., the combination of traditional covering array and MFS identification.

One obvious insight is that if there is only **single** MF-S in each failing test case, this criterion is satisfied. This conclusion is based on the fact that the MFS identification is actually a process to isolate the failure-inducing interaction among other interactions in the failing test case, and since there is only single MFS, then other schemas can be

determined as non-MFS.

For example in Table 4, t_1 contained a single MFS (-, 0, -, -), and we identified this MFS by generating four extra test cases $(t_{10} \text{ to } t_{13})$. As for t_1 , the schema (-, 0, -, -) is determined to be MFS, but since the target of that testing is 2-way coverage, i.e., to cover all the 2-degree schemas, this 1-degree schema do not contribute any more coverage. Based on the fact that (-, 0, -, -) is MFS, all the test cases contain this schema will fail by definition, and surely the super-schemas of (-, 0, -, -) in this test case -(0, 0, -, -), (-, -, -)(0, 0, -) and (-, 0, -, 0) are also faulty schemas as all the test cases containing these schemas must contain the MFS (-, 0, -, -), which will fail after execution. The remaining 2-degree schemas (0, -, 0, -), (0, -, -, 0), (-, -, 0, 0) are contained in the extra-generated test case t_{11} (0, 1, 0, 0) (Note that for single MFS, there will be at least one passing extra-generated test case), which are of course non-faulty schemas. After all, all the 2-degree schemas in the failing test case t_1 satisfied the tested t-way interaction criterion.

When a failing test case has multiple MFS, however, SC-T fails to meet that criterion. As discussed previously, SCT cannot properly work on test cases with multiple MFS-and even cannot obtain a validate schema. With this in mind, we cannot determine which schemas in this failing test case are MFS or not, consequently, we cannot ensure we have examined all the t-degree schemas in this failing test case. For example, t_4 has two MFS-(-, 0, -, -), (-, -, 0, 1), which can not be identified with OFOT approach (In fact, there is no passing extra-generated test case). As a result, there are two 2-degree schemas (1, 0, -, -) (-, -, 0, 1) in this test case that are neither contained in a passing test case nor determined as MFS or faulty schemas. Hence, tested t-way interaction criterion is not satisfied. Since multiple MFS in a test case can introduce masking effects, SCT must be negatively affected as it lacks mechanisms to avoid the appearance of multiple MFS in failing test cases.

4. INTERLEAVING APPROACH

To overcome such deficiencies in traditional CT, we propose a new CT generation-identification framework – $Inter-leaving\ CT$ (ICT). Our new framework aims at enhancing the interaction of generation and identification to reduce the unnecessary and invalid test cases discussed previously.

4.1 Overall framework

The basic outline of our framework is illustrated in Figure 2. Specifically, this new framework works as follows: First, it checks whether all the needed schemas are covered or not. Normally the target of CT is to cover all the t-degree schemas, with t be assigned as 2 or 3. If the current coverage is not satisfied, it will generate a new test case to cover as many uncovered schemas as possible. After that, it will execute this test case with the outcome of pass (executed normally, i.e., does not triggered an exception, violate the expected oracle or the like) or fail (on the contrary). When the test case passes, we will recompute the coverage state, as all the schemas in the passing test case are regarded as error-irrelevant. As a result, the schemas that was not covered before will be determined to be covered if it is contained in this newly generated test case. Otherwise if the test case fails, then we will start the MFS identification module to identify the MFS in this failing test case. One point to note is that if the test case fails, we will not directly change the

Figure 2: The Interleaving Framework

coverage, as we can not figure out which schemas are responsible for this failure among all the schemas in this test case until we identify them.

The identification module works in a similar way as traditional independent MFS identification process, i.e., repeats generating and executing additional test cases until it can get enough information to diagnose the MFS in the original failing test case. The difference from traditional MFS identifying process is that we record the coverage that this module has contributed to the overall coverage. In detail, when the additional test case passes, we will label the schemas in these test cases as covered if it has not been covered before. And when the MFS is found at the end of this module, we will first set them as forbidden schemas that latter generated test cases should not contain (Otherwise the test case must fail and it cannot contribute to more coverage), and second all the t-degree schemas that are related to these MFS as covered. Here the related schemas indicate the following three types of t-degree schemas:

First, the MFS **themselves**. Note that we do not change the coverage state after the generated test case fails (both for the generation and identification module), so these MFS will never be covered as they always appear in these failing test cases.

Second, the schemas that are the **super-schemas** of these MFS. By definition of the super-schemas (Definition 3), if the test case contains the super-schemas, it must also contain all its sub-schemas. So every test case that contains the super-schemas of the MFS must fail after execution. As a result, they will never be covered as we do not change the coverage state for failing test cases.

Third, those implicit forbidden schemas, which was

first introduced in [7]. This type of schemas are caused by the conjunction of multiple MFS. For example, for a SUT with three parameters, and each parameter has two values, i.e., SUT(2, 2, 2). If there are two MFS for this SUT, which are (1, -, 1) and (0, 1, -). Then the schema (-, 1, 1) is the implicit forbidden schema. This is because for any test case that contain this schema, it must contain either (1, -, 1) or (0, 1, -). As a result, (-, 1, 1) will never be covered as all the test cases containing this schema will fail and so we will not change the coverage state. In fact, by Definition 4, they can be deemed as faulty schemas.

The terminating condition of most CT frameworks is to cover all the t-degree schemas. Then since the three types of schemas will never be covered in our new CT framework, we can set them as covered after the execution of the identification module, so that the overall process can stop.

4.2 Modifications of CT activities

More details of the modifications of CT activities are listed as follows:

(1) Modified CT Generation: We adopt the one test case one time method as the basic skeleton of the generation process. Originally, the generation of one test case can be formulated as EQ1.

$$t \leftarrow select(\mathcal{T}_{all}, \Omega, \xi)$$
 (EQ1)

There are three factors that determine the selection of test case t. \mathcal{T}_{all} represents all the valid test cases that can be selected to execute. Usually the test cases that have been tested will not be included as they have no more contribution to the coverage. Ω indicates the set of schemas that have not been covered yet. ξ is a random factor. Most CT generation approaches prefer to select a test case that can cover as many uncovered schemas as possible. This greedy selection process does not guarantee an optimal solution, i.e., the final size of the set of test cases is not guaranteed to be minimal. The random factor ξ is used to help to escape from the local optimum.

As discussed in Section 3, we should make the MFS not appear in the test cases generated afterwards, by treating them as the forbidden schemas. In other words, the candidate test cases that can be selected are reduced, because those test cases that contain the currently identified MFS should not appear next. Formally, let \mathcal{T}_{MFS} indicates the set of test cases that contain the currently identified MFS, then the test case selection is augmented as EQ2.

$$t \leftarrow select(\mathcal{T}_{all} - \mathcal{T}_{MFS}, \Omega, \xi)$$
 (EQ2)

In this formula, the only difference from EQ1 is that the candidate test cases that can be selected are changed to $\mathcal{T}_{all} - \mathcal{T}_{MFS}$, which excludes \mathcal{T}_{MFS} from candidate test cases.

In practice, it is impossible to thoroughly search the exhaustive candidate test cases \mathcal{T}_{all} to get a specific test case t. Hence, some heuristic methods are used to simplify the selection. For example, AETG [4] successively assigns the value to each parameter to form a test case (in random order). The value to be assigned is the one that appears in the greatest number of uncovered schemas. Correspondingly, to exclude the test cases in \mathcal{T}_{MFS} , it is common to utilize a constraint solver to avoid the forbidden schemas [7, 8].

