

Computer Networks - Xarxes de Computadors

Outline

- Course Syllabus
- Unit 1: Introduction
- Unit 2. IP Networks
- Unit 3. TCP
- Unit 4. LANs
- Unit 5. Network applications

Based on: https://studies.ac.upc.edu/FIB/grau/XC/#slides

Outline

- DNS
- Email
- Web
- Charsets
- HTML

Domain Name System DNS (RFC 1034, 1035)

- Allows users to use names instead of IP addresses: e.g. rogent.ac.upc.edu instead of 147.83.31.7, www.upc.edu instead of 147.83.194.21, etc.
- Names consists of a node-name and a domain-name
 - e.g. rogent.ac.upc.edu, www.upc.edu
- DNS consists of a worldwide distributed data base.
- DNS data base entries are referred to as Resource Records (RR).
- The information associated with a name is composed of 1 or more RRs.
- Names are case insensitive (e.g. www.upc.edu and WWW.UPC.EDU are equivalent).

Unit 2: IP Networks DNS – Domain Hierarchy

DNS data base is organized in a tree:

List of TLDs https://data.iana.org/TLD/tlds-alpha-by-domain.txt

DNS – Domain Hierarchy

- The *Internet Corporation for Assigned Names and Numbers* (ICANN) is responsible for managing and coordinating the DNS.
- ICANN delegates Top Level Domains (TLD) administration to registrars (list of accredited registrars: https://www.icann.org/en/accredited-registrars)
- Domains delegate the administration of subdomains.

InterNIC—Public Information Regarding Internet Domain Name Registration Services

Do you have a complaint or dispute?

Your Registrar or Domain Name:

- Domain Name Transfer Dispute
- Unsolicited Renewal or Transfer Solicitation
- Your Registrar is Not on the Accredited List
- Unauthorized Transfer of Your Domain Name
- Trademark Infringement
- Registrar Services Dispute
 - Failure to answer phones or respond to email messages
 - Financial Transaction Issues
- Uniform Domain Name Dispute Resolution (UDRP) Intake Report System

Information about Registrars

- Search Accredited Registrar Directory
 - Alphabetical List
 - List by Location
 - List by Language Supported
- Have a Problem with a Registrar?
 - Complaint Form
 - Helpful Hints

Information about Whois

- Search Whois
- Report Inaccurate Whois Listing

DNS – Data Base Organization

- Access to DNS data base is done using *Name Servers* (NS).
- NSs may hold permanent and cached RRs. Cached RRs are removed after a timeout.
- Each subdomain has an *authority* which consists of a primary and backup NSs.
- In this context, subdomains are referred to as *zones*, and delegated subdomains *subzones*.
- An authority has the complete information of a zone:
 - Names and addresses of all nodes within the zone.
 - Names and addresses of all subzone authorities.

DNS – Data Base Organization

- Root Servers are the entry point to the domain hierarchy.
- Root Servers are distributed around the world and have the TLD addresses: http://www.root-servers.org
- Root server addresses are needed in a NS configuration.

Source: http://www.root-servers.org

The root zone 13 root name servers clusters operated by 12 independent organizations. Official name of the clusters: a.root-servers.net to m.root-servers.net. As of May 2023 there are ~1700 instances in total.

DNS - Protocol

- Client-server paradigm
- UDP/TCP. Short messages uses UDP.
- well-known port: 53

- 1 18:36:00.322370 IP (proto: UDP) 147.83.34.125.1333 > 147.83.32.3.53: 53040+ A? www.foo.org. (31)
- 2 18:36:00.323080 IP (proto: UDP) 147.83.32.3.53 > 147.83.34.125.1333: 53040 1/2/2 www.foo.org. A 198.133.219.10 (115)

Server-client paradigm: **Client side**

DNS - Unix example: The resolver

• The applications use the calls (*resolver* library):

```
struct hostent *gethostbyname(const char *name);
struct hostent *gethostbyaddr(const void *addr, int len, int type);
```

• The resolver first looks the /etc/hosts file:

```
# hosts
# mappings for the TCP/IP subsystem. It is mostly
# used at boot time, when no name servers are running.
# On small systems, this file can be used instead of a
# "named" name server.
# Syntax:
# IP-Address Full-Qualified-Hostname Short-Hostname
127.0.0.1 localhost
10.0.1.1 massanella.ac.upc.edu massanella
```

