#### Tresses et treillis

Vincent Jugé

Stage Animath 2016

22/08/2016

## Sommaire

Tresses positives

#### Qu'est-ce qu'une tresse?

Des brins entremêlés





- Des brins entremêlés
- 2 Des brins entremêlés à déformation près



- Des brins entremêlés
- 2 Des brins entremêlés à déformation près

- Des brins entremêlés
- 2 Des brins entremêlés à déformation près

- Des brins entremêlés
- 2 Des brins entremêlés à déformation près, munis d'un produit

#### Qu'est-ce qu'une tresse?

- Des brins entremêlés
- 2 Des brins entremêlés à déformation près, munis d'un produit

#### Des notations bien pratiques :



#### Qu'est-ce qu'une tresse?

- Des brins entremêlés
- 2 Des brins entremêlés à déformation près, munis d'un produit

## Quelles propriétés pour ce produit?

$$3 - 3 = 0$$
 et  $3 \div 3 = 1$ 

#### Qu'est-ce qu'une tresse?

- Des brins entremêlés
- 2 Des brins entremêlés à déformation près, munis d'un produit

## Quelles propriétés pour ce produit?

Simplifications

$$3 - 3 = 0$$
 et  $3 \div 3 = 1$ 

#### Qu'est-ce qu'une tresse?

- Des brins entremêlés
- 2 Des brins entremêlés à déformation près, munis d'un produit

#### Quelles propriétés pour ce produit?

Simplifications

$$3 - 3 = 0$$
 et  $3 \div 3 = 1$ 

Commutativité partielle

$$2\times 3=3\times 2 \text{ et } 2+3=3+2$$

$$\begin{array}{cccc}
2 & & & \\
1 & & & \\
\sigma_1 & & \sigma_1^{-1} & & & \\
\end{array} = 
\begin{array}{ccccc}
& & & \\
& & & \\
& & & \\
\end{array}$$

#### Qu'est-ce qu'une tresse?

- Des brins entremêlés
- 2 Des brins entremêlés à déformation près, munis d'un produit

#### Quelles propriétés pour ce produit?

Simplifications

$$3 - 3 = 0$$
 et  $3 \div 3 = 1$ 

Commutativité partielle

$$2\times 3=3\times 2 \text{ et } 2+3=3+2$$

## Qu'est-ce qu'une tresse?

- Des brins entremêlés
- 2 Des brins entremêlés à déformation près, munis d'un produit

## Quelles propriétés pour ce produit?

Simplifications

$$3 - 3 = 0$$
 et  $3 \div 3 = 1$ 

Commutativité partielle

$$2\times 3=3\times 2 \text{ et } 2+3=3+2$$

Relations de tresses

## Qu'est-ce qu'une tresse?

- Des brins entremêlés
- 2 Des brins entremêlés à déformation près, munis d'un produit

#### Quelles propriétés pour ce produit?

Simplifications

$$3 - 3 = 0$$
 et  $3 \div 3 = 1$ 

Commutativité partielle

$$2\times 3=3\times 2 \text{ et } 2+3=3+2$$

Relations de tresses

$$2 \underbrace{ 1 \underbrace{ }_{\sigma_1 \quad \sigma_1^{-1}}^2 = \underbrace{ }_{\varepsilon} \quad 3 \underbrace{ 2 \underbrace{ }_{\sigma_1 \sigma_3}^2 = \underbrace{ }_{\sigma_3 \sigma_1}^3 \quad 1 \underbrace{ 2 \underbrace{ }_{\sigma_1 \sigma_2 \sigma_1}^2 = \underbrace{ }_{\sigma_2 \sigma_1 \sigma_2}^2 }$$

## Qu'est-ce qu'une tresse positive?

lacktriangle Une tresse avec uniquement des échanges de la forme  $\sigma_i$ 

#### Qu'est-ce qu'une tresse positive?

lacktriangle Une tresse avec uniquement des échanges de la forme  $\sigma_i$ 



Qu'est-ce qu'une tresse positive?

f 0 Une tresse avec uniquement des échanges de la forme  $\sigma_i$ 



Qu'est-ce qu'une permutation?

