results of t' = 0, U = 2

$April\ 1,\ 2015$

Abstract

This report contains results of t'=0, U=2, T=0.5, 0.25, 0.125 which are simulated at fixed n=0.3, 0.6, 0.8, 0.875, 1.0. We present four physical quantities including energy density E, kinetic energy density K, double occupancy density D and chemical potential μ . Three techniques have been used including $G^2\Gamma$ -scheme, $[G^{(0)}]^2\Gamma^{(0)}$ -scheme and $[G^{(0)}]^2U$ -scheme. Extrapolation(in the order N) figures are shown in Section 2,3,4, and final results($N\to\infty$) are shown in Table 1, 2, 3.

1 Fitting table

Table 1: Extrapolation results	$G^2\Gamma$, $[G^{(0)}]^2\Gamma^{(0)}$	and $[G^{(0)}]^2U$ seri	ies for $U = 2, T = 0.5$
--------------------------------	---	-------------------------	--------------------------

	r. Enter apone	colon reserves. G	- , [∽] -	ana [a]	C BOITOB TOT C	-, - 0.0
	n	1.0	0.875	0.8	0.6	0.3
	$G^2\Gamma$	-	-1.1478(6)	-1.1802(6)	-1.1676(4)	-0.8191(2)
E	$[G^{(0)}]^2\Gamma^{(0)}$	-1.04998(10)	-	-	-	-
	$[G^{(0)}]^2U$	-1.05001(6)	-	-	-	-
	$G^2\Gamma$	-	-1.4221(10)	-1.4017(7)	-1.2832(5)	-0.8452(2)
K	$[G^{(0)}]^2\Gamma^{(0)}$	-1.4351(6)	-	-	-	-
	$[G^{(0)}]^2U$	-1.4355(4)	-	-	-	-
	$G^2\Gamma$	-	0.1372(6)	0.1107(4)	0.0578(3)	0.01304(6)
D	$[G^{(0)}]^2\Gamma^{(0)}$	0.1927(3)	-	-	-	-
	$[G^{(0)}]^2U$	0.1928(2)	-	-	-	-
	$G^2\Gamma$	-	0.482(2)	0.173(2)	-0.6804(8)	-2.1908(1)
μ	$[G^{(0)}]^2\Gamma^{(0)}$	1.0	-	-	-	-
	$[G^{(0)}]^2U$	1.0	-	-	-	_

2 Fitting table

Table 2: Extrapolation results: $G^2\Gamma$, $[G^{(0)}]^2\Gamma^{(0)}$ and $[G^{(0)}]^2U$ series for $U=2,\,T=0.25$

	n	1.0	0.875	0.8	0.6	0.3
	$G^2\Gamma$	-	-1.2325(6)	-1.2667(6)	-1.2548(4)	-0.8812(2)
E	$[G^{(0)}]^2\Gamma^{(0)}$	-1.1337(3)	-	-	-	-
	$[G^{(0)}]^2U$	-1.1339(2)	-	-	-	-
	$G^2\Gamma$	-	-1.5144(8)	-1.4963(7)	-1.3763(6)	-0.9089(3)
K	$[G^{(0)}]^2\Gamma^{(0)}$	-1.5247(6)	-	-	-	-
	$[G^{(0)}]^2U$	-1.5248(5)	-	-	-	-
	$G^2\Gamma$	-	0.1410(5)	0.1148(3)	0.0607(3)	0.01387(6)
D	$[G^{(0)}]^2\Gamma^{(0)}$	0.1955(4)	-	-	-	-
	$[G^{(0)}]^2U$	0.1955(4)	-	-	-	-
	$G^2\Gamma$	-	0.527(3)	0.245(2)	-0.5755(8)	-2.1045(1)
μ	$[G^{(0)}]^2\Gamma^{(0)}$	1.0	-	-	-	-
	$[G^{(0)}]^2U$	1.0	-	-	-	-

3 Fitting table

Table 3: Extrapolation results: $G^2\Gamma$, $[G^{(0)}]^2\Gamma^{(0)}$ and $[G^{(0)}]^2U$ series for $U=2,\,T=0.25$

	n	1.0	0.875	0.8	0.6	0.3
	$G^2\Gamma$	-	-1.2600(6)	-1.2951(6)	-1.2790(4)	-0.8975(2)
E	$[G^{(0)}]^2\Gamma^{(0)}$	-	-	-	-	-
	$[G^{(0)}]^2U$	-1.1613(5)	-	-	-	-
	$G^2\Gamma$	-	-1.5464(7)	-1.529(1)	-1.4025(6)	-0.9257(2)
K	$[G^{(0)}]^2\Gamma^{(0)}$	-	-	-	-	-
	$[G^{(0)}]^2U$	-1.554(1)	-	-	-	-
	$G^2\Gamma$	-	0.1431(5)	0.1169(3)	0.0617(2)	0.01410(5)
D	$[G^{(0)}]^2\Gamma^{(0)}$	-	-	-	-	-
	$[G^{(0)}]^2U$	0.1961(9)	-	-	-	-
	$G^2\Gamma$	-	0.558(3)	0.2897(7)	-0.5423(5)	-2.0874(1)
μ	$[G^{(0)}]^2\Gamma^{(0)}$	-	-	-	-	-
	$[G^{(0)}]^2U$	1.0	-	-	-	_

4 T = 0.5

4.1 T = 0.5, n = 0.3

1/6

1/N

1/4

1/3

4.2 T = 0.5, n = 0.6

0.01295

4.3 T = 0.5, n = 0.8

4.4 T = 0.5, n = 0.875

1/3

4.5 T = 0.5, n = 1.0

5
$$T = 0.25$$

5.1 T = 0.25, n = 0.3

5.2 T = 0.25, n = 0.6

5.3 T = 0.25, n = 0.8

5.4 T = 0.25, n = 0.875

5.5 T = 0.25, n = 1.0

6 T = 0.125

6.1 T = 0.125, n = 0.3

6.2 T = 0.125, n = 0.6

6.3 T = 0.125, n = 0.8

1/6

1/N

1/4

1/3

6.4 T = 0.125, n = 0.875

0.117

0.1165

0

6.5 T = 0.125, n = 1.0

