ЛАБОРАТОРНАЯ РАБОТА № 8

Идентификация органических и неорганических соединений соединений (полимеров) по ИК-спектрам

<u>Цель работы</u>: **1.** Изучение физических явлений, лежащих в основе абсорбционной ИК-спектроскопии.

- 2. Освоить навыки анализа простейших ИК-спектров, идентификации органических молекул и их определения химической структуры по данным ИК-спектров
- 3. ознакомиться с ИК спектром слюды и провести его интерпретацию *Приборы и принадлежности*: ИК-спектрофотометр SPECORD 75IR, полимерные пленки, слюда.

Основные понятия

Для проведения качественного анализа проб по ИК - спектрам необходимо провести интерпретацию инфракрасного спектра. При этом необходимо сочетание экспериментальных данных с теоретическим расчетом. Изучение ИК - спектров неорганических веществ в настоящее время проводится двумя методами: выявлением характеристических частот и сравнением спектров сложных веществ со спектрами индивидуальных соединений.

Метод характеристических частот

Молекулы, имеющие одни и те же химические группы, часто имеют одинаковые частоты в спектре. Эти частоты называют характеристическими.

Расшифровка ИК-спектра производится следующим идентификацию полос поглощения начинают с наиболее сильных и высокочастотных полос в области валентных колебаний ОН-связи. По таблицам характеристических частот полосу поглощения относят к колебанию конкретной связи. Наличие той ИЛИ иной СВЯЗИ подтверждают деформационной полосой поглощения, относящейся к данной связи.

Метод сравнения

Идентификация неизвестного соединения по ИК-спектру осуществляется сравнением его спектра с эталонными спектрами. Для этого необходима обширная картотека эталонных спектров, при этом важнейшим фактором является стандартность условий их регистрации. В настоящее время имеются многочисленные атласы ИК-спектров поглощения органических и неорганических соединений.

Идентификация веществ по ИК-спектру является полностью достоверной только при точном совпадении изучаемого спектра со спектром эталона по положению (частоте), форме и относительной интенсивности всех полос, то есть всей спектральной кривой.

Упражнение 1. Идентификация полимеров по ИК-спектрам

1. Произвести регистрацию ИК-спектров полученных образцов полимерных пленок

Пользуясь корреляционными таблицами ИК-спектров поглощения, найти характеристические частоты функциональных групп, по которым провести идентификацию исследованных веществ.

Корреляционные таблицы смотри в Приложении.

Упражнение 2. Идентификация слюд по их ИК-спектрам

Порядок выполнения упражнения

- 1. Подготовить образцы слюд необходимой толщины.
- 2. Снять ИК-спектры приготовленных образцов.
- 3. Провести интерпретацию полос полученного спектра.
- 4. Данные занести в табл. 5.1, необходимые сведения взять из табл. 5.2 и 5.3.
- 5. Провести анализ полученных результатов.

Частоты максимумов наблюдаемых полос поглощения

No	Частоты максимумов	Интерпретация полос
П/П	полос поглощения	
1		

В табл. 5.2, 5.3 приведены частоты максимумов основных полос поглощения ОНгрупп для диоктаэдрических и триоктаэдрических слюд (в табл. 5.2 - данные для мусковита, в табл. 5.3 - для флогопита, биотита, вермикулита). Пользуясь ими, можно провести интерпретацию спектра слюд в области валентных и деформационных колебаний ОНгрупп.

Таблица 5.2 Частоты колебаний ОН-групп в ИК-спектре мусковита

Частота, см ⁻¹	Интерпретация
351	ΟΗ (γ)
405	ОН (γ) Е ав
630	ОН (ү) Е ав
691	ОН (γ) Е ав
700	ОН
805	ΟΗ (γ)
925	ΟΗ (δ)
1000*	OH (H ₂ O)
1795*	ΟΗ (δ)
1800, 2045,.2705	ОН (комбин.)
3003, 3444	İ
3025*	
3120*	ОН
3280*	İ
3440*	OH (ν) H ₂ O
3620*	ОН (ν) (струк.)
3666, 3650, 3618	ΟΗ (ν)
3634	ОН (ν) в пл. ас.
3675, 3680*, 3660*	
3630, 3635*, 3590*	OH (ν)
3570*	
4080*	ОН (комбинир.)
4200*	
4535*	
7080*	2 ν OH
10387	3 ν ОН
	4

Частоты колебаний ОН-групп в ИК-спектрах триоктаэдрических слюд (флогопит, биотит, вермикулит)

