This Listing of Claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS

Claim 1 (currently amended): A An oral pharmaceutical composition comprising an ileal bile acid transport (IBAT) inhibiting compound of formula (I):

$$(R^{x})_{q} = \begin{bmatrix} 0 \\ 8 \end{bmatrix}_{n} = \begin{bmatrix} R^{7} \\ 1 \\ 2 \end{bmatrix}_{R^{6}} = \begin{bmatrix} R^{8} \\ 1 \\ 3 \end{bmatrix}_{R^{2}} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}_{R^{6}} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}_{R^{6}}$$

wherein:

q is an integer from 1 to 4;

n is an integer from 0 to 2;

R¹ and R² are independently selected from the group consisting of H, alkyl, alkenyl, alkynyl, haloalkyl, alkylaryl, arylalkyl, alkoxy, alkoxyalkyl, dialkylamino, alkylthio, (polyalkyl)aryl, and cycloalkyl,

wherein alkyl, alkenyl, alkynyl, haloalkyl, alkylaryl, arylalkyl, alkoxy, alkoxyalkyl, dialkylamino, alkylthio, (polyalkyl)aryl, and cycloalkyl optionally are substituted with one or more substituents selected from the group consisting of OR⁹, NR⁹R¹⁰, N⁺R⁹R¹⁰R^wA⁻, SR⁹, S⁺R⁹R¹⁰A⁻, P⁺R⁹R¹⁰R¹¹A⁻, S(O)R⁹, SO₂R⁹, SO₃R⁹, CO₂R⁹, CN, halogen, oxo, and CONR⁹R¹⁰,

wherein alkyl, alkenyl, alkynyl, alkylaryl, alkoxy, alkoxyalkyl, (polyalkyl)aryl, and cycloalkyl optionally have one or more carbons replaced by O, NR⁹, N⁺R⁹R¹⁰A⁻, S, SO, SO₂, S⁺R⁹A⁻, P⁺R⁹R¹⁰A⁻, or phenylene,

- wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of H, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, acyl, heterocycle, ammoniumalkyl, arylalkyl, and alkylammoniumalkyl; or
- R¹ and R² taken together with the carbon to which they are attached form C₃-C₁₀ cycloalkyl;
- R³ and R⁴ are independently selected from the group consisting of H, alkyl, alkenyl, alkynyl, acyloxy, aryl, heterocycle, OR⁹, NR⁹R¹⁰, SR⁹, S(O)R⁹, SO₂R⁹, and SO₃R⁹, wherein R⁹ and R¹⁰ are as defined above; or
- R³ and R⁴ together form =O, =NOR¹¹, =S, =NNR¹¹R¹², =NR⁹, or =CR¹¹R¹², wherein R¹¹ and R¹² are independently selected from the group consisting of H, alkyl, alkenyl, alkynyl, aryl, arylalkyl, alkenylalkyl, alkynylalkyl, heterocycle, carboxyalkyl, carboalkoxyalkyl, cycloalkyl, cyanoalkyl, OR⁹, NR⁹R¹⁰, SR⁹, S(O)R⁹, SO₂R⁹, SO₃R⁹, CO₂R⁹, CN, halogen, oxo, and CONR⁹R¹⁰, wherein R⁹ and R¹⁰ are as defined above, provided that both R³ and R⁴ cannot be OH, NH₂, and SH, or
- R¹¹ and R¹² together with the nitrogen or carbon atom to which they are attached form a cyclic ring;
- R⁵ and R⁶ are independently selected from the group consisting of H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocycle, quaternary heterocycle, OR³⁰, SR⁹, S(O)R⁹, SO₂R⁹, and SO₃R⁹,
- wherein alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocycle, quaternary heterocycle, and quaternary heteroaryl can be substituted with one or more substituent groups independently selected from the group consisting of alkyl, alkenyl, alkynyl, polyalkyl, polyether, aryl, haloalkyl, cycloalkyl, heterocycle, arylalkyl, quaternary heterocycle, quaternary heteroaryl, halogen, oxo, OR¹³, NR¹³R¹⁴, SR¹³, S(O)R¹³, SO₂R¹³, SO₃R¹³, NR¹³OR¹⁴, NR¹³NR¹⁴R¹⁵, NO₂, CO₂R¹³, CN, OM, SO₂OM, SO₂NR¹³R¹⁴, C(O)NR¹³R¹⁴, C(O)OM, COR¹³, P(O)R¹³R¹⁴, P⁺R¹³R¹⁴R¹⁵A⁻, P(OR¹³)OR¹⁴, S⁺R¹³R¹⁴A⁻, and N⁺R⁹R¹¹R¹²A⁻,

