

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar Irányítástechnika és Informatika Tanszék

iContrALL

Korszerű fűtési rendszerek szabályzása munkapéldány

SZADOLGOZAT

Készítette Gyulai László Belső konzulens dr. Kiss Bálint Külső konzulens Kurbucz Máté

Tartalomjegyzék

1.	Mod	dellalkotás, irodalomkutatás	3			
	1.1.	Felírandó modellek	. 4			
2.	Ház	z modellje	5			
	2.1.	Big picture	. 5			
3.	A fe	elírt modell	5			
	3.1.	Fűtési rendszer és ház kapcsolata	. 5			
	3.2.	Megvalósítás MATLAB-ban	. 6			
4.	Fűté	- űtési rendszer modellje				
	4.1.	Radiátor modelljének felírása	. 7			
		4.1.1. Hőleadás	. 7			
		4.1.2. Hőfelvétel	. 8			
		4.1.3. Hőkapacitás	. 8			
		4.1.4. Energiamérleg állandósult állapotban	. 8			
		4.1.5. Sugárzó és konvektív teljesítmény szétválasztása	. 9			
		4.1.6. Dinamikus modell	. 10			
5.	Fűté	ési rendszer	11			
6.	Iden	ntification	11			
7.	Szal	bályzó kiválasztása és analízise	12			
	7.1.	Ismerkedés az MPC szabályzással	. 12			
	7.2.	A MATLAB MPC Toolbox elemei	. 12			
	7.3.	Az automatikusan létrehozott MPC tulajdonságai	. 13			
		7.3.1. A kezdeti szabályzó problémái	. 13			
		7.3.2. Robosztusság	. 13			

8. A szabályzó paramétereinek finomítása, hangolása, alapbeállítások felülírása					
		8.0.1. Módosítások az MPC-ben	13		
	8.1.	Az MPC költségfüggvénye	14		
	8.2.	Offline MPC - supervisory control	14		
	83	Validálás	14		

1. Modellalkotás, irodalomkutatás

Munkámban elsősorban a különböző fűtési típusok közti különbségeket szeretném megvizsgálni. A ház modelljét először adottnak venném, az eltérést pedig a különböző fűtési módok jelentenék. Azaz megpróbálom felírni a környezet belső hőmérsékletre való ráhatását, eztán pedig modellezem többféle fűtőtest viselkedését.

Ehhez először áttekintettem a hőátadás lehetséges formáit és forrásait. Arra jutottam, hogy ha a levegő hőmérsékletére szabályzok, akkor az abba beleszóló tényezőket veszem sorra:

- konvektív hőátadás: a felszín közelében felmelegedett levegő áramlani kezd
- radiatív hőátadás: sugárzással kibocsátott energia a környezetbe

1. ábra. Alacsony hőmérsékletű fűtés és magas hőmérsékletű hűtés c. könyv ábrája

A levegő hőmérsékletére ezek a következőképp hatnak a leginkább:

- a fűtőtestek konvektív és radiatív hőátadással is melegítik a környezetet
- a radiatív energiát a tárgyak, falak nyelik el, amik ezáltal felmelegszenek (mintegy kapacitásként lesz egy hőtároló tömeg, ami a fűtés kikapcsolásával fenntartja a hőmérsékletet / lassítja a hűlést)
- a fűtetlen falfelületek hűtik a szobát (külső hőmérséklet befolyása)

Így a kezdeti modellben azzal a feltételezéssel élek, hogy ezen kívül más hatás nem lép fel.

A modellben feltételezem, hogy a fűtőtest felületi hőmérsékletével tudunk beavatkozni. A modellben paraméter a fűtőtestek hőátadási tényezője és felülete. Zavarásként (?) hat a külső hőmérséklet értéke, amit mérni is tudunk. Kimenet a belső hőmérséklet (térben konstansnak véve azt / átlagolva a szoba levegőjére)

A modell felírásához a fűtőtest tulajdonságain kívül szükség van a szobában található levegő mennyiségére is. A zavarás hatását is fel kell írni, azaz hogy egy külső hőmérsékletváltozás hogyan jelenik meg a kimeneten. (Célszerű itt egy átviteli függvényt felírni először, szuperpozíciószerűen. A zavarás viszont nem a modell bemenetén és nem is a kimenetén hat.)

