CS312 Notes

September 17, 2024

Contents

1	The	ory Of Computation Introduction	3
	1.1	Automata (Automaton)	4
	1.2	Computability	4
	1.3	Complexity	4
	1.4	Problem Abstration	4
		1.4.1 Abstration of Data	5
2	Fini	te Automata	6
	2.1	Formal Language	6
	2.2	Abstraction of Problems	6
	2.3	Formal Definition	7
		2.3.1 Example	7
	2.4	DFA	7
	2.5	Applications	7
	2.6	FA Computation	8
	2.7	Language Recognition	8
	2.8	Formal Definition of Acceptance	8
	2.9	Regular Languages	9
	2.10	FA Design Approach	9
	2.11	Example	9
		2.11.1 Notes on Example	10
	2.12	Example 2	10
		2.12.1 Expansiion on Above M_3	10
		2.12.2 What does this give us?	10
	2.13	Last DFA Example	11

3	Reg	gular Languages	11												
		3.0.1 Is ϵ always a member of A^* regarless of the language A?	11												
		3.0.2 What is another name for the language of $A ^A^*$?	11												
		3.0.3 Closures of Regular Languages	12												
	3.1	Nondeterminism	12												
		3.1.1 Formal Definition	12												
		3.1.2 Formal Definition of Acceptance (NFA)	12												
		3.1.3 NFA Motivation	13												
		3.1.4 DFA/NFA Equivalence	13												
4	Nor	Nonregular Languages 1													
	4.1	Language Example	14												
		4.1.1 Warning	14												
	4.2	Example	15												
5	Pur	nping Lemma	15												
	5.1	Example	15												
	5.2	Lemma	15												
	5.3	Pumping Lemma Proof Construction	16												
	5.4	Proof	16												
		5.4.1 Example	17												
	5.5	Technique	17												
		5.5.1 Example	18												
	5.6	How might the proof above be simplified using condition 3 of													
		the PL to constrain the contents of the substring y?	19												
		5.6.1 Example	19												
	5.7	Conditions	19												
	5.8	Example Again	20												
	5.9	Another example	20												
		5.9.1 Language 1	20												
6	Cor	ntext Free Languages	21												
	6.1	Example	21												
	6.2	Language Specification	22												
		6.2.1 Example	22												
	6.3	Direct Derivation	23												
	6.4	Derivation	23												
	6.5	Applications	23												
	6.6	Design Techniques	23												
		6.6.1 Design a Language Example	24												

6.7	Ambig	uous Grammar											24
	6.7.1	Derivation Order											24
	6.7.2	Example											24

1 Theory Of Computation Introduction

The 3 componenets of problem solving

- 1. Unknowns
- 2. Data
- 3. Conditions

To solve a problem we need to find a way of determining the unknowns from given data such that conditions of the problem are satisfied.

The traditional areas of the theory of computation (TOC)

- Automata
 - Provide problem solving devices
- Computability
 - Provide framework that can characterize devices by their computing power
- Complexity
 - Provide framework to classify problems acording to time/space complexity of the toold used to solve them

1.1 Automata (Automaton)

- Abstration of computing devices
- How much memory can be used?
- What operations can be performed?

1.2 Computability

- Study different computing models and identify the most powerful ones
- Range of problems
- Problems can be undecidable or uncomputatble
 - The halting problem

1.3 Complexity

- Computing problems range from easy to hard; sorting is easier than scheduling
- Question
 - What makes some problems computationally hard or others easy?

1.4 Problem Abstration

Data

• Abstracted as a word in a given alphabet

Conditions

• Abstracted as a set of words called a language

Unknowns

• A boolean variable: true if a word is in the language or false other wise

1.4.1 Abstration of Data

- Σ : alphabet, a finite, nonempty set of symbols
- Σ^* : all words of a finite length built up using Σ
- Rules: (1) the empty word (ϵ) is in Σ^* ; (2) if $w \in \Sigma^*$ and $a \in \Sigma$, then $aw \in \Sigma^*$, and (3) nothing else is in Σ^*

```
Example: If \Sigma = \{0,1\}, then \Sigma^* = \{\epsilon,0,1,00,01,10,11,000,001,010,011,\dots\}.
```

