Life Cycle Plan (LCP)

Field Progress Web App

Team 04

Team Member	Role			
Uche Uba	Project Manager			
Mayank Kulkarni	Requirements Engineer			
Sahithi Velma	System/Software Architect			
Akanksha Diwedy	Operational Concept Engineer			
Madhavi Shantharam	Life Cycle Planner			
Aishwarya Joisa	Feasibility Analyst			
Kevin Grimes	Website Maintainer, IIV&V, Quality Foc			
	Point			

Version History

Date	Author	Version	Changes made	Rationale
10/28/2019	Madhavi Shantharam	1.0	Initial draft	Initial draft of LCP
12/09/2019	Madhavi Shantharam	1.1	Added sections 6.2, 6.3	Submission for As-Built Package

Table of Contents

Life Cyc	le Plan (LCP)	i
Version	History	ii
Table of	Contents	iii
Table of	Tables	iv
Table of	Figures	v
1.	Introduction	1
1.1	Purpose of the LCP	1
1.2	Status of the LCP	1
1.3	Assumptions	1
2.	Milestones and Products	2
2.1	Overall Strategy	2
2.2	Project Deliverables	3
3.	Responsibilities	6
3.1	Project-specific stakeholder's responsibilities	6
3.2	Responsibilities by Phase	6
3.3	Skills	9
4.	Approach	12
4.1	Monitoring and Control	12
4.2	Methods, Tools and Facilities	12
5.	Resources	14
6.	Iteration Plan	20
6.1	Plan	20
	6.1.1 Capabilities to be implemented	20
	6.1.2 Capabilities to be tested	20
	6.1.3 Capabilities not to be tested	20
	6.1.4 CCD Preparation Plans	21
6.2	Iteration Assessment	22
	6.2.1 Capabilities Implemented, Tested, and Results	22
	6.2.2 Core Capabilities Drive-Through Results	22
6.3	Adherence to Plan	23

Table of Tables

Table 1: Artifacts Deliverables in Exploration Phase	
Table 2: Artifact deliverable in Valuation Phase	
Table 3: Artifact deliverable in Foundations Phase	£
Table 4: Artifact deliverable in Development Phase	4
Table 5: Stakeholder's Responsibilities in each phase	
Table 6: Module lists and SLOC of each module	14
Table 7: COCOMOII Scale Driver	
Table 8: COCOMOII Cost Driver for Input Module	15
Table 9: COCOMOII Cost Driver for Turf Cutting Module	
Table 10: COCOMOII Cost Driver for Output Module	16
Table 11: COCOMOII Cost Driver for Testing Framework	
Table 12: Construction iteration capabilities to be implemented	20
Table 13: Construction iteration capabilities to be tested	20
Table 14: Capabilities implemented, tested and results	
Table 15: Core Capabilities drive-through results	

Table of Figures

Figure 1	: COCOMO	Estimation Result	18
----------	----------	-------------------	----

1. Introduction

1.1 Purpose of the LCP

The purpose of the LCP is to help complete the project on time without overrunning costs. At each phase, careful planning is carried out to eliminate any technical debts and reduce risks.

LCP document ensures that the team and clients have the same collective understanding of requirements and timeline to be followed. This helps in achieving the final aim of the project.

1.2 Status of the LCP

The status of the LCP is currently Operation phase preparing to hand-over the product to the clients.

1.3 Assumptions

- The duration of the project is 12 weeks in Fall 2019 semester
- We don't have access to real time voter data. We are developing the algorithm assuming that the test data available with us is very similar to the real time voter information

2. Milestones and Products

2.1 Overall Strategy

The Field Progress Web App follows NDI/NCS strategy because we are using these services to develop our core capabilities.

Exploration phase

Duration: 09/11/2019 – 09/20/2019

Concept: Analyzing the proposed system and identification of success critical stakeholders. Identify software requirement, supporting technologies, COTS that could be

used and conduct feasibility evidence

Deliverables: Website set up, Client interaction meeting notes

Milestone: Valuation Commitment Review

Valuation phase

Duration: 09/20/2019 – 10/04/2019

Concept: Define the project scope, develop operational concept, identify win conditions,

analyze risk and prepare risk mitigation plan, prototype high risk item

Deliverables: Jira Weekly Survey, Project Plan, Progress Report, Risk and Defect Report,

