Algorithms - Solutions to Exercise 1

Question 1

The worst case input is $n = 3^k$. In this case the recursion formula is $T(n) = T(n/3) + \Theta(1)$ (where we assume that comparison of n to 1 and check of whether n is divisible by 3 take constant time). It is easy to see that the solution is $T(n) = \Theta(\log n)$. Indeed, $\log n = \log n/3 + 3$.

Question 2

- First solution calculate F_n by the recursion $F_n = F_{n-1} + 2F_{n-2}$. The recursion ends when n = 1 or n = 2 where $F_n = 1$. Let T(n) be the number of operations needed to calculate F_n in this way. Then $T(n) = T(n-1) + T(n-2) + \Theta(1)$. You can prove that T(n) grows exponentially with n. If you prove it by induction all you have to note is that there exists $1 < \alpha < 2$ such that $\alpha^{n-1} + \alpha^{n-2} \ge \alpha^n$ (e.g. $\alpha = \sqrt{2}$).
- Second solution: Create an array F of size n to contain the first n numbers. Initialize F[1] = 1, F[2] = 1. then conduct:

for j=3 up to n do:

$$F[j] = F[j-1] + 2F[j-2]$$
;

Correctness and linear running time in n are obvious.

• Third solution: Let M be the matrix $M = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$ So M(x,y) = (x+2y,x). It is easy to see that $M(F_{k+1},F_k) = (F_{k+2},F_{k+1})$. Now look at $M^n = M \times M \times ... \times M - n$ times. By induction on the formula above we get: $M^{n-1}(F_1,F_2) = (F_n,F_{n-1})$. So in order to calculate F_n it is enough to calculate M^{n-1} . Multiplying two 2×2 matrixes takes constant time, and recall that we know how to compute M^n using only $\Theta(s)$ multiplications $(s = \lceil \log_2 n \rceil)$: we simply compute the square of the result of the previous step in each step until we reach n. Since the number of steps is $\log n$, we end up with an algorithm, linear in s, the size of n (notice that we are assuming that multiplying two numbers takes a constant time, even if they are very large, which is untrue in reality).

Question 3

The functions are asymptoticly decreasing from top-left to bottom-right:

$$2^{2^{n+1}} 2^{2^n} (n+1)! n! e^n$$

$$n \cdot 2^n 2^n (\frac{3}{2})^n n^{\lg \lg n} = (\lg n)^{\lg n}$$

$$(\lg n)! n^3 n^2 = 4^{\lg n} n\lg n$$

$$\lg(n!) n = 2^{\lg n} (\sqrt{2})^{\lg n} 2^{\sqrt{2 \lg n}}$$

$$\lg^2 n \ln n \sqrt{(\lg n)} \ln \ln n 2^{\lg^* n}$$

$$\lg^* n \lg^* (\lg n) \lg(\lg^* n) n^{1/\lg n} = 2 1$$

here are several explanations (including all the cases where $f = \Theta(g)$): first one notation: we write f >> g, if $f = \Omega(g)$ but f is not $\Theta(g)$.

- $2^{2^n} >> (n+1)!$ to see that, take the log of both functions and note that $2^n >> \Theta(n \lg n)$.
- $n^{\lg \lg n} = (\lg n)^{\lg n}$ since the log of both functions is $(\lg \lg n \cdot \lg n)$.
- $(\lg n)^{\lg n} >> (\lg n)!$ simply since $m^m >> m!$ and we may substitute m by $\lg n$.
- $n \lg n = \Theta(lg(n!))$ as was shown in class.
- $(\sqrt{2})^{\lg n} >> 2^{\sqrt{2 \lg n}}$ to see that, take the log of both functions and note that $\lg n >> \sqrt{(\lg n)}$.
- $\lg^* n = \Theta(\lg^*(\lg n))$ since $\lg^* n = \lg^*(\lg n) 1$.
- $n^{1/\lg n}=2=\Theta(1)$ since if we substitute n by 2^m we get: $n^{1/\lg n}=(2^m)^{1/m}=2$.