

- Nascimento: 1928 (101 anos).
- Terminou seu PhD na Universidade de Princeton em 1949.
- Trabalhou na General Eletric (Segunda Guerra), Bell Laboratories (1958-1961);
 Sandia National Lab (acompanhou o Weapons Reliability Committee, e posteriormente virou vice-presidente).
- O algoritmo autointitulado "o algoritmo de Prim", foi originalmente descoberto em 1930 pelo matemático Vojtěch Jarník e, posteriormente, de forma independente por Prim em 1957.

Árvore Geradora Mínima – Prim

 Diferente do algoritmo de Kruskal, o algoritmo de Prim alimenta uma única árvore durante a execução.

• Ideia geral (Algoritmo de Prim):

- O algoritmo começa de um dado nó r e vai expandindo a árvore geradora até alcançar todos os nós de V.
- Durante o processo, $X \subseteq E$ será sempre uma árvore (nunca uma floresta, como acontece em Kruskal).
- O algoritmo de Prim é guloso, uma vez que a árvore geradora é expandida a cada etapa a partir da inserção da aresta de menor peso possível.

Árvore Geradora Mínima – Prim

Estruturas auxiliares do algoritmo:

- Q: Nós que ainda não integram a AGM parcial, isto é, que ainda não fazem parte do conjunto *X*.
- chave[u]: peso da aresta mais leve do nó u que a conecta à AGM parcialmente construída.
- $\pi[u]$: nó pai do vértice u.

Rodando um exemplo "na mão" para r = a

 $AGM_Prim (G(V, E, W), r)$ $X \leftarrow \{ \} //AGM$ $Para \ cada \ nó \ u \in V \ faça$ $chave(u) \leftarrow \infty$) $\pi(u) \leftarrow NULL$ Fim_para $chave[r] \leftarrow 0$ $Q \leftarrow V$

vértice	a	b	c	d	e	f	g	h	i
chave									
π									
Q									

 $AGM_Prim(G(V, E, W), r)$ $X \leftarrow \{ \} //AGM$

Para cada nó $u \in V$ faça $chave(u) \leftarrow \infty$ $\pi(u) \leftarrow NULL$

Fim_para $chave[r] \leftarrow 0$ $Q \leftarrow V$

vértice	a	b	c	d	e	f	g	h	i
chave	∞								
π	NULL								
Q									

 $AGM_Prim (G(V, E, W), r)$ $X \leftarrow \{ \} //AGM$ $Para cada nó u \in V faça$ $chave(u) \leftarrow \infty$ $\pi(u) \leftarrow NULL$ Fim_para $chave[r] \leftarrow 0$ $Q \leftarrow V$

	vértice	a	b	c	d	e	f	g	h	i	
	chave	0	∞	∞	∞	∞	∞	∞	∞	∞	
	π	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	
(Q	а	b	С	d	е	f	g	h	i	

^{*}Nota: $Extrai_Min(Q)$: Extrai o mínimo do conj. Q com relação à chave.

AGM – Algoritmo de Prim Enquanto $Q \neq \{\}$ $u \leftarrow Extrai_Min(Q)$ u = a $X \leftarrow X \cup \{(u, \pi[u])\} //se \ u \neq r$ 8 Para cada $v \in Adj[u]$ faça Se $(v \in Q)$ e w(u, v) < chave[v]4 $chave[v] \leftarrow w(u, v)$ 14 a $\pi[v] \leftarrow u$ Fim_se 6 8

10

Fim_para

Retorne X

Fim_enquanto

vértice	a	b	c	d	e	f	g	h	i
chave	0	∞	∞	∞	∞	∞	∞	∞	∞
π	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL
Q		b	С	d	е	f	g	h	Ì

