4. IMPLEMENTASI DAN PENGUJIAN

4.1 Instalasi Alat

Instalasi alat ini dilakukan agar alat dapat beroprasi dengan maksimal dengan cara tempatkan alat pada *green house*, disarankan menempatkan sensor pada alat ini di tengah *green house* supaya efektivitas alat dapat bekerja secara maksimal dan optimal.

Gambar 3. 10 Instalasi Perancangan Alat

4.2 Cara Pengoperasian Alat

Berikut ini merupakan tahapan – tahapan cara untuk pengoperasian alat:

- Membuka aplikasi Arduino Cloud melalui website/aplikasi yang sudah di unduh melalui Playstore dan App Store
- 2. Mendownload software pada Arduino Cloud
- 3. Menghubungkan aktivator +5V dengan mikrokontroler untuk mengaktifkan alat dan aktivator +12V untuk mengaktifkan pompa celup.
- 4. Proses menghubungkan NodeMCU ke internet.
- 5. Setelah terhubung ke internet maka alat siap digunakan.
- 6. Update Arduino Cloud sinkronisasi board dan device
- 7. Setelah proses sinkronasi selesai maka alat siap digunakan
- 8. Selanjutnya proses monitoring bisa dilakukan di handphone dan juga di komputer.

4.3 Uji Coba dan Data Pengamatan

Uji coba dan pengamatan pada *green house* dilakukan selama 3 hari dilakukan untuk monitoring yang diambil dari sensor yang dipakai sebagai inputan yaitu Soil Moisture dan DHT11 kemudian mengambil data dan di tampilkan Arduino Cloud sebagai outputnya.

4.3.1 Uji Coba dan Pengamatan Pada Alat

Uji coba dan pengamatan pada alat langsung di *Green House* yang dilakukan, pengamatan yang dilakukan dengan monitoring pada suhu, kelembaban udara, dan kelembaban tanah.

Tabel 4. 1 Uji Coba Pada Alat

Suhu	Kelembaban	Kelembaban	Kondisi	Votewengen
Sullu	udara	tanah	relay	Keterangan
27°C Suhu Ideal	55%	56% Tanah Kering	Aktif	Pompa menyala karena kelembaban tanah di bawah 60%
27°C Suhu Ideal	52%	81% Tanah Basah	Mati	Pompa mati karena kelembaban tanah lebih dari 80%
28°C Suhu Ideal	41%	74% Tanah Ideal	Nyala	Pompa mati karena kondisi kelembaban tanah masih dalam kondisi ideal berada di rentang 60% - 80%
28°C Suhu Ideal	41%	62% Tanah Ideal	Mati	Pompa mati karena kondisi kelembaban tanah masih dalam kondisi ideal berada di rentang 60% - 80%
27°C Suhu Ideal	58%	55% Tanah Kering	Aktif	Pompa menyala karena kelembaban tanah di bawah 60%
32°C Suhu Tidak Ideal	76%	82% Tanah Basah	Mati	Pompa mati karena kelembaban tanah lebih dari 80%

Suhu	Kelembaban	Kelembaban	Kondisi	Vatavanaan
Sunu	udara	tanah	relay	Keterangan
21°C	60%	70% Tanah Ideal	Mati	Pompa mati karena
				kondisi
				kelembaban tanah
Suhu Ideal				masih dalam
Sunu ideai				kondisi ideal
				berada di rentang
				60% - 80%
	53%	59%		Pompa menyala
23°C Suhu Ideal		Tanah Kering	Aktif	karena kelembaban
				tanah di bawah
				60%
24°C	45% Ta	81% Tanah Basah	Mati	Pompa mati karena
Suhu Ideal				kelembaban tanah
Sunu ideai				lebih dari 80%
	47%	75% Tanah Ideal	Mati	Pompa mati karena
				kondisi
25°C Suhu Ideal				kelembaban tanah
				masih dalam
				kondisi ideal
				berada di rentang
				60% - 80%

