On Cancellation Properties of Languages Which Are Supports of Rational Power Series

ANTONIO RESTIVO

Universitá di Palermo, Palermo, Italy

AND

CHRISTOPHE REUTENAUER

LITP, Institut de Programmation, Université Paris VI, Paris 75230, France

Received February 24, 1983; revised November 2, 1983

Two properties of languages which are supports of rational power series are proved: (i) if two supports are complementary, then they are regular languages; (ii) the Ehrenfeucht conjecture is true for these languages. © 1984 Academic Press, Inc.

1. Introduction

In this paper, we study properties of <u>supports</u>, that is, formal languages that are <u>supports</u> of rational power series. We answer affirmatively a conjecture quoted in [14]: if two supports are complementary, then they are regular languages. (Theorem 3.1). Secondly we solve, for this special class of languages, the <u>Ehrenfeucht</u> conjecture (cf. [9]): given a language it contains some finite test set (Theorem 4.1).

Recall that supports were introduced in [16], as a natural generalization of regular languages. They possess some properties similar to the properties of regular languages, such as pumping and closure by usual operations (but not complementation). For a survey of these questions, see [14]. The techniques of proof here rely on cancellation properties of supports. For Theorem 3.1, we use a characterization of regularity, through a cancellation property, as proved by Ehrenfeucht, et al. [5]. For Theorem 4.1 we establish a more delicate cancellation property, which allows us to prove the Ehrenfeucht conjecture in a similar way as for regular languages.

We study in this paper rational power series with coefficients in a field and not in a semiring as is customary. Actually, it is not reasonable to expect any interesting property of supports, when no assumption is made on the semiring of coefficients; indeed, a general semiring is a very loose structure. Recall that, in order to obtain a basic property such as the pumping lemma for supports, it is necessary to suppose that it is a field, as did Jacob [8] (see also [12]). As another example, let us mention

a result of E. Sontag [17], who showed that if a rational power series with coefficients in a commutative ring has only a finite number of coefficients, then for each scalar a, the language of those words having a as coefficient is a regular language; this is no longer true for a general semiring (even commutative), as shown by C. Choffrut, see [3, p. 207]. Moreover, Sontag showed that for each language, it is possible to a find a (noncommutative) ring such that the characteristic series of this language is rational, see [17, p. 380]. A similar construction shows that there exists a noncommutative ring such that for any language, its characteristic series is a rational power series over this ring.

2. RATIONAL POWER SERIES

Let A be a finite alphabet and k a field. A formal power series is a mapping $S: A^* \to k$. The image of a word w through S will be denoted (S, w). The series S is denoted by the infinite sum

$$S = \sum_{w \in A^*} (S, w) w.$$

The sum of two series S and T is defined by

$$(S + T, w) = (S, w) + (T, w).$$

The product of a series S by a scalar $\alpha \in k$ is defined by

$$(\alpha S, w) = \alpha(S, w).$$

The product of S by T is defined by

$$(ST, w) = \sum_{uv=w} (S, u)(T, v).$$

With these operations, the set of all formal power series gets a structure of algebra over k, denoted by $k \langle \langle A \rangle \rangle$. It contains A^* and k.

The *support* of a series S is the language

$$supp(S) = \{w \in A^*, (S, w) \neq 0\}.$$

A polynomial is a series with finite support. The set of all polynomials, denoted by $k\langle A \rangle$, is a subalgebra of $k\langle A \rangle$.

The star of a series S such that (S, 1) = 0, where 1 stands for the empty word, is defined by

$$S = \sum_{k \geq 0} S^k.$$

This infinite sum is well defined because (S, 1) = 0.

The set of *rational* power series is the least subalgebra of $k\langle\langle A \rangle\rangle$ containing $k\langle A \rangle$ and closed for the star operation.

A formal power series S is recognizable if there exists an integer n, a monoid homomorphism μ from the free monoid A^* into the multiplicative monoid $k^{n\times n}$ of n-by-n matrices over k, a row matrix $\lambda \in k^{1\times n}$ and a column matrix $\gamma \in k^{n\times 1}$ such that for any word w

$$(S, w) = \lambda \mu w \gamma. \tag{2.1}$$

By the Kleene-Schützenberger theorem, a series is recognizable if and only if it is rational.

In the sequel, we study languages that are supports of some rational power series; such a language will simply be called a *support*, for brevity. For a proof of the abovecited theorem and properties of supports, see [7] or [15].

3. COMPLEMENTARY SUPPORTS

We solve a conjecture quoted in [14].

THEOREM 3.1. Let L_1 , L_2 be two complementary languages which are supports of rational power series. Then they are regular languages.