• Otherwise a *name server* is contacted using /etc/resolv.conf file:

```
search ac.upc.edu
nameserver 147.83.32.3
nameserver 147.83.33.4
```

search Domain attached by the OS if not specified by the user (e.g. 'ping rogent' → ''ping rogent.ac.upc.edu''

nameserver Name servers to be used by preference (subsequent NS is only used if the precedent has timed out

Server-client paradigm: **Server side**

DNS – Unix example: Basic NS configuration

- Unix NS implementation is BIND (Berkeley Internet Name Domain), http://www.isc.org.
- named is the BIND NS daemon.
- BIND basic configuration files:
 - /etc/named.conf global configuration Source of truth:
 /var/lib/named/root.hint root servers addresses https://www.internic.net/domain/named.root
 - /var/lib/named/*.db **ZONE** files——Source of truth of the root-zone: https://www.internic.net/domain/root.zone

DNS – Unix example: root servers addresses

Server-client paradigm: **Server side**

```
linux # cat /var/lib/named/root.hint
           This file holds the information on root name servers needed to
           initialize cache of Internet domain name servers
           (e.g. reference this file in the "cache . <file>"
           configuration file of BIND domain name servers).
                                                                                 comments
           This file is made available by InterNIC
           under anonymous FTP as
                                    /domain/named.root
                file
                on server
                                    FTP.INTERNIC.NET
            -0R-
                                    RS.INTERNIC.NET
                             3600000
                                          NS
                                                A.ROOT-SERVERS.NET.
   A.ROOT-SERVERS.NET.
                             3600000
                                      IN
                                                198.41.0.4
                                      IN
                                          NS
                             3600000
                                                B.ROOT-SERVERS.NET.
   B.ROOT-SERVERS.NET.
                                                192,228,79,201
                             3600000
                                      IN
                                                                           Resource Records (RR)
                             3600000
                                      IN
                                          NS
                                                C.ROOT-SERVERS.NET.
                                                                           pointing to root-servers
   C.ROOT-SERVERS.NET.
                                                192.33.4.12
                             3600000
                                      TN A
                                                M.ROOT-SERVERS.NET.
                             3600000
                                          NS
   M.ROOT-SERVERS.NET.
                                                202.12.27.33
                             3600000
                                      IN
                                          Α
address of a name
NS name
```


DNS – Unix example: zone file

Server-client paradigm: **Server side**

DNS – Resolution

- NSs cache name resolutions.
- A cached RR is returned without looking for in the NS authority.
- The same name may be associated with several IP addresses (e.g. load balancing).
- The addresses of a common domain may not belong to the same IP network (e.g. Content Distribution Networks).

DNS – Load balancing, example

foo.org authority

• Example using dig:

;; MSG SIZE rcvd: 203

```
linux ~> dig www.microsoft.com
; <<>> DiG 9.3.2 <<>> www.microsoft.com
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 31808
;; flags: qr rd ra; QUERY: 1, ANSWER: 9, AUTHORITY: 0, ADDITIONAL: 0
;; QUESTION SECTION:
; www.microsoft.com.
;; ANSWER SECTION:
www.microsoft.com.
                                        CNAME
                                                toggle.www.ms.akadns.net.
toggle.www.ms.akadns.net. 181
                                        CNAME
                                                g.www.ms.akadns.net.
g.www.ms.akadns.net.
                                        CNAME
                                                lb1.www.ms.akadns.net.
lb1.www.ms.akadns.net. 181
                                                207.46.19.60
lb1.www.ms.akadns.net. 181
                                                207.46.18.30
                                                207.46.20.60
lb1.www.ms.akadns.net. 181
lb1.www.ms.akadns.net. 181
                                                207.46.19.30
                                        A
lb1.www.ms.akadns.net. 181
                                IN
                                                207.46.198.30
lb1.www.ms.akadns.net. 181
                                                207.46.225.60
;; Query time: 42 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Sun Mar 11 10:48:11 2007
```

```
linux ~> dig www.microsoft.com
; <<>> DiG 9.3.2 <<>> www.microsoft.com
;; global options: printcmd
;; Got answer:
;; ->>HEADER <<- opcode: QUERY, status: NOERROR, id: 17923
;; flags: qr rd ra; QUERY: 1, ANSWER: 9, AUTHORITY: 0, ADDITIONAL: 0
;; QUESTION SECTION:
; www.microsoft.com.
                                         Α
                                ΙN
;; ANSWER SECTION:
www.microsoft.com.
                                         CNAME
                                                 toggle.www.ms.akadns.net.
toggle.www.ms.akadns.net. 215
                                         CNAME
                                                 g.www.ms.akadns.net.
g.www.ms.akadns.net.
                                         CNAME
                                                 lb1.www.ms.akadns.net.
                                                 207.46.198.30
lb1.www.ms.akadns.net.
lb1.www.ms.akadns.net.
                                                 207.46.199.30
                        215
                                                 207.46.18.30
lb1.www.ms.akadns.net.
lb1.www.ms.akadns.net.
                        215
                                IN
                                                 207.46.19.60
lb1.www.ms.akadns.net.
                        215
                                IN
                                                 207.46.198.60
lb1.www.ms.akadns.net.
                                                 207.46.20.60
;; Query time: 43 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Sun Mar 11 10:42:38 2007
;; MSG SIZE rcvd: 203
```


