Теорема

Если функция f(x) непрерывна на отрезке [a,b], то она ограничена на данном отрезке.

Доказательство

От противного. Предположим, что f(x) непрерывна, но неограниченна: $\forall n \; \exists x_n : |f(x_n)| > n$ По теореме Больцано-Вейерштрасса, из последовательности $\{x_n\}$ можно выделить подпоследовательность $\{x_{n_k}\}$, которая будет сходиться к пределу $\lim_{k\to\infty} x_{n_k} = x_0$. По теореме о предельном переходе в неравенстве $a \leq x_n \leq b \Rightarrow a \leq x_0 \leq b$. Так как $f(x) \in C(x_0) \Rightarrow \lim_{x\to x_0} f(x) = f(x_0) \; x_{n_k} \to x_0, \; |f(x)-f(x_1)| < \varepsilon$ Полученное противоречие доказывает теорему.