CS2040S Midterm Summary

AY22/23 Sem 2

github.com/gerteck

Adapted from github.com/jovyntls/cheatsheets/

Data Structures and Algorithms

- Algorithm: finite sequence of steps, unambiguous and precise, to accomplish some task.
- Desirable Traits of algorithms: fast, efficient, fair, small memory, parallel, modular, correct, secure. Compare trade-offs
- Midterms Key Topics: Asymptotic Notation, Simple Recurrences, Asymptomatic Analysis, Basic Probability.
- **Key Algorithms**: Binary search, Sorting, Balanced Binary Trees, Augmented Trees, Heaps.
- Key Ideas: Problem Solving: Identify Invariants (to understand and show how algorithm works), Trade-offs (Choosing), Augmentation of data structures.
- Strategies: Try something simple (Naive), Reduce and conquer (binary search), Divide and conquer (Mergesort), Maintaining invariant (AVL trees, keep sorted), Augment existing structure.

ORDERS OF GROWTH

• Notations: Big-O (Upper bounded by), Big- Ω (Lower Bounded by), Big- θ (Tight Bounded by - Grows at same rate)

Complexity Rules

Let T(n) = O(f(n)) and S(n) = O(g(n))

• addition: T(n) + S(n) = O(f(n) + g(n))

• multiplication: T(n) * S(n) = O(f(n) * g(n))

• composition: $f_1 \circ f_2 = O(g_1 \circ g_2)$

- only if both functions are increasing

• if/else statements: $cost = max(c1, c2) \le c1 + c2$

• max: $\max(f(n), g(n)) \le f(n) + g(n)$

notable

• $\sqrt{n} \log n$ is O(n)• $O(2^{2n}) \neq O(2^n)$

• $O(\log(n!)) = O(n \log n) \to \text{sterling's approximation}$

• $T(n-1) + T(n-2) + \cdots + T(1) = 2T(n-1)$

SORTING

Consider the **Monotonic** Properties of the problem at hand, and the **Invariants** for each of the sorting algorithms.

- BubbleSort
- \bullet 'Bubble' largest element rightmost. Compare adjacent items and swap. Average: O(n^2)
- Invariant: largest last k items are sorted
- SelectionSort
- Selects next smallest element, swaps it to the left sorted portion. Average: O(n^2)
- Invariant: smallest leftmost k items sorted

InsertionSort

• Left to Right index, swaps element leftwards till it is smaller than next element. Average: O(n^2)

• Invariant: first k items sorted

• tends to be faster than the other $O(n^2)$ algorithms

MergeSort

• Split in half, mergeSort 1st half; mergeSort 2nd half; merge.

Deterministic: O(n log n)

• Invariant: subarray is sorted wishfully

• HeapSort (Array Implementation)

• (Heapify) Creating a Heap: Naive insert: O(n log n) vs.

Recursive divide and conquer. O(n).

• Heap as Array:

- $| left(x) | = 2x + 1, \quad | right(x) | = 2x + 2$

- parent(x) = $\lfloor \frac{x-1}{2} \rfloor$

• **HeapSort**: Repeated extract Max from heap, placing it at newly available last index. Time Complexity (log n) extract max, for n elements: Deterministic : O(n log n)

• **Invariant:** Last k elements are sorted (Max)

• Notes: Faster than mergesort, slightly slower than quicksort. In place algorithm. Not stable.

OuickSort

• partition algorithm: O(n)

• stable quicksort: $O(\log n)$ space (alt implementation)

• Steps: first element as partition. 2 pointers from left

- left pointer moves until element ¿ pivot

- right pointer moves until element; pivot

- swap elements until left = right. then swap partition in, and left=right index.

Optimisations of QuickSort:

• array of duplicates: $O(n^2)$ without 3-way partitioning

• stable if the partitioning algo is stable.

• extra memory allows quickSort to be stable.

Choice of pivot

• worst case $O(n^2)$: first/last/middle element

• worst case $O(n \log n)$: median/random element

split by fractions: O(n log n)
choose at random: runtime is a random variable

quickSelect

- O(n) to find the k^{th} smallest element (in an array)
- Mechanism: Partition list according to random pivot (e.g. first element). If random pivot is in index k-1, we have found the answer. Other wise, we do quick select on left / right partition if pivot index i, k-1 or i, k-1 respectively. Eventually, if array is size 1, that is answer.

• Time Complexity:

Average: O(n) assuming partition halves on average. Worst: $O(n^2)$, (partition n times).