Note that the converse is also true, because each regular language L is a support; even the characteristic series L of L,

$$\mathbf{L} = \sum_{w \in I} w$$

is rational, see, e.g., [14, Theorem 2.5.1]. Moreover the complementary of a regular language is regular.

To prove the theorem, we use a result of [5]. In this paper a property of languages is introduced as follows: a language L has the *cancellation* property if there exists an integer $n \ge 1$ such that for any words w, x, u_1 ,..., u_n , y verifying

$$w = xu_1 \cdots u_n y$$

there exists $i, j, 1 \le i \le j \le n$, such that

$$w \in L \Leftrightarrow xu_1 \cdots u_{i-1}u_{j+1} \cdots u_n y \in L.$$

In other words, by cancelling $u_i \cdots u_j$ in w, one obtains a word w' such that w and w' are simultaneously in or out of L.

The following theorem is due to Ehrenfeucht et al.

THEOREM. If a language has the cancellation property, then it is regular.

In analogy with the cancellation property, we say that a language L has the weak cancellation property if there exists an integer n such that for each word w in L such that $w = xu_1 \cdots u_n y$ for some words $x, u_1, ..., u_n, y$, there exists $i, j, 1 \le i \le j \le n$, such that $xu_1 \cdots u_{i-1}u_{j+1} \cdots u_n y$ is in L (the weak property is obtained from the strong one by replacing \Leftrightarrow with \Rightarrow).

Note that if this property holds for n, then it holds also for any $n' \ge n$.

Corollary. Let L_1 , L_2 be two complementary languages. If they both have the weak cancellation property, then they are regular.

Proof. By the theorem of Ehrenfeucht *et al.*, it suffices to show that L_1 has the cancellation property. Let n be such that both L_1 and L_2 have the weak cancellation property for n (see the previous remark). Let $w = xu_1 \cdots u_n y$ be some word. Define i, j, $1 \le i \le j \le n$, by:

If $w \in L_1$ let i, j be such that $xu_1 \cdots u_{i-1}u_{i+1} \cdots u_n \in L_1$ (weak property for L_1). If $w \in L_2$ let i, j be such that $xu_1 \cdots u_{i-1}u_{j+1} \cdots u_n \in L_2$ (weak property for L_2). Thus $w \in L_1$ implies $xu_1 \cdots u_{i-1}u_{j+1} \cdots u_n \in L_1$, and $w \notin L_1$ implies $w \in L_2$ hence $xu_1 \cdots u_{i-1}u_{j+1} \cdots u_n y \in L_2$, hence $w \notin L_1$. Thus $w \in L_1 \Leftrightarrow xu_1 \cdots u_{i-1}u_{j+1} \cdots u_n \in L_1$ and L_1 has the cancellation property.

Proof of Theorem 3.1. By the corollary, it suffices to show that each support has the weak cancellation property. Let L = supp(S) where S is defined by (2.1). Let $w = xu_1 \cdots u_n y \in L$. The vectors

$$\lambda \mu x$$
, $\lambda \mu x u_1$, $\lambda \mu x u_1 u_2$,..., $\lambda \mu x u_1 \cdots u_n$

belong to the *n*-dimensional space $k^{1\times n}$.

Moreover $\lambda \mu x \neq 0$, otherwise $(S, w) = \lambda \mu x \mu u_1 \cdots u_n y = 0$ and $w \notin \operatorname{supp}(S)$. Hence there exists j, $1 \leqslant j \leqslant n$, such that $\lambda \mu x u_1 \cdots u_j$ is a linear combination of $\lambda \mu x, \dots, \lambda \mu x u_1 \cdots u_{j-1}$:

$$\lambda \mu x u_1 \cdots u_j = \sum_{1 \leq i \leq j} \alpha_i \lambda \mu x u_1 \cdots u_{i-1}$$

with α_i in k.

Multiplying on the right by $\mu u_{j+1} \cdots u_n yy$ we obtain

$$(S, w) = \sum_{1 \le i \le j} a_i(S, xu_1 \cdots u_{i-1}u_{j+1} \cdots u_n y).$$

Because $(S, w) \neq 0$, there exists some $i, 1 \leq i \leq j$, such that $(S, xu_i \cdots u_{i-1}u_{j+1} \cdots u_n y) \neq 0$. Hence $xu_1 \cdots u_{i-1}u_{j+1} \cdots u_n y \in L$ and L has the weak cancellation property.

Remark. A quite similar proof shows that if $A^* = L_1 \cup \cdots \cup L_k$ is a partition of A^* into a finite number of supports, then they are all regular.

Theorem 3.1 leaves open the following conjecture.

