

Design and Analysis of Algorithms

Mohammad GANJTABESH

mgtabesh@ut.ac.ir

School of Mathematics, Statistics and Computer Science, University of Tehran, Tehran, Iran.

Exact String Matching

Finding all occurrences of a pattern in a text.

- Native Algorithm (Brute Force)
- Rabin-Karp
- Finite State Automata
- Knuth-Morris-Pratt (KMP)

Notaion and Problem Definition

- Σ: a given alphabet
- T: an string over $\Sigma^n (T[1 \cdots n])$
- P: an string over $\Sigma^m (P[1 \cdots m])$
- ε: empty string of length 0
- xy: concatenation of strings x and y

- $w \sqsubseteq x$: w is a prefix of x
- $w \supset x$: w is a suffix of x
- T_k : the prefix $T[1 \cdots k]$ of T
- P_k : the prefix $P[1 \cdots k]$ of P
- $\bullet \ T_0 = P_0 = \epsilon$

Notaion and Problem Definition

- Σ: a given alphabet
- T: an string over $\Sigma^n (T[1 \cdots n])$
- P: an string over $\Sigma^m (P[1 \cdots m])$
- ε: empty string of length 0
- xy: concatenation of strings x and y

- $w \sqsubseteq x$: w is a prefix of x
- $w \supseteq x$: w is a suffix of x
- T_k : the prefix $T[1 \cdots k]$ of T
- P_k : the prefix $P[1 \cdots k]$ of P
- $\bullet \ T_0 = P_0 = \epsilon$

Definition

A shift s is valid iff $0 \le s \le n-m$ and $P[1 \cdots m] = T[s+1 \cdots s+m]$. String matching problem: find all valid shifts.

text
$$T$$

a b c a b a a b c a b a c

pattern P
 $s=3$

a b a a

Native Algorithm (Brute Force)

- Match the pattern string against the input string character by character.
- When there is a mismatch, shift the whole pattern string right by one character and start again at the beginning.

```
\begin{array}{lll} \text{Naive-String-Matcher}(T,P) \\ 1 & m \leftarrow length[T] \\ 2 & n \leftarrow length[P] \\ 3 & \text{for } s \leftarrow 0 \text{ to } n-m \\ 4 & \text{do if } P[1..m] = T[s+1..s+m] \\ 5 & \text{then Print "pattern occurs with shift } s" \end{array}
```


Time Complexity: $\Theta((n-m+1) \times m)$ (Consider $T=a^n$ and $P=a^m$).

String Matching property

Lemma

Suppose that x, y, and z are strings such that $x \sqsupset z$ and $y \sqsupset z$. If $|x| \leqslant |y|$, then $x \sqsupset y$. If $|x| \geqslant |y|$, then $y \sqsupset x$. If |x| = |y|, then x = y.

- Performs well in practice and can be used in two-dimensional pattern matching.
- Uses elementary number-theoretic notions (the equivalence of two numbers modulo a third number).
- Assume that each character is a digit in radix-d notation, where $d = |\Sigma|$.
- A string of length k can be seen as a length-k number.

- Let p denotes the corresponding decimal value of pattern $P[1 \cdots m]$.
- Similarly, t_s denotes the decimal value of length-m substring $T[s+1\cdots s+m]$, for $s=0,1,\cdots,n-m$.
- Certainly, $t_s = p$ iff $T[s+1\cdots s+m] = P[1\cdots m]$; thus, s is a valid shift iff $t_s = p$.
- If we could compute p in time $\Theta(m)$ and all the t_s values in a total of $\Theta(n-m+1)$ time, then we could determine all valid shifts s in time $\Theta(m)+\Theta(n-m+1)=\Theta(n)$ by comparing p with each of the t_s 's.

• We can compute p in time $\Theta(m)$ using Horners rule:

$$p = P[m] + d(P[m-1] + d(P[m-2] + \cdots + d(P[2] + dP[1]) \cdots)).$$

• We can compute p in time $\Theta(m)$ using Horners rule:

$$p = P[m] + d(P[m-1] + d(P[m-2] + \cdots + d(P[2] + dP[1]) \cdots)).$$

- The value t_0 can be similarly computed from $T[1 \cdots m]$ in time $\Theta(m)$.
- To compute the remaining values t_1, t_2, \dots, t_{n-m} in time $\Theta(n-m)$, it suffices to observe that t_{s+1} can be computed from t_s in constant time, since

$$t_{s+1} = d(t_s - d^{m-1}T[s+1]) + T[s+m+1].$$

• We can compute p in time $\Theta(m)$ using Horners rule:

$$p = P[m] + d(P[m-1] + d(P[m-2] + \cdots + d(P[2] + dP[1]) \cdots)).$$

- The value t_0 can be similarly computed from $T[1 \cdots m]$ in time $\Theta(m)$.
- To compute the remaining values t_1, t_2, \dots, t_{n-m} in time $\Theta(n-m)$, it suffices to observe that t_{s+1} can be computed from t_s in constant time, since

$$t_{s+1} = d(t_s - d^{m-1}T[s+1]) + T[s+m+1].$$

• What happens if *p* and *t*_s become too large to work with conveniently?

