Project: Analysis of medical appointments(in Brazil)

Table of Contents

- Introduction
- Data Wrangling
- Exploratory Data Analysis
- Conclusions

Introduction

No-Show appointments

Data set consists of data of medical appointments in Brazil, is focused on the question whether people turn up for appointment or not. Characteristics of the data set

- 1. Neighbourhood-gives location
- 2. Gender
- 3 Age
- 4. Scholarship
- 5. Hipertension
- 6. No-show-This shows whether appointment taken or not if value is No, then appointment taken and vice-versa

Posing Questions

- 1. Observing people appointments with respect to scholarship?
- 2. Based on location and hipertension how people appointments affected?
- 3. Male vs Female scholarship and its effect on appointment
- 4. Which age people are not taking appointments mostly with respect to Neighbourhood?
- 5. People with hipertension, diabetes appointment vs Ppl without hipertension, diabetes appointment

```
In [1]: # Use this cell to set up import statements for all of the packages that you
# plan to use.

# Remember to include a 'magic word' so that your visualizations are plotted
# inline with the notebook. See this page for more:
# http://ipython.readthedocs.io/en/stable/interactive/magics.html
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
%matplotlib notebook
```

Data Wrangling

Tip: In this section of the report, you will load in the data, check for cleanliness, and then trim and clean your dataset for analysis. Make sure that you document your steps carefully and justify your cleaning decisions.

General Properties

pr	int(data.nead	())							
	PatientId	Appoint	mentID	Gender		S	cheduledDay	\	
0	2.987250e+13	50	642903	F	2016-6	4-2	9T18:38:08Z		
1	5.589978e+14	50	642503	М	2016-6	4-2	9T16:08:27Z		
2	4.262962e+12	50	642549	F	2016-6	4-2	9T16:19:04Z		
3	8.679512e+11	50	642828	F	2016-6	4-2	9T17:29:31Z		
4	8.841186e+12	50	642494	F	2016-6	4-2	9T16:07:23Z		
	Appoint	tmentDay	Age	Neigh	nbourho	od	Scholarship	Hipertension	\
0	2016-04-29T0	0:00:00Z	62	JARDIM	DA PEN	IHA	0	1	
1	2016-04-29T0	0:00:00z	56	JARDIM	DA PEN	IHA	0	0	
2	2016-04-29T0	0:00:00Z	62	MATA	DA PRA	ΑIΑ	0	0	
3	2016-04-29T0	0:00:00Z	8 F	PONTAL DE	CAMBL	JRI	0	0	
4	2016-04-29T0	0:00:00Z	56	JARDIM	DA PEN	IHA	0	1	
	Diabetes Alo	coholism	Handca	ap SMS_r	receive	ed N	lo-show		
0	0	0		0		0	No		
1	0	0		0		0	No		
2	0	0		0		0	No		
3	0	0		0		0	No		
4	1	0		0		0	No		

In [3]: #convert the dataframe data into a data frame that allows access using a uniqu

```
e value
        #this allows to remove duplicates in the data frame
        df=data.set index('PatientId')
        print(df.head())
                                                     ScheduledDay \
                       AppointmentID Gender
        PatientId
        2.987250e+13
                             5642903
                                             2016-04-29T18:38:08Z
        5.589978e+14
                             5642503
                                          M 2016-04-29T16:08:27Z
        4.262962e+12
                             5642549
                                             2016-04-29T16:19:04Z
        8.679512e+11
                             5642828
                                             2016-04-29T17:29:31Z
        8.841186e+12
                             5642494
                                             2016-04-29T16:07:23Z
                                                      Neighbourhood Scholarship \
                             AppointmentDay
                                             Age
        PatientId
        2.987250e+13
                      2016-04-29T00:00:00Z
                                                    JARDIM DA PENHA
                                              62
        5.589978e+14 2016-04-29T00:00:00Z
                                              56
                                                    JARDIM DA PENHA
                                                                                0
                      2016-04-29T00:00:00Z
                                                                                0
        4.262962e+12
                                              62
                                                      MATA DA PRAIA
                                                                                0
        8.679512e+11 2016-04-29T00:00:00Z
                                               8 PONTAL DE CAMBURI
        8.841186e+12 2016-04-29T00:00:00Z
                                              56
                                                    JARDIM DA PENHA
                                                                                0
                       Hipertension Diabetes Alcoholism Handcap SMS_received \
        PatientId
        2.987250e+13
                                  1
                                            0
                                                        0
                                                                  0
                                                                                0
        5.589978e+14
                                  0
                                            0
                                                        0
                                                                  0
                                                                                0
                                  0
                                                                                0
        4.262962e+12
                                            0
                                                        0
                                                                  0
        8.679512e+11
                                  0
                                            0
                                                        0
                                                                  0
                                                                                0
        8.841186e+12
                                  1
                                                                  0
                                                                                0
                     No-show
        PatientId
        2.987250e+13
                           No
        5.589978e+14
                           No
        4.262962e+12
                           No
        8.679512e+11
                           No
        8.841186e+12
                           No
In [4]: | df.columns = df.columns.str.replace('No-show', 'NoShow')
        df.columns
Out[4]: Index(['AppointmentID', 'Gender', 'ScheduledDay', 'AppointmentDay', 'Age',
                'Neighbourhood', 'Scholarship', 'Hipertension', 'Diabetes',
                'Alcoholism', 'Handcap', 'SMS received', 'NoShow'],
              dtype='object')
```

