IN THE CLAIMS

CLAIMS

What is claimed is:

1	1.	(currently amended) A method for correcting signals received from an earth				
2		formation using a Nuclear Magnetic Resonance (NMR) tool into in a borehole in				
3		said earth formation, the method comprising:				
4		(a) exciting said earth formation with a first pulse sequence having a first				
5		recovery time;				
6		(b) exciting said earth formation with a plurality of additional pulse sequence				
7		having a second recovery time less than said first recovery time;				
8		(c) determining from spin echo signals resulting from said additional pulse				
9		sequences an estimate of a non-formation signal; and				
10		(d) correcting spin echo signals resulting from said first pulse sequence using				
11		said estimate and obtaining corrected spin ceho signals.				
12						
1	2.	(original) The method of claim 1 wherein at least one of said additional pulse				
2		sequences has a duration less than a duration of said first pulse sequence.				
3						
1	3.	(original) The method of claim 1 wherein said second recovery time corresponds				
2		to partial recovery of nuclear spins in said earth formation.				
3						
. 1	4.	(original) The method of claim 1 wherein said additional pulse sequences				
2		comprise clay bound water (CBW) sequences.				

3

- 5. 1 (original) The method of claim 1 wherein said additional pulse sequences have
- 2 durations less than 40 ms.

3

- 1 6. (original) The method of claim 1 wherein said first pulse sequence and said
- 2 additional pulse sequences comprise CPMG sequences.

Fax:7132668510

3

- 1 7. (original) The method of claim 1 wherein said first pulse sequence and said
- 2 additional pulse sequences comprise modified CPMG sequence having a tip angle
- 3 of a refocusing pulse that is less than 180°.

4

- 1 8. (original) The method of claim 1 wherein said additional pulse sequences
- 2 comprise pulse sequences having a plurality of pairs of phase alternated pairs
- 3 (PAP) of pulse sequences.

4

- 1 9. (original) The method of claim 6 wherein said plurality of pairs of PAP sequences
- 2 have a specified phase relationship to each other.

3

- 1 10. (original) The method of claim 8 wherein the number of said pairs of PAP
- 2 sequences nf, frequency shift between said pairs of PAP sequences δf are related
- 3 according to:
- $nf \cdot \delta f = \frac{m}{t}$ 4
- 5 where m is any integer that is not a multiple of nf.

10/827,183

6

1 11. (original) The method of claim 8 wherein said non-formation signal comprises a 2 ringing from a refocusing pulse.

3

1 12. (original) The method of claim 8 wherein said non-formation signal comprises a 2 ringing from an excitation pulse.

3

- 1 13. (original) The method of claim 11 wherein estimating said ringing from said 2 refocusing pulse further comprises:
- 3 (i) separately estimating a ringing from each one of said plurality of phase 4 alternated pairs;
- 5 (ii) forming a vector sum of said separate estimates.

Fax:7132668510

6

- 1 14. (original) The method of claim 12 wherein estimating said ringing from said 2 excitation pulse further comprises:
- 3 separately estimating an echo signal from each one of said plurality of (i) 4 phase alternated pairs; and
- (ii) 5 forming a vector sum of said separate estimates of said echo signal.

б

4

1 15. (currently amended) The method of claim 1 further comprising processing said 2 corrected spin echo signals for determining at least one of (i) a T₂ distribution, (ii) 3 total porosity, (iii) bound volume irreducible, (iv) a T₁ distribution, (v) clay bound

water, and, (vi) bound water moveable, and (vii) a sum of echos.

10/827,183

5

1	16.	(original) The method of claim 1 further comprising conveying said NMR tool						
2		into s	into said earth formation on one of (i) a wireline, (ii) a drilling tubular, and, (iii)					
3		slickl	slickline.					
4								
1	17.	(origi	nal) The method of claim 1 further comprising:					
2		(i)	exciting said earth formation with a second pulse sequence having a					
3			recovery time substantially equal to said first recovery time, said second					
4			pulse sequence forming a phase alternated pair with said first pulse					
5			sequence; and					
6		(ii)	determining from spin echo signals resulting from said first and second					
7			pulse sequences an additional estimate of said non-formation signal.					
8								
1	18.	(origin	nal) The method of claim 17 further comprising:					
2		(A)	comparing said estimate and said additional estimate of said non-					
3			formation signal; and					
4		(B)	using a result of said comparison as an indication of a change in said earth					
5			formation between positions of said NMR tool at excitation with said first					
6			and second pulse sequences.					
7								
1	19.	(currently amended) An apparatus for conducting logging operations in a borehold						
2		in an earth formation, the apparatus comprising:						

