

Mandatory Assignment

Table of content

1	Cald	culate the delays	. 1
	1.1	Calculate the delay. The clock frequency is 16MHz	. 1
	1.2	Calculate the delay. The clock frequency is 16MHz	. 1
	1.3	Calculate the delay. The clock frequency is 16MHz	. 1
	1.4	Calculate the delay. The clock frequency is 16MHz	. 2
	1.5	Calculate the delay. The clock frequency is 16MHz	. 2
	1.6	Calculate the delay. The clock frequency is 16MHz	. 3
	1.7	Calculate the delay. The clock frequency is 16MHz	. 4
2	Cre	ate delays	.5
	2.1	Your microcontroller is connected to a 16MHz clock. Create a delay that is $10\mu s$ (+- 5%):	5
	2.2	Your microcontroller is connected to a 16MHz clock. Create a delay that is	
	2.3	Your microcontroller is connected to a 16MHz clock. Create a delay that is	
	around	d 1ms (+- 5%):	.6

i

1 Calculate the delays

1.1 Calculate the delay. The clock frequency is 16MHz

delay:
ldi r20, 86
loop1:
dec r20
brne loop1

Solution

$$1 + 86 \cdot 3 - 1 = 258$$
 $\frac{258}{16 \ MHz} = 16.125 \ \mu s$

1.2 Calculate the delay. The clock frequency is 16MHz

delay:
ldi r20, 100
loop1:
nop
dec r20
brne loop1
nop
nop

Solution

1.3 Calculate the delay. The clock frequency is 16MHz

delay:


```
ldi r20, 200
loop1:
nop
dec r20
nop
nop
brne loop1
nop
nop
```

Solution

$1+200 \cdot 6 - 1 + 2 = 1202$	1202
	$\frac{1202}{16 \ MHz} = 75.125 \ \mu s$

1.4 Calculate the delay. The clock frequency is 16MHz

delay:
ldi r18, 180
loop2:
ldi r20, 199
loop1:
dec r20
brne loop1
dec r18
brne loop2

Solution

$$loop1 := 1 + 3 \cdot 199 - 1 = 597$$

$$delay := (597 + 3) \cdot 180 = 108000$$

$$\frac{108000}{16 \ MHz} = 6.75 \ ms$$

1.5 Calculate the delay. The clock frequency is 16MHz

delay:
ldi r18, 11
loop2:
nop
ldi r20, 15


```
loop1:
nop
nop
dec r20
nop
brne loop1
nop
nop
dec r18
brne loop2
nop
nop
```

Solution

$loop1 := 1 + 6 \cdot 15 - 1 = 90$	
$delay := (90+6) \cdot 11 + 3 = 1059$	$\frac{1059}{16 \ MHz} = 66.188 \ \mu s$

1.6 Calculate the delay. The clock frequency is 16MHz

delay:
ldi r16, 14
loop3:
ldi r18, 11
loop2:
ldi r20, 15
loop1:
dec r20
brne loop1
dec r18
brne loop2
dec r16
brne loop3

Solution

1.7 Calculate the delay. The clock frequency is 16MHz

delay: ldi r16, 14 loop3: nop ldi r18, 110 loop2: nop ldi r20, 150 loop1: dec r20 brne loop1 nop nop dec r18 brne loop2 dec r16 brne loop3 nop nop nop

Solution

2 Create delays

2.1 Your microcontroller is connected to a 16MHz clock. Create a delay that is around $10\mu s$ (+- 5%):

Solution

$$clocks = 10 \ \mu s \cdot 16 \ MHz = 160$$

You could choose a loop of 5 clocks and run it 32 times (32 * 5 = 160)

```
delay:
ldi r16, 32
loop1:
nop
nop
dec r16
brne loop1
```

2.2 Your microcontroller is connected to a 16MHz clock. Create a delay that is around 168 μs (+- 5%):

Solution

$$clocks = 168 \ \mu s \cdot 16 \ MHz = 2688$$

If you divide this number with 16, you get a round number: $\frac{2688}{16} = 168$

So make a loop that take 16 clocks and run it 168 times:

nop nop dec r16 brne loop1

2.3 Your microcontroller is connected to a 16MHz clock. Create a delay that is around 1ms (+- 5%):

Solution

$$clocks \coloneqq 1 \circ ms \cdot 16 \circ MHz = 16000$$

One way of doing this is to create an innerloop that takes 495 clocks. Then an outer loop that add 5 clocks, and then runs 32 times.

$$(495 + 5) * 32 = 16000$$

delay:
ldi r17, 32
loop2:
ldi r16, 99
loop1:
nop
nop
dec r16
brne loop1
nop
nop
dec r17
brne loop2