PATENT ABSTRACTS OF JAPAN

(11)Publication number:

01-294792

(43)Date of publication of application: 28.11.1989

(51)Int.CI.

C09K 21/02 C01F 5/14

(21)Application number: 63-123923

(71)Applicant: MIZUSAWA IND CHEM LTD

(22)Date of filing:

23.05.1988

(72)Inventor: SAWADA HIROSHI

MORI TAKASHI

KOMATSU YOSHINOBU

OGUMA AKIO OGAWA MASAHIDE

(54) MAGNESIUM HYDROXIDE FLAME RETARDER AND PRODUCTION THEREOF

(57) Abstract:

PURPOSE: To suppress reactivity with carbon dioxide gas and improve efflorescence resistance by conducting wet pulverization of natural brucite to obtain grains having a predetermined size, conducting surface treatment of the grains with an ammonium salt of a fatty acid or an amine acid salt, and drying.

CONSTITUTION: Natural brucite pref. having a purity of 80–96% and a lattice strain coefficient $1 \times 10-3$ is wet pulverized to obtain grains having a median diameter (Coulter counter method) of 2–61 m, thereby producing a slurry. The slurry is mixed with an aq. emulsion soln. of an ammonium salt of a fatty acid or an amine acid salt (e.g., ammonium oleate) in an amt., in terms of the amt. of fatty acid, of 1.5–6.0wt%, based on the wt. of the brucite. As a result, a portion of the salt, e.g., ammonium oleate, reacts with the surface of brucite grains, thereby effecting the desired surface treatment. Subsequently, filtering, washing with water and drying are conducted. A pref. product exhibits 2 0001/I101 for an X-ray diffraction peak intensity of plane index |001], |101] for product powder.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

⑩日本国特許庁(JP)

卯特許出願公開

◎ 公開特許公報(A) 平1-294792

Sint CL 4

識別配号

庁内整理番号

63公開 平成 1 年(1989)11月28日

C 09 K 21/02 C 01 F 5/14 6958-4H 6939-4G

審査請求 未請求 請求項の数 5 (全10頁)

6)発明の名称 水酸化マグネシウム系難燃剤及びその製法

②特 顧 昭63-123923

②出 顧 昭63(1988) 5月23日

山形県鶴岡市新海町11-52 宏 個発 明 者 沢 B 山形県鶴岡市本町3-18-48 ⑦発 明 者 森 隆 伸 山形県鶴岡市大字水沢甲24 60発 小 松 明 者 (2)発 明 者 熊 昭 夫 山形県鶴岡市新海町7番18号 小 新潟県新発田市緑町2丁目2番7号 @発 明 小 川 政 英 者 東京都中央区日本橋室町4丁目1番21号 ②出 水澤化学工業株式会社 顯

郊代 理 人 弁理十 鈴木 郁男 外1名

明新

1、発明の名称

水酸化マグネシウム系難燃制及びその製法

2. 特許請求の範囲

- (1) 天然産ブルーサイトを、コールターカウンター法によるメジアン径が2万至6μmとなるように選式粉砕し、この粉砕物を脂肪酸のアンモニウム塩又はアミン塩で表面処理し、次いで乾燥することを特徴とする水酸化マグネシウム系難燃剤の製法。
- (2) 天然産ブルーサイトが80万至96%の施度と1×10-M以下の格子歪係数とを有するものである請求項1記載の製法。
- (1) 顧肪酸のアンモニウム塩又はアミン塩を、 ブルーサイト当り腐肪酸として1.5 乃至6.0 重量 %の量で用いる請求項1記載の製法。
- (4) 発達したブルーサイト型結晶構造を有し且 つ2万至6μmのメジアン径と1×10 - 3以下の 格子盃係数を有する水酸化マグネシウム粒子と、 該粒子の表面を被覆し且つ少なくとも一部がマグ

