

Unclassi SECULITY CLA	tied SSIFICATION O	OF THIS PA	AGE	MP CLU					
				REPORT DOCU	MENTATION	PAGE			
1a REPORT S Unclassi	ECURITY CLASS	SIFICATIO	, D	TIC	16 RESTRICTIVE	MARKINGS			(2)
•					3 DISTRIBUTION / AVAILABILITY OF REPORT				
AD-	AD-A187 868			LE	Approved for public release;				
				3 0 1987	Distribution unlimited.				
4 PERFORMING ORGANIZATION REPORT NUMBER(S)					5 MONITORING ORGANIZATION REPORT NUMBER(S)				
				D		87-			
6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL (If applicable)					7ª NAME OF MONITORING ORGANIZATION				
Universi	ty of Geo	rgia		<u> </u>	AFOSR/NC				
6c. ADDRESS (City, State, and ZIP Code)					7b ADDRESS (City, State, and ZIP Code)				
Department of Chemistry Athens, GA 30602									
8a NAME OF ORGANIZA	FUNDING / SPC	ONSORING		8b OFFICE SYMBOL (If applicable)	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER				
AFOSR	ATTOM			NC NC	AFOSR-84-0050				
BC ADDRESS (City, State, and		•)		10 SOURCE OF FUNDING NUMBERS				
1-06	1 410				PROGRAM ELEMENT NO	PROJECT NO	TASK NO		WORK UNIT
Bolling AFB, DC 20332-6448					61102F	61102F 2303 B2		2	
11 TITLE (Include Security Classification)									
NOVEL DIALKYLAMINO DERIVATIVES OF PHOSPHORUS AND SILICON									
12 PERSONAL AUTHOR(S) R.B. King									
13a TYPE OF REPORT 13b TIME COVERED FROM 840101 TO 870930					14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT				
16 SUPPLEMENTARY NOTATION									
17	COSATI	T		SUBJECT TERMS (Continue on reverse if necessary and identify by block number)					
FIELD	GROUP	SUB-	GROUP	Phosphorus / Silicon	us / Metal Complexes Dialkylamino Metal Carbonyls				
		1		Boron	Cyclopolyphosphines				
19 ABSTRACT (Continue on reverse if necessary and identify by block number)									
Major achievements from this research project include the preparation and characterization of new types of dialkylaminophosphorus derivatives and their metal									
carbonyl complexes. Reductions with LiAlH4 of dialkylaminodichlorophosphines,									
R_2NPCl_2 , having sufficiently large dialkylamino groups were found to lead to the corresponding dialkylaminophosphines, R_2NPH_2 ($R_2N=dicyclohexylamino$ and									
$2,2,6,6$ -tetramethylpiperidino) as very air-sensitive liquids. Dehalogenation of R_2NPCl_2									
(R = isopropyl or cyclohexyl) with magnesium in tetrahydrofuran was found to give the corresponding cyclotetraphosphines $(R_2N)_4P_4$; the corresponding biphosphines									
the corresponding cycloterraphosphines (K214)4F4, the corresponding orphosphines									
(Continued on back page)									
20 DISTRIBUTION AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION WUNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS Unclassified									
228 NAME O	F RESPONSIBLE	UAL			22c	OFFICE SY	MBOL		
22a NAME OF RESPONSIBLE INDIVIDUAL Dr. Anthony J. Matuszko 22b TELEPHONE (Include Area Code) (202) 767-4963 22c OFFICE SYMBOL (202) 767-4963									
DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE									

 $(iPr_2N)_2P_2X_2$ (X = C1 and Br) constbe isolated from reactions of iPr_2NPX_2 with more limited quantities of magnesium. Reactions of R2NPCl2 (R = isopropyl, cyclohexyl) with Na₂Fe(CO)₄ were found to give the phosphorus-bridging carbonyl derivatives (R₂NP)₂COFe₂(CO)₆ as the major products in diethyl ether solution and the triphosphine complexes $(R_2NP)_3Fe_2(CO)_6$ as the major products in tetrahydrofuran solution $(R = isopropyl \ or \ cyclohexyl)$. Treatment of $(iPr_2NP)_2COFe_2(CO)_6$ with NaBH₄ in methanol was found to result in reduction of the phosphorus-bridging carbonyl group give the corresponding secondary alcohol (iPr2NP)2CHOHFe2(CO)6. treatment of (iProNP)2COFe2(CO)6 with LiAlH4 in diethyl ether was found to result in more extensive reduction to give a product shown by X-ray diffraction to be (iPr2NPHCHPNiPr2)Fe2(CO)s in which an iron-phosphorus bond has been broken and a new iron-carbon bond formed. Treatment of (iPr2NP)2COFe2(CO)6 with the alkyllithiums RLi (R = Me, nBu) was found to result in addition to the phosphorus-bridging carbonyl group to give the corresponding tertiary alcohols (iPr2NP)2C(R)(OH)Fe2(CO)6. Reactions of (iPr2NP)2COFe2(CO)6 with the alcohols ROH (R = Me, Et) under relatively vigorous conditions result in expulsion of the phosphorus-bridging carbonyl groups to give yellow (iPr2NPOR)(iPr2NPH)Fe2(CO)6. Reactions of the triphosphine complex (iPr2NP)3Fe2(CO)6 with hydrogen halides or with alcohols in the presence of catalytic acetic acid at elevated temperatures were found to result in selective cleavage of the diisopropylamino group attached to the center phosphorus atom of the triphosphine chain to give $(iPr_2NP)_2P(X)Fe_2(CO)_6$ (X = Cl, Br, OMe, OEt). NaMn(CO)5 (iPr₂NP)₂P(Cl)Fe₂(CO)₆ and with (THF)Cr(CO)₅ the with $(iPr_2NP)_2P[Mn(CO)_5]Fe_2(CO)_6$ heterobimetallic derivatives (iPr2NP)2P(Cl)[Cr(CO)5]Fe2(CO)6, respectively. The readily available ligand (iPr2N)2PH reacts with (THF)M(CO)_n and with (THF)Mn(CO)₂C₅H₅ to give the complexes $(iPr_2N)_2PHM(CO)_n$ (n = 4, M = Fe; n = 5, M = Cr, Mo, W) and $(iPr_2N)_2PHMn(CO)_2C_5H_5$, respectively. In general these (iPr2N)2PH complexes react rapidly with the hydrogen halides HX (X = Cl, Br) to cleave selectively in good yield one of the two diisopropylamino groups to give the corresponding iPr2NP(H)X complexes. Attempts novel dialkylaminosilicon and dialkylaminoboron dehalogenations of (CH₂)₃(NCMe₃)₂SiCl₂ and R₂NBBr₂ using alkali metals, magnesium, or (Me₃Si)₂Hg did not lead to tractable products in significant quantities.

