# Optimal allocation of attention in user-generated content platforms

Iván Rendo Barreiro Advisor: Alexandre de Cornière



### Context

#### Almost everything is User-Generated Content (UGC)!

- Except for Google, the 6 most viewed websites are UGC
- Of the 10 most downloaded iPhone apps, 8 are UGC (and 2 messaging services)



- Looking at the distribution of attention...
  - Some platforms opted for professionalization (few users creating most of the content consumed)
    - E.g. Twitch, Youtube... <— "High quality" content, attention concentrated at biggest creators
  - Others tried to incentivise the creation of content from all users and social interaction
    - E.g. Instagram (stories introduction), BeReal... < "Low quality" content, attention more distributed

# Introduction (I)

**Question to answer** in this thesis: For a monopolist platform, which is the **best way to distribute attention** across users such that they are incentivised to create content in a way that maximises its utility (profit/sum of users utilities)?

I focus in the differences between optimal allocations depending on the preferences that users have for consuming quality that has been created by different users.

Social platforms (IG, Snapchat): users prefer to consume content from a lot of creators VS Entertainment platforms (Youtube, Twitch)... where quality comes first

## Introduction (II)

Question *quite* studied in Computer Science literature but not in economics, some (big) differences:

- CS literature does not derive an optimal mechanism, but study which of some (exogenously provided) ones is better
- 2. They **focus on the qualities** of the equilibrium, not the utility that agents derive from it or profits of the platform (there are exceptions)
- 3. They use different tools. (e.g. algorithmic game theory)

I use a "modified" Principal-Agent model:

The principal (a platform) allocates attention to agents (users) in exchange for them creating quality. Two differences:

- 1. No monetary transfers available: payment of attention (which is bounded)
- 2. **Utility** of any user in the platform **depends on the transfers** (attention) **paid to the rest** of users.

### Outline

- 1. General Model (theoretical framework)
- 2. Binary Model (more results)
- 3. Ad-funded Platforms (application)

### General Model: Framework

- Consider a benevolent platform P which has N users.
- Each user  $i \in [1,N]$  is both **creator** and **consumer** of (quality of) content.
- Production of a unit of content has a **cost**  $\theta_i$ , heterogeneous across users.

#### **Actions**

- **Users**: choose the quality of the content created  $q_i \in \mathbb{R}^+$
- **Platform**: choose the attention *paid* to each user  $A_i \in [0,1]$ .
  - ▶ Total attention is bounded:  $\sum_{i=1}^{N} A_i \le 1$ .

All users consume the same content, which is decided by the platform through the allocation of attention!

Utility of each user  $i \in [[1,N]]$ :

Creation utility Consumption utility

$$U_i(\mathbf{A}, \mathbf{q}) = A_i - q_i \theta_i + \sum_{j \neq i} (A_j q_j)^{\mu}$$

- Parameter  $\mu \in \mathbb{R}^+$  represents the preference for consuming (quality of) content from different creators. The lower the  $\mu$ , the higher is the preference for **variety** in creators.
- In the consumption utility, I use  $A_jq_j$  and not just  $q_j$  because the relevant variable is the **perceived quality**. Otherwise, users derive utility from quality they are not paying attention to.

### First best problem and results

- The platform is benevolent in the sense that maximises the sum of utilities of the users.
- Complete Info: Knowing costs  $\theta=(\theta_1,\ldots,\theta_N)$ , the platform offers a contract  $\{A_i(\theta),q_i(\theta)\}$  to each user in which allocates attention  $A_i$  in exchange for the production of quality  $q_i$

#### Problem of the platform:

$$\max_{\mathbf{A},\mathbf{q}} \sum_{i=1}^{N} \left( A_{i} - \theta_{i} q_{i} + \sum_{j \neq i} \left( A_{j} q_{j} \right)^{\mu} \right) \equiv \max_{\mathbf{A},\mathbf{q}} \sum_{i=1}^{N} U_{i}$$
s.t. 
$$\begin{cases} A_{i} - q_{i} \theta_{i} \geq 0 & (\text{IR}) \\ \sum_{i=1}^{N} A_{i} \leq 1 & (\text{Feasibility 1}) \end{cases} \quad \forall i \in \llbracket 1, N \rrbracket$$

$$0 \leq A_{i} \leq 1 \quad (\text{Feasibility 2})$$

The IR only concerns creation of content

It is assumed that the platform is open-access and free and therefore any user can consume content even if it does not creates content at all

Lemmas 1 & 2:

If N is large enough and  $\mu \in (0, 1/2)$ , IR binds and Feasibility 2 does not.

Optimal attention shares and qualities:

$$A_i^* = \frac{\theta_i^{\frac{\mu}{2\mu - 1}}}{\sum_{j=1}^N \theta_j^{\frac{\mu}{2\mu - 1}}} \qquad q_i^* = \frac{A_i^*}{\theta_i} = \frac{\theta_i^{\frac{1 - \mu}{2\mu - 1}}}{\sum_{j=1}^N \theta_j^{\frac{\mu}{2\mu - 1}}}$$

Example. N = 30 and equidistant costs.



