

4GB - 240-Pin 2Rx4 Registered ECC DDR3 DIMM

Identification

DTM64313H 512Mx72 4GB 2Rx4 PC3-10600R-9-10-E1

Performance range

Clock / Module Speed / CL-t_{RCD} -t_{RP}

667 MHz / PC3-10600 / 9-9-9 533 MHz / PC3-8500 / 8-8-8 533 MHz / PC3-8500 / 7-7-7 400 MHz / PC3-6400 / 6-6-6

Features

240-pin JEDEC-compliant DIMM, 133.35 mm wide by 30 mm high

Operating Voltage: 1.5V ± 0.075

I/O Type: SSTL_15

On-board I²C temperature sensor with integrated Serial Presence-

Detect (SPD) EEPROM

Data Transfer Rate: 10.6 Gigabytes/sec

Data Bursts: 8 and burst chop 4 mode

ZQ Calibration for Output Driver and On-Die Termination (ODT)

Programmable ODT / Dynamic ODT during Writes

Programmable CAS Latency: 6, 7, 8, and 9

Bi-directional Differential Data Strobe signals

SDRAM Addressing (Row/Col/Bank): 14/11/3

Fully RoHS Compliant

Description

DTM64313H is a registered 512Mx72 memory module, which conforms to JEDEC's DDR3, PC3-10600 standard. The assembly is Dual-Rank. Each rank is comprised of eighteen 256Mx4 DDR3 Samsung SDRAMs. One 2K-bit EEPROM is used for Serial Presence Detect and a combination register/PLL, with Address and Command Parity, is also used. Both output driver strength and input termination impedance are programmable to maintain signal integrity on the I/O signals.

A thermal sensor accurately monitors the DIMM module and can prevent exceeding the maximum operating temperature of 95C.

