Chapter 8, Problem 4(b)

```
#Problem2(b)
1
2
    par(xpd = NA)
    plot(NA, NA, type = "n", xlim = c(-2, 2), ylim = c(-3, 3), xlab = "X1", ylab = "X2")
3
4
    # plot X2 < 1
    lines(x = c(-2, 2), y = c(1, 1))
    \# plot X1 < 1 with X2 < 1
    lines(x = c(1, 1), y = c(-3, 1))
8
   text(x = (-2 + 1)/2, y = -1, labels = c(-1.8))
9
    text(x = 1.5, y = -1, labels = c(0.63))
   # plot X2 < 2 with X2 >= 1
10
    lines(x = c(-2, 2), y = c(2, 2))
11
    text(x = 0, y = 2.5, labels = c(2.49))
12
    # plot X1 < 0 with X2<2 and X2>=1
13
    lines(x = c(0, 0), y = c(1, 2))
14
   text(x = -1, y = 1.5, labels = c(-1.06))
15
16 text(x = 1, y = 1.5, labels = c(0.21))
```


- 4. This problem uses the diabetes data in lars package. Specifically, use the x2 design matrix, and the y outcome. First split the data into training and test sets of size 300 and 142 each, using 1234 as the random seed. Make sure to fit the models on a training set and to evaluate their performance on a test set.
 - (a) Apply boosting, bagging, and random forests to predict the outcome. Compare the performance of these methods to linear regression with and without penalties.

(b) Repeat the previous task 10 times, using random seeds 1 to 10. Summarize the ranking of the
methods in the 10 different runs.
Will finish it sooner