Identify shortcomings of Estimators of Discriminative Performance in Time-to-Event Analyses: A Comparison Study

Ying Jin, Andrew Leroux

Question

If the evaluation metric reveals perfect out-of-sample performance of the underlying model, should we conclude that the model fits the population well?

Example

A linear regression model with out-of-sample $R^2 = 1$ or MSE = 0?

Example

A linear regression model with out-of-sample $R^2 = 1$ or MSE = 0?

Example

A logistic regression model with out-of-sample AUC = 1, indicating perfect separation?

Example

A logistic regression model with out-of-sample AUC = 1, indicating perfect separation?

Alert

This can actually happen when we have noisy or abnormal observations!

- Example: With the same model, adding one outlier inflates the AUC estimates to 1
- Estimator does not reflect true prediction performance of model

Incident/Dynamic ROC Curve at a single time point Comparing Estimated Results when Adding in A Single Outlier True Positive Rate Model TOTIQINAL data Original data with 1 Outlier 0.25 AUC = 0.998AUC = 0.811 0.00

False Positive Rate

0.00

Time-to-event data

- Observed outcomes include timing and occurrence of a specific event.
 e.g. death, disease onset, relapse, etc.
- Observations are usually subject to right censoring, which means event has not happened until censoring time, but no information is available after censoring.
 e.g. Fixed follow-up period, patient dropout, etc

Notation

- let i = 1...N indicates individuals
- For each individual, T_i^* is true event time subject to independent right censoring; C_i is censoring time
- Observed time $T_i = min(T_i^*, C_i)$; observed status $\delta_i = I(T_i^* < C_i)$
- Observed covariate $\boldsymbol{X}_i = (X_{i1},...X_{ip})^t$; risk score $\eta_i = \boldsymbol{X}_i^t \boldsymbol{\beta}$
- Assume survival time is associated with risk score through a proportional hazard model as follows:

$$\log \lambda_i(t|\boldsymbol{X}_i) = \log \lambda_0(t) + \boldsymbol{X}_i^t \boldsymbol{\beta} , \quad t > 0$$

= $\log \lambda_0(t) + \eta_i$

where $\lambda_0(t)$ is constant across population

 We aim to evaluate discriminative performance of models, which is the ability to predict timing of event with covariates

We use Incident/dynamic AUC to measure discriminative performance of a model. At a specific time t and a fixed threshold of risk score c:

Incident sensitivity

$$\mathsf{sensitivity}^{\mathbb{I}}(c,t) = \mathsf{TP}^{\mathbb{I}}_t(c) = \mathsf{Pr}(\eta_i > c | T_i^* = t)$$

We use Incident/dynamic AUC to measure discriminative performance of a model. At a specific time t and a fixed threshold of risk score c:

Incident sensitivity

$$\mathsf{sensitivity}^{\mathbb{I}}(c,t) = \mathsf{TP}^{\mathbb{I}}_t(c) = \mathsf{Pr}(\eta_i > c | T_i^* = t)$$

Dynamic specificity

$$1-\mathsf{specificity}^{\mathbb{D}}(c,t)=\mathsf{FP}^{\mathbb{D}}_t(c)=1-\mathsf{Pr}(\eta_i\leq c|\,T_i^*>t)$$

We use Incident/dynamic AUC to measure discriminative performance of a model. At a specific time t and a fixed threshold of risk score c:

• Incident sensitivity

$$\mathsf{sensitivity}^{\mathbb{I}}(c,t) = \mathsf{TP}^{\mathbb{I}}_t(c) = \mathsf{Pr}(\eta_i > c | T_i^* = t)$$

• Dynamic specificity

$$1 - \mathsf{specificity}^{\mathbb{D}}(c, t) = \mathsf{FP}^{\mathbb{D}}_t(c) = 1 - \mathsf{Pr}(\eta_i \le c | T_i^* > t)$$

• For all possible thresholds c: $\mathsf{ROC}^{\mathbb{I}/\mathbb{D}}_t(p) = \mathsf{TP}^{\mathbb{I}}_t\{[\mathsf{FP}^{\mathbb{D}}_t]^{-1}(p)\}$

