FIN2010 Financial Management Lecture 6: Bond Pricing

Review—Capital Markets

- Equity Financing:
 - Venture capital
 - Private equity
 - IPO
 - Costs: gross spread, underpricing
 - SEO
- Debt Financing:
 - Private debt
 - Public debt (bond)
 - Credit rating

Agenda

- What is asset valuation
- Bond terminologies
- Bond value
- Bond yield
- Determinants of value and yield

Agenda

- What is asset valuation
- Bond terminologies
- Bond value
- Bond yield
- Determinants of value and yield

Asset Valuation- What is Value?

Market value = \$150.73 per share on 12/21/2018

An analyst on Seeking Alpha believe that fair value should be \$260.

There are a thousand Hamlets in a thousand people's eyes.

Long Ideas | Tech | Editors' Picks Why Apple's Stock Is Worth \$260 Oct. 16, 2018 9 19 AMET | Acoust Apple Inc. (AAPL) This article is exclusive for subscribers. Mango Tree Analysis Mango Tree Analysis Long-Mort equity, each, disprankers, social networking Summary Initiating coverage on Apple, with a \$260 price target and a buy rating. Until we get a negative catalyst, iPhone unit shipments, average sellling prices, and gross margins will continue to expand leading us to higher iPhone revenues. IPad and Mac should remain strong, though I do expect Mac revenues to have a CAGR of -3.6% for the next five years. If you believe that Apple has high growth in any of its business segments, I believe that these segments would be their Services & Other segments,

that are looking at double digit revenue growth rates.

Book value = 107,147,000,000 / 4,754,986,000 = \$22.53 per share

Note: shareholders' equity is in \$millions, and number of shares are in thousands according to the balance sheet Source: https://s22.q4cdn.com/396847794/files/doc_financials/quarterly/2018/Q4/10-K-2018-(As-Filed).pdf

Asset Valuation – Why?

- Asset valuation: the process of determining fair price/value
 - Alternative terms for fair value: fair price/value, fundamental price/value, intrinsic price/value...
- Important decision rules
 - Buyers:
 - Market price <= fair value: buy
 - Market price > fair value: not buy
 - Seller:
 - Market price >= fair value: sell
 - Market price < fair value: not sell

Fair Value and Market Value

- Economics 101:
 - Fair valuation → supply and demand → market price
- How do supply and demand determine prices in an exchange where there is no face-to-face interaction among buyers and sellers?
 - Watch the video of Lecture 13 Microstructure of the Financial Market

Agenda

- What is asset valuation
- Bond terminologies
- Bond value
- Bond yield
- Determinants of value and yield

What is Bond?

- Publicly traded debt is also called **bond**
- Depending on who the issuer is, bond can be classified as corporate bond (firms), treasury bond (central government), municipal bond (local government)

Bond Features

Face Value/Par Amount: amount to be repaid as principle

 Note: usually face value ≠ amount the borrower raised, or amount the investor paid

Coupon: interim interest payments, stated in APR

- Coupon rate= Coupon/Par value
- For instance, if a bond with par value of \$1,000 pays \$90 in interest each year, we say that \$90 is the coupon and 9%(\$80/\$1000) is the coupon rate. If the bond makes semiannual payments, there would be a \$45 interest payment every 6 months.

Coupon Frequency: how often coupons are paid (semiannual 99% of the times)

Maturity: date that principle is paid back

Bond Features

- Rating: an AAA to D grade indicating credit worthiness of issuer
- Call provision: whether the issuer has the option to retire the bond before maturity
 - Treasury debts are not callable. 70% of recent corporate bonds are callable
- Conversion feature: whether the lender has the option to convert bond into equity
 - Treasury debts are not convertible. It is very common for small firms/entrepreneurs to use convertible debt
- Put feature: the lender has the option to demand early prepayment of principle
 - Treasury debts are not puttable. Less than 1% of corporate bonds are puttable
- Secured vs Unsecured debt
 - Whether the bond issue is secured by collateral or not. A secured bond has specific assets pledged to support repayment of the bond.

Bond Investment Profits (Losses)

- Source of income: coupon + capital gain/loss
 - Capital gain/loss: price changes
- Investment strategies. Denote maturity as T.
 - Hold until maturity. Denote maturity as T.

Cash flow: T coupons + part value Capital gain = par value – purchase price

Sell before maturity

Cash flow: t coupons + sell price
Capital gain = sell price – purchase price

Hold until call date

Cash flow: x coupons + call price
Capital gain = call price – purchase price

Agenda

- What is asset valuation
- Bond terminologies
- Bond value
- Bond yield
- Determinants of value and yield

Bond Valuation- 3 Steps

- Determine the future cash flows
 - Oftentimes, we assume that we will hold the bond until maturity.

