Nombre:

Examen Parcial Economía Financiera

Instructor: Miguel Cantillo

Instrucciones: Tiene 2:45 horas para completar este examen, que consiste de una sección de falso y verdadero, y de un problema. Puede usar una calculadora y una hoja de apuntes por los dos lados. Enseñe todo su trabajo: respuestas que sólo contengan frases escuetas y sin explicación recibirán muy poco crédito. ¡Buena Suerte!

Parte I: Falso o Verdadero (40 puntos)

La parte de falso o verdadero contiene 10 proposiciones. Decida si son verdaderas o falsas. De ser falsas, explique porqué en un par de líneas.

- 1. _____ El rendimiento por dividendos ("dividend yield") siempre es positivo. V. aunque alguien muy estricto puede decir que el rendimiento por dividendos puede también ser cero, que estrictamente no es positivo.
- 2. _____ Un instrumento complejo es un caso especial de un instrumento puro.**F. Es** al revés
- 3. _____ Si sólo sabemos que la utilidad tiene u' > 0 y u'' < 0 es posible ordenar los siguientes fondos por dominancia estocástica **V.** $B \succ_{DESO} A$

Repagos	1	2	3	5	8
Prob(Fondo A)	0,20	0,10	0,40	0,10	0,20
Prob(Fondo B)	0,10	0,25	0,15	0,40	0,10
F(t)	0,20	0,30	0,70	0,80	1,00
G(t)	0,10	0,35	0,50	0,90	1,00
$\int_{-\infty}^{t} F(x) dx$		0.20	0.90	2.5	5.5
$\int_{-\infty}^{t} G(x) dx$		0.10	0.60	2.4	5.4

- 4. _____ El θ_s nunca puede tener un valor negativo. **V.**
- 5. _____ Las utilidades cardinales $u_1 = \sqrt{w}$ y $u_2 = 2 \sqrt{w}$ son equivalentes. **F.** porque es una transformación lineal negativa.
- 6. _____ La tasa libre de riesgo puede bajar con un aumento en la aversión relativa al riesgo. V. $r_f = \delta + \gamma \mu \frac{\gamma^2 \sigma^2}{2}$
- 7. ______ Si el test de razón de varianzas se rechaza, la variable bajo estudio debe ser estacionaria. **F. sólo si** VR < 1 **significativamente.**
- 8. _____ Ceteris Paribus, en un mercado completo el valor de la deuda riesgosa es mayor que el de una deuda sin riesgo. F. ya que los fc_{js} de la deuda riesgosa es menor o igual al de la deuda sin riesgo con las mismas caracterítsicas (valor facial, cupón, plazo, etc.).

- 9. _____ El rendimiento continuamente compuesto es siempre menor que el rendimiento simple. V. (alguno dijo que pueden ser iguales con el rendimiento simple de 0, y otros que miden las mismas cosas con distintos valores, les dí puntos, aunque no era el sentido de la pregunta)
- 10. ______ Hay preferencias de media y varianza cuando se combinan las utilidades CRRA con rendimientos lognormales. F., ya que los rendimientos lognormales no son de ubicación y escala, y la CRRA no incluye a la utilidad cuadrática.

Parte II: Problema (60 puntos)

1. Problema de las acciones.

- a) Explique qué es un rendimiento bruto R_j y qué es un rendimiento continuamente compuesto r_j , su rango bajo responsabilidad limitada, y las ventajas y desventajas de cada una de estas medidas. (14 puntos). Para una inversión como el de una acción, el rendimiento bruto se calcula como $R_{jt} \equiv \frac{P_{jt}}{P_{jt-1}} + \frac{DIV_{jt}}{P_{jt-1}}$, y me dice por cuánto se ha multiplicado mi inversión en un dado periodo. Con responsabilidad limitada, este rendimiento debe ser mayor o igual a cero. Este rendimiento es intuitivo, aunque para cambiar su periodo de análisis (p.e. de un mes a un año), hay que componer los intereses, no solamente multiplicarlo, p.e. por doce. El rendimiento continuamente compuesto se calcula como $r_{jt} = ln(R_{jt})$, y con responsabilidad limitada tiene el rango igual a toda la línea real. De desventaja tiene que es menos intuitivo, pero de ventaja tiene, por ejemplo, que para pasarlo de un periodo mensual a anual, sólo es necesario multiplicarlo por 12, es decir, que es muy fácil de manipular. Los dos rendimientos son dos formas de decir la misma cosa.
- b) Considere dos empresas con la condición de que $lnR_j \sim N(\mu_j, \sigma_j^2)$, dadas abajo:

Ticker	μ_j	σ_{j}
MSFT	6,64%	28,00 %
GOOG	6,70 %	31,65%

Calcule el rendimiento bruto esperado $E(R_j)$ de cada acción (16 puntos). Para un rendimiento lognormal, sabemos que $E(R_j) = exp\left(\mu_j + \frac{\sigma_j^2}{2}\right)$, por lo que el rendimiento bruto esperado de MSFT es 1,1113 y el de GOOG es de 1,1243.

c) Suponga que un agente tiene una utilidad CRRA con $\gamma=1,34$ y debe decidir si invierte en GOOG o MSFT, cuyos datos están dados en (b). Explique cuál de las dos inversiones escogería. (16 puntos). La utilidad $CRRA=\frac{W^{1-\gamma}-1}{1-\gamma}$, y con $W_0\equiv 1$ sin pérdida de generalidad, tenemos que $W=R_j$, dependiendo de la acción en que queremos invertir. La utilidad esperada es $V_j=\frac{E\left(R_j^{1-\gamma}\right)-1}{1-\gamma}=\frac{exp\left[(1-\gamma)\mu_j+\frac{(1-\gamma)^2\sigma_j^2}{2}\right]-1}{(1-\gamma)}$. Esta utilidad esperada admite transformaciones monotónicas, en particular, $\tilde{V}_j=\frac{ln\left(\left[V_j+\frac{1}{1-\gamma}\right]\times\left[1-\gamma\right]\right)}{1-\gamma}=\mu_j+(1-\gamma)\frac{\sigma_j^2}{2}$, como vimos en clase.

- Usando esta fórmula, la utilidad esperada con $\gamma = 1{,}34$ de MSFT es $5{,}30\,\%$ y la de GOOG es de $5{,}00\,\%$, por lo que la persona escogerá invertir en MSFT.
- d) Suponga que un agente tiene una utilidad CRRA y los datos de GOOG y MSFT están dados en (b). Explique si existe una aversión al riesgo relativa (RRA) que haga que el agente esté indiferente entre una u otra acción: si es así, calcule el RRA. Si tal RRA no existe, explique porqué no existe (14 puntos). Si el agente tuviera una utilidad logarítmica $(\gamma=1)$ preferiría a Google, por lo que el γ de indiferencia está entre 1 y 1,34. En este caso, debemos igualar las utilidades esperadas, $\mu_1 + (1-\gamma)\frac{\sigma_1^2}{2} = \mu_2 + (1-\gamma)\frac{\sigma_2^2}{2}$, y despejando a γ nos da $\gamma=1+\frac{2(\mu_1-\mu_2)}{(\sigma_1^2-\sigma_2^2)}$, y usando a MSFT como 1 y a GOOG como 2 nos da $\gamma=1,0551$.