

10/62/01
U.S. PTOFORM PTO-1390 (Modified)
REV. 11-98)

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE

ATTORNEY'S DOCKET NUMBER

**TRANSMITTAL LETTER TO THE UNITED STATES
DESIGNATED/ELECTED OFFICE (DO/EO/US)
CONCERNING A FILING UNDER 35 U.S.C. 371**

19036/37155

U.S. APPLICATION NO. (IF KNOWN, SEE 37 CFR

09/806615INTERNATIONAL APPLICATION NO.
PCT/JP00/02190INTERNATIONAL FILING DATE
5 April 2000

PRIORITY DATE CLAIMED

TITLE OF INVENTION

RESIN COMPOSITION FOR INK JET RECORDING SHEET, THE RECORDING SHEET, RECORDING METHOD OF THE SAME, AND METHOD FOR PRODUCING THE RECORDING SHEET

APPLICANT(S) FOR DO/EO/US

MATSUO, Katsuaki; TSUBAKI, Takayuki

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:

1. This is a **FIRST** submission of items concerning a filing under 35 U.S.C. 371.
2. This is a **SECOND** or **SUBSEQUENT** submission of items concerning a filing under 35 U.S.C. 371.
3. This is an express request to begin national examination procedures (35 U.S.C. 371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(1).
4. A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.
5. A copy of the International Application as filed (35 U.S.C. 371 (c) (2))
 - a. is transmitted herewith (required only if not transmitted by the International Bureau).
 - b. has been transmitted by the International Bureau.
 - c. is not required, as the application was filed in the United States Receiving Office (RO/US).
6. A translation of the International Application into English (35 U.S.C. 371(c)(2)).
7. A copy of the International Search Report (PCT/ISA/210).
8. Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371 (c)(3))
 - a. are transmitted herewith (required only if not transmitted by the International Bureau).
 - b. have been transmitted by the International Bureau.
 - c. have not been made; however, the time limit for making such amendments has NOT expired.
 - d. have not been made and will not be made.
9. A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).
10. An oath or declaration of the inventor(s) (35 U.S.C. 371 (c)(4)).
11. A copy of the International Preliminary Examination Report (PCT/IPEA/409).
12. A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371 (c)(5)).

Items 13 to 20 below concern document(s) or information included:

13. An Information Disclosure Statement under 37 CFR 1.97 and 1.98.
14. An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.
15. A **FIRST** preliminary amendment.
16. A **SECOND** or **SUBSEQUENT** preliminary amendment.
17. A substitute specification.
18. A change of power of attorney and/or address letter.
19. Certificate of Mailing by Express Mail
20. Other items or information:

U.S. APPLICATION NO. IF KNOWN, SEE 37 CFR
091806615INTERNATIONAL APPLICATION NO.
PCT/JP00/02190ATTORNEY'S DOCKET NUMBER
19036/37155

21. The following fees are submitted:

BASIC NATIONAL FEE (37 CFR 1.492 (a) (1) - (5)) :

- | | |
|---|------------|
| <input type="checkbox"/> Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2) paid to USPTO and International Search Report not prepared by the EPO or JPO | \$1,000.00 |
| <input checked="" type="checkbox"/> International preliminary examination fee (37 CFR 1.482) not paid to USPTO but International Search Report prepared by the EPO or JPO | \$860.00 |
| <input type="checkbox"/> International preliminary examination fee (37 CFR 1.482) not paid to USPTO but international search fee (37 CFR 1.445(a)(2)) paid to USPTO | \$710.00 |
| <input type="checkbox"/> International preliminary examination fee paid to USPTO (37 CFR 1.482) but all claims did not satisfy provisions of PCT Article 33(1)-(4) | \$690.00 |
| <input type="checkbox"/> International preliminary examination fee paid to USPTO (37 CFR 1.482) and all claims satisfied provisions of PCT Article 33(1)-(4) | \$100.00 |

CALCULATIONS PTO USE ONLY**ENTER APPROPRIATE BASIC FEE AMOUNT =**

\$860.00

Surcharge of \$130.00 for furnishing the oath or declaration later than
months from the earliest claimed priority date (37 CFR 1.492 (e)). 20 30

\$0.00

CLAIMS	NUMBER FILED	NUMBER EXTRA	RATE	
Total claims	20 - 20 =	0	x \$18.00	\$0.00
Independent claims	1 - 3 =	0	x \$80.00	\$0.00

Multiple Dependent Claims (check if applicable).	<input checked="" type="checkbox"/>	\$270.00
		TOTAL OF ABOVE CALCULATIONS =

\$1,130.00

Reduction of 1/2 for filing by small entity, if applicable. Verified Small Entity Statement must also be filed (Note 37 CFR 1.9, 1.27, 1.28) (check if applicable).	<input type="checkbox"/>	\$0.00
		SUBTOTAL =

\$1,130.00

Processing fee of \$130.00 for furnishing the English translation later than months from the earliest claimed priority date (37 CFR 1.492 (f)).	<input type="checkbox"/> 20 <input type="checkbox"/> 30	+ \$0.00
		TOTAL NATIONAL FEE =

\$1,130.00

Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31) (check if applicable).	<input type="checkbox"/>	\$0.00
		TOTAL FEES ENCLOSED =

\$1,130.00

Amount to be: refunded	\$
charged	\$

- A check in the amount of **\$1,130.00** to cover the above fees is enclosed.
- Please charge my Deposit Account No. _____ in the amount of _____ to cover the above fees.
A duplicate copy of this sheet is enclosed.
- The Commissioner is hereby authorized to charge any fees which may be required, or credit any overpayment to Deposit Account No. **13-2855** A duplicate copy of this sheet is enclosed.

NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status.

SEND ALL CORRESPONDENCE TO:

NAPOLI, James J.
Customer No. 04743
Marshall, O'Toole, Gerstein, Murray & Borun
6300 Sears Tower
233 South Wacker Drive
Chicago, Illinois 60606
United States of America

SIGNATURE

James J. Napoli

NAME

32,361

REGISTRATION NUMBER

29 March 2001

DATE

09/806615

JC02 Rec'd PCT/PTO 29 MAR 2001

PATENT--FEE

IN THE UNITED STATES PATENT
AND TRADEMARK OFFICE

Applicants:

KATSUAKI MATSUO ET AL.

U.S. National Phase of
International Application No.
PCT/JP00/02190 filed under 35
U.S.C. §371

International Filing Date:
5 April 2000

Filed: Herewith

For: RESIN COMPOSITION FOR INK
JET RECORDING SHEET, THE RECORD-
ING SHEET, RECORDING METHOD OF
THE SAME, AND METHOD FOR PRODUC-
ING THE RECORDING SHEET

Group Art Unit: Unknown

Examiner: Unknown

Attorney Docket No. 19036/37155

) "EXPRESS MAIL" mailing label
No. EM578444178US
) Date of Deposit:
March 29, 2001
) I hereby certify that this
paper (or fee) is being
deposited with the United
States Postal Service "EXPRESS
MAIL POST OFFICE TO ADDRESSEE"
service under 37 CFR §1.10 on
the date indicated above and is
addressed to:
) Assistant Commissioner for
Patents, Washington, D.C.
20231.