wherein:

A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation,

- said alkyl, alkenyl, alkynyl, polyalkyl, polyether, aryl, haloalkyl, cycloalkyl, and heterocycle can be further substituted with one or more substituent groups selected from the group consisting of OR⁷, NR⁷R⁸, SR⁷, S(O)R⁷, SO₂R⁷, SO₃R⁷, CO₂R⁷, CN, oxo, CONR⁷R⁸, N⁺R⁷R⁸R⁹A⁻, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocycle, arylalkyl, quaternary heterocycle, quaternary heteroaryl, P(O)R⁷R⁸, P⁺R⁷R⁸R⁹A⁻, and P(O)(OR⁷)OR⁸ and
- wherein said alkyl, alkenyl, alkynyl, polyalkyl, polyether, aryl, haloalkyl, cycloalkyl, and heterocycle can optionally have one or more carbons replaced by O, NR⁷, N⁺R⁷R⁸A⁻, S, SO, SO₂, S⁺R⁷A⁻, PR⁷, P(O)R⁷, P⁺R⁷R⁸A⁻, or phenylene, and R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, polyalkyl, aryl, arylalkyl, cycloalkyl, heterocycle, heteroaryl, quaternary heterocycle, quaternary heteroaryl, and quaternary heteroarylalkyl,
- wherein alkyl, alkenyl, alkynyl, arylalkyl, heterocycle, and polyalkyl optionally have one or more carbons replaced by O, NR⁹, N⁺R⁹R¹⁰A⁻, S, SO, SO₂, S⁺R⁹A⁻, PR⁹, P⁺R⁹R¹⁰A⁻, P(O)R⁹, phenylene, carbohydrate, amino acid, peptide, or polypeptide, and
- R^{13} , R^{14} and R^{15} are optionally substituted with one or more groups selected from the group consisting of sulfoalkyl, quaternary heterocycle, quaternary heteroaryl, OR^9 , NR^9R^{10} , $N^+R^9R^{11}R^{12}A^-$, SR^9 , $S(O)R^9$, SO_2R^9 , SO_3R^9 , oxo, CO_2R^9 , CN, halogen, $CONR^9R^{10}$, SO_2OM , $SO_2NR^9R^{10}$, $PO(OR^{16})OR^{17}$, $P^+R^9R^{10}R^{11}A^-$, $S^+R^9R^{10}A^-$, and C(O)OM,
- wherein R¹⁶ and R¹⁷ are independently selected from the substituents constituting R⁹ and M; or
- R¹⁴ and R¹⁵, together with the nitrogen atom to which they are attached, form a cyclic ring; and
- R³⁰ is selected from the group consisting of alkyl, alkenyl, alkynyl, cycloalkyl, aryl, acyl, heterocycle, ammoniumalkyl, alkylammoniumalkyl, and arylalkyl; and
- R⁷ and R⁸ are independently selected from the group consisting of hydrogen and alkyl; and one or more R^x are independently selected from the group consisting of H, alkyl, alkenyl, alkynyl, polyalkyl, acyloxy, aryl, arylalkyl, halogen, haloalkyl, cycloalkyl, heterocycle, heteroaryl, polyether, quaternary heterocycle, quaternary heteroaryl, OR¹³, NR¹³R¹⁴, SR¹³, S(O)₂R¹³, SO₃R¹³, S⁺R¹³R¹⁴A⁻, NR¹³OR¹⁴, NR¹³NR¹⁴R¹⁵, NO₂, CO₂R¹³,

