R code for I_{dep} and I_{mmi} PIDs for Gaussian systems

These notes describe how to use the package R to compute PIDs for Gaussian systems¹. The output for the numerical examples in the paper was produced using version 3.4.3 of R, which can be downloaded from http://cran.r-project.org.

A script for running Examples 5 and 6 is available in the folder IdepFuns, in the file, IdepGscript.R. Once R is loaded, the user is required to set a working directory and then to load the functions that are contained in the file, IdepGauss.R.

Commands given in IdepGscript.R can then be run by copying and pasting them into R and running them or by selecting and running them in RStudio. Data used in examples 5 & 6 in the paper are provided in this file.

The folder IdepFuns contains the definitions of four functions, given as follows

Function	Inputs	Outputs
idepGU idepGM	p,q,r sizes, mat	$I_{\rm dep}$ and $I_{\rm mmi}$ PIDs (univariate) $I_{\rm dep}$ and $I_{\rm mmi}$ PIDs (multivariate)
DevTestU DevTestM	p,q,r,n sizes, mat, n	Model names and p-values Model names and p-values

where

- p is the correlation between X_0 and X_1
- *q* is the correlation between *X*⁰ and *Y*
- *r* is the correlation between *X*₁ and *Y*
- *n* is the number of observations (sample size)
- sizes is a numeric list of the values n_0, n_1, n_2
- mat is a positive definite covariance or correlation matrix

Robin Ince has posted some Matlab code at

https://github.com/robince/partial-info-decomp/blob/master/calc_pi_Idep_
mvn.m

¹Kay & Ince (2018): Exact partial information decompositions for Gaussian systems based on dependency constraints (*submitted*)