# **Lineare Algebra S2**

Raphael Nambiar

Version: 10. Juni 2022

# Vektorgeometrie

### **Begriffe**

**Kollinear:** Es existiert eine Gerade q, zu der beide Vektoren parallel

Komplanar: Existiert eine Ebene e, zu der alle drei Vektoren parallel.

**Ortsvektor:** Beginnt vim Ursprung. Schreibweise:  $\vec{r}(P)$ **Nullvektor:** Vektor mit Betrag 0,keine Richtung.:  $\vec{0}$ 

### Betrag

$$|\vec{a}| = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \sqrt{x^2 + y^2 + z^2}$$

#### Skalarprodukt

$$\vec{a} \cdot \vec{b} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \cdot \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = a_x b_x + a_y b_y + a_z b_z$$
$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos(\varphi)$$

$$\cos(\varphi) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} \to \arccos(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|})$$

# Orthogonal

Wenn zwei Vektoren senkrecht zueinander sind.

$$\vec{a} \cdot \vec{b} = 0$$

# **Orthogonale Projektion**

Projektion des Vektores  $\vec{b}$  auf den Vektor  $\vec{a}$ .



$$\vec{b}_a = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \cdot \vec{a}$$

$$|\vec{b}_a| = \frac{|\vec{a}| \cdot |\vec{b}|}{|\vec{a}|}$$

$$|\vec{b}_a| = |\vec{a}| \cdot \cos(\varphi)$$

### Zwischenwinkel

$$\varphi = \cos^{-1}(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|})$$

#### Einheitsvektor

$$ec{e}_a=rac{1}{|ec{a}|}\cdotec{a}$$
 ;  $|ec{e}_a|=1$ 

### Vektorprodukt / Kreuzprodukt

$$\begin{pmatrix}
a_1 \\
a_2 \\
a_3
\end{pmatrix}
\begin{pmatrix}
b_1 \\
b_2 \\
a_3b_1 - a_1b_3 \\
a_1b_2 - a_2b_1
\end{pmatrix}$$

$$\begin{pmatrix}
a_1b_2 - a_2b_1 \\
a_2b_3 - a_3b_2
\end{pmatrix}$$

$$\begin{pmatrix}
a_1b_2 - a_2b_1 \\
a_2b_3 - a_3b_3
\end{pmatrix}$$

$$\begin{array}{ll} \mid \vec{a} \times \vec{b} \mid = \mid \vec{a} \mid \cdot \mid \vec{b} \mid \cdot \cos(\alpha) & g : \vec{r}(P) + \\ \vec{a} \times \vec{b} \text{ ist orthogonal zu } \vec{a} \text{ und} & \text{P: Aufpunkt} \\ \text{zu } \vec{b} & \vec{a} = \overrightarrow{PQ}; = \end{array}$$

# Kreuzprodukt in R<sup>2</sup>

Seien a und b zwei Vektoren, dann gilt für das Kreuzprodukt in  $R^2$ :

$$\begin{split} \mathbf{a} &= \begin{bmatrix} a_x \\ a_y \end{bmatrix} \quad \text{ und } \quad \mathbf{b} = \begin{bmatrix} b_x \\ b_y \end{bmatrix} \\ \vec{\mathbf{a}} \times \vec{\mathbf{b}} &= \det \begin{pmatrix} \vec{\mathbf{a}} \, \vec{\mathbf{b}} \end{pmatrix} = \begin{vmatrix} \mathbf{a}_x & \mathbf{b}_x \\ \mathbf{a}_y & \mathbf{b}_y \end{vmatrix} = \mathbf{a}_x \cdot \mathbf{b}_y - \mathbf{b}_x \cdot \mathbf{a}_y \end{split}$$

### Fläche / Parallelogramm



$$\mid \vec{a} imes \vec{b} \mid = \mathsf{A}$$
  
Dreieck  $= \frac{1}{2} \mathsf{A}$ 

# Volumen / Spatprodukt

Das Spatprodukt der drei Vektoren  $\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$  und  $\vec{c} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$ 

- berechnest du mit
  - $(\vec{a} \times \vec{b}) \cdot \vec{c}$  oder mit
- der Determinante  $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$  Volumen: ->  $\mid$  Betrag nehmen  $\mid$

#### Geraden

### **Parameterdarstellung**

$$g: \vec{r}(P) + \lambda \cdot \vec{a}$$

 $\vec{a} = \overrightarrow{PQ}$ ; = Richtungsvektor

### Koordinatendarstellung

$$g: ax + by + c = 0$$

### Koordinatendarstellung zu Parameterdarstellung

Zwei Punkte auf q bestimmen: 2 beliebige x Koordinaten wählen und in q einsetzen. Danach jeweils q auslesen. Dies ergibt zwei Punkte P,Q. In Parameterdarstellung bringen.

