

STATISTIQUE

Terminologies statistique et symboles :

A. Population – unité statistique – caractère – valeurs – classes :

a. Activité:

Exemple 1:

Dix candidats ont passé un concours, les notes obtenues sur 150 points sont :

$$60 - 70 - 80 - 60 - 60 - 70 - 90 - 70 - 60 - 80$$
.

Exemple 2:

Le tableau suivant présente les poids de 60 bébés âgés de 4 mois :

Ī	Pois des bébés en kg	[5;5,5[[5,5;6[[6;6,5[[6,5;7[[7;7,5[
	Nombres de bébés	20	17	11	10	2

Exemple 3:

Le tableau suivant donne le nombre des voitures vendues de chaque marque parmi 300 voitures vendues pendant un mois.

		_		I	
Marques des voitures	Dacia	Peugeot	Ford	Mercedes	$\mathbf{B}\mathbf{M}\mathbf{W}$
Nombres des voitures vendues	200	50	30	15	5

b. Terminologies statistique

termes	Exemple 1	Exemple 2	Exemple 3
Population statistique	10 candidats	60 bébés	Les 300 voitures vendues
Effectif total noté N	N = 10N = 60N = 300	N = 60	N = 300
unité statistique ou « individu»	candidat	bébé	Voiture vendue
Le caractère (ou la variable statistique):	Les notes obtenues	Poids de chaque bébé	Marque de voiture
Types de caractères	caractère quantitatif discret	caractère quantitatif continue	caractère qualitatif
 x_i Valeurs du caractère [a_p, a_{p+1} classes du caractère 	Suivant le sens croissant $x_1 = 60$ et $x_2 = 70$ et $x_3 = 80$ et $x_4 = 90$	la 1 ^{ière} classe est [5;5,5[la dernière classe est [7;7,5[. le représentant est	

 c_i Le milieu $c_1 = \frac{a_i + a_{i+1}}{2}$ le milieu de l'intervalle $[a_i, a_{i+1}]$

c. Remarque:

caractère quantitatif discret : prend des valeurs isolées(comme les mois de naissances des élèves ou le nombre des membres de la famille pour chaque élève d'une classe de tronc commun .

caractère quantitatif continue : prend des valeurs très proches (comme les poids ou les hauteurs des élèves d'un lycée) . dans ce cas les valeurs du caractères sont rassemblées dans des intervalles demi ouvert ($\begin{bmatrix} a_i, a_{i+1} \end{bmatrix}$) de même longueur ou de même capacité . Chaque intervalle est appelé classe . la

1^{ière} classe est $[a_1, a_2]$ et la dernière classe est $[a_p, a_{p+1}]$.

caractère qualitatif : qui ne peut pas s'exprimer par des nombres (comme les couleurs des yeux ou les cheveux les marques des voitures préférées)

On désigne par **p** le nombre des valeurs **x**_i donc la dernière valeur sera noter **x**_p

STATISTIQUE

þage 🔎

B Effectifs – effectifs cumulés – fréquences – fréquences cumulées – pourcentages :

a. Effectifs:

1. Définition :

La somme des effectifs n_i est N le nombre total de la population statistique

Le couple (x_i, n_i) s'appelle une série statistique.

Toute valeur ou toute classe ayant le plus grand effectif s'appelle valeur (ou classe) modale .
on peut avoir plusieurs valeurs modes (valeurs modales) ou classes modes (ou classes modales) .

2. Exemples :

- Pour l'exemple 1 : Effectif de la valeur $x_1 = 60$ est $4 n_1 = 4$. donner n_2 et n_3 et n_4 .
- Pour l'exemple 2 : Effectif de la classe [5;5,5[est $4 n_1 = 20$. donner n_2 et n_3 et n_4 et n_5 .
- Pour l'exemple 3 : Effectif pour la marque Dacia est $n_1 = 200$. donner n_2 et n_3 et n_4 et n_5 .
- Pour l'exemple 1 : la valeur mode est $x_1 = 60$. Pour l'exemple 2 : la classe modale est [5;5,5] .

b. Effectifs cumulés

1. Définition :

Le nombre $n_1 + n_2 + \cdots + n_i$ s'appelle l'effectif cumulé de la valeur x_i d'un caractère.

