Single Source Shortest Paths

Paths in Graphs

Consider a digraph G = (V, E) with edge-weight function $w : E \to \mathbb{R}$. The weight of path $p = v_1, v_2, \ldots, v_k$ is defined to be

$$w(p) = \sum_{i=1}^{k-1} \underbrace{w(v_i, v_{i+1})}_{\text{edge}} - \underbrace{\text{sum of all }}_{\text{edge}}$$

Example:

This is cost of I parm, we have another parm that has $\omega(p) = 8$.

She pick the path with smallest $\omega(p)$

Shortest Paths

A **shortest path** from u to v is a path of minimum weight from u to v. The **shortest path weight** from u to v is defined as

 $\delta(u, v) = \min\{w(p) : p \text{ is a path from } u \text{ to } v\}$

(Note: $\delta(u, v) = \infty$ if no path from u to v exists)

Single-source Shortest Paths

Problem. From a given source vertex $s \in V$, find the shortest the shortest-path weights $\delta(s, v)$ for all for all $v \in V$.

Assumption: All edge weights w(u, v) are nonnegative. It follows that all shortest-path weights must exist (i.e., no negative weight cycles).

Idea: Greedy Algorithm

- Maintain a set S of vertices whose shortest-path weights from s are known (Let $d[v] = \delta(s, v)$)
- At each step add to S the vertex $v \in V S$ whose distance estimate from s is minimal
- Update the distance estimates of vertices adjacent to v.

Dijkstras algorithm

```
1: Set Q = V
2: Set d[v] = \infty for all v \in V
3: Set d[s] = 0 for your starting point s \in V
4: while Q is not empty do
5:
       u = ExtractMin(Q)
       for each v \in Adj[u] do
6:
 7:
          if v \in Q and d[u] + w(u, v) < d[v] then
              d[v] = d[u] + w(u, v) //Decreases key in priority queue Q
8:
9:
              \pi[v] = u
           end if
10:
       end for
11:
12: end while
```

compute: Shortest parn from Start
Point to all other places of
graph

Dijkstras Example (1)

5= { 3

	A	В	C	D	$oxed{E}$
Q:	Ø	∞	∞	∞	∞
Priorit	ye)				
			_	.	2
		5	= {	H	3
	1				

A	B	C	D	E
Q: -	10	3/	∞	∞

5 = 5	A,	C 3
-------	----	-----

	A	B	C	D	E
Q:	_	7	_	11	<i>\$</i>

Dijkstras Example (2)

	A	B	C	D	E
Q:	_	7	_	11	_

	A	B	C	D	E
Q:	_	_	_	9/	_

5= { A, C, E, B, d }

	A	B	C	D	E
Q:	_	_	_	_	_

Forms a Tree of connections from tells us what edges to use to get to diff.

Tocations

Dijkstras Algorithm Runtime

Here's our pseudocode for Dijkstras Algorithm:

```
1: Set Q = V
2: Set d[v] = \infty for all v \in V
3: Set d[s] = 0 for your starting point s \in V
4: while Q is not empty do
5:
       u = ExtractMin(Q)
       for each v \in Adj[u] do
6:
          if v \in Q and d[u] + w(u, v) < d[v] then
 7:
              d[v] = d[u] + w(u, v) //Decreases key in priority queue Q
 8:
9:
           end if
10:
11:
       end for
12: end while
```

Compare this to Prim's Algorithm:

```
1: Q = V
2: Set key[v] = \infty for all v \in V
3: Set key[s] = 0 for some arbitrary s \in V
4: while Q is not empty do
       u = ExtractMin(Q)
5:
       for each v \in Adj[u] do
6:
 7:
          if v \in Q and w(u, v) < key[v] then
8:
              key[v] = w(u, v) //Decreases key in priority queue Q
9:
              \pi[v] = u
          end if
10:
       end for
11:
12: end while
```

Same as Prim's Algorithm:

Q	$T_{EXTRACT-MIN}$	$T_{DECREASE-KEY}$	Total Runtime
array	O(V)	O(1)	$O(V ^2)$
binary heap	$O(\log V)$	$O(\log V)$	$O(V \log V + E \log V)$
Fibonacci heap (not covered)	$O(\log V)$	O(1)	$O(V \log V + E)$