

Questionnaire Contrôle périodique 2

PHS1101

Sigle du cours

		lden	tificatio	n de l'étud	liant(e)		Réservé
Nom:	Cha	cle,		Prénom	: Casiy		Q1:30 /50
Signature	: Gu	ry Charles	garant.	Matricul	e : १९५२०%	Groupe: ひ3	Q2: 6 /50
			Siale et	titre du co	III'o		Q3: 10 /50
					r ingénieurs		Q4: 4 /50
Res	ponsa	ıble	Téle	éphone	Groupe	Trimestre	TOTAL:
Jérémi	ie Ville	neuve	4	1577	Tous	Automne 2022	60
Jour		Date)	Ε	Ourée	Heures	
Lundi	i	7 noven	nbre	1 heure	50 minutes	18h30 à 20h20	200
Document	ation			Calculati	ice	Outils électroniques	
	ectives	particulières		☐ Aucun ☐ Toutes ☑ Non pe		Les appareils électroniques personnels sont interdits.	
		D	irective	s particuli	ères		
DétaillezToute répUn aide-nLe profes	les étape oonse fin némoire seur ne	nale doit être a pour les form répondra à a u	ions. Une ccompag ules vues cune que	e réponse san née des unité en cours se t estion durant	s justification ne és appropriées. crouve à la fin de cet examen. Si v	vaut aucun point. ce cahier. ous pensez qu'il y a ux que vous pouvez.	
C (exc		en contient ette page).	4 qu	estions sur	un total de 1	9 pages	
La I	pondér	ation de cet	exameı	n est de 30	%		
E Vol	ıs deve	ez répondre	sur : 🗵] le questio	nnaire 🗌 le c	ahier 🗌 les deux	
Vou	ıs deve	z remettre l	e questi	onnaire :	\boxtimes oui $\; \square$ nor	1	

Question 1 (50 points) - Questions à court développement

Répondez aux sous-questions suivantes en expliquant votre raisonnement et en incluant les équations pertinentes. **Une réponse sans justification ne vaut aucun point.** Les sous-questions **A**, **B** et **C** sont indépendantes les unes des autres.

A. [10 points] Une voiture miniature roule sur une piste et parcourt une boucle verticale de 15 m de rayon. On suppose que la vitesse de la voiture au début de la boucle est tout juste suffisante pour parcourir la boucle sans tomber.

Quel est le poids apparent de la voiture au sommet de la boucle ?

B. [15 points] Les manchons A et B du système suivant sont reliés par un câble. À l'instant représenté, A monte à une vitesse de 0,1 m/s. Quelle est la vitesse de B (module et sens) à cet instant ?

C. [25 points] Calculer la position du centre de masse de la pièce mince et homogène montrée ci-dessous.

mouvement contraint _ A hi = cte

Prus que le module à un Prus que le module à un Aigne regatif, il pe dirige Jess le bas dans le peus

Contraire de A.

PHS1101	- CP2 -	Automne	2023

Matricule:

Question 2 (50 points)

Vous vous déplacez de Montréal à Québec en prenant le train. Le temps est pluvieux, mais il n'y a pas de vent. En regardant par la fenêtre, vous remarquez que les gouttes de pluie tombent avec un angle oblique θ (voir figure). Vous vous demandez alors s'il serait possible de déterminer la vitesse du train v_T en mesurant l'angle θ !

Vous commencez donc à étudier le mouvement d'une goutte d'eau en chute libre verticale à partir du repos. Une recherche sur votre téléphone vous permet de trouver les informations suivantes :

- Les petites gouttes sont presque sphériques. Vous étudiez donc une goutte d'eau sphérique de diamètre D=2 mm et de masse volumique $\rho_e=1000$ kg/m³.
- Une telle goutte en chute libre subit une force de traînée de la forme :

$$F_D = \frac{1}{2} \rho_a S C_D v^2,$$

où $\rho_a=1,2$ kg/m³ est la masse volumique de l'air, S est la section de la goutte perpendiculaire à sa vitesse, $C_D\approx0,5$ est le coefficient de traînée et v est la vitesse de la goutte.