Pin Co	nfiguration	Pin Description

Front Side	Back Side	Name	Function
1 V _{REFDQ} 31 DQ25 61 A2 91 DQ41	121 V _{SS} 151 V _{SS} 181 A1 211 V _{SS}	CB[7:0]	Data Check Bits
2 V _{SS} 32 V _{SS} 62 V _{DD} 92 V _{SS}	122 DQ4 152 DQS12 182 V _{DD} 212 DQS14	DQ[63:0]	Data Bits
3 DQ0 33 /DQS3 63 CK1* 93 /DQS5	123 DQ5 153 /DQS12 183 V _{DD} 213 /DQS14	DQS[17:0], /DQS[17:0]	Differential Data Strobes
4 DQ1 34 DQS3 64 /CK1* 94 DQS5	124 V _{SS} 154 V _{SS} 184 CK0 214 V _{SS}	CK[1:0], /CK[1:0]	Differential Clock Inputs
5 V _{SS} 35 V _{SS} 65 V _{DD} 95 V _{SS}	125 DQS9 155 DQ30 185 /CK0 215 DQ46	CKE[1:0]	Clock Enables
6 /DQS0 36 DQ26 66 V _{DD} 96 DQ42	126 /DQS9 156 DQ31 186 V _{DD} 216 DQ47	/CAS	Column Address Strobe
7 DQS0 37 DQ27 67 V _{REFCA} 97 DQ43	127 V _{SS} 157 V _{SS} 187 /EVENT 217 V _{SS}	/RAS	Row Address Strobe
8 V _{SS} 38 V _{SS} 68 P _{AR} I _N 98 V _{SS}	128 DQ6 158 CB4 188 A0 218 DQ52	/S[3:0]	Chip Selects
9 DQ2 39 CB0 69 VDD 99 DQ48	129 DQ7 159 CB5 189 V _{DD} 219 DQ53	WE	Write Enable
10 DQ3 40 CB1 70 A10/AP 100 DQ49	130 V _{SS} 160 V _{SS} 190 BA1 220 V _{SS}	A[15:0]	Address Inputs
11 V _{SS} 41 V _{SS} 71 BA0 101 V _{SS}	131 DQ12 161 DQS17 191 V _{DD} 221 DQS15	BA[2:0]	Bank Addresses
12 DQ8 42 /DQS8 72 V _{DD} 102 /DQS6	132 DQ13 162 /DQS17 192 /RAS 222 /DQS15	ODT[1:0]	On Die Termination Inputs
13 DQ9 43 DQS8 73 WE 103 DQS6	133 V _{SS} 163 V _{SS} 193 /S0 223 V _{SS}	SA[2:0]	SPD Address
14 V _{SS} 44 V _{SS} 74 /CAS 104 V _{SS}	134 DQS10 164 CB6 194 V _{DD} 224 DQ54	SCL	SPD Clock Input
15 /DQS1 45 CB2 75 V _{DD} 105 DQ50	135 /DQS10 165 CB7 195 ODT0 225 DQ55	SDA	SPD Data Input/Output
16 DQS1 46 CB3 76 /S1 106 DQ51	136 V _{SS} 166 V _{SS} 196 A13 226 V _{SS}	/EVENT	Temperature Sensing
17 V _{SS} 47 V _{SS} 77 ODT1 107 V _{SS}	137 DQ14 167 NC (TEST) 197 V _{DD} 227 DQ60	/RESET	Reset for register and DRAMs
18 DQ10 48 V _{TT} 78 V _{DD} 108 DQ56	138 DQ15 168 /RESET 198 /S3, NC 228 DQ61	PAR_IN	Parity bit for Addr/Ctrl
19 DQ11 49 V _{TT} 79 /S2, NC 109 DQ57	139 V _{SS} 169 CKE1 199 V _{SS} 229 V _{SS}	/ERR_OUT	Error bit for Parity Error
20 V _{SS} 50 CKE0 80 V _{SS} 110 V _{SS}	140 DQ20 170 V _{DD} 200 DQ36 230 DQS16	A12/BC	Combination input: Addr12/Burst Chop
21 DQ16 51 V _{DD} 81 DQ32 111 /DQS7	141 DQ21 171 A15 201 DQ37 231 /DQS16	A10/AP	Combination input: Addr10/Auto-precharge
22 DQ17 52 BA2 82 DQ33 112 DQS7	142 V _{SS} 172 A14 202 V _{SS} 232 V _{SS}	V _{SS}	Ground
23 V _{SS} 53 /E _{RR} O _{UT} 83 V _{SS} 113 V _{SS}	143 DQS11 173 V _{DD} 203 DQS13 233 DQ62	V_{DD}	Power
24 /DQS2 54 V _{DD} 84 /DQS4 114 DQ58	144 /DQS11 174 A12/BC 204 /DQS13 234 DQ63	V_{DDSPD}	SPD EEPROM Power
25 DQS2 55 A11 85 DQS4 115 DQ59	145 V _{SS} 175 A9 205 V _{SS} 235 V _{SS}	V_{REFDQ}	Reference Voltage for DQ's
26 V _{SS} 56 A7 86 V _{SS} 116 V _{SS}	146 DQ22 176 V _{DD} 206 DQ38 236 V _{DDSPD}	V_{REFCA}	Reference Voltage for CA
27 DQ18 57 V _{DD} 87 DQ34 117 SA0	147 DQ23 177 A8 207 DQ39 237 SA1	V_{TT}	Termination Voltage
28 DQ19 58 A5 88 DQ35 118 SCL	148 V _{SS} 178 A6 208 V _{SS} 238 SDA	NC	No Connection
29 V _{SS} 59 A4 89 V _{SS} 119 SA2	149 DQ28 179 V _{DD} 209 DQ44 239 V _{SS}		
30 DQ24 60 V_{DD} 90 DQ40 120 V_{TT}	150 DQ29 180 A3 210 DQ45 240 V _{TT}		

4GB - 240-Pin 2Rx4 Registered ECC DDR3 DIMM

Front view

Notes

Tolerances on all dimensions except where otherwise indicated are $\pm .13$ (.005).

All dimensions are expressed: millimeters [inches]

4GB - 240-Pin 2Rx4 Registered ECC DDR3 DIMM

Absolute Maximum Ratings

(Note: Operation at or above Absolute Maximum Ratings can adversely affect module reliability.)

