# Računarske mreže 1 IPv6 – novija verzija IP protokola

#### Predavač:

Prof. dr Slavko Gajin, slavko.gajin@rcub.bg.ac.rs

#### **Asistenti:**

Stefan Tubić, stefan.tubic@etf.bg.ac.rs Marko Mićović, micko@etf.bg.ac.rs Kristijan Žiza, ziza@etf.bg.ac.rs

http://elearning.rcub.bg.ac.rs

# IPv4 – standardna verzija IP protokola

IP verzija 4, u oznaci IPv4, RFC 791, Septembar 1981

#### Problemi:

- Eksponencijalni rast Interneta i povezanih uređaja
- Nedostatak IPv4 adresnog prostora
- Veliki broj mreža na Intenetu velike tabele rutiranja

#### Nove potrebe:

- Bezbednost podataka na IP nivou
- Ostvarivanje kvaliteta servisa (QoS - Quality of Service)

#### APPROXIMATE IPV4 ADDRESS SPACE USAGE BY YEAR



Izvor slike: arstechnica.com

### Nedostatak IPv4 adresnog prostora

- IPv4 adresni prostor je potrošen
- Nove IPv4 adrese se mogu kupiti samo od "preprodavaca"
- Privatne adrese i NAT donekle rešavaju problem
- Potrebne su nove adrese novi IP protokol



Izvor slike: arstechnica.com

# IPv6 – novija verzija IP protokola

- "Internet Protocol, Version 6 (IPv6) Specification", RFC 1883, December 1995
- Različit protokol u odnosu na IPv4
  - L2 identifikacija
    - IPv4 0x0800
    - IPv6 0x86dd
- Osnovne karakteristike
  - Veći adresni prostor
  - Efikasnije rutiranje
    - Manji broj eksternih ruta na Internetnu hijerarhijska struktura mrežnih adresa omogućava efikasnije agragiranje
    - Jednostavnije zaglavlje za efikasniju obradu paketa
  - Podršku za automatsku konfiguraciju računara
  - Podršku za bezbednost podataka sa IPSec implementacijom
  - Poboljšana podrška za mobilne uređaje
  - Ugrađena podrška za alokaciju resursa i kvalitet servisa (QoS)
  - Povećan broj multicast adresa

# Format zaglavlja

IPv4 zaglavlje



• IPv6 zaglavlje

| 1. bajt                |         | 2. bajt |                  | 3. bajt     | 4. bajt   |  |  |  |
|------------------------|---------|---------|------------------|-------------|-----------|--|--|--|
| VERS                   | Traffic | Class   | Class Flow Label |             |           |  |  |  |
|                        | Payload | Length  |                  | Next Header | Hop Limit |  |  |  |
| Source IP Address      |         |         |                  |             |           |  |  |  |
| Destination IP Address |         |         |                  |             |           |  |  |  |
| Data                   |         |         |                  |             |           |  |  |  |
|                        |         |         |                  |             |           |  |  |  |

# Izbačena polja

#### Internet Header Length

- IPv4 sadrži opcije koje čine promenljivu veličinu zaglavlja
- IPv6 zaglavlje je fiksne veličine, jer su opcije izdvojene u posebna zaglavlja

#### Header Checksum

- Provera integriteta paketa se sprovodi na L2 nivou
- TCP/UDP sadrži Checksum polje koje obuhvata iz i IP adrese iz IP zaglavlja (pseudo-header)

#### Options

- Nedovoljno se koriste u IPv4
- U IPv6 uveden novi mehanizam flekslibilnog ugnježdavanja opcija u dodatnim zaglavljima
- Polja za fragmentaciju (Identification, Flags, Fragment Offset)

| 1. bajt                |                       | 2. bajt         | 3. bajt |                   | 4. bajt |  |  |
|------------------------|-----------------------|-----------------|---------|-------------------|---------|--|--|
| VERS                   | HLEN                  | Type of Service |         | Total I           | ength   |  |  |
| Identification         |                       |                 | Flags   | s Fragment Offset |         |  |  |
| Time t                 | Time to Live Protocol |                 |         | Header Checksum   |         |  |  |
| Source IP Address      |                       |                 |         |                   |         |  |  |
| Destination IP Address |                       |                 |         |                   |         |  |  |
|                        |                       | Options         |         |                   | Padding |  |  |
| Data                   |                       |                 |         |                   |         |  |  |
|                        |                       |                 |         |                   |         |  |  |