(2) Modified identification of MFS: Traditional MFS identification aims at finding the MFS in a failing test case. As discussed before, test cases in the covering array are not

enough to identify the MFS. Hence, additional test cases should be generated and executed. Generally, an additional test case is generated based on the original failing test case, so that the failure-inducing parts can be determined by comparing the difference between the additional test cases and the original failing test case. Take the OFOT approach as an example. In Table 4, the additional test case t_{11} is constructed by mutating the second parameter value of the original failing test case t_{1} . Then as t_{11} passed the testing, we can determine that the second parameter value (-, 0, -, -) must be a failure-inducing element. Formally, let $t_{failing}$ be the original failing test case, Δ be the mutation parts, $\mathcal P$ be the parameters and their values, then the traditional additional test case generation can be formulated as EQ3.

$$t \leftarrow mutate(\mathcal{P}, t_{failing}, \Delta)$$
 (EQ3)

EQ3 indicates that the test case t is generated by mutating the part Δ of the original failing test case $t_{failing}$. Note that the mutated values may have many choices, as long as they are within the scope of \mathcal{P} and different from those in $t_{failing}$. For example, for the original failing test case t_1 (0,0,0,0) in Table 4, let Δ be the second parameter value, then test cases (0, 1, 0, 0) and (0, 2, 0, 0) all satisfy EQ3. We refer to all the test cases that satisfy EQ3 as $\mathcal{T}_{candidate}$, which can be formulated as EQ4.

$$\mathcal{T}_{candidate} = \{ t \mid t \leftarrow mutate(\mathcal{P}, t_{failing}, \Delta) \}$$
 (EQ4)

Traditional MFS identification process just selects one test case from $\mathcal{T}_{candidate}$ randomly. However, to adapt the MFS identification process to the new CT framework, this selection should be refined.

Specifically, there are two points to note. First, the additional test case should not contain the currently identified MFS; second, the additional test case is expected to cover as many uncovered schemas as possible. These two goals are similar to CT generation, hence we can directly apply the same selection method on additional test case generation, which can be formulated as EQ5. The same as EQ2, EQ5 excludes the test cases that contain the currently identified MFS from the candidate test cases ($\mathcal{T}_{candidate} - \mathcal{T}_{MFS}$), and selects the additional test case which covers the greatest number of uncovered schemas (Ω).

$$t \leftarrow select(\mathcal{T}_{candidate} - \mathcal{T}_{MFS}, \Omega, \xi)$$
 (EQ5)

(3) Updating uncovered schemas: After the MFS are identified, some related t-degree schemas, i.e., MFS themselves, super-schemas and implicit forbidden schemas, should be set as covered to enable the termination of the overall CT process. The algorithm that seeks to handle these three types of schemas is listed in Algorithm 1.

In this algorithm, we firstly check each MFS (line 1) to see if it is a t-degree schema (line 2). We will set those t-degree MFS as covered and remove them from the uncovered schema set Ω (line 3). This is the first type of schemas -t-themselves. For each t-degree super-schema of these MFS, it will also be removed from the uncovered schema set (line 5 - 9), as they are the second type of schemas -s-super-schemas. The last type, i.e., implicit forbidden schemas, is the toughest one. To remove them, we need to search through each potential schema in the uncovered schema set (line 11), and check if it is the implicit forbidden schema (line 12). The checking process involves solving a satisfiability problem. Specifically, if we can not find a test case from

Algorithm 1 Changing coverage after identification of MFS Input: S_{MFS} ▷ currently identified MFS \triangleright the schemas that are still uncovered Ω \mathcal{T}_{all} \triangleright all the possible test cases \triangleright all the test cases that contain the MFS \mathcal{T}_{MFS} Output: Ω ▷ updated schemas that are still uncovered 1: for each $s \in \mathcal{S}_{MFS}$ do 2: if s is t-degree schema then 3: $\Omega \leftarrow \Omega \backslash s$ 4: end if 5: for each s_p is super-schema of s do if s_p is t-degree schema then 6: 7: $\Omega \leftarrow \Omega \backslash s_p$ end if 8: 9: end for 10: end for for each $s \in \Omega$ do 11: if $\not\exists t \in (\mathcal{T}_{all} - \mathcal{T}_{MFS}), s.t., t.contain(s)$ then 12: 13: $\Omega \leftarrow \Omega \backslash s$ end if 14: 15: end for

the set $(\mathcal{T}_{all} - \mathcal{T}_{MFS})$ (excluding those that contain MFS), such that it contains the schema under checking, then we can determine the schema is the implicit forbidden schema and it needs to be removed from uncovered schema set (line 13). This is because in this case, the schema under checking can only appear in \mathcal{T}_{MFS} , which we will definitely not generate in later iterations. In this paper, a SAT solver will be utilized to do this checking process.

Advantages of our framework

In view of the problems listed in Section 3, our new framework has the following advantages:

1. Redundant test cases are eliminated such that the overall cost is reduced:

Two facts of our framework support this improvement: (1) The schemas appeared in the passing test cases are counted towards the overall coverage, so that the test cases generation process has faster convergence rate, which results in generating a smaller number of test cases. (2) The forbidden of identified MFS. As a result, test cases which contain these MFS will not appear, as well as those extra-generated test cases used to reidentify these MFS.

2. The appearance of multiple MFS in the same test case is limited, improving the effectiveness $of\ MFS\ identification$

This is mainly because we forbid the appearance of MFS that has been identified. Consequently, following our approach, the number of remaining MFS decreases one by one. Correspondingly, the probability that multiple MFS appear in the same test case will also decrease. Since multiple MFS has a negative effect on MFS identification as discussed in Section 3, the reduction of the appearance of multiple MFS in the same test case obviously improve the effectiveness of MFS identification.

3. The Masking effect is reduced, hence adequate testing is better satisfied

As discussed in Section 3, SCT suffers from masking effects when there are multiple MFS in one failing test case. Since our approach theoretically reduce the probability that multiple MFS appear in the same test case, we believe our framework can alleviate the masking effects. In fact, our framework conforms to tested tway interaction criterion because we only update tway coverage for two types of schemas: (1) t-degree schemas in those passing test cases and (2) t-degree schemas related to MFS. Hence, our Interleaving C-T framework supports a better adequate testing than SCT.

4.4 Example

Applying the new framework to the scenario of Section 3, we can get the result listed in Table 5.

	Table 5: Interleaving CT case study										
	G	ene	ratio	on			Ide	enti	ficat	ion	
$\overline{t_1}$	0	0	0	0	Fail						
						t_2^*	1	0	0	0	Fail
						t_3 *	0	1	0	0	Pass
						t_4*	0	0	1	0	Fail
						t_{2}^{*} t_{3}^{*} t_{4}^{*} t_{5}^{*}	0	0	0	1	Fail
						MFS	S: (-	-, 0,	-, -)	
t_6	1	1	1	1	Pass		•				
t_7	0	2	1	1	Pass						
t_8	0	1	0	1	Fail						
						t_9 *	1	1	0	1	Fail
						$t_{10}*$	0	2	0	0	Fail
						$t_{11}*$	0	1	1	0	Pass
						$ \begin{array}{c} t_9^* \\ t_{10}^* \\ t_{11}^* \\ t_{12}^* \end{array} $	0	1	0	0	Pass
						MFS	S: (-	-, -,	0, 1))	
t_{13}	1	2	0	0	Pass		`		. ,		
t_{14}	2	1	0	0	Pass						
t_{15}	2	2	1	1	Pass						

This table consists of two main columns, in which the left column indicates the generation part while the right indicates the identification process. We can find that, after identifying the MFS (-, 0, -, -) for t_1 , the following test cases $(t_6 \text{ to } t_{15})$ will not contain this schema. Correspondingly, all the 2-degree schemas that are related to this schema, e.g. (0, 0, -, -), (-, 0, 1, -), etc, will also not appear in the following test cases. Additionally, the passing test case t_3 generated in the identification process cover six 2-degree schemas, i.e., (0, 1, -, -), (0, -, 0, -), (0, -, -, 0), (-, 1, 0, -), (-, 1, -, 0),and (-, -, 0, 0) respectively, so that it is not necessary to generate more test cases to cover them. We later found that t_8 failed, which only contain one MFS as expected, and we easily identified it (-, -, 0, 1) with four extra-generated test cases. This schema is 2-degree MFS, which will be forbidden in the following test cases and set to be covered.