Win Conditions, Prototype, Cost Estimation Report

Milestone: Foundation Commitment Review

Foundations phase

Duration: 10/04/2019 – 10/25/2019

Concept: Analyze use-cases, produce system and software architecture, project plan,

operational concept, feasibility evidence, further prototyping

Deliverables: Winbook, Technical Debt Report, Jira Weekly Survey, Project Plan, Progress Report, Risk and Defect Report, Development Commitment Package (OCD,

SSAD, FED, LCP), Improved version of the prototype

Milestone: Development Commitment Review

Development phase

Duration: 10/25/2019 – 11/20/2019

Concept: Implement all the required capabilities and test them

Deliverables: Core Capability Drive Through report, Transition Readiness report, Jira

Weekly Survey, Project Plan, Progress Report, Risk and Defect Report

Milestone: Operational Commitment Review

Operation phase

Duration: 11/20/2019 – 12/12/2019 **Concept:** Prepare for system delivery

Deliverables: Final product, necessary documentation

2.2 Project Deliverables

2.2.1 Exploration Phase

Table 1: Artifacts Deliverables in Exploration Phase

Artifact	Due date	Format	Medium
Client Interaction Report	9/13/2019	.pdf	Soft copy
Team Website	9/23/2019	Website	Soft copy
Win Conditions	9/26/2019	Winbook	Soft copy

2.2.2 Valuation Phase

Table 2: Artifact deliverable in Valuation Phase

Artifact	Due date	Format	Medium
Prototype Presentation	10/04/2019	.pptx	Soft copy
Slides			
Cost Estimation LCP	10/11/2019	.pdf	Soft copy
Cost Estimation V&V	10/11/2019	.pdf	Soft copy
Project Plan	Bi-weekly	.mpp	Soft copy
	09/25/2019		
Progress Report	Bi-weekly	.xlsx	Soft copy
	09/25/2019		
Risk and Defect Report	Bi-weekly	.xlsx	Softcopy
	09/25/2019		
Jira Weekly Survey	Weekly Monday	Jira ticket	Jira website

2.2.3 Foundations Phase

Table 3: Artifact deliverable in Foundations Phase

Artifact	Due date	Format	Medium
Jira Weekly Summary	Weekly Monday	Jira ticket	Jira Website
Project Plan	Bi-weekly	.mpp	Soft copy
	10/09/2019, 10/23/2019		
Progress Report	Bi-weekly	.xlsx	Soft copy
	10/09/2019, 10/23/2019		
Risk and Defect Report	Bi-weekly	.xlsx	Soft copy
	10/09/2019, 10/23/2019		

LCP_TRR_F19a_T04_V1.1

Team Technical Debt	10/23/2019	.xlsx	Soft copy
Report			
Development	10/25/2019	.ppt	Soft copy
Commitment Review			
(DCR) ARB Slides			
Development	10/28/2019	.doc, .pdf	Soft copy
Commitment Package			
 Operational 			
Concept			
Description			
(OCD)			
 Feasibility 			
Evidence			
Description			
(FED)			
 System and 			
Software			
Architecture			
Description			
(SSAD)			
 Life Cycle Plan 			
(LCP)			
Winbook and	10/15/2019	.xlsx	Soft copy
Prioritization report			
Win Conditions	10/21/2019	.pdf	Soft copy

2.2.4 Development Phase

Table 4: Artifact deliverable in Development Phase

Artifact	Due date	Format	Medium
Jira Weekly Summary	Weekly Monday	Jira ticket	Jira Website
Project Plan	Bi-weekly	.mpp	Soft copy
	11/06/2019, 11/20/2019		
Progress Report	Bi-weekly	.xlsx	Soft copy
	11/06/2019, 11/20/2019		
Risk and Defect Report	Bi-weekly	.xlsx	Soft copy
	11/06/2019, 11/20/2019		

2.2.5 Operation Phase

Table 5: Artifact deliverable in Operation Phase

Artifact	Due date	Format	Medium
Jira Weekly Summary	Weekly Monday	Jira ticket	Jira Website
Project Plan	Bi-weekly 12/04/2019	.mpp	Soft copy
Progress Report	Bi-weekly 12/04/2019	.xlsx	Soft copy
Risk and Defect Report	Bi-weekly 12/04/2019	.xlsx	Soft copy
Team Technical Debt	12/04/2019	.xlsx	Soft copy
Report			
Core Capability Drive	11/25/2019	.pdf	Soft copy
Through Report (CCD)			
As-Built Package	12/09/2019	.pdf,	Soft copy
		.docx	
Project Archive	12/11/2019	.zip	Soft copy
Individual Critique	12/12/2019	.pdf	Soft copy
Report			

3. Responsibilities

3.1 Project-specific stakeholder's responsibilities

Stakeholders for Field Progress Web Application are Client, User, Maintainer, Developers and IIV&V.

