Key Component Types

Prefix	Component	Example	Notes
R	Resistor	R1 in n2 1k	1 kΩ between node 1 & 2
С	Capacitor	C1 out 0 10u	Node 0 = ground
L	Inductor	Lw n2 out 50n	1 mH
V	Voltage src	V1 in 0 DC 5	DC or AC

Netlist vs Schematic

V1 in 0 DC 5
R1 in n2 1k
Lw n2 out 50n
C1 out 0 10u
.end

Noise Analysis

.NOISE V(<OUT_NODE>) <INPUT_SOURCE> <SWEEP_TYPE> <NPOINTS> <FSTART> <FSTOP>

V(<out_node>) Output node for noise calculation

<input_source> Reference source for input-referred noise

<sweep_type> Frequency sweep style (dec, oct, lin)

<Npoints> Points per decade/octave or total

<Fstart> <Fstop> start and stop frequencies (1 Hz to 1 GHz)

Time-domain Transient Analysis

.TRAN <TSTEP> <TSTOP> [TSTART [DTMAX]]

<Tstep> Plotting increment

<Tstop> Total simulated time

[Tstart Time to start saving data

[dTmax]] Maximum time step

Frequency Response (Gain & Phase)

.AC <TYPE> <POINTS> <START_FREQ> <STOP_FREQ>

<type> Sweep spacing (dec, oct, lin)

<points>
Number of frequency points per decade/octave or total (linear)

<start_freq> Starting frequency

Parameter Sweep

.STEP PARAM <PARAM_NAME> <START> <STOP> <INCREMENT>

<param_name>
Name from the parameter definition

<start> Start value of the sweep

<stop> End value of the sweep

<increment>
Sweep increment

SPICE CHALLENGE

- Make Teams with minimum one Github Account and minimum one IC Designer
- Install LTSpice
- Clone Repo https://github.com/padiro/co-simulation-workshop
- Import netlist into LTSPICE
- Fix errors in netlist
- Find the resistance value for R1
- Find the voltage noise power spectral density at 1kHz
- Submit solution via Pull Request on Github