- La goutte atteint sa vitesse terminale (maximale) bien avant de toucher le sol.
- **A.** [20 points] Faire le DCL-DCE de la goutte en chute libre dans le référentiel du sol, puis déterminer l'expression de son accélération en fonction de sa vitesse.
- B. [15 points] Déterminer l'expression de la vitesse de la goutte en fonction du temps.
- **C.** [15 points] Quelle est la vitesse du train v_T (en km/h) si vous mesurez un angle $\theta = 10^{\circ}$?

N.B. L'intégrale suivante pourrait vous être utile :

$$\int \frac{1}{a^2 - b^2 x^2} dx = \frac{1}{ab} \operatorname{arctanh} \left(\frac{b}{a} x \right) + \operatorname{Cste},$$

avec a et b des paramètres constants. La fonction $\operatorname{arctanh}(x)$ est la fonction arc tangente hyperbolique. Elle représentée sur la figure ci-contre.

Matricule:

Question 3 (50 points)

Sur un plan incliné d'un angle α par rapport à l'horizontale, on fait glisser un disque de masse $m=1~\mathrm{kg}$ et de dimensions négligeables. Le disque est attaché par une corde inextensible de longueur $L=0.5~\mathrm{m}$ à un clou D fixe.

Le disque est initialement posé immobile au point A de sorte que la corde soit horizontale et droite. À cette position, la tension de la corde est nulle.

Après lui avoir donné une toute petite poussée (négligeable), le disque se met à glisser sur le plan incliné décrivant un quart de cercle autour de D. Arrivé en B, la corde commence à s'enrouler sur un deuxième clou E situé à une distance $\overline{ED}=d$ du clou D. Le disque décrit alors un mouvement circulaire autour de E.

Les coefficients de frottements statique et cinétique entre le disque et le plan incliné sont $\mu_s = 0.7$ et $\mu_c = 0.3$.

- **A.** [10 points] Déterminer la valeur de l'angle α .
- **B.** [15 points] Déterminer la distance *d* sachant que le disque s'immobilise au point C après avoir décrit un quart de cercle autour de E.
- **C.** [25 points] Quelle est la variation du module de la tension de la corde entre les instants juste avant et juste après que celle-ci touche le clou E ?

Matricule: PHS1101 - CP2 - Automne 2022 A. La valeur de l'angle & On etudie le cas statique. Conne Éty= map me pind - fs = ma p Lz0,5m mgpind = fs. -> fs= mgcood A) 4 Ms = 0,7 my sind = my con & 40 =013 pind = "cord on Churche La valeur de & B. La distance d'pachant que le disque p'emmobilise au pt c après avoir de crit le quart de cercle autour de c La distance d'and le des que Alm mohlise DA = 0,5 m yanation da module $\overline{ED} = \overline{DA} - \overline{EC}$ de la tension de la On utilise le principe travail energie: L'energie me carrique est conserver, La tension a un travail seul car perpendi-2 de ment rinetians = bode $f_{\lambda} = \begin{cases} f_{\lambda} & \text{devent anetique} = \\ f_{\lambda} & \text{or } 45^{\circ} = 2,08 \end{cases}$ $f_{\lambda} = \begin{cases} f_{\lambda} & \text{or } 45^{\circ} = 2,08 \\ f_{\lambda} & \text{or } 45^{\circ} = 2,08 \end{cases}$ B) 6 $\frac{1}{2}mv^2 + me^{1}L = 0$ $12mv^2 + mg(\overline{\Delta E} - \overline{\Delta A}) = 0$

Matricule:

Question 4 (50 points)

Une boule de billard A de masse m se déplace sur une table avec une vitesse initiale v orientée vers le haut (voir figure ci-dessous). Elle frappe une seconde boule B (de même masse et au repos) avec un angle de contact θ . La figure illustre la configuration juste avant l'impact.

Lors de la collision, la boule A exerce une impulsion δ sur la boule B. On suppose que la collision est élastique et l'on néglige tout frottement.

