EE6550 MACHINE LEARNING

HW#1, DOCUMENT OF MY PROGRAM

102061210 王尊玄

- 1. My program is written in Matlab scripts, no need to compile, and can be directly run in Matlab.
- 2. All test will be done through directly modifying my Matlab code, which is further elaborated in the next point.
- 3. Any adjustable parameters and the unknown concept will be followed by comment with a lot of plus sign, i.e.

♦ Generalization guarantee parameters,

δ: delt and ε: myEps

♦ Bivariate normal distribution parameters,

MU: can be directly adjusted through vector variable MU

SIGMA: can be adjusted through r_xy, sigma_x, sigma_y, where

$$SIGMA = \begin{bmatrix} sigma_x^2 & r_xy \times sigma_x \times sigma_y \\ r_xy \times sigma_x \times sigma_y & sigma_y^2 \end{bmatrix}$$

- Unknown concept c can be adjusted directly or randomly direct-input: if 1, c can be directly assigned, else, c may be randomly chosen.
 c: there are 2 c (line 24 & 33) followed by comment "directly assigned c" and "randomly chosen c", where random number generator function in "randomly chosen c" must be carefully chosen, otherwise it can never find qualified c and jump out of the searching loop. Also, c = [v u], where v and u are both column vector respectively representing lower left corner and upper right corner.
- \Leftrightarrow Sample number m is defaulted to $\frac{4}{\epsilon} \ln \frac{4}{\delta}$
- 4. This program will output a hypothesis $h_s = A(S; c, \textbf{\textit{H}})$, which is found by PAC learning algorithm A over sample S within hypothesis set $\textbf{\textit{H}}$, equivalent to concept class $\textbf{\textit{C}}$, as well as an unbiased estimator \hat{q} of $P(\Delta_S) = R(h_S)$, where our validation goal $R(h_S) < \epsilon$ can be approximated by $\hat{q} \pm 0.1\epsilon < \epsilon$. Finally, a graph will be shown to help visualizing this program.
- 5. You can run "PAC.m" or "validate.m" for different purposes, but DO comment all the codes creating figures (codes under "figure") in

- "PAC.m", otherwise there will be thousands of figures pop out, which will be disastrous. (maybe your GPU memory will be blown up.)
- 6. Given an unknown but fixed concept c (c must be directly assigned to certain fixed value throughout the following process). A checking program "validate.m" can be executed to validate guarantee $P(R(h_S) < \epsilon) \geq 1 \delta \text{ over my PAC learning algorithm A. By running my PAC learning algorithm A ("PAC.m") <math display="inline">\frac{10}{\delta}$ times, at most 10 out of $\frac{10}{\delta}$ have $R(h_S) > \epsilon$. "validate.m" will output "numFail" as the number of h_S that defies $R(h_S) < \epsilon$. If "numFail" is no greater than 10, then "hurrah! We make it!"