- CN, OM, SO_2OM , $SO_2NR^{13}R^{14}$, $NR^{14}C(O)R^{13}$, $C(O)NR^{13}R^{14}$, $NR^{14}C(O)R^{13}$, C(O)OM, COR^{13} , OR^{18} , $S(O)_nNR^{18}$, $NR^{13}R^{18}$, $NR^{18}OR^{14}$, $N^+R^9R^{11}R^{12}A^-$, $P^+R^9R^{11}R^{12}A^-$, amino acid, peptide, polypeptide, and carbohydrate,
- wherein alkyl, alkenyl, alkynyl, cycloalkyl, aryl, polyalkyl, heterocycle, acyloxy, arylalkyl, haloalkyl, polyether, quaternary heterocycle, and quaternary heteroaryl can be further substituted with OR⁹, NR⁹R¹⁰, N⁺R⁹R¹¹R¹²A⁻, SR⁹, S(O)R⁹, SO₂R⁹, SO₃R⁹, oxo, CO₂R⁹, CN, halogen, CONR⁹R¹⁰, SO₂OM, SO₂NR⁹R¹⁰, PO(OR¹⁶)OR¹⁷, P⁺R⁹R¹¹R¹²A⁻, S⁺R⁹R¹⁰A⁻, or C(O)M, and
- wherein R¹⁸ is selected from the group consisting of acyl, arylalkoxycarbonyl, arylalkyl, heterocycle, heteroaryl, alkyl,
- wherein acyl, arylalkoxycarbonyl, arylalkyl, heterocycle, heteroaryl, alkyl, quaternary heterocycle, and quaternary heteroaryl optionally are substituted with one or more substituents selected from the group consisting of OR⁹, NR⁹R¹⁰, N⁺R⁹R¹¹R¹²A⁻, SR⁹, S(O)R⁹, SO₂R⁹, SO₃R⁹, oxo, CO₂R⁹, CN, halogen, CONR⁹R¹⁰, SO₃R⁹, SO₂OM, SO₂NR⁹R¹⁰, PO(OR¹⁶)OR¹⁷, and C(O)OM,
- wherein in R^x, one or more carbons are optionally replaced by O, NR¹³, N⁺R¹³R¹⁴A⁻, S, SO, SO₂, S⁺R¹³A⁻, PR¹³, P(O)R¹³, P⁺R¹³R¹⁴A⁻, phenylene, amino acid, peptide, polypeptide, carbohydrate, polyether, or polyalkyl,
- wherein in said polyalkyl, phenylene, amino acid, peptide, polypeptide, and carbohydrate, one or more carbons are optionally replaced by O, NR⁹, N⁺R⁹R¹⁰A⁻, S, SO, SO₂, S⁺R⁹A⁻, PR⁹, P⁺R⁹R¹⁰A⁻, or P(O)R⁹;
- wherein quaternary heterocycle and quaternary heteroaryl are optionally substituted with one or more groups selected from the group consisting of alkyl, alkenyl, alkynyl, polyalkyl, polyether, aryl, haloalkyl, cycloalkyl, heterocycle, arylalkyl, halogen, oxo, OR¹³, NR¹³R¹⁴, SR¹³, S(O)R¹³, SO₂R¹³, SO₃R¹³, NR¹³OR¹⁴, NR¹³NR¹⁴R¹⁵, NO₂, CO₂R¹³, CN, OM, SO₂OM, SO₂NR¹³R¹⁴, C(O)NR¹³R¹⁴, C(O)OM, COR¹³, P(O)R¹³R¹⁴, P⁺R¹³R¹⁴R¹⁵A⁻, P(OR¹³)OR¹⁴, S⁺R¹³R¹⁴A⁻, and N⁺R⁹R¹¹R¹²A⁻,