AGM – Algoritmo de Prim Enquanto $Q \neq \{\}$ $u \leftarrow Extrai_Min(Q)$ u = a $X \leftarrow X \cup \{(u, \pi[u])\} //se u \neq r$ 8 Para cada $v \in Adj[u]$ faça b Se $(v \in Q)$ e w(u, v) < chave[v]4 $chave[v] \leftarrow w(u,v)$ 4 14 a $\pi[v] \leftarrow u$ e Fim_se 6 8 10 Fim_para h Fim_enquanto *Retorne X* vértice d b a C e g 8 0 chave ∞ ∞ ∞ ∞ ∞ ∞ a NULL NULL NULL NULL a **NULL NULL NULL** π

d

e

g

Q

Enquanto $Q \neq \{\}$ $u \leftarrow Extrai_Min(Q)$

 $X \leftarrow X \cup \{(u, \pi[u])\} //se \ u \neq r$ $Para \ cada \ v \in Adj[u] \ faça$ $Se \ (v \in Q) \ e \ w(u, v) < chave[v]$ $chave[v] \leftarrow w(u, v)$

 $\pi[v] \leftarrow u$

Fim_se

Fim_para
Fim_enquanto
Retorne X

vértice	a	b	c	d	e	f	g	h	i
chave	0	4	∞	∞	∞	∞	∞	8	∞
π	NULL	а	NULL	NULL	NULL	NULL	NULL	а	NULL
Q			С	d	е	f	g	h	i

AGM – Algoritmo de Prim Enquanto $Q \neq \{\}$ $u \leftarrow Extrai_Min(Q)$ u = b $X \leftarrow X \cup \{(u, \pi[u])\} //se u \neq r$ 8 $Para\ cada\ v \in Adj[u]\ faça$ Se $(v \in Q)$ e w(u, v) < chave[v] $chave[v] \leftarrow w(u, v)$ 14 $\pi[v] \leftarrow u$ 6 Fim_se 8 10 Fim_para Fim_enquanto Retorne X

vértice	a	b	c	d	e	f	g	h	i
chave	0	4	∞	∞	∞	∞	∞	8	∞
π	NULL	a	NULL	NULL	NULL	NULL	NULL	а	NULL
Q			С	d	е	f	g	h	i

AGM – Algoritmo de Prim Enquanto $Q \neq \{\}$ $u \leftarrow Extrai_Min(Q)$ $\triangleright u = b$ $X \leftarrow X \cup \{(u, \pi[u])\} //se u \neq r$ 8 Para cada $v \in Adj[u]$ faça Se $(v \in Q)$ e w(u, v) < chave[v]4 $chave[v] \leftarrow w(u, v)$ 14 $\pi[v] \leftarrow u$ 6 Fim_se 8 10 Fim_para

Fim_enquanto

Retorne X

vértice	a	b	$\left(\begin{array}{c} \mathbf{c} \end{array}\right)$	d	e	f	g	(h)	i
chave	0	4	∞	∞	∞	∞	∞	8	∞
π	NULL	а	NULL	NULL	NULL	NULL	NULL	а	NULL
Q			С	d	е	f	g	h	i

AGM – Algoritmo de Prim Enquanto $Q \neq \{\}$ $u \leftarrow Extrai_Min(Q)$ $\triangleright u = b$ $X \leftarrow X \cup \{(u, \pi[u])\} //se u \neq r$ 8 Para cada $v \in Adj[u]$ faça Se $(v \in Q)$ e w(u, v) < chave[v]4 $chave[v] \leftarrow w(u, v)$ 14 $\pi[v] \leftarrow u$ 6 Fim_se 8 10 Fim_para Fim_enquanto *Retorne X* vértice b d e g 8 4 chave ∞ ∞ ∞ ∞ ∞ NULL NULL NULL π NULL a **NULL** a **NULL**

d

e

h

g

Q

Enquanto $Q \neq \{\}$	
$u \leftarrow Extrai_Min(Q)$	

 $X \leftarrow X \cup \{(u, \pi[u])\} //se \ u \neq r$ $Para \ cada \ v \in Adj[u] \ faça$ $Se \ (v \in Q) \ e \ w(u, v) < chave[v]$ $chave[v] \leftarrow w(u, v)$ $\pi[v] \leftarrow u$