- What happens if p and t_s become too large?
- Solution:
 - Compute p and all t_s s modulo a suitable modulus q.

• For a d-ary alphabet $\{0,1,\cdots,d-1\}$, we choose q so that dq fits within a computer word and adjust the recurrence equation to work modulo q (where $h \equiv d^{m-1} \pmod{q}$):

$$t_{s+1} = (d(t_s - hT[s+1]) + T[s+m+1]) \mod q.$$

- Since the computation of p, t_0 , and all values t_1, t_2, \dots, t_{n-m} can be performed modulo q, we can compute p modulo q in $\Theta(m)$ time and all the t_s 's modulo q in $\Theta(n-m+1)$ time.
- Another Problem: working modulo q is not perfect, since $t_s \equiv p \pmod{q}$ does not imply that $t_s = p$.

- Since the computation of p, t_0 , and all values $t_1, t_2, \cdots, t_{n-m}$ can be performed modulo q, we can compute p modulo q in $\Theta(m)$ time and all the t_s 's modulo q in $\Theta(n-m+1)$ time.
- Another Problem: working modulo q is not perfect, since $t_s \equiv p \pmod{q}$ does not imply that $t_s = p$.
- On the other hand, if $t_s \not\equiv p \pmod{q}$, then we definitely have that $t_s \neq p$, so that shift s is invalid.
- We can thus use the test $t_s \equiv p \pmod{q}$ as a fast heuristic test to rule out invalid shifts s.

• Any shift s for which $t_s \equiv p \pmod{q}$ must be tested further to see if s is really valid or we just have a spurious hit.

- This testing can be done by explicitly checking the condition $P[1 \cdots m] = T[s + 1 \cdots s + m]$.
- If q is large enough, then we can hope that spurious hits occur infrequently enough that the cost of the extra checking is low.

```
RABIN-KARP-MATCHER (T, P, d, q)
 1 n \leftarrow length[T]
 2 m \leftarrow length[P]
 3 \quad h \leftarrow d^{m-1} \bmod q
 4 p \leftarrow 0
 5 t_0 \leftarrow 0
    for i \leftarrow 1 to m
                                        > Preprocessing.
          do p \leftarrow (dp + P[i]) \mod q
              t_0 \leftarrow (dt_0 + T[i]) \bmod q
 9
     for s \leftarrow 0 to n - m \triangleright Matching.
          do if p = t_s
10
11
                 then if P[1..m] = T[s+1..s+m]
                         then print "Pattern occurs with shift" s
12
13
               if s < n - m
14
                 then t_{s+1} \leftarrow (d(t_s - T[s+1]h) + T[s+m+1]) \mod q
```

Finite State Automata (Review)

Definition (Finite automata)

A finite automaton M is a 5-tuple $(Q, q_0, A, \Sigma, \delta)$, where

- Q is a finite set of states, $q_0 \in Q$ is the start state,
- $A \subseteq Q$ is a distinguished set of accepting states,
- Σ is a finite input alphabet,
- δ is a function from $Q \times \Sigma$ into Q, called the transition function of M.

Finite State Automata (Review)

Definition (Finite automata)

A finite automaton M is a 5-tuple $(Q, q_0, A, \Sigma, \delta)$, where

- Q is a finite set of states, $q_0 \in Q$ is the start state,
- $A \subseteq Q$ is a distinguished set of accepting states,
- \bullet Σ is a finite input alphabet,
- δ is a function from $Q \times \Sigma$ into Q, called the transition function of M.
- The finite automaton begins in state q_0 and reads the characters of its input string one at a time.
- If the automaton is in state q and reads input character a, it moves (makes a transition) from state q to state $\delta(q, a)$.
- Whenever its current state q is a member of A, the machine M is said to have accepted the string read so far. An input that is not accepted is said to be rejected.

Finite State Automata (Review)

- A finite automaton M induces a function φ , called the final-state function, from Σ^* to Q such that $\varphi(w)$ is the state that M ends up in after scanning the string w.
- Thus, M accepts a string w if and only if $\varphi(w) \in A$.
- \bullet The function φ is defined by the recursive relation

$$\varphi(\epsilon) = q_0,$$

 $\varphi(wa) = \delta(\varphi(w), a) \text{ for } w \in \Sigma^*, a \in \Sigma.$

	input	
state	a	b
0	1	0
1	0	0

String-Matching Automata

Definition (suffix function)

A suffix function σ corresponding to pattern $P[1\cdots m]$ is a mapping from Σ^* to $\{0,1,\cdots,m\}$ such that $\sigma(x)$ is the length of the longest prefix of P that is a suffix of x:

$$\sigma(x) = \max\{k \mid P_k \sqsupset x\}.$$

Example

For the pattern P=ab, we have $\sigma(\epsilon)=0$, $\sigma(ccaca)=1$, and $\sigma(ccab)=2$.

