

PRÉSENTATION

- \triangleright Modèle: Intégration de β dans un Variational Autoencoder (VAE)
- Base de données: MNIST avec rotations aléatoires
- Objectif: Capturer les facteurs de variation

BASE DE DONNÉES

Dataset MNIST: 60 000 images (entraînement) + 10 000 images (test)

Redimensionnement: 28x28 à 64x64 pour aligner avec l'architecture

</>>

Dataset Rotated MNIST: Images avec rotation aléatoire (-90° à 90°)

1

Entraînement: Combinaison Rotated MNIST + MNIST

0

Objectif : Améliorer la capacité du VAE à générer chiffres avec ou sans rotation

β-VAE

- Réguler la représentation des données dans l'espace latent du VAE
- Paramètre β : Contrôle l'équilibre fidélité/organisation
- Influence de β : Impact sur séparation des facteurs de variation
- \succ Compromis : Précision de reconstruction vs. Séparation (ajustement de β)
- Valeur β : [1 ; +∞]
- \triangleright Principe: Améliorer la séparation des facteurs de variation à l'aide de β

ÉTUDE : EXPLORER IMPACT DE BETA SUR NOTRE ENSEMBLE DE DONNÉES

ÉTUDE : EXPLORER IMPACT DE BETA SUR NOTRE ENSEMBLE DE DONNÉES

ARCHITECTURE DU VAE

ARCHITECTURE DE L'ARTICLE

mu:Dense

NOTRE ARCHITECTURE

Inspirée de l'article (VAE-CNN)

Complexification : Ajout de couches de convolution

Objectif : Capturer de meilleurs d facteurs de variation

Entre chaque couche : Batch
Normalization, Activation linéaire
Encodeur : 32, 32, 64, 64, 128, 128, 256 (channels)

Décodeur : Inverse de l'encodeur,
 Sigmoid à la dernière couche

RÉSULTAT

RÉSULTATS OBTENUS AVEC NOTRE ARCHITECTURE PROPOSÉE

Pour l'entrainement:

- 15 epochs
- $\beta = 4$
- Dimension d'espace latent = 10

Training Loss

Validation Loss

RÉSULTATS OBTENUS AVEC NOTRE ARCHITECTURE PROPOSÉE

VISUALISATION DE L'ESPACE LATENT

VISUALISATION DE L'ESPACE LATENT

L'espace latent possède plusieurs dimensions

Impossible à visualiser dans un graphe

- Utilisation de la PCA ou TSNE pour réduire les dimensions à 2
- Permet de garder au maximum l'information originale en réduisant la dimension

ESPACE LATENT

CAPTURE DES FACTEURS DE VARIATION

CAPTURE À PARTIR D'UN POINT ALÉATOIRE

Tentative: Déterminer les dimensions de l'espace latent responsable des variations

Observer à partir d'un point aléatoire de l'espace latent l'effet de chaque dimension à intervalles réguliers

VARIATION À PARTIR D'UN POINT ALÉATOIRE

CAPTURE À PARTIR DE L'ENCODAGE D'IMAGES

Un point aléatoire dans l'espace latent ne donne pas toujours un résultat exploitable

Observer à partir de l'encodage d'une image de chaque chiffre

DIMENSION 1

DIMENSION 6

POUR RÉSUMER

Notre architecture ne donne pas des résultats concluants très concluant

- Peu de dimensions sont responsables d'une variation (seulement la 1, 6 et 8)
- Les facteurs de variation sont liés entre eux
- Le paramètre β n'a pas permis de mieux les séparer

COMPARAISON AVEC L'ARCHITECTURE DE L'ARTICLE

VARIATION À PARTIR D'UN POINT ALÉATOIRE

VARIATION À PARTIR DE L'ENCODAGE D'IMAGES DIMENSION 1

DIMENSION 7

DIMENSION 9

POUR RÉSUMER

L'architecture de l'article donne de bien meilleurs résultats

- > Toutes les dimensions sont responsables d'une variation
- Les facteurs de variation sont indépendants (il y a une seule variation par dimension)
- \triangleright Le paramètre β a bien permis de mieux séparer les facteurs de variation

Point négatif: La rotation n'a pas été capturée

POUR CONCLURE

POSSIBILITÉ D'AJOUT

DEMO