- **A.** [15 points] Quelle(s) quantité(s) physique(s) pertinente(s) sont conservées pendant la collision ? <u>Justifier votre réponse.</u>
- **B.** [25 points] Obtenir les expressions du vecteur vitesse de A et du vecteur vitesse de B immédiatement après la collision.
- **C.** [10 points] Pour quelle(s) valeur(s) de l'angle de contact les boules ont-elles la même énergie cinétique immédiatement après la collision ?

A. Si la collemon est clastique, alors l'évergé mécanique est conservé car il n'y a pas de perte d'enigi et aven re force externe intervient La quantité de nouvement est aussi conservée car avanc fre est une n'enter went non plus

B. Lox = Lyx (au report)

B. Lox = Lyx (au report)

B. Lox = Lyx (au report)

B. Lox and La collection

Lox = Lyx (au report)

Collection

Collection et vu que la colles son est élastique, les deux Nortes pont collèses après la collèses non est de la collèse de la et ont la virture, con la gut mAVA + mBVB = (mA+ mB)V} de monvement est conservée No to

On que $V_{A} = V_{B} = \left(\frac{m_{A}V_{A}}{m_{A}}\frac{dmb}{m_{B}}\vec{x} + \frac{m_{A}V_{A}}{m_{A}}\frac{dmb}{m_{B}}\vec{y}\right)$ - ma VA Din O = (ma + mb) Yx Vfx = mAVA DING

en y 3 cos B = (mA + mB) Vfy Vfy = mavacas

C. Le valeurs de l'angle de contact des boules qui ont la nume energie anétique or Vu que la collesion est blastique, E1 = E2, il faut comparer les viterses et ther or

NT + NIT-17

DT+ DV=0

PHS1101 – Mécanique pour ingénieurs Aide-mémoire

Moment d'une force :	$\vec{M}_O = \vec{r} \times \vec{F}$	To the state of th	$\vec{v} = \vec{v}_0 + \vec{a}t$
Moment d'une force par rapport à un axe :	$\vec{M}_{OO'} = (\vec{M}_O \cdot \hat{u}_{OO'}) \hat{u}_{OO'}$	Mouvement uniformément accéléré :	$\vec{r} = \vec{r}_0 + \vec{v}_0 t + \frac{1}{2} \vec{a} t^2$
Moment d'un couple :	M = Fd		$v^2 = v_0^2 + 2\vec{a} \cdot (\vec{r} - \vec{r}_0)$
Système force-couple	$ec{R} = \sum ec{F}_i$	Accélération non	$\int_0^t dt = \int_{v_0}^v \frac{dv}{a(v)}$
équivalent :	$\vec{M}_O^R = \sum \vec{M}_i + \sum \vec{r}_{Oi} \times \vec{F}_i$	uniforme :	$\int_{v_0}^v v dv = \int_{x_0}^x a(x) dx$
Équilibre statique :	$\sum \vec{F} = \vec{0}, \qquad \sum \vec{M}_O = \vec{0}$		$\vec{r}=r\hat{u}_r$
Loi de Hooke :	$\vec{F} = -k(\vec{L} - \vec{L}_0)$	Coordonnées polaires :	$\vec{v} = \dot{r}\hat{u}_r + r\dot{\theta}\hat{u}_t$
Frottement sec :	$f_{s,\max} = \mu_s N,$ $f_k = \mu_k N$		$\vec{a} = (\ddot{r} - r\dot{\theta}^2)\hat{u}_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{u}_t$
Pression :	$p = F_n/A$, $\tilde{p} = p - p_0$		$\vec{v} = v\hat{u}_t$
Principe de Pascal :	$p_2 = p_1 + \rho g h$	Coordonnées normale et	$\vec{a} = (v^2/\rho)\hat{u}_n + (dv/dt)\hat{u}_t$
Poussée d'Archimède :	$P_A = \rho g V$	tangentielle :	$\rho(x) = \frac{[1 + (dy/dx)^2]^{3/2}}{ d^2y/dx^2 }$
Force hydrostatique sur une paroi :	$F_H = \frac{\rho g h A}{2}$	Deuxième loi de Newton :	$\sum ec{F} = m ec{a}_{\mathit{CM}}$
	$\vec{v} = \frac{d\vec{r}}{dt}, \qquad \vec{a} = \frac{d\vec{v}}{dt}$	Mouvement contraint :	$\sum \Delta \ell_i = 0$
Variables du mouvement :	$\vec{r} = \vec{r}_0 + \int_0^t \vec{v} dt$	Travail d'une force :	$U = \int ec{F} \cdot dec{r}$
	$\vec{v} = \vec{v}_0 + \int_0^t \vec{a} dt$	Énergie cinétique (particule) :	$T = \frac{1}{2}mv^2$
	$\omega = \frac{d\theta}{dt}, \qquad \alpha = \frac{d\omega}{dt}$	Énergie	$V_g = mgh$
Variables du mouvement	$\theta = \theta_0 + \int_0^t \omega dt$	potentielle :	$V_{res} = \frac{1}{2}k(L - L_0)^2$
(angulaires):	$\omega = \omega_0 + \int_0^t \alpha dt$	Énergie mécanique :	E = T + V
	$\vec{r}_{B/A} = \vec{r}_B - \vec{r}_A$	Principe travail- énergie :	$\sum U = \Delta T, \qquad \sum U_{nc} = \Delta E$
Mouvement relatif :	$\vec{v}_{B/A} = \vec{v}_B - \vec{v}_A$	Puissance :	$ar{P} = U/\Delta t$, $P = dU/dt = \vec{F} \cdot \vec{v}$
	$\vec{a}_{B/A} = \vec{a}_B - \vec{a}_A$	Rendement	$\eta = P_{\text{sortie}}/P_{\text{entrée}}$

