Решение методом Галеркина неоднородных краевых задач в Maxima

ревизия*№0

Дмитрий Мальков[†]

г. Комсомольск-на-Амуре

8 ноября 2014 г.

Аннотация

Продолжается знакомство с методом Галеркина. Приводится алгоритм решения неоднородных краевых задач и его реализация в системе символьной математики Maxima.

^{*}статьи время от времени пересматриваются и исправляются, скачивайте свежайшие версии с домашней страницы автора

[†]Email: maldmitrix@gmail.com, домашняя страница: https://maldmitrix.github.com

Содержание

1	Определения краевой задачи и краевых условий	3
2	Алгоритм решения обобщенным методом Галеркина	3
3	Построение систем базисных и весовых функций	6
4	Пример вычисления аппроксимации по алгоритму	8
Литература		11
Π	Приложение А	

1 Определения краевой задачи и краевых условий

Будем рассматривать только краевые задачи для линейного обыкновенного дифференциального уравнения второго порядка.

Kpaeвoй задачей для функции u(x) обобщенно называется задача вида

$$\begin{cases} \phi_1 \frac{d^2 u}{dx^2} + \phi_2 \frac{du}{dx} + \phi_3 u = \phi_4, & a \le x \le b, \\ \left(\alpha u + \beta \frac{du}{dx} \right) \Big|_{x=a} = \omega_a, & \left(\gamma u + \delta \frac{du}{dx} \right) \Big|_{x=b} = \omega_b, \end{cases}$$

где $\phi_1, \phi_2, \phi_3, \phi_4$ — известные непрерывные на интервале [a,b] функции от x; $\alpha, \beta, \gamma, \delta$ — известные коэффициенты; ω_a, ω_b — известные значения. Если первое уравнение разделить на $\phi_1 \neq 0$ и после этого переобозначить функции ϕ_i , то их станет всего три (как будет сделано чуть ниже). Символом L обозначается оператор линейного дифференциального уравнения. Первое уравнение в поставленной задаче можно коротко записать как $Lu = \phi_4$. Функция ϕ_4 не включается в состав оператора L, чтобы не нарушать его линейность относительно u.

Второе и третье уравнения называются *краевыми условиями*. Если $\omega_a = \omega_b = 0$, то такие краевые условия называются *однородными*.

В отличие от задачи Коши, краевая задача не всегда разрешима, а если разрешима, то не обязательно единственным образом.

2 Алгоритм решения обобщенным методом Галеркина

Пусть нужно решить задачу

$$\begin{cases} \frac{d^2u}{dx^2} + \phi_1 \frac{du}{dx} + \phi_2 u = \phi_3, & a \le x \le b, \\ \left(\alpha u + \beta \frac{du}{dx}\right)\Big|_{x=a} = \omega_a, & \left(\gamma u + \delta \frac{du}{dx}\right)\Big|_{x=b} = \omega_b, \end{cases}$$

причем в паре коэффициентов α и β есть хотя бы одно ненулевое, и то же самое относится к паре коэффициентов γ и δ (эту фразу можно математически записать как $\alpha^2 + \beta^2 > 0$ и $\gamma^2 + \delta^2 > 0$).

Везде далее будем предполагать существование единственного решения u(x) для данной задачи, что часто вытекает из физического смысла того явления или процесса, математическое моделирование которого

привело к задаче.

Зададимся на отрезке [a,b] некоторой системой дважды непрерывно дифференцируемых функций $u_0(x), u_1(x), \dots, u_n(x)$, таких, что $u_0(x)$ удовлетворяет данным в условии задачи краевым условиям, а остальные функции $u_1(x), u_2(x), \dots, u_n(x)$, называемые базисными функциями, линейно независимы на отрезке [a,b] и удовлетворяют однородным краевым условиям

$$\left(\alpha u + \beta \frac{du}{dx}\right)\Big|_{x=a} = 0, \quad \left(\gamma u + \delta \frac{du}{dx}\right)\Big|_{x=b} = 0.$$

