<u>istatistik</u>

2. Hafta

Veri Kümesinin Düzenlenmesi

(Frekans Dağılımı ve Frekans Dağılımının Betimlenmesi)

FREKANS DAĞILIMLARI

- Araştırmalarda elde edilen veriler genellikle düzensiz ham verilerdir.
- Toplanan veriler kolay ve anlaşılır bir biçimde düzenlenebilir.
- Bu düzenleme çeşitli şekillerde yapılabilir.

Örnek: Aşağıdaki sayılar saat 24 ile 7 arasında bir telefon santraline gelen toplam 911 çağrının 36 günlük dağılımını göstermektedir.

22	76	6	23	54	31
30	27	35	19	71	48
17	30	48	28	105	22
63	41	26	37	35	44
11	41	64	65	52	63
8	34	38	32	43	30

Verileri küçükten büyüye doğru sıralayıp düzenli hale getiren yöntemlerden bir tanesi gövde-yaprak (stem –and-leaf) görüntüsü yöntemidir.

Yöntemde sayılar basamaklarına ayrılarak bir kısmı gövde bir kısmı da yaprak şeklinde gösterilir.

Bu verileri gövde-yaprak şeklinde düzenleyelim:

	gövde	yaprak
10		5
7		1, 6
6		3,3,4,5
5		2,4
4		1,1,3,4,8,8
3		0,0,0,1,2,4,5,5,7,8
2		2,2,3,6,7,8
1		1,7,9
0		6,8

Sınıflama

- İncelenen özelliğin aynı şıkkına sahip birimleri kümeler halinde bir araya getirme işlemine sınıflama (tasnif) denir.
- Vasıfların çeşitli şıklarının kütlede kaç defa tekrarlandığını gösteren sayılar frekans adını alır.
- Bir sınıfa düşen veri sayısı o sınıfın frekansıdır diyebiliriz.
- Verilerin sınıflar ve bu sınıflara karşı gelen frekanslar şeklinde düzenlenmesine frekans dağılımı veya frekans tablosu denir.

Örnek: 100 kişilik bir sınıfta öğrenciler yaş vasfının şıklarına göre sınıflanıyor.

Ele alınan özelliğin (vasfın) şıkları çok sayıda ise sınıflamada sorun çıkabilir. Bu durumda gruplamaya

başvurulur.

Yaş (şıklar)	frekans(n)
18	21
19	25
20	30
21	18
22	6
toplam	100

Sınıf Sayısının Belirlenmesi

- Genel olarak frekans dağılımları oluşturulurken Kullanılacak sınıf sayısı 5 ile 15 arasında olmalıdır.
- Eldeki toplam veri sayısı kullanılarak gerekli sınıf sayısını belirlemek mümkündür.

k:sınıf sayısı n:toplam veri sayısı

 $2^k \ge n$

Sınıf Aralığının Belirlenmesi

- Sınıf aralığı seçerken yuvarlak rakamlar kullanılmalı
- Birinci sınıfın alt limiti sınıf aralığının çift bir katı olmalı
- Sınıf aralıkları birbirleri ile örtüşmemeli
- Açık sınıf aralıklarından kaçınılmalı

Frekans Dağılımı Tablosunun Adımları

- 1. Aralığın Belirlenmesi
- 2. Sınıf Sayısının Seçilmesi
 - Genelde 5 15 (hariç) aralığında
- 3. Sınıf Aralıklarının Hesaplanması (Genişlik):Bir sınıfın üst ve alt sınırları arasındaki farka sınıf genişliği denir.
- 4. Sınıf Sınırlarının Belirlenmesi (Limitler):Her sınıfın alt ve üst değerleridir.
- 5. Sınıf Orta Noktalarının Belirlenmesi: Alt ve üst sınıf uçlarının toplanıp ikiye bölünmesidir.
- 6. Gözlemlerin Sayılması, Sınıflara İşlenmesi

Verilerin Sınıflandırılması

- 2,4,4,4,6,6,8,10,12,16,18
- En büyük değerden en küçük değer çıkarılarak veri aralığı tespit edilir. İstenen sınıf sayısına bölünerek
- 2-18 = 16/8 = 2 veri aralığı 2 olarak hesaplanır.
- 2-3; 4-5; 6-7; 8-9;10-11; 12-13; 14-15; 16-17
- 2-5; 6-9; 10-13; 14-17

Ancak bazı durumlarda bu kural uygulandığında uç noktalar belirlenen sınıfın dışında kalabilir!!!