### Fragmentacija

- Fragmentacija je "neekonomičan" proces
  - Alocira resurse na strani primaoca
  - Uvodi tajmere i čekanje u slučaju gubitka bilo kog fragmenta
  - Gubitak fragmenta uzrokuje gubitak celog originalnog paketa
- Fragmentacija je neophodna, ali je treba ograničiti i minimizirati
  - Fragmentacija se sprovodi na izvorištu, a ne u ruterima
- MTU Maximum Transmission Unit
  - IPv6 garantuje MTU od najmanje 1280 bajtova
  - Izvorište koristi ili garantovani MTU ili radi Path MTU Discovery
  - U slučaju da ruter ne može da prosledi paket jer je veći od MTU na linku
    - Paket se uništava
    - Ruter generiše ICMPv6 poruku "Packet Too Big"
- Path MTU Discovery pronalazi najmanji MTU na celom putu do odredišta
  - Šalje pakete određene veličine i prati da li je dobio "Packet Too Big"
- Problem
  - Rutiranje je dinamičko i putanja se može promeniti tokom komunikacije
  - Ovo se ipak retko dešava

# IPv6 format zaglavlja

- *Traffic Class* (8 bita)
  - Isto kao ToS (Type of Service) polje kod IPv4
  - Izvorište generiše pakete koji pripadaju različitim klasama saobraćaja, sa različitim prioritetima
- Flow Label (20 bita)
  - Flow (tok) predstavlja komunikaciju između aplikacija izvorišta i odredišta
  - Flow Label jedinstveno označava svaki tok
  - Samo se prvi paket rutira, a Flow Label uparen sa izlaznim portom se kešira
  - Ubrzan proces rutiranja
    - Naredni paketi istog toka ne zahtevaju rutiranje
- Payload Length (16 bits)
  - Bužina podataka u bajtovima



# IPv6 format zaglavlja

- Hop Limit (8 bits)
  - Ista funkcija kao kod IPv4 Time To Live (TTL)
- Next Header (8 bits)
  - Umesto polja "Protocol" kod IPv4
  - Identifikuje "sledeće zaglavlje"
    - Zaglavlje višeg nivoa TCP, UDP, ICMPv6, OSPFv3 itd.
    - Zaglavlje sa IPv6 opcijama
  - Na isti način se tretiraju IPv6 opcije i TCP/UDP zaglavlje (protokoli višeg nivoa)



### Ruting opcija

- Utiče na put paketa
  - Izvorište definiše sekvencu rutera, tzv. međutačaka (Checkpoints)
  - Usputni ruteri prosleđuju pakete prema navedenim međutačkama



- Zaglavlje ruting opcije sadrži:
  - Sekvencu adresa međutačaka (ne moraju da budu uzastopni ruteri)
  - Brojač (Segment Left) koliko je još međutačaka preostalo

|      | Routing Extension |          |              |            |      |       |      |  |
|------|-------------------|----------|--------------|------------|------|-------|------|--|
|      |                   |          | ID: 43       |            |      | ID: 6 |      |  |
| IPv6 | NH=43             | Src, Dst | Seg.<br>Left | Adr1, Adr2 | NH=6 | ТСР   | Data |  |

### Ruting opcija

#### Princip rada

- Izvorište definiše sekvencu adresa međutačaka, poslednja adresa je odredište
- Odredišna adresa regularnog IPv6 zaglavlja je adresa prve međutačke
- Ruter kada prepozna sebe kao odredište, a postoji ruting zaglavlje radi:
  - N = Segment Left
  - Adresa odredišta se manja sa adresom na N-toj poziciji od kraja sekvence



### IPv6 adrese

- IPv6 adresa je dužine 16 bajta (128 bita)
  - 4x veće od IPv4!
- Piše se u heksadekadnom obliku
  - Jedna heksadekadna cifra od 4 bita "niblle"
- Maska se koristi u prefiks notaciji ("/n")
- Primer:
  - 2340:13c1:a12d:001d:02c3:19ff:fe7b:5004/64



