Discrete Math

Contents				4 Relation among	
				tautologies, con-	
				tradictions, satis-	
Part I Discrete Math: Logic				fiable asser-tions,	
		1	consequence re-		
			lations and logic		
Chapter I Propositional Lo		•4•	4	equivalence	4
		Propositional Logic	1	§ 1.3 Normal Forms	4
§ 1		Connectives and Truth		Chapter II First Order Logic,	
	Assingments	ngments	1		6
§ 1	.2 C	onsequence and		§ 2.1 The syntax of first or-	
	Equivalent		1	der language	6
	-			§ 2.2 The semantics of first	
	1	The definition of		order language	6
		consequence and		1 Structure	7
		logically equivalent	2	2 Interpretation	7
	2	Important properties	2	§ 2.3 Quantiers with re-	
	_	important properties	2	stricted domains	8
	3	Prove Logical		1 The truth of "if-	
		Equivalence	3	then"	8

Part I Discrete Math: Logic

Chapter I Propositional Logic

§ 1.1 Connectives and Truth Assingments

Define 1.1.1 (Truth table of Connectives) (Omitted)

Define 1.1.2 (Truth Assingments) Suppose Σ is the set of propositional variables. A mapping from Σ to $\{T, F\}$ called a truth assignment.

Define 1.1.3 Suppose Σ is the set of propositional variables and $\mathcal{J}:\Sigma\to\{\mathbf{T},\mathbf{F}\}$ is a truth assignment. The truth value of the compond proposition on \mathcal{J} ... (Omitted)

Define 1.1.4 (Tautology, contradiction) (Omitted)

Define 1.1.5 (Contingency, Satisfiable) A contingency is a compound proposition that is neither a tautology nor a contradiction.

A compound proposition is satisfiable if it is true under some truth assignment.

§ 1.2 Consequence and Equivalent

1 The definition of consequence and logically equivalent

Define 1.2.1 (Consequence) Suppose Φ is a set of propositions and ψ is one single proposition. We say that ψ is a consequence of Φ , written as $\Phi \models \psi$. if Φ 's being all true implies that ψ is also true.

In other words, $\Phi \models \psi$ if for any truth assignment \mathcal{J} , $\llbracket \phi \rrbracket_{\mathcal{J}} = \mathbf{T}$ for any $\phi \in \Phi$ implies $\llbracket \psi \rrbracket_{\mathcal{J}} = \mathbf{T}$.

Define 1.2.2 (Logically Equivalent) ϕ is a logically equivalent to ψ , written as $\phi \equiv \psi$, if ϕ 's truth value and ψ 's truth value are the same under any situation. In other words, $\phi \equiv \psi$ if $[\![\phi]\!]_{\mathcal{J}} = [\![\psi]\!]_{\mathcal{J}}$ for any truth assignment \mathcal{J} .

Example 1.2.1
$$\Phi = \{ \}, \psi = p \vee \neg p, \Phi \models \psi \}$$

2 Important properties

Theorem 1.2.1

- $\phi \lor \neg \phi$ is an tautology
- $\phi \land \neg \phi$ is a contradiction
- $\phi, \psi \models \phi \land \psi$ (\land -Introduction)
- $\phi \land \psi \models \phi$ (\land -Elimination)
- $\phi \models \phi \lor \psi$ (\lor -Introduction)
- If $\Phi, \phi_1 \models \psi, \Phi, \phi_2 \models \psi$, then $\Phi, \phi_1 \lor \phi_2 \models \psi$ (\lor -Elimination)

Proof (Proof of the last one) Suppose $\llbracket \phi \rrbracket_{\mathcal{J}} = \mathbf{T}$, $\llbracket \phi_1 \lor \phi_2 \rrbracket_{\mathcal{J}} = \mathbf{T}$. Then at least one of the following holds: $\llbracket \phi_1 \rrbracket_{\mathcal{J}} = \mathbf{T}$, $\llbracket \phi_2 \rrbracket_{\mathcal{J}} = \mathbf{T}$.

