W4 - 1.4 - Transformations MHF4U

AUSWERS

1) Match each graph with the corresponding function.

A)
$$y = 2(x-3)^3 + 1$$

B)
$$y = -\frac{1}{3}(x+1)^3 - 1$$

c)
$$y = 0.2(x - 4)^4 - 3$$

A)
$$y = 2(x-3)^3 + 1$$
 B) $y = -\frac{1}{3}(x+1)^3 - 1$ C) $y = 0.2(x-4)^4 - 3$ D) $y = -1.5(x+3)^4 + 4$

2) List a good set of key points for the following parent functions:

$f(x)=x^2$	
x	y
-2	4
-1	1
0	0
(į
	4

$f(x) = x^3$	
x	y
-2	-8
-)	4
0	0
1	1
2	8

$f(x) = x^4$	
x	у
-2	16
-1	1
Ö	0
	1
2	16

$f(x) = x^5$	
x	у
-2	-32
~	-1
0	0
(1
2	32

3) Identify the a, k, d and c values and explain what transformation is occurring to the parent function:

a)
$$f(x) = -2(x-1)^2$$

b)
$$g(x) = [-\frac{1}{3}(x+5)]^4 - 1$$

4) Write the full equation given the parent function and the transforming function:

a)
$$f(x) = x^5$$
, $g(x) = -3f[2(x+5)] - 1$

a)
$$f(x) = x^5$$
, $g(x) = -3f[2(x+5)] - 1$ b) $f(x) = x^3$, $g(x) = \frac{1}{2}f\left[-\frac{1}{4}(x-4)\right] + 7$

$$9(x) = \frac{1}{2} \left[-\frac{1}{4} (x-4) \right]^3 + 7$$

5) For the following questions, use the key points of the parent function to perform transformations. Graph the parent and transformed function. Write the equation of the transformed function.

a)
$$f(x) = x^4$$
 $g(x) = \frac{1}{2}f[-(x-5)] + 1$

$$f(x) = \chi^4$$
 $g(x) = \frac{1}{a} \left[-(x-5) \right]^4 + 1$

$$\frac{19}{2}$$
 $\frac{-x+5}{9}$ $\frac{9}{2}$ + 1 $\frac{1}{7}$ $\frac{9}{6}$ $\frac{1}{10}$ $\frac{1}{1$

b)
$$f(x) = x^3$$

$$g(x) = -f[-2(x+1)] + 6$$

$$f(x) = x^3$$
 $g(x) = -[-2(x+1)]^3 + 6$

6) Write an equation for the function that results from the given transformations.

a) The function
$$f(x) = x^4$$
 is translated 2 units to the left and 3 units up.

$$g(x) = (x+2)^4 + 3$$

b) The function
$$f(x) = x^5$$
 is stretched horizontally by a factor of 5 and translated 12 units to the left.

$$9(\chi) = \left(\frac{1}{5}(\chi+12)\right)^5$$

c) The function
$$f(x) = x^4$$
 is stretched vertically by a factor of 3, reflected vertically in the x -axis, and translated 6 units down and 1 unit to the left.

$$9(x) = -3(x+1)^4 - 6$$

d) The function
$$f(x) = x^6$$
 is reflected vertically in the x -axis, stretched horizontally by a factor of 5 , reflected horizontally in the y -axis, and translated 3 units down and 1 unit to the right. $cz - 3$, $dz = 1$

$$g(x) = -\left[-\frac{1}{5}(x-1)\right]^6 - 3$$

ANSWER KEY

1) C A B D

2)	$f(x) = x^2$	
-/	x	у
- f	-2	4
1	-1	1
İ	0	0
1	1	1
İ	2	4

$f(x) = x^3$	
x	y
-2	-8
-1	-1
0	0
1	1
2	8

$f(x) = x^4$	
x	y
-2	16
-1	1
0	0
1	1
2	16

$f(x) = x^5$	
x	У
-2	-32
-1	-1
0	0
1	1
2	32

- 3) a) a = -2; vertical reflection and vertical stretch by a factor of 2 (-2y) d = 1; shift right 1 unit (x + 1)
- **b)** $k = -\frac{1}{3}$; horizontal reflection and horizontal stretch by a factor of 3 (-3x) d = -5; shift left 5 units (x 5) c = -1; shift down 1 unit (y 1)

4) a)
$$g(x) = -3[2(x+5)]^5 - 1$$
 b) $g(x) = \frac{1}{2}[-\frac{1}{4}(x-4)]^3 + 7$

-0.5

6) a)
$$g(x) = (x+2)^4 + 3$$
 b) $g(x) = \left[\frac{1}{5}(x+12)\right]^5$ **c)** $g(x) = -3(x+1)^4 - 6$ **d)** $g(x) = -\left[-\frac{1}{5}(x-1)\right]^6 - 3$