DNS - Content Distribution Networks, example

DNS – Messages: Message Format

- All DNS messages have the same format:
 - Header: type of message.
 - Question: What is to be resolved.
 - Answer: Answer to question.
 - Authority: Domain authority names.
 - Additional: Typically, the authority name's addresses.

<pre>/ Question (variable) / / Answer (variable) / / Authority (variable) /</pre>		Header (12 bytes)	Ī
<u> </u>	/	Question (variable)	/
/ Authority (variable) /	/	Answer (variable)	/
	/	Authority (variable)	7
/ Additional (variable) /	/	Additional (variable)	/

DNS – **Messages:** Header

- Identification: 16 random bits used to match query/response
- Flags. Some of them:
 - Query-Response, **QR**: 0 for query, 1 for response.
 - Authoritative Answer, AA: When set, indicates an authoritative answer.
 - Recursion Desired, RD: When set, indicates that recursion is desired.
- The other fields indicate the number of Questions, Answer, Authority and Additional fields of the message.

	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6														6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	bits		
1	Identification														+	+	+ F.	⊦ Lag	⊦–- gs	+		+	+		+	+	+	+	+	Ť			
1														+	+	+ #2	⊦–- Ans	 swe	+-+	+ 3	+	+-+		+	+	+	+	+-·					
1		 	+ - -	+-:	+ - : : +	+−- #Αι +	utl	ho:	+−- rit +	+ ti∈	+-: =s +-:	+-:	+	+-:	+	+		+	+-·	+ #2 +	+ \da	+ dit ⊢		na	+ al 	+	 	+	+ 	+	+	+-:	

DNS – Messages: Question

- **QName**: Indicates the name to be resolved.
- QType: Indicates the question type:
 - Address, A.
 - Name Server, NS.
 - Pointer, PTR: For an inverse resolution.
 - Mail Exchange, MX: Domain Mail Server address.
- **Qclass**: For Internet addresses is 1.

QName codification example of rogent.ac.upc.edu

DNS – Messages: Resource Records (RRs)

- The fields Answer, Authority and Additional are composed of RRs:
 - Name, Type, Class: The same as in the Question field.
 - TTL (Time To Live): Number of seconds the RR can be cached.
 - RDLenth: RR size in bytes.
 - Rdata: E.g. An IP address if the Type is 'A', or a name if the Type is 'NS', 'MX' or 'CNAME'.

DNS – **Messages:** Example

Query message:

- 36388: Identifier.
- +: Recursion-Desired is set.
- A?: Qtype = A.
- ns.uu.net.: Name to resolve.

Response message:

- 36388: Identifier.
- q: A? ns.uu.net.: Repeat the Question field.
- 1/2/2: 1 Answers, 2 Authorities, 2 Additional follows.
- ns.uu.net. A 137.39.1.3: The answer (RR of type A, address: 137.39.1.3).
- ns: ns.uu.net. NS auth00.ns.uu.net., ns.uu.net. NS auth60.ns.uu.net.: 2 Authorities (RRs of type NS: the domain ns.uu.net. authorities are auth00.ns.uu.net. and auth60.ns.uu.net).
- ar: auth00.ns.uu.net. A 198.6.1.65, auth60.ns.uu.net. A 198.6.1.181: 2 Additional (RRs of type A: authorities IP addresses).

Outline

- DNS
- Email
- Web
- Charsets
- HTML

Email

- Electronic mail (email): One of the first applications used in the Internet to electronic messaging.
- Components:
 - Transport layer: TCP, well-known port: 25.
 - Application layer protocol: Simple Mail Transfer Protocol (SMTP). First defined by RFC-821 and last updated by RFC-5321.
 - Retrieval protocols (IMAP, POP, HTTP).