A felírandó átviteli függvények:

- levegő felmelegedése konstans külső hőmérsékletet feltételezve, fűtőtest egységugrással
- levegő felmelegedése fűtés kikapcsolt állapota mellett, környezeti hőmérséklet ugrásával

Ezeket ráadtam a rendszerre és két bemenetű, egy kimenetű rendszerként identifikáltam.

1.1. Felírandó modellek

Fűtési típusok szerint:

- radiátoros fűtés hőátvitele
- padlófűtés hőátvitele

A fentiekre különböző értékű lesz a

- hőátadási tényező
- hőtároló tömeg
- költségfüggvény?
- előremenő vízhőmérséklet és ezzel a leadott teljesítmény maximumértéke

ami így eltérő ház-modelleket fog eredményezni.

2. Ház modellje

2.1. Big picture

A modellalkotásnál igyekszek energetikai tanúsítványban szereplő adatokat felhasználni. Figyelembe kell vennem a ház hőveszteségeit és hőtároló képességét is. Az kinyerhető adatok között van a határoló elemek felszíne, hőátbocsátási tényezője, a hőtároló elemek fajhője. Az alábbi táblázat értékeinek nagy részét ki lehet tölteni a tanúsítványból. Az épület hőigénye numerikusan is szerepel, ám ez pl. éves átlagolással adódik, nem csak a fűtési rendszert, hanem a várható időjárást is figyelembe veszi. A Simscape-ben hőátadási tényezőket és hőtároló tömegeket vettem fel.

3. A felírt modell

Egyzónás hőmérsékletszabályzást veszek alapul, azaz egy referenciajelem és egy mért hőmérsékletem van, a modellben a szoba levegőjének hőmérsékletét mindenhol ugyanakkorának feltételezem. A példában a schönherzes kollégiumi szoba határoló elemeit vettem fel.

felület	méret	kalorikus hőátbocsá- tási tényező	hőtároló tömeg	hőkapac
külső fal	4.5 m ²	2 W m ² K	4.5*200kg	e.g. 4.5*200*840 $\frac{J}{K}$
ablak	4 m ²	4 W/m ² K	0	0
belső válaszfalak	50 m ²	7	50*100kg	50*100*840
padló	16 m ²	11	16*200kg	169*200*840
mennyezet	16 m ²	? rad / conv		

1. táblázat. Különböző SDO típusok felépítése - minden adat hexában értendő

Egy átlagos szobát 4 másik vesz körül, van ablaka, egy radiátora. A belső falakon nem vesztünk hőt, csak az ablakon ill. a külső falon. Tegyük fel, hogy a radiátoros fűtést egy szeleppel szabályozhatjuk, amit tetszőleges mértékben nyithatunk ki. A napsütés hőnyereségét is figyelembe vehetjük, úgy, hogy egy hőforrás a padlót melegíti.

3.1. Fűtési rendszer és ház kapcsolata

Nyilván egy kész házban a fűtési rendszer méretezve van az épülethez, így rendelkezésre áll megfelelő teljesítmény. (Gondolatkísérlet: HA nem hatna zavarás, csak az időállandók számítanának, a pontos teljesítményveszteségek, nyereségek nem. Azaz mindegy volna hogy 1000W hő szökik ki és ehhez tartozik 1500W-nyi fűtési kapacitás, vagy hogy 5000W és 7500W ezek az értékek. Ám pl. napsütés hatásakor nem csak az arányok hanem a konkrét teljesítmények is kellenek...

Így a modell egyik belső változója bizonyosan a teljesítmény kell, hogy legyen. Erre a belső változóra hat majd zavarás: emberek jelenléte kb. 80 W 1 főre, napsütés, szellőztetés, stb.)

A gyakorlati alkalmazásokban szeretnék majd az energetikai tanúsítványból kiindulni

Ashrae HVAC - 6.19 Panel H & C. - Controls strategy

Ezért utánanéztem a jellemző szerkezeti tulajdonságoknak. A modellezés Gouda alapján történik, gyakorlatilag csomóponti egyenleteket kell felírni az alábbi hálózatra, amiben az ellenállások a rétegrendi hőátbocsátási tényező reciprokai. A hőtároló képességeket kapacitások modellezik. Ezeket az elemeket Simscape-ben implementáltam, a hőáramok így áttekinthetők és a paraméterek könnyen változtathatók.

