Show all your work. Justify your solutions. Answers without justification will not receive full marks.

Only hand in the problems on page 2.

Practice Problems

Question 1. Using the Prime Number Theorem, estimate the number of prime numbers between 2 million and 7 million.

Solution:

The number of primes between 2000000 and 7000000
$$= \pi(7000000) - \pi(1999999)$$

$$\approx 7000000/\log(7000000) - 1999999/\log(1999999)$$

$$\approx 306274.$$

The exact answer is 327715, so we are about 6.5% out.

Question 2.

- (a) Calculate $\varphi(n)$ for n = 1200 and n = 2008.
- (b) Let $n \in \mathbb{N}$ and let p be a prime. Show that if $p \mid n$ then $\varphi(np) = p\varphi(n)$. Hint: consider the prime factorization of n.

Solution:

(a)
$$\varphi(1200) = \varphi(2^4 \cdot 3 \cdot 5^2) = \varphi(2^4) \cdot \varphi(3) \cdot \varphi(5^2) = (1 \cdot 2^3)(2 \cdot 3^0)(4 \cdot 5^1) = 320$$

$$\varphi(2008) = \varphi(2^3 \cdot 251) = \varphi(2^3) \cdot \varphi(251) = (1 \cdot 2^2)(250) = 1000$$

(b) Since $p \mid n$, the prime factorization of n is

$$n = p^e p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k},$$

for some k. Thus

$$\begin{array}{rcl} \varphi(n) & = & \varphi(p^e) \; \varphi(p_1^{e_1}p_2^{e_2} \cdots p_k^{e_k}) \\ & = & (p-1)p^{e-1} \; \varphi(p_1^{e_1}p_2^{e_2} \cdots p_k^{e_k}) \\ \\ \varphi(np) & = & \varphi(p^{e+1}p_1^{e_1}p_2^{e_2} \cdots p_k^{e_k}) \\ & = & \varphi(p^{e+1}) \; \varphi(p_1^{e_1}p_2^{e_2} \cdots p_k^{e_k}) \\ & = & (p-1)p^e \; \varphi(p_1^{e_1}p_2^{e_2} \cdots p_k^{e_k}) \\ & = & p\varphi(n) \end{array}$$

Question 3.

- (a) Show that the inverse of 5 modulo 101 is 5⁹⁹.
- (b) Use repeated squaring to simplify 5⁹⁹ (mod 101).
- (c) Hence solve the equation $5x \equiv 31 \pmod{101}$.

Solution: (a) By Fermat's Little Theorem,

$$5^{100} \equiv 1 \pmod{101}$$
,

so

$$5^{99} \cdot 5 \equiv 5 \cdot 5^{99} \equiv 1 \pmod{101}$$
,

which by definition means that 5^{99} is the inverse of 5 modulo 101.

(b)
$$5^2 = 25$$
, $5^4 \equiv 19$, $5^8 \equiv 19^2 \equiv 58$, $5^{16} \equiv 58^2 \equiv 31$, $5^{32} \equiv 31^2 \equiv 52$, $5^{64} \equiv 52^2 \equiv 78 \pmod{101}$. Thus
$$5^{99} = 5^{64+32+2+1} \equiv 5^{64} \cdot 5^{32} \cdot 5^2 \cdot 5^1 \pmod{101}$$
$$\equiv 78 \cdot 52 \cdot 25 \cdot 5 \pmod{101}$$
$$\equiv 81 \pmod{101}$$

(c)
$$x \equiv 5^{-1} \cdot 31 \equiv 81 \cdot 31 \equiv 87 \pmod{101}$$
.

Check: $5 \cdot 87 = 435 \equiv 31 \pmod{101}$.

