12.3 Choropleths

May 9, 2019

1 12.3 Choropleths

A **choropleth** is a map in which areas are colored according to some statistic of interest. Perhaps the most familiar example of a choropleth is the presidential election map, which shows the percentage in each county who voted for the Democratic or Republican candidate. In this graphic, the observational units are counties, and the statistic of interest is the percentage who voted for the Democratic (or Republican) candidate.

In this notebook, you will learn how to make choropleths like the one above.

1.1 Shapefiles

The shapefile format is a data format for geometric objects, such as points, lines, and polygons. A shapefile can be used to describe the boundaries of a lake, the course of a river, or the boundaries of a county.

You can find shapefiles for most geographic entities online. For example, the U.S. Census Bureau maintains shapefiles for boundaries of states, counties, and congressional districts in the United States. Shapefiles for the countries of the world can be found at this website.

I downloaded the shapefiles for U.S. counties from the Census Bureau website and uploaded them to JupyterHub. You can find them in the /data301/data/cb_2017_us_county_5m/ directory.

Notice that "shapefile" is somewhat of a misnomer, as the format refers not to a single file but a collection of files. The main files are:

- .shp shape format, which stores the geometric objects
- .shx shape index format, which indexes the objects to make them quickly searchable
- .dbf attribute format, which stores additional metadata about each object
- .prj projection format

To read in a shapefile using Basemap, we first set up the map, then call the .readshapefile() method, which takes two arguments: (1) the stem of the shapefiles (without the file extension) and (2) a name for the field that will store the attributes (you can pick any name you like, but try to be descriptive).

```
In [2]: import matplotlib.pyplot as plt
        %matplotlib inline
        import cartopy.crs as ccrs
        from cartopy.io.shapereader import Reader
        from cartopy.feature import ShapelyFeature
        ax = plt.axes(
            projection=ccrs.LambertConformal(
                central_latitude=39,
                central longitude=-96,
                standard_parallels=(33, 45)
            )
        )
        ax.set_extent([-125, -66.5, 20, 50])
        # Read in county-level shapefiles
        fname = "/data301/data/cb_2017_us_county_5m/cb_2017_us_county_5m"
        shp = Reader(fname)
        # Add each county to the data set.
        ax.add_geometries(shp.geometries(),
                          ccrs.PlateCarree(),
                          facecolor="None",
                          edgecolor='black')
```

Out[2]: <cartopy.mpl.feature_artist.FeatureArtist at 0x7fb276c283c8>

To make a choropleth, we simply need to set the facecolor of each geometry. First, let's read in some county-level data that we can plot.

	erect	TOII_dI						
Out[3]:		votes_dem	votes_gop	total_votes	per_dem	per_gop	diff	\
	0	93003.0	130413.0	246588.0	0.377159	0.528870	37,410	
	1	93003.0	130413.0	246588.0	0.377159	0.528870	37,410	
	2	93003.0	130413.0	246588.0	0.377159	0.528870	37,410	
	3	93003.0	130413.0	246588.0	0.377159	0.528870	37,410	
	4	93003.0	130413.0	246588.0	0.377159	0.528870	37,410	
	5	93003.0	130413.0	246588.0	0.377159	0.528870	37,410	
	6	93003.0	130413.0	246588.0	0.377159	0.528870	37,410	
	7	93003.0	130413.0	246588.0	0.377159	0.528870	37,410	
	8	93003.0	130413.0	246588.0	0.377159	0.528870	37,410	
	9	93003.0	130413.0	246588.0	0.377159	0.528870	37,410	
	10	93003.0	130413.0	246588.0	0.377159	0.528870	37,410	
	11	93003.0	130413.0	246588.0	0.377159	0.528870	37,410	
	12	93003.0	130413.0	246588.0	0.377159	0.528870	37,410	
	13	93003.0	130413.0	246588.0	0.377159	0.528870	37,410	
	14	93003.0	130413.0	246588.0	0.377159	0.528870	37,410	
	15	93003.0	130413.0	246588.0	0.377159	0.528870	37,410	
	16	93003.0	130413.0	246588.0	0.377159	0.528870	37,410	
	17	93003.0	130413.0	246588.0	0.377159	0.528870	37,410	
	18	93003.0	130413.0	246588.0	0.377159	0.528870	37,410	
	19	93003.0	130413.0	246588.0	0.377159	0.528870	37,410	
	20	93003.0	130413.0	246588.0	0.377159	0.528870	37,410	
	21	93003.0	130413.0	246588.0	0.377159	0.528870	37,410	

