

What is Claimed:

1. A method for establishing cryptographic communications comprising the step of:

encoding a plaintext message word M to a ciphertext word signal C, where M corresponds to a number representative of a message and

$$0 \leq M \leq n-1$$

n being a composite number formed from the product of $p_1 \cdot p_2 \cdot \dots \cdot p_k$ where k is an integer greater than 2, p_1, p_2, \dots, p_k are distinct prime numbers, and where C is a number representative of an encoded form of message word M, wherein said encoding step comprises the step of:

transforming said message word signal M to said ciphertext word signal C whereby

$$C = M^e \pmod{n}$$

where e is a number relatively prime to $(p_1-1) \cdot (p_2-1) \cdot \dots \cdot (p_k-1)$.

2. The method according to claim 1, comprising the further step of:

decoding the ciphertext word signal C to the message word signal M, wherein said decoding step comprises the step of: transforming said ciphertext word signal C, whereby:

$$M = C^d \pmod{n}$$

where d is a multiplicative inverse of $e \pmod{\text{lcm}((p_1-1), (p_2-1), \dots, (p_k-1))}$. *A*

3. A method for transferring a message signal M_i in a communications system having j terminals, wherein each terminal is characterized by an encoding key $E_i = (e_i, n_i)$ and decoding key $D_i = (d_i, n_i)$, where $i=1, 2, \dots, j$, and wherein M_i corresponds to a number representative of a message-to-be-transmitted from the i^{th} terminal, n_i is a composite number of the form

$$n_i = p_{i,1} \cdot p_{i,2} \cdot \dots \cdot p_{i,k}$$

where k is an integer greater than 2,

$p_{i,1}, p_{i,2}, \dots, p_{i,k}$ are distinct prime numbers,

e_i is relatively prime to $\text{lcm}(p_{i,1}-1, p_{i,2}-1, \dots, p_{i,k}-1)$, d_i is selected from the group consisting of the class of numbers equivalent to a multiplicative inverse of

$$e_i \pmod{\text{lcm}((p_{i,1}-1), (p_{i,2}-1), \dots, (p_{i,k}-1))},$$

comprising the step of:

encoding a digital message word signal M_A for transmission from a first terminal ($i=A$) to a second terminal ($i=B$), said encoding step including the sub-step of:

transforming said message word signal M_A to one or more message block word signals M_A'' , each block word signal M_A'' corresponding to a number representative of a portion of said message word signal M_A in the range $0 \leq M_A'' \leq n_B-1$,

transforming each of said message block word signals M_A'' to a ciphertext word signal C_A , C_A corresponding to a number representative of an encoded form of said message block word signal M_A'' , whereby:

$$C_A \equiv M_A''^{eB} \pmod{n_B}.$$

A

4. A cryptographic communications system comprising:

a communication medium;

an encoding means coupled to said channel and adapted for transforming a transmit message word signal M to a ciphertext word signal C and for transmitting C on said channel, where M corresponds to a number representative of a message and

$0 \leq M \leq n-1$ where n is a composite number of the form

$$n = p_1 \cdot p_2 \cdot \dots \cdot p_k$$

where k is an integer greater than 2 and p_1, p_2, \dots, p_k are distinct prime numbers, and where C corresponds to a number representative of an enciphered form of said message and corresponds to

$$C \equiv M^e \pmod{n}$$

where e is a number relatively prime to $\text{lcm}(p_1-1, p_2-1, \dots, p_k-1)$; and

a decoding means coupled to said channel and adapted for receiving C from said channel and for transforming C to a receive message word signal M' where M' corresponds to a

20 number representative of a deciphered form of C and corresponds to

$$M' \equiv C^d \pmod{n}$$

where d is selected from the group consisting of the class of numbers equivalent to a multiplicative inverse of
25 $e \pmod{\text{lcm}((p_1-1), (p_2-1), \dots, (p_k-1))}$.

