Member(s): Subhrangshu Bit Harsh Sharma

Approaches

Preprocessing

Models

- <u>CLAM</u> (**CL**ustering constrained **A**ttention **M**ultiple instance learning)
- <u>CTransPath</u> (CNN Transformer Pathology)
- Graph-Transformer

Approaches

CLAM

CTransPath

Pretrained module trained using contrastive learning on H & E stained whole slide images, using a Swin transformer

Graph-Transformer

- Preprocessing CLAM
- Feature Extraction CTransPath

Experiment Results

K-Fold generation

Method 6	Features 🐡	# Parameters	Balanced Accuracy (%) (k-fold) Average(std)
CLAM	ResNet50	- 664K	65.23 (5.2)
CLAM	CTransPath		74.09 (7.3)
Graph Transformer (best)	ResNet50	300K	68.5 (3.8)
Graph Transformer (best)	CTransPath		77.3 (5.7)

Discussions

- High standard deviation in k-folds, which we suspect is due to highly varying data sources (20 labs).
- In Graph Transformer, instead of using the whole image for building the graph we only use small section of the image selected at random.
- This increases the efficiency of the model (faster training), but instability in training of the Graph Transformer. Although he model performance is at par.

Next Steps

- Hyper-parameter tuning
- Test tuned model on the original Kaggle dataset
- Train model with image augmentations