

Frekvencijska karakteristika sustava

Signali i sustavi

Profesor Branko Jeren

27. svibnja 2013.

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu eksponencijalom Prijenosna

funkcija Frekvencijska karakteristika vremenski diskretnih

Odziv diskretnog sustava na pobudu eksponencijalom Uz^n

- pokazano je kako je $y(t) = H(s)Ue^{st}$, odziv linearnog vremenski stalnog kontinuiranog sustava na pobudu svevremenskom eksponencijalom $u(t) = Ue^{st}$,
- razmotrimo odziv diskretnog sustava na svevremensku eksponencijalu

$$u(n) = Uz^n, \ n \in \mathbb{Z}, \ z \in \mathbb{C},$$

odziv mirnog sustava određujemo konvolucijom pa je

$$y(n) = h(n) * u(n) = h(n) * Uz^{n} = U \sum_{m=-\infty}^{\infty} h(m)z^{n-m} =$$

$$= Uz^{n} \underbrace{\sum_{m=-\infty}^{\infty} h(m)z^{-m}}_{H(z)} = H(z)Uz^{n}$$

Frekvencijska karakteristika sustava Odziv diskretnog

sustava na pobudu eksponencijalom Prijenosna funkcija Frekvencijska

Frekvencijski karakteristiki vremenski diskretnih sustava

Odziv diskretnog sustava na pobudu eksponencijalom

• prema tome, odziv mirnog, linearnog, vremenski diskretnog sustava, na svevremensku eksponencijalu Uz^n , je

$$y(n) = H(z)Uz^n$$

 $gdje je^1$

$$H(z) = \sum_{m=-\infty}^{\infty} h(m)z^{-m}$$

- za konkretnu kompleksnu frekvenciju pobude z, dakle kompleksan broj, H(z) je također, u općem slučaju, kompleksan broj pa vrijedi
- za pobudu kompleksnom eksponencijalom odziv je istog oblika i rezultat je množenja pobude s konstantom
- kompleksnu eksponencijalu nazivamo karakterističnom ili vlastitom funkcijom sustava

 $^{^1}$ Za $z\in\mathbb{C}$, H(z) nazivamo prijenosnom funkcijom definiranom s preslikavanjem $H:\mathbb{C}\to\mathbb{C}$

2012/2013

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu eksponencijalom Prijenosna funkcija

Frekvencijska karakteristika vremenski diskretnih sustava

Odziv diskretnog sustava na pobudu eksponencijalom $U(e^{j\Omega})^n$

• razmatra se slučaj odziva linearnog vremenski stalnog diskretnog sustava na svevremensku eksponencijalu frekvencije $z=e^{j\Omega}$, dakle,

$$u(n) = Uz^{n} = U \cdot (e^{j\Omega})^{n}, \quad U \in \mathbb{R}^{+}$$

$$y(n) = h(n) * u(n) = h(n) * U(e^{j\Omega})^{n} =$$

$$= U \sum_{m=-\infty}^{\infty} h(m)e^{j\Omega(n-m)} =$$

$$= Ue^{j\Omega n} \sum_{m=-\infty}^{\infty} h(m)e^{-j\Omega m} = H(e^{j\Omega})Ue^{j\Omega n}$$

• za $\Omega \in \mathbb{R}$, $H(e^{j\Omega})$ je kompleksna funkcija i naziva se frekvencijska karakteristika diskretnog sustava

$$H(e^{j\Omega}) = \sum_{m=-\infty}^{\infty} h(m) e^{-j\Omega m}$$

Frekvencijska karakteristika sustava Odziv diskretnog

sustava na pobudu eksponencijalom Prijenosna funkcija

Frekvencijska karakteristika vremenski diskretnih sustava

Frekvencijska karakteristika diskretnog sustava

• očigledno je kako vrijedi veza frekvencijske karakteristike diskretnog sustava², $H(e^{j\Omega})$, i prijenosne funkcije H(z)

$$H(e^{j\Omega}) = H(z)|_{z=e^{j\Omega}}$$

• za realni impulsni odziv h(n) vrijedi

$$H(e^{j\Omega}) = \underbrace{\sum_{m=-\infty}^{\infty} h(m)\cos(\Omega m)}_{Re[H(e^{j\Omega})]} - j\underbrace{\sum_{m=-\infty}^{\infty} h(m)\sin(\Omega m)}_{-Im[H(e^{j\Omega})]}$$

$$H(e^{j\Omega}) = Re[H(e^{j\Omega})] + jIm[H(e^{j\Omega})]$$

- očigledno je kako je
 - $Re[H(e^{j\Omega})]$ parna funkcija od Ω a
 - $Im[H(e^{j\Omega})]$ neparna funkcija od Ω

 $^{^2}$ Frekvencijska karak. definirana je kao $H:\mathbb{R} \to \mathbb{C}$, a prijenosna funkcija kao funkcija $H:\mathbb{C} \to \mathbb{C}$

2012/2013 Cjelina 13.

Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu eksponencijalom

Prijenosna funkcija

Frekvencijska karakteristika vremenski diskretnih

Frekvencijska karakteristika diskretnog sustava

ullet kako je $H(e^{j\Omega})$ kompleksna funkcija vrijedi

$$H(e^{j\Omega}) = Re[H(e^{j\Omega})] + jIm[H(e^{j\Omega})] = |H(e^{j\Omega})|e^{j\angle H(e^{j\Omega})}$$

pri čemu je amplitudna frekvencijska karakteristika,

$$|H(e^{j\Omega})| = \sqrt{(Re[H(e^{j\Omega})])^2 + (Im[H(e^{j\Omega})])^2},$$

a fazna frekvencijska karakteristika,

$$\angle H(e^{j\Omega}) = \arctan\left(\frac{Im[H(e^{j\Omega})]}{Re[H(e^{j\Omega})]}\right)$$

- iz parnosti $Re[H(e^{j\Omega})]$ i neparnosti $Im[H(e^{j\Omega})]$, slijedi kako je
 - $|H(e^{j\Omega})|$ parna funkcija od Ω i
 - $\angle H(e^{j\Omega})$ neparna funkcija od Ω

2012/2013

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu eksponencijalom

Prijenosna funkcija

Frekvencijska karakteristika vremenski diskretnih sustava

Frekvencijska karakteristika diskretnog sustava

- iz parnosti i neparnosti realnog i imaginarnog dijela frekvencijske karakteristike slijedi $H(e^{-j\Omega}) = H^*(e^{j\Omega})$
- iz

$$H(e^{j\Omega}) = Re[H(e^{j\Omega})] + jIm[H(e^{j\Omega})]$$

i

$$H(e^{-j\Omega}) = Re[H(e^{-j\Omega})] + jIm[H(e^{-j\Omega})]$$

uz parni $Re[H(e^{j\Omega})]$ i neparni $Im[H(e^{j\Omega})]$ slijedi

$$H(e^{-j\Omega}) = Re[H(e^{j\Omega})] - jIm[H(e^{j\Omega})] = H^*(e^{j\Omega})$$

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu eksponencijalom

eksponencijalo Prijenosna

Frekvencijski karakteristiki vremenski diskretnih

Periodičnost frekvencijske karakteristike diskretnog sustava

• frekvencijska karakteristika diskretnog sustava je periodična s periodom 2π

$$H(e^{j(\Omega+2\pi k)}) = \sum_{m=-\infty}^{\infty} h(m)e^{-j(\Omega+2\pi k)m} =$$

$$= \sum_{m=-\infty}^{\infty} h(m)e^{-j\Omega m} \underbrace{e^{-j2\pi km}}_{1} = H(e^{j\Omega})$$

Signali i sustavi školska godina 2012/2013 Cjelina 13.

Profesor Branko Jeren

Frekvencijsk karakteristik sustava

Odziv diskretnog sustava na pobudu eksponencijalom

Prijenosna funkcija Frekvencijs

karakteristika vremenski diskretnih

Odziv diskretnog sustava na realnu sinusoidu

• pokazano je kako je za pobudu $u(n)=Uz^n=U\cdot(e^{j\Omega})^n, U\in\mathbb{R}^+,$ odziv linearnog diskretnog sustava

$$y(n) = Yz^n = (H(z)Uz^n)_{z=e^{j\Omega}} = H(e^{j\Omega})Ue^{j\Omega n}$$

• odziv na pobudu $u(n)=Uz^n=U(e^{-j\Omega})^n, U\in\mathbb{R}^+,$ je

$$y(n) = Yz^{n} = (H(z)Uz^{n})_{z=e^{-j\Omega}} = H(e^{-j\Omega})Ue^{-j\Omega n}$$