Pada percobaan alat dilakukan sebanyak 10 kali kemudian dari hasil pengujian tersebut di dapat hasil pengukuran suhu dan kelembaban udara yang 90% dalam kondisi ideal dan 10% dalam kondisi tidak ideal, selain itu di dapat juga hasil pengukuran dari kelembaban tanah dan relay yang dimana terdapat pompa menyala karena kelembaban tanah di bawah 60% dengan kondisi relay aktif sebanyak 3 dari 10 percobaan yang berarti 30%, serta pompa mati karena kondisi kelembaban tanah masih dalam kondisi ideal berada di rentang 60% - 80% dengan kondisi relay mati sebanyak 4 dari 10 percobaan yang berarti 40% dan pompa mati karena kelembaban

tanah lebih dari 80% dengan kondisi relay mati sebanyak 3 dari 10 sebanyak 3 dari 10 percobaan yang berarti 30%.

4.3.2 Uji Coba dan Pengamatan Hari Pertama Pada Aplikasi

Uji coba dan pengamatan pada Green House yang dilakukan pada hari pertama, pengamatan yang dilakukan dengan monitoring pada suhu, kelembaban udara, dan kelembaban tanah.

3 Juli 2024 Suhu Kelembaban Udara Kelembaban Tanah Jam 26,37°C 48% 59% 10 27,29°C 49% 71% 11 27,10°C 74% 47% 12 32,06°C 59% 48% 13 26,09°C 14 49% 72% 27,84°C 43% 78% 15

Tabel 4. 2 Hasil Uji Pengamatan Green House Hari Pertama

Gambar 4. 1 Tangkapan layar pada website Arduino Cloud

Pada hari pertama percobaan aplikasi dilakukan sebanyak 6 kali kemudian dari hasil pengujian tersebut di dapat hasil pengukuran suhu dan kelembaban udara yang di dapat dari hasil pengujian 83% dalam kondisi ideal dan 17% dalam kondisi

kepanasan, selain itu di dapat juga hasil pengukuran dari kelembaban tanah yang di dapat dari hasil pengujian 66% dalam kondisi ideal dan 34% dalam kondisi kering.

4.3.3 Uji Coba dan Pengamatan Hari Kedua Pada Aplikasi

Uji coba dan pengamatan pada Green House yang dilakukan pada hari kedua, pengamatan yang dilakukan dengan monitoring pada suhu, kelembaban udara, dan kelembaban tanah.

4 Juli 2024 Kelembaban Tanah Suhu Kelembaban Udara Jam 32,57°C 55% 70% 10 27,29°C 52% 76% 11 31,90°C 59% 41% 12 28,30°C 41% 76% 13 27,10°C 14 58% 75% 27°C 41% 75% 15

Tabel 4. 3 Hasil Uji Pengamatan Green House Hari Kedua

Gambar 4. 2 Tangkapan layar pada website Arduino Cloud Hari Kedua

Pada hari kedua percobaan aplikasi dilakukan sebanyak 6 kali kemudian dari hasil pengujian tersebut di dapat hasil pengukuran suhu dan kelembaban udara yang di dapat dari hasil pengujian 66% dalam kondisi ideal dan 34% dalam kondisi

kepanasan, selain itu di dapat juga hasil pengukuran dari kelembaban tanah yang di dapat dari hasil pengujian 83% dalam kondisi ideal dan 17% dalam kondisi kering.

4.3.4 Uji Coba dan Pengamatan Hari Ketiga Pada Aplikasi

Uji coba dan pengamatan pada Green House yang dilakukan pada hari ketiga, pengamatan yang dilakukan dengan monitoring pada suhu, kelembaban udara, dan kelembaban tanah.

5 Juli 2024			
Jam	Suhu	Kelembaban Udara	Kelembaban Tanah
10	27,95°C	76%	78%
11	21,86°C	58%	59%
12	31,90°C	53%	59%
13	24,50°C	45%	71%
14	32,05°C	47%	58%
15	24,30°C	44%	75%

Tabel 4. 4 Hasil Uji Pengamatan Green House Hari Ketiga

Gambar 4. 3 Tangkapan layar pada website Arduino Cloud Hari Ketiga

Pada hari ketiga percobaan aplikasi dilakukan sebanyak 6 kali kemudian dari hasil pengujian tersebut di dapat hasil pengukuran suhu dan kelembaban udara yang di dapat dari hasil pengujian 66% dalam kondisi ideal dan 34% dalam kondisi

kepanasan, selain itu di dapat juga hasil pengukuran dari kelembaban tanah yang di dapat dari hasil pengujian 50% dalam kondisi ideal dan 50% dalam kondisi kering.

