### PreseLinked Stream Data Processing Engines: Facts and Figures

ISWC'2012

# Motivation

### Motivation

- Provide an open benchmarking framework to evaluate the linked stream data processing systems:
  - Functionality test
  - Correctness test
  - Performance test

# Method and Result

## Scenario: Social Network



### Data Generator

- Stream Social network data Generator (S2Gen)
  - Add window to S3G2 (Scalable Structure Correlated Social Graph Generator): slide a window of users along all users, creates social activities for each user
  - Static data: generates the user profiles and the friendship information of all the users

### Parameters

- Generating period: create streams with different sizes for scalability testing
- Maximum number of activities per week: control throughput
- Correlation probabilities: test the quary plan optimization capability

### **Functionality Test**

Table 1: Queries classification

|       | ] | Patterns covered |   |              |   | Q | $N_P$        | N~ | Engines |              |    |    | Patterns covered |          |   |   | Q | $N_P$        | Na | Engines |              |  |      |              |    |    |    |
|-------|---|------------------|---|--------------|---|---|--------------|----|---------|--------------|----|----|------------------|----------|---|---|---|--------------|----|---------|--------------|--|------|--------------|----|----|----|
|       | F | J                | A | $\mathbf{E}$ | N | U | $\mathbf{T}$ | b  | IN P    | 1 <b>v</b> S | CQ | CS | JT               |          | F | J | A | $\mathbf{E}$ | N  | U       | $\mathbf{T}$ |  | TV P | 1 <b>v</b> S | CQ | CS | JT |
| $Q_1$ |   |                  |   |              |   |   |              |    | 1       | 1            |    |    |                  | $Q_7$    |   |   |   |              |    |         |              |  | 7    | 2            |    | ®  | Ø  |
| $Q_2$ |   |                  |   |              |   |   |              |    | 2       | 1            |    |    |                  | $Q_8$    |   |   |   |              |    |         |              |  | 3    | 2            | ×  | ®  | Ø  |
| $Q_3$ |   |                  |   |              |   |   |              |    | 3       | 1            |    |    |                  | $Q_9$    |   |   |   |              |    |         |              |  | 8    | 4            |    | Е  | Ø  |
| $Q_4$ |   |                  |   |              |   |   |              |    | 4       | 1            |    |    |                  | $Q_{10}$ |   |   |   |              |    |         |              |  | 1    | 1            |    |    |    |
| $Q_5$ |   |                  |   |              |   |   |              |    | 3       | 2            |    |    | Ø                | $Q_{11}$ |   |   |   |              |    |         |              |  | 2    | 2            | ×  |    | X  |
| $Q_6$ |   |                  |   |              |   |   |              |    | 4       | 2            |    |    | Ø                | $Q_{12}$ |   |   |   |              |    |         |              |  | 1    | 1            | ×  |    | ×  |

F: filter J: join E: nested query N: negation T: top k U: union A: aggregation S: uses static data

 $N_P$ : number of patterns,  $N_S$ : number of streams, S: syntax error, E: error,  $\emptyset$ : return no answer,  $\times$ : not supported

CQ: CQELS, CS: C-SPARQL, JT: JTALIS

### Correctness Test

Table 2: Output Mismatch,  $|U_{data}| = 219825$ ,  $|S_{pc}| = 102955$ 

|    | Rate: 100 (input elements/sec) |        |       |       |      |       |      |       |                          | Rate: 1000 (input elements/sec) |        |       |       |      |       |      |       |      |
|----|--------------------------------|--------|-------|-------|------|-------|------|-------|--------------------------|---------------------------------|--------|-------|-------|------|-------|------|-------|------|
|    | Output size Mismatch (%)       |        |       |       |      |       |      |       | Output size Mismatch (%) |                                 |        |       |       |      |       |      |       |      |
| Q  | CQ                             | CS     | JT    | CQ—CS |      | CQ—JT |      | CS—JT |                          | CQ                              | CS     | JT    | CQ—CS |      | CQ—JT |      | CS-   | -JT  |
| 1  | 68                             | 604    | 68    | 1.47  | 0.00 | 0.00  | 0.00 | 0.00  | 1.47                     | 68                              | 662    | 68    | 1.47  | 0.00 | 0.00  | 0.00 | 0.00  | 1.47 |
| 2  | 68                             | 124    | 68    | 1.47  | 0.00 | 0.00  | 0.00 | 0.00  | 1.47                     | 68                              | 123    | 68    | 1.47  | 0.00 | 0.00  | 0.00 | 0.00  | 1.47 |
| 3  | 533                            | 1065   | 533   | 0.00  | 0.00 | 0.00  | 0.00 | 0.00  | 0.00                     | 533                             | 1065   | 533   | 0.00  | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 |
| 4  | 11948                          | 125910 | 1442  | 1.69  | 1.10 | 87.93 | 0.00 | 78.91 | 0.07                     | 11945                           | 127026 | 4462  | 1.54  | 1.12 | 62.65 | 0.00 | 52.79 | 0.02 |
| 10 | 28021                          | 205986 | 28021 | 14.96 | 0.04 | 87.66 | 0.00 | 44.67 | 0.00                     | 28021                           | 209916 | 28021 | 14.70 | 0.04 | 86.30 | 0.00 | 43.25 | 0.00 |

### Performance Test

Table 3: (Comparable) Maximum Execution Throughput

|          | $Q_1$ | $Q_2$ | $Q_3$ | $Q_4$ | $Q_5$ | $Q_6$ | $Q_{10}$ |
|----------|-------|-------|-------|-------|-------|-------|----------|
| CQELS    | 24122 | 8462  | 9828  | 1304  | 7459  | 3491  | 2326     |
| C-SPARQL | 10    | 1.68  | 1.63  | 10    | 1.72  | 1.71  | 10       |
| JTALIS   | 3790  | 3857  | 1062  | 99    | _     |       | 87       |



Fig. 2: Comparable max. execution throughput for varying size of static data.



Fig. 3: Comparable max. execution throughput running multiple query instances.

# Conclusion and Lesson

### Conclusion

- CSPARQL: low scalability(static data), high "throughput", low correctness
- CQELS: high scalability(static data), low throughput, high correctness
- JTALIS: low correctness, low functionality

### Lesson

- We can provide big LSD evaluation framework or big LSB benchmark for current efficient/scalable LSD processing systems – CQELS-Cloud, TrOWL, SR on s4, etc
- The paper provides some criterias for our own stream reasoning system throughput, static data size, complexity of linkage (correlation probabilities), number of streams, functionality, correctness, etc.