

CSI 3350 Fall 2019 PROGRAMMING LANGUAGES

What have we covered so far?

- Described syntax of fundamental program components (hw06 loop, block structure, scoping mechanism, etc.,)
- Discussed fundamental concepts of operational semantics yet to cover (hw06, coding the value-of function)
 - Describe parameter passing and access to non-locals (hw07 soon!)
 - Described data types and type systems (hw06, grammar, hw05, define-datatype)
 - Apply major features of functional programming languages (hw01~hw04, map, foldl, high order functions, lambda etc.)
 - Described activation records (Sep 30 lecture notes, slides 43 ~ 66)

What have we covered so far?

- Described syntax of fundamental program components (hw06 loop, block structure, scoping mechanism, etc.,)
 - Discussed fundamental concepts of operational semantics (hw06, coding the value-of function)
 - Describe parameter passing and access to non-locals (hw07)
- Described data types and type systems (hw06, grammar, hw05, define-datatype)
- Apply major features of functional programming languages (hw01~hw04, map, foldl, high order functions, lambda etc.)
- Described activation records (Sep 30 lecture notes, slides 43 ~ 66)

Type Inferences Through Typing Rules

(Types systems of programming languages)

Premise(s)

Conclusion

• (type-of (const-exp num) tenv) = int

- (type-of (const-exp num) tenv) = int
- (type-of (var-exp var) tenv) = (apply-tenv var)

Add Typing Rules For The LET Language

Figure 3.2 Syntax for the LET language

```
(type-of exp1 tenv) = int
(type-of (zero?-exp exp1) tenv) = bool
```

```
(type-of exp1 tenv) = int
(type-of exp2 tenv) = int
```

```
(type-of (diff-exp exp1 expr2) tenv) = int
```


Typing Rule For If-expr

```
Expression ::= if Expression then Expression else Expression
if-exp (expl exp2 exp3)
```

```
(type-of exp1 tenv) = bool
(type-of exp2 tenv) = t
(type-of exp3 tenv) = t
```

```
(type-of (if-exp exp1 exp2 exp3) tenv) = t
```


Typing Rule For proc-exp

```
Expression ::= proc (Identifier) Expression
proc-exp (var body)
```

```
(type-of body ([var t1] tenv)) = t2
```

```
(type-of (proc-exp var body) tenv) = t1->t2
```


Typing Rule For call-exp

```
Expression ::= (Expression Expression)
call-exp (rator rand)
```

```
t1 \rightarrow t2
(type-of rator tenv) = ? t1 \rightarrow t2
(type-of rand tenv) = ? t1 \rightarrow t2
```

(type-of (call-exp rator rand) tenv) = t2

Type Inference

What is the type of

proc (f) proc (x) -((f 3) (f x))

What is the type of

proc (f) proc (x) -((f 3) (f x))

- Introduce a type variable for:
 - every sub-expression, and
 - every bound variable

- Introduce a type variable for:
 - every sub-expression, and
 - every bound variable
- Identify type constraints for each sub-expression
 - based on its typing rule

- Introduce a type variable for:
 - every sub-expression, and
 - every bound variable
- Identify type constraints for each sub-expression
 - based on its typing rule
 - for example: x has to be a number for 3 + x

- Introduce a type variable for:
 - every sub-expression, and
 - every bound variable
- Identify type constraints for each sub-expression
 - based on its typing rule
 - for example: x has to be a number for 3 + x
- Solve the equations

- Introduce a type variable for:
 - every sub-expression, and
 - every bound variable
- Identify type constraints for each sub-expression
 - based on its typing rule
 - for example: x has to be a number for 3 + x
- Solve the equations
 - using substitutions

- Introduce a type variable for:
 - every sub-expression, and
 - every bound variable
- Identify type constraints for each sub-expression
 - based on its typing rule
 - for example: x has to be a number for 3 + x
- Solve the equations (i.e., unification)
 - using substitutions

What is the type of

proc (f) proc (x) -((f 3) (f x))

