

Intro into Machine Learning

Decision Trees. Bagging. Ensembles. RandomForest. Stacked generalization

Third Machine Learning in High Energy Physics Summer School, MLHEP 2017, July 17-23

Alexey Artemov^{1,2}

¹ Yandex LLC ² National Research University Higher School of Economics

Lecture overview

- > Decision Trees
- > Bagging and Random Forests
- > Learning Theory continued
- > Stacked generalization

Decision trees

Decision making at a bank

Decision tree formalism

- \rightarrow Decision tree is a binary tree V
- > Internal nodes $u \in V$: predicates $\beta_u : \mathbb{X} \to \{0, 1\}$
- \rightarrow Leafs $v \in V$: predictions x
- \rightarrow Algorithm $h(\mathbf{x})$ starts at $u=u_0$
 - \rightarrow Compute $b = \beta_u(\mathbf{x})$
 - \rightarrow If b = 0, $u \leftarrow \text{LeftChild}(u)$
 - \rightarrow If b = 1, $u \leftarrow \text{RightChild}(u)$
 - \rightarrow If u is a leaf, return b
- \rightarrow In practice: $\beta_u(\mathbf{x}; j, t) = [\mathbf{x}_j < t]$

Greedy tree learning for binary classification

- ightarrow Input: training set $X^{\ell}=\left\{ \left(\mathbf{x}_{i},y_{i}
 ight)
 ight\} _{i=1}^{\ell}$
 - 1. Greedily split X^{ℓ} into R_1 and R_2 :

$$R_1(j,t) = \{\mathbf{x} \in X^{\ell} | \mathbf{x}_j < t\}, \qquad R_2(j,t) = \{\mathbf{x} \in X^{\ell} | \mathbf{x}_j > t\}$$
 optimizing a given loss: $Q(X^{\ell},j,t) \to \min_{(j,t)}$

- 2. Create internal node u corresponding to the predicate $[\mathbf{x}_j < t]$
- 3. If a stopping criterion is satisfied for u, declare it a leaf, setting some $c_u \in \mathbb{Y}$ as leaf prediction
- 4. If not, repeat 1-2 for $R_1(j,t)$ and $R_2(j,t)$
- \rightarrow Output: a decision tree V

Greedy tree learning for binary classification

Greedy tree learning for binary classification

With decision trees, overfitting is extra-easy!

Design choices for learning a decision tree classifier

- > Type of predicate in internal nodes
- \rightarrow The loss function $Q(X^{\ell}, j, t)$
- > The stopping criterion
- > Hacks: missing values, pruning, etc.

> CART, C4.5, ID3

The loss function $Q(X^{\ell}, j, t)$

- $\rightarrow R_m$: the subset of X^{ℓ} at step m
- \rightarrow With the current split, let $R_l \subseteq R_m$ go left and $R_l \subseteq R_m$ go right
- > Choose predicate to optimize

$$Q(R_m, j, t) = H(R_m) - \frac{|R_l|}{|R_m|} H(R_l) - \frac{|R_r|}{|R_m|} H(R_r) \to \max$$

- $\rightarrow H(R)$: impurity criterion
- > Generally $H(R) = \min_{c \in \mathbb{Y}} \frac{1}{|R|} \sum_{(\mathbf{x}_i, y_i) \in R} L(y_i, c)$

The idea: maximize purity

12

Examples of information criteria

> Regression:

$$H(R) = \min_{c \in \mathbb{Y}} |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} (y_i - c)^2$$

- \rightarrow Sum of squared residuals minimized by $c=|R|^{-1}\sum_{(\mathbf{x}_i,y_i)\in R}y_j$
- > Impurity ≡ variance of the target
- > Classification:
 - \rightarrow Let $p_k = |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} [y_i = k]$ (share of y_i 's equal to k)
 - \rightarrow Miss rate: $H(R) = \min_{c \in \mathbb{Y}} |R|^{-1} \sum_{(\mathbf{x}_i, y_i) \in R} [y_i \neq c]$

Minimizing miss rate $1 - p_{k_*}$,

Gini index
$$\sum_{k=1}^{K} p_k (1-p_k),$$
 Cross-entropy $-\sum_{k=1}^{K} p_k \log p_k$