2. Exemples:

- Pour l'exemple 1 : l'effectif cumulé de la valeur $x_3 = 80$. Est $n_1 + n_2 + n_3 = 4 + 3 + 2 = 9$. donner les effectifs cumulés des valeurs : $x_1 = 60$ et $x_2 = 70$ et et $x_4 = 90$.
- Pour l'exemple 2 : l'effectif cumulé de la classe [5,5;6[est $n_1+n_2=250$. donner les effectifs cumulés des autres classes .
- Pour l'exemple 3 : Effectif cumulé de la marque Ford est $n_1 + n_2 + n_3 = 250 + 50 + 30 = 280$. donner les effectifs cumulés des autres marques .

<u>c.</u> Fréquences :

1. Définition :

 (x_i, n_i) est une série statistique.

Le nombre $\frac{n_i}{N}$ s'appelle la fréquence cumulée de la valeur x_i d'une caractère .on note $f_i = \frac{n_i}{N}$.

2. Exemples:

- Pour l'exemple 1 : fréquence de la valeur $x_1 = 60$ est $f_1 = \frac{n_1}{N} = \frac{4}{10} = \frac{2}{5}$. donner les autres fréquences .
- Pour l'exemple 2 : fréquence de la classe [5;5,5[est $f_1 = \frac{n_1}{N} = \frac{200}{300} = \frac{2}{3}$. donner les autres fréquences.

STATISTIQUE

- Pour l'exemple 3 : fréquence de la marque Dacia est $n_1 = 200$. donner les autres fréquences
- 3. Remarque: La somme des fréquences est égale à 1. $(f_1 + f_2 + f_3 + \cdots + f_p = 1)$
- d. Fréquences cumulées :
 - 1. Définition :

 (x_i, n_i) est une série statistique.

Le nombre $\mathbf{f}_1 + \mathbf{f}_2 + \cdots \mathbf{f}_i$ s'appelle la fréquence cumulée de la valeur \mathbf{x}_i d'un caractère .

2. Exemples:

- Pour l'exemple 1 : la fréquence cumulée de la valeur $x_3 = 80$. Est $f_1 + f_2 + f_3 = \frac{4}{10} + \frac{3}{10} + \frac{2}{10} = \frac{9}{10}$. donner les autres fréquence cumulées des valeurs : $x_1 = 60$ et $x_2 = 70$ et et $x_4 = 90$.
- Pour l'exemple 2 : l'effectif cumulé de la classe [5,5;6[est $f_1+f_2=\frac{20}{60}+\frac{17}{60}=\frac{37}{60}$. donner les fréquences cumulées des autres classes .
- Pour l'exemple 3 : fréquence cumulée de la marque Ford est $f_1 + f_2 = \frac{200}{300} + \frac{50}{300} = \frac{250}{300} = \frac{5}{6}$. donner les fréquences cumulées des autres marques .
- e. Pourcentages:
 - 1. Définition :

 (x_i, n_i) est une série statistique.

- Le nombre $f_i \times 100\%$ s'appelle le pourcentage de la valeur x_i d'une caractère .on note $p_i = f_i \times 100\%$.
- La somme des pourcentage est égale à 100% ($p_1 + p_2 + \cdots + p_p = 100\%$.

2. Exemples :

- Pour l'exemple 1 : Pourcentage de la valeur $x_1 = 60$ est $p_1 = f_1 \times 100 = \frac{n_1}{N} \times 100 = \frac{4}{10} \times 100 = 40\%$. donner les autres Pourcentage.
- Pour l'exemple 2 : Pourcentage de la classe [5;5,5[est

$$p_1 = f_1 \times 100 = \frac{n_1}{N} \times 100 = \frac{20}{60} \times 100 = 33,33\%$$
. donner les autres Pourcentage.

• Pour l'exemple 3 : Pourcentage de la marque Dacia est

$$p_1 = f_1 \times 100 = \frac{n_1}{N} \times 100 = \frac{200}{300} \times 100 = 66,66\%$$
 donner les autres Pourcentage.

