\triangle congruency shortcuts

Triangle centers

Altitudes & orthocenter

Circumcenter (where perpendicular bisectors of sides meet)
Incenter (where angle bisectors meet)

From a vertex to the midpoint of its opposite side

Centroid Where medians meet Center of mass Average of all vertices

Centroid to side = \% entire median length Centroid to vertex = 3/5 entire median length

CPCTC

- Corresponding points of congruent triangles are congruent.

N-gon formulas:

Sum of interior angles

$$(n-2)180$$

Interior angle measure of equiangular n-gon

$$\frac{(n-2)180}{n}$$

Diagonals

Sum of n triangle numbers (1,2,3,4,5)

$$\frac{n(n+1)}{2}$$

Diagonals and midsegments

Properties of Midsegments of a Triangle

- 1 Joins the midpoints of 2 sides of a triangle
- 2 A triangle has 3 midsegments
- 3 It is always parallel to the third side
- 4 It is $\frac{1}{2}$ the length of the third side

Proportions

Angle Bisector Theorem

MATH

Diagonal of Quadrilaterals

Rectangle

- · Has two diagonals
- · Diagonals are equal
- · Diagonals bisect each other

Square

- Has two diagonals
- · Diagonals are perpendicular
- · Diagonals bisect each other

Parallelogram

- · Has two diagonals
- · Diagonals bisect each other

Rhombus

- · Has two diagonals
- · Diagonals are perpendicular
- · Diagonals bisect each other

Trapezoid

- · Has two diagonals
- ·Diagonals are not equal (exception: isosceles trapezoid)

- · Has two diagonals
- · Diagonals are perpendicular
- Longer diagonal bisects the shorter one

Quadrilateral Area Formulas

Ouadrila	toral	Area Formula
Quadrilateral		Area Formula
Square	x x	x ²
Rectangle	b 1	l × b
Parallelogram h		b×h
Trapezoid 4	a h c	$\frac{1}{2}$ (a + b)h
Rhombus	d ₁ d ₂	$\frac{1}{2} \times d_1 \times d_2$
Kite	d ₁	$\frac{1}{2} \times d_1 \times d_2$

Two Tangents Theorem

Cyclic Quadrilateral

A cyclic quadrilateral has all its vertices on the circumference of the circle.

Opposite angles add up to 180° Exterior angle is equal to ∠a + ∠c = 180°

∠b + ∠d = 180°

the interior opposite angle ∠a = ∠e

Similar Figures			
Similarity ratio	Area Ratio	Volume Ratio	
$\frac{a}{b}$	$\frac{a^2}{b^2}$	$\frac{a^3}{b^3}$	