Vashu Agarwal

E21CSEU0054 EB06 lab7 q1 ¶

```
In [1]: import numpy as np
        import matplotlib.pyplot as mtp
        import pandas as pd
In [2]: dataset = pd.read csv("/Users/vashuagarwal/Downloads/BENNETT
In [3]: print(dataset.head())
                  id diagnosis
                                radius mean
                                              texture mean
                                                            perimeter mean
        area_mean \
             842302
                                       17.99
                                                     10.38
                                                                     122.80
        0
                             М
        1001.0
                                      20.57
                                                     17.77
                                                                     132.90
             842517
                             М
        1326.0
                                       19.69
                                                     21.25
        2 84300903
                             М
                                                                     130.00
        1203.0
                                      11.42
                                                     20.38
                                                                      77.58
        3 84348301
                             М
        386.1
                                      20.29
                                                     14.34
           84358402
                             М
                                                                     135.10
        1297.0
           smoothness mean
                             compactness_mean concavity_mean concave poin
        ts_mean
                                       0.27760
                                                        0.3001
                    0.11840
        0.14710
                    0.08474
                                       0.07864
                                                        0.0869
        0.07017
                    0.10960
                                      0.15990
                                                        0.1974
        2
        0.12790
                    0.14250
                                       0.28390
                                                        0.2414
        0.10520
                    0.10030
                                      0.13280
                                                        0.1980
        0.10430
                 texture_worst perimeter_worst area_worst
                                                              smoothness_wor
        st
                         17.33
                                          184.60
                                                      2019.0
                                                                         0.16
        0
        22
                         23.41
                                                                         0.12
        1
                                          158.80
                                                      1956.0
        38
                         25.53
                                                                         0.14
        2
                                          152.50
                                                      1709.0
        44
```

3 98	26.50	98.87	567.7		0.20
98 4 74	16.67	152.20	1575.0		0.13
compactnes	ss_worst	concavity_worst	concave poin	ts_worst	symme
0 0.4601	0.6656	0.7119		0.2654	
1 0.2750	0.1866	0.2416		0.1860	
2 0.3613	0.4245	0.4504		0.2430	
3 0.6638	0.8663	0.6869		0.2575	
4 0.2364	0.2050	0.4000		0.1625	
fractal_d:	imension_v	vorst Unnamed: 3	2		
0		L1890 Nal			
1 2 3		08902 Nal			
2		08758 Nal			
4		L7300 Nal 07678 Nal			
•	010		. =		

[5 rows x 33 columns]

In [4]: f = set(["diagnosis"])
 dataset["diagnosis"] = dataset["diagnosis"].map({"M":0,'B':1}).asty
 print(dataset.head)

		n \	id diagnosis	radius_mea
842302	per filleter_lilea	17.99	10.38	122.8
9/12517	ρ	20 57	17 77	132.9
042317	V	20.37	17.77	132.9
84300903	0	19.69	21.25	130.0
84348301	0	11.42	20.38	77.5
84358402	0	20.29	14.34	135.1
• • •	•••	• • •	• • •	• •
926424	0	21.56	22.39	142.0
926682	0	20.13	28.25	131.2
926954	0	16.60	28.08	108.3
927241	0	20.60	29.33	140.1
	842302 842302 842517 84300903 84348301 84358402 926424 926682 926954	842302 0 842517 0 84300903 0 84348301 0 84358402 0 926424 0 926682 0 926954 0	texture_mean perimeter_mean \ 842302 0 17.99 842517 0 20.57 84300903 0 19.69 84348301 0 11.42 84358402 0 20.29 926424 0 21.56 926682 0 20.13 926954 0 16.60	texture_mean perimeter_mean 17.99 10.38 842517 0 20.57 17.77 84300903 0 19.69 21.25 84348301 0 11.42 20.38 84358402 0 20.29 14.34 926424 0 21.56 22.39 926682 0 20.13 28.25 926954 0 16.60 28.08