Richard Zimmermann

PRELIMINARY AMENDMENT ACCOMPANYING
NEW APPLICATION TRANSMITTAL

Commissioner for Patents
Washington, D.C. 20231

Sir:

Please amend the above-identified application
filed under 37 C.F.R. §371 as follows:

IN THE CLAIMS:

Cancel claims 1-9, without prejudice.

Add new claims 10-18:

--10. A resin composition for ink jet recording comprising (a) a major component of a water-absorbing polymer compound represented by the formula (I),

(I)

wherein A consists of

with a manner of linkage therebetween being

wherein m, n, and p represent integers greater than or equal to 1, and a weight ratio calculated on the basis of each recurrence number m, n, and p predetermined to be: $44 \times (m+p) / (\text{molecular weight of the unit of the alkylene oxide having more than or equal to four carbon atoms}) \times n = 94/6$ to $80/20$,

and the weight ratio calculated on the basis of each recurrence number m and p, $p/(m+p)$ is predetermined to be more than or equal to 50 percent by weight;

263656-13-5
263656-13-5
263656-13-5

Y represents a hydrocarbon group having two or more carbon atoms; X¹ represents a residue of an organic compound having two active hydrogen groups; and R¹ represents a residue of a dicarboxylic acid compound; and (b) a cationic polymer compound.

11. The resin composition of claim 10 wherein (b) is a cationic polymer compound having a weight average molecular weight ranging between 1,000 and 50,000 with a linear and irregular arrangement, comprising 65 mol% to 99 mol% of an ethylene structural unit represented by formula (II),

(II)

less than or equal to 15 mol% of an acrylate structural unit represented by formula (III),

(III)

wherein R² represents an alkyl group having 1 to 4 carbon atoms, and 1 mol% to 35 mol% of an acrylamide structural unit represented by formula (IV),

(IV)

wherein R³ represents an alkylene group having 2 to 8 carbon atoms, R⁴ and R⁵, respectively, represent an alkyl group having 1 to 4 carbon atoms, R⁶ represents an alkyl group having 1 to 12 carbon atoms, an aryl alkyl group having 7 to 12 carbon atoms, or an alicyclic alkyl group having 6 to 12 carbon atoms, and X⁻ represents a halogen ion, CH₃OSO₃⁻, or C₂H₅OSO₃⁻.

12. The resin composition of claim 10 wherein
(b) is a cationic polymer compound having a weight
average molecular weight ranging between 1,000 and 50,000
with a linear and irregular arrangement, comprising 65
mol% to 99 mol% of an ethylene structural unit
represented by formula (II),

(II)

less than or equal to 15 mol% of an acrylate structural
unit represented by formula (III),

(III)

wherein R² represents an alkyl group having 1 to
4 carbon atoms, and 1 mol% to 35 mol% of an acrylamide
structural unit represented by formula (V) :

(V)

PAPERS
EXCEDED
200

wherein R³ represents an alkylene group having 2 to 8 carbon atoms, R⁴ and R⁵, respectively, represent an alkyl group having 1 to 4 carbon atoms, and X⁻ represents a halogen ion, CH₃OSO₃⁻ or C₂H₅OSO₃⁻.

13. The resin composition of claim 10 wherein a mixing ratio by weight of the water-absorbing polymer compound (a) and the cationic polymer compound (b) is between 50/50 and 99/1.

14. The resin composition of claim 10 further comprising (c) a cationic or nonionic surface active agent.

15. The resin composition of claim 14 wherein an amount of the cationic or nonionic surface active agent (c) is from 1% by weight to 10% by weight.

16. An ink jet recording sheet comprising a substrate layer and an ink-receiving layer that is overlaid said substrate layer, wherein said ink-receiving layer comprises the resin composition according to any of claims 10 through 15.

17. A method of ink jet recording using an ink jet recording sheet according of claim 16, comprising the step of adsorbing small droplets of a water-based color ink applied to the ink-receiving layer.

18. A method of producing an ink jet recording sheet comprising the steps of extruding a resin composition that constitutes a substrate layer into a sheet form, while extruding a resin composition for ink jet recording sheet according to any of claims 9 through 15 into a sheet form concurrently with the substrate layer, and forming layers from both of said resin compositions.

REMARKS

Claims 1-9 are pending in the application and have been cancelled by this amendment. New claims 10-18 have been added by this amendment. Accordingly, claims 10-18 are at issue.

This amendment adds no new matter. Support for new claims 10-18 can be found in originally filed claims 1-9. This amendment presents claims 1-9 as new claims 10-18 and puts the claims in a better form for examination.

It is submitted that the claims are now in proper form and scope for examination. An early and favorable action on the merits is respectfully requested.

Should the examiner wish to discuss the foregoing, or any matter of form in an effort to advance this application toward allowance, the examiner is urged to telephone the undersigned at the indicated number.

Respectfully submitted,

MARSHALL, O'TOOLE, GERSTEIN,
MURRAY & BORUN

By

James J. Napoli
(Registration No. 32,361)
Attorneys for Applicants
6300 Sears Tower
233 South Wacker Drive
Chicago, Illinois 60606
(312) 474-6300

Chicago, Illinois
March __, 2001

- 1 -

RESIN COMPOSITION FOR INK JET RECORDING SHEET,
THE RECORDING SHEET, RECORDING METHOD OF THE SAME,
AND METHOD FOR PRODUCING THE RECORDING SHEET

5

FIELD OF THE INVENTION

The present invention relates to a resin composition for an ink jet recording sheet, an ink jet recording sheet, a method for ink jet recording, and a method for producing an ink jet recording sheet. More particularly, the present invention relates to a resin composition that is suitable for ink jet recording in which a water-based ink is used, such an ink jet recording sheet, a method for ink jet recording in which a water-based ink is used, and a method for producing such an ink jet recording sheet.

20

BACKGROUND OF THE INVENTION

Ink jet recording is quiet, allows for high-speed printing, makes multicolored printing possible by using a plurality of nozzles, and is low in cost. Therefore, its use rapidly became widespread as output devices for image information, such as color copying, computers, and the like. Media for this ink jet recording require properties as follows:

30

- (1) absorption velocity of ink is rapid;
- (2) ink can be immediately evaporated to dryness;

SEARCHED
INDEXED
MAILED
SERIALIZED
FILED

(3) diffusion upon absorption of ink, and formation of unclear marginal portions of dots, are avoided;

5 (4) incidence rates of lack in printing uniformity is low;

(5) clear interfaces between different color zones can be provided; and

10 (6) quality stability is maintained over the long-term preservation after printing, particularly a low incidence of inferior alteration of images, such as blurring even under humid conditions, is provided.

15 Conventionally, an ink jet recording sheet has been utilized which comprises a water insoluble film as a support and hydrophilic polymer as a major component of an ink absorption layer that is overlaid on the support. The hydrophilic polymer may include water soluble polymers, e.g., polyvinyl alcohol, denatured polyvinyl alcohol, polyvinyl pyrrolidone, gelatin, and the like. Further, ink jet recording sheets comprising combinations of the above-described hydrophilic polymer and a water-absorbing resin, and combinations with porous inorganic powder, such as silica, alumina, and the like, 20 also have been proposed. However, problems are suggested in that the water soluble resin overlaid as an ink absorption layer absorbs water during storage, thus blurring of ink results when recording is carried out using these ink jet recording sheets.