ネシウム塩を形成している脂肪酸膿とから成り且 つ式

$$D_{\alpha} = \frac{I_{\alpha + 1}}{I_{101}}$$

式中、Iooiは試料の面指数 [001]のX線回折ピーク強度であり、Iiotは試料の面指数 [101]のX線回折ピーク強度である、

で定義される配向度 (D 。) が 2 以上であること を特徴とする耐白挙性に優れた水酸化マグネシウ ム系難燃剤。

- (5) オレフィン系樹脂に請求項 4 記載の水酸化マグネシウム系難燃剤を配合して成る難燃性樹脂組成物。
- 3. 発明の詳細な説明

(産業上の利用分野)

本発明は、耐白華性に優れた水酸化マグネシウム系鉄燃剤及びその製法に関する。本発明は更に この鉄燃剤を配合した難燃性オレフィン系樹脂組 成物に関する。 (従来の技術)

水酸化マグネシウムがオレフィン系樹脂等に対する優れた難燃剤であることは古くから知られており、水酸化マグネシウムを比較的多い量で、必要により金属石鹼と共にオレフィン系樹脂に配合することも広く行われている。

この難燃剤等に使用する水酸化マグネシウムは、海水又は苦汁中に苛性アルカリ又は消石灰乳を加えて反応させ、生成物を洗浄、乾燥する方法や、水酸化マグネシウムに少量の水酸化ナトリウムを添加し、オートクレーブ中等で加圧加熱処理する方法(特公昭50-23680号公報)、塩塩する方法(特開昭52-115799号公報)、水可溶性マグネシウム塩とアンモニアとを反応させて水酸化マグネシウム塩を製造する方法(例えば特開昭81-168522号及び62~123014号公報)等が知られている。

(発明が解決しようとする問題点)

従来難燃剤に使用されている上記の水酸化マグ

シウム系酸燃剤のにおける上記問題点が解消され、耐白華性と伸び等の機械的性質とに優れた水酸化マグネシウム 難燃剤及びその製法を提供するにある。

本発明の他の目的は、比較的低コストであり且 つ製造も容易な水酸化マグネシウム系繋燃剤及び その製法を提供するにある。

(問題点を解決するための手段)

本発明によれば、天然産ブルーサイトを、コールターカウンター法によるメジアン径が 2 乃至 6 μ m となるように温式粉砕し、この粉砕物を脂肪酸のアンモニウム塩又はアミン塩で表面処理し、次いで乾燥することを特徴とする水酸化マグネシウム系難燃剤の製法が提供される。

本発明によればまた、発達したブルーサイト型 結晶構造を有し且つ2万至6μmのメジアンほと 1×10⁻³以下の格子登係数を有する水酸化マグ ネシウム粒子と、該粒子の表面を被覆し且つ少な くとも一部がマグネシウム塩を形成している脂肪 酸層とから成り且つ式 ネシウムは、例えば六角板状等の比較的整った粒子形状と比較的均斉で微細な粒径とを有し、オレフィン系樹脂等に対して比較的多量に充填させ得るという利点を有しているが、これらの配合樹脂組成物は未だ解決すべき幾つかの問題点を有している。

その一つは、水酸化マグネシウム系um 然初を多量に配合した樹脂成形品を大気中に長期間置くと、成形品表面に白い粉ふきが生ずる、所謂白華現象と呼ばれる現象を生ずることである。この白華現象は、その粉を分析すると炭酸マグネシウムであることから、成形品中に配合されている水酸化マグネシウムが大気中の炭酸ガスと反応することによるものと認められる。

その二つは、公知の水酸化マグネシウム系鑑燃 剤を配合したオレフィン系樹脂組成物、特に弾性 率の比較的大きい樹脂に配合したものでは、破断 伸びのような機械的性質がかなり低下することで ある。

従って、本発明の目的は、従来の水酸化マグネ

$$D_{0} = \frac{I_{001}}{I_{101}} \qquad ... \qquad (1)$$

式中、Icolは試料の面指数 [001]のX線回折ビーク強度であり、Icolは試料の面指数 [101]のX線回折ビーク強度である、

で定義される配向度 (D 。) が 2 以上であることを特徴とする耐白筆性に優れた水酸化マグネシクム系難燃剤が提供される。

本発明によれば更に、上記特定の水酸化マグネシウム系難燃剤をオレフィン系樹脂に配合して成る難燃性樹脂組成物が提供される。

(作用)