Слюда	Частота, см-1	Интерпретация
Флогопит	343, 364	ΟΗ (γ)
-	607, 658	ΟΗ (γ)
-	708, 728, 773, 804	ΟΗ (γ)
-	1620*	OH (δ) H ₂ O
Вермикулит	1640	OH (δ) H ₂ O
-	1700, 2070, 2670	H ₃ O
-	1635, 1800,2024	
-	2854, 3110, 3216	ОН (комб.)
-	3316, 3430, 3528	
Флогопит	3320*	OH (ν) H ₂ O
-	3400*	OH (ν) H ₂ O
Биотит	3590*, 3675	OH (ν)
Флогопит	3550*	OH (ν) H ₂ O
-	3620*	OH (ν) H ₂ O
	3635*	ОН (у) струк.
-	3700*	ОН (у) струк.
Биотит	3636*, 3652, 3668	
Флогопит	3680, 3696*, 3712*	ΟΗ (ν)
Флогопит,биотит	4200*	ОН (комбин.)
Флогопит, биотит	4300*	ОН (комбин.)
Флогопит	5120*	ОН (комбин.)
(мягкий), Вермикулит		
Флогопит, Вермикулит	7080*	2νOH
Флогопит	7324,7410	2 v OH

 $[\]gamma$ - либрационные колебания, δ - деформационные, ν - валентные

Оформление результатов

В отчете должны быть представлены:

- 1. Градуировочный график (если он необходим).
- 2. Таблицы соотнесения полос поглощения в спектрах исследуемых соединений.
- 4. Выводы о принадлежности исследуемых веществ к тому или иному классу органических соединений.

Контрольные вопросы

- 1. Чем отличаются однолучевые спектрофотометры от двулучевых?
- 2. Почему в спектрах поглощения жидкостей не наблюдается вращательной структуры?
- 3. Что такое валентные и деформационные колебания?
- 4. Какие типы колебаний в молекулах не проявляются в ИК-спектрах поглошения?
- 5. Сформулируйте закон светопоглощения.
- 6. В каких случаях наблюдается отклонение от линейной зависимости между оптической плотностью и концентрацией?
- 7. Что такое волновое число и почему в спектроскопии принято пользоваться этим понятием?
- 8. Каким образом осуществляется выравнивание интенсивности световых пучков в ИК-спектрофотометре?
- 9. Для чего служит модулятор в спектрофотометре?

Литература

Казицына Л.А., Куплетская Н.Б. Применение УФ, ИК, ЯМР и масс-спектроскопии в органической химии. М.: Изд-во Моск. ун-та, 1979, 240 с.;

Сильверстейн Р., Басслер Г., Моррил Т. Спектрометрическая идентификация органических соединений. М.: Мир, 1977, 590 с.

СХЕМА АНАЛИЗА УГЛЕВОДОРОДНЫХ ПОЛИМЕРОВ

Идентификация по ИК-спектрам		
Полоса поглощения, см-1	Полимеры	
970,	Сополимеры стирола с бутадиеном	
интенсивные при 750 - 670		
Интенсивные при 750 – 670	Полистирол, сополимеры стирола с	
узкие 900, 850	α-метилстиролом, β-	
	винилнафталином, с аценафтиленом	
Интенсивные при 750 -670	Поли-α-метилстирол	
Интенсивные при 2940, 1470,	Полиэтилен	
1350, 715		
Четкие средней интенсивности	Полипропилен	
1160, 1000, 970, 840,		
интенсивные при 1370,		
слабые в области 1330 - 770		
1150, 720	Сополимеры этилена с пропиленом	
Интенсивные средней ширины	Полиизобутилен, бутилкаучук	
при 1235, 1390, 1370 (дублет),	(идентификация по двойной связи:	
950,1000 (дублет)	положительная – бутилкаучук)	
Широкая средней интенсивности	Полиизопрен	
830, средняя 1370		
970	транс-1,4-Полибутадиен	
960	1,2-Полибутадиен	
Отсутствуют все указанные выше	<i>цис</i> -1,4-Полибутадиен	
полосы, но есть полоса 735		