provided that both R⁵ and R⁶ cannot be hydrogen or SH; provided that when R⁵ or R⁶ is phenyl, only one of R¹ or R² is H;

provided that when q=1 and R^x is styryl, anilido, or anilinocarbonyl, only one of R⁵ or R⁶ is alkyl; or

a pharmaceutically acceptable salt, solvate, or prodrug thereof, and

a pharmaceutically acceptable carrier suitable for administration to a patient in a dosage range from about 0.3 mg/kg bodyweight/day to about 100 mg/kg bodyweight/day of said compound of formula (I) to the small intestine of said patient by oral administration.

Claims 2–352 (previously cancelled)

Claim 353 (new): The oral pharmaceutical composition of claim 1 wherein said pharmaceutically acceptable carrier is suitable for delivering said compound of formula (I) to the ileum.

Claim 354 (new): The oral pharmaceutical composition of claim 353 wherein said pharmaceutical composition is a pH sensitive release formulation.

Claim 355 (new): The oral pharmaceutical composition of claim 353 wherein said pharmaceutical composition is a bioadhesive formulation.

Claim 356 (new): The oral pharmaceutical composition of claim 353 wherein said compound of formula (I) is released by enzymatic action.

Claim 357 (new): The oral pharmaceutical composition of claim 353 wherein said pharmaceutical composition is in a solid dosage form.

Claim 358 (new): The oral pharmaceutical composition of claim 357 wherein said solid dosage form comprises a tablet optionally coated with an enteric coating.

Claim 359 (new): The oral pharmaceutical composition of claim 358 wherein said enteric coating comprises a member selected from the group consisting of cellulose acetate phthalate,

polyvinylacetate phthalate, hydroxypropylmethylcellulose phthalate, and anionic polymers of methacrylic acid and methacrylic acid methyl ester.

Claim 360 (new): The oral pharmaceutical composition of claim 357 wherein said solid dosage form comprises a capsule optionally comprising an enteric coating.

Claim 361 (new): The oral pharmaceutical composition of claim 360 wherein said enteric coating comprises a member selected from the group consisting of cellulose acetate phthalate, polyvinylacetate phthalate, hydroxypropylmethylcellulose phthalate, and anionic polymers of methacrylic acid and methacrylic acid methyl ester.

Claim 362 (new): The oral pharmaceutical composition of claim 353 wherein said dosage range is from about 1 mg/kg bodyweight/day to about 50 mg/kg bodyweight/day.

Claim 363 (new): The oral pharmaceutical composition of claim 362 wherein said dosage range is from about 3 mg/kg bodyweight/day to about 10 mg/kg bodyweight/day.

Claim 364. (new): The oral pharmaceutical composition of claim 363 wherein said dosage range is subdivided from about 2 to about 6 subdoses per day.

Claim 365. (new): An oral pharmaceutical composition comprising an ileal bile acid transport (IBAT) inhibitor in a dosage range from about 0.3 mg/kg bodyweight/day to about 100 mg/kg bodyweight/day and a pharmaceutically acceptable carrier, wherein said oral pharmaceutical composition provides delayed release or sustained release of said IBAT inhibitor to the gastrointestinal tract of a subject to whom said composition is administered, and wherein said IBAT inhibitor is represented by a compound of formula (I):

Len F. LEE U.S. Patent Application Serial No. 10/068,297

$$(R^{x})_{q} = \begin{bmatrix} O \end{bmatrix}_{n} \qquad R^{7} \qquad R^{8} \qquad (I)$$

$$R^{x} = \begin{bmatrix} R^{3} & R^{2} & R^{3} & R^{2} & R^{3} & R^{4} & R^{3} & R^{4} & R^$$

wherein:

q is an integer from 1 to 4;

n is an integer from 0 to 2;

