Multi-omics data visualization & integration on dental pulp regeneration

Produced by
Victor DEGUISE, François VICTOR & Zakaria TOUGUI

under the supervision of

Mourad BEKHOUCHE & Cécile HILPERT

CONTEXT

REGENERATIVE ENDODONTIC PROCEDURES (REP)

Experimental design

Transcriptomic data

Exon

...

Proteomic data

Proteomic data

Protein FDR Confidence	Master	▼ Accessio	Description	Contamir S	um PEP	Coverage # Pept	ide # PSMs	▼ #U	nique # AAs	▼ M	W [kDa ▼ calc. p	y s	core Se # Pepti	de 🕶
High	Master Protein	P02751	Fibronectin OS=Homo sapiens QX=9606 GN=FN1 PE=1 SV=5	0	1079,65	55	92	607	92	2477	272,2	5,5	2264,21	92
High	Master Protein	sp	ALBU_BOVIN	1	573,971	77	46	652	42	607	69,2	6,18	1876,85	46
High	Master Protein	sp	ALBU_HUMAN	1	516,103	75	42	396	38	609	69,3	6,28	1273	42
High	Master Protein	sp	GELS_HUMAN	1	149,977	39	24	80	24	782	85,6	6,28	236,71	24
High	Master Protein	Q9P2E9	Ribosome-binding protein 1 OS=Homo sapiens OX=9606 GN=	RP 0	144,903	41	35	82	35	1410	152,4	8,6	219,94	35
High	Master Protein	sp	PPIA_HUMAN	1	91,763	72	10	75	1	164	17,9	7,81	218,43	10
High	Master Protein	sp	GSTP1_HUMAN	1	91,288	61	10	40	10	209	23,2	5,64	180,46	10
High	Master Protein	sp	K1M1_SHEEP	1	88,686	47	19	63	10	412	46,6	4,81	182,94	19
High	Master Protein	P0DOX6	Immunoglobulin mu heavy chain OS=Homo sapiens QX=9606	PP 0	78,102	34	15	64	1	576	63,4	7,87	173,33	15
High	Master Protein	sp	PRDX1_HUMAN	1	76,513	65	12	58	9	199	22,1	8,13	168,52	12
High	Master Protein	sp	SYH_HUMAN	1	67,007	30	13	34	13	509	57,4	5,88	101,76	13
High	Master Protein	sp	RS27A_HUMAN	1	59,727	51	8	76	1	156	18	9,64	208,18	8
High	Master Protein	P04179	Superoxide dismutase [Mn], mitochondrial OS=Homo sapiens	Q 0	58,392	54	11	36	11	222	24,7	8,25	121,19	11
High	Master Protein	sp	TRYP_PIG	1	53,07	25	4	38	4	231	24,4	7,18	136,37	4
High	Master Protein	sp	NQ01_HUMAN	1	52,919	36	10	35	10	274	30,8	8,88	110,05	10
High	Master Protein	sp	K2M2_SHEEP	1	47,472	25	14	50	7	491	53,6	5,57	114,28	14
High	Master Protein	Q99873	Protein arginine N-methyltransferase 1 OS=Homo sapiens Q)	(=9- 0	35,395	32	10	28	10	371	42,4	5,35	71,52	10
High	Master Protein	sp	B2MG_HUMAN	1	32,511	55	- 5	15	5	119	13,7	6,52	54,48	- 5
High	Master Protein	sp	UBE2I_HUMAN	1	32,062	37	4	14	4	158	18	8,66	38,92	4
High	Master Protein	sp	K1HB_HUMAN	1	31,56	16	7	28	1	404	46,2	4,84	71,92	7
High	Master Protein	sp	K2M1_SHEEP	1	26,617	59	5	13	3	109	12,7	4,59	46,82	5
High	Master Protein	sp	KRHB5_HUMAN	1	25,06	16	9	31	2	507	55,8	6,55	61,25	9
High	Master Protein	sp	CATD_HUMAN	1	20,242	14	6	16	6	412	44,5	6,54	35,42	6
High	Master Protein	sp	ANT3_HUMAN	1	14,791	13	-5	11	5	464	52,6	6,71	27,63	5
High	Master Protein	sp	K1H6_HUMAN	1	13,875	10	- 5	10	1	467	52,2	4,94	24,3	5
High	Master Protein	P02765	Alpha-2-HS-glycoprotein OS=Homo sapiens QX=9606 GN=AH	SG* 0	13,249	20	5	9	5	367	39,3	5,72	14,91	5
High	Master Protein	Q9H3H3	UPF0696 protein C11orf68 OS=Homo sapiens QX=9606 GN=C	11 0	12,236	16	4	7	4	292	31,4	6,32	17,31	4
High	Master Protein	000468	Agrin OS=Homo sapiens QX=9606 GN=AGRN PE=1 SV=6	0	9,413	2	3	- 5	3	2068	217,2	6,39	10,48	3
High	Master Protein	sp	IGF2_HUMAN	VRAI	8,892	14	2	- 5	2	180	20,1	9,32	15,3	2
High	Master Protein	043847	Nardilysin OS=Homo sapiens QX=9606 GN=NRDC PE=1 SV=3	FAUX	5,947	1	2	3	2	1151	131,6	4,98	7,08	2
High	Master Protein	sp	BID_HUMAN	VRAI	5,852	8	1	1	1	195	22	5,44	3,32	1
High	Master Protein	Q9NZL4	Hsp70-binding protein 1 OS=Homo sapiens OX=9606 GN=HSP	BP FAUX	5,39	4	1	2	1	359	39,3	5,21	6,1	1
High	Master Protein	sp	RETBP_HUMAN	VRAI	5,272	9	1	1	1	201	23	6,07	4,56	1
High	Master Protein	Q52LJ0	Protein FAM98B OS=Homo sapiens QX=9606 GN=FAM98B PE	=1 FAUX	5,125	4	2	4	2	433	45,5	8,69	8,37	2