22	93003.0	130413.0		246588.0	0.377159	0.528870	37,410
23	93003.0	130413.0		246588.0	0.377159	0.528870	37,410
24	93003.0	130413.0		246588.0	0.377159	0.528870	37,410
25	93003.0	130413.0		246588.0	0.377159	0.528870	37,410
26	93003.0	130413.0		246588.0	0.377159	0.528870	37,410
27	93003.0	130413.0		246588.0	0.377159	0.528870	37,410
28	93003.0	130413.0		246588.0	0.377159	0.528870	37,410
29	5908.0	18110.0		24661.0	0.239569	0.734358	12,202
 3111	 1763.0	 6971.0		 9180.0	0.192048	0.759368	 5,208
							· · · · · · · · · · · · · · · · · · ·
3112	3334.0	11077.0		15080.0	0.221088	0.734549	7,743
3113	554.0	2284.0		2955.0	0.187479	0.772927	1,730
3114	1348.0	4461.0		6191.0	0.217735	0.720562	3,113
3115	383.0	1903.0		2410.0	0.158921	0.789627	1,520
3116	8327.0	25168.0		35256.0	0.236187	0.713864	16,841
3117	1061.0	6527.0		7809.0	0.135869	0.835830	5,466
3118	6888.0	7601.0		16420.0	0.419488	0.462911	713
3119	594.0	4067.0		5079.0	0.116952	0.800748	3,473
3120	1324.0	15778.0		17935.0	0.073822	0.879732	14,454
3121	1279.0	4409.0		6200.0	0.206290	0.711129	3,130
3122	668.0	5520.0		6552.0	0.101954	0.842491	4,852
3123	271.0	3347.0		3771.0	0.071864	0.887563	3,076
3124	4200.0	11167.0		16543.0	0.253884	0.675029	6,967
3125	924.0	4418.0		5708.0	0.161878	0.774001	3,494
3126	400.0	1939.0		2535.0	0.157791	0.764892	1,539
3127	638.0	3477.0		4349.0	0.146700	0.799494	2,839
3128	11572.0	24844.0		39945.0	0.289698	0.621955	13,272
3129	1105.0	6779.0		8398.0	0.131579	0.807216	5,674
3130	6573.0	23523.0		32493.0	0.202290	0.723941	16,950
3131	115.0	1116.0		1297.0	0.088666	0.860447	1,001
3132	2535.0	11115.0		14634.0	0.173227	0.759533	8,580
3133	719.0	3437.0		4460.0	0.161211	0.770628	2,718
3134	2926.0	10266.0		14187.0	0.206245	0.723620	7,340
3135	644.0	3409.0		4297.0	0.149872	0.793344	2,765
3136	3233.0	12153.0		16661.0	0.194046	0.729428	8,920
3137	7313.0	3920.0		12176.0	0.600608	0.321945	3,393
3138	1202.0	6154.0		8053.0	0.149261	0.764187	4,952
3139	532.0	2911.0		3715.0	0.143203	0.783580	
3140	294.0	2898.0		3334.0	0.088182	0.869226	
	per_point_di			С	ounty_name		
0	15.1		AK		Alaska		2013
1	15.1		AK		Alaska		2016
2	15.1		AK		Alaska		2020
3	15.1		AK		Alaska		2050
4	15.1	17%	AK		Alaska		2060
5	15.1		AK		Alaska		2068
6	15.1	17%	AK		Alaska		2070

7	4 - 4 - 70/	A 7.7		A 7 1	0000
7	15.17%	AK		Alaska	2090
8	15.17%	AK		Alaska	2100
9	15.17%	AK		Alaska	2105
10	15.17%	AK		Alaska	2110
11	15.17%	AK		Alaska	2122
12	15.17%	AK		Alaska	2130
13	15.17%	AK		Alaska	2150
14	15.17%	AK		Alaska	2164
15	15.17%	AK		Alaska	2170
16	15.17%	AK		Alaska	2180
17	15.17%	AK		Alaska	2185
18	15.17%	AK		Alaska	2188
19	15.17%	AK		Alaska	2195
20	15.17%	AK		Alaska	2198
21	15.17%	AK		Alaska	2220
22	15.17%	AK		Alaska	2230
23	15.17%	AK		Alaska	2240
24	15.17%	AK		Alaska	2261
25	15.17%	AK		Alaska	2270
26	15.17%	AK		Alaska	2275
27	15.17%	AK		Alaska	2282
28	15.17%	AK		Alaska	2290
29	49.48%	AL	Autauga	County	1001
			_		
3111	56.73%	WV	Upshur	County	54097
3112	51.35%	WV	_	County	54099
3113	58.54%	WV	Webster	County	54101
3114	50.28%	WV	Wetzel	County	54103
3115	63.07%	WV		County	54105
3116	47.77%	WV		County	54107
3117	70.00%	WV	Wyoming	County	54109
3118	4.34%	WY		County	56001
3119	68.38%	WY	Big Horn	County	56003
3120	80.59%	WY	Campbell	•	56005
3121	50.48%	WY	-	County	56007
3122	74.05%	WY	Converse	•	56009
3123	81.57%	WY		County	56011
3124	42.11%	WY	Fremont	•	56013
3125	61.21%	WY		County	56015
3126	60.71%	WY	Hot Springs	v	56017
3127	65.28%	WY	Johnson	•	56019
3128	33.23%	WY	Laramie	-	56021
3129	67.56%	WY	Lincoln	•	56023
3130	52.17%	WY	Natrona	•	56025
3131	77.18%	WY	Niobrara	•	56027
3132	58.63%	WY		County	56029
3133	60.94%	WY		County	56031
3134	51.74%	WY	Sheridan	•	56033
0101	O1.7 ±/0	AA T	Shot raall	Junioy	30000

