

Cell constant and Electrochemical Cells

- 1. (d) In the absence of electric field the ions in the solution move randomly due to thermal energy.
- 2. (d) Since E_{A/A^-}^o has large negative value, the tendency of A to be reduced to A^- is very small. In other words tendency of A^- to be oxidized to A is very large.
- 3. (d) Practically only 60-70% efficiency has been attained.
- **4.** (b) $K = \frac{1}{R} \times \text{Cell constant}$ Cell constant $= K \times R$; $0.012 \times 55 = 0.66 \text{ cm}^{-1}$.
- 5. (b) In common dry cell.

 Anode: $Zn \rightarrow Zn^{++} + 2e^{-}$ Cathode: $2MnO_2 + Zn^{++} + 2e^{-} \rightarrow ZnMn_2O_4$.
- **6.** (a) Because the reduction potential of Cu is highest
- 7. (c) Overall reaction $2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O(l)$.
- 8. Answer: (b) H₂SO₄ is regenerated

Explanation:

- During charging, electrical energy drives the reverse of the discharge reactions.
- PbSO₄ on the electrodes is converted back to Pb (on the negative plate) and PbO₂ (on the positive plate), and H₂SO₄ concentration in the electrolyte increases.
- This regeneration of sulfuric acid is why a charged lead-acid battery has a stronger electrolyte.
- 9. (b) During charging of a lead storage battery, the reaction at the anode and cathode are

Anode: $PbSO_4 + 2e^- \rightarrow Pb + SO_4^{2-}$

Cathode: $PbSO_4 + 2H_2O \rightarrow PbO_2 + 4H^+ + SO_4^{2-} + 2e^-$ In both the reactions H_2SO_4 is regenerated.

10. Answer: (b) Reduction

Explanation:

- At the cathode, cations gain electrons (reduction occurs).
- In dilute H_2SO_4 , H^+ ions are reduced to form hydrogen gas: 2 $H^+ + 2 e^- \rightarrow H_2$
- At the anode, water is oxidized:
 2 H₂O → O₂ + 4 H⁺ + 4 e⁻

11. (c)
$$2NH_4Cl + Zh \rightarrow 2NH_3 + ZhCl_2 + H_2 \uparrow$$
.

- **13.** (a) When platinum electrodes are dipped in dilute solution H_2SO_4 than H_2 is evolved at cathode.
- **14.** (a) Electrode on which oxidation occurs is written on *L.H.S.* and the other on the *R.H.S.* as represented by

ESTD: 2005

$$Zn \mid Zn^{2+} \mid \mid Cu^{2+} \mid Cu$$
.

- **15.** (d) $Zn^{2+} + 2e^{-} \rightarrow Zn$. It shows reduction reaction.
- **16.** (c) In the electrolytic cell electrical energy change into chemical energy.
- **17.** (c) In the cell $Z_{n}|Z_{n}|^{2+}|C_{u}|^{2+}|C_{u}|$ the negative electrode (anode) is Z_{n} . In electrochemical cell representation anode is always written on left side while cathode on right side.
- **18.** (a) Galvanic cell converts the chemical energy into electrical energy.

IIT-JEE CHEMISTRY

19. (b) Fuel-cells are used to provide power and drinking water to astronauts in space programme.

21. (b)
$$E_{\text{cell}}^o = \frac{2.303 \ RT}{nF} \log K = \frac{0.0591}{n} \log K_c \ at \ 298 \ K$$
.

22. (b)
$$Cu^{2+} + 2e^{-} \rightarrow Cu$$

Reductio

- **24.** (b) The cell in which *Cu* and *Zn* roads are dipped in its solutions called Daniel cell.
- **25.** (c) $K = C \times \text{Cell constant} = \frac{K}{C} = \frac{0.2}{0.04} = 5 \text{ cm}^{-1}$.

