Temario de Oposiciones de Matemáticas

Cuerpo de Profesores de Enseñanza Secundaria

Índice general

 rune	cions ex	contencials e logaritmicas. Situacions reals has que apa-				
rece	ecen 1					
22.1	Introdu	ıción	1			
22.2	A funci	ión logarítmica	2			
	22.2.1	Definición	2			
	22.2.2	Observación	2			
	22.2.3	Propiedades	2			
	22.2.4	Teorema	3			
	22.2.5	Corolario	3			
	22.2.6	Proposición	4			
	22.2.7	Grafo de log	4			
	22.2.8	Proposición	4			
	22.2.9	O número e	5			
22.3	A funci	ión exponencial	6			
	22.3.1	Definición	6			
	22.3.2	Propiedades da función exponencial	6			
	22.3.3	Grafo de exp	6			
	22.3.4	Observación	6			
	22.3.5	Teorema	7			
	22.3.6	Definición	7			
	22.3.7	Proposición	7			
22.4	As fund	cións exponenciais e logarítmicas de base a	7			
	22.4.1	Definción: Función exponencial de base a	8			
	22.4.2	Observación	8			
	22.4.3	Propiedades	8			
	22.4.4	Corolario	8			
	22.4.5	Caracterización de \exp_a	9			
	22.4.6	Grafo de \exp_a	10			
	22.4.7	Definición: Función logarítmica de base a	10			
	22.4.8	Proposición	10			
	22.4.9	Propiedades	11			
	22.4.10	Grafo de \log_a	11			
22.5		, i	11			
	22.5.1	Proposición	11			

	22.5.2	Definición	12
	22.5.3	Proposición	12
22.6	Series	relacionadas coas funcións exponencial e logarítmica	12
	22.6.1	Serie de Taylor de e^x	12
	22.6.2	Serie de $\log (1+x) \dots \dots \dots$	12
22.7	Situaci	óns reais nas que aparecen	13
	22.7.1	Desintegración de partículas radioactivas	13
	22.7.2	Epidemias. Función loxística	14
	22.7.3	pH dunha disolución	14
22.8	Conclu	sión	14
22.9	Contexto no currículo		
22.10	Bibliog	rafía	15

22 Funcións exponenciais e logarítmicas. Situacións reais nas que aparecen

22.1. Introdución

O logaritmo decimal foi descuberto por John Napier no s. XVI e supuxo un gran avance na navegación moderna con sextante. Doutra banda, o número e apareceu no s. XVII ao formular J. Bernouilli un problema financieiro de xuro composto. No s. XVII Euler definiu as funcións exponenciais e logarítmica como unha inversa da outra a través de series de potencias.

Coa redución de traballo de varios meses de cálculo a uns poucos días, o invento dos logaritmos parece ter duplicado a vida dos astrónomos

—Laplace citado en Bryant, 1907.

A evolución gradual do coñocemiento matemático foi acompañada da introducción de novas clases de funcións, en xeral, debido á imposibilidade de resolver problemas coas xa existentes. Este proceso é similar á introducción dos números irracionais e dos complexos, cando se demostrou que certas ecuacións alxébricas non se podían resolver mediante os números dispoñíbeis. Unha das fontes máis frutíferas de novas funcións foi a integración. Cando sucesivos intentos de integrar unha función f(x) en termos de outras xa coñecidas fracasan, parece probable que o problema sexa irresoluble. En xeral, os matemáticos dan por sentada a imposibilidade tan pronto como se convencen razoablemente dela, e de este xeito, introducen unha nueva función F(x) coa propiedade requerida. A partir de esta definición, investíganse as propiedades de F(x) e conclúese que ten propiedades que ningunha combinación finita de funciones previamente definidas puidera ter, e así se confirma que o problema orixinal non se podía resolver. De igual maneira sucede cando definimos a función $\log (x)$ mediante a ecuación,

$$\log x + C = \int \frac{dt}{t}$$
 para calquera $C \in \mathbb{R}$

Vexamos no que nos xustificamos para supoñer que $\log{(x)}$ é unha función nova (coñecidas as restantes funcións elementais exceptuando as exponenciais). Non pode ser unha función racional, xa que a súa derivada sería outra función racional cuxo denominador contén factores repetidos. A cuestión de se é unha función alxébrica ou trigonométrica é máis complicada. Sen embargo, é fácil convencerse sabendo que a derivación non elimina as irracionalidades alxébricas. Por exemplo, o resultado de derivar calquera número de veces $\sqrt{1+x}$ é sempre o produto de $\sqrt{1+x}$ por unha función racional, e así en xeral. De maneira similiar, sucede coa derivación das funcións trigonométricas, algunha delas persiste no resultado.

