"B	сборник труд	ов НПО Энергомаш №33
Гла	авный редакто	pp
		В.К. Чванов
"	"	2016 г.

ОЦЕНКА ПОВРЕЖДАЕМОСТИ И РЕСУРСА ЭЛЕМЕНТОВ КОНСТРУКЦИИ ЖРД ПОСЛЕ ОГНЕВЫХ ИСПЫТАНИЙ

Кандидат техн. наук В.В. Ткач

Описан алгоритм обработки динамических тензоизмерений с вычислением повреждаемости и ресурса элементов конструкции двигателя.

На примере трубопровода двигателя РД181 №7А и рессор демпфера дросселя двигателя РД180 №91Т приведены результаты вычисления ресурса и выявления динамически активных режимов работы двигателей.

Ключевые слова: повреждаемость; ресурс; усталостная характеристика; частотная диаграмма.

Введение

Огневое испытание (ОИ) двигателя сопровождается реакцией элементов конструкции на рабочие процессы, характеризующиеся вибрациями и пульсациями давления на частотах акустических мод колебаний газовых и жидкостных сред, а также роторных и лопаточных частотах. Совпадение собственных частот колебаний элементов конструкции с частотами рабочих процессов двигателя может привести к росту динамических напряжений, накоплению повреждаемости и снижению остаточного ресурса элементов конструкции двигателя.

Расчётная оценка динамических напряжений затруднена сложностью конструкции, разнообразностью рабочих процессов и режимов работы двигателя, а также множеством их комбинаций. Более того, анализ виброакустических характеристик двигателей показывает, что спектральные составляющие динамических параметров на частотах рабочих процессов (так называемые диагностические признаки - ДП) непостоянны даже на стационарных режимах работы. Поэтому наиболее точным методом определения динамических напряжений является тензометрирование элементов конструкции в процессе ОИ двигателя.

Динамическое тензометрирование осуществляется с помощью клеёных тензодатчиков в районах сварных швов концевых элементов трубопроводов, на поверхностях корпусов насосов, газогенератора, камеры сгорания, рамы двигателя, рессорах демпфера и т.п. Число точек регистрации может достигать нескольких десятков, что вкупе с количеством рабочих процессов и режимов работы двигателя делают процесс обработки измерений весьма трудоёмким. Поэтому обработка результатов динамических тензоизмерений с вычислением повреждаемости автоматизирована помошью языка программирования VisualBasic.NET (Microsoft) программы LMS Test.Lab И (Siemens). Интерфейс разработанной программы представлен на рис. 1.

Алгоритм предобработки результатов динамических тензоизмерений

Непосредственно перед обработкой сигналы с динамических тензорезисторов разбиваются на реализации без наложения, длиной 2048 точек, что для частоты опроса, например,

кГц составляет продолжительность реализации t=0,064сек. Далее реализации центрируются, с целью отсечки постоянной составляющей, а также проходят дефектацию по критериям нормального распределения Гаусса — скошенность по модулю не более 0,2, статистический эксцесс не более 0,5. Данные критерии выбраны исходя из практического опыта.

Рис. 1. Интерфейс программы обработки динамических тензоизмерений с вычислением повреждаемости: Ksi - чувствительность материала к асимметрии цикла нагружения; Sm - среднее (статическое) напряжение; С и m - константы кривой усталости материалов

В случае быстрого изменения режима работы двигателя в интервале реализации, когда обороты двигателя меняются более чем на 350 мин⁻¹ или имеют отклонение от среднего значения выше 100 мин⁻¹, она также отбраковывается. Параметры алгоритма дефектации приведены в окне интерфейса программы.

По прошедшим дефектацию реализациям вычисляется единичный амплитудно-частотный спектр (АЧС), с использованием выбранного типа окна, эффективные значения спектральных составляющих рабочих процессов двигателя (A_i) в единицах относительной деформации ($EOD - 10^{-5}$) и их частоты f_i . На рис. 2 приведен пример вычисленных значений спектральных составляющих и суммарного сигнала динамического тензодатчика, установленного на концевом элементе трубопровода управления клапаном ВСУ двигателя РД181.

Рис. 2. Изменение спектральных составляющих параметра Я137 в процессе КТИ двигателя РД181 №7А: — – суммарный сигнал; — – первая роторная; — – продольная акустическая мода ГГ; R - режим работы двигателя в % по тяге.

Как видно из графика, при запуске двигателя максимальная спектральная составляющая в параметре соответствует 1-ой роторной частоте. По амплитуде составляющая уменьшается при выходе двигателя на номинальный режим и повышается в интервале тяг 70-80%. Перевод эффективного значения спектральной составляющей в амплитуду напряжения осуществляется по следующей формуле:

$$\sigma_{\rm a} = k \cdot (EO\mathcal{I} \cdot 10^{-5})$$
, кгс/мм²,

где, k - коэффициент перевода деформаций в напряжения. Например, для стали k=0,2, для БрБ2 k=0,136.