568 2	92751	1		7.76	24.5	4	47.9
a \	rea_mean	smoothnes	s_mean	compactnes	s_mean	concavity_m	ean
0 1 2 3	1001.0 1326.0 1203.0	0	.11840 .08474 .10960	0	.27760 .07864 .15990	0.30 0.08 0.19	690 740
3 4	386.1 1297.0		.14250 .10030		.28390 .13280	0.24 0.19	
564 565 566 567 568	1479.0 1261.0 858.1 1265.0 181.0	0 0 0	.11100 .09780 .08455 .11780 .05263	0 0 0	.11590 .10340 .10230 .27700 .04362	0.24 0.14 0.09 0.35 0.00	400 251 140
c a_wors	•	ints_mean	t	exture_wors	t peri	meter_worst	are
0 2019.0		0.14710	• • •	17.3		184.60	
1 1956.0		0.07017	• • •	23.4		158.80	
2 1709.0 3		0.12790 0.10520	•••	25.5 26.5		152 . 50 98 . 87	
567.7 4		0.10320		16.6		152.20	
1575.0							
564		0.13890		26.4	.0	166.10	
2027.0 565		0.09791		38.2	5	155.00	
1731.0 566 1124.0		0.05302		34.1	2	126.70	
567 1821.0		0.15200	• • •	39.4	.2	184.60	
568 268 . 6		0.00000	• • •	30.3	7	59.16	
0 1 2 3 4	0 0 0	_worst co .16220 .12380 .14440 .20980 .13740	mpactne	ss_worst c 0.66560 0.18660 0.42450 0.86630 0.20500	oncavit	y_worst \ 0.7119 0.2416 0.4504 0.6869 0.4000	
564 565 566	0	.14100 .11660 .11390		0.21130 0.19220 0.30940		0.4107 0.3215 0.3403	

0.86810

0.16500

567

0.9387

```
568
               0.08996
                                     0.06444
                                                         0.0000
                              symmetry_worst
                                                fractal_dimension_worst
     concave points_worst
\
0
                     0.2654
                                       0.4601
                                                                   0.11890
1
                     0.1860
                                       0.2750
                                                                   0.08902
2
                     0.2430
                                       0.3613
                                                                   0.08758
3
                     0.2575
                                       0.6638
                                                                   0.17300
4
                     0.1625
                                       0.2364
                                                                   0.07678
                         . . .
                                           . . .
564
                     0.2216
                                       0.2060
                                                                   0.07115
565
                     0.1628
                                       0.2572
                                                                   0.06637
566
                     0.1418
                                       0.2218
                                                                   0.07820
                                                                   0.12400
567
                     0.2650
                                       0.4087
568
                     0.0000
                                       0.2871
                                                                   0.07039
     Unnamed: 32
0
              NaN
1
              NaN
2
              NaN
3
              NaN
4
              NaN
              . . .
564
              NaN
565
              NaN
566
              NaN
567
              NaN
568
              NaN
[569 rows x 33 columns]>
```

```
In [5]: x = dataset.iloc[:,2:-1].values
print(x)

[[1.799e+01 1.038e+01 1.228e+02 ... 2.654e-01 4.601e-01 1.189e-01]
[2.057e+01 1.777e+01 1.329e+02 ... 1.860e-01 2.750e-01 8.902e-02]
```

```
[2.057e+01 1.777e+01 1.329e+02 ... 1.860e-01 2.750e-01 8.902e-02]

[1.969e+01 2.125e+01 1.300e+02 ... 2.430e-01 3.613e-01 8.758e-02]

...

[1.660e+01 2.808e+01 1.083e+02 ... 1.418e-01 2.218e-01 7.820e-02]

[2.060e+01 2.933e+01 1.401e+02 ... 2.650e-01 4.087e-01 1.240e-01]

[7.760e+00 2.454e+01 4.792e+01 ... 0.000e+00 2.871e-01 7.039e-02]
```

