

UNIVERSIDADE FEDERAL DO CEARÁ - CAMPUS SOBRAL
ENGENHARIA DA COMPUTAÇÃO
DISCIPLINA DE CIRCUITOS ELÉTRICOS I
LISTA DE EXERCÍCIOS #13 – RESPOSTA AO DEGRAU DO CIRCUITO RL
PROF. CARLOS ELMANO

* Fonte: Nilson, 10ª. Edição.

- 7.36 A chave do circuito mostrado na Figura P7.36 esteve na posição a por um longo tempo antes de passar para a posição $b \in t = 0$.
 - a) Determine as expressões numéricas para $i_t(t)$ e $v_o(t)$ quando $t \ge 0$.
 - b) Determine os valores numéricos para $v_I(0^+)$ e $v_o(0^+)$.

Figura P7.36

- 7.41 A chave do circuito mostrado na Figura P7.41 esteve fechada por um longo tempo. Ela se abre em t = 0. Para $t \ge 0^+$:
 - a) Determine $v_o(t)$ em função de I_g, R_1, R_2 e L.
 - b) Explique o que acontece com $v_o(t)$ quando R_2 aumenta indefinidamente.
 - c) Determine v_{sw} em função de I_g, R_1, R_2 e L.
 - d) Explique o que acontece com $v_{\rm sw}$ quando R_2 aumenta indefinidamente.

Figura P7.41

7.47 A chave no circuito da Figura P7.47 esteve na posição 1 por um longo tempo. Em t=0, ela passa instantaneamente para a posição 2. Em quantos milissegundos, depois do acionamento da chave, v_o atinge 100 V?

Figura P7.47

- 7.48 Para o circuito da Figura P7.47, determine (em joules):
 - a) a energia total dissipada no resistor de 40Ω ;
 - b) a energia retida nos indutores;
 - c) a energia inicial armazenada nos indutores.
- 7.50 Não há nenhuma energia armazenada nos indutores L_1 e L_2 no instante em que a chave é aberta, no circuito mostrado na Figura P7.50.
 - a) Deduza as expressões para as correntes $i_1(t)$ e $i_2(t)$ para $t \ge 0$.
 - b) Use as expressões deduzidas em (a) para determinar $i_1(\infty)$ e $i_2(\infty)$.

Figura P7.50

GABARITO

7.36) a)
$$i_L(t) = -0.8 + 2.4e^{-4000t}$$

 $v_o(t) = 41.6 + 19.2e^{-4000t}$

b) Ambos -48V;

7.41) a)
$$v_o(t) = -I_g R_2 e^{-[(R1+R2)/L]t}$$

b) A intensidade tende ao infinito e diminui a sua duração;

c)
$$[R_1I_g/(1+R_1/R_2)] + [R_2I_g/(1+R_1/R_2)]e^{-[(R1+R2)/L]t}$$

d)A parcela constante tende a R_1I_g e a parcela amortecida tende ao infinito em intensidade mas diminui em duração.

7.47) 17,33ms

7.48) a)12,5J b)25J c)37,5J

7.50)
$$a,b$$
) $i_1(t) = [I_g L_2/(L_1 + L_2)](1 - e^{-t/\tau})$
 $i_2(t) = [I_g L_1/(L_1 + L_2)](1 - e^{-t/\tau})$