PHS1101 – Mécanique pour ingénieurs Aide-mémoire

Quantité de mouvement (QM) :	$ec{L} = m ec{v} \ ec{L} = M ec{v}_{CM}$	Vitesse de rotation :	$\vec{v} = \vec{\omega} \times \vec{r}$
Principe impulsion-	$\sum \vec{F} = \frac{d\vec{L}}{dt}$	Décomposition translation-rotation :	$\vec{v}_B = \vec{v}_A + \vec{\omega} \times \vec{r}_{B/A}$
QM:	$\Delta \vec{L} = \int \sum \vec{F} dt$	Centre instantané de rotation :	$\omega = \frac{v_A}{r_{A/CIR}} = \frac{v_B}{r_{B/CIR}}$
Force moyenne :	$\vec{F}_{ m moy}\Delta t = \int \vec{F}dt$		$\Delta r = R\Delta \theta$
	$ec{r}_{\mathit{CM}} = rac{\sum m_i ec{r}_i}{\sum m_i}$	Roulement sans glissement :	$v = \omega R$
Centre de masse :	$ec{v}_{\mathit{CM}} = rac{\sum m_i ec{v}_i}{\sum m_i}$		$a = \alpha R$
	$\vec{a}_{CM} = \frac{\sum m_i \vec{a}_i}{\sum m_i}$	Deuxième loi de	$\sum \vec{M}_O = \vec{r}_{CM/O} \times M \vec{a}_{CM} + \mathbf{I}_{CM} \vec{a}$
Moment d'inertie d'une particule :	$I_0 = mR^2$	Newton en rotation :	$\sum \vec{M}_O = \mathbf{I}_O \vec{\alpha}$
Rayon de giration :	$\kappa_0 = \sqrt{I_0/m}$	Énergie cinétique	$T = \frac{1}{2}Mv_{CM}^2 + \frac{1}{2}I_{CM}\omega^2$
Théorème des axes parallèles :	$I_{O'} = I_{O,CM} + md_{OO'}^2$	d'un corps rigide :	$T = \frac{1}{2}I_O\omega^2$
	$ec{H}_O = ec{r} imes m ec{v}$	Travail d'un couple :	$U = \int \vec{M} \cdot d\vec{ heta}$
Moment cinétique :	$\vec{H}_O = I_O \vec{\omega}$	_	$\overrightarrow{M}_{res} = -\kappa \Delta \overrightarrow{ heta}$
	$\vec{H}_O = \vec{r}_{CM} \times M \vec{v}_{CM} + \mathbf{I}_{CM} \vec{\omega}$	Ressort de torsion :	$V_{res} = \frac{1}{2}\kappa(\Delta\theta)^2$
Principe impulsion-	$\sum \vec{M}_O = \frac{d\vec{H}_O}{dt}$	Puissance d'un couple :	$P = \vec{M} \cdot \vec{\omega}$
MC:	$\Delta \vec{H}_O = \int \sum \vec{M}_O dt$,	
Système à masse variable :	$\sum \vec{F} + \frac{dm}{dt} (\vec{v}_p - \vec{v}) = m\vec{a}$		
Débit dans une conduite :	dV/dt = Sv,		
conduite:	$ dm/dt = \rho Sv$		
Masse en fonction du temps :	$m = m_0 + \int_0^t \frac{dm}{dt} dt$		
Force exercée par un courant de	$\vec{F}_e = dm/dt \vec{v}_e$		
particules :	$\vec{F}_{S} = - dm/dt \vec{v}_{S}$		