### Parameterdarstellung zu Koordinatendarstellung

Gerade 
$$g: \begin{pmatrix} 7\\1 \end{pmatrix} + \lambda \cdot \begin{pmatrix} -2\\-4 \end{pmatrix}$$

Gleichungssystem aufstellen und Lösen:

$$x = 7 - 2\lambda$$
$$y = 1 - 4\lambda$$

In Koordinatendarstellung bringen: -2x + y + 13 = 0

### Abstand Punkt zu Geraden

Gerade g: 
$$\begin{pmatrix} 1\\13\\-5 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 3\\5\\-4 \end{pmatrix}$$

Punkt A: 
$$(3, -1, 4)$$

$$\overrightarrow{PA} = \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix} - \begin{pmatrix} 1 \\ 13 \\ -5 \end{pmatrix} = \begin{pmatrix} 2 \\ -14 \\ 9 \end{pmatrix}$$

$$l = \frac{|PA \times \vec{a}|}{|\vec{a}|}$$

 $\vec{a} \Rightarrow \text{aus der Parameterdarstellung}$ 

#### Ebene

### Normalenvektor der Ebene (orthogonal zur Ebene)

Auf der Ebene E senkrecht stehnder Vektor  $\vec{n}$ .

$$\vec{n} = \vec{a} \times \vec{b}$$

### Parameterdarstellung

$$E: \vec{r}(P) + \lambda \cdot \vec{a} + \mu \cdot \vec{b}$$

P: Aufpunkt

$$\vec{a} = \overrightarrow{PQ}$$
;  $\vec{b} = \overrightarrow{PR} = \text{Richtungsvektoren}$ 

### Koordinatendarstellung

$$E: ax + by + cz + d = 0$$

### Parameterdarstellung zu Koordinatendarstellung

$$E: \begin{pmatrix} 2\\4\\1 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1\\3\\1 \end{pmatrix} + \mu \cdot \begin{pmatrix} 2\\4\\-4 \end{pmatrix}$$
$$\vec{n} = \begin{pmatrix} 1\\3\\1 \end{pmatrix} \times \begin{pmatrix} 2\\4\\-4 \end{pmatrix} = \begin{pmatrix} -14\\6\\-4 \end{pmatrix}$$

- 2 Koordinatendarstellung E: -14x + 6y 4z + d = 0
- (3) Aufpunkt einsetzen:  $\begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix} \Rightarrow E: -14 \cdot 2 + 6 \cdot 4 4 \cdot 1 + d = 0$
- (4) d ausrechnen:  $E: -14 \cdot 2 + 6 \cdot 4 4 \cdot 1 + d = 0 \Rightarrow d = 8$
- (5) E: -14x + 6y 4z + 8 = 0 $\Rightarrow \frac{-14x + 6y - 4z + 8 = 0}{2} \Rightarrow E: -7x + 3y - 2z + 4 = 0$

# Koordinatendarstellung zu Parameterdarstellung

Wir bestimmen drei beliebige Punkte auf E, indem wir die x- und y- Koordinaten frei wählen und die zugehörigen z-Koordinaten aus der Koordinatendarstellung von E berechnen. Aus diesen drei Punkten können wir dann eine Parameterdarstellung von E gewinnen.

$$\begin{array}{lll} E: 2x + 7y - 4z + 1 = 0 \\ x = 0, y = 0 & -4z + 1 = 0 \Rightarrow z = 1/4 \Rightarrow P = (0; 0; 1/4) \\ x = 1, y = 0 & 2 - 4z + 1 = 0 \Rightarrow z = 3/4 \Rightarrow Q = (1; 0; 3/4) \\ x = 0, y = 1 & 7 - 4z + 1 = 0 \Rightarrow z = 2 \Rightarrow R = (0; 1; 2) \end{array}$$
 Eine mögliche Parameterdarstellung der Ebene  $E: \begin{pmatrix} 0 \\ 0 \\ 1/4 \end{pmatrix} + \lambda \cdot \begin{pmatrix} 1 \\ 0 \\ \frac{1}{7} \end{pmatrix} + \mu \cdot \begin{pmatrix} 0 \\ 1 \\ \frac{7}{7} \end{pmatrix}$ 

#### Abstand Punkt zu Ebene

Abstand 
$$l=rac{|ax_A+bx_A+cz_A+d|}{|\vec{n}|}$$

Ebene 
$$E: 3x - 6y - 2z + 67 = 0$$
  
Punkt  $A = (3, -4, 1)$ 

(2) 
$$l = \frac{(3\cdot3) - (6\cdot(-4)) - (2\cdot1)}{7} = 14$$

### normierte Koordinatendarstellung der Ebene

$$E: 2x + 7y - 4z + 1 = 0$$

$$\vec{n} = \begin{pmatrix} 2 \\ -6 \\ 2 \end{pmatrix}$$
  $|\vec{n}| = \sqrt{2^2 + (-6)^2 + 3^2} = \sqrt{49} = 1$ 

normierte Koordinatendarstellung der Ebene

E: 
$$\frac{2}{7} \cdot x - \frac{6}{7} \cdot y + \frac{3}{7} \cdot z + \frac{4}{7} = 0$$

### Linearen Gleichungssysteme

#### Rang

Matrix muss in Zeilenstufenform sein.

rg(A) = Gesamtanzahl Zeilen - Anzahl Nullzeilen .

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 6 & 4 \\ 0 & 3 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 3 \\ 0 & 6 & 4 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \begin{array}{l} \operatorname{rang}(\mathbf{A}) = 2 \\ \operatorname{rang}(\mathbf{A}|\mathbf{b}) = 2 \\ \mathbf{A} \end{array}$$

#### Lösbarkeit von LGS

n = Anzahl Spalten(Variablen)

Das LGS  $A \cdot \vec{x} = \vec{c}$  ist genau dann lösbar, wenn  $\operatorname{rg}(A) = \operatorname{rg}(A \mid \vec{c})$ . Es hat genau eine Lösung, falls **zusätzlich** gilt:  $\operatorname{rg}(A) = n$ . Es hat unendlich viele Lösungen, falls **zusätzlich** gilt:  $\operatorname{rg}(A) < n$ .

