Esperienza 3

Matteo Romano, Vittorio Strano

09/12/2021

Indice

1	Obiettivo dell'esperienza							
2	Strumenti e materiali							
3	One	da qua	dra	2				
	3.1	Dati e	d errori	2				
	3.2	Analis	i dati	3				
4	Onda sinusoidale							
	4.1	Funzio	one di trasferimento ai capi di C	5				
		4.1.1	Dati ed errori	5				
		4.1.2	Analisi dati	5				
	4.2	Funzio	one di trasferimento ai capi di R	8				
		4.2.1	Dati ed errori	8				
		4.2.2	Analisi dati	9				
5	Cor	nclusio	ni	11				

1 Obiettivo dell'esperienza

Lo scopo dell'esperienza è quello di calcolare la frequenza di taglio di un circuito RC. Per farlo si analizza la differenza di potenziale ai capi di R (Figura 1a) e/o ai capi di C (Figura 1b) quando si sottopone il circuito ad una tensione variabile.

Figura 1: Schema circuito

2 Strumenti e materiali

- Generatore di tensione AC
- Multimetro digitale (utilizzato come ohmetro)
- Oscilloscopio
- Cavi
- Breadboard
- Resistore
- Condensatore

3 Onda quadra

La prima parte dell'esperimento consiste nell'applicare ai capi del circuito una tensione variabile secondo un'onda quadra di ampiezza picco-picco pari a V_0 . La frequenza dell'onda $(f = (3.46 \pm 0.06) \ kHz)$ è stata scelta in modo da permettere al condensatore di completare il regime transitorio, passando da una tensione $V_0/2$ fino ad una tensione $-V_0/2$. La curva osservata nell'oscilloscopio rappresenta la tensione V_C ai capi del condensatore in funzione del tempo t e segue l'Equazione 3.1, dove con $\tau = RC$ si indica il tempo caratteristico del circuito.

$$V_C = V_0 \cdot e^{-t/\tau} - V_0/2 \tag{3.1}$$

Per prendere le misure il sistema di riferimento è stato traslato in modo da porre come zero delle ordinate il valore $-V_0/2$ e ottenere l'Equazione 3.2.

$$V = V_0 \cdot e^{-t/\tau} \tag{3.2}$$

Noto il valore di $R=(1.874\pm0.004)~\mathrm{k}\Omega$ (misurato con il multimetro) si vuole ottenere il valore di C.

3.1 Dati ed errori

Sull'oscilloscopio è stato fissato il primo cursore in corrispondenza dell'asintoto della curva a $-V_0/2$; questo sarà lo zero delle ordinate.

Il secondo cursore è stato fatto variare in modo da ottenere la differenza di potenziale al variare del tempo. Le misure ottenute sono riportate nella Tabella 1 con i relativi errori pari a 1/10 della scala.

7D 1 11 4 1/1	1 11		1				1.	α	1		
Tabella 1: Misu	re della v	ariazione c	11 te	nsione	a_1	capı	d1	C	nel	regime	transitorio

V(V)	V div. (V)	$\delta V (V)$	$t (\mu s)$	t div. (μs)	$\delta t \; (\mu s)$
7.00	1	0.10	0.0	2.5	0.3
6.52	1	0.10	0.9	2.5	0.3
6.00	1	0.10	2.0	2.5	0.3
5.52	1	0.10	3.1	2.5	0.3
5.00	1	0.10	4.5	2.5	0.3
4.52	1	0.10	5.9	2.5	0.3
4.00	1	0.10	7.5	2.5	0.3
3.52	1	0.10	9.2	2.5	0.3
3.00	1	0.10	11.4	5.0	0.5
2.52	1	0.10	13.8	5.0	0.5
2.00	1	0.10	17.0	5.0	0.5
1.52	1	0.10	20.8	10.0	1.0
1.00	1	0.10	26.0	10.0	1.0
0.52	1	0.10	35.0	25.0	3

3.2 Analisi dati

$$V = V_0 \cdot e^{-t/\tau} \implies \ln(V) = \ln(V_0) - \frac{t}{\tau}$$

Riportando le misure in un grafico semi-logaritmico (come in Figura 2), ci si aspetta di ottenere una funzione lineare.

