

LINMA2460 Nonlinear Programming

Simon Desmidt Issambre L'Hermite Dumont

Academic year 2024-2025 - Q2

Contents

1	Definitions, notations and random properties	2		
	1.1 Properties	3		
	1.2 Complexity table			
2	TODO	4		
3	Gradient descent without gradient	6		
4	Local rate of convergence for the GM and Newton's method			
	4.1 Linear rate of GM	8		
	4.2 Local quadratic convergence of Newton's method	9		
5	Tips and Tricks	10		

Definitions, notations and random properties

• The Taylor expansion of order *p* of the function *f* around *x*_k and evaluated at *y* is:

$$T_p(y; x_k) = f(x_k) + \sum_{i=1}^p \frac{1}{i!} D^i f(x_k) (y - x_k)^i$$
 (1.1)

• We can thus define the gradient w.r.t. y of the Taylor expansion of order p of f around x_k and evaluated at x_{k+1} :

$$\nabla_{y} T_{p}(x_{k+1}; x_{k}) = \left. \nabla_{y} T_{p}(y; x_{k}) \right|_{y = x_{k+1}}$$
(1.2)

• An oracle is a "black box" that gives information about the derivatives based on *x*. The general form of an oracle is:

p-order oracle:
$$x \mapsto \{D^i f(x)\}_{i=0}^p$$
 (1.3)

And so we have the following simple oracles examples:

Zeroth-order oracle:
$$x \mapsto \{f(x)\}$$

First-order oracle: $x \mapsto \{f(x), \nabla f(x)\}$ (1.4)
Second-order oracle: $x \mapsto \{f(x), \nabla f(x), \nabla^2 f(x)\}$

- $C_L^p(\mathbb{R}^n)$: Class of functions p-times continuously differentiable with L-Lipschitz continuous p-order derivative, i.e. $||D^p f(x) D^p f(y)|| \le L||x y||$, $\forall x, y \in \mathbb{R}^n$. And so we have the following simple classes of problems:
 - $C_L^1(\mathbb{R}^n)$: Class of continuously differentiable functions with L-Lipschitz gradient;
 - $C_L^2(\mathbb{R}^n)$: Class of continuously differentiable functions with L-Lipschitz hessian.
- p order method (generalization of GM):

$$x_{k+1} = \arg\min_{y \in \mathbb{R}^n} \Omega_{x_k, y, p}(y) \equiv T_{x_k, p}(y) + \frac{M}{(p+1)!} ||y - x_k||^{p+1}$$
(1.5)

1.1 Properties

- For a function $f \in C^1(\Omega)$ and Ω is bounded, the following holds: $\|\nabla f(x)\| \le L$ for all $x \in \Omega$ for some $L \ge 0$.
- By the mean value theorem, for a continuously differentiable function f, $\forall x, y \in \Omega$, $\exists z \in \Omega : f(y) f(x) = \langle \nabla f(z), y x \rangle$.
- For a matrix A and a scalar b, $||A|| \le b \Longrightarrow |\lambda(A)| \le b \Longrightarrow |A| \le bI_n$, where the absolute value of the matrix is taken component wise.

1.2 Complexity table

Method	Lipschitz	∇f	$\nabla^2 f$		$\nabla^p f$
Zero order		$O(n\varepsilon^{-2})$			
First order	p=1	$O(\varepsilon^{-2})$			
Second order	p=2	Χ	$O(\varepsilon^{-3/2})$		
:		X	X	٠٠.	
p order		Х	Х	Χ	$O(arepsilon^{-rac{p+1}{p}})$

TODO

We can generalise the property of a L-Lipschitz function to $f \in \mathcal{C}^p_L(\mathbb{R}^n)$. For p = 1, we had

$$f(y) \le f(x_k) + \langle \nabla f(x_k), y - x_k \rangle + \frac{L}{2} ||y - x_k||^2 \qquad \forall y \in \mathbb{R}^n$$
 (2.1)

For a general value of *p*, it becomes

$$f(y) \le T_p(y; x_k) + \frac{L}{(p+1)!} ||y - x_k||^{p+1} \forall y \in \mathbb{R}^n$$
 (2.2)

Using this, we need a *p*-th order oracle for the method to work.

