Décidabilité de la rationnalité pour les WSTS

Lucas Bueri

Stage M2 - 2021

1 Réseaux de Petri

Un réseau de Petri $N = (P, T, B, F, M_0)$ est la donnée de

- un ensemble fini P de d emplacements,
- un ensemble fini T de transitions,
- une fonction de coût $B: P \times T \to \mathbb{N}$,
- une fonction de production $F: P \times T \to \mathbb{N}$,
- un marquage initial $M_0: P \to \mathbb{N}$.

Les configurations sont les marquages $M: P \to \mathbb{N}$, aussi considérés comme les valeurs possibles de d compteurs (vecteur de \mathbb{N}^d). On peut déclencher la transition t à partir du marquage M si et seulement si $M(p) \geqslant B(p,t)$ pour tout $p \in P$ (noté $M \geqslant B(\cdot,t)$).

On obtient alors un nouveau marquage M' défini par $M' := M + D(\cdot, t)$ où $D \stackrel{def}{=} F - B$. B représente donc le coût de la transition (le nombre de jetons requis et consommés dans chaque emplacement), et F représente sa production (les jetons créés lors du déclenchement).

On notera M(t) lorsque t peut se déclencher sur M, et M(t)M' si déclencher t sur M donne M'. On étendra naturellement cette notation (ainsi que $B(p,\cdot)$ et $F(p,\cdot)$) aux séquences de transitions, ou mots $w \in T^*$.

Deux ensembles nous intéresseront alors : le langage $\mathcal{L}(N) \stackrel{def}{=} \{w \in T^* \mid M_0(w)\}$ du réseau de Petri et les configurations accessibles $\mathcal{R}(N) \stackrel{def}{=} \{M' : P \to \mathbb{N} \mid \exists w \in T^*, M_0(w)M'\}$.

2 VAS

2.1 La structure

Un système d'addition de vecteurs de dimension $d \in \mathbb{N}$ (d-VAS) $S = (A, \mathbf{x}_{init})$ est la donnée d'un vecteur initial $\mathbf{x}_{init} \in \mathbb{N}^d$ et d'un ensemble fini A d'actions. À chaque action $a \in A$ est associé un unique vecteur $\overline{a} \in \mathbb{Z}^d$, de telle manière à ce que deux actions ne soient pas associées au même vecteur de \mathbb{Z}^d .

Les configurations de S sont alors les vecteurs de \mathbb{N}^d (à coordonnées positives), et chaque action $a \in A$ agit sur \mathbb{N}^d en additionnant à la configuration courante le vecteur \overline{a} associé. On a alors une transition entre \mathbf{x} et \mathbf{y} étiquetée par l'action a lorsque $\mathbf{x} + \overline{a} = \mathbf{y}$.

De manière équivalente, on dira que l'action $a \in A$ est franchissable à partir de la configuration $\mathbf{x} \in \mathbb{N}^d$ lorsque $\mathbf{x} + \overline{a} \ge \mathbf{0}$, et son déclenchement aboutit à la configuration $\mathbf{y} := \mathbf{x} + \overline{a}$ à travers la transition $(\mathbf{x}, a, \mathbf{y}) \in \mathbb{N}^d \times A \times \mathbb{N}^d$. On notera $\mathbf{x} \xrightarrow{a}_S \mathbf{y}$ lorsqu'un tel déclenchement est possible (ou simplement $\mathbf{x} \xrightarrow{a} \mathbf{y}$ s'il n'y a pas ambiguité sur S).

Lorsqu'une séquence d'actions $w = a_1 \cdots a_k \in A^*$ permet d'aller de \mathbf{x} à \mathbf{y} par la séquence de transition $\mathbf{x} = \mathbf{x_0} \xrightarrow{a_1} \mathbf{x_1} \xrightarrow{a_2} \dots \xrightarrow{a_k} \mathbf{x_k} = \mathbf{y}$ (où $\mathbf{x_0}, \dots, \mathbf{x_k} \in \mathbb{N}^d$ et $\mathbf{x_{i-1}} + \overline{a_i} = \mathbf{x_i}$ pour tout $1 \leq i \leq k$), on dit que w est franchissable à partir de \mathbf{x} , et qu'on a une exécution $\rho : \mathbf{x} \xrightarrow{w}_S \mathbf{y}$. \mathbf{y} est alors dit accessible à partir de \mathbf{x} .

De plus, en notant $\overline{w} \stackrel{def}{=} \sum_{i=1}^{k} \overline{a_i}$ le vecteur associé à w, on obtient $\mathbf{x} + \overline{w} = \mathbf{y}$. Attention, cette égalité peut-être vérifiée même si w n'est pas franchissable.

Nous allons étudier deux ensembles naturellement associés à un VAS $S = (A, \mathbf{x}_{init})$:

1. $\mathcal{L}(A, \mathbf{x}) \stackrel{def}{=} \left\{ w \in A^* \mid \exists \mathbf{y} \in \mathbb{N}^d, \mathbf{x} \xrightarrow{w}_S \mathbf{y} \right\}$ qui est le *langage* des séquences d'actions franchissables à partir de la configuration \mathbf{x} ,

2. $\mathcal{R}(A, \mathbf{x}) \stackrel{def}{=} \left\{ \mathbf{y} \in \mathbb{N}^d \mid \exists w \in A^*, \mathbf{x} \xrightarrow{w}_S \mathbf{y} \right\}$ qui est l'ensemble des configurations accessibles à partir de \mathbf{x} .

