Регрессионный анализ, часть 1

Математические методы в зоологии с использованием R

Марина Варфоломеева

- 1 Описание зависимости между переменными
- 2 Линейная регрессия
- 3 Неопределенность оценок коэффициентов
- 4 Тестирование значимости модели и ее коэффициентов
- Оценка качества подгонки модели

Вы сможете

- посчитать и протестировать различные коэффициенты корреляции между переменными
- подобрать модель линейной регрессии и записать ее в виде уравнения
- интерпретировать коэффициенты простой линейной регрессии
- протестировать значимость модели и ее коэффициентов при помощи tили F-теста
- \circ оценить долю изменчивости, которую объясняет модель, при помощи R^2

Описание зависимости между переменными

Пример: потеря влаги личинками мучных хрущаков

Как зависит потеря влаги личинками малого мучного хрущака *Tribolium* confusum от влажности воздуха?

- 9 экспериментов, продолжительность 6 дней
- разная относительная влажность воздуха, %
- измерена потеря влаги, мг

Малый мучной хрущак Tribolium confusum, photo by Sarefo, CC BY-SA

Nelson, 1964; данные из Sokal, Rohlf, 1997, табл. 14.1 по Loqan, 2010. глава 8, пример 8c; Данные в файлах nelson.xlsx и nelson.csv

Скачиваем данные с сайта

Не забудьте войти в вашу директорию для матметодов при помощи setwd()

```
library(downloader)
# в рабочем каталоге создаем суб-директорию для данных
if(!dir.exists("data")) dir.create("data")
# скачиваем файл в xlsx, либо в текстовом формате
if (!file.exists("data/nelson.xlsx")) {
  download(
    url = "https://varmara.github.io/mathmethr/data/nelson.xlsx",
    destfile = "data/nelson.xlsx")
}
if (!file.exists("data/nelson.csv")) {
  download(
    url = "https://varmara.github.io/mathmethr/data/nelson.xls",
    destfile = "data/nelson.csv")
```

Читаем данные из файла одним из способов

Чтение из xlsx

```
library(readxl)
nelson <- read_excel(path = "data/nelson.xlsx", sheet = 1)</pre>
```

Чтение из csv

```
nelson <- read.table("data/nelson.csv", header = TRUE, sep = "\t")</pre>
```

Все ли правильно открылось?

```
str(nelson) # Структура данных

# 'data.frame': 9 obs. of 2 variables:
# $ humidity : num 0 12 29.5 43 53 62.5 75.5 85 93
# $ weightloss: num 8.98 8.14 6.67 6.08 5.9 5.83 4.68 4.2 3.72

head(nelson) # Первые несколько строк файла
```

```
# humidity weightloss
# 1    0.0    8.98
# 2    12.0    8.14
# 3    29.5    6.67
# 4    43.0    6.08
# 5    53.0    5.90
# 6    62.5    5.83
```

Знакомимся с данными

Есть ли пропущенные значения?

```
sapply(nelson, function(x)sum(is.na(x)))
```

```
# humidity weightloss
# 0 0
```

Каков объем выборки?

```
nrow(nelson)
```

[1] 9

Как зависит потеря веса от влажности?

Коэффициент корреляции — способ оценки силы связи между двумя переменными

Коэффициент корреляции Пирсона

- Оценивает только линейную составляющую связи
- Параметрические тесты (t-критерий) значимости применимы если переменные распределены нормально

Ранговые коэффициенты корреляции (кор. Кендалла и кор. Спирмена)

- Не зависят от формы распределения переменных
- Тест на значимость непараметрический

Интерпретация коэффициента корреляции

$$-1 < \rho < 1$$

$$-1<
ho<1$$
 $ho|=1$ — сильная связь $ho=0$ — нет связи

$$ho =$$
 0 — нет связи

В тестах для проверки значимости тестируется гипотеза $H_0:
ho = 0$

By DenisBoigelot, original uploader was Imagecreator [CC01, via Wikimedia Commons

Можно расчитать значение коэффициента корреляции между потерей веса и влажностью

Можно расчитать значение коэффициента корреляции между потерей веса и влажностью

Можно описать результаты несколькими способами:

- Величина потери веса мучных хрущаков отрицательно коррелирует с относительной влажностью воздуха (r=-0.99, p<0.01)
- Мучные хрущаки теряют вес при уменьшении относительной влажности воздуха (r = -0.99, p < 0.01)

Коэффициент корреляции не позволяет предсказать значение одной переменной, зная знаячение другой

Нам бы хотелось описать функциональную зависимость

$$weightloss_i = b_0 + b_1 humidity_i$$

Линейная регрессия

Линейная регрессия

Линейная регрессия

• простая

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

множественная

$$Y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \varepsilon_i$$

Как провести линию регрессии?

Линейная модель:

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

Оценка модели:

$$\hat{y}_i = b_0 + b_1 x_i$$

Нужно оценить параметры линейной модели:

- β_0

Методы оценки параметров:

- Метод наименьших квадратов (Ordinary Least Squares)
- Методы максимального правдоподобия (Maximum Likelihood, REstricted Maximum Likelihood)

Метод наименьших квадратов

Оценки параметров линейной регрессии подбирают так, чтобы минимизировать остатки $\sum_{i} (y_i - \hat{y}_i)^2$

> Линия регрессии по методу наименьших квадратов из кн. Quinn, Keough, 2002, стр. 85, рис. 5.6 a

 X_i

X

Оценки параметров линейной регрессии

Параметры	Оценки параметров	Стандартные ошибки оценок
β_1	$b_1 = \frac{\sum_{i=1}^{n} [(x_i - \bar{x})(y_i - \bar{y})]}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$	$SE_{b_1} = \sqrt{rac{ extit{MS}_e}{\sum_{i=1}^n (x_i - ar{x})^2}}$
β_0	$b_0 = \bar{y} - b_1 \bar{x}$	$\mathit{SE}_{b_0} = \sqrt{\mathit{MS}_{e}[rac{1}{n} + rac{ar{x}}{\sum_{i=1}^{n}(x_i - ar{x})^2}]}$

Таблица из кн. Quinn, Keough, 2002, стр. 86, табл. 5.2

Стандартные ошибки коэффициентов - используются для построения доверительных интервалов - нужны для статистических тестов

Интерпретация коэффициентов регрессии

Рисунок из кн. Logan, 2010, стр. 170, рис. 8.2

Интерпретация коэффициентов регрессии

Рисунок из кн. Logan, 2010, стр. 170, рис. 8.2

- b_0 Отрезок (Intercept), отсекаемый регрессионной прямой на оси y. Значение зависимой переменной y, если предиктор x=0.
- b_1 Коэффициент угла наклона регрессионной прямой. Показывает на сколько единиц изменяется отклик (y), при увеличении значения предиктора (x) на единицу.

Для сравнения разных моделей - стандартизованные коэффициенты

- Не зависят от масштаба измерений х и у
 - Можно вычислить, зная обычные коэффициенты и их стандартные отклонения $b_1^* = b_1 \frac{\sigma_x}{\sigma_c}$
- Можно вычислить, посчитав регрессию по стандартизованным данным

Добавим линию регрессии на график

Что это за серая область вокруг линии регрессии?

Добавим линию регрессии на график

Что это за серая область вокруг линии регрессии?

Доверительная зона регрессии

- 95% доверительная зона регрессии
- В ней с 95% вероятностью лежит регрессионная прямая
- Возникает из-за неопределенности оценок коэффициентов регрессии

Как в R задать формулу линейной регрессии

lm(формула, данные) - функция для подбора регрессионных моделей Формат формулы: зависимая_переменная ~ модель

- $\hat{y}_i = b_0 + b_1 x_i$ (простая линейная регрессия с b_0 (intercept)) $\hat{y}_i = X$
 - Y ~ X
 - Y ~ 1 + X
 - Y ~ X + 1
- $\hat{y}_i = b_1 x_i$ (простая линейная регрессия без b_0)
 - Y ~ X − 1
 - Y ~ -1 + X
- ullet $\hat{y}_i = b_0$ (уменьшенная модель, линейная регрессия Y от b_0)
 - Y ~ 1
 - Y ~ 1 X

