一、矩阵运算

 $m \times n$ 矩阵 $A = [a_{ij}]$ 的**对角线元素**是 $a_{11}, a_{22}, a_{33}, \cdots$, 它们组成 A 的**主对角** 线.

对角矩阵是一个方阵, 它的非对角线元素全是 0. 例如 $n \times n$ 单位矩阵 I_n . 元素全是 0 的 $m \times n$ 矩阵称为零矩阵, 用 0 表示.

若两个矩阵有相同的维数 (即有相同的行数和列数), 而且对应元素相同, 则称该两个矩阵相等

若 r 是标量而 A 是矩阵, 则**标量乘法** rA 是一个矩阵, 它的每一列是 A 的对应列的 r 倍.

定理 1 设 A,B,C 是相同维数的矩阵, r 与 s 为数, 则有

a.
$$A + B = B + A$$

b.
$$(A + B) + C = A + (B + C)$$

$$c. A + 0 = A$$

$$d. \ r(A+B) = rA + rB$$

$$e. (r+s)A = rA + sA$$

$$f. \ r(sA) = (rs)A$$

定义 若 $A \in m \times n$ 矩阵, $B \in n \times p$ 矩阵, B 的列是 $\mathbf{b}_1, \dots, \mathbf{b}_p$, 则乘积 $AB \in m \times p$ 矩阵, 它的各列是 $A\mathbf{b}_1, \dots, A\mathbf{b}_p$, 即

$$AB = A[\boldsymbol{b}_1 \ \boldsymbol{b}_2 \ \cdots \ \boldsymbol{b}_p] = [A\boldsymbol{b}_1 \ A\boldsymbol{b}_2 \ \cdots \ A\boldsymbol{b}_p]$$

AB 的每一列都是 A 的各列的线性组合, B 的对应列的元素为权.

计算 AB 的行列法则

若乘积 AB 有定义,则 AB 的第 i 行第 j 列的元素是 A 的第 i 行与 B 的第 j 列对应元素乘积之和. 若 $(AB)_{ij}$ 表示 AB 的 (i,j) 元素, A 为 $m \times n$ 矩阵,则

$$(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}$$

定理 2 设 A 为 $m \times n$ 矩阵, B 和 C 的维数使下列各式的乘积有意义.

a.
$$A(BC) = (AB)C$$

(乘法结合律)

$$b. \ A(B+C) = AB + AC$$

(乘法左分配律)

$$c. (B+C)A = BA + CA$$

(乘法右分配律)

$$d. r(AB) = (rA)B = A(rB), r$$
 为任意数

e.
$$I_m A = A = A I_m$$

(矩阵乘法的恒等式)

乘积 AB 的因子关系为: A 被 B 右乘, 或 B 被 A 左乘 若 AB=BA, 我们称 A 和 B 彼此可交换

警告

- 1. 一般情况下, $AB \neq BA$.
- 2. 消去律对矩阵乘法不成立, 即若 AB = AC, 一般情况下, B = C 并不成立.
- 3. 若乘积 AB 是零矩阵, 一般情况下, 不能断定 A=0 或 B=0.

给定 $m \times n$ 矩阵, 则 A 的转置是一个 $n \times m$ 矩阵, 用 A^T 表示, 它的列是由 A 的对应行构成的.

定理 3 设 A 与 B 表示矩阵, 其维数使下列和与积有定义, 则

a.
$$(A^T)^T = A$$
.

b.
$$(A + B)^T = A^T + B^T$$
.

- c. 对任意数 r, $(rA)^T = rA^T$.
- $d. (AB)^T = B^T A^T.$

若干个矩阵的乘积的转置等于它们的转置的乘积, 但相乘的顺序相反.

二、矩阵的逆

A 为 $n \times n$ 矩阵, 若存在一个 $n \times n$ 矩阵 C, 使得

则称 A 可逆, 并且 C 是 A 的逆.

若 A 可逆, 它的逆是唯一的, 我们将它记为 A^{-1} , 则

$$A^{-1}A = I \qquad \coprod AA^{-1} = I$$

不可逆矩阵也称为**奇异矩阵**. 可逆矩阵也称为**非奇异矩阵**.

定理 4 设
$$A = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}$$
. 若 $ad - bc \neq 0$, 则 A 可逆且

$$A^{-1} = \frac{1}{ad - bc} \left[\begin{array}{cc} d & -b \\ -c & a \end{array} \right]$$

若 ad - bc = 0, 则 A 不可逆.

