Pesquisa Operacional / Programação Matemática

Otimização discreta Programação dinâmica II

Programação dinâmica

- Ao contrário do que ocorre em programação linear, não há uma *regra* para se trabalhar com programação dinâmica.
- Cada caso é um caso...

(e vice-versa)

■ Três características básicas:

1. O problema pode ser dividido em etapas.

Ex.: No problema de dimensionamento de lotes, cada início de período é uma etapa.

■ Três características básicas:

2. Em cada etapa, é possível definir o estado da solução.

Ex.: no PDL, quantidade de peças em estoque.

■ Três características básicas:

3. A cada etapa, toma-se uma *decisão* que influencia o estado da etapa seguinte.

Ex.: no PDL, quanto se produzir.

■ Para se saber a que estado leva uma decisão, é preciso definir uma função, chamada de função de transição.

Principio da otimalidade (Bellman, 1959)

"Para um dado estado do sistema, a política ótima para os estados remanescentes é independente da política de decisão adotada em estados anteriores"

Exemplo

Admita-se um aluno que pretende minimizar o custo de transporte entre a sua residência e o ISG utilizando os vários meios de transporte disponíveis na rede seguinte:

Retirado de: http://www.moraissilva.com/din.pdf

Distâncias

	В	С	D	Е
Casa (A)	20	25	15	30

	F	G	Н	Ι
В	90	85	70	75
С	75	70	85	80
D	85	75	80	90
Е	95	90	105	95

	J	K	L	M
F	55	60	70	65
G	70	75	65	80
Н	75	55	70	65
I	65	70	75	60

	ISG (N)
J	30
K	30
L	30
M	30

м

Da análise da rede e matrizes de custos conclui-se que:

A rede não apresenta sub circuitos e o aluno sempre que atinge um dado vértice da rede(estado) tem que decidir qual o vértice seguinte do seu itinerário.

Sendo a casa do aluno o ponto inicial do itinerário as ETAPAS DE DECISÃO agrupam os vértices extremos de caminhos elementares com o mesmo comprimento relativamente ao ponto inicial pelo que o problema tem quatro Etapas (n=4) como mostra a figura seguinte:

Em cada uma das Etapas existe uma Variável de Estado (s_n):

- Etapa 1: {s₁= Casa do aluno}
- Etapa 2 : {s₂= B ou C ou D ou E}
- Etapa 3 : {s₃= F ou G ou H ou I}
- Etapa 4 : {s₄= J ou K ou L ou M}

Em cada uma das Etapas existe uma Variável de Decisão (x_n):

- Etapa 1 : {x1= B ou C ou D ou E}
 Quando o aluno está em casa (etapa 1) tem que decidir se segue para B, C, D ou E que são os
 estados possíveis da etapa seguinte (etapa 2).
- Etapa 2 : {x₂ = F ou G ou H ou I}
 Estando na etapa 2 o aluno poderá estar em B ou C ou D ou E (estados da etapa 2) onde deverá decidir se segue para F ou G ou H ou I que são os <u>estados possíveis da etapa seguinte</u> (etapa 3).
- Etapa 3 : {x₃ = J ou K ou L ou M}
 Estando na etapa 3 o aluno poderá estar em F ou G ou H ou I (estados da etapa 3) onde deverá decidir se segue para F ou G ou H ou I que são os <u>estados possíveis da etapa seguinte</u> (etapa 4).
- Etapa 4 : {x₄ = ISG}
 Estando na etapa 4 o aluno poderá estar em J ou K ou L ou M (estados da etapa 4) onde só poderá decidir que segue para o ISG (objectivo final).

М

Estabelecidas as "n" Etapas, os "s_n" Estados de cada etapa, e as "x_n" Variáveis de Decisão é necessário fixar a relação entre estados \rightarrow **Função de Transição** $f_n^*(s)$.

