Lecture 27

An Overview of Spatial Interpolation

STAT 8020 Statistical Methods II December 3, 2020

CLEMS N

Spatial Model

Whitney Huang Clemson University

Toy Examples of Spatial Interpolation

Spatial Interpolation

Question: What is your best guess of the value of the missing pixel, denoted as $Y(s_0)$, for each case?

Interpolating Paraná State Precipitation Data

Spatial Model
Spatial Interpolation

Goal: To interpolate the values in the spatial domain

The Spatial Interpolation Problem

Given observations of a spatially varying quantity Y at n spatial locations

$$y(s_1), y(s_2), \cdots, y(s_n), \quad s_i \in \mathcal{S}, i = 1, \cdots, n$$

We want to estimate this quantity at any unobserved location

$$Y(s_0), \quad s_0 \in \mathcal{S}$$

Applications

- Mining: ore grade
- Climate: temperature, precipitation, · · ·
- Remote Sensing: CO₂ retrievals
- Environmental Science: air pollution levels, · · ·

Gaussian Process
Spatial Model

Spatial Interpolation

Spatial Interpolation

Parameter estin

 Mining (Krige 1951)
 Matheron (1960s),
 Forestry (Matérn 1960)

 More recent work: Cressie (1993) Stein (1999)

Spatial Interpolation

arameter estimation

Gaussian Process Spatial Model

Spatial Interpolation

The best guess (in a statistical sense) should be based on the conditional distribution $[Y(s_0)|Y=y]$ where

$$\boldsymbol{y} = (y(\boldsymbol{s}_1), \cdots, y(\boldsymbol{s}_n))^{\mathrm{T}}$$

- Calculating this conditional distribution can be difficult
- Instead we use a linear predictor:

$$\hat{Y}(\boldsymbol{s}_0) = \lambda_0 + \sum_{i=1}^n \lambda_i y(\boldsymbol{s}_i)$$

• The best linear predictor is completely determined by the mean and covariance of $\{Y(s), s \in \mathcal{S}\}$, and the observations y

We assume that the observed data $\{y(s_i)\}_{i=1}^n$ is one partial realization of a (continuously indexed) spatial GP $\{Y(s)\}_{s \in \mathcal{S}}$.

Model:

$$Y(oldsymbol{s}) = m(oldsymbol{s}) + \epsilon(oldsymbol{s}), \qquad oldsymbol{s} \in \mathcal{S} \subset \mathbb{R}^d$$

where

Mean function:

$$m(s) = \mathrm{E}[Y(s)] = \boldsymbol{X}^{T}(s)\boldsymbol{\beta}$$

Covariance function:

$$\{\epsilon(s)\}_{s \in \mathcal{S}} \sim GP(0, K(\cdot, \cdot)), \quad K(s_1, s_2) = Cov(\epsilon(s_1), \epsilon(s_2))$$

In practice, the covariance must be estimated from the data $(y(s_1),\cdots,y(s_n))^{\rm T}.$ We need to impose some structural assumptions

Stationarity:

$$K(s_1, s_2) = \operatorname{Cov}(\epsilon(s_1), \epsilon(s_2)) = C(s_1 - s_2)$$

= $\operatorname{Cov}(\epsilon(s_1 + h), \epsilon(s_2 + h)))$

Isotropy:

$$K(\boldsymbol{s}_1, \boldsymbol{s}_2) = \operatorname{Cov}\left(\epsilon(\boldsymbol{s}_1), \epsilon(\boldsymbol{s}_2)\right) = C(\|\boldsymbol{s}_1 - \boldsymbol{s}_2\|)$$

A covariance function is positive if

$$\sum_{i,j=1}^{n} a_i a_j C(\boldsymbol{s}_i - \boldsymbol{s}_j) \ge 0$$

for any finite locations s_1, \dots, s_n , and for any constants a_i , $i = 1, \dots, n$

Question: what is the consequence if a covariance function is NOT p.d.? ⇒ weird things can happen

Question: How to guarantee a $C(\cdot)$ is p.d.?

- Using a parametric covariance function
- Using Bochner's Theorem to construct a valid covariance function

An Overview of Spatial Interpolation

Powered exponential:

$$C(h) = \sigma^2 \exp\left(-\left(\frac{h}{\rho}\right)^{\alpha}\right), \qquad \sigma^2 > 0, \, \rho > 0, \, 0 < \alpha \le 2$$

Spherical:

$$C(h) = \sigma^2 \left(1 - 1.5 \frac{h}{\rho} + 0.5 \left(\frac{h}{\rho} \right)^3 \right) \mathbb{1}_{\{h \le \rho\}}, \quad \sigma^2, \, \rho > 0$$

Note: it is only valid for 1,2, and 3 dimensional spatial domain.

