Wavelength-Division Multiplexing (WDM)

CME 451

WDM Technology

- WDM combines multiple wavelengths on a single fiber
 - using transmitters of different wavelengths
 - each wavelength requires separate laser source and light detector
- Wavelengths and grid spacings specified by ITU standards
- CWDM: coarse, with fewer than 8 wavelengths
- DWDM: dense, with more than 8 wavelengths

WDM Principle

FIGURE 3.1 WDM principle of operation.

WDM channels

FIGURE 3.2 Sixteen-channel WDH signal.

Impairments and WDM

FIGURE 3.3 Chromatic dispersion effect in DWDM and CWDM systems.

WDM Capacity

- Optical transmission range 1280 1650 nm (recall chapter 2)
 - Bandwidth of 50 THz
 - Single electrical stream cannot fully exploit such capacity
 - Need multiple transmitters

WDM Expansion

- Possible approaches
 - More fiber
 - Cost.
 - More bandwidth:
 - Larger wavelength range for transmission;
 - Need new optical fiber with wider optical bw.
 - More wavelengths:
 - Smaller channel spacing: 50, 25, 12.5 GHz;
 - Components with higher stability and performance.
 - More bits:
 - Increasing transmission rate: 10 Gb/s ⇒ 40 Gb/s;
 - Expensive electronics & dispersion problems.

WDM Expansion

FIGURE 3.4 Hypothetical paths to increase WDM capacity.

Networking Equipment

- Recall two main types of distortions:
 - Signal attenuation
 - Equipment: Amplification
 - Dispersion (leading to smearing and ISI)
 - Equipment: Dispersion compensation (optical or electrical)
- Optical amplifier vs. O-E-O regeneration
 - cost vs. performance

Network Equipment

FIGURE 3.5 WDM regenerator with O-E-O conversion.

Network Equipment

- Simple optical cross-connect (switch)
 - n inputs, n outputs, n x n switching

FIGURE 3.6 Optical $n \times n$ cross-connect with optical core.

MEMS for Optical Switching

- Microelectronic mechanical systems (MEMS)
 - simple mirrors (two positions): nxn array
 - 3-D architecture (n states): 2n mirrors

FIGURE 3.7 Two-dimensional switching architecture using an $n \times n$ mirror array. (From Chu et al., 2001.)

FIGURE 3.8 Three-dimensional switching architecture.

Switching & wavelength conversion

 Wavelength conversion useful to solve wavelength blocking problem (described later)

FIGURE 3.11 Optical $n \times n$ cross-connect with electrical core and wavelength-conversion capability.

FIGURE 3.12 Electronic $n \times n$ cross-connect.

OADM & ROADM

- Used to launch and terminate WDM signals.
- Add and drop electrical signals as required.
- Grooming: convert low-bandwidth signals into one larger BW signal.
- Remotely reconfigurable to avoid manual reconfiguration tasks.

FIGURE 3.13 Optical add-drop multiplexer or WDM terminal with add-drop capability.

FIGURE 3.14 Reconfigurable optical add-drop multiplexer. (Courtesy of Ciena Inc.)

WDM Networks

- WDM Network provisioning
 - Fixed-wavelength lasers vs. tunable lasers (R&D)
 - Tunable lasers: potential for all optical bypasses.
- Wavelength blocking: network node is blocked at a particular wavelength.
 - Wavelength conversion and O-E-O solution.
 - O-E-O as practical solutions
 - also for attenuation and dispersion problems.

Wavelength Blocking

FIGURE 3.15 (a) Wavelength blocking problem between B and C; (b) solution by converting wavelength at point B (dashed lines).

WDM Network Protection

- Physically separated designs for redundancy.
- Not easy to implement in practice.

FIGURE 3.16 Working and protection two-fiber-pair configuration.

WDM Design Case Study

FIGURE 3.17 San Francisco-to-New York WDM point-to-point link.