

FACULTAD DE INGENIERÍA Y CIENCIAS AGROPECUARIAS Ingeniería en Producción Industrial EIP-756-1/ AUTOMATIZACIÓN INDUSTRIAL Y ROBOTICA

Período 2016-1

1. Identificación

Número de sesiones: 48 sesiones

Número total de horas de aprendizaje: 120

Créditos – malla actual: 3 Profesor: Jean-Michel Clairand

Correo electrónico del docente (Udlanet): j.clairand@udlanet.ec

Coordinador: Ing. Christian Chimbo

Campus: Sede Queri

Pre-requisito: EIP-455 e EIP-553 Co-requisito:

Paralelo: 1

Tipo de asignatura:

Optativa	
Obligatoria	X
Práctica	

Organización curricular:

Unidad 1: Formación Básica	
Unidad 2: Formación Profesional	X
Unidad 3: Titulación	

Campo de formación:

Campo de formación					
Fundamentos teóricos	Praxis profesional	Epistemología y metodología de la investigación	Integración de saberes, contextos y cultura	Comunicación y lenguajes	
	X				

2. Descripción del curso

La Automatización Industrial es el uso de sistemas de control y de tecnología informática con el efecto de reducir la necesidad de la intervención humana en un proceso industrial. De esta forma presenta grandes ventajas en cuanto a producción más eficiente y disminución de riesgos al operador.

La asignatura Automatización Industrial se centra en la elaboración de los sistemas de control de un sistema automático de producción partiendo de su descripción funcional. Con este propósito, se propone la construcción de modelos utilizando lenguajes matemáticos, para analizar su funcionamiento y proponer correcciones necesarias. Por lo que el objetivo final de este curso es que los alumnos aprendan a diseñar y corregir sistemas de automatización industrial o robóticos, a partir de cualquier sistema físico.

3. Objetivo del curso

Analizar el control e instrumentación en procesos de plantas industriales, tener conocimiento y capacidad para el modelado de sistemas físicos como: electrónicos, mecánicos, termodinámicos, e presión, etc. Adicional a esto adquirir la capacidad para diseñar sistemas de automatización y robóticos.

4. Resultados de aprendizaje deseados al finalizar el curso (Sílabo maestro)

Resultados de aprendizaje (RdA)	RdA perfil de egreso de carrera	Nivel de desarrollo (carrera)
 Analiza y corrige los diferentes tipos de sistemas de control aplicados en una planta industrial o en un robot. Analiza los principios de transducción de sensores y selecciona con criterio sensores y actuadores para ser usados a nivel industrial. Analiza el funcionamiento de un proceso para entender la lógica de un programa de un PLC y una interfaz de HMI. 	1. Analiza, selecciona e integra con efectividad las tecnologías manufactureras (maquinaria, materiales, energía, etc.) adaptadas a cada proceso productivo, utilizando herramientas de alta tecnología y coordinando con especialistas del área (mecánica, eléctrica, automatismos, etc.).	Inicial () Medio () Final (x)

5. Sistema de evaluación

Reporte de progreso 1: 35% Reporte de progreso 2: 35% Asistencia: 0% Evaluación final: 30%

Al finalizar el curso habrá un examen de recuperación para los estudiantes que deseen reemplazar la nota de un examen anterior (ningún otro tipo de evaluación). Este examen es de carácter complexivo y de alta exigencia, por lo que el estudiante necesita prepararse con rigurosidad.

6. Metodología del curso y de mecanismos de evaluación.

El curso estará esencialmente compuesto de sesiones de teoría, y de resolución de problemas para la correcta comprensión de ésta. Se realizará un pequeño test de unos 15 minutos cada 2 semanas para evaluar la comprensión de la teoría, así como las posibles dificultades que pueden encontrar los estudiantes, para que puedan perfeccionar sus problemas en los exámenes de progreso. De igual manera habrá unas 3 prácticas que permitirán evaluar la aplicación práctica, gracias a los conocimientos teóricos que posean los estudiantes.