Stopping rules for decision tree learning

- > Significantly impacts learning performance
- > Multiple choices available:
 - > Maximum tree depth
 - > Minimum number of objects in leaf
 - Maximum number of leafs in tree
 - > Stop if all objects fall into same leaf
 - Constrain quality improvement
 (stop when improvement gains drop below s%)
- > Typically selected via exhaustive search and cross-validation

Decision tree pruning

- > Learn a large tree (effectively overfit the training set)
- \rightarrow Detect overfitting via K-fold cross-validation
- > Optimize structure by removing least important nodes

Bagging and Random Forests

The bootstrapping procedure

- \rightarrow Input: a sample $X^{\ell} = \{(x_i, y_i)\}_{i=1}^{\ell}$
- \rightarrow Bootstrapping: generate new samples X_1^m of (x_i, y_i) drawn from X^{ℓ} uniformly at random with replacement (replicated (x_i, y_i) possible!)
- > Ensemble learning idea:
 - 1. Generate N bootstrapped samples X_1^m,\ldots,X_N^m
 - 2. Learn N hypotheses h_1, \ldots, h_N
 - 3. Average predictions to obtain $h(x) = \frac{1}{N} \sum_{i=1}^{N} h_i(x)$
 - 4 Profit!

Picture credit: http://www.drbunsen.org/bootstrap-in-picture

Bagging: bootstrap aggregation (+ demo)

> Input: a sample $X^{\ell} = \{(x_i, y_i)\}_{i=1}^{\ell}$

> Weak learners via bootstrapping
$$\tilde{\mu}(X^{\ell}) = \mu(\tilde{X}^{\ell})$$

> Ensemble average

$$h_N(x) = \frac{1}{N} \sum_{i=1}^N h_i(x) =$$
$$= \frac{1}{N} \sum_{i=1}^N \tilde{\mu}(X^{\ell})(x)$$

The Random Forest algorithm

- > Bagging over (weak) decision trees
- > Reduce error via averaging over instances and features
- \rightarrow Input: a sample $X^{\ell}=\{(\mathbf{x}_i,y_i)\}_{i=1}^{\ell}$, where $\mathbf{x}_i\in\mathbb{R}^d,y_i\in\mathbb{Y}$
- \rightarrow The algorithm iterates for $i = 1, \dots, N$:
 - 1. Pick p random features out of d
 - 2. Bootstrap a sample $X_i^m = \{(\mathbf{x}_i, y_i)\}_{i=1}^\ell$ where $\mathbf{x}_i \in \mathbb{R}^p, y_i \in \mathbb{Y}$
 - 3. Learn a decision tree $h_i(\mathbf{x})$ using bootstrapped X_i^m
 - 4. Stop when leafs in h_i contain less that n_{min} instances

$$\begin{aligned} \mathbf{x}_i &\in \{\mathbf{A}, \mathbf{B}, \mathbf{C}\} & \text{Tree 1} & \text{Tree 2} & \text{Tree 3} & \text{Tree N} \\ X^{\ell} &= \{(\mathbf{x}_i, y_i)\}_{i=1}^5 & \text{[1, 1, 2, 4, 5]} & \text{[2, 1, 3, 4, 5]} & \text{[2, 1, 3, 4, 5]} \\ & \text{Bootstrap } X_i^m, i \in \{1, 2, 3, 4\} & \text{Learn Tree}_i(\mathbf{x}) \text{ using } X_i^m & \text{Alexev Artemov} \end{aligned}$$

Random Forest: synthetic examples

Learning Theory (continued)

Expected risk formalism

- \rightarrow Input: the training set $X^\ell = \{(x_i,y_i)\}_{i=1}^\ell$
- > Suppose $(x_i, y_i) \in \mathbb{X} \times \mathbb{Y}$ are generated from a distribution p(x, y)
- \rightarrow Consider the MSE loss $Q(y,h) = (y-h(x))^2$
- ightarrow Expected risk: average (over p(x,y)) squared loss when using h

$$R(h) = \mathbb{E}_{x,y} \left[\left(y - h(x) \right)^2 \right] = \int_{\mathbb{X}} \int_{\mathbb{Y}} p(x,y) \left(y - a(x) \right)^2 dx dy.$$