R¹ and R² are independently selected from the group consisting of H, alkyl, alkenyl, alkynyl, haloalkyl, alkylaryl, arylalkyl, alkoxy, alkoxyalkyl, dialkylamino, alkylthio, (polyalkyl)aryl, and cycloalkyl,

wherein alkyl, alkenyl, alkynyl, haloalkyl, alkylaryl, arylalkyl, alkoxy, alkoxyalkyl, dialkylamino, alkylthio, (polyalkyl)aryl, and cycloalkyl optionally are substituted with one or more substituents selected from the group consisting of OR⁹, NR⁹R¹⁰, N⁺R⁹R¹⁰R^wA⁻, SR⁹, S⁺R⁹R¹⁰A⁻, P⁺R⁹R¹⁰R¹¹A⁻, S(O)R⁹, SO₂R⁹, SO₃R⁹, CO₂R⁹, CN, halogen, oxo, and CONR⁹R¹⁰.

wherein alkyl, alkenyl, alkynyl, alkylaryl, alkoxy, alkoxyalkyl, (polyalkyl)aryl, and cycloalkyl optionally have one or more carbons replaced by O, NR⁹, N⁺R⁹R¹⁰A⁻, S, SO, SO₂, S⁺R⁹A⁻, P⁺R⁹R¹⁰A⁻, or phenylene,

wherein R⁹, R¹⁰, and R^w are independently selected from the group consisting of H, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, acyl, heterocycle, ammoniumalkyl, arylalkyl, and alkylammoniumalkyl; or

R¹ and R² taken together with the carbon to which they are attached form C₃-C₁₀ cycloalkyl;

R³ and R⁴ are independently selected from the group consisting of H, alkyl, alkenyl, alkynyl, acyloxy, aryl, heterocycle, OR⁹, NR⁹R¹⁰, SR⁹, S(O)R⁹, SO₂R⁹, and SO₃R⁹, wherein R⁹ and R¹⁰ are as defined above; or

 R^3 and R^4 together form =0, =NOR¹¹, =S, =NNR¹¹R¹², =NR⁹, or =CR¹¹R¹², wherein R^{11} and R^{12} are independently selected from the group consisting of H, alkyl,

alkenyl, alkynyl, aryl, arylalkyl, alkenylalkyl, alkynylalkyl, heterocycle, carboxyalkyl, carboalkoxyalkyl, cycloalkyl, cyanoalkyl, OR^9 , NR^9R^{10} , SR^9 , $S(O)R^9$, SO_2R^9 , SO_3R^9 , CO_2R^9 , CN, halogen, oxo, and $CONR^9R^{10}$, wherein R^9 and R^{10} are as defined above, provided that both R^3 and R^4 cannot be OH, NH_2 , and SH, or

- R¹¹ and R¹² together with the nitrogen or carbon atom to which they are attached form a cyclic ring;
- R⁵ and R⁶ are independently selected from the group consisting of H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocycle, quaternary heterocycle, OR³⁰, SR⁹, S(O)R⁹, SO₂R⁹, and SO₃R⁹,
- wherein alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocycle, quaternary heterocycle, and quaternary heteroaryl can be substituted with one or more substituent groups independently selected from the group consisting of alkyl, alkenyl, alkynyl, polyalkyl, polyether, aryl, haloalkyl, cycloalkyl, heterocycle, arylalkyl, quaternary heterocycle, quaternary heteroaryl, halogen, oxo, OR¹³, NR¹³R¹⁴, SR¹³, S(O)R¹³, SO₂R¹³, SO₃R¹³, NR¹³OR¹⁴, NR¹³NR¹⁴R¹⁵, NO₂, CO₂R¹³, CN, OM, SO₂OM, SO₂NR¹³R¹⁴, C(O)NR¹³R¹⁴, C(O)OM, COR¹³, P(O)R¹³R¹⁴, P⁺R¹³R¹⁴R¹⁵A⁻, P(OR¹³)OR¹⁴, S⁺R¹³R¹⁴A⁻, and N⁺R⁹R¹¹R¹²A⁻,

wherein:

A is a pharmaceutically acceptable anion and M is a pharmaceutically acceptable cation,