Fim_se
Fim_para
Fim_enquanto
Retorne X

vértice	a	b	c	d	e	f	g	h	i
chave	0	4	8	∞	∞	∞	∞	8	∞
π	NULL	а	b	NULL	NULL	NULL	NULL	a	NULL
Q			С	d	е	f	g	h	i

Enquanto $Q \neq \{\}$

vértice	a	b	c	d	e	f	g	h	i
chave	0	4	8	∞	∞	∞	∞	8	∞
π	NULL	а	b	NULL	NULL	NULL	NULL	а	NULL
Q			С	d	е	f	g		i

AGM – Algoritmo de Prim Enquanto $Q \neq \{\}$ $u \leftarrow Extrai_Min(Q)$ $\triangleright u = h$ $X \leftarrow X \cup \{(u, \pi[u])\} //se u \neq r$ 8 $\overline{Para\ cada}\ v \in Adj[u]\ faça$ Se $(v \in Q)$ e w(u, v) < chave[v]4 $chave[v] \leftarrow w(u, v)$ 14 $\pi[v] \leftarrow u$ Fim_se 6 8 10 Fim_para Fim_enquanto *Retorne X*

vértice	a	b	c	d	e	f	g	h	i
chave	0	4	8	∞	∞	∞	∞	8	∞
π	NULL	а	b	NULL	NULL	NULL	NULL	(a)	NULL
Q			С	d	е	f	g		i

AGM – Algoritmo de Prim Enquanto $Q \neq \{\}$ $u \leftarrow Extrai_Min(Q)$ $\triangleright u = h$ $X \leftarrow X \cup \{(u, \pi[u])\} //se \ u \neq r$ 8 Para cada $v \in Adj[u]$ faça Se $(v \in Q)$ e w(u, v) < chave[v]4 $chave[v] \leftarrow w(u, v)$ 14 $\pi[v] \leftarrow u$ Fim_se 6 8 10 Fim_para Fim_enquanto *Retorne X*

vértice	a	b	c	d	e	f	g	h	$\left(i\right)$
chave	0	4	8	∞	∞	∞	∞	8	∞
π	NULL	а	b	NULL	NULL	NULL	NULL	а	NULL
Q			С	d	е	f	g		i

AGM – Algoritmo de Prim Enquanto $Q \neq \{\}$ $u \leftarrow Extrai_Min(Q)$ $\triangleright u = h$ $X \leftarrow X \cup \{(u, \pi[u])\} //se u \neq r$ 8 Para cada $v \in Adj[u]$ faça Se $(v \in Q)$ e w(u, v) < chave[v]4 $chave[v] \leftarrow w(u, v)$ 14 $\pi[v] \leftarrow u$ Fim_se 6 8 10 Fim_para Fim_enquanto *Retorne X* vértice d h b e 8 8 chave ∞ ∞ ∞ a NULL NULL NULL π **NULL** a Q d C g e

Enquanto $Q \neq \{\}$ $u \leftarrow Extrai_Min(Q)$

 $X \leftarrow X \cup \{(u, \pi[u])\} //se \ u \neq r$ Para cada $v \in Adj[u]$ faça $Se \ (v \in Q) \ e \ w(u, v) < chave[v]$ $chave[v] \leftarrow w(u, v)$

 $\pi[v] \leftarrow u$

Fim_se

Fim_para
Fim_enquanto
Retorne X

vértice	a	b	c	d	e	f	g	h	i
chave	0	4	8	∞	∞	∞		8	7
π	NULL	а	b	NULL	NULL	NULL	h	а	h
Q			С	d	е	f)	i

vértice	a	b	c	d	e	f	g	h	i
chave	0	4	8	∞	∞	∞		8	7
π	NULL	а	b	NULL	NULL	NULL	h	а	h
Q			С	d	е	f			i