Email – Architecture

- MUA: Mail User Agent
- MTA: Mail Transfer Agent

Email – Protocols

- "Retrieval" protocols (mailbox access):
 - Post Office Protol (POP3)
 - Internet Message Access Protocol (IMAP)
- Simple Mail Transfer Protocol (SMPT)

Email - SMTP processing model

Unit 5. Network applications Email - SMTP protocol (RFC-821, last update RFC-5321)

- Designed as a simple (few commands) and text-based protocol (ASCII).
 - Client basic commands: HELO (identify SMTP client), MAIL FROM: (identify sender mailbox), RCPT TO: (identify recipient mailbox), DATA (mail message), QUIT (close transaction).
 - Server replies: Three digit number (identify what state the client to enter next), and a human understandable message.

```
    Example: Manually send an email using telnet to port 25.

                                                                                    Other possible ports: 587 (TLS -
                                                                                   STARTTLS), 465 (SSL: outdated)
                linux ~> telnet relay.upc.edu 25
         CLIENT
                 Trying 147.83.2.12...
                                            Try telnet mail.guifi.net 587
                 Connected to relay.upc.edu.
                 Escape character is '^]'.
                                                                                     SMTP transaction
                 220 dash.upc.es ESMTP Sendmail 8.14.1/8.13.1; Fri, 4 Feb 2011 14:57:15 +0100
        SERVER
      COMMANDS HELO linux.ac.upc.edu
                 250 dash.upc.es Hello linux.ac.upc.edu [147.83.34.125], pleased to meet you
                 MAIL FROM: 
                 250 2.1.0 clorenc@ac.upc.edu>... Sender ok
                 RCPT TO: <albert@ac.upc.edu>
                 250 2.1.5 <albert@ac.upc.edu>... Recipient ok
                                                                      With STARTTLS:
                 DATA
                                                                      openssl s_client -debug -starttls smtp \
                 354 Enter mail, end with "." on a line by itself
                                                                       -crlf -connect mail.guifi.net:587
                 Hello world
                 250 2.0.0 p14DvF0Q008320 Message accepted for delivery
                 QUIT
                 221 2.0.0 dash.upc.es closing connection
                 Connection closed by foreign host.
                 linux ~>
```


Multipurpose Internet Mail Extensions: MIME

- Used in mail, web, etc
- Specification for "Transport" of composite multimedia objects
 - Transport type information (receiver can automatically present)
 - Encoding to enable/facilitate the transfer
- The internal format becomes invisible to users
- Include one or more objects, text in diverse alphabets, large objects (fragments, refs), alternatives, etc.

MIME: examples

```
From: Nathaniel Borenstein <nsb@thumper.bellcore.com>
To: Ned Freed <ned@innosoft.com>
Subject: Plain old email
This is a plain old email message.
It contains ASCII text, nothing more.
From: Nathaniel Borenstein <nsb@thumper.bellcore.com>
To: Ned Freed <ned@innosoft.com>
Subject: Plain text mail
Content-type: text/plain; charset=us-ascii ◄
This is plain text mail.
...Subject: French mail
Content-type: text/plain; charset=iso-8859-1
Content-transfer-encoding: quoted-printable
Le courrier =E9lectronique =E0 la fran=E7aise ...
...Content-type: image/gif
Content-Transfer-Encoding: base64
R0lGODdhSqGqAfUAAENDQ01NTTw8PEVF...
```


MIME: example multipart

```
From: Nathaniel Borenstein <nsb@bellcore.com>
 To: Ned Freed <ned@innosoft.com>
 Subject: A multipart example
 Content-Type: multipart/mixed; boundary=CUT_HERE
--CUT_HERE
 Content-type: text/plain
 Hey, Ned, look at this neat picture:
--CUT HERE
 Content-type: image/gif
 Content-Transfer-Encoding: base64
 5WVlZ6enqqqqr....
--CUT_HERE \
 Content-type: text/plain
 Wasn't that \neat?
--CUT HERE--
                Note the ending '--' of the last boundary
```


MIME: content type

- Text:
 - Attribute: charset=iso-8859-1
 - text/plain (simple text), text/html ...
- Image: image/gif, image/jpeg, image/png ...
- Audio: sound, voice, music ...
- Application: application specific content
 - Application/octet-stream: data without any associated application
 - Application/organization-product
- Multipart: a set of objects
 - Mixed: a combination of several objects
 - Alternative: an object in several formats to select one (text/html/rtf)
 - Parallel: several objs for simultaneous presentation (e.g. audio+video)
 - Digest: collection of messages
 - Related: set of objects part of a single object (web page)
- Message:
 - RFC822: a complete message (eg. resent message)
 - Partial: a fragment ...
 - External-Body: a reference to an external object

