

SPI SLAVE WITH SINGLE PORT RAM

Under Supervision of:

ENG. Kareem Waseem

Submitted by:

Ahmed Belal

Omar Waleed

Overview

This project implements a Serial Peripheral Interface (SPI) Slave on an FPGA that communicates with an SPI Master to store and retrieve data using an on-chip single-port RAM. The SPI Slave receives commands and data over SS_n, SCLK, and MOSI, writes data into RAM on write commands, and returns the requested bytes over MISO on read commands. A finite-state machine (FSM) coordinates command decoding, address handling, and data transfers to ensure reliable, synchronous operation with an active-low reset.

Beyond demonstrating a practical SPI memory-mapped peripheral, the design compares Gray, One-Hot, and Sequential FSM encodings to show how state encoding choices affect timing and resource usage on FPGA, highlighting performance/area trade-offs in real digital systems.

A Finite State Machine (FSM) is used to manage the communication process:

• Questa Sim Snippets:

• QuestLint Snippets:

• Elaboration schematic:

Elaboration Massage:

➤ Gray Code:

• Synthesis Schematic of Gray Code:

Synthesis report showing the encoding used:

• Synthesis Timing report snippet:

• Snippet of the critical path highlighted in the schematic:

Massage after Synthesis:

• Implementation Timing report:

• Implementation Utilization report:

Massage after Implementation:

• FPGA device snippet:

One_hot Code:

• Synthesis Schematic of one_hot Code:

• Synthesis report showing the encoding used:

105					
106	State	New Encoding	Previous Encoding		
107					
108	IDLE	00001	1 000		
109	CHK_CMD	00010	001		
110	READ_DATA	00100	111		
111	READ_ADD	01000	011		
112	WRITE	10000	010		
113					
114	INFO: [Synth 8-3354] encoded FSM with state register 'current_state_reg' using encoding 'one-hot' in module 'spi'				
115	WARNING: [Synth 8-327] inf	erring latch for variable 'FSM_one	hot_next_state_reg' [E:/Digital_Design_Co	ourse/Project_2/spi.v:32]	
116					
117	Finished RTL Optimization	Phase 2 : Time (s): cpu = 00:00:13	; elapsed = 00:00:16 . Memory (MB): peal	c = 786.770 ; gain = 529.246	

• Synthesis Timing report snippet:

• Snippet of the critical path highlighted in the schematic:

• Massage after Synthesis:

• Implementation Timing report:

• Implementation Utilization report:

• Massage after Implementation:

• FPGA device snippet:

> Sequential Code:

• Synthesis Schematic of Seq Code:

• Synthesis report showing the encoding used:

105				
106	State	New Encoding	Previous Encoding	
107				
108	IDLE	000	1 000	
109	CHK_CMD	001	001	
110	READ_DATA	010	111	
111	READ_ADD	011	011	
112	WRITE	100	010	
113				
114	INFO: [Synth 8-3354] encod	led FSM with state register 'curren	t_state_reg' using encoding 'sequent:	ial' in module 'spi'
115	WARNING: [Synth 8-327] inf	erring latch for variable 'FSM_seq	uential_next_state_reg' [E:/Digital_I	Design_Course/Project_2/spi.v:32]
116				
117	Finished RTL Optimization	Phase 2 : Time (s): cpu = 00:00:14	; elapsed = 00:00:16 . Memory (MB):	peak = 785.449 ; gain = 527.711

• Synthesis Timing report snippet:

• Snippet of the critical path highlighted in the schematic:

Massage after Synthesis:

• Implementation Timing report:

• Implementation Utilization report:

Massage after Implementation:

• FPGA device snippet:

Note that: The best timing is the Gray Code

```
create_debug_core u_ila_0 ila
set_property ALL_PROBE_SAME_MU true [get_debug_cores u_ila_0]
set_property ALL_PROBE_SAME_MU_CNT 1 [get_debug_cores u_ila_0]
set_property C_ADV_TRIGGER false [get_debug_cores u_ila_0]
set_property C_DATA_DEPTH 1024 [get_debug_cores u_ila_0]
set_property C_EN_STRG_QUAL false [get_debug_cores u_ila_0]
set_property C_INPUT_PIPE_STAGES 0 [get_debug_cores u_ila_0]
set_property C_TRIGIN_EN false [get_debug_cores u_ila_0]
set_property C_TRIGOUT_EN false [get_debug_cores u_ila_0]
set_property port_width 1 [get_debug_ports u_ila_0/clk]
connect_debug_port u_ila_0/clk [get_nets [list clk_IBUF_BUFG]]
set_property PROBE_TYPE DATA_AND_TRIGGER [get_debug_ports u_ila_0/probe0]
set_property port_width 1 [get_debug_ports u_ila_0/probe0]
connect_debug_port u_ila_0/probe0 [get_nets [list clk_IBUF]]
create_debug_port u_ila_0 probe
set_property PROBE_TYPE DATA_AND_TRIGGER [get_debug_ports u_ila_0/probe1]
set_property port_width 1 [get_debug_ports u_ila_0/probe1]
connect_debug_port u_ila_0/probe1 [get_nets [list MISO_OBUF]]
create_debug_port u_ila_0 probe
set_property PROBE_TYPE DATA_AND_TRIGGER [get_debug_ports u_ila_0/probe2]
set_property port_width 1 [get_debug_ports u_ila_0/probe2]
connect_debug_port u_ila_0/probe2 [get_nets [list MOSI_IBUF]]
create_debug_port u_ila_0 probe
set_property PROBE_TYPE DATA_AND_TRIGGER [get_debug_ports u_ila_0/probe3]
set_property port_width 1 [get_debug_ports u_ila_0/probe3]
connect_debug_port u_ila_0/probe3 [get_nets [list rst_n_IBUF]]
create_debug_port u_ila_0 probe
set_property PROBE_TYPE DATA_AND_TRIGGER [get_debug_ports u_ila_0/probe4]
set_property port_width 1 [get_debug_ports u_ila_0/probe4]
connect_debug_port u_ila_0/probe4 [get_nets [list SS_n_IBUF]]
set_property C_CLK_INPUT_FREQ_HZ 300000000 [get_debug_cores dbg_hub]
set_property C_ENABLE_CLK_DIVIDER false [get_debug_cores_dbg_hub]
set_property C_USER_SCAN_CHAIN 1 [get_debug_cores dbg_hub]
connect_debug_port dbg_hub/clk [get_nets clk_IBUF_BUFG]
```