北京邮电大学

2021 年硕士研究生招生考试试题

考试科目:807 软件工程专业综合

请考生注意: ①所有答案(包括选择题和填空题)—律写在答题纸上,否则不计成绩。

②不允许使用计算器。本考题包括数据结构、操作系统两个科目。

科目一:数据结构(90分)

一、选择题(每小题2分,共20分)

- 1. 指针 s 指向了循环双链表中的一个结点。欲在指针 s 所指向的结点的前面插入一个 指针 q 所指向的结点时候,下面哪个选项是不正确的语句序列
 - q->next=s; q->prior=s->prior; s->prior->next=q; s->prior=q;
 - s->prior->next=q; q->next=s; q->prior=s->prior; s->prior=q; B.
 - C. q->prior=s->prior; s->prior->next=q; q->next=s; s->prior=q;
 - s->prior=q; q->next=s; s->prior->next=q; q->prior=s->prior;
- 2. 考虑用链表实现的线性表和用数组实现的线性表. 在下列操作中,哪一个操作在链 表上实现比在数组上的实现在运行时较快?
 - 在线性表中删除所有键值为 x 元素
 - B. 在线性表中查找某个元素
 - C. 交换两个位置的元素
 - D. 将线性表中数据导出的到硬盘 <
- 已知一棵二叉树有 2020 个结点,则其中最多可以包含多少个度为贰的结点? 3.
 - A. 1008
 - B. 1009
 - C. 1010
 - D. 1011
- 李 英 当输入序列已经接近排序时,下列算法中哪一个的速度会快 4.
 - A. 希尔排序
 - 堆排序 В.
 - C. 归并排序
 - 插入排序 D.
- 中序递归遍历包含 n 个结点二叉树的示意代码如下: 5.

void inorder(Bnode* root) {

if(root == 0) return:

inorder(root->lc); //递归访问左子

访问 root 结点;

inorder(root->rc): //递归访问右子

考试科目:807 软件工程专业综合

第1页 共7页

各个学校计算机考研/软件考研真题 免费分享 https://github.com/csseky/cskaoyan } 上述代码的空间复杂度是。 A. $0(\log n)$ B. O(n)C. $0(n \log n)$ D. $O(n^2)$ 已知使用顺序表存储数据,表长为 n,假设在表中的任意位置插入元素的概率相等, 则插入一个元素,平均需要移动的元素个数____。 (n-1)/2B. n/2C. (n+1)/2D. 不确定 7. 执行完下面的代码片段后,变量 counter 的值是多少? int counter = 0: for (int i=1; $i \le n$; ++i) for (int j=1; $i \neq i$; ++ j) for (int k = 1) $k \le j$; ++k) ++counter; (n+1) n (n-1) / 6Α. B. (n+2)(n+1)n/6C. n(n-1)(n-2)/6D. (n+3)(n+2)(n+1)/6有 n 个顶点的简单完全无向图有多少条弧边? III. A. n(n-1)B. n(n-1)/2 $C. n^2$ D. $(n^2 - 1)/2$ 某种线性表在表头和表尾都可以进行插入和删除操作,此种线性表通常被称为 堆栈 A. B. 双端堆栈 C. 队列 D. 双端队列 10. 用邻接矩阵存储一个包含有 n 个顶点的有向图, 通常情况下此邻接矩阵有多少个 元素? A. n(n-1)/2B. (n+1) n/2 $C. n^2$ D. n

8.

9.

二、简答题(每小题 10 分,共 40 分)

- 1. 以键值输入序列 1、4、7、2、5、8、3、6、9、0 构造一颗平衡的排序二叉树(AVL 树)。 画出添加键值 2、3 和 0 后的平衡排序二叉树。
- 2. 将数组 a[0,10) = (9,8,7,6,5,4,3,2,1,0) 使用 Williams shift down 算法建成 小根堆,请给出结果数组,并描述过程。
- 3. 求模式串'bacbaca'的 next 数组和 nextval 数组。
- 4. 已知一无向图如下图所示。

- a) 给出从 v1 开始的广度优先搜索序列;
- b) 画出从 V1 开始的深度优先搜索生成树。

三、编程题(每小题15分,共30分)

1. 下面是给定容量为 MAX 的使用循环数组实现队列的代码片段,其中 T 是队列中元素 类型。

static int const MAX = 256; //队列的最大容量 static T* data; //循环数组,队列元素存储在此 static 其他必要数据;

- a) 请给出循环数组实现队列所需的其他必要数据的定义;
- b) 请使用循环数组实现队列的下述六个功能函数,请首先用语言描述实现的方法, 再给出 C/C++语言的具体实现。

void ini(); //初始化函数

int size(); //返回队列中元素个数

bool full(); //判满函数 bool empty(); //判空函数

T front(); //返回队头元素; T 是元素类型

void push(T v); //入队 void pop(); //出队

2. n 次 Laguerre 多项式 Pn(x) 的递归定义是:

 $P_0(x) = 1$

 $P_1(x) = 1 - x$:

考试科目:807 软件工程专业综合

第3页 共7页

- $P_n(x) = (2n-1-x) P_{n-1}(x) (n-1)^2 P_{n-2}(x)$ (n>1) A series of the property of the pr
- a) 请按照上面的定义用递归的方式求 n 次 Lagureer 多项式在 x 处的值: double laguerre (double x, int n):
- b) 给出此递归函数的时间复杂度。

科目二:操作系统(60分)

四、判断题(每小题1分,共10分)

请考生在答题纸上标记所给出判断题题目的题号,并在题号后给出正确与 否的选择,标注方式采用"对"/"错",或者"True"/"False",或者"T"

