- 1. 源语言: 书写源程序所使用的语言
- 2. 源程序: 用程序设计语言书写的程序
- 3. **目标语言:** 计算机的机器指令。目标语言可以是机器语言,也可以是汇编语言,或者是其他中间语言,但最终结果必是机器语言。
- 4. **目标程序: 由机器指令构成的程序**。目标程序是经过翻译程序加工后用目标语言表示的程序。
- 5. **翻译程序:** 能够把某一种语言程序(源程序)改造成另一种语言程序(目标程序)将源程序译成逻辑上等价的目标程序的程序。翻译程序有两种工作方式:编译和解释。
- 6. 编译程序: 也称翻译程序
- 7. 解释程序:有些翻译程序在翻译过程中并不产生完整的目标程序,而是翻译一句,解释执行一句,这样的称为解释程序。
- 8. 汇编程序:由汇编语言写成的程序
- 9. 词法分析: 执行词法分析的程序成为词法分析器, 词法分析依据的是语言构词规则。词法分析器从文件读入源程序, 由字符拼接单词。每当识别出一个单词, 词法分析器就输出这个单词的内部码。
- 10. 语法分析: 执行语法分析的程序叫做语法分析器。语法分析的任务就是根据语言的规则,将词法分析器所提供的单词种别分成各类语法范畴。
- 11. 中间代码生成:中间代码产生有时称为语义分析,执行中间代码产生的程序 称为中间代码生成器。他的任务时按照语法分析器所识别出的语法范畴产生 相应的中间代码,并建立符号表、常数表,等各种表格。
- 12. 目标代码生成: 执行目标代码生成的程序称为目标代码生成器。他的任务是根据中间代码和表格信息,确定各类数据在内存中的位置,选择合适的指令代码,将中间代码翻译成汇编语言或机器指令,这部分工作与计算机硬件有关。
- 13. 符号表: 用于记录源程序中出现的标识符,一个标识符往往具有一系列的语义值,她包括标识符的名称、种属、类型、值存放的地址等等。
- 14. 常数表: 用于记录在源程序中出现的常数。
- 15. 编译程序前端:是由词法分析器、语法分析器和中间代码产生器组成的。她的特点是依赖于被编译的源程序,输出结果用中间代码描述,和目标机器无关。
- 16. 编译程序后端: 是由目标代码生成器组成,他的特点是和源程序无关,以中间代码形式的源程序为输入进行处理,输出结果依赖于目标机器。
- 17. 文本文件: 文本文件的内容由 94 个图形字符 '! '-' (33-126) 和 4 个 控制字符换行 (10)、回车 (13)、空格 (32)、TAB (9) 构成,文本文件又 称为 ASCII 码文件,扩展名通常为 TXT,文件尾用控制字符 EOF (26) 指示。
- 18. 二进制文件:由机器指令即二进制数构成,因二进制数可能是 26(文件结束控制符),故文件尾用文件长度(文件的字节数)指示,扩展名通常为 E X E 。
- 19. 源代码 (source code) → 预处理器 (preprocessor) → 编译器 (compiler) → 汇编程序 (assembler) → 目标代码 (object code) → 链接器 (Linker) → 可执行程序 (executables)
- 20. 编译程序的流程是: 源程序一》词法分析一》语法分析一》语义分析(中间代码产生)一》目标

代码生成一》目标程序

21. 二元式编码表:

| 单词        | 二元式               |
|-----------|-------------------|
| b e g i n | (' {', "NUL")     |
| e n d     | (' } ' , " NUL" ) |
| real      | ('c'," NUL")      |
| integer   | ( 'a' , " NUL" )  |
| 标识符       | ('i',"abc")       |
| 无符号整数     | ( 'x' , " 223" )  |
| 无符号实数     | ( 'y' , " 1.23" ) |

- 22. 词法分析的各种正规式所代表的含义
  - (1) a (a | b) \*

描述标识符的正规式

(2) bb\*

描述无符号整数的正规式

(3)bb<sub>\*</sub>. b<sub>\*</sub> . bb<sub>\*</sub> bb<sub>\*</sub>. b<sub>\*</sub>(E|e)(+|-|ε)bb<sub>\*</sub> 描述的是无符号实数的正规式

