Союз Соозтехих Социалистических Республик

12123028998



Государственный комитет СССР по делам изобратений и открытий

## ОПИСАНИЕ (11) 827538 ИЗОБРЕТЕНИЯ

## К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

- (61) Дополнительное к авт. свид-ву -
- (22) Заявлено 14.08.78 (21) 2673722/23-04
- с присоединением заявки № --
- (23) Приоритет -
- (43) Олубликовано 07.05.81. Бюллетень № 17
- (45) Дата опубликования описания 30.07.81

(51) M.Ka.3 C 10 M 5/02

(53) УДК 621.892.8 (088.8)

(72) Авторы изобретения

(71) Заявители

Г. В. Старикова, Д. И. Белый и В. Н. Стариков

Гомельский Государственный университет и Гомельский филнал Белорусского ордена Трудового Красного Знамени политехнического института

## (54) АНТИФРИКЦИОННАЯ МЕТАЛЛОПЛАКИРУЮЩАЯ СМАЗКА

1

Изобретение относится к технологии масся, используемых для уменьциения износа трущихся поверхностей.

В современной технике широко используется большое число различного состава консистентных смазок и масел, обладающих высокими антифрикционными характеристиками.

Известны смазки с добавлением различных наполнителей, в том числе порошков металлов [1].

Наибольшее раопространение нашли облагающие рядом ценных преимуществ металлоплакирующие смазки.

Известна металлоплакирующая смазка на основе пластичной мыльной смазки, например ЦИАТИМ-201 или ЦИАТИМ-203, содержащая 5—60 вес. % порошкообразного металла, например олова, свинца, меди, цинка [2].

Однако, повышая противозадирные свойства смазки в целом и износостойность пар трения, данная смазка обеспечивает это повышение в незначительной степени; например линейная интенсивность износа пар трения с применением известной смазки равна  $4.8 \cdot 10^{-8} \div 5.2 \cdot 10^{-8}$ , а с применением только смазки основы —5,72  $\cdot 10^{-8}$ , т. е. линеймая интенсивность износа умень-

цилась на 17-9%. Таким образом, износостойкость пар трения с применением известной смазки повысилась на 10-20% по смазки сравнению C примененнем ЦИАТИМ-201, т. с. повышение это незначительное. Это обусловлено тем, что относительно невелика пластичность частиц металлоплакирующей присадки на основе антифрикционных металлов, содержащихся в известной смазке. Кроме того, частицы меди и сплавов на ее основе имеют свойство наклепываться на трущихся поверхностях, а это повышает их твердость и уменьшает пластичные свойства. Это, в свою очередь, приводит к тому, что при работе в тяжелых режимах происходит частичное отслоение плакирующей пленки, приводящее к схватыванию и задиру повержностей, т. е. уменьшению износостойкости трущихся 20 пар

Во-вторых, недостатком известной смазки является то, что плакирующая присадка добавляется в большом количестве (до 60 вес. %), что удорожает стоимость смазки, так как в состав присадки могут входить дорогостоящие (дефицитные) металлические компоненты, а их получение (диспергирование) связано со значительными трудовыми и энергетическими затратами.

Таблица l Линейная интенсив HOCTL Смазки изиоса.  $I_h \cdot 10^4$ 5,72 **ТІИ АТИМ-201** ЦИАТИМ 201 +5% С ц ЦИАТИМ 201 +20% С ц ЦИАТИМ 201 + 40% С ц 4,2 4,6 5,6 ПИЛТИМ-201 ±6)% С□ ЦИАТИМ-201+5% Sn 3,0 3,4 5,0 ЦИАТИМ-201+20% Sn ЦИАТИМ-201+40% Sn ЦИАТИМ-201+61% Sn ПИАТИМ-201+1% Bi-Pb-Sn ПИАТИМ-201+5% Bi-Pb-Sn ПИАТИМ-201+10% BI-Pb-Sn ПИАТИМ-201+20% BI-Pb-Sn ПИАТИМ-201+30% BI-Pb-Sn 3.12 0,45 0,62 0,91 2,41 ЦИАТИМ-201+40% BI-Pb-Sn

тенсивности износа по сравнению со смязками известного технического решения. Из табличных данных также видно, что интервал оптимального процентного содержания присадки в предлагаемой смазке лежит в пределах от 5 до 20 вес. %, в то время как для известной смазки — в пределах 20— 40%.

Для определения влияния дисперсмости используемого наполнителя на интенсивность износа испытывают по указанной выше методике смазки, оптимальный процент содержания наполнителя в которых соответствует минимальному значению интенсивности износа (см. табл. 2).