Polo tanto, non dispoñemos dunha demostración formal de que $\log{(x)}$ sexa unha función nova pero si dunha idea razoable de que o sexa. Deste xeito, a consideraremos como tal, e ao examinala atoparemos que as súas propiedades son moi diferentes ás de calquera outra función.

22.2. A función logarítmica

22.2.1. Definición

Defínese a función logarítmica, tamén chamada función logaritmo neperiano, como a función $\log:\mathbb{R}^+\to\mathbb{R}$, dada para todo x>0 pola ecuación,

$$\log x = \int_1^x \frac{dt}{t} \tag{22.1}$$

22.2.2. Observación

Impoñemos x>0, xa que a integral non converxe se o rango de integración inclúe o punto x=0.

22.2.3. Propiedades

- 1. $\log x > 0$ se x > 1, $\log 1 = 0$ e $\log x < 0$ se 0 < x < 1.
- 2. A función logarítmica é continua e derivable no intervalo $(0,\infty)$:

$$\log' x = \frac{1}{x}$$

- 3. A función logarítmica é estrictamente crecente e cóncava.
- 4. $\log x = -\log(1/x)$.

Demostración:

- A función $t \in \mathbb{R}^+ \mapsto \frac{1}{t}$ é continua e positiva, polo que $\log x = \int_1^x \frac{dt}{t} > 0$ se x > 1, $\log 1 = \int_1^1 \frac{dt}{t} = 0$ e $\log x = \int_1^x \frac{dt}{t} = -\int_x^1 \frac{dt}{t} < 0$ se 0 < x < 1.
- Do teorema fundamental do cálculo dedúcese que log é continua e derivable en \mathbb{R}^+ e que a súa derivada é $\log'(x) = \frac{1}{x} > 0$ para todo x > 0, o que implica que log sexa estrictamente crecente en $(0, \infty)$. De $\log'' = -\frac{1}{x^2} < 0$ dedúcese que log é cóncava
- Do cambio t = 1/u, dedúcese $\log x = \int_1^x \frac{dt}{t} = -\int_1^{1/x} \frac{du}{u} = -\log(1/x)$.

22.2.4. **Teorema**

Sexan $x, y \in \mathbb{R}^+$, entón $\log(xy) = \log x + \log y$.

Demostración: Do cambio t = yu,

$$\log xy = \int_{1}^{xy} \frac{dt}{t} = \int_{1/y}^{x} \frac{du}{u} = \int_{1}^{x} \frac{du}{u} - \int_{1}^{1/y} \frac{du}{u} = \log x - \log(1/y) = \log x + \log y$$

22.2.5. Corolario

Sexa $x, y \in \mathbb{R}^+$, entón:

- 1. $\log(x^r) = r \log x$, para todo número racional r.
- $2. \log\left(\frac{x}{y}\right) = \log x \log y.$

Demostración:

- 1. Sexa $x \in \mathbb{R}^+$. Dedúcese por indución o seguinte,
 - 1. **Proposición:** Sexa P_n a proposición que $\log{(x^n)} = n \log{x}$ para cada n entero no negativo.
 - 2. Caso inicial: Sexa n = 0, entón $\log(x^0) = \log 1 = 0 = 0 \cdot \log x$.
 - 3. Hipótese de indución: P_n é certa para algún n > 1 entero.
 - 4. Consideramos P_{n+1} :

$$\log(x^{n+1}) = \log(x^n \cdot x) = \log(x^n) + \log(x) = n \log x + \log x = (n+1) \log x$$

5. Conclusión: Como P_0 é certo e ademais P_n implica que P_{n+1} sexa certo, entón P_n é certo para todo n enteiro non negativo.