We use Incident/dynamic AUC to measure discriminative performance of a model. At a specific time t and a fixed threshold of risk score c:

Incident sensitivity

$$\mathsf{sensitivity}^{\mathbb{I}}(c,t) = \mathsf{TP}^{\mathbb{I}}_t(c) = \mathsf{Pr}(\eta_i > c | T_i^* = t)$$

• Dynamic specificity

$$1 - \mathsf{specificity}^{\mathbb{D}}(c, t) = \mathsf{FP}^{\mathbb{D}}_t(c) = 1 - \mathsf{Pr}(\eta_i \le c | T_i^* > t)$$

- For all possible thresholds c: $\mathsf{ROC}_t^{\mathbb{I}/\mathbb{D}}(p) = \mathsf{TP}_t^{\mathbb{I}}\{[\mathsf{FP}_t^{\mathbb{D}}]^{-1}(p)\}$
- Incident/dynamic AUC: $\mathsf{AUC}^{\mathbb{I}/\mathbb{D}}(t) = \int_0^1 \mathsf{ROC}_t^{\mathbb{I}/\mathbb{D}}(p) dp$

Estimands: Concordance

We use concordance to measure discriminative performance of model over the entire follow-up period:

Concordance

$$C = \Pr(\eta_i < \eta_j | T_i^* > T_j^*)$$
.

Estimands: Concordance

We use concordance to measure discriminative performance of model over the entire follow-up period:

Concordance

$$C = \Pr(\eta_i < \eta_j | T_i^* > T_j^*)$$
.

Concordance subject to administrative censoring

$$C^{\tau} = \Pr(\eta_i < \eta_j | T_i^* > T_j^*, T_j^* < \tau),$$

where au is the end of follow-up period

Estimands: Concordance

We use concordance to measure discriminative performance of model over the entire follow-up period:

Concordance

$$C = \Pr(\eta_i < \eta_j | T_i^* > T_i^*) .$$

• Concordance subject to administrative censoring

$$C^{\tau} = \Pr(\eta_i < \eta_j | T_i^* > T_j^*, T_j^* < \tau),$$

where τ is the end of follow-up period

Concordance by integrating AUC

$$\mathsf{C}^{ au} = \int_0^{ au} \mathsf{AUC}^{\mathbb{I}/\mathbb{D}}(t) w^{ au}(t) dt$$

where
$$w^{\tau}(t) = 2f(t)S(t)/1 - S^{2}(\tau)$$

- Now let's talk about ways to estimator these evaluation metrics.
- Many estimators proposed, roughly categorized as semi-parametric and non-parametric.
- Semi-parametric estimators suffer from out-of-sample inflation
- Non-parametric estimators are highly variable

Incident/dynamic AUC: at time t and a specific threshold for risk threshold c,

• Dynamic False-positive rate

$$\widehat{\mathsf{FP}}^{\mathbb{D}}_t(c) = \frac{\sum_k I(\eta_k > c)I(T_k > t)}{\sum_j I(T_j > t)}$$

Incident/dynamic AUC: at time t and a specific threshold for risk threshold c,

Dynamic False-positive rate

$$\hat{\mathsf{FP}}^{\mathbb{D}}_t(c) = rac{\sum_k I(\eta_k > c)I(T_k > t)}{\sum_j I(T_j > t)}$$

Incident True-positive rate:
 Non-parametric:

$$\widehat{\mathsf{TP}}_t^{\mathbb{I}}(c) = \frac{\sum_k I(\eta_k > c) I(T_k = t) I(\delta_i = 1)}{\sum_j I(T_j = t) I(\delta_i = 1)}$$

Incident/dynamic AUC: at time t and a specific threshold for risk threshold c,

• Dynamic False-positive rate

$$\widehat{\mathsf{FP}}_t^{\mathbb{D}}(c) = \frac{\sum_k I(\eta_k > c)I(T_k > t)}{\sum_j I(T_j > t)}$$

Incident True-positive rate:
 Non-parametric:

$$\hat{\mathsf{TP}}_t^{\,\mathbb{I}}(c) = rac{\sum_k I(\eta_k > c) I(\mathcal{T}_k = t) I(\delta_i = 1)}{\sum_j I(\mathcal{T}_j = t) I(\delta_i = 1)}$$

