Understanding IC3

SAT-Based Model Checking Without Unrolling

Predicate abstraction

- A state is variables assignment $x_1 = v_1 \wedge x_2 = v_2 \wedge \cdots \wedge x_n = v_n$.
- ▶ A state space is $X_1 \times X_2 \times \cdots \times X_n$.
- ▶ Given a logic formula φ such that $Var(\varphi) \in \{x_1, \dots, x_n\}$, then it can split the state space into two distinct parts φ and $\neg \varphi$, i.e., $\varphi = x_1 > 0$ and $\neg \varphi = x_1 < 0$.
- When n is large, the state space is huge, i. e., $|D|^n$ where D is minimum domain of variables. We can not analyze huge state space due to time and machine.
- ► Thus we have to model the state space to a proper abstract state space, which we can run our analysis on it and preserve the correctness.

Predicate abstraction

- A Boolean formula consists of Boolean variables which can be assigned to true or false.
- Given some logic formulas $\varphi_1, \varphi_2, \cdots, \varphi_m$ over state space $X_1 \times X_2 \times \cdots \times X_n$. We can construct different abstract states by combine $\varphi_1, \varphi_2, \cdots, \varphi_m$ with logic connectives i.e., \land, \lor, \lnot . For example, let $\varphi_1 = x_1 > 0$, $\varphi_2 = x_2 > 0$, then $s_1 = \varphi_1 \land \varphi_2, s_2 = \varphi_1 \land \lnot \varphi_2$.
- In formal, we often call $\varphi_1, \varphi_2, \cdots, \varphi_m$ as predicates, an abstract state space consists of abstract states.
- True is whole state space, false means contradiction.

Predicate abstraction

- We can control the predicates to balance the correctness and effectiveness.
- Some examples:
 - Safety property: Given an state space, we want to verify that all states satisfied $x_1 > 1$. We can use predicate $\varphi = x_1 > 2$ to model original state space, if we verified all states satisfy φ , then we know all states also satisfy $x_1 > 1$.
 - Liveness property: Given an state space, we want to verify that there is a state satisfied $x_1 = 1$. We can also use predicate $\varphi = x_1 > 2$ to model original state space, if we verified all states satisfy φ , the we know there is no state satisfied $x_1 = 1$.

Transition system or automata

 $\mathcal{T} = (S, I, T)$ where S is state space, I is initial state predicate, T is states transition relation predicate.

Transition system with predicate abstraction

Original

Abstract

Let $\varphi = x > 1$, $P = x^{s_3} \ge 0$.

Counterexample

Let $P = x^{s_3} \ge 0$.

Let $\varphi = x \ge 0$, $P = x^{s_3} \ge 0$.

Refinement

- Reabstract state space to eliminate counterexamples.
- Extract predicates from transition system.
- Learn from counterexamples.

$$\varphi = x \ge 0, P = x^{s_3} \ge 0$$

Counterexample-guided abstraction refinement (CEGAR)

Counterexample-guided abstraction refinement (CEGAR)

$$\varphi=x\geq 0,\,P=x^{s_3}\geq 0$$

Counterexample-guided abstraction refinement (CEGAR)

SAT-Based Model Checking

- A formula P is true $\equiv \neg P$ is unsatisfiable. For example, x+1>x is always true, that is we can not find x satisfies $x+1\leq x$.
- ▶ Given a transition system T = (S, I, T) and safety property P. Our goal is

$$G = I(s_0) \wedge \left(\bigwedge_{i=0}^{k-1} T(s_i, s_{i+1}) \right) \wedge \left(\bigvee_{j=0}^{k} \neg P(s_j) \right)$$

- When k = 0, $G = I(s_0) \land \neg P(s_0)$.
- ▶ When k = 1, $G = I(s_0) \wedge T(s_0, s_1) \wedge (\neg P(s_0) \vee \neg P(s_1))$.
- K-bounded model checking.

