

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) **EP 0 741 444 A1**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

06.11.1996 Bulletin 1996/45

(51) Int Cl.6: **H02K 21/04**, H02K 1/27

(21) Application number: 96303059.8

(22) Date of filing: 01.05.1996

(84) Designated Contracting States: **DE FR GB**

(30) Priority: 03.05.1995 US 433187

(71) Applicant: Ford Motor Company Dearborn, MI 48126 (US)

(72) Inventors:

 Evans, Paul Michael Ypsilanti, Michigan 48197 (US) Schultz, Roy David Dearborn, Michigan 48128 (US)

(74) Representative: Messulam, Alec Moses et al
 A. Messulam & Co.
 24 Broadway
 Leigh-on-Sea Essex SS9 1BN (GB)

(54) Rotating electrical machine

(57) An alternator is disclosed. The alternator includes a rotor (10) having both wound-field poles (36,38,40,42,44,46) and permanent magnet poles

(12,14,16,18,20,22). The wound-field and permanent magnet poles are disposed about the circumference of the rotor (10)

15

20

Description

The present invention relates to rotating electrical machines.

One of the challenges in the design of electrical systems for automobiles relates to the generation of electrical power. With the increasing number of electrical features on automobiles comes the need for increased electric power generation. Thus, one challenge is to find an alternator which can provide this increased power with a minimum of adverse vehicle-level consequences (such as increased cost, increased mass, increased packaging volume, and the like).

Further, because the power consumption of most electrical loads on an automobile is independent of engine speed, the aforementioned increased need for electrical power exists down to engine idle. Because the power output of alternators is generally a function of the speed at which they are driven, a large electrical load at idle can be particularly difficult to supply.

One proposed solution to the above concerns is a socalled "hybrid" alternator. Such an alternator would contain a rotor which combines field windings (a conventional feature of almost all present alternators) with added permanent magnets. Several patents disclose hybrid alternators, including U.S. Patent 3,555,327, issued to Terry; U.S. Patent 4,980,595, issued to Arora; U.S. Patents 4,882,515 and 4,959,577, issued to Radomski; U.S. Patents 5,132,581 and 5,177,391, issued to Kusase; and U.S. Patent 5,397,975, issued to Syverson.

Although those designs just mentioned may have desirable features, other designs may provide superior power output. Just as importantly, alternative designs may prove to be more manufacturable than those designs. Thus, an alternator which can provide improved power output, particularly at low speeds, and which can do so in a highly manufacturable design, will provide advantages over the prior art.

The present invention provides an electrical machine. The electrical machine includes a generally-annular stator and a rotor rotateably mounted within the stator. The rotor comprises a plurality of wound-field poles disposed about at least one portion of the circumference of the rotor and a plurality of permanent magnet poles all disposed about at least one circumferentially-shifted portion of the circumference of the rotor. The permanent magnet poles each further have a magnetised surface of one polarity generally facing the stator and a magnetised surface of the opposite polarity generally facing away from the stator.

Preferably, the wound-field poles are disposed in circumferentially-consecutive pairs.

The present invention additionally provides an electrical machine comprising a generally-annular stator and a rotor rotateably mounted within the stator, the rotor comprising a plurality of wound salient poles. The wound salient poles each further comprise a base and

a winding about the base. At least some of the bases of the salient poles are substantially parallel to one another

One embodiment of this invention is an alternator which has the potential to provide improved power output, particularly at low speeds, over other alternative alternator designs. This alternator is also highly manufacturable, an advantage over many other designs. For these reasons, the present invention can provide advantages over the prior art.

The invention will now be described, by way of example, with reference to the accompanying drawings, in which:

Figure 1 is a cross-sectional view of a rotor 10 of an electrical machine according to one embodiment of the present invention;

Figure 2 is a partial cross-sectional view of rotor 10, showing in detail permanent magnet poles 12 and 14. Figure 2 also shows a partial cross-section of stator 74 of an alternator 75 which comprises rotor 10 and stator 74;

Figure 3 is a partial cross-sectional view of rotor 10, showing in detail wound-field poles 36 and 38;

Figure 4 is a block diagram showing a voltage regulator 80 for controlling the output voltage of alternator 75; and

Figure 5 is an exploded view of pertinent portions of a rotor 110 according to another embodiment of the present invention.

