Homework 4

Problem 1 (14.3.3). Prove that an algebraically closed field must be infinite.

Proof. Let $F = \{a_1, \dots a_n\}$ be a finite field. Consider $p(x) = (x - a_1) \dots (x - a_n) + 1$. This clearly has no roots in F so F cannot be algebraically closed.

Problem 2 (14.3.5). Exhibit an explicit isomorphism between the splitting fields of $x^3 - x + 1$ and $x^3 - x - 1$ over \mathbb{F}_3 .

Proof. Let K and L be splitting fields for $x^3 - x + 1$ and $x^3 - x - 1$ respectively. Let α , β and γ be the roots of $x^3 - x + 1$ in K. Then note that $\alpha^3 - \alpha = -1$ so $(-\alpha)^3 + \alpha = 1$ and $-\alpha$ is a root for $x^3 - x - 1$ in L. Thus there is an isomorphism from K to L fixing \mathbb{F}_3 and taking α , β and γ to $-\alpha$, $-\beta$ and $-\gamma$.

Problem 3 (14.4.2). Find a primitive generator for $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ over \mathbb{Q} .

Proof. Note that $\operatorname{Gal}(\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{5})/\mathbb{Q})$ is generated by ρ , σ and τ where $\rho:\sqrt{2}\mapsto -\sqrt{2}$, $\sigma:\sqrt{3}\mapsto -\sqrt{3}$ and $\tau:\sqrt{5}\mapsto -\sqrt{5}$. But then none of ρ , σ or τ or their products will fix $\sqrt{2}+\sqrt{3}+\sqrt{5}$. Thus only the trivial automorphism fixes it so $\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{5})\subseteq \mathbb{Q}(\sqrt{2}+\sqrt{3}+\sqrt{5})$. The other inclusion is obvious so $\sqrt{2}+\sqrt{3}+\sqrt{5}$ is a generator.

Problem 4 (14.4.6). Prove that $\mathbb{F}_p(x,y)/\mathbb{F}_p(x^p,y^p)$ is not a simple extension by explicitly exhibiting an infinite number of intermediate subfields.

Proof. Let $F = \mathbb{F}_p(x^p, x^p)$ and consider the extensions $F(x+y^k)$ where $p \nmid k$. Clearly each of these contains F. Suppose $F(x+y^k) = F(x+y^j)$. Then we have the element $y^k - y^j$ in both of these fields. Note that if $k \neq j$, $F(y^k - y^j)$ is a degree p extension and it contains F(y), also a degree p extension. Thus $F(x+y^k)$ contains the element p and therefore also p. Then p and p are distinct. p which we know can't be true by degree considerations. Thus any two p and p and p are distinct. p