#### Qu'est-ce qu'une tresse positive?

lacktriangle Une tresse avec uniquement des échanges de la forme  $\sigma_i$ 



## Qu'est-ce qu'une permutation?

**2** Une tresse où l'on ne sait pas quel brin passe au premier plan  $(\sigma_i = \sigma_i^{-1})$ 



## Divisibilité et tresses positives

## Divisibilité dans les entiers positifs ou nuls : a | b

Un entier a divise un entier b si et seulement s'il existe un entier c tel que  $b = a \times c$ .

$$3\mid 12,\, 2\mid 14,\, 7\mid 0$$
 et  $0\mid 0$  mais  $4\nmid 7$ 

## Divisibilité et tresses positives

## Divisibilité dans les entiers positifs ou nuls : a | b

Un entier a divise un entier b si et seulement s'il existe un entier c tel que  $b = a \times c$ .

$$3 \mid 12, 2 \mid 14, 7 \mid 0 \text{ et } 0 \mid 0 \text{ mais } 4 \nmid 7$$

## Divisibilité dans les tresses positives : $\alpha \leq \beta$ et $\beta \geq \alpha$

- **1** Une tresse  $\alpha$  divise une tresse  $\beta$  **à** gauche si et seulement s'il existe une tresse  $\gamma$  telle que  $\beta = \alpha \times \gamma$ .
- ② Une tresse  $\alpha$  divise une tresse  $\beta$  à droite si et seulement s'il existe une tresse  $\gamma$  telle que  $\beta = \gamma \times \alpha$ .

$$\sigma_1 \leqslant \sigma_1 \sigma_2 \sigma_1$$
,  $\sigma_1 \leqslant \sigma_2 \sigma_1 \sigma_2$ ,  $\sigma_1 \sigma_2 \sigma_1 \geqslant \sigma_1$  et  $\sigma_2 \leqslant \sigma_2 \sigma_1$  mais  $\sigma_1 \leqslant \sigma_2 \sigma_1$ 



# Diagrammes de divisibilité : PGCD et PPCM

Dans les entiers naturels : PGCD(4,7) = 1 et PPCM(3,5) = 15



## Diagrammes de divisibilité : PGCD et PPCM

Dans les tresses positives à 4 brins (division à gauche) :  $PGCD(\sigma_1\sigma_3\sigma_2, \sigma_3\sigma_3) = \sigma_3$  et  $PPCM(\sigma_1, \sigma_2) = \sigma_1\sigma_2\sigma_1$ 



## Que sont les tresses simples?

Les tresses dont deux brins ne se croisent jamais deux fois.



## Que sont les tresses simples?

Les tresses dont deux brins ne se croisent jamais deux fois.



## Que sont les tresses simples?

Les tresses dont deux brins ne se croisent jamais deux fois.



## Que sont les tresses simples?

Les tresses dont deux brins ne se croisent jamais deux fois.



L'ensemble des tresses simples est :

clos par division à gauche et à droite.

## Que sont les tresses simples?

Les tresses dont deux brins ne se croisent jamais deux fois.



- clos par division à gauche et à droite.
- 2 en bijection avec les permutations.

## Que sont les tresses simples?

Les tresses dont deux brins ne se croisent jamais deux fois.



- olos par division à gauche et à droite.
- 2 en bijection avec les permutations.

| 4 | 4 |
|---|---|
| 3 | 3 |
| 2 | 2 |
| 1 | 1 |

## Que sont les tresses simples?

Les tresses dont deux brins ne se croisent jamais deux fois.



- 1 clos par division à gauche et à droite.
- 2 en bijection avec les permutations.



## Que sont les tresses simples?

Les tresses dont deux brins ne se croisent jamais deux fois.



- olos par division à gauche et à droite.
- 2 en bijection avec les permutations.



## Que sont les tresses simples?

Les tresses dont deux brins ne se croisent jamais deux fois.



- 1 clos par division à gauche et à droite.
- 2 en bijection avec les permutations.



