Projet Hydrogen

Abdoulaye Diabakhaté 21 juin 2018

Table des matières

1	Méthode Adonis sur toute les fractions de taille	3
	1.1 Introduction	3
Ι	Fraction de taille du premier groupe des 11 distances	4
2	Fraction de taille 0_0.2	5
3	Fraction de taille 0.22_3	5
4	Fraction de taille 20_180	5
II	Fraction de taille du deuxième groupe des 13 distances	6
5	Fraction de taille 5_20	7
6	Fraction de taille 180_2000	7
7	Fraction de taille 0.8_5	7
II	I Conclusion	8

1 Méthode Adonis sur toute les fractions de taille

1.1 Introduction

La méthode adonis a été appliquée sur 15 variables variables :

Lat, Long, T, Sal, chla, O2 l, NO3m l, NO3, NO2 l, NH4 l, SSD, Phos, Si, depth, Fe.

Les fractions de taille concernées sont au nombre de 6 :

- 3 fractions composées de 11 matrices de distance : 0 0.2, 0.22 3 et 20 180
- 3 autres fractions composées de 13 matrices de distance : 5_20, 180_2000 et 0.8_5

Les 11 matrices du premier groupe de fractions sont :

- 1) jaccard abundance
- 2) ochiai abundance
- 3) sorensen_abundance
- 4) simka_jaccard_abundance
- 5) chord_hellinger_prevalence
- 6) jaccard_canberra_prevalence
- 7) kulczynski_prevalence
- 8) ochiai prevalence
- 9) whittaker prevalence
- 10) simka jaccard prevalence
- 11) sorensen_braycurtis_prevalence

Les 13 matrices du deuxième groupe de fractions sont :

- 1) jaccard_abundance
- 2) ab jaccard abundance
- 3) braycurtis_abundance
- 4) ab ochiai abundance
- 5) ab sorensen abundance
- 6) simka_jaccard_abundance
- 7) chord_prevalence
- 8) jaccard prevalence
- 9) kulczynski prevalence
- 10) ochiai_prevalence
- 11) whittaker prevalence
- 12) simka_jaccard_prevalence

13) sorensen_braycurtis_prevalence

Première partie

Fraction de taille du premier groupe des 11 distances

2 Fraction de taille $0_0.2$

Pour cette fraction, on note que le Fe apparait non significatif pour l'ensemble des 11 matrices alors que depth, apparait comme non significatif que pour les 3 distances : simka_jaccard_prevalence, jaccard_canberra_prevalence et chord_hellinger_prevalence.

3 Fraction de taille 0.22_3

Pour cette fraction de taille, on note que toutes les variables apparaissent comme significatives.

4 Fraction de taille 20 180

Pour cette fraction de taille aussi, on note que toutes les variables apparaissent comme significatives.

Deuxième partie

Fraction de taille du deuxième groupe des 13 distances

5 Fraction de taille 5_20

Pour cette fraction, Phos, Fe et Si sont apparues non significatifs pour toutes les distances; SSD et NO3 sont apparues non significatifs pour 11 distances et depth pour 4 distances et enfin NO2_l est apparue non significatif pour 2 distances.

6 Fraction de taille 180_2000

Pour cette fraction de taille, chla est apparu comme non significatif pour 10 distances alors que Si en est apparu que pour 2 distances.

7 Fraction de taille 0.8_5

Pour cette fraction de taille, on note également que toutes les variables apparaissent comme significatives.

Troisième partie

Conclusion

On peut noter que pour une fraction donnée, on a quasiment le même comportement des variables pour toutes les distances alors que pour 2 fractions données on a un comportement qui diffèrent, exceptées les fractions 0.22_3, 20_180 et 0.8_5, où l'ensemble des variables ont le même comportement.

En s'intéressant aux 3 dernières fractions citées dernièrement, on peut penser que les espèces les constituant se ressemblent voire sont de la même famille et que d'autres ont émigrées à une certaines distances.