62 Chapter 2 Data

Such a representation is actually a transaction data set, where the transactions are the compounds and the items are the substructures.

In some cases, it is easy to represent the data in a record format, but this type of representation does not capture all the information in the data. Consider spatio-temporal data consisting of a time series from each point on a spatial grid. This data is often stored in a data matrix, where each row represents a location and each column represents a particular point in time. However, such a representation does not explicitly capture the time relationships that are present among attributes and the spatial relationships that exist among objects. This does not mean that such a representation is inappropriate, but rather that these relationships must be taken into consideration during the analysis. For example, it would not be a good idea to use a data mining technique that ignores the temporal autocorrelation of the attributes or the spatial autocorrelation of the data objects, i.e., the locations on the spatial grid.

2.2 Data Quality

Data mining algorithms are often applied to data that was collected for another purpose, or for future, but unspecified applications. For that reason, data mining cannot usually take advantage of the significant benefits of "addressing quality issues at the source." In contrast, much of statistics deals with the design of experiments or surveys that achieve a prespecified level of data quality. Because preventing data quality problems is typically not an option, data mining focuses on (1) the detection and correction of data quality problems and (2) the use of algorithms that can tolerate poor data quality. The first step, detection and correction, is often called **data cleaning**.

The following sections discuss specific aspects of data quality. The focus is on measurement and data collection issues, although some application-related issues are also discussed.

2.2.1 Measurement and Data Collection Issues

It is unrealistic to expect that data will be perfect. There may be problems due to human error, limitations of measuring devices, or flaws in the data collection process. Values or even entire data objects can be missing. In other cases, there can be spurious or duplicate objects; i.e., multiple data objects that all correspond to a single "real" object. For example, there might be two different records for a person who has recently lived at two different addresses.

Even if all the data is present and "looks fine," there may be inconsistencies—a person has a height of 2 meters, but weighs only 2 kilograms.

In the next few sections, we focus on aspects of data quality that are related to data measurement and collection. We begin with a definition of measurement and data collection errors and then consider a variety of problems that involve measurement error: noise, artifacts, bias, precision, and accuracy. We conclude by discussing data quality issues that involve both measurement and data collection problems: outliers, missing and inconsistent values, and duplicate data.

Measurement and Data Collection Errors

The term **measurement error** refers to any problem resulting from the measurement process. A common problem is that the value recorded differs from the true value to some extent. For continuous attributes, the numerical difference of the measured and true value is called the **error**. The term **data** collection error refers to errors such as omitting data objects or attribute values, or inappropriately including a data object. For example, a study of animals of a certain species might include animals of a related species that are similar in appearance to the species of interest. Both measurement errors and data collection errors can be either systematic or random.

We will only consider general types of errors. Within particular domains, certain types of data errors are commonplace, and well-developed techniques often exist for detecting and/or correcting these errors. For example, keyboard errors are common when data is entered manually, and as a result, many data entry programs have techniques for detecting and, with human intervention, correcting such errors.

Noise and Artifacts

Noise is the random component of a measurement error. It typically involves the distortion of a value or the addition of spurious objects. Figure 2.5 shows a time series before and after it has been disrupted by random noise. If a bit more noise were added to the time series, its shape would be lost. Figure 2.6 shows a set of data points before and after some noise points (indicated by '+'s) have been added. Notice that some of the noise points are intermixed with the non-noise points.

The term noise is often used in connection with data that has a spatial or temporal component. In such cases, techniques from signal or image processing

Figure 2.5. Noise in a time series context.

Figure 2.6. Noise in a spatial context.

can frequently be used to reduce noise and thus, help to discover patterns (signals) that might be "lost in the noise." Nonetheless, the elimination of noise is frequently difficult, and much work in data mining focuses on devising **robust algorithms** that produce acceptable results even when noise is present.

Data errors can be the result of a more deterministic phenomenon, such as a streak in the same place on a set of photographs. Such deterministic distortions of the data are often referred to as **artifacts**.

Precision, Bias, and Accuracy

In statistics and experimental science, the quality of the measurement process and the resulting data are measured by precision and bias. We provide the standard definitions, followed by a brief discussion. For the following definitions, we assume that we make repeated measurements of the same underlying quantity.