- For a pattern P of length m, we have $\sigma(x) = m$ iff $P \supset x$.
- If $x \supset y$, then $\sigma(x) \le \sigma(y)$ (following from the definition of the suffix function).

String-Matching Automata

Constructing the String-Matching Automata

For a given pattern $P[1 \cdots m]$, the corresponding string-matching automaton would be as follows:

- $Q = \{0, 1, \cdots, m\}.$
- $q_0 = 0$.
- $A = \{m\}.$
- The transition function δ is defined by the following equation, for any state q and character a:

$$\delta(q, a) = \sigma(P_q a)$$

String-Matching Automata

- The machine maintains as an invariant of its operation that $\varphi(T_i) = \sigma(T_i)$ (will be proved later).
- This means that after scanning T_i , the machine is in state $\varphi(T_i) = q$, where $q = \sigma(T_i)$ is the length of the longest suffix of T_i that is also a prefix of the pattern P.
- If the next character scanned is T[i+1] = a, then the machine should make a transition to state $\sigma(T_{i+1}) = \sigma(T_i a)$.
- The later proof shows that $\sigma(T_i a) = \sigma(P_q a)$, i.e. to compute the length of the longest suffix of $T_i a$ that is a prefix of P, we can compute the longest suffix of $P_q a$ that is a prefix of P.
- Therefore, setting $\delta(q, a) = \sigma(P_q a)$ maintains the desired invariant.

String-Matching Automata (matcher)

If the string-matching automaton is constructed (as a preprocess) for the pattern P, then the following algorithm could be used as a matcher.

```
FINITE-AUTOMATON-MATCHER (T, \delta, m)

1 n \leftarrow length[T]

2 q \leftarrow 0

3 for i \leftarrow 1 to n

4 do q \leftarrow \delta(q, T[i])

5 if q = m

6 then print "Pattern occurs with shift" i - m
```

• Time Complexity: $\Theta(n)$.

String-Matching Automata (transition function)

The following procedure computes the transition function δ from a given pattern $P[1 \cdots m]$.

```
COMPUTE-TRANSITION-FUNCTION (P, \Sigma)

1 m \leftarrow length[P]

2 for q \leftarrow 0 to m

3 do for each character a \in \Sigma

4 do k \leftarrow \min(m+1, q+2)

5 repeat k \leftarrow k-1

until P_k \sqsupset P_q a

\delta(q, a) \leftarrow k

8 return \delta
```

- Time Complexity: $O(m^3|\Sigma|)$.
- This Complexity can be reduced to $O(m|\Sigma|)$. How?

String-Matching Automata (Correctness)

Lemma (Suffix-function inequality)

For any string x and character a, we have $\sigma(xa) \leq \sigma(x) + 1$.

Proof.

Let $r = \sigma(xa)$ and follow the figure...

String-Matching Automata (Correctness)

Lemma (Suffix-function recursion)

For any string x and character a, if $q = \sigma(x)$, then $\sigma(xa) = \sigma(P_qa)$.

Proof.

Let $r = \sigma(xa)$ and follow the figure...

String-Matching Automata (Correctness)

Theorem

If φ is the final-state function of a string-matching automaton for a given pattern P and $T[1\cdots n]$ is an input text for the automaton, then $\varphi(T_i) = \sigma(T_i)$ for $i=0,1,\cdots,n$.

Proof.

The proof is by induction on i. For i=0, the theorem is trivially true, since $T_0=\epsilon$. Thus, $\varphi(T_0)=0=\sigma(T_0)$. Now, we assume that $\varphi(T_i)=\sigma(T_i)$ and prove that $\varphi(T_{i+1})=\sigma(T_{i+1})$. Let q denotes $\varphi(T_i)$, and let a denotes T[i+1]. Then:

```
 \varphi(T_{i+1}) = \varphi(T_i a) \qquad \text{(by the definitions of } T_{i+1} \text{ and } a \text{)} 
 = \delta(\varphi(T_i), a) \qquad \text{(by the definition of } \varphi \text{)} 
 = \delta(q, a) \qquad \text{(by the definition of } q \text{)} 
 = \sigma(P_q a) \qquad \text{(by the definition of } \delta \text{)} 
 = \sigma(T_i a) \qquad \text{(by previous lemmas and induction)} 
 = \sigma(T_{i+1}) \qquad \text{(by the definition of } T_{i+1} \text{)}.
```

The Knuth-Morris-Pratt (KMP) algorithm

- ullet This algorithm avoids the computation of the costly transition function δ .
- Instead, it uses an auxiliary function $\pi[1 \cdots m]$ (called Prefix Function), precomputed from the pattern in time $\Theta(m)$.
- For any state $q=0,1,\cdots,m$ and any character $a\in\Sigma$, the value $\pi[q]$ contains the information that is independent of a and is needed to compute $\delta(q,a)$.
- The prefix function π for a pattern encapsulates knowledge about how the pattern matches against shifts of itself.
- The array π has only m entries, whereas δ has $m \times |\Sigma|$ entries.
- Its matching time would be $\Theta(n)$.