25 30 In order to overcome such disadvantages, an ink jet recording sheet is proposed that contains a cationic substance in the ink absorption layer, which would prevent blurring of ink through reac-

tions between the cationic substance and anionic dyes that are used in the water-based ink. However, this type of ink jet recording sheet may lead to bleed out of the cationic substance on the surface of an ink-receiving layer due to an inferior mutual solubility between the cationic substance and the water soluble polymer. In addition, because such cationic substances have no thermoplasticity, manufacturing restrictions also may result, namely coating application with a solution must be conducted to produce the ink jet recording sheet. Moreover, the fixative property of reaction products between the cationic substance and anionic dyes that are ingredients of ink may be insufficient. Consequently, prevention of blurring phenomenon may sometimes be impossible. Additionally, alteration of color tone may be developed from reaction products of the cationic substance and anionic dyes.

As explained heretofore, an ink jet recording sheet that satisfies all of the various desired properties has not yet been accomplished. The present invention was achieved taking these problems into account, and is directed to providing a resin composition for an ink jet recording sheet, an ink jet recording sheet, a method for ink jet recording, and a method for producing an ink jet recording sheet, which can be satisfactory in various desired properties, particularly an ink absorption ability and a blurring suppressive effect.

SUMMARY OF THE INVENTION

The present invention that accomplishes
the objects set forth above is directed to a resin
composition for ink jet recording which comprises
5 (1) a major component of a water-absorbing polymer
compound represented by the formula (I) below, and
(2) a cationic polymer compound.

10

(I)

15 In formula (I), "A" consists of:

20

with a manner of linkage therebetween being:

25

30

wherein m, n, and p represent integer numbers greater than or equal to 1. Additionally, a weight ratio that is calculated on the basis of each of the recurrence numbers m, n, and p is predetermined to

be $44 \times (m + p) / (\text{the molecular weight of the unit of the alkylene oxide having more than or equal to four carbon atoms}) \times n = 94/6-80/20$, while the weight ratio that is calculated on the basis of each of the recurrence numbers m and p, $p/(m + p)$ should be predetermined to be more than or equal to 50 percent by weight. Y represents hydrocarbon group having more than or equal to two carbon atoms. Further, X¹ represents a residue of an organic compound having two active hydrogen groups, and R1 represents a residue of a dicarboxylic acid compound.

The resin composition for an ink jet recording sheet of the present invention comprises (1) a major component of a water-absorbing polymer compound represented by the formula (I) above and (2) a cationic polymer compound that is mutually solubilized with the compound (1), accordingly, blurring upon storage under humid conditions can be suppressed while an excellent ink absorption ability is retained.

In this aspect of the present invention, when the following compound (a) or (b) is used alone or in combination as the cationic polymer compound (2), bleed out on a surface of the ink-receiving layer is avoided due to their affinity to the water-absorbing polymer compound (I). In addition, alteration of color tone resulting from reactions with the anionic dyes that are used as ingredients of ink are prevented.

(a) A cationic polymer compound having a weight average molecular weight ranging between 1,000 and 50,000 with linear and irregular arrangement comprising 65 mol% to 99 mol% of an ethylene

structural unit represented by the following formula
(II), less than or equal to 15 mol% of an acrylate
structural unit represented by the following formula
(III), and 1 mol% to 35 mol% of an acrylamide struc-
5 tural unit represented by the following formula
(IV) :

10

(II)

15

(III)

20

wherein R² represents an alkyl group having 1-4
carbon atoms,

25

(IV)

30

wherein R³ represents an alkylene group having 2-8
carbon atoms; R⁴ and R⁵ respectively represent an
alkyl group having 1-4 carbon atoms; R⁶ represents an
alkyl group having 1-12 carbon atoms, an aryl alkyl

group having 7-12 carbon atoms, or an alicyclic alkyl group having 6-12 carbon atoms; and X⁻ represents a halogen ion, CH₃OSO₃⁻, or C₂H₅OSO₃⁻.

(b) A cationic polymer compound having a weight average molecular weight ranging between 1,000 and 50,000 with linear and irregular arrangement comprising 65 mol% to 99 mol% of an ethylene structural unit represented by the above formula (II), less than or equal to 15 mol% of an acrylate structural unit represented by the above formula (III), and 1 mol% to 35 mol% of an acrylamide structural unit represented by the following formula (V):

wherein R³ represents an alkylene group having 2-8 carbon atoms; R⁴ and R⁵ respectively represent an alkyl group having 1-4 carbon atoms; and X⁻ represents a halogen ion, CH₃OSO₃⁻, or C₂H₅OSO₃⁻.

The cationic polymer compound (2) of the above-described (a) and (b) preferably comprises the acrylate structural unit represented by the formula (III), although the acrylate structural unit is not a necessary component to be contained therein.

Therefore, the mole fraction of this acrylate structural unit is defined only in terms of an upper limit (15 mol%), and a lower limit thereof is not particularly defined.

In the present invention set forth above, when a mixing ratio by weight of the water-absorbing polymer compound (1) and the cationic polymer compound (2) ranges between 50/50 and 99/1, a well-balanced ink absorption ability and blurring suppressive effect can be achieved.

In the present invention set forth above, when a cationic or nonionic surface active agent is contained in the resin composition, blurring upon storage under humid conditions can be more sufficiently suppressed. An amount of surface active agent (3) to be contained may be preferably 1 wt% (percent by weight) to 10 wt%.

When an ink jet recording sheet is prepared by overlaying a substrate layer with an ink-receiving layer in which the resin composition for an ink jet recording sheet is used, and thereafter ink jet recording is performed by discharging small droplets of water-based color ink such that they are adsorbed to the ink-receiving layer, then clear images with less blurring upon storage under humid conditions results.

This ink jet recording sheet can be readily produced by extruding a resin composition that constitutes a substrate layer into a sheet form, while extruding the above-described resin composition for an ink jet recording sheet of the present invention also into a sheet form concurrently with the substrate layer, and simultaneously forming layers from both of the resin compositions.

BEST EMBODIMENT FOR CARRYING OUT THE INVENTION

The most characteristic feature of an ink jet recording sheet according to the present invention is that the ink-receiving layer comprises a principal component of a water-absorbing polymer compound (1) that is represented by the above formula (I). Herein, "comprise a major component of a water-absorbing polymer compound (1)" means that the water-absorbing polymer compound (1) is a major polymer material of the ink-receiving layer. Specifically, the percentage content of the water-absorbing polymer compound (1) in the ink-receiving layer may be preferably greater than or equal to 50 wt%.

A part represented as "A" in the above formula (I) may be in an arrangement, wherein an alkylene oxide chain having more than or equal to 4 carbon atoms, which is designated by a recurrence number n, is interpositioned between an ethylene oxide chain designated by a recurrence number m and an ethylene oxide chain designated by a recurrence number p at opposite ends.

