Lecture 3 Distance-based classifiers

Machine Learning Andrey Filchenkov

06.03.2018

Lecture plan

- Distance-based classifiers (1NN)
- Parameters tuning
- Generalized distance-based classifiers
- Prototype selection
- Anomaly detection
- The presentation is partly prepared with materials of the K.V. Vorontsov's course "Machine Leaning".
- Slides are available online: goo.gl/Wkif2w

Lecture plan

- Distance-based classifiers (1NN)
- Parameters tuning
- Generalized distance-based classifiers
- Prototype selection
- Anomaly detection

Problem formulation

X is an object set, Y is an answer set, $y: X \to Y$ is an unknown dependency, $|Y| \ll \infty$ $X^{\ell} = \{x_1, ..., x_n\}$ is a training sample, $T^{\ell} = \{(x_1, y_1), ..., (x_{\ell}, y_{\ell})\}$ is a set of examples.

Task: return an algorithm $a: X \rightarrow Y$.

What is this task?

Classification problem formulation

X is an object set, Y is an answer set, $y: X \to Y$ is an unknown dependency, $|Y| \ll \infty$ $X^{\ell} = \{x_1, ..., x_n\}$ s a training sample, $T^{\ell} = \{(x_1, y_1), ..., (x_{\ell}, y_{\ell})\}$ is set of examples.

Task: return an algorithm $a: X \rightarrow Y$.

What is this task? Classification, because $|Y| \ll \infty$.

Duck test

Duck test:

If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck.

Duck test

Duck test: if it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck.

Looks	Swims	Quacks	A duck?
like a duck	like a duck	like a duck	Probably, a duck
totally not like a duck	can be a duck	not like a duck	Probably, not a duck

How is the classifier formalized?

What is the training sample?

Many ducks, many non-ducks (unducks).

What is classification procedure?

- 1. Ducks were described with **key features**.
- 2. Similarity concept was used.
- 3. Logical separator was used for classification.

Main idea

Key hypothesis: similar objects belong to same class.

Main idea: for an object we have to find a class, in which objects are the most similar to the given one.

- Reasoning by analogy (case-based)
- Lazy learning

Formalization of "similarity"

"Similarity" is a distance between objects. We will talk about **metrics**.

Distance: $\rho: X \times X \to [0; +\infty)$.

Metric space is a set with a metric $\rho(x, y)$, defined on it.

Commonly used metrics

Minkowski distance:

$$p(x,y) = \left(\sum_{i} |x_i - y_i|^p\right)^{\frac{1}{p}},$$

when p = 2, it is the Euclidian distance; when p = 1, it is the Manhattan distance.

Mahalanobis distance:

$$p(x,y) = \sqrt{(x-y)^{\top} S^{-1}(x-y)},$$

where *S* is covariance matrix for *x* and *y*.

Nearest neighbor method (1NN)

 $x_{(u,1)}$ is nearest neighbor of u: $x_{(u,1)} = \operatorname{argmin}_{x \in X^{\ell}} \rho(u, x)$.

Classifier:

$$a(u,T^{\ell})=y_{(u,1)}.$$

Voronoi diagram:

1NN discussion

Advantages:

- simplicity;
- lucidity;
- interpretability.

Disadvantage:

- sensibility to noise;
- low efficacy;
- no parameters (explicitly);
- necessity to store all the examples.

Lecture plan

- Distance-based classifiers (1NN)
- Parameters tuning
- Generalized distance-based classifiers
- Prototype selection
- Anomaly detection

Hold-out validation

Hold-out validation, HO

Split training sample into two parts:

$$T^{\ell} = T^t \cup T^{\bar{\ell} - t}$$

Train, T^t

Test, $T^{\ell-t}$

Solve the optimization problem:

$$\mathrm{HO}(\mu, T^t, T^{\ell-t}) = Q(\mu(T^t), T^{\ell-t}) \to \min$$

Complete cross-validation

Choose value of t.

Split the sample with all the possible ways on T^t and $T^{\ell-t}$.