Question 4. Find the two smallest positive integer solutions to the following system of equivalences

$$x \equiv 2 \pmod{5}$$

$$x \equiv 5 \pmod{8}$$

$$x \equiv 4 \pmod{37}$$

Solution: This is a direct application of the CRT: We have $m_1 = 5$, $m_2 = 8$, $m_3 = 37$, so

$$M_1 = 8 \cdot 37 = 296$$
 $M_2 = 5 \cdot 37 = 185$ $M_3 = 5 \cdot 8 = 40$

$$M_1 \equiv 1 \pmod{5}$$
 $M_2 \equiv 1 \pmod{8}$ $M_3 \equiv 3 \pmod{37}$

We have $1 \cdot 1 \equiv 1 \pmod{5}$ $1 \cdot 1 \equiv 1 \pmod{8}$ $3 \cdot 25 \equiv 1 \pmod{37}$,

so
$$N_1 = 1$$
, $N_2 = 1$, $N_3 = 25$,

Thus $x \equiv 2 \cdot 296 \cdot 1 + 5 \cdot 185 \cdot 1 + 4 \cdot 40 \cdot 25 = 5517 \equiv 1077 \pmod{5 \cdot 8 \cdot 37}$. An integer satisfies the system of congruences iff it is in this congruence class modulo $5 \cdot 8 \cdot 37 = 1480$. The two smallest positive integers in this congruence class are 1077 and 2557.

Question 5.

- (a) Calculate $\varphi(27)$ and list the elements of $(\mathbb{Z}/27\mathbb{Z})^{\times}$.
- (b) Find the order of 2 and 8, and state which one is a primitive root.
- (c) Using this primitive root, find $x \in (\mathbb{Z}/27\mathbb{Z})^{\times}$ such that $x^7 \equiv 13 \pmod{27}$.

Solution: $\varphi(27) = \varphi(3^3) = 2 \cdot 3^2 = 18$ and $(\mathbb{Z}/27\mathbb{Z})^{\times} = \{1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26\}.$

(b)

	n:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
2^{n} :		2	4	8	16	5	10	20	13	26	25	23	19	11	22	17	7	14	1
$8^{n}:$		8	10	26	19	17	1	8	10	26	19	17	1	8	10	26	19	17	1

Thus 2 has order $18 = \varphi(27)$ and is a primitive root, while 8 has order 6 and is not a primitive root.

(c) From the above table, $13 \equiv 2^8 \pmod{27}$. Since 2 is a primitive root and $x \in (\mathbb{Z}/27\mathbb{Z})^{\times}$, x is some power of 2 (mod 27). So let $x = 2^y$. Then

$$x^7 \equiv 13 \pmod{27}$$

becomes

$$(2^y)^7 = 2^{7y} \equiv 2^8 \pmod{27}.$$

Then since 2 has order $\varphi(27) = 18$,

$$7y \equiv 8 \pmod{18}$$
.

Multiplying both sides by 13 (find by trial and error or Euclid's algorithm) gives $y \equiv 14 \pmod{18}$, which we substitute back to get $x \equiv 2^{14} \equiv 22 \pmod{27}$.

Assignment Problems

Question 1.

- (a) Calculate $13^{2010} \pmod{71}$.
- (b) Calculate 100^{-1} (mod 2011).
- (c) Calculate $\varphi(2010)$.

Solution:

- (a) 30
- (b) 181
- (c) 528.

Question 2. Your Facebook friend posts the RSA public key (N=3551, e=1565), hoping for secret messages from fans of repeated squaring. While looking through their rubbish, you find a scrap of paper with the number 67 on it, one of your favourite primes. You instantly know that it is significant. Find your friend's private key.

Solution: The significance of 67 is that it is a factor of N = 3551, and using it we obtain the prime factorization of N, namely $N = 53 \cdot 67$. Thus $\varphi(N) = 52 \cdot 66 = 3432$. The private key, d, is the inverse of e = 1565 modulo 3432. We find it using Euclid's algorithm:

Thus the private key is 125.

Question 3. Find the smallest positive integer x satisfying the following system, or show that no such x exists:

$$2x \equiv 1 \pmod{3}$$

$$3x \equiv 2 \pmod{5}$$

$$4x \equiv 3 \pmod{7}$$

$$5x \equiv 4 \pmod{11}$$

Hint: First multiply the first equation by 2^{-1} , the second by 3^{-1} etc.

