Reconstruction in high-dimensional spaces

David Salinas

PhD advisor : Dominique Attali

11 septembre 2013

▶ Input : a point cloud that samples a shape

► Goal : connect the points

Construct an approximation:

- efficiently
- that is "similar" to the sampled shape

Construct an approximation:

- efficiently
- that is "similar" to the sampled shape

Similar? Same topology.

Why should we care about topology?

Same topology?

Two spaces A and B:

- ▶ are **homeomorphic** if there exists $f: A \rightarrow B$ bijective and bicontinuous \rightarrow denoted by $A \approx B$
- ▶ have the same **homotopy type** if there exists an homotopy between them \rightarrow denoted by $A \simeq B$

We say that A and B have **the same topology** if they have the same homotopy type.

- ▶ Vast litterature when points are in \mathbb{R}^2 or \mathbb{R}^3
- ▶ Less when points are in \mathbb{R}^d
- ▶ Point in \mathbb{R}^d ?

- ▶ Vast litterature when points are in \mathbb{R}^2 or \mathbb{R}^3
- ▶ Less when points are in \mathbb{R}^d
- ▶ Point in \mathbb{R}^d ?
 - ▶ Several measures (size, weight, age, . . .) about a person

- ▶ Vast litterature when points are in \mathbb{R}^2 or \mathbb{R}^3
- ▶ Less when points are in \mathbb{R}^d
- ▶ Point in \mathbb{R}^d ?
 - ► Several measures (size, weight, age, ...) about a person
 - ► An image : dimension = number of pixel

- ▶ Vast litterature when points are in \mathbb{R}^2 or \mathbb{R}^3
- ▶ Less when points are in \mathbb{R}^d
- ▶ Point in \mathbb{R}^d ?
 - ▶ Several measures (size, weight, age, ...) about a person
 - ► An image : dimension = number of pixel

▶ Shape in \mathbb{R}^d ?

- ▶ Vast litterature when points are in \mathbb{R}^2 or \mathbb{R}^3
- ▶ Less when points are in \mathbb{R}^d
- ▶ Point in \mathbb{R}^d ?
 - ▶ Several measures (size, weight, age, ...) about a person
 - ► An image : dimension = number of pixel

▶ Shape in \mathbb{R}^d ?

In low and high dimensional spaces

- ▶ Vast litterature when points are in \mathbb{R}^2 or \mathbb{R}^3
- ▶ Less when points are in \mathbb{R}^d
- ▶ Point in \mathbb{R}^d ?
 - ▶ Several measures (size, weight, age, ...) about a person
 - ► An image : dimension = number of pixel

▶ Shape in \mathbb{R}^d ?

Reconstruction in high-dimensional spaces Efficiency

▶ Notation :

- n: number of points
- ▶ *d* : dimension of points
- ▶ k : dimension of the shape

- n = 22
- ► *d* = 16384
- k=1

Reconstruction in high-dimensional spaces Efficiency

- ▶ Notation :
 - n: number of points
 - ▶ d : dimension of points
 - k : dimension of the shape

- ▶ Fundamental hypothesis : k << d
- ► Efficient : O(d) (n and k fixed)
 - \bigcirc $n^{d/2}$
 - \odot dn^k

- n = 22
- d = 16384
- k = 1

Reconstruction in high-dimensional spaces

Road map

- Find conditions such that an approximation has the same topology as the shape
- 2 Compute (efficiently) the approximation
- 3 Data-structure to store this approximation
- 4 Simplification in this data-structure

Reconstruction in high-dimensional spaces

Road map

- 1 Find conditions such that an approximation has the same topology as the shape
- 2 Compute (efficiently) the approximation
- 3 Data-structure to store this approximation
- 4 Simplification in this data-structure

Previous results in high dimensions

Homotopy type

- ▶ Shape with Reach> 0 [Niyogi Smale Weinberger 04]
- Compact with μ-Reach> 0 [Chazal Cohen-Steiner Lieutier 06]

Homeomorphism

- ► First approach : using the Delaunay complex [Cheng Dey Ramos 05]
- ▶ With the witness complex [Boissonat Guibas Oudot 09]
- ► Tangential Delaunay complex [Boissonat Ghosh 10]

Previous results in high dimensions

Homotopy type

- ► Shape with Reach> 0 [Niyogi Smale Weinberger 04]
- ▶ Compact with μ -Reach> 0 [Chazal Cohen-Steiner Lieutier 06]

