

1 Problem 1

Fig. 1 gives the results to problem 1.

2 Problem 4

The evolution of the ionization fraction as a functin of temperature is given in Fig. 2. Recombination is defined as the point at which x=0.5, and is given as $T_{rec}=3740$ K for $\eta=5.5\times10^{-10}$, as shown by the solid black line in the plot. Photon decoupling and the surface of last scattering occur at the same time/redshift/temperature, as the surface of last scattering exists because photons decoupled from matter. This occurs when $H=\Gamma$, which is at a redshift of z=1100 and a temerature of about T=3000 K, shown by the black dashed line. For $\eta=5.5\times10^{-10}$, this occurs at $x=4.33\times10^{-3}$.

Figure 2: Ionization fraction of Hydrogen as a function of temperature in the universe.