3135	64.35%	WY	Sublette	County	56035
3136	53.54%	WY	Sweetwater	County	56037
3137	27.87%	WY	Teton	County	56039
3138	61.49%	WY	Uinta	County	56041
3139	64.04%	WY	Washakie	County	56043
3140	78.10%	WY	Weston	County	56045

[3141 rows x 10 columns]

We need to merge this data with the shapefile that we just loaded. We can create a DataFrame out of the records of a shapefile.

	siip_u	1							
Out[4]:		AFFGEOID	ALAND	AWATER	COUNTYFP	COUNTYNS	GEOID	LSAD	\
	0	0500000US04015	34475503964	387344307	015	00025445	04015	06	
	1	0500000US22105	2049488093	136678798	105	00559500	22105	15	
	2	0500000US16063	3111451190	11606076	063	00395624	16063	06	
	3	0500000US27119	5105067510	69169913	119	00659505	27119	06	
	4	0500000US38017	4571107601	7732062	017	01034226	38017	06	
	5	0500000US46081	2072127374	667509	081	01266996	46081	06	
	6	0500000US36095	1610503572	11676949	095	00974145	36095	06	
	7	0500000US02275	6619614514	2384746838	275	02516402	02275	03	
	8	0500000US13143	730804590	2616530	143	00350637	13143	06	
	9	0500000US13023	559100209	8447343	023	00347451	13023	06	
	10	0500000US18093	1163367128	7122898	093	00451703	18093	06	
	11	0500000US18079	975364386	4546211	079	00450364	18079	06	
	12	0500000US26087	1668448345	48310232	087	01622986	26087	06	
	13	0500000US28017	1299609263	6380767	017	00695733	28017	06	
	14	0500000US39033	1040619677	2359515	033	01074029	39033	06	
	15	0500000US46099	2089691696	18198505	099	01265772	46099	06	
	16	0500000US46125	1598188427	1636386	125	01265770	46125	06	
	17	0500000US48471	2031033548	44838548	471	01384021	48471	06	
	18	0500000US72133	88144282	111140897	133	01804547	72133	13	
	19	0500000US46003	1834813747	11201379	003	01266983	46003	06	
	20	0500000US48047	2443277016	741627	047	01383809	48047	06	
	21	0500000US72025	151782488	1201689	025	01804492	72025	13	
	22	0500000US72033	12629288	5619250	033	01804496	72033	13	
	23	0500000US72101	100676181	139537	101	01804531	72101	13	
	24	0500000US31029	2316533465	7978174	029	00835836	31029	06	
	25	0500000US72054	39391498	34012	054	01804507	72054	13	
	26	0500000US08021	3334423639	9235291	021	00198126	08021	06	
	27	0500000US24043	1185609331	24803926	043	01714220	24043	06	
	28	0500000US20137	2274122723	8421464	137	00485032	20137	06	
	29	0500000US17053	1257719718	1640286	053	00424228	17053	06	

