FOUILLE DE TEXTES SUPERVISÉE

Text Mining

- Ensemble des techniques et méthodes destinées au traitement automatique de documents non structurés contenant des données textuelles en langage naturel
 - Tous types de formats :
 - articles de presse, documents word, email, pdf, powerpoint, blogs, reviews, ...
 - But?
 - Dégager du sens
 - et/ou structurer le contenu

Problématique

- Association automatique entre
 - Documents textuels (page web, tweet, document xml...)
 - Classes prédéfinies (catégories, étiquettes, opinions...)
- □ Exemple : DEFT 2007, corpus jeux vidéos

```
<DOCUMENT id="2:18">
<EVALUATION nombre="1">
<NOTE valeur="1" confiance="1.00" />
</EVALUATION>
<TEXTE>
<![CDATA[
Lego Star Wars II : La Trilogie Originale
LEGO Star Wars, premier du nom, ayant surpris bon nombre
de joueurs par sa mise en scène pleine d'humour, une vraie
fidélité à l'oeuvre de papa Lucas, et la variété de ses
phases de jeu, le second opus était pour le moins attendu.
             [... suppression de 1358 mots ...]
Quoi qu'il en soit, ne vous faites pas prier si vous aimez
l'oeuvre de George Lucas et l'humour en régle générale.]]>
</TEXTE>
</DOCUMENT>
```

- valeur dans la balise NOTE
 est la variable à prédire
- Le contenu de la balise
 CDATA est l'ensemble des variables prédictives
- → Classification par le contenu

Catégorisation de documents

- Approches statistiques
 - Représentation numérique du document par un ensemble de descripteurs
 - Utilisation d'algorithmes d'apprentissage statistique supervisé
 - → Combinaison entre algorithme et données d'apprentissage

Exemples concrets de tâches

- Catégorisation
 - SNCF : Classification de documents techniques
 - LS2N : Dossier de candidatures à la fac
- Détection d'opinions
 - Orange : Satisfaction client à partir de plateforme service client
 - MMA : Analyse besoins clients sur retours
 - □ IPPON: Prospection commerciale
- Extraction d'entités nommées
 - Ina: Indexation des fonds audiovisuels

Extraction de connaissances

 Un sous-ensemble de Knowledge Discovery in Databases (KDD)

 En français : Extraction de Connaissances à partir de Données (ECD)

Une étape primordiale du KDD

- Étapes du processus de KDD
 - 1. Définition du problème et ses objectifs
 - Inventaire/Intégration des données
 - Sélection/Préparation des données
 - 4. Fouille de données
 - Evaluation des performances
 - Représentation des connaissances pour prise de décisions
 - 7. Déploiement, enrichissement des modèles
- Souvent : confusion entre Data mining et le KDD

Exemple de charges en temps

Etape	Charge (en jours)	
	Projet Léger	Projet moyen
Définition de la cible et des objectifs	4j	8j
Inventaire des données	7 _i	10j
Collecte et préparation des données	1 <i>5</i> j	28j
Elaboration et validation des modèles	1 <i>5</i> j	25j
Analyse complémentaire, restitution des résultats	9j	12j
Documentation - Présentation	5į	7 _i
Analyse des premiers test	5j	10j
Total	60j	100j

Catégorisation de texte

- □ Résumé en trois grands temps
 - À partir d'un ensemble de documents
 - Choix d'une description pertinente du document
 - Mise en œuvre efficace d'un algorithme
 - Fonction du type de problème à résoudre
 - Evaluation et/ou analyse des résultats obtenus
 - Fonction de l'application visée
- □ Tâche transversale
 - Cible et objectif

Les données : les documents

Qu'est-ce qu'une donnée-document ?

- Instance du corpus caractérisée par un ensemble de descripteurs (variables)
- Représentation plus formelle
 - x un document de l'ensemble du corpus C
 - chaque document x est défini par p descripteurs
 - chaque descripteur d prend sa valeur dans Vd
 - Tout document appartient alors à un espace euclidien à p dimensions

Document x

Types de descripteurs

- Descripteurs qualitatifs
 - Variable discrète
 - Ensemble de valeurs prédéfinies
 - Pas d'application d'opérations arithmétiques habituels
 - Exemples:
 - une couleur, une marque, une ville, ...
 - Nature de la valeur :
 - nominale
 - Ensemble de valeurs arbitraires, incomparables a priori
 - Ex couleur : rose et orange