4.3.5 Hasil Uji Coba Suhu Pada Aplikasi

Perbandingan hasil uji coba suhu pada sensor DHT11 pada Green House yang dilakukan selama 3 hari untuk mengukur seberapa efektivitas dan efesiensi dari alat yang telah di buat.

Gambar 4. 4 Grafik Perbandingan Suhu Pada Green House

4.3.6 Hasil Uji Coba Kelembaban Udara Pada Aplikasi

Perbandingan hasil uji coba kelembaban udara pada sensor DHT11 pada Green House yang dilakukan selama 3 hari untuk mengukur seberapa efektivitas dan efesiensi dari alat yang telah di buat.

Gambar 4. 5 Grafik Perbandingan Kelembaban Udara Pada Green House

4.3.7 Hasil Uji Coba Kelembaban Tanah Pada Aplikasi

Perbandingan hasil uji coba DHT11 dan pengamatan pada Green House yang dilakukan selama 3 hari untuk mengukur seberapa efektivitas dan efesiensi dari alat yang telah di buat.

Gambar 4. 6 Grafik Perbandingan Kelembaban Tanah Pada Green House

4.3.8 Hasil Uji Coba Relay Hari Pertama Pada Aplikasi

Uji coba dan pengamatan pada Green House yang dilakukan pada hari pertama, pengamatan yang dilakukan dengan monitoring pada Relay.

Tabel 4. 5 Hasil Uji Relay Hari Pertama

3 Juli 2024			
Jam	Kondisi	Kelembaban Tanah	
10	Aktif	59%	
11	Mati	71%	
12	Mati	74%	
13	Aktif	59%	
14	Mati	72%	
15	Mati	78%	

Pada uji coba relay hari pertama di dapat hasil pengukuran dari kelembaban tanah yang di dapat dari hasil pengujian 66% dalam kondisi relay mati karena masih dalam kondisi kelembaban tanah yang ideal, dan 34% dalam kondisi relay aktif karena dalam kondisi kelembaban tanah kering.

4.3.9 Hasil Uji Coba Relay Hari Kedua Pada Aplikasi

Uji coba dan pengamatan pada Green House yang dilakukan pada hari kedua, pengamatan yang dilakukan dengan monitoring pada relay.

Tabel 4. 6 Hasil Uji Relay Hari Kedua

4 Juli 2024			
Jam	Kondisi	Kelembaban Tanah	
10	Mati	70%	
11	Mati	76%	
12	Aktif	59%	
13	Mati	76%	
14	Mati	75%	
15	Mati	75%	

Pada uji coba relay hari kedua di dapat hasil pengukuran dari kelembaban tanah yang di dapat dari hasil pengujian 83% dalam kondisi relay mati karena masih dalam kondisi kelembaban tanah yang ideal, dan 17% dalam kondisi relay aktif karena dalam kondisi kelembaban tanah kering.

4.3.10 Hasil Uji Coba Relay Hari Ketiga Pada Aplikasi

Uji coba dan pengamatan pada Green House yang dilakukan pada hari ketiga pengamatan yang dilakukan dengan monitoring pada relay.

Tabel 4. 7 Hasil Uji Relay Hari Ketiga

5 Juli 2024			
Jam	Kondisi	Kelembaban Tanah	
10	Mati	77%	
11	Aktif	59%	
12	Aktif	59%	
13	Mati	71%	
14	Aktif	58%	
15	Mati	75%	

Pada uji coba relay hari ketiga di dapat hasil pengukuran dari kelembaban tanah yang di dapat dari hasil pengujian 50% dalam kondisi relay mati karena masih dalam kondisi kelembaban tanah yang ideal, dan 50% dalam kondisi relay aktif karena dalam kondisi kelembaban tanah kering.