La retta di massima pendenza passa per i punti (-0.2, 7) e (35, 0.6), mentre la retta di minima pendenza passa per i punti (0.2, 7) e (34, 0.5).

$$m_{max} = \frac{\ln(7/0.6)}{-0.2 - 35} = -0.06979$$
 $m_{min} = \frac{\ln(7/0.5)}{0.2 - 34} = -0.07808$

$$m_{best} = \frac{m_{max} + m_{min}}{2} = -0.0739 \approx -0.074$$

$$\delta m = \frac{m_{max} - m_{min}}{2} = 0.0041 \approx 0.004$$

$$m = -0.074 \pm 0.004 \tag{3.3}$$

Figura 2: Grafico semi-logaritmico delle misure della variazione di tensione ai capi di C nel regime transitorio

Essendo $m = -\frac{1}{\tau}$ è possibile ricavare il valore di $\tau = (13.5 \pm 0.7)~\mu s$ utilizzando l'Equazione 3.4.

$$\tau = -\frac{1}{m}$$

$$\delta \tau = \frac{\delta m}{m} \tau$$
(3.4)

Conoscendo il valore di $R = (1.874 \pm 0.004) \text{ k}\Omega$, si calcola $C = (7.2 \pm 0.4) \text{ nF}$ con l'Equazione 3.5.

$$C = \frac{\tau}{R}$$

$$\delta C = \left(\frac{\delta \tau}{\tau} + \frac{\delta R}{R}\right) C \tag{3.5}$$

4 Onda sinusoidale

La seconda parte dell'esperimento consiste nel sottoporre il circuito a tensione in regime sinusoidale. Variando la frequenza f del segnale è stata misurata la tensione in entrata V_{in} e quella in uscita V_{out} del circuito, così come il tempo di sfasamento t tra le due.

Le misurazioni sono state effettuate 2 volte, prendendo la tensione in uscita prima ai capi del condensatore C e successivamente ai capi di R.

Con i dati raccolti sono stati calcolati il modulo della funzione di trasferimento |A| (Equazione 4.1) e la sua fase φ (Equazione 4.2).

$$|A| = \frac{V_{out}}{V_{in}}$$

$$\delta|A| = \left(\frac{\delta V_{out}}{V_{out}} + \frac{\delta V_{in}}{V_{in}}\right) \cdot |A|$$
(4.1)

$$\varphi = 2\pi f t$$

$$\delta \varphi = 2\pi f \delta t \tag{4.2}$$

Attraverso l'analisi grafica delle misure è stato ricavato il valore della frequenza di taglio f_0 del circuito.

Per indicare il componente in esame, nei nomi delle variabili è stato inserito a pedice "C" per le misure del condensatore ed "R" per quelle del resistore.

4.1 Funzione di trasferimento ai capi di C

4.1.1 Dati ed errori

Nella Tabella 2 sono riportati i risultati delle misurazioni effettuate con i relativi errori.

Per le tensioni in entrata V_{in} la scala utilizzata è sempre di 1V con errore $\delta V_{in} = 0.1V$; questi non sono riportati in tabella per compattezza.

 $V_{in}(V)$ $V_{out}(V)$ V_{out} div. (V) $\delta V_{out} (V)$ f(kHz)t div. (μs) $\delta t \; (\mu s)$ $t (\mu s)$ 6.96 6.921 0.100.5155- 13.7 2.5 0.37.04 6.92 1 1.024 - 13.5 0.3 0.102.57.046.861 2.495- 13.2 2.5 0.30.107.046.751 0.103.525- 12.8 5 0.57.04 6.64 1 0.104.010 - 12.7 2.5 0.3 7.04 - 11.9 2.5 0.3 6.00 1 0.107.042- 9.2 6.003.34 1 0.1015.552.50.35.72- 6.76 2.440.50.0525.461 0.105.60 1.76 0.50.0536.37 - 5.3 2.5 0.3- 2.22 5.44 0.6280.1 0.010 104.7 0.50.055.440.4240.010 156.0- 1.52 0.10 0.11 5.360.2580.050.005254.1- 0.95 0.50.055.28 0.1810.020.002356.6- 0.65 0.250.03 5.24 0.1720.050.005376.5- 0.636 0.10.010