The above alkylene oxide chain having more than or equal to 4 carbon atoms, which is designated by a recurrence number n, may be for example, a butylene oxide chain that is derived from butylene oxide or an α -olefin oxide chain having more than or equal to 12 carbon atoms that is derived from α -olefin oxide having more than or equal to 12 carbon atoms. Namely, in the above formula (I), Y may be an ethyl group when the alkylene oxide chain designated by a recurrence number n is a butylene oxide

chain that is derived from butylene oxide. Mean-
while, Y may be a hydrocarbon group having more than
or equal to 10 carbon atoms when the alkylene oxide
chain designated by a recurrence number n is an α -
5 olefin oxide chain having more than or equal to 12
carbon atoms that is derived from α -olefin oxide
having more than or equal to 12 carbon atoms.

Besides, in cases where an α -olefin oxide
chain is included, the α -olefin oxide having more
than or equal to 12 carbon atoms from which the
chain is derived is not particularly restricted as
long as it is an epoxide compound containing an
alkylene group having more than or equal to 12
carbon atoms, and may be more preferably an epoxide
10 compound containing an alkylene group having carbon
atoms ranging between 12 and 30. Such an α -olefin
oxide may be used alone or as a mixture in combina-
tion of two or more kinds thereof.

When the alkylene oxide chain designated
20 by a recurrence number n is a butylene oxide chain,
the two ethylene oxide chains designated by the re-
currence numbers m and p may be determined so that
those chains are included in the designated part "A"
in the above formula (I) from 80 wt% to 90 wt%,
25 preferably from 82 wt% to 87 wt%. Further, when the
alkylene oxide chain designated by a recurrence
number n is an α -olefin oxide chain having more than
or equal to 12 carbon atoms, the two ethylene oxide
chains designated by the recurrence numbers m and p
30 may be determined so that those chains are included
in the designated part "A" in the above formula (I)
from 90 wt% to 94 wt%, preferably from 92 wt% to 94
wt%. Accordingly, at the designated part "A" in the

RECORDED IN FEDERAL REGISTER

above formula (I), a value that is calculated by means of the following formula may be predetermined to be in the range between 80/20 and 94/6:

(44 x (m + p) / (the molecular weight of the unit of the alkylene oxide having more than or equal to four carbon atoms) x n). For reference, "44" herein denotes a molecular weight of ethylene oxide.

When the ratio of the two ethylene oxide chains designated by the recurrence numbers m and p is below the above range, it may result in a decrease of an ink absorption ability of the ink jet recording sheet. If this ratio is greater than the above range to the contrary, blurring of ink upon storage at a humid condition may occur as a result of absorbing water.

At the designated part "A" in the above formula (I), a value obtained by calculation: "p / (m + p)," namely a ratio of an ethylene oxide chain part designated by the recurrence number p in two of the ethylene oxide chains (parts designated by the recurrence numbers m and p) must be determined to be greater than or equal to 50%, and particularly preferably, in the range between 60% and 80%. Consequently, an esterification reaction and an ester exchange reaction can be readily carried out with dicarboxylic acid compound R¹ detailed below.

In the above-described formula (I), a part designated as X¹ is a residue of an organic compound having two active hydrogen groups. The organic compounds having two active hydrogen groups may include for example, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, 1,4-butane-diol, 1,6-hexanediol, neopentyl glycol, bisphenol A,

polytetramethylene glycol; alicyclic diols, such as cyclohexane-1,4-dimethanol and the like; amines such as butylamine, laurylamine, octylamine, cyclohexylamine, aniline and the like. These may be used alone or in combination of two or more kinds thereof.

In the above-described formula (I), a part designated as R¹ is a residue of a dicarboxylic acid compound. The applicable dicarboxylic acid compounds may include for example, dicarboxylic acid, dicarboxylic anhydride, lower alkyl ester of dicarboxylic acid, and the like. Dicarboxylic acids described above may include, for example, phthalic acid, isophthalic acid, terephthalic acid, malonic acid, succinic acid, sebacic acid, maleic acid, fumaric acid, adipic acid, itaconic acid, and the like. Dicarboxylic anhydride described above may include, for example, anhydrides of several kinds of dicarboxylic acids described above. In addition, the lower alkyl ester of dicarboxylic acid described above may include, for example, methyl ester, dimethyl ester, ethyl ester, diethyl ester, propyl ester, dipropyl ester, and the like of several kinds of the dicarboxylic acids described above. These may be used alone or in combination of two or more kinds thereof. Among them in particular, dicarboxylic anhydride or lower alkyl ester of dicarboxylic acid preferably may be used in view of feasibility of the reactions.

Because this water-absorbing polymer compound (1) that is represented by formula (I) exhibits water absorption ability that is 5 to 15 times of its own weight, an ink absorption ability can be

imparted to the ink-receiving layer through using this compound. Moreover, the water-absorbing polymer compound (1) can be formed into a shape like a sheet by extrusion because of its thermoplasticity. Therefore, facilitated production of an ink jet recording sheet can be achieved.

An exemplary method for producing the water-absorbing polymer compound (1) that is represented by formula (I) is hereinafter explained.

First, an organic compound having more than or equal to 2 carbon atoms is subjected to addition polymerization with ethylene oxide at approximately 90-200°C using caustic alkali, such as sodium hydroxide or potassium hydroxide, as a catalyst. Next, addition polymerization with alkylene oxide having more than or equal to 4 carbon atoms is effected thereto, and then further addition polymerization with ethylene oxide is followed. Namely, ethylene oxide, butylene oxide, or α -olefin oxide having more than or equal to 12 carbon atoms, and then ethylene oxide are subjected to addition polymerization as a block in this order to an organic compound having two active hydrogen groups. By way of caution, the polyalkylene oxide compound that is obtained in this step may preferably have a weight average molecular weight ranging between 5,000 and 30,000, and particularly preferably have a weight average molecular weight ranging between 10,000 and 30,000. When the weight average molecular weight is less than the above range, deterioration in formability of an ink-receiving layer may result. To the contrary, when the weight average molecular weight is greater than the above range, remarkable lowering of reaction

velocity for the alkylene oxide addition reaction may be accompanied. Next, a dicarboxylic acid compound is added to the polyalkylene oxide compound. Then, following elevation of the temperature, de-
5 hydration or dealcoholation is performed at a re-duced pressure of 0.1 to 2.7×10^3 Pa while heating at 80-250°C. The reaction time may be generally from 30 minutes to 10 hours. Accordingly, the water-absorbing polymer compound (1) is obtained.

10 When a dicarboxylic acid compound is added to the polyalkylene oxide compound, the incorpora-tion ratio of both compounds is preferably in the range between 1/3.5 and 1/0.5 at an equivalent ratio.

15 Thus obtained water-absorbing polymer com-pound (1) preferably may be predetermined to have a weight average molecular weight ranging between 10,000 and 300,000, and particularly preferably between 50,000 and 200,000. Additionally, a value
20 that is resulted from division of a weight average molecular weight of the water-absorbing polymer compound (1) obtained in such a manner with a weight average molecular weight of the polyalkylene oxide compound that is used for the production preferably
25 may be greater than or equal to 3, more preferably in the range between 3 and 21, and still more pref-erably in the range between 5 and 21.

