# **Optimization in Machine Learning**

# Mathematical Concepts Quadratic forms II





#### Learning goals

- Geometry of quadratic forms
- Spectrum of Hessian

# PROPERTIES OF QUADRATIC FUNCTIONS

**Recall**: Quadratic form q

• Univariate:  $q(x) = ax^2 + bx + c$ 

• Multivariate:  $q(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b}^T \mathbf{x} + c$ 

**General observation:** If  $q \ge 0$  ( $q \le 0$ ), q is convex (concave)

**Univariate function:** Second derivative is q''(x) = 2a

- $q''(x) \stackrel{(>)}{\geq} 0$ : q (strictly) convex.  $q''(x) \stackrel{(<)}{\leq} 0$ : q (strictly) concave.
- High (low) absolute values of q''(x): high (low) curvature

**Multivariate function:** Second derivative is H = 2A

- Convexity/concavity of q depend on eigenvalues of H
- Let us look at an example of the form  $q(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$



# **GEOMETRY OF QUADRATIC FUNCTIONS**

**Example:** 
$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \implies H = 2A = \begin{pmatrix} 4 & -2 \\ -2 & 4 \end{pmatrix}$$

• Since **H** symmetric, eigendecomposition  $\mathbf{H} = \mathbf{V} \wedge \mathbf{V}^T$  with

$$\mathbf{V} = \begin{pmatrix} | & | \\ \mathbf{v}_{\text{max}} & \mathbf{v}_{\text{min}} \\ | & | \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \text{ orthogonal}$$

and 
$$\Lambda = \begin{pmatrix} \lambda_{\text{max}} & 0 \\ 0 & \lambda_{\text{min}} \end{pmatrix} = \begin{pmatrix} 6 & 0 \\ 0 & 2 \end{pmatrix}$$
.





# **GEOMETRY OF QUADRATIC FUNCTIONS / 2**

•  $v_{\text{max}}$  ( $v_{\text{min}}$ ) direction of highest (lowest) curvature

**Proof:** With  $\mathbf{v} = \mathbf{V}^T \mathbf{x}$ :

$$\mathbf{x}^T \mathbf{H} \mathbf{x} = \mathbf{x}^T \mathbf{V} \wedge \mathbf{V}^T \mathbf{x} = \mathbf{v}^T \wedge \mathbf{v} = \sum_{i=1}^a \lambda_i v_i^2 \le \lambda_{\max} \sum_{i=1}^a v_i^2 = \lambda_{\max} \|\mathbf{v}\|^2$$

Since 
$$\|\mathbf{v}\| = \|\mathbf{x}\|$$
 (V orthogonal):  $\max_{\|\mathbf{x}\|=1} \mathbf{x}^T \mathbf{H} \mathbf{x} \leq \lambda_{\max}$  Additional:  $\mathbf{v}_{\max}^T \mathbf{H} \mathbf{v}_{\max} = \mathbf{e}_1^T \lambda \mathbf{e}_1 = \lambda_{\max}$  Analogous:  $\min_{\|\mathbf{x}\|=1} \mathbf{x}^T \mathbf{H} \mathbf{x} \geq \lambda_{\min}$  and  $\mathbf{v}_{\min}^T \mathbf{H} \mathbf{v}_{\min} = \lambda_{\min}$ 

 Contour lines of any quadratic form are ellipses (with eigenvectors of A as principal axes, principal axis theorem)

Look at 
$$q(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b}^T \mathbf{x} + c$$
  
Now use  $\mathbf{y} = \mathbf{x} - \mathbf{w} = \mathbf{x} + \frac{1}{2} \mathbf{A}^{-1} \mathbf{b}$ 

This already gives us the general form of an ellipse:

$$\mathbf{y}^{\mathsf{T}} \mathbf{A} \mathbf{y} = (\mathbf{x} - \mathbf{w})^{\mathsf{T}} \mathbf{A} (\mathbf{x} - \mathbf{w}) = q(\mathbf{x}) + const$$

If we use  $\mathbf{z} = \mathbf{V}^{\dagger} \mathbf{y}$  we obtain it in standard form

$$\sum\limits_{i=1}^{n}\lambda_{i}z_{i}^{2}=oldsymbol{z}^{T}oldsymbol{\Lambda}oldsymbol{z}=oldsymbol{y}^{T}oldsymbol{V}oldsymbol{V}^{T}y=oldsymbol{y}^{T}oldsymbol{A}oldsymbol{y}=q(oldsymbol{x})+const$$



#### **GEOMETRY OF QUADRATIC FUNCTIONS / 3**

Recall: Second order condition for optimality is sufficient.