5. Таблица характеристичных колебательных частот органических соединений

Группы и типы колебаний	Диапазон частот (см ⁻¹), интенсивность полос поглощения	
Простые ковалентные связи С-Н		
алканы		
$\mathrm{C}_{\mathrm{sp3}} ext{-}\mathbf{H}$		
валентные	2975-2860 (сильн.)	
деформационные	1470-1430 (средн.)	
	1380-1370 (сильн.)	
циклопропаны		
валентные (С-Н)	3100-3000 (средн.)	
деформационные (CH ₂)	1020-1000 (средн.)	
OCH ₃		
валентные	2820-2810 (сильн.)	
NCH_3		
валентные	2820-2780 (сильн.)	
CH ₃ Hal (F, Cl, Br, I)		
валентные	3058-3005 (сильн.)	
алкены		
C_{sp2} -H		
валентные ($=$ CH ₂)	3095-3075 (средн.)	
деформационные (-СН=СН2)	1420-1410 (сильн.)	
	995-985 (сильн.)	
	915-905 (сильн.)	
валентные (=СН-)	3040-3010 (средн.)	
деформационные (-СН=СН-)		
транс-	1310-1295 (средн.)	
	970-960 (сильн.)	
цис-	около 690 (средн.)	
арены		
$\mathbf{C}_{ ext{apom.}} ext{-}\mathbf{H}$		
валентные	~3030 (сильн.)	
деформационные	900-690(сильн.)	
альдегиды		
валентные (-СНО) (2 полосы)	2900-2820 (слаб.)	
	2775-2700 (слаб.)	
алкины		
$\mathbf{C}_{sp} ext{-}\mathbf{H}$		
валентные (≡С-Н)	3300 (сильн.)	
деформационные (-С≡С-Н)	680-610 (сильн.)	

Простые ковалентные связи Х-Н		
О-Нсвободная		
валентные	3650-3590 (сильн., узкая)	
деформационные	1450-1250 (средн., широкая)	
О-Н связанная Н-связью		
валентные		
спирты, фенолы, углеводы	3550-3200 (сильн., широкая)	
карбоновые кислоты	2700-2500 (широкая)	
N-H		
первичные амины и амиды (-NH ₂)		
валентные (2 полосы)	3500-3300 (средн.)	
деформационные (полоса амид II)	1650-1590 (сильнсредн.)	
вторичные амины и амиды (-NH-)		
валентные (1 полоса)	3500-3300 (средн.)	
деформационные (полоса амид II)	1650-1550 (слаб.)	
аминокислоты		
валентные (NH_3^+)	3130-3030 (средн.)	
деформационные (NH3 ⁺)		
аминокислотная полоса I	1660-1610 (слаб.)	
аминокислотная полоса II	1550-1485 (средн.)	
имины (=NH-)		
валентные (1 полоса)	3400-3300 (средн.)	
S-H		
валентные	2600-2550 (средн.)	
P-H		
валентные	2440-2350 (средн., широкая)	
Si-H		
валентные	2280-2080 (средн.)	
Простые ковалентные связи Х-У		
алкильные группы		
C_{sp3} - C_{sp3}		
валентные	1250-1200 (сильн.)	
C-O		
валентные		
спирты первичные	1075-1000 (сильн.)	

спирты вторичные	1150-1075 (сильн.)
спирты третичные	1210-1100 (сильн.)
фенолы	1260-1180 (сильн.)
простые эфиры	
диалкиловые (-СН2-О-СН2-)	1150-1060 (оч. сильн.)
ароматические (Ar-O-Ar)	1270-1230 (оч. сильн.)
C-N	
валентные	
алифатические амины	1220-1020 (среднслаб.)
•	около 1410 (слаб.)
ароматические амины первичные	1340-1250 (сильн.)
ароматические амины вторичные	1350-1280 (сильн.)
ароматические амины третичные	1360-1310 (сильн.)
aponarii rookiic aminini rperii iiniic	1000 1010 (GIMBH.)
алифатические нитросоединения	920-830 (сильн.)
азпрати теские интросоединения	520 650 (CHIBH.)
ароматические нитросоединения	860-840 (сильн.)
ароматические интросоединения С-Hal	600-640 (сильи.)
валентные	
С-Е	1400-1000 (on one n
	1400-1000 (оч. сильн.)
C-Cl	800-600 (сильн.)
C-Br	600-500 (сильн.)
C-I	около 500 (сильн.)
C-S	710 570 (5)
валентные	710-570 (слаб.)
С-Р	
валентные	800-700 (перем.)
S-O	
валентные	870-690 (перем.)
Двойные ковален	тные связи Х=Ү
C=C	
валентные	
изолированная двойная связь	
алкены	1670-1620 (перем.)
кумулированные двойные связи	
аллены (С=С=С)	1950 (сильн.)
	1060 (средн.)

