STATISTICAL MODELING AND CAUSAL INFERENCE WITH R

Week 11: Causal Mediation

Manuel Bosancianu

November 23, 2020

Hertie School of Governance

Max Schaub

Results: Baron-Kenny approach

treatment

$$Depression_i = \alpha_1 + \beta_1 \overline{Seminar_i} + \zeta_1 X_i + \epsilon_{i1}$$
 (1)

$$Confidence_i = \alpha_2 + \beta_2 Seminar_i + \zeta_2 X_i + \epsilon_{i2}$$
 (2)

$$Depression_{i} = \alpha_{3} + \gamma Seminar_{i} + \beta_{3} \underbrace{Confidence_{i}}_{mediator} + \zeta_{3}X_{i} + \epsilon_{i3}$$
(3)

	DV: Depression	DV: Confidence	DV: Depression
(Intercept)	0.895***	3.870***	1.499***
	(0.133)	(0.159)	(0.158)
Seminar	-0.047	0.101*	-0.032
	(0.035)	(0.042)	(0.035)
Confidence			-0.156***
			(0.023)

^{***} p < 0.001; ** p < 0.01; * p < 0.05. Estimates from pre-treatment covariates

Bosancianu | Schaub | Hertie School have been excluded from the table. N = 1285. Measures of model fit removed from the table.

Computing effects & uncertainty

- ✓ Direct effect: -0.032
- ✓ Indirect effect: $\beta_2 \times \beta_3 = 0.101 \times -0.156 = -0.016$
- \checkmark Total effect: direct + indirect = -0.032 + (-0.016) = -0.047 (rounding)

$$SE_{indirect} = \sqrt{c^2 \sigma_b^2 + b^2 \sigma_c^2 + \sigma_b^2 \sigma_c^2}$$
 (4)

β -0.032 -0	
SE (0.035) (0.016* 0.007)

Causal mediation results

The Imai et al setup I

Sequential ignorability is still needed as fundamental assumption.

Requires only 2 regressions (OLS, logit, probit, survival...):

$$Confidence_{i} = \psi_{1} + \phi_{1} \underbrace{\mathsf{Seminar}_{i} + \zeta_{2} \mathsf{X}_{i} + \epsilon_{i2}}_{treatment}$$

$$\mathsf{Depression}_{i} = \psi_{2} + \phi_{2} \mathsf{Seminar}_{i} + \phi_{3} \underbrace{\mathsf{Confidence}_{i} + \zeta_{3} \mathsf{X}_{i} + \epsilon_{i3}}_{(6)}$$

 $Depression_{i} = \psi_{2} + \phi_{2}Seminar_{i} + \phi_{3}\underbrace{Confidence_{i}}_{mediator} + \zeta_{3}X_{i} + \epsilon_{i3}$ (6)

Generate predictions for mediator from Equation 5: $Confidence_i|Seminar_i = 0$ and $Confidence_i|Seminar_i = 1$.

The Imai et al setup II

Generate predictions for the outcome from Equation 6, using predictions for mediator: $Depression_i|Seminar_i = 1$, $Confidence_i(1)$ and $Depression_i|Seminar_i = 1$, $Confidence_i(0)$.

$$ACME = \delta_i(t) = Y_i(t, M_i(1)) - Y_i(t, M_i(0)), \text{ for each } t \in \{0, 1\}$$
 (7)

SEs computed with bootstrapping (or Monte Carlo methods).

Syntax: Imai et al approach

The automated function works with the two regression model objects.

Results: Imai et al approach

$$ADE_{BK} = -0.032 \ (0.035) \ \text{and} \ ACME_{BK} = -0.016 \ (0.007).$$

Sensitivity analysis I

ACME unbiased if $cov(\epsilon_{i2}, \epsilon_{i3}) = 0$ (call this ρ).

If sequential ignorability holds, then $\rho=0$. If not, estimates are biased.

In practice, sensitivity analysis is based on a function of R^2 from the two models (see Imai, Keele, & Yamamoto, 2010, pp. 61–62).

Sensitivity analysis II

```
Mediation Sensitivity Analysis for Average Causal Mediation Effect

Sensitivity Region

Rho ACME 95% CI Lower 95% CI Upper R^2_M*R^2_Y* R^2_M~R^2_Y~

[1,] -0.25 0.0056 -0.0008 0.0121 0.0625 0.0403

[2,] -0.20 0.0012 -0.0035 0.0058 0.0400 0.0258

[3,] -0.15 -0.0032 -0.0084 0.0020 0.0225 0.0145

[4,] -0.10 -0.0074 -0.0150 0.0001 0.0100 0.0064

Rho at which ACME = 0: -0.2

R^2_M*R^2_Y* at which ACME = 0: 0.04

R^2 M*R^2 Y* at which ACME = 0: 0.0258
```

Sensitivity analysis III

Thank you for the kind attention!

Imai, K., Keele, L., & Yamamoto, T. (2010). Identification, inference and sensitivity analysis for causal mediation effects. *Statistical Science*, *25*(1), 51–71.