SET - 1 R20 Code No: R2031041

III B. Tech I Semester Regular/Supplementary Examinations, December -2023 ANALOG ICS AND APPLICATIONS

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

		Answer any FIVE Questions ONE Question from Each unit	
		All Questions Carry Equal Marks	

1	-)	<u>UNIT-I</u>	[7] (1)
1.	a)	Derive the AC performance close loop Characteristics of Op-amp to discuss on	[7M]
	b)	the circuit Bandwidth,and slew rate. Draw and explain the equivalent circuit of an operational amplifier.	[7M]
	U)	(OR)	[/141]
2.	a)	Explain all the DC characteristics of an ideal op-amp with relevant expressions.	[7M]
	b)	Describe the features of 79xx IC series dual power supply.	[7M]
		UNIT-II	
3.	a)	With a neat sketch explain about voltage to current converter using op-amp.	[7M]
	b)	Explain the function of op-amp as differentiator and draw the waveforms.	[7M]
		(OR)	
4.	a)	Explain the operation of op-amp current to voltage converter circuit.	[7M]
	b)	Explain the application of op-amp as integrator and differentiator.	[7M]
		<u>ÛNIT-III</u>	
5.	a)	If a band pass filter has a lower cut-off frequency f _L =250Hz and a higher cut-	[7M]
	L)	off frequency $f_H = 2500$ Hz, then find its bandwidth and the resonant frequency.	[7] (1)
	b)	Design a wide-band reject filter having f_h =400 Hz, f_l =2 kHz and pass band gain of 2.	[7M]
		(OR)	
6.	a)	Design a wide band reject filter having $f_H=200$ Hz and $f_L=1$ kHz.	[7M]
	b)	Design a high pass filter at a cut-off frequency of 1 kHz with a passband gain	[7M]
		of 2.	
		<u>UNIT-IV</u>	
7.	a)	What is 555 timer? Explain the working of 555 timer as Monostable	[7M]
	1 \	Multivibrator.	[7] (1)
	b)	Draw the circuit of a PLL AM detector and explain its operation. (OR)	[7M]
8.	a)	Briefly explain the use of PLL for the process of FSK demodulation.	[7M]
٥.	ĺ		
	b)	Draw and explain the functional diagram of 555 timer. UNIT-V	[7M]
9.	a)	With a neat circuit diagram, explain the operation of inverted R-2R digital-to-	[7M]
		analog converter.	
	b)	Explain the operation of dual slope analog-to-digital converter. (OR)	[7M]
10.	a)	Explain the following characteristics of analog-to-digital converter: Resolution,	[7M]
			_

1 of 1

Explain the working principle of Successive approximation type analog-to-

[7M]

Accuracy, Settling time, Linearity.

digital converter.

R20

SET - 2 Code No: R2031041

III B. Tech I Semester Regular/Supplementary Examinations, December -2023 ANALOG ICS AND APPLICATIONS

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

Answer any FIVE Questions ONE Question from Each unit

		Answer any FIVE Questions ONE Question from Each unit	
		All Questions Carry Equal Marks	

