

NOME DO(A) ALUNO(A): Lucas Mattos da Silva

Pontifícia Universidade Católica do Rio Grande do Sul ESCOLA POLITÉCNICA TRABALHO DE CONCLUSÃO DE CURSO

Proposta de TCC [Trabalho de Conclusão de Curso]

Atenção: Descreva suscintamente a sua proposta de Trabalho de Conclusão de Curso, levando em consideração a estrutura abaixo. Você poderá utilizar gráficos, figuras, esquemas, etc. para melhor elucidar sobre a sua proposição de TCC.

Assinatura:
NOME DO(A) ORIENTADOR(A): Rafael da Silveira Castro
Assinatura:
TITULO PROVISÓRIO: SISTEMA DE CONTROLE REGULATÓRIO PARA RASTREAMENTO DE OBJETOS UTILIZANDO CÂMERA PAN-TILT
ÁREA DO TCC: Sistemas de Controle Digital

Sumário (Indispensável)

- 1 Introdução
- 2 Fundamentação Teórica
- 3 Objetivos
- 3.1 Objetivo Geral
- 3.2 Objetivos Específicos
- 4 Definição das Atividades
- 4.1 Atividades Previstas
- 4.2 Cronograma de Atividades
- 5 Recursos Necessários
- 6 Referências Bibliográficas

Sumário

1.	INTRODUÇÃO	3
2.	FUNDAMENTAÇÃO TEÓRICA	3
3.	OBJETIVOS	3
3.1.	OBJETIVO GERAL	3
3.2.	OBJETIVO ESPECÍFICO	3
4.	DEFINIÇÃO DAS ATIVIDADES	3
4.1.	ATIVIDADES PREVISTAS	3
4.2.	CRONOGRAMA DE ATIVIDADES	4
	RECURSOS NECESSÁRIOS	
5.1.	VARIÁVEIS DE ENTRADA E SAÍDA	4
5.2.	ATUADORES	5
5.3.	SENSORIAMENTO	5
5.4.	PROCESSADOR	5
5.5.	IDENTIFICAÇÃO DO SISTEMA E PROJETO DO CONTROLADOR	6
6.	REFERÊNCIAS BIBLIOGRÁFICAS	6

1. INTRODUÇÃO

Ao ser adicionada uma plataforma pan-tilt para uma câmera digital, é criada a possibilidade de um sistema de rastreio de diversos tipos de referências como objetos, cores ou movimento. Este trabalho usa a identificação de cores em uma imagem digital para definir a referência do sistema de controle. Aplicando controle regulatório neste sistema, será produzido um sistema de rastreio de cores para a câmera capaz de acompanhar referências de degrau, velocidade e aceleração.

2. FUNDAMENTAÇÃO TEÓRICA

Para identificação do sistema será aplicado um sinal de entrada enquanto a variação da saída do sistema é capturada. O sinal de entrada consiste na movimentação dos servo-motores responsáveis pelos movimentos e pan e tilt da câmera em graus, enquanto a saída consiste na variação da cor rastreada na imagem em pixels. Serão utilizados como sinal de entrada o degrau e o ruído branco. Com os dados de entrada e saída destes dois ensaios, serão estimados dois modelos discretos G(z) utilizando o método dos mínimos quadrados e o modelo que ter mais semelhança com o real será utilizado para o projeto do controlador. O método para projeto do controlador ainda não foi definido.

3. OBJETIVOS

3.1. OBJETIVO GERAL

Garantir ao protótipo a capacidade de seguir uma referência visual através do projeto de controle regulatório.

3.2. OBJETIVO ESPECÍFICO

Montagem do protótipo, desenvolvimento do software para identificação da referência, aplicação do controle e comunicação com a interface dos motores. Identificar o sistema do protótipo e projetar o sistema de controle deve ser capaz de rejeitar distúrbios do tipo degrau e velocidade, assim garantindo o erro nulo com relação ao foco da câmera e acompanhando a referência de interesse.

