UNIVERSIDADE FEDERAL DE GOIÁS ENGENHARIA DE SOFTWARE ARQUITETURA DE SOFTWARE

ADRIEL LENNER VINHAL MORI IGOR MOREIRA PÁDUA PAULO ROBERTO VIEIRA

Decisões Arquiteturais

Goiânia

Nome: Medical Monitoring Assistance for The Elderly (MMAE)

Descrição do Sistema

A arquitetura proposta tem como objetivo implementar um sistema de gerenciamento hospitalar inteligente que permita o monitoramento contínuo de pacientes em tempo real. O sistema se integra a dispositivos loT e sensores vestíveis, que captam e transmitem sinais vitais e parâmetros de saúde relevantes para o sistema de gerenciamento. O fluxo contínuo de dados do paciente é processado e analisado usando técnicas avançadas de processamento e análise de dados.

Algoritmos de aprendizado de máquina e modelos preditivos são aplicados para detectar padrões, identificar anomalias e gerar alertas para os profissionais de saúde. A interface do usuário fornece um painel intuitivo para visualização dos dados do paciente em tempo real, análise de tendências e monitoramento simultâneo de vários pacientes. O sistema prioriza casos críticos e exibe alertas urgentes com destaque, garantindo um atendimento eficiente e proativo aos pacientes.

A integração dos componentes é realizada por meio de conexões de rede seguras, garantindo a transmissão dos dados em tempo real entre os dispositivos e o sistema de gerenciamento.

A arquitetura utiliza tecnologias, como dispositivos IoT, sensores vestíveis, processamento de dados em tempo real, aprendizado de máquina e interfaces de usuário responsivas. O desempenho do sistema é essencial, com processamento rápido, latência mínima e exibição instantânea de alertas urgentes para garantir uma resposta ágil dos profissionais de saúde.

Dispositivos IoT: Esses dispositivos são colocados nos pacientes e em diferentes áreas do ambiente hospitalar para coletar dados relevantes. Eles podem incluir monitores de sinais vitais, câmeras, sensores ambientais, etc. Os dados coletados são enviados de forma segura e contínua para o sistema de gerenciamento.

Sensores Vestíveis: Esses sensores são usados para coletar dados discretos e contínuos diretamente do paciente. Eles podem ser incorporados a roupas, pulseiras ou dispositivos pessoais, permitindo a coleta não invasiva de informações sobre a saúde do paciente.

Sistema de Gerenciamento: É o núcleo do sistema, responsável pelo processamento e análise dos dados coletados pelos dispositivos loT e sensores vestíveis. Utiliza tecnologias de processamento em tempo real e aprendizado de máquina para interpretar os dados, identificar tendências, detectar padrões anormais e gerar alertas.

Interface do Usuário: É a interface visual que permite que os profissionais de saúde interajam com o sistema. Por meio dessa interface, eles podem visualizar os dados dos pacientes, monitorar múltiplos pacientes simultaneamente, analisar tendências e receber alertas urgentes para respostas rápidas.

Requisitos Arquiteturalmente Significativos

ID	RAS	DESCRIÇÃO CENÁRIO
01	Conectividade	A arquitetura deve suportar a integração e comunicação segura com uma variedade de dispositivos loT e sensores vestíveis para captar e transmitir dados vitais e parâmetros de saúde dos pacientes.
02	Escalabilidade	A arquitetura deve ser projetada para acomodar um grande número de pacientes e dispositivos, garantindo que o sistema possa lidar com um aumento significativo no volume de dados e usuários sem comprometer o desempenho.
03	Usabilidade	Os requisitos de usabilidade são aqueles que afetam a facilidade de uso, eficiência e satisfação do usuário ao interagir com o sistema, podemos citar: Interface Intuitiva; Navegação Coerente; Resposta Rápida; Feedback Adequado.
04	Privacidade e Segurança	Os requisitos de privacidade e segurança são críticos em sistemas que lidam com informações sensíveis, como dados médicos e de saúde dos pacientes, devemos considerar os seguintes: Criptografia; Controle de Acesso; Auditoria de Acesso; Conformidade com Regulamentações.
05	Manutenibilidade	Os requisitos de manutenibilidade dizem respeito à facilidade de realizar alterações, correções e melhorias no sistema ao longo do tempo, os requisitos arquiteturalmente significativos de manutenibilidade podem incluir: Modularidade; Documentação; Testabilidade; Extensibilidade:

DECISÃO - Profissionais de saúde	
ID do RAS	06
Tipo de decisão Arquitetural	Usabilidade
Decisão	Priorizar uma interface de usuário simples e intuitiva, com fluxos de trabalho otimizados para facilitar a
	visualização e análise dos dados dos pacientes.
Justificativa	Os profissionais de saúde precisam acessar e compreender rapidamente as informações clínicas para tomar decisões informadas sobre os pacientes, portanto, uma interface de usuário amigável é essencial.
Forma de implementação	Desenvolvimento de uma interface de usuário com design centrado no usuário, testes de usabilidade frequentes e feedback contínuo dos profissionais de saúde para refinamento.

DECISÃO - Profissionais de saúde	
ID do RAS	07
Tipo de decisão Arquitetural	Conectividade
Decisão	Implementação de uma arquitetura que permita a interoperabilidade entre sistemas de saúde, possibilitando a integração de dados de diferentes fontes, como registros eletrônicos de saúde e dispositivos médicos.
Justificativa	Os profissionais de saúde precisam acessar informações abrangentes sobre os pacientes, e a interoperabilidade garante que dados relevantes estejam disponíveis independentemente da origem.
Forma de implementação	Adoção de padrões de interoperabilidade, como HL7 FHIR, para facilitar a troca de dados entre sistemas de saúde e dispositivos.

DECISÃO - Pacientes		
ID do RAS	08	
Tipo de decisão Arquitetural	Privacidade e Segurança	
Decisão	Implementação de medidas de segurança robustas, como criptografia de dados, controle de acesso e auditorias de segurança, para proteger os dados de saúde dos pacientes.	

Justificativa	Os pacientes confiam que seus dados de
	saúde estão seguros e protegidos contra
	acessos não autorizados, violações de
	privacidade e uso indevido.
Forma de implementação	Desenvolvimento de um modelo de
	segurança em camadas, com
	criptografia de ponta a ponta,
	autenticação multifator e monitoramento
	contínuo de atividades suspeitas.

DECISÃO – Equipe TI	
ID do RAS	09
Tipo de decisão Arquitetural	Escalabilidade
Decisão	Utilização de uma arquitetura escalável,
	baseada em microsserviços ou nuvem,
	que permita a expansão do sistema de
	acordo com o aumento da demanda.
Justificativa	A escalabilidade é necessária para lidar
	com o crescimento no volume de dados,
	tráfego e requisitos do sistema,
	garantindo um desempenho consistente.
Forma de implementação	Uso de tecnologias de orquestração de
	contêineres, como Kubernetes, para
	dimensionar automaticamente os
	recursos de acordo com a carga de
	trabalho.

DECISÃO – Equipe TI	
ID do RAS	10
Tipo de decisão Arquitetural	Manutenibilidade
Decisão	Adoção de boas práticas de
	desenvolvimento, como modularização
	do código, documentação abrangente e
	implementação de testes automatizados.
Justificativa	A manutenção eficiente do sistema ao
	longo do tempo requer um código bem
	estruturado, documentado e fácil de
	entender, o que reduzirá os riscos de
	erros e facilitará a solução de problemas.
Forma de implementação	Integração de ferramentas de
	gerenciamento de código-fonte,
	documentação automatizada e testes
	unitários em todo o processo de
	desenvolvimento.