MSBD5004 Mathematical Methods for Data Analysis Homework 1

RONG Shuo - 21126613

September 2024

Question 1:

- 1. Consider the vector space \mathbb{R}^n .
- (a) Check that $\|\boldsymbol{x}\|_{\infty} = \max_{1 \leq i \leq n} |x_i|$ is indeed a norm on \mathbb{R}^n .
- (b) Omitted
- (c) Omitted

Answer:

(a)

Proof. To show that $||x||_i nfty$ is a norm, we check the following properties:

1. $\forall \boldsymbol{x} \in \mathbb{R}^n$, we have

$$\|\boldsymbol{x}\|_{\infty} = \max_{1 \le i \le n} |x_i| \ge 0.$$

2. Assume $\|\boldsymbol{x}\|_{\infty} = 0$. Then,

$$\max_{1 \le i \le n} |x_i| = 0 \implies x_i = 0, \forall i \implies \boldsymbol{x} = \boldsymbol{0}.$$

3. $\forall \alpha \in \mathbb{R}$,

$$|\alpha \cdot \boldsymbol{x}|_{\infty} = \max_{1 \le i \le n} |\alpha \cdot x_i| = |\alpha| \cdot \max_{1 \le i \le n} |x_i| = |\alpha| \cdot ||\boldsymbol{x}||_{\infty}.$$

4. $\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$,

$$\| \boldsymbol{x} + \boldsymbol{y} \|_{\infty} = \max_{1 \leq i \leq n} |x_i + y_i| \leq \max_{1 \leq i \leq n} (|x_i| + |y_i|) \leq \max_{1 \leq i \leq n} |x_i| + \max_{1 \leq i \leq n} |y_i| = \| \boldsymbol{x} \|_{\infty} + \| \boldsymbol{y} \|_{\infty}.$$

Thus, $\|\boldsymbol{x}\|_{\infty}$ satisfies all properties of a norm.

(b)

Proof. we have

$$\max_{1 \le i \le n} |x_i| \le \sum_{i=1}^n |x_i| \le n \cdot \max_{1 \le i \le n} |x_i|$$

s.t.

$$\|\boldsymbol{x}\|_{\infty} \leq \|\boldsymbol{x}\|_{1} \leq n \cdot \|\boldsymbol{x}\|_{\infty}$$

(c)

Proof. we have

$$|\boldsymbol{x^T}\boldsymbol{y}| = |\sum_{i=1}^n x_i \cdot y_i| \le \sum_{i=1}^n |x_i \cdot y_i| \le \sum_{i=1}^n |x_i| |y_i| \le \sum_{i=1}^n (\max_{1 \le i \le n} |y_i|) \cdot |x_i| = \max_{1 \le i \le n} |y_i| \cdot \sum_{i=1}^n |x_i| = \|\boldsymbol{x}\|_1 \|\boldsymbol{y}\|_{\infty}$$

s.t.

$$orall oldsymbol{x}, oldsymbol{y} \in \mathbb{R}^n, |oldsymbol{x}^T oldsymbol{y}| \leq \|oldsymbol{x}\|_1 \|oldsymbol{y}\|_{\infty}$$

Question 2:

2. For any $\mathbf{A} \in \mathbb{R}^{m \times n}$, we have defined

$$\|m{A}\|_2 = \max_{m{x} \in \mathbb{R}^n, \|m{x}\|_2 = 1} \|m{A}m{x}\|_2.$$

- (a)Prove that $\|\cdot\|_2$ is a norm on $\mathbb{R}^{m\times n}$.
- (b)Prove that $||\mathbf{A}\mathbf{x}||_2 \le ||\mathbf{A}||_2 ||\mathbf{x}||_2$ for any $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{x} \in \mathbb{R}^n$.
- (c) Prove that $\|\mathbf{A}\mathbf{B}\|_2 \le \|\mathbf{A}\|_2 \|\mathbf{B}\|_2$ for all $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$.

Answer:

(a)

Proof. 1. $\forall \mathbf{A} \in \mathbb{R}^{m \times n}$

$$\|\boldsymbol{A}\|_{2} = \max_{\boldsymbol{x} \in \mathbb{R}^{n}, \|\boldsymbol{x}\|_{2} = 1} \|\boldsymbol{A}\boldsymbol{x}\|_{2} \ge 0,$$

since $||Ax||_2$ is non-negative for all x.

