1 Задание 10

1.1 Задача 1

а) <u>Ответ:</u> Не является LL(k)-грамматикой при любом k

1.
$$S \longrightarrow_{l}^{*} Aa^{k}b \longrightarrow_{l} a^{k+1}b, \omega = \varepsilon, \alpha = a^{k}b, \beta = a$$

2.
$$S \longrightarrow_{l}^{*} Aa^{k}b \longrightarrow_{l} Aa^{k+1}b, \omega = \varepsilon, \alpha = a^{k}b, \gamma = Aa$$

 $FIRST_k(\beta\alpha) \cup FIRST_k(\gamma\alpha) \neq \emptyset$ для любого k.

б) <u>Ответ:</u> Является LL(k)-грамматикой при $k \geqslant 2$.

1.
$$S \longrightarrow_l^* a^k Ab \longrightarrow_l a^k ab, \omega = a^k, \alpha = b, \beta = a$$

2.
$$S \longrightarrow_l^* a^k Ab \longrightarrow_l a^k aAb, \omega = a^k, \alpha = b, \gamma = aA$$

 $FIRST_k(\beta\alpha) \cup FIRST_k(\gamma\alpha) = \emptyset \ k \geqslant 2.$

в) <u>Ответ:</u> Не является LL(k)-грамматикой для любого k.

1.
$$S \longrightarrow_{l}^{*} aBBb \longrightarrow_{l} aabBb, \omega = a, \alpha = Bb, \beta = ab$$

2.
$$S \longrightarrow_{l}^{*} aBBb \longrightarrow_{l} a\varepsilon Bb, \omega = a, \alpha = Bb, \gamma = \varepsilon$$

Используя индукцию по k получим, что $FIRST_k(\beta\alpha) \cup FIRST_k(\gamma\alpha) \neq \emptyset$, при k=1 и k=2 возьмём $B \longrightarrow ab$; при $k\geqslant 3$, возьмём $B \longrightarrow \varepsilon$ в первом и случае и $B \longrightarrow ab$:

 $FIRST_k(abBb) \cup FIRST_k(Bb) \neq \emptyset$, Грамматика не является LL(k для любого k г) Ответ: Не является LL(k)-грамматикой для любого k

1.
$$S \longrightarrow_{l}^{*} aaBB \longrightarrow_{l} aaaBBB, \omega = aa, \alpha = B, \beta = aBB$$

2.
$$S \longrightarrow_l^* aaBB \longrightarrow_l aabB, \omega = aa, \alpha = B, \gamma = b$$

 $FIRST_k(\beta\alpha) \cup FIRST_k(\gamma\alpha) \neq \emptyset$, т.к. содержит $\omega = a^k$. Поэтому грамматика не будет LL(k)-грамматикой для любого k.

д) <u>Ответ:</u> Является LL(k)-грамматикой для любого k.

1.
$$S \longrightarrow_{l}^{*} aaBB \longrightarrow_{l} aaaBBB, \omega = aa, \alpha = B, \beta = aBB$$

2.
$$S \longrightarrow_{l}^{*} aaBB \longrightarrow_{l} aabB, \omega = aa, \alpha = B, \gamma = b$$

Видно, что $FIRST_k(\beta\alpha) \cup FIRST_k(\gamma\alpha) = \emptyset$, поэтому это LL(k)-грамматика.

1

ПРЯТ

1.2 Задача 2

Получим грамматику: $S \to Ab, A \to aA', A' \to a|\varepsilon$, воспользоваващись алгоритмом удаления правого ветвления.

	FIRST(X)			FOLLOW(X)		
X	S	A	A'	S	A	A'
F_0	Ø	Ø	Ø	\$	Ø	Ø
F_1	a	a	a, ε	\$	b	Ø
F_2	a	a	a, ε	\$	b	b

Используем алгоритм построения анализатора:

	a	b	\$
S	$S \longrightarrow Ab$	error	error
A	$A \longrightarrow aA'$	error	error
A'	$A' \longrightarrow a$	$A' \longrightarrow \varepsilon$	error

Получим LL(k)-грамматику, т.к. в каждой ячейку получилось записано не больше одного правила.