3		(a)	a ma	gnet on a Nuclear Magnetic Resonance (NMR) tool for polarizing
4			whic	h polarizes nuclear spins in a region of interest in the earth formation
5		(b)	an an	tenna on the NMR tool for which:
6			(A)	exciting excites said earth formation with a first pulse sequence
7				having a first recovery time;
8			(B)	exciting excites said earth formation with a plurality of additional
9		٠.		pulse sequences having a recovery time less than said first
10				recovery time;
11		(c)	a pro	cessor for which:
12			(C)	determining determines from spin echo signals resulting from said
13				additional pulse sequences an estimate of a non-formation signal,
14				and
15			(D).	correcting corrects spin echo signals resulting from said first pulse
16				sequence using said estimate and obtaining corrected spin ocho
17				signals.
18				
1	20.	(origi	nal) The	e apparatus of claim 19 wherein said additional pulse sequences
2		compr	rise clay	y bound water (CBW) sequences.
3				
1	21.	(origin	nal) The	e apparatus of claim 19 wherein said additional pulse sequences have
2		duratio	ons less	s than 40 ms.
3				

(original) The apparatus of claim 19 wherein said first pulse sequence and said
additional pulse sequences comprise CPMG sequences.

3

- 1 23. (original) The apparatus of claim 19 wherein said first pulse sequence and said
- 2 additional pulse sequences comprise modified CPMG sequence having a tip angle
- 3 of a refocusing pulse that is less than 180°.

4

- 1 24. (original) The apparatus of claim 19 wherein said additional pulse sequences
- 2 comprise pulse sequences having a plurality of pairs of phase alternated pairs
- 3 (PAP) of pulse sequences.

4

- 1 25 (original) The apparatus of claim 24 wherein said plurality of pairs of PAP
- 2 sequences have a specified phase relationship to each other.

3

- 1 26 (original) The apparatus of claim 24 wherein the number of said pairs of PAP
- 2 sequences nf, frequency shift between said pairs of PAP sequences δf are related
- 3 according to:

$$4 nf \cdot \delta f = \frac{m}{t}$$

5 where m is any integer that is not a multiple of nf.

6

- 1 27 (original) The apparatus of claim 24 wherein said non-formation signal comprises
- a ringing caused by a refocusing pulse.

3

10/827,183

1	28	(original) The apparatus of claim 24 wherein said non-formation signal comprises				
2		a ringing caused by an excitation pulse.				
3						
1	29	(currently amended) The apparatus of claim 24 wherein said processor estimates				
2		said ringing caused by said an refocusing pulse by:				
3		(i) separately estimating a ringing from each one of said plurality of phase				
4		alternated pairs;				
5		(ii) forming a vector sum of said separate estimates.				
6						
1	30	(currently amended) The apparatus of claim 25 wherein said processor estimates				
2		said ringing caused by said an excitation pulse by:				
3		(i) separately estimating an echo signal from each one of said plurality of				
4		phase alternated pairs; and				
5		(ii) forming a vector sum of said separate estimates of said echo signal.				
6						
ı	31	(currently amended) The apparatus of claim 21 wherein said processor further				
2		determines from said corrected spin echo signals at least one of (i) a T2				
3		distribution, (ii) total porosity, (iii) bound volume irreducible, (iv) bound water				
4		movable, (v) clay bound water, and, (vi) a T1 distribution, and (vii) a sum of				
5		echos.				

10/827,183 8

6

Apr 8 '05 15:09

1	32.	(currently amended) The apparatus of claim 19 further comprising a conveyance
2		device for conveying said NMR tool into said borehole, said conveyance device
3		selected from (i) a wireline, (ii) a drilling tubular, and, (iii) a slickline slickline
4		
1	33.	(currently amended) The apparatus of claim 45 19 wherein said transmitter further
2		excites said earth formation with a second pulse sequence having a recovery time
3		substantially equal to said first recovery time, said second pulse sequence forming
4		a phase alternated pair with said first pulse sequence; and wherein said processor
5		further determines from spin echo signals resulting from said first and second
6		pulse sequences an additional estimate of said non-formation signal.
7		
1	34.	(original) The apparatus of claim 33 wherein said processor further:
2		(i) compares said estimate and said additional estimate of said non-
3		formation signal; and
4		(ii) provides an indication of a change in said earth formation between
5		positions of said NMR tool at excitation with said first and second pulse
6		sequences.