DATA WAREHOUSE & BUSINESS INTELLIGENCE

Ing. Julio Paciello

juliopaciello@cds.com.py

Contenido

Data Warehouse & Business Intelligence

- Business Intelligence
- OLAP vs OLTP
- ODS, Staging
- DWH, Data Marts
- Software de BI y visualizaciones
- Conceptos de Data Mining

Contenido

Diseño multidimensional

- Hechos y dimensiones
- Modelo en estrella y copo de nieve
- Tipos de Dimensiones
- Estrategias: Slowly changing, Rapidly changing dimensions
- Tablas de hechos: Transactional, Periodic Snapshot, Accumulating Snapshot
- Análisis de casos de estudio

Caso Práctico 1: Datos del PGN

- Staging Area: Pentaho Data Integration
- Visualizaciones: Power BI

Bibliografía

Ralph Kimball et al., The Data Warehouse Toolkit

Mi experiencia previa

BI convencional

Business Intelligence

 Infraestructura tecnológica para obtener la máxima información de los datos disponibles para la mejora continua de los procesos de negocio

- Sistemas de BI
 - OLAP (Online Analytical Processing)
 - CRM (Customer Relationship Management)
 - GIS (Geographic Information System)
 - KDD (Knowledge Discovery in Databases)

•

Business Intelligence

Variance to Plan or LY

Amazon.com and NetFlix

Collaborative Filtering

Intentan predecir otros ítems que un cliente desea comprar en base a lo que hay en sus shopping cart y wish lists y el comportamiento de compra de otros clientes

Customers Who Bought This Item Also Bought

The Last Full Measure by Jeff Shaara

(149)

Gods and Generals by Jeff Shaara

****** (248)

Rise to Rebellion: A Novel of the American Revolution by Jeff Shaara ***** (162) \$10.85

A Shopkeeper's
Millennium: Society and
Rev... by Paul E. Johnson

★★★★ (9)
\$11.20

Gone For Soldiers by Jeff Shaara ★★★☆ (108)

\$7.99

The Glorious Cause by Jeff Shaara (84)

The Classic Slave Narratives-paperback by Henry Louis Gates (11) \$7.95

Page 1 of 15

House of cards

Referencias:

https://www.cio.com/article/3207670/big-data/how-netflix-built-a-house-of-cards-with-big-data.html https://www.nytimes.com/2013/02/25/business/media/for-house-of-cards-using-big-data-to-guarantee-its-popularity.html

Unstructured Text Processing

Unstructured Text Processing

https://www.predictiveanalyticstoday.com/lexalytics/

Niveles de análisis (madurez)

Jerarquía de BI

Arquitectura DWH

OLAP vs OLTP

OLAP vs OLTP (2)

CARACTERISTICA	OnLine Transaction Processing OLTP	OnLine Analytical Processing OLAP
ORIGEN DE DATOS	Bases de datos transaccionales	Consumen <i>múltiples orígenes OLTP</i>
PROPOSITO	Operativa de procesos de negocio	Toma de decisiones estratégicas
REPRESENTACION DE DATOS	Típicamente <i>transacciones</i>	Cubos multi-dimensionales
INSERTS & UPDATES	Frecuentes, <i>por cada transacción</i>	Periódico, <i>por lotes</i>
CONSULTAS	Simples, involucran pocos registros	Complejas, involucran agregaciones
VELOCIDAD AL PROCESAR	Rápida	Lenta, gran volumen de datos
ALMACENAMIENTO	Controlable , archivando históricos	Grande, acumula los datos
DISEÑO	Altamente <i>normalizado</i>	Desnormalizado esquema en estrella
BACKUP & RECOVERY	Crítico, típicamente diario	No crítico , puede recargarse con los datos OLTP

Operational Data Store (ODS)

Características:

- Instantánea de la base de datos operacional
- No almacena datos históricos
- Al pasar del RDBMS al ODS podrían realizarse operaciones de transformación
- Actualización no se realiza en tiempo real

Propósitos:

- Tomar un punto de corte del RDBMS donde ya no habrán actualizaciones
- No utilizar la base operativa para operaciones de carga del DWH

Staging Area

ETL (Extracción, Transformación y Carga)