### Moreover...

- Proposition 2:
- In the First Best setting, the optimal attention allocation with respect to qualities follows a Generalized
   Tullock Contest:

$$A_i^* = \frac{q_i^{\frac{\mu}{1-\mu}}}{\sum_{i=1}^N q_j^{\frac{\mu}{1-\mu}}}$$

In the contests' literature, the higher  $r=\frac{\mu}{1-\mu}$  the lower levels of participation but the highest top qualities

For simplicity, the **second best** setting and its relation with the first best is studied in the framework of N users divided in two types of users, L and H, that have costs  $\theta_L < \theta_H$ 

(more elegant and tractable seems to be the case of the continuum of agents explored minimally in Appendix B, but its study is left out of this thesis)

# Binary Model

(The first best is a special case of the general case)

- Platform P knows  $\theta_L < \theta_H$  and proportions  $f_L, f_H$  of users of each type, but **not which type is each user**.
- Assume N is large enough such that it is admissible consider that the actual proportions are the theoretical ones and  $N_k = f_k N$  for  $k \in \{L, H\}$ .
- The platform offers a menu of contracts  $\{A_i, q_i\}_{i=L,H}$  where allocates  $A_i$  in exchange for production of  $q_i$  and each user chooses its preferred one. They are designed incentivising self-revelation through IC constraint(s)

$$\max_{A_L,A_H,q_L,q_H} \ N_L \left( A_L - q_L \theta_L + (N-1) \left( A_L q_L \right)^\mu \right) + N_H \left( A_H - q_H \theta_H + (N-1) (A_H q_H)^\mu \right) \\ = \max_{\mathbf{A},\mathbf{q}} \ \sum_{i=1}^N U_i \\ \mathrm{s.t.} \begin{cases} A_L - q_L \theta_L \geq A_H - q_H \theta_L & \mathrm{(IC_L)} \\ A_H - q_H \theta_H \geq 0 & \mathrm{(IR_H)} \\ N_L A_L + N_H A_H \leq 1 & \mathrm{(Feasibility 1)} \\ 0 \leq A_i \leq 1 & \mathrm{(Feasibility 2)}, \ i \in \{\mathrm{L},\mathrm{H}\} \end{cases}$$

Analytical solutions difficult to get! There is a numerical example next slide.

#### **Proposition 3:**

Under standard assumptions, quality of the low-cost type is distorted

$$\exists\,\mu\in\left(0,\frac{1}{2}\right)\ :\ q_L(\mu)^{FB}\neq q_L(\mu)^{SB}$$

#### **Conjecture 1:**

Moreover, the direction of the distortion depends on the preference for variety  $\mu$ 

$$\begin{cases} q_L(\mu)^{SB} < q_L(\mu)^{FB} & \text{iff} \quad \mu < \mu^* \\ q_L(\mu)^{SB} = q_L(\mu)^{FB} & \text{iff} \quad \mu = \mu^* \\ q_L(\mu)^{SB} > q_L(\mu)^{FB} & \text{iff} \quad \mu > \mu^* \end{cases}$$

# Example: Numerical Solutions









### Application: ad-funded platforms

- Platform P is ad-funded and maximises profit.
- Same benchmark as in the binary model: two types L,H with costs  $\theta_L < \theta_H$  and proportions  $f_L,f_H$
- Platform now allocates  $A_0 \in [0,1]$  attention to ads and gets revenue from it.

Attention allocated to ads 
Total utility derived by users

Profit  $U^P$  is determined by:

$$U^P = A_0 \cdot \widetilde{\Sigma_{i=1}^N U_i}$$

Problem of the platform:

$$\begin{aligned} \max_{A_0,A_L,A_H,q_L,q_H} A_0 \left( N_L \left( A_L q_L \right)^\mu + N_H \left( A_H q_H \right)^\mu \right) \\ \text{s.t.} & \begin{cases} A_H - q_H \theta_H \geq 0 & \text{(IR}_H) \\ A_0 + N_L A_L + N_H A_H \leq 1 & \text{(Feasibility 1)} \\ 0 \leq A_i \leq 1 & \text{(Feasibility 2), i} \in \{0,L,H\} \end{cases} \\ A_L - q_L \theta_L \geq 0 & \text{(IR}_L) & \text{Only in First Best} \\ A_L - q_L \theta_L \geq A_H - q_H \theta_L & \text{(IC}_L) & \text{Only in Second Best} \end{aligned}$$

**Propositions 4 and 5:** Both in the first and second best settings, the **optimal allocation to ads**  $A_0$  is

$$A_0 = \frac{1}{1 + 2\mu}$$

Does not depend on the info context! Does not depend in any parameter but  $\mu$ !

### Conclusion

#### Takeaways:

- In complete information, distribution of attention shaped by preferences on diversity
- In the second best, qualities are distorted upwards or downwards depending on  $\mu$

#### Different directions in **future research**:

- Make the model continuous
- Heterogeneous  $\mu_i$  across agents and platforms
- Behavioural aspects (e.g. addiction)