3. Remarque: la somme de toutes les pourcentages est 1.

Paramètres de position :

A. Moyenne arithmétique (ou la moyenne statistique) – variance – écart-type **01.** Moyenne arithmétique (ou la moyenne statistique):

STATISTIQUE

a. Définition :

La moyenne arithmétique d'une série statistique (x_i, n_i) est le nombre x tel que :

$$\frac{\mathbf{x}}{\mathbf{x}} = \frac{\mathbf{n}_1 \times \mathbf{x}_1 + \mathbf{n}_2 \times \mathbf{x}_2 + \dots + \mathbf{n}_p \mathbf{x}_p}{\mathbf{N}} \text{ avec p est le nombre des valeurs } \mathbf{x}_i \text{ et } \mathbf{n} = \mathbf{n}_1 + \mathbf{n}_2 + \dots + \mathbf{n}_p.$$

b. Exemple:

La moyenne arithmétique pour l'exemple des 10 candidats est : D'où : $\bar{x} = \frac{4 \times 60 + 3 \times 70 + 2 \times 80 + 1 \times 90}{10} = 70$

Conclusion: La moyenne arithmétique est: $\bar{x} = 70$.

Remarque: $n_1 \times x_1 + n_2 \times x_2 + \dots + n_p \times x_p = N \times x$. On utilise le tableau suivant:

Valeurs x _i	$x_1 = 60$	$x_2 = 70$	$x_3 = 80$	$x_4 = 90$	La somme de chaque ligne
Effectifs n _i	4	3	2	1	4+3+2+1=10=N
$\frac{\mathbf{n_i} \times \mathbf{x_i}}{\mathbf{N}}$	$\frac{\mathbf{n}_1 \times \mathbf{x}_1}{\mathbf{N}} = \frac{4 \times 60}{10}$	21	16	9	$\bar{x} = 24 + 21 + 16 + 9 = 70$

Conclusion: La moyenne arithmétique est: $\bar{x} = 70$.

c. Remarque:

Pour le cas d'une série statistique les valeurs sont exprimées par classes [a,,a,+1] les valeurs x, par les milieux

$$\mathbf{c}_{i} = \frac{\mathbf{a}_{i} + \mathbf{a}_{i+1}}{2} \text{ des classes } \left[\mathbf{a}_{i}, \mathbf{a}_{i+1}\right] \text{ donc : } \mathbf{x} = \frac{\mathbf{n}_{1} \times \mathbf{c}_{1} + \mathbf{n}_{2} \times \mathbf{c}_{2} + \dots + \mathbf{n}_{p} \times \mathbf{c}_{p}}{\mathbf{N}} \text{ . p est le nombre des classes .}$$

Exemple: Le tableau suivant présente les durées de vies de 60 lampes:

Classe $\begin{bmatrix} \mathbf{a}_{\mathbf{p}}, \mathbf{a}_{\mathbf{p+1}} \end{bmatrix}$	[10;20[[20;30[[30;40[[40;50[[50;60[
Effectifs	2	7	3	10	8

- 1. Déterminer l'effectif cumulé de la classe [40;50]
- 2. Déterminer la fréquence de la classe [30;40] puis le pourcentage de cette classe
- 3. Quelle est la classe mode (ou modale)?
- 4. Calculer la moyenne arithmétique de la série statistique .

Correction:

- 1. L'effectif cumulé de la classe [40;50] est : 2+7+3+10=22.
- 2n Déterminer la fréquence de la classe [30;40[et le pourcentage de la classe [30;40[:
 - > la fréquence de la classe [30;40[est $f_3 = \frac{n_3}{N} = \frac{3}{30} = \frac{1}{10}$.

STATISTIQUE

> le pourcentage de la classe [30;40[est $p_3 = f_3 \times 100 = \frac{1}{10} \times 100 = 10\%$.

3 la classe modale est [40;50].

4. la moyenne arithmétique de la série statistique est :

$$\frac{-}{x} = \frac{n_1 \times c_1 + n_2 \times c_2 + \dots + n_p \times c_p}{N} = \frac{2 \times 15 + 7 \times 25 + 3 \times 35 + 10 \times 45 + 8 \times 55}{30} = 40$$

Conclusion: la moyenne arithmétique de la série statistique est $\bar{x} = 40$.

02. La médiane :

a. Définition :

La plus petite valeur du caractère dont l'effectif cumulé est plus grand ou égal à la moitié de l'effectif total N'est appelée la médiane , on note Me .

b. Exemple:

Prenons l'exemple 1 : la médiane est $Me=x_2=70$. Car l'effectif cumulé de $x_2=70$ est $N_2=n_1+n_2=4+3=7$ et l'effectif total N=10.