Registration scheme Type/subtype: mantained by IANA

MIME: transfer encoding

Ways to encode content: (to "get through" a 7 bit transport)

- Quoted-Printable:
 - The majority of text is 7 bits, transform some characters € → =E4
 - The result "almost" legible without decoding. Depends on table (charset)
- Base64:
 - 3 bytes (24 bits) <=> 4 ASCII (32 bits)
 - A-Za-z0-9+/=
 - '=' as padding, other are ignored (\r, \n, ...)
- Binary: No encoding: any character and lines of any length
- 7Bit: No character encoding (all 7 bits) and lines of appropriate length
- 8Bit: No character encoding (8 bits) and lines of appropriate length
- In the heading:

MIME-Version: 1.0

Subject: =?iso-8859-1?Q?acentuaci=F3n=20t=EDpica?=

Email - retrieval protocols

- Post Office Protocol (POP), RFC-1939:
 - POP server listens on well-known port 110
 - User normally deletes messages upon retrieval.
- Internet Message Access Protocol (IMAP) RFC-3501:
 - IMAP server listens on well-known port 143
 - Messages remain on the server until the user explicitly deletes them.
 - Provide commands to create folders, move messages, download only parts of the messages (e.g. only the headers)
- Web based Email (HTTP)
 - A web server handles users mailboxes. User agent is a web browser, thus, using HTTP to send and retrieve email messages.

Email - Webmail

- Web front-end for mail services. The MUA is a web browser.
- Real protocol to access the services: HTTP (web).
- The HTTP server machine uses SM TP or POP3, as required.

Outline

- DNS
- Email
- Web
- Charsets
- HTML

URI

URL

Unit 5. Network applications

Web – links

- Uniform Resource Identifier (URI) RFC3986
 - Generic syntax to identify a resource.
- Uniform Resource Locator (URL) RFC1738
 - Subset of URIs identifying the locating a resource in the Internet.
- The URL general syntax is

scheme://username:password@domain:port/path?query_string#fragment_id

- scheme: Purpose, and the syntax of the remaining part. http, gopher, file, ftp...
- domain name or IP address gives the destination location. The port is optional.
- query_string: contains data to be passed to the server.
- fragment_id: specifies a position in the html page.
- Examples:
 - http://tools.ietf.org/html/rfc1738
 - http://147.83.2.135
 - http://studies.ac.upc.edu/FIB/grau/XC/#Practs
 - file:///home/llorenc/gestio/2010/cd/autors.html
 - http://www.amazon.com/product/03879/refs9?pf_ra=ATVPD&pf_rd=07HR2

Web – HTTP Messages, RFC2616

• Client (HTTP request):

- Header: Allows the client to give additional information about the request and the client itself.
 - Host:
 - host of the resource being requested
 - mandatory in HTTP/1.1

Web – HTTP Messages, RFC2616

• Methods:

- GET Typical command. Requests an object.
- POST Request an object qualified by the data in the body. This data is the contents of the HTML form fields, provided by the client.
- HEAD the server returns only the header
- OPTIONS request communication options
- PUT store entity
- PATCH modify an existing resource
- DELETE delete entity
- TRACE final recipient echoes the received message back
- CONNECT used with a proxy

NOTES

- Most used: GET, POST
- Safe and mandatory: GET, HEAD——Any server must implement these methods at least

Web – HTTP Messages, RFC2616

• POST uses MIME types: application/octet-stream, to send raw binary data, and application/x-www-form-urlencoded, to send name-value pairs. Example:

```
request line POST /login.jsp HTTP/1.1

Host: www.mysite.com

Host: www.mysite.com

Header lines

User-Agent: Mozilla/4.0

Content-Length: 27

Content-Type: application/x-www-form-urlencoded

blank line 

POST vs. GET

GET is used to request data from a specified resource. The query string (name/value pairs) is sent in the URL of a GET message (e.g. /test/demo_form.php? name1=value1&name2=value2)

POST is used to send data to a server to create/update a resource. The data sent to the server with POST is stored in the request body of the HTTP request (as show in the example below)

Content-Type: application/x-www-form-urlencoded

blank line {

body { userid=llorenc&password=mypassword}
```

```
Example ('|jq' is ancillary):
curl https://gw1.vocdoni.net/dvote -X POST -H Content-Type:application/json -data \
'{"id": "req00'$RANDOM'", "request": {"method": "getStats", "timestamp":'$(date + \
%s)'}}' | jq
```


