Machine Learning

Support Vector Machines

Fabio Vandin

November 20th, 2023

Classification and Margin

Consider a classification problem with two classes:

- instance set $\mathcal{X} = \mathbb{R}^d$
- label set $\mathcal{Y} = \{-1, 1\}$.

Training data: $S = ((\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m))$

Hypothesis set $\mathcal{H} = \text{halfspaces}$

Assumption: data is linearly separable ⇒ there exist a halfspace that perfectly classifies the training set

In general: multiple separating hyperplanes: ⇒ which one is the best choice?

Classification and Margin

The last one seems the best choice, since it can tolerate more "noise".

Informally, for a given separating halfspace we define its *margin* as its minimum distance to an example in the training set *S*.

Classification and Margin

The last one seems the best choice, since it can tolerate more "noise".

Informally, for a given separating halfspace we define its *margin* as its minimum distance to an example in the training set *S*.

Intuition: best separating hyperplane is the one with largest margin.

How do we find it?

Linearly Separable Training Set

```
Training set S = ((\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)) is linearly separable if there exists a halfspace (\mathbf{w}, b) such that y_i = \text{sign}(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) for all i = 1, \dots, m.
```

Linearly Separable Training Set

Training set $S = ((\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m))$ is linearly separable if there exists a halfspace (\mathbf{w}, b) such that $y_i = \text{sign}(\langle \mathbf{w}, \mathbf{x}_i \rangle + b)$ for all $i = 1, \dots, m$.

Equivalent to:

$$\forall i = 1, \ldots, m : y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) > 0$$

Informally: *margin* of a separating hyperplane is its minimum distance to an example in the training set *S*

Separating Hyperplane and Margin

Given hyperplane defined by $L = \{ \mathbf{v} : \langle \mathbf{w}, \mathbf{v} \rangle + b = 0 \}$, and given \mathbf{x} , the distance of \mathbf{x} to L is

$$d(\mathbf{x}, L) = \min\{||\mathbf{x} - \mathbf{v}|| : \mathbf{v} \in L\}$$

Separating Hyperplane and Margin

Given hyperplane defined by $L = \{ \mathbf{v} : \langle \mathbf{w}, \mathbf{v} \rangle + b = 0 \}$, and given \mathbf{x} , the distance of \mathbf{x} to L is

$$d(\mathbf{x}, L) = \min\{||\mathbf{x} - \mathbf{v}|| : \mathbf{v} \in L\}$$

Claim: if $|\mathbf{w}| = 1$ then $d(\mathbf{x}, \mathbf{L}) = |\langle \mathbf{w}, \mathbf{x} \rangle + b$ (Proof: Claim 15.1 [UML])

Margin and Support Vectors

The *margin* of a separating hyperplane is the distance of the closest example in training set to it. If $|\mathbf{w}| = 1$ the margin is:

$$\min_{i\in\{1,\ldots,m\}}|\langle \mathbf{w},\mathbf{x}_i\rangle+b|$$

The closest examples are called *support vectors*

Support Vector Machine (SVM)

> looking for linear models that maximize
the makegin

Support Vector Machine (SVM)

Hard-SVM: seek for the separating hyperplane with largest margin (only for linearly separable data)

Support Vector Machine (SVM)

Support Vector Machine (SVM)

Hard-SVM: seek for the separating hyperplane with largest margin (only for linearly separable data)

Computational problem:

$$\arg\max_{(\mathbf{w},b):||\mathbf{w}||=1}\min_{i\in\{1,\dots,m\}}|\langle\mathbf{w},\mathbf{x}_i\rangle+b|$$
 subject to $\forall i:y_i(\langle\mathbf{w},\mathbf{x}_i\rangle+b)>0$

Hard-SVM: Quadratic Programming Formulation

- input: $(x_1, y_1), \dots, (x_m, y_m)$
- solve:

$$(\mathbf{w}_0, b_0) = \arg\min_{(\mathbf{w}, b)} ||\mathbf{w}||^2$$
 subject to $\forall i$ $y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge 1$ linear constants output: $\hat{\mathbf{w}} = \frac{\mathbf{w}_0}{\mathbf{w}_0}, \hat{b} = \frac{b_0}{\mathbf{w}_0}$ (in $\mathbf{w}_i(b)$)

• output: $\hat{\mathbf{w}} = \frac{\mathbf{w}_0}{\|\mathbf{w}_0\|}, \hat{b} = \frac{b_0}{\|\mathbf{w}_0\|}$

for this formulation the constrain becomes \ge 1 instead of 0

Proposition

The output of algorithm above is a solution to the *Equivalent Formulation* in the previous slide.

How do we get a solution? Quadratic optimization problem: objective is convex quadratic function, constraints are linear inequalities ⇒ Quadratic Programming solvers!

Equivalent Formulation and Support Vectors

Equivalent formulation (homogeneous halfspaces): assume first component of $x \in \mathcal{X}$ is 1, then

$$\mathbf{w}_0 = \min_{\mathbf{w}} ||\mathbf{w}||^2 \text{ subject to } \forall i: y_i \langle \mathbf{w}, \mathbf{x}_i \rangle \geq 1$$

"Support Vectors" = vectors at minimum distance from \mathbf{w}_0

The support vectors are the only ones that matter for defining \mathbf{w}_0 !