- Determine the appropriate discount rate (r)
 - To determine how much we are willing to pay, we need to know how much return we require or the required return.
- Find the present value of future cash flows

What is the Appropriate Discount Rate?

- What: required return
- **How:** often use similar bonds' return, termed as the market prevailing yield
- Why: the law of one price
 - Assumption: arbitrageurs exist in competitive market and they take advantage of the price differences so that these differences disappear quickly
 - If equivalent investment opportunities trade simultaneously in competitive markets, then they must offer the same return for investors
 - What determines equivalency:
 - Product market: function and quality etc.
 - Securities market: risk level
 - In summary: securities with similar risk should offer similar returns

Examples- Bond Value

On Jan.1st,2013, AT&T issued a bond with a maturity date of Dec. 31,2032 and a coupon rate of 8.5%. AT&T pays interest every year. Par value is \$1,000. The market's yield for a similar debt is 7.5% per year. What is the value of the bond?

Answer:

Bond value =
$$\frac{85}{(1+7.5\%)^1} + \frac{85}{(1+7.5\%)^2} + \dots + \frac{85}{(1+7.5\%)^{20}} + \frac{1000}{(1+7.5\%)^{20}}$$

= $85 * \frac{1 - \frac{1}{(1+7.5\%)^{20}}}{7.5\%} + \frac{1000}{(1+7.5\%)^{20}}$
= 1101.94

Examples- Bond Value

- In the AT&T example, what if the coupon is paid semiannually?
- Answer:

Bond value =
$$\frac{42.5}{(1+3.75\%)^1} + \frac{42.5}{(1+3.75\%)^2} + \dots + \frac{42.5}{(1+3.75\%)^{40}} + \frac{1000}{(1+3.75\%)^{40}}$$

= $42.5 * \frac{1 - \frac{1}{(1+3.75\%)^{40}}}{3.75\%} + \frac{1000}{(1+3.75\%)^{40}}$
= 1102.75

Examples-Pricing of Zero-Coupon Bond

- Zero-coupon bonds have no coupons.
- Suppose you purchased a 15-year zero coupon bond today. The par value is \$1,000 and the market prevailing yield for similar bonds is 8%. What is the value of this zero-coupon bond?

Value of the bond =
$$\frac{1000}{(1+8\%)^{15}} = 315$$

- Rather, these securities are sold at a discount from their face values.
- Investors' profit purely come from the capital gain.

Key Relationships in Bond Valuation

• Example: there are three similar bonds with maturity of 5 years, 3 years, and 1 year. Their coupon rates are all 12%. Please calculate these bonds' prices when the market prevailing yields are 15%,12%, and 9% respectively. The par value is \$100, and coupons are paid annually.

Market prevailing yield	year to maturity			
	5	3	1	0
15%				
12%				
9%				
Change in bond's value when yield change from 9% to 15%				

Key Relationships in Bond Valuation

Market prevailing yield	year to maturity			
	5	3	1	0
15%	89.94	93.15	97.39	100.00
12%	100.00	100.00	100.00	100.00
9%	111.67	107.59	102.75	100.00
Change in bond's value when yield change from 9% to 15%	-19%	-13%	-5%	0

- When yield goes up, price goes down.
 - When yield=coupon, price=100
 - The bond is traded at <u>par</u>
 - When yield>coupon, price<100
 - The bond is traded at a discount
 - When yield<coupon, price>100
 - The bond is traded at a <u>premium</u>
 - For a zero coupon bond, price<100

Agenda

- What is asset valuation
- Bond terminologies
- Bond value
- Bond yield
- Determinants of value and yield

Bond Yield

- Definition: the return investors can expect from bond investment should they purchase the bond at the market price
 - It is the discount rate that sets the present value of the promised bond payments equal to the current market price of the bond.
 - Same as the IRR concept in lecture 3.
 - Note: bond yields are **quoted as APRs**
- Different types of yield

so r = ? APR = ?

Yield to maturity(YTM): measures investors' annual expected return when the bond is held until maturity date and the firm makes all the promised payments. Our focus!

$$Market \ price = PV = Coupon * \frac{1 - \frac{1}{(1+r)^t}}{r} + \frac{par \ value}{(1+r)^t}$$

- Yield to call (YTC): investors' annual expected return when they expect to *hold the* bond until the first call date
- Investors' annual expected return when they expect to **sell the bond before the** maturity date.

