Zderzenie sprężyste

VIII OIG — Zawody drużynowe, II trening. Dostępna pamięć: 64 MB.

28 X 2013

Jaką masę M powinna mieć spoczywająca stalowa kulka, aby po sprężystym i centralnym zderzeniu z nią kulka o masie m poruszająca się z prędkością v straciła k% swojej energii kinetycznej?

Wejście

W pierwszym wierszu standardowego wejścia znajduje się liczba całkowita k ($1 \le k \le 99$) oraz masa uderzającej kulki m ($0,1 \le m \le 1$) w kilogramach podana z dokładnością do dwóch miejsc po przecinku.

Wyjście

W pierwszym wierszu standardowego wyjścia należy wypisać szukaną wartość masy z dokładnością do 0,001 kg.

Przykłady

Wejście: 20 0.20	Wejście: 35 0.40	Wejście: 95 0.60
Wyjście:	Wyjście:	Wyjście:
3.589	3.729	0.946

Zderzenie sprężyste

KAPITAŁ LUDZKI