Задача

Запишите в нотации R эти модели линейных регрессий

$$\hat{y}_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + b_3 x_{3i}$$

(множественная линейная регрессия с b_0)

$$\hat{y}_i = b_0 + b_1 x_{1i} + b_3 x_{3i}$$

(уменьшенная модель множественной линейной регрессии, без x_2)

Решение

$$\hat{y}_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + b_3 x_{3i}$$

(множественная линейная регрессия с b_0)

$$Y \sim X1 + X2 + X3$$

$$Y \sim 1 + X1 + X2 + X3$$

$$\hat{y}_i = b_0 + b_1 x_{1i} + b_3 x_{3i}$$

(уменьшенная модель множественной линейной регрессии, без x_2)

$$Y \sim X1 + X3$$

$$Y \sim 1 + X1 + X3$$

Подбираем параметры линейной модели

```
nelson_lm <- lm(weightloss ~ humidity, nelson)
summary(nelson_lm)</pre>
```

```
Call:
  lm(formula = weightloss ~ humidity, data = nelson)
 Residuals:
      Min
                10 Median
                                 30
                                         Max
 -0.46397 -0.03437 0.01675 0.07464 0.45236
 Coefficients:
              Estimate Std. Error t value
                                              Pr(>|t|)
 (Intercept) 8.704027 0.191565 45.44 0.000000000654 ***
# humidity -0.053222 0.003256 -16.35 0.000000781615 ***
 Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Residual standard error: 0.2967 on 7 degrees of freedom
# Multiple R-squared: 0.9745. Adjusted R-squared: 0.9708
# F-statistic: 267.2 on 1 and 7 DF, p-value: 0.0000007816
```

Подбираем параметры линейной модели

```
nelson_lm <- lm(weightloss ~ humidity, nelson)
summary(nelson_lm)</pre>
```

```
Call:
 lm(formula = weightloss ~ humidity, data = nelson)
 Residuals:
               10 Median
      Min
                                30
                                       Max
 -0.46397 -0.03437 0.01675 0.07464 0.45236
# Coefficients:
             Estimate Std. Error t value Pr(>|t|)
 (Intercept) 8.704027 0.191565 45.44 0.000000000654 ***
# humidity -0.053222 0.003256 -16.35 0.000000781615 ***
# Signif, codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# Residual standard error: 0.2967 on 7 degrees of freedom
# Multiple R-squared: 0.9745. Adjusted R-squared: 0.9708
# F-statistic: 267.2 on 1 and 7 DF. p-value: 0.0000007816
```

Коэффициенты линейной регрессии:

$$b_0 = 8.7 \pm 0.2$$

 $b_1 = -0.053 \pm 0.003$

Записываем уравнение линейной регрессии

Коэффициенты модели:

```
coef(nelson_lm)
```

```
# (Intercept) humidity
# 8.70402730 -0.05322215
```

Уравнение регрессии:

weightloss = 8.70 - 0.05 humidity

Более формальная запись:

$$Y = 8.70 - 0.05 X1$$

Неопределенность оценок коэффициентов

Неопределенность оценок коэффициентов

Неопределенность оценок коэффициентов

Доверительный интервал коэффициента

- ullet зона, в которой с $(1-lpha)\cdot 100\%$ вероятностью содержится среднее значение коэффициента
- $b_1 \pm t_{\alpha,df=n-2} \cdot SE_{b_1}$
- ullet lpha = 0.05 => $(1-0.05) \cdot 100\% = 95\%$ интервал

Доверительная зона регрессии

ullet зона, в которой с $(1-lpha)\cdot 100\%$ вероятностью лежит регрессионная прямая

Находим доверительные интервалы коэффициентов

```
# оценки коэффициентов отдельно
coef(nelson_lm)

# (Intercept) humidity
# 8.70402730 -0.05322215

# доверительные интервалы коэффициентов
confint(nelson_lm)
```

