Firewall

Артур Сагутдинов

О спикере:

- Опыт в ИТ с 2007 года
- Эксперт в разработке и внедрении Linux инфраструктуры
- Индивидуальный предприниматель

Цели занятия

- Познакомиться с протоколом Firewall
- Изучить возможности межсетевого экрана Netfilter и его утилиты iptables
- Научиться управлять трафиком с помощью собственного небольшого роутера
- Научиться создавать базовые правила в iptables

План занятия

- 1 Firewall
- (2) Историческая справка о Firewall
- Netfilter и iptables
- 4 Цепочки iptables: PREROUTING, INPUT, FORWARD
- 5 Цепочки iptables: OUTPUT, POSTROUTING
- 6 <u>Синтаксис iptables</u>
- (7) Настройка доступа по порту с помощью iptables
- **8** <u>Итоги</u>
- 9 Домашнее задание

Firewall

Цели темы

- Познакомиться с Firewall, видами и особенностями его реализации
- Разобраться с видами угроз, которые может устранить Firewall
- Понять, против чего Firewall бессилен

Дословный перевод Firewall

Firewall Огненная стена

Firewall

дополнительный слой защиты между вами и проблемами

Реализации Firewall

1

Программное решение

2

Программно-аппаратная реализация

Задача Firewall - фильтрация проходящего через него трафика на основе определенных ранее правил

Когда Firewall нужен?

Защита сетей или отдельных хостов от атак, направленных извне внутрь защищаемой сети

Когда Firewall бесполезен?

В борьбе с атаками, проводимыми внутри периметра, чей трафик не проходит сквозь его интерфейсы

Отсутствие Firewall

- высокие риски возникновения проблем

Какие есть риски без Firewall?

На что направлены атаки?

- Вызов всевозможных неполадок
- Работа по принципу крипто-вымогателей
- Кража информации

Наличие Firewall

ОБЯЗАТЕЛЬНО

при работе с публичным трафиком (общедоступными сетями), чтобы избежать утечки данных

Итоги темы

- Firewall представляет собой программный или программно-аппаратный фильтр, анализирующий и управляющий проходящим через него трафиком
- Если у вас нет Firewall , а всё работает, то велика вероятность, что ваши данные постоянно крадут
- 3 Firewall может справится только с теми угрозами, потоком которых он может управлять

Историческая справка o Firewall

Цели темы

- Узнать историю появления firewall
- Познакомится с ранними версиями firewall и понять их принцип работы

Происхождение слова Firewall

Предшественник Firewall

Расти Рассел

Основатель ipchains

B 1998 г. создал проект **Netfilter/iptables**

Функции Firewall выполняли:

Мануалы по работе с firewall

- Руководство по <u>ipfwadm</u> на английском языке
- Руководство по <u>ipchains</u> на английском и <u>Перевод</u> на русском.
- Руководство по iptables (Iptables Tutorial 1.1.19).
- Оригинал(1.2.2) на английском на <u>github</u>, на <u>одной странице</u>.
- man iptables на русском языке.
- Статья на <u>Викиучебнике</u>.

Различные мануалы по работе

Итоги темы

- Первоначально Firewall был представлен в виде устройства, программные реализации появились гораздо позже
- 2 За 25 лет развития Firewall в Linux сменил множество реализаций (ipfwadm, ipchains, Netfilter), но основной принцип у всех похож
- З Хорошей практикой является брать с собой оффлайн документацию по всем реализациям Firewall

Netfilter

Цели темы

- Познакомится с современной реализацией файрвола в Linux
- Рассказать об особенностях реализации Netfilter
- Понять взаимодействие таблиц и цепочек в Netfilter

Netfilter

межсетевой экран, встроенный в ядро Linux, начиная с версии 2.4.

