

El Plano Proyectivo Compleio CP²

The Comple Projetive Plane

Lines in General Position

El plano proyectivo de un anillo

El Plano Proyectivo Complejo \mathbb{CP}^2 Seminario de Estructuras Geométricas y Combinatorias

Mauricio Toledo-Acosta

Departamento de Matemáticas Universidad de Sonora

Table of Contents

El Plano Proyectivo Compleio CP

The Comple Projetive Plane

Lines in General Position

El plano proyectivo de un anillo 1 The Complex Projetive Plane

2 Lines in General Position

3 El plano proyectivo de un anillo

The Complex Projetive Plane

El Plano Proyectivo Complejo CP

The Comple Projetive Plane

Lines in General Position

El plano proyectivo de un anillo The complex projective plane \mathbb{CP}^2 is defined as

$$\mathbb{CP}^2 = \left(\mathbb{C}^3 \setminus \{0\}\right)/\mathbb{C}^*,$$

where $\mathbb{C}^*:=\mathbb{C}\setminus\{0\}$ acts by the usual scalar multiplication. Let

$$[\]:\mathbb{C}^3\setminus\{0\}\to\mathbb{CP}^2$$

be the quotient map. We denote by e_1 , e_2 , e_3 the projectivization of the canonical base of \mathbb{C}^3 .

Decomposition of \mathbb{CP}^2

El Plano Proyectivo Compleio CP²

The Comple Projetive Plane

Lines in General Position

El plano proyectivo de un anillo

$$\mathbb{CP}^2=\mathbb{C}^2\cup\mathbb{CP}^1$$

- $\mathbb{C}^2 \cong \{ [z_0 : z_1 : z_2] | z_0 \neq 0 \}$, affine chart.
- $\mathbb{CP}^1 \cong \{[0:z_1:z_2]\}$, line at infinity.

Observation: This generalizes $\mathbb{CP}^1 = \mathbb{C} \cup \{\infty\}$

Complex Projective Lines

El Plano Proyectivo Complejo CP²

The Comple Projetive Plane

General Position

El plano proyectivo de un anillo Given $p, q \in \mathbb{CP}^2$, we denote the complex projective line passing through p, q by

$$\overleftarrow{p,q} = [\langle \mathbf{p}, \mathbf{q} \rangle] \cong \hat{\mathbb{C}}$$

If ℓ_1 , ℓ_2 are different complex lines in \mathbb{CP}^2 , then $\ell_1 \cap \ell_2$ consists of exactly one point.

Complex Lines

El Plano Proyectivo

The Comple Projetive Plane

Lines in General Position

El plano proyectivo de un anillo Given $p, q \in \mathbb{C}^2$, the complex line passing through p, q is

$$\ell(p,q) = \{p + t(q-p) : t \in \mathbb{C}\} \cong \mathbb{C}$$

If ℓ_1 , ℓ_2 are different complex lines in \mathbb{C}^2 , then $\ell_1 \cap \ell_2$ consists of either:

- exactly one point (if they intersect), or
- the empty set (if they are parallel)

Given $p, w \in \mathbb{C}^2$ we also write

$$\ell(t) = \{p + tw \mid t \in \mathbb{C}\}$$

the complex line passing through p with complex direction w.

Relationship between Complex Lines

El Plano Proyectivo

Let $p,q\in\mathbb{C}^2\subset\mathbb{CP}^2$. Then:

The Comple Projetive Plane

Lines in General Position

El plano proyectivo de un anillo

$$\overleftarrow{p,q}=\ell(p,q)\cup\{\text{point at infinity}\}$$

More precisely:

- The complex projective line $\overleftarrow{p,q}\cong \hat{\mathbb{C}}$ is the compactification of the affine line $\ell(p,q)\cong \mathbb{C}$
- ullet Conversely, $\ell(p,q)=\overleftarrow{p,q}\cap\mathbb{C}^2$ is the affine part of $\overleftarrow{p,q}$

Parallel lines in \mathbb{C}^2 meet at their common point at infinity in \mathbb{CP}^2 . Furthermore, each pair of complex lines with the same complex direction determine a point in \mathbb{CP}^1 (their intersection).

\mathbb{CP}^2 as a Homogeneous Space

El Plano Proyectivo

The Comple Projetive Plane

Lines in General Position

El plano proyectivo de un anillo \mathbb{CP}^2 is a homogeneous space: it "looks the same" at every point.

The group PSL $(3,\mathbb{C})$ acts transitively on \mathbb{CP}^2 :

- For any two points $p, q \in \mathbb{CP}^2$, there exists $g \in \mathsf{PSL}\,(3,\mathbb{C})$ such that $g \cdot p = q$
- No intrinsic way to distinguish points: all points are equivalent under the symmetry group

This is analogous to how S^2 is homogeneous under rotations SO(3).

Homogeneity and Structure

El Plano Proyectivo ompleio CP²

The Comple Projetive Plane

Lines in General Position

El plano proyectivo de un anillo A space is homogeneous with respect to a geometric structure if the group of automorphisms of that structure acts transitively.

- ullet Vector space structure: linear transformations $\mathsf{GL}\left(3,\mathbb{C}\right)$
- Affine structure: affine transformations (linear + translations)
- Projective structure: projective transformations $PSL(3,\mathbb{C})$
- Metric structure: isometries

Examples:

- \mathbb{C}^2 as a vector space: NOT homogeneous under GL $(2,\mathbb{C})$ (origin is fixed)
- \mathbb{C}^2 as an affine space: homogeneous under Aff $(2,\mathbb{C})$
- \mathbb{CP}^2 as a projective space: homogeneous under PSL $(3,\mathbb{C})$

Foliation of $\mathbb{CP}^2 \setminus \overrightarrow{e_i, e_j} \cup \{e_k\}$

El Plano Proyectivo Compleio ℂℙ²

The Comple Projetive Plane

Lines in General Position

El plano proyectivo de un anillo For r > 0, let

$$T_1(r) = \{ [z_1 : z_2 : z_3] \in \mathbb{CP}^2 \mid |z_2|^2 + |z_3|^2 = r|z_1|^2 \},$$

$$T_2(r) = \{ [z_1 : z_2 : z_3] \in \mathbb{CP}^2 \mid |z_1|^2 + |z_3|^2 = r|z_2|^2 \},$$

$$T_3(r) = \{ [z_1 : z_2 : z_3] \in \mathbb{CP}^2 \mid |z_1|^2 + |z_2|^2 = r|z_3|^2 \}.$$

The family $\{T_i(r)\}_{r>0}$ is a foliation of $\mathbb{CP}^2 \setminus \overrightarrow{e_{i-1}, e_{i+1}} \cup \{e_i\}$.

Observe that
$$T_i(1) \cong S^3 \subset \mathbb{C}^2$$
.

(Singular) Foliation of S^3 by tori

El Plano
Proyectivo

The Complex Projetive Plane

Lines in General Position

El plano proyectivo de un anillo Consider the unit sphere $T_3(1)$, and consider the intersections

$$C_r := T_3(1) \cap T_1(r)$$

for r > 0. We have three cases:

- If r < 1, $C_r = \emptyset$.
- If r = 1,

$$C_r = \{ [z_1 : z_2 : 1] \mid |z_1| = 1, \ z_2 = 0 \}$$

 $\cong S^1.$

• If r > 1,

$$C_r = \left\{ [z_1 : z_2 : 1] \, \middle| \, |z_1| = \sqrt{\frac{2}{r+1}}, \, |z_2| = \sqrt{\frac{r-1}{r+1}} \right\}$$

$$\simeq S^1 \times S^1$$

Table of Contents

El Plano Proyectivo Compleio CP²

The Comple Projetive Plane

Lines in General Position

El plano proyectivo d un anillo

- 1 The Complex Projetive Plane
- 2 Lines in General Position
- 3 El plano proyectivo de un anillo

Lines in General Position

El Plano
Proyectivo

The Comple Projetive Plane

Lines in General Position

El plano proyectivo d un anillo A collection of complex projective lines $\{\ell_1, \ell_2, \dots, \ell_n\}$ in \mathbb{CP}^2 is in general position if:

No three lines meet at a common point

Equivalently:

- ullet Any two lines ℓ_i,ℓ_j intersect at exactly one point
- For any three distinct lines ℓ_i, ℓ_j, ℓ_k , the intersection points $\ell_i \cap \ell_j$, $\ell_i \cap \ell_k$, and $\ell_j \cap \ell_k$ are all different

For *n* lines in general position, there are exactly $\binom{n}{2}$ intersection points.

The space of arrays of 5 CPL in GP

El Plano Proyectivo

The Comple Projetive Plane

Lines in General Position

El plano proyectivo de un anillo **Ultimate Goal:** Define a measure supported on the limit set for the action of a discrete subgroup of PSL $(3, \mathbb{C})$.

- We want to describe the space of arrays of 5 complex projective lines in general position in CP².
- Each of these configurations of lines determines a domain in \mathbb{CP}^2 : The complement in \mathbb{CP}^2 of the array.
- The existence of the measure ultimately depends on whether the entropy volume of the Kobayashi metric is finite on this domain.

The space of arrays of 5 CPL in GP

El Plano Proyectivo Compleio CP

The Comple Projetive Plane

Lines in General Position

El plano proyectivo de un anillo The group PSL $(3,\mathbb{C})$ acts sharply 4-transitively on the space of complex projective lines in general position in \mathbb{CP}^2 .

Given an array of 5 complex projective lines in general position, we can arbitrarily pick 4 of them and describe the parameter space as the parameter space of configurations of 4 complex lines in general position.

The space of arrays of 5 CPL in GP

El Plano Proyectivo Compleio CF

The Comple Projetive Plane

Lines in General Position

El plano proyectivo de un anillo The space of arrays of 4 complex lines in general position in \mathbb{C}^2 is given by

$$\mathcal{P} = \left\{ \left(\zeta_1, \zeta_2\right) \in \mathbb{C}^2 \,\middle|\, \zeta_1 \in \mathbb{C} \setminus \{0, 1\} \,\text{, } \zeta_2 \in \mathbb{C} \setminus \{0, 1, \zeta_1\} \right\}.$$

The set $\mathcal{P} \subset \mathbb{C}^2$ can be regarded as

$$(\mathbb{C} \setminus \{0,1\}) \times (\mathbb{C} \setminus \{0,1\}) \setminus \ell$$

where ℓ is a complex line going through the origin.

Table of Contents

El Plano Proyectivo Compleio CP

The Comple Projetive Plane

Lines in General Position

El plano proyectivo de un anillo 1 The Complex Projetive Plane

- 2 Lines in General Position
- 3 El plano proyectivo de un anillo

El plano proyectivo de un anillo

El Plano
Proyectivo
Compleie CP²

The Comple Projetive

Lines in General Position

El plano proyectivo o un anillo