Back-Propagation Algorithm

November 6, 2018

1 Concept Description

• Matrices V and W, which store the connection weights between the input and hidden layers and between the hidden and output layers, respectively.

2 Learning Element

• Note that

$$f(x) = \frac{1}{1 + e^{-\lambda x}} \ .$$

- Assume $\lambda = 1.0$.
- Given are M training pairs:

$$\{\mathbf{x}_1,\mathbf{y}_1,\mathbf{x}_2,\mathbf{y}_2,\ldots,\mathbf{x}_M,\mathbf{y}_M\},\$$

where \mathbf{x}_i is $(I \times 1)$, \mathbf{y}_i is $(K \times 1)$, and $i = 1, 2, \dots, M$.

- Note that the Ith component of each \mathbf{x}_i is of value -1 since input vectors have been augmented.
- Select the size J-1 of the hidden layer having outputs **h**.
- Note that the Jth component of \mathbf{h} is of value -1, since hidden layer outputs have also been augmented.
- **h** is $(J \times 1)$ and **o** is $(K \times 1)$.
- Step 1: Select $\eta > 0$, where η is the learning rate, and E_{\min} , where E_{\min} is the minimum acceptable error
- Initialize weight matrices V and W to small random values.
- **V** is $(J \times I)$, **W** is $(K \times J)$.
- q = 1, m = 1, E = 0, where q counts the total number of presentations made, m counts the number of presentations for a given epoch, and E is the error term for an epoch.
- Step 2: Training step starts here. Present input and compute layers' output:

$$\mathbf{x} = \mathbf{x}_m, \mathbf{y} = \mathbf{y}_m$$

$$h_j = f(\mathbf{v}_j \mathbf{x}), \text{ for } j = 1, 2, \dots, J,$$

where \mathbf{v}_i is the jth row of \mathbf{V} .

$$o_k = f(\mathbf{w}_k \mathbf{h}), \text{ for } k = 1, 2, \dots, K,$$

where \mathbf{w}_k is the kth row of \mathbf{W} .

• Step 3: Compute error value:

$$E = \frac{1}{2}(y_k - o_k)^2 + E$$
, for $k = 1, 2, \dots, K$

- Step 4: Compute error signal vectors δ_o and δ_h for both layers.
- Vector $\boldsymbol{\delta_o}$ is $(K \times 1)$, $\boldsymbol{\delta_h}$ is $(J \times 1)$.
- The error signal terms of the output layer in this step are:

$$\delta_{ok} = (y_k - o_k)(1 - o_k)o_k$$
, for $k = 1, 2, \dots, K$.

• The error signal terms of the hidden layer in this step are:

$$\delta_{hj} = h_j (1 - h_j) \sum_{k=1}^K \delta_{ok} w_{kj}, \text{ for } j = 1, 2, \dots, J.$$

• Step 5: Adjust output layer weights:

$$w_{kj} = w_{kj} + \eta \delta_{ok} h_j$$
, for $k = 1, 2, ..., K$ and $j = 1, 2, ..., J$.

• Step 6: Hidden layer weights are adjusted:

$$v_{ji} = v_{ji} + \eta \delta_{hj} x_i$$
, for $j = 1, 2, ..., J$ and $i = 1, 2, ..., I$.

- Step 7: If m < M then m = m + 1, q = q + 1, and go to Step 2; otherwise, go to Step 8.
- Step 8: The training cycle is completed. For E < E_{min} terminate the training session.
 Output weights V, W, q, and E. If E > E_{min}, then E = 0, p = 1, and initiate the new training cycle by going to Step 2.

3 Performance Element

• Given an augmented observation \mathbf{x} , where \mathbf{x} is $(I \times 1)$ and the Ith component of \mathbf{x} is the value -1, compute

$$h_j = f(\mathbf{v}_j \mathbf{x}), \text{ for } j = 1, 2, \dots, J,$$

where \mathbf{v}_{i} is the jth row of \mathbf{V} .

$$o_k = f(\mathbf{w}_k \mathbf{h}), \text{ for } k = 1, 2, \dots, K,$$

where \mathbf{w}_k is the kth row of \mathbf{W} .

• Return \mathbf{o} as the prediction for \mathbf{x} .

References

- [1] C. M. Bishop. Pattern recognition and machine learning. Springer, Berlin-Heidelberg, 2006.
- [2] J. M. Zurada. Introduction to Artificial Neural Systems. West Publishing, St. Paul, MN, 1992.