

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE171101104

FCC REPORT

Applicant: Shenzhen AlldoCube Technology and Science Co.,Ltd

Address of Applicant:

Building No.1, Suwang Industrial Park, Xiahenglang, Dalang,

Longhua District, Shenzhen, China

Equipment Under Test (EUT)

Product Name: Tablet PC

Model No.: i1101, KNOTE

Trade mark: ALLDOCUBE

FCC ID: 2AKO6ADC03

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 02 Nov., 2017

Date of Test: 02 Nov., to 21 Nov., 2017

Date of report issued: 22 Nov., 2017

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	22 Nov., 2017	Original

Tested by: Date: 22 Nov., 2017

Test Engineer

Reviewed by: Date: 22 Nov., 2017

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3		NTENTS	
4		ST SUMMARY	
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	7
	5.5	MEASUREMENT UNCERTAINTY	7
	5.6	LABORATORY FACILITY	7
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	8
6	TES	ST RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	
	6.6	BAND EDGE	41
	6.7	Spurious Emission	
	6.7.		
	6.7.		
	6.8	FREQUENCY STABILITY	61
7	TES	ST SETUP PHOTO	63
Ω	FIIT	CONSTRUCTIONAL DETAILS	64

4 Test Summary

Test Item	Section in CFR 47	Test Result			
Antenna requirement	15.203/15.407 (a)	Pass			
AC Power Line Conducted Emission	15.207	Pass			
Conducted Peak Output Power	15.407 (a) (1) (iv)	Pass			
26dB Occupied Bandwidth	15.407 (a) (5)	Pass			
Power Spectral Density	15.407 (a) (1) (iv)	Pass			
Band Edge	15.407(b)	Pass			
Spurious Emission	15.205/15.209	Pass			
Frequency Stability	15.407(g)	Pass			
Pass: The EUT complies with the essential requirements in the standard.					

5 General Information

5.1 Client Information

Applicant:	Shenzhen AlldoCube Technology and Science Co.,Ltd
Address:	Building No.1,Suwang Industrial Park, Xiahenglang,Dalang,Longhua District,Shenzhen,China
Manufacturer/ Factory:	Shenzhen Alldocube Technology and science Co., LTD
Address:	Building No.1,Suwang Industrial Park, Xiahenglang,Dalang,Longhua District,Shenzhen,China

5.2 General Description of E.U.T.

<u> </u>	
Product Name:	Tablet PC
Model No.:	i1101, KNOTE
Operation Frequency:	Band 1: 5150MHz-5250MHz
Channel numbers:	Band 1: 802.11a/802.11n20: 4, 802.11n40: 2, 802.11ac: 1
Channel separation:	802.11a/802.11n20: 20MHz, 802.11n40: 40MHz, 802.11ac: 80MHz
Modulation technology: (IEEE 802.11a)	BPSK, QPSK, 16-QAM, 64-QAM
Modulation technology: (IEEE 802.11n)	BPSK, QPSK, 16-QAM, 64-QAM
Modulation technology: (IEEE 802.11ac)	BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM
Data speed (IEEE 802.11a)	6Mbps, 9Mbps,12Mbps,18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n20):	MCS0: 13Mbps, MCS1: 26Mbps, MCS2: 39Mbps, MCS3: 52Mbps, MCS4: 78Mbps, MCS5: 104Mbps, MCS6: 117Mbps, MCS7: 130Mbps
Data speed (IEEE 802.11n40):	MCS0: 30Mbps, MCS1: 60Mbps, MCS2: 90Mbps, MCS3: 120Mbps, MCS4: 180Mbps, MCS5: 240Mbps, MCS6: 270Mbps, MCS7: 300Mbps
Data speed (IEEE 802.11ac):	Up to 650Mbps
Antenna Type:	Internal Antenna
Antenna gain:	-4.78 dBi
Power supply:	Rechargeable Li-ion Battery DC7.6V/4000mAh
AC adapter:	Model:AK36WG-120025U Input: AC100-240V, 50/60Hz, 0.8A Output: DC 12V, 2.5A
Remark:	Model No.: i1101, KNOTE were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.

Operation Frequency each of channel							
	Band 1						
802.11a/8	302.11n20	80	2.11n40	80	2.11ac		
Channel	Frequency	Channel	Frequency	Channel	Frequency		
36	5180MHz	38	5190MHz	42	5210MHz		
40	5200MHz	46	5230MHz				
44	5220MHz						
48	5240MHz						

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

000 001011.						
Band 1						
802.11a/802.11n20 802.11n40						
Channel	Frequency	Channel	Channel Frequency		Frequency	
Lowest channel	5180MHz	Lowest channel	5190MHz	Middle channel	5210MHz	
Middle channel	5200MHz	Highest channel	5230MHz			
Highest channel	5240MHz					

5.3 Test environment and test mode

5.5 Test environment and test mode				
Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Continuously transmitting mode	Keep the EUT in 10	0% duty cycle transmitting with modulation.		
We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:				
Per-scan all kind of data rate, and	d found the follow lis	t were the worst case.		
Mode		Data rate		
802.11a		6 Mbps		
802.11n20		13 Mbps		
802.11n40		30 Mbps		
802.11ac		58.5 Mbps		

