久保公式のベクトル化による電気伝導度計算の高速化

〇 矢作裕太^{1,2},加藤季広¹

1. NEC, 2. 產業技術総合研究所

- ◆久保公式にベクトル化を適用することで、電気伝導度および異常ホール伝導度の計算を高速化した。
- ◆ベクトル計算機 NEC SX-Aurora TSUBASA とスカラ計算機 Xeon でベンチマーク比較を行ったところ、 ノード性能でSX-Auroraが最大2倍程度高速であった。

背景:ハイスループット第一原理計算による材料データ生成

電気伝導度データ生成のための自動計算ワークフローと所要CPU時間[1]

前処理 電子状態計算 後処理 伝導度計算

データベースより 結晶構造を取得 < 1 sec

計算対象のスクリーニン

~ 1 sec

密度汎関数法による 電子状態計算 ~ 1 day

ワニエ強結合模型の構築

伝導度テンソルを 久保公式により評価 ~ 10 day

~ 0.5 day

久保公式 [2]: $\sigma_{\alpha\beta} = v_{\alpha}$ (内因性異常ホール伝導度の場合)

久保公式の計算は一般に高コスト、ワークフローの律速要因となっている。

久保公式の高速化ができれば、材料データをより効率的に生成できる。

久保公式のベクトル化による高速化

久保公式に基づく伝導度計算法の課題

- ◆ 数値積分の要求精度が高く、高コスト
 - 典型的な積分点数 200³ (DFTの約1000倍程度)
- ◆ 律速要因が混在(3次元数値積分×行列対角化)
 - > 実装が容易なMPI(+OpenMP)並列が主流

久保公式の疑似コード(従来手法[3])

!数値積分(このループにMPI並列適用)

for \vec{k} in $\{\vec{k}_1, \vec{k}_2, ..., \vec{k}_{N_k}\}$

!ハミルトニアン、速度演算子の計算

 \widehat{H} , \widehat{v}_{α} , $\widehat{v}_{\beta} = \text{evaluate_matrix_elements}(\overline{k})$!ハミルトニアンの対角化 (by LAPACK)

 \vec{E} , \hat{U} = diagonalize (\hat{H})

!演算子を固有基底に変換 $(\hat{v} = \hat{U}\hat{v}\hat{U}^{\dagger})$

 $\hat{v}_{\alpha} = \operatorname{convert}(\hat{U}, \hat{v}_{\alpha}); \hat{v}_{\beta} = \operatorname{convert}(\hat{U}, \hat{v}_{\beta})$

!電気伝導度の計算

 $\sigma += \text{evaluate_conductivity}(\vec{E}, \hat{v}_{\alpha}, \hat{v}_{\beta}) * d\vec{k}$ end for

ベクトル化&SX-Aurora向け最適化コード

!積分点をベクトル長 lb に分割 (ex. lb = 256)

for $\vec{k}[:]$ in $\{\vec{k}_{[1:lb]}, \vec{k}_{[lb+1:2lb]}, ..., \vec{k}_{[N_k-lb+1;N_k]}\}$

! ベクトル(長さlb)を成分にもつ行列 Â[:] を考える ! → 行列演算をベクトル実行 (loop-pushing)

 $\widehat{H}[:],\widehat{v}_{\alpha}[:],\widehat{v}_{\beta}[:] = \text{evaluate_matrix_elements}(\overrightarrow{k}[:])$!EISPACKをベースに対角化コードを最適化

 $\vec{E}[:], \widehat{U}[:] = diagonalize_vectorized_eispack(\widehat{H}[:])$

 $\widehat{v}_{\alpha}[:] = \operatorname{convert}(\widehat{U}[:], \widehat{v}_{\alpha}[:])$ $\hat{v}_{\beta}[:] = \operatorname{convert}(\widehat{U}[:], \hat{v}_{\beta}[:])$

 $\sigma[:] += \text{evaluate_conductivity}(\vec{E}[:], \hat{v}_{\alpha}[:], \hat{v}_{\beta}[:]) * d\vec{k}$ $\sigma += sum(\sigma[:])$

end for

最長ループである数値積分にベクトル化を適用 → 高いベクトル化率を達成 (~99%)

ベクトル計算機とスカラ計算機のベンチマーク比較

計算対象

電気伝導度テンソル@bcc-Fe supercell (原子数=2, 4, 6, 8, 16, 18)

ベクトル計算機 スカラ計算機 ハードウェア VE Type-20B Xeon Gold 6362 (1/-1) 8 cores 2sockets × 16 cores コンパイラ NEC SDK 4.0.0 ifort 19.1.2.254 NEC MPI 3.0.0 Intel MPI ver. 2019 ライブラリ NLC 2.3 MKL

計算環境

- ◆久保公式のベクトル化による伝導度テンソル計算の高速化に成功。
- ◆ノード性能でSX-Auroraが最大2倍程度高速であった。
- ◆積分点数を増やす(=計算精度を上げる)と優位性がより顕著になる傾向。
- ◆行列次元=96,192でSX-Auroraの性能が低下。メモリバンク競合が原因?

参考文献

- [1] J. Zelezny, Y. Yahagi, C.-G. Ollivella, Y. Zhang, and Y. Sun, arXiv:2205.14907 (2022),
- [2] R. Kubo, J. Phys. Soc. Jpn. **12**, 570-586 (1957),
- [3] J. Zelezny, Wannier-linear-response, https://bitbucket.org/zeleznyj/wannier-linear-response

