Real Analysis Homework 8

National Taiwan University, Department of Mathematics R06221012 Yueh-Chou Lee

May 14, 2019

EXERCISE 11.5

Let f be monotone increasing and right continuous on \mathbb{R}^1 .

- (a) Show that Λ_f is absolutely continuous with respect to Lebesgue measure if and only if f is absolutely continuous on \mathbb{R}^1 . (By absolutely continuous on \mathbb{R}^1 , we mean absolutely continuous on every compact interval.)
- (b) If Λ_f is absolutely continuous with respect to Lebesgue measure, show that its Radon–Nikodym derivative equals df/dx.

Proof.

(a) (\Rightarrow)

By Theorem 10.34, since Λ_f is absolutely continuous on \mathbb{R}^1 .

Let $[a, b] \subset \mathbb{R}^1$, then $\forall \varepsilon > 0$, there exists $\delta > 0$ such that $\Lambda_f(A) < \varepsilon$ for any measurable $A \subset [a, b]$ with $|A| < \delta$.

Let $\{[a_k, b_k]\}$ be nonoverlapping subintervals of [a, b] and $\sum_k (b_k - a_k) < \delta$. Then

$$\sum_{k} |f(b_k) - f(a_k)| = \sum_{k} \Lambda_f((a_k, b_k]) = \Lambda_f(\cup(a_k, b_k]) < \varepsilon$$

Hence, f is absolutely continuous.

 (\Leftarrow)

Let $[a, b] \subset \mathbb{R}^1$ and $\{[a_k, b_k]\}$ be nonoverlapping subintervals of [a, b].

Since f is absolutely continuous, then $\forall \varepsilon > 0$, there exists $\delta > 0$ such that $\sum_k |f(b_k) - f(a_k)| < \varepsilon$ with $\sum_k (b_k - a_k) < \delta$.

Let $|A| < \delta$ such that $A \subset \cup_k [a_k, b_k]$.

$$\begin{split} \Lambda_f(A) &\leq \Lambda_f(\cup_k [a_k,b_k]) \leq \sum_k \Lambda_f([a_k,b_k]) \\ &= \sum_k (f(b_k) - f(a_k^-)) = \sum_k (f(b_k) - f(a_k)) < \varepsilon \end{split}$$

Hence, Λ_f is absolutely continuous.

(b) Let $[a, b] \subset \mathbb{R}^1$.

By **Theorem 10.39 (Radon-Nikodym)**, we know that there exists a unique $g \ge 0$ such that $\Lambda_f(A) = \int_A g \, dx$, $\forall A \subset \mathbb{R}^1$.

By Exercise 11.5 (a), since Λ_f is absolutely continuous, then f is also absolutely continuous.

Also, by **Theorem 7.29**, since f is absolutely continuous, then f' exists a.e. in [a, b] and f' is integrable on [a, b]. So

$$\Lambda_f([a,b]) = f(b) - f(a) = \int_a^b f'(x) dx$$

Hence, Radon-Nikodym derivative of Λ_f is f' = df/dx.

EXERCISE 11.7

If f is monotone increasing and continuous from the right on \mathbb{R}^1 , show that $\Lambda_f^*(A) = \Lambda_f^{o*}(A)$, where Λ_f^{o*} is defined in the same way as Λ_f^* except that we use *open* intervals (a_k, b_k) .

Proof.

Let the countable collections $\{(a_k, b_k]\}$ such that $A \subset \bigcup_k (a_k, b_k]$. So for $\Lambda_f^*(A)$, we know that

$$\Lambda_f^*(A) = \inf \sum_k \lambda(a_k, b_k] = \inf \sum_k [f(b_k) - f(a_k)].$$

For all collections $\{(a_k, b_k^+)\}$, we have

$$\sum_{k} \lambda(a_k, b_k^+) = \sum_{k} [\lambda(a_k, b_k)] + \lambda(b_k, b_k^+)].$$

Since f is monotone increasing and continuous from the right, then $\lambda \geq 0$ and $f(x) = f(x^+)$ for all $x \in \mathbb{R}^1$. Also, $0 \leq \lambda(b_k, b_k^+) \leq \lambda(b_k, b_k^+) = f(b_k^+) - f(b_k) = 0 \Rightarrow \lambda(b_k, b_k^+) = 0$ for all k. Thus,

$$\sum_{k} \lambda(a_k, b_k^+) = \sum_{k} \lambda(a_k, b_k].$$

Hence

$$\Lambda_f^*(A) = \inf \sum_k \lambda(a_k, b_k] = \inf \sum_k \lambda(a_k, b_k^+) = \Lambda_f^{o*}(A).$$

EXERCISE 11.8

If f is monotone increasing and continuous from the right, derive formulas for $\Lambda_f([a,b])$ and $\Lambda_f((a,b))$.

Proof.