En particulier, on regardera $\mathcal{L}(S) := \mathcal{L}(A, \mathbf{x}_{\text{init}})$ le langage du VAS S, et $\mathcal{R}(S) := \mathcal{R}(A, \mathbf{x}_{\text{init}})$ l'ensemble d'accessibilité de S.

Définition 1. Un VAS S est rationnel si $\mathcal{L}(S)$ est rationnel sur A^* .

Définition 2. Soit $S = (A, \mathbf{x}_{\text{init}})$ un d-VAS et $I \subseteq \{1, \dots, d\}$ un sous-ensemble d'indices.

— S est borné sur I lorsque toute configuration accessible a ses coordonnées de I bornées :

$$\exists k \in \mathbb{N}, \forall \mathbf{y} \in \mathcal{R}(S), \forall i \in I, \mathbf{y}(i) \leqslant k$$

— S est borné inférieurement sur I lorsque toutes les coordonnées de I ne diminue pas plus qu'une certaine borne (même en augmentant les ressources initiales) :

$$\exists k \in \mathbb{N}, \forall n \in \mathbb{N}, \forall \mathbf{y} \in \mathcal{R}(A, \mathbf{x}_{\text{init}} + n \cdot \mathbb{1}_I), \forall i \in I, \mathbf{y}(i) \geqslant \mathbf{x}(i) + n - k$$

2.2 Clover et le graphe de couverture

On aimerait avoir un meilleur aperçu des configurations accessibles, et notamment décrire de manière finie les capacités pour le VAS d'atteindre des configurations non-bornées. Rappelons d'abord la notion d'idéal :

Définition 3. Soit (X, \leq) un ensemble ordonné et $E \subseteq X$ un sous-ensemble de E.

- E est dit dirigé lorsque pour tous $x, y \in E$ il existe un $z \in E$ vérifiant $x \leq z$ et $u \leq z$.
- E est dit $clos\ par\ le\ bas\ lorsqu'il$ est égal à sa clôture par le bas $\downarrow E \stackrel{def}{=} \{x \in X \mid \exists y \in E, x \leqslant y\}.$
- Enfin, E est un $id\acute{e}al$ s'il est dirigé et clos par le bas.

On peut maintenant introduire l'ensemble de couverture $\mathcal{C}(A,x) \stackrel{def}{=} \downarrow \mathcal{R}(A,x)$ d'un VAS. Il est clos par le bas dans $(\mathbb{N}^d, \leqslant)$ bien ordonné, donc se décomposition comme une union finie d'idéaux.

Les idéaux de \mathbb{N}^d peuvent se voir comme des éléments de \mathbb{N}^d_{ω} , obtenu en étendant \mathbb{N} en $\mathbb{N}_{\omega} \stackrel{def}{=} \mathbb{N} \cup \{\omega\}$ de façon naturelle.

Définition 4. Soit $S = (A, \mathbf{x}_{init})$ un d-VAS. On définit $Clover(S) \subseteq \mathbb{N}^d_{\omega}$ comme l'ensemble des idéaux maximaux inclus dans $\mathcal{C}(S)$. C'est aussi l'unique ensemble de taille minimale d'idéaux dont l'union correspond à $\mathcal{C}(S)$.

À revoir.

Le graphe de couverture a pour sommets des configurations de \mathbb{N}^d_{ω} et pour arêtes des transitions du VAS, étiquetés par une action de A. Il est obtenu en partant d'un sommet initial $s_0: \mathbf{x}_{\text{init}}$ étiqueté par la configuration initiale $\mathbf{x}_{\text{init}} \in \mathbb{N}^d$, puis par récurrence sur la profondeur des noeuds en indiquant les voisins des noeuds accessibles :

Pour chaque noeud $s: \mathbf{x}$ associé à la configuration $\mathbf{x} \in \mathbb{N}^d_{\omega}$, on fait partir de s autant d'arêtes que d'actions $a \in A$ qui sont franchissables à partir de \mathbf{x} . Le sommet d'arrivée de l'arête associée à une action a est déterminé ainsi :

- Si $\mathbf{x} \xrightarrow{a} \mathbf{y}$ (déclencher a aboutit à la configuration $\mathbf{y} := \mathbf{x} + \overline{a}$) et qu'il existe un sommet déjà existant $r : \mathbf{y}$ associé à cette configuration, alors on crée une arête étiquetée par a de $s : \mathbf{x}$ vers $r : \mathbf{y}$;
- Si $\mathbf{x} \stackrel{a}{\longrightarrow} \mathbf{y}$ et qu'il existe un ancêtre $r : \mathbf{z}$ de s (c'est-à-dire tel qu'il existe une chemin dans le graphe déjà créé de r à s) avec $\mathbf{y} > \mathbf{z}$, alors on crée un nouveau sommet $s' : \mathbf{y}'$ et une arête de $s : \mathbf{y}$ vers $s' : \mathbf{y}'$ étiquetée par a, où $\mathbf{y}' \in \mathbb{N}^d_{\omega}$ est la configuration de coordonnées $\mathbf{y}'(i) := \mathbf{y}(i)$ pour les $1 \le i \le d$ tels que $\mathbf{y}(i) = \mathbf{z}(i)$, et $\mathbf{y}'(i) := \omega$ si $\mathbf{y}(i) > \mathbf{z}(i)$;
- Si la configuration \mathbf{y} atteinte n'est pas dans les cas précédents, on crée simplement un nouveau sommet $s': \mathbf{y}$ et une arête de s à s' étiquetée par a.

