Diferensiasi Numerik

Andhika Giyantara

Pendahuluan

- Penyelesaian lebih mudah untuk mencari nilai diferensial suatu fungsi yang cukup kompleks
- Misal mencari diferensial pada x=1.6 dari fungsi berikut

$$f(x) = \frac{x^2 \ln(x) + e^{-x}}{5x \sin x}$$

$$f(x) = \frac{x^2 \cos x}{e^{-x}} \qquad \text{dst}$$

Metode Diferensiasi Numerik

- 1. Metode Newton-Gregory Forward
- 2. Metode Newton Gregory Backward
- 3. Metode Stirling
- 4. Metode Lagrange

Metode Newton-Gregory Forward

 Penurunan persamaan Newton-Gregory Forward pada interpolasi

$$f'(x) = \frac{1}{h} \left[\Delta f_0 + \frac{2s - 1}{2!} \Delta^2 f_0 + \frac{3s^2 - 6s + 2}{3!} \Delta^3 f_0 + \dots \right]$$

Tahap Penyelesaian

- Mencari nilai beda dan membuat tabel beda hingga
- 2. Mencari nilai s dan mencari nilai diferensial pada titik yang diketahui

Contoh soal

X	f(x)
1.0	1.449
1.3	2.060
1.6	2.645
1.9	3.216
2.2	3.779
2.5	4.338
2.8	4.898
	1.0 1.3 1.6 1.9 2.2 2.5

 Carilah nilai f'(x) pada x=1.03 dengan metode NGF

Step 1

	1							
S	X	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$	$\Delta^4 f(x)$	$\Delta^5 f(x)$	$\Delta^6 f(x)$
0	1.0	1.449	0.611					
1	1.3	2.060	0.585	-0.026	0.012			
2	1.6	2.645		-0.014	0.006	-0.006	0.004	
3	1.9	3.216	0.571	-0.008		-0.002		-0.01
4	2.2	3.779	0.563	-0.004	0.004	0.001	0.003	
5	2.5	4.338	0.559	0.001	0.005			
6	2.8	4.898	0.560					

Step 2

Nilai s diperoleh

$$s = \frac{x - x_0}{h} = \frac{1.03 - 1}{1.3 - 1} = 0.1$$

Nilai diferensial dapat diperoleh dengan menggunakan persamaan yang ada dan nilai dari Δf

Step 2

Nilai diferensial saat x=1.03

$$f'(x) = \frac{1}{h} \left[\Delta f_0 + \frac{2s-1}{2!} \Delta^2 f_0 + \frac{3s^2 - 6s + 2}{3!} \Delta^3 f_0 + \frac{3s^2 - 6s$$

$$\frac{4s^{3}-18s^{2}+22s-6}{4!}\Delta^{4}f_{0}+\frac{5s^{4}-40s^{3}+105s^{2}-100s+24}{5!}\Delta^{5}f_{0}+$$

$$\frac{6s^5 - 75s^4 + 340s^3 - 675s^2 + 548s - 120}{6!} \Delta^6 f_0 = 2.088647$$

Metode Newton-Gregory Backward

 Penurunan persamaan Newton-Gregory Backward pada interpolasi

$$f'(x) = \frac{1}{h} \left[\Delta f_{-1} + \frac{2s+1}{2!} \Delta^2 f_{-2} + \frac{3s^2 + 6s + 2}{3!} \Delta^3 f_{-3} + \dots \right]$$

Tahap Penyelesaian

- Mencari nilai beda dan membuat tabel beda hingga
- 2. Mencari nilai s dan mencari nilai diferensial pada titik yang diketahui

Contoh soal

n	X	f(x)
-6	1.0	1.449
-5	1.3	2.060
-4	1.6	2.645
-3	1.9	3.216
-2	2.2	3.779
-1	2.5	4.338
0	2.8	4.898

