Alex Psomas: Lecture 15.

Bayes' Rule, Mutual Independence, Collisions and Collecting

- Conditional Probability
- 2. Independence
- 3. Bayes' Rule
- 4. Balls and Bins
- 5. Coupons

Conditional Probability: Review

Recall:

- $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}.$
- ► Hence, $Pr[A \cap B] = Pr[B]Pr[A|B] = Pr[A]Pr[B|A]$.
- A and B are positively correlated if Pr[A|B] > Pr[A],
 i.e., if Pr[A∩B] > Pr[A]Pr[B].
- A and B are negatively correlated if Pr[A|B] < Pr[A],
 i.e., if Pr[A∩B] < Pr[A]Pr[B].
- ► A and B are independent if Pr[A|B] = Pr[A], i.e., if $Pr[A \cap B] = Pr[A]Pr[B]$.
- Note: $B \subset A$, and $Pr[A] \neq 0$, $\Rightarrow A$ and B are positively correlated. (Pr[A|B] = 1 > Pr[A])
- Note: $A \cap B = \emptyset$, Pr[A], $Pr[B] \neq 0$, $\Rightarrow A$ and B are negatively correlated. (Pr[A|B] = 0 < Pr[A])

Monty Hall

3 closed doors. Behind one of the doors there is a prize (car). The others have goats.

You pick a door. Say door number 1

I open door 2 or door 3. One of the two that I **know** doesn't have the prize. Say it was door 2

I ask: Would you like to change your door to number 3?

Question: What should you do in order to maximize the probability of winning?

Monty Hall

Change!!!!

What is the probability that the prize is in door 3? $\frac{2}{3}$!

How does that make any sense????

Say the original door where the prize is random. So each door has probability $\frac{1}{3}$.

You pick door 1. What's the probability that it's in either 2 or 3? $\frac{2}{3}$

The door I opened wasn't random! I knew it didn't have a prize!! Therefore, switching, is like getting to pick two doors at the beginning!

Balls in bins

I throw 5 (indistinguishable) balls in two bins. What is the probability that the first bin is empty?

- 1. Approach 1: There are 6 outcomes: (5,0), (4,1), (3,2), (2,3), (1,4), (0,5). Probability that the first bin is empty is $\frac{1}{6}$
- 2. Approach 2: I pretend I can tell the balls apart. There are 2^5 outcomes: (1,1,1,1,1), (1,1,1,1,2), ... (2,2,2,2,2). (x,1,x,x,x) means that the second ball I threw landed in the first bin.

Probability that the first bin ie empty is $\frac{1}{2^5}$. The fact that I can tell them apart shouldn't change the probability.

Well... I guess probability is wrong... Or..... Could one of the approaches be wrong??? Approach 1 is WRONG! Why did we divide by $|\Omega|$??? Why?????? Noooooooooooooooooooooooo

Conditional Probability: Pictures

Illustrations: Pick a point uniformly in the unit square

- ▶ Left: A and B are independent. Pr[B] = b; Pr[B|A] = b.
- ▶ Middle: A and B are positively correlated. $Pr[B|A] = b_1 > Pr[B|\overline{A}] = b_2$. Note: $Pr[B] \in (b_2, b_1)$.
- ▶ Right: A and B are negatively correlated. $Pr[B|A] = b_1 < Pr[B|\overline{A}] = b_2$. Note: $Pr[B] \in (b_1, b_2)$.

Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

$$\begin{split} & Pr[A] = 0.5; Pr[\bar{A}] = 0.5 \\ & Pr[B|A] = 0.5; Pr[B|\bar{A}] = 0.6; Pr[A \cap B] = 0.5 \times 0.5 \\ & Pr[B] = 0.5 \times 0.5 + 0.5 \times 0.6 = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}] \\ & Pr[A|B] = \frac{0.5 \times 0.5}{0.5 \times 0.5 + 0.5 \times 0.6} = \frac{Pr[A]Pr[B|A]}{Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]} \\ & \approx 0.46 = \text{fraction of } B \text{ that is inside } A \end{split}$$

Bayes: General Case

Pick a point uniformly at random in the unit square. Then

$$Pr[A_m] = p_m, m = 1, ..., M$$

 $Pr[B|A_m] = q_m, m = 1, ..., M; Pr[A_m \cap B] = p_m q_m$
 $Pr[B] = p_1 q_1 + \cdots p_M q_M$
 $Pr[A_m|B] = \frac{p_m q_m}{p_1 q_1 + \cdots p_M q_M} = \text{fraction of } B \text{ inside } A_m.$

Why do you have a fever?

Using Bayes' rule, we find

$$Pr[\text{Flu}|\text{High Fever}] = \frac{0.15 \times 0.80}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 0.58$$

$$\textit{Pr}[\text{Ebola}|\text{High Fever}] = \frac{10^{-8} \times 1}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 5 \times 10^{-8}$$

$$Pr[\text{Other}|\text{High Fever}] = \frac{0.85 \times 0.1}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 0.42$$

The values $0.58,5 \times 10^{-8}, 0.42$ are the posterior probabilities.

Why do you have a fever?

Our "Bayes' Square" picture:

Note that even though Pr[Fever|Ebola] = 1, one has

 $Pr[Ebola|Fever] \approx 0.$

This example shows the importance of the prior probabilities.

Bayes' Rule Operations

Bayes' Rule is the canonical example of how information changes our opinions.

Independence

Recall:

A and B are independent

$$\Leftrightarrow Pr[A \cap B] = Pr[A]Pr[B]$$

$$\Leftrightarrow Pr[A|B] = Pr[A].$$

Consider the example below:

$$(A_2, B)$$
 are independent: $Pr[A_2|B] = 0.5 = Pr[A_2]$. (A_2, \bar{B}) are independent: $Pr[A_2|\bar{B}] = 0.5 = Pr[A_2]$. (A_1, B) are not independent: $Pr[A_1|B] = \frac{0.1}{0.5} = 0.2 \neq Pr[A_1] = 0.25$.

Pairwise Independence

Flip two fair coins. Let

- ► A = 'first coin is H' = {HT, HH};
- ▶ B = 'second coin is H' = {TH, HH};
- ▶ C = 'the two coins are different' = {TH, HT}.

A, C are independent; B, C are independent;

 $A \cap B$, C are not independent. $(Pr[A \cap B \cap C] = 0 \neq Pr[A \cap B]Pr[C]$.)

A did not say anything about C and B did not say anything about C, but $A \cap B$ said something about C!

Example 2

Flip a fair coin 5 times. Let A_n = 'coin n is H', for n = 1, ..., 5.

Then,

 A_m, A_n are independent for all $m \neq n$.

Also,

 A_1 and $A_3 \cap A_5$ are independent.

Indeed,

$$Pr[A_1 \cap (A_3 \cap A_5)] = \frac{1}{8} = Pr[A_1]Pr[A_3 \cap A_5]$$

. Similarly,

 $A_1 \cap A_2$ and $A_3 \cap A_4 \cap A_5$ are independent.

This leads to a definition

Mutual Independence

Definition Mutual Independence

(a) The events A_1, \dots, A_5 are mutually independent if

$$Pr[\cap_{k\in\mathcal{K}}A_k] = \prod_{k\in\mathcal{K}}Pr[A_k], \text{ for all } \mathcal{K}\subseteq\{1,\ldots,5\}.$$

(b) More generally, the events $\{A_j, j \in J\}$ are mutually independent if

$$Pr[\cap_{k\in\mathcal{K}}A_k]=\Pi_{k\in\mathcal{K}}Pr[A_k], \text{ for all finite } K\subseteq J.$$

Example: Flip a fair coin forever. Let A_n = 'coin n is H.' Then the events A_n are mutually independent.

