FORM NO. 51.61 INTELLOFAX 29

CLASSIFICATION

SECRET

SECURITY INFORMATION CENTRAL INTELLIGENCE AGENCY

1

25X1A

INFORMATION REPORT CD NO.

REPORT NO.

COUNTRY

East Germany

DATE DISTR. 4 February 1953

SUBJECT

Catalogue for Antifriction Bearings Prepared by the NO. OF PAGES Deutsche Kugellagerfabrik (DKF), SAG Transmasch,

Boehlitz-Ehrenberg

PLACE ACQUIRED

25X1C

NO. OF ENCLS. (LISTED BELOW)

1 (75 photostats)

DATE OF INFO. ACQUIRED

SUPPLEMENT TO REPORT NO.

25X1X

Attached for your retention is a photostated copy of the DKF catalogue.

THIS DOCUMENT HAS AN ENGLOSURE ATTACHED DO NOT DETACH

CLASSIFICATION STATE NAVY

AIR

SECRET DISTRIBUTION **CPYRGHT**

25X1A Approved For Release 2002/01/04 : CIA-RDP83-00415R01410013000

DKF WÄLZLAGER

HAUPTLISTE 50

Mit Erscheinen dieser Liste werden früher ausgegebere u ${\mathbb R}^{n}$

DEUTSCHE KUGELLAGERFABRIK "DKF"

BÖHLITZ-EHRENBERG BEGLI 1976

FERNSPRICH NOMMER 33161

Approved For Release 2002/01/04 CIA-RDP83-00415R014100130004-6

Approved For Release 2002/01/04 : CIA-RDP83-00415R014100130004-25X1A

Inhaltsverzeichnis Textteil Normung, Bauarten und Benennungen Bezeichnung der Wälzlager Außenmaße der Scheibenlager 42 Prüfverfehren und Toleranzen für Wälzlager DIN 620 . . . 45-58 Abmessungen und Tregzehlen Ring-Rillenlager nech DIN 625 Ring-Schräglager nach DIN 628 Reihe QA Reihe QB 76-77 Ring-Pendellager nech DIN 630 Reihe 12 und 12 K Reihe 13 und 13 K Reihe 22 und 22 K . . . 82-83 84-65

SEGNET

Polease.2002/01/04: CIA-RDP83-00415R014100130004-6

25X1A Approved For Release 2002/01/04 : CIA-RDP83-00415R0141001300

Inhaltsverzeichnis

nach DIN 5412	Seite
MUE	86-87
HL NUL NJL NUPL	88 89
NM, NUM, NJM, NUPM	90-91
NS, NUS, NJS, NUPS	92-93
WUL WIL WUPL	94 - 95
WUM, WIM, WUPM	96-97
	98-99
Na, RNa nach DIN 617	100-101
Tagelinger nach DIN 720	
302	100 100
The state of the s	
***	104-105
322	
323	
313	110-111
Tennenlager nach DIN 635	
Bulle 222 und 222 K	112-113
223 und 223 K	114-115
Milentager nach DIN 711 (einseitig wirkend)	
511	116 117
512, 532, 532 + U 2	110 110
Raihe 513, 533, 533 + U 3	100-119
Sibe 514, 534, 534 + U 4	120-121
	122-123
Rillenlager nach DIN 715 (zweiseitig wirkend)	
522, 542, 542 + U 2	124-125
523, 543, 543 + U 3	126-127
524, 544, 544 + U 4	128-129
Nedeln DIN 617 und Prüfverfahren	100 100
Kurzrollen DIN 5402 und Prüfverfahren	130-132
The Store and Prurvertahren	133 139
The state of the s	127 140

Normung

im Jehre 1917 wurde in Deutschland mit der Normung von Kugellsgern begonnen, da diese die Grundlage des Austauschbaues und der wirtscheftlichen Fertigung ist. Die ereten Normblätter wurden im Jehre 1922 veröffentlicht. An der Wälzlager-Normung arbeiteten aber auch Schweden, die Schweiz und die Vereinigten Staaten von Amerike, Im Jahre 1926 wurde in New York die "ISA" (Internetional Federation of the National Standardising Associations) gegründet; Deutschland, England, Italien, Schweden, die Schweiz und die Vereinigten Staaten von Amerika waren im Kugellagerausschuß vertreten. Die Normungserbeiten wurden auf den Tagungen des ISA-Komitees 4 ... Walzlager" in den Jahren 1927 bis 1939 stark gefördert. Im September 1939 erschien dae Blatt DIN 616 (2. Ausgabe) über die Heuptmeße der Ringlager (Querlager), welchee als eine Grundnorm für elle übrigen Normungsarbeiten angesehen werden kann. In diese Grundnorm sollen nach Möglichkeit alle zu fertigenden Wälzlager eingeordnet werden (siehe Seite 38 ff.). Der Deutsche Normeneusschuß echuf in den Jahren 1939 bis 1942 die Unterlagen für die Normung der Wälzlager unter Berücksichtigung der Leistungssteigerung der gesamten Wälzlagerindustrie. Diese Steigerung war aber nur durch eine wesentliche Typeneinschränkung, bzw. Typenverminderung, herbeizuführen. im Jahre 1942 war das Normwerk "Wälzleger" abgeschlossen und wurde für verbindlich erklärt.

Das Normwerk über Wälzlager enthält die Grundnormen über die Bauarten (DIN 612) der Walzlager (Begriffe und Bemerkungen), über die Abmessungen (DIN 616), über die Prüfverfehren und Toleranzen (DIN 620), über die Gewichte (DIN 621), über die Tragfähigkeit (DIN 622), über die Bezeichnung der Wälzlager (DIN 623) und die Normblätter der einzelnen Lageranten.

Als neue Reihen wurden unter anderem die Ring-Schraglager, zweiseitig wirkend, Reihe QA und Reihe QB im DIN-Blatt 628 aufgenommen, ferner die Ring-Zylinderlager "Nadellager", Lagerreihe Ne im DIN-Blatt 617. Dagegen wurden veraftete Lagerreihen, wie die Ritlen-Kugellager mit Einfulfnuten, Bernarm A. B. C einreihig und AA. BB. CC zweireihig nicht genormt

Beitign A. B. C einreihig und AA, BB, CC zweireihig, nicht genormt.

Die Beariffe und Benennungen der Wälzlager und ihrer Teile sind im DIN-Battol affestgelegt. Bisherige gebräuchliche Benennungenwaren zum Teil annochtst

Approved For Release 2002/01/04: CIA PP83-00415R01410013600446Scheibenlager.

Approved For Release 2002/01/04 : CIA-RDP83-00415R01410013000

Bauarten und Benennungen

Bauarten und Benennungen

	١
	ì
W.C	P

707	(2)													
	Orașe		Br Act	Form	Rehen	B. d								
			ne- ninger	ohne Füllnuten	80 X, 160 82, 63, 64									
	Ring		ing-	selbathaltend einreihig	72. 73	四								
-	Kugal- Ingar	Schri	lgiager	zereiseitig wirkend mit geteiltem Außenring	QA, QB									
			ing- allagar	zweireihig	12. 13 22. 23	図								
Rthag-		- Zylinder-	mit (snen- bord	mit Tragring	NL, NM. NS	国								
			Zylinder-	Zylinder-	Zylinder-	Zylinder-	Zylinder-	Zylinder-		mit Tragring	NUE NUL, NUM, NUS WUL, WUM			
	Ring-								Zylinder-	en- Zylinder	mit Auton-	mit Stützring	MIL, MIM, NIS	四
	lagar										bord	mit Stützring und Winkelding	MJL + H 2, WJL + H 22 NJM + H 3, WJM + H 23 NJS + H 4	
				mit Stützring u. Bordscheibe	NUPL, WUPL NUPM, WUPM NUPS	用								
			Nadel- lager	mit Tragning ohne Tragning	Na NAR* ANa, RNAR*									

Gattung	Gruppe	8	Beuerl		B₁:d
Ring-	Ring-	Art Amg- Kegeliage-	Form mit kleinem Kegelwinkel mit großem Kegelwinkel	302, 303 322, 323 313	日
'ager	Rollen- lager	Aing- Tannenisger	mit drei Borden	222 223	四
			einseilig wirkend mit ebener Gehäusescheibe	511 512 513 514	
	·		eineeitig wirkend mit kugel ger Gehäusescheibe	532 533 534	
Schaiben- leger	Scheiben- Kugel- fager	Scheiben- Rillenleger	zweiseltig wirkend mit ebenen Gehausescheiten	522 523 524	
1 g 46			zweise tig wirkend in t kugeligen Gahäusesche den	542 543 544	644

tilne Gegenüberstellung der alten und neuen Benennungen siehe Seite 8

Approved For Release 2002/01/04 : CIA-RDP83-00415R014100130004-6

lager mit Führungsrahmen

Approved For Release 2002/01/04: CIA-RDP83-00415R014100130004-6

Gegenüberstellung der alten und neuen Benennungen

	neu
113	Ringlager
	Scheibenlager
1507 mm	Ring-Kugellager
	Ring-Rollenlager
Linearolleninger	Scheiben-Rollenlager
Hashachulterkuge lager	Ring-Rillenlager (ohne Füllnuten)
Bubridings lager	Ring-Schräglager
	Ring-Schräglager zweiseitig wirkend
	Ring-Pendellager
Butular kagellager	Ring-Schulterlager
- Collegerrottenleger	Ring-Zylinderlager
- Entelrollenlager	dto. mit Tragning
Bahallarrollenleger	dto. mit Stützring
Phymagicallenlager	dto. mit Stützring und Bardsche pe
Madellager	Ring-Zylinderlager Reihe Na
Kagairollenlager	Ring-Kegellager
Lingskugellager	Scheiben-Rillenlager
Wildsorper	Rollkörper
Piolio	Zylinderrolle, Kurzrolle
Nedel	Zylinderwelze, Nedel
Laufring	Rollbahnring
Protor Laufring	Tragring
Schulterring	Stützring
Bordring	Führungering
Selliger Fling	Kugsliger Außenring
Filhrungsecheibe	Bordschaibe
Druckscheibe	Rollbehnscheibe
Enge Scheibe	Wellenscheibe
Weite Scheibe	Gehäusescheibe
Ballige Scheibe	Kugelige Gehäusescheibe
Einstellscheibe	Unterlagscheibe
	_

Bezeichnung der Wälzlager

Die Bezeichnung der Wätzlager wurde im DIN-Blett 623 fastgelagt, sie wurde von den früheren Normblättern übernommen und ist nicht geändert worden. In diesem DIN-Blett eind euch die Zeichen für die euftratenden Sonderformen und für Wälzteger mit höherer Geneuigkeit aufgenommen worden.

Jedee Lager wird durch ein "Kurzzeichen" eindautig gekennzeichnet, dieses besteht eus dem Zeichen für die Legerreihe und dem Zeichen für die Bohrung. Die festgelegten Zeichen für Sonderformen oder für beeondere Genauigkeit werden an des Kurzzeichen engefügt.

Die Lagerreihen werden mit Zehlen oder Buchstaben bezeichnet. Diese Re henbezeichnung mit Zahlen bestend bisher aus 4 oder 5 Z. ffern, mit "00" em Ende, z. B.

6200, 1200, 30200, 51100 usw.

Die Reihen werden jetzt nur noch mit Zahlen benannt, dis jeweils am Kopfe der Tebelle aufgeführt sind, um eine Verwechslung mit den Lagern gleicher Bezeichnung (10 mm Bohrung) zu vermeiden, z B.

Reihe 62	etatt	6200	Reihe	302	statt	30200	
., 12		1200		511		51100	uew.

Ring-Rillenleger unter 10 mm Bohrung, Ring-Schulterlager und Ring-Zylinderlager werden mit Buchstaben bezeichnet, z. B.

R. E. EL. NJL. WUM usw.

Die Bohrungen der Lager, deren Reihenbezeichnung Zahlen sind, werden durch 2 Ziffern (Bohrungskennziffer) bezeichnet. Diese Bohrungskennziffer wird an das Zeichen für die Lagerreihe angehängt. Ab 20 mm Bohrung ergibt die Bohrungskennziffer mit 5 multipliziert das Bohrungsmaß. Des Kurzzeichen eines Ring-Rillenlagers der Durchmessergruppe 2 (leichte Reihe) mit 30 mm Bohrung Ist also: 6206.

Unter 20 mm Bohrung bezeichnet:

die Bohrungskennziffer 00 das Bohrungsmaß 10 mm

	 	•			
01				12	
02				• 5	
03				17	

Approved For Release 2002/01/04 CTA-RDP83-00415R014100130004

Bezeichnung der Wälzlager

- Lager, deren Reihenbezeichnung Buchstaben eind: werden se bezeichnet. Das Bohrungsmeß wird en des Zeichen machines, z. 8.
- 1 50 = Ring-Zylinderlager mit Tragring.
 - Außenbordführung und 50 mm Bohrung 7 - Ring-Rillenlager mit 7 mm Bohrung
- 12 Ring-Schulterlager mit 12 mm Bohrung.
- Sendarformen werden an das Kurzzeichen angehengt. Es
 - K kagelige Bohrung

 - Deckacheibe auf einer Seite
- Deckscheiben auf beiden Seiten
 - 21 Deckscheibe und Ringnut
- These Form oder andere Maße.
- nene Raihe 60 X het diesee Zueatzzeichen ir such ehne weiteres fortfallen, da eine Verwechslung Angerert nicht mehr wahrscheinlich ist.
- Plinglager, (siehe Seite 38) der einseitig wirkenden Schei-Saite 42) und der Kegellager (siehe Seite 40) eind im DIN-Bei den Kagellagern haben die Rollbahnringe verschiedene
- im DIN-Blatt 616 in "Durchmessergruppen" zusam-Lagarreiben, die bei gleicher Bohrung gleiche Manlel-M, gehören zu einer Durchmessergruppe. Innerhalb einer gibt es mehrere Maßreihen, die eich durch verschiedene
- O entspricht den früheren "ganz leichten Reihen". 2 "den feichten", die Durchmessergruppe 3 den sod die Durchmessergruppe 4 den "schweren Reihen". Die 8, 9, und 1 sind neu hinzugekommen.

Bezeichnung der Wälzlager

Die Wälzleger in dieser Hauptliete gehören den Durchmessergruppen 0, 1, 2, 3 und 4 en. Die entsprechende Meßreihe ist jeweile am Kopf der Tabelle zu

In dem DIN-Blatt 620 (siehe Seite 45) sind die Tolerenzen für die Maßund Laufgenauigkeit der Ring- und Scheiberlager, sowie die Formgenauigkeit der Ringlager für die allgemeinen als auch für die Sonderfälle, festgelegt. Ferner wurden darin die Angeben über Prüfverfahren für die Maß-, Form-

Die Anschlußmaße eind in den nachstehenden DIN-Blättern festgelegt worden Rundungen und Schulterhöhen in DIN 5418 Seite 1 (siehe Seite 28) Anschlußmaße für Ring-Zylinderleger in DIN 5418 Seite 2 (s S 43) Anschlußmaße für Ring-Kegelleger in DIN 5418 Seite 3 (s S 44)

Die Anschlußmeße für Ringlager mit Spennhülsen eind im DIN 5418 Seite 4 zu finden, diese Meße sind in dieser Heuptliste nicht aufgeführt, da die

In die Wälzlegernormen wurden auch die Leistungsengaben aufgenommen d.h. es ist für jedes Lagen die Tregzehl Clengegeben. Nach DIN 622 Biet! 1 ist diese Tragzeht C die Tragfähigkeit einee bestimmten Lagers in kg beeiner Lebensdeusr von einer Million Umdrehungen (siehe Seite 20 m)

in dem DIN-Biett 621 sind die Gewichte der einzenen Lager aufgefuhrt. die euch für die in dieser Hauptliste angegebenen Gewichte voernommen wurden, de nach Ausführung und Meterial des Käfigs konnen Abweichungen von diesem Gewicht vorkommen.

In den Normblättern der einzelnen Lagerarten ist der Umfang der einzelnen Lagerreihe festgelegt, ebenfalls des Kurzzeichen, die Maße und die Tragzen. C. Für die Lebensdauerberechnung enthalten diese weiter die Bewerte xund y sowie die Leitern für die Bestimmung der Drehzahl- und Lebensdauerfaktoren

Von den Ring-Zylinderlagern sind nur noch folgende Formen genormt N. NU. NJ und NUP in der Durchmessergruppe 2.3 und 4 (L. M und S) WUEWJ und WUP in den Durchmessergruppen 2 und 3 (L und M)

Approved For Release 2002/07/04 : CIA-RDP83-09415R014100130004-6 419 e.nzise Form

25X1A Approved For Release 2002/01/04: CIA-RDP83-00415R014100130004-6 Lagerauswahl

rigen Erfahrungen bei der Auswahl zweckentsprechender Wälz-

Harmal- und Sonderfälte stellen wir ihnen gern zur Verfügung. eines Wälzlegere hängt von den euftretenden Dreh-Kranen ab, die von dem Konstrukteur jeweils für die ungünstigsten Staisse in Rachnung zu stellen eind. (Siehe Tragfähigksit nech 20 ff.). Auftretende zusätzliche Tempereturen, hohe Drehstrenge Passungssitze können ein erhöhtes Lagerspiel == C 003 ist die Bohrung des Innenlaufringes kleiner ele der Durchmesser sind der Durchmesser des Außenringes größer ete die Gehäusestritt sine Yerkleinerung der radialen Lagerluft ein. Der Innenaich um ca. 80 % des Obermaßes, die Außenring eufbahn deum ca. 60 % des Untermaßes, die Außenring eufbahn de-um ca. 60 % des Untermaßes kleiner. Die Lager müssen deher mit einem um diese Verminderung der Lagerluft größeren Lager-Lager Liftet sein.

160000 sent für besondere Fälle (Getriebe usw.) eingeengte Leger-CD02 benötigt werden. Diese Abweichungen vom normelen Leger-werden und sind dem bei der Bestellung besonders gefordert werden und sind dem Wilderger anzuftigen. Beispiel: NUM 50 C 002 - Ring-Zylinder-50 mm Bohrung und eingeengtem Lagerspiel.

angegebenen Punkte sind bestimmend für die Lagerwehl:

in kW oder PS pro Minute

behatung in kg aufgeteilt in Quer- und Längsdrücke (ob einseitig zweiseitig wirkend)

ser Belastung: gleichmäßig, wechselnd, stoßweise der Höchstbelastung und der Normelbelestung sit, tägliche, bzw. jährliche Betriebsdauer

venschite Labensdauer

the search at this see: Staub, Feuchtigkeit, Gase, Tempereturen in 'C michte umlaufender Maschinenteile und nicht eusgewuchteier Massen Eur Verfügung stehender Raum oung des Antriebes

Dei Zahnridern die Bearbeitungsgüte der Zahnflanken; roh, gefrast,

Lagerauswahl

Bei der Berechnung der Lagerbelaetungen müssen sämtliche Kräfte berücksichtigt werden, denen die Lager im Betriebe eusgesetzt eind, elso euch elle Zusetzkräfte, wie eie durch Unwucht, Stöße, Ftishkräfte usw. entstehen können. Nachstehend seien hierfür einige Werte engegeben:

einfecher Riemenentrieb ohne Spennrolle = 5 mei Umfsngskreft

Zehnradentriebe: e) geschliffene Zähne

v = 10 : 50 m sek. = 1.5 : 2 mel Umfengskraft

b) gehobelte oder gefräste Zähne

v - bis 10 m/eek. = 1.5 : 2 met Umfengekreft

c) unbearbeilete Zähne

v = bis 4 m sek. = 2 : 3 met Umfengskraft

Getriebelager für Fehrzeuge:

Personenwegen	. 1 : 1.5 mel Drehmoment
Lestwagen und Omnibusse	. 1.2 : 1.8 mai Drehmoment
	10 05
Streßenweizen Legerdrücke errechnet aus dem größten Orehmoms Stat. elektrische Manaking	
Stet, elektrische Maschines	int und entsprechender Drenzahl
Stet, elektrische Maschinen	2 : 3 mel Läufergewicht
Schwungräder	 2 mel Läufergewicht

Zahlenwerte und Formein:

Lagerreibungsleistung
$$L = \frac{P \cdot n \cdot \pi \cdot d \cdot n}{4500} PS$$
 d in m

Fliehkraft C m · v² kg

Wucht W = m · v2 mkg

Approved For Release 2002/01/04 : CIA-RDP83-00415R014100130004-6

Schm

Approved For Release 2002/01/04; CIA/RDP83-00415R014100130004-6

Lagerarten

iter die Auswahl eines Wälzlagere ist die Legerbelastung, die und die geforderte Lebensdauer. Die notwendige Lagergröße kenn der Wahl der Lagerart bestimmt werden. Für den Konstrukteur deshelb wichtig, die Eigenschaften der verschiedenen Lagerarien und Granzen ihrer Anwendungsmöglichkeiten zu kennen.

Grunde werden die ainzelnen Lagerarten im nachstehenden ausbehandelt.

king Kugellager (Querkugellager)

Ring-Rillenlager ohne Fullnuten ist ein einreihiges, selbsthallendes und starres Ring-Kugellager mit hohen Schultern an den Laufringen und großen Kugein, die sich eng en die Laufbshnen schmiegen. Außer radialen Belastungen vermag dieses Lager axiele Belestungen in gewissen Grenzen eufzunehmen, was vor ellem bei hohan Orehmhlen von Bedeutung ist, da eich hierfür bekanntlich Scheibennicht eignen. Für hohe Drehzahlen empfehlen wir die Verwendung -Rillenlagern mit Massivkäfigen.

Rilenisger wird auf allen Gebieten des Maschinenbaues engeund stellt das gebräuchlichste Wälzlager dar,

Fing-Schräglager

Die einseitig wirkenden Ring-Schräglager der Reihen 72 und 73 und die zweiseltig wirkenden Ring-Schräglager (Querlängslager) der Reihen QA und QB heben dieselben genormten Hauptmaße wie das Ring-Riffenlager dar leichten bzw. mittelschweren Reihe. Im Gegensetz zu den Ring-Rillanlagern besitzen diese Lager die großere Kugelanzahl bei gleichgroßem Kugeldurchmesser, so daß der Lagerquerschnitt besser susgenutzt wird.

Diese Lager haben ainen ungateilten Käfig, der an den geschliffenen Rollbahnring prazia geführt wird, so daß auch bei sehr hohen Dreh-Approved For Release 2002/01/04::CIA-RDP83-00415R014100130004-6

Lagerarten

brüche eusgeschlossen sind. Durch die günstigen Rillenformen sind die Ring-Schräglager für die Aufnahme euch größerer Axisidrücke bei hohen Drehzehlen besonders geeignet. Ein weiterer Vorzug des zweiseitig wirkenden Ring-Schräglegers ist das geringe axiste Spiel der Lager, das jeweils dem Verwendungszweck angepaßt werden kann.

Das zweiseitig wirkende Ring-Schräglager findet hauptsächlich Anwendung zur Aufnahme von kombinierten Beanepruchungen, wobei die axialen Drucke gleich oder größer sind als die radialen Kräfte, oder auch für reine Axia!belastungen bis zu den höchsten Drehzahlen.

Einige der wichtigsten Anwendungsgebiete sind: Gebläse, Turbinen, Zentrifug. pumpen, Ventilatoren, Separatoren, Holzbearbeitungs- und Werkzeugmasch.nen. Vertikelspindellagerungen, Elektromoloren, Kegetradantriabe, Spiralgetriebe, Schneckengetriebe, im Kraftwagen für Ritzellagerungen, Kupplungen, Lenkung. Ausgleichgetriebe und Schaltgetriebe.

Für spielfreie Legerungen werden auf Wunsch des Bestellers paarweise eplelfrei zusammengepaßte zweiseitig wirkende Ring-Schräglager geliefert Die außenliegenden Stirnflächen der Lagerringe sind "Außen" gekennzeichnet Die angelieferte Lagerung muß auch in dieser Lage eingebaut werden, damit diese bei dem Anzug des Gehäusedeckels und der Wellenmuttern unter einer Vorspannung steht, die dann die Spielfreiheit ergibt. Die Rollbahnringe sind gekennzeichnet und dürfen untereinander nicht vertauscht werden.

Approved For Release 2002/01/04; CIA RDP83-00445-D0444-0043-004

SEUNET

Lagerarten

de sziałe Tragfähigkeit von einem zweiseitig wirkenden Ring-Schrag-(Quertängskugellager) nicht aus, so können zwei Lager hinlereinander (Quertängskugellager) nicht aus, so können zwei Lager hinlereinander und werden, die eber beide gleichen axielen Durchschlag eufweisen Die Lager werden für diesen Anwendungsfall pearweise mit gleiardien Durchschlag geliefert (im Bestellungsfell unbedingt engeben). Tragzahl C von 2 hintereinander gescheiteten Lagern beträgt denn das Lager der Tragzahl C eines Lagers.

Pendellager (Pendelkugellager)

Ring-Pendellager ist ein zweireinigee, selbsihaltendee und schwenkberes Kugellager. Durch die hohlkugelformig geschliffene Laufbehn im Außenring wird eine leichte Einstellbarkeit des Lagers
beufrkt. Die Ring-Pendellager sind übereilt da zu verwenden, wo
Bearbeitungs- oder Einbau-Ungeneuigkeiten nicht zu vermeiden
sind, d. h., wo die Wellenachse und die Gehäueeachse nicht parallel zueinander liegen. Durch die leichte Schwenkbarkeit können
Wellendurchbiegungen durch das Lager aufgenommen und aus-

Hauptanwendungsgebiete sind: Transmissionen, Vorgelege, Landmaschi-Sm. Holzbearbeitungsmaschinen, Textilmaschinen, Mühlenbau und Zentrifugen.

Ring-Zylinderlager (Querrollenlager)

18

Ting-Zyfinderlager oder Zyfinder-Rollenlager stimmen in den Haup'
sellen mit den Ring-Rillenlagern überein. Die Ring-Zyfinderlager werden

se Ring-Zyfinderlager mit Tragring, mit Stützring und mit Stützring - Bord
scheibe getiefert.

Ring-Zylinderlager mit Tragring, früher Einsteltrollenlager genannt, sind im Normtielt als Innen- bzw. Außenbordlager vorgesehen. Diese Lager könnan nur reine radiale Belestungen übernehmen, da sie in axialer Richtung frei bewegtlich sind. Die Rollbahnringe müssen daher innen und eußen seitlich in beiden Richtungen gehalten wenden ferner iet zu beachten, daß die Rollen nicht wesentlich aus inner Leuflage (Lagermitte) verschoben werden.

Lagerarten

Die Ring-Zylinderlager mit Stützring, früher Schulterrollenlager genennt, übernehmen nur in einer Richtung die axiale Fixierung der Welle. Beim paarweisen Einbau von diesen Lagern müssen die Schultern entgegengesetzt zueinander eingebaut werden, wobei in Längsrichtung, besonders bei großen Lagerabständen und Temperaturschwenkungen, eusreichend Spiel vorgesehen werden muß, um exiale Verklemmungen zu vermeiden. Ring-Zylinderlager mit Stülzring können auch durch die Kombination von Ring-Zylinderlager mit Tregring — Winkelring, Kurzzeichen NU. — HJ. bzw. WUJ. — HJ. . . . frühere Bezeichnung NUJ. bzw. WUJ. oder durch ein einseitig wirkendes Ring-Schräglager der Reihen 72 und 73 ersetzt werden

Das Kurzzeichen für den Winkelring NJ wird dem Kurzzeichen fur die gewählte Ausführung jeweils hinzugefügt, z. B. für ein Lager mit 30 mm Bohrung

•	,						
	NUL	30 + HJ	206				206
		30 - HJ		NJM	30 +	ΗJ	306
		30 - HJ		NJS	30 -	ΗJ	406
							2206
		30 - HJ					2306
	WIIM	30 ÷ HJ	2306	AA Y IAI	30 -	L.3	2300

Die Ring-Zylinder mit Stützring – Bordscheibe, früher Fuhrungsro entager genannt, besitzen eine lose Bordscheibe, die seitlich festgespannt werden muß, wodurch eine seitliche Führung der Welle in beiden Richtunger bewirkt wird (Fixierlager). Danselben Zweck kann man mit einem Ring-Zylinderlager mit Stützring kombiniert mit einem Winkering Austührung NJ. – HJ. bzw. WJ. + HJ. . . . , frühere Bezeichnung NM. bzw. WH., erreichen. Da diese Lager in der Hauptsache als Fixierlager Verwendung finden, können austauschweise auch Ring-Rien ager der Raihen 62 und 63 und Ring-Schräglager zweiseitig wirkend der Reihen QA und QB einzebaut werden.

Die Hauptanwendungsgebiete für Ring-Zylinderlager sind. Elektromotoren. Bahnmotoren, Rollenschslager, Fahrzeuge und Werkzeugmaschinen. Für sehr hoch beanspruchte Lager, z. B. Kurbelweilenlager, Getriebelager, Laufräder, können sogenannte Vollrollenlager vorgesehen werden (käfiglos), die gegenüber den Lagern mit Käfig eine um ca. 25. hohere Tragzahl besitzen. Langjährige Erfahrungen in der Herstellung und Lieferung von Vollrollenlagern geben uns die Moglichkeit, Vorschlage über die zweckmäßige Anwendung dieser Lager zu machen.

Lagerarten

ist ebenfalla ain Ring-Zytinderlagar. Ea iat wia das Vollrolleninger käniglos und die Rollkörper eind nadalförmige Zylinderwalzen mat denem Durchmesser D_r ≤ 5, sogenennten Lagernsdein. Im DIN-Blatt 617 sind die Nedallager, Reihe Na bie zu ainem Bohrungsdurchmesser d → 150 mm eufgenommen worden, abeneo die Außenringe mit Nadeln mit dem Kurzzeichen RNe — Nadellager ohne Innestring. Die Heupfmaße stimmen nicht mit den Meßen nech dem Generalplan OIN-Blatt 616 überein. Ea schwaban eber Verhandlungen über die Angleichung der Hauptmaße der Nadalleger.

hat sich für bestimmte Anwendungsgebieta enderan Lagargegenüber durch seine günstigen Querschnittaverhältniese bei hoher seutnahme überlegen gezeigt. Ee wird heute allgemein engewendet, die "DKF" vor mehr ets 15 Jahran dae Nadellager entwickelt und hat.

*Aewendungsgebiete eind besondere Autobau, Getriebebau, Werkzeugme-Kompressoran und Pumpen, Walzwerke, Hofzbeerbeitungema-Landwirtschaftliche Maschinen, Textilmaschinen und viele endere mehr.

Selbstherstellung von Nadeltagern wardan Lagernadatn nach DIN-17 und in Spezialaueführung geliefert. Die Anwandung und dar Einbeu Lagernadein ist sehr einfach. Eine Sonderliste übar die Nadelleger Bre Anwendung, die wir Ihnen auf Anforderung gern zur Verfügung etellen, hiereber Aufschluß.

Ping-Kegellager (Kegetrollenlager)

Das Ring-Kegellager ist ein einreihiges sterras Lager, das eus einem Außenring und einem Innenring mit dan in einem Käfig gehaltenen kegeligan Rollen besteht. Dar Außenring ist mit laicht batig geschlifferar Laufbahn versehen und ebnehmbar. Das Kegellager kann hohe Quer- und Längsdrücke aufnahmen. Die Lagerluft wird durch Anstellen der beiden Ringe gageneinander garagalt.

Ring-Kegellager werden hauptsächlich im Werkzeugmaschinen-und Kraftwerwendet, inebesonders für Getriebe und Radiagerungen.

Lagerarten

Ring-Tonnenlager (Pendeirollenlager)

Das Ring-Tonnenlager ist ein zweireihigee, selbsthaltandes Lager, des

durch die besonders ausgebildeten innan- und Außenringleufbahnen schwenkbar ist. Es besteht aus einem Außenring mit
hohlkugelig geschliffener Leufbehn, sinem Innanring mit zwei
konkavan zur Mittelschse geneigten Laufbehnan, zwai Rollenreihen und zwai auf dam Mittelbord geführten Messivkefigan.
Diesee Lagar kann bedeutande Kräfte in Quer- und Längsrichtung
der Welle aufnehman, außerdam können Wellandurchbiagungan
im Lager selbst aufgenommen und eusgeglichen warden. Ein

weitarer Vortail diases Lagera ist, deß ee übarall da eingebaut werdan kann, wo Baarbaitungs- oder Einbau-Unganauigkeiten nicht zu vermeidan sind. d. h., wo die Wellen- und Gehäuseachse nicht parallel zueinsnder liagen.

Die Heuptenwendungsgebiete aind: Walzwarksmaschinen Getriebe, Sägegatter, Papiarmaschinen und andere mehr.

Scheiben-Rillenlager (Längskugellager)

Dae Scheiben-Rillenlager ist ein nicht selbsthaltendas etarrae Kugellagar und diant zur Aufnahme von reinen Axalbalaslungen. Das ainseitig wirkende Scheiben-Rillenlager besteht eus zwei Scheiben und ainem Kafig mit Kugeln. Dieses Lager kann Längskräfta nur in ainer Richtung aufnahmen.

Das zweiseitig wirkende Scheiben-Rillenleger besteht aus dre-Schaiben und zwei Kafigan mit Kugeln, Dieses Lager kann Längskräfte in wechseinder Richtung eufnahmen,

Die Scheiben-Rillenlager sind mit Stahlblechfoder Mass vkäfgen ausgerüstet.

Die Hauptanwendungsgebiete dieser Leger sind: allgematrar Maschinenbau, Hebezeugbau, Schnackengetriebe und andere mehr.

Für hohe Drehzahlen und größere Axieldrücke sind Scheiban-Rillanleger ungeeignet, wir enipfehlen dafür zweiseitig wirkenda Ring-Schräglager mit Massivkäfig vorzusehen.

Approved For Release 2002/01/04: CIA-RDP83-00415R014100130004-6

Approved For Release 2002/01/04: CIA-RDP83-00415R014100130004-5

Tragfähigkeit

SECRET

Tragfähigkeit

Dynamische Tragfähigkeit nech DIN 622 L Aligemeines

nachstehende Berechnung der Lebensdauer eines Walzlagere gilt nur den Feli, daß das Wälzlager durch Ermüdungsbruch in den Rollbahnen inchbar wird. Andere Ursachen für den Ausfall des Legere, wie z. B. Perschleiß oder Rost, werden bei der Berechnung nicht berücksichtigt. Durch reuche wurde folgender Zusammenheng zwischen Lebenedeuer, Tregfählgall und Belestung gefunden:

(1)

- Lebensdauer in Millionen Umdrehungen für 90 % der Lager, 10 % können worher eusfallen.
- Tragzahl in kg. das ist die Tragfähigkeit eines bestimmten Legers, bei welcher eine Lebensdauer von einer Million Umdrehungen erreicht wird. Die in den Lagernormen eufgeführtan Tragzahlen gelten für den Fell, des der ganze Umfeng der Rollbahn des Innenringes zur Übertragung der Last herangezogen wird (Umfanglast für den Innenring). Wenn nur ein Teil des Umfanges der Rollbeitn des Innenringes beensprucht wird (Punktiast für den innenring), ist die Tragfähigkeit geringer.
- ideelle konstante Last in kg, das ist diejenige Last auf ein Lager, walche bei unveränderlicher Bezugsdrehzahl die gleiche Lebensdeuer ergibt, wie ains nach Höhe und Dauer veränderliche Last bei veränderlicher Drehzahl. Berechnung der ideellen Last

fenn außer einer bekannten konstanten Last noch zusätzliche Kräfte aufsten, deren Höhe und Wirkungszeit unbekennt eind, denn muß die konstente Lest mit einem Fektor muitipliziert werden, der im ellgemeinen eue der Ershrung der Harsteller gewonnen wurde.

3,1. Wenn das Lager verschiedenen Betriebszuständen ausgesetzt ist, wabei die Lagerlast, die Drehzahl und die Wirkungszeit unveränderlich eind, errechnet sich die idealle Lagerlast P aus der Formet

$$P = \begin{cases} -t_1 \cdot n_1 \cdot P_1^3 + t_2 \cdot n_2 \cdot P_2^3 + \dots + t_j \cdot n_j \cdot P_r^3 \\ t \cdot n \end{cases}$$
 (2)

P., P. P. -- Konstante Lasten

n., n. n. - Konstanta Drehzahlen der z Betriebszustände

ts, t₂ t₃ ⇒Wirkungszeiten

- Bezugsdrehzahl

2,2. Wenn sich die Lagerlast in einem bestimmten Zeitabschnitt linear verändert, gilt für diesen Zeitebschnitt:

P -- Kleinstwert, P Größtwert der linear veränderlichen Last. 2,3. Bai Ringlegern mit gleichzeitig wirkender konstanter Radial- und Axiallest gilt:

$$P = x \cdot P_r + y \cdot P_z, \qquad (4)$$

- Pr. wirkliche Radiellest, in redieler Richtung euf des Lager wirkende Lest.
- wirkliche Axiallest, in axialer Richtung auf das Lager wirkende Last.
- Beiwert für die Umrechnung von Punktlast am innenring in Umfengslast.
- y = Beiwert für die Umrechnung von Axiellast in Radiallast.

Betrie	bsverhä	Itnisse		Sitz	für
cosnring	Außenring	Belastung	Belastungsart	Innenring	AuSenting
lituff um	staht	sisht	Umfangslast für den innenring,		fose
staht	illuft um	Hauft um		feet	1066
likuft um	staht	läufi um	Punktlast für den Innenring,	lose	fest
steht	lauft um	steht	Umfangslest für den Außenring	lose	· ·

2,4. Bei Scheibentagern mit gleichzeitig wirkender konstanter Radiel- und Axiallast gilt:

wirkliche Axiallaet.

