

(1)Import Lib and dataset

In [264]:

```
import numpy as np
   import pandas as pd
3
   import matplotlib.pyplot as plt
   %matplotlib inline
5
7
   import seaborn as sns
8
   sns.set()
9
   import warnings
10
   warnings.filterwarnings('ignore')
11
12
13
   from sklearn.model_selection import cross_val_score
```

In [265]:

1 df=pd.read_csv(r"C:\Users\bhavi\Desktop\Data Science\dataset\Churn_Modelling - Larry

In [266]:

1 df.head()

Out[266]:

vNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	Nι
1	15634602	Hargrave	619	France	Female	42	2.0	0.00	
2	15647311	Hill	608	Spain	Female	41	1.0	83807.86	
3	15619304	Onio	502	France	Female	42	8.0	159660.80	
4	15701354	Boni	699	France	Female	39	1.0	0.00	
5	15737888	Mitchell	850	NaN	Female	43	2.0	125510.82	
4									•

In [267]:

1	<pre>df.info()</pre>		
капв	етпаех. тоооо епс	ו.tez, א נס אפאבי	
Data	columns (total 1	4 columns):	
#	Column	Non-Null Count	Dtype
0	RowNumber	10000 non-null	int64
1	CustomerId	10000 non-null	int64
2	Surname	10000 non-null	object
3	CreditScore	10000 non-null	int64
4	Geography	9998 non-null	object
5	Gender	9999 non-null	object
6	Age	10000 non-null	int64
7	Tenure	9999 non-null	float64
8	Balance	10000 non-null	float64
9	NumOfProducts	10000 non-null	int64
10	HasCrCard	10000 non-null	int64
11	IsActiveMember	10000 non-null	int64
12	EstimatedSalary	10000 non-null	float64
13	Exited	10000 non-null	int64
dtyp	es: float64(3), i	nt64(8), object(3)
memo	ry usage: 1.1+ MB		

In [268]:

```
#To verify null values by another coding
df.isnull().sum()/len(df)*100
```

Out[268]:

RowNumber	0.00
CustomerId	0.00
Surname	0.00
CreditScore	0.00
Geography	0.02
Gender	0.01
Age	0.00
Tenure	0.01
Balance	0.00
NumOfProducts	0.00
HasCrCard	0.00
IsActiveMember	0.00
EstimatedSalary	0.00
Exited	0.00
dtype: float64	

In [269]:

1 df.describe()

Out[269]:

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance
count	10000.00000	1.000000e+04	10000.000000	10000.000000	9999.000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012301	76485.889288
std	2886.89568	7.193619e+04	96.653299	10.487806	2.891889	62397.405202
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000
4						•

(2) Cleansing the dataset (Handled Null values)

In [270]:

```
# check duplicate rows
 2
 3
 4
   def drop dup(df):
 5
        if df.duplicated().any() == True:
 6
            df.drop_duplicates( inplace = True, Keep = "Last", reset_index = True)
 7
            print("data after removig duplicate rows",df.duplicated().sum())
 8
9
        else:
            return "No action required(No duplicate rows)"
10
11
12
13
   drop_dup(df)
```

Out[270]:

'No action required(No duplicate rows)'

Data entry review : To see the data entry in all column

```
In [271]:
```

```
for i in df.columns:
    print(i)
    print()
    print(set(df[i].tolist()))
    print()
```

```
RowNumber
```

```
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92,
93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 10
8, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 12
2, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 13
6, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 15
0, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 16
4, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 17
8, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 19
2, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 20
6, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 22
0, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 23
4, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 24
8, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 26
```

(3) Visulization the data through Summarytool, histogram

#Below through Summarytools, we can find unique values in each column.

In [272]:

- 1 **from** summarytools **import** dfSummary
- 2 dfSummary(df)

Out[272]:

Data Frame Summary

df

Dimensions: 10,000 x 14

Duplicates: 0

No	Variable	Stats / Values	Freqs / (% of Valid)	Graph	Missing
1	RowNumber [int64]	Mean (sd): 5000.5 (2886.9) min < med < max: 1.0 < 5000.5 < 10000.0 IQR (CV): 4999.5 (1.7)	10,000 distinct values		0 (0.0%)
2	CustomerId [int64]	Mean (sd): 15690940.6 (71936.2) min < med < max: 15565701.0 < 15690738.0 < 15815690.0 IQR (CV): 124705.5 (218.1)	10,000 distinct values		0 (0.0%)
3	Surname [object]	1. Smith 2. Scott 3. Martin 4. Walker 5. Brown 6. Yeh 7. Shih 8. Genovese 9. Maclean 10. Wright 11. other	32 (0.3%) 29 (0.3%) 29 (0.3%) 28 (0.3%) 26 (0.3%) 25 (0.2%) 25 (0.2%) 25 (0.2%) 24 (0.2%) 24 (0.2%) 9,733 (97.3%)		0 (0.0%)
4	CreditScore [int64]	Mean (sd): 650.5 (96.7) min < med < max: 350.0 < 652.0 < 850.0 IQR (CV): 134.0 (6.7)	460 distinct values		0 (0.0%)
5	Geography [object]	 France Germany Spain nan 	5,014 (50.1%) 2,509 (25.1%) 2,475 (24.8%) 2 (0.0%)		2 (0.0%)
6	Gender [object]	1. Male 2. Female 3. nan	5,456 (54.6%) 4,543 (45.4%) 1 (0.0%)		1 (0.0%)
7	Age [int64]	Mean (sd): 38.9 (10.5) min < med < max: 18.0 < 37.0 < 92.0 IQR (CV): 12.0 (3.7)	70 distinct values		0 (0.0%)

No	Variable	Stats / Values	Freqs / (% of Valid)	Graph	Missing
8	Tenure [float64]	Mean (sd): 5.0 (2.9) min < med < max: 0.0 < 5.0 < 10.0 IQR (CV): 4.0 (1.7)	11 distinct values		1 (0.0%)
9	Balance [float64]	Mean (sd): 76485.9 (62397.4) min < med < max: 0.0 < 97198.5 < 250898.1 IQR (CV): 127644.2 (1.2)	6,382 distinct values		0 (0.0%)
10	NumOfProduct s [int64]	Mean (sd): 1.5 (0.6) min < med < max: 1.0 < 1.0 < 4.0 IQR (CV): 1.0 (2.6)	4 distinct values		0 (0.0%)
11	HasCrCard [int64]	Mean (sd): 0.7 (0.5) min < med < max: 0.0 < 1.0 < 1.0 IQR (CV): 1.0 (1.5)	2 distinct values		0 (0.0%)
12	IsActiveMembe r [int64]	Mean (sd): 0.5 (0.5) min < med < max: 0.0 < 1.0 < 1.0 IQR (CV): 1.0 (1.0)	2 distinct values		0 (0.0%)
13	EstimatedSalar y [float64]	Mean (sd): 100090.2 (57510.5) min < med < max: 11.6 < 100193.9 < 199992.5 IQR (CV): 98386.1 (1.7)	9,999 distinct values		0 (0.0%)
In	Exited [4int64]	Mean (sd): 0.2 (0.4) min < med < max: 0.0 < 0.0 < 1.0 IQR (CV): 0.0 (0.5)	2 distinct values		0 (0.0%)
1	•	=50, figsize=(15,	10))		
2	plt.show()				
	RowNumber		CustomerId	CreditScore	

(4) Looking for corelations

```
In [274]:
```

```
1 corr_matrix=df.corr()
```

In [275]:

```
corr_matrix["Exited"].sort_values(ascending = False)
```

Out[275]:

Exited	1.000000
Age	0.285323
Balance	0.118533
EstimatedSalar	y 0.012097
CustomerId	-0.006248
HasCrCard	-0.007138
Tenure	-0.013916
RowNumber	-0.016571
CreditScore	-0.027094
NumOfProducts	-0.047820
IsActiveMember	-0.156128
Name: Exited,	dtype: float64

In [276]:

```
from pandas.plotting import scatter_matrix
attributes = ["Exited", "Age", "Balance", "EstimatedSalary"]
scatter_matrix(df[attributes], figsize = (12,8))
```

