Khôlles de Mathématiques $\mathbb{H} \mathbb{X} \mathbb{I} \mathbb{I}$

Matrices

Exercice 1. Soit $A \in GL_n(\mathbb{R})$ vérifiant $A + A^{-1} = I_n$. Pour $k \in \mathbb{N}$, calculer $A^k + A^{-k}$.

Exercice 2. Soit $n \in \mathbb{N}^*$. Montrer que le produit de n matrices triangulaires supérieures strictes de $\mathcal{M}_n(\mathbb{R})$ est nul.

Exercice 3. Montrer que toute matrice nilpotente est de trace nulle.

Exercice 4.

- 1. Quelles sont les matrices de $\mathcal{M}_n(\mathbb{K})$ commutant avec toutes les matrices de $\mathcal{M}_n(\mathbb{K})$?
- 2. Même question avec les matrices commutant avec toutes celles de $GL_n(\mathbb{K})$.

Exercice 5.

Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ et φ l'endomorphisme de $\mathcal{M}_n(\mathbb{R})$ défini par

$$\varphi(M) = AMB$$

Exprimer la trace de φ en fonction des traces de A et B.

$\mathcal{E}_{xercice}$ 6.

Soit φ une forme linéaire sur $\mathcal{M}_n(\mathbb{K})$. Montrer qu'il existe $A \in \mathcal{M}_n(\mathbb{K})$ tel que pour tout $M \in \mathcal{M}_n(\mathbb{K})$, $\varphi(M) = \operatorname{tr}(AM)$.

Exercice 7.

Soit $A \in \mathcal{M}_n \mathbb{R}$ défini par $a_{i,j} = 1$ si $j \ge i$, o sinon.

- 1. Montrer que l'inverse d'une matrice A triangulaire supérieure inversible est elle-même triangulaire supérieure. On pourra introduire l'endomorphisme de $\mathbf{T}_{n,s}$, $\varphi_A: M \mapsto AM$.
- 2. Montrer que A est inversible et calculer A^{-1} .
- 3. Calculer $(A^{-1})^k$ pour $k \in \mathbb{N}$.

Exercice 8.

Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{C})$ telle que

$$\forall 1 \leq i \leq n, \sum_{i \neq i} \left| a_{i,j} \right| < \left| a_{i,i} \right|$$

Montrer que la matrice A est inversible.

Exercice 9.

Soit $A \in \mathcal{M}_{n+1}(\mathbb{R})$ définie par $a_{i,j} = \binom{j-1}{i-1}$ pour $i, j \in \{1, \dots, n+1\}$.

- 1. Montrer que A est inversible et calculer A^{-1} .

 Application : Une permutation σ de $\mathbf{S_n}$ est appelé dérangement si elle ne possède aucun point fixe.
- 2. Soit a_n le nombre de dérangement de S_n . Montrer que $n! = \sum_{k=0}^n \binom{n}{k} a_k$.
- 3. Déduire du a) une expression de a_n .

$\mathcal{E}_{xercice}$ 10.

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que A est semblable à une matrice "sous-triangulaire", i.e de la forme $(b_{i,j})$ avec $b_{i,j} = 0$ si $i - j \ge 2$.

Exercice 11. Soit $A \in \mathcal{M}_n(\mathbb{R})$ non inversible. Montrer que

$$\exists B \in \mathcal{M}_n(\mathbb{R}) \text{ tel que } \forall \lambda \in \mathbb{R}^*, A + \lambda B \in GL_n(\mathbb{R})$$