

Probabilistic Reasoning

Russell Chap 12, 13, 14

Uncertainty

- Why uncertainty?
 - Agent can not access the whole truth of its environment
 - Partial observability (Wumpus world)
 - Incomplete understanding (Diagnosis)
- Example
 - Causal rule (cause → effect)
 - Cavity ⇒ Toothache: True
 - Diagnostic rule (effect → cause)
 - Toothache ⇒ Cavity : Not always True
 - Toothache ⇒ Cavity ∨ Abscess ∨ ...
 - \implies Toothache \Rightarrow Cavity: 0.85

Probability

- Outcomes
 - An experiment produce outcomes (not really a die)
- Sample space
 - **S** set of all outcomes ({ ⋅ , ⋅ , ..., ⋅ })
- Event
 - E subset of sample sapce (E: even = { ••, ••, ••})
- Probability
 - $0 \le P(\omega) \le 1$

 - P(E) = |E| / |S| if all outcomes are equally likely
 - Ex> P(even) = 3/6

Probability

Random variables

- Function: outcome $\omega \rightarrow$ value a
 - Ex> X: outcome of rolling a die \rightarrow {1, 2, ..., 6} X(•)=1, X(•)=2, X(••)=3, ... P(X=1) = 1/6
- P(X=a) = $\sum_{(X(\omega)=a)} P(\omega)$
 - Ex> X: outcome of rolling a die \rightarrow {0(even), 1(odd)} X(•)=1, X(•)=0, E(•)=1, ... P(X=0) = 1/6 + 1/6 + 1/6 = 1/2
- Boolean r.v. : {T, F}
 - Ex> P(Cavity) = 0.1 is same as P(Cavity = True) = 0.1
- Discrete r.v. : {a, b, c, ... }
 - Ex> P(weather = sunny) = 0.1
- Continuous r.v.
 - Ex> P(temp < 36.5) = 0.1

Probability Distribution

- Discrete variable
 - P(X = a) : Probability for value of X = a

S	X	P(X)
1	1	1/6
2	2	1/6
6	6	1/6

- Continuous variable probability density
 - $P(X \le a)$ = probability for value of $X \le a$ = area between 0 and a

Probability Distribution

- Joint probability distribution
 - P(X, Y): represents joint probabilities for values of X and Y
 - Example
 - Gas{true,false}, Meter{empty, full}, Start{yes, no}
 - P(G,M,S):

Gas	Meter	Start	P(G,M,S)
false	empty	no	0.1386
false	empty	yes	0.0014
false	full	no	0.0594
false	full	yes	0.0006
true	empty	no	0.0240
true	empty	yes	0.0560
true	full	no	0.2160
true	full	yes	0.5040

Probability Distribution

Gas	Meter	Start	P(G,M,S)
false	empty	no	0.1386
false	empty	yes	0.0014
false	full	no	0.0594
false	full	yes	0.0006
true	empty	no	0.0240
true	empty	yes	0.0560
true	full	no	0.2160
true	full	yes	0.5040

- P(Gas=false, Meter=empty, Start=no) = 0.1386
- P(Start=yes) = 0.5620
 - → Prior probability (unconditional probability)
- P(Start=yes), given that Meter=empty ? = 0.2609
 - Posterior probability (conditional probability)

Conditional Probability

Conditional probability

- $P(A \mid B) = P(A \land B) / P(B)$
- Example
 - $P(A \land B) = 4 / 100 = 0.04$
 - P(B) = 5 / 100 = 0.05
 - $P(A \mid B) = 4 / 5 = 0.80$

Independence

- $P(A \mid B) = P(A)$
- P(A ∧ B) = P(A | B) P(B)
 = P(A) P(B) if A, B are independent