Составим пробное решение задачи

$$u(x) \approx \tilde{u}(x) = u_0(x) + \sum_{i} c_i u_i(x), \quad i = 1, 2, \dots, n,$$

с неизвестными пока коэффициентами c_1, c_2, \ldots, c_n . В силу линейности исходных краевых условий, пробное решение удовлетворяет им при любых значениях коэффициентов c_i . Подставляя пробное решение $\tilde{u}(x)$ в дифференциальное уравнение, находим выражение невязки:

$$R(c_i, x) = L\tilde{u} - \phi_3(x) = Lu_0 - \phi_3(x) + \sum_i c_i Lu_i, \quad i = 1, 2, \dots, n.$$

Невязка линейно зависит от параметров c_i и является характеристикой уклонения пробного решения $\tilde{u}(x)$ от точного решения u(x). Если при некоторых значениях c_i невязка на рассматриваемом отрезке [a,b] во всех точках равна нулю, то $u(x) \equiv \tilde{u}(x)$ в силу единственности точного решения (то есть мы случайно угадали точное решение). Но обычно невязка нулю не равна. Поэтому подбираем коэффициенты c_i так, чтобы невязка была в каком-то смысле наименьшей. В обобщенном методе Галеркина значения этих коэффициентов определяются из системы n уравнений

$$\langle R(c_1, c_2, \dots, c_n, x), w_j(x) \rangle = \int_a^b R(c_1, c_2, \dots, c_n, x) w_j(x) dx = 0,$$

$$j = 1, 2, \dots, n,$$

где $w_j(x)$ – линейно независимые и непрерывные на интервале [a,b] весовые функции (еще их называют поверочными). Если в качестве весовых функций w_j взять базисные функции u_j , то мы получаем $aemopc\kappa u\ddot{u}$ метод Галеркина. Если весовые функции w_j входят в полную систему функций, то при $n\to\infty$ невязка будет ортогональной всем элементам полной системы и, значит, сходится при $n\to\infty$ к нулю в среднем.

Запишем систему n уравнений:

$$\int_{a}^{b} \left[Lu_0 - \phi_3(x) + \sum_{i} c_i Lu_i \right] w_j(x) \ dx = 0, \quad i, j = 1, 2, \dots, n;$$

или

$$\sum_{i} \int_{a}^{b} c_{i} L u_{i} w_{j}(x) \ dx = \int_{a}^{b} \left[\phi_{3}(x) - L u_{0} \right] w_{j}(x) \ dx, \quad i, j = 1, 2, \dots, n;$$

Перепишем систему развернутом виде:

$$\sum_{i} K_{ji} c_i = f_j, \quad i, j = 1, 2, \dots, n$$

или в матричной форме:

$$Kc = f$$

где $K_{ji} = \langle Lu_i, w_j(x) \rangle$, $f_j = \langle \phi_3(x) - Lu_0, w_j(x) \rangle = \langle -R(x), w_j(x) \rangle$. Решив эту систему (матричное уравнение), подставляем найденные коэффициенты c_i в разложение пробного решения $\tilde{u}(x)$ по базисным функциям и записываем ответ.

Запишем алгоритм решения неоднородной краевой задачи обобщенным методом Галеркина, предполагая, что пробное решение $\tilde{u}(x)$ задачи сходится к точному решению u(x) при $n \to \infty$:

0. Выбираем главный член $u_0(x)$ пробного решения, базисные функции $u_1(x), u_2(x), \ldots, u_n(x)$ и весовые функции $w_1(x), w_2(x), \ldots, w_n(x)$.

Находим выражение невязки при $\tilde{u}(x) = u_0(x)$: $R_0(x) = Lu_0(x) - \phi_3(x)$. Если для любого $x \in [a,b]$ невязка $R_0(x)$ равна нулю, то записываем ответ $u(x) \equiv u_0(x)$ и радуемся. В противном случае, переходим к следующему шагу алгоритма.