Unclassified
SECURITY CLASSIFICATION OF THE AGE(When Date Ent.

FINAL TECHNICAL REPORT

to the

Air Force Office of Scientific Research

U.S. Air Force

Bolling Air Force Base, D.C. 20332

on

NOVEL DIALKYLAMINO DERIVATIVES OF PHOSPHORUS AND SILICON

Period Covered:

January 1, 1984, to September 30, 1987

Grant Covered:

AFOSR-84-0050

by

Dr. R. B. King

Regents' Professor of Chemistry

University of Georgia

Athens

Georgia 30602

Accesion	lor	1
NTIS C	RAMI	J
DIKC T	43	
Unmer	44	
Just Car		
Ly		
121 No. 1	,	
.\ <i>\</i> .		
Dru .		
Dru 1	` · · ·	
Λ		
4-1	1	

Approved for public release;

PERSONNEL ASSOCIATED WITH THIS RESEARCH PROGRAM

- (1) Dr. R. B. King, Regents' Professor of Chemistry and Principal Investigator

 January 1, 1984, to September 30, 1987
- (2) Dr. N. D. Sadanani, Postdoctoral Associate

 January 1, 1984, to March 31, 1985
- (3) Dr. Mario Grenz, Postdoctoral Associate

 September 1, 1984, to August 31, 1985
- (4) Dr. Gayatri Chorghade, Postdoctoral Associate
 October 1, 1985, to September 30, 1987
- (5) Mr. (now Dr.) Wen-Ker (Martin) Fu, Graduate Student
 January 1, 1984, to August 31, 1985
- (6) Mr. (now Dr.) Feng-Jung Wu, Graduate Student November 1, 1984, to December 31, 1986
- (7) Mr. S. Mukhopadhyay, Graduate Student

 June 1, 1984, to November 30, 1984

INTRODUCTION

The original scientific objective of this basic research program was the understanding of the synthesis and chemical reactivity of dialkylamino derivatives of phosphorus and silicon. Such compounds are of potential importance as intermediates in the manufacture of materials of possible value to the Air Force in diverse applications including antioxidants, lubricity agents, elastomers, flame retardants, fuel cell catalysts, thermally stable polymers, and refractory materials.

This project originated from the principal investigator's previous work in synthetic organophosphorus chemistry. His active research in this area was initiated in late 1968 under support from the Air Force Office of Scientific Research. Initial achievements of this project included the development of new methods for preparing chelating polyphosphine ligands which have been used by coordination chemists throughout the world. A more recent project on organophosphorus chemistry, also funded by the Air Force Office of Scientific Research and initiated in early 1981. focused on polyphosphorus compounds containing phosphorus-nitrogen bonds. This project resulted in the discovery of efficient routes for the preparation of certain (R₂N)₂PH, R₂NPH₂, and (R₂NP)₄ derivatives. The studies on the preparation and properties of the latter two types of phosphorus-nitrogen compounds were completed in the initial phases of the current project. The use of LiAlH4 to form the P-H bonds in the syntheses of (R2N)2PH and R2NPH2 derivatives also led to the formation of novel volatile dialkylaminophosphorus-aluminum hydride derivative, probably (Et₂N)₂PAlH₄, which is the focus of a joint proposal by Prof. Michael Norton and the principal investigator on the chemical vapor deposition of aluminum phosphide and other Group III-V materials. This proposal was recently submitted to materials science divisions of the Army Research Office and the Department of Energy.