### Freie Variable

Lösungsmenge:  $\lambda_3=$  kann beliebig gewählt werden,  $\infty$ -viele Lösungen.

#### Matrizen

### Begriffe

Quadratische Matrix: gleich viele Zeilen und Spalten

**Hauptdiagonale:** Die Diagonale von links oben nach rechts unten

Untere- und obere Dreiecksmatrix

| Ontere and obere Breicensmatrix |                                   |                              |  |  |  |
|---------------------------------|-----------------------------------|------------------------------|--|--|--|
| Beispiel                        | (a) (1. L. J.)<br>(0. C. S.)      |                              |  |  |  |
| Beschreibung                    | unles des Happdiag.<br>alles NUI. | ale Nul.                     |  |  |  |
| Bezeichnung                     | Ober Dreiedrandin                 | Unlere Dreichnahr<br>L=Loner |  |  |  |

**Symmetrische Matrix :** symmetrisch bzgl. Hauptdiagonale

$$\begin{pmatrix} 1 & 5 & 6 \\ 5 & 2 & 3 \\ 6 & 3 & 1 \end{pmatrix}$$

### Multiplikation / Rechenregeln

$$A = \begin{pmatrix} 2 & -3 \\ 2 & 1 \end{pmatrix}$$

$$\begin{vmatrix} 2 & -3 \\ 2 & 1 \end{vmatrix}$$

$$A, B, C \in \mathbb{R}^{m \times n} \land \lambda, \mu \in \mathbb{R}$$

$$A + (B + C) = (A + B) + C$$

$$A + B = B + A$$

$$A + 0 = A$$

$$A - A = 0 \text{ (Null matrix)}$$

### Transponieren

$$A = \begin{pmatrix} 2 & 3 & 0 \\ 1 & 4 & 5 \end{pmatrix} \longrightarrow A^T = \begin{pmatrix} 2 & 1 \\ 3 & 4 \\ 0 & 5 \end{pmatrix}$$

Rechenregeln:

$$(A^T)^T = A$$
$$(A+B)^T = A^T + B^T$$
$$(A \cdot B)^T = B^T \cdot A^T$$

Gilt  $A = A^T$ , so heißt die Matrix A symmetrisch.

Gilt  $A = -A^T$ , so heißt die Matrix A antisymmetrisch.

#### Inverse

Matrix muss quadratisch sein:  $n \times n \rightarrow 2 \times 2, 3 \times 3$ 

#### 2x2

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \cdot \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Die  $2 \times 2$ -Matrix hat genau dann ein Invese wenn  $ad - bc \neq 0$ 

### 3x3 und grösser

#### Determinante

### 2x2

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = a \cdot d - b \cdot c$$

# 3x3 Regel von Sarrus

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \cdot e \cdot i + b \cdot f \cdot g + c \cdot d \cdot h - g \cdot e \cdot c - h \cdot f \cdot a - i \cdot d \cdot b.$$

# Laplacescher Entwicklungssatz (>3x3)

Vorzeichen:

Entwickeln nach derjenigen Zeile oder Spalte, in der die meisten Nullen stehen (hier gelb)

$$\begin{vmatrix} 2 & -1 & 3 & 0 & 5 \\ 0 & 4 & 1 & 3 & -2 \\ 0 & \overline{0} & \overline{2} & 0 & 0 \\ 6 & 2 & -1 & 0 & 3 \\ 3 & -1 & 4 & 0 & 2 \end{vmatrix} \rightarrow 2 \cdot det \begin{vmatrix} 2 & 1 & 0 & 5 \\ 0 & 4 & 3 & -2 \\ 6 & 2 & 0 & 3 \\ 3 & -1 & 0 & 2 \end{vmatrix}$$

Wichtig: häufig sind die entwickelten identisch! → Aufwand sparen!

$$A = \begin{bmatrix} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \\ a_{20} & a_{21} & a_{22} \end{bmatrix}$$

Entwicklen nach 1er

$$\det(A) = +\underline{a_{00}} \cdot \det \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} - \underline{a_{01}} \cdot \det \begin{bmatrix} a_{10} & a_{12} \\ a_{20} & a_{22} \end{bmatrix} + \underline{a_{02}} \cdot \det \begin{bmatrix} a_{10} & a_{11} \\ a_{20} & a_{21} \end{bmatrix}$$

$$= +a_{00}(a_{11}a_{22} - a_{12}a_{21}) - a_{01}(a_{10}a_{22} - a_{12}a_{20}) + a_{02}(a_{10}a_{21} - a_{11}a_{20})$$

$$= +a_{00}a_{11}a_{22} + a_{01}a_{12}a_{20} + a_{02}a_{10}a_{21} - a_{00}a_{12}a_{21} - a_{01}a_{10}a_{22} - a_{02}a_{11}a_{20}$$