本発明では天然度のブルーサイトを水酸化マグネシウムの原料として用いることが一つの特徴である。天然産のブルーサイトでは、ブルーサイト型の結晶構造がよく発達しており、しかも格子盃係数も1×10-3以下、特に8×10-4以下であるという合成水酸化マグネシウムには認められない特徴を有する。

(3)

本発明者等は、本発明に至る研究通程におれて次の如き興味のある事実を見出した。即ち、種々の格子盃係数を有する水酸化マグネシウムの試料を用意し、この水酸化マグネシウムを炭塩を放けるので、第1図の結果から、水酸化マグネシウムを投入を変更を変更がある。水酸化マグネシウムを変更を変更が変更が変更が変更が増大きくなればなる程、炭酸マグネのの生成量が増大するという事実が明らかである。

本発明ではかかる知見に基づき、結晶が良く発達しておりしかも格子歪の比較的小さいものとして天然産のブルーサイトを原料として用いるものである。ところで、天然産のブルーサイトは粒子が粗大であり、そのままでは樹脂中に配合することができない。本発明では、このブルーサイトをとれてきない。しかもコールターカウンター法によるメジアン径が2乃至8μm、特に2乃至4μmとなるように粒度調整することが第二の特徴であ

くない。

次いで得られた粉砕物を脂肪酸のアンモニウム 塩又はアミン塩で表面処理し、乾燥することが第 三の特徴である。即ち、ブルーサイト粉砕物に は、未だ水酸化マグネシウムの活性な面が存在し ている。この粉砕物を脂肪酸のアンモニウム塩又 はアミン塩で表面処理し、このものを乾燥する と、この塩が分解してアンモニアやアミンが揮散 し、表面に活性な脂肪酸が残留する。この脂肪酸 の少なくとも一部は活性な木酸化マグネシウム・ サイトと反応し、活性面のブロッキングが行われ る。かくして、本発明によれば、炭酸ガスとの反 応性が顕著に抑制された水酸化マグネシウム系難 燃剤が提供されることが了解されよう。しかも、 水酸化マグネシウム粒子表面に存在する脂肪酸マ グネシウムや脂肪酸は、水酸化マグネシウム粒子 を被覆する分散剤として、樹脂中への分散性を助 長する作用を示す。

ブルーサイト型水酸化マグネシウム粒子においては、C軸方向[001]に平行な面では活性が

ブルーサイトを空気中で摩砕すると、ずり広力 によりブルーサイトの層間が容易に分断されて [OO1]面の剝離と再結晶により X 線的に無定 形物質となることが知られている("粘土ハンド ブック 第二版、日本粘土学会編、技報堂出版、 (1967年))。かかる公知事実からする と、天然産プルーサイトは発達した結晶構造を有 するとしても、これを粒度調整のため粉砕する と、折角の結晶構造が破壊されることが予測され る。しかるに、本発明に従い、天然産プルーサイ トを選式粉砕すると、このブルーサイトの結晶化 度や格子盃係数を実質上変化させることなしに、 前述した粒度に粒度調整することが可能なるもの である。本発明においては、粒度が上記範囲にあ ることも重要であり、粒径が上記範囲を越えて大 きくなると、樹脂に配合した粗成物の機械的強度 が低下する傾向が顕著となり、一方粒径が上記範 囲よりも小さくなると、配合租成物の溶融流動特 性や成形性が低下する傾向があり、何れも好まし

少なく、これに対する横断方向の面では活性が大きい。 本発明の水酸化マグネシウム系難燃剤では、粒径が微額化された状態においても、 C 軸方向への結晶が発達しており、その活性が小さくなっていることも了解されよう。

第2図は、本発明の水酸化マグネシウム系難燃 剤のX線回折像を示す。一方、下記第A表は、A STMカードによる水酸化マグネシウム (ブルー サイト)のX線回折像を示す。