Bayes' Rule

• Probability of A \Rightarrow B is P(B | A)

$$P(A \wedge B) = P(A \mid B) \cdot P(B)$$
$$= P(B \mid A) \cdot P(A)$$

$$\therefore P(B \mid A) = \frac{P(A \mid B) P(B)}{P(A)}$$

$$\longrightarrow Bayes' Rule$$

Assessing P(Cause | Effect) from P(Effect | Cause)

$$P(Cause \mid Effect) = \frac{P(Effect \mid Cause) P(Cause)}{P(Effect)}$$

Statistical classifier

- It performs probabilistic prediction (classification)
- From evidence E to hypothesis H

Performance

- Bayesian Classification provides a standard of optimal decision making
- A simple Naïve Bayesian Classifier has comparable performance with other statistical / machine learning methods

If we want to conclude among H₁, H₂, ... (classes) given evidence E,

$$P(H_1 \mid E) = \underbrace{P(E \mid H_1) \cdot P(H_1)}_{P(E)}$$

$$P(H_2 \mid E) = \underbrace{P(E \mid H_2) \cdot P(H_2)}_{P(E)}$$
same

$$\therefore \qquad P(H_i \mid E) = \alpha P(E \mid H_i) \cdot P(H_i)$$

Example

- Evidence: headache
- Hypothesis: 1. flu ?, 2. covid-19 ?

```
P(headache | flu) = 0.4
P(headache | covid-19) = 0.5
P(flu) = 1/100
P(covid-19) = 1/500
```

```
P(f | headache) = \alpha P(h | f) P(f) = \alpha x 0.4 x 1/100 = 0.004 \alpha P(c | headache) = \alpha P(h | c) P(c) = \alpha x 0.5 x 1/500 = 0.001 \alpha
```

$$0.004 \alpha + 0.001 \alpha = 1$$

 \rightarrow Probability of flu = P(f | headache) = 0.8

Naïve Bayesian Classifier

For multiple, conditionally independent evidences

$$P(E_1, E_2, ... E_n | H_i) = P(E_1 | H_i) \cdot P(E_2 | H_i) \cdot ... \cdot P(E_n | H_i)$$

$$P(H_i \mid E_1, E_2, ... E_n)$$

$$= \alpha P(E_1, E_2, ... E_n \mid H_i) \cdot P(H_i)$$

$$= \alpha P(E_1 \mid H_i) \cdot P(E_2 \mid H_i) \cdot ... \cdot P(E_n \mid H_i) \cdot P(H_i)$$

$$= \alpha P(H_i) \cdot \prod_{k=1..n} P(E_k \mid H_i)$$

These probabilities can be obtained from sample data

Example

No.	age	income	student	credit_rating	buys_computer
1	<=30	high	no	fair	no
2	<=30	high	no	excellent	no
3	3140	high	no	fair	yes
4	>40	medium	no	fair	yes
5	>40	low	yes	fair	yes
6	>40	low	yes	excellent	no
7	3140	low	yes	excellent	yes
8	<=30	medium	no	fair	no
9	<=30	low	yes	fair	yes
10	>40	medium	yes	fair	yes
11	<=30	medium	yes	excellent	yes
12	3140	medium	no	excellent	yes
13	3140	high	yes	fair	yes
14	>40	medium	no	excellent	no

Example

- P(H_i)
 - P(Yes) = 9/14 = 0.643
 - P(No) = 5/14 = 0.357
- $P(E_k \mid H_i)$
 - P(age = "<30" | Yes) = 2/9 = 0.222
 - P(income = "medium" | Yes) = 4/9 = 0.444
 - P(student = "yes" | Yes) = 6/9 = 0.667
 - P(credit = "fair" | Yes) = 6/9 = 0.667

• • •

- P(age = "<30" | No) = 3/5 = 0.600
- P(income = "medium" | No) = 2/5 = 0.400
- P(student = "yes" | No) = 1/5 = 0.200
- P(credit = "fair" | Yes) = 2/5 = 0.400

• • •

Example

```
X: (age="<30", income="medium",
  student="yes", credit="fair") → yes / no?
```