# det Dreiecksmatrix = Produkt der Hauptdiagonale

### Rechenregeln

- (1) Für die Einheitsmatrix E gilt: det(E) = 1
- (2) Für jede  $n \times n$  -Dreiecksmatrix U gilt:  $\det(U) = u_{11} \cdot u_{22} \cdot ... \cdot u_{nn}$
- (3) Für jede quadratische Matrix A gilt:  $det(A^T) = det(A)$
- (4) Für alle  $n \times n$  -Matrizen A und B gilt:  $\det(A \cdot B) = \det(A) \cdot \det(B)$
- (5) Für jede invertierbare Matrix A gilt:  $\det(A^{-1}) = \frac{1}{\det(A)}$
- (6) Für jede  $n \times n$  -Matrix A und jedes  $\lambda \in \mathbb{R}$  gilt:  $\det(\lambda \cdot A) = \lambda^n \cdot \det(A)$

$$2 \times 2 \rightarrow det(5 \cdot A) = 5^2 \cdot det(A)$$
  
 $3 \times 3 \rightarrow det(5 \cdot A) = 5^3 \cdot det(A)$ 

### Geometrische Interpretation der Determinante

### 2x2

Fläche von  $\vec{a}$  und  $\vec{b}$  = Betrag von  $\det \begin{vmatrix} a1 & b1 \\ a2 & b2 \end{vmatrix}^{\frac{1}{\tilde{a}}}$ 

### 3x3

Volumen von  $\vec{a}$ ,  $\vec{b}$  und  $\vec{c}$  = Betrag von  $\det \begin{vmatrix} a1 & b1 & c1 \\ a2 & b2 & c2 \\ a3 & b3 & c3 \end{vmatrix}$ 



# Matrizengleichungen

| Grundgleichung          | Lösung                            |  |  |
|-------------------------|-----------------------------------|--|--|
| $A \cdot X = B$         | $X = A^{-1} \cdot B$              |  |  |
| $X \cdot A = B$         | $X = B \cdot A^{-1}$              |  |  |
| $A \cdot X \cdot B = C$ | $X = A^{-1} \cdot C \cdot B^{-1}$ |  |  |

# Lösung einer Matrizengleichung:

(1) Wenn man eine unbekannte Matrix X ausklammert, muss X nach dem Ausklammern auf der Seite stehen, wo sie vorher stand:

$$A \cdot X + B \cdot X = (A + B) \cdot X$$

(2) Die Zahlen beim Ausklammern werden mit einer Einheits-

matrix multipliziert:

$$A \cdot X + 4X = (A + 4E) \cdot X$$

(3) Man kann nicht durch eine Matrix dividieren, man kann aber mit einer inversen Matrix multiplizieren:

$$A \cdot X = B \rightarrow X = A^{-1} \cdot B$$

$$X \cdot A = B \rightarrow X = B \cdot A^{-1}$$

$$A \cdot X + 4 \cdot X = C \to (A + 4E) \cdot X = C \to X = (A + 4E)^{-1} \cdot C$$

### Vektorräume

#### Unterräume

Eine Teilmenge U eines Vektorraums V heisst Unterraum von V wenn U selber auch ein Vektorraum ist.

#### Unterraumkriterien

- (1) Für beliebige Elemente  $\vec{a}, \vec{b} \in U$  ist  $\vec{a} + \vec{b} \in U$ .
- (2) Für jeden Skalar  $\lambda \in \mathbb{R}$  und jeden Vektor  $\vec{a} \in U$  ist  $\lambda \cdot \vec{a} \in U$ .

# Unterraumkriterien überprüfen

(a) Ja, Vektorraum
$$1. \begin{pmatrix} a_1 & 0 \\ 0 & b_1 \end{pmatrix} + \begin{pmatrix} a_2 & 0 \\ 0 & b_2 \end{pmatrix} = \begin{pmatrix} a_1 + a_2 & 0 \\ 0 & b_1 + b_2 \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \in M_1$$

$$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \qquad 2. \lambda \cdot \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} = \begin{pmatrix} \lambda \cdot a & 0 \\ 0 & \lambda \cdot b \end{pmatrix} \in M_1$$

$$\begin{pmatrix} a & 1 \\ 1 & b \end{pmatrix} \text{ Nein } \rightarrow \begin{pmatrix} a_1 & 1 \\ 1 & b_1 \end{pmatrix} + \begin{pmatrix} a_2 & 1 \\ 1 & b_2 \end{pmatrix} = \begin{pmatrix} a_1 + a_2 & 2 \\ 2 & b_1 + b_2 \end{pmatrix} \neq \begin{pmatrix} a & 1 \\ 1 & b \end{pmatrix}.$$

#### Linearkombination

Stellen Sie 
$$\vec{d} = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}$$
 als Linearkombination von  $\vec{a} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ ,  $\vec{b} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$  und  $\vec{c} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$  dar.

Gesucht sind 
$$\lambda$$
,  $\mu$  und  $\nu$  mit  $\lambda \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \mu \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + \nu \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}$ 

### Lineareabhängigkeit prüfen

#### Quadratische Matrix:

 $det(a) = 0 \Rightarrow \text{Lineare Abhängigkeit}$ 

 $det(a) \neq 0 \Rightarrow$  Lineare Unabhängigkeit

# Nicht Quadratische Matrix:

Vektoren nebeneinander in eine Matrix schreiben → Gauss Nullzeile oder -Spalte in der Matrix ⇒ Lineare Abhängigkeit der Vektoren

Keine Nullzeile oder-Spalte in der Matrix ⇒ Lineare Unabhängigkeit der Vektoren.

# Linearer Spann (Lineare Hülle)

Diese Menge besteht aus allen Vielfachen der Vektoren und deren Summen, ist also die Menge aller möglichen Linearkombinationen, die mit den gegebenen Vektoren gebildet werden können.

$$span(\vec{a}, \vec{b}) = \mathsf{Ebene}$$

 $span(\vec{a}, \vec{b}, \vec{c}) = eine Gerade mit Aufpunkt.$ 

#### Dimension

Wir betrachten einen reellen Vektorraum V. Die Anzahl Vektoren, die eine Basis von V bilden, heisst Dimension von V.

