Aritmetične funkcije Seminar

Marko Petkovšek Fakulteta za matematiko in fiziko Oddelek za matematiko

24. februar 2017

1 Uvod

V teoriji števil, ki se ukvarja z lastnostmi celih števil, s pojmom aritmetična funkcija označujemo preslikavo množice naravnih števil $\mathbb{N} = \{1, 2, 3, \ldots\}$ v neko podmnožico množice kompleksnih števil \mathbb{C} . Posebej uporabne so tiste aritmetične funkcije, ki so multiplikativne.

Definicija 1 Aritmetična funkcija f je multiplikativna, če za vse $a, b \in \mathbb{N}$ velja:

$$D(a,b) = 1 \implies f(ab) = f(a)f(b).$$

Vrednosti multiplikativne funkcije f so določene že z vrednostmi pri potencah praštevil. Če namreč razcepimo

$$n = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r},$$

kjer so p_1, p_2, \ldots, p_r različna praštevila in $k_1, k_2, \ldots, k_r \in \mathbb{N}$, je

$$f(n) = f(p_1^{k_1}) f(p_2^{k_2}) \cdots f(p_r^{k_r}).$$

Pomembni multiplikativni funkciji sta Eulerjeva funkcija $\varphi(n)$ in Möbiu-sova funkcija $\mu(n)$. Oglejmo si nekaj njunih lastnosti.

2 Eulerjeva funkcija

Definicija 2 Za vse $n \in \mathbb{N}$ s $\varphi(n)$ označimo število celih števil iz množice $\{1, 2, ..., n\}$, ki so tuja številu n. Preslikavo $\varphi : \mathbb{N} \to \mathbb{N}$ imenujemo Eulerjeva funkcija.

Zgled 1 Tabela ?? prikazuje izračun prvih šest vrednosti funkcije $\varphi(n)$. V n-ti vrstici so krepko natisnjena števila med 1 in n, ki so tuja številu n. Slika ?? pa grafično prikazuje prvih 100 vrednosti funkcije $\varphi(n)$.

n	$\{1,2,\ldots,n\}$	$\varphi(n)$
1	$\{1\}$	1
2	$\{1, 2\}$	1
3	$\{1, 2, 3\}$	2
4	$\{1, 2, 3, 4\}$	2
5	$\{1, 2, 3, 4, 5\}$	4
6	$\{1, 2, 3, 4, 5, 6\}$	2

Tabela 1: Vrednosti funkcije $\varphi(n)$ za $n = 1, 2, \dots, 6$

Slika 1: Vrednosti funkcije $\varphi(n)$ za $n = 1, 2, \dots, 100$

Računanje $\varphi(n)$ po definiciji je pri velikem n zelo zamudno. Vendar ima Eulerjeva funkcija lepe lastnosti, zaradi katerih lahko njeno vrednost izračunamo tudi pri velikem argumentu, če ga le znamo razcepiti na prafaktorje.

Če je p praštevilo, med števili $1, 2, \ldots, p$ edinole število p ni tuje številu p, torej je $\varphi(p) = p - 1$. Skoraj prav tako preprosto lahko poiščemo vrednost $\varphi(n)$, če je n potenca nekega praštevila.

Trditev 1 Naj bo p praštevilo in $k \in \mathbb{N}$. Potem je $\varphi(p^k) = p^k - p^{k-1}$.

Dokaz: Število a je tuje številu p^k natanko tedaj, ko ni večkratnik praštevila p. Med števili $1, 2, \ldots, p^k$ je natanko $p^k/p = p^{k-1}$ večkratnikov števila p, torej je $\varphi(p^k) = p^k - p^{k-1}$.

Izrek 1 Eulerjeva funkcija je multiplikativna.

Dokaz: Vzemimo tuji naravni števili a in b. Zapišimo vsa števila med 1 in ab v obliki tabele z a vrsticami in b stolpci:

Za vsako število velja, da je tuje številu ab natanko tedaj, ko je tuje številu a in tuje številu b. Vrednost $\varphi(ab)$ lahko torej dobimo tako, da preštejemo, koliko je v gornji tabeli števil, ki so tuja tako številu a kot tudi številu b.

