Numerische Simulation eines Mondflugs

Besondere Lernleistung von

Toni Happe

Der Wettlauf ins All

"That's one small step for a human, one giant leap for mankind"

Neil Alden Armstrong, 1969

Gliederung

- 1. Grundlagen
 - 1.1. Physikalische
 - 1.2. Numerische
- 2. Implementierung
- 3. Ergebnisse
- 4. Quellen

$$\vec{F}_G = \gamma \cdot \frac{M_1 \cdot m_2}{r^2}$$

$$\vec{F}_G = \gamma \cdot \frac{M_1 \cdot m_2}{r^2}$$

$$\vec{F}_{ER} = \gamma \cdot \frac{M_E \cdot m_R}{r_{ER}^2} \quad \vec{F}_{MR} = \gamma \cdot \frac{M_M \cdot m_R}{r_{MR}^2}$$

$$\vec{F}_G = \gamma \cdot \frac{M_1 \cdot m_2}{r^2}$$

1.2. Numerische Grundlagen

$$F_{RES} = m_R \cdot \ddot{x}$$

$$x(t+h) = x(t) + h \cdot v(t)$$

$$v(t+h) = v(t) + a_{Res}(t) \cdot h$$

1.2. Numerische Grundlagen

Runge Kutta 4. Ordnung


```
k<sub>1 4</sub> - Hilfssteigungen
                                            y-Achse \hat{=} P_{R}
y(t) - echte Lösung
                                            k_3 = v[i-1] + \frac{h}{2} \cdot l_2
l_3 = \vec{a}_{Res}
k_1 = v[i-1]l_1 = \vec{a}_{Res}
k_2 = v[i-1] + \frac{h}{2} \cdot l_1  k_4 = v[i-1] + \frac{h}{2} \cdot l_3
l_2 = \vec{a}_{Res}
                                         l_4 = \vec{a}_{Res}
```

$$P_R[i] = P_R[i-1] + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$
$$v[i] = v[i-1] + \frac{h}{6}(l_1 + 2l_2 + 2l_3 + l_4)$$

2. Implementierung

Festlegung der Naturkonstanten
Berechnung der Gravitationskraft der Erde
Berechnung der Gravitationskraft des Mondes
Berechnung der resultierenden Kraft
Berechnung der resultierenden Beschleunigung
Rückgabe der Beschleunigung und allen berechneten Kräften

Struktogramm des Unterprogramms "getBeschl"

Position des Raumschiffes in Abhängigkeit von der Zeit

Geschwindigkeit in Abhängigkeit von der Zeit

Resultierende Beschleunigung in Abhängigkeit von der Zeit

Kräfte bei v_0 =11076 m/s in Abhängigkeit von der Zeit (vergrößert)

Geschwindigkeit in Abhängigkeit von der Position des Raumschiffes

Exkurs: Bremsvorgang

Gesamte Bremsbeschleunigung

Aufheben der Geschwindigkeit am L1

Umkehrung von F_{RES}

Geschwindigkeit in Abhängigkeit von der Position des Raumschiffes

Geschwindigkeit in Abhängigkeit von der Position mit und ohne Bremse Links: unvergrößert Rechts: Vergrößerter Ausschnitt

4. Quellen

Repetitorium der Numerischen Mathematik (Binomi Verlag, 1. November 2001, Seite 186 ff., ISBN: 978-3923923069)

https://www.brainyquote.com/quotes/neil_armstrong_101137 (13.05.2019, 14:35 Uhr)

https://upload.wikimedia.org/wikipedia/commons/7/7e/Runge-Kutta_slopes.svg (05.02.2019, 16:45 Uhr)

https://www.nasa.gov/sites/default/files/apollo11_0.jpg (19.05.2019, 13:05 Uhr)

Formeldarstellung durch http://latex2png.com/