Predicting WNV Presence in Chicago through Weather Data

Problem Statement

- Data scientists at Disease and Treatment Agency
- Given mosquito collection data by Department of Public Health
- Instructed to come up with a plan on how to manage the West Nile Virus through use of

Background Information

- West Nile Virus is the most dominant vector-borne disease in North America
- Virus stems from Africa, introduced into North America via birds
- Mosquitoes transmit the disease from bird to human through feeding on both species

EDA

- Quality of data
 - Inconsistent sampling quantity
 - Collection date
 - Location

EDA

- Large class imbalance
- SMOTE necessary

Modelling Workflow

Data prep (feature engineering, dual models)

- Balancing Data
 - Scale first then SMOTE (Synthetic Minority Oversampling Technique)

Final model Tuning and Adding Features

Feature Engineering

- Identified from EDA:
 - Humidity and Temp play a part
 - Locations play a part
 - Used Trap
 - Certain Months/Weeks play a part
- Resorted to Polynomial Features
- Tested 2 Datasets
 - Minimal multicollinearity
 - Features with multicollinearity

Feature	Correlation
nummosquitos	0.248242
week	0.104807
month	0.101115
dewpoint	0.087043
wetbulb	0.082887
tmin	0.070538
longitude	0.068600
tavg	0.065243
station	0.063496
cool	0.059307
heat	0.054685
year	0.053875
tmax	0.051986
resultspeed	0.045893
latitude	0.033330
avgspeed	0.031990
preciptotal	0.014298
addressaccuracy	0.012268
weekday	0.011084
block	0.009204
sealevel	0.007648
stnpressure	0.006849
resultdir	0.000253

Base Models

Base Models

200	model_name	model	recall	test_auc
7	lr_base_reg	lr	0.629032	0.813799
0	Ir_base_multi	Ir	0.620968	0.814525
1	svm_base_multi	svm	0.411290	0.803701
8	svm_base_reg	svm	0.403226	0.793494
6	ada_base_multi	ada	0.225806	0.816133
13	ada_base_reg	ada	0.193548	0.800370
5	gb_base_multi	gb	0.169355	0.822053
12	gb_base_reg	gb	0.096774	0.813685

• Prioritise Recall Score

why?

Tuned Models

	model_name	recall	test_auc
0	lr_tuned	0.620968	0.814525
1	svm_tuned	0.290323	0.772498
3	gb_tuned	0.161290	0.816846
2	ada_tuned	0.153226	0.848250
4	xg_tuned	0.048387	0.837677

Back to Feature Engineering

nummosquitos week 0.248242

- Testing 'nummosquitos' feature
 - Made a Significant difference in model performance

- Secondary Linear Regression model
 - Predicts 'nummosquitos' for the test dataset
 - Fairly low root mean squared error, details can be found in the notebooks that will be shared after this presentation

- Increases of up to 6% in model performance
 - Merit to use a prediction model for this

Precision-Recall Curve

Logistic Regression

Tradeoff

	model_name	recall	test_auc
0	Ir_final_tuned	0.685484	0.850978
1	ada_logreg_tuned	0.685484	0.847914
2	gb_logreg_tuned	0.201613	0.860428

Model and Error analysis

Confusion Matrix

	Predict No WNV	Predict WNV
Actual No WNV	1952 (80.5%)	348 (14.3%)
Actual WNV	39 (1.6%)	85 (3.5%)

Error analysis on Temperature

Error analysis on traps

Deep dive into Misclassified Trap T228

General WNV Rate	Trap T228 WNV Rate
5%	9%

	nummosquitos	month	tavg	dewpoint	trap
7955	29	7	71.0	53	T228
4989	2	9	71.0	55	T228
8123	17	7	84.0	70	T228

Cost Benefit Analysis - Spray Cost ¹

Item	Cost Calculation
Spray Cost Per km sq	\$245.21
Total km sq	238,211 km sq
Frequency	12
Total Spray Cost	\$2,858,536

1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322011/

Cost Benefit Analysis - Estimated Reduction in WNV (2013)

Item	Cases
WNV Incidences	113
Reduction from Spray	57.5%
Predicted Reduction of WNV instances	67

Cost Benefit Analysis - Cost Savings (2013)

Item	Cost
Cost Per Case	\$17,000
Total Case Reduction	67
Human Infection Per WNV instance	3 (Minimum profitability)
Estimated Total Cost Savings	+ \$3.41 mil
Total Spray Cost	- \$2.85 mil
Total Savings	+ \$0.56 mil

Cost Benefit Analysis - Cost Savings (2013)

Human Infection Per WNV instance	Cost Savings (+\$ 1.13 mil per additional case)
1	- \$1.72 mil
2	- \$0.59 mil
3	+ \$ 0.56 mil
4	+ \$ 1.69 mil
5	+ \$ 2.82 mil

Conclusions and Recommendations

	Details
Where to spray	Trap locations based on highest WNV infection rate
When to Spray	July - September
What to spray with	Malathion

Conclusions and Recommendations

Consider...

- Using alternate insecticides
- Using alternate insecticide dispersal methods
 - Community-based larvicide application
- Optical sensor-based counting system to ensure consistent sampling

Future Improvements

Fine-tune Linear Regression to better predict number of mosquitos

Further fine-tune XGBoost to explore its potential performance

Explore other classification techniques such as Neural Networks etc

External Research

- 1.https://academic.oup.com/jme/article/56/6/1456/5572378
- 2.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322011/
- 3.https://academic.oup.com/jme/article/56/6/1456/5572378
- 4.https://www.chicago.gov/city/en/depts/cdph/provdrs/healthy_living/news/2021/august/city-to-spray-insecticide-wednesday-to-kill-mosquitoes.html
- 5.https://www.centralmosquitocontrol.com/-/media/files/centralmosquitocontrol-na/us/specimen%20labels/zenivex%20e20%20specimen%20label.pdf
- 6.https://pubmed.ncbi.nlm.nih.gov/23883850/
- 7.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2661378/
- 8.https://link.springer.com/article/10.1007/s00340-019-7361-2
- 9.https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179673
- 10.https://www.science.org/content/article/after-40-years-most-important-weapon-against-mosquitoes-may-be-failing
- 11.https://www.cmmcp.org/pesticide-information/pages/zenivex-e4-etofenprox
- 12. http://npic.orst.edu/factsheets/archive/malatech.html