• iz ovoga zaključujemo o odzivu na svevremensku pobudu $u(n) = Ucos(\Omega n) = 0.5 Ue^{j\Omega n} + 0.5 Ue^{-j\Omega n}$

$$y(n) = 0.5UH(e^{j\Omega})e^{j\Omega n} + 0.5UH(e^{-j\Omega})e^{-j\Omega n}$$

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu eksponencijalom Prijenosna funkcija Frekvencijska

Frekvencijska karakteristika vremenski diskretnih sustava

Odziv diskretnog sustava na realnu sinusoidu

$$y(n) = 0.5UH(e^{j\Omega})e^{j\Omega n} + 0.5UH(e^{-j\Omega})e^{-j\Omega n}$$

pišemo kao

$$y(n) = 0.5UH(e^{j\Omega})e^{j\Omega n} + (0.5UH(e^{j\Omega})e^{j\Omega n})^*$$

odnosno

$$y(n) = 2Re(0.5UH(e^{j\Omega})e^{j\Omega n}) = Re(|H(e^{j\Omega})|Ue^{j\angle H(e^{j\Omega})}e^{j\Omega n})$$

i finalno

$$y(n) = |H(e^{j\Omega})|U\cos\left(\Omega n + \angle H(e^{j\Omega})\right), \quad -\infty < n < \infty$$

• zaključujemo kako je problem određivanja odziva sustava, u vremenskoj domeni, transformiran u frekvencijsku domenu i svodi se na određivanje vrijednosti $H(e^{j\Omega})$

Frekvencijska karakteristika sustava Odziv diskretnog

sustava na pobudu eksponencijalom Prijenosna funkcija Frekvencijska

Operatorski zapis jednadžbe diferencija

 linearni, vremenski stalni, diskretan sustav N-tog reda, opisan je jednadžbom diferencija

$$y(n) + a_1 y(n-1) + \ldots + a_{N-1} y(n-N+1) + a_N y(n-N) =$$

= $b_0 u(n) + b_1 u(n-1) + \ldots + b_{N-1} u(n-N+1) + b_N u(n-N)$

 jednadžbu zapisujemo pomoću operatora pomaka definiranog kao

za
$$n \in \mathbb{Z}$$
 $E^{-1}w(n) = w(n-1)$ — pomak za jedan korak
 $E^{-K}w(n) = w(n-K)$ — pomak za K koraka
$$\underbrace{[1 + a_1E^{-1} + \ldots + a_{N-1}E^{-N+1} + a_NE^{-N}]}_{A(E)}y(n) = \underbrace{[b_0 + b_1E^{-1} + \ldots + b_{N-1}E^{-N+1} + b_NE^{-N}]}_{A(E)}u(n)$$

B(E)

Frekvencijska karakteristika sustava Odziv diskretnog

sustava na pobudu eksponencijalom Prijenosna funkcija Erekvencijska

Frekvencijska karakteristika vremenski diskretnih sustava

Operatorski zapis jednadžbe diferencija

 dakle, skraćeni, operatorski zapis jednadžbe diferencija zapisujemo kao

$$A(E)y(n) = B(E)u(n)$$

gdje su A(E) i B(E) složeni operatori

$$A(E) = 1 + a_1 E^{-1} + \ldots + a_{N-1} E^{-N+1} + a_N E^{-N}$$

$$B(E) = b_0 + b_1 E^{-1} + \ldots + b_{N-1} E^{-N+1} + b_N E^{-N}$$

odnosno

$$y(n) = \left(\frac{B(E)}{A(E)}\right)u(n) \Rightarrow y(n) = H(E)u(n)$$

• složeni operator H(E) pridružuje vremenskoj funkciji y(n) funkciju u(n) i predstavlja formalni, operatorski, zapis polazne jednadžbe diferencija

Frekvencijska karakteristika sustava Odziv diskretnog

sustava na pobudu eksponencijalom Prijenosna funkcija Frekvencijska

Frekvencijski karakteristiki vremenski diskretnih sustava

Odziv sustava na pobudu eksponencijalom

 sustav pobuđujemo svevremenskom kompleksnom eksponencijalom

$$n \in \mathbb{Z}, \quad z \in \mathbb{C}$$

 $u(n) = Uz^n$

U – kompleksna amplituda pobude, z – neka konkretna kompleksna frekvencija

- budući da pobuda starta u $-\infty$, za stabilni su sustav početni uvjeti, koji su eventualno postojali u $-\infty$, istitrali, nema prijelaznog odziva, i totalno je rješenje jednako partikularnom rješenju jednadžbe diferencija
- totalni odziv je zato

