© Laurent Garcin MP Dumont d'Urville

Devoir surveillé n°12

• La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1 – D'après Centrale MP Maths 1 2014

L'objet de ce problème est l'étude de certaines fonctions définies sur des espaces de matrices. Dans tout le problème, on fixe un entier $d \in \mathbb{N}^*$ et on note $\mathcal{M}_d(\mathbb{K})$ l'espace des matrices carrées à coefficients dans \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$) de taille $d \times d$. Si i et j sont deux entiers entre 1 et d, on note $A_{i,j}$ le coefficient placé sur la ligne i et la colonne j dans la matrice A. On rappelle que $A^0 = I_d$. On note $\|\cdot\|_{\infty}$ la norme sur \mathbb{K}^d définie par :

$$\forall x = (x_1, \dots, x_d) \in \mathbb{K}^d, \ \|x\|_{\infty} = \max_{1 \le i \le d} |x_i|$$

On note enfin $\|\cdot\|$ la norme sur $\mathcal{M}_d(\mathbb{K})$ subordonnée à la norme $\|\cdot\|_{\infty}$:

$$\forall \mathbf{A} \in \mathcal{M}_d(\mathbb{K}), \ \|\mathbf{A}\| = \sup_{x \in \mathbb{K}^d \setminus \{0\}} \frac{\|\mathbf{A}x\|_{\infty}}{\|x\|_{\infty}}$$

Les parties I et II sont indépendantes des parties III et IV.

I Série entière de matrices

Dans cette partie, on se donne une série entière $\sum_{n\geq 0} a_n z^n$ de rayon de convergence R strictement positif, éventuellement égal à $+\infty$.

- **1.a** Soit $n \in \mathbb{N}$. Montrer que l'application $A \mapsto A^n$ est une fonction continue de $\mathcal{M}_d(\mathbb{C})$ dans $\mathcal{M}_d(\mathbb{C})$.
 - **1.b** Montrer que pour tout $A \in \mathcal{M}_d(\mathbb{C})$ et tout $n \in \mathbb{N}$, $||A^n|| \le ||A||^n$.
 - **1.c** Soit $\mathcal{B} = \{A \in \mathcal{M}_d(\mathbb{C}), \|A\| < R\}$. Montrer que l'application $\varphi : A \mapsto \varphi(A) = \sum_{n=0}^{+\infty} a_n A^n$ est définie et continue sur \mathcal{B} .
- [2] Soit $A \in \mathcal{M}_d(\mathbb{R})$ une matrice non nulle telle que ||A|| < R. On note

$$\mathbb{C}[A] = \{P(A), P \in \mathbb{C}[X]\}$$

et on note $r = \dim \mathbb{C}[A]$.

- **2.a** Justifier que $\mathbb{C}[A]$ est une partie fermée de $\mathcal{M}_d(\mathbb{C})$.
- **2.b** En déduire qu'il existe un unique polynôme $P \in \mathbb{C}[X]$ tel que $\varphi(A) = P(A)$ et deg P < r.
- **2.c** Déterminer ce polynôme lorsque $A = \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ 1 & 1 & 2 \end{pmatrix}$ et $a_n = \frac{1}{n!}$ pour tout $n \in \mathbb{N}$.
- Trouver une condition nécessaire et suffisante sur la série entière $\sum_{n\geq 0} a_n z^n$ pour qu'il existe $P \in \mathbb{C}[X]$ tel que

$$\forall A \in \mathcal{M}_d(\mathbb{C}), \ \varphi(A) = P(A)$$

© Laurent Garcin MP Dumont d'Urville

II Deux applications

4 Première application : une formule de trigonométrie matricielle

Pour tout $A \in \mathcal{M}_d(\mathbb{R})$, on pose

$$\cos(A) = \sum_{n=0}^{+\infty} (-1)^n \frac{A^{2n}}{(2n)!} \qquad \text{et} \qquad \sin(A) = \sum_{n=0}^{+\infty} (-1)^n \frac{A^{2n+1}}{(2n+1)!}$$

Montrer que

$$\forall A \in \mathcal{M}_d(\mathbb{R}), \cos(A)^2 + \sin(A)^2 = I_d$$

On pourra utiliser le fait que si M et N sont deux matrices de $\mathcal{M}_d(\mathbb{C})$ qui commutent, alors

$$exp(M + N) = exp(M) exp(N)$$

5 Seconde application : le théorème de Cayley-Hamilton

On fixe une matrice $A \in \mathcal{M}_d(\mathbb{R})$.

5.a Pour R assez grand, montrer que, pour tout $\theta \in \mathbb{R}$, la matrice $Re^{i\theta}I_d - A$ est inversible dans $\mathcal{M}_d(\mathbb{C})$ et que son inverse est la matrice

$$(Re^{i\theta})^{-1}\sum_{n=0}^{+\infty}(Re^{i\theta})^{-n}A^n$$

5.b Montrer que, pour tout $n \in \mathbb{N}^*$ et tout R assez grand, la matrice

$$\frac{1}{2\pi} \int_0^{2\pi} (\mathbf{R}e^{i\theta})^n (\mathbf{R}e^{i\theta} \mathbf{I}_d - \mathbf{A})^{-1} d\theta$$

vaut A^{n-1} .