第A表

d Å	1/1,	hkl	dA	1/1,	hkl
4.77	90	001	1.0067	8	211
2.725	6	100	0.9543	2	005
2.365	100	101	0.8593	6	114
1.794	55	102	0.9455	8	212
1.575	35	110	0.9085	4	300
1.494	18	111	0.9001	< 1	105
1.373	15	103	0.8974	2	204
1.363	2	200	0.8923	2	301
1.310	12	201	0.8643	6	213
1.192	2	094	0.8156	4	115
1.163	10	202	0.7858	4	220
1.118	2	113			
1.092	4	104			
1.034	6	203			
1.030	2	210			
	لــــا				

第日表

	一般的範囲	好適範囲
MgO	55.0 ~86.0%	\$3.0~ 65.0 %
\$102	8.0 ~ 1.0	7.0~2.0
A1202) Fe202	2.0 ~ 0.1	1.8~0.2
CaD	4.0 ~ 1.0	3.0~1.5
灼熱減量	32.0 ~ 25.0	30.0~25.0

このブルーサイトは、我が国でも京都府大江山 江山鉱山、福岡県毘舎門岳等で産出するが、朝鮮 民主主義人民共和国、中華人民共和国旧満州領等 で多量産出する。

天然産ブルーサイトの湿式粉砕は、ブルーサイトの水性スラリーを調製し、このスラリーを、ボールミル、タワーミル、円形振動ミル、らせん 旋動最動ミル、遊星形粉砕機、サンドグラインダー、アトマイザー、パルペライザー、スーパーミクロンミル、コロイドミル、等に供給して粉砕する。スラリーの濃度は一般に5万至30重量

第2図と第A表との対比から、本発明の水酸化マグネシウム系難燃剤は [D 0 1] 面の結晶が発達していることがわかる。この特徴は、前記式 (1) の配向度 (D。) で規定することができる。 従来の合成水酸化マグネシウム系 難燃剤は、この配向度 (D。) が1.7 以下であるのに対して、本発明のものでは配向度 (D。) が2以上、特に3以上である。この特徴により、本発明の難燃剤は耐白華性に優れていると共に、樹脂に配合したとき、伸びの保持率が大きいという特徴を有する。

(発明の好適態様)

本発明に用いる天然産ブルーサイト (brucite)は、発達したブルーサイト型結晶構造を有するものであり、一般に80乃至96%、特に85万至95%の純度と、1×10~3以下、特に8×10~4以下の格子歪係数とを有するものが好ましい。その組成の代表例は次の通りである。

%、特に10万至25重量%の範囲が適当である。粉砕物の粒度は、前述した範囲にあるのが適当であり、一般に必要でないが、所望により、粉砕スラリーを液体サイクロンに通して分級操作を行ない、所望の粒度のものを取出すこともできる。

この粉砕スラリーに、脂肪酸のアンモニウム塩 又はアミン塩を、乳化液の形で添加し、この系を 機拌して表面処理を行う。脂肪酸としては、炭素 数 8 乃至 2 0 の飽和乃至不飽和脂肪酸、例えばラ クリン酸、パルミチン酸、ステアリン酸、オレイ ン酸、リノール酸、アラキン酸、ヘブタデシル酸、 ミリスチン酸、ペンタデシル酸、ヘブタデシル 酸、ノナデカン酸、ペヘン酸、リノレン酸、アラ キドン酸、ヤシ油脂肪酸、牛脂脂肪酸等の混合脂 肪酸等を挙げることができる。これらの内でもオ レイン酸が好通である。

これらの脂肪酸をアンモニウム塩の形で用いる ことが好適であるが、アミン塩を用いることもで

特開平1-294792(5)

き、この場合アミンとしては、モノー、ジー、又はトリーエタノールアミン、モルホリン、ピロリジン等を用いることができる。これらのアンモニウム塩又はアミン塩は、ブルーサイト当り、脂肪酸として1.5 乃至6.0 重量%、特に2.0 乃至5.0 重量%の量で用いるのがよい。両者の混合攪拌は、特に制限されないが、一般に2.0 乃至90で、特に4.0 乃至8.0 での温度で行うのがよく、添加混合後、或る時間ゆるやかな攪拌下に熟成させるのがよい。

