Compact Course in Data Mining

Data Mining and Business Intelligence

Professor Dr. Gholamreza Nakhaeizadeh

Why BI ?

Worldwide BI, Analytics and Performance Management Revenue Estimates for 2010 (Millions of U.S. Dollars)

Source: Gartner (March 2011)

Company	2010 Revenue	2010 Market Share (%)	2009 Revenue	2009 Market Share (%)	2009-2010 Growth
Company	2010 Nevenue	Silate (70)	2009 Neveride	Silate (70)	diowth
SAP	2,413.1	22.9	2,066.2	22.3	16.8
Oracle	1,645.8	15.6	1,350.5	14.6	21.9
SAS Institute	1,386.5	13.2	1,324.6	143	4.7
IBM	1,222.0	11.6	1,135.6	12.2	7.6
Microsoft	913.7	8.7	739.5	8.0	23.6
Other Vendors	2,940.6	27.9	2,661.5	28.7	10.5
Total	10,521.8	100.0	9,277.9	100.0	13.4

Worldwide BI, Analytics and Performance Management Revenue Estimates for 2011 (Millions of U.S. Dollars)

Company	2011 Revenue	2011 Market Share (%)	2010 Revenue	2010 Market Share (%)	2010-2011 Growth (%)
SAP	2,883.5	23.6	2,413.1	23.0	19.5
Oracle	1,913.5	15.6	1,645.8	15.7	16.3
SAS Institute	1,542.8	12.6	1,386.5	13.2	11.3
IBM	1,477.6	12.1	1,222.0	11.6	20.9
Microsoft	1,059.9	8.7	913.7	8.7	16.0
Other Vendors	3,363.8	27.5	2,931.1	27.9	14.8
Total	12,241.0	100.0	10,512.2	100.0	16.4

Gartner Magic Quadrant for Business Intelligence Platforms

Source: Gartner (January 2008)

As of January 2008

Gartner Magic Quadrant for Business Intelligence Platforms

2008

2013

Source: Gartner (February 2013)

Gartner Magic Quadrant for Business Intelligence Platforms 2015

What is BI?

Some definitions (theoretical point of view)

- BI is a broad category of Management Information Systems, applications and technologies for gathering, storing, analyzing, and providing access to data to help enterprise users make better business. decisions.
 - The process firms go through to gather, store and anci-
 - A critical activity that helps companied the decisions, as well as increased the streamline operations in a processes.
- se Lation's operations and direction with its strategic B. goals.
 - Ine theory that the more you know about your customers and the B. problem you're trying to solve, the better you're able to solve it.
 - An effective BI system provides corporations with "one version of the truth".

Source: http://www.managementlogs.com/2004/09/what-is-bi-really-multiple-versions-of.html

BI-History

Business intelligence was defined in an October 1958 IBM Journal article by <u>Hans Peter Luhn</u>.

New Father

Howard Dresner

The term "business intelligence" was refounded in 1989 (31 years after Luhn) by Howard Dresner an analyst of Gartner Group.

Now: Dresner Advisory Services, LLC

Main Components of a Business Intelligent (BI) System

ETL: Extraction, Transformation, Loading

Reporting tools

Where is the intelligence ?

What is "Business" in BI?

In this paper, business is a collection of activities carried on for whatever purpose, be it science, technology, commerce, industry, law, government, defense, et cetera.

Business is not just:

- Commerce
 - CRM
 - Finance
 -

What about "Intelligence" in BI?

The notion of intelligence is also defined here, in a more general sense, as "the ability to apprehend the interrelationships of presented facts in such a way as to guide action towards a desired goal."

