Fundamentals of Electric Circuits Chapter 1

Introduction

- This chapter introduces the concept of voltage and current.
- The concept of a circuit will be introduced.
- Sources will be introduced.
- These can provide either a specified voltage or current.
- Dependent and independent sources will be discussed.
- Also a strategy for solving problems will be introduced.

What is a circuit?

- An electric circuit is an interconnection of electrical elements.
- It may consist of only two elements or many more:

Units

- When taking measurements, we must use units to quantify values
- We use the International Systems of Units (SI for short)
- Prefixes on SI units allow for easy relationships between large and small values

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

TABLE 1.2

The SI prefixes.

Multiplier	Prefix	Symbol
10 ¹⁸	exa	Е
10^{15}	peta	P
10^{12}	tera	T
10^9	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{2}	hecto	h
10	deka	da
10^{-1}	deci	d
10^{-2}	centi	С
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p
10^{-15}	femto	$\dot{\mathbf{f}}$
10^{-18}	atto	a

Charge

- Charge is a basic SI unit, measured in Coulombs (C)
- Counts the number of electrons (or positive charges) present.
- Charge of single electron is 1.602*10⁻¹⁹ C
- One Coulomb is quite large, 6.24*10¹⁸ electrons.

Charge II

- In the lab, one typically sees (pC, nC, or μC)
- Charge is always multiple of electron charge
- Charge cannot be created or destroyed, only transferred.

Current

- The movement of charge is called a current
- Historically the moving charges were thought to be positive
- Thus we always note the direction of the equivalent positive charges, even if the moving charges are negative.

Current II

 Current, i, is measured as charge moved per unit time through an element.

$$i \equiv \frac{dq}{dt} \qquad Q \stackrel{\Delta}{=} \int_{t_0}^t i \, dt$$

 Unit is Ampere (A), is one Coulomb/second

DC vs. AC

- A current that remains constant with time is called Direct Current (DC)
- Such current is represented by the capital *I*, time varying current uses the lowercase, *i*.
- A common source of DC is a battery.
- A current that varies sinusoidally with time is called Alternating Current (AC)
- Mains power is an example of AC

Direction of current

- The sign of the current indicates the direction in which the charge is moving with reference to the direction of interest we define.
- We need not use the direction that the charge moves in as our reference, and often have no choice in the matter.

Direction of Current II

 A positive current through a component is the same as a negative current flowing in the opposite direction.

Voltage

- Electrons move when there is a difference in charge between two locations.
- This difference is expressed at the potential difference, or voltage (V).
- It is always expressed with reference to two locations

Figure 1.7

Two equivalent representations of the same voltage v_{ab} : (a) point a is 9 V above point b, (b) point b is -9 V above point a.

Voltage II

- It is equal to the energy needed to move a unit charge between the locations.
- Positive charge moving from a higher potential to a lower yields energy.
- Moving from negative to positive requires energy.

Power and Energy

- Voltage alone does not equal power.
- It requires the movement of charge, i.e. a current.
- Power is the product of voltage and current

$$p = vi$$

$$p \triangleq \frac{dw}{dt}$$

- It is equal to the rate of energy provided or consumed per unit time.
- It is measured in Watts (W)

Passive Sign Convention

- By convention, we say that an element being supplied power has positive power.
- A power source, such as a battery has negative power.
- Passive sign convention is satisfied if the direction of current is selected such that current enters through the terminal that is more positively biased.

Conservation of Energy

- In a circuit, energy cannot be created or destroyed.
- Thus power also must be conserved
- The sum of all power supplied must be absorbed by the other elements.
- Energy can be described as watts x time.
- Power companies usually measure energy in watt-hours

Figure 1.9

Two cases of an element with an absorbing power of 12 W: (a) $p = 4 \times 3 = 12$ W, (b) $p = 4 \times 3 = 12$ W.

Circuit Elements

- Two types:
 - Active
 - Passive
- Active elements can generate energy
 - Generators
 - Batteries
 - Operational Amplifiers

Symbols for: (a) dependent voltage source, (b) dependent current source

Symbols for independent voltage sources:

- (a) used for constant or time-varying voltage,
- (b) used for constant voltage (dc).

Symbol for independent current source.

Figure 1.14

The source on the right-hand side is a current-controlled voltage source.

Circuit Elements II

- Passives absorb energy
 - Resistors
 - Capacitors
 - Inductors
- But it should be noted that only the resistor dissipates energy ideally.
- The inductor and capacitor do not.