Data Cleaning

In [5]: #getting dataframe with required col's
 #refering to the questions posed above the col's are selected
 df_investigate=df[['Gender','ScheduledDay','Age','Neighbourhood','Scholarship'
 ,'Hipertension','Diabetes','NoShow']]
 print(df_investigate.head())

	Gender	ScheduledDay	/ Age	Neighbourhood	\
PatientId					
2.987250e+13	F 2016	-04-29T18:38:082	Z 62	JARDIM DA PENHA	
5.589978e+14	M 2016	-04-29T16:08:27	Z 56	JARDIM DA PENHA	
4.262962e+12	F 2016	-04-29T16:19:04Z	Z 62	MATA DA PRAIA	
8.679512e+11	F 2016	-04-29T17:29:312	Z 8 P	ONTAL DE CAMBURI	
8.841186e+12	F 2016	-04-29T16:07:23	Z 56	JARDIM DA PENHA	
	Scholarship	Hipertension	Diabetes	NoShow	
PatientId					
2.987250e+13	0	1	e) No	
5.589978e+14	0	0	e) No	
4.262962e+12	0	0	e) No	
8.679512e+11	0	0	6) No	
8.841186e+12	0	1	1	. No	
	v			. 110	

Out[6]:	Gender ScheduledDay	object object
	Age	int64
	Neighbourhood	object
	Scholarship	int64
	Hipertension	int64
	Diabetes	int64
	NoShow	object
	dtype: object	

In [7]: #after checking the data types of the col's in the data frame to investigate c onverting them to appropriate data type #converting data in the ScheduledDay from dtype object to dtype datatime df investigate1=df investigate[df investigate['ScheduledDay']==pd.to datetime(df['ScheduledDay'])].copy() df_investigate.head()

Out[7]:

	Gender	ScheduledDay	Age	Neighbourhood	Scholarship	Hipertension
PatientId						
2.987250e+13	F	2016-04- 29T18:38:08Z	62	JARDIM DA PENHA	0	1
5.589978e+14	М	2016-04- 29T16:08:27Z	56	JARDIM DA PENHA	0	0
4.262962e+12	F	2016-04- 29T16:19:04Z	62	MATA DA PRAIA	0	0
8.679512e+11	F	2016-04- 29T17:29:31Z	8	PONTAL DE CAMBURI	0	0
8.841186e+12	F	2016-04- 29T16:07:23Z	56	JARDIM DA PENHA	0	1

In [14]: #knowing the data types of the data in the col's after conversion into proper dtypes df_investigate.dtypes

Out[14]: Gender object ScheduledDay object Age int64 Neighbourhood object Scholarship int64 Hipertension int64 Diabetes int64 NoShow object dtype: object

In [15]: #removing noisy data ,here as of interest we got data Frame with required co l's

> #age can't be negative so removing such noisy data if any this is achieved as follows

df investigate=df investigate[df investigate['Age']>=0] #performing a comparision on a col and obtaining the filtered data In [16]: # After discussing the structure of the data and any problems that need to be # cleaned, perform those cleaning steps in the second part of this sectio n. #Create a new function: def num_missing(x): return sum(x.isnull()) #Applying per column: print("Missing values per column:") print(df_investigate.apply(num_missing, axis=0)) #axis=0 defines that funct ion is to be applied on each column #Applying per row: #print ("\nMissing values per row:") #print (df_investigate.apply(num_missing, axis=1).head()) df_investigate.head()

Missing values per column:

Gender 0 ScheduledDay 0 Age 0 Neighbourhood 0 Scholarship 0 Hipertension 0 Diabetes 0 NoShow dtype: int64

Out[16]:

	Gender	ScheduledDay	Age	Neighbourhood	Scholarship	Hipertension
Patient i d						
2.987250e+13	F	2016-04- 29T18:38:08Z	62	JARDIM DA PENHA	0	1
5.589978e+14	М	2016-04- 29T16:08:27Z	56	JARDIM DA PENHA	0	0
4.262962e+12	F	2016-04- 29T16:19:04Z	62	MATA DA PRAIA	0	0
8.679512e+11	F	2016-04- 29T17:29:31Z	8	PONTAL DE CAMBURI	0	0
8.841186e+12	F	2016-04- 29T16:07:23Z	56	JARDIM DA PENHA	0	1

from the above finding no missing values hence imputing missing values is not necessary

Exploratory Data Analysis

Tip: Now that you've trimmed and cleaned your data, you're ready to move on to exploration. Compute statistics and create visualizations with the goal of addressing the research questions that you posed in the Introduction section. It is recommended that you be systematic with your approach. Look at one variable at a time, and then follow it up by looking at relationships between variables.