## Que sont les tresses simples?

Les tresses dont deux brins ne se croisent jamais deux fois.



- olos par division à gauche et à droite.
- 2 en bijection avec les permutations.



Pour chaque tresse simple  $\beta$ , on note  $\mathcal{L}(\beta)$  l'ensemble

$$\{(i,j): i < j, \mathbf{brin}_{i \to} \text{ croise } \mathbf{brin}_{\to j}\}.$$

#### Théorème

Pour chaque tresse simple  $\beta$ , on note  $\mathcal{L}(\beta)$  l'ensemble

$$\{(i,j): i < j, \mathbf{brin}_{i \to} \text{ croise } \mathbf{brin}_{\to j}\}.$$

#### Théorème





Pour chaque tresse simple  $\beta$ , on note  $\mathcal{L}(\beta)$  l'ensemble

$$\{(i,j): i < j, \mathbf{brin}_{i \to} \text{ croise } \mathbf{brin}_{\to j}\}.$$

#### Théorème





Pour chaque tresse simple  $\beta$ , on note  $\mathcal{L}(\beta)$  l'ensemble

$$\{(i,j): i < j, \mathbf{brin}_{i \to} \text{ croise } \mathbf{brin}_{\to j}\}.$$

#### Théorème



### Divisibilité des tresses simples

Pour chaque tresse simple  $\beta$ , on note  $\mathcal{L}(\beta)$  l'ensemble

$$\{(i,j): i < j, \mathbf{brin}_{i \to} \text{ croise } \mathbf{brin}_{\to j}\}.$$

#### Théorème

Pour toutes les tresses simples  $\beta$  et  $\gamma$ , on a  $\beta \leqslant \gamma$  ssi  $\mathcal{L}(\beta) \subseteq \mathcal{L}(\gamma)$ .



### Divisibilité des tresses simples

Pour chaque tresse simple  $\beta$ , on note  $\mathcal{L}(\beta)$  l'ensemble

$$\{(i,j): i < j, \mathbf{brin}_{i \to} \text{ croise } \mathbf{brin}_{\to j}\}.$$

#### Théorème

Pour toutes les tresses simples  $\beta$  et  $\gamma$ , on a  $\beta \leqslant \gamma$  ssi  $\mathcal{L}(\beta) \subseteq \mathcal{L}(\gamma)$ .



### Divisibilité des tresses simples

Pour chaque tresse simple  $\beta$ , on note  $\mathcal{L}(\beta)$  l'ensemble

$$\{(i,j): i < j, \mathbf{brin}_{i \to} \text{ croise } \mathbf{brin}_{\to j}\}.$$

#### Théorème

Pour toutes les tresses simples  $\beta$  et  $\gamma$ , on a  $\beta \leqslant \gamma$  ssi  $\mathcal{L}(\beta) \subseteq \mathcal{L}(\gamma)$ .



S'il vous plaît . . . dessine-moi un  $\mathcal{L}(\beta)$ 

#### S'il vous plaît . . . dessine-moi un $\mathcal{L}(\beta)$

- $(i,j) \in S$  et  $(j,k) \in S \Rightarrow (i,k) \in S$ , et
- $(i,j) \in S$  et  $i < k < j \Rightarrow (i,k) \in S$  ou  $(k,j) \in S$ .



#### S'il vous plaît . . . dessine-moi un $\mathcal{L}(\beta)$

- $(i,j) \in S$  et  $(j,k) \in S \Rightarrow (i,k) \in S$ , et
- $(i,j) \in S$  et  $i < k < j \Rightarrow (i,k) \in S$  ou  $(k,j) \in S$ .
- Choisir un (i, i + 1) dans **S**.

$$S = \{(1,2), (1,4), (3,4)\}$$

#### S'il vous plaît . . . dessine-moi un $\mathcal{L}(\beta)$

- $(i,j) \in S$  et  $(j,k) \in S \Rightarrow (i,k) \in S$ , et
- $(i,j) \in S$  et  $i < k < j \Rightarrow (i,k) \in S$  ou  $(k,j) \in S$ .
- Choisir un (i, i + 1) dans **S** et le supprimer.

