Functional Programming with Abstract Algebra,

timetraveler314 University of Genshin timetraveler314@outlook.com

1.

1.1. Basic Structures

Definition 1.1.1 (Left) Semigroup Action

Let $\langle M, \oplus \rangle$ be a semigroup and S be a set. A (left) semigroup action of M on S is a function \cdot : $M \times S \to S$ such that for all $m, n \in M$ and $s \in S$,

$$(m \oplus n) \cdot s = m \cdot (n \cdot s)$$

Example 1.1.1

Consider the semigroup $\langle \mathbb{R}, + \rangle$ and the vector set \mathbb{R}^2 . The function $\mathfrak{G}: \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$ defined by a counter-clockwise rotation of s by angle m is a semigroup action.

$$(\alpha+\beta)\circlearrowleft s=\alpha\circlearrowleft(\beta\circlearrowleft s)$$

Extending actions to monoids is straightforward by adding the requirement that

$$\varepsilon \cdot s = s$$
.

1.2. Monoid Constructions

How to construct a monoid out of a given monoid, a type and the arrow constructor?

Definition 1.2.1 Pointwise Monoid

Let M be a monoid and S be a set. The pointwise monoid of M and S is the set of all functions $S \to M$ with the operation of pointwise multiplication.

$$(f \oplus g)(s) = f(s) \oplus g(s),$$

$$\varepsilon(s) = \varepsilon$$

How to upgrade a semigroup to a monoid?

Example 1.2.1 Free Monoid from Semigroup

Use Maybe. Maybe M is a monoid with Nothing as the identity element and Just m as the non-identity element.

1.2.1.1. Cayley Representation

```
rep :: [a] -> ([a] -> [a])
rep xs = (xs ++)
```

```
abs :: ([a] -> [a]) -> [a] abs f = f [] \langle [A], ++, [] \rangle \leftrightarrow \langle [A] \to [A], \circ, \mathrm{id} \rangle
```

The idea works for any monoid.

Definition 1.2.1.1.1 Cayley Representation

Let M be a monoid. The Cayley representation of M is the set of all functions $M \to M$ with the operation of function composition.

$$(f \circ g)(m) = f(g(m)),$$

$$\mathrm{id}(m) = m$$

Definition 1.2.1.1.2 Free Monoid

Let S be a set. The free monoid generated by S is the set of all finite sequences of elements of S with the operation of concatenation.

2. Day 2 : Automatic Differentiation

2.1. Structures

2.1.1. Semiring Module ("Scalar Product")

```
class (Semiring d, Monoid e)
    => Module d e | e -> d where
    (.*.) :: d -> e -> e
```

3. Day 3: PLP/Graded Monoids