Post-processing

Sigvald Marholm

University of Oslo Department of Physics

03.02.22

Approaching the end

Visualizing fields with ParaView

Noise and averaging

Inspecting time series

Introduction to Langmuir

Colors

3 / 21

Visualizing fields with ParaView

Noise and averaging

Inspecting time series

Introduction to Langmuir

Colors

03.02.22

4/21

Visualizing fields with ParaView

PTetra VTK files:

- ► Volumetric fields: pictetra⟨timestep⟩.vtk
- ► Surface fields: scc⟨timestep⟩.vtk

Visualizing fields with ParaView

PTetra VTK files:

- ► Volumetric fields: pictetra⟨timestep⟩.vtk
- ► Surface fields: scc⟨timestep⟩.vtk

Available fields: Phi

- Potential: phi, phiAv (averaged)
- Charge density: rho, rhoAv (averaged)
- Number density: dne, dni
- Surface current density: J
- Force per surface area: Fx, Fy, Fz

(everything in SI units)

5/21

Visualizing fields with ParaView

Example of ParaView use:

- Open and combine data Apply
- Contour, clip, slice \(\bigcirc \pi \) \(\bar{\pi} \) \(\bar{\pi} \)
- ► Animate (open entire group)

 Animate (open entire group)
- ▶ Plot over line 💆
- ► Adjust colorbar ## ## ##

See the ParaView tutorial: https://www.paraview.org/tutorials

6/21

Example ParaView Visualizations

Figure: PUNC++ simulation (punc.rtfd.io)

◆□▶ ◆□▶ ◆重▶ ◆重▶ ■ 釣♀⊙

7 / 21

Example ParaView Visualizations

(NVIDIA)

(Sandia National Labortory)
See more at https://www.paraview.org/gallery

Visualizing fields with ParaView

Noise and averaging

Inspecting time series

Introduction to Langmuir

Colors

Sigvald Marholm (UiO)

Main disadvantage of PIC:

Particle noise prop. to \sqrt{N} (N is number of sim. particles) To halve the noise, quadruple memory usage and CPU time.

10 / 21

Main disadvantage of PIC:

Particle noise prop. to \sqrt{N} (N is number of sim. particles) To halve the noise, quadruple memory usage and CPU time.

Integration smooths out noise:

$$abla^2 \phi = -rac{
ho}{arepsilon_0} \quad \Rightarrow \quad \phi \ \ {
m is \ smoother \ than} \ \
ho$$

10 / 21

Main disadvantage of PIC:

Particle noise prop. to \sqrt{N} (N is number of sim. particles) To halve the noise, quadruple memory usage and CPU time.

Integration smooths out noise:

$$abla^2 \phi = -rac{
ho}{arepsilon_0} \quad \Rightarrow \quad \phi \ \ {
m is \ smoother \ than} \ \
ho$$

10 / 21

Which simulation is more accurate?

Which simulation is more accurate?

Currents are not only noisy, but discrete:

- ▶ In nature: sum of δ -pulses
- In simulations: granularity $\Delta I = q/\Delta t$ (q is charge of sim. particle)

Which simulation is more accurate?

Currents are not only noisy, but discrete:

- ▶ In nature: sum of δ -pulses
- ▶ In simulations: granularity $\Delta I = q/\Delta t$ (q is charge of sim. particle)

Simulations are identical except for Δt . Lower is more accurate. Use averaging!

Exponential moving average of time-series $\{x^0, x^1, ...\}$:

$$\bar{x}^0 = x^0$$

$$\bar{x}^n = \alpha x^n + (1 - \alpha)\bar{x}^{n-1}$$

 $\alpha = 1 - e^{-\frac{\Delta t}{\tau}}$ and τ is the relaxation time.

Adjusting weight imbalance:

$$\tilde{x}^n = \frac{\bar{x}^n}{W^n}$$

$$W^n = \alpha + (1 - \alpha)W^{n-1}$$

Memory efficent, also works on field quantities.

Figure: Weights of past samples.

12 / 21

Visualizing fields with ParaView

Noise and averaging

Inspecting time series

Introduction to Langmuir

Colors

03.02.22

Sigvald Marholm (UiO)

Inspecting time series

Time series stored in pictetra.hst:

```
#nepop= 1nipop= 1 sc_nstruc= 2
# timestep
               time
                                               nitot
                                                              Te eff
                                                                              pot1
                                                                                              sc_phi
                                                                                                                              sc i
                               netot
                                                                                                              sc_q
               0.000000E+00
                                   5000000
                                                   5000000
                                                                1.099091E-01
                                                                               3.798997E-17
                                                                                               3.000000E+00
                                                                                                              0.000000E+00
                                                                                                                              0.000000E+00
               1.210681E-09
                                                   4999826
                                                                1.099306E-01
                                                                              -2.702192E-16
                                                                                               3.000000E+00
                                                                                                              -1.620472E-16
                                                                                                                              -1.338480E-07
                                   5000148
               2.421362E-09
                                   4999988
                                                   4999765
                                                                1.099913E-01
                                                                              -6.032211E-16
                                                                                               3.000000E+00
                                                                                                              -5.772932E-16
                                                                                                                              -3.429855E-07
               3.632043E-09
                                   4999917
                                                   4999691
                                                                1.100872E-01
                                                                              -9.380563E-16
                                                                                               3.000000E+00
                                                                                                              -1.301442E-15
                                                                                                                              -5.981333E-07
                    . . .
                                     . . .
                                  Number of
                                                  Number of
                                                                Estimate of
                                                                              Estimate of
                                                                                               Spacecraft.
                                                                                                               Spacecraft
                                                                                                                               Spacecraft
                                  electrons
                                                                el. temp.
                                                                              pot, energy
                                                                                               potential
                                                                                                               charge
                                                  ions
                                                                                                                               current
                                                                                                Repeatead for each spacecraft component
```

Can be plotted with attached script:

- \$./plot.py Sphere_0.5R_3V_3V sc_i_0
- \$./plot.py -h

3.0

3.0

3.0

3.0

14 / 21

Visualizing fields with ParaView

Noise and averaging

Inspecting time series

Introduction to Langmuir

Colors

Introduction to Langmuir

Programmatic access to I(V), also in cases where there are no analytic expressions.

Example:

Figure: Current collected per unit length of a cylindrical probe Marholm and Marchand, DOI: 10.1103/PhysRevResearch.2.023016

Visualizing fields with ParaView

Noise and averaging

Inspecting time series

Introduction to Langmuir

Colors

03.02.22

Sigvald Marholm (UiO)

Colors – Perceptual uniformity and order

Figure: Crameri et al., DOI: 10.1038/s41467-020-19160-7

Colors - Perceptual uniformity and order

Figure: Crameri et al., DOI: 10.1038/s41467-020-19160-7

Colors - Color vision deficiency friendly

Figure: Crameri et al., DOI: 10.1038/s41467-020-19160-7

8% of men and 0.5% of women are red-green color blind (deuteranopia)

Colors – Color map classes

Figure: Crameri et al., DOI: 10.1038/s41467-020-19160-7

03.02.22