Lecture 2 VECTOR AND TENSOR ANALYSES

Oliver Heaviside
(1850-1925)
EE/Physics/Math
BS in EE
Vector Calculus
Transmission Line Eqs

- 2.1 Summation Convention and Special Symbols
- 2.2 Vectors and Tensors
- 2.3 Differential Vector Operators
- 2.4 Coordinate Systems
- 2.5 Helmholtz Theorem
- 2.6 Transverse and Longitudinal Components

Josiah Willard Gibbs
(1839-1903)
Physics/Chem/Math
PhD in Engr.
Vector Calculus
Physical Optics
Statistical Mechanics

2.1 Summation Convention and Special Symbols

Summation Convention

For the vector and tensor analyses, often it's convenient to use the summation (or Einstein) convention in which any repeated index implies a summation for that index, for example,

$$a_{ii} \rightarrow \sum_{i} a_{ii} \qquad a_{i}b_{i} \rightarrow \sum_{i} a_{i}b_{i}$$
 (2.1)

Kronecker Delta

$$\delta_{ij} = \begin{bmatrix} 1, & i = j \\ 0, & i \neq j \end{bmatrix}$$
 (2.2)

Levi-Civita
$$\varepsilon_{ijk} = \begin{bmatrix}
1, & \text{even permutation} : (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2) \\
-1, & \text{odd permutation} : (i, j, k) = (2, 1, 3), (3, 2, 1), (1, 3, 2) \\
0, & \text{repeated index} : i = j, j = k, k = i
\end{cases}$$
(2.3)

$$\varepsilon_{ijk}\varepsilon_{imn} = \delta_{jm}\delta_{kn} - \delta_{jn}\delta_{km}, \quad \varepsilon_{ijk}\varepsilon_{ijn} = 2\delta_{kn}, \quad \varepsilon_{ijk}\varepsilon_{ijk} = 6$$
 (2.4)

Product of Levi-Civitas

$$\varepsilon_{ijk}\varepsilon_{lmn} = \det \begin{bmatrix} \delta_{il} & \delta_{im} & \delta_{in} \\ \delta_{jl} & \delta_{jm} & \delta_{jn} \\ \delta_{kl} & \delta_{km} & \delta_{kn} \end{bmatrix}$$
(2.5)

$$\varepsilon_{ijk}\varepsilon_{imn} = \delta_{jm}\delta_{kn} - \delta_{jn}\delta_{km}, \quad \varepsilon_{ijk}\varepsilon_{ijn} = 2\delta_{kn}, \quad \varepsilon_{ijk}\varepsilon_{ijk} = 6$$
 (2.6)

2.2 Vectors and Tensors

Scalars_and vectors are 0th and 1st-order tensors (polyads). The 2nd- and 3rd-order tensors are also called dyad and triad. The dyad, one of the most used tensors in both physics and engineering, defines the relation between two vectors.

Coordination-Free Equations

A physics law should be independent of the choice of coordinate systems. With the vector and dyadic notations, we can write equations in coordinate-free forms. Obviously, the cartesian tensor is the simplest, and we can use it to derive the coordinate-free equations.

Notations
$$[A:scalar]$$
 $\begin{bmatrix} A:vector \\ \hat{\mathbf{u}}:unit\ vector \end{bmatrix}$ $\begin{bmatrix} \overline{\mathbf{T}}:dyad \\ \overline{\mathbf{I}}:unit\ dyad \end{bmatrix}$

Vector

An n-dimensional vector has n scalar components :

$$\mathbf{A} = A_{i}\mathbf{u}_{i} = (A_{1}, A_{2}, \dots A_{n}) = A_{1}\mathbf{u}_{1} + A_{2}\mathbf{u}_{2} + \dots + A_{n}\mathbf{u}_{n}$$
(2.7)

The position vector is given by

with unit vectors defined as

$$\mathbf{r} = \mathbf{u}_i x_i \tag{2.8}$$

$$\mathbf{i}_{i} = \frac{\partial \mathbf{r} / \partial x_{i}}{\left| \partial \mathbf{r} / \partial x_{i} \right|}$$

$$(2.9)$$

Dyad

 $\overline{\text{An }n\text{-}dimensional dyad has }n$ vector components ($n \times n$ scalar components) :

$$\overline{\mathbf{T}} = \mathbf{A}_i \mathbf{u}_i = T_{ij} \mathbf{u}_i \mathbf{u}_j \tag{2.10}$$

Note that the i-th component of a dyad is a vector while that of a vector is a scalar

For an example of a 20 dyad,

$$\overline{\mathbf{T}} = \mathbf{A}_{1}\mathbf{u}_{1} + \mathbf{A}_{2}\mathbf{u}_{2} = (A_{11}\mathbf{u}_{1} + A_{12}\mathbf{u}_{2})\mathbf{u}_{1} + (A_{21}\mathbf{u}_{1} + A_{22}\mathbf{u}_{2})\mathbf{u}_{2}$$

$$= A_{11}\mathbf{u}_{1}\mathbf{u}_{1} + A_{12}\mathbf{u}_{2}\mathbf{u}_{1} + A_{21}\mathbf{u}_{1}\mathbf{u}_{2} + A_{22}\mathbf{u}_{2}\mathbf{u}_{2}$$

Here, it should be noted that $\mathbf{u}_i \mathbf{u}_j \neq \mathbf{u}_j \mathbf{u}_i$ for $i \neq j$.