Homeomorphism

- ▶ First approach : using the Delaunay complex [Cheng Dey Ramos 05]
- ▶ With the witness complex [Boissonat Guibas Oudot 09]
- ▶ Tangential Delaunay complex [Boissonat Ghosh 10]

▶ MedialAxis(M) = { $x \in \mathbb{R}^d \mid x$ has at least two closest points on M}

- ▶ MedialAxis(M) = { $x \in \mathbb{R}^d \mid x$ has at least two closest points on M}
- $\qquad \mathsf{Reach}(M) = d(M, \mathsf{MedialAxis}(M))$

Niyogi Smale and Weinberger's theorem

Offset of points

Given $P \subset \mathbb{R}^d$ we denote $P^{\alpha} = \bigcup B(p, \alpha)$ the α -offset of P.

Niyogi Smale and Weinberger's theorem

Offset of points

Given $P \subset \mathbb{R}^d$ we denote $P^{\alpha} = \bigcup B(p, \alpha)$ the α -offset of P.

Theorem [Niyogi Smale Weinberger 08]

The lpha-offset P^{lpha} has the same homotopy type as M i.e. $P^{lpha} \simeq M$ when

$$\left\{ \begin{array}{c} d_H(P,M) < (3-\sqrt{8}) \ \operatorname{reach}(M) \\ d_H(P,M) \leq (1-\frac{\sqrt{2}}{2})\alpha \leq (3-\sqrt{8})\operatorname{Reach}(M) \end{array} \right.$$

- ightharpoonup P: a set of points in \mathbb{R}^d
- ▶ A simplex : a subset $\sigma \subset P$
- lacktriangledown A simplicial complex K: a set of simplices with one rule

$$\rightarrow \sigma \in K \implies \forall \tau \subset \sigma, \tau \in K$$

- ► Geometry? Take the convex hull of simplices
 - \rightarrow Shadow $(K) = \bigcup_{\sigma \in K} \mathsf{Hull}(\sigma)$

- ightharpoonup P: a set of points in \mathbb{R}^d
- ▶ A simplex : a subset $\sigma \subset P$
- $\,\blacktriangleright\,$ A simplicial complex ${\cal K}$: a set of simplices with one rule

$$\rightarrow \ \sigma \in K \implies \forall \tau \subset \sigma, \tau \in K$$

- Geometry? Take the convex hull of simplices
 - \rightarrow Shadow(K) = $\bigcup_{\sigma \in K} \mathsf{Hull}(\sigma)$

- ightharpoonup P: a set of points in \mathbb{R}^d
- ▶ A simplex : a subset $\sigma \subset P$
- lacktriangledown A simplicial complex K: a set of simplices with one rule

$$\rightarrow \ \sigma \in K \implies \forall \tau \subset \sigma, \tau \in K$$

- Geometry? Take the convex hull of simplices
 - \rightarrow Shadow $(K) = \bigcup_{\sigma \in K} \mathsf{Hull}(\sigma)$

- ightharpoonup P: a set of points in \mathbb{R}^d
- ▶ A simplex : a subset $\sigma \subset P$
- ▶ A simplicial complex K : a set of simplices with one rule $\rightarrow \sigma \in K \implies \forall \tau \subset \sigma, \tau \in K$
- ▶ Geometry? Take the convex hull of simplices
 - $ightarrow \ \mathsf{Shadow}(K) = igcup_{\sigma \in K} \mathsf{Hull}(\sigma)$

- ightharpoonup P: a set of points in \mathbb{R}^d
- ▶ A simplex : a subset $\sigma \subset P$
- lacktriangledown A simplicial complex K: a set of simplices with one rule

$$\rightarrow \ \sigma \in K \implies \forall \tau \subset \sigma, \tau \in K$$

Geometry? Take the convex hull of simplices

$$ightarrow$$
 Shadow $(K) = \bigcup_{\sigma \in K} \mathsf{Hull}(\sigma)$

- ightharpoonup P: a set of points in \mathbb{R}^d
- ▶ A simplex : a subset $\sigma \subset P$
- ightharpoonup A simplicial complex K: a set of simplices with one rule

$$\rightarrow \ \sigma \in K \implies \forall \tau \subset \sigma, \tau \in K$$

- Geometry? Take the convex hull of simplices
 - $ightarrow \ \operatorname{\mathsf{Shadow}}(K) = igcup_{\sigma \in K} \operatorname{\mathsf{Hull}}(\sigma)$