3 Une caractérisation pour la rationnalité

La preuve de décidabilité se divise en deux étapes. Tout d'abord, on va donner une caractérisation mathématique équivalente à la rationnalité. On montrera ainsi qu'un VAS est rationnel si et seulement s'il existe une borne $k \in \mathbb{N}$ telle que si on peut accéder à la configuration \mathbf{x} , puis à \mathbf{y} , alors \mathbf{y} reste au dessus de $\mathbf{x} - \mathbf{k}$ (\mathbf{k} désignera le vecteur $(k, k, ..., k) \in \mathbb{N}^d$).

3.1 La relation d'équivalence de Ginzburg et Yoeli n'est pas d'index fini

Ginzburg et Yoeli introduisent dans [2] une relation d'équivalence \equiv_S^{GY} sur les configurations et énoncent que $\mathcal{L}(S)$ est rationnel si et seulement si \equiv_S^{GY} admet un nombre fini de classes d'équivalence dans $\mathcal{R}(S)$ ([2], Théorème 1).

S'il est vrai que $\mathcal{R}(S)/\equiv_S^{\mathrm{GY}}$ fini implique que $\mathcal{L}(S)$ est rationnel, la réciproque est fausse et nous donnerons un contre-exemple d'un langage $\mathcal{L}(S)$ rationnel tel que $\mathcal{R}(S)/\equiv_S^{\mathrm{GY}}$ est infini. Nous proposerons de reprendre l'idée de Ginzburg et Yoeli, mais en définissant une autre relation d'équivalence pour laquelle on obtiendra cette fois-ci l'équivalence entre la rationnalité du langage et le quotient fini selon cette relation.

Définition 5 ([2] section 3). Soit $S = (A, \mathbf{x}_{init})$ un VAS. La relation \equiv_S^{GY} est définie pour tout $\mathbf{x}, \mathbf{y} \in \mathcal{R}(S)$ par :

$$\mathbf{x} \equiv_S^{GY} \mathbf{y} \text{ ssi } \forall w \in A^*, (\mathbf{x} + \overline{w} \in \mathcal{R}(S) \Leftrightarrow \mathbf{y} + \overline{w} \in \mathcal{R}(S))$$

ça donne quoi si on définit \equiv_S^{GY} sur tout \mathbb{N}^d ? Une classe de plus seulement? Une infinité?

Remarque. \equiv_S^{GY} est une relation d'équivalence sur l'ensemble $\mathcal{R}(S)$ des configurations accessibles.

On aurait envie d'obtenir un résultat similaire à celui de Nérode, à savoir dire que $\mathcal{L}(S)$ est rationnel si et seulement si \equiv_S^{GY} admet un nombre fini de classes d'équivalence. Cela est malheureusement faux, puisque pour $\mathbf{x} \in \mathcal{R}(S)$ et $w \in A^*$, l'écriture $\mathbf{x} + \overline{w} \in \mathcal{R}(S)$ ne permet pas de dire si la séquence w est franchissable à partir de \mathbf{x} . Il pourrait en effet exister une autre séquence $w' \in A^*$ franchissable à partir de \mathbf{x} aboutissant à la configuration $\mathbf{x} + \overline{w'} = \mathbf{x} + \overline{w}$, voire même un moyen d'accéder à la configuration $\mathbf{x} + \overline{w} = \mathbf{x}_{\mathrm{init}} + \overline{u}$ depuis la configuration initiale par une autre séquence d'action $u \in A^*$ sans que $\mathbf{x}_{\mathrm{init}} + \overline{u}$ ne soit accessible depuis \mathbf{x} .

Plus précisément sur la preuve de Ginzburg et Yoeli, avoir $\mathcal{R}(S)/\equiv_S^{\mathrm{GY}}$ fini implique bien $\mathcal{L}(S)$ rationnel, ce qui est prouvé en construisant explicitement l'automate. Par contre, la réciproque est fausse : L'erreur (avant-dernière ligne de la preuve du théorème 1 de [2]) était d'affirmer que savoir $\mathbf{x}_{\mathrm{init}} + \overline{uw} \in \mathcal{R}(S)$ pour $u \in \mathcal{L}(S)$ et $w \in A^*$ permettait d'en déduire que $uw \in \mathcal{L}(S)$.

On donne ci-dessous un contre-exemple pour illustrer ce point. Il est nécessaire de se placer au moins en dimension 3, car le résultat de Ginzburg et Yoeli reste vrai en dimension inférieure.

Ajouter preuve que le résultat reste vrai en dimension inférieure à 2.

Exemple 6. Soit le 3-VAS $S = (A := \{a, b, c\}, \mathbf{x}_{init} := (0, 0, 0))$ dont les actions sont étiquetés par $\overline{a} = (1, 0, 0), \overline{b} = (0, 1, -1)$ et $\overline{c} = (-1, -1, 1)$. Le langage reconnu $\mathcal{L}(S) = a^*$ est rationnel, et les configurations accessibles sont les $\mathbf{x}_n := (n, 0, 0)$ pour $n \in \mathbb{N}$.

