Power Functions

A function of the form $f(x) = x^a$, where a is a constant, is called a **power function**. We consider several cases.

(i) a = n, where n is a positive integer

The graphs of $f(x) = x^n$ for n = 1, 2, 3, 4, and 5 are shown in Figure 11. (These are polynomials with only one term.) We already know the shape of the graphs of y = x (a line through the origin with slope 1) and $y = x^2$ [a parabola, see Example 1.1.2(b)].

Figure 11

Graphs of $f(x) = x^n$ for n = 1, 2, 3, 4, 5

The general shape of the graph of $f(x)=x^n$ depends on whether n is even or odd. If n is even, then $f(x)=x^n$ is an even function and its graph is similar to the parabola $y=x^2$. If n is odd, then $f(x)=x^n$ is an odd function and its graph is similar to that of $y=x^3$. Notice from Figure 12, however, that as n increases, the graph of $y=x^n$ becomes flatter near 0 and steeper when $|x|\geqslant 1$. (If x is small, then x^2 is smaller, x^3 is even smaller, x^4 is smaller still, and so on.)

Figure 12

Note

A **family of functions** is a collection of functions whose equations are related. Figure 12 shows two families of power functions, one with even powers and one with odd powers.

(ii) a = 1/n, where n is a positive integer

The function $f(x) = x^{1/n} = \sqrt[n]{x}$ is a **root function**. For n = 2 it is the square root function $f(x) = \sqrt{x}$, whose domain is $[0, \infty)$ and whose graph is the upper half of the parabola $x = y^2$. [See Figure 13(a).] For other even values of n, the graph of $y = \sqrt[n]{x}$ is similar to that of $y = \sqrt{x}$. For n = 3 we have the cube root function $f(x) = \sqrt[3]{x}$ whose domain is \mathbb{R} (recall that every real number has a cube root) and whose graph is shown in Figure 13(b). The graph of $y = \sqrt[n]{x}$ for n odd (n > 3) is similar to that of $y = \sqrt[n]{x}$.

Figure 13

Graphs of root functions

(iii)
$$a = -1$$

The graph of the **reciprocal function** $f(x) = x^{-1} = 1/x$ is shown in Figure 14. Its graph has the equation y = 1/x, or xy = 1, and is a hyperbola with the coordinate axes as its asymptotes. This function arises in physics and chemistry in connection with Boyle's Law, which says that, when the temperature is constant, the volume V of a gas is inversely proportional to the pressure P:

$$V = \frac{C}{P}$$

where C is a constant. Thus the graph of V as a function of P (see Figure 15) has the same general shape as the right half of Figure 14.

Figure 14

The reciprocal function

Figure 15

Volume as a function of pressure at constant temperature

Power functions are also used to model species-area relationships (Exercises 30 and 31), illumination as a function of distance from a light source (Exercise 29), and the period of revolution of a planet as a function of its distance from the sun (Exercise 32).

Chapter 1: Functions and Models Power Functions Book Title: Calculus: Early Transcendentals Printed By: Troy Jeffery (tradozprime@gmail.com) © 2018 Cengage Learning, Cengage Learning

© 2019 Cengage Learning Inc. All rights reserved. No part of this work may by reproduced or used in any form or by any means - graphic, electronic, or mechanical, or in any other manner - without the written permission of the copyright holder.