1. Берем только одну базисную функцию $u_1(x)$ и строим пробное решение первого шага в виде $\tilde{u}_{(1)}(x) = u_0(x) + c_1 u_1(x)$. Из описанной выше системы линейных уравнений при n=1 (она выродится в одно уравнение) находим коэффициент c_1 .

Вычисляем невязку $R(c_1,x)$. Если для любого $x \in [a,b]$ невязка $R(c_1,x)$ равна нулю, то записываем ответ $u(x) \equiv u_0(x) + c_1u_1(x)$ и заканчиваем вычисления. В противном случае, вычисляем то, как сильно пробное решение отклоняется от точного.

Введем меру точности Δ_m пробного решения $\tilde{u}_{(m)}(x)$ на шаге m

(когда используются m различных базисных функций u_i):

$$\Delta_m = \max_{x \in [a,b]} |R(c_1, c_2, \dots, c_n, x)|, \quad i = 1, 2, \dots, m.$$

На первом шаге m=1. Пусть нам нужно наибольшее отклонение, не превышающее некоторого заданного значения ε . Если $\Delta_m \leq \varepsilon$, записываем ответ $u(x) \approx u_0(x) + c_1 u_1(x)$ и заканчиваем вычисления. Иначе, переходим к следующему, (m+1)-му, шагу. И так далее, пока не случится при некотором m, что $R(c_1, c_2, \ldots, c_n, x) = 0$ или $\Delta_m \leq \varepsilon$.

3 Построение систем базисных и весовых функций

Система функции называется *линейно независимой*, если любая линейная комбинация этих функций обращается в ноль тогда и только тогда, когда все коэффициенты линейной комбинации равны нулю.

Известно, что степенные функции $1, x, x^2, \ldots, x^n, \ldots$ линейно независимы на всей оси вещественных чисел \mathbf{R} и, следовательно, на любом ее отрезке $[a,b] \subset \mathbf{R}$. Также на любом таком отрезке линейно независима любая система из многочленов *последовательных* степеней (то есть наивысшая степень переменной x у каждого многочлена системы уникальна).

Для построения $u_0(x)$ и линейно независимой на [a,b] системы базисных функций $u_1(x), u_2(x), \ldots, u_n(x)$, являющихся многочленами, можно применить метод неопределенных коэффициентов.

Пример 1. Построить главный член $u_0(x)$ и систему из пяти базисных функций $u_i(x)$, $i \ge 1$ для задачи с краевыми условиями

$$\left(u(x) + \frac{du}{dx}\right)\Big|_{x=0} = 1, \quad \left(u(x) + \frac{du}{dx}\right)\Big|_{x=1} = -4.$$

Peшение. Пусть главный член $u_0(x)=A,$ тогда $\frac{du_0}{dx}=0,$ и краевые условия дают несовместную систему из уравнений A=1 и A=-4.

Пусть теперь $u_0 = A + Bx$, тогда $\frac{du_0}{dx} = B$ и краевые условия дают

$$\left\{ \begin{array}{l} A+B=1, \\ A+2B=-4; \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} A+B=1, \\ B=-5; \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} A=6, \\ B=-5. \end{array} \right.$$

Получаем $u_0 = 6 - 5x$.

Базисные функции $u_i(x)$, $i \ge 1$ должны удовлетворять однородным

условиям

$$\left(u(x) + \frac{du}{dx}\right)\Big|_{x=0} = 0, \quad \left(u(x) + \frac{du}{dx}\right)\Big|_{x=1} = 0.$$

Базисные функции не могут быть нулевыми, поэтому $u_1(x)$ в виде $u_1 = A$ или $u_1 = A + Bx$ не подойдет. Будем искать в виде $u_1 = A + Bx + Cx^2$. Первая производная будет $\frac{du_1}{dx} = B + 2Cx$, и из однородных условий получаем систему из двух уравнений для трех неизвестных (неопределенная система):

$$\begin{cases} A+B=0, \\ A+2B+3C=0; \end{cases} \Leftrightarrow \begin{cases} A+B=0, \\ B+3C=0 \end{cases}.$$