Example 1.5

Find the power delivered to an element at t = 3 ms if the current entering its positive terminal is

$$i = 5 \cos 60 \pi t A$$

and the voltage is: (a) v = 3i, (b) $v = 3 \frac{di}{dt}$.

Solution:

(a) The voltage is $v = 3i = 15 \cos 60 \pi t$; hence, the power is

$$p = vi = 75\cos^2 60\pi t \,\mathrm{W}$$

At t = 3 ms,

$$p = 75\cos^2(60\pi \times 3 \times 10^{-3}) = 75\cos^2(0.18\pi) = 53.48 \text{ W}$$

(b) We find the voltage and the power as

$$v = 3\frac{di}{dt} = 3(-60\pi)5 \sin 60\pi t = -900\pi \sin 60\pi t \text{ V}$$
$$p = vi = -4500\pi \sin 60\pi t \cos 60\pi t \text{ W}$$

At
$$t = 3$$
 ms,

$$p = -4500 \pi \sin 0.18 \pi \cos 0.18 \pi W$$

= -14137.167 \sin 32.4° \cos 32.4° = -6.396 kW

Example 1.7

Calculate the power supplied or absorbed by each element in Fig. 1.15.

Figure 1.15

For Example 1.7.
$$p_1 = 20(-5) = -100 \text{ W}$$
 Supplied power $p_2 = 12(5) = 60 \text{ W}$ Absorbed power $p_3 = 8(6) = 48 \text{ W}$ Absorbed power $p_4 = 8(-0.2I) = 8(-0.2 \times 5) = -8 \text{ W}$ Supplied power $p_1 + p_2 + p_3 + p_4 = -100 + 60 + 48 - 8 = 0$

Ideal Voltage Source

- An ideal voltage source has no internal resistance.
- It also is capable of producing any amount of current needed to establish the desired voltage at its terminals.
- Thus we can know the voltage at its terminals, but we don't know in advance the current.

Ideal Current Source

- An Ideal Current sources are the opposite of the voltage source:
- They have infinite resistance
- They will generate any voltage to establish the desired current through them.
- We can know the current through them in advance, but not the voltage.

Ideal sources

- Both the voltage and current source ideally can generate infinite power.
- They are also capable of absorbing power from the circuit.
- It is important to remember that these sources do have limits in reality:
- Voltage sources have an upper current limit.
- Current sources have an upper voltage limit.

Dependent Sources

- A dependent source has its output controlled by an input value.
- Symbolically represented as a diamond
- Four types:
 - A voltage-controlled voltage source (VCVS).
 - A current-controlled voltage source (CCVS).
 - A voltage-controlled current source (VCCS).
 - A current-controlled current source (CCCS).

Dependent Source example

- The circuit shown below is an example of using a dependent source.
- The source on the right is controlled by the current passing through element C.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Circuit Applications of Dependent Sources

- Dependent sources are good models for some common circuit elements:
 - Transistors: In certain modes of operation, transistors take either a voltage or current input to one terminal and cause a current that is somehow proportional to the input to appear at two other terminals.
 - Operational Amplifiers: Not covered yet, but the basic concept is they take an input voltage and generate an output voltage that is proportional to that.

TV Picture Tube

- Old style cathode Ray Tubes (CRT) are a good example of the flow of electrons
- A hot filament is the source of electrons
- Charged plates accelerate and steer a thin stream (beam) of electrons
- The beam strikes a phosphor coated screen causing light emission.

Problem Solving I

- Successfully solving an engineering problem requires a process.
- Shown here is an effective method for determining the solution any problem.
 - 1. Carefully define the problem.
 - 2. Present everything you know about the problem.
 - 3. Establish a set of alternative solutions and determine the one that promises the greatest likelihood of success.

Problem Solving II

- 4. Attempt a problem solution.
- 5. Evaluate the solution and check for accuracy.
- 6. Has the problem been solved satisfactorily? If so, present the solution; if not, then return to step 3 and continue through the process again.

Problem Solving III

- Carefully <u>define</u> the problem
 - This is the most important step
 - What needs to be solved?
 - What questions need to be addressed before solving? Find the sources to answer them.
- Present everything you know about the problem
 - What do you know?
 - What don't you?

Problem Solving IV

- Establish a set of alternative solutions and determine the one that promises the greatest likelihood of success.
 - Most problems have more than one way to be solved
 - But not all solutions are as simple
 - Are the required tools available?

Problem Solving V

- Attempt to solve the problem
 - Documenting this process is very important
- Evaluate the solution and check for accuracy
 - Does it makes sense?
 - Is it consistent with any assumptions made?
- Is the solution satisfactory? If not, try an alternate solution.