- Obtiene registros de los orígenes de datos, los procesa y carga al DW.
- Extracción: Obtener datos de múltiples orígenes
- Transformación: Procesar los datos para la carga
 - Limpieza/Reemplazo de valores (NULL => 0)
 - Agrupación en clases, ej. Edad: 0-20, 20-40, 40-60, > 60
 - Filtrado, seleccionar cuáles columnas utilizar
 - Separar una columna en múltiples columnas
 - Validaciones
- Carga: Append de los datos al DW

Herramientas de ETL

- Open source
 - Pentaho Data Integration
 - Talend
- Comerciales:
 - IBM Infosphere Datastage
 - Oracle Data Integrator
 - Microsoft SQL Server Integration Services
 - SnapLogic (Tableau)
 - QlikView Data Files (QVD)

•

Data Marts

- Subconjunto del DW, orientado a un tema de análisis, normalmente asociado a un departamento de la empresa. Ej: clientes, créditos
- Diseño multidimensional, cada objeto de análisis es una tabla de hechos enlazada con diversas tablas de dimensiones.
- Desnormalizado, esquema en Estrella propone una tabla para cada dimensión

Software BI / OLAP

- Power BI
 - Microsoft SQL Server Analysis Services
- IBM Cognos Anaytics
- Oracle BI
- Tableau
- QlikView
- Open Source:
 - Pentaho
 - JasperBI
 - SpagoBI

Gartner Magic Quadrant 2016

ABILITY TO EXECUTE —

COMPLETENESS OF VISION

Gartner Magic Quadrant 2017

COMPLETENESS OF VISION

As of February 2017

- Estadísticas: regresión, análisis multivariable, análisis clúster
- Simbólicas: árboles de decisión, reglas
- Técnicas de inteligencia artificial: redes neuronales, algoritmos predictivos

Clustering

- Decision Trees
 - Ej: Aprobación de crédito

Red Neuronal

https://www.youtube.com/watch?v=0F5w6q0ZpBI

Conclusiones

- Sobre el Data Warehouse:
 - Se requiere enriquecer el DW con la mayor cantidad de hechos
 - OLTP
 - CRM
 - Social Networks
 - Server logs

Conclusiones (2)

- Sobre el Software de BI:
 - Se pueden mezclar soluciones
 - Reporting
 - Cubos OLAP, tablas dinámicas Excel
 - GIS
 - Se puede complementar con otras herramientas
 - Por ej: un motor de Data Mining para calcular pronósticos y tendencias sobre los datos
 - Se requiere una constante revisión de manera a validar que no exista una mejor opción

Conclusiones (3)

- Sobre la operativa del DW
 - El DW soportará la carga con pocos Data Marts
 - El almacenamiento se debe controlar y optimizar su rendimiento
 - Típicamente se utiliza hardware de Storage dedicado
 - En la medida en que el desempeño del proceso de ETL disminuya (demore horas), debe plantearse particionar los datos (particiones anuales, mensuales, diarias)
 - En la medida en que el desempeño de las apps de consultas disminuya, debe plantearse la creación de índices y re-validar que la solución de DW continue como una buena opción

• ¿Que hechos tenemos actualmente en el Data Ware?

- ¿Que hechos tenemos actualmente en el Data Ware?
- ¿Hacemos análisis del CRM y Social media?

- ¿Que hechos tenemos actualmente en el Data Ware?
- ¿Hacemos análisis del CRM y Social media?
- ¿Tenemos analytics georreferenciado? Recolectamos los datos en los sistemas transaccionales?

- ¿Que hechos tenemos actualmente en el Data Ware?
- ¿Hacemos análisis del CRM y Social media?
- ¿Tenemos analytics georreferenciado? Recolectamos los datos en los sistemas transaccionales?
- ¿En que nivel de madurez estamos?
 - Reportes de lo sucedido? monitoreo de lo que está sucediendo? predicción de lo que sucederá?

Referencias

- Kimball, R. Ross, M. The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling. 2nd Ed, Wiley. 2002
- Datawarehouse4u.info. URL: http://datawarehouse4u.info/
- Dataprix.com. URL:

http://www.dataprix.com/arquitectura-data-warehouse-are as-datos-nuestro-almacen-corporativo