Stat 102

Introduction to Business Statistics Class 21

Richard P. Waterman

Wharton

Table of contents I

- Today's module
- 2 Last time
- 3 Time series
 - Types of data
 - Time series data
 - Problems with residuals
 - Adding a categorical for a seasonal effect
 - The Durbin Watson test
- 4 A one-step ahead forecast
- Summary

Today's module

Topics to be covered in this module:

- Last time
- Regression models for time series
- Correlated residuals
- The Durbin Watson test
- One-step ahead forecast with lagged residuals
- Summary
- Next time

Last time

- Introduction to logistic regression
- Quality of fit using the false positive and false negative rates
- RoC curves
- Lift curves

Time series

- We think of data for regression models being of one of three types:
 - Cross-sectional: Data that is collected on many subjects at a single point in time (or ignoring time)
 - 2 Time series: collected on one subject, over the course of time
 - 3 Panel data: data collected on many subjects at multiple points in time
- We have been treating all data as cross-sectional
- This class will discuss regression for time-series data (Stine Chapter 27-2)

Time series data

- Time series data often requires additional thought because:
 - 1 It can display seasonality
 - 2 This independence assumption on the error terms is often broken.

Prediction airline passenger demand

- The file IntlAir-reg.JMP contains monthly passenger data (in units of 1,000 passengers) from 1949 to 1960, a period of rapid growth.
- A time series graph can be produced using the Graph→Overlay Plot in JMP:

 Multiple regression provides an approach for modeling this kind of data

A simple regression of passengers against time

Time

We begin with a simple regression of Passengers on Time, a simple linear trend model that captures much of the variation in Passengers.

What about the residuals?

Issues with the residuals

- Problems:
 - Lack of constant variance
 - Curvature, indicating a lack of fit of the model to the data
 - 3 A very strong cyclical pattern, that is, positive autocorrelation
- We will attempt to fix these problems:
- The linear model doesn't make a lot of sense with its implied constant increase of 32,000 passengers a year.
- An exponential growth process may be more reasonable, implying a constant proportional change (rather than additive change).
- We model exponential growth by taking the log of Y.

The log passengers model

Log Passengers = -1.084732 + 0	.1203000 111116
Summary of Fit	
RSquare	0.9015
RSquare Adj	0.900807
Root Mean Square Error	0.139037
Mean of Response	5.542176
Observations (or Sum Wgts)	144

Parame	ter Estimates				
Term	Estimate	Std Error	t Ratio	Prob> t	
Intercept	-1.084732	0.184189	-5.89	<.0001	
Time	0.1205806	0.003345	36.05	<.0001	

Improvements

Things are looking better:

- Much of the curvature has gone
- The variance has been stabilized
- The model implies constant 12% growth rate a year

Color coding the residual by month

The color coding reveals strong seasonality (it will help to label by month):

Comparison box plots of the residuals against month

Plot the residuals over the level of the categorical variable, month, and the story is much clearer. There is a strong monthly **seasonal effect**:

Using a categorical variable to capture a seasonal effect

Dropping the seasonal effect into the model as a multi-level categorical will capture most of the systematic variation in the residuals:

As the lines are parallel, the slope is the same for all months. That is we still have the same constant 12% annual growth rate, for all months.

Criticism's

- The model is getting better
- That is, the added month term was significant (review the Effect test table)
- RMSE has dropped from 0.14 to 0.06.
- Out we still need to check the residuals

Positive autocorrelation

Plotting the residuals over time shows a meandering pattern

Positive autocorrelation

The scatterplot of adjacent residuals shows the positive autocorrelation:

The Durbin Watson test

This ¹test looks to see if the lag 1 autocorrelation is statistically significant. In this case, it is:

Durbin-Watson					
Durbin-	Number				
			D I DIM		
Watson	of Obs.	AutoCorrelation	Prob <dw< td=""></dw<>		

 $^{^{\}rm 1}{\rm From}$ the regression output, click on the title bar, row diagnostics, then Durbin Watson Test

The Durbin Watson test

- This test on the adjacent residuals looks to see if there is sequential (serial/auto) correlation between the adjacent error terms ϵ_i .
- The form of the test is:

$$D = \frac{\sum_{i=2}^{n} (e_t - e_{t-1})^2}{\sum_{i=1}^{n} e_t^2}.$$

 When the correlation is 0, D is expected to be 2. Values of D between 0 and 2 imply positive autocorrelation and values of D between 2 and 4 negative autocorrelation.

Adding the lagged residuals to the model

- Adding the lagged residuals to the model can be an effective way of dealing with autocorrelation
- It is appropriate when the goal is forecasting, not so much interpretation
- The idea is that if the residuals (forecast errors) are correlated you can use last times residual to predict this times residual.
- If you have a prediction for what the forecast error will be, you can then directly adjust the forecast, by using this prediction of the forecast error
- But you will not know whether it works well until you try it

The multiple regression, including the lagged residual

Indicator Function Parameterization								
Term	Estimate	Std Error	DFDen	t Ratio	Prob> t			
Intercept	-1.187682	0.05101	129.00	-23.28	<.0001*			
Time	0.1205144	0.0009	129.00	133.88	<.0001*			
Month[Jan]	0.0165913	0.015423	129.00	1.08	0.2840			
Month[Feb]	-0.000993	0.015092	129.00	-0.07	0.9476			
Month[Mar]	0.1292599	0.015088	129.00	8.57	<.0001*			
Month[Apr]	0.098017	0.015085	129.00	6.50	<.0001*			
Month[May]	0.0956703	0.015082	129.00	6.34	<.0001*			
Month[Jun]	0.2178425	0.01508	129.00	14.45	<.0001*			
Month[Jul]	0.3218107	0.015078	129.00	21.34	<.0001*			
Month[Aug]	0.3125418	0.015076	129.00	20.73	<.0001*			
Month[Sep]	0.1679331	0.015075	129.00	11.14	<.0001*			
Month[Oct]	0.0298008	0.015074	129.00	1.98	0.0502			
Month[Nov]	-0.113891	0.015073	129.00	-7.56	<.0001*			
Residual Log Passengers 2 Lag	0.7930716	0.054899	129.00	14.45	< 0001*			

- The Durbin Watson statistic is no longer significant
- The lagged residuals coefficient is highly significant
- Both the monthly seasonal effect and the overall time trend (Year) are highly significant
- RMSE has decreased to 0.037

A time-series plot of the residuals

This is much better looking. No evident meandering as confirmed by the DW-statsitic.

The NQP of the residuals

This looks good too:

Forecasting

- We will use this model to predict the number of passengers in January 1961
- We will do everything on the log-scale first, then at the very last step, back-transform to the original scale
- The components of the prediction:

$$\hat{y}_{Jan,1961} = \underbrace{-1.188}_{Intercept} + \underbrace{0.12 \times 61}_{Year\ effect} + \underbrace{0.0166}_{Jan\ effect} + \underbrace{0.7931 \times (-0.0335)}_{Previous\ residual}$$

$$= 6.111$$

- Add on +/- 2 RMSE to get on the log-scale: (6.0372, 6.1848)
- Exponeniate to finally get the 95% prediction interval of: (418.72, 485.32), which is in thousands

Plotting the observed and expected frequencies

Using the time-series Overlay plot we can plot the actual and forecast values together:

Summary

- Regression models for time series
- Correlated residuals
- The Durbin Watson test
- One-step ahead forecast with lagged residuals