得られる表面処理スラリーは、確遇、遠心分離、沈降等の手段で水性媒体から固被分離し、乾燥し、解砕して製品とする。

本発明の水酸化マグネシウム系難燃剤は、種々の熱可塑性樹脂、特にオレフィン系樹脂の難燃剤として有用である。オレフィン系樹脂としては、低ー、中-又は高-密度ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-野酸ピニル共重合体、エチレン-アクリル酸エチル共重合

(寒蓝例)

安施保1

本実施例で、天然ブルーサイト (Brucite) を原料として、耐白華性に優れた水酸化マグネシウム系難燃剤を製造し、オレフィン系樹脂に配合した組成物について説明する。

天然ブルーサイトとしては、朝鮮半島産、米国テキサス州ランカスターのロウス鉱山産とカナダケベック州のアステストス産の3種類(A-1.B-1.C-1)を選んだ。その組成(分析値)、ブルーサイイト純度、メジアン径を測定し、下記第1扱に示した。

なお、比較のために、海水マグネシウムより合成された合成品水酸化マグネシウム (A 社製) についても同様に測定し、第 1 表に併せ表示した。

以下に本発明で物性特定や同定のために使用した た測定方法について記載する。

① 粉末 X 韓回折の測定法:-

常法の粉末X線回折法の手頭にしたがい、理

体、イオン製鍋オレフィン共重合体(アイオノマー)等を挙げることができ、本発明の水酸化マグネシウム系離燃剤は樹脂当り80乃至230重量%、特に100乃至200重量%の量で配合することができる。

(発明の効果)

学電気(株)製X線回折装置(ゴニオメーター PMG-S2、レートメーター ECP-D2)を用いて下記に 示す測定条件で測定した。

(測定条件)

ターゲット	Cu ·
フィルター	NI.
ディテクター	2 C
電 圧	40 k¥
電 淺	20 mA
カウントスケール	8000 c/s
時定数	1 sec
スキャンスピード	1/8 * /min
チャートスピード	2 cm/min
ダイバージェンススリット	(101) (202) 1° 2°
レシーピングスリット	0.3 am
スキャッタリングスリット	1. 2.
グランシング角	6*

② 面指数(101)の格子歪係数の測定法:-

上記の①項にて記載の粉末×線回折法の条件下

(6)

で測定した回折図を基礎に、ジョンズ(Jorns) 等が提案している方法手順(『X 線工業分析法』オーム社書店(1965年)参照)に従い、面指数(101) と(202) 角度を高純度シリコン(純度89.98 %)を用いて補正後、β(真の半価編)を求め、下記Hollの式(1) を用い、η(格子歪係数)を求めた。

$$\frac{\theta \cos \theta}{\lambda} = \frac{1}{\epsilon} + 2 \eta \frac{\sin \theta}{\lambda} \qquad \cdots \qquad (1)$$

λ:Cu-X α, 緑

1.5405 Å

θ:ブラック角

β:真の半価幅(ラジアン)

e: 結晶子径(入)

n:格子亞係数

③ 配向度 (Do)の衡定法:-

上記記載の粉末 X 絵回折法で下記に示す測定条件下で測定した回折図を基礎に、面指数 (001) と (101) の回折ピークの強度を下記配合度 (Do)式 (2) に代入し、配向度 (Do)を求めた。

配向度 (Do) = 1 (001) / 1 (101) ~~ (2)

定量測定した。

内部領準法としては常法("X線工業分析法"オーム社書店(1965年)参照)により試料に予じめシリカゲル粉末(水澤化学工業(株)製、シルトンLP-105)50重量%に、ファ化カルシウム(GaF2、和光純薬(株)製、試薬特級)を外割で10重量%添加し、充分均質に混合後、下記測定条件下で測定した粉末 X線回折図の、ブルーサイトの場合は面指数(101)、ファ化カルシウムの場合は面指数(111)の回折ビークの面積比より計算し、ブルーサイドの含有量をパーセントで求めた。

ターゲット	Cu
フィルター	NI
ディテクター	SC
電 旺	40 k¥
電 流	20 mA
カウントフルスケール	8000 c/s
時定数	2 sec

I (101) : ブルーサイド面指数(101) の ピーク強度(cps)

(測定条件)