Bezeichnung: dim(V)

# Es gilt:

$$\begin{array}{ll} \text{Vektorraum } \{ \vec{0} \} \rightarrow \dim \ 0 & \dim = rg(A) \\ \dim(span(\vec{a},\vec{b})) = 2 & \dim(R^{3\times 3}) = 2 \\ \dim(R^{2\times 2}) = 2 & \end{array}$$

# Beispiel:

$$A:A^T=-A$$

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} -a & -b \\ -c & -d \end{pmatrix}$$

$$\implies a = -a; \ d = -d; \ c = -b; \ b = -c$$

$$\begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix} \rightarrow dim() = 1$$

### Erzeugendensystem

Eine Menge von Vektoren heißt Erzeugendensystem, wenn man mit ihnen alle Vektoren eines Vektorraumes durch Linearkombination erzeugen kann.

# Menge von Vektoren auf Erzeugendeneigenschaft überprüfen

 $\rightarrow$  Bestimmung des Rangs rq(A)

Wenn  $rq(A) < \text{Anzahl Zeilen}(m) \rightarrow \text{kein Erzeugendensystem}$ 

#### Basis eines Vektorraums

Eine Basis eines Vektorraumes ist ein "minimales Erzeugendensystem"des Vektorraumes. Die Vektoren einer Basis nennt man Basisvektoren.

### Uberprüfung, ob eine Menge von Vektoren eine Basis ist Quadratische Matrix : $\rightarrow det(A) \neq 0$

Generell:

- (1) Die Anzahl der Vektoren stimmt überein mit der Dimension des Vektorraumes.
- (2) Die Vektoren sind linear unabhängig.

# Wichtige Basen

Für  $\mathbb{R}^n$ : Basis S heisst StandardbasisFür  $P_n[x]$ : Basus M heisst Monombasis

# Umrechnung von Basis B zur Standardbasis S

$$\vec{a} = a_1 \cdot \vec{b_1} + a_2 \cdot \vec{b_2} + a_3 \cdot \vec{b_3} \dots + a_n \cdot \vec{b_n}$$

Beispiel: 
$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix} \right\}$$

(7, -3, -1) von B nach S

$$\vec{b} = \begin{pmatrix} 7 \\ -3 \\ 1 \end{pmatrix}_{\mathcal{B}} = 7 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}_{\mathcal{S}} - 3 \cdot \begin{pmatrix} 2 \\ 2 \\ 0 \\ 0 \end{pmatrix}_{\mathcal{S}} + 1 \cdot \begin{pmatrix} 3 \\ 3 \\ 3 \\ 0 \end{pmatrix}_{\mathcal{S}} = \begin{pmatrix} 4 \\ -3 \\ 3 \\ 3 \end{pmatrix}$$

# Umrechnung von Standardbasis S zur Basis B

LGS bilden:

### Lineare Abbildungen

### **Definition: Lineare Abbildung**

Gegeben sind zwei reelle Vektorräume V und W (können auch identisch sein).

Eine Abbildung  $f:V\to W$  heisst  $lineare\ Abbildung$ , wenn für alle Vektoren  $\vec{x},\vec{y}\in V$  und jeden Skalar  $\lambda\in\mathbb{R}$  gilt:

(1) 
$$f(\vec{x} + \vec{y}) = f(\vec{x}) + f(\vec{y})$$

$$(2) \ f(\lambda \cdot \vec{x}) = \lambda \cdot f(\vec{y})$$

Der Vektor  $\vec{x} \in W$ , der herauskommt, wenn f auf einen Vektor  $\vec{x}$  angewendet, heisst **Bild** von  $\vec{x}$ .

### Beispiele:

(a) 
$$f: \mathbb{R}^2 \to \mathbb{R}^2: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

(c) 
$$f: \mathbb{R}^2 \to \mathbb{R}^2: {x_1 \choose x_2} \mapsto {x_1 + 2x_2 \choose x_2}$$

(e) 
$$f: \mathbb{R}^3 \to \mathbb{R}^2: \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \mapsto \begin{pmatrix} 2x_1 - x_2 \\ -3x_1 + 5x_3 \end{pmatrix}$$

(a) Bed 1: 
$$f\left(\binom{x_1}{x_2} + \binom{y_1}{y_2}\right) = f\left(\binom{x_1 + y_1}{x_2 + y_2}\right) = \binom{0}{0}$$
  
 $f\left(\binom{x_1}{x_2}\right) + f\left(\binom{y_1}{y_2}\right) = \binom{0}{0} + \binom{0}{0} = \binom{0}{0}$  o.k.