(4) (0|1) (0|1) \*

描述二进制数的正规式

23. 左递归的消除

文法:  $PP \alpha \mid \beta$  消除左递归的公式是  $P\beta P'$   $P' \alpha P' \mid \epsilon$ 

24. 提取左因子

文法:  $P \delta \beta 1 | \delta \beta 2 | \delta \beta 3 | \cdots | \delta \beta n$  提取左因子的公式是 PP' P'  $\beta 1 | \beta 2 | \beta 3 | \cdots | \beta n$ 

25. First 集和 Follow 集规律【E】

First 集: (1) aB 为 ε , 则 E 终结符的这种,则 b 在 Fisrt (E) 中 (2) a 在 First (E) 中,此时的a可以是+,-,\*,/,.等(3) a 为ε,则First(B)/ ε添加到 First (E) 中

Follow 集: (1) 文法的开始符号,那么#在 Follow (E) 中(2) 看紧跟在所 要求的那个非终结符后面的元素,将  $first(b)/\epsilon$  添加到 Follow(B)(3)若 b 为 ε, 或者文法式为 E, 则 Follow (E) 添加到 Follow (B) 中

26. LL(1)分析表的构造

将非终结符的 first 集中的符号列下填上相对应的文法规则 若将非终结符的 first 集中含有 ε , 则在 Follow 集中的符号列下填上推出 ε的文法规则

- 27. LR (0) 分析表的构造
  - (1) A rk(K 为文法规则的编号)
  - (2)A数字 m(m 为 I j 的 j)
  - (3)SAcc
  - sj(j为Ij的j) (4) A
  - 28. SLR 分析表的构造

删除非终结符的 Follow 集中的不存在的那些列中的值

28. 文法分析过程





## 29. LR 语法分析器的控制程序

例如: a\*b+c

经 词 法 分 析 , 单 词 的 二 元 式 为 ('i',"a"),('\*',"NUL"),('i',"b"),('+',"NUL"),('i',"c"),('#',"NUL")

因此单词的种别序列为 i\*i+i#

| step | 状态栈 | 符号栈 | 输入串    | 动作 |
|------|-----|-----|--------|----|
| 0)   | 0   | #   | i*i+i# | 初始 |

| 1)  | 05    | #i   | *i+i# | 移进    |
|-----|-------|------|-------|-------|
| 2)  | 03    | #F   | *i+i# | 归约【1】 |
| 3)  | 02    | #T   | *i+i# | 归约【2】 |
| 4)  | 027   | #T*  | i+i#  | 移进    |
| 5)  | 0275  | #T*i | +i#   | 移进    |
| 6)  | 02710 | #T*F | +i#   | 归约【3】 |
| 7)  | 02    | #T   | +i#   | 归约【4】 |
| 8)  | 01    | #E   | +i#   | 归约【5】 |
| 9)  | 016   | #E+  | i#    | 移进    |
| 10) | 0165  | #E+i | #     | 移进    |
| 11) | 0163  | #E+F | #     | 归约【6】 |
| 12) | 0169  | #E+T | #     | 归约【7】 |
| 13) | 01    | #E   | #     | 归约【8】 |
| 14) |       | Acc  |       | 接受    |

注:【1】i

- **[**2] F
- **[**3] i
- 【4】T\*F
- **[**5] T
- **[6]** i
- [7] F
- **[**8] E+T

## 30. aVbVc 语法制导翻译过程如下所示

| step | symbol | wval | .addr | .tc | .fc | 输入串          | nxq=1               |
|------|--------|------|-------|-----|-----|--------------|---------------------|
| 0    | #      | _    | _     | _   | _   | (i, "a")     |                     |
| 1    | #i     | -a   |       |     |     | (V, " NUL" ) |                     |
| 2    | #X     |      | -&a   |     |     | (V, " NUL" ) |                     |
| 3    | #E     |      |       | -1  | -2  | (V, " NUL" ) | (1) (jnz, &a, 0, 0) |
|      |        |      |       |     |     |              | (2) (jmp, 0, 0, 3)  |
|      |        |      |       |     |     |              | nxq=3               |
| 4    | #EV    |      |       | -1- | -2- | (i, "b")     |                     |
| 5    | #Eo    |      |       | -1  |     | (i, "b")     |                     |

