Chapter 4, Section 1

James Lee

April 25, 2025

1.	Let X be a curve, and let $P \in X$ be a poin	. Then there exists a nonconstant	rational function,	$f \in K(X)$, where $X \in K(X)$	hich is
	regular everywhere except at P .				

Proof. Pick another point $Q \neq P \in X$, which exists since we always assume the ground field k is algebraically closed. By the Riemann-Roch Theorem, there exists n > 0 such that $\dim |n(-P+2Q)| > 0$. Hence, there exists a rational function with pole at P of order n, and regular everywhere else.

2. Again let X be a curve, and let $P_1, \ldots, P_r \in X$ be points. Then there is a rational function $f \in K(X)$ having poles (of some order) at each of the P_i , and regular elsewhere.

Proof. Pick another point $Q \neq P_i \in X$, and repeat (Ex. 1.1) with $n(-\sum P_i + 2rQ)$.

- **3.** Let X be an integral, separated, regular, one-dimensional scheme of finite type over k, which is *not* proper over k. Then X is affine.
- **4.** Show that a separated, one-dimensional scheme of finite type over k, none of whose irreducible components is proper over k, is affine.
- **5.** For an effective divisor D on a curve X of genus g, show that $\dim |D| \leq \deg D$. Furthermore, equality holds if and only if D = 0 or g = 0.

Proof. By definition dim $|D| = \ell(D) - 1$. Rearranging the Riemann-Roch Theorem gives

$$\dim |D| = \ell(K - D) + \deg D - g,$$

so we want to show $\ell(K-D) \leq g$. But D is effective, so $\mathcal{L}(K-D) \to \mathcal{L}(K)$ is injective, and $g = \ell(K) = \dim H^0(X, \mathcal{L}(K))$ by definition.

6. Let X be a curve of genus g. Show that there is a finite morphism $f: X \to \mathbb{P}^1$ of degree $\leq g+1$.

Proof. By the Riemann-Roch Theorem, it suffices to show there exists a divisor D such that $2 \le \ell(D) \le \ell(K-D)$. Indeed, take D = -P

- 7. A curve X is called hyperelliptic if $g \geq 2$ and there exists a finite morphism $f: X \to \mathbb{P}^1$ of degree 2.
 - (a) If X is a curve of genus g = 2, show that the canonical divisor defines a complete linear system |K| of degree 2 and dimension 1, without base points. Use (II, 7.8.1) to conclude that X is hyperelliptic.
 - (b) Show taht the curves constructed in (1.1.1) all admit a morphism of degree 2 to \mathbb{P}^1 . Thus there exist hyperelliptic curves of any genus $g \geq 2$.