Computational Astrophysics Maximum Likelihood --2

PART-A (already done)

Last lab, we have estimated the parameters using direct MLE using angular distribution of electron scattering experiments with a probability distribution function : $p(\cos \theta) = N(1 + \alpha \cos^2 \theta)$, where θ is the angle between incident and scattered direction.

PART-B

For a better estimation of error in parameter, write a Monte Carlo code to generate events using the normalized probability distribution $p(\cos \theta) = N(1 + \alpha \cos^2 \theta)$. Take $\cos \theta$ in [-1,1], and $p(\cos \theta)$ in [0, $N(1+\alpha)$].

- (i) Generate 500 accepted events with α = 5.5 and draw a histogram of probability distribution with 20 bins between [-1, 1]. Plot the theoretical probability distribution on top of the simulated histogram. Calculate the mean and variance of the generated events and compare that with theoretical values.
- (ii) Redo (i) with 4000 accepted events.
- (iii) Calculate the likelihood function (\mathcal{L}) for 500 and 4000 accepted events in (i & ii) by changing α between [0, 25]. Value of likelihood function may be extremely small and hence better to calculate -log(\mathcal{L}).
- (iv) Plot $-\log(\mathcal{L})$ vs α for (i) and (ii) in the same figure. As they may have very different values, scale $-\log(\mathcal{L})$ with respect to the minimum vale in each case.
- (v) Estimate the parameter and its uncertainty. Over plot the scaled $-\log(\mathcal{L})$ in (iv) and result from part-A.

Note: Mentioned the method used to minimize -log(L).