THÉORÈME DE HARDY SUR LES ZÉROS DE LA CÉLÈBRE FONCTION 5 DE RIEMANN

ÉNONCÉ

Préambule

Les propriétés suivantes de la fonction Γ pourront être utilisées sans démonstration; elles n'interviennent pas dans la première partie du problème.

Soit s un nombre complexe; on note Re(s) sa partie réelle, Im(s) sa partie imaginaire. Pour Re(s) > 0, on pose :

$$\Gamma(s) = \int_0^{+\infty} e^{-t} t^{s-1} dt.$$

La fonction Γ est holomorphe dans le demi-plan $\operatorname{Re}(s) > 0$. Elle se prolonge en une fonction méromorphe dans $\mathbf C$ dont les pôles sont les entiers négatifs ou nuls. Ces pôles sont simples, et le résidu de Γ au point s=-p, $(p\in \mathbf N)$, est $\frac{(-1)^p}{p!}$.

Si s n'est pas un pôle, on a : $\Gamma(s+1)=s$ $\Gamma(s)$, et : $\Gamma(s)\neq 0$. Soient σ_1 , σ_2 des nombres réels tels que $\sigma_1\leqslant \sigma_2$, et m un entier positif; on a : $\lim_{|t|\to +\infty} |t^m| \Gamma(\sigma+it)|=0$, uniformément pour σ élément de $[\sigma_1,\sigma_2]$.

Enfin, si c et x sont des nombres réels strictement positifs, on a :

$$e^{-x} = \frac{1}{2i\pi} \int_{\text{Re}(s)=c}^{x^{-s}} \Gamma(s) ds$$
,

la droite Re(s) = c étant orientée dans le sens des ordonnées croissantes. (Cette convention d'orientation est conservée pour toutes les intégrales analogues apparaissant dans le problème).

ÉNONCÉ

Si z est un nombre complexe non nul, on note $\operatorname{Arg}(z)$ l'unique détermination de l'argument de z qui appartient à $[-\pi, \pi[$, et on pose : $\operatorname{Log}(z) = \operatorname{Log} \mid z \mid + i \operatorname{Arg}(z)$, puis, pour tout nombre complexe $a: z^a = e^{a \operatorname{Log}(z)}$.

Dans tout le problème, $\mathfrak L$ désigne l'ensemble des nombres complexes dont la partie imaginaire est strictement positive.

Soit λ un réel strictement positif; une fonction f définie dans \mathfrak{L} est dite périodique, de période λ , si, quel que soit $z \in \mathfrak{L}$, on a : $f(z + \lambda) = f(z)$.

PREMIÈRE PARTIE

1º Soit f une fonction définie dans \mathfrak{A} , holomorphe et périodique de période λ .

a. Démontrer qu'il existe une fonction g, définie et holomorphe dans l'ouvert :

$$\{z \mid z \in \mathbb{C} \text{ et } 0 < |z| < 1\},$$

telle que

$$g(e^{2i\pi z/\lambda}) = f(z)$$
.

b. Soit $z_0 = x_0 + iy_0 \in \mathfrak{D}$. Pour $n \in \mathbb{Z}$, on pose:

(1)
$$a_n = \frac{1}{\lambda} \int_{x_0}^{x_0 + \lambda} f(t + iy_0) e^{-2i\pi n (t + iy_0)/\lambda} dt.$$

Démontrer que a_n est indépendant de z_0 , et que

(2)
$$f(z) = \sum_{n=-\infty}^{+\infty} a_n e^{2i\pi nz/\lambda} ,$$

la convergence de cette série étant uniforme sur toute partie compacte de \mathcal{Q} . La fonction f est dite holomorphe (resp. méromorphe) à l'infini si la fonction g est holomorphe (resp. méromorphe) en zéro; donner les conditions sur les a_n pour qu'il en soit ainsi. Dans la suite, on dira que les a_n sont les coefficients de Fourier de f.

c. On suppose qu'il existe deux constantes positives c et ρ telles que, quel que soit $z = x + iy \in \mathcal{R}$, avec $y \le 1$, on ait

$$|f(x+iy)| \leqslant c y^{-1-p}.$$

Démontrer que

(4)
$$\sup_{n \in \mathbf{Z}^*} |a_n| |n|^{-\rho-1} < + \infty.$$

2º a. Soit $\rho > 0$. Montrer que la suite u définie, pour $n \ge 1$, par

$$u_n = n^{\rho} \frac{n!}{(\rho+1) (\rho+2) \dots (\rho+h) \dots (\rho+n)}$$

est bornée.

