Superstore Sales Prediction

Capstone Project

Retail Riddle Crew Angelina Neunzig, Klaus Finkbeiner, Ricarda Albers 19.09.2023

Our Target perspective

Mission:

Predicting sales
 more precisely than
 the current way of
 predicting
 (baseline model)

Goals:

- Allow to better manage inventory
- Demand-oriented order management
- Ultimately increase sales and avoid money loss

Data comes in

10 Features

Mean: 17.639 \$
Many outliers

Maximum: 693.099\$

-							
	Store	Department	Date	Storesize	Weather		Sales
						•••	
						•••	

420.000 Observations

Feb 2010

Oct 2012

Seasonality shown by weekly sales in total over time

Our journey predicting sales

Deep dive into data

Feature Engineering

Modelling & Prediction

Weekly sales by store size

- Correlation between weekly sales and store size (pearson's r: 0.24)
- No correlation between other features (fuel price, temperature, ...)

Top and bottom stores' sales per year

Main explanation:

- Size of stores
- Amount of departments

Top and bottom departments'

sales per year

Top performers:

- 92 Grocery Dry Goods95 Grocery & Snacks38 Pharmacy

Bottom performers:

- 48 Firearms
- 48 Firearm54 Jewelry60 Concept
- 60 Concept Stores and Stamps

Our journey predicting sales

Deep dive into data

Feature Engineering

Modelling & Prediction

Feature Engineering

- Introduce new features to improve predictions
 - Sliding window technique for time series
- Introduce new features to consider seasonal patterns
 - Christmas
 - Thanksgiving

Our journey predicting sales

Deep dive into data

Feature Engineering Modelling & Prediction

Modelling

- Baseline model: consider what happened last year
- Evaluation metric: average error between predictions and actual data (RMSE)
- Improved modelling: by using different algorithms

Best model (Extra Trees) compared to baseline model

Prediction during test period

- Cumulative weekly sales during test period: ~ 2 Billion \$
- Error in predictions with baseline model:
 ~ 465 Million \$
- Error in predictions with best model:~ 347 Million \$

Enhancement in test period predictions by \$118 Million.

Future Work

- Feature engineering to deal better with seasonal patterns
- Applying time series algorithm
- Filter by stores with outlying patterns and model separately

Thank you for your attention

Our journey predicting sales

Knowing our data

Exploratory Data Analysis

Feature Engineering

Modelling

Goals achieved

- Better planning of inventory
- Decrease of losses during the storage of perishable foods
- Reduction of the storage of currently not needed goods

Total sales per year by department

per year by department top 3 and bottom 3

SICHERHEITSKOPIE

Model comparison

RMSE	Baseline model	Extra Tree	Mean		dard ation	
train		799,85	17.639,94	23.53	33,86	
validation	4.172,0	1703,86	17.342,50	22.89	93,48	
Test	4.056	3.031	17.370	22.53	30,90	

we can improve our prediction by about XXXUSD for the validation data, while an improvement of about XXXUSD was achieved for the test period. This means an improvement of the prediction in

Comparison of Baseline Model and best model comparison

Test period	Baseline	Best model	Mean Sales	
from Jan 2012 to Okt 2012	model	Extra Tree	per week	
RMSE	4.056\$	3.031\$	17.370\$	

Goals achieved

- Better planning of inventory
- Decrease of losses during the storage of perishable foods
- Reduction of the storage of currently not needed goods

Feature engineering to handle time series data

Store	Department	Date		Sales	Feature 1	Feature 2

Total sales

per year by store top 3 and bottom 3

Main explanation:

- Size of stores
- Amount of departments

Top 3 and bottom 3 total sales per year by department

Unsorted, with decimals

Top performers:

- 92 Grocery Dry Goods 95 DSD Grocery & Snacks
- 38 Pharmacy

Bottom performers:

- 48 Firearms
- 54 Jewelry
 - 60 Concept Stores and Stamps

Top 3 and bottom 3 total sales per year by store

Unsorted, with decimals

Main explanation:

- Size of stores
- Amount of departments

Top 3 and bottom 3 total sales per year by department

Top performers:

- 92 Grocery Dry Goods
 95 DSD Grocery & Snacks
 38 Pharmacy
 48 Firearms
 54 Jewelry
 60 Concept States

Bottom performers:

- 60 Concept Stores and Stamps

Model: Extra Trees

Evaluation Metric: RMSE

Result: 6 % better prediction of weekly sales

 \longrightarrow

112 Mio \$

Superstore Sales Prediction