Above all, when using the interleaving CT approach, the overall generated test case are 8 less than that of the traditional sequential CT approach in Table 4, and the new approach identified the expected MFS (-, -, 0, 1) which SCT fails to identify.

DISCUSSION

To forbid identified MFS in the latter generated test cases is efficient for CT, as it will reduce many unnecessary test cases. On the other hand, our framework has strict requirements in accuracy of the identified MFS. This is obvious, as if the schema identified is not a MFS, latter generated test cases will forbid a non-MFS schema, which will have two impacts: (1)If this non-MFS schema is the sub-schema of some actual MFS, then the corresponding MFS will never appear and surely we will not detect and identify it. (2)If this non-MFS schema is a sub-schema of some t-degree uncovered schemas, then these schemas will never be covered and an adequate testing will not be reached.

For example, suppose we incorrectly regard (-, -, 0, -) as MFS of the failing test case t_1 in Table 5, then we will never generate test cases contain the real MFS (-, -, 0, 1) $(t_8$ in Table 5, for example). Hence, (-, -, 0, 1) will be never detected and identified. Additionally, the uncovered 2-degree schemas like (1, -, 0, -) (-, 2, 0, -), (-, 1, 0, -), etc, will never be covered in the latter generated test cases.

To definitely correctly identify the MFS in one failing test case, if possible, however, is not practical due to the cost of testing [27, 10]. This is because for any test case with nparameter values, there are $2^{n}-1$ possible schemas which are the candidate MFS. For example, the possible candidate schemas of failing test case (1, 1, 1) are (1, -, -), (-, 1, -), (-, -, -)-, 1), (1, 1, -), (1, -, 1), (-, 1, 1) and (1, 1, 1). According to the definition of MFS, we need to individually determine whether these $2^n - 1$ are faulty schemas or not. In fact, even to determine whether a schema is faulty schema or not is not easy, as we must figure out whether all the test cases containing this schema will fail or not. So the complexity to correctly obtain a real MFS is surely exponential. As a result, existing MFS identification approaches actually obtain approximation solution through a relatively small size of extra-generated test cases [27, 30, 40, 10, 24, 25, 15].

Based on the insight that incorrectly identifying MFS is inevitable, our approach surely suffer from the two problems discussed previously, but the following measures can help to alleviate such impacts:

1)Combining MFS identification approaches: Utilizing different approaches is appealing for our framework, as it can improve the robustness of the MFS identification and hence render a more reliable result. Specifically, when a failure is triggered by a test case, instead of only using O-FOT, we apply multiple MFS identification approaches (F-IC_BS [40], classification tree [37], for example) to identify the MFS. Subsequently, we filter out obtained schemas unless at least two identification approaches produce them as MFS. This simple voting mechanism can improve both precision and robustness of identified MFS. Particularly, the incorrectly MFS can be eliminated if it is obtained by only one identification approach, and MFS that are omitted by one approach can be identified by other approaches.

2)Tolerating mechanism (Weak forbidden): Unlike our basic ICT framework that rigorously forbids the identified MFS, we can permit some identified MFS to appear in the latter generated test cases incidentally. This extension can make ICT tolerant of incorrectly identifying MFS to some extent, as it increases the chance that covering array check them again and re-identify whether they are MFS or not. When to let the identified MFS re-appear in a test case is important, as it affects the efficiency of our framework (If they re-appear too many times, many test cases will fail and MFS identification will repeat again and again, which is inefficient). It is worth to obtain a balance between the

appearance of existing MFS and the cost of overall testing.

3)More rigorous validation This needs to cooperate with developers of the SUT. Specifically, when a MFS is identified, not only should we send it to developers of the SUT, but also we need to get the feedback from them to see whether this MFS is the root cause of failure or not. Although this process may be time-consuming and delay the testing for the remaining bugs, it is the most effective way to determine the correct MFS.

6. SUBJECT PROGRAMS

6.1 Subject programs

The five subject programs used in our experiments are listed in Table 6. Column "Subjects" indicates the specific software. Column "Version" indicates the specific version that is used in the following experiments. Column "LOC" shows the number of source code lines for each software. Column "Faults" presents the fault ID, which is used as the index to fetch the original fault description from the bug tracker for that software. Column "Lan" shows the programming language for each software (For subjects written in more than one programming language, only the main programming language is shown).

Table 6: Subject programs

Subjects	Version	LOC	Faults	Lan
Tomcat	7.0.40	296138	#55905	java
Hsqldb	2.0rc8	139425	#981	Java
Gcc	4.7.2	2231564	#55459	с
Jflex	1.4.1	10040	#87	Java
Tcas	v_1	173	#Seed	с

Among these subjects, Tomcat is a web server for java servlet; Hsqldb is a pure-java relational database engine; Gcc is a programming language compiler; Jflex is a lexical analyzer generator; and Tcas is a module of an aircraft collision avoidance system. We select these software as subjects because their behaviours are influenced by various combinations of configuration options or inputs. For example, the component *connector* of Tomcat is influenced by more than 151 attributes [17]. For program Tcas, although with a relatively small size (only 173 lines), it also has 12 parameters with their values ranged from 2 to 10. As a result, the overall input space for Tcas can reach 460800 [33, 19].

As the target of our empirical studies is to compare the ability of fault defection between our approach with traditional ones, we firstly must know these faults and their corresponding MFS in prior, so that we can determine whether the schemas identified by those approaches are accurate or not. For this, we looked through the bug tracker of each software and focused on the bugs which are caused by the interaction of configuration options. Then for each such bug, we derive its MFS by analysing the bug description report and the associated test file which can reproduce the bug. For Tcas, as it does not contain any fault for the original source file, we took an mutation version for that file with injected fault. The mutation was the same as that in [19], which is used as a experimental object for the fault detection studies.

6.2 Specific inputs models

To apply CT on the selected software, we need to firstly model their input parameters. As discussed before, the whole configuration options are extremely large so that we cannot include all of them in our model in consideration of the experimental time and computing resource. Instead, a moderate small set of these configuration options is selected. It includes the options that cause the specific faults in Table 6, so that the test cases generated by CT can detect these faults. Additional options are also included to create some noise for the MFS identification approach. These options are selected randomly. Details of the specific options and their corresponding values of each software are posted at http://barbie.uta.edu/data.htm. A brief overview of the inputs models as well as the corresponding MFS (degree) is shown in Table 7.

Table 7: Inputs model

Subjects	Inputs	MFS
Tomcat	$2^8 \times 3^1 \times 4^1$	1(1) 2(2)
Hsqldb	$2^9 \times 3^2 \times 4^1$	3(2)
Gcc	$2^9 \times 6^1$	3(4)
Jflex	$2^{10} \times 3^2 \times 4^1$	2(1)
Tcas	$2^7 \times 3^2 \times 4^1 \times 10^2$	9(16) 10(8) 11(16) 12(8)

In this table, Column "inputs" depicts the input model for each version of the software, presented in the abbreviated form $\#values^{\#number\ of\ parameters} \times \dots$, e.g., $2^9 \times 3^2 \times 4^1$ indicates the software has 9 parameters that can take on 2 values, 2 parameters can take on 3 values, and only one parameter that can take on 4 values. Column "MFS" shows the degrees of each MFS and the number of MFS (in the parentheses) with that corresponding degree.

