Institut für Stochastik

Prof. Dr. D. Hug · Dr. F. Nestmann

Stochastische Geometrie (SS2019)

Übungsblatt 10

Aufgabe 1 (Die Euler-Charakteristik)

Zeigen Sie mithilfe der Steiner-Formel, dass für $K \in \mathcal{K}^d \setminus \{\emptyset\}$

$$V_0(K) = 1$$

gilt.

Aufgabe 2 (Schnitte durch Boolsche Modelle)

Sei Φ ein homogener Poisson prozess in \mathbb{R}^d mit Intensität $\gamma>0$ und \mathbb{Q} ein Wahrscheinlichkeitsmaß auf \mathcal{C}^d mit $\int_{\mathcal{C}^d} \lambda_d(K+C) \mathbb{Q}(\mathrm{d}K) < \infty, C \in \mathcal{C}^d$. Weiter seien Ψ der zugehörige Poisson sche Partikelprozess mit Intensitätsmaß Θ und Z das zugehörige Boolesche Modell. Außer dem sei $k \in \{1,\ldots,d-1\}$ und $0 \in H \subset \mathbb{R}^d$ eine k-dimensionale Ebene.

- (a) Zeigen Sie, dass $\Psi_H := \sum_{C \in \Psi} \mathbb{1}\{C \cap H \neq \emptyset\} \delta_{C \cap H}$ ein Poissonscher Partikelprozess auf H ist und stationär im Sinne von $T_u \Psi_H \stackrel{d}{=} \Psi_H$, $y \in H$.
- (b) Zeigen Sie, dass $Z \cap H$ ein Boolesches Modell in H ist. **Hinweis:** Ein Boolesches Modell in H wird definiert, indem H mit \mathbb{R}^k identifiziert wird.

Aufgabe 3 (Ergänzung zum Beweis von Lemma 4.2.5)

Für $z \in \mathbb{Z}^d$ sei $C_z := C^d + z$ mit $C^d := [0, 1]^d$. Es seien r > 0 und $W \in \mathcal{K}^d$ mit $V_d(W) > 0$ und $0 \in \text{int}(W)$. Weiter seien

$$Z_r^1 := \{ z \in \mathbb{Z}^d : C_z \cap rW \neq \emptyset, C_z \not\subset rW \} \quad \text{und} \quad Z_r^2 := \{ z \in \mathbb{Z}^d : C_z \subset rW \}.$$

Zeigen Sie

$$\lim_{r\to\infty}\frac{\operatorname{card}\,Z_r^1}{V_d(rW)}=0\qquad\text{ und }\qquad\lim_{r\to\infty}\frac{\operatorname{card}\,Z_r^2}{V_d(rW)}=1.$$

Aufgabe 4 (Inklusions- Exklusionsprinzip und Ergänzung zum Beweis von Satz 4.3.1)

(a) Es sei $f: \mathbb{R}^d \to \mathbb{R}$ eine additive Abbildung, das heißt

$$f(\emptyset) = 0$$
 und $f(K \cup L) + f(K \cap L) = f(K) + f(L), K, L \in \mathbb{R}^d$.

Zeigen Sie, dass für $m \in \mathbb{N}$ und $K_1, \ldots, K_m \in \mathbb{R}^d$

$$f(K_1 \cup \dots \cup K_m) = \sum_{k=1}^m (-1)^{k-1} \sum_{1 \le i_1 < \dots < i_k \le m} f(K_{i_1} \cap \dots \cap K_{i_k})$$

gilt.

(b) Es bezeichne \mathbb{F} den Vektorraum aller Funktionen $f \colon \mathbb{R}^d \to \mathbb{R}$. Zeigen Sie, dass die Abbildung

$$\varphi \colon \mathcal{R}^d \to \mathbb{F}, \quad B \mapsto \varphi(B) := \mathbb{1}_B,$$

additiv ist.

(c) Zeigen Sie für $m \in \mathbb{N}, K_1, \dots, K_m \in \mathcal{K}^d$ und $K := \bigcup_{i=1}^m K_i$, dass

$$\mathbb{1}_K = \sum_{k=1}^m (-1)^{k-1} \sum_{1 \le i_1 < \dots < i_k \le m} \mathbb{1}_{K_{i_1} \cap \dots \cap K_{i_k}}$$

gilt.