Data Analytics of the Spread and Impact of COVID-19 Globally

Importing modules

```
In [4]: import pandas as pd
   import numpy as np
   import plotly.express as px
   import matplotlib.pyplot as plt
   print('modules are imported')
```

modules are imported

Loading the Dataset

Check the dataframe

In [9]: df.head()

Out[9]:		Date	Country	Confirmed	Recovered	Deaths
	0	2020-01-22	Afghanistan	0	0	0
	1	2020-01-23	Afghanistan	0	0	0
	2	2020-01-24	Afghanistan	0	0	0
	3	2020-01-25	Afghanistan	0	0	0
	4	2020-01-26	Afghanistan	0	0	0

In [11]: df.tail()

Out[11]:		Date	Country	Confirmed	Recovered	Deaths
	161563	2022-04-12	Zimbabwe	247094	0	5460
	161564	2022-04-13	Zimbabwe	247160	0	5460
	161565	2022-04-14	Zimbabwe	247208	0	5462
	161566	2022-04-15	Zimbabwe	247237	0	5462
	161567	2022-04-16	Zimbabwe	247237	0	5462

Shape of the dataframe

In [13]: df.shape

Out[13]: (161568, 5)

Some preprocessing to reveiw from the dataset

ln [16]: df = df[df.Confirmed > 0]

In [14]: df.head()

Out[14]:	Date	Country	Confirmed	Recovered	Deaths
0	2020-01-22	Afghanistan	0	0	0
1	2020-01-23	Afghanistan	0	0	0

2	2020-01-24	Afghanistan	0	0	0
3	2020-01-25	Afghanistan	0	0	0
4	2020-01-26	Afghanistan	0	0	0

let's see data related to a country for example Italy

In [25]: df[df.Country == 'Italy']

Out[25]:	Date	Country	Confirmed	Recovered	Deaths
70176	2020-01-22	Italy	0	0	0
70177	2020-01-23	Italy	0	0	0
70178	2020-01-24	Italy	0	0	0
70179	2020-01-25	Italy	0	0	0
70180	2020-01-26	Italy	0	0	0
70987	2022-04-12	Italy	15404809	0	161032
70988	2022-04-13	Italy	15467395	0	161187
70989	2022-04-14	Italy	15533012	0	161336
70990	2022-04-15	Italy	15595302	0	161469
70991	2022-04-16	Italy	15659835	0	161602

816 rows × 5 columns

Global spread of Covid19

```
Global Deaths of Covid19
```

Visualizing how intensive the Covid19 Transmission has been in each of the country

Out[23]: Date Country Confirmed Recovered Deaths

30192	2020-01-22	China	548	28	17
30193	2020-01-23	China	643	30	18
30194	2020-01-24	China	920	36	26
30195	2020-01-25	China	1406	39	42
30196	2020-01-26	China	2075	49	56

Selecting for Number of Confirmed Cases in China

```
In [28]: df_China = df_China[['Date','Confirmed']]
```

In [30]: df_China.head()

Out[30]:		Date	Confirmed
	30192	2020-01-22	548
	30193	2020-01-23	643
	30194	2020-01-24	920
	30195	2020-01-25	1406
	30196	2020-01-26	2075

Calculating the first derivation of confrimed column

In[]: df_China['Infection Rate'] = df_China['Confirmed'].diff()

In [42]: df China.head()

Out[42]:		Date	Confirmed	Infection Rate	Infection rate
	30192	2020-01-22	548.0	NaN	548.0
	30193	2020-01-23	643.0	95.0	643.0
	30194	2020-01-24	920.0	277.0	920.0
	30195	2020-01-25	1406.0	486.0	1406.0
	30196	2020-01-26	2075.0	669.0	2075.0

ln [50]: px.line(df_China , x = 'Date' , y = ['Confirmed','Infection Rate'])

In [46]: df_China['Infection Rate'].max()

```
Out[46]:77402.0
Calculating Maximum infection rate for all of the countries
In [51]: df.head()
Out[51]:
                        Country Confirmed Recovered Deaths
                Date
        33 2020-02-24 Afghanistan
                                        5
                                                          0
                                        5
        34 2020-02-25 Afghanistan
                                                   0
                                                          0
        35 2020-02-26 Afghanistan
                                        5
                                                  0
                                                          0
                                        5
        36 2020-02-27 Afghanistan
                                                  0
                                                          0
        37 2020-02-28 Afghanistan
                                                  0
                                                          0
In [64]: Countries = list(df['Country'].unique())
      max infection rates = []
       for c in Countries :
           MIR = df[df.Country == c].Confirmed.diff().max()
           max infection rates.append(MIR)
Creating a new Dataframe for the Maximum Infection Rate in each Country
ln [66]: df_MIR = pd.DataFrame()
      df MIR['Country'] = Countries
      df MIR['Max Infection Rate'] = max infection rates
      df MIR.head()
Out[66]:
             Country Max Infection Rate
        0 Afghanistan
                               3243.0
        1
              Albania
                               4789.0
        2
                                2521.0
              Algeria
        3
             Andorra
                                2313.0
        4
              Angola
                               5035.0
```

Ploting the barchart: maximum infection rate of each country

How National Lockdowns Impacts Covid19 transmission in Italy

COVID19 pandemic lockdown in Italy

On 9 March 2020, the government of Italy under Prime Minister Giuseppe Conte imposed a national quarantine, restricting the movement of the population except for necessity, work, and health circumstances, in response to the growing pandemic of COVID-19 in the country. source