Note that these inputs just indicate the combinations of configuration options. To conduct the experiments, some other files are also needed. For example, besides the XML configuration file, we need a prepared HTML web page and a java program to control the startup of the tomcat to see whether exceptions will be triggered. Other subjects also need some corresponding auxiliary files (e.g., c source files for GCC, SQL commands for Hsqldb, some text for Jflex).

7. EMPIRICAL STUDIES

To evaluate the effectiveness and efficiency of the interleaving CT approach, we conducted a series of empirical studies on several open-source software subjects. Each of these studies aims at addressing one of the following research questions:

Q1: Does ICT perform better than traditional SCT at the overall cost and the accuracy of MFS identification?

Q2: Does ICT alleviate the three problems proposed in Section 3. Specifically, (1) does ICT reduce generating redundant and useless test cases, (2) does ICT reduce the appearance of test cases which contain multiple MFS, and (3) does ICT reduce the impacts of masking effects?

Q3: Does *ICT* have any advantages over the existed masking effects handling technique — *FDA-CIT* [38]?

7.1 Comparing ICT with SCT

The covering array generating algorithm used in the experiment is AETG [4], as it is the most common one-test-case-one-time generation algorithm. Another reason for choosing AETG, which is also the most important, is that the mu-

tation of this algorithm, i.e., AETG_SAT [6, 8] is a rather popular approach to handle constraints in covering array generation, which is the key to our framework. The MFS identifying algorithm is OFOT [27] as discussed before. The constraints handling solver (integrated into AETG_SAT) is a java SAT solver – SAT4j [22]. Note that all the three algorithms or techniques can be easily replaced with other similar approaches. For example, we can use other one-test-one-time covering array generation algorithms, like DDA [3], or other MFS identification techniques [40, 30], or other popular SAT solvers [12]. However, to select which algorithms for the three components of combinatorial testing is not the key concern of this paper; instead, our work focus on the overall CT process.

7.1.1 Study setup

For each software except Tcas, a test case is determined to be passing if it ran without any exceptions; otherwise it is regarded as failing. For Tcas, as the fault is injected, we determine the result of a test case by separately running it with the original correct version and the mutation version. The test case will be labeled as passing if their results are the same; otherwise, it is deemed as failing.

In this experiment, we focus on three coverage criteria, i.e., 2-way, 3-way and 4-way, respectively. It is known that the generated test cases vary for different runs of AETG algorithm. So to avoid the biases of randomness, we conduct each experiment 30 times and then evaluate the results. (Note that the remaining case studies are also based on 30 repeated experiments.) For each run of the experiment, we separately applied traditional approach and our approach on the prepared subject to detect and identify the MFS.

To evaluate the results of the two approaches, one metric is the cost, i.e., the number of test cases that each approach needs. Specifically, the test cases that are generated in the CT generation and MFS identification, respectively, are recorded and compared for these two approaches. Apart from this, another important metric is the quality of their identified MFS. For this, we used standard metrics: precision and recall, which are defined as follows:

$$precision = \frac{\#the\ num\ of\ correctly\ identified\ MFS}{\#the\ num\ of\ all\ the\ identified\ schemas}$$

 $\quad \text{and} \quad$

$$recall = \frac{\#the\ num\ of\ correctly\ identified\ MFS}{\#the\ num\ of\ all\ the\ real\ MFS}$$

Precision shows the degree of accuracy of the identified schemas when comparing to the real MFS. Recall measures how well the real MFS are detected and identified. Their combination is F-measure, defined as

$$F-measure = \frac{2 \times precision \times recall}{precision + recall}$$

7.1.2 Result and discussion

Table 8 presents the results for the number of test cases. In Column 'Method', *ict* indicates the interleaving CT approach and *sct* indicates the sequential CT approach. The results of three covering criteria, i.e., 2-way, 3-way, and 4-way are shown in three main columns. In each of them, the number of test cases that are generated in *CT generation* activity (Column 'Gen'), in *MFS identification* activity

(Column 'Iden'), and the total number of test cases (Column 'Total) are listed.

One observation from this table is that the total number of test cases generated by our approach are far less than that of the traditional approach. In fact, except for subject Tcas, our approach reduced about dozens of test cases for 2-way coverage, and hundreds of test cases for 3-way and 4-way coverage. For Tcas, however, as the MFS are hard to detect (all of them have degrees greater than 9), so both approaches rarely trigger errors. Under this condition, both approaches will be transferred to a normal covering array.

The gap of total number of test cases is mainly due to the difference in the number of test cases generated in MFS identification activity. In fact, their results in the CT generation are almost the same. Even for 4-way coverage criteria which may need thousands test cases, the gap between them are no more than 10.

For MFS identification activity, the interleaving approach only consumed a relatively small amount of test cases when compared to the sequential approach. What's more, the interleaving approach obtained almost the same results under the 2-way, 3-way, and 4-way coverage (see the cells in bold). This is as expected, as the MFS identification only happens after a test case fails in our interleaving approach. And after the identification process, the identified MFS will be set as forbidden schemas for the latter generated test cases. As a result, each MFS only needs to be identified once, no matter what the coverage is and how many test cases needed to be generated.

However, this is not the case for the sequential approach. As discussed before, the sequential approach does not identify the MFS at early iteration, so that these MFS can appear in latter test cases. As a result, it needs many more test cases to identify the same MFS, which is a huge waste. Even worse, the more test cases generated in CT generation activity, the more test cases are needed in MFS identification activity (See the Column 'Iden' of sequential approach under 2-way, 3-way and 4-way coverage). This is because the possibility that failures are triggered is increased when there are more test cases without forbidding the appearance of these MFS.

With regard to the quality of the identified MFS, the comparison of the two approaches are listed in Table 9. Based on this table, we find that there is no apparent gap between them. For example, there are 11 cases under which our approach performed better than the traditional one (marked in bold). But among these cases, the maximal gap is 0.27 (2-way for Tomcat), and the average gap is around 0.1, which is trivial.

The reason of the similarity between the quality of these two approaches is that both of them have advantages and disadvantages. Specifically, our approach can reduce the impacts when a test case contains multiple MFS. As discussed in section 3.2, multiple MFS in a test case can reduce the accuracy of the MFS identifying algorithms [30]. As a result, our approach can improve the quality of the identified schemas (details are given in the next study). But as a side-effect, if the schemas identified at the early iteration of our approach are not correct, they will significantly impact the following iteration. This is because we will compute the coverage and forbid schemas based on previously identified MFS. It was the other way around for the traditional approach. It suffers when a test case contains multiple MFS,

but correspondingly, previous identified MFS has little influence on the traditional approach. Note that in the case studies, we do not apply the measures proposed in Section 5, which we believe can improve the quality of the MFS identification.

In summary, the answer to **Q1** is: our approach needs much fewer test cases than the traditional sequential CT approach, and there is no decline in the quality of the identified MFS when comparing with the traditional approach.

7.2 Alleviation of the three problems

Section 3 shows three problems that impact the performance of traditional CT process, which are redundant test cases generation, multiple MFS in the same test case and masking effects, respectively. To learn if ICT can alleviate these problems, we re-use the experiment in the first study, i.e., let SCT and ICT generate test cases to identify the MFS in the five program subjects. Then, we respectively investigate the extent to which ICT and SCT are affected by those impacts.

7.2.1 Study setup

We design three metrics for each of the three problems. First, to measure the redundant test cases generation, we gather the number of times that each schema is covered. This metric directly indicates the redundance of generated test cases, as it is obvious that if there are too many schemas that are repeatedly being covered by different test cases, then the CT process is inefficiency as if one schema is covered and tested, it is unnecessary to check them again with other test cases. It is worth to point that this metric is closely related to the number of test cases discussed in the previous study, more test cases surely make schemas being covered more times. However, there exist one difference, i.e., test cases can evenly cover many schemas for a relatively few times, or alternatively, some schemas are covered many times, but others not.