Števila v posameznem stolpcu dajejo vsa isti ostanek pri deljenju z b. Torej so bodisi vsa tuja številu b bodisi mu ni tuje nobeno od njih. Stolpcev, katerih elementi so tuji številu b, je toliko, kot je takih števil v prvi vrstici tabele, teh pa je ravno $\varphi(b)$.

Različna števila v posameznem stolpcu dajo različne ostanke pri deljenju z a. Če namreč števili k_1b+r in k_2b+r , kjer je $0 \le k_1, k_2 \le a-1$, dasta isti ostanek pri deljenju z a, je njuna razlika $(k_1-k_2)b$ deljiva z a. Ker sta števili a in b tuji, sledi, da je z a deljiva razlika k_1-k_2 . To pa je možno le, če je $k_1=k_2$, saj je $-(a-1) \le k_1-k_2 \le a-1$. Ker je dolžina stolpca enaka a, dobimo pri deljenju elementov stolpca z a ravno vse možne ostanke $0,1,\ldots,a-1$. Torej je v vsakem stolpcu $\varphi(a)$ števil tujih a.

To velja tudi za $\varphi(b)$ stolpcev, katerih elementi so tuji številu b. Potemtakem je v gornji tabeli $\varphi(b)\varphi(a)$ števil, ki so tuja tako številu b kot tudi številu a. Torej je $\varphi(ab) = \varphi(a)\varphi(b)$, kar pomeni, da je Eulerjeva funkcija multiplikativna.

Zgled 2 Izračunajmo $\varphi(10^k)$. Ker je $10^k=2^k5^k$, je po izreku ?? in trditvi ??

$$\varphi(10^k) = \varphi(2^k)\varphi(5^k) = (2^k - 2^{k-1})(5^k - 5^{k-1}) = 4 \times 10^{k-1}.$$

Posledica 1

$$\varphi(n) = n \times \prod_{p \mid n} \left(1 - \frac{1}{p}\right),$$

kjer p preteče vse različne prafaktorje števila n.

Dokaz: Naj bo $n = \prod_{i=1}^r p_i^{k_i}$, kjer so p_1, p_2, \dots, p_r različna praštevila in $k_1, k_2, \dots, k_r \in \mathbb{N}$. Po izreku ?? in trditvi ?? je potem

$$\varphi(n) = \prod_{i=1}^{r} \varphi\left(p_i^{k_i}\right) = \prod_{i=1}^{r} \left(p_i^{k_i} - p_i^{k_i-1}\right)$$

$$= \left(\prod_{i=1}^{r} p_i^{k_i}\right) \times \prod_{i=1}^{r} \left(1 - \frac{1}{p_i}\right) = n \times \prod_{p \mid n} \left(1 - \frac{1}{p}\right). \quad \Box$$

Trditev 2 Za vse $n \in \mathbb{N}$ velja enačba

$$\sum_{d \mid n} \varphi(d) = n, \tag{1}$$

kjer d preteče vse pozitivne delitelje števila n.

Dokaz: Za vse delitelje d števila n označimo

$$A_d = \left\{ \frac{kn}{d}; \ k \in \mathbb{Z}, \ 0 \le k < d, \ D(k,d) = 1 \right\}.$$

Recimo, da je $k_1n/d_1 = k_2n/d_2$, kjer je $D(k_1, d_1) = D(k_2, d_2) = 1$. Potem je $k_1d_2 = k_2d_1$, od koder sledi, da d_1 deli d_2 in obratno, kar pomeni, da je $d_1 = d_2$. Od tod zaključimo, da so si množice A_d paroma tuje, torej je

$$\left| \bigcup_{d \mid n} A_d \right| = \sum_{d \mid n} |A_d| = \sum_{d \mid n} \varphi(d).$$

Po drugi strani pa je

$$\bigcup_{d \mid n} A_d = \{0, 1, \dots, n-1\}.$$

Res, naj bo $kn/d \in A_d$. Ker d deli n, je število kn/d celo, iz $0 \le k < d$ pa sledi $0 \le kn/d < n$, torej $kn/d \in \{0,1,\ldots,n-1\}$. Vzemimo zdaj še poljuben $j \in \{0,1,\ldots,n-1\}$ in označimo: k=j/D(n,j), d=n/D(n,j). Potem je $j=kD(n,j)=kn/d \in A_d$.