3.2 Responsibilities by Phase

Table 5: Stakeholder's Responsibilities in each phase

Т	Primary / Secondary Responsibility					
Team	Exploration	Valuation	Foundation	Development-	Development-	
Member /	_		S	Construction	Transition	
Role				Iteration	Iteration	
Name:	Primary	Primary	Primary	Primary	Primary	
Evan	Responsibility	Responsibility	Responsibility	Responsibility	Responsibility	
Shulman, Isaac Wang, Nikolaj Baer Role: Client	Outline the requireme nts of the desired system Attend Win-Win Negotiatio n Session 1	Attend Win-Win Negotiatio n Session 2 Secondary Responsibility Provide voters informatio n based on which algorithm should be implement ed	Hold meetings with the developme nt to monitor progress and re- align project goals according to project progress	 Provide feedback on DCR prototype and suggest improvements Secondary Responsibility Provide necessary platform support for application development 	 Participate in CCD to have hands experience on the system and provide feedback Involve other stakeholde rs (if any, maintainer s) and train them 	
Name:	Primary	Primary	Primary	Primary	Primary	
Uche Uba	Responsibility	Responsibility	Responsibility	Responsibility	Responsibility	
Role: Project Manager	Understan d the project scope. Get to know teams' strengths and weaknesse s Create biweekly project	 Create biweekly project plan, progress report, and risk and defect report Assess high risk features to prototype 	 Create biweekly project plan, progress report, and risk and defect report Set up React framework and 	Help create a develop ment schedule with LCP and ensure that the develop ment progress	 Ensure that the transition plan is in place Prepare the system to be delivered with necessary documenta tion 	

LCP_TRR_F19a_T04_V1.1

Name: Mayank Kulkarni Role: Requirement s Engineer	plan, progress report, and risk and defect report Assign tasks to team members Primary Responsibility Analyze the system requireme nts from win- conditions	Develop Personas for prototype presentatio n Prototype implement ation — render output of clustering algorithm on MapBox Primary Responsibility Prototype — Implement algorithm to form clusters of voters based on number of volunteers Integrate NDIs and ensure working of prototype Set up GitHub repository	develop front-end of the application Plan weekly meetings for developing and working on ARB presentatio n Primary Responsibility ARB Prototype - Implement algorithm to form clusters of voters based on number of volunteers within given precincts Integrate NDIs and ensure working of prototype	is on track to be complete d before the deadline Primary Responsibility • Ensure that the ongoing develop ment is in accordan ce with the requirem ents • Develop ment of algorithm /user interface	Primary Responsibility
Name: Sahithi	Primary	Primary	Primary	Primary	Primary
Velma	ResponsibilityResearch	ResponsibilityPrototype	ResponsibilityDevelop	ResponsibilityEnsure that the	ResponsibilityReview system
Role:	different	implement	module	application	architecture
Software/Sys tem	COTS, APIs, and	ation – render	architectur e for the	being	• Testing of the
Architect	other	output of	proposed	developed is in sync with the	system
	technologi	clustering	system	architecture	
	es to be	algorithm	• Work on	and keep it up	
	used	on Man Dan	SSAD	to date in case	
	Determine whether	MapBox	documenta tion for	of any changes	

LCP_TRR_F19a_T04_V1.1

Name: Akanksha Diwedy Role: Operational Concept Engineer	the different NDIs are interopera ble Primary Responsibility Understan d requireme nts and win conditions Begin developin g the operationa 1 concept descriptio n	Primary Responsibility Continue to work on the operational concept description as Win - Win conditions change and evolve	Primary Responsibility Work on OCD documenta tion for DC Package Select optimal NDI for application implement ation ARB Prototype - Integrate the backend framework with the	Development of algorithm/user interface Primary Responsibility Development of algorithm/user interface Ensure that the objectives are met as the product is being developed	Primary Responsibility Check whether all the objectives have been met Prepare operation phase documentation
N.			front end Prepare for prototype presentatio		
Name: Madhavi	Primary	Primary	Primary Dogramsibility	Primary	Primary
Shantharam Role: Life Cycle Planner	Responsibility Determine the responsibil ities of each stakeholde r Start building the life cycle plan Determine the deliverabl es of each milestone	Responsibility Discuss with team members to determine the values of factors and calculate the estimated effort using COCOMO II Prototype - Implement algorithm to form clusters of voters based on	Responsibility Restimate efforts using COCOMO II Create iteration plan for further iterations in LCP Work on LCP documenta tion for DC Package	Responsibility Create development schedule for product implementatio n Implementatio n of algorithm/user interface	Testing of the product Prepare transition plan to deliver the product to the clients

