2nde Année 2013-2014

CORRECTION DU DEVOIR COMMUN DE MATHÉMATIQUES

Exercice 1: (15 points)

La figure complétée est la suivante :

- a) Le point A a pour coordonnées (-2; 3).
 - **b**) Voir la figure.
- 2. Dans le repère orthonormé précédent, on a :

$$AC^2 = (x_C - x_A)^2 + (y_C - y_A)^2 = [-2 - (-2)]^2 + (-9 - 3)^2 = 144,$$

$$AD^2 = (x_D - x_A)^2 + (y_D - y_A)^2 = [-8 - (-2)]^2 + (-3 - 3)^2 = 72$$
, et

$$DC^2 = (x_C - x_D)^2 + (y_C - y_D)^2 = [-2 - (-8)]^2 + [-9 - (-3)]^2 = 72.$$

Ainsi $AD^2 = DC^2$, donc AD = DC et le triangle ADC est isocèle en D.

De plus,
$$AD^2 + DC^2 = 72 + 72 = 144 = AC^2$$
.

D'après la réciproque du théorème de Pythagore, le triangle ADC est rectangle en D.

Le triangle ADC est donc rectangle et isocèle en D.

3. **a)**
$$x_C \neq x_D$$
, donc la droite (CD) admet une équation du type $y = mx + p$.
$$m = \frac{y_D - y_C}{x_D - x_C} = \frac{-3 - (-9)}{-8 - (-2)} = \frac{6}{-6} = -1.$$

La droite (CD) admet donc une équation du type y = -x + p.

 $C \in (CD)$ donc $y_C = -x_C + p$.

Or,
$$y_C = -x_C + p$$
 \Leftrightarrow $-9 = -(-2) + p$ \Leftrightarrow $-11 = p$.

La droite (CD) admet donc pour équation (réduite) y = -x - 11.

b) La droite (CD) n'est pas parallèle à l'axe des ordonnées.

La droite Δ ne l'est donc pas non plus et admet le même cœfficient directeur que la droite (CD).

Elle admet donc une équation du type y = -x + p'.

$$A \in \Delta \Leftrightarrow y_A = -x_A + p' \Leftrightarrow 3 = 2 + p' \Leftrightarrow 1 = p'.$$

 Δ admet pour équation y = -x + 1.

4. a) \mathcal{D} a pour équation y = 5x + 1.

$$\star$$
 Pour $x = 0 : y = 5 \times 0 + 1 = 1$

★ Pour
$$x = -2$$
: $y = 5 \times (-2) + 1 = -9$

La droite \mathcal{D} passe donc par les points de coordonnées (0; 1) et (-2; -9).

b) Notons (x; y) les coordonnées du point B.

Remarquons tout d'abord que B existe car $\mathcal D$ et Δ sont sécantes : elles n'ont pas le même cœfficient directeur.

Le couple (x; y) est solution du système (S): $\begin{cases} y = -x+1 \\ y = 5x+1 \end{cases}$.

Or, (S)
$$\Leftrightarrow$$

$$\begin{cases} y = -x+1 \\ -x+1 = 5x+1 \end{cases} \Leftrightarrow \begin{cases} y = -x+1 \\ 0 = 4x \end{cases} \Leftrightarrow \begin{cases} y = -0+1 \\ 0 = x \end{cases} \Leftrightarrow \begin{cases} y = 1 \\ x = 0 \end{cases}$$

Les coordonnées du point B sont (0; 1)

Remarquons que les deux droites en question ont la même ordonnée à l'origine : 1. Elles passent donc toutes les deux par le point de coordonnées (0; 1). On retrouve le résultat précédent.

5. a) Comme $\Omega \in \mathcal{D}$, $y_{\Omega} = 5x_{\Omega} + 1 = 5 \times 1 + 1 = 6$.

L'ordonnée de Ω est de 6.

b) Comme K est le milieu du segment [CD],

$$x_{\rm K} = \frac{x_{\rm C} + x_{\rm D}}{2} = \frac{-2 - (-8)}{2} = -5$$
 et $y_{\rm K} = \frac{y_{\rm C} + y_{\rm D}}{2} = \frac{-9 + (-3)}{2} = -6$.

K a pour coordonnées (-5; -6).

c) 1ère méthode:

* $x_{\Omega} \neq x_{K}$, donc la droite (K Ω) a pour cœfficient directeur $m_{1} = \frac{y_{\Omega} - y_{K}}{x_{\Omega} - x_{K}} = \frac{6 - (-6)}{1 - (-5)} = 2$.

*
$$x_{\Omega} \neq x_{\rm I}$$
, donc la droite (I Ω) a pour cœfficient directeur $m_2 = \frac{y_{\Omega} - y_{\rm I}}{x_{\Omega} - x_{\rm I}} = \frac{6 - 2}{1 - (-1)} = 2$.

 $m_1 = m_2$, donc les points I, K et Ω sont alignés.

2ème méthode:

★ Déterminons une équation de la droite (IK).

 $x_{\rm I} \neq x_{\rm K}$, donc la droite (IK) admet une équation du type y = ax + b.

$$a = \frac{y_{\rm I} - y_{\rm K}}{x_{\rm I} - x_{\rm K}} = \frac{2 - (-6)}{-1 - (-5)} = 2.$$

La droite (IK) admet une équation du type y = 2x + b.

 $I \in (IK)$, donc $y_I = 2x_I + b$.

Or,
$$y_1 = 2x_1 + b \Leftrightarrow 2 = 2 \times (-1) + b \Leftrightarrow 4 = b$$
.

