notation

Notation

Symbol	Meaning
c_1, c_2, \cdots, c_z	the thresholds for simplification
C_0, C_1, \cdots, C_z	the groups for simplication
$f_{\phi}(.)$	the function on temporal processing with parameters ϕ
$F_{\eta}(.)$	the PDF to fit the data with parameter η
$g_{\theta}(.)$	the function on spatial aggregation with parameter θ
h(.)	the function on variable transformation, no parameter
$i:1,2,\cdots,n$	the generic space index in the data
$j:1,2,\cdots,J$	the generic time index in the data
j^*	variation of time index in normalising
j'	variation of time index in temporal processing
$\stackrel{\circ}{k}$	time scale in temporal processing
$m:0,1,\cdots,11$	remainder of $j^* \mod 12$ for index monthly data
n	the maximum space index in the data
$p:1,2,\cdots,P$	the (maximum) variable index in the data
$p^*:1,2,\cdots,P^*$	the dimension reduced variable index
q(.)	the function on dimension reduction
u	the subtracted constant in benchmarking
\mathcal{D}_s and \mathcal{D}_t	the parameter space for space and time
α	the subtracted quantity in scaling
γ	the divided quantity in scaling
η	parameters in PDF distribution fit
θ	additional parameters in spatial aggregation
λ	the PCA factor loadings
σ	the standard deviation of the data in scaling
ϕ	additional parameters in temporal processing
$\Phi^{-1}(.)$	the quantile (inverse CDF) function

Step	Notation	Notes
Raw	$\mathbf{X}(\mathbf{s};\mathbf{t}),$	$\mathbf{s} \in \mathcal{D}_s, \mathcal{D}_s \subseteq \mathbb{R}^2, \mathbf{s} = (s_1, s_2, \cdots, s_n)'$
data	$x_p(s_i; t_j)$	$t \in \mathcal{D}_t$, $\mathbf{t} = (t_1, t_2, \cdots, t_J)'$
		$\mathbf{X}(\mathbf{s}; \mathbf{t}) = (x_1(\mathbf{s}; \mathbf{t}), x_2(\mathbf{s}; \mathbf{t}), \cdots, x_P(\mathbf{s}; \mathbf{t}))'$
		when the pipeline step can be written in univariate case,
		the data will be referred to as $x(\mathbf{s}; \mathbf{t})$
Spatial	$g_{ heta}(x(\mathbf{s};\mathbf{t}))$	TODO: to be filled
aggrega-		
tion		
scaling	$rac{x(s_i;t_j)-lpha}{\gamma}$	Example 1: z-score standardisation:
	ı	$\alpha = \bar{x}(s;t)$ and $\gamma = \sigma(s;t)$ to standardise the data by
		the its mean and standard deviation across all time and
		all space units.
		Example 2: standardise into unit interval:
		$\alpha = \min[x(s_i, t_j)] \text{ and } \gamma = \max[x(s_i, t_j)] - \min[x(s_i, t_j)]$
		where min[.] and max[.] are the minimum and maximum
NT 11 1	x _1(r) / ())]	value across all spatial and temporal units.
Normalisin $\Phi^{-1}[F_{\eta}(x(\mathbf{s};\mathbf{t}))]$		Example:
		When PDF $F(.)$ is separately fitted for each month:
		$\Phi^{-1}[F_{\eta}^{m}(x(\mathbf{s};t_{j^{*}}))]$ where j^{*} is all the indexes that satisfy
Variable	$h(x(\mathbf{s};\mathbf{t}))$	$j^* \mod 12 = m$ for each $m = 0, 1, \dots, 11$ TODO: to be filled
transfor-	$n(x(\mathbf{S}, \mathbf{t}))$	TODO: to be filled
mation		
	$f_{\phi}(x(\mathbf{s};\mathbf{t}))$	Example 1:
process-	$J_{\phi}(w(s,s))$	aggregate across a time scale of $\phi = k$:
ing		$x(s_i; t_{j'}) = \sum_{j=j'-k+1}^{j'} x(s_i; t_j)$
0		Example 2:
		aggregate with a kernel weight $\phi = w_{ij}$:
		$x(s_i; t_{j'}) = \sum_{j=j'-k+1}^{j'} w_{ij} x(s_i; t_j)$
	$\operatorname{n} x_{p^*}(\mathbf{s}; \mathbf{t}) = q(x_p(\mathbf{s}; \mathbf{t}))$	Example: first principal component: $\sum_{i=1}^{P} P_{i}$
reduc- tion	where $p^* = 1, 2, \dots, P^*$ and $P^* < P$	$x_{p^*}(\mathbf{s}; \mathbf{t}) = \sum_{p=1}^{P} \lambda_p x_p(\mathbf{s}; \mathbf{t})$
	and F < F	where λ_p is the loading of the PC1, derived from
		maximising the variance of the data given the constraint $\sum_{i=1}^{P} x_i^2$
, .	1. ($\sum_{p=1}^{P} \lambda_p^2 = 1$
$\operatorname{benchmark}\mathbf{ir}(\mathbf{g}_i,t_j)-u$		where u is a constant of interest in the index
		constructed.
		Example:
		In SPI, $u = -2$ is the threshold for extreme drought.

Step	Notat	ion	Notes
Simplifica	$ \begin{array}{c} C_0 \\ C_1 \\ \vdots \\ C_2 \\ \vdots \\ C_z \end{array} $	$\begin{aligned} c_1 &\leq (s_i; t_j) < c_0 \\ c_2 &\leq x(s_i; t_j) < c_0 \\ c_3 &\leq x(s_i; t_j) < c_0 \\ c_2 &\leq x(s_i; t_j) \end{aligned}$	$\begin{array}{l} c_2 \underline{\text{Example:}} \\ \hline \text{In SPI, four categories are classified: mild drought:} \\ \hline [-0.99,0]; \text{moderate drought:} [-1.49,-1]; \text{severe} \\ \hline \text{drought:} [-1.99,-1.5], \text{and extreme drought:} [-\infty,-2]. \\ \hline \text{Here } C_0, C_1, C_2, C_3 \text{are the drought categories: mild,} \\ \hline \text{moderate, severe, and extreme drought} (z=3) \text{and} \\ \hline c_0 = 0, c_1 = -1, c_2 = -1.5, c_3 = -2 \end{array}$