PARAMETER	Symbol	Minimum	Maximum	Unit
Temperature, non-Operating	T _{STORAGE}	-55	100	С
Ambient Temperature, Operating	T _A	0	70	С
DRAM Case Temperature, Operating	T _{CASE}	0	95	С
Voltage on V _{DD} relative to V _{SS}	V_{DD}	-0.4	1.975	V
Voltage on Any Pin relative to V _{SS}	V_{IN}, V_{OUT}	-0.4	1.975	V

Notes:

DRAM Operating Case Temperature above 85C requires 2X refresh.

Recommended DC Operating Conditions ($T_A = 0$ to 70 C, Voltage referenced to $V_{ss} = 0$ V)

PARAMETER	Symbol	Minimum	Typical	Maximum	Unit	Note
Power Supply Voltage	V_{DD}	1.425	1.5	1.575	V	
I/O Reference Voltage	V_{REFDQ}	0.49 V _{DD}	0.50 V _{DD}	0.51 V _{DD}	V	1
I/O Reference Voltage	V_{REFCA}	0.49 V _{DD}	0.50 V _{DD}	0.51 V _{DD}	V	1

Notes:

DC Input Logic Levels, Single-Ended ($T_A = 0$ to 70 C, Voltage referenced to $V_{ss} = 0$ V)

PARAMETER	Symbol	Minimum	Maximum	Unit
Logical High (Logic 1)	$V_{\text{IH(DC)}}$	V _{REF} + 0.1	V_{DD}	V
Logical Low (Logic 0)	$V_{IL(DC)}$	V _{SS}	V _{REF} - 0.1	V

AC Input Logic Levels, Single-Ended (T_A = 0 to 70 C, Voltage referenced to V_{ss} = 0 V)

PARAMETER	Symbol	Minimum	Maximum	Unit
Logical High (Logic 1)	V _{IH(AC)}	V _{REF} + 0.175	-	V
Logical Low (Logic 0)	V _{IL(AC)}	-	V _{REF} - 0.175	V

¹⁾ The value of V_{REF} is expected to equal one-half V_{DD} and to track variations in the V_{DD} DC level. Peak-to-peak noise on V_{REF} may not exceed $\pm 1\%$ of its DC value.

4GB - 240-Pin 2Rx4 Registered ECC DDR3 DIMM

Differential Input Logic Levels ($T_A = 0$ to 70 C, Voltage referenced to $V_{ss} = 0$ V)

PARAMETER	Symbol	Minimum	Maximum	Unit
Differential Input Logic High	$V_{IH.DIFF}$	+0.200	DC:V _{DD} AC:V _{DD} +0.4	V
Differential Input Logic Low	$V_{IL,DIFF}$	DC:V _{SS} AC:V _{SS} -0.4	-0.200	V
Differential Input Cross Point Voltage relative to VDD/2	V _{IX}	- 0.150	+ 0.150	V

Capacitance (T_A = 25 C, f = 100 MHz)

PARAMETER	Pin	Symbol	Min.	Max.	Unit
Input Capacitance, Clock	CK0, /CK0	C _{CK}	1.5	2.5	pF
Input Capacitance, Address	BA[2:0], A[15:0], /RAS, /CAS, /WE	Cı	1.5	2.5	pF
Input Capacitance Control	/S[1:0], CKE[1:0], ODT[1:0]	Cı	1.5	2.5	pF
Input/Output Capacitance	DQ[63:0], CB[7:0] DQS[17:0], /DQS[17:0]	C _{IO}	3	5	pF

DC Characteristics ($T_A = 0$ to 70 C, Voltage referenced to $V_{ss} = 0$ V)

PARAMETER	Symbol	Minimum	Maximum	Unit	Note
Input Leakage Current	I _{IL}	-18	+18	μA	1,2
(Any input 0 V < VIN < VDD)					
Output Leakage Current	I _{OL}	-10	+10	μA	2,3
(0V < VOUT < VDDQ)					

Notes:

- 1) All other pins not under test = 0 V
- 2) Values are shown per pin
- 3) DQ, DQS, DQS and ODT are disabled

4GB - 240-Pin 2Rx4 Registered ECC DDR3 DIMM

 I_{DD} Specifications and Conditions ($T_A = 0$ to 70 C, Voltage referenced to $V_{ss} = 0$ V)

