Exercise 1.

找一个 5 次不可约多项式,构造GF(32),给出元素向量表示与幂表示对应表。

解: 查表得,5次不可约多项式有: x^5+x^2+1 , x^5+x^3+1 , $x^5+x^3+x^2+x+1$, $x^5+x^4+x^2+x+1$, $x^5+x^4+x^3+x+1$, $x^5+x^4+x^3+x^2+1$. 对于 5 次不可约多项式 x^5+x^2+1 而言,列出其元素向量表示和幂表示如表(见下页)

-					
系数	多项式	幂表示	系数	多项式	幂表示
00000	0	0	11111	$\alpha^4 + \alpha^3 + \alpha^2 + \alpha + 1$	α^{15}
10000	1	α^{0}	11011	$\alpha^4 + \alpha^3 + \alpha + 1$	α^{16}
01000	α	α^1	11001	$\alpha^4 + \alpha + 1$	α^{17}
00100	α^2	α^2	11000	$\alpha + 1$	α^{18}
00010	α^3	α^3	01100	$\alpha^2 + \alpha$	α^{19}
00001	α^4	α^4	00110	$\alpha^3 + \alpha^2$	α^{20}
10100	$\alpha^2 + 1$	α^5	00011	$\alpha^4 + \alpha^3$	α^{21}
01010	$\alpha^3 + \alpha$	α^{6}	10101	$\alpha^4 + \alpha^2 + 1$	α^{22}
00101	$\alpha^4 + \alpha^2$	α^7	11110	$\alpha^3 + \alpha^2 + \alpha + 1$	α^{23}
10110	$\alpha^3 + \alpha^2 + 1$	α^{8}	01111	$\alpha^4 + \alpha^3 + \alpha^2 + \alpha$	α^{24}
01011	$\alpha^4 + \alpha^3 + \alpha$	α^9	10011	$\alpha^4 + \alpha^3 + 1$	α^{25}
10001	$\alpha^4 + 1$	α^{10}	11101	$\alpha^4 + \alpha^2 + \alpha + 1$	α^{26}
11100	$\alpha^2 + \alpha + 1$	α^{11}	11010	$\alpha^3 + \alpha + 1$	α^{27}
01110	$\alpha^3 + \alpha^2 + \alpha$	α^{12}	01101	$\alpha^4 + \alpha^2 + \alpha$	α^{28}
00111	$\alpha^4 + \alpha^3 + \alpha^2$	α^{13}	10010	$\alpha^3 + 1$	α^{29}
10111	$\alpha^4 + \alpha^3 + \alpha^2 + 1$	α^{14}	01001	$\alpha^4 + \alpha$	α^{30}

ロト (個) (重) (重) 重 の(で

Exercise 2.

列出所有码长是7的二元循环码。

解:
$$x^7 - 1 = (x^3 + x + 1)(x^3 + x^2 + 1)(x + 1)$$
.
当 $g(x) = x^3 + x + 1$ 时, $k = 4$

当
$$g(x) = x^3 + x^2 + 1$$
 时, $k = 4$

◆ロト ◆卸 ト ◆差 ト ◆差 ト ・ 差 ・ からぐ

当
$$g(x) = x + 1$$
 时, $k = 6$

当
$$g(x) = (x+1)(x^2+x+1)$$
 时, $k=3$

当
$$g(x) = (x+1)(x^3+x^2+1)$$
 时, $k=3$

当
$$g(x) = (x^3 + x + 1)(x^3 + x^2 + 1)$$
 时, $k = 1$