### IPv6 adrese

#### Skraćeni zapis

- 1. Izbaciti vodeće nule u grupama od 4 cifre (nakon znaka ":00x" => ":x")
- 2. Izbaciti samo jedan niz grupa sa nulama (":0:0:0:" => "::")
- Primer 1: 2001:417b:0000:0000:0000:0000:0000:01af/64
  - Skraćeni zapis:
    - 1. korak: 2001:417b:0:0:0:0:1af/64
    - 2. korak: 2001:417b::1af/64
- Primer 2: 2001:417b:0000:0000:002c:0000:0000:01af/64
  - Neispravno: 2001:417b::2c::1af/64 nije jednoznačno:
    - 2001:417b:0:0:0:2c:0:1af/64,
    - 2001:417b:0:0:2c:0:0:1af/64 ili
    - 2001:417b:0:2c:0:0:0:1af/64
  - Ispravno:
    - 2001:4170::fff:0:0:112/64 ili
    - 2001:4170:0:0:fff::112/64

### Vrste IPv6 adresa

#### Unicast

Jedinstvena adresa, identifikuje interfejs

#### Multicast

- Adresa koja identifikuje više interfejsa različitih uređaja prema nekoj zajedničkoj nameni
  - Paket poslat na multicast adresu biće prosleđen na sve pripadajuće interfejse

#### Anycast

- Adresa koja identifikuje više interfejsa različitih uređaja
  - Paket poslat na anycast adresu biće prosleđen samo jednom interfejse



#### Unicast adrese

Global Unicast Address (GUA) 2000::/3

Unique Local Address (ULA) fc00/7

Link-Local Address (LLA) fe80::/10

Loopback Address ::1/128

Unspecified Address ::/128

Endedded IPv4 Address



# Global Unicast adrese – javne adrese

- Javna adresa, dostupna na Internetu
- Opseg: 2000::/3 počinju sa binarnom vrednošću "001"
- Terminologija:
  - Prefix mrežni deo adrese
  - Interface ID adresa interfejsa u IPv6 mreži (ekvivalent IPv4 host delu)
- Obično se logički deli na tri dela:
  - Globalni prefiks (Global Routing Prefix) tipično prvih 48 bita, dodeljuje se provajderima i drugim korisnicima
  - Adresa podmreže (Subnet ID) tipično 16 bita, podmreže unutar osnovne mreže
  - Adresa hosta odnosno interfejsa (Interface ID) tipično poslednja 64 bita
- Mrežni deo, odnosno maska, može da "uđe" i u Interfejs ID, ali:
  - Nije dobra praksa
  - Obično nema potrebe



# Global Routing Prefix, Subnet ID

- Agregacija prefiksa hijerarhijska podela
  - Kontinenti (RIR), globalni provajderi (ISP), države, regione...
  - Efikasnije rutiranje
- Provider-Aggregatable (PA)
  - Pripada opsegu adresa povajdear agregacija
  - Prednost Na naplaćuje se, provajderi dodeljuju svojim korisnicima
  - Nedostatak Promena provajdera zahteva promenu prefiksa
- Provider-Independent (PI)
  - Dodeljuje se od strane RIR-a, kao i mreže provajdera
  - Prednost Nezavisne od provajdera, moguće povezivanje na više provajdera
  - Nedostatak Obično se naplaćuje



### Interface ID

- Polje adrese koje označava uređaje u podmreži
  - Host deo adrese IPv4 terminologija
  - Interface ID IPv6 terminologija (Interfejs ID)
- Postavljanje
  - Statički manuelno
    - Proizvoljna vrednost, obično mali brojevi kao kod IPv4
    - Dozvoljene su sve jedinice i sve nule, ali za time nema potrebe
  - Dinamički automatski
    - Pravilo EUI-64 (Extended Unique Identifier)
    - Random pseudo-slučajan niz bita (default za Windows računare)



### EUI-64 - Extended Unique Identifier

- EUI-64 pravilo generisanja Interface ID na osnovu MAC adrese
  - 6 bajta MAC adrese se proširuje na 8 bajta koji čine Interface ID
  - Deli se MAC adresa na dve grupe od po 3 bajta
  - U sredinu se umeću dva bajta: ff i fe (11111111 i 11111110)
  - Sedmi bit prvog bajta U/L bit (Universal/Local bit) postavlja se na 1
    - 0 *Universal:* MAC adresa je fizički upisana (*burned-in*)
    - 1 Local: MAC adresa je logički konfigurisana na proizvoljan način i ima lokalno značenje