		4405004400					
3203	0500000US33009	4425224129	106489725	009	00873178	33009	06
3204	0500000US55117	1324905935	1967592839	117	01581118	55117	06
3205	0500000US28129	1647926085	2599432	129	00695785	28129	06
3206	0500000US22103	2190165998	647368450	103	01629503	22103	15
3207	0500000US24033	1250087042	41892810	033	01714670	24033	06
3208	0500000US27145	3477880457	122121594	145	00659517	27145	06
3209	0500000US25017	2117830644	75814940	017	00606935	25017	06
3210	0500000US42055	2000052118	1544300	055	01213670	42055	06
3211	0500000US17145	1144186125	13416186	145	01784940	17145	06
3212	0500000US29073	1344215195	18009291	073	00758491	29073	06
3213	0500000US18161	417568563	10238515	161	00450395	18161	06
3214	0500000US29099	1700691208	19797687	099	00758504	29099	06
3215	0500000US40131	1749945924	92823523	131	01101853	40131	06
3216	0500000US45017	987179165	29350862	017	01247986	45017	06
3217	0500000US54035	1202677932	18836099	035	01559963	54035	06
3218	0500000US69100	85098741	539090851	100	01805246	69100	12
3219	0500000US72123	179660999	115910809	123	01804542	72123	13
3220	0500000US48239	2148246715	71039573	239	01383905	48239	06
3221	0500000US53035	1023306116	442189824	035	01529223	53035	06
3222	0500000US12057	2642602901	635590801	057	00295757	12057	06
3223	0500000US17043	848222200	22887251	043	00422191	17043	06
3224	0500000US34031	481744927	32079811	031	00882232	34031	06
3225	0500000US48181	2415995947	120112446	181	01383876	48181	06
3226	0500000US13283	516529395	7805621	283	00347505	13283	06
3227	0500000US28155	1090223315	5935288	155	00695798	28155	06
3228	0500000US31101	2749531887	124672175	101	00835872	31101	06
3229	0500000US28001	1197464269	65273640	001	00695726	28001	06
3230	0500000US36069	1668114449	47820988	069	00974133	36069	06
3231	0500000US54053	1115633278	36174540	053	01560254	54053	06
3232	0500000US04025	21039796372	11501575	025	00042809	04025	06

	NAME	STATEFP
0	Mohave	04
1	Tangipahoa	22
2	Lincoln	16
3	Polk	27
4	Cass	38
5	Lawrence	46
6	Schoharie	36
7	Wrangell	02
8	Haralson	13
9	Bleckley	13
10	Lawrence	18
11	Jennings	18
12	Lapeer	26
13	Chickasaw	28
14	Crawford	39

15	Minnehaha	46
16	Turner	46
17	Walker	48
18	Santa Isabel	72
19	Aurora	46
20	Brooks	48
21	Caguas	72
22	Cataño	72
23	Morovis	72
24	Chase	31
25	Florida	72
26	Conejos	80
27	Washington	24
28	Norton	20
29	Ford	17
3203	Grafton	33
3204	Sheboygan	55
3205	Smith	28
3206	St. Tammany	22
3207	Prince George's	24
3208	Stearns	27
3209	Middlesex	25
3210	Franklin	42
3211	Perry	17
3212	Gasconade	29
3213	Union	18
3214	Jefferson	29
3215	Rogers	40
3216	Calhoun	45
3217	Jackson	54
3218	Rota	69
3219	Salinas	72
3220	Jackson	48
3221	Kitsap	53
3222	Hillsborough	12
3223	DuPage	17
3224	Passaic	34
3225	Grayson	48
3226	Treutlen	13
3227	Webster	28
3228	Keith	31
3229	Adams	28
3230	Ontario	36
3231	Mason	54
3232	Yavapai	04
0202	Tavapai	0-1

[3233 rows x 9 columns]

We will need to merge election_df with shp_df. But what do we merge the DataFrames on? It turns out that every county in the United States is assigned a unique ID called a FIPS code. The FIPS code appears in election_df as combined_fips and in shp_df as GEOID. Let's take a look at these columns.