Cependant, pour deux entiers m>n>0, bien que $\mathcal{L}(A,\mathbf{x}_m)=\mathcal{L}(A,\mathbf{x}_n)=\mathcal{L}(S)$, on a $\mathbf{x}_m\not\equiv_S^{\mathrm{GY}}\mathbf{x}_n$: Cela se constate en considérant la séquence d'actions $b^{n+1}c^{n+1}$ qui n'est jamais franchissable, mais qui vérifie $\mathbf{x}_m+\overline{b^{n+1}c^{n+1}}=(m-n-1,0,0)\in\mathcal{R}(S)$ alors que $\mathbf{x}_n+\overline{b^{n+1}c^{n+1}}=(-1,0,0)\notin\mathcal{R}(S)$.

La relation \equiv_S^{GY} admet alors une infinité de classes d'équivalences $(\{\mathbf{x}_n\})_{n\in\mathbb{N}}$ sur S.

3.2 Une autre relation d'équivalence qui est d'index fini

Pour corriger ce problème, on va aussi regarder si les actions sont franchissables :

Définition 7. Soit $S = (A, \mathbf{x}_{init})$ un VAS. On introduit la relation \equiv_S sur les configurations en posant pour tout $\mathbf{x}, \mathbf{y} \in \mathbb{N}^d$:

$$\mathbf{x} \equiv_S \mathbf{y} \text{ ssi } \mathcal{L}(A, \mathbf{x}) = \mathcal{L}(A, \mathbf{y})$$

Constatons déjà que cette nouvelle relation est plus grande que celle de Ginzburg et Yoeli (au sens de l'inclusion) :

Proposition 8. Soit $S = (A, \mathbf{x}_{init})$ un VAS et $\mathbf{x}, y \in \mathcal{L}(S)$. Si $\mathbf{x} \equiv_S^{GY} y$ alors $\mathbf{x} \equiv_S y$.

Démonstration. Supposons $\mathbf{x} \equiv_S^{\mathrm{GY}} \mathbf{y}$ et montrons $\mathcal{L}(A, \mathbf{x}) \subseteq \mathcal{L}(A, \mathbf{y})$ par récurrence sur la longueur des mots. Soit $w \in \mathcal{L}(A, \mathbf{x})$.

Si $w = \varepsilon$ est le mot vide, $\mathbf{y} \in \mathcal{L}(S)$ assure que $\varepsilon \in \mathcal{L}(S, \mathbf{y})$.

Sinon, on écrit w = ua avec $u \in A^*$ et $a \in A$. $u \in \mathcal{L}(A, \mathbf{x})$ est plus court que w, donc par hypothèse de récurrence on a également $u \in \mathcal{L}(A, \mathbf{y})$. u est donc franchissable depuis \mathbf{y} . Mais $ua \in \mathcal{L}(A, \mathbf{x})$, ce qui assure que $\mathbf{x} + \overline{ua} \in \mathcal{R}(S)$.

Comme $\mathbf{x} \equiv_S^{\mathrm{GY}} \mathbf{y}$, on obtient que $\mathbf{y} + \overline{u}\overline{a} \in \mathcal{R}(S)$, aboutissant à $\mathbf{y} + \overline{u}\overline{a} \geqslant \mathbf{0}$. L'action a est donc franchissable depuis $\mathbf{y} + \overline{u}$. En résumé, on a les transitions valides $\mathbf{x} \xrightarrow{u}_S \mathbf{x} + \overline{u} \xrightarrow{a}_S \mathbf{x} + \overline{w}$, d'où $w \in \mathcal{L}(A, y)$.

On conclut enfin que $\mathcal{L}(A, \mathbf{x}) = \mathcal{L}(A, \mathbf{y})$ par symétrie.

On va établir le lien avec la relation de Nérode \sim_L associée à un langage $L \subseteq A^*$. Pour tout $u, v \in A^*$, on définit :

$$u \sim_L v \text{ ssi } \forall w \in A^*, uw \in L \Leftrightarrow vw \in L$$

On sait que \sim_L est une relation d'équivalence invariante par composition à droite et qu'un langage $L \subseteq A^*$ est rationnel si et seulement si A^*/\sim_L est fini ([1], Théorème 2).

La congruence de Nérode concerne donc les mots plutôt que les configurations, mais est liée à l'équivalence \equiv_S sur les VAS de la manière suivante :

Lemme 9. Soient $S = (A, \mathbf{x}_{init})$ un VAS et $u, v \in \mathcal{L}(S)$. On a $u \sim_{\mathcal{L}(S)} v$ si et seulement si $\mathbf{x}_{init} + \overline{u} \equiv_S \mathbf{x}_{init} + \overline{v}$.