- / "F" 形式。
- 1. 如果一个程序为多个进程所共享,那么该程序的代码在执行过程中不能被修改,即 程序应该是可重入代码。
- 2. 分时系统中,时间片越小越好。
- 3. 当一个进程从等待状态变成就绪状态时,则一定有一个进程从就绪状态变成运行状 态。
- 4. 优先级是进程调度的一个重要依据,优先级大的进程必然首先被调度运行。
- 5. 对单处理器环境下,并发进程不能重叠,只能被交替执行。
- 6. 最短作业优先调度策略经常被用在分时系统和处理环境变化情况下,因为它没有抢 占模式。
- 7. 虚拟存储系统可以在每一台计算机上实现。
- 8. 在虚拟存储方式下,程序员编程时不必考虑主存的容量,但系统的吞吐量在很大程 度上依赖于主存储器的容量。
- 9. 文件的块越大,一次 I/O 操作所传送的记录就会越多。但是大块需要更大的 I/O 缓 冲区,从而使缓冲区的管理更加困难。
- 10. C-SCAN 要求磁头臂仅仅沿着一个方向移动,并在途中完成所有没有完成的请求,找 到它到达这个方向上的最后一个磁道,或者在这个方向上没有其他请求为止,接着

考试科目:807 软件工程专业综合

第4页 共7页

石、	选择题	(毎/	1、题 2	分.	共 20	分)
ш,	起于此	\ <u>\</u> \	1、此然 2	- // ,	元 40	<i>J</i> 1 <i>J</i>

九	、选择题(每小题 2 分,共 20 分)
1.	实时操作系统必须在 内处理完来自外部的事件。 A. 响应时间 B. 周转时间 C. 规定时间 D. 调度时间
2.	下面对进程的描述中,错误的是。 A. 进程是动态的 B. 进程执行需要处理机 C. 进程是有生命期的 D. 进程是指令的集合
3.	对进程的管理和控制使用。 A. 指令 B. 原语 C. 信息量 D. 信箱
4.	某系统中有 3 个并发进程,都需要同类资源 4 个,试问该系统不会发生死锁的最少资源数是。 A. 9 B. 10 C. 11 D. 12 在下列解决死锁的方法中,属于死锁预防策略的是。 A. 银行家算法
5.	在下列解决死锁的方法中,属于死锁预防策略的是A. 银行家算法 B. 资源有序分配法 C. 死锁检测法 D. 资源分配图化简法
6.	在某系统中采用基址、限长寄存器的方法来保护存储信息,判断某指令访问地址是否超界的判别式为。 A. 0 ≤ 被访问的逻辑地址 < 限长寄存器的内容长度 B. 0 ≤ 被访问的逻辑地址 ≤ 限长寄存器的内容长度 C. 0 <被访问的物理地址 < 限长寄存器的内容长度 D. 0 <被访问的物理地址 ≤ 限长寄存器的内容长度

考试科目:807 软件工程专业综合

页式虚拟存储管理的主要特点是_____

- A. 不要求将作业装入到内存
- B. 不要求将作业同时全部装入到内存的连续区域
- C. 不要求进行缺页中断处理
- D. 不要求进行页面置换
- 8. 在操作系统中,用户程序申请使用 I/O 设备时,通常采用。。
 - A. 物理设备名
 - B. 逻辑设备名
 - C. 虚拟设备名
 - D. 独占设备名
- 9. 文件路径名是指。
 - A. 文件名和文件扩展名
 - B. 一系列的目录文件名和该文件的文件名
 - C. 从根目录到该文件所经历的路径中各符号名的集合
 - D. 目录文件名和文件名的集会
- 10. 逻辑文件是
 - A. 在外部设备上
 - B. 从用户观点看
 - C. 虚拟存储
 - D. 目录

六、简答题(10分)

- 操作系统内存管理中什么是驻留集?什么是工作集?驻留集管理和页替换策略有什 么区别? (4分)
- 2. 什么是操作系统的微内核架构?简单列举并解释微内核设计相对于整体式设计的优 点和缺点? (6分)

七、计算或设计题(20分)

1. 表 1 给出作业 1、2、3 的到达时间和运行时间。采用最短作业优先调度算法和先 来先服务调度算法,试问平均周转时间各为多少?是否还有更好的调度策略存在? (时间单位:小时,以十进制进行计算)(8分)

表 1 作业的到达及运行时间

作业号	到达时间	运行时间
1	0.0	8. 0
2	0. 4	4. 0
3	1.0	1.0

考试科目:807 软件工程专业综合

- 2. 花果山有很多猴子,山对面有很多猴子爱吃的桃子,但是中尚有一处峡谷,横跨峡谷拉了一根绳索(假设为南北方向,花果山在南边),这样猴子就可以攀着绳索越过峡谷去吃桃子。只要它们朝着相同的方向,同一时刻可以有多只猴子通过。但是如果在相反的方向上同时有猴子通过则会发生死锁(这些猴子将被卡在绳索中间,假设这些猴子无法在绳索上从另一只猴子身上翻过去)。如果猴子们想越过峡谷,它们必须看当前是否有别的猴子在逆向通过。猴子们怎样才能吃到桃子呢?请使用P/V操作帮助它们解决该问题。(8 分)
- 3. 考虑如表 2 所示的段表。

表 2 段表

N = WK					
段号	基地址	段长			
0	219	600			
1	2300	14			
2	90	100			
3	1327	580			
4	1952	96			

那么,逻辑地址(2、88)对应的物理地址是多少? 逻辑地址(4,100)对应的物理地址是多少?(4分)