- $P(yes \mid X) = \alpha P(X \mid yes) \cdot P(yes)$ $= \alpha P(<30 \mid yes) \cdot P(m \mid yes) \cdot P(y \mid yes) \cdot P(f \mid yes) \cdot P(yes)$ $= \alpha \ 2/9 \cdot 4/9 \cdot 6/9 \cdot 6/9 \cdot 9/14 = 0.028 \alpha$
- $P(no \mid X) = \alpha P(X \mid no) \cdot P(no)$ $= \alpha P(\langle 30 \mid no) \cdot P(m \mid no) \cdot P(y \mid no) \cdot P(f \mid no) \cdot P(no)$ $= \alpha \cdot 3/5 \cdot 2/5 \cdot 1/5 \cdot 2/5 \cdot 5/14 = 0.007 \alpha$
 - X is classified to yes

P(yes | X) =
$$\frac{0.028}{0.028 + 0.007}$$
 = 0.8

Laplace Correction

- Eliminate too strong probability estimation (0, 1)
 - For K distinct values for feature(evidence) Z,

$$P(Z = i) = \frac{n_i + 1}{n_0 + \dots + n_k + K}$$

- Example
 - If for 100 yes class data → income : medium:90, high:10, low:0
 - P(y | age="<30", income="low", student="yes", credit="fair")
 = P(y) P(<30 | y) P(low | y) P(yes | y) P(fair | y) = 0

P(medium | y) = 91/103
P(high | y) = 11/103
P(low | y) =
$$\frac{1}{103}$$

Advantage and Disadvantage

- Advantage
 - Easy to implement
 - Show good performance in most cases
- Disadvantage
 - Assume conditional independence
 - Actually there are dependencies among variables (evidences)
 Ex> 'age' and 'student'
 - → Bayesian Networks

Bayesian Networks

- A directed graph that represents dependencies among r.v.
 - Nodes: Random variables
 - Edges: Direct influence
 - Each node X stores P(X | parents(X))

Dependency

Example

- Gas and Plug are independent
- Gas and Plug are conditionally dependent given Start
- Meter and Start are dependent
- Meter and Start are conditionally independent given Gas
 - P(S | M, G) = P(S | G)

Dependency

- A, B are independent
 - P(B|A) = P(B)
- A, B are conditionally dependent
 - $P(B|A,C) \neq P(B|C)$

- A, B are dependent
 - $P(B|A) \neq P(B)$
- A, B are conditionally independent
 - P(B|A,C) = P(B|C)

Chain Rule

P(A,B) =
$$P(A,B)$$
 P(A) = $P(B|A)$ P(A)
P(A,B,C) = $P(A,B,C)$ P(A,B) P(A) = $P(C|B,A)$ P(B|A) P(A)
P(A,B,C,D) = $P(D|C,B,A)$ P(C|B,A) P(B|A) P(A)

- $P(G,M,S) = P(S \mid G, M) P(M \mid G) P(G)$ (Chain rule)
 - = P(S | G) P(M | G) P(G)(If S, M are conditionally independent given G)
 - = P(S) P(M) P(G)(If S, M, G are all independent)

Computing Joint Distribution

In Bayesian networks, joint probability = product of conditional probabilities

$$P(X_{1}, X_{2}, ..., X_{n}) = P(X_{n} \mid X_{1}, ..., X_{n-1}) P(X_{n-1} \mid X_{1}, ..., X_{n-2}) ... P(X_{2} \mid X_{1}) P(X_{1})$$

$$= \prod P(X_{1} \mid parents(X_{1}))$$

Ex>

$$P(A,B,C,D,E) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)P(E|A,B,C,D)$$

$$= P(A)P(B|A)P(C|B) P(D|B,C) P(E|C,D)$$

Computing Joint Distribution

Example

Gas	Meter	Start	P(G,M,S)
false	empty	no	0.1386
false	empty	yes	0.0014
false	full	no	0.0594
false	full	yes	0.0006
true	empty	no	0.0240
true	empty	yes	0.0560
true	full	no	0.2160
true	full	yes	0.5040

=

P(G)	
false	0.2
true	0.8

P(M G)	G = f	G = t
empty	0.7	0.1
full	0.3	0.9

P(S G)	G = f	G = t
no	0.99	0.30
yes	0.01	0.70

Inference with Full Distribution

Inference for P(X | E) with P(X, E, Y)

