Preambule

Theory box

Lorem ipsum dolor sit amet.

Formula box

Lorem ipsum dolor sit amet.

Lab/examples box

Lorem ipsum dolor sit amet.

1 Fluids as energy carriers

1.1 Fluid state variables and properties

Formulas

1.1.1 State variables

Density

$$\rho \triangleq \frac{m}{V} \left[\frac{kg}{m^3} \right] \tag{1}$$

Specific volume

$$v \triangleq \frac{V}{m} = \frac{1}{\rho} \left[\frac{m^3}{kg} \right] \tag{2}$$

1.1.2 Viscosity

Kinematic viscosity

$$\nu \triangleq \frac{\eta}{\rho} \left[\frac{m^2}{s} \right] \tag{3}$$

Dynamic viscosity

$$\eta \triangleq \nu \cdot \rho \left[Pa \cdot s = \frac{Ns}{m^2} = \frac{kg}{m \cdot s} \right]$$
(4)

1.1.3 Real and ideal fluid

Real fluid Ideal fluid

variable density ($\Delta \rho \neq 0$) incompressible ($\Delta \rho = 0$) friction $(\eta > 0, \nu > 0)$ frictionless $(\eta = 0, \nu = 0)$

1.1.4 Compressibility

Mach number

$$M \triangleq \frac{u}{c} \tag{5}$$

where:

- *M* is the Mach number [-] $M \lesssim 0.3$: incompressible flow
- u is the flow velocity [m/s]
- c is the speed of sound in the fluid [m/s]

and:

- $c_{\rm w}^{20^{\circ}} = 1484 \text{ m/s}$ $c_{\rm a}^{20^{\circ}} = 343 \text{ m/s}$

1.2 Laminar and turbulent flow

Reynolds number

$$Re = \frac{v \cdot L}{\nu} = \frac{\rho \cdot v \cdot L}{\eta} \left[- \right] \tag{6}$$

where:

- v is the mean flow velocity [m/s]
- L is the characteristic length [m]

Re values

- Re < 2000: laminar flow
- $Re \simeq 2300$: critical point
- 2000 < Re < 4000: transitional regime
- $Re \geq 4000$: turbulent flow

1.3 Pressure and velocity

Pressure

1.3.1 Total pressure

In addition to the static pressure p_{stat} , there is also the dynamic pressure $p_{\rm dyn}$ and the total pressure p_{tot} :

$$p_{\text{tot}} = p_{\text{stat}} + p_{\text{dyn}} \tag{7}$$

1.3.2 Absolute pressure

Absolute pressure $p_{\rm abs}$ refers to the pressure in a vacuum $p_{\text{vaacum}} = 0Pa$ while relative pressure p_{rel} can refer to any chosen reference pressure $p_{\rm ref}$.

$$p_{\rm abs} = p_{\rm rel} - p_{\rm ref} \tag{8}$$

1.3.3 Velocity

Velocity is a vector quantity:

$$\vec{v} = (v_x v_y v_z) \tag{9}$$

The magnitude is given by:

$$v = \sqrt{v_x^2 + v_y^2 + v_z^2} \tag{10}$$

1.4 Curvature pressure formula

Deflection motion of a fluid element around a blunt body

2 Mass conservation

2.1 Continuity equation / Mass conservation

2.1.1 Steady mass-flow

$$\dot{m}_{\rm in} = \dot{m}_{\rm out} \tag{12}$$

2.1.2 Incompressible fluid

$$\dot{m} = \rho \, \dot{V} \implies \dot{V}_{\rm in} = \dot{V}_{\rm out}$$
 (13)

2.1.3 Streamline theory

$$\dot{V} = \bar{v} A \implies \bar{v}_{\rm in} A_{\rm in} = \bar{v}_{\rm out} A_{\rm out}$$
 (14)

3 Energy conservation

3.1 Fluid mechanical energy conservation

Derivation of the Bernoulli equation

$$\dot{m}_1 \left(\frac{p_1}{\rho} + \frac{v_1^2}{2} + gz_1 \right) = \dot{m}_2 \left(\frac{p_2}{\rho} + \frac{v_2^2}{2} + gz_2 \right) \tag{15}$$

This derivation is based on the assumption that the system has:

- steady flow
 - fluid
- ideal fluid
- adiabatic process
- no work in or out of the system
- 1D streamline flow

3.1.1 Energy flow

$$\frac{dE}{dt} = \underbrace{\sum_{\text{Energy flow across system boundary}}}_{\text{Energy flow across system boundary}} + \underbrace{\sum_{in} \left[\dot{m}^{\swarrow} \cdot \left(h^{\swarrow} + \frac{v^{2\swarrow}}{2} + gz^{\swarrow} \right) \right]}_{\text{Energy transfer mass in}} - \underbrace{\sum_{out} \left[\dot{m}^{\nearrow} \cdot \left(h^{\nearrow} + \frac{v^{2\nearrow}}{2} + gz^{\nearrow} \right) \right]}_{\text{Energy transfer}} \tag{16}$$

3.1.2 Outflow formula according to Torricelli

$$gz_1 = \frac{v_2^2}{2} \Longrightarrow v_2 = \sqrt{2g\Delta z}$$
 (17)

3.2 Bernoulli equation

$$\frac{p_1}{\rho} + \frac{v_1^2}{2} + gz_1 = \frac{p_2}{\rho} + \frac{v_2^2}{2} + gz_2 = \text{const.} \left[\frac{J}{kg} \right]$$
 (18)

3.2.1 Alternative forms

Pressure equation

$$p_1 + \frac{\rho v_1^2}{2} + \rho g z_1 = p_2 + \frac{\rho v_2^2}{2} + \rho g z_2 = \text{const.} [Pa]$$
(19)

Height equation

$$\frac{p_1}{\rho g} + \frac{v_1^2}{2g} + z_1 = \frac{p_2}{\rho g} + \frac{v_2^2}{2g} + z_2 = \text{const.}[m]$$
 (20)

True energy equation

The Bernoulli equation states that the sum of these energies is constant along a streamline.