PARAMETER	Symbol	Test Condition	Max Value	Unit
Operating One Bank Active- Precharge Current	I _{DD} 0*	Operating current : One bank ACTIVATE-to-PRECHARGE	2060	mA
Operating One Bank Active-Read- Precharge Current	I _{DD} 1*	Operating current : One bank ACTIVATE-to-READ-to-PRECHARGE	2240	mA
Precharge Power- Down Current	I _{DD} 2P**	Precharge power down current: (Slow exit)	970	mA
Precharge Power- Down Current	I _{DD} 2P**	Precharge power down current: (Fast exit)	1330	mA
Precharge Standby Current	I _{DD} 2N**	Precharge standby current	1580	mA
Active Power-Down Current	I _{DD} 3P**	Active power-down current	1510	mA
Active Standby Current	I _{DD} 3N**	Active standby current	2470	mA
Operating Burst Write Current	I _{DD} 4W*	Burst write operating current	2880	mA
Operating Burst Read Current	I _{DD} 4R*	Burst read operating current	2870	mA
Burst Refresh Current	I _{DD} 5B**	Refresh current	3190	mA
Self Refresh Current	I _{DD} 6**	Self-refresh temperature current: MAX Tc = 85°C	960	mA
Operating Bank Interleave Read Current	I _{DD} 7*	All bank interleaved read current	4130	mA

Current | | | | * One module rank in this operation, the rest in IDD2P slow exit. ** All module ranks in this operation.

4GB - 240-Pin 2Rx4 Registered ECC DDR3 DIMM

AC Operating Conditions

PARAMETER	Symbol	Min	Max	Unit
Internal read command to first data	t _{AA}	13.125	20	ns
CAS-to-CAS Command Delay	t _{CCD}	4	-	t _{CK}
Clock High Level Width	t _{CH(avg)}	0.47	0.53	t _{CK}
Clock Cycle Time	t _{CK}	1.5	1.875	ns
Clock Low Level Width	t _{CL(avg)}	0.47	0.53	t _{CK}
Data Input Hold Time after DQS Strobe	t _{DH}	65	-	ps
DQ Input Pulse Width	t _{DIPW}	400	-	ps
DQS Output Access Time from Clock	t _{DQSCK}	-255	+255	ps
Write DQS High Level Width	t _{DQSH}	0.45	0.55	t _{CK(avg)}
Write DQS Low Level Width	t _{DQSL}	0.45	0.55	t _{CK(avg)}
DQS-Out Edge to Data-Out Edge Skew	t _{DQSQ}	-	125	ps
Data Input Setup Time Before DQS Strobe	t _{DS}	30	-	ps
DQS Falling Edge from Clock, Hold Time	t _{DSH}	0.2	-	t _{CK(avg)}
DQS Falling Edge to Clock, Setup Time	t _{DSS}	0.2	-	t _{CK(avg)}
Clock Half Period	t _{HP}	minimum of t _{CH} or t _{CL}	-	ns
Address and Command Hold Time after Clock	t _{IH}	140	-	ps
Address and Command Setup Time before Clock	t _{IS}	65	-	ps
Load Mode Command Cycle Time	t _{MRD}	4	-	t _{CK}
DQ-to-DQS Hold	t _{QH}	0.38	-	t _{CK(avg)}
Active-to-Precharge Time	t _{RAS}	36	9*t _{REFI}	ns
Active-to-Active / Auto Refresh Time	t _{RC}	49.125	-	ns
RAS-to-CAS Delay	t _{RCD}	13.125	-	ns
Average Periodic Refresh Interval 0° C < T _{CASE} < 85° C	t _{REFI}	-	7.8	μs
Average Periodic Refresh Interval 0° C < T _{CASE} < 95° C	t _{REFI}	-	3.9	μs
Auto Refresh Row Cycle Time	t _{RFC}	110	-	ns
Row Precharge Time	t _{RP}	13.125	-	ns
Read DQS Preamble Time	t _{RPRE}	0.9	Note-1	t _{CK(avg)}
Read DQS Postamble Time	t _{RPST}	0.3	Note-2	t _{CK(avg)}
Row Active to Row Active Delay	t _{RRD}	Max(4nCK, 6ns)	-	ns
Internal Read to Precharge Command Delay	t _{RTP}	Max(4nCK, 7.5ns)	-	ns
Write DQS Preamble Setup Time	t _{WPRE}	0.9	-	t _{CK(avg)}
Write DQS Postamble Time	t _{WPST}	0.3	-	t _{CK(avg)}
Write Recovery Time	t _{WR}	15	-	ns
Internal Write to Read Command Delay	t _{WTR}	Max(4nCK, 7.5ns)	-	ns