Bed 2: 
$$f\left(\lambda \cdot {x_1 \choose x_2}\right) = f\left({\lambda \cdot x_1 \choose \lambda \cdot x_2}\right) = {0 \choose 0}$$
  
 $\lambda \cdot f\left({x_1 \choose x_2}\right) = \lambda \cdot {0 \choose 0} = {0 \choose 0}$  o.k.  $\Rightarrow f$  ist lines

(b) Bed 1: 
$$f\left(\binom{x_1}{x_2} + \binom{y_1}{y_2}\right) = f\left(\binom{x_1 + y_1}{x_2 + y_2}\right) = \binom{x_1 + y_1 + 2}{x_2 + y_2}$$
  
 $f\left(\binom{x_1}{x_2}\right) + f\left(\binom{y_1}{y_2}\right) = \binom{x_1 + 2}{x_2} + \binom{y_1 + 2}{y_2} = \binom{x_1 + y_1 + 4}{x_2 + y_2}$   
nicht gleich  $\Rightarrow f$  ist nicht linear

$$\begin{array}{c} \text{(c) Bed 1: } f\left(\binom{x_1}{x_2} + \binom{y_1}{y_2}\right) = f\left(\binom{x_1 + y_1}{x_2 + y_2}\right) = \binom{x_1 + y_1 + 2(x_2 + y_2)}{x_2 + y_2} \\ f\left(\binom{x_1}{x_2}\right) + f\left(\binom{y_1}{y_2}\right) = \binom{x_1 + 2x_2}{x_2} + \binom{y_1 + 2y_2}{y_2} = \binom{x_1 + 2x_2 + y_1 + 2y_2}{x_2 + y_2} \\ \text{o.k.} \end{array}$$

Bed 2: 
$$f\left(\lambda \cdot {x_1 \choose x_2}\right) = f\left({\lambda \cdot x_1 \choose \lambda \cdot x_2}\right) = {\lambda \cdot x_1 + 2\lambda \cdot x_2 \choose \lambda \cdot x_2}$$
  
 $\lambda \cdot f\left({x_1 \choose x_2}\right) = \lambda \cdot {x_1 + 2x_2 \choose x_2} = {\lambda \cdot (x_1 + 2x_2) \choose \lambda \cdot x_2}$  o.k.  $\Rightarrow f$  ist linear.

### **Abbildungsmatrix**

Bzgl. Standardbasis: Ablesen  $\rightarrow$ 

1.

Gegeben ist die lineare Abbildung  $f: \mathbb{R}^2 \to \mathbb{R}^3: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_2 \\ x_2 \end{pmatrix}$ 

Bestimmen Sie die Abbildungsmatrix A von f.

.

Wir betrachten die lineare Abbildung  $f: \mathbb{R}^2 \to \mathbb{R}^2: \binom{x_1}{x_2}_{\mathcal{S}} \mapsto \binom{x_1 - x_2}{x_1 + x_2}_{\mathcal{S}}$ . Dabei ist  $\mathcal{S}$  die Standardbasis von  $\mathbb{R}^2$ . Bestimmen Sie

- (a) die Abbildungsmatrix  $_{\mathcal{S}}A_{\mathcal{S}}$  von f bezüglich  $\mathcal{S}$ .
- (b) die Abbildungsmatrix  $_{\mathcal{B}}A_{\mathcal{B}}$  von f bezüglich der Basis  $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}_{\mathcal{S}}; \begin{pmatrix} -1 \\ 0 \end{pmatrix}_{\mathcal{S}} \right\}$  von  $\mathbb{R}^2$ .

(a) 
$$f\left(\begin{pmatrix}1\\0\\\delta\end{pmatrix}\right) = \begin{pmatrix}1\\1\\\delta\end{pmatrix}$$
,  $f\left(\begin{pmatrix}0\\1\\0\\\delta\end{pmatrix}\right) = \begin{pmatrix}-1\\1\\0\\\delta$ ,  $_{\mathcal{S}}A_{\mathcal{S}} = \begin{pmatrix}1&-1\\1&1\end{pmatrix}_{\mathcal{S}}$ 

(b) 
$$f(\vec{b}_1) = f\left(\binom{1}{1}_{\mathcal{S}}\right) = \binom{0}{2}_{\mathcal{S}} = 2 \cdot \left(\binom{1}{1}_{\mathcal{S}} + \binom{-1}{0}_{\mathcal{S}}\right) = 2\vec{b}_1 + 2\vec{b}_2 = \binom{2}{2}_{\mathcal{S}}$$

$$f(\vec{b}_2) = f\left(\binom{-1}{0}_{\mathcal{S}}\right) = \binom{-1}{-1}_{\mathcal{S}} = -\binom{1}{1}_{\mathcal{S}} = -\vec{b}_1 = \binom{-1}{0}_{\mathcal{B}}$$

$${}_{\mathcal{B}}A_{\mathcal{B}} = \binom{2}{2} - \binom{-1}{0}_{\mathcal{B}}$$

### $cA_B$ Beispiel 5

Gegeben ist die lineare Abbildung  $f: \mathbb{R}^2 \to \mathbb{R}^3: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}_{\mathcal{S}_2} \mapsto \begin{pmatrix} -x_2 \\ 2x_1 \\ x_2 - x_1 \end{pmatrix}_{\mathcal{S}_2}$  sowie

$$\operatorname{die \, Basen} \, \mathcal{B} = \left\{ \binom{2}{5}_{\mathcal{S}_2} \, ; \, \, \binom{-1}{3}_{\mathcal{S}_2} \right\} \operatorname{von} \, \mathbb{R}^2 \, \operatorname{und} \, \mathcal{C} = \left\{ \binom{1}{0}_{1}_{\mathcal{S}_3} \, ; \, \, \binom{0}{2}_{1}_{\mathcal{S}_3} \, ; \, \, \binom{1}{-4}_{0}_{\mathcal{S}_3} \right\} \operatorname{von} \, \mathbb{R}^3.$$

Bestimmen Sie die Abbildungsmatrix  ${}_{\mathcal{C}}A_{\mathcal{B}}$  von f sowie das Bild  $f(\vec{x})$  von  $\vec{x} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}_{\mathcal{B}}$ .

