PRACA DOMOWA 4

Z poniższych zadań należy wybrać 5 zadań

 Zadanie 1. Niech $n \in \mathbb{N}$ i $\alpha = \frac{\pi}{n}$ i niech W będzie 2n-kątem, którego wierzchołki stanowią punkty

$$w_1 = \langle \cos(\alpha), \sin(\alpha) \rangle$$

$$w_2 = \langle \cos(\alpha) + \cos(2\alpha), \sin(\alpha) + \sin(2\alpha) \rangle$$

:

$$w_{2n} = \left\langle \sum_{k=1}^{2n} \cos(k\alpha), \sum_{k=1}^{2n} \sin(k\alpha) \right\rangle.$$

- (1) Narysuj W.
- (2) Znajdź średnicę W.
- (3) Wywnioskuj, że $\sup_{x \in [0,2\pi], n \in \mathbb{N}} \sum_{k=1}^{n} \sin(kx) = +\infty$.

Zadanie 2 (4*0.25p). Wyznaczyć zbiór punktów zbieżności następujących szeregów:

- (1) $\sum_{n=1}^{\infty} \frac{(3x+1)^{n+1}}{2n+2}$, (2) $\sum_{n=1}^{\infty} \left(\sqrt{n+1} \sqrt{n}\right) (x-3)^n$.

Wyznaczyć promień zbieżności następujących szeregów potęgowych:

- (3) $\sum_{n=1}^{\infty} \frac{n!}{3 \cdot 6 \cdot 9 \cdot \dots \cdot 3n} x^n$, (4) $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2} x^n$.

Zadanie 3. Wykazać, że dla $|x| \leq 1$ prawdziwy jest wzór

$$|x| = 1 - \frac{1}{2}(1 - x^2) - \sum_{n=2}^{\infty} \frac{(2n-3)!!}{(2n)!!} (1 - x^2)^n.$$

Zadanie 4 (2*0.33p + 0.34p). Rozwinąć w szereg Taylora w otoczeniu zera funkcje:

- (1) $f(x) = \frac{1}{(x-1)^3}, x \in (-1,1),$ (2) $f(x) = \frac{1}{2+x}, x \in (-2,2),$ (3) $f(x) = \cos^2(x)\sin(x), x \in \mathbb{R}.$

Zadanie 5 (8*0.125p). Policzyć następujące całki:

- (1) $\int \operatorname{ctg}^{2}(x) dx,$ (2) $\int \frac{e^{3x}-1}{e^{x}-1} dx,$
- (3) $\int x^2 \arctan \, dx$, (4) $\int \frac{\sin x}{3+2\cos x} \, dx$, (5) $\int \frac{1}{x^4+4} \, dx$,

(6)
$$\int \frac{\sin^2(x)}{1+\sin^2(x)} dx$$
,
(7) $\int \frac{1}{x\sqrt{x^2+4x-4}} dx$,
(8) $\int \frac{1}{x\sqrt{x^2-1}} dx$.

(7)
$$\int \frac{1}{x\sqrt{x^2+4x-4}} \, \mathrm{d}x$$
,

(8)
$$\int \frac{1}{x\sqrt{x^2-1}} dx$$

Zadanie 6. Niech $f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^2}$ dla $x \in (0,1)$. Wyraź f(x) + f(1-x) przez funkcje elementarne.

Podpowiedź: Rozważ f'(x).