PHS1101 – Mécanique pour ingénieurs Formulaire de centre de masse et de moment d'inertie

Corps	Centre de masse	Moments d'inertie	Corps	Centre de masse	Moments d'inertie
£/2 - £/2 - £/2 - 1		$I_{xy} = I_{xy} = \frac{1}{2}mr^{2} + \frac{1}{12}m\ell^{2}$ $I_{zz} = mr^{2}$	b (1/2 + (1/2 + 1/		$I_{xx} = \frac{1}{12} m(\mathbf{a}^2 + \ell^2)$ $I_{xy} = \frac{1}{12} m(\mathbf{b}^2 + \ell^2)$ $I_{zz} = \frac{1}{12} m(\mathbf{a}^2 + \mathbf{b}^2)$
(/2 × × × ×	$\frac{\bar{x}}{\pi} = \frac{2r}{\pi}$	$I_{xx} = \frac{1}{2}mr^2 + \frac{1}{12}m\ell^2$ $I_{yy} = \left(\frac{1}{2} - \frac{4}{\pi^2}\right)mr^2 + \frac{1}{12}m\ell^2$ $I_{zz} = \left(1 - \frac{4}{\pi^2}\right)mr^2$	$\frac{\ell/2}{G} = \frac{\ell/2}{V}$	CORPS MINCES $ \overline{x} = \overline{y} I_{xx} = $ $ 2r$	NCES $I_{yy} = \frac{1}{12} m\ell^2$ $I_{xy} = I_{yy} = \frac{1}{2} mr^2$
¢ (/2 > ¢ (/2 >) G X		$I_{xx} = I_{yy} = \frac{1}{4}mr^2 + \frac{1}{12}m\ell^2$ $I_{\pm} = \frac{1}{2}mr^2$	Z Z Z Z	= = = = = = = = = = = = = = = = = = =	$I_{zz} = mr^{2}$ $I_{xy} = I_{yy} = \frac{1}{2}mr^{2}$ $I_{zz} = mr^{2}$ $*\bar{I}_{yy} = \left(\frac{1}{2} - \frac{4}{\pi^{2}}\right)mr^{2}$
X X	$\overline{x} = \frac{3r}{8}$	$I_{xy} = \frac{2}{5}mr^2$ $I_{yy} = I_{z} = \frac{83}{320}mr^2$	Z X	1	$I_{xx} = I_{yy} = \frac{1}{2}mr^2$
(4/2) G X y	$\overline{x} = \frac{4r}{3\pi}$	$I_{xx} = \frac{1}{4}mr^2 + \frac{1}{12}m\ell^2$ $I_{yy} = \left(\frac{1}{4} - \frac{16}{9\pi^2}\right)mr^2 + \frac{1}{12}m\ell^2$ $I_{zz} = \left(\frac{1}{2} - \frac{16}{9\pi^2}\right)mr^2$	X X X X X X X X X X X X X X X X X X X	$\frac{\bar{x} = \frac{2}{3}b}{\bar{y} = \frac{1}{3}a}$	$I_{xx} = mr^{2}$ $I_{xx} = \frac{1}{6}ma^{2}$ $I_{yy} = \frac{1}{2}mb^{2}$ Triangle rectangle mince

*Demi-cercle : les moments d'inertie avec une barre sont calculés par rapport à un axe qui passe par le centre de masse de l'objet.