In [5]: election_df.combined_fips

Out[5]:	0	2013
	1	2016
	2	2020
	3	2050
	4	2060
	5	2068
	6	2070
	7	2090
	8	2100
	9	2105
	10	2110
	11	2122
	12	2130
	13	2150
	14	2164
	15	2170
	16	2180
	17	2185
	18	2188
	19	2195
	20	2198
	21	2220
	22	2230
	23	2240
	24	2261
	25	2270
	26	2275
	27	2282
	28	2290
	29	1001
	3111	54097
	3112	54099
	3113	54101
	3114	54103
	3115	54105
	3116	54107
	3117	54109
	3118	56001
	3119	56003
	3120	56005

```
3122
                 56009
        3123
                 56011
        3124
                 56013
        3125
                 56015
        3126
                 56017
        3127
                 56019
        3128
                 56021
        3129
                 56023
        3130
                 56025
        3131
                 56027
        3132
                 56029
        3133
                 56031
        3134
                 56033
        3135
                 56035
        3136
                 56037
        3137
                 56039
        3138
                 56041
        3139
                 56043
        3140
                 56045
        Name: combined_fips, Length: 3141, dtype: int64
In [6]: shp_df.GEOID
Out[6]: 0
                 04015
                 22105
        1
        2
                 16063
        3
                 27119
        4
                 38017
        5
                 46081
        6
                 36095
        7
                 02275
        8
                 13143
        9
                 13023
        10
                 18093
        11
                 18079
        12
                 26087
        13
                 28017
        14
                 39033
        15
                 46099
        16
                 46125
        17
                 48471
        18
                 72133
        19
                 46003
        20
                 48047
        21
                 72025
        22
                 72033
        23
                 72101
```

```
24
        31029
25
        72054
26
        08021
27
        24043
28
        20137
29
        17053
         . . .
3203
        33009
3204
        55117
3205
        28129
3206
        22103
3207
        24033
3208
        27145
3209
        25017
3210
        42055
3211
        17145
3212
        29073
3213
        18161
3214
        29099
3215
        40131
3216
        45017
3217
        54035
3218
        69100
3219
        72123
3220
        48239
3221
        53035
3222
        12057
3223
        17043
3224
        34031
3225
        48181
3226
        13283
3227
        28155
3228
        31101
3229
        28001
3230
        36069
3231
        54053
        04025
3232
Name: GEOID, Length: 3233, dtype: object
```

Notice that shp_df treats the FIPS code as a string (so every FIPS code is exactly 5 digits, with a leading zero if necessary). On the other hand, election_df treats the FIPS code as an integer. If we want to join the two, we will have to cast them to the same type. It is probably easier to convert the string to an integer than vice versa.

left_on="GEOID", right_on="combined_fips")

all_data

C	Out[8]:	AFFGEOID	ALAND	AWATER	COUNTYFP	COUNTYNS	GEOID	LSAD	\
	0	0500000US04015	34475503964	387344307	015	00025445	4015	06	
	1	0500000US22105	2049488093	136678798	105	00559500	22105	15	
	2	0500000US16063	3111451190	11606076	063	00395624	16063	06	
	3	0500000US27119	5105067510	69169913	119	00659505	27119	06	
	4	0500000US38017	4571107601	7732062	017	01034226	38017	06	
	5	0500000US46081	2072127374	667509	081	01266996	46081	06	
	6	0500000US36095	1610503572	11676949	095	00974145	36095	06	
	7	0500000US02275	6619614514	2384746838	275	02516402	2275	03	
	8	0500000US13143	730804590	2616530	143	00350637	13143	06	
	9	0500000US13023	559100209	8447343	023	00347451	13023	06	
	10	0500000US18093	1163367128	7122898	093	00451703	18093	06	
	11	0500000US18079	975364386	4546211	079	00450364	18079	06	
	12	0500000US26087	1668448345	48310232	087	01622986	26087	06	
	13	0500000US28017	1299609263	6380767	017	00695733	28017	06	
	14	0500000US39033	1040619677	2359515	033	01074029	39033	06	
	15	0500000US46099	2089691696	18198505	099	01265772	46099	06	
	16	0500000US46125	1598188427	1636386	125	01265770	46125	06	
	17	0500000US48471	2031033548	44838548	471	01384021	48471	06	
	18	0500000US72133	88144282	111140897	133	01804547	72133	13	
	19	0500000US46003	1834813747	11201379	003	01266983	46003	06	
	20	0500000US48047	2443277016	741627	047	01383809	48047	06	
	21	0500000US72025	151782488	1201689	025	01804492	72025	13	
	22	0500000US72033	12629288	5619250	033	01804496	72033	13	
	23	0500000US72101	100676181	139537	101	01804531	72101	13	
	24	0500000US31029	2316533465	7978174	029	00835836	31029	06	
	25	0500000US72054	39391498	34012	054	01804507	72054	13	
	26	0500000US08021	3334423639	9235291	021	00198126	8021	06	
	27	0500000US24043	1185609331	24803926	043	01714220	24043	06	
	28	0500000US20137	2274122723	8421464	137	00485032	20137	06	
	29	0500000US17053	1257719718	1640286	053	00424228	17053	06	
	3203	0500000US33009	4425224129	106489725	009	00873178	33009	06	
	3204	0500000US55117	1324905935	1967592839	117	01581118	55117	06	
	3205	0500000US28129	1647926085	2599432	129	00695785	28129	06	
	3206	0500000US22103	2190165998	647368450	103	01629503	22103	15	
	3207	0500000US24033	1250087042	41892810	033	01714670	24033	06	
	3208	0500000US27145	3477880457	122121594	145	00659517	27145	06	
	3209	0500000US25017	2117830644	75814940	017	00606935	25017	06	
	3210	0500000US42055	2000052118	1544300	055	01213670	42055	06	
	3211	0500000US17145	1144186125	13416186	145	01784940	17145	06	
	3212	0500000US29073	1344215195	18009291	073	00758491	29073	06	
	3213	0500000US18161	417568563	10238515	161	00450395	18161	06	
	3214	0500000US29099	1700691208	19797687	099	00758504	29099	06	
	3215	0500000US40131	1749945924	92823523	131	01101853	40131	06	