Netfilter имеет свою утилиту

Можно создавать и изменять правила, которые фильтруют трафик

Аналог iptables

В операционных системах CentOS, Fedora, OpenSUSE, Red Hat Enterprise Linux, SUSE Linux Enterprise

Архитектура Netfilter

Архитектура Netfilter

1

Подразумевает прохождение пакетов через цепочки правил

2

Каждое правило содержит различные критерии и действие или переход, выполняющиеся в случае полного соответствия пакета критериям

3

Отсутствие критериев применяет правило ко всем проходящим через него пакетам

Архитектура Netfilter

Цепочка / Таблица	PREROUTING	INPUT	FORWARD	OUTPUT	POSTROUTING
filter		+	+	+	
nat	+	+		+	+
mangle	+	+	+	+	+
raw				+	
security		+	+	+	

iptables

интерфейс управления netfilter

iptables оперирует

Правилами

Цепочками

Таблицами

iptables

является полноценным инструментом позволяющим настроить фаерволл

iptables

В состав правила iptables входят

Логическое выражение на основании которого происходит анализ свойств пакета / соединения и которое определяет попадание пакета / соединения под текущее правило

Выполняется в случае соответствия пакета / соединения текущему правилу

Учитывает количество пакетов попавших под условие текущего правила

Цепочки iptables

упорядоченная последовательность правил

Цепочки iptables

1

Пользовательская цепочка

Создаётся пользователем и используется только в пределах своей таблицы

(2)

Базовая цепочка

Создаётся по умолчанию при создании таблицы и в отличии от пользовательской обладает действием по умолчанию

Базовые цепочки iptables

Таблица iptables

совокупность базовых и пользовательских цепочек, имеющих общее назначение

4>

4

iptables имеет 4 типа таблиц:

Дословный перевод SELinux

Security Enhanced Linux Безопасность улучшенной Linux

SELinux

улучшенный механизм управления доступом,

разработанный Агентством национальной

безопасности США для предотвращения

злонамеренных вторжений

SELinux добавляет в Netfilter дополнительную таблицу security, где проходящим пакетам могут назначаться особые метки для предотвращения доступа сторонних процессов, не находящихся под контролем SELinux

Пример, SELinux

Можно указать, что запросы на 80 порт может отправлять только определенный web-браузер или процесс никто иной

Conntrack (англ. отслеживание соединения)

специальная подсистема, отслеживающая состояния

соединений и позволяющая использовать эту

информацию при принятии решений о

судьбе отдельных пакетов

Состояния соединений

NEW

пакет является первым в соединении

ESTABLISHED

пакет относится к уже установленному соединению

INVALID

установить принадлежность пакета не удалось

RELATED

пакет открывает новое соединение, логически связанное с уже установленными

UNTRACKED

отслеживание состояния соединения для данного пакета было отключено

Дословный перевод host

Host

любое устройство подключенное к сети TCP/IP, принимающее или создающее подключения

Дословный перевод localhost

Localhost Локальный хост

Localhost

официально зарезервированное доменное имя для IP-адресов 127.0.0.1/8

Localhost

с помощью специального сетевого интерфейса «внутренней петли» (loopback) позволяет создавать сети, состоящие из одного компьютера

Итоги темы

- 1) Netfilter состоит из пяти цепочек и пяти таблиц
- Для операций с метаданными используют таблицу mangle, для операции с адресами - nat, для фильтрации - таблица filter
- Деление правил по цепочкам условно и жестко не контролируется, однако размещение правила в не соответствующей таблице может привести к сбоям и ошибкам обработки

Цепочки iptables: PREROUTING, INPUT, FORWARD

Цели темы

- Узнать о цепочках PREROUTING, INPUT, FORWARD
- Выяснить, каким образом принимается решение о прохождении пакетом этих цепочек
- Понять, какие операции с трафиком может выполнять firewall в этих цепочках

Цепочка PREROUTING

Цепочка PREROUTING

Цепочка PREROUTING

Цепочка PREROUTING: аналогия

В больнице предписание:

нужно надеть маску и бахилы, прежде чем подойти к регистратуре

В цепочке PREROUTING помещаются правила:

- Для управления отслеживанием (таблица raw):
 отменить, настроить, ограничить отслеживание и т.д.
- Если необходимо модифицировать пакет до маршрутизации (mangle), например изменить поле TOS (IPv4), DSCP, TTL. Также можно сделать маркировку пакета или соединения
- Для изменения адреса получателя в таблице nat: как IPадреса через (Destination Network Address Translation) так и порта (с помощью действия REDIRECT)

Пример PREROUTING

Скрытие порта приложения с помощью таблицы nat (REDIRECT с внешнего порта 12345 на 22 в локальной сети)

Пример PREROUTING

Использование двух провайдеров с разделением по спискам пользователей, кто каким провайдером пользуется (маркировка с помощью таблицы mangle)

Цепочка INPUT

Цепочка INPUT

Цепочка INPUT: аналогия

Правила поведения в поликлинике при прохождении диспансеризации

Цепочка INPUT

Что происходит при прохождении пакета через цепочку правил?