Out[69]:	Date	Country	Confirmed	Recovered	Deaths
33	2020-02-24	Afghanistan	5	0	0
34	2020-02-25	Afghanistan	5	0	0
35	2020-02-26	Afghanistan	5	0	0
36	2020-02-27	Afghanistan	5	0	0
37	2020-02-28	Afghanistan	5	0	0

```
Data related to italy
```

```
In [72]: df Italy = df[df.Country == 'Italy']
```

lets check the dataframe

 $ln [73]: df_Italy.head()$

Out[73]:		Date	Country	Confirmed	Recovered	Deaths
	70185	2020-01-31	Italy	2	0	0
	70186	2020-02-01	Italy	2	0	0
	70187	2020-02-02	Italy	2	0	0
	70188	2020-02-03	Italy	2	0	0
	70189	2020-02-04	Italy	2	0	0

Calculating the infection rate in Italy

```
ln[74]: df Italy['Infection rate'] = df_Italy.Confirmed.diff()
     df Italy.head()
```

C:\Users\idowuay1\AppData\Local\Temp\1\ipykernel 8612\2459636895.py:1: SettingWithCopyWarnin g:

```
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guid e/indexing.html#returning-a-view-versus-a-copy

Out[74]:		Date	Country	Confirmed	Recovered	Deaths	Infection rate
	70185	2020-01-31	Italy	2	0	0	NaN
	70186	2020-02-01	Italy	2	0	0	0.0
	70187	2020-02-02	Italy	2	0	0	0.0
	70188	2020-02-03	Italy	2	0	0	0.0
	70189	2020-02-04	Italy	2	0	0	0.0

visualization for Infection Rate in Itally

```
ln[106]: fig = px.line(df_Italy , x = 'Date' , y = 'Infection rate' , title = "Before and
      After Lockdoown in Italy")
      fig.add shape (
          dict(
          type="line",
          x0=Italy lockdown start date,
          x1=Italy lockdown start date,
          y1= df Italy['Infection rate'].max(),
          line = dict(color='red' , width=2)
```

```
fig.add_annotation(
    dict(
    x = Italy_lockdown_start_date,
    y = df_Italy['Infection rate'].max(),
    text = "Starting date of the lockdown"
)
```

How National Lockdowns Impacts Covid19 active cases in Italy

In [108]: df_Italy.head()

Out[108]:	Date	Country	Confirmed	Recovered	Deaths	Infection rate
70185	2020-01-31	Italy	2	0	0	NaN
70186	2020-02-01	Italy	2	0	0	0.0
70187	2020-02-02	Italy	2	0	0	0.0
70188	2020-02-03	Italy	2	0	0	0.0
70189	2020-02-04	Italy	2	0	0	0.0

Calculating the number of active cases day by day In [109]:

```
df Italy['Death Rate'] = df Italy.Deaths.diff()
```

 $\label{local_Temp_1_8612_1984322640.py:1: SettingWithCopyWarning:} \\$

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer, col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guid e/indexing.html#returning-a-view-versus-a-copy

let's check the dataframe again

In [110]: df_Italy.head()

Out[110]:		Date	Country	Confirmed	Recovered	Deaths	Infection rate	Death Rate
7	0185	2020-01-31	Italy	2	0	0	NaN	NaN
7	0186	2020-02-01	Italy	2	0	0	0.0	0.0
7	0187	2020-02-02	Italy	2	0	0	0.0	0.0
7	0188	2020-02-03	Italy	2	0	0	0.0	0.0
7	0189	2020-02-04	Italy	2	0	0	0.0	0.0

Ploting a line chart to compare COVID19 national lockdowns impacts on spread of the virus and number of active cases in Italy

```
In [115]: fig = px.line(df_Italy, x='Date', y=['Infection rate', 'Death Rate'])
    fig.show()
```

```
\label{localization} $$ \ln [117]: df \ Italy['Infection \ rate'] = df_Italy['Infection \ rate'] / df_Italy['Infection \ rat
                 rate'].max()
                 df Italy['Death Rate'] = df Italy['Death Rate']/df Italy['Death Rate'].max()
C:\Users\idowuay1\AppData\Local\Temp\1\ipykernel 8612\1808481513.py:1: SettingWithCopyWarnin
q:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user quid
e/indexing.html#returning-a-view-versus-a-copy
C:\Users\idowuay1\AppData\Local\Temp\1\ipykernel 8612\1808481513.py:2: SettingWithCopyWarnin
q:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guid
e/indexing.html#returning-a-view-versus-a-copy
ln [118]: fig = px.line(df_Italy,x='Date',y=['Infection rate','Death Rate'])
                  fig.show()
```

Next Visualization to work on: COVID19 pandemic lockdown in Germany Lockdown was started in Freiburg, Baden-Württemberg and Bavaria on 20 March 2020. Three days later, it was expanded to the whole of Germany

```
In[]: Germany_lockdown_start_date = '2020-03-23'
      Germany lockdown a month later = '2020-04-23'
let's select the data related to Germany
In []:
let's check the dataframe
In []:
selecting the needed column
In []:
let's check it again
In []:
let's calculate the infection rate in Germany
In []:
let's check the dataframe
In []:
now let's plot the line chart
In []:
In []:
let's do some scaling
In []:
let's plot the line chart
In []:
```