Functional requirements

1 : Identify significantly differentially expressed genes and differentially abundant proteins

2 : Identify the functions and associated biological processes by querying a database of annotations (GO database) and performing enrichment tests

3 : Comparative analysis between transcripts and proteins

4 : Deploying interactive notebook online without visible code

Log2 FC

Volcano plots

Volcano plot of the transcripts fold change between D0 and D2

Table to show the results viewed on the volcano plot

padj 🌲	pvalue 🛊	IfcSE 💠	log2FoldChange	baseMean 🖣	symbol 💠
NaN	NaN	NaN	NaN	0	5_8S_rRNA
NaN	0.9825698	0.274193	-0.001017	0.038653	5S_rRNA
NaN	0.6740422	0.273432	-0.019322	0.517037	7SK
0.9279159	0.831401	0.221786	-0.027497	595.000641	A1BG
0.4158482	0.1597196	0.182067	-0.199175	391.792709	A1BG-AS1
NaN	0.8800164	0.274288	0.011649	0.084189	A1CF
1.01879e-13	6.1939e-17	0.919416	6.91734	281.240669	A2M
0.3982945	0.1476119	0.312138	-0.163297	7.184134	A2M-AS1
NaN	NaN	NaN	NaN	0	A2ML1
NaN	NaN	NaN	NaN	0	A2ML1-AS1

Venn diagrams

Venn Diagram of the gene symbol sets in transcriptomic vs. proteomic data

- Competitive null hypothesis against Gene Ontology terms
- J2/J0 differentially abundant transcripts enrichment
 - → Glycolysis, signal transduction, perception of EC environment

		, 0			
	Gene_set	Term	Overlap	Adjusted P-value	Genes
0	GO_Biological_Process_2021	glycolytic process (GO:0006096)	10/29	0.001133	LDHA;TPI1;PKLR;HKDC1;PGK1;ALDOC;ENO2;ALDOA;GAP
1	GO_Biological_Process_2021	canonical glycolysis (GO:0061621)	9/24	0.001133	TPI1;PKLR;PGK1;ALDOC;ENO2;ALDOA;GAPDH;HK2;PFKP
2	GO_Biological_Process_2021	glucose catabolic process to pyruvate (GO:0061	9/24	0.001133	TPI1;PKLR;PGK1;ALDOC;ENO2;ALDOA;GAPDH;HK2;PFKP
3	GO_Biological_Process_2021	glycolytic process through glucose-6-phosphate	9/25	0.001270	TPI1;PKLR;PGK1;ALDOC;ENO2;ALDOA;GAPDH;HK2;PFKP
4	GO_Biological_Process_2021	cellular response to cytokine stimulus (GO:007	47/482	0.003846	RIPOR2;IL1RN;CCL11;SELPLG;IL24;RORA;AKAP6;CXCL
	Gene_se	t Term Over	lap Adju	sted P-value	Genes
0	GO_Molecular_Function_202	1 receptor ligand activity (GO:0048018) 32/3	307	0.028938 SEN	MA7A;COLEC10;CCL11;TNFRSF11B;FGF1;AREG;PTHLH
	Gene_set	Term	Overlap	Adjusted P- value	Genes
0	GO_Cellular_Component_2021	ionotropic glutamate receptor complex (GO:0008	8/32	0.016052	GRIA1;OLFM2;DLG4;GRIK4;GRIK2;GRIN2C;CNIH3;GRIN1
1	GO_Cellular_Component_2021	collagen-containing extracellular matrix (GO:0	36/380	0.016052	COL17A1;LRRC15;SEMA7A;SERPINA1;COL13A1;LAMC3;L
2	GO_Cellular_Component_2021	integral component of plasma membrane (GO:0005	101/1454	0.018797	ICAM5;ICAM1;SLC8A2;AQP1;MILR1;EDNRA;HTR7;SLC16
3	GO_Cellular_Component_2021	potassium channel complex (GO:0034705)	12/80	0.031223	KCNF1;KCNJ8;KCNIP2;KCNC3;KCNIP3;GRIK4;ABCC9;GR