Report No: CCISE171101104

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	4.56 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	02-25-2017	02-24-2018	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	02-25-2017	02-24-2018	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	02-25-2017	02-24-2018	
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A	
Pre-amplifier	HP	8447D	2944A09358	02-25-2017	02-24-2018	
Pre-amplifier	CD	PAP-1G18	11804	02-25-2017	02-24-2018	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	02-25-2017	02-24-2018	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	02-25-2017	02-24-2018	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	02-25-2017	02-24-2018	
Cable	MICRO-COAX	MFR64639	K10742-5	02-25-2017	02-24-2018	
Cable	SUHNER	SUCOFLEX100	58193/4PE	02-25-2017	02-24-2018	

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	02-25-2017	02-24-2018
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	02-25-2017	02-24-2018
LISN	CHASE	MN2050D	1447	02-25-2017	02-24-2018
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2017	07-20-2018
Cable	HP	10503A	N/A	02-25-2017	02-24-2018
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The WiFi antenna is an Internal Antenna which cannot replace by end-user, the best case gain of the antenna is -4.78 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150kHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kH	Z		
Limit:	Frequency range	Limit (dBuV)	
	(MHz)	Quasi-peak	,	
	0.15-0.5	66 to 56*	0.15-0.5	
	0.5-5	56	0.5-5	
	5-30	60	5-30	
	* Decreases with the loga			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). It provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 			
Test setup:	Reference Plane			
	AUX Equipment E.U.T Remark E.U.T Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0 8m			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details.			
Test results:	Passed			

Measurement Data:

Line:

Site : CCIS Shielding Room Condition : FCC PART15 B QP LISN LINE EUT : Tablet PC

Model : i1101 Test Mode : 5G-WIFI mode Power Rating : AC 120V/50Hz

Power Rating : AC 120V/50Hz Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Carey

Remark

emark								
	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line		Remark
***	MHz	dBu∜	dB	₫B	dBu₹	dBu∜	d₿	
1	0.154	49.51	-0.56	10.78	59.73	65.78	-6.05	QP
2	0.202	30.33	-0.52	10.76	40.57	53.54	-12.97	Average
3	0.369	23.58	-0.50	10.73	33.81	48.52	-14.71	Average
4	0.381	30.68	-0.50	10.72	40.90	58.25	-17.35	QP
5	0.442	30.62	-0.50	10.74	40.86	57.02	-16.16	QP
2 3 4 5 6 7 8 9	0.471	23.35	-0.49	10.75	33.61	46.49	-12.88	Average
7	0.727	27.07	-0.48	10.78	37.37	56.00	-18.63	QP
8		19.07		10.79	29.38	46.00	-16.62	Average
9	1.005	16.68	-0.49	10.87	27.06	46.00	-18.94	Average
10	3.417	28.71	-0.38	10.91	39.24	56.00	-16.76	QP
11	13.267	39.66	-0.44	10.91	50.13		-9.87	
12		29.56			40.03			Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

Neutral:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : Tablet PC Condition

EUT Model : ill01

Test Mode : 5G-WIFI mode Power Rating : AC 120V/50Hz

Environment : Temp: 23 °C Huni: 56% Atmos: 101KPa

Test Engineer: Carey

Remark

10.111.705.000	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
- 75	MHz	dBu∜	₫B	dB	dBu∀	dBu∀	₫₿	
1	0.154	49.37	-0.38	10.78	59.77	65.78	-6.01	QP
2	0.186	29.14	-0.35	10.76	39.55	54.20	-14.65	Average
3	0.211	42.25	-0.34	10.76	52.67	63.18	-10.51	QP
4	0.253	37.03	-0.33	10.75	47.45	61.64	-14.19	QP
5	0.258	19.27	-0.33	10.75	29.69	51.51	-21.82	Average
6	0.310	17.65	-0.32	10.74	28.07	49.97	-21.90	Average
7	0.796	16.96	-0.30	10.81	27.47	46.00	-18.53	Average
2 3 4 5 6 7 8 9	1.324	25.81	-0.28	10.91	36.44	56.00	-19.56	QP
9	3.840	27.53	-0.20	10.89	38.22	56.00	-17.78	QP
10	4.049	16.23	-0.21	10.89	26.91	46.00	-19.09	Average
11	13.479	38.09	-0.13	10.91	48.87		-11.13	
12	13.768	28.31	-0.17	10.91	39.05	50.00	-10.95	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission. 2.
- Final Level = Receiver Read level + LISN Factor + Cable Loss 3.

6.3 Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (iv)					
Test Method:	ANSI C63.10: 2013, KDB789033					
Limit:	Band 1: 24dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data:

weasurement Data:									
Mode	Test CH	Ant. Port	Conducted Output power (dBm)	Total power (dBm)	Limit (dBm)	Result			
	Laurant	AUX	6.62	,					
	Lowest	MAIN	6.88	/		Pass			
902.110	Middle	AUX	6.45	,	24.00				
802.11a	Middle	MAIN	6.85	/	24.00				
	Llighoot	AUX	6.38	,					
	Highest	MAIN	6.54	/					
	Lowest	AUX	3.35	6.24	24.00				
		MAIN	3.11	0.24		Pass			
802.11n20	Middle	AUX	3.21	6.10					
002.111120		MAIN	2.97	0.10		F d 5 5			
	Highest	AUX	3.17	6.16					
		MAIN	3.13	0.10					
	Lowest	AUX	2.90	5.90	24.00				
802.11n40	Lowest	MAIN	2.87	5.90		Pass			
	Highoet	AUX	2.73	5.85					
	Highest	MAIN	2.94	5.65					
802.11ac80	Middle	AUX	2.63	5.58	24.00	Page			
002.118000		MAIN	2.51	5.56		Pass			