5.c On considère le polynôme caractéristique

$$\chi_{\mathbf{A}}(\mathbf{X}) = \det(\mathbf{A} - \mathbf{X}\mathbf{I}_d) = \sum_{k=0}^{a} a_k \mathbf{X}^k$$

Montrer que, pour R assez grand:

$$\chi_{\mathbf{A}}(\mathbf{A}) = \frac{1}{2\pi} \int_0^{2\pi} \mathbf{R} e^{i\theta} \chi_{\mathbf{A}}(\mathbf{R} e^{i\theta}) (\mathbf{R} e^{i\theta} \mathbf{I}_d - \mathbf{A})^{-1} d\theta$$

5.d En déduire que $\chi_A(A)$ est la matrice nulle. On pourra faire intervenir des comatrices.

III Etude d'une équation fonctionnelle

Soit $M \in \mathbb{R}_+^* \cup \{+\infty\}$ et $f:]-\infty, M[\to \mathbb{R}$ une fonction continue telle que

$$\forall (x,y) \in \left] -\infty, \frac{M}{2} \right[^{2}, \ 2f(x+y) = f(2x) + f(2y)$$
 (**)

Soit α un nombre strictement inférieur à $\frac{M}{2}$ et F la primitive de f s'annulant en α . Montrer que pour tous x et y dans $\left]-\infty, \frac{M}{2}\right[$, avec $y \neq \alpha$, on a :

$$f(2x) = 2\frac{F(x+y) - F(x+\alpha) - \frac{1}{4}F(2y) + \frac{1}{4}F(2\alpha)}{y - \alpha}$$

7 En déduire que la fonction f est de classe \mathcal{C}^{∞} sur $]-\infty, M[$.

8 Montrer que f'' = 0, puis que l'ensemble des solutions continues de l'équation (\star) forme un \mathbb{R} -espace vectoriel, dont on déterminera une base.

© Laurent Garcin MP Dumont d'Urville

IV Etude d'une autre fonction matricielle

Dans cette partie, on se donne une fonction $\xi \colon \mathbb{R} \to \mathbb{R}$ et on définit une fonction $f_{\xi} \colon \mathcal{M}_d(\mathbb{R}) \to \mathcal{M}_d(\mathbb{R})$ telle que

$$\forall \mathbf{A} \in \mathcal{M}_d(\mathbb{R}), \ f_{\xi}(\mathbf{A}) = \left(\xi(\mathbf{A}_{i,j})\right)_{1 \le i,j \le d}$$

On se propose de déterminer les fonctions continues $\xi \colon \mathbb{R} \to \mathbb{R}$ telles que

$$\forall A \in \mathcal{M}_d(\mathbb{R}), A \text{ inversible } \Longrightarrow f_{\xi}(A) \text{ inversible}$$

9 Déterminer les fonctions continues ξ vérifiant la condition (\blacktriangle) lorsque d=1.

On se place dorénavant dans le cas $d \ge 2$.

On se donne une fonction continue ξ de \mathbb{R} dans \mathbb{R} vérifiant (\blacktriangle).

10 Montrer que

$$\forall (a, b, c, d) \in \mathbb{R}^4, \ ad \neq bc \implies \xi(a)\xi(d) \neq \xi(b)\xi(c)$$

On pourra considérer la matrice
$$\begin{pmatrix} a & b & 0 & \cdots & 0 \\ c & d & 0 & \cdots & 0 \\ c & d & & & \\ \vdots & \vdots & I_{d-2} & & \\ c & d & & & \end{pmatrix}.$$

- 11 En déduire que la fonction ξ est injective, puis qu'elle est strictement monotone sur \mathbb{R} .
- 12 Montrer que la fonction ξ ne s'annule pas sur \mathbb{R}^* .
- 13.a Montrer que si $\xi(0) \neq 0$, alors il existe $\alpha > 0$ tel que $\xi(0)\xi(2) = \xi(1)\xi(\alpha)$.

 13.b Conclure.
- **14** Soit $\eta = \xi^{-1}: I \to \mathbb{R}$ la bijection réciproque de la bijection $\xi: \mathbb{R} \to I$. Montrer que là ou cela est défini

$$\eta(xy)^2 = \eta(x^2)\eta(y^2)$$

- 15 On suppose dans cette question que la fonction η prend des valeurs strictement positives sur $I \cap]0, +\infty[$.
 - **15.a** Montrer que la fonction $f = \ln \circ \eta \circ \exp \text{ vérifie l'équation } (\star) \text{ sur un intervalle }] \infty, M[, avec M (éventuellement infini) à préciser en fonction de l'intervalle I.$
 - **15.b** En déduire que sur l'intervalle I∩]0, $+\infty$ [, la fonction η est de la forme

$$\eta: x \mapsto K_1 x^{\alpha_1}$$

avec deux constantes $K_1 > 0$ et $\alpha_1 > 0$.

15.c Montrer que sur l'intervalle $I \cap]-\infty, 0[$, la fonction η est de la forme

$$\eta: x \mapsto K_2(-x)^{\alpha_2}$$

avec deux constantes $K_2 < 0$ et $\alpha_2 > 0$.

- **15.d** Montrer que $I = \mathbb{R}$ puis que la fonction η est une fonction impaire.
- En déduire dans le cas général que, si $\xi \colon \mathbb{R} \to \mathbb{R}$ est une fonction continue vérifiant la condition (\blacktriangle), alors elle est impaire et sa restriction à \mathbb{R}_+^* est de la forme $x \mapsto Cx^\beta$ avec $C \neq 0$ et $\beta > 0$.
- Pour $\lambda \in \mathbb{R}$, calculer le déterminant de la matrice $A_{\lambda} \in \mathcal{M}_d(\mathbb{R})$ ne comportant que des 1 hors de la diagonale et que des λ sur la diagonale.
- **18** En déduire toutes les fonctions continues $\xi \colon \mathbb{R} \to \mathbb{R}$ vérifiant (\blacktriangle).