- Competitive null hypothesis against Gene Ontology terms
- J2/J0 differentially abundant proteins enrichment
 - → ECM organization, exocytosis, regulation of fibrinolysis

	Gene_set	Term	Overlap	Adjusted P-value	Genes
0 G	GO_Biological_Process_2021	extracellular matrix organization (GO:0030198)	16/300	7.015200e-20	APP;VWF;MMP2;SERPINF2;MMP3;SERPINE1;PLG;THBS1;
1 G	GO_Biological_Process_2021	extracellular structure organization (GO:0043062)	13/216	1.340338e-16	${\sf APP; VWF; MMP2; MMP3; SERPINE1; THBS1; DCN; COL3A1; CO}$
2 G	GO_Biological_Process_2021	external encapsulating structure organization \dots	13/217	1.340338e-16	${\sf APP;VWF;MMP2;MMP3;SERPINE1;THBS1;DCN;COL3A1;CO}$
3 G	GO_Biological_Process_2021	platelet degranulation (GO:0002576)	9/125	1.046657e-11	APP;VWF;SERPINF2;SERPINE1;APOA1;PLG;TIMP1;THBS
4 G	GO_Biological_Process_2021	regulated exocytosis (GO:0045055)	9/180	2.330239e-10	${\sf APP;} {\sf VWF;} {\sf SERPINF2;} {\sf SERPINE1;} {\sf APOA1;} {\sf PLG;} {\sf TIMP1;} {\sf THBS}$
5 G	GO_Biological_Process_2021	collagen fibril organization (GO:0030199)	7/89	3.065533e-09	COL3A1;COL1A2;COL5A1;COL4A2;SERPINF2;COL6A1;CO
6 G	GO_Biological_Process_2021	regulation of complement activation (GO:0030449)	6/50	5.697646e-09	C1QB;C3;C5;C1S;CFP;C1QC
7 G	O_Biological_Process_2021	regulation of immune effector process (GO:0002	6/53	7.175437e-09	C1QB;C3;C5;C1S;CFP;C1QC
8 G	GO_Biological_Process_2021	regulation of humoral immune response (GO:0002	6/54	7.175437e-09	C1QB;C3;C5;C1S;CFP;C1QC
9 G	GO_Biological_Process_2021	negative regulation of fibrinolysis (GO:0051918)	4/9	2.376390e-08	SERPINE1;SERPINF2;PLG;THBS1
10 G	GO_Biological_Process_2021	supramolecular fiber organization (GO:0097435)	9/351	4.116684e-08	APP;COL3A1;COL1A2;COL5A1;COL4A2;SERPINF2;COL6A
11 G	GO_Biological_Process_2021	regulation of fibrinolysis (GO:0051917)	4/13	1.119484e-07	SERPINE1;SERPINF2;PLG;THBS1
12 G	O_Biological_Process_2021	positive regulation of blood coagulation (GO:0	4/17	3.426633e-07	SERPINE1;SERPINF2;PLG;THBS1

- Competitive null hypothesis against Gene Ontology terms
- J4/J2 differentially abundant transcripts enrichment → mitotic processes