1

```
In [6]: y = dataset.iloc[:,1].values
   print(y)
   0 0 0 0
   10000000010111110010011111010101111
   0 1 0 0
   1 1 0 1
   0 0 1 0
   101110110010000100010101010101010101010
   0000
   1 1 1 1
   0 0 1 1
   1 1 1 1
   1 1 0 1
   1 1 1 1
   1 1 1 1 1 1 1 0 0 0 0 0 0 1]
In [ ]:
In [7]: | from sklearn.model_selection import train_test_split
   x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.25
In [ ]:
In [8]: from sklearn.preprocessing import StandardScaler
   st_x= StandardScaler()
   x_train = st_x.fit_transform(x_train)
   x test = st x.transform(x test)
```

```
In []:
In [14]: from sklearn.neighbors import KNeighborsClassifier
      classifier = KNeighborsClassifier(n_neighbors=5,metric = 'minkowski
      classifier.fit(x_train,y_train)
Out[14]: KNeighborsClassifier()
In [15]: y_pred = classifier.predict(x_test)
In [16]: print(y_pred)
      1 0 1 1
       1 1 1 1
       In [17]: from sklearn.metrics import confusion_matrix
      cm = confusion_matrix(y_test,y_pred)
In [18]: print(cm)
      [[47 6]
       [ 1 89]]
In [19]: | from sklearn.metrics import accuracy_score
      print("Accuracy of model {0}%".format(accuracy_score(y_test,y_pred)
      Accuracy of model 95.1048951048951%
In [ ]:
```

Vashu Agarwal

E21CSEU0054 EB06 Lab7 Q2

```
In [8]: import numpy as np
          import matplotlib.pyplot as mtp
          import pandas as pd
 In [9]: dataset = pd.read csv("/Users/vashuagarwal/Downloads/BENNETT
In [10]: print(dataset.head(5))
                                     enroll top10perc top25perc f_undergrad
            private
                      apps
                            accept
          0
                Yes
                      1660
                               1232
                                         721
                                                      23
                                                                  52
                                                                              2885
          1
                Yes
                      2186
                               1924
                                         512
                                                      16
                                                                  29
                                                                              2683
          2
                Yes
                      1428
                               1097
                                         336
                                                      22
                                                                  50
                                                                              1036
          3
                                                                  89
                Yes
                       417
                                349
                                         137
                                                      60
                                                                               510
          4
                Yes
                       193
                                146
                                          55
                                                      16
                                                                               249
                                                                  44
             p_undergrad
                                                                            termin
                           outstate
                                      room_board
                                                   books
                                                           personal
                                                                      phd
          al
          0
                      537
                                7440
                                             3300
                                                      450
                                                                2200
                                                                       70
          78
                                                      750
                                                                1500
                                                                       29
          1
                     1227
                               12280
                                             6450
          30
          2
                       99
                               11250
                                             3750
                                                      400
                                                                1165
                                                                       53
          66
                       63
                               12960
                                             5450
                                                      450
                                                                 875
                                                                       92
          3
          97
                                                                1500
                                                                       76
          4
                      869
                                7560
                                             4120
                                                      800
          72
                         perc_alumni
             s_f_ratio
                                       expend
                                                grad_rate
          0
                                          7041
                   18.1
                                   12
                                                        60
          1
                   12.2
                                   16
                                         10527
                                                        56
          2
                   12.9
                                   30
                                          8735
                                                        54
          3
                    7.7
                                   37
                                         19016
                                                        59
                   11.9
                                    2
                                         10922
                                                        15
```

```
In [57]: x = dataset.iloc[:,[1,2]].values
         print(x)
          [[ 1660
                  1232]
           [ 2186
                  1924]
           [ 1428
                  1097]
           [ 2097
                   1915]
           [10705
                  24531
           [ 2989
                   1855]]
In [58]: from sklearn.preprocessing import StandardScaler
         st x= StandardScaler()
         x = st_x.fit_transform(x)
In [59]: from sklearn.cluster import KMeans
         wcss_list = []
In [60]: for i in range(1,11):
              kmeans = KMeans(n_clusters = i,init= 'k-means++',random_state =
              kmeans.fit(x)
             wcss_list.append(kmeans.inertia_)
         mtp.plot(range(1,11),wcss_list)
         mtp.title("The Elbow Method ")
         mtp.xlabel("Number of clusters")
         mtp.ylabel("wcss_list")
         mtp.show()
                              The Elbow Method
            1600
            1400
            1200
            1000
             800
             600
             400
             200
```

```
In [ ]:
```

