

## Probability and Statistics

**Expected Values** 

### **Expected Values**

 The Expected Value of x is the sum of the products of the values of x and their corresponding probabilities

$$E(x) = \sum_{n=1}^{N} x_n P(x_n)$$

• In probability theory, the expected value (also called expectation, expectancy, mathematical expectation, mean, average, or first moment) is a generalization of the weighted average

### Average

 Average is a special scenario of expected value in which the probabilities are equal

$$\bar{x} = \mu = \frac{\sum x}{n}$$

- For example, the average of the numbers 2, 3, 4, 7, and 9 (summing to 25) is 5
- Depending on the context, an average might be another statistic such as the median, or mode

# Average vs Expected Value: Same weight

- Example of students who scored a certain value on their test {76,81,100,92}
- The average will be:

$$\bar{x} = \frac{\sum x}{n} = \frac{76 + 81 + 100 + 92}{4} = 87.25$$

• Whereas the expected value will be:

$$E(x) = \sum_{n=1}^{N} x_n P(x_n) = \left(\frac{1}{4}\right) 76 + \left(\frac{1}{4}\right) 81 + \left(\frac{1}{4}\right) 100 + \left(\frac{1}{4}\right) 92 = 87.25$$

### Average vs Expected Value: Different Weight

#### • Dice Example:



| X | P(x) |
|---|------|
| 1 | 1/6  |
| 2 | 1/6  |
| 3 | 1/6  |
| 4 | 1/6  |
| 5 | 1/6  |
| 6 | 1/6  |



| X | P(x) |
|---|------|
| 1 | 3/20 |
| 2 | 3/20 |
| 3 | 3/20 |
| 4 | 3/20 |
| 5 | 1/5  |
| 6 | 1/5  |

Equal Chance All equal 16.67%

5 and 6 are more likely than others

5 and 6: 20% each, others: 15%

### Dice Example

• Average can be only used for equal dice:

$$\bar{x} = \frac{1+2+3+4+5+6}{6} = 3.5$$

 However, Expected value can be used for both Equal and Unequal Dice Example

Equal Dice:

$$E(x) = \left(\frac{1}{6}\right)1 + \left(\frac{1}{6}\right)2 + \left(\frac{1}{6}\right)3 + \left(\frac{1}{6}\right)4 + \left(\frac{1}{6}\right)5 + \left(\frac{1}{6}\right)6 = 3.5$$

Unequal Dice:

$$E(x) = \left(\frac{3}{20}\right)1 + \left(\frac{3}{20}\right)2 + \left(\frac{3}{20}\right)3 + \left(\frac{3}{20}\right)4 + \left(\frac{1}{5}\right)5 + \left(\frac{1}{5}\right)6 = 3.7$$

### Job Example:

- Supposed we have two different works in a week:
  - Job 1: \$20 / hour, work 8 hours/week
  - Job 2: \$12 / hour, work 16 hours/week
- This can not be calculated using Average
- Instead, we will use Weighted Average a.k.a Expected
   Value
  - $E(x) = \$20.8 \, hrs/w + \$12.16 hrs/w = \$352/week$
- Using Average will give you false results of \$384 / week

### Purpose for Expected Values

1) Assists in making mathematically sound decisions for future events.

2) Used when making investments, determining a price for numerous services, prioritizing events, and in calculating return on investment.

#### Example 1:

A third grade class was surveyed regarding the number of hours that they played electronic games each day. The probability distribution is given in the table below:

| # of Hours (x) | <b>Probability P(x)</b> |  |
|----------------|-------------------------|--|
| 0              | 0.3                     |  |
| 1              | 0.4                     |  |
| 2              | 0.2                     |  |
| 3              | 0.1                     |  |

Calculate the Expected Value of the quantity of time that a third grader spends each day playing electronic games.

$$E(x) = x_1 P(x_1) + x_2 P(x_2) + x_3 P(x_3) + ... + x_n P(x_n)$$

| # of Hours (x) | Probability P(x) |  |
|----------------|------------------|--|
| 0              | 0.3              |  |
| 1              | 0.4              |  |
| 2              | 0.2              |  |
| 3              | 0.1              |  |

Expected value, 
$$E(x) = 0 (0.3) + 1 (0.4) + 2 (0.2) + 3 (0.1)$$
  
Expected value,  $E(x) = 0 + 0.4 + 0.4 + 0.3$   
Expected value,  $E(x) = 1.1 \ hours$ 

Conclusion: Third graders spend 1.1 hrs playing video games each day.

