Logic in Computer Science Föreläsning 2

Erik Sjöström

September 2, 2016

1 Propositional logic

- \(\lambda\) conjugation "and"
- \vee disjunction "or"
- ullet \rightarrow implication "if ... then"
- \bullet \perp absurdity
- ¬ negation "not"

Formulas are built from atomic formulas $(p,\ q,\ \ldots)$ by using the connectives, \vee , $\wedge\ldots$

Exempel 1.1.

$$(p \to q) \lor (q \land \pi)$$

The language of logic is built up from syntax, semantics, and proof rules.

1.1 Proof rules

Natural deduction (Gentzen 1934)

There are two kinds of rules:

- Introduction rules
- Elimination rules

Conjugation:

 $\overline{\wedge}$ -introduction " \wedge -i":

$$\frac{\phi \quad \psi}{\phi \wedge \psi}$$

 \land -elimination " \land -e":

$$\frac{\phi \wedge \psi}{\phi} \frac{\phi \wedge \psi}{\psi}$$

Exempel 1.2.

Show: $\phi \land \psi \vdash \psi \land \phi$

- 1. $\phi \wedge \psi$ Premise
- 2. $\psi \wedge -e$, 1
- 3. $\phi \wedge -e$, 1
- 4. $\psi \wedge \phi \wedge -i$, 2,3

Implication

 \rightarrow -introduction

- 1. ϕ
- 2.
- 3. ψ
- 4. $\phi \rightarrow \psi$

 \rightarrow -elimination

$$\begin{array}{ccc} \phi & \phi \rightarrow \psi \\ \hline \psi & \end{array}$$

Exempel 1.3.

Show: $\phi \to (\psi_1 \land \psi_2) \vdash \phi \to \psi_1$

- 1. $\phi \to (\psi_1 \land \psi_2)$
- Premise

- 2.
- ϕ

Assumption

- 3.
- $\psi_1 \wedge \psi_2$

 \rightarrow -e, 1,2

4.

^-*e*, *3*

5. $\phi \to \psi_1$

→-i, 2-4

$\underline{\mathbf{Absu}}\mathbf{rdity}$

 $\overline{\perp}$ -elimination

 $\frac{\perp}{\phi}$

Definition of negation $\neg \phi$

$$\neg \phi \underset{def}{=} \phi \rightarrow \bot$$

Exempel 1.4. Show: $\phi \vdash \neg \neg \phi \ i.e. \ \phi \vdash (\phi \to \bot) \to \bot$

1. Q

Premise

- 2.
 - $\phi \to \bot$

Assumption

 $\rightarrow \text{-}e,\ 1,2$

4. $(\phi \to \bot) \to \bot$

 \rightarrow -e, 2,3

Exempel 1.5.

Show: $\phi \land \neg \phi \vdash \psi$

- 1. $\phi \land \neg \phi$
- Premise

 $2. \quad \phi$

- \wedge -e, 1
- 3. $\phi \rightarrow \bot$
- \wedge -e, 1

4. ⊥

 \rightarrow -e, 2,3

5. ψ

⊥-e, 4

 $\textbf{Disjunction} \ \lor \text{-introduction}$

$$\frac{\phi}{\phi \wedge \psi} \frac{\psi}{\phi \wedge \psi}$$

∨-elimination

- $1. \quad \phi \vee \psi$
- 2.
- 3.
- 4. χ
- 5.
- 6.
- 7. χ
- 8. *χ*

Exempel 1.6.

Show: $\phi \lor \psi \vdash \psi \lor \phi$

- 1. $\phi \lor \psi$
- 2. 3.

 $\psi \vee \phi$

- Premise
- Assumption
- V-i, 2

- 4.
- 5. $\psi \vee \phi$

- Assumption
- V-i, 4

6. $\psi \lor \phi$

V-e, 1, 2-3, 4-5

Proof by contradiction

- 1.
- 2.
- 3. \perp
- 4. ϕ

Exempel 1.7.

Show: $\neg \neg \phi \vdash \phi$

- 1. $\neg \neg \phi$
- 2. 3.
- 4. ϕ

- Premise
- Assumption
- \rightarrow -e, 2,1
- PBC, 2-3