CSC373 Worksheet 4 Solution

August 3, 2020

1. Let G = (V, E) be a directed graph. Let $[v_1, ..., v_n]$ be a list of vertices in graph G.

I need to calculate the outdegree of every vertex using adjacency list.

We know that in addition to counting v_i where i = 1, ..., n in adjacency list, we are counting $|Adj[v_i]|$ edges.

Since we are traversing |V| = n many vertices, we can write that in addition to there are total of $\sum_{i=1}^{n} |Adj[v_i]| = |E|$ edges.

Notes:

• Vertex

- Is a fundamental unit of which graphs are formed
- Also means node

• Adjacency-list Representation

- Associates each vertax in a graph with the collection of its neighbouring vertices or edges
- Is represented by Adj[v]

- \ast Means all vertices that are neighbour to vertex v
- * In a directed graph, Adj[v] are all out-degree vertices of vertax v
- * |Adj[v]| means the total number of outdegree of vertax v

• Directed graph

- Is a graph that is made up of a set of vertices connected by edges, where the edges have a direction associated with them

• Out-degrees

- For a directed graph G = (V(G), E(G)) and a vertex $x_1 \in V(G)$, the Out-Degree of x_1 refers to the number of arcs incident from x_1 . That is, the number of arcs directed away from the vertex x_1 .

• In-degrees

- For a directed graph G = (V(G), E(G)) and a vertex $x_1 \in V(G)$, the In-Degree of x_1 refers to the number of arcs incident to x_1 . That is, the number of arcs directed towards the vertex x_1 .

• Computing the outdegree of every vertex using adjacency list

$$(v_1 + v_2) + (e_1 + e_2 + e_3)$$

3)

$$(v_1 + v_2 + v_3) + (e_1 + e_2 + e_3 + e_4 + e_5)$$

3)

$$(v_1 + v_2 + v_3) + (e_1 + e_2 + e_3 + e_4 + e_5)$$

4)

$$(v_1 + v_2 + v_3 + v_4) + (e_1 + e_2 + e_3 + e_4 + e_5)$$

4)

$$(v_1 + v_2 + v_3 + v_4) + (e_1 + e_2 + e_3 + e_4 + e_5)$$

6)

So it has $\mathcal{O}(V+E)$

• Computing the outdegree of every vertex using adjacency list

The outdegree of a vertex is indegree of another vertex.

Using this fact, we can conclude the running time of computing indegree of every vertax is $\mathcal{O}(V+E)$.