EXERCICE N°1

1) Déterminer le tableau de signes des fonctions affines définies ci-dessous.

2) Pour chacune des fonctions précédentes, donner un nombre réel x_1

1.a) f(x)=4,2x+5

1.b) g(x) = -3.5x + 7

1.c) h(x) = x + 6

- 1.d) j(x) = 9 x
- positive et un nombre réel x_2 dont l'image est négative.

EXERCICE N°2

- Construire le tableau de signes de chaque expression.
- 1) f(x)=4x-8

2) g(x) = -2x + 4

3) h(x) = -8x + 2

4) $l(x) = \frac{2x+5}{-5}$

EXERCICE N°3

1) En utilisant le graphique suivant, écrire le tableau de signes de chaque fonction affine représentée ci-dessous.

2) Chaque droite est la représentation graphique d'une des fonctions définies par les expressions suivantes.

$$f(x)=1$$

$$g(x) = \frac{4}{3}x + \frac{8}{3}$$

$$h(x) = -\frac{1}{3}x + 2$$

Associer chaque droite à la fonction qu'elle représente.

EXERCICE N°4 Des tableaux signes plus complexes

VOIR LE CORRIGÉ

dont l'image est

Construire le tableau de signes de chaque expression.

1)
$$f(x)=(x+4)(x-6)$$

2)
$$g(x)=(-3x+6)(5x+3)$$

3)
$$h(x)=6(-3x+4)(5x-2)$$

4)
$$l(x)=-4(-3x-1)(5x-7)$$

EXERCICE N°1

(Le corrigé)

RETOUR À L'EXERCICE 1

1) Déterminer le tableau de signes des fonctions affines définies ci-dessous.

f(x)=4,5x+51.a)

g(x) = -3.5x + 71.b)

m=4.5; p=5 done $x_0 = \frac{-p}{m} = \frac{-5}{4.51}$

m=-3.5; p=7 donc $x_0=\frac{-p}{m}=\frac{-1}{2}$

 \boldsymbol{x} $-\infty$ $+\infty$ f(x)

h(x)=x+61.c)

j(x) = 9 - x1.d)

$$m=1$$
; $p=6$ donc $x_0 = \frac{-p}{m} = \frac{-6}{1} = -6$

$$m=1$$
; $p=6$ donc $x_0 = \frac{-p}{m} = \frac{-6}{1} = -6$

x	$-\infty$		9	$+\infty$
f(x)		+	0	_

2) Pour chacune des fonctions précédentes, donner un nombre réel x_1 dont l'image est positive et un nombre réel x_2 dont l'image est négative.

Pour f: par exemple $x_1 = -4$ et $x_2 = 10$

Pour x_1 on peut donner n'importe qu'elle valeur inférieure à $\frac{-10}{9}$ et pour x_2 n'importe quelle valeur supérieure à

g: par exemple $x_1 = -6500$ et $x_2 = 25$

h: par exemple $x_1 = 0$ et $x_2 = -59989$ Pour

Pour j: par exemple $x_1 = 7$ et $x_2 = 9.01$

EXERCICE N°2

(Le corrigé)

RETOUR À L'EXERCICE 2

Construire le tableau de signes de chaque expression.

1)
$$f(x)=4x-8$$

2)
$$g(x) = -2x + 4$$

$$m=4$$
; $p=-8$ donc $x_0=\frac{-(-8)}{4}=2$

$$\begin{array}{c|cccc}
x & -\infty & \mathbf{2} & +\infty \\
\hline
f(x) & - & \emptyset & +
\end{array}$$

$$m=-2$$
; $p=4$ donc $x_0=\frac{-4}{-2}=2$

x		$-\infty$		2		$+\infty$
g(x)	;)		+	0	_	

3)
$$h(x) = -8x + 2$$

4)
$$l(x) = \frac{2x+6}{-8}$$

$$m=-8$$
; $p=2$ donc $x_0=\frac{-2}{-8}=0,25$

x	$-\infty$	0,25	$+\infty$
h(x)	+	0	_

$$m = -\frac{1}{4}$$
; $p = -\frac{3}{4}$ donc $x_0 = \frac{-\left(-\frac{3}{4}\right)}{-\frac{1}{4}} = -3$

x	$-\infty$	-3	$+\infty$
h(x)	+	0	_

Quelques détails supplémentaires pour la question 4) :

$$l(x) = \frac{2x+6}{-8} = \frac{2}{-8}x + \frac{6}{-8} = -\frac{1}{4}x - \frac{3}{4}$$

EXERCICE N°3

(Le corrigé)

RETOUR À L'EXERCICE 3

1) En utilisant le graphique suivant, écrire le tableau de signes de chaque fonction affine représentée ci-dessous.

Pour (d_3) c'est facile puisqu'elle représente la fonction constante $x \to 1$. Elle est donc positive partout.

 (d_2) ce n'est pas très dur non plus car elle coupe l'axe des abscisses en $(\text{donc } x_0 = -2)$ et qu'elle est en-dessous avant et au-dessus après.

Enfin (d_1) nous prendra un peu plus de temps.