Örnek Uygulama

Ham veri:

22	GRENCIN	IN MATEN	ATİK SIN	AVI PUAN	IADI
28	28	19	17	29	30
28	32	32	29	31	31
28	14	25	25	31	30
14	17	25	34	29	
12	12	17	19	28	25

sıralı veri:

9,12,12,14,14,17,17,17,19,19,25,25,25,25,28,28,28,28,28,29,29,29,30,30,31,31,31,32,32,34,36

1. Verileri sıraya koyma

- Puanlar büyükten küçüğe veya küçükten büyüğe sıralanır.
- Tekrar eden puanlar art arda gelirler.
- En büyük ve en düşük puan üzerinden puanların yayılımı hakkında bilgi edinilir.

Örnekte 36-9=27 ve 36=9*4 olur ve bu değer puanların birbirinden ne kadar uzaklaştığı hakkında kabaca bilgi verir.

UYARI

 Ölçümler sıralama ölçeği düzeyinde olduğu için en yüksek notu (36) alan öğrenci en düşük (9) notu alan öğrenciden 4 kat daha zekidir veya daha başarılıdır şeklinde yorum yapmak yanlıştır.

2. Tablo yapma

- Veri kümesinden daha fazla bilgi edinmek için yapılacak iş frekans tablosu yapmaktır.
- Frekans: Veri kümesinde ele alınan değişkenin tekrar sayısıdır.
- Bazen frekanslara tekrar sayılarının toplamalı/yığmalı/birikimli değerleri de eklenerek veri kümesi daha kullanışlı/faydalı hale getirilmiş olunur.

TABLO 4.1'DEKI MATEMATIK SINAVI PUANLARINA AİT FREKANS VE TOPLAMLI FREKANS TABLOSU				
X	f	tf		
9	1	1		
12	2	3		
14	2	5		
17	3	8		
19	2	10		
25	4	14		
28	5	19		
29	3	22		
30	2	24		
31	3	27		
32	2	29		
34	1	30		
36	1	31		
Toplam	31	Maria and		

sıralı veri:

9,12,12,14,14,17,17,17,19,19,25,25,25,25,25,28,28,28,28,28,29,29,29,30,30,31,31,31,32,32,34,36

Değişkenin her bir değerine ilişkin yığmalı frekans, değişkenin önceki değerlerine ait frekansların toplanması yoluyla elde edilmektedir.

Yığmalı frekansın sonuncusu toplam gözlem sayısına eşit olmalıdır.

N = 31

Frekans tablosu sıralı veri kümesinden daha fazla bilgi vermektedir.

-den çok ve –den az ile daha deniş aralıklar hakkında ilgi vermektedir.

Örneğin:

28 alan 5 öğrenci 28 den aşağı notu olan 14 öğrenci 28 den yüksek notu olan 12 öğrenci vardır

Bağıl frekans tablosu

- Bağıl frekanslar: frekansların toplam frekanslara göre yüzdeleridir. Başka bir ifadeyle ilgili frekans değerinin toplam gözlem sayısına bölünmesiyle elde edilen ondalık sayılardır.
- Bağıl frekans yerine yüzde ifadesi de kullanılmaktadır.
- Yuvarlamaya dikkat edilmesi gerekir (ör. 3,14).

		VERİ KÜMES	
BAĞIL F	REKANS	VE TOPLAM	LI BAGIL
July 1	FREKAN	S TABLOSU	
X	f	%f	%tf
9	1	0,03	0,03
12	2	0,06	0,10
14	2	0,06	0,16
17	3	0,10	0,26
19	2	0,06	0,32
25	4	0,13	0,45
28	5	0,16	0,61
29	3	0,10	0,71
30	2	0,06	0,77
31	3	0,10	0,87
32	2	0,06	0,94
34	1	0,03	0,97/
36	1	0,03	1,00
Toplam	31	1,000	

 Yığmalı bağıl frekansların toplamının 1,00 olduğuna dikkat ediniz.