(Sub)Expression	Type Variable
f	T _f
x	T_x
proc (f) proc(x) $-$ ((f 3) (f x))	T_0
proc(x) - ((f 3) (f x))	T ₁
-((f3)(fx))	T ₂
(f 3)	T ₃
(f x)	T ₄

proc (f) proc (x)
$$-((f 3)(f x))$$

Expression	Type Variable	Equations
f	T _f	
x	T _x	
proc(f) proc(x) -((f 3) (f x))	T ₀	$T_0 = T_f -> T_1$
proc(x) -((f 3) (f x))	T ₁	$T_1 = T_x \rightarrow T_2$
-((f 3) (f x))	T ₂	$T_3 = int$ $T_4 = int$ $T_2 = int$
(f 3)	T ₃	$T_f = int -> T_3$
(f x)	T ₄	$T_f = T_x \rightarrow T_4$

proc (f) proc (x)
$$-((f 3)(f x))$$

Expression	Type Variable	Equations
f	T _f	
x	T _x	
proc(f) proc(x) -((f 3) (f x))	T ₀	$T_0 = T_f -> T_1$
proc(x) -((f 3) (f x))	T ₁	$T_1 = T_x \rightarrow T_2$
-((f 3) (f x))	T ₂	$T_3 = int$ $T_4 = int$ $T_2 = int$
(f 3)	T ₃	$T_f = int -> T_3$
(f x)	T ₄	$T_f = T_x \rightarrow T_4$

proc (f) proc (x)
$$-((f 3)(f x))$$

Equations	Substitutions
$T_0 = T_f -> T_1$	
$T_1 = T_x \to T_2$	
$T_3 = int$ $T_4 = int$ $T_2 = int$	
$T_f = int -> T_3$	
$T_f = T_x \rightarrow T_4$	

- Introduce a type variable for:
 - every sub-expression, and
 - every bound variable
- Identify type constraints for each sub-expression
 - based on its typing rule
 - for example: x has to be a number for 3 + x
- Solve the equations (i.e., unification)
 - using substitutions

proc (f) proc (x)
$$-((f 3)(f x))$$

Equations	Substitutions
$T_0 = T_f -> T_1$	
$T_1 = T_x \to T_2$	
$T_3 = int$ $T_4 = int$ $T_2 = int$	
$T_f = int -> T_3$	
$T_f = T_x \rightarrow T_4$	

proc (f) proc (x)
$$-((f 3)(f x))$$

Equations	Substitutions
	$T_0 = T_f \rightarrow T_1$
$T_1 = T_x -> T_2$	
$T_3 = int$ $T_4 = int$ $T_2 = int$	
$T_f = int -> T_3$	
$T_f = T_x \rightarrow T_4$	

proc (f) proc (x)
$$-((f 3)(f x))$$

Equations	Substitutions
	$T_0 = T_f \rightarrow T_1$
	$T_0 = T_f - T_1$ $T_1 = T_x - T_2$
$T_3 = int$ $T_4 = int$	
$T_4 = int$	
$T_2 = int$	
$T_f = int -> T_3$	
$T_f = T_x \rightarrow T_4$	

proc (f) proc (x)
$$-((f 3)(f x))$$

Equations	Substitutions
	$T_0 = T_f \rightarrow (T_x \rightarrow T_2)$
	$T_1 = T_x \rightarrow T_2$
$T_3 = int$ $T_4 = int$ $T_2 = int$	
$T_f = int -> T_3$	
$T_f = T_x \rightarrow T_4$	

proc (f) proc (x)
$$-((f 3)(f x))$$

Equations	Substitutions
	$T_0 = T_f \rightarrow (T_x \rightarrow T_2)$
	$T_1 = T_x \rightarrow T_2$
	$T_3 = int$ $T_4 = int$ $T_2 = int$
$T_f = int -> T_3$	
$T_f = T_x \rightarrow T_4$	

proc (f) proc (x)
$$-((f 3)(f x))$$

Equations	Substitutions
	$T_0 = T_f \rightarrow (T_x \rightarrow T_2)$
	$T_0 = T_f -> (T_x -> T_2)$ $T_1 = T_x -> T_2$
	$T_3 = int$ $T_4 = int$
	$T_4 = int$
	T ₂ = int
$T_f = int -> T_3$	
$T_f = T_x \rightarrow T_4$	