We can show that an *n*-dimensional dyad is given by *n* terms of dyadic (or direct) products of two vectors,

$$\overline{\mathbf{T}} = \mathbf{A}_1 \mathbf{B}_1 + \mathbf{A}_2 \mathbf{B}_2 + \cdots + \mathbf{A}_n \mathbf{B}_n$$
 (2.11)

Matrix Representation of Dyads

We can also use a matrix notation for a dyad:

$$\overline{\mathbf{T}} = A_{1}B_{1}^{t} = \begin{bmatrix} A_{1} \\ A_{2} \\ A_{3} \end{bmatrix} \begin{bmatrix} B_{1} & B_{2} & B_{3} \end{bmatrix} = \begin{bmatrix} A_{1}B_{1} & A_{1}B_{2} & A_{1}B_{3} \\ A_{2}B_{1} & A_{2}B_{2} & A_{2}B_{3} \\ A_{3}B_{1} & A_{3}B_{2} & A_{3}B_{3} \end{bmatrix}$$
(2.12)

Dyadic Transpose

Unlike the matrix formalism of vectors (row and column vectors), for the dyadic notation, transposed vectors make no difference in its representation.

$$\mathbf{A}^{t} = \mathbf{A}$$

$$\mathbf{T}^{t} = \mathbf{u}_{j} \mathbf{u}_{i} T_{ji} = \mathbf{u}_{i} \mathbf{u}_{j} T_{ij}$$

$$(\mathbf{A}\mathbf{B})^{t} = \mathbf{B}^{t} \mathbf{A}^{t} = \mathbf{B}\mathbf{A}$$

$$(2.13)$$

However, a dyad becomes from its transpose in general,

$$AB = BA$$
: symmetric dyad (commuting)
 $AB \neq BA$: asymmetric dyas (non-commuting) (2.14)

Dot, Cross, and Direct Products

wector-dyad
$$\begin{bmatrix} \mathbf{A} \cdot \mathbf{B} = A_i B_i & \text{: dot product (projection)} \\ \mathbf{A} \cdot \mathbf{B} = A_i B_i & \text{: cross product (directional area)} \\ \mathbf{A} \times \mathbf{B} = \mathbf{u}_i \varepsilon_{ijk} A_j B_k & \text{: cross product (directional area)} \\ \mathbf{A} \mathbf{B} = \mathbf{u}_i \mathbf{u}_j A_i B_j & \text{: direct product} \\ \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{A} \cdot \mathbf{B} \mathbf{C} = (\mathbf{A} \cdot \mathbf{B}) \mathbf{C}, & \mathbf{A} \mathbf{B} \cdot \mathbf{C} = \mathbf{A} (\mathbf{B} \cdot \mathbf{C}) \\ \mathbf{A} \times \mathbf{B} \mathbf{C} = (\mathbf{A} \times \mathbf{B}) \mathbf{C}, & \mathbf{A} \mathbf{B} \times \mathbf{C} = \mathbf{A} (\mathbf{B} \times \mathbf{C}) \\ \end{bmatrix}$$

$$(2.15)$$

vector-dyad
$$\begin{bmatrix} \mathbf{A} \cdot \mathbf{B} \mathbf{C} = (\mathbf{A} \cdot \mathbf{B}) \mathbf{C}, & \mathbf{A} \mathbf{B} \cdot \mathbf{C} = \mathbf{A} (\mathbf{B} \cdot \mathbf{C}) \\ \mathbf{A} \times \mathbf{B} \mathbf{C} = (\mathbf{A} \times \mathbf{B}) \mathbf{C}, & \mathbf{A} \mathbf{B} \times \mathbf{C} = \mathbf{A} (\mathbf{B} \times \mathbf{C}) \end{bmatrix}$$
(2.16)

Combined Products

$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \varepsilon_{ijk} A_i B_j C_k \quad \text{: volume}$$

$$(\mathbf{A} \times \mathbf{B}) \times \mathbf{C} = (\mathbf{B}\mathbf{A} - \mathbf{A}\mathbf{B}) \cdot \mathbf{C} = \mathbf{C} \cdot (\mathbf{A}\mathbf{B} - \mathbf{B}\mathbf{A})$$

$$\mathbf{C} \times (\mathbf{A} \times \mathbf{B}) = \mathbf{C} \cdot (\mathbf{B}\mathbf{A} - \mathbf{A}\mathbf{B}) = (\mathbf{A}\mathbf{B} - \mathbf{B}\mathbf{A}) \cdot \mathbf{C}$$

$$(\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{C} \times \mathbf{D}) = \mathbf{A} \cdot (\mathbf{C}\mathbf{D} - \mathbf{D}\mathbf{C}) \cdot \mathbf{B} = \mathbf{C} \cdot (\mathbf{A}\mathbf{B} - \mathbf{B}\mathbf{A}) \cdot \mathbf{D}$$
(2.19)