Second, to measure multiple MFS in the same test case is simple, we just directly search for each generated test case and examine if it contains more than one MFS.

Third, we use the *tested-t-way* coverage criteria [38] to the measure the masking effects. Specifically, we re-compute the coverage of the test cases generated by ICT and SCT by counting all the *t*-degree schemas that is either covered in a passing test case or identified as MFS or faulty schema. For ICT and SCT, the more is the *tested-t-way* coverage, the more the testing is adequate and hence the less is the masking effects.

7.2.2 Result and discussion

1) Redundant test cases.

Our result is shown in Figure 3. This figure consists of nine sub-figures, one for each subject with specific testing coverage (ranged from 2 - 4 way). For each sub-figure, the x-axis represents the number of times a schema is covered in total, the y-axis represents the number of schemas. For example in the first sub-figure (2-way for Tomcat), two bars with x-coordinate equal to 2 indicates that ICT approach have 2.8 schemas in average which are covered twice and SCT have 0.4 schemas.

As discussed previously, the more schemas that are covered with a low-frequency, the less redundant the generated test cases are. Hence it implies an effective testing if the

Table 8: Comparison of the number of test cases

Subjects Method			2-way	_		3-way			4-way	
Subjects	Method	Gen	Iden	Total	Gen	Iden	Total	Gen	Iden	Total
Tomcat	ict	12.73	30	42.73	34.97	29.67	64.64	85.57	29.33	114.9
	sct	14.1	105.6	119.7	38.3	256.03	294.33	93.4	578.4	671.8
Hsqldb	ict	14.93	23.2	38.13	45.3	28.0	73.3	118.33	30.4	148.73
	sct	15.63	133.13	148.76	47.37	356.7	404.07	122.7	876.37	999.07
Gcc	ict	14.5	19.33	33.83	47.9	21.33	69.23	102.63	24.67	127.3
	sct	15.27	19.67	34.94	50.97	64.93	115.9	103.87	124.6	228.47
Jflex	ict	15.8	14	29.8	50.47	14	64.47	145.17	14	159.17
	sct	15.83	28.93	44.76	49.63	134.74	184.37	142.1	433.47	575.57
Tcas	ict	109.03	0	109.03	426.8	0.8	427.6	1629.83	3.2	1633.03
	sct	108.67	0	108.67	426.77	1.2	427.97	1633.2	2.8	1636

Table 9: Comparison of the quality of the identified MFS

Subjects	Subjects Method		2-way		3-way			4-way		
Subjects	Method	Precision	Recall	F-measure	Precision	Recall	F-measure	Precision	Recall	F-measure
Tomcat	ict	1	1	1	0.97	0.96	0.96	0.93	0.91	0.92
	sct	0.73	0.74	0.73	0.75	1	0.86	0.75	1	0.86
Hsqldb	ict	0.52	0.82	0.61	0.56	0.67	0.6	0.69	0.77	0.72
	sct	0.46	0.82	0.57	0.49	0.5	0.49	0.67	0.5	0.57
Gcc	ict	0.47	0.28	0.34	0.46	0.37	0.40	0.58	0.48	0.52
	sct	0.33	0.18	0.23	0.36	0.43	0.39	0.33	0.5	0.40
Jflex	ict	1	1	1	1	1	1	1	1	1
	sct	1	1	1	1	1	1	1	1	1
Tcas	ict	0	0	0	0.03	0.0007	0.001	0.07	0.001	0.0027
	sct	0	0	0	0	0	0	0.03	0.001	0.0026

number of schemas (y-axis) decrease with the increase of the covered times (x-axis). Most of the nine sub-figures indicates that ict performs better than sct. In fact. for ict, the bars decrease rapidly with the increase of x-axis, while for sct, the trend is more smooth. See subject tomcat with 4-way coverage for example, ict have about 80 schemas which are only covered once, about 25 schemas covered twice, less than 10 schemas with the covered times more than 8. For sct, however, for most covered times, it has about 10 schemas, which indicates a very low effectiveness. The interesting exception is subject Tcas, on which ict and sct show a similar trend. This is because both ict and sct hardly detect the high-degree MFS in Tcas, and consequently they are both transformed to normal covering arrays.

This result shows that our two modifications of traditional approach, i.e., taking account of the covered schemas by test cases generated in MFS identification and forbidding the appearance of existing MFS to reduce the test cases that are used to identify the same MFS, are useful, especially when the MFS are detected and identified.

2) Multiple MFS.

The result is shown in Table 10, which lists the number of test cases (on average) that contain more than one MFS.

From this table, one observation is that *ict* obtained a better result than *sct* at limiting the test cases which contain multiple MFS. For all the subjects except *Gcc*, *ict* eliminated all the test cases which contain multiple MFS. Even if for *Gcc*, the number of test cases which contain MFS is less than that of *sct*. For *sct*, however, the result is not as good as *ict*. In fact except subjects *Jflex* and *Tcas*, *sct* suffers from generating test cases which contain multiple MFS. This is why even though *sct* generate much more test cases than

Table 10: Number of test cases that contain multiple MFS

Subject	Method	2-way	3-way	4-way
Tomcat	ict	0	0	0
	sct	1.13	4.4	10.77
Hsqldb	ict	0	0	0
	sct	0.33	1.87	4.67
Gcc	ict	0.37	0.87	0.47
	sct	0.37	1.6	3.73
Jflex	ict	0	0	0
	sct	0	0	0
Tcas	ict	0	0	0
	sct	0	0	0

ict, it did not obtain a better MFS identification result than ict. Two exceptions are subjects Jflex and Tcas, on which both ict and sct did not generate test cases contain multiple MFS. The reason is that Jflex has only one MFS (see Table 7) and the MFS of Tcas are all high degree which are hardly detected.

3) Masking effects.

The tested-t-way coverage for each approach is shown in Table 11. Specifically, the number of t-degree (t = 2, 3, 4) schemas which are tested (in the passing test cases or identified as faulty schemas) are gathered, as well as the percentage of the total t-degree schemas (in the parentheses followed). There are several observations can be obtained from this result:

First, the extent to which sct and ict suffered from masking effects is not severe. Actually, the lowest tested-t-way

Figure 3: The redundance of test cases

	Table 11: Tested-t-way coverage								
Subject	Method	2-way	3-way	4-way					
Tomcat	ict	236(100.00%)	1411.17(99.10%)	5459.47(97.49%)					
	sct	230.23(97.56%)	1404.7(98.65%)	5550.7(99.12%)					
Hsqldb	ict	356.63(99.90%)	2729.57(99.55%)	14051.37(99.40%)					
	sct	354.5(99.30%)	2717.63(99.11%)	14065.47(99.50%)					
Gcc	ict	249.43(98.98%)	1490.6(97.04%)	5825.43(96.32%)					
	sct	251.83(99.93%)	1533.47(99.84%)	6015.8(99.47%)					
Jflex	ict	473(100.0%)	4282(100.0%)	26532(100.0%)					
	sct	473(100.0%)	4282(100.0%)	26532(100.0%)					
Tcas	ict	837(100.0%)	9158(100.0%)	64696(100.0%)					
	sct	837(100.0%)	9158(100.0%)	64696(100.0%)					

Table 11: Tested-t-way coverage

coverage of *ict* is 96.32% (4-way for Gcc) and *sct* is 97.56% (2-way for Tomcat). This shows that combining MFS identification with covering array (either in the sequential way or interleaving way) can make testing more adequate than using covering array alone.