Raramètres de dispersion :

01. Etendue:

a. Définition:

La différence entre deux valeurs extrêmes s'appelle l'étendue .

b. Exemple:

Prenons l'exemple 1 : la valeur maximale est $x_4=90$ et la valeur minimale est $x_1=60$ d'où l'étendue est égale à $x_4-x_1=30$

02. Ecart- moyen

a. Définition :

Is moyenne des écarts à la moyenne statistique \mathbf{x} s'appelle l'écart-moyen on note \mathbf{e} ou bien .

$$\frac{1}{e} = \frac{\mathbf{n}_1 \times \left| \mathbf{x}_1 - \overline{\mathbf{x}} \right| + \mathbf{n}_2 \times \left| \mathbf{x}_2 - \overline{\mathbf{x}} \right| + \dots + \mathbf{n}_p \times \left| \mathbf{x}_p - \overline{\mathbf{x}} \right|}{\mathbf{N}}.$$

b. Exemple:

Prenons l'exemple 1 (10 candidats): calculons l'écart-moyen.

On a la moyenne statistique x = 70, Donc:

$$\begin{split} & -\frac{n_1 \times \left|x_1 - \overline{x}\right| + n_2 \times \left|x_2 - \overline{x}\right| + \dots + n_p \times \left|x_p - \overline{x}\right|}{N} = \frac{4 \times \left|60 - 70\right| + 3 \times \left|70 - 70\right| + 2 \times \left|80 - 70\right| + 1 \times \left|90 - 70\right|}{10} \\ & = \frac{40 + 0 + 20 + 20}{10} = 8 \end{split}$$

Conclusion: l'écart-moyen est e = 8. Remarque: on peut utiliser le tableau suivant:

STATISTIQUE

Valeurs X _i	$x_1 = 60$	$x_2 = 70$	$x_3 = 80$	$x_4 = 90$	La somme de chaque ligne
Effectifs n _i	$\mathbf{n}_1 = 4$	3	2	1	4+3+2+1=10=N
$\frac{\mathbf{n}_{i}\left \mathbf{x}_{i}-\mathbf{x}^{-}\right }{\mathbf{N}}$	$\frac{n_i x_i - \bar{x} }{N} = \frac{4 60 - 70 }{10} = 4$	0	2	2	e=4+0+2+2=8

03. Variance:

a. Définition :

La variance d'une série statistique (x_i, n_i) est le nombre V tel que :

$$\mathbf{V} = \frac{\mathbf{n}_1 \times \left| \mathbf{x}_1 - \mathbf{x}^2 \right| + \mathbf{n}_2 \times \left| \mathbf{x}_2 - \mathbf{x}^2 \right| + \dots + \mathbf{n}_p \times \left| \mathbf{x}_p - \mathbf{x}^2 \right|}{\mathbf{N}} \text{ avec p est le nombre des valeurs } \mathbf{x}_i \text{ et}$$

 $\frac{1}{n} = n_1 + n_2 + \dots + n_p$ et $\frac{1}{x}$ est : la moyenne arithmétique de la série statistique.

<u>b.</u> Propriété :

- La variance d'une série statistique $(\mathbf{x}_i, \mathbf{n}_i)$ est : $V = \frac{\mathbf{n}_1 \times (\mathbf{x}_1)^2 + \mathbf{n}_2 \times (\mathbf{x}_2)^2 + \dots + \mathbf{n}_p (\mathbf{x}_p)^2}{N} (\mathbf{x}_p)^2$.
- 3. La variance est toujours positive (c.à.d. $V \ge 0$.

c. Exemple:

Prenons l'exemple des 10 candidats calculons V la variance de série statistique :

On a la moyenne arithmétique de la série statistique est $\bar{x} = 70$

D'où:

$$V = \frac{n_1 \times (x_1)^2 + n_2 \times (x_2)^2 + \dots + n_p (x_p)^2}{N} - (\bar{x})^2$$

$$= \frac{4 \times 60^2 + 3 \times 70^2 + 2 \times 80^2 + 1 \times 90^2}{10} - 70^2$$

$$= \frac{14400 + 14700 + 12800 + 8100}{10} - 4900$$

$$= 5000 - 4900 = 100$$

Conclusion: la variance de la série statistique est V = 100.