- Изменение заголовка пакета, прежде чем он попадет к локальному процессу (таблица mangle)
- Фильтрация входящего трафика (таблица filter)
- Передача специфичным системам принудительного контроля доступа (security) Данная таблица появляется только с использованием возможностей SELinux
- Иногда необходимо обработать два идентичных потока из разных зон, когда получателем выступает машина с фаерволом. В таких случаях в цепочке INPUT используется таблица nat

Цепочка FORWARD

Цепочка FORWARD

Цепочка FORWARD: аналогия

Проходная на режимную территорию

Цепочка FORWARD

Правила в цепочке FORWARD

- В исключительных случаях вносить изменение в заголовок транзитного пакета
- Фильтрация трафика, идущего в обоих направлениях (в локальную и внешнюю сеть)

Итоги темы

- Bce входящие пакеты, независимо от их источника, обязательно проходят через цепочку PREROUTING.
 В этой цепочке можно отключать отслеживание conntrack через таблицу raw
- (2) В цепочке INPUT обрабатываются пакеты, предназначенные для локальной машины. В большинстве случаев достаточно правил в таблицах mangle и filter
- Обработку промежуточного трафика обеспечивает цепочка FORWARD. Необходимо тщательно проверять правила этой цепочки, потому что они применяются как к исходящему клиентскому, так и входящему внешнему потоку

Цепочки iptables: OUTPUT, POSTROUTING

Цели видео

- Узнать о прохождении пакетами цепочек OUTPUT, POSTROUTING
- Разобраться с особенностями управления трафиком, применяемыми на данных этапах

Цепочка OUTPUT

Цепочка OUTPUT

Цепочка OUTPUT

Правила цепочки OUTPUT предназначены для:

- Управления отслеживанием (таблица raw), как то: задать зону conntrack для пакета, отменить, настроить, ограничить отслеживание и т.д.
- Внесение изменений в заголовок исходящего пакета (таблица mangle)
- Повторения в случае необходимости подмены адресов (IP, порт TCP) для локально созданных пакетов (таблица nat)
- Обычной (таблица filter) и усиленной (таблица security) фильтрации исходящих пакетов

Цепочка POSTROUTING

Цепочка POSTROUTING

Цепочка POSTROUTING

Правила цепочки POSTROUTING предназначены для:

- Внесения изменения в заголовок исходящего или транзитного пакета/сегмента уже после того, как принято последнее решение о маршрутизации (таблица mangle)
- Замены адреса отправителя (Source Network Address Translation), проводить операции маскарадинга (таблица nat)

Итоги

- Правила цепочки OUTPUT обрабатывают все пакеты, созданные на локальной машине.
- Через правила цепочки POSTROUTING проходят весь исходящий и транзитный трафик для получателей во внутренней, внешней сетях, а также сгенерированный локальными процессами и предназначенный другим локальным процессам

Синтаксис iptables

Цели видео

- Ознакомиться с синтаксисом iptables
- Узнать об особенностях добавлений правил
- Обзорно поговорить об аналоге iptables для L2-сетей

Утилита netstat

позволяет смотреть состояния соединений, таблиц маршрутизации, чисто сетевых интерфейсов и статистику по протоколам

Посмотреть слушает ли сервер порт 22

netstat -an | grep ":22"

Посмотреть слушает ли сервер порт 22

netstat -an | grep ":22"

Посмотреть все сокеты с состоянием LISTEN netstat -

Посмотреть слушает ли сервер порт 22

netstat -an | grep ":22"

Посмотреть все сокеты с состоянием LISTEN netstat -

Узнать статистику для каждого протокола netstat -s

Посмотреть слушает ли сервер порт 22

netstat -an | grep ":22"

Посмотреть все сокеты с состоянием LISTEN netstat -

Узнать статистику для каждого протокола netstat -s

Посмотреть руководство по netstat man netstat

Для работы с iptables всегда необходимы повышенные привилегии

Шаблон работы с iptables

iptables [-t table] command [match] [target/jump]

Шаблон работы с iptables

iptables [-t table] command [match] [target/jump]

-t – указывает на таблицу (raw, mangle, nat, security), по умолчанию без указания параметра выбирается таблица filter

[match] — задает критерии проверки, по которым определяется подпадает ли пакет под действие этого правила или нет

