Formulário MDIO 2020/2021

PL: Definição matricial

PL: Simplex Dual (prob. min)

- Vértice dual admissível inicial (todos os coeficientes da linha da função objectivo são não-positivos, i.e., $c \le \tilde{0}$) (*)
- Repetir
 - Selecção da linha pivô:
 - Coeficiente mais negativo do lado direito
 - (em caso de empate, escolha arbitrária)
 Se não existir coef.<0, solução óptima.
 - Selecção da coluna pivô:
 - Menor valor absoluto da razão (f.objectivo/linha pivô) negativa (coef.linha<0) (**)
 - Se n\u00e3o existir coef.linha <0, problema \u00e9 imposs\u00edvel.
 - Fazer eliminação de Gauss
- Enquanto (solução não for óptima)

• nota: o elemento pivô tem sempre valor negativo.

Problema impossível

Um problema (primal) é impossível se existir uma linha com um coeficiente negativo do lado direito e com todos os coeficientes das variáveis não-básicas não-negativos (≥ 0).

3 Relax4

n org dst custo cap (m vezes) vert (n vezes)

- n: número de vértices
- m: número de arcos do grafo
- org: vértice de origem do arco
- dst: vértice de destino
- custo: custo de transporte
- cap: capacidade do arco
- vert: oferta/procura no vértice, + e respetivamente

Transportes: Introdução

Caracterização das soluções básicas

A uma base podemos associar uma árvore (grafo com vértices não orientados) que suporta todos os vértices.

4.1.1 Propriedades da árvore de suporte de um grafo G

- é um grafo ligado (existe um caminho entre cada par de vértices)
- sem ciclos
- com |A| = |V| 1 (nº de arcos = nº de vértices 1)

4.2 Método dos multiplicadores

- 1. Fixar o valor de qualquer multiplicador em 0
- 2. Arcos básicos: $c_{ij} = u_i u_j$
- 3. Arcos não-básicos: $\delta_{ij} = c_{ij} (u_i u_j)$

Transportes: Grafos Bipartidos

Um grafo G = (V, A) é bipartido se o conjunto de vértices V puder ser dividido em dois conjuntos disjuntos, V_1 e V_2 (i.e., $V_1 \cup V_2 = V$, $V_1 \cap V_2 = \emptyset$), de tal modo que todos os arcos $(i, j) \in A$ tenham origem num vértice $i \in V_1$ e destino num vértice $j \in V_2$.

Solução inicial

5.1.1 Método do canto NW / custo mínimo

- 1. Colocar a maior quantidade possível na casa mais a NW / com custo mínimo ⇒
 - ou a procura de um destino (coluna) é totalmente satisfeita,
 - ou a oferta de uma origem (linha) é totalmente usada,
 - ou ambas.
- 2. Cortar a linha ou a coluna (ou ambas)
- 3. Repetir se ainda houver uma casa

Seleção da variável básica com valor 0 (quando faltar uma var. básica)

- Nem todas as variáveis podem ser escolhidas!
- ullet No seguinte exemplo, escolher a variável x_{AE} dá origem a um grafo que não é uma árvore.

• Os arcos associados às variáveis formam um ciclo (i.e., as colunas do modelo de PL são linearmente dependentes, e portanto não formam uma base)

Transportes: Redes c/ capacidades

Caracterização das soluções básicas

Iguais às referidas no 2.2, mas agora as variáveis no limite superior são também consideradas como não-básicas, para além das iguais a 0.