CONTRACTOR OF THE SECURITY OF

A productive aspect of this research project arose from merging the principal

investigator's interests in dialkylaminophosphorus chemistry and metal carbonyl chemistry. Numerous unusual types of dialkylaminophosphorus metal carbonyls were prepared and characterized during the course of this research project. The most exciting such compounds were derivatives of the types (R2NP)2COFe2(CO)6 (I: R = isopropyl $R_2N = 2.2.6.6$ -tetramethylpiperidino) containing phosphorus-bridging carbonyl group. Such compounds may be considered to be phosphorus analogues of organic ketones. These compounds are major products from reactions of Na₂Fe(CO)₄ with R₂NPCl₂ derivatives provided that the R₂N group is sufficiently large and the reaction is carried out in diethyl ether. Furthermore, the reactions of Na₂Fe(CO)₄ with R₂NPCl₂ derivatives under a variety of conditions yielded a variety of interesting products and in addition raised a number of questions of mechanistic interest. The availability of (iPr₂NP)₂COFe₂(CO)₆ (I: R = isopropyl) in 30 gram quantities from a single reaction of Na₂Fe(CO)₄ with iPr₂NPCl₂ has made this compound available in sufficient quantities for a study of the chemical reactivity of the phosphorus-bridging carbonyl group. Thus ketone-like behavior was noted in the reactions of (iPr2NP)2COFe2(CO)6 with NaBH4 and with alkyllithiums to give alcohols of the type $(iPr_2NP)_2C(R)(OH)Fe_2(CO)_6$ (R = H, Me, nBu, etc.).

In terms of scientific publications this research project was very productive leading to 20 publications in major scientific journals and seven presentations at key scientific meetings. Funds for the continuation of aspects of this project involving dialkylaminophosphorus metal carbonyl derivatives are currently being sought from the National Science Foundation.

NEW RESULTS FROM THIS RESEARCH PROGRAM

የ*ደንታኒኒኒኒኒኒኒ* አያሪር ኃይደናዊ **| የ**ደናደር ይደረ **በተተ**ታ አንአንነት | **| የተ**ደኛ

(1) Dialkylaminophosphines, R₂NPH₂

Reductions with LiAlH₄ of dialkylaminodichlorophosphines, 4 R₂NPCl₂, having sufficiently large dialkylamino groups were found to lead to the corresponding dialkylaminophosphines, R₂NPH₂ (R₂N = dicyclohexylamino 2,2,6,6-tetramethylpiperidino), as very air-sensitive liquids characterized by proton and phosphorus-31 NMR spectroscopy. 2,6 These dialkylaminophosphines react with $(THF)M(CO)_n$ (M = Cr and W, n = 5; M = Fe, n = 4) to give the corresponding metal carbonyl complexes R₂NPH₂M(CO)_n. The complexes of the type R₂NPH₂M(CO)₅ (M = Cr and W) are yellow, sublimable solids, which are considerably more stable than the free R₂NPH₂ ligands. Reduction of diisopropylaminodichlorophosphine, iPr₂NPCl₂, with LiAlH₄ gives a solution shown by phosphorus-31 NMR to contain iPr₂NPH₂, but this product decomposes upon attempted isolation. However, the metal carbonyl complexes iPr2NPH2M(CO)5 (M = Cr and W) can be isolated as relatively stable yellow sublimable solids by the LiAlH₄ reduction of the corresponding iPr₂NPCl₂M(CO)₅ complexes.2,6

Dehalogenation of R_2NPCl_2 (R = isopropyl or cyclohexyl)⁴ with magnesium in tetrahydrofuran was found to give the corresponding cyclotetraphosphines (R2N)4P4; the corresponding biphosphines $(iPr_2N)_2P_2X_2$ (X = Cl and Br) can be isolated from reactions of iPr2NPX2 with more limited quantities of magnesium. 5 Dehalogenations with magnesium of R₂NPCl₂ derivatives having R₂N groups smaller than diisopropylamino lead to redistribution of the dialkylamino groups $(R_2N)_2P-P(NR_2)_2$ $(R_2N = piperidino)$ or $(R_2N)_3P$ $(R_2N = diethylamino)$ or dimethylamino). Such redistribution reactions can be suppressed but not eliminated by using the

homogeneous dehalogenating agent $(Me_3Si)_2Hg$ in hydrocarbon solvents. The steric bulk of the diisopropylamino groups in $(iPr_2N)_4P_4$ reduces its chemical reactivity relative to other cyclotetraphosphines; thus $(iPr_2N)_4P_4$ is unreactive towards oxygen, carbon disulfide, potassium metal, and various metal carbonyls [e.g., $Cr(CO)_6$, $Mo(CO)_6$, and $Fe_2(CO)_9$] under conditions where other cyclotetraphosphines react with these reagents. However, the P_4 ring in $(iPr_2N)_4P_4$ is cleaved under mild conditions by hydrogen chloride as well as by bromine and iodine.