[target] -

указывает, какое действие должно быть выполнено при условии выполнения критериев в правиле При прохождении пакетом цепочек, в которых Netfilter ищет совпадение с правилом, необходимо придерживаться принципов

Принципы в работе c iptables

1

Чем выше правило (меньше порядковый номер), тем раньше оно будет обработано, поэтому порядок правил имеет огромное значение

2

Если ни одно правило не подошло, будет выполнено действие по умолчанию

Важно

При начальной настройке всегда нужно задавать политику обработки пакетов по умолчанию для каждой цепочки

Например:

sudo iptables -P INPUT DROP sudo iptables -P FORWARD DROP

При работе с iptables всегда приходится обращаться к просмотру содержимого таблиц, для получения информации о текущих настройках

Команда для просмотра таблиц iptables

1

sudo iptables -nvL -t raw

(3)

sudo iptables -nvL -t nat

(2)

sudo iptables -nvL -t mangle

4

sudo iptables -nvL -t filter

Если не указать имя таблицы, команда выдаст содержимое таблицы filter

Способы управления порядком правил

Пример добавления правила iptables

Необходимо разрешить подключение к локальной машине на порт 22 из локальной сети 192.168.0.0/24

Используем команду:

sudo iptables -A INPUT -p tcp --dport 22 -m state \

--state NEW,ESTABLISHED -s 192.168.0.0/24 -j ACCEPT

Пример добавления правила iptables

Используем команду:

```
sudo iptables -A INPUT -p tcp --dport 22 -m state \
--state NEW,ESTABLISHED -s 192.168.0.0/24 -j ACCEPT
```

-A INPUT — (аррепd, добавить) указывает цепочку (например, INPUT) для добавления правила
-p tcp — указываем сетевой протокол (например, tcp или udp)
--dport 22 — порт назначения пакетов
-m state — критерий, свойство пакета, которое мы хотим сопоставить (например, state)
--state NEW, ESTABLISHED — состояние(я) пакета для соответствия
-s 192.168.0.0/24 — (source, источник) IP-адрес и маска источника, из которого исходят пакеты

-i ACCEPT – цель или что делать с пакетами (например, ACCEPT, DROP, REJECT и т. д.)

Ebtables

средство для фильтрации пакетов для программных мостов Linux, работает преимущественно на втором

(канальном) уровне модели OSI

Обработка трафика

Ebtables предназначена для фильтрации трафика в bridge

Например

Чтобы отбросить трафик от конкретного MAC адреса в ebtables необходима следующая команда:

ebtables -A INPUT -s 08:00:27:47:88:CE -j DROP

Вариант, который мы использовали в iptables:

sudo iptables -A INPUT -m mac --mac-source 08:00:27:47:88:CE -j DROP

Итоги темы

- Всегда важно устанавливать правила по умолчанию для тех пакетов, которые не будут соответствовать ни одному правилу в цепочке
- 2 Если при операции с цепочкой не указать таблицу назначения, действие будет применено к таблице filter
- При добавлении правил необходимо помнить о дуплексной природе взаимодействия и при необходимости добавлять правила и для входящего и для исходящего потока

Настройка доступа по порту с помощью iptables

Цели темы

- Получить практический навык настройки файрвола
- Объединить на практике работу NAT и Firewall
- Познакомится с различными нюансами работы с iptables

Исходные данные

- Ноутбук подключён к сети 192.168.2.0 и на нём установлен VirtualBox
- vm1 подключена к сети 192.168.2.0 (enp0s3) и к виртуальной сети 192.168.42.0 (enp0s8)
- vm2 подключена только к сети 192.168.42.0
- Сеть 192.168.2.0 выход в интернет
- Сеть 192.168.42.0 виртуальная сеть Virtual Вох
- vm1 в сети 42.0 имеет IP 192.168.42.1
- vm2 в сети 42.0 имеет IP 192.168.42.31

Блокируем порт извне

К примеру, мы хотим закрыть доступ извне к какомуто порту.