To pa pomeni, da je
$$\left|\bigcup_{d\mid n} A_d\right| = n$$
 in izrek je dokazan.

Izrek 2 (Eulerjev izrek) Naj bosta $n \in \mathbb{N}$ in $a \in \mathbb{Z}$ tuji števili. Potem je

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$
.

Dokaz: Naj bodo $k_1, k_2, \ldots, k_{\varphi(n)}$ vsa števila med 1 in n, ki so tuja n. Če za indeksa $i, j \in \{1, 2, \ldots, \varphi(n)\}$ velja $k_i a \equiv k_j a \pmod{n}$, sledi $n | (k_i a - k_j a)$ in zato $n | (k_i - k_j)$, saj sta števili n in a tuji. To pa je mogoče le, če je i = j. Števila $k_1 a, k_2 a, \ldots, k_{\varphi(n)} a$ so torej med seboj paroma nekongruentna po modulu n. Ker so tuja številu n, je množica njihovih ostankov pri deljenju z n enaka množici $\{k_1, k_2, \ldots, k_{\varphi(n)}\}$. Zato je $k_1 a \cdot k_2 a \cdots k_{\varphi(n)} a \equiv k_1 \cdot k_2 \cdots k_{\varphi(n)}$ (mod n), od tod pa po krajšanju s produktom $k_1 \cdot k_2 \cdots k_{\varphi(n)}$, ki je tuj številu n, dobimo $a^{\varphi(n)} \equiv 1 \pmod{n}$.

Posledica 2 (mali Fermatov izrek) Naj bo p praštevilo in $a \in \mathbb{Z}$ celo število, ki ni deljivo s p. Potem je

$$a^{p-1} \equiv 1 \pmod{p}$$
.

3 Möbiusova funkcija

Definicija 3 Za vse $n \in \mathbb{N}$ naj bo

$$\mu(n) = \begin{cases} 0, & \check{c}e \ n \ deljiv \ s \ kvadratom \ pra\check{s}tevila, \\ (-1)^r, & sicer, \end{cases}$$

kjer je r število različnih prafaktorjev števila n. Preslikavo $\mu: \mathbb{N} \to \mathbb{Z}$ imenujemo Möbiusova funkcija.

Zgled 3 Tabela ?? prikazuje prvih nekaj vrednosti funkcije $\mu(n)$.

Tabela 2: Vrednosti funkcije $\mu(n)$

Izrek 3 Möbiusova funkcija je multiplikativna.

Dokaz: Vzemimo tuji naravni števili a in b. Ce je število ab deljivo s kvadratom praštevila, velja to tudi za a ali za b. V tem primeru je torej $\mu(ab) = 0 = \mu(a)\mu(b)$. Če pa število ab ni deljivo s kvadratom praštevila, velja to tudi za a in za b. Naj bo r število različnih prafaktorjev števila a, s pa število različnih prafaktorjev števila b. Potem je število različnih prafaktorjev števila ab enako ab0 e

Trditev 3 Za vse $n \in \mathbb{N}$ velja enačba

$$\sum_{d \mid n} \mu(d) = \begin{cases} 1, & n = 1, \\ 0, & n > 1, \end{cases}$$
 (2)

kjer d preteče vse pozitivne delitelje števila n.

Dokaz: Zadošča seštevati po tistih deliteljih d števila n, ki imajo same različne prafaktorje (sicer je $\mu(d)=0$). Imenujmo takšne delitelje enostavni. Naj bo r število različnih prafaktorjev števila n. Število enostavnih deliteljev števila n, ki imajo natanko k prafaktorjev, je potem $\binom{r}{k}$, prispevek takega delitelja h gornji vsoti pa znaša $\mu(d)=(-1)^k$. Torej je

$$\sum_{d \mid n} \mu(d) = \sum_{k=0}^{r} (-1)^k \binom{r}{k} = \begin{cases} 1, & r = 0, \\ 0, & r > 0 \end{cases} = \begin{cases} 1, & n = 1, \\ 0, & n > 1. \end{cases} \square$$

Pripomba 1 Enačbo (???) bi lahko uporabili tudi za (rekurzivno) definicijo funkcije $\mu(n)$:

$$\mu(n) = \begin{cases} 1, & n = 1, \\ -\sum_{d \mid n, d < n} \mu(d), & n > 1. \end{cases}$$

Möbiusova funkcija igra pomembno vlogo pri Möbiusovem obratu, ki nam omogoča izraziti aritmetično funkcijo f(n), če poznamo funkcijo $g(n) = \sum_{d|n} f(d)$, kjer d preteče vse pozitivne delitelje števila n.