Out[276]:

```
array([[<Axes: xlabel='Exited', ylabel='Exited'>,
        <Axes: xlabel='Age', ylabel='Exited'>,
        <Axes: xlabel='Balance', ylabel='Exited'>,
        <Axes: xlabel='EstimatedSalary', ylabel='Exited'>],
       [<Axes: xlabel='Exited', ylabel='Age'>,
        <Axes: xlabel='Age', ylabel='Age'>,
        <Axes: xlabel='Balance', ylabel='Age'>,
        <Axes: xlabel='EstimatedSalary', ylabel='Age'>],
       [<Axes: xlabel='Exited', ylabel='Balance'>,
        <Axes: xlabel='Age', ylabel='Balance'>,
        <Axes: xlabel='Balance', ylabel='Balance'>,
        <Axes: xlabel='EstimatedSalary', ylabel='Balance'>],
       [<Axes: xlabel='Exited', ylabel='EstimatedSalary'>,
        <Axes: xlabel='Age', ylabel='EstimatedSalary'>,
        <Axes: xlabel='Balance', ylabel='EstimatedSalary'>,
        <Axes: xlabel='EstimatedSalary', ylabel='EstimatedSalary'>]],
      dtype=object)
```


In [277]:

```
#Heatmap to Find correlation
plt.figure(figsize=(20,15))
corr = df.corr()
sns.heatmap(corr, annot=True, cmap='coolwarm')
plt.show()
```


(5)Missing data

```
In [278]:
```

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):
 #
    Column
                      Non-Null Count Dtype
_ _ _
     _____
                      -----
                                      ____
0
    RowNumber
                      10000 non-null int64
 1
    CustomerId
                      10000 non-null
                                      int64
 2
    Surname
                      10000 non-null object
 3
    CreditScore
                      10000 non-null int64
 4
    Geography
                      9998 non-null
                                      object
 5
    Gender
                      9999 non-null
                                      object
 6
    Age
                      10000 non-null int64
 7
    Tenure
                      9999 non-null
                                      float64
                     10000 non-null float64
 8
    Balance
    NumOfProducts
 9
                     10000 non-null int64
 10 HasCrCard
                     10000 non-null int64
 11
    IsActiveMember
                     10000 non-null int64
 12
    EstimatedSalary 10000 non-null float64
    Exited
13
                      10000 non-null int64
In [279]:
   df.drop(["RowNumber", "CustomerId", "Surname"], axis = 1,inplace=True)
In [280]:
    df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 11 columns):
    Column
#
                     Non-Null Count
                                      Dtype
                      -----
 0
    CreditScore
                      10000 non-null
                                     int64
 1
    Geography
                      9998 non-null
                                      object
 2
    Gender
                      9999 non-null
                                      object
 3
                      10000 non-null
                                      int64
    Age
 4
                                      float64
    Tenure
                      9999 non-null
 5
                      10000 non-null float64
    Balance
 6
    NumOfProducts
                      10000 non-null
                                      int64
 7
    HasCrCard
                      10000 non-null
                                      int64
 8
                      10000 non-null
    IsActiveMember
                                     int64
 9
    EstimatedSalary 10000 non-null
                                     float64
                      10000 non-null
 10 Exited
                                      int64
dtypes: float64(3), int64(6), object(2)
memory usage: 859.5+ KB
In [281]:
   df["Tenure"].median()
Out[281]:
5.0
```

```
In [282]:
```

```
1 df["Tenure"]= df["Tenure"].fillna(df["Tenure"].median())
```

In [283]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 10000 entries, 0 to 9999 Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	CreditScore	10000 non-null	int64
1	Geography	9998 non-null	object
2	Gender	9999 non-null	object
3	Age	10000 non-null	int64
4	Tenure	10000 non-null	float64
5	Balance	10000 non-null	float64
6	NumOfProducts	10000 non-null	int64
7	HasCrCard	10000 non-null	int64
8	IsActiveMember	10000 non-null	int64
9	EstimatedSalary	10000 non-null	float64
10	Exited	10000 non-null	int64
dtyp	es: float64(3), i	nt64(6), object(2)

memory usage: 859.5+ KB

Object column imputation is left only

In [284]:

```
# Imputing null value
# pls treat numerical value first and then try below one - most_frequent
from sklearn.impute import SimpleImputer
imp_mode = SimpleImputer(missing_values=np.nan, strategy='most_frequent')
df_imputed = pd.DataFrame(imp_mode.fit_transform(df))
df_imputed.columns = df.columns
df_imputed
```

Out[284]:

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard
0	619	France	Female	42	2.0	0.0	1	1
1	608	Spain	Female	41	1.0	83807.86	1	0
2	502	France	Female	42	8.0	159660.8	3	1
3	699	France	Female	39	1.0	0.0	2	0
4	850	France	Female	43	2.0	125510.82	1	1
9995	771	France	Male	39	5.0	0.0	2	1
9996	516	France	Male	35	10.0	57369.61	1	1
9997	709	France	Female	36	7.0	0.0	1	0
9998	772	Germany	Male	42	3.0	75075.31	2	1
9999	792	France	Female	28	4.0	130142.79	1	1

10000 rows × 11 columns

In [285]:

```
1 df_imputed.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	CreditScore	10000 non-null	object
1	Geography	10000 non-null	object
2	Gender	10000 non-null	object
3	Age	10000 non-null	object
4	Tenure	10000 non-null	object
5	Balance	10000 non-null	object
6	NumOfProducts	10000 non-null	object
7	HasCrCard	10000 non-null	object
8	IsActiveMember	10000 non-null	object
9	EstimatedSalary	10000 non-null	object
10	Exited	10000 non-null	object

dtypes: object(11)
memory usage: 859.5+ KB

```
In [286]:
```

```
for i in df.select_dtypes(exclude=['object']).columns:
    df_imputed[i] = df_imputed[i].apply(lambda x :float(x))
```

In [287]:

```
1 df_new = df_imputed.copy()
```

In [288]:

```
1 df_new.head()
```

Out[288]:

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	Is
0	619.0	France	Female	42.0	2.0	0.00	1.0	1.0	
1	608.0	Spain	Female	41.0	1.0	83807.86	1.0	0.0	
2	502.0	France	Female	42.0	8.0	159660.80	3.0	1.0	
3	699.0	France	Female	39.0	1.0	0.00	2.0	0.0	
4	850.0	France	Female	43.0	2.0	125510.82	1.0	1.0	
4									•

In [289]:

```
1 df_new.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 11 columns):
```

#	Column	Non-Null Count	Dtype
0	CreditScore	10000 non-null	float64
1	Geography	10000 non-null	object
2	Gender	10000 non-null	object
3	Age	10000 non-null	float64
4	Tenure	10000 non-null	float64
5	Balance	10000 non-null	float64
6	NumOfProducts	10000 non-null	float64
7	HasCrCard	10000 non-null	float64
8	IsActiveMember	10000 non-null	float64
9	EstimatedSalary	10000 non-null	float64
10	Exited	10000 non-null	float64

dtypes: float64(9), object(2)
memory usage: 859.5+ KB

(6) Encoding concept

Two column: for Gender, we will go with OHE and for Geography, we will go with dummy.

In [290]:

```
#Gender column : OHE
df_new['Gender'].value_counts()
df_new['Gender'] = df_new['Gender'].astype('category')
df_new['Gender'] = df_new['Gender'].cat.codes

#for Geography column : Dummy
df_new = pd.get_dummies(df_new, columns=['Geography'])
df_new = df_new.drop(['Geography_France'], axis=1)
```

In [291]:

```
1 df_new.head(10)
```

Out[291]:

	CreditScore	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMembe
0	619.0	0	42.0	2.0	0.00	1.0	1.0	1.
1	608.0	0	41.0	1.0	83807.86	1.0	0.0	1.
2	502.0	0	42.0	8.0	159660.80	3.0	1.0	0.
3	699.0	0	39.0	1.0	0.00	2.0	0.0	0.
4	850.0	0	43.0	2.0	125510.82	1.0	1.0	1.
5	645.0	1	44.0	8.0	113755.78	2.0	1.0	0.
6	822.0	1	50.0	7.0	0.00	2.0	1.0	1.
7	376.0	0	29.0	4.0	115046.74	4.0	1.0	0.
8	501.0	1	44.0	4.0	142051.07	2.0	0.0	1.
9	684.0	1	27.0	2.0	134603.88	1.0	1.0	1.
4								•

(7)Outlier handling

In [292]:

```
df_new_Ncat = df.select_dtypes(exclude='object')
df_new_Ncat.dtypes
```

Out[292]:

dtype: object

CreditScore	int64
Age	int64
Tenure	float64
Balance	float64
NumOfProducts	int64
HasCrCard	int64
IsActiveMember	int64
EstimatedSalary	float64
Exited	int64

In [293]:

```
# outlier check on all independent feature except dependent variable
outlier_list = list(df_new_Ncat.columns)

DepV_remove=['Exited']

for i in DepV_remove:
    outlier_list.remove(i)
    outlier_list
```