Notes:

- The maximum preamble is bound by tLZDQS(min)
 The maximum postamble is bound by tHZDQS(max) 1. 2.

4GB - 240-Pin 2Rx4 Registered ECC DDR3 DIMM

SERIAL PRESENCE DETECT MATRIX

Byte#	Function.	Value	Hex		
0	Number of Bytes Used / Number of Bytes in SPD Device / CRC Co	verage.	0x92		
	Bit 3 ~ Bit 0. SPD Bytes Used -	176			
	Bit 6 ~ Bit 4. SPD Bytes Total -	256			
	Bit 7. CRC Coverage -	Bytes 0-116	0.40		
1	SPD Revision.	Rev. 1.0	0x10		
2	Key Byte / DRAM Device Type.	DDR3 SDRAM	0x0B		
3	Key Byte / Module Type.		0x01		
	Bit 3 ~ Bit 0. Module Type -	RDIMM			
	Bit 7 ~ Bit 4. Reserved -	0			
4	SDRAM Density and Banks.		0x02		
	Bit 3 ~ Bit 0. Total SDRAM capacity, in megabits -	1Gb			
	Bit 6 ~ Bit 4. Bank Address Bits -	8 banks			
	Bit 7. Reserved -	0			
5	SDRAM Addressing.		0x12		
	Bit 2 ~ Bit 0. Column Address Bits -	11			
	Bit 5 ~ Bit 3. Row Address Bits -	14			
	Bit 7, 6. Reserved	0	0.00		
6	Reserved.	UNUSED	0x00		
7	Module Organization.		0x08		
	Bit 2 ~ Bit 0. SDRAM Device Width -	4-Bits			
	Bit 5 ~ Bit 3. Number of Ranks -	2-Rank			
	Bit 7, 6. Reserved	0	0.05		
8	Module Memory Bus Width.		0x0B		
	Bit 2 ~ Bit 0. Primary bus width, in bits -	64-Bits			
	Bit 4, Bit 3. Bus width extension, in bits -	8-Bits			
	Bit 7 ~ Bit 5. Reserved -	0	050		
9	Fine Timebase (FTB) Dividend / Divisor.		0x52		
	Bit 3 ~ Bit 0. Fine Timebase (FTB) Divisor	2			
40	Bit 7 ~ Bit 4. Fine Timebase (FTB) Dividend	5	004		
10	Medium Timebase (MTB) Dividend.	1 (MTB = 0.125ns)	0x01		
11	Medium Timebase (MTB) Divisor.	8 (MTB =	0x08		
	Wediam Timebase (WTD) Divisor.	0.125ns)	0,00		
12	SDRAM Minimum Cycle Time (tCKmin).	1.5ns	0x0C		
13	Reserved.	UNUSED	0x00		
14	CAS Latencies Supported, Least Significant Byte.				
	Bit 0. CL = 4 -				
	Bit 1. CL = 5 -				
	Bit 2. CL = 6 -	Χ			
	Bit 3. CL = 7 -	X			
	Bit 4. CL = 8 -	X			
	Bit 5. CL = 9 -	Χ			
	Bit 6. CL = 10 -				
	Bit 7. CL = 11 -				