 Carilah nilai f'(x) pada x=2.67 dengan metode NGB

-								
S	X	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$	$\Delta^4 f(x)$	$\Delta^5 f(x)$	$\Delta^6 f(x)$
-6	1.0	1.449	0 611					
-5	1.3	2.060	0.611	-0.026	0.012			
-4	1.6	2.645	0.585	-0.014	0.006	-0.006	0.004	
-3	1.9	3.216	0.571	-0.008		-0.002		-0.01
-2	2.2	3.779	0.563	-0.004	0.004	0.001	0.003	
-1	2.5	4.338	0.559	0.001	0.005			
0	2.8	4.898	0.560					

Nilai s diperoleh

$$s = \frac{x_s - x_0}{h} = \frac{2.67 - 2.8}{1.3 - 1} = -0.4333$$

Nilai yang digunakan pada tabel beda digunakan pada persamaan NGB

Step 2

Nilai diferensial saat x=2.67

$$f'(x) = \frac{1}{h} \left[\Delta f_{-1} + \frac{2s+1}{2!} \Delta^2 f_{-2} + \frac{3s^2 + 6s + 2}{3!} \Delta^3 f_{-3} + \frac{3s^2 + 6s + 2}{$$

$$\frac{4s^3 + 18s^2 + 22s + 6}{4!} \Delta^4 f_{-4} + \frac{5s^4 + 40s^3 + 105s^2 + 100s + 24}{5!} \Delta^5 f_{-5} +$$

$$\frac{6s^{5} + 75s^{4} + 340s^{3} + 675s^{2} + 548s + 120}{6!} \Delta^{6} f_{-6} = 1.8711214$$

Metode Stirling

Penurunan persamaan stirling pada interpolasi

$$f'(x) = \frac{1}{h} \left| \frac{\Delta f_{-1} + \Delta f_0}{2} + s\Delta^2 f_{-1} + \frac{3s^2 - 1}{3!} \frac{(\Delta^3 f_{-1} + \Delta^3 f_{-2})}{2} + \dots \right|$$

Contoh soal

n	X	f(x)
-3	1.0	1.449
-2	1.3	2.060
-1	1.6	2.645
0	1.9	3.216
1	2.2	3.779
2	2.5	4.338
3	2.8	4.898

 Carilah nilai f(x) pada x=1.87 dengan metode stirling

S	X	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$	$\Delta^4 f(x)$	$\Delta^5 f(x)$	$\Delta^6 f(x)$
-3	1.0	1.449	0.611					
-2	1.3	2.060	0.511	-0.026	0.012			
-1	1.6	2.645		-0.014	0.006	-0.006	0.004	
0	1.9	3.216	0.571	-0.008		-0.002		-0.01
1	2.2	3.779	0.563	-0.004	0.004	0.001	0.003	
2	2.5	4.338	0.559	0.001	0.005			
3	2.8	4.898	0.560					

Nilai s diperoleh

$$s = \frac{x_s - x_0}{h} = \frac{1.87 - 1.9}{1.3 - 1} = -0.1$$

Nilai yang digunakan pada tabel beda digunakan pada persamaan stirling

Step 2

Nilai diferensial saat x=1.87

$$f'(x) = \frac{1}{h} \left[\frac{\Delta f_{-1} + \Delta f_0}{2} + s\Delta^2 f_{-1} + \frac{3s^2 - 1}{3!} \frac{\left(\Delta^3 f_{-1} + \Delta^3 f_{-2}\right)}{2} + \frac{4s^3 - 2s}{4!} + \Delta^4 f_{-2} + \frac{5s^4 - 15s^2 + 4}{5!} \frac{\left(\Delta^5 f_{-2} + \Delta^5 f_{-3}\right)}{2} + \frac{6s^5 - 20s^3 + 8s}{6!} \Delta^6 f_{-3} \right] = 1.890292$$