ターゲット	Cu
フィルター	NI
ディテクター	sc
電 庄	30 k¥
冠 流	15 mA
カウントフルスケール	2\s 0008
時定数	1 sec
スキャンスピード	2 * /min
チャートスピード	1 cm/min
ダイバージェンススリット	1 *
レシーピングスリット	0.15 mm
スキャッタリングスリット	1 *
グランシング角	B *

@ ブルーサイト純度(%)の測定法:-

試料を上記記載の粉末×線回折法で、下記に示す測定条件下で測定しした回折図を基礎に、面指数 (101) の回折ピークを用い、内部標準法により

スキャンスピード 1/4 * /min チャートスピード 1 cm/min ダイバージェンススリット 1 * レシーピングスリット 0.3 mm スキャッタリングスリット 1 * グランシング角 6 *

⑤ CO』との反応性テストの測定法:-

25℃におけるCD。ガス熱和水溶液600 ■2中に試料粉末20gを加え均質分散せしめた後、25℃で3日間放置し、次いで、液部を濾別後、固体部を110℃で乾燥し、CO2との反応性測定試料とした。

反応性の測定は、上記方法で60』と接触せしめた試料を上記の項記載の粉末 X 繰回折法と測定条件により測定した回折図を基礎に、面指数(101)の回折ビークを用い、標準添加法により定量測定

標準添加法としては、常法により、試料にま プシリカゲル(上記と同様の水澤化学工業(株) 製)を50、重量%添加後、外割にて、ブルーサイ (7)

ト標準品を5重量%、10重量%と各々添加し、 面指数(101)の回折ピークの面積増加比より計算 し、CO2と反応した水酸化マグネシウムの量を求 め、この値より、CO2との反応により、生成した 炭酸マグネシウムの生成量(%)とした。その数 値が小さい程、反応性が低いと評価した。

⑥ 平均粒子径(メジアン径)の測定法:-

200 m2 ピーカーに試料 1 8 をはかり採り、これに脱イオン水 1 5 0 m2 を加えて提择下、超音波で 2 分間分散させる。次いでこの分散液をコールターカウンタ社製コールターカウンターT A II 型を使用し、アパーチャーチューブ 1 0 0 μm を用いて測定する。この時得られた累積分布図より平均粒子径(メジアン径(μm))を求めた。

知 - 被

比较到	合成品	A社製	88.6 0.0 0.81 0.09 29.8	99.9	0.9	1	i
室	C - 1	カナダケベック	81.0 6.4 2.2 1.9 28.7	87.5	7.5	34.0	4.8
成	B - 1	米国テキサス	2.4.4.1.2.85.12.2.85.2.2.85.3.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.	0.08	15.0	28.0	3.9
*	A - 1	超半进	81.2 2.6 2.6 2.6 2.6 2.5	86.0	11.3	31.0	£.3
	** **	君),), O, Loss	ブルーサイト純度(8)	(E 71) 22	(8)	112/8)
1	r E	樹	海域 関連状 20 2 3 1 0 2 1 0 2 1 0 2 1 0 2 1 0 1 0 1 0 1 0	イルーサイ	メジアン部 (エヨ)	吸油母(cc/8)	比表面積 (12/8)

この原料となる天然ブルーサイト(試料番号 A-1およびB-1) 150gと水750g (ス ラリー濃度20%)を容量70の磁製ポットミル にそれぞれ採り、フリントポールを粉砕媒体とし て、8時間回転させ、選式粉砕を行った。粉砕後 粉砕スラリー2種類(試料番号A-2。 B-2) を容器に採り出し、約80℃の温度に加熱し、こ のスラリー液に、予じめ調製されたオレイン酸ア ンモニウムのエマルジョン水溶液を攪拌下に往加 し、ブルーサイト固形分に対して、オレイン酸ア ンモニウムの量が2.5 重量%に相当する量を加 え、さらに約80℃に保持しながら2時間提拌 し、各ブルーサイト粒子表面にオレイン酸アンモ ニクムを一部反応させながら表面処理した。この 表面処理後、濾過、水洗し、110℃で乾燥し て、オレイン酸アンモニクムで表面処理されたブ ルーサイト型水酸化マグネシウム系難燃剤粉末2 種類(試料番号A-4とB-4)を製造した。