Solution: $2^{-1} \equiv 2 \pmod{3}$, $3^{-1} \equiv 2 \pmod{5}$, $4^{-1} \equiv 2 \pmod{7}$, $5^{-1} \equiv 9 \pmod{11}$, so the system becomes

$$x \equiv 2 \pmod{3}$$

$$x \equiv 4 \pmod{5}$$

$$x \equiv 6 \pmod{7}$$

$$x \equiv 3 \pmod{11}$$

We solve this via the CRT: $x \equiv 839 \pmod{1155}$. So the smallest positive solution is x = 839.

Question 4. Define a function $f: \mathbb{Z} \to \mathbb{N} \cup \{0\}$ by:

$$f(n) = \begin{cases} 2n, & \text{if } n \ge 0\\ -1 - 2n, & \text{if } n < 0 \end{cases}$$

Prove that f is a bijection. Give a formula for $f^{-1}(m)$.

Solution: f is injective: Note that f(n) is even if $n \ge 0$ and is odd if n < 0. Thus if f(n) = f(m), either both $m, n \ge 0$, or both m, n < 0. In the first case 2m = f(m) = f(n) = 2n so m = n. In the second case -1-2m = f(m) = f(n) = -1-2n so 2m = 2n so m = n. Thus $f(n) = f(m) \implies n = m$ in all cases.

f is surjective: Let $N \in \mathbb{N} \cup \{0\}$. If N is even, let N = 2n for integer $n \ge 0$. Then f(n) = 2n = N. If N is odd, let N = 2k - 1 for some positive integer k. Then f(-k) = -1 - 2(-k) = 2k - 1 = N. So in all cases, given $N \in \mathbb{N} \cup \{0\}$ there exists $m \in \mathbb{Z}$ with f(m) = N.

Since k = (N+1)/2, this analysis shows:

$$f^{-1}(n) = \begin{cases} n/2, & \text{if } n \text{ is even} \\ -(n+1)/2, & \text{if } n \text{ is odd.} \end{cases}$$

Check: $f^{-1}: \mathbb{N} \cup \{0\} \to \mathbb{Z}$ is a well defined function. If $n \in \mathbb{N} \cup \{0\}$ is even then $f(f^{-1}(n)) = f(n/2) = 2(n/2) = n$. If $n \in \mathbb{N} \cup \{0\}$ is odd then -(n+1)/2 is a negative integer and $f(f^{-1}(n)) = f(-(n+1)/2) = -1 - 2(-(n+1)/2) = -1 + n + 1 = n$, so $f \circ f^{-1} = 1_{\mathbb{N} \cup \{0\}}$.

Similarly, if $n \in \mathbb{Z}$ and $n \ge 0$ then f(n) = 2n is even and $f^{-1}(f(n)) = f^{-1}(2n) = (2n)/2 = n$. If $n \in \mathbb{Z}$ and n < 0 then f(n) = -1 - 2n is odd and $f^{-1}(f(n)) = f^{-1}(-1 - 2n) = -(-1 - 2n + 1)/2 = 2n/2 = n$. So $f^{-1} \circ f = 1_{\mathbb{Z}}$.

Question 5. Let A and B be sets and let $g: A \to B$ be a function. A function $f: B \to A$ is a *left inverse* for g if $f \circ g = 1_A$. A function $h: B \to A$ is a *right inverse* for g if $g \circ h = 1_B$.

- (a) Show that g has a left inverse iff it is injective.
- (b) Show that g has a right inverse iff it is surjective.

Solution: (a) \Longrightarrow If $g: A \to B$ has a left inverse $f: B \to A$ then $f \circ g = 1_A$. If g(a) = g(b) then $a = 1_A(a) = (f \circ g)(a) = f(g(a)) = f(g(b)) = (f \circ g)(b) = 1_A(b) = b$, so g is injective.

 \Leftarrow Fix $a_0 \in A$. If g is injective, for each $b \in A$ there is at most one $a \in A$ with g(a) = b. Define $f: B \to A$ by

$$f(b) = \begin{cases} a, & \text{if there exists } a \text{ with } g(a) = b \\ a_0, & \text{if there is no } a \text{ with } g(a) = b. \end{cases}$$

Then f(g(a)) = f(b) where g(a) = b, so f(b) = a by definition. Hence for all $a \in A$ we have $(f \circ g)(a) = f(g(a)) = a = 1_A(a)$, so $f \circ g = 1_A$, so g has left inverse f. Notice that a_0 plays no role.

