CSCI 3022

intro to data science with probability & statistics

September 12, 2018

- 1. HW 1 due this Fri. 9/14/18 ——— 5 P.M. Moodle.
- 2. Mathematical probability

Last Time

- Sample Space (): set of all possible outcomes of an experiment.
- **Event**: a set of one or more outcomes.
- Probability Function P: assigns value in [0,1] to each outcome or event.

 - Two requirements: 1. Probability of the sample space is 1. $P(\Omega)=1$ 2. $P(A \cup B)=P(A)+P(B)$ if A and B are disjoint.
 - If A and B are not disjoint then P(AUB) = P(A) + P(B) P(A)B
 - If results of two trials don't affect each other, we say they are *independent*.

Warming up

Suppose you draw one card from a standard 52-card deck

Question: What is the probability that the card is $\mathbf{A} \blacklozenge ?$

Question: What is the probability that the card is an \mathbf{A} or a $\mathbf{\Phi}$?

$$\frac{1}{4} + \frac{1}{13} - \frac{1}{52} = \frac{16}{52}$$

$$P(44) + P(A) - P(A \cap 4)$$

A rigorous way to compute probabilities

to learioint

- Suppose we know $P(\omega)$ for each outcome ω in Ω .
- We can compute the probability of an event A (1 or more outcomes) as the sum of the probabilities of the outcomes in A

Question: suppose we flip a *biased* coin $P(\{H,T\}) = \{p,1-p\}$ exactly 3 times. What is the probability that we get two or more T?

TTH,
$$w_1$$
 $P(w_1) = (1-p)^2 p$
THT, w_2 $P(w_2) = (1-p)^2 p$
HTT, w_3 $P(w_3) = (1-p)^2 p$
TTT, w_4 $P(w_4) = (1-p)^3$

To Infinity and Beyond!

Suppose you flip a biased coin until a H comes up. Prove that the probability that you flip a H eventually is 1.

Question 1: what is the sample space for this experiment?

$$P(E) = P(H) + P(TH) + P(TTH) + ...$$

$$= P + (I-p)p + (I-p)^{2}p + (I-p)^{3}p + ...$$

$$= P(I-p)^{2} = P(I-p)^{2} = P(I-p)^{2} = P(I-p)^{2} = P(I-p)^{2}$$

$$= P(I-p)^{2} = P(I-p)^{2} = P(I-p)^{2} = P(I-p)^{2} = P(I-p)^{2}$$

$$= P(I-p)^{2} = P(I-p)^{2} = P(I-p)^{2} = P(I-p)^{2} = P(I-p)^{2}$$

$$= P(I-p)^{2} = P(I-p)^{2} = P(I-p)^{2} = P(I-p)^{2} = P(I-p)^{2}$$

$$= P(I-p)^{2} = P(I-p)^{2} = P(I-p)^{2} = P(I-p)^{2} = P(I-p)^{2}$$

$$= P(I-p)^{2} = P(I-p)^{2}$$

Question: Stop a random person on the street and ask them what month they were born. What is the probability that they were born in a 31-day month?

Question: What is the probability that they were born in a month with an *r* in the name?

Question: Suppose that the person tells you that they were born in a 31-day month. Now what is the probability that they were born in a month with an r in it?

$$P(R) = \frac{8}{12}$$
we know this
$$P(E_{31}) = \frac{7}{12}$$
we know this
$$P(E_{31}) = \frac{7}{12}$$
we know this
$$P(E_{31}) = \frac{7}{12}$$
where the production of the p

Definition: The conditional probability of A given C is

$$P(A|C) = \frac{P(A \cap C)}{P(C)}$$

Example: A bit string (1s and 0s) of length 4 is generated at random so that each of the 16 possible bit strings is equally likely. What is the probability that it contains at least two consecutive 1s given that the first bit is a 1?

8 contain 2 consec. ones
$$P(\text{start } \sim 11/12\text{marow}) = \frac{1}{16}$$

8 start with ones. $P(\text{start } \sim 11/12\text{marow}) = \frac{1}{16}$
5 start $\sim 10^{-1}$ one, have two consec 1s. $\frac{1}{16}/\frac{1}{2} = \frac{10}{16} = \frac{5}{8}$

Example2: A bit string (1s and 0s) of length 4 is generated at random so that each of the 16 possible bit strings is equally likely. What is the probability that it does not contain two consecutive 1s given that the first bit is a 1?