Second, there is no apparent gap between *ict* and *sct* at restricting the masking effects. In our case studies, there are four cases (shown in bold) that *ict* are better than *sct*, 6 cases that they are equal (for subjects *Jflex* and *Tcas*) and remaining 5 cases that *sct* is better. This gap is trivial. As we discussed before, *ict* forbids the appearance of identified MFS and can improve the performance at handling masking effects. The results, however, do not show this advantage. One possible explanation for this is that *sct* generates more test cases, of which some are passing test cases that cover more schemas.

Third, if there is only single MFS or MFS is not detected, the tested-t-way coverage is 100% for both ict and sct approaches. This can be observed in subjects Jflex and Tcas , in which all the t-degree schemas are covered. For single MFS, as MFS identification is effective, all the oth-

er t-degree schemas can be determined as irrelevant to the failure. Consequently, the tested-t-way coverage is satisfied. For the case that MFS cannot be detected (MFS with high degrees), traditional t-way covering arrays are enough to obtain adequate testing, as all the test cases will pass if there is no MFS detected.

In summary, the answer to \mathbf{EQ} 2 is that our approach can alleviate the three problem discussed in Section 3, especially on reducing the redundance of test cases and limiting the test cases with multiple MFS. Additionally, both ict and sct have a good performance on reducing the masking effects.

7.3 Comparison with FDA-CIT

fda-cit [38] is a feedback framework that can augment the traditional covering array to iteratively identify the MFS, and can handle the masking effects. The overall process can be illustrated in Figure 4. Specifically, it will first generate a t-way covering array and execute all the test cases in it. After that it will utilize the classification tree method to identify the MFS. Then it will forbid the identified MFS to be appeared and compute the tested-t-way coverage. If

Figure 4: The Framework of fda-cit

the tested-t-way coverage is not satisfied, it will repeat the previous process, i.e., generating additional test cases and identifying MFS. Like our ict approach, FDA-CIT is also an adaptive approach which iteratively generate test cases and identify the MFS. Besides these commonalities, there are several important difference between our approach and fda-cit (shaded in Figure 4):

First, the **granularity** of adaptation. Instead of handling one test case one time as *ict*, *fda-cit* tries to generate a batch of test cases at each iteration (A complete covering array will be generated at the first iteration, and more test cases will be supplemented to cover those t-degree schemas which are masked at latter iterations). To generate a batch of test cases may improve the degree of parallelism of testing, but this coarser granularity may also introduce some problems, e.g., some test cases generated at one iteration may fail with the same MFS, which is a potential waste because it is better to use one failing test case to reveal one particular MFS.

Second, the MFS identification approach is different. fda-cit uses classification tree on existed executed test cases to characterize the MFS. Different from our OFOT approach, this post-analysis technique does not need additional test cases, but as a side effect it cannot precisely find the MFS. What's worse, the effectiveness of this post-analysis approach depends greatly on the covering array, e.g., if there is a large number of failing tests, and a small size test suite, there is little information to exclude the particular MFS [40].

Third, the **coverage criteria** is not the same. *fda-cit* directly uses the tested-t-way coverage to guide their pro-

cess. This support a better adequate testing and reduces the impacts of masking effects. As we will see later in our experiments, however, the incorrectly MFS identification may negatively affect the achievement of this type of coverage.

Next, we will design experiments to measure the performance of fda-cit.

7.3.1 Study setup

The design of this case study is similar to the previous two. For each subject in Table 6, we apply fda-cit to generate test cases and identify the MFS. After that, we gather the overall test cases generated (fda-cit does not need additional test cases to identify the MFS), MFS identification results(including re-call, precise and f-measure), and the other two metrics, i.e., covered times of schemas, and the t-tested-coverage. Note that in this study, we do not gather the test cases which contain multiple MFS, as the post-analysis classification tree method are not affected by this factor. The same as previous experiments, we will repeat executing each experiment 30 times for different coverage (2, 3, and 4 way), and then gather and analyse the average data.

7.3.2 Result and discussion

1)Overall number of test cases The overall number of test cases generated by fda-cit for each subject is shown in Table 12. To better evaluate the performance of fda-cit, we list the gaps between FDA-CIT with ict and sct respectively in the parentheses (the first number is for ict, latter one is sct). The value with negative sign indicates the reduction in the test cases between fda-cit and other two approaches, while the value without negative sign indicates the number of test cases which fda-cit generated more than the other two approaches.

From this table, one observation is that fda-cit is better than sct at all these cases. Combining the results of previous studies for sct and ict, we can conclude that sct is most inefficient approach at test cases generation. Second, for ict and fda-cit, there are ups and downs on both sides. In detail, fda-cit needs less test cases at lower coverage (mainly for the 2-way coverage), while ict performs better at higher coverage (Except tcas and gcc, fda-cit increases by 10% test cases).

This result is reasonable. First, fda-cit does not need additional test cases to identify the MFS, which will reduce some cost when comparing with ict, especially when the coverage is low (For low coverage, the test cases generated by ict in the MFS identification stage account for a considerable proportion of the overall test cases). One the other hand, as noted earlier, the coarse grained generation will make fda-cit generate some unnecessary test cases.

2)**F-measure of MFS identification** The results of the quality of MFS identification by *fda-cit* is listed in Table 13. Same as previous metric, the comparison between fdacit with *ict* and *sct* are also attached (the first number is for ict, latter one is sct).

This table shows a discernible disparity between fda-cit with the other two approaches. In fact, besides subject Iflex of which all three approaches accurately identified the single low-degree MFS (with F-measure equal to 1), ict leads over fda-cit by about 50%, which is not trivial. The result is similar when comparing sct with fda-cit. One exception is subject GCC for coverage 3-way and 4-way (shown in bold), fda-cit performs slightly better than ict and sct (the gap is

Table 12: Number of test cases generated by fda-cit

	2-way	3-way	4-way
Tomcat	27.93 (-14.8, -91.77)	66.57 (1.93 , -227.76)	201.1 (86.2 , -470.7)
HSQLDB	28.67 (-9.47, -119.47)	86 (12.7 , -316.13)	179.77 (31.03 , -816.57)
GCC	20.63 (-13.2, -14.31)	63.07 (-6.16, -52.83)	125.1 (-2.2, -103.37)
Jflex	19.57 (-10.23, -25.19)	65.4 (0.93 , -118.97)	181.3 (22.13 , -394.27)
Tcas	19.57 (-0.96, -0.6)	65.4 (-11.47, -11.84)	181.3 (-72.13, -75.1)

Table 13: The F-measure of MFS identification for fda-cit

	2-way	3-way	4-way
Tomcat	0.26 (-73.56%, -46.56%)	0.31 (-64.62%, -54.62%)	0.33 (-58.67%, -52.67%)
HSQLDB	0.33 (-27.80%, -24.02%)	0.26 (-33.94%, -22.70%)	0.31 (-40.77%, -25.91%)
GCC	0.08 (-25.83%, -14.83%)	0.44 (4.44%, 5.44%)	0.47 (-5.45%, 6.55%)
Jflex	1 (0.00%, 0.00%)	1 (0.00%, 0.00%)	1 (0.00%, 0.00%)
Tcas	0 (0.00%, 0.00%)	0 (-0.10%, 0.00%)	0 (-0.27%, -0.26%)

not more than 7%).

Another interesting observation is for subject Tcas, which has multiple high degree MFS. We can find that, although very trivial, sct and ict have identified some high-degree MFS (F-measures of 3-way and 4-way is not equal to 0). However, fda-cit failed to accurately identify even one high-degree MFS, as all f-measure equal to 0.

Overall, this result suggests that the classification tree approach, although very resource-saving (does not needs additional test cases), is ineffective to accurately MFS identification result, especially when there are multiple MFS with high degrees.

3)**Redundant test cases**. The result is listed in Figure 5. The same as Figure 3, for each sub-figure, the x-axis represents the number of times a schema is covered in total, and the y-axis represents the number of schemas. To enable an intuitive comparison with *ict* and *sct*, we attach the data for *ict* and *ict*, respectively, with solid line and dotted line.