- ightharpoonup P: a set of points in \mathbb{R}^d
- ▶ A simplex : a subset $\sigma \subset P$
- ightharpoonup A simplicial complex K: a set of simplices with one rule

$$\rightarrow \ \sigma \in K \implies \forall \tau \subset \sigma, \tau \in K$$

- Geometry? Take the convex hull of simplices
 - ightarrow Shadow $(K) = \bigcup_{\sigma \in K} \mathsf{Hull}(\sigma)$

- ightharpoonup P: a set of points in \mathbb{R}^d
- ▶ A simplex : a subset $\sigma \subset P$
- ightharpoonup A simplicial complex K: a set of simplices with one rule

$$\rightarrow \sigma \in K \implies \forall \tau \subset \sigma, \tau \in K$$

Geometry? Take the convex hull of simplices

$$\rightarrow \mathsf{Shadow}(K) = \bigcup_{\sigma \in K} \mathsf{Hull}(\sigma)$$

The Cech complex

Cech complex

- ▶ Nerve of a family : Nrv $F = \{ \sigma \subset F \mid \bigcap \sigma \neq \emptyset \}$
- ▶ Cech complex $C(P, \alpha) = Nrv\{B(p, \alpha) \mid p \in P\}$

 $\ \odot$ Nerve theorem : $P^{\alpha} \simeq \mathcal{C}(P, \alpha)$

The Cech complex

Cech complex

- ▶ Nerve of a family : Nrv $F = \{ \sigma \subset F \mid \bigcap \sigma \neq \emptyset \}$
- ▶ Cech complex $C(P, \alpha) = \text{Nrv}\{B(p, \alpha) \mid p \in P\}$

- \bigcirc Nerve theorem : $P^{\alpha} \simeq \mathcal{C}(P, \alpha)$
- \odot Cannot be computed in O(d)

The Rips complex

Rips complex

- Proximity graph $G(P, 2\alpha)$: \rightarrow graph with edges whose length are smaller than 2α
- ► Simplices of $\mathcal{R}(P,\alpha)$:

 → cliques in the proximity graph $G(P,2\alpha)$

Rips complex

- Proximity graph $G(P, 2\alpha)$: \rightarrow graph with edges whose length are smaller than 2α
- ► Simplices of $\mathcal{R}(P,\alpha)$:

 → cliques in the proximity graph $G(P,2\alpha)$

 $\ \odot\ \mathcal{R}(P,\alpha)$ may not have the same topology as P^{lpha}

Rips complex

- Proximity graph $G(P, 2\alpha)$: \rightarrow graph with edges whose length are smaller than 2α
- ► Simplices of $\mathcal{R}(P,\alpha)$:

 → cliques in the proximity graph $G(P,2\alpha)$

- $\ \odot\ \mathcal{R}(P,\alpha)$ may not have the same topology as P^{α}
- \odot Computation and storage in $O(n^2)$

Rips complex

- Proximity graph $G(P, 2\alpha)$: \rightarrow graph with edges whose length are smaller than 2α
- ► Simplices of $\mathcal{R}(P,\alpha)$:

 → cliques in the proximity graph $G(P,2\alpha)$

- $\ \odot\ \mathcal{R}(P,\alpha)$ may not have the same topology as P^{α}
- \bigcirc Computation and storage in $O(n^2)$

Flag complex

A complex whose simplices are cliques in its graph.

Proximity with the Cech complex

Fundamental interleaving

$$\mathcal{C}(P,\alpha) \subset \mathcal{R}(P,\alpha) \subset \mathcal{C}(P,\theta_d\alpha)$$
 where $\theta_d = \sqrt{\frac{2d}{d+1}}$

Fundamental interleaving

$$\mathcal{C}(P,\alpha) \subset \mathcal{R}(P,\alpha) \subset \mathcal{C}(P,\theta_d\alpha)$$
 where $\theta_d = \sqrt{\frac{2d}{d+1}}$

Question: Is it possible to find conditions on P such that $\mathcal{R}(P,\alpha) \simeq \mathcal{C}(P,\alpha)$?