Ademais como para calquera $n \in \mathbb{N}$

$$0 = \log 1 = \log (x^{-n} \cdot x^n) = \log (x^{-n}) + \log (x^n) = \log (x^{-n}) + n \log x \implies \log (x^{-n}) = -n \log x$$

entón tamén é certo para todo $n \in \mathbb{Z}$. Supoñamos agora que n = p/q é racional $con p \in \mathbb{Z} e q \in \mathbb{N},$

$$\log x = \log [(x^{1/q})^q] = q \log (x^{1/q}) \implies \log (x^{1/q}) = \frac{1}{q} \log x \implies \log (x^{p/q}) = \log [(x^{1/q})^p] = p \log (x^{1/q}) = \frac{p}{q} \log x$$

de modo que $\log{(x^n)}=n\log{x}$ para todo $n\in\mathbb{Q}.$ 2. $\log{x}=\log{x\over y}\cdot y=\log{x\over y}+\log{y}.$

22.2.6. Proposición

Sexa $x \in \mathbb{R}^+$, entón $\log(x^n) = n \log x$ para todo $n \in \mathbb{R}$.

Demostración: Mediante o cambio $t = u^n$, tal que $dt = nu^{n-1}du$,

$$\log\left(x^{n}\right) = \int_{1}^{x^{n}} \frac{dt}{t} = n \int_{1}^{x} \frac{du}{u} = n \log x$$

Grafo de log 22.2.7.

Para debuxar o grafo $y = \log x$ estudiamos o comportamento de $\log x$ cando $x \to 0^+$ e $x \to \infty$. Sexa k > 0, como $\log 2 > 0$, existe $n \in \mathbb{N}$ tal que $n \log 2 > k$, e se $x > 2^n$, entón $\log x > \log (2^n) = n \log 2 > k$. Deste xeito, $\log x \to \infty$ cando $x \to \infty$, ademais facendo o cambio $x = \frac{1}{t}$ resulta $\lim_{x\to 0^+} \log x = \lim_{t\to\infty} \log\left(\frac{1}{t}\right) = -\lim_{t\to\infty} \log t = 1$ $-\infty$.

22.2.8. Proposición

 $\log x \to \infty$ cando $x \to \infty$, pero máis lentamente que calquera potencia positiva de x, é dicir, sexa $\alpha \in \mathbb{R}^+$, entón

$$\lim_{x \to \infty} \frac{\log x}{x^{\alpha}} = 0$$

Demostración: Sexa $\beta \in \mathbb{R}^+$, tal que $\beta < \alpha$, entón $1/t^{1-\beta} > 1/t$ se t > 1. Deste xeito, cando x > 1,

$$\log x = \int_1^x \frac{dt}{t} < \int_1^x \frac{dt}{t^{1-\beta}} \implies \log x < \frac{(x^{\beta} - 1)}{\beta} < \frac{x^{\beta}}{\beta}$$

Entón, $0<\frac{\log x}{x^{\alpha}}<\frac{x^{\beta-\alpha}}{\beta}$. Como $\alpha>\beta,$ $x^{\beta-\alpha}\to 0$ cando $x\to\infty$, e polo teorema de emparedado, resulta $\frac{\log x}{x^{\alpha}}\to 0$.

22.2.9. O número *e*

Agora introducimos, un número irracional denotado por e, que é de gran importancia nas matemáticas. É, ao igual que π , unha das constantes fundamentais da análese. O definiremos, como o número cuxo logaritmo é 1, é dicir,

$$1 = \int_{1}^{e} \frac{dt}{t}$$

Como $\log x$ é estrictamente crecente en todo o seu dominio, só pode valer 1 se x=e.

22.3. A función exponencial

A función logarítmica log é estrictamente crecente e polo tanto inxectiva, e ademais a súa imaxe é \mathbb{R} . Deste xeito, log : $\mathbb{R}^+ \to \mathbb{R}$ é unha aplicación bixectiva e que polo tanto admite función inversa.

22.3.1. Definición

Chámase función exponencial á inversa da función logarítmica, é dicir, á función exp: $\mathbb{R} \to \mathbb{R}$, tal que $\exp = \log^{-1}$.