04. Ecart type:

a. Définition:

L'écart type d'une série statistique $(\mathbf{x}_i, \mathbf{n}_i)$ est le nombre σ tel que : $\sigma = \sqrt{V}$ avec V est la variance de la série statistique

b. Exemple:

Prenons l'exemple des 10 candidats calculons σ l'écart type de série statistique :

STATISTIQUE

On a la variance de série statistique est V=100 donc $\sigma=\sqrt{V}=\sqrt{100}=10$.

Conclusion: l'écart type de la série statistique est : $\sigma = 10$.

Diagramme en bâtons – diagramme en bandes – histogramme – polygone statistique – diagramme sectoriel :

A. Diagramme en bâtons et polygone statistique pour les effectifs ou pour les fréquences :

a. Approche:

On trace deux demi droites $\mathbf{d_1}$ et $\mathbf{d_2}$ de mêmes origine O tel que :

- d_1 graduée et horizontale vers la droite puis on place les valeurs x_i soit dans le sens croissant (ou décroissant) à chaque graduation .
- d_1 graduée convenablement et verticale vers le haut et graduée proportionnelle par rapport aux valeurs des n_i s'il s'agit d'un diagramme des effectifs (ou f_i s'il s'agit d'un diagramme des fréquences) puis on place les valeurs n_i (ou f_i) dans les graduations qui corresponds à ses proportionnalités .
- On place les points de coordonnés (x_i, n_i) (ou (x_i, f_i)).
- On trace les segments qui relient \mathbf{x}_i et le point $(\mathbf{x}_i, \mathbf{n}_i)$ dans ce cas le diagramme s'appelle diagramme en bâtons (ou bâtonnets) des effectifs (ou \mathbf{x}_i et le point $(\mathbf{x}_i, \mathbf{f}_i)$) le diagramme s'appelle diagramme en bâtons (ou bâtonnets) des fréquences) .
- Si on relie chaque deux points de coordonnées (x_i, n_i) et (x_{i+1}, n_{i+1}) par un segment le diagramme obtenue s'appelle polygone statistique des effectifs.
- Si on relie chaque deux points de coordonnées (x_i, f_i) et (x_{i+1}, f_{i+1}) par un segment le diagramme obtenue s'appelle polygone statistique des fréquences .

Exemple:

Le tableau suivant présente les effectifs d'une série statistique (x_i, n_i) :

Valeurs X _i	$x_1 = 30$	$x_2 = 50$	$x_3 = 170$	$x_4 = 200$	$x_5 = 320$
Effectifs n _i	12	8	14	20	6

- $\mathbf{1}_{\mathbf{i}}$ Donner les fréquences de chaque valeur $\mathbf{x}_{\mathbf{i}}$.
- Construire le diagramme bâtons des effectifs puis polygone statistique des effectifs de la série (x_i, n_i) .
- 3. Construire le diagramme en bâtons des fréquences puis polygone statistique des fréquences de cette série Correction :
- 1. On donne les fréquences de chaque valeur x_i .

Valeurs x _i	$x_1 = 30$	$x_2 = 50$	$x_3 = 170$	$x_4 = 200$	$x_5 = 320$
Effectifs n _i	$n_1 = 12$	8	14	20	6
Fréquences f _i	$f_1 = \frac{n_1}{N} = \frac{12}{60}$	$\mathbf{f}_2 = \frac{8}{60}$	$\mathbf{f}_3 = \frac{14}{60}$	$f_4 = \frac{20}{60}$	$\mathbf{f}_5 = \frac{6}{20}$

Diagramme en bâtons des effectifs puis polygone statistique des effectifs de la série statistique $(\mathbf{x}_i, \mathbf{n}_i)$. Les graduations sur l'axe vertical 1 cm correspond à l'effectif 4.