 $\emptyset \neq \sigma \subset P$ Rad $\sigma \leq t$

 $\emptyset \neq \sigma \subset P$ Rad $\sigma \leq t$

 $\emptyset \neq \sigma \subset P$ Rad $\sigma \leq t$

$$\mathsf{Centers}(P,t) = \bigcup_{\substack{\emptyset \neq \sigma \subset P \\ \mathsf{Rad} \ \sigma \leq t}} \{\mathsf{Center}(\sigma)\}.$$

Proposition

 $c_P(t) = t \Leftrightarrow \mathsf{the} \; \mathsf{topology} \; \mathsf{of} \; P^{lpha} \; \mathsf{changes} \; \mathsf{at} \; t$

Homotopy type of the Rips complex

Theorem [Attali Lieutier Salinas (SoCG 2011)]

If $c_P(\theta_d \alpha) < (2 - \theta_d)\alpha$ then $\mathcal{R}(P, \alpha) \simeq \mathcal{C}(P, \alpha)$.

The condition on c_P is optimal (at least in low dimension).

Homotopy type of the Rips complex

Theorem [Attali Lieutier Salinas (SoCG 2011)]

If $c_P(\theta_d \alpha) < (2 - \theta_d)\alpha$ then $\mathcal{R}(P, \alpha) \simeq \mathcal{C}(P, \alpha)$. The condition on c_P is optimal (at least in low dimension).

Theorem [Attali Lieutier Salinas (SoCG 2011)]

Assume that P samples well enough M i.e. :

$$\left\{ \begin{array}{l} d_H(P,M) < \lambda \operatorname{reach}(M) \\ d_H(P,M) \leq \rho \alpha \leq \lambda \operatorname{Reach}(M) \end{array} \right.$$

then $\mathcal{R}(P,\alpha) \simeq M$.

- $ightharpoonup \lambda
 ightarrow rac{2\sqrt{2-\sqrt{2}}-\sqrt{2}}{2+\sqrt{2}} pprox 0.0340$ when $d
 ightarrow \infty$
- ho o 0.13 when $d o \infty$

Reconstruction in high-dimensional spaces

Road map

- Find conditions such that an approximation has the same topology as the shape
- 2 Compute (efficiently) the approximation
- 3 Data-structure to store this approximation
- 4 Simplification in this data-structure

Reconstruction in high-dimensional spaces

Road map

- Find conditions such that an approximation has the same topology as the shape
- 2 Compute (efficiently) the approximation
- 3 Data-structure to store this approximation
- 4 Simplification in this data-structure

Point Cloud

Approximation

Data Structure

Simplified approximation

▶ How can we store a simplicial complex?

- ► Store all simplices?
- $\ \, \ \, \ \, \ \, \ \, \ \, \ \,$ Many simplices in general \rightarrow nice to avoid full representation for flag-complexes.

▶ How can we store a simplicial complex?

- ► Store all simplices?
- \odot Many simplices in general \rightarrow nice to avoid full representation for flag-complexes.

Flag-complex nearly everywhere

▶ How can we store a simplicial complex?

- ► Store all simplices?
- \odot Many simplices in general \rightarrow nice to avoid full representation for flag-complexes.

Flag-complex nearly everywhere but here

Graph and blockers

► Alternative representation :

- Graph(K) = {ab, ac, ad, bc, bd, dc, df, ec, fc, fe}
- Blockers(K)={bcd, cdf}

Graph and blockers

Alternative representation :

- Graph(K) = {ab, ac, ad, bc, bd, dc, df, ec, fc, fe}
- Blockers(K)={bcd, cdf}
- ▶ Blockers(K)= $\{\sigma \subset P \mid \sigma \not\in K \text{ and } \forall \tau \subsetneq \sigma, \tau \in K\}$
- ▶ The pair [Graph(K),Blockers(K)] is sufficient to encode entirely K!

Graph and blockers

► Alternative representation :

- Graph(K) = {ab, ac, ad, bc, bd, dc, df, ec, fc, fe}
- Blockers(K)={bcd, cdf}
- ▶ Blockers(K)= $\{\sigma \subset P \mid \sigma \notin K \text{ and } \forall \tau \subsetneq \sigma, \tau \in K\}$
- ▶ The pair [Graph(K),Blockers(K)] is sufficient to encode entirely K!

This data-structure:

is compact if few blockers

Graph and blockers

Alternative representation :

- Graph(K) = {ab, ac, ad, bc, bd, dc, df, ec, fc, fe}
- Blockers(K)={bcd, cdf}
- ▶ Blockers(K)= $\{\sigma \subset P \mid \sigma \not\in K \text{ and } \forall \tau \subsetneq \sigma, \tau \in K\}$
- ▶ The pair [Graph(K),Blockers(K)] is sufficient to encode entirely K!

