

Лабораторная работа 5.5.5 Компьютерная сцинтилляционная γ -спектрометрия

Студенты:

Панченко Наталья
Исламов Сардор
Физтех-школа физики и исследований им. Ландау
Московский Физико-Технический Институт

Аннотация. В данной работе предполагается изучить спектр гамма-излучений для образцов 22 Na, 137 Cs, 60 Co, 241 Am, 152 Eu найти для них пики полного поглощения и обратного рассеяния.

Теоретическое введение

Основными процессами взаимодействия гамма-излучения с веществом являются фотоэффект, эффект Комптона и образование электрон-позитронных пар.

Фотоэффект - процесс взаимодействия гамма-кванта с электроном, связанным с атомом, при котором электрону передается вся энергия гамма-кванта. При этом электрону сообщается кинетическая энергия:

$$T_e = E_{\gamma} - I_i \tag{1}$$

где E_{γ} – энергия гамма-кванта, I_{i} – потенциал ионизации i-той оболочки атома.

Эффект Комптона - упругое рассеяние фотона на свободном электроне, сопровождающееся изменением длины волны фотона (реально этот процесс происходит на слабо связанных с атомом внешних электронах). Максимальная энергия образующихся комптоновских электронов соответствует рассеянию гамма-квантов на 2π и равна

$$E_{max} = \frac{\hbar\omega}{1 + \frac{mc^2}{2\hbar\omega}} \tag{2}$$

Процесс образования электрон-позитронных пар. Если процесс образования пары идет в кулоновском поле ядра, то энергия образующегося ядра отдачи оказывается весьма малой, так что пороговая энергия гамма-кванта E_{limit} , необходимая для образования пары, практически совпадает с удвоенной энергией покоя электрона $E_{limit} \approx 2mc^2 = 1.022$ МэВ. Появившиеся в результате процесса образования пар частицы теряют свою кинетическую энергию на ионизацию среды.

Любой спектр, получаемый с помощью гамма-спектрометра, описывается несколькими компонентами, каждая из которых связана с определенным физическим процессом. Каждый процесс взаимодействия гамма-квантов с веществом (фотоэффект, эффект Комптона и образование электрон-позитронных пар) вносит свой вклад в образование спектра. Помимо этих процессов, добавляются экспонента, связанная с наличием фона, пик характеристического излучения, возникающий при взаимодействии гамма-квантов с окружающим веществом, а также пик обратного рассея- ния, образующийся при энергии квантов $E_{\gamma} \gg mc^2$ в результате рассеяния гамма-квантов на большие углы на материалах конструктивных элементов детектора и защиты и последующего фотоэффекта в сцинтилляторе. Положение пика обратного рассеяния определяется по формуле:

$$E_{formation} = \frac{E}{1 + 2E/mc^2} \tag{3}$$

где E - энергия фотопика.

Экспериментальная установка

Энергетическим разрешением спектрометра называется величина

$$R_i = \frac{\Delta E_i}{E_i} \tag{4}$$

т.е. отношение ширины пика полного поглощения (измеренной на полувысоте) к регистрируемой энергии пика поглощения. Это значение $E_i \propto \overline{n_i}$ — числу частиц на выходе ФЭУ. При этом $\Delta E_i \propto \overline{\Delta n_i} = \sqrt{\overline{n_i}}$ — ширина пика пропорциональна среднеквадратичной флуктуации, которая равна корню из числа частиц. Таким образом, наша формула (4) примет вид

$$R_i = \frac{\text{const}}{\sqrt{E_i}} \tag{5}$$

Рис. 1: Принципиальная схема экспериментальной установки

- 1. Сцинтиллятор
- 2. ФЭУ
- 3. Предусилитель импульсов
- 4. высоковольтный блок питания для ФЭУ
- 5. Блок преобразования аналоговых импульсов с ФЭУ в цифровой код (АЦП)
- 6. Компьютер для сбора данных, их обработки и хранения

Ход работы

Снимем спектры излучения радиоактивных веществ: 22 Na, 137 Cs, 60 Co, 241 Am, 152 Eu и определим для каждого из них номера каналов, отвечающие центрам пиков полного поглощения излучения. По табличным данным проведём линейную аппроксимацию зависимости энергии от номера канала (каллибровку) для данного гамма-спектрометра: $E_i = aN_i + b$ (рис. 2)

Перед дальнейшим анализом спектров приведем спектр фонового шума, полученный при отсутствии образцов (рис. 3).