Mutual Independence

Theorem

(a) If the events $\{A_j, j \in J\}$ are mutually independent and if K_1 and K_2 are disjoint finite subsets of J, then

 $\cap_{k \in K_1} A_k$ and $\cap_{k \in K_2} A_k$ are independent.

(b) More generally, if the K_n are pairwise disjoint finite subsets of J, then the events

 $\cap_{k \in K_n} A_k$ are mutually independent.

(c) Also, the same is true if we replace some of the A_k by \bar{A}_k .

Balls in bins

One throws m balls into n > m bins.

Balls in bins

One throws m balls into n > m bins.

Theorem:

 $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}, \text{ for large enough } n.$

The Calculation.

 A_i = no collision when *i*th ball is placed in a bin.

$$Pr[A_1] = 1$$

 $Pr[A_2|A_1] = 1 - \frac{1}{n}$
 $Pr[A_3|A_1, A_2] = 1 - \frac{2}{n}$
 $Pr[A_i|A_{i-1} \cap \cdots \cap A_1] = (1 - \frac{i-1}{n})$.
no collision = $A_1 \cap \cdots \cap A_m$.

Product rule:

$$Pr[A_1 \cap \cdots \cap A_m] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_m|A_1 \cap \cdots \cap A_{m-1}]$$

$$\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right).$$

$$\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right).$$

$$\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{1}{n}\right)$$
. Hence,

$$ln(Pr[\text{no collision}]) = \sum_{k=1}^{m-1} ln(1 - \frac{k}{n}) \approx \sum_{k=1}^{m-1} (-\frac{k}{n})^{(*)}$$

$$= -\frac{1}{n} \frac{m(m-1)}{n}^{(\dagger)} \approx -\frac{m^2}{2n}$$

(*) We used $\ln(1-\varepsilon) \approx -\varepsilon$ for $|\varepsilon| \ll 1$. (†) $1+2+\cdots+m-1=(m-1)m/2$.

Approximation

$$\exp\{-x\} = 1 - x + \frac{1}{2!}x^2 + \dots \approx 1 - x$$
, for $|x| \ll 1$.

Hence, $-x \approx \ln(1-x)$ for $|x| \ll 1$.

Balls in bins

Theorem:

 $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}\$, for large enough n.

Balls in bins

Theorem:

 $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}\$, for large enough n.

In particular, $Pr[\text{no collision}] \approx 1/2 \text{ for } m^2/(2n) \approx \ln(2), \text{ i.e.,}$

$$m \approx \sqrt{2 \ln(2) n} \approx 1.2 \sqrt{n}$$
.

E.g., $1.2\sqrt{20} \approx 5.4$.

Roughly, $Pr[\text{collision}] \approx 1/2 \text{ for } m = \sqrt{n}. \ (e^{-0.5} \approx 0.6.)$

The birthday paradox

Today's your birthday, it's my birthday too..

Probability that m people all have different birthdays? With n = 365, one finds

 $Pr[\text{collision}] \approx 1/2 \text{ if } m \approx 1.2\sqrt{365} \approx 23.$

If m = 60, we find that

$$Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\} = \exp\{-\frac{60^2}{2 \times 365}\} \approx 0.007.$$

If m = 366, then Pr[no collision] = 0. (No approximation here!)

The birthday paradox

n	p(n)
1	0.0%
5	2.7%
10	11.7%
20	41.1%
23	50.7%
30	70.6%
40	89.1%
50	97.0%
60	99.4%
70	99.9%
100	99.99997%
200	99.9999999999999999999999999
300	(100 – (6×10 ⁻⁸⁰))%
350	(100 – (3×10 ⁻¹²⁹))%
365	(100 – (1.45×10 ⁻¹⁵⁵))%
366	100%
367	100%

Checksums!

Consider a set of *m* files.

Each file has a checksum of b bits.