$$y(n) = y_p(n) = Yz^n$$

Odziv diskretnog

sustava na pobudu eksponencijalom

Odziv sustava na pobudu eksponencijalom

• kompleksnu amplitudu odziva Y određujemo iz polazne jednadžbe metodom neodređenih koeficijenata pa. uvrštenjem u polaznu jednadžbu, slijedi

$$\underbrace{(1 + a_1 z^{-1} + \ldots + a_{N-1} z^{-N+1} + a_N z^{-N})}_{A(z)} Y z^n = \underbrace{(b_0 + b_1 z^{-1} + \ldots + b_{N-1} z^{-N+1} + b_N z^{-N})}_{B(z)} U z^n$$

kompleksna je amplituda odziva Y

$$Y = \underbrace{\frac{b_0 + b_1 z^{-1} + \ldots + b_{N-1} z^{-N+1} + b_N z^{-N}}{1 + a_1 z^{-1} + \ldots + a_{N-1} z^{-N+1} + a_N z^{-N}}_{H(z)}}_{H(z)} U = H(z)U$$

 amplituda partikularnog rješenja Y određena je amplitudom pobude, svojstvima sustava, te konkretnom kompleksnom frekvencijom z

2012/2013

Frekvencijska karakteristika sustava

odziv diskretnog sustava na pobudu eksponencijalom

Prijenosna funkcija

Frekvencijsk karakteristik vremenski diskretnih

Prijenosna funkcija

• H(z) je veličina koja određuje odnos kompleksne amplitude prisilnog odziva Yz^n i kompleksne amplitude pobude Uz^n

$$H(z) = \frac{b_0 + b_1 z^{-1} + \ldots + b_{N-1} z^{-N+1} + b_N z^{-N}}{1 + a_1 z^{-1} + \ldots + a_{N-1} z^{-N+1} + a_N z^{-N}} = \frac{Y}{U}$$

• za konkretnu frekvenciju z, H(z) ima značenje faktora kojim treba množiti kompleksnu amplitudu ulaza da se dobije amplituda izlaza

$$Y = H(z)U$$

• H(z) možemo formalno zapisati iz složenog operatora H(E), zamjenom operatora E^{-1} s kompleksnom frekvencijom z^{-1}

2012/2013

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu eksponencijalom

Prijenosna funkcija

karakteristiki vremenski diskretnih sustava

Prijenosna funkcija

• H(z), za $z\in\mathbb{C}$, nazivamo prijenosna funkcija ili transfer funkcija diskretnog sustava i možemo je definirati kao

$$n \in \mathbb{Z}, \quad z \in \mathbb{C}$$
 $H(z) = \frac{y_p(n)}{u(n)}\Big|_{u(n) = Uz^n} = \frac{Yz^n}{Uz^n} = \frac{Y}{U}$

• prijenosna ili transfer funkcija sustava H(z) racionalna je funkcija koju možemo prikazati kao

$$H(z) = \frac{b_0 + b_1 z^{-1} + \ldots + b_N z^{-N}}{1 + a_1 z^{-1} + \ldots + a_N z^{-N}} = \frac{\sum_{j=0}^{N} b_j z^{-j}}{1 + \sum_{j=1}^{N} a_j z^{-j}}$$

odnosno

$$H(z) = \frac{b_0 z^N + b_1 z^{N-1} + \ldots + b_N}{z^N + a_1 z^{N-1} + \ldots + a_N} = \frac{\sum_{j=0}^{N} b_j z^{N-j}}{z^N + \sum_{i=1}^{N} a_i z^{N-j}}$$

sustavi školska godina 2012/2013 Cjelina 13.

Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu

Prijenosna funkcija

Frekvencijski karakteristiki vremenski diskretnih

Prijenosna funkcija

 prijenosnu funkciju možemo pisati uz pomoć produkta korijenih faktora:

$$H(z) = \frac{\sum_{j=0}^{N} b_j z^{-j}}{1 + \sum_{j=1}^{N} a_j z^{-j}} = b_0 \frac{\prod_{j=1}^{N} (1 - z_j z^{-1})}{\prod_{j=1}^{N} (1 - p_j z^{-1})}$$

odnosno u obliku

$$H(z) = \frac{\sum_{j=0}^{N} b_j z^{N-j}}{z^n + \sum_{j=1}^{N} a_j z^{N-j}} = b_0 \frac{\prod_{j=1}^{N} (z - z_j)}{\prod_{j=1}^{N} (z - p_j)}$$

 z_1, z_2, \dots, z_N su nule prijenosne funkcije p_1, p_2, \dots, p_N su polovi³ prijenosne funkcije

³dolazi od engleske riječi tent-pole

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu eksponencijalom

Prijenosna funkcija

Frekvencijska karakteristika vremenski diskretnih sustava

Prijenosna funkcija

prijenosnu funkciju možemo pisati kao produkt i kvocijent vektora

$$H(z) = b_0 \frac{|z - z_1| e^{j\angle(z - z_1)} |z - z_2| e^{j\angle(z - z_2)} \cdots |z - z_N| e^{j\angle(z - z_N)}}{|z - p_1| e^{j\angle(z - p_1)} |z - p_2| e^{j\angle(z - p_2)} \cdots |z - p_N| e^{j\angle(z - p_N)}}$$

ullet prijenosnu funkciju H(z) možemo pisati i kao

$$H(z) = |H(z)|e^{j\angle H(z)}$$

pri čemu su⁴

$$|H(z)| = |b_0| \frac{|z - z_1||z - z_2| \cdots |z - z_N|}{|z - p_1||z - p_2| \cdots |z - p_N|}$$

$$\angle H(z) = \angle (b_0) + [\angle (z - z_1) + \angle (z - z_2) + \cdots + \angle (z - z_N)] -$$

$$- [\angle (z - p_1) + \angle (z - p_2) + \cdots + \angle (z - p_N)]$$

$$\angle b_0 = \pi$$
 za $b_0 < 0$

 $^{^4}$ Za realne sustave je $b_0 \in \mathbb{R}$, pa je $\angle b_0 = 0$ za $b_0 \ge 0$, odnosno

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu

Prijenosna funkcija

Frekvencijsk karakteristik vremenski diskretnih sustava

Prijenosna funkcija diskretnog sustava – primjer

 za prije razmatrani diskretni sustav, opisan jednadžbom diferencija,

$$y(n) - 0.8\sqrt{2}y(n-1) + 0.64y(n-2) = u(n)$$

prijenosnu funkciju možemo formalno pisati zamjenjujući operator E^{-1} sa z^{-1} , pa slijedi

$$H(z) = \frac{1}{1 - 0.8\sqrt{2}z^{-1} + 0.64z^{-2}} = \frac{z^2}{z^2 - 0.8\sqrt{2}z + 0.64}$$

2012/2013

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu

Prijenosna funkcija

Frekvencijska karakteristika vremenski diskretnih

Prisilni odziv sustava

• totalni je odziv vremenski diskretnog sustava, na pobudu $u(n) = cos(\Omega n) \cdot \mu(n)$, dan kao⁵

$$y(n) = \sum_{j=1}^{N} c_j q_i^n + y_p(n)$$

• pri čemu je prisilni odziv, uz danu pobudu,

$$y_p(n) = |H(e^{j\Omega})| \cos\left(\Omega n + \angle H(e^{j\Omega})\right), \qquad n \ge 0$$

⁵ovdje su pretpostavljene jednostruke karakteristične frekvencije

Frekvencijski karakteristiki sustava

Odziv diskretnog sustava na pobudu eksponenciialom

Prijenosna funkcija

Frekvencijski karakteristiki vremenski diskretnih sustava

Prisilni odziv diskretnog sustava – primjer

prije razmatrani diskretni sustav, opisan jednadžbom diferencija,

$$y(n) - 0.8\sqrt{2}y(n-1) + 0.64y(n-2) = u(n)$$

sustav je pobuđen s

$$u(n) = -0.2\cos(\frac{\pi}{8}n) \cdot \mu(n)$$

- za ovaj sustav određujemo, prisilni odziv, prijenosnu funkciju i frekvencijsku karakteristiku
- prisilni odziv, na pobudu $u(n) = Ucos(\Omega_0 n)$ je, kako je prije pokazano,

$$y_p(n) = |H(e^{j\Omega_0})|U\cos\left(\Omega_0 n + \angle H(e^{j\Omega_0})\right)$$