(5)

- · wirkliche Rediallest.
- Druckwinkel (Winkel zwischen Drucklinie, d. h. Richtung des Rollkörperdruckes euf die höchatbeanspruchte Druckfläche und der

Ebene senkrecht zur Drehechse). Bei Scheiben-Rittenlagern ist $a=90^\circ$, also $t_{\rm f}=\infty$, die Lager können also nicht radial belastet werden.

Scheiben-Tonnenlager eind radial belastbar, wenn

$$P_r < \frac{P_s}{5 t_s n}$$
 ist.

Gesamtleufzeit Summe der z-Wirkungszeiter Approved For Release 2002/01/04 : CIA-RDP83-00415R014f00130004-6

Approved For Release 20020104 CIA-RDP83-00415R014100130004-6

Tragfähigkeit

- Lahensdauer den Lebensdauerfaktor nach der Forme

(6)

fektor für L., Betriebsstunden nach Leiter 2 ktor für in Umdrehungen Minute nach Leiter 1 fishtor für t °C Betriebstemperetur nech Leiter 3.

Schräglager QB 40 DiN 628 unterliegt einer radialen Belestung P. == ig und einer gleichzeitig wirkenden axialen Belastung P. - 185 kg bei Drehzahl n - 940 U'min, Nach DIN 628 ist bei Umfangalast für den ing x = 0.5 und y = 0.7. Es ergibt sich dann nach Gl. (4)

 $P = 0.5 \times 450 + 0.7 \times 185 = 355 \text{ kg}.$ Leiter 3 let fi = 1; nach Leiter 1 list fi = 0.33 und nach DIN 628-st Tragzahl C - 3200 kg, also wird nach Gl. (6)

$$f_{c} = \frac{1 \cdot 0.33 \cdot 3200}{365} = 3.$$

ser Wert entspricht nach Leiter 2 einer Lebensdauer La - 13 500 Betriebestunden.

Tragfähigkeit

5. Zulässige Drehzshl Die singegebenen Werte gelten als Richtlinie bei guter Schmierung und einwandfreiem Einbau. Werden diese Grenzen wesentlich überschritten, dann sind besondere Maßnshmen erforderlich.

	Kugellager
650 000 0 5 (d + D) + 7	Kisine Ring-Kugellager bis 10 mm Bohrung
500 000 n == 0 5 (d + D)	Ring-Rillenlager über 10 mm Bohrung Ring-Pendellager über 10 mm Bohrung Ring-Schulterlager über 10 mm Bohrung Ring-Schräglager, einreihig
n = 350 000 0 5 (d + D)	Ring-Schrägisger, zweireih g
n 0.5 (d + D _g)	, Scheiben-Ralenisger

Du - Wellermail nimm d bzw. d. == Bohrungsmaß n mm н5hе-та3 л тт Dibzw D. -- Mantelmaß in mm

	Rollenlager
$n = \frac{500000}{05(d+D)}$	Ring-Zylinderlager
n = 100 000	$\frac{n=\frac{142000}{d}}{d}$ Nade ager $\frac{n=\frac{n_0-n_0}{d}}{n}$
$n = \frac{250000}{D}$	Walzenkranze
350 000 0 5 (d + D)	Ring-Kegellager Ring-Tonnenlager Reihe 222 und 223
250 000 n = 05 ,a + D	Ring-Tonnenlager Reine 230, 231, 232, 213
130 000	Sine ben-Torinen ager

Approved For Release 2002/01/04: CIA-RDP83-00415R014100130004-6

Abdichtungen an Wälzlagern

SECRET

Abdichtungen an Wälzlagern

Mahlenswerte Konstruktionen

Abbildungen zeigen einige empfehlenswerte Konatruktionen von Abdichtungen für Fett- und Olschmierung. Die Anwendung von Filz zur Abdichtungszwecke ist im allgemeinen nicht empfehlenswert. Nachteile sind: Reibungsverluste, Erwärmung der Weile; der Filz hart und setzt sich voll Fremdkörper. Selbst bei Verwendung von Machteile zusen sich diese Übelstände kaum beseitigen.

Abbildung 1

Schlusebohrung - Wellendurchmesser + 0.25 bis 0.5 mm. Abschlung möglichst breit halten.

Abbildung 2

dedichtung, nur für untergeordnete Zwecke geeignet, bei hohen underehungszahlen nicht verwenden.

abbildung 3

Doppelte Ledermanschette, für Lagerstellen, die Spritzwasser oder Eurodämpfen ausgesetzt sind.

Abbildung 4

debestpackung, für Wellen mit geringerer Umdrehungszahl, verdedert das Eindringen von Staub und Flüssigkeiten.

Approved For Release 2002/01@4 -RDP83-00415R014.10013990049

Abdichtungen an Wälzlagern

bhildung 5

marring-Abdichtung, kann einbaufertig bezogen werden, versert das Austreten von Fett und Ol, Anwendung für Getriebe

Abbildung 6

Carache Labyrinthringabdichtung, für allgemeine Anwendungspoliste und bei hoher Umlaufzahl geeignet.

Abbildung 7

chleuderscheibe mit schrägem Labyrinthgang, für Wellen mit Scher Drehzahl, z. B. Holzbearbeitungsmaschinen, Warkzeugmaschifür Leichtmetallbearbeitung.

Abbildung 8

Gepritzring, bei Olschmierung und hoher Umlaufzahl.

Abbildung 9

Labyrinthdichtung, für Lagerstellen, die Witterungseinflüssen, Spritzner und Steub ausgesetzt sind, z. B. Achsbuchsenlager, Bahnmotoren.

Abbildung 10

Schleuderscheibe, für Achsenlager.

Abbildung 11

Lebyrinthdichtung, für vertikele Wellen und bei Fettschmierung.

dispritzring, für vertikale Wellen mit hoher Umdrehungszahl, obere Abdichtung übergreifende Schleuderscheibe.

Abbildung 13

Gihalterohr, für vertikale Wellen mit Olschmierung, obere Abdichtung übergreifende Schleuderscheibe.

Befestigungsmöglichkeiten der Ringlager-Innenringe

(Anwendbar für elle querbelasteten Wälzlager)

Pessungss.tz

Mutter, Gewinde enigegen der Drehtichtung

mit Sicherungsschreube

Nutmatter mit Sicherungsbiech

Doppe-mutter

Apstendspüchse

Approved For Release 2002/01/04: CIA-RDP83-00415R014100130

Kantenverrundung und Schultermaße

Hohlkehlenabrundung von Weilen- und Gehäusebund (Höchelwert

Wellen- und Gehäusebundhöhe (Kleinstwert "k")

			_		schwere I	10.00	Sc)	were Rei	
manual Park	د) م 800	ichte Reih ri mm	thus.	Miller mm	mm r,	mm l	mm L	mm L,	mm h
10 mm 14 13 11 11 11 11 11 11 11 11 11 11 11 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	De 0.6e 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1:55 1:55 1:55 1:55 1:55 1:55 1:55 1:	0.6 11 11 12.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13	2.5 3.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5		1 1.5 1.5 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5	4.5 4.3 5 5 5.5 6.3 6.3 6.3 6.3 6.3 7.9 9.9 9.9 9.1 12 12 12 12 12 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15

einzelnen Lagern zu beschlande Listenwart r, lat in dieser Tafel nicht aufgeführt I nur ein angenählerter Wort, da die Abrundung nicht geschliffen ist

Wahl der Passung

Der Konstrukteur muß der Auswahl der richtigen Paesung die größte Aufmerksamkeit schenken, denn eine richtige radiele Befestigung der Rollbahnringe kann nur durch genaue Kenntnis der verschiedenen Paesungen und ihrer praktischen Anwendung gewährleistet werden. Gleichzeitig mit der Frage der Passung ist die der Lagerluft zu löeen. Strenge Passungssitze bedingen erhöhte Legerluft in noch nicht eingebautem Zustande, die im Bestellungsfalle durch entsprechenden Zusatz zum Kurzzeichen (C 003) gefordert werden muß.

Die Passung ist abhängig von der Art und Größe der Welzlager und der auftretenden Belastung, den Stößen und Schwingungen, von der Debzaht, von der Lagertemperatur, von dem Material und den Wandstarken da-Gehäuse, von dem Werkstoff und der Oberflächengüte der Sitzlischen.

Um für den jeweiligen Einbaufall die richtige Passung für die Welle und das Gehäuse bestimmen zu können, muß zuerst geprüft werden, welche Belastungsart, d. h. ob Umfangstast oder Punktiast für den innen- oder Außenring vorliegt. Durch Umfangslast beanspruchte ..lose sitzende" Ringe dieten sich auf der Welle oder in dem Gehäuse. Dieses "Wandern" verursacht einen raschen Verschleiß der Sitzfläche und des wandernden Ro bahnringes. Dem kann nur durch einen entsprechenden festen Sitz vorgebeugt werden dashalb muß jeder durch Umfangslast beanspruchte Ring einen Fests iz haben.

Aus der Übersicht (siehe Tragfshigkeit Seite 21) kann für den jehe s vortregenden Einbaufall die entsprechende Belaetungsart für den Inner- bzw. Außenring ermittelt werden.

Eine unbestimmte Belastungsart liegt vor, wenn die Punklisst in eine Umfangslast übergeht. Diese Belastungsart ist vorhanden, wenn zu der Lagerbelastung eine durch Umwucht hervorgerufene Fliehkraft euftritt, die bei höheren Drehzahlen größer als die gegebene Lagerbelastung een sann.

Bei nur in Längsrichtung beanspruchten Lagern kann von einem Drehen der Ringe im Verhältnis der Belästungsrichtung nicht gesprochen werden, beide Ringe könnten daher leichte Passungssitze haben, in der Regel erhält meist der umlaufende Ring Haffsitz auf der Welle. Für elle Scheibenlagen trifft letzteres ebenfalls zu.

Um den Konstrukteuren die Auswahl der Passungen zu erleichtern, sind für die wichtigsten Verwendungszwecke in den Tebellen "ISA-Walzlager-Paesungen" für die Wellen und Gehäuse georgnete Passungen eingetragen worden.

Approved For Release 2002/01/04 : CIA-RDP83-00415R014100130004-6

ISA-Wälzlager-Passungen für Wellen

ISA-Abmaße für die Wellensitze

Abmaße	in	,,	

		Lager mi	t zylindrischer Bo	hrung	15A Kurz
	Betrebeyerhälte Einbaubeding		Lagerart und Lagergröße	Be-spiel	20.01
, [September Generalises gast sensycher imme parameter generalises parameter generalises	Inspecing but der Walle		Yordersåder von Kraffsägan, Lauf ration, Förgerbandrotten, Loeråder von Wegen	g 6
Ħ	Hote Brissling to sufferen Onstantier	inch! vgrschipbter	Atla Lagorarian und Lagoraritan	LiperScan von Sehlanan und Sinstenfahrzeugen	g 5
	Bater hades Barastung adar Stationassung	Innereng nicht immer micht auf d Wese verschieber		Hintersider von Kraffweger, Spann- rellen, Se. scheiben, fing-Schrigtager	h 6
	Baringo Basalung tas millaran und batan Drahaphan		Ring Kage ager be 20 mm Bahrung	Tachameter, Licht, u. Zündmasch non. Blaubsauger, Soperationen, Fannschun scha Gorbie	h 5
	desting below An- forderungen an die Gemanghot	Lague können Imohi ayagobayi dersan	Ring-Kupatagar	Gatrabawa en f. Werkzeugmaschiner, Kleine schrelleufande Elektremotoren	j 5
I	Barrigo Basadung grafia Taurangan ASASCHARS WO'S		bes 80 mm Behrung	Getresekbier für Kraftwagen, Kreussigen, Kraselpumpen, Mobelmaach nen, Lüfter	j6
	horras I		Alla Ring: Kuga g 6 20 mm Bahrung, Ring Zy ndarig d Durchmassargruppe 0 x 2	Mittlere und größere Elektromotoren, Mittseradt seintriebe von Kreftwagen Pradellager	k 5
2			Ring: Zjilinderlager der Durchmessangruppe 2 u. 2 Ring: Kage/lager	hade ager auf umfaulender Wata. Ring-Kegal agerin Warzaugmasch nan	k 6
į	Mone, phythaen		Ring Kupitager d. Durch- nossory: Su. 4-0, 30 mm Behrung, Ring-Zylinderig	Fanzmotoren, erettz: Schlener führ. 20ige, Haupt ager von Diese mistoren. Elektromotoren großer Leistung	m 5
1			Ping-Zylindarlagar dar Duzehmassargruppa 8 and 4	Achslager für Behierer fahrzeuge, Bagger, ach ware Kurbeltrece	m 6
	C ate to	she,	Ring- Zyl rdeclager	Sagagether, Vardichter, Bausenbiecher	n 6
	referen I	elektu-g	der Durchmessergruppe 4	Schweie Bohwings abe	n 6°
	Rene Austera	e-q	A'le Scheberlager, F	ng agan ber na nan Alsia te saliyng	Je
		Lager	mit kegeliger Boi	nrung	
			ome nee Masch nerteu		h 7
	Adheiseer for School	e lat ize ege		n zirkt dürfen inleht gift flet sein	h 9
	Tipnominosone o Utiloggopánolo Verson			oersns'eld R 7	h 10

			Abm	aße in	μ	1 μ	0.001	mm			
1SA- Kurz- zeich	Abmeß	über 10 bie 18	Gber 18 bis 30	übergo bis so		Gber \$0		mm üb. 180 bis 250			
£ 6	oberes unteres	- 6 - 17	-7 -20	- p - 25	-10 -29	-13 -34	-14 -59	-15 -44	- 17 - 49	- 18 - 54	- 20 - 40
g 5	oberee unteres	-6 -14	-7 -16	- 9 - 20	- 10 - 23	- 12 - 27	-14 -32	15 -35	-17 -40	- 18 - 43	30 47
h 6	oberes unteres	-11	-13	o — 16	0 19	0 — 22	0 — 25	0 - 39	0 - 52	o - 36	0 - 40
h 5	oberes unteres	- s	° -9	- 11	0 — 13	0 — 15	- 18	0 - 20	0 -23	0 35	0 - 27
j 5	oberes	+ 5	+5	+ 6 - 5	+ 6 - 7	+ 6 - 9	+ 7 - 11	+7	+ 7 - 16	- 7 - 18	+ 7
16	operes unteree	+ 8	+9	+ 11	+ 12	+13	+ 14	- 16 - 13	+ 16 - 16	+ 18 - 18	- 30 - 30
k 5	oberee unteres	+ 9 + 2	+ [1]	+ 13 + 2	+ 15	+ 18 + 3	+ 21	+ 24	- 27 - 4	- 39 - 4	- 12 - 5
k 6	operes unieres	+ 12	+ 15	+ 18 + 2	+ 21 + 3	+ 25 + 3	+ 28 + 3	+33	- 36 - 4	- 45 - 4	- 45 - 5
m 5	oberes unteres	+ 15 + 7	+ 17	+ 30	+ 24 + 11	+ 28 + 13	+ 33	- 37 - 17	- 43 - 20	- 46 - 31	- 10
m 6	oberes unteres	+ 18 + 7	+ 31 :	+ 25	+ 30	+ 35	+ 40	+ 46 + 17	- 53 - 30	+ 5+ + 31	- 63 - 23
n 5	oberes unteres	+ 20 + 12	+ 24 + 15	+ 28 + 17	+ 33	+ 38 + 23	+ 45 + 27	+ 51 + 31	+ 5? + 34	- 62 - 3"	- 67 - 40
n6	oberes unteree	+ 23	+ 28 + 15	+ 33 + 17	+ 39 + 20	+ 45 + 23	+ 52 + 27	+ 60 + 31	- 66 - 34	- 73 - 31	+ \$0 + 40
j 6	operes unieres	→ 8 - 3	+9	+ 11 - 5	+13	+ 13 - 9	+ 14 - 11	- 16 - 13	- 16 - 16	- 12 - 13	- 20 - 20
h7	Oberes unteres	0 ;	-31	0 - 25	o — 30	0 35	o I	0 - 46	- 52	0	0 - 63
h9	operes unleres		O - 52	0 - 62	O -74	87	- 100 0	- 115	130	0 !	0 155
h 10 _	oberes unteres ,	- 75	o - 84	100	0 — 140	0 - 140	0 160	o — 185	310	0 - 330	- 35c

A Company			gerert und agergröße		Baispiel	ISA- Kurz- erchen	
	ingo und normale asterig bei nied- test Oretzehlen	1		Get	eilte Genäuse, Transmis- eionsgehäuse	Н8	ļ
-	riters und hele Be- hing bei niedrigen Drokeshier	A	le Lagorarten und Lagorarößen		gemeiner Maschinenbau tollenechslager, geleilte Ider ungeteilte Gehäuse	1	
1	ernale und habe Be- stung bei mittleren Drehashlen					H 6	
1	Morreale and hohe Belastung. Authors Beethelestung, bei ist vo interen und hohen schlebl	-	ing-Zylinderlage Ring-Kegellage		Schnellstrein Gebiäs- notoren, Getrisbe, Gebiäs- reiselpumpen, Zentrifugt Merkzeugmaschinen, Kra- wagengelriebe, Holzbas	n-	
	Drehashlen Auten	1	Ring-Kugallage Naddilager Ring-Zylinderia Ring-Kagallag	-	beitungsmaschinen Große schnellaufende G triebe, Hinterachsantris von Lastwagen, nicht va schlebbare Lager große Elektromotoren	.	
	Hohen Drezahlen nicht achie	et ver-	Ring Kugeling	er	Schle-fspindeln, senkred Spindeln von Holzbeart tungsmaschinen, Flug motoren		٠,
-	Garings and normals Balastons		Ring-Kugella Ring-Zylinder	age:		ben,	M
111	nich Batanting Bich	enring t vør- ebbar	l	age	•	yon lizen-	N
}	Betr hake Belestung eder hake Belestung bei disanwandigen Gehäusen		Millia-trage		Kranlaufräder, Zentril Krafiwagenvorderräde dünnwendigen Neb	e mu	P

Sinday	100	(S)-18	1.1	e in	ive e	1 11 200			1+08	4= /	_
SA-	Abmaß	yon to	Goer LE bis 30	Qber 30 bis 50		Ober to bis 130			Qb 250 bie315	6b. 315 6 bis 400 t	10 400 100
н 8	unteres oberse	0 + 27	+ 33	+ 19	q + 46	0 + 54	o + 63	+ 73	+ 81	+ 19	+ 97
H 7	unteres oberes	0 + 1 E	Q + 3 [0 25	o + 30	+ 35	+ 40	. o +46	0 + 52	+ 57	+ 61
н ө	unierse obaree	0 + 11	o + 13	o .+ 16	¢ + 19	0 + 23	0 + 25	o + 3 9	o + 31	e + 36	- 40
3 7	unteres oberee	1	- 9 0 +11	- 11					- 16 + 36		- 20 + 43
16	uniere obste	•	6 +		0 +1	3 +1	5 → l'	. + 22 	+ 15	- 19	
K7	unter	٠,	12 — 1 6 +	,	7 +	9 +1	0 +1				
×.	ober	}	3 -	• •	3 +	15 -		4 -	, -	ş -	· · · · · · · · · · · · · · · · · · ·
"	7 obe	"e" [. 10		25 -	, ,	,,		•	,	c
\	7 1	erės ires	- 23 - 5	28	3,	- 30 - 9	- 45 10 -	,,	60 14 -		10 1
	57 1	terés eres	,	- 35 - 34				68 28	•		o\$ 14

Approved For Release 2002/01/04 CJA-RDP83-00415R014100130004-6

Approved For Release 2002/01/04: CIA RDP83-00415R0

Gegenüberstellung von DIN- und ISA-Passungen Gegenüberstellung von DIN- und ISA-Passungen für Gehäuse

nach DIN-Vornorm 8060

Abmate in / 0.001 mm

	omo	m	80	59											,	bn	naB	e i	in ,	1	0.0	90.	1 m	ım
		1	Sec. Leading	461 F6	_	4 8 0	D Globaltz	- 1		<u>4</u>	8 Schrebenitz		_	VE 184		134	C delbrurbeitz	Z.		₫	E della series	¥.	T Feelbill	1
		-	-,	-,	_	٥	•	•	_	t	+,	+	_	-	+ 6	_		,	÷.	⇟			+ + 12 1	,
	-	÷-	 	-		-	-	-	_	-	-,	-	_	_		_		•	+	+		۱	+	
	٠.	Ę	É	=	•	٦	۰		+,	+	,	+,	+	_	+	7	+	+1	+	+1	+ 4 5 1		+ 1	
		-	-			-	- -	-	-	-	<u>.</u> ,	-,	+	_	•	-1	+ .	+	+ •	٠,		i.	5 1 4 4	
			-	<u>-</u>	•	1		-		∄	:	+	÷	+		-		+		1	• +	. 1 .	8 1	
	4 -	-		-		Ξ'n	_	_ i :	_	-		:	10 +	기 †	10	+	+ +		5 1	i i a	0 10	Ϊą	0 19	ı
- Outre	1,		-	7			,	,	•	+	_	-	†	+	+ .	+ 1-	F 4	+	5	- 14		1,	+	1
	4 -	- 1		,		- 1	2 1	í	• •	; -		- :		•		2 I	- 4		8 1			ĺ.		ı
-	.†.	=		+		+	-	. 1				٠1.	+ -	٠.	+1+	1	- +	1,	- 4		-	+	2 11	1
	-	-		Ti.	1.	j:	-, -	i.				9 - -	5 1	ij	4	ŀi∓	+	7 3		1+		34	2 3 8	
	 	=	-	+	,	+	,	+		+	_	1	_	-		1 +	+	1+	+	18	+	+	15	ł
	13	-1	5 2	. -		1-	16	٠.		: -	_	i.		.	+	1.		+	3 3 5	1+	18	35 +	33	
	1	_	0 10	1	_	T	:	+	+	+	+		+	1.	- +	13	+	+	- 9	22	17	18	# T	ı
3	-		0 29	iΞ		1=		1-		1=	_	Ť.		†	+	,-	+	30	30	10	33	40		
Output.	1	-1-		Ħ	13	1		+	+	1	+	1.	-	4	-	1	+	10	+	25	20	10	10	l
-	•,1	: i_		i_		 -	_ i	i_		i	13	•		2.2		35	11	35	35	43	38	45	45	
235.	17 2	1	34	H	15		22	6		٠		+	+	0		17	13	ň	13	28	13	22	13	
Australia .	i	4 13	_	í	-			13	<u>*</u>	i	14	15	21	25		40	33	40	40	50	45		52	
- 1	20 3	۲	39	20	-11	25	25	7	11	13		7	3		* 3	10	15	13	15	32	27	25	2-	
DIN	5 5	1	-	33	:	2	:	3	2	3	9	83	ž.	·	9	22	-	26	٥	5.	او	c	اءِ	

		-	-	+	٠.	-	_	_	_	,		_		_	-	_			_	_	_		
Nann- durch- meas-r- bara,ch		Profesio			45	Edelbranharre	15.4	Treibaitz	. ASI	E deibuftatt	3	1	75				180						
mm	1	F	P	'	N1	1-1	M	6 T	M	'nН	K	5 H	K)	•	3)	٠ ١	37	•	н	6 0	н	7 00	н
lb-s3	Ausscruß seite		, 7	- -	3 4	-	•	-6	. •	-		1	, –	-	+		5 3	-	. †		9 9		
	Guissile	+-	16	1	2 13	Ŀ	7	9	9	Ŀ	_	13	6 —	_	- 4	1	3 6	-		، ،		, ,	•
über 3 bie 6	Aussch "3 Mile	10		-	- 4	1	1		۰	۰	_	1	-	1	+	[;	+	1	†	1:	111	,	5 11
Die 6	Guise le	22	30	17	16	1.5	-,	112	12	-	_	-	i _	1-	4	1-	, ,			ĺ,		Ì,	
űs-r 6	Ausethab eate	1,	9	-	-4	-5	-3		۰	۰	+ 2	†		+	÷ 5	10	†	+	+	1;		+	, ±
b·s 10	Gulse.'e	30	14	10	19	1.5	-	15	15	10	7	10	-	ļ -	-	١-,	-,	ĺ.	۰	ĺ.		١.	
über 10	Ausschuß. 44 le	10	11	-	5	-6	-4	٥	۰	۰	†	+	+	+	+	1,2	+	12	11	18	18	35	+
b.s 18	Gulseile	38	_ 29	25	23	1.8	15	18	18	-	-	12	12	-	-	j -	-	١	۰	٥	٥		
úber 18 bis 30	Ausschuß. Brite	25	14	7	7	-	-4	۰	۰	۰	+	+	+6	÷,	†	+;	-	+	13	+ 22	+	45	, 11
30	Gulteria	45	35	30	28	_ 22	17	33	3,	15	11	15	15	- 8	-	-	-	١,	۰	١.		o	۰
ize-310 b-s 50	Ausschuß. Be 'e	35	17	9	-	9	-4	۰	٥	۰	+	+	+ 7	÷,	10	i	14	10	+ 16	1	25	-	39
0.30	Guise is	- 60	42	35	33	25	20	_ 25	25	. 8 1	- 13	_ 18	18	-,	_ 6	٦,	-	۰	٥	ì			٥
über 50	Ausachuft skife	45	_ 21	10	9	10	5	٥	٥	۰	+	+ 10	+ 9	10	† 13	÷ 20	18	10		30	-	-	-
	Guise (e	75	51	40	39	30	74	_ 30	30	_ 20	-,	- 10	21	-01	-6	10	<u>, j</u>	c	۰		۰		۰
ion 100	Austenië: te/e	55	24	ñ	10	-	-6	۰	•	۰	+	† 11	10	+ !1	+ 16	*1	ž.	÷,	+	+ 35	+	:0	÷ 54
D:# 120	Galtera	90	59	45	45	_ 35	28	35	3.	- 1 2	18	11	- 15	-	ا ۾	-	-	o	٠			۰	•
o. 120	444551-02 48 Fg	65	28	13	12	13	8	•		•	+	+	÷	;	+ 18	+	+	25	-	÷	+	**	÷
c.e 1+0	Gutenta	104	68	 50	52	40	33	40	40		<u>.</u>	- 25		- 13	,	 13	- Í	٠-	اُ	••	•	•	3
DIN	1 ;	ĭ,	-tog	Ç	8037	ę,	80.16	<u>,</u>	Bo1-	ę,	Rojé	*	8017	•	96.08	*		•	8016	;	2037	- 141	96.08

Approved For Release 2002/01/04: CIA-RDP83-00415R014100130004-6

Approved For Release 2002/01/03 EIA-RDP83-00415R0141001

Schmierung

der Schmierstoffe bei den Wälzlagern sind: zu schmieren, zu konservieren, d. h., vor Rost zu schützen.

koff zwischen den Rollbahnringen und dan Rollkörpern, Kaffgtaschen eine Schmierschlicht (Schmierfilm) bilden, die den durch metallische Reibung verhindert und die Lagerteile vor Rost beiden eignen sich hierfür Mineralöle und Mineralfette, man von Olschmierung und Fettschmierung. Zwischen beiden

wird meist der Olschmierung vorgezogen, weil die und die Abdichtung (siehe Seite 25) gegen den Austritt und gegen des Eindringen von Schmutz leichter durch-Früfüllung richtet sich nach den Betriebeverhältnissen. Bei Drehzehlen kann das Lagergehäuse mit dam Schmiermittel sussensen. Diese Füllung muß oft bei schwer zugänglichen Lagerteilen ausreichen. In der Regel braucht diese nur ein- bis zweimal sines Jahres ernsuert zu werden. Aus diesem Grunde darf für die des Schmierstoffes niemals der Preis, sondern nur die Güte des maßgebend sein. Je höher eber die Drehzahl wird, um so gemuß die Fettmenge sein, da infolge der Walkarbeit die Reibungszahl semit die Lagertemperatur eich erhöhen würde, was schließlich Lagerzur Folge heben kann. Allgemein gilt für die Fettfüllung, daß 1, des zur Verfügung etehenden Raumes mit Mineralfett ausgefüllt werden Die Grenzwerte für die Fettschmierung sind:

Drehzahl × Lagerbohrung = 300000 Betriebstemperatur bis 70° Celsius maximat,

bei höheren Lagertemperaturen (bis 100°C) und höheren Drehzahlen eind
genannte Heißlagerfette (Natronfette) mit Tropfpunkten von etwa 130°
te 160°C vorzusehen, dagegen sind für sehr tiefe Temperaturen besondere
gette zu verwenden.

Die Glechmlerung findet Anwendung für Lager mit sehr hohen Drehzahlen mit ungewöhnlich hohen Betriebstempereturen. Die Olschmierung erfordert sehe sehr sorg*altig ausgebildete Abdichtung (siehe Seite 25), die meist werden kann. Für hohe

Schmierung

mit Ol-

Betriebstempereturen wird zweckmäßig Kreislaufschmierung evtl. mit Ölrückkühlung durch Heißzylinderöle vorgesehen, dagegen soll für hohe Drehzahlen möglichst wenig Olim Lager sein, deshalb ist hier eine Tropfölschmierung
mit entsprechender Einstellung vorzusehen. Es ist aber zu beachten, daß mit
steigender Drehzahl die Viskosilät des Mineralöles ziemlich niedrig sein soll
Fürniedrige Drehzahlen genügtfür verschiedene Welztegermeist die Schmierung
durch Spritzöt oder Oldunst.

Die Olfüllung soll so durchgeführt werden, daß der unterste Rollkörper bis 1, eintaucht, aus diesem Grunde muß der Olstand kontrollierbar sein

Bei eußergewöhnlichen Betriebsverhältnissen ist es zweckmaßig, den Rat der Wälzlegerfirmen oder such der Hersteller von Schmiermitteln einzuholen

Für den Betriebsfachmann ist es wichtig, die mittleren Zeitabstände für die vorzunehmende Nachschmierung zu kennen. Nachstehende Tabe eig bil den ungefähren Zeitebstend zwischen den Schmierungen für verschiedene Lagenerien an.

Lagereit	Zeitabstand zwischen den Schmierungen
Ring-Zylinderlagen "Nadellagen"	50 k 10. Umdrehungen
Ring-Tonnenlager mit Massivkarg	50 % 10
Ring-Zylinderlager mit Massivkang	100 < 10
Ring-Rillenlager mit Messivkäfig	200 × 10
Ring-Rillenlager mit Blechkäfig	300 ~ 10

Die Nachschmierung muß um so öfter erfolgen ie höher die Drichtath ist es soll eber siets nur so viel Schmierstoff nachgefüllt werden wie durch die Dichtungen ausgetreten ist. Der alte Schmierstoff ist in genaul festgelegten Zeitabständen (Abschmierprotokolle) zu entfernen, die Lager mit Benan oder Benzol auszuwaschen, zu trocknen und mit neuem Schmierstoff versehen wieder mit größter Sorgfalt einzubauen. Für Betriebe mit starker Staubentwicklung, wie Bergwerke, Walzwerke, Mühlen und Zementfabriken, muß die Nachschmierung noch öfter erfolgen, um die wertvollen Wälzlager vor frühzeitiger Zerstörung zu schutzen. Hierbei sind auch die Abdichtungen genau

Approved For Release 2002/01/04 GIA-RDP83-00415R014100130004-6

30

Approved For Release 2002/01/04: CIA-RDP83-00415R014100130005

10 20 30

00

Außenmaße der Ringlager

Auszug aus DIN 616

Außenmaße der Ringlager

_	_	_	_	_	
			T 2 4 5 #		
			Bre te:		
		٥	1		3 • he
		oc	٠٥	20	30
đ	٥			<u> </u>	
,	24		-	10	12
10	26 28		- 1	10	12
15	32		9	11	13
17	35	:	10	12	14
20	,		12	14	16
25 30	47 55 62		13	16	19
35		9	14	17	10
40	68 T	10	15	19	21
30	80	io	16	19	23
55	90	11	1.8	22	26
45	95	11	12	22	26 26
-		13	20	24	30
75 80	115	13	20 22	24	30
	125	14		27	34
\$5 90	130	14 16	22	30	37
95	145	16	24	30	3~
100	150	16 18	24	30 33	3 ~ 4 I
105	170	19	28	36	45
1.30	180	19	28	36	46
140	200	22	33 33	42	52 53
150	225	24	35	45	56
160	240	25 28	3 %	48	0.0
170	260		42	54	57
180 190	250 290	31 31	45 45	60	74
260	310	34	57	46	H 2
220	340	37	56 55	72	90 92
240 250	400	37 44	65	*2	104
250	410	44	65	¥ 2	106
300 320	460 480	50 50	74 74	95	115
	120	1	82	106	133
340 360	440	57	82	156	134
380	560	57	82	106	
470	62G	63 63	90	[] k	148
440	650	67	94	122	157
460	680	71	100	128	163
480 500	710	71	100	128	165

		Durch	mes	sergi	uppe.	2	Т	0	urche		rgru	ose 3		D	urchm	9150	rerus	pe 4
			Brei	tenre	the	1	ı		1	Bre:	tenre	he	1	1		180	Hten-	
		0	1	2	3	1	ı		0	1	2	3	1	ı		6	2	1 1
		İ	Ma	Breit		1	i		1	Ma	Breih	•	1	l		Mes	re he	1 1
		02	12	22	32	ı	ı		03	, 13	23	23	ı	1		04	24	1 1
٥	D			ь		٠.	٥	D			b		,	1	٥		b .	•
,	26	2			13	1	,	30			14		1					
10	30	30		14	14	1	10	35 37			17		1.5	1,,	42	13	14	. ,
15	35	11		14	15.9	, ,	1,5	42	١,,		17	19	1.5	15	52	15	24	, 1
17	47	12		15	17.	2.4	17	47 52			19	22.2	1.5	12	62	1-	29	2
25	52	15		18	20.6	f	2,	52	17		24	25.];	25	10	,,	33 36	2 5
30	62 72	16 17		20	23.1	t r. š	30	-2	19		27	30.2	2	30	90	23	40	2 5
35 40	80	17		23	27	1 2	35	80	21		31	34 9		3.5	100	25	43	2 5
45	85	19		23	30.2	2	40	90 100	23 25		33 36	36.5	2.5	4°	110	29	45	3
50	90	30		23	30 2	1	50	110	27		40	44 4	ļ 3 °	30	136	31	53	3 5
50	110	21		25	33.3 36.5		5.5 60	130	31		43	49 3 54	3.5	#	140	3.5	60	3 5 3 5
65	120	23		31	38.1	2.5	65	140	33		48	58.7		65	160	3	64	3.5
70	125	24 25		31 31	39.	2.5	74	150	35 37		51 55	63.5 68.3	3.5	::	:Ro	42	74	4
Χó	140	26		33	44.4		85	170	39		58	68.3	3.5	80	190	45	1:	:
85	150	28		36	49 2		85	180	41		60	~3	4	85	210	52	3.4	,
95	160	30 32		40	52 4 55.6	3.5	90	190	43 45		64 61	-7.8	1	90 95	240	54	200	3
100	180	34		46	60.3	3.5	160	215	47		73	726		100	250	4.6		. 1
103	190 200	36 38		50 53	65. I	3.5 3.5	105	225	49		\$0	87.3 92.1		105	202	6.5	104	-5 -1
120	215	40	42	58	*6	3.5	120	260	55			106	1	120	37.0	-1		
110	230	40	46	64 68	80 88	4	130	2 × C	58		93	112		13.00	745	• •	125	4
140	250	45	50	*3	96	•	140	300	62	6~	102	118	•	110	3.00	11	772	3
160	290	48	58 54	80	104	4	061	342	68	71	114		•	165	454	5.5	120	•
1:0	310	52	62	86	110	5	175	36c	^2	~5	120		3	172	217	÷ 2	:4<	٥
180	340	55	62	86 92	112	5	150	395 450	-8	8,	126			192	440		117	:
200	360	58	70	98	128	Ś	120	450	80	87	138		۵	22.0	2		1	,
220	400	65	78 85	108		5	220	460 500	# 8 G 5	99 111	155		6	240	440		125	1
260	480	80	90	130		6	250	\$40	163	120	161		3	270	640	112	226	12
280 100	500	80	98	130		6	250	550	108	125	175	224	8	280	6-:		27.1	12
	540 580	92	98 105	140		6	120 320	6°0	112	155	185	218	10	300	755		257	10
	620		118	165		ĸ	34"	710	115	165	212	2 ~ 2	12	345	*72	: * *	164	: I
	040		122	170		8	310	282		175	234		10	1	900	:50	187	12
3::	-22	101	140	185		8	400	822		184	241		10	400	460		314	
420	"ho	109	150	195	272	10	420	340	116	100	250	375	1.2	420	440	206	125	: 5 15
	-	112	155	200		10	445	V26		200	265		**		1010	212	235	15
4 0	815	125	1.0	224	310	10	410	950	160	212	240		22 12		1120		145	15
40C	920	116	184	243	336	10	51.0	1030	1.0	235	300		15		135¢		1-5	i\$

laße für den Mentel D, ihe 3 und den Kantenan

Approved For Release 2002/01/04 CIA-RDP83-00415R014100130004-6

Approved For Release 2002/01/04: CIA-RDP83-00415R014100130004-6

Außenmaße der Ring-Kegellager Auszug aus DIN 616

			Breit	euteibe	0		Breite	nreihe 2	<u>'</u> [
-	19886*- 188		Mal	renhe O	2		Meßi	eihe 22			
							Ī				
4	D	b .	b.	Gride-	Kinima.	*	b ,	Gradi-	Kiningt-	r	, r,
25	25	11	10	13.0	11.5		1		: 1		0.3
15 17	25	12	11	13.5	13.0	l	ŧ			1.5	0.5
30	; 47	14	13	15.5	15.0		1		, 1	2.5	0.5
48	53	15	15	11.5	16.0	i				1.5	0.5
3	- 61	16	14	17.5	17.0	30	17	21.5	21.0	1.5	0.5
Š	72	17	15	18.5	18.0	23	19	34-5	24.0	2	0.8
_	. 80	12	16	20.0	- 19.5	35	19	35.0	24.3	2	0.1
	£5	ii	16	31.0	20.5	23	19	35.0	34.5	3	0.8
;	90	36	17	23.0	31.5	23	19	25.0	24.5	3	0.8
**	100	21	1 12	23.0	28.5	31	31	27.0	36.5	2.5	0.8
Ľ	510	1 33	10	24.0	23.5	1 34	24	30.0	29.5	3.5	0.8
85	120	35		35.0	34.5	51	37	33.0	31.5	3.5	0 1
_	225	24		36.5	25.0	51	37			2.5	0.1
70 75	130	33	22	27.5	37.0	31	37	35.5	33.0	2.5	0.8
š	140	36	22	34.5	28.0	33	31	55.5	35.0	5	1 7.
85 90	150	38 30	24	31.0	30.0	36	30	39.0	38.0	3	1
<u></u>	170	33	27	35.0	34.0	40 43	34 37	43.0 46.0	42.0	3 3.5	. 1.2
		-							· · · · · · · · ·		1
100 105	180	34	29	87-5	56 5	46	39	49.5	48.5	3.5	1.2
<u> </u>	190	36	30	39.5 41.5	38.5	50	43	, 53.5	52.5	3.5	1.2
			-		40.3	53	46	56.5	55.5	3.5	, 1.2
30	315	40	34	44.0	43.0	58	50	610	61.0	3.5	1.2
20	130	40	34	44.3	43.0	64	54	68.5	67.0	4	1 1.5
-	350	43	34	46.5	45.0	64	52	72.5	71.0	4	1.5
2	270	45	38	50.0	48.0	73	- 60	78.0	76.0	4	1.5
•	290	48	40	55.0	51.0	to	67	85.0	83.0	4	1.5
70	310	52	43	58 0	56.0	86	71	91.0	90.0	5	2
-	320	52	41	52.0	160	16	71	92.0	90.0	5	. 2
Ľ	3.00 360	55	46	61.0	59.0	92	75	98.0	96.0	5	. 2
-	360	58	48	43.0	63.0	98	12	105.0	103.0	3	2
		61	34	71.0	71.0	101	90	1150	- 1		2
2	440	72	6	\$0.0	78.0	120	100	128.0	113.0	5	2
40	480	\$e	67	90.0	88.0	130	106	138.0	136.0	6	2.9
40	300	80	67	900	88.0	_		-	-	-	-
=	540	1	. 71	97.0	95.0	130	106	138.0	136.0	6	2 9

Außenmaße der Ring-Kegellager

Diese Teballe enthält die MeSe der Kegellager, deren Rollbahnringe verschiedene Breiten haben

Disse Tebsite enthält die Meße der Kegellager, deren Rottobanninge verschiedene verschieden. In der Tebelle eind die Durchmessergruppen 2 und 3 engeführt. Die Durchmessergruppe 2 entepricht der früheren leichten, die Durchmessergruppe 3 der früheren mittelsch weren Reihe. Die Meße d, D, b, und r stimmen mit denen euf Tebelle Seite 38.33 überein (b, b). In jeder Durchmessergruppe gibt es mehrere Meßreihen, die eich durch verschiedene Breiten unterschieden. Die Bestichnung der Meßreihe setzt sich susamman aus der Kennsiffer der Breitennenhe ein erster Stelle und der Kennziffer der Durchmessergruppe an zweiter Stelle. So umfaßt z.B. die Meßreihe 13, auber den Meßneihe für die Bohrung d, die Meße für den Mantel D, die Breiten b, b, und B der Breitenreihe 1 und den Kanlenebstend in der Meßreihe 13.