Démonstration. Si $u \in \mathcal{L}(S)$, alors pour tout mot $w \in A^*$, on a l'équivalence :

$$uw \in \mathcal{L}(S) \Leftrightarrow w \in \mathcal{L}(A, \mathbf{x}_{\text{init}} + \overline{u})$$

On en déduit immédiatement le résultat en reprenant les définitions de chaque relation. \Box

Remarque. La relation de Nérode ne s'intéresse qu'aux mots du langage, et $\{w \in A^* \mid w \notin \mathcal{L}(S)\}$ forme une unique classe d'équivalence pour $\sim_{\mathcal{L}(S)}$. Ainsi, le lemme 9 devient faux dès lors que $u, v \notin \mathcal{L}(S)$, puisque l'on a toujours $u \sim_{\mathcal{L}(S)} v$ dans ce cas sans que $\mathbf{x}_{\text{init}} + \overline{u} \equiv_S \mathbf{x}_{\text{init}} + \overline{v}$ ne soit nécessairement vrai.

Théorème 10. Pour un VAS S, $\mathcal{L}(S)$ est rationnel si et seulement si $\mathcal{R}(S)/\equiv_S$ est fini.

Démonstration. On a les équivalences suivantes :

 $\mathcal{L}(S)$ est rationnel ssi $A^*/\sim_{\mathcal{L}(S)}$ est fini (propriété de la relation de Nérode) ssi $\mathcal{L}(S)/\sim_{\mathcal{L}(S)}$ est fini (car $\sim_{\mathcal{L}(S)}$ admet un seule classe d'équivalence sur $A^*\setminus\mathcal{L}(S)$) ssi $\mathcal{R}(S)/\equiv_S$ est fini (par le lemme 9).

Enfin, on donne une propriété de monotonie pour cette relation, qui appuie son intérêt pour l'étude du système de transition S.

Proposition 11. La relation d'équivalence \equiv_S sur les configurations d'un d-VAS S est compatible/monotone avec les actions : Pour tout $\mathbf{x}, \mathbf{y} \in \mathbb{N}^d$, $\mathbf{x} \equiv_S \mathbf{y}$ implique $\forall a \in A, \mathbf{x} + \overline{a} \equiv_S \mathbf{y} + \overline{a}$.

Remarque. La relation \equiv_S^{GY} de Ginzburg et Yoeli vérifie également cette propriété.

3.3 Borne sur la décroissance

Pour obtenir un nombre fini de classes d'équivalence pour \equiv_S , on cherche une borne à partir de laquelle les configurations accessibles sont indiscernables. Comme la seule règle restreignant les actions franchissables est un test de positivité, on va exiger que les configurations ne puissent pas trop décroître.

Ginzburg et Yoeli proposent une caractérisation au travers des deux lemmes suivants :

Énoncé ([2] Lemme 1). Supposons que dans un VAS $S = (A, \mathbf{x}_{init}), n \leq d$ coordonnées (disons les n premières) soient non-bornées. Supposons aussi qu'il existe n entiers positifs k_1, k_2, \ldots, k_n tels que pour tout $\mathbf{x} \in \mathcal{R}(S)$, tout $w \in A^*$ et tout $i = 1, 2, \ldots, n, (\mathbf{x} + \overline{w}) \in \mathcal{R}(S)$ implique $\mathbf{x}(i) - (\mathbf{x} + \overline{w})(i) \leq k_i$. Alors $\mathcal{R}(S) / \equiv_S^{GY}$ est fini.

Ce résultat est correct, et nous l'adapterons facilement à la relation \equiv_S en modifiant la propriété requise en conséquence. Notons qu'il n'est pas nécessaire de prendre des valeurs différentes pour les k_i , il est tout à fait possible de considérer leur maximum.

Énoncé ([2] Lemme 2). Soit $S=(A,\mathbf{x}_{\mathrm{init}})$ un VAS, et supposons qu'il existe une coordonnée non-bornée j telle que pour tout $k\geqslant 0$, il existe une configuration $\mathbf{x}\in\mathcal{R}(S)$ et un mot $w\in A^*$ tels que $(\mathbf{x}+\overline{w})\in\mathcal{R}(S)$ et $\mathbf{x}(j)-(\mathbf{x}+\overline{w})(j)>k$. Alors l'ensemble $\mathcal{R}(S)/\equiv_S^{\mathrm{GY}}$ est infini.

Cette fois, la preuve donnée comporte une erreur de même nature que précédemment : Il est affirmé que si $\mathbf{x} + \overline{w} \in \mathcal{R}(S)$, alors toutes les étapes intermédiaires sont accessibles, ce qui n'est pas forcément vrai. Le résultat semble cependant vrai (à vérifier), mais n'apporte pas la caractérisation souhaitée.

Donnons maintenant une caractérisation similaire pour la relation \equiv_S . La preuve suit les idées de Ginzburg et Yoeli [2] en effectuant les modifications nécessaires.

Théorème 12. Soit $S = (A, \mathbf{x}_{init})$ un VAS. Alors $\mathcal{L}(S)$ est rationnel si et seulement si

$$\exists k \in \mathbb{N}, \forall \mathbf{x}, \mathbf{y} \in \mathbb{N}^d, \left(\mathbf{x}_{\text{init}} \xrightarrow{*}_S \mathbf{x} \xrightarrow{*}_S \mathbf{y} \implies \mathbf{y} \geqslant \mathbf{x} - \mathbf{k}\right)$$
 (1)

Démonstration. Commençons par montrer le sens ((1) $\Rightarrow \mathcal{L}(S)$ rationnel). Soit S un VAS vérifiant la propriété (1) pour un $k \in \mathbb{N}$.