A ház modelljének felírásakor figyelembe vettem a hőtároló elemeket. A pontos (reális) modell felállításakor ezek hőtartalmát (a hőáram integrálja egyensúlyi állapotban legyen 0, azaz egy nagyobb ciklusban a felvett és leadott hője egyenlő) az egyensúlyi állapothoz közelinek vettem.

Viszont a szabályzótervezéshez identifikálni kell, ekkor pedig a falak, ill. szoba levegőjének kezdeti állapotát (hőmérsékletét) azonosnak vettem a külső hőmérséklettel. Így ha a hőkülönbség a modell kimenő jele, akkor lineáris a rendszer: 0 bemenetre (fűtés) 0 kimenetet ad.

3.2. Megvalósítás MATLAB-ban

a simscape elemek kapcsolatai

4. Fűtési rendszer modellje

4.1. Radiátor modelljének felírása

Mivel a Matlab szimulációban a legbefúvásos fűtés modelljének teljesítmény kimenete van, fel akartam állítani egy olyan modellt, ami beillesztehető az eredeti légbefúvó rendszer helyére. A ház hőveszteségeit a Matlab számolja¹, ebből pedig adódik a szoba levegőjének hőmérséklete. A rendszer szabályozását így visszavezettem a leadott teljesítmény szabályzására. A levezetett egyenletnek köszönhetően egy teljesítményigényhez meg tudom majd mondani hogy mennyire kell a szabályzószelepeket kinyitni.

Az Épületgépészet a gyakorlatban² c. könyvben szó esik fűtési rendszerek méretezéséről. Itt adatként szerepel egy épületre a szobák hőigénye³ és névleges hőmérséklete. Ehhez választanak megfelelő méretű radiátort, hogy azokban a kiszámolt sebességgel vizet keringetve a hőleadás elég legyen az adott helyiségbe. (Ehhez figyelembe kell venni minden radiátorra a keringő víz hőmérsékletét is, különösen ha azok sorba vannak kötve és a hőmérsékletesések is jelentősek.)

Hasonlóan méretezési feladatot mutat be a [1, 4.2.7.3] is. Ezek alapján vezettem le a leadott hő mennyiségét állandósult állapotra. Természetesen a felmelegedés és lehűlés idejét is figyelembe kell majd venni, de ezzel érthető módon a méretezésnél sem számolnak.

4.1.1. Hőleadás

A fűtőtestek hőleadását befolyásolja a fűtőtestek közepes hőmérsékletkülönbsége (ld. a 2. egyenletet), a felülete és a hőleadási tényezője. Ezek közötti kapcsolatot adja az 1. egyenlet ([1, 358. o.]-ből):

$$\dot{Q}_{le} = k_e \ A_e \ \Delta t_m \tag{1}$$

ahol

 \dot{Q}_{le} [W] a leadott hő

 $k_e \left[\frac{\mathsf{W}}{\mathsf{m}^2 \mathsf{K}} \right]$ hőleadási tényező - ezt hőmérsékletfüggetlennek tekintem.

 A_e [m²] a radiátor felülete

 Δt_m [K] a közepes hőmérsékletkülönbség:

$$\Delta t_m = \frac{t_s + t_r}{2} - t_i \tag{2}$$

ahol

 t_s a radiátorba befolyó, t_r az onnan kifolyó víz hőmérséklete $^{\circ}$ C-ban

¹Pontosításra szorul ez a modell is, mert valószínűleg csak a konvektív hővezetéssel számol (a sugárzásival pedig nem). A légbefúvás a ház levegőjét melegíti. Ám a modellben a ház hőtároló tömege nem jelenik meg, csak egy hőellenállás a veszteségek modellezéséhez.

²Könyvtári könyv, Verlag. 5.11.6, 2. o.

³Pontosan nem tudom még, hogyan definiálják a hőigényt: mekkora kültéri hőmérsékletet vesznek pl. figyelembe, illetve hogy radiátor méretezésénél ezt nyilván felül kell becsülni.

 t_i a szoba hőmérséklete

A hőátadási tényező is hőmérsékletfüggő, de ezzel egyelőre nem foglalkozom, állandónak tekintem.