Dur				denreche				itenreil				enreine Ireine 2			
mee	207- DD0		Me	Breine C		<u> </u>	Me	Breihe		├	W 11:				
	3			Green.	3	İ			3 			Green.	Kin . s.		
đ	D	ð,	b.		K'e rst mail	b.	ь,	WF9.	~45	ь	b,	~45	~+1	•	-
15	42 47	13	11	14.5	140	Γ				12	14 16	18.5	11.0	1.5	0.5 0.5 0.8
20	52	15	13	16.5	16.0					21	18	22.5	110	•	08
25 30 35	62 72 80	17 19 21	15 16 18	18.5 21.0 23.0	18.0 20.5	17 19	13 14 15	18.5 21.0 23.0	18.0 20.5 22.5	24 2* 31	23 23 25	25.0 29.0 33.0	25 0 28.5 32.5	2 2 5	0.% 0.8
40	90	23 25	10	25.5 27.5	25.0 27.0	23	17	25.5	15.0 17.0	33 36	37	35.5	350	2 5 2 5	0 8 0 8
50	110	17	23	29 5	29.0	37	19	29.5	19.0	40	33	48.5	410	3	'
55 60	120 130	30 31	25 16 28	32 0 34 0 36.5	31.0 33.0 35.5	29 31 53	21 22 23	31.0 34.0 36.5	31.0 33.0 35.5	43 40 48	35 37 39	46.0 49.0 51.5	45 0 48.0 53.5	3.5	1 2
65	140	33	30	38.5	37.5	35	15	38.5	37.5	51	42	54-5	53.5	3.5	: :
75 80	150	37	31	40.5	39.5 42.0					55.	48	55 5 62 0	61.0	1.5	: 2
85	180	41	34	45.0	44.0					60	49	68.5	51.2 51.2	4	1.5
90 95	190	43	36 38	50.0	490					6-	55	71.0	†1-0	4	1 4
100 105	215 225	47 49	39 41	52.0 54.0	51.0 53.0					7-	63 63	8.0 81.0	81.0 84.0	:	15
110	140	50	42	55.0	54.0					\$6	60	01.0	90.0		1.5
130 130 140	260 280 300	55 58 62	46 49 53	63.0 64.5 68.5	59.0 61.0 67.0	ļ				93	28 85	99 5 108.5	05 0 107.0	5	2
150	320	63	55	*3.0 76.0	71.0					108	90 95	115.0 122.0	113.0	5	2
170	360	72	61	810	79.0	1				110	100	128.0	1260	5	2
180 190	380 400	75 78	64 65	84.0 84.0	83.0 83.0					136 133 138	106 109 115	135.0	133 0	6	2 2.5 2.5
200	420 460	80	73	90.0	95.0					145	123	1550	153 0	6	2.5
240 260	500	95	80 . 85		1040	1				155	112	155.0	164 0	8	2.5 3.5
280	580	102	90	120.0	:18.0					1-5	145	0.881	1850		3 5
	,		•							ĺ				}	

25X1A

Approved For Release 2002/01 CIA-RDP83-00415Res

Außenmaße der Scheibenlager

einseitig wirkend, mit ebenen Scheiben Auszug aus DIN 616

340 420 64 3 340 460 96 4 72 360 440 65 3 360 500 110 5

Nennma6 da	Kleinstmaß dg
8 bie 120	d _w + 0.2
130 bis 300	d _w + 0.3
520 018 360	d. + 0.4

4	F	C	1	-	-
	Brd	4.3	22		清晰

BOOK T.	0-			- :	۰	-	-	» 2	D _m ,	ch mese	**8****	- 2	Dun	C P T + 1 84	ALCO DO	4
	4	gorre	the E	111	La	gerrei	he B	12	L	Merra	he S	13	La	gerreil	he 51	•
P -	4.	D _B	H	,	d.,		н	1 "	ø.	D,		r	đ.	Dg	, н	-
1	10	24		0.5	10	36	11	1								
E	12	; 3 6	,	0.5	12	o E	11	t								
45	15	28	,	0.5	15	33 [12	1				il	l			
	87	90	. •	0.5	17	85	13		ł			: 1	Ī			
*	20	. 35	. 10	0.5	20	40	14	t			_					
E	•5	42	13	t	25	47	15	ı	25	52	18	1.5	25	60	34	1.5
191	30	47	11		30	55	16	1	30	60	21	1.5	50	70	28	1.5
06	35	55	12	1	35	62	18	1.5	35	68	34	1.5	35	80	32	3
	40	60	13		40	68	19	1.5	40	78	26	1.5	40	90	56	2
	45	65	14	1	45	75	20	1.5	45	25	28	1-5	45	100	39	2
Dist.	50	78	14	2	50	78	22	2.5	50	95	51	2	50	110	43	2.5
AC.	55	•	10	ı	55	90	25	1.5	55	165	35	, 2	\$5	110	48	2.5
a .	60	85	. 17	1.5	60	95	26	1.5	60	110	55	2	60	150	51	2.5
	70	90	18	1.5	65	100	27	1.5	65	115	36	2	65	140	56	3
		95	18	1.5	70	105	27	1.5	70	125	40	, 2	70	150	60	3
	75	100	19	1.5	75	310	27	1.5	75	135	44	2.5	75	160	65	3
7	80	105	19	1.5	80.	315	28	1.5	80	140	44	2.5	80	170	68	3.5
	85	110	19	1.5	85	125	31	1.5	85	150	49	2.5	85	180	72	3.5
	90	110	22	1.5	90	135	35	2	90	155	50	. 0.5	90	190	77	3.5
	100	135	25	1.5	100	150	38	2	100	170	55	2.5	100	210	86	4
	110	145	25	1.5	110	160	38	2	110	190	63	5	110	230	95	4
ž	120	155	25	1.5	120	170	39	2	120	210	70	5.5	120	250	102	5
	130	179	30	1-5	130	190	45	2.5	130	225	75		130	270	110	5
	140	180	31	1.5	140	200	46	2.5	140	240	80	3.5	140	280	112	3 1
*	150	190	51	1.5	150	215	50	2.5	150	250	80	3.5	150	300	120	5
	160	300	51	1.5	160	225	51	2.5	160	270	87	4	160	310	130	6 I
31	170	215	54	2	170	240	55	2.5	170	280	87	4	170	340	135	6
2	180	225	34	2	120	250	16	2.5	180	300	95	4	180	160	140	6
	190	240	37	2	190	270	62	3	190	320	105	7	190	380	150	6
	200	250	37	2	200	280	62	3	260	340		ا ۋ	200	400	155	6
44	220	270	37	2	220	300	63	3								8
2	240	300	45	2.5	240	340	78	3.5		i		2	240	440	160	8
	360	320	45,	2.5	260	360	79	3.5				٠ ا	260	480	175	8
- 80	2\$o	350	53	2.5	280	180	80	3.5								
	300	380	62) l	300	420	95	4 4	1	:			280 300	520	190	8 X
- 84	130	400	61		110	440	á	1.7		- 1			300	340	190	•

Soll beim Ausbau von Ring-Zylinderlagern ein Abziehen der aufgepreüten Innenringe verhindert werden, müssen die angegebenen Anschlußmaße eingehalten werden. Maße in mm

Anschlußmaße für Ring-Zylinderlager

10	36	11	t	1								Maßell	n mm															
13 15 17	92 32 85	11 12 13	t t		j						1	Lager boh- rung		_	rreiñe U E		NU	L, NJ	reihen	PL.	NUK	t. NJ	rreihen M. NU	PM.	NU	_	re "#/	
35	47	15	i	25	52	18	1.5	25	60	34	1.5	a	0	D. 1	D ₂	D.	0	D,		D,	D	ο,	D.	D.	D	D.	D	D.
36 35	55	16	1 1.5	36 35	60 68	21 34	1.5	50 35	70 80	28 32		20				-	47	26.5	28.5	31.5	52	25	30	33-5				
45 50	68 75 78	19 20 22	1.5 1.5 1.5	40 43 50	78 25 95	28 28 51		40 45 10	90 100 110	39 43	2 2.5	25 30 35	47 55 62		32 38 43-5	34 2 40 5 46.1	52 62 72	31.5 38 43	33.5 40 45.3	36.5 43.3 49.1	62 72 80	34 5 41 5 45-5	36.5 43.5 47.7	40.5 47.5 52.3			16 5	52 60.5
55 60	90	25 26	1.5	55 60	105	35 35	2	55 60	130 150	48 51	2.5 2.5	40 45	68 75	46.5 51	48.5	51.3 57	85 85	49-5 54-5	51.5 56.5	\$5.7 60.5		13	55 60	59.9 65.5	120	57 5 64	19 5 46 72 1	16 3 73.3 80 3
	105	27	1.5	70	115	40	2	70	150	56	3	50 55	90	57 64	59 66		100	65 -1	61.9 68	72.3	120	64.5 70 -6.5	66.5 *2 *8.5		140	70 76 5 82 5	-4-	%5.7 G13
80. 85	315	28 31	1.5 1.5 1.5	75 80 85	135 140 150	44	2.5 2.5 2.5	75 80 85	1 60 17 0 180	68 72	3 3.5 3.5	60 65 70	100	6y 74 79.5	71 76 81.5	79.2	ı	79 84	81 1	86.3	140	83 895	85	92.5	160	34 4		
90 100 110		35 38 18	2 2 2 2	90 100 110	155 170 190	50 53 63	2.5	90 100	190 210	77 85	3.5 4	75 80	115	84.5 91		90.5	130 140	×8	90		160	95	94 105	106 1	190 200	103. <u>5</u> 109		124
	170	39 45	2 2.5	120	210	70	5 5.5 3.5	120	230 250 270	95 102 110	5	85 90 93		96 102.5 107.5			150 160 1°0	106	103.8 109 115.5	116 2		114	110 117 123 5	127	225	122 6	114 125 5 135 5	114
	215	46 50	2.5	140	240 250	80	3.5	140	280 300	112	5	100	150	112.5	115	120	180	119	121 125.8	130		134	111.5	149	100	141.5	147 5	101 5
170	240	51 55	2.5	170	280	87	4	160	310 340	130	6	110 120	180	124.5	137	143	205 215	143	134-5 145-5	155	260	153	156	157.5	110	164	172	140 140
190	250 270 280	56 62 62	2.5 3 3	180 190 260	300 320 340	95 105 110	5	180 190 200	360 380 400	140 150		110	210	147.5	160		230 230	158	171	167.5 181.5		1-9	183	144 198 213	140	19-		20% 222
	300 340 360	63 78 79	3 3.5 3.5		i			220 240	420 440	160 160	8	150 160 170	240 250		171.5 182 195	140	290 310	194	10-	195 210 223 5	340	207		22× 241	410	225		251 265
50 00	380 420	80 95	3.5					280 300	480 520 340	190		180 190 200	290	204 214 228	208 218 212	218 228 242.5	140	230	214	233 5 247.5 201		244	235 248 263	255 268 281	443 463 480	264	251 268 279	278 293 305
110	440 460	96	4 4					320 340 360	5%0 620	205 220 220	10	229 240 250	340	2.49 269	253 273 273	265 285 312.5	400	264 244	271 294	280 316 343	460 450 440	2 % 3 3 C G	287 313 339	310 318 365	540		108	339 367
Δ	pp	orc	ove	d F	or	R	ele		-			CIA-F	1											-	<u> </u>			

Approved For Release 2002/01/04: CIA-RDP83-00415R014100130004-6

Anschlußmaße für Ring-Kegellager

Prüfverfahren für Wälzlager nach DIN 620

Bei den Ring-Kegellagern eteht der Käfig über die Stirnfläche des Außenringes vor. Demit genügend Abstand zwischen dem Käfig und den Gehäussteilen ble bl, sind eie angegeberen Maße einzuhallen.

Maãe in mm

Acres de la constante de la co																		
1		0.44		322		1	102 hstmail		22		30: Grafi	3 und		egerr }		303		323
	P	ō	D.	d.	4	- I	meurau			0	0	ם.	d.	d.				
	+*			V.	- 12	-	_	-	_==		_	_		_	_			
- 7	ية ا	23	21	11	96.5	7	-	_	Ξ	43	22		35		2 2	3	2	4
. H 6	e7	26	26	39	43	2	3	_	_	52	27	87	43	47	2	j	2	4
Automatical Control	57	-	31	43	48	2	,	_	-	54	35	-		57	2	3	2	3
	1 62		36 48	52 6 r	57 67	3	3	3	4	73	38 43		61 68	66 74	2	4.5	2	5.5
- 2	\$ 50		47	44	75	í	3.5	3	ş.,		50		76	14	3	4.5	3	7.5
	es		52	73	80	,	4-5	3	5.5	100	56	54	85	93	3	5	1	
1	100	- 58 63	57	7E 87	85 94	,	45	3	5.5		62			102	3	6	3	9
	110	60	64	-		•		4		120	-		103		4	6	4	10
-	120	73	74	105	102	4	4.5	4	3.5	130	75 80		112		4	7.5	4	11.5
20	125	80	79	106	117	4	5	4	6	150	85		129		7	- 3	- 7	11.5
35	130	25		113		4	5	4	•	160	eı	e 7	138	149	4	8 5	4	11 9
	140	90		130		4	6	4	7	110	97		147		4	9	4	13
-	160	102	_	118		5	6	,	i	100			155		5	10	9	14
	170	106	107	146	158	5	7	3	10		113	104	103	126	5	10	10	14
300	180	114	112	153	168	5	8	5	10	215	121	114	ıė,	200	ś	11	11	16
705 130	190 200	120		163		:	9	5	10	215	127	119	193	209	11	12	11	17
120	215	133		184		÷	9	;	10	260	135	134	205	222	11	11	I 2 I 2	17
120	230	144	144	100	218		٠	_	_	l		- 34	,	-37	••			17
140	250			215		10	10	_	-									
1417	270	168	104	230	255	10	10	-										
							Lage	vre.	he 3	13			_					
		Q-401			Klein	stm	a.S	•		1		- 681						
4	D	0,	ο,	, d,	d,			ı	đ	1.	•	D	D.			einsta		_
	62	33	32	46	59			┲	-30	177	_	61	50	d;		_		10
80	72	30	37	34	68	2	6.5	ı	55	1,		67	65	•, •1		13		10
-	20	44	44	61	76	,	7.5	Ī	60	١.,	10	72	7.1	101		-		
	90	50	49	70	84	3	. 8		63	1.		78	77	109			•	11
	IOO .	13	54	72	95	-		ı	70	1,		E 1	*2	109	- 13	11 4	•	11.5

Maß-, Form- und Laufgenaulgkeit a) Allgemeines

Die Bezugstemperatur beträgt 20°. Werkstück, Vergleichsstück und Meßgerät müseen bei der Messung gleiche Temperatur heben. Meßgeräte und Lager eollten deshelb vor der Messung eine genügend lenge Zeit (Stunden oder Tege, je nach ihrer Größe und dem Temperaturunterschied) im Meßraum etehen. Die schnellste Angleichung der Temperetur iet zu erzielen, wenn Werketück und Meßgerät auf eine Metellplatte gelegt werden.

Um ein möglichst geneues Meßergebnis zu erzielen, sollten Meßgeräte, Vergleichsetücke und zu messende Teile vor der Handwärme geschützt werden. Die Meßgenaufgkeit von Bohrung und Mentel kann mit den üblichen festen Lehren (Lehrdornen, Flachlehrdornen, Kugetendmeßen, Rechenlehren) geprüft werden. Für geneue Messungen und besonders in Zweifelsfälten sind dagegen die im folgenden beschriebenen Prüfverfahren enzuwenden, weil sich die verhältnismäßig dünnen Rollbehnringe leicht verformen,

Vor der Messung muß das Fett entfernt werden. Weil sich bei vollkommen trockenen Lagern leicht Rost bildet, sollte für des Auswaschen kein neines Benzin benutzt werden, sondern z. B. Weschbenzin mit etwas Oi oder saurefreies Petroleum. Nach dem Messen sind die Lager sofort wieder einzuben oder einzufetten.

Radialschlag oder Axialschlag der einzelnen Rollbehnringe können bei gewissen Lagern, z. B. Rillenlagern, nicht unmittelbar gemessen werden. Bei
der Messung des Radielschleges ist die dedurch bedingte Meßungeneu gweit
gering. Bei der Messung des Axialschlages ergibt sich jedoch eine verhältniemäßig große Meßungeneuigkeit. Bei der Bewartung der Meßergebnisse ist
deshalb die Meßungeneuigkeit der mittelbaren Messung zu beechten. Der
Fehler des Dorres ist in Rechnung zu aetzen.

Wiedargabe effolgt mit Genahmigung des Deutschen Normenausschusses.

Approved For Release 2002/01/04 : CIA-RDP83-00415R014100130004-6

SEGNET

一方式 计可能数据 医

Prüfverfahren für Wälzlager

Triverfahren für die Maß- und Formgenauigkeit

d ist der erithmetische Mittelwert eller Messungen, die ist der Unterschied zwischen den Mittelwerten der gemessenen In jeder Meßebene und die Unrundheit ist der Unterschied som größten und kleinsten gemessenen Durchmesser.

Die Messungen erfolgen mit einem Meßgerät für Zweipunktmessung. (Skelenwert S = 1 u.)

- Nullpunkteinstellung des Fühlhebelenach Endmaßen (Genauigkeitsgrad I nech DIN 861).
- tn 2 verschiedenen Querechnitten der Bohrung (Meßebenen e und b) je 4 em Umfeng gleichmäßig verteilte Meseungen eueführen. Die Meßebenen e und b dürfen nicht unmittelbar an der Kante der Rundung liegen.

Aus den 8 Meseungen eind zu ermitteln:

- a) Durchmesser der Bohrung,
- b) Kegeligkeit der Bohrung,
- c) der größte und kleinete gemessene Durchmesser.

ruläeeiger größter Durchmesser: 40.003
zuläeeiger größter Durchmesser: 40.003
zuläeeiger kleinster Durchmesser: 39.985

*	40.005 40.004 40.004 40.003	b ₁ b ₂ b ₃	40.003 40.000 40.000 39.99\$
•	40.004	b	40 000
	40 002 (unzullssig	!)
	· 4# Q	rulàssig)	
	39 998	(zulāssig)	•
	*	84 40.004 84 40.003 8 40.004 40.002 f	89 40.004 b ₁ 84 40.004 b ₂ 84 40.003 b ₃

edite investor our Approved For Release 2002/01/04 : CIA-RDP83-00415R014100130004-6

Prüfverfahren für Wälzlager

2. Mantel

Der Durchmesser D ist der arithmetische Mittelwert eller Messungen, die Kegeligkeit ist der Unterschied zwischen den Mittelwerten der gemeesenen Durchmesser in jeder Meßebene und die Unrundheit ist der Unterschied zwischen dem größten und kleinsten.

gemessenen Durchmesser.

Die Messungen erfolgen auf ebener Unterlage und Fühlhebelmeßgerät mit gut gerundeter Meßspitze. (Skalenwert S. 14.)

MeBanleitung:

- Nullpunkteinstellung des Fuhlhebels nech Endmaßen (Genauigkeitsgrad I nech DIN 861).
- in 2 verschiedenen Querschnitten des Mantels (Meßebenen e und b)
 in 4 em Limfang steichmäßig ver-

teilte Messungen ausführen Die Meßebenen a und zigunfen nicht unm Heilbe bar an der Kanteider Rundung liegen.

Bei jeder Messung ist das Wätzlager unter dem Meßs: f; angsam durtnerrollen und der höchste Zeigerausschlag (Umkehrpunkt) festzustellen

Aus den 8 Messungen sind zu ermitteln:

- a) Durchmesser des Mantels. b) Kegeligkeit des Mantels
- c) der größte und kleinste gemessene Durchmessen

Beiepiel: D=90 mm: zulässige Abmaße 0 und = 0.015 zulässiger größler Durchmesser 90.006 zulässiger kleinster Durchmesser: 89.979

Maße in mm an der Meßstelle	*: *. *. *.	80 UM 80 UM 80 U80 80 U83	t 4: 4: 4:	50 070 50 150 50 060 50 003
Mittle wert leder Meßebene		FU SEC		81.485
Durchmesser D (Mite')		F9 983 (unt les g	2
Kege gke t		6 . 12	a ass g	
Kleinsfer gemessener Dutchmesser .		For are in	unzu äss j	
Grafter gemestener Durchmesten		FG 993	(zu kse gʻ	

47

Approved For Release 2002/01/04: CIA-RDP83-00415R014100130004-6

Prüfverfahren für Wälzlager

SECRET

Prüfverfahren für Wälzlager

....

b ist der Abstand der Seitenflächen an ingendeiner Stelle des oder des Außenringes. Bei allen Kugellagern und bei Schräglach DIN 628, Blatt 2, gilt die Breitentolerenz nur für den Innenring.

mittele Schraublehre (Skatenwert S-10 µ) und ist en Stellen des Umfanges zu prüfen.

Rendung oder Kantenabstand r

Profij der Rundung iet kein Viertelkreis. Der Kantenabstand wird daher als der Abstend der Rundungskanten von der Seite, der Bohrung

Die Messung erfolgt mittels Hakenlehre. Meßanleitung:

Einetellung von e für Größtmeß oder Kleinetmeß Lineal an die Bezugsfläche legen. Durch Augenschein Lage der Kante prüfen.—Das Messen des Kantenabetandes ist schwierig, deshalb ist die Meßgeneuigkeit gering. Ortliche Fehler dürfen nicht berücksichtigt werden.

Prüfverfahren für die Laufgenauigkeit

Brothmachwankung Up

atellt den Unterschied zwischen der größten und kleinsten Breite des ger Außenringes der (Unparellelität). Die Meseung erfolgt mittele Fuhl-

hebelmeßgerät (Skalenwert S 1 µ). Bei der Prüfung der Planparallelität den Innen-oder Außenring auf seiner an das Führungsstück a drücken. Die Grenzausschläge des Meßzeigers be mindestens einer Umdrehung ergeben die Breitenschwenkung

2. Seitenschleg des Innenringes Si

Der Seitenschlag ist die Abweichung einer Seitenfläche von
der rechtwinkligen Lage zur Bohrung, gemessen eite Gesemteusschlag eines in einem beetimmten
Abstend von der Bohrung suf
die Seitenfläche gesetzten Meßstiftes bei einer Umdrehung
(Si.). — Der Fehler der anderen
Seite (Si.) ist aus der Formet
Sig—Up - Si.

zu berechnen. Hierrn ist Up die Breilenechwenkung.

Die Meeung erfolgt mittels Fühlhebelmeßgerät (Skalenwert S=1u). Dazu ein waagerechter Spitzenbockmit Dorn. Kegel gkeit des Dornee: 0.02 bis 0.04 mm euf 200 mm Länge. Rundlauffehler dee Dornes höchetens 2u.

Meßanleitung.

Um die Meßungenauigkeit zu verningern, ist eine spiel/reie und möglichst neibungsfreie Lagerung des Winkelhebeis erfordertich. Verkenten des innenringes auf dem Dorn vermeiden. Deshalb innenting ebleufsetzen daß bei etwa vorhandener Kegeligkeit der Bohrung die weite Seite nach dem dickeren Ende des Dornes gerichtet ist. Zu meesen ist auf der nichtgestembeiten Seite des Innentinges: Frostzustellen ist der größte Aueschlag des Fuhlhebeibei mindestens einer Umdrehung.

Anmerkung Für den Seitenschlag des Außen inges sind vorläufig kein Mediemfahren und

25X1A

Approved For Release 2002/01/04: CIA-RDP83-00415R014100130

Prüfverfahren für Wälzlager

Rollbahn des Innenringes (Ri)

AND DESCRIPTION TO

Der Redialschlag der Rollbahn des Innenringes ist gleich der Schwankung der Ringdicke in der Mitte der Rollbahn, wenn der Ring allein geprüft wird. Die Schwankung kann hervorgerufen werden durch unsymmetrische oder nicht rechtwinklige Lage der Rollbahn zur Bohrung.

Prütverfahren für Wälzlager

Bei der Prüfung eines zusammengesetzten Lagerakommt der Größenunterschied der Rollkörper und der Rundlauffahler des Dornes hinzu. Beim eingebeuten Lager wird der Radialachleg eußerdem beeinflußt von dem Seitenschlag und dem Axialschlag des Innenringes. Der Redistachlag ist ferner abhängig von der Belastung. Da die Meßkreft meistene gering ist gegenüber der Betriebebelestung, werden bei der Prüfung des einzelnen Lagers höhere Werte festgestellt, als eie im Betrieb zu erwarten sind.

> Die Messung erfolgt mittels Fühlhebelmeßgerät (Skalenwert S==1 ").

Bei Rillenlagern, zweireihigen Schräglagern, Pendellagern, Zylinderlagern und Tonnenlagern: Waagerechter Spitzenbock mit Kegeligkeit des Dornes: 0.02 bis 0.04 mm auf 200 mm Länge. Rundleuffehler des Dornes; höchstens 2 p. Bei Kegellagern und einreihigen Schräglagern; Gehäuse mit senkrechtem Dorn und Belastung G. Kegeligkeit und Rundlauffehler des Dornes wie oben.

MeBanleitung:

Verkanten des Innenringes auf dem Dorn vermeiden. Deshalb Innenring so aufsetzen, daß bei etwa vorhandener Kegeligkeit der Bohrung die weite Seite nach dem dickeren Ende des Dornas gerichtet iet. Der Radialschleg des Innenringes wird gemessen, indem man den Dorn mit dem Innenring lengsam und möglichst gleichmäßig dreht; der Außenring muß festgehalten werden. Der Meßatift muß in der Mitte des Außenringes angesetzt werden. - Bei der Messung von Kegellagern ruht der Meßstift auf dem Dorn. - Bei Zylinderlagers mit Außenbord kann der Innenring euch allein, wie unter c 4 angegeben, gemessen werden. Festzustellen ist der größte Ausschlag des Fühlhebels bei mindestens einer Umdrehung.

4. Radialschlag der Rollbahn des Außenringes (Re)

Der Radialechlag der Rollbahn des Außenringes ist gleich der Schwankung der Ringdicke in der Mitte der Rollbahn, wenn der Ring allein geprüft wird. Die Schwankung kann hervorgerufen werden durch unsymmetrische oder nicht winkelrechte Lage der Rollbahn zum Mantel. Bei der Prüfung eines zusammengesetzten Lagers kommt der Größenunterschied der Rollkörper und der Rundlauffehler des Dornes hinzu. - Beim eingebauten Lager wird der Radialachlag außerdem beeinflußt von dem Seilenschlag und dem Axialschlag des Außenringes. Der Radialschlag ist ferner abhangig von der Belastung.

Approved For Release 2002/01/04 : CIA-RDP83-00415R014100130004-6

Stunct

Prüfverfahren für Wälzlager

Ca de Meßkraft meistene gering iet gegenüber der Betriebsbelastung, werden Ger Prüfung des einzelnen Lagers höhers Werte festgestellt, als sie im Gerieb zu erwarten sind.

Die Messung erfotgt mittets Fühlhebelmeßgerät (Skalenwert S = 1 μ). Bei winningern, Pendellegern, Zylinderlagern und Tonnenlagern; Waegerechter Schenbeck mit Dorn; Kegeligkeit des Dornes: 0.02 bis 0.04 mm suf 200 mm und 200 mm; Rundleuffehler des Dornes: höchetens 2μ . Bei losen Außenringen:

Medenleitung:

Der Radiatschtag des Außenringes wird gemsseen, indem men den Außenrieg langsam und möglichet gleichmäßig dreht; Dorn und Innenring müssen seigehalten werden. Der Meßetift muß in der Mitte des Außenringes enmester werden.

ren den Rottkörpern abziehen lassen. Pastzustellen ist der größte Ausschlag des Fühlhebels bei mindestene einer Umdrehung.

Arialechlag der Laufbahn des Innenringes (AI) und Außenringes (Aa)

Arialechlag der Laufbahn eines Rollbahnringes ist die Abweichung der

Laufbahn von der winkelrechten Lage zur Bohrung oder zum Mantel, wenn

Be	instungsri	ng	
Durchmesse	r		Gewicht
D, j	Dg	Bg	kg
mm	mm	mm	ca.
bis 30	85	15	0.60
über 30 ors 50	90	1 20	0.75
uber 50 bis 80	120	25	1.50
uber \$0 bis 120 (170	30	3.50
über 120 bis 150	220	35	6.00
Oper 150 bis 180	180	40	13.00

Die Bohrung D., der Sitzfläche soll nach

Prüfverfahren für Wälzlager

der Ring ellein geprüft wird.— Die Messung des Axialschlagee des Außenringes wird von dem Seitenschlag des Außenringes beeinflußt.— Die mittelbere Prüfung am zusammengesetzten Lager ergibt eine verhältnismäßig große Meßungenauigkeit.

Die Messung erfolgt mittels Fühlhebelmeßgerät (Skalenwart S $-1~\mu$). Senkrechter Spitzenbock mit Dorn; Kegeligkeit des Dornee: 0.02 bis 0.04 mm auf 200 mm Länge; Rundlauffehler des Dornee: höchstens 2 μ .

Meßanleitung:

Verkanten des Innenringes auf dem Dorn vermeiden. Deshalb Ringe so aufsetzen, deß bei etwa vorhandener Kegeligkeit die weite Seite der Bohrung
nach dem dickeren Ende des Dornes gerichtet ist. Der Axia'schleg des
Innenringes wird gemessen, indem man den Dorn mit dem Innenring lengsam und möglichst gleichmäßig dreht, Außenring und Gewicht müssen stillstehen. — Der Axialschlag des Außenringes wird gemessen, indem man den
Außenring langsam und möglichst gleichmäßig dreht, Innenring und Dorn
müssen stillstehen. — Der Meßstift muß bei der Prufung des Innen- und
Außenninges in der Mitts der nichtgestempellen Seitenfläche des Außenringes
bei A engesetzt werden. Wird der Meßstift auf der Seitenfläche des Gewichtes
bei B angesetzt, so ist dafür zu sorgen, daß die Dicke des Flansches um
höchstens 5 % der zulässigen Abweichung schwankt.

Festzustellen ist der größte Ausschlag des Fuhlhebels bei mindestens einer Umdrehlung

6. Axialechlag der Rollbehn von Scheiben (As)

Dieser ist die Schwenkung der Dicke in der Mitte der Rollbahn der einzstnen Scheiben. Die Messung erfolgt mittels Fühlhebelmeßgerät (Skalenwerl S. 1."). — Meßplatte mit Anschlagwinkel oder Nocken und Dreigunktauflage.

Meßanleitung:

Die Scheibe wird langsam unter dem Meßstift gedreht. Festzustellen ist der größte Ausschlag des Fuhlhebels bei mindestens einer Umdrehung.

Approved For Release 2002/01/04 : CIA-RDP83-00415R014100130004-6

Toleranzen für Wälzlager

Toleranzen für Wälzlager

Toleranzen in aligemeinen Fällen nach DIN 620

Maßgenauigkeit der Ring- und Scheibenlagar

Nannmati	e in	1			Abmet	Se in //			
mm		d and d. 1)		1	ניפי	Ì	De	6 ')	
	is ::		-10		- 8		- 10		
Ober IS b	·6 30	0	- 10		~ 0		-10		-10
Ober 15 b	. 50		-12	ه ا	-11	i	12		- 10
	-			ı •		٠,	12	ľ	- 12
Sher 50 b			-15		- 13	ه ا	-15		- 15
Shor to b			-20		- 15	1 0	- 20	ة ا	- 20
8007 120 b	6 I 50		-25		- 18	۰	~ 25	ŏ	- 25
Mer 250 b	e ISO		-	_ ا		ł			
Mar 250 b			-25		- 25	۰	-25	•	-25
Bber \$50 b		0	-30	۰	- 30	•	- 30	e	- 30
	. 315	۰	-35		-35	٥	-35	۰ ا	- 35
Ober 315 b	8 400	0	- 40		- 40				
Sher soo b	# 500	0	- 45				- 40		-40
Mer 500 b		ه ا	- 30	ı	-45		-45	۰	- 45
		, -	- 30	i °	-50	•	60	۰	- 50
86er 630 b	8 800		-75	۰	-75	۰	- 75	۰	
liber Soo b	6 1000		~ too	ě	- 100		100	ŏ	- 75
Mer 1000 b	0 1250		- 125		-125		100	Š	- 100
				•	-123		-		- 125
Ober 1250 b.	8 1600	-	-	۰	- 160	_	-	_	_
1			2		3				5

Formgenauigkeit	der	Ringlager	٠,
			•

		Größter und klein	eter zu'äseiger Di	rchmesser, D in r	nm, Atmete in a		
Ober 18 0 to 18	Nennmaße in mm	_	Maffgruppe 9		Mašgruppe 1		
Sper 180 bis 120 d+ 5 d-25 - - D+7 D-22 D+6 D-7 Sper 180 bis 180 d+ 6 d-31 - - - - - - Sper 180 bis 180 d+ 6 d-31 - - - - - Sper 180 bis 250 d+ 8 d-38 - - - - -	über 18 2 s 30	d+ 3 d-13	D+2 D-11	D+3 D-11	D+2 D-1		
GDer 180 Ds 250 d + 8 d - 38 - - - - -	über 80 bis 120	d+ 5 d-25			D+6 D-21		
	über 180 b.s 250	d+ 8 d-38		= =	= =		
Ober 115 Dis 400 d + 10 d - 50	Ober 315 bis 400 uper 400 bis 500	d+10 d-50	= =	= =	:		

	Größter und kleinster zulässiger Durchmesser, Din mm. Abmede in /									
Nennmaße in mm	der Bohrung alle Maßgruppen	Meßgruppe 2	das Mantels Meßgruppe 3	Maßgruppe 4						
bis 18 über 18 bie 30 über 30 bis 50	d+ 3 d-13 d+ 3 d-13 d+ 3 d-15	D+ 1 D- 9 D+ 2 D-11 D+ 3 D-14	D+ 1 D- 9 D+ 2 D-11 D+ 3 D-14	 D+ 2 D=0						
über 50 bie 80 über 80 bis 120 über 120 bis 150	d+ 4 d-19 d+ 5 d-25 d+ 6 d-31	D+ 4 D-17 D+ 6 D-21 D+ 7 D-25		D+ 3 D-1						
über 150 b s 180 über 180 bis 250 über 250 bis 315	d+ 6 d-31 d+ 8 d-38 d+ 9 d-44	D+ 8 D-33 D+ 9 D-39 D+ 10 D-45	D+ 6 D-31 D+ 7 D-37 D+ 8 D-43	D+ 5 D-3 D+ 6 D-3 D+ 7 D-4						
über 315 b \$ 400 uber 400 b \$ 500 über 500 b \$ 630	d+10 d-50 d+12 d 57	ΞΞ	D+ 9 D-49 D+11 D-36 D+12 D-62	D+ 8 D-4 D+ 9 D-9 D+ 10 D-6						
6	7	11	12	13						

- Das Kurzzeichen für das Toleranzfeld ist KB.