Proposition

Let w_0 be as above. Let $I = \{i \mid |\langle w_0, x_i \rangle| = 1\}$. Then there exist coefficients $\alpha_1, \ldots, \alpha_m$ such that

$$\mathbf{w}_0 = \sum_{i \in I} \alpha_i \mathbf{x}_i$$

Equivalent Formulation and Support Vectors

Equivalent formulation (homogeneous halfspaces): assume first component of $\mathbf{x} \in \mathcal{X}$ is 1, then

$$\mathbf{w}_0 = \min_{\mathbf{w}} ||\mathbf{w}||^2$$
 subject to $\forall i: y_i \langle \mathbf{w}, \mathbf{x}_i \rangle \geq 1$

"Support Vectors" = vectors at minimum distance from \mathbf{w}_0

The support vectors are the only ones that matter for defining \mathbf{w}_0 !

Proposition

Let \mathbf{w}_0 be as above. Let $I = \{i : |\langle \mathbf{w}_0, \mathbf{x}_i \rangle| = 1\}$. Then there exist coefficients $\alpha_1, \ldots, \alpha_m$ such that

$$\mathbf{w}_0 = \sum_{i \in I} \alpha_i \mathbf{x}_i$$

"Support vectors" $= \{ \mathbf{x}_i : i \in I \}$

Equivalent Formulation and Support Vectors

Equivalent formulation (homogeneous halfspaces): assume first component of $\mathbf{x} \in \mathcal{X}$ is 1, then

$$\mathbf{w}_0 = \min_{\mathbf{w}} ||\mathbf{w}||^2$$
 subject to $\forall i : y_i \langle \mathbf{w}, \mathbf{x}_i \rangle \geq 1$

"Support Vectors" = vectors at minimum distance from \mathbf{w}_0

The support vectors are the only ones that matter for defining \mathbf{w}_0 !

Proposition

Let \mathbf{w}_0 be as above. Let $I = \{i : |\langle \mathbf{w}_0, \mathbf{x}_i \rangle| = 1\}$. Then there exist coefficients $\alpha_1, \dots, \alpha_m$ such that

$$\mathbf{w}_0 = \sum_{i \in I} \alpha_i \mathbf{x}_i$$

"Support vectors" = $\{\mathbf{x}_i : i \in I\}$

Note: Solving Hard-SVM is equivalent to find α_i for i = 1, ..., m, and $\alpha_i \neq 0$ only for support vectors

Soft-SVM

Hard-SVM works if data is linearly separable.

What if data is not linearly separable? ⇒ soft-SVM

Idea: modify constraints of Hard-SVM to allow for some violation, but take into account violations into objective function

Soft-SVM Constraints

Hard-SVM constraints:

$$y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \geq 1$$

for (\vec{x}_i, \vec{y}_2) for (\vec{x}_i, \vec{y}_m)

Soft-SVM constraints: /

• slack variables:
$$\xi_1, \ldots, \xi_m \ge 0 \Rightarrow \text{vector } \xi = \begin{cases} \frac{7}{2} \\ \frac{7}{2} \end{cases}$$

- for each i = 1, ..., m: $y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \ge 1 \xi_i$
- ξ_i : how much constraint $y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \geq 1$ is violated

Soft-SVM minimizes combinations of

- norm of w
- average of ξ_i

Tradeoff among two terms is controlled by a parameter $\lambda \in \mathbb{R}, \lambda > 0$

Soft-SVM: Optimization Problem

Soft-SVM: Optimization Problem

- input: $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$, parameter $\lambda > 0$
- solve:

$$\min_{\mathbf{w},b,\xi} \left(\lambda ||\mathbf{w}||^2 + \frac{1}{m} \sum_{i=1}^m \xi_i \right)$$

subject to $\forall i: y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \geq 1 - \xi_i$ and $\xi_i \geq 0$

output: w, b

Equivalent formulation: consider the *hinge loss*

$$\ell^{\text{hinge}}((\mathbf{w},b),(\mathbf{x},y)) = \max\{0,1-y(\langle \mathbf{w},\mathbf{x}\rangle+b)\}$$
Given (\mathbf{w},b) and a training S , the empirical risk $L_S^{\text{hinge}}((\mathbf{w},b))$ is
$$L_S^{\text{hinge}}((\mathbf{w},b)) = \frac{1}{m} \sum_{i=1}^m \ell^{\text{hinge}}((\mathbf{w},b),(\mathbf{x}_i,y_i))$$

Soft-SVM as RLM

Soft-SVM: solve

$$\min_{\mathbf{w},b,\xi} \left(\lambda ||\mathbf{w}||^2 + \frac{1}{m} \sum_{i=1}^m \xi_i \right)$$

Equivalent formulation with hinge loss:

subject to $\forall i: y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) > 1 - \xi_i$ and $\xi_i > 0$

$$\min_{\mathbf{w},b} \left(\lambda ||\mathbf{w}||^2 + L_S^{\text{hinge}}(\mathbf{w},b) \right)$$

that is

$$\min_{\mathbf{w},b} \left(\lambda ||\mathbf{w}||^2 + \frac{1}{m} \sum_{i=1}^{m} \ell^{\text{hinge}}((\mathbf{w},b),(\mathbf{x}_i,y_i)) \right)$$

Note:

- $\lambda ||\mathbf{w}||^2$: ℓ_2 regularization
- $L_S^{\text{hinge}}(\mathbf{w}, b)$: empirical risk for hinge loss