WhatsApp: +212707668863

Primitives

I. Primitive d'une fonction sur un intervalle

Activité

Soient f et F deux fonctions définies sur \mathbb{R} par $f(x) = 5x^3 - 3x + 2$ et $F(x) = \frac{5}{4}x^4 - \frac{3}{2}x^2 + 2x$.

- 1. Vérifier que F est dérivable sur \mathbb{R} et que F'(x) = f(x) pour tout réel x. On dit que la fonction F est une primitive de f sur \mathbb{R} .
- 2. Montrer que $G(x) = \frac{5}{4}x^4 \frac{3}{2}x^2 + 2x 4$ est aussi une primitive de f sur \mathbb{R} . Si F est une primitive de f sur I, alors F + c est aussi une fonction primitive de f sur I avec $c \in \mathbb{R}$.
- 3. Déterminer une primitive H de la fonction f tel que H(1) = 0.

Définition

Soient f et F deux fonctions définies sur un intervalle I de \mathbb{R} . On dit que F est une **primitive** de la fonction f sur I, si F est dérivable sur I et pour tout $x \in I : F'(x) = f(x)$.

Exemples

- La fonction $x \mapsto 5x + 4$ est une primitive sur \mathbb{R} de $x \mapsto 5$.
- La fonction $x \mapsto x^2 + 2x + 3$ est une primitive sur \mathbb{R} de $x \mapsto 2x + 2$.
- La fonction $x \mapsto 2\sqrt{x} + 7$ est une primitive sur $]0; +\infty[$ de $x \mapsto \frac{1}{\sqrt{x}}$.

Propriété

Toute fonction continue sur un intervalle I admet une primitive sur I.

Application

Montrer que la fonction $x \mapsto x\sqrt{x} + 1 + \cos(x)$ sur admet une primitive sur $I = [-1, +\infty[$.

Propriété

Soit F une fonction primitive d'une fonction f sur I.

- L'ensemble des primitives de f sur I est l'ensemble des fonctions $x \mapsto F(x) + c$ tel que $c \in \mathbb{R}$.
- Pour tout $x_0 \in I$ et $y_0 \in \mathbb{R}$, il existe une unique primitive G de f sur I vérifiant $G(x_0) = y_0$.

Application

- 1. Déterminer l'ensemble des primitives des fonctions f et g sur l'intervalle I à déterminer sachant que $f(x) = x^4 3x^3 + 5$ et $g(x) = \frac{1}{2\sqrt{x}} + \frac{1}{x^2}$.
- 2. Déterminer la primitive F de la fonction f sur \mathbb{R} , qui vérifie la condition indiquée : $f(x) = 4x^3 5x^2 + 8x 7$ et F(1) = 0.

II. Tableau des primitives usuelles

Fonction	Primitives
$x \mapsto 0$	$x \mapsto c$
$x \mapsto a (a \in \mathbb{R})$	$x \mapsto ax + c$
$x \mapsto x^n (n \in \mathbb{N}^*)$	$x \mapsto \frac{1}{n+1}x^{n+1} + c$
$x \mapsto x^r (r \in \mathbb{Q}^* \setminus \{-1\})$	$x \mapsto \frac{1}{n+1}x^{n+1} + c$ $x \mapsto \frac{1}{r+1}x^{r+1} + c$
$\begin{array}{c} x \mapsto \frac{1}{\sqrt{x}} \\ x \mapsto \frac{1}{x^2} \end{array}$	$x \mapsto 2\sqrt{x} + c$
$x \mapsto \frac{1}{x^2}$	$x \mapsto -\frac{1}{x} + c$
$x \mapsto \cos(x)$	$x \mapsto \sin(x) + c$
$x \mapsto \sin(x)$	$x \mapsto -\cos(x) + c$
$x \mapsto 1 + \tan^2(x)$	$x \mapsto \tan(x) + c$
$x \mapsto \cos(ax+b) (a \neq 0)$	$x \mapsto \frac{1}{a}\sin(ax+b) + c$
$x \mapsto \sin(ax+b) (a \neq 0)$	$x \mapsto -\frac{1}{a}\cos(ax+b) + c$
$U' \times U^r (r \in \mathbb{Q}^* \setminus \{-1\})$	$x \mapsto -\frac{1}{a}\cos(ax+b) + c$ $x \mapsto \frac{1}{r+1}U^{r+1} + c$
U'V + UV'	$U \times V + c$
$\frac{U'V-UV'}{V^2}$	$\frac{U}{V} + c$
$\frac{U'}{U^2}$	$-\frac{1}{U}+c$
$\begin{array}{c c} \underline{U'V-UV'} \\ \underline{V'^2} \\ \underline{U'} \\ \underline{U'^2} \\ \underline{U'} \\ \sqrt{U} \end{array}$	$2\sqrt{U} + c$

Application

Déterminer une primitive des fonctions suivantes :

•
$$f_1(x) = 2x^5 - 3x^2 - 1$$
 • $f_4(x) = \sqrt{x+2}$

•
$$f_4(x) = \sqrt{x+2}$$

•
$$f_8(x) = (3x^2 - 1)(x^3 - x)^2$$

•
$$f_2(x) = \frac{1}{x^4} + \frac{2}{\sqrt{x}} - \sqrt[4]{x^3}$$

• $f_5(x) = (2x+1)\sqrt{2x+1}$
• $f_6(x) = \sin(5-2x)$

•
$$f_5(x) = (2x+1)\sqrt{2x+1}$$

•
$$f_9(x) = \cos(x)(\sin(x))^4$$

•
$$f_3(x) = \sqrt{x}(x^2 + 2\sqrt{x})$$
 • $f_7(x) = \cos(3x - 1)$

•
$$f_6(x) = \sin(5 - 2x)$$

• $f_7(x) = \cos(3x - 1)$

•
$$f_{10}(x) = \frac{2x}{\sqrt{x^2+1}}$$