tranSLATor

Milan Ilic

Problem description

- The task of this project was music classification, specifically classifying the song to the correct rap artist.
- The biggest challenge of this project is the similarity of songs between different artists.
- Most of the songs used for the project can be catagorized as mumble rap which also increases the difficulty of this problem.

Dataset

- Dataset consisted out of 437 different songs collected from 8 artists.
- These songs are split into 32166 lines using timestamp information of each line.
- The songs were filtered to contain only solo songs and then further filtered so there is no duplicate line transcripts in the dataset.
- After all preprocessing the number of lines was 11867.

Dataset statistics

Histogram of slice length in milliseconds.

Barplot of number of slices per artist.

Approach

- For solving this problem, the chosen approach is as follows:
 - Take the line slice given as .wαν file and transform it into mel spectogram.
 - 2. Resize the mel spectogram to fixed size and perform some data augmentation techniques.
 - 3. Use a CNN backbone and MLP head to perform classification.

Training

- Several neural network architecutres were used for training the dataset:
 - MobileNetV2, InceptionV3, Resnet50V2, DenseNet121
- Training was done with the next parameters:

Parameter	Train/Val	Input shape	Epochs	Batch size	Optimizer	Scheduler	Loss
Value	80/20	(128, 256, 3)	200	4	RAdam	Cosine Annealing	CCE

Evaluation Metrics

- Metrics used to evaluate the performance of models are:
 - *Slice accuracy* (samplewise accurace)
 - Song accuracy (song prediction is calculated by getting the majority vote of song slices predictions)

Results

 Results were recorded for each network architecture alone, and for their ensemble.

Validation

Architecture	Augmentations	Slice Accuracy	Song Accuracy*
MobileNetV2	SpecAugment	86.93%	100%
InceptionV3	SpecAugment	88.17%	100%
Resnet50V2	SpecAugment	89.27%	100%
DenseNet121	SpecAugment	89.62%	97.78%
Ensemble (4 nets)	-	91.87%	100%

Test

Augmentations	Slice Accuracy	Song Accuracy*
SpecAugment	72.48%	88.89%
SpecAugment	77.23%	88.89%
SpecAugment	71.23%	83.33%
SpecAugment	75.65%	100%
-	78.65%	88.89%
	SpecAugment SpecAugment SpecAugment SpecAugment	SpecAugment 72.48% SpecAugment 77.23% SpecAugment 71.23% SpecAugment 75.65%

Confusion Matrix

 Confusion matrix is plotted only for ensemble method. (No new test songs for two artists)

Validation

Test

References

1. SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition (https://arxiv.org/abs/1904.08779)