SAT-Based Model Checking

- ▶ $G = (I(s_0) \land T(s_0, s_1) \land T(s_1, s_3) \land \neg P(s_3)) \lor (I(s_0) \land T(s_0, s_2) \land T(s_2, s_3) \land \neg P(s_3))$ where $I : x \in \mathbb{Z}$, $P : x \ge 0$.
- ▶ *G* is unsatisfiable.

- ▶ Real world is difficult, we need approximation!
- We hope the k as small as possible.

- ▶ Suppose k = 2, then $G = I(s_0) \wedge T(s_0, s_1) \wedge T(s_1, s_2) \wedge (\neg P(s_0) \vee \neg P(s_1) \vee \neg P(s_2))$.
- ► Can we just use G model over whole state space? Craig interpolation theorem is a excellent method!
- ▶ If $A \land B$ is unsatisfiable, then there is a C satisfies
 - ightharpoonup Atoms(C) \subseteq Atoms(A) \cap Atoms(B).
 - $A \Rightarrow C$.
 - \triangleright C \land B is unsatisfiable.

$$l(s_0)$$
 s_1 s_2

$$G = I(s_0) \land T(s_0, s_1) \land T(s_1, s_2) \land (\neg P(s_0) \lor \neg P(s_1) \lor \neg P(s_2)).$$

 $A \Rightarrow C, C \land B$ is unsat

$$A = I(s_0) \wedge T(s_0, s_1)$$
 $B = T(s_1, s_2) \wedge (\neg P(s_0) \vee \neg P(s_1) \vee \neg P(s_2)).$

- 1. *C* is true in every state reachable from the initial state in one step.
- 2. no states satisfying *C* can reach a final sate in 1 (k-1) steps

$$G = I(s_0) \wedge T(s_0, s_1) \wedge T(s_1, s_2) \wedge (\neg P(s_0) \vee \neg P(s_1) \vee \neg P(s_2)).$$

 $A \Rightarrow C, C \land B$ is unsat

$$A = I(s_0) \wedge T(s_0, s_1)$$
 $B = T(s_1, s_2) \wedge (\neg P(s_0) \vee \neg P(s_1) \vee \neg P(s_2)).$

- 1. *C* is true in every state reachable from the initial state in one step.
- 2. no states satisfying *C* can reach a final sate in 1 (k-1) steps

$$I(s_0)$$
 s_1 s_2

$$G = I(s_0) \wedge T(s_0, s_1) \wedge T(s_1, s_2) \wedge (\neg P(s_0) \vee \neg P(s_1) \vee \neg P(s_2)).$$

 $A \Rightarrow C, C \land B$ is unsat

$$A = I(s_0) \wedge T(s_0, s_1)$$
 $B = T(s_1, s_2) \wedge (\neg P(s_0) \vee \neg P(s_1) \vee \neg P(s_1)).$

- 1. *C* is true in every state reachable from the initial state in one step.
- 2. no states satisfying *C* can reach a final sate in 1 (k-1) steps

- 1. *C* is true in every state reachable from the initial state in one step.
- 2. no states satisfying *C* can reach a final sate in 2 steps

IC3: without unrolling

- Incremental Construction of Inductive Clauses for Indubitable Correctness.
- Unrolling is the goal

$$G = I(s_0) \land \left(\bigwedge_{i=0}^{k-1} T(s_i, s_{i+1})\right) \land \left(\bigvee_{j=0}^{k} \neg P(s_j)\right)$$

with k > 1.

Is there a way only use k = 1? That is only give SAT solver one step constraint like $F \wedge T \Rightarrow S$ is true $\equiv F \wedge T \wedge \neg S$ is unsat.

IC3: Inductive invariant

- ▶ Given a transition system T = (S, I, T) and formula F. We say F is inductive invariant of T, if F satisfies the following conditions
 - $I \Rightarrow F$
 - $F \wedge T \Rightarrow F'$
- \triangleright Given a safety property P, if P is inductive invariant of T, then we are done.
- ▶ Unfortunately, P does not often satisfy $P \wedge T \Rightarrow P'$.