We skipped the **proof** at first, but can now catch up on it. If  $H(\mathbf{x}^*) \succ 0$  at stationary point  $\mathbf{x}^*$ , then  $\mathbf{x}^*$  is local minimum ( $\prec$  for maximum).

**Proof:** Let  $\lambda_{\min} > 0$  denote the smallest eigenvalue of  $H(\mathbf{x}^*)$ . Then:

$$f(\mathbf{x}) = f(\mathbf{x}^*) + \underbrace{\nabla f(\mathbf{x}^*)}_{=0}^T (\mathbf{x} - \mathbf{x}^*) + \frac{1}{2} \underbrace{(\mathbf{x} - \mathbf{x}^*)^T H(\mathbf{x}^*)(\mathbf{x} - \mathbf{x}^*)}_{\geq \lambda_{\min} \|\mathbf{x} - \mathbf{x}^*\|^2 \text{ (see above)}} + \underbrace{R_2(\mathbf{x}, \mathbf{x}^*)}_{=o(\|\mathbf{x} - \mathbf{x}^*\|^2)}.$$

Choose  $\epsilon>0$  s.t.  $|R_2(\mathbf{x},\mathbf{x}^*)|<\frac{1}{2}\lambda_{\min}\|\mathbf{x}-\mathbf{x}^*\|^2$  for each  $\mathbf{x}\neq\mathbf{x}^*$  with  $\|\mathbf{x}-\mathbf{x}^*\|<\epsilon$ . Then:

$$f(\mathbf{x}) \geq f(\mathbf{x}^*) + \underbrace{\frac{1}{2} \frac{\lambda_{\min} \|\mathbf{x} - \mathbf{x}^*\|^2 + R_2(\mathbf{x}, \mathbf{x}^*)}_{>0}} > f(\mathbf{x}^*) \quad \text{for each } \mathbf{x} \neq \mathbf{x}^* \text{ with } \|\mathbf{x} - \mathbf{x}^*\| < \epsilon.$$



# **GEOMETRY OF QUADRATIC FUNCTIONS / 4**

If spectrum of  ${\bf A}$  is known, also that of  ${\bf H}=2{\bf A}$  is known.

- If all eigenvalues of  $\mathbf{H} \overset{(>)}{\geq} 0 \ (\Leftrightarrow \mathbf{H} \overset{(\succ)}{\succcurlyeq} 0)$ :
  - q (strictly) convex,
  - there is a (unique) global minimum.
- If all eigenvalues of  $\mathbf{H} \stackrel{(<)}{\leq} 0 \ (\Leftrightarrow \mathbf{H} \stackrel{(\prec)}{\preccurlyeq} 0)$ :
  - q (strictly) concave,
  - there is a (unique) global maximum.
- If **H** has both positive and negative eigenvalues (⇔ **H** indefinite):
  - q neither convex nor concave,
  - there is a saddle point.





## **CONDITION AND CURVATURE**

Condition of  $\mathbf{H}=2\mathbf{A}$  is given by  $\kappa(\mathbf{H})=\kappa(\mathbf{A})=|\lambda_{\max}|/|\lambda_{\min}|$ .

#### **High condition** means:

- $|\lambda_{\mathsf{max}}| \gg |\lambda_{\mathsf{min}}|$
- Curvature along v<sub>max</sub> ≫ curvature along v<sub>min</sub>
- Problem for optimization algorithms like gradient descent (later)



**Left:** Excellent condition. **Middle:** Good condition. **Right:** Bad condition.



## **APPROXIMATION OF SMOOTH FUNCTIONS**

Any function  $f \in \mathcal{C}^2$  can be locally approximated by a quadratic function via second order Taylor approximation:

$$f(\mathbf{x}) \approx f(\tilde{\mathbf{x}}) + \nabla f(\tilde{\mathbf{x}})^{\mathsf{T}} (\mathbf{x} - \tilde{\mathbf{x}}) + \frac{1}{2} (\mathbf{x} - \tilde{\mathbf{x}})^{\mathsf{T}} \nabla^2 f(\tilde{\mathbf{x}}) (\mathbf{x} - \tilde{\mathbf{x}})$$





→ Hessians provide information about local geometry of a function.

