DATA WAREHOUSE

Chapter II – Data Warehouse Architecture

AIMS (PART I)

- Data Warehouse Layer Architecture
- Data Mart
- Stagin-Layer

- Architecture of a Data Warehouse:
 - Multiple layers
 - Data sources and ETL process:
 - Extraction, Transformation, and Loading of data from the data sources
- ETL process:
 - Utilization of an ETL tool for extracting various data formats
- Staging Layer:
 - First layer of the Data Warehouse
 - Used for extracting data into tabular form

Department B

employee_id	entry_date	position_level
1	1/2/2022	HR
2	1/6/2022	IT
3	1/4/2022	IT
4	1/7/2022	UM
5	1/6/2022	PM .

Department A

employee_id	entry_date	position_level
6	1/5/2022	HR
7	1/6/2022	HR
8	1/8/2022	PM
9	1/7/2022	UM
10	1/6/2022	PM .

- Data in tables:
 - No data transformation performed
 - Goal: Keep data as unchanged as possible
- Example: Employee data in different departments
 - Different formats such as CSV files and databases
 - Extraction into the staging area:
- Data extracted from various sources into tabular form
- Possibility of multiple tables in the staging area.

Departments

employee_id	entry_date	position_level
1	1/2/2022	HR
2	1/6/2022	IT
3	1/4/2022	IT
4	1/7/2022	UM .
5	1/6/2022	PM
6	1/5/2022	HR
7	1/6/2022	HR
8	1/8/2022	PM
9	1/7/2022	UM
10	1/6/2022	PM

 Possibility of summarization if tables have the same structure.

Last session

DATA WAREHOUSE LAYER ARCHITECTURE

Department B

em	ployee_id	entr	y_date	position_level
	1	L	1/2/2022	HR
	2	2	1/6/2022	IT
	3		1/4/2022	IT
	4	ı	1/7/2022	UM
	5	,	1/6/2022	PM .

Department A

employee_id		entry_date	position
	1	1/2/2022	Human Ressources
	2	1/6/2022	Information Technologies
	3	1/4/2022	Information Technologies
	4	1/7/2022	Upper Management
	5	1/6/2022	Project Manager

- Differences in the tables:
 - Different column names such as "position" and "position_level"
 - Different data formatting and abbreviations
 - Repetition of IDs in various departments
- Data transformation:
 - Steps to integrate the data and resolve differences
- Data modeling:
 - Restructuring the data according to desired requirements

Usage of the ETL tool:

- Performing data copying and transformations
- Copying the data from the staging to the core layer:
- The core layer is sometimes considered as the actual data warehouse
- Transformations occur during the copying process
- Core layer as user interface:
 - Main access point for end users and applications
- Data access and utilization:
 - Creation of reports, data analysis, and predictive analytics

TASK WHAT IS "DATA MART"

- Please search for the term on the internet.
- Explain what you understand by it.
- Time: 5 minutes

Data Mart I

Data Mart 2

DATA MART

- Building Data Marts:
 - Addition to the core layer in large data warehouses with many tables and use cases
- Purpose:
 - Selecting relevant tables for specific use cases
 - Improving user-friendliness and query performance
- Advantages:
 - Reducing complexity by selecting relevant data
 - Relieving data warehouse performance for specific user groups

Data Mart I

Data Mart 2

DATA MART

Data Mart I

Data Mart 2

- Utilization of specialized databases:
 - In-memory databases or cubes to enhance performance
- Goal: Improving performance through specialization and targeted data provisioning.
- Use case for scenarios with very large data volumes
- Data Mart not always necessary
 - Additional layer, depending on the requirements

DATA WAREHOUSE THE TERM IS DIFFICULT TO CLASSIFY

- Confusion about the term "Data Warehouse":
 - Different perceptions of the various layers
- Core Layer:
 - Often considered as the Data Warehouse by end users
 - Single Point of Truth
- Data warehouse encompasses all layers:
 - Core, Data Marts, and Cleansing Area
- Significance of the Staging Area:
 - Important component of the process
- Goal: In-depth examination of the Staging Area in the next lecture.

CHAPTER II – II – STAGING LAYER TASK: WHAT IS STAGING LAYER

- Search for the term on the internet.
- Explain what you understand by it.
- Time: 5 minutes.