2.5 % 97.5 %

(Intercept) 8.25104923 9.15700538 humidity -0.06092143 -0.04552287

Предсказываем Ү при заданном Х

Какова средняя потеря веса при заданной влажности?

```
# $fit
# fit lwr upr
# 1 6.042920 5.809068 6.276771
# 2 3.381812 2.933952 3.829672
# # $se.fit
# 0.09889579 0.18940006
# # $df
# [1] 7
```

\$residual.scale # [1] 0.2966631

newdata <- data.frame(humidity = c(50, 100)) # значения, для которых предсказываем

Предсказываем Ү при заданном Х

Какова средняя потеря веса при заданной влажности?

```
newdata <- data.frame(humidity = c(50, 100)) # значения, для которых предсказываем (prl <- predict(nelson_lm, newdata, interval = "confidence", se = TRUE))
```

 \bullet При 50 и 100% относительной влажности ожидаемая средняя потеря веса жуков будет 6 ± 0.2 и 3.4 ± 0.4 , соответственно.

Строим доверительную зону регрессии

```
gg_nelson + geom_smooth(method = "lm") +
labs (title = "95% доверительная зона регрессии")

gg_nelson + geom_smooth(method = "lm", level = 0.99) +
labs (title = "99% доверительная зона регрессии")
```


Неопределенность оценок предсказанных значений

Доверительный интервал к предсказанному значению

- ullet зона в которую попадают $(1-lpha)\cdot 100\%$ значений \hat{y}_i при данном x_i
- $\hat{y}_i \pm t_{\alpha,n-2} \cdot SE_{\hat{y}_i}$
- $SE_{\hat{y}} = \sqrt{MS_e \left[1 + \frac{1}{n} + \frac{(x_{prediction} \bar{x})^2}{\sum_{i=1}^{n} (x_i \bar{x})^2}\right]}$

Доверительная область значений регрессии

ullet зона, в которую попадает $(1-lpha)\cdot 100\%$ всех предсказанных значений

Предсказываем изменение Y для 95% наблюдений при заданном X

В каких пределах находится потеря веса у 95% жуков при заданной влажности?

```
newdata <- data.frame(humidity = c(50, 100)) # новые данные для предсказания значения (pr2 <- predict(nelson_lm, newdata, interval = "prediction", se = TRUE))
```

Предсказываем изменение Y для 95% наблюдений при заданном X

В каких пределах находится потеря веса у 95% жуков при заданной влажности?

```
newdata <- data.frame(humidity = c(50, 100)) # новые данные для предсказания значения (pr2 <- predict(nelson_lm, newdata, interval = "prediction", se = TRUE))
```

ullet У 95% жуков при 50 и 100% относительной влажности будет потеря веса будет в пределах 6 \pm 0.7 и 3.4 \pm 0.8, соответственно.

Данные для доверительной области значений

Предсказанные значения для исходных данных объединим с исходными данными в новом датафрейме - для графиков

```
# fit lwr upr
# 1 8.704027 7.868990 9.539064
# 2 8.065361 7.269036 8.861687
# 3 7.133974 6.377243 7.890704
# 4 6.415475 5.673847 7.157102
# 5 5.883253 5.143538 6.622969
# 6 5.377643 4.632344 6.122941
# 7 4.685755 3.921455 5.450055
# 8 4.180144 3.394150 4.966139
# 9 3.754367 2.945412 4.563322
```

nelson with pred <- data.frame(nelson, pr all)</pre>

(pr all <- predict(nelson lm, interval = "prediction"))</pre>

Строим доверительную область значений и доверительный интервал одновременно

Относительная влажность, %

Осторожно!

Тестирование значимости модели и ее коэффициентов

Тестируем коэффициенты t-критерием

t-критерий

$$t = \frac{b_1 - \theta}{SE_{b_1}}$$

 $H_0: b_1 = heta$, для heta = 0Число степеней свободы df = n-2

Тестируем значимость коэффициентов с помощью t-критерия

```
# Call:
 lm(formula = weightloss ~ humidity, data = nelson)
 Residuals:
               10 Median
      Min
                                 30
                                        Max
 -0.46397 -0.03437 0.01675 0.07464 0.45236
 Coefficients:
              Estimate Std. Error t value
                                              Pr(>|t|)
 (Intercept) 8.704027 0.191565 45.44 0.000000000654 ***
                        0.003256 -16.35 0.000000781615 ***
 humiditv
             -0.053222
 Signif. codes:
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Residual standard error: 0.2967 on 7 degrees of freedom
# Multiple R-squared: 0.9745, Adjusted R-squared: 0.9708
# F-statistic: 267.2 on 1 and 7 DF. p-value: 0.0000007816
```

summary(nelson lm)