10

STATISTIQUE

rage 💢

3. Diagramme en bâtons des fréquences polygone statistique des fréquences de la série statistique (x_i, n_i)

Remarque:

- Si on trace sur la demi droite d_1 (horizontale) à partir de O (l'origine) des segments juxtaposer (un à coté de l'autre) et de même longueur (en général) et à partir de deux extrémités successives on trace les deux segments verticaux de hauteurs correspondent à \mathbf{n}_i qui est situé sur l'axe \mathbf{d}_2 on obtient à chaque fois des rectangles dont les longueurs varient suivants les valeurs des \mathbf{n}_i . Le diagramme obtenue s'appelle diagramme en bandes.
- **<u>b.</u>** Exemple :

Le tableau suivant présente l'effectifs d'une série statistique (x_i, n_i) :

Valeurs x _i	30	50	170	200	320
Effectifs n _i	12	4	14	20	6

1. Construire le diagramme en bandes des effectifs de la série statistique (x_i, n_i) .

STATISTIQUE

þage

B. Diagramme sectoriel:

a. Diagramme sectoriel sur un cercle tout entier :

On présente les effectifs (ou les fréquences) d'une série statistique donnée par des classes suivantes un cercle.

2.
$$N = n_1 + n_2 + n_3 + \cdots + n_n$$
 est présenté par secteur angulaire de 360° c.à.d. 360° $\rightarrow N$.

$$\mathbf{a}_{i}$$
 \mathbf{n}_{i} est présenté par secteur angulaire de α° c.à.d. $\alpha^{\circ} \rightarrow \mathbf{n}_{i}$.

4. D'après la règle de trois on a :
$$\begin{cases} 360^\circ \to N \\ \alpha^\circ \to n_i \end{cases} \Rightarrow 360^\circ \times n_i = N \times \alpha^\circ . D'où : \alpha^\circ = \frac{360^\circ \times n_i}{N}$$

Conclusion : le secteur angulaire qui représente l'effectif \mathbf{n}_i de la valeur \mathbf{x}_i d'un caractère a pour angle de mesure $\alpha^\circ = \frac{360^\circ \times \mathbf{n}_i}{N}$.

Exemple:

1. On donne un diagramme sectoriel des effectifs du 10 candidats, on a les mesures des angles des secteurs angulaires des effectifs sont :

Valeurs x _i	$x_1 = 30$	$x_2 = 50$	$x_3 = 170$	$x_4 = 200$	$x_5 = 320$
Effectifs n _i	12	8	14	20	6
$\alpha_{i}^{\circ} = \frac{360^{\circ} \times n_{i}}{N}$	$\alpha_1^{\circ} = \frac{360^{\circ} \times n_1}{N} = 72^{\circ}$	$\alpha_2^{\circ} = \frac{360^{\circ} \times n_2}{N} = 48^{\circ}$	$\alpha_3^{\circ} = 84^{\circ}$	$\alpha_4^{\circ} = 120^{\circ}$	$\alpha_5^{\circ} = 36^{\circ}$

On a le diagramme sectoriel suivant :

b. Diagramme sectoriel sur un demi cercle :

Remarque: le secteur angulaire qui

représente l'effectif n_i de la valeur x_i d'un caractère a pour angle de mesure $\beta^\circ = \frac{1}{2} \times \alpha^\circ = \frac{360^\circ \times n_i}{2N}$.

Exemple:

On donne un diagramme sectoriel des effectifs du 10 candidats , on a les mesures des angles des secteurs angulaires des effectifs sont :

STATISTIQUE

Valeurs x _i	$x_1 = 30$	$x_2 = 50$	$x_3 = 170$	$x_4 = 200$	$x_5 = 320$
Effectifs n _i	12	8	14	20	6
$\alpha_{i}^{\circ} = \frac{360^{\circ} \times n_{i}}{N}$	$\beta_1^{\circ} = \frac{360^{\circ} \times n_1}{2N} = 36^{\circ}$	$\beta_2^{\circ} = \frac{360^{\circ} \times n_2}{2N} = 24^{\circ}$	${\beta_3}^{\circ}=42^{\circ}$	$\beta_4^{\circ} = 60^{\circ}$	$\beta_5^{\circ} = 18^{\circ}$

C. Histogramme:

- Le cas des série statistique définie par des classes même chose que les diagramme en bâtons au lieu de placer les sur l'axe horizontale d₁ on place les classes c.à.d. les intervalles juxtaposer (un à coté de l'autre) ou séparés d'une distance régulière.
- ***** Exemple:

Le tableau suivant présente les effectifs des classes d'une série statistique :

Classe $\left[a_{p}, a_{p+1}\right]$	[10;20[[20;30[[30;40[[40;50[[50;60[
Effectifs	2	7	3	10	8

1. On donne un histogramme des effectifs :