4. DEFINIÇÃO DAS ATIVIDADES

4.1. ATIVIDADES PREVISTAS

- Desenvolvimento do software para detecção da referência e comunicação com a interface dos servo-motores;
- Montagem do protótipo;
- Identificação do sistema através de ensaios:

- Projeto do controlador através do modelo;
- Testes para verificar a eficiência e robustez do controle;
- Elaboração da documentação do trabalho;
- Aplicação de melhorias.

4.2. CRONOGRAMA DE ATIVIDADES

A realização das atividades está separada por mês:

- Março: Desenvolvimento do software para detecção da referência e comunicação com a interface dos servo-motores; Montagem do protótipo;
- Abril: Identificação do sistema através de ensaios; Projeto do controlador através do modelo;
- Maio/junho: Testes para verificar a eficiência e robustez do controle; Aplicação de melhorias.

As atividades referentes a elaboração da documentação do trabalho ocorrerão em paralelo as outras atividades.

5. RECURSOS NECESSÁRIOS

Esta seção tem por objetivo descrever os recursos que serão utilizados. Uma breve descrição sobre as variáveis de entrada e saída antecede as definições dos sensores e atuadores para facilitar o entendimento sobre onde cada item será aplicado.

5.1. VARIÁVEIS DE ENTRADA E SAÍDA

Por se tratar de um sistema de controle regulatório, a variável de saída do sistema e de entrada do controlador é o número de pixels da referência até o centro da imagem. O sinal de controle é dado em graus que serão aplicados nos servo-motores. Cada eixo possui seu próprio controlador e atuador, assim o sistema tanto para o eixo horizontal quanto para o vertical pode ser exemplificado pelo diagrama de blocos na figura 1:

Figura 1- Diagrama de Blocos do Sistema em malha fechada (fonte: Autor)

5.2. ATUADORES

Para o projeto, serão utilizados dois servo-motores Tower Pro MG90S instalados em uma base pan-tilt e controlados com uma plataforma Arduino modelo UNO. A figura 2 mostra a base pan-tilt com os servo-motores instalados. A figura 3 mostra de forma simplificada a ligação dos atuadores.

Figura 2 - Base pan-tilt (fonte: filafill.com)

Figura3 - Ligação dos Atuadores (fonte: Autor)

5.3. SENSORIAMENTO

O sistema contará apenas com um sensor, que será a câmera digital. O modelo que será utilizado é a WebCam Logitech C270 HD. A câmera será conectada diretamente ao computador rodando Windows via USB.

5.4. PROCESSADOR

O processador utilizado para o projeto será um computador estilo desktop rodando o sistema operacional Windows. Todo o processamento de imagem, cálculo de controle e envio do comando para os atuadores será feito na plataforma Python, utilizando principalmente as bibliotecas OpenCV e SerialPy, para processamento de imagem e comunicação serial, respectivamente.

O diagrama de blocos da figura 4 representa o protótipo deste trabalho com seus componentes.

Figura 4 - Diagrama de Blocos do Protótipo (fonte: Autor)

5.5. IDENTIFICAÇÃO DO SISTEMA E PROJETO DO CONTROLADOR

As atividades referentes a identificação do sistema e projeto do controlador serão realizadas no software MATLAB, utilizando ferramentas como, por exemplo, SIMULINK e RLTOOL.

6. REFERÊNCIAS BIBLIOGRÁFICAS

KIKUCHI, Davi Yoshinobu. **Sistema de controle servo visual de uma câmera pan-tilt com rastreamento de uma região de referência**. 2007. Dissertação (Mestrado em Engenharia de Controle e Automação Mecânica) - Escola Politécnica, Universidade de São Paulo, São Paulo, 2007. doi:10.11606/D.3.2007.tde-27072007-163810. Acesso em: 2020-04-01.

Aguirre, L.A. **Introdução a Identificação de Sistemas**, 2a Edição. Editora UFMG, 2007.