ここに製造した2種類のブルーサイト試料のう ち、オレイン酸アンモニウムによるブルーサイト 表面処理する前のブルーサイトスラリーより選 過、乾燥して調製した未処理のブルーサイト粒子 粉末2種類(試料A-3.B-3)について、下 記に示す物性測定を行い、その結果を下記第2表 に示した。

なお、前記した合成品を比較例として同様の物 性測定を行い、その結果を第2表に併せ表示した。

次いで、該2種類の試料を用いて、オレフィン 系樹脂に配合し、樹脂製品としての評価を引張り 伸び残事テストと耐炭酸ガス性(耐白華性)テス トで行い、さらに難燃効果を限界酸素指数のテス トで評価した。

なお、比較例として、前記合成品についても同 様にして評価した。

本実施例で選んだ樹脂は工業用に市販されてい る東ソ社製EVA(Ethylene Vinyl Acetate:ウ ルトラセン B 3 O)と日本ユニカー社製EEA (Ethylene Ethyl Acrylate : DPDJ 6189) の2種 類を選んだ。

樹脂に対する配合量は、樹脂100重量郎に対 し、試料粉末130重量部を加え3.5 インチの混 練ロールを用い、100℃で10分間ロール混練 し、表面がテフロン加工されたステンレス製プレ ス板に挟み、130℃で7分間プレスし、各試験 用シート片(伸び残率デスト用は厚さ1mmでダン ベル型(JIS K-7113)、耐炭酸ガス性テスト用は68 mm×120 mm× 1 mm、限界酸素指数測定テスト用は

1.0 × 10-9 ナヤーサイ 1.67 **ノシーサイト** × 10-4 ~ 90 戕 _ n アーサイ 88 × 10-4 8 de ンラーサイト諸田 (E #) ቀ メジアン衛 菜 格子亞係數

8

때 등

成数

台北

6 ag×80 ag × 1 ag) を調製した。

幺

以上の試験用シート片を用いて、それぞれの物 性テストを行い、その結果を第3表に表示した。

枯點點

配向度

以下に難燃剤の配合された樹脂製品の物性評価 を行ったテスト測定法について記載する。

O 引張り伸び残率テストの測定法:-

上記方法で調製した試験用シートを、関係温度 90%でCO2 ガスで飽和されたデシケータ中に吊 し、30℃の恒温室に2週間静震し、この2週間 CO。ガス中に導された試験用シートをダンペラ型 に切断後、JJS-K-7113記載のプラスチックの引張 試験方法に準拠して、測定した。伸び残率が大き い程、シートの引張りに対する耐性が強いことを 示している.

② 耐炭酸ガス性(耐白華性)テストの測定法: 上記方法で課製した試験用シートを、関係程度 90%でCOx ガスで飽和されたデシケータ中に吊 し、30℃の低温室に2週間静置し、この2週間 での試験用シートの重量増加量を求め、重量増加 搴(%)で表示し、増加率が小さい程、耐炭酸ガ ス性(耐白薬性)に優れていると評価した。

- ③ 限界體素指数(%)テストの穩定法:→
- (株) 東洋精機製作所製キャンドル法燃焼試験 機を使用し、JIS-K-7201記載のA法に準拠して、 試験を行い、限界酸素指数(%)を求め、この指 数が大きい程、難燃効果が大きいと評価した。

② 電気絶益性 (VR、Q・cm) テストの測定法: -

JIS-K-1723に記載の方法に準拠して、所定量の 試料が配合された樹脂シート片(厚さ 1 mm)を、 60%関係温度に保たれたデシケーター中に24 時間(20℃)保持した後、鉄試験シート片にス ズ箱を続ワセリンを用いて貼り付け、直偏法によ り、シートの電気抵抗値を測定し、この測定値か ら下記式により体積固有抵抗値ρ (Ω·cm)を求

$$\rho = R \times \frac{A}{D}$$

M ...