Test plot as follows: AUX Antenna Port:

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Highest channel

Lowest channel

Highest channel

Middle channel

MAIN Antenna Port:

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Lowest channel

Highest channel

Middle channel

6.4 Occupy Bandwidth

0.4 Occupy Bandwidth						
Test Requirement:	FCC Part15 E Section 15.407 (a) (5) ANSI C63.10:2013 and KDB 789033 Band 1: N/A (26dB Emission Bandwidth and 99% Occupy Bandwidth)					
Test Method:						
Limit:						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table					
Took In other on too	Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data: AUX Antenna Port:

Took Channal		Linait	Result			
Test Channel	802.11a 802.11n20 802.11n40 802.11ac80				Limit	
Lowest	24.24	23.20	42.56			
Middle	23.12	23.52	79.36		N/A	PASS
Highest	19.60	19.84	39.44			
Took Channal		Limit	Dogult			
Test Channel	802.11a	802.11n20	802.11n40	802.11ac80	Limit	Result
Lowest	16.88	17.92	36.16			
Middle	16.88	17.92		75.52 N/A		PASS
Highest	16.80	17.92	36.16			

MAIN Antenna Port:

Test Channel		Limit	Result			
rest Channel	802.11a 802.11n20 802.11n40 802.11ac80				Limit	
Lowest	23.36	24.40	42.88	42.88		
Middle	23.52	24.16		79.68	N/A	PASS
Highest	18.42	19.68	40.16			
Test Channel		Limit	Result			
rest Channel	802.11a	802.11n20	802.11n40	802.11ac80	LITTIL	Kesuit
Lowest	16.96	18.00	36.16			
Middle	16.88	17.92		75.52 N/A		PASS
Highest	16.80	18.00	36.16			

Test plot as follows: AUX Antenna Port:

Highest channel

Highest channel

Highest channel

Middle channel

MAIN Antenna Port:

Highest channel

Highest channel

Highest channel

Middle channel

6.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (iv)					
Test Method:	ANSI C63.10:2013, KDB 789033					
Limit:	Band 1: 11 dBm/MHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data:

weasurement Data.									
Mode	Test CH	Ant. Port	PSD (dBm)	Total PSD (dBm)	Limit (dBm)	Result			
	1	AUX	-3.60	/		Pass			
	Lowest	MAIN	-4.06						
000 110	Middle	AUX	-2.89	,	11.00				
802.11a	Middle	MAIN	-3.53	/	11.00				
	Llighoot	AUX	-2.85	,					
	Highest	MAIN	-3.67	/					
	Lowest	AUX	-3.92	-1.16	11.00	Pass			
		MAIN	-4.44						
802.11n20	Middle	AUX	-3.20	-0.47					
602.111120		MAIN	-3.79						
	Highest	AUX	-3.19	0.00					
		MAIN	-4.15	-0.63					
	Lowest	AUX	-6.97	-4.26	11.00				
802.11n40	Lowest	MAIN	-7.59	-4.20		Pass			
	Highort	AUX	-7.25	-4.62					
	Highest	MAIN	-8.05	-4.02					
802.11ac80	Middle	AUX	-10.45	7.45	11.00	Page			
002.118080		MAIN	-10.47	-7.45		Pass			

Test plot as follows: AUX Antenna Port:

Date: 14.NOV.2017 06:40:49

Date: 14.NOV.2017 06:41:04

Middle channel

Date: 14.NOV.2017 06:41:16

Highest channel

Date: 14.NOV.2017 06:42:25

Lowest channel

Date: 14.NOV.2017 06:41:33

Highest channel

Middle channel

Date: 14.NOV.2017 06:41:55

Lowest channel

Highest channel

Test mode:802.11ac80

Date: 14.NOV.2017 06:43:51

Middle channel

MAIN Antenna Port:

Date: 14.NOV.2017 06:10:11 Date: 14.NOV.2017 06:09:53

Lowest channel

Date: 14.NOV.2017 06:09:42

Highest channel

Middle channel

Date: 14.NOV.2017 06:09:00

Lowest channel

Date: 14.NOV.2017 06:09:26

Highest channel

Middle channel

Date: 14.NOV.2017 06:09:15

Highest channel

Test mode:802.11n40

Date: 14.NOV.2017 06:08:23

Lowest channel

Highest channel

Test mode:802.11ac80

Date: 14.NOV.2017 06:08:38

Date: 14.NOV.2017 06:07:54

Middle channel

Band Edge

Test Requirement:	FCC Part 15 E Sect	tion 15 407 (h)		
· ·		` '		
Test Method:	ANSI C63.10:2013		\/D\\/	December
Receiver setup:	Detector	RBW 120kHz	VBW 300kHz	Remark Quasi-peak Value
	Quasi-peak RMS	120kHz	3MHz	Average Value
Limit:	Band		V/m @3m)	Remark
LIIIII.			3.20	Peak Value
	Band 1/2/3		.00	Average Value
	D 1.4		3.20	Peak Value
	Band 4		.00	Average Value
Test Presedure	2. Band 4 limit: E[dBµV/m] = EIR	P[dBm] + 95.2=78.	2 dBuV/m, for	EIPR[dBm]=-27dBm. EIPR[dBm]=-17dBm. table 0.8 meters above
Test Procedure:	the ground at a to determine the 2. The EUT was a antenna, which tower. 3. The antenna he the ground to a Both horizontal make the meas 4. For each suspecase and then meters and the to find the max 5. The test-receiv Specified Bance 6. If the emission the limit specified for the EUT wou have 10dB max	a 3 meter camber the position of the set 3 meters awards a was mounted or the letermine the mall and vertical polar surement. The antenna was a rotatable was ture imum reading. The system was so level of the EUT ed, then testing or the could be reported. Orgin would be re-	The table was highest radiaty from the interpretary from the interpretary from the top of a second money may be a facility of the EUT was a second from 0 dependent of the top of the facility	as rotated 360 degrees tion. erference-receiving variable-height antenna to four meters above of the field strength. The antenna are set to the arranged to its worst this from 1 meter to 4 degrees to 360 degrees tect Function and
Test setup:	SWWWWWW.	(Turnkline) Grand A	Horr Artisma Aver	MYTHIS TOWNET
Test Instruments:	Refer to section 5.8	for details		
Test mode:	Refer to section 5.3	for details		
Test results:	Passed			

AUX Antenna:

	802.11a											
Test cl	nannel		Lov	vest		Le	vel		Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factot (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5150.00	45.72	31.38	7.05	3.36	41.93	45.58	68.20	-22.62	Horizontal			
5150.00	46.15	31.38	7.05	3.36	41.93	46.01	68.20	-22.19	Vertical			
				8	02.11a							
Test ch	nannel		Lov	vest		Le	vel	A۱	/erage			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factot (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5150.00	35.43	31.38	7.05	3.36	41.93	35.29	54.00	-18.71	Horizontal			
5150.00	36.46	31.38	7.05	3.36	41.93	36.32	54.00	-17.68	Vertical			
				8	802.11a							
Test ch	nannel		Higl	hest		Level			Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factot (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	45.72	30.82	7.11	3.38	41.89	45.14	68.20	-23.06	Horizontal			
5350.00	46.34	30.82	7.11	3.38	41.89	45.76	68.20	-22.44	Vertical			
				8	02.11a							
Test ch	nannel		Higl	hest		Le	vel	A۱	/erage			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factot (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	35.43	30.82	7.11	3.38	41.89	34.85	54.00	-19.15	Horizontal			
5350.00	36.86	30.82	7.11	3.38	41.89	36.28	54.00	-17.72	Vertical			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

MAIN Antenna:

				8	02.11a					
Test cl	nannel		Lov	vest		Le	vel		Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factot (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	45.40	31.38	7.05	3.36	41.93	45.26	68.20	-22.94	Horizontal	
5150.00	46.15	31.38	7.05	3.36	41.93	46.01	68.20	-22.19	Vertical	
802.11a										
Test cl	nannel		Lov	vest		Le	vel	A۱	/erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factot (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	35.42	31.38	7.05	3.36	41.93	35.28	54.00	-18.72	Horizontal	
5150.00	36.43	31.38	7.05	3.36	41.93	36.29	54.00	-17.71	Vertical	
				8	02.11a					
Test cl	nannel		Higl	hest		Level			Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factot (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	45.46	30.82	7.11	3.38	41.89	44.88	68.20	-23.32	Horizontal	
5350.00	46.71	30.82	7.11	3.38	41.89	46.13	68.20	-22.07	Vertical	
				8	02.11a					
Test cl	nannel		Higl	hest		Le	vel	A۱	/erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factot (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	35.48	30.82	7.11	3.38	41.89	34.90	54.00	-19.10	Horizontal	
5350.00	36.17	30.82	7.11	3.38	41.89	35.59	54.00	-18.41	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

MIMO Antenna:

				80	2.11n20					
Test cl	nannel		Lov	vest		Le	vel		Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factot (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	46.96	31.38	7.05	3.36	41.93	46.82	68.20	-21.38	Horizontal	
5150.00	46.56	31.38	7.05	3.36	41.93	46.42	68.20	-21.78	Vertical	
802.11n20										
Test cl	nannel		Lov	vest		Le	vel	A۱	/erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factot (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	36.43	31.38	7.05	3.36	41.93	36.29	54.00	-17.71	Horizontal	
5150.00	36.32	31.38	7.05	3.36	41.93	36.18	54.00	-17.82	Vertical	
				80	2.11n20					
Test cl	nannel		Higl	nest		Level			Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factot (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	46.34	30.82	7.11	3.38	41.89	45.76	68.20	-22.44	Horizontal	
5350.00	46.52	30.82	7.11	3.38	41.89	45.94	68.20	-22.26	Vertical	
				80	2.11n20					
Test cl	nannel		Higl	nest		Le	vel	A۱	/erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factot (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	36.13	30.82	7.11	3.38	41.89	35.55	54.00	-18.45	Horizontal	
5350.00	36.54	30.82	7.11	3.38	41.89	35.96	54.00	-18.04	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