From this figure, we can see the trend of the bars that represents fda-cit matches pretty well with the curve representing ict, which has a significant advantage over the curve of sct. This result implies that the test case redundance between ict and fda-cit are similar, which is not severe when comparing with sct.

4) Masking effects. The result is listed in Table 14, the gaps between *fda-cit* with *ict* and *sct* are listed in the parentheses, respectively (the first one is ict, latter one is sct).

We can find that except subject Jflex (with single MFS) and Tcas (wit high-degree MFS) which all three approaches work normally without masking effects, the schemas of other subjects does not get completely covered by the three approaches. Additionally, there doesn't exist apparent gaps between the three approaches. For example, fda-cit decreased about 4.07% and 3.47% at tested-2-way coverage than ict and sct, respectively, for the subject Hsqldb, but also increased about 3.17% and 0.02% at tested-4-way coverage for the subject Gcc. In fact, there are five cases (shown in bold) that fda-cit performed better than ict, and four cases that fda-cit did not. Above all, the gap between the three approaches is very trivial.

This result gives us a confidence that our approach *ict* does reach the same level as *fda-cit* at reducing the masking effects. The conclusion also implies that, to limit the masking effects, only using an adaptive framework to separately

identify the MFS is not enough; making MFS identification accurately is more important and should be the key focus in the future studies of masking effects.

To summarize, the answer to \mathbf{EQ} 3 is that when comparing the adaptive CT approach fda-cit, our approach works as good as it, even if at reduction of masking effects and making testing adequately which fda-cit focuses on addressing. Additionally, our approach supports a better MFS identification than fda-cit.

7.4 Threats to validity

There are several threats to validity in our empirical studies. First, our experiments are based on only 5 open-source software. More subject programs are desired to make the results more general. In fact, we plan to conduct comprehensive experiments on programs with parameters and MFS under control, such that the conclusion of our experiment can reduce the impact caused by specific input space and specific degree or location of the MFS.

Second, there have been many more generation algorithms and MFS identification algorithms. In our empirical studies, we just used AETG [4] as the test case generation strategy, and OFOT [27] as the MFS identification strategy. As different generation and identification algorithms may affect the performance our proposed CT framework, especially on the number of test cases, some studies using different test case generation and MFS identification approaches are desired.

8. RELATED WORKS

Combinatorial testing has been widely applied in practice [18], especially on domains like configuration testing [37, 9, 13] and software inputs testing [4, 1, 14]. A recent survey [28] comprehensively studied existing works in CT and classified those works into eight categories according to the testing procedure. Based on this study, we learn that test cases generation and MFS identification are two most important parts in CT studies.

Although CT has been proven to be effective at detecting and identifying the interaction failures in SUT, however, to directly apply them in practice can be inefficient and some times even does not work at all. Some problems, e.g., constraints of parameters values in SUT [6, 8], masking effects of multiple failures[11, 38], dynamic requirement for the strength of covering array [13], will cause difficulty to CT

Figure 5: The redundance of test cases generated by fda-cit

Table 14: The tested-t-way coverage for fda-cit

ſ		2-way	3-way	4-way
ſ	Tomcat	208.2 (-11.78%, -9.34%)	1387.3 (-1.68%, -1.22%)	5378 (-1.46%, -3.08%)
İ	HSQLDB	$342.1 \ (-4.07\%, -3.47\%)$	2732.43 (0.11% , 0.54%)	14093.17 (0.30 %, 0.20%)
İ	GCC	250.37 (0.37 %, -0.58%)	1532.03 (2.70 %, -0.09%)	6016.97 (3.17 %, 0.02%)
İ	Jflex	473 (0.00%, 0.00%)	4282 (0.00%, 0.00%)	26532 (0.00%, 0.00%)
İ	Tcas	837 (0.00%, 0.00%)	9158 (0.00%, 0.00%)	64696 (0.00%, 0.00%)

process. To overcome these problems, some works try to make CT more adaptive and flexible.

JieLi [24] augmented the MFS identifying algorithm by selecting one previous passing test case for comparison, such that it can reduce some extra test cases when compared to another efficient MFS identifying algorithm [40].

S.Fouché et al., [13] introduced the notion of incremental covering. Different from traditional covering array, it does not need a fixed strength to guide the generation; instead, it can dynamically generate high-way covering array based on existing low-way covering array, which can support a flexible tradeoff between covering array strength and testing resources. Cohen [6, 8] studied the impacts of constraints for CT, and proposed an SAT-based approach that can handle those constraints. Bryce and Colbourn [2] proposed an one-test-case-one-time greedy technique to not only generate test cases to cover all the t-degree interactions, but also prioritize them according their importance. E. Dumlu et al., [11] developed a feedback driven combinatorial testing approach that can assist traditional covering in avoiding the masking effects between multiple failures. Yilmaz [38] extended that work by refining the MFS diagnosing method. Specifically, this feedback driven approach firstly generate a t-way covering array, and after executing them, the MFS will be identified by utilizing a classification tree method. It then forbids these MFS and generates additional test cases

to cover the interactions that are masked by the MFS. This process continues until all the interactions are covered. Additionally, Nie [29] constructed an adaptive combinatorial testing framework, which can dynamically adjust the inputs model, strength t of covering array, and generation strategy during CT process.

Our work differs from them mainly in that we proposed a highly interactive framework for test case generation and MFS identification. Specifically, we do not generate a complete t-way covering array at first; instead, when a failure is triggered by a test case, we immediately terminate test cases generation and turn to MFS identification. After the MFS is identified, the coverage will be updated and the test cases generation process continues.

9. CONCLUSION AND FUTURE WORKS

Combinatorial testing is an effective testing technique at detecting and diagnosis of the failure-inducing interactions in the SUT. Traditional CT separately studies test cases generation and MFS identification. In this paper, we proposed a new CT framework, i.e., *interleaving CT*, that integrates these two important stages, which allows for both generation and identification better share each other's information. As a result, interleaving CT approach can provide a more efficient testing than traditional sequential CT.

Empirical studies were conducted on five open-source soft-

ware subjects. The results show that with our new CT framework, there is a significant reduction on the number of generated test cases when compared to the traditional sequential CT approach, while there is no decline in the quality of the identified MFS. Further, when comparing with another adaptive CT framework fda-cit [11, 38], our approach also performed better, especially with better quality of the MFS identification.

As a future work, we need to extend our interleaving CT approach with more test case generation and MFS identification algorithms, to see the extent on which our new CT framework can enhance those different CT-based algorithms. Another interesting work is to combine interleaving CT approach with the masking effects technique *fda-cit*[38]. By this, we believe the impacts of masking effects can be further reduced and it can support a better quality of MFS identification.