This data-structure:

- is compact if few blockers
- © handles efficiently many useful operations :
 - contract an edge
 - collapse a simplex

Graph and blockers

Alternative representation :

- Graph(K) = {ab, ac, ad, bc, bd, dc, df, ec, fc, fe}
- Blockers(K)={bcd, cdf}
- ▶ Blockers(K)= $\{\sigma \subset P \mid \sigma \notin K \text{ and } \forall \tau \subsetneq \sigma, \tau \in K\}$
- ▶ The pair [Graph(K),Blockers(K)] is sufficient to encode entirely K!

This data-structure:

- is compact if few blockers
- © handles efficiently many useful operations :
 - contract an edge
 - collapse a simplex

Edge contraction

Overview

Point cloud $P \subset \mathbb{R}^d$ that approximates a manifold M

Edge contraction Overview

Point cloud $P \subset \mathbb{R}^d$ that approximates a manifold M

Under good sampling conditions $\mathcal{R}(P, \alpha) \simeq M$

Edge contraction Overview

Point cloud $P \subset \mathbb{R}^d$ that approximates a manifold M

Under good sampling conditions $\mathcal{R}(P, \alpha) \simeq M$

Is it possible to simplify $\mathcal{R}(P, \alpha)$ to a complex with few simplices?

Topology-preserving edge contraction

A condition on the link

- ► Contracting an edge = identify two vertices in the complex
- ► May change the homotopy type

Topology-preserving edge contraction

A condition on the link

- ► Contracting an edge = identify two vertices in the complex
- ► May change the homotopy type

Theorem [Dey et al 99]

Let K be a simplicial complex homeomorphic to 2 or 3-manifold and ab an edge of K. If the link condition on ab is verified then the edge contraction ab preserves the homeomorphism.

Topology-preserving edge contraction

A condition on the link

- ► Contracting an edge = identify two vertices in the complex
- ► May change the homotopy type

 $ab\mapsto c$ preserves the homotopy type

ab → c changes the homotopy typ

Theorem [Dey et al 99]

Let K be a simplicial complex homeomorphic to 2 or 3-manifold and ab an edge of K. If the link condition on ab is verified then the edge contraction ab preserves the homeomorphism.

Theorem [Attali Lieutier Salinas (SoCG 2011)]

Let K be a simplicial complex and ab an edge of K. If no blocker passes through ab then the edge contraction $ab \mapsto c$ preserves the homotopy type.

Topology-preserving edge contraction Experiment

Rips complex

6000 contractions

6700 contractions

6787 contractions

- Start with a Rips complex with 6806 vertices and 10⁷ simplices and contract edges
- ▶ After contraction, the complex has only 19 vertices and 168 simplices
- Contractions takes only 10 seconds

Point cloud $P \subset \mathbb{R}^d$ that approximates a manifold M

Under good sampling conditions $\mathcal{R}(P,\alpha) \simeq M$

Point cloud $P \subset \mathbb{R}^d$ that approximates a manifold M

Under good sampling conditions $\mathcal{R}(P,\alpha) \simeq M$

Point cloud $P \subset \mathbb{R}^d$ that approximates a manifold M

Under good sampling conditions $\mathcal{R}(P,\alpha) \simeq M$ But in general $\mathcal{R}(P,\alpha) \not\approx M$

Point cloud $P \subset \mathbb{R}^d$ that approximates a manifold M

Under good sampling conditions $\mathcal{R}(P,\alpha) \simeq M$ But in general $\mathcal{R}(P,\alpha) \not\approx M$

Is it possible to simplify $\mathcal{R}(P,\alpha)$ to a complex homeomorphic to the manifold?

Homeomorphic reconstruction

- ▶ Build a Rips complex such that $\mathcal{R}(P, \alpha) \simeq M$
- Keep removing the star of the largest edge whose link can be reduced to a point

Homeomorphic reconstruction

- ▶ Build a Rips complex such that $\mathcal{R}(P,\alpha) \simeq M$
- Keep removing the star of the largest edge whose link can be reduced to a point

Theorem

Let M be a 1-dimensional manifold and $P \subset M$ a finite point cloud. If $d_H(P,M) < \alpha < \operatorname{reach}(M)/2$ then this strategy returns a complex homeomorphic to M.

Homeomorphic reconstruction

- ▶ Build a Rips complex such that $\mathcal{R}(P,\alpha) \simeq M$
- ► Keep removing the star of the largest edge whose link can be reduced to a point

Theorem

Let M be a 1-dimensional manifold and $P \subset M$ a finite point cloud. If $d_H(P,M) < \alpha < \operatorname{reach}(M)/2$ then this strategy returns a complex homeomorphic to M.