Definition 2.3 (Precision). The closeness of repeated measurements (of the same quantity) to one another.

Definition 2.4 (Bias). A systematic variation of measurements from the quantity being measured.

Precision is often measured by the standard deviation of a set of values, while bias is measured by taking the difference between the mean of the set of values and the known value of the quantity being measured. Bias can be determined only for objects whose measured quantity is known by means external to the current situation. Suppose that we have a standard laboratory weight with a mass of 1g and want to assess the precision and bias of our new laboratory scale. We weigh the mass five times, and obtain the following five values: {1.015, 0.990, 1.013, 1.001, 0.986}. The mean of these values is 1.001, and hence, the bias is 0.001. The precision, as measured by the standard deviation, is 0.013.

It is common to use the more general term, accuracy, to refer to the degree of measurement error in data.

Definition 2.5 (Accuracy). The closeness of measurements to the true value of the quantity being measured.

Accuracy depends on precision and bias, but there is no specific formula for accuracy in terms of these two quantities.

One important aspect of accuracy is the use of significant digits. The goal is to use only as many digits to represent the result of a measurement or calculation as are justified by the precision of the data. For example, if the length of an object is measured with a meter stick whose smallest markings are millimeters, then we should record the length of data only to the nearest millimeter. The precision of such a measurement would be \pm 0.5mm. We do not review the details of working with significant digits because most readers will have encountered them in previous courses and they are covered in considerable depth in science, engineering, and statistics textbooks.

Issues such as significant digits, precision, bias, and accuracy are sometimes overlooked, but they are important for data mining as well as statistics and science. Many times, data sets do not come with information about the precision of the data, and furthermore, the programs used for analysis return results without any such information. Nonetheless, without some understanding of the

66 Chapter 2 Data

accuracy of the data and the results, an analyst runs the risk of committing serious data analysis blunders.

Outliers

Outliers are either (1) data objects that, in some sense, have characteristics that are different from most of the other data objects in the data set, or (2) values of an attribute that are unusual with respect to the typical values for that attribute. Alternatively, they can be referred to as **anomalous** objects or values. There is considerable leeway in the definition of an outlier, and many different definitions have been proposed by the statistics and data mining communities. Furthermore, it is important to distinguish between the notions of noise and outliers. Unlike noise, outliers can be legitimate data objects or values that we are interested in detecting. For instance, in fraud and network intrusion detection, the goal is to find unusual objects or events from among a large number of normal ones. Chapter 9 discusses anomaly detection in more detail.

Missing Values

It is not unusual for an object to be missing one or more attribute values. In some cases, the information was not collected; e.g., some people decline to give their age or weight. In other cases, some attributes are not applicable to all objects; e.g., often, forms have conditional parts that are filled out only when a person answers a previous question in a certain way, but for simplicity, all fields are stored. Regardless, missing values should be taken into account during the data analysis.

There are several strategies (and variations on these strategies) for dealing with missing data, each of which is appropriate in certain circumstances. These strategies are listed next, along with an indication of their advantages and disadvantages.

Eliminate Data Objects or Attributes A simple and effective strategy is to eliminate objects with missing values. However, even a partially specified data object contains some information, and if many objects have missing values, then a reliable analysis can be difficult or impossible. Nonetheless, if a data set has only a few objects that have missing values, then it may be expedient to omit them. A related strategy is to eliminate attributes that have missing values. This should be done with caution, however, because the eliminated attributes may be the ones that are critical to the analysis.

Estimate Missing Values Sometimes missing data can be reliably estimated. For example, consider a time series that changes in a reasonably smooth fashion, but has a few, widely scattered missing values. In such cases, the missing values can be estimated (interpolated) by using the remaining values. As another example, consider a data set that has many similar data points. In this situation, the attribute values of the points closest to the point with the missing value are often used to estimate the missing value. If the attribute is continuous, then the average attribute value of the nearest neighbors is used; if the attribute is categorical, then the most commonly occurring attribute value can be taken. For a concrete illustration, consider precipitation measurements that are recorded by ground stations. For areas not containing a ground station, the precipitation can be estimated using values observed at nearby ground stations.