Name: Aishwarya Joisa Role: Feasibility Analyst	Primary Responsibility Determine the feasibility of features proposed by the client and verify whether it is feasible within the given time frame	number of volunteers Setup system for prototype presentatio n Primary Responsibility Analyze NDI and COTS Determine high risk items and come up with a risk mitigation strategy Select optimal NDI for implement ation of prototype	Primary Responsibility Work on FED documenta tion for DC Package Research APIs/ NDIs that could be used for product implement ation Develop Personas for prototype presentatio n	Primary Responsibility Implemen tation of algorithm/ user interface Continuou sly check feasibility of the system	Primary Responsibility
Name: Kevin Grimes Role: Website Maintainer, IIV&V, Quality Focal Point	Primary Responsibility Build Team Website and keep it up to date Review win conditions	Primary Responsibility Ensure that the team website is up to date Perform Independe nt Cost Estimation using COCOMO II Understan d the intended behavior of desired capabilities Verify working prototype	Primary Responsibility Verify and validate Jira tickets Verify working prototype Start preparing test plan to run unit and integration tests on developed modules	Primary Responsibility Create a test plan Review code Perform unit and integration tests	Primary Responsibility Test the application and ensure that it is ready for delivery Prepare a quality management document for maintainers to help maintain the application

3.3 Skills

Team members	Role	Skills
Uche Uba	Project Manager	Current Skills: Python,
		JavaScript, Angular, Node
		Required Skills: Project
		Management, Python,
		Django, React, Deck.gl, MS
		Project, Jira
Mayank Kulkarni	Requirements Engineer	Current Skills: Python,
		Django, Winbook
		Dogwined Chilles Duth on
		Required Skills: Python,
		Django, React, Deck.gl, Winbook
Sahithi Velma	System / Seftyyone Amehiteet	Current Skills:
Santin Venna	System/Software Architect	
		Java, Python, Backend
		Development
		Required Skills: Python,
		Django, React, Deck.gl,
		Analyzing NDI
		interoperability, UML
		Modelling, Technical writing
Akanksha Diwedy	Operational Concept	Current Skills: Python,
	Engineer	Django, Backend
		Development, ML/AI, Scala
		1 , , ,
		Required Skills: Python,
		Django, React, Deck.gl,
		Technical writing
Madhavi Shantharam	Life Cycle Planner	Current Skills: Python, Java
		backend development,
		JavaScript
		Required Skills: Project/Life
		Cycle Planning, MS Project,
		Python, Django, React,
		Deck.gl, Technical writing,
		COCOMO II
Aishwarya Joisa	Feasibility Analyst	Current Skills: Python,
		Backend Development

		Required Skills: Python,
		Django, React, Deck.gl,
		Technical writing
Kevin Grimes	Website Maintainer, IIV&V,	Current Skills: Python, Jira,
	Quality Focal Point	Technical Writing, Test
		Planning
		Required Skills: Python,
		Django, React, Deck.gl, Jira,
		Technical writing, Test
		Planning

4. Approach

4.1 Monitoring and Control

We use Microsoft Project to prepare the project plan, create tasks in Jira to keep track of all the individual and team activities. We use GitHub repository to review and check-in code. Bi-Weekly Progress reports, and Risk and Defect reports are being prepared to monitor the progress of the project.

4.1.1 Closed Loop Feedback Control

Team uses Slack, Gmail to share ideas within the team and to facilitate communication with the clients. All resources and documents are uploaded to a shared Google Drive and to the team website. Also, team members meet at least once in a week to discuss project milestones, progress and provide feedback for each other's work.

4.1.2 Reviews

Team conducts bi-weekly meetings to discuss and review the current project plan and progress, identify any new risks and defects and, assess the goals and issues that needs to be resolved from previous report. We review each other's work, develop test cases to find bugs and improve code quality. We setup timely meetings with the clients to receive feedback on the ongoing work.