- said alkyl, alkenyl, alkynyl, polyalkyl, polyether, aryl, haloalkyl, cycloalkyl, and heterocycle can be further substituted with one or more substituent groups selected from the group consisting of OR⁷, NR⁷R⁸, SR⁷, S(O)R⁷, SO₂R⁷, SO₃R⁷, CO₂R⁷, CN, oxo, CONR⁷R⁸, N⁺R⁷R⁸R⁹A⁻, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocycle, arylalkyl, quaternary heterocycle, quaternary heteroaryl, P(O)R⁷R⁸, P⁺R⁷R⁸R⁹A⁻, and P(O)(OR⁷)OR⁸ and
- wherein said alkyl, alkenyl, alkynyl, polyalkyl, polyether, aryl, haloalkyl, cycloalkyl, and heterocycle can optionally have one or more carbons replaced by O, NR⁷, N⁺R⁷R⁸A⁻, S, SO, SO₂, S⁺R⁷A⁻, PR⁷, P(O)R⁷, P⁺R⁷R⁸A⁻, or phenylene, and R¹³, R¹⁴, and R¹⁵ are independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl,

- polyalkyl, aryl, arylalkyl, cycloalkyl, heterocycle, heteroaryl, quaternary heterocycle, quaternary heteroaryl, and quaternary heteroarylalkyl,
- wherein alkyl, alkenyl, alkynyl, arylalkyl, heterocycle, and polyalkyl optionally have one or more carbons replaced by O, NR⁹, N⁺R⁹R¹⁰A⁻, S, SO, SO₂, S⁺R⁹A⁻, PR⁹, P⁺R⁹R¹⁰A⁻, P(O)R⁹, phenylene, carbohydrate, amino acid, peptide, or polypeptide, and
- R¹³, R¹⁴ and R¹⁵ are optionally substituted with one or more groups selected from the group consisting of sulfoalkyl, quaternary heterocycle, quaternary heteroaryl, OR⁹, NR⁹R¹⁰, N⁺R⁹R¹¹R¹²A⁻, SR⁹, S(O)R⁹, SO₂R⁹, SO₃R⁹, oxo, CO₂R⁹, CN, halogen, CONR⁹R¹⁰, SO₂OM, SO₂NR⁹R¹⁰, PO(OR¹⁶)OR¹⁷, P⁺R⁹R¹⁰R¹¹A⁻, S⁺R⁹R¹⁰A⁻, and C(O)OM,
- wherein R¹⁶ and R¹⁷ are independently selected from the substituents constituting R⁹ and M; or
- R¹⁴ and R¹⁵, together with the nitrogen atom to which they are attached, form a cyclic ring; and
- R³⁰ is selected from the group consisting of alkyl, alkenyl, alkynyl, cycloalkyl, aryl, acyl, heterocycle, ammoniumalkyl, alkylammoniumalkyl, and arylalkyl; and
- R⁷ and R⁸ are independently selected from the group consisting of hydrogen and alkyl; and one or more R^x are independently selected from the group consisting of H, alkyl, alkenyl,
 - alkynyl, polyalkyl, acyloxy, aryl, arylalkyl, halogen, haloalkyl, cycloalkyl, heterocycle, heteroaryl, polyether, quaternary heterocycle, quaternary heteroaryl, OR¹³, NR¹³R¹⁴, SR¹³, S(O)R¹³, S(O)₂R¹³, SO₃R¹³, S⁺R¹³R¹⁴A⁻, NR¹³OR¹⁴, NR¹³NR¹⁴R¹⁵, NO₂, CO₂R¹³, CN, OM, SO₂OM, SO₂NR¹³R¹⁴, NR¹⁴C(O)R¹³, C(O)NR¹³R¹⁴, NR¹⁴C(O)R¹³, C(O)OM, COR¹³, OR¹⁸, S(O)_nNR¹⁸, NR¹³R¹⁸, NR¹⁸OR¹⁴, N⁺R⁹R¹¹R¹²A⁻, P⁺R⁹R¹¹R¹²A⁻, amino acid, peptide, polypeptide, and carbohydrate,
- wherein alkyl, alkenyl, alkynyl, cycloalkyl, aryl, polyalkyl, heterocycle, acyloxy, arylalkyl, haloalkyl, polyether, quaternary heterocycle, and quaternary heteroaryl can be further substituted with OR⁹, NR⁹R¹⁰, N⁺R⁹R¹¹R¹²A⁻, SR⁹, S(O)R⁹, SO₂R⁹, SO₃R⁹, oxo, CO₂R⁹, CN, halogen, CONR⁹R¹⁰, SO₂OM, SO₂NR⁹R¹⁰, PO(OR¹⁶)OR¹⁷, P⁺R⁹R¹¹R¹²A⁻, S⁺R⁹R¹⁰A⁻, or C(O)M, and