- (1) Das Kurzzeichen für das Toleranzfe'd ist KB, 11) Das Kurzzeichen für das Toleranzfe'd ist hB.
 (2) Das Kurzzeichen für das Toleranzfe'd ist hB.
 (3) E. Ring-Schullertisper gelten die Werte nach DIN 615
 (3) Die Werte sind der Bonrung zugeordnet. Für die Breite der Innenringe eiler Ring-Kegellager Stühr dan Ring-Schräglager Reihe 173 gelten die doppelten Werte. Für die Breite der Außenringe dieser Lager sind kein an Abmaß lesige egt.
 (3) Rundungen und Schulterhöhen siehe Seite 28,
 (4) Zurassige Kegrigke I 50 oer Tolerenz von Spelle 2 bzw. 3

Die Toleranz für den Kegel 1-12 bei Lagern mit kegeliger Bohrung ist noch nicht festgelegt.

SECHET

Toleranzen für Wälzlager

Laufgenauigkeit der Ring- und Scheibenleger

	l .	201E	ssige Abweichur	ng in it	
Nennmaße für			Innenring		
d, D und d in mm	Breiten- schwankung	Seiten- schlag	Red at	Axielechias	
	Up hõchstens	Si höchstene	zyi. Bohrung höchstens	kegl, Bohrung höchstens	Ai hõchstene
Die 18	20	20	15	22	40 40
Shor 18 bes 30 Shor 30 bes 30	30	30	15	ii	40
Sher 50 bis 50	25	25	20	30 38	50
800 80 bis 120	3 35	25 25	25 50	31 45	50 60
800F 130 Des 150	30	30	1		1
ther 130 bis 180 ther 180 bis 250	50	90	30	45 60	60 60
800" 150 04 150 800" 250 54 315	50 50 55	90 90 93	40 50	73	70
	1		60		80
Ober 313 bis 400 Mar 400 bis 500	40	**	65	90 100	1 10
ther you bis \$30	=	=	70	110	-

	zuläseige Abweichung in z							
Nennme5 für	Auße	Scheibe						
d, D und d⊎ in mm	Radialschlag Ra höchstens	Axielschlag Az höchsteng	Axielsch eg As höchelene					
bis 18	15	40	15					
Ober 18 bis 30	15	40	15					
Ober 30 bis 30	20	40	15					
Ober 30 bis 80	35	40	/ 18					
Ober 80 bis 120	55	45	21					
Ober 130 bis 150	40	50	14					
Ober 150 bis 180	45	60	24					
Ober 180 bie 250	50	70	30					
Ober 250 bie 315	60	80	40					
Bber 315 bis 400	70	90						
Bber 400 bis 500	\$0	100						
Gber 500 bis 630	100	120						
14	20	21	22					

Toleranzen für Wälzlager

e) Toleranzen in Sonderfällen nach DIN 620

Maß-, Form- und Laufgenauigkeit der Ring- und Scheibenleger

_	Al	Abma3e 1)			1	tullssig	e Abw	e chuni	g in #		
Nennmeße für	×	fur		Innenring							
d, Dund d _a	g		(י ס	Breiten- F) schwenkung Uo nöchstens		Seiten- schlag Si hochsteng		Rediel- ach eg Ri röchstens		Ax elschisg Ax Höchstene	
h.s. 18 18 18 18 18 18 18 18	0 -	15 0 20 0 25 0 25 0 35 0	- 8 - 9 - 11 - 13 - 15 - 18 - 25 - 50 - 55 - 40 - 45	10 10 10 12 12 15 15 15 17	7 7 7 8 8 10 10 10 10	10 10 10 12 12 15 15 15 17	7 7 8 8 10 10 10 12	10 10 10 12 14 16 16 20 24	5 5 6 7 8 10 12	10 20 25 25 30 30 30 31	13 13 18 18 12 20 20 20
über 500 b:8 630	2	30 0	3	4	5	6	7	8	9	10	11
Kurzzeichen	C 10	1	C 10	C 01	C 02	C 61	C 02	C 01	C 02	C 01	Cox

15, 16, 17, 18 und 19 and der Bohrung d., die Spaten 20 and 21 sem Marin70 und die Spate 22 der Bohrung d., zugeordnet. Behrung, Wente, und Scher der
19 Bei Ring-Schulterlegerin geiten die Werte nach DIN 615.
19 und die Spate 22 der Bohrung d., zugeordnet. Behrung, Wente, und Scher der
19 Bei Ring-Schulterlegerin geiten die Werte nach DIN 615.
19 Und die Spate 22 der Bohrung d., zugeordnet. Behrung, Wente, und Scher der
19 Bei Ring-Schulterlegerin geiten die Werte nach DIN 615.
19 Und die Spate 22 der Bohrung d., zugeordnet. Behrung, Wente, und Scher der
19 Bei Ring-Schulterlegerin geiten die Werte nach DIN 615.
19 Bei Ring-Schulterlegerin geiten die Werte nach DIN 615.
19 Des Ring-Schulterlegerin geiten die Werte nach DIN 615.
19 Des Ring-Schulterlegerin geiten die Werte nach DIN 615.
19 Des Ring-Schulterlegerin geiten die Werte nach DIN 615.
19 Des Ring-Schulterlegerin geiten die Werte nach DIN 615.
19 Des Ring-Schulterlegerin geiten die Werte nach DIN 615.
19 Des Ring-Schulterlegerin geiten die Werte nach DIN 615.
19 Des Ring-Schulterlegerin geiten die Werte nach DIN 615.
19 Des Ring-Schulterlegerin geiten die Werte nach DIN 615.
19 Des Ring-Schulterlegerin gesten die Werte nach DIN 615.
19 Des Ring-Schulterlegerin gesten die Werte nach DIN 615.
19 Des Ring-Schulterlegerin gesten die Werte nach DIN 615.
19 Des Ring-Schulterlegerin gesten die Werte nach DIN 615.
19 Des Ring-Schulterlegerin gesten die Werte nach DIN 615.
19 Des Ring-Schulterlegerin gesten die Werte nach DIN 615.
19 Des Ring-Schulterlegerin gesten die Werte nach DIN 615.
19 Des Ring-Schulterlegerin gesten die Werte nach DIN 615.
19 Des Ring-Schulterlegerin gesten die Werte nach DIN 615.
19 Des Ring-Schulterlegerin gesten die Werte nach DIN 615.
19 Des Ring-Schulterlegerin gesten die Werte nach DIN 615.
19 Des Ring-Schulterlegerin gesten die Werte nach DIN 615.
19 Des Ring-Schulterlegerin gesten die Werte nach DIN 615.
19 Des Ring-Schulterlegerin gesten die Werte nach DIN 615.
19 Des Ring-Schulterlegerin gesten die Werte nach DIN 615.
19 Des R

25X1A

Approved For Release 2002/01/04: CIAIRDP83-00415R014100130004-6

Toleranzen für Wälzlager

		zuiāt	Mile Athe	e grung d	<u></u>			
Nannmaße für		Außenring						
d, D and d ₌	Redials Re hāchs		Axialsi Aa hõchs		Axialsoh'a As hoomsten			
bia 18	7	3	20	13		5		
Sher 18 bis 30	7	5	20	13		2		
Ober 30 bis 30	10	7	20	t3		•		
Ober 50 bis 80	1 12		20	13		2		
Ober 50 bis 120	1 17	12	22	15		•		
über 130 b.a 150	20	13	25	18	,	0		
	22	15	30	20		0		
Sher 150 bis 180 Sher 180 bis 250	25	17	33	23	1	5		
Ober 250 bis 315	30	36	40	27				
			45	50		_		
Ober 315 th 400	53	25	50	33				
Ober 400 bis 500	40 30	33	60	40				
Ober 500 b.e 630	30							
1	12	13	14	15		16		
Kurzzeichen	CH	C 04	C 03	C 04	COI	С		

Bedeutung der Kurzzeichen

C 10	MeSgenauigka't.			nach 2, 3
C 81	Laufgenaulgkeit bei sich drehandem innenring (bzw. Wallenschalbe)			nach 4, 6, 8, 10, (16)
C es	Laufgenauigke t bei sich drehendem Innenring			
C 🚾	Laufgeneu gkeit bei sich drahandem Außenzing (bzw. Gehäusrscheiba)			
C #				
C 65	Laufgeneuigkeit C 61 und C 63			nach 4, 6, 8, 10, 12, 14, (10,
C 66		٠		nach 5, 7, 9, 11, 12, 14, (16)
C 67	Laufgenaugkeit CSI und COI	1	1	nath 4, 6, 8, 10, 13, 15, (16, rath 5, 7, 9, 11, 13, 15

Maße, Tragfähigkeit, Gewichte und Fertigungsgruppen der Lager

SEGRET

gung der genormten Wälzlager

randen sind für die einzelnen Lagerarten die

Wälzlager werden ohne besonderen Auftrag und können vom Lager, beziehungsweise

dem jeweiligen Auftrag entspricht. Diesedem jeweiligen Auftrag entspricht. Diesemeistens nicht vorrätig und bedingen eine etwas-

werden, die dem jeweiligen Auftrag entspricht, die Fragen in bezug auf Material, Fertigungsund Vorrichtungen geklärt sind. Die Fertigung

som plette Spannhülsen, Abziehhülsen und Gehäuse werden der Firma DKF nicht gefertigt.

Fur jede Lagertype ist in den nachstehenden Tabellen die DIN-Tragzahl C enthalten, das ist die relative Tragfähigkeit bei einer Drehzahl n 33 U min. (f_n - 1) und einer Lebensdauer von L_h = 500 Betriebsstunden (f_L =1). Weiterhin ist die relative Tragfähigkeit C_n für verschiedene Drehzahlen und eine Lebensdauer von

500 Betriebsstunden

angegeben. Für andere Drehzahlen kann die relative Tragfähigkeit C_n bei 500 Betriebsstunden mit Hilfe des Drehzahlfaktors f_n aus der Beziehung C_n $C \cdot f_n$ berechnet werden. Die Tragfähigkeit C_n für eine geforderte andere Lebensdauer L_h wird mit Hilfe des Lebensdauerfaktors f_L aus C_n f_L errechnet.

Mit Hilfe der angegebenen Formeln und Leitern kann für gegebene Betriebsverhältnisse, auch für kombinierte Belastungen, die rechnerische Lebensdauer bzw. die Tragfahigkeit ermittelt werden.

Approved For Release 2002/01/01 F01 R P83-00415R014100130004-6

16 2.0

Approved For Release 2002/01/04 CIA-RDP83-00415R014100130004-6

Ring-Rillenlager ohne Füllnuten

Reihe 160 DIN 625 MeBreihe 00

		Male	in mm		DiN- Tragzahi C	Gewicht kg Stück	Fertigunge- gruppe
	•	D	•	,	in kg	CB.	8 -
AND T	20	43	3	• 5	475	0.030	3
20 F	35	47		0.5	540 850	0.060	3
7000		. 33	•	0.5	850	0 085	j ,
	35	4 z	9	0.3	950	0.110	1 5
10.00		- 68	•	0.5	1020	0.125	1 5 1
- CONTROL -	45	75	10	1	I 620	0.170	3
	22	. He	10	1	1 470	0.180	3
	35	90	I I	I	1 560	0.260	3
	60	95	11	1	I 600	0.280	3
100	65	100	11	1	1 730	8.300	3
	70	IIO	13	1	3 240	0.433	1 3 1
- 15 m	70 75	115	15	1	a 360	0.457	3
	So	125	14	E	2750	0.597	
	85	130	14	1	0850	0.626	1 3
	90	1.40	16	1.5	3 400	0.848	5
100	100	150	16	1.5	3 650	0.910	1 3
	110	170	10	1.5	4 650	1.46	1 5
S	I 20	180	19	1.5	5100	1.80	5
	190	200	22	•	6 3 50	0.69	1 3
	140	010	22	. •	6790	0.86	1 3
The Everydrone	15	223	24	•	7 500	3.58	3
	160	140	28	8.5	\$ 150	4-34	
	170	360	28	2.5	8500	5.77	1 3
	180	280	31	3	10 800	7.60] 3
	190	390	31	3	11800	7.89	1 1
	300	310	34	3	- 13400	10.1	3

Ring-Rillenlager ohne Füllnuten

Reihe 160 DIN 625

wideelle konstante Last in kg
wirktiche Radialtast in kg
wirktiche Azieltast in kg
wirktliche Azieltast in kg
Treggahl nech Din in kg
Beiwert für die Umrechnung
von Umfangalast in Punktlast
Beiwert für die Umrechnung
von Aziellast in Radiallest

von Axellat in Radia iset

- Lebensdauerfahlor

- Lebensdauer in Betriebsslunden

Umdrehungen Minute

Drehsshifaktor

bel C: P = 4 8 16

 $f_n\cdot\underline{C}$

Kenn- ziffer			Re		Tragfäh von 50						er		
	13	30	50	100	150	300	500	1 000	1 300	3 000	3 000	7500	10 000
64	618	490	418	328	290	228	194	133	134	105	89	78	71
0.5	700	556	475	375	330	a 60	223	174	152	120	IOA	19	8 1
06	1 105	275	730	386	518	408	346	274	245	139	160	140	127
07	1810	960	8 20	640	570	445	380	500	262	206	175	153	140
08	2 3 2 5	1 050	900	705	620	490	416	328	282	226	192	162	
09	2 383	1 260	1073	840	745	383	500	592	344	270	236	302	
10	1650	1 510	E 120	873	775	610	520	410	338	282	238	210	
ii	8030	1 610	1 370	1050	950	750	636	300	440	346	294		
12	0080	1 610	1410	1 100	976	770	855	313	450	555	300		
13	0 2 3 0	1 780	1 520	1 195	1 055	\$30	793	336	488	184	326		
14	0910	2300	1970	1 350	1370	1080	913	720	630	496	410		
15	\$ 070	3 430	2080	1 630	1 440	1 130	963	760	663	525	444		
16	1 580	2840	0 420	1 900	1 680	1 520	£ 120	885	775	510			
17	3 700	2940	2500	1970	1740	1 370	1165	920	803	635			
18	4 420	3500	5 000	4540	2 080	1630	1 390	1 100	960	755			
20	4750	3 760	5210	2 5 2 0	2 220	1 750	1 490	1173	1030	\$10			
22	6050	4800	4 100	3 200	2840	2 240	1 900	1 300	1310	1 030			
24	6630	3 250	4 300	3 5 2 0	3 120	2 450	2080	1640	1 440	1 130			
26	\$ 500	6750	5 760	4 520	4000	3 140	2 680	0110	1 \$ 50	1 455			
28	8700	6900	5 900	4 620	4050	5 2 2 0	2740	2160	1 890				
30	9730	7730	6 600	3 170	4 370	3 600	3 060	9 130	3 120				
33	10600	8 400	7 170	3630	4970	3920	3 3 3 0	2 620	2300				
34	12 340		8 560	6 3 60	3 800	4 360	3 8 80	3 060	2680				
36	14040	11120	9 300	7 460	6 5 90	3 180	4 420	3 480	3 040				
38			10400		7 600	5 660	4815	3 800	3 3 9 3				
40	17 420	13 800	11800	9 8 50	\$ 180	6440	3480	4 5 20	3 78 0				

· 7 7 4 8 8 * 9 8 .

Approved For Release 2002/01/04 CIA-RDP83-00415R014100130004-6

Alileniager ohne Füllnuten

Reihe 60 X DIN 625 MaBreihe 10

	Meda	in mm		DIN- Tregant C	Gewicht in Stück	Fertigungs
	0			in log	Cat.	gruppe
=	2	73	1	695	0.069	,
1	- 4	-14	1.5	750 2000	0.010	3 3
	62	14	2.5	2 300	0.155	
7.5	75	15	3.5	1270	0.192	3 3 3
=		,	1.5	1 630	0.245	3
	F 🚆 .	16	2.5	1700	0.261	3
	20 25	18	•	3 200	0.385	3 3 3
46	100	18		3 400	0.435	
427	110	20		3 000	0.602	;
75	115	20 ,	3	3150	0.638	3
\$17 E	125	28 1	2	3 750	0.850	3
34	140	23	2.5	3 900 4 550	0.890 1.16	3 3 3
200	250	24	2.5	4800	1.25	
250	270 280	26	3	6400	2.96	3 3 3
150		22	3	6700	2.43	3
130	320	33	3	E 300	3-70	3
190	325	33 35	3.5	8 650 9 800	3.91 4.80	3
160		38				3
170	340 260 380	42	3-5	21 000 13 000	5.89 7-92	3
120	180	46	3.5	14 600	10.3	1
190	390	46	3.5	15600	10.8	
200 ,	310	51	3.5	17 600	13.9	3

40 ER ER ER ER ER ER ER ER

6 48 65 EX EL

Ring-Rillenlager ohne Füllnuten

ideelle konstante Last in kg wirkliche Radielleet in kg wirkliche Axiellast in kg Tregrahl nech DIN in kg Beiwert für die Umrechnung von Umfangelest in Punktleet Beiwert für die Umrechnung von Axielleet in Rediellest Lebenadauerfaktor Lebenadauer in Steriabsatunden Umdrehungen Minute Drahrehlfaktor

P-x-Pr+y-Ps

Reihe 60X DIN 625

1.3 1.6 3.0

Kenn- ziffer			Re					g für ei. nden bi			er .		
	15	30	50	100	150	300	500	1 000	1 500	3 000	5 000	7 500	10 000
40 X	905	715	610	480	424	334	284	374	196	154	130	115	
05 X	975	772	660	518	456		306	242	212	166	141		104
06 X	1 300	1030	880	690	610			322	282	232	188	114	112
07 X	1 560	1 240	1060	830	732	576	490	386	338	266	226	-	-
03 X	1650	1310	1120	875	775	610	520	410	358	282		198	130
0 9 X	2120	1 680		1125	993	782	665	525	460	362	23 8 306	210	244
19 X	2210	1 750	1500	1 170	1 040	816	695	548	480	-			
11 X	2860	2 260		1 520		1 060	900	710	610	378	320	280	
12 X	2 950	2 350		1 570		1 100	930	735	645	490	414	361	
	1							/33		505	430	376	
13 X	3 1 2 0	2 470		I 660		1 150	980	775	6-6	532	450		
14 X	3 900	3 090		2 070	1830	1 440	1 2 2 4	966	846	666	564		
15 X	4100	3 2 40	2 780	2 180	1920	1510	1 28 5	1015	890	700	592		
16 X	4880	3 860		2 590	2 2 9 0	1 800	1 530	1210	1 060	810	705		
t7 X	5070	4015	3 430	2 690	2 380	1870	1 590	1255	1 100	865	735		
ISX	5910	4690	4000	3 140	2 780	2 180	1860	1 465	1 280	1010	855		
20 X	6240	4950	4 220	3310	2 9 3 0	2 100	1 960	1 545	I 350	1061			
22 X	8 320	6 600	5 630	4415	3 900		2 610	2 060	1800				
24 X	B 700	6 900	3900	4 620	4 08 0		2740	2 160	1890	1410			
26 X	10800	8 550	7 300	5730	5 060	1010	3 380	2 670					
23 X	11220	8910	7 600	5 9 7 0	5270		3 530	2 780	2 340	1840			
30 X	12700	10100	8 630	6760	5980		4 000	3 160	3 760	1920			
32 X	14 100	11 100	9 700	7600	6 700	4 200	4 500	3 540	3 100				
34 X	16770		11 300	8 900	7870		1 280	4 150	3 630				
36 X	19000	15000			8 900		\$960	4 700	4120				
38 X	20 100	16 100	13 700	10 800									
40 X	21900	13 100	13 300	19160	10740	2 300	6 360 7 200	5 020	4 400				

i) Bei Umfangalast für den Innenring: innenring läuft um Leat etehl efüll, oder Innenring steht statt Leat läuft um. h Bei Punktlast für den Innenring: oder Innenring läuft um ... Leat elehl efül, oder Innenring läuft um ... Leat elehl efül,

Approved For Release 2002/01/04 GIA-RDP83-00415R014100130004-6

25X1A

Approved For Release 2002/01/04 PM RDP83-00415R014100130004-6

Ritlenlager ohne Füllnuten

Reihe 62 DIN 625 MaSreihe 02

Reihe	62

Media	a non		DM- Traggahi C in kg	Gewicht lug Stück ca.	Fortigungs- gruppe
	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P 1.5 1.5 0 2 2 3 3 5 3 5 3 5 3 5 3 5 3 5 5 5 5 5 5	980 1 980 1	0.105 0.128 0.129 0.128 0.199 0.218 0.469 0.467 0.467 0.763 0.990 1.07 1.18 1.79 0.15 5.14 6.36 5.15 5.12 8.35 17.5 18.3 0.30 28.0	

- ### - ### - ### - ### - ### - ### - ### - ### - ### - ### - ### - ### - ### - ### - ### - ### - ### - ## ### - ### - ### - ### - ### - ### - ### - ### - ### - ### - ### - ### - ### - ### - ### - ### - ### - ### - ## ### - ### - ### - ### - ### - ### - ### - ### - ### - ### - ### - ### - ### - ### - ### - ### - ### - ### - ## ### -

B 45 45

Ring-Rillenlager ohne Füllnuten

Reihe 62 DIN 625

- Ideelle konetenie Laal in kg
- wirkliche Rediellest in kg
- wirkliche Axiellast in kg
- Tragzehl nech DIN in kg
- Belwert für die Umrechnung
von Umfangslest in Punktesi
- Belwert für die Umrechnung
von Axiellast in Rediellest
- Lebensdeuer in Batriebeslunden
- Umdrehungen, Minute
- Drehzehlfaktor
- Drehzehlfaktor

bei C : P

f_n . C

Kenn- ziffer	Relative Tragfählgkeit Cn in kg für eine Lebenedeuer Lh von 500 Betriebsetunden bei n U'min.												
	15	30	50	100	150	300	500	1 000	E 500	5 000	5 000	7 500	10000
64	1 870	1010	860	675	600	470	400	515	075	220	185	160	147
65	1 350	1 070	915	720	635	500	424	335	293	230	196		
*	1900	1 500	1 28 5	1 007	890	- 700	506	470	412	324	274	241	220
87	0 550	8010	1 725						-				
×	2910	3 300		1350	1 195	940	800	630	553	435	368	314	
÷ i	3 2 5 0	e 575	1970	1 545	1 366	1075	915	721	632	497	421	370	
	3 230	-373	3 300	1 725	1 525	1 200	1 003	805	705	560	4 0	412	
10	3 520	e 780	2 3 80	1860	1650	1 205	1100	870	760	600	510	445	
11	4230	5 3 4 0	2860	2 2 40	1 980	1 160	1 330	1050	915	-10	615	443	
12	5 200	4 120	3 520	3 760	2 440		1 630	1 290	1110	890	750		
13	5720	4 5 3 0	3 8 70	3 040	2680	3110	1 \$00						
iš	6050	4800	4100	5 200				I 420	1240	975	830		
15 l	6 500	5 150	4 400	3 450	3050		1 900	1 500	1510	1 030	875		
	0,00	3 . 3 .	4 400	3 430	3030	2400	8 040	1630	1410	1110	940		
10	7150	5650	4850	3 800	3 3 6 0	2640	3 8 50	I 770	1 550	1210			
17	8 200	6 500	5 5 5 0	4 3 5 0	3840	1020	3 570	2 030	1775	1400			
18	9230	7 300	6250	4 900	4 3 3 0	5 400	2 900	2 280	2 000	15-0			
20	11 700	9 2 7 0	7920	6000	1 100	4 320	3680	2 900	0 540	2 000			
22	14 040	111120	9 500	7 450	6 600	5 200	4410	3 480	3050	2 400			
24	14500	11550	9 700	7 600	6 700	5 300	4 500	5 540	3100	3 440			
26	11600	12400	10 550	8 300	7 320	5 750	4900		-				
28	16770	11100	11 300	8 900	7 870	6 200		3860	3 380	2660			
30	17 800	14 100	12 050	9 450	2350	~ 6 560	5 280 5 600	4 150	3 630				
			-	A 430	- 350	0 300	2 900	4 400	3 1600				
32	19000	15000	12850	00101	8 900	7 000	5 960	4700	4 120				
34	22 100	17500	14950	EI 700	10350	8160	6950	5480	4 800				
36	25 800	18 850	16 100	10 620	11 200	8 800	7 500	5 900	5 1 60				
38	87 000	61 400	18 300	*14350	12 700	10000	# 100°	6 700	1860	-			
40	28 600	22 660	10 110	14 000	13 400	10 160	0 000	7190	6 200				

Approved For Release 2002/01/04 CIA-RP-83-00415R014100130004-618uh mill gleicher Drehzehl um.

Approved For Release 2002/01/04 F CA RDP83-00415R014100130004-6

		in ma		Din- Tregzehl C	Gewicht kg/Stück	Fertigungs-	
4	, D	<u> </u>	r	in kg	ça.	gruppe	
30	53	25	2	1950	0.144		
	62	17	2	1660	0.252	1 1	
9	72	19	2	2 200	0.546	1 :	i
55	80	21	2.5	2 500			ı
40	. 90	23	2.5		0.457	1 1	1
45	100	- 25	2.3	5 1 50	0.633		1
		-		4050	0.835	1	1
101 30	110	27	. 3	4750	1.07		1
1 23	130	28	3 5	5400	1.37	1 :	1
**	130	. 51	3.5	8 100	1.70	1 :	ı
65	140				-		1
76	150	35 55	5 5 5.5	6950	2.08		
79	160	37		7 800	3.53	1	
	1	37	5.5	1 500	5 02	1	
20	170	59	5.5	9300	3.59		
85	180	d1	4	19200	4.25		
90	190	43	4	11000	4.91	1	
700	215					4	ŧ
110	240	47 50	: 1	15700 16600	7.00	2	í
120	. 260	35	: 1	16 600	9.54	2	ı
-	,	22	•	18 900	12.4	2	ı
130	250	58	5	18 60a	18.2	,	i
140	300	62	3 1	30 800	21.8	í	İ
150	320	25	3	22 400	26.2	. i	ĺ
160	340	63		22 800		_	į
170	360	- 78	ś	26 500	20.0	3	i
180	380	75	3	30000	34.5	3	r
	-	73		30000	42.4	5	
190	400	73	6	31 000	48.8		
200	410	80	6	12 000	55.5	3	

27 AV 29 29 C7 47 915 EN 915 BV 97 Q1

Ring-Rillenlager ohne Füllnuten

fL

- ideells konstante Laat in kg wirkliche Redialisat in kg wirkliche Axielleat in kg Tregzehl nech DIN in kg Seiwert für die Umrechnung von Umfangelest in Punktlest Beiwert für die Umrechnung von Axielleat in Radiellast Lebensdeuer in Betriebselunde Umdrehungen, Minute Drahzahlfektor

Kenn	.1			Relative	Tragfäh	gkeit C.	Jn ke i	ür alos	Lehen	deuse			_
z:ffer				Lh	von 600	Betriet	bestund	en bei n	Umin				
	13	30	50	100	150	300	500		1 500		3 900	7300	19 900
84	1630		1 100	865	750	600						7,3-2	10000
95	2 160		1460	1 145	1 010					280	235	205	183
*	2860	2260	1940		1340				467	361	310	2.4	148
67			1		1 340	1 055	900	710	620	490	415	360	339
, a	3 3 7 0	2 6 7 0	2 280	I 800	1 380	1 2 3 0	1060	E40				-	-
88	4100	3 1 30	2780	1 180	1 920	1 310	1 289		733	380	490	430	340
-	5270	4170	3 360	2 800	2 470	1930	1660			700	593	310	
t a	5200	4 900		1	1			1300	1140	900	765	670	
ii	7 000	5 3 3 9	4200	3 280	2 900	2 280	1930	1 3 3 0	E 340	1 033	893		
12	7 900		4750	3 720	3 300	2 600	2200		1530	1200			
	/ ,~~	. 6300	5 360	4 200	3720	2930	2 500	1960	1720	1350	1 015		
13	9 050	7150	6100	4800	4 250				. /	1330	1 150		
14	10200	8 000	6850	3 400		3 3 4 0	2 840	2 340	1 950	I 350	f 300		
15	11 000	B 750	7500	3 860	4750	3 750	3 180		2 200	1730	1 470		
		- / 3 -	/ 300	1 3 800	3 200	4 100	3480	8740	2 400	1880	. 4,,		
16	12 100	9 600	\$ 200	6400	5 6 6 0	4 46 0	·		-				
17	13 230	10 300	9 900	7010	6100	4900	3 800		2 610	2 050			i
18	14300	11300	9700	7600	6 700	5 300	4 1 60		2880	2 1 60			
20						3 300	4 3 0 0	3 340	3100	2 440			i
	17 800	14100	12 000	9 450	8350	6 600	1 600						- 1
22 24	31600	17000	14600	11430	10 100	8 000	6800	7,700	\$ 860	3040			
27	21600	17000	14 600	- 11450	10 100	8 000	6800		4610	3 680			
26	14 100	001 01					0 800	5350	4670				
24	27000	21 400	16 3 30		11300	8 900	7500	6 000	3 2 3 0				
30	19 000	E 3 000		14350	11 700	10 000	8 300	6 700	5 860				1
1	29 000	2 3 000	19700	15300	13700	10730	9150	7200	6300				
32	29 600	23.470	20000	13700				, =	0 3 00				
34	34 300	27 200	13300	18 100	13900	10950	9300	-350	6430				
36	39000	31 000	26 400	20 700	16 200	12.700	10800	\$ 500	7 460				
		-	-0400	20 /00	18 300	14 400	12300	9650	8450				1
	40 000	31 000	47 300	21 400	18 900	14000							
40	41600	33 000	18 200	12100	19 500	14 900	12 *00	10000	8 730				
					19 200	15 400	11100	10 300	9000				

i) Bai Umfengstest für den tonenring: oder Innanring steht still...

Approved For Release 2002/04/94: CIA-RDP83-00415R0 44196130004r6sun mit gleicher Drehtehlum.

Approved For Release 2002/01/04 - CIA-RDP83-00415R014100130004-6

Ring-Rillenlager ohne Füllnuten

Reihe 64 DIN 625 Maßreihe 04

Reihe 64

	MaSe	in mm		DIN- Tragzahi C	Gewicht lug/Stück	Fertigungs-
	D	b		in kg	ca	gruppe
20	72	10		2 600		
25	72 80	21	2.5	2 900	0.400	2
30	90	25	2.5	3 450	e. 530	2
			_	3 430	9.735	2
35	100	25	2.5	4 300	0.952	
	110	27	3 5	5000	1.23	1 2
45	120	29	5	6000	1.55	
50	850	31	3.5	6700	1.98	1 -
15	140	33	3 3	7 800	2.29	2
JR. 60	150	55	5.5	8500	2.77	
65					//	2 .
	150	57	5.5	9500	5.30	2
70		42	4	11800	4.83	2
75	190	45	4	12 700	5.72	1 2
ISS So	200	48		15 700		1
17 45	210	52	- 7	14 300	6.76	2
3 90	325	54	í	15 500	7.95 01.4	3

Post -		,,				50					200	300	400	504	· **
	++++	41	4	ہىلىر	щ	بلنها	4	لتلينا	44	بلنب	بيليب	سابيا	يتثلينا	ıШ	
-	U	¥	ø	;		ė	اء		17	` ar	•	1, '		丁	14
				200		-	_	-						7.	3
	عيلنا	٠.,	111	بلب		ũ,	ш	ايآن	لبليا	التيار التيار	1	2000	پورور اینی		1
		۳	44	41.	41	Τ,	എ	بآب	لبلب	بآبله	444	<u>////</u>	س لببل	۳	4

Ring-Rillenlager ohne Füllnuten

Reihe 64 DIN 625

... er apital de la

ideelle konelente Last in kg wirkliche Rediellest in kg wirkliche Aziellest in kg Tregtahl nach DIN in kg Beiwert für die Umrechnung von Umfengslest in Punktfest Beiwert für die Umrechnung von Axiellest in Radiellest Lebenedauerfaktor Lebenedauer in Betriebsstunde

Lebensdeuer in Betriebsstunden Umdrehungen Minute Orehzehlfaktor

bei C: P iety | 1.3 16 20

 $f_L \equiv \begin{array}{c} f_n \underline{\cdot} C \\ \end{array}$

Kenn-	ł		Releti	ve Tregf. h von 5	ähigkeit 00 Betr	C, in i	ig für i nden s	ere Le	bensd I m.a	5 u 0 ?		
	15	30	50	100	150	300	500	1000	1500	1 000	. 000	7 50
04	3 380	2680										<u> </u>
04 95 06	3 780		2 290	1 800	1 590	1250	1050	836	*35	5-5	440	430
ñá		3 000	2550	2 000	1770	1390	1 180	935	815	649	545	480
	4500	3550	5 040	2 380	2100	1655	1410	E 110	9.0	765	650	5*0
97	5 600	4430	3 780			_					4,50	, .
8 8	6500	\$ 150		2 970	2 620	2 060	I ~63	1 185	1210	955	\$10	-10
09	7800	6180	4 400	3 450	3050	2 400	2 040	600	I 400	1100	940	
•	, 500	0180	5 280	4 1 40	3 6 60	2 880	3450	1930	1 640	1330	: 110	
10	8 700	6 900	5900	4 620								
11	10130	8 040	6 8 6 0		4100	3 7 2 0	3 -40	2 160	1800	1 400	1 250	
12	11 000	8 750		\$ 400	4 760	5 740	3180	2 510	2200	1 730	I 410	
		0 / 30	7 500	5 860	5 180	4 083	54"0	2740	2400	1 800	1 600	
t3	12100	9600	8 200	6400	5 6 6 0							
14	15 300	12150	10 400	B 150		4 460	3 8 30	3 000	2620	2 563		
15	165C0	13100	11200		7 200	5 6 60	4 820	3 800	3 3 2 0	2620		
	3-0	- 3 - 00		8 760	7750	6100	5 2 0 0	4100	3580	2820		
16	17800	14 100	12 100	9 4 60	8 360	6 580						
17	18 600	14700	12 600	9870	8 720	6860	5 600	4400	3860	3040		
18	19 900	15800	13 500	10600			5 850	4 500	4 0 3 0	3180		
ì		-, -, -, -,	- 3 300	10 300	9340	7350	6 2 50	4930	4 300	3 400		

7) Bel Umfengelast für den Innenring: Innenring läuft um Leet steht etill, Leet läuft um, Pel Punktlest für den Innenring effekt etill. Leet läuft um, Leet

Approved For Release 2002/01/04 GIA-RDP83-00415R014100130004-6

Ring-Schräglager selbsthaltend einreihig Reihe 72 DIN 628 chte Reibe MaBreihe 02

Ring-Schräglager selbsthaltend einreihig

Reihe 72 DIN 628

1.2 1.5 1.5

*# MT

12 Company of the Com

5850 6550 7100

1 23 1.50 1-8"

20 10 15

7300 16 11

1212 12 14

7215 16 17

120

130 140 150

		- 0	N			
	laße in m	NATA P	F ₃	DIN- Tragzahl C in kg	Gewichl kg Stück ca.	Ferligung gruppe
•	•	1	0,	375	0 031	,
•	10	ı	0.5	545	0.045	1 5
,	. 11	. 1	05	6io	0 048	1 5
	12	1.5	0.8	765		_
,	14	1.5	0.8	1040	0 070	1
ŧ	15	1.5	0.8	116c	0 1 1 3	1
		-	_		0 135	1 '
	16	15	0.8	1630	0.208	
	27	2	1	3160	0 295) i
	18	2	3	2 600]	0.382	l i
	10	2	1	2900		1
	30	ā	i	3050	0 430	
	31	- 2,5	12	3800	0.485	, ,
			• •	3.00	0 635	1
	22	25	12	4550	0 \$ 20	1 .
	23	2 5	12	£100	101	1 1
	24	2 5	12	5 600	1.12	1 1
	26					

idecile konstanle Lesi in kg wirkliche Rad elleat in kg wirkliche Axielleat in kg Tregzehl nech DIN in kg Beiwert für die Umrechnung von Umfengelest in Punklicit Beiwert für die Umrechnung von Axielleat in Radiellast Lebenedeuerfektor

Lebenedeuerfektor
Lebensdeuer in Betriebsstunden
Umdrehungen Minute
Drehzehlfaktor

P > Pr , . . .

