SECURITY (COMP0141): NETWORK SECURITY

HOW DOES THE INTERNET WORK?

goal: get Alice to that website!

http://me.bob.com/hi.html

HOW DOES HTTP WORK?

goal: get Alice to that website!

http://me.bob.com/hi.html

INTERNET PROTOCOL SUITE

Application layer: SMTP, FTP, SSH, HTTP, etc.

Transport layer: host-to-host communications (UDP, TCP, etc.)

Internet layer (IP): End-to-end routing of data packets

Link layer: Transmission of data within a local network (Ethernet)

Physical layer: Transmission of raw bits over a physical link

HOW DOES THE INTERNET WORK?

goal: get Alice to that website!

application layer

get IP address for me.bob.com ("domain name resolution")

transport layer (TCP) send GET request to IP address
Internet layer (routing via the internet backbone)

i.html

Internet layer

wait for response from IP address, then render hi.html and enjoy

HOW DOES TCP/IP WORK?

Application layer: SMTP, FTP, SSH, HTTP, etc.

Transport layer: host-to-host communications (UDP, TCP, etc.)

Internet layer (IP): End-to-end routing of data packets

Link layer: Transmission of data within a local network (Ethernet)

Physical layer: Transmission of raw bits over a physical link

STEP 1: FIND CONTENT HOST

DOMAIN NAME SYSTEM

FAQs

q: do we really do this every time we go to a website?

a: no! DNS results are cached by your browser.

DNS responses and negative queries are cached, and cached data expires according to TTL (time to live) provided by owner of data

These results are also cached by the resolver itself

This opens up the potential for DNS cache poisoning because the NS does not validate that DNS entries are from authoritative sources

DNS SPOOFING

DNS SPOOFING

query packet

attacker needs these values to match

response packet

DNS SPOOFING

Many examples of this being done in practice:

- 2000: hilary2000.org sent to hilaryno.com
- 2004: Google and Amazon sent to an online pharmacy
- 2016: all 36 of a Brazilian bank's domains sent to phishing sites (pharming)
- 2017: Wikileaks visitors sent to attacker-controlled page

There have been two types of internet infrastructure (DNS) attacks. Always use HTTPS or our .onion.

4:26 am - 31 Aug 2017

Solutions include:

- Randomising source port (more randomness for QID)
- Ignoring unnecessary responses
- DNSSEC: authenticate responses with digital signature

STEP 2: REQUEST CONTENT

IP PACKET

4-bit version	4-bit Header len	8-bit type of service	16-bit total length (in bytes)				
16-bit identification			3-bit flags	13-bit fragment offset			
8-bit tim (T		8-bit protocol	16-bit header checksum				
Alice's IP address							
Bob's IP address							
Options (if any)							
"I want the content at hi.html"							

TCP PACKET

TCP

Used to establish a bi-directional stateful session between two endpoints identified by their IP address and port

TCP PACKET

TCP

Used to establish a **stateful** bi-directional session between two endpoints identified by their IP address and **port**

22: SSH (remote access)80: HTTP

• 53: DNS • 443: HTTPS

Packets can contain special flags:

SYN: I want to start a connection

• FIN: I want to close a connection

• ACK: I got your last packet

TCP HANDSHAKE

TCP

Used to establish a **stateful** bi-directional session between two endpoints identified by their IP address and **port**

• 22: SSH (remote access)

• 80: HTTP

• 53: DNS

• 443: HTTPS

Packets can contain special flags:

SYN: I want to start a connection

• FIN: I want to close a connection

• ACK: I got your last packet

TCP/IP trust model has evolved:

- 1970s: trusted network and trusted hosts
- 1980s: hosts may be compromised
- today: network may be compromised too

CIA TRIANGLE

CONFIDENTIALITY

4-bit version	4-bit Header len	8-bit type of service	16-bit total length (in bytes)					
16-bit identification			3-bit flags	13-bit frag				
	ie to live TL)	8-bit protocol	16-bit header checksum		ecksum			
		Bob's	IP address:					
		Alice's	IP ad	dress				
Options (if any)								
<content (part="" 1="" at="" hi.html="" n)="" of=""></content>								

anyone can read your web traffic

anyone can see who you're talking to

IP SPOOFING

4-bit versio	I	8-bit type of service	16-bit total length (in bytes)			
16-bit identification		3-bit flags	13-bit fragment offset			
8-bit time to live (TTL)		8-bit protocol	16-bit header checksum			

Professor Evil's Alice's IP address

Bob's IP address

Options (if any)

"I want the content at hi.html"

anyone can impersonate you (or anyone else)

INTEGRITY: TCP SPOOFING

if ack,seq generated using weak crypto, this is possible (and both are only 4 bytes so can be brute-forced)

INTEGRITY: TCP HIJACKING

this is easy (just need MitM capabilities)

AVAILABILITY: SMURF ATTACK

AVAILABILITY: DNS AMPLIFICATION

AVAILABILITY: BOTNETS

communication takes place via:

-IRC (easy to infiltrate)

-proprietary channels (easy to blacklist)

structure uses:

- -multiple tiers (expensive)
- -p2p (easy to infiltrate)
- -fast flux/domain flux (hard!)

AVAILABILITY: SYN FLOOD

AVAILABILITY: SYN FLOOD

Several proposed countermeasures:

- Filtering (don't allow so many connections from same place)
- Reducing SYN-RECEIVED timer (don't wait so long to close connection)
- SYN cookies
- Firewalls and proxies

SYN cookies:

- Let t be slow timestamp (e.g., changes every minute)
- Let m be maximum segment size (MSS)
- Let s = H(IP addresses, ports, t)
- Initial seq ("SYN cookie") = 5 bits t + 3 bits m + 24 bits s
- This seq+1 is sent as ack in TCP ACK
- Server can check t within range, compute s and check equal

STEP 2: REQUEST CONTENT