Soit $\mathbf{x}, \mathbf{y} \in \mathcal{R}(S)$. Supposons que \mathbf{x} et \mathbf{y} sont indiscernables pour les petites valeurs, c'est-à-dire que pour toute coordonnée $i \in \{1, \ldots, d\}$, on a soit $\mathbf{x}(i) = \mathbf{y}(i)$, soit $(\mathbf{x}(i) \ge k \text{ et } \mathbf{y}(i) \ge k)$. Alors $\mathbf{x} \equiv_S \mathbf{y}$. En effet, on a $\mathbf{x} + \overline{w} \geqslant \mathbf{0} \Leftrightarrow \mathbf{y} + \overline{w} \geqslant \mathbf{0}$ pour tout $w \in A^*$, puisque les coordonnées qui diffèrent entre \mathbf{x} et \mathbf{y} ne peuvent devenir négatives.

Ainsi, \equiv_S admet au plus $(k+1)^d$ classes d'équivalences, donc $\mathcal{L}(S)$ est rationnel (théorème 10).

Prouvons maintenant la réciproque $(\mathcal{L}(S) \text{ rationnel} \Rightarrow (1))$ par contraposée. Si S ne vérifie pas la propriété (1), alors pour tout $k \in \mathbb{N}$, il existe une configuration accessible \mathbf{x} , un mot $w \in \mathcal{L}(A, \mathbf{x})$ et une coordonnée $j \in \{1, \ldots, d\}$ tels que $(\mathbf{x} + \overline{w})(j) \leq \mathbf{x}(j) - k$.

On note $\mathbf{x}_{\mathbf{p}} := \mathbf{x} + \overline{a_1 \cdots a_p} \in \mathcal{R}(S)$ les différentes configurations obtenues en lisant $w = a_1 \cdots a_n$. On a alors $\mathbf{x} = \mathbf{x}_0 \xrightarrow{a_1} \mathbf{x}_1 \xrightarrow{a_2} \dots \xrightarrow{a_n} \mathbf{x}_n = \mathbf{x} + \overline{w}$.

Notons $\xi = \max\{-\overline{a}(j) \mid a \in A\} > 0$ la valeur de la plus grande diminution en coordonnée j possible par une action. Alors, au moins k/ξ configurations \mathbf{x}_p voient leur coordonnée j décroître, et l'on a une sous-séquence d'extractrice φ vérifiant $\mathbf{x}_{\varphi(0)}(j) > \mathbf{x}_{\varphi(1)}(j) > \cdots > \mathbf{x}_{\varphi(h)}(j)$ où $h \geqslant k/\xi$.

Ces configurations ne sont pas équivalentes pour \equiv_S : En effet, si l'on avait $\mathbf{x}_{\varphi(p)} \equiv_S \mathbf{x}_{\varphi(q)} =$ $(\mathbf{x}_{\varphi(p)} + \overline{u})$ avec $0 \leqslant p \leqslant q \leqslant h$ et en notant $u = a_{\varphi(p)+1} \cdots a_{\varphi(q)}$, alors on aurait $(\mathbf{x}_{\varphi(p)} + \overline{u^r}) \equiv_S$ $(\mathbf{x}_{\varphi(p)} + \overline{u^{r+1}})$ pour tout $r \in \mathbb{N}$ (en procédant par récurrence sur r avec la proposition 11).

Or $\overline{u^r}(j) = r \times \overline{u}(j) = r \times (\mathbf{x}_{\varphi(q)}(j) - \mathbf{x}_{\underline{\varphi(p)}}(j)) < -r$, ce qui prouve que $(\mathbf{x}_{\varphi(p)} + \overline{u^r})(j) < 0$ à partir d'un certain $r \in \mathbb{N}$, et donc $(\mathbf{x}_{\varphi(p)} + \overline{u^r}) \not\equiv_S \mathbf{x}_{\varphi(p)}$, d'où une contradiction.

On conclut qu'il existe au moins k/ξ classes d'équivalences pour \equiv_S (et ce pour tout $k \in \mathbb{N}$), ainsi $\mathcal{R}(S)/\equiv_S$ est infini.

Décider la caractérisation 4

La procédure de décision nécessite de connaître deux choses :

- 1. D'abord, on veut pouvoir accéder à la liste des idéaux maximaux Clover(S) du VAS étudié,
- 2. Ensuite, il nous faut une procédure pour décider si un VAS donné est bornées.

Lemme 13 ([2] lemme 3). Soit $S = (A, \mathbf{x}_{init})$ un VAS et $k \in \mathbb{N}$. Supposons qu'il existe une configuration $\mathbf{x} \in \mathcal{R}(S)$ et un mot $v \in \mathcal{L}(A, \mathbf{x})$ franchissable tel que $\overline{v}(i) < -k$ pour un certain i. Alors on peut trouver une autre configuration y et un autre mot $w \in \mathcal{L}(A, \mathbf{y})$ tel que $\overline{w}(i) < -k$ et $\overline{u}(i) \leq 0$ pour tout préfixe u de w.

