Symulacja systemów dyskretnych

Model oraz architektura systemu

Social Force Model

How simple rules determine pedestrian behaviour and crowd disasters?

- Artykuł Moussaïda, Helbinga i Theraula z 2011
- Heurystyki behawioralne dla uproszczenia problemu
- Planowane modyfikacje w ramach dalszej pracy

Model

Pierwsza wykorzystana heurystyka:

Pieszy wybiera kierunek α_{des} , związany z jak najbardziej bezpośrednią drogą do celu O_i , biorąc pod uwagę możliwe kolizje.

$$\alpha_{des}(t)$$
 jest obliczany przez minimalizację $d(\alpha)$:
 $d(\alpha) = d_{max}^{2} + f(\alpha)^{2} - 2d_{max}f(\alpha)\cos(\alpha_{0} - \alpha)$

Druga wykorzystana heurystyka:

Pieszy zachowuje dystans do pierwszej przeszkody na jego drodze, który zapewnia czas do kolizji równy co najmniej τ.

$$v_{des}(t) = min(v_{i,}^{0} d_{h} / \tau)$$

$$a_{i} = (v_{des} - v_{0}) / \tau$$

Efekty kolizji

W przypadku dużego zatłoczenia należy uwzględnić też **siły** działające na pieszych w związku z **bezpośrednim kontaktem fizycznym** z innymi ciałami.

$$f_{ij}$$
 - wektor siły zderzenia dwóch
pieszych i oraz j:
 $f_{ij} = kg(r_i + r_j - d_{ij}) * n_{ij}$

$$f_{iW}$$
 - wektor siły zderzenia pieszego
oraz ściany:
 $f_{iW} = kg(r_i - d_{iW}) * n_{iW}$

Ostateczny wektor przyspieszenia pieszego:

$$a_i = (v_{des} - v_0) / \tau + j f_{ij} / m_i + W f_{iW} / m_i$$

Stos technologiczny

Założenia względem symulacji

- 1. Łatwość poprawy lub zmiany modelu fizycznego
- 2. Możliwość stosowania wielu heurystyk
- 3. Płynność działania symulacji obliczenia na jednym bądź wielu wątkach
- 4. Możliwość modyfikowania modelu w trakcie symulacji

Diagram klas

Implementacja

Wersja alfa

Różnice między modelami Social Force

- nie skupia się na interakcjach parami
- pieszy aktywnie szuka ścieżki w tłumie a nie tylko jest poddawany odpychającej sile
- zachowanie pieszego to nie tylko suma sił
- połączenie heurystyk z siłami związanymi ze zderzeniami

Co udało się zrobić

Wersja alfa symulacji

- podstawowa wizualizacja
- zaimplementowany silnik fizyczny wraz z heurystykami,
- wielowątkowość dla (znacznego) przyspieszenia obliczeń
- testy bardziej skomplikowanych metod
- podstawowa plansza, na której testujemy symulację

Wnioski i plany

- konieczność walidacji modelu
- wybór odpowiednich parametrów i współczynników
- zastanowienie się nad sensem poszczególnych zachowań agentów

Implementacja - poprawki

Co udało się zrobić

Poprawiona symulacja

- poprawa błędów już nie wchodzą w ściany!!
- analiza ruchu pieszych
- poprawa wizualizacji kolory
- nowe mapy

Walidacja i wnioski

Co udało się zrobić

- uzupełnienie dokumentacji
- testowanie symulacji w odniesieniu do życia codziennego

Wnioski:

- dobrze pokazane zachowanie w przypadku ewakuacji i interakcji z innymi ludźmi oraz obiektami - testy dla różnych scenariuszy
- zależność freezing by heating