(b) \Longrightarrow Suppose $g: A \to B$ has a right inverse $h: B \to A$, so $g \circ h = 1_B$. Let $b \in A$, and let a = h(b). Then $g(a) = g(h(b)) = (g \circ h)(b) = 1_B(b) = b$, so g is surjective.

 \Leftarrow Suppose g is surjective. Then for each $b \in A$ there exists (at least one) $a \in A$ with g(a) = b. For each b, choose a corresponding element a_b such that $g(a_b) = b$. Now define $h: B \to A$ by $h(b) = a_b$. Then $(g \circ h)(b) = g(h(b)) = g(a_b) = b$ for all $b \in A$, so $g \circ h = 1_B$, and g has right inverse h.

In this direction we are required to make a simultaneous choice of a_b for each b; this is allowed according to the Axiom of Choice in Set Theory (see Math 3306).

Question 6. Let $G = \mathbb{Z} \times \mathbb{Q}$. Binary operations \star , \circ and \bullet are defined on G as follows:

- (a) $(a,b) \star (c,d) = (a+c, 2^c b+d);$
- (b) $(a,b) \circ (c,d) = (a+c, 2^{-c}b+d);$
- (c) $(a,b) \bullet (c,d) = (a+c, 2^c b d).$

Determine if \star , \circ , and \bullet are associative. For the associative operations, determine if there is an identity element.

Solution: All three are binary operations on G.

Check associativity:

$$\begin{array}{lll} \Big((a,b) \star (c,d) \Big) \star (e,f) &=& (a+c,\, 2^cb+d) \star (e,f) &=& (a+c+e,\, 2^e(2^cb+d)+f) \\ &=& (a+c+e,\, 2^{c+e}b+2^ed+f). \\ (a,b) \star \Big((c,d) \star (e,f) \Big) &=& (a,b) \star (c+e,\, 2^ed+f) &=& \\ &=& (a+c+e,\, 2^{c+e}b+2^ed+f). \\ \\ \Big((a,b) \circ (c,d) \Big) \circ (e,f) &=& (a+c,\, 2^{-c}b+d) \circ (e,f) &=& (a+c+e,\, 2^{-e}(2^{-c}b+d)+f) \\ &=& (a+c+e,\, 2^{-(c+e)}b+2^{-e}d+f). \\ \\ (a,b) \circ \Big((c,d) \circ (e,f) \Big) &=& (a,b) \circ (c+e,\, 2^{-e}d+f) &=& \\ &=& (a+c+e,\, 2^{-(c+e)}b+2^{-e}d+f). \\ \\ \Big((a,b) \bullet (c,d) \Big) \bullet (e,f) &=& (a+c,\, 2^cb-d) \bullet (e,f) &=& (a+c+e,\, 2^e(2^cb-d)-f) \\ &=& (a+c+e,\, 2^{c+e}b-2^ed-f). \\ \\ (a,b) \bullet \Big((c,d) \bullet (e,f) \Big) &=& (a,b) \bullet (c+e,\, 2^ed-f) &=& (a+c+e,\, 2^{c+e}b-(2^ed-f)) \\ &=& (a+c+e,\, 2^{c+e}b-2^ed+f). \end{array}$$

So • is not associative.

Check identity:

If $(a,b) \star (c,d) = (a,b)$ then a+c=a, $2^cb+d=d$ so c=0 and b+d=b so d=0. So if there is an identity, it must be (0,0). Check: $(a,b) \star (0,0) = (a+0,2^0b+0) = (a,b)$ and $(0,0) \star (a,b) = (0+a,2^a0+b) = (a,b)$. So (0,0) is the identity.

If $(a,b) \circ (c,d) = (a,b)$ then a+c=a, $2^{-c}b+d=d$ so c=0 and b+d=b so d=0. So if there is an identity, it must be (0,0). Check: $(a,b) \circ (0,0) = (a+0,2^0b+0) = (a,b)$ and $(0,0) \circ (a,b) = (0+a,2^{-a}0+b) = (a,b)$. So (0,0) is the identity.