Homework 7

1. (4 points) Determine an ordinary generating function that gives the number of integer solutions to the equation

$$c_1 + c_2 + c_3 + c_4 + c_5 = n$$
,

where $2 \le c_1 \le 4$, c_2 is a multiple of 3, and $3 \le c_i \le 8$ for $3 \le i \le 5$.

Which coefficient in your function gives the number of solutions to the equation $c_1 + c_2 + c_3 + c_4 + c_5 = 30$? You do not need to explicitly find the coefficient, just identify which one it is.

- 2. (4 points) (a) Find the sequence generated by each of the following ordinary generating functions.
 - i. $f(x) = \frac{4x^2}{2-6x}$.
 - ii. $g(x) = \frac{2}{1+x^2} e^{3x}$.
 - (b) Find, in closed form, each of the following:
 - i. The ordinary generating function for the sequence (2, 0, 2, 0, 2, 0, ...)
 - ii. The ordinary generating function for the sequence $(6, 27, 128, 629, ...) = (1+5, 2+5^2, 3+5^3, 4+5^4, ...)$
- 3. (4 points) Find the coefficient of x^5 in the power series expansion of the ordinary generating function $f(x) = \frac{2}{3x^2 4x + 1}$. Your answer should be an integer.
- 4. Find the closed form of the ordinary generating function for the convolution of the sequences $(n^2)_{n>0}$ and $(n)_{n>0}$.