01204211 Discrete Mathematics Lecture 13b: Eigenvalues and Eigenvectors

Jittat Fakcharoenphol

September 22, 2022

Review: Hamming codes (1)

Review: Hamming codes (1)

GP(2)

The code is defined by the generator matrix

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{1} & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{1} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{1} & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \\ \chi_4 \\ \chi_4 \end{bmatrix} = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \\ \chi_4 \\ \chi_2 + \chi_3 + \chi_4 \\ \chi_1 + \chi_3 + \chi_4 \\ \chi_1 + \chi_2 + \chi_4 \end{bmatrix}$$

Consider the encoding function
$$e: GF(2)^4 \to GF(2)^7$$
. Let $e(x) = Gx$. What is Ker $e? = \{ [0,0,0,0] \}$ din Kere = 0

dim V = dim Inc + dinkore

The code is defined by the generator matrix

$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \qquad G = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Consider the encoding function $e: GF(2)^4 \to GF(2)^7$. Let e(x) = Gx. What is Ker e? What is dim Im e?

Review: Hamming codes (2)

The code is defined by the generator matrix $G = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$

What can you say about the minimum "distance"?

Let's start with a simple system with one variable.

$$\frac{du}{dt} = au,$$
 with $u = u(0)$ when $t = 0$.
$$\mathcal{U} = \underbrace{\mathbf{u}}_{\text{ext}}$$

$$l_{t} = \frac{(1.1)^{t}}{100}$$
exponential.

Examples: differential equations (2)

Now consider a system with two variables v and w:

$$\begin{array}{rcl} \frac{dv}{dt} & = & 4v - 5w \\ \frac{dw}{dt} & = & 2v - 3w \end{array}$$

with v=5 and w=4 when t=0,

Examples: differential equations (2)

Now consider a system with two variables \boldsymbol{v} and \boldsymbol{w} :

$$\begin{array}{rcl} \frac{dv}{dt} & = & 4v - 5w \\ \frac{dw}{dt} & = & 2v - 3w \end{array}$$

with v=5 and w=4 when t=0, or if we let $u(t)=\begin{bmatrix}v(t)\\w(t)\end{bmatrix}$ and

$$A = \begin{bmatrix} 4 & -5 \\ 2 & -3 \end{bmatrix}, \qquad \lambda t = 4e^{\lambda t} - 5e^{\lambda t}$$

$$\frac{du}{dt} = Au, \qquad \lambda ye^{\lambda t} = 2e^{\lambda t} - 3e^{\lambda t}$$

$$\lambda \begin{bmatrix} u \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} u \end{bmatrix} \qquad \lambda y = 4x - 5y$$

$$\lambda \begin{bmatrix} u \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} u \end{bmatrix} \qquad \lambda y = 2x - 4y$$

we have

with
$$u(0) = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$$

Examples: differential equations (3)

Eigenvalues and eigenvectors

Definition

For an n-by-n matrix A, a vector ${\boldsymbol v}$ is an ${\color{red} {\bf eigenvector}}$ of A if

$$A\mathbf{v} = \lambda \mathbf{v},$$

and $v \neq 0$. The scalar λ is called an eigenvalue associated with v.

Consider matrix
$$A=\begin{bmatrix}5&7\\5&3\end{bmatrix}$$
. If we let $m{v}_1=\begin{bmatrix}-1\\1\end{bmatrix}$, we have
$$Am{v}_1=\begin{bmatrix}5&7\\5&3\end{bmatrix}\begin{bmatrix}-1\\1\end{bmatrix}=$$

Consider matrix
$$A=\begin{bmatrix}5&7\\5&3\end{bmatrix}$$
. If we let ${m v}_1=\begin{bmatrix}-1\\1\end{bmatrix}$, we have
$$A{m v}_1=\begin{bmatrix}5&7\\5&3\end{bmatrix}\begin{bmatrix}-1\\1\end{bmatrix}=\begin{bmatrix}-5+7\\-5+3\end{bmatrix}=$$

Consider matrix
$$A = \begin{bmatrix} 5 & 7 \\ 5 & 3 \end{bmatrix}$$
.