# Unique Local adrese – privatne adrese

- Namenjena za korišćenje u privatnim mrežama, RFC 4193
  - Po analogiji sa IPv4 privatnim adresama
- Opseg: fc00::/7
  - Sedmi bit:
    - 0 trenutno se ne koristi
    - 1 trenutno jedino dozvoljeno
  - Slobodan opseg: fd00::/8
- Ne smeju da se oglašavaju na Internetu
- Global ID pseudo-slučajna vrednost
  - Definisan je algoritam za generisanje, https://www.sixxs.net/tools/grh/ula
  - Omogućava povezivanje više različitih mreža sa Unque Local adresama



### Link Local adrese

- Za korišćenje samo u unutar lokalne IP mreže (L2 segment)
  - Opseg: fe80::/10
  - Novi koncept u odnosu na IPv4
  - Ruteri ne prosleđuju pakete sa ovim adresama
  - Format: fe80 + 54x0 + Interface ID
  - Dodela Interfejs ID
    - Automatski (EUI-64)
    - Manuelno može se postaviti bilo koja vrednost, obično se postavlja na ruterima, radi jednostavnijeg praćenja
    - Random pseudo-slučajan niz bita
- Primer:
  - Ruteri komuniciraju preko Link Local adresa, oglašavaju kao next-hop



### Specijalne *Unicast* adrese

- Loopback Address ::1/128
  - Logička adresa za lokalne korišćenje na jednom uređaju adresa tog uređaja
  - Ekvivalentna IPv4 adresi 127.0.0.1
  - Ne izlazi van uređaja, ne rutira se
- Unspecified Address ::/128
  - Nepostojeća adresa sadrži sve nule
  - Sadržaj adresnog polja kada adresa nije poznata samo kao izvorišna adresa
  - Ne rutira se
- Emdedded IPv4 Address ::/80
  - Za tranziciju sa IPv4 na IPv6
  - Na početak se dodaje 80 nula i 16 jedinica
  - IPv4 su poslednja 4 bajta u IPv6 adresi i dalje u Dotted Decimal formi
  - Primer:



### IPv6 multicast adrese

- Opseg: ff00::/8
- Flags 4 bita specijalnih flegova:
  - T fleg:
    - 0 Well-Known, predefinisane permanentne adrese, dodeljene od strane IANA
    - 1 Transient, dodeljene po potrebi od strane različitih multikast aplikacija
- Scope
  - 4 bita koji definišu opsege korišćenja
    - 2 samo na lokalnom L2 segmentu
    - 8 na nivou organizacije (Subnet ID)
    - 14 (E) globalni opseg
- Primeri:
  - FF02::1 adresa svih IPv6 uređaja, zamena za broadcast
  - FF02::2 adresa svih IPv6 rutera
  - FF02::5 adresa svih IPv6 OSPF rutera



**Global Unicast** 

2000::/3



### Solicited-Node Multicast adrese

- Odnose se na pojedinačne uređaje
- Automatski generisane iz: GUA, ULA i LLA
- Koriste se za internu komunikaciju Neighbor Discovery Protocol
  - Address Resolution (ekvivalent ARP-a)
  - Duplicate Address Detection (DAD) detekcija duplih adresa
- Mapiranje:
  - Fiksan prefix: ff02:0:0:0:1:ff00::/104
  - Dodaje se poslednja 24 bita iz Interfejs ID dela

**Link Local** fe80 0000 0000 0000 уууу уууу уу XX XXXX 32 bita 8 bital 24 bita 48 bita 16 bita **Solicited-Node Multicast** ff02 0000 0000 0000 0000 0001 ff XX XXXX

Interface ID

### Anycast adrese

- Identifikuje više interfejsa koji pripadaju i različitim uređajima, bilo gde na mreži
  - Više uređaja sa istom adresom na mreži
  - Paketi stižu samo do jednog najbližeg uređaja (određeno protokolom rutiranja i metrikom)

Nije poseban opseg adresa, već koncept rutiranja unicast adresa



# Konfigurisanje IPv6 adresa

#### Statičko

- Konfigurisanje cele adrese 128 bita, nepraktično
- Konfiguracija samo mrežnog dela adrese 64 bita
  - Interface ID se automatski postavlja po pravilu EUI-64