				80	2.11n40					
Test ch	nannel		Lov	vest		Le	vel		Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factot (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	46.53	31.38	7.05	3.36	41.93	46.39	68.20	-21.81	Horizontal	
5150.00	46.34	31.38	7.05	3.36	41.93	46.20	68.20	-22.00	Vertical	
802.11n40										
Test ch	nannel		Lov	vest		Le	vel	A۱	/erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factot (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	36.32	31.38	7.05	3.36	41.93	36.18	54.00	-17.82	Horizontal	
5150.00	36.17	31.38	7.05	3.36	41.93	36.03	54.00	-17.97	Vertical	
				80	2.11n40					
Test cl	nannel		Higl	nest		Le	vel		Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factot (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	46.26	30.82	7.11	3.38	41.89	45.68	68.20	-22.52	Horizontal	
5350.00	46.43	30.82	7.11	3.38	41.89	45.85	68.20	-22.35	Vertical	
				80	2.11n40					
Test ch	nannel		Higl	nest		Le	vel	A۱	/erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factot (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	36.46	30.82	7.11	3.38	41.89	35.88	54.00	-18.12	Horizontal	
5350.00	36.85	30.82	7.11	3.38	41.89	36.27	54.00	-17.73	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

				802	2.11ac80					
Test ch	nannel		Mic	ldle		Le	vel		Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factot (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	46.56	31.38	7.05	3.36	41.93	46.42	68.20	-21.78	Horizontal	
5150.00	46.67	31.38	7.05	3.36	41.93	46.53	68.20	-21.67	Vertical	
	802.11ac80									
Test ch	nannel		Mic	ldle		Le	vel	A۱	/erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factot (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	36.64	31.38	7.05	3.36	41.93	36.50	54.00	-17.50	Horizontal	
5150.00	36.46	31.38	7.05	3.36	41.93	36.32	54.00	-17.68	Vertical	
				802	2.11ac80					
Test ch	nannel		Mic	ldle		Level			Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factot (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	46.33	30.82	7.11	3.38	41.89	45.75	68.20	-22.45	Horizontal	
5350.00	46.43	30.82	7.11	3.38	41.89	45.85	68.20	-22.35	Vertical	
				802	2.11ac80					
Test cl	nannel		Mic	ldle		Le	vel	A۱	/erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factot (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	36.86	30.82	7.11	3.38	41.89	36.28	54.00	-17.72	Horizontal	
5350.00	36.84	30.82	7.11	3.38	41.89	36.26	54.00	-17.74	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.6 Spurious Emission

6.6.1 Restricted Band

6.6.1 Restricted Band											
Test Requirement:	FCC Part15 E S	FCC Part15 E Section 15.407(b)									
Test Method:	ANSI C63.10: 20)13									
Test Frequency Range:	4.5 GHz to 5.15	GHz and 5.35	GHz to 5.46G	Hz							
Test site:	Measurement Di	stance: 3m									
Receiver setup:	Frequency	Detector	RBW	VBV		Remark					
	Above 1GHz	Peak RMS	1MHz 1MHz	3MH 3MH		Peak Value Average Value					
Limit:	Frequency		it (dBuV/m @:			Remark					
Littiit.	Above 1GH		74.00	J,		eak Value					
			54.00			erage Value					
Test Procedure:	the ground a to determine 2. The EUT was antenna, wh tower. 3. The antenna the ground a Both horizon make the m 4. For each su case and the meters and to find the m 5. The test-recessified Base 6. If the emiss the limit specified Base of the EUT whave 10dB is second and to determine the second and the	at a 3 meter can the position as set 3 meter on the position as set 3 meter on the position as set 3 meter on the position as the position as the position and the position as the position and the position as the position as the position as the position and the position as the position	amber. The tage of the highest is away from the top of the don the top ied from one in the maximum all polarizations as turned from the was turned from the maximum Howas set to Pe Maximum Howas turned be EUT in peak sting could be orted. Otherwis the re-tested content in the country in the	able was radiation the interior of a value of the was arrow on the lates and the lates are the electric by ond then the lates are the electric by ond the lates are the electric by ond the lates are t	s rotated on. Iference ariable- o four managed to from egrees to the firm egrees to the f	height antenna neters above ld strength. na are set to to its worst 1 meter to 4 to 360 degrees ction and dB lower than the peak values ns that did not ng peak, quasi-					
		Tee	Grand Adminis Plans ###################################	Cortolal	-						
Test Instruments:	Refer to section	5.8 for details									
Test mode:	Refer to section	5.3 for details									
Test results:	Passed										

AUX Antenna of 802.11a:

Test cl	hannel		Low	est		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	46.42	29.30	6.80	3.29	42.05	43.76	74.00	-30.24	Horizontal
4500.00	46.99	29.30	6.80	3.29	42.05	44.33	74.00	-29.67	Vertical
Test cl	hannel		Low	est		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	36.56	29.30	6.80	3.29	42.05	33.90	54.00	-20.10	Horizontal
4500.00	36.51	29.30	6.80	3.29	42.05	33.85	54.00	-20.15	Vertical
Test cl	hannel		High	est		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	45.43	30.54	7.18	3.39	41.85	44.69	74.00	-29.31	Horizontal
5460.00	46.82	30.54	7.18	3.39	41.85	46.08	74.00	-27.92	Vertical
Test cl	hannel		High	est		Le	vel	Av	rerage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	35.53	30.54	7.18	3.39	41.85	34.79	54.00	-19.21	Horizontal
5460.00	36.43	30.54	7.18	3.39	41.85	35.69	54.00	-18.31	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

MAIN Antenna of 802.11a:

Test ch	nannel		Low	est		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	46.01	29.30	6.80	3.29	42.05	43.35	74.00	-30.65	Horizontal
4500.00	46.15	29.30	6.80	3.29	42.05	43.49	74.00	-30.51	Vertical
Test cl	nannel		Low	est		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	36.91	29.30	6.80	3.29	42.05	34.25	54.00	-19.75	Horizontal
4500.00	36.22	29.30	6.80	3.29	42.05	33.56	54.00	-20.44	Vertical
Test cl	nannel		High	est		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	45.63	30.54	7.18	3.39	41.85	44.89	74.00	-29.11	Horizontal
5460.00	46.15	30.54	7.18	3.39	41.85	45.41	74.00	-28.59	Vertical
Test cl	nannel		High	est		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	35.48	30.54	7.18	3.39	41.85	34.74	54.00	-19.26	Horizontal
5460.00	36.42	30.54	7.18	3.39	41.85	35.68	54.00	-18.32	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

MIMO Antenna: 802.11n-HT20

Test cl	nannel		Low	est		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	46.96	29.30	6.80	3.29	42.05	44.30	74.00	-29.70	Horizontal
4500.00	46.53	29.30	6.80	3.29	42.05	43.87	74.00	-30.13	Vertical
Test cl	nannel		Low	est		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	36.72	29.30	6.80	3.29	42.05	34.06	54.00	-19.94	Horizontal
4500.00	36.14	29.30	6.80	3.29	42.05	33.48	54.00	-20.52	Vertical
Test cl	nannel		High	est		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	46.42	30.54	7.18	3.39	41.85	45.68	74.00	-28.32	Horizontal
5460.00	46.97	30.54	7.18	3.39	41.85	46.23	74.00	-27.77	Vertical
Test cl	nannel		High	est		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	36.42	30.54	7.18	3.39	41.85	35.68	54.00	-18.32	Horizontal
5460.00	36.85	30.54	7.18	3.39	41.85	36.11	54.00	-17.89	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40

Test ch	nannel		Low	est		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	46.56	29.30	6.80	3.29	42.05	43.90	74.00	-30.10	Horizontal
4500.00	46.86	29.30	6.80	3.29	42.05	44.20	74.00	-29.80	Vertical
Test ch	nannel		Low	est		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	36.43	29.30	6.80	3.29	42.05	33.77	54.00	-20.23	Horizontal
4500.00	36.26	29.30	6.80	3.29	42.05	33.60	54.00	-20.40	Vertical
Test ch	nannel		High	est		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	46.85	30.54	7.18	3.39	41.85	46.11	74.00	-27.89	Horizontal
5460.00	46.26	30.54	7.18	3.39	41.85	45.52	74.00	-28.48	Vertical
Test ch	nannel		High	est		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	36.86	30.54	7.18	3.39	41.85	36.12	54.00	-17.88	Horizontal
5460.00	36.54	30.54	7.18	3.39	41.85	35.80	54.00	-18.20	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11ac-HT80

Test cl	hannel		Mid	dle		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	46.46	29.30	6.80	3.29	42.05	43.80	74.00	-30.20	Horizontal
4500.00	46.74	29.30	6.80	3.29	42.05	44.08	74.00	-29.92	Vertical
Test cl	hannel		Mid	dle		Le	vel	A۱	rerage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	36.44	29.30	6.80	3.29	42.05	33.78	54.00	-20.22	Horizontal
4500.00	36.29	29.30	6.80	3.29	42.05	33.63	54.00	-20.37	Vertical
Test cl	hannel		Mid	dle		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	46.61	30.54	7.18	3.39	41.85	45.87	74.00	-28.13	Horizontal
5460.00	46.12	30.54	7.18	3.39	41.85	45.38	74.00	-28.62	Vertical
Test cl	hannel		Mid	dle		Le	vel	A۱	verage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	36.99	30.54	7.18	3.39	41.85	36.25	54.00	-17.75	Horizontal
5460.00	36.85	30.54	7.18	3.39	41.85	36.11	54.00	-17.89	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.6.2 Unwanted Emissions out of the Restricted Bands

Test Requirement:	FCC Part15 C Section 15.209 and 15.205										
Test Method:	ANSI C63.10: 20	13									
Test Frequency Range:	30MHz to 40GHz	<u>,</u>									
Test site:	Measurement Dis	stance: 3	m								
Receiver setup:	Frequency	Detec	tor	RBW	VE	3W	Remark				
	30MHz-1GHz	Quasi-p	eak	100kHz	300)kHz	Quasi-peak Value				
	Above 1GHz	Peal		1MHz		ИHz	Peak Value				
		RMS		1MHz		/IHz	Average Value				
Limit:	Frequency		Lim	nit (dBuV/m @3	sm)		Remark				
	30MHz-88MHz 40.0 Quasi-peak Value										
	88MHz-216MHz 43.5 Quasi-peak Value										
	216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value										
	68 20 Peak Value										
	Above 1GH	Above 1GHz 54.00 Average Value									
	Pomorle:			54.00			Average value				
	Remark: Above 1GHz limit:										
	Above 1GHz limit: $E[dB\mu V/m] = EIRP[dBm] + 95.2=68.2 \ dBu V/m, for EIPR[dBm]=-27dBm.$										
Test Procedure:				e top of a rota							
rest i roccuire.							eter camber. The				
							on of the highest				
	radiation.										
				away from th							
	· ·	ich was i	mount	ed on the top	of a va	ariable	height antenna				
	tower.	الفطاءة أمطا			-44-	. fa	t - v				
				aximum value			neters above the				
							e set to make the				
	measureme		μι ρυια	inzations of th	c and	illia ai	c set to make the				
			emissi	ion, the EUT v	vas ar	ranged	to its worst case				
							eter to 4 meters				
			ıs turn	ed from 0 deg	rees t	o 360 d	degrees to find the				
	maximum re	_									
				as set to Peal			ction and				
	Specified Bandwidth with Maximum Hold Mode.										
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the										
				therwise the e							
							ak, quasi-peak or				
				ed and then re							
Test setup:	Below 1GHz										