Another feature of the ink jet recording sheet according to the present invention is char-
30 acterized by the point that the ink-receiving layer comprises a cationic polymer compound (2). Because the cationic polymer compound (2) may react with anionic dyes that are generally used in water-based

ink, blurring of ink thereby can be prevented. In addition, because the cationic polymer compound (2) is a macromolecule, bleed out to the surface of the ink-receiving layer may not result. By way of caution, the cationic polymer compound (2) herein means cationic substances having a weight average molecular weight greater than or equal to 1,000, and preferably greater than or equal to 5,000.

An amount of the cationic polymer compound (2) to be contained preferably may be in the range between 50/50 and 99/1, and more preferably in the range between 65/35 and 90/10 as a mixing ratio by weight of the water-absorbing polymer compound (1) and the cationic polymer compound (2). When the amount of the cationic polymer compound (2) is less than the above range, blurring of ink upon storage of the ink jet recording sheet under humid conditions may occur as a result of absorbing water. To the contrary, when the amount is greater than the above range, an ink absorption ability of the ink-receiving layer may be deteriorated.

As a suitably used cationic polymer compound (2),

(a) a cationic polymer compound having a weight average molecular weight ranging between 1,000 and 50,000 with a linear and irregular arrangement comprising 65 mol% to 99 mol% of an ethylene structural unit represented by the above formula (II), less than or equal to 15 mol% of an acrylate structural unit represented by the above formula (III), and 1 mol% to 35 mol% of an acrylamide structural unit represented by the above formula (IV); and

(b) a cationic polymer compound having a weight average molecular weight ranging between 1,000 and 50,000 with a linear and irregular arrangement comprising 65 mol% to 99 mol% of an ethylene structural unit represented by the above formula (II), less than or equal to 15 mol% of an acrylate structural unit represented by the above formula (III), and 1 mol% to 35 mol% of an acrylamide structural unit represented by the above formula (V) may be utilized. Such cationic polymer compounds may be used alone or in combination as a mixture. When such a compound (a) or (b) is employed as the cationic polymer compound (2), blurring of ink is more efficiently prevented, and changes in color tone resulting from a reaction with anionic dyes that are ingredients of the ink may be suppressed.

The cationic polymer compound (2) of the above-described (a) must comprise 65 mol% to 99 mol%, and more preferably, may comprise 65 mol% to 80 mol% of the ethylene structural unit represented by the above formula (II). When the content of the ethylene structural unit is less than the above range, mutual solubility with the water-absorbing polymer compound (1) may be decreased. To the contrary, when the content of the ethylene structural unit is greater than the above range, a blurring event may result because of a lack in available reactivity with the dyes due to insufficiently present acrylamide structural unit that participates in a reaction with the dyes.

The above-described cationic polymer compound (2) of the above-described (a) must comprise

less than or equal to 15 mol%, and more preferably,
may comprise 5 mol% to 10 mol% of an acrylate struc-
tural unit represented by the above formula (III).
When the content of the acrylate structural unit is
5 less than the above range, mutual solubility with
the water-absorbing polymer compound (1) may not be
achieved. When the content of the acrylate structur-
al unit is greater than the above range to the
contrary, there may be difficulty in producing the
10 cationic polymer compound (2).

The above-described cationic polymer com-
pound (2) of the above-described (a) must comprise 1
mol% to 35 mol%, and particularly preferably, may
comprise 10 mol% to 30 mol% of an acrylamide struc-
15 tural unit represented by the above formula (IV).
When the content of the acrylamide structural unit
is less than the above range, blurring of ink may
occur due to existence of unreacted dyes because
reaction equivalence with the dyes falls to an in-
sufficient level. When the content of the acryl-
20 amide structural unit is greater than the above
range to the contrary, extreme deterioration of
mutual solubility with the water-absorbing polymer
compound (1) may result.

25 The above-described cationic polymer com-
pound (2) of the above-described (b) must comprise
65 mol% to 99 mol%, and more preferably, may com-
prise 65 mol% to 80 mol% of an ethylene structural
unit represented by the above formula (II). When
30 the content of the ethylene structural unit is less
than the above range, mutual solubility with the
water-absorbing polymer compound (1) may be de-
creased. To the contrary, when the content of the

CONFIDENTIAL INFORMATION

ethylene structural unit is greater than the above range, a blurring event may result because of lack in available reactivity with the dyes due to insufficiently present acrylamide structural unit that participates in a reaction with the dyes.

The above-described cationic polymer compound (2) of the above-described (b) must comprise less than or equal to 15 mol%, and more preferably, may comprise 5 mol% to 10 mol% of an acrylate structural unit represented by the above formula (III). When the content of the acrylate structural unit is less than the above range, mutual solubility with the water-absorbing polymer compound (1) may deteriorate. When the content of the acrylate structural unit is greater than the above range to the contrary, there may be difficulty in producing the cationic polymer compound (2).

The above-described cationic polymer compound (2) of the above-described (b) must comprise 1 mol% to 35 mol%, and particularly preferably, may comprise 10 mol% to 30 mol% of an acrylamide structural unit represented by the above formula (V). When the content of the acrylamide structural unit is less than the above range, blurring of ink may occur due to existence of unreacted dyes because reaction equivalence with the dyes falls to an insufficient level. When the content of the acrylamide structural unit is greater than the above range to the contrary, extreme deterioration of mutual solubility with the water-absorbing polymer compound (1) may result.

The cationic polymer compounds (2) of the above (a) and (b) have linear and irregular arrange-

00000000000000000000000000000000

ments in each of the formula units. Thermoplasticity is acquired thereby, and thermoforming of the ink-receiving layer becomes feasible combined with thermoplasticity of the water-absorbing polymer compound (1). Moreover, the weight average molecular weight of such cationic polymer compound (2) is in the range between 1,000 and 50,000, and the range between 5,000 and 30,000 is particularly preferred.

5 When the weight average molecular weight is less than the above range, bleed out of the cationic polymer compound (2) may occur on the surface of the ink-receiving layer. To the contrary, when the weight average molecular weight is greater than the above range elevation of the melting viscosity often

10 may result in difficulties in mixing with the water-absorbing polymer compound (1).

15

It is preferred that the ink-receiving layer of the ink jet recording sheet according to the present invention comprises a cationic or nonionic surface active agent (3). Because hydrophilicity of the ink-receiving layer is increased thereby, absorption velocity of ink can be improved, and in addition, blurring of ink can be prevented.

Suitably employed cationic surface active agents (3) may include, for example, secondary ammonium salt type cationic surface active agents, tertiary ammonium salt type cationic surface active agents, quaternary ammonium salt type cationic surface active agents, and the like. Besides, suitably employed nonionic surface active agents (3) may include, for example, alkyl phenol type nonionic surface active agents, higher alcohol type nonionic surface active agents, higher fatty acid type non-

PRINTED IN U.S.A. 1975

onic surface active agents, Pluronic-type nonionic surface active agents, esters of propylene glycol fatty acid, esters of glycerol fatty acid, and the like.

5 An amount of the cationic or nonionic surface active agent (3) to be contained in the ink-receiving layer may be preferably 1% by weight to 10% by weight, and particularly preferably, may be 2% by weight to 5% by weight. When the amount of
10 the surface active agent (3) is less than the above range, lowering of the ink absorption velocity may occur, or an incidence of ink blurring may be liable to increase. To the contrary, when the amount is greater than the above range, bleed out on the surface of the ink-receiving layer may occur, thereby
15 stickiness on the surface may result.