Fazendo o estudo <u>no sentido inverso</u> (última etapa \rightarrow primeira etapa), esta função serve para estabelecer uma relação recursiva que identifica a política óptima na etapa "n" conhecida que seja a política óptima na etapa "n+1". Sendo " c_{sx_n} " o custo do transporte associado à decisão x_n , quando o aluno se encontra no estado " s_n " (vértice da rede da etapa "n"), tem-se para o encaminhamento $f_n^*(s) = Min\left\{c_{sx_n} + f_{n+1}^*(x_n)\right\}$.

Seja a etapa n=3 e nesta o estado $s_3 = F$.

Na etapa "n+1= 4" a decisão óptima para qualquer dos estados $s_4 = J$ ou K ou L ou M tem o valor $f_4^*(x_4 = ISG) = 30$ \$.

A <u>ligação</u> de F a cada destes estados da etapa 4 tem os seguintes custos:

- para J: 55\$ (implies x₃ = J)
- para K: 60\$ (implies x₃ = K)
- para L: 70\$ (implies $x_3 = L$)
- para M: 65\$ (implies x₃ = M)

- x_5 (o último estado) é o destino final. $f^*(x_5) = 0$;
- \blacksquare Para x_4 :

<i>x</i> ₄	$f_4(s, x_4) = c_{sx_4}$		
s	ISG	$f_4^*(s)$	x_4^*
J	30	30	ISG
K	30	30	ISG
L	30	30	ISG
M	30	30	ISG

$$f_n^*(s) = Min\left\{c_{sx_n} + f_{n+1}^*(x_n)\right\}$$

Para x_3 (nesse caso há de se considerar que cada estado x_3 pode levar a vários estados x_4):

$$f_n^*(s) = Min \left\{ c_{sx_n} + f_{n+1}^*(x_n) \right\}$$

<i>x</i> ₃	$f_3(s, x_3) = c_{sx_3} + f_4^*(x_3)$					
s	J	K	L	М	$f_3^*(s)$	x_3^*
F	55+30=85*	60+30=90	70+30=100	65+30=95	85	J
G	70+30=100	75+30=105	65+30=95*	80+30=110	95	L
Н	75+30=105	55+30=85*	70+30=100	65+30=95	85	K
I	65+30=95	70+30=100	75+30=105	60+30=90*	90	M

Nota: $f_4^*(x_3) = f_4^*(s_4)$ com $s_4 = \{J, K, L, M\}$ que são os estados da etapa 4

Alysson M. Costa – ICMC/USP

 \blacksquare Analogamente para x_2 :

$$f_n^*(s) = Min \left\{ c_{sx_n} + f_{n+1}^*(x_n) \right\}$$

x_2	$f_2(s, x_2) = c_{sx_2} + f_3^*(x_2)$					
s	F	G	Н	I	$f_2^*(s)$	x_2^*
В	90+85=175	85+95=180	70+85=155*	75+90=165	155	Н
C	75+85=160*	70+95=165	85+85=170	80+90=170	160	F
D	85+85=170	75+95=170	80+85=165*	90+90=180	165	Н
Е	95+85=180*	90+95=185	105+85=190	95+90=185	180	F

Nota: $f_3^*(x_2) = f_3^*(s)$ com $s = \{F, G, H, I\}$ que são os estados da etapa 3

 \blacksquare Analogamente para x_1 :

$$f_n^*(s) = Min\left\{c_{sx_n} + f_{n+1}^*(x_n)\right\}$$

x_1	$f_1(s, x_1) = c_{sx_1} + f_2^*(x_1)$					
s \	В	С	D	Е	$f_1^*(s)$	x_1^*
Casa	20+155=175*	25+160=185	15+165=180	30+180=210	175	В

Nota: $f_2^*(x_1) = f_2^*(s)$ com $s = \{B, C, D, E\}$ que são os estados da etapa 2

M

Exemplo nº 2 – Um problema de afectação múltipla (PD determinística e discreta)

Um aluno está prestes a iniciar a sua época de exames em três cadeiras sendo de 3 dias o tempo disponível para preparação. Adicionalmente o aluno durante um dia só estuda para um dos exames, por uma questão de método, e quer estar presente em todos eles.

