ЛАБОРАТОРНАЯ РАБОТА №12 ФОКУСИРОВКА И ГРАДУИРОВКА СПЕКТРОГРАФА ИСП-51

Поляков Даниил, 19.Б23-ф3

Цель работы: сфокусировать спектрограф, подобрав наилучший угол поворота фотоэлектрической кассеты и наилучшее положение объектива камеры, получить спектр излучения неона, расшифровать полученный спектр, построить график зависимости обратной линейной дисперсии от длины волны.

Схема установки

Рисунок 1. Оптическая схема спектрографа ИСП-51

1 — входная щель;

2 — ахроматический объектив коллиматора;

3, 5 — призмы с преломляющим углом 63°;

4 — призма Аббе;

6 — объектив камеры;

7 — фокальная поверхность объектива камеры.

Расчётные формулы

• Координата пикселя ПЗС-линейки:

• Разность координат соседних спектральных линий:

$$\Delta x_i = x_{i+1} - x_i$$

• Разность длин волн соседних спектральных линий:

$$\Delta \lambda_i = \lambda_{i+1} - \lambda_i$$

• Средняя длина волны:

$$\langle \lambda \rangle_i = \frac{\lambda_i + \lambda_{i+1}}{2}$$

• Обратная линейная дисперсия спектрографа:

$$\Lambda = \frac{\Delta \lambda}{\Delta x}$$
 $\Delta \lambda$ — разность длин волн соседних спектральных линий; Δx — разность координат соседних спектральных линий.

• Волновое число:

$$v = \frac{1}{n\lambda}$$
 $n = 1.00029$ — показатель преломления воздуха; λ — длина волны.

Порядок измерений

- 1. Запускаем программу «Spectral Page». Устанавливаем минимальный диаметр диафрагмы. Включаем лампу и запускаем измерения. Устанавливаем такое время накопления, при котором наибольшая измеряемая интенсивность не выходит за предел измерений прибора.
- 2. Выключаем лампу и измеряем шум для вычитания из последующих измерений. Поворачивая фотоэлектрическую кассету, добиваемся такого её положения, при котором интенсивность крайних длин волн (слева и справа) синхронно изменяется во время перемещения объектива камеры. Снимаем полученное значение угла поворота кассеты.
- 3. Далее подбираем такое положение объектива камеры, при котором измеряемая интенсивность максимальна. Подбираем соответствующее время накопления.
- 4. Теперь спектрограф сфокусирован, и можно непосредственно переходить к измерению спектра. Устанавливаем программу в режим усреднения по 100 кадрам и, выключив лампу, снова измеряем шум. Включаем лампу и измеряем спектр для трёх диаметров диафрагмы: 3 мм, 10 мм, 30 мм.

Результаты

<u>Примечание</u>: построение графиков и аппроксимация зависимостей выполнены с помощью ПО MATLAB.

- Ширина щели спектрографа: 6 мкм;
- Угол поворота фотоэлектрической кассеты: 12.6°;
- Время накопления: 100 мс.

График 1. Спектр излучения неоновой лампы при диаметре диафрагмы 3 мм

График 2. Спектр излучения неоновой лампы при диаметре диафрагмы 10 мм

График 3. Спектр излучения неоновой лампы при диаметре диафрагмы 30 мм

Фокусировка спектрографа была проведена успешно: спектр получился дискретным, а максимумы интенсивностей чётко совпали с определёнными пикселями ПЗС-линейки. Теперь сравним полученный спектр с атласом и сопоставим пиксели ПЗС-линейки с длинами волн.

Таблица. Спектральные линии неона

N	λ, нм	X, MM	Δλ, нм	Δx , mm	$\langle \lambda angle$, HM	Λ , HM/MM
407	556.277	3.256	9.389	1.624	560.972	5.781
610	565.666	4.880	0.589	0.096	565.961	6.135
622	566.255	4.976	2.727	0.456	567.619	5.980
679	568.982	5.432	2.941	0.472	570.453	6.231
738	571.923	5.904	2.907	0.464	573.377	6.265
796	574.830	6.368	1.612	0.248	575.636	6.500
827	576.442	6.616	4.003	0.608	578.444	6.584
903	580.445	7.224	1.571	0.240	581.231	6.546
933	582.016	7.464	3.233	0.480	583.633	6.735
993	585.249	7.944	2.034	0.288	586.266	7.062
1029	587.283	8.232	0.907	0.136	587.737	6.669
1046	588.190	8.368	2.056	0.288	589.218	7.139
1082	590.246	8.656	0.397	0.056	590.445	7.089
1089	590.643	8.712	0.720	0.104	591.003	6.923
1102	591.363	8.816	0.528	0.072	591.627	7.333
1111	591.891	8.888	2.592	0.360	593.187	7.200
1156	594.483	9.248	2.064	0.280	595.515	7.371
1191	596.547	9.528	1.006	0.136	597.050	7.397
1208	597.553	9.664	1.238	0.168	598.172	7.369
1229	598.791	9.832	0.374	0.048	598.978	7.792
1235	599.165	9.880	0.928	0.120	599.629	7.733
1250	600.093	10.000	2.907	0.384	601.547	7.570
1298	603.000	10.384	3.454	0.440	604.727	7.850
1353	606.454	10.824	0.980	0.128	606.944	7.656
1369	607.434	10.952	2.182	0.272	608.525	8.022
1403	609.616	11.224	4.690	0.576	611.961	8.142
1475	614.306	11.800	2.053	0.248	615.333	8.278
1506	616.359	12.048	1.856	0.216	617.287	8.593
1533	618.215	12.264	2.363	0.280	619.397	8.439
1568	620.578	12.544	1.150	0.136	621.153	8.456
1585	621.728	12.680	2.945	0.336	623.201	8.765
1627	624.673	13.016	1.977	0.224	625.662	8.826
1655	626.650	13.240	2.724	0.304	628.012	8.961
1693	629.374	13.544	1.105	0.120	629.927	9.208
1708	630.479	13.664	2.964	0.320	631.961	9.262
1748	633.443	13.984	4.856	0.520	635.871	9.338
1813	638.299	14.504	1.926	0.200	639.262	9.630
1838	640.225	14.704	10.428	1.048	645.439	9.950