(3) Dialkylaminophosphorus Metal Carbonyl Derivatives

Reactions of R_2NPCl_2 (R = isopropyl, cyclohexyl) with $Na_2Fe(CO)_4$ were found to give the orange phosphorus-bridging carbonyl derivatives (R2NP)2COFe2(CO)6 (I) as the major products in diethyl ether solution and the orange triphosphine complexes $(R_2NP)_3Fe_2(CO)_6$ (II) as the major products in tetrahydrofuran solution. 8,12,14,15,18,19 The structures of both products (R = isopropyl) have been confirmed by X-ray diffraction.8,12,14,15 Minor products from the reaction of iPr₂NPCl₂ with Na₂Fe(CO)₄ in tetrahydrofuran include $(iPr_2NP)_2COFe_2(CO)_6$ (I: R = isopropyl) and the trinuclear derivative (iPr2NP)2Fe3(CO)9 (III: R = isopropyl)well as orange (iPr₂NP)₃COFe₂(CO)₆ shown by X-ray diffraction to have structure IV (R = isopropyl) similar to that of $(iPr_2NP)_3Fe_2(CO)_6$ (II: R = isopropyl) but with a carbonyl group inserted into the triphosphine chain. 12,14,15 Reaction of Et2NPCl2 with Na2Fe(CO)4 in diethyl ether gives deep orange (Et2NP)3Fe3(CO)12 below 0°C and orange (Et₂NP)₃Fe₃(CO)₁₁ at room temperature shown by X-ray crystallography^{13,14,15} to have structures V and VI, respectively, arising from migrations of diethylamino groups. Reactions of the binuclear iron carbonyl anion Na₂Fe₂(CO)₈ with R₂NPCl₂ (R = methyl,cyclohexyl $R_2N = piperidino$, derivatives ethyl, isopropyl, 2,6-dimethylpiperidino, 2,2,6,6-tetramethylpiperidino) give the trinuclear derivatives $(R_2NP)_2Fe_3(CO)_9$ (III) and $R_2NPFe_3(CO)_{10}$ (VII). No evidence was obtained for the formation of any (R₂NP)₂COFe₂(CO)₆ (I) or (R₂NP)₃Fe₂(CO)₆ (II) derivatives in significant quantities from any of the reactions of Na₂Fe₂(CO)₈ with R₂NPCl₂

The facile preparation of air-stable $(iPr_2NP)_2COFe_2(CO)_6$ (I: R = isopropyl) in 30 gram quantities from the reaction of $Na_2Fe(CO)_4$ with iPr_2NPCl_2 in diethyl ether 8.12.14.15.18 has prompted a detailed study of the chemical reactivity of this compound which is of particular interest because of the presence of the unusual phosphorus-bridging carbonyl group. 8.16 Thus treatment of $(iPr_2NP)_2COFe_2(CO)_6$ (I: R = isopropyl) with $NaBH_4$ in methanol was found to result in reduction of the phosphorus-bridging carbonyl group to give the corresponding secondary alcohol $(iPr_2NP)_2CHOHFe_2(CO)_6$ (VIII: R = H). Similar treatment of $(iPr_2NP)_2COFe_2(CO)_6$ with $LiAlH_4$ in diethyl ether was found to result in more extensive reduction to give a dark orange product of stoichiometry " $(iPr_2NP)_2CH_2Fe_2(CO)_6$ " shown, however, by X-ray diffraction to be $(iPr_2NP)CH_2Pi_2(CO)_6$ (IX) in which an

AND THE COLUMN TWO PARTY OF THE PARTY OF THE

iron-phosphorus bond has been broken and a new iron-carbon bond formed. Treatment of (iPr2NP)2COFe2(CO)6 with the alkyllithiums RLi (R = Me, nBu) was found to result in addition to the phosphorus-bridging carbonyl group to give the corresponding tertiary (iPr2NP)2C(R)(OH)Fe2(CO)6 (VIII: R = MenBu). Reduction or (iPr2NP)2COFe2(CO)6 with sodium amalgam in tetrahydrofuran results in cleavage of a disopropylamino group to give the anion [iPr2NPCOPFe2(CO)6] which can be isolated as its orange bis(triphenylphosphine)iminium salt or as the light orange trimethyltin derivative (iPr₂N)(Me₃Sn)P₂COFe₂(CO)₆ (X) still containing phosphorus-bridging carbonyl group. Reaction of [iPr2NPCOPFe2(CO)6] with iPr2NPCl2 results in rearrangement with expulsion of the phosphorus-bridging carbonyl group

shown by X-ray diffraction to have the unusual structure XI. Reactions of $(iPr_2NP)_2COFe_2(CO)_6$ (I: R = isopropyl) with the alcohols ROH (R = Me, Et) under

X

relatively vigorous conditions results in expulsion of the phosphorus-bridging carbonyl

ΧI

(iPr₂NPOR)(iPr₂NPH)Fe₂(CO)₆. give vellow Reaction of groups to hydrogen bromide results in expulsion of (iProNP)oCOFeo(CO)6 with phosphorus-bridging carbonyl group and selective cleavage of one of the disopropylamino groups to give orange (iPr2NPBr)(HPBr)Fe2(CO)6; both of the possible stereoisomers of this compound have been detected by phosphorus-31 NMR spectroscopy and one has been isolated in the pure state. Reaction of (iPr2NPOEt)(iPr2NPH)Fe2(CO)6 with hydrogen bromide results in selective cleavage of one of the two disopropylamino groups to give orange (iPr2NPOEt)(HPBr)Fe2(CO)6 shown by X-ray crystallography to have structure XII, which is the first example of a bis(phosphido)hexacarbonyldiiron derivative with four different terminal groups (iPr2N, EtO, H, and Br).

