Spark Installtion

```
# innstall java
!apt-get install openjdk-8-jdk-headless -qq > /dev/null
# install spark (change the version number if needed)
!wget -q https://archive.apache.org/dist/spark/spark-3.0.0/spark-3.0.0-bin-hadoop3.2.tgz
# unzip the spark file to the current folder
!tar xf spark-3.0.0-bin-hadoop3.2.tgz
# set your spark folder to your system path environment.
import os
os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64"
os.environ["SPARK_HOME"] = "/content/spark-3.0.0-bin-hadoop3.2"
# install findspark using pip
!pip install -q findspark
```

Imports

```
import findspark
findspark.init()
import pyspark

from pyspark.sql import SparkSession
import pyspark.sql.functions as F
from pyspark.sql.types import *
from pyspark.sql.window import Window

from importlib import reload
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
```

Spark Sesstion

```
def init_spark(app_name: str):
    spark = SparkSession.builder.appName(app_name).getOrCreate()
    sc = spark.sparkContext
    return spark, sc
```

```
spark, sc = init_spark( proj )
spark
```

SparkSession - in-memory SparkContext

Spark UI

```
Version
v3.0.0
Master
local[*]
AppName
proj
```

Place Based Analysis

Drive already mounted at /content/gdrive; to attempt to forcibly remount, call drive.mou StationId|latitude|longitude| maxTemp| minTemp| GME00121990 51.0892 12.9342 278.4731182795699 -41.03225806451613 16.22542989642368 UKE00105897 51.9589 1.0267 248.97777777778 -9.4666666666666667 17.05960073320977 |SPE00120467| 28.4775| -16.3292| 290.9732142857143| 94.9375 | 12.0054549621174 GME00132286 54.0206 9.9267 258.88659793814435 - 34.329896907216494 19.28566346059702 GME00131386 52.3625 12.3883 284.5 -32.27450980392157 14.1052278387372 GME00102193 54.5289 9.5492 | 245.1078431372549 | -16.83333333333332 | 25.7690426715061 GME00131794 52.0106 10.3956 273.3921568627451 -28.92156862745098 16.87486015946581 GME00123718 | 51.6267 | 10.3717 | 272.9306930693069 | -41.99009900990099 | 18.39367412683995 GME00131938 | 48.7358 | 10.7428 265.6 -40.93684210526316 18.37077698957789 SPE00156522 | 42.1769 | 3.0967 | 304.6203703703704 | 8.74074074074074 | 13.81171679700619 |FRM00007627| 43.008| 1.103 | 303.029702970297 | -17.693069306930692 | 25.06517839477428 8.9681 -34.45 14.84435285925015 GME00128266 49.9203 292.26 |NOE00109394| 69.0589| 18.5403|204.76415094339623|-198.41509433962264|18.0706942559837{ 9.9589 | 287.5247524752475 | -27.099009900990097 | 12.6146453613697 GME00102356 | 49.7714 | GME00122698 49.985 7.9544 | 288.2647058823529 | -17.91176470588235 | 13.5107753418775 GME00129190 | 50.9789 | 12.3444 | 283.02912621359224 | -40.699029126213595 | 14.8341867715139 57.18 -2.2 | 190.8469387755102 | -10.306122448979592 | 25.09809921029931 |UKM00003091| 2.0803 | 315.35714285714283 | 43.526785714285715 | 16.74362695615368 SPE00156171 41.3403 |SPE00119963| 36.0153| -5.5975 | 272.80357142857144 | 89.49107142857143 | 13.3117086203415

```
countries = ['GM','NO','SP','UK','FR']
df = df.withColumn("country", F.col("StationId").substr(1, 2))
countries dict = {}
countries = {}
countries['GM'] = 'Germany'
countries['NO'] = 'Norway'
countries['SP'] = 'Spain'
countries['UK'] = 'United Kingdom'
countries['FR'] = 'France'
for country in countries:
 countries_dict[country] = df[df["country"] == country]
for country in countries:
 print("-----
                                        " + countries[country] + "
 fig, axes = plt.subplots(nrows=1, ncols=3)
 sns.histplot(x="maxTemp", bins = 20, data = countries dict[country].select('maxTemp').toPan
 axes[0].set_title("Max Temperature")
  axes[0].set xlim(left=0, right=400)
 sns.histplot(x="minTemp", bins = 20, data = countries_dict[country].select('minTemp').toPan
 axes[1].set title("Min Temperature")
  axes[1].set xlim(left=-300, right=200)
 sns.histplot(x="avgPrcp", bins = 20, data = countries dict[country].select('avgPrcp').toPan
 axes[2].set title("Percipitation")
  axes[2].set xlim(left=0, right=200)
 fig.tight layout()
 plt.show()
```


