

Università degli Studi di Milano - Bicocca

Scuola di Scienze

Dipartimento di Informatica, Sistemistica e Comunicazione

Corso di Laurea Magistrale in Informatica

Algoritmi per la trasformata di Burrows-Wheeler Posizionale con compressione run-length, RLPBWT

Relatore: Prof.ssa Raffaella Rizzi

Correlatore:

Tesi di Laurea Magistrale di: Davide Cozzi

Matricola 829827

Abstract

Indice

1	Intr	roduzione	3
2	Pre	liminari	4
	2.1	Motivazioni Biologiche	4
	2.2	Trasformata di Burrows-Wheeler	4
		2.2.1 Trasformata di Burrows-Wheeler run-length	4
	2.3	Trasformata di Burrows-Wheeler posizionale	4
		2.3.1 Implementazione originale	4
		2.3.2 Varianti	2
		2.3.3 Variant Calling Format	4
3	Met	todo	ļ
	3.1	Introduzione agli strumenti usati	ļ
	3.2	Costruzione della RLPBWT	ŗ
		3.2.1 RLPBWT con divergence array	,
		3.2.2 RLPBWT senza divergence array	ļ
		3.2.3 Implementazione dell'uv-trick	ļ
		3.2.4 Algoritmo per match massimali	ļ
4	Ris	ultati	•
	4.1	Ambiente di benchmark	(
	4.2	Analisi temporale	(
		4.2.1 Confronto con implementazione originale e varianti	(
	4.3	Analisi spaziale	(
		4.3.1 Confronto con implementazione originale e varianti	(
5	Cor	nclusioni	,
	5.1	Sviluppi futuri	,
$\mathbf{B}^{\mathbf{i}}$	ibliog	grafia e sitografia	,

Capitolo 1 Introduzione

Preliminari

- 2.1 Motivazioni Biologiche
- 2.2 Trasformata di Burrows-Wheeler
- 2.2.1 Trasformata di Burrows-Wheeler run-length MONI
- 2.3 Trasformata di Burrows-Wheeler posizionale
- 2.3.1 Implementazione originale

Gli algoritmi di Durbin

2.3.2 Varianti

PBWT multiallelica

PBWT con struttura LEAP

PBWT dinamica

PBWT bidirezionale

2.3.3 Variant Calling Format

Metodo

- 3.1 Introduzione agli strumenti usati
- 3.2 Costruzione della RLPBWT
- 3.2.1 RLPBWT con divergence array
- 3.2.2 RLPBWT senza divergence array
- 3.2.3 Implementazione dell'uv-trick
- 3.2.4 Algoritmo per match massimali

Caso con divergence array

Caso senza divergence array

Risultati

- 4.1 Ambiente di benchmark
- 4.2 Analisi temporale
- 4.2.1 Confronto con implementazione originale e varianti
- 4.3 Analisi spaziale
- 4.3.1 Confronto con implementazione originale e varianti

Conclusioni

5.1 Sviluppi futuri