The triphosphine complex $(iPr_2NP)_3Fe_2(CO)_6$ (II: R = isopropyl) is also available in quantity from the reaction of $Na_2Fe(CO)_4$ with iPr_2NPCl_2 if the reaction is carried out in tetrahydrofuran rather than diethyl ether. 12,14,15,19 Some studies on the chemical reactivity of this interesting substance were therefore carried out. 12,17 Reactions of $(iPr_2NP)_3Fe_2(CO)_6$ (II: R = isopropyl) with hydrogen halides were found to result in selective cleavage of the diisopropylamino group attached to the center phosphorus atom of the triphosphine chain to give orange $(iPr_2NP)_2P(X)Fe_2(CO)_6$ (XIII: X = Cl, Br). The complex $(iPr_2NP)_3Fe_2(CO)_6$ (II: R = isopropyl) was found to react analogously with the boiling alcohols ROH (R = Me, Et) in the presence of catalytic acetic acid to give orange $(iPr_2NP)_2P(OR)Fe_2(CO)_6$ (XIII: X = OMe, OEt). The derivative $(iPr_2NP)_2P(Cl)Fe_2(CO)_6$ (XIII: X = Cl) is a useful precursor to other

triphosphine diiron hexacarbonyl derivatives through nucleophilic substitution chlorine attached central phosphorus to the atom. (iPr2NP)2P(Cl)Fe2(CO)6 with NaBH4 in tetrahydrofuran solution $(iPr_2NP)_2P(H)Fe_2(CO)_6$ (XIII: X = H). However, reduction of $(iPr_2NP)_2P(C)_1Fe_2(CO)_6$ with LiAlH₄ results in phosphorus-phosphorus bond cleavage to give velicus (iPr2NPH)2Fe2(CO)6. Nucleophilic substitution of the chlorine $(iPr_2NP)_2P(Cl)Fe_2(CO)_6$ (XIII: X = Cl) with NaMn(CO)₅ provides a route to the rec heterobimetallic derivative (iPr₂NP)₂P[Mn(CO)₅]Fe₂(CO)₆ (XIII: X Mn(COmm. The heterobimetallic (iProNP)oP(C1)[Cr(CO)]Fea(Ct), derivatives $(iPr_2NP)_2P(H)[Cr(CO)_5]Fe_2(CO)_6$, and $(iPr_2NP)_2P(H)[Fe(CO)_4]Fe_2(CO)_6$ can be obtained by complexation of the central phosphorus atoms in $(iPr_2NP)_2P(X)Fe_2(CO)_6 + XIII: X = H$. Cl) with (THF)Cr(CO)₅ and Fe₂(CO)₉/THF.¹⁷

ХIII

The readily available bis(dialkylamino)phosphine, $(iPr_2N)_2PH$, is an interesting ligand for metal carbonyl chemistry since after complexation the phosphorus-nitrogen bonds can be selectively cleaved by acidic reagents to give metal carbonyl complexes of organophosphorus ligands not available in the uncomplexed state. 1,7,9,10,11 The complexes $(iPr_2N)_2PHM(CO)_n$ (n = 4, M = Fe; n = 5, M = Cr, Mo, W) and $(iPr_2N)_2PHMn(CO)_2C_5H_5$ are obtained as air-stable sublimable hydrocarbon-soluble solids by reactions of $(iPr_2N)_2PH$ with the corresponding tetrahydrofuran complexes $(THF)M(CO)_n$ and $(THF)Mn(CO)_2C_5H_5$. In general these $(iPr_2N)_2PH$ complexes react rapidly with the hydrogen halides HX (X = Cl, Br) to cleave selectively in good

yield one of the two disopropylamino groups to give the corresponding $iPr_2NP(H)X$ complexes; the exception to this reactivity pattern is the reaction of $(iPr_2N)_2PHMn(CO)_2C_5H_5$ with HBr, which proceeds all the way to $Br_2P(H)Mn(CO)_2C_5H_5$. Dehydrochlorination of $iPr_2NP(H)ClFe(CO)_4$ with excess triethylamine gives a low yield of the phosphorus-bridging carbonyl derivative $(iPr_2NP)_2COFe_2(CO)_6$ (I: R = isopropyl) discussed in detail above. 9

The reactions of $(iPr_2N)_2PH$ with the metal-metal bonded metal carbonyls $Mn_2(GO)_{10}$ and $Co_2(GO)_8$ have been shown to follow a different course than those outlined above. 3,10 Thus, photolysis of $(iPr_2N)_2PH$ with $Mn_2(GO)_{10}$ in tetrahydrofuran solution results in cleavage of the phosphorus-hydrogen bond to give yellow air-stable sublimable $[\mu\text{-}(iPr_2N)_2P]$ $(\mu\text{-}H)Mn_2(GO)_8$ shown by X-ray diffraction to have structure XIV in which a manganese-manganese bond in bridged symmetrically by both a hydrogen atom and a bis(diisopropylamino)phosphido group. One of the two diisopropylamino groups in XIV is selectively cleaved with the hydrogen halides HX (X = Gl, Br) to give the corresponding complex $(\mu\text{-}iPr_2NPX)(\mu\text{-}H)Mn_2(GO)_8$ shown by its infrared $\nu(GO)$ and NMR spectra to have a structure analogous to XIV. Reaction of $(iPr_2N)_2PH$ with $Co_2(GO)_8$ in hexane at ambient temperature gives a complex mixture of relatively unstable products from which paramagnetic $(2.0 \mu_B)$ black air-sensitive crystalline $(\mu_3\text{-}iPr_2NP)Co_3(GO)_9$ can be isolated after chromatography on silica gel. X-ray crystallography on this complex indicates the expected structure XV with a PCo_3 tetrahedron. 3.10