Notons h la fonction représentée par (d_1) . Nous savons qu'elle est affine et qu'il existe deux réels m et p tels que pour tout réel x, h(x)=mx+p

Par lecture graphique: $m = -\frac{1}{3}$ et p = 2. Comme $\frac{-p}{m} = \frac{-2}{-1} = 6$ on obtient:

x	$-\infty$	6	$+\infty$
h(x)	+	0	_

- g la fonction représentée par Notons (d_2) .
- f la fonction représentée par Notons (d_3) .

Par lecture graphique:

x	$-\infty$	_	2	$+\infty$
f(x)	-	- () +	-

Par lecture graphique:

x	$-\infty$	$+\infty$
g(x)	+	

2) Chaque droite est la représentation graphique d'une des fonctions définies par les expressions suivantes.

$$f(x)=1$$

$$g(x) = \frac{4}{3}x + \frac{8}{3}$$

$$g(x) = \frac{4}{3}x + \frac{8}{3}$$
 $h(x) = -\frac{1}{3}x + 2$

Associer chaque droite à la fonction qu'elle représente.

D'après la question précédente : (d_1) ; (d_2) et (d_3) représentent respectivement h, g et f

EXERCICE N°4 Des tableaux signes plus complexes (Le corrigé)

RETOUR À L'EXERCICE 4

Ligne bilan

Construire le tableau de signes de chaque expression.

1)
$$f(x)=(x+4)(x-6)$$

2)
$$g(x)=(-3x+6)(5x+3)$$

3)
$$h(x)=6(-3x+4)(5x-2)$$

4)
$$l(x) = -4(3x-1)(5x+7)$$

1)
$$f(x)=(x+4)(x-6)$$

• $x+4 > 0 \Leftrightarrow x > -4$

- $x-6 > 0 \Leftrightarrow x > 6$

Avec ces inéquations, on trouve où « placer les + »dans le tableau.

Bien sûr, « là où il n'y a pas de +, il y des - »

х	$-\infty$		-4		6		+ ∞
x+4		_	0	+		+	
x-6		_		_	0	+	
f(x)		+	0	_	0	+	

Avec la règle des signes, on peut remplir la dernière ligne du tableau. C'est elle qui donne le signe de l'expression f(x).

On peut par exemple dire que:

f(x) est strictement positif pour x appartenant à la réuinon d'intervalles $|-\infty;-4|\cup |6;+\infty|$

ou que :

f(x) est positif pour x appartenant à la réunion d'intervalles $]-\infty;-4] \cup [6;+\infty[$

f(x) est strictement négatif pour x appartenant à l'intervalle -4; 6

ou que :

f(x) est négatif pour x appartenant à l'intervalle [-4; 6](Observez bien les crochets à chaque fois)

2)
$$g(x)=(-3x+6)(5x+3)$$

- 2) g(x)=(-3x+6)(5x+3)-3x+6 > 0 \Leftrightarrow -3x > -6 \Leftrightarrow x < 2
- $5x+3 > 0 \Leftrightarrow 5x > -3 \Leftrightarrow x > \frac{-3}{5}$

x	$-\infty$		$\frac{-3}{5}$		2		+∞
-3x+6		+		+	0	_	
5x-3		_	0	+		+	
g(x)		_	0	+	0	_	

Ligne bilan

Oui, vous avez le droit de remplacer $\frac{-3}{5}$ par 0,6.

3)
$$h(x)=6(-3x-4)(5x-2)$$

• 6 est toujours positif (la bonne blague... vous verrez à la question suivante ...)

$$-3x-4 > 0 \Leftrightarrow -3x > 4 \Leftrightarrow x < -\frac{4}{3}$$

$$5x-2 > 0 \Leftrightarrow 5x > 2 \Leftrightarrow x > \frac{2}{5}$$

x	$-\infty$		$-\frac{4}{3}$		<u>2</u> 5		+∞
6		+		+		+	
-3x-4		+		_	0	_	
5x-2		_	0	_	T	+	
h(x)		_	0	+	0	_	

Ligne bilan

La ligne comportant le 6 n'est pas obligatoire, je vous conseille toutefois de prendre l'habitude de l'écrire...

• Oui, vous pouvez remplacer $\frac{2}{5}$ par 0,4

Non, vous ne pouvez pas remplacer $-\frac{4}{3}$ par -1,3 ou -1,33 ou -1,333 ou...

4)
$$l(x)=-4(-3x-1)(5x-7)$$

4)
$$l(x)=-4(-3x-1)(5x-7)$$

-4 est toujours négatif (vous voyez venir « le problème »?)

-3x-1 > 0 \Leftrightarrow -3x > 1 \Leftrightarrow x < $-\frac{1}{3}$

$$5x-7 > 0 \Leftrightarrow 5x > 7 \Leftrightarrow x > \frac{7}{5}$$

x	$-\infty$		$\frac{-1}{3}$		$\frac{7}{5}$		+∞
-4		-		_		_	
-3x-1		+		_	0	_	
5x-7		_	0	_		+	
l(x)		+	0	_	0	+	

Ligne bilan

Cette fois-ci, si vous oubliez la ligne comportant le -4 alors votre bilan est faux...