Atty Docket No.: OCIM-002/15US 309602-2082

Serial No.: 10/501,933

IN THE CLAIMS:

1-69. (Canceled)

70. (Currently amended) A method for determining whether a test compound is a hepatotoxin, comprising:

- (a) exposing liver tissue or liver cells to the test compound;
- (b) preparing a normalized gene expression profile of at least ten genes for said liver tissue or liver cells, wherein the gene expression profile contains the differential gene expression levels for said at least ten genes upon exposure to the test compound, and wherein said at least ten genes are listed in one of Tables 5A-5WWW;
- (c) comparing the gene expression profile to a hepatotoxicity model, the hepatotoxicity model comprising:
 - (i) the normalized mean expression levels of said at least ten genes in liver tissue or liver cells exposed to a known hepatotoxin,
 - (ii) the normalized mean expression levels of said at least ten genes in unexposed—liver tissue or liver cells not exposed to a hepatotoxin, and
 - (iii) information from one or more of Tables 5A-5WWW; and
 - (d) scoring the comparison to determine whether the test compound is a hepatotoxin.
- 71. (Previously Presented) The method of claim 70, wherein the gene expression profile contains the differential gene expression levels for at least 100 genes listed in one of Tables 5A-5WWW, and wherein the hepatotoxicity model comprises the gene expression levels in said one of Tables 5A-5WWW.
- 72. (Previously Presented) The method of claim 70, wherein said gene expression profile is generated by hybridization of nucleic acids to a microarray, and is normalized for hybridization conditions, label intensity, and reading efficiency prior to comparison.
- 73. (Previously Presented) The method of claim 70, wherein the hepatotoxicity model comprises all the information in one of Tables 5A-5WWW.

87206 v1/DC 3.

Atty Docket No.: OCIM-002/15US 309602-2082

Serial No.: 10/501,933

74. (Previously Presented) The method of claim 70, wherein the liver tissue or liver cells are

exposed to the test compound in vivo and the hepatotoxicity model is generated by exposure of

liver tissue or liver cells to the known hepatotoxin in vivo.

75. (Previously Presented) The method of claim 70, wherein the known hepatotoxin is

associated with at least one of carcinogenesis, cholestasis, hepatitis, liver enlargement,

inflammation, liver necrosis, liver steatosis, and peroxisome proliferation.

76. (Previously Presented) The method of claim 70, wherein the known hepatotoxin is one

or more of acetominophen, 2-acetylaminofluorene (2-AAF), acyclovir, ANIT, AY-25329, BI

liver toxin, chloroform, bicalutamide, carbon tetrachloride, CI-1000, clofibrate, colchicine, CPA,

diclofenac, diflunisal, dimethylnitrosamine (DMN), dioxin, 17α-ethinylestradiol, gemfibrozil,

hydrazine, indomethacin, LPS, menadione, phenobarbitol, tacrine, thioacetamide, valproate,

WY-14643, and zileuton.

77. (Previously Presented) The method of claim 70, wherein the gene expression profile

contains the differential gene expression levels for at least 20 genes listed in one of Tables 5A-

5WWW, and wherein the hepatotoxicity model comprises the gene expression levels in said one

of Tables 5A-5WWW.

78. (Previously Presented) The method of claim 70, wherein the gene expression profile

contains the differential gene expression levels for at least 30 genes listed in one of Tables 5A-

5WWW, and wherein the hepatotoxicity model comprises the gene expression levels in said one

of Tables 5A-5WWW.

79. (Previously Presented) The method of claim 70, wherein the comparison is scored by

determining whether the test compound induces a change in expression of the at least 10 genes in

the same direction as the known hepatotoxin.

4.