ESCUELA POLITÉCNICA SUPERIOR

Matemáticas II, Grado en Ingeniería Eléctrica

PRIMERA CONVOCATORIA, PRIMERA PARTE

07-06-2024

NOMBRE y APELLIDOS:

Grupo:

PROBLEMA 1:

- **1.A)** [1.5 puntos] Dada la integral $\int_0^{\pi} \frac{\sin x}{\cos^2 x + 4\cos x + 4} dx$, se pide:
 - A.1) Obtener su valor exacto.
 - **A.2)** Obtener un valor aproximado usando el método de los trapecios con n = 3.
- **1.B)** [2 puntos] Considérese el sólido que se forma cuando la región acotada por las curvas $y = x^2 + 1$, y = 1, x = 2 gira alrededor de la recta y = 6. Se pide:
 - B.1) Expresar el volumen del sólido usando el método de discos.
 - B.2) Expresar el volumen del sólido usando el método de capas.

Nota: No hay que calcular las integrales

1.C) [1.5 puntos] Determinar si la integral $\int_1^\infty \frac{2+x}{x(1+x^2)} dx$ es convergente y, si lo es, determinar su valor.

PROBLEMA 2:

2.A) [3 puntos] Sea $f(x,y) = y^2 + xy - 2x - 5y$ y sea \mathcal{D} la región del plano dada por

$$\mathcal{D} = \{(x, y) \in \mathbb{R}^2 : -1 \le y \le 2, \ -y \le x \le -y^2 + 2\}$$

- **A.1)** Calcular el área de la región \mathcal{D} .
- **A.2)** Determinar si f tiene extremos relativos y calcularlos si los tuviera.
- **A.3)** Utilizar los multiplicadores de Lagrange para calcular los extremos absolutos f en la región \mathcal{D} .
- 2.B) [2 puntos] La ecuación

$$sen (x + y + z) + e^{xy+z} + x + 2y - 1 = 0$$

define de forma implícita una función diferenciable z = f(x, y) con f(0, 0) = 0.

- **B.1)** Calcular la máxima derivada direccional de f en (0,0)
- **B.2)** Calcular la derivada direccional de f en el punto (0,0) en la dirección $\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)$.
- **B.3)** Calcular su plano tangente en el punto (0,0,0).
- ▶ Problemas distintos se escribirán en grupos de hojas distintos.
- ▶ Todas las respuestas deberán estar debidamente razonadas.