Relatório de Algoritmos e Estruturas de Dados II

Objetivo

Fazer a análise do algoritmo misto entre o *QuickSort* e o algoritmo de ordenação por *Inserção*, escolhendo o limite ideal para a transição entre os dois algoritmos.

Procedimento

Para encontrarmos o valor k, onde k = b-a+1, tal que para um valor inferior a este seja melhor usar o algoritmo de *Inserção* e. caso contrário, o *QuickSort*, é necessário fazer uma comparação entre os custos destes dois algoritmos.

Vimos em aula que os custos destes dois algoritmos, em relação ao número de comparações, são:

$$0 \le C_I(n) \le \frac{n^2}{2}$$
, para o custo do *Inserção* e

$$nlog(n) \le C_Q(n) \le \frac{n^2}{2}$$
, para o custo do *QuickSort*.

Lembrando que existe apenas uma situação onde ocorre o melhor caso do *Inserção* e uma situação para o pior caso do *QuickSort*. Então, deixando de lado esses dois extremos é possível plotar um gráfico de $C(n) \times n$ e definir k.

$$C_I(n) \le C_Q(n) \Leftrightarrow nlog(n) \le \frac{n^2}{2}$$
, para $n < k$ com $n, k \in \mathbb{N}$.

n	QuickSort	Inserção
0	0,00	0,00
1	0,00	0,00
2	3,17	2,00
3	4,75	4,50
4	8,00	8,00
5	11,61	12,50
6	15,51	18,00
7	19,65	24,50
8	24,00	32,00
9	28,53	40,50
10	33,22	50,00

É possível observar que para vetores com até quatro elementos o algoritmo QuickSort possui um custo maior. Temos então que para um certo n < 5 é melhor usar o algoritmo de Inserção.

Conclusão

Através da análise dos algoritmos foi possível observar que k=5 é o limite ideal para a transição entre o algoritmo de *Inserção* e o *QuickSort*.