2. If $||A||_2 = 0$, then:

$$\max_{\boldsymbol{x} \in \mathbb{R}^n, \|\boldsymbol{x}\|_2 = 1} \|\boldsymbol{A}\boldsymbol{x}\|_2 = 0 \implies \|\boldsymbol{A}\boldsymbol{x}\|_2 = 0, \forall \boldsymbol{x},$$

which means $Ax = 0, \forall x$.

Choossing \boldsymbol{x} as the standard basis vectors(e.g. $e_1 = [1, 0, 0, ...], e_i = [0, ..., 1, 0, ...]$), we conclude that $\boldsymbol{A} = \boldsymbol{0}$.

Conversely, if $\mathbf{A} = \mathbf{0}$, then clearly $\|\mathbf{A}\|_2 = 0$

3. For any scalar α ,

$$\|\alpha \boldsymbol{A}\|_2 = \max_{\boldsymbol{x} \in \mathbb{R}^n, \|\boldsymbol{x}\|_2 = 1} \|\alpha \boldsymbol{A} \boldsymbol{x}\|_2 = \max_{\boldsymbol{x} \in \mathbb{R}^n, \|\boldsymbol{x}\|_2 = 1} |\alpha| \|\boldsymbol{A} \boldsymbol{x}\|_2 = |\alpha| \max_{\boldsymbol{x} \in \mathbb{R}^n, \|\boldsymbol{x}\|_2 = 1} \|\boldsymbol{A} \boldsymbol{x}\|_2 = |\alpha| \|\boldsymbol{A}\|_2.$$

4. For any matrices A, B:

$$\|m{A} + m{B}\|_2 = \max_{m{x} \in \mathbb{R}^n, \|m{x}\|_2 = 1} \|m{A}m{x} + m{B}m{x}\|_2$$

By the triangle inequality for the $\|x\|_2$ norm:

$$\|Ax + Bx\|_2 \le \|Ax\|_2 + \|Bx\|_2.$$

Thus,

$$\|m{A} + m{B}\|_2 \le \max_{m{x} \in \mathbb{R}^n, \|m{x}\|_2 = 1} \|m{A}m{x}\|_2 + \max_{m{x} \in \mathbb{R}^n, \|m{x}\|_2 = 1} \|m{B}m{x}\|_2 = \|m{A}\|_2 + \|m{B}\|_2$$

5. Conclusion Since all four properties of norms are satisfied, we conclude that $\|\cdot\|_2$ is a norm on $\mathbb{R}^{m\times n}$.

(b)

Proof. ** $\|\boldsymbol{x}\|_2 \neq 0$ **:

for any $\boldsymbol{x} \in \mathbb{R}^n$, we know:

$$\| {m x} \|
eq 0 \implies rac{{m x}}{\| {m x} \|_2}$$
 is a unit vector: ${m u}$

Since $\|\boldsymbol{u}\| = 1$, we have:

$$\|m{A}(rac{m{x}}{\|m{x}\|_2})\|_2 = rac{1}{\|m{x}\|_2} \|m{A}m{x}\|_2 = \|m{A}m{u}\|_2 \le \|m{A}\|_2 \implies \|m{A}m{x}\|_2 \le \|m{A}\|_2 \|m{x}\|_2$$

** $\|\boldsymbol{x}\|_2 = 0$ **: we have:

$$\|\mathbf{A0}\|_2 = 0 = \|\mathbf{A}\|_2 \cdot 0$$

Conclusion:

$$\forall \boldsymbol{A} \in \mathbb{R}^{m \times n} \text{ and } \boldsymbol{x} \in \mathbb{R}^n : \|\boldsymbol{A}\boldsymbol{x}\|_2 \leq \|\boldsymbol{A}\|_2 \|\boldsymbol{x}\|_2$$

(c)

Proof. For all matrix $M \in \mathbb{R}^{n \times m}$, we have:

$$\|\boldsymbol{M}\boldsymbol{x}\|_{2} \leq \|\boldsymbol{M}\|_{2}\|\boldsymbol{x}\|_{2}, \forall \boldsymbol{x} \in \mathbb{R}^{m}$$
 (1)

and

$$\|Mx\|_2 \le \|M\|_2 \|x\|_2 = \|M\|_2, \forall x \in \mathbb{R}^m \text{ and } \|x\|_2 = 1$$
 (2)

