Propositional Logic

• A statement that is either true or false 2 + 3 = 5

• A statement that is either true or false 2 + 3 = 5: true

• A statement that is either true or false 1 + 1 = 3

• A statement that is either true or false 1 + 1 = 3: false

A statement that is either true or false
 Dhaka is the capital of Bangladesh

A statement that is either true or false
 Dhaka is the capital of Bangladesh: true

A statement that is either true or false
 Chittagong is the capital of Bangladesh:
 false

A statement that is either true or false
 Give me an A

A statement that is either true or false
 Give me an A
 Neither true or false
 Not a proposition

A statement that is either true or false
 Would there be a third world war?
 Neither true or false
 Not a proposition

All humans are mortal and 2 + 3 = 5

All humans are mortal and 2 + 3 = 5: Hard to depict whether true / false

All humans are mortal and 2 + 3 = 5

All humans are mortal: true and

2 + 3 = 5: true

All humans are mortal: true

and

2 + 3/=5: true

Logical connector

Propositional Variable

All humans are mortal

Propositional Variable

All humans are mortal: p

p can either be true / false

Propositional Variable

All humans are mortal and 2 + 3 = 5

p and q

Logical Connector

- Not
- · And
- Or
- Implies
- Xor
- Iff

Logical Connector: NOT

- Notation: ¬
- Truth table:

р	¬ p
0	1
1	0

Logical Connector: AND

- Notation: A
- Truth table:

р	q	p∧q
0	0	0
0	1	0
1	0	0
1	1	1

Logical Connector: OR

Notation: V

Truth table:

р	q	p∨q
0	0	0
0	1	1
1	0	1
1	1	1

Logical Connector: IMPLIES

- Notation: →
- Truth table:

р	q	$p \rightarrow q$
0	0	1
0	1	1
1	0	0
1	1	1

Logical Connector: XOR

Notation: ⊕

Truth table:

р	q	p xor q		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

Logical Connector: IFF

Notation: ↔

Truth table:

р	q	p IFF q	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

 $P \land q \oplus s$

No of propositional variables = 3

No of rows in truth table = $2^3 = 8$

 $P \land q \oplus s$

р	q	S	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

P \wedge q \oplus s Which operation to perform first? p \wedge q \oplus s

 $P \wedge q \oplus s$ Which operation to perform first? $p \wedge q / q \oplus s$:

See Precedence Table

Precedence Table

Connector	Precedence
7	1
Λ	2
V	3
\rightarrow	4
\leftrightarrow \oplus	5

$$P \wedge q \oplus s$$

= $(p \wedge q) \oplus s$

$$= a \oplus s$$

 $P \wedge q \oplus s = (p \wedge q) \oplus s = a \oplus s = b$

р	q	S	p ∧ q = a	a ⊕s = b
0	0	0	0	0
0	0	1	0	1
0	1	0	0	0
0	1	1	0	1
1	0	0	0	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	0

$$(\neg p \leftrightarrow \neg q) \land p \rightarrow r$$

= $a \land p \rightarrow r$
= $(a \land p) \rightarrow r$
= $b \rightarrow r$

р	q	r	¬р	¬q	(¬p ↔¬q)	a ∧ p = b	b→r
					= a		
0	0	0	1	1	1	0	1
0	0	1	1	1	1	0	1
0	1	0	1	0	0	0	1
0	1	1	1	0	0	0	1
1	0	0	0	1	0	0	1
1	0	1	0	1	0	0	1
1	1	0	0	0	1	1	0
1	1	1	0	0	1	1	1

Propositional Equivalences

Tautology

$$[\neg p \land (p \lor q)] \rightarrow q$$

р	P		$[\neg p \land (p \lor q)] \to q$
0	0		1
0	1		1
1	0		1
1	1		1

Contradiction

$$\neg([\neg p \land (p \lor q)] \to q)$$

р	Р		$\neg([\neg p \land (p \lor q)] \to q)$
0	0		0
0	1		0
1	0		0
1	1		0

Contingency

 $p \rightarrow q$

р	P	$p \rightarrow q$
0	0	1
0	1	1
1	0	0
1	1	1

Logical Equivalences

The compound propositions p and q are called *logically equivalent* if $p \leftrightarrow q$ is a tautology.

Notation: ≡

Logical Equivalences

Compound propositions that have the same truth values in all possible cases are called logically equivalent

Prove that: $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

Truth table of $p \lor (q \land r)$

р	q	r	(q ∧ r)	p∨(q∧r)
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Truth table of $(p \lor q) \land (p \lor r)$

р	q	r	(p ∨ q)	(p∨r)	(p ∨ q) ∧ (p ∨ r)
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	1	1	1
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	1	1

Prove that: $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

p ∨ (q ∧ r)	(p∨q)∧(p∨ r)
0	0
0	0
0	0
1	1
1	1
1	1
1	1
1	1

Prove that: $(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$

Logical Equivalences

$$p \rightarrow q \equiv \neg p \lor q$$
$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$
$$p \oplus q \equiv (p \lor q) \land (\neg p \lor \neg q)$$

$$p \rightarrow q$$

```
if p, then q
p implies q
if p, q
p only if q
p is sufficient for q
```

q if p
q whenever p
q when p
q is necessary for p
q follows from p

$$p \leftrightarrow q$$

p is necessary and sufficient for q if p then q, and conversely p iff q

if Aang is not in the path of totality during the solar eclipse, Aang won't defeat the firelord.

- a: Aang is in the path of totality
- b: Aang will defeat the firelord.

$$\neg a \rightarrow \neg b$$

if you are a computer science major or you are not a freshman, you can access the Internet from campus

- a: you are a computer science major
- b: you are a freshman
- C: you can access the Internet from campus

a
$$V \neg b \rightarrow c$$

you can access the Internet from campus if you are a computer science major or you are not a freshman,

- a: you are a computer science major
- b: you are a freshman
- C: you can access the Internet from campus

a
$$V \neg b \rightarrow c$$

you can access the Internet from campus only if you are a computer science major or you are not a freshman,

- a: you are a computer science major
- b: you are a freshman
- C: you can access the Internet from campus

$$c \rightarrow a V \neg b$$

you can access the Internet from campus only if you are a computer science major but you are not a freshman,

- a: you are a computer science major
- b: you are a freshman
- C: you can access the Internet from campus

$$c \rightarrow a \land \neg b$$

you can access the Internet from campus iff you are a computer science major but you are not a freshman,

- a: you are a computer science major
- b: you are a freshman
- C: you can access the Internet from campus

$$c \leftrightarrow a \land \neg b$$

Negation of propositional logic

De Morgan's Las

$$\neg(p \lor q) \equiv \neg p \land \neg q$$
$$\neg(p \land q) \equiv \neg p \lor \neg q$$

Negating propositions

Find the negation of $(p \lor (\neg p \land q))$

```
\neg (p \lor (\neg p \land q))
\equiv \neg p \land \neg (\neg p \land q)
\equiv \neg p \land (\neg (\neg p) \lor \neg q))
\equiv \neg p \land (p \lor \neg q)
```

Negating propositions

Find the negation of $p \leftrightarrow q$

$$\neg (p \leftrightarrow q)$$

$$\equiv \neg (p \rightarrow q \land (q \rightarrow p))$$