Имеем множество решений A=3t, B=-3t, C=t. Выбираем одно решение при $t=\frac{1}{3}.$ Тогда

$$u_1(x) = 1 - x + \frac{1}{3}x^2.$$

Аналогично находим

$$u_2(x) = 1 - x + \frac{1}{4}x^3$$
, $u_3(x) = 1 - x + \frac{1}{5}x^4$,

$$u_4(x) = 1 - x + \frac{1}{6}x^5, \quad u_5(x) = 1 - x + \frac{1}{7}x^6.$$

В обобщенном методе Галеркина весовые функции w_j не обязательно должны быть такими же, как базисные. Можно выбрать, например, многочлены Лежандра, которые, как известно, ортогональны на интервале $t \in [-1,1]$:

$$P_n(t) = \frac{1}{2^n n!} \frac{d^n}{dt^n} (t^2 - 1)^n, \quad n = 0, 1, 2, \dots$$

Вместо параметра t нужно подставлять

$$t = \frac{2}{b-a} \left(x - \frac{a+b}{2} \right),$$

чтобы получить ортогональные на интервале $x \in [a, b]$ полиномы $P_n(x)$.

Дополнительные примеры и объяснения можно найти в неплохом учебном пособии А. В. Анкилова «Алгоритмы методов взвешенных невязок для решения линейных задач математической физики и их реализация в системе MathCAD», изданном в Ульяновском государственном техническом университете (2006 г.).

4 Пример вычисления аппроксимации по алгоритму

Рассмотрим подготовительный и первый шаги приведенного выше алгоритма для следующей краевой задачи:

$$\begin{cases} \frac{d^2u}{dx^2} - 3\frac{du}{dx} + 2u = 2x^2 - 6x + 2, & x \in [0, 1], \\ \left(u + \frac{du}{dx}\right)\Big|_{x=0} = 1, & \left(u + \frac{du}{dx}\right)\Big|_{x=1} = -4. \end{cases}$$

Подготовительный шаг. Будем аппроксимировать степенными полиномами. Для данных краевых и однородных краевых условий мы уже находили функции u_0 и u_i $(i=1,2,\ldots,5)$. Перепишем еще раз главный член разложения u_0 :

$$u_0 = 6 - 5x$$
.

Запишем для него выражение линейного дифференциального оператора:

$$Lu_0(x) = -3 \cdot (-5) + 2(6 - 5x) = 27 - 10x.$$

Запишем выражение невязки для главного члена:

$$R(x) = 27 - 10x - 2x^{2} + 6x - 2 = -2x^{2} - 4x + 25 \neq 0.$$

Значит, мы не угадали точное решение. Тогда переходим к следующему шагу. Но сначала найдем на всякий случай наибольшее отклонение невязки от нуля (по алгоритму это делать не обязательно). На отрезке $x \in [0,1]$ невязка плавно уменьшается со значения 25 до значения 25-2-4=19. Значит $\Delta_0=25$.

Первый шаг. Представим пробное решение как

$$\tilde{u}_{(1)} = u_0 + c_1 u_1$$

где

$$u_0(x) = 6 - 5x$$
, $u_1(x) = 1 - x + \frac{1}{3}x^2$.

Находим выражение линейного дифференциального оператора для базисной функции u_1 :

$$Lu_1(x) = \frac{2}{3} - 3\left(-1 + \frac{2}{3}x\right) + 2 - 2x + \frac{2}{3}x^2 = \frac{2}{3}x^2 - 4x + \frac{17}{3}.$$