 $x\cdot P_r+y\cdot P_a$

 $f_n\in C$

Kens. z ffer			R	e'stive Lh	Tregfă von 5	higkeit 00 Bel	C. in	kg fúr unden i	eine Le Dein U	ibersda I m.n.	ue-		
	15	10	*0	100	150	100	150	1 000		1 000	1000	* 105	1500
00	486	386	330	258	228	180	153	120	106	33			
10	-00	556	4"5	372	330	260	220	174			70	62	56
02	806	604	546	428	374	198	253	200	152 1~5	130	102	102	\$ 1 9 1
03	995	788	6.4	528	456	368	112	245		_			
04	1 150	10-0	915	-20	635	500			316	170	144	116	115
05	1 510	1195	1020	850	708		425	335	293	231	146	172	146
				800	.04	556	475	3*4	32%	258	218	192	174
06	2120	1680	1435	1 125	995	782	065	525	460				
07	2800	2 220	1 900	1 490	1 320	1040	852	695	610	362	106	268	2 4 4
98	3 380	2610	2280	1850	1580	1 250	1:60	840		480	406	356	
!					-		1.00	840	735	586	490	430	
09	3 -80	3 000	3 440	2 000	10	1 390	2181	935	212	645	545	48	
10	3 960	3 1 4 0	2 630	2 100	1860	1464	1244	980	860	67*		••	
ti	4940	392C	3 340	2620	2120	1820	1 452	1 2 20	10-0	844	*15		
12	5 910	4690	4 600	3 140	2 *80	2 185	1 56.	1454					
13	6630	5 2 5 0	4 500	1420	3120	2440	2 8	1645	21:	0101	8		
14	- 280	60	4910	3 3 6 c	1420	26,0	228:	1800	144	1110	+60		
		-			,	20,0	440-	1400	1 (85	1240	1.045		
15	7500	6025	\$ 150	4040	35-0	2810	2 390	1885	1610	1100			
16	3555	6-40	5 6C	4 520	4000	3 140	2 68	3110	1810	1 455			
17	9350	7410	6340	446:	4400	3460	2 -45	3 120	2 10	1600			
19	11 000	8 755	7500	₹260	5200	4100	3.485						
20	3 250 1		9000	4010	0 200	4 900		2 746	2 400	1 882			
	1 5 8 6 5 I			1 4 2 2	1450	5860	4160 50.0	3 280	2 8 5 0 3 4 4 0	2 2 MG 2 * LC			

Last staht et.ll.

Approved For Release 2002/07/04 C/A-RDP83-00415R014100130004-6

Ring-Schräglager salbsthaltend einreihig Reihe 73 DIN 628 MaBreihe 03

Ring-Schräglager selbsthaltend einreihig

Reihe 73 DIN 6

Kury-		N	taða in s			DIN- Trestant C	Gewicht kg Stück	Fartigungs.
	4	٥	ь	•	P,	In kg	Ca.	274994
7000	10	35	71	. 1	0.2	693	0.035	-
=	12	37	22	. 1.3	0.8	850	0.065	1 :
-	15	43	23	1.3	0.2	919	0.090	1
7	17	47 52 62	24	1.5	0.5	1180	0.120	
=	20	52	, 13	2	1	1 370	0.150	1 1
•	23	62	17	. 2		1960	0.245	1 1
- 100							-	1 '
7	36 35	71 80	29	3 (1	3 500	0.362	1 1
ä	1 22			1.3	1.4	5000	0.475	l i
	1	-	23	4.3	1-2	3 3 50	0.257	l i
7790	45	100	35	2.5	1.2	4610		l -
-	, ye	110	27		1.5	3400	0.875	, ,
11	350 55	220	29	1	1.3	£ 200	1.14	į t
-	1			1 -	•••		1-45	2
100 H	60	130	31	3-5	2	6950	1.81	
	65	140	33	3.5	2	7 800	3.32	:
	70	150	85	3-5	2	\$ \$00	2.70	2 2
70(5 16 17	74	166	57	3-3	_			-
10	75	170	2/		3	9 6 50	3-15	2
17	l)	180	39	3.5	:	19 600	3 85	2 2 2
	_	1	4.	•	- 2	11 600	4-53	2
7700	90	190	43	4		12700		
.	106	315	47	á	- 1	11600	5.30	2
=	210	- 646	50	ā		19 000	7.55	2 2
						.,	20 1	2

Р	idae e konstante Lazt in sg						
ρ,	wirk iche Rad affezt in ke			_	P, - y		
P.	wirkliche Axizilast in ag	r		-	r, - y	۲,	
c c	Traggahi nach DIN in kg						
_	Dament for daily		-				

Fragzahl nach Dilk in sg Baiwert Ger die Umrachung von Umfengs'est in Punataat Baiwart Ger die Umrachung von Ax affast in Bad affast Labensdauer faktor Labensdauer in Batr absslunden Umdrehungen Minuta Orehzehlfaktor

٥, د 0.7

> f. C fL

Kenn- ziffer					a Tragf h von 5						1.61		
	15	30	50	100	150	300	500	1 000	1 500	3 000	5 000	* *50	10 000
86	905	715	613	480	414	334	254	324	196	154	137	115	::4
01	1 105	875	-50	586		408	346	2-4	347	16.	4.5	145	. :2*
62	1190	940	8 05			44:	374	295	358	2:3	1 - 2	151	
83	1 330	1215	1 240	E 1 5	-20	166	482	110	332	251			
•	1780	1410				658	160		136	304	113	114	:
05	2550	2019	1 725			940	100	633	553	435	345	215	125
		-	•			94-	•••	0,0	253	4)3	3-3	224	2+4
*	3 2 50	2575				1 200	1020	805	706	***	470	413	
87	3 900	3090	2640			1 440	1 224	955	845	× 4	154	4.4	
66	4620	3 660	3125	2450	2:65	1705	1440	1145	1 300	***	662	***	
09	6030	4 800	4100	3 200	2840	2 3 4 2	1000	1 400	1 310	1612	8-4	-	
10	7 000	1 160				2 500	2233		1 5 2 0	1230	1620		
11	8 060	£ 380	5 460		3 5.	2,80	2 5 3 2	2 . 50	1 50	11.5	1265		
13	9010	* 150	6 100	4100	4250	3 342	2845	3 340	1950	1440			
	10 200	\$ 000	6850			3 *50		2 400	1100		1 300		
	11430	9 050	40	6000	5 3 5 0	4225		2832	3450	1 732			
15	12520	0.010	8 490	6 6 6 5	5 8 8 3	4610		-					
	13 780		9330			5100	3 940	3 100	3 - 3 0	2 2 4 0			
	15 100					5 562	4330	3 410	1940	2 7 5 2			
							• 35	9.40	3 4 - 2	2 5 5 3			
15	15 500	13100	11300	8 3	50			4090	3 5 8 5	1810			
30	203001	66 100	13.00	10800	9510	* 500	£360	5 020	4.425	3 4 50			
22	24 700 1	9 600	16 200	13 200	11 600	9:30	**55	6130	5 352				

					Tragzani C	kg Stück	Ferligunge- gruppe
	10	0	ь .	r	in kg	CA.	
QA M	10	30	•		430	0.04	3
12 15	1 13	31	I O		465	0.05	
15	2.5	35	28	1	340	0.06	1 -
Q A 17	177	40	12	1.8	735	0.08	١,
39	20	47	14	1.5	Z LAG	0.13	1 :
=	25	84	15	1.8	1 270	0.16	1 ;
QA #	1 10	62	16	1.5	1560	0.24	,
35	35	74	57		1900	0.35	1 ;
44	40	\$q	18	ā	2280	0.44	1 :
QA 45	45	85		2	2350		
	36	90	20	•	2450	0.51	
26	35	199	21	2.5	3130	0.58	!!
QA 40	po po	110					
** ==	65	120	23	3.8	4000	0.97	1
45 79	70	115		2.5	4550	1.2	t
	1	-	24	2.5	4750	1.3	1
Q A 75	75	130	25	2.5	5000	3.65	1
	80	140	46	3	3850	r.R	:
85	85	150	28	3	6350	2.2	i
QA 🚥	90	r 60	30	3	7350	2.7	
100	100	180	34	3 5	9500	39	:
110	810	200	38	3 3	11800	3.9	2
Q A 120	120	215	40	3-5	12 500	6.8	
136	130	230	40	4	12 900	7.7	2
140	140	250	42	4	14 600	9.7	
Q A 150	750	210	43	4	16600	12.2	_
166	160	290	48	7	18 600	15.0	. 3

Größers Lager auf Anfrege. Die Lager haben gefailten A.Benring

Ring-Schräglager zweiseitig wirkend einreihig

x Pr . y P.

- idactie konstante Last in kg wirkliche Rediellast in kg wirkliche Acielest in kg Tregzahl nach DIN in kg Beinert für die Umrechnung von Umfangelast in Punktiest Beinert für die Umrechnung von Axallest in Rediellast
- Lebensdeuerfeklor
 Lebensdeuer in Beiriebsstunden
 Lebensdeuer in Beiriebsstunden
 Umdrehungen Minute
 Drehzehlfaktor

Lugar boh-			F		Tragfa.								
thus	15	30	50	100	150	100	\$00	1 000	1 500	3 500	5 000	- 500	10000
10	559	445	3.8	196	252	146	125	128	121	95	81	-1	64
12	604	478	408	321	284	221	140	140	111	151	k **		-6
15	700	556	475	373	330	160	120	1-4	152	110	103	8.	81
17	955	757	647	507	448	353	100	216	247	167	118	121	110
20	1 433	1152	985	***3	684	578	458	361	315	249	210	18.5	168
25	1650	1310	1120	8-5		610	520	410	358	2 % 2	238	\$10	190
30	#010	1610	2 1*0	1080	950	750	535	100	440	346	294	354	274
33	2 470	1950	16.0	1310	1160	910		012	* 16	412	1157	314	• • •
40	2 960	8350	3 000	15"0	1390	1100	930	~35	045	505	430	1.6	
45	3070	2430	2 080	1 630	1 440	1 130	963	~60	665	525	444	3 g C	
50	3180	# 520	# 160	1690	1 495	1 1	1 000	100	640	144	400	/ ***	
55	4100	3 2 40	3 ***	2 150	1 920	1 510	1 185	1015	840	-00	4.2		
60	5 100	4120	3 5 20	2 - 50	2 440	1 970	1 610	1200	1110	840	***		
63	3910	4540	4000	3140	2 -80	2 180	1860	1465	1 285	1010	211		
70	6100	4910	4200	3 280	2 900	2 280	1930	1 5 10	1340	1055	8.1		
75	5 500	5150	4400	3 450	1050	2.400	2040	1620	1410	1110			
90	7600	6025	5150	4040	350	1 200	2 100	1883	1640	1 320			
85	8 500	6750	5 60	4520	4 000	3 140	2680	2110	1850	1455			
90	9550	7.60	6470	5000	4 480	3 5 3 0	1000	2 160	20.0	1612			
100	22 340	4780	8 3 6 0	6 5 60	\$ 840	4 500	3 880	1060	2080	1110			
110	13 340	12150	10400	8 150	- 200	\$ 660	4 515	1800	3 1 2 5	2613			
120	16250	12 180	11000	8640	-610	6000	5 110	4010	3416	2 **2			
139			11100	8000	- 8-0	6 20C	\$ 250	4150	301				
140	18 500	14 400	12300	9663	X 110	6-20	5 "10	4,500	304				
150	21 600	17000	1.1600	11450	10 100	8 000	6800	5352	4607				
160					11 300		70.0	6.00	125				

이 Bei Umfangslast für den Johenring : cour Incenting steht 하

200

Last archt at - ; La 1 suftm 1 g e chen Dienzahrum

£

SLOWET

25X1A Approved For Release 2002/01/04: CIA RDP83-00415R014100130004

Mittelschwere Reihe einreihig MaBreihe 03 Reine QB

Ring-Schräglager zweiseitig wirkend Reihe QB DIN 628

Kurz-		₩e5e	• •• mm		D-N- Tragger: C	Gewich) kg Stück	Ferligungs-
	<u> •</u>	٥	<u> </u>		in kg	Co.	[ruppe
QB 10	10	55	11	-	695	9 07	
12	12	37	12	1.5	350	0 0 8	2
15	1 15	43	15	1.5	915	9 -10	2 2
Q B 17	17					U -10	1 -
	30	47	14	1.5	1080	0.14	1 2
_ =		52	15	3	1270	0.18	2
	25	62	17	2	1560	0.17	1
QB m	j 30	72	20	2	3200	0 41	J
	55	80	21	2 5	2750		1 !
-	40	9-2	25	3.5	3200	c. 56	1
Q B 45		-	-		,	C. 77	,
Q B 45	45	100	25	2.5	3900	1.00	1 1
86	30	110	27	3	4500	1.34	1 ;
	55	130	20	5	5300	1.70	1 i
Q B -	50	130	51	55	6100		
- 5	65	140	33	- 33	6 800	8 10	1 1
70	70	150	33	- 33	7 800	2 60	1
		-		''	7400	3-10	1 1
Q B 75	75	160	57	3.5	\$ 200	3.80	,
2	80	170	50	5.5	9,000	4.50	2
-	85	I Bo	41	4	10 000	9.50	1 1
QB w	80	100					
100	100	315	43	1	11 000	6 30	2
110	110	240	50		13 "00	9.10	2
			30	4	16300	12 20	2
Q B 130	130	360	55	4	18 600	10.00	
130	130	382	58	5	36 000	15.70 19 30	2
140	140	300	62	5	33 400	23 50	3
0 8 130						1	
4 - 130	150	320	65	5	25000	38 10	2

Ring-Schräglager zweiseitig wirkend einreihig

- ideo e konstante Last in vg idae e konstante Last in vg in reiche Rada i Isal in vg in reiche Azie ast in vg in reiche Azie ast in vg in reiche Azie ast in vg in reicht ach Die vert für die Umrechnung von Umfangs ast in Punktast Bei wert für die Umrechnung von Aziellsein Rada fast Lebensdauerfeiter. Lebensdauerfeiter umdrehungen Minute Onenzenfastor.

 	ν .	
5 \$		

f fa C

Lager boh			٥				C. n r				•-		
rung	15	30	50	150	150	310	500			3 220	5 240	* ::::	10 00
10	95	719	610	43:	424	334	274	274	195	114	110		
12	1 129								240		150	115	:2-
15	1 190								258	211	172	151	13*
17	1 454	1111	950	745	16:	125	441	345	325	310	213	1-4	:52
20	1640	1 310							258	812	2 . 1	210	190
25	2030	1610							447	344	274	354	274
.30	2 7 60	2 2 6 0	1915	1 520	1340	1050	966	-12	620	491	474	112	
35	.358:	3 840	2 4 2 2							111	310	4 5 4	
40	4160	3366						:032	925	*::	600	111	
45	5070	4015	3 43 2	2 690	2350	18*0	1590	1355	1 100		*35		
30	5850	4630							1272	1126	945		
55	6,000	5 4 50					3160		14,5	11-5			
60	7 900	6 350	5 360	4 2 00	3 - 20	2915	2 577	1.50		: 112	1742		
6.5	\$ \$ ¢o	7000	6000	4 *00			2 * 50	2:00	1 -27	1110			
78	10200	1 000	6850			3 - 50	3180		3 200	1 - 1 -			
75	16 \$00	2 55¢	7 100	5-30	5:50	1980	33**	24-5	2 740	1 841			
80		9270		6 200	5 500			2 200	2 542	2000			
85	13000	10360	1150	5 900	6100	4800	4:85		3 827	2 2 2 2			
90	14 300	11320	9 -00	- 600	6 750	5 300	4400	3 440	3 1 1 2	3 440			
100	17800	14100	12 055	9450	8 352	6 : 60		4 400	115.	3:41			
110	2:200	16800	14350	11250	9950	* \$ 25	6650		4650				
120	24 200	19100	16350	12 400	11106	800	1600	6000	4241				
130	26000	20 600	1-600	13 800	12 202	4 60¢	F 160	6 44C	1645				•
140	29000	23 000	1,765	15565	13 -00	10.50	9115	-10c	6352				
150	32 500	25 * 60	32500	10215	16260	13 000	10.010	1545	4050				

Approved For Release 2002/01/04 CIA-RDP83-00415R014100130004-6

Approved For Release 2002/01/04 CHA-RDP63-00415R014100130004-6

Ring-Pendellager zweireihig Reihen 12,12..K DIN 630

MaBreine 02

Ring-Pendellager zweireinig

Kurz- zeithen 12 : 12 .K		١.		in man		DIN- Tragzani C	Gawicht kg Stück	Fartiguege-			
	. 12 . K	-	<u> </u>	ь		in tig	Ca.	12	12		
뿟	MAN K	25	52	75	2.5	1020	0.145	1			
=	. #K	30	62	76	1.5	1 400	0.145	, ,	i 1		
-	87 K	35	73	17			O. 32 B		1 1		
	1285 K			-	-	1 530	O 334	1	1		
-	- 3 K	40	lo.	12		1930	0.414	1.			
3		45	35	19		3160	0.480				
-	30 K	50	90	30	2	2 320		, ,	4 I		
251	1271 K						0.550	1	; I		
32	12 6	55	100	31	2.5	3 \$00	0.720	١.			
13	i3R	60	610	33	3.5	3 200	0.930	1 :			
-	***	45	(30	23	35	3 450	1.17				
254	1254 K				-	1	1.17	, ,	ı		
15	15 6	70	125	24	3.5	32∞	1.31		× .		
15	MÈ	75 80	1 30	25	2.5	4250	2.38	l :	. 1		
		•	140	2.5	3 1	4 500	1.70	1 .	. 1		
227	1217 K	25	150	28		i i	•/•	1	ı		
36	18 K	90	150		3	5400	3.14		_		
3	20 6	180	180	30	3	6066	2.58		- 2		
			. 20	34	3.5	7350	3.83		2		
₩.	1322 X	110	300	32	1			4	2		
_					3.5	9300	5-35	2	_		

The state of the s	7% Max day sax may
The state of the s	<i>(704 100 au</i>)
M	````\

P C.	dee's konstants Lest in kg with one Redie est in kg		Láger	-
P.	wireliche Axialtest in lig Tregzehl nech DIN in lig	P Pray Pa	1 265	2 *5
,	Beinert für die Umrechnung	,	1206 5-1 120*	3.15
	von Axia fest in Red a lest. Lebersdeuerfektor		1201 5 8 1209	2.5
	Letansdeuer in Betriebestungen	1, 1n - C	1210 0-5 1212	4 5
	Umdrehungen Miriuta Drehtun/favhor	- Р	1213 5 6 7 222	45

Kenr. z Mer		Reisting Tregfinigkeit C. In sig für eins Lebsrisdeller En von 500 Batriebsstunden bei in Ulmin													
	15	30	50	100	1 40	300	500		1 500		5 500	* 550	11.004		
05 66 67	1 325	1050	900	705	620	490	416	328	211						
96	1 120	1440	1233	956	855	6-1	5-2			225	9.2	168	153		
47	1995	1580	1352	1060	934	-35	625	4:5	375	3:5	2:3	23:	2:9		
•	I				,,,	23	043	493	430	340	2 2 5	252	23;		
O's	2510		1.00	1 3 3 3	1180	925	*90	611	545						
99	2 800		1 300	1495	1330	1011	115	646	6:5	425	363	3:8			
10	3 020	2 390	2040	1600	1415	1110	950	48		410	405	3:6			
11	1				- 4.,		450	4.	693	\$15	435	3 2 3			
12		2 #8:	2450	1930	1.10	1 140	1140	422	-91	625					
	4160		1812	2 2 1 5	1950	1 547	1310	1039	900		5 4 5				
13	4 500	3 550	3 5 4 5	2 3 9 0	2100	1655	1410	1110	9"3	7:0	600				
14									A-7	*55	655				
15	4943	3920	3 3 4 0	2625	2 320	1 825	1550	1220	16*5	844	-:5				
16	5 500	4375	3 -50	2 933	2390	2 0 4 0	1 135	1310	1200		100				
10	5 8 50	4630	3 9 60	3 100	2 * 5 5	2:65	1840	1 450	12-0	1 30.5					
17	7000							,.		. 300	845				
15	7800		4 - 50	3 - 3 5	3 300	2600	2 200	1 -82	1 530	12::					
20	9550		5 2 5 7	4145	3 650	2 110	2450	1915	16.0	1110					
	9350	7 565	64-5	5000	4 480	3 5 3 C	3 000	a 350	25.0	1610					
22	12 100	9 5 52	# rns	6400	5 650	4450	3 800			2051					

Approved For Release 2002/01/04 : CIA=RDP89-00415R014100130004-6

25X1A Approved For Release 2002/01/04 : CIA-RDP83-00415R014100130004-6

Ring-Pendellager zwerreihig Mittelschwere Reihe schmal

Reihen 13, 13...K DIN 630 Maßreihe 03

Kurzzeichen			Me\$e	o mm		DIN- Tragzahi C	Gewicht kg Stück	Fartigungs- grupps		
13	13K	4	D	•	٠	an feg	04.	12	13K	
1995	1396 K	25	62	17	2	2 500	0.268	, I		
-	66 氏	50	72	19	2	1160	0.398	1 7	- 7	
67	67 K	35	lo.	32	2.5	2280	0.513	i	1	
1300	1306 K	40	90	23	2.5	2:50	0.730		1	
7	40 氏	45	100	35	2.5	3450	0.983	1		
16	ЮK	50	210	27	3	3900	1 25	1	E	
1371	1311 K	55	120	29	5	4750	1.62		1	
12	12 K	60	130	31	35	5500	3.00	1	I	
13	13 K	45	340	35	3 5	3850	2.5C	2	2	
1314	1314 K	70	1 50	55	5.5	6950	5.05	2	2	
15	15 K	75	160	37	3.5	7350	5.65	1 2	2	
14	16 K	80	170	39	3.5	\$150	4.36	2	3	
1317	1317 K	85	180	41	4	9150	5.19	,	2	
14.	18 K *	40	190	43	4	10 400	5.95	,	3	
78"	26 K*	100	315	47	4	12500	8.70	1 2	2	
1322*	1332 K*	110	240	50	4	15300	11.3		2	

Reihe 13

Bei diesen Lagern stehen die Kugeln über die Lagerbreite von. Das Meß über Kuge'n ist 46, 64 und 55,6 mm.

Ring-Pendellager zweireihig

- ee ei konstante Laatiin kg in ziche Radie est in kg inz iche Azia last in kg. Tregram inschied nach in kg. Tregram inschied eine Azia last die Westerung von Axia last nach albeitenschlauerfaktor. Die beitenschlauer in Betrietsstunden Undfehungen Minute. Die haat faktor.

Lager	,
1305	3-75
1306 6 9 1309	3.0
1310 848 1313	3 25
1314 5-8 1321	3.5

***		Relative Tragfån gredt Culin ing für eine Lebensdauen En von 500 Betriebsstunden de in Ulimin												
2 **+*	1.5	30	50	100	150	300	500	1 000	1500	3 000	1000	- 500	15 000	
65	1950	1 545	1 320	1035	915	-30	6:2	413	423	333	252	34"	225	
116	2425	1915	1640	1285	E 135	893	-60	60¢	525	413	355	35"	282	
07	2 450	2 350	2 000	15-0	1 390	1 100	430	735	645	303	435	3-5		
0.	3580	2840	2 430	1 900	1680	1330	1120	885	-15	615	516	454		
04	4500	3 5 5 0	3 045	3 3 3 3	2 100	1655	1410	1110	970	-65	ē 50	ما " و		
10	\$0-5	4015	3 43 -	2 6 yo		r Bro	15,0	1 255	1 100	865	-35			
11	6300	4 900	4 250	3 2 5 5	2900	2 180	1930	1 530	1 340	1:55	845			
12	1 -150	5650	4850	3 800	3 360	2 640		1	1 550	1 220	1636			
13	7600	6015	\$ 150	4 546	3 370	2 850	2400	1880	1650	1 300	1120			
11	9050	- 150	6 100	4800	4250	3 340	2840	2240	1950	1552	1370			
15	9450	- 560	6470	50.0	4450	3 5 3 0	3000	2 360	3 0 *2	: 630				
16	10650	8 400	7170	5610	49-0	3 410	3330	3 620	2 300	1 1 10				
17	111000	9.450	8 5 4 9	6110	5 580	4400	3-40	2940	3 5 8 3	2230				
15	13500	10 -00	9150	7180	6310	5 000	4250	3330	2 930	2310				
20		13880	11000	8640	*610	6000	5110	4 620	3 5 20	2 - 5 :				
22	10000	15 \$00	13 500	10 600	9 340	* 350	6150	4930	4 300	1450				

25X1A Approved For Release 2002/01/04 FCIA PDP83-00415R014100130004-6

Ring-Pendellager zweireihig Reihen 22, 22.. K DIN 630 Leichte Reihe breit Maßreihe 22

Kurs	nichen		MaSe	in mm		DIN- Tragzali C	Gewicht kg Stück	Fertigungs- gruppe		
98	92.K	6	D	ь	r	in kg	ca.	22	22K	
	2005 X	25	30	18	T. S	1060	0.173	٦,	3	
. 77	66 K	30	62	20	1.5	1370	0.251	3	3	
	₩ K	38	72	23	3	1930	0-433	3	3	
	6000 K	40	10	23	2	2 120	0.335	3	3	
	60 K	45	15	23		2 330	0.118	1 3	3	
-	神能	90	1 90	73	3	3400	0.626	3	3	
	201 K	55	100	23	2.3	3750	9.850	,	3	
	12 K	55	110	23	3.5	3 450	1.16	l i	3	
- 18	iā K	65	120	31	2.5	4 300	I. 53	i	ž	
1004	MILE K	79	123	31	23	4500	1.62	3	3	
36	18 K		130	31	3.5	4750	1.69	1 3	3	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	接席	78	140	33	3	1 200	3.13	3	3	
-	2217 K	85	150	36	3	6100	2.68	3	3	
	16 %	90	160	40	3	7 100	3.40	li	3	
- 3	39 K	100	114	.6	3.5	9 500	4.98	š	ž	
-	100 K	219	200	33	3-3	11 600	7.10	1,	3	

Ring-Pendellager zweireihig

Reihen 22, 22..K DIN 630

	-remie konstante Last in kg	
,	a ratione Radiallast in kg	
4	a rkliche Axiallast in kg	
	Traggabl each DIN in kg	P Pr-y P
	Beiwert für die Umrechnung	
	von Axialfast in Rad alfast	
	Lebensdauerfaktor	, f _n ⋅ C
-	Lebensdauer in Betriebzstunden	f fa · C
	Umdrehungen Minute	•
	Drehzahlfaktor	

Lagor	7
2 205 bie 2 207	3.0
1 208 bis 1 209	8-3
2210 bis 2213	8.75
2314 bis 2323	30

Kenn- ziffer	Relativa Tragfähigkeil C., in kg für eine Lebensdeuer L _h von 500 Betriebsstunden bei n U min.													
	15	30	50	100	150	300	500	1 000	1 500	3 000	5 000	7 500	10 000	
0.5	1 380	1 090	934	732	646	510	: 433	342	300	235	200	175	159	
96	1730	1410	1210	946	836	658	360	440	386	304	258	116	206	
06 07	2510	1 990	001	1 330	1 180	926	790	биц	543	438	363	313		
06 09	2 760	3 180	1865	1 464	1 294	1020	866	681	597	470	395	150		
09	3020	2390		1600	1415	1110	950	748	695	315	436	383		
10	3 1 2 0	2470		t 660	1 465	1150	980	775	676	532	450	3-3		
11	3 580	2840	3 430	1900	1680	1 120	1120	885	775	610	516			
12	4500	3 5 5 0		2 180	2 100	1655	1410	1110	970	765	650			
13	\$ 600	4 430		2970	2 620	2060	1760	1 385	1210	955	810			
14	5 8 50	4639	1 060	3 100	2-10	2 160	1840	1 450	1 2 7 0	1 000	845			
15	6200	4900		1280	3 900	2 3 5 0	1930	1 530	1340	1 055	,			
16	6750	\$ 350		3 580	3170	2 500	2110	1 670	1465	1 150				
17	7990	6 300	1160	4 100	3 7 3 0	2 930	2500	1 960	1 720	1 350				
18	9230	7 100		4900	4 3 3 0	3 400	1900	2 280	3 000	1 570				
20	12340	9 780		6 560	5 800	4 560	3880	3 060	2680	2110				
22	15 100	11950	10 200	8 000	7 080	5 560	4730	3 740	3 2 7 0	2 580				

Approved For Release 2002/01/04 GIA-RDP83-00415R014100130004-6

Ring-Pendellager zweirelhig Reihen 23,23. K DIN 630

MaBreihe 23

Ring-Pendellager zweireihig

Reihen 23, 23..K DiN 630

Reihe 23..K

dec a korstante Last in kg wirkliche Rad alest in kg wirkliche Aziatest in kg Tragzahl nach DIN in kg Beiwert für die Umrachnung von Aviallest in Rad alest Lebensdauerfaktor Lebensdauer in Betriebstunden Umdrahungen Minute Dranza faktor

LAZPT 2 Are bis 2 414

Mare	neichen		Male	ie mm		DIN- Tragzahl C	Gewicht kg Stück		gurgs- ubbe
20	28.K	•	D	b	•	in kg	CA.	23	23 K
100	SEE K	25	62	24	2	1 M60	0.143	٦	,
	S K	3Ö	72	27		3450	0.545	4	- 3
-	御業	35	84	31	2-5	3050	0.738	4	
100	9800 X	40	90	33	2.5	3600	1.01	3	1
	** ***	45	100	36	2.5	4300	1.34	3	2
	10 K	50	110	40	3	5100	1.21	3	2
	2011 K	35 60	130	43	3	6200	2.2~	3	4
TÌ.	32 K	60	130	46	3-5	5800	2.84	3	-
13	13 K	65	140	48	3-5	7350	3.48		:
13 13	18014 K	70	150	21	3-5	8300	4.23	2	7
33	13 K	75	160	55	3.5	9300	5.13	4	,
*	36 K	80	170	55 58	3.5	10300	6.10	4	
997	1017 K	85	riio	60	4	10 900	7.05		
- 29	10 K	gaC .	190	64	i	11160	8.44	3	
-	39 K	106	215	73	4	15300	12.4	3	
	2000 K	116	2.40	Sc.	4	11600	17.3	,	:

Kenn-			R		Tragia: von 50						••		
	3.5	25	50	100	150	300	100	1,000	1 430	3,000	4 188	- 0.0	11.00
65	2 422	1910	16.5	: 280	1135	\$40	760	606	۲2٤	411	160	100	: *
66	1185	2 520	216.	1640	1 445	1177	1000	- 40	646	644	16	4.4	. 1.5
67	165	1146	2 540	2199	1 86%	1 465	1245	985	26.	6	٠.,	٠.	44.
95	46-4	3 -25	3156	2.4%	2.270	1 - 10	1476	1150	1611	\$-xc	6-5	4-4	
09	4.600	4412	3 780	29"0	2 6 2 0	2060	1 -60	1 285	1210	619	214	24.5	
10	66.5	\$ 250	4500	3 523	3125	2 455	2 020	1640	₹ 44	1115	ç.		
-11	* \$4.0	6180	F 280	4146	1660	2 884	2455	1930	164	7.330	1116		
12	8 X 4 5	7000	6 000	4 100	4150	1260	2 75	2190	1925	1415	1.280		
-11	9555	<60	64"5	400	. 4485	3 5 3 6	3 000	2 :40	2 5 - 5	1644	7.484		
14	11 800	8 4 4 5	* 156	5 ** 35	SCAL	ي لاي د	1180	26-5	1 140	1841			
15	12 700	96%	\$ 20C	6450	9660	4 460	1800	1500	2620	4 4			
16	13.251	11.500	3,000	-050	6250	4 900	4:60	, 180	2 \$\$5	236			
17	14545	11120	9 450	*445	66ic	1200	4415	1480	1949	24%			
15	.5.00	12155	15490	¥150	* 200	1665	4 \$ 24	3800	1 120	1620			
20	19.60	25 7 30	11500	10,600	934	-354	6255	4936	4 300	1400			
22	22900	18770	15 556	12 150	10.40	\$450	*100	166.	4950	1900			

Approved For Release 2002/01/04 7CIA-RDP83-00415R014100130004-6

Approved For Release 2002/01/04 PRDP83-00415R014100130004-6

Ring-Zylinderlager Ganz leichte Reihe

Reihe NUE DIN 5412 MaBreihe 10

mit Außenbord und Tragring Reihe NUE

E.	-			Mes	e in mm			DIN- Traggeni C	Gewicht ke Stück	Fart gun
fire.	-	۰	, D	b	. dr	r	f ₁	in kg	Ca.	grupp:
3000	25	25	* 47	12	30.5	1 t.o	0.5	830	0.000	
in mi	77	30	55	13	36.5	1.5	0.8	1100	0.135	3
53/1/67	-	35	63	34	42	1.5	0.6	1340		3
	-	40	68			_			0.180	3
	I			15	47	1-5	1.0	1 560	0.225	3
AL.	E	45	75	16	51.5	1.5	1.0	1860	D. 280	3
	-	30	80	16	1 57.5	1.5	1.0	2000	P.310	
		55	90	12	64.5				,	3
	-	1 66	95	18	69.5	2.0	1.5	2 2 80	0.450	
7	-	69	100	16	74-5	3.0	1.5	2 360	0.482	3
	-				74-3	2.0	1.5	2 4 50	0.512	3
	75	70	110	20	80	3.0	1.5		- 1	,
	75	75	115	20	. 85	2.0	1.5	3 530	0.710	3
		Ba	125	22	91.5	3.0		3650	0.750	3
-	85		-			4.0	1.5	4 500	1.00	3 3 3
-		85	130	32	96.5	3.0	1.5	4900		
		- 90	140	24	103	2.5	3.0	3300	1.03	3
	700	100	150	34	115	2. 5	3.0	3330	1.36	3 3 3
300.0	119	110	179			-		3.30	1.48	3
-	iii	120	180	21	125	5.0	2.0	\$ 100	2.31	_
	15	150			135	3.0	3.0	9130	2.47	3
	-	130	200	53	148	3.0	2.0	11000		3
	140	140	310	33	158			1	3.74	3
		150	225	33	159.5	3.0	2.0	12000	4:00	
		160	240	33	280	3.5	2.5	13 400	4.90	3 3 3
				3.		3.5	2.5	16500	6.00	:
	179	170	260	43	193	3.5	2.5			3
	180	180	280	46	205	3.5		19600	8.00	3
		190	200	46	215	3.5	3.5	24 500	10.6	- 1
-			-	-		3.3	3.5	25 500	11.1	3 3 3
-	1	300	310	51	229	3.5	3.5	28000		
A			_				٠.,	200	14.3	3

Ring-Zylinderlager

Reihe NUE DIN 5412

ideelle konstante Last in kg wirkliche Radiallast in kg Tregzahl nech DIN in kg Beiwert für die Umrachnung von Umfengelsel in Punktlest Lebensdeuerfaktor Lebensdeuer in Betriebsstunden Umdrahungen Minute Drehzehlfaktor

1	٦l
1.4	7
 	_

boh.				Relative L _h	Tregfá von 50	higkeit 10 Batri	Cr in kg izbsetun	für ei Idan be	ne Leb	ensdau	ır		
run s	15	30	50	100	150	300	500	1000		3 000	5 000	7 500	10000
25	1 080			573	506	198	338	267	234	184			
30	1 430			760	670		450	354	312	244	156	137	114
35	1742	1 380	1180	925	818	644	548	432	378	298	252	182	165
40	2010	1610	1 170	1080	950	750	636				-		
45	3 420	1910				890	760	550	440	346	294	258	254
50	3 600					960	816	6::	325	413	352	37.7	
				1 300		900	810	644	554	444	3.76	330	
55	2960			I \$70	1 390	1 100	930	735	645	525	430		
60	3 0 7 0			1630	1 440	1130		-6.	665	525		3-6	
65	3180	2 5 20	2 160	1690	1 495	1 177	1 000	792	69	344	444	475	
70	4620	3660	3130	2450	2170	1 705	1 450	114:	1 200	-88	668	4.5	
75	4 730	3 760	3 210	2 520		1 750	1 490	1175	1 32	813	686		
50	3850	4630		3100	2 750	2 160	1840	1 45	1 273	1000	844		
85	6370	5 0 5 0	4310	3 350	2 990	2 350	2000	-					
90	7150		4850	3 800	5 3 6 0	2640	2250	1580	1 38.	1 090	91:		
t00	7600		5 150	4040	3 5 7 0	2810	2 190	1 583	1550	1 223	1 6 3 2		
tto	111000	8 750							-	-	1.150		
120	11 900		7 500	5 860	5 200	4 100	3480	2 = 42	2.40-0	I 88:			
130			8050	6 3 1 0	5 580	4400	3 140	2 943	2580	2030			
		11330	9.700	7 600	6 700	1 300	4500	3 54=	3100	2 440			
140	15600	12 400	10550	8 100	7320	5 7 50	4900	3 860	3 382	2 66a			
150	17420	13800	11800	9 2 4 0	8 180	6 4 4 0	5 480	4 120	1782	2050			
160	21 200	16800	14350	11250	9 950	7 820	6650	5 250	4 600	3 620			
170	25 500	20190	17 250	12 500	11050	9400	8000	6300					
1.0			21 600	16 400		11 770	10000	7900	5530				
190	33 150	26263	22420	17 600	15 560	12 250	10 400		7 200				
200					17 100				7 900				

 Bei Umfangsleet für den Innanring: Innanring (Buft um oder Innanring at shift um 17 Bei Punktlast für den Innanring oder Innanring i oder Innanring i oder Innanring i Suft um Last at innanring i oder Innanring i Suft um i Last at innanring i oder Innanring i Suft um i Last at innanring i Suft um i Last at innanring i Suft um i Last at innanring i Suft um i Last at innanring i Suft um i Su ... Leet eleht still, Leet illuft um, Lest sreht still, mil gleicher Drehzzhlum,