1. Valid C

```
int my_func() { return 1; };
int main() {
   int var = my_func(1,2,3,4,5,6,7);
   for (;;) {}
   // You cannot just simply change the syntax of a for loop
   for(;) {}
}
```

2. Invalid C++

```
int my_func() { return 1; };
int main() {
```

```
int var = my_func(1,2,3,4,5,6,7);
for (;;) {}
  // You cannot just simply change the syntax of a for loop
  for(;) {}
}
```

2 Finite Automata

2.1 Formal Language

- Some set of strings over a give alphabet
- How do you specify a language?
- How do you recognize strings in a language?
- How do you translate the language?

2.2 Abstraction of Problems

- 1. Data word in a given alphabet
 - Σ alphabet, a finite non-empty set of symbols
 - Σ^* all words of finite length built-up using Σ
- 2. Conditions Set of words called a language
 - Any subset $L \subseteq \Sigma^*$ is a formal language
- 3. Unknown a boolean variable that is true, if word is in language; false, otherwise.
 - Given $w \in \Sigma^*$ and $L \subseteq \Sigma^*$, is $w \in L$?

2.3 Formal Definition

- Simplest computational model also referred to as a finite-state machine or finite automaton (FA)
- Representations: graphical, tabular, and mathmatical
- A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where Q is a finite set of states, Σ is a finite set of symbols (alphabet), the transition function δ maps $Q \times \Sigma$ to Q, $q_0 \in Q$ is the start (initial) state, and $F \subseteq Q$ is the set of accept (final) states
- Used to design embedded systems, or compilers

2.3.1 Example

If the machine is in a start state, where the initial state is an accept state, that means that our FA can accept an empty string ϵ

2.4 DFA

Deterministic Finite Automata

2.5 Applications

- Parsers for compilers
- Pattern recognition
- Speech processing and OCR
- Financial planning and market prediction

2.6 FA Computation

- Automaton M₁ receives input symbols one-by-one (left to right)
- After reading each symbol, M₁ moves from one state to another along the transition that has that symbol as its label
- When M₁ reads the last symbol of the input, it produces the output: accept if M₁ is in an accept state, or reject if M₁ is not in an accept state

2.7 Language Recognition

- If L is the set of all strings that an FA M accepts, we say that L is the language of the machine M and write L(M) = L
- An automaton may accept several strings, but it always recognizes only one language
- If a machine accepts no strings, it still recognizes one language, namely the empty language 0

The machines are recognizing words in the language Any given automaton only recognizes specifically one language

2.8 Formal Definition of Acceptance

- LEt $M = (Q, \Sigma, \delta, q_0, F)$ be an FA and $w = a_1 a_2 \dots a_n$ be a string over Σ . We say M accepts w if a sequence of states $r_0 r_1 \dots r_n$ exist in Q such that
 - $-\ r_0 = q_0 \ (where \ machine \ starts)$
 - $-\delta(\mathbf{r}_{i},\mathbf{a}_{i+1}) = \mathbf{r}_{i+1}, i=0,1,\ldots,n-1, \text{(transitions based on } \delta)$
 - $r_n \in F \text{ (input accepted)}$

2.9 Regular Languages

- We say that FA recognizes the language L if $L = \{w \mid M \text{ accepts } w\}$
- A language is called a **regular** language, if there exists an FA that recognizes it
- Q: how do you design/build an FA

2.10 FA Design Approach

- 1. Identify finite pieces of information you need, i.e., the states (possibilities)
- 2. Identify the condition (or alphabet) to change from one state to another
- 3. Idenitfy the starting and final/accept states
- 4. Add missing transitions

2.11 Example

Let $M_1 = (Q, \Sigma, \delta, q_1, F)$, $Q = \{q_1, q_2, q_3\}$, $\Sigma = \{0,1\}$, and $F = \{q_2\}$. Let's define a transition function δ for M_1 and then draw the resulting (graph-based) state transition diagram for M_1

DFA, this table is Q X $\Sigma \to Q$ q_1 is the start state q_2 is the accept

$$\begin{array}{cccc} & 0 & 1 \\ q_1 & q_1 & q_2 \\ q_2 & q_3 & q_2 \\ q_3 & q_2 & q_2 \end{array}$$