To solve $\min_{x \in \mathbb{R}^n} f(x)$, we can use the iteration

$$x_{k+1} = \arg\min_{y \in \mathbb{R}^n} T_p(y; x_k) + \frac{M}{(p+1)!} ||y - x_k||^{p+1}$$
(2.3)

where the constant M is an approximation of the Lipschitz constant L. Assuming $f \in \mathcal{C}_L^p(\mathbb{R}^n)$, we have

$$f(x_{k+1}) \leq T_{p}(x_{k+1}; x_{k}) + \frac{L}{(p+1)!} \|x_{k+1} - x_{k}\|^{p+1}$$

$$= \underbrace{T_{p}(x_{k+1}; x_{k}) + \frac{M}{(p+1)!} \|x_{k+1} - x_{k}\|^{p+1}}_{\leq f(x_{k})} + \underbrace{\frac{(L-M)}{(p+1)!} \|x_{k+1} - x_{k}\|^{p+1}}_{\leq f(x_{k})}$$
(2.4)

where the inequality $\leq f(x_k)$ is due to the decrease of f and equation (2.3). Suppose that M > 2L. After some algebraic manipulations, we get

$$f(x_k) - f(x_{k+1}) \ge \frac{L}{(p+1)!} ||x_{k+1} - x_k||^{p+1}$$
(2.5)

On the other hand, using the triangular inequality,

$$\|\nabla f(x_{k+1})\| \leq \|\nabla f(x_{k+1}) - \nabla_y T_p(x_{k+1}; x_k)\|$$

$$+ \underbrace{\left\|\nabla_y T_p(x_{k+1}; x_k) + \nabla\left(\frac{M}{(p+1)!} \| \cdot - x_k \|^{p+1}\right)\right\|_{y=x_{k+1}}}_{=0}$$

$$+ \left\|\nabla\left(\frac{M}{(p+1)!} \| \cdot - x_k \|^{p+1}\right)\right\|_{y=x_{k+1}}$$

$$\leq \underbrace{\frac{L}{p!}} \|x_{k+1} - x_k \|^p + \underbrace{\frac{M}{p!}} \|x_{k+1} - x_k \|^p$$
(2.6)

Le + rouge doit être un -?

$$\Longrightarrow \|x_{k+1} - x_k\| \ge \left(\frac{p!}{L+M}\right)^{1/p} \|\nabla f(x_{k+1})\|^{1/p} \tag{2.7}$$

Combining equations (2.5) and (2.7),

$$f(x_{k}) - f(x_{k+1}) \ge \underbrace{\frac{L}{(p+1)!} \left(\frac{p!}{L+M}\right)^{\frac{p+1}{p}}}_{-:C(L)} \|\nabla f(x_{k+1})\|^{\frac{p+1}{p}}$$
(2.8)

Let $T(\varepsilon) = \inf\{k \in \mathbb{N} : \|\nabla f(x_k)\| \le \varepsilon\}$. Assume that $T(\varepsilon) \ge 2$ and $f(x) \ge f_{low}$ $\forall x \in \mathbb{R}^n$. Summing up (2.8) for $k = 0, \ldots, T(\varepsilon) - 2$,

$$f(x_{0}) - f_{low} \ge f(x_{0}) - f(x_{T(\varepsilon)-1}) = \sum_{k=0}^{T(\varepsilon)-2} f(x_{k}) - f(x_{k+1})$$

$$\ge (T(\varepsilon) - 1)C(L)\varepsilon^{\frac{p+1}{p}}$$

$$\Longrightarrow T(\varepsilon) \le 1 + \frac{f(x_{0}) - f_{low}}{C(L)}\varepsilon^{-\frac{p+1}{p}} \equiv \mathcal{O}\left(\varepsilon^{-\frac{p+1}{p}}\right)$$
(2.9)

Gradient descent without gradient

For this problem consider an adversarial attack on block-based image classifier. We have a machine learning model that given an image $a \in \mathbb{R}^p$ it returns $c(a) \in \mathbb{R}^m$, where $c_j(a) \in [0,1]$ is the probability of image a to be in class j. The classifier prediction is: $j(a) = \arg\max_{j \in [1,...,m]} c_j(a)$.

Given x_k let us decide:

$$x_{k+1} = x_k - \frac{1}{\sigma} g_{h_k}(x_k)$$
 $h_k > 0, \, \sigma > 0$ (3.1)

where $g_{h_k}(x_k) \in \mathbb{R}^n$ is given by:

$$[g_{h_k}(x_k)]_j = \frac{f(x_k + he_j) - f(x_k)}{h_k} \quad \forall j \in [1, \dots, m]$$
 (3.2)

Suppose that $f \in \mathcal{C}_L^1(\mathbb{R}^n)$. Then,

$$\|\nabla f(x_k) - g_{h_k}(x_k)\| \le \frac{L\sqrt{n}}{2}h_k$$
 (3.3)

