PHY 101: Quiz 2

1. An insect is spiraling up on a surface of a cylinder (shown below) of radius R with anglular velocity α and upward velocity β along the z- axis, both constants. Find out the relation between the

magnitudes of its velocity and acceleration.

2. A particle is moved along the surface of a sphere of radius R first in the $\theta=\pi/2$ plane from $\phi=0$ to $\phi=\pi/2$ at contstant speed $\mathcal V$. Then in the $\phi=\pi/2$ plane it is moved from $\theta=\pi/2$ to $\theta=0$ at the same constant speed. If a force is causing the particle to move in this trajectory find out the work done by the force along the whole trajectory assuming Newton's law of motion.

$$\vec{r} = R \hat{\beta} + z (t) \hat{k}$$

$$\vec{r} = R \hat{\beta} + z \hat{k}$$

$$\vec{r} = R \hat{\theta} \hat{\theta} + z \hat{k}$$

$$\vec{r} = R \hat{\theta} \hat{\theta} + z \hat{k}$$

$$\vec{r} = R \hat{\theta} \hat{\theta} - R \hat{\theta} \hat{\rho} + z \hat{k}$$

$$\vec{a} = -R \hat{\theta}^2 \hat{\beta} \Rightarrow |\vec{a}| = \sqrt{R \hat{\theta}^2} \Rightarrow |\vec{a}| = \sqrt{R \hat{\theta}^2}$$
2. For the $\theta = \pi/2$ plane

If $\phi = \text{const.} = \alpha$

$$m\vec{r} = -m R \hat{\phi}^2 \hat{r}$$
While, $\vec{r} = R \hat{\phi} \hat{\phi}$

$$\vec{r} = R \hat{\theta} \hat{\phi}$$

$$\vec{r} = R \hat{\phi} \hat{\phi}$$

$$\vec{r} = R \hat{\phi}$$