DEPARTMENT OF CHEMISTRY

Chemical Crystallography

Will it crystallise?

Classification of solid form data extracted from CSD and ZINC using machine learning

Jerome G P Wicker, William I F David, Richard I Cooper

CCK-1 24th May 2016

Overview

1. Tools used:

CSD

ZINC

RDKit

scikit-learn

2. How machine learning tools can predict the crystallisability of novel molecules with 90%

accuracy.

Databases

The Cambridge Structural Database (CSD)

Comprehensive of the published literature and highly curated, the Cambridge Structural Database (CSD) is an essential resource to scientists around the world

Established in 1965, the CSD is the world's repository for small-molecule organic and metal-organic crystal structures. Containing over 800,000 entries from x-ray and neutron diffraction analyses, this unique database of accurate 3D structures has become an essential resource to scientists around the world.

With comprehensive and fully retrospective coverage of the published literature you can have full confidence that your CSD searches are returning all crystal structure matches. The CSD also contains directly deposited data that are not available anywhere else.

Growth of the CSD since 1972, the red bar shows structures added annually.

Each crystal structure undergoes extensive validation and cross-checking by expert chemists and crystallographers to ensure that the CSD is maintained to the highest possible standards. Also, each database entry is enriched with bibliographic, chemical and physical property information, adding further value to the raw structural data. These editorial processes are vital for enabling scientists to interpret structures in a chemically meaningful way.

Databases

Irwin, Sterling, Mysinger, Bolstad and Coleman, *J. Chem. Inf. Model.* 2012

ZINC contains over 21 million 'purchasable' compounds.

CSD contains 800,000+ 'crystalline' compounds.

C. R. Groom et al, *Acta Cryst.*, **B72**, 171-179, 2016
F. H. Allen et al, *Acta Cryst.*, **B58**, 380-388, 2002

Cambridge Structural Database

Cambridge Structural Database

CSD Python API


```
>>> csd_reader = io.MoleculeReader('CSD')
>>> first_molecule = csd_reader[0]
>>> first_molecule.identifier
u'AABHTZ'
>>> abebuf_mol = csd_reader.molecule('ABEBUF')
>>> abebuf_mol.identifier
u'ABEBUF'
```

```
>>> mol = mol_reader[0]
>>> print mol.identifier
ABEBUF
>>> print mol.smiles
O=C1Nc2cccc2C(=O)Nc2cccc12.c1ccncc1
>>> len(mol.components)
2
>>> for component in mol.components:
... print component.smiles
...
O=C1Nc2cccc2C(=O)Nc2cccc12
c1ccncc1
```


CSD Python API

ZINC

Download from internet

	Lead-Like	Fragment-Like	Drug-Like	All	Shards
Standard Size Updated	<u>Lead-Like</u> 6,053,287 2014-09-29	Fragment-Like 847,909 2015-02-04	<u>Drug-Like</u> 17,900,742 2014-11-24	All Purchasable 22,724,825 2014-11-28	<u>Shards</u> 635,159 2014-05-16
Clean Size Updated	<u>Clean Leads</u> 4,591,276 2014-09-25	Clean Fragments 1,611,889 2014-09-24	<u>Clean Drug-Like</u> 13,195,609 2013-11-05	<u>All Clean</u> 16,403,865 2013-12-18	Clean Shards 325,950 2014-11-24
In Stock Size Updated	<u>Leads Now</u> 3,687,621 2014-06-25	Frags Now 704,041 2015-02-04	<u>Drugs Now</u> 10,639,555 2014-11-24	All Now 12,782,590 2014-05-01	Shards Now 424,775 2014-09-24
Boutique Size Updated	Boutique Leads 5,114,169 2012-12-24	Boutique Frags 2,755,555 2013-11-08	Boutique Drugs 10,292,210 2012-11-27	All Boutique 12,217,845 2012-11-27	Boutique Shards 80,698 2013-11-08

Convert CSD and ZINC smiles to canonical smiles in RDKit to find "crystalline" molecules in ZINC – remainder "non-crystalline"

RDKit - Descriptor calculation

[0.832, -1.34, 1.23, 134.4, 3, 5, 3, 4, 0.43, 0.0, 0.02, 0.6, 1.3, 13.23, 1, 0, 0, 3, 2, 2.43, 449, ...]

RDKit - Descriptor calculation


```
from rdkit import Chem
from rdkit.Chem import Descriptors

from rdkit.ML.Descriptors import MoleculeDescriptors

names = [x[0] for x in Descriptors.descList]

calc = MoleculeDescriptors.MolecularDescriptorCalculator(names)

molecule_supplier = Chem.SmilesMolSupplier('csdtrain.smi')

for molecule in molecule_supplier:

if molecule is not None:

descriptors = calc.CalcDescriptors(molecule)

print descriptors
```

Molecular weight, connectivity indices, functional group counts...

Scikit-learn - machine learning

Purpose: To classify data

Support vector machines; neural networks; decision trees;

random forest.