22.3.2. Propiedades da función exponencial

- 1. $\exp(x) > 0$ para todo $x \in \mathbb{R}$, é dicir $Im(exp) = \mathbb{R}^+$.
- 2. A función exponencial é continua e derivable en todo $x \in \mathbb{R}$, ademais exp'(x) = exp(x).
- 3. A función exponencial é estrictamente crecente e convexa.

Demostración:

- Dado que $\log x$ só se definiu para $x \in \mathbb{R}^+$, entón exp(x) > 0 para todo $x \in \mathbb{R}$. Ademais, por ser \log continua e estrictamente crecente en $(0, \infty)$, a súa inversa, exp, tamén o é en todo \mathbb{R} .
- Dado que $\log'(x) = \frac{1}{x}$ para todo $x \in \mathbb{R}^+$, a función exp é derivable en \mathbb{R} . Ademais, como $\log(exp(x)) = x$ se $x \in \mathbb{R}$, ao derivar aplicando a regra da cadea,

$$\frac{1}{exp(x)}exp'(x) = 1 \implies exp'(x) = exp(x)$$

■ Do anterior dedúcese que exp''(x) = exp(x) > 0, e polo tanto exp é convexa.

22.3.3. Grafo de exp

O grafo de exp é simétrico do de log respecto a y=x. Ao ser exp función inversa de log transforma un punto calquera (x,y) do grafo $G(\log)$ no punto (y,x) do seu grafo.

22.3.4. Observación

De maneira directa, é doado probar a continuidade da función exponencial. Sexa $y = \log x, x = \exp(y)$ e $x + \xi = \exp(y + \eta)$, entón

$$\eta = \int_{x}^{x+\epsilon} \frac{dt}{t}$$

Deste xeito, $\xi/x>|\eta|>\xi/(x+\xi)$ se $\xi>0$ e $|\xi|/(x+\xi)>|\eta|>|\xi|/x$ se $\xi<0$. Polo tanto, se $|\eta|$ é moi pequeno, ξ tamén debe selo.

22.3.5. **Teorema**

Para todo $x, y \in \mathbb{R}$, entón $exp(x + y) = exp(x) \cdot exp(y)$.

Demostración:

Sexan $x',y' \in \mathbb{R}^+$, tal que x' = exp(x) e y' = exp(y), entón se cumpre que $x = \log x'$ e $y = \log y'$. Deste xeito, $x + y = \log x' + \log y' = \log x'y'$, o que equivale a

$$exp(x + y) = x'y' = exp(x)exp(y)$$

22.3.6. Definición

Para todo $x \in \mathbb{R}$, defínese $e^x = \exp(x)$.

Obsérvese que se $x \in \mathbb{R}$, de 2.6 dedúcese que $\log e^x = x \log e = x$, e polo tanto $\exp(x) = \exp[\log{(e^x)}] = e^x$, xustificando así o nome exponencial.

22.3.7. Proposición

Sexa $\gamma \in \mathbb{R}$. Cando $x \to \infty$ e $\gamma > 0$, $exp(\gamma x) \to \infty$, mentres que se $\gamma < 0$, $exp(\gamma x) \to 0$. En ámbolos casos máis rápido que calquera potencia de x, é dicir,

$$\lim_{x\to\infty}\frac{x^\alpha}{e^{\gamma x}}=0 \text{ para todo }\alpha\in\mathbb{R} \text{ e }\gamma>0$$

$$\lim_{x\to\infty}\frac{x^\alpha}{e^{\gamma x}}=\infty \text{ para todo }\alpha\in\mathbb{R} \text{ e }\gamma<0$$

Demostración: De 2.8 dedúcese $\lim_{x\to\infty}\frac{(\log x)^\alpha}{x}=0$. Se $\gamma>0$, facendo o cambio $x=e^{\gamma y}$, $\lim_{y\to\infty}\frac{(\gamma y)^\alpha}{e^{\gamma y}}=0$. Razoase de maneira similar se $\gamma<0$.

22.4. As funcións exponenciais e logarítmicas de base a

Sexa $a \in \mathbb{R}^+$ e $x \in \mathbb{R}$, entón $a^x = (e^{\log a})^x = e^{x \log a}$, de modo que como o último membro desta igualdade está definido para calquera x real, podemos empregar dita

igualdade para definir a^x , para todo $x \in \mathbb{R}$.