Time Based Analisys

Drive already mounted at /content/gdrive; to attempt to forcibly remount, call drive.mou

```
-----+
                   date|label|
   StationId|
|SPE00156423|2016-01-03|
                            01
|SPE00120125|2016-01-04|
                          408 l
SPE00120170 2016-01-05
                           48
|SPE00156585|2016-01-06|
                            01
|SPE00119918|2016-01-10|
                            8
SPE00156369 2016-01-10
                            0
|SPE00156414|2016-01-10|
                           34
 SPE00156648 | 2016-01-10 |
                            0
|SPE00120017|2016-01-11|
                           48
SPE00156018 | 2016-01-13 |
                            0
|SPE00156288|2016-01-13|
                            0
|SPW00013024|2016-01-13|
                            0
 SPE00156594 | 2016-01-15 |
                            01
|SPE00156513|2016-01-17|
                            0
SPE00156000 2016-01-18
                            0
|SPE00156189|2016-01-19|
                            01
|SP000007038|2016-01-20|
                            0
|SPE00156549|2016-01-22|
                            0
|SPE00156162|2016-01-23|
                            01
|SPE00156621|2016-01-24|
+----+
only showing top 20 rows
```

1

Month Based

```
mount_agg_df = df.withColumn('month', F.split(df.date, '-')[1].cast('integer'))
mount_agg_df = mount_agg_df.withColumn('year', F.split(mount_agg_df['date'], '-')[0].cast('in
mount_agg_df = mount_agg_df.groupby('StationId', 'month', 'year').sum('label')
mount_agg_df = mount_agg_df.groupby('StationId', 'month').mean('sum(label)')
mount_agg_df = mount_agg_df.withColumn('PRCP', mount_agg_df['avg(sum(label))']).drop('avg(sum
mount_agg_df.show())
```

```
+----+
  StationId|month| PRCP|
+----+
|GME00115771|
                 8 | 1298.4 |
GME00124810
                 8 | 1333.6 |
                 2 | 1086.8 |
GME00121750
|NOE00110554|
                 8 | 3561.2 |
                 4 | 666.2
SPE00156342
|FR000007130|
                12 | 1446.8 |
                10 | 841.0 |
|NOE00134718|
GME00131530
                 8 | 911.2
                 1 | 657.0 |
|NOE00109876|
 GME00125146
                 1 | 1452.0
|N0000001026|
                10 | 1630.0 |
GM000003038
                 4 | 653.6
GME00121654
                10 | 1322.4 |
NOE00134574
                 3 | 400.4 |
                 7 | 835.4
NOE00133254
GME00132154
                 3 | 837.6
GME00123130
                 2 | 1234.0
|NOE00111004|
                 7 | 809.6
|GMM00010480|
                 1 910.4
                 6 | 1170.0 |
|GME00129190|
only showing top 20 rows
```

```
pd_df = mount_agg_df.toPandas()
sns.scatterplot(x = pd_df['month'], y = pd_df['PRCP'])
plt.show()
```

```
8000 - 7000 -
```

```
mount_agg_df = mount_agg_df.drop('StationId')
mount_agg_df = mount_agg_df.groupBy("month").agg(F.min("PRCP"), F.max('PRCP'), F.var_pop("PRC
mount_agg_df = mount_agg_df.withColumn('min_PRCP', mount_agg_df['min(PRCP)']).drop('min(PRCP)
mount_agg_df = mount_agg_df.withColumn('max_PRCP', mount_agg_df['max(PRCP)']).drop('max(PRCP))
mount_agg_df = mount_agg_df.withColumn('var_PRCP', mount_agg_df['var_pop(PRCP)']).drop('var_p
mount_agg_df = mount_agg_df.withColumn('range_PRCP', mount_agg_df.max_PRCP - mount_agg_df.min_mount_agg_df.show()
```