(On pourra utiliser la série de terme général Log $\frac{u_{n+1}}{u_n}$) .

b. Soit

$$(a_n)_{n \geq 0}$$

une suite de complexes. On suppose l'existence d'un réel $\rho,$ strictement positif, tel que :

$$\sup_{n \in \mathbb{N}^*} |a_n| n^{-\rho} < + \infty$$

et l'on considère l'application f, de A dans C, définie par

(6)
$$f(z) = \sum_{n=0}^{+\infty} a_n e^{2i\pi nz/\lambda}$$

Montrer que f est holomorphe et que (3) est vérifiée pour une valeur convenable de la constante positive c.

Montrer que, pour tout réel y strictement positif, on a

$$\lim_{t\to+\infty} t^{\gamma} |f(it) - a_o| = 0.$$

DEUXIÈME PARTIE

Soient λ un réel strictement positif et $(a_n)_{n\geq 0}$ une suite de nombres complexes. On suppose qu'il existe $\rho>0$ tel que (5) soit vérifiée. On définit f par (6), et l'on pose, pour $\operatorname{Re}(s)>\rho+1$,

$$\varphi(s) = \sum_{n=1}^{+\infty} a_n n^{-s}, \quad \Phi(s) = \left(\frac{2\pi}{\lambda}\right)^{-s} \Gamma(s) \varphi(s)$$

1º a. Montrer que φ est holomorphe pour Re(s) > $\rho + 1$.

b. Montrer, avec soin, que

$$\Phi(s) = \int_0^{+\infty} t^{s-1} (f(it) - a_0) dt \quad \text{pour } \text{Re}(s) > \rho + 1,$$

ÉNONCÉ

251

et qu'inversement, pour $\alpha > \rho + 1$ et y > 0, on a

$$f(iy) - a_0 = \frac{1}{2i\pi} \int y^{-s} \Phi(s) ds$$

$$\operatorname{Re}(s) = \alpha$$

c. Montrer que s² Φ (s) est bornée sur toute « verticale » du demiplan Re(s) > $\rho+1$.

2º Soient ε et k des réels tels que $|\varepsilon|=1$ et k>0. On suppose que Φ possède les propriétés suivantes A et B:

 $\boxed{\mathbb{A}}$. Notant ω l'ensemble des complexes distincts de 0 et de k, la fonction Φ admet un prolongement holomorphe à ω , et ce prolongement, noté encore Φ , vérifie : $(\forall s \in \omega) (\Phi(s) = \varepsilon \Phi(k - s))$.

B. La fonction $s \longmapsto \Phi(s) + a_o\left(\frac{1}{s} + \frac{\varepsilon}{k-s}\right)$ se prolonge en une fonction entière de s, et est bornée sur toute bande « verticale ».

a. Soit α un réel tel que $\alpha > \rho + 1$ et $\alpha > k$. On note U la partie de C, ensemble des complexes s tels que

$$k - \alpha \leq \text{Re}(s) \leq \alpha \text{ et } |\text{Im}(s)| \geq 1$$

Montrer que s^2 $\Phi(s)$ est bornée sur la frontière de U, puis que s^2 $\Phi(s)$ est bornée dans U.

[On pourra utiliser le résultat précédent et considérer, pour tout a>0, la fonction $s\longmapsto e^{as^2}\,s^2\,\Phi(s)$; on rappelle l'énoncé : Principe du maximum : Soit V un ouvert borné de C. Soit g une fonction définie et continue dans l'adhérence de V et holomorphe dans V. Si ∂ V désigne la frontière de V, on a $\sup_{z\in\partial V}|g(z)|=\sup_{z\in\partial V}|g(z)|$].

b. Pour tout réel y, strictement positif, on pose :

$$I(y) = \int y^{-s} \Phi(s) ds \quad \text{et} \quad J(y) = \int y^{-s} \Phi(s) ds$$

$$Re(s) = k - \alpha$$

$$Re(s) = \alpha$$

Montrer que $I(y) = \varepsilon y^{-k} J\left(\frac{1}{y}\right)$ et expliciter J(y) - I(y).

c. Déduire de b. que f possède la propriété suivante :

$$\boxed{\mathbb{C}}. \qquad f(z) = \varepsilon \left(\frac{z}{i}\right)^{-k} f\left(-\frac{1}{z}\right).$$

3º Conservant les notations du paragraphe précédent, montrer que si f possède la propriété \mathbb{C} , alors Φ possède les propriétés \mathbb{A} et \mathbb{B} . (On pourra utiliser l'expression de $\Phi(s)$ obtenue en (II 1º b.) et faire intervenir le point 1 de l'intervalle d'intégration.)

