4271 HW 4

Duncan Wilkie

8 March 2023

Problem 1. For the following gamma transitions, give all permitted multipoles and indicate which might be the most intense:

- 1. $\frac{9}{2}^- \mapsto \frac{7}{2}^+$
- 2. $\frac{1}{2}^- \mapsto \frac{7}{2}^-$
- 3. $1^- \mapsto 2^+$
- 4. $4^+ \mapsto 2^+$
- 5. $3^+ \mapsto 3^+$

Solution. In the first case, the vector diference yields possible L of 1,2,3,4,5,6,7. The parity is $(-1)^L$ for an electric transition, and $-(-1)^L$ for a magnetic transition, so these correspond to an electric dipole, magnetic quadrupole, electric octupole, magnetic 16-pole, etc. on up to electric 128-pole. In general, the lower-L transitions tend to be more intense.

Proceeding similarly, but in less detail for the other cases, with the most intese guess underlined,

$$3 \le J_f - J_i \le 4 \Leftrightarrow L = 3, 4 \Rightarrow$$
 magnetic octupole and electric 16-pole transitions.

 $1 \le J_f - J_i \le 3 \Rightarrow L = 1, 2, 3 \Rightarrow$ electric dipole, magnetic quadrupole, and electric octupole transitions.

$$2 \le J_f - J_i \le 6 \Rightarrow L = 2, 3, 4, 5, 6 \Rightarrow$$
 electric quadrupole, magnetic octupole, electic 16-pole,

magnetic 32-pole, and electric 64-pole transitions.

In the last case, there can be no gamma transition, as there is no change in angular momentum.

Problem 2. An even-Z, even-N nucleus has the following sequence of levels: 0+ (ground state), 2+ (89 keV), 4+ (288 keV), 6+ (585 keV), 0+ (1050 keV), 2+ (1129 keV). Drawn an energy level diagram and show all reasonably probable gamma-ray transitions and their dominant multipole assignments.

Solution. Possible transitions:

There is also an electric quadrupole transition from the highest 2^+ state to the lowest 0^+ ; the chemistry package I yoinked this drawing code from doesn't support that kind of a thing so easily. \Box

Problem 3. The excited states of 174 Hf have two similar rotational bands, with energies (in MeV) given in the following table. Calculate the moments of inertia for these two bands and comment on the difference.

	$E(0^{+})$	$E(2^{+})$	$E(4^{+})$	$E(6^{+})$	$E(8^{+})$	$E(10^{+})$	$E(12^{+})$
Band 1	0	0.091	0.297	0.608	1.010	1.486	2.021
Band 2	0.827	0.900	1.063	1.307	1.630	2.026	2.489

Solution. A quick linear fit yields:

The exact fit parameters extracted from gnuplot yield slopes of 0.0130 ± 0.0002 and 0.0106 ± 0.0001 , for bands 1 and 2 respectively; the rule for rotational kinetic energy is that

$$E_{rot} = \frac{\hbar^2}{2I} [J(J+1)] + E_k,$$

implying that the moment of inertia in terms of the slope m is, considering J in natural units of \hbar ,

$$I = \frac{\hbar^2}{2m} = \frac{1\,\hbar^2}{2(0.013)} = 38.5$$

for the first band and

$$I = \frac{\hbar^2}{2m} = \frac{1\,\hbar^2}{2(0.0106)} = 47.2$$

for the second.

Problem 4 (Bonus). Show explicitly that a uniformly-charged ellipsoid at rest with a total charge of Ze and semi-axes a and b has a quadrupole moment

$$Q = \frac{2}{5}Z(a^2 - b^2)$$

Solution. First, the volume of an ellipsoid with semi-axes a, b, c: in angular ellipsoidal coordinates, in which the angular coordinates from spherical coordinates remain unchanged, but the remaining variable parameterizes larger ellipsoidal constant surfaces with semi-axes a, b, c,

$$V = \int_0^{\pi} \int_0^{2\pi} \int_0^1 abcs^2 \sin \theta ds d\phi d\theta = 4\pi abc \left(\frac{s^3}{3} \Big|_{s=0}^1 \right) = \frac{4}{3}\pi abc.$$

The quadrupole moment is computed by

$$\begin{split} Q_{ij} &= \int \rho(\vec{r}) \big(3r_i r_j - |\vec{r}|^2 \delta_{ij} \big) dV \\ &= \int_0^\pi \int_0^{2\pi} \int_0^c \frac{Ze}{V} \big(3r_i r_j - s^2 (a^2 \sin^2\theta \cos^2\phi + b^2 \sin^2\theta \sin^2\phi + c^2 \cos^2\theta) \delta_{ij} \big) abcs^2 \sin\theta ds d\phi d\theta \\ &= \int_0^\pi \int_0^{2\pi} \int_0^c \frac{3Ze}{V} r_i r_j abcs^2 \sin\theta ds d\phi d\theta \\ &- \delta_{ij} \frac{Zec^5 abc}{5V} \bigg(a^2 \int_0^\pi \sin^3\theta d\theta \int_0^{2\pi} \cos^2\phi d\phi + b^2 \int_0^\pi \sin^3\theta d\theta \int_0^{2\pi} \sin^2\phi d\phi + 2\pi c^2 \int_0^\pi \sin\theta \cos^2\theta d\theta \bigg) \end{split}$$

