Sequential Circuit Binary Multiplier

- Initialization
 - A \leftarrow 0, Q ₋₁ \leftarrow 0
 - *M* gets multiplicand.
 - Q gets multiplier.
- Loop for each bit of multiplier
 - If $Q_0 Q_{-1} = 01$ then $A \leftarrow A + M$
 - else if $Q_0 Q_{-1} = 10$ then $A \leftarrow A M$
 - Arithmetic Shift right A Q₀ Q₋₁.
- Result contained in register combination AQ.

Sequential Circuit Binary Multiplier

Initialize

 $A \leftarrow A + M$

 $A \leftarrow A - M$

 $A \leftarrow A + M$

end of 2nd pass

end of 3rd pass

end of 4th pass

0100 (M) * 0101 (Q)

- Initialization
 - A \leftarrow 0, Q ₋₁ \leftarrow 0
 - M gets multiplicand.
 - Q gets multiplier.
- Loop for each bit of multiplier
 - If $Q_0 Q_{-1} = 01$ then $A \leftarrow A + M$
 - else if $Q_0 Q_{-1} = 10$ then $A \leftarrow A M$
 - Arithmetic Shift right A Q₀ Q₋₁.
- Result contained in register combination AQ.

Try: 11101 * 11010 (using sequential circuit binary multiplier)
Show the value of A and Q after the end of each pass

After this pass	A	Q
1 st	00000	01101
2 nd	11001	10110
3 rd	00011	01011
4 th	11011	00101
5th	11101	10011