3. Gruplama

- Veri kümesinde en yüksek ve en düşük değer arasındaki farkın büyük ve yayılmanın geniş olduğu durumlarda frekans tablosundan veri kümesinin topluca görülmesi zorlaşabilir.
- Örneğin TYT sınavına giren öğrencilerin puanları...
- Gruplama: Veriyi aralıklar eşit olacak şekilde düzenleyip bu aralıklara karşılık gelen frekans değerini hesaplamaktır.

- En büyük ve en düşük ölçme sonucu arasındaki farka bakarak ölçümlerin yaklaşık olarak kaç grupta olacağına karar verilir.
- Grup aralığının belirlenmesinde ranj değeri olması istenilen grup sayısına bölünür.

$$grup \ aralığı = \frac{x_{maksimum} - x_{minimum}}{grup \ sayısı}$$

- İstatistiksel olarak zorunlu olmamakla beraber grup aralık katsayısının işlemlerde kolaylık sağlaması amacıyla 3,5,7,...,2n-1gibi tek sayı olması tavsiye edilmektedir.
- ✓ Grup aralıkları eşit olacak.
- Her veri yalnız bir grupta olacak.
- ✓ Gruplamaya olabildiğince çok verinin grubun orta noktasında olacak şekilde başlanacak (Not: Bu kural ker zaman saglanmayabilir).

sıralı veri:

9,12,12,14,14,17,17,17,19,19,25,25,25,25,28,28,28,28,28,29,29,29,30,30,31,31,31,32,32,34,36

Daha önceki örnekte grup sayısı 6 olması için

grup aralığı =
$$\frac{36-9}{6}$$
 = 4,50 \cong 5 olarak hesaplanır.

HATIRLATMA

sıralı veri:

9,12,12,14,14,17,17,17,19,19,25,25,25,25,28,28,28,28,28,29,29,29,30,30,31,31,31,32,32,34,36

Veri seti 9 ile başladığı için orta noktası 9 ve grup aralığı 5 olması için grubun alt ve üst limitleri sırasıyla 7 ve 11 olmalıdır.

Gruplar	Frekans (f)
7 – 11	1
12 – 16	4
17 – 21	5
22 – 26	4
27 – 31	13
32 – 36	4

Gruplar	Frekans (f)
7 – 11	1
12 – 16	4
17 – 21	5
22 – 26	4
27 – 31	13
32 – 36	4

- Oluşturulan gruplar kesiklidir.
 - Başka bir ifadeyle birinci gruptaki öğrencilerin istatistik notları 7 ile başlayıp 11 ile bitmektedir. İkinci grup 12 ile başlayıp 16 ile bitmektedir. Birinci ve ikinci grubun başlangıç ve bitiş puanları arasında 1 puanlık boşluk vardır.
- Buna kesikli grup aralığı denir.

- Kesikli değişkenler üzerinde matematiksel işlemlerin (ör. çarpma-bölme gibi) yapılamaması sebebiyle veriler sürekli hale getirilmektedir.
- Bu nedenle gruplar başlangıç ve bitim noktalarını içine alacak şekilde yarımşar puan (birim) sola veya sağa doğru genişletilebilirler.
- Böylece elde edilen aralıklara sürekli grup aralıkları denir.

Farklı Bir Yaklaşımla Frekans Dağılımı Tablosu Örneği (teorik bir sebeple oluşturulmuş yaş aralıkları)

Ham Veriler: 24, 26, 24, 21, 27, 27, 30, 41, 32, 38

Sıralı Veriler 21-24-24-26-27-27-30-32-41-38

Sınıf	Orta Nokta	Frekans
15 - 25	20	3
26 - 35	30	5
36 - 45	40	2
Sınırlar	(Üst -	+ Alt Sınırlar) / 2

SPSS Örneği

 31 öğrenci için verilerin SPSS programına girilmesi sonucunda elde edilen grafikler sırasıyla gösterilmektedir.