If we let
$$v_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
, we have

$$A\mathbf{v}_1 = \begin{bmatrix} 5 & 7 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -5+7 \\ -5+3 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \end{bmatrix} = (-2) \cdot \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

If we let
$$oldsymbol{v}_2 = egin{bmatrix} 7 \\ 5 \end{bmatrix}$$
 , we have

$$Av_2 = \begin{bmatrix} 5 & 7 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} 7 \\ 5 \end{bmatrix} =$$

Consider matrix
$$A = \begin{bmatrix} 5 & 7 \\ 5 & 3 \end{bmatrix}$$
.

If we let $v_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, we have

$$A\mathbf{v}_1 = \begin{bmatrix} 5 & 7 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -5+7 \\ -5+3 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \end{bmatrix} = (-2) \cdot \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

If we let
$$oldsymbol{v}_2 = egin{bmatrix} 7 \\ 5 \end{bmatrix}$$
 , we have

$$Av_2 = \begin{bmatrix} 5 & 7 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} 7 \\ 5 \end{bmatrix} = \begin{bmatrix} 35 + 35 \\ 35 + 15 \end{bmatrix} =$$

Consider matrix
$$A = \begin{bmatrix} 5 & 7 \\ 5 & 3 \end{bmatrix}$$
.

If we let $v_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, we have

$$A\mathbf{v}_1 = \begin{bmatrix} 5 & 7 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -5+7 \\ -5+3 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \end{bmatrix} = (-2) \cdot \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

If we let
$$oldsymbol{v}_2 = egin{bmatrix} 7 \\ 5 \end{bmatrix}$$
 , we have

$$A\mathbf{v}_2 = \begin{bmatrix} 5 & 7 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} 7 \\ 5 \end{bmatrix} = \begin{bmatrix} 35 + 35 \\ 35 + 15 \end{bmatrix} = \begin{bmatrix} 70 \\ 50 \end{bmatrix} = 10 \cdot \begin{bmatrix} 7 \\ 5 \end{bmatrix}.$$

Consider matrix
$$A = \begin{bmatrix} 5 & 7 \\ 5 & 3 \end{bmatrix}$$
.

If we let $v_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, we have

$$A\mathbf{v}_1 = \begin{bmatrix} 5 & 7 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -5+7 \\ -5+3 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \end{bmatrix} = (-2) \cdot \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

If we let ${m v}_2 = \begin{bmatrix} 7 \\ 5 \end{bmatrix}$, we have

$$A\mathbf{v}_2 = \begin{bmatrix} 5 & 7 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} 7 \\ 5 \end{bmatrix} = \begin{bmatrix} 35 + 35 \\ 35 + 15 \end{bmatrix} = \begin{bmatrix} 70 \\ 50 \end{bmatrix} = 10 \cdot \begin{bmatrix} 7 \\ 5 \end{bmatrix}.$$

See demo in colab.

Invariant subspace

Definition (invariant subspace)

For an n-by-n matrix A, subspace $\mathcal{V}\subseteq\mathbb{R}^n$ is called an **invariant subspace** under linear map $f(\boldsymbol{x})=A\boldsymbol{x}$ if for all $\boldsymbol{u}\in\mathcal{V}$, $f(\boldsymbol{u})=A\boldsymbol{u}\in\mathcal{V}$.

Invariant subspace

Definition (invariant subspace)

For an n-by-n matrix A, subspace $\mathcal{V} \subseteq \mathbb{R}^n$ is called an **invariant subspace** under linear map $f(\boldsymbol{x}) = A\boldsymbol{x}$ if for all $\boldsymbol{u} \in \mathcal{V}$, $f(\boldsymbol{u}) = A\boldsymbol{u} \in \mathcal{V}$.

Eigenvector

If $oldsymbol{v}$ is an eigenvector of matrix A, then

Span
$$\{v\}$$

is a 1-dimensional invariant subspace under linear map defined by ${\cal A}.$

Finding eigenvalues and eigenvectors

Given A, we want to find an eigenvalue λ and a vector ${m u} \neq {m 0}$ such that

$$Au = \lambda u.$$

$$Au - \lambda u = \phi \quad Au - \lambda Lu$$

$$= (A - \lambda I)u = 0$$

Finding eigenvalues and eigenvectors

Given A, we want to find an eigenvalue λ and a vector ${m u} \neq {m 0}$ such that

$$A\mathbf{u} = \lambda \mathbf{u}$$
.

After some writing, we want to solve this equation

$$(A - \lambda I)\boldsymbol{u} = 0,$$

where $\boldsymbol{u} \neq 0$.

