restricted vs. full F tests

In many situations, we want to compare the fit of two linear models

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + ... + \beta_q X_q + \beta_{q+1} X_{q+1} + ... + \beta_p X_p$$

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + ... + \beta_\alpha X_\alpha$$

where the X variables in the restricted model are a subset of the X variables in the full model.

If X_{q+1} to X_p are not included in the model, their coefficients are being set to 0.

The restricted model estimates β_1 to β_q under the hypothesis that **all** of β_{q+1} to β_p are equal to 0 in the population.

The restricted vs. full F test uses the SSE from each model and the corresponding dfe to construct a formal hypothesis test.

The SSE from the full model will always be less than or equal to the SSE from the restricted model.

The test answers the question: does the reduction in SSE provide enough evidence that the full model describes the population more accurately than the restricted model?

The F statistic is calculated as:

$$(SSE_{rest} - SSE_{full}) / (dfe_{rest} - dfe_{full})$$
 $/$ SSE_{full} / dfe_{full}

(The denominator is equal to the MSE for the full model.)

The degrees of freedom for this F ratio are dfe $_{rest}$ – dfe $_{full}$ and dfe $_{full}$ For the test set up here, the difference dfe $_{rest}$ – dfe $_{full}$ is equal to p – q, the number of variables deleted from the restricted model.

The hypotheses may be stated in terms of the coefficients

$$H_0: \beta_{q+1} = 0 \text{ AND } \beta_{q+2} = 0 \text{ AND } ... \text{ AND } \beta_p = 0$$

Ha: not all of
$$\beta_{q+1}$$
, β_{q+2} , ..., β_p are equal to 0

The alternative hypothesis says **at least one** of the coefficients β_{q+1} , β_{q+2} , ..., β_p is not 0. The alternative hypothesis **does not say** that all of β_{q+1} , β_{q+2} , ..., β_p are not equal to 0!!

To use an F test, the models must be "nested" -

the variables in the restricted model must all be in the full model.

Notes:

- 1. The use of the F distribution to obtain P values (or critical values for some specified α level) requires the assumption that the ϵ are normally distributed.
- 2. The restricted vs. full F test is a relative comparison of model fit, not an absolute one.

It is useful to examine the root MSE and the R² from the two models to help determine the quality of the fit.

3. The full and restricted models are also relative; one model may be the full model in one test and the restricted model in another test!

Implementation in Stata:

Be sure that you can calculate the F statistic by fitting the full and restricted models, getting the SSEs and the corresponding dfe values, and using the formula above.

The Ftail function in stata can be used to find P values

If the computed F statistic is 4.83 with 2 and 45 df,

```
display Ftail(2, 45, 4.83) will give the P value.
```

Be careful not to space between Ftail and the opening parenthesis.

To carry out the test in Stata

Fit the full model with the regress command

Use the test command followed by the names of the variables deleted from the restricted model.

example:

```
regr poverty metro hsgrad snglpar test metro snglpar
```

will give the F ratio to test the null hypothesis that the coefficients on metro and snglpar are both equal to 0, comparing the model with 3 predictors to the model that just includes hsgrad.

examples with the Agresti and Finlay crime data

. regr poverty metro white hsgrad snglpar

	Source	SS	df	MS	Numb	er of obs	= =	51
-	+	+			F(4,	46)	=	34.22
	Model	786.486789	4	196.621697	Prob	> F	=	0.0000
	Residual	264.276748	46	5.74514669	R-sq	uared	=	0.7485
_					Adj	R-squared	= £	0.7266
	Total	1050.76354	50	21.0152707	Root	MSE	=	2.3969
	'							
_								
	poverty	Coef.	Std. Err.	t	P> t	[95% (Conf.	<pre>Interval]</pre>
_								
	metro	0324866	.016552	-1.96	0.056	06580	041	.0008309
	white	.0460236	.0363422	1.27	0.212	02712	294	.1191767
	hsgrad	5520469	.064914	-8.50	0.000	68271	121	4213817
	snglpar	1.141768	.2121786	5.38	0.000	.7146	742	1.568861
	cons	41.72504	6.427176		0.000	28.78		54.66227
_								

Can we take out both metro and white from the model? Both have P > .05?

(We already know the answer is No, from our model using metro, hsgrad, and snglpar)

. regr poverty hsgrad snglpar

	Source	l ss	df	MS	Numh	per of obs	=	51
		, 22 +				48)	=	58.55
	Model	745.265099	2	372.6325		> F	=	0.0000
	Residual	305.498437	48	6.3645507	77 R-sc	quared	=	0.7093
-	+	+			Adj	R-squared	=	0.6971
	Total	1050.76354	50	21.015270	7 Root	MSE	=	2.5228
	poverty	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
	hsgrad	5369575	.0653997	-8.21	0.000	668452	25	4054625
	snglpar	.874346	.1723884	5.07	0.000	.527735	59	1.220956
	_cons	45.28522	5.750212	7.88	0.000	33.7236	55	56.8468

SS resid restricted 305.498 df resid = 48 SS resid full model 264.277 df resid = 46

F statistic = [(305.498 - 264.277)/(48 - 46)]/[264.277/46] = 3.5875

Stata: . display Ftail(2,46,3.5875) .03565806

The restricted model never fits better, but sometimes it fits *as well as* the full model.

