MTRN3500 Computing Applications in Mechatronics Systems

Developing a Flight Controller for a Quad-copter

T3 - 2020

Aim

- To logically analyze a complex system and develop a sophisticated software solution.
- The chosen system is an ordinary quad-copter operating in X configuration.
- Generally, these systems have non-linearities. However, in stable horizontal flying the non-linearities are minimal.

Approach

- Develop a complete schematic diagram incorporating all elements required.
- Breakdown the schematic to logical software units
- Develop classes for the logical units
- Develop the flight controller class

System Specifications

- System quadcopter
- Controls required (attitude control only)
 - Pitch control
 - Roll control
 - Yaw control
- Controls required (position)
 - Heave rate control -> vertical position
- Sensing required
 - Gyro rates (roll, pitch and yaw rates in rad/sec).
 - Attitude sensing (roll, pitch and yaw angles in rad).
- Actuation
 - Speed control of four rotors
- Commands
 - From a remote transmitter

Red - Roll Command

Green - Pitch Command

Yellow – Yaw rate command

Purple – Heave rate command

Configuration

- X- configuration
- Counter rotating propellers
- X is the forward direction
- Z is vertically up
- Propellers are numbered from 1 4
- An IMU at the centre of the copter measures the attitude and gyro rates

- A positive pitch angle θ
 will make the quadcopter
 move forward
- A positive roll angle φ will make the quadcopter move rightwards.
- A positive yaw angle ψ will rotate the quadcopter in counter clockwise direction.

Pitch Control

Roll Control

6

Yaw Rate Controller

Heave Rate Control

Flight Controller

Let us Look at Some Software

