Duplication Correcting Codes for live DNA Storage

Data Storage in DNA

genetic information is stored in DNA

ex-vivo data storage

in-vivo data storage

Storage in live DNA

Watermarking GMOs

Related Work

- Arita & Ohashi, 2004 parity check bits
- Haider & Barenkow, 2007 Hamming code or repetition code
- Yachie et. al, 2008 copy data multiple times at different locations
- Haughton & Balado, 2013 Coded for substitution

- Dolecek and Ananthram 2008 Tandem duplication errors of length 1
- Mitzenmacher 2008 Lower & upper bounds on sticky channel capacity

Tandem Duplications

Tandem Repeats in Genome

TTTCTTTCTTTCTTTCTTTC AAGAAAAAAAAGAAGGAGAA GGAGAAGGGGAAGGGG CCTTCCTTCCTTCCTT TCCTTCCTTCCTTCT GGTTTGGTTTGGTTTGG IGAGAAGAAGGAGAA GGTTTGGTTTGGTT IAGAAGGAGAAGGGG GGAGAAGAAGAAGA TGGTTTGGTTTGGT GGTTTGGTTTGGTTTGG TGGTTTGGTTTGGT TGGTTTGGTTTGGTT TGGTTTGGTTTGGTTT GGTTTGGTTTGGTTTGG TTTGGTTTGGTTT

Channel Model

k-uniform Errors, T_k

Example : 2-uniform (T₂)

Input: x = ACGT

ACGT → ACGCGT → ACACGCGT → ACACGCGTGT

Output: y = ACACGCGTGT

k-bounded Errors, $T_{\leq k}$

Example : 4-bounded $(T_{\leq 4})$

Input: x = ACGT

ACGT → ACG<u>CG</u>T → ACG<u>ACG</u>CGT →
AACGACGCGT → AACGACGCGT<u>GCGT</u>

Output: y = AACGACGCGTGCGT

Encoding

• Repeat-free sequences

Decoding

Remove all repeats

Decoding by Deduplication

Removing k-uniform errors

Example : 2-uniform (T₂)

Channel output: y = ACACGCGTGT

ACACGCGTGT → ACGCCTGT → ACGTCT

Input estimate: $\hat{x} = ACGT$

Decoding by Deduplication

Removing k-bounded errors

Example : 4-bounded $(T_{\leq 4})$

Channel output: y = AACGACGCGTGCGT

AACGACGCGTGCGT → ACGACCCGTGCGT →
ACGCCGTCCCT → ACGCCCT

Input estimate: $\hat{x} = ACGT$

What Could Go Wrong?

Example: $T_{\leq 4}$

Root of s: repeat-free sequence that can be transformed to *s* via duplications

Duplication Cone

Uniqueness of Roots

Theorem 1

For tandem duplication rule T_k , the root is unique for any k.

Theorem 2

For tandem duplication rule $T_{\leq k}$, the root is unique for $k \leq 3$.

$$T_{k'}$$
 $T_{\leq 2'}$ $T_{\leq 3}$

Codes for T_k , $T_{\leq 2}$, $T_{\leq 3}$ Channels

Extend each root to length *n* through *T*

Example: T_2 , n = 7, $|\Sigma| = 4$:

ACTCTCT, AAAAAAA, CGGTATA, CATGCGA

This code is optimal for T_k and $T_{\leq 2}$

Codes for T_k Channel

Bijection: Roots \leftrightarrow RLL(0, k-1)

$$M = \sum_{i=0}^{\lfloor n/k \rfloor - 1} |\Sigma|^k M_{RLL(0,k-1)}(n - (i+1)k)$$

This code is not optimal for $T_{\leq 3}$

Other Results

Construction: Optimal codes for t errors under T_k using codes in ℓ_1 -metric

Theorem: Under T_U , the root is unique for all sequences if and only if

$ \Sigma =1$	k U
$ \Sigma = 2$	$U = \{k\}$ $U \supseteq \{1,2\}$
$ \Sigma \geq 3$	$U = \{k\}$ $U \supseteq \{1,2\}$ $U \supseteq \{1,2,3\}$

Open Problems

- Optimal Code for ≤ 3 duplication error
- Codes for non-unique root regimes
- Codes for unbounded duplication error
- Code for duplication errors with point mutations