Matérn:

$$C(h) = \sigma^2 \frac{\left(\sqrt{2\nu}h/\rho\right)^{\nu} \mathcal{K}_{\nu}\left(\sqrt{2\nu}h/\rho\right)}{\Gamma(\nu)2^{\nu-1}}, \qquad \sigma^2 > 0, \, \rho > 0, \, \nu > 0$$

"Use the Matérn model" - Stein (1999, pp. 14)

Gaussian Process

Spatial Interpolation

1-D Realizations from Matérn Model with Fixed $\sigma^2,\,\rho$

UNIVERSITY

Spatial Interpolation

Figure: courtesy of Rasmussen & Williams 2006

2-D Realizations from Matérn Model with Fixed σ^2

An Overview of Spatial Interpolation

Gaussian Process Spatial Model

Outline

An Overview of Spatial Interpolation

Gaussian Process Spatial Model

Spatial Interpolation

Parameter estimation

Gaussian Process Spatial Model

2 Spatial Interpolation

Conditional Distribution of Multivariate Normal

An Overview of Spatial Interpolation

Gaussian Process Spatial Model

Spatial Interpolation

arameter estimation

$$\begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} \sim \mathrm{N} \begin{pmatrix} \begin{pmatrix} \boldsymbol{\mu_1} \\ \boldsymbol{\mu_2} \end{pmatrix}, \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} \end{pmatrix}$$

Then

$$[\boldsymbol{Y}_1|\boldsymbol{Y}_2=\boldsymbol{y}_2]\sim \mathrm{N}\left(\boldsymbol{\mu_{1|2}}, \Sigma_{1|2}
ight)$$

where

$$\mu_{1|2} = \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (y_2 - \mu_2)$$

$$\Sigma_{1|2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$$

Gaussian Process

Spatial Interpolation

ameter estimation

If $\{Y(s)\}_{s\in\mathcal{S}}$ follows a GP, then

$$\begin{pmatrix} Y_0 \\ Y \end{pmatrix} \sim N \begin{pmatrix} m_0 \\ m \end{pmatrix}, \begin{pmatrix} \sigma_0^2 & k^T \\ k & \Sigma \end{pmatrix}$$

We have

$$[Y_0|\boldsymbol{Y}=\boldsymbol{y}] \sim \mathrm{N}\left(m_{Y_0|\boldsymbol{Y}=\boldsymbol{y}}, \sigma^2_{Y_0|\boldsymbol{Y}=\boldsymbol{y}}\right)$$

where

$$m_{Y_0|\mathbf{Y}=\mathbf{y}} = m_0 + k^{\mathrm{T}} \Sigma^{-1} (\mathbf{y} - \mathbf{m})$$

$$\sigma_{Y_0|\mathbf{Y}=\mathbf{y}}^2 = \sigma_0^2 - k^{\mathrm{T}} \Sigma^{-1} k$$

Spatial Prediction of Paraná State Rainfall

Spatial Interpolation

Gaussian Process Spatial Model

Spatial Interpolation

arameter estimation

If $\{Y(s)\}_{s\in\mathcal{S}}$ follows a GP, then

$$\begin{pmatrix} Y_0 \\ \boldsymbol{Y} \end{pmatrix} \sim \mathrm{N} \left(\begin{pmatrix} m_0 \\ \boldsymbol{m} \end{pmatrix}, \begin{pmatrix} \sigma_0^2 & k^\mathrm{T} \\ k & \Sigma \end{pmatrix} \right)$$

We have

$$[Y_0|\mathbf{Y}=\mathbf{y}] \sim N\left(m_{Y_0|\mathbf{Y}=\mathbf{y}}, \sigma_{Y_0|\mathbf{Y}=\mathbf{y}}^2\right)$$

where

$$m_{Y_0|\mathbf{Y}=\mathbf{y}} = m_0 + k^{\mathrm{T}} \Sigma^{-1} (\mathbf{y} - \mathbf{m})$$

$$\sigma_{Y_0|\mathbf{Y}=\mathbf{y}}^2 = \sigma_0^2 - k^{\mathrm{T}} \Sigma^{-1} k$$

Question: what if we don't know $m_0, m, \sigma_0^2, \Sigma$?

 \Rightarrow We need to estimate the mean and covariance from the data y.

Outline

An Overview of Spatial Interpolation

Gaussian Process Spatial Model

Spatial Interpolation

Parameter estimation

Gaussian Process Spatial Model

Spatial Interpolation

We assume that the observed data $\{y(s_i)\}_{i=1}^n$ is one partial realization of a (continuously indexed) spatial stochastic process $\{Y(s)\}_{s\in\mathcal{S}}$.