Démonstration. Notons z le plus long préfixe de v tel que $\overline{z}(i) \geq 0$. On a alors v = zw, et le mot w ainsi obtenu est franchissable à partir de $\mathbf{y} := \mathbf{x} + \overline{z}$, et vérifie $\overline{w}(i) = \overline{v}(i) - \overline{z}(i) \leqslant \overline{v}(i) \leqslant k$. De plus, pour tout préfixe u de w, on a $\overline{u}(i) = \overline{zu}(i) - \overline{z}(i) \le \overline{zu}(i) < 0$ puisque zu est un préfixe de vplus long que z.

Définition 14. Soit $S = (A, \mathbf{x}_{init})$ un d-VAS. Pour tout idéal maximal $\mathfrak{m} \in Clover(S)$ de l'ensemble de couverture, notons $J_{\mathfrak{m}}:=\{j\mid \mathfrak{m}(j)\neq\omega\}$ l'ensemble des coordonnées bornées pour les configurations de \mathfrak{m} . On écrit $J_{\mathfrak{m}} = \{j_1, \dots, j_r\}$. Pour tout $i \notin J_{\mathfrak{m}}$, on définit un (r+1)-VAS $S(\mathfrak{m}, i) = (A(\mathfrak{m}, i), \mathbf{x}_{\mathfrak{m}})$ en posant

- $-A(\mathfrak{m},i) := \{a(\mathfrak{m},i) \mid a \in A\}$ les actions étiquetées par $\overline{a(\mathfrak{m},i)} := (\overline{a}(j_1),\ldots,\overline{a}(j_r),-\overline{a}(i)),$
- $-\mathbf{x}_{\mathfrak{m}} := (\mathfrak{m}(j_1), \dots, \mathfrak{m}(j_r), 0) \in \mathbb{N}^{r+1}$ la configuration initiale.

On regarde ainsi le comportement de chaque coordonnée non-bornée indépendamment des autres.

On étend la correspondance entre les actions de S et celles de $S(\mathfrak{m},i)$ aux mots : pour $w=a_1\cdots a_n\in A^*$, on pose $w(\mathfrak{m},i):=a_1(\mathfrak{m},i)\cdots a_n(\mathfrak{m},i)\in A(\mathfrak{m},i)^*$.

Le théorème suivant est alors obtenu :

Théorème 15 ([2] théorème 2). Soit $S = (A, \mathbf{x}_{init})$ un d-VAS. Alors S est rationnel si et seulement si tous les VAS $S(\mathfrak{m}, i)$ sont bornés pour tout idéal maximal $\mathfrak{m} \in Clover(S)$ et tout $i \notin J_{\mathfrak{m}}$.

Démonstration. Supposons que l'un des $S(\mathfrak{m},i)$ ne soit pas borné, et posons $r:=|J_{\mathfrak{m}}|$. La coordonnée r+1 (associée à $\mathfrak{m}(i)$) est la seule <u>à pouv</u>oir être non-bornée. Pour tout $k \in \mathbb{N}$, il existe donc un mot $w(\mathfrak{m},i) \in \mathcal{L}(S(\mathfrak{m},i))$ vérifiant $\overline{w(\mathfrak{m},i)}(r+1) > k$.

Alors on peut trouver une configuration $\mathbf{x} \in \mathcal{R}(S)$ de \mathfrak{m} telle que $w \in \mathcal{L}(A, \mathbf{x})$. En effet, w a le même effet sur les coordonnées $j_p \in J_{\mathfrak{m}}$ que $w(\mathfrak{m}, i)$ sur $p \leq r$, puisque pour tout $x \in \mathcal{R}(S)$ et tout préfixe u de w, on a $(\mathbf{x} + \overline{u})(j_p) = \mathfrak{m}(j_p) + \overline{u}(j_p) = \mathbf{x}_{\mathfrak{m}}(p) + \overline{u}(\mathfrak{m}, i))(p) \geqslant 0$. Les autres coordonnées (non-bornées dans \mathfrak{m}) peuvent ensuite être choisies aussi grandes que nécessaire pour franchir w.

Comme $\overline{w}(i) = -\overline{w(\mathfrak{m},i)}(r+1) < -k$, on sait que S ne vérifie pas (1) pour ce k, ce qui assure que $\mathcal{L}(S)$ n'est pas rationnel (par le théorème 12).

On suppose maintenant qu'il existe $k \in \mathbb{N}$ majorant les coordonnées de toutes les configurations accessibles de tous les $S(\mathfrak{m}, i)$. Par l'absurde, supposons que la propriété (1) n'est pas vérifiée pour ce k. Par le lemme 13, il existe une coordonnée $i \leq d$, une configuration \mathbf{y} et un mot $w \in \mathcal{L}(A, \mathbf{y})$ tel que $\overline{w}(i) < -k$ et $\overline{u}(i) \leq 0$ pour tout préfixe u de w.

