

Interpretations & Assumptions for Two Population Proportion Intervals

Julie Deeke Statistics Course Developer

Swimming Lessons Confidence Interval

"range of reasonable values for our parameter"

With 95% confidence, the population proportion of parents with white children who have taken swimming lessons is 11.23 to 24.77% higher than the population proportion of parents with black children who have taken swimming lessons.

Intervals for Differences

Is there a difference between two parameters?

If parameters are equal → difference is 0

If parameters are unequal → difference is not 0

Look for **0** in the range of reasonable values

Assumptions

We need to assume that we have <u>two independent</u> <u>random samples.</u>

We also need <u>large enough sample sizes</u> to assume that the distribution of our estimate is normal. That is, we need $n_1\hat{p_1}$, $n_1(1-\hat{p_1})$, $n_2\hat{p_2}$, and $n_2(1-\hat{p_2})$ to all be at least 10.

Assumptions

We need to assume that we have two independent random samples.

We also need <u>large enough sample sizes</u> to assume that the distribution of our octiments. In other words, we need the distribution of our estimate need $n_1\hat{p_1}$, $n_1(1-\hat{p_1})$, $n_2\hat{p_2}$, and $n_2(1-\hat{p_1})$

at least 10 yes's and at least 10 no's for each sample.