$$S' = \{(1,4), (3,4)\}$$

#### S'il vous plaît . . . dessine-moi un $\mathcal{L}(\beta)$

- $(i,j) \in S$  et  $(j,k) \in S \Rightarrow (i,k) \in S$ , et
- $(i,j) \in \mathbf{S}$  et  $i < k < j \Rightarrow (i,k) \in \mathbf{S}$  ou  $(k,j) \in \mathbf{S}$ .
- Choisir un (i, i + 1) dans **S** et le supprimer.
- 2 Échanger les i et les i + 1.

$$S'' = \{(2,4), (3,4)\}$$

#### S'il vous plaît . . . dessine-moi un $\mathcal{L}(\beta)$

- $(i,j) \in S$  et  $(j,k) \in S \Rightarrow (i,k) \in S$ , et
- $(i,j) \in \mathbf{S}$  et  $i < k < j \Rightarrow (i,k) \in \mathbf{S}$  ou  $(k,j) \in \mathbf{S}$ .
- Choisir un (i, i + 1) dans **S** et le supprimer.
- ② Échanger les i et les i + 1.
- **3** Construire une tresse  $\gamma$  par récurrence sur  $|\mathbf{S}|$ .

$$S'' = \{(2,4), (3,4)\}$$

#### S'il vous plaît . . . dessine-moi un $\mathcal{L}(\beta)$

- $(i,j) \in S$  et  $(j,k) \in S \Rightarrow (i,k) \in S$ , et
- $(i,j) \in \mathbf{S}$  et  $i < k < j \Rightarrow (i,k) \in \mathbf{S}$  ou  $(k,j) \in \mathbf{S}$ .
- Choisir un (i, i + 1) dans **S** et le supprimer.
- 2 Échanger les i et les i + 1.
- **3** Construire une tresse  $\gamma$  par récurrence sur  $|\mathbf{S}|$ .
- $\bullet \quad \mathsf{On a} \; \mathsf{S} = \mathcal{L}(\sigma_i \gamma) \, !$

$$S = \{(1,2), (1,4), (3,4)\}$$



### S'il vous plaît . . . dessine-moi un $\mathcal{L}(\beta)$

- $(i, j) \in \mathbf{S}$  et  $(j, k) \in \mathbf{S} \Rightarrow (i, k) \in \mathbf{S}$ , et
- $(i, j) \in \mathbf{S}$  et  $i < k < j \Rightarrow (i, k) \in \mathbf{S}$  ou  $(k, j) \in \mathbf{S}$ .
- Choisir un (i, i + 1) dans **S** et le supprimer.
- 2 Échanger les i et les i+1.
- **o** Construire une tresse  $\gamma$  par récurrence sur |S|.
- **4** On a  $S = \mathcal{L}(\sigma_i \gamma)$ !

Bonus : 
$$\sigma_i \leqslant \beta$$
 ssi  $(i, i + 1) \in \mathcal{L}(\beta)$ 

#### Des PGCD et des PPCM pour les tresses simples

• Les tresses simples ont des PPCM.

#### Des PGCD et des PPCM pour les tresses simples

• Les tresses simples ont des PPCM :  $\mathcal{L}(\mathsf{PPCM}(\beta, \gamma)) = \mathsf{cl}(\mathcal{L}(\beta) \cup \mathcal{L}(\gamma)).$ 



#### Des PGCD et des PPCM pour les tresses simples

- Les tresses simples ont des PPCM :  $\mathcal{L}(\mathsf{PPCM}(\beta, \gamma)) = \mathsf{cl}(\mathcal{L}(\beta) \cup \mathcal{L}(\gamma)).$
- ② Les tresses simples ont des PGCD :  $\mathbf{PGCD}(\beta,\gamma) = \mathbf{PPCM}(\{\delta \mid \delta \leqslant \beta \text{ et } \delta \leqslant \gamma\}).$