ROLE OF STAGIN-LAYER

- Role of the Staging Environment in the ETL Process:
 - Data extraction from sources
 - Data access without significant time investment
 - Extraction and storage of data in the staging environment
- Connection to the core layer:
 - Definition of transformations with ETL tool
 - Loading into the core layer
- Role of the core layer:
 - Access layer for end users and applications
 - Perception as a data repository (Data Warehouse)

WHY WE NEED A STAGIN-LAYER?

- Why do we need the Staging Layer?
 - Avoidance of complications
 - Prevention of redundant data
 - Weighing the pros and cons
- Reasons for using a Staging Layer:
 - Risk avoidance for operational systems
 - Risk of slowdown due to data access
 - Minimization of system resource usage
 - Need for quick data access
 - Structuring data in relational database tables

- Benefits of data structuring:
 - Application of transformations to relational data
 - Utilization of CSV and JSON files for data structuring
- Implementation in the staging environment:
 - Import of data into relational database tables
 - Definition and application of transformations with ETL tool
- Significance of the Staging Layer in the Data Warehouse:
 - Secure data access and processing
 - Basis for further analysis and queries

PRACTICAL EXAMPLE FOR ILLUSTRATION

- E-Commerce Plattform:
 - Data sources: Online-Shops, payment processors, inventory management systems
 - Role of the Staging Layer:
 - Extraction, transformation, and loading (ETL) of raw data
 - Integration of data from various sources
 - Preparation of data for the main data warehouse

- Customer Data Management:
 - Data sources: CRM systems, social media, customer surveys
 - Role of the Staging Layer:
 - Integration and preparation of customer information
 - Data cleaning and standardization
 - Preparation of data for analysis and reports

PRACTICAL EXAMPLE FOR ILLUSTRATION

- Financial Reporting:
 - Data sources: Trading systems, payment processors, bank accounts
 - Role of the Staging Layer:
 - Collecting and processing transaction data
 - Cleaning and standardizing financial data
 - Generating financial reports and risk analyses

- Logistics and Supply Chain:
 - Data sources: Warehouse management systems, transportation management systems, GPS trackers
 - Role of the Staging Layer:
 - Integration and cleansing of logistics data
 - Structuring and standardizing supply chain information
 - Analysis of efficiency, inventory management, and route optimization

HOW DOES THE STAGING LAYER WORK?

- Extraction of data from the source systems:
 - Rapid reading of data from the source systems
 - Extraction of data into the staging environment
- 2. Application of transformations:
 - Merging the data with additional tables
 - Adding additional columns
 - Performing minor transformations
- 3. Loading the transformed data into the Data Warehouse:
 - Using the staging environment as an intermediary step
 - Integration of the transformed data into the Data Warehouse

D	Date Product	Customer ID	Store ID
	25.04.2024 Burger	102	5
2	25.04.2024 Pizza	203	3
3	26.04.2024 Fries	305	7
4	26.04.2024 Soda	104	2
5	27.04.2024 Chicken	206	4

ID	Date	Product
Ι	25.04.202	4 Burger
2	25.04.202	4 Pizza
3	26.04.202	4 Fries
4	26.04.202	4 Soda
5	27.04.202	4 Chicken

HOW DOES THE STAGING LAYER WORK?

After a few hours, new data is available

- 4. Cleansing of the Staging Layer:
 - Emptying the staging environment
 - Temporary contents of the staging layer
 - Truncating the staging environment after each ETL cycle
- Identification of new data:
 - Implementation of delta logic
 - Using a delta column to identify new data
 - Example: ID column or date column as a delta column
 - Ensuring that the ID column contains strictly increasing numbers
 - Preference for date column in practice

D	Date Product	Customer ID	Store ID
1	25.04.2024 Burger	102	5
2	25.04.2024 Pizza	203	3
3	26.04.2024 Fries	305	7
4	26.04.2024 Soda	104	2
5	27.04.2024 Chicken	206	4

ID	Date	Product
I	25.04.2024	Burger
2	25.04.2024	Pizza
3	26.04.2024	Fries
4	26.04.2024	Soda
5	27.04.2024	Chicken
6	27.04.2024	Taco
7	28.04.2024	Hot Dog
8	28.04.2024	Ice Cream
9	29.04.2024	Nachos
10	29.04.2024	Smoothie

ID	Date	Product
6	27.04.2024 Ta	ıco
7	28.04.2024 Ho	ot Dog
8	28.04.2024 Ice	e Cream
9	29.04.2024 Na	achos
10	29.04.2024 Sn	noothie

HOW DOES THE STAGING LAYER WORK?