Metode Lagrange

$$f'(x) = \sum_{m=1}^{n+1} \frac{f_m - 1}{\prod_{\substack{k=1\\k \neq m}}^{n+1} (x_{m-1} - x_{k-1})} \sum_{\substack{j=1\\j \neq m}}^{n+1} \frac{\prod_{\substack{i=1\\i \neq 1}}^{n+1} (x - x_{i-1})}{(x - x_{j-1})}$$

Contoh soal

n	X	f(x)
0	1.0	0.00000
1	1.2	0.26254
2	1.5	0.91230
3	1.9	2.31709
4	2.1	3.27194
5	2.5	5.72682
6	3.0	9.88751

 Carilah nilai f(x) pada x=2.25 dengan metode lagrange

$$f'(x) = \sum_{m=1}^{n+1} \frac{f_m - 1}{\prod_{\substack{k=1\\k \neq m}}^{n+1} (x_{m-1} - x_{k-1})} \sum_{\substack{j=1\\j \neq m}}^{n+1} \frac{\prod_{\substack{i=1\\i \neq 1}}^{n+1} (x - x_{i-1})}{(x - x_{j-1})}$$

• Untuk x=2.25

$$\frac{(x-x_{2})(x-x_{3})(x-x_{4})+(x-x_{1})(x-x_{3})(x-x_{4})+(x-x_{1})(x-x_{2})(x-x_{4})+(x-x_{1})(x-x_{2})(x-x_{3})}{(x_{0}-x_{1})(x_{0}-x_{2})(x_{0}-x_{3})(x_{0}-x_{4})}f_{0}+\frac{(x-x_{2})(x-x_{3})(x-x_{4})+(x-x_{0})(x-x_{3})(x-x_{4})+(x-x_{0})(x-x_{2})(x-x_{4})+(x-x_{0})(x-x_{2})(x-x_{3})}{(x_{1}-x_{0})(x_{1}-x_{2})(x_{1}-x_{3})(x_{1}-x_{4})}f_{1}+\frac{(x-x_{1})(x-x_{3})(x-x_{4})+(x-x_{0})(x-x_{3})(x-x_{4})+(x-x_{0})(x-x_{3})(x-x_{4})+(x-x_{0})(x-x_{1})(x-x_{3})}{(x_{2}-x_{0})(x_{2}-x_{1})(x_{2}-x_{3})(x_{2}-x_{4})}f_{2}+\frac{(x-x_{1})(x-x_{3})(x-x_{4})+(x-x_{0})(x-x_{3})(x-x_{4})+(x-x_{0})(x-x_{1})(x-x_{4})+(x-x_{0})(x-x_{1})(x-x_{3})}{(x_{2}-x_{0})(x_{2}-x_{1})(x_{2}-x_{3})(x_{2}-x_{4})}f_{2}+\frac{(x-x_{1})(x-x_{2})(x-x_{1})(x-x_{2})(x-x_{1})(x-x_{2})(x-x_{1})(x-x_{2})(x-x_{1})(x-x_{2})}{(x_{2}-x_{0})(x_{2}-x_{1})(x_{2}-x_{3})(x_{2}-x_{4})}f_{2}+\frac{(x-x_{1})(x-x_{2})(x-x_{1})(x-x_{2})(x-x_{1})(x-x_{2})(x-x_{1})(x-x_{2})(x-x_{2})}{(x_{2}-x_{0})(x_{2}-x_{1})(x_{2}-x_{3})(x_{2}-x_{4})}f_{2}+\frac{(x-x_{1})(x-x_{2})(x-x_{2})(x-x_{2})(x-x_{2})(x-x_{2})(x-x_{2})(x-x_{2})}{(x_{2}-x_{2})(x-x_{2})(x-x_{2})(x-x_{2})(x-x_{2})(x-x_{2})(x-x_{2})(x-x_{2})(x-x_{2})(x-x_{2})(x-x_{2})}f_{2}+\frac{(x-x_{1})(x-x_{2}$$

dst