4º Pour tout élément z de I, on pose :

$$\theta\left(z\right) = \sum_{n \in \mathbf{Z}} e^{i\pi n^2 z}$$

a. Calculer, pour t réel strictement positif et y réel, l'intégrale

$$\int_{-\infty}^{+\infty} e^{-\pi x^2 t} e^{-2i\pi xy} dx$$

(On pourra utiliser, sans la démontrer, l'égalité $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$).

b. Pour t réel strictement positif et x réel, on pose :

$$\psi(x) = \sum_{n \in \mathbb{Z}} e^{-\pi(x+n)^2 t} .$$

La fonction ψ est une fonction périodique de la variable réelle x. Préciser sa série de Fourier et montrer que celle-ci converge vers ψ . En déduire l'égalité $\theta(it) = \frac{1}{\sqrt{t}} \theta\left(-\frac{1}{it}\right)$.

c. Dans l'hypothèse $\left(\lambda=2\,,\;k=\frac{1}{2},\;\epsilon=1\right)$ et en choisissant une suite $(a_n)_{n\geq 0}$ convenable, montrer que θ possède la propriété $\overline{\mathbb{C}}$.

d. Pour tout complexe s tel que Re(s) > 1, on pose :

$$\zeta(s) = \sum_{n=1}^{+\infty} n^{-s}$$

Déduire de l'étude précédente certaines propriétés de la fonction ζ .

TROISIÈME PARTIE

On pourra utiliser, sans démonstration, le résultat suivant : lorsque $\mid t \mid$ tend vers l'infini (t réel), on a :

$$\lim \mid \Gamma \left(\sigma + it\right) \mid (2\pi)^{-\frac{1}{2}} e^{\frac{\pi \mid t \mid}{2}} \mid t \mid^{\frac{1}{2} - \sigma} = 1 ,$$

uniformément pour o appartenant à une partie compacte de R.

1º Soient σ_1 , σ_2 des nombres réels vérifiant $\sigma_1 < \sigma_2$, U (resp. V) la partie de $\mathbb C$ définie par les inégalités $\sigma_1 \leq \operatorname{Re}(s) \leq \sigma_2$ et $|\operatorname{Im}(s)| \geq 1$ (resp. $\sigma_1 \leq \operatorname{Re}(s) \leq \sigma_2$ et $\operatorname{Im}(s) \geq 1$).

ÉNONCÉ

Soit h (resp. l) une fonction définie et holomorphe au voisinage de U (resp. V). On suppose qu'il existe des réels positifs α , β_1 , β_2 tels que :

$$\begin{cases} \sup_{s \in \mathbf{U}} \mid h(s) \mid e^{-\alpha \mid s \mid} < + \infty \\ \\ \sup_{\mid i \mid \, \geqslant 1} \mid t \mid^{-\beta_j} \mid h(\sigma_j + it) \mid < + \infty \quad (j = 1, 2) \,. \end{cases}$$

$$\begin{cases} \sup_{s \in \mathbf{V}} \mid l(s) \mid e^{-\alpha \mid s \mid} < + \infty \\ \\ \sup_{t \geqslant 1} t^{-\beta_j} \mid l(\sigma_j + it) \mid < + \infty \quad (j = 1, 2) \,. \end{cases}$$

Soit L la fonction affine telle que : $L(\sigma_i) = \beta_i$, (j = 1, 2).

Démontrer qu'il existe un réel M tel que, quel que soit $\sigma \in [\sigma_1, \sigma_2]$, on ait :

$$\sup_{|t| \geqslant 1} \mid t \mid^{-L(\sigma)} \mid h(\sigma + it) \mid \leqslant M \quad \text{(resp. } \sup_{t \geqslant 1} t^{-L(\sigma)} \mid l(\sigma + it) \mid \leqslant M \text{)}.$$

(On se ramènera à démontrer le résultat concernant V et l, puis, en divisant l par la fonction $\left(\frac{s}{i}\right)^{L(s)}$, on se ramènera au cas où : $\beta_1 = \beta_2 = 0$).