++-			h	+
month n	nin PRCP	max_PRCP	var PRCP	range_PRCP
++-	+		·	+
12	3.0	7406.8	823054.7028707761	7403.8
1	8.8	6458.0	595233.2888347387	6449.2
6	0.4	3980.8	341531.8432363311	3980.4
3	78.0	4798.8	323520.29335984966	4720.8
5	0.0	4702.4	316599.0529666013	4702.4
9	0.0	7847.2	663580.216593518	7847.2
4	22.0	3992.0	175490.68071661235	3970.0
8	0.0	6398.8	525633.3475020734	6398.8
7	0.0	4408.0	362539.1955357152	4408.0
10	0.0	6577.2	508345.22355317156	6577.2
11	0.0	5657.6	540652.4992342772	5657.6
2	57.2	4938.4	414570.52899540437	4881.2
++-	+		h	+

```
pd_month_df = mount_agg_df.toPandas()
sns.scatterplot(x = pd_month_df['month'], y = pd_month_df['min_PRCP'])
sns.scatterplot(x = pd_month_df['month'], y = pd_month_df['max_PRCP'])
plt.show()
```



```
sns.scatterplot(x = pd_month_df['month'], y = pd_month_df['var_PRCP'])
plt.show()
```


sns.scatterplot(x = pd_month_df['month'], y = pd_month_df['range_PRCP'])
plt.show()


```
sns.scatterplot(x = pd_month_df['range_PRCP'], y = pd_month_df['var_PRCP'])
x = pd_month_df['range_PRCP']
y = pd_month_df['var_PRCP']
z = np.polyfit(x, y, 1)
p = np.poly1d(z)
plt.plot(x, p(x), "r--")
plt.show()
```

```
800000 -
700000 -
600000 -
```

Time - Place Based Analisys

```
from google.colab import drive
drive.mount('/content/gdrive')
time df = spark.read \
        .format("com.microsoft.sqlserver.jdbc.spark") \
        .option("url", url) \
        .option("dbtable", "timeDF") \
        .option("user", username) \
        .option("password", password).load()
time df.show()
place df = spark.read \
        .format("com.microsoft.sqlserver.jdbc.spark") \
        .option("url", url) \
        .option("dbtable", "spatialDF") \
        .option("user", username) \
        .option("password", password).load()
place_df.show()
```

Drive already mounted at /content/gdrive; to attempt to forcibly remount, call drive.mou

```
+----+
  StationId|
                  date|label|
+----+
|SPE00156423|2016-01-03|
                           01
SPE00120125 | 2016-01-04 |
                         408
|SPE00120170|2016-01-05|
                          48
SPE00156585 2016-01-06
                           0
|SPE00119918|2016-01-10|
                           8
|SPE00156369|2016-01-10|
                           0
SPE00156414 | 2016-01-10 |
                          34
|SPE00156648|2016-01-10|
                           0
SPE00120017 | 2016-01-11 |
                          48
SPE00156018 2016-01-13
                           01
|SPE00156288|2016-01-13|
                           0
SPW00013024 2016-01-13
                           0
|SPE00156594|2016-01-15|
                           01
SPE00156513 | 2016-01-17 |
                           0
|SPE00156000|2016-01-18|
                           01
SPE00156189 2016-01-19
                           01
SP000007038 | 2016-01-20 |
                           0
|SPE00156549|2016-01-22|
                           0
SPE00156162 2016-01-23
                           01
|SPE00156621|2016-01-24|
                           0
```

```
+----+
only showing top 20 rows
```

+	+	+		+		
StationId latitu	de longitude	maxTemp	minTemp	avgPro		
+	+	+		+		
GME00121990 51.08	92 12.9342	278.4731182795699	-41.03225806451613	16.22542989642368		
UKE00105897 51.95	89 1.0267	248.97777777778	-9.46666666666667	17.05960073320977		
SPE00120467 28.47	75 -16.3292	290.9732142857143	94.9375	12.0054549621174		
GME00132286 54.02	06 9.9267	258.88659793814435	-34.329896907216494	19.28566346059702		
GME00131386 52.36	25 12.3883	284.5	-32.27450980392157	14.1052278387372		
GME00102193 54.52	89 9.5492	245.1078431372549	-16.833333333333333	25.7690426715061		
GME00131794 52.01	06 10.3956	273.3921568627451	-28.92156862745098	16.87486015946581		
GME00123718 51.62	67 10.3717	272.9306930693069	-41.99009900990099	18.39367412683995		
GME00131938 48.73	58 10.7428	265.6	-40.93684210526316	18.37077698957789		
SPE00156522 42.17	69 3.0967	304.6203703703704	8.74074074074074	13.81171679700619		
FRM00007627 43.0	08 1.103	303.029702970297	-17.693069306930692	25.06517839477428		
GME00128266 49.92	03 8.9681	292.26	-34.45	14.84435285925015		
NOE00109394 69.05	89 18.5403	204.76415094339623	-198.41509433962264	18.07069425598378		
GME00102356 49.77	14 9.9589	287.5247524752475	-27.099009900990097	12.6146453613697		
GME00122698 49.9	85 7.9544	288.2647058823529	-17.91176470588235	13.5107753418775		
GME00129190 50.97	89 12.3444	283.02912621359224	-40.699029126213595	14.8341867715139		
UKM00003091 57.	18 -2.2	190.8469387755102	-10.306122448979592	25.09809921029931		
SPE00156171 41.34	03 2.0803	315.35714285714283	43.526785714285715	16.74362695615368		
SPE00119963 36.01	53 -5.5975	272.80357142857144	89.49107142857143	13.3117086203415		
GME00122938 49.6	65 11.2253	266.8910891089109	-45.37623762376238	20.5874140295963		
+	+	+		+		
only showing top 20 rows						