Далее, не утруждая себя при интегрировании приведением подобных

слагаемых, находим внутреннее произведение от функции u_1 и ее обработкой оператором $Lu_1(x)$:

$$K = \langle Lu_1(x), u_1(x) \rangle = \int_0^1 \left(\frac{2}{3} x^2 - 4x + \frac{17}{3} \right) \left(1 - x + \frac{1}{3} x^2 \right) dx =$$

$$= \int_0^1 \left(\frac{2}{3} x^2 - 4x + \frac{17}{3} - \frac{2}{3} x^3 + 4x^2 - \frac{17}{3} x + \frac{2}{9} x^4 - \frac{4}{3} x^3 + \frac{17}{9} x^2 \right) dx =$$

$$= \left(\frac{2}{9} x^3 - \frac{4}{2} x^2 + \frac{17}{3} x - \frac{2}{12} x^4 + \frac{4}{3} x^3 - \frac{17}{6} x^2 + \frac{2}{45} x^5 - \frac{4}{12} x^4 + \frac{17}{27} x^3 \right) \Big|_0^1 =$$

$$= \frac{2}{9} - 2 + \frac{17}{3} - \frac{1}{6} + \frac{4}{3} - \frac{17}{6} + \frac{2}{45} - \frac{1}{3} + \frac{17}{27} \approx 2.563.$$

Таким же образом находим внутреннее произведение от функции u_1 и невязкой R(x), полученной на шаге алгоритма m=0 (при $\tilde{u}_{(0)}=u_0$) и взятой с обратным знаком:

$$f = \langle -R(x), u_1(x) \rangle = \int_0^1 \left(1 - x + \frac{1}{3}x^2 \right) \left(2x^2 + 4x - 25 \right) dx =$$

$$= \int_0^1 \left(2x^2 + 4x - 25 - 2x^3 - 4x^2 + 25x + \frac{2}{3}x^4 + \frac{4}{3}x^3 - \frac{25}{3}x^2 \right) dx =$$

$$= \left(\frac{2}{3}x^3 + 2x^2 - 25x - \frac{2}{4}x^4 - \frac{4}{3}x^3 + \frac{25}{2}x^2 + \frac{2}{15}x^5 + \frac{4}{12}x^4 - \frac{25}{9}x^3 \right) \Big|_0^1 =$$

$$= \frac{2}{3} + 2 - 25 - \frac{1}{2} - \frac{4}{3} + \frac{25}{2} + \frac{2}{15} + \frac{1}{3} - \frac{25}{9} \approx -13.978.$$

Из уравнения $Kc_1 = f$ находим нужный коэффициент:

$$c_1 = \frac{-13.978}{2.563} \approx -5.454.$$

Запишем пробное решение \tilde{u} с найденным коэффициентом:

$$\tilde{u}_{(1)} = 6 - 5x + c_1(1 - x + \frac{1}{3}x^2) = \frac{1}{3}c_1x^2 - (5 + c_1)x + 6 + c_1.$$

Запишем выражение невязки от пробной функции на шаге m=1 алгоритма:

$$R(c_1, x) = \frac{2}{3}c_1 - 2c_1x + 3c_1 + 15 + \frac{2}{3}c_1x^2 - 2c_1x - 10x + 12 + 2c_1 - 2x^2 + 6x - 2 =$$

$$= \left(\frac{2c_1 - 6}{3}\right)x^2 - 4(c_1 + 1)x + \left(\frac{17c_1}{3} + 25\right) \neq 0.$$

Точное решение снова не угадали. Найдем тогда наибольшее отклонение невязки $R(c_1,x)$ от нуля при первом шаге на отрезке $x \in [0,1]$. Для этого нужно найти все локальные экстремумы функции $R(c_1,x)$, принадлежащие отрезку, найти в них значения невязки, а также найти значения невязки на концах отрезка, и выбрать из них наибольшее абсолютное значение.

Мы имеем параболу. Значит у нее есть только один экстремум, который может не принадлежать рассматриваемому отрезку. Для его нахождения, нужно взять первую производную и приравнять ее к нулю:

$$\frac{dR(c_1,x)}{dx} = \frac{2}{3}(2c_1 - 6)x - 4(c_1 + 1) = 0.$$

Отсюда найдем абсциссу единственного экстремума:

$$x = \frac{6(c_1 + 1)}{2c_1 - 6} \approx 1.58 \notin [0; 1].$$

Экстремум находится вне рассматриваемого отрезка. Найдем значения невязки на концах отрезка:

$$R(c_1, 0) \approx -5.906$$
, $R(c_1, 1) \approx 6.274$.