- wherein R¹⁸ is selected from the group consisting of acyl, arylalkoxycarbonyl, arylalkyl, heterocycle, heteroaryl, alkyl,
- wherein acyl, arylalkoxycarbonyl, arylalkyl, heterocycle, heteroaryl, alkyl, quaternary heterocycle, and quaternary heteroaryl optionally are substituted with one or more substituents selected from the group consisting of OR⁹, NR⁹R¹⁰, N⁺R⁹R¹¹R¹²A⁻, SR⁹, S(O)R⁹, SO₂R⁹, SO₃R⁹, oxo, CO₂R⁹, CN, halogen, CONR⁹R¹⁰, SO₃R⁹, SO₂OM, SO₂NR⁹R¹⁰, PO(OR¹⁶)OR¹⁷, and C(O)OM,
- wherein in R^x, one or more carbons are optionally replaced by O, NR¹³, N⁺R¹³R¹⁴A⁻, S, SO, SO₂, S⁺R¹³A⁻, PR¹³, P(O)R¹³, P⁺R¹³R¹⁴A⁻, phenylene, amino acid, peptide, polypeptide, carbohydrate, polyether, or polyalkyl,
- wherein in said polyalkyl, phenylene, amino acid, peptide, polypeptide, and carbohydrate, one or more carbons are optionally replaced by O, NR⁹, N⁺R⁹R¹⁰A⁻, S, SO, SO₂, S⁺R⁹A⁻, PR⁹, P⁺R⁹R¹⁰A⁻, or P(O)R⁹;
- wherein quaternary heterocycle and quaternary heteroaryl are optionally substituted with one or more groups selected from the group consisting of alkyl, alkenyl, alkynyl, polyalkyl, polyether, aryl, haloalkyl, cycloalkyl, heterocycle, arylalkyl, halogen, oxo, OR¹³, NR¹³R¹⁴, SR¹³, S(O)R¹³, SO₂R¹³, SO₃R¹³, NR¹³OR¹⁴, NR¹³NR¹⁴R¹⁵, NO₂, CO₂R¹³, CN, OM, SO₂OM, SO₂NR¹³R¹⁴, C(O)NR¹³R¹⁴, C(O)OM, COR¹³, P(O)R¹³R¹⁴, P⁺R¹³R¹⁴R¹⁵A⁻, P(OR¹³)OR¹⁴, S⁺R¹³R¹⁴A⁻, and N⁺R⁹R¹¹R¹²A⁻.

provided that both R⁵ and R⁶ cannot be hydrogen or SH;

provided that when R⁵ or R⁶ is phenyl, only one of R¹ or R² is H;

provided that when q=1 and R^x is styryl, anilido, or anilinocarbonyl, only one of R^5 or R^6 is alkyl; or

a pharmaceutically acceptable salt, solvate, or prodrug thereof.

Claim 366 (new): The oral pharmaceutical composition of claim 365, wherein said oral pharmaceutical composition delivers said IBAT inhibitor to the small intestine of said subject.

Claim 367 (new): The oral pharmaceutical composition of claim 366, wherein said oral pharmaceutical composition is designed to deliver said IBAT inhibitor to the ileum of said subject.

Claim 368 (new): The oral pharmaceutical composition of claim 365, wherein said subject is a human.

Claim 369 (new): An oral pharmaceutical composition comprising an ileal bile acid transport (IBAT) inhibiting compound of formula (I):

$$(R^{x})_{q} = \begin{bmatrix} O \end{bmatrix}_{n} \\ S \\ 1 \\ 2 \\ R^{8} \\ R^{3} \\ R^{2} \\ R^{3} \end{bmatrix}$$
 (I)

wherein:

q is 1 or 2;

n is 2;

R¹ and R² are each alkyl;

R³ is hydroxy;

R⁴ and R⁶ are hydrogen;

R⁵ has the formula (II)

wherein t is an integer from 0 to 5;

one or more R^y are OR¹³;

- R¹³ is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, polyalkyl, aryl, arylalkyl, cycloalkyl, heterocycle, heteroaryl, quaternary heterocycle, quaternary heteroaryl, and quaternary heteroarylalkyl;
- said R¹³ alkyl, alkenyl, arylalkyl, heterocycle, and polyalkyl groups optionally have one or more carbons replaced by O, NR⁹, N⁺R⁹R¹⁰A⁻, S, SO, SO₂, S⁺R⁹A⁻, PR⁹, P⁺R⁹R¹⁰A⁻, P(O)R⁹, phenylene, carbohydrate, amino acid, peptide, or polypeptide;
- R¹³ is optionally substituted with one or more groups selected from the group consisting of sulfoalkyl, quaternary heterocycle, quaternary heteroaryl, OR⁹, NR⁹R¹⁰, N⁺R⁹R¹¹R¹²A⁻, SR⁹, S(O)R⁹, SO₂R⁹, SO₃R⁹, oxo, CO₂R⁹, CN, halogen, CONR⁹R¹⁰, SO₂OM, SO₂NR⁹R¹⁰, PO(OR¹⁶)OR¹⁷, P⁺R⁹R¹⁰R¹¹A⁻, S⁺R⁹R¹⁰A⁻, and C(O)OM,
- wherein A is a pharmaceutically acceptable anion, and M is a pharmaceutically acceptable cation,
- R⁹ and R¹⁰ are independently selected from the group consisting of H, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, acyl, heterocycle, ammoniumalkyl, arylalkyl, and alkylammoniumalkyl;
- R¹¹ and R¹² are independently selected from the group consisting of H, alkyl, alkenyl, alkynyl, aryl, arylalkyl, alkenylalkyl, alkynylalkyl, heterocycle, carboxyalkyl, carboalkoxyalkyl, cycloalkyl, cyanoalkyl, OR⁹, NR⁹R¹⁰, SR⁹, S(O)R⁹, SO₂R⁹, SO₃R⁹, CO₂R⁹, CN, halogen, oxo, and CONR⁹R¹⁰, wherein R⁹ and R¹⁰ are as defined above, provided that both R³ and R⁴ cannot be OH, NH₂, and SH; or
- R¹¹ and R¹² together with the nitrogen or carbon atom to which they are attached form a cyclic ring; and
- R¹⁶ and R¹⁷ are independently selected from the substituents constituting R⁹ and M;
- R⁷ and R⁸ are hydrogen; and
- one or more R^x are independently selected from the group consisting of alkoxy, alkylamino and dialkylamino; or
- a pharmaceutically acceptable salt, solvate, or prodrug thereof, and
- a pharmaceutically acceptable carrier suitable for delivery of said compound of formula (I) to the small intestine by oral administration.

Attorney Docket No. 161765.00467 (3091/04/US/DIV)

Claim 370 (new): The oral pharmaceutical composition of claim 369 wherein said composition delivers said IBAT inhibiting compound of formula (I) to the ileum.

Claim 371 (new): The oral pharmaceutical composition of claim 370 wherein said pharmaceutical composition is a pH sensitive release formulation.