Average: T(n) = T(n/2) + O(n) = O(n)Worst: $T(n) = T(n-c) + O(n) = O(n^2)$

• Invariant / Useful property after partitioning, the partition is always in the correct position

TREES

binary search trees (BST)

- a BST is either empty, or a node pointing to 2 BSTs.
- tree balance depends on order of insertion
- balanced tree: $O(h) = O(\log n)$
- for a full-binary tree of size $n, \exists k \in \mathbb{Z}^+$ s.t. $n = 2^k 1$

BST operations

- height, h(v) = max(h(v. left), h(v. right))
- leaf nodes: h(v) = 0
- modifying operations
- search, insert O(h)
- delete O(h)
- * case 1: no children remove node
- \ast case 2: 1 child remove node, connect parent to child
- * case 3: 2 children delete successor; replace node with successor
- · query operations
 - searchMin O(h) recurse into left subtree
 - searchMax O(h) recurse into right subtree
 - successor O(h)
 - * if node has a right subtree: searchMin(v. right)
 - * else: traverse upwards and return the first parent that contains the key in its left subtree

AVL Trees

- Adelson-Velskii and Landis Tree \rightarrow self-balancing tree.
- height-balanced (maintained with rotations)
- \iff |v.left.height v.right.height| ≤ 1
- bBST where each node is augmented with its height v.height = h(v)
- Invariant: BST is height balanced if every node is height balanced. Has at most height height $h < 2 \log (n)$.
- space complexity: O(LN) for N strings of length L

rebalancing

[case 1] B is balanced: right-rotate

[case 2] B is left-heavy: right-rotate

[case 3] B is right-heavy: left-rotate(v.left), right-rotate(v)

updating nodes after rotation

Order Statistics: weights

Interval Trees: max endpoint in subtree

AVL Tree Rotations:

- insertion: max. 2 rotations
- deletion: recurse all the way up
- rotations can create every possible tree shape.

Trie

- search, insert O(L) (for string of length L)
- space: O(size of text · overhead)

interval trees

- search (key) $\Rightarrow O(\log n)$
 - if value is in root interval, return
 - if value ; max(left subtree), recurse right
- else recurse left (go left only when can't go right) • all-overlaps $\Rightarrow O(k \log n)$ for k overlapping intervals

orthogonal range searching (bBST)

- binary tree; leaves store points, internal nodes store max value in left subtree
- query(low, hight) $\Rightarrow O(k + \log n)$ for k points
- v=FindSplit () $\Rightarrow O(\log n)$ find node b/w low & high
- leftTraversal (v) $\Rightarrow O(k)$ either output all the right subtree and recurse left, or recurse right
- rightTraversal (v) symmetric
- insert (key), insert (key) $\Rightarrow O(\log n)$
- 2D_query() $\Rightarrow O(\log^2 n + k)$ (space is $O(n \log n)$)
- build x-tree from x-coordinates; for each node, build a y-tree from y-coordinates of subtree
- 2D_buildTree(points []) $\Rightarrow O(n \log n)$

kd-Tree

- stores geometric data (points in an (x, y) plane)
- alternates splitting (partitioning) via x and y coordinates
- construct (points []) $\Rightarrow O(n \log n)$
- search (point) $\Rightarrow O(h)$
- searchMin() $\Rightarrow T(n) = 2T(\frac{n}{4}) + O(1) \Rightarrow O(\sqrt{n})$

(a, b)-trees

e.g. a (2, 4)-tree storing 18 keys

• Rules:

1. (a, b)-child policy where $2 \le a \le (b+1)/2$

	# keys		# children	
node type	min	max	min	max
root	1	b-1	2	b
internal	a-1	b-1	a	b
leaf	a-1	b-1	0	0

- 2. an internal node has 1 more child than its number of keys 3. all leaf nodes must be at the **same depth** from the root
- terminology (for a node z)
- key range range of keys covered in subtree rooted at z
- keylist list of keys within z
- treelist list of z's children
- max height = $O(\log_a n) + 1$
- min height = $O(\log_b n)$
- search (key) $\Rightarrow O(\log n) = O(\log_2 b \cdot \log_a n)$ for binary search at each node
- insert (key) $\Rightarrow O(\log n)$
- split () a node with too many children
- 1. use median to split the keylist into 2 halves
- 2. move median key to parent; re-connect remaining nodes
- 3. (if the parent is now unbalanced, recurse upwards; if the root is reached, median key becomes the new root)

- delete (key) $\Rightarrow O(\log n)$
- if the node becomes empty, merge(y, z) join it with its

left sibling & replace it with their parent

- if the combined nodes exceed max size: share(y, z) =merge(y, z) then split ()

B-Tree

- (B, 2B)-trees $\Rightarrow (a, b)$ -tree where a = B, b = 2B
- possible augmentation: use a linkedList to connect between each level

HEAPS

Heaps vs. AVL Trees as Priority Queues: Same asymptotic cost for operations. Heaps faster real cost, simpler (no rotations), slightly better concurrency.