Statistics

istatistik_notlari

Ν	Valid	31
	Missing	0

istatistik_notlari

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	9,00	1	3,2	3,2	3,2
	12,00	2	6,5	6,5	9,7
	14,00	2	6,5	6,5	16,1
	17,00	3	9,7	9,7	25,8
	19,00	2	6,5	6,5	32,3
	25,00	4	12,9	12,9	45,2
	28,00	5	16,1	16,1	61,3
	29,00	3	9,7	9,7	71,0
	30,00	2	6,5	6,5	77,4
	31,00	3	9,7	9,7	87,1
	32,00	2	6,5	6,5	93,5
	34,00	1	3,2	3,2	96,8
	36,00	1	3,2	3,2	100,0
	Total	31	100,0	100,0	

istatistik_notlari

HATIRLATMA

sıralı veri: 9,12,14,14,17,17,17,19,19,25,25,25,25,28,28,28,28,28,29,29,29,30,30,31,31,31,32,32,34,36

Basit Seri

 Araştırma veya analizlerde kullanılmak üzere elde edilen veri sayısı az ise bu tür veri yapılarına BASİT SERİ adı verilir.

 Verilerin büyükten küçüğe veya küçükten büyüğe sıralanmasıyla oluşturulan seridir.

Örnek: 7 öğrencinin bir dersten devamsızlık sayıları 3,4,6,1,5,2,4 olsun. Verileri küçükten büyüğe doğru sıraladığımızda

basit seri; 1,2,3,4,4,5,6 elde edilir.

Basit Seri Grafikleri

 Basit serilerde şans değişkeninin sürekli veya kesikli olduğuna bakılmaksızın verileri bir grafik halinde özetlemek amacıyla ÇUBUK ve ÇİZGİ grafikleri kullanılır.

Gruplanmış Seri

 Bir seriyi özetlemek ve daha anlaşılır hale getirmek istediğimizde gruplandırılmış seriyi kullanırız.

Frekans, olaydaki tekrar sayısıdır.

Örnek: Bir mağazada satılan kot pantolonların bedenlerine göre satış adetleri;

28 beden 2 adet

29 beden 5 adet

30 beden 6 adet

32 beden 7 adet

33 beden 1 adet

34 beden 4 adet

Gruplanmış Seri Tabloları

- Basit serilerde şans değişkeni kesikli olduğundan verileri bir tablo şekline getirip frekans dağılımı ve relatif frekans dağılımını kullanırız.
- Relatif(göreli) frekanslar her bir grubun bütün içerisindeki miktarı yüzde olarak ifade eden değerlerdir. Kümülatif frekans ise mevcut grup ve kendinden önceki grupların toplam içindeki yüzdesini ifade eder.

<u>Beden</u>	Adet(Ire.)	Relatif(gorell) Frekans	<u>Kumulatii Frekans</u>
28	2	2 / 25 = 0,08	0,08
29	5	5 / 25 = 0,20	0,28
30	6	6/25 = 0.24	0,52
32	7	7/25 = 0,28	0,80
33	1	1/25 = 0.04	0,84
_34	4	4 / 25 = 0,16	1,00 ₃₅
Toplam	25	1,00	

Padan Adat/fra) Palatif(aärali) Erakana Kümülatif Erakana

Gruplanmış Seri Grafikleri - I

• Gruplanmış serilerde şans değişkeninin kesikli olmasından dolayı verileri bir grafik halinde özetlemek amacıyla ÇUBUK, ÇİZGİ ve DAİRE(PASTA) grafikleri kullanılır.

Gruplanmış Seri Grafikleri - II

Çizgi grafiğinin sürekli bir değişkenin zamana göre aldığı değerlerdeki farklılığı göstermek için kullanılması daha uygundur.

Gruplanmış Seri Grafikleri - III

Sınıflanmış Seri

• Verilerin **sürekli şans değişkeni** olduğu durumlarda her bir verinin belirli kurallara göre oluşturulan bir sınıfa kaydedilerek sınıflandırıldığı seridir.

Örnek: Erkek öğrencilerin ağırlıkları göre

```
55 \le x < 65  ( 55- 65'den az)

65 \le x < 75  ( 65- 75'den az)

75 \le x < 85  ( 75- 85'den az)
```

gibi sınıflara ayrılması.

Sınıflanmış Seri Tabloları-I

- Sınıflanmış serilerde şans değişkeninin sürekliliği vardır. Verileri bir tablo şeklinde frekans, relatif frekans ve kümülatif relatif frekans dağılımları haline getiririz.
- Bir sınıftaki erkek öğrencilerin kiloları hakkında bir araştırma yapılmaktadır. Bu amaçla 50 öğrencinin kiloları ölçülerek kaydedilmiştir.
- Erkek öğrencilerin kiloları bir sonraki çizelgede sıralanmıştır.

