# Pouria Mistani

Computational Scientist with physics background



+1 951 386 9775

http://www.pouriamistani.com

My LinkedIn Profile

p.a.mistani@gmail.com

## Hard Skills

Multi-Variable Calculus, Statistics, Linear Algebra, Stochastic **Processes** 

Machine Learning, Scientific Computing

**Data Intuition Extraction** 

</> Python, C/C++, HTML

Tensorflow, Keras, Scikit-Learn, Scipy, Pandas, Boost, GSL

🍔 SQL, Apache Spark

Matplotlib, ParaView, Seaborn

MPI, Petsc

Linux, Mac OS, Windows

## Soft Skills

Multi-disciplinary → Fast-paced Critical Thinking **Problem Solving** 

Team Player

6 years experience in several scientific collaborations

Communication

10 years of teaching experience

## Certificates -



Fundamentals of Scalable Data Science



Applied AI with Deep Learning



Advanced Machine Learning and Signal Processing

### **Working Experience**

Developed two parallel computing softwares to numerically integrate nonlinear PDEs. Also I developed a stochastic model based on data. 2013 – 2016 Research/Teaching Assistant University of California Riverside Analyzed terabytes of high-dimensional datasets produced by the illustris simulations of the Universe, and developed a theory for assembly of dwarf galaxies from data.

2014 – 2014 Visiting Scholar Developed several Python routines to effectively filter through

illustris datasets.

2012 – 2013 **Scientific Software Developer** 

Research/Teaching Assistant

I was involved in development of a real-time star identification system. This project involved data acquisition and calibration of optoelectronic devices, followed by image processing and fast search algorithms for pattern recognition.

University of California Santa Barbara

RCISP Iran

#### Education

2016 - now

| 2016 - now  | PhD in Mechanical Engineering                                | University of California, Santa Barbara |  |
|-------------|--------------------------------------------------------------|-----------------------------------------|--|
|             | Focus: Computational Science and Engineering (GPA: 3.95/4.0) |                                         |  |
| 2013 – 2016 | MS Physics                                                   | University of California, Riverside     |  |
|             | Focus: Computational Astrophysics (GPA: 3.95/4.0)            |                                         |  |
| 2009 – 2013 | BS Physics                                                   | Sharif University of Technology         |  |
|             | Focus: Astronomy (GPA: 18.45/20.                             | .0)                                     |  |
| 2008 – 2013 | BS Aerospace Engineering                                     | Sharif University of Technology         |  |
|             | Focus: Astronautics (GPA: 18.45/2                            | 0.0)                                    |  |

#### **Projects**

**Inverse PDEs** 

(Machine Learning) 2019-now We developed the "Blended Inverse-PDE Networks" (BIPDE-Nets) that combine traditional methods for numerical computations of PDEs with modern deep learning architectures to discover hidden fields in data. BIPDE-Nets seamlessly incorporate domain-

knowledge about physics of the problem.

</> Python, Tensorflow, Keras, Linux

Electroporation </> C++, Petsc, Python, Scikit-Learn, Scipy, Tensorflow, Keras,

(Biophysics) Visualization, Data Wrangling, Linux 2016-now

We numerically solved partial differential equations with nonlinear boundary conditions on tens of thousands of interfaces with arbitrary geometries. We used a finite volume discretization on adaptive interface-fitted Voronoi grids. I implemented more than 5,000 lines of parallel C++ code, tested, then ran it on Stampede2 supercomputer using 2,048 processors for 24 hours. I used ParaView in parallel over 256 processors to visualize the results, then I extensively analyzed the datasets in Python. The product is a high fidelity reduced model that predicts observations with minimal computations.

**Epitaxy** (Materials) 2016-2019 </> C++, Petsc, Boost, p4est, Visualization, Linux

We developed a novel approach for simulating epitaxial growth in parallel. In this approach we made use of a forest of quadtree adaptove grids using p4est library in a parallel environment. This work extended previous studies by combining mesh adaptivity and multi-core parallelism that enabled simulations of mound formation in orders of magnitude larger domains. We used C++ using parallel framework Petsc as an interface to BLAS and LAPACK linear algebra libraries, as well as Boost for fast mathematical operations.

Dwarf **Galaxies** 

</> Python, C, MPI, GSL, matplotlib, Scipy, Scikit-Learn, Pandas, Data Wrangling, Linux

(Astrophysics) 2014-2016

I analyzed  $250\mathrm{TB}$  of correlated datasets generated by the Illustris cosmological and hydrodynamical simulation suite to study the assembly of dwarf galaxies. I developed a semi-analytic model for the formation and stripping of globular clusters that support our findings.