Web – HTTP Messages, RFC2616

Web – HTTP Messages, RFC2616

Status codes:

- 1xx informational response the request was received, continuing process
- 2xx successful the request was successfully received, understood, and accepted
- 3xx redirection further action needs to be taken in order to complete the request
- 4xx client error the request contains bad syntax or cannot be fulfilled
- 5xx server error the server failed to fulfill an apparently valid request

Some well-know status codes:

- 200 OK
- 304 Not Modified——Used by proxies
- 400 Bad Request
- 403 Forbidden
- 404 Not Found
- 500 Internal Server Error
- 502 Bad Gateway

Web – HTTP Messages, RFC2616

- Header
 - Last-Modified: date, used in conditional retrieval.
 - Etag: id, used in conditional retrieval.
 - Connection: keep-alive/close, controls whether or not the network connection stays open after the current transaction.
 - Accept: <MIME_type>/<MIME_subtype>, acceptable mime types.

• ...

```
Example HTTP 1.0 interactive sessions (double intro needed):

$ telnet www.google.com 80
Trying 2a00:1450:4003:80d::2004...
Connected to www.google.com.
Escape character is '^]'.
GET / HTTP/1.0

HTTP/1.0 200 OK
Date: Thu, 26 May 2022 09:57:36 GMT/
Expires: -1
...
```

```
Example HTTP 1.1 interactive session (Host is mandatory in HTTP 1.1):

$ telnet www.google.com 80
Trying 2a00:1450:4003:80d::2004...
Connected to www.google.com.
Escape character is '^]'.
GET / HTTP/1.1
Host: www.google.com

HTTP/1.1 200 OK
Date: Thu, 26 May 2022 09:59:59 GMT
Expires: -1
...
```

```
Example HTTP 1.1 TLS interactive session:

$ openssl s_client -connect \
www.upc.edu:443
CONNECTED(00000003)
depth=2 C = US, O = DigiCert Inc, OU = www.digicert.com, CN = DigiCert
Assured ID Root CA
verify return:1
...
Extended master secret: yes
---
GET /ca HTTP/1.1
Host: www.upc.edu

HTTP/1.1 200 OK
Date: Wed, 25 May 2022 18:31:52 GMT
...
```


Web – Persistent/non Persistent connections

- Non persistent (default in HTTP/1.0): The server close the TCP connection after every object. E.g, for an html page with 10 jpeg images, 11 TCP connections are sequentially opened.
- Persistent (default in HTTP/1.1): The server maintains the TCP connection opened until an inactivity time. In the example: All 11 objects would be sent over the same TCP connection.
- Persistent connections with pipelining (supported only in HTTP/1.1): The client issues new requests as soon as it encounter new references, even if the objects have been not completely downloaded. In the example: All 11 objects would be sent over the same TCP connection.

Llorenç Cerdà-Alabern, Leandro Navarro i Jaime Delgado, Roger Baig

Web – Caching and Proxies

• Caching: The client stores downloaded pages in a local cache. Conditional GET requests are used to download pages if necessary. It can use the Date and/or Etag:

GET /index.html HTTP/1.1

Host: www.example.com

If-Modified-Since: October 21, 2002 4:57 PM

If-None-Match: "686897696a7c876b7e"

- Proxy server: Acts as an intermediary for requests from clients.
 - Advantages:
 - Security (the proxy may reject the access to unauthorized servers)
 - Logs
 - Caching
 - Save public IP addresses (only the proxy may have access to the Internet)
 - ...

Drawback: cannot work in HTTPS due to end-to-end encryption

Web – web based applications

- Components:
 - Presentation: A web browser (client side).
 - Engine generating "on the fly" HTML pages (server side).
 - Storage: a database (e.g. mysql).

Benefits:

- Fast to deploy and upgrade (only server side).
- Only a compatible browser is required at the client side.
- Provide cross-platform compatibility (i.e., Windows, Mac, Linux, etc.)

Outline

- DNS
- Email
- Web
- Charsets
- HTML

Languages, cultures, alphabets

7400 million people (2016)

22% speak Chinese, 11% English, 7% Spanish, 0,1% Catalan

Apart from languages, there are cultures and alphabets

- Language with several cultures: es_ES, es_CO ("locale")
- Alphabet shared by several languages (e.g. català & français)

Culture:

 Messages, character sets, transliteration, ordering, search in strings, hours and dates, numbers and currency, pronunciation, ...