4.2 Methods, Tools and Facilities

Tools	Usage	Provider
Project	Prepare Bi-Weekly Project plan	Microsoft
Professional		
2016		
Jira	Create tasks to keep track of planned work and monitor	USC
	progress and to track defects	
COCOMO II	Estimate cost and efforts	USC
GitHub	Developers to collaborate on Software Development	GitHub
Microsoft Excel	To create Progress report, and Risk and Defect Report	Microsoft
Slack	Team and Client communication	Slack
Zoom Meetings	Video conferencing with DEN Students and Clients	Zoom
Winbook	Add/Prioritize Win Conditions	USC
Visual Paradigm	Create UML Models	USC
Balsamiq	Create UI Mockups	Balsamiq

LCP TRR F19a T04 V1.1

React	JavaScript library for creating UI Interfaces	React
Django	Backend server	Django
Deck.gl/MapBox	MapBox is used to render clusters of voters on a map based	Open Source
	view.Deck.gl is used to provide visualizations on top of	
	MapBox based maps.	

5. Resources

- Estimated CSCI577a Effort: 7 team members at 12 hours/week for 12 weeks. Increased efforts per/team member, per/week with the increase in scope of the project (need for an input module) from previous cost estimation specification.

- Total estimated effort: 1008 hours
- Budget information: We currently don't have any defined budget i.e. budget is \$0
- Project duration: 12 weeks
- Component modules: Input Module, Turf Cutting Module, Output Module and Testing Framework
- Programming language used: Python, JavaScript

Table 6: Module lists and SLOC of each module

No.	Module Name	Brief Description	SLOC
1	Input module	Provide an interface for the users to input	500
		volunteer information	
2	Turf cutting module	Clustering of voter data within the given	400
		precincts	
3	Output module	Provide an interface for the users to view	300
	(Visualization)	the cut turfs visually in a map-based view	
4	Testing framework	Build a testing framework for validating	200
	(internal use)	the system for its effectiveness both	
		module wise and integration with each	
		other	

Table 7: COCOMOII Scale Driver

Scale Driver	Value	Rationale
PREC	NOMINAL	Team is familiar with some technologies like usage of
		Google Maps API. However, there is a need for
		innovative data processing architectures, and algorithms
		to accommodate the requirements of this project
FLEX	NOMINAL	The Development team is given a lot of leeway in how
		they want to implement the project, but the final product
		must plug into Field Progress' existing tech stack. So,
		there is a need for Software conformance with external
		interface specifications
RESL	HIGH	All critical risk items, schedule and internal milestones are
		identified. However, there is a potential risk in
		implementing certain features cutting turfs based on
		walkability, availability of the volunteers, the type of
		terrain among others. We plan to have regular sync ups

		with clients and collaborative brainstorming to resolve
		this risk
TEAM	HIGH	We have the Win-Win negotiations in place to minimize
		the conflicts. Also, each stakeholder has considerable
		consistency of objectives and willingness to accommodate
		each other's objectives
PMAT	NOMINAL	We are at Maturity Level 1

Table 8: COCOMOII Cost Driver for Input Module

Cost Driver	Value	Rationale
RELY	HIGH	Turf cutting and Visualization modules depend on this module.
		The effect of software failure is high, as without input other
		modules cannot function
DATA	NOMINAL	Input to the system from user interface includes volunteer
		information like name, availability, walkability, and others
		Approx. 500 SLOC to provide an interface to take in this input
		data. Keeping an average window of 5 to 50 volunteers per
		transaction, test data will not exceed approx. 1200 Bytes. D/P = 2.4
DOCU	NOMINAL	Development process follows ICSM, the document for life-cycle
CDI II	NOTEDIA	needs is normal.
CPLX	NOMINAL	Simple UI component which takes in user input
RUSE	NOMINAL	Interface to take the input is specific to the application being
TIME	NOMINAL	designed.
TIME	NOMINAL	System should be able to take in user data in a considerable time.
STOR	NOMINAL	<50% of the available execution time Should have the capability to store the provided input as it in turn
STOR	NOMINAL	serves as an input to the algorithm. <50% of available storage
PVOL	LOW	Creates a dynamic array for the Volunteer info in React
ACAP	NOMINAL	Development team was quite good in gathering the requirements
ACAI	NOMINAL	and producing a high-level design of the product to be developed
PCAP	NOMINAL	Development team was able to choose the COTS to be used in
		the project implementation in a collaborative way
PCON	NOMINAL	Not quite risky as it is a 12-week project and team members are
		committed to course guidelines
APEX	LOW	Development team has very little experience in building this kind
		of application
LTEX	NOMINAL	Few team members have prior experience in building Python
		applications. But we are learning React.js to implement front-end
		of the application and integrate it with the back-end
PLEX	NOMINAL	Few team members have experience working on Django.
		However, we are not familiar with React and integrating Django
		and React