Theorem 1.2.2 (Contrapositive) If Φ , $\neg \phi \models \psi$, then Φ , $\neg \psi \models \phi$

Theorem 1.2.3

- $\neg(\neg q) \equiv q$ (Double Negation)
- $\phi \land \phi \equiv \phi$, $\phi \lor \phi \equiv \phi$ (Idempotent Laws)
- $\phi \wedge \psi \equiv \psi \wedge \psi$, $\phi \vee \psi \equiv \psi \vee \psi$ (Commutative Laws)
- $\phi \lor (\psi \land \chi) \equiv (\phi \lor \psi) \land (\phi \lor \chi), \quad \phi \land (\psi \lor \chi) \equiv (\phi \land \psi) \lor (\phi \land \chi)$ (Distributive Laws)
- $\neg (q \land q) \equiv \neg p \lor \neg q$, $\neg (q \lor q) \equiv \neg p \land \neg q$ (De Morgan's Laws)
- $\phi \wedge (\neg \phi) \equiv \mathbf{F}, \quad \phi \vee (\neg \phi) \equiv \mathbf{T}$ (Negation Laws)
- $\phi \wedge \mathbf{T} \equiv \phi$, $\phi \vee \mathbf{F} \equiv \phi$, $\phi \wedge \mathbf{F} \equiv \mathbf{F}$, $\phi \vee \mathbf{T} \equiv \mathbf{T}$ (Laws of logical constants)
- $\phi \lor (\phi \land \psi) \equiv \phi$, $\phi \land (\phi \lor \psi) \equiv \phi$ (Absorption Laws)

3 Prove Logical Equivalence

Theorem 1.2.4 (Transitivity) If $\phi \equiv \psi$ and $\psi \equiv \chi$, then $\phi \equiv \chi$.

Theorem 1.2.5 (Congruence Property)

- If $\phi \equiv \psi$, then $\neg \phi \equiv \neg \psi$
- If $\phi_1 \equiv \phi_2$, $\psi_1 \equiv \psi_2$, then $\phi_1 \wedge \psi_1 \equiv \phi_2 \wedge \psi_2$
- If $\phi_1 \equiv \phi_2$, $\psi_1 \equiv \psi_2$, then $\phi_1 \vee \psi_1 \equiv \phi_2 \vee \psi_2$

Theorem 1.2.6 (Reflexivity) $\phi \equiv \phi$

4 Relation among tautologies, contradictions, satisfiable asser-tions, consequence relations and logic equivalence

Theorem 1.2.7

- $\phi_1, \phi_2, \dots \phi_n \models \psi$ iff. $\left(\bigwedge_{k=1}^n\right) \land \neg \psi$ is not satisfiable.
- $\{\ \} \models \phi \text{ iff. } \phi \text{ is an tautology.}$
- $\phi \equiv \psi$ iff. $\phi \models \psi$ and $\psi \models \phi$.

Theorem 1.2.8 If $\phi \models \psi$ and $\psi \models \chi$, then $\phi \models \chi$.

§ 1.3 Normal Forms

Define 1.3.1 (Disjunctive Normal Form, DNF)

- A literal is a propositional variable or its negation.
- A **conjunctive clause** is a conjunctions of literals.
- A **compound proposition** is in disjunctive normal form if it is a disjunction of conjunctive clauses.

Define 1.3.2 (Conjunctive Normal Form, CNF)

(Similar as above)

Example 1.3.1

- literals $x, y, z, p, q, r, \neg q$
- conjunctive clauses $p, p \land q, \neg p \land q$
- DNF $p, p \lor (\neg q \land r), \neg p \lor (q \land p \land r)$

Theorem 1.3.1 Every compound proposition is logically equivalent to some compound proposition in DNF.

Proof (Proof 1) Suppose that the compound proposition ϕ consists of the literals p_1, p_2, \dots, p_n .