1.3 Задача 3

Используем алгоритм удаления левой рекурссии:

 $S \longrightarrow baaA|babA$

 $A \longrightarrow aA|bA|a|b$

Удалим правое ветвление:

 $S \longrightarrow baS'$

 $S' \longrightarrow aA|bA$

 $A \longrightarrow aA|bA|\varepsilon$

Строим таблицу FIRST и FOLLOW:

	FIRST(X)			FOLLOW(X)		
X	S	$S^{'}$	A	S	S'	A
F_0	Ø	Ø	Ø	\$	Ø	Ø
F_1	b	a, b	a, b, ε	\$	\$	Ø
F_2	b	a, b	a, b, ε	\$	\$	\$

Построим анализатор:

	a	b	\$
S	error	$S \longrightarrow baS'$	error
$S^{'}$	$S' \longrightarrow aA$	$S' \longrightarrow bA$	error
A	$A \longrightarrow aA$	$A \longrightarrow bA$	$A \longrightarrow \varepsilon$

Продемнострируем работа анализатора на слове baab: $S \longrightarrow baS' \longrightarrow baaA \longrightarrow baab$

2 ТРЯП

1.4 Задача 5

Видно, что это грамматика языка Дика. А язык Дика задаётся грамматикой: $S \longrightarrow (S)S|\varepsilon$

Получили мы эту грамматику, используя алгоритм удаления левой рекурсии и правого ветвления.

1.
$$S \longrightarrow_{l}^{*} (S)S \longrightarrow_{l} ((S)S)S, \omega = (\alpha = S)S, \beta = (S)S$$

2.
$$S \longrightarrow_{l}^{*} (S)S \longrightarrow_{l} (\varepsilon)S, \omega = (\alpha = S)S, \gamma = \varepsilon$$

 $FIRST_1[(S)S)S] \cup FIRST_1[)S] = \emptyset$, $FIRST_1[S] \cup FOLLOW_1[S] = \emptyset$ Видно, что после S может быть только «)», поэтому последнее равенство верно.

1.5 Задача 6

Пусть у нас есть праволинейная грамматика: $G=\langle \{S,A,B\},\{a,b,\$\},P,S\rangle,$ где Р: $S\longrightarrow A,A\longrightarrow ba|b$

Это не будет LL(1)-грамматикой, т.к. нет правил с ε : $FIRST_1(ba) \cup FIRST_1(b) = b \neq \emptyset$

1.6 Задача 7

Ответ: Да, верно.

$$G = \langle \{S, A, B\}, \{a, b, \$\}, P, S \rangle, P: S \longrightarrow AB, A \longrightarrow \varepsilon, B \longrightarrow \varepsilon$$

Построим анализатор (очевидно, что таблица first и follow будет содержать только ε и \$ соотвественно):

,				
	a	b	\$	
S	error	error	$S \longrightarrow AB$	
Α	error	error	$A \longrightarrow \varepsilon$	
В	error	error	$B \longrightarrow \varepsilon$	

Видим, что каждой ячейке таблицы соотвествует не больше одного правила вывода, из чего делаем вывод, что грамматика является LL(1)-грамматикой.

1.7 Задача 8

Ответ: Нет, неверно.

Рассмотрим грамматику $G=\langle\{S,A,B\},\{a,b,\$\},P,S\rangle$, где Р: $S\longrightarrow AB,A\longrightarrow \varepsilon,B\longrightarrow \varepsilon$

Видно, что $FOLLOW(A) \cup FOLLOW(B) = \{\$\}$, но грамматика G является LL(1)-грамматикой, было доказано в предыдущей задаче.

 Π R Π T