15	CAS Latencies Supported, Most Significant Byte.		0x0	
	Bit 0. CL = 12 -			
	Bit 1. CL = 13 -			
	Bit 2. CL =14 -			
	Bit 3. CL = 15 -			
	Bit 4. CL = 16 -			
	Bit 5. CL = 17 -			
	Bit 6. CL = 18 -			
	Bit 7. Reserved.	40.40=		
16	Minimum CAS Latency Time (tAAmin).	13.125ns	0x6	
17	Minimum Write Recovery Time (tWRmin).	15.0ns	0x7	
18	Minimum RAS# to CAS# Delay Time (tRCDmin).	13.125ns	0x6	
19	Minimum Row Active to Row Active Delay Time (tRRDmin).	6.0ns	0x3	
20	Minimum Row Precharge Delay Time (tRPmin).	13.125ns	0x6	
21	Upper Nibbles for tRAS and tRC.		0x11	
	Bit 3 ~ Bit 0. tRAS Most Significant Nibble -	1		
	Bit 7 ~ Bit 4. tRC Most Significant Nibble -	1		
22	Minimum Active to Precharge Delay Time (tRASmin), Least Significant Byte.	36.0ns	0x2	
23	Minimum Active to Active/Refresh Delay Time (tRCmin), Least Significant Byte.	49.125ns	0x8	
24	Minimum Refresh Recovery Delay Time (tRFCmin), Least Significant Byte.	110.0ns	0x7	
25	Minimum Refresh Recovery Delay Time (tRFCmin), Most Significant Byte.	110.0ns	0x0	
26	Minimum Internal Write to Read Command Delay Time (tWTRmin).	7.5ns	0x3	
27	Minimum Internal Read to Precharge Command Delay Time (tRTPmin).	7.5ns	0x3	
28	Upper Nibble for tFAW.		0x0	
	Bit 3 ~ Bit 0. tFAW Most Significant Nibble -	0		
	Bit 7 ~ Bit 4. Reserved -	0	-	
29	Minimum Four Activate Window Delay Time (tFAWmin), Least Significant Byte.	30.0ns	0xF	
30	SDRAM Optional Features.		0x83	
	Bit 0. RZQ / 6 -	Х		
	Bit 1. RZQ / 7 -	X		
	Bit 6 ~ Bit 2. Reserved -			
	Bit 7. DLL-Off Mode Support	Х		
31	SDRAM Drivers Supported.		0x01	
	Extended Temperature Range -	X		
	Extended Temperature Refresh Rate -			
	Auto Self Refresh (ASR) -			
	On-die Thermal Sensor (ODTS) Readout -			
	Reserved -			
	Reserved -			
	Reserved -			
	Partial Array Self Refresh (PASR) -			