Tabella 2: Misure dell'onda sinusoidale ai capi di C

4.1.2 Analisi dati

0.138

0.02

5.02

I valori del modulo e della fase della funzione di trasferimento ai capi di C sono riportati nella Tabella 3.

459.1

-0.52

0.25

0.03

0.002

Tabella 3: Modulo e fase della funzione di trasferimento ai capi di ${\cal C}$

$ A_C $	$d A_C $	$\varphi_C (rad)$	$d\varphi_C (rad)$	f(kHz)
0.99	0.03	- 0.0444	0.0008	0.5155
0.98	0.03	- 0.0869	0.0016	1.024
0.97	0.03	- 0.207	0.004	2.495
0.96	0.03	- 0.283	0.011	3.525
0.94	0.03	- 0.320	0.006	4.010
0.85	0.03	- 0.527	0.011	7.042
0.56	0.03	- 0.90	0.02	15.55
0.427	0.016	- 1.081	0.016	25.46
0.314	0.015	- 1.21	0.06	36.37
0.115	0.004	- 1.46	0.03	104.7
0.078	0.003	- 1.49	0.10	156.0
0.0481	0.0018	- 1.52	0.08	254.1
0.0343	0.0010	- 1.46	0.06	356.6
0.0328	0.0016	- 1.50	0.02	376.5
0.0275	0.0009	- 1.50	0.07	459.1

Riportando le misure della Tabella 3 in un grafico logaritmico $|A_C|(f)$ si ottiene la Figura 3.

Si osserva che il modulo della funzione di trasferimento, in scala logaritmica, assume un andamento lineare agli estremi del grafico. A basse frequenze la funzione avrà andamento costante mentre ad alte frequenze si avrà un andamento lineare con pendenza -1.

Figura 3: Rette nelle zone di linearità del grafico del modulo della funzione di trasferimento ai capi di C

Figura 4: Zoom della Figura 3 per la stima della frequenza di taglio

Le rette si intersecano nei punti di frequenze

$$f_{C min} = 12.0 \ kHz$$

 $f_{C max} = 12.95 \ kHz$

$$f_{C\ best} = rac{f_{C\ max} + f_{C\ min}}{2} = 12.475 \approx 12.5\ kHz$$

$$\delta f_{C} = rac{f_{C\ max} - f_{C\ min}}{2} = 0.475 \approx 0.5\ kHz$$

Quindi il valore della frequenza di taglio calcolata utilizzando le misure ai capi di C è $f_C=(12.5\pm0.5)~kHz.$

Riportiamo le frequenze in Figura 5 per verificare che i valori della fase siano compatibili con la frequenza di taglio ottenuta.

Visto l'andamento decrescente della funzione, la frequenza di taglio risulta compatibile con i valori della fase.

Figura 5: Grafico della fase della funzione di trasferimento ai capi di ${\cal C}$

4.2 Funzione di trasferimento ai capi di R

4.2.1 Dati ed errori

Nella Tabella 4 sono riportati i risultati delle misurazioni effettuate con i relativi errori.

Per le tensioni in entrata V_{in} la scala utilizzata è sempre di 1V con errore $\delta V_{in} = 0.1V$; questi non sono riportati in tabella per compattezza.