- Loading new data into the Data Warehouse:
 - Selection and loading of new records based on delta logic
 - Example: Loading all records created after a certain date
 - Application of transformations to the new records
 - Appending the transformed data to the Data Warehouse

ID	Date Product	Customer ID	Store ID
- 1	25.04.2024 Burger	102	5
2	25.04.2024 Pizza	203	3
3	26.04.2024 Fries	305	7
4	26.04.2024 Soda	104	2
5	27.04.2024 Chicken	206	4
6	27.04.2024 Taco	108	
7	28.04.2024 Hot Dog	210	6
8	28.04.2024 Ice Cream	112	8
9	29.04.2024 Nachos	314	5
10	29.04.2024 Smoothie	116	3

CHALLENGES

- Problem with transformations:
 - Possible errors and issues with transformations
 - Data changes may occur
- Need for rollback:
 - Reversal of erroneous transformations
 - Reverting to previous records
 - Possible restart of the process from previous days

- Persisting Layer
 - Staging Layer will not trunked
 - Rare use of method

Staging Layer

Task: Extract

ID	Date	Product	Customer ID	Store ID
1	25.04.202	4 Burger	102	
2	25.04.202	4 Pizza	203	
3	26.04.202	4 Fries	305	
4	26.04.202	4 Soda	104	
5	27.04.202	4 Chicken	206	
6	27.04.202	4 Taco	108	
7	28.04.202	4 Hot Dog	210	
8	28.04.202	4 Ice Cream	112	
9	29.04.202	4 Nachos	314	
10	29.04.202	4 Smoothie	116	

ID	Date	Product
ı	25.04.2024	Burger
2	25.04.2024	Pizza
3	26.04.2024	Fries
4	26.04.2024	Soda
5	27.04.2024	Chicken
6	27.04.2024	Taco
7	28.04.2024	Hot Dog
8	28.04.2024	Ice Cream
9	29.04.2024	Nachos
10	29.04.2024	Smoothie
_		

ID	Date	Product	Customer ID	Store ID
-1	25.04.2024	Burger	102	5
2	25.04.2024	ł Pizza	203	3
3	26.04.2024	Fries	305	7
4	26.04.2024	l Soda	104	2
5	27.04.2024	Chicken	206	4
6	27.04.2024	Taco	108	1
7	28.04.2024	Hot Dog	210	6
8	28.04.2024	Ice Cream	112	8
9	29.04.2024	Nachos	314	5
10	29.04.2024	Smoothie	116	3

SUMMARY

- Definition of the Staging Layer:
 - Landing zone in the Data Warehouse for extracted data from the data sources
 - Objective: Extraction of data from various files and formats into a relational and separate database
 - Minimization of changes in the Staging Layer to avoid burdening the source systems
- Types of Staging Layers:
 - Temporary Staging Layer
 - Truncation after each ETL cycle
 - Persistent Staging Layer
 - No truncation after each ETL cycle
 - Retention of source data at this level

- Placement within the layers of the Data
 Warehouse
- Existing layers: Staging Layer and Core Layer (Access Layer)
- Challenges in large enterprises
 - Complexity with many different use cases
 - Utilization of various tools in the Data Warehouse
 - All user groups, departments, and regions use the same Data Warehouse

- Placement within the layers of the Data
 Warehouse
- Existing layers: Staging Layer and Core Layer (Access Layer)
- Challenges in large enterprises
 - Complexity with many different use cases
 - Utilization of various tools in the Data Warehouse
 - All user groups, departments, and regions use the same Data Warehouse
- Additional layer: Data Marts
 - Purpose: Complement to the Core Layer to reduce complexity
 - Data Marts are a subset of the Data
 Warehouse, specifically the Core Layer

- Additional layer:
 - Data Marts Purpose:
 - Supplement to the Core Layer to reduce complexity Data Marts are a subset of the Data Warehouse, specifically the Core Layer.

- Data modeling in Data Marts
 - Dimensional modeling
 - Fact tables in the middle
 - Dimension tables around these fact tables
 - This modeling approach will be discussed later.
 - Modeling in the core layer
 - Possibility of dimension and fact modeling
- Specificity of Data Marts
 - Structure for specific use cases
 - Ability to further aggregate data according to the use case

CHAPTER II - III DATA MARTS - REASONS

Data Warehouse

- Increase in user-friendliness
- Facilitation of focusing on relevant data
- Avoidance of overload from working with many tables in the
- Important for the acceptance of the Data Warehouse or Data Marts, especially for non-technical users

