

	Prin	ited	Pa	ge:	1	of 2	
Sub	iect	Cod	••	RC	S	303	ì

Roll No:							
	 _	 _	_	 	 	 	

BTECH (SEM III) THEORY EXAMINATION 2023-24 DISCRETE STRUCTURES & THEORY OF LOGIC

TIME: 3HRS

M.MARKS: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECT	ION A
	APIOL

<u> </u>	Attempt all questions in brief.	2 x 7 =	: 14
Q no.	Question	Marks	С
a	Determine the service of		0
	Determine the greatest lower bound and least upper bound of the set {2, 3, 6}, if they exist, in the Poset (D24, /).	2	1
b.	Express power set of each of these sets.	2	1
	1) {Ø,{ Ø}}	1~	•
	2) {a,{a}}		
С.	Investigate whether the function $f(x) = x^2 - 1$ is injective or not for $f: R \rightarrow R$.	2	2
d.	Express $E(x, y, z) = xy + y'z$ into its complete sum-of-products form.	2	2
e.	Construct inverse of the following statement "If I wake up early	2	3
	in the morning, then I will be healthy."	1	
f.	Show that identity element is unique in a group,	2	4
g.	Compare Euler circuit and Hamiltonian circuit.	2	50

SECTION B Attempt any three of the following:

0.70		~\rac{1}{2} -	· 41
Q no.	○ Question	Marks	co
a.	Construct the Hasse Diagram for (P(S), ⊆) where P(S) is a power	ŕ	\Box
	set defined on set S={a, b, c}. Determine whether it is a Lattice	1	1 1
	or not.	\	
b.	Solve the following Boolean functions using K-map:	7	2
	(i) $F(A,B,C,D) = \sum (m0,m1,m2,m4,m5,m6,m8,m9,m12,m13,m14)$	1	1
	(ii) $F(A,B,C,D) = \sum (0,2,5,7,8,10,13,15)$	}	
C.	Show the validity of the following argument:	7	3
	hypotheses: "It is not sunny this afternoon and it is colder than m	.	
	yesterday. We will go swimming only if it is sunny. If we do not go	.	
1\	swimming, then we will take a canoe trip. If we take a canoe trip, then	. 1	1
`	we will be home by sunset.	`	
	conclusion: "We will be home by sunset."		
d.	Let G= {1, -1, i, - i} with the binary operation multiplication be	7	4
	an algebraic structure, where i then determine whether G is	1	'
$V \mid$	an Abelian group. Also if G is cyclic Group, then determine the	1	-
	generator of G.	}	-
e.	Explain Pigeon hole principle. Describe generalized form of Pigeon hole	7	5
	principle. If 6 colors are to paint 37 homes. Show that at least 7 of them	<u>,</u>	'
	will be of same color.	'	

SECTION C

3.	Attempt any one part of the following:	$7 \times 1 =$	<u> </u>
Q no.	Question	Marks	СО
a.	Let R be a binary relation on the set of all strings of 0 and 1 such that R = {(a,b): a and b have same number of 0's}. Show that whether R is reflexive, symmetric, transitive or a partial order relation.	7	1
b.	Show that (D42, /) is lattice. Compare the distributive and complemented lattice with example.	7	1

4	Attempt any one part of the following:	$7 \times 1 =$	= 7
Q no.	Ouestion	Marks	co
a.	Solve the following Boolean function using K-map:	7	2
ļ	F(A,B,C) = (1,2,5,7) and $D(0,4,6)$ using SOP. If $f: R \rightarrow R$, $g: R \rightarrow R$ and $h: R \rightarrow R$ defined by $f(x) = 3x^2 + 2$, $g(x) = 7x - 5$	7	2
b.	and $h(x) = 1/x$. Compute the following composition functions.		
	(i) (fogoh)(x) (ii) (gog)(x) (iii) (goh)(x)		

_	Attack and part of the following:	/ X I -	-,,,
5	Attempt any one part of the following:	Marks	100
Q no.		70	٠3
a.	Test the validity of the following afgirment.	ζ δ.	
+	"If there was a ball game, then traveling was difficult. If they arrived on	ر ۲	
1	time, then traveling was not difficult. They arrived on time. Thereto,)	
1	my man ma hall game "	7	3
b.	Describe \exists and \forall Quantifiers with example. "There is someone who got	'	
	a the course" convert this sentence into predicate toget asing		
- 1	quantifiers. Prove the following argument. All man are monas. Sociates		
1	is a man. Therefore, Socrates is mortal.		

,	Attempt any one part of the following:	$7 \times 1 =$	= 7
6. Q no.	Question	Marks	СО
a.	Describe Algebraic structure, semigroup monoid and group. Also explain the relationship among them.	7	4
b.	Consider group $G = \{1, 2, 3, 4, 5, 6\}$ under multiplication modulo 7. (a) Construct the multiplication table of G. (b) Compute 2^{-1} , 3^{-1} , 6^{-1} (c) Compute the orders and subgroups generated by 2 and 3. (d) Is G cyclic?	7	4

7	Attempt any one part of the following:	7 x 1 =	
Q no.	Question	Marks	co
	Compare bipartite and complete graph with example. Draw K _{3,4} and K ₅ . Explain why these two graphs are not planar.	7	5
b.	Show that $K_{3,3}$ satisfies in equality $ E \le 3 V - 6$, but it is non-planar (V=No. of Vertices, E=No. of Edges, R=No. of Regions)	7	5