TOOL	NOMINAL	Team is familiar in using some software tools like GitHub, Slack.
		However, tools like Microsoft Project, Jira is new for most of the
		team members
SITE	HIGH	Team consists of 6 on-campus and 1 off-campus student. Team
		collaboration has never been a problem as the team is proficient
		in using tools for video conferencing and exchanging emails for
		communication
SCED	NOMINAL	The schedule is set at 12 weeks and we are not planning on
		stretching out

Table 9: COCOMOII Cost Driver for Turf Cutting Module

Cost Driver	Value	Rationale	
RELY	NOMINAL	If the turf cutting fails, campaign managers will have to resort to cutting the turfs manually. This could cost Field Progress quite a bit of money and reputation, as this functionality is a major piece of their offering. So, providing a reliable algorithm is quite important	
DATA	VERY	Input to the system includes thousands of entries of voter data	
	HIGH	consisting of latitudes, longitudes and precincts and volunteer information like no. of volunteers, availability, capability etc. Approx. 400 SLOC to process the input and cut turfs. D/P > 1000	
DOCU	NOMINAL	Because the development process follows ICSM, the document for life-cycle needs is normal.	
CPLX	HIGH	This involves implementation of clustering algorithms with input parameters such as volunteer availability, terrain, walkability, and calls to APIs to obtain the distance and other information.	
RUSE	NOMINAL	Algorithm should be designed in such a way that it could be plugged into Field Progress' existing stack	
TIME	VERY HIGH	We will be running complex algorithms on considerably huge amount of data. Application is expected to use almost 85% of the available execution time	
STOR	NOMINAL	Less than 50% of the available storage will be used	
PVOL	LOW	As we are using Python libraries for implementation of algorithm, it may not be too dependent on the underlying platform	
ACAP	NOMINAL	Development team was quite good in gathering the requirements and producing a high-level design of the product to be developed	
PCAP	NOMINAL	Development team was able to choose the COTS to be used in the project implementation in a collaborative way	
PCON	NOMINAL	Not quite risky as it is a 12-week project and team members are committed to course guidelines	

APEX	LOW	Development team has very little experience in building this	
		kind of application	
LTEX	NOMINAL	Few team members have prior experience in building Python	
		applications. But we are learning React.js to implement front-	
		end of the application and integrate it with the back-end	
PLEX	NOMINAL	Few team members have experience working on Django.	
		However, we are not familiar with React and integrating	
		Django and React	
TOOL	NOMINAL		
		Slack. However, tools like Microsoft Project, Jira is new for	
		most of the team members	
SITE	HIGH	Team consists of 6 on-campus and 1 off-campus student. Team	
		collaboration has never been a problem as the team is	
		proficient in using tools for video conferencing and exchanging	
		emails for communication	
SCED	NOMINAL	The schedule is set at 12 weeks and we are not planning on	
		stretching out	

Table 10: COCOMOII Cost Driver for Output Module

Cost Driver	Value	Rationale	
RELY	NOMINAL	Visualization is important as it provides the user to view the	
		output of the algorithm i.e. turf cutting in a map view. Plan is	
		to plug in the data into visualization tools like mapbox/deck.gl	
DATA	HIGH	Test data would be GeoJSON list of voters returned by the turf	
		cutting algorithm. Approx. 400 SLOC to process the response	
		and render it on the map. Approx. D/P between 100 and 1000	
DOCU	NOMINAL	Because the development process follows ICSM, the document	
		for life-cycle needs is normal.	
CPLX	HIGH	Involves integration of output from Django server with UI	
		designed using React	
RUSE	LOW	Required for verification during development cycle. May or	
		may not be required after integrating with actual output module	
		on Field Progress' tech stack	
TIME	NOMINAL	Less than 50% of the available execution time	
STOR	NOMINAL	Less than 50% of the available storage will be used	
PVOL	NOMINAL	Browser and COTS upgrades might pose a potential risk.	
		However, they are not prone to change very frequently	
ACAP	NOMINAL	Development team was quite good in gathering the	
		requirements and producing a high-level design of the product	
		to be developed	
PCAP	NOMINAL	Development team was able to choose the COTS to be used in	
		the project implementation in a collaborative way	

