Advanced Python for Neuroscientists

Lecture 4: Classification (Decoding) / GLM (Encoding)

Classification (Decoding)

An example in fMRI

"Traditional" view of neural response - selective response

(Furey et al., 2006)

Classification (Decoding) An example in fMRI

- Searchlight method in fMRI
 - Real information is in a-b, a+.5b,...

a b c

Analyzing for information, not activation, to exploit high-resolution fMRI

Nikolaus Kriegeskorte* and Peter Bandettini

Section on Functional Imaging Methods, Lab of Brain and Cognition, National Institute of Mental He

Received 15 September 2006; revised 22 December 2006; accepted 6 February 2007 Available online 27 February 2007

Classification (Decoding)

- 1.fMRI voxel activation
- 2.Gene expressions
- 3. Single neuron spike count
- 4.Pixel luminance patten

. . .

- 1. Visual stimulus
- 2.Cell type
- 3.Attend left / right
- 4.Dog / cat

. . .

Cross-validation

- Cross-validation
- Bias-variance trade-off

- Cross-validation
- Bias-variance trade-off
- Supervised vs. unsupervised learning

- Cross-validation
- Bias-variance trade-off
- Supervised vs. unsupervised learning
- Cost function the thing you're trying to minimize

• E.g.
$$\sum (y - \hat{y})^2$$
, $\sum (y - \hat{y})^2 + \lambda |\mathbf{w}|$

- Misclassification
 - 0-1 loss; hinge loss (SVM); log loss (logistic regression)

- Soft margin
 - Maximum margin classifier
 - Support vector classifier

Data points without outlier

Data points with outlier

Prediction on new data point

- Soft margin
 - Hyper-parameter: how much do you care about misclassification

- SVM vs logistic regression
 - Different cost function
 - SVM performs better with data that is less structured

Naive Bayes

Probability based

• Prior Posterior
$$p(H=h \mid Y=y) = \frac{p(H=h)p(Y=y \mid H=h)}{p(Y=y)}$$
• likelihood

posterior

 $\propto p(H=h)p(Y=y | H=h)$

- Weighted average of prior
- Update prior belief with likelihood, get posterior

Example: COVID testing

- sensitivity (true positive rate) p(Y=1 | H=1)
- Likelihood
- specificity (true negative rate) p(Y=0 | H=0)
- Prevalence of the disease p(H = 1) Prior

• Estimate p(H | Y) Posterior

Example: COVID testing

- How likely is that you actually have COVID when receiving a positive test?
 - If you know ~ 10% of people are infected in your area

$$p(H = 1 \mid Y = 1) = \frac{p(Y = 1 \mid H = 1)p(H = 1)}{p(Y = 1 \mid H = 1)p(H = 1) + p(Y = 1 \mid H = 0)p(H = 0)}$$

$$= \frac{\text{TPR} \times \text{prior}}{\text{TPR} \times \text{prior} + \text{FPR} \times (1 - \text{prior})}$$

$$= \frac{0.875 \times 0.1}{0.875 \times 0.1 + 0.025 \times 0.9} = 0.795$$

Example: COVID testing

- How likely is that you actually have COVID when receiving a positive test?
 - If you know ~ 1% of people are infected in your area

$$p(H = 1 \mid Y = 1) = \frac{p(Y = 1 \mid H = 1)p(H = 1)}{p(Y = 1 \mid H = 1)p(H = 1) + p(Y = 1 \mid H = 0)p(H = 0)}$$

$$= \frac{\text{TPR} \times \text{prior}}{\text{TPR} \times \text{prior} + \text{FPR} \times (1 - \text{prior})}$$

$$= \frac{0.875 \times 0.01}{0.875 \times 0.01 + 0.025 \times 0.99} = 0.2612$$

Naive Bayes Classifier

$$p(\text{Class} | \text{Data}) = \frac{p(\text{Class})p(\text{Data} | \text{Class})}{p(\text{Data})}$$

$$p(C_k|\mathbf{x}) = \frac{p(C_k)p(\mathbf{x}|C_k)}{p(\mathbf{x})} \propto p(C_k)p(\mathbf{x}|C_k)$$

Naive Bayes Classifier

•
$$p(C_k|\mathbf{x}) \propto p(C_k) p(\mathbf{x}|C_k)$$

Assume independence

$$p(\mathbf{x} \mid C_k) = \prod_i p(x_i \mid C_k)$$

Popcorn (grams)	Soda Pop (ml)	Candy (grams)
24.3	750.7	0.2
28.2	533.2	50.5
etc.	etc.	etc.

Popcorn (grams)	Soda Pop (ml)	Candy (grams)
2.1	120.5	90.7
4.8	110.9	102.3
etc.	etc.	etc.

Gaussian Naive Bayes is named after the Gaussian distributions that represent the data in the Training Dataset.

K-means clustering

K-means clustering

Example: spike sorting

- Unsupervised learning
 - The data should separate themselves

GLM (Encoding)

- 1.fMRI voxel activation
- 2.Gene expressions
- 3. Single neuron spike count
- 4.Pixel luminance patten

. . .

- 1. Visual stimulus
- 2.Cell type
- 3.Attend left / right
- 4.Dog / cat

. . .