Wave Equation With Backward Euler (Fixed Point Iteration)

We will solve wave equation

$$u'' = \Delta u - \lambda u' \tag{1}$$

using backward Euler with fixed point iteration.

First we break Eq(1) into two equation:

$$u' = v \tag{2}$$

$$v' = \Delta u - \lambda v \tag{3}$$

We use the discrete Laplacian operator for triangle meshes:

$$\Delta u_i = \frac{1}{2} \sum_{j} (\cot \alpha_{ij} + \cot \beta_{ij}) (u_j - u_i)$$
(4)

Applying backward Euler to Eq(2, 3) and using Eq(4), we get fixed point update rules for each vertex i:

$$v_i^{k+1} = v_i^k \tag{5}$$

$$u_i^{k+1} = u_i^k \tag{6}$$

$$v_i^{k+1} = v_i^k + \tau \left[\frac{1}{2} \sum_j (\cot \alpha_{ij} + \cot \beta_{ij}) (u_j^k - u_i^k) - \lambda v_i^{k+1} \right]$$
 (7)

$$u_i^{k+1} = u_i^k + \tau v_i^{k+1} \tag{8}$$

After initializing velocity and offset for each vertex using Eqs(5, 6), we run Eqs(7, 8) for several times for each vertex.