Semi-parametric [Heagerty and Zheng, 2005]:

$$\widehat{\mathsf{TP}}_t^{\,\mathbb{I}}(c) = \frac{\sum_k I(\eta_k > c) I(T_k \ge t) \mathsf{exp}(\eta_k)}{\sum_j I(T_j \ge t) \mathsf{exp}(\eta_j)}$$

Concordance:

• Integrating $\mathsf{AUC}^{\mathbb{I}/\mathbb{D}}(t)$ estimates

$$\mathsf{C}^{ au} = \int_0^ au \mathsf{AUC}^{\mathbb{I}/\mathbb{D}}(t) w^ au(t) dt$$

Requires estimates of $\mathsf{AUC}^{\mathbb{I}/\mathbb{D}}(t),\ S(t)$ and f(t)

Concordance:

• Integrating $\mathsf{AUC}^{\mathbb{I}/\mathbb{D}}(t)$ estimates

$$\mathsf{C}^{ au} = \int_0^ au \mathsf{AUC}^{\mathbb{I}/\mathbb{D}}(t) w^ au(t) dt$$

Requires estimates of AUC $^{\mathbb{I}/\mathbb{D}}(t)$, S(t) and f(t)

• Gonen-Heller [Gonen and Heller, 2005]: semi-parametric

$$C = \frac{2}{n(n-1)} \sum_{i < j} \frac{I(\eta_j - \eta_i < 0)}{1 + exp(\eta_j - \eta_i)} + \frac{I(\eta_i - \eta_j < 0)}{1 + exp(\eta_i - \eta_j)}$$

Concordance:

• Integrating $\mathsf{AUC}^{\mathbb{I}/\mathbb{D}}(t)$ estimates

$$\mathsf{C}^{ au} = \int_0^ au \mathsf{AUC}^{\mathbb{I}/\mathbb{D}}(t) w^ au(t) dt$$

Requires estimates of AUC $^{\mathbb{I}/\mathbb{D}}(t)$, S(t) and f(t)

• Gonen-Heller [Gonen and Heller, 2005]: semi-parametric

$$C=rac{2}{n(n-1)}\sum_{i< j}rac{I(\eta_j-\eta_i<0)}{1+exp(\eta_j-\eta_i)}+rac{I(\eta_i-\eta_j<0)}{1+exp(\eta_i-\eta_j)}$$

• Harrell's C index: non-parametric

$$C = \frac{\sum_{i < j} I(T_i < T_j) I(\eta_i > \eta_j) I(\delta_i = 1) + I(T_i > T_j) I(\eta_i < \eta_j) I(\delta_j = 1)}{\sum_{i < j} I(T_i < T_j) I(\delta_i = 1) + I(T_i > T_j) I(\delta_j = 1)}$$

Simulation setup

- 1000 simulated data sets with sample size N = 500
- Generate three signals independently from N(0, 1)
- Survival generated from Cox propotional hazard model with Weibull baseline hazard

$$\log \lambda_i(t|X_i) = \log p\theta t^{p-1} + X_{i1}\beta_1 + X_{i2}\beta_2 + X_{i3}\beta_3$$

• Censoring time generated uniformly from (0.5, 1)

Results: Incident/Dynamic AUC

Note: Incident/Dynamic AUC is smoothed across all simulation

Results: Incident/Dynamic AUC

Note: Incident/Dynamic AUC is smoothed across all simulation

Results: Incident/Dynamic AUC

Note: Incident/Dynamic AUC is smoothed across all simulation

Results: Concordance

Conclusion

Estimator	Bias	Variability	Inflation with noise
Semi-parametric (HZ)	No bias	Small	Large
Non-parametric (NP)	No bias	Large	No inflation
Smoothed non- parametric (SNP)	Underestimate at edges and overestimate in the middle	Medium	No inflation

Comparison of I/D AUC estimators

Conclusion

Estimator	Bias	Variability	Inflation with noise
Semi-parametric Non-parametric	No bias Overestimation	Small Large	Large No inflation
Non-parametric with smoothed weight	No bias	Medium	No inflation