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu eksponencijalom

Prijenosna funkcija

Frekvencijski karakteristiki vremenski diskretnih sustava

Prisilni odziv diskretnog sustava – primjer

iz jednadžbe diferencija,

$$y(n) - 0.8\sqrt{2}y(n-1) + 0.64y(n-2) = u(n)$$

odnosno

$$(1 - 0.8\sqrt{2}E^{-1} + 0.64E^{-2})y(n) = u(n)$$

prije je već izvedena prijenosna funkcija

$$H(z) = \frac{1}{1 - 0.8\sqrt{2}z^{-1} + 0.64z^{-2}}$$

a frekvencijsku karakteristiku izračunavamo za $z=e^{j\Omega}$

$$H(e^{j\Omega}) = \frac{1}{1 - 0.8\sqrt{2}e^{-j\Omega} + 0.64e^{-j2\Omega}}$$

Signali i sustavi školska godina 2012/2013 Cielina 13.

Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu eksponencijalom

Prijenosna funkcija

Frekvencijski karakteristiki vremenski diskretnih

Prisilni odziv diskretnog sustava – primjer

• za konkretnu frekvenciju pobude $\Omega_0=\frac{\pi}{8}$ omjer kompleksne amplitude odziva i pobude je

$$H(e^{j\Omega_0}) = H(e^{j\frac{\pi}{8}}) = \frac{1}{1 - 0.8\sqrt{2}e^{-j\frac{\pi}{8}} + 0.64e^{-j2\frac{\pi}{8}}}$$

$$H(e^{j\frac{\pi}{8}}) = 2.4495 + j0.1178 = 2.4524e^{j0.0481}$$

pa je partikularno rješenje

$$y_p(n) = |H(e^{j\Omega_0})|U\cos\left(\Omega_0 n + \angle H(e^{j\Omega_0})\right) =$$

$$= 2.4524(-0.2)\cos\left(\frac{\pi}{8}n + 0.0481\right) =$$

$$= -0.49048\cos\left(\frac{\pi}{8}n + 0.0481\right) \qquad n \ge 0$$

2012/2013

Frekvencijski karakteristiki sustava

Odziv diskretnog sustava na pobudu

Prijenosna funkcija

Frekvencijsk karakteristik vremenski diskretnih sustava

Prisilni odziv diskretnog sustava – primjer

 prije je određen prisilni odziv diskretnog sustava, zadanog jednadžbom diferencija,

$$y(n) - 0.8\sqrt{2}y(n-1) + 0.64y(n-2) = u(n),$$

na pobudu
$$u(n) = -0.2cos(\frac{\pi}{8}n) \cdot \mu(n)$$

- pokazano je kako je partikularno rješenje jednadžbe diferencija jednako prisilnom odzivu sustava
- ovdje će biti ponovljen postupak određivanja partikularnog rješenja u vremenskoj domeni, kako bi se ukazalo na jednostavnost netom prikazanog postupka određivanja partikularnog rješenja u frekvencijskoj domeni

Signali i sustavi školska godina 2012/2013 Cjelina 13.

Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu

Prijenosna funkcija

Frekvencijsk karakteristik vremenski diskretnih sustava

Prisilni odziv diskretnog sustava – primjer

• kako je pobuda $u(n) = -0.2cos(\frac{\pi}{8}n) \cdot \mu(n)$ partikularno rješenje je oblika

$$y_p(n) = K_1 cos(\frac{\pi}{8}n) + K_2 sin(\frac{\pi}{8}n)$$

- koeficijente K_1 i K_2 određujemo metodom neodređenog koeficijenta
- uvrštenjem $y_p(n)$ u polaznu jednadžbu slijedi

$$y_p(n) - 0.8\sqrt{2}y_p(n-1) + 0.64y_p(n-2) = -0.2\cos(\frac{\pi}{8}n);$$

$$K_1 cos(\frac{\pi}{8}n) + K_2 sin(\frac{\pi}{8}n) - 0.8\sqrt{2}K_1 cos[\frac{\pi}{8}(n-1)] - 0.8\sqrt{2}K_2 sin[\frac{\pi}{8}(n-1)] + 0.64K_1 cos[\frac{\pi}{8}(n-2)] + 0.64K_2 sin[\frac{\pi}{8}(n-2)] = -0.2 cos(\frac{\pi}{8}n)$$

školska godina 2012/2013 Cjelina 13.