#### Dinamičko

- Stateful DHCPv6 po analogiji sa DHCP za IPv4
  - DHCPv6 pamti kom uređaju je dodelio koju adresu
- Stateless Address Autoconfiguration (SLAAC)
  - Automatsko uspostavljanje IPv6 adrese za hostove (interfejse)
  - Nova funkcija ugrađena u IPv6
  - Uređaji automatski saznaju
    - Mrežni deo od 64 bita (site prefix),
    - Default Gateway
    - DNS server (opciono)
  - Interface ID se automatski postavlja po pravilu EUI-64 ili slučajnim izborom

# Konfigurisanje IPv6 adresa - primer

#### Konfigurisanje statičke IPv6 adrese:

```
interface Serial0/0/0
ipv6 address 2340:1111:1::1/64

R1#show ipv6 interface serial 0/0/0
   IPv6 is enabled, link-local address is FE80::240:BFF:FEB2:48B6
   Global unicast address(es):
      2340:1111:1::1, subnet is 2340:1111:1::/64
```

#### Konfigurisanje dinamičke IPv6 adrese preko pravila EUI-64:

```
interface Serial0/0/0
ipv6 address 2340:1111:1::/64 eui-64

R1#show ipv6 interface serial 0/0/0
   IPv6 is enabled, link-local address is FE80::240:BFF:FEB2:48B6
   Global unicast address(es):
    2340:1111:1:0:240:BFF:FEB2:48B6, subnet is 2340:1111:1::/64 [EUI]
```

#### ICMPv6

- ICMPv6 (Internet Control Message Protocol)
  - Slične funkcije kao kod ICMP za IPv4
  - Error Messages poruke o grešci
    - Destination Unreachable
      - Network Unreachable
      - Address Unreachable
      - Port Unreachable
      - Reject route to destination
    - Packet Too Big
    - Time Exceeded
    - Parameter Problem
  - Informational Messages Informacione poruke
    - Ping (Echo Request/Echo Reply)
    - Multicast Listener Discovery
    - Neighbor Discovery Protocol

### NDP - Neighbor Discovery Protocol

- ICMPv6 Neighbor Discovery Protocol (NDP), RFC 4861
  - NDP zamenjuje ARP, ICMP Router Discovery i ICMP Redirect
  - Funkcije:
    - Router discovery otkrivanje svih povezanih rutera
    - Prefix discovery otkrivanje mrežne adrese
    - Address Resolution ekvivalentno ARP protokolu
    - Duplicate Address Detection otkrivanje da li je adresa iskorišćena
    - Redirect ekvivalentno "ICMP Redirect" za IPv4
    - Neighbor Unreachability Detection
  - Poruke:
    - Router Solicitation (RS) i Router Advertisement (RA)
    - Neighbor Solicitation (NS) i Neighbor Advertisement (RA)

# Autokonfiguracija IPv6 uređaja

- Stateless Address Autoconfiguration (SLAAC)
  - Koristi se NDP u dva koraka
- 1. korak uređaj šalje upit ruteru preko *Router Solicitation* (RS) poruke
  - Uređaj šalje upit svim ruterima na lokalnoj mreži
  - Izvorišta IP adresa: Link-Local adresa uređaja
  - Odredišna IP adresa: multikast adresa FF02::2 (All IPv6 Routers)



# Autokonfiguracija IPv6 uređaja

- 2. korak ruter odgovara slanjem Router Advertisement (RA) poruke
  - Interfejs rutera je konfigurisan sa unikast IPv6 adresom
  - RA poruka, kao odgovor na RS:
    - Izvorišna IP adresa: Link-Local adresa rutera
    - Odredišna IP adresa: Link-Local adresa uređaja
    - Sadržaj: mrežna adresa (prefiks), opciono i DNS
    - Default Gateway uzima se izvorišna IP adresa (Link-Local adresa rutera)
  - Uređaj sam određuje Interfejs ID koristeći EUI-64 ili random pravilo



# Autokonfiguracija IPv6 uređaja

- Nezavisno od RS poruke, ruteri periodično samostalno oglašavaju RA poruke
  - Izvorišna IP adresa: Link-Local adresa rutera
  - Odredišna IP adresa: FF02::1 (All IPv6 Devices)
- Period oglašavanja
  - Cisco ruteri: 200 sekundi