The reactivity of the phosphorus-halogen bonds in the iPr₂NP(H)XM(CO)_n derivatives towards nucleophiles provides a novel approach for the synthesis of interesting heterobimetallic derivatives. 7.11 Thus reactions of iPr₂NP(H)XM(CO)₅ (X = Br, M = Cr; X = Cl, M = Mo, W) and $iPr_2NP(H)ClMn(CO)_2C_5H_5$ with $NaFe(CO)_2C_5H_5$ result in nucleophilic substitution of the phosphorus-bonded halogen with the iron nucleophile to give relatively good yields of deep orange C₅H₅Fe(CO)₂PH(NiPr₂)M(CO)₅ and deep red C₅H₅Fe(CO)₂PH(NiPr₂)Mn(CO)₂C₅H₅, respectively, which do not contain metal-metal bonds. Photolyses of C₅H₅Fe(CO)₂PH(NiPr₂)M(CO)₅ (M = Cr, W) and C₅H₅Fe(CO)₂PH(NiPr₂)Mn(CO)₂C₅H₅ in pentane or cyclohexane solution result in rapid decarbonylation to give black C5H5FeM(CO)6PH(NiPr2) (M = Cr, W) and (C₅H₅)₂FeMn(CO)₃PH(NiPr₂), respectively. X-rav diffraction $C_5H_5FeM(CO)_6PH(NiPr_2)$ (M = Cr, W) indicates structures of the type XVI (M = Cr, W) in which a heteronuclear Fe-M bond is bridged by both a carbonyl group and a iPr₂NPH phosphido group. Α related structure XVII is postulated $(C_5H_5)_2$ FeMn(CO)₃PH(NiPr₂) on the basis of the observation of two terminal and one bridging v(CO) frequencies.

(4) Dialkylaminosilicon Derivatives

XVI

The general objective of this portion of the project was the preparation of cyclic derivatives of the stoichiometry $[(R_2N)_2Si]_n$. In this connection attempts to dehalogenate $(CH_2)_3(NCMe_3)_2SiCl_2$ (%VIII) and $R(iPr_2N)SiCl_2$ led to the following observations:

XVΠ

- (a) (CH₂)₃(NCMe₃)₂SiCl₂: This dichlorosilane did not appear to react with magnesium metal (boiling tetrahydrofuran), lithium metal (boiling tetrahydrofuran), sodium metal (boiling toluene), (Me₃Si)₂Hg (pentane at room temperature), LiAlH₄ (diethyl ether at room temperature), and Na₂Fe(CO)₄ (tetrahydrofuran at room temperature). Reactions of (CH₂)₃(NCMe₃)₂SiCl₂ (XVIII) with potassium metal in boiling tetrahydrofuran gave a mixture of unidentified products apparently resulting from cleavage of one or both silicon-nitrogen bonds. Reaction of (CH₂)₃(NCMe₃)₂SiCl₂ with sodium naphthalenide in boiling tetrahydrofuran gave a mixture of unreacted starting material and unidentified products incorporating the naphthalene.
- (b) Me(iPr₂N)SiCl₂: This dichlorosilane did not appear to react with lithium metal in tetrahydrofuran or with (Me₃Si)₂Hg in a mixture of pentane and hexane. Reactions of Me(iPr₂N)SiCl₂ with sodium or potassium metal under various conditions appeared to give complex mixtures from which tractable products of interest could not be isolated.

From these experiments the following general conclusions can be drawn:

ASSESSED RECORDED TO A STATE OF THE PROPERTY O

- (a) The introduction of dialkylamino substituents into chlorosilanes makes them very difficult to dehalogenate.
- (b) The silicon-nitrogen bond is too readily cleaved to allow forcing conditions for reactions of dialkylaminochlorosilanes with very strong reducing agents.
- (c) In some reactions ether solvents such as tetrahydrofuran or diethyl ether are cleaved in significant amounts.

These negative results suggested that reactions of HSiCl3 and H2SiCl2 with

secondary amines might provide better entries for the preparation of cyclic $[(R_2N)_2Si]_n$ derivatives. In this connection the reaction of $HSiCl_3$ with excess disopropylamine in boiling hexane was found to give $(iPr_2N)_2SiHCl$ as an air-sensitive colorless liquid, b.p. $112^\circ/1mm$. An attempt to prepare $(iPr_2N)_2SiFe(CO)_4$ by reaction of $(iPr_2N)_2SiHCl$ with $Fe_2(CO)_9$ did not appear promising and unreacted $(iPr_2N)_2SiHCl$ was identified as the only hexane-soluble silicon compound in the reaction mixture.

S. POZDZOGO PSSESSO POSODOS POSSESSO POSSESSO PO

We also investigated replacement of the chlorine atoms in $(CH_2)_3(NCMe_3)_2SiCl_2$, PhMeSiCl₂, and Me(iPr₂N)SiCl₂ with trimethylsilyl groups through reaction with the LiSiMe₃ obtained by treatment of $(Me_3Si)_2Hg$ with lithium metal in a hydrocarbon solvent in order to provide intermediates for the preparation of $[(R_2N)_2Si]_n$ derivatives by subsequent photolytic elimination of hexamethyldisilane or trimethylsilane. Mass spectrometric evidence was obtained for the formation of $(CH_2)_3(NCMe_3)_2Si(H)SiMe_3$ and Me(iPr₂N)Si(SiMe₃)₂ from reactions of this type, but these compounds were not obtained in useful quantities for further chemistry.