->, node distance=3cm, every state/.style=thick, fill=gray!10, initial text=,

[state, initial] (q1) q_1 ; [state, accepting, right of=q1] (q2) q_2 ; [state, right of=q2] (q3) q_3 ; (q1) edge[loop above] node0 (q1) (q1) edge[above] node1 (q2) (q2) edge[loop above] node1 (q2) (q2) edge[bend left, above] node0 (q3) (q3) edge[bend left, below] node0, 1 (q2);

2.11.1 Notes on Example

 $L(M_1) = ?$

 $L(M_1) = A$

 $A = \{w \mid w \text{ contains at least one 1 AND an event number of 0's following the last 1}\}$

2.12 Example 2

 $\delta \neq Q \times \Sigma \rightarrow Q$

$$\begin{array}{c|cc} & 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_1 & q_2 \end{array}$$

[state, initial] (q1) q_1 ; [state, accepting, right of=q1] (q2) q_2 ; (q1) edge[loop above] node0 (q1) (q1) edge[bend left, above] node1 (q2) (q2) edge[loop above] node1 (q2) (q2) edge[bend left, below] node0 (q1)

$$L(M_2) = B = \{ w \mid w \text{ ends in a } 1 \}$$

2.12.1 Expansiion on Above M_3

[state, initial, accepting] (q1) q_1 ; [state, right of=q1] (q2) q_2 ; (q1) edge[loop above] node0 (q1) (q1) edge[bend left, above] node1 (q2) (q2) edge[loop above] node1 (q2) (q2) edge[bend left, below] node0 (q1)

Language of $M_3 = C = \{ w \mid w \text{ ends in a } 0 \text{ OR } w \text{ is empty } \}$

2.12.2 What does this give us?

If we flip the accept and initial state, we generate the complement of the machine (flip the meaning)

2.13 Last DFA Example

$$Q = \{s,q_1,q_2,r_1,r_2\}$$

$$\Sigma = \{a,b\}$$

$$F = \{q_1,r_1\}$$

 Δ chart

$$\begin{array}{c|cccc} & a & b \\ \hline s & q_1 & r_1 \\ q_1 & q_1 & q_2 \\ q_2 & q_1 & q_2 \\ r_1 & r_2 & r_1 \\ r_2 & r_2 & r_1 \\ \end{array}$$

[state, initial] (s) s; [state, accepting, right of=s] (q1) q_1 ; [state, accepting, left of=s] (r1) r_1 ; [state, below of =q1] (q2) q_2 ; [state, below of =r1] (r2) r_2 ; (s) edge[] nodea (q1) (s) edge[] nodeb (r1) (q1) edge[loop above] nodea (q1) { w | starts with 'a' AND ends with 'a' }

3 Regular Languages

Let A and B be languages

Union: A B = {
$$x \mid x \in A \lor x \in B$$
 }
Concatenation: A ^ B = { $xy \mid x \in A \land y \in B$ }
Star: A* = { $x_1x_2...x_k \mid k >= 0 \land x_i \in A, 0 <= i <= k$ }

- 3.0.1 Is ϵ always a member of A^* regarless of the language A? Yes
- 3.0.2 What is another name for the language of A $\hat{\ }$ A*? A^+

3.0.3 Closures of Regular Languages

Theorem: Class of regular languages is closed under intersection. (Proof: Use cross-product construction of states)

Theorem: Class of regular languages is closed under complementation (Proof: swap accept/non-accept states and show FA recognizes the complement)

3.1 Nondeterminism

NFA or nondeterministic finite automata

- Every stop of a FA computation follows in a unique way from the proceeding step; a deterministic computation
- Nondeterministic computation choices exist for the next state; a nondeterministic FA (NFA)
- Ways to introduct nondeterminism
 - more choices for next state (zero, one, many)
 - State may change to another state without reading any symbol

3.1.1 Formal Definition

a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where Q is a finite set of states, Σ is a finite set of symbols (alphabet), the transition function δ maps $Q \times \Sigma \{\epsilon\}$ to P(Q), $q_0 \in Q$ is the start (initial) state, and $F \subseteq Q$ is the set of accept (final) states.

