ECONOMETRIA Regressão linear sim rentação formal da esperança co $= \alpha + \beta X_i$ e regressão representa rança condicional d $(\alpha + \beta X_i)$ ≥ Ank INTRODUÇÃO À DA 4ª EDIÇÃO NORTE-AM

Econometria Conceitos introdutórios Parte II

OU

Principais funções complementares

1) **glimpse()** (pocete **dplyr**)Descrição: Fornece uma visão rápida e compacta da estrutura de um objeto de dados, mostrando as primeiras entradas de cada coluna e os tipos de dados.

Exemplo: glimpse(data)

2) **str()** Descrição: Mostra a estrutura interna de um objeto R de forma compacta e informativa. É útil para entender rapidamente a composição e as características dos objetos, como listas, vetores e data frames.

Exemplo: str(data)

3) ifelse() Descrição: Avalia uma condição e retorna um valor se a condição for verdadeira e outro valor se for falsa. É útil para operações vetorizadas, substituindo os valores de um vetor com base em condições especificadas.

Exemplo: ifelse(condição, valor_se_verdadeiro, valor_se_falso)

4) as.numeric() Descrição: Converte um objeto em R para o tipo de dados numérico. Essencial para operações que exigem números, especialmente quando os dados vêm como caracteres ou fatores.

Exemplo: as.numeric(dados)

5) **options(scipen=999)** Descrição: Configura a opção scipen para controlar a penalidade para a notação científica em R. Um valor maior favorece a representação de números em formato decimal ao invés de notação científica.

Exemplo: options(scipen=999)

Principais funções regressão

1) **Im()** Descrição: Ajusta um modelo linear entre uma variável dependente e uma ou mais variáveis independentes. É amplamente usada em análise estatística para estimar os coeficientes das variáveis preditoras.

Regressão linear

INTERPRETAÇÃO DOS COEFICIENTES

– Aumento de uma unidade em x aumenta y em β_1 unidades:

$$y = \beta_0 + \beta_1 x + u$$

Aumento de 1% em x aumenta y em (β₁/100) unidades:

$$y = \beta_0 + \beta_1 \log(x) + u$$

– Aumento de uma unidade em x aumenta y em $(100*\beta_1)\%$. O cálculo da semi-elasticidade $\{[\exp(\beta_1) - 1]*100\}$ indica a diferença percentual exata:

$$log(y) = \beta_0 + \beta_1 x + u$$

– Aumento de 1% em x aumenta y em β_1 % (modelo de elasticidade constante):

$$log(y) = \beta_0 + \beta_1 log(x) + u$$

 Elasticidade é a razão entre o percentual de mudança em uma variável e o percentual de mudança em outra variável.

Regressão linear

FORMAS FUNCIONAIS ENVOLVENDO LOGARITMOS

Modelo	Variável Dependente	Variável Independente	Interpretação de β₁
nível-nível	y	X	$\Delta y = \beta_1 \Delta x$
nível-log	y	log(x)	$\Delta y = (\beta_1/100)\% \Delta x$
log-nível	log(y)	x	%Δy=(100β ₁)Δx
log-log	log(y)	log(x)	%Δy=β ₁ %Δx

Obrigado!