CIA-RDP83-00415R014100130004-6

Approved For Release 2002/01/04 RDP83-00415R014100130004-6

1		STATE OF THE PARTY.					74 11		•		gii G	- Diu	AT HITE		
· P. a Splanger	1	MUL.	d	D	Ma b	đe in i	D,		r,	DIN- Tragzani C in kg	Gewicht* NUL kg Stück	F	rtigun Nuc		Dt a
			25	52	15	33	45	1.5		1 100	0.148	3			2
	99		10	62	16	il.c	53.5	1.5		1 460	0.224	1	i		2
			33	72	17	43.8	61.6	•	i	2130	C.325	3	3	1	2
318			40	80	18	50	70			●75 0	0.411	3			
i i		2	45	85	10	55	75		2	0 900	0.418	l í	i	÷	2
ä		-	50		20	60.4		·	2	3050	C.530	3	i	ī	2
		=	55	100	21	46.0	88.5	2.4	2	3650	0.715	Ι,			2
g.			66	110	2.2		97-5		2.5	4400	6.923	1 1	- ;	:	2
扉		-	65	120	23		105.6		2.5	5100	1.17	3	i	i	3
W.	2.70	B	70	: 125	34	84.1	110.5	2.4	2.1	5 300	1.29	١,			2
	₩	75	75	130	0.5		116.5		2.5	6400	1.40	Ιí	i	- î	2
į.		••	10	140	26		125.3		3	7100	1.71	1	- î	1	2
L.F. 和影響與			k	140	28	101.8	133.6	3	3	2140	2.14	١,			2
2			90	160	30		143	í	3	9 80G	2.48	3	i	i	2
	•	100	100	(Bo	34	100	160	3.5	3.5	12700	1.74	3	i	í	2
	-	110	110	300	38	1325	178.5	3. 5	3-5	16 100	₹,28	١,	2	2	2
-2		130	120	415	40	143-5	191.5	3.5	3.5	18 300	6.31	3	2	2	2
		129	130	030	40		204	4	4	19000	7.23	3	2	2	2
7	等	149	140	250	43	169	221	4	4	02.400	9,17		2	2	2
III		150	150	270	45	160	238	4	á.	21000	13.4		;	2	2
器	300	349	160	290	48	195	255	4	4	31 000	14.4	3	2	2	2
ff,	579	170	170	110	53	208	272		5	35 500	18.4		_		-
4	2	186	illo	120	53		252	5	3	36100	19.3	3	2	2	2
8			L.,	,,,,,						3-700	19.5	. 5		4	2

ar re in the fin on an en-

Ring-Zylinderlager

Rethen NL, NUL, NJL, NUPL DIN 5412

wirkt che Resiellest in kg Tregsahl nech DiN in kg Beiwert für die Umrechnung Beiwert für die Umrechung von Umfengelsat in Punktiest Lebensdauerfaktor Lebensdauer in Betriebsstunden Umdrehungen Minuta Onehzeh faktor

Aria e Tragfih gkeit bilte anfragen

Lager. Den-			R						re Les in Uin		e "		
• . >	15	20	50	100	150	100	500	1 000	: 500	1000	1000	* 500	10.000
23	1 4 1 6	1141	970	~60	6-0	110	440	144	115	244	20-0	115	160
30	19.0	1 500	1285	1 00*	890	*30	1-6	470	412	324	2.4	247	723
35	2 700	2180	: 855	1 464	1294	1 020	806	64.	500	4"0	145	3.85	318
40	3 480	2 840	2 420	1 400	1 680	1 125	1120	854		6:0	615	444	412
45	3 70	3,000	2 4 5 5	2,000	1 ***3	1.190	1180	934	81.6	A45	747	445	1.4
50	3960	3140	2600	2 100	1 860	1 465	1 245	480	950	5		\$ 7.3	
51	4-40	3.60	3410	2 5 20	1 220	1 ***	1440	7 174	: 416	8:4	686	6: 2	
61	5 20	4535	1870	3 045	2 6 % C	2110	1 800	3 4 2 2	1240	4.5	*:0	-:6	
65	6630	5250	4400	3,520	3 126	2453	2 333	1 640	1440	1130	960		
70	6950	5.450	4555	3 660	1210	2 547	2 160	1775	1464	11.6	cu.A		
7.5	0050	6.40	£460	4.28-0	1-80	2 482	4.532	2,000	1745	1 150	1164		
80	9210	7 100	6250	4900	4330	3 400	2 900	2250	2 300	1570	1.334		
85	10 600	8400	-:-3	16.0	4910	3 920	3 332	2620	2 400	1 ×12	1.537		
90	12 700	10 100	8 650	6-50	6,000	4 700	4 500	3150	2 *45	2.476	1.84		
103	16 50c	11100	I I 200	8 750	7750	5100	5 20C	4 100	1,580	# x2.0			
110	21 200	16800	14 350	11 250	9940	- 82C	6551	\$ 250	4,600	7610			
120		C7 2 RI					7400	K 900	5 16C	4 000			
130	24700	19 600	16 "00	13200	11600	9130	* * * * *	9150	5300	4220			
140	29100	23,000	10.700	15 450	11660	10 754	9150	1212	0.320	4 474			
150	35 200	27500	21800	18 650	:6500	12950	11000	8 - 30	- 6×	5.000			
160						14900		15.000	8.75%				
170	45200	14500	11 200	24 500	21640	17050	14 500	11492	10 000				
140	11-5:0	1*60.	42 100	3 6 950	22 2/5	17.600	14 400	11 252	10.300				

Innenting (Bufflum)

Bei Umfangslast für den Innenting) oder Innanting steht stiff...... gabohrtem Massaykafig gallefort. Glodges Lagar auf Antirga.
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht still
Last staht staht still
Last staht staht still
La

VIUNT

Approved For Release 2002/01/04 CIAIRD 83-00415R014100130004-6

Ring-Zylinderlager Reihen NM, NUM, NJM, NUPM DIN 5412
Mattelschwere Reihe schmal Mattelsch 03

K	HUM,			M	eBe in	mm		3	DIN- Tragzant C	Gewicht*	F	ertigur	1gagr	прре
-	MJM, NU PM	4	D	b	đ,	D,	•	r	in kg	kg Stück	NM	NUM	NJM	NUPM
	27	25	62	17	35	53	2	2	1860	0.266	3	1	1	,
	39	30	72	19	42	62	2	2	2450	0.403	3	i	- 1	2
	į 2 i	35	80	21	46.	2 68 2	2.5	2	3000	0.532	3	ī	i	2
	#	40	90	25		5 77.5	2.5	2.5	3 750	0.727	١,		,	2
	44	45	100	25	58.	86.5	2.5	. 2.5	4800	0 990	1	-	÷	2
		50	110	27	65	95	5	3	5850	1.29	3	i	i	-
574	. 55 44	55	110	29	70.5	104 5	5	5	7100	1.64				2
-	- 60	60	130	51	77	113	3.5	3.5	8500	2.06		:	:	2
*	45	65	140	53	83.5	12Ĭ.5		3.5	9500	250	3	i	i	•
	. 70	70	150	55	-00	130	5.5	3.5	10400	3.05	,	-		-
	75	75	160	37		139.5		5.5	12 700	3.66	•	•		2
	210	E0	170	59	103	147	3.5	3.5	13400	4-32	3	;	•	2
2	85	85	180	41	102	146	4	4	15000	5.13	-	•	•	-
	90	90	190	45	115	164	7	Ĭ.	17300	5.00	3	1	1	2
	109	100	215	47		185.5	7	4	21 600	1.62	3	2	2 2	3
(P	110	110	240	10	143	207			10000		-	-	_	
-	120	110	260	55	154	226	7	4	34 000	11.6	3	2	2	3
136	130	130	280	58	167	243	•	;	41500	14.2	3	2	2	3
140	140			-			,	,	1 - 1	182	3	2	2	3
100	150	140	300	64	180	250	5	5	46 500	22.3	3	2	2	3
580 100	180	160	320	65	193	277	5	5	51000	264	3	2	1	3
			542	68	208	292	5	5	54000	31.7	3	3	3	3
172	170	170	360	72	220	310	5	5	62 000	386	3			
-	198	180	180	75	232	328	5	5	69500	426	3	3	3	3

Ring-Zylinderlager

Reihen NM, NUM, NJM, NUPM DIN 5412

mit Außenbord, Stützring und Bordscheibe

P	see e konstante Lest n kg
₽.	wirkliche Radiellest in kg
C	Tregzani nech DiN in kg
×	Se wert für die Umrechnung
	on Umfangalast in Punktiest
'	Lebensdeuerfaktor
L-	Lebensdeuer in Betriebsstunden
n	Umstehungen Minute
f.,	Drenzer faktor

Axiele Tragfähigkeit bitle anfragen

Lager.			Re	lative 1	regfāhi	gkell C	. in kg	Ch eini	Leger	SINUE			
20 h-	l			L _h v	on 500	Betriel	bsslund	len be	~ U m.	n			
rung	15	30	50	100	150	300	500	1000	1500	3 000	1 000	* 400	10000
25	2410	1910	1635				750	500	525	413	350	307	1*0
30	3 180	2 520	2 160	1 690		1177	1000		640	444	440	424	365
35	3 900	3 090	2640	2 070	1830	1440	I 224	955	840	556	164	435	
40	4880	3860	3 300	2 590	2 290	1 900	1530	1210	1 060	530	-01	4:5	
45	6240	4950	4 2 20	3 3 1 0	2930	2 300	1960		1340	1065	- 55	-	
56	7 600	6 02 5	5 150	4 040			2450	1853	1652	1 100	1100		
.55	9230	7 300	6 2 5 0	4 900			1900						
60	11050	8750	7500	4 86c		3 400 4 100	1430	2.250	2003	1 4-0			
65	12 540	9780	8 360	6 560	5850	4560	3886	3-13	2 400	1830			
	_		. 34.2	0 ,00	3 500	4 300	3 5.50	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2000	2110			
70	13 500					5000	4 240	3350	2925	2 100			
75	16 500	13 100	11200	8-50		6100	5200	4153	3 583	1820			
50	17410	13 100	11800	9250	8 180	6440	5 480	4 3 2 0	3-80	1985			
85	19 400	15450	13200	10350	9150	7 200	6120	4810	4210				
90			15 200			B 100	-050	\$ 465	4855				
100	28 000	22200	19000	14900	13 200		8 8 10	6950	6100				
110	****	****	26400					9 650					
120	44200	35,000	30 000	20 -00	20 850	14 400	12 240	11000	\$460				
130	54 000	43 700	36 500	18600	25 200	10 000	12000	12 25 2	11 00				
									11 00				
140	60 500	48 000	41 COO	32 000	34 400	22400	10000	14 005					
150 160	00300	52 500	45 COO	35 200	31 200	24 500	10 800	18 400					
100	70 000	55500	47 500	37 200	33000	10000	22000	17.800					
170	80 600	61800	54 600	42 500	17 800	29.500	24 100	10000					
160	90 500	71 500	61 000	48 000	41 500	31400	25 200	22 450					

12 The second of the second of

1) Bei Umfangslast für den Innenring i der Innenring steht

Last steht still,
..., Leet läuft um.
... Lest steht ebil,
tele cher Drehtshium

Approved For Release 2002/01/04: CIA RDP83-00415R014100130004-6

			Hado	in	n		DIN- Traggashi C	Gewicht ^e NUS	F	ertigu	Fortigungsgruppe			
-	4	D	•	4,	D,	,	in bg	kg Stück	NS.	NUS	NJS	NUP		
	-	110	87	- 58	92	3	6700	1.42	3	-	. 3	3		
	45	: 130	- 29		100.5	3	~ 500	1.82	3	2	2	3		
	50	1 90	32	70.8	110.8	3.5	8 300	2.26	3	3		3		
3	55	140	33		117.2	3.5	9800	2.79	3	2	2	3		
	60	150	35		187	3.5	E1 800	3.36	3	2	2	3		
8 . 9	65	160	: 37	89.3	135.3	3.5	13200	3.99	3	2	2	3		
3 2	70	180	42	100	152	4	16600	9.85	3	2	2	3		
24 - 2	73	190	45		160,5	4	19300	6.8*	3	2	2	3		
		300	48	110	1-0	4	22 0000	8.07	3.	3	3	3		
1 5	85	310	58	113	177	9	35 500	9.54	3	3	3	3		
	90	225	54	123.5	191.5	5	28 500	11.5	3	3	3	3		
** 100	100	250	58	1 39	211	5	34 000	15.5] 3	3	3	3		
110	110	250	65	155	835	5	41 500	22.1	١,	3	3	3		
	120	310	72	170	260	6	53000	37.1	13	3	3	3		
139	130	340	78	185	289	6	65 50C	45.1	3	3	3	3		
	140	360	12	198	302	5	71 000	46.8	1 3	3	3	3		
19	150	380	25	213	317	4	75000	53.9	3	3	3.	3		
100	160	400	22	236	114	6	\$0.000	61.5	3	3	3	3		
170	170	420	22	239	351	6	86 500	-0.5	1 3	3				
100	190	440	95	250	370	8	100 000	80.0	1 3	3		3		
	190	460	- 98	265	385		101000	89.0	3	3	3	3		
700	200	480	102	276	404		118000	100	1 3	3		3		

Ring-Zylinderlager

Reine NUPS

Lebenedauen in Berne Umdrehungen Mikute Orenzahlfantzir

Avia e Tragfar exe to the antragen

sit Außenbord, Slützring und Bordscheite

Lager- boh-					Nangve : 500 Bet					•		
rung	15	340	50	toc	1 52	100	şot.	: 500	resc	1.000	4 500	* 530
**	8 *00	6900	5 400	4620	45%	7 2 2 3	2 * 40	1:50	1,840	rate	7.250	1774
45 30	9-5-		6650	5 1 - 5	45.75	9 6 00	7.060	245	2 12:	1.564	14.0	
30	12100	9630	3 2 5 5	6 400	< 66.	4 450	100	: 500	2712	1067	::	
\$5	72.700	10 100	\$ 520	6.6:	تگټ ۽	4 "00	4,000	9.760	21.67	2:41	. 84.	
-	15 140	12 110	10.400	\$150	1.00	< 560	4814	9 400	7724	2 844	4 2 : 7	
65	7" 150	11600	11 600	9100	8 050	6.14	3 400	4257	1-10	1445	2.457	
79	27 60c	17100	14 600	11455	12120	# 500	5300	£ 352	45-1	3 540	4.121	
75	3 (100	19 900	1 ° 000	17100	11 500	. 6.	455	* 27.5	4 4 4 5	4123		
94	28 630	11600	19355	15200	13 400	12 600	4,000	*::4	61:0	4.000		
85	13 150	16 265	22.420	1*600	15560	12247	11.400	7212	- 2:10	F 500		
-	1"00C	39 100	84000	19 700	17.400	1 5 = 50	642	-200	8 5 5 5	5 1 6 2		
769	44 200	35000	10,000	23.400	30 BOC	16 100		17 000	4 600	* 457		
110	54000	42 - 13	16 100	18600	24 100	11 500	11 000	13.257	11 *55	4.212		
139	60 00C	1460C	#6600	16600	12 100	25.420	21,570	10000	4 - 5 -			
130	\$500C	61500	5"50C	45 200	#C 000	31.400	26 500	27 100	8 (30			
140	92 100	*1000	62 500	49 000	44.300	34 000	29,000	22,300	\$0.000			
150	97 120	300	66.000	61.790	45 "00	10,000	30,000	24200	11100			
160	104 300	82 4 DC	70,400	4 5 200	48 BGC	5 400	32,700	24 800	22 500			
170	11220C	\$4100	≈6.3 0 €	44 =∞	42,700	41.470	35 100	2" \$00	24.430			
180	130 000	101000	X4 500	5- DOC	51 500	48 222	45 % C	12100	28.554			
190	135000	107000	91 500	*2 500	63.500	\$ 5,000	42 400	33 500				
200	143.400	12000	104.000	As coc	*1.000	15500	48.142	33 000				

9 Bai Umfangs'ast für den Ennenring oder innenring steht at

RP33-00415R014100130004-6

Approved For Release 2002/01/04 - CIA-RDP83-00415R014100130004-6

THE PERSON			Aaße in	mm			DIN- Tragzahi C	Gewicht *			gruppe
		0		d,	-	P ₁	in kg	kg Stick	WUL	WJL	WUPL
	40	80	25	50	3	3	1450	0.545	1	5	5
	44	83	25	45	3	3	9650	0.593	[3	5	3
CHES TO	45	90	25	55 50.4	3	2	5 800	0.643	1 2	3	3
See 1	44	100	25	66.9	2.5	2	4500	0.862	2	5	5
SHIPMAN	15	110	28	75 5	2.5	2.5	5 250	3.23	3	3	3
	69	120	31	79 6	2 5	2.5	7100	3.63	2	5	5
- 33 7	70	125	51	84-3	2.5	2.5	7 550	2.68	1 2	5	5
	73	130	33	18.5	2.5	3.5	8 000	3-15	2	,	5
	Šá	140	33	95.5	3	3	9 500	2 12	2	5	3
	15	150	36	ter.S	5	3	11000	3.52	3	5	3
	*	180	ac.	107	•	•	13700	5-51	3	3	3 3
	100	18-2	46	130	3.5	5.5	17000	5.16	2	3	5
	110	200	43	152 5	3-5	5.5	31200	7-47	١,	3	5
4	120	815	á	345.5	5.5	3-5	34500	9.78	1 5	3	5
5	130	250	33 54	156	4	4	36 500	13.3	3	3	5
	140	250	68	169		4	32 000	14-5	1 3	5	5
1	130	370	73	182	ã	á	58 00C	19.3	1 3	5	5
	160	290	80	195	4	4	44,000	24.4	5	5	5
	170	119	14	208	•	5	52000	30.0	1 3	3	5
	ito	120	94	218	•	5	55.000	90.8	1 3	3	5
	190	340	93	231	Š	5	€ €:000	g8.0	3	3	3
	200	160	- 44	844	5	5	67 000	46.0	1 3	5	5
E .	330	400	108	870	Ĩ	9	\$3,000	62.0	3	3	3
	340	440	130	295	3	5	108.000	85.0	3	3	5

Ring-Zylinderlager

Reihen WUL, WJL, WUPL DIN 5412

Axae Tragfiligant bitte sefrager

			Res	tive Tre					6 L654 H U M		,		
~~	25	3:	50	Ι×	15:	350	500	1.56	1500	3 34	y 2000	* 5%	15 000
**	4500	3550	3 242	2 38:	3 100	1.650		1112	9":	⊸.	647	500	•:•
- 45	475-	ვ~6ა	3 210	2 522	2 227	1 150	1 490	11.4		9.5	414	04.0	24"
50	4940	3 9 2 4	3 340	1 52C	2 330	1220	151	1130	15	*44	-15	*1.	
55	9850	463:	595:	3:00	2 . 50	2150	: 142	1463	: 1 *:	1000	£4 C	-43	
60	7600	6 52 5	5 152	4:4:	35-2	2 \$34	3 400	1 440	: 6 C	1 400	. : 50	961	
ü	925	7 300	6350	4.900	4310	3.400	1 900	2.240	2,000	1175	7 - 67		
79	9552	* 163	64-0	5:00	444	1530	1 300	3 160	3 :*:	190	1 150		
75	22.430	1245		3 540	484	114	1260	3 580	2.250		, e.z.		
96	1214:	9 - 52	8 957	6 550	1100	4150	114:	3.064	3 51.	3317	1.795		
85	14 500	11 100	9.5%	- 6:2	5 * 20	1130	4150	1.745	1100	3 444	2 · · ·		
~	16 130		11.400	8*12		5:00	4:50	4100		2 820	2.15		
100	13 100		15000	11.50	12.4%	1 160	8 95.	14%	A 1.	7.480			
118	17600	21 500	11642	:464:	1194	17275	1 66 :	61::	5 9 -:	4.140			
120	11 \$30	24200	2:650	:66>2	:4952	14 ***	14,004	* **		* 44"			
139	145.0	21200	23 300	19 500	19210	11.00	تن فئة	\$ 500	- 45-	\$ 5°°°			
140	41600	11000	25 200	12:00	19 400	1446	11100	12 900	0.000	*:00			
150	49.476	19 200	13.400	26 2 30	31200	112 X	255 K	12 230	15 . 5	7 44			
160	200	44 100	9 DC	10 400	25 144	11:00	18 500	14 200	11.4%				
170	66 5 X	C 400	45 300	14 200	3138	24 500	\$0 KM	16470	14.470				
150	64 000	14530	40.00	-6.5×C	18 100	25 430	2:6%	10050	24 9 7 2				
199	*8.00	61 500	تتفدو	4: 400	16 600	36 1440	14500	:4:30	15 p×				
200	\$1.000	64 200	14 500	46 200	41:00	12 2 70	31470	215%	15.6%				
220	124 200	\$4.500	* 1 300	E* 100	1: 500	16 1-30	11 200	- 14 ° 25	21470				
240	140 400	111 400	4 (000	4 600	65 500	51 300	44 200	54 foc	15430				

Ľቋዕከታያናይሲ For Release 2002/01/04 : CIA-RDP83-00415R014100130004-6

		Me	Se in m	LITT		DIN- Tragzahi C	Gawicht [®] WUM	Fartigungsgruppe			
		D	.	d.	r	in kg	kg Stück	W.W	WIM	WUPM	
		-	- 53	13.5	2.5	\$100	1.05	2	3	3	
California de	3 1	100	33	j£.j	2.3	6 300	1.40	3	3	,	
*****	#	110	49	65	3	7 800	1.85		3	3	
	-	120	43	70.5	3	9000	2.36		3	3	
40.00	E	130	46	**	3.3	11000	2.98] 3	3	3	
and the same of	- 4 5	140	48	83.3	3.5	12 000	3.63) <i>*</i>	3	3	
	-	198	. 31	90	3.5	14 900	4-47	3	3	3	
Luc AD		196	33	93.5	3.3	17600	3.43 6.39	3	3	3	
4.8000	25	170	38	103	3.3	19 600	6.39	, ,	3	3	
(m), (7)		180	- 4	106	4	20 400	7.46	9	3	3	
		190	44	113	4	22 400	8.76	3	- 3	3	
2000 0	100	213	. 73	139.5	4	30300	13.8) 3	3	3	
Minerpar 1	110	240	- 80	143	4	41 500	18.7	3	3	3	
Di-10	130	===	- 84	154	- i	1 12000	a3.1] 3	3	3	
<u> </u>	130 J	200	93	167	ž	£1000	a9 5] 3	3	3	
Will Company		200	103	150		68 000	37.8	3	3	3	
24 - 1	=	130	198	193	i	76300	45.2	. 3	3	3	
	2	330 349	514	268	j	81 500	53.8	3	3	3	
100 miles	-		120	230	•	92 500	69.9	3	3	3	
100	1	- 32	134	232	ī	104 000	74.0	i i	3	3	
170. 1	150		: 22	245	ě	116000	85 a	1 3	3	3	
ALCOHOL:	20000	-	tyń	260	4	116 000	98.0	3	3	3	
	19 And	I	143	14	6	137000	124 0] 3	3	3	

Ring-Zylinderlager

Reihen WUM, WJM, WUPM DIN 5412

-	i T	P x · Pr	P.
-	mit Außenbord, Stützing und Bordscheibe	$x = \begin{bmatrix} \frac{1}{1.4} \frac{t_1}{t_2} \end{bmatrix}$	٠ . ال
-	Reine WUPM	f _L : f _n : C	L. R Fa
		[Are

P	x · P.		stealants viceos
•	A . I .	P.	- wirktiche Radialia
		c	- Traggetti sach Oil
- 1	1-2	×	 Beiwert für die U von Umfangslast
	1.4 5	1.	- Laboradouerfanto
		Ĺ.	Lebensdauer in B
		n	Umdrehungen Mir
f, i	1n . C	f,	Dreheah Fabtor
	P		

ie Tragfan gue t ailte anfragen

Lago.						t C., in s riebss'u				۳		
7414	74	10	50	100	150	190	100	1000	1 160	160	ياره	- 400
42	6610	1210	4500	3 5 20	2 1 20	2445	2050	1640	1.440	1114	41.	84"
45	8 06-0	6 180	5 450	4280	3 - 80	2980	2510	3 000	1 ***	1 1-4	1 154	1031
50	10300	2 000	6740	4 400	4-40	8.047	1 180	351€	223	1-10	14.5	1 246
35	11.00	0 2 * 6	- 920	6100	5 55C	4 324	1680	2990	2745	10.5	160	
60	14100	11310	9 "00	- 600	6 -60	5 30C	4 460	3 5 16	1100	2 44	\$ 207	
63	11660	12400	10 510	2 100	7.120	1727	4 400	. NV :	1.784	2 554	2 5000	
70	18 200	14400	12 100	9660	1 050	6.20	7 *20	4466	3.5	1106	26:0	
75	22,460	18 100	11 100	12165	10 * 40	8455	100	< 24c	4 460	1000	1 111	
80	24300	19 100	16 150	12800	11 100	2 400	800	0.500	121	4	14.0	
85	26 roc	21 000	12000	14150	12450	4800	1 720	9 150	575.	4 * * -		
98	14 100	21000	10.00	15450	11660	10.752	9 1 5 6	- 210	A 121	4 **		
100	19500	31400	26 900	21 000	18 600	14650	11.440	* N G	*115			
110	14000	41 *00	of esc	25500	25 400	20,000	11000	11100	11 466			
120	5-100	41456	44.00	15800	11 -00	25000	21 200	15 -60		24 4.1		
130	¥:600	61800	4460C	43 4 DC	3" EUC	24.80	28 × 50	2017=	1.4.4	1,75-		
147	88450	70.000	60,000	41000	41 100	11600	2* hos	21 90C	19 255			
1.0	44 430	*9 000	E * 100	42 Roc	45.00		91 102	24 50C	\$1.60%			
160	106 000	84000	*1*60	46 20:	44 *00	16 100	11 100	2* 2×	2.0			
170	110000	94,000	\$2,100	61100	44.850	44 000	31 400	29.4%				
160	115000		61 400	-120	51500	50,000	41 500	3 R SUC	24 14			
190	141000	110 400	101 200	2000	+c 8.00	4 5 600	4" 556	14.800	129.5			
203	111000	114 530	102000	Secon	10700	55500			12116			
220		141 000		44100	\$1,500	65500	56.000	44 000				
240		158 000			99 100	-B 200	86 50C	\$2.500				

Approved For Release 2002/01/04 : CIA-RDP83-00415R0141001389044

LIMET

Winkelringe für Ring-Zylinderlager (schmal)

Reihe HJ 4

-	egerrythen NUL, NUL	für die La	gerreihen NUM, NJM	für ole Li	gerreihen N	еци , ви
	Maße in mm	Kurz- zeichen	Maße in mm	Kurz- zeichen	Meße in	ישש השיי
1	35 35 3 1 30 41.8 4 1 35 47.4 4 1	H-1 886 886 887 888 888 888 888 888 888 888	25 39 4 2 30 45.9 5 2 35 50.8 6 2	HJ 465 466 467	30 50.5 35 59	7 2.5 2 2.5
		M. 25	40 58.4 7 2.5 45 64 7 2.5 50 71 8 3	409 410	40 64.8 45 71.8 50 78.8	3 3 8 3 0 3.5
		MJ 811 812 813	55 77.2 9 3 60 84.2 9 3.5 63 91 10 3.5	HJ 411 412 413 HJ 414	55 \$5.2 60 91.8 65 95.5	10 3.5 16 3.5 11 3.5
	70 89.6; 7 2.5 75 94 7 2.5 80 101.2 8 3 85 t08.3 8 3	HJ 316 215 214 HJ 317	75 104-2 11 3.5 80 111-8 11 3.5	HJ 414 415 416 HJ 417	70 110.5 75 116 80 122 85 126	12 A 13 A 13 A 14 5
	90 1141 9 3 100 138 10 1.5	818 818 818	85 117.5 12 4 90 125 12 4 	415 419 HJ 420	90 13"	14 3
	110 141-1 11 3-1	H1 22	110 155-5 14 4	421 422 HJ 424	110 171	1 8
	190 185.5 11 4 160 179.5 11 4 150 193 12 4	H) 220	130 IB3 I4 5 140 196 15 5 150 210 15 5	426 428 HJ 430	140 264 140 219	18 6 18 6 25 6
- 5	160 207 13 4 170 230.5 12 - 5	334	160 225 14 5 170 238 16 5			

Rethe HJ 3

Winkelringe für Ring-Zylinderlager (breit)

-			브	٠	
-	وأحاف	N	F Ţ	1	
-	. 7	r	-	1	
		Ц	L÷.	-	
		М		1	
	- 1	n	1	1	
				1	
-				ı	
	-	ŀ			
1		•			

für d		ie HJ 2 rreiken W		JL.	Reihe 23 für die Legerreihen WUM, WIM					
Kurz-		Ma6e i	n mm		Kurz-		Maše i	n mm		
zelchen	d	J	ь,	·	Ze/chen	đ	<u>, , , , , , , , , , , , , , , , , , , </u>			
HJ 2208	40 45	54-2 5g		2	HJ 2305	4° 45	ct.e	:		
10	50	64.6	5	;	10	30	-1		:	
HJ 2211 12 13	60 60	*0.\$ *8.4 \$4.8	6 6 8	2 2.5 3.5	NJ 2311	55 60 65	***,3 \$4.3	9 9	1	
HJ 2214	-0	14.5		2.5	HJ 2314	*0	of	te.	1	
13 16	75 80	94 101.3	i	3.5	15	1.5	104.2	11	,	
HJ 2217	RS	168.2	3	3	HJ 2317	24 90	125	12	4	
15 19	- 80	114.3	_	<u>-</u>	19		12	-	:	
HJ 2220	10-0	128	10	3.5	HJ 2323	100	147.5	"	4	
21 22	110	145.5	11	1.5	22	110	355 4	14	7	
HJ 2224	120	161	11	3.5	HJ 2321	130	168 4 177	14	:	
25	140	179.5	11	1	*	140	196	15	,	
HJ 2210	140	148	12	4	HJ 2330 32	140	210	**	:	
	1				.34	100	9 , €	1 🕏	•	
					HJ 233¥	140	242	ş.*	•	

Approved 50 Release 2002/01/04 CA-RDP83-00415R014100130004-6

Approved For Release 2002/01/04 : CIA-RDP83-00415R014100130004-6

Ring-Zylinderlager, Nadellager Reihen Na, RNa DIN 617 bis 150 Bohrg.

	, å ¥	afe in m	100		DIN- Traggabl C	Gewicht kg Stück	Farti-	
Ale.				4,	in kg	¢∎.	gruppe	
17	37	-		34.7	1 460	0.110		
	- 12	20	1	18.7	16:0	0.160	1	
. 11	47		1	53.5	2 160	0.200	ı	
	1	21 22 23	1	38.2	2 320	0.230	1	
	31	22	1 1	44	3 550	G.2 TO	1	
	65	23	1.5	49.7	2750	0.330	ľ	
15	72	2	1.5	55-4	1900	5.400	ı	
	72 80 85	#	3	62.1	4 000	0.610	1	
35	- 15		3	68.8	4250	0.680		
7 44			1 2	72.6	4406	0.730		
45	25		1	78.3	4550	0,"RD	1	
	100			83.1	4*50	0.820		
	110	10	2	90.8	6100	1.10		
	81.5	10	. 2	95-5	6 300	1.30		
- 45	125	10		101.3	6550	1.35	1	
	123	2	3	105	6700	1.40		
166	135	33		115.5	7100	1.50	i i	
1700	130			137	10000	2.50	t	
439	160	40	3	137	10600	2.°C	1	
100	180	52 52	3	15L5	15600	4 *0	,	
170	190	52	3	167.1	16 390	.f.10		
12	200	52	1 3	171.9	11000	₹.40		
	110	52	4	180.9	1**00	4,76	2	
179	230	65	3	195.8	25152	9.45	2 2	

Ring-Zylinderlager, Nadellager

Reihen Na, RNa DIN 617 bis 150 Bohrg.

wir eine Legerreihe NAR in den gleichen Abmessungen her, bei der die Legernedeln durch besondere Rahmen zwangsläufiggaführtwarden

Diese Lager werden auch els Außenring mit Nedeln, din ohne Innenring, gelle-fert. Des Kurzzeichen hier-für ist RNAR

- ideella konstents Last in kg wirkliche Radiellast in kg Traggabl nach DiN in kg Bewert für die Umrechnung von Umfangslast in Punktisst Lebensdauerfahter Lebensdauer im Betriebsstunden Umdrehungen Minute Dnehzah faktor

Lager-		Relative, Tregfähigkeit Ca, in kg für eine Labensdauer La von 500 Betriebsstunden bei n. U.m.n.											
fung	15	10	₹0	100	140	100	100	1006	1 100	1000	1000		
17	1 900	f 433	1285	1010	890	-00	494	4*0	412	124	2*4		
20	2080	1640	1410	1 100	4*6	***	6 4 4	414	45%	. 44	466		
25	2865	2 2 2 3 6	1 900	1 490	1 120	1040	112	544	644	445			
30													
35	3 3 1 5	2020	2040	1 500 1 750	1415	1 224	1040	F 2 1	210				
40	2580	2845	2 420	1900	1650	1 120	1120	844					
	1340	2040	2 424	1 000	1000	1 420	1120						
45	1-80	3,000	2 446	2 500	1 5	1 163	1180	614	8:4				
50	f 200	4 120	1 520	2"00	2 443	1940	1010	1 207	1110				
55	5 500	4375	3*50	2930	2 590	2040	1745	1100	1 2 20				
60													
65	5 720	4 5 10	1870	1040	2685	2 110	1 120	1 430	1 340				
70	6 200	4600	4600	3 140	8 * 80	8 145	1360	1 454	1 3×c				
	0 200	4 920	4 200	1280	2 900	2 2% 5	16,0	1411					
75	7920	6 100	5 150	4 200	1-20	2410	2500	1 665					
NO	X 200	6 400	4 440	4350	1740	1620	2 ***	25.15					
85	R 500	6750	4 - 80	4520	4000	8 140	2473	2112					
90	\$700	6400	1900	4520	4090	1220	2"40	2150					
106	9210	7 10C	6250	4900	4316	1400	2010	2.25					
110	11000	10 300	# 30c	6 900	6 100	4855	4615	447.					
						4	•••						
126	11780	16 000	4 110	* 120	5450	€ 100	4115						
139	20 100	16 100	11-00	10 800	Q 410	9 500	6 16.0						
140	21 200	16230	14145	11240	9450	- 8 20	685:						
150	22100	17 400	11000	11 700	10.466	6 160	648						
160	21000	17 220	11600	12200	16800	# 50C	* 123						
170	12 "00	24 900	22 200	17 400	14 140	12 100	10 100						

Last statt still, Last lauft mit gleicher Drehgen: um.

4 15	D ; b,		ALCE Kinnet- alle male	٠ ، ر	DIN- Tragzehi C In kg	Gawicht kg Slück	Fartin Eungs-
55 1: 60 1: 65 1: 70 12 75 13 80 14 80 16 80 180 10 800 10	2 34 35 40 3	24 1	20.5 a 21.5 a 21.5 a 23.5 a.5 24.5 a.5 24.5 a.5	5 0.5 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1 1.3 1.4 1.5 1.5 1.5	28500	0.150 0.220 0.320 0.470 0.470 0.550 0.860 1.10 1.22 1.33 1.59 2.00 2.49 3.54 4.66 1.66 1.76 1.76 1.76 1.76 1.76 1.76 1	######################################

Ring-Kegellager

Reihe 302 DIN 720

- P idaetia konstanta Lest in kg
 P, wrkitche Radialest in kg
 E wrkitche Axialiest in kg
 C Tregzent nach DIN in va
 Beiwert für die Umrechnung
 von Umfengelest im Punktlast
 Element die Umrechnung
 von Axialiest im Radiellast
 Labensdeuer in Batriabsslunden
 Umdrehungen Minuta
 Drehaantfaktor

0.5 1)
015

_	
Lagar	
10 205 Bis 35213	÷
10314 018 10310	
10.0 (0.160.)	14

	t_	fr. C
Rant		

Kann- aiffer	Lh von 600 Batriebsstunden bei n Umia										
05 86 67 08 09	4 000 3 46°5 3 5 460 4	#20 25 470 21 200 2- 705 31- 2-C 365	0 146 0 166 10 131	5 10°. 0 146 1290	1250	720 980 1 8*0	1000	1500	190 191 111 690	5000 331 450 522	* 50 19:
14 1.	900 6 350	*60 493 100 336 110 834	9 3140 9 3860 9 4300 4950	3 - 20	1 090 1 090	1 400 1 860 2 3 280 2 3 000 2 9 40	1950	1015 1170 1182 1186	\$40 980 1210 1840 1350	2-5 -10 255	Jio
77 16	\$20 89 \$20 99 \$00 11 0 \$00 1310 \$00 1680	10 7600 30 8490	5970 6660 7870 3750	4 *50 5 2*0 5 880 8 950 **50	3 "\$0 4 1\$0 4 630 \$ 410 8 100	3 180 3 530 3 942 4 660	3 320 2 750 3 100 5 6 70	2030 2200 4440 2°20	1 600 1 *10 1 930 2 840	1 194	
22 36 39 31 31 31 31 31 42 31	00 3040	31 600 30 000 31 600	11350 14100 13 00 18900 19 00	9950 11450 11900 14950 11400	7 \$20 9 \$00 11 000	9 300	4 100 5 250 2 560 2 350	3 (30	2 300 2 3 300 1 626		

Approved For Release 2002/01/04 CIATROP83-00415801140 mm Last aut me gis cher Dental st.

