Dynamics of Learning and Iterated Games - Concise Notes -

MATH60007

Year 3

Arnav Singh

Content from previous years to be known.

Mathematics Imperial College London United Kingdom October 13, 2022

Contents

		Page
0	Introduction	2
1	Replicator Dynamics for one population	2

0 Introduction

1 Replicator Dynamics for one population

Consider population, where individuals employ one of n pure strategies

- 1. x_i frequency of strategy i in population
- 2. (x_1, \ldots, x_n) a probability vector
- 3. $\Delta_n = \{x \in R; 0 \le x_i \le 1, \sum_{i=1}^n x_i = 1\}$

Take e_i the unit vector in the i^{th} dimension. n often fixed so we write Δ often...

Take a population, with invader who chooses strategy i against a strategy j to recieve payoff a_{ij} .

Given a population uses mixed strategy $(y)_1, \ldots, y_n$, with random matching - givin us the linear payoff

$$a_i(y) = \sum_{j=1} a_{ij} y_j = (Ay)_i$$

For A the matrix (a_{ij}) .

Using a mixed strategy $x \in \Delta$ we have a payoff

$$Payoff(x, y) := x \cdot Ay$$

A probability vector $\hat{x} \in \Delta$ is called a **Nash Equilibrium (NE)** iff

$$x\cdot A\hat{x} \leq \hat{x}, \forall x \in \Delta$$

and a strict Nash Equilibrium if

$$x \cdot A\hat{x} < \hat{x} \cdot A$$

$$\hat{x} = \sum_{x=1}^{\infty}$$