Тестируем значимость коэффициентов с помощью t-критерия

```
# Call:
 lm(formula = weightloss ~ humidity, data = nelson)
 Residuals:
            10 Median
      Min
                                 30
                                        Max
 -0.46397 -0.03437 0.01675 0.07464 0.45236
# Coefficients:
              Estimate Std. Error t value
                                              Pr(>|t|)
 (Intercept) 8.704027 0.191565 45.44 0.000000000654 ***
             -0.053222   0.003256   -16.35   0.000000781615 ***
# humidity
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Residual standard error: 0.2967 on 7 degrees of freedom
# Multiple R-squared: 0.9745, Adjusted R-squared: 0.9708
# F-statistic: 267.2 on 1 and 7 DF. p-value: 0.0000007816
```

Результаты можно описать в тексте так:

• Увеличение относительной влажности привело к достоверному замедлению потери веса жуками ($b_1=-0.053,\,t=-16.35,\,p<0.01$)

summary(nelson lm)

Проверка при помощи F-критерия

F-критерий

$$F = \frac{MS_{regression}}{MS_{error}}$$

$$H_0: \beta_1 = 0$$

Число степеней свободы $df_{regression}$, df_{error}

Общая изменчивость

Общая изменчивость - SS_{total} , отклонения от общего среднего значения

Рис. из кн. Logan, 2010, стр. 172, рис. 8.3

Общая изменчивость

Остаточная изменчивость

Рис. из кн. Logan, 2010, стр. 172, рис. 8.3

Если зависимости нет, $b_1=0$

Остаточная изменчивость

Рис. из кн. Logan, 2010, стр. 172, рис. 8.3

Что оценивают средние квадраты отклонений?

Источник изменчивости	Число степеней свободы df	Суммы квадратов отклонений SS	Средний квадрат отклонений MS	Ожидаемый средний квадрат
Регрессия	1	$\sum (\bar{y} - \hat{y}_i)^2$	$\frac{\sum_{i=1}^{n} (\bar{y} - \hat{y}_i)^2}{1}$	$\sigma_{\varepsilon}^2 + \beta_1^2 \sum_{i=1}^n (x_i - \bar{x})^2$
Остаточная	n-2	$\sum (y_i - \hat{y}_i)^2$	$\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n-2}$	$\sigma_arepsilon^2$
Общая	n-1	$\sum (\bar{y}-y_i)^2$		

Если $b_1=0$, тогда $\hat{y}_i=ar{y}_i$ и $extit{MS}_rpprox extit{MS}_e$

Тестируем:

$$F = \frac{MS_{regression}}{MS_{error}}$$

F-критерий и распределение F-статистики

F - соотношение объясненной и не объясненной изменчивости

$$F = \frac{MS_r}{MS_e}$$

Зависит от

- α
- df_r
- o df_e

Распределение F-статистики при

справедливой H_0 Рис. из кн. Logan, 2010, стр. 172, рис. 8.3

Таблица результатов дисперсионного анализа

Источник изменчивости	df	SS	MS	F
Регрессия	$df_r = 1$	$SS_r = \sum (\bar{y} - \hat{y}_i)^2$	$MS_r = \frac{SS_r}{df_r}$	$F_{df_r,df_e} = \frac{MS_r}{MS_e}$
Остаточная	$df_e = n - 2$	$SS_{e} = \sum (y_{i} - \hat{y}_{i})^{2}$	$ extit{MS}_{ extit{e}} = rac{ extit{SS}_{ extit{e}}}{ extit{df}_{ extit{e}}}$	
Общая	$df_t = n - 1$	$SS_t = \sum (\bar{y} - y_i)^2$		

Минимальное упоминание результатов в тексте должно содержать F_{df_r,df_e} и p.

