

型号: LX-12864B5-1

液晶显示模块使用手册

型号: LX12864B5-1

版本: 2.0

地址:	深圳市宝安区西乡三围航空路 30 号 B 栋 4 楼
电话:	+86(755)29582963
传真:	+86(755)22144273
技术:	18948703963
Email:	lcd@lcdlcd.cn
网站:	www.lcdlcd.cn

版本变更历史记录

版本	修订日期	修改内容	修订人
1. 0	2013-11-3	初版发行	Huang
2. 0	2022-5-24	修正规格书内容	he

型号: LX-12864B5-1

一、LCD 基本参数

1.产品简介:

我司所生产 LX-12864B5-1 型液晶模块由于小巧轻便、使用方便、显示清晰,广泛应用于各种人机交流面板。 此款可以显示 128 列*64 行

点阵单色图片,或显示 8 个/行*4 行 16*16 点阵的汉字,或显示 16 个/行*8 行 8*8 点阵的英文、数字、符号。输入指令强,可组合成各种输入、显示、位移方式以满足不同的要求可广泛应用于各种仪器仪表、PM2.5 检测仪, POS 刷卡机,考勤系统、门禁系统等。

2.模块的特性:

- 2.1. 产品薄、轻、结构牢、FPC、插接工艺。
- 2.2. COG 工艺, IC 采用 ST7567, 功能强大, 稳定性好。
- 2.3.显示内容:
- ●128*64 点阵单色图片;
- ●可选用 16*16 点阵或其他点阵的图片来自编汉字,按照 16*16 点阵汉字来计算可显示 8 字/行*4 行。
- 2.4. 指令功能强: 可组合成各种输入、显示、移位方式以满足不同的要求;
- 2.5.接口简单方便:串行接口。

3. 显示屏基本参数:

项目	规格描述	单位
显示模式	STN/黄绿底黑字/正显	
LCD 偏压比	1/64duty, 1/9bias	
逻辑电源(VDD)	3.3	V
视角	6	o'clock
外形尺寸	56.7×37.5×31.7	mm
可显区域	53.8×28.8	mm
显示区域	48.61×24.93	mm
驱动点阵数	128 × 64	dots
工作温度	- 10 ∼ +60	°C
储存温度	-20 ~ +70	$^{\circ}$

4. 显示屏尺寸图:

型号: LX-12864B5-1

注:上图为反面图,左边为第一脚 CS

显示屏接口定义:

5.1			
序号	名称		功能
1	CS	H/L	片选输入引脚, 低电平使能
2	RES	H/L	低电平复位,复位完成后,回到高电平,液晶模块开始工作 (注:复位脚需预留对地电容位,(电容参考值:10pF~100pF)16V)
3	A0	H/L	指令和数据选择端口 A0=H: 为显示数据 A0=L: 为控制指令
4	NC		NC
5	D6 (SCL)		串行时钟输入
6	D7 (SDA)		串行数据输入
7	VDD		电源3.3V

型号: LX-12864B5-1

8	VSS	 接地 <mark>0V</mark>
9	VO	 · 倍压电路,两线之间接一个(0.1uF~1uF)16V电容.
10	XVO	 而压电避,网线之间按一个(U.lur~lur)10V电台.
11	NC	NC
12	NC	NC
13	VG	LCD倍压输出,与VSS之间接一个(0.1uF~1uF)16V电容
14	NC	NC

5.2 外围连接图:

二、芯片参数

6.技术参数

6.1 极限参数

型号: LX-12864B5-1

除非另有规定, T_{amb}=25℃, VSS=0V

参数名称	符号	额 定 值	单 位
数字电源电压	VDD	-0.3 ∼ +3.6	V
模拟电源电压	VDD2	-0.3 ∼ +3.6	V
LCD 电源电压	VOUT, V0	-0.3 ∼ +13.5	V
LCD 偏置电压	V1, V2, V3, V4	-0.3 ~ V0	V
逻辑输入电压	VIN	$-0.3 \sim V_{DD} + 0.3$	V
工作环境温度	T _{amb}	- 10∼+60	$^{\circ}$
贮存温度	T _{stg}	-20∼+70	$^{\circ}$