CHAPTER II – III DATA MARTS - REASONS

- Improvement of performance
 - Dimensional data modeling enables specific technologies
 - Utilization of in-memory databases with fast query performance
 - Construction of so-called cubes for better performance
- Better user-friendliness and acceptance through increased performance
- Main reason for the use of Data Marts

CHAPTER II – III DATA MARTS – USE CASES

- Usage of different tools with the Data Warehouse
 - Data visualization with Power BI
 - Utilization of in-memory databases for good performance
- Other tools, such as predictive analytics, do not necessarily require in-memory databases

CHAPTER II – III DATA MARTS – USE CASES

- Need for different Data Marts for various use cases
 - Different departments with different use cases
 - Sales team, finance team, marketing team
 - Storage of all data in the core, but not all relevant for every use case and department
- Setting up Data Marts for different regions is possible
- In summary, Data Marts are built for various use cases, whether for different tools, departments, or regions.

CHAPTER II – III DATA MARTS – BENEFITS

- I. Enhanced usability: Focuses on relevant data, simplifying usage.
- 2. Reduces complexity: Users avoid dealing with numerous tables in the database.
- Improved acceptance: Especially beneficial for nontechnical business users.
- 4. Performance boost: Data is modeled dimensionally, enabling faster query processing.
- 5. Leveraging specific technology: In-memory databases and cubes enhance query speed.
- 6. Better usability and acceptance: Result from increased performance.

CHAPTER II – IV RELATIONAL DATABASES

ID	Date	Product
1	25.04.202	4 Burger
2	25.04.202	4 Pizza
3	26.04.202	4 Fries
4	26.04.202	4 Soda
5	27.04.202	4 Chicken

Tables (relations)

Relational databases

- Introduction to Data Warehouse Technology
 - Focus on Relational Databases
 - Primary housing for data warehouse
 - Role of Relational Databases
 - Storage of data in tables
 - Tables also termed as relations
 - Data structured into columns and rows
 - Utilization of SQL
 - Query language for accessing data
 - Natural and relatively simple to learn
 - Example: SELECT statement for data retrieval
 - Use of Keys
 - Establishing relations between tables

CHAPTER II – IV RELATIONAL DATABASES

id	name	city
101	Alice	New York
102	Bob	Los Angeles
103	Charlie	Chicago
104	David	Houston
105	Emily	San Francisco

- Specifics of Relational Databases
 - Utilization of Keys and Table Relations
- Primary Key
 - Purpose: Uniquely identifies each row
 - Column designated as primary key
 - Requires unique and non-null values
- Foreign Keys
 - Purpose: Referencing another table
 - Contains values from primary key of another table
 - Facilitates reference to specific rows in other tables
- Querying and Joining Tables
 - Joins combine results of multiple tables
 - Enables combining columns from different tables in queries

CHAPTER II – IV RELATIONAL DATABASES

id	name	city
101	Alice	New York
102	Bob	Los Angeles
103	Charlie	Chicago
104	David	Houston
105	Emily	San Francisco

- Significance of Relational Databases
 - Game changer for data analysis
 - Development of logic and algorithms for query performance
 - Transition from querying single tables to analyzing multiple tables
- Advancement of OLAP
 - Enhancement of analysis capabilities
- Connection to Data Warehouses
 - Organization of data in multiple tables
 - Facilitation of data analysis through table relations
- Modeling of Tables
 - Utilization of star schemas for table modeling

CHAPTER II – IV RELATIONAL DATABASES

id	name	city
101	Alice	New York
102	Bob	Los Angeles
103	Charlie	Chicago
104	David	Houston
105	Emily	San Francisco

- Overview of Relational Database Products
 - Relational Database Management Systems (RDBMS)
 - Examples: PostgreSQL, Oracle, Microsoft SQL Server
 - Commonly used in enterprises for database management
 - Open source alternatives: PostgreSQL, MySQL
 - Cloud services: Amazon Relational Databases, Azure SQL databases
- Introduction to In-Memory Databases
 - Growing importance in modern data management
 - Next topic of discussion in upcoming lecture

CHAPTER II – V IN-MEMORY DATABASES - INTRO

- Highly optimized for query performance
- Common Use Cases
 - Analytical purposes
 - High query volume scenarios
- Application in Data Marts
 - Access layer for users or applications
 - High query performance essential for user experience
- Technology Independence
 - Suitable for both relational and non-relational data structures