10. REFERENCES

- [1] M. N. Borazjany, L. Yu, Y. Lei, R. Kacker, and R. Kuhn. Combinatorial testing of acts: A case study. In Software Testing, Verification and Validation (ICST), 2012 IEEE Fifth International Conference on, pages 591–600. IEEE, 2012.
- [2] R. C. Bryce and C. J. Colbourn. Prioritized interaction testing for pair-wise coverage with seeding and constraints. *Information and Software Technology*, 48(10):960–970, 2006.
- [3] R. C. Bryce and C. J. Colbourn. The density algorithm for pairwise interaction testing. Software Testing, Verification and Reliability, 17(3):159–182, 2007.
- [4] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The aetg system: An approach to testing based on combinatorial design. *Software Engineering*, *IEEE Transactions on*, 23(7):437–444, 1997.
- [5] M. B. Cohen, C. J. Colbourn, and A. C. Ling. Augmenting simulated annealing to build interaction test suites. In Software Reliability Engineering, 2003. ISSRE 2003. 14th International Symposium on, pages 394–405. IEEE, 2003.
- [6] M. B. Cohen, M. B. Dwyer, and J. Shi. Exploiting constraint solving history to construct interaction test suites. In *Testing: Academic and Industrial Conference* Practice and Research Techniques-MUTATION, 2007., pages 121–132. IEEE, 2007.
- [7] M. B. Cohen, M. B. Dwyer, and J. Shi. Interaction testing of highly-configurable systems in the presence of constraints. In *Proceedings of the 2007 international* symposium on Software testing and analysis, pages 129–139. ACM, 2007.
- [8] M. B. Cohen, M. B. Dwyer, and J. Shi. Constructing interaction test suites for highly-configurable systems in the presence of constraints: A greedy approach. Software Engineering, IEEE Transactions on, 34(5):633-650, 2008.
- [9] M. B. Cohen, J. Snyder, and G. Rothermel. Testing across configurations: implications for combinatorial testing. ACM SIGSOFT Software Engineering Notes, 31(6):1–9, 2006.
- [10] C. J. Colbourn and D. W. McClary. Locating and detecting arrays for interaction faults. *Journal of*

- combinatorial optimization, 15(1):17-48, 2008.
- [11] E. Dumlu, C. Yilmaz, M. B. Cohen, and A. Porter. Feedback driven adaptive combinatorial testing. In Proceedings of the 2011 International Symposium on Software Testing and Analysis, pages 243–253. ACM, 2011.
- [12] N. Eén and N. Sörensson. An extensible sat-solver. In Theory and applications of satisfiability testing, pages 502–518. Springer, 2004.
- [13] S. Fouché, M. B. Cohen, and A. Porter. Incremental covering array failure characterization in large configuration spaces. In *Proceedings of the eighteenth* international symposium on Software testing and analysis, pages 177–188. ACM, 2009.
- [14] B. Garn and D. E. Simos. Eris: A tool for combinatorial testing of the linux system call interface. In Software Testing, Verification and Validation Workshops (ICSTW), 2014 IEEE Seventh International Conference on, pages 58–67. IEEE, 2014.
- [15] L. S. G. Ghandehari, Y. Lei, T. Xie, R. Kuhn, and R. Kacker. Identifying failure-inducing combinations in a combinatorial test set. In Software Testing, Verification and Validation (ICST), 2012 IEEE Fifth International Conference on, pages 370–379. IEEE, 2012.
- [16] D. Jin, X. Qu, M. B. Cohen, and B. Robinson. Configurations everywhere: Implications for testing and debugging in practice. In Companion Proceedings of the 36th International Conference on Software Engineering, pages 215–224. ACM, 2014.
- [17] K. Kolinko. The HTTP Connector. http://tomcat.apache.org/tomcat-7.0-doc/config/http.html, 2014. [Online; accessed 3-Nov-2014].
- [18] D. R. Kuhn, R. N. Kacker, and Y. Lei. Practical combinatorial testing. NIST Special Publication, 800:142, 2010.
- [19] D. R. Kuhn and V. Okun. Pseudo-exhaustive testing for software. In Software Engineering Workshop, 2006. SEW'06. 30th Annual IEEE/NASA, pages 153–158. IEEE, 2006.
- [20] D. R. Kuhn and M. J. Reilly. An investigation of the applicability of design of experiments to software testing. In Software Engineering Workshop, 2002. Proceedings. 27th Annual NASA Goddard/IEEE, pages 91–95. IEEE, 2002.
- [21] D. R. Kuhn, D. R. Wallace, and J. AM Gallo. Software fault interactions and implications for software testing. Software Engineering, IEEE Transactions on, 30(6):418–421, 2004.
- [22] D. Le Berre, A. Parrain, et al. The sat4j library, release 2.2, system description. *Journal on Satisfiability, Boolean Modeling and Computation*, 7:59–64, 2010.
- [23] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence. Ipog/ipog-d: efficient test generation for multi-way combinatorial testing. Software Testing, Verification and Reliability, 18(3):125–148, 2008.
- [24] J. Li, C. Nie, and Y. Lei. Improved delta debugging based on combinatorial testing. In *Quality Software* (QSIC), 2012 12th International Conference on, pages 102–105. IEEE, 2012.
- [25] C. Martínez, L. Moura, D. Panario, and B. Stevens.

- Algorithms to locate errors using covering arrays. In $LATIN\ 2008$: Theoretical Informatics, pages 504–519. Springer, 2008.
- [26] C. Martínez, L. Moura, D. Panario, and B. Stevens. Locating errors using elas, covering arrays, and adaptive testing algorithms. SIAM Journal on Discrete Mathematics, 23(4):1776–1799, 2009.
- [27] C. Nie and H. Leung. The minimal failure-causing schema of combinatorial testing. ACM Transactions on Software Engineering and Methodology (TOSEM), 20(4):15, 2011.
- [28] C. Nie and H. Leung. A survey of combinatorial testing. ACM Computing Surveys (CSUR), 43(2):11, 2011.
- [29] C. Nie, H. Leung, and K.-Y. Cai. Adaptive combinatorial testing. In *Quality Software (QSIC)*, 2013 13th International Conference on, pages 284–287. IEEE, 2013.
- [30] X. Niu, C. Nie, Y. Lei, and A. T. Chan. Identifying failure-inducing combinations using tuple relationship. In Software Testing, Verification and Validation Workshops (ICSTW), 2013 IEEE Sixth International Conference on, pages 271–280. IEEE, 2013.
- [31] K. J. Nurmela. Upper bounds for covering arrays by tabu search. *Discrete applied mathematics*, 138(1):143–152, 2004.
- [32] X. Qu, M. B. Cohen, and G. Rothermel. Configuration-aware regression testing: an empirical study of sampling and prioritization. In *Proceedings of* the 2008 international symposium on Software testing and analysis, pages 75–86. ACM, 2008.
- [33] K. Shakya, T. Xie, N. Li, Y. Lei, R. Kacker, and R. Kuhn. Isolating failure-inducing combinations in combinatorial testing using test augmentation and classification. In Software Testing, Verification and Validation (ICST), 2012 IEEE Fifth International Conference on, pages 620–623. IEEE, 2012.
- [34] C. Song, A. Porter, and J. S. Foster. itree: Efficiently discovering high-coverage configurations using interaction trees. In *Proceedings of the 2012* International Conference on Software Engineering, pages 903–913. IEEE Press, 2012.
- [35] Y.-W. Tung and W. S. Aldiwan. Automating test case generation for the new generation mission software system. In Aerospace Conference Proceedings, 2000 IEEE, volume 1, pages 431–437. IEEE, 2000.
- [36] Z. Wang, B. Xu, L. Chen, and L. Xu. Adaptive interaction fault location based on combinatorial testing. In *Quality Software (QSIC)*, 2010 10th International Conference on, pages 495–502. IEEE, 2010
- [37] C. Yilmaz, M. B. Cohen, and A. A. Porter. Covering arrays for efficient fault characterization in complex configuration spaces. *Software Engineering, IEEE Transactions on*, 32(1):20–34, 2006.
- [38] C. Yilmaz, E. Dumlu, M. Cohen, and A. Porter. Reducing masking effects in combinatorialinteraction testing: A feedback drivenadaptive approach. Software Engineering, IEEE Transactions on, 40(1):43–66, Jan 2014.
- [39] S. Yoo, M. Harman, and D. Clark. Fault localization prioritization: Comparing information-theoretic and

- coverage-based approaches. ACM Transactions on Software Engineering and Methodology (TOSEM), 22(3):19, 2013.
- [40] Z. Zhang and J. Zhang. Characterizing failure-causing parameter interactions by adaptive testing. In Proceedings of the 2011 International Symposium on Software Testing and Analysis, pages 331–341. ACM, 2011.