Profesor Branko Jeren

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu eksponencijalom

Prijenosna funkcija

Frekvencijsk karakteristik vremenski diskretnih sustava

Prisilni odziv diskretnog sustava – primjer

primjenom trigonometrijskih transformacija slijedi

$$\begin{array}{l} K_{1}cos(\frac{\pi}{8}n) + K_{2}sin(\frac{\pi}{8}n) - \\ -0.8\sqrt{2}K_{1}[cos(\frac{\pi}{8}n)cos(\frac{\pi}{8}) + sin(\frac{\pi}{8}n)sin(\frac{\pi}{8})] - \\ -0.8\sqrt{2}K_{2}[sin(\frac{\pi}{8}n)cos(\frac{\pi}{8}) - cos(\frac{\pi}{8}n)sin(\frac{\pi}{8})] + \\ +0.64K_{1}[cos(\frac{\pi}{8}n)cos(\frac{\pi}{4}) + sin(\frac{\pi}{8}n)sin(\frac{\pi}{4})] + \\ +0.64K_{2}[sin(\frac{\pi}{8}n)cos(\frac{\pi}{4}) - cos(\frac{\pi}{8}n)sin(\frac{\pi}{4})] = -0.2cos(\frac{\pi}{8}n) \end{array}$$

razvrstavanjem slijedi

$$\begin{split} \{ [1 - 0.8\sqrt{2}cos(\frac{\pi}{8}) + 0.64cos(\frac{\pi}{4})]K_1 + \\ + [0.8\sqrt{2}sin(\frac{\pi}{8}) - 0.64sin(\frac{\pi}{4})]K_2 \} cos(\frac{\pi}{8}n) + \\ \{ - [0.8\sqrt{2}sin(\frac{\pi}{8}) - 0.64sin(\frac{\pi}{4})]K_1 + \\ + [1 - 0.8\sqrt{2}cos(\frac{\pi}{8}) + 0.64cos(\frac{\pi}{4})]K_2 \} sin(\frac{\pi}{8}n) = -0.2cos(\frac{\pi}{8}n) \end{split}$$

Signali i sustavi školska godina 2012/2013 Cielina 13.

Profesor Branko Jeren

Frekvencijska karakteristika sustava

sustava na pobudu eksponencijalom

Prijenosna funkcija

Frekvencijski karakteristiki vremenski diskretnih sustava

Prisilni odziv diskretnog sustava – primjer

usporedbom lijeve i desne strane pišemo

$$\begin{split} [1 - 0.8\sqrt{2}cos(\frac{\pi}{8}) + 0.64cos(\frac{\pi}{4})]K_1 + \\ + [0.8\sqrt{2}sin(\frac{\pi}{8}) - 0.64sin(\frac{\pi}{4})]K_2 = -0.2 \\ - [0.8\sqrt{2}sin(\frac{\pi}{8}) - 0.64sin(\frac{\pi}{4})]K_1 + \\ + [1 - 0.8\sqrt{2}cos(\frac{\pi}{8}) + 0.64cos(\frac{\pi}{4})]K_2 = 0 \end{split}$$

ullet rješenjem ovih jednadžbi izračunavamo K_1 i K_2

$$K_1 = -0.4899, \qquad K_2 = 0.0236$$

• pa je partikularno rješenje

$$y_p(n) = -0.4899\cos(\frac{\pi}{8}n) + 0.0236\sin(\frac{\pi}{8}n) =$$

= -0.49048\cos(\frac{\pi}{8}n + 0.0481)

2012/2013

Frekvencijski karakteristiki sustava

sustava na pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski diskretnih sustava

Frekvencijska karakteristika diskretnog sustava – primjer

• iz izračunatih H(z)

$$H(z) = \frac{1}{1 - 0.8\sqrt{2}z^{-1} + 0.64z^{-2}} = \frac{z^2}{z^2 - 0.8\sqrt{2}z + 0.64}$$

i
$$H(e^{j\Omega})$$

$$H(e^{j\Omega}) = \frac{1}{1 - 0.8\sqrt{2}e^{-j\Omega} + 0.64e^{-j2\Omega}} = \frac{e^{j2\Omega}}{e^{j2\Omega} - 0.8\sqrt{2}e^{j\Omega} + 0.64}$$

možemo crtati, kao i u slučaju kontinuiranih sustava, plohe koje prikazuju |H(z)| i $\angle H(z)$, odnosno krivulje, $|H(e^{j\Omega})|$ i $\angle H(e^{j\Omega})$

Frekvencijsk karakteristik sustava

Odziv diskretnog sustava na pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski diskretnih sustava