In [17]: # Use this, and more code cells, to explore your data. Don't forget to add
Markdown cells to document your observations and findings.
df_show=df_investigate[['Gender','Neighbourhood','Scholarship','NoShow','Hiper
tension']] #getting dataframe with required features
print(df_show.head())

	Gender	Neighbourhood	Scholarship No	Show	Hipertension
PatientId					
2.987250e+13	F	JARDIM DA PENHA	0	No	1
5.589978e+14	М	JARDIM DA PENHA	0	No	0
4.262962e+12	F	MATA DA PRAIA	0	No	0
8.679512e+11	F	PONTAL DE CAMBURI	0	No	0
8.841186e+12	F	JARDIM DA PENHA	0	No	1

Based on Scholarship ,how appointment is affected?

Parameters

- 1. Scholarship Independent variable
- 2. Appointment(NoShow)-dependent variable on above variable

In [18]: #data frame of interested investigation
 df_Scholarship=df_show[['Scholarship','NoShow']]
 #to visualize the scholarship with No-->NoShow and yes-->NoShow
 view_Scholarship=df_Scholarship.groupby(['NoShow']).sum()
 view_Scholarship.unstack().plot(kind='bar',stacked=True, color=['green','red'
], grid=True)

Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x2a0e16d1128>

probability of a person to turnup for appointment on getting Scholarship: 0.762636957923

Based on Neighbourhood and Scholarship ,how appointment is affected?

Parameters

- 1. Neighbourhood Independent variable
- 2. Scholarship Independent variable
- 3. Appointment(NoShow)-dependent variable on above variables

```
In [20]: df_location_Scholarship=df_show[['Neighbourhood','Scholarship','NoShow']]
    print(len(df_location_Scholarship))
    #view_loc_Scholar=df_location_Scholarship.groupby(['Neighbourhood','NoShow'],a
    s_index=False).sum()
    view_loc_Scholar = df_location_Scholarship.groupby([ "Neighbourhood", "NoSho
    w",'Scholarship'],as_index=False )
    #adding a new column count as NoShow is categorical and here we take count of
    similar values
    g=pd.DataFrame(view_loc_Scholar.size().reset_index(name = "Count"))
    g
```

110526

Out[20]:

	Neighbourhood	NoShow	Scholarship	Count
0	AEROPORTO	No	0	7
1	AEROPORTO	Yes	0	1
2	ANDORINHAS	No	0	1510
3	ANDORINHAS	No	1	231
4	ANDORINHAS	Yes	0	429
5	ANDORINHAS	Yes	1	92
6	ANTÔNIO HONÓRIO	No	0	212
7	ANTÔNIO HONÓRIO	No	1	9
8	ANTÔNIO HONÓRIO	Yes	0	45
9	ANTÔNIO HONÓRIO	Yes	1	5
10	ARIOVALDO FAVALESSA	No	0	176
11	ARIOVALDO FAVALESSA	No	1	44
12	ARIOVALDO FAVALESSA	Yes	0	54
13	ARIOVALDO FAVALESSA	Yes	1	8
14	BARRO VERMELHO	No	0	332
15	BARRO VERMELHO	Yes	0	91
16	BELA VISTA	No	0	1345
17	BELA VISTA	No	1	178
18	BELA VISTA	Yes	0	337
19	BELA VISTA	Yes	1	47
20	BENTO FERREIRA	No	0	649
21	BENTO FERREIRA	No	1	16
22	BENTO FERREIRA	Yes	0	186
23	BENTO FERREIRA	Yes	1	7
24	BOA VISTA	No	0	237
25	BOA VISTA	No	1	17
26	BOA VISTA	Yes	0	52
27	BOA VISTA	Yes	1	6
28	BONFIM	No	0	1940
29	BONFIM	No	1	283
273	SOLON BORGES	Yes	0	58