注: 1、V0, VDD2, VG, VM, VSS 和 XV0的匹配关系: V0≥VDD2>VG>VM>VSS≥XV0

6.2 直流参数 1

除非另有规定, T_a=-30°C~+80°C,VSS_c=0V

		, , ,		£	见 范 值		对应		
	参数名称	符号	测证	测 试 条 件				单位	
L					最小	典型	最大		端口
	工作电压(1)	VDD			1.7	-	3.3	V	VDD1
		1					p-		
	工作电压(2)	VDD			2.4	-	3.3	V	VDD2
		2							
Ī	工作电压(3)	VDD		2	2.4	-	3.3	V	VDD3
		3		4					
Ī	输入高电平电压	V _{IHC}	W 20 200	1	0.7VDD	_	VDD1	V	MPU 接
		V IIIC	- 400		1				
ł	松)从中亚中区	***	A	100000	VSS1		0.21/DD	V	NADIT +
	输入低电平电压	$V_{\rm ILC}$			V 551	-	0.3VDD	V	MPU 接
-							1		Ц
	输出高电平电压	$V_{ m OHC}$	I _{OUT} =1m.	A,VDD1=1.8V	0.8VDD	-	VDD1	V	D[7: 0]
					1				
	输出低电平电压	V_{OLC}	IOUT=-1m.	A,VDD1=1.8V	VSS1	-	0.2VDD	V	D[7: 0]
		020	00.				1		
Ī	输入漏电流	I_{LI}			-1.0	-	1.0	μА	MPU 接
	11147 40114 (21716	TLI						'	
+	松山田土屋	1			2.0		2.0	4	, ,
	输出漏电流	I_{LO}			-3.0	-	3.0	μA	MPU 接
				VOP=8.5V,	_	0.6	0.8	ΚΩ	COMX
	液晶驱动导通电阻	R _{ON}	T _a =25°C	Δ V=0.85V		0.0	0.0	1332	
	似明心幼子四电阻	Kon	1a 23 C	VG=1.9V,		1.2	1.5	WO.	CECV
				Δ V=0.19V	-	1.3	1.5	ΚΩ	SEGX
t	J. J. J. S.		Duty=1/6	5, OP=8.5V,			0.0		
	帧频	FR		=25°C	70	75	80	Hz	
L			_						

型号: LX-12864B5-1

6.2.1 直流参数 2

电流损耗:输出显示,内部电源工作,整个裸芯片的电流损耗

工作状态	符号	测试条件		单位		
工作从念	付与		最小	典型	最大	1 半巡
显示:	ISS	VDD1=VDD2=VDD3=3.0V,倍压 X5 ,		150	300	^
SNOW (静态)	155	VOP=8.5 V, Bias=1/9,Ta=25°C	-	130	300	μΑ
显示关	ISS	VDD1=VDD2=VDD3=3.0V,倍压 X5 ,		95	190	μА
亚小大	133	VOP=8.5 V, Bias=1/9,Ta=25°C	_	93	190	μΑ
掉电	ISS	VDD1=VDD2=VDD3=3.0V,Ta=25°C	-	8	16	μA

7.读写时序特性

串行4线接口时序参数

图 6、交流参数 3

$(VDD1 = 3.3V, Ta = 25^{\circ}C)$

参数名称	对应	符号 测 试 条 件	规 范 值		单位	
多 奴 石 你	端口	11) 5	例 以 宋 什	最小	最大	中世
串行时钟周期		tSCY		50	_	
	SCLK	C	7			
SCLK H 脉冲宽度		tSHW		25		
SCLK L 脉冲宽度		tSLW		25	_	
地址建立时间	A	tSAS		20		ns
地址保持时间	A 0	tSAH		10	_	
数据建立时间	SDA	tSDS		20	_	
数据保持时间	SDA	tSDH		10		
CSB 到SCLK 时 间	CSB	tCSS		20	_	
CSB 到 SCLK 时间		tCSH		40		

$(VDD1 = 2.8V , Ta = 25^{\circ}C)$

(1221 2.01,14 23	. •)					
全 料 点 玩	对应	符号	河 子 夕 井	规 范 值		单位
参数名称	端口	1寸 与	测试条件	最小	最大	中 世
串行时钟周期		tSCY		100	_	
	SCLK	С				
SCLK H 脉冲宽度		tSHW		50		

型号: LX-12864B5-1

SCLK L 脉冲宽度		tSLW	50	_	
地址建立时间	A	tSAS	30	_	ns
地址保持时间	0	tSAH	20		
数据建立时间	SDA	tSDS	30	_	
数据保持时间	SDA	tSDH	20		
CSB 到SCLK 时 间	CSB	tCSS	30	_	
CSB 到SCLK 时间		tCSH	60		

$(VDD1 = 1.8V . Ta = 25^{\circ}C)$

(VDD1 - 1.6V, 1a - 25C)								
参数名称	对应	符号	河 注 夕 <i>休</i>	规 范 值		单位		
多 级 石 你	端口	1寸与	测试条件	最小	最大	中 世		
串行时钟周期		tSCY		200				
	SCLK	С						
SCLK H 脉冲宽度		tSHW		80				
SCLK L 脉冲宽度		tSLW		80	_			
					10	ns		
地址建立时间	A	tSAS		60	*# <u>_</u>			
地址保持时间	$\begin{bmatrix} A \\ 0 \end{bmatrix}$	tSAH		30	_			
数据建立时间	SDA	tSDS		60				
数据保持时间	SDA	tSDH		30				
CSB 到SCLK 时	CSB	tCSS		40	_			
间	CSB	- 5						
CSB 到SCLK 时间		tCSH		100	_			

- 注: 1、输入信号的上升下降时间(tr, tf)要≤15 ns。
 - 2、所有时序测试的参考电压为 20% VDD1 到 80% VDD1

7.1 硬件复位时序参数

图 7、交流参数 4

 $(VDD1 = 3.3V, Ta = 25^{\circ}C)$

	1				
参数名称	符号	测试条件	规系	苞 值	单 位
多 奴 石 你	11) 5	例 以 宋 什	最小	最大	十 世
复位时间	tR			1.0	110
RESET L 脉冲宽度	tRW		1.0	_	us