Implementing in Stata:

. regr poverty metro white hsgrad snglpar

Source	SS	df	MS	Number	of obs =	51
	+			F(4, 4	6) =	34.22
Model	786.486789	4	196.621697	Prob >	F =	0.0000
Residual	264.276748	46	5.74514669	R-squa	red =	0.7485
	+			Adj R-	squared =	0.7266
Total	1050.76354	50	21.0152707	Root M	SE =	2.3969
poverty	Coef.	Std. Err.	t	P> t	[95% Conf.	<pre>Interval]</pre>
	+					
metro	0324866	.016552	-1.96	0.056	0658041	.0008309
white	.0460236	.0363422	1.27	0.212	0271294	.1191767
hsgrad	5520469	.064914	-8.50	0.000	6827121	4213817
snglpar	1.141768	.2121786	5.38	0.000	.7146742	1.568861
_cons	41.72504	6.427176	6.49	0.000	28.7878	54.66227

- . test metro white
- (1) metro = 0
- (2) white = 0

$$F(2, 46) = 3.59$$

Prob > F = 0.0357

If the models differ by a single variable, the restricted vs. full F test gives exactly the same answer as the t test on that variable in the full model. $\{t \text{ statistic }\}^2 = F \text{ statistic}$

. regr poverty metro white hsgrad snglpar

Source	SS	df	MS	Num	ber of obs	=	51
+				- F(4	, 46)	=	34.22
Model	786.486789	4	196.62169	7 Pro	b > F	=	0.0000
Residual	264.276748	46	5.7451466	9 R-s	quared	=	0.7485
+				- Adj	R-squared	=	0.7266
Total	1050.76354	50	21.015270	7 Roo	t MSE	=	2.3969
poverty	Coef.	Std. Err.	t	P> t	[95% Co	nf.	<pre>Interval]</pre>
+							
metro	0324866	.016552	-1.96	0.056	065804	1	.0008309
white	.0460236	.0363422	1.27	0.212	027129	4	.1191767
hsgrad	5520469	.064914	-8.50	0.000	682712	1	4213817
snglpar	1.141768	.2121786	5.38	0.000	.714674	2	1.568861
_cons	41.72504	6.427176	6.49	0.000	28.787	8	54.66227

. test white

the not-so-useful overall F test

null hypothesis model: all of the Xs in the model have population slopes = 0

none of the Xs are useful in explaining variability in Y

model E(Y) = constant with constant estimate = \bar{y}

alt hypothesis model: the regression does have some useful information

for explaining variability in Y values

some of the Xs, but not necessarily all,

have population slopes that are not 0

model E(Y) = β_0 + β_1 X₁ + β_2 X₂ + β_3 X₃ + ... + β_p X_p describes the population better

Every Statistical Software system does this test for every regression fit.

Under the null hypothesis, the Sum of squares residual is simply $\sum_{i=1}^{n} (y_i - \bar{y})^2 = SS$ total

The F statistic becomes

$${ (SStotal - SSresid) / ([n-1] - [n-(p+1)]) } / { SSresid / [n-(p+1)] }$$

{ SS model / p } / MS resid

or MS model / MS resid

with df p and [n-(p+1)]

model for poverty with metro, white, hsgrad and snglpar

MS model = 786.487 / 4 = 196.62

F = 34.22 4, 46 df P < .00005

Ms resid = 264.277/46 = 5.745

Our model is better than model with no Xs, even though we have P = .212 on white.

How can we compare "non-nested" models?

Compare adjusted R² values.

. regr poverty metro hsgrad

Source Model Residual Total	464.988021	2 48	MS 292.887758 9.68725043 21.0152707	F(2, 48) Prob > F R-squared Adj R-squared	= = = =	0.5575
poverty	Coef.	Std. Err.	t P		nf.	Interval]
_cons	6100675 61.65373	.0787127 6.170625	-7.75 0	.512053563 .0007683 .000 49.2468	3	451805
Source	y metro snglpa SS	df	MS	Number of obs	=	51
Model Residual	362.693435 688.070101			F(2, 48) Prob > F R-squared	=	12.65 0.0000 0.3452
Total	1050.76354	50	21.0152707	Adj R-squared Root MSE	=	0.3179 3.7861
poverty	Coef.	Std. Err.	t P		nf.	Interval]
metro snglpar _cons	0454657 1.307678 2.512668	.2613634	5.00 0	.0780962 .000 .782172 .415 -3.62607	21	1.833185