A statement: the expected risk is minimized by

$$h_*(x) = \mathbb{E}[y \mid x] = \int_{\mathbb{Y}} yp(y \mid x)dy = \operatorname*{arg\,min}_{h} R(h)$$

- > Input: the training set $X^{\ell} = \{(x_i, y_i)\}_{i=1}^{\ell}$
- \rightarrow Learning method $\mu: (\mathbb{X} \times \mathbb{Y})^{\ell} \rightarrow \mathbb{H}$
- \rightarrow Can evaluate quality using average (over possible samples X^{ℓ})

$$Q(\mu) = \mathbb{E}_{X^{\ell}} \Big[\mathbb{E}_{x,y} \Big[\big(y - \mu(X^{\ell})(x) \big)^2 \Big] \Big] =$$

$$= \int_{(\mathbb{X} \times \mathbb{Y})^{\ell}} \int_{\mathbb{X} \times \mathbb{Y}} \big(y - \mu(X^{\ell})(x) \big)^2 p(x,y) \prod_{i=1}^{\ell} p(x_i, y_i) dx dy dx_i dy_i$$

> We arrive at the famous bias-variance(-noise) decomposition

$$\begin{split} Q(\mu) &= \underbrace{\mathbb{E}_{x,y} \Big[\big(y - \mathbb{E}[y \, | \, x] \big)^2 \Big]}_{\text{noise}} + \\ &+ \underbrace{\mathbb{E}_{x} \Big[\big(\mathbb{E}_{X^{\ell}} \big[\mu(X^{\ell}) \big] - \mathbb{E}[y \, | \, x] \big)^2 \Big]}_{\text{bias}} + \underbrace{\mathbb{E}_{x} \Big[\mathbb{E}_{X^{\ell}} \Big[\big(\mu(X^{\ell}) - \mathbb{E}_{X^{\ell}} \big[\mu(X^{\ell}) \big] \big)^2 \Big] \Big]}_{\text{variance}} \end{split}$$

- > Noise term: an error of an ideal learner (nobody can do better!)
- > Bias term: learner's approximation of the ideal algorithm
 - > The more complex the learning algorithm, the lower the bias
- > Variance term: sensitivity to sample replacement
 - > Simple algorithms have lower variance

Polynomial fits of different degrees

Bias-variance tradeoff

An application: statistical analysis of Bagging

> Bias: not made any worse by bagging multiple hypotheses

$$\mathbb{E}_{x,y} \left[\left(\mathbb{E}_{X^{\ell}} \left[\frac{1}{N} \sum_{n=1}^{N} \tilde{\mu}(X^{\ell})(x) \right] - \mathbb{E}[y \mid x] \right)^{2} \right] =$$

$$= \mathbb{E}_{x,y} \left[\left(\frac{1}{N} \sum_{n=1}^{N} \mathbb{E}_{X}^{\ell} [\tilde{\mu}(X^{\ell})(x)] - \mathbb{E}[y \mid x] \right)^{2} \right] =$$

$$= \mathbb{E}_{x,y} \left[\left(\mathbb{E}_{X^{\ell}} \left[\tilde{\mu}(X^{\ell})(x) \right] - \mathbb{E}[y \mid x] \right)^{2} \right]$$

An application: statistical analysis of Bagging

> Variance: N times lower for uncorrelated hypotheses, yet not as much an improvement for highly correlated

$$\mathbb{E}_{x,y} \left[\mathbb{E}_{X^{\ell}} \left[\left(\frac{1}{N} \sum_{n=1}^{N} \tilde{\mu}(X^{\ell})(x) - \mathbb{E}_{X^{\ell}} \left[\frac{1}{N} \sum_{n=1}^{N} \tilde{\mu}(X^{\ell})(x) \right] \right)^{2} \right] \right] =$$

$$= \frac{1}{N} \mathbb{E}_{x,y} \left[\mathbb{E}_{X^{\ell}} \left[\left(\tilde{\mu}(X^{\ell})(x) - \mathbb{E}_{X^{\ell}} \left[\tilde{\mu}(X)(x) \right] \right)^{2} \right] \right] +$$

$$+ \frac{N(N-1)}{N^{2}} \mathbb{E}_{x,y} \left[\mathbb{E}_{X^{\ell}} \left[\left(\tilde{\mu}(X^{\ell})(x) - \mathbb{E}_{X^{\ell}} \left[\tilde{\mu}(X^{\ell})(x) \right] \right) \times \left(\tilde{\mu}(X^{\ell})(x) - \mathbb{E}_{X^{\ell}} \left[\tilde{\mu}(X^{\ell})(x) \right] \right) \right] \right]$$

