ECE216: Digital Electronics Laboratory

Exp 3: Understanding the combinational logic by implementing the Boolean function using multiplexer

Table of Content

	Task	Title	Page No.
	Experiment 1	Understanding the combinational logic by implementing the	1
		boolean function using basic logic gates	
	Experiment 2	To design and analyze the circuit for Full adder and Full	6
		subtractor using Logic Gates.	
1	Practical work	Practical work evaluation based on Experiment 1 and	9
	evaluation 1	Experiment 2.	
\rightarrow	Experiment 3	Understanding the combinational logic by implementing the	12
		boolean function using multiplexer	
	Experiment 4	Understanding the combinational logic by implementing the	16
		boolean function using decoder	
	Practical work	Practical work evaluation based on Experiment 3 and	20
	evaluation 2	Experiment 4.	
	Project evaluation 1	Design and Implementation of application-based projects-1	23

Experiment 5	Understanding the sequential logic by implementing the flip flop with the help of logic gates	26
Experiment 6	Understanding the sequential logic by implementing the counter with flip flop.	28
Practical work	Practical work evaluation based on Experiment 5 and	31
evaluation 3	Experiment 6.	
Experiment 7	To visualize the output of decade counter on seven segment	34
	display	
Experiment 8	To implement and simulate combinational and sequential	37
	circuit using DSCH/Proteus.	
Practical work	Practical work evaluation based on Experiment 7 and	41
evaluation 4	Experiment 8.	
Project evaluation 2	Design and Implementation of application-based projects-2	44

Multipluxer which can do met may 1/1s to one of.

Which can do met may 1/1s to one of.

No of selection of. Do. of inpuls line line Selet line Sold se connected to the off Note: At one time only one input will be connected with the off? 9. How to identify which input get connected with the 0/P? Ano. We new reled line-No. of selet line for 2": 1 mar one: n

Amisha

USR
$$SS = 0$$
 $SI = 1$
 $Y = 0$
 $SI = 1$
 $SI = 0$
 $SI = 1$
 $SI = 0$
 $SI = 0$

Experiment-3

1. Aim: To design a circuit to implement Boolean functions using Multiplexers.

Apparatus required: Multiplexer ICs (dual 4:1 mux 74153),7404, Chords.

2. Learning objectives:

- a) How to realize functionality of Dual 4 Line to 1 Line Multiplexer using 74153 IC.
- b) How Dual 4 Line to 1 Line Multiplexer select the particular input to be sent to the output.

3. Theory:

It quite often happens, in the design of large-scale digital systems, that a single line is required to carry two or more different digital signals. Of course, only one signal at a time can be placed on the one line. What is required is a device that will allow us to select, at different instants, the signal we wish to place on this common line. Such a circuit is referred to as a Multiplexer. A multiplexer performs the function of selecting the input on any one of 'n' input lines and feeding this input to one output line.

Multiplexers are used as one method of reducing the number of integrated circuit packages

Understanding the combinational logic by implementing the Boolean function using 9. this cost multiplexer Ex: Sum of full adder MSB ISBA (FBFC) At Allowy Consider

A |B|C |S the MSB Bits

O |O |O |C | far select lines. 9: How may Variable function can se implemed voiry one 2": | Mup ! n+1 Variables.

A Minten Representation $C_{61} + = \leq m(3,5,6,7)$ other the opinge Sol Mag fen Representation Cot = [M(0,1,2,4) other those in one

Pin configuration of ICs:

Draw Bread Board Connection diagram: Full addr uny Mys

Inflent the following Balen fun. ung $Y(A,B,C) = \leq m(0,3,4,5)$

Ex Siplemet ett followy back for my May (i) $\gamma = \leq m(0,1,5,6)$ (ii) $\gamma_{2} = \pi (0,1,3,4)$ A B - 14, 12 Vc GND