BTS OPTICIEN LUNETIER

MATHÉMATIQUES-U41

SESSION 2013

Durée : 2 heures Coefficient : 2

Matériel autorisé :

- Toutes les calculatrices de poche, y compris les calculatrices programmables, alphanumériques ou à écran graphique, à condition que leur fonctionnement soit autonome et qu'il ne soit pas fait usage d'imprimante. (Circulaire n° 99 – 186 du 16/11/1999.)

Dès que le sujet vous est remis, assurez-vous qu'il est complet. Le sujet comporte 5 pages numérotées de 1/5 à 5/5.

Un formulaire de 3 pages est joint au sujet.

BTS OPTICIEN LUNETIER		SESSION 2013
ÉPREUVE DE MATHÉMATIQUES	CODE : MAT OL	Page 1/5

EXERCICE 1 (10 points)

Avant une greffe de cornée, la cornée prélevée est plongée dans un liquide physiologique afin de provoquer l'évacuation du surplus d'eau contenu dans le tissu. On étudie l'évolution dans le temps de l'épaisseur de la cornée.

Les trois parties de cet exercice peuvent être traitées de façon indépendante.

A. Statistique à deux variables

Une étude expérimentale de l'épaisseur *y* de la cornée, exprimée en micromètres, en fonction du temps *t*, exprimé en heures, a permis d'obtenir le tableau suivant.

	t	0	1	2	3	4	5	6	7	8	9	10
)	y	983	786	700,64	662,08	645,22	637,83	634,57	633,13	632,5	632,22	632,1

Le nuage des points de coordonnées (t, y) correspondant est représenté sur le graphique suivant.

- 1° À l'aide du graphique et sans calcul, expliquer pourquoi un ajustement affine de y en t n'est pas approprié.
- **2°** On pose $z = \ln(y 632)$ et on obtient le tableau suivant, où les valeurs approchées sont arrondies à 10^{-2} .

t	0	1	2	3	4	5	6	7	8	9	10
Z	5,86	5,04	4,23	3,4	2,58	1,76	0,94	0,12	-0,69	- 1,51	- 2,3

- a) Donner une équation de la droite de régression de z en t, obtenue par la méthode des moindres carrés, sous la forme z = at + b, où a et b sont à arrondir à 10^{-2} . (Pour cette question, on utilisera les fonctions de la calculatrice. Le détail des calculs n'est pas demandé).
- **b)** En déduire une expression de *y* en fonction de *t*, selon cet ajustement.

BTS OPTICIEN LUNETIER		SESSION 2013
ÉPREUVE DE MATHÉMATIQUES	CODE: MAT OL	Page 2/5

B. Résolution d'une équation différentielle

On considère l'équation différentielle (E) :

$$1,22 y' + y = 632$$

où y est une fonction inconnue de la variable t, définie et dérivable sur $[0, + \infty[$, et y ' la fonction dérivée de y.

On admet que la fonction correspondant à l'épaisseur de la cornée, exprimée en micromètres, en fonction du temps, exprimé en heures, vérifie l'équation différentielle (E).

1° Déterminer les solutions de l'équation différentielle (E_0):

$$1,22 y' + y = 0.$$

- **2°** Soit g la fonction définie sur $[0, +\infty[$ par g(t) = 632. Vérifier que g est une solution de (E).
- 3° En déduire les solutions de l'équation différentielle (E).
- **4°** Déterminer la solution f de l'équation différentielle (E) vérifiant la condition initiale f(0) = 983.

C. Étude d'une fonction

Soit f la fonction définie sur $[0, +\infty[$ par $f(t) = 632 + 351 e^{-0.82 t}$. On note C sa courbe représentative dans le plan muni d'un repère orthonormal.

- 1° a) Calculer f'(t) pour tout réel t de l'intervalle $[0, +\infty[$.
 - **b)** Étudier le signe de f'(t) sur l'intervalle $[0, +\infty[$.
 - c) En déduire le sens de variation de f sur l'intervalle $[0, +\infty[$.
- **2°** Les questions a), b) et c) suivantes sont des questions à choix multiples. Pour chaque question, une seule réponse est exacte. Recopier sur la copie la réponse qui vous paraît exacte. On ne demande aucune justification.

La réponse juste rapporte un point. Une réponse fausse ou une absence de réponse ne rapporte ni n'enlève de point.

a)

$\lim_{t \to +\infty} f(t) = 0 \qquad \lim_{t \to +\infty} f(t) = 351 \qquad \lim_{t \to +\infty} f(t) = 351$	$\inf_{t\to +\infty} f(t) = 632 \qquad \lim_{t\to +\infty} f(t) = +\infty$
---	--

b) La courbe C admet une asymptote dont une équation est :

t = 632	t = 0	y = 0
---------	-------	-------

c) Une équation de la tangente T à la courbe C au point d'abscisse 0 est :

y = -0.82 t + 632	y = 983 t - 287,82	y = -287,82 t + 983	y = 632 t - 0.82

BTS OPTICIEN LUNETIER		SESSION 2013
ÉPREUVE DE MATHÉMATIQUES	CODE : MAT OL	Page 3/5

EXERCICE 2 (10 points)

Les trois parties de cet exercice peuvent être traitées de façon indépendante.