3216	0500000US45017	987179	165 2935	50862 C	01247	7986	45017	06
3217	0500000US54035	1202677	932 1883	36099 (35 01559	9963	54035	06
3218	0500000US69100	85098	741 53909	90851 1	.00 01805	5246	69100	12
3219	0500000US72123	179660	999 11591	10809 1	.23 01804	1542	72123	13
3220	0500000US48239	2148246	715 7103	39573 2	239 01383	3905	48239	06
3221	0500000US53035	1023306	116 44218	39824 (35 01529	9223	53035	06
3222	0500000US12057	2642602	901 63559	90801 (57 00295	5757	12057	06
3223	0500000US17043	848222	200 2288	37251 (00422	2191	17043	06
3224	0500000US34031	481744	927 3207	' 9811 (31 00882	2232	34031	06
3225	0500000US48181	2415995	947 12011	2446 1	.81 01383	3876	48181	06
3226	0500000US13283	516529	395 780	5621 2	283 00347	7505	13283	06
3227	0500000US28155	1090223	315 593	35288 1	.55 00695	5798	28155	06
3228	0500000US31101	2749531	887 12467	² 2175 1	.01 00835	5872	31101	06
3229	0500000US28001	1197464	269 6527	'3640 (00695	5726	28001	06
3230	0500000US36069	1668114	449 4782	20988 (069 00974	1133	36069	06
3231	0500000US54053	1115633			01560		54053	06
3232	0500000US04025	21039796			25 00042		4025	06
	NAME	STATEFP	votes_dem	votes_gop	total_vo	otes	per_de	m \
0	Mohave	04	16485.0	54656.0	7418		0.22220	
1	Tangipahoa	22	16869.0	33933.0	5238		0.32204	
2	Lincoln	16	360.0	1184.0			0.20595	
3	Polk	27	4712.0	8979.0			0.32058	
4	Cass	38	31291.0	39738.0			0.39705	
5	Lawrence	46	3356.0	7411.0			0.28339	
6	Schoharie	36	3777.0	8173.0			0.29803	
7	Wrangell	02	93003.0	130413.0	24658		0.37715	
8	Haralson	13	1474.0	9579.0			0.13024	
9	Bleckley	13	1094.0	3717.0			0.22172	
10	Lawrence	18	4210.0	14034.0			0.22069	
11	Jennings	18	2364.0	8222.0			0.21268	
12	Lapeer	26	12734.0	30037.0	4512		0.28218	
13	Chickasaw	28	3649.0	4127.0			0.46248	
14	Crawford	39	4518.0	13265.0			0.24157	
15	Minnehaha	46	30610.0	42043.0			0.39111	
16	Turner	46	961.0	2937.0			0.23156	
17	Walker	48	6085.0	12878.0			0.30915	
18	Santa Isabel	72	NaN	NaN		NaN	Na	
19	Aurora	46	340.0	974.0	14(0.24164	
20	Brooks	48	1937.0	613.0			0.74614	
21	Caguas	72	NaN	NaN	200	NaN	Na	
22	Cataño	72	NaN	NaN		NaN	Na	
23	Morovis	72	NaN	NaN		NaN	Na	
24	Chase	31	171.0	1621.0	189		0.09238	
25	Florida	72	NaN	NaN	100	NaN	Na	
26	Conejos	08	1753.0	1885.0	307		0.44156	
27	Washington	24	19193.0	38842.0	6073		0.31603	
28	Washington Norton	20	277.0	1808.0			0.12648	
20	MOT COII	20	211.0	1000.0	213	,0.0	0.12040	, _

