L2 Mathématiques

Suites et Séries

Université de Brest

Feuille 5 Série de fonctions

Questions de cours.

- 1. Donner la définition d'une série de fonctions qui converge simplement.
- 2. Donner la définition d'une série de fonctions qui converge uniformément.
- 3. Donner la définition d'une série de fonctions qui converge normalement.
- 4. Énoncer le théorème de continuité.
- 5. Énoncer le théorème de dérivabilité.
- 6. Énoncer le théorème d'intégration.
- 7. Énoncer le théorème de convergence dominée.

Exercice 1. Déterminer le domaine de convergence des séries de fonctions suivantes :

$$\sum_{n\geq 0} 3^n x^n \qquad \sum_{n\geq 1} n^2 e^{-nx} \qquad \sum_{n\geq 1} \frac{1}{n^x} \qquad \sum_{n\geq 0} \frac{1}{1+x^{2n}} \qquad \sum_{n\geq 0} x^n (1-x)^n$$

Exercice 2. Démontrer que les séries suivantes convergent uniformément sur le domaine D:

$$\sum_{n>1} \frac{\sin(nx)}{n^2 + x^2} \quad D = \mathbb{R} \qquad \sum_{n>0} \frac{1}{2^n} \left(\frac{2x+1}{x+2}\right)^{n+1} \quad D = [-1, 1]$$

$$\sum_{n>0} x^n (1-x)^n \quad D = [0,1] \qquad \sum_{n>2} \frac{1}{n^2 + \arctan(nx)} \quad D = R$$

Exercice 3. On considère la série de fonction $\sum_{n\in\mathbb{N}} \frac{x^n}{n!}$.

- 1. Montrer que la série converge simplement sur \mathbb{R} .
- 2. Montrer que la série ne converge pas uniformément sur \mathbb{R} .
- 3. Plus généralement, montrer que la limite uniforme sur \mathbb{R} d'une suite de polynôme qui converge, est nécessairement un polynôme.

Exercice 4. Soit $(f_n)_{n\in\mathbb{N}}$ la suite de fonctions définies sur \mathbb{R}^+ par :

$$f_n(x) = ne^{-nx}.$$

1. Étudier la convergence simple, uniforme et normale de la série $\sum_{n\in\mathbb{N}} f_n$ sur $\mathbb{R}^{+\star}$.

On notera S sa somme.

2. Même question sur $[a, +\infty[$, où a > 0.

- 3. Pourquoi a-t-on: $\int_a^{+\infty} S(t) dt = \frac{e^{-a}}{1 e^{-a}}$, pour tout a > 0?
- 4. En déduire la valeur de S(x), pour $x \in \mathbb{R}^{+\star}$.

Exercice 5. Soit la suite $(f_n)_{n\in\mathbb{N}^*}$ de fonctions définies sur \mathbb{R} par :

$$f_n(x) = \frac{(-1)^n}{\sqrt{n^2 + n^3 x^2}}.$$

- 1. Montrer que la série $\sum_{n\in\mathbb{N}} f_n$ converge simplement sur \mathbb{R} . On note S sa somme.
- 2. Montrer que la série $\sum_{n\in\mathbb{N}} f_n$ converge normalement sur $]-\infty,-a]\cup[a,+\infty[$, pour tout a>0.
- 3. En déduire que S est continue sur \mathbb{R}^* .
- 4. Montrer que la série $\sum_{n\in\mathbb{N}} f_n$ ne converge pas normalement sur \mathbb{R}^* .
- 5. Montrer que la série $\sum_{n\in\mathbb{N}} f_n$ converge uniformément sur \mathbb{R} .
- 6. En déduire que S est continue sur \mathbb{R} .

Exercice 6. Pour tout $t \in \mathbb{R}$, on pose $u_n(t) = \frac{\arctan(nt)}{n^2}$.

- 1. Justifier que pour tout $t \in \mathbb{R}$, la série $\sum_{n \in \mathbb{N}} u_n(t)$ est convergente. On note S(t) sa somme.
- 2. Démontrer que S est un fonction continue sur $\mathbb R$ et impaire.
- 3. Montrer que S est dérivable sur \mathbb{R}^* .
- 4. Montrer que S admet une tangente verticale à l'origine.

Exercice 7. Soit $(f_n)_{n\in\mathbb{N}}$ la suite de fonctions définies sur [-1,1] par :

$$f_n(x) = \frac{x}{1 + n^2 x^2}.$$

- 1. Montrer que $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur [-1,1] vers 0.
- 2. Étudier la convergence simple et uniforme de $(f'_n)_{n\in\mathbb{N}}$ sur [-1,1].
- 3. On considère la suite $(g_n)_{n\in\mathbb{N}}$ la suite de fonctions définies sur [-1,1] par :

$$g_n(x) = \frac{\ln(1 + n^2 x^2)}{2n^2}.$$

Montrer que la suite $(g_n)_{n\in\mathbb{N}}$ converge uniformément sur [-1,1] vers 0.

Exercice 8. On considère la fonction f définie par la série

$$f(x) = \sum_{n=1}^{+\infty} \left(\cos \left(\frac{1}{n^2} \right) - 1 \right) \sin(nx).$$

- 1. Quel est le domaine de définition de f?
- 2. Montrer que f est continue sur son domaine de définition.
- 3. Montrer que f est dérivable sur son domaine de définition.