Thus

$$f(x_{k+1}) \leq f(x_k) + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} \| x_{k+1} - x_k \|^2$$

$$= f(x_k) + \langle g_{h_k}(x_k), x_{k+1} - x_k \rangle + \frac{\sigma}{2} \| x_{k+1} - x_k \|$$

$$+ \langle \nabla f(x_k) - g_{h_k}(x_k), x_{k+1} - x_k \rangle + \frac{(L - \sigma)}{2} \| x_{k+1} - x_k \|^2$$

$$\leq f(x_k) - \frac{1}{\sigma} \| g_{h_k}(x_k) \|^2 + \frac{1}{2\sigma} \| g_{h_k}(x_k) \|^2$$

$$+ \| \nabla f(x_k) - g_{h_k}(x_k) \| \frac{1}{\sigma} \| g_{h_k}(x_k) \| + \frac{(L - \sigma)}{2\sigma^2} \| g_{h_k} \|^2$$

$$\leq f(x_k) - \frac{1}{2\sigma} \| g_{h_k}(x_k) \|^2 + \frac{L\sqrt{n}}{2} h_k \frac{1}{\sigma} \| g_{h_k} \| + \frac{(L - \sigma)}{2\sigma^2} \| g_{h_k} \|^2$$

$$\leq f(x_k) - \frac{1}{2\sigma} \| g_{h_k}(x_k) \|^2 + \frac{L}{2} \left(\frac{nh_k^2}{2} + \frac{1}{2\sigma} \| g_{h_k}(x_k) \|^2 \right) + \frac{(L - \sigma)}{2\sigma^2} \| g_{h_k} \|^2$$

$$= f(x_k) - \left(\frac{2\sigma - L - 2(L - \sigma)}{4\sigma^2} \right) \| g_{h_k}(x_k) \|^2 + \frac{Ln}{4} h_k^2$$

$$= f(x_k) - \frac{(4\sigma - 3L)}{4\sigma} \| g_{h_k}(x_k) \|^2 + \frac{Ln}{4} h_k^2$$

$$(3.4)$$

$$\implies \frac{(4\sigma - 3L)}{4\sigma} \|g_{h_k}(x_k)\|^2 \le f(x_k) - f(x_{k+1}) + \frac{Ln}{4} h_k^2$$
 (3.5)

If $\sigma \gg L$, then

$$\frac{1}{4\sigma} \|g_{h_k}(x_k)\|^2 \le f(x_k) - f(x_{k+1}) + \frac{\sigma n}{4} h_k^2$$
(3.6)

On the other hand, we have

$$\|\nabla f(x_k)\| \le \|\nabla f(x_k) - g_{h_k}(x_k)\| + \|g_{h_k}(x_k)\|$$

$$\le \frac{L\sqrt{n}}{2}h_k + \|g_{h_k}(x_k)\|$$
(3.7)

Using Trick n°3

$$\implies \|\nabla f(x_k)\|^2 \le 2\left(\frac{L\sqrt{n}}{2}h_k\right)^2 + 2\|g_{h_k}(x_k)\|^2$$

$$\le \frac{L^2n}{2}h_k^2 + 2\|g_{h_k}(x_k)\|^2$$
(3.8)

$$\implies \frac{1}{8\sigma} \|\nabla f(x_k)\|^2 \le \frac{L^2 n}{16\sigma} h_k^2 + \frac{1}{4\sigma} \|g_{h_k}(x_k)\|^2 \tag{3.9}$$

$$\Longrightarrow \frac{1}{8\sigma} \|\nabla f(x_k)\|^2 \le f(x_k) - f(x_{k+1}) + \frac{\sigma n}{4} h_k^2 + \frac{\sigma n}{16} h_k^2 \tag{3.10}$$

Let $T(\varepsilon) = \inf\{k \in \mathbb{N} : \|\nabla f(x_k)\| \le \varepsilon\}$, with f(x) bounded below by f_{low} , summing up (3.10) for $k = 0, \ldots, T(\varepsilon) - 1$:

$$\frac{T(\varepsilon)}{8\sigma}\varepsilon^2 \le f(x_0) - f_{low} + \frac{5\sigma n}{4} \sum_{k=0}^{T(\varepsilon)-1} h_k^2 \tag{3.11}$$

If $\{h_k^2\}$ is summable

$$\Longrightarrow T(\varepsilon) \le 8\sigma(f(x_0) - f_{low} + \frac{5\sigma n}{4} \sum_{k=0}^{T(\varepsilon) - 1} h_k^2)\varepsilon^2 = O(\varepsilon^2)$$
 (3.12)

In terms of call to the oracle, we have a complexity bound of $O(n\varepsilon^2)$

Local rate of convergence for the GM and Newton's method

4.1 Linear rate of GM

Let $f \in C^{2,2}_M(\mathbb{R}^n)$. Assume f has a local minimizer x^* such that

$$\mu I_n \preceq \nabla^2 f(x^*) \preceq M I_n \tag{4.1}$$

Let $x_{k+1} = x_k - \frac{1}{L}\nabla f(x_k)$ for a given $x_0 \in \mathbb{R}^n$