Equations	Substitutions
	$T_0 = T_f \rightarrow (T_x \rightarrow int)$
	$T_0 = T_f -> (T_x -> int)$ $T_1 = T_x -> int$
	$T_3 = int$ $T_4 = int$
	T ₄ = int
	T ₂ = int
$T_f = int -> T_3$	
$T_f = T_x \rightarrow T_4$	

proc (f) proc (x)
$$-((f 3)(f x))$$

	Equations	Substitutions
		$T_0 = T_f -> (T_x -> int)$
		$T_1 = T_x \rightarrow int$
		$T_3 = int$ $T_4 = int$ $T_2 = int$
4	$T_f = int -> T_3$	
	$T_f = T_x \rightarrow T_4$	

next equation to move

proc (f) proc (x)
$$-((f 3)(f x))$$

Equations	Substitutions
	$T_0 = T_f -> (T_x -> int)$
	$T_1 = T_x \rightarrow int$
	T_3 = int T_4 = int T_2 = int
$T_f = int - T_3$	
$T_f = T_x \rightarrow T_4$	

proc (f) proc (x)
$$-((f 3)(f x))$$

Equations	Substitutions
	$T_0 = T_f \rightarrow (T_x \rightarrow int)$
	$T_1 = \overline{T_x} \rightarrow int$
	$T_3 = int$ $T_4 = int$ $T_2 = int$
	T _f = int -> int
$T_f = T_x \rightarrow T_4$	

proc (f) proc (x)
$$-((f 3)(f x))$$

Equations	Substitutions
	$T_0 = (int->int) \rightarrow (T_x \rightarrow int)$
	$T_1 = T_x \rightarrow int$
	$T_3 = int$ $T_4 = int$ $T_2 = int$
	T _f = int -> int
$T_f = T_x \rightarrow T_4$	

proc (f) proc (x)
$$-((f 3)(f x))$$

Equations	Substitutions
	$T_0 = (int->int) -> (T_x -> int)$
	$T_1 = T_x \rightarrow int$
	$T_3 = int$ $T_4 = int$ $T_2 = int$
	T _f = int -> int
int -> int = T_x -> T_4	

proc (f) proc (x) -((f 3)(f x))

	Equations	Substitutions
		$T_0 = (int->int) -> (T_x -> int)$
		$T_1 = T_x \rightarrow int$
		$T_3 = int$ $T_4 = int$ $T_2 = int$
not a substitution yet	on	T _f = int -> int
	int -> int = T _x -> int	
	Solving this equation	

proc (f) proc (x)
$$-((f 3)(f x))$$

Equations	Substitutions
	$T_0 = (int->int) -> (\Gamma_x -> int)$
	$T_1 = T_x \rightarrow int$
	$T_3 = int$ $T_4 = int$ $T_2 = int$
	T _f = int -> int
	T _x = int

proc (f) proc (x)
$$-((f 3)(f x))$$

Equations	Substitutions
	T ₀ = (int->int) -> (int -> int)
	$T_1 = int \rightarrow int$
	$T_3 = int$ $T_4 = int$ $T_2 = int$
	T _f = int -> int
	T _x = int

proc (f) proc (x)
$$-((f 3)(f x))$$

(Sub)Expression	Type Variable
f	T _f
x	T _x
proc (f) proc(x) $-$ ((f 3) (f x))	T_0
proc(x) - ((f 3) (f x))	T ₁
- ((f 3) (f x))	T ₂
(f 3)	T ₃
(f x)	T_4

proc (f) proc (x)
$$-((f 3)(f x))$$

Equations	Substitutions
	$T_0 = (int->int) \rightarrow (int->int)$
	$T_1 = int \rightarrow int$
	$T_3 = int$ $T_4 = int$ $T_2 = int$
	T _f = int -> int
	T _x = int

proc (f) proc (x) -((f 3)(f x))

(int -> int) -> (int -> int)

Second Example

proc (f) (f 11)

(Sub)Expression	Type Variable
f	T _f
proc (f) (f 11)	T_0
(f11)	T ₁

(Sub)Expression	Type Variable	Equations
f	T _f	
proc (f) (f 11)	T_0	$T_0 = T_f \rightarrow T_1$
(f11)	T ₁	$T_f = int -> T_1$

Euqations	Substitutions
$T_0 = T_f \to T_1$	
$T_f = int -> T_1$	

proc (f) (f 11)