Consider an n-by-n matrix A and the following linear system of equations

$$Ax = 0.$$

Consider an n-by-n matrix A and the following linear system of equations

$$Ax = 0.$$

Suppose that there exists $x \neq 0$ that satisfies the equation, what can you say about A?

$$A = A = A = A$$

$$A = A = A = 0$$

Consider an n-by-n matrix A and the following linear system of equations

$$Ax = 0$$
.

Suppose that there exists $\underline{x \neq 0}$ that satisfies the equation, what can you say about A?

Clearly, A cannot have an <u>inverse</u> because no matrix B can bring \boldsymbol{x} back from $A\boldsymbol{x}=0$.

Consider an n-by-n matrix A and the following linear system of equations

$$Ax = 0$$
.

Suppose that there exists $x \neq 0$ that satisfies the equation, what can you say about A?

Clearly, A cannot have an inverse because no matrix B can bring \boldsymbol{x} back from $A\boldsymbol{x}=0$. In this case, we say that A is singular.

Consider an n-by-n matrix A and the following linear system of equations

$$Ax = 0$$
.

Suppose that there exists $x \neq 0$ that satisfies the equation, what can you say about A?

Clearly, A cannot have an inverse because no matrix B can bring \boldsymbol{x} back from $A\boldsymbol{x}=0$. In this case, we say that A is singular.

Consider an n-by-n matrix A and the following linear system of equations

$$Ax = 0.$$

Suppose that there exists $x \neq 0$ that satisfies the equation, what can you say about A?

Clearly, A cannot have an inverse because no matrix B can bring x back from Ax = 0. In this case, we say that A is singular. Equavilent conditions:

- ightharpoonup The rank of A is less than n.
- Rows of A are not linearly independent.
- ▶ The linear function f(x) = Ax is not injective.
- $\blacktriangleright \operatorname{Ker} f \neq \{\mathbf{0}\}.$
- $ightharpoonup \dim \operatorname{Ker} f \neq 0.$

Finding λ

From this equation

$$(A - \lambda I)\boldsymbol{x} = \boldsymbol{0}.$$

Since we want it to have nonzero solution x. Our goal is to find λ so that $A-\lambda I$ becomes singular.

Finding λ

From this equation

$$(A - \lambda I)\boldsymbol{x} = \boldsymbol{0}.$$

Since we want it to have nonzero solution x. Our goal is to find λ so that $A - \lambda I$ becomes singular.

Typically, the tool to use is the **determinant**. However, we do not cover this topic in this class. We will look at small examples and consider an iterative method instead.

Consider matrix
$$A=\begin{bmatrix}5&7\\5&3\end{bmatrix}$$
. We want to find λ such that
$$\begin{bmatrix}5-\lambda&7\\5&3-\lambda\end{bmatrix} = \angle\begin{bmatrix}5-\lambda&7\\5&3-\lambda\end{bmatrix}$$

$$\alpha\begin{bmatrix}5-\lambda&7\\5&3-\lambda\end{bmatrix}$$

Consider matrix $A=\begin{bmatrix} 5 & 7 \\ 5 & 3 \end{bmatrix}$. We want to find λ such that

$$\begin{bmatrix} 5 - \lambda & 7 \\ 5 & 3 - \lambda \end{bmatrix}$$

is singular. This amounts to solving

$$\frac{5-\lambda}{5} = \frac{7}{3-\lambda},$$

Consider matrix $A=\begin{bmatrix} 5 & 7 \\ 5 & 3 \end{bmatrix}$. We want to find λ such that

$$\begin{bmatrix} 5 - \lambda & 7 \\ 5 & 3 - \lambda \end{bmatrix}$$

is singular. This amounts to solving

$$\frac{5-\lambda}{5} = \frac{7}{3-\lambda},$$

i.e.,

$$\lambda^2 - 8\lambda - 20 = 0.$$

Consider matrix $A=\begin{bmatrix} 5 & 7 \\ 5 & 3 \end{bmatrix}$. We want to find λ such that

$$\begin{bmatrix} 5 - \lambda & 7 \\ 5 & 3 - \lambda \end{bmatrix}$$

is singular. This amounts to solving

$$\frac{5-\lambda}{5} = \frac{7}{3-\lambda},$$

i.e.,

$$\lambda^2 - 8\lambda - 20 = 0.$$

The equation can be re-written as $(\lambda-10)(\lambda+2)=0$; thus, it has 2 roots: 10 and -2