Izrek 4 (Möbiusov obrat) Za aritmetični funkciji f, g velja:

$$g(n) = \sum_{d \mid n} f(d) \iff f(n) = \sum_{d \mid n} \mu\left(\frac{n}{d}\right) g(d)$$

Dokaz: Najprej vzemimo, da je $g(n) = \sum_{d|n} f(d)$ za vse $n \in \mathbb{N}$. Potem je

$$\begin{split} \sum_{d \mid n} \mu\left(\frac{n}{d}\right) g(d) &= \sum_{d \mid n} \mu\left(\frac{n}{d}\right) \sum_{k \mid d} f(k) \\ &= \sum_{k \mid n} f(k) \sum_{a \mid (n/k)} \mu\left(a\right) \\ &= \int_{k \mid n} f(k) \sum_{a \mid (n/k)} \mu\left(a\right) \\ &= f(n). \end{split}$$

Drugo enakost smo dobili z zamenjavo vrstnega reda seštevanja, tretjo z uvedbo nove spremenljivke a = n/d, četrta pa sledi iz (??).

Vzemimo zdaj, da je $f(n) = \sum_{d \mid n} \mu\left(\frac{n}{d}\right) g(d)$ za vse $n \in \mathbb{N}$. Potem je

$$\begin{split} \sum_{d \mid n} f(d) &= \sum_{d \mid n} \sum_{k \mid d} \mu\left(\frac{d}{k}\right) g(k) &= \sum_{k \mid n} g(k) \sum_{k \mid d \mid n} \mu\left(\frac{d}{k}\right) \\ &= \sum_{k \mid n} g(k) \sum_{b \mid (n/k)} \mu\left(b\right) &= g(n). \end{split}$$

Drugo enakost smo dobili z zamenjavo vrstnega reda seštevanja, tretjo z uvedbo nove spremenljivke b = d/k, četrta pa sledi iz (??).

Zgled 4 • Iz enačbe (??) sledi z Möbiusovim obratom, da je

$$\varphi(n) = \sum_{d \mid n} \mu\left(\frac{n}{d}\right) d.$$

• Za vse $n \in \mathbb{N}$ s $\tau(n)$ označimo število vseh pozitivnih deliteljev števila n. Torej je $\tau(n) = \sum_{d \mid n} 1$, od koder sledi z Möbiusovim obratom, da je

$$\sum_{d \mid n} \mu\left(\frac{n}{d}\right) \tau(d) = 1.$$

• Za vse $n \in \mathbb{N}$ s $\sigma(n)$ označimo vsoto vseh pozitivnih deliteljev števila n. Torej je $\sigma(n) = \sum_{d \mid n} d$, od koder sledi z Möbiusovim obratom, da je

$$\sum_{d \mid n} \mu\left(\frac{n}{d}\right) \sigma(d) = n.$$

4 Kolobar aritmetičnih funkcij

Definicija 4 Za aritmetični funkciji $f, g: \mathbb{N} \to \mathbb{C}$ in za vse $n \in \mathbb{N}$ naj bo

$$(f * g)(n) = \sum_{d \mid n} f(d)g\left(\frac{n}{d}\right).$$

Aritmetična funkcija f * g je Dirichletova konvolucija funkcij f in g.

Trditev 4 Naj bodo f, g, h aritmetične funkcije. Potem velja:

- (i) f * q = q * f,
- (ii) (f * g) * h = f * (g * h),

(iii)
$$f * (q + h) = f * q + f * h$$
.

Dokaz:

(i) Trditev sledi iz zapisa Dirichletove konvolucije v simetrični obliki

$$(f * g)(n) = \sum_{de=n} f(d)g(e), \tag{3}$$

kjer seštevamo po vseh urejenih parih naravnih števil (d, e), katerih produkt je enak n.

