Chapter 10

Error Detection and Correction

- Data can be corrupted during transmission
- Types of Errors
 - Single-bit errors only 1 bit is changed in the data unit
 - Burst errors two or more bits have changed, length is measured from the first corrupted bit to the last corrupted bit,
 - Affected bits depend on data rate and noise duration

Error Detection and Correction

Redundancy

- To be able to detect or correct errors, extra bits are needed with data
- Redundant bits are added by the sender and removed by the receiver
- Detection vs. Correction
 - Detection did errors occur?
 - Correction need to know the exact number of corrupted bits and exact location

Error Detection and Correction

Foward Error Correction

Receiver tries to guess the message by using redundant bits

Retransmission

 Receiver detects an error and asks the sender to resend the message

Coding

 Creates a relationship between redundant bits and actual data bits; block coding and convolution coding

Modular Arithmetic

- We use a limited range of integers
- Modulus N upper limit, use the integers from 0 to N-1
- Ex. Clock system is modulo-12
- If a number is greater than N, it is divided by N and the remainder is the result
- If a number is negative, as many Ns are added to make it positive

Modular Arithmetic

- Modulo-2
 - Adding
 - 0+0=0, 0+1=1, 1+0=1, 1+1=0
 - Subtracting
 - 0-0=0, 0-1=1, 1-0=1, 1-1=0
 - Adding and subtracting yields the same results
 - We can use XOR for both addition and subtraction

Block Coding

- Divide message into blocks, each of k bits, called datawords
- We add r redundant bits to each block to make the length n = k+ r, the n-bit blocks are called codewords
- With k bits, we can have 2^k data words, with n bits we can have 2ⁿ codewords
- Same dataword is always encoded as the same codeword

Block Coding: Error Detection

- Conditions to detect
 - Receiver has/can find a list of valid codewords
 - Original codeword has changed to an invalid one
- Can only detect single bit errors

First demester 2012-2013 Civide 137 Jac remocilla

Block Coding: Error Detection

- Example: Sender encodes 01 as 011
- Cases:
 - Receiver gets 011 valid
 - Receiver gets 111 invalid
 - Receiver gets 000 undetected error

Table A

Datawords	Codewords		
00	000		
01	011		
10	101		
11	110		

Block Coding: Error Correction

- Sender encodes 01 as 01011
- Receiver gets 01001
- Codeword not in table
- Assumes that 1 bit is corrupted
- Not first, third, fourth 2 bits in error
- Must be second!

Table B

Dataword	Codeword		
00	00000		
01	01011		
10	10101		
11	11110		

Hamming Distance

- The number of differences between the corresponding bits between two words
- d(x,y)
- Use XOR to and count the number of 1's in the result

ICS-UPLB

• Ex.: d(000,011)=2, d(10101,11110)=3

Minimum Hamming Distance

- Smallest hamming distance between all possible pairs of the codewords
- d_{min}
- d(000,011)=2, d(000,101)=2, d(000,110)=2, d(011,101)=2, d(011,110)=2, d(101,110)=2

$$-d_{min} = 2$$

- Any coding scheme needs to have at least three parameters: codeword size n, dataword size k, and d_{min}
- C(3,2), $d_{min}=2$

Minimum Hamming Distance

To guarantee detection of up to s errors in all cases, the minimum Hamming distance in a block code must be d_{min} = s + 1

ICS-UPLB

JAC Hermocilla

Minimum Hamming Distance

 To guarantee correction of up to t errors in all cases, the minimum Hamming distance in a block code must be d = 2t+1

CMSC 137
Data Communications and Networking ICS-UPLB

Linear Block Codes

- A code in which the XOR of two valid codewords creates another valid codeword
- Minimum hamming distance is the number of 1's in the nonzero valid codeword with the smallest number of 1's
- In Table A, number of 1's in the nonzero codewords are 2,2, and 2; d_{min}=2
- In Table B, number of 1's in the nonzero codewords are 3,3, and 4; d_{min}=3

 A single-bit error-detecting code in which n=k+1 with d_{min}=2

Datawords	Codewords	Datawords	Codewords	
0000	00000	1000	10001	
0001	01 00011 1001		10010	
0010	00101	1010	10100	
0011	00110	1011	10111	
0100	01001 1100		11000	
0101	01010	1101	11011	
0110 01100		1110	11101	
0111	01111	1111	11110	

• $r_0=a_3+a_2+a_1+a_0$ (modulo-2), number of 1's is even, result is 0;number of 1's is odd result is 1

First Semester 2012-2013

CMSC 137
Data Communications and Networking ICS-UPLB

• $s_0 = b_3 + b_2 + b_1 + b_0 + q_0$, syndrome is 0 when the number of 1's in the received codeword is even; otherwise, it is 1

