

Redes Neurais Artificiais

UFPI

PROF. ME. FILIPE FONTINELE DE ALMEIDA

FILIPEFONTINELI@GMAIL.COM

Estrutura das RNA

Neurônio artificial:

Estrutura das RNA

- Neurônio artificial:
 - combinação das entradas: somatório

$$net = \sum u_i$$

função de ativação:

linear: out = k.net

sigmoide: $out = (1 - e^{-net})^{-1}$

tanh: $out = 2*(1-e^{-net})^{-1}-1$

Gaussiana: $out = e^{-\frac{net^2}{2\sigma^2}}$

Funções

Sigmoide

Tangente Hiperbólica

Estrutura das RNA

Rede Neural Artificial – modelo básico:

Arquitetura das RNA

- ► Topologias:
 - Feedforward

feedback

Arquitetura das RNA

- ► Topologias:
 - estritamente feedforward

com bias

Tipos de RNA

- Perceptron de múltiplas camadas MLP
- RBF
- Time-delay NN
- Kohonen
- Hopfield
- Elman
- CMAC
- muitas outras ...

Tipos de RNA

- Especificações de um modelo:
 - conjunto de unidades de processamento
 - estado de ativação para cada unidade
 - função de saída para cada unidade
 - padrão de conectividade (topologia de rede)
 - ambiente externo que interaja com a rede
 - função de combinação
 - regra de ativação
 - regra de aprendizado

Uso das RNA

- ► Fase 1: treinamento
 - escolha do algoritmo
 - modificação dos pesos via algoritmo
- ► Fase 2: execução
 - nenhuma modificação nos pesos
 - cálculo da saída para a entrada apresentada