8. Let c_1, c_2, c_2, \ldots be defined by

$$c_k = 2c_{k-1} + k$$
 for $k \ge 2$, and $c_k = 1$

Write the first fives terms in the sequence.

$$c_1 = 1$$
 $c_2 = 4$ $c_3 = 11$ $c_4 = 26$ $c_5 = 57$
 $c_{1} = 1$
 $c_{2} = 2 \cdot 1 + 2 = 4$
 $c_{3} = 2 \cdot 4 + 3 = 11$
 $c_{4} = 2 \cdot 11 + 4 = 22 + 4 = 26$

 $C_5 = 2 \cdot 26 + 5 = 52 + 5 = 57$ 9. Show that $a_n = c2^n$ is a solution to

$$a_n = 5a_{n-1} - 6a_{n-2}$$

for $n \geq 0$ and where c is a constant.

The mlug
$$a_n = c 2^n$$
 into $5a_{n-1} - 6a_{n-2}$
and $9naw$ it reduces to a_n
 $5a_{n-1} - 6a_{n-2} = 5c 2^{n-1} - 6c 2^{n-2}$
 $= 5c 2 2^{n-2} - 6c 2^{n-2}$
 $= (5c \cdot 2 - 6c) 2^{n-2}$
 $= (10c - 6c) 2^{n-2}$
 $= (14c) 2^{n-2}$
 $= 2^2 c 2^{n-2}$
 $= 2^2 c 2^{n-2}$