Notice that

$$\nabla f(x_k) = \nabla f(x_k) - \nabla f(x^*)$$

$$= \int_0^1 \nabla^2 f(x^* + \tau(x_k - x^*))(x_k - x^*) d\tau$$

$$= \int_0^1 \nabla^2 f(x^* + \tau(x_k - x^*)) d\tau(x_k - x^*)$$

$$= G_k(x_k - x^*)$$
(4.2)

Then,

$$||x_{k+1} - x^*|| = ||x_k - \frac{1}{L} \nabla f(x_k) - x^*||$$

$$= ||(I_n - \frac{1}{L} G_k)(x_k - x^*)||$$

$$\leq ||I_n - \frac{1}{L} G_k|| ||x_k - x^*||$$
(4.3)

Since $f \in C_M^{2,2}(\mathbb{R}^n)$, we have $\|\nabla^2 f(x^* + \tau(x_k - x^*)) - \nabla^2 f(x^*)\| \le \tau M \|x_k - x^*\|$ and using this we get:

$$|\langle \nabla^2 f(x^* + \tau(x_k - x^*)) - \nabla^2 f(x^*)v, v \rangle| \le \tau M \|x_k - x^*\| \|v\|^2 \quad \forall v \in \mathbb{R}^n$$
 (4.4)

Using the bound (4.1) and the previous inequality, we get:

$$\tau M \|x_{k} - x^{*}\| \|v\|^{2} \leq |\langle \nabla^{2} f(x^{*} + \tau(x_{k} - x^{*})) - \nabla^{2} f(x^{*}) v, v \rangle| \leq \tau M \|x_{k} - x^{*}\| \|v\|^{2}$$

$$(4.5)$$

$$\nabla^{2} f(x^{*}) - \tau M \|x_{k} - x^{*}\| I_{n} \leq \nabla^{2} f(x^{*} + \tau(x_{k} - x^{*})) \leq \nabla^{2} f(x^{*}) + \tau M \|x_{k} - x^{*}\| I_{n}$$

$$(4.6)$$

$$(\mu - \tau M \|x_{k} - x^{*}\|) I_{n} \leq \nabla^{2} f(x^{*} + \tau(x_{k} - x^{*})) \leq (L + \tau M \|x_{k} - x^{*}\|) I_{n}$$

$$(4.7)$$

By the properties of the semi-definite matrices, and the trick (5.2), we have:

$$\int_{0}^{1} (\mu - \tau M \|x_{k} - x^{*}\|) \|v\|^{2} d\tau \leq \int_{0}^{1} \langle \nabla^{2} f(x^{*} + \tau (x_{k} - x^{*})) v, v \rangle d\tau
\leq \int_{0}^{1} (L + \tau M \|x_{k} - x^{*}\|) \|v\|^{2} d\tau \quad \forall v \in \mathbb{R}^{n}$$
(4.8)

By using G_k and some constants, we get:

$$-\frac{1}{L}(L + \frac{M}{2}||x_k - x^*||)I_n \le -\frac{1}{L}G_k \le -\frac{1}{L}(\mu - \frac{M}{2}||x_k - x^*||)I_n$$
 (4.9)

$$\left(1 - \frac{1}{L}(L + \frac{M}{2}||x_k - x^*||)\right) I_n \leq I_n - \frac{1}{L}G_k \leq \left(1 - \frac{1}{L}(\mu - \frac{M}{2}||x_k - x^*||)\right) I_n \quad (4.10)$$

And finally, we get:

$$||I_{n} - \frac{1}{L}G_{k}|| \leq \max\{|1 - \frac{1}{L}(L + \frac{M}{2}||x_{k} - x^{*}||)|, |1 - \frac{1}{L}(\mu - \frac{M}{2}||x_{k} - x^{*}||)|\}$$

$$= \max\{\frac{M}{2L}||x_{k} - x^{*}||, 1 - \frac{\mu}{L} + \frac{M}{2L}||x_{k} - x^{*}||\}$$

$$= 1 - \frac{\mu}{L} + \frac{M}{2L}||x_{k} - x^{*}||$$

$$(4.11)$$

4.2 Local quadratic convergence of Newton's method

Tips and Tricks

• Approximation of the max:

$$\max\{z,0\} = \frac{z+|z|}{2} = \frac{z+\sqrt{z^2}}{2} \approx \frac{z+\sqrt{z^2+\delta}}{2}$$
 (5.1)

- $ab \leq \frac{a^2+b^2}{2}$
- $\bullet \ (a+b)^2 \le 2a^2 + 2b^2$

•

$$\langle xv, v \rangle \le \|x\| \|v\|^2 \tag{5.2}$$