(5) Dialkylaminoboron Derivatives

The general objective of this portion of the research project was the preparation of cyclic dialkylaminoboranes of the general formula $(R_2NB)_n$ by the dehalogenation of corresponding dialkylaminodihaloboranes. Cyclic dialkylaminoboranes are of potential interest as precursors both to novel boride refractory materials as well as for more efficient syntheses of polyhedral boranes and carboranes for ingredients in high energy materials and high temperature polymers.

Our studies on the dehalogenation of R_2NBX_2 compounds with strong reducing agents can be summarized as follows:

(a) Reaction of Et_2NBBr_2 with excess sodium in boiling toluene gave a liquid product suggested by mass spectrometry to contain cyclic derivatives of the stoichiometries $(Et_2NB)_n$ (n = 4, 5, 6, 7). This mixture did not form a chromium carbonyl complex upon reaction with norbornadienetetracarbonylchromium. A similar reaction of

Et2NBBr2 with sodium in boiling hexane led to redistribution of diethylamino groups to give (Et2N)3B and (Et2N)3B·NHEt2.

- (b) Treatment of R_2NBBr_2 (R = isopropyl or R_2N = 2,2,6,6-tetramethylpiperidino) with sodium amalgam at room temperature resulted only in recovery of the starting material.
- (c) Reaction of Et₂NBBr₂ with (Me₃Si)₂Hg in toluene solution at low temperatures resulted in a low yield of a complex mixture of products which could not be separated or conclusively identified.

KKKKKKI, \$959,2220 BYKKKKKI, \$KKKKKII, \$335000 BYXXXII, KKKKKKI, \$350000 BYXXXXII, BXXXXXX BXXXXXII,

PUBLICATIONS SUPPORTED IN PART BY AIR FORCE GRANT AFOSR-84-0050

- (1) King, R. B.; Fu, W.-K. "Metal Carbonyl Complexes of Bis(diisopropylamino)phosphine and Diisopropylaminochlorophosphine," J. Organometal. Chem. 1984, 272, C33-C35.
- King, R. B.; Sadanani, N. D. "Dialkylaminophosphines," Chem. Comm. 1984, 955-956.
- (3) King, R. B.; Fu, W.-K.; Holt, E. M. "Bis(diisopropylamino)phosphido and Diisopropylaminophosphinidene Metal Carbonyl Complexes from Reactions of Manganese and Cobalt Carbonyls with Bis(diisopropylamino)phosphine: X-ray Crystal Structures of (iPr₂N)₂PMn₂(CO)₈H and iPr₂NPCo₃(CO)₉." Chem. Comm. 1984, 1439-1440.
- (4) King, R. B.; Sadanani, N. D. "Dialkylaminodichlorophosphines," Syn. React.
 Inorg. Metalorg. Chem. 1985, 15, 149-153.

PANNONDE SONS AND LONG CONTRACTOR MANAGEMENT CONTRACTOR CONTRACTOR

- (5) King, R. B.; Sadanani, N. D. "Tetrakis(dialkylamino)cyclotetraphosphines and Bis(dialkylamino)dihalobiphosphines," J. Org. Chem. 1985, 50, 1719-1722.
- (6) King, R. B.; Sadanani, N. D. "Dialkylaminophosphines and their Metal Carbonyl Complexes," Inorg. Chem. 1985, 24, 3136-3139.
- (7) King, R. B., Fu, W.-K.; Holt, E. M. "The Synthesis of Heterobimetallic Complexes from Metal Carbonyl Complexes of Bis(disopropylamino)phosphine," <u>Inorg.</u> Chem. 1985, 24, 3094-3095.
- (8) King, R. B.; Wu, F.-J.; Sadanani, N. D.; Holt, E. M. "Carbonylbis(dialkylaminophosphido)hexacarbonyldiiron Complexes: Migration of a Carbonyl Group from Iron to Phosphorus," <u>Inorg. Chem.</u> 1985, 24, 4449-4450.
- (9) King, R. B.; Fu. W.-K. "Dialkylaminophosphorus Metal Carbonyls. 1. Mononuclear Derivatives from Reactions of Bis(diisopropylamino)phosphine with Metal Carbonyls," Inorg. Chem. 1986, 25, 2384-2389.

- King, R. B.; Fu, W.-K.; Holt, E. M. "Dialkylaminophosphorus Metal Carbonyls.
 Bis(diisopropylamino)phosphido and Diisopropylaminophosphinidene Metal
 Carbonyl Complexes from Reactions of Manganese and Cobalt Carbonyls with
 Bis(diisopropylamino)phosphine," Inorg. Chem. 1986, 25, 2390-2394.
- King, R. B.; Fu. W.-K.; Holt, E. M. "Dialkylaminophosphorus Metal Carbonyls.
 Heterobimetallic μ₂-Phosphido Derivatives from Reactions of Diisopropylaminohalophosphine Metal Carbonyl Complexes with Sodium Cyclopentadienyldicarbonylferrate," Inorg. Chem. 1986, 25, 2394-2400.
- (12) King, R. B.; Wu, F.-J.; Holt, E. M. "Novel Diisopropylamino Triphosphine Hexacarbonyldiiron Complexes," Inorg. Chem. 1986, 25, 1733-1734.
- (13) King, R. B.; Wu, F.-J.; Holt, E. M. "Novel Diethylamino Migrations in the Reaction of Diethylaminodichlorophosphine with Sodium Tetracarbonylferrate (-II)," J. Organometal. Chem. 1986, 314, C27-C30.
- (14) King, R. B.; Wu, F.-J.; Holt, E. M. "Reactions of Dialkylaminodichlorophosphines with Tetracarbonylferrate(-II): Routes to Novel Phosphorus-Bridging Carbonyl Derivatives and Triphosphine Complexes," Phosphorus and Sulfur 1987, 30, 169-172.

