Question Number	Scheme	Marks
2	expand and re-arrange to achieve 3TQ	
	$\Rightarrow 4x^2 - 19x + 12 > 0$	M1
	$\Rightarrow (4x-3)(x-4) > 0 \Rightarrow \text{correct cvs } x = \frac{3}{4}, x = 4$	M1A1
	$\Rightarrow x < \frac{3}{4}, x > 4 \Rightarrow x < \frac{3}{4} \text{ OR } x > 4 \text{ (Outside region)}$	M1A1
	Or any equivalent notation eg., $\left(-\infty, \frac{3}{4}\right) \cup \left(4, \infty\right)$	(5)

Notes

M1 for attempting to expand the bracket and collecting up like terms to achieve a 3TQ Can have > 0 , = 0 < 0 or even the expression on its own.

An acceptable attempt is to expand the bracket to 3 or 4 terms to give $4x^2 \pm kx \pm 9$

- M1 for attempting to **solve** their 3TQ (see General Guidance for an acceptable attempt to factorise, complete square or use formula). For the award of this mark, their 3TQ must be either > 0, = 0 or < 0, and they must achieve their critical values.

 (It is not enough just to factorise without leading to roots or a solution)
- A1 for the correct critical values of x = 4 and $x = \frac{3}{4}$
- M1 for selecting the outside region for their critical values, ft their values.
- A1 for the correct inequality as shown

We will accept; a comma, a space, the word **or**, between $x < \frac{3}{4}$ x > 4

$$x < \frac{3}{4}$$
 and $x > 4$ is M1A0

Use of \geq and \leq in an otherwise correct region is M1A0