Unit Dyad

$$\overline{\mathbf{I}} = \hat{\mathbf{u}}_i \hat{\mathbf{u}}_i \qquad \overline{\mathbf{I}} \cdot \overline{\mathbf{I}} = \overline{\mathbf{I}} \qquad \overline{\mathbf{I}} \times \overline{\mathbf{I}} = 0$$

$$\mathbf{A} \cdot \overline{\mathbf{I}} = \overline{\mathbf{I}} \cdot \mathbf{A} = \mathbf{A}$$
(2.20)

$$\mathbf{A} \cdot \overline{\mathbf{I}} = \overline{\mathbf{I}} \cdot \mathbf{A} = \mathbf{A}$$

$$\mathbf{A} \times \overline{\mathbf{I}} = \overline{\mathbf{I}} \times \mathbf{A} = \mathbf{u}_i \overline{\mathbf{u}_j} \varepsilon_{mij} A_m : \underline{\text{anti-symmetric dyadic}}$$

(2.21)

(2.18)

$$(\mathbf{A} \times \mathbf{B}) \times \overline{\mathbf{I}} = \overline{\mathbf{I}} \times (\mathbf{A} \times \mathbf{B}) = \mathbf{B}\mathbf{A} - \mathbf{A}\mathbf{B}$$

where (2.23) can be derived from (2.18) by $\mathbb{C} \to \mathbb{I}$.

CANNX I = MA-MON-T

Symmetric and Anti-Symmetric Tensors

$$T = T^{t}$$
: symmetric tensor
 $T = -T^{t}$: anti-symmetric tensor $\rightarrow T_{ii} = 0$, $T_{ij} = -T_{ji}$ (2.24)

An arbitrary tensor can be decomposed into symmetric and anti-symmetric components,

$$\overline{\overline{\mathbf{T}}} = \frac{1}{2}(\overline{\mathbf{T}} + \overline{\mathbf{T}}^t) + \frac{1}{2}(\overline{\mathbf{T}} - \overline{\mathbf{T}}^t)$$

and we obtain dyadic symmetry decomposition:

$$\mathbf{AB} = \frac{1}{2}(\mathbf{AB} + \mathbf{BA}) + \frac{1}{2}(\mathbf{AB} - \mathbf{BA}) = \frac{1}{2}[\mathbf{A}, \mathbf{B}]_{+} + \frac{1}{2}[\mathbf{A}, \mathbf{B}]_{-}$$
 (2.26)

where the two dyadic operators are defined as:

$$[\mathbf{A}, \mathbf{B}]_{+} = \mathbf{A}\mathbf{B} + \mathbf{B}\mathbf{A}$$
: anti-commutator
 $[\mathbf{A}, \mathbf{B}]_{-} = \mathbf{A}\mathbf{B} - \mathbf{B}\mathbf{A}$: commutator (2.27)

2.3 Differential Vector Operators

We consider three orthogonal unit vectors $(\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)$ in Cartesian coordinates.

$$\nabla = \mathbf{u}_i \partial_i \qquad (2.28)$$

$$\nabla \varphi(\mathbf{r}) = \mathbf{u}_i \partial_i \varphi(\mathbf{r}) \tag{2.29}$$

$$d\mathbf{r} \cdot \nabla \varphi(\mathbf{r}) = \varphi(\mathbf{r} + d\mathbf{r}) - \varphi(\mathbf{r}) \tag{2.30}$$

Divergence

$$\nabla \cdot \mathbf{A}(\mathbf{r}) = \partial_i A_i(\mathbf{r}) = \lim_{V \to 0} \frac{1}{V} \oint_S ds \mathbf{n} \cdot \mathbf{A}(\mathbf{r})$$

Curl

$$\nabla \times \mathbf{A}(\mathbf{r}) = \varepsilon_{ijk} \mathbf{u}_i \partial_j A_k = \lim_{V \to 0} \frac{1}{V} \oint_S d\mathbf{s} \times \mathbf{A}(\mathbf{r})$$

$$= \oint_{V \to 0} \mathcal{A}(\mathbf{r}) \int_{V} \mathbf{a}(\mathbf{r}) d\mathbf{s} \times \mathbf{A}(\mathbf{r})$$

Laplacian

From a vector identity

$$\nabla \times \nabla \times \mathbf{A} = \nabla \nabla \cdot \mathbf{A} - \nabla^2 \mathbf{A} \tag{2.33}$$

the laplacian operator is defined as

$$\nabla^2 = \nabla \nabla \cdot - \nabla \times \nabla \times$$
 (2.34)

Lecture 2-8