Consider matrix $A=\begin{bmatrix} 5 & 7 \\ 5 & 3 \end{bmatrix}$. We want to find λ such that

$$\begin{bmatrix} 5 - \lambda & 7 \\ 5 & 3 - \lambda \end{bmatrix}$$

is singular. This amounts to solving

$$\frac{5-\lambda}{5} = \frac{7}{3-\lambda},$$

i.e.,

$$\lambda^2 - 8\lambda - 20 = 0.$$

The equation can be re-written as $(\lambda - 10)(\lambda + 2) = 0$; thus, it has 2 roots: 10 and -2.

You can find associated eigenvectors by solving corresponding $(A-\lambda I)x=\mathbf{0}$ equations.

Consider matrix $A = \begin{bmatrix} 5 & 7 \\ 5 & 3 \end{bmatrix}$. We know that A has two eigenvectors

$$m{v}_1 = egin{bmatrix} 7 \ 5 \end{bmatrix}, \qquad m{v}_2 = egin{bmatrix} -1 \ 1 \end{bmatrix}.$$

with corresponding eigenvalues $\lambda_1 = 10$ and $\lambda_2 = -2$.

Consider matrix $A = \begin{bmatrix} 5 & 7 \\ 5 & 3 \end{bmatrix}$. We know that A has two eigenvectors

$$oldsymbol{v}_1 = egin{bmatrix} 7 \ 5 \end{bmatrix}, \qquad oldsymbol{v}_2 = egin{bmatrix} -1 \ 1 \end{bmatrix}.$$

with corresponding eigenvalues $\lambda_1=10$ and $\lambda_2=-2$. What can we say about

$$\begin{bmatrix} 5 & 7 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} 5 \\ 7 \end{bmatrix}$$

Consider matrix $A = \begin{bmatrix} 5 & 7 \\ 5 & 3 \end{bmatrix}$. We know that A has two eigenvectors

$$oldsymbol{v}_1 = egin{bmatrix} 7 \ 5 \end{bmatrix}, \qquad oldsymbol{v}_2 = egin{bmatrix} -1 \ 1 \end{bmatrix}.$$

with corresponding eigenvalues $\lambda_1=10$ and $\lambda_2=-2$. What can we say about

$$\begin{bmatrix} 5 & 7 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} 5 \\ 7 \end{bmatrix} = \begin{bmatrix} 5 & 7 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} 7 & 2 \\ 5 & 2 \end{bmatrix} =$$

Consider matrix $A = \begin{bmatrix} 5 & 7 \\ 5 & 3 \end{bmatrix}$. We know that A has two eigenvectors

$$oldsymbol{v}_1 = egin{bmatrix} 7 \ 5 \end{bmatrix}, \qquad oldsymbol{v}_2 = egin{bmatrix} -1 \ 1 \end{bmatrix}.$$

with corresponding eigenvalues $\lambda_1=10$ and $\lambda_2=-2$. What can we say about

$$\begin{bmatrix} 5 & 7 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} 5 \\ 7 \end{bmatrix} = \begin{bmatrix} 5 & 7 \\ 5 & 3 \end{bmatrix} \begin{bmatrix} 7-2 \\ 5+2 \end{bmatrix} = \begin{bmatrix} 5 & 7 \\ 5 & 3 \end{bmatrix} \left(\begin{bmatrix} 7 \\ 5 \end{bmatrix} + 2 \cdot \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right)$$

Fact: An n-by-n matrix A has n linearly independent eigenvectors v_1, \ldots, v_n with corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$. (They might not be real vectors.)

Fact: An n-by-n matrix A has n linearly independent eigenvectors v_1,\ldots,v_n with corresponding eigenvalues $\lambda_1,\ldots,\lambda_n$. (They might not be real vectors.)

Since v_1,\ldots,v_n form a basis, for any vector x there exist $\alpha_1,\alpha_2,\cdots,\alpha_n$ such that

$$\boldsymbol{x} = \alpha_1 \boldsymbol{v}_1 + \alpha_2 \boldsymbol{v}_2 + \dots + \alpha_n \boldsymbol{v}_n.$$

Fact: An n-by-n matrix A has n linearly independent eigenvectors v_1, \ldots, v_n with corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$. (They might not be real vectors.)