PCON	NOMINAL	Not quite risky as it is a 12-week project and team members are	
		committed to course guidelines	
APEX	LOW	Development team has very little experience in building this	
		kind of application	
LTEX	NOMINAL	Few team members have prior experience in building Python	
		applications. But we are learning React.js to implement front-	
		end of the application and integrate it with the back-end	
PLEX	NOMINAL	Few team members have experience working on Django.	
		However, we are not familiar with React and integrating	
		Django and React	
TOOL	NOMINAL	Team is familiar in using some software tools like GitHub,	
		Slack. However, tools like Microsoft Project, Jira is new for	
		most of the team members	
SITE	HIGH	Team consists of 6 on-campus and 1 off-campus student. Team	
		collaboration has never been a problem as the team is	
		proficient in using tools for video conferencing and exchanging	
		emails for communication	
SCED	NOMINAL	The schedule is set at 12 weeks and we are not planning on	
		stretching out	

Table 11: COCOMOII Cost Driver for Testing Framework

Cost Driver	Value	Rationale	
RELY	NOMINAL	Testing is a fairly important component as it defines the quality	
		of the product. Testing framework must be good enough to	
		catch any bugs and ensure that the product is working as expected	
DATA	HIGH	Requires good amount of test data to test all modules of the	
DATA	піоп	<u> </u>	
		product individually and integration between them.	
		Approx. 200 SLOC of unit and integration test functions.	
		Approx. D/P between 100 and 1000	
DOCU	NOMINAL	Because the development process follows ICSM, the document	
		for life-cycle needs is normal.	
CPLX	NOMINAL	Unit tests to verify working of each module separately and	
		integration with one another to test the end to end functionality	
RUSE	NOMINAL	Could be reused/extended by maintainer if there comes a need	
		to verify any issues or test any additional functionality	
TIME	NOMINAL	Less than 50% of the available execution time	
STOR	NOMINAL	Less than 50% of the available storage will be used	
PVOL	NOMINAL	Test scripts are not too dependent on the underlying platform.	
		However, it might need changes if the core functionality	
		changes which is not highly prone to changes	
ACAP	NOMINAL	Development team was quite good in gathering the	
		requirements and producing a high-level design of the product	
		to be developed	

PCAP	NOMINAL	Development team was able to choose the COTS to be used in the project implementation in a collaborative way
PCON	NOMINAL	Not quite risky as it is a 12-week project and team members are committed to course guidelines
APEX	LOW	Development team has very little experience in building this kind of application
LTEX	NOMINAL	Few team members have prior experience in building Python applications. But we are learning React.js to implement frontend of the application and integrate it with the back-end
PLEX	NOMINAL	Few team members have experience working on Django. However, we are not familiar with React and integrating Django and React
TOOL	NOMINAL	Team is familiar in using some software tools like GitHub, Slack. However, tools like Microsoft Project, Jira is new for most of the team members
SITE	HIGH	Team consists of 6 on-campus and 1 off-campus student. Team collaboration has never been a problem as the team is proficient in using tools for video conferencing and exchanging emails for communication
SCED	NOMINAL	The schedule is set at 12 weeks and we are not planning on stretching out

Figure 1: COCOMO Estimation Result

Estimated Size: 1500 SLOC

Estimated Effort:

Optimistic: 4.7 person-month x 152 = 714.4 person-hr Most Likely: 5.8 person-month x 152 = 881.6 person-hr Pessimistic: 7.3 person-month x 152 = 1109.6 person-hr

Estimated Schedule:

Total work time of the whole team = 12 hr/week x 4 weeks x 7 team members = 336 hr/month

Optimistic: 714.4 / 336 = 2.12 month Most Likely: 881.6 / 336 = 2.6 month Pessimistic: 1109.6/336 = 3.3 month

Thus, most likely we need 2.6 month to complete this project which is no longer than the length of one semester. However, the actual work time may be longer than that. If each team member can stretch a little more than 12 hr/week, we can avoid falling into Pessimistic estimates (which is little longer than one semester) thereby not scoping down or stretching out on the project schedule.

Note: - This is a revised estimate after considering increase in scope and complexity from the previous version of cost estimation

6. Iteration Plan

6.1 Plan

As we move ahead to the Development Phase, we are planning on enhancing the current Prototype for Turf Cutting.

Development Phase will consist of two iterations. First being, implementation of all the remaining core capabilities. This includes design and implementation of an efficient algorithm to take volunteer info, voter info, and other parameters like likelihood of conversation, terrain among others as input and produce a sub-list of volunteers mapped to voters. This output must be rendered on a map view which shows turfs cut within each precinct as area-covered by polygons (Visualization purposes only, not delivered as part of the project). This iteration also includes testing of the modules individually i.e. unit tests and all the modules integrated i.e. integration tests.