Conjecture. Let L_1 , L_2 be two disjoint supports. Then there exist disjoint regular languages K_1 , K_2 such that $L_1 \subset K_1$, $L_2 \subset K_2$. Note that a positive answer would imply Theorem 3.1. This conjecture is true for languages over a one-letter alphabet: if char (k) = 0, it is a trivial consequence of the theorem of Skolem-Mahler-Lech, see [10], and if $char(k) \neq 0$, it is proved in [13].

4. On the Ehrenfeucht Conjecture

The following conjecture is due to Ehrenfeucht, see [9]:

Let $L \subset A^*$ be a language. Then there exists a finite subset K of L such that for any alphabet B and any homomorphisms f, $g: A^* \to B^*$, the condition $f|_{K} = g|_{K}$ implies $f|_{L} = g|_{L}$.

In other words, to test whether two homomorphisms coincide on L it is enough to do the test on some finite subset of L (depending only on L). This conjecture was proved in the case where L is context-free [1], or when A has only two letters [5] or [6].

THEOREM 4.1. The Ehrenfeucht conjecture is true for supports.

As the proof will show, the finite test set may effectively be constructed. We need a lemma, which proves a kind of cancellation property.

LEMMA 4.2. Let L be a support. Then there exists an integer N such that each word w in L, of length at least N, admits a factorization w = xuyvz, such that u, $v \neq 1$ and xyvz, xuyz, $xyz \in L$.

Proof. Let L = supp(S) where S is defined by (2.1). Let $N = n^4$. Let $w \in L$, of length at least 2N. Then w may be written

$$w = a_1 \cdots a_N s b_N \cdots b_1$$

for some letters $a_1,...,a_N$, $b_1,...,b_N$ and some word s. Consider in the n^4 -dimensional vector space $k^{1\times n}\otimes k^{n\times 1}\otimes k^{1\times n}\otimes k^{n\times 1}$ the n^4+1 vectors

$$\lambda \otimes \gamma \otimes \lambda \otimes \gamma$$
 $\lambda \mu a_1 \otimes \mu b_1 \gamma \otimes \lambda \mu a_1 \otimes \mu b_1 \gamma$
 $\lambda \mu a_1 a_2 \otimes \mu b_2 b_1 \gamma \otimes \lambda \mu a_1 a_2 \otimes \mu b_2 b_1 \gamma$
 \vdots
 $\lambda \mu a_1 \cdots a_N \otimes \mu b_N \cdots b_1 \gamma \otimes \lambda \mu a_1 \cdots a_N \otimes \mu b_N \cdots b_1 \gamma.$

Because $w \in L$, $\lambda \mu w \gamma \neq 0$, hence the first vector is nonzero. Thus, there exists some j, $1 \le j \le N$, such that one has the linear dependence relation

$$(\lambda \mu a_1 \cdots a_j \otimes \mu b_j \cdots b_1 \gamma)^2 = \sum_{1 \leqslant i \leqslant j} \alpha_i (\lambda \mu a_1 \cdots a_{i-1} \otimes \mu b_{i-1} \cdots b_1 \gamma)^2$$

where $\alpha_i \in k$ and where the square means the tensor square. Let $\gamma' \in k^{n \times 1}$, $\lambda' \in k^{1 \times n}$ and $M \in k^{n \times n}$. Then the mapping

$$k^{1\times n} \otimes k^{n\times 1} \otimes k^{1\times n} \otimes k^{n\times 1} \to k$$

$$v_1 \otimes v_2 \otimes v_3 \otimes v_4 \mapsto v_1 \gamma' \cdot \lambda' v_2 \cdot \lambda v_3 M v_4 \gamma$$

is linear. Put $\gamma' = \mu a_{j+1} \cdots a_N s b_N \cdots b_1 \gamma$, $\lambda' = \lambda \mu a_1 \cdots a_N s b_N \cdots b_{j+1}$, $M = \mu a_{j+1} \cdots a_N s b_N \cdots b_{j+1}$.

Apply this mapping to the above relation, obtaining

$$(S, w)^{3} = \sum_{1 \leq i \leq j} a_{i}(S, a_{1} \cdots a_{i-1} a_{j+1} \cdots a_{N} s b_{N} \cdots b_{1})$$

$$\cdot (S, a_{1} \cdots a_{N} s b_{N} \cdots b_{j+1} b_{i-1} \cdots b_{1})$$

$$\cdot (S, a_{1} \cdots a_{i-1} a_{j+1} \cdots a_{N} s b_{N} \cdots b_{j+1} b_{i-1} \cdots b_{1}).$$

From this relation and $(S, w) \neq 0$ we deduce that there exists $i, 1 \leq i \leq j$, such that the *i*th term of the above sum is nonzero. Let $x = a_1 \cdots a_{i-1}, u = a_i \cdots a_j,$ $y = a_{j+1} \cdots a_N s b_N \cdots b_{j+1}, v = b_j \cdots b_i, z = b_{i-1} \cdots b_1$. Then we obtain: $xyvz, xuyz, xvz \in L$.

