# Perceptron/Neural Networks Laboratory

## Linearly separable example scatter plot



This plot proves that the data given is effectively linearly separable, thus a perceptron (neural network of one hidden layer and one output) can separate data and give solutions for given inputs.

### Artificial Neural Networks Analysis with Weka

The set of data used for this analysis is called Phishing data. It is compound of 10 attributes (inputs) and 1353 instances.

#### Neural Network One



Learning rate = 0.3 Momentum = 0.2 Epochs = 500

#### Data used for training

In 500 epochs (iterations) the error per epoch decreased to 0.039 Correctly classified instances = 93.34% Incorrectly classified instances = 6.65% Time taken to test model on training data: 0.03 seconds

#### 50% of data for training and 50% for testing

#### For testing:

In 500 epochs (iterations) the error per epoch decreased to 0.041 Correctly classified instances = 85.79% Incorrectly classified instances = 14.20% Time taken to test model on test split: 0.01 seconds

**Conclusion:** The amount of training data is little to expect a result near to 99.99% of correct instances classified when testing.

#### Changing learning rate = 0.8

#### Data used for training

In 500 epochs (iterations) the error per epoch decreased to 0.041

Correctly classified instances = 92.23% Incorrectly classified instances = 7.76% Time taken to test model on training data = 0.01 seconds

#### 50% of data for training and 50% for testing

For testing:

In 500 epochs (iterations) the error per epoch decreased to 0.044 Correctly classified instances = 86.53% Incorrectly classified instances = 13.46% Time taken to test model on test split: 0.01 seconds

**Conclusion:** Have increased learning rate helped to reduce error (incorrectly classified instances) when testing. Time taken for training decreased from last prove, this must mean that for a higher learning rate the training algorithm (forward and backward propagation) is less "strict".

#### Changing epochs = 1000 (from original NN parameters)

#### Data used for training

In 500 epochs (iterations) the error per epoch decreased to 0.038 Correctly classified instances = 93.05% Incorrectly classified instances = 6.94% Time taken to test model on training data: 0.02 seconds

#### 50% of data for training and 50% for testing

For testing:

In 500 epochs (iterations) the error per epoch decreased to 0.040 Correctly classified instances = 85.94% Incorrectly classified instances = 14.05% Time taken to test model on test split: 0.02 seconds

**Conclusion:** Have increased epochs decreased very little error. Time taken for testing doubled, as the epochs (this is a very expected time result).

#### 20% of data for training and 80% for testing (from original NN)

For testing:

In 500 epochs (iterations) the error per epoch decreased to 0.026 Correctly classified instances = 82.99% Incorrectly classified instances = 17.00% Time taken to test model on test split: 0.02 seconds

**Conclusion:** As expected, error increased compared to when it is 50% training and 50% testing, because NN had less data to learn. That was a behavior we have seen since we reduced 100% training to 50% training and 50% testing, that is why this was expected. Considering the % of data for testing from 50 to 80, the time taken doubled from 0.01 to 0.02. An expected result, just because more data was used for testing.

#### 80% of data for training and 20% for testing (from original NN)

#### For testing:

In 500 epochs (iterations) the error per epoch decreased to 0.041 Correctly classified instances = 87.82% Incorrectly classified instances = 12.17% Time take to test model on test split: 0.01seconds

**Conclusion:** Error decreased a little compared to when It is 50%/50%. This is a very good NN because neither in the 20%/80% nor in the 80%/20%, it went overfitted.

#### Neural Network Two



Learning rate = 0.3 Momentum = 0.2 Epochs = 500

Time taken to test model on training data (100% of data for training): 0.07 seconds

#### 90% of data for training and 10% for testing

#### For testing:

Correctly classified instances = 54.81% Incorrectly classified instances = 45.18% Time taken to test model on test split: 0.01 seconds

**Conclusion:** Obviously this NN is being overfitted. Too much data for training, so when it is tested, results are wrong. In this case almost 50% correct and 50% wrong. Time taken is very little because it was used just 10% of the data. Even for this complex NN, using 10% of data for testing is fast = 0.01 seconds. On the other hand, when using 100% of data for training, time increase from 0.03 to 0.07 seconds between the less complex and the more complex NN, same parameters, different NN.