数 ad - bc 称为 A 的行列式, 记为

$$\det A = ad - bc$$

定理 5 若 A 是可逆 $n \times n$ 矩阵, 则对每一 \mathbb{R}^n 中的 \mathbf{b} , 方程 $A\mathbf{x} = \mathbf{b}$ 有 唯一解 $\mathbf{x} = A^{-1}\mathbf{b}$.

胡克定律

公式如下

$$y = Df$$

其中 D 为弹性矩阵, 它的逆称为刚性矩阵, f 表示它在各个点受的力, y 表示各个点的形变量.

定理 6

a. 若 A 是可逆矩阵, 则 A^{-1} 也可逆而且 $(A^{-1})^{-1} = A$.

b. 若 A 和 B 都是 $n \times n$ 可逆矩阵, 则 AB 也可逆, 且其逆是 A 和 B 的 逆矩阵按相反顺序的乘积. 即

$$(AB)^{-1} = B^{-1}A^{-1}$$

c. 若 A 可逆, 则 A^T 也可逆, 且其逆是 A^{-1} 的转置, 即 $(A^T)^{-1} = (A^{-1})^T$.

若干个 $n \times n$ 可逆矩阵的积也是可逆的, 其逆等于这些矩阵的逆按相反顺序的乘积.

把单位矩阵进行一次初等行变换, 就得到初等矩阵.

若对 $m \times n$ 矩阵 A 进行某种初等行变换, 所得矩阵可写成 EA, 其中 $E \not\in m \times m$ 矩阵, 是由 I_m 进行同一行变换所得.

每个初等矩阵 E 是可逆的, E 的逆是一个同类型的初等矩阵, 它把 E 变回 I.

定理 7 $n \times n$ 矩阵 A 是可逆的, 当且仅当 A 行等价于 I_n , 这时, 把 A 化简为 I_m 的一系列初等行变化同时把 I_n 变成 A^{-1} .

求 A^{-1} 的算法

把增广矩阵 $[A\ I]$ 进行行化简. 若 A 行等价于 I, 则 $[A\ I]$ 行等价于 $[I\ A^{-1}]$, 否则 A 没有逆.

三、可逆矩阵的特征

定理 8 (可逆矩阵定理) 设 A 为 $n \times n$ 矩阵,则下列命题是等价的,即 对某一特定的 A. 它们同时为真或同时为假.

- a. A 是可逆矩阵.
- b. A 行等价于 $n \times n$ 单位矩阵.
- c. A 有 n 个主元位置.
- d. 方程 Ax = 0 仅有平凡解.
- e. A 的各列线性无关.
- f. 线性变换 $x \mapsto Ax$ 是一对一的.
- g. 对 \mathbb{R}^n 中任意 b, 方程 Ax = b 至少有一个解.
- h.A 的各列生成 \mathbb{R}^n .
- i. 线性变换 $x \mapsto Ax$ 把 \mathbb{R}^n 映上到 \mathbb{R}^n .
- i. 存在 $n \times n$ 矩阵 C 使 CA = I.
- k. 存在 $n \times n$ 矩阵 D 使 AD = I.
- $1. A^T$ 是可逆矩阵.

设 A 和 B 为方阵, 若 AB=I, 则 A 和 B 都是可逆的, 且 $B=A^{-1}$, $A=B^{-1}$.

定理 9 设 $T:\mathbb{R}^n \to \mathbb{R}^n$ 为线性变换, $A \to T$ 的标准矩阵. 则 T 可逆当且仅当 A 是可逆矩阵.

若一个 $m \times n$ 矩阵的主对角线以下元素全为 0, 则称之为**上三角矩阵**. 若一个 $m \times n$ 矩阵的主对角线以上元素全为 0, 则称之为**下三角矩阵**.

四、分块矩阵

形如

$$A = \begin{bmatrix} 3 & 0 & -1 & 5 & 9 & -2 \\ -5 & 2 & 4 & 0 & -3 & 1 \\ \hline -8 & -6 & 3 & 1 & 7 & -4 \end{bmatrix}$$

为矩阵 A 的 2×3 分块矩阵, 也可表示为

$$A = \left[\begin{array}{ccc} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \end{array} \right]$$