29		Ford	17	1410.0	4474.0	6289.0	0.224201	
3203	Gr	rafton	33	28510.0	19010.0	50065.0	0.569460	
3204	Sheb	ooygan	55	22636.0	32368.0	58290.0	0.388334	
3205		Smith	28	1598.0	5877.0	7556.0	0.211488	
3206	St. Ta	ammany	22	27716.0	90914.0	124389.0	0.222817	
3207	Prince Geo	•	24	313627.0	29290.0	351091.0	0.893293	
3208		tearns	27	25575.0	47618.0	78985.0	0.323796	
3209	Mido	dlesex	25	508919.0	216163.0	767337.0	0.663227	
3210		anklin	42	17322.0	49554.0	69345.0	0.249795	
3211		Perry	17	2433.0	6816.0	9706.0	0.250670	
3212	Gaso	conade	29	1519.0	5670.0	7444.0	0.204057	
3213	dab	Union	18	715.0	2445.0	3286.0	0.217590	
3214	Jeff	ferson	29	31546.0	68973.0	105969.0	0.297691	
3215		Rogers	40	7895.0	30893.0	40834.0	0.193344	
3216		alhoun	45	3569.0	3785.0	7553.0	0.472527	
3217		ackson	54	2648.0	8959.0	12108.0	0.218698	
3218		Rota	69	NaN	NaN	NaN	NaN	
3219	Q:	alinas	72	NaN	NaN	NaN	NaN	
3220		ackson	48	904.0	4266.0	5275.0	0.171374	
3221			53	60561.0	46762.0	118625.0	0.510525	
3222	-		12	306422.0	265928.0	595072.0	0.514933	
3223	DuPage		17	222499.0	164355.0	412929.0	0.538831	
3224	Passaic		34	112608.0	71488.0	189099.0	0.595498	
3225		rayson	48	10276.0	35274.0	47068.0	0.333430	
3226		eutlen	13	860.0	1808.0	2700.0	0.210322	
3227		ebster	28	1001.0	3949.0	5024.0	0.316319	
3228	WE		31	560.0	3203.0	3945.0	0.199244	
3229		Keith Adams					0.141932	
	Ω		28 26	6921.0	5125.0	12214.0		
3230	UI	ntario	36	20233.0	24343.0	47664.0	0.424492	
3231	W.	Mason	54	2069.0	7597.0	10115.0	0.204548	
3232	Ya	avapai	04	29705.0	58862.0	92780.0	0.320166	
	per_gop	diff	per po:	int_diff sta	ate abbr	cou	nty_name	\
0	0.736713	38,171	1 –1	- 51.45%	– AZ		e County	
1	0.647811	17,064		32.58%	LA	Tangipaho	a Parish	
2	0.677346	824		47.14%	ID	0.	n County	
3	0.610899	4,267		29.03%	MN		k County	
4	0.504245	8,447		10.72%	ND		s County	
5	0.625823	4,055		34.24%	SD		e County	
6	0.644914	4,396		34.69%	NY		e County	
7	0.528870	37,410		15.17%	AK		Alaska	
8	0.846426	8,105		71.62%	GA	Haralso	n County	
9	0.753344	2,623		53.16%	GA		y County	
10	0.735689	9,824		51.50%	IN		e County	
11	0.739721	5,858		52.70%	IN		s County	
12	0.665625	17,303		38.34%	MI	_	r County	
13	0.523067	478		6.06%	MS	-	w County	
-0	3.320001	110		0.00/0	110	OHICKUBU	Julioy	

