Modelli compartimentali

Informazioni generali

$$\frac{\beta}{\gamma} = R_0 > 1$$

$$\gamma = \frac{1}{d}$$

d: Durata media dell'infezione

SIS

Il modello SIS prevede una semplice transizione da **suscettibile** (sano) a **infettivo** e non è possibile sviluppare una resistenza immunitaria. Questo modello è simile a quello utilizzato da <u>Plaque INC</u>.

Si può esprimere con le seguenti equazioni differenziali ordinarie[2]:

$$\frac{\Delta S}{\Delta t} = \gamma I - \beta \frac{S}{N} I$$

$$\frac{\Delta I}{\Delta t} = \beta \frac{S}{N} I - \gamma I - \mu I$$

$$\frac{\Delta D}{\Delta t} = \mu I$$

Dove:

- S: Numero di soggetti <u>suscettibili</u>
- *I*: Numero di soggetti <u>infetti</u>
- D: Numero di soggetti morti
- N: Numero di soggetti della <u>popolazione</u> (N = S + I)
- Δt : Tempo trascorso
- β: Rateo di <u>diffusione</u> (<u>Wikipedia</u>)
- μ: Rateo di <u>decessi</u>
- γ: Rateo di <u>quarigioni</u>

SIRS

Il modello SIRS è utile se si vuole considerare l'**immunità adattiva** totale o parziale, infatti comprende lo stato **guarito**.

Si può esprimere con le seguenti equazioni differenziali ordinarie.

$$\frac{\Delta S}{\Delta t} = \xi R - \beta \frac{S}{N} I$$

$$\frac{\Delta I}{\Delta t} = \beta \frac{S}{N} I - \gamma I - \mu I$$

$$\frac{\Delta R}{\Delta t} = \gamma I - \xi R$$

$$\frac{\Delta D}{\Delta t} = \mu I$$

Dove:

- S: Numero di soggetti <u>suscettibili</u>
- *I*: Numero di soggetti <u>infetti</u>
- R: Numero di soggetti <u>quariti</u>
- D: Numero di soggetti morti
- N: Numero di soggetti della <u>popolazione</u> (N = S + I + R)
- Δt : Tempo trascorso
- β: Rateo di <u>diffusione</u>
- γ: Rateo di <u>quarigioni</u>
- μ: Rateo di <u>decessi</u>
- ξ: Rateo di <u>perdita immunità</u>

SEIRS

Il modello **SEIRS** descrive la diffusione di un virus che necessita di un tempo di **incubazione** durante il quale non si è capaci di trasmettere il patogeno. Inoltre la guarigione porta all'immunità solo una parte delle popolazione. E' quindi simile alla diffusione del <u>SARS-CoV-2</u> del 2019/2020.

Si può esprimere con le seguenti equazioni differenziali ordinarie 3:

$$\frac{\Delta S}{\Delta t} = \xi R - \beta \frac{S}{N} I$$

$$\frac{\Delta E}{\Delta t} = \beta \frac{S}{N} I - \sigma E$$

$$\frac{\Delta I}{\Delta t} = \sigma E - \gamma I - \mu I$$

$$\frac{\Delta R}{\Delta t} = \gamma I - \xi R$$

$$\frac{\Delta D}{\Delta t} = \mu I$$

Dove:

- S: Numero di soggetti <u>suscettibili</u>
- E: Numero di soggetti in incubazione
- *I*: Numero di soggetti <u>infetti</u>
- R: Numero di soggetti <u>quariti</u>
- D: Numero di soggetti morti
- N: Numero di soggetti della <u>popolazione</u> (N = S + E + I + R)
- Δt : Tempo trascorso
- β: Rateo di <u>diffusione</u>
- σ: Rateo di <u>sintomaticità</u> (uscita dalla incubazione)
- γ: Rateo di <u>quarigioni</u>
- μ: Rateo di <u>decessi</u>
- ξ: Rateo di <u>perdita immunità</u>

Densità di popolazione

La **densità di popolazione** ha un impatto significativo sulla velocità di diffusione di un agente patogeno; è quindi importante considerarla nei modelli compartimentali.

Metodo base

Un metodo semplice ideato dal nostro gruppo ma non completamente realistico è di fissare una **proporzionalità** di β con la densità di popolazione **relativa**.

$$\beta' = \beta \frac{3}{1 + e^{-\frac{d}{10p} + 4}}$$

Dove:

• β': Rateo di <u>diffusione modificato</u>

• β: Rateo di <u>diffusione</u>

• d: Densità di popolazione ($\frac{abitanti}{km^2}$)

• $p: \underline{\text{Densità}}$ di popolazione $\underline{\text{media}}$ mondiale ($\frac{abitanti}{km^2}$) (p=55)

Si tratta di una <u>funzione sigmoidea</u>, che nella forma base è scritta come:

$$S(x) = \frac{1}{1 + e^x}$$

E segue la curva:

[5]

Download Vscodium:

https://github.com/VSCodium/vscodium/releases/download/1.44.2/VSCodiumSetup-x64-1.44.2.exe

Link sessione:

https://prod.liveshare.vsengsaas.visualstudio.com/join?A765151D7359F44C26D8B2C3DB2D97C6858C

Greek question mark: -->; <--

COORDINATE CITTA':

CITTA'	х	Y	POPOLAZIONE
OTTAWA	0.224	0,394	994.000
TORONTO	0.218	0.401	2.930.000

MONTREAL	0.232	0.391	1.780.000
SAN FRANCISCO	0.123	0.426	7.753.000
LOS ANGELES	0.130	0.452	10.105.000
SAN DIEGO	0.137	0.462	3.263.000
DALLAS	0.181	0.461	1.345.000
HOUSTON	0.184	0.480	2.325.000
CHICAGO	0.199	0.418	5.246.000
NEW YORK	0.228	0.424	8.399.000
PHILADELPHIA	0.224	0.423	1.584.000
CITTA' DEL MESSICO	0.173	0.526	8.855.000
BRASILIA	0.286	0.700	2.481.000
RIO DE JANEIRO	0.296	0.736	6.320.000
SAN PAOLO	0.286	0.741	12.180.000
BOGOTA'	0.228	0.596	7.413.000
SANTIAGO DEL CILE	0.236	0.796	5.614.000
IL CAIRO	0.457	0.478	19.370.000
LAGOS	0.398	0.593	15.280.000
KINSHASA	0.426	0.641	13.530.000
JOHANNESBURG	0.452	0.754	9.505.000
LUANDA	0.420	0.668	8.415.000
NAIROBI	0.470	0.634	6.020.000
MOSCA	0.476	0.323	17.125.000
ISTANBUL	0.452	0.421	15.155.000
PARIGI	0.397	0.376	11.020.000
LONDRA	0.389	0.355	10.980.000
MADRID	0.382	0.426	6.025.000

MILANO	0.412	0.398	4.905.000
BAGDAD	0.485	0.461	7.665.000
RIYAD	0.488	0.509	6.500.000
TEHERAN	0.500	0.448	8.694.000
NEW DELHI	0.557	0.492	21.750.000
TOKYO	0.692	0.448	37.975.000
JAKARTA	0.623	0.659	34.540.000
MANILA	0.652	0.552	23.090.000
SHANGHAI	0.652	0.471	22.120.000
PECHINO	0.640	0.415	19.435.000
BANGKOK	0.608	0.553	17.065.000
SYDNEY	0.717	0.788	4.580.000
MELBOURNE	0.700	0.816	4.540.000

⁺wuhan