Approved For Release 2002/01/04 : CIA-RDP83-00415R014100130004-6

Ring-Kegellager

Misleinem Kegstwinkel

Misleischwere Reihe schmal

Reihe 303 DIN 720 MaBreihe C3

11000				Meše	in mm	DIN-	Gewicht	Ferti-			
Aug su	٠	D	b.	ь,	Great.	Kipingi-	,	•	Tragzahl C in kg	kg Stück ce.	gungs- gruppe
Mary Control	25	62	. 17	. 15	18.5	18	8	0.5	3050	0.25	, ,
Carlotte Marie	30	73	. 19	. 16	21	20.5	2	0,8	3550	0.38	1 1
10 A 100	35	80	, 21	18	83	22.5	2.5	0,8	4750	0.52	
	40	90	83	30	25.5	25	3.5	0.8	5400	0.70	,
Allowed S	45	100	25	22	27.5	27	2.5	0.8	6800	0.92	3
	50	110	27	23	29.5	29 ;	3		8 0000	1.19	3
Wheels !	38	120	29	25	3.8	31	5		9130	1.53	1
1. 1.	60	130	31	26 28	. 34	35	3.5	1.2	10800	1,95	í
777	45	140	. 53	28	36.3	35.5	3.5	1.2	12500	2.10	3
	70	150	35	30	32.5	37-5	3.5	1.8	14300	3.00	,
	75	160	57	31	40.5	39.5	3.3	1.8	16000	3,49	1
William St.	3o	170	39	53	43 ,	43	3-5	1.2	. 17660	4.00	í
	85	180	41	34	45 .	44	4	1.5	20,000	4.70	
- 2	90	190	43	36	47	46	i	1.5	21600	5.50	,
	100	. 825	47	59	52	51	4	1.5	28 000	7.95	1
	170	340	50	42	55	54	4	1.5	33500	12.2	, I
-	2.80	360	33	45	60	59	•	1.5	40000	15.9	i

Ring-Kegellager

decide konstante Leat in by wirkliche Rediellest in by wirkliche Axiellast in by Treggehl nech DIN in by Beiwert für die Umrechnung von Umfengrest in Punktlest Beiwert für die Umrechnung von Axiellest in Rediellest Lebensdeurfaktor.

Lebensdeuerfektor
Lebensdeuer in Betriebsstunden
Umdrehungen Minute
Drehzehlfektor

für.	2
P > P,	05 1
P = 14 P,	G

7	Leger	,
1	10 10 1 D.0 10 10 -	2
r,	45 70% BH 80 73%	1.0

 $\mathbf{f}_{\mathbf{r}}$. \mathbf{C}

Kenn- ziffer		Relative Treyfangkeit Cx in kg für eine Lebensdauer Ly von 500 Betrisbestunden bei n. U.min.												
	15	10	50	100	140	100	406	1.000	1460	15%	5 GCC	* 4 30		
65	3960	5 140	2 680	2 100	1760	1461	1245	910	165	6		4.1		
04i 87	4520	1660	1 120	2445	2164	1764	1450	1145	1000	-11	MAE	ii.		
67	6230	4900	4 200	3 285	1900	2 2 3 5	1910	1430	1 142	1044	N-S	-14		
**	7600	5550	4-50	1 *20	1 100	2 500	2 200	1 480	1416	1.204	1514			
60	8810	1000	6 000	4 00	4150	1255	2 83	2 190	1010	1 510	1125			
10	10400	8 240	.010	5 520	4880	3843	3250	2580	2 250	1-1;	1450			
11	21900	9 400	Roto	6 110	4480	4450	3740	2 9 4 2	2485					
12	14040	11120	9 500	7 460	8 193	1180	4 420	1485		2 6 12	2.0			
13	16250	12885	11 000	8 643	-612	6000	4110	4 630	3516	1.400				
14	18 600	14700	12 600	93.0	8-20	6860	1845	4 500		2 (25				
15	20 800	16 100	14 100	11 000	9*60	7736	6440	3150	4010					
İĞ	22900	18 100	15 500	12 150	10 *40	8410	* 200	166.	4 960	1464				
17	26,000	10630	1*600	11850	12 200	9.500	# 160	€ 440						
18	28 000	22200	19 000	14 900	11200	10 400	8 6 3 6	5410	درين	444				
20	36 400	28 Soc	24 600	14 100	17100	11470	11 476	9000	8 100	415				
22	41100	14100	29 500	23 100	20400	16100	11700		-					
22 24	52000	41 200	35 200	2* 600	24 400	10 400	15 120	12 400	11 100					

h C	ar es 1	n n n n	B # " 9 7 1	1	
· · · · · · · · · · · · · · · · · · ·	հարդակա լ - լ	Վուկրիոյի	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	* *** .	
29	300 war 500	22	7200 SCOT WORK 16	a som '	THE METER SHOPE

9 Bei Umlengsfest für den Innenring innenring täuft um ... oder Innenring etekt et. ... (Interring etekt etil...) ... (Interring etekt etil...) ... oder innenringstauft um

Approved For Release 2002/01/04: CIA-RDP83-00415R014100130004-6

ing-Kegellager

Raine 322 DIN 720 MaBreihe 22

Ring-Kegellager

Reine 322 DIN 720

ideelle koretatte Last in kg
wirkliche Radialisat in kg
wirkliche Asialisat in kg
"Tragsahl nach DiN in kg
"Baiwart für die Umrachnung
von Umfangstast in Punktast
"Baiwart für die Umrachnung
von Asiellast in Radia last
"Labensdeuer in Bath ebsstunden
Umdrehungen Minuta
Drehzen faston

2 P. . y P. Para P.

12.214 848 12.224

4. C

Reihe 322

				Made	in mm		DIN- Tragzahi O	Gewicht kg Stück	Ferti-		
		D	h		Green.	Const	,	F,	in kg	ca.	gruppe
de la lación		61	20	17	01.5	0.1	1.5	0.5	3 0 50	0,280	14 6
,100 II.	1 5	- 73	13	19	34.5	24	,	3.8	4300	0.430	
10000); ;;	72	23	19	•5	24.5	ā	0.8	4800	0.510	3
	45	85	23	19	. 25	34.5	•	0.8	5 200	0.560	3
國		. 90	23	19	0.5	24.5	•	0.8	5 300	0.590	3
1	22	100	25	31	27	26.5	2.5	0.8	6950	0.820	3
	6	110	¹ 26	24	30	29.5	2.5	0.8	8 300	1.10	5
	69	130	31	37	35	32.5	2.5	0.8	10000	1.41	3
-	70	125	31	27	33-5	33	2.5	0.8	10 200	1.56	3
	72	130	31	37	33-5	55	25	0.8	10800	1.60	3
100 (40] Se	140	33	38	35.5	35	3		12 500	2.00	3
	85	150	36	30	39	38	5	1	14 300	2.50	3
	90	160	40	34	43	: 43	3	1	17300	3.30	,
	100	130	- 46	34 39 46	49-5	48.5	3-5	1.2	22 000	4.76	3
-	110	200	55	46	. 96.5	53-5	3-5	1.2	28 500	6.90	3
	130	015	58	50	63	61	3-5	1.0	34000	9.~6	3

Sec. 9						,						*			200		306	-	V* w	
g delinic.	4		سا	ليد	4	بنلد	سليب	بلب	1.	ш	4	با		и.	n.i		44	بليب		-
	-	_			b	. !	,	1 .	I	٠		Ī	•	1	•			, ,		
		-	_						•			•		•			2		€	•
			-			7		*	-	-	٠.			· =			. 100.2		100 A	97
4	1		ببد	┿	···	44.4	+	411	4	Ψ.	4	÷	₩	4	4	ىبلد	щ	ىہى	إسبيل	L
State .		-	_		w		44		•									4"		

Kenn- ziffer					in give ! : 500 Be:				161.1		
	15	3.0	50	1 00	150	100	**	1 000	: **	1 555	1 200
03 07	4 8 12	1 140	2 840	2347	: 685	1560	: 332	72.50		*17	879
67	4 5-00	4410	3 *8:	2000	2620	2 064	1 -60	1154	1 214	411	811
08	€210	4040	4210	3 312	2 4 10	3 100	. 660	1.545	1 350	: 04 7	907
00	6-45	4 140	44.5	3.580	4 7 7 0	2100	2 130	1 6 * 2	45.8	1157	***
19	6 900	4 460	466	1654	1210	2 440	2 184	1 -04	1 49 5	::=6	اتب
11	9555	- 150	8 100	4 \$25	4212	1 34C	2 342	7 24	1.000	1 1 1 1	132
12	15820	\$ 55¢	- 100	6 * 84	1 260	3 682	1.182	2842	2 147	647	
13	11000	10 100	1100	64%	A 100	4 800	4 344	1 1 10	1 8 2 2	2 127	
13 14	13255	10500	y 000	- 5 62	0.300	4 900	4160	3 280	2 E # .	1 24:	
13	14540	11120	9422	- 450	A 44:	4182	4 420	3.484	3.040	2.47*	
18	16 130	12850	11000	×64.	500	8 300	4:00	4050	3.844	1800	
17	18600	14 700	12500	0875	B *20	6 860	3 6 5 2	4000	4232	3 184	
18	22 533	1-800	14 300	11655	15 845	B 103	- 5 4 5	e 160	4 24.	1844	
20	28600	12507	19 350	1433	11400	r: 500	9000	1:00	4 3cm		
20 22	3.000	29 400	25 00C	19 0	1" 4.K	14 -90	11 B E C	6 300	2747		
24	46200	35000	30 000	23.400	20 B 14	16 100	10000	1:00:	S THE		

7. Bei Punktiest für den Innenting: poertneering staft um Amenica Stirafilable dea Außenzingsia vor. Gehause bzw. Dackel eind dasha b eus:

7. Bei Punktiest für den innentitial ogerinnenning sturck-Amenica Apprioved For Release 2002/01/04 : CIA-RDP83-00415R014100130004-6

107

Approved For Release 2002/01/04 : CIA-RDP83-00415R014100130004-6

Ring-Kegellager Malaem Regelwinkel Shwere Relhe breit

Reihe 323 DIN 720 MaBreihe 23

Ring-Kegellager

Ρ	idee'le konstante Last in ug
ρ,	wirkliche Radieliast in ag
P.	w rkliche Axist'ast in be
C	Tragrant nach DIN in ag
*	Berwert für die Umrachnung
	von Umfangsfeat in Punktas
у -	- Beiwart für die Umrechnung
	von Ax ellast in Rad allast

Lebensdauerfaktor Lebensdeuer in Betriebsstunden Umdrehungse Minute Drehzehlfaktor

151	•
P . P.	05)

Lagar	•
II M 4 DOB 12 of	p c
12 105 8/8 12 124	

U.5.				MaSe	in ma	,			DIN-	Gewicht	Forti-
	•	D	bı	, b,	Green.	B Keenst	, ,	, r ₁	Traggani C.	kg Stück ca.	gungs-
	25 20 31	62	. 24	30	25.5	25	7		-		-
The same of	30	. 73	27	- 23	29	28. 9		0.2	4150	0.16	
	l is	72	31	35			2	0.8	5400	0.54	1 5
			, ,,	***	33	32.5	2.5	0.2	6700	0.72	
22	40	90	33	27	35-5			_			,
	45	, 100	. 56	. 30	33.3	35	2.5	O. E	-100	0.99	
_	1 70	110			38.5	32	2.5	0.8	9500	1.33	
	-	****	, 40	. 33	42.5	42	3	1	11800		3
	11	130	4)						.,	1.74	. 3
111	12	130		35	46	45	3	1	11700	2 20	
- 11	6		. 44	37	49	48	3.5	1.2	16 200		3
-	7	140	. 48	. 19	51.5	50.5	3.5	1.3		2.70	1
100	70		٠	*	-	-	J -J		18 300	3.40	- 1
110 77.2		190	51	42	54.5	53.5	3.5	E.2	20500		
The same of	7.5	160	55	45	98.9	57.5	3.5	1.2		4.10	3
- P. W.	80	170	51	45	62	61	3.5		24 000	5.00	3
	85		_				3.3	1.2	27000	5.90	3
		180	60	49	64	63	4	1.5			10.0
	90	190	44	53	68	67	7		30 500	7.92	- 1
- wan	100	. 215	73	60	78	77	•	1.5	34500	9.41	3
20072		1 :				77	4	1.5	44000	13.9	
70	110	240	80	69	25	14					
de acce	130	260	34	69	91	90	•	1.5	51000	19.3	
-	4			-7	7.	70	4	1.5	62000	24.0	

	**.	» v v			45.5
The state of the s	The property	إدارا وسنجارا	Herrita 4	المحاربة	بالبا
Filtri		1 U M 2007 2007 1007 2007	<i>u</i>	*	4.

Kann. ziller			Rela⊤ I	.e Tragi	ängket 500 Berr	C zg	t 10+ e g idan de	8 Leben			
	14	1:	**	150	147	100	• -				
65 66 67	5400	427:	164:	2550	2						
96	. 200		4-12	2 - 2		::	1.00	1.11	1.145	4.15	• .
67	\$ 700	6 400	1900	452	3.407	25.50	2 20%	-4-	2 * * 2	1.477	16.
-				492.	4770	1200	2 - 4 -	2.154	1.84	11	1.21
86 80 18	101:0	7,000	5840	11.0	4 ***	3000	4 7 4 7				7
-	12 140	9 = 5 :	\$ 160	645		4 * * * *	2312	1.00	1.0		1.4"
16	15340	12140	10 400	# je:	* 254	4 9 5 5		1.00	294.	\$ 11.0	1 **:
11				-17.	-2.0		2516	1.814	117		7:
14	17800	14 10G	12040	6445	\$ 147	6125	1500	4411			
12	20 500	16436	14 100	11000	a +A			6182	1860	4	
''	21800	18850	16 100	12620	11200	44.		1900	4 167		
14	37000		_			-		7 8 . 7	4 1K-	4 *	
iš l	37.200	21.400	18 thc	14 54:	12-05	102.0	T 404	6.456		46.	
15		24 50	21 200	166:6	14512	11400	w \$400		6 %	112	
	5 200	2-850	21500	14600	16 (00	12442	11 200	4 ***	• 40		
17	19500	31430	26455	11 one							
15	45000	45.50	1. 200		18 600	1454	12477	. 0			
20	51200	44 100	48.301	2:850	21 00C	15 440	\$4176	11.100	9.500		
_	-	4.400	*# 40°	FC 470	24.8	2:1.0	11.002	14300	124-		
22 24	70 555	44400	4* 500	1* 200	\$1.50c	26.000	*****				
24	82.600	5 4800	41000	42 500	10.000	24.800	22 000 24 100	2 * \$765 2 * 550	। व । स्टब्स् । व 4 क्य		

Del Umfangalast für den Innenring Innenring lauf um oder Innenring stahl still.

Approved For Release 2002/01/04: CIA-RDP83-00415R014100130004-6

Approved For Release 2002/01/04 : CIA-RDP83-00415R01410013000

Ring-Kegellager protein Regulation in Sischwere Relhe

Reihe 313 DIN 720 Maßreihe 13

Ring-Kegellager

Reihe 313 DIN 720

s · Pr · y · Pa

fn . C

B-B 313

	Reihe 313
dille	

Kurz-	l					M	60	in mm				DIN-	Gewicht	Ferti-
	٥	!	D	, b	,	ь		Größi-) 6	Tragzehi C in kg	kg Stück ce.	gruppe
-	25	-	61	1	,	. 1	5	18.5	: 18		0.5	2500	0.225	<u> </u>
±2	30		72	2	9	. 1	ā	at	30.5	1 2	0.8	3150	9.372	1 1
- 47	55		80	2	1	: :	5	. a3	22.5	2.5	0.8	3800	0.500	1 3
		1						i	-	, -		, ,	0.300	, ,
	40	1	90	- 2				₹ 05.5	25	2.5	. 0.8	5000	0.685	١ ،
16	4.5		100	2		1		27.5	87	2.5	0.8	8 400	0.915	ĺí
14	50	1	110	2	7	, :	•	29.5	1 39	: 3	1.0	7350	1.16	1 1
101	**		120			2		32	31			1		1
12	55		130	- 5		- 3					1.0	8 300	t.49	3
. 13	85							34	53	3-5	1.2	10000	1.83	3
	•,	1	140	3	3	2	3	36.5	35.5	3-5	1.2	11600	2.25	1
21314	70	ş	150	* 3	5	2,	5	38. 5	37-5	3.5	1.2	13700	2.82	;

der Reihe 313 sind nur sugelessen, wenn die Verwendung von Lagern der Reihen, die khränkungevermerk Iragen, einen nicht zumutberen Nechteil bedeuten würde.

,	ideelle konstante Lest in kg		P
?,	wirkliche Rediellest in kg		•
?•	wirkliche Axiellest in kg		
	Tragzahl nech DIN in kg Beiwert für die Umrechnung	for	7
	von Umfengelest in Punkliest	P > P,	05 1
	Beiwert für die Umrechnung von Axielleet in Rediellest	P > 1.4 P.	0.7 %
	- Le benedeuerfaktor		
h	Lebensdeuer in Betriebsstunden		
	Umdrehungen, Minute		
	Drehzehlfektor		, r
	- Dienteulieurôt.		

for	z
P > P,	0.5 1
P > 1.4 P.	0.7 Ps

Lager	7
31 105 bis 11 114	0,71

Kenn- ziffer		Relative Tragfänigkeit C. In kg für eine Lebensdauer Liu von 500 Betriebsstunden bei in Ulmin.														
	15	30	50	100	140	300	500	1 000	1 500	3 000	§ 000	* 500				
80 84 97	3250 4100 4940	2 575 3 240 5 9 20	2 300 2 780 5 340	1 725 2 180 2610	1525 1920 2120	1300 1510 1820	1000	#04 1015 1220	709 Ego 1070	550 700	470	4:2				
80 E	6500 8520 9550	5 150 6 600 7 5 60	4 400 5 6 3 0 6 4 7 0	3450 4415 5070	3050 3900 4480	2 400 3 070 3 5 10	1042 3810 1000	1 620 1 060 2 160	1410	1 42% 1 6 40	*15 942					
11 12 13	10 800 13 000 15 100	# 550 10 300 11 950	7300 8800 19200	\$710 6900 \$000	5 060 6 100 7 0\$0	3980 4800 5560	3 380 4080 4 *10	26~0 3 lac 1~40	2140 2140 1120	1 #40 2 ##0 2 ##0						
14	17200	14 100	12050	9450	\$ 140	6460	1600	4.450	1860	LS4						

Bei Umfengslest für den Innenring: Innenring i um

 der Innenring elekt at it.

Rife staht über die Stimflache des Ausenringen von Geliche Seine 2002/01/04: CIAPPP83-0041-5R012100130004-6 aust mit glocher Dretzehlum.

Lest elekt stat.

Lest elekt stat. GALT

111

Approved For Release 2002/01/04 : CIA-RDP83-00415R014100130004-6

Ring-Tonnenlager zweireinig

mit zylindrischer

Reihe 222

Reihen 222, 222... K DIN 635

Maßreihe 22

			in mm		DIN- Tragzahi C	Gewicht kg-Stück	gn	gungs- uppe
668 · K	1 0	D	ь	г	in kg	Ce.	222	222 H
BI-K	80	140	33	. 3	9500	2.16	1	1
17.6	1 15	150	36	3	12 200	2.75	l i	
A Second	90	180	49	. 3	15 500	3.55	1	ī
20 Sept K	100	180	46	3.5	21200	5-15	١.,	
K K	110	300	53	3.5	27500	7.40	1 ;	•
H.X.	130	315	53 58	3.5	34000	9.21	l i	i
	110	230	64	4	42 500	11.4	Ι.	
	140	350	68	7	48000	14.5	1:	:
The second second	150	370	73	- Ā	54000	18.5	1 :	
Mark Mark	160	290	E0		67100	23.2	,	
野 . MK	179	310	86	- 7	73500	29,0	1 1	- 2
36 K	180	320	86	3	75000	10.2	1 ;	,
MARK SPEEK	193	340	92	_	R1000		1 .	-
- 40 K	200	160	60	:	91000	37.0	2	2
44 11K	210	400	10#	:	115000	44.5	2	2
	1			,	1	01.3	3	3
Marie Marie	240	443	120	•	146 000	\$1.0	3	3
	265	485	1 (0	6	1-0000	109	í	í
	283	500	1 30	8	140,000	113	3	1
22 200 K	100	540	140	6	204000	141		
# NK	320	135	150	š	2,6000	123	3	1

AN 48 47 48 45 45 42 42 47

Ring-Tonnenlager zweireihig, Reihen 222, 222.. K DIN 635

- ideelle konstente Last in kg wirkliche Rediellest in kg wirkliche Axiallest in kg Tregreht nach DIN in kg Tregreht nach DIN in kg Beiwert für die Umrechnung von Umfengelest in Punktlest Beiwert für die Umrechnung von Axiallast in Rediellest Lebensdeuerfektor Lebensdeuer in Betriebsslunden Umdrehungen Minute Drehzehlfaktor

Ι.	1	'n
*	1.4	2

Leger	,
22 216 bis 2221*	4 6
2221# bil 11 110	4.4
22 222 bie 12 264	4.8

fn . C f_

g . Pr + y . Pe

Kenn-	1	8		Fregfishig on 500					•	
ziffer	15	30	50	100	150	100	310	1 000	1100	16.0
16	12 340	9.780	8 360	6 560	5 800	4 560	3116	3 060	2 680	2 11
17	14850	12600	10750	8 400	7 450	5850	5000	3920	1449	2 *0
18	20 300	16 100	13700	10800	9 500	7500	6 360	5000	4 400	145
20	37600	21 860	18650		12940		1660	6810	49*5	
22	35 800	28 400	34 200	19 000	16800	11200	11 200	# # 1 50	- 416	
24	44200	35000	30 000	13 400	20 800	16 300	13900	11000	9800	
26	55 000	43750	37 500		25 900	20400	1-350	13760	12 000	
28	62 400	49500	42 279		19 300	11000 .		15450	1150	
30	*0000	55 600	47500	37 300	33 000	35 000	32 000	17 400	15200	
32	8<000	67500	57600	45 200		31 400	25 800	21 100	1846	
34	95 500	75 500	64700	50700	44800	35 100 .	90 000	21600		
36	97 500	77 300	66 000	\$1700	45700	J6 000	3C 6G0	34 300		
38	108000	84 500	73 000	47 100	50600	39 800	33 200	25 700		
40	121000	65000	21000	64000	57 000	44 500		30 000		
44	153400	121 500	104000	81 500	73 000 ,	56630	48 150	18 000		
49	190000	150000				10 000		4* 000		
52 58	221000	175000	150 000	117000	104000		69 500			
56	234 500	185000	159000	124000	110000	26400	*3500			
60	261000			141 000			B1400			
64	307000	241000	207 000	163 000	144 000	111000	66 500			

TOVED POTRelease 2002/01/04: CIA RDP83-00415R074100130904-6----

113

Approved For Release 2002/01/04 : CIA-RDP83-00415R014100130004-6

Ring-Tonnenlager zweinsteig Reihen 223, 223_ K DIN 635

Bookel as talk for Reihe 223_K

		Made			Dife- Traggeri C	Govient ne Stilet		E+* g+-
	4	0		1 .	in by	COL.	223	277 . 1
	=	-	. 13	2.5	6 3000	1.03		
	#		- 5	3	11 000	1.65 1.90	:	
	55 66 65	120	2	3	12900	2.40		
	4	130	. 2	3.5	17600	3-ec	:	
	20	150	52	3-5	12.600	435		- 1
	2		. 35 #8	3.5	27 200 27 500	5.40 6.77	:	
	. 9	pho.	•		×	*.40		- 11
TANK PERMIT	-	315	4	1	37 900 47 500	5.5a 13-0	2	
- m	330	340	No.		95 cm	18.1	i	
The state of the s	130	200	93	*	44 000	22.1 25.5	1	
12	40	300	102	9	84 50c	35.6	;	
	2	320	70E	:	95 5C0 305 000	53.4		; [
	Andrewick &	pin pin	130	,	122 500	95	,	: 1
	-	300	:36 :32	I i	132 000 146 000	10.0	3	-3
	-	400	198	.	196000		3	
St Pasto	-	**	145		781680 216480	93.5 122 154	1	- 1

Ring-Tonnenlager zwe rein g. Reihen 223, 223_K DIN 635

Can a constante Lean in egin mis otra Radia sacilin egin mis otra Radia sacilin egin mascari m

22 144 9-5 22 196

Kana. Z ^{el} ga			B gia	in the	'Angres 500 Beb	-	*** *** *** **	6 E-86644 8 W Wild	14.4		
	15	347	•:	100	1 50	300	700	1 800	7 NOS) acc	-
-	1 200		444:	4 140	: 5.40	1 200	1 1-0	11:4	:4	1 407	t rike
	20 400	1 340		1 130	4 81:	3147	126	1.534	360		1.00
10	24 397	21,300	9.734	500	6 %	9 9280	4 500		7 200	1 444	
15	24 ~ :	13300		8 400	. 1	6 200	r pic	4144	1410	2 944	
12	36,107	14:50	19 700	14 April	6.573	4.24	5 166	639	4 400	1 464	
13	22 1444	1 - 500	1,500	12 100	1: 400	8:40	4 4 * 5	9 88-4	4 500	1 -4:	
н	29 100	1 9 000	16 750	17 700	13 *50	sa koc	4754	- 100	f tos	4 994	
15	90.2400	23,900	30 410	75 000	14:51	12 200	1 506		4 5 64	4 2 4 5	
H	35800	28 at 1	24 315	16 000	25 Birt	1 9 2006	11 304	11:5	* 46	1110	
17	36 000	MC SCC	26 at 2	25 776	18 990	ta and	121.00	4 64:	8 460		
14	46 300	96 6cc	37 200	24 500	31 650	1114	14 500	11 400	12000		
-	F4 900	a4 90%	ec-uc:	11 800	3" 8:25	21 444	1 640	14542	11 506		
22	To Bac	F* 600	#5 NOC	si tec	14 300	26 sec	23 3:06	18 00c	t s bas		
24	23 516	76-5KK	40 500	1" DEC	47 4-25	14 500	p= \$ 70	31 940	1 300		
*	POR 90%	No poor	64 - 54	54 000	47.5	F 174	31 500	25 000	11 200		
- 28	178 2000	\$5.00	75 000	#4 "CC	53 PGC	41 400	14 306	an And	La apr		
- 30	124 BOC	99 90%	By yes	66 500	54 8 22	and secur	14 400	3 : DOC			
22	1 yr 30:	109,000	\$1 HOC	*+ 500	64600	g) 364	41 300	34 190			
24	: 98 924	125-000	101416	\$4,000	*4 500	48 400	****	14.256			
_ × ;	1-1-20	THE DOC	:14000	41 000	Sc Sec	91 400	146 36	44 446			
-	196 000	19000	124 424	101 000	\$4,000	75.000	79 400	200			
	201 900		1 pr 20:	:05 000	64 800	* 5 000	61400	46 880			
	214 100	780 SCC	161 304		113 905	10 total	* / 200	74 332			
-	244 000	222 Orc	190 000		L1 000	1 Get 2556	99 200				

Approved For Release 2002/01/04 GIA RDP83-00415R014100130004-6

Scheiben-Rillenlager einseitig wirkend Reihe 511 DIN 711 Ganz leichte Reihe

Maßgruppe 1

ener Gehäusescheibe Reihe 511

Kurg-			faße in	mm,		DIN- Traggeti C	Gewicht ke Stück	Fert-gunga
ing desiring	4.	D _p	н	de	, ,	in kg	CA.	Bruppe
#19	20	35	10	21	0.5	965	0.043	-
2	25	44	11	36	1 1	1220	0.061	I :
_	30	47	11	31	į I	1 320	0,072	1 :
OL: 97	35	. 53	12	36		1460		
	40	60	13	41	1:		0.094	1 1
-	45	65	14	46	! :	1960	0.127	1
8 1 10				1	•	2040	0. I 5E	
2,1	30	70	14	51		3 240	0.160	l .
12	22	78	. 16	56	ı	2100	0.250	1 :
		25	17	61	1.5	1200	0.306	
84113	45	••	12	66				
14	70	93	12	71	1.5	3350	0.358	1
18	75	100	. 19	76	1.5	3450	0.378	,
44114				, ,,,	, 1.5	3650	0.438	1
	80	105	19	ł 81	1.5	3750	0.451	
17	85	110	91	36	1.5	1900	0.481	
-	90	130	22	91	1.5	5000	0.719	
\$41 30	100	235	35	102		1		•
	110	145	35	11.5	1.5	6950	1.05	1
2	120	255	35		1.5	7350	1.15	1
244.00			-		1.5	7650	1.24	
413	130	170	30	132	1.5	8300	1.96	
=	140	180	31	142	1.5	9150	2.17	
- 1	150	190	31	152	1.5	9650	2.30	:
- 81138 ' [160	300	31	162	1.4			•
1	170	115	34	172	1.5	10000	2.33	2
- #	180	215	- 2	182	1	11 800	3.31	2
New 1		_		,	•	12 000	5.48	2
Section 1	290	340	39	192	3	14600	4.06	
	300	250	32	104	a i	15000	4.34	3

Scheiben-Rillenlager einseltig wirkend Ganz leichte Relhe

Reihe 511 DIN 711

- wirkliche Axiallast in kg Tragzahl nach DIN in kg Lebenadsverfaktor Lebenadsver in Betriebasfunden Umdrehungen Minute Drehzahlfaktor

4.	f _R · C
10	P.

Kenn- ziffer	Relative Tragfählgkeit C. in by für aine Lebenadauer Lie von 500 Betriebsstunden bei in U min														
	15	30	50	100	150	100	*60	1000	1 466	1000	9 000	* */*			
04 95 66	1252	993	855	660	188	461	194	310							
95	1 586	1 256	1075	842	-44	486	500	191	344	221	141	144			
	1715	1 36/3	0811	910	806	634	542	425	344	201	2 10	8700			
07 08 09	1900	2 500	1 28 5	1010	800						74-				
06	1440	2 025	1 725	1 350	191	*00	546	1.0	412	124	2*c				
09	1100	2 140	1830	1415	1270	640	\$00	610	553	434					
		-	-	***	1270	1 000	850	6°0	585	452					
10	1910	3 300	1970	1444	1 166	10"5	911	721	6.2						
11	3520	2 150	2 380	1 860	1650	1294	1 100	8-4	*60	16-					
12	4160	3 300	2820	2210	1050	1545	1 110	1010	900						
13	. 50	3410	2950	2 310	3 040	1610									
14	4 100	3550	3040	3 .80	2 100	1910	1 3"0	1 680	945						
15	4750	3 *60	3 210	3 520	2 1 20	1655	1410	1110	970						
				2,20	2 2 2 0	1-50	1 493	11-1	1010						
16	4880	3 660	3 300	2 190	2 200	1800	1530	1212	1060						
17	5000	4015	3430	2600	2 180	1870	1 590	1 255	1 160						
15	6 500	\$ 150	4400	3450	3050	3 400	2040	1620	1100						
20	9650	7150	6100	4800	4 250	3 140									
22	9550	7 160	6470	5070	4480	1510	3 840	2 240							
24	9950	7880	6750	5 2 7 3	4660	1680	1120	2 360							
26	11 430	9 010	7740	6070											
24	11000	9400	8050		5 360	4 22 5	3 500								
30	12 520	3930	8 490	6 100 6 660	5 580	4 400	3 49								
	,	. 4 10	- 490	0 000	5 880	4610	3040								
32	13000	10,70	2 20c	6400	6100	4800	4050								
34	15340	12157	10 400	8150	7 300	1660	4815								
36	15600	11400	10 500	8 100	7 320	5 60	4900								
38	10 000	15000	12850	10100	8 900										
49	19 100	15450	13 200	10150	0719	7 000									

oved For Release 2002/01/04 : CIA-RDR83-00415R014100130004-6

Approved For Release 2002/01/04 CIA RDP83-00415R014100130004-6

Scheiben-Rillenlager Reihen 512,532,532 U 2 DIN 711
Me8grupps 2
Reihe
512
Reihe
532

in the second	Kerto	alohen			٥.				DIN-							
	1.832	632	+U2	4.	٥,	Н	de	•	h	A	R	d.	D,	Н,	٠.	in kg
	Men	PR 91	+ U 394	30		14	22	1	14.7	18	16	30	43	1.		
20	fre D	. 2		85	47	15	37	1	16.7	19	40	36	50	19	5.5	1 405
	45.7		-) 30	55	16	32	1	17.3	22	45	44	35	20	5.5	1960
	1 100	M207	+ U 197	135	63	18	37	1.5							3.3	1 900
				مة ا	- 44	10	44	1.5	19.9	24	30	48	65	22	7	2610
			- "	45	73	30	47	1.5		22.5	56	55	72	23	7	3050
-	-			100			•	3.3		26	56	60	78	24	7.5	3250
-8		-	+ U 210	50	78	23	52	1.5	23.5	12.5	64	62	82	26		
*	111	11	55	55	90	25	57	1.5	27.1	35	72	72	95	30	7.5	3 450
7	-	1.8	12	60	95	. 36	61	1.5	38	32.5	72	78	120	31	3	4900
FD.	A22 13	SM 12 -	U 213	65	100	27	67	1.5	28.7					٠,,	,	5 300
75	54	14	14	70	104	27	73	1.5	28.2	40	80	82	105	32	9	5 100
	. 15	18	1.5	25	110	27	77	1.5	25.3	38	80	28	110	32	9	5 700
-	-							,	24.3	49	90	92	115	32	9.5	5850
77	77	milities.	U 216	10	115	28	¥8	1.5	39.3	46	90	0.8	120	33	10	
-	1 44 1	17	!7	85	125	31	##	1.5	33-1	52	100	105	1 10	37		6 100 *200
24	-	10	1.8	90	135	35	93	2	34.5	45	100	110	140	42	13.5	8610
-	100 M	M#+	U 200	400	250	18	105	2						••	13-31	90,0
3	11	-	13	176	160	18	111	•	40.9	52	112	125	155	45	14	10800
*		24	- 3	130	170	39	125	í		65	135	135	165	45	14	I1 400
-	-						•••	•	40.6	61	135	145	1-5	46	15	11800
=	-3	~2	· U 25	130	190	45	133	2.5	47-9	67	340	160	195	53	17	
т.	- E	- 2	- 21	140	300	46	143	2.5	48.6	87	160	170	310	33	13.1	15 600
-	· •	-	-	150	215	50	153	2.5	53-3	79	160	185	225	60	20.5	11000
₩.	500 M	開放 +	U 222	160	225	51	161	2. 5					•	•••	٦٠,٠١	1.000
蠶.	24	34	24		240	33	173		54.7	74	160	190	215	61	21	1 600
₩;		36	35		250	56	181	2.5	54.7	91	081	300	250	65	21.5	20 000
m '	204 M				-	-	,	٠.,	58.2	112	200	310	250	66	21.5	20 800
Z-		M M +	U 200		370	63	194	3	66.7	98	200	210	280		. 1	
≖ ∶	2	77	346	300	360	61	304	3	65.3		321	240	290	73	23	34500
		**		230)00	63	224	3	65.6		225		110	74	31	25 000 25 500

Scheiben-Rillenlager Reihen 512, 532, 532 - U2 DIN 711

25X1A

Reihe 532-U2 Unterlagscheibe nech DIN 5414 P. wirkliche Asia tast in bg
G. Tregrahl nech DrN in kg
fu. — Lebensdeuerfaktor
L. Lebensdeuer in Betriebsstützen
n. Umdrehungen Minute
fi. — Drenzen faktor

f. · C

mil kuşelişer Gehäusescheibe und Unterlagscheibs

Kann- ziffer	k	Gewick g Stück	c ca.	Partig	unsts: 532		elive Tr	500 B	e it C, in triebsst	kş für e undan	na Lei	ANACI M.A	Lyer
	512	532	532 + U 2	512	532 + U2		50	100	300	500		1006	1000
94	0.087	0.08	5 0.105		,	1820	1310	956	8-3		-		-
85	0.126	0.12		l i	3	3 140			864	(*)	450 580	516 406	35)
•	0 157	0.16	7 0.300		ŝ	3 550			940	8.0	910	433	3 18 364
97 08 08	0.236	0.23	5 0.393	١,	3	3 450	3110		1320	1680			,,,,
- 00	0.290	0.29		Ιī	ż	1960			1 465	1345	810 680	\$96	
*	0.340	0.330		l i	3	4210			1 564	1330	1050	34	
10	0.414	0.40	0.102	١,	,	4500	1040	2110			-		
l ii	0.615			i i	3	6 170	4 110	1110	1660	1 413	1110		
12	730			l ;	3	6000	4560	1660	3 140	3 000	1 585		
13					,	~~٠	4 700	3 900	3 ; 40	2160	1 -04		
14	0.011			1	3	- 150		3800	2640	3350	1000		
13	0.858			1		430	₹ 200	3 9 3 0	3 * 40	3 110	1814		
	0.911	0 901	1 113	1	3	*6∞	5150	4040	3810	2 590	185.		
16	1.00	0.98	1.302		3	****	1160	4 300	3414	3 5∞	1960		
17	1.36	1.35	1.642	i	í	9350	6 149	4950	1460	3940	212		
18	1 86	1.86	2.28		3	11 220	600	59"0	8156	3540	2.784		
20 22	3.49	2.47	2.97		3	14040	9 500	450	4180				
22	2.70	2.61	3.185	á	- í - I	14800	10000	****	140	4442	1487		
24	3.02	2.97	3-615		i	15 340	10400	1150	1660	4815			
26	i							-					
23	444	4.33	5.33	2	3	19 500	13300	10 150	* 300	8 130			
30	57	5.5	7-37	2	3	20 300	13 700	10800	7 500	8 160			
				•	3	23 100	15000	11700	8 1 60	4450			1
32	6.67	6.23	8.04	2	3	22 900	15366	13154	8450	* 300			-
34	8.28	7.85	9.99	2	3	35 000	17600	11866	9 600	8 160			
36	8.85	8.25	IL 52	2	3	87000	18 100	14350	10 000				1
36	11.9	11.4	1405	2	,	11 800	11600	16 006	11170				1
40 44	124	11.3	14.50	ā	5 I	32 500	23 000	17250	13000				
44	13.7	12.8	16.10	5	i i	34 500	21 100	18 300	13700				

Zur Aufnahme geringerer Längzerücke und genauen existen Fizzerung der Weite bei hoher Drengant.