22.4.1. Definción: Función exponencial de base a

Sexa a un número real positivo e sexa x un número real calquera. Defínese a^x como $a^x=(e^{\log a})^x=e^{x\log a}$ e a función $\exp_a:\mathbb{R}\to\mathbb{R}:x\mapsto a^x$ se chama función exponencial de base a.

22.4.2. Observación

Se a = e, esta definición coincide con 3.6.

22.4.3. Propiedades

Para todo $x, y \in \mathbb{R}$ e $a \in \mathbb{R}^+$, as propiedades despréndese das da función exponencial,

- 1. $a^0 = 1$, $a^1 = a$.
- 2. $a^x \cdot a^y = e^{x \log a} \cdot e^{y \log a} = e^{(x+y) \log a} = a^{x+y}$.
- 3. $(a^x)^y = e^{y \log a^x} = e^{xy \log a} = a^{xy}$
- 4. Se a>1, $a^x=e^{x\log a}=e^{\alpha x}$, con $\alpha>0$. Neste caso, o grafo de \exp_a é similar ao de \exp , e $a^x\to\infty$ cando $x\to\infty$, máis rápido que calquera potencia de x. Se a<1, $a^x=e^{x\log a}=e^{-\beta x}$, con $\beta>0$. Neste caso, o grafo de \exp_a é similar na forma ao de e^x pero invertido na dirección do eixo x, e $a^x\to0$ cando $x\to\infty$, máis rápido que calquera potencia de 1/x.
- 5. \exp_a é unha función continua por ser composición das funcións continuas $f: \mathbb{R}^+ \to \mathbb{R}: x \mapsto x \log x$ e exp, polo que $Im(\exp_a) = \mathbb{R}^+$.
- 6. Da regra da cadea dedúcese que a función \exp_a é derivable en todo $\mathbb{R},$

$$exp'_a(x) = \frac{d}{dx}(e^{x\log a}) = e^{x\log a} \cdot \log a = a^x \cdot \log a$$
, para todo $x \in \mathbb{R}$

22.4.4. Corolario

$$\lim_{h\to 0} \frac{a^h-1}{h} = \log a$$
 ou $\lim_{h\to 0} \frac{e^{\alpha h}-1}{h} = \alpha$

Demostración:

$$\exp_a'(x) = \lim_{h \to 0} \frac{\exp_a(x+h) - \exp x}{h} = \lim_{h \to 0} \frac{a^h - 1}{h} a^x \implies \lim_{h \to 0} \frac{a^h - 1}{h} = \log a$$

22.4.5. Caracterización de \exp_a

Teorema

Sexa $c \in \mathbb{R}$. Se $f : \mathbb{R} \to \mathbb{R}$ é derivable e f'(x) = cf(x) para todo $x \in \mathbb{R}$, entón existe $k \in \mathbb{R}$ tal que $f(x) = ke^{cx}$ para todo $x \in \mathbb{R}$.

Demostración: Sexa $g: \mathbb{R} \to \mathbb{R}: x \mapsto \frac{f(x)}{e^{cx}}$. Como $e^{cx} > 0$ para todo $x \in \mathbb{R}$, g é derivable en todo $x \in \mathbb{R}$. Ademais,

$$g'(x) = \frac{f'(x)e^{cx} - cf(x)e^{cx}}{e^{2cx}} = \frac{f'(x) - cf(x)}{e^{cx}} = 0$$

Deste xeito, $g(x) = k e^{x} = k e^{x} = k e^{x}$, onde $a = e^{c}$

Teorema

A función exponencial de base a>0 é a unica función $f:\mathbb{R}\to\mathbb{R}$ continua con f(1)=a e tal que, para calesquera $x,y\in\mathbb{R}$,

$$f(x+y) = f(x)f(y)$$

Demostración: Sexa $f: \mathbb{R} \to \mathbb{R}$ unha función calquera que cumpre as condicións do teorema.