Таблица 2

| Смязка                        | Дисперс-<br>пость на-<br>полнителя,<br>маж | Линейная интен-<br>сивность износа.<br>/ <sub>h</sub> -10 <sup>8</sup> |  |
|-------------------------------|--------------------------------------------|------------------------------------------------------------------------|--|
| ЦИАТИМ-201+<br>+20% Си        | 5-10<br>10-20<br>60-100                    | 4.52<br>4.2<br>4.8—5,0                                                 |  |
| ЦИАТИМ-201+<br>+20% Sn        | 5-10<br>10-20<br>60-100                    | 3,0—3,21<br>3,3<br>3,6—4,0                                             |  |
| ЛЦИАТИМ-201+<br>+5% ВІ −Рb—Sл | 5-10<br>10-20<br>60-100                    | 0,45<br>0,68<br>3,15                                                   |  |

Как видно из табл. 2, увеличение размера частиц от 5 до 60 мкм в известной смазке к вначительному изменению интенсивности износа не приводит, в то время, как для предлагаемой смазки это изменение существенно, а минимальной интексивности износа соответствует дисперсность от 5 до 10 мкм.

Практически не влияет на линейную интенсивность износа пары трения и величина зерна в частицах порошка наполнителя известной смазки, в то время как в предлатаемой смазке величина зерна в частицах наполнителя завнсит от процентного содержания компонент сверхпластичного сплава (см. табл. 3) и при его отклонении от оптимального на болсе чем ±3% приводит к увеличению китенсивности износа в 5—10

6

раз. Для определения эксплуатационных характеристик предлагаемой смазки ЦИА. ТИМ-201 + 5% Ві-Рь-Яп проводят ислы-тання пары трення латунь Л63 — сталь 9ХС в среде различных смазок и при различных нагрузках. После часовой приработки при удельной нагрузке 10 кас/см2 нагрузку увеличивают через каждые 20 мин на 10 кгс/см2. Испытание ведут 20 мин при каждой нагрузке с целью стабилизации процесса трения. В ходе эксперимента определяют коэффициент трения и температуру в зоне трення. Определение линейной интенсивности износа проводят для каждой нагрузки по указанной выше методике. Испытания проводят до достижения нагрузки заедания. Определение температуры в зоне трения проводят методом комбинированной термопары. Данные испытаний сведены в табл. 4.

Как видно из таблицы, при добавлении в основную смазку 5% сплава примерно в 2 раза расширяется рабочий диапазон удельных нагрузок узла трения по сравнению с известной смазкой и в 3 раза по сравнению с базовой смазкой ЦИАТИМ-201. Резко уменьшается коэффициент трения и при удельных нагрузках 100 кас/см² он равен 0,02, т. в. в четыре раза меньше минимального значения коэффициента трения для смазки ЦИАТИМ-201 + 5% Sn. в шесть раз меньше, чем для смазки ЦИАТИМ-201 + 5% Си и в 8 раз меньше, чем для ЦИАТИМ-201.

Температурный режим в зоне тренки при работе узла со смазкой ЦИАТИМ-201 + 5% Ві—РЬ—Яп, как видно мз таблицы, становится более стабильным при удельной нагрузке свыше 30 кгс/см², в то время как для известных смазок с увеличением нагрузки температура возрастает по экспоненте, что приводит к протеканию в смазке деструкционных процессов, отрицательно сказывающихся на ее долговечности и приводящих к работе пары трения с задиром.

Вследствие того, что процесс трения с нопользованием предлагаемой смазки характеризуется низкими значениями жоэффициента трения и стабильной температурой в зоме трения в указанном диапазоне насрузок, значительно уменьшается интенсивность износа и увеличиваются противо-

7

12123028998

Таблица З

8

|                   |                                                                                                                                                                  |                                                    | TO SHIELD                                 |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------|
| Сжазка            | Содержание компонент в сплаве<br>висмут — свинец — олово                                                                                                         | Величниа<br>осрна<br>в частицах<br>порошка,<br>мкж | Линейная интепсивность износа. $I_h$ -105 |
|                   | Эвтектическая концентрация 50 всс. %, 33 всс. %, 17 всс. %                                                                                                       | 0,5—1,5                                            | 0,45                                      |
| ٥                 | Отклонение компоненты висмут на — 3 вес. % 47 вес. % висмута, 35 вес. %                                                                                          | 1,2—2,5                                            | 0,48                                      |
| — олово           | свинца, 18 вес. % олова<br>Отклонение компоненты висмут на + 3 вес.<br>% 53 всс. % висмута, 31 вес.                                                              | 1,5—2,50                                           | 0,50                                      |
| - рэннсс          | % свинца, 16 вес. % олова<br>Отклопение компоненты свинец на — 3 вес. %<br>52 вес. % эксмута, 30 вес                                                             | 1,25—2,5                                           | 0,55                                      |
| 100               | % свинца, 18 вес. % олова<br>Отклонение комприенты свипец на + 3 вес. %<br>47,5 вес. % висмута, 36 вес. % свинца,                                                | 1,45—2,5                                           | 0,54                                      |
| нсмут             | 16,5 всс. % олова<br>Откловение компоненты олово на — 3 всс. %<br>52 всс. % висмута, 34 всс. %                                                                   | 1,2—2,0                                            | 0,50                                      |
| 5 вес, % висмут — | свинца, 14 вес. % олова Отклоневие компоненты олово на + 3 вес. % 18 рес. % висмута, 32 вес. %                                                                   | 1,5—2,0                                            | 0,55                                      |
| + 5 86            | свинца, 20 вес. % олова<br>Отклонение компоненты висмут на<br>— 5 вес. % 45 вес. % рисмута,                                                                      | 5_7,5                                              | 3,51                                      |
| UNATHM-201 +      | 36,5 вес. % свинца, 1,5 вес. % олова Отклонение компоненты васмут на + 5 вес. % 55 вес. % янсмута,                                                               | 6,5-8,0                                            | 3,6                                       |
| ИАТИ              | 29.5 % свинца, 16,5 вес. % олова<br>Отклонение компоненты висмут на — 10                                                                                         | 8,5—12,5                                           | 6,24                                      |
| <b>=</b>          | вес. % 40 нес. % висмута, 39.5 нес. % свинца, 20,5 вес. % олова Отклонение компоненты висмут на + 10 нес. % 60 нес. % висмута, 26 нес. % свинца, 14 нес. % олова | 8,0—13                                             | 6,12                                      |

