Performance Analysis with Vampir

Madhura Kumaraswamy

Content derived from slides by Ronny Tschüter, Bert Wesarg and Matthias Weber (Technische Universität Dresden)

Outline

Part I: Vampir Tool Suite

- Event trace visualization
- The Vampir displays
- Visualization modes

Part II: Vampir Hands-On

Visualizing and analyzing NPB-MZ-MPI / BT

Event Trace Visualization with Vampir

- Display and analyze performance data
- Show dynamic run-time behavior graphically
- Provide statistics and performance metrics
- Optimized displays to quickly identify problem areas/faulty parts of program code

Use Vampir to visualize:

- application execution during a given time in a given process/thread
- communication patterns during application execution
- imbalances in computation, I/O or memory usage
- effect of imbalances on the parallel execution of application

The main displays of Vampir

- Timeline Charts: Show application activities and communication along a time axis
 - Emaline
 - Process Timeline
 - Counter Data Timeline
 - Performance Radar

- Summary Charts: Provide quantitative results for the currently selected time interval
 - Function Summary
 - Message Summary
 - Process Summary
 - Communication Matrix View

Additional displays of Vampir

- I/O Summary summary of input/output operations
- Call Tree Summary invocation hierarchy of all monitored functions in a tree representation. Shows callers and callees

Visualization Modes (1)

Directly on front end or local machine

% vampir

Visualization Modes (2)

On local machine with remote VampirServer

Hands-on: Visualizing and analyzing NPB-MZ-MPI / BT

Help! Where is my trace file?

```
% ls tutorial/NPB3.3-MZ-MPI/bin.scorep/scorep_bt-mz_B_4x4_trace/
scorep.cfg scorep.filt scorep.log scorep.score
scout.cubex scout.log trace.cubex traces traces.def
traces.otf2 trace.stat
```

 If you followed the Score-P hands-on up to the trace experiment

Starting Vampir on SuperMUC

```
% module load vampir
```

% vampir traces.otf2

Enable X server forwarding while logging in on the SuperMUC ssh -X user@supermuc.lrz.de

Starting VampirServer

% vampirserver start -t 30

Start VampirServer on SuperMUC

Starting VampirServer

```
% vampirserver start -t 30
Launching VampirServer...
-----LRZ system integration (start message)------
SuperMUC LoadLeveler job has the ID: srv04-ib.1055953.0
Please abort with the llcancel command once done,
and ignore the following "abort with" message.
-----LRZ system integration (end message)----
INFO: Notification set to NEVER!
VampirServer 7.5.0
Licensed to LRZ
Running 16 analysis processes... (abort with vampirserver stop 4025)
VampirServer listens on:
                                                                             Copy host:port
      Server I
```

Enable Port Forwarding

% ssh -L 30080:localhost:30090 <username>@lxhalle.in.tum.de

 Open a port forwarding to lxhalle from your local machine

% ssh -L 30090: <username>@supermuc.lrz.de

 Open a port forwarding to SuperMUC to be able to access the VampirServer

host:port from VampirServer output

Start Vampir on local computer

NOTE:

- Use Vampir on your local system to increase responsiveness
- Copy your trace directory to your local machine and open the trace (otf2) from the GUI

Visualization of the NPB-MZ-MPI / BT trace

Visualization of the NPB-MZ-MPI / BT traceMaster Timeline

Visualization of the NPB-MZ-MPI / BT traceProcess Timeline

Visualization of the NPB-MZ-MPI / BT trace Summary Timeline

Visualization of the NPB-MZ-MPI / BT trace Typical program phases

Visualization of the NPB-MZ-MPI / BT trace Counter Data Timeline

Visualization of the NPB-MZ-MPI / BT trace Performance Radar

Detailed counter information over time for a collection of processes

Additional Slides

Visualization of the NPB-MZ-MPI / BT traceProcess Summary

Function Summary: Overview of the

accumulated information across all functions and for a collection of processes

Process Summary:

Overview of the accumulated information across all functions and for every process independently

Visualization of the NPB-MZ-MPI / BT trace Call Tree Summary

Call Tree Summary:
Overview of the
callers and callees
across all functions

Visualization of the NPB-MZ-MPI / BT trace

Visualization of the NPB-MZ-MPI / BT trace

Zoom in: Finalization Phase

Summary and Conclusion

Summary

- Vampir & VampirServer
 - Interactive trace visualization and analysis
 - Intuitive browsing and zooming
 - Compare traces
 - Scalable to large trace data sizes (20 TiByte)
 - Scalable to high parallelism (200,000 processes)
- Vampir for Linux, Windows, and Mac OS X
- **Note:** Vampir neither solves your problems automatically, nor points you directly at them. It only gives you a full insight into the execution of your application.

Vampir is available at http://www.vampir.eu Get support via vampirsupport@zih.tu-dresden.de