Ağırlık Verileri

71,67	77,92	84,28	73,60	66,09
71,99	63,51	78,65	73,00	78,43
74,12	76,90	73,10	85,57	53,68
52,14	90,40	94,54	53,17	82,00
70,08	74,51	80,63	80,95	77,00
62,72	69,65	74,43	62,42	76,00
77,51	61,92	66,68	76,60	67,20
86,10	65,72	86,51	61,57	68,99
81,09	75,50	68,17	67,00	80,01
72,11	83,82	88,41	71,38	68,22

Bazı durumlarda araştırmacılar daha önceden belirlenmiş aralıkları esas alarak kendileri de grup aralığı belirleyebilirler.

Sınıflanmış Seri Tabloları-II

71,67	77,92	84,28	73,60	66,09
71,99	63,51	78,65	73,00	78,43
74,12	76,90	73,10	85,57	53,68
52,14	90,40	94,54	53,17	82,00
70,08	74,51	80,63	80,95	77,00
62,72	69,65	74,43	62,42	76,00
77,51	61,92	66,68	76,60	67,20
86,10	65,72	86,51	61,57	68,99
81,09	75,50	68,17	67,00	80,01
72,11	83,82	88,41	71,38	68,22

<u>Sınıf</u>	<u>Frekans</u>	Relatif(göreli) Fre.	Küm. Relatif Fre.
50-57'den az	3	3 / 50 = 0,06	0,06
57-64'den az	5	5/50 = 0,10	0,16
64-71'den az	10	10 / 50 = 0,20	0,36
71-78'den az	17	17 / 50 = 0.34	0,70
78-85'den az	9	9/50 = 0.18	0,88
_85-92'den az	5	5/50 = 0,10	0,98
92-99'den az	1	1 / 50 = 0,02	1,00
Toplam	50	1,00	42

Sınıflanmış Seri Tabloları-II

 Ek olarak; aşağıdaki gösterim de bilimsel çalışmalarda kabul edilen bir yaklaşımdır.

Sinif

ΓΟ Γ7'don	FO FC
50-57'den az	50-56
57-64'den az	57-63
64-71'den az	64-70
71-78'den az	71-77
78-85'den az	78-84
85-92'den az	85-91
92-99'den az	92-98

Sınıflanmış Seri Grafiği

- Sınıflanmış serilerde şans değişkeninin sürekli olmasından dolayı verileri bir grafik halinde özetlemek amacıyla uygulamada oldukça sık kullanılan HİSTOGRAM bir dikdörtgenler dizisidir.
- Frekans dağılışlarının elde edilmesinin önemli nedenlerinden biri ilgilenilen değişkenin nasıl bir dağılış gösterdiği hakkında bilgi sahibi olmaktır. Örneğin dağılış şekilsel olarak çift tepeli bir görünüm arz ediyorsa örneklenen anakütlenin ilgilenilen özellik bakımından karışık olduğunu gösterebilir.

Frekans Dağılımı Tablosu

Ham Veriler: 24, 26, 24, 21, 27, 27, 30, 41, 32, 38

Sınıf	Frekans
15 ve < 25	3
25 ve < 35	5
35 ve < 45	2

Bağıl Frekans & % Yüzde Dağılımı Tabloları

Bağıl Frekans Dağılımı

Sınıf	oran
15 ve < 25	.3
25 ve < 35	.5
35 ve < 45	.2

Yüzde Dağılımı

Sınıf	%
15 but < 25	30.0
25 but < 35	50.0
35 but < 45	20.0

Histogram

Frekans Poligonu

Dikdörtgenlerin üst kenarlarının orta noktaları birleştirilerek elde edilen grafiğe frekans poligonu denir.

Histogram Grafiği

Aralık sayısı fazla-Aralık genişliği az bu nedenle UYGUN DEĞİL

Ağırlık(kg.)

