# **Prediction theory**

COMS 4771 Fall 2019

### Overview

- ► Statistical model for classification problems
- ► Plug-in principle
- ► Statistical models and MLE
- ► Error estimation and evaluation

# Statistical model for binary outcomes



Figure 1: Coin toss

- ▶ Physical model: hard
- ► Statistical model: outcome is random
  - ightharpoonup Bernoulli distribution with heads probability heta
  - $\blacktriangleright$  Written as  $Bern(\theta)$
- ► Goal: correctly predict outcome

# Learning to make predictions

 $\blacktriangleright$  If  $\theta$  known:

▶ If  $\theta$  unknown:

2 / 23

## Plug-in principle



Figure 2: Plug-in

- ► Plug-in principle:
  - $\triangleright$  Estimate unknown(s) based on data (e.g.,  $\theta$ )
  - ▶ Plug estimates into formula for optimal prediction
- ▶ When can we estimate the unknowns?
  - ▶ Observed data should be related to the outcome we want to predict
  - ▶ <u>IID model</u>: Observations & outcome are <u>iid</u> random variables

#### Statistical models

- ▶ Parametric statistical model  $\{P_{\theta} : \theta \in \Theta\}$ 
  - collection of parameterized probability distributions for observed data
- ightharpoonup E.g., distributions on n binary outcomes treated as iid Bernoulli random variables

$$\Theta =$$

$$P_{\theta}(y_1,\ldots,y_n) =$$

/ 23

5 / 23

### Maximum likelihood estimation

- ightharpoonup Likelihood of parameter  $\theta$  (given observed data)
  - $L(\theta) = P_{\theta}(y_1, \dots, y_n)$
- ▶ Maximum likelihood estimation: choose  $\theta$  with highest likelihood
- ► Log-likelihood
  - ightharpoonup E.g.,  $\ln L(\theta) =$
- Maximizer:

## Performance of plug-in prediction I

- $ightharpoonup \hat{\theta}$  is MLE estimate of  $\theta$  from data  $y_1, \ldots, y_n$
- ▶ Plug-in prediction of outcome:  $\hat{y} = \mathbb{1}_{\{\hat{\theta} > 1/2\}}$
- ► Is this any good? Study behavior in IID model
  - $ightharpoonup Y_1, \dots, Y_n, Y$  are iid Bernoulli with parameter  $\theta$
  - $ightharpoonup \hat{Y}$  is plug-in prediction

# Performance of plug-in prediction II

▶ **Theorem**:  $\Pr(\hat{Y} \neq Y) \leq \min\{\theta, 1 - \theta\} + |2\theta - 1| \cdot e^{-2n(\theta - 0.5)^2}$ 



Figure 3: n=20

# Performance of plug-in prediction III

▶ **Theorem**:  $\Pr(\hat{Y} \neq Y) \leq \min\{\theta, 1 - \theta\} + |2\theta - 1| \cdot e^{-2n(\theta - 0.5)^2}$ 



Figure 4: n=40

23

# Performance of plug-in prediction IV

► **Theorem**:  $\Pr(\hat{Y} \neq Y) \leq \min\{\theta, 1 - \theta\} + |2\theta - 1| \cdot e^{-2n(\theta - 0.5)^2}$ 



Figure 5: n = 60

## Performance of plug-in prediction V

▶ **Theorem**:  $\Pr(\hat{Y} \neq Y) \leq \min\{\theta, 1 - \theta\} + |2\theta - 1| \cdot e^{-2n(\theta - 0.5)^2}$ 



Figure 6: n=80

9 / 23

40 (0)

. . . . .

### Statistical model for labeled examples

- ► Example: spam filtering
- ▶ Labeled example:  $(x,y) \in \mathcal{X} \times \{0,1\}$
- $\triangleright$   $\mathcal{X}$  is input (feature) space;  $\{0,1\}$  is the output (label) space
  - $\triangleright$   $\mathcal{X}$  is not necessarily the space of inputs itself (e.g., space of all emails), but rather the space of what we measure about inputs
- $\blacktriangleright$  We only see x, and then must make prediction of y
- ightharpoonup Statistical model: (X,Y) is random
  - ► X has some marginal probability distribution
  - lacktriangle Conditional probability distribution of Y given X=x is Bernoulli with heads probability  $\eta(x)$
  - $lackbox{$\displaystyle \eta\colon\mathcal{X} o[0,1]$ is a function, sometimes called the$ *regression function* $}$

### Conditional expectations

- ightharpoonup Consider any random variables A and B.
- ► Conditional expectation of *A* given *B*:
  - ▶ Written  $\mathbb{E}[A \mid B]$
  - ► A random variable! What is its expectation?
  - ► Law of iterated expectations:

12

## Bayes classifier

► Optimal classifier (Bayes classifier):

$$f^{\star}(x) = \mathbb{1}_{\{\eta(x) > 1/2\}},$$

where  $\eta$  is the regression function

- ► Classifier with smallest probability of mistake
- $\triangleright$  Depends on the regression function  $\eta$ , which is typically unknown!
- ► Optimal error rate (Bayes error rate):
  - Write error rate as  $\Pr(f^*(X) \neq Y) = \mathbb{E}[\mathbb{1}_{\{f^*(X) \neq Y\}}]$
  - ▶ In terms of  $\eta$ :

## Example: spam filtering

- ightharpoonup Suppose input x is a single (binary) feature, "is email all-caps?"
- ▶ How to interpret "the probability that email is spam given x = 1?"