#### Example 2:

Find the expected number of boys for a three-child family. Assume girls and boys are equally likely. Key: b=Boy; g=Girl

|          | # of Boys | Probability          | Product               |
|----------|-----------|----------------------|-----------------------|
| 8 Combos |           |                      | _ , ,                 |
| bbb      | X         | P(x)                 | x P(x)                |
| bbg      | 0         | 1/8                  | 0                     |
| bgb      | 1         | 3/8                  | 3/8                   |
| bgg      | 2         | 3/8                  |                       |
| gbb      | 2         | 3/0                  | 6/8                   |
| gbg      | 3         | 1/8                  | 3/8                   |
| ggb      |           | Expected Value: E(x) | =0 + 3/8 + 6/8 + 3/8  |
| ggg      |           |                      | = 12/8  or  1.5  boys |
|          |           |                      |                       |

Concl: The expected # of boys for a 3-child family is 1.5 boys.

#### Example 3:

Finding Expected Winnings

A player pays \$3 to play the following game:

Win \$7 by rolling a 6 on a single die, Win \$1 by rolling any other number.

What are the expected net winnings for the game?

| Number        | Payoff | Net | P(x) | x P(x) |
|---------------|--------|-----|------|--------|
|               |        |     |      |        |
| 1, 2, 3, 4, 5 |        |     |      |        |
|               |        |     |      |        |
| 6             |        |     |      |        |
|               |        |     |      |        |

#### Finding Expected Winnings

A player pays \$3 to play the following game:

Win \$7 by rolling a 6 on a single die, Win \$1 by rolling any other number.

#### What are the expected net winnings for the game?

| Number        | Payoff | Net                   | P(x)           | x P(x)                         |
|---------------|--------|-----------------------|----------------|--------------------------------|
| 1, 2, 3, 4, 5 | \$1    | \$1-\$3 = <b>-\$2</b> | 5/6            | $-\$2 \ \frac{5}{6} = -\$1.67$ |
| 6             | \$7    | \$7-\$3 = \$4         | 1/6            | $$4 \frac{1}{6} = $0.67$       |
|               |        |                       | Expected Value | -\$1.67 + \$0.67 = -\$1        |

ANS: The player will not have an expected net winning for the game, since his Expected Value is a **loss of \$1.00**.

# Fair Games/Expected Value

• The <u>expected value</u> of a game is the amount, <u>on average</u>, of money you win per game. The expected value (in terms of a game) is calculated as follows:

• (x) = (\$ paid if you win) \* (P(winning))

• A game is a <u>fair game</u> when the cost of each game equals the expected value (what you put in, you get out).

Deciding if a Game is Fair, Favors the House, Favors the Player

A fair game is one in which the net winnings are zero.

An unfair game against the player has a **negative** expected winnings.

An unfair game in favor of the player has a **positive** expected winnings.

#### Example 1:Two dice are rolled

A player gets \$5 if the two dice show the same number, or if the numbers on the dice are different then the player pays \$1.

| Number              | Payoff | P(x)         | x P(x)                 |
|---------------------|--------|--------------|------------------------|
|                     |        |              |                        |
| Same for both dice  | \$5    | 6/36 or 1/6  | \$5 x 1/6 = \$5/6      |
| Different<br>number | -\$1   | 30/36 or 5/6 | -\$1 x 5/6 =<br>-\$5/6 |

a. What is the probability of winning \$5?

ANS: 6/36 or 1/6 probability of winning \$5

b. What is the probability of paying a \$1?

ANS: 30/36 or 5/6 probability of losing \$1.

#### Example 1:

A player gets \$5 if the two dice show the same number, or if the numbers on the dice are different then the player pays \$1.

| Number             | Payoff | P(x)         | x P(x)              |
|--------------------|--------|--------------|---------------------|
| Same for both dice | \$5    | 6/36 or 1/6  | \$5 x 1/6 = \$5/6   |
| Different number   | -\$1   | 30/36 or 5/6 | -\$1 x 5/6 = -\$5/6 |

c. What is the expected value of this game?

$$E(x) = x_1 P(x_1) + x_2 P(x_2) + x_3 P(x_3) + \dots + x_n P(x_n)$$
  

$$E(x) = \$5(1/6) + (-\$1)(5/6) = \$5/6 - \$5/6 = 0$$

d. The Expected Value is \$0. This would be a fair game, neither the House or Player is favored.

### END OF LECTURE