3.2.2 Pressure energy

$$E_p = m \cdot \frac{p}{\rho} [J] \tag{21}$$

3.2.3 Kinetic energy

$$E_{\rm kin} = m \cdot \frac{v^2}{2} \left[J \right] \tag{22}$$

3.2.4 Potential energy

$$E_{\text{pot}} = m \cdot g \cdot z [J] \tag{23}$$

3.2.5 Energy conservation

$$E_{p,1} + E_{\text{kin},1} + E_{\text{pot},1} = E_{p,2} + E_{\text{kin},2} + E_{\text{pot},2}$$

$$m\left(\frac{p_1}{\rho} + \frac{v_1^2}{2} + gz_1\right) = m\left(\frac{p_2}{\rho} + \frac{v_2^2}{2} + gz_2\right)$$
 (24)

3.3 Hydrostatics

Fundamental law of hydrostatics

$$p = p_0 + \rho g h = \text{const.} [Pa] \tag{25}$$

derived from:

$$p = p_0 + \frac{F_g}{A} = p_0 + \frac{mg}{A} = p_0 + \frac{\rho h Ag}{A}$$
 (26)

3.4 Venturi effect experiment

3.5 Contraction coefficient

3.6 Energy line diagram

3.7 Extended Bernoulli equation

Extension of the Bernoulli equation

$$\frac{p_1}{\rho} + \frac{v_1^2}{2} + gz_1 + e_A = \frac{p_2}{\rho} + \frac{v_2^2}{2} + gz_2 + e_V \left[\frac{J}{kg} \right]$$

$$E_{p,1} + K_1 + U_1 + E_A = E_{p,2} + K_2 + U_2 + E_V [J]$$
(32)

3.7.1 Additional terms

Work term e_A

$$e_A = \frac{p_A}{\rho} = gz_A = \frac{E_A}{m} = \frac{P_A}{\dot{m}} \left[\frac{J}{kg} \right]$$
 (33)

where:

 e_A : work term [J/kg] E_A : energy difference [J] p_A : pressure diff [Pa] P_A : power difference [W]

 z_A : height difference [m]

If energy is added to the fluid along a streamline from point 1 to point 2 (eg. a pump), the total energy at point 2 becomes higher than at point 1.

Sign convention

 $e_A > 0$: work is done on the fluid \rightarrow energy is added to the fluid (eg. pump);

 $\mathbf{e_A} < \mathbf{0}$: work is done by the fluid \rightarrow energy is extracted from the fluid (eg. turbine).

Pump and turbine work Y

In the pressure equation, the pressure p_A increase (or decrease with a turbine) can be read directly at the working term, hence:

$$e_A = \frac{E_A}{m} = Y = H \cdot g = \frac{p_A}{\rho} \left[\frac{J}{kq} \right]$$
 (34)

The hydraulic power P_{hyd} is then given by:

$$P_{\text{hyd}} = \dot{m} \cdot Y = \dot{V} \cdot \rho \cdot Y = \rho \cdot \dot{V} \cdot g \cdot H[W]$$
 (35)

Specific loss term e_V

$$e_V = \frac{p_V}{\rho} = gz_V = \frac{E_V}{m} = \frac{P_V}{\dot{m}} \left[\frac{J}{kg} \right]$$
 (36)

where:

 e_V : loss term [J/kg] E_V : energy loss [J] p_V : pressure diff [Pa] P_V : power loss [W]

 z_V : height loss [m]

The effects of a viscous fluid along a stramline from point 1 to point 2 are taken into account by e_V .

Pressure loss Δp_V

$$\Delta p_V = e_V \cdot \rho = \frac{E_V \cdot \rho}{m} = g \cdot z_V \cdot \rho = \zeta \cdot \rho \cdot \frac{v^2}{2} [Pa]$$
(37)

3.8 Loss behavior in turbolent flows

Zeta value

$$\zeta = \frac{2 \cdot \Delta p_V}{\rho \cdot v^2} \tag{38}$$

Total pressure loss

If multiple losses occur in a system due to sequentially connected hydraulic components, the ttal loss $\Delta p_{V,\text{tot}}$ is given by the sum of the individual losses:

$$\Delta p_{V,\text{tot}} = \sum_{i} \Delta p_{V,i} = \sum_{i} \zeta_i \cdot \rho \cdot \frac{v_i^2}{2} \left[Pa \right]$$
 (39)

$$\Delta p_{V,\text{tot}} = \rho \cdot \frac{v^2}{2} \cdot \sum_{i} \zeta_i = \rho \cdot \frac{v^2}{2} \cdot \zeta_{\text{tot}} [Pa] \quad (40)$$