A previsão do aluno para a classificação em cada uma das cadeiras, em função do tempo (dias) de preparação para cada uma delas, é a seguinte:

Cadeiras Dias	A	В	С
0	8	9	10
1	10	11	12
2	14	15	16
3	15	16	17

O aluno pretende saber qual o plano de estudo (dias de estudo/cadeira) que maximizará a média das classificações dos exames.

O problema pode resolver-se por recurso ao modelo de PL a seguir apresentado.

Considerando para variáveis de decisão:

$$x_{ij} = \begin{cases} 1, \text{ se o aluno estuda } i \text{ dias para a cadeira } j \\ 0, \text{ caso contrário} \end{cases}$$
 $(i = 0,1,2,3; j = A, B, C)$

tem-se:

Max
$$\frac{1}{3}$$
 (8 x_{0A} + 10 x_{1A} + 14 x_{2A} + 15 x_{3A} + 9 x_{0B} + 11 x_{1B} + 15 x_{2B} + 16 x_{3B} + 10 x_{0C} + 12 x_{1C} + 16 x_{2C} + + 17 x_{3C})

s.a

$$\begin{aligned} x_{0\text{A}} + x_{1\text{A}} + x_{2\text{A}} + x_{3\text{A}} &= 1 \\ x_{0\text{B}} + x_{1\text{B}} + x_{2\text{B}} + x_{3\text{B}} &= 1 \\ x_{0\text{C}} + x_{1\text{C}} + x_{2\text{C}} + x_{3\text{C}} &= 1 \\ 1 \ x_{1\text{A}} + 2 \ x_{2\text{A}} + 3 \ x_{3\text{A}} + 1 \ x_{1\text{B}} + 2 \ x_{2\text{B}} + 3 \ x_{3\text{B}} + 1 \ x_{1\text{C}} + 2 \ x_{2\text{C}} + 3 \ x_{3\text{C}} &\leq 3 \\ x_{ij} \in \{ \ 0, \ 1 \ \}, \ i = 0, \ 1, \ 2, \ 3, \ ; \ j = \text{A}, \ \text{B}, \ \text{C} \end{aligned}$$

O processo de decisão consiste em escolher o número de dias de estudo para cada um dos três exames pelo que são identificáveis três momentos distintos (3 etapas) em que se decide o número de dias de estudo para as cadeiras A (etapa 1), B (etapa 2) e C (etapa 3) respectivamente.

etapa: momento de decidir em relação a uma dada matéria.

decisão: quantos dias estudar para essa matéria.

estado: quantos dias ainda tenho para estudar.

Ex. estar no estado 2 (ainda há 2 dias para estudar) na etapa 2 (cadeira B).

Alysson M. Costa – ICMC/USP

- Começar da decisão sobre o número de dias dedicados para a matéria C.
- Obviamente, todos os dias restantes vão ser dedicados a essa matéria.

x ₃		
	$f_3^*(s_3)$	<i>x</i> ₃ *
0	10	0
1	12	1
2	16	2
3	17	3

Decisão sobre B.

x_2	$f_2(s_2, x_2) = c_2(x_2) + f_3^*(s_2 - x_2)$					
s_2	0	1	2	3	$f_2^*(s_2)$	x_2^*
0	9+10=19*				19	0
1	9+12=21*	11+10=21*			21	0 ou 1
2	9+16=25*	11+12=23	15+10=25*		25	0 ou 2
3	9+17=26	11+16=27*	15+12=27*	16+10=26	27	1 ou 2

Decisão sobre A

x_1	$f_1(s_1, x_1) = c_1(x_1) + f_2^*(s_1 - x_1)$					
s_1	0	1	2	3	$f_1^*(s_1)$	x_1^*
3	8+27=35*	10+25=35*	14+21=35*	15+19=34	35	0, 1 ou 2

Política ótima:

Solução	Cadeira A (dias)	Cadeira B (dias)	Cadeira C (dias)	Classificação acumulada
I	0	1	2	8+11+16 = 35
II	0	2	1	8+15+12 = 35
III	1	0	2	10+9+16 = 35
IV	1	2	0	10+15+10 = 35
V	2	0	1	14+9+12 = 35
VI	2	1	0	14+11+10 = 35