Approved For Release 2002/01/04 : CIA-ROP83-00415R014100130004-6

25X1A Approved For Release 2002/01/04 : CIA-RDP83-00415R01410013000

Scheiben-Rillenlager Rethen 513, 533, 533 + U3 DIN Mittelschwere Reihe

Reibe 533+U3 Unterlagscheibe nech DIN 5414

wirkliche Axialiant in kg Tragzahl nech DIN in kg Lebensdauerfaktor Lebensdauer in Betriat Umdrehungen Minute Drehzshifaktor

mit kugsliger Gehllusesche und Unterlagscheibe

Kenn-		Bowich Stock	ca.	Partig	≠ngsgr. 533		h von 5						
21TT GP	613	533	533 + U3	613	833 + U3	13	50	100	100	(00	1 000	11000	100
65	0.193	0.193	0.137	1	•	2960	2000	1570	1 100	930	-15	505	
	0.288	0.288	0.344	1	3	3640	2460	1 8 30	1 343	1140	900	540	924
er.	0.417	0.427	0.511	1	3	4675	3170	3 48 0	1730	14"0	1160	Bac	
	0.588	0.608	0.728	1	,	5850	1960	1100	2150	1840	1450	1000	
	0.715	0.735	0.895	i	á l	6 900	4669	1660	2540	2160	1705		
19	.07	1.08		1	Š	8 200	3550	4 330	3 6 3 4	1510	2010		
11	34	1.50	1.48			6910	6730	\$ 180	1610	1110	2453		
12	1.53	1.57	1.88		3	10 600	7170	3630	1930		2623		
13	1.67	1.71	2.05	1		11000	7500	5862	4100	1480	1 *43		
34	2.30	1.29	2.10	1	3	12700	2610	6 750	4 100	4000	1160		
15	2.87	2.91	3.46	1	5	14550	9850	7730	5 343	4580	1610		
16	2.9 I	3.05	5.62		3	15 100	10100	8 000	5 560	4750	1 40		
17	3-90	3.87	4.68	3	3	17150	11600	9 100	4 140	5 400	4250		
18	4.76	4.15	4.99	2		17150	21620	9100	6 140	5 400	4150		
25	5.45	5-44	6.39	2	3	30 300	13700	10800	7 300	0 160			
25 24	7.87	7.78	9.06		اع.	21400	15500	12 400	8640	* 150			
34	10.9	10.7	13.74			38 000	19000	14900	10 400	S Lao			
	13.3		15.53		3	30 300	30 400	15 000	11 100	# 500			
22	11.0	15.5	18.4		,	33200	12800		12 500	14 600			
38	16.7		19.31	2	3	35 800	24 200		1 1 300	11800			
	21.5	21.5	25.6	3	3	41 600	26 200	22 100	15.400				
34 35 35	32.5		27.1	•	,	49 500	29 500		16 100				
	28.7	27-4	32.7	3	3	46 750	51700	24 500					
35	36.7	37.0	43.1	3	3	55000	37 500	29 300	30 400				
*	43-7	43.7	52.2	١,	5	80 500	41000	12 000	22 400				

Approved For Release 2002/01/04 : CIA-RDP83-00415R01410013

3 35						Ma6e i	n m	m					DIN- Tragzahi C
T 🗀	•	Δ	н	4	-	1	A	R	d,	, D.	H	۵,	in kg
7	23	60	24	27	2.5	36.4	19	50	43	62	39		3350
	90	70			2.5		30	34	50	75	33	9	4 400
	35	60	, 32	37	2	. 34.0	23	64	58	*,	: 37	10	5 300
	40	90	36	42	3	38.3	36	72	65	95	42	12	6800
	45	100	39	47	' 2	42-4	39	B q	. 72	105	36	23.5	7800
الخالد	30	2 20	43	52	2.5	45.6	35	90	80	113	50	14	9500
mi l	45	120	4	57	2.5	1 50.3	28	90	22	123	**	15.5	10800
		130			2.5		34	100	91	145		16 1	12700
il i	65	140	56		3	60.3	40	112	100	143	63		14000
	30	190	60	73	3	62.6	34	122	110	115	60	19.4	15 300
30		260	69		3	60.0	2	125	115		7.5		17000
		170	4	. 83	25	72.3	36	125	125	173		22	18 300
371	85	28e	72	36	3.3	77.0	47	140	130	183	51	23	19600
-181		190	77	43	3.5	81.2	40	140	140	199		25.4	31200
44	-	240	83	103		90.0	50	160	155	320	98	27	26 000
	110	330	95	223	4	99.7	59	180	170	240	109	24	29000
	120	290	102	123	5	107.3	70	306	185		118	32	31 000
24	130	270	110	134	\$	115.2	58	200	300	280	128	38	38 000
	246	280	114	144	3	117.0	23	225	206	300	111	38	35000
-81	150		120			. 123.0	60	225	221	310	140	41	41 500
1000	100	300	130	144	6	133.3	14	250	240	330	t50	41.5	48 000
			135			141.0	74	350	255	350	116	46	53000
-300-4	180	Me.	140	184	6	148.3	97	280	470	170	164	45.5	31000

Scheiben-Rillenlager Rethen 514,534,534 ซ U4 อเหว้าเ Schware Rethe

wirkliche Ax alfazt in ing Tragashi nach DIN in ing Lebensdauerfastor Lebensdauer in Betrebszlunden Umdrehungen Minute Drenzahifistor

Kenn-		Swicht Stück e	:a.	Fertig	634 634	Ralatio deuer	re Tragi La von f	Shighelt SOO Betr	G. in ki I ebsei ui	für e- nden bi	ng Leb H n U,	Min Min
zilfer	614	634	534 + U 4	B16	+ 44	15	46	100	100	100	1000	1000
65	0.368	0.178	9.45	,	3	4350	2950	2310	1010	11*0	l olic	744
- F	0.465	0.565	0.665		á l	5120	3 870	3040	2110	1 200	1 430	***
97	0.848	0.848	1.018		3	6,00	4660	3 660	2 540	2100	1 -04	114
93 l	1.22	04.1	1.45	1 2	,	R250	6 000	4150	3 840	# *\$c	2 190	
، تقد	1.58	2,62	1.03	1 1	3	10 200	6850	4.400	3 7 50	3 180	2 4 16	
10	12	2.10	2.51	l i	á	12 140	N jác	0 565	4540	1080	3.00	
- 11	a.#2	2,73	3.26		3	14040	9 500	* 460	£ 180	4 430	2 48 %	
12	3.51	3.44	4-13	l ā	í	16 500	11300	2-95	6100	1 300	4 1/00	
13	4.47	4.47	5.18	1 2	í	18 300	12 300	9 660	6.36	1 +10	4 500	
14	5.48	5.18	6.17] _	3	19 900	13 500	16.600	1350	6250	1930	
15	6.75	6.54	7.87	1 3	î	33 100	15000	11 700	2160	6440	5.486	
įs.	7.97	7.84	9.32	1	3	33300	16 100	13 630	\$ Boc	7 400	4 986	
17	9.45	9.16	10.98	,	. 3	25500	17250	13500	9 400	\$ 200		
18	11.3	10.9	12.82	1 1	3	27500	12610	14 640	10 300	2 660		
20	15.0	14.9	17.78	l	9	33500	2 2 FOO	12 000	12 500	10600		
72	20.2	20.1	23.79	l,	3	11500	25 100	20 000	13900	11 800		
54	23.5	25.2	29.19	1 3	í	40,000	27 100	21 400	14 900	11792		
27 24 26	32.0	31.1	37-54	1 5	í	49 400	33 400	26 200	18 200	14 500		
	343	31.3	40.14	,		49.400	33.400	26 200	18 200			
26	41.3	40.4	48.62	15	í	54000	34 500	# 65G	19 900			
20 22	51.0	\$1.0	60.50	1 3	í	62,400	42 300	\$3 100	33000			
34 36	61.0	15.0	68.0	١,	3	69 000	46 600		25 400			
36	70.5	70.0	82.7	3	•	74 000	50,000	34 100	3- 100			

Approved For Release 2002/01/04 : CIA-RDP83-00415R014100130004-6

pproved For Release 2002/01/04 : CIA-RDP83-80415R814188

100								Mas	e in	mm						DIN-
Ď	UL.	•	de	D,	Н		d		r,	h	R	d _u	۵.	8,	н	
: 1/2.	100	30	25	53	39	1 7	- 32	1	0.5	32 6	45	42	55	5.5	37	1950
25. A.		35	, 30	62	34		37	15	0.5	37 8	50	48	65	7	42	2650
-	1 al	40	90	, 44.	36	į	42	1.5	1	38 6	56	55	72	7	44	3 650
1 1		45		73	57		47	1.5	1	19.6	<6	60	72	7.5	45	3250
-		50	. 40	78					1	42	64	62	82	7.5	47	3 450
31	<u> </u>	5.5	45	90	45	,10	57	1.5	1	49 8	73	72	85	9	55	4900
- ni	110	60			46	10		1.5	1	50	72	72	100	9	56	5 300
	_13	45		100		10		1.5	1	50.4	80	82	105	9	57	5 500
	28	70	55	103	47	, 10	72	1.5	1.5	30.6	* \$ 0	88	110	9	57	5700
	134	75		110		10	77		1.5	49.6	90		115	9.5	57	5850
	-		65			10			1.5	51			130	10	58	6100
	July 6	-5	70	123	, 55	, 12	82	1.5	15	59.3	100	105	130	11	67	7 300
	130	90		135		14		2	1.5	69				13.5	76	8650
-		100	25	1 10	- 67		103	2	1.5		112				81	10500
т.	1	110	85	160	97	, 15	.113	3	15	714	125	135	ths	14	81	11 400
- 1	ш.		100				123			716	125	145	175	15	82	11800
	-		119				133	2.5	2	858	140	160	195	17	96	15000
200		140	130	300		, 18	143	2.5	2	86.2	160	170	210	17	99	15600
g tal			110				153	2.5		9.5					109	17000
-			140				183			97.4					110	17500
	S-399117.4			340	97	21	173	3.5	2	1044	180	200	250	21.5	117	20 000
4.		ilo.	150	250	98	31	181	3.5	3	102.4	300	210	260	21.5	218	20 800
		Ten.	HA	370	100	24	194			116.4					131	14 500

m Massividfig geliefert. Größete Legel auf Anfrege.

715 Scheiben-Rillenlager Reihen 522,542.542 · U2 DIN 718

 $f_n\in \boldsymbol{C}$

Kenn-		Gewich Stück o		Fertig	ungage 542				et C _a in i				
2iffer	872	542	542 + U 2	872	+ 0.2	15	50	100	tor	too	1,000	Lone	4 00
86	0.2 7	0.304	0,117	2	3	2550	1.35	1 150	940	Sec.	# to	415	164
97	0.43	0.461	0.519	2	3	3450	2 3 10	1840	1140	1 480	ft.	Eggl	,
95	0.572	0.580	0.650	3	3	3950	2613	3 100	1445	1 143	35	6	
oo 1	0.650	0.650	0.737	1 2	3	4210	2 \$6o	2 240	1 464	1 110	1010	-10	
ĬĎ (0.750	0.718	0.816	· 3	í	4 500	1040	2 180	1003	1410	1110	• -	
ii	1.17	1.23	1.382	2	3	6 370	4 310	1150	2 350	1 000	1480		
12	1.34	1.32	1.45		3	6900	4 660	1660	2 140	2 (50	1704		
13	1.44	1.42	1.6	1 2	3	7150	4810	1800	2640	4 250	1770		
14	1.56	1.56	1.245	2	3	7 400	5000	1930	2740	2 130	1815		
15	1.67	1.64	1.852		3 .	7800	6110	4040	2210	2 190	18%		
ii.	1.80	1.76	1.977	2	š	7000	1 160	4 300	3 4 10	2 100	1960		
17	5.14	2.46	2.752	3	' ā ˈ	9 350	6 340	4950	3 460	4040	1 110		
16	3.41	3.42	3.84		3	11 220	7 600	1970	4110	3 5 10	2750		
20	4.54	1 64	5.0	2	. 1	14040	9 500	7.460	S I B o	4440	1480		
22	4.95	4.82	3.375	3	3	14800	10 000	7870	3410	4660			
24 38	5.55	9.45	6.105	3	3	15340	10.400	\$ 150	5660	4815			
36	1.24	101	8.01	j .	ä	19 500	13 200	10350	7 300	\$ 130			
25	8.95	\$.74	9.95	,	5	30 300	13700	to Boo	7 500	6 460			
36	10.5	10.2	11.89	,	3	12 100	15000	11700	8 1 6 0	6950			
32	12.3	11.0	12.81	3	3	22 900	15 500	11150	2450	* 100			
34	15.3	13.5	15.64	3	3	26 000	17800	11100	9 600	8 (6-2			
36	16.0	11.0	17.11	3	3	17000	18 300	14350	10 000				
36	21.7		23.65	1	3	11 800	21 Ago	16 900	11 770				

Zur Aufnahme geringerer Längsdrücke und genauen au jempfehlen wir Ring-Rillenfager und Ring-Schräglager.

Approved For Release 2002/01/04 2014 RDP83-00415R014100130004-6

Approved For Release 2002/01/04 : CIA-RDP83-00415R014100130004-0

Scheiben-Rillenlager Reihen 523,543,543 - U3 DIN718 Mittelschwere Relhe

Reine 543 . U3

Unterlagezcheiban nech DIN 5414

wirkliche Axialazt in kg Tragzahl nech DIN in kg Lebensdauerfaktor Lebensdauer in Betriebeztungan Umdrehungen Minute rifikliche Axiallazt in ka

·	1,	Dreha
mit kugetigen Gehäuzescheiben und Unterlagsscheiben		

Kenn- ziffar	, k	Gewic Stück	CR.	Fortig	ungegr. 843		live Tra	gfähigk	eit C. in Irlabze	kg für e	ine Lei	benade	10 er
	623	543	843 +∪3	624	543 + U 3	15	50	100	300	500		1000 11000	
96	1 426			2	3	1640	3 46:	1010			_		- (
07	0. 4	0.784	1 0.363	2	í	45.4						634	545
96	3.14	1. 18	1.35	2	í	5250						Tic	
89	1.48				,		3 903	1100	2160	1 240	1 450	1 000	
10	2.00	1.37	1.54	2	1	5900	4 553	1850	2540	3160	1704		
ii	2.50	3.84	2, 25	2	3	8233	5 5 50		3080		2030		
-	l - · · · ·	4.04	3.12	2	3	9950	6:10	5 28 5	36.0		2 45		
12	2.87	2.94	5.45	2	3	10620				,,,,,			
13 14	3.10	5.18	1.52	2			7110	5 620	3930	3310	2620		
14	4.17	4.23	464	;	3	11000	7500	5160	4 100	1415	3:40		
15				•	3	12700	# 63G	6-60	4700	4 000	1160		
16	5.20	5.35	5.93	2	3	14550	8850	7710	\$ 380				
17	5.44	5.60	6.17	2	í	15100	19300	8 300		4593	1610		
''	6.91	6.89	7.70	3	1	17 150	11 630	9 100	1560	4"50	1.10		
18	7.15	7:31	1					7 100	6 347	9 400	4310		
20	9.57	9.52	0.15	3	- 1	17150	11630	8 300	6 140	9 400	4340		
20 22	13.8	13.7	10.55	3		20 100	13700	16200	100	6 164			
		3.7	14.93	3	3	23 400	15 Boc	12400	8640	7 150			
24	17.2	18.8	30.84	5	3	28000							
20 28	22.2			í	' !	10 300	19 000	14900	10400	8810			
28	2* 9		- 1		ı		30 100	10000	11 100	9 500			
30			ī	,	ı	1100	3283S	18 000	12500	10 600			
	29.3		- 1	3	- 1	35000	34300	14 200	11300				
24	37.8		- 1		- 1	41634		33 100	11 400	100			
	19-7		1	3	- 1			33100	10 100				
36	11.0		- 1										
			- 1	•		45.50	31 700	24 #30	17 100				

wirkliche Axielisst in kg Tregashi nech DiN in kg - Lebensdeuerfeklor Lebenzdeust in Betriebsztunden

-- Umdrehungen, Minute

-- Orehgehifsktor

Approved For Release 2002/01/04 CIA-RDP83-00415R014100130004-6 Reihen 524,544,544 : U4DIN 715 cheiben-Rillenlager Maßgruppe 4 Scheiben-Rillenlager Reihen 524,544,544+U4 DIN 715 Schwere Reihe Reihe

Raiha 544 Reihe 544+U4 Unterlegecheibe nech DIN 8414 mit kugeligen Gehäusescheiben mit kugeligen Gehäuzescheiben und Unterlegscheiben

D. S. H.	OIN- TragzaniC in kg	Kenn- ziffer		Gewich Siūck 544		Fertig	ungagr. 844 844 + U4				C, in kg f bastund: 300			
75 9 62 85 10 69 95 12 77 95 12 5 86 15 14 92	4 400 5 200 6 800 - 700 9 500	06 97 68	1.07 1.56 2.18	1.06 1.57 2.20	1.19 1.74 2.45 2.62	3 3	3 3	5720 6900 8850	3 870 4660 6 000 6 850	3040 3660 4700 5400	2110 2540 3260	1 800 2 160 2 780	1 420 1 705 3 190	11.6
15 15.5 101 15 16 10* 15 17.5 119	10 800 11 "00 14 000	10 11 11	3.63 3.02 6.33	3.24 4.68 6.22	4.25 5.41	3	3 3 3	12 340 14 040 16 100	9 500 9 500	6 560 7 460 8 7 50	4 560 5 180 6 100	1880 4470 5100	3060 5480 4100	
5 19.5 125 5 21 115	15 300 17 000 15 300	13 14 15	8.03 9.71	8.10 9.61		3 3 3	3 3	18 100 19900	12 300 13 500	9 660 10 600	6720 7350	5730	4930 4930 5480	
5 22 140 5 23 150 5 25.5 157	19 500 21 260 25 000	15 17 18	14 17.5 19.6	13.8 16.5	18.12	3 3 3	3 3	23 800 25 500 27 600	15 100	13 500 13 500	8 800 9 400	7 500 8 000 8 660	5900	
27 176	11 000 14 000	20 22 24	26.6 35 44.3	26. 2	29.08	3	3	33 800 37 800	22 500 25 500	16 000 20 000	12 500 13 900 14 900	10600		
	41 400 41 400	24 26 28 30	56.6 60.8 74.1		:	3		49 400 49 400	33 400 33 400 36 100	25 200 25 200 25 10	18 200 18 200			
	¢1000 ¢1000	32 34 36	90.5 108			3		52 400 59 000 74 000	43 300 46 600	35 100 36 600	23 000 25 400 27 400			

Approved For Release 2002/01/04: CIA RDP83-00415R014100130004-6

130 95 250 177 40 123 5 130 100 270 192 42 174 5 140 110 280 196 44 144 5 150 130 300 309 46 154 5 160 130 330 826 50 164 6 170 135 340 836 30 174 6

524

129

Approved For Release 2002/01/04: CIA-RDP83-00415R014100130004-6

Zylinderwalzen, Nadein nach DIN 617

Ausführung: gehärlet, geschliffen und poliert

die Enden der Nedeln sind gerundel (keine Kuge)-fläche) und poliert

HErta:

HR. 56 . 64 Material: chromizgizrter Stehl

vem Durchmesser d. 3 mm und Länge f. 15.8 mm:

Nadel 3 x 15.8 DIN 617

Maße und Gewichte

Durchmesser D. Zul. Abw. - 6.61	Lange I, Zul. Abw. - 6.2	Varwandungs- klesaa	Gawichi ¹⁾ kg/1000 Siück ca.
2	7.8 9.8 11.8 13.8 15.8 17.8 19.8 21.8 23.8	2 2 1 3 3 3	0.190 0.240 0.290 0.340 0.390 0.440 0.490 0.540
2.5	7.8 9.8 11.8 13.8 15.8 17.8 19.8 21.8 23.8	3 3 3 3 3 3	0.590 0.300 0.380 0.450 0.530 0.610 0.690 0.760 0.840
3	9.8 tt 8 13.8 13.8 17.8 19.0 21.0	3 t 2 1 3 1	0.920 0.540 0.630 0.760 0.270 0.990 1.100 1.210
3.6	29.2 34.8	:	2.250 2.650
4	39.8	-	3 960
5	49.8		7.300

Verwandungskisssen: 1 bevorzugt verwenden

2 können bei Bederf verwendet worden

3 möglichet vermeiden

Prüfverfahren nach DIN 617

Toleranzen für Formgenauigkeit

Zulässige Unrundheit nach Zweipunktmessung: höchstens 0 005 mm Zulässige Unrundheit nach Dreipunklmessung: höchstens 0 005 mm

Zulässige Kegeligkeit höchstens: 0.005 mm Zuläseige Balligkeit: höchstens 0.005 mm

a) Maßgenauigkeit"

1. Durchmesser

Begriff: Durchmessor arithmetisches Mittet aller Messungen an verschiedenen Stellen des Umfanges und der Länge des Zylinders.

Meßgeräte und Vorrichtungen: Ebene Untertage und Fühlhebelmeßgerät mit balliger oder ebener, zur Unterlage paralleler Meßflache Skalenwert S 0.001 mm (Meßgenauigkeit otwa 0.0005 mm).

Meßante fung: Zuerst Nullpunkteinstellung des Fuhlhebels nach Endmaß eder Lehrrolle. An jedem Ende, möglichst nahe an dem Übergang der Zylinderfläche in die Rundungsfläche, sind je 4 em Umfang gleichmaßig verleitte Messungen euszuführen. Bei jeder Mossung ist die Nadel unter dem Meßetift langsam durchzurollen und der größte Zeigerausschlag (Umkehrpunkt) fastzustollen.

2. Länge

Begriff: Länge Absland zweier sonkrecht zur Drehachse liegender und die Nadel berührender Ebenen.

Meßgerät: Schraublehre mit ebenen Moßflächen, Genausgkeit 1 nach DIN 863 MeBanleitung: Nadel zwischen den Meßflächen der Schraublehre durchschwenken.

b) Formgenauigkeit"

1. Unrundheit nach Zweipunktmessung"

Begriff: Unrundhoit Unterschied zwischen dem größten und kleinsten aufgefundenen Zeigerausschleg des Meßgerates, wenn die Nadel auf einer ebenon Platte tiegt, wie bei a1.

Meßgeräte und Verrichtungen: Sehe a 1

1) Nadeln sorkfärig vor Rost schützen, sie daher nur mit ble ner Zenge oder Lederleppen

Prüfverfahren nach DIN 617

Unrundheit nach Dreipunktmessung

Unrundheit - Unterschied zwischen dem größlen und kleinsten aufgefundenen Zeigerausschlag des Meßgerätes, wenn die Nadel in einem

File und Verrichtungen: Fühlhebelmeßgerät mit ebener Meßfläche; ert 8 - 0.001 mm. 60-Grad-Prisma und Anschlagstiff, dessen

Kegeligkeit - Unterschied zwiechen den Mittelwerten, die sich aus den 4 Messungen nach a 1 in jeder Meßebene ergeben. und Vorrichtungen: siehe a 1. Medanieltung: siehe a 1.

4. Balligkeit

Begriff: Unterschied zwischen dem Durchmesser nach a 1 und dem Mittel von 4 Messungen in der Mitte der Nedel. Medgeräte und Vorrichtungen: siehe a 1. MeBanleitung: siehe e 1.

Zu den Messungen an den Enden der Nadel komman die 4 Messungen

Zylinderrollen, Kurzrollen nach DIN 5402

Ausführung: gehärtel, Mentel und Seiten geläppt oder fein geschliffen. Rundungen geglättet

Werketoff: chromlegierler Siehl

Harte: HR. 58+65

Bezeichnung einer Zylinderrolle vom Durchmesser D. 5 mm und Länge I, 8 mm:

Zylinderrolle 5 x 8 DIN 5402

Maße und Gewichte

			CHILL		
Meße in mm D _r I _r c	Gew. 1) kg/1000 Stück ce.	M	eße in		Gew 1 kg 1000 Slück
		1 10	- 10	٢	CB
5 \$ 0.3	0.75	16	16 24	6 2	34 8
5.5 8 0.3	1.00 1.46	17	17	1	19 * 42 0
8 8 03	1 30 1.78	1,	18	ī	15 7 51 0
6.5 g 0.5	1.66 2.30	19	19	ı	41 6
7 7 0.5	2 06 8.96	20	30	1	41.5
7.5 7.5 0.5	2.54 3.74	21	21	1	46 0 10 0
8 g 0.5	3 OB 4 65	22	22 34	1	64 100
e 14 os	4.40 6.80	23	83	1	74 113
10 14 0.9	6,00 8.50	24	24 36	1	14
11 11 p.4	1.10 11.00	25	25 36	1.5	95
12 18 0.8	10.4 15.7	28	26 40	1.5	167 164
13 13 0.8	13.3	24	28 44	: 5	111
14 20 0.8	16.6 23.8	30	30 48	1.5	161
014100	20.4 30 0	22	32 58	1.5	199 124

bet erfest. Approved For Release 2002/01/04 : CIA-RDP83-00415R014100130004-6

Approved For Release 2002/01/04: CIA-RDP83-00415R014100130004-6

Zylinderrollen, Kurzrollen nach DiN 5402

Toleranzen und Sorten für Dr und I,

	Nennme6 In mm	Tolerene einer Sorte in µ	Mitllere Abmaße der Sorten in μ
Ting Aug	9b. 3 - 26		-10 -14 -10 -10 -0 -6 -4 -6 0 +2 +4 +6 .8 -1
E	69. 26 - 40	3	-18 -15 -16 -9 -6 -3 0 3 +6 19
u.	56. 3 – 42	•	-18 -1e -6 o +6
77.	86.48 — 65	10	-40 -30 -20 -10 0 +10

h Dreipunktmessung 50 % der Durchmessertolerenz einer Sorte.
0% der Durchmessertolerenz einer Sorte.
Längentolerens einer Sorte.

Grenzmaße für den Kantenebetand r

Meße in mm		
Nennmet	Kleinstmeß	Größimeß
0.5 0.8	0.1 0.5 0.5	0.5 0.8 1.8
1 1.5	0.7 I.1 I.5	1.5 6.1 2.7

Die Liefermenge von Zylinderrollen gleicher Nennmeße wird nach Wehl des Herstellere auf die einzelnen Sorten verteilt. Jede Sorte wird getrennt verpackt. Die Verpeckung trägt einen Stempel mit der Bezeichnung der Zylinderrolle und den mittleren Abmeßen von Durchmesser (en 1. Stetle) und Länge (en 2. Stelle) der Sorte, z. B.

Zylinderrollen 5 x 8 DIN 5402 + 2, 6,

d.h. der Durchmesser der Zylinderrollen in dieser Packung beträgt:

Prüfverfahren nach DIN 5402

a) Maßgenauigkeit 1

1. Durchmesser

WE UNET

Begriff: Durchmesser -- arithmetischee Mittel eller Meseungen en verechledenen Stellen des Umfenges und Länge des Zylinders

Meßgeräte und Vorrichtungen: Ebene Unterlage und Fühlhebelmeßgerät mit belliger oder ebener, zur Unterlage peralleler Meßfläche. Skelenwert: S = 0.001 mm (Meßgeneuigkeit etwe 0.0005 mm).

Meßanleitung: Zueret Nullpunkteinetellung des Fühlhebele nech Endmeß oder Lehrralle. An jedem Ende, möglichet nehe an dem Übergeng der Zylinderfläche in die Rundungsfläche, eind je 4 em Umfeng gleichmäßig verteilte Messungen euszuführen. Bei jeder Messung ist die Rolle unter dem Meßetift lengeem durchzurollen und der größte Zelgereusschleg (Umkehrpunkt) feetzustellen.

2. Länge

Begriff. Länge - erithmetischee Mittel alter Meseungen en verschiedenen Stellen der Seite.

Meßgeräte und Vorrichtungen: eiehe e 1.

Meßanleitung: Zueret Nullpunkteinetellung des Fühlhebels nach Endmeßen oder Lehrrolle. 4 auf einem Kreie nahe em Übergeng der Seitenfläche in die Rundung gleichmäßig verteilte Meesungen eusführen.

b) Formgenauigkeit"

1. Unrundheit nach Zweipunktmessung

Begriff: Unrundheit -- Unterschied zwischen dem größten und kleineten aufgefundenen Zeigereueschieg des Meßgerätes, wenn die Rolle auf einer ebenen Plette liegt, wie bei e1.

Meßgeräte und Vorrichtungen eiehe e 1.

n Rollen sorgfältig vor Rost schützen; eie daher nur mit kleiner Zenge oder Lederlaggen anfassen, im übrigen siehe DIN 820.

h Bei der Zweipunktmessung wird nur ein kleiner Teil, dagegen bei der Oreipunstmessung 8.002 mm 1 14 und di LLing Refease 2002/01/04: CIA RDF83-00415R014100130004-60-101 01/40L

Approved For Release 2002/01/04: CIA-RDP83-00415R614

SEGRET

Prüfverfahren nach DIN 5402

Inrundheit nach Dreipunktmessung 3

Laz Unrundheit - Unterschied zwischen dem größlen und kleinsten auf-Zeigerausschleg des Meßgerätes, wenn die Rolle in einem

und Vorrichtungen: Fühlhebelmeßgerät mit ebener Meßflache, p. 1 – 0.001 mm. 60-Gred-Priema und Anschlagstift, dessen

Einstellung nach der zu den Nolle, Anschlagstift so daß seine Achse enmi der Rollenechse zu-un; Prisma so einstellen, Mehrchse durch die Rollen-Durch Drehen der

el skelt

wischen den Mittelwerter und Vorrichtungen: eiehe e 1.

Laregenaulgkeit der Seiten"

4==

riil: Unter dem Seitenschlag einer Rolle versteht man die Abweichung Beitsnfläche von der rechtwinkeligen Lege zum Mentel der Rolle,

profiten und kleinsten Zelger-ethes eines in einem bestimm-Abstand vom Mentel euf die Seitenfläche gesetzten Meßstiftes el einer Umdrehung.

ette und Vorrichtungen: Fühlhebelgerät mit Meßspitze; Skalenwert -0.001 mm. 60-Gred-Priame und Anschlagstift.

fanleitung: Anschlegstift so einstellen, daß seine Achse annähernd mit er Rollenachse zusemmenfällt. Fühlhebelmeßgerät so ensetzen, daß die Meßapitze eich gegen die Seitenfläche der Rolle, möglichst nahe am Obergang der Seltentläche in die Rundungstläche anlegt. Zu messen aind beide Seiten. Festzustellen ist der Unterschied zwischen dem

Einbaubeispiele

Unsere langjährigen Erfehrungen bei der Auswahl und Einbau zweckentsprechender Watzieger für Normsl- und Sonderfalle etellen wir Ihnen gern zur Verfügung. Naheres über Lagerauswahl siehe Seite 12.

Wellenlagerung mit Ring-Rillenlagern (Fest- und Losisger)

kleinsten und größten Zeigereusschleg.

n wed n siehe Seite 136 Approved For Release 2002/01/04: CIARDP 3-00415R014100130004-6

Approved For Release 2002/01/04: CIA-RDP83-00415R014100130004-6

Einbaubeispiele

Einbaubeispiele

Ritzellagerung mit Ring-Zylinderlagern und Ring-Schräglager

gleichen axisien Durchsching besitzen

Lagorung mit Vollrollenlager und Ring-Schrägtager

Approved For Release 2002/01/04: CIA-RDP83-00415R014100130004-6

Approved For Release 2002/01/04 : CIA-RDP83-00415R0

J. UILT

Einbaubeispiele

Wattenlagerung mit Ring-Pendellagern (Fest- und Loslager)

Wellentagerung mit Ring-Tonnenlagern (Fest- und Losleger)

Wellenlegerung mit Ring-Kegellagern

Liefer- und Zahlungsbedingungen

Preise: Diese versiehen sich bis zur Auftregsennshme freibleibend in D-Merk.
Die Berechnung erfolgt zu den am Liefertege geltendan Preisen, Rabettan
und Zuschlägen.

Zahlungeziel: Den jeweiligen geaetzlichen Vorschriften entsprechend (6. DB. zur Finenzwirtscheft, veröffentlicht im ZVOBL Nr. 63 vom 29. 7. 1949).

Elgentumsvorbehalt: Die geliefarte Ware bleibt bis zur vollständigen Bezahlung unsarae Gesemtguthebens, welches uns "ewailig aus der bestehenden Geschäftsverbindung mit dem Käufer zusteht, unser Eigentum, euch bei inzwischen erfolgtem Einbau oder erfolgter Weiterveraußerung. Bei Lieferung en Dritte gilt die entstandene Forderung als en uns abgetreten Erfüllt der Käufer seine Zahlungsverpflichtungon nicht eind wir berechtigt, die Ware zurückzufordern. Zurückforderung und Zurücknahme der Wese nitt els Rücktritt vom Vertrage nur dann, wenn dies von uns schriftlich er "färt wird. Wird unser Eigentum gepfändet, so ist unser E Bentumsrecht sowohl dem Dritten als euch uns zu bestätigen.

Erfüllungsort: Erfullungsort für Lieferung und Zshlung ist Leipzig. Als Gerichtsstand gilt des Amtsgericht Leipzig.

Versand: Versand erfolgt euf Rechnung und Gefehr des Empfangers. Für Beschädigung und Abhandenkommen der Sendung unterwegs wird keine Haftung übernommen.

Lieferzeiten: Diese rechnen vom Eingang der Bestellung, bzw. den endgültigen Angaben über die Ausführung und verstehen sich ebenfalls freibleibend. Zwischenverkauf vorbehalten. Die Einhaltung der vereinberten Lieferzeiten, (Tege els Arbeitstage verstenden), die ohne gegenteilige Abmechungen annähernd sind, gilt vorbehaltlich unvorhsrgesehener Vorgänge bei der Febrikation und sonstiger Hindernisse, wie Falle höherer Gewalt, Transportverzögerungen, Betriebszeretörungen im eigenen Werk, wie euch in den Werken der Unterlieferanten.

Schadenersatzeneprüche: Schadenersatzeneprüche: Schadenersatzeneprüche: Insbesondere Verzuge-Approved For Release 2002/01/04: CIA-RDP83n00415R014100130004-6

Approved For Release 2002/01/04 : CIA-RDP83-00415R014100130004-6

Liefer- und Zahlungsbedingungen

Peanstandungen: Beenstendungen bozüglich Menge und Beschaffenheit der Sendung, bzw. wegen mengelhafter Verpackung, können nur innerhalb 8 Tegen nach Empfang der Were berücksichtigt werden.

Gewährleistung: Wir übernehmen für uneere Fabrikete Gewährleistung in der Weise, deß die innerheib eines Jehres nach Inbetriebnehme, späteetens aber binnen 15 Moneten, vom Tage der Ablieferung en gerechnet, nachwelslich infolge Materiel- oder Herstellungsfehler unbrauchber gewordenen Febrikate kostenioe wiederhergestellt bzw. ereetzt werden. Irgendwelche sonstige Ereatzensprüche werden nicht enerkennt. Für Leger oder Teile, die Innerheib der vorgenennten Frist eine der Gebrauchszeit enteprachende natürliche Abnutzung erfehren, oder bei welchen die Abnutzung durch Verschmutzung oder durch Rostbildung hervorgerufen ist, wird keine Heftung übernommen.

reazileferung: Ereetzlieferung oder Gutschrift kenn erst erfolgen nech einwendfreier Feststellung der Ereatzpflicht durch geneue Untersuchung in
unserem Werk. Zu diesem Zweck sind die beenstandelen Febrikete
gebührenfrei einzueenden. In dringenden Bedarfsfällen wird Erestz gegen
Berechnung des Jeweiligen Tegespreises geltefert. Nach Feststellung
der Ereatzpflicht wird Gutschrift erteilt.

Angebote und Verkäufe: Angebote und Verkäufe gelten ohne gegenteilige Vereinberung nur für den Bederf im Inlend unter ausdrücklichem Ausschluß des gewerbsmäßigen Weiterverkaufs in tosem Zustende, d. h. nicht eingebeut in Meschinen, Fehrzeugen, Appareten u. dgl.

Ausgenommen eind die Verkäufe, die von Händlerfirmen, welche eusdrücklich eis solche bezeichnet eind, gemecht werden.

Anderung: Eine Anderung der Lieferungs- und Zehlungsbedingungen beheiten wir uns jederzeit vor.

Alle in den Bestetlungen oder Einkeufsbedingungen unserer Auftraggeber enthaltenen Abweichungen von den vorstehenden Zehlungs- und Lieferungsbedingungen sind nur dann rechtsverbindlich, wenn sie von une schriftlich bestätigt sind; Stillschweisen Release 2002/01/04:

