EEE336 Signal Processing and Digital Filtering

Lecture 4 Quantization 4_1 Introduction to Quantization

Zhao Wang

Zhao.wang@xjtlu.edu.cn

Room EE322

What is quantisation?

- Sampling: the process of converting a continuous-time signal into a discrete-time signal
- Quantization: converts a signal continuous in amplitude into a signal discrete in amplitude.

• The hold capacitor in the sampler holds each measured sample x(nT) for at most T seconds

• The A/D converter convert it to a quantized sample, $x_Q(nT)$, which is representable by a finite number of bits, say B bits.

Number representation

- Binary representation: the number is represented using the symbols 0 and 1, called *bits*.
 - Eg: 10110101

- The block of bits representing a number is called a *word*, and the number of bits in the word is called the *wordlength* or *word size*.
 - Wordlength: integer power of 2, such as 8, 16, 32, etc.;
 - Word size: often expressed in units of 8 bits called a byte, such as a
 4-byte word has the wordlength of 32 bits.

Number representation

- To avoid confusion between a decimal number containing only 1 and 0 and a binary number, we shall include a subscript 10 to the right of the LSB to indicate a decimal number, and a subscript 2 for binary number.
 - 1101₁₀ represents a decimal number;
 - -1101_2 represents a binary number whose decimal equivalent is 13_{10} .
- There are two basic types of binary representations of numbers:
 - Fixed point: "int" in C/C++
 - Floating point: "float" in C/C++

Fixed and floating Point Numbers

• Fixed point representation: the binary point is assumed to be fixed.

– The range:

Non-negative integer	$0 \le \eta \le 2^{\mathrm{B}}$ -1
Negative-positive integer	$-2^{B-1} \le \eta \le 2^{B-1}-1$
Non-negative decimal	$0 \le \eta \le 1$ -2-B

- **Dynamic range** R of the numbers that can be represented with B bits is given by $R = \eta_{max} \eta_{min}$, where η_{max} and η_{min} are the maximum and the minimum values which can be represented.
- The *resolution* of the representation is defined by:

$$Q = \frac{R}{2^B}$$

where Q is also known as the quantisation level.

 Fixed point is a simple representation, however causes worse finite word-length effects.

Fixed and floating Point Numbers

• *Floating point representation*: in this case, a positive number η is represented using two parameters: the mantissa M and exponent, E in the form

$$\eta = M \cdot 2^E$$

- E is either a positive or a negative binary integer;
- M is a binary fraction restricted to lie in the range [0.5, 1)
- IEEE 32-bit floating-point format

$$\eta = (-1)^S \cdot M \cdot 2^{E-127}$$

Stored as:

4_1 Wrap up

- The signals in the system:
 - Analog signal
 - Sampled and hold signal
 - Quantized signal
- Number representation
 - Decimal VS binary
- Fixed and floating point numbers
 - Fixed point
 - Floating point

EEE336 Signal Processing and Digital Filtering

Lecture 4 Quantization
4_2 Quantization and Errors

Zhao Wang
Zhao.wang@xjtlu.edu.cn

Room EE322

Quantisation Process

- R is the full-scale range which is divided equally (for a uniform quantizer) into 2^B quantization levels.
- The spacing between levels are called the *quantization width / quantization level* or *quantizer resolution* Q

Quantisation Process

• Bipolar ADC: quantized values lie within the symmetric range:

$$-\frac{R}{2} \le x_{\rm Q}(nT) < \frac{R}{2}$$

- The upper end, R/2, of the full-scale range is not realized as one of the levels; rather, the maximum level is R/2 Q.
- Unipolar ADC: quantized values lie within the asymmetric range:

$$0 \le \chi_{\mathbb{Q}}(nT) < R$$

- Quantization of x(t) was done by
 - Rounding
 - Truncation
 - Rounding is preferred in practice because it produces a less biased quantized representation of the analog signal.

Quantisation error

• The quantisation error is the error that results from using the quantised signal $x_0(nT)$ instead of the true signal x(nT)

$$e(nT) = x_Q(nT) - x(nT)$$
(1)

- A more natural definition would be $e(nT) = x(nT) x_Q(nT)$. The choice eq(1) is more convenient for making quantizer models.
- If x lies between two levels, it will be rounded up or down depending on which is the closest level.
- Therefore, the maximum error is $e_{max} = Q/2$ in magnitude. This is an overestimate for the typical error that occurs.
- Error in quantizing a number x that lies in [-R/2,R/2):

$$e = x_Q - x$$
 \longrightarrow $-\frac{Q}{2} \le e \le \frac{Q}{2}$

Quantisation error

- To obtain a more representative value for the average error, we consider the mean and mean-square values of e:
 - Mean of error e:

$$\overline{e} = \frac{1}{Q} \int_{-Q/2}^{Q/2} e \, de = 0$$

- The result mean error e = 0 states that on the average half of the values are rounded up and half down. Thus, mean cannot be used as a representative error.
- Mean-square of error e:

$$\overline{e^2} = \frac{1}{Q} \int_{-Q/2}^{Q/2} e^2 de = \frac{Q^2}{12}$$

A more typical value is the "Root-mean-square" of error e:

$$e_{\rm rms} = \sqrt{\overline{e^2}} = \frac{Q}{\sqrt{12}}$$

Consider the mean and mean-square for "truncation"

Quantisation error

• The quantisation error e is a random variable which is distributed uniformly over the range [-Q/2, Q/2] with the probability density

$$p(e) = \begin{cases} \frac{1}{Q} & \text{if } -\frac{Q}{2} \le e \le \frac{Q}{2} \\ 0 & \text{otherwise} \end{cases}$$

- Signal-to-noise ratio (SNR)
 - R range of signal

$$SNR = 20 \log_{10} \left(\frac{R}{Q}\right) = 6B \text{ (dB)}$$

SNR is also called the *dynamic range* of the quantiser

4_2 Wrap up

- Key parameters in quantization:
 - Full scale range R
 - Quantization number of bits B
 - Quantization width / resolution Q
- Classification
 - Unipolar VS Bipolar
 - Rounding VS Truncation
- Quantization error
 - Error range, error mean and error root-mean-square

EEE336 Signal Processing and Digital Filtering

Lecture 4 Quantization
4_3 D/A and A/D Conversion

Zhao Wang

Zhao.wang@xjtlu.edu.cn

Room EE322

D/A Converters

- B-bit DAC with full-scale range R.
 - Input B bits of zeros and ones, $b = [b_1, b_2, ..., b_B]$;
 - Output an analog value x_O
 - x_0 lies on one of the 2^B quantization levels within the range R.
 - If the converter is unipolar, the output xQ falls in the range [0,R).
 - If it is bipolar, it falls in [-R/2,R/2).

B-bit D/A converter

An example

• Let's take the 4-bits, unipolar natural binary as an example:

2^{-1}	2^{-2}	2 ⁻³	2 ⁻⁴
b_1	b_2	b_3	b_4
MSB			LSB

• The equation used to calculate the value expressed by this binary number is:

$$x_Q = R(b_1 2^{-1} + b_2 2^{-2} + b_3 2^{-3} + b_4 2^{-4}) \longleftrightarrow x_Q = Qm$$

• Example: What does 1101 represent with the full scale range R = 8V?

D/A Converters

- Three types of converter and the coding conventions
 - Natural Binary: the unipolar natural binary

$$x_Q = R(b_1 2^{-1} + b_2 2^{-2} + \dots + b_B 2^{-B}) \iff x_Q = Qm$$
 (1)

where m is the integer whose binary representation is $(b_1b_2 \cdots b_B)$

- LSB (Least Significant Bit): b_B
- MSB (Most Significant Bit): b₁
- Offset Binary: the bipolar natural binary

$$x_{Q} = R(b_{1}2^{-1} + b_{2}2^{-2} + \dots + b_{B}2^{-B} - 0.5)$$
 (2)

- 2's Combine: the two's complement

$$x_{Q} = R(\overline{b}_{1}2^{-1} + b_{2}2^{-2} + \dots + b_{B}2^{-B} - 0.5)$$
(3)