Euqations	Substitutions
	$T_0 = T_f \to T_1$
$T_f = int -> T_1$	

Euqations	Substitutions
	$T_0 \neq T_f \rightarrow T_1$
	$T_f = int -> T_1$

Euqations	Substitutions
	$T_0 = (int -> T_1) -> T_1$
	$T_f = int \rightarrow T_1$

(Sub)Expression		Type Variable	
f	T_f		
proc (f) (f 11)	T_0		
(f11)	T ₁		Are

Polymorphic in T_1 , for any choice of T_1

Polymorphic in T_1 , for any choice of T_1

(Sub)Expressions	
x	
if x then -(x,1) else 0	
-(x,1)	

(Sub)Expressions	Type Variables
x	T_{x}
if x then -(x,1) else 0	T_0
-(x,1)	T_1

(Sub)Expression	Type Variable	Equations
x	T _x	
if x then -(x,1) else 0	T_0	
-(x,1)	T_1	

(Sub)Expression	Type Variable	Equations
x	T_x	
if x then -(x,1) else 0	T ₀	$T_x = bool$ $T_1 = T_0$ $int = T_0$
-(x,1)	$\overline{T_{1}}$	

(Sub)Expression	Type Variable	Equations
x	T _x	
if x then -(x,1) else 0	T ₀	$T_x = bool$ $T_1 = T_0$ $int = T_0$
-(x,1)	T ₁	$T_x = int$ $T_1 = int$

if
$$x$$
 then $-(x,1)$ else 0

Equations	Substitutions
T _x = bool	
$T_1 = T_0$	
int = T ₀	
T _x = int	
T ₁ = int	

if x then
$$-(x,1)$$
 else 0

Equations	Substitutions
	T _x = bool
	$T_1 = T_0$
	$T_0 = int$
T _x = int	
$T_1 = int$	

if x then -(x,1) else 0

Equations	Substitutions
	$T_x = bool$
	$T_1 = T_0$
	$T_0 = int$
bool = int	
T ₄ = int	

A contradiction!

Yet Another Example

proc (f) zero? ((f f))

Expression	Type Variable

Yet Another Example

proc (f) zero? ((f f))

Expression	Type Variable
proc (f) zero? ((f f))	T_0
zero? ((f f))	T_1
(f f)	T ₂
f	T_f

Equations

proc (f) zero? ((f f))

Expression	Type Variable	Equations
proc (f) zero? ((f f))	T_0	$T_0 = T_f \to T_1$
zero? ((f f))	T_{1}	$T_1 = bool$
		$T_2 = int$
(f f)	T ₂	$T_f = T_f \rightarrow T_2$

Equations	Substitutions
$T_0 = T_f \to T_1$	
$T_1 = bool$	
T ₂ = int	
$T_f = T_f \rightarrow T_2$	

Equations	Substitutions
	$T_0 = T_f \to T_1$
	$T_1 = bool$
T ₂ = int	
$T_f = T_f \rightarrow T_2$	

Equations	Substitutions
	$T_0 = T_f \rightarrow bool$
	$T_1 = bool$
$T_2 = int$	
$T_f = T_f \rightarrow T_2$	

Equations	Substitutions
	$T_0 = T_f \rightarrow bool$
	$T_1 = bool$
	T ₂ = int
$T_f = T_f - T_2$	

Equations	Substitutions
	$T_0 = T_f \rightarrow bool$
	$T_1 = bool$
	$T_2 = int$
$T_f = T_f \rightarrow int$	

Equations	Substitutions
	$T_0 = T_f \rightarrow bool$
	$T_1 = bool$
	$T_2 = int$
	$T_f = T_f \rightarrow int$

Equations	Substitutions
	$T_0 = T_f \rightarrow bool$
	$T_1 = bool$
	T ₂ = int
	$T_f = T_f \rightarrow int$
	Turing Undecidable!

Equations	Substitutions
	$T_0 = T_f \rightarrow bool$
	$T_1 = bool$
	$T_2 = int$
	$T_f = T_f \rightarrow int$

Turing Undecidable!

→ Unsolvable by any computer!

CSI 3350 Fall 2019 PROGRAMMING LANGUAGES

CSI 3350 Fall 2019 PROGRAMMING LANGUAGES

Thank you!