Interaction between agents in different languages and cultures: alphabets and character sets

Languages, cultures, alphabets

Internacionalization (i18n), Localization (l10n)

Alphabets

- "base": ascii
- National: e.g.: latin-1 (includes ascii), kanji
- International: e.g.: unicode (includes latin-1 and "all" languages)

Expression or language negotiation (in HTTP):

Accept-Language: es, ca, en-gb, en
Accept-Charset: iso-8859-15, unicode-9-0

English is the default ... Content-Language: ca
Content-Type: text/html; charset=utf-8

Character sets

Characters are encoded following several conventions:

- repertoire: a set of characters (name and representation (glyph))
- code: correspondence between repertoire and natural numbers.
- **encoding**: method (algorithm) to convert code numbers into a sequence of octets (> 256 characters)
- US-ASCII: 95 characters + control=128: 7 bits (1 octet sent)

						-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
192	, -				ĮF.	°°,	°°,	٥, ٥	۰,	١٠,	١٠,	' _' °	٠,
	0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					0	-	2	3	4	5	6	7
•	0	٥	0	0	0	NUL .	DLE	SP	0		Р	``	P
	0	0	0	_	1	SOH	DC1	!	1	Α.	0	•	9
	0	0	1	0	2	STX	DCS		2	В	R	. b	
	٥	0	•	-	3	ETX	DC3	#	3	C	S	c	1
	0	-	0	0	4	EOT	DC4	•	4	D	т	đ	1
	0	-	0	-	5	ENQ	NAK	%	5	£	٥	•	U
	0	-	•	0	6	ACK	SYN	8	6	F	٧	1	٧
	٥	-	-	_	7	BEL	ETB	•	7	G	w		•
	•	0	0	0	8	BS	CAN	(8	н	×	h	x
	┖	0	0	1	9	нТ	EM)	9	1	Y	i	y
		0	1	0	10	LF	SUB	*	_:_	J	Z	j	2
	1	0	-	1	11	VT	ESC	+		K	C	. k .	(
	١	-	0	0	12	FF	FS		<	L	`	- 1	- 1
	1	1	0	1	13	CR	GS	-	-	м))
	•	.1	1	0	14	SO	RS		>	N	^	•	~
	ш	1	1	1	15	\$1	US	/	?	0		•	DEL

ISO 8859

• ISO 8859-1 (ISO Latin 1): 190 + control = 256: 1 octet Western European, default for HTTP

More variants

ISO 8859-15 extends -1 + Ÿ, €

ISO 8859-2 (Central European)

ISO 8859-4 (North European)

ISO 8859-5 (Cyrillic)

AO		A1	i	A2	ф	A3	£.	A4	€	A5	¥	A6	Š	A7	8	A\$.		A9 (0	AA	a	AB	≪	AC	_	AD	_	ΑE	®	AF	_
BO	0	B1	<u>±</u>	B2	2	B3	3	вч	ž	B5	μ	B6	1	B7		B8 1	ź	B9	1	BA	0	BB	>>	BC	Œ	BD	œ	βE	Ϋ	BF	خ
CO	Ã	Ci	Á	CZ	Â	C3	Ã	C4	Ä	C5	Å	C6	Æ	C7	Ç	c* . E	-		É	CA	Ê	CB	Ë	CC	Ì	CD	Í	CE	Î	CF	Ϊ
DO	Đ	D1	Ñ	D2	Õ	D3	Ó	D4	ô	DS	õ	De	ö	D7	×	D8 Ç		D9 	Ü	DA	Ú	DB	Û	DC	Ü	DD	Ý	DE	þ	DF	В
ΕO	ã	E1	á	E2	â	E3	ã	EЧ	ä	E5	å	E6	æ	E7	Ç	E* .	- 1		é	ΕĤ	ê	EΒ	ë	EC	ĩ	ED	ī	EE	î	EF	ï
F0	ð	F1	ñ	F2	õ	F3	Ó	F4	ô	F5	õ	F6	ö	F7	=	F8 Ç	_	F9 	ũ	FA	ű	FB	û	FC	ü	FD	ý	FE	Þ	FF	ÿ

ISO 8859-6 (Arabic) — Most common Arabic glyphs

ISO 8859-7 (Greek)

ISO 8859-8 (Hebrew) — modern Hebrew.