- ▶ Given a formula *F*. We say F is inductive relative to P, if F satisfies the following condition
 - $I \Rightarrow F$
 - $F \land P \land T \Rightarrow F'$
- If F is inductive relative to P, and $F \wedge P \wedge T \Rightarrow P'$. Then $F \wedge P$ is inductive invariant of T. That is every reachable state satisfies $F \wedge P$, it clearly satisfies P.

- ▶ Initial: $x = 1 \land y = 1 \Rightarrow y \ge 1$.
- ▶ 1-step: $y \ge 1 \land y' = y + x \Rightarrow y' \ge 1$.
- ► Then we add predicate $\varphi_1 = x \ge 0$.
 - Initial $x = 1 \land y = 1 \Rightarrow x \ge 0$.
 - ▶ 1-step: $x \ge 0 \land y \ge 1 \land y' = y + x \Rightarrow x' \ge 0$.
 - ▶ 2-step: $x \ge 0 \land y \ge 1 \land x' = x + 1 \Rightarrow x' \ge 0$.
- It is obvious that φ_1 is inductive relative to P and $\varphi_1 \wedge P$ is a inductive invariant.

```
x, y := 1, 1
while * :
y = y + x
x = x + 1
```


$$s_0 \Rightarrow P, s_1 \Rightarrow P, s_2 \Rightarrow P, s_3 \Rightarrow P, s_5 \Rightarrow P$$

$$s \Rightarrow P$$

$$s = ?$$

$$s = \neg s_6 \land \neg s_7 \land \neg s_8 \land \neg s_9 \land \neg s_{10}$$

IC3

- Construct $F_0, F_1, F_2, \dots, F_k$ satisfy the following conditions
 - $ightharpoonup F_0 = I.$
 - $F_i \wedge T \Rightarrow F_{i+1} \text{ for } 0 \leq i < k.$
 - $ightharpoonup F_i \Rightarrow P \text{ for } 0 \leq i < k.$
- If $F_i = F_{i+1}$, then we are done.

$$F_0 = I$$

- $F_0 = I$. $F_i \wedge T \Rightarrow F_{i+1}$ for $0 \le i < k$. $F_i \Rightarrow P$ for $0 \le i < k$.

 $F_1 \Rightarrow P (F_1 \land \neg P \text{ is sat}), s_9 \text{ is the counterexample.}$

$$F_0 = I, F_1 = true$$

- $F_0 = I$.
- $F_i \wedge T \Rightarrow F_{i+1} \text{ for } 0 \leq i < k$.
- $F_i \Rightarrow P \text{ for } 0 \le i < k$.

 $F_0 \wedge T \Rightarrow F_1 \ (F_0 \wedge T \wedge \neg F_1 \text{ is unsat)} \text{ and } F_1 \Rightarrow P \text{ (we assume only } s_9 \text{ violates } P \text{)}.$

$$F_0 = I, F_1 = \neg s_9$$

- $F_0 = I$.
- $F_i \wedge T \Rightarrow F_{i+1} \text{ for } 0 \leq i < k$.
- $F_i \Rightarrow P \text{ for } 0 \le i < k$.

 $F_2 \not\Rightarrow P (F_2 \land \neg P \text{ is sat}), s_9 \text{ is the counterexample.}$

$$F_0 = I, F_1 = \neg s_9, F_2 = true$$

- $F_0 = I$.
- $F_i \wedge T \Rightarrow F_{i+1} \text{ for } 0 \leq i < k$.
- $F_i \Rightarrow P \text{ for } 0 \le i < k$.

 $F_1 \wedge T \Rightarrow F_2$, because s_7, s_8 are counterexamples.

$$F_0 = I, F_1 = \neg s_9, F_2 = \neg s_9$$

- $F_0 = I$.
- $F_i \wedge T \Rightarrow F_{i+1} \text{ for } 0 \leq i < k$.
- $F_i \Rightarrow P \text{ for } 0 \le i < k$.