Алгоритм оценки повреждаемости и ресурса

Усталостная характеристика материалов определяется экспериментально и описывается кривой Вёлера:

$$\sigma^m \cdot N_f = C,$$

где: σ в кгс/мм² – амплитуда напряжений (σ_a) при симметричном цикле нагружения (статическое напряжение $\sigma_m = 0$), в противном случае – эквивалентная амплитуда напряжений ($\sigma_{a \text{ экв}}$),; N_f – число циклов до разрушения; C и m – константы. Например, на рис. 3 приведена кривая усталости трубопровода d6x1, находящегося под действием статической и динамической нагрузок [1], а также кривая усталости цилиндрического образца из БрБ2 при симметричном цикле нагружения. В последнем случае при ненулевом значении статического напряжения в точке измерения вычисляется эквивалентная амплитуда напряжений по следующей зависимости:

$$\sigma_{a \text{ 9KB}} = k_t \cdot (\sigma_a + \psi \cdot \sigma_m)$$

где, $\psi = \frac{\sigma_{-1}}{\sigma_B}$ — чувствительность материала к асимметрии цикла нагружения; σ_{-1} — предел выносливости при симметричном цикле нагружения; σ_B — предел временной прочности; k_t — коэффициент концентрации напряжений, задаваемый в случае невозможности постановки измерения в интересуемом месте.

Рис. 3. Кривые усталости материалов: ■ – трубопровод d6x1 из 12X18H10T под давлением 300атм, вероятность возникновения трещины 0,02; ▲ – цилиндрический образец из БрБ2, вероятность возникновения трещины 0,5.

Используя кривую Вёлера, для каждой спектральной составляющей в реализации вычисляется число циклов до разрушения — N_{fi} , наработка в циклах $N_i=t\cdot f_i$ и повреждаемость $P_i=\frac{N_i}{N_{fi}}$, [2]. Далее, суммарная повреждаемость (P_Σ) по каждому динамическому параметру вычисляется как сумма повреждаемостей по всем спектральным составляющим $P_\Sigma=\sum w\cdot P_i$,

где w — весовой коэффициент, принимаемый равным единице при отсутствии экспериментальных данных о вкладе спектральных составляющих в повреждаемость. Ресурс в точке измерения определяется далее как $n=\frac{1}{P_n}$.

На рис. 4 приведены вычисленные значения повреждаемостей рессор №1 и 7, изготовленных из БрБ2, демпфера дросселя двигателя РД180. Повреждаемости вычислены с учётом статической составляющей напряжений от действия веса привода, развиваемого приводом крутящего момента и несоосности рессор. Максимальная повреждаемость за испытание достигла величины 0,003 по параметру ЯДМФ1-1, что соответствует ресурсу $\frac{1}{0,003} \approx 300$ ОИ по циклограмме КТИ при вероятности возникновения трещины 0,5 в конце выработанного ресурса.

Рис. 4. Накопление суммарной повреждаемости рессор демпфера дросселя РД180 №91Т в процессе КТИ, расположение тензодатчиков: "-1" - в плоскости демпфера; "-2" - по оси привода

Вклад составляющих в повреждаемость, частотная диаграмма (диаграмма Кемпбелла)

Кроме расчёта повреждаемости и ресурса программа обработки тензоизмерений предоставляет информацию о доле каждой спектральной составляющей в суммарной повреждаемости.

В таблице приведены расчетные значения повреждаемостей по параметрам некоторых трубопроводов двигателя 7A и доля спектральных составляющих на частотах акустических мод ГГ (с A600 по A2300), на частоте первой роторной (1E) и лопаточных частотах (7E и 14E). Из таблицы видно, что, например, по большинству параметров максимальный вклад в повреждаемость имеет составляющая на первой роторной частоте.

Таблица. Повреждаемость за КТИ в % от суммарной повреждаемости

ДП	Трубопровод 6370				Трубопровод 6540	
	Я1035	Я1045	Я1015	Я1025	Я136	Я137
A600	70	10	0	1	3	0
A1050	2	10	0	1	0	0
A1650	1	1	0	1	0	0
A2300	0	0	0	0	0	0
1E	27	79	100	97	97	100
7E	0	0	0	0	0	0
14E	0	0	0	0	0	0
\mathbf{P}_{Σ}	1e-5	2e-5	6e-5	4e-5	5e-4	0,02

⁻ вклад в суммарную повреждаемость более 50%

В дополнение к таблице, для анализа реакции конструкции на рабочие процессы двигателя, также доступна частотная диаграмма, определяющая наиболее динамически активные режимы работы двигателя.

На рис. 5 приведена частотная диаграмма трубопровода 6540 двигателя 7A по динамическому параметру Я137. Диаграмма свидетельствует о наличии динамически активных режимов для трубопровода в районе тяг 45%, 75% и 95%. Тем не менее, согласно данным таблицы, ресурс трубопровода составляет $\frac{1}{0,02} = 50$ ОИ по циклограмме КТИ при вероятности разрушения 0,02 в конце выработанного ресурса.

Рис. 5. Частотная диаграмма трубопровода по параметру Я137 в процессе КТИ: 1Е – первая роторная, 7Е – седьмая роторная, 14Е – четырнадцатая роторная, шкала min/ max – вычисленные значения напряжений

Выводы

- 1. Автоматизация процесса обработки тензоизмерений после ОИ сократила трудоёмкость вычисления повреждаемости и ресурса работы элементов конструкции двигателя.
- 2. Анализ вклада спектральных составляющих в повреждаемость, анализ частотной диаграммы и диаграммы накопле-

ния повреждаемости упрощает нахождение динамически активных режимов работы двигателя.

Литература

- 1. Пастухов В.И. Усталостная прочность трубопроводов, используемых в ЖРД. // Труды ГДЛ-ОКБ. №19. М.: 2001. С. 239-250.
- 2. *Биргер И.А.*, *Шорр Б.Ф.*, *Иосилевич Г.Б.* Расчёт на прочность деталей машин. М.: 1979. 702с.

Поступила 09.09.2016 г.

 Зам. главного редактора:
 Л.Е. Стернин

 Редактор раздела:
 П.С. Лёвочкин

 Научно-литературный редактор:
 В.К. Старков

Автор: В.В. Ткач