KMP Algorithm: Motivation

KMP Algorithm: Motivation

General Question

Given that pattern characters $P[1\cdots q]$ match text characters $T[s+1\cdots s+q]$, what is the least shift s'>s such that

$$P[1\cdots k] = T[s'+1\cdots s'+k],$$

where s' + k = s + q?

- Such a shift s' is the first shift greater than s that is not necessarily invalid due to our knowledge of $T[s+1\cdots s+q]$.
- In the best case, we have that s' = s + q, and shifts $s+1, s+2, \cdots, s+q-1$ are all immediately ruled out.
- In any case, at the new shift s' we don't need to compare the first k characters of P with the corresponding characters of T, since we are guaranteed that they match.

KMP Algorithm: prefix function

- The necessary information can be precomputed by comparing the pattern against itself.
- Since $T[s' + 1 \cdots s' + k]$ is part of the known portion of the text, it is a suffix of the string P_q .
- Equation $P[1 \cdots k] = T[s' + 1 \cdots s' + k]$ can therefore be interpreted as asking for the largest k < q such that $P_k \supset P_q$.
- Then, s' = s + (q k) is the next potentially valid shift.

Formal definition of prefix function

Given a pattern $P[1 \cdots m]$, the prefix function for the pattern P is the function $\pi: \{1, 2, \cdots, m\} \mapsto \{0, 1, \cdots, m-1\}$ such that

$$\pi[q] = \max\{k \mid k < q \text{ and } P_k \supset P_q\}.$$

One again: $\pi[q]$ is the length of the longest prefix of P that is a suffix of P_a .

KMP Algorithm: prefix function

(b)

KMP Algorithm: Matcher

```
KMP-MATCHER (T, P)
 1 n \leftarrow length[T]
 2 m \leftarrow length[P]
 3 \pi \leftarrow \text{COMPUTE-PREFIX-FUNCTION}(P)
    a \leftarrow 0
                                              Number of characters matched.
    for i \leftarrow 1 to n

    Scan the text from left to right.

          do while q > 0 and P[q + 1] \neq T[i]
                  \operatorname{do} q \leftarrow \pi[q]
                                             > Next character does not match.
             if P[q + 1] = T[i]
 9
                then q \leftarrow q + 1
                                    Next character matches.

    ▷ Is all of P matched?

10
             if q = m
                then print "Pattern occurs with shift" i - m
11
12
                     q \leftarrow \pi[q]
                                        Look for the next match.
```

• Time Complexity: $\Theta(n)$ (Amortized analysis?)

KMP Algorithm: Computing Prefix Function

```
COMPUTE-PREFIX-FUNCTION(P)
 1 m \leftarrow length[P]
 2 \pi[1] \leftarrow 0
 3 \quad k \leftarrow 0
     for q \leftarrow 2 to m
           do while k > 0 and P[k+1] \neq P[q]
                    do k \leftarrow \pi[k]
               if P[k+1] = P[q]
                  then k \leftarrow k+1
               \pi[a] \leftarrow k
10
      return \pi
```

• Time Complexity: $\Theta(m)$ (Amortized analysis?)

Exercises

- 1. Show how to extend the Rabin-Karp method to handle the problem of looking for a given $m \times m$ pattern in an $n \times n$ array of characters. (The pattern may be shifted vertically and horizontally, but it may not be rotated)
- 2. Draw a state-transition diagram for a string-matching automaton for the pattern ababbabbabbabbabb over the alphabet $\{a,b\}$.
- Given two patterns P and P', describe how to construct a finite automaton that determines all occurrences of either pattern. Try to minimize the number of states in your automaton.
- 4. Compute the prefix function π for the pattern *ababbabbabbabbabbabbabb* when the alphabet is $\Sigma = \{a, b\}$.
- 5. Give a linear-time algorithm to determine if a text T is a cyclic rotation of another string T'. For example, arc and car are cyclic rotations of each other.
- 6. Give an efficient algorithm for computing the transition function δ for the string-matching automaton corresponding to a given pattern P. Your algorithm should run in time $O(m|\Sigma|)$. (Hint: Prove that $\delta(q,a) = \delta(\pi[q],a)$ if q=m or $P[q+1] \neq a$.)