iddio SebbbblockstikSin kikkstikin Zaazaan ee sebbban se saaraan beereen neereeze Kaazaan Kaazaan Kaazaan Kaaz

- (15) King, R. B.; Wu, F.-J.; Holt, E. M. "Dialkylaminophosphorus Metal Carbonyls.
 4. Novel Phosphorus-Bridging Carbonyl Derivatives and Triphosphine Derivatives from Reactions of Tetracarbonylferrate(-II) with Dialkylaminodichlorophosphines,"
 J. Am. Chem. Soc., in press.
- King, R. B.; Wu, F.-J.; Holt, E. M. "Dialkylaminophosphorus Metal Carbonyls.
 Chemical Reactivity of the Phosphorus-Bridging Carbonyl Group in Carbonylbis(diisopropylaminophosphido)hexacarbonyldiiron," J. Am. Chem. Soc., in press.
- (17) King, R. B.; Wu, F.-J.; Holt, E. M. "Dialkylaminophosphorus Metal Carbonyls.6. Chemistry of Diisopropylamino Triphosphine Diiron Hexacarbonyl Derivatives

Including the Synthesis and Structure of Heterometallic Derivatives," <u>Inorg.</u> Chem., in press.

- (18) Wu, F.-J.; King, R. B.

 "[(Carbonylbis(diisopropylamino)phosphido)]hexacarbonyldiiron," Organometal.

 Syn. 1988, 4, 152-154.
- (19) Wu, F.-J.; King, R. B. [(Diisopropylamino)triphosphine]hexacarbonyldiiron,"

 Organometal. Syn. 1988, 4, 155-158.
- (20) King, R. B.; Chorghade, G. S. "Dialkylaminophosphorus Metal Carbonyls. 7.

 Trinuclear Iron Carbonyl Derivatives from Reactions of Disodium

 Octacarbonyldiferrate with Dialkylaminodichlorophosphines," submitted for publication (J. Organometal. Chem.).

1. 18 CONTROL OF THE PROPERTY OF THE PROPERTY

MEETING PRESENTATIONS

- (1) Sadanani, N. D.; King, R. B. "Novel Dialkylaminophosphorus Derivatives from Reduction of Dialkylaminodichlorophosphines," presented by N. D. Sadanani at the 188th National Meeting of the American Chemical Society, Philadelphia, Pennsylvania, August, 1984: paper INOR 218 in abstracts.
- (2) King, R. B.; Fu, W.-K.; Holt, E. M. "Novel Metal Carbonyl Complexes from Bis(diisopropylamino)phosphine," presented by R. B. King at the Twelfth International Conference on Organometallic Chemistry, Vienna, Austria, September, 1985: abstracts, p. 341.
- (3) Fu, W.-K.; King, R. B.; Holt, E. M. "Metal Carbonyl Complexes of Diisopropylaminohalophosphines and their Application for the Synthesis of Novel Bimetallic Complexes," presented by W.-K. Fu at the 190th National Meeting of the American Chemical Society, Chicago, Illinois, September 1985: paper INOR 276 in abstracts.
- (4) Wu, F.-J.; King, R. B.; Holt, E. M.

 "Carbonylbis(dialkylaminophosphido)hexacarbonyldiiron Complexes: Migration
 of a Carbonyl Group from Iron to Phosphorus," presented by F.-J. Wu at the
 191th National Meeting of the American Chemical Society, New York, New
 York, April, 1986: paper INOR 428 in abstracts.

- King, R. B.; Wu, F.-J.; Holt, E. M. "Reactions of Dialkylaminodichlorophosphines with Tetracarbonylferrate(-II): Routes to Novel Phosphorus-Bridging Carbonyl Derivatives and Triphosphine Complexes," presented by R. B. King at the Tenth International Conference on Phosphorus Chemistry, Bonn, West Germany, September, 1986: paper A-17 in abstracts.
- (6) <u>King, R. B.</u>; Wu, F.-J.; Holt, E. M. "New Triphosphine Diiron Hexacarbonyl Derivatives," presented by R. B. King at the 193rd National Meeting of the

American Chemical Society, Denver, Colorado, April, 1987: paper INOR 131 in abstracts.

MAZZZZZZZI W KUCHCHANA W WYDYYY I KARYAWI PYYY

(7) King, R. B.; Wu, F.-J.; Holt, E. M. "Novel Phosphorus-bridging Carbonyl Derivatives and Triphosphine Derivatives from Reactions of Tetracarbonylferrate (-II) with Dialkylaminodichlorophosphines," presented by R. B. King at the Symposium on Binuclear Complexes with Phosphorus-Donor Bridging Ligands at the 19th Central Regional Meeting of the American Chemical Society, Columbus, Ohio, June, 1986: paper 184 in abstracts.

END DATE FILMED FEB. 1988