- f(x) > 0 para todo $x \in \mathbb{R}$, xa que $f(x) = f(\frac{x}{2} + \frac{x}{2}) = f(\frac{x}{2})^2 \ge 0$, e se fora $f(x_0) = 0$ para algún $x_0 \in \mathbb{R}$, entón $f(x) = f(x x_0 + x_0) = f(x x_0)f(x_0) = 0$ para todo $x \in \mathbb{R}$ e f sería a función nula, contra a hipótese f(1) = a > 0. Ademais, $f(0) = f(0 + 0) = f(0)^2 \implies f(0) = 1$.
- Para todo $x \in \mathbb{R}$, se $n \in \mathbb{N}$, demóstrase por indución,
 - 1. **Proposición:** Sexa P_n a proposición que $f(nx) = f(x)^n$.
 - 2. Caso inicial: Sexa n = 1, entón f(x) = f(x).
 - 3. Hipótese de indución: P_n é certa para algún n > 1.
 - 4. Consideramos P_{n+1} :

$$f((n+1)x) = f(nx+x) = f(nx)f(x) = f(x)^n f(x) = f(x)^{n+1}$$

- 5. Conclusión: Como P_1 é certo e ademais P_n implica que P_{n+1} sexa certo, entón P_n é certo para todo $n \in \mathbb{N}$.
- Para todo $m \in \mathbb{Z}$, $f(m) = a^m$, xa que se m = 0, entón $f(0) = 1 = a^0$, e se m > 0, polo apartado anterior, facendo x = 1, $f(m) = f(1)^m = a^m$. Se m < 0, entón 1 = f(-m+m) = f(-m)f(m) e $f(m) = \frac{1}{f(-m)} = \frac{1}{a^{-m}} = a^m$.
- Para todo $r\in\mathbb{Q},$ $f(r)=a^r$, xa que se $r=\frac{m}{n}$ con $m,n\in\mathbb{Z}$ tal que n>0, entón $a^m=f(nr)=f(r)^n\implies f(r)=a^{m/n}=a^r$.
- Finalmente, para todo $x \in \mathbb{R}$, $f(x) = a^x$, xa que pola densidade de \mathbb{Q} en \mathbb{R} existe algunha sucesión $(r_n) \subset \mathbb{Q}$ tal que $r_n \to x$. Deste xeito, pola continuidade de f, $f(r_n) \to f(x)$, de modo que $f(x) = \lim_{n \to \infty} f(r_n) = \lim_{n \to \infty} a^{r_n} = a^x$.

Observación

Se non se impón a condición de continuidade, existen ademais da función nula, infinitas funcións f distintas ás exponenciais que cumpren f(x+y)=f(x)f(y).

22.4.6. Grafo de \exp_a

Se a>1, entón $\log a>0 \implies \exp_a'(x)>0$, mentres que se a<1, entón $\log a<0 \implies \exp_a'(x)<0$. Deste xeito, \exp_a é estrictamente crecente se a>1 e estrictamente decrecente se a<1. Polo tanto, dedúcese que o grafo de \exp_a é de dous tipos según a sexa maior ou menor que 1.

Finalmente, das propiedades anteriores dedúcese que a función $\exp_a:\mathbb{R}\to\mathbb{R}^+$ é bixectiva e polo tanto admite inversa.

22.4.7. Definición: Función logarítmica de base a

Sexa a un número real positivo, defínese a función logarítmica de base a como a función inversa da función exponencial de base a, é dicir, $\log_a:\mathbb{R}^+\to\mathbb{R}$ tal que $\log_a=(\exp_a)^{-1}$.

22.4.8. Proposición

Se $y = \log_a x$, entón $x = a^y = e^{y \log a}$. Deste xeito, $\log x = y \log a \Leftrightarrow y = \frac{\log x}{\log a}$,

$$\log_a = \frac{\log x}{\log a}$$

22.4.9. Propiedades

Da igualdade anterior e das propiedades de log dedúcense para todo $x, y \in \mathbb{R}^+$, $a, b \in \mathbb{R}^+$ e $k \in \mathbb{R}$,

- 1. $\log_a(1) = 0$ e $\log_a(a) = 1$.
- 2. $\log_a(xy) = \log_a(x) + \log_a(y)$.
- 3. $\log_a(x^k) = k \log_a(x)$.
- 4. Fórmula de cambio de base: $\log_a b \log_b(x) = \log_a x$.
- 5. \log_a é continua con $Im(\log_a) = \mathbb{R}$, por selo \log .
- 6. \log_a é derivable en \mathbb{R}^+ por selo \log .

$$\log_a'(x) = \frac{d}{dx} \left(\frac{\log x}{\log a} \right) = \frac{1}{x \log a}$$

22.4.10. Grafo de \log_a

Da súa derivada dedúcese que se a>1 o grafo é estrictamente crecente e que se a<1 é estrictamente decrecente. O grafo $G(\log_a)$ é o simétrico de $G(\exp_a)$ respecto da bisectriz y=x.

