Aflevering om eksponentialfunktioner og eksponentiel vækst

Opgave 1

To funktioner f og g er givet ved henholdsvist

$$f(x) = 0, 7 \cdot (1,04)^x$$
 og $g(x) = 1, 2 \cdot (0,47)^x$.

- i) Hvilke typer funktioner er f og g?
- ii) Hvad er fremskrivningsfaktoren og vækstraten for de to funktioner?
- iii) Hvor skærer de to funktioner y-aksen?
- iv) Er funktionerne voksende eller aftagende?
- v) Hvilken type funktion er produktet af de to funktioner $f \cdot g$? Bestem skæringen med y-aksen for $f \cdot g$.

Opgave 2

Graferne for tre eksponentialfunktioner f, g og h er tegnet på Fig. 1. Forskrifterne for funktionerne er

$$f(x) = 2^x,$$

$$g(x) = 2 \cdot 2^x,$$

$$h(x) = 2 \cdot (0.5)^x.$$

Figur 1: Grafer for de tre funktioner f, g og h.

i) Par funktionerne f, g og h med graferne på Fig. 1. Argumentér ved at bruge betydningen af konstanterne a og b for funktionerne.

Opgave 3

I Tabel 1 er to datapunkter givet.

Tabel 1: To punkter

- i) Brug topunktsformlen for eksponentialvækst til at bestemme forskriften til den eksponentialfunktion f, der skærer de to punkter.
- ii) Bestem fordoblingskonstanten/halveringskonstanten for f.
- iii) Tag den naturlige logaritme l
n af y-værdierne. Dette kan ses af Tabel 2.

$$\begin{array}{c|cc} x & 2 & 5 \\ \hline y & \ln(18) & \ln(486) \end{array}$$

Tabel 2: In-transformation af punkter

- iv) Brug topunktsformlen for lineære funktioner på disse punkter. Du får så et udtryk $y=a\cdot x+b$.
- v) Bestem e^a og e^b . Sammenlign med fremskrivningsfaktoren og skæringen med y-aksen for f.

Opgave 4

Tabel 3 beskriver antallet af bakterier N i en opløsning efter tid t. Enheden for N er mio. bakterier og t er tid i timer.

	0											
N(t)	2,8	3	3	3,4	3,7	4,2	4,7	4,8	5,8	6,4	7,5	9,2

Tabel 3: Bakterievækst

- i) Bestem den eksponentialfunktion $\hat{N},$ der passer bedst på datasættet Tabel 3.
- ii) Hvad er fremskrivningsfaktoren for \hat{N} ? Hvad med skæringen med y-aksen?
- iii) Bestem fordoblingskonstanten for \hat{N} , og fortæl, hvad den betyder for modellen af bakterievæksten.
- iv) Hvor mange bakterier fortæller modellen os, at der er efter et døgn? Hvad med en uge?
- v) Kan vi forvente, at denne model bliver ved med at beskrive den rigtige bakterievækst N(t) for evigt?