Выбираем наибольшее абсолютное значение:

$$\Delta_1 = \max_{x \in [0,1]} |R(c_1, x)| \approx 6.274.$$

Теперь нужно оценить погрешность. Если бы область задачи была, скажем, $[0,50\,000]$, то наибольшая погрешность, равная в некоторой точке 6.274, была бы еще приемлемой. Но на маленьком интервале [0,1] полученная аппроксимация не может серьезно рассматриваться. Введем ограничение на приемлемость погрешности: $\varepsilon = 0.01$. Алгоритм теперь нужно выполнять до тех пор, пока Δ_m не станет при некотором шаге m меньше предела неприемлемости аппроксимации ε .

Алгоритм выполнен до четвертого шага включительно в программе Maxima. Реализацию смотрите в приложении А. Поставленная задача имеет единственное точное решение вида

$$u(x) = \frac{e^2 + 7}{2(e^2 - e)}e^x - \frac{7 + e}{3(e^2 - e)}e^{2x} + x^2.$$

Список литературы

- [1] Анкилов, А. В. Алгоритмы методов взвешенных невязок для решения линейных задач математической физики и их реализация в системе MathCAD: учебное пособие / А. В. Анкилов, П. А. Вельмисов, А. С. Семёнов. Ульяновск : УлГТУ, 2006. 168 с.
- [2] Флетчер, К. Численные методы на основе метода Галеркина / К. Флетчер.— М. : Мир, 1988.-352 с.
- [3] Bruce A. Finlayson The method of weighted residuals and variational principles. Academic ress, inc., New York, 1972.
- [4] Иванов В.Н. Вариационные принципы и методы решения задач теории упругости: Учеб. пособие М.: Изд-во РУДН, 2004. 176 с.: ил.
- [5] Бабенко К.И. Основы численного анализа. М.: Наука, 1986.