22.5. e^x e $\log x$ expresadas como límites

22.5.1. Proposición

$$\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n = \lim_{n\to\infty} \left(1-\frac{x}{n}\right)^{-n} = e^x$$

Demostración: Dado que log é continua,

$$\begin{split} &\log\left[\lim_{n\to\infty}\left(1+\frac{x}{n}\right)^n\right] = \lim_{n\to\infty}\left[\log\left(1+\frac{x}{n}\right)^n\right] = \\ &= \lim_{n\to\infty}n\log\left(1+\frac{x}{n}\right) = \lim_{n\to\infty}x\frac{\log(1+x/n)}{x/n} = y = 1/n = \\ &= \lim_{y\to0}x\frac{\log(1+y)}{y} = \text{L'Hôpital} = x\cdot 1 = x \implies \lim_{n\to\infty}\left(1+\frac{x}{n}\right)^n = e^x \end{split}$$

Razoase de maneira similar para a outra igualdade.

22.5.2. Definición

$$e = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n$$

22.5.3. Proposición

$$\lim_{n \to \infty} n(1 - x^{-1/n}) = \lim_{n \to \infty} n(x^{1/n} - 1) = \log x$$

Demostración: Dado que $\lim_{h\to 0} \frac{x^h-1}{h} = \log x$, facendo o cambio h=1/n,

$$\lim_{n \to \pm \infty} n(x^{1/n} - 1) = \log(x)$$

Para a outra igualdade basta facer h = -1/n.

22.6. Series relacionadas coas funcións exponencial e logarítmica

22.6.1. Serie de Taylor de e^x

Como as derivadas da función exp son iguais á función exp,

$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^{n-1}}{(n-1)!} + \frac{x^n}{n!}e^{\theta x}$$

onde $0 < \theta < 1$, e polo tanto $e^{\theta x} < e^x$. Se $n \to \infty$, entón $x^n/n! \to 0$ para calquera $x \in \mathbb{R}$. Polo tanto, facendo $n \to \infty$,

$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^{n-1}}{(n-1)!} + \frac{x^n}{n!} + \dots$$

22.6.2. Serie de $\log (1 + x)$

$$\log\left(1+x\right) = \int_0^x \frac{dt}{1+t}$$

e 1/(1+t) = 1 - t + t^2 - . . . se |t| < 1. Deste xeito,

$$\frac{1}{1+t} = 1 - t + t^2 - \ldots + (-1)^{m-1} t^{m-1} + \frac{(-1)^m t^m}{1+t}$$

Para x > -1,

$$\log(1+x) = \int_0^x \frac{dt}{1+t} = x - \frac{x^2}{2} + \dots + (-1)^{m-1} \frac{x^m}{m} + (-1)^m R_m$$

onde,

$$R_m = \int_0^x \frac{t^m dt}{1+t}$$

Se $0 < x \le 1$,

$$0 < R_m < \int_0^x t^m dt = \frac{x^{m+1}}{m+1} \le \frac{1}{m+1}$$

Mentres que se -1 < x < 0, facendo o cambio t = -u e $x = -\xi$, tal que

$$R_m = (-1)^m \int_0^{\xi} \frac{u^m du}{1 - u}$$

Dado que o maior valor 1/(1-u) no rango de integración é $1/(1-\xi)$,

$$0 < |R_m| < \frac{1}{1-\xi} \int_0^{\xi} u^m du = \frac{\xi^m}{(m+1)(1-\xi)} < \frac{1}{(m+1)(1-\xi)}$$