Soit $\mathfrak{m} \in Clover(S)$ un élément maximal contenant \mathbf{y} . Alors il existe une configuration $\mathbf{z} \in \mathfrak{m}$ vérifiant $\mathbf{y} \leq \mathbf{z}$. Dans le VAS $S(\mathfrak{m}, i)$, le mot $w(\mathfrak{m}, i)$ appartient au langage $\mathcal{L}(S(\mathfrak{m}, i))$ puisque pour tout préfixe $u(\mathfrak{m}, i)$ de $w(\mathfrak{m}, i)$, on a

- $-(\mathbf{x}_{\mathfrak{m}} + \overline{u(\mathfrak{m},i)})(p) = (\mathbf{z} + \overline{u})(j_p) \geqslant (\mathbf{y} + \overline{u})(j_p) \geqslant 0$ pour tout p car u est franchissable sur \mathbf{y} ,
- $-(\mathbf{x}_{\mathfrak{m}} + \overline{u(\mathfrak{m},i)})(r+1) = -\overline{u}(i) \geqslant 0 \text{ où } r := |J_{\mathfrak{m}}|.$

Néanmoins, la configuration accessible $(\mathbf{x}_{\mathfrak{m}} + \overline{w(\mathfrak{m},i)}) \in \mathcal{R}(S(\mathfrak{m},i))$ contredit l'hypothèse de borne puisque $\overline{w(\mathfrak{m},i)}(r+1) = -\overline{w}(i) > k$.

5 Rationalité structurelle

Définition 16. On dit qu'un d-VAS $S = (A, \mathbf{x}_{init})$ est structurellement rationnel lorsque le VAS (A, \mathbf{x}) est rationnel pour toute configuration initiale $\mathbf{x} \in \mathbb{N}^d$.

Pour $\mathbf{x}, \mathbf{y} \in \mathbb{Z}^d$ (pas forcément positifs), on note $\mathbf{x} \xrightarrow{u}_A \mathbf{y}$ pour $u \in A^*$ lorsque $\mathbf{y} = \mathbf{x} + \overline{u}$. A désigne deux choses différentes, il y a d'autres lettres comme Σ classique pour un alphabet On ne s'intéresse alors pas à la notion de franchissement. On écrira $\mathbf{x} \xrightarrow{*}_A \mathbf{y}$ lorsqu'il existe un tel u.

Valk et Vidal-Naquet proposent une caractérisation pour cette nouvelle propriété :

Théorème 17 ([3] théorème 6). Un d-VAS $S = (A, \mathbf{x}_{init})$ est structurellement rationnel si et seulement s'il existe $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4 \in \mathbb{Z}^d$ tels que

- 1. $\mathbf{x}_1 \leqslant \mathbf{x}_2 \text{ mais } \mathbf{x}_1 \neq \mathbf{x}_2,$
- 2. $\mathbf{x}_1(i) = \mathbf{x}_2(i)$ implique $\mathbf{x}_3(i) \leq \mathbf{x}_4(i)$ pour tout $i \leq d$,
- 3. $\mathbf{x}_3(i) > \mathbf{x}_4(i)$ pour un certain $i \leq d$.
- 4. $\mathbf{0} \xrightarrow{*}_{A} \mathbf{x}_{1} \xrightarrow{*}_{A} \mathbf{x}_{2} \xrightarrow{*}_{A} \mathbf{x}_{3} \xrightarrow{*}_{A} \mathbf{x}_{4}$

Démonstration. Si (A, \mathbf{x}) n'est pas rationnel pour une configuration initiale $\mathbf{x} \in \mathbb{N}^d$,

Donnons maintenant une définition équivalente avec les mots.

Théorème 18. $S=(A,\mathbf{x}_{\mathrm{init}})$ est structurellement rationnel si et seulement s'il existe $u,v\in A^*$ tels que

- 1. $\overline{u} > \mathbf{0} \ \overline{u} \ge \mathbf{0} \text{ mais } \overline{u} \ne \mathbf{0}$,
- 2. pour tout $i \in [1..d]$, on a $\overline{u}(i) = 0 \implies \overline{v}(i) \ge 0$
- 3. il existe $i \in [1..d]$ tel que $\overline{v}(i) < 0$

On a alors $\mathbf{0} = \mathbf{x}_1 \xrightarrow{u}_A \mathbf{x}_2 = \mathbf{x}_3 \xrightarrow{v}_A \mathbf{x}_4$

6 Commentaires

Vérifier qu'on peut énoncer Vidal-Naquet sur le graphe de couverture minimal défini par le graphe de Karp-Miller dans lequel on a gardé que les marquages maximaux.

Vérifier que ce nouveau graphe peut être obtenu à partir de Clover en ajoutant les transitions possibles (prolongées par continuité sur \mathbb{N}^d). Vérifier qu'il ne manque pas de transitions utiles.

Réécrire le thm 6 de Valk et Vidal-Naquet. Rationnalité structurelle serait décidable (arithmétique de Presburger donne 3-exptime), peut-être NP?

Simplifier le thm 12 pour avoir un calcul facile dans les cas faciles (borné).

Voir Garey, Johnson : référence pour les problèmes de complexité sur les vecteurs

Regarder taille de l'automate (minimal?) construit par GY et VVN. Est-ce Ackermann?

Sortir la config initiale \mathbf{x}_{init} du VAS (plus facile pour gérer les VAS structurellement)

Références

- [1] M. O. Rabin and D. Scott. Finite Automata and Their Decision Problems. *IBM Journal of Research and Development*, vol. 3, pages 114-125, 1959.
- [2] A. Ginzburg and M. Yoeli. Vector Addition Systems and Regular Languages. *Journal of Computer and System Science* 20, pages 277-284, 1980.
- [3] R. Valk and G. Vidal-Naquet. Petri Nets and Regular Languages. *Journal of Computer and System Science* 23, pages 299-325, 1981.