Problem 1. Prove that in homogeneous coordinates, the intersection point $\hat{\mathbf{x}}$ of two lines $\hat{\mathbf{l}}_1$ and $\hat{\mathbf{l}}_2$ is given by $\hat{\mathbf{x}} = \hat{\mathbf{l}}_1 \times \hat{\mathbf{l}}_2$.

Problem 2. Prove that the line that joins two points $\hat{\mathbf{x}}_1$ and $\hat{\mathbf{x}}_2$ is given by $\hat{\mathbf{l}} = \hat{\mathbf{x}}_1 \times \hat{\mathbf{x}}_2$.

Problem 3. Given the following two lines in \mathbb{R}^3 :

$$l_1 = \{(x, y)^T \in \mathbb{R}^3 \mid x + y + 3 = 0\},\$$

$$l_2 = \{(x, y)^T \in \mathbb{R}^3 \mid -x - 2y + 7 = 0\},\$$

perform the following tasks:

- 1. Find the intersection point of the two lines by solving the corresponding system of linear equations.
- 2. Rewrite the lines using homogeneous coordinates, and calculate their intersection point using the cross product of their homogeneous representations.
- 3. Verify whether the intersection point obtained in homogeneous coordinates is the same as the one obtained from solving the system of equations.

Problem 4. Write down the equation of the line whose normal vector is in the direction $(3,4)^T$ and which is at a distance of 3 units from the origin.

Problem 5. Determine the distance from the origin and the normalized normal vector for the homogeneous line $\hat{l} = \begin{pmatrix} 2 \\ 5 \\ \frac{\sqrt{29}}{5} \end{pmatrix}$.

Problem 6. Write down the 2×3 translation matrix that maps the point $(1,2)^T$ to $(0,3)^T$.

Problem 7. Assume you are given N correspondence pairs in 2D:

$$(\mathbf{x}_i, \mathbf{y}_i) = \left(\begin{pmatrix} x_1^i \\ x_2^i \end{pmatrix}, \begin{pmatrix} y_1^i \\ y_2^i \end{pmatrix} \right), \quad i = 1, 2, \dots, N.$$

Find the 2×3 translation matrix \mathbf{T} that maps \mathbf{x}_i onto \mathbf{y}_i , which is optimal in the least-squares sense.

Hint: Define a cost function as

$$E(\mathbf{T}) = \sum_{i=1}^{N} \|\mathbf{T}\mathbf{x}_i - \mathbf{y}_i\|_2^2$$

and find the optimal T^* that minimizes E:

$$\mathbf{T}^* = \operatorname*{arg\,min}_{\mathbf{T}} E(\mathbf{T}).$$

You can find \mathbf{T}^* by calculating the Jacobian \mathbf{J}_E of E and setting it to $\mathbf{0}^T$:

$$\mathbf{J}_E = \left[\frac{\partial E}{\partial t_1}, \dots, \frac{\partial E}{\partial t_N}\right] = \mathbf{0}^T.$$

Can you provide an intuitive explanation for the equation you derive for T^* ?

Problem 8. You are given the following three correspondence pairs:

$$\left(\begin{pmatrix}0\\1\end{pmatrix},\begin{pmatrix}3\\-5\end{pmatrix}\right),\quad \left(\begin{pmatrix}5\\7\end{pmatrix},\begin{pmatrix}7\\6\end{pmatrix}\right),\quad \left(\begin{pmatrix}4\\1\end{pmatrix},\begin{pmatrix}5\\-4\end{pmatrix}\right).$$

Using the equation you derived for \mathbf{T}^* , calculate the optimal 2×3 translation matrix \mathbf{T}^* .