		<u>UNIT-I</u>	
1.	a)	List the six characteristics of an ideal op-amp and explain in detail.	[7M]
	b)	Explain in detail the AC characteristics of an ideal op-amp with relevant	[7M]
		expressions.	
		(OR)	
2.	a)	Use appropriate block diagram, explain the general stages of an	[7M]
		op-amp IC.	
	b)	What is a switching regulator? With a neat block diagram, explain the internal	[7M]
		diagram of IC 78XX.	
		<u>UNIT-II</u>	
3.	a)	With a neat circuit diagram, explain the working of Schmitt trigger using op-	[7M]
		amp.	
	b)	Draw the circuit of op-amp Monostable multivibrator and obtain expression for	[7M]
		pulse width.	
		(OR)	
4.	a)	Explain the operating principle of an instrumentation amplifier with a suitable	[7M]
		circuit diagram and derive its gain.	
	b)	What is a comparator? Explain the characteristics of a comparator with a neat	[7M]
		diagram.	
		<u>UNIT-III</u>	
5.	a)	Design a low pass filter with a cut off frequency of 1 kHz and with a pass band	[7M]
		gain of 2.	
	b)	Design a notch filter so that f_0 =8 kHz, Q=10. Choose C=500pF.	[7M]
		(OR)	
6.	a)	Design a second order Butterworth LPF having upper cut-off frequency of 1	[7M]
		kHz.	
	b)	The following specifications are given for a certain wide-band pass filter:	[7M]
		f _L =400 Hz, f _H =1kHz, and passband gain=1. Calculate the value of Q for the	
		filter.	
		<u>UNIT-IV</u>	
7.	a)	Draw the circuit of a Schmitt trigger using 555 timer and explain its operation.	[7M]
	b)	Explain the application of PLL as a frequency multiplier with a neat sketch.	[7M]
		(OR)	
8.	a)	With the help of a neat internal function diagram explain the working of IC 555	[7M]

[7M]

b) Determine how the IC 565 PLL can be used as a frequency multiplier/divider.

as a astable multivibrator.

UNIT-V

- 9. a) With a neat circuit diagram, explain the operation of weighted resistor digital-to-analog converter. [7M]
 - b) What is the use of an analog-to-digital converter? Explain the Dual slope type [7M] of analog-to-digital converter.

(OR)

[7M]

- 10. a) Explain the operation of a parallel comparator type analog-to-digital converter [7M] with a neat diagram.
 - b) Describe the terms settling time and conversion time related to digital-to-analog converters. Determine how many resistors are required in a 12-bit weighted resistor digital-to-analog converter.

2 of 2

Code No: R2031041 (R20) (SET - 3)

III B. Tech I Semester Regular/Supplementary Examinations, December -2023 ANALOG ICS AND APPLICATIONS

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

Answer any FIVE Questions ONE Question from Each unit

		All Questions Carry Equal Marks	

1	,	<u>UNIT-I</u>	[73] (3)
1.	a)	Explain in detail, the DC characteristics of op-amp with the help of neat diagrams.	[7M]
	b)	Describe the principle of a three-terminal 78xx series voltage regulator.	[7M]
		(OR)	
2.	a)	Determine the output voltage of the differential amplifier having input voltages	[7M]
		V_1 =1 mV and V_2 =2 mV, the amplifier has a differential gain of 5000 and CMRR of 1000.	
	b)	Explain the functions of all the basic building blocks of an op-Amp.	[7M]
		<u>UNIT-II</u>	
3.	a)	Draw the block diagram of four quadrant multiplier and explain its operation	[7M]
	1.	in detail.	[773 4 7
	b)	Sketch the op-amp Integrator circuit and explain the working principle in detail.	[7M]
		(OR)	
4.	a)	Draw and explain the operation of op-amp triangular wave generator.	[7M]
	b)	With a suitable circuit diagram, explain the operating principle of	[7M]
	·	aninstrumentation amplifier and derive its gain.	
		<u>UNIT-III</u>	
5.	a)	Discuss the second order high pass filter with its frequency response and	[7M]
	1- \	design the circuit with the cut-off frequency of 5 kHz.	[73] ([]
	b)	Draw the circuit of a second order Butterworth low pass filter and explain its operation.	[7M]
		(OR)	
6.	a)	Design a wide-band pass filter having f_1 =400 Hz, f_h =2 kHz and pass band gain	[7M]
	,	of 4, find the value of Q of the filter.	
	b)	A low pass Butterworth filter is to be designed to have a 3-dB bandwidth of	[7M]
		200 Hz and an attenuation of 50 dB at 400 Hz. Find the order of the filter.	
7	- \	<u>UNIT-IV</u>	[73] ([]
7.	a)	In the astable multivibrator using 555 timer, R_A =2.2 K Ω , R_B =6.8 K Ω and C=0.01 μ F. Calculate t_{HIGH} , t_{LOW} , free running frequency and Duty cycle.	[7M]
	b)	Explain the use of PLL for FM detection with a neat diagram.	[7M]
	0)	(OR)	[/1/1]
8.	a)	Draw the circuit diagram of a 555 timer connected for a stable multivibrator and	[7M]
		explain its operation.	
	b)	Draw the block diagram of IC 566 VCO and explain its operation.	[7M]