CHAPTER II – V IN-MEMORY DATABASES – TRADITIONAL DATABASES VS. IN-MEMORY DATABASES

Databases

- 0
- Hard drive

- Storage Mechanism in Traditional Databases
 - Data stored on hard drives or solid-state disks
 - Data loaded into memory when queried, resulting in response time
- Limitations of Traditional Approach
 - Response time from disk to memory contributes to query delay
 - Suboptimal for high query performance requirements
- Advantages of In-Memory Databases
 - Elimination of disk-based storage
 - Entire data stored in memory, reducing response time
 - Significant improvement in query performance

CHAPTER II – V IN-MEMORY DATABASES – TRADITIONAL DATABASES VS. IN-MEMORY DATABASES

Databases

- Advantages of In-Memory Databases
 - Elimination of disk-based storage
 - Entire data stored in memory, reducing response time
 - Significant improvement in query performance
- Technology and Methods in In-Memory Databases
 - Different algorithms and methods utilized
 - Example: Columnar storage, scanning data by columns
 - Potential use of parallel query plans for faster processing
- Simplified Explanation
 - In-memory databases eliminate response time from disk loading
 - Result: Enhanced query performance without technical intricacies

CHAPTER II – V IN-MEMORY DATABASES -CHALLENGES OF IN-MEMORY DATABASES

Databases

- **Durability of Data**
 - Essential requirement for databases
 - In-memory storage susceptible to data loss during power disconnection or reset
 - Solutions for Durability
 - Creation of snapshots or images representing database state
 - Storage of data on disks before updates or restarts
 - Ensures availability of data even after disruptions
- Cost Considerations
 - Expensive technology despite hardware advancements
 - Increasing data volume outpaces reduction in hardware costs
 - Consideration of cost-effectiveness in implementing in-memory databases

CHAPTER II – V IN-MEMORY DATABASES -CHALLENGES OF IN-MEMORY DATABASES

Databases

- Advancements in Traditional Databases
 - Optimization efforts to reduce disk usage
 - Improvements in query performance
- Strategic Use of In-Memory Databases in Data Marts
 - Load only relevant data for specific use cases
 - Cost-effective approach to leverage in-memory databases

CHAPTER II – V IN-MEMORY DATABASES – TECHNOLOGIES IN-MEMORY DATABASES

Databases

- Examples of In-Memory Database Technologies
 - SAP Hana, Microsoft Secure In-memory Tables, Oracle
 - Cloud services: Amazon Memory DB

CHAPTER II – VI – OLAP CUBES – TRADITIONAL DATA WAREHOUSE VS. CUBES

- Data Storage in Relational Databases
 - Organized into tables with relations
- Cube Structure
 - Non-relational organization into dimensions
 - Absence of table relations
- Multidimensional Dataset
 - Referred to as MOLAP (Multidimensional Online Analytical Processing)
 - Data stored in arrays instead of tables

- Importance of Cubes
 - Analytical Purposes
 - Fast query performance
 - Exclusive use in data marts
- Utilization in BI Solutions
 - Integration with various software
 - Example: Excel integration for analysis

CHAPTER II – VI – OLAP CUBES – THE CUBE VIEW

- Visualization of Data Organization
 - Cubes organize data into multiple dimensions
 - Typically represented with three dimensions for simplicity
 - Example Scenario: Sales Analysis
 - Dimensions: Products, Time, Customers
 - Measurement: Sales

CHAPTER II – VI – OLAP CUBES – THE CUBE VIEW

- Slicing and Dicing of Data
 - Using arrays and cells to manipulate data
 - Example: Analyzing sales for specific customer in certain months
- Pre-calculated Data
 - Values in cells are pre-calculated
 - Enables instant access and visualization of data
- Benefits of Pre-calculated Values
 - Facilitates quick data retrieval and visualization
 - Aggregated in a way suitable for reports and applications

CHAPTER II – VI – OLAP CUBES – TECHNOLGIES

- MDX Language in Cube Technology
 - Alternative to SQL for querying cube data
 - MDX: Multidimensional Expression
 - Developed by Microsoft
 - Most commonly used query language for cubes
- Purpose of Cubes
 - High performance due to pre-calculated values
 - Main benefit in interactive tools with hierarchies
 - Enables efficient drilling, slicing, and dicing of data
- Storage of Data
 - Multidimensional databases instead of relational databases
 - Utilizes different hardware for storage and processing

CHAPTER II – VI – OLAP CUBES – ALTERNATIVE TECHNOLOGIES

In-Memory Databases

- Advancements leading to better performance
- Decreasing significance of cubes

Tabular Models

- Utilized, particularly by Microsoft
- Features columnar storage, parallel processing
- Provides alternatives to traditional cube usage

Evolving Technologies

- Continuous improvements making cubes less vital
- Better hardware and storage methods contributing to alternatives

Relational Databases

- Improved performance in modern setups
- Viable option without resorting to cubes

Considerations for Data Marts

Selection of methods based on query performance requirements

QUESTIONS CHAPTER II

WHAT IS THE MAIN REASON FOR IMPROVED QUERY PERFORMANCE IN CUBES?