Une entreprise fabrique des verres ophtalmiques à partir de verres semi-finis.

A. Probabilités conditionnelles

Ce fabriquant possède un stock de verres semi-finis provenant de deux fournisseurs différents, désignés par « fournisseur 1 » et « fournisseur 2 ».

On admet que 60 % des verres semi-finis proviennent du fournisseur 1 et 40 % des verres semi-finis proviennent du fournisseur 2.

On admet que 2 % des verres semi-finis du fournisseur 1 sont défectueux et que 1 % des verres semi-finis du fournisseur 2 sont défectueux.

On prélève au hasard un verre semi-fini dans ce stock.

On considère les événements suivants :

- A: « le verre semi-fini prélevé provient du fournisseur 1 » ;
- B: « le verre semi-fini prélevé provient du fournisseur 2 » ;
- D: « le verre semi-fini prélevé est défectueux ».
- 1° Calculer la probabilité $P(B \cap D)$.
- 2° Montrer que la probabilité que le verre semi-fini prélevé soit défectueux est égale à 0,016.
- **3°** Calculer la probabilité conditionnelle $P_D(B)$.

(On rappelle que $P_D(B)$ est la probabilité de l'événement B sachant que l'événement D est réalisé.)

B. Loi binomiale, loi de Poisson et loi normale

Sauf mention du contraire, dans cette partie, les résultats approchés sont à arrondir à 10⁻³.

On prélève au hasard n verres semi-finis dans un stock, pour vérification. On admet que la probabilité qu'un verre semi-fini prélevé au hasard dans ce stock soit défectueux est égale à 0,016. Le stock est suffisamment important pour assimiler un prélèvement de n verres semi-finis à un tirage avec remise de n verres.

On considère la variable aléatoire X qui, à tout prélèvement de n verres semi-finis dans ce stock, associe le nombre de verres semi-finis défectueux.

- **1°** Justifier que la variable aléatoire *X* suit une loi binomiale.
- **2°** Dans cette question n = 250.
 - a) Calculer l'espérance mathématique E(X). Interpréter le résultat.
 - b) Calculer la probabilité qu'aucun verre ne soit défectueux.
 - c) En déduire la probabilité qu'au moins un verre soit défectueux.

BTS OPTICIEN LUNETIER		SESSION 2013
ÉPREUVE DE MATHÉMATIQUES	CODE: MAT OL	Page 4/5

- d) On admet que la loi de la variable aléatoire X peut être approchée par une loi de Poisson. Donner le paramètre λ de cette loi de Poisson.
- e) On désigne par Y une variable aléatoire suivant la loi de Poisson de paramètre obtenu au d). Calculer, avec la précision permise par la table du formulaire, $P(Y \ge 1)$.
- **3°** Dans cette question n = 1000.

On admet que la loi de la variable aléatoire X peut être approchée par la loi normale de moyenne 16 et d'écart type 3,97.

- a) Justifier ces paramètres par le calcul.
- **b)** Cette question est une question à choix multiples. Une seule réponse est exacte. Recopier sur la copie la réponse qui vous paraît exacte. On ne demande aucune justification.

La réponse juste rapporte un point. Une réponse fausse ou une absence de réponse ne rapporte ni n'enlève de point.

Soit Z une variable aléatoire qui suit la loi normale de moyenne 16 et d'écart type 3,97. Pour déterminer, à l'aide de cette variable aléatoire, la probabilité que, dans un prélèvement de 1 000 verres semi-finis, il y ait au moins 18 verres défectueux, on calcule $P(Z \ge 17,5)$.

La valeur approchée obtenue, arrondie à 10⁻², est :

0.35	0.38	0.65
0,00	0,50	0,03

C. Intervalle de confiance

Ce fabriquant effectue un sondage auprès de ses clients opticiens. Il souhaite évaluer la proportion inconnue p de clients intéressés par un nouveau verre. Pour cela, il interroge au hasard un échantillon de 100 opticiens parmi sa clientèle. Cette clientèle est suffisamment importante pour considérer que cet échantillon résulte d'un tirage avec remise.

Soit F la variable aléatoire qui à tout échantillon ainsi prélevé, associe la fréquence, dans cet échantillon, des opticiens intéressés par ce nouveau verre. On suppose que F suit la loi

normale de moyenne p inconnue et d'écart type $\sqrt{\frac{p(1-p)}{100}}$.

Pour l'échantillon prélevé, on constate que 70 opticiens sont intéressés par le nouveau verre.

- 1° Donner une estimation ponctuelle f de la proportion inconnue p.
- **2°** Déterminer un intervalle de confiance centré sur f de la proportion p avec le coefficient de confiance 95 %. Arrondir les bornes de l'intervalle à 10^{-2} .
- 3° Peut-on affirmer que p est compris dans cet intervalle de confiance ? Pourquoi ?

BTS OPTICIEN LUNETIER		SESSION 2013
ÉPREUVE DE MATHÉMATIQUES	CODE : MAT OL	Page 5/5