Chirag Agarwal

Ph.D. Candidate — Computer Vision & Deep Learning

Chicago, IL, USA

ightharpoonup chiragagarwall12@gmail.com \diamond ightharpoonup chiragagarwall12 \diamond ightharpoonup +1.312.478.1132 \diamond ightharpoonup chiragagarwall

Biography: Chirag is a Ph.D. Candidate at the University of Illinois at Chicago. He has been actively researching in Image processing, Computer Vision, and Deep Learning for the last 7 years. Currently, his research interests are in Deep Neural Networks, specifically developing novel architectures, explaining and improving the robustness performance of deep networks.

EDUCATION

University of Illinois at Chicago, Chicago, IL

Aug 2014 - Present

Ph.D. in Electrical & Computer Engg. — Deep Learning Advisors: Dan Schonfeld and Anh Nguyen

Thesis: The Robustness and Explainability of Deep Neural Networks

University of Illinois at Chicago, Chicago, IL

2018

M.S. in Electrical & Computer Engg. — Human Activity Recognition Advisor: Jezekiel Ben-Arie

Future Institute of Engg. & Management, Kolkata, India

2008 - 2012

B.S. in Electronics & Communication Engg.

TECHNICAL STRENGTHS

Computer Languages

Python, MATLAB, R

Libraries

PyTorch, Keras, Tensorflow, NLTK, OpenCV, scikit

RESEARCH EXPERIENCE

University of Illinois at Chicago

Aug 2016 - Present

Chicago, IL

Research Assistant under Dr. Dan Schonfeld

- · Conceptualized unstructured Neural Networks, which overcomes the limitations of traditional sequential feedforward architectures.
- · Developed robust deep learning architectures by learning discriminative feature representations of the inputs.
- · Developed generative explainable AI algorithms having higher object localization accuracy and robustness across different hyperparameters.
- · Developed TreatNet, an LSTM based deep learning framework, for automatically generating beat-to-beat blood pressure using other physiological signals.

Auburn University

May 2019 - Aug 2019

Auburn, AL

Research Assistant under Dr. Anh Nguyen

- · Integrated a generative inpainter into different explainable AI algorithms to remove salient input features.
- · Our generative algorithms resulted in (1) more plausible counterfactual samples under the true data generating process; (2) hyperparameter robustness; and (3) better object localization.
- · Performed the first systematic study on the sensitivity of explainable AI algorithms to changes in the input hyper-parameters—a phenomenon previously overlooked in the interpretability field.

WORK EXPERIENCE

Robert Bosch LLC (Supervisor: Dr. Ye Mao)

May 2018 - Aug 2018

Sunnyvale, CA

Computer Vision / Augmented Reality Intern

Developed novel methods for obtaining discriminative representations of images for tasks like recognition and identification.

· Generated a 3-D dataset, using Microsoft Kinect, for developing novel Augmented Reality (AR) applications in Microsoft Hololens.

Tempus labs Inc. (Supervisor: Dr. Stephen Yip)

Jan 2018 - May 2018

Imaging Science Intern

Chicago, IL

- · Developed unsupervised machine learning algorithms for detecting malignant cells in breast cancer mammogram images.
- · Applied state-of-the-art deep learning methods for analyzing pathology images.

Kitware Inc. (Supervisor: Dr. Eran Swears)
Research and Development Intern

May 2017 - August 2017 Clifton Park, NY

- · Applied state-of-the-art object detection, motion-tracking and image segmentation algorithms for DARPA projects.
- · Benchmarked VIRAT video dataset, comprising both ground and aerial videos, using CNN and LSTM models.

Geisinger Health Systems (Supervisor: Dr. Mohammad Arbabshirani)
Research Intern

May 2016 - August 2016 Danville, PA

- · Quantified volume of adipose tissue from abdominal CT scans with 97% accuracy using Greedy Snake's algorithm.
- · Created a dynamic tool using MATLAB that automatically segments and calculates volume of adipose tissues.
- · Contributed to other research projects resulting in 3 conferences and 1 journal publications.

PUBLICATIONS

https://scholar.google.com/citations?user=AFEjd1QAAAAJ&hl=en

Journal papers

- · C. Agarwal, J. Klobusicky, and D. Schonfeld: Convergence of backpropagation with momentum for network architectures with skip connections, *Journal of Computational Mathematics*, 2019.
- · E. Cha, Y. Veturi, C. Agarwal, M. Arbabshirani and S. Pendergrass: Using Adipose Measures from Electronic Health Record Imaging Based Data for Discovery, *Journal of Obesity*, 2018.

Conference papers

- · C. Agarwal, N. Bansal, and A. Nguyen: The Sensitivity of Interpretability Methods to Hyperparameters, CVPR 2020.
- · C. Agarwal, D. Schonfeld, and A. Nguyen: Removing input features via a generative model to explain their attributions to classifier's decisions, arXiv preprint, 2020 (Under review).
- · C. Agarwal, S. Khobahi, A. Bose, M. Soltanalian, and D. Schonfeld: Deep-URL: A Model-Aware Approach To Blind Deconvolution Based On Deep Unfolded Richardson-Lucy Network, arXiv preprint, 2020 (Under review).
- \cdot C. Agarwal, A. Nguyen, and D. Schonfeld: Improving Adversarial Robustness by Encouraging Discriminative Features, ICIP~2019.
- · C. Agarwal, N. Khobragade. Multi-class segmentation of neuronal electron microscopy images using deep learning, SPIE Medical Imaging, 2018.
- · C. Agarwal, M. Sharifzadeh, D. Schonfeld. CrossEncoders: A complex neural network compression framework accepted for oral presentation at the Visual Information Processing and Communication Conference, at IS&T Electronic Imaging 2018
- · M. Sharifzadeh, C. Agarwal, M. Aloraini, D. Schonfeld. Convolutional Neural Network Steganalysis's Application to Steganography, *IEEE Visual Communications and Image Processing (VCIP)*, 2017.
- · C. Agarwal, A. Dallal, M.R. Arbabshirani, A. Patel, and G. Moore. Unsupervised Quantification of Abdominal Fat from CT images using Greedy Snakes, SPIE Medical Imaging, 2017.
- · M.R. Arbabshirani, A. Dallal, <u>C. Agarwal</u>, A. Patel, and G. Moore. Accurate Segmentation of Lung fields on Chest Radiographs using Deep Convolutional Networks, *SPIE Medical Imaging*, 2017.

E-print articles

- \cdot C. Agarwal, B. Dong, D. Schonfeld, and A. Hoogs: An Explainable Adversarial Robustness Metric for Deep Learning Neural Networks, $arXiv\ preprint,\ 2018.$
- · C. Agarwal, M. Sharifzadeh, J. Klobusicky, D. Schonfeld. CrossNets: Cross-Information Flow in Deep Learning Architectures, arXiv preprint, 2018.

ACADEMIC SERVICES

Reviewing Conference papers:: ICIP, ICLR President of UIC ECE Journal Club $\mathbf{Dr.}\ \mathbf{Dan}\ \mathbf{Schonfeld}:$ Professor, University of Illinois at Chicago

Dr. Anh Nguyen: Assistant Professor, Auburn University,

dans at uic.edu anhnguyen at auburn.edu