

Fontane v parku

V bljižnjem parku je n fontan, označenih od 0 do n-1. i-ta fontana ($0 \le i \le n-1$) stoji na točki (x[i], y[i]), pri čemer sta x[i] in y[i] sodi števili. Položaji vseh fontan so paroma različni.

Arhitekt Tim je dobil nalogo, da načrtuje izgradnjo **stezic** in postavitev **klopc** (po eno klopco na stezico). Stezica je **vodoravna** ali **navpična** črta dolžine 2, ki povezuje dve različni fontani. Stezice morajo biti postavljene tako, da lahko preko njih pridemo od katerekoli do katerekoli fontane. Predhodno obstoječih stezic v parku ni.

Ob vsako stezico mora biti postavljena **natanko** ena klopca, ki ji pripada. Postavljena mora biti na neko točko (a,b), pri čemer sta a in b lihi celi števili. Položaji vseh klopc morajo biti paroma različni. Klopca na točki (a,b) pripada stezici samo, če sta **obe** njeni krajišči v množici (a-1,b-1), (a-1,b+1), (a+1,b-1), (a+1,b+1). Na primer, klopca na točki (3,3) lahko pripada eni izmed sledečih stezic: (2,2)-(2,4), (2,4)-(4,4), (4,4)-(4,2), (4,2)-(2,2).

Pomagaj Timu postaviti stezice in klopce tako, kot zahtevajo zgornja pravila, oziroma ugotoviti, ali je to sploh mogoče. Če obstaja več možnih rešitev, lahko vrneš katerokoli izmed njih.

Podrobnosti implementacije

Implementiraj sledečo funkcijo:

```
int construct_roads(int[] x, int[] y)
```

- x,y: dve polji dolžine n. i-ta fontana ($0 \le i \le n-1$) stoji na točki (x[i],y[i]), pri čemer sta x[i] in y[i] sodi števili.
- Če obstaja dovoljena postavitev stezic in klopc, naj ta funkcija kliče funkcijo build (opisano spodaj) natanko enkrat, nato pa vrne 1.
- Sicer naj vrne 0 in naj ne kliče funkcije build.
- Ta funkcija bo klicana natanko enkrat.

Na voljo imaš sledečo funkcijo, s katero podaš možno postavitev stezic in klopc:

```
void build(int[] u, int[] v, int[] a, int[] b)
```

• u,v: dve polji dolžine m, ki podajata postavitev stezic. j-ta stezica ($0 \le j \le m-1$) povezuje fontani u[j] in v[j]. Vsaka stezica mora biti vodoravna ali navpična črta dolžine 2. Poljuben par stezic ima lahko največ eno skupno točno.

• a,b: dve polji dolžine m, ki podajata postavitev klopc. j-ta klopca ($0 \le j \le m-1$) stoji na točki (a[j],b[j]) in pripada j-ti stezici. Vsi položaji klopc morajo biti paroma različni.

Primeri

1. primer

Obravnavajmo naslednji klic:

Imamo 5 fontan na sledečih položajih: (4,4), (4,6), (6,4), (4,2) in (2,4).

Postavimo lahko sledeče 4 stezice, skupaj s pripadajočimi klopcami:

Oznaka stezice	Fontani v krajiščih	Položaj pripadajoče klopce
0	0,2	(5,5)
1	0,1	(3,5)
2	3,0	(5,3)
3	4,0	(3,3)

Rešitev ustreza sledečemu diagramu:

Funkcija construct_roads bi za ta primer klicala build([0, 0, 3, 4], [2, 1, 0, 0], [5, 3, 5, 3], [5, 5, 3, 3]) in nato vrnila 1.

Opomba: Za to postavitev fontan obstaja več veljavnih rešitev. Na primer, veljaven bi bil tudi klic build([1, 2, 3, 4], [0, 0, 0, 0], [5, 5, 3, 3], [5, 3, 3, 5]).

2. primer

Obravnavajmo naslednji klic:

```
construct_roads([2, 2], [4, 6])
```

Fontani stojita na točkah (2,2) in (4,6). Ker ne obstaja postavitev stezic, ki bi ustrezala omejitvam, funkcija construct roads v tem primeru vrne 0 in ne kliče funkcije build.

Omejitve

- $1 \le n \le 200\,000$
- $2 \leq x[i], y[i] \leq 200\,000$ (za vse $0 \leq i \leq n-1$)
- x[i] in y[i] sta sodi celi števili (za vse $0 \le i \le n-1$)
- · Položaji fontan so paroma različni.

Podnaloge

- 1. (5 točk) x[i]=2 (za vse $0\leq i\leq n-1$)
- 2. (10 točk) $2 \le x[i] \le 4$ (za vse $0 \le i \le n-1$)
- 3. (15 točk) $2 \le x[i] \le 6$ (za vse $0 \le i \le n-1$)
- 4. (20 točk) Obstaja največ ena postavitev cest, ki povezuje vse fontane.
- 5. (20 točk) Nobene 4 fontane ne tvorijo kvadrata dimenzij 2×2 .
- 6. (30 točk) Ni dodatnih omejitev.

Vzorčni ocenjevalnik

Vzorčni ocenjevalnik bere vhod v naslednji obliki:

- vrstica 1:n
- vrstica 2+i ($0 \le i \le n-1$): x[i] y[i]

Vzorčni ocenjevalnik izpiše tvoje odgovore v naslednji obliki:

• 1. vrstica: rezultat klica construct_roads

Če je rezultat klica $construct_roads$ enak 1 in je bila klicana funkcija build(u, v, a, b), vzorčni ocenjevalnik izpiše tudi:

- 2. vrstica: m
- 3+i. ($0 \le i \le m-1$) vrstica: $u[i] \ v[i] \ a[i] \ b[i]$