Referring now to Figure 1, a rotor 10 for an electrical machine according to one embodiment of the present invention will be described. Rotor 10 is rotateably mounted on a shaft 11. In this embodiment of the present invention, rotor 10 has 12 magnetic poles, though the invention is not so limited. Six of the poles 12, 14, 16, 18, 20 and 22 are formed by permanent magnets 24, 26, 28, 30, 32 and 34. The remaining six poles 36, 38, 40, 42, 44 and 46 are wound poles. Those skilled in the art will recognise those wound poles as "salient" poles, as opposed to "claw poles" in Lundell-type rotors.

Poles 36, 38, 40, 42, 44 and 46 are magnetised by field windings. Those windings include winding 50, wound around base 52 of pole 36; winding 54, wound around base 56 of pole 38; winding 58, wound around base 60 of pole 40; winding 62, wound around base 64 of pole 42; winding 66, wound around base 68 of pole 44; and winding 70, wound around base 72 of pole 46. In the preferred embodiment of the present invention, windings 50, 54, 58, 62, 66 and 70 are all connected in series. However, this series connection is not an essential feature of the present invention.

Windings 50, 54, 58, 62, 66 and 70 are wound such that for each adjacent (that is, consecutive) pair of wound poles (e.g., 36 and 38; 40 and 42; or 44 and 46), the windings on the two adjacent poles are wound in opposite directions. Thus, for a given direction of current

45

20

40

flowing in the field coil comprising windings 50, 54, 58, 62, 66 and 70, the adjacent poles in each pair of poles will have opposite magnetic polarities.

With respect to permanent magnet poles 12, 14, 16, 18, 20 and 22, these poles are likewise adapted such that for each adjacent (that is, consecutive) pair of poles (e.g., 12 and 14; 16 and 18; or 20 and 22) the two poles have opposite magnetic polarities. The magnetic polarity of each permanent magnet pole is the magnetic polarity of the radially-outward surface of the permanent magnet within the pole (e.g., permanent magnet 24 within pole 12).

In the preferred embodiment of the present invention, permanent magnets 24, 26, 28, 30, 32 and 34 are rectangular in cross-section. They are preferably neodymium-iron-boron (NdFeB) or other rare earth material, though ceramic or other permanent magnet material can also be used to advantage in this invention.

Rotor 10 is preferably constructed of iron laminations, each punched with the cross-sectional features shown in Figure 1. When the laminations are stacked together, the rectangular pockets for permanent magnets 24, 26, 28, 30, 32 and 34 are formed. Once the permanent magnets are inserted into their respective pockets, a final non-magnetic lamination without openings for permanent magnets 24, 26, 28, 30, 32 and 34 can be added on each end of rotor 10. These final laminations will hold the permanent magnets in place. Alternatively, adhesives or potting material can be used to hold the permanent magnets in place in their respective pockets in rotor 10.

Although rotor 10 is preferably constructed of laminations, the present invention is not so limited. By way of example, rotor 10 can also be made solid, as opposed to laminated.

Referring now to Figure 2, further features of rotor 10 will be described. Figure 2 also illustrates stator 74, within which rotor 10 is rotateably mounted. Rotor 10 and stator 74 (among other components such as slip rings, a housing, cooling fans and the like) comprise an alternator 75. Figure 2 illustrates permanent magnet poles 12 and 14, comprising permanent magnets 24 and 26, respectively. Most of the magnetic flux generated by permanent magnets 24 and 26 is disposed as shown by flux lines 76. As is illustrated, most of the flux is not located in base 78 of poles 12 and 14. As a result, base 78 has little tendency toward magnetic saturation, thus requiring less iron per pole than the bases of the woundfield poles. Advantage is taken of the lower iron requirement in designing the windings of wound-field poles 36, 38, 40, 42, 44 and 46, as shown in Figure 3.

Figure 3 illustrates wound-field poles 36 and 38 (stator 74 is omitted for clarity). Because the bases of the permanent magnet poles require relatively little iron, bases 52 and 56 of wound-field poles 36 and 38 can be made parallel to one another. In conventional rotor designs, bases 52 and 56 would likely be radially-oriented, instead of parallel to one another. If bases 52 and 56

were radially-oriented, the spaces surrounding them would taper down near the centre of rotor 10, leaving little room for windings in that area. However, being parallel to one another, bases 52 and 56 allow a very large amount of wire to be wound around them, even near the centre of rotor 10. This high density of wire gives alternator 75 a high power density (i.e., power output per unit volume of alternator 75).