Since v_1,\ldots,v_n form a basis, for any vector x there exist $\alpha_1,\alpha_2,\cdots,\alpha_n$ such that

$$\boldsymbol{x} = \alpha_1 \boldsymbol{v}_1 + \alpha_2 \boldsymbol{v}_2 + \dots + \alpha_n \boldsymbol{v}_n.$$

Let's multiply x with A:

$$Ax = A(\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n)$$

$$= A\alpha_1 \mathbf{v}_1 + A\alpha_2 \mathbf{v}_2 + \dots + A\alpha_n \mathbf{v}_n$$

$$= \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 \mathbf{v}_2 - \dots - \dots$$

Fact: An n-by-n matrix A has n linearly independent eigenvectors v_1, \ldots, v_n with corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$. (They might not be real vectors.)

Since v_1,\ldots,v_n form a basis, for any vector x there exist $\alpha_1,\alpha_2,\cdots,\alpha_n$ such that

$$\boldsymbol{x} = \alpha_1 \boldsymbol{v}_1 + \alpha_2 \boldsymbol{v}_2 + \dots + \alpha_n \boldsymbol{v}_n.$$

Let's multiply x with A:

$$Ax = A(\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n)$$

= $A\alpha_1 \mathbf{v}_1 + A\alpha_2 \mathbf{v}_2 + \dots + A\alpha_n \mathbf{v}_n$
= $\lambda_1 \alpha_1 \mathbf{v}_1 + \lambda_2 \alpha_2 \mathbf{v}_2 + \dots + \lambda_n \alpha_n \mathbf{v}_n$.

Fact: An n-by-n matrix A has n linearly independent eigenvectors v_1,\ldots,v_n with corresponding eigenvalues $\lambda_1,\ldots,\lambda_n$. (They might not be real vectors.)

Since v_1,\ldots,v_n form a basis, for any vector x there exist $\alpha_1,\alpha_2,\cdots,\alpha_n$ such that

$$\boldsymbol{x} = \alpha_1 \boldsymbol{v}_1 + \alpha_2 \boldsymbol{v}_2 + \dots + \alpha_n \boldsymbol{v}_n.$$

Let's multiply x with A:

$$Ax = A(\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n)$$

= $A\alpha_1 \mathbf{v}_1 + A\alpha_2 \mathbf{v}_2 + \dots + A\alpha_n \mathbf{v}_n$
= $\lambda_1 \alpha_1 \mathbf{v}_1 + \lambda_2 \alpha_2 \mathbf{v}_2 + \dots + \lambda_n \alpha_n \mathbf{v}_n$.

We can keep multiplying with A many times:

$$A^k x =$$

Fact: An n-by-n matrix A has n linearly independent eigenvectors v_1,\ldots,v_n with corresponding eigenvalues $\lambda_1,\ldots,\lambda_n$. (They might not be real vectors.)

Since v_1,\ldots,v_n form a basis, for any vector x there exist $\alpha_1,\alpha_2,\cdots,\alpha_n$ such that

$$\boldsymbol{x} = \alpha_1 \boldsymbol{v}_1 + \alpha_2 \boldsymbol{v}_2 + \dots + \alpha_n \boldsymbol{v}_n.$$

Let's multiply x with A:

$$Ax = A(\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n)$$

= $A\alpha_1 \mathbf{v}_1 + A\alpha_2 \mathbf{v}_2 + \dots + A\alpha_n \mathbf{v}_n$
= $\lambda_1 \alpha_1 \mathbf{v}_1 + \lambda_2 \alpha_2 \mathbf{v}_2 + \dots + \lambda_n \alpha_n \mathbf{v}_n$.

We can keep multiplying with A many times:

$$A^k \mathbf{x} = \lambda_1^k \alpha_1 \mathbf{v}_1 + \lambda_2^k \alpha_2 \mathbf{v}_2 + \dots + \lambda_n^k \alpha_n \mathbf{v}_n.$$

The power method

If A has eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ such that

$$|\lambda_1| > |\lambda_i|,$$

for $i \neq 1$. We call λ_1 the **dominant eigenvalue**. We also call the eigenvectors corresponding to λ_1 **dominant eigenvectors**.

The power method (or power iteration)

- ightharpoonup Start with a random vector x_0 .
- For $i=0,1,\ldots,k$, Let ${m x}_{i+1}=A{m x}_i$, with probably some scaling.