Midterm Exam

Q1: If two binary random variables X and Y are independent, are \bar{X} (the complement of X) and Y also independent? Prove your claim.

A: If
$$Pr[XY] = Pr[X] Pr[Y]$$
, then

$$\Pr[\bar{X}Y] = \Pr[Y - XY] = \Pr[Y] - \Pr[X]\Pr[Y] = \Pr[\bar{X}]\Pr[Y].$$

So \bar{X} and Y are independent.

Q2: To estimate the head probability θ of a coin from the results of N flips, we use fictional observations (or pseudo-counts) to incorporate our belief of the fairness of the coin. This is equivalent to using which distribution as a prior of θ ?

A: The coin flipping satisfies Bernoulli distribution, so if the prior can be incorporated into it, the prior is equivalent to a Bernoulli distribution.

Q3: Suppose we have two sensors with known (and different) variances v_1 and v_2 , but unknown (and the same) mean μ . Suppose we observe N_1 observations $y_i^{(1)} \sim N(\mu, v_1)$ from the first sensor and N_2 observations $y_i^{(2)} \sim N(\mu, v_2)$ from the second sensor. Let D represent all the data from both sensors. What is the posterior $p(\mu|D)$ assuming a noninformative prior for μ (which we can simulate using a Gaussian with a precision of 0)?

A: The noninformative prior is a constant $p(\mu) = \mu$.

The likelihood of the first sensor is

$$p(D_1|\mu) \propto \exp(rac{N_1(ar{D}_1 - \mu)^2}{2v_1^2}).$$

Because of the constant prior, the posterior is also proportional to it.

The posterior of the second sensor is the same way, which is

$$p(\mu|D_2) \propto \exp(rac{N_2(ar{D}_2-\mu)^2}{2v_2^2}).$$

So the posterior on D is

$$p(\mu|D) \propto \exp(rac{N_1(ar{D}_1-\mu)^2}{2v_1^2} + rac{N_2(ar{D}_2-\mu)^2}{2v_2^2}).$$

This should be a Normal distribution, from which the μ can be solved.

Q4: About undirect graphical model.

A: (a) The Markov properties of the random variables are

$$p(x_1|x_2,x_3,x_4)=p(x_1|x_2,x_4),\quad p(x_2|x_1,x_3,x_4)=p(x_2|x_1,x_3)\ p(x_3|x_1,x_2,x_4)=p(x_3|x_2,x_4),\quad p(x_4|x_1,x_2,x_3)=p(x_4|x_1,x_3).$$

(b) The cliques are $\{x_1,x_4\}$, $\{x_1,x_2\}$, $\{x_2,x_3\}$, $\{x_3,x_4\}$. So the factorization of the joint distribution $p(x_1,x_2,x_3,x_4)$ w.r.t. $\psi(\cdot)$ is

$$p(x_1, x_2, x_3, x_4) = \psi(x_1, x_4)\psi(x_1, x_2)\psi(x_2, x_3)\psi(x_3, x_4).$$

Q5: ML estimation for linear regression.

A: If x_i, y_i are regraded as the instantiations of random variables X, Y, then

$$\lim_{N o\infty}ar x=\mathrm{E}[X],\quad \lim_{N o\infty}ar y=\mathrm{E}[Y],\quad \lim_{N o\infty}\sum_i^Nrac{x_iy_i}{N}=\mathrm{E}[XY].$$

When N is large, it has

$$rac{\mathrm{cov}[X,Y]}{\mathrm{var}[X]} = rac{\mathrm{E}[XY] - \mathrm{E}[Y]\mathrm{E}[Y]}{\mathrm{E}[X^2] - \mathrm{E}[X]^2} pprox rac{\sum_i x_i y_i - Nar{x}ar{y}}{\sum_i x_i^2 - Nar{x}^2},$$

and

$$ar y - w_1 ar x pprox \mathrm{E}[Y] - w_1 \mathrm{E}(X).$$

Q6: The logit of the probability of a logistic regression model is a linear function of x.

A: The nominator is

$$p(y=1|x,w) = sigm(w^Tx+b) = rac{1}{1+\exp(-w^Tx-b)}.$$

The denominator is

$$p(y=0|x,w)=1-sigm(w^Tx+b)=rac{\exp(-w^Tx-b)}{1+\exp(-w^Tx-b)}.$$

So the logit of them

$$\ln\left(rac{p(y=1|x,w)}{p(y=0|x,w)}
ight) = \ln\left(rac{1}{\exp(-w^Tx-b)}
ight) = w^Tx+b$$

is a linear function of x.

Q7: Gaussian mixture model vs k-means algorithm.

A: (a) True. Uniform p(z)=1/k is an assumption of the k-means algorithm, which means that the probability of each sample coming from any cluster is the same; in GMM this can be any distribution.

- (b) True. k-means assumes that features are independent of each other. As a result, the covariance between different features tends to zero.
- (c) True: The covariance matrix in k-means is assumed as $\Sigma = I$.

Q8: Optimal log-likelihood of Bernoulli.

A: (a) The objective function is

$$l(heta) = -\ln\left(\prod f(x_i| heta)
ight) = -\ln\left((1- heta)^2 heta
ight) = -(2\ln(1- heta) + \ln heta).$$

When $l'(\theta) = 0$, i.e.

$$l'(heta) = -\left(rac{-2}{1- heta} + rac{1}{ heta}
ight) = 0 \quad o \quad heta = rac{1}{3}.$$

This is the global minima of $l(\theta)$, under the constraint $\theta \geq 1/2$, the optimal solution is $\theta = 1/2$.

(b) The inequality constraint can be written as $\theta-1/2-s^2=0$, where $s\geq 0$ is a slack variable. Then the Lagrangian function is

$$L(heta,\lambda,s)=l(heta)-\lambda(heta-rac{1}{2}-s^2),$$

where $\lambda \geq 0$ is the multiplier.