#### Dodela DNS servera

- Slanje adrese DNS server opciono polje u RA poruci
- Alternative
  - Stateless DHCPv6
    - Dodeljuje se samo DNS server (i još poneki parametri), ali ne i IP adrese
    - Ne pamti se šta je poslato pojedinačnim uređajima (jer se svima šalju iste informacije)
  - Stateful DHCPv6
    - Dodeljuje se IPv6 adresa, maska, Default Gateway, DNS server i ostali parametari
    - Pamti se koje su adrese dodeljene
- DNS server
  - AAAA zapis IPv6 adrese



**DHCP** 

DNS: 2001:4170:10::22

GUA: 2001:4170:0:4::6444.55ff.fe55.6666/64

### Address Resolution

- Ekvivalent ARP protokola za poznatu IPv6 adrese traži se MAC adresa
  - Sprovodi se u dva koraka
- 1. korak uređaj šalje upit preko Neighbor Solicitation (NS) poruke
  - Šalje bilo koji uređaj kome je potrebna MAC adresa da prosledi IPv6 paket
  - Izvorišna adresa: unikast adresa uređaja koji zahteva MAC adresu
  - Odredišna adresa: Solicited-Node Multicast adresa uređaja za poznatu IP adresu

Odredišna MAC adresa: multikast (3333.ff55.6666)

Ruter A

2001:4170:0:4::/64



Src: 2001:1234.5678::90

Dst: 2001:4170:0:4::6444.55ff.fe55.6666

MAC: 1111.2222.3333

LLA: fe80::1

GUA: 2001:4170:0:4::1/64

MAC: 4444.5555.6666

LLA: fe80::6444.55ff.fe55.6666

GUA: 2001:4170:0:4::6444.55ff.fe55.6666/64

PC1

#### **Neighbor Solicitation**

Src MAC: 1111.2222.3333 Dst MAC: 3333.ff55.6666

Src: 2001:4170:0:4::1 Dst: ff02::1.ff55.6666

TA: 2001:4170:0:4::6444.55ff.fe55.6666

#### Address Resolution

- 2. korak prozvani uređaj šalje *Neighbor Advertisement* (NA) poruku
  - Odgovara uređaja sa navedenom Solicited-Node Multicast adresom iz NS poruke
  - Izvorišna adresa: unikast adresa uređaja koji šalje NA poruku
  - Odredišna adresa: unikast adresa uređaja koji je poslao NS poruku
  - Sadržaj: zahtevana MAC adresa uređaja koji šalje NA poruku



2001:4170:0:4::/64

Src: 2001:1234.5678::90

Dst: 2001:4170:0:4::6444.55ff.fe55.6666

MAC: 1111.2222.3333

LLA: fe80::1

GUA: 2001:4170:0:4::1/64

MAC: 4444.5555.6666

LLA: fe80::6444.55ff.fe55.6666

GUA: 2001:4170:0:4::6444.55ff.fe55.6666/64

PC1

**Neighbor Advertisement** 

Src MAC: 4444.5555.6666 Dst MAC: 1111.2222.3333

Src: 2001:4170:0:4::6444.55ff.fe55.6666

Dst: 2001:4170:0:4::1

TA: 4444.5555.6666

Src MAC: 1111.2222.3333 Dst MAC: 4444.5555.6666

Src: 2001:1234.5678::90

Dst: 2001:4170:0:4::6444.55ff.fe55.6666

# Duplicate Address Detection (DAD)

- Provera da li već postoji adresa koja se želi koristiti (RFC 4861)
  - Automatski se sprovodi za ručno postavljene adrese, SLAAC i DHCPv6
- Šalje se upit za adresu koja se želi koristiti (Neighbor Solicitation) i čeka se da li će neko da odgovori (Neighbor Advertisement)



TA: 2001:4170:0:4::6444.55ff.fe55.6666

# IPv6 protokoli rutiranja

- IPv6 Rutiranje isti principi kao i kod IPv4
  - Destination-based
    - Na osnovu destinacione adrese
  - Longest-prefix match
    - Nalaženje najspecifičnije odredišne mreže u ruting tabeli
- Protokoli rutiranja za IPv6
  - Nove verzije postojećih protokola
    - RIPng
    - OSPFv3
    - IS-IS
    - Multiprotocol BGP

