The Dunford-Pettis theorem

Jordan Bell jordan.bell@gmail.com Department of Mathematics, University of Toronto

April 19, 2015

1 Weak topology and weak-* topology

If (E,τ) is a topological vector space, we denote by E^* the set of continuous linear maps $E \to \mathbb{C}$, the **dual space of** E. The **weak topology on** E, denoted $\sigma(E,E^*)$, is the coarsest topology on E with which each function $x \mapsto \lambda x$, $\lambda \in E^*$, is continuous $E \to \mathbb{C}$. Thus, $\sigma(E,E^*) \subset \tau$. If (E,τ) is a locally convex space, it follows by the Hahn-Banach separation theorem that E^* separates X, and hence $|\lambda|, \lambda \in E^*$, is a separating family of seminorms on E that induce the topology $\sigma(E,E^*)$. Therefore, if (E,τ) is a locally convex space, then $(E,\sigma(E,E^*))$ is a locally convex space.

If (E, τ) is a topological vector space, the **weak-* topology on** E^* , denoted $\sigma(E^*, E)$, is the coarsest topology on E^* with which each function $\lambda \mapsto \lambda x$, $x \in E$, is continuous $E^* \to \mathbb{C}$. It is a fact that E^* with the topology $\sigma(E^*, E)$ is a locally convex space.

If E is a normed space, then $\|\lambda\|_{op} = \sup_{\|x\| \le 1} |\lambda x|$ is a norm on the dual space E^* , and that E^* with this norm is a Banach space. The **Banach-Alaoglu theorem** states that $\{\lambda \in E^* : \|\lambda\|_{op} \le 1\}$ is a compact subset of $(E^*, \sigma(E^*, E))$.

If (X, Σ, μ) is a σ -finite measure space, for $g \in L^{\infty}(\mu)$ define $\phi_g \in (L^1(\mu))^*$ by $\phi_g(f) = \int_X fgd\mu$. The map $g \mapsto \phi_g$ is an isometric isomorphism $L^{\infty}(\mu) \to (L^1(\mu))^*$.

Let (X, Σ, μ) be a probability space. If $\Psi \in (L^{\infty}(\mu))^*$ and $A \mapsto \Psi(\chi_A)$ is countably additive on Σ , then there is some $f \in L^1(\mu)$ such that

$$\Psi(g) = \int_X gfd\mu, \qquad g \in L^{\infty}(\mu),$$

and $\|\Psi\|_{op} = \|f\|_1$.² Also, an additive function F on an algebra of sets \mathscr{A} is countably additive if and only if whenever A_n is a decreasing sequence of

¹Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second ed., p. 190, Theorem 6.15.

²V. I. Bogachev, *Measure Theory*, volume I, p. 263, Proposition 4.2.2.

elements of \mathscr{A} with $\bigcap_{n=1}^{\infty} A_n = \emptyset$, we have $\lim_{n\to\infty} F(A_n) = 0.3$ Using that μ is countably additive we get the following.

Theorem 1. Suppose that (X, Σ, μ) be a probability space and that $\Psi \in (L^{\infty}(\mu))^*$, and suppose that for each $\epsilon > 0$ there is some $\delta > 0$ such that $E \in \Sigma$ and $\mu(E) \leq \delta$ imply that $|\Psi(\chi_A)| \leq \epsilon$. Then there is some $f \in L^1(\mu)$ such that

$$\Psi(g) = \int_X gfd\mu, \qquad g \in L^{\infty}(\mu).$$

2 Normed spaces

If E is a normed space, its dual space E^* with the operator norm is a Banach space, and $E^{**} = (X^*)^*$ with the operator norm is a Banach space. Define $i: E \to E^{**}$ by

$$i(x)(\lambda) = \lambda(x), \qquad x \in E, \quad \lambda \in E^*.$$

It follows from the Hahn-Banach extension theorem that $i: E \to E^{**}$ is an isometric linear map.

If E and F are normed spaces and $T: E \to F$ is a bounded linear map, we define the **transpose** $T^*: F^* \to E^*$ by $T^*\lambda = \lambda \circ T$ for $\lambda \in F^*$. If T is an isometric isomorphism, then $T^*: F^* \