AGM – Algoritmo de Prim Enquanto $Q \neq \{\}$ $u \leftarrow Extrai_Min(Q)$ $\triangleright u = g$ $X \leftarrow X \cup \{(u, \pi[u])\} //se u \neq r$ 8 Para cada $v \in Adj[u]$ faça Se $(v \in Q)$ e w(u, v) < chave[v]4 $chave[v] \leftarrow w(u,v)$ 14 $\pi[v] \leftarrow u$ Fim_se 6 8 10 Fim_para Fim_enquanto *Retorne X*

vértice	a	b	c	d	e	f	g	h	$\left(i\right)$
chave	0	4	8	∞	∞	∞	1	8	7
π	NULL	а	b	NULL	NULL	NULL	h	а	h
Q			С	d	е	f			i

Enquanto $Q \neq \{\}$ $u \leftarrow Extrai_Min(Q)$

 $X \leftarrow X \cup \{(u, \pi[u])\} //se \ u \neq r$ Para cada $v \in Adj[u]$ faça $Se \ (v \in Q) \ e \ w(u, v) < chave[v]$

 $chave[v] \leftarrow w(u,v)$

 $\pi[v] \leftarrow u$

Fim_se

Fim_para
Fim_enquanto
Retorne X

vértice	a	b	c	d	e	f	g	h	i
chave	0	4	8	∞	∞	2	I	8	6
π	NULL	а	b	NULL	NULL	g	h	а	g
Q			С	d	е)		j

vértice	a	b	c	d	e	(f)	g	h	i
chave	0	4	8	∞	∞	2	ı	8	6
π	NULL	а	b	NULL	NULL	g	h	а	g
Q			С	d	е				i

						C			
vértice	a	b	C	a	e	I	g	n	1
chave	0	4	8	∞	∞	2		8	6
π	NULL	а	b	NULL	NULL	g	h	а	g
Q			С	d	е				i

Enquanto $Q \neq \{\}$ $u \leftarrow Extrai_Min(Q)$

 $X \leftarrow X \cup \{(u, \pi[u])\} //se \ u \neq r$ Para cada $v \in Adj[u]$ faça

Se $(v \in Q) e w(u, v) < chave[v]$ $chave[v] \leftarrow w(u, v)$

 $\pi[v] \leftarrow u$

Fim_se

Fim_para

Fim_enquanto

Retorne X

vértice	a	b	c	d	e	f	g	h	i
chave	0	4	4	14	10	2	I	8	6
π	NULL	а	f	f	f	g	h	а	g
Q			()	d	е				İ

vértice	a	b	$\left(\begin{array}{c} \mathbf{c} \end{array}\right)$	d	e	f	g	h	i
chave	0	4	4	14	10	2	I	8	6
π	NULL	а	(f)	f	f	g	h	а	g
Q				d	е				i

vértice	a	b	c	$\left(\begin{array}{c}d\end{array}\right)$	e	f	g	h	$\left(\begin{array}{c} \mathbf{i} \end{array}\right)$
chave	0	4	4	14	10	2	1	8	6
π	NULL	а	f	f	f	g	h	а	g
Q				d	е				i

Enquanto $Q \neq \{\}$ $u \leftarrow Extrai_Min(Q)$

 $X \leftarrow X \cup \{(u, \pi[u])\} //se \ u \neq r$ $Para \ cada \ v \in Adj[u] \ faça$ $Se \ (v \in Q) \ e \ w(u, v) < chave[v]$

 $chave[v] \leftarrow w(u, v)$

 $\pi[v] \leftarrow u$

Fim_se

Fim_para

Fim_enquanto

Retorne X

vértice	a	b	c	d	e	f	g	h	i
chave	0	4	4	7	10	2	I	8	2
π	NULL	а	f	С	f	g	h	a	С
Q				d	е				(-)

vértice	a	b	c	d	e	f	g	h	í
chave	0	4	4	7	10	2	I	8	2
π	NULL	а	f	С	f	g	h	а	(c)
Q				d	е				

vértice	a	b	$\left(\begin{array}{c}\mathbf{c}\end{array}\right)$	d	e	f	g	h	i
chave	0	4	4	7	10	2		8	2
π	NULL	а	f	С	f	g	h	а	С
Q				d	е				