Converter codes for B = 4 bits, R = 10 volts

	natural binary		natural binary offset binary		2's C	
$b_1b_2b_3b_4$	m	$x_Q = Qm$	m'	$x_Q = Qm'$	$b_1b_2b_3b_4$	
5 -	16	10.000	8	5.000	-	
1111	15	9.375	7	4.375	0111	
1110	14	8.750	6	3.750	0110	
1101	13	8.125	5	3.125	0101	
1100	12	7.500	4	2.500	0100	
1011	11	6.875	3	1.875	0011	
1010	10	6.250	2	1.250	0010	
1001	9	5.625	1	0.625	0001	
1000	8	5.000	0	0.000	0000	
0111	7	4.375	-1	-0.625	1111	
0110	6	3.750	-2	-1.250	1110	
0101	5	3.125	-3	-1.875	1101	
0100	4	2.500	-4	-2.500	1100	
0011	3	1.875	-5	-3.125	1011	
0010	2	1.250	-6	-3.750	1010	
0001	1	0.625	-7	-4.375	1001	
0000	0	0.000	-8	-5.000	1000	

A/D Converter

• A/D converters quantize an analog value x so that it is represented by B bits $[b_1, b_2, \ldots, b_B]$.

A/D Converter

- Algorithm of successive approximation A/D conversion
 - Initially all B bits are cleared to zero, b = [0, 0,..., 0], in SAR.
 - Then, starting with the MSB b₁, each bit is turned on in sequence and a test is performed to determine whether that bit should be left on or turned off.
 - The control logic puts the correct value of that bit in the right slot in the SAR register.
 - Then, leaving all the tested bits set at their correct values, the next bit is turned on in the SAR and the process repeated.
 - After B tests, the SAR will hold the correct bit vector $\mathbf{b} = [b_1, b_2, ..., b_B]$, which can be sent to the output.

Implement truncation rather than rounding.

```
for each x to be converted, do:

initialize \mathbf{b} = [0, 0, ..., 0]

for i = 1, 2, ..., B do:

b_i = 1

x_Q = \text{dac}(\mathbf{b}, B, R)

if (x \ge x_Q)

C = 1

else

C = 0

b_i = C
```

Examples

• Convert the analog values x = 3.5 and x = -1.5 volts to their offset binary representation, assuming B = 4 bits and R = 10 volts

test	$b_1b_2b_3b_4$	x_{Q}	$C = u(x - x_{Q})$
b_1	1000	0.000	1
b_2 b_3	1100	2.500	1
b_3	1110	3.750	0
b_4	1 1 0 1	3.125	1
	1101	3.125	

$$x = 3.5$$

test	$b_1b_2b_3b_4$	x_{Q}	$C = u(x - x_{Q})$
b_1	1000	0.000	0
b_2	0100	-2.500	1
b_3	0110	-1.250	0
b_4	0101	-1.875	1
	0101	-1.875	

Rounding and Truncation

- If the value of x[n] falls between two quantization levels, it will be either truncated or rounded.
- The input/output characteristic of the quantizer then depends on not only the truncation / rounding, but also on the type of number representation used:

A/D Converter

• In order to quantize by rounding to the nearest level, shift x by half the spacing between levels $y = x + \frac{1}{2}Q$

Examples

- To quantize the value x = 3.5 by rounding, we shift it to y = x + Q/2 = 3.5 + 0.625/2 = 3.8125.
- For the case x = -1.5, we have y = -1.5 + 0.625/2 = -1.1875.

test	$b_1b_2b_3b_4$	x_{Q}	$C = u(y - x_{Q})$
b_1	1000	0.000	1
b_2	1100	2.500	1
b_3	1110	3.750	1
b_4	1111	4.375	0
	1110	3.750	

test	$b_1b_2b_3b_4$	x_{Q}	$C = u(y - x_{\rm Q})$
\boldsymbol{b}_1	1000	0.000	0
b_2	0100	-2.500	1
b_3	0110	-1.250	1
b_4	0 1 1 1	-0.625	0
	0110	-1.250	

Chapter 4 Summary

- Conversion between analog and digital values
- D/A converter
 - What does a given binary word represent?
 - Three types of binary coding: natural, offset and 2's C.

- A/D converter
 - Successive approximation conversion
 - How to perform?
 - Rounding and truncation