# Pouria Mistani

Computational Scientist with physics background

### About Me

I build multiscale mathematical models from big data. I develop parallel scientific computing softwares (multi-core and GPU) to generate and analyze large datasets, which I then use to develop physics-informed predictive models at different scales of time and length. These models can accelerate decision making or enhance complex technological, biomedical and financial processes.

### Persona



## Barskills



# Memberships



Society for Industrial and Applied Mathematics, USA



National Elite Foundation, Iran

#### **Awards**

| 2019 | Travel award for SIAM conference on computational science and engineering                                                                                             |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2017 | Spokane, Washington, USA Finalist for the 3rd edition of the IEEE entrepreneurship forum and startup contest IEEE Robotics and Automation Society                     |
| 2016 | IEEE RAS Awarded 740,082 SUs computing allocation on Stampede supercomputer                                                                                           |
| 2015 | XSEDE TACC FIELDS fellowship for big data and visualization                                                                                                           |
| 2015 | NASA MIRO program  Michael Devirian award for outstanding research by a 2nd year  graduate student                                                                    |
| 2013 | University of California, Riverside Winner of dean's distinguished fellowship award                                                                                   |
| 2013 | University of California, Riverside  Merit based admission offer to the graduate program in aerospace engineering                                                     |
| 2013 | Sharif University of Technology Ranked 1st among BS students in department of aerospace engineering                                                                   |
| 2008 | Sharif University of Technology Top 0.1% (rank 258) among more than 300,000 high school students in the national university entrance exam Ministry of Education, Iran |
| 2007 | 4 year "National Elite Foundation Undergraduate Fellowship Award"                                                                                                     |
| 2007 | Ministry of Education, Iran Silver medal in the 3rd national olympiad in astronomy Ministry of Education, Iran                                                        |
|      | 7                                                                                                                                                                     |

#### **Publications**

| 2020                                                       | Solving inverse-PDE problems with                                           | arXiv (under review)              |  |
|------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------|--|
| 2020                                                       | physics-aware neural networks                                               | ,                                 |  |
|                                                            | S Pakravan, Pouria Mistani, MA Calvo, F Gibou                               |                                   |  |
|                                                            | A parallel Voronoi-based approach                                           |                                   |  |
| 2019                                                       | for meso-scale simulations of cell                                          | Journal of Computational Physics  |  |
|                                                            | aggregate electropermeabilization                                           |                                   |  |
|                                                            | Pouria Mistani, A Guittet, C Poignard, F Gibou                              |                                   |  |
| 2019                                                       | Towards a tensor network                                                    |                                   |  |
|                                                            | representation of complex systems                                           | Springer International Publishing |  |
|                                                            | Pouria Mistani, S Pakravan, F Gibou                                         |                                   |  |
|                                                            | Tensor network renormalization as                                           |                                   |  |
| 2019                                                       | an ultra-calculus for complex system                                        | Springer International Publishing |  |
|                                                            | dynamics                                                                    |                                   |  |
|                                                            | Pouria Mistani, S Pakravan, F Gibou                                         |                                   |  |
| 2018                                                       | The island dynamics model on                                                | laurnal of Commutational Physics  |  |
|                                                            | parallel quadtree grids                                                     | Journal of Computational Physics  |  |
|                                                            | Pouria Mistani, D Bochlov, A Guittet, J Schneider, D Margetis, C Ratsch,    |                                   |  |
|                                                            | F Gibou                                                                     |                                   |  |
|                                                            | On the assembly of dwarf                                                    |                                   |  |
| 2016                                                       | galaxies in clusters and                                                    |                                   |  |
|                                                            | their efficient formation of  Monthly Notices of Royal Astronomical Society |                                   |  |
|                                                            | globular clusters                                                           |                                   |  |
|                                                            | Pouria Mistani, L Sales, A Pillepich, R Sanchez-Janssen, M Vogels-          |                                   |  |
| berger, D Nelson, V Rogriguez-Gomez, P Torrey, L Hernquist |                                                                             |                                   |  |
|                                                            |                                                                             | 3,                                |  |

#### **Teaching**

| ME   | Engineering Dynamics (main instructor)     | UC Santa Barbara                |
|------|--------------------------------------------|---------------------------------|
| ME   | Statics                                    | UC Santa Barbara                |
| ME   | Fluid Mechanics I, II (twice)              | UC Santa Barbara                |
| ME   | Engineering Vibrations (twice)             | UC Santa Barbara                |
| PHYS | Intermediate Mechanics                     | UC Santa Barbara                |
| PHYS | General Physics Discussions (sections 2A,  | 2B, 2C) UC Riverside            |
| PHYS | Physics General Labs (sections 2LA, 2LC, 2 | 2C) UC Riverside                |
| AE   | Orbital Mechanics (5 semesters)            | Sharif University of Technology |
| AE   | Aircraft Design II                         | Sharif University of Technology |

January 24, 2020

**Pouria Mistani**