UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO

UNIVASF

COLEGIADO DE ENGENHARIA MECÂNICA

Cálculo Diferencial e Integral I

Atividade V - Limites fundamentais e Continuidade de funções

Questão 1. Quais são os limites considerados fundamentais? Exponha-os! Para melhorar a compreensão, esboce o gráfico de tais funções com o auxílio de algum software.

Questão 2. Considerando os limites fundamentais apresentados no item anterior, calcule:

- a. $\lim_{x \to 0} \frac{\tan x}{x};$
b. $\lim_{x \to 0} \frac{\sin 2x}{\sin 3x}$
- c. $\lim_{x \to 0} (1+x)^{\frac{1}{x}}$; (Dica: Considere $x=\frac{1}{t}$)
- d. $\lim_{x\to\pm\infty}\left(1+\frac{1}{x}\right)^x$, onde b é um número real. (Dica: Faça $\mathbf{t}=\mathbf{x}_{\overline{b}}$)

Questão 3. Considere a seguinte definição:

Definição 1. Seja f uma função e $a \in Dom(f)$, onde Dom(f) é o domínio de f. A função f é dita contínua no ponto a se:

- i. $\lim_{x \to a} f(x)$ existe; e
- ii. $\lim_{x \to a} f(x) = f(a)$

Se a função for contínua em todos os pontos diremos, simplesmente, que a função é contínua. Caso contrário será uma função descontínua.

Com base na definição acima, verifique se as funções abaixo são contínuas:

- a. $f(x) = \frac{x^2 1}{x 1}$ se $x \neq 1$, e f(x) = 1 se x = 1;
- b. $f(x) = \frac{x^2 1}{x 1}$ se $x \neq 1$, e f(x) = 2 se x = 1;
- c. $f(x) = x^3$, se x < -1; f(x) = x, se $-1 \le x \le 2$; e $f(x) = 6 x^2$, se x > 2.

Questão 4. Considere a função dada por : f(x) = 2x - 2, se x < -1; f(x) = Ax + B, se $-1 \le x \le 1$; e f(x) = 5x + 7, se x > 1.

Determine as constantes A e B para que a função acima seja contínua em \mathbb{R} .

Questão 5. É correto afirmar que a função $g(x) = |x^2 + 2x + 1|$ é contínua em \mathbb{R} ? Justifique!

Questão 6. Observe o resultado abaixo:

Teorema 2. Seja $f:[a,b] \to \mathbb{R}$ uma função contínua em [a,b]. Se f(a) e f(b) tem sinais contrários, então existe $c \in (a,b)$ tal que f(c) = 0.

O teorema acima, por exemplo, pode ser utilizado para localizar as raízes de uma função. Nessas condições, mostre que a função $f(x) = x^3 - 4x + 2$ possui três raízes distintas. Em quais intervalos estariam as raízes? Justifique.

Questão 7. Considere a função polinomial $f(x) = x^5 - 3x^2 + 3$. Mostre que existe uma raiz no intervalo [-1,0] e que não possui raiz no intervalo [1,2].

Questão 8. É correto afirmar que a função $f(x) = \frac{|x|}{x}$ é contínua no ponto x = 0? Justifique sua resposta.

Questão 9. Considere a função f(x) = x + 1, se x < -4; f(x) = 1, se x = -4 e $f(x) = \frac{x^2}{4} - 7$, se x > -4.

- a. Faça um esboço do gráfico;
- b. Calcule o limite da função quando x se aproximar de -4;
- c. A função f é contínua em -4? E para pontos diferentes de -4? Justifique!