Although the thickness of the ink-receiving layer is not particularly limited as long as absorption of the ink can be provided, it is generally in the range between 10 μm and 50 μm , and particularly from 20 μm to 30 μm .

An ink jet recording sheet according to the present invention is prepared from a substrate layer and an ink-receiving layer that is overlaid said substrate layer. The material of the substrate layer is not particularly limited. However, a film that is constituted from water insoluble plastics, for example, polyester resins, polyamides, polyolefins, and the like may be suitably used. In particular, polyester resins having superior film hardness, transparency, and property of adhesion to the receiving layer are preferable. Although the thickness of the substrate layer is not particularly

limited, it is generally in the range between 50 μm and 100 μm , and particularly from 70 μm to 100 μm .

A method for producing an ink jet recording sheet of the present invention is explained below. First, a resin composition is prepared by melting and admixing a water-absorbing polymer compound (1) and a cationic polymer compound (2) according to known methods; and adding cationic or nonionic surface active agent (3), if required.

Next, the resin composition is pelletized, followed by melting, and extrusion into a film form while concomitantly overlaying the substrate layer so that an ink jet recording sheet can be produced. When the substrate layer is prepared from plastics, the ink jet recording sheet can be produced through so-called coextrusion wherein overlaying is performed while extruding both of the ink-receiving layer and the substrate layer. Simplification of the process for production of the ink jet recording sheet can be achieved by this coextrusion.

Furthermore, an ink jet recording sheet also can be produced by dissolving the resin composition in a solvent that can dissolve the aforementioned resin composition used for the ink-receiving layer (e.g., a mixed solvent of toluene and methanol); and coating the dissolved composition on a substrate layer. For the coating process, several kinds of known means, for example, bar coating machine, roll coating machine, blade coating machine, kiss coating machine, and the like, can be employed.

When a substrate layer is overlaid with an ink-receiving layer by the above-described extrusion or coating, a treatment on the surface of the sub-

strate layer with primer may be conducted in order to improve the adhesion strength of the both layers, if necessary.

When ink jet recording is carried out using this ink jet recording sheet, water-based ink is rapidly absorbed into the ink-receiving sheet, thus clear images can be obtained. Additionally, even when the ink jet recording sheet is subjected to storage after printing under humid conditions for a long period of time, blurring of ink hardly occurs.

The effects exerted by the present invention would be apparent from the Examples below, however, those Examples should not be construed as any limitation of the present invention.

[Example 1]

A water-absorbing polymer compound (1) was prepared, with m being 52, n being 14, p being 155, Y being an ethyl group, X¹ being an ethylene glycol residue, and R¹ being a eicosanedioic acid residue in the above-described formula (I). The weight ratio of alkylene oxide having 4 or more carbon atoms in the polyalkylene oxide compound was 11 wt% for this water-absorbing polymer compound (1). In addition, the weight average molecular weight of polyalkylene oxide residue represented by AX¹A was 20,294.

Further, the weight average molecular weight of this water-absorbing polymer compound (1) was 154,800.

For a reference, measurement of a molecular weight was performed by determination through PEO conversion, using GPC in a water-based system with a mixed solution of acetonitrile and water with a ratio of

1:1 as a solvent for dissolving the water-absorbing polymer compound (1).

Meanwhile, a cationic polymer compound (2) was prepared, with R² being C₂H₅ in the above formula (III), R³ being an ethylene group, R⁴, R⁵, and R⁶ being methyl groups, and X⁻ being C₂H₅OSO₃⁻ in the above formula (IV). Molar fractions (determined with NMR) in this cationic polymer compound (2) were 65 mol% for an ethylene structural unit represented by the above formula (II); 5 mol% for an acrylate structural unit represented by the above formula (III); and 30 mol% for an acrylamide structural unit represented by the above formula (IV). Moreover, the weight average molecular weight (determined with GPC) of this cationic polymer compound (2) was 23,000.

Then, 80 parts by weight of the water-absorbing polymer compound (1) and 20 parts by weight of the cationic polymer compound (2) were mixed using a double spindle extruder at an extrusion condition of 150°C, thus pelletization was accomplished. Next, the resulting pellet was extruded using a single spindle extruder at 150°C, thereby a film having 40 µm of thickness was formed. Finally, an ink jet recording sheet of Example 1 was produced through overlaying a polyethylene terephthalate film (100 µm of thickness) with thus formed film, followed by lamination process at 160°C.

[Example 2]

A water-absorbing polymer compound (1) was prepared, with m being 28, n being 2, p being 118, Y being a hydrocarbon group having 12-14 carbon atoms,

X¹ being an ethylene glycol residue, and R¹ being a terephthalic acid residue in the above-described formula (I). The weight ratio of alkylene oxide having 4 or more carbon atoms in the polyalkylene oxide compound was 6 wt% for this water-absorbing polymer compound (1). In addition, the weight average molecular weight of polyalkylene oxide residue represented by AX¹A was 13,873. Further, the weight average molecular weight of this water-absorbing polymer compound (1) was 97,111, when it was determined in a similar manner to the method for measurement in the above Example 1.

Meanwhile, a cationic polymer compound (2) was prepared, with R² being C₂H₅ in the above formula (III), R³ being an ethylene group, R⁴ and R⁵ being methyl groups, R⁶ being a lauryl group, and X⁻ being a chloride ion in the above formula (IV). Molar fractions (determined with NMR) in this cationic polymer compound (2) were: 70 mol% for an ethylene structural unit represented by the above formula (II); 10 mol% for an acrylate structural unit represented by the above formula (III); and 20 mol% for an acrylamide structural unit represented by the above formula (IV). Moreover, the weight average molecular weight (determined with GPC) of this cationic polymer compound (2) was 23,000.

Then, 75 parts by weight of the water-absorbing polymer compound (1) and 25 parts by weight of the cationic polymer compound (2) were used to produce an ink jet recording sheet of Example 2 in a similar manner to the procedure in Example 1.

[Example 3]

A water-absorbing polymer compound (1) was prepared, with m being 42, n being 23, p being 168, Y being an ethyl group, X¹ being an ethylene glycol residue, and R¹ being a eicosanedioic acid residue in the above-described formula (I). The weight ratio of alkylene oxide having 4 or more carbon atoms in the polyalkylene oxide compound was 18 wt% for this water-absorbing polymer compound (1). In addition, the weight average molecular weight of polyalkylene oxide residue represented by AX¹A was 21,854. Further, the weight average molecular weight of this water-absorbing polymer compound (1) was 139,860, when it was determined in a similar manner to the method for measurement in the above Example 1.

Then, 85 parts by weight of the water-absorbing polymer compound (1) and 15 parts by weight of the cationic polymer compound (2) as in Example 1 were used to produce an ink jet recording sheet of Example 3 in a similar manner to the procedure in Example 1.