Train, T^t	Test, $T^{\ell-t}$	

Solve the optimization problem:

$$CVV_t = \frac{1}{C_\ell^{\ell-t}} \sum_{T^\ell = T^{\ell-t} \cup T^t} Q(\mu(T^t), T^{\ell-t}) \to \min$$

Cross-validation

Split sample to *k* parts *k* times

k-fold cross-validation

k-fold cross-validationEach of k blocks is a test sample once.k is usually 10 (5 is small sample size).

Split
$$T^{\ell} = F_1 \cup ... \cup F_k$$
, $|F_i| \approx \frac{\ell}{k}$.

Solve the optimization problem:

$$CV_k = \frac{1}{k} \sum_{i=1}^k Q(\mu(T^{\ell} \backslash F_i), F_i) \to \min.$$

$t \times k$ -fold cross-validation

Repeat *t* times: split sample on *k* blocks, each of *k* blocks is a test sample once.

k is usually 10, *t* is usually 10 or less.

Split T^{ℓ} t times randomly:

$$T^{\ell} = F_{(1,1)} \cup \cdots \cup F_{(k,1)} = \cdots = F_{(1,t)} \cup \cdots \cup F_{(k,t)},$$
$$|F_{(i,j)}| \approx \frac{\ell}{k}.$$

Solve the optimization problem:

$$CV_{t\times k} = \frac{1}{tk} \sum_{j=1}^{t} \sum_{i=1}^{k} Q(\mu(T^{\ell} \setminus F_{(i,j)}), F_{(i,j)}) \to \min.$$

Leave one out

Leave-one-out cross-validation, LOO Split sample into $\ell-1$ and 1 objects ℓ times.

Train,
$$T^{\ell-1}$$
 $\{x_i\}$

Solve the optimization problem:

LOO =
$$\frac{1}{\ell} \sum_{i=1}^{\ell} Q(\mu(T^{\ell} \backslash p_i), p_i) \rightarrow \min.$$

where $p_i = (x_i, y_i)$.

Lecture plan

- Distance-based classifiers (1NN)
- Parameters tuning
- Generalized distance-based classifiers
- Prototype selection
- Anomaly detection

How can it be improved?

- More complicated model (more parameters)
- Distance choosing
- Dimension reduction
- Usage of good structures for storing data
- Object set thinning
- Noise filtering
- Prototype selection

kNN

Choose a distance ρ .

Sort objects:

$$\rho\big(u,x_{(u,1)}\big) \leq \rho\big(u,x_{(u,2)}\big) \leq \cdots \leq \rho\big(u,x_{(u,\ell)}\big).$$

Algorithm *k*NN:

$$a(u; T^{\ell}) = \operatorname{argmax}_{y \in Y} \sum_{i=1}^{\ell} [y(u, i) = y][i \le k],$$

$$a(u; T^{\ell}) = \operatorname{argmax}_{y \in Y} \sum_{i=1}^{k} [y(u, i) = y].$$

Optimization of k

Is equal to the problem of LOO quality functional minimization:

$$LOO(k, T^{\ell}) = \sum_{i=1}^{\ell} \left[a(x_i; T^{\ell} \setminus \{(x_i, y_i)\}, k) \neq y_i \right] \rightarrow \min_k$$

Generalized metric classifier

$$a(u; T^{\ell}) = \operatorname{argmax}_{y \in Y} \sum_{i=1}^{\ell} [y(u, i) = y] w(i, u),$$

where w(i, u) is a function representing importance of ith neighbor of u.

 $C_y(u) = \sum_{i=1}^{\ell} [y(u,i) = y] w(i,u)$ is estimation of object u closeness to class y.

$$a(u; T^{\ell}) = \operatorname{argmax}_{y \in Y} \sum_{i=1}^{\ell} C_{y}(u).$$

What can be chosen as w?

w(i,u):

- linearly decreasing functions;
- exponentially decreasing functions;
- kernel functions.

Kernel function

Kernel function K(x) is symmetric non-negative function, $\int_{-\infty}^{+\infty} K(x) dx = 1$.