▶ What does it mean for the Bayes classifier  $f^*$  to be optimal?

### Learning prediction functions

- ▶ What to do if  $\eta$  is unknown?
  - ightharpoonup Training data:  $(x_1, y_1), \ldots, (x_n, y_n)$
  - ▶ Data are related to what we want to predict
  - ▶ IID model:  $(X_1, Y_1), \dots, (X_n, Y_n), (X, Y)$  are iid random variables
  - ightharpoonup (X,Y) is the "test" example
  - ▶ (Technically, each labeled example is a  $(\mathcal{X} \times \{0,1\})$ -valued random variable. If  $\mathcal{X} = \mathbb{R}^d$ , can regard as vector of d+1 random variables.)

### Performance of nearest neighbor classifiers

- ► Study in context of IID model
- Assume  $\eta(x) \approx \eta(x')$  whenever x and x' are close.
- Let (X,Y) be the "test" example, and suppose  $(X^*,Y^*)$  is the nearest neighbor among training data.

16 / 23

#### Test error rate

► Hard to analyze in the IID model!

Performance of decision trees

- lacktriangle Simpler algorithm: assume partitioning of  $\mathcal{X}=\mathbb{R}^d$  is fixed in advance before seeing any training data
- Fix leaf node, and consider training examples that reach that node.

- ► How to estimate error rate?
- ▶ IID model: Training examples  $((X_i,Y_i))_{i=1}^n$  and test examples  $((X_i',Y_i'))_{i=1}^m$  are iid
- lacktriangle Classifier  $\hat{f}$  is based only on training examples; hence, it is independent of test examples
- ► Conditional distribution of

$$\sum_{i=1}^{m} \mathbb{1}_{\{\hat{f}(X_i') \neq Y_i'\}}$$

given  $((X_i, Y_i))_{i=1}^n$  and  $\hat{f}$ :

- ightharpoonup Binomial distribution with m trials and heads probability equal to error rate  $\varepsilon$  of  $\hat{f}$
- ▶ Written as  $Z \sim \operatorname{Binom}(m, \varepsilon)$

17 / 23

18 / 23

. . . . .

#### Confusion tables

- ► True positive rate (recall):  $Pr(\hat{f}(X) = 1 \mid Y = 1)$
- False positive rate:  $Pr(\hat{f}(X) = 1 \mid Y = 0)$
- Precision:  $Pr(Y = 1 \mid \hat{f}(X) = 1)$
- Confusion table

|       | $\hat{y} = 0$     | $\hat{y} = 1$     |
|-------|-------------------|-------------------|
| y = 0 | # true negatives  | # false positives |
| y=1   | # false negatives | # true positives  |

#### **ROC** curves

- ► Receiver operating characteristic (ROC) curve
  - ▶ What points are achievable on the TPR-FPR plane?
  - ▶ Use randomization to combine classifiers



#### More than two outcomes



Figure 7: Six-sided die

- $\blacktriangleright$  What if K > 2 possible outcomes?
- ightharpoonup Replace coin with K-sided die
- ▶ Say Y has a categorical distribution over  $[K] := \{1, ..., K\}$ , determined probability vector  $\theta = (\theta_1, \dots, \theta_K)$ 
  - $\begin{array}{ll} \bullet & \theta_k \geq 0 \text{ for all } k \in [K] \text{, and } \sum_{k=1}^K \theta_k = 1 \\ \bullet & \Pr(Y = k) = \theta_k \end{array}$
- ightharpoonup Optimal prediction of Y if  $\theta$  is known

$$\hat{y} := \underset{k \in [K]}{\arg \max} \, \theta_k$$

#### Statistical model for multi-class classification

- $\triangleright$  Statistical model for labeled examples (X,Y), where Y takes values in [K]
  - Now,  $Y \mid X = x$  has a categorical distribution with parameter vector  $\eta(x) = (\eta(x)_1, \dots, \eta(x)_K)$
  - Conditional probability function  $\eta(x)_k := \Pr(Y = k \mid X = x)$
  - ▶ Optimal classifier:  $f^*(x) = \arg \max_{k \in [K]} \eta(x)_k$
  - ▶ Optimal error rate:  $\Pr(f^*(X) \neq Y) =$