

Buro Happold Specialist Consulting

Wind Engineering at Buro Happold Dr Graham Knapp, CoSA Solutions

Buro Happold

- Multidisciplinary engineering company for complete developments, buildings and their infrastructure
- Nearly 2000 employees around the world
- Links to over 50 universities and research organisations

CoSA

Computational Simulation and Analysis

- Thermal performance and air movement
- Energy prediction and building regulations compliance
- Masterplanning and external comfort
- Wind engineering
- Fire and smoke modelling
- Post-occupancy evaluation
- Research and development

Approximately 30 employees around the world

Wind Engineering

Environmental

- 1) Master planning
- 2) EIA / Planning applications
- 3) Problem Solving
- 4) Support to fire and ventilation strategies
- 5) Pollution dispersion (internal & external)
- 6) Peer review, expert witness, etc

Structural / New technology

- 1) Structural wind loading
- Wind tunnel
 Commissioning,
 Peer review
- Wind Turbines:Stand- aloneBuilding integrated
- Rain, snow and sand drift Modelling
- 5) Transient / gust effects of wind (PhD)
- 6) Design for extreme events

Links to Design Team

External Comfort

- Temperature
- Radiation
- Wind
- Humidity
- Clothing
- Expectation
- Acclimatisation
- Activity
- Exposure time

Hot Climates

- Cooling breezes
- Shelter from extreme winds

Cold climates

- Protect from cold winds
- Evergreen trees

Temperate climates

- Balance cooling vs. shelter
- Shelter from strong winds
- Dependent on activity

UTCI Universal Thermal Climate Index

- European collaborative research project
- http://www.utci.org
- Now available
- Allows for temperature, radiative heat, humidity and wind speed
- Applicable to all climates

Sustainability

- Commercial viability
- Natural ventilation
- Efficient structures
- Wind power

Wind Engineering Process

Computational Fluid Dynamics

- Coupled with upstream terrain model
- RANS and LES modelling
- Custom boundary conditions Harris and Deaves method
 Wind speed profile
 - Turbulence kinetic energy
- QNET CFD guidelines
- Quality control through academic partners
- Typically 12 -16 wind directions
- 10M cells

Comfort Software

- Developed by Buro Happold
- Statistical analysis of wind data
- Combines all wind directions
- Typically 10⁵ 10⁶ locations
- Produces comfort map
- For use in EIA / planning applications
 / design development
- Clear graphical output

Sectors – Sports / Stadia / Entertainment

Temperatur

Exemplarische Berechnung an Option B.

Berechnung des Temperaturanstiegs in Sitzebene bei

- 15° Umgebungstemperatur
- Sonneneinstrahlung
- Energiedurchlässigkeit des Membrandaches von 10%
- 10 W/m² Wärmeabstrahlung aus Personen
- 0,5 m/s Wind (West)

Größere Bereiche etwa 10 K wärmer als Umgebungstemperatur.

Einzelne Peaks können ignoriert werden, da in der Realität kein stationärer Zustand vorliegt (stärkere Durchmischung der Luftmassen).

- Geländer als Windschutz (50% Durchlässigkeit)
- Giebelseiten: Anordnung wie bei Option C (ggf. In Glas)
- Schutz auf Geländeniveau durch Bepflanzung

Option C+

Nutzung ohnehin anzuordnender Geländer auch als Windschutz.

Ausbildung des Windschutz mit 50% Durchlässigkeit (z.B. durch Metallgewebe).

An den Giebelseiten Anordnung wie bei Option C (auch in Glas möglich).

Zusätzlich Schutz auf Geländeniveau vor den Treppenaufgängen

Sectors – tall buildings

King Alfred – Hove Frank Gehry Project value – 187,000,000 Client - Karis Holdings Ltd

- CoSA External appointment with Hepher Dixon Planners
- Wind assessment to support planning application
- Extensive analysis of building Towers organic shapes in close collaboration with Frank Gehry
- Peer reviewed by BRE: CFD appropriate to project stage and time scales

Wind tunnel testing

Drag on tower

Peak acceleration

Load spectrum

Sectors - Masterplanning

Contact Details

graham.knapp@burohappold.com

+44 (0) 789 4172 849

www.burohappold.com

