1) Given the normal distribution with mean - 200 and variance - 100, find:
$\frac{U = 200}{0^2 = 100} = \sqrt{100} = 0 = 100$
a) the area below 214 b) the area obove 179
$P(X < 2/4) \qquad P(X > 179)$ $P(z < \frac{2/4 - 200}{10}) \qquad P(z > \frac{174 - 200}{10})$
$P(z < \frac{2/4 - 200}{10})$ $P(z > \frac{174 - 200}{10})$
P(Z< 1.4) P(Z > -2.1)
P(1-0.0179)
= 0.9192 or 91.92%
= 0.9821 or 98.21 %
c) the over between 188 and 206
P(188 < X < 206)
P(188 < Z < 206) -1.4, 70.6
P(188-200 < 206-200)
10 2 10
P(-1.2 < Z < 0.6)
P(Z < 0.6) - P(Z < -1.2)
0.7257 - 0.1151
= 0.61.06 or 61.06 %
CS laser with Donklorpe
7546
0.7700.800
a) 0.7745-0.84 6) 46 (2.5 % 87.5 = 6.8799 = 1.15
87.5 %
80% × lower × upper
$x = 2.0 + \mu$ $(-1.15)(10) + 200$ $(1.15)(10) + 200$
x = 0.89(10) + 200 x = 188.50 x = 211.50
= 208. 96
*
CS Internal of Calcium of

2) A sortdrink machine is regu	lated so that it discharges as are rage of 200
milities per cop, it the one	unt op driek is normally distributed with a
standard deviation of 1	Militers;
4 = 200	-06 0-6
r = 15	
a) $P(x > 229)$	BU PEREXIA
P(z > 229-200)	b) P(191 < X < 209)
P(Z > 1.6)	b) P(191 < x < 209) P(191 < z < 209)
P(1-9452)	
= 0.0548 or 5.98%	P(191-200 < Z < 209-200)
0.0018 00 0 10 10	p(-0.6 < Z < 0.6)
	P(2<0.6)- P(2<-0.6)
- P(V > 270)	
c) P(X7 230)	. 72457 2743
P(Z 7 230)	= 0-4514 or 45-14 %
P(Z 7 230-200)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1(272)	d) 6-25 = .25 143 =-0.67
9(1-0.9772)	
-0-0228	18-17-26 1 - 17-6) - 1
at of 1000 aps:	DOMEST X = 20 + M
1000 x 0.228	2000 x = (-0.679) (b) +200
= 22.8 or approx 23 cups	100
and brupping to the	V4.703.957-3

CS

- 3. If a set of grades on a Statistics exam are approximately normally distributed with a mean of 74 and a standard deviation of 7.9, find
- a) the lowest passing grade if the lowest 10% of the students are given F's;
- b) the highest B if the top 5% of the students are given A's;
- c) the lowest B if the top 10% are given A's and the next 25% are given B's.

M - 79	
D = 7.9	
a) 00 D.1 = 0.1003 = -1.28	6) 95% 0.5 -9495 = 1.645
	5%
25-1-28	2=1.695
x= 20 + M	x = 20 + M
(-1.28)(7.9) + 74 =63-89, "Lowest Passing Grade."	(1.645) (7.9) + 79 = 86.99 "Highest R"
=63-89 Lowest Passing Grade.	= 86.99 "Highest R"
c) . 10 = 0.8997 = 1.28	
35% - 105-0-385-2	
10% .25=0.6480.0-385	(8)
231-28	
2=0·385	
10%: == 1.28	
(1-28) (7.9) + 74	
-84.11	
25%: 7 = 0.385	
(0.385) (7.9) + 74	
= 77.04, "Lourst B."	

4. The IQs of 2,000 applicants to a certain university are approximately normally distributed with a mean of 115 and a standard deviation of 12. If the school requires an IQ of at least 95, how many of these students will be rejected on this basis, regardless of other qualifications?

9) M=115-15-20	40.50
0 = 12	1
The second second	J.
) P(X < 95)	. 3
P(Z<95)	. 7.3
P(Z < 95-115)	37.
P(Z< -1.67	
=0.0475	
2000 × 0.0475	
=95	
95 students will be rejede	d
based on their 1a.	