In [294]:

```
def boxplots(df,col):
    sns.boxplot(y = col, data = df_new_Ncat, palette ='Set2')
    plt.show()
    for col in outlier_list:
        boxplots(df,col)

200000

150000

50000

0
```

In [295]:

```
1 # Find the distribution of the dataset
```

In [296]:

```
# Find the distribution of the dataset

def distplots(col):
    sns.distplot(df_new[col])
    plt.show()

for i in list(df_new.select_dtypes(exclude=['object']).columns)[0:]:
    distplots(i)
```


0.8

1.2

1.0

2

1

0

-0.2

0.0

0.2

0.4

HasCrCard

0.6

(11)Imbalance data

for independent variable)

In [302]:

- from sklearn.preprocessing import StandardScaler
 sc = StandardScaler()
- 2 3c = ScandardScarci ()
- 3 sc_x = sc.fit_transform(x)
- 4 pd.DataFrame(sc_x)

Out[302]:

	0	1	2	3	4	5	6	7	8	
0	-0.314408	-0.841684	0.080526	-1.098881	-1.334220	-0.834590	0.696388	1.158537	0.013958	1
1	-0.433927	-0.841684	-0.018536	-1.466585	0.033102	-0.834590	-1.641097	1.158537	0.208235	-1
2	-1.585649	-0.841684	0.080526	1.107344	1.270640	2.447289	0.696388	-0.975611	0.232342	1
3	0.554816	-0.841684	-0.216659	-1.466585	-1.334220	0.806349	-1.641097	-0.975611	-0.116598	-1
4	2.195476	-0.841684	0.179588	-1.098881	0.713484	-0.834590	0.696388	1.158537	-0.372469	-1
15921	1.067609	1.188095	-1.124944	1.031784	-1.334220	-0.834590	0.696388	-0.118045	-1.397701	1
15922	0.852784	-0.841684	0.204974	-1.051766	-1.334220	-0.774516	0.696388	1.158537	1.205969	1
15923	-0.640367	-0.841684	0.524926	-1.427554	-1.334220	-0.660406	-1.392976	-0.749073	0.441154	1
4										•

```
In [303]:
```

```
1 x.head()
```

Out[303]:

	CreditScore	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMembe
0	619.0	0	42.0	2.0	0.00	1.0	1.0	1.
1	608.0	0	41.0	1.0	83807.86	1.0	0.0	1.
2	502.0	0	42.0	8.0	159660.80	3.0	1.0	0.
3	699.0	0	39.0	1.0	0.00	2.0	0.0	0.
4	850.0	0	43.0	2.0	125510.82	1.0	1.0	1.
4								•

In [304]:

```
1 x.shape
```

Out[304]:

(15926, 12)

In [305]:

1 # (9)Used PCA method to reduce variables(Unnecesary Variables)

(12) spliting in train and test

In [306]:

```
# split the training data into train and test
from sklearn.model_selection import train_test_split
x_train,x_test,y_train, y_test = train_test_split(x, y ,test_size=0.2, random_state=
```

(13) Machine Learning Model

In [307]:

```
#Machine Learning classification models
 2 from sklearn.linear_model import LogisticRegression
3 from sklearn.tree import DecisionTreeClassifier
4 from sklearn.ensemble import RandomForestClassifier
   from sklearn.ensemble import BaggingClassifier
 6 from sklearn.ensemble import AdaBoostClassifier
7 | from sklearn.ensemble import GradientBoostingClassifier
8 from xgboost import XGBClassifier
9 from sklearn.svm import SVC
10 from sklearn.neighbors import KNeighborsClassifier
   from sklearn.naive_bayes import GaussianNB
   from sklearn.naive_bayes import BernoulliNB
13
14
   #voting method
   from sklearn.ensemble import VotingClassifier
15
16
17
   #to see the result
   from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
18
19
20
21
```