La droite (IK) admet pour équation y = 2x + 4.

 \star Vérifions si le point Ω appartient ou non à la droite (IK).

 $2x_{\Omega} + 4 = 2 \times 1 + 4 = 6 = y_{\Omega}$, donc $\Omega \in (IK)$.

Conclusion : Les points I, K et Ω sont alignés.

* * * * *

Exercice 2: (15 points)

Partie A

1. \star L'image de -6 par f est 100.

★ L'image de -3 par f est -150.

 \star L'image de 8 par f est 0.

- **2.** Graphiquement 200 admet deux antécédents par f dans l'intervalle [-8;8]:-7 et 3.
- **3.** Graphiquement, l'ensemble des solutions de l'inéquation $f(x) \ge 0$ sur l'intervalle [-8; 8] est $[-8; -5] \cup [-1; 8]$.
- **4. a)** On obtient le tableau de variation suivant de f dans l'intervalle [-8;8]:

- **b)** \star Dans l'intervalle [-8;8], le minimum de f est -150; il est atteint en -3.
 - \star Dans l'intervalle [-8;8], le maximum de f est 400; il est atteint en -8.

Partie B

1.
$$g(1,5) = 2 \times 1,5^3 - 3 \times 1,5^2 - 72 \times 1,5 + 208 = 100.$$

- **2. a)** Pour tout réel x, $(x-4)^2 = x^2 2 \times x \times 4 + 4^2 = x^2 8x + 16$.
 - **b)** Pour tout réel *x*,

$$(2x+13)(x-4)^2 = (2x+13)(x^2-8x+16) = 2x^3-16x^2+32x+13x^2-104x+208 = 2x^3-3x^2-72x+208 = g(x).$$

On a donc bien, pour tout réel x, $g(x) = (2x+13)(x-4)^2$.

3. Pour tout réel x, $g(x) = 0 \Leftrightarrow (2x+13)(x-4)^2 = 0 \Leftrightarrow [2x+13=0 \text{ ou } (x-4)^2 = 0] \Leftrightarrow [x = \frac{-13}{2} = -6,5 \text{ ou } x = 4].$ L'ensemble des solutions dans \mathbb{R} de l'équation g(x) = 0 est $\left\{\frac{-13}{2}; 4\right\}$. 4.

x	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8
g(x)	-432	-121	100	243	320	343	324	275	208	135	68	19	0	23	100	243	464

- 5. Voir le graphique précédent.
- **6.** Graphiquement, sur l'intervalle [-8;8], l'ensemble des solutions de l'équation f(x) = g(x) est $\{-6;1,5;6\}$.

* * * * *

Exercice 3: (10 points)

Partie A

Âge (en années)	10	11	12	13	14	15	16	17	18
Effectif	28	56	98	152	148	201	176	101	40
Effectifs Cumulés Croissants	28	84	182	334	482	683	859	960	1 000

1. a) On calcule l'effectif total: 28 + 56 + 98 + 152 + 148 + 201 + 176 + 101 + 40 = 1000.

Mille adolescents ont été concernés par l'étude.

b)
$$\overline{m} = \frac{28 \times 10 + 56 \times 11 + \dots + 101 \times 17 + 40 \times 18}{28 + 56 + \dots + 101 + 40} = \frac{14388}{1000} = 14,388$$

L'âge moyen des adolescents interrogés est environ 14 ans.

- 2. Voir le tableau précédent
- **3.** a) L'effectif total est pair : $1000 \div 2 = 500$.

 $\left. \begin{array}{l} 500^{\rm e} \ {\rm valeur} : 15 \\ 501^{\rm e} \ {\rm valeur} : 15 \end{array} \right\} \ {\rm On \ choisit \ alors} \ {\rm M}_e = 15.$

Interprétation : Au moins 50% des adolescents interrogés sont âgés de 15 ans ou plus.

b) Premier Quartile. $\frac{1}{4} \times 1000 = 250 \text{ donc } Q_1 \text{ est la } 250^e \text{ valeur} : Q_1 = 13.$

Interprétation : Au moins 25% des adolescents interrogés sont âgés de 13 ans ou moins.

Troisième Quartile. $\frac{3}{4} \times 1000 = 750 \text{ donc } Q_3 \text{ est la } 750^e \text{ valeur : } Q_3 = 16.$

Interprétation : Au moins 75% des adolescents interrogés sont âgés de 16 ans ou moins.

4. 50% de 1 000 adolescents correspondent à 500 adolescents.

D'après le tableau de la question 2, il y a 482 adolescents âgés de 14 ans ou moins, ce qui correspond à moins de 50%.

L'objectif du Président de la chaîne n'a donc pas été respecté le jour de l'étude.

Partie B

1. Cette série statistique est représentée par un diagramme en bâton : l'effectif de chaque valeur est donné par la hauteur du bâton. On additionne chaque effectif pour connaître le total :

$$5 + 10 + 20 + 45 + 50 + 35 + 30 + 10 = 205.$$

Dans cette seconde étude, deux cent cinq adolescents ont été interrogés.

2. 1h30 = 90min.

On ne s'intéresse qu'aux adolescents qui regardent la télévision 90 minutes par jour ou davantage.

35 + 30 + 10 = 75:

Soixante-quinze adolescents regardent la télévision durant 1h30 par jour ou davantage, ce qui représente une proportion d'environ 36,6%.

En effet, $\frac{75}{205} \approx 0.365 \ 85 \approx 0.366 = 36.6\%$.