Control of the field current in rotor 10 is preferably accomplished by means of a bi-directional current regulator. One such regulator 80 is shown in Figure 4. Regulator 80 comprises four semiconductor switches 82, 84, 86 and 88, arranged in an "H"-bridge configuration between system voltage ($V_{\rm sys}$) and ground. The series connection of windings 50, 54, 58, 62, 66 and 70 is shown as field coil 89. Control circuitry 90 is connected to the gates of each semiconductor switch. Control circuitry 90 is also provided with a sense input connected to system voltage, in order to have feedback information regarding system voltage.

Control circuitry 90 can use conventional negative-feedback proportional-integral (PI) control to modulate the current through field coil 89, thereby regulating the output voltage of alternator 75. The departure of the design of regulator 80 from conventional regulator design is that bi-directional current is to be controlled through field coil 89 via switches 82, 84, 86 and 88. The reason for such bi-directional control will become apparent during the upcoming discussion.

Referring to Figures 1 and 4, the operation of alternator 75 will now be discussed. With current flow in one direction (say, direction 92) in field coil 89, all poles of rotor 10 will alternate in magnetic polarity around the circumference of rotor 10. Beginning with pole 12 and progressing clockwise in Figure 1, and assuming pole 12 to be a north magnetic pole, the polarity of the poles of rotor 10 will be as follows:

Table 1

<u>Pole</u>	<u>Polarity</u>	
12	north	
14	south	
36	north	
38	south	
16	north	
18	south	
40	north	
42	south	
20	north	
22	south	
44	north	
46	south	

35

40

45

With these polarities, wound-field poles 36, 38, 40, 42, 44 and 46 work in an additive manner with permanent magnet poles 12, 14, 16, 18, 20 and 22 to "boost" the output of alternator 75. If, for a given speed of rotation of rotor 10, the output voltage of alternator 75 is too high, regulator 80 will reduce the average current through field coil 89. This reduction in current will reduce the flux generated by the wound-field poles of rotor 10, thus reducing the output voltage from alternator 75.

However, for some rotational speeds of rotor 10, even reducing current flow in field coil 89 to zero can still result in output voltages above which regulator 80 is attempting to regulate. This would be true because of permanent magnet poles' 12, 14, 16, 18, 20 and 22 ability to generate magnetic flux with no field current in field coil 89. If a reduction to zero field current is not sufficient, regulator 80 will cause current flow in the opposite direction (say, direction 94) in field coil 89. By modulating the current in the opposite direction, regulator 80 will reduce the output voltage of alternator 75 to the target value.

When regulator 80 changes the direction of the current through field coil 89, the voltage induced in the windings of stator 74 "bucks" the voltage induced by the permanent magnet poles. In this event, the polarities of the poles of rotor 10 will be as follows:

Table 2

Table 2				
<u>Pole</u>	<u>Polarity</u>			
12	north			
14	south			
36	south			
38	north			
16	north			
18	south			
40	south			
42	north			
20	north			
22	south			
44	south			
46	north			

As a comparison of Table 2 with Table 1 illustrates, each of the wound-field poles 36, 38, 40, 42, 44 and 46 changed polarity when the direction of current through field coil 89 changed. The polarity of permanent magnet poles 12, 14, 16, 18, 20 and 22, of course, remained unchanged.

The design of rotor 10 of this embodiment of the present invention is highly manufacturable, largely because it is of uniform cross-section for its entire axial length. Rotor 10 is thus a single rotor, as opposed to

designs which are really two separate rotors which are axially married. For the same reason, rotor 10 can be made axially shorter than rotors of other such designs. This can provide packaging advantages.

