Homework #2 of「類比積體電路導論」

作業繳交截止日期: Oct. 17, 2024 12:00 (上傳 E3 數位平台繳交)

本次作業共三大題, 2.1~2.3

請將作業轉成一個 PDF 檔案(file size 小於 10MB),檔名請使用「AIC_HW2_自己的學號」(例如: AIC_HW2_109700018),於作業繳交截止日期/時間前,上傳到指定的 E3 數位平台繳交。

Unless otherwise stated, in the following problems, use the device data shown in Table 1 and assume that $V_{DD}=3V$. The Dielectric constant of gate oxide is 3.9 and $E_0=8.854\times 10^{-12} F/m$.

Table 1. Level 1 SPICE models for NMOS and PMOS devices.

NMOS Model			
$\begin{aligned} \text{LEVEL} &= 1\\ \text{NSUB} &= 9\text{e}{+}14\\ \text{TOX} &= 9\text{e}{-}9\\ \text{MJ} &= 0.45 \end{aligned}$	VTO = 0.7 LD = 0.08e - 6 PB = 0.9 MJSW = 0.2	$\begin{aligned} & \text{GAMMA} = 0.45 \\ & \text{UO} = 350 \\ & \text{CJ} = 0.56\text{e}{-3} \\ & \text{CGDO} = 0.4\text{e}{-9} \end{aligned}$	$\begin{aligned} & \text{PHI} = 0.9 \\ & \text{LAMBDA} = 0.1 \\ & \text{CJSW} = 0.35\text{e}{-11} \\ & \text{JS} = 1.0\text{e}{-8} \end{aligned}$
PMOS Model			
$\begin{aligned} \text{LEVEL} &= 1\\ \text{NSUB} &= 5\text{e}{+}14\\ \text{TOX} &= 9\text{e}{-}9\\ \text{MJ} &= 0.5 \end{aligned}$	VTO = -0.8 LD = 0.09e-6 PB = 0.9 MJSW = 0.3	$\begin{aligned} & \text{GAMMA} = 0.4 \\ & \text{UO} = 100 \\ & \text{CJ} = 0.94 \\ & \text{CGDO} = 0.3 \\ & \text{e} - 9 \end{aligned}$	$\begin{aligned} & \text{PHI} = 0.8 \\ & \text{LAMBDA} = 0.2 \\ & \text{CJSW} = 0.32\text{e}{-11} \\ & \text{JS} = 0.5\text{e}{-8} \end{aligned}$

VTO: threshold voltage with zero V_{SB} (unit: V)

GAMMA: body-effect coefficient (unit: V^{1/2})

PHI: $2\Phi_F$ (unit: V)

TOX: gate-oxide thickness (unit: m)

NSUB: substrate doping (unit: cm⁻³)

LD: source/drain side diffusion (unit: m)

UO: channel mobility (unit: cm²/V/s)

LAMBDA: channel-length modulation coefficient (unit: V-1)

CJ: source/drain bottom-plate junction capacitance per unit area (unit: F/m²)

CJSW: source/drain sidewall junction capacitance per unit length (unit: F/m)

PB: source/drain junction built-in potential (unit: V)

MJ: exponent in CJ equation (unitless)

MJSW: exponent in CJSW equation (unitless)

CGDO: gate-drain overlap capacitance per unit width (unit: F/m)

CGSO: gate-source overlap capacitance per unit width (unit: F/m)

JS: source/drain leakage current per unit area (unit: A/m²)

2.1 Assuming all MOSFETs are in saturation, calculate the small signal voltage gain of each circuit in Fig. 1 ($\gamma = 0, \lambda \neq 0$).

本題限定使用 gmx, rox電晶體參數符號進行推導 (30 pts)

- 2.2 Assuming that all the transistors in the circuits of Fig. 2 are saturated and designed with $(W/L)_{1,2} = 45/0.3 \; (\mu m/\mu m)$, $(W/L)_{3,4} = 10/0.3 \; (\mu m/\mu m)$, $R_D = 5 \; k\Omega$, and $(W/L)_5 = 75/1 \; (\mu m/\mu m)$ with $I_{DS,M5} = 0.5 \; mA$. Use $\lambda = \gamma = 0$ for bias purpose and $\gamma = 0$, $\lambda \neq 0$ for small signal analysis. Answer the following questions for each circuit. (45 pts)
 - (i) What are the minimum and maximum allowable input common mode voltage levels if the differential swings at the input and output are small?
 - (ii) What are the maximum allowable output voltage swing if $V_{in,CM} = 1.2 \text{ V}$?
 - (iii) What's the differential mode voltage gain if $V_{in,CM} = 1.2 \text{ V}$?

- 2.3 In the circuit of Fig. 3, assume that $I_{ss}=1$ mA, $V_{DD}=3$ V and W/L=60/0.5 for all the transistors. Also we have $I_{SD,M5}=I_{SD,M6}=0.4\times I_{SS}$. Use $\lambda=\gamma=0$ for bias purpose and $\lambda\neq0$, $\gamma=0$ for small signal analysis. (25 pts)
 - (a) Determine the differential mode voltage gain (Vout/Vin).
 - (b) Calculate V_b such that $I_{SD,M5} = I_{SD,M6} = 0.4 \times I_{SS}$.
 - (c) If I_{SS} requires a minimum voltage of 0.4 V, what is the maximum differential output swing?

Figure 3