(i) By **Theorem 11.10**, since f is monotone increasing and continuous from the right, then

$$\Lambda_f((a,b]) = f(b) - f(a).$$

In particular, $\Lambda(\{a\}) = f(a) - f(a^-)$. So

$$\Lambda_f([a,b]) = \Lambda_f(\{a\}) + \Lambda((a,b]) = [f(a) - f(a^-)] + [f(b) - f(a)] = f(b) - f(a^-).$$

(ii) Also,

$$\Lambda_f((a,b)) = \Lambda_f((a,b]) - \Lambda_f(\{b\}) = [f(b) - f(a)] - [f(b) - f(b^-)] = f(b^-) - f(a).$$

EXERCISE 11.10

Show that in \mathbb{R}^n , n > 1, the Hausdorff outer measure H_n is not identical to Lebesgue outer measure. (For example, let n = 2, and write $A = \bigcup A_k$, $\delta(A_k) < \varepsilon$. Enclose A_k in a circle C_k with the same diameter, and show that $\sum \delta(A_k)^2 \ge (4/\pi)|A|_e$. Thus, $H_2^{\varepsilon}(A) \ge (4/\pi)|A|_e$.)

Proof.

Follow the hint, let n=2, and write $A=\cup A_k$, $\delta(A_k)<\varepsilon$. Enclose A_k in a circle C_k with the same diameter. Then

$$|C_k| = \left(\frac{\delta(C_k)}{2}\right)^2 \pi = \left(\frac{\delta(A_k)}{2}\right)^2 \pi.$$

So

$$\sum_{k} \delta(A_k)^2 = \sum_{k} \frac{4}{\pi} |C_k| \ge \frac{4}{\pi} \sum_{k} |A_k|_e \ge \frac{4}{\pi} |\cup_k A_k|_e = \frac{4}{\pi} |A|_e.$$

Thus,

$$H_2^{\varepsilon}(A) \ge (4/\pi)|A|_e$$
.

This counterexample is sufficient to show that in \mathbb{R}^n , n > 1, the Hausdorff outer measure H_n is not identical to Lebesgue outer measure.

EXERCISE 11.11

If A is a subset of \mathbb{R}^n , define the Hausdorff dimension of A as follows: If $H_{\alpha}(A) = 0$ for all $\alpha > 0$, let $\dim A = 0$; otherwise, let

$$\dim A = \sup \{ \alpha : H_{\alpha}(A) = +\infty \}.$$

- (a) Show that $H_{\alpha}(A) = 0$ if $\alpha > \dim A$ and that $H_{\alpha}(A) = +\infty$ if $\alpha < \dim A$. Show that in \mathbb{R}^n we have $\dim A \leq n$. See **Exercise 11.19** in order to determine the Hausdorff dimension of the Cantor set.
- (b) If $\dim A_k = d$ for each A_k in a countable collection $\{A_k\}$, show that $\dim(\cup A_k) = d$. Hence, show that every countable set has Hausdorff dimension 0.

Proof.

(a) (i) Let $\alpha > \dim A$. If $H_{\alpha}(A) = +\infty \Rightarrow \dim A \geq \alpha > \dim A \ (\rightarrow \leftarrow)$. So $H_{\alpha}(A) < +\infty$. Then we choose $\alpha > \alpha_0 > \dim A \Rightarrow H_{\alpha_0}(A) < +\infty$. By **Theorem 11.13 (i)**, if $H_{\alpha_0}(A) < +\infty$, then

$$H_{\alpha}(A) = 0$$
 for $\alpha > \alpha_0$.

(ii) Since dim $A = \sup\{\alpha : H_{\alpha}(A) = +\infty\}$, then for all $\alpha > 0$ with $H_{\alpha}(A) = +\infty$, we have dim $A \ge \alpha$. Hence,

$$H_{\alpha}(A) = +\infty$$
 for all $\alpha < \dim A$.

(iii) By **Theorem 11.16 (ii)**, if $\alpha > n$, then $H_{\alpha}(A) = 0$, $\forall A \subset \mathbb{R}^n$. So we have dim $A \leq n$.

3

(b) (i) If $\alpha > d = \mathrm{dim} A_k$, then by (a) we have $H_{\alpha}(A_k) = 0$. So

$$0 \le H_{\alpha}(\cup_k A_k) \le \sum_k H_{\alpha}(A_k) = 0 \quad \Rightarrow \quad \dim(\cup_k A_k) \le d.$$

If $\alpha < d = \dim A_k$, then by (a) we have $H_{\alpha}(A_k) = \infty \le H_{\alpha}(\cup_k A_k)$. So

$$\dim(\cup_k A_k) \ge d.$$

Hence, $\dim(\bigcup_k A_k) = d$.

(ii) If $x \in \mathbb{R}^n$, then $x \in B_{\varepsilon}(x)$. So

$$H_{\alpha}(\{x\}) = \liminf_{\varepsilon \to 0} \sum_{k} \delta(A_k)^{\alpha} \le 0.$$