As has been discussed, the preferable design for rotor 10 includes six permanent magnet poles disposed in pairs and six wound-field poles also disposed in pairs. However, the present invention is not limited to such a number or configuration of poles. For example, the number of wound-field poles to be employed can vary based on the speed range in which alternator 75 is to be operated. If operating in a narrower speed range than the alternator of Figure 1, fewer wound field poles may be required in order to sufficiently "buck" the voltage induced by the permanent magnet poles at the upper end of the speed range. In such a case, four wound-field poles (for example) might be employed. In that event, the poles of rotor 10 may have polarities as follows with current in one direction in field coil 89 (with "PM" referring to a permanent magnet pole and "WF" referring to a wound-field pole):

Table 3

Pole Type	oe Polarity	
PM	north	
PM	south	
PM	north	
WF	south	
WF	north	
PM	south	
PM	north	
PM south		
WF	north	
WF	south	

Here, the wound-field poles would "boost" the alternator output generated by the permanent magnet poles. With current in the other direction in field coil 89, the poles would be configured as follows:

Table 4

<u>Pole Type</u>	<u>Polarity</u>		
PM	north		
PM	south		
PM	north		
WF	north		
WF	south		
PM	south		
PM	north		

25

Table 4 (continued)

Pole Type	<u>Polarity</u>	
PM	south	
WF	south	
WF	north	

Here, the voltage induced by the wound-field poles will "buck" the voltage induced by the permanent magnet poles.

An alternative design for a rotor 110 according to another embodiment of the present invention is illustrated in Figure 5. Here, rotor 110 is in a Lundell or "claw pole" configuration. Rotor 110 comprises two pole pieces 112 and 114, disposed on a shaft (not shown) and defining an axis of rotation 115 of rotor 110. Disposed on the hubs of the pole pieces is a single field coil 116. In a conventional Lundell alternator, all of the pole fingers 118 through 140 would be magnetised by field coil 116 (and would thus be "wound-field" poles). Pole fingers 118 through 128 of pole piece 112 would be magnetised with one magnetic polarity, and pole fingers 130 through 140 of pole piece 114 would be magnetised with the opposite magnetic polarity.

In this embodiment of the present invention, however, some of the pole fingers are replaced by permanent magnets poles. Such permanent magnet poles preferably have a surface of one polarity generally facing the stator of the alternator, and a surface of the opposite polarity generally facing away. Preferably, the poles of rotor 110 are disposed such that with current flowing in one direction in field coil 116, the poles of rotor 110 alternate in magnetic polarity in the following manner:

Table 5

14510 0			
<u>Pole</u>	<u>Type</u>	<u>Polarity</u>	
118	PM	north	
130	РМ	south	
120	WF	north	
132	WF	south	
122	РМ	north	
134	PM	south	
124	WF	north	
136	WF	south	
126	PM	north	
138	РМ	south	
128	WF	north	
140	WF	south	

With current flowing in this direction in field coil 116, the

voltage induced by the wound field poles "boosts" the voltage induced by the permanent magnet poles. With the current in field coil 116 reversed, the poles have the following magnetic polarity:

Table 6

<u>Pole</u>	Type Polarity		
118	РМ	north	
130	РМ	south	
120	WF	south	
132	WF	north	
122	РМ	north	
134	РМ	south	
124	WF	south	
136	WF	north	
126	РМ	north	
138	РМ	south	
128	WF	south	
140	WF	north	

With current flowing in this direction in field coil 116, the voltage induced by the wound field poles "bucks" the voltage induced by the permanent magnet poles.

Current control for an alternator comprising rotor 10' can be accomplished with the bi-directional voltage regulator 80 of Figure 4.

The permanent magnets which replace the woundfield poles in this embodiment of the present invention can be attached to pole pieces 112 and 114 in a variety of ways. For example, in forging pole pieces 112 and 114, a thin axially-projecting ledge can be formed in place of each of the wound-field poles which are to be replaced. The permanent magnets can then be attached on the ledges with a suitable method, such as with adhesive or with KEVLAR banding. Alternatively, in forging pole pieces 112 and 114, pockets can be formed in the bodies of pole pieces 112 and 114 where permanent magnets are to be employed instead of wound-field poles. The permanent magnets can each then be inserted with one end in a pocket and the other end extending axially, in the same way that the wound-field pole fingers extend.

Claims

50

55

An electrical machine comprising:
 a generally-annular stator (74); and
 a rotor (10) rotateably mounted within said stator,
 said rotor having a circumference, said rotor com prising a plurality of wound-field poles
 (36,38,40,42,44,46) disposed about at least one

15

portion of the circumference of said rotor and a plurality of permanent magnet poles (12,14,16,18,20,22) all disposed about at least one circumferentially-shifted portion of the circumference of said rotor (10), said permanent magnet poles each further having a magnetised surface of one polarity generally facing said stator (74) and a magnetised surface of the opposite polarity generally facing away from said stator (74).