Notice that the range of the transition function δ for an NFA is the power set of Q P(Q)

3.1.2 Formal Definition of Acceptance (NFA)

Let N k (Q, Σ , δ , q₀, F) be an NFA and w = y₁y₂...y_n be a string over $\Sigma_{\epsilon} = \Sigma \epsilon$. We say N accepts w if a sequence of states r₀,r₁,...,r_m exist in Q

such that

- 1. $r_0 = q_0$
- 2. $\delta(r_i, y_{i+1}) = r_{i+1}$ for i = 0, 1, ..., m-1
- 3. r_m∈F

3.1.3 NFA Motivation

- For some problems they are much easier to construct than a DFA
- NFA may actually be smaller than a DFA that performs the same task; but NFA computation is usually more expensive
- Every NFA can be converted into an equivalent DFA (in theory, every NFA has an equivalent DFA t orecognize the same language)
- NFAs can be used to show that regular languages are closed under union, concatenation, and star operations

Epsilon transitions happen without reading anything, allowing you to go either direction

3.1.4 DFA/NFA Equivalence

Let $N = (Q, \Sigma, \delta, q_0, F)$ be the NFA that recognizes the language A and construct the DFA M that also recognizes A. Define $M = (Q', \Sigma, \delta', q_0', F')$.

$$E(R) = R \{ q \in Q \mid r_1 \in R, r_2, \dots, r_k \in Q, r_{i+1} \in \delta(r_i, \epsilon), r_k = q \}$$

4 Nonregular Languages

R is a regular expression if

- 1. a for some $a \in \Sigma$
- 2. ϵ (language contains only the empty string)
- 3. 0 (language has no strings)
- 4. $(R_1 R_2)$, where R_1 , R_2 are regular expressions
- 5. $(R_1 \hat{R}_2)$, where R_1 , R_2 are regular expressions
- 6. R_1^* , where R_1 is a regular expression

4.1 Language Example

Is $B = \{0^n1^n | n \ge 0\}$ a regular language?

• No because one single machine cannot possible match the infinte states

4.1.1 Warning

Just because a language might seem to require unbounded (infinite) memory t orecognize it - it could still be regular

Suppose you have the following two languages: $C = \{w \mid w \text{ has an equal number of 0s and 1s}\}$ and $D = \{w \mid w \text{ has an equal number of 01 and 10 substrings}\}$

2nd is regular?

4.2 Example

Language $D = \{w | w \text{ has an equal number of } 01 \text{ and } 10 \text{ substrings} \}$

We can generally create a regular language if the constraints are ordering Generally non-regular if we have to do some sort of counting without ordering

5 Pumping Lemma

- All strings in a language can be pumped if they are at least as long as a certain value called the pumping length
- Another interpretation: every string contains a section that can be repeated any number of itmes with the resulting string remaining in the language

5.1 Example

```
\operatorname{sqrt}(\operatorname{sqrt}(\operatorname{sqrt}(\ldots\operatorname{sqrt}(x)\ldots)))
```

5.2 Lemma

If A is a regular language, then there exists a number p (the pumping length) where, if s is any string in A of length of at least p, then s may be divided into three pices, s = xyz subject too

If you take any string out of the language, at least length p, then I can take that string, cut it into pieces, 3 pieces, prefix x, suffix z,

1.
$$\forall i \geq 0, xy^iz \in A$$

- p is an integer
- $\bullet\,$ You can also remove all y's, 0 y's

- 2. |y| > 0
 - The actual substring must have some chars
 - x and z can both be empty strings
- $3. |xy| \leq p$
 - the length of x+y cannot be bigger than p

5.3 Pumping Lemma Proof Construction

- Let $M = (Q, \Sigma, \delta, q_1, F)$ be a DFA that recognizes the language A. Assign a pumping length p to the number of states of M.
 - P (pumping length) is the number of states in M, which is finite
 - If you have finite number of states (p), and it is way bigger than p, then we will have to loop
- Show that any string $s \in A$, $|s| \ge p$ may be broken into xyz satisfying the three PL conditions
- If there are no strings in A of length at least p, then the PL is true because all three conditions hold for all strings of length at least p (if there are NO such strings)

5.4 Proof

Recognizes A and let p be the size of Q, let $s=s_1s_2...s_n$ be a string over Σ with $n\geq p$ and $r=r_1r_2...r_{n+1}$ be the sequence of states encountered while processing

5.4.1 Example

We know that $n+1 \ge p+1$, why?