First Semester 2012-2013 CMSC 137 JAC Hermocilla

Can only detect an odd number of errors

Two-Dimensional Parity Check

a. Design of row and column parities

d. Three errors affect four parities

e. Four errors cannot be detected

0 1 0 1 0 0 1 1

- d_{min}=3, can detect up to two errors or correct one single error
- We will focus on single-bit error-correcting code
- $n=2^{m}-1$, k=n-m, m>=3, r=m

• Ex. If m=3, Hamming code C(7,4), d_{min}=3

Datawords	Codewords	Datawords	Codewords		
0000	0000000	1000	1000110		
0001	0001101	1001	1001011		
0010	0010 0010111		1010001		
0011	0011010	1011	1011100		
0100	0100011	1100	1100101		
0101	0101110	1101	1101000		
0110	0110 0110100		1110010		
0111	0111001	1111	1111111		

$$r_0 = a_2 + a_1 + a_0$$
 modulo-2 $s_0 = b_2 + b_1 + b_0 + q_0$ modulo-2 $r_1 = a_3 + a_2 + a_1$ modulo-2 $s_1 = b_3 + b_2 + b_1 + q_1$ modulo-2 $r_2 = a_1 + a_0 + a_3$ modulo-2 $s_2 = b_1 + b_0 + b_3 + q_2$ modulo-2

Syndrome	000	001	010	011	100	101	110	111
Error	None	q_0	q_1	b ₂	q_2	b_0	b ₃	b_1

- If b₂ is in error, s₀ and s₁ are the bits affected, syndrome is 011, bit b₂ must be flipped to correct the error
- Split burst errors between several codewords, one error for each codeword

Cyclic Codes

- Linear block codes in which if a codeword is cyclically shifted (rotated), the result is another codeword
- Ex. 1011000, perform a SHL, 0110001
- Ex. Cyclic Redundancy Check (CRC)

CRC

• CRC code with C(7,4)

Dataword	Codeword	Dataword	Codeword	
0000	0000000	1000	1000101	
0001	0001011	1001	1001110	
0010	0010110	1010	1010011	
0011	0011101	1011	1011000	
0100	0100111	1100	1100010	
0101	0101100	1101	1101001	
0110	0110 0110001		1110100	
0111	0111010	1111	1111111	

CRC

Encoder and Decoder

CRC Encoder

- Dataword has k bits, codewords has n bits
- Size of dataword is augmented by adding n-k zeros to the righthand side
- n-bit result is fed into generator
- Generator use a divisor of size n-k+1, predefined and agreed upon
- Divisor divides augmented dataword by divisor (modulo-2 division)
- Remainder is appended to dataword to create codeword

CRC Encoder

CRC Decoder

- Decoder receives a possibly corrupted codeword
- n bits fed to the checker, replica of generator
- Remainder produced by checker is a syndrome of n-k bits
- If syndrome bits are all 0's, k leftmost bits of the codeword are accepted as dataword

CRC Decoder

CRC

- Good performance in detecting single bit errors, double errors, odd number of errors, burst errors
- Easily implemented in hardware and software
- Hardware implementation is fast

- Suppose data is five 4-bit numbers: (7,11,12,0,6)
- We send (7,11,12,0,6, **36**), sum is 36
- Receiver adds the five number and compares result to the sum

ICS-UPLB

 If we send the negative of the sum: (7,11,12,0,6, -36), receiver simply adds everything and a result of zero is expected

- In the previous example, the checksum,-36, cannot be written as a four bit word
- Use one's complement arithmetic
 - Unsigned numbers between 0 to 2ⁿ-1 using only n bits
 - If the number has more than n bits, extra leftmost bits are added to the n rightmost bits
 - Negative number can be represented by inverting all bits
- Ex. 21 using 4 bits is 6; 10101=>0101+1=0110

 Checksum in the Internet, 64-bit, msg divided into 16-bit words

1	0	1	3		Carries
l	4	6	6	F	(Fo)
1	7	2	6	F	(ro)
	7	5	7	Α	(uz)
	6	1	6	E	(an)
	0	0	0	0	Checksum (initial)
	8	F	С	6	Sum (partial)
L				- 1	000 00 W 00 000 17 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	8	F	С	7	Sum
	7	0	3	8	Checksum (to send)

1 0 1 3 | Carries |
4 6 6 F | (Fo) |
7 2 6 F | (ro) |
7 5 7 A | (uz) |
6 1 6 E | (an) |
7 0 3 8 | Checksum (received) |
F F F E | Sum (partial) |

F F F F Sum |
0 0 0 0 | Checksum (new)

a. Checksum at the sender site

b. Checksum at the receiver site

Enjoy!:)