time_place_df = time_df.join(place_df.select('StationId', 'cluster_label'), on = 'StationId')
time_place_df.show()

+	+		+
StationId	date	label	cluster_label
SPE00156423	 2016-01-03	 0	
SPE00120125	2016-01-04	408	1
SPE00120170	2016-01-05	48	0
SPE00156585	2016-01-06	0	0
SPE00119918	2016-01-10	8	0
SPE00156369	2016-01-10	0	0
SPE00156414	2016-01-10	34	0
SPE00156648	2016-01-10	0	0
SPE00120017	2016-01-11	48	0
SPE00156018	2016-01-13	0	2
SPE00156288	2016-01-13	0	0
SPW00013024	2016-01-13	0	0
SPE00156594	2016-01-15	0	0
SPE00156513	2016-01-17	0	1
SPE00156000	2016-01-18	0	0
SPE00156189	2016-01-19	0	0
SP000007038	2016-01-20	0	0
SPE00156549	2016-01-22	0	1
SPE00156162	2016-01-23	0	2
SPE00156621	2016-01-24	0	1

```
+----+
only showing top 20 rows
```

```
time_place_df = time_place_df.withColumn('date', F.substring(time_place_df.date, 0, 7))
time_place_df = time_place_df.withColumn('date', 10*F.split(time_place_df.date, '-')[0] + (10
time_place_df = time_place_df.groupby('StationId', 'date', 'cluster_label').sum('label')
time_place_df = time_place_df.withColumn('sum_PRCP', time_place_df['sum(label)']).drop('sum(label))
```

+	h	·	++
StationId	date	cluster_label	sum_PRCP
+			++
SPE00156018		2	516
SPE00156351	20160.76923076923	1	142
SPE00120089	20162.30769230769	0	320
SPE00155964	20161.53846153846	0	159
SPE00120035	20163.846153846152	0	784
SPE00120467	20162.30769230769	0	1296
SPE00120395	20165.384615384617	0	128
SPE00120287	20162.30769230769	0	780
SPE00156090	20163.076923076922	0	598
SPE00156495	20166.923076923078	2	1552
SPE00119855	20164.615384615383	0	20
SPE00120062	20168.46153846154	0	1644
SPE00120170	20175.384615384617	0	20
SPE00120530	20167.69230769231	0	732
SPE00119936	20170.76923076923	0	248
SPM00008360	20173.076923076922	0	46
SPE00155982	20176.153846153848	0	186
SPE00156531	20163.076923076922	0	706
:	20176.153846153848		
:	20169.23076923077		ii
+	- 		++

only showing top 20 rows

```
prcp_ts = time_place_df.toPandas()
for k in range(3):
    fig, ax1 = plt.subplots(1, figsize=(10,8))
    sns.lineplot(x="date", y="sum_PRCP", data = prcp_ts[prcp_ts['cluster_label']==k], ax=ax1)
    prcp_mean = prcp_ts[prcp_ts['cluster_label']==k]["sum_PRCP"].mean()
    prcp_std = prcp_ts[prcp_ts['cluster_label']==k]["sum_PRCP"].std()
    ax1.axhline(y = prcp_mean, color = 'r', linestyle = '-', label="prcp_mean")
    ax1.axhline(y = prcp_mean + 2*abs(prcp_std - prcp_mean), color = 'k', linestyle = 'dotted',
    ax1.axhline(y = prcp_mean - 2*abs(prcp_std - prcp_mean), color = 'k', linestyle = 'dotted')
    ax1.set title("Percipitation from 2016-2021: cluster " + str(k))
```


20180

date

20190

20200

20210

labels = ['Cluster 0', 'Cluster 1', 'Cluster 2']
for k in range(3):

20170

20160

 plt.legend()
plt.show()

×