Deste xeito, $R_m \to 0$ cando $m \to \infty$, e para $-1 < x \le 1$,

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$$

22.7. Situacións reais nas que aparecen

22.7.1. Desintegración de partículas radioactivas

Se un material radioactivo ten N(t) átomos nun instante t, o número que se desintegran nun periodo Δt é proporcional a N(t) e ao tempo transcorrido. Existe polo menos un número real $\lambda>0$ (constante radioactiva) tal que $N(t+\Delta t)=N(t)-\lambda N(t)\Delta t$, e a derivada de N pode expresarse como:

$$N'(t) = \lim_{\Delta t \to 0} \frac{N(t + \Delta t) - N(t)}{\Delta t} = \lim_{\Delta t \to 0} \frac{-\lambda N(t) \Delta t}{\Delta t} = -\lambda N(t)$$

Do teorema 4.5.1, dedúcese que existe k > 0 tal que $N(t) = ke^{-\lambda t}$.

22.7.2. Epidemias. Función loxística

Os patóxenos para os que unha poboación non ten inmunidade son outro exemplo de crecemento exponencial, xa que novos casos de infección son orixinados polos xa existentes. Sexa N_d o número de casos nun día calquera, E o número de persoas de media ás que un infectado está exposto, e p a probabilidade de que unha persoa exposta contraiga a enfermidade, entón o número de casos no día seguinte é $N_{d+1} = N_d + E \cdot p \cdot N_d = (1 + E \cdot p)N_d \implies N_d = (1 + E \cdot p)^d \cdot N_0$. Isto resulta máis doado de representar nunha escala logarítmica no eixo y, de maneira que o crecemento exponencial aparece como unha recta.

Doutra banda, é inevitable que a propagación disminúa a medida que máis individuos xa estean infectados, polo tanto a probabilidade de infección p debe incluir un factor que teña en conta a probabilidade de que unha persoa exposta non estea infectada, o cal nun modelo de exposición aleatorio, onde P é o tamaño da pobación, é $1-\frac{N_d}{D}$.

Incluíndo este factor e resolvendo para N obtemos a curva loxística, que ao principio é indistinguible respecto dunha exponencial, pero que cambia de curvatura e se nivela ao alcanzar o tamaño da poboación.

$$N'(t) = c\left(1 - \frac{N}{P}\right)N \implies N(t) = \frac{P \cdot N_0 \cdot e^{ct}}{P + N_0(e^{ct} - 1)}$$

As verdadeiras curvas exponenciais non existen no mundo real, representan só o inicio dun proceso. A curva loxística aparece en diversos modelos de crecemento de poboacións, difusión en redes sociais, redes neuronais, incluso en sistemas caóticos, é dicir, moi sensibles ás condicións iniciais.

22.7.3. pH dunha disolución

En Química, dada unha disolución dun composto, chámase pH da disolución ao oposto do logaritmo neperiano da concentración c de iones H^+ . É dicir, $pH=-\log c$

22.8. Conclusión

Neste tema desenvólvese a teoría das funcións exponenciais e logarítmicas dende un enfoque riguroso e analítico das súas definicións e propiedades, e ademais estudamos

problemas aplicados a situacións reais onde interveñen. Comezamos usando o Teorema Fundamental do Cálculo para definir a función logarítmica como unha integral definida. Desenvólvense rápidamente as súas propiedades alxébricas, xeométricas e analíticas. A continuación, preséntase a función exponencial como a función inversa da logarítmica, e establécense as súas propiedades. Se ben ao principio pode parecer extraño seguir este enfoque, ofrece unha maneira elegante e potente de obter as propiedades clave das funcións logarítmica e exponencial. Algúns procedementos alternativos parten da definición de función exponencial como serie de potencias ou prolongan a definición de potencias a^x para exponentes reais.

22.9. Contexto no currículo

- 4º de ESO: estúdianse as características, parámetros e a representación da función exponencial en ámbalas ramas, na rama de Académicas tamén se estuda a función logarítmica.
- Bacharelato (ambos): estúdase o comportamento e a gráfica das funcións a partir da expresión analítica.

22.10. Bibliografía

- 1. Hardy, G.H. (1908). A Course of Pure Mathematics
- 2. Spivak, M. (2012). Calculus. Reverté
- 3. Temario de oposiciones. Ed. Deimos.
- 4. Rodríguez, M. B., Gamboa, J. M. (2010). Desarrollo del temario de las oposiciones de secundaria matematicas. Saenz y Torres.
- 5. Bryant, W. (1907). History of Mathematics