Gas	Meter	Start	P(G,M,S)
false	empty	no	0.1386
false	empty	yes	0.0014
false	full	no	0.0594
false	full	yes	0.0006
true	empty	no	0.0240
true	empty	yes	0.0560
true	full	no	0.2160
true	full	yes	0.5040

```
    P(S=yes | M=full) = P(S=yes, M=full) / P(M=full)
    = (0.5040+0.0006) / (0.5040+0.0006+0.2160+0.0594)
    = 0.6469
```

Inference with Bayesian Network

Inference for P(X | E) with P(Xi | Parents(Xi))

$$P(X \mid E) = \alpha P(X, E) = \alpha \Sigma_Y P(X, E, Y)$$

From the product of probability table, P(X, E, Y)

- Remove all rows except E
- 2. Compute product $\alpha P(X, Y \mid E)$
- 3. Sum over irrelevant variables $\alpha P(X \mid E)$
- 4. Normalize P(X | E)

Inference with Bayesian Network

Example - P(S=yes | M=full)

Remove M=empty

1.

P(G)	
false	0.2
true	0.8

P(M G)	G = f	G = t
empty	0.7	0.1
full	0.3	0.9

P(S G)	G = f	G = t
no	0.99	0.30
yes	0.01	0.70

P(S, M, G)

2.

S	G = f	G = t
no	0.0594	0.2160
yes	0.0006	0.5040

Product

 α P(S, G | M)

3.

S	
no	0.2754
yes	0.5046

Sum over G

 α P(S | M)

4.

S	
no	0.3531
yes	0.6469

Normalize

P(S | M)

Inference with Bayesian Network

- Let P(A=true) → P(a)
- Computing P(s | m)

P(s | m) =
$$\alpha$$
 P(s, m) = α Σ_G P(s, m, G)
= α Σ_G P(G) P(s | G) P(m | G)

Computing P(g | m)

$$P(g \mid m) = \alpha P(g, m) = \alpha \Sigma_{S} P(g, m, S)$$

$$= \alpha \Sigma_{S} P(g) P(S \mid g) P(m \mid g)$$

$$= \alpha P(g) P(m \mid g) \Sigma_{S} P(S \mid g)$$

$$= \alpha P(g) P(m \mid g)$$

Every variable that is not an ancestor of Evidence or Query is irrelevant

Advantage of Bayesian Network

- Assume 20 boolean variables: 19 E → 1 H
- Compute P(H | E_1 , E_2 , ..., E_{19}) $= P(E_1, E_2, ..., E_{19} | H) P(H)$ $P(E_1, E_2, ..., E_{19})$
- 1) From full joint distribution

- \implies We need to know $2^{20} = 1,048,576$ prob.
- → Almost impossible

Н	E1	E2	 P(H,E ₁ ,E ₂ ,)
Т	Т	Т	 0.xxxx
F	F	F	 0.xxxx

Advantage of Bayesian Network

2) Assume complete independences (Naïve Bayesian)

$$P(E_1 | H) P(E_2 | H) ... P(E_{19} | H) P(H)$$

 $\Rightarrow 4*19 + 2 = 78 \text{ prob.}$
(1 parent cond. prob. table has 4 values)

- → But the evidences are not actually independent
- 3) Consider actual dependences (Bayesian Network)

$$P(E_1) P(E_2) P(E_3 \mid E_1, E_2) P(E_4 \mid E_3) ...$$
 (assume less than 2 parents)

- less than 8*20 = 160 prob.(2 parent cond. prob. table has 8 values)
- Actual dependences are considered, yet need small # of probabilities.