(i) Accuracy check in Test data

In [308]:

```
1 # Applying all the model together
 3 # Applying all the model together
5 # LogisticRegression
6 logistic = LogisticRegression()
7 logistic.fit(x_train, y_train)
8 y_train_pred_logistic = logistic.predict(x_train)
9 accuracy_logistic = accuracy_score(y_train, y_train_pred_logistic)
10
11 # DecisionTree
12 dtree = DecisionTreeClassifier()
13 dtree.fit(x_train, y_train)
14 y_train_pred_dtree = dtree.predict(x_train)
15 accuracy_dtree = accuracy_score(y_train, y_train_pred_dtree)
16
17 # RandomForest
18 rfmodel = RandomForestClassifier()
19 rfmodel.fit(x_train, y_train)
20 y_train_pred_rfmodel = rfmodel.predict(x_train)
21 accuracy_rfmodel = accuracy_score(y_train, y_train_pred_rfmodel)
22
23 # BaggingClassifier
24 bagg = BaggingClassifier()
25 bagg.fit(x_train, y_train)
26 y_train_pred_bagg = bagg.predict(x_train)
27 accuracy_bagg = accuracy_score(y_train, y_train_pred_bagg)
28
29 # AdaBoostClassifier
30 ada = AdaBoostClassifier()
31 ada.fit(x_train, y_train)
32 y_train_pred_ada = ada.predict(x_train)
33 accuracy_ada = accuracy_score(y_train, y_train_pred_ada)
34
35 # GradientBoostingClassifier
36 gdb = GradientBoostingClassifier()
37 gdb.fit(x_train, y_train)
38 y_train_pred_gdb = gdb.predict(x_train)
39 accuracy_gdb = accuracy_score(y_train, y_train_pred_gdb)
40
41 # XGBClassifier = RF + GDBoosting - lambda - regularisation, gamma - autoprunning, e
42 xgb = XGBClassifier()
43 xgb.fit(x_train, y_train)
44 y_train_pred_xgb = xgb.predict(x_train)
45 accuracy_xgb = accuracy_score(y_train, y_train_pred_xgb)
46
47
48 # SVM
49 svc = SVC()
50 svc.fit(x_train, y_train)
51 y_train_pred_svc = svc.predict(x_train)
52 accuracy_svc = accuracy_score(y_train, y_train_pred_svc)
53
54 # KNN
55 knn = KNeighborsClassifier()
56 knn.fit(x_train, y_train)
57 y_train_pred_knn = knn.predict(x_train)
58 accuracy_knn = accuracy_score(y_train, y_train_pred_knn)
```

```
60
   # GaussianNB
61
   Gnb = GaussianNB()
   Gnb.fit(x_train, y_train)
62
   y_train_pred_Gnb = naive_gb.predict(x_train)
63
   accuracy_Gnb = accuracy_score(y_train, y_train_pred_Gnb)
65
66
   # BernoulliNB
   Bnb = BernoulliNB()
67
   Bnb.fit(x_train, y_train)
68
   y_train_pred_Bnb = naive_bn.predict(x_train)
69
   accuracy_Bnb = accuracy_score(y_train, y_train_pred_Bnb)
```

In [309]:

In [331]:

```
Method_Used = ['LogisticRegression','DecisionTree','RandomForest','Bagging','Adaboos
                 'GradientBoosting', 'XGBoost','SupportVector','KNearestNeighbors',
'NaiveBayesGaussian','NaiveBayesBernoullies','VotingClassifier']
 2
 3
 4
 5
     Accuracy_test = [accuracy_logistic, accuracy_dtree, accuracy_rfmodel, accuracy_bagg,
 6
                 accuracy_xgb, accuracy_svc, accuracy_knn, accuracy_Gnb, accuracy_Bnb, accur
 7
 8
 9
     final_accuracy_test = pd.DataFrame({'Method Used': Method_Used, "Accuracy_test": lis
10
11
     print(final_accuracy_test)
12
     charts = sns.barplot(x="Method Used", y = 'Accuracy_test', data=final_accuracy_test)
13
     charts.set_xticklabels(charts.get_xticklabels(), rotation=90)
14
15
     print(charts)
Accuracy_t
    0.6
    0.4
    0.2
    0.0
            ogisticRegression
                                        Adaboost
                                                GradientBoosting
                                                                     JearestNeighbors
                                                                            eBayesGaussian
                   DecisionTree
                          RandomForest
                                 Bagging
                                                      XGBoost
                                                              SupportVector
                                                                                   BayesBernoullies
                                                                                          VotingClassifier
```