设 A 为 $m \times n$ 矩阵, B 为 $n \times p$ 矩阵, 当 A 的列的分法与 B 的行的分法一 致时, 可计算 AB. 如下:

$$A = \begin{bmatrix} 2 & -3 & 1 & 0 & -4 \\ 1 & 5 & -2 & 3 & -1 \\ \hline 0 & -4 & -2 & 7 & -1 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

$$B = \begin{bmatrix} 6 & 4 \\ -2 & 1 \\ \hline -3 & 7 \\ \hline -1 & 3 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}$$

$$AB = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} = \begin{bmatrix} A_{11}B_1 + A_{12}B_2 \\ A_{21}B_1 + A_{22}B_2 \end{bmatrix} = \begin{bmatrix} -5 & 4 \\ -6 & 2 \\ \hline 2 & 1 \end{bmatrix}$$

定理 10 (AB 的列行展开)

若 $A \neq m \times n$ 矩阵, $B \neq n \times p$ 矩阵, 则

$$AB = [col_1(A) \ col_2(A) \ \cdots \ col_n(A)] \begin{bmatrix} row_1(B) \\ row_2(B) \\ \vdots \\ row_n(B) \end{bmatrix}$$
$$= col_1(A)row_1(B) + \cdots + col_n(A)row_n(B)$$

五、矩阵因式分解

设 $A \neq m \times n$ 矩阵, 它可以行化简为阶梯形 (化简步骤不包含对换变换), 则 A 可写成 A = LU. 其中, $L \neq m \times m$ 下三角矩阵, 主对角线元素全是 1; $U \neq A$ 的一个 $m \times n$ 阶梯形矩阵.

LU 分解的算法

- 1. 如果可能的话, 用一系列的行倍加变换把 A 化为阶梯形 U(即 $L^{-1}A=U$).
- 2. 填充 L 的元素使相同的行变换把 L 变为 L.

LU 分解图解:

$$A = \begin{bmatrix} 2 & 4 & 5 & -2 \\ -4 & -5 & -8 & 1 \\ 2 & -5 & 1 & 8 \\ -6 & 0 & -3 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & 4 & 5 & -2 \\ 0 & 3 & 2 & -3 \\ 0 & -9 & -4 & 10 \\ 0 & 12 & 12 & -5 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & 4 & 5 & -2 \\ 0 & 3 & 2 & -3 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 4 & 7 \end{bmatrix} \Rightarrow \begin{bmatrix} 2 & 4 & 5 & -2 \\ 0 & 3 & 2 & -3 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 5 \end{bmatrix} = U$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 1 & 1 & 0 \\ -3 & 1 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 1 & -3 & 1 & 0 \\ -3 & 4 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 1 & -3 & 1 & 0 \\ -3 & 4 & 2 & 1 \end{bmatrix} = L$$

六、列昂惕夫投入产出模型

列昂惕夫投入产出模型或生产方程

$$x = Cx + d$$

定理 11 设 C 为某一经济体系的消耗矩阵, d 为最终需求. 若 C 和 d 的元素非负, C 的每一列的和小于 1, 则 $(I-C)^{-1}$ 存在, 产出向量

$$\boldsymbol{x} = (I - C)^{-1} \boldsymbol{d}$$

有非负元素, 且是下列方程的唯一解:

$$\mathbf{x} = C\mathbf{x} + d$$

七、计算机图形学中的应用

物体的平移并不直接对应于矩阵乘法,因为平移并非线性变换,所以引入**齐** 次坐标

 \mathbb{R}^2 中每个点 (x,y) 对应于 \mathbb{R}^3 中的点 (x,y,1), (x,y,1) 为 (x,y) 的**齐次坐标** $(x,y,1)\mapsto (x+h,y+k,1)$ 的平移变换实现:

$$\begin{bmatrix} 1 & 0 & h \\ 0 & 1 & k \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x+h \\ y+k \\ 1 \end{bmatrix}$$

 \mathbb{R}^2 中任意线性变换可以通过齐次坐标乘以分块矩阵 $\left[egin{array}{cc} A & 0 \\ 0 & 1 \end{array} \right]$ 实现, 其中 A 是 2×2 矩阵.

(x,y,z,1) 是 \mathbb{R}^3 中点 (x,y,z) 的齐次坐标. 若 $H \neq 0$, 则 (X,Y,Z,H) 为 (x,y,z) 的齐次坐标, 且

$$x = \frac{X}{H}, y = \frac{Y}{H}, z = \frac{Z}{H}$$

点 (x,y,z) 在 xy 平面上的透视投影坐标为 $(\frac{x}{1-z/d},\frac{y}{1-z/d},0)$. 其中, d 为 z 轴观测位置 (0,0,d)

绕 \mathbb{R}^2 中一点 p 的旋转是这样实现的: 首先把图形平移 -p, 然后绕原点旋转, 最后平移 p.