сопряженные двойные связи	1640 1600 (
(С=С-С=С или С=С-С=О)	1640-1600 (сильн.)
алкадиены и еноны	
	1600 (перем.)
бензольное кольцо (несколько полос)	1580 (средн.)
	1500 (перем.)
	1450 (средн.)
C=O	
валентные	
насыщенные альдегиды, кетоны,	
карбоновые кислоты, сложные эфиры	1750-1700 (сильн.)
карооповые кнелоты, еложные эфиры	1750 1700 (CHAIBIL.)
α-аминокислоты (СООН)	1755-1720 (сильн.)
, , , , , , , , , , , , , , , , , , , ,	` '
аминокислоты (СОО)	1600-1560 (сильн.)
ненасыщенные и ароматические	1505 1660 /
альдегиды и кетоны	1705-1660 (сильн.)
амиды (полоса амид I)	1700-1630 (сильн.)
C=N	
валентные	1690-1630 (перем.)
C=S	
валентные	1200-1050 (сильн.)
N=N	
валентные	1630-1575 (перем.)
-N=C=N-	
валентные	2155-2130 (сильн.)
N=O	
валентные	
нитриты (-O-N=O) (2 полосы)	1680-1610 (сильн.)
нитрозосоединения (-C-N=O)	1600-1500 (сильн.)
(= 1. 5)	(4)
нитрозамины (-N-N=O)	1500-1430 (сильн.)
S=O	1000 Tito (VINIDIII)
сульфоксиды	1225-980 (сильн.)
сульфоксиды	1225-960 (CHIBH.)
P=O	1300-960 (сильн.)
	1300 300 (СПЛВП.)

Тройные ковалентные связи Х≡Ү		
C≡C		
валентные		
монозамещенные производные (НС≡С-)	2140-2100 (сильн.)	
дизамещенные производные (-С≡С-)	2260-2190	
C≡N		
валентные		
алифатические нитрилы	2260-2240 (сильн.)	
ароматические нитрилы	2240-2220 (сильн.)	
N≡N	22.0 2220 (01112111)	
валентные		
азиды	2160-2120 (сильн.)	
	1340-1180 (слаб.)	
изонитрилы R-N ⁺ ≡C ⁻	, , ,	
валентные	2150-2110 (сильн.)	
соли диазония R-N ⁺ ≡N		
валентные	2310-2130 (средн.)	
ацильные катионы R-C≡O ⁺		
валентные	2300-2000 (сильн.)	
Группы ХО2		
NO ₂		
валентные		
нитросоединения (-NO ₂)	1570-1500 (сильн.)	
ттрососдинения (1102)	1370-1300 (сильн.)	
	TO TO TO SO (MINIMITY)	
нитраты (-O-NO ₂)	1650-1600 (сильн.)	
(= === 2)	1300-1250 (сильн.)	
SO ₂	,	
валентные		
сульфоны (SO ₂)	1350-1300 (сильн.)	
	1160-1140 (сильн.)	
0.55	1200 1145 (
O-SO ₂ -	1200-1145 (сильн.)	
	1420-1330 (сильн.)	

6. Список рекомендуемой литературы

- 1. Преч Э., Бюльманн Ф., Аффольтер К. Определение строения органических соединений. М: Мир, 2006.
- 2. Пентин Ю.А., Вилков Л.В. Физические методы исследования в химии. М: Мир, 2003.
- 3. Браун Д., Флойд А., Сейнзбери М. Спектроскопия органических веществ. М: Мир, 1992.
- 4. Бахшиев Н.Г. Введение в молекулярную спектроскопию. Л.: Химия, 1987.
- 5. Иоффе Б.В., Костиков Р.Р., Разин В.В. Физические методы определения строения органических соединений. М.: Высш. школа, 1984.
- 6. Смит А. Прикладная ИК-спектроскопия. М.: Мир, 1982.
- 7. Драго Р. Физические методы в химии, в 2-х т. М.: Мир, 1981.
- 8. Сильверстейн Р., Басслер Г., Морил Т. Спектрометрическая идентификация органических соединений. М.: Мир, 1977.
- 9. Беллами Л. Новые данные по ИК-спектрам сложных молекул. М.: Мир, 1971.
- 10. Бранд Дж., Эглинтон Г. Применение спектроскопии в органической химии. М.: Мир, 1967.
- Наканиси К. Инфракрасные спектры и строение органических соединений.
 М.: Мир, 1965.
- 12. Беллами Л. ИК-спектры сложных молекул. М.: Мир, 1963.