	Bit 6 ~ Bit 0. Thermal Sensor Accuracy -	0	7
	Bit 7. Thermal Sensor -	With TS	
33	SDRAM Device Type.		0x00
	Bit 6 ~ Bit 0. Non-Standard Device Description -	0	1
	Bit 7. SDRAM Device Type -	Std Mono	
34-59	Reserved	UNUSED	0x00
60	Module Nominal Height.		0x0F
	Bit 4 ~ Bit 0. Module Nominal Height max, in mm -	29 <h<=30< td=""><td>-</td></h<=30<>	-
	Bit 7 ~ Bit5. Reserved -	0	
61	Module Maximum Thickness.		0x11
	Bit 3 ~ Bit 0. Front, in mm (baseline thickness = 1 mm) -	1 <th<=2< td=""><td>1</td></th<=2<>	1
	Bit 7 ~ Bit 4. Back, in mm (baseline thickness = 1 mm) -	1 <th<=2< td=""><td></td></th<=2<>	
62	Reference Raw Card Used.	=	0x24
	Bit 4 ~ Bit 0. Reference Raw Card -	R/C E	1
	Bit 6, Bit 5. Reference Raw Card Revision -	Rev.1	
	Bit 7. Reserved -	0	=
63	(Registered) DIMM Module Attributes.		0x09
	Bit 1 ~ Bit 0. # of Registers used on RDIMM -	1 Register	-
	Bit 3 ~ Bit 2. # of Rows of DRAMs on RDIMM -	2 Rows	
	Bit 7 ~ Bit 4. Reserved -	0	
64	RDIMM Thermal Heat Spreader Solution.		0x00
	Bit 6 ~ Bit 0. Heat Spreader Thermal Characteristics -	0	
	Bit 7. Heat Spreader Solution -	No HS	
65	Register Manufacturer ID Code, Least Significant Byte (Optional).	UNUSED	0x00
66	Register Manufacturer ID Code, Most Significant Byte (Optional).	UNUSED	0x00
67	Register Revision Number (Optional).		0xFF
68	Register Type.		0x00
	Bit[2-0] Support Device -	SSTE32882	
	Bit[7-3] Reserved -	0	
69	[SSTE32882]: RC1 (MS Nibble) / RC0 (LS Nibble)	UNUSED	0x00
70	[SSTE32882]: RC3 (MS Nibble) / RC2 (LS Nibble) - Drive Strength, Command/Address.		0x50
	Bit 1, Bit 0. RC2/DA3,4 Value	RESERVED	1
	Bit 3, Bit 2. RC2/DBA0,1 Value -	RESERVED	1
	Bit 5, Bit 4. RC3/DA4,3 value, Command/Address A Outputs -	Moderate	
	Bit 7, Bit 6. RC3/DBA0,1 value, Command/Address B Outputs -	Moderate	
71	[SSTE32882]: RC5 (MS Nibble) / RC4 (LS Nibble) - Drive Strength, Control and Clock.		0x55
	Bit 1, Bit 0. RC4/DA3,4 Control Signals, A Outputs	Moderate	
	Bit 3, Bit 2. RC4/DBA0,1 Control Signals, B Outputs -	Moderate	
	Bit 5, Bit 4. RC5/DA4,3 value, Y1/Y1# and Y3/Y3# Clock Outputs	Moderate	
	Bit 7, Bit 6. RC5/DBA0,1 value, Y0/Y0# and Y2/Y2# Clock Outputs -	Moderate	
72	[SSTE32882]: RC7 (MS Nibble) / RC6 (LS Nibble).	UNUSED	0x00
73	[SSTE32882]: RC9 (MS Nibble) / RC8 (LS Nibble).	UNUSED	0x00
74	[SSTE32882]: RC11 (MS Nibble) / RC10 (LS Nibble).	UNUSED	0x00
75	[SSTE32882]: RC13 (MS Nibble) / RC12 (LS Nibble).	UNUSED	0x00
10	[SSTEDZOOZ]. INO TO (INTO TRIBBIO) / THO TZ (LO TRIBBIO).	5.100LD	0,00

76	[SSTE32882]: RC15 (MS Nibble) / RC14 (LS Nibble).	UNUSED	0x00
77-112	Module-Specific Section	UNUSED	0x00
113	Module-Specific Section.	UNUSED	0x00
114-116	Module-Specific Section	UNUSED	0x00
117	Module Manufacturer ID Code, Least Significant Byte		0x01
118	Module Manufacturer ID Code, Most Significant Byte		0x91
119	Module Manufacturing Location	UNUSED	0x00
120,121	Module Manufacturing Date		0x00
122-125	Module Serial Number		0x20
126	Cyclical Redundancy Code (CRC).	CRC	0x0D
127	Cyclical Redundancy Code (CRC).	CRC	0x16
128-131	Module Part Number		0x20
132	Module Part Number	D	0x44
133	Module Part Number	А	0x41
134	Module Part Number	Т	0x54
135	Module Part Number	A	0x41
136	Module Part Number	R	0x52
137	Module Part Number	A	0x41
138	Module Part Number	M	0x4D
139	Module Part Number		0x20
140	Module Part Number	6	0x36
141	Module Part Number	4	0x34
142	Module Part Number	3	0x33
143	Module Part Number	1	0x31
144	Module Part Number	3	0x33
145	Module Part Number		0x20
146,147	Module Revision Code		0x20
148	DRAM Manufacturer ID Code, Least Significant Byte	UNUSED	0x00
149	DRAM Manufacturer ID Code, Most Significant Byte	UNUSED	0x00
150-175	Manufacturer's Specific Data	UNUSED	0x00
176-255	Open for customer use	UNUSED	0x00

4GB - 240-Pin 2Rx4 Registered ECC DDR3 DIMM

DATARAM CORPORATION, USA Corporate Headquarters, P.O. Box 7528, Princeton, NJ 08543-7528; Voice: 609-799-0071, Fax: 609-799-6734; www.dataram.com

All rights reserved.

The information contained in this document has been carefully checked and is believed to be reliable. However, Dataram assumes no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Dataram.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Dataram.