On reprend maintenant les notations et hypothèses de la deuxième partie.

La fonction f vérifie $\boxed{\mathbb{C}}$ et n'est pas constante.

Soit m un entier strictement positif tel que $a_m \neq 0$.

Soit Z une primitive de $s^{\frac{k-1}{2}}$ $m^s \varphi(s)$, dans le quart de plan :

$$Re(s) > 0$$
, $Im(s) > 0$.

2º On donne des réels σ_1 , σ_2 vérifiant : $0 < \sigma_1 < \sigma_2$, et l'on note V la partie de C définie par : $\sigma_1 \leq \text{Re}(s) \leq \sigma_2$ et $\text{Im}(s) \geq 1$. Montrer qu'il existe $\alpha > 0$ tel que $Z(s)e^{-\alpha |s|}$ soit bornée sur V.

3º Soit σ un réel tel que $\sigma > \rho + 1$. Démontrer que, pour a réel, on a : $\sup_{t \ge 1} t^{-a} \mid Z(\sigma + it) \mid < + \infty$ si, et seulement si : $a \ge \frac{k+1}{2}$.

4º a. Démontrer que, quel que soit σ réel, il existe a>0 tel que $\sup_{|t|\geqslant 1} |t|^{-a} |\varphi(\sigma+it)| < +\infty.$

(On utilisera la question 1º en prenant σ_2 strictement supérieur, en particulier, à $\rho + 1$, et : $\sigma_1 = k - \sigma_2$).

b. Démontrer que, pour σ réel ($\sigma > \rho + 1$) et z élément de \mathfrak{R} , on a :

$$f(z) - a_0 = \frac{1}{2i\pi} \int_{\text{Re}(s) = \sigma}^{\infty} \Phi(s) \ ds \ .$$

c. Évaluer l'intégrale suivante, pour z élément de $\mathfrak L$:

$$\frac{1}{2i\pi} \int \left(\frac{z}{i}\right)^{-s} \Phi(s) \ ds \ .$$

$$\operatorname{Re}(s) = \frac{k}{2}$$

On suppose désormais que les coefficients de Fourier de f (I 1° b.) sont réels, qu'il existe $\beta \in \left[0, \frac{k+1}{2}\right[$ tel que, lorsque u tend vers 0 par valeurs strictement positives, $u^{\beta} \mid f(e^{iu}) \mid$ reste borné et qu'enfin la fonction φ n'a qu'un nombre fini de zéros sur la droite $\operatorname{Re}(s) = \frac{k}{2}$.

5° a. Démontrer que $i^{\frac{1-\varepsilon}{2}}$ $\Phi(s)$ est réel pour $\mathrm{Re}(s)=\frac{k}{2}$, et que, lorsque u tend vers 0 par valeurs strictement positives,

$$u^{\beta} \int_{-\infty}^{+\infty} e^{t\left(\frac{\pi}{2}-u\right)} \left| \Phi\left(\frac{k}{2}+it\right) \right| dt$$
 reste borné.

b. En déduire que, lorsque T, réel, tend vers $+\infty$,

$$T^{-\beta}\int_{0}^{T} t^{\frac{k-1}{2}} \mid \varphi\left(\frac{k}{2}+it\right) \mid dt$$
 reste borné.

c. Démontrer que :
$$\sup_{t\geqslant 1} t^{-\beta} \left| Z\left(\frac{k}{2}+it\right) \right| < +\infty$$
 .

Quelle conclusion peut-on tirer des calculs précédents ?

- 6º Les notations sont celles de la dernière question de la deuxième partie.
 - a. Établir, pour z élément de I, l'égalité :

$$\theta\left(1-\frac{1}{z}\right) = \left(\frac{z}{i}\right)^{\frac{1}{2}} \sum_{n=-\infty}^{+\infty} e^{i\pi\left(n+\frac{1}{2}\right)^2} z.$$

b. Démontrer que la fonction ζ a une infinité de zéros sur la droite $\mathrm{Re}(s) = \frac{1}{2}$.