#### IPv6 i IPv4

- Prelazak sa IPv4 na IPv6
  - Inertan, komplikovan i dugotrajan proces
  - Potrebno je obezbediti postepeno uvođenje IPv6 i integraciju u postojeće IPv4 mreža i aplikacija
- Mehanizmi tranzicije sa IPv4 na IPv6
  - IPv4/IPv6 Dual Stack
    - Istovremeni radi i IPv4 i IPv6
  - IPv6 Tunelovanje (IPv6 Tunneling)
    - Enkapsulaciji IPv6 paketa u IPv4 paket
  - Mehanizam translacije protokola (Protocol Translation)
    - Translaciji IPv6 paketa u IPv4 paket i obratno
    - Omogućava komunikaciju IPv6 i IPv4 uređaja

# IPv4/IPv6 Dual stack

- Dvostruki IP sloj i IPv4 i IPv6
  - Identifikator IPv6 protokola na L2 nivou je 86dd
- Svi protokoli viših slojeva mogu komunicirati preko IPv4 i IPv6
- Pojedine aplikacije će prvo pokušati komunikaciju preko IPv6
  - Npr. pristup veb sajtovima, DNS vraća i A i AAAA zapis





# IPv6 tunelovanje

- Mogućnost komunikacije IPv6 mreža, koje su povezane preko IPv4 mreže
  - Bez potrebe za izmenom postojeće IPv4 infrastrukture
- Na prelasku iz IPv6 u IPv4 IPv6 paketi se enkapsuliraju u IPv4 pakete
  - IPv4 zaglavlje: IPv4 adrese rutera koje formiraju "tunel"
- Na prelasku iz IPv4 u IPv6 IPv6 paketi se dekapsuliraju iz IPv4 pakete
  - IPv6 zaglavlje: IPv6 adrese originalnog izvorišta i odredišta
- Efekat: IPv6 komunikacija između IPv6 domena
  - IPv4 domen je transparentan za učesnike u IPv6 komunikaciji
  - IPv6 tunel preko IPv4 mreže ekvivalent jedne fizičke veze (1 korak)



### Translacija protokola

- Direktna komunikacija između IPv6 i IPv4 uređaja
  - Translaciju IPv6 i IPv4 adresa
     NAT-PT Network Address Translation Protocol Translation
  - Slično kao i IPv4 NAT
    - Zamena adresa u zaglavlju na graničnom ruteru između IPv6 i IPv4 domena



### IPv6 vs. IPv4

Izvor: Hurricane Electric (<a href="http://bgp.he.net/report/prefixes">http://bgp.he.net/report/prefixes</a>)

|                    |          |          | IPv4   |              | IPv6     |       |              |  |
|--------------------|----------|----------|--------|--------------|----------|-------|--------------|--|
| Country            |          | Prefixes | ASN    | Prefixes/ASN | Prefixes | ASN   | Prefixes/ASN |  |
| United States      |          | 244,263  | 19,356 | 12           | 25,701   | 3,511 | 7            |  |
| China              | *3       | 69,212   | 7,504  | 9            | 4,932    | 315   | 15           |  |
| Brazil             | <b>*</b> | 43,288   | 717    | 60           | 12,585   | 4,146 | 3            |  |
| India              |          | 38,224   | 1,954  | 19           | 5,841    | 378   | 15           |  |
| Russian Federation |          | 38,096   | 5,252  | 7            | 2,495    | 915   | 2            |  |
| Japan              | •        | 11,135   | 725    | 15           | 5,401    | 336   | 16           |  |
| Serbia             | Ü        | 1,499    | 172    | 8            | 63       | 32    | 1            |  |





# Zaključak

- IPv6 protokol postaje sadašnjost računarskih mreža i Interneta
- Noviji operativni sistemi imaju podršku za IPv6
- Problemi:
  - Nedovoljna podrška novih aplikacija
  - Inertnost mrežnih administratora
  - Mora se obezbediti prelazni režim mehanizmi tranzicije

#### Literatura

 Wendell Odom "CCNA - Cisco official exam certification guide" Cisco Press



Rick Graziani
"IPv6 Fundamentals:
 A Straightforward Approach to
 Understanding IPv6"
 Cisco Press