Histogram 2

Frekans

Uygulama – 1

- Bir gurup sporcunun ağırlık değerleri aşağıda verilmiştir.
- 55,56,60,65,65,67,68,70,75,77,80,82,84,8
 6,88,90,92,95,97,100 n=20

Uygulama – 2

İki gurubun sınıflandırması

- Sporcuların kuvvet değerleri
- Erkek: 10,10,20,20,20,30,30,30,30,50,40
- Bayan: 5,5,10,20,20,20,30,30,40,40,

Gövde ve Yaprak Grafiği

Her gözlem gövde ve yaprak değerlerine ayrıştırılır:

Gövde değeri sınıfı belirler. Yaprak değeri frekansı (adet) belirler.

Sayının onlar basamağı dal (gövde), Birler basamağı yapraktır.

Örneğin, bir golf oyununda yer alan 25 oyuncunun aşağıda verilen ortalama vuruş uzunlukları için bir gövde-yaprak diyagramı çizelim.

227 244 246 278 262 252 269 260 247 277 250 235 274 257 282 269 265 263 236 289 258 231 255 241 261

Bu sayıların ilk iki basamağını, yani 22, 23, 24, 25, 26, 27 ve 28 sayılarını gövde olarak alalım. Daha sonra üçüncü basamaktaki sayıları da yaprak olarak alıp, yaprakları ilgili gövdelerin sağına Şekil 2.6'da gösterildiği gibi bir düzen içinde yerleştirelim. Sayıların bu şekilde oluşturduğu grafiğe gövde-yaprak diyagramı denir.

Gövde		_	_	Yap	rak		Frekans
22	1						1
23	5	6	/1				3
24 /	4	6	7	1			4
25	2	0	7	5	8	5	6
26	2	9	0	9	3	1	6 .
27	8	7	4				3
28	2	9					2

Taşıt motorlarında kullanılan pompaların gürültü düzeylerine ait fabrika içerisinde yapılmış ölçüm sonuçları verilmiştir. Bu ölçümler 2 gün boyunca 100 adet pompa üzerinde elde edilmiştir ve aşağıdaki tabloda verilmiştir.

Gövde ve Yaprak Grafiği

		uc v	\mathbf{c}	<u>ipian</u>		<u> </u>	
	Pompa		Pompa		Pompa		Pompa
Gün	Gürültü	Gün	Gürültü	Gün	Gürültü	Gün	Gürültü
	Seviyesi		Seviyesi		Seviyesi		Seviyesi
1	2.4	1	4.2	2	5.7	2	0.6
1	5.4	1	5.6	2	3.4	2	9.4
1	2.7	1	2.1	2	5.5	2	7.6
1	14.1	1	7.0	2	2.3	2	7.8
1	7.2	1	2.1	2	6.8	2	10.0
1	0.9	1	6.6	2	2.4	2	4.5
1	3.5	1	3.1	2	3.7	2	2.9
1	2.5	1	7.6	2	2.1	2	2.7
1	3.9	1	4.7	2	4.2	2	3.1
1	1.9	1	3.9	2	10.0	2	9.8
1	4.5	1	3.4	2	3.6	2	14.6
1	3.3	1	1.5	2	7.8	2	6.5
1	2.0	1	5.8	2	5.0	2	5.9
1	7.4	1	9.8	2	5.0	2	6.2
1	1.3	1	5.7	2	4.4	2	8.7
1	5.4	1	11.4	2	2.0	2	9.1
1	12.0	1	3.2	2	6.5	2	7.3
1	5.8	1	5.2	2	5.4	2	2.7
1	8.9	1	3.5	2	5.8	2	4.8
1	4.0	1	4.1	2	2.4	2	10.3
1	3.4	1	13.1	2	11.7	2	7.6
1	7.8	1	4.6	2	4.8	2	5.2
1	2.9	1	9.8	2	3.7	2	2.1
1	4.2	1	3.7	2	2.7	2	2.7
1	5.4	1	8.2	2	10.4	2	1.0

Gövde ve Yaprak Grafiği

Yaprağın Birimi = 0.10

```
69 0.6 dan 1 tane, 0.9 dan bir tane var.
     0359
     001111344457777799
     112344455677799
     012224556788
     0022444456778889
 6
     25568 ———— 6.2 den bir tane, 6.5 den iki tane var.
     0234666888
 8
     279
 9
     14888
10
     0034
     1 1
12
     13
                                         57
14
```


Dinlediğiniz İçin Teşekkür Ederim...