With some trig identities, we can compute antiderivatives:

$$\cos(2\theta) = \cos^2\theta - \sin^2\theta = 1 - 2\sin^2\theta \Rightarrow \sin^2\theta = \frac{1}{2} - \frac{1}{2}\cos(2\theta) \Rightarrow \text{antideriv.} = \frac{\theta}{2} - \frac{1}{4}\sin(2\theta) + c$$
$$\cos^2\theta = \sin^2(\theta + \frac{\pi}{2}) \Rightarrow \text{antideriv} = \frac{\theta}{2} + \frac{1}{4}\sin(2\theta) + c.$$

These entail, alongside integration by parts and u-substitution, that the original integral is

$$= \int_{0}^{\pi} \int_{0}^{2\pi} \int_{0}^{c} \frac{3Ze}{V} r_{i} r_{j} abcs^{2} \sin \theta ds d\phi d\theta$$

$$-\delta_{ij} \frac{Zec^{5} abc}{5V} \left(a^{2} \left(\frac{4}{3}\right)(\pi) + b^{2} \left(\frac{4}{3}\right)(\pi) + 2\pi c^{2} \left(\frac{2}{3}\right)\right)$$

$$= \frac{3Ze}{4\pi} \int_{0}^{\pi} \int_{0}^{2\pi} \int_{0}^{c} r_{i} r_{j} s^{2} \sin \theta ds d\phi d\theta - \frac{Zec^{5} \delta_{ij}}{5} (a^{2} + b^{2} + c^{2})$$

which in particular is

$$Q_{xx} = \frac{3Ze}{4\pi} \int_0^{\pi} \int_0^{2\pi} \int_0^1 a^2 s^4 \sin^3 \theta \cos^2 \phi ds d\phi d\theta - \frac{Zec^5}{5} (a^2 + b^2 + c^2) = \frac{Ze}{5} (2a^2 - b^2 - c^2)$$

$$Q_{yy} = \frac{3Ze}{4\pi} \int_0^{\pi} \int_0^{2\pi} \int_0^1 b^2 s^4 \sin^3 \theta \sin^2 \phi ds d\phi d\theta - \frac{Zec^5}{5} (a^2 + b^2 + c^2) = \frac{Ze}{5} (2b^2 - a^2 - c^2)$$

$$Q_{zz} = \frac{3Ze}{4\pi} \int_0^{\pi} \int_0^{2\pi} \phi^2 \int_0^1 c^2 s^4 \cos^2 \theta \sin \theta ds d\phi d\theta - \frac{Zec^5}{5} (a^2 + b^2 + c^2) = \frac{Ze}{5} (2c^2 - a^2 - b^2)$$

I caved and used a table (Gradshteyn-Ryzhik), but these little trig integrals should be pretty quick with integration-by-parts. The quadrupole tensor is symmetric, because multiplication and the Kronecker delta are commutative. Furthermore, the symmetry of the problem would indicate that the non-diagonal components are zero; indeed, if one writes them out, one finds immediate functional parity arguments to enforce this, so this is the full quadrupole moment. From the form of the solution, I presume it is intended that this is an ellipsoid of revolution, i.e. circular in some projection; say WLOG b=c.

Accordingly, the tensor becomes

$$\frac{Ze}{5} \begin{pmatrix} 2a^2 - 2b^2 & 0 & 0\\ 0 & b^2 - a^2 & 0\\ 0 & 0 & b^2 - a^2 \end{pmatrix}$$

Were I to privelege an axis along which to compute, it'd be the axis of revolution of the ellipsoid, which is the x-axis (given our choice of which semi-axes are identified). Accordingly, the 1-1 component of the tensor is a sensible choice for a scalar to be called the "quadrupole moment:"

$$Q = \frac{2Ze}{5}(a^2 - b^2),$$

which matches the form given closely enough that I'm not too worried about it.

Problem 5. Use the answer to Problem 4 to determine the sizes of the semi-major and semi-minor axes of 165 Ho, which has a quadrupole moment of Q=3.5 b.

Solution. My result derived above has units of $\rm C\cdot m^2$; to get areal units, I'll suppose that I've missed a convention somewhere, and that the formula given, with e divided out, is the correct one. If the "average" radius obeys the phenomenological rule $r=1.2\,{\rm fm}A^{1/3}=6.58\,{\rm fm}$, but the nucleus is truly spherical, then $r=\frac{a+b}{2}\Leftrightarrow a=2r-b$. This gives us a second equation to solve simultaneously with that given by the quadrupole moment formula:

$$Q = \frac{2Z}{5}((2r - b)^2 - b^2) = \frac{2Z}{5}(b^2 - 4rb + 4r^2 - b^2) \Leftrightarrow b = \frac{1}{4r} \left[4r^2 - \frac{5Q}{2Z} \right] = r - \frac{5Q}{8Zr}$$
$$= 6.58 \,\text{fm} - \frac{5 \cdot 3.5 \times 10^{-28} \,\text{m}}{8 \cdot 67 \cdot 6.58 \,\text{fm}} = 6.08 \,\text{fm}$$
$$\Rightarrow a = 2 \cdot 6.58 \,\text{fm} - 6.08 \,\text{fm} = 7.08 \,\text{fm}$$