Types de descripteurs

- Descripteurs quantitatifs
 - Type : entier, réel, date
 - ≠ numérique et réciproquement
 - Possibilité d'appliquer des opérateurs arithmétiques habituels
 - □ Nature de la valeur :
 - Ordinale
 - Ensemble de valeurs arbitraires mais comparables SELON une unité de mesure
 - Absolue
 - Ensemble de valeurs non arbitraires

Types de descripteurs

- Descripteur textuel (particularités...)
 - Représentation vectorielle
 - Cas usuel
 - **Nombre** de composantes = taille du vocabulaire
 - **Sélectionner** les composantes pertinentes
 - Définir les **valeurs** de chaque composante
 - Prise en compte de la sémantique (LSA, LDA,...)
 - Moins de composantes
 - Valeurs continues obtenues lors d'un apprentissage
 - Word embeddings
 - Nombre de composantes à définir
 - Valeurs continues obtenues lors d'un apprentissage

Word embeddings

Embeddings Linguistiques

CBOW [T. Mikolov et al. 2013]

w2vf-deps [O. Levy et al. 2014]

- Calcul d'une matrice de co-occurence X
- Factorisation de X pour obtenir les word embeddings

Skip-gram [T. Mikolov et al. 2013]

Représentation... concrètement!

Non séquentialité / Séquentialité

Approches traditionnelles

1ectents

Matrice?

Approches neuronales

Entrée de taille fixe ? Padding/truncating Combinaison avec descripteurs globaux ?

Doc2Vec?

Préparation des données

- Préparation des documents
 - Inventaire, collecte et intégration
 - Sélection (détails slide suivant)
 - Choix de la représentation des mots
 - Choix et intégration d'autres descripteurs?
 - Regroupement en corpus (détails slide d'après)
 - Ensemble des données disponibles

Sélection des descripteurs

- Pertinence
 - Importance de la sélection des descripteurs en fonction de l'application visée
 - → Définir le problème et les objectifs
- □ Fiabilité / Bruit
 - Représentation complète?
 - Validité des valeurs des descripteurs?
- Quantité
 - □ Peu : apprentissage simplifié... performance?
 - Beaucoup: apprentissage complexe... performance?

Les corpus

- □ Ensemble des données disponibles
- Corpus d'apprentissage (APP)
 - Entraînement du modèle
- Corpus de développement (DEV) (facultatif)
 - Optimisation des paramètres d'ajustement du modèle (si nécessaire)
- Corpus de test (TEST)
 - Évaluation des performances du modèle en généralisation
- !! La taille est critique ...

Au final

Dictionnaires de descripteurs et de classes

□ Nouvelle donnée

Domaine de définition des classes

- □ Y est un ensemble fini : Problème de classement
 - Associer une donnée à une valeur discrète parmi plusieurs classes prédéfinies
 - □ Classement binaire : $Y = \{0,1\}$
 - □ Classement multi-classes : Y = $\{0,1,...,I\}$
- □ Y est un ensemble infini : Problème de régression
 - Associer une donnée à une valeur continue
 - lue Régression : Y $\subseteq \mathfrak{R}$

Classification multi-classes:

Cas particulier

- Possibilité d'associer plusieurs classes à une seule donnée
 - Ensemble de classes discrètes non exclusives

$$Y = \{a,b,c,d,\ldots\}$$

- □ Si une donnée n'est associée qu'à une seule classe
 - Classement uni-label
- Si une donnée peut être associée à plusieurs classes
 - Classement multi-labels
- Cas proposé par peu d'algorithmes
- Correspond souvent à plusieurs classifications binaires.

L'algorithme – La construction du modèle

Apprentissage supervisé

- Création automatique d'un modèle à partir d'un corpus de données d'apprentissage annotées
 - Prédire une classe par donnée « connue »
 - Généraliser : Prédiction sur une donnée non connue
- Modèle permettant d'associer à toute donnée correctement décrite une valeur définie
- □ Objectif de l'apprentissage :
 - Identifier une liaison fonctionnelle qui soit la plus
 « efficace » possible entre le document et la classe

Classification supervisée

Plus formellement:

- □ Ensemble de couples document/classe : (x_i,y_i)
 - \blacksquare Avec $x_i \in C$, l'ensemble des données d'apprentissage
 - \square Avec $y_i \in Y$, l'ensemble des classes à prédire
 - Tel que : $y_i = f(x_i) + w_i$ (w_i bruit de mesure)
- Construction d'un modèle
 - lacktriangle Déterminer la représentation compacte de f par g appelée fonction de prédiction.
 - Tel que : $y_i = g(x_i) + \varepsilon_i$, ε_i erreur de prédiction