- GeNIe (<u>www.bayesfusion.com</u>)
 - An interactive model building, learning, and exploration tool for Bayesian networks
 - Based on the SMILE library for probabilistic graphical models

 The ALARM Bayesian network designed to provide an alarm message system for patient monitoring

37 variables

- CVP (central venous pressure): a three-level factor with levels LOW, NORMAL and HIGH.
- PCWP (pulmonary capillary wedge pressure): a three-level factor with levels LOW, NORMAL and HIGH.
- HIST (history): a two-level factor with levels TRUE and FALSE.
- TPR (total peripheral resistance): a three-level factor with levels LOW, NORMAL and HIGH.
- BP (blood pressure): a three-level factor with levels LOW, NORMAL and HIGH.
- CO (cardiac output): a three-level factor with levels LOW, NORMAL and HIGH.
- HRBP (heart rate / blood pressure): a three-level factor with levels LOW, NORMAL and HIGH.
- HREK (heart rate measured by an EKG monitor): a three-level factor with levels LOW, NORMAL and HIGH.
- HRSA (heart rate / oxygen saturation): a three-level factor with levels LOW, NORMAL and HIGH.
- PAP (pulmonary artery pressure): a three-level factor with levels LOW, NORMAL and HIGH.
- SAO2 (arterial oxygen saturation): a three-level factor with levels LOW, NORMAL and HIGH.
- FIO2 (fraction of inspired oxygen): a two-level factor with levels LOW and NORMAL.
- PRSS (breathing pressure): a four-level factor with levels ZERO, LOW, NORMAL and HIGH.
- ECO2 (expelled CO2): a four-level factor with levels ZERO, LOW, NORMAL and HIGH.
- MINV (minimum volume): a four-level factor with levels ZERO, LOW, NORMAL and HIGH.
- MVS (minimum volume set): a three-level factor with levels LOW, NORMAL and HIGH.

- HYP (hypovolemia): a two-level factor with levels TRUE and FALSE. (혈량저하)
- LVF (left ventricular failure): a two-level factor with levels TRUE and FALSE. (좌심실부전)
- APL (anaphylaxis): a two-level factor with levels TRUE and FALSE. (아나필락시스)
- ANES (insufficient anesthesia/analgesia): a two-level factor with levels TRUE and FALSE. (불충분마취)
- PMB (pulmonary embolus): a two-level factor with levels TRUE and FALSE. (폐색전)
- INT (intubation): a three-level factor with levels NORMAL, ESOPHAGEAL and ONESIDED. (기도삽관)
- KINK (kinked tube): a two-level factor with levels TRUE and FALSE. (관꼬임)
- DISC (disconnection): a two-level factor with levels TRUE and FALSE. (관분리)
- LVV (left ventricular end-diastolic volume): a three-level factor with levels LOW, NORMAL and HIGH.
- STKV (stroke volume): a three-level factor with levels LOW, NORMAL and HIGH.
- CCHL (catecholamine): a two-level factor with levels NORMAL and HIGH.
- ERLO (error low output): a two-level factor with levels TRUE and FALSE.
- HR (heart rate): a three-level factor with levels LOW, NORMAL and HIGH.
- ERCA (electrocauter): a two-level factor with levels TRUE and FALSE.
- SHNT (shunt): a two-level factor with levels NORMAL and HIGH.
- PVS (pulmonary venous oxygen saturation): a three-level factor with levels LOW, NORMAL and HIGH.
- ACO2 (arterial CO2): a three-level factor with levels LOW, NORMAL and HIGH.
- VALV (pulmonary alveoli ventilation): a four-level factor with levels ZERO, LOW, NORMAL and HIGH.
- VLNG (lung ventilation): a four-level factor with levels ZERO, LOW, NORMAL and HIGH.
- VTUB (ventilation tube): a four-level factor with levels ZERO, LOW, NORMAL and HIGH.
- VMCH (ventilation machine): a four-level factor with levels ZERO, LOW, NORMAL and HIGH.