Stacked generalization

Stacking motivation: the game of Darts

Base model training

- Select k nearest neighbours as base model 1
- Fit base model 1 in the most fancy way possible
 (grid search for optimal k using K-fold cross-validation, etc.)
- > k-NN accuracy on Test Darts: 70%

- > Select Support Vector Machine as base model 2
- > Fit base model 2 in the most fancy way possible (different penalizations, grid search for optimal kernel width using K-fold cross-validation, etc.)

> SVM accuracy on Test Darts: 78%

Results for base models

Stacking base models

- 1. Partition train into 5 folds
- Create train_meta/test_meta: same row/fold Ids as in train/test, empty M1/M2
- 3. For each $Fold_i \in \{Fold_1, \dots, Fold_5\}$
 - 3.1 Combine the other 4 folds for training $\rightarrow \operatorname{Fold}_{-i}$
 - 3.2 Fit each base model to $Fold_{-i}$, predict on $Fold_{i}$, save prdections to M1/M2 in train_meta
- 4. Fit each base model to train, predict on test, save predictions to M1/M2 in test_meta
- 5. Fit stacking model S to train_meta, using M1/M2 as features
- 6. Use the stacked model S to make final predictions on test_meta

Results for base models

-1.0

-0.5

0.0

XCoord

0.5

1.0

Conclusion

- > Decision trees: intuitive and interpretable, yet prone to overfitting
- > Bootstrapping: a general statistical technique for computing sample functionals (and their variance)
- > Bagging: meta-learner over arbitrary weak algorithms via bootstrap aggregation
- > The Random Forest algorithm: Bagging over decision trees
- > Stacked generalization: blend output of weak learners (weak signals) with raw features

Bonus track

Minimum of the expected risk: the proof

> Transform the loss

$$Q(y, h(x)) = (y - h(x))^{2} = (y - \mathbb{E}(y \mid x) + \mathbb{E}(y \mid x) - h(x))^{2} =$$

$$= (y - \mathbb{E}(y \mid x))^{2} + 2(y - \mathbb{E}(y \mid x))(\mathbb{E}(y \mid x) - h(x)) +$$

$$+ (\mathbb{E}(y \mid x) - h(x))^{2}.$$

> Write the expected risk

$$R(h) = \mathbb{E}_{x,y}Q(y, h(x)) =$$

$$= \mathbb{E}_{x,y}(y - \mathbb{E}(y \mid x))^{2} + \mathbb{E}_{x,y}(\mathbb{E}(y \mid x) - h(x))^{2} +$$

$$+ 2\mathbb{E}_{x,y}(y - \mathbb{E}(y \mid x))(\mathbb{E}(y \mid x) - h(x)).$$

Minimum of the expected risk: the proof

 \rightarrow Consider $\mathbb{E}_{x,y}(y - \mathbb{E}(y \mid x))(\mathbb{E}(y \mid x) - h(x))$ which is essentially some

$$\mathbb{E}_x \mathbb{E}_y[f(x,y) \mid x] = \int_{\mathbb{X}} \left(\int_{\mathbb{Y}} f(x,y) p(y \mid x) dy \right) p(x) dx$$

meaning that (as $(\mathbb{E}(y \mid x) - h(x))$ is independent of y):

$$\mathbb{E}_{x}\mathbb{E}_{y}\Big[\big(y - \mathbb{E}(y \mid x)\big)\big(\mathbb{E}(y \mid x) - h(x)\big) \mid x\Big] =$$

$$= \mathbb{E}_{x}\Big(\big(\mathbb{E}(y \mid x) - h(x)\big)\mathbb{E}_{y}\Big[\big(y - \mathbb{E}(y \mid x)\big) \mid x\Big]\Big) =$$

$$= \mathbb{E}_{x}\Big(\big(\mathbb{E}(y \mid x) - h(x)\big)\big(\mathbb{E}(y \mid x) - \mathbb{E}(y \mid x)\big)\Big) =$$

$$= 0$$

Minimum of the expected risk: the proof

> We obtain that the expected risk has the form

$$R(h) = \mathbb{E}_{x,y}(y - \mathbb{E}(y \mid x))^2 + \mathbb{E}_{x,y}(\mathbb{E}(y \mid x) - h(x))^2.$$