Parzen-Rosenblatt window

With fixed window width:

$$a(u; T^{\ell}; h; K) =$$

$$= \operatorname{argmax}_{y \in Y} \sum_{i=1}^{\ell} [y(u, i) = y] K\left(\frac{\rho(u, x_{(u, i)})}{h}\right),$$

With variable window width:

$$a(u; T^{\ell}; \mathbf{k}; K) =$$

$$= \operatorname{argmax}_{y \in Y} \sum_{i=1}^{\ell} [y(u, i) = y] K\left(\frac{\rho(u, x_{(u,i)})}{\rho(u, x_{(u,k+1)})}\right).$$

Parzen-Rosenblatt window

With fixed window width:

$$a(u; T^{\ell}; h; K) =$$

$$= \operatorname{argmax}_{y \in Y} \sum_{i=1}^{\ell} [y(u, i) = y] K\left(\frac{\rho(u, x_{(u, i)})}{h}\right),$$

With variable window width:

$$a(u; T^{\ell}; \mathbf{k}; K) =$$

$$= \operatorname{argmax}_{y \in Y} \sum_{i=1}^{\ell} [y(u, i) = y] K\left(\frac{\rho(u, x_{(u,i)})}{\rho(u, x_{(u,k+1)})}\right).$$

Distance selection (learning)

Distance can be learned.

Example (weighted Minkowski):

$$p(x,y) = \left(\sum_{i} w_i |x_i - y_i|^p\right)^{\frac{1}{p}}.$$

Now the problem is how to choose coefficients w_i .

When $w_i = 0$, the feature is thrown away (feature selection).

A kernelization can be applied.

Structure for storing data

Different greed-like structures can be used. The most effective is k-d-trees:

Lecture plan

- Distance-based classifiers (1NN)
- Parameters tuning
- Generalized distance-based classifiers
- Prototype selection
- Anomaly detection

Margin

Margin of object x_i with respect to algorithm a(u):

$$M(x_i) = C_{y_i}(x_i) - \max_{y \in Y \setminus \{y_i\}} C_y(x_i).$$

Margin is the measure of object "typicalness" for its class. The higher margin is, the more typical the object is.

Ranking based on margin

- C **core** (base for classification)
- A **accompaniment** (can be deleted)
- F **frontier** (classification is instable)
- E **erroneous** (misclassification because of bad model)
- N **noisy** (misclassification because of bad data)

Prototype selection problem

Prototype selection problem is how to choose optimal subset of object $\Omega \subseteq X^{\ell}$.

Distance-based classifier:

$$a(u; \Omega) = \operatorname{argmax}_{y \in Y} \sum_{x_i \in \Omega} [y(u, i) = y] w(i, u).$$

Prototype selection solutions

The problem is NP-hard, so there are lots of approximate solutions.

Two main approaches:

- 1) linear programming relaxation;
- 2) greedy algorithms.

Plenty of heuristic approaches.

Lecture plan

- Distance-based classifiers (1NN)
- Parameters tuning
- Generalized distance-based classifiers
- Prototype selection
- Anomaly detection

How is the classifier formalized?

What is the training sample?

Many ducks, many non-ducks (unducks).

What is classification procedure?

- 1. Ducks were described with **key features**.
- 2. Similarity concept was used.
- 3. Logical separator was used for classification.

One-class classification problem

The duck test in one-class classifier: we can make suggestions only about belonging to a certain class (ducks). Nothing is said about other classes.

Anomaly (outlier, exception, surprise) **detection** is the problem of one-class classification.

More precise definition

The definition is determined by the class of problems we solve:

- Labels are known for positive and negative examples: **supervised** rare-class detection.
- Labels are known only for positive examples: semi-supervised learning.
- Labels are unknown: **unsupervised** small-cluster detection.

Anomaly detection taxonomy

- Point anomaly detection
- Contextual anomaly detection
- Collective anomaly detection

Contextual anomaly detection

Assumption: all normal instances within a context will be similar (in terms of behavioral attributes), while the anomalies will be different.

Collective anomaly detection

Data instances are related:

- sequential data
- spatial data
- graph data

Point anomaly detection

NN anomaly detection

Two types of methods:

- distance based methods: anomalies are data points most distant from other points
- density based methods: anomalies are data points in low density regions