Math 58B, Spring 2022 Jo Hardin WU # 18 Thursday, March 31, 2022

Your Name:			
Names of peo	ople you worked wi	ith:	

Instructions: Work on this problem in class with your group. Do your best. This piece of paper will be collected during class.

Task: Many people (particularly those who grew up in countries who use British systems of measurement) consider a "healthy" body temperature to be 98.6 degrees F. Let's say that you took a sample of 130 people and found that their average temperature was 98.249 degrees with a standard deviation of 0.733 degrees. (Both the average and the standard deviation are calculated on the 130 people.)

$$n = 130$$
 $\overline{X} = 98.249$
 $s = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}} = 0.733$

Find a T score and a p-value (use xpt() in R) to address the null hypothesis that the average healthy body temp is 98.6.

Solution:

 $H_0: \mu = 98.6$ $H_A: \mu \neq 98.6$

T score =
$$\frac{98.249 - 98.6}{0.733/\sqrt{130}} = -5.46$$

2*mosaic::xpt(-5.46, df = 129) Gives a p-value of 2.35×10^{-7} .

Conclusion: We definitely reject H_0 . There is no way this sample of 130 people came from a population with a true average healthy body temperature of 98.6.