Format of Bond's Market Prices

- Market price → yield
- Par value: usually in denomination (smallest unit one can buy) of \$1000 (US) or ¥100 (China)
- Quoted price (报价): percentage points of the par value

证券代码	证券简称	最新	涨跌幅	涨跌	成交量(手)
122015	09长电债	101.11	0.00%	0.00	0
122017	09大唐债	100.87	0.00%	0.00	0
122019	09中交G2	101.09	0.00%	0.00	0
122046	10中铁G2	101.57	0.24%	0.24	70
122052	10石化02	100.90	0.00%	0.00	0
122054	10中铁G3	00.70	0.00%	0.00	0
122055	10中铁G4	101.00	0.00%	0.00	0
122057	10龙源02	100.00	0.00%	0.00	0
122062	11西矿02	99.00	0.00%	0.00	0
122064	11龙源02	108.35	0.00%	0.00	0
122066	11大唐01	103.17	0.00%	0.00	0
122071	11海航02	94.19	0.31%	0.29	202

Maturity	Coupon	Bid	Asked	Chg
2015 May 15	4.125	110:06	110:07	-6
2016 Feb 15	4.500	111:29	111:30	-10
2016 May 15	5.125	115:02	115:04	-12
2016 Nov 30	2.750	102:00	102:02	-14
2017 Feb 28	3.000	103:00	103:01	-15
2017 May 15	8.750	136:24	136:27	-20
2017 Jul 31	2.375	98:17	98:18	-16
2017 Aug 15	4.750	113:02	113:03	-19
2018 Aug 15	4.000	107:25	107:27	-22
2018 Nov 15	3.750	105:26	105:27	-21
2018 Nov 15	9.000	143:09	143:12	-28
2019 Feb 15	2.750	98:05	98:06	-22
2019 May 15	3.125	100:15	100:15	-22
2019 Aug 15	3.625	103:25	103:26	-24
2019 Aug 15	8.125	138:12	138:15	-30
2019 Nov 15	3.375	101:14	101:15	-24
2020 Feb 15	3.625	103:01	103:01	-26
2020 May 15	3.500	101:17	101:18	-26
2020 Aug 15	2.625	93:28	93:29	-26
2020 Aug 15	8.750	145:01	145:04	-33

Treasury Notes and Bonds

Market price = 101.57%* ¥ 100 = ¥ 101.57

Example- YTM with Annual Coupons

- Consider a bond with a 10% annual coupon rate and 15 years to maturity. The current price is 92.81.
- Will the yield be more or less than 10%?
- Solution:

92.81 =
$$10*\left[\frac{1-\frac{1}{(1+r)^{15}}}{r}\right] + \frac{100}{(1+r)^{15}}$$

r = 11%

Example-YTM with Semiannual Coupons

- Suppose a bond with a 10% coupon rate and semiannual coupons, 20 years to maturity and is selling for \$119.79.
- Is the YTM more or less than 10%?
- Solution:

$$119.79 = 5* \left[\frac{1 - \frac{1}{(1+r)^{40}}}{r} \right] + \frac{100}{(1+r)^{40}} \Rightarrow r = 4\%$$

$$YTM = 4\%*2 = 8\%$$

YTM and the Realized Return

- Assumptions in YTM:
 - 1. Investors hold the bond till maturity
 - 2. Firms make all promised payments
 - 3. All coupon payments are reinvested at the same rate as the bond's current yield (YTM)
- In reality, these assumptions could be violated. Thus, your actual return may differ from YTM
- Returns from investing in bonds are often uncertain even though bonds are "fixed-income" assets!

YTM and the Realized Return

• In the example on page 25, what if the firm go bankrupt in the 15th year (after the 30th coupon payment) and default on the remaining coupons and par value? Assumption 2 violated.

• 119.79 =
$$5*\left[\frac{1-\frac{1}{(1+r)}30}{r}\right] + \frac{0}{(1+r)}40 \Rightarrow r = 1.52\%$$

- Actual yield = 3.04%
- Using the same example, suppose the firm makes all the promised payment. However, when you receive the coupons, you cannot find a good place to invest, so you put them in the bank which generates 5% per year. How much do you have after 20 years? What is your investment return (actual yield) per year? Assumption 3 violated.

$$- FV = 5 \frac{1.025^{40} - 1}{2.5\%} + 100 = 437.01$$

- Return per half year = $\left(\frac{437.01}{110.70}\right)^{1/40}$ 1 = 3.29%, actual yield = 6.58%
- Note yields in both scenarios are not equal to the yield, which is 8%.

Agenda

- What is asset valuation
- Bond terminologies
- Bond value
- Bond yield
- Determinants of value and yield

Prices (Yield) Vary across Time and Bond

- Example: Microsoft Corp. US dollar bond, issued on Sep 22, 2010, maturity date April 2040, coupon rate 4.5%, price at offering was 98.91.
- The prices vary for the same bond over time
- The prices vary across bonds at the same time.
- · Why?

Data source: FINRA

Determinants of Bond Prices and Yield

- Bond prices vary over time and across industries although bonds are called "fixed-income" assets
- Fair valuations, market prices, and yield vary with:
 - Promised cash flow streams
 - Required return. Generally, higher risk \rightarrow higher return. Risk can come from
 - Interest rate risk
 - Default risk
 - Liquidity risk (may not be able to sell the bond at a reasonable price when needed.)
 - Call feature
 - Reinvestment risk (coupon reinvested as unknown interest rate)
 - Maturity
 - Will have an in-depth discussion of risk and return relationship in lecture 8-10.

Default Risk and Bond Prices

- Definition: the chance that the issuer will default on interest or principal payments
- Holding all else equal, higher default risk → lower price and higher yield
 - By saying holding all else equal, we pull out the effect of all other factors
- The difference between the yields of the corporate bonds and the treasury (safest bond) yields is the default spread or credit spread

Example – Bond Issuance

 A firm would like to issue a 5-year 4.5% coupon (annual payments) bonds with par value equal to \$10 million. Currently the 5-year 3% coupon government bond is traded at par. The following table summarizes the credit spreads for bonds of various ratings:

Rating	AAA	AA	Α	BBB	BB
Credit Spread	0.70%	0.90%	1.10%	1.50%	2.00%

 Assuming the bonds will be rated AA, how much money can they raise?

Solution:

- Yield for 5-year government bond is 3%
- Yield for this bond should be 3%+0.9%=3.9%
- $Price = 4.5 \frac{1-1.039^{-5}}{3.9\%} + 100(1.039)^{-5} = 102.6786$ That is, they can raise (investors are willing to pay) \$10.27 million

Call Provisions and Bond Prices

- Some bonds have call provisions, which grant the borrowers the options to pay back the debt earlier than the maturity date
 - Option: the borrower can choose to call or not to call
 - Timing: either any time or on specific dates
 - Call price: often higher than par value
- When would the borrower want to exercise the call?
 - When
 - Market prevailing yield declines
 - Credit quality of the borrower improves
 - Reason: borrower can now issue a new debt paying a lower interest rate. Why keep paying the higher interest rate for the previous debt?
- Who benefits? How does call provisions affect asset prices?
 - Borrowers benefit. Investors suffer. Therefore, investors willing to pay less for callable bonds than non-callable bonds, everything else equal.

Time to Maturity and Yield

- Holding all else equal, the relationship between time to maturity and yields is called term structure.
- Time-to-maturity has a huge impact on yield through affecting interest rate risk, inflation risk, liquidity risk...
- Yield curve graphical representation of the term structure
 - The yield curve is usually upward-sloping, meaning long-term yields are higher than short-term yields
 - Sometimes, it can also be downward-sloping, long-term yields are lower than short-term yields
 - Exactly why the curve display a certain shape is beyond the scope of this lecture. If you are interested, please take Fixed Income

Yield Curve in Reality

Figure: Term Structure of Risk-Free U.S. Interest Rates, November 2006, 2007, and 2008

Term		Date	
(years)	Nov-06	Nov-07	Nov-08
0.5	5.23%	3.32%	0.47%
1	4.99%	3.16%	0.91%
2	4.80%	3.16%	0.98%
3	4.72%	3.12%	1.26%
4	4.63%	3.34%	1.69%
5	4.64%	3.48%	2.01%
6	4.65%	3.63%	2.49%
7	4.66%	3.79%	2.90%
8	4.69%	3.96%	3.21%
9	4.70%	4.00%	3.38%
10	4.73%	4.18%	3.41%
15	4.89%	4.44%	3.86%
20	4.87%	4.45%	3.87%

Summary

- Price = PV (coupons + principal)
- Yield: discount rate that equates the PV (CF) and the price
 - Expressed in APR
 - Yield ↑⇒ price ↓
 - Yield-to-maturity is often not the same as the investment return
- Determinants of prices and yield