Проверяем значимость модели при помощи F-критерия

```
nelson_aov <- aov(nelson_lm)
summary(nelson_aov)</pre>
```

```
# Df Sum Sq Mean Sq F value Pr(>F)
# humidity    1 23.514    23.514    267.2 0.000000782 ***
# Residuals    7 0.616    0.088
# ---
# Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Результаты дисперсионного анализа можно описать в тексте:

• Количество влаги, потерянной жуками в период эксперимента, достоверно зависело от уровня относительной влажности ($F_{1,7}=267,\,p<0.01$).

Результаты дисперсионного анализа можно представить в виде таблицы

 Количество влаги, потерянной жуками в период эксперимента, достоверно зависело от уровня относительной влажности (Табл. 1).

Таблица 1: Результаты дисперсионного анализа зависимости потери веса мучных хрущаков от относительной влажности воздуха. df — число степеней свободы, SS — суммы квадратов отклонений, MS — средние квадраты отклонений, F — значение F-критерия, P — доверительная вероятность.

	df	SS	MS	F	Р
Влажность	1	23.51	23.51	267.18	< 0.01
Остаточная	7	0.62	0.09		

Оценка качества подгонки модели

Оценка качества подгонки модели

Коэффициент детерминации

Коэффициент детерминации R²

доля общей изменчивости, объясненная линейной связью х и у

$$R^{2} = \frac{SS_{r}}{SS_{t}} = 1 - \frac{SS_{e}}{SS_{t}}$$
$$0 < R^{2} < 1$$

Иначе рассчитывается как квадрат коэффициента корреляции $R^2=r^2$ **Не используйте обычный** R^2 **для множественной регрессии!**

Коэффициент детерминации можно найти в сводке модели

```
summary(nelson_lm)
```

```
# Call:
# lm(formula = weightloss ~ humidity, data = nelson)
# Residuals:
                10 Median
      Min
                                 30
                                         Max
 -0.46397 -0.03437 0.01675 0.07464 0.45236
 Coefficients:
              Estimate Std. Error t value
                                              Pr(>|t|)
 (Intercept) 8.704027 0.191565 45.44 0.0000000000654
 humidity -0.053222 0.003256 -16.35 0.000000781615 ***
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Residual standard error: 0.2967 on 7 degrees of freedom
# Multiple R-squared: 0.9745, Adjusted R-squared: 0.9708
# F-statistic: 267.2 on 1 and 7 DF, p-value: 0.0000007816
```

Сравнение качества подгонки моделей

$$R_{adj}^2$$
 — скорректированный R^2

$$R_{adj}^2 = 1 - \frac{SS_e/df_e}{SS_t/df_t}$$

где $df_e=n-p-1$, $df_t=n-1$

 R_{adj}^2 учитывает число переменных в модели, вводится штраф за каждый новый параметр.

Используйте R_{adi}^2 для сравнения моделей с разным числом параметров.

Take home messages

- ullet Модель простой линейной регрессии $y_i=eta_0+eta_1x_i+arepsilon_i$
- В оценке коэффициентов регрессии и предсказанных значений существует неопределенность. Доверительные интервалы можно расчитать, зная стандартные ошибки.
- Значимость всей регрессии и ее параметров можно проверить при помощи t- или F-теста. $H_0: \beta_1 = 0$
- Качество подгонки модели можно оценить при помощи коэффициента детерминации R^2

Дополнительные ресурсы

Учебники

- Гланц, 1999, стр. 221-244
- Open Intro to Statistics: Chapter 7. Introduction to linear regression, pp. 315-353.
- Quinn, Keough, 2002, pp. 78-110
- Logan, 2010, pp. 170-207
- Sokal, Rohlf, 1995, pp. 451-491
- Zar, 1999, pp. 328-355
- Упражнения для тренировки
 - OpenIntro Labs, Lab 7: Introduction to linear regression (Осторожно, они используют базовую графику а не ggplot)
 - Обычный вариант, упражнения 1—4
 - Интерактивный вариант на Data Camp, до вопроса 4