NB: the conditional probability $P(\ \cdot\ | C)$ is a valid probability function.

$$P(A|C) + P(not A|C) = 1$$

i.e. $P(x) = 1$

The product rule of probability

- The definition of conditional probability can be manipulated!
- In this form, we call this the product rule:

$$P(A \cap C) = P(A|C)P(C)$$

• The product rule is useful when the conditional probability is easy to compute, but the probability of intersections of events is difficult.

Example: you draw 2 cards from a deck. What is the probability that they are both black?

$$P(1^{st} \text{ and black}) = P(2^{nd} \text{ black and } | 1^{st} \text{ and black}) P(1^{st} \text{ and black})$$

$$= \frac{25}{51} \times \frac{1}{2} = \frac{25}{102}$$

Independent events - intuition

Example: you draw 2 cards from a deck. What is the probability that they are both black?

Are the events of drawing the first black card and the second black card independent?

Independent events - math

Definition: An event A is said to be independent of event B if P(A|B) = P(A)

This definition, combined with the product rule (or the definition of conditional probability) gives us many equivalent definitions (or tests!) for independence:

$$P(A|B) = P(A) \iff \text{indep}.$$

$$P(B|A) = P(B)$$

$$P(B|A) = P(B)$$

$$P(A \cap B) = P(A)P(B)$$

Subtleties of Independence

• **Def**: Events A_1, A_2, \ldots, A_m are independent if

$$P(A_1 \cap A_2 \cap \cdots \cap A_m) = P(A_1)P(A_2) \dots P(A_m)$$

Question: is independence of A, B, and C the same as: A and B are independent; B and C are independent; A and C are independent?

Example: Flip a fair coin twice. Let A be "Heads on flip 1", let B be "Heads on flip 2", let C be "the two flips match.

$$P(A) = \frac{1}{2}$$
 $P(C) = \frac{1}{2}$ $P(A \cap B \cap C) = \frac{1}{4}$ $P(C|B) = P(C)$
 $P(B) = \frac{1}{2}$ $P(A) \cdot P(B) \cdot P(C) = \frac{1}{8}$

Law of Total Probability

6,4 3,7

- Suppose I have a bag of marbles. The first bag contains 6 white marbles and 4 black marbles. The second bag contains 3 white marbles and 7 black marbles.
- Now suppose I put the two bags in a box. If I close my eyes, grab a bag from the box, and then grab a marble from that bag, what is the probability that it is black?

$$P(\text{marble is black B}) = P(B | \text{bag 1}) P(\text{bag 1}) + P(B | \text{bag 2}) P(\text{bag 2})$$

$$P(B \cap \text{bag 1}) + P(B \cap \text{bag 2})$$

$$= \frac{4}{10} \cdot \frac{1}{2} + \frac{7}{10} \cdot \frac{1}{2}$$

Law of Total Probability

Same as before: The first had contains 6 white marbles and 1 black marbles

• Same as before: The first bag contains 6 white marbles and 4 black marbles. The second bag contains 3 white marbles and 7 black marbles. But suppose the first bag is much larger than the second bag—I'm twice as likely to grab the first bag as the second bag. What's the probability that I get a black marble?

$$P(B) = P(B|bag 1) P(bag 1) + P(B|bag 2) P(bag 2)$$

$$= \frac{4}{10} \cdot \frac{2}{3} + \frac{7}{10} \cdot \frac{1}{3}$$

$$= \frac{8}{30} + \frac{7}{30} = \frac{1}{2}$$

Law of Total Probability

ullet Definition: Suppose C_1,C_2,\ldots,C_m are disjoint events such that

$$C_1 \cup C_2 \cup \cdots \cup C_m = \Omega$$

Then the probability of an arbitrary event A can be expressed as:

$$P(A) = P(A|C_1)P(C_1) + P(A|C_2)P(C_2) + \dots + P(A|C_m)P(C_m)$$

Data Party!

https://tinyurl.com/octopusbirthday

The Birthday Paradox

 Say there are two random people in a room. What is the probability that they have different birthdays?

The Birthday Paradox

 Say there are n random people in a room. What is the probability that they all have different birthdays?

The Birthday Paradox

- 23 people in the room: P(shared bday) = 0.5973
- 58 people in the room: P(shared bday) = 0.9917
- 120 people in the room: $P(shared\ bday) = 0.9999999998$