	Gene_set	Term	Overlap	Adjusted P- value	Genes
0	GO_Biological_Process_2021	microtubule cytoskeleton organization involved	40/128	4.757960e-16	ERCC6L;BUB1B;CDCA8;TTK;KIF11;CENPA;SKA1;AURKB;
1	GO_Biological_Process_2021	mitotic spindle organization (GO:0007052)	43/157	2.806952e-15	ERCC6L;BUB1B;CDCA8;TTK;KIF11;CENPA;SKA1;AURKB;
2	GO_Biological_Process_2021	mitotic sister chromatid segregation (GO:0000070)	27/102	1.061352e-08	CDCA5;NCAPG2;KIF14;NCAPG;CDCA8;NCAPH;CCNB1;NUS
3	GO_Biological_Process_2021	kinetochore organization (GO:0051383)	9/13	2.860446e-06	CDT1;CENPE;CENPF;CENPW;CENPH;NUF2;CENPA;NDC80;
4	GO_Biological_Process_2021	centromere complex assembly (GO:0034508)	14/37	3.911693e-06	CENPU;CENPV;CENPW;HJURP;KNL1;CENPA;CENPE;CENPF
5	GO_Biological_Process_2021	sister chromatid segregation (GO:0000819)	13/34	9.888964e-06	TOP2A;SPAG5;NCAPG2;PLK1;CDCA8;KNSTRN;ZWINT;NDC
6	GO_Biological_Process_2021	mitotic nuclear division (GO:0140014)	18/74	4.841909e-05	SPAG5;UBE2C;NDE1;NCAPG2;PLK1;CDCA8;KIF11;KNSTR
7	GO_Biological_Process_2021	regulation of cyclin-dependent protein serine/	19/82	4.841909e-05	BLM;CDKN2B;CCNF;PLK1;PROX1;PKD2;CDC25C;PKMYT1;
8	GO_Biological_Process_2021	glycolytic process (GO:0006096)	11/29	9.267617e-05	PFKFB2;GPI;LDHA;TPI1;PGAM1;PGK1;ALDOC;ENO1;ENO
9	GO_Biological_Process_2021	canonical glycolysis (GO:0061621)	10/24	9.497093e-05	GPI;TPI1;PGAM1;PGK1;ALDOC;ENO1;ENO2;ALDOA;HK2;

- Competitive null hypothesis against Gene Ontology terms
- J4/J2 overabundant proteins enrichment → Metabolism, cell morphogenesis

	Gene_set	Term	Overlap	Adjusted P-value	Genes
403	GO_Cellular_Component_2021	intracellular organelle lumen (GO:0070013)	11/848	1.141924e-08	GLUD1;HMGCL;FH;ECHS1;HSPA5;MDH2;C1QBP;FGG;SERP
404	GO_Cellular_Component_2021	mitochondrial matrix (GO:0005759)	8/348	4.144643e-08	GLUD1;HMGCL;FH;ECHS1;MDH2;C1QBP;DLD;ACAT1
0	GO_Biological_Process_2021	cellular amino acid catabolic process (GO:0009	5/90	1.084072e-05	GLUD1;HMGCL;ECHS1;DLD;ACAT1
1	GO_Biological_Process_2021	branched-chain amino acid catabolic process (G	3/20	1.281631e-04	ECHS1;DLD;ACAT1
2	GO_Biological_Process_2021	branched-chain amino acid metabolic process (G	3/20	1.281631e-04	ECHS1;DLD;ACAT1
3	GO_Biological_Process_2021	positive regulation of substrate adhesion-depe	3/36	5.479377e-04	FGB;C1QBP;FGG
4	GO_Biological_Process_2021	platelet degranulation (GO:0002576)	4/125	5.479377e-04	FGB;FGG;LAMP2;SERPING1
5	GO_Biological_Process_2021	negative regulation of blood coagulation (GO:0	3/40	5.479377e-04	FGB;FGG;SERPING1
6	GO_Biological_Process_2021	positive regulation of peptide hormone secreti	3/43	5.854625e-04	FGB;GLUD1;FGG
7	GO_Biological_Process_2021	positive regulation of cell morphogenesis invo	3/50	6.833829e-04	FGB;C1QBP;FGG
8	GO_Biological_Process_2021	regulation of substrate adhesion-dependent cel	3/51	6.833829e-04	FGB;C1QBP;FGG
9	GO_Biological_Process_2021	fatty acid beta-oxidation (GO:0006635)	3/52	6.833829e-04	HADHB;ECHS1;ACAT1
10	GO_Biological_Process_2021	malate metabolic process (GO:0006108)	2/7	6.833829e-04	FH;MDH2

Displaying interactive results online

Starting repository: victordeguise/Multi_omics/HEAD

New to Binder? Check out the Binder Documentation for more information

Transcripto

log2FoldChange

7.5

<function __main__.volcano_plot(file, pval, 12FC_up, 12FC_down, label_up, label_down)>

file J2/J0 ✓
Show 10 ✓ entries

symbol = haseMean = lon2FoldChange = lfrSF = nvalue = nadi =

Search:

Conclusion

To sum up:

- Interactive visualisations accessible for users without programming background
- Functional annotations and geneset comparison between datasets

Limitations:

- Few options for displaying a Jupyter notebook into a webpage
- Data integration is specific to the formats used → limited reusability
- Experimental design was not intended for multi-omic integration → no standard method to combine the two types of data

Further improvements

- Deploying the html page on university's servers with the help of iCap
 - → **URL**: https://momics.univ-lyon1.fr
- Adding more options for the input format

Thank you for your attention!

Any questions?