14	0.709282	8,747	46.77%	OH	Crawford	County
15	0.537201	11,433	14.61%	SD	Minnehaha	County
16	0.707711	1,976	47.61%	SD	Turner	County
17	0.654270	6,793	34.51%	TX	Walker	County
18	NaN	NaN	NaN	NaN		NaN
19	0.692253	634	45.06%	SD	Aurora	
20	0.236133	1,324	51.00%	TX	Brooks	•
21		NaN	NaN		DIOOKS	NaN
	NaN N-N			NaN NaN		
22	NaN	NaN	NaN	NaN		NaN
23	NaN	NaN	NaN	NaN		NaN
24	0.875743	1,450	78.34%	NE	Chase	County
25	NaN	NaN	NaN	NaN		NaN
26	0.474811	132	3.32%	CO	Conejos	County
27	0.639575	19,649	32.35%	MD	Washington	County
28	0.825571	1,531	69.91%	KS	Norton	County
29	0.711401	3,064	48.72%	IL		County
			•••	• • •		
3203	0.379706	9,500	18.98%	NH	Grafton	County
3204						-
	0.555293	9,732	16.70%	WI	Sheboygan	•
3205	0.777792	4,279	56.63%	MS		County
3206	0.730885	63,198	50.81%	LA	St. Tammany	
3207	0.083426	284,337	80.99%	MD	Prince George's	•
3208	0.602874	22,043	27.91%	MN	Stearns	County
3209	0.281705	292,756	38.15%	MA	${ t Middlesex}$	County
3210	0.714601	32,232	46.48%	PA	Franklin	County
3211	0.702246	4,383	45.16%	IL	Perry	County
3212	0.761687	4,151	55.76%	MO	Gasconade	-
3213	0.744066	1,730	52.65%	IN		County
3214	0.650879	37,427	35.32%	МО	Jefferson	•
3215	0.756551	22,998	56.32%	OK		County
3216	0.700331	216	2.86%	SC	Calhoun	•
						•
3217	0.739924	6,311	52.12%	VV	Jackson	
3218	NaN	NaN	NaN	NaN		NaN
3219	NaN	NaN	NaN	NaN		NaN
3220	0.808720	3,362	63.73%	TX	Jackson	County
3221	0.394200	13,799	11.63%	WA	Kitsap	County
3222	0.446884	40,494	6.80%	FL	Hillsborough	County
3223	0.398022	58,144	14.08%	IL	DuPage	County
3224	0.378045	41,120	21.75%	NJ	Passaic	County
3225	0.749426	24,998	53.11%	TX	Grayson	•
3226	0.669630	948	35.11%	GA	Treutlen	•
3227	0.786027	2,948	58.68%	MS	Webster	•
3228						•
	0.811914	2,643	67.00%	NE MC		County
3229	0.419600	1,796	14.70%	MS		County
3230	0.510721	4,110	8.62%	NY	Ontario	•
3231	0.751063	5,528	54.65%	WV		County
3232	0.634426	29,157	31.43%	AZ	Yavapai	County

	combined_fips
0	4015.0
1	22105.0
2	16063.0
3	27119.0
4	38017.0
5	46081.0
6	36095.0
7	2275.0
8	13143.0
9	13023.0
10	18093.0
11	18079.0
12	26087.0
13	28017.0
14	39033.0
15	46099.0
16	46125.0
17	48471.0
18	NaN
19	46003.0
20	48047.0
21	NaN
22	NaN
23	NaN
24	31029.0
25	NaN
26	8021.0
27	24043.0
28	20137.0
29	17053.0
3203	33009.0
3204	55117.0
3205	28129.0
3206	22103.0
3207	24033.0
3208	27145.0
3209	25017.0
3210	42055.0
3211	17145.0
3212	29073.0
3213	18161.0
3214	29099.0
3215	40131.0
3216	45017.0
3217	54035.0
3218	NaN

```
3219
                 NaN
3220
            48239.0
3221
            53035.0
3222
            12057.0
3223
            17043.0
3224
            34031.0
3225
            48181.0
3226
            13283.0
            28155.0
3227
3228
            31101.0
3229
            28001.0
            36069.0
3230
3231
            54053.0
3232
             4025.0
[3233 rows x 19 columns]
```

Now let's plot each county, with the facecolor representing the percentage of voters in each county that voted for the Democratic candidate (per_dem). To do this, we normalize all values to be between 0 and 1, and define a color map that maps numbers in [0,1] to a color.

```
In [9]: ax = plt.axes(
            projection=ccrs.LambertConformal(
                central_latitude=39,
                central_longitude=-96,
                standard_parallels=(33, 45)
            )
        )
        ax.set_extent([-125, -66.5, 20, 50])
        # Read in county-level shapefiles
        fname = "/data301/data/cb_2017_us_county_5m/cb_2017_us_county_5m"
        shp = Reader(fname)
        # define a normalizer and a color map
        import matplotlib as mpl
        norm = mpl.colors.Normalize(vmin=all_data["per_dem"].min(),
                                    vmax=all_data["per_dem"].max())
        cmap = plt.cm.RdBu
        # plot the geometries with a facecolor that depends on per_dem
        for geometry, (_, row) in zip(shp.geometries(), all_data.iterrows()):
            if ~pd.isnull(row["per_dem"]):
                ax.add_geometries([geometry],
                                  ccrs.PlateCarree(),
                                  facecolor=cmap(norm(row["per_dem"])))
```


2 Exercises

Exercise 1. Use the shapefiles for the countries of the world (/data301/data/TM_WORLD_BORDERS_SIMPL-0.3/) to make a choropleth showing carbon dioxide emissions per capita in 2014 (/data301/data/co2.csv).

(*Hint:* Some countries are missing data. One way to handle this is to: (1) fill the missing values with an arbitrary value in the range when making the initial map, and (2) go back and re-draw the polygons for those countries on top of the existing map, using a special face color to indicate that data was missing.)

Out[13]: <cartopy.mpl.feature_artist.FeatureArtist at 0x7fb26591ce48>