 $F_0 \wedge T \Rightarrow F_1$, $F_1 \wedge T \Rightarrow F_2$ are all ok.

$$F_0 = I$$
, $F_1 = \neg s_9 \land \neg s_7 \land \neg s_8$, $F_2 = \neg s_9$

- $F_0 = I$.
- $F_i \wedge T \Rightarrow F_{i+1} \text{ for } 0 \leq i < k$.
- $F_i \Rightarrow P \text{ for } 0 \le i < k$.

 $F_3 \Rightarrow P$, s_9 is the counterexample.

$$F_0 = I, F_1 = \neg s_9 \land \neg s_7 \land \neg s_8, F_2 = \neg s_9, F_3 = true.$$

- $F_0 = I$.
- $F_i \wedge T \Rightarrow F_{i+1} \text{ for } 0 \leq i < k$.
- $F_i \Rightarrow P \text{ for } 0 \le i < k$.

 $F_2 \wedge T \Rightarrow F_3$, s_7 , s_8 is the counterexample.

$$F_0 = I, F_1 = \neg s_9 \land \neg s_7 \land \neg s_8, F_2 = \neg s_9, F_3 = \neg s_9.$$

- $F_0 = I$.
- $F_i \wedge T \Rightarrow F_{i+1} \text{ for } 0 \leq i < k$.
- $F_i \Rightarrow P \text{ for } 0 \le i < k$.

 $F_1 \wedge T \Rightarrow F_2$, s_6 is the counterexample.

$$F_0 = I, F_1 = \neg s_9 \land \neg s_7 \land \neg s_8, F_2 = \neg s_9 \land \neg s_7 \land \neg s_8, F_3 = \neg s_9.$$

- $F_0 = I$.
- $F_i \wedge T \Rightarrow F_{i+1} \text{ for } 0 \leq i < k$.
- $F_i \Rightarrow P$ for $0 \le i < k$.

Remove s_6 from F_1 , $F_0 \wedge T \Rightarrow F_1$, $F_1 \wedge T \Rightarrow F_2$, $F_2 \wedge T \Rightarrow F_3$ are all ok.

$$F_0 = I, F_1 = \neg s_9 \land \neg s_7 \land \neg s_8 \land \neg s_6, F_2 = \neg s_9 \land \neg s_7 \land \neg s_8, F_3 = \neg s_9.$$

- $F_0 = I$.
- $F_i \wedge T \Rightarrow F_{i+1}$ for $0 \le i < k$.
- $F_i \Rightarrow P$ for $0 \le i < k$.

 $F_4 \Rightarrow P$, s_9 is the counterexample.

$$F_0 = I, F_1 = \neg s_9 \land \neg s_7 \land \neg s_8 \land \neg s_6, F_2 = \neg s_9 \land \neg s_7 \land \neg s_8, F_3 = \neg s_9, F_4 = \neg s_9$$
.

- $F_0 = I$.
- $F_i \wedge T \Rightarrow F_{i+1} \text{ for } 0 \leq i < k$.
- $F_i \Rightarrow P$ for $0 \le i < k$.

 $F_1 = F_2$, we are done!

$$F_0 = I, F_1 = \neg s_9 \land \neg s_7 \land \neg s_8 \land \neg s_6, F_2 = \neg s_9 \land \neg s_7 \land \neg s_8 \land \neg s_6,$$
$$F_3 = \neg s_9 \land \neg s_7 \land s_8, F_4 = \neg s_9.$$

- $F_0 = I$.
- $F_i \wedge T \Rightarrow F_{i+1} \text{ for } 0 \leq i < k$.
- $F_i \Rightarrow P$ for $0 \le i < k$.

IC3: summary

- ▶ It decomposes a big problem into small problems that are cheap to be solved.
- The method is very friendly to theorem solvers.
- The method can be implemented in parallel.

It is easier to write an incorrect program than to understand a correct one.

Alan Perlis
Epigrams on Programming, 1982