三、实验内容及基本要求

(二) 几种排序算法的实验性能比较

实现插入排序(Insertion Sort, IS),自项向下归并排序(Top-down Mergesort, TDM),自底向上归并排序(Bottom-up Mergesort, BUM),随机快速排序(Random Quicksort, RQ),Dijkstra 3-路划分快速排序(Quicksort with Dijkstra 3-way Partition,QD3P)。在你的计算机上针对**不同输入规模数据**进行实验,对比上述排序算法的时间及空间占用性能。要求对于每次输入运行 10 次,记录每次时间/空间占用,取平均值。

Comparison of running time of sorting algorithms (in Micro Seconds)

	Run1	Run2	Run3	Run4	Run5	Run6	Run7	Run8	Run9	Run10	Average
TO.	rtairi	rtanz	rtans	Ttairi	Italio	rtano	Italii	rtano	rtairy	rtairro	riverage
IS											
TDM											
BUM											
RQ											
QD3P											

Comparison of space usage of sorting algorithms (in Kilo Bytes)

	Run1	Run2	Run3	Run4	Run5	Run6	Run7	Run8	Run9	Run10	Average
IS											
TDM											
BUM											
RQ											
QD3P											

回答以下问题:

- 1. Which sort worked best on data in constant or increasing order (i.e., already sorted data)? Why do you think this sort worked best?
 - 2. Did the same sort do well on the case of mostly sorted data? Why or why not?
- 3. In general, did the ordering of the incoming data affect the performance of the sorting algorithms? Please answer this question by referencing specific data from your table to support your answer.
- 4. Which sort did best on the shorter (i.e., n = 1,000) data sets? Did the same one do better on the longer (i.e., n = 10,000) data sets? Why or why not? Please use specific data from your table to support your answer.
- 5. In general, which sort did better? Give a hypothesis as to why the difference in performance exists.
- 6. Are there results in your table that seem to be inconsistent? (e.g., If I get run times for a sort that look like this {1.3, 1.5, 1.6, 7.0, 1.2, 1.6, 1.4, 1.8, 2.0, 1.5] the 7.0 entry is not consistent with the rest). Why do you think this happened?