(ii)Accuracy check in Train data

In [332]:

```
1 # Applying all the model together
3 # LogisticRegression
4 logistic = LogisticRegression()
5 logistic.fit(x_train, y_train)
6 y_train_pred_logistic = logistic.predict(x_train)
7 accuracy_logistic = accuracy_score(y_train, y_train_pred_logistic)
9 # DecisionTree
10 dtree = DecisionTreeClassifier()
11 dtree.fit(x_train, y_train)
12 y_train_pred_dtree = dtree.predict(x_train)
13 accuracy_dtree = accuracy_score(y_train, y_train_pred_dtree)
14
15 # RandomForest
16 rfmodel = RandomForestClassifier()
17 rfmodel.fit(x_train, y_train)
18 y_train_pred_rfmodel = rfmodel.predict(x_train)
19 accuracy_rfmodel = accuracy_score(y_train, y_train_pred_rfmodel)
20
21 # BaggingClassifier
22 bagg = BaggingClassifier()
23 bagg.fit(x_train, y_train)
24 y_train_pred_bagg = bagg.predict(x_train)
25 accuracy_bagg = accuracy_score(y_train, y_train_pred_bagg)
26
27 # AdaBoostClassifier
28 ada = AdaBoostClassifier()
29 ada.fit(x_train, y_train)
30 y_train_pred_ada = ada.predict(x_train)
31 accuracy_ada = accuracy_score(y_train, y_train_pred_ada)
33 # GradientBoostingClassifier
34 gdb = GradientBoostingClassifier()
35 gdb.fit(x_train, y_train)
36 y_train_pred_gdb = gdb.predict(x_train)
37 accuracy_gdb = accuracy_score(y_train, y_train_pred_gdb)
38
39 # XGBCLassifier = RF + GDBoosting - Lambda - regularisation, gamma - autoprunning, e
40 xgb = XGBClassifier()
41 xgb.fit(x_train, y_train)
42 y train pred xgb = xgb.predict(x train)
43 accuracy_xgb = accuracy_score(y_train, y_train_pred_xgb)
44
45
46 # SVM
47 \text{ svc} = SVC()
48 svc.fit(x_train, y_train)
49 y_train_pred_svc = svc.predict(x_train)
50 accuracy_svc = accuracy_score(y_train, y_train_pred_svc)
51
52 # KNN
53 knn = KNeighborsClassifier()
54 knn.fit(x_train, y_train)
55 y train pred knn = knn.predict(x train)
56 accuracy_knn = accuracy_score(y_train, y_train_pred_knn)
57
58 # GaussianNB
59 Gnb = GaussianNB()
```

```
Gnb.fit(x_train, y_train)
y_train_pred_Gnb = naive_gb.predict(x_train)
accuracy_Gnb = accuracy_score(y_train, y_train_pred_Gnb)

# BernoulliNB
Bnb = BernoulliNB()
Bnb.fit(x_train, y_train)
y_train_pred_Bnb = naive_bn.predict(x_train)
accuracy_Bnb = accuracy_score(y_train, y_train_pred_Bnb)
```

In [333]:

In [334]:

```
Method_Used = ['LogisticRegression','DecisionTree','RandomForest','Bagging','Adaboos
 2
             'GradientBoosting', 'XGBoost', 'SupportVector', 'KNearestNeighbors',
 3
             'NaiveBayesGaussian','NaiveBayesBernoullies','VotingClassifier']
 4
 5
   Accuracy_train = [accuracy_logistic, accuracy_dtree, accuracy_rfmodel, accuracy_bage
 6
             accuracy_xgb, accuracy_svc, accuracy_knn, accuracy_Gnb, accuracy_Bnb, accur
 7
 8
9
   final accuracy train = pd.DataFrame({'Method Used': Method Used, "Accuracy train": 1
10
   print(final_accuracy_train)
11
12
   charts = sns.barplot(x="Method Used", y = 'Accuracy_train', data=final_accuracy_trai
13
   charts.set_xticklabels(charts.get_xticklabels(), rotation=90)
15
   print(charts)
```

	Method Used	Accuracy_train
0	LogisticRegression	0.671193
1	DecisionTree	1.000000
2	RandomForest	1.000000
3	Bagging	1.000000
4	Adaboost	1.000000
5	GradientBoosting	1.000000
6	XGBoost	1.000000
7	SupportVector	0.568995
8	KNearestNeighbors	0.790188
9	NaiveBayesGaussian	0.765542
10	NaiveBayesBernoullies	1.000000
11	VotingClassifier	1.000000
Axe	s(0.125,0.11;0.775x0.77))