La evaluación en cada progreso estará definida de esta forma, sobre un total de 100%:

-Promedio Tests: 30%

-Prácticas: 20%

-Examen Progreso: 50%

6.1. Escenario de aprendizaje presencial.

Resolución de ejercicios en clase, tests.

6.2. Escenario de aprendizaje virtual

Trabajos en grupo

6.3. Escenario de aprendizaje autónomo.

"Comprende el trabajo realizado por el estudiante, orientado al desarrollo de capacidades para el aprendizaje independiente e individual del estudiante. Son actividades de aprendizaje autónomo, entre otros: lectura, análisis de material bibliográfico, búsqueda de información, generación de datos, elaboración de trabajos, ensayos, proyectos, exposiciones, entre otros" (CES, 2013, p.10)

7. Temas y subtemas del curso (Sílabo maestro)

Deben seleccionarse los RdA y contenidos de cada asignatura de manera que sean los mismos en los diferentes paralelos. Sin embargo, el docente puede adaptar el orden de los temas y subtemas de acuerdo a las necesidades de sus grupos de estudiantes, siempre y cuando se cumpla con los objetivos establecidos.

RdA	Temas	Subtemas
Analiza los diferentes tipos de	1.DEFINICIONES BÁSICAS	1.1 Introducción a la
sistemas de control aplicados en	DE SISTEMAS DE CONTROL	Automatización. Ventajas
una planta industrial		y Desventajas.
		1.2 Definiciones de
		sistema de control.
		1.3 Clasificación de
		sistemas de control
		1.4 Concepto de sistema
		de control en lazo
		abierto.
		1.5 Concepto de sistema
		de control en lazo
		cerrado.
		1.6 Partes constitutivas
		de un sistema de lazo
		cerrado.
		1.7 Etapas de Diseño de
		un sistema de control
		1.8. Correctores a un
		sistema de control
		1.9 Aplicaciones de
		control a la robótica
Analiza los principios de	2. PRINCIPIOS DE	2.1 Introducción a los
transducción de sensores y	TRANSDUCCIÓN DE	Sensores.
selecciona con criterio sensores y	SENSORES	2.2 Características
actuadores para ser usados a nivel		generales de sensores.
industrial		2.3 Tipos de sensores
		2.4 Sistemas de
		adquisición de datos
		2.5 Aplicaciones de
D: ~ C	2 PROCEANACIÓN E	sensores en robótica
Diseña eficazmente diferentes tipos	3. PROGRAMACIÓN E	3.1 Introducción a los
de sistemas de control aplicados en	INSTALACIÓN DE PLC's Y	PLC's y sistemas SCADA
una planta industrial mediante la	SISTEMAS SCADA	3.2 Arquitectura interna
utilización de sistemas de simulación		de un PLC

UOD-

Sílabo 2016-1 (Pre-grado)

basados en softwares de sistemas	3.2 Modos de Operación
SCADA, OPC Servers y Programación	de PLC
de PLC'S basados en norma IEC-	3.3 Conexión de I/Os
61131-3	3.4 Máquinas de Estado
	3.5 Sistemas SCADA

