CS/B.Tech (CSE, IT, ECE, ER, EEE, PWE, BME, ICE)/SEM-3/EE-301/08/(09)

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2008 CIRCUIT THEORY & NETWORKS SEMESTER - 3

Time: 3 Hours]	[Full Marl	ks : 70
----------------	-------------	---------

GROUP - A

		G	ROUP - A			
		(Multiple Che	oice Type (Questions)		
Cho	ose th	ne correct alternatives for a	ny ten of th	e following :	10 × 1 =	
i)	Max	Maximum power transfer occurs at efficiency of				
	a)	100%	b)	50%		
	c)	25%	d)	75%.		
ii)	A periodic waveform possessing half-wave symmetry has no					
	a)	odd harmonics	b)	even harmonics		
	c)	cosine terms	d)	sine terms.		
iii)	The	impedance of an ideal curr	rent source	should be		
	a)	0				
	b)	infinite				
	c)	greater than 0 but less th	nan infinity			
	d)	none of these.				
iv)	iv) In R-L circuit, the phase angle difference between voltage & curren					
	a)	30°	b)	90°		
	c)	180°	d)	greater than 0° but l	ess than 90°.	

- v) Unit step function is first derivative of
 - a) ramp function

b) impulse function

c) gate function

- d) parabolic function.
- vi) After closing the switch 's' at t = 0, the current i(t) at any instant 't' in the network shown

is given by

a) $10 + 10 e^{100t}$

b) $10 - 10 e^{100t}$

c) $10 + 10 e^{-100t}$

- d) $10 10^{e^{-100t}}$
- vii) When compared to a first order low psss filter, a second order low pass filter has

d)

- a) lower voltage gain
- b) higher voltage gain
- c) faster drop in filter response
- higher cut-off frequency.
- viii) A cut set schedule gives relation between
 - a) branch currents & link currents
 - b) branch voltages & tree branch voltages
 - c) branch voltages & link voltages
 - d) branch currents & tree currents.
- ix) The equation Y = mx + c is
 - a) linear

b) non-linear

c) parabolic

d) none of these.

CS/B.Tech (CSE, IT, ECS, RE, EEE, PWE, BME, ICE)/SEM-3/ER-301/08/(09) 5

x) Graphical representation of u(a-t)

- xi) A two port network is reciprocal if & only if
 - a) $Z_{11} = Z_{22}$

b) BC - AD = -1

c) $Y_{12} = Y_{21}$

- d) $h_{12} = h_{21}$.
- xii) Given $V_{TH} = 20 \text{ V & } R_{TH} = 5\Omega$, the current in the load resistance of a network is
 - a) 4A

b) more than 4A

c) 4A or less

d) less than 4A.

GROUP - B (Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. For an RL series circuit shown in the figure 1 with $R = 2\Omega$ & L = 1H and no initial current in the inductor. A voltage $V = 4e^{-t}$ volts is applied at t = 0. Find expression for the resulting current in the circuit for $t \ge 0$ using Laplace transform method.

Figure 1

- 3. a) Define incidence matrix.
 - b) For the graph shown in figure 2, find the complete incidence matrix.

Figure 2

1 + 4

4. What should be the value of Z_2 for maximum power to be delivered in the circuit shown in fig. 3

- 5. In a linear circuit consisting of $R = 9\Omega$ & L = 8 mH, a current. $i = 5 + 100 \sin (1000t + 45^{\circ}) + 100 \sin (3000t + 60^{\circ})$ amps is flowing. Find the equation of applied voltage.
- 6. Measurements were made on two terminal network shown in figure 4.

Figure 4

- a) With terminal pair 2 open, a voltage of $100 < 0^{\circ}$ volts applied to terminal pair 1 resulted in $I_1 = 10 < 0^{\circ}$ amps & $V_2 = 25 < 0^{\circ}$ volts.
- b) With terminal pair 1 open, the same voltage applied to terminal pair 2 resulted in $I_2 = 20 < 0^\circ$ amps & $V_1 = 50 < 0^\circ$ volts.

Write the loop equations for this network and also find the driving point & transfer impedances.

S/B.Tech (CSE, IT, ECE, EE, EEE, FWE, BME, ICE)/SEM-3/EE-301/08/(09)

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

a) Solve the circuit current 't' shown in the figure 5 using Thevenin's theorem.

Figure 5

Verify the result obtained by Norton's theorem.

b) Obtain the output voltage V_0 across X - Y terminal for the circuit shown in figure 6.

10 + 5

8. a) Find the Fourier series for the square wave shown in figure 7.

b) Find the Fourier transform of an exponential voltage waveform given by

$$v(t) = V_0 e^{-t} \text{ for } t \ge 0$$

= 0 for $t < 0$.

- 9. a) What are transmission parameters? Where are they most effectively used?
 - b) Calculate the ABCD parameters of the network shown in figure 8.
 - c) Find the hybrid parameters of the circuit given in figure 9.

- 10. a) Differentiate between active and passive filters.
 - b) Find out the cut-off frequency of the following low-pass second order active filter shown in figure 10.

Figure 10

c) Draw the circuit diagram of a first order high-pass active filter and find out the expression of the cut-off frequency. 5+6+4

CS/B.Tech (CSE, IT, ECE, EE, EEE, PWE, BME, ICE)/SEM-3/EE-301/06/(09)

- 11. a) State superposition theorem. For the network shown in figure 11, calculate current throughout the impedance (3+j4) ohm using superposition theorem.
 - b) In the given circuit of figure 12, find the reading of the voltmeter V. Interchange the current source and voltmeter and verify the Reciprocity theorem.

END