How large should b be for $Pr[\text{share a checksum}] \leq 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

Let $n = 2^b$ be the number of checksums.

We know $Pr[\text{no collision}] \approx \exp\{-m^2/(2n)\} \approx 1 - m^2/(2n)$. Hence,

$$\begin{aligned} &\textit{Pr}[\text{no collision}] \approx 1 - 10^{-3} \Leftrightarrow \textit{m}^2/(2\textit{n}) \approx 10^{-3} \\ &\Leftrightarrow 2\textit{n} \approx \textit{m}^2 10^3 \Leftrightarrow 2^{\textit{b}+1} \approx \textit{m}^2 2^{10} \\ &\Leftrightarrow \textit{b}+1 \approx 10 + 2\log_2(\textit{m}) \approx 10 + 2.9\ln(\textit{m}). \end{aligned}$$

Note: $\log_2(x) = \log_2(e) \ln(x) \approx 1.44 \ln(x)$.

Coupon Collector Problem.

There are *n* different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...)
One random baseball card in each cereal box.

Theorem: If you buy *m* boxes,

- (a) $Pr[\text{miss one specific item}] \approx e^{-\frac{m}{n}}$
- (b) $Pr[\text{miss any one of the items}] \leq ne^{-\frac{m}{n}}$.

Coupon Collector Problem: Analysis.

Event A_m = 'fail to get Brian Wilson in m cereal boxes'

Fail the first time: $(1 - \frac{1}{n})$

Fail the second time: $(1 - \frac{1}{n})$

And so on ... for m times. Hence,

$$Pr[A_m] = (1 - \frac{1}{n}) \times \dots \times (1 - \frac{1}{n})$$

$$= (1 - \frac{1}{n})^m$$

$$In(Pr[A_m]) = mIn(1 - \frac{1}{n}) \approx m \times (-\frac{1}{n})$$

$$Pr[A_m] \approx exp\{-\frac{m}{n}\}.$$

For $p_m = \frac{1}{2}$, we need around $n \ln 2 \approx 0.69 n$ boxes.

Collect all cards?

Experiment: Choose *m* cards at random with replacement.

Events: E_k = 'fail to get player k', for k = 1, ..., n

Probability of failing to get at least one of these *n* players:

$$p := Pr[E_1 \cup E_2 \cdots \cup E_n]$$

How does one estimate *p*? Union Bound:

$$p = Pr[E_1 \cup E_2 \cdots \cup E_n] \leq Pr[E_1] + Pr[E_2] \cdots Pr[E_n].$$

$$Pr[E_k] \approx e^{-\frac{m}{n}}, k = 1, \ldots, n.$$

Plug in and get

$$p \leq ne^{-\frac{m}{n}}$$
.

Collect all cards?

Thus,

 $Pr[\text{missing at least one card}] \leq ne^{-\frac{m}{n}}.$

Hence,

 $Pr[\text{missing at least one card}] \leq p \text{ when } m \geq n \ln(\frac{n}{p}).$

To get p = 1/2, set $m = n \ln(2n)$.

E.g., $n = 10^2 \Rightarrow m = 530$; $n = 10^3 \Rightarrow m = 7600$.

Summary.

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results:

- ▶ Bayes' Rule: $Pr[A_m|B] = p_m q_m / (p_1 q_1 + \cdots + p_M q_M)$.
- ▶ Product Rule: $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$
- ▶ Balls in bins: m balls into n > m bins.

$$Pr[\text{no collisions}] \approx \exp\{-\frac{m^2}{2n}\}$$

► Coupon Collection: *n* items. Buy *m* cereal boxes.

 $Pr[\text{miss one specific item}] \approx e^{-\frac{m}{n}}; Pr[\text{miss any one of the items}] \leq ne^{-\frac{m}{n}}.$

Key Mathematical Fact: $ln(1-\varepsilon) \approx -\varepsilon$.