

Visualization toolkit: yt

Hsi-Yu Schive & Kuo-Chuan Pan

Introduction to yt

- Visualization and analysis toolkit for 3D data
- Support a variety of simulation codes
 - E.g., Athena, Pluto, Enzo, FLASH, Gadget, GAMER
 - Same analysis script, different simulation codes → allow you to forget about the data format and grids of your simulations
- Python- and script-based
 - Make your scientific results reproducible and shareable
- Unit-aware calculations
 - Otherwise unit conversion can be a headache...
- Very active and friendly community
- Open source

Useful Links

- Official website: https://yt-project.org/
- Source on GitHub: https://github.com/yt-project/yt
- Mailing list
 - User: https://mail.python.org/mailman3/lists/yt-users.python.org/
 - Developers: https://mail.python.org/mailman3/lists/yt-dev.python.org/
- Slack: https://yt-project.org/slack.html
- Installation: https://yt-project.org/#getyt
- Sample data: https://yt-project.org/data/

Other Features

- Support non-Cartesian coordinates
- Parallelization
 - Analyze multiple datasets in parallel
 - https://yt-project.org/docs/dev/analyzing/parallel_computation.html
- Extensions for connecting to external packages
 - E.g., pyXSIM (mock X-ray observations), Trident (mock absorption spectra), ytree (halo merger tree), unyt (unit manipulation in python)
 - https://yt-project.org/extensions.html
- yt hub: host and share your data
 - https://yt-project.org/docs/dev/sharing_data.html

Setup your visualization environment

Request an interactive job

qsub -I -X -N name -l nodes=1:ppn=1,pmem=2gb,walltime=1:00:00

Activate your python environment for yt

conda activate yt

Slice plot

One command to plot all data

yt plot -f density my_sim_hdf5_plt_cnt_*

Make a movie with ffmpeg

ffmpeg -r 10 -pattern_type glob -i '*.png' -vcodec libx264 -s 782x662 -pix_fmt yuv420p movie_sedov.mp4

Command line tools

yt plot -h

Customize the plot

yt plot -h

yt plot -a 2 -f entr -w 300 -u km --linear --colormap Spectral_r -z 0 32 ccsn3d_hdf5_plt_cnt_0656

Customize the plot (conti.)

Working with cylindrical data

Import yt in a python script

```
import yt
import numpy as np
# set the root path
ROOT_PATH="./sample_data/"
# the file name for demo
fn = ROOT_PATH+"2d_cartesian/sedov_hdf5_chk_0010"
# Load the file to a dataset
ds = yt.load(fn)
# A simple slice plot
slice = yt.SlicePlot(ds,'z',"density")
slice.save("fig_tutorial_01.png")
```