

Время восстановления диода и влияние этого эффекта на динамические потери

Peter Haaf, Senior Field Applications Engineer Jon Harper, Market Development Manager November 2006

Оглавление

- 1. Определение
- 2. Математическая оценка
- 3. Динамические потери от напряжения
- 4. Динамические потери от тока
- 5. Динамические потери в прямоходовом преобразователе (косой полумост) с жесткой коммутацией при использовании разной технологии изготовления диодов
- 6. Влияние параллельной емкости на динамические потери
- 7. Динамические потери от времени нарастания и спада
- 8. Заключение

Распределение заряда диода в проводящем и непроводящем состоянии

Поведение диода при жесткой коммутации

Step 1: Транзистор включен ток растет

Step 2: Транзистор выключен ток течет по контуру

Step 3: Транзистор снова включен, диод восстанавливается, ток продолжает расти

Расчет динамических потерь

• Определение мощности потерь

$$P = 1/T^* \int U(t) * I(t) dt$$

= mean (U(t) * I(t))

E = P * t
=
$$\int U(t) * I(t) dt$$

= area ($U(t) * I(t)$)

Pon =
$$E_{ON} * f$$
;
Poff = $E_{OFF} * f$

Потери при включении из-за восстановления диода (Phase t_R)

Потери при включении из-за восстановления диода(Phase t_A)

7

Потери при включении из-за восстановления диода(Phase t_B)

Двойная проверка формул:

franchise

Тестовые схемы

Тестовые схемы, которые использованы в следующих измерениях

Диаграммы и определение потерь

Динамические потери по напряжению

E_{ON} / E_{OFF} losses

 $V_{IN} = 100V$ $E_{ON} = 8.7uJ$ $E_{OFF} = 9.5uJ$

 $V_{IN} = 300V$ $E_{ON} = 32.3uJ$ $E_{OFF} = 23.1uJ$

Динамические потери по напряжению: Е_{ON} и Е_{OFF} потери

Динамические потери по току FQP9N50C + ISL9R460 @ V_{IN} = 300V

Изменение E_{ON} и E_{OFF} потерь входного тока для различных диодных технологий

Eon and Eoff losses of the FET - FQP9N50C vs Current

Изменение I_{RRM} с dI/dt для различных диодных технологий

Irr, Reverse Recovery Peak Current of the Diode vs Current

E_{ON} потерь при жесткой коммутации с диодами выполненными по различной технологией, при V_{IN} = 300V @ I = 4A

Изменение E_{ON} потерь при разном напряжении с диодами выполненными по различной технологией

Eon losses of the FET - FQP9N50C vs Input Voltage

Изменение I_{RRM} при разном напряжении с диодами выполненными по различной технологией

Irr, Reverse Recovery Peak Current of the Diode vs. Input Voltage

Влияние температуры на время восстановление диода

dI/dt=200A/ms, Vdd=400V, If=8A, Tj=25°C Two industry standard diodes

Results for Tj = 25°C

Results for Tj = 125°C

Динамические потери при увеличение скорости переключений

Switching off:

Same FET, reducing Rg:

 $E_{OFF} = 22.8 \text{uJ} \Leftrightarrow 16.7 \text{uJ}$

Drawback: ringing due to parasitic Ind. & Caps

All measurements: FDD6N50 + ISL9R460, U = 300V, I = 4A

Динамические потери при увеличение скорости переключений

• Switching on:

Using faster FET and smaller gate resistance

Left: FQP9N50C, Rg = 300hm $_{23.230\mu Ws}^{M2 Area}$ Right : FDD6N50, Rg = 300hm

$$E_{ON}$$
 = 23.2uJ \Leftrightarrow 15.3uJ
dl/dt = 400A/us \Leftrightarrow 640A/us
 I_{RRM} = 2.6A \Leftrightarrow 3.9A

 $\begin{array}{l} \begin{array}{l} \tiny \text{C4 Rise} \\ \tiny 5.9499ns \\ \tiny \text{Unstable} \\ \tiny \text{histogram} \end{array} \text{ Left: } \begin{array}{l} \text{FDD6N50, Rg = 100hm} \\ \text{Right: FDD6N50, Rg = 30hm} \end{array}$

$$E_{ON} = 8uJ \Leftrightarrow 4uJ$$

 $dI/dt = 1400A/us \Leftrightarrow 1600A/us$
 $I_{RRM} = 6.2A \Leftrightarrow 7.4A$

152 V 25 oct 2006 All measurements:

Diode = ISL9R460, U = 300V, I = 4A

Изменение I_{RRM} при разном dI/dt с диодами выполненными по различной технологией

Изменение E_{ON} потерь от di/dt для различных диодных технологий

Eon losses of the FET vs dl/dt @ V = 300V @ dl/dt = 4A

Влияние параллельной емкости на динамические потери, при $V_{IN} = 300V @ I = 4A @ ISL9R460$

Тор: Большое снижение энергии потерь из-за параллельной емкости Second row: Преимущество в режиме выключения

Влияние параллельной емкости на динамические потери

Eon and Eoff losses with a snubber Capacitance

Заключение

- Обратное восстановление в диодах в полу мостовых структурах
 - Малые потери в диодах
 - Большие потери в MOSFET/IGBT
- I_{RRM} и t_{RR} увеличиваются с ростом:
 - Температуры
 - di/dt
 - Тока
- Больший ток диода, той же самой семьи
 - Имея выше I_{RRM} приводит к более высокой E_{ON}
 - Имея большую емкость, приводя к снижению Е_{ОЕЕ}
 - Причина повышения всех динамических потерь
- Выше di/dt приводит к более низким потерям E_{ON}, несмотря на выше I_{RRM}
- Дополнительная внешняя емкость
 - Увеличивает E_{ON} потерь но уменьшает E_{OFF} потери
 - Дополнительная внешняя емкость могла уменьшить суммарные потери.