For all \mathcal{J} as a interpretation, we only need to prove that

$$\phi \equiv \bigvee_{\llbracket \phi \rrbracket_{\mathcal{J}} = \mathbf{T}} \left(\bigwedge_{\mathcal{J}(p_i) = \mathbf{T}} p_i \wedge \bigwedge_{\mathcal{J}(p_i) = \mathbf{F}} \neg p_i \right) = \mathbf{T}$$

Consider a specific interpretation \mathcal{J}_0 , if $\llbracket \phi \rrbracket_{\mathcal{J}} = \mathbf{T}$, then

$$\left[\!\!\left[\bigvee_{\llbracket \phi \rrbracket_{\mathcal{J}} = \mathbf{T}} \left(\bigwedge_{\mathcal{J}(p_i) = \mathbf{T}} p_i \wedge \bigwedge_{\mathcal{J}(p_i) = \mathbf{F}} \neg p_i \right) \right]\!\!\right]_{\mathcal{J}_0} = \left[\!\!\left[\left(\bigwedge_{\mathcal{J}_0(p_i) = \mathbf{T}} p_i \wedge \bigwedge_{\mathcal{J}_0(p_i) = \mathbf{F}} \neg p_i \right) \right]\!\!\right]_{\mathcal{J}_0}$$

If $\mathcal{J}_0(p_i) = \mathbf{T}$, then $\llbracket p_i \rrbracket_{\mathcal{J}_i} = \mathbf{T}$,

if $\mathcal{J}_0(p_i) = \mathbf{F}$, then $\llbracket \neg p_i \rrbracket_{\mathcal{J}_i} = \mathbf{T}$.

So

$$\left[\left(\bigwedge_{\mathcal{J}_0(p_i) = \mathbf{T}} p_i \wedge \bigwedge_{\mathcal{J}_0(p_i) = \mathbf{F}} \neg p_i \right) \right]_{\mathcal{J}_0} = \mathbf{T}$$

Proof (Proof 2) Define $DNF(\phi)$ as follow and prove that $DNF(\phi) \equiv \phi$.

Define 1.3.3 • $DNF(\phi) \triangleq DNF_2(DNF_1(\phi))$

• $DNF_1(\neg \neg \phi) = DNF_1(\phi)$. (The De Morgan's law)

$$DNF_1(\phi \wedge \psi) = DNF_1(\phi) \wedge DNF_1(\psi)$$
 (\vee is the same) $DNF_1(l) = l$ is a literal.

• $DNF_2(l) = l$ l is a literal, $DNF_2(\phi \lor \psi) = DNF_2(\phi) \lor DNF_2(\psi)$ If $\phi = \bigvee_{i=1}^{n} \phi_i, \psi = \bigvee_{j=1}^{m} \psi_j$, then

$$DNF_2(\phi \wedge \psi) = \bigvee_{i=1}^n \bigvee_{j=1}^m (\phi_i \wedge \psi_j)$$

Then it's obvious that $\phi \equiv DNF(\phi)$ and $DNF(\phi)$ is a DNF.

Theorem 1.3.2 Every compound proposition is logically equivalent to some compound proposition in CNF.

Proof (Similar as above)

Example 1.3.2 (*) The CDCL algorithm. (Suspended now)

Chapter II First Order Logic, FOL

§ 2.1 The syntax of first order language

Define 2.1.1

- Predicate Logic's Language
 - Variables x, y, z, \cdots
 - Constants c_1, c_2, \cdots
 - Prelicates P, Q, R, \cdots
 - Functions f, g, h, \cdots
 - Logic patterns $\exists, \forall, \land, \lor, \neg$
- Terms $x, y, c_1, c_2, f(x), g(x, y), \cdots$
- propositions $P(x), Q(f(x, g(x, y))), \exists x \forall y R(x, g(y)), \cdots$
 - § 2.2 The semantics of first order language