Number of clusters

0

```
In [62]: kmeans = KMeans(n_clusters = 3,init = 'k-means++',random_state = 42
y_predict = kmeans.fit_predict(x)
```

```
In []:
```

```
In [63]: mtp.scatter(x[y_predict == 0, 0], x[y_predict == 0, 1], s = 100, c
mtp.scatter(x[y_predict == 1, 0], x[y_predict == 1, 1], s = 100, c
mtp.scatter(x[y_predict == 2, 0], x[y_predict == 2, 1], s = 100, c =
    # mtp.scatter(x[y_predict == 3, 0], x[y_predict == 3, 1], s = 100,
    # mtp.scatter(x[y_predict == 4, 0], x[y_predict == 4, 1], s = 100,
    mtp.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[
    mtp.title("Clusters")
    mtp.legend()
    mtp.show()
```



```
In [ ]:
```

In []:

In [74]: x = dataset.iloc[:,[3,4]].values
print(x)

```
[[ 721 23]
[ 512 16]
[ 336 22]
...
[ 695 34]
[1317 95]
[ 691 28]]
```

```
In [75]: from sklearn.preprocessing import StandardScaler
st_x= StandardScaler()
x = st_x.fit_transform(x)
```

```
In [76]: from sklearn.cluster import KMeans
wcss_list = []
```



```
In [79]: kmeans = KMeans(n_clusters = 5,init = 'k-means++',random_state = 42
y_predict = kmeans.fit_predict(x)
```

```
In [80]: mtp.scatter(x[y_predict == 0, 0], x[y_predict == 0, 1], s = 100, c
mtp.scatter(x[y_predict == 1, 0], x[y_predict == 1, 1], s = 100, c
mtp.scatter(x[y_predict == 2, 0], x[y_predict == 2, 1], s = 100, c
mtp.scatter(x[y_predict == 3, 0], x[y_predict == 3, 1], s = 100, c
mtp.scatter(x[y_predict == 4, 0], x[y_predict == 4, 1], s = 100, c
mtp.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[
mtp.title("Clusters")
mtp.legend()
mtp.show()
```


In []:

```
In [81]: x = dataset.iloc[:,[5,6]].values

from sklearn.preprocessing import StandardScaler
st_x= StandardScaler()
x = st_x.fit_transform(x)
from sklearn.cluster import KMeans
wcss_list = []
for i in range(1,11):
    kmeans = KMeans(n_clusters = i,init= 'k-means++',random_state = kmeans.fit(x)
    wcss_list.append(kmeans.inertia_)
mtp.plot(range(1,11),wcss_list)
mtp.title("The Elbow Method ")
mtp.xlabel("Number of clusters")
mtp.ylabel("wcss_list")
mtp.show()
```


In []:

```
In [82]: kmeans = KMeans(n_clusters = 7,init = 'k-means++',random_state = 42
y_predict = kmeans.fit_predict(x)
mtp.scatter(x[y_predict == 0, 0], x[y_predict == 0, 1], s = 100, c
mtp.scatter(x[y_predict == 1, 0], x[y_predict == 1, 1], s = 100, c
mtp.scatter(x[y_predict == 2, 0], x[y_predict == 2, 1], s = 100, c
mtp.scatter(x[y_predict == 3, 0], x[y_predict == 3, 1], s = 100, c
mtp.scatter(x[y_predict == 4, 0], x[y_predict == 4, 1], s = 100, c
mtp.scatter(x[y_predict == 5, 0], x[y_predict == 5, 1], s = 100, c
mtp.scatter(x[y_predict == 6, 0], x[y_predict == 6, 1], s = 100, c
mtp.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[
mtp.title("Clusters")
mtp.legend()
mtp.show()
```



```
In []:
In []:
```