The network structure

The node probability

Inference based on evidences

Time and Uncertainty

- Inference in static situation
 - Given evidences about a patient → infer the patient state
 - Value of the r.v. remains fixed
- Inference in dynamic situation
 - Given evidences about economy → infer the economic state
 - Given ambiguous sequence of phonemes → infer the spoken word
 - Value of the r.v. changes over time
- X t
 - A state variable at time t
 - Ex> Weather = {Rain, Cloudy, Sunny} vs.
 Weather₁ = {Rain, Cloudy, Sunny} → Weather₂ → Weather₃ → ...
 - Probability distribution: Prob. of (X_t | X_{t-1}, X_{t-2}, X_{t-3}, ...)

Markov Process

- Markov process
 - Probability of a state at time t depends on its previous n states $P(X_t \mid X_{t-1}, X_{t-2}, X_{t-3}, ..., X_{t-n})$
- First-order Markov process (Markov chain)
 - Probability of a state at time t depends on its previous 1 state $P(X_t \mid X_{t-1})$

- Stationary process
 - State change rule itself does not change over time
 - $P(X_t \mid X_{t-1}) = P(X_{t+k} \mid X_{t+k-1})$

Markov Process

Example

- 3 state values: R(Rain), C(Cloudy), S(Sunny)
- Transition table and diagram for P(X_t | X_{t-1})

V		
Λ₊	ï	4
	+	Т

	Rain	Cloudy	Sunny
Rain	0.4	0.3	0.3
Cloudy	0.2	0.6	0.2
Sunny	0.1	0.1	8.0

Markov Process

Probability of a sequence

- $P(X_{1}, X_{2}, ..., X_{t})$ $= P(X_{1}) P(X_{2} | X_{1}) P(X_{3} | X_{1}, X_{2}) ... P(X_{t} | X_{1}, X_{2}, ..., X_{t-1})$ $= P(X_{1}) P(X_{2} | X_{1}) P(X_{3} | X_{2}) ... P(X_{t} | X_{t-1})$
- Today is rainy. → Prob. of next 2 days are sunny, sunny?
 - P(R, S, S) = P(R) P(S | R) P(S | S) = 1 * 0.3 * 0.8 = 0.24 0.4 1: 0.2 0.2 0.1 0.2 0.3 0.2 0.0 0.0 0.0 0.0 0.0

Hidden Markov Model (HMM)

- States are "hidden" (unobservable)
 - Transition probabilities P(X_{t+1} | X_t) are given
- Evidences are observable
 - Probabilities of observation P(E₊ | X₊) are given
- Example: predict Rain(state) based on Umbrella(evidence)

Hidden Markov Model (HMM)

Computing most likely state sequence based on evidences

$$P(X_{1} ... X_{t} | E_{1} ... E_{t})$$

$$= \frac{P(E_{1} ... E_{t} | X_{1} ... X_{t}) P(X_{1} ... X_{t})}{P(E_{1} ... E_{t})}$$

$$= \alpha P(E_{1} ... E_{t} | X_{1} ... X_{t}) P(X_{1} ... X_{t})$$

$$= \alpha P(E_{1} | X_{1}) P(E_{2} | X_{2}) ... P(E_{t} | X_{t}) P(X_{1} ... X_{t})$$

 $= \alpha P(E_1 \mid X_1)P(E_2 \mid X_2)...P(E_t \mid X_t) P(X_1)P(X_2 \mid X_1)...P(X_t \mid X_{t-1})$

$$= \alpha \prod_{i=1..t} P(E_i \mid X_i) P(X_i \mid X_{i-1})$$

Example

• Markov process $P(X_t \mid X_{t-1})$

States: S1, S2, S3

Ex> P(S2 | S1) = 0.2

• Output process $P(E_t \mid X_t)$

Evidences: R, B, G

 $Ex> P(R \mid S1) = 3/6$

Example

- Which cup is selected? → hidden
- Only output sequence is observed

Most likely sequence for evidence (R, R)

```
= argmax _{X} P(X_{1}, X_{2},..., X_{t} | E_{1}, E_{2}, ..., E_{t})
= argmax _{X1,X2} (\prod_{i=1..2} P(E_{i} | X_{i}) P(X_{i} | X_{i-1}))
 \begin{pmatrix} (1/3(S1) \cdot 3/6 \cdot 0.6(S1) \cdot 3/6 & & & & \\ 1/3(S1) \cdot 3/6 \cdot 0.2(S2) \cdot 1/6 & & & & \\ 1/3(S1) \cdot 3/6 \cdot 0.2(S3) \cdot 1/6 & & & & \\ 1/3(S2) \cdot 1/6 \cdot 0.1(S1) \cdot 3/6 & & & & \\ & & & & & \end{pmatrix} = S1, S1
```

