Comparison Tables: CEC-BBOB 2015 Testbed in 2-D

The BBOBies

May 27, 2015

Abstract

This document provides tabular results of the special session on Black-Box Optimization Benchmarking at CEC 2015, see http://coco.gforge.inria.fr/doku.php?id=cec-bbob-2015. Overall, eight algorithms have been tested on 24 benchmark functions in dimensions between 2 and 20. A description of the used objective functions can be found in [6, 4]. The experimental set-up is described in [5].

The performance measure provided in the following tables is the expected number of objective function evaluations to reach a given target function value (ERT, expected running time), divided by the respective value for the best algorithm in BBOB-2009 (see [1]) if an algorithm from BBOB-2009 reached the given target function value. The ERT value is given otherwise (ERT_{best} is noted as infinite). See [5] for details on how ERT is obtained. Bold entries in the table correspond to values below 3 or the top-three best values. Table 1 gives an overview on all algorithms submitted to the noise-free testbed at CEC 2015.

Table 1: Names and references of all algorithms submitted for the noise-free testbed $\,$

algorithm short	paper	reference
name		
MATSuMoTo	Comparison of the MATSuMoTo Library for Expensive Optimization on the Noiseless Black-Box Optimization Benchmarking Testbed	[2]
R-DE-10e2	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
R-DE-10e5	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
R-SHADE-10e2	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
R-SHADE-10e5	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
RL-SHADE-10e2	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
RL-SHADE-10e5	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
SOO	Simultaneous Optimistic Optimization on the Noiseless BBOB Testbed	[3]

Table 2: 02-D, running time excess ERT/ERT_{best 2009} on f_1 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f1	1.8	5.7	5.7	6.2	6.2	6.2	6.2	15/15
MATSUMOTO-	1.7 (1)	1.6(0.4)	2.6 (0.7)	3.7(0.8)*3	4.5(0.8)*3	24 (30)	276(355)	1/15
R-DE-10e2-	2.3(2)	2.0(2)	8.5(6)	11(6)	18(6)	34(25)	160(178)	3/15
R-DE-10e5-	1.7(2)	8.1(5)	30(4)	69(8)	74(6)	81(82)	98(148)	15/15
RL-SHADE-1	1.6(2)	2.7 (1)	8.0(3)	12(4)	16(6)	25(13)	66(42)	7/15
RL-SHADE-1	1.9(2)	4.3(8)	19(13)	37(14)	70(21)	136(10)	191(20)	15/15
R-SHADE-10	2.1(2)	3.2(3)	10(4)	16(6)	22(7)	116(113)	∞ 200	0/15
R-SHADE-10	1.5(1)	3.7(2)	8.6(3)	13(6)	18(6)	28(3)	39 (7)	15/15
SOO-Derbel	1.1(0.8)	1.5(1)	3.6(2)	7.1 (2)	11 (4)	22 (3)	42(2)	15/15

Table 3: 02-D, running time excess ERT/ERT_{best 2009} on f_2 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f2	16	19	25	25	26	28	29	15/15
MATSUMOTO-	11(11)	76(83)	∞	∞	∞	∞	∞ 100	0/15
R-DE-10e2-	5.6 (2)	7.6 (2)	8.8(3)	16(8)	29(23)	∞	∞ 200	0/15
R-DE-10e5-	14(3)	13(49)	12(1)	13(21)	19(37)	21(33)	23 (19)	15/15
RL-SHADE-1	6.0(2)	6.3 (3)	5.9 (2)	8.8(8)	15(10)	∞	∞ 200	0/15
RL-SHADE-1	21(12)	27(13)	30(4)	37(8)	46(7)	56(5)	68(8)	15/15
R-SHADE-10	8.9(8)	11(8)	22(21)	116(144)	∞	∞	∞ 200	0/15
R-SHADE-10	7.0(3)	8.7(2)	8.4(4)	9.2(2)	10 (1)	12 (3)	14 (3)	15/15
SOO-Derbel	7.0(3)	10(1)	8.3(2)	11(5)	14 (1)	18(2)	25(4)	15/15

Table 4: 02-D, running time excess ERT/ERT_{best 2009} on f_3 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

coccii ciiio roica	.c arrage	· · · · · · · · · · · · · · · · · · ·	CILCIOII.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f3	15	271	445	446	450	454	464	15/15
MATSUMOTO	-3.0(0.9)	6.1(6)	3.7(6)	∞	∞	∞	∞ 100	0/15
R-DE-10e2-	2.8 (4)	0.97 (1)	1.5(2)	∞	∞	∞	∞ 200	0/15
R-DE-10e5-	2.7 (3)	1.6(2)	3.2(6)	4.0(8)	4.0(8)	4.7(4)	7.3(20)	15/15
RL-SHADE-1	2.2(1)	0.70 (0.4)	0.66(0.5)	1.3(1)	6.6(9)	∞	$\infty 200$	0/15
RL-SHADE-1	5.6(4)	2.3 (1)	2.0 (0.7)	3.0 (0.5)	3.5(0.6)	4.3(0.5)	5.1(0.3)	15/15
R-SHADE-10	2.4(2)	0.75 (0.4)	1.0(0.7)	6.7(6)	∞	∞	$\infty 200$	0/15
R-SHADE-10	3.7(1)	1.3(1)	2.0(2)	2.1 (3)	2.2 (3)	2.4(2)	2.5(2)	15/15
SOO-Derbel	2.5 (1)	0.92 (0.6)	0.73 (0.5)	0.82 (0.6)	0.92 (0.4)	1.2(0.3)	1.5(0.4)	15/15

೮

Table 5: 02-D, running time excess ERT/ERT_{best 2009} on f_4 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f4	22	344	459	496	523	544	566	15/15
MATSUMOTO	-1.9 (0.7)	∞	∞	∞	∞	∞	∞ 100	0/15
R-DE-10e2-	1.9 (1)	2.0 (2)	∞	∞	∞	∞	∞ 200	0/15
R-DE-10e5-	5.1(11)	1.4(1.0)	4.1(4)	4.3(3)	6.7(3)	7.9(4)	8.1(5)	15/15
RL-SHADE-1	1.8(0.9)	0.52 (0.3)	0.94(1)	1.1(2)	1.9(2)	∞	∞ 200	0/15
RL-SHADE-1	5.2(3)	2.2 (0.6)	2.5 (0.7)	2.9 (0.4)	3.1(0.5)	4.2(0.9)	4.6(0.6)	15/15
R-SHADE-10	2.0 (1)	2.0(2)	3.3(4)	∞	∞	∞	∞ 200	0/15
R-SHADE-10	2.4(2)	1.4 (1)	2.0(2)	2.0(2)	2.0(2)	2.1(2)	2.3 (3)	15/15
SOO-Derbel	1.5(0.3)	0.86(0.7)	7.6(16)	12(5)	11(10)	12(7)	12(13)	15/15

Table 6: 02-D, running time excess ERT/ERT_{best 2009} on f_5 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f5	3.7	4.4	4.4	4.4	4.4	4.4	4.4	15/15
MATSUMOTO-	1.5 (0.8)	$2.0(0.6)^{\star}$	⁴ 2.5 (1)* ⁴	2.5(0.9)**	4 2.5 (0.5)*	4 2.5 (0.8)*	4 2.5 (1)*4	15/15
R-DE-10e2-	4.9(4)	13(6)	21(7)	31(9)	45(6)	680(795)	∞ 200	0/15
R-DE-10e5-	3.3(2)	12(4)	28(16)	81(4)	111(31)	206(206)	303(311)	15/15
RL-SHADE-1	5.5(6)	12(3)	18 (6)	25 (7)	33 (18)	61 (46)	213(137)	3/15
RL-SHADE-1	4.1(4)	42(12)	86(8)	122(23)	167(23)	242(23)	317(15)	15/15
R-SHADE-10	4.7(4)	13(2)	23(3)	33(4)	46(7)	∞	∞ 200	0/15
R-SHADE-10	4.7(4)	23(9)	46(39)	63(49)	75(16)	99(51)	121(21)	15/15
SOO-Derbel	2.3 (0.1)	8.8(0.1)	22(0.1)	41(0.1)	76(0.1)	166(0.1)	273(0.1)	15/15

~1

Table 7: 02-D, running time excess ERT/ERT_{best 2009} on f_6 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
13	23	41	54	67	95	124	15/15
1.4(0.9)	14(25)	∞	∞	∞	∞	∞ 100	0/15
1.8(2)	2.3 (0.8)	3.0 (1)	5.2 (3)	8.4(9)	∞	∞ 200	0/15
10(4)	20(17)	19(38)	20(32)	21(29)	19(26)	20(31)	15/15
2.1 (1)	4.2(2)	3.6 (2)	6.8(7)	8.7(8)	∞	$\infty 200$	0/15
3.5(4)	7.1(4)	8.6(5)	12(2)	13(3)	16 (2)	17 (2)	15/15
1.6(0.7)	4.2(2)	9.1(8)	13(13)	∞	∞	∞ 200	0/15
1.9 ₍₁₎	3.2(2)	5.5(1)	5.6 (7)	5.3 (3)	4.8(1)	4.7 (3)	15/15
1.3(2)	7.6(11)	94(127)	402(716)	1663(2632)	5292(4900)	2.4e4(4e4)	1/15
	13 1.4(0.9) 1.8(2) 10(4) 2.1(1) 3.5(4) 1.6(0.7) 1.9(1)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 8: 02-D, running time excess ERT/ERT_{best 2009} on f_7 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

	$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
	f7	3.2	21	60	193	217	217	241	15/15
N	ATSUMOTO-	2.8(2)	1.4(0.5)	0.97 (0.4)	0.84(0.7)	2.2 (3)	2.2(3)	∞ 100	0/15
	R-DE-10e2-	3.1(3)	2.7 (3)	2.0 (0.9)	1.2(0.9)	2.0 (3)	2.0(2)	2.9(2)	4/15
	R-DE-10e5-	2.2(2)	3.6(4)	3.8(3)	1.9 ₍₁₎	1.7(1)	1.7(0.7)	1.8(0.5)	15/15
]	RL-SHADE-1	5.9(10)	3.0 (3)	5.0(5)	2.9 (3)	6.8(6)	6.8(8)	$\infty 200$	0/15
]	RL-SHADE-1	4.9(8)	3.5(4)	4.6(2)	2.7 (2)	3.0 (1)	3.0 (1)	3.5(1)	15/15
	R-SHADE-10	2.9 (3)	2.7 (3)	4.1(6)	5.0(8)	∞	∞	∞ 200	0/15
	R-SHADE-10	2.6(2)	1.8(2)	1.7 ₍₁₎	0.85 (0.7)	0.94 (0.8)	0.94 (0.2)	0.97 (0.5)	15/15
	SOO-Derbel	1.8 (0.6)	1.4(0.9)	1.5(0.5)	0.83 (0.7)	1.1 (1)	1.1 (1)	1.3 (1)	15/15

Table 9: 02-D, running time excess ERT/ERT_{best 2009} on f_8 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
	5.4	12	37	46	86	94	112	15/15
MATSUMOTO-	2.7 (2)	3.9 (2)	6.6(7)	∞	∞	∞	∞ 100	0/15
R-DE-10e2-	4.8(3)	8.8(7)	27(33)	∞	∞	∞	∞ 200	0/15
R-DE-10e5-	2.6 (3)	11(19)	13(11)	16(12)	10(5)	12 (6)	12 (5)	15/15
RL-SHADE-1	4.2(3)	7.6(4)	6.9(10)	63(65)	∞	∞	∞ 200	0/15
RL-SHADE-1	7.6(5)	13(12)	14(10)	18(10)	17(5)	23(5)	23(4)	15/15
R-SHADE-10	6.9(3)	11(9)	11(14)	63(77)	∞	∞	∞ 200	0/15
R-SHADE-10	3.9(2)	4.4(4)	4.0 (5)	6.1 (6)	4.2 (5)	5.3 (4)	5.1 (3)	15/15
SOO-Derbel	2.0(2)	2.8 (3)	3.8 (2)	7.5 (5)	6.9(7)	18(17)	26(19)	15/15

Table 10: 02-D, running time excess ERT/ERT_{best 2009} on f_9 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f9	1	18	30	44	68	81	92	15/15
MATSUMOTO-	16 (19)	2.7 (2)	4.7(4)	∞	∞	∞	∞ 100	0/15
R-DE-10e2-	19(18)	6.0(6)	15(19)	33(38)	∞	∞	∞ 200	0/15
R-DE-10e5-	33(20)	7.7(10)	23(46)	26(15)	20(24)	20(13)	20(17)	15/15
RL-SHADE-1	34(27)	7.0(8)	13(10)	33(25)	44(33)	∞	∞ 200	0/15
RL-SHADE-1	39(34)	10(7)	14(10)	19(7)	18(6)	23(5)	26(3)	15/15
R-SHADE-10	32(21)	10(11)	17(14)	68(73)	∞	∞	∞ 200	0/15
R-SHADE-10	23(14)	3.4(5)	7.4(11)	11 (7)	8.0(16)	7.6 (9)	7.8 (3)	15/15
SOO-Derbel	1(0)*2	2.0 (0.8)	3.1 (3)	5.8 (3)	6.8 (3)	14 (4)	19 (14)	15/15

11

Table 11: 02-D, running time excess ERT/ERT_{best 2009} on f_{10} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f10	30	46	54	61	68	82	98	15/15
MATSUMOTO-	9.1(13)	∞	∞	∞	∞	∞	∞ 100	0/15
R-DE-10e2-	7.3(10)	32(59)	55(49)	∞	∞	∞	∞ 200	0/15
R-DE-10e5-	27(53)	62(105)	73(71)	68(116)	77(100)	70(107)	74(94)	15/15
RL-SHADE-1	18(19)	31(38)	53(64)	49(71)	44(26)	∞	∞ 200	0/15
RL-SHADE-1	15(8)	17(5)	20(2)	23 (4)	23 (4)	25(4)	26 (3)	15/15
R-SHADE-10	13(7)	64(93)	∞	∞	∞	∞	∞ 200	0/15
R-SHADE-10	3.2(1)	3.2 (1)	3.6 (0.8)	3.9 (1)	4.0 (1)	4.4(1.0)	4.3(0.9)	15/15
SOO-Derbel	3.3 (1)	4.8(5)	10 (15)	29(63)	103(87)	303(525)	453(658)	15/15

Table 12: 02-D, running time excess ERT/ERT_{best 2009} on f_{11} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	$1e\mathring{0}$	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f11	35	45	50	62	67	81	97	15/15
MATSUMOTO-	7.9(7)	∞	∞	∞	∞	∞	∞ 100	0/15
R-DE-10e2-	5.1(2)	22(22)	59(60)	∞	∞	∞	$\infty 200$	0/15
R-DE-10e5-	18(19)	23(40)	25(53)	31(31)	39(34)	48(88)	56(48)	15/15
RL-SHADE-1	12(12)	33(38)	∞	∞	∞	∞	∞ 200	0/15
RL-SHADE-1	14(9)	18(6)	21(4)	22 (4)	24 (3)	25 (5)	25 (3)	15/15
R-SHADE-10	11(14)	21(24)	57(66)	∞	∞	∞	$\infty 200$	0/15
R-SHADE-10	4.7(4)	4.9 (3)	5.3 (2)	4.7 (0.7)	4.8(3)	4.9(3)	4.9 (1)	15/15
SOO-Derbel	3.0 (0.8)	5.2 (2)	14 (18)	46(45)	97(126)	250(179)	488(298)	15/15

Table 13: 02-D, running time excess ERT/ERT_{best 2009} on f_{12} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	$1\mathrm{e}\overset{\circ}{0}$	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f12	35	46	75	94	105	153	195	15/15
MATSUMOTO-	9.1(8)	32(63)	∞	∞	∞	∞	∞ 100	0/15
R-DE-10e2-	6.4(7)	12(9)	19(20)	16 (12)	∞	∞	∞ 200	0/15
R-DE-10e5-	15(25)	29(84)	33(41)	33(58)	37(45)	40(41)	44(45)	15/15
RL-SHADE-1	4.2(2)	7.0(9)	19(16)	31(41)	28(40)	∞	∞ 200	0/15
RL-SHADE-1	11(6)	17(5)	15(5)	19(6)	26 (9)	26 (10)	24 (11)	15/15
R-SHADE-10	7.0(9)	32(34)	∞	∞	∞	∞	∞ 200	0/15
R-SHADE-10	4.5(6)	12(8)	13 (23)	14 (33)	15 (15)	13(22)	11 (1)	15/15
SOO-Derbel	3.9 (6)	5.2 (3)	10 (8)	17(9)	46(51)	65(82)	132(89)	15/15

Table 14: 02-D, running time excess ERT/ERT_{best 2009} on f_{13} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f13	23	35	46	60	71	95	122	15/15
MATSUMOTO	-1.6 (0.8)	3.6(2)	18(14)	∞	∞	∞	∞ 100	0/15
R-DE-10e2-	4.0(4)	6.0(2)	32(54)	∞	∞	∞	$\infty 200$	0/15
R-DE-10e5-	4.5(3)	6.1(4)	9.3(2)	16 (12)	33(43)	75(60)	341(917)	14/15
RL-SHADE-1	3.9(3)	8.8(8)	32(19)	∞	∞	∞	$\infty 200$	0/15
RL-SHADE-1	4.7(4)	15(3)	20(5)	22(5)	24 (3)	25 (2)	25 (1)	15/15
R-SHADE-10	5.8(6)	28(39)	∞	∞	∞	∞	$\infty 200$	0/15
R-SHADE-10	2.6(2)	3.8 (3)	5.6 (6)	5.1 (2)	5.2(0.6)	4.9(6)	5.0 (3)	15/15
SOO-Derbel	2.8 (1)	4.9(5)	15(5)	24(9)	38(65)	113(138)	261(320)	15/15

Table 15: 02-D, running time excess ERT/ERT_{best 2009} on f_{14} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f14	1.4	7.4	16	24	38	67	90	15/15
MATSUMOTO	-1.2 (1)	1.5(0.8)	1.5(0.4)	3.1 (3)	20(14)	∞	∞ 100	0/15
R-DE-10e2-	1.7 (0.9)	3.1(3)	3.7(1)	4.6(2)	7.6(11)	∞	∞ 200	0/15
R-DE-10e5-	1.2(0.7)	1.9(1)	3.6(1)	11(12)	11(18)	14(12)	38(25)	15/15
RL-SHADE-1	1.6(0.7)	2.7 (3)	3.8(2)	4.2(2)	6.4(10)	∞	∞ 200	0/15
RL-SHADE-1	1.3 (0.5)	4.3(4)	8.8(7)	17(7)	17(5)	22(2)	24(3)	15/15
R-SHADE-10	1.5(0.5)	3.3(3)	5.5(4)	11(5)	19(12)	∞	∞ 200	0/15
R-SHADE-10	1.5(0.7)	3.8(2)	3.9(0.8)	4.4(1)	4.2(0.6)	3.9 (0.6)	4.0(0.4)	15/15
SOO-Derbel	0.81(0)	1.8(2)	2.6 (1)	3.7 (2)	5.9 (7)	12 (9)	23 (8)	15/15

Table 16: 02-D, running time excess ERT/ERT_{best 2009} on f_{15} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f15	37	291	1033	1066	1113	1231	1412	5/5
MATSUMOTO-	-0.85(1)	5.1(5)	1.4 (1)	1.4(2)	∞	∞	∞ 100	0/15
R-DE-10e2-	1.2(0.6)	4.8(4)	∞	∞	∞	∞	∞ 200	0/15
R-DE-10e5-	0.94(1)	3.3(5)	4.7(6)	5.4(7)	5.6(6)	5.3(6)	4.7(5)	15/15
RL-SHADE-1	1.8(2)	2.3 (3)	1.4(0.7)	1.4 (1)	2.7 (1)	∞	∞ 200	0/15
RL-SHADE-1	1.5(2)	2.6 (1)	1.4(0.4)	1.8(0.4)	2.0 (0.5)	2.2 (0.3)	2.2 (0.3)	15/15
R-SHADE-10	1.7 (1)	4.9(4)	∞	∞	∞	∞	∞ 200	0/15
R-SHADE-10	1.0(0.5)	1.1(1)	0.87 (0.6)	0.91(2)	0.91(2)	0.89(1)	0.83 (0.7)	15/15
SOO-Derbel	0.75 (0.5)	0.82 (0.6)	0.80(0.4)	0.89(2)	0.91 (0.4)	1.1(0.8)	1.1(0.2)	15/15

Table 17: 02-D, running time excess ERT/ERT_{best 2009} on f_{16} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

COCCII CIIID TOILG		ou o., arri	TOTIOTOTI.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f16	9.1	50	174	326	358	409	538	15/15
MATSUMOTO-	2.0 (1)	1.2(0.5)	1.2 (1)	2.2 (3)	∞	∞	∞ 100	0/15
R-DE-10e2-	3.3(7)	2.8 (4)	8.3(7)	4.5(6)	∞	∞	∞ 200	0/15
R-DE-10e5-	4.6(7)	3.8(2)	2.9 (2)	4.3(8)	4.1(6)	4.8(3)	4.2(3)	15/15
RL-SHADE-1	3.0 (3)	3.9(3)	5.1(5)	4.3(5)	8.3(5)	∞	∞ 200	0/15
RL-SHADE-1	4.3(5)	4.1(3)	5.8(2)	6.6(2)	8.9(5)	10(6)	9.2(1)	15/15
R-SHADE-10	3.1(1)	3.0 (3)	3.9(3)	∞	∞	∞	∞ 200	0/15
R-SHADE-10	2.5 (0.9)	2.4 (2)	2.2 (4)	1.8(2)	1.8(1.0)	2.2 (3)	1.8(2)	15/15
SOO-Derbel	2.2 (2)	1.5 (1)	1.8 (3)	1.4(4)	1.6(0.6)	2.0(2)	2.1 (2)	15/15

Table 18: 02-D, running time excess ERT/ERT_{best 2009} on f_{17} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

JOSEPH CITIES TO	arac arriac	J	CILCIOI.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f17	2.7	61	133	275	396	1086	1657	5/5
MATSUMO	ΓO- 1.5 (0.9)	0.88(1)	2.5 (3)	∞	∞	∞	∞ 100	0/15
R-DE-10e2-	3.2(9)	1.1(0.8)	1.9(0.9)	∞	∞	∞	∞ 200	0/15
R-DE-10e5-	1.8(1)	0.90 (0.8)	1.8(0.7)	2.2 (2)	2.6 (2)	3.5(4)	3.2(2)	15/15
RL-SHADE-	-1 2.3 (2)	1.3(0.4)	1.8(0.9)	∞	∞	∞	∞ 200	0/15
RL-SHADE-	-1 1.9 (2)	2.1(1)	4.7(1)	4.4(1)	4.7(0.7)	3.0 (0.3)	2.6 (0.1)	15/15
R-SHADE-1	0 2.8(4)	1.5(2)	11(7)	∞	∞	∞	∞ 200	0/15
R-SHADE-1	0 2.3(2)	1.0(0.2)	1.2(0.7)	0.96 (0.4)	0.93(0.3)	0.97 (0.5)	0.75 (0.7)	15/15
SOO-Derbe	l 1.8 (1)	0.58 (0.4)	0.97 (0.5)	1.0(0.2)	1.3(0.7)	1.7 (3)	1.6(0.2)	15/15

Table 19: 02-D, running time excess ERT/ERT_{best 2009} on f_{18} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

	$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ					
	f18	19	134	666	1249	1708	2438	2858	15/15					
1	MATSUMOTO-	0.87 (0.7)	1.7 ₍₁₎	∞	∞	∞	∞	∞ 100	0/15					
	R-DE-10e2-	1.7 (0.7)	1.2(1.0)	1.4(2)	∞	∞	∞	∞ 200	0/15					
	R-DE-10e5-	4.9(0.5)	3.0(5)	1.4(2)	1.9(3)	1.9(0.4)	15(30)	14(19)	15/15					
	RL-SHADE-1	1.4 (1)	1.5(2)	∞	∞	∞	∞	∞ 200	0/15					
	RL-SHADE-1	2.1 (1)	2.7 (1)	1.6 (1.0)	1.6(0.2)	1.5(0.1)	1.6(0.1)	1.8(0.1)	15/15					
	R-SHADE-10	1.2 (1)	2.7 (4)	∞	∞	∞	∞	∞ 200	0/15					
	R-SHADE-10	1.2(2)	2.3(5)	0.66 (0.3)	0.44(0.5)	0.54(0.4)	0.81(0.6)	0.77 (0.5)	15/15					
	SOO-Derbel	0.95 (0.4)	0.90 (0.6)	0.65 (0.5)	0.91 (0.8)	2.0 (2)	4.3(6)	9.0(4)	15/15					

Table 20: 02-D, running time excess ERT/ERT_{best 2009} on f_{19} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f19	1	1	26	216	227	252	276	15/15
MATSUMOTO-	5.8(5)	40(40)	9.3(9)	6.6(5)	∞	∞	∞ 100	0/15
R-DE-10e2-	4.2(4)	40(19)	4.2 (3)	6.7(5)	13(11)	∞	$\infty 200$	0/15
R-DE-10e5-	5.1(4)	28 (35)	5.6(6)	11(11)	12(6)	22(18)	23(18)	15/15
RL-SHADE-1	5.4(5)	41(35)	7.1(10)	6.5 (10)	13(13)	∞	∞ 200	0/15
RL-SHADE-1	7.0(5)	54(64)	7.6(8)	9.1(6)	10 (6)	14 (4)	17 (15)	15/15
R-SHADE-10	5.3(4)	42(24)	8.4(14)	∞	∞	∞	∞ 200	0/15
R-SHADE-10	4.7(3)	29(21)	3.3 (3)	5.2 (2)	6.0 (9)	5.8 (4)	5.6(7)	15/15
SOO-Derbel	1 (0)*	1(0)*3	5.0(3)	17(18)	30(33)	98(43)	168(217)	15/15

Table 21: 02-D, running time excess ERT/ERT_{best 2009} on f_{20} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ			
f20	3.7	61	365	366	366	370	375	15/15			
MATSUMOTO	-1.8 (1)	5.6(5)	∞	∞	∞	∞	∞ 100	0/15			
R-DE-10e2-	2.2(2)	2.8 (1)	1.4(0.8)	1.9(2)	8.2(13)	∞	∞ 200	0/15			
R-DE-10e5-	2.9 (3)	3.2(6)	5.1(6)	6.0(5)	6.6(6)	8.2(8)	8.6(8)	15/15			
RL-SHADE-1	3.1(4)	4.1(2)	3.9(2)	8.0(5)	8.2(8)	∞	∞ 200	0/15			
RL-SHADE-1	3.6(3)	5.0(2)	17(1.0)	18(28)	19(28)	20(54)	21(27)	15/15			
R-SHADE-10	3.6(5)	4.4(6)	3.9(6)	∞	∞	∞	∞ 200	0/15			
R-SHADE-10	2.9 (3)	4.1(7)	3.2 (2)	3.5 (3)	3.7(4)	3.9 (2)	4.1(2)	15/15			
SOO-Derbel	3.9(0.1)	1.9(8e-3)	5.1(5e-3)	5.4(1e-2)	5.6(8e-3)	5.8 (9e-3)	6.3(7e-3)	15/15			

Table 22: 02-D, running time excess ERT/ERT_{best 2009} on f_{21} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f21	1.7	51	174	276	290	324	330	15/15
MATSUMOTO-	1.1 (0.6)	0.82(0.4)	0.51(0.7)	0.78 (0.8)	1.6(4)	∞	∞ 100	0/15
R-DE-10e2-	1.6(2)	1.9(2)	1.7(2)	1.4 (2)	2.2 (1)	2.9 (3)	4.4(7)	2/15
R-DE-10e5-	1.3(0.8)	7.2(15)	3.3(3)	2.6 (3)	2.9 (2)	3.0(3)	3.3(2)	15/15
RL-SHADE-1	1.1(1)	0.89(0.6)	0.75 (0.4)	1.1(1.0)	1.5(2)	4.5(6)	9.1(10)	1/15
RL-SHADE-1	1.6 (0.8)	1.2(2)	0.98 (0.6)	1.1(2)	1.7 (1)	3.0(0.5)	3.7(0.7)	15/15
R-SHADE-10	1.5(0.9)	1.1 (1)	0.80(1)	1.1(0.8)	4.7(3)	∞	$\infty 200$	0/15
R-SHADE-10	1.3(0.3)	1.3 (1)	2.0 (4)	1.5(3)	1.5(1)	1.6(2)	1.7 (1)	15/15
SOO-Derbel	0.88(0.8)	0.69 (0.5)	0.43 (0.4)	0.38 (0.1)	0.57 (0.4)	0.74 (0.7)	1.0(0.7)	15/15

Table 23: 02-D, running time excess ERT/ERT_{best 2009} on f_{22} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f22	5.1	27	168	218	249	289	306	15/15
MATSUMOTO-	1.7 (2)	1.1(0.8)	0.90 (0.9)	3.4(4)	6.2(3)	∞	∞ 100	0/15
R-DE-10e2-	1.2(0.6)	2.1(3)	0.64(0.5)	1.1(0.4)	1.7(2)	5.1(4)	10(8)	1/15
R-DE-10e5-	1.5 ₍₁₎	11(29)	3.0(3)	2.6(2)	2.4(4)	2.3(2)	2.6 (2)	15/15
RL-SHADE-1	1.5(0.7)	2.2(4)	0.90(1)	2.3 (3)	3.5(4)	4.9(3)	4.7(5)	2/15
RL-SHADE-1	0.43(0.5)	2.5 (3)	17(60)	13(47)	13(2)	12(36)	13(2)	15/15
R-SHADE-10	0.62(0.5)	2.9(4)	1.5(4)	1.6 (1)	3.8(4)	∞	∞ 200	0/15
R-SHADE-10	0.92(0.8)	4.0(2)	1.9(4)	1.7(2)	1.7(1.0)	1.6(2)	1.7(1)	15/15
SOO-Derbel	1(0.7)	0.91 (0.9)	0.71(1)	0.83 (0.7)	1.7(3)	4.1(0.8)	4.2(9)	15/15

Table 24: 02-D, running time excess ERT/ERT_{best 2009} on f_{23} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f23	7.8	193	234	263	299	348	379	15/15
MATSUMOTO-	1.2 (2)	∞	∞	∞	∞	∞	∞ 100	0/15
R-DE-10e2-	1.8(2)	3.3 (3)	∞	∞	∞	∞	$\infty 200$	0/15
R-DE-10e5-	1.7(1)	23(31)	282(311)	266(196)	286(214)	352(219)	475(672)	9/15
RL-SHADE-1	1.9(2)	∞	∞	∞	∞	∞	$\infty 200$	0/15
RL-SHADE-1	2.0 (3)	6.6(3)	41(89)	146(115)	148(200)	129(115)	120(158)	15/15
R-SHADE-10	2.4(2)	15(10)	∞	∞	∞	∞	$\infty 200$	0/15
R-SHADE-10	2.3 (3)	4.0(6)	16 (16)	15 (9)	13(22)	12 (11)	11 (15)	15/15
SOO-Derbel	2.6 (2)	2.0 (1)	2.7 (0.8)	3.5(2)	4.4 (3)	6.8 (3)	9.3(3)	15/15

Table 25: 02-D, running time excess ERT/ERT_{best 2009} on f_{24} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f24	18	857	8515	23399	24113	24721	24721	5/15
MATSUMOTO	-1.5 (2)	∞	∞	∞	∞	∞	∞ 100	0/15
R-DE-10e2-	1.0 (0.9)	∞	∞	∞	∞	∞	∞ 200	0/15
R-DE-10e5-	1.1(0.6)	12(6)	10(9)	6.9(9)	8.6(14)	8.4(6)	8.4(9)	9/15
RL-SHADE-1	1.6 (1.0)	∞	∞	∞	∞	∞	∞ 200	0/15
RL-SHADE-1	1.2(0.5)	49(58)	5.1 (2)	2.0(2)	2.0(3)	1.9(0.8)	1.9(2)	15/15
R-SHADE-10	1.7(2)	3.4 (5)	∞	∞	∞	∞	∞ 200	0/15
R-SHADE-10	1.0(0.3)	3.2 (5)	1.3(1)	1.4(0.9)	1.5(2)	1.5(0.8)	1.5(2)	15/15
SOO-Derbel	1.5 (1)	4.1(19)	5.9(6)	56(43)	54(52)	53(45)	53(47)	2/15

References

- Anne Auger, Steffen Finck, Nikolaus Hansen, and Raymond Ros. BBOB 2009: Comparison tables of all algorithms on all noiseless functions. Technical Report RT-0383, INRIA, April 2010.
- [2] Dimo Brockhoff. Comparison of the matsumoto library for expensive optimization on the noiseless black-box optimization benchmarking testbed. In *Proceedings of the IEEE Congress on Evolutionary Computation, CEC* 2015, 25-28 May, Sendai, Japan, 2015.
- [3] Bilel Derbel and Philippe Preux. Simultaneous optimistic optimization on the noiseless bbob testbed. In *Proceedings of the IEEE Congress on Evolu*tionary Computation, CEC 2015, 25-28 May, Sendai, Japan, 2015.
- [4] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE, 2009. Updated February 2010
- [5] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2012: Experimental setup. Technical report, INRIA, 2012.
- [6] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009. Updated February 2010.
- [7] Ryoji Tanabe and Alex Fukunaga. Parameter tuning for differential evolution for cheap, medium, and expensive computational budgets. In *Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2015, 25-28 May, Sendai, Japan, 2015.*