Caitao Zhan

Personal Website Google Scholar GitHub Profile LinkedIn Profile Email Me

ABOUT ME

My Ph.D. is in both classical and quantum computing/networking/sensing. I can start defending my Ph.D. as soon as I find a job, preferably a quantum job.

EDUCATION

Aug. 2017 \sim present	Stony Brook University GPA: 3.9/4.0	Ph.D. Candidate in Computer Science. Advisor: Himanshu Gupta
Aug. 2017 \sim Aug. 2022	Stony Brook University	M.S. in Computer Science
Sept. $2013 \sim \text{Jun. } 2017$	China University of Geosciences GPA: 92/100	B.S. in Computer Science and Technology Rank: 1/122

INTERN EXPERIENCE

RESEARCH EXPERIENCE

Aug. 2022 \sim present	Quantum Sensor Network Algorithms for Transmitter Localization. [10] Quantum sensing, quantum state discrimination, hybrid quantum-classical algorithms
Sep. $2021 \sim \text{present}$	Discrete Outcome Quantum Sensor Networks. [9, 12] Quantum state/channel discrimination, initial state optimization, semidefinite programming, theory.
Jan. 2021 \sim present	Efficient Quantum Communication Networks. [8] Design/implement routing algorithms/protocols for quantum networks using entanglement-swapping trees.
Nov. $2019 \sim \text{Mar. } 2022$	Intelligent Radio with Deep Learning. [5, 7, 11] Design/implement CNNs to solve wireless network problems: wireless localization & spectrum allocation. Reframe wireless problems to computer vision problems: image-to-image translation & object detection.
Mar. 2019 \sim Oct. 2019	Efficient Localization of Multiple Intruders in Shared Spectrum System. [3] Design/implement. Bayesian approach. Testbed(Odroid,Raspberry Pi,USRP,HackRF).
Dec 2018 \sim Sep. 2020	Datacenter Networks. [4] Multi-hop circuit switch scheduling. Greedy, approximation proof. Participate in implementation.
July 2018 \sim July 2019	Selection of Sensors for Efficient Transmitter Localization. [2, 6] Implement. Greedy, approximation proof. Bayesian approach. GPU acceleration.
Otc. $2015 \sim \text{Sept.}\ 2016$	Optimization using Evolutionary Algorithms. [1] Design/implement. Shortest path-finding using ant colony optimization algorithms. Proposed a probability-based evolutionary algorithm solving shape formation problems.

Skills & Tools

Python are C++ are my most frequently used languages. I also have experience in C#, Java, C, and Matlab. For machine learning, have experience in PyTorch, scikit-learn, and ML.NET. For quantum, have experience in quantum network simulator NetSquid and quantum development SDK Qiskit, and quantum machine learning library TorchQuantum. For GPU programming, have experience in CUDA and Numba. For software-defined radio, have experience in GNU Radio. For database, have experience in MySQL and SQLite. For convex optimization, have experience in OR-Tools and CVXPY.

Academic Services

Artifact Evaluation Committee of ACM MobiCom 2023 Shadow Program Committee of ACM SenSys 2022 Reviewer of Elsevier The Journal of Networks and Computer Applications

SELECTED AWARDS AND HONORS

China National Scholarship $2^{\rm nd}$ Prize in Freshman ACM ICPC Cup Travel Grant for ACM IMC Best Poster Award (Participants Choice) in Graduate Research Day

2014, Chinese Ministry of Education, Top 1% 2014, China University of Geosciences, Top 6% 2018, ACM Internet Measurement Conference 2022, Department of CS, Stony Brook University

Preprint

- [12] C. Zhan, H. Gupta, M. Hillery, "Optimizing Initial State of Detector Sensors in Quantum Sensor Networks". Submitted to ACM Transactions on Quantum Computing (TQC), arXiv
- [11] M. Ghaderibaneh, C. Zhan, H. Gupta, "DeepAlloc: CNN-Based Approach to Efficient Spectrum Allocation in Shared Spectrum Systems". arXiv

PUBLICATION

- [10] C. Zhan, H. Gupta, "Quantum Sensor Network Algorithms for Transmitter Localization". To appear at IEEE Quantum Computing and Engineering (QCE) 2023, PDF.
- [9] M. Hillery, H. Gupta, C. Zhan, "Discrete Outcome Quantum Sensor Networks". Physical Review A (PRA), PDF.
- [8] M. Ghaderibaneh, C. Zhan, C.R. Ramakrishnan, H. Gupta, "Efficient Quantum Network Communication using Optimized Entanglement-Swapping Trees", IEEE Transactions on Quantum Engineering (TQE) 2022. PDF.
- [7] C. Zhan, M. Ghaderibaneh, P. Sahu, H. Gupta, "DeepMTL Pro: Deep Learning Based Multiple Transmitter Localization and Power Estimation", Elsevier Pervasive and Mobile Computing (PMC) 2022. PDF, Presentation.
- [6] A. Bhattacharya, C. Zhan, A. Maji, H. Gupta, S. Das, P. Djuric, "Selection of Sensors for Efficient Transmitter Localization", IEEE/ACM Transactions on Networking (TON) 2021. PDF.
- [5] C. Zhan, M. Ghaderibaneh, P. Sahu, H. Gupta, "DeepMTL: Deep Learning Based Multiple Transmitter Localization", IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM) 2021. PDF, Presentation.
- [4] H. Gupta, M. Curran, C. Zhan, "Near-Optimal Multihop Scheduling in General Circuit-Switched Networks", ACM International Conference on emerging Networking Experiments and Technologies (CoNEXT) 2020. PDF, Presentation.
- [3] C. Zhan, H. Gupta, A. Bhattacharya, M. Ghaderibaneh, "Efficient Localization of Multiple Intruders in Shared Spectrum System", ACM/IEEE Information Processing in Sensor Networks (IPSN) 2020. PDF, Presentation.
- [2] A. Bhattacharya, C. Zhan, H. Gupta, S. Das, P. Djuric, "Selection of Sensors for Efficient Transmitter Localization", IEEE International Conference on Computer Communications (INFOCOM) 2020. PDF, Presentation.
- [1] C. Zhan and C. Li, "Shape Formation in Games: a Probability-based Evolutionary Approach", 2016 International Conference on Computational Intelligence and Security. PDF.