Используя калибровочный график, определим для всех остальных источников значения энергии пиков полного поглощения E_i , их ширины на половине высоты ΔE_i и энергетическое разрешение R_i . Результаты сведем в табл. 1.

Рис. 2: Калибровочный график

Рис. 3: Фоновый шум

Рис. 4: Спектр источника $^{137}\mathrm{Cs}$

Рис. 5: Спектр источника 22 Na

Рис. 6: Спектр источника 60 Со

Рис. 7: Спектр источника $^{241}{\rm Am}$

Рис. 8: Спектр источника 152 Eu

Источник	N_{i}	ΔN_i	E_i , keV	ΔE_i , keV	$R_i, 10^{-3}$
$^{22}\mathrm{Na}_{1}$	683.1	66.7	510.5	37	72.4
$^{22}\mathrm{Na}_{2}$	1680.2	91.6	1270.0	60	47.2
$^{137}\mathrm{Cs}$	882.65	66.7	662.5	41	61.9
⁶⁰ Co	1554.2	81.15	1174.0	52	44.3
⁶⁰ Co	1764.2	89.03	1334.0	58	43.5
$^{241}\mathrm{Am}$	96.6	23.4	63.8	8	125.4
$^{152}\mathrm{Eu}_{1}$	179.7	28.8	127.1	11.1	87.3
$^{152}\mathrm{Eu}_{2}$	337.1	46.4	246.9	25.5	103.2
$^{152}{\rm Eu}_{3}$	466.1	55.4	345.2	32.4	93.8

Таблица 1: Пики полного поглощения

Проверим справедливость выражения (5), построив зависимость R^2 от величины $\frac{1}{E}$. Как видно из рис. 9, последние две точки (соответствующие пикам для $^{241}\mathrm{Am}$ и $^{152}\mathrm{Eu}_1$) не поддаются аппроксимации прямой. Это может быть связано с большой погрешностью измерений при малых значениях энергии.

Для остальных точек получаем значение const = 1.67 kEv.

Рис. 9: Проверка выражения (5)

Занесем значения энергий обратного рассеяния в таблицу (табл. 2) и построем график ее зависимости от энергии поглощения (рис. 10).

Источник	E_i , keV	E_{rev} , kEv
22 Na	510.5	191.1
$^{137}\mathrm{Cs}$	662.5	198.8
⁶⁰ Co	1334.0	229.8
¹⁵² Eu	127.1	91.8

Таблица 2: Пики полного поглощения

Обратим внимание, что в левой части спектров каждого из образцов наблюдаются узкие пики (для $^{241}{\rm Am}$ — низкий широкий) в районе $E_{\rm Pb}\simeq 81~{\rm kEv}$. Они соответствуют энергии характеристического излучения из свинца, служащего защитой спектрометра от внешнего излучения.

Рис. 10: Зависимость энергии обратного рассеяния от энергии поглощения

Выводы

В ходе работы были изучены спектры гамма-излучений для образцов 22 Na, 137 Cs, 60 Co, 241 Am, 152 Eu и найдены для них пики полного поглощения и обратного рассеяния. Были подтверждены соотношения между энергиями полного поглощения и энергетическим разрешением, а также между энергиями полного поглощения и обратного рассеяния. Помимо этого, по наблюдаемым спектрам излучения образцов определена характеристическая энергия излучения из свинца.