- Less latency due to multi-dimensional approach
- Better query optimizer
- Precalculated (aggregated) values

WHAT IS THE KEY IDEA FOR IMPROVING PERFORMANCE WITH IN-MEMORY DATABASES?

- Defining multiple dimension and precalculating the relevant values.
- Eliminating response time from disc by processing all data directly in memory.
- Optimizing queries with better query optimizers

QUESTIONS CHAPTER II – V – VI

WHAT IS THE MAIN REASON FOR IMPROVED QUERY PERFORMANCE IN CUBES?

- Less latency due to multi-dimensional approach
- Better query optimizer
- Precalculated (aggregated) values

WHAT IS THE KEY IDEA FOR IMPROVING PERFORMANCE WITH IN-MEMORY DATABASES?

- Defining multiple dimension and precalculating the relevant values.
- Eliminating response time from disc by processing all data directly in memory.
- Optimizing queries with better query optimizers

CHAPTER II – VII – ODS (OPERATIONAL DATA STORAGE) – OVERVIEW

- Similarity to Data Warehouse
 - Integration of data from various operational systems
- Purpose
 - Consolidation of important data from operational systems
- Integration Process
 - Utilization of ETL (Extract, Transform, Load)
 - Data integrated into a single database
- Difference from Data Warehouse
 - Usage for operational decision making
 - Contrasting requirements and processes
- Operational Decision Making
 - Focus on quick, tactical decisions
 - Not primarily for analytical or strategic purposes

CHAPTER II – VII – ODS (OPERATIONAL DATA STORAGE) – REQUIREMENTS

CRM Systeme

Complementary roles in fulfilling different

decision-making needs in an organization

- Focus on Operational Decisions
 - No requirement for extensive historical data
 - Emphasis on current state of data
- Timeliness of Data
 - Need for immediate reflection of data from source systems
 - Importance of near-real-time data updates
- Importance of Data Accuracy
 - Avoidance of operational decisions based on outdated or incorrect data
- Contrast with Data Warehouse
 - Differentiated by data update frequency and historical data retention
 - Data warehouse for strategic decisions, ODS for operational decisions

CHAPTER II – VII – ODS (OPERATIONAL DATA STORAGE) – EXAMPLE (USE CASE)

- Scenario: Financial Service Company
 - Customers engage in various activities: ETFs, stocks, cryptocurrencies, account balance
- Integration of Data from Different Systems
 - Multiple systems for crypto, stock trading, etc.
 - Need to consolidate overall customer balance across systems
- Importance of Timely Data Reflection
 - Immediate availability of combined customer balance for operational decisions
 - Decision-making for customer credit assessments, for instance
- Focus on Operational Decision Making
 - Requirement for accurate, current data from operational systems
 - Not for strategic analysis but for immediate operational decisions
- Data Update Approach
 - ETL or real-time data feed for near-real-time updates
 - Data replacement or update rather than appending for history

CHAPTER II – VII – ODS (OPERATIONAL DATA STORAGE) – ODS AND/OR DWH

CHAPTER II – VII – ODS (OPERATIONAL DATA STORAGE) – SEQUENTUAL ODS

CHAPTER II – VII – ODS (OPERATIONAL DATA STORAGE) – EXAMPLE (USE CASE)

- Decreasing Relevance of ODS
 - Improved Hardware Performance
 - Faster data loading reduces need for ODS
 - Emergence of Alternative Technologies
 - Other solutions offer real-time or rapidly updated data
 - Diminishing need for traditional ODS
- Uncommon Implementation
 - Increasing rarity of ODS in companies
 - Shift towards alternative data management approaches
- Pragmatic Approach to Terminology
 - Focus on practical usage rather than terminology
 - Utilize existing ODS if available in the company
 - Potential integration into ETL processes
 - Avoid fixation on definitions, prioritize functionality and utility
- Summary of Architectural Concepts
 - Recap of discussed data warehouse architectures
 - Consolidation of key learnings in upcoming lecture