- Gaussian Processes $\mathrm{GP}\left(m\left(\cdot\right),K\left(\cdot,\cdot\right)\right)$ are widely used in modeling spatial stochastic processes
- Spatial statisticians often focus on the covariance function.

e.g.
$$K(h) = \sigma^2 \frac{\left(\sqrt{2\nu}h/\gamma\right)^{\nu} \mathcal{K}_{\nu}\left(\sqrt{2\nu}h/\gamma\right)}{\Gamma(\nu)2^{\nu-1}}$$

Gaussian Process
Spatial Model

Spatial Interpolation

Source: fields vignette by Wiens and Krock, 2019

Under the stationary and isotropic assumptions

Variogram:

$$\begin{aligned} 2\gamma(\boldsymbol{s}_i, \boldsymbol{s}_j) &= \operatorname{Var} \left(Y(\boldsymbol{s}_i) - Y(\boldsymbol{s}_j) \right) \\ &= \operatorname{E} \left\{ \left(\left(Y(\boldsymbol{s}_i) - \mu(\boldsymbol{s}_i) \right) - \left(Y(\boldsymbol{s}_j) - \mu(\boldsymbol{s}_j) \right) \right)^2 \right\} \\ &= \operatorname{E} \left\{ \left(Y(\boldsymbol{s}_i) - Y(\boldsymbol{s}_j) \right)^2 \right\} \\ &= 2\gamma (\|\boldsymbol{s}_i - \boldsymbol{s}_j\|) = 2\gamma(h) \end{aligned}$$

Semivariogram and covariance function:

$$\gamma(h) = C(0) - C(h)$$

Gaussian Process Spatial Model

Spatial Interpolation

Given data
$$y = (y(s_1), \dots, y(s_n))^{\mathrm{T}}$$

$$\begin{split} &\ell_n(\boldsymbol{\beta}, \boldsymbol{\theta}; \boldsymbol{y}) \propto -\frac{1}{2} \log |\boldsymbol{\Sigma}_{\boldsymbol{\theta}}| - \frac{1}{2} (\boldsymbol{y} - \boldsymbol{X}^{\mathrm{T}} \boldsymbol{\beta})^{\mathrm{T}} \left[\boldsymbol{\Sigma}_{\boldsymbol{\theta}}\right]_{n \times n}^{-1} (\boldsymbol{y} - \boldsymbol{X}^{\mathrm{T}} \boldsymbol{\beta}) \\ &\text{where } \boldsymbol{\Sigma}_{\boldsymbol{\theta}}(i, j) = \sigma^2 \rho_{\rho, \nu}(\|\boldsymbol{s}_i - \boldsymbol{s}_j\|) + \tau^2 \mathbb{1}_{\{\boldsymbol{s}_i = \boldsymbol{s}_j\}}, i, j = 1, \cdots, n \end{split}$$

An Overview of Spatial Interpolation

Spatial Model

Spatial Interpolation

$$\ell_n(oldsymbol{eta}, oldsymbol{ heta}; oldsymbol{y}) \propto -rac{1}{2} \log |oldsymbol{\Sigma}_{oldsymbol{ heta}}| - rac{1}{2} (oldsymbol{y} - oldsymbol{X}^{\mathrm{T}} oldsymbol{eta})^{\mathrm{T}} \left[oldsymbol{\Sigma}_{oldsymbol{ heta}}
ight]_{n imes n}^{-1} (oldsymbol{y} - oldsymbol{X}^{\mathrm{T}} oldsymbol{eta})$$

where
$$\Sigma_{\theta}(i,j) = \sigma^2 \rho_{\rho,\nu}(\|s_i - s_j\|) + \tau^2 \mathbb{1}_{\{s_i = s_j\}}, i, j = 1, \cdots, n$$

for any fixed $\theta_0 \in \Theta$ the unique value of $oldsymbol{\beta}$ that maximizes ℓ_n is given by

$$\hat{\boldsymbol{\beta}} = \left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{\Sigma}_{\boldsymbol{\theta}_0}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{\Sigma}_{\boldsymbol{\theta}_0} \boldsymbol{y}$$

Then we obtain the profile log likelihood

$$\ell_n(\boldsymbol{\theta}; \boldsymbol{y}) \propto -\frac{1}{2} \log |\boldsymbol{\Sigma}_{\boldsymbol{\theta}}| - \frac{1}{2} \boldsymbol{y}^{\mathrm{T}} P(\boldsymbol{\theta}) \boldsymbol{y}$$

where

$$P(\boldsymbol{\theta}) = \Sigma_{\boldsymbol{\theta}}^{-1} - \Sigma_{\boldsymbol{\theta}}^{-1} \boldsymbol{X} \left(\boldsymbol{X}^{\mathrm{T}} \Sigma_{\boldsymbol{\theta}}^{-1} \boldsymbol{X} \right)^{-1} \boldsymbol{X}^{\mathrm{T}} \Sigma_{\boldsymbol{\theta}}$$

Solve the maximization problem above to get the MLE

Spatial Model

Spatial Interpolation