MATH 3400 - Group and Ring Theory Assignment 7

Cody Barnson ID: 001172313

2 Nov 2018

1 Suppose that $G_1 \cong G_2$ and $H_1 \cong H_2$. Prove that $G_1 \times H_1 \cong G_2 \times H_2$.

Let $\alpha: G_1 \longrightarrow G_2$ and $\beta: H_1 \longrightarrow H_2$ be isomorphisms (as given). We wish to show that $G_1 \times H_1 \cong G_2 \times H_2$. We proceed with the 4 step isomorphism test:

Step 1

$$\alpha \times \beta : G_1 \times H_1 \longrightarrow G_2 \times H_2$$

 $(q,h) \longrightarrow (\alpha(q),\beta(h))$

Step 2 We need to prove $\alpha \times \beta$ is one-to-one. Suppose $\alpha \times \beta(a,b) = \alpha \times \beta(g,h)$. Then, $(\alpha(a), \beta(b)) = (\alpha(g), \beta(h))$ and $\alpha(g) = \alpha(h)$, and also $\beta(b) = \beta(h)$. Since α and β are isomorphisms, and thus are both one-to-one, we have a = g and b = h. Then, (a,b) = (g,h), so $\alpha \times \beta$ is one-to-one.

Step 3 We need to prove $\alpha \times \beta$ is onto. Let $(g,h) \in G_2 \times H_2$ be arbitrary. This means, $g \in G_2, h \in H_2$. Then, $\exists a \in G_1$ and $\exists b \in H_1$ such that $\alpha(a) = g$ and $\beta(b) = h$ (since α and β are isomorphisms, and thus are both onto). Then, $(a,b) \in G_1 \times H_1$ and $\alpha \times \beta(a,b) = (\alpha(a),\beta(b)) = (g,h)$, thus $\alpha \times \beta$ is onto.

Step 4 We need to show that $\alpha \times \beta$ is operation preserving. Let $(a, b), (g, h) \in G_1 \times H_1$ be arbitrary, then since both α and β are operation preserving, we have,

$$\begin{split} \alpha \times \beta((a,b)(g,h)) &= \alpha \times \beta(ag,bh) \\ &= (\alpha(ag),\beta(bh)) \\ &= (\alpha(a)\alpha(b),\beta(b)\beta(h)) \\ &= ((\alpha(a),\beta(b)),(\alpha(g),\beta(h))) \\ &= (\alpha \times \beta(a,b),\alpha \times \beta(g,h)) \end{split}$$

So $\alpha \times \beta$ is operation preserving as well. Thus be our 4-step isomorphism test, we can conclude that if $G_1 \cong G_2$ and $H_1 \cong H_2$, then $G_1 \times H_1 \cong G_2 \times H_2$, as desired.

2 How many elements of order 25 does $\mathbb{Z}_5 \times \mathbb{Z}_{25}$ have?

We have $\mathbb{Z}_5 \times Z_{25}$. Using the fact: $\varphi(p^n) = p^n - p^{n-1}$ for any odd prime p, we know there are $\varphi(25) + \varphi(5) = (25 - 5) + (5 - 1) = 24$ elements of order 5, and we know there are 5 * 25 = 125 elements in total (one of which is the identity) in $\mathbb{Z}_5 \times \mathbb{Z}_{25}$, then the number of elements of order 25 must be $\varphi(25) + \varphi(5) * \varphi(25) = 20 + 4 * 20 = 100$.

3 How many cyclic subgroups of order 4 does $\mathbb{Z}_4 \times \mathbb{Z}_2$ have?

First, note that (1) $\mathbb{Z}_4 \times \mathbb{Z}_2$ has order 8, (2) every subgroup of order 2 must be cyclic, (3) the only subgroup order 1 is that containing the identity element, (4) the only subgroup order 8 is the whole group, and (5) the only other subgroups have order 4, since 4 divides the order of the group. We are interested in knowing the number of cyclic subgroups of order 4. Since each subgroup of order 4 has 2 elements of order 4, and two cyclic subgroups of order 4 have an element of order 4 in common, we know there are $\frac{4}{2} = 2$ cyclic subgroups order 4.

In particular, for $\mathbb{Z}_4 \times \mathbb{Z}_2$, there are 3 subgroups of order 4, but only two are cyclic. Take the subgroup: $\{(2,0),(0,1),(2,1),(0,0)\}$, which is not cyclic, which supports our claim above there are 2 cyclic subgroups of order 4 in $\mathbb{Z}_4 \times \mathbb{Z}_2$.

4 Let N be a normal subgroup of a group G. If N is cyclic, prove that every subgroup is also normal in G.

We have $N = \langle n \rangle, n \in G, N \subseteq G$. Let $H \subseteq N$ be an arbitrary subgroup. We wish to show that if N is cyclic, then $H \subseteq G$ also. We start with $N \subseteq G \Longrightarrow \forall g \in gng^{-1} = n^m$ for some integer m. That is, all elements of $n \in N$ have the form n^m . We have some arbitrary $H \subseteq N = \langle n \rangle$, so $H = \langle n^k \rangle$ for some integer k. That is, all elements of $H \subseteq N$ have the form n^k for some integer k. It is easy to see that when |n| = 1, $H = N = \{1\}$, and $H \subseteq G$.

Note when $|n| = \infty$, we have the desired $H \subseteq G$, so we will omit this and prove for finite |n|. For $1 < |n| < \infty$, since $N \subseteq G$, $\forall g \in G$, we have $gNg^{-1} = N = \langle gng^{-1} \rangle$, such that $\forall g \in G, \langle gng^{-1} \rangle = \langle n \rangle$. So gng^{-1} is a generator of $\langle n \rangle, \forall g \in G$.

Now, $\forall g \in G, \langle gng^{-1} \rangle = \langle n \rangle \Longrightarrow gng^{-1} = n^j$ for some integer j such that gcd(|n|,j) = 1. Then, $gng^{-1} = n^j \Longrightarrow gn^kg^{-1} = n^{jk}$, and also

$$g\langle n^k \rangle g^{-1} = \langle n^{jk} \rangle.$$

We have $\langle n^k \rangle = \langle n^{jk} \rangle, \langle n^k \rangle \supseteq \langle n^{jk} \rangle$, we wish to show $\langle n^k \rangle \subseteq \langle n^{jk} \rangle$ is also true. We have $\gcd(|n|,j)=1$, so $\exists s,t \in \mathbb{Z}$ such that 1=s|n|+tj. Equivalently, k=ks|n|+ktj.

$$n^{k} = n^{ks|n|} n^{ktj}$$

= $(n^{|n|})^{ks} n^{ktj}$
= n^{ktj} (by $n^{|n|} = 1$)
= $(n^{k})^{tj}$

So we have $n^k=(n^k)^{tj}\Longrightarrow \langle n^k \rangle\subseteq \langle n^{jk} \rangle$, as desired. So $\langle n^k \rangle=\langle n^{jk} \rangle$.

Thus, $\forall g \in G, g \langle n^k \rangle g^{-1} = \langle n^k \rangle$ and $gNg^{-1} = H$ so $H \leq G$.