WO 2006/057499 PCT/KR2005/003923

```
Korea Research Insitute of Bioscience and Biotechnology
     <110>
              Cattle beta-casein gene targeting vector using homologous
     <120>
              recombination
     <150>
              PCT/KR2004003034
     <151>
              2004-11-23
     < 160>
10
              KopatentIn 1.71
     <170>
     <210>
     <211>
              31
     <212>
              DNA
15
              Artificial Sequence
     <213>
     <220>
              primer for bovine casein gene amplification
     <223>
20
     <400>
                                                                                 31
     attcagtcga gtggaacata aactttcagc c
25
     <210>
              2
     <211>
              31
     <212>
              DNA
              Artificial Sequence
     <213>
30
      <220>
              primer for bovine casein gene amplification
      <223>
               2
      <400>
35
                                                                                 31
     catatgtcga ctgtgagatt gtattttgac t
               3
      <210>
      <211>
               24
40
      <212>
               DNA
               Artificial Sequence
      <213>
```

WO 2006/057499		PCT/KR2005/003923	
	<220> <223>	primer for hTPO amplification	
5	<400> ggagetga	3 act gaattgctcc tcgt	. 24
10	<210> <211> <212> <213>	4 24 DNA Artificial Sequence	
15	<220> <223>	primer for hTPO amplification	
20	<400> cctgacgo	4 ag agggtggacc ctcc	. 24
25	<210> <211> <212> <213>	5 23 DNA Artificial Sequence	
	<220> <223>	primer for identification gene targeting	
30	<400> ccacacag	5 gc atagagtgtc tgc	23
35	<210> <211> <212> <213>	6 22 DNA Artificial Sequence	
40	<220> <223>	primer for identification gene targeting	

22

<400>

6

ccacagaatt gactgcgact gg

WO 2006/057499			PCT/KR2005/003923	
-,	<210> <211> <212>	7 24 DNA		
_	<213>	Artificial Sequence		
5	<220>			
	<223>	primer for nested PCR		
10	<400>	7		24
	gagacgg	acc tgtccagaaa gctg		24
	<210>	8		
15	<211>	29		
	<212>	DNA		
	<213>	Artificial Sequence		
	<220>	·		
20	<223>	primer for identification gene targeting		
	<400>	8		
		o gcat tctagttgtg gtttgtcca		29
25	((Cac (§	godt totagtigig governor	9	
	<210>	9		
	<211>	25		
	<212>	DNA	•	
30	<213>	Artificial Sequence		
	<220>			
	<223>	primer for identification gene targeting		

35

<400>

9

tctaggacca aacatcggct tactt

PCT/KR2005/003923

WO 2006/057499 PCT/KR2005/003923

```
Korea Research Insitute of Bioscience and Biotechnology
     <110>
              Cattle beta-casein gene targeting vector using homologous
     <120>
              recombination
             . PCT/KR2004003034
     <150>
              2004-11-23
     <151>
     <160>
              9
10
              Kopatent In 1.71
     <170>
     <210>
              1 ·
              31
     <211>
     <212>
              DNA
15
              Artificial Sequence
     <213>
     <220>
              primer for bovine casein gene amplification
     <223>
20
     <400>
                                                                                  31
     atteagtega gtggaacata aacttteage e
25
               2
      <210>
      <211>
               31
               DNA
      <212>
               Artificial Sequence
      <213>
30
      <220>
               primer for bovine casein gene amplification
      <223>
               2
      <400>
35
                                                                                  31
      catatgtcga ctgtgagatt gtattttgac t
               3
      <210>
 40
      <211>
               24
      <212>
               DNA
               Artificial Sequence
      <213>
```

	<220>		
	<223>	primer for hTPO amplification	
5	<400>	3	
	ggagctga	ct gaattgctcc tcgt	24
10	<210> <211>	4 24	
10	<211>	DNA	
	<213>	Artificial Sequence	
	\Z 102	Altificial Sequence	
	<220>		
15	<223>	primer for hTPO amplification	
	•		
	<400>	4	_
	cctgacgc	ag agggtggacc ctcc	24
20			
	<0.10>		
	<210> <211>	5 23	
	<212>	DNA ·	
25	<213>	Artificial Sequence	
20	1210	THE POTE TO SUBSTITUTE OF THE POTE TO THE	
	<220>		
	<223>	primer for identification gene targeting	
30			
	<400>	5	23
	ccacacag	gc atagagtgtc tgc	20
35	<210>	6	
, ,	<211>	22	
	<212>	DNA	
	<213>	Artificial Sequence	
10	<220>		
	<223>	primer for identification gene targeting	

PCT/KR2005/003923

22

WO 2006/057499

<400>

45

ccacagaatt gactgcgact gg

WO 2006/057499 PCT/KR2005/003923

	<210>	7	
	<211>	24	
	<212>	DNA	
	<213>	Artificial Sequence	
5			
	<220>		
	<223>	primer for nested PCR	
10	<400>	7	
	gagacgg	gacc tgtccagaaa gctg	24
	•		
	(010)	0	
1.5	<210> <211>	8 29	
15	<2112>	DNA	
	<213>	Artificial Sequence	
	~210>	Al (Titotal Sequence	
	<220>		
20	<223>	primer for identification gene targeting	
	<400>	8	
		o gcat totagtigig gilligicca	29
25	rreacre	godi totagitigig gittigiood	
20		•	
	<210>	9	•
	<211>	25	
	<212>	DNA	
30	<213>	Artificial Sequence	
	<220>		
	<223>	primer for identification gene targeting	
35		·	
	<400>	9	. 25
	tctagga	acca aacategget tactt	25