Ignore the Missing Value during Analysis Many data mining approaches can be modified to ignore missing values. For example, suppose that objects are being clustered and the similarity between pairs of data objects needs to be calculated. If one or both objects of a pair have missing values for some attributes, then the similarity can be calculated by using only the attributes that do not have missing values. It is true that the similarity will only be approximate, but unless the total number of attributes is small or the number of missing values is high, this degree of inaccuracy may not matter much. Likewise, many classification schemes can be modified to work with missing values.

Inconsistent Values

Data can contain inconsistent values. Consider an address field, where both a zip code and city are listed, but the specified zip code area is not contained in that city. It is possible that the individual entering this information transposed two digits, or perhaps a digit was misread when the information was scanned from a handwritten form. Regardless of the cause of the inconsistent values, it is important to detect and, if possible, correct such problems.

Some types of inconsistences are easy to detect. For instance, a person's height should not be negative. In other cases, it can be necessary to consult an external source of information. For example, when an insurance company processes claims for reimbursement, it checks the names and addresses on the reimbursement forms against a database of its customers.

Once an inconsistency has been detected, it is sometimes possible to correct the data. A product code may have "check" digits, or it may be possible to double-check a product code against a list of known product codes, and then correct the code if it is incorrect, but close to a known code. The correction of an inconsistency requires additional or redundant information.

Example 2.6 (Inconsistent Sea Surface Temperature). This example illustrates an inconsistency in actual time series data that measures the sea surface temperature (SST) at various points on the ocean. SST data was originally collected using ocean-based measurements from ships or buoys, but more recently, satellites have been used to gather the data. To create a long-term data set, both sources of data must be used. However, because the data comes from different sources, the two parts of the data are subtly different. This discrepancy is visually displayed in Figure 2.7, which shows the correlation of SST values between pairs of years. If a pair of years has a positive correlation, then the location corresponding to the pair of years is colored white; otherwise it is colored black. (Seasonal variations were removed from the data since, otherwise, all the years would be highly correlated.) There is a distinct change in behavior where the data has been put together in 1983. Years within each of the two groups, 1958–1982 and 1983–1999, tend to have a positive correlation with one another, but a negative correlation with years in the other group. This does not mean that this data should not be used, only that the analyst should consider the potential impact of such discrepancies on the data mining analysis.

Duplicate Data

A data set can include data objects that are duplicates, or almost duplicates, of one another. Many people receive duplicate mailings because they appear in a database multiple times under slightly different names. To detect and eliminate such duplicates, two main issues must be addressed. First, if there are two objects that actually represent a single object, then one or more values of corresponding attributes are usually different, and these inconsistent values must be resolved. Second, care needs to be taken to avoid accidentally combining data objects that are similar, but not duplicates, such as two distinct people with identical names. The term **deduplication** is often used to refer to the process of dealing with these issues.

In some cases, two or more objects are identical with respect to the attributes measured by the database, but they still represent different objects. Here, the duplicates are legitimate, but can still cause problems for some algorithms if the possibility of identical objects is not specifically accounted for in their design. An example of this is given in Exercise 17 on page 128.

Figure 2.7. Correlation of SST data between pairs of years. White areas indicate positive correlation. Black areas indicate negative correlation.

2.2.2Issues Related to Applications

Data quality issues can also be considered from an application viewpoint as expressed by the statement "data is of high quality if it is suitable for its intended use." This approach to data quality has proven quite useful, particularly in business and industry. A similar viewpoint is also present in statistics and the experimental sciences, with their emphasis on the careful design of experiments to collect the data relevant to a specific hypothesis. As with quality issues at the measurement and data collection level, many issues are specific to particular applications and fields. Again, we consider only a few of the general issues.

Timeliness Some data starts to age as soon as it has been collected. In particular, if the data provides a snapshot of some ongoing phenomenon or process, such as the purchasing behavior of customers or web browsing patterns, then this snapshot represents reality for only a limited time. If the data is out of date, then so are the models and patterns that are based on it.