Relatório 2 | Laboratório de Física1 | Aluno: Leonardo C. Rossato

x(m)	t(s)
5,00	2,10
10,00	2,98
20,00	4,13
30,00	5,14
40,00	5,97
50,00	6,68
70,00	8,00
90,00	9,24

log x	log t
0,6990	0,3222
1,0000	0,4742
1,3010	0,6160
1,4771	0,7110
1,6021	0,7760
1,6990	0,8248
1,8451	0,9031
1,9542	0,9657

Para calcular os valores de A precisamos fazer:

$$\log x = \log A + n*\log t$$

que é equivalente a:

$$y' = ax' + b$$

então:

$$y' = \log x \mid x' = \log t$$

$$b = log A \mid a = n$$

dado isso, podemos verificar a equação do gráfico log x por log t, obtendo:

$$y' = 1,94x' + 0,0953$$

agora é só calcular os valores de A e de n:

$$b = log A ou seja A = exp(b)$$

$$a = n$$

Obtendo assim os resultados finais:

$$A = \exp(b) = \sim 1.1 \mid n = 1.94$$

$$x(t) = At^n = 1,1 t^1,94$$

0

Relatório 2 | Laboratório de Física1 | Aluno: Leonardo C. Rossato

Para calcular o Módulo da Aceleração da Partícula, fazemos:

 $| aceleração | = | x'' | = | d^2(x)/dt^2 |$

onde:

$$x'' = (At^n)'' = d^2(At^n) / dt^2$$

obtendo a 2ª derivada da função x(t):

$$a = n(n-1)t^{(n-2)}$$

substituindo os valores, obtemos:

ou ainda

$$| a(t) | = a(t) = 1,8236 / t^0,06$$

t(s)	a(t)	x(t) = At^n
2,10	1,74	4,64
2,98	1,71	9,15
4,13	1,67	17,23
5,14	1,65	26,34
5,97	1,64	35,22
6,68	1,63	43,80
8,00	1,61	62,14
9,24	1,60	82,19

*Essa tabela é baseada na hipótese de função que modela a relação entre x e t ;

No caso seria: $x(t) = A t ^n$

26,34

4,00

Aceleração média (m/s²):

1,66

 $x(t) = 1,1 t^{1},94$

35,22

82,19

8,00

62,14

43,80

6,00

100,00

75,00

€ 50,00

25,00

0,00

2,00