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M2G) HORIZONTAL : Tablet PC Condition

EUT Iest mode : 5G-WIFI Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey
REMARK :

munu			v rayer en en e		0.000		* * * *		
	Free		Antenna Factor					Over	
	rreq	Level	ractor	LUSS	ractor	Level	LINE	LIMIT	Nemalk
-	MHz	dBuV	dB/m	₫B	₫B	dBuV/m	dBuV/m	dB	
1	72.084	44.42	9.86	1.56	29.70	26.14	40.00	-13.86	QP
2	96.099	43.30	11.67	2.00	29.55	27.42	43.50	-16.08	QP
3	132, 221	54.64	8.54	2.32	29.32	36.18	43.50	-7.32	QP
4	155.910	53.02	8.56	2.56	29.17	34.97	43.50	-8.53	QP
5	264.746	56.40	12.43	2.85	28.51	43.17	46.00	-2.83	QP
6	330.195	53.72	13.80	3.04	28.52	42.04	46.00	-3.96	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M2G) VERTICAL : Tablet PC Condition

: 11101

Test mode : 5G-WIFI mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey
REMARK : EUT

		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq		Factor				Line	Limit	Remark
	MHz	dBu₹	dB/a	₫B	₫B	dBuV/m	dBu∜/m	₫B	
1	80.927	46.93	8.92	1.69	29.63	27.91	40.00	-12.09	QP
2	89.905	45.99	10.60	2.04	29.57	29.06	43.50	-14.44	QP
3	132.221	48.86	8.54	2.32	29.32	30.40	43.50	-13.10	QP
4	150.011	48.61	8.50	2.52	29.22	30.41	43.50	-13.09	QP
5	279.044	51.87	12.72	2.88	28.49	38.98	46.00	-7.02	QP
6	285.978	51.28	12.97	2.90	28.47	38.68	46.00	-7.32	QP

Above 1GHz: AUX Antenna Port:

	802.11a mode Lowest channel (Peak Value)													
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization					
10400.00	46.69	36.95	9.82	5.31	41.97	56.80	68.20	-11.40	Vertical					
10400.00	46.54	36.95	9.82	5.31	41.97	56.65	68.20	-11.55	Horizontal					
			802.11a r	node Lowe	st channel (Average Val	ue)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization					
10400.00	36.97	36.95	9.82	5.31	41.97	47.08	54.00	-6.92	Vertical					
10400.00	36.12	36.95	9.82	5.31	41.97	46.23	54.00	-7.77	Horizontal					

	802.11a mode Middle channel (Peak Value)												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10400.00	46.51	36.96	9.85	5.33	41.95	56.70	68.20	-11.50	Vertical				
10400.00	46.78	36.96	9.85	5.33	41.95	56.97	68.20	-11.23	Horizontal				
			802.11a ı	mode Middl	le channel (Average Valu	ne)						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10400.00	36.93	36.96	9.85	5.33	41.95	47.12	54.00	-6.88	Vertical				
10400.00	36.48	36.96	9.85	5.33	41.95	46.67	54.00	-7.33	Horizontal				

	802.11a mode Highest channel (Peak Value)												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10400.00	46.89	37.00	9.96	5.37	41.88	57.34	68.20	-10.86	Vertical				
10400.00	46.97	37.00	9.96	5.37	41.88	57.42	68.20	-10.78	Horizontal				
			802.11a n	node Highe	st channel (Average Val	ue)						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10400.00	36.14	37.00	9.96	5.37	41.88	46.59	54.00	-7.41	Vertical				
10400.00	36.55	37.00	9.96	5.37	41.88	47.00	54.00	-7.00	Horizontal				

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

MAIN Antenna of 802.11a:

	802.11a mode Lowest channel (Peak Value)												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10400.00	46.00	36.95	9.82	5.31	41.97	56.11	68.20	-12.09	Vertical				
10400.00	46.44	36.95	9.82	5.31	41.97	56.55	68.20	-11.65	Horizontal				
			802.11a r	node Lowe	st channel (Average Val	ue)						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10400.00	36.57	36.95	9.82	5.31	41.97	46.68	54.00	-7.32	Vertical				
10400.00	36.94	36.95	9.82	5.31	41.97	47.05	54.00	-6.95	Horizontal				

	802.11a mode Middle channel (Peak Value)												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10400.00	46.54	36.96	9.85	5.33	41.95	56.73	68.20	-11.47	Vertical				
10400.00	46.74	36.96	9.85	5.33	41.95	56.93	68.20	-11.27	Horizontal				
			802.11a ı	mode Middl	e channel (/	Average Valu	ne)						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10400.00	36.38	36.96	9.85	5.33	41.95	46.57	54.00	-7.43	Vertical				
10400.00	36.05	36.96	9.85	5.33	41.95	46.24	54.00	-7.76	Horizontal				

