Quoc-Viet Рнам

Personal Data

PLACE AND DATE OF BIRTH: Hai Duong, Vietnam | 05 April 1990

ADDRESS: 310-2, ABC Center, Pusan National University, Yangsan Campus, 50612 Korea

PHONE: +82-10-2158-5224

EMAIL: vietpq@pusan.ac.kr / vietpq@ieee.org / vietpq9o@gmail.com

Personal Site: https://vietpq90.github.io/

Profiles: Google Scholar, ResearchGate, Publons, Scopus, LinkedIn, and ORCID

EDUCATION

Aug. 2017 Doctor of Telecommunications, Inje University, Korea

Aug. 2015 Master of Telecommunications, Inje University, Korea

Aug. 2013 Bachelor of Telecommunications, Hanoi University of Science and Technology, Vietnam

WORK EXPERIENCE

JAN. 2020 - CURRENT Research Professor,

Korean Southeast Center for the 4th Industrial Revolution Leader Education,

Pusan National University, Korea

MAR. 2018 - DEC 2019 Research Professor,

ICT Convergence Center, Changwon National University/Inje University, Korea

SEP. 2017 - Feb. 2018 Post-Doctoral Research Fellow,

Dept. Computer Science and Engineering, Kyung Hee University, Korea

SEP. 2013 - Jun. 2017 Research Assistant, Wireless Networks (WINE) laboratory,

Dept. Information and Communication System, Inje University, Korea

GRANTS AND PROJECTS

2019 - 2024 NRF Basic Science and Research (500,000,000 KRW), Principal Investigator

Title: Privacy Enhancing Connected Cars in 5G and Beyond

2022 - 2024 FDCRGP Grant (\$136,000, 3 years), Co-Principal Investigator

Title: Edge-assisted Activity Recognition using Skeletal Representation and DL for Video Surveillance

2019 - 2024 NRF Basic Science and Research (500,000,000 KRW), Key Participant

Title: Edge Computing in the 5G Ecosystem: Joint 4C Framework and Its Applications

2018 - 2019 NRF Basic Science and Research (25,000,000 KRW), Key Participant

Title: Low Overhead Channel Access for 5G Mobile Communications in Large-Scale IoT Networks

2020 - 2027 Brain Korea (BK) 21 (549,825,000 KRW/year), Participant

Korean Southeast Center for the 4th Industrial Revolution Leader Education,

RECOGNITIONS & AWARDS

- Prize for excellent students, Vietnamese Students' Association in Korea (VSAK), 2015.
- Best paper award, KMMS 2014, JKCCS 2016, KJCCS 2020, KICS 2021.
- Best PhD dissertation, Inje University, Spring 2017.
- Top Reviewer Award, IEEE Transactions on Vehicular Technology, 2020.
- Award for outstanding contributions and research excellence, Minister of Education (Korea), 2021.
- Golden globe award 2021 for young Vietnamese scientists, Ministry of Science and Technology, 2021.

TEACHING EXPERIENCE

Adjunct Lecturer, Inje University

- 1. Network Optimization in Wireless and Communication Networks
- 2. Game Theory in Wireless and Communication Networks
- 3. Machine Learning in Wireless and Communication Networks

Teaching assistant, Inje University

- 1. Introduction to Android Programming, Fall semester 2016.
- 2. Data and Computer Communications, 2016-2017 (3 semesters).

SUPERVISION

Current Students

- Le Thi Mai [PNU, 2021-Present] Wireless AI and aerial access networks.
- Nguyen Minh Duong [PNU, 2020-Present] Deep federated learning for 6G optimization
- Swe Swe Latt [PNU, 2020-Present] Federated learning and 6G resource optimization
- Dao Thien Thanh [PNU, 2020-Present] Deep learning and depth map
- Nadia Iradukunda [Inje University, 2019-Present] UAV communications in 5G and beyond
- Daeil Noh [PNU, 2020-Present] Deep learning for amateur UAV recognition
- Sang Min Lee [PNU, 2020-Present] Communication-efficient federated learning

Alumnus

- Le Thi Mai [MS, Inje University, 2019-2021] Swarm intelligence for D2D communications
- Vo Ta Hoang [PhD, Inje University, 2017-2020] Resource allocation for MEC systems
- Hoang Huu Trung [PhD, Inje University, 2018-2021] ML for mmWave communications
- Nguyen Tien Hoang [MS, Inje University, 2017-2019] Coalitional games for NOMA-MEC
- Maurice Nduwayezu [MS, Inje University, 2017-2019] DRL for NOMA-MEC offloading
- Girmay Gebremariam [MS, Inje University, 2017-2019] Swarm intelligence for D2D communications
- Akmal Azizan [MS, Inje University, 2017-2019] Blockchain for healthcare applications

Professional Activities

Editors

- Scientific Reports [Nature, Q1, IF 4.379, 2022-Present]
- Journal of Network and Computer Applications [Elsevier, Q1, IF 6.281, 2020-Present]
- IEEE Internet of Things Journal [Lead Editor, Aerial Computing for IoT, 2021-2022]
- Frontiers in Communications and Networks [Associate Editor, 2020-Present]
- Sensors [Guest Editor, Security and Privacy in the Internet of Things (IoT), 2021-2022]

Invited Referee for Journals

- Letters: IEEE COMML, IEEE WCL, IEEE L-NET.
- Transactions: IEEE TCOM, IEEE TWC, IEEE TVT, IEEE TMC, IEEE TCC, IEEE TSC, IEEE TPDS, IEEE TCSS, IEEE JSAC, IEEE TGCN, IEEE TSIPN, IEEE IoTJ.
- Magazines: IEEE CommMag, IEEE WCM, IEEE CSM, IEEE VTM, IEEE CIM, IEEE CEMag.

TPC/TPC Chair/Track Chair

- 2022: IEEE ICC, IEEE VTC, EAI GameNets 2022, ICIT 2022, IEEE ATC 2022.
- 2021: IEEE VTC2021-Fall, IEEE ISC2, EAI Qshine, FICTA, IEEE GLOBECOM, SoICT.
- 2020: ICCIS, IEEE WCNC, IEEE ICC, IEEE VTC2020-Spring, IEEE STP-CPS-SECON.

FIELDS OF RESEARCH INTEREST

- Edge Computing: resource optimization, edge of things, and edge AI.
- Future Networks: 6G, Internet of Things, intelligent surfaces, and blockchain.
- Wireless AI: communication-efficient federated learning, sustainable AI, and secure learning.
- AI for Future Networks: deep learning, deep reinforcement learning, and federated learning.

SELECTED PUBLICATIONS

Books

[1] C. de Alwis, Q.-V. Pham, P. Kumar, and M. Liyanage, 6G Frontiers: New Technologies, Applications, and Standardization Approaches, Wiley-IEEE Press, expected Jun. 2022.

Book Chapters

- [1] **Q.-V. Pham**, et al., "The Emergence of Aerial Computing: Applications and Challenges," in 6G Wireless: The Communication Paradigm Beyond 2030, CRC Press, 2022.
- [2] M. Zeng, Q.-V. Pham, et al., "IRS-Empowered Wireless Communications: State-of-the-Art, Key Techniques, and Open Issues," in 6G Wireless: The Communication Paradigm Beyond 2030, CRC Press, 2022.
- [3] Z. Yang, Q.-V. Pham, et al., "Federated Learning for Unmanned Aerial Vehicle Communication Networks," in Secure and Digitalized Future Mobility: Shaping the Ground and Air Vehicles Cooperation, CRC Press, 2022.

- [4] **Q.-V. Pham**, et al., "Artificial intelligence and big data for COVID-19 and social distancing," in *Enabling Technologies for Social Distancing: Fundamentals, concepts and solutions*, IET, 2022.
- [5] D. C. Nguyen, Q.-V. Pham, et al., "Security and privacy and blockchain applications in COVID-19 detection and social distancing," in *Enabling Technologies for Social Distancing: Fundamentals, concepts and solutions*, IET, 2022.
- [6] N.-N. Dao, **Q.-V. Pham**, *et al.*, "Vulnerabilities in fog/edge computing from architectural perspectives," in *Fog/Edge Computing for Security, Privacy, and Applications*, Springer, 2021.

Selected Journal Articles

- [1] **Q.-V. Pham**, et al., "Aerial Computing: A New Computing Paradigm, Applications, and Challenges," *IEEE Internet of Things Journal*, in press.
- [2] T. Huynh-The, Q.-V. Pham, et al., "MIMO-OFDM Modulation Classification Using Three-Dimensional Convolutional Network," *IEEE Transactions on Vehicular Technology*, in press.
- [3] Q.-V. Pham, et al., "Energy-Efficient Federated Learning over UAV-enabled Wireless Powered Communications," *IEEE Transactions on Vehicular Technology*, in press.
- [4] **Q.-V. Pham**, et al., "Aerial Access Networks for Federated Learning: Applications and Challenges," *IEEE Network*, in press.
- [5] M. Le, Q.-V. Pham, et al., "Enhanced Resource Allocation in D2D Communications with NOMA and Unlicensed Spectrum," *IEEE Systems Journal*, in press.
- [6] R. Ruby, **Q.-V. Pham**, *et al.*, "Enhancing secrecy performance of cooperative NOMA-based IoT networks via multi-antenna aided artificial noise," *IEEE Internet of Things Journal*, in press.
- [7] M. Alazab, Q.-V. Pham, et al., "Federated learning for cybersecurity: concepts, challenges and future directions," *IEEE Transactions on Industrial Informatics*, vol. 18, no. 5, pp. 3501-3509, 2022.
- [8] T. R. Gadekallu, **Q.-V. Pham**, et al., "Blockchain for Edge of Things: Applications, Opportunities, and Challenges," *IEEE Internet of Things Journal*, vol. 9, no. 2, pp. 964-988, 2022.
- [9] Q. V. Do, Q.-V. Pham, et al., "Deep reinforcement learning for energy-efficient federated learning in UAV-enabled wireless powered networks," *IEEE Communications Letters*, vol. 26, no. 1, pp. 99-103, 2022.
- [10] L. Nkenyereye, Q.-V. Pham, et al., "Efficient RSU Selection Scheme for Fog-Based Vehicular Software-Defined Network," *IEEE Transactions on Vehicular Technology*, vol. 70, no. 11, pp. 12126-12141, 2021.
- [11] D. C. Nguyen, Q.-V. Pham, et al., "Federated learning meets blockchain in edge computing: Opportunities and challenges," *IEEE Internet of Things Journal*, vol. 8, no. 16, pp. 12806-12825, 2021.
- [12] L. Nkenyereye, **Q.-V. Pham**, et al., "Virtual IoT service slice functions for multi-access edge computing platform," *IEEE Internet of Things Journal*, vol. 8, no. 14, pp. 11233-11248, 2021.
- [13] L. Nkenyereye, **Q.-V. Pham**, *et al.*, "MEIX: Evolving multi-access edge computing for industrial internet-of-things services," *IEEE Network*, vol. 35, no. 3, pp. 147-153, 2021.
- [14] N.-N. Dao, **Q.-V. Pham**, *et al.*, "Survey on aerial radio access networks: Toward a comprehensive 6G access infrastructure," *IEEE COMST*, vol. 23, no. 2, pp. 1193-1225, 2021.
- [15] Q.-V. Pham, et al., "UAV communications for sustainable federated learning," *IEEE Transactions on Vehicular Technology*, vol. 70, no. 4, pp. 3944-3948, 2021.
- [16] F. Fang, Q.-V. Pham, et al., "Energy-efficient design of IRS-NOMA networks," IEEE Transactions on Vehicular Technology, vol. 69, no. 11, pp. 14088-14092, 2020.

- [17] **Q.-V. Pham**, et al., "Sum-rate maximization for UAV-assisted VLC using NOMA: Swarm intelligence meets machine learning," *IEEE Internet of Things Journal*, vol. 7, no. 10, pp. 10375-10387, 2020.
- [18] **Q.-V. Pham**, *et al.*, "A survey of multi-access edge computing in 5G and beyond: Fundamentals, technology integration, and state-of-the-art," *IEEE Access*, vol. 8, pp. 116974-117017, 2020.
- [19] **Q.-V. Pham**, et al., "Whale optimization algorithm with applications to resource allocation in wireless networks," *IEEE Transactions on Vehicular Technology*, vol. 69, no. 4, pp. 4285-4297, 2020.
- [20] **Q.-V. Pham**, et al., "Coalitional games for computation offloading in NOMA-enabled multi-access edge computing," *IEEE Transactions on Vehicular Technology*, vol. 69, no. 2, pp. 1982-1993, 2020.
- [21] **Q.-V. Pham**, et al., "Mobile edge computing with wireless backhaul: Joint task offloading and resource allocation," *IEEE Access*, vol. 7, pp. 16444-16459, 2019.
- [22] **Q.-V. Pham**, et al., "Decentralized computation offloading and resource allocation for mobile-edge computing: A matching game approach," *IEEE Access*, vol. 6, pp. 75 868–75 885, 2018.
- [23] **Q.-V. Pham**, et al., "Fairness-aware spectral and energy efficiency in spectrum-sharing wireless networks," *IEEE Transactions on Vehicular Technology*, vol. 66, no. 11, pp. 10207-10219, 2017.
- [24] **Q.-V. Pham**, *et al.*, "Network utility maximization-based congestion control over wireless networks: A survey and potential directives," *IEEE COMST*, vol. 19, no. 2, pp. 1173-1200, 2017.
- [25] **Q.-V. Pham**, et al., "Resource allocation for heterogeneous traffic in complex communication networks," *IEEE Transactions on Circuits and Systems II: Express Briefs*, vol. 63, no. 10, pp. 959-963, 2016.

Selected Conferences

- [1] **Q.-V. Pham**, *et al.*, "UAV-enabled Wireless Powered Communication for Energy-Efficient Federated Learning," *IEEE International Conference on Communications (ICC)*, Seoul, Korea, May. 2022.
- [2] T. Huynh-The, Q.-V. Pham, et al., "RaComNet: High-Performance Deep Network for Waveform Recognition in Coexistence Radar-Communication Systems," *IEEE International Conference on Communications* (*ICC*), Seoul, Korea, May. 2022.
- [3] T. Huynh-The, Q.-V. Pham, et al., "Automatic Modulation Classification with Low-Cost Attention Network for Impaired OFDM Signals," *IEEE WCNC*, Austin, TX, USA, Apr. 2022.
- [4] T. Huynh-The, Q.-V. Pham, et al., "Densely-accumulated convolutional network for accurate LPI radar waveform recognition," *IEEE GLOBECOM*, Madrid, Spain, 2021.
- [5] R. Ruby, Q.-V. Pham, et al., "Delay Performance of UAV-Based Buffer-Aided Relay Networks under Bursty Traffic: Mobile or Static?," *IEEE WoWMoM*, Pisa, Italy, 2021.
- [6] V.-.S. Doan, **Q.-V. Pham**, *et al.*, "Chain-Net: Learning deep model for modulation classification under synthetic channel impairment," in *IEEE GLOBECOM*, Taipei, Taiwan, 2020.
- [7] T. Huynh-The, **Q.-V. Pham**, *et al.*, "Learning constellation map with deep CNN for accurate modulation recognition," in *IEEE GLOBECOM*, Taipei, Taiwan, 2020.
- [8] R. Ruby, Q.-V. Pham, et al., "Aiding a disaster spot via an UAV-based mobile AF relay: Joint trajectory and power optimization," in ACM MobiWac, Alicante, Spain, 2020.
- [9] I. Budhiraja, **Q.-V. Pham**, *et al.*, "Energy efficient mode selection scheme for wireless powered D2D communications with NOMA underlaying UAV," in *IEEE INFOCOM*, Toronto, Canada, 2020.
- [10] H. Han, Q.-V. Pham, et al., "Intelligent reflecting surface aided network: Power control for physical-layer broadcasting," in *IEEE ICC*, Dublin, Ireland, 2020.