Scribe Note: KG²: Learning to Reason Science Exam Questions with Contextual Knowledge Graph Embeddings[2]

Presenter: William Zhang, Scribe: Ji Gao June 1, 2019

1 Task

- Answer science exam questions
- The science exam is targeting 8-13 year old student, however, previous IR methods can only get 21% accuracy, even worse than random guess.
- Motivation: Use human-like logic to help solving the questions:
 - 1. Read the question
 - 2. Generate hypothesis by combining the question stem and answer option
 - 3. Find supporting sentences in the corpus
 - 4. Verify the hypothesis
- Use knowledge graph and deep neural models to help the model.

2 Method

- Definitions:
 - i-th Question stem(text): q_i , where $i \in \{1, 2...n\}$
 - Answer(text) $c_i^{(j)}$, where $i \in \{1, 2...n\} \land j \in \{1, 2...m\}$
 - Science exam questions: $\mathcal{D} = \{q_i, (c_i^{(1)}, \dots, c_i^{(m)}), a_i\}_{i=1}^n, a_i \text{ is the label of correct answer.}$
- Generating Hypothesis:
 - If wh-word can be found in the question, replacing the wh-word with the answer.

- If no wh-word can be found, append the correct answer to the question.
- Searching Potential Supports:
 - Query the hypothesis in the corpus(Which is very large)
 - Use ElasticSearch to pick top 20 sentences
- Constructing Knowledge Graphs
 - Use Open IE[1] to generate a knowledge graph.
 - Extract relation triple $T(s, p, o_i)$, s is the subject, p is predicate, and o_i is i-th object. In the graph, it will build edge subj and obj between s and o
- Inference with graph embedding
 - Evaluates $f:G_{hypo}\times G_{supp}\to \mathcal{R}$ on every q,c pair, and pick the best c
 - Use a graph model to evaluate. Iteratively, for every v, calculate an embedding

$$\mu_v^{(t)} = h(\mathbf{x}_v, \mu_v^{(t-1)}, \{(\mu_u^{(t-1)}, e_{u,v})\}_{(u,v,e_{u,v}) \in E})$$
(1)

Where \mathbf{x}_v encodes the text feature.

 $e_{u,v}$ stands for the edge type, that can be time, loc, etc.

 After T iterations, the model returns the maximum cosine similarity result.

$$f(G^{hypo}, G^{supp}) = f(\{\mu_u\}_{u \in V_p^{hypo}}, \{\mu_v\}_{v \in V_p^{supp}})$$

$$= \sigma\Big(\max_{u,v} \frac{\mu_u^\top \mu_v}{\|\mu_u\|\|\mu_v\|} - 0.5\Big), \tag{2}$$

3 Experiment

- Dataset: ARC Challenge Set. which includes 1172 questions.
- Baselines:
 - Guess-all/Random
 - IR-based algorithms: Including IR-ARC which learns on ARC corpus, and IR-Google which is on a larger corpus
 - TableILP: Formulate the reasoning as an ILP
 - Deep learning based algorithms: DecompAttn, DGEM-OpenIE, BiDAF
- Results:

Method	Test Scores
IR-ARC	20.26
IR-Google	21.58
TupleInference	23.83
DecompAttn	24.34
Guess-all / Random	25.02
DGEM-OpenIE	26.41
BiDAF	26.54
TableILP	26.97
$ m KG^2$	31.70

 KG^2 outperforms all baselines, however is still far from human performance.

Authors believe that the inference part is performing well, however, the supporting set is not enough.

References

- [1] Michele Banko, Michael J Cafarella, Stephen Soderland, Matthew Broadhead, and Oren Etzioni. Open information extraction from the web. In *IJCAI*, volume 7, pages 2670–2676, 2007.
- [2] Yuyu Zhang, Hanjun Dai, Kamil Toraman, and Le Song. Kg[^] 2: Learning to reason science exam questions with contextual knowledge graph embeddings. arXiv preprint arXiv:1805.12393, 2018.