ρ:体積固有抵抗値(Ω·cm)

A:スズ狢(小さい方)の面積(ca2)

D:シートの厚さ(cm)

特開平1-294792(9)

(9)

以上の結果、本発明の方法で製造された2種類のブルーサイトはいずれも好適な粒子径に調製されており、しかも格子歪係数は小さく、結晶が良く発達しており、また配向度が高く、樹脂への配合時における配向性分散に効果的である。さらに本実施例におけるオレイン酸塩で表面処理が低くブルーサイトは、COs 魚和水中での反応性が低くであり、しかも樹脂に配合されたシートは炭酸白素性がの反応性が抑制されていることが合成品の場合と比較するとき良く理解される。

実施例 2

本実施例で、脂肪酸のアンモニウム塩またはア ミン塩で表面処理された水酸化マグネシウム系難 燃剤について説明する。

天然ブルーサイトの湿式粉砕スラリーとしては 実施例1にて記載の方法で製製した試料番号A~ 2のスラリーを用いて、実施例1に記載と同様の 方法により、市版1級試薬より2種類の脂肪酸塩

:01 X 22.5 :: : 뫋 샠 × 101 × 13.5 12.0 69.7 * 10 × 7: ÷ ×101× × 10 × 8.3 2 25.0 × 10 × : 25 9 $\widehat{\mathbf{x}}$ 8 × 財政観がス化 10 中で独立 Ξ

を選び、下記第4表に示す量割合で表面処理し、 建過、水洗、乾燥し、それぞれ表面処理されたブ ルーサイト型水酸化マグネシウム系離燃剤2種類 (試薬番号2-1及び2-2)を製造した。

なお、表面処理剤として、オレイン酸ソーダを 用いて、同様に表面処理し、濾過後、イオン交換 水で充分洗浄して調製した。比較例試料も調製した。

ここに調製したオシイン酸塩で表面処理されたブルーサイト系の白華性が防止された難燃剤試料について、実施例1の場合と同様にしてオレフィン系樹脂2種類(EVA、EEA)にそれぞれ樹脂100部に試料130部を配合し、その各々の物性測定を行い、その結果を第4表に併せ表示する。

其計畫學		-	2 - 2	4	2 - 3	8	##	_
英田加速用階 助駐債の経知	ギワイン値アンホン ギフイン位アンホン ギアイン響キアホリン	アンモン	ギレイン語	アンセン	ギアイン型	モルホリン	ギアイン扱ン	> 45
服助設性の実 関処理量(4)	9.8		3.5		2.5		2.5	
政務の提供	EVA	EEA	EVA	EEA	EVA	EEA	EVA	ഥ
中 (元)	8.38	81.1	13.1	69.0	81.8	8.1	82.8	-
服 埃勒 47性 (米)	9.0	1.1	9.1	6.1	8.8	1.1	11.8	
東京総第200 (X)	8.85	18.0	28.0	14.8	81.5	15.5	28.0	~
異気能操性 (ロ・cm)	F.0 × 1014	2.5 × 101*	F.0 × 1014	4.5 × 1010	8.6 × 101 × 8.5 × 101 × 8.0 × 101 × 8.4 × 101 × 8.5 × 101 × 8.5 × 101 × 8.5	2.5 × 1018	1.6 ×1019	1.0

が

以上の結果、脂肪酸のアンモニウム塩およびアミン塩を表面処理する時は、オレイン酸ソーダで表面処理した時に較べて、CO。の反応性が低く、耐白薬性に優れており、しかも電気絶縁性にも優れているオレフィン系制度への配合難燃剤であることが理解される。

4. 図面の簡単な説明

第1図は、本発明の水酸化マグネシウム系難燃 剤が持つ格子蛋係数と、炭酸マグネシウムの生成 量(%)との関係図を示す。

第2図は本発明の水酸化マグネシウムと合成の 水酸化マグネシウム (比較例)のX線回折図を示す。

特許出頭人 水澤化学工業株式会社

件 理 人 杂理士 鈴 木 郁

作 理 人 弁理士 庄 子 奉

(10) 特開平1-294792 (10)

第 1 図

A: 実施例1記載の試料番号A-3

B: 実施例 1 記載の 試料番号 B-3

D: 実施例1記載の試料番号合成品(比較例)

第 2 図

BEST AVAILABLE COPY