	Neighbourhood	NoShow	Scholarship	Count
274	SOLON BORGES	Yes	1	11
275	SÃO BENEDITO	No	0	825
276	SÃO BENEDITO	No	1	327
277	SÃO BENEDITO	Yes	0	210
278	SÃO BENEDITO	Yes	1	77
279	SÃO CRISTÓVÃO	No	0	1335
280	SÃO CRISTÓVÃO	No	1	138
281	SÃO CRISTÓVÃO	Yes	0	327
282	SÃO CRISTÓVÃO	Yes	1	36
283	SÃO JOSÉ	No	0	1416
284	SÃO JOSÉ	No	1	133
285	SÃO JOSÉ	Yes	0	381
286	SÃO JOSÉ	Yes	1	47
287	SÃO PEDRO	No	0	1678
288	SÃO PEDRO	No	1	255
289	SÃO PEDRO	Yes	0	449
290	SÃO PEDRO	Yes	1	66
291	TABUAZEIRO	No	0	2126
292	TABUAZEIRO	No	1	433
293	TABUAZEIRO	Yes	0	469
294	TABUAZEIRO	Yes	1	104
295	UNIVERSITÁRIO	No	0	118
296	UNIVERSITÁRIO	No	1	2
297	UNIVERSITÁRIO	Yes	0	29
298	UNIVERSITÁRIO	Yes	1	3
299	VILA RUBIM	No	0	645
300	VILA RUBIM	No	1	65
301	VILA RUBIM	Yes	0	131
302	VILA RUBIM	Yes	1	10

303 rows × 4 columns

```
In [21]: sns.factorplot(x="Count", y="Neighbourhood", hue="NoShow", data=g, col ="Schol
arship", kind="swarm")
#requesting to view the image --> in new tab for proper view (open in .ipynb )
```


Out[21]: <seaborn.axisgrid.FacetGrid at 0x2a0e16d16d8>

MALE Vs FEMALE, Scholarship and its effect on NoShow Appointment

Parameters

- 1. Scholarship Independent variable
- 2. Gender -Independent Variable
- 3. Appointment(NoShow)-dependent variable on above variables

In [22]: #getting data frame to investigate
 df_gender_Scholarship=df_show[['Gender','Scholarship','NoShow']]
 #grouping data frame based on gender,NoShow and ploting a histogram
 df_gender_Scholarship.groupby(['Gender','NoShow']).size().plot(kind='bar')

Out[22]: <matplotlib.axes._subplots.AxesSubplot at 0x2a0e16d13c8>

In [23]: var_df_gender=df_gender_Scholarship.groupby(['Gender','NoShow'],as_index=False
).size()
#getting the probability of scholarship making to turn up for appointment
var_df_gender

Out[23]: Gender NoShow

F No 57245

Yes 14594

M No 30962

Yes 7725

dtype: int64

In [24]: #female patients probability of taking appointment
p=57245+14594
p=57245/p
print('female patients probability of taking appointment : ',p)
q=30962+7725
q=30962/q
print('male patients probability of taking appointment : ',q)

female patients probability of taking appointment : 0.7968512924734475 male patients probability of taking appointment : 0.8003205211052808

In [25]: view_Gen_Scholar = df_gender_Scholarship.groupby(["Gender", "NoShow", 'Schola
 rship'],as_index=False)
 g_df=pd.DataFrame(view_Gen_Scholar.size().reset_index(name = "Count"))
 g_df

Out[25]:

	Gender	NoShow	Scholarship	Count
0	F	No	0	50498
1	F	No	1	6747
2	F	Yes	0	12488
3	F	Yes	1	2106
4	М	No	0	29426
5	М	No	1	1536
6	М	Yes	0	7253
7	М	Yes	1	472

Out[26]: <matplotlib.axes._subplots.AxesSubplot at 0x2a0e5496b38>

In [27]: #to know how scholarship effects appointment based on gender
#plot a swarmplot using seaborn
sns.factorplot(x="Count", y="Gender", hue="NoShow", data=g_df, col ="Scholarsh
ip", kind="swarm")

Out[27]: <seaborn.axisgrid.FacetGrid at 0x2a0e47f8908>

Conclusions

Findings

Based on Neighbourhood and Scholarship ,how appointment is affected? findings Based on Scholarship as independent variable and NoShow as dependent

following observation has been made:

 Individual who is getting Scholarship there is a probability of 0.76 that he/she takes appointment

findings based on Neighbourhood, Scholarship and NoShow

from the visuvalization,

- No Location is getting scholarship for more than 1000 persons
- Many Locations are having almost less than 1000 persons that dont turnup for appointment who are not getting any Scholarship
- Highest no.of persons turnup for appointment even though no Scholarship (considering single location) is around 6000

MALE Vs FEMALE Scholarship based on Neighbourhood and its effect on NoShow Appointment

From the Visualizations,

- No.of Female patients are greater than no.of male patients
- Female patients dont turn up for appointment comparitively to male patients
- Patients who are getting scholarship that dont turnup for appointment are more females than males

REFERENCES

- https://www.analyticsvidhya.com/blog/2015/05/data-visualization-python/
- https://stackoverflow.com/questions/36367986/how-to-make-inline-plots-in-jupyter-notebook-larger
- https://seaborn.pydata.org/tutorial/categorical.html