Catégorisation de texte : mise en production

À propos du modèle

- Peut-être considéré comme une boite noire
 - Simple utilisateur... mais
- Selon l'algorithme choisi :
 - Différentes représentations possibles
 - Différents paramètres à ajuster
- → Meilleur choix et optimisation de l'apprentissage si on connaît l'algorithme

L'évaluation

Validation classique des résultats

- Cas classique : Assez de données annotées
 - Ex : 1 APP (70%) et 1 TEST (30%)
 - Estimation de l'erreur de prédiction
 - Évaluation du modèle sur l'APP
 - Taux de mauvaise classification sur l'APP
 - Estimation de l'erreur de généralisation
 - Evaluation du modèle sur le TEST
 - Taux de mauvaise classification sur le TEST
- Mise en production
 - Ré-apprentissage du modèle sur TOUT le corpus annoté

Mesures de performance du modèle

- □ Évaluation de l'erreur
 - □ Soit le couple (x_i,y_i), y_i classe de **référence**
 - Soit le modèle g
 - Soit l'hypothèse $y'_i = g(x_i)$

Est-ce que $y'_{i} = y_{i}$?

- Comment évaluer l'erreur?
 - Dépend de l'objectif de l'application visée

Terminologies des mesures d'évaluation en classification binaire

		Predicted condition			
	Total population	Predicted Condition positive	Predicted Condition negative	$= \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	
True condition	condition positive	<i>tp</i> True positive	fn False Negative (Type II error)	True positive rate (TPR), Sensitivity, Recall, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$
	condition negative	False Positive (Type I error)	tn True negative	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	True negative rate (TNR), Specificity (SPC) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$
	Accuracy (ACC) = $\frac{\Sigma \text{ True positive} + \Sigma \text{ True negative}}{\Sigma \text{ Total population}}$	Positive predictive value (PPV), Precision $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Test outcome positive}}$	False omission rate (FOR) $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Test outcome negative}}$	Positive likelihood ratio $(LR+) = \frac{TPR}{FPR}$	Diagnostic odds ratio
		False discovery rate (FDR) $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Test outcome positive}}$	$\begin{aligned} & \text{Negative predictive value} \\ & = \frac{(\text{NPV})}{\Sigma \text{ True negative}} \\ & = \frac{\Sigma \text{ True negative}}{\Sigma \text{ Test outcome negative}} \end{aligned}$	Negative likelihood ratio $(LR-) = \frac{FNR}{TNR}$	$(DOR) = \frac{LR+}{LR-}$

Tableau de contingence

- Aussi appelée Matrice de confusion
- Représentation des documents en fonction de leur dépendance à deux critères:
 - □ Hypothèse : HYP
 - □ Référence : REF
- Alignement des classes REF et HYP
- Remplir par comptage un tableau
 - Chaque donnée doit appartenir à l'effectif d'une case

HYP RFF

Classification binaire - Mesures classiques

■ Matrice de confusion

HYP

	+'	_'	Σ
+	Α	В	A+B
-	С	D	C+D
Σ	A+C	B+D	N

- □ Taux d'erreur (error rate)
- □ Précision (precision)
 - pourcentage de documents pertinents
 - Précision élevée, moins de bruit

$$prec = \frac{A}{A+C}$$

 $CER = \frac{B+C}{\mathbf{N}^{\mathsf{T}}}$

- □ Rappel (recall)
 - pourcentage de documents pertinents retrouvés
 - Rappel élevé, moins de silence

$$A$$
 Choix!!

$$rapp = \frac{A}{A + B}$$

Confiance dans l'estimation de l'erreur?

- □ Erreur = variable aléatoire
 - Après classification, 2 valeurs possibles pour la donnée
 bien ou mal classé
 - Erreur = probabilité de l'événement « mal classé »
 - En déterminer la moyenne? Un intervalle?
- □ Calcul de l'Erreur sur *1* corpus de test par le CER
 - □ Sur 100 exemples de test, 15 sont faux
 - Le taux d'erreur du système est de 15%?

Intervalle de confiance

- Estimation du taux d'erreur réel du système à partir du taux d'erreur observé sur un ensemble de test T
 - Approximation de la loi binomiale par la loi normale Intervalle de confiance à 95%
 - On estime l'erreur par l'intervalle de confiance :

$$CER \pm 1.96\sqrt{\frac{CER(1-CER)}{N}}$$

!! Nombre d'exemples du jeu de test suffisant

Courbe précision/rappel

F-mesure ou F-score

- □ F-mesure:
 - combinaison de la précision et du rappel
 - mesure unique pour accélérer les comparaisons

$$fmes = \frac{(1+\beta^2) * prec * rapp}{\beta^2 * prec + rapp}$$

- Moyenne harmonique pondérée
 - \square généralement $\beta=1$ (F1-mesure)
 - \square β =2 : poids du rappel double p/r précision
 - \square β =0,5 : poids de la précision double p/r rappel

Classification multiclasses

- Uni-label ou multi-label, mesures par classes
- □ Précision de la classe i :

$$\mathrm{prec}_i = \frac{\# \text{ instances correctement class\'ees i}}{\# \text{ instances class\'ees i}}$$

□ Rappel de la classe i :

$$\operatorname{rapp}_i = \frac{\# \text{ instances correctement class\'ees i}}{\# \text{ instances r\'eellement i}}$$

Comment combiner ces mesures?