Таблина 4

|              | Эксплуатацион-<br>ные характерис-<br>тики смазки | Удельная<br>нагрузка<br>Р. кгс/см <sup>3</sup> | Коэффи-<br>инелт, µ          | Темпера-<br>тура<br>в зоне<br>трення,<br>Т°С  | Линейная<br>нотенсив-<br>ность<br>износа,<br>S <sub>h</sub> ·10* | Скорость<br>скольже-<br>ния <i>V, мје</i> | Цримсатине                                              |
|--------------|--------------------------------------------------|------------------------------------------------|------------------------------|-----------------------------------------------|------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------|
| Известивя    | ЦИАТИМ-201                                       | 10<br>30<br>60<br>100                          | 0,2<br>0,19<br>—             | 50<br>71<br>Деструк-<br>ция<br>смазки         | 2,88<br>5,72<br>Схваты-<br>вание                                 | 0,73                                      | Апалогичи <i>ые</i><br>результаты                       |
| Изэсстиая    | ЦИАТИМ-201+<br>+20 % Cu                          | 10<br>30<br>60<br>100                          | 0,15<br>0,13<br>0,17         | 34<br>46<br>Деструк-<br>цил<br>смазки         | 2,16<br>4,2<br>Схваты-<br>вание                                  | 0,73                                      | получены и при изготовлении смазок па основе ЦИАТИМ 208 |
| Известная    | ЦИАТИМ-201+<br>+20 % Cu                          | 10<br>30<br>60<br>100                          | 0,11<br>0,09<br>0,13         | 34<br>36<br>94<br>Деструк-<br>. цня<br>смазки | 1,92<br>3,0<br>4,70<br>Схваты-<br>вание                          | 0,73                                      | литол-24,<br>ОКБ-122-7                                  |
| Предлагаемвя | ЦИАТИМ-201+<br>+5 %<br>BI—Pb—Sп                  | 10<br>30<br>60<br>100                          | 0,10<br>0,06<br>0,03<br>0,02 | 34<br>35<br>45<br>52                          | 0,29<br>0,45<br>0,14<br>0,05<br>и менее                          | 0,73                                      |                                                         |

827538

10

HEDMANCOSTIGAN

9

задирные свойства, т. е. поставленная цель достигается.

Кроме того, применение предлагаемой смазки значительно расширяет рабочий диапазон удельных нагрузок для трушихся пар, а также ввиду низкого оптимального процентного содержания металлоплакирующей присадки позволяет почти в три раза удешевить стоимость смазки.

## Формула изобретения

Антифрикционная металлоплакирующая смазка на основе пластичной мыльной смазки, содержащая порошкообразную металлическую добавку, отличающаяся тем, что, с целью повышения противозадирочных свойств смазки и износостойкости

пар трения, в качестве порошкообразной металлической добавки смазка содержит 5-20 вес. % сплава висмут -- свинец -олово при содержании компонентов в спла-5 ве, вес. %:

10

14 - 20Олово 30---36 Свинец Остальное. Висмут

Источники информации, принятые во внимание при экспертизе:

CCCP свидетельство Авторское № 278938, кл. С 10 М 5/02, 1968. 2. Авторское свидетельство CCCP № 179409, кл. С 10 М 5/02, 1962 (прото-

Составитель Л. Русянова

Релактор П. Горькова

Техред Л. Кунлина

Корректор С. Файн

Закла 573/517 Иэд. № 368 Закло 573/517 Иэд. № 368 Тираж 553 Подписнов НПО «Поиск» Государственного комитета СССР по делам изобретений и открытий 113035, Москва, Ж-35, Раушская наб., д. 4/5

Тип. Харьк. фил. пред. «Патент»