 $\widehat{(1)}$  Vektoren aus  $\mathcal B$  in f einsetzen

1. 
$$f(b_1) = f(\frac{2}{5}) = \begin{pmatrix} -5\\4\\3 \end{pmatrix}_S$$
; 2.  $f(b_2) = f(\frac{-1}{3}) = \begin{pmatrix} -3\\-2\\4 \end{pmatrix}_S$ 

(2) dargestellt über C (LGS mit C und (1))

$$cA_B = \begin{pmatrix} -11 & -11 \\ 14 & 15 \\ 6 & 8 \end{pmatrix}$$

(3) Bild von  $f(\vec{x})$  von  $\vec{x}$ ...

$$f(b_1) = f({-2 \choose 1}_B = cA_B \cdot f(b_1) = f({-2 \choose 1}_B)$$

$$\begin{pmatrix} -11 & -11 \\ 14 & 15 \\ 6 & 8 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 11 \\ -13 \\ -4 \end{pmatrix}$$

### Verknüpfung von linearen Abbildungen(Komposition)

 $f \rightarrow \mathsf{Abbildungsmatrix} \ \mathsf{A} \ ; \ q \rightarrow \mathsf{Abbildungsmatrix} \ \mathsf{B}$ 

$$g \circ f \to B \cdot A$$

$$f \circ g \to A \cdot B$$

Die Matrix der Abbildung, die zuerst ausgeführt wird, steht xechts

### lineare Abbildungen in der Ebene

→! normieren nicht vergessen! ←

| Streckung um $\lambda_1$ in $x$ und $\lambda_2$ in $y$         | orthogonale<br>Projektion<br>auf die Gerade<br>g: ax + by = 0<br>mit $a^2 + b^2 = 1$ | Spiegelung<br>an der Geraden<br>g: ax + by = 0 mit<br>$a^2 + b^2 = 1$ | $\begin{array}{c} \textbf{Rotation} \\ \text{um den Ursprung} \\ \text{um Winkel } \varphi \end{array}$ | Scherung<br>in x-Richtung<br>mit Faktor m      |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------|
|                                                                |                                                                                      | 4                                                                     |                                                                                                         |                                                |
| $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$ | $\begin{pmatrix} 1-a^2 & -ab \\ -ab & 1-b^2 \end{pmatrix}$                           | $\begin{pmatrix} 1-2a^2 & -2ab \\ -2ab & 1-2b^2 \end{pmatrix}$        | $\begin{pmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix}$         | $\begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}$ |

### linearen Abbildungen im Raum

#### →! normieren nicht vergessen! ←

Bei einer zentrischen Streckung mit dem Faktor  $\lambda$  wird jeder Basisvektor mit diesem Faktor multipliziert. Somit ist die entsprechende Abbildungsmatrix gegeben durch:





goade

# 5.4.2 Orthogonale Projektionen und Spiegelungen

| Orthogonale Projektion auf die x/y-Ebene                            | Spiegelung an der $x/y$ -Ebene                                       | Orthogonale<br>Projektion<br>auf die x-Achse                        | Spiegelung<br>an der <i>x</i> -Achse                                  |  |
|---------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------|--|
| $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ | $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ | $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ | $\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ |  |
| Orthogonale Projektion auf die x/z-Ebene                            | Projektion Spiegelung                                                |                                                                     | Spiegelung<br>an der <i>y</i> -Achse                                  |  |
| $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ | $\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ | $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ | $\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ |  |
| Orthogonale Projektion auf die y/z-Ebene                            | Projektion Spiegelung                                                |                                                                     | Spiegelung<br>an der z-Achse                                          |  |
| $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ |                                                                      |                                                                     | $\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ |  |

#### Rotationen

#### Aufgabe: Rotationen um die Koordinatenachsen

(1) Rotation um den Winkel  $\varphi$  um die z-Achse:

| Blick von oben                                                                                                                                                              | $r_z(\vec{e}_1)$                                                    | $r_z(\vec{e}_2)$                                                     | $r_z(\vec{e}_3)$                            | Abbildungsmatrix                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c c} & \downarrow & \downarrow \\ & \downarrow & \downarrow \\ \hline \vdots & \downarrow & \downarrow \\ -1 & z & 0 & \overrightarrow{e_1} & 1 \end{array}$ | $\begin{pmatrix} \cos(\varphi) \\ \sin(\varphi) \\ 0 \end{pmatrix}$ | $\begin{pmatrix} -\sin(\varphi) \\ \cos(\varphi) \\ 0 \end{pmatrix}$ | $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ | $\begin{pmatrix} \cos(\varphi) & -\sin(\varphi) & 0\\ \sin(\varphi) & \cos(\varphi) & 0\\ 0 & 0 & 1 \end{pmatrix}$ |

(2) Rotation um den Winkel  $\varphi$  um die x-Achse:

| Blick von vorne                                       | $r_x(\vec{e}_1)$                            | $r_x(\vec{e}_2)$                                                    | $r_x(\vec{e}_3)$                                                     | Abbildungsmatrix                                                                                                     |
|-------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ | $\begin{pmatrix} 0 \\ \cos(\varphi) \\ \sin(\varphi) \end{pmatrix}$ | $\begin{pmatrix} 0 \\ -\sin(\varphi) \\ \cos(\varphi) \end{pmatrix}$ | $\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\varphi) & -\sin(\varphi) \\ 0 & \sin(\varphi) & \cos(\varphi) \end{pmatrix}$ |