1 Structure

Define 2.2.1 (*S*-structure)

Given a sumbol set S, an S-structure $\mathcal{A} = (A, \alpha)$ contains

- a domain A, which is a non-empty set.
- an interpretation of every predicate symbol.
 Example 2.2.1 if P is a symbol of binary predicate, then α(P) is a mapping from A × A to {T, F}.
- an interpretation of every function symbol. **Example 2.2.2** if f is a symbol of unary function, then $\alpha(f)$ is a mapping from A to A.
- an interpretation of every constant symbol. **Example 2.2.3** if s is a constant symbol, $\alpha(c)$ is an element in domain A.

With a structure, we can determine the truth of an closed proposition.

2 Interpretation

Define 2.2.2 (S-interpretation)

Given a symbol set S, a S-interpretation $\mathcal{J} = (\mathcal{A}, \beta)$ is

- a S-structure $\mathcal{A} = (A, \alpha)$
- a S-assignment β : a mapping from variables to elements in the domain A

For $\mathcal{J}=(\mathcal{A},\beta)$ and $\mathcal{A}=(A,\alpha)$, we usually use $\mathcal{J}(P)$ and $\mathcal{A}(P)$ to represent $\alpha(P)$, use $\mathcal{J}(f)$ and $\mathcal{A}(f)$ to represent $\alpha(f)$, use $\mathcal{J}(c)$ and $\mathcal{A}(c)$ to represent $\alpha(c)$, and use $\mathcal{J}(x)$ to represent $\beta(x)$.

Define 2.2.3 (Terms' denotation)

For S-interpretation \mathcal{J} and a S-term t,

- $\bullet \ [\![x]\!]_{\mathcal{J}} = \mathcal{J}(x)$
- $\llbracket f(t_1, t_2, \dots, t_n) \rrbracket_{\mathcal{J}} = \mathcal{J}(f) (\llbracket t_1 \rrbracket_{\mathcal{J}}, \llbracket t_2 \rrbracket_{\mathcal{J}}, \dots, \llbracket t_n \rrbracket_{\mathcal{J}})$

Define 2.2.4 (Propositions' truth)

For S-interpretation \mathcal{J} and a S-proposition t,

- $[P(t_1, t_2, ..., t_n)]_{\mathcal{J}} = \mathcal{J}(P)([t_1]_{\mathcal{J}}, [t_2]_{\mathcal{J}}, ..., [t_n]_{\mathcal{J}})$
- $\bullet \ \llbracket \varphi \wedge \psi \rrbracket_{\mathcal{J}} = \llbracket \wedge \rrbracket \big(\llbracket \varphi \rrbracket_{\mathcal{J}}, \llbracket \psi \rrbracket_{\mathcal{J}} \big)$
- $\bullet \ \llbracket \neg \varphi \rrbracket_{\mathcal{J}} = \llbracket \neg \rrbracket \big(\llbracket \varphi \rrbracket_{\mathcal{J}} \big)$
- $\llbracket \forall x \varphi \rrbracket_{\mathcal{J}} = \mathbf{T}$ if and only if for every a in \mathcal{A} 's domain, $\llbracket \varphi \rrbracket_{\mathcal{J}[x \mapsto a]} = \mathbf{T}$
- $[\![\exists x\varphi]\!]_{\mathcal{J}} = \mathbf{T}$ if and only if for at least one a in \mathcal{A} 's domain, $[\![\varphi]\!]_{\mathcal{J}[x\mapsto a]} = \mathbf{T}$

where $\mathcal{J}[x \mapsto a]$ is a S-interpretation which keeps all other interpretations in \mathcal{J} and interprets x by a.

2.3 Quantiers with restricted domains

1 The truth of "if-then"

Theorem 2.3.1

- $\phi \to (\psi \to \phi) \equiv \mathbf{T}$. $(\phi \to \psi \to \chi) \to (\phi \to \psi) \to (\phi \to \chi) \equiv \mathbf{T}$.