Viterbi Algorithm

- Finding most likely sequence
 - 1. Generate all possible sequences
 - 2. For each sequence, calculate the probability, and pick the best one

N states, T sequence
$$\rightarrow N \times N \times ... \times N = O(N^T)$$

- The Viterbi algorithm
 - 1. Find the probabilities for all states X₁ for E₁

$$P(E_1 \mid X_1) P(X_1) \rightarrow score(X_1)$$

2. For each next states X₂ calculate

$$\max P(E_2 \mid X_2) P(X_2 \mid X_1) \operatorname{score}(X_1) \rightarrow \operatorname{score}(X_2)$$

Record the state X₁ which maximizes this value

3. Repeat the above until the end of the sequence is reached

N states, T sequence
$$\rightarrow N^2 + N^2 + ... N^2 = O(N^2 \cdot T)$$

S1, S2, S1

Viterbi Algorithm

Example

Observation = (R, R, G, B)

 $score(S1) = P(R \mid S1) P(S1)$

 $score(S1) = max P(R \mid S1) P(S1 \mid X_1) score(X_1)$

 $score(S1) = max P(G \mid S1) P(S1 \mid X_2) score(X_2)$

Viterbi Algorithm

Observation = (R, R, G, B)

→ Most likely sequence = (S1, S2, S2, S3)

Speech Recognition

The problem

- Observed: sequence of acoustic signals (c₁ ... c_n)
- Determine: which phoneme? → which word? states (p₁ ... p_n)
 - → Compute P(states for a phone/word | signal) by using HMM

Find argmax
$$P(p_1 ... p_n | c_1 ... c_n)$$

= argmax $\prod_{i=1...n} P(c_i | p_i) P(p_i | p_{i-1})$

Speech Recognition

Phone model

- Phoneme : smallest unit of sound that has a distinct meaning
 - [b] (bet), [ch] (chat), [d] (dog), ... [iy] (beat), [ih] (bit), [eh] (bet), ...
- Sound signal → frames (sampling 8kHz)
 - \rightarrow feature labels C₁, C₂, ... (vector quantization)
- Three states phone model

Phone HMM for [m]:

Output probabilities for the phone HMM:

observation	End:	Mid:	Onset:
	C_4 : 0.1	C_3 : 0.2	C_1 : 0.5
probability	C_6 : 0.5	C_4 : 0.7	C_2 : 0.2
	C_7 : 0.4	$C_5: 0.1$	C_3 : 0.3

Speech Recognition

Word model

- Word is represented by sequence of phonemes
 - [t ow m aa t ow], [t ow m ey t ow], ...
- Word pronunciation model

Phone HMM for [m]:

Output probabilities for the phone HMM:

Onset:	Mid:	End:
C_1 : 0.5	C_3 : 0.2	C_4 : 0.1
C_2 : 0.2	C_4 : 0.7	$C_6: 0.5$
C_3 : 0.3	$C_5: 0.1$	C_7 : 0.4

Handwriting Recognition

Hand-written character recognition

Handwriting Recognition

The problem

- Observed: sequence of moving directions (d₁.. d_n)
- Determine: which character? states (s₁.. s_n)

Find argmax
$$P(s_1 ... s_n | d_1 ... d_n)$$

= argmax $\prod_{i=1..n} P(d_i | s_i) P(s_i | s_{i-1})$

Handwriting Recognition

- The character model
 - HMM for '0':

- Observation: [8, 8, 7, 7, 7, 6, 6, 5, 5, ...]
 - P(states of '0' | 8, 8, 7, 7, 7, 6, 6, 5, 5, ...) is max.