Для этого в таблицу INPUT нам необходимо добавить условие, и соответствующее для него действие:

sudo iptables -A INPUT -p tcp --dport 22 -j DROP

После этого любое подключение из любого источника к текущему хосту на порт 22 будет заблокировано

sudo iptables -A INPUT -p tcp --dport 22 -j ACCEPT

После этого любое подключение из любого источника к текущему хосту на порт 22 будет разрешено

Настраиваем NAT маскарадинг

Сделаем так, чтобы трафик с vm2 выходил в интернет

```
# Ha vm1
# Включаем IP форвардинг в ядре Linux
cat /proc/sys/net/ipv4/ip_forward # Проверяем включён ли ip форвардинг
sudo nano /proc/sys/net/ipv4/ip_forward # Изменяем на 1 если было 0
# Разрешаем форвардинг уже установленных соединений
sudo iptables -A FORWARD -j ACCEPT -m conntrack --ctstate \
ESTABLISHED, RELATED -m comment --comment "established traffic"
# Разрешаем форвардинг новых соединений с интерфейса enp0s8 на
enp0s3
sudo iptables -A FORWARD -j ACCEPT -i enp0s8 -o enp0s3 \
-m comment --comment "forward"
# Включаем маскарадинг всех соединений идущих через enp0s3
sudo iptables -t nat -A POSTROUTING -o enp0s3 -j MASQUERADE \
-m comment --comment "masquerade"
# Чтобы ip_forward сохранился после перезагрузки, пригодится команда:
sudo sysctl -w net.ipv4.ip_forward=1
# Ha vm2
ping 8.8.8.8
```


Пробрасываем порт

Сделаем так, чтобы порт 22 vm2 был доступен ноутбуку по адресу 192.168.2.190:44322

```
#Пробрасываем трафик с "публичного" IP шлюза порт 44322 на IP адрес 192.168.42.31 порт 22 sudo iptables -t nat -A PREROUTING -d 192.168.2.190 -p tcp \ --dport 44322 -j DNAT --to-destination 192.168.42.31:22 # Разрешаем пропускать трафик с enp0s3 через enp0s8 на 192.168.42.31 порт 22 sudo iptables -I FORWARD 1 -i enp0s3 -o enp0s8 -d 192.168.42.31 \ -p tcp -m tcp --dport 22 -j ACCEPT
```

На ноутбуке остаётся через Putty подключиться по SSH на IP 192.168.2.190 на порт 44322

iptables блокировка по MAC

Обозначим критерием блокировки трафика – МАС адрес. В случае если аппаратный адрес сетевой карты подключающегося устройства будет соответствовать указанному в правиле, оно будет отбрасывать трафик

#Отбрасываем трафик если он исходит от MAC адреса 08:00:27:47:88:се sudo iptables -A INPUT -m mac --mac-source 08:00:27:47:88:СЕ -j DROP #Отбрасываем трафик если он исходит НЕ от MAC адреса 08:00:27:47:88:се sudo iptables -A INPUT -m mac! --mac-source 08:00:27:47:88:СЕ -j DROP

Теперь попытки пинга vm1 с vm2 или какие-либо подключения непосредственно к шлюзу обречены на неудачу

iptables блокировка по MAC

Обозначим критерием блокировки трафика — МАС адрес. В случае если аппаратный адрес сетевой карты подключающегося устройства будет соответствовать указанному в правиле, оно будет отбрасывать трафик

#Отбрасываем трафик если он исходит от MAC адреса 08:00:27:47:88:ce sudo iptables -A INPUT -m mac --mac-source 08:00:27:47:88:CE -j DROP #Отбрасываем трафик если он исходит HE от MAC адреса 08:00:27:47:88:ce sudo iptables -A INPUT -m mac! --mac-source 08:00:27:47:88:CE -j DROP

Теперь попытки пинга vm1 с vm2 или какие-либо подключения непосредственно к шлюзу обречены на неудачу

Итоги темы

- Рассмотрели настройку firewall iptables для Linux
- Узнали как:

превратить виртуальную машину с двумя сетевыми интерфейсами в шлюз

перенаправлять порты в локальную сеть

блокировать трафик по МАС

фильтровать L2 трафик

Итоги занятия

Итоги занятия

- Познакомились с протоколом Firewall
- Изучили возможности межсетевого экрана Netfilter и его утилиты iptables
- Научились управлять трафиком с помощью собственного небольшого роутера
- Научились создавать базовые правила в iptables

Домашнее задание

Давайте посмотрим вашу практику после лекции

- (1) Практика: домашнее задание (обязательное) с проверкой от преподавателя
- (2) Вопросы по домашнему заданию задавайте в чате учебной группы
- Задачи можно сдавать по частям. Зачёт по домашней работе ставят после того, как приняты все задачи

Спасибо за внимание

