Revisão A2: Cálculo II Final Shutdown

Monitor Carlos Souza

November 20, 2022

Contéudo

- Integral dupla
- · integral tripla
- · áreas de superfícies
- Jacobiano(ideia)
- coordenadas polares(integral dupla)
- Coordenadas cilíndricas (integral tripla)
- Coordenadas esféricas(integral tripla)

Exercise 1

Resolva as integrais:

- a) $\int \int xydA$ limitada pelas curvas $y = x^2$ e y = 3x
- b) $\int \int (2x y) dA$ limitada pelo círculo centrado na origem de raio 2
- c)Determine o volume do tetraedro limitado pelos planos x+2y+z=2 ,x=2y x=0 e z=0

Exercise 2

Calcule $\int \int (3x+4y^2)dA$ limitada pelo no semiplano superior , limitada pelos círculos $x^2+y^2=1$ e $x^2+y^2=4$

Exercise 3

Calcule o volume do sólido limitado acima do cone $z=\sqrt{x^2+y^2}$ e abaixdo da esfera $x^2+y^2+z^2=1$

Exercise 4

Calcule a área da parte finita do paraboloide $y = x^2 + z^2$ limitada pelo plano y=25

Exercise 5

Calcule o volume da região limitada pelos parabolóides:

$$z = 8 - x^2 - y^2$$
, $z = 8 - 3(x^2 + y^2)$, $z = x^2 + y^2$

Exercise 6

Calcule o $\int \int (x^2 + y^2) dA$ onde S é a superfície do sólido limitado pela parte superior da esfera $x^2 + y^2 + z^2 = 1$ e o cone $z = \sqrt{x^2 + y^2}$

Exercise 7

Calcule o $\int \int \int z dx dy dz$ limitado pelas superfícies :

$$y = 0, z = 0, x + y = 2, 2y + x = 6, y^2 + z^2 = 4$$

Exercise 8

Considere o arco da parábola $z=3-x^2$, no plano xz compreendido entre as semi-retas $z=2x, z=\frac{11}{2}x$.

Seja S a superfície obtida pela rotação desta curva ao redor do eixo z. Pede-se:

- a) Parametrização de S
- b) Área de S

Exercise 9

Deseja-se construir uma peça de zinco que tem a forma da superfície do cilindro $x^2 + y^2 = 4$, compreendida entre os planos :

$$z = 0, x + y + z = 2, z \ge 0.$$

a)Calcule o volume do sólido

b)Se o metro quadrado do zinco custa A reais calcule o preço total da peça.

Exercise 10

Determine o volume e o centroide do sólido E que está acima do cone $z=\sqrt{x^2+y^2}$ e abaixo da esfera $x^2+y^2+z^2=1$.

2

Exercise 11

Calcule a área da esfera $x^2+y^2+z^2=12$, que se encontra no interior da parabolóide $z=x^2+y^2$