Приложение А

Код для программы Maxima. Для его запуска нужно в консоли ввести maxima -b Путь-К-Файлу. Код вычерчивает три графика.

```
/* запускать командой << maxima -b ./qalerkin.mac >> */
/************************/
/***************
** Подготовительный шаг **
**********
/* Задание линейного дифференциального оператора,
  функции для правой части уравнения,
  общего выражения невязки */
L(y,x) := diff(y,x,2) - 3*diff(y,x,1) + 2*y$
Pfi3(x) := 2*x^2 - 6*x + 2$
R(y,x) := L(y,x) - Pfi3(x)$
/* Задание главного члена пробной функции
* и базисных функций */
u0(x) := 6 - 5*x$
u1(x) := 1 - x + 1/3*x^2
u2(x) := 1 - x + 1/4*x^3
u3(x) := 1 - x + 1/5*x^4
u4(x) := 1 - x + 1/6*x^5
/* Невязка только от главной функции */
RUO(x) := R(uO(x),x)$
/* Левая часть дифф.уравнения при каждой из базисных функций */
Lu1(x) := L(u1(x),x)$
Lu2(x) := L(u2(x),x)$
Lu3(x) := L(u3(x),x)$
Lu4(x) := L(u4(x),x)$
/* Общее выражение внутреннего
* произведения двух произвольных функций */
InProd(y1, y2,x,a,b) := integrate(y1(x)*y2(x),x,a,b)
/**********
** Шаг первый **
********
/* Преобразованное условие ортогональности */
K1: InProd(Lu1,u1,x,0,1)$
```

```
f1: InProd(RU0,u1,x,0,1)*(-1) $
/* Ищем коэффициент */
c1: f1/K1$
/* Записываем пробное решение */
U1(x) := u0(x) + c1*u1(x)$
/* Невязка на первом шаге */
RU1(x) := R(U1(x),x)$
/*******
** Шаг второй **
*******/
/* Матричное уравнение ортогональности */
K2: matrix( [InProd(Lu1,u1,x,0,1), InProd(Lu2,u1,x,0,1)],
            [InProd(Lu1,u2,x,0,1), InProd(Lu2,u2,x,0,1)])$
f2: matrix(
            [InProd(RU0,u1,x,0,1)*(-1)],
                 [InProd(RU0,u2,x,0,1)*(-1)]
/* Ищем коэффициенты */
c2: invert(K2).f2$
/* Записываем пробное решение */
U2(x) := u0(x) + c2[1]*u1(x)+c2[2]*u2(x)
/* Невязка на втором шаге */
RU2(x) := R(U2(x)[1],x)$
/*******
*******/
/* Матричное уравнение ортогональности */
K3: matrix(
    [InProd(Lu1,u1,x,0,1), InProd(Lu2,u1,x,0,1),
                InProd(Lu3,u1,x,0,1) ],
    [InProd(Lu1,u2,x,0,1), InProd(Lu2,u2,x,0,1),
                InProd(Lu3,u2,x,0,1)],
    [InProd(Lu1,u3,x,0,1), InProd(Lu2,u3,x,0,1),
                InProd(Lu3,u3,x,0,1)])$
f3: matrix(
            [InProd(RU0,u1,x,0,1)*(-1)],
            [InProd(RU0,u2,x,0,1)*(-1)],
            [InProd(RU0,u3,x,0,1)*(-1)]
/* Ищем коэффициенты */
c3: invert(K3).f3$
```

```
/* Записываем пробное решение */
U3(x) := u0(x) + c3[1]*u1(x) + c3[2]*u2(x) + c3[3]*u3(x)
/* Невязка на третьем шаге */
RU3(x) := R(U3(x)[1],x)$
/***********
** Шаг четвертый **
*******/
/* Матричное уравнение ортогональности */
K4: matrix( [InProd(Lu1,u1,x,0,1), InProd(Lu2,u1,x,0,1),
             InProd(Lu3,u1,x,0,1), InProd(Lu4,u1,x,0,1)],
            [InProd(Lu1,u2,x,0,1), InProd(Lu2,u2,x,0,1),
             InProd(Lu3,u2,x,0,1), InProd(Lu4,u2,x,0,1)],
            [InProd(Lu1,u3,x,0,1), InProd(Lu2,u3,x,0,1),
             InProd(Lu3,u3,x,0,1), InProd(Lu4,u3,x,0,1)],
            [InProd(Lu1,u4,x,0,1), InProd(Lu2,u4,x,0,1),
             InProd(Lu3,u4,x,0,1), InProd(Lu4,u4,x,0,1)])$
f4: matrix( [InProd(RUO,u1,x,0,1)*(-1)],
            [InProd(RU0,u2,x,0,1)*(-1)],
            [InProd(RU0,u3,x,0,1)*(-1)],
            [InProd(RU0,u4,x,0,1)*(-1)])$
/* Ищем коэффициенты */
c4: invert(K4).f4$
/* Записываем пробное решение */
U4(x) := u0(x) + c4[1]*u1(x) + c4[2]*u2(x)
+ c4[3]*u3(x) + c4[4]*u4(x)$
/* Невязка на третьем шаге */
RU4(x) := R(U4(x)[1],x)$
/********
   Точное решение
********
Uexact(x) := 1/2*(%e^2 + 7)/(%e^2 - %e)*%e^x -
(7 + \%e)/3/(\%e^2 - \%e)*\%e^(2*x) + x^2$
/******
** Графики **
*******/
```


Рис. 1: Графики невязок, полученные на первых четырех шагах алгоритма.

Рис. 2: а) Графики пробных решений, полученных на первых четырех шагах алгоритма. б) Графики точного и четвертого пробного решений