Consider $\boldsymbol{B} \in \mathbb{R}^{n \times p}, \boldsymbol{x} \in \mathbb{R}^p$ and $\|\boldsymbol{x}\|_2 = 1$, as $\boldsymbol{M}, \boldsymbol{x}$ according formula (2), s.t.

$$\|Bx\|_2 \le \|B\|_2$$

Consider $A \in \mathbb{R}^{m \times n}$, $Bx \in \mathbb{R}^n$ as M, x according formula (1), s.t.

$$\|ABx\|_2 \le \|A\|_2 \|Bx\|_2 \le \|A\|_2 \|B\|_2$$

So we can conclude:

$$\|oldsymbol{A}oldsymbol{B}\|_2 = \max_{oldsymbol{x} \in \mathbb{R}^p, \|oldsymbol{x}\|_2 = 1} \|oldsymbol{A}oldsymbol{B}oldsymbol{x}\|_2 \leq \|oldsymbol{A}\|_2 \|oldsymbol{B}\|_2, orall oldsymbol{A} \in \mathbb{R}^{m imes n} ext{ and } oldsymbol{B} \in \mathbb{R}^{n imes p}$$

Question 3:

3. For any $\mathbf{A} \in \mathbb{R}^{m \times n}$, we define the Frobenius norm $\|\mathbf{A}\|_F = \left(\sum_{i=1}^m \sum_{j=1}^n a_{i,j}^2\right)^{1/2}$. Prove that

$$\|A\|_{2} \le \|A\|_{F} \le \sqrt{n} \|A\|_{2}$$

Answer:

Proof. **To prove $\|\boldsymbol{A}\|_2 \leq \|\boldsymbol{A}\|_F$ ** We have,

$$\|m{A}\|_2 = \max_{m{x} \in \mathbb{R}^n, \|m{x}\|_2 = 1} \|m{A}m{x}\|_2$$

Assume $\operatorname{argmax}(\|\boldsymbol{A}\|_2) = \boldsymbol{x}, \ \boldsymbol{x} = [x_1 \cdots x_j \cdots x_n]$

$$\|\mathbf{A}\|_{2}^{2} = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{i,j} x_{j}\right)^{2}$$

We know:

$$\left(\sum_{i=1}^{n} a_i b_i\right)^2 \le \sum_{i=1}^{n} a_i^2 \sum_{i=1}^{n} b_i^2$$

$$\left(\sum_{j=1}^{n} a_{i,j} x_j\right)^2 \le \sum_{j=1}^{n} a_{i,j}^2 \sum_{j=1}^{n} x_j^2 = \sum_{j=1}^{n} a_{i,j}^2$$

s.t.:

$$\|A\|_2^2 \le \sum_{i=1}^m \sum_{i=1}^n a_{i,j}^2 = \|A\|_F^2$$

s.t.:

$$\|\boldsymbol{A}\|_2 \leq \|\boldsymbol{A}\|_F$$

**To prove $\|\boldsymbol{A}\|_F \leq \sqrt{n} \|\boldsymbol{A}\|_2$ **

Let e_i be the standard basis vector in \mathbb{R}^n .

$$\|m{A}\|_F^2 = \sum_{i=1}^n \|m{A}m{e}_i\|_2^2$$

We know:

$$\|Ae_i\|_2^2 \le \|A\|_2^2$$

 $\sum_{i=1}^n \|Ae_j\|_2^2 \le n\|A\|_2^2$

s.t.

$$\|A\|_F^2 \le n\|A\|_2^2$$

 $\|A\|_F \le \sqrt{n}\|A\|_2$

Question 4:

4. A magic square M_n is a $n \times n$ matrix containing the integers from 1 to n^2 whose row and column sums are all the same. For example:

$$\begin{bmatrix} 16 & 2 & 3 & 13 \\ 5 & 11 & 10 & 8 \\ 9 & 7 & 6 & 12 \\ 4 & 14 & 15 & 1 \end{bmatrix}$$

This magic square appears in the Renaissance engraving $Melencolia\ I$ by the German painter, engraver, and amateur mathematician Albrecht Durer (1471 -1528).