(3) Rotation um den Winkel  $\varphi$  um die y-Achse

| Blick von rechts                                                                                                                                                                                                                                                  | $r_y(\vec{e}_1)$                                                     | $r_y(\vec{e}_2)$                            | $r_y(\vec{e}_3)$                                                    | Abbildungsmatrix                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c c} & & & \\ & & & \\ \hline \end{array}$ | $\begin{pmatrix} \cos(\varphi) \\ 0 \\ -\sin(\varphi) \end{pmatrix}$ | $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ | $\begin{pmatrix} \sin(\varphi) \\ 0 \\ \cos(\varphi) \end{pmatrix}$ | $\begin{pmatrix} \cos(\varphi) & 0 & \sin(\varphi) \\ 0 & 1 & 0 \\ -\sin(\varphi) & 0 & \cos(\varphi) \end{pmatrix}$ |

### Rotation um eine allgemeine Achse durch den Ursprung

$$\begin{pmatrix} \cos(\varphi) + a_1^2(1-\cos(\varphi)) & a_1a_2(1-\cos(\varphi)) - a_3\sin(\varphi) & a_1a_3(1-\cos(\varphi)) + a_2\sin(\varphi) \\ a_1a_2(1-\cos(\varphi)) + a_3\sin(\varphi) & \cos(\varphi) + a_2^2(1-\cos(\varphi)) & a_2a_3(1-\cos(\varphi)) - a_1\sin(\varphi) \\ a_1a_3(1-\cos(\varphi)) - a_2\sin(\varphi) & a_2a_3(1-\cos(\varphi)) + a_1\sin(\varphi) & \cos(\varphi) + a_3^2(1-\cos(\varphi)) \end{pmatrix}$$

#### Kern einer Matrix

**Definition:** Der Kern ker(A) einer  $m \times n$  -Matrix A ist die Lösungsmenge des homogenen linearen Gleichungssystems:

$$A \cdot \vec{x} = \vec{0}$$

$$det(A) \neq 0 \rightarrow Kern(A) = \{0\}$$
 trivial

$$det(A) = 0 \rightarrow Kern(A)$$
 ist nicht trivial.

# $\rightarrow$ Abbildungsmatrix $\rightarrow$ Lösen durch LGS

### Beispiel:

Bestimmen Sie Kern und Bild der linearen Abbildung  $f: \mathbb{R}^3 \to \mathbb{R}^3$ , die durch die folgendermassen definiert ist:

(a) 
$$f \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix}$$
  $f \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 6 \\ 3 \end{pmatrix}$   $f \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ -3 \end{pmatrix}$   
(b)  $f \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x - y + z \\ -6y + 12z \\ -2x + 2y - 2z \end{pmatrix}$ 

Abbildungsmatrix:

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & -6 & 12 \\ -2 & 2 & -2 \end{pmatrix}$$

Kern der Matrix (Lösung des LGS  $A\vec{x} = \vec{0}$ )

$$\begin{pmatrix} 1 & -1 & 1 & | & 0 \\ 0 & -6 & 12 & | & 0 \\ -2 & 2 & -2 & | & 0 \end{pmatrix} : (-6) \leftarrow \begin{bmatrix} 1 & -1 & 1 & | & 0 \\ 0 & 1 & -2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$ker(A) = \begin{cases} \vec{x} \in \mathbb{R}^3 | \vec{x} = \lambda \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \ \lambda \in \mathbb{R} \end{cases}$$

#### Bild einer Matrix

Wir multiplizieren eine Matrix A mit einem Vektor  $\vec{x}$  und erhalten den Lösungsvektor  $\vec{b}$ .

Das Bild einer Matrix gibt an, welche Menge an Vektoren als Lösungen auftreten können.

- ightarrow Die linear unabhängigen Spalten einer Matrix heißen Bild der Matrix.
- (1) Matrix in obere Dreiecksmatrix umwandeln
- 2 Linear unabhängige Spalten mithilfe der Köpfe bestimmen
- 3 Lösung aufschreiben

$$A = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 4 & 4 \\ 3 & 5 & 6 \end{pmatrix} \widehat{1} \rightarrow \begin{pmatrix} 1 & 3 & 2 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\widehat{2} \begin{pmatrix} 1 & 3 & 2 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 2 \\ 2 & 4 & 4 \\ 2 & 5 & 6 \end{pmatrix}$$

Da sich die Köpfe in der 1. und 2. Spalte befinden, sind diese beiden Spalten der ursprünglichen (!) Matrix die linear unabhängigen Spalten.

$$(3) \operatorname{img}(A) = \left\langle \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix} \right\rangle$$

Beispiel aus der Aufgabe von "Kern der Matrix"

Bild der Matrix (Linearkombination zweier linear unabhängige Spaltenvektoren von *A*):  $\lim_{n \to \infty} (A) = \sqrt{\frac{n}{n}} = \frac{n}{n} \sqrt{\frac{n}{n}$ 

#### Basiswechsel von S nach B

$$BT_S = ({}_ST_B)^{-1}$$

$$SA_S = {}_ST_B \cdot {}_BA_B \cdot {}_BT_S$$

$$BA_B = {}_BT_S \cdot {}_SA_S \cdot {}_ST_B$$