2. An electrical machine as claimed in Claim 1, wherein said wound-field poles are salient poles.

An electrical machine as claimed in Claim 1 or 2, wherein:

said rotor further comprises two disc-shaped pole pieces defining an axis of rotation of said rotor; and

at least some of said wound field pole extend 20 axially from one of said pole pieces.

- 4. An electrical machine as claimed in any one of Claims 1 to 3, wherein said wound-field poles are disposed in circumferentially-adjacent pairs, without an intervening permanent magnet pole.
- **5.** An electrical machine as claimed in any one of the preceding Claims, wherein said permanent magnet poles are disposed in circumferentially-adjacent 30 pairs, without an intervening wound-field pole.
- 6. An electrical machine as claimed in Claim 4 and 5, wherein said pairs of circumferentially-adjacent permanent magnet poles are of opposite magnetic polarity and said pairs of circumferentially-adjacent wound-field poles are of opposite magnetic polarity.
- 7. An electrical machine as claimed in Claim 6, wherein:

said wound-field poles each has a base with windings wound around said base; and said bases of said circumferentially-adjacent pairs of wound-field poles are substantially parallel.

- **8.** An electrical machine as claimed in any one of the preceding Claims, wherein said rotor comprises six wound-field poles and six permanent magnet poles.
- An electrical machine as claimed in Claim 6, wherein:

said rotor further comprises two pole pieces each with generally-circular bodies, the bodies of said pole pieces defining an axis of rotation of said rotor; and

at least some of said wound-field poles extend axially from one of said pole pieces.

10. An electrical machine comprising:

a generally-annular stator; a rotor rotateably mounted within said stator, said rotor comprising a plurality of wound salient poles, said poles each further comprising a base and a winding about said base, wherein at least some of the bases of the salient poles are substantially parallel to one another.

40

EUROPEAN SEARCH REPORT

Application Number EP 96 30 3059

otos	Citation of document with in	ndication, where appropriate,	Relevant	CLASSIFICATION OF THE
Category	of relevant pa		to claim	APPLICATION (Int.Cl.6)
X	1994 & JP-A-05 304752 (F 16 November 1993,	JAPAN E-1513), 22 February UJI ELECTRIC CO LTD),	1,5	H02K21/04 H02K1/27
,	* abstract *		2,4,6,7	
′	FR-A-1 238 273 (NOR * the whole documen		2	
(FR-A-1 453 957 (KIR * page 3, left-hand figure 7 *	SCH) 22 December 1966 column, paragraph 9;	10 4,6,7	
4		JAPAN E-445), 15 October 1986 AWAFUJI ELECTRIC CO	1,2	TECHNICAL SIELDS
A	US-A-3 413 502 (SCH * figures *	WAB ERICH)	1,2	TECHNICAL FIELDS SEARCHED (Int.Cl.6)
	The present search report has b	een drawn up for all claims	1	
	Place of search	Date of completion of the search		Examiner
	THE HAGUE	20 August 1996	Zan	ichelli, F
X : par Y : par doc	CATEGORY OF CITED DOCUME ticularly relevant if taken alone ticularly relevant if combined with an ument of the same category hadological background	E : earlier patent do after the filing Orther D : document cited f L : document cited f	cument, but publicate in the application of the reasons	ished on, or

EPO FORM 1503 03.82 (P04C01)

PUB-NO: EP000741444A1

DOCUMENT- EP 741444 A1

IDENTIFIER:

TITLE: Rotating electrical

machine

PUBN-DATE: November 6, 1996

INVENTOR-INFORMATION:

NAME COUNTRY

EVANS, PAUL MICHAEL US

SCHULTZ, ROY DAVID US

ASSIGNEE-INFORMATION:

NAME COUNTRY

FORD MOTOR CO US

APPL-NO: EP96303059

APPL-DATE: May 1, 1996

PRIORITY-DATA: US43318795A (May 3,

1995)

INT-CL (IPC): H02K021/04,

H02K001/27

EUR-CL (EPC): H02K021/04,

H02K001/22 ,

H02K001/22

ABSTRACT:

CHG DATE=19990617 STATUS=0> An alternator is disclosed. The alternator includes a rotor (10) having both wound-field poles (36,38,40,42,44,46) and permanent magnet poles (12,14,16,18,20,22). The wound-field and permanent magnet poles are disposed about the circumference of the rotor (10)