| 6  | #E∘i              | b |    | -1- |     | (V, " NUL" ) |                     |
|----|-------------------|---|----|-----|-----|--------------|---------------------|
| 7  | #E <sub>0</sub> X |   |    | -1- |     | (V, " NUL" ) |                     |
| 8  | #E <sub>°</sub> E |   |    | -13 | 4   | (V, " NUL" ) | (3) (jnz, &b, 0, 1) |
|    |                   |   |    |     |     |              | (4) (jmp, 0, 0, 5)  |
|    |                   |   |    |     |     |              | nxq=5               |
| 9  | #E                |   |    | -3  | -4  | (V, " NUL" ) |                     |
| 10 | #EV               |   |    | -3- | -4- | (i, "c")     |                     |
| 11 | #E <sub>0</sub>   |   |    | -3  |     | (i, "c")     |                     |
| 12 | #E∘i              | с |    | -3- |     | (#, " NUL" ) |                     |
| 13 | #Е•Х              |   | &c | -3- |     | (#, ""NUL)   |                     |
| 14 | #E <sub>°</sub> E |   |    | -35 | 6   | (#, " NUL" ) | (5) (jnz, &c, 0, 3) |
|    |                   |   |    |     |     |              | (6) (jmp, 0, 0, 0)  |
|    |                   |   |    |     |     |              | nxq=7               |
| 15 | #E                |   |    | -5  | -6  | (#, " NUL" ) |                     |
|    | Acc               |   |    |     |     |              | E. tc=5 E. fc=6     |

31. 设源程序为 a A b A c, 经词法分析, 他的二元式序列为:(i, "a")

( $\Lambda$ , "NUL")(i, "b") ( $\Lambda$ , "NUL")(i, "c")(#, "NUL")

| step | symbol | wval | .addr | .tc | .fc | 输入串        | nxq=1               |
|------|--------|------|-------|-----|-----|------------|---------------------|
| 0    | #      | _    | _     | _   | _   | (i, " a")  |                     |
| 1    | #i     | -a   |       |     |     | (Λ, "NUL") |                     |
| 2    | #X     |      | -&a   |     |     | (Λ, "NUL") |                     |
| 3    | #E     |      |       | -1  | -2  | (Λ, "NUL") | (1) (jnz, &a, 0, 3) |

|    |                   |   |    |     |     |              | (2) (jmp, 0, 0, 0)  |
|----|-------------------|---|----|-----|-----|--------------|---------------------|
|    |                   |   |    |     |     |              | nxq=3               |
| 4  | #E A              |   |    | -1- | -2- | (i, "b")     |                     |
| 5  | #EA               |   |    |     | -2  | (i, "b")     |                     |
| 6  | #Eai              | b |    |     | -2- | (Λ, "NUL")   |                     |
| 7  | #E <sub>A</sub> X |   | &b |     | -2- | (Λ, "NUL")   |                     |
| 8  | #EAE              |   |    | 3   | -24 | (Λ, "NUL")   | (3) (jnz, &b, 0, 5) |
|    |                   |   |    |     |     |              | (4) (jmp, 0, 0, 2)  |
|    |                   |   |    |     |     |              | nxq=5               |
| 9  | #E                |   |    | -3  | -4  | (Λ, "NUL")   |                     |
| 10 | #EV               |   |    | -3- | -4- | (i, "c")     |                     |
| 11 | #EA               |   |    |     | -4  | (i, "c")     |                     |
| 12 | #Eai              | с |    |     | -4- | (#, " NUL" ) |                     |
| 13 | #E <sub>A</sub> X |   | &c |     | -4- | (#, "" NUL)  |                     |
| 14 | #E <sub>A</sub> E |   |    | 5   | -46 | (#, " NUL" ) | (5) (jnz, &c, 0, 3) |
|    |                   |   |    |     |     |              | (6) (jmp, 0, 0, 0)  |
|    |                   |   |    |     |     |              | nxq=7               |
| 15 | #E                |   |    | -5  | -6  | (#, " NUL" ) |                     |
|    | Acc               |   |    |     |     |              | E. tc=5 E. fc=6     |