UNIT-V

9.	a)	Draw the circuit diagram of 5-bit inverted R-2R ladder DAC. How many levels	[7M]
		are possible in this DAC. What is its resolution if the output range is 0-10V.	
	b)	Explain the operation of counter type analog-to-digital converter with a neat	[7M]

Explain the operation of counter type analog-to-digital converter with a neat diagram.

(OR)

10. Illustrate the working principle of dual slope type analog-to-digital converter. [7M] Write its advantages and limitations.

Explain the operation of R-2R Ladder type digital-to-analog converter. b)

[7M]

SET - 4 R20 Code No: R2031041

III B. Tech I Semester Regular/Supplementary Examinations, December -2023 ANALOG ICS AND APPLICATIONS

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 70

Answer any FIVE Questions ONE Question from Each unit

		Answer any FIVE Questions ONE Question from Each unit	
		All Questions Carry Equal Marks *****	
		UNIT-I	
1.	a)	Draw the block diagram of a typical op-amp and explain each block in detail.	[7M]
1.	b)	Define slew rate, CMRR and PSRR with respect to an op-amp and describe	[7M]
	0)	their significance.	[/1/1]
		(OR)	
2.	a)	What is slew rate? What is the slew rate if the output voltage of a certain op-	[7M]
		amp circuit changes by 24 V in 4 microseconds.	[,]
	b)	Explain the features and principle of current booster with a neat diagram.	[7M]
		UNIT-II	
3.	a)	With a neat circuit diagram, explain the working of Sample and Hold circuit	[7M]
	·	using op-amp.	
	b)	Draw the circuit of antilog amplifier using op-amp and explain its operation.	[7M]
		(OR)	
4.	a)	Explain the operation of an op-amp square wave generator with a neat diagram.	[7M]
	b)	Draw the circuit of log amplifier using op-amp and explain its operation.	[7M]
		<u>UNIT-III</u>	
5.	a)	Design a band pass filter so that $f_0=2$ kHz, $Q=20$ and $A_0=10$. Choose C=1 μ F.	[7M]
	b)	Design a second order Butterworth HPF with cut-off frequency of 4 kHz and	[7M]
		draw the designed circuit.	
		(OR)	
6.	a)	Design a second order Butterworth low-pass filter having upper cut-off	[7M]
		frequency of 2.1961 kHz.	
	b)	Explain in detail, the first order low pass Butterworth filter with a neat circuit	[7M]
		diagram.	
7.	a)	<u>UNIT-IV</u> Draw and explain the functional diagram of 555 timer.	[7M]
7.	a) b)	List one application of PLL and then describe the role of PLL in that	[7M]
	U)	application.	[/1 V1]
		(OR)	
8.	a)	Draw the circuit diagram of a 555 timer connected for monostable	[7M]
	,	multivibrator and explain its operation.	[,-:-]
	b)	Describe the basic building blocks of a PLL. Define capture range and lock-in	[7M]
	•	range of a PLL.	_

Code No: R2031041 (R20) (SET - 4)

UNIT-V

9.	a)	Define Monotonocity with respect to data converters and explain the important	[7M]
		digital-to-analog converter specifications.	
	b)	Explain a R-2R ladder type digital-to-analog converter.	[7M]
		(OR)	
10.	a)	Explain the working principle of successive approximation type analog-to-	[7M]
		digital converter with a neat diagram.	
	b)	With a neat circuit diagram, explain the operation of weighted resistor digital-	[7M]
		to-analog converter.	