[Example 4]

An ink jet recording sheet of Example 4 was produced in a similar manner to the procedure in Example 1, except that the 20 parts by weight of the cationic polymer compound (2) that was used in Example 1 was substituted for a mixture of 10 parts by weight of the cationic polymer compound (2) as in Example 1 and 10 parts by weight of lauryl trimethylammonium chloride as a cationic surface active agent (3) that had been previously mixed and pelletized with a heated roll at 150°C.

[Comparative Example 1]

An ink jet recording sheet of Comparative Example 1 was produced in a similar manner to the procedure in Example 1, except that 100 parts by weight of the water-absorbing polymer compound (1) used in Example 1 was used without using any cationic polymer compound (2).

[Comparative Example 2]

An ink jet recording sheet of Comparative Example 2 was produced in a similar manner to the procedure in Example 1, except that the 20 parts by weight of the cationic polymer compound (2) that was used in Example 1 was substituted for 20 parts by weight of lauryl trimethylammonium chloride as a cationic surface active agent (3).

[Test for ink absorption ability]

Printing was carried out on the ink jet recording sheet that were produced in each of the Examples and Comparative Examples, using ink jet printers (tradename "Epson PM750C"; and tradename "Canon BJC-455J"). At one minute after completion of the printing, printed portion of ink-receiving layer was rubbed softly with a finger, thus respective ink absorption ability was evaluated visually. The results were evaluated as: "●," highly excellent ink absorption ability without any change in the printed portion; "○," excellent ink absorption ability; "△," fairly inferior ink absorption ability; and "×," cases in which the ink came off with dirty printed portion. The results are illustrated in Table 1 below.

[Test for ink blurring property]

The ink jet recording sheets, which were subjected to printing similarly to the above-described procedure, were left at a room temperature for 3 hours after completion of the printing. Then, the sheets were placed in a constant temperature and humidity chamber at a temperature of 35°C and a humidity of 90%, and then blurring of ink was observed visually after 24 hours and 120 hours. The results were evaluated as: "1," any blurring was not observed at all; "2," slight extent of blurring was observed; "3," definite blurring was observed; and "4," blurring was manifested so that the printing became beyond recognition. The results are illustrated in Table 1 below.

CONFIDENTIAL

Table 1: Results of evaluation on each of the ink jet recording sheets

		Example 1	Example 2	Example 3	Example 4	Comparative Example 1	Comparative Example 2
Ink absorption ability	PM750C	○	○	○	○	△	○
	BJC-455J	●	●	●	●	○	●
Ink blurring property (after 24 hours)	PM750C	1	1	1	1	4	2
	BJC-455J	1	1	1	1	3	2
Ink blurring property (after 120 hours)	PM750C	2	2	2	2	4	3
	BJC-455J	1	1	1	1	4	3

As is shown in Table 1, it was apparent that the ink jet recording sheet produced in each of the Examples was superior in respect to both of the ink absorption ability and ink blurring property when compared to those of the ink jet recording sheet produced in each of the Comparative Examples. Consequently, advantages of the present invention were demonstrated.

10

INDUSTRIAL APPLICABILITY

15

As explained herein above, according to the present invention, better ink absorption ability can be afforded when ink jet recording is carried out, and moreover, blurring of ink can be avoided that was conventionally disadvantageous in cases where hydrophilic polymer was used in an ink-receiving layer.

WHAT IS CLAIMED IS:

1. A resin composition for ink jet recording, which comprises: (1) a major component of a water-absorbing polymer compound represented by the formula (I), and (2) a cationic polymer compound

(I)

in the formula (I), "A" consists of:

and

with a manner of linkage therebetween being:

wherein m, n, and p represent integer numbers greater than or equal to 1. Additionally, a weight ratio that is calculated on the basis of each of the recurrence numbers m, n, and p is predetermined to be: $44 x (m + p) / (\text{the molecular weight of the unit of the alkylene oxide having more than or equal to four carbon atoms}) \times n = 94/6 - 80/20$, while the weight ratio that is calculated on the basis of each of the recurrence numbers m and p, $p/(m + p)$ should be predetermined to be more than or equal to 50 percent by weight. Y represents hydrocarbon group having more than or equal to two carbon atoms. Further, X¹ represents a residue of an organic compound having two active hydrogen groups, and R¹ represents a residue of a dicarboxylic acid compound.

2. The resin composition for ink jet recording sheet according to claim 1, wherein the cationic polymer compound (2) is a cationic polymer compound having a weight average molecular weight ranging between 1,000 and 50,000 with a linear and irregular arrangement, comprising 65 mol% to 99 mol% of an ethylene structural unit represented by the following formula (II), less than or equal to 15 mol% of an acrylate structural unit represented by the following formula (III), and 1 mol% to 35 mol% of an acrylamide structural unit represented by the following formula (IV) :

(II)

(III)

wherein R² represents an alkyl group having 1-4 carbon atoms

(IV)

wherein R³ represents an alkylene group having 2-8 carbon atoms; R⁴ and R⁵, respectively, represent an alkyl group having 1-4 carbon atoms; R⁶ represents an alkyl group having 1-12 carbon atoms, an aryl alkyl group having 7-12 carbon atoms, or an alicyclic alkyl group having 6-12 carbon atoms; and X⁻ represents a halogen ion, CH₃OSO₃⁻ or C₂H₅OSO₃⁻.

3. The resin composition for ink jet recording sheet according to claim 1, wherein the cationic polymer compound (2) is a cationic polymer compound having a weight average molecular weight ranging between 1,000 and 50,000 with a linear and irregular arrangement, comprising 65 mol% to 99 mol% of an ethylene structural unit represented by the above formula (II), less than or equal to 15 mol% of an acrylate structural unit represented by the above formula (III), and 1 mol% to 35 mol% of an acrylamide structural unit represented by the following formula (V):

wherein R³ represents an alkylene group having 2-8 carbon atoms; R⁴ and R⁵, respectively, represent an alkyl group having 1-4 carbon atoms; and X⁻ represents a halogen ion, CH₃OSO₃⁻ or C₂H₅OSO₃⁻.

4. The resin composition for ink jet recording sheet according to any of claims 1 to 3, wherein mixing ratio by weight of the water-absorbing polymer compound (1) and the cationic polymer compound (2) is ranging between 50/50 and 99/1.

5. The resin composition for ink jet recording sheet according to any of claims 1 to 4, further comprising (3) a cationic or nonionic surface active agent.

6. The resin composition for ink jet recording sheet according to claim 5, wherein an amount of the cationic or nonionic surface active agent (3) to be contained is from 1% by weight to 10% by weight.

7. An ink jet recording sheet comprising a substrate layer and an ink-receiving layer that is overlaid said substrate layer, wherein said ink-receiving layer comprises the resin composition according to any of claims 1 to 6.

8. A method for ink jet recording in which the ink jet recording sheet according to claim 7 is used, comprising the step of adsorbing small droplets of water-based color ink through discharging to the ink-receiving layer.

9. A method for producing an ink jet recording sheet comprising the steps of extruding a resin composition that constitutes a substrate layer into a sheet form, while extruding the resin composition for ink jet recording sheet according to any of claims 1 to 6 into a sheet form concurrently with the substrate layer, and forming layers from both of said resin compositions.