4.1.2. Hőfelvétel

A vízből felvett hő felírható:

$$\dot{Q}_{fel} = c \ \dot{m} \ \Delta t \tag{3}$$

ahol

 \dot{Q}_{fel} [W] a vízből felvett hő, ami annak lehűléséből adódik

$$c\left[\frac{\mathsf{J}}{\mathsf{kg}\,\mathsf{K}}\right]$$
 a víz fajhője

 $\dot{m} \left[\frac{\mathrm{kg}}{\mathrm{s}} \right]$ a víz tömegárama

 $\Delta t = t_s - t_r$ [K] a víz lehűlésének mértéke

4.1.3. Hőkapacitás

Katalógusból radiátorok tömege és a bennük lévő víz térfogata leolvasható.

4.1.4. Energiamérleg állandósult állapotban

Állandósult állapot esetén a leadott hő egyenlő a felvettel, mivel akkor nem történik hőfelhalmozás, hőtárolás. Azaz ekkor a radiátor hőkapacitását nem kell figyelembe vennem.

Beírva a (2)-ba (1)-t:

$$\dot{Q}_{le} = k_e \ A_e \ \left(\frac{t_s + t_r}{2} - t_i\right) = k_e \ A_e \ \left(\frac{t_s + (t_s - \Delta t)}{2} - t_i\right)$$
 (4)

Ahol felhasználtuk azt is, hogy $t_r=t_s-\Delta t$, majd Δt helyére beírhatjuk a (3) átrendezett alakját:

$$\Delta t = \frac{\dot{Q}_{fel}}{c \ \dot{m}} \tag{5}$$

Beírva (4)-ba (5)-t:

$$\dot{Q}_{le} = k_e A_e \left(t_s - t_i - \frac{\dot{Q}_{fel}}{c \ \dot{m}} \right)$$

$$\dot{Q}_{le} + \frac{k_e \ A_e \ \dot{Q}_{fel}}{2 \ c \ \dot{m}} = k_e \ A_e \ (t_s - t_i) \tag{6}$$

$$2 c \dot{m} \dot{Q}_{le} + k_e A_e \dot{Q}_{fel} = k_e A_e 2 c \dot{m} (t_s - t_i)$$

Csak abban az esetben, ha $\dot{Q}_{le}=\dot{Q}_{fel}$:

$$\dot{Q}(2 c \dot{m} + k_e A_e) = 2 k_e A_e c \dot{m} (t_s - t_i)$$

$$\dot{Q} = \frac{2 c \dot{m} k_e A_e}{2 c \dot{m} + k_e A_e} (t_s - t_i)$$
(7)

A fenti képletet kiegészítve kezelhető lenne a hőmérsékletfüggő hőleadási tényező.

Mivel a hőleadást, hőtárolást Simscape-ben valósítottam meg, a radiátorba bemenő hőt kell csak kiszámítani. Erre meg kell vizsgálni, hogy az állandósult állapotbeli képlet helyes-e.

Megjegyzés: A radiátorba bekerülő teljesítményt a t_s-t_r szabja meg (3. egyenlet), viszont itt t_r -t kiejtettem az egyenletekből. Viszont az irodalom⁴ szerint a $\Delta t=t_s-t_r$ -re szabályzozással megtakarítás érhető el. Meg kell vizsgálni, reális-e mindkét paraméter mérése, radiátorok esetén, vagy csak padlófűtésnél.

4.1.5. Sugárzó és konvektív teljesítmény szétválasztása

Fun facts:

- A falakra az $\alpha=10~\frac{W}{m^2\,K}$ érték a sugárzó és konvektív hőleadást is tartalmazza. A konvektív hőleadás függ a felületi áramlási sebességtől: falsaroknál ez az érték alacsonyabb, kb. a fele.
- A sugárzó hő a Stefan-Boltzmann törvény alapján függ az emisszivitástól. (Annak a mértéke, hogy a test a feketetesthez képest mennyi hőt bocsát ki). A hőmennyiség a hőmérséklet negyedik hatványával arányos. A sugárzott hő meghatározásához még meg kell keresni és be kell írni a Simscape blokkba a megfelelő együtthatókat. Valami általános összefüggést kell találni, hogy a radiátor milyen arányban melegíti a külső falat, ahol van, ill. az ablakra milyen hatással van: még nem kezelem le ezeket az aszimmetriákat, hanem minden hőmérsékleteloszlást homogénnek veszek.
- A q_r $[\frac{W}{m^2}]$ radiant heat flux density a T. Cholewa⁵ (5.) egyenlet alapján számítható.