8. Planificación secuencial del curso (Docente)

	Semana 1 -11				
RdA	Tema	Sub tema	Actividad/ estrategia de clase	Tarea/ trabajo autónomo	MdE/Producto/ fecha de entrega
1	1.DEFINICIONES	1.1 Introducción	Clase Magistral	Revisión	Informe Prácticas
	BÁSICAS DE	a la		para tests	
	SISTEMAS DE	Automatización.	Introducción a		Examen
	CONTROL	Ventajas y	Sistemas de		Complexivo de
		Desventajas. 1.2 Definiciones	Automatización		Tema 1
		de sistema de	Presentación Aire		
		control.	Definición de		
		1.3 Clasificación	Sistemas de		
		de sistemas de	Control		
		control	Control		
		1.4 Concepto de	Taller de		
		sistema de	Clasificación de		
		control en lazo	Sistemas de		
		abierto.	Control		
		1.5 Concepto de			
		sistema de	Clase Magistral		
		control en lazo	Sistema Lazo		
		cerrado.	Abierto		
		1.6 Partes			
		constitutivas de	Clase Magistral		
		un sistema de	Sistema Lazo		
		lazo cerrado.	Cerrado		
		1.7 Etapas de			
		Diseño de un	Clase Magistral		
		sistema de	Etapas de Diseño		
		control	de Sistemas de		
		1.8. Correctores	Control		
		a un sistema de	D ()		
		control	Prácticas		
		1.9 Aplicaciones			
		de control a la			
		robótica			

	Semana 11-15				
RdA	Tema	Sub tema	Actividad/ estrategia de clase	Tarea/ trabajo autónomo	MdE/Producto/ fecha de entrega
2	2. PRINCIPIOS DE TRANSDUCCIÓN DE SENSORES	2.1 Introducción a los Sensores. 2.2 Características generales de sensores. 2.3 Tipos de sensores 2.4 Sistemas de adquisición de datos 2.5 Aplicaciones de sensores en robótica	Clase Magistral Conceptos básicos de Instrumentación Presentación Sensores de temperatura. Clasificación	Exposiciones en clases diferentes tipos de sensores	Exposiciones

	Semana 15-18				
RdA	Tema	Sub tema	Actividad/ estrategia de clase	Tarea/ trabajo autónomo	MdE/Producto/ fecha de entrega
3	3. PROGRAMACIÓN E INSTALACIÓN DE PLC'S Y SISTEMAS SCADA	3.1 Introducción a los PLC's y sistemas SCADA 3.2 Arquitectura interna de un PLC 3.2 Modos de Operación de PLC 3.3 Conexión de I/Os 3.4 Máquinas de Estado 3.5 Sistemas SCADA	Presentación Arquitectura de PLCs Presentación Modos de Operación PLCs Clase Magistral Conexión de I/Os de PLCs Clase Magistral Sistemas Scada	Ejercicios Máquinas de Estado Ejercicios Componentes Sistemas Scada	Entrega de ejercicios

9. Normas y procedimientos para el aula

Los alumnos tienen que llegar a la hora a la clase. Transcurridos los 10 minutos, serán marcados como ausente. No se aceptará ninguna justificación, eso tendrá que ser hablado con secretaría. En caso de ausencia, los alumnos tendrán que recuperar la clase con las notas de sus compañeros y solicitar tutorías en caso de que no se entienda el curso, para evitar estar perdidos en las clases siguientes. El uso del celular es prohibido.

10. Referencias bibliográficas (Docente)

Sílabo 2016-1 (Pre-grado)

10.1. Principales.

Creus, A. (2010). Instrumentación Industrial. (10ª ed.). México DF: Alfaomega

10.2. Referencias complementarias.

• Gil, A. (2007). Introducción al control industrial. Madrid, España, Foinsa

11. Perfil del docente

Nombre de docente: Jean-Michel Clairand

"Candidato a PhD en Ingeniería y Producción Industrial por la Univrstitat Politècnica de Valencia, con enfoque en eficiencia energética, vehículos eléctricos y su integración en redes eléctricas inteligentes, Master en Automática y Electrónica Industrial por l'Ecole Nationale Supérieure de l'Electronique et Ses Applications (ENSEA) de Cergy-Francia, al igual que Ingeniero Electrónico por la misma institución. Experiencia de un año como docente en la Universidad de las Américas. Experiencia profesional relacionada con proyectos de vehículos eléctricos e híbridos, generación de electricidad y redes eléctricas inteligentes.

Contacto: j.clairand@udlanet.ec

Teléfono: 0995860613