ISO 8859-9 (Turkish, Kurdish)

ISO 8859-11 (Thai) — Contains most glyphs needed

Universal Coded Character Set Unicode

All characters from all written languages + math + emoticons + +=Universal Character set (ucs)

Encoding: UCS-4 bytes (fixed length)

Proportional spacing, language independent

Unicode consortium: synchronized with

- Unicode 9.0.0 (7/2016): 140,186 symbols (2023/05/29)
- U+hex code: U+0020 = ' '

Character Encoding: Universal Transformation Format (UTF)

- Difficulty or impossibility to transport 8 o 16 bits data in Internet protocols:
- **UTF-8**, UTF-16, UTF-32 (variable length)

http://www.unicode.org

Variable length encodings

- UTF-8 (8 bits) (rfc2044)
 - One to four 8-bit code units
 - Most common in the Internet
 - Preserves ASCII codes

```
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
CatalÃ, Français, Tämä on testi.
```

- UTF-16 (16 bits)
 - One or two 16-bit code units
- UTF-32 (32 bits)
 - Fixed-length 32-bit code units

Universal Coded Character Set Unicode

UTF-8 Encoding

- Determine high-order bits from the number of octets
- Fill in the bits marked x

- character: €.
- code point: U+20AC
- combination of the initial bits • code point in binary (12 bits): 10 0000 1010 1100
- 3 code units required:
- UTF-8: 11100010 10000010 10101100
- UTF-8 in hex: E282AC

• Self-synchronization => it is possible to identify any character

at any time (no need to restart reading from the beginning of

The number of bytes of the character is determined by the

the communication -it is not the case in ASCII):

Outline

- DNS
- Email
- Web
- Charsets
- HTML

HTML – Hyper-Text Markup Language, HTML

- Tim Berners-Lee defined HTML in 1989. HTML design mail goal was displaying formated text documents with hyperlinks (including links to other documents) in web browsers.
- Based on tags e.g. <head> data </head>
- Example:

```
<html>
<head>
<title>Basic html document</title>
</head>
<body>
<hl><font color="red">First Heading</font></hl>
first paragraph.
</body>
</html>
```

First Heading

first paragraph.

Terminology:

- •element
- •attribute
- •text

HTTP GET

Unit 5. Network applications

HTML – Hyper-Text Markup Language, HTML

- HTML features (1):
 - Hyperlinks: Click on a link and jump to another document
 - Forms: The document accept user inputs that are sent to the server

 JavaScript
 - Scripting: Allow adding programs. The program executes on the client's machine when the document loads, or at some other time such as when a link is activated.
 - Hyperlinks
 - <a>− <a> tag defines an hyperlink
 - Syntax:
 - » link text
 - Example:
 - » XC-GRAU

Unit 5. Network applications HTML – Hyper-Text Markup Language, HTML

- HTML features (2):
 - javascript example:

```
<html>
<head>
<script type="text/javascript">
function displaymessage() {
   alert("Hello World!");
}
</script>
</head>
<body>
<form>
   <input type="button"
   value="Click me!" onclick="displaymessage()" />
</form>
</body>
</html>
```


Unit 5. Network applications WEB & HTML – Example: "Hello, world!"

- 1) Create (copy & paste) index.html and index2.html files (source code from previous slides)
- 2) In terminal 1 run Wireshark and observe the captured traces while working in terminal 3 and

the web browser:

```
wireshark -n -i any -k -f "host 127.0.1.1"
```

- 3) In terminal 2 run the Python http module (server):

 python3 -m http.server -d <path> -b 127.0.1.1 8080
- 4) In terminal 3 run a telnet client (GET ... commands must be explicitly typed and intro pushed twice):

```
telnet 127.0.1.1 8080 ... GET / HTTP/1.0 ...
```

5) In terminal 3 run a telnet client:

```
telnet 127.0.1.1 8080 ...
GET /index2.html HTTP/1.1 ...
```

6) Open a web browser and visit http://127.0.1.1:8080 and http://127.0.1.1:8080/index2

```
Path to directory of index.html and index2.html
```

```
index.html
<html>
<head>
    <title>Basic html document</title>
    </head>
    <body>
        <hl><font color="red">First Heading</font></hl>
        first paragraph.
    </body>
    </html>
```

```
index2.html

<html>
<head>
<script type="text/javascript">
function displaymessage() {
    alert("Hello World!");
}

</script>
</head>
<body>
<form>
    input type="button"
    value="Click me!" onclick="displaymessage()" />
</form>
</body>
</html>
```


Unit 5. Network applications WEB & HTML – Example: Hello world