PCT/KR2005/003923 RO/KR 23.01.2006

	<110>	Korea Research Institute of Bioscience and Biotechnology	
	<120>	Cattle beta-casein gene targeting vector using homologous recombination	
5	<150> <151>	PCT/KR2004003034 2004-11-23	
	<160>	9	
10	<170>	Kopatentin 1.71	
15	<210> <211> <212> <213>	1 31 DNA Artificial Sequence	
20	<220> <223>	primer for bovine casein gene amplification	
	<400> attcagto	1 cga gtggaacata aactttcagc c	31
25			
	<210> <211> <212> <213>	2 31 DNA Artificial Sequence	
30	<220> <223>	primer for bovine casein gene amplification	
35	<400> catatgto	2 cga ctgtgagatt gtattttgac t	31
. 40	<210> <211> <212> <213>	3 24 DNA Artificial Sequence	

45

PCT/KR2005/003923 RO/KR 23.01.2006

	<220> <223>	primer for hTPO amplification		
5	<400> ggagctg	3 pact gaattgctcc tcgt		24
10	<210> <211> <212> <213>	4 24 DNA. Artificial Sequence		
15	<220> <223>	primer for hTPO amplification		
20	<400> cctgacg	4 cag agggtggacc ctcc		24
	<210> <211> <212>	5 23 DNA		
25	<213> <220> <223>	Artificial Sequence primer for identification gene targeting	·	
30	<400> ccacaca	5 aggc atagagtgtc tgc		23
35	<210> <211> <212> <213>	6 22 DNA Artificial Sequence		
40	<220> <223>	primer for identification gene targeting		
45	<400> ccacaga	6 att gactgcgact gg		22

PCT/KR2005/003923 RO/KR 23.01.2006

	<210> <211>	7 24	
5	<212> <213>	DNA Artificial Sequence	
5	<220> <223>	primer for nested PCR	
10	<400> gagacgga	7 acc tgtccagaaa gctg	24
15	<210> <211> <212> <213>	8 29 DNA Artificial Sequence	
20 .	<220> <223>	primer for identification gene targeting	
25	<400> ttcactgo	8	29
30	<210> <211> <212> <213>	9 25 DNA Artificial Sequence	
	<220> <223>	primer for identification gene targeting	
35	<400> tctagga	9 cca aacatcggct tactt	25

Sequence Listing

	<110>	Korea Research Institute of Bioscience and Biotechnology
· [:] 5	<120>	Cattle beta-casein gene targeting vector using homologous recombination
	<150> <151>	PCT/KR2004003034 2004-11-23
10	<160>	9
* .:	<170>	KopatentIn 1.71
15	<210> <211> <212> <213>	1 31 DNA Artificial Sequence
20	<220> <223>	primer for bovine casein gene amplification
25	<400> attcagto	1 ga gtggaacata aactttcagc c 31
•		
30	<210> <211> <212>	2 31 DNA
	<213>	Artificial Sequence
35	<220> <223>	primer for bovine casein gene amplification
	<400>	2 ega etgtgagatt gtattttgac t 31
40	<210> <211> <212> <213>	3 24 DNA Artificial Sequence

	<220>		•
٠.	<223>	primer for hTPO amplification	
	•	•	
5	<400>	3	
	•	act gaattgetee tegt	24
			-:
•			
	<210>	A	
10	<211> ·	24	
10	<212>	DNA	
•	<213>	Artificial Sequence	٠.
		Altitoral dequence	
•	<220>		
15	<223>	primer for hTPO amplification	
.10			
	<400>	4	
•		cag agggtggacc cicc	24
20 .	Corgacyc	cag agggragaco croc	
20			
	<210>	5	٠,
	<211>	23	
•	<212>	DNA	
.25 .	<213>	Artificial Sequence	
.20 .	VZ 107 .	Attitutal ocquence	
	· <220>.		
	<223>	primer for identification gene targeting	
	LLO	primer to reciti reaction gone targeting	
30			•
. 00	<400>	5	
		ggc atagagtgtc tgc	23
	oododoag	990 1119191910 190	
	٠.		•
35	<210>	6	
	<211>	22	
•	<212>	DNA	
	<213>	Artificial Sequence	
	,	· · · · · · · · · · · · · · · · · · ·	
40	<220>		
10	<223>	primer for identification gene targeting	٠
	~~~~	primer to radiffication gone targeting	
	<400>	6	
45		att gactgcgact gg	22
<del>1</del> 0	·	rr andranami AA	

	<210>	7
	<211>	24
	<212>	DNA
	<213>	Artificial Sequence
. 5		
	<220>	
	<223>	primer for nested PCR
	·.	
10	•	7
	gagacgg	acc tgtccagaaa gctg 24
	<210>	8
15	<211>	29
	<212>	DNA
	<213>:	Artificial Sequence
	<220>	
20	<223>	primer for identification gene targeting
20	· LLO	primor for rubiter roacron gold targeting
•	<400>	8
٠.	ttcactg	cat totagttgtg gtttgtcca 29
25		
	<210>	9
	<211>	25
	<212>	DNA
30	<213>	Artificial Sequence
•		
	<220>	for identification cano torgeting
	. <223> :	primer for identification gene targeting
35	٠.	
JU	<400>	9.
		cca aacatcggct tactt 25