DOCUMENT FILED
APR 26 1994
U.S. PATENT AND TRADEMARK OFFICE

ABSTRACT

A resin composition for an ink jet recording sheet, an ink jet recording sheet, a method for ink jet recording, and a method for producing an ink jet recording sheet are provided, wherein an ink absorption ability and a blurring suppressive effect are satisfactorily achieved. The ink jet recording sheet is prepared from a substrate layer and an ink-receiving layer that is overlaid said substrate layer. The ink-receiving layer contains (1) a major component of a water-absorbing polymer compound represented by the formula (I), and (2) a cationic polymer compound. A mixing ratio by weight of the water-absorbing polymer compound (1) and the cationic polymer compound (2) may be in the range between 50/50 and 99/1. A cationic or nonionic surface active agent (3) may be contained in the ink-receiving layer in an amount from 1% by weight to 10% by weight.

PAPERS OF THE AMERICAN INSTITUTE OF POLYMER SCIENCE

Declaration and Power of Attorney For Patent Application

特許出願宣言書

Japanese Language Declaration

私は、下欄に氏名を記載した発明者として、以下のとおり宣言する：

私の住所、郵便の宛先および国籍は、下欄に氏名に統一して記載したとおりであり。

名称の発明に関し、請求の範囲に記載した特許を求める主題の本来の、最初にして唯一の発明者である（一人の氏名のみが下欄に記載されている場合）か、もしくは本来の、最初にして共同の発明者である（複数の氏名が下欄に記載されている場合）と信じ、

その明細書を
(該当する方に印を付す)

ここに添付する。

_____ 日に出願番号

第 _____ 号として提出し、

_____ 日に補正した。
(該当する場合)

私は、前記のとおり補正した請求の範囲を含む前記明細書の内容を検討し、理解したことを陳述する。

私は、連邦規則法典第37部第1章第56条（a）項に従い、本願の審査に所要の情報を開示すべき義務を有することを認める。

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name,

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled

Resin Composition for Ink Jet
Recording Sheet, the Recording
Sheet, Recording Method of the
Same, and Method for Producing
the Recording Sheet

the specification of which

(check one)

is attached hereto.

was filed on April 5, 2000 as
International
Application Serial No. PCT/JP00/02190

and was amended on _____
(if applicable)

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, §1.56(a).

Japanese Language Declaration

私は、合衆国法典第35部第119条にもとづく下記の外国特許出願または発明者証出願の外国優先権利益を主張し、さらに優先権の主張に係わる基礎出願の出願日前の出願日を有する外国特許出願または発明者証出願を以下に明記する：

Prior foreign applications 先の外国出願

(Number) (番 号)	(Country) (国 名)	(Day/Month/Year Filed) (出願の年月日)	Priority claimed 優先権の主張
			<input type="checkbox"/> Yes あり <input type="checkbox"/> No なし
			<input type="checkbox"/> Yes あり <input type="checkbox"/> No なし
			<input type="checkbox"/> Yes あり <input type="checkbox"/> No なし

私は、合衆国法典第35部第120条にもとづく下記の合衆国特許出願の利益を主張し、本願の請求の範囲各項に記載の主題が合衆国法典第35部第112条第1項に規定の態様で先の合衆国出願に開示されていない限度において、先の出願の出願日と本願の国内出願日またはPCT国際出願日の間に公表された連邦規則法典第37部第1章第56条(a)項に記載の所要の情報を開示すべき義務を有することを認めることとする：

(Application Serial No.) (出願番号)	(Filing Date) (出願日)

I hereby claim foreign priority benefits under Title 35, United States Code, §119 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, §1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

(現 態) (特許済み、係属中、放棄済み)	(Status) (patented, pending, abandoned)

私は、ここに自己の知識にもとづいて行った陳述がすべて真実であり、自己の有する情報および信ずるところに従って行った陳述が真実であると信じ、さらに故意に虚偽の陳述等を行った場合、合衆国法典第18部第1001条により、罰金もしくは禁錮に処せられるか、またはこれらの刑が併科され、またかかる故意による虚偽の陳述が本願ないし本願に対して付与される特許の有効性を損うことがあることを認識して、以上の陳述を行ったことを宣言する。

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Japanese Language Declaration

委任状：私は、下記発明者として、以下の代理人をここに選任し、本願の手続を遂行すること並びにこれに関する一切の行為を特許商標庁に対して行うことを委任する。
(代理人氏名および登録番号を明記のこと)

29
Allen H. Gerstein (22,218)
Nate F. Scarpelli (22,320)
Edward M. O'Toole (22,417)
Michael F. Borun (25,447)
Trevor B. Joike (25,542)
Carl E. Moore, Jr. (26,487)
Richard H. Anderson (26,526)

Patrick D. Ertel (26,877)
James P. Zeller (28,491)
William E. McCracken (30,195)
Richard A. Schnurr (30,920)
Anthony Nimmo (30,920)
Christine A. Dudzik (31,245)
Kevin D. Hogg (31,839)

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith. (list name and registration number)

Jeffrey S. Sharp (31,879)
Martin J. Hirsch (32,237)
James J. Napoli (32,361)
Richard M. La Barge (32,254)
Li-Hsien Rin-Laures, M.D. (33,547)
Douglass C. Hochstetler (33,710)
Robert M. Gerstein (34,824)
David W. Clough (36,107)
Anthony G. Sitko (36,278)
James A. Flight (37,622)
Roger A. Heppermann (37,641)
David A. Gass (38,153)
Gregory C. Mayer (38,238)
Michael R. Weiner (38,359)
William K. Merkel (40,725)

書類の送付先：

Send Correspondence to:
James J. Napoli
Marshall, O'Toole, Gerstein,
Murray & Borun
6300 Sears Tower
233 South Wacker Drive
Chicago, Illinois 60606

直通電話連絡先：(名称および電話番号)

Direct Telephone Calls to: (name and telephone number)

James J. Napoli (312) 474-6300

唯一のまたは第一の発明者の氏名

Full name of sole or first inventor
Katsuaki Matsuo

同発明者の署名

日付

Inventor's signature

Date

Katsuaki Matsuo March 21, 2001

住所

Residence 29-1, Chudoji-mibugawa-cho
Shimogyo-ku, Kyoto-shi, Kyoto

国籍

Citizenship 600-8806 JAPAN
Japan

郵便の宛先

Post Office Address 29-1, Chudoji-mibugawa-cho
Shimogyo-ku, Kyoto-shi, Kyoto
600-8806 Japan

第2の共同発明者の氏名 (該当する場合)

Full name of second joint inventor, if any
Takayuki Tsubaki

同第2発明者の署名

日付

Second Inventor's signature

Date

Takayuki Tsubaki March 21, 2001

住所

Residence 42-4-C, Katsura-nishitakigawa-cho,
Nishikyo-ku, Kyoto-shi, Kyoto

国籍

Citizenship 615-8024 JAPAN
Japan

郵便の宛先

Post Office Address 42-4-C, Katsura-nishitakigawa-
cho, Nishikyo-ku, Kyoto-shi,
Kyoto 615-8024 Japan

(第六またはそれ以降の共同発明者に対しても同様な情報および署名を提供すること。)

(Supply similar information and signature for third and subsequent joint inventors.)