Scikit-learn - machine learning

- Support vector machine: tries to separate classes using surfaces through descriptor space.
- Rank molecules according to probability of belonging to class
- Kernel trick transforms to higher dimensional feature space – "black box model"

Scikit-learn - machine learning


```
def Do_SVM(filename, C, gamma, train_d, train_labels, test_d, test_labels):
    clf_svm = svm.SVC(gamma=gamma, C=C, probability = True)
    clf_svm = clf_svm.fit(train_d, train_labels)
    preds_SVM = clf_svm.predict(test_d)
    confmat = metrics.confusion_matrix(test_labels, preds_SVM)
    accuracy = clf_svm.score(test_d, test_labels)
```

		predicted class		
		0	1	
true	0	True Positive (TP)	False Negative (FN)	
class	1	False Positive (FP)	True Negative (TN)	

Predictions of solid state properties

Morphology prediction

Daniel Winn, Michael F. Doherty *Chem. Eng. Sci.*, 2002, **57**, 1805-1813

Polymorph prediction

Sarah L. Price *Phys. Chem. Chem. Phys.*, 2008, **10**, 1996-2009

Melting point, solubility, logP, toxicity, heat capacity, ...

Crystallisation

- Crystallisation has been described as "the definitive black art"¹
- Methods include "Braconnot's procedure" – leave in back of fumehood for a year

- Potential applications of predicting crystallisation:
 - Flag up hopeless cases during recrystallisation screens
 - Modify molecules to make materials more/less crystalline
 - Rationalize crystal growth/non-growth

Databases

Subset of molecules: no organometallic

Leaves ~24000 "crystalline" molecules, take a similar number of randomly selected non-crystalline ones to ensure no class imbalance

Machine learning

Results

Validation

Experimental:

20 *diverse* ZINC compounds predicted to be most crystalline and least crystalline. After a recrystallization screen:

- 1 sample was rejected. (wrong compound supplied)
- 7 of 11 predicted crystalline, grew good quality crystals.
- 8 of 8 predicted non-crystalline failed to recrystallize under the same conditions.

79% accuracy.

CSD update:

Rotatable bond effect

RDKit - 3D descriptor

Generate 50 conformers

Optimise using MMFF94 force field

Discard any within an RMSD of 0.5Å of any other

Conformer energy landscape

```
| from rdkit import Chem
from rdkit.Chem import AllChem
| from rdkit.Chem import PyMol

molecule = Chem.MolFromSmiles('c1ccccc1C(=0)OCCCC')
conformers = AllChem.EmbedMultipleConfs(molecule, 20, pruneRmsThresh=0.5)

core = Chem.MolFromSmarts('c1ccccc1')
match = molecule.GetSubstructMatch(core)
AllChem.AlignMolConformers(molecule, atomIds=match)

v = PyMol.MolViewer()
confs = [conf.GetId() for conf in molecule.GetConformers()]
| for x in confs:
    name = 'Conformer' + str(x)
    v.ShowMol(molecule, confId=x, name='Conf-%d' % x, showOnly=False)
```

RDKit - 3D descriptor

Conformer Energies (kcal/mol):

27.12

27.26

27.51

27.61

27.87

28.22

28.22

28.25

28.66

28.66

Conformers 0.0-1.5: **8**

Conformers 1.5-3.5: 2

3D descriptor

Upper limit for conformer energy 0.795 0.790 0.785 0.780 0.775 0.770 0.765 0.765 0.755 └─ 5 10 15 20 25 30 35 Conformer energy (kcal/mol)

Upper energy limit 14.5 kcal/mol

3D descriptor

	Predicted non-crystalline	Predicted crystalline	OVERALL ACCURACY	
Non-crystalline	91.9% (5525)	8.1% (488)	92.48%	
Crystalline	6.9% (417)	93.1% (5599)	92.46%	

RDKit - 3D descriptor

10 rotatable bonds

2 conformers

SVM rule extraction

- SVM is "black box" no way of understanding the classification
- Useful to obtain set of rules which mimic the SVM
- Decision trees can learn predictive model directly from data
 - 1. Train an SVM algorithm
 - 2. Reassign training labels based on SVM predictions
 - 3. Train a decision tree on the newly-assigned training labels

SVM rule extraction

Conclusions

- Crystallinity can be predicted from atomic connectivity with an accuracy of ~92% for unfiltered test set.
- 3D descriptor gives small overall improvement, but is the single best-performing descriptor – captures more info.
- Decision trees can be used to extract rules from "black box" algorithm
- Ongoing work synchrotron powder diffraction, combinatorial synthetic validation, physical property measurements

Acknowledgements

Greg Landrum

Trixie Wagner

Max Pillong

Richard Cooper

Bill David

Karim Sutton

Sophie Gearing

Katie McInally

Cooper Group

Scikit-learn: Machine Learning in Python, Pedregosa et al. (2011), Journal of Machine Learning Research 12, 2825-2830.

What is crystalline?