Second iteration aims at preparing the application to be handed over to the client. This involves exhaustive testing of the algorithm to ensure that all the desired functionalities are working as expected when the algorithm is plugged into Field Progress' tech stack.

6.1.1 Capabilities to be implemented

Table 12: Construction iteration capabilities to be implemented

ID	Capability	Description	Priority	Iteration
1	Implementation of algorithm	User should be able to generate turfs	Very High	1
2	Input interface	User should be able to provide volunteer information into the system	High	1
3	Output interface	User should be able to view the cut turfs on a map-based view	High	1

6.1.2 Capabilities to be tested

Table 13: Construction iteration capabilities to be tested

ID	Capability	Description	Priority	Iteration
1	Input	Verify whether user can provide inputs	Very High	1
	Interface	using the input interface		
2	Turf Cutting	Verify whether turfs are cut efficiently	Very High	1
3	Output	Verify whether user can view the cut	High	1
	Interface	turfs on a map-based view with zoom in		
		and zoom out options		
4	End-End flow	Verify whether end-end flow of the app	Very High	1
		is working as desired		
5	Performance	Verify efficiency of the algorithm in	High	2
		terms of execution time		
6	Compatibility	Verify whether algorithm output when	Very High	2
		plugged into Field Progress's stack		
		produces the desired result		
7	API Testing	Since the main deliverable is the	Very High	1
		algorithm in the form of a library,		
		verify whether the user can access this		
		library to access/fetch the desired		
		information		

6.1.3 Capabilities not to be tested

All the capabilities mentioned above will be tested to ensure that performance of the algorithm is efficient both in terms of accuracy and execution time.

6.1.4 CCD Preparation Plans

• Implement and test all the features as per client's requirement specification. Ensure that the system is well tested and there are no bugs

- Prepare a demonstrational workflow for the client to use the system. This involves ensuring that integration of all the modules are in place
- During CCD, clients get a chance to use the application. They can input volunteer information into the said system via an input interface designed using React, generate turfs and view the cut turfs on a map generated using Deck.gl.
- Receive feedback from the clients and course faculty. Incorporate any necessary changes in accordance with client's feedback
- Prepare for the final delivery of the system

6.2 Iteration Assessment

6.2.1 Capabilities Implemented, Tested, and Results

ID	Capability	Test Case	Test Results	If fail, why?
TC-01	Loading voter files into backend	TC-01-01 to TC-01-05	Pass	
TC-02	Changing number of volunteers	TC-02-01 to TC-02-03	Pass	
TC-03	Map Rendering	TC-03-01 to TC-03-03	Pass	
TC-04	Adding volunteer cards	TC-04-01, TC-04-02	Pass	
TC-05	User volunteer input	TC-05-01 to TC-05-04	Pass	
TC-06	Toggling input panel	TC-06-01, TC-06-02	Pass	

Table 12: Capabilities implemented, tested and results

6.2.2 Core Capabilities Drive-Through Results

Overall, the CCD was successful. The client gave some positive feedback in pointing them in the right direction to solve the problem and on having put together different modules given the complexity of the problem and learning curve of relevant technologies. Although, we couldn't deliver all the core-capabilities, at this point in the development cycle, the clients were quite satisfied with the work we had done so far . They also suggested on how we could modularize the code and prioritize the remaining core-capabilities.

Continuing with the development cycle, we did extensive research and came up with an approximate solution as the given problem is NP-Hard. With this, we implemented all the core-

capabilities, integrated all the modules and performed a complete round of testing around all the modules to ensure that all the win-conditions were met, and product is bug free. We also, refactored the code to make it more modular as per the client's suggestion. In the process, we cleaned up the code base and fixed some bugs.

Table 13: Core capabilities drive-through results

Core	Positive feedbacks	Improvements
Capability		needed/suggested
Algorithm to cut turfs	(as mentioned by the clients)	(as mentioned by the clients)
	 The challenge was quite significant and difficult. They have done a good job of getting something together given the difficulty and learning curve of the relevant technologies Their discovery is helpful in helping us frame the problem 	The underlying setup of their codebase (the deliverable) was pretty rough. We expected a bit more structure

6.3 Adherence to Plan

Overall, the project is successful. We delivered the code and all the required documents to the client as per the plan. We implemented all the core-capabilities as discussed in win-win negotiations. However, the product was tested with limited data as

- real-time voter data was not available (it is confidential)
- monetary constraints in making huge number of API calls

The project was completed on time and the cost was kept within budget as most of the APIs and tools used were open-source or free versions.

23