ANNA UNIVERSITY: CHENNAI 600025

BONAFIDE CERTIFICATE

Certified that this project report "IOT BASED INDUSTRIAL POLLUTION MONITORING SYSTEM" is the bonafide work of "GAUTHAM GANESH R. (Reg.No.: 912819106002), SANTHIYA JINTHAN P. (Reg.No.: 912819106014) AND TAMIZHARASAN R. (Reg.No.: 912819106019)"

who carried out the project work under my supervision.

SIGNATURE SIGNATURE

Dr. G. MAHENDRAN, M. E., Ph. D., Mr. J. SAKUBAR SADIQ, M.E.,

Ph.D.,

HEAD OF THE DEPARTMENT SUPERVISOR

DEPARTMENT OF ECE, ASSOCIATE PROFESSOR,

SYED AMMAL ENGG.COLLEGE, DEPARTMENT OF ECE,

RAMANATHAPURAM- 623502. SYED AMMAL ENGG.COLLEGE,

RAMANATHAPURAM- 623502.

Submitted for the project viva-voce held on:

INTERNAL EXAMINER

EXTERNAL EXAMINER

ACKNOWLEDGEMENT

We express our heartfelt thanks to **ALMIGHTY** who provided us such a valuable project to serve the people of our society.

We acknowledge our indebtedness and heartfelt thanks to our **CORRESPONENT AND MANAGEMENT** for having provided with excellent facilities and infrastructure.

We express our most sincere thanks to our beloved Principal, **Dr. M. PERIYASAMY, M.E., Ph.D.,** for his constant encouragement and support throughout the project.

We are deeply indebted and thankful to our Head of the Department Dr.

G. MAHENDRAN, M.E., Ph.D., for his expert guidance, valuable help and constant encouragement by providing us necessary resources throughout this tenure to make our project a wonderful one.

We sincerely thank our project guide $Mr. J. SAKUBAR SADIQ, M.E., \overline{Ph.D.}$, for giving the knowledge about the project and for her expert guidance.

We take this golden opportunity to thank our parents and our family member for their support and encouragement in all steps that we have kept forward. We acknowledge with gratitude to our friends, who had been with us complete this project.

ABSTRACT

The IoT-based Industrial Pollution Monitoring System is a system that uses Internet of Things (IoT) technology to monitor and track industrial pollution. The main goal of this project is to monitor and control the levels of various pollutants released into the environment by industries, and to ensure that they comply with environmental regulations and standards. The system typically consists of various IoT sensors that are deployed at different locations in and around the industrial area.

These sensors collect real-time data on different parameters such as air quality, water quality, soil quality, and noise levels. This data is transmitted to a central server through the internet, where it is analyzed and processed to determine the level of pollution in the area. The server also has an interface that allows authorized personnel to access and view the pollution data, as well as to set alarms and notifications based on the level of pollution. This can help identify areas where pollution is reaching unacceptable levels and prompt action to reduce or eliminate the pollution.

The IoT-based Industrial Pollution Monitoring System can play a critical role in promoting sustainable development and protecting the environment. By providing real-time data on pollution levels, it helps to raise awareness about the impact of industrial activities on the environment, and to promote responsible industrial practices. Additionally, it helps to ensure that industries comply with environmental regulations, which can help to reduce the negative impact of industrial activities on the environment.

TABLE OF CONTENTS

CHAPTER			TITLE	PAGE
NO.				NO.
	AI	BSTR	ACT	IV
	LI	ST O	F TABLES	IX
	LI	ST O	F FIGURES	X
	LI	ST O	F ABBREVIATION	XII
1	INTR	RODU	ICTION	1
2	2 EXISTING METHOD		G METHOD	3
	2.1	Pro	posed System	4
3	ARD	UINO	UNO	7
	3.1	Intr	roduction	7
	3.2	Mo	dules	8
	3.3	Spe	ecification	10
	3.4	App	plication	12
4	NOD	ЕМС	CU	13
	4.1	Intro	oduction	13
	4.2	Feat	tures	14
	4.3	Hist	ory	15
	4.4	Wi-	Fi Module	15
	4.5	App	olication	15
5	GAS	SENS	SOR	17
		5.1	Introduction	17
		5.2	Specification	18
		5.3	Working Principle	18

6	SOUN	D SENSOR		20
	6.1	Introduction		20
	6.2	Pin Configuration	21	
	6.3	Working principle		21
	6.4	Features		22
	6.5	Specifications		22
	6.6	Applications		23
7	TDS S	ENSOR		24
	7.1	Introduction		24
	7.2	What is TDS and why should you care		24
	7.3	Applications		25
	7.4	Specifications		25
	7.5	Hardware Overview		26
8	DISP	LAY & BUZZER		27
	8.1	Liquid Crystal Display		27
	8.2	Buzzer		30

9	POWI	ER SUPPLY	32
	9.1	Introduction	32
		9.1.2 Applications	33
	9.2	Transformer	34
		9.2.1 Introduction	34
		9.2.2 Principle	34
		9.2.3 Characteristics	34
		9.2.4 Applications of Transformer	36
	9.3	Linear Power Supply	36
	9.4	Bridge Rectifier	37
	9.5	Regulator	40
10	ARDU	INO IDE	42
	10.1	Introduction	42
	10.2	Benefits	43
11	BLYN	K	44
	11.1	Introduction	44
		Types	44
	11.3		45
12	_	ASED INDUSTRIAL POLLUTION DRING SYSTEM	46

	12.1 Project description	47
13	RESULT	48
	CONCLUSION	50
14	APPENDIX	51
	REFERENCES	62

LIST OF TABLES

TABLE NO:	TITLES	PAGE NO
3.3	ARDUINO SPECIFICATIONS	10
8.1	LCD SPECIFICATION	29

LIST OF FIGURES

FIG NO:	TITLE	PAGE NO:
1.1	REPRENSENTATION OF IOT	2
2.1	EXISTING BLOCK DIAGRAM	3
2.2	PROPOSED SYSTEM	5
3.1	ARDUINO UNO BOARD	8
3.2	ARDUINO UNO PARTS	8
4.1	NODE MCU	13
5.1	CIRCUIT DIAGRAN OF MQ2	17
5.2	MQ2 SENSOR	19
6.1	SOUND SENSOR	21
7.1	WATER QUALITY	25
7.5	TDS SENSOR SPECIFICATION	26
8.1.1	LCD DISPLAY UNIT	27
8.1.2	INTERNAL WORKING OF LCD UNIT	28
8.2	BUZZER	30
9.1	CIRCUIT DIAGRAM OF POWER BOARD	33
9.4.1	BRIDGE RECTIFIER	38
9.4.2	SMOOTHING	39
9.4.3	POWER SUPPLY CIRCUIT	39
9.5	REGULATOR	41
10.1	ARDUINO IDE	42
11.2	BLYNK SERVER DIAGRAM	45

12.1	BLOCK DIAGRAM	46
13.1	PROJECT MODULE	48
13.2	PROJECT KIT WITH BLYNK APP	48
13.3	BLYNK OUTPUT	49

LIST OF ABBREVIATIONS

NODE MCU Node Microcontroller Unit

TDS Total dissolved solids

IoT Internet of Things

Wi-Fi Wireless Fidelity

SRAM Static Random-Access Memory

EEPROM Electrically Erasable Programmable Read Only Memory

LCD Liquid crystal display

AREF Analog Reference

PWM Pulse Width Modulation

USB Universal Serial Bus

MOSFET Metal-Oxide Semiconductor Field Effect Transistor

LPG Liquefied Petroleum Gas