⁵On the heat transfer coefficients between heated/cooled radiant floor and room. DOI: http://dx.doi.org/10.1016/j.enbuild.2013.07.065

 A hőhidak a hőveszteségek meglepően nagy részéért felelősek, jelentős hibát követünk el, ha ezekkel nem számolunk. Meg kell keresni az energ. tanúsítványokban hogy hol tüntetik fel ezek mértékét.

4.1.6. Dinamikus modell

A felmelegedéskor és lehűléskor a pontos hőleadást akkor tudjuk modellezni, ha ismerjük a radiátor hőkapacitását. Ehhez tudnunk kell, hogy a radiátorban mennyi víz van, illetve hogy a radiátortest milyen nehéz.

Radiátor katalógusokból⁶ azt találtam, hogy az egyes radiátor típusokra ezek a paraméterek milyen értékűek.

Ismert a radiátor hossza, magassága, konstrukciója. Ezalapján a tömege, illetve az acél hőkapacitása alapján a radiátortest hőkapacitása - simscape termikus hőtároló elem blokként víztérfogata, a víz fajhője még egy hőtároló elem.

Ezen hőtároló elemek feltöltődése szimulálva adja a dinamikus viselkedést.

A modell kimenetén külön szerepelhet a sugárzás és a konvekció.

⁶Purmo Ventil Compact - purmo.com

5. Fűtési rendszer

- szabályzó
- kazán: bemenete on/off (plusz egy egytárolós taga az elejére)
- szelep: 0..1 folytonosnak tekintve. Hihi-haha, kvantálási hiba megjelenhet. (Ha csak 10 lépcsős a szelep???)
- megfontolandó bemenet a vízhőmérséklet, hiszen az szokott változni a külső hőmérséklet függvényében.
- a fűtőtesteknek szintén van hőtároló képességük

6. Identification

A Simulink modellt bemenetein gerjesztem (külső hőmérséklet ablak $40\,^{\circ}$ C 5 napig, majd fűtés $60\,^{\circ}$ C előremenő hőmérsékleten valve = 1 állásban.⁷)

 $^{^7}$ A stratégia lehet t_s előremenő hőmérséklet vagy $\alpha\cdot\dot{m}$ tömegáram szabályzása $\alpha=[0..1]$ beavatkozójellel.

7. Szabályzó kiválasztása és analízise

Az identifikált modellekre többféle szabályzót tervezek, illetve próbálok ki.

7.1. Ismerkedés az MPC szabályzással

Ahhoz, hogy az MPC szabályzás működését, tulajdonságait meg tudjam figyelni, lépésről lépésre fogok featureöket hozzáadni.

A kezdeti cél egy "sima" szabályzás. Kérdés, hogy egyáltalán tud-e ilyet az MPC. Gyanítom, hogy a hibaminimalizáló függvény megfelelő megadásával tud: ha egy négyzetes hibaminimalizáló van rajta, *biztosan "jó"* lesz.⁸

Plant bemenetek lehetnek:

- kazán bekapcsolása
- előremenő hőmérséklet unmeasured VAGY uncontrolled inputként
- 1 db. fűtőtest (most radiátor) szelepének tömegárama (szelep áteresztése)
- Később több fűtőtest vagy többféle fűtőtestek (padlófűtés, különböző teljesítményű radiátorok) szabályozása
- környezeti hőmérséklet: mért bemenet később predikció is lesz rá. Hatása a kimeneten már identifikálva lett, 3 pólussal és 2 zérussal tökéletesen lekövethető.
- napsugárzás zavaró hatása szimulálható a bizonytalansága valószínűleg nagy lesz

Belső változók - fűtési rendszer és ház kapcsolata

- napsugárzás radiatív, az ablak felületével és a szöggel arányos
- fűtőtestek sugárzó és konvektív hőárama

Paraméterek a plantben nem állandók:

- hőátadási tényezők hőmérsékletfüggők, áramlási sebesség-függők (szél)
- szellőztetés, belső hőterhelés hatása

Az elvárás a következő lépésben az, hogy ha egy t_0 időpontban a rendszer egy adott állapotban van, és várható egy zavarás Δt idő múlva (vagy mértem egy zavarást MOST és a hatása csak később jelenne meg a kimeneten), akkor a rendszer megfelelően beavatkozzon.

(Azaz ha fél óra múlva 10 °C-al melegebb lesz, ne fűtsön.)