• because $n \ge p$

The among the first p+1 elements in the sequence r..., there must be a repeating state, say r_i, r_k what principle is this based on?

• Pigeon hole principle

Let r_k be the recurring state among the first p+1 states in the sequence starting with r_1 , so $k \leq p+1$. Let $x = s_1s_2 \dots s_{j-1}$, $y = s_js_{j+1} \dots s_{k-1}$, and $z = s_ks_{k+1} \dots s_n$

So X takes M from r_1 to r_j , Y takes M from r_j to r_j and Z takes M from r_j to r_{n+1} ; recall that $r_j == r_k$ and that r_{n+1} is an accept state Therefore:

- M must accept xy^iz , for $i \ge 0$ (Condition 1)
- Since $j \neq k$ then |y| > 0 (Condition 2)
- Since $k \le p + 1$ then $|xy| \le p$ (Condition 3)

5.5 Technique

- Assume the language is regular, and assume a contradiction
- PL guarantees existence of a pumping length p such that all strings of length p or greater (in A) can be pumped
- Find $s \in A$, $|s| \ge p$ that cannot be pumped; consider all the ways of dividing s int ox,y,z and show that for each division, at least one of the

PL conditions fail to hold

• pumping length = number of states in a minimalist machine

5.5.1 Example

$$B = \{0^n1^n \mid n \ge 0\}$$
 is not regular

Assume B is regular and let p be the pumping length for B. Choose $s = 0^p 1^p \in B$ so that clearly $s \ge p$. By the PL, we can partition s = xyz such that for all $i \ge 0$, $xy^iz \in B$. Let's consider three possible cases for the contents of substring y

Think about what the string is, in our case s = 00...011...1, where our length is now 2p, p 0's followed by p 1's.

- 1. Options
 - (a) Y consists of only 0's
 - x | y | z
 - 0000|...0|111.11
 - Then S' = xyyz
 - Then S' has more 0's than 1's, therefore it is no longer in the language
 - Hence, xyyz ∉ B, a violation of condition 1 of the PL
 - Y consists only of 0's. Then S' = xyyz has more 0's than 1's since |y| > 0 by condition 2. Hence, xyyz ∉ B. This is a violation of condition 1 of the PL.

(b) Y consists of only 0's

• Y consists only of 1's. Then S' = xyyz has more 1's than 0's since |y| > 0 by condition 2. Hence, xyyz ∉ B. This is a violation of condition 1 of the PL.

(c) Y consists of 0's and 1's

• Y consists of 0's and 1's. Then s' = xyyz may have the same number of 0's and 1's, but they are out of order (i.e some 1's occur before 0's), and so s' = xyyz ∉ B. This is a violation of condition 1 of the PL.

5.6 How might the proof above be simplified using condition 3 of the PL to constrain the contents of the substring y?

According to condition 3, we must have $|xy| \le p$.

We picked s = 0000000|11111111, both of length p xy is already p length, therefore the language only contains 0's. y could only contain 0's and we have contradiction in case 1 for all y

5.6.1 Example

i = 2

New string is xz

5.7 Conditions

- If a language is regular, one should be able to take any string out of that language, partition it into 3 parts XYZ, with the Y component having something in it, then you can pump that string
- \forall $i \geq 0$, $XY^{i}Z$ has to be in the language, if i = 0 we are pumping down, if i > 1 we are pumping up

- \bullet We only have to find one i that breaks the conditions, because the condition says \forall i's
- \bullet if i = 1, then we are not pumping, that is just the same string
- When $i \ge 2$ then we are pumping up
- When i 0 then we are pumping down

5.8 Example Again

Use the PL to prove that the language $E = \{0^i 1^j \mid i > j\}$ is not regular.

Assume E is regular and let p be the pumping length for E. Choose $s=0^{p+1}1^p\in E$ so that clearly s>p. By the PL, we can partition s=xyz such that for all i>=0, $xy^iz\in E$. By condition 3 of the pumping lemma, we must have $|xy|\leq p$. Therefore, y must contain only 0's. Is it possible for s'=xyyz to be in the language? Adding an additional copy of y increases the number of 0's which does not violate the constraints of the language. But setting i=0 does violate the condition since we would now have 0^p and 1^p , or more generally i<=j. Subsequently s' would $\notin E$, given this contradiction of condition 1 of the PL, we can conclude E is not regular.

Start with condition 3 of the PL to determine the contents of substring y and see if you can get a violation of Condition 1 of the PL for any choice of y.

5.9 Another example

5.9.1 Language 1

$$L_1 = \{a^i b a^j \mid 0 \le i < j\}$$

- ba
- Assume L₁ is regular with pumping length p

- Choose $s = a^p b a^{p+1}$
- State cond 1, s = xyz \forall i \geq 0 xy'z \in L₁
- Use condition 3 ($|xy| \le p$), and condition 2 (|y| > 0)
- y contains only a's
- Pumping up violates the constraint i < j, because xyyz would result in i is now greater than j, which means j is no longer strictly greater than i
- Therefore $s' \notin L_1$, a's before b are greater than or equal to those after b

6 Context Free Languages

We have shown that $L = \{0^n1^n \mid n \ge 0\}$ cannot be specified by a FA or regular expression; Context-Free Grammars (or CFGs) provide a more powerful way to specify languages. A CFG is a 4-tuple (V, Σ, R, S) , where

- V is a finite set of symbols (variable or nonterminals)
- Σ is a finite set of symbols disjoint from V (terminals)
- R is a finite set of specification rules of the form $lhs \to rhs$, $lhs \in V$, $rhs \in (V \Sigma)$, and $S \in V$ is the start variable

6.1 Example

CFG G_1 has the following specification rules

$$A \rightarrow 0A1$$

 $A \to B$

 $B \to \#$

The start variable for G_1 is A. What are the nonterminals?

• A, B

What are the terminals?

• 0, 1, #

6.2 Language Specification

- 1. Write down start variable; *lhs* of first spec rule
- 2. Find variable that is written down and a rule whose lhs is that variable; replace the written down variable with the rhs of that rule
- 3. Repeat Step 2 until no variables remain in string

6.2.1 Example

Use the CFG G_1 (above) to derive the string 000#111. Show derivation and corresponding parse tree

6.3 Direct Derivation

If $u,v,w \in (V \Sigma)^*$, i.e., are strings of variables and terminals, and $A \to w \in R$ is a grammar rule, then we say that uAv yields uwv or $uAv \Rightarrow uwv$. Alternatively, uwv is directly derived from uAv using the rule $A \to w$.

6.4 Derivation

$$S \rightarrow aSb$$

$$S \to SS$$

$$S \to \epsilon$$

6.5 Applications

- Compiler design and implementation
- Programming language specification
- Scanner, parsers, and code generators

6.6 Design Techniques

- 1. CFG Design Technique
 - Many CFGs are unions of simpler CFGs
 - Combination involves putting all the rules together and adding the new rules

•
$$s \to s_1 | s_2 | \dots | s_k$$

– where the variables s_i , $1 \le i \le k$, are the start variables of the invidivual grammars and the s is a new variable

6.6.1 Design a Language Example

CFG G = ({S,B}, {a,b}, {S
$$\rightarrow$$
 aSB|B| ϵ , B \rightarrow bB|b} S)
$$\{a^nb^m \mid n <= m\}$$

6.7 Ambiguous Grammar

Consider the CFG G_5 that has the rules $E \to E + E \mid E * E \mid (E) \mid a$.

For this out by parsing left to right

6.7.1 Derivation Order

It is possible for 2 derivations to produce hte same derivation because htey differ in the order

Leftmost derivation, replace the leftmost nonterminal first Rightmost Derivation, replace the rightmost nonterminal at each step

6.7.2 Example

$$\begin{split} \Sigma &= \{a,b,c\} \\ A &= \{a^ib^jc^k \mid i=j \ \forall \ j=k \ \ (i,j,k \geq 0)\} \end{split}$$

Rules

- $S \to E_{ab}C \mid AE_{bc}$
- $E_{ab} \rightarrow aE_{ab}b \mid \epsilon$