N	λ, нм	X, MM	Δλ, нм	Δx , mm	$\langle \lambda angle$, hm	Λ , HM/MM
1969	650.653	15.752	2.635	0.256	651.971	10.293
2001	653.288	16.008	6.607	0.624	656.592	10.588
2079	659.895	16.632	5.314	0.488	662.552	10.889
2140	665.209	17.120	2.619	0.240	666.519	10.913
2170	667.828	17.360	3.876	0.336	669.766	11.536
2212	671.704	17.696	21.243	1.760	682.326	12.070
2432	692.947	19.456	9.458	0.728	697.676	12.992
2523	702.405	20.184	0.836	0.064	702.823	13.063
2531	703.241	20.248	2.670	0.200	704.576	13.350
2556	705.911	20.448	11.483	0.824	711.653	13.936
2659	717.394	21.272	7.123	0.488	720.956	14.596
2720	724.517	21.760	19.373	1.256	734.204	15.424
2877	743.890	23.016	3.354	0.208	745.567	16.125
2903	747.24	23.224	1.643	0.096	748.066	17.115
2915	748.887	23.320	4.690	0.288	751.232	16.285
2951	753.577	23.608	0.827	0.048	753.991	17.229
2957	754.404	23.656	39.914	2.192	774.361	18.209
3231	794.318	25.848	13.928	0.688	801.282	20.244
3317	808.246	26.536	3.609	0.168	810.051	21.482
3338	811.855	26.704	1.786	0.088	812.748	20.295
3349	813.641	26.792	12.967	0.600	820.125	21.612
3424	826.608	27.392	3.425	0.152	828.321	22.533
3443	830.03	27.544	7.728	0.336	833.897	23.000
3485	837.761	27.880	4.082	0.176	839.802	23.193
3507	841.843	28.056	4.493	0.192	844.090	23.401
3531	846.336	28.248	3.200	0.136	847.936	23.529
3548	849.536	28.384	4.934	0.208	852.003	23.721
3574	854.470	28.592	2.665	0.104	855.803	25.625
3587	857.135	28.696	1.991	0.080	858.131	24.887
3597	859.126	28.776	4.339	0.176	861.296	24.653
3619	863.465	28.952	1.973	0.080	864.452	24.662
3629	865.438	29.032	2.511	0.104	866.694	24.144
3642	867.949	29.136	_	_	_	_

Всего удалось выделить 71 линий спектра.

График 4. Градуировочная кривая спектрального прибора

Зависимость $\lambda(N)$ успешно аппроксимируется полиномом 3-го порядка. Уравнение аппроксимирующего полинома:

$$y = 5.006 \cdot 10^{-9} x^3 - 8.907 \cdot 10^{-6} x^2 + 0.05803 x + 532.0$$

Зависимость обратной линейной дисперсии прибора от длины волны

Зависимость $\varLambda(\langle\lambda\rangle)$ успешно аппроксимируется полиномом 2-го порядка. Уравнение аппроксимирующего полинома:

$$y = 5.886 \cdot 10^{-5} x^2 - 0.01996 x - 1.646$$

График 6. Спектр излучения неоновой лампы по длинам волн при диаметре диафрагмы 3 мм

График 7. Спектр излучения неоновой лампы по волновым числам при диаметре диафрагмы 3 мм

Спектр по ν перевёрнут относительно спектра по λ , а также расположен немного ближе к центру. Помимо этого, расстояние между соседними линиями немного увеличилось.

Выводы

В ходе работы была успешно проведена фокусировка спектрографа. Всего удалось зафиксировать 71 спектральных линий. Длины волн распределены по ПЗС-линейке неравномерно.