- © M is a 1-dimensional manifold
- \bigcirc $P \subset M$

- A movie taken while turning with a rotating chair
- ▶ Data : 474 frames corresponding to points in \mathbb{R}^{29056}

- A movie taken while turning with a rotating chair
- ▶ Data : 474 frames corresponding to points in \mathbb{R}^{29056}

- ▶ A movie taken while turning with a rotating chair
- ▶ Data : 474 frames corresponding to points in \mathbb{R}^{29056}

► A sampling of a 1-manifold!

- ▶ A movie taken while turning with a rotating chair
- ▶ Data : 474 frames corresponding to points in \mathbb{R}^{29056}

- ► A sampling of a 1-manifold!
- ▶ Build a Rips complex (11 neighbors on average on its graph).

Collapse

An experiment

- ▶ A movie taken while turning with a rotating chair
- ▶ Data : 474 frames corresponding to points in \mathbb{R}^{29056}

- ► A sampling of a 1-manifold!
- ▶ Build a Rips complex (11 neighbors on average on its graph).
- After 2045 collapses, we get a complex homeomorphic to a 1-dimensional manifold

Conclusion

- ▶ The Rips complex has the same homotopy type as a sampled shape
- ▶ Complexes near flag-complexes can be stored efficiently
- ▶ Rips complexes can be reduced (drastically) with edge contractions
- Rips complexes can be simplified to a complex homeomorphic to the manifold (experimentally)

Perspectives and future works

Practical:

- ▶ implementation of the graph/blocker data-structure in a open-source project
- ▶ test this data-structure on others simplicial complexes

Theoretical:

- extend reconstruction results with weaker sampling conditions
- prove that the Rips complex can simplified efficiently to a complex homeomorphic to the manifold
- prove that edge contractions are efficient

Simplification operations that preserve the homotopy type

Ttwo simplification operations:

- ightharpoonup the edge contraction of an edge σ
- ightharpoonup the collapse of a simplex σ

These two operations preserve the homotopy type when a (local) condition is verified on the link of σ .

K: a simplicial complex

 σ : a simplex of K

Link of
$$\sigma$$
: $\mathsf{Lk}_{\mathsf{K}}(\sigma) = \{ \tau \in \mathsf{K} \mid \tau \cap \sigma = \emptyset \text{ and } \tau \cup \sigma \in \mathsf{K} \}$
Star of σ : $\mathsf{St}_{\mathsf{K}}(\sigma) = \{ \tau \in \mathsf{K} \mid \sigma \subset \tau \}$

Collapse

Let K be a simplicial complex and σ a simplex of K.

 \triangleright Removing the star of σ may change the homotopy type

Removing $St_K(\sigma)$ changes the homotopy type

- If the link of σ is a the closure of a simplex then removing the star of σ preserves the homotopy type
- ▶ In this case, we say that removing $St_K(\sigma)$ from K is a **collapse**

Experimental results for collapses

Data-sets

 $\blacktriangleright \ \, \mathsf{Data}: \ \mathsf{a} \ \mathsf{point} \ \mathsf{cloud} \ P \in \{\mathsf{Cat}, \mathsf{Ramses}, \mathsf{SO3}\} \ \mathsf{sampling} \ \mathsf{a} \ \mathit{d}\text{-manifold} \ \mathit{M}$

Cat: 72 images of size 128x128

ightharpoonup Ramses: A scan of a statue that consists in 200000 points in \mathbb{R}^3

▶ S03: 10000 points in \mathbb{R}^9 that samples rotational matrices

▶ Input of the simplification algorithm : $\mathcal{R}(P, \alpha)$ such that $\mathcal{R}(P, \alpha) \simeq M$

Р	d	D	$dim(\mathcal{R}(P, lpha))$
Cat	1	16384	19
Ramses	2	3	14
S03	3	9	16

► Output after simplification K_{out}

Р	$dim(K_{out})$	$K_{\rm out} \approx M$	running time
Cat	1	YES	2 s
Ramses	2	YES	150 min
S03	3	NO	7 min

Homotopy type of the Rips complex

A bound on the convexity defect for a manifold

Theorem

If
$$d_H(P, M) \leq \varepsilon$$
 then, $\forall t < \operatorname{reach}(M) - \varepsilon$

$$c_P(t) \le \operatorname{reach}(M) - \sqrt{\operatorname{reach}(M)^2 - (t+\varepsilon)^2} + 2\varepsilon$$