(ii) Z uporabo enačbe (??) izračunamo

$$((f * g) * h)(n) = \sum_{de=n} (f * g)(d)h(e) = \sum_{de=n} \left(\sum_{ab=d} f(a)g(b)\right)h(e)$$

$$= \sum_{ab=n} f(a)g(b)h(e) = \sum_{ac=n} f(a)\sum_{be=c} g(b)h(e)$$

$$= \sum_{ac=n} f(a)(g * h)(c) = (f * (g * h))(n).$$

Četrto enakost smo dobili z uvedbo nove spremenljivke c = be.

(iii) Z uporabo enačbe (??) izračunamo

$$(f * (g+h))(n) = \sum_{de=n} f(d)(g+h)(e) = \sum_{de=n} f(d)(g(e) + h(e))$$

$$= \sum_{de=n} f(d)g(e) + \sum_{de=n} f(d)h(e)$$

$$= (f * g + f * h)(n). \square$$

Iz trditve ?? sledi, da je množica vseh aritmetičnih funkcij $f: \mathbb{N} \to \mathbb{C}$ z operacijama + in * komutativen kolobar. Imenujemo ga *Dirichletov kolobar* in označimo z \mathcal{D} .

Funkcija $\varepsilon \in \mathcal{D}$, ki za vse $n \in \mathbb{N}$ zadošča enačbi

$$\varepsilon(n) = \begin{cases} 1, & n = 1, \\ 0, & n > 1, \end{cases}$$

je enica kolobarja \mathcal{D} , saj za vse $f \in \mathcal{D}$ in $n \in \mathbb{N}$ velja

$$(f * \varepsilon)(n) = \sum_{de=n} f(d)\varepsilon(e) = f(n)\varepsilon(1) = f(n).$$

Brez težav se lahko prepričamo tudi, da je \mathcal{D} cel kolobar in da je funkcija $f \in \mathcal{D}$ obrnljiva natanko tedaj, ko $f(1) \neq 0$.

Zdaj lahko enačbo (??) prepišemo v obliki

$$\mu * \mathbf{1} = \varepsilon,$$

kjer ${\bf 1}$ označuje konstantno funkcijo z vrednostjo 1. Z drugimi besedami, Möbiusova funkcija je inverz konstantne funkcije ${\bf 1}$ glede na Dirichletovo konvolucijo:

$$\mu = 1^{-1}$$
.

Möbiusov obrat lahko torej zapišemo v obliki

$$g = f * \mathbf{1} \iff f = g * \mu,$$

kjer njegova veljavnost postane očitna. Zgled ?? pa lahko prepišemo v obliki

$$\varphi * \mathbf{1} = \mathrm{id}_{\mathbb{N}} \implies \varphi = \mu * \mathrm{id}_{\mathbb{N}},$$

$$\tau = \mathbf{1} * \mathbf{1} \implies \mu * \tau = \mathbf{1},$$

$$\sigma = \mathrm{id}_{\mathbb{N}} * \mathbf{1} \implies \mu * \sigma = \mathrm{id}_{\mathbb{N}}.$$

Angleško-slovenski slovar strokovnih izrazov

arithmetic function aritmetična funkcija

coprime tuj

Dirichlet convolution Dirichletova konvolucija

Dirichlet ring Dirichletov kolobar, kolobar aritmetičnih funkcij

divisor delitelj

Euler's phi function, Euler's totient function – Eulerjeva funkcija φ

Euler's theorem Eulerjev izrek

Fermat's little theorem mali Fermatov izrek

fundamental theorem of arithmetic osnovni izrek aritmetike

greatest common divisor največji skupni delitelj, največja skupna mera

least common multiple najmanjši skupni večkratnik

Möbius function Möbiusova funkcija μ

Möbius inversion Möbiusov obrat, Möbiusova inverzija

multiple večkratnik

prime praštevilo; praštevilski

prime factor prafaktor

prime number praštevilo

relatively prime tuj

Literatura

- [1] M. Aigner in G. M. Ziegler, *Proofs from THE BOOK*, 2. izdaja, Springer, Berlin–Heidelberg–New York, 2001.
- [2] N. Calkin in H. S. Wilf, Recounting the rationals, Amer. Math. Monthly 107 (2000), 360–363.
- [3] J. Grasselli, *Elementarna teorija števil*, DMFA založništvo, Ljubljana, 2009.