Uma variável não-básica é atrativa quando:

- $x_{i,i} = 0$ (variável aumenta de valor) e $\delta_{i,i} < 0$
- $x_{ij} = u_{ij}$ (variável decrementa de valor) e $\delta_{ij} > 0$

6.2 Transformações

6.2.1 Capacidade num vértice

6.2.2 Limite inferior num arco

7 Programação Inteira: Modelos

7.1 Expressões lógicas

Expressão lógica	Restrição binária
$a \Rightarrow b$	a≤b
$\overline{b} \Rightarrow \overline{a}$	$(1-b) \le (1-a)$
$\overline{b} \Rightarrow \overline{a}$	$a \leq b$
$a \Rightarrow \overline{b}$	$a+b \leq 1$
$b \Rightarrow \overline{a}$	$a+b \leq 1$
$\stackrel{\bullet}{a}\stackrel{\bullet}{\lor} b$ (ou exclusivo)	a + b = 1
seleccionar <i>exactamente</i> uma das opções	$a+b+\ldots+z=1$
seleccionar, <i>no máximo.</i> uma das opções	$a+b+\ldots+z\leq 1$
$a.b \Rightarrow c$	$a+b-1 \le c$

7.2 Restrições ativas e redundantes

 A variável binária y₁ pode ser usada para tornar uma restrição activa ou redundante (M deve ter um valor adequado):

$$A^1 x \leq b^1 + M(1 - y_1)$$

8 PI: Planos de corte

8.1 Algoritmo de planos de corte

- 1. Otimizar relaxação linear
- 2. Enquanto a solução não for inteira:
 - identificar um plano de corte
 - adicionar plano de corte ao conjunto de restrições
 - · reotimizar (usando o método simplex dual)

8.2 Plano de corte de Chvátal-Gomory

- 1. Pegar na restrição da var. básica com a maior mantissa
- 2. Pegar na parte fracionária da restrição e meter ≥

8.2.1 Exemplo

1.

$$x_1 + \frac{1}{4}s_1 + \frac{3}{2}s_2 = \frac{5}{2}$$

2.

$$\frac{1}{4}s_1 + \frac{1}{2}s_2 \ge \frac{1}{2}$$

9 PI: Partição e avaliação

9.1 Partição do domínio

Dado um pai com uma solução fracionária:

- 1. selecionar variável x_i fracionária
- 2. criar 2 nós filhos, $x_i \leq \lfloor x_i \rfloor$ e $x_i \geq \lfloor x_i \rfloor$

9.2 Solução incumbente

É a melhor solução inteira encontrada até um dado passo da pesquisa (x_{SI}) com valor de função objetivo z_{SI} .

9.3 Avaliação do nó (prob. maximização)

9.3.1 [Início] Determinar sol. ótima PL $(x_{PL} \rightarrow z_{PL})$

- se for inteira, é a melhor sol. inteira no domínio do nó
- se não, pode haver na subárvore uma sol. inteira $\leq z_{\rm Pl}$

9.3.2 [Opção 1] Abandonar o nó (podar a subárvore) se:

- o problema for impossível (domínio vazio)
- a solução x_{PL} for inteira (atualizar incumbente se $z_{PL} > z_{SI}$)
- a solução x_{PL} for fracionária e não puder haver na subárvore uma solução inteira melhor do que a solução incumbente $z_{PL} \le z_{SI}$

9.3.3 [Opção 2] Fazer partição (explorar a subárvore):

• se a solução $x_{\rm PL}$ for fracionária e ainda puder haver na subárvore uma solução inteira melhor do que a solução incumbente $z_{\rm PL} > z_{\rm SI}$

9.4 Limites para o valor do ótimo

 $z_I^* \in [LI,LS], z_I^* \rightarrow \text{solução ótima inteira}$

9.5 Limite superior

Num problema de maximização o LS é apenas um valor de referência, não está associado a nenhuma solução inteira admissível. O valor do ótimo da relaxação linear ($z_{\rm RL}$) é um limite superior para o valor do ótimo inteiro z_t^* :

$$z_I^* \le z_{\mathsf{RL}}$$

Para problemas de minimização é o oposto (lim. inferior).

9.6 Limite inferior

O valor de qualquer solução inteira admissível é um limite inferior para z_i^* .

Para problemas de minimização é o oposto (lim. superior).