Tabella 4: Misure dell'onda sinusoidale ai capi di ${\cal R}$

$V_{in}(V)$	$V_{out}(V)$	V_{out} div. (V)	$\delta V_{out} (V)$	$\int f(kHz)$	$t (\mu s)$	t div. (μs)	$\delta t \; (\mu s)$
7.00	0.294	0.05	0.005	0.5149	464	100	10
7.00	0.576	0.1	0.010	1.025	230	50	5
7.04	0.780	0.1	0.010	1.388	166	25	3
7.04	1.38	0.2	0.02	2.498	86.8	10	1.0
7.04	2.18	0.5	0.05	4.016	48.8	10	1.0
7.00	3.46	0.5	0.05	7.077	23.2	5	0.5
6.96	5.32	1	0.10	15.12	7.28	1	0.10
6.88	6.04	1	0.10	25.28	2.94	0.5	0.05
6.84	6.56	1	0.10	52.06	0.716	0.1	0.010
6.80	6.72	1	0.10	103.7	0.180	0.025	0.003
6.80	6.80	1	0.10	203.7	0.0448	0.01	0.0010
6.80	6.80	1	0.10	403.1	0.0106	0.005	0.0005

4.2.2 Analisi dati

I valori del modulo e della fase della funzione di trasferimento ai capi di R sono stati riportati nella Tabella 5.

Tabella 5: Modulo e fase della funzione di trasferimento ai capi di R

$ A_C $	$d A_C $	$\varphi_C (rad)$	$d\varphi_C (rad)$	f(kHz)
0.0420	0.0013	1.50	0.03	0.5149
0.082	0.003	1.48	0.03	1.025
0.111	0.003	1.45	0.02	1.388
0.196	0.006	1.362	0.016	2.498
0.310	0.012	1.23	0.03	4.016
0.494	0.014	1.03	0.02	7.077
0.76	0.03	0.692	0.010	15.12
0.88	0.03	0.467	0.008	25.28
0.96	0.03	0.234	0.003	52.06
0.99	0.03	0.1172	0.0016	103.7
1.00	0.03	0.0574	0.0013	203.7
1.00	0.03	0.0269	0.0013	403.1

Riportando le misure della Tabella 5 in un grafico logaritmico $|A_R|(f)$ si ottiene la Figura 6.

In maniera opposta alla funzione di trasferimento valutata ai capi di C, a basse frequenze la funzione avrà andamento lineare con pendenza 1, mentre sarà costante per frequenze alte.

Figura 6: Rette nelle zone di linearità del grafico del modulo della funzione di trasferimento ai capi di ${\cal R}$

Figura 7: Zoom della Figura 6 per la stima della frequenza di taglio

$$f_{R min} = 11.8 kHz$$

$$f_{R max} = 12.8 kHz$$

$$f_{R best} = \frac{f_{R max} + f_{R min}}{2} = 12.3 \ kHz$$

$$\delta f_{R} = \frac{f_{R max} - f_{R min}}{2} = 0.5 \ kHz$$

Quindi il valore di $f_R = (12.3 \pm 0.5) \; kHz.$

Riportiamo le frequenze in Figura 8 per verificare che i valori della fase siano compatibili con la frequenza di taglio ottenuta.

Visto l'andamento decrescente della funzione, la frequenza di taglio risulta compatibile con i valori della fase.

Figura 8: Grafico della fase della funzione di trasferimento ai capi di ${\cal R}$

5 Conclusioni

Tramite il valore di $\tau = (13.5 \pm 0.7)~\mu s$ ottenuto nella sezione 3 è possibile calcolare (Equazione 5.1) la frequenza di taglio del circuito $f_{\tau} = (11.8 \pm 0.6)~kHz$.

$$f_{\tau} = \frac{1}{2\pi\tau}$$

$$\delta f_{\tau} = \frac{\delta\tau}{\tau} f$$
(5.1)

Confrontando il valore appena ottenuto con f_C ed f_R essi risultano compatibili, come è possibile vedere nella Figura 9.

$$f_C = (12.5 \pm 0.5) kHz$$

 $f_R = (12.3 \pm 0.5) kHz$

Figura 9: Verifica della compatibilità di f_{C} ed f_{R}

È possibile dare un valore finale di $f_0 = (12.2 \pm 0.2) \; kHz.$