Compton Scattering Experiment

Introduction

The collision of a gamma ray with a free electron is explained by the Compton interaction. The gamma ray is scattered by the electron, transferring some of its energy to the electron in the process. In the first part of this experiment the energy of the scattered gamma ray is measured as a function of the scattering angle. In part two the differential cross-section for Compton scattering is measured as a function of the scattering angle and the results are compared with theoretical predictions.

Equipment

137Cs gamma ray source Radioactive

2" × 2" NaI(Tl) scintillation detector

Photomultiplier tube and amplifier High voltage

Software – Maestro-32

Part 1: Energy Determination

Theory

The kinematic equations that describe the Compton interaction are exactly the same equations governing the collision of two billiard balls. Figure 1 shows the interaction schematically.

Figure 1: Scattering caused by Compton interaction.

In this figure, a gamma ray of energy E_{γ} scatters from an electron with an energy $E_{\gamma'}$ and a scattering angle θ . The energy that the electron gains in the collision is E_{e} and its scattering angle is ϕ . During the interaction both energy and momentum are conserved.

Conservation of energy:
$$E_y = E_{y'} + E_{e}$$
 (1)

Conservation of momentum:
$$x \text{ direction } \frac{hf}{c} = \frac{hf}{c} \cos(\theta) + mv \cos(\phi)$$
 (2)

y direction
$$0 = \frac{hf}{c}\sin(\theta) - mv\sin(\phi)$$
 (3)

In the above equations: $E_{\gamma} = hf$ and $E_{\gamma'} = hf'$

$$E_e = mc^2 - m_0c^2$$

$$m = m_0/(1 - v^2/c^2)^{-1/2}$$

where m_0 is the rest mass of the electron and v is the velocity of the recoil electron.

Solving these equations for $E_{y'}$ gives:

$$E_{\gamma'} = \frac{E_{\gamma}}{1 + \frac{E\gamma}{m_0 c^2} (1 - \cos(\theta))}$$
 (4)

Using MeV for the units of energy m_0c^2 is equal to 0.511 MeV and E_{γ} is equal to 0.662 MeV for the ¹³⁷Cs source used in this experiment. Substituting these values into Equation 4 gives:

$$E_{y} = \frac{0.662}{1 + 1.295 (1 - \cos(\theta))}$$
 (5)

or written in terms of 1/E_y, we get:

$$\frac{1}{E_{y'}} = 1.51 + 1.956 (1 - \cos(\theta)) \tag{6}$$

Therefore a plot of $1/E_{\gamma'}$ against $(1-\cos(\theta))$ should yield a straight line with a y-intercept of 1.51 and a slope of 1.956.

Procedure

A schematic diagram of the apparatus used in this experiment is shown in Figure 2. As mentioned previously, the source used in this experiment is a high activity ¹³⁷Cs source, which is surrounded by a lead shield. The source aperture should only be open when the source is in use. The scattering sample is placed directly in front of the source aperture and the NaI(Tl) detector is on a movable arm pivoted about the centre of the scattering sample. The detector, scattering sample and source aperture must be aligned in the same horizontal plane.

CALIBRATION?

For scattering angles (θ) between 20° and 100°, in steps of 5°, measure the gamma spectra. The spectra should be counted until at least 10 000 net counts have amassed under the photopeak. Record the energy of the scattered gamma ray corresponding to each angle.

Analysis

Plot $1/E_{\gamma'}$ against $(1-\cos(\theta))$ and determine the slope and intercept. Plot the calculated results (from Equation 6) on the same graph and compare.

Calibration

Calibration Source	Energy of Photopeak (keV)	Channel number
Am-241	59.5	
Ba-133	303 356	
Cs-137	662	

Calibration:

Calibration Source	Energy of Photopeak (keV)	Channel number
Ba-133	276.4 302.9 356.0 383.9	
Cs-137	661.7	
⁻ Co-60	1173 1332	

Part 2: Cross-Section Determination

Theory

The differential cross-section for Compton scattering (i.e. the probability that an incident photon is Compton scattered at an angle θ) can be calculated using the *Klein-Nishina* formula:

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\text{theory}} = \frac{\mathrm{r_0}^2}{2} \left\{ \frac{1 + \cos^2\theta}{\left[1 + \alpha\left(1 - \cos\theta\right)\right]^2} \right\} \times \left\{ 1 + \frac{\alpha^2 \left(1 - \cos\theta\right)^2}{\left(1 + \cos^2\theta\right)\left(1 + \alpha\left[1 - \cos\theta\right]\right)} \right\}, \left(\frac{\mathrm{cm}^2}{\mathrm{sr}}\right) \tag{7}$$

where

 $r_0 = 2.82 \times 10^{-13}$ cm (classical electron radius),

$$\alpha = \frac{E_{y}}{m_{0}c^{2}} = \frac{0.662 \text{ MeV}}{0.511 \text{MeV}} = 1.29 \text{ for } ^{137}\text{Cs},$$

 $d\Omega$ = the measured solid angle in steradians

Procedure

For the spectra counted in part 1 determine the NET counts under the photopeak (and the associated error) for each angle measured and record the time each angle was counted for.

Analysis

The measured differential cross-section can be calculated using the following equation:

$$\left(\frac{\partial \sigma}{\partial \Omega}\right)_{\text{measured}} = \frac{\Sigma_{\gamma}}{N \Delta \Omega I} \tag{8}$$

where

 Σ_{γ} = sum under the photopeak divided by the counting time and divided by the intrinsic peak efficiency (see Appendix A)

N = number of electrons in the scattering sample

= (mass of scattering rod) (atomic no.) (Avogadro's no.)
(atomic mass)

 $\Delta\Omega$ = solid angle of the detector in steradians

$$= \frac{\text{area of detector } (\text{cm}^2)}{(R_2 (\text{cm}))^2}$$

I = the number of incident gamma rays per cm² per s at the scattering sample = 1.013×10^6 e^{-(V43.48)} Bq cm⁻² (where t is the time in years since August 1977)

Plot the theoretical and measured differential cross-section against scattering angle and compare.

Note:

Radius of detector = 2.5 cm R_2 = distance from detector to the scattering sample \approx 26 cm Mass of scattering rod = 79.3 g

References:

Introduction to Nuclear Physics, K.S. Krane