Comparison of concordance estimators

Data Application

- Data:
 - NHANES 2011-2014
 - 3556 participants age 50-80
 - Analytic dataset
 - Complete data: age, mortality follow-up, BMI, PIR
 - ullet \geq 3 days of accelerometry data with 95% wear
- Goals:
 - Predict time to all-cause mortality using PA features and other covariate data using a complicated mean model
 - Compare estimated in- and out-of-sample performance for discrimination
 - Compare results to a linear regression and \hat{R}^2

Data Application

- Suppose we have a covariate vector $[x_{i1}, \dots, x_{i6}]^t = \mathbf{X}_i \in \mathbb{R}^6$
- Models:

Cox Regression:
$$\log \lambda_i(t|X) = \log \lambda_0(t) + f(\boldsymbol{X}_i)$$

Linear Regression: $E[age_i] = \beta_0 + f(\boldsymbol{X}_i)$

- $f(\cdot)$ is a smooth function of the 5 covariates modelled as a linear combination of 200 (penalized) thin plate regression splines
- 200 coefficients (parameters) with N=3556 will tend to overfit, particularly for non-Gaussian models (e.g. log hazard)

Data Application

Discussion

- Use ridge regression to reduce overfit
- Mitigate bias of smoothed non-parametric estimator (SNP) of AUC^{I/D}(t)
 - Skewed distribution of $AUC^{\mathbb{I}/\mathbb{D}}(t)$
 - Neither transformation of outcome nor weighted regression by variance was helpful
 - Bounded regression led to slight improvement
- Smoothness of survival function seems to reduce bias of non-parametric concordance estimator

References

- Gonen, M. and Heller, G. (2005).

 Concordance probability and discriminatory power in proportional hazards regression.

 Biometrika, 92(4):965–970.
- Heagerty, P. J. and Zheng, Y. (2005). Survival model predictive accuracy and roc curves. *Biometrics*, 61(1):92–105.
- Uno, H., Cai, T., Pencinac, M. J., D'Agostinod, R. B., and Weib, L. J. (2011). On the c-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data.

Statistics in medicine, 30(10), 1105–1117. https://doi.org/10.1002/sim.4154, 30(10):1105–1117.

Thank you!

Supplemental Material

- Methodologic contributions/work for follow-up papers
 - Propose "optimal" estimation procedures for measures of discrimination
 - Propose a method for deriving true $AUC^{\mathbb{I}/\mathbb{D}}(t)$ to use for comparisons in simulation
- Estimation procedures for discrimination
 - For estimating C^{τ} using integrated AUC we need to estimate the quantities
 - 1. $\mathsf{AUC}^{\mathbb{I}/\mathbb{D}}(t)$
 - 2. $w^{\tau}(t)$
 - a. S(t)
 - b. f(t)
 - We propose to estimate each quantity using penalized regression splines
- Deriving true $\mathsf{AUC}^{\mathbb{I}/\mathbb{D}}(t)$
 - Some Bayes
 - Some numeric approximations

Supplemental Material: Estimating $\mathsf{AUC}^{\mathbb{I}/\mathbb{D}}(t)$

- Clearly the SP estimator of $AUC^{\mathbb{I}/\mathbb{D}}(t)$ is inappropriate, but it is relatively "stable"
- NP estimator is highly variable

Supplemental Material: Estimating $\mathsf{AUC}^{\mathbb{I}/\mathbb{D}}(t)$

- Numeric integration a noisy function is generally a bad idea
- Integrate a smoothed version of $\mathsf{AUC}^{\mathbb{I}/\mathbb{D}}(t)$ instead (blue line) instead
- Penalized regression splines

$$egin{aligned} \widehat{\mathsf{AUC}}^{\mathbb{I}/\mathbb{D}}(t) &= f_0(t) + \epsilon(t) \ &= \sum_{k=1}^K \xi_k B_k(t) + \epsilon(t) \end{aligned}$$

Subject to a second derivative penalty on $f_0(t)$

ullet $\hat{f_0}(t) = \widetilde{\mathsf{AUC}}^{\mathbb{I}/\mathbb{D}}(t)$ is the smoothed estimate of the non-parametric estimator