型号: LX-12864B5-1

 $(VDD1 = 2.8V, Ta = 25^{\circ}C)$

全 粉 <i>与</i> 秒	符号	测试条件	规刻	范 值	单位
参数名称	付与	测试条件	最小	最大	单 位
复位时间	tR		_	2.0	110
RESET L 脉冲宽度	tRW		2.0	_	us

 $(VDD1 = 1.8V, Ta = 25^{\circ}C)$

参数名称	符号	测试条件	规》	も 値	单 位
多	何与	例 风 余 什	最小	最大	中 ′型
复位时间	tR		_	3.0	110
RESET L 脉冲宽度	tRW		3.0	_	us

 7.2

 SPI4 线串行通讯 (PSB 为高电平, C86 为高电平或低电平) 设置串行接口

通讯模式	PS	C86	CS	A0	ER	RWR	D[7:0]
	В		В		D		
SPI 4 线串行通讯	L	X	CS	A0	/	A	SDA,SCLK,,,,
			В		1	11/202	

注: 1、被标注为"--"的引脚必须要短接到高电位, VDD1、

VDDH 2、C86 被标注为"×",可以接高电位也可以接低电位

当 CSB 为低电平时,芯片可以进行通信,串行数据(SDA)和串行时钟(SCLK)开始工作。 当 CSB 为高电平时,ST7567 无法进行通信,内部的 8 位移位寄存器和 3 位的计数器被复位。当电路处于串行模式时,SDA 上面的数据在 SCLK 的上升沿被存储在移位寄存器中,在第八个时钟的上升沿时将 A0 端口的信号存储,同时产生一个脉冲信号,将串行数据转换为并行数据,之后数据的处理与并行信号完全一致。在 DDRAM 存取每个字节之后,DDRAM column 地址指针会自动加一。 SCLK 的抗干扰性是非常重要的,外部的噪声会导致其有异常的数据或命令出现。

图8、 4 线SPI 存取

注: 1、当处于省电模式或硬件复位后,一些微处理器往往会处于高阻抗状态。而当芯片的 VDD1 端导通时,这是不允许的,因为这会导致电路的浮空输入端出现异常状态。

型号: LX-12864B5-1

7.3、数据传输

ST7567 使用总线锁存和内部数据总线进行接口数据传输。在从 MPU 向 DDRAM 写数据时,数据自动从总线锁存传输至 DDRAM,如图 4 当从片内 DDRAM 读数据到 MPU 时,第一个读周期读取总线锁存的内容(空读),在下一个读周期才输出 MPU 应该读取的数据,如图 5,这表示,设置完目标地址后,接下来的读操作之前需要有一个空闲的读周期。因此,一些要求精确的数据无法在设置完目标地址的第一个读周期读取,但是可以在第二个读周期读取。

图 9 、数据传输:写

图 10、数据传输: 读

7.4 、显示数据

ST7567 电路内建有 65*132bit 的 DDRAM 用于存储显示数据,显示数据 RAM (DDRAM) 存储了 LCD 的点数据,可以通过设定 132 列和 65 行来控制显示。DDRAM 与 LCD 屏及通讯地址的对应关系如图 6。当处于 MPU 通讯模式时,DDRAM 被 X、Y 地址分割成 9 行,132 列,每列 8bit 数据,当处于 LCD 显示模式时,DDRAM 被分为 65 行,每行 132bit 数据,其中行又以页来划分,Page0~Page7 每页有 8 行(对应 COM0~63) Page8 仅有一行(对应 COMS,用作图像显示)显示数据(D7 ~D0)对应 LCD 的 COM 行方向,D0

在首位。除图像页外,其余所有页都可以通过 D7 ~D0 直接存取。图像 RAM 异常使用数 据总线的 D0 这一位。见图 7。MPU 可以通过 I/O 总线来进行读写操作。由于 LCD 驱动器可独立操作,数据进行显示时可以同步写入数据,不会导致 LCD 闪烁或者数据冲突。

图 11 、 DDRAM 的数据与显示屏的对应关系

图 12、 读写地址与 DDRAM 的对应关系

注: 串行模式下只能写不能读

7.5 、寻址

ST7567 的显示数据 RAM 为132bit*65,地址范围为: $X=0\sim131$ (列地址), $Y=0\sim8$ (页地址)在该范围之外的数据是无效的。

7.6、页地址电路

此电路由一个 4 位页地址寄存器组成,只能通过"PAGEADDRESSSET"指令进行修改,能提供 DDRAM 的页面数据。页地址必须在存取 DDRAM 内容前进行设置,页地址 8 是一个用于图像显示的特殊 RAM 区,只有一个合法操作位:D0。

7.7、列地址电路

DDRAM 的列地址是由"COLUMN ADDRESS SET"指令来设置的。列地址在每次显

型号: LX-12864B5-1

示数据存取(读/写)后会加 1,因此 MPU 可连续存取 DDRAM 的内容,但由于页地址 电路和列地址电路是独立的,此特性只能执行至每一页页尾(列地址"83H")。例如,从(页 -0,列 -83H)到(页-1,列 -0),需要对页地址和列地址均重新赋值来改变 DDRAM 指针。

此外,寄存器 MX 和 MY 可以颠倒 DDRAM 与输出(COM/SEG)的关系,在改变 MX 的设置后,必须重新将显示数据写入到 DDRAM 里。

图13、 DDRAM 的数据与 SEG、COM 的对应关系

型号: LX-12864B5-1

7.8 、行地址电路

行地址电路由一个计数器和一个行地址寄存器组成,行地址寄存器由"DISPLAY STARTLINE SET"指令来设置。此电路赋值给 DDRAM 一个行地址,作为显示的第一行(COM0)。因此,通过重复设置行地址,ST7567 可以不改变 DDRAM 内容来实现屏幕的滚动。如图 9 所示。最后一个行始终是 COMS(用作图像的行输出)即图像不会和通常的显示数据一起滚动。

型号: LX-12864B5-1

第 十三 页

图14、DDRAM 数据与起始行的对应 关系

8.0、振荡电路

ST7567 内建振荡电路来产生液晶驱动电路需要的系统时钟。在 ST7567 初始化后振荡电路被激活。为降低电源损耗,时钟不会被输出。

8.1、液晶驱动电源电路

ST7567 内建电源电路来产生驱动液晶的电压。电路采用最少的外围元件以降低电源损耗。内建的电源电路包括电压倍压器、电压调整器和电压跟随电路。在 ST7567 断电前需要一个电源关闭程序(参考操作流程部分)

8.2 、电源电路的外围元件

推荐的电源外围元件只有两个电容。这两个电容的具体值由屏的尺寸和负载决定。

图 15、电源电路

8.3 、调整器电路

ST7567 内建高精度调整器电路, 共 8 种调节比率 (regulation ratio—RR),每种 RR 有64 个 EV 电平进行电压调节。无需额外的外围元件,输出电压可以通过"Regulation Ratio"和"Set EV" 指令进行改变。指令描述部分有详细的设置方法。

第 十五 页

8.4 、复位电路

ST7567 由 RSTB 端口置低对电路内部进行初始化。当 RSTB 置低时除读状态指令有效, 其余均无效。操作前需要通过 RSTB 脚对电路进行初始化。硬件复位与软件复位不同,当 RSTB 变为低,硬件复位程序就会启动;当执行 RESET 指令后,软件复位程序就会启动。

寄存器	RSTB 硬件复位值	RESET 软件复位
		值
显示关闭:D=0,所有 SEG 和COM 输出均为低	V	X
正常显示: INV=0, AP=0	V	X
SEG 正常显示	V	X
串行计数器和移位寄存器清零(若使用了串行接口)	V	X
偏置选择: BS=0	V	X
倍压幅度: BL=0	V	X
退出节电模式	V	X
关闭电源控制: VB=0, VR=0, VF=0	V	X

退出读写修正模式	V	V
起始行: S[5]=0	V	V
行地址: X[7:0]=0	V	V
页地址: Y[3:0]=0	V	V
COM 正常显示方式:MY=0	V	V
V0 调整率: RR[2:0]=(1,0,0)	V	V
EV[5:0]=(1,0,0,0,0,0)	V	V
退出测试模式	V	V

上电后,RAM 数据未定义,显示状态为"显示关"。在显示打开之前最好初始化整个 DDRAM (如:填写全 00h 或写显示图案) 此外,电源刚打开时不稳定,当电源稳定之后需要进 行硬件复位对内部寄存器进行初始化。

9. 指令描述

9.1、通用指令表

序	指令	A0	R/W				指	令位				描述
号	1日之	Au	(RW	D	D	D5	D4	D3	D2	D1	D0	加火
			R)	7	6							
1	显示开/关 (display on/off)	0	0	1	0	1	0	1	1	1	D	D=1,显示开 D=0,显示关
2	设置起始行 (set start line)	0	0	0	1	S5	S4	S3	S2	S1	S0	设置显示的起始行
3	设置页地址 (set pageaddress)	0	0	1	0	1	1	Y3	Y2	Y1	Y0	设置页地址
4	设置列地址 (set column	0	0	0	0	0	1	X7	X6	X5	X4	设置列地址高位 (MSB)
	address)	0	0	0	0	0	0	Х3	X2	X1	X0	设置列地址地位 (LSB)

型号: LX-12864B5-1

第十六页

5	读状态 (read status)	0	1	0	M X	D	RST	0	0	0	0	读取 IC 的状态
6	写数据 (write data)	1	0	D 7	D 6	D5	D4	D3	D2	D1	D0	对DDRAM 写数据
7	读数据 (read data)	1	1	D 7	D 6	D5	D4	D3	D2	D1	D0	读取 DDRAM 的数据
8	SEG 显示方式 (seg direction)	0	0	1	0	1	0	0	0	0	MX	设置 SEG 的扫描方向 MX=1,显示左右颠倒 MX=0,普通显示
9	反显 (inverse display)	0	0	1	0	1	0	0	1	1	IN V	INV=1,反显 INV=0,普通显示
10	屏全亮 (all pixel on)	0	0	1	0	1	0	0	1	0	AP	AP=1,屏全部点亮 AP=0,普通显示
11	偏置选择 (bias select)	0	0	1	0	1	0	0	0	1	BS	偏置选择 0=1/9;1=1/7(1/65 占空比)
12	read-modify-write	0	0	1	1	1	0	0	0	0	0	行地址增量: 读: +0, 写: +1
13	END	0	0	1	1	1	0	1	1	1	0	退出