- 1. **heap ordering** priority[parent] > priority[child]
- 2. **complete binary tree** every level (except last level) is full; all nodes as far left as possible
- Supported Operations: all $O(\max height) = O(|\log n|)$
- insert : insert as leaf, bubble up to fix ordering
- increase / decrease Key : bubble up/down larger key
- delete: swap w bottomrightmost in subtree; bubble
- extractMax: Extract root then delete (root), bubble down swapped last node towards larger key
- heap as an array:
- left (x) = 2x + 1, right (x) = 2x + 2
- parent (x) = $\left| \frac{x-1}{2} \right|$
- **HeapSort**: $\rightarrow O(n \log n)$ always
- unsorted arr to heap: O(n) (bubble down, low to high)
- heap to sorted arr: $O(n \log n)$ (extractMax, swap to back)

UNION-FIND

- · Disjoint-Set Data Structure
- quick-find int [] componentId , flat trees
- -O(1) find check if objects have the same componentId
- -O(n) union enumerate all items in array to update id
- quick-union int [] parent , deeper trees
 - -O(n) find check for same root (common parent)
 - -O(n) union add as a subtree of the root
- weighted union int [] parent , int [] size
- $-O(\log n)$ find check for same root (common parent)
- $-O(\log n)$ union add as a smaller tree as subtree of root
- path compression set parent of each traversed node to the root - $O(\log n)$ find, $O(\log n)$ union
- a binomial tree remains a binomial tree
- weighted union + path compression for m union/find operations on n objects: $O(n + m\alpha(m, n))$
- $O(\alpha(m, n))$ find, $O(\alpha(m, n))$ union

PROBABILITY THEORY

- if an event occurs with probability p, the expected number of iterations needed for this event to occur is $\frac{1}{2}$
- for random variables: expectation is always equal to the
- linearity of expectation: E[A + B] = E[A] + E[B]

UNIFORMLY RANDOM **PERMUTATION**

- for an array of n items, every of the n! possible permutations are producible with probability of exactly $\frac{1}{2}$
- the number of outcomes should distribute over each permutation uniformly. (i.e. $\frac{\text{\# of outcomes}}{\text{\# of permutations}} \in \mathbb{N}$)
- probability of an item remaining in its initial position $=\frac{1}{2}$
- KnuthShuffle $\Rightarrow O(n)$ for every element in array A, swap it with a random index in array A.

sort	best	average	worst	stable?	memory
bubble	$\Omega(n)$	$O(n^2)$	$O(n^2)$	✓	O(1)
selection	$\Omega(n^2)$	$O(n^2)$	$O(n^2)$	×	O(1)
insertion	$\Omega(n)$	$O(n^2)$	$O(n^2)$	✓	O(1)
merge	$\Omega(n \log n)$	$O(n \log n)$	$O(n \log n)$	✓	O(n)
quick	$\Omega(n \log n)$	$O(n \log n)$	$O(n^2)$	×	O(1)
heap	$\Omega(n \log n)$	$O(n \log n)$	$O(n \log n)$	×	O(n)

		searching		
sorting invariants		search	average	
sort	invariant (after k iterations)	linear	O(n)	
bubble	largest k elements are sorted	binary	$O(\log n)$	
selection	smallest k elements are sorted	quickSelect	O(n)	
insertion	first k slots are sorted	interval	$O(\log n)$	
merge	given subarray is sorted	all-overlaps	$O(k \log n)$	
quick	partition is in the right position	1D range	$O(k + \log n)$	
		2D range	$O(k + \log^2 n)$	

data structures assuming O(1) comparison cost

data structure	search	insert
sorted array	$O(\log n)$	O(n)
unsorted array	O(n)	O(1)
linked list	O(n)	O(1)
tree (kd/(a, b)/binary)	$O(\log n)$ or $O(h)$	$O(\log n)$ or $O(h)$
trie	O(L)	O(L)
dictionary	$O(\log n)$	$O(\log n)$
symbol table	O(1)	O(1)
chaining	O(n)	O(1)
open addressing	$\frac{1}{1-\alpha} = O(1)$	O(1)

orders of growth

$$1 < \log n < \sqrt{n} < n < n \log n < n^2 < n^3 < 2^n < 2^{2n}$$
$$\log_n n < n^a < a^n < n! < n^n$$

orders of growth

$$T(n) = 2T(\frac{n}{2}) + O(n) \qquad \Rightarrow O(n \log n)$$

$$T(n) = T(\frac{n}{2}) + O(n) \qquad \Rightarrow O(n)$$

$$T(n) = 2T(\frac{n}{2}) + O(1) \qquad \Rightarrow O(n)$$

$$T(n) = T(\frac{n}{2}) + O(1) \qquad \Rightarrow O(\log n)$$

$$T(n) = 2T(n-1) + O(1) \qquad \Rightarrow O(2^n)$$

$$T(n) = 2T(\frac{n}{2}) + O(n \log n) \qquad \Rightarrow O(n(\log n)^2)$$

$$T(n) = 2T(\frac{n}{4}) + O(1) \qquad \Rightarrow O(\sqrt{n})$$

T(n) = T(n-c) + O(n)