Proof of the Theorem. Let $L \subset A^*$ be a support and N the integer of the lemma. Let

$$K = \{ w \in L, |w| < N \}.$$

K is a finite subset of L. Let f, g be two homomorphisms $A^* \to B^*$ such that f | K = g | K. We show by induction on |w|, that for each $w \in L$, f(w) = g(w).

This is surely true if |w| < N. Let $|w| \ge N$: then, by the lemma, w = xuyvz for some words $u, v \ne 1, x, y, z$ such that $xyvz, xuyz, xyz \in L$. By induction f and g coincide on these three words. Let F(A) (resp. F(B)) be the free group generated by A (resp. B). Then f and g extend uniquely to homomorphisms $\bar{f}, \bar{g}: F(A) \to F(B)$. Because w = xuyvz = xuyz $(xyz)^{-1}$ xyvz, w belongs to the subgroup generated by xyz, xuyz, and xyvz. Hence $\bar{f}(w) = \bar{g}(w)$, which implies f(w) = g(w).

Remark. If L is a regular language, it is easy to show that there exists an integer N such that each word w in L of length at least N admits a factorization w = xuvz such that xz, xvz, $xuz \in L$. This raises the question of whether this property is also true for supports.

Other open questions concerning supports are the following: (i) If L is the support of a rational power series over \mathbb{R} , is L also a support of a rational power series over

 \mathbb{Q} ? (question raised in [14]). (ii) Is it possible to characterize bounded supports, in a way similar to the characterization of bounded regular or context-free languages, as proved in [2, 11]?

ACKNOWLEDGMENTS

This work was done while the second author was a visiting professor at the University of Palermo, supported by the Consiglio Nazionale delle Ricerche.

REFERENCES

- 1. J. Albert, K. Culik, and J. Karhumäki, Test sets for context-free languages and systems of equations over a free monoid, *Inform. and Control* 52 (1982), 172–186.
- L. Boasson and A. Restivo, Une caractérisation des languages algébriques bornés, RAIRO Inform. Théor. 11 (1977), 203-205.
- 3. C. CHOFFRUT, Sur les tranductions reconnaissables, RAIRO Inform. Théo. 12 (1978), 203-218.
- K. Culik and A. Salomaa, Test sets and checking words for homomorphism equivalence, J. Comput. System Sci. 20 (1980), 379-395.
- A. EHRENFEUCHT, R. PARIKH, AND G. ROZENBERG, Pumping lemmas for regular sets, SIAM J. Comput. 10 (1981), 536-541.
- A. EHRENFEUCHT, J. KARHUMÄKI, AND G. ROZENBERG, On binary equality languages and a solution to the test set conjecture in the binary case, J. Algebra 85 (1983), 76-85.
- 7. S. EILENBERG, "Automatas, Languages and Machines," Vol. A, Academic Press, New York, 1974.
- G. Jacob, Un théorème de factorisation des produits d'endomorphismes de Kⁿ, J. Algebra 63 (1979), 389-412.
- 9. M. KARPINSKI (Ed.), New Scottish book of problems, in preparation.
- 10. C. LECH, A note on recurring series, Ark. Math. 2 (1952), 417-421.
- A. RESTIVO, Mots sans répétitions et languages rationnels bornés, RAIRO Inform. Théor. 11 (1977), 197-202.
- C. REUTENAUER, An Ogden-like iteration lemma for rational power series, Acta Informa. 13 (1980), 189-197
- 13. C. REUTENAUER, Sur les éléments inversibles de l'algèbre de Hadamard des séries rationnelles, Bull. Soc. Math. France 110 (1982), 225-232.
- 14. A. SALOMAA, Formal power series in noncommuting variables, in "18th Scand. Congr. Math., Proc., Aarhus 1980," Prog. Math. 11 (1981).
- 15. A. SALOMAA AND M. SOITTOLA, "Automata-Theoretic Aspects of Formal Power Series," Springer-Verlag, New York/Berlin, 1978.
- 16. M. P. SCHÜTZENBERGER, On the definition of a family of automata, Inform. and Control 4 (1961), 245-270.
- E. SONTAG, On some questions of rationality and decidability, J. Comput. System Sci. 11 (1975),