	802.11a mode Highest channel (Peak Value)												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10400.00	46.89	37.00	9.96	5.37	41.88	57.34	68.20	-10.86	Vertical				
10400.00	46.97	37.00	9.96	5.37	41.88	57.42	68.20	-10.78	Horizontal				
			802.11a n	node Highe	est channel (Average Val	ue)						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10400.00	36.14	37.00	9.96	5.37	41.88	46.59	54.00	-7.41	Vertical				
10400.00	36.55	37.00	9.96	5.37	41.88	47.00	54.00	-7.00	Horizontal				

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

MIMO Antenna:

	802.11n20 mode Lowest channel (Peak Value)													
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization					
10400.00	46.27	36.95	9.82	5.31	41.97	56.38	68.20	-11.82	Vertical					
10400.00	46.69	36.95	9.82	5.31	41.97	56.80	68.20	-11.40	Horizontal					
		8	02.11n20	mode Low	est channel	(Average Va	alue)							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization					
10400.00	36.47	36.95	9.82	5.31	41.97	46.58	54.00	-7.42	Vertical					
10400.00	36.13	36.95	9.82	5.31	41.97	46.24	54.00	-7.76	Horizontal					

	802.11n20 mode Middle channel (Peak Value)												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10400.00	46.88	36.96	9.85	5.33	41.95	57.07	68.20	-11.13	Vertical				
10400.00	46.43	36.96	9.85	5.33	41.95	56.62	68.20	-11.58	Horizontal				
		8	302.11n20	mode Mid	dle channel	(Average Va	ılue)						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10400.00	36.29	36.96	9.85	5.33	41.95	46.48	54.00	-7.52	Vertical				
10400.00	36.38	36.96	9.85	5.33	41.95	46.57	54.00	-7.43	Horizontal				

	802.11n20 mode Highest channel (Peak Value)												
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10400.00	46.54	37.00	9.96	5.37	41.88	56.99	68.20	-11.21	Vertical				
10400.00	46.17	37.00	9.96	5.37	41.88	56.62	68.20	-11.58	Horizontal				
		8	02.11n20	mode High	est channel	(Average Va	alue)						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization				
10400.00	36.24	37.00	9.96	5.37	41.88	46.69	54.00	-7.31	Vertical				
10400.00	36.46	37.00	9.96	5.37	41.88	46.91	54.00	-7.09	Horizontal				

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
 The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n40 mode Lowest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	46.82	36.96	9.85	5.32	41.95	57.00	68.20	-11.20	Vertical
10400.00	46.32	36.96	9.85	5.32	41.95	56.50	68.20	-11.70	Horizontal
	802.11n40 mode Lowest channel (Average Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	36.89	36.96	9.85	5.32	41.95	47.07	54.00	-6.93	Vertical
10400.00	36.22	36.96	9.85	5.32	41.95	46.40	54.00	-7.60	Horizontal

802.11n40 mode Highest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	46.28	36.97	9.89	5.34	41.93	56.55	68.20	-11.65	Vertical
10400.00	46.85	36.97	9.89	5.34	41.93	57.12	68.20	-11.08	Horizontal
	802.11n40 mode Highest channel (Average Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	36.49	36.97	9.89	5.34	41.93	46.76	54.00	-7.24	Vertical
10400.00	36.47	36.97	9.89	5.34	41.93	46.74	54.00	-7.26	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11ac80 mode Middle channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	44.15	36.97	9.89	5.34	41.93	54.42	68.20	-13.78	Vertical
10400.00	45.13	36.97	9.89	5.34	41.93	55.40	68.20	-12.80	Horizontal
	802.11ac80 mode Middle channel (Average Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Aux Factor (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	34.65	36.97	9.89	5.34	41.93	44.92	54.00	-9.08	Vertical
10400.00	35.15	36.97	9.89	5.34	41.93	45.42	54.00	-8.58	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.7 Frequency stability

o.r rrequericy stability					
Test Requirement:	FCC Part15 E Section 15.407 (g)				
Limit:	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.				
Test setup: Test procedure:	Variable Power Supply Note: Measurement setup for testing on Antenna connector 1. The EUT is installed in an environment test chamber with external power source.				
	 Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions. 				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data (the worst channel):

Voltage vs. Frequency Stability (Lowest channel=5180MHz)

Test conditions		F	Max. Deviation (ppm)		
Temp(℃) Voltage(dc)		Frequency(MHz)			
	6.5V	5179.997643	0.45		
20	7.6V	5179.974779	4.87		
	8.7V	5179.963951	6.96		

Temperature vs. Frequency Stability (Lowest channel=5180MHz)

Test conditions		Francisco (MIII-)	May Davistian (num)		
Voltage(dc)	Temp(℃)	Frequency(MHz)	Max. Deviation (ppm)		
	-20	5179.987033	2.50		
	-10	5179.995377	0.89		
	0	5179.968421	6.10		
7.0)/	10	5179.987556	2.40		
7.6V	20	5179.996681	0.64		
	30	5179.974290	4.96		
	40	5179.963775	6.99		
	50	5179.974929	4.84		