> Both summands are nonnegative meaning that the sum is minimized when

$$h_*(x) = \mathbb{E}(y \mid x) = \int_{\mathbb{Y}} y p(y \mid x) dy.$$

- \rightarrow Input: the training set $X^{\ell} = \{(x_i, y_i)\}_{i=1}^{\ell}$
- \rightarrow Learning method $\mu: (\mathbb{X} \times \mathbb{Y})^{\ell} \rightarrow \mathbb{H}$
- \rightarrow Can evaluate quality using average (over possible samples X^{ℓ})

$$Q(\mu) = \mathbb{E}_{X^{\ell}} \Big[\mathbb{E}_{x,y} \Big[\big(y - \mu(X^{\ell})(x) \big)^2 \Big] \Big] =$$

$$= \int_{(\mathbb{X} \times \mathbb{Y})^{\ell}} \int_{\mathbb{X} \times \mathbb{Y}} \big(y - \mu(X^{\ell})(x) \big)^2 p(x,y) \prod_{i=1}^{\ell} p(x_i, y_i) dx dy dx_i dy_i$$

 \rightarrow For a fixed sample X^{ℓ} , we know the expected risk

$$\mathbb{E}_{x,y}\left[\left(y-\mu(X^{\ell})\right)^{2}\right] = \mathbb{E}_{x,y}\left[\left(y-\mathbb{E}[y\mid x]\right)^{2}\right] + \mathbb{E}_{x,y}\left[\left(\mathbb{E}[y\mid x]-\mu(X^{\ell})\right)^{2}\right]$$

> Plugging the expression for fixed X^{ℓ} into $Q(\mu)$, we obtain

$$Q(\mu) = \mathbb{E}_{X^{\ell}} \bigg[\underbrace{\mathbb{E}_{x,y} \bigg[\big(y - \mathbb{E}[y \, | \, x] \big)^2 \bigg]}_{\text{independent of } X^{\ell}} + \mathbb{E}_{x,y} \bigg[\big(\mathbb{E}[y \, | \, x] - \mu(X^{\ell}) \big)^2 \bigg] \bigg]$$

> Transforming the second summand

independent of X^{ℓ} $+2\mathbb{E}_{x,y}\Big[\mathbb{E}_{X^{\ell}}\Big[\big(\mathbb{E}[y\,|\,x]-\mathbb{E}_{X^{\ell}}\big[\mu(X^{\ell})\big]\big)\big(\mathbb{E}_{X^{\ell}}\big[\mu(X^{\ell})\big]-\mu(X^{\ell})\big)\Big]\Big]^{42}$

> We prove that the last term is zero:

$$\mathbb{E}_{X^{\ell}} \Big[\Big(\mathbb{E}[y \mid x] - \mathbb{E}_{X^{\ell}} \Big[\mu(X^{\ell}) \Big] \Big) \Big(\mathbb{E}_{X^{\ell}} \Big[\mu(X^{\ell}) \Big] - \mu(X^{\ell}) \Big) \Big] =$$

$$= \Big(\mathbb{E}[y \mid x] - \mathbb{E}_{X^{\ell}} \Big[\mu(X^{\ell}) \Big] \Big) \mathbb{E}_{X} \Big[\mathbb{E}_{X^{\ell}} \Big[\mu(X^{\ell}) \Big] - \mu(X^{\ell}) \Big] =$$

$$= \Big(\mathbb{E}[y \mid x] - \mathbb{E}_{X^{\ell}} \Big[\mu(X^{\ell}) \Big] \Big) \Big[\mathbb{E}_{X^{\ell}} \Big[\mu(X^{\ell}) \Big] - \mathbb{E}_{X^{\ell}} \Big[\mu(X^{\ell}) \Big] \Big] =$$

$$= 0.$$