7.2. A MATLAB MPC Toolbox elemei

Az MPC blokknak van egy alapértelmezett költségfüggvénye, és ennek a súlyozását lehet beállítani. Külön beállítható a szabályzási és a szimulációs horizont. Ezek optimális beállításai

⁸Bármit is jelentsen a *jó* szabályzás.

A kezdeti MPCkontrollert egyszerűen étre lehet hozni az identifikált modellből és a bemenetek típusának megadásával. (A szelep a beavatkozó jelem, ebből származik a kazán bekapcsolása (hiszterézises cucc), illetve a plantnek van még egy bemenete, egy mérhető zavarás.) Ezután a bemenetek értékkészletét adtam meg, illetve van egy normalizáló faktor, ami a jellemzőfull scale.

Az optimalizálás egy költségfüggvény minimalizálását jelenti, amiben *büntetjük* a referenciajeltől való eltérést és a beavatkozó jelek **értékét vagy változását**.

A fenti a klasszikus MPC, tov. info. Baochang DING, Modern MPC című könyvében olvasható.

7.3. Az automatikusan létrehozott MPC tulajdonságai

Az MPC szabályzót létrehoztam a toolbox-szal, az identfikált szakaszból. Beállítottam a be-és kimenetek jellegét, korlátait. A ki-és bemeneteket helyesen bekötve már működött is a szabályzás.

7.3.1. A kezdeti szabályzó problémái

Igaz, hogy az alapjelkövetés gyakorlatilag tökéletes volt, de a beavatkozó jelnek a gyakorlatban nem csak a nagysága, hanem a frekvenciája is korlátos. Ezért a beavatkozó szervnek is kell egy átviteli függvény ideális esetben. (Itt most a szelepről van szó.)

A súlyozatlan MPC nem vette figyelembe a beavatkozójel változásának nagy költségét, ezért irreálisan gyorsan nyitotta és zárta azt. A gyakorlatban nincs szükség tűpontos referenciakövetésre, a hőmérséklet kb. 1 °C-ot ingadozhat. (\pm 0.5 °C) Ha ezt megengedjük, a beavatkozás költsége lecsökkenhet.

7.3.2. Robosztusság

A Simulinkben identifikált modellre pontosan lehetett átviteli függvényt illeszteni, így a szabályzóban futó modell gyakorlatilag tökéletes volt. Gyakorlatban viszont a modellek igencsak pontatlanok lehettek, így megvizsgáltam a szabályzás viselkedését megváltozott paraméterekkel is. Ezt a szabályzás alapvetően jól viselte, a referenciakövetés minősége megmaradt.

8. A szabályzó paramétereinek finomítása, hangolása, alapbeállítások felülírása

8.0.1. Módosítások az MPC-ben

A súlyozást módosítva adhatunk költséget a beavatkozásnak, csökkentve így pl. annak a frekvenciáját. Ez a referenciakövetést rontja, de esetünkben nem cél a tized °C-os pontosság, hanem az energiamegtakarítás. Pontosan fel kellene ezért írni a forintosított költségét a beavatkozásnak, és ezt minimalizálni.

8.1. Az MPC költségfüggvénye

Nem csak a bemenetek értékei súlyozhatók. Az egyik kinyomtatott doksiban nem csak a bemenetek, vagy a hibajel kap súlyozást, hanem a villamos energia aktuális ára is tényező.

Kell keresni egy suitable költségfüggvényt. Illetve megfontolandó lenne vízhőmérsékletre szabályozni, annak a költsége szemléletesebb.

8.2. Offline MPC - supervisory control

4.4. Approaches without real-time dynamic optimization Döntési fa, affin leképezés ilyenek.

Elkészíteni az offline döntési hálót viszont nehezebb.

8.3. Validálás

Szimulációval ellenőrizzük a szabályzás robosztusságát. Ehhez megnöveltem a hőtároló tömegeket.

Ötlet: random időpontban lehetne ablaknyitást szimulálni. Napsütés hatásmechanizmusa. Radiant heat transfer paramétere továbbra sem olyan világos: sok publikációban a hőmérsékletkülönbség lineáris függését tartalmazza és nem a Stefan-Boltzmann törvény szerinti negyedik hatvány szerintit

⁹Thieblemont-ból. A real-time update nélküli MPC a legegyszerűbb és a leggyorsabban kiszámolható. Gyakran más irányítási technikákon alapul.

Hivatkozások

[1] Csoknyai István. Több, mint hidraulika. Herz Armatúra Hungária Kft, 2013.