Supplemental Material: Estimating $\mathsf{AUC}^{\mathbb{I}/\mathbb{D}}(t)$

- Some issues
 - 1. Residuals $\epsilon(t)$ non-Gaussian (data bounded)
 - 2. Data are correlated: $\widehat{\mathsf{AUC}}^{\mathbb{I}/\mathbb{D}}(t_1)$, $\widehat{\mathsf{AUC}}^{\mathbb{I}/\mathbb{D}}(t_2)$ calculated using overlapping individuals (intersection of $R(t_1)$, $R(t_2)$)
 - 3. $\mathsf{Var}(\widehat{\mathsf{AUC}}^{\mathbb{I}/\mathbb{D}}(t_1)) < \mathsf{Var}(\widehat{\mathsf{AUC}}^{\mathbb{I}/\mathbb{D}}(t_2))$ for $t_1 < t_2$
 - 4. Biased results
- Some possible solutions (work in progress)
 - Non-Gaussian data
 - Response transformation
 - Generalized additive model
 - Correlated/heteroskedastic data
 - (easier) Bootstrap estimates of covariance/bias
 - (harder) derive distributional results

Supplemental Material: Estimating S(t), f(t)

- Same strategy as with $\widehat{\mathsf{AUC}}^{\mathbb{I}/\mathbb{D}}(t_1)$
- Smooth the Kaplan-Meier Estimator

$$\hat{S}(t) = \prod_{i:t_i \leq t} \left(1 - rac{d_i}{|R_i(t)|}
ight)$$

- Subject to
 - Montonicity constraints $(S(t_1) > S(t_2))$ for $t_1 < t_2)$
 - Point constraint S(0) = 1
 - Positivity (S(t) > 0)
- For f(t), given an estimate for $\tilde{S}(t)$

$$ilde{f}(t) = -rac{d}{dt} ilde{S}(t)$$

Supplemental Material: Deriving True AUC $^{1/1D}(t)$

Non-trivial to obtain "true" $AUC^{\mathbb{I}/\mathbb{D}}(t)$ except from extremely simple models. Here we propose a general solution. Recall we simulate from the model

$$f(t|\eta) = h(t|\eta)S(t|\eta)$$

 $\eta \sim N(0, \sigma_{\eta}^2)$

With Weibull baseline hazard this becomes

$$= (\theta e^{\eta}) \gamma t^{\gamma - 1} e^{-(\theta e^{\eta}) t^{\gamma}}$$

Supplemental Material: Deriving True AUC $^{\mathbb{I}/\mathbb{D}}(t)$

Incident sensitivity

$$egin{aligned} \Pr(\eta_i > c | T_i = t) &= E[1(\eta > c) | T = t] \ &= \int 1(\eta > c) f(\eta | t) d\eta \ &= \int 1(\eta > c) rac{f(t | \eta) f(\eta)}{\int f(t | \eta) f(\eta) d\eta} d\eta \end{aligned}$$

Dynamic specificity

$$\mathsf{Pr}(\eta_i \leq c | T_i > t) = rac{\mathsf{Pr}(\eta_i \leq c \cap T_i > t)}{\mathsf{Pr}(T_i > t)} \ = rac{\int_t^\infty \int_{-\infty}^c f(t | \eta) f(\eta) d\eta dt}{\int_t^\infty [\int f(t | \eta) f(\eta) d\eta] dt}$$

Supplemental Material: Deriving True AUC $^{1/10}(t)$

- For any t we can estimate $Pr(\eta_i > c | T_i = t)$, $Pr(\eta_i \le c | T_i > t)$ for a range of c
- Estimate $\mathsf{AUC}^{\mathbb{I}/\mathbb{D}}(t)$ as

$$\mathsf{AUC}^{\mathbb{I}/\mathbb{D}}(t) = \int_0^1 \mathsf{ROC}_t^{\mathbb{I}/\mathbb{D}}(p) dp$$

$$= \int_0^1 \mathsf{TP}_t^{\mathbb{I}} \{ [\mathsf{FP}_t^{\mathbb{D}}]^{-1}(p) \} dp$$

$$\approx \sum_I \delta_I \mathsf{TP}_t^{\mathbb{I}} \{ [\mathsf{FP}_t^{\mathbb{D}}]^{-1}(I) \}$$

• Where δ_I are quadrature weights