Classification multiclasses

Macro-mesures

- Même poids pour toutes les classes
 - + Ne pas masquer les classes rares
 - Classes rares et très présentes ont même importance

$$mes_{macro} = \frac{\sum_{i} mes_{i}}{\# classes}$$

 $\mathrm{mes} \in \{prec, rapp\}$

Micro-mesures

- Même poids pour tous les documents
- Classe très présentes masque les résultats sur la classe rare

HYP

	+'	_'
+	$TP = \Sigma TPi$	$FN = \Sigma FNi$
-	$FP = \Sigma FPi$	

$$\mathrm{prec}_{micro} = \frac{TP}{TP + FP}$$

$$\operatorname{rapp}_{micro} = \frac{TP}{TP + FN}$$

Problème de sur-apprentissage

- Deux critères à considérer
 - Erreur de prédiction
 - Erreur de généralisation
- Quand « arrêter » d'apprendre?
 - Erreur de prédiction diminue ET l'erreur de généralisation augmente
- □ Comment faire?
 - Taille du corpus d'apprentissage
 - □ Paramètres d'ajustement du modèle

Problème de sur-apprentissage

Validation croisée

- □ Problème : manque de données annotées
- Approche par « leave one out »
 - □ Soit un ensemble de P données annotées
 - Construction de P modèles différents sur (APP-1 donnée)
 - Test de chacun des modèles sur la donnée mise de côté
- Généralisation au « N-fold »
 - Découpage de l'APP en N sous-ensembles distincts
 - Apprentissage sur N-1 fold et test sur le fold restant
- Erreur: moyenne des erreurs de chaque fold

Quelques réflexions

Données d'apprentissage

- □ Le point sensible de la classification supervisée
 - Nécessité suffisamment de données annotées
 - □ Suffisamment? Dépend de :
 - La difficulté de la tâche
 - La complexité de représentation des données
- □ Problème:
 - L'annotation du corpus d'apprentissage/test est humaine
 - → Coût très élevé
- Mais les méthodes ont fait leurs preuves!

Facteurs de succès d'un projet

- Objectifs précis, stratégiques et réalistes
 - !! Données existantes et disponibles
- Qualité et richesse des informations collectées
 - !! Collecte des données, contrôle qualité
- Maitrise des techniques de data mining utilisées
 - !! En utiliser plusieurs
- Bonne restitution des résultats

Les Data miners

- □ De nombreuses compétences :
 - Maitrise des outils d'exploitation performants
 - Expertise mathématique pour analyse des résultats
 - Bonne connaissance métier
- Besoin croissant de data miners...

http://archives.lesechos.fr/archives/2012/lesechos.fr/07/15/02021733689 14.htm

http://news.efinancialcareers.com/fr-fr/139910/data-miner-un-job-davenir-en-it-finance-mais-qui-reste-ultra-selectif/

« Data scientist : The Sexiest Job of the 21st Century », T.H. Davenport et D.J Patil, Harward Buziness Review, 2012

Ressources en ligne

- □ http://chirouble.univ-lyon2.fr/~ricco/data-mining
 - Un portail pour la documentation : liens, supports de cours en ligne, logiciels, données
- □ http://www.kdnuggets.com
 - « Le » portail du DATA MINING, avec toute l'actualité du domaine
- □ http://data.mining.free.fr
 - Le site de Stéphane Tufféry
- Wikipédia

Quelques sources

Livres:

« Apprentissage artificiel, concepts et algorithmes »,
 A.Cornéjuols et L.Miclet

Cours sur le web :

- \neg http://www.grappa.univ-lille3.fr/ \sim ppreux/fouille/
- □ http://www.dsi.unive.it/~marek/files/06%20-%20datamining.pdf
- □ http://www.public.asu.edu/~jye02/
- https://eric.univ-lyon2.fr/~ricco/cours/slides/TM.C%20-%20categorisation%20de%20textes.pdf
- http://freedownloadb.com/ppt/data-mining-data-warehousing-lecture-notes