One interpretation of

Knowledge Discovery in data (Data Mining)

Main Components of a Business Intelligent (BI) System

Future trend in BI and the roll of Intelligence

Collaborative BI

Collaborative BI

Data and Knowledge Driven Problem Solving in Healthcare

Future trend in BI and the roll of Intelligence

Mobile BI

The current top three features for Mobile BI:

- Viewing
- Alerting
- KPI Monitoring

Mobile BI

In future needed technology for performing data mining:

- Intelligent Sampling
- High speed learning algorithms
- Learning from small training datasets
- Sophisticated content extraction algorithms

Launching of a Business Intelligence Competency Centre (BICC)

Launching of a Business Intelligence Competency Centre (BICC)

What is BICC?

A Business Intelligence Competency Center is a cross-functional organizational team that has defined tasks, roles, responsibilities for supporting and promoting the effective use of Business Intelligence across an organization.

Source: http://en.wikipedia.org/wiki/Business_Intelligence_Competency_Center

A Business Intelligence Competency Center is a:

- permanent and formal organizational structure
- staffed internally (i.e. by the organization) with individuals from the business and IT
- with defined tasks, roles, responsibilities and processes
- supporting and promoting the effective use of Business Intelligence to drive the business strategy.

Source: http://www.computerworld.com/pdfs/sas_free_wp.pdf

Example: Project AQUA at Daimler AG

- "AQUA (Advanced Quality Analysis) is the standardized platform for
 - Product and diagnosis reliability,
 - Fixed First Visit controlling
 - as well as market and dealer controlling at Daimler
- > The system identifies quality problems in
 - Development,
 - Production
 - After-Sales
- "There were many different systems for data analysis in use, the idea was, therefore, to transfer all the data into a consistent system"

Source: http://www.teradataemea.com/Lisbon/Speakers/Parallel-Sessions-Speakers/page.aspx/975?xf_itemId=37 and http://www.monitor.co.at/index.cfm?storyid=9952&mark=daimler

The Providers, Example

OLAP-CUBE: Analysis in OLAP is done by using OLAP-CUBES

slicing: Selecting a value of a dimensional and consider all the cells belong to other dimensions

Dicing: selecting a subset of a cube on two or more dimensions

Roll-up: Aggregation by climbing up a category hierarchy

Other capabilities and functionalities

- Calculation Engine for
 - Ratios
 - Mean
 - Variance
 -
- Supporting functional modeling for:
 - Forecasting
 - Trend analysis
 - Other statistical computations and tests

Other systems

- > ROLAP: Relational OLAP
 - OLAP software based on relational data bases
 - They have greater scalability than MOLAP but less efficiency
- > MOLAP: Multidimensional OLAP
 - OLAP software based on multidimensional data models
 - Mapping multidimensional views directly to data cube array structures

- ➤ HOLAP: Hybrid OLAP
 - Such systems combine ROLAP and MOLAP technologies
 - They benefit from the high scalability of ROLAP systems and faster computation of MOLAP systems
- ➤ OLAM: Online Analytical Mining
 - Integration of OLAP with Data Mining
 - Related to the concept "in-database Mining"

Data Warehouse (DWH)

Introduction

Development of DWH started in the beginning of 80s DWH is an enterprise-wide database that serves as a database for all kind of management support systems

Definition:

Several definition can be found for DW in the literature. One often used is due to W. H. Inmon:

"A Data Warehouse is a subject-oriented, integrated, time-variant and non-volatile collection of Data in support of managements Decision support process."

Technical potential benefits

- Integrated database systems for management support
- Discharge operational data processing systems
- Quick queries and reports due to the integrated data

Data Warehouse

Definition (continuous)

✓ Subject-Oriented:

Oriented to main subjects like Customer, Company, product, supplier,... instead to concentrate on company's ongoing operations.

✓ Integrated:

Integrate data from different heterogeneous data sources
Relational databases flat files....

by application of data cleaning and data integration methods consistency in naming,

encoding structure and attributes measures is fulfilled

Time-variant: Analysis on temporal changes and developments requires the long-term storage of data in DW; therefore "time" is a main dimension of DW

Nonvolatile: The data once stored in a DW should not change; otherwise it is not possible to perform a realistic data analysis