							1					
					~							read-modify-write 模式
14	复位(RESET)	0	0	1	1	1	0	0	0	1	0	软件复位
15	COM 扫描方式 (com direction)	0	0	1	1	0	0	MY	1	-	1	设置 COM 的扫描方向 MY=1,上下颠倒 MY=0,普通显示
16	电源控制 (power contral)	0 <	0	0	0	1	0	1	VB	VR	VF	设置内置电源 管理电路的工作
17	RR 设置 (regulation ratio)	0	0	0	0	1	0	0	RR2	RR 1	RR 0	选择 RR 电阻范围
18	EV 设置(set EV)	0	0	1	0	0	0	0	0	0	1	双行指令设
	Z. (XE(SVZ.)	0	0	0	0	EV 5	EV 4	EV3	EV2	EV 1	EV 0	置EV 等级
19	设置倍压	0	0	1	1	1	1	1	0	0	0	双行指令 设置倍压等级:
19	(set booster)	0	0	0	0	0	0	0	0	0	BL	BL=0: 4倍 BL=1: 5倍
20	省电模式 (power save)	0	0		复用指令				display off + all pixel on			
21	空操作(nop)	0	0	1	1	1	0	0	0	1	1	不执行操作
22	测试(test)	0	0	1	1	1	1	1	1	1	ı	测试指令

注: "-"可接'H''或'L"

型号: LX-12864B5-1

第十七页

9.2 、显示开/关(display on/off)

A0	R/W(RWR)	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	1	0	1	1	1	D

D=1,显示开

D=0,显示关,所有的 SEG、COM 端口被置为 0 电平

9.3 、设置起始行(set start line)

A0	R/W(RWR)	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	S5	S4	S3	S2	S1	S0

设置起始行的作用是选择 DDRAM 中被 S[5:0]指定的显示数据在 COM0 上面进行显示,其余的数据按照地址自加进行循环,用于设置画面的滚动效果。

S5	S4	S3	S2	S1	S0	显示地址
0	0	0	0	0	0	0
0	0	0	0	0	1	1
0	0	0	0	1	0	2
0	0	0	0	1	1	3
		. 0				
1	1	1	1	0	1	61
1	1	1	1	1	0	62
1	1	1	1	1	1	63

9.4、设置页地址(set page address)

A0	R/W(RW R)	D7	D6	D5	D4	D3	D 2	D1	D 0
0	0	1	0	1	1	Y3	Y 2	Y1	Y 0

Y	Y2	Y	Y0	页地址	数据的有效位
3		1			
0	0	0	0	page0	D7~D0
0	0	0	1	page1	D7~D0
0	0	1	0	page2	D7~D0
•	•	•			
0	1	1	0	page6	D7~D0
0	1	1	1	page7	D7~D0
1	0	0	0	page8 (icon page)	D0

型号: LX-12864B5-1

第十八页

9.5、设置列地址(set column address)

A0	R/W(RWR)	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	1	X7	X6	X5	X4
0	0	0	0	0	0	X3	X2	X1	X0

行地址可选择的范围为 0~131, 需要采用两条指令才能够完全设置完成。

X	X	X	X4	Х3	X	X	X	行地址
7	6	5			2	1	0	
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1
:	:	:	:	:	:	:	:	:
1	0	0	0	0	0	0	1	129
1	0	0	0	0	0	1	0	130
1	0	0	0	0	0	1	1	131

9.6、写数据(write data)

A0	R/W(RWR)	D6	D5	D4	D3	D2	D1	D0
1	0	D6	D5	D4	D3	D2	D1	D0

当地址设置完成之后,MPU 可以连续的对 DDRAM 进行写数据操作,但当一行写完之后, 必须重新设置 X、Y 地址才可以进行下一行数据的写操作,否则在 X 地址溢出之后将会覆 盖原输入数据。

9.7、SEG 显示方式 (seg direction)

A0	R/W(RWR)	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	1	0	0	0	0	MX

MX=0: 普通显示模式 (SEG0->SEG131)

MX=1: 左右颠倒显示方式

(SEG131~SEG0)

9.8、反显(inverse display)

A0	R/W(RWR)	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	1	0	0	1	1	IN V

INV=0: 普通显示模式

INV=1: 反转显示模式

型号: LX-12864B5-1

第十九页

9.9、屏全亮 (all pixel on)

1	A0	R/W(RWR)	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	1	0	1	0	0	1	0	AP

AP=0: 普通显示模式 AP=1: 屏全亮显示模式

10、偏置选择(bias select)

A0	R/W(RWR)	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	1	0	0	0	1	BS

10.1、复位(RESET)

A0	R/W(RWR)	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	1	1	0	0	0	1	0

执行这条指令之后,电路进入软件复位状态,各寄存器值详见复位状态寄存器表。

10.2、COM 扫描方式 (com direction)

A0	R/W(RWR)	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	1	0	0	MY	ı	-	-

MY=0: 普通扫描显示模式(COM0~COM63)

MY=1: 上下颠倒扫描显示模式

(COM63~COM0)

10.3、省电模式(power save)

A0	R/W(RWR)	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	1	0	1	1	1	0
0	0	1	0	1	0	0	1	0	1

ST7567 电路的省电模式是通过两条指令联合使用来实现的,第一条指令为设置显示关(D=0)第二条指令为设置屏全亮(AP=1)之后电路进入省电模式,进入省电模式时电路的工作状态:

型号: LX-12864B5-1

第二十页

- 1、RC 时钟关闭
- 2、内置的电源管理电路关闭
- 3、LCD 的时序发生关闭,所有的 COM、SEG 端口被置为 0 电位

当FD=0 时, 电路内部按照如下时序工作

图19、工作时序

退出省电模式时方向执行上面两条指令,退出省电模式后,电路回复到省电模式前的配置状态

型号: LX-12864B5-1

第 二十一 页

10.4、设置倍压(set booster)

A0	R/W(RWR)	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	1	1	1	1	0	0	0
0	0	0	0	0	0	0	0	0	BL

BL=0: 4 倍压 BL=1: 5 倍压

广东力先电子有限公司

ブラブノブレー J イードスムーリ 型号: LX-12864B5-1 Guangdong lixian electronics co., LTD

第 二十二 页

11. NOP

AO	R/W(RWR)	D7	D6	D5	D4	D3	D2	D1	DO
0	0	1	1	1	0	0	0	1	1

当设置为这条指令时,电路不执行任何操作

11.1、工作时序

11.2、电路上电

图 21、上电时序

注: 下面表格有参数的详细描述

- 1、tRW 和 tR 请参考时序参数指标
- 2、RESET 请参考4.11.6节说明
- 3、5ms 是为了符合LCD屏的规格和电源部分外接器件的要求。可根据实际使用的器件来检测
- 4、INSTRUCTION 功能的详细描述见4.11节说明
- 5、VDDI 或者 VDDA电压上升到预定值的90%时,被视为电源的稳定态。

型号: LX-12864B5-1

第 二十三 页

11.3、时序要求:

参 数	符号	条件	备注
VDDA 电源延时	toN-V2	0 ≤ toN-V2	VDDI 和 VDDA 在任何情况下都不会损坏电路。
RSTB 输入时间	tON-RST	没有限制	 在上电期间,如果RSTB 为低电平、高电平或者补丁态,RSTB有效的外部复位应该是在VDDI 电压稳定后。 电源电压稳定后,在任何时候都可以使RSTB置为低电平。 tRW 和 tR 必须符合RSTB的时序要求。 防止损坏显示,推荐的时序是: 0 ≤ tON-RST ≤ 30 ms.

注:表中给出的时序要求是为了防止损坏LCD模组

11.4、显示数据

注:参考项目

- 1、INSTRUCTION 功能的详细描述见4.11节分说明
- 2、在显示打开之前,推荐要写入显示数据,即初始化DDRAM

型号: LX-12864B5-1

第 二十四 页

11.5、刷新

推荐在固定的间隔时间刷新时序

注:

- 1、电源稳定时间取决于加载的LCD屏。
- 2、上图中给出的电源稳定时间的条件是: LCD屏尺寸=1.4", C1=1uF, C2=1uF, VDD=2.7V, Vop=9V。

11.6 、电路掉申时序及流程

电路在省电模式时,LCI输出端拉到VSS,模拟输出端处于放电状态,电源电压关断。下面给出的两种方式可以触发电路进入省电模式。

使用省电模式

掉电流程:

在内置电源电路关断和完全放电之后,VDD1和VDDA电压被移掉。

型号: LX-12864B5-1

第 二十五 页

11.7、硬件复位功能: 掉 电流程:

在内置电源电路关断和完全放电之后,VDD1和VDDA电压被移掉。

注:

- 1、tPOFF: 内部电源放电时间≥250ms(最大)
- 2、tV2OFF: VDDI和 VDDA关断时间≥Oms(最小)
- 3、不建议在VDDA关断前,先关断VDDI。关断了VDDI,电路内部状态不稳定,可能会停止放电。未被放掉的电压可能会流入COM/SEC输出端,及极化LCD屏。
- 4、VDDI和 VDDA不同时供电,不会损坏电路
- 5、时序与负载屏和外接电容有关
- 6、 上图中的时序测试条件: LCD P屏尺寸 = 1.4" , C1=1uF, C2=1uF
- 7、VDDA关断时,下降时间要满足如下要求: 20ms ≤ tPFall ≤ 0.2s

第二十六页

12、示例参考程序:

```
/******************
// project
        : 221-3059-1428
// driver IC : st7567
// LCD
           :
               1/65 duty, 1/9bias, 8.8V vop
// interface :
            SPI
// ver
       : 00
// date
         : -07
// other
         : VDD 3.1v
#include "reg51.h"
/*
 sbit RS = P3^7; AO
 sbit RES = P3^3;
               复位
 sbit CS = P3^4;
               偏选
 sbit SCL = P1^1;
 sbit SDI = P1^0;
*/
 sbit CS = P1^0;
 sbit RES = P1^1;
 sbit RS = P1^2:
 sbit SCL = P1^3;
 sbit SDI = P1^4;
// sbit SCL = P1^6;
// sbit SDI = P1^7;
 sbit
       key1=P2^1;
sbit
       key2=P2^2;
```