Frekvencijska karakteristika diskretnog sustava – primjer

Frekvenciiska karakteristika diskretnih sustava

Frekvencijska karakteristika diskretnog sustava – primjer

frekvencijska karakteristika se može odrediti grafički iz

$$H(z) = b_0 \frac{\prod_{j=1}^{N} (z - z_j)}{\prod_{j=1}^{N} (z - p_j)},$$

praćenjem |H(z)| i $\angle H(z)$ na jediničnoj kružnici, dakle, za $z = e^{j\Omega}$

$$|H(e^{j\Omega})| = |b_0| \frac{\prod_{j=1}^N |(e^{j\Omega} - z_j)|}{\prod_{j=1}^N |(e^{j\Omega} - p_j)|},$$

$$\angle H(e^{j\Omega}) = \underbrace{\angle (b_0)}_{\substack{0 \text{ za } b_0 \geq 0 \\ x \text{ za } b_0 \leq 0}} + \sum_{j=1}^{N} \angle \left(e^{j\Omega} - z_j\right) - \sum_{j=1}^{N} \angle \left(e^{j\Omega} - p_j\right)$$

 svaki korijeni faktor prijenosne funkcije daje svoj individualni doprinos modulu (multiplikativno) i fazi (aditivno)

2012/2013

Frekvencijski karakteristiki sustava

sustava na pobudu eksponencijalon Prijenosna

Frekvencijska karakteristika vremenski diskretnih sustava

Frekvencijska karakteristika diskretnog sustava – primjer

• svaki od članova $\left(e^{j\Omega}-z_j\right)$ ili $\left(e^{j\Omega}-p_j\right)$ možemo prikazati kao vektore u kompleksnoj ravnini

 napomena: višestruke nule ili višestruke polove označujemo oznakama o, odnosno x, i uz njih upisujemo arapski broj koji označuje red njihove višestrukosti

Signali i sustavi školska godina 2012/2013 Cjelina 13.

Profesor Branko Jeren

Frekvencijsk karakteristik sustava

Odziv diskretno sustava na pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski diskretnih sustava

Frekvencijska karakteristika diskretnog sustava – primjer

$$H(z) = \frac{z^2}{z^2 - 0.8\sqrt{2}z + 0.64} = \frac{z^2}{(z - p_1)(z - p_2)}$$

$$H(e^{j\Omega}) = rac{e^{j2\Omega}}{(e^{j\Omega} - 0.8e^{jrac{\pi}{4}})(e^{j\Omega} - 0.8e^{-jrac{\pi}{4}})}$$

za konkretnu frekvenciju

$$z=\mathrm{e}^{j\Omega_0}$$
 ,

i za
$$I_1 = I_2 = 1$$
,

$$|H(e^{j\Omega_0})| = \frac{l_1 l_2}{d_1 d_2} = \frac{1}{d_1 d_2}$$

$$\angle H(e^{j\Omega_0}) = \varphi_1 + \varphi_2 - \psi_1 - \psi_2$$

Frekvencijska karakteristika sustava

sustava na pobudu eksponencijalom Prijenosna funkcija

Frekvencijska karakteristika vremenski diskretnih sustava

Frekvencijska karakteristika diskretnog sustava – primjer

- slijede primjeri koji ukazuju kako položaj polova i nula određuje frekvencijsku karakteristiku
- položaj polova i nula određen je sustavnim postupcima za projektiranje sustava
- prikazani su primjeri četiri tipa tzv. Butterworth-ovih filtara:
 - niskopropusni (NP)
 - visokopropusni (VP)
 - pojasna brana (PB)
 - pojasno propusni (PP)

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski diskretnih sustava

Frekvencijska karakteristika diskretnog sustava – primjer

Frekvencijska karakteristika sustava

Odziv diskretnog sustava na pobudu eksponencijalom Prijenosna

Frekvencijska karakteristika vremenski diskretnih sustava

Frekvencijska karakteristika diskretnog sustava – primjer

 slijedi primjer koji pokazuje kako mali pomak polova ima izravni utjecaj na frekvencijsku karakteristiku ⇒ potrebni sustavni postupci projektiranja

$$p_{1,2} = 0.7498 \pm j0.5348,$$

 $p_{3,4} = 0.7774 \pm j0.2120,$

$$p'_{1,2} = 0.7700 \pm j0.5348$$

 $p'_{3,4} = 0.7774 \pm j0.2120$