#### Des PGCD et des PPCM pour les tresses simples

- Les tresses simples ont des PPCM :  $\mathcal{L}(\mathsf{PPCM}(\beta, \gamma)) = \mathsf{cl}(\mathcal{L}(\beta) \cup \mathcal{L}(\gamma)).$
- 2 Les tresses simples ont des PGCD :  $\mathbf{PGCD}(\beta,\gamma) = \mathbf{PPCM}(\{\delta \mid \delta \leqslant \beta \text{ et } \delta \leqslant \gamma\}).$



#### Des PGCD et des PPCM pour les tresses simples

- Les tresses simples ont des PPCM :  $\mathcal{L}(\mathsf{PPCM}(\beta, \gamma)) = \mathsf{cl}(\mathcal{L}(\beta) \cup \mathcal{L}(\gamma)).$
- ② Les tresses simples ont des PGCD :  $\mathbf{PGCD}(\beta,\gamma) = \mathbf{PPCM}(\{\delta \mid \delta \leqslant \beta \text{ et } \delta \leqslant \gamma\}).$



#### Des PGCD et des PPCM pour tous



$$\begin{array}{l} \sigma = \zeta \wedge \Delta_n \\ \delta = (\sigma^{-1}\beta) \wedge (\sigma^{-1}\gamma) \\ \alpha = \beta \wedge \gamma \wedge \Delta_n \end{array}$$

#### Des PGCD et des PPCM pour tous



$$\begin{split} \sigma &= \zeta \wedge \Delta_n \\ \delta &= (\sigma^{-1}\beta) \wedge (\sigma^{-1}\gamma) \\ \alpha &= \beta \wedge \gamma \wedge \Delta_n \\ d &= (\alpha^{-1}\beta) \wedge (\alpha^{-1}\gamma) \end{split}$$

#### Des PGCD et des PPCM pour tous



$$\begin{split} \sigma &= \zeta \wedge \Delta_n \\ \delta &= (\sigma^{-1}\beta) \wedge (\sigma^{-1}\gamma) \\ \alpha &= \beta \wedge \gamma \wedge \Delta_n \\ d &= (\alpha^{-1}\beta) \wedge (\alpha^{-1}\gamma) \end{split}$$

#### Des PGCD et des PPCM pour tous



$$\begin{split} \sigma &= \zeta \wedge \Delta_n \\ \delta &= (\sigma^{-1}\beta) \wedge (\sigma^{-1}\gamma) \\ \alpha &= \beta \wedge \gamma \wedge \Delta_n \\ d &= (\alpha^{-1}\beta) \wedge (\alpha^{-1}\gamma) \end{split}$$

#### Des PGCD et des PPCM pour tous

- Les tresses positives ont des PGCD.
- **2** Les tresses positives ont des PPCM :  $PPCM(\beta, \gamma) = PGCD(\{\delta \mid \beta \leq \delta, \gamma \leq \delta\}).$

#### **Trois lemmes**

#### Des PGCD et des PPCM pour tous

- Les tresses positives ont des PGCD.
- **2** Les tresses positives ont des PPCM :  $PPCM(\beta, \gamma) = PGCD(\{\delta \mid \beta \leqslant \delta, \gamma \leqslant \delta\}).$

#### **Trois lemmes**

$$\sigma_1 \sigma_3 \sigma_2 \sigma_1 \Delta_n^2 = \sigma_1 \sigma_3 \sigma_2 \Delta_n^2 \sigma_1 = \dots = \Delta_n^2 \sigma_1 \sigma_3 \sigma_2 \sigma_1$$



#### Des PGCD et des PPCM pour tous

- Les tresses positives ont des PGCD.
- **2** Les tresses positives ont des PPCM :  $PPCM(\beta, \gamma) = PGCD(\{\delta \mid \beta \leqslant \delta, \gamma \leqslant \delta\}).$

#### **Trois lemmes**

$$\sigma_1\sigma_3\sigma_2\sigma_1 \leqslant \sigma_1\sigma_3\sigma_2\Delta_n^2 = \Delta_n^2\sigma_1\sigma_3\sigma_2 \leqslant \Delta_n^2\sigma_1\sigma_3\Delta_n^2 \leqslant \ldots \leqslant \Delta_n^8$$

# Merci!