AGM – Algoritmo de Prim Enquanto $Q \neq \{\}$ $u \leftarrow Extrai_Min(Q)$ $\triangleright u = d$ $X \leftarrow X \cup \{(u, \pi[u])\} //se u \neq r$ 8 Para cada $v \in Adj[u]$ faça b Se $(v \in Q)$ e w(u, v) < chave[v]4 $chave[v] \leftarrow w(u, v)$ 14 $\pi[v] \leftarrow u$ Fim_se 6 8 10 Fim_para h Fim_enquanto *Retorne X*

vértice	a	b	c	d	e	f	g	h	i
chave	0	4	4	7	10	2	I	8	2
π	NULL	а	f	С	f	g	h	а	С
Q					е				

vértice	a	b	c	d	e	f	g	h	i
chave	0	4	4	7	10	2	I	8	2
π	NULL	а	f	(c)	f	g	h	а	С
Q					е				

vértice	a	b	$\left(\begin{array}{c}\mathbf{c}\end{array}\right)$	d	(e)	f	g	h	i
chave	0	4	4	7	10	2	I	8	2
π	NULL	а	f	С	f	g	h	а	С
Q					е				

AGM – Algoritmo de Prim

vértice	a	b	c	d	e	f	g	h	i
chave	0	4	4	7	9	2		8	2
π	NULL	а	f	С	d	g	h	а	С
Q					$\left(\right)$				

vértice	a	b	c	d	e	f	g	h	i
chave	0	4	4	7	9	2		8	2
π	NULL	а	f	С	d	g	h	а	С
Q									

vértice	a	b	c	d	e	f	g	h	i
chave	0	4	4	7	9	2		8	2
π	NULL	а	f	С	d	g	h	а	С
Q									

AGM – Algoritmo de Prim Enquanto $Q \neq \{\}$ $u \leftarrow Extrai_Min(Q)$ u = e $X \leftarrow X \cup \{(u, \pi[u])\} //se u \neq r$ 8 Para cada $v \in Adj[u]$ faça b Se $(v \in Q)$ e w(u, v) < chave[v]4 $chave[v] \leftarrow w(u, v)$ 14 $\pi[v] \leftarrow u$ Fim_se 6 Fim_para Fim_enquanto Retorne X

vértice	a	b	c	d	e	f	g	h	i
chave	0	4	4	7	9	2	1	8	2
π	NULL	а	f	С	d	g	h	а	С
Q									

Algoritmo de Prim - Demo

Demonstração do algoritmo de Prim em um gráfico completo com pesos baseados na distância euclidiana (https://en.wikipedia.org/wiki/File:PrimAlgDemo.gif)

Kruskal Prim 00 0 0

Compreendendo PRIM nos moldes do Algoritmo Genérico para construir a AGM

Árvore Geradora Mínima – Prim

 Ao contrário do algoritmo de Kruskal, no algoritmo de Prim o procedimento de corte em grafo pode ser facilmente visualizado e implementado nos models do algoritmo genérico para construir uma AGM

$$S = \{a, b, d, e\}$$

 $V - S = \{h, i, c, g, f\}$

• Começando de r = a

• Começando de r = a

• Começando de r = a

Prim nos models do algoritmo genérico Custo da AGM: 84

Prim e Kruskal – Complexidades vs TADs

Prim

- Adicionar uma aresta de menor custo que interliga um novo vértice a cada iteração.
- $O(|V|^2)$ Matriz de Adjacência.
- $O(|E|\log(|V|))$ Lista de Adjacência.

Kruskal

- Adicionar uma aresta de menor peso que interliga árvores distintas a cada iteração.
- $O(|V|^2 \log(|V|))$ Matriz de Adjacência.
- $O(|E|\log(|V|))$ Lista de Adjacência.

Prim e Kruskal – Árvores Geradoras Mínimas

Fonte: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-24062015-112215/pt-br.php