型号: LX-12864B5-1

第二十七页

```
sbit
           pause=P2^0;
void writec(uchar);
void stop(void);
void writed(uchar);
#define
         uchar
                  unsigned char
#define
         uint
                 unsigned int
 uchar vop=0x29;
uchar code chara1 = 
/*-- 调入了一幅图像: C:\Users\Administrator\Desktop\G1011.bmp --*/
/*-- 宽度 x 高度=128x64 --*/
0xF8,0x00,0x00,0x00,0xE8,0x00,0xF8,0x00,0xC0,0x20,0x00,0x00,0xC0,0xA0,0xA0,0xE0,
0x00,0x00,0x00,0x00,0xE0,0x20,0xE0,0x00,0x20,0xF8,0x28,0x00,0x00,0x00,0x00,
0xFF,0x00,0x00,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x07,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
0x07,0x04,0x00,0x00,0x07,0x00,0x07,0x01,0x01,0x02,0x04,0x00,0x03,0x04,0x04,0x04,
```


公一 1 1 7

型号: LX-12864B5-1

0x00,0xC0,0x40,0xC0,0x80,0x40,0xC0,0x80,0x00,0x80,0x40,0x80,0x00,0x00,0xC0,0x40,0xC0,0x80,0x00,0x00,0x00,0x00,0x80,0x40,0xC0,0x80,0x40,0xF0,0x50,0x00,0x00,0x00,0x40,0xE0,0x40,0x00,0x00,0xF0,0x40,0xC0,0x80,0x00,0x80,0x40,0xC0,0x80,0x00,0xC0,0x00.0x00.0xC0.0x00.0x80.0x40.0x80.0xC0,0x00.0xF0.0x40.0xC0,0x80.0x40.0xE0,0x40. 0x08,0x00,0x0F,0x0A,0x0A,0x03,0x00,0x00,0x00,0x0E,0x0A,0x0F,0x00,0x00,0x00,0x000x00,0x0F,0x00,0x00,0x0F,0x00,0x0F,0x00,0x0F,0x00,0x0E,0x0A,0x0A,0x0F,0x00,0x0F,0x00,0x08,0x08,0x0F,0x00,0x2F,0x28,0x28,0x1F,0x00,0x0F,0x00,0x0F,0x00,0x0F,0x00,0x0F,0x08,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x3F,0x02,0x02,0x02,0x02,0x3F,0x00,0x1E,0x25,0x25,0x27,0x00,0x00,0x3F,0x01,0x01,0x1F,0x00,0x00,0x3F,0x01,0x01,0x01,0x01,0x00,0x3F,0x00,0x00,0x00,0x00,0x3F,0x22,0x22,0x22,0x3D,0x00,0x00,0x1E,0x25,0x25,0x27,0x00,0x00,0x3F,0x01,0x01,0x01,0xBF,0xA1,0xA1,0xFF,0x00,0x00,0x27,0x25,0x25,0x39,0x00,0x00.0x3F.0x21.0x21.0x3F.0x00.0x00.0x3F.0x01.0x01.0x1F.0x00.0x00.0x00.0x00.0xFF

型号: LX-12864B5-1

第 二十九 页

```
};
uchar code chara2[]=
{
/* Image size : 128 x 64 pixels */
/*-- 调入了一幅图像: C:\Users\Administrator\Desktop\诗 1.bmp
/*-- 宽度 x 高度=128x64 --*/
0x00,0x00,0x00,0x00,0x00,0x08,0x14,0x22,0x49,0x94,0x22,0x41,0x80,0x00,0x00,0x00,
0x00,0x24,0x24,0x15,0xED,0xA5,0xA7,0xA5,0xA5,0xA5,0xED,0x15,0x24,0x24,0x00,0xFF,
0x88,0x88,0xFF,0x00,0x51,0x51,0xC9,0x4B,0xC4,0x4A,0x50,0x1C,0x00,0x00,0x00,0x00,
```


型号: LX-12864B5-1

第 三十 页

0x00,0x00,0x01,0x04,0x04,0x02,0x01,0x00,0x03,0x04,0x04,0x06,0x00,0x00,0x00,0x01,0xFF,0x00,0x00,0x00,0x24,0xAC,0xEC,0xEC,0xBC,0xAA,0xAC,0xEC,0xAC,0x24,0x00,0xFE, 0x52,0xFE,0x00,0xFE,0x52,0x72,0xD2,0x52,0x5E,0x00,0x00,0x82,0x82,0x42,0x32,0xFA, 0x06,0x12,0x62,0xC2,0x82,0x00,0x00,0x38,0xCA,0x2C,0x28,0xAE,0x28,0x28,0xEE,0x0A,0x18,0x00,0xFC,0x24,0xFC,0x80,0xA4,0xA7,0x9C,0xB4,0xCA,0xE2,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x60,0x3C,0xCA,0x08,0xF8,0x00,0xFE,0x00,0x10,0x60,0x00,0x00,0x60,0x3C,0xCA,0x08,0xF8,0x00,0xFE,0x00,0x10,0x60,0x00,0x00,0xF8,0x02,0x00,0xF0, 0xB2,0xB2,0xF2,0x02,0x02,0xFE,0x00,0xFC,0x04,0xFC,0x74,0x94,0x9C,0xF3,0x94,0x9C, 0xB4,0x10,0x00,0x00,0xF8,0x84,0x84,0x9F,0xA4,0xA4,0xA4,0xBC,0x80,0x00,0x00,0xFF, 0xFF,0x00,0x00,0x00,0x01,0x00,0x0F,0x0A,0x0A,0x0A,0x0A,0x0F,0x00,0x01,0x00,0x07,0x02,0x07,0x08,0x0F,0x04,0x04,0x03,0x0C,0x08,0x00,0x00,0x01,0x00,0x00,0x00,0x0F,0x0C,0x00,0x07,0x01,0x03,0x08,0x0C,0x07,0x00,0x0F,0x08,0x08,0x04,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x04,0x06,0x03,0x04,0x04,0x0B,0x08,0x08,0x08,0x00,0x00,0x08,0x04,0x06,0x03,0x04,0x04,0x0B,0x08,0x08,0x08,0x00,0x00,0x0F,0x00,0x02,0x03,0x02,0x02,0x07,0x02,0x08,0x0F,0x00,0x01,0x01,0x01,0x00,0x07,0x00,0x0F,0x00,0x040xFF,0x00,0x00,0x00,0x42,0xF2,0x0E,0x62,0x7B,0x8F,0x6A,0xCA,0x3A,0x02,0x00,0x22, 0x26,0xBA,0xF2,0xFF,0x22,0xF2,0xAE,0x22,0x20,0x00,0x00,0x00,0xFF,0x09,0x89,0x71, 0xF9,0x05,0x0D,0xF3,0x00,0x00,0x00,0xF9,0x09,0x89,0x29,0x09,0xFF,0x99,0x29,0x09, 0xF9,0x00,0x01,0xF1,0x99,0x99,0x99,0xF7,0x99,0x99,0xF1,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x42,0x22,0xFA,0x07,0x82,0xFA,0x47,0x22,0x32,0x02,0x00,0x00, 0x21,0xA9,0x81,0xB3,0x59,0x7D,0x2B,0x59,0x49,0x41,0x00,0x00,0x2C,0x23,0xFC,0xA4, 0x20,0x00,0xFE,0x02,0x02,0xFE,0x00,0x24,0x24,0x24,0x97,0x5A,0xAA,0x3E,0x26,0xA0,

第 三十一 页

```
};
 void delay1(unsigned int t)
  while(t>0)
                         //TT-
     t--;
     pause=1;
     if(pause==0)stop();
}
 void flash(unsigned int t)
  while(t > 0)
                         //TT-
     t--;
          void stop()
```



```
flash(100);
while(pause==0)
 pause=1;
 key1=1;
 key2=1;
 if(key1==0)
 flash(200);
 if(key1==0)
 while(key1==0);
 flash(100);
   if(vop<63)
   vop++;
 writec(0x81);
   writec(vop);}
 else if(key2==0)
  flash(100);
if(key2==0)
  while(key2==0);
  flash(100);
  if(vop>0)
  {
   vop--;
 writec(0x81);
   writec(vop);
 }
```

第 三十二 页

型号: LX-12864B5-1

第 三十三 页

```
void writec(uchar com)
{ unsigned char i;
 CS=0;
 RS=0;
   for(i=0;i<8;i++)
    { com=com<<1;
    SDI=CY;
    SCL=1;
    SCL=0;
    CS=1;
 RS=1;
void writed(uchar dat)
{ unsigned char i;
 CS=0;
    RS=1;
  for(i=0;i<8;i++)
    dat=dat << 1;
    SDI=CY;
    SCL=1;
    SCL=0;
    }
    CS=1;
 RS=1;
```

第 三十四 页

```
void init()
    uchar col;
   RES=1;
   flash(1000);
   RES=0;
   flash(2000);
   RES=1;
   flash(1000);
 writec(0xe3); // reset signal
 writec(0xa3); //(0xa2 1/9 bias,1/65 duty)
 writec(0xa0); // ADC select
 writec(0xc8); // command output select
 writec(0x2f); // power control
 writec(0x21); // select resistor ratio Rb/Ra
 writec(0x81); // select volume
 writec(55);
               // vop
 writec(0xf8); // x4
 writec(0x08); // x4
  writec(0xb0);//set page address
       writec(0x10);//set column address
       writec(0x00);
       for(col=0;col<128;col++)
          writed(0x00);
 writec(0xaf); //display on
void display(uchar dat1,uchar dat2)
   uchar row,col;
```


第 三十五 页

```
for (row=0xb0; row<0xb8; row++)
                                         //0XB0
                                                     0XB8
      writec(row);//set page address
       writec(0x10);//set column address
       writec(0x00);
       for(col=0;col<128;col++)
          writed(dat1);
          writed(dat2);
   delay1(50000);
void displaychar(uchar *p)
   uchar row,col;
   for (row=0xb0; row<0xb8; row++)
       writec(row);//set page address
      writec(0x10);//set column address
      writec(0x00);
      for(col=0;col<128;col++)
       writed(*p++);
   }
   delay1(50000);
void main(void)
   delay1(1000);
```

型号: LX-12864B5-1

第 三十六 页

```
vop=0x29; //vop=9.1V
//vop=0x15; //vop=7.1V
init();
while (1)
{
    display(0xff,0xff);
    display(0x00,0x00);
    display(0x55,0xaa);
    display(0xaa,0x55);
    displaychar(chara1);
    displaychar(chara2);//vop_test();
}
```