5 5. A communication system for transferring message signals M_i , comprising j stations, wherein each station is characterized by an encoding key $E_i = (e_i, n_i)$ and decoding key $D_i = (d_i, n_i)$, where $i=1, 2, \dots, j$, and wherein

M_i corresponds to a number representative of a message signal to be transmitted from the i^{th} terminal, and

$$0 \leq M_i \leq n_i - 1,$$

n_i is a composite number of the form

$$n_i = p_{i,1} \cdot p_{i,2} \cdot \dots \cdot p_{i,k}$$

where k is an integer greater than 2, Δ

$p_{i,1}, p_{i,2}, \dots, p_{i,k}$ are distinct prime numbers,

e_i is relatively prime to $\text{lcm}(p_{i,1}-1, p_{i,2}-1, \dots, p_{i,k}-1)$,

d_i is selected from the group consisting of the class of numbers equivalent to a multiplicative inverse of

$$e_i \pmod{\text{lcm}((p_{i,1}-1), (p_{i,2}-1), \dots, (p_{i,k}-1))},$$

wherein a first terminal includes means for encoding a digital message word signal M_A for transmission from said first terminal ($i=A$) to a second terminal ($i=B$), said first terminal including:

20 means for transforming said message word signal M_A to a signed message word signal M_{AS} , M_{AS} corresponding to a number representative of an encoded form of said message word signal M_A , whereby:

$$M_{AS} \equiv M_A^{dA} \pmod{n_A}.$$

6. The system of claim 5 further comprising:

means for transmitting said signal message word signal M_{AS} from said first terminal to said second terminal, and wherein said second terminal includes means for decoding said signed message word signal M_{AS} to said message word signal M_A , said second terminal including:

means for transforming said signed message word signal M_{AS} to said message word signal M_A , whereby

$$M_A \equiv M_{AS}^{eA} \pmod{n_A}.$$

7. A communications system for transferring a message signal M_i comprising j stations, wherein each station is characterized by an encoding key $E_i = (e_i, n_i)$ and decoding key $D_i = (d_i, n_i)$, where $i=1, 2, \dots, j$, and wherein M_i corresponds to a number representative of a message signal to be transmitted from the i^{th} terminal, n_i is a composite number of the form

$$n_i = p_{i,1} \cdot p_{i,2} \cdot \dots \cdot p_{i,k}$$

where

k is an integer greater than 2,

$p_{i,1}, p_{i,2}, \dots, p_{i,k}$ are distinct prime numbers,

e_i is relatively prime to $\text{lcm}(p_{i,1}-1, p_{i,2}-1, \dots, p_{i,k}-1)$,

d_i is selected from the group consisting of the class of numbers equivalent to a multiplicative inverse of

$$e_i \pmod{\text{lcm}((p_{i,1}-1), (p_{i,2}-1), \dots, (p_{i,k}-1))}$$

wherein a first communication includes means for encoding a digital message word signal M_A for transmission from said first communication station ($i=A$) to a second communication station ($i=B$), said first communication station including:

means for transforming said message word signal M_A to one or more message block word signals M_A'' , each block word signal M_A' being a number representative of a portion of said message word signal M_A in the range $0 \leq M_A \leq n_B - 1$, means for transforming each of said message block word signals M_A'' to a ciphertext word signal C_A , C_A corresponding to a number representative of an encoded form of said message block word signal M_A'' , whereby:

$$C_A \equiv M_A''^{eB} \pmod{n_B}.$$

8. The system of claim 7 further comprising:

means for transmitting said ciphertext word signals from said first terminal to said second terminal, and

5 wherein said second terminal includes means for decoding
said ciphertext word signals to said message word signal M_A ,
said second terminal including:

means for transforming each of said ciphertext word
signals C_A to one of said message block
word signals M_A'' , whereby

$$10 M_A'' \equiv C_A^{dB} \pmod{n_B}$$

means for transforming said message block word signals
 M_A'' to said message word signal M_A .

9. A cryptographic communications system having a plurality of terminals coupled by a communications channel, including a first terminal characterized by an associated encoding key $E_A = (e_A, n_A)$ and decoding key $D_A = (d_A, n_A)$, wherein n_A is a composite number of the form

$$n_A = p_{A,1} \cdot p_{A,2} \cdot \dots \cdot p_{A,k}$$

where k is an integer greater than 2, $p_{A,1}, p_{A,2}, \dots, p_{A,k}$ are distinct prime numbers, e_A is relatively prime to

$$\text{lcm}(p_{A,1}-1, p_{A,2}-1, \dots, p_{A,k}-1),$$

d_A is selected from the group consisting of the class of numbers equivalent to a multiplicative inverse of

$$e_A \pmod{\text{lcm}((p_{A,1}-1), (p_{A,2}-1), \dots, (p_{A,k}-1))},$$

and including a second terminal, comprising:

15 blocking means for transforming a message-to-be-transmitted from said second terminal to said first terminal to one or more transmit message word signals M_B , where M_B corresponds to a number representative of said message in the range

$$0 \leq M_B \leq n_A - 1,$$

20 encoding means coupled to said channel and adapted for transforming each transmit message word signal M_B to a ciphertext word signal C_B and for transmitting C_B on said channel,

25 where C_B corresponds to a number representative of an enciphered form of said message and corresponds to

$$C_B \equiv M_B^{e_A} \pmod{n_A}$$

wherein said first terminal comprises:

decoding means coupled to said channel and adapted for receiving said ciphertext word signals C_B from said channel and for transforming each of said ciphertext word signals to a receive message word signal M_B , and means for transforming said receive message word signals M_B' to said message, where M_B' is a number representative of a deciphered form of C_B and corresponds to

$$M_B' \equiv C_B^{d_A} \pmod{n_A}.$$

10. The system according to claim 9 wherein said second terminal is characterized by an associated encoding key $E_B = (e_B, n_B)$ and decoding key $D_B = (D_B, d_B)$, where:

n_B is a composite number of the form

$$n_B = p_{B,1} \cdot p_{B,2} \cdot \dots \cdot p_{B,k}$$

where k is an integer greater than 2, $p_{B,1}, p_{B,2}, \dots, p_{B,k}$ are distinct prime numbers, e_B is relatively prime to

$$\text{lcm}(p_{B,1}-1, p_{B,2}-1, \dots, p_{B,k}-1), \quad A$$

d_B is selected from the group consisting of the class of numbers equivalent to a multiplicative inverse of

$$e_B \pmod{\text{lcm}((p_{B,1}-1), (p_{B,2}-1), \dots, (p_{B,k}-1))},$$

wherein said first terminal comprises:

blocking means for transforming a message-to-be-transmitted from said first terminal to said second terminal, to one or more transmit message word signals M_A , where M_A corresponds to a number representative of said message in the range

$$0 \leq M_A \leq n_B - 1,$$

encoding means coupled to said channel and adapted for transforming each transmit message word signal M_A to a ciphertext word signal C_A and for transmitting C_A on said channel,

where C_A corresponds to a number representative of an enciphered form of said message and corresponds to

$$C_A \equiv M_A^{e_B} \pmod{n_B}$$

wherein said second terminal comprises:

decoding means coupled to said channel and adapted for receiving said ciphertext word signals C_A from said channel and for transforming each of said ciphertext word

30 signals to a receive message word signal M_A' , and means for transforming said receive message word signals M_A to said message,

where M' corresponds to a number representative of a deciphered form of C and corresponds to

35
$$M_A' \equiv C_A^{dB} \pmod{n_B}.$$

11. In a communications system, an encoding means for transforming a transmit message word signal M to a ciphertext word signal C where M corresponds to a number representative of a message and

5
$$0 \leq M \leq n-1$$

where n is a composite number having at least 3 whole number factors greater than one, the factors being distinct prime numbers, and

where C corresponds to a number representative of an enciphered form of said message and corresponds to

$$C = a_e M^e + a_{e-1} M^{e-1} + \dots + a_0 \pmod{n}$$

where e and a_e, a_{e-1}, \dots, a_0 are numbers.

12. A method for establishing cryptographic communications comprising the step of:

encoding a digital message word signal M to a cipher text word signal C , where M corresponds to a number representative of a message and

$$0 \leq M \leq n-1,$$

where n is a composite number having at least 3 whole number factors greater than one, the factors being distinct prime numbers, and

10 where C corresponds to a number representative of an encoded form of message word M ,

wherein said encoding step comprises the step of:

transforming said message word signal M to said ciphertext word signal C whereby

$$C \equiv a_e M^e + a_{e-1} M^{e-1} + \dots + a_0 \pmod{n}$$

15 where e and a_e, a_{e-1}, \dots, a_0 are numbers.

13. In the method according to claim 12 where said encoding step includes the step of transforming M to C by the performance of a first ordered succession of invertible operations on M, the further step of:

5 decoding C to M by the performance of a second ordered succession of invertible operations on C, where each of the invertible operations of said second succession is the inverse of a corresponding one of said first succession, and wherein the order of said operations in said second succession is
10 reversed with respect to the order of corresponding operations in said first succession.