Let a_n denote the magic constant of M_n , so that $a_n = n(n^2+1)/2$. Let d denote a vector in \mathbb{R}^n with each element equal to 1.

- (a) Determine $M_n d$ and $d^T M_n$. Conclude that a_n is an eigenvalue of M_n .
- (b) Show that the row and column sums of M_n^2 are all the same.
- (c) Determine $||\boldsymbol{M}_n||_2$.

Answer:

(a)

Proof. Assume that $M_n = [c_1 \cdots c_i \cdots c_n]$, each c indicates the column of M_n .

We know:

$$oldsymbol{M}_n oldsymbol{d} = [oldsymbol{c}_1 \cdots oldsymbol{c}_n] oldsymbol{d} = \sum_{i=1}^n oldsymbol{c}_i = a_n oldsymbol{d}$$

Assume that $M_n = [r_1 \cdots r_i \cdots r_n]^T$, each r indicates the row of M_n .

$$\boldsymbol{d}^T \boldsymbol{M}_n = \boldsymbol{d}^T [\boldsymbol{r}_1 \cdots \boldsymbol{r}_n]^T = a_n \boldsymbol{d}^T$$

Since $M_n d = a_n d$, s.t. a_n is an eigenvalue of M_n with an eigenvector d. Since:

$$\boldsymbol{d}^T\boldsymbol{M}_n = a_n\boldsymbol{d}^T$$

We can also conclude that a_n is an eigenvalue with a left eigenvector.

(b

Proof. We know for each row in M_n^2 , it can be expressed by:

$$r_i M_n$$

s.t. the sum of the rows can be expressed by:

$$r_i M_n d = r_i a_n d = a_n \sum_{i=1}^n r_{ij} = a_n^2$$

We know for each column in M_n^2 , it can be expressed by:

$$\boldsymbol{M}_{n}^{T}\boldsymbol{c}_{i}$$

s.t. the sum of the column can be expressed by:

$$\boldsymbol{d}^T \boldsymbol{M}_n^T \boldsymbol{c}_i = a_n^2$$

In Conclusion: the row and the column sums of M_n^2 are all the same as a_n^2 .

(c)

Proof. We know, for every element c_{ij} in M_n :

$$\|\boldsymbol{M}_n\|_2^2 \leq \|\boldsymbol{M}_n\|_F^2 = \sum_{j=1}^n \sum_{i=1}^n c_{ij}^2$$

We know that M_n contains the integers from 1 to n^2 , s.t.:

$$\|\boldsymbol{M}_n\|_F^2 = \sum_{j=1}^n \sum_{i=1}^n c_{ij}^2 = 1^2 + 2^2 + \dots + (n^2)^2 = \frac{n^2(n^2+1)(2n^2+1)}{6}$$

And we know:

$$a_n^2 = \frac{n^2(n^2+1)^2}{4}$$

And:

$$\frac{a_n^2}{\|\boldsymbol{M}_n\|_F^2} = \frac{3}{2} \cdot \frac{n^2 + 1}{2n^2 + 1} = \frac{3}{2} \cdot (1 - \frac{1}{2 + \frac{1}{n^2}}) \geq \lim_{n^2 \to \infty} \frac{3}{2} \cdot (1 - \frac{1}{2 + \frac{1}{n^2}}) = 1$$

s.t.:

$$a_n^2 \ge \|\boldsymbol{M}_n\|_F^2 \ge \|\boldsymbol{M}_n\|_2^2$$

s.t.:

$$\|\boldsymbol{M}_n\|_2 < a_n$$

And:

$$\frac{\|\boldsymbol{M}_n\boldsymbol{d}\|_2}{\|\boldsymbol{d}\|_2} = \frac{\|a_n\boldsymbol{d}\|_2}{\|\boldsymbol{d}\|_2} = a_n$$

s.t.:

$$\|\boldsymbol{M}_n\|_2 = a_n$$

Question 5:

5. Let a_1, a_2, \dots, a_m be m given real numbers. Prove that a median of a_1, a_2, \dots, a_m minimizes

$$\sum_{i=1}^{m} |a_i - b|$$

over all $b \in \mathbb{R}$ (As we discussed in the lecture, this result is curcial for deriving the K-medians algorithm in clustering.)

Answer:

Proof. Suppose we order this sequence, and have $a_1 \leq a_2 \leq \cdots \leq a_m$ For $b \in \mathbb{R}$ and $a_1 \leq a_k \leq b \leq b+d \leq a_{k+1} \leq a_m$ in the ascending ordered sequence a_1, \dots, a_m , we have:

$$f(b+d) = \sum_{i=1}^{m} |a_i - b - d| = \sum_{i=1}^{k} (b+d - a_i) + \sum_{i=k+1}^{m} (a_i - b - d)$$

$$= \sum_{i=k+1}^{m} (a_i - b) + \sum_{i=1}^{k} (b - a_i) + (2k - m)d = f(b) + (2k - m)$$

$$f(b+d) - f(b) = (2k - m)d$$

We know for f(b), 2k < m, f(b) is descending, and f(b) get the minimum when $b = a_{k+1}$. When 2k > m, f(b) is ascending, and when $b = a_k$, f(b) get the minimum.

And when m is even, $k=\frac{m}{2},$ f(b) to be minimum, when $a_{\frac{m}{2}} \leq b \leq a_{\frac{m}{2}+1}$ And when m is odd, $k=\frac{m+1}{2},$ f(b) to be minimum, when $b=a_{\frac{m+1}{2}}.$ $k=\frac{m-1}{2}$ to be the same.

And when b is the median of this sequence, it satisfies these inequations.

For $b < a_1$, we know $f(b) > f(a_1)$ all the time.

For $b > a_n$, we know $f(b) > f(a_n)$ all the time.

We can conclude that a median of this sequence minimizes $\sum_{i=1}^{m} |a_i - b|$

Question 6:

- 6. Suppose that the vector x_1, \dots, x_N in \mathbb{R}^n are clustered using the K-means algorithm, with group representative $z_1, \dots z_k$.
- (a) Suppose the original vectros x_i are nonnegative, *i.e.*, their entries are nonnegative. Explain why the representative z_j output by the K-means algorithm are also nonnegative.
- (b) Suppose the original vectors x_i represent proportions, *i.e.*, their entries are nonnegative and sum to one. (This is the case when x_i are word count hisograms, for example.) Explain why the representatives z_j output by the K-means algorithm are also represent proportions (*i.e.*, their entries are nonnegative and sum to one).
- (c) Suppose the original vectors x_i are Boolean, *i.e.*, their entries are either 0 or 1. Give an interpretation of $(z_j)_i$, the *i*-th entry of the *j* group representative.

Answer:

(a)

Proof. We know:

$$\boldsymbol{z}_j = \frac{\sum_{\boldsymbol{x}_i \in G_j} \boldsymbol{x}_i}{\mathrm{Count}(G_j)} \text{ where } G_j = \{\boldsymbol{x} | \text{the representative of } \boldsymbol{x} \text{ is } \boldsymbol{z}_j, \boldsymbol{x} \in \{\boldsymbol{x}_1, \cdots, \boldsymbol{x}_N\}\}$$

According, x_i is nonnegative. We know:

$$\sum_{\boldsymbol{x}_i \in G_i} \boldsymbol{x}_i$$
 is nonnegative.

s.t. z_j is nonnegative.

(b) Proof. We know:

$$oldsymbol{z}_j = rac{\sum_{oldsymbol{x}_i \in G_j} oldsymbol{x}_i}{\operatorname{Count}(G_j)}$$

$$\sum_{m=1}^{n} z_m = \frac{1}{\operatorname{Count}(G_j)} \sum_{\boldsymbol{x}_i \in G_j} \sum_{m=1}^{n} x_m = \frac{1}{\operatorname{Count}(G_j)} \cdot \operatorname{Count}(G_j) = 1$$

We know z_j is nonnegative, according to (a). And z_j represents proportions, too.

(c) Proof.

$$(\boldsymbol{z}_j)_i = \frac{1}{\operatorname{Count}(G_j)} \sum_{\boldsymbol{x}_i \in G_j} (\boldsymbol{x}_i)_i = \frac{\sum_{\boldsymbol{x}_i \in G_j(\boldsymbol{x}_i)_i = 1} 1}{\operatorname{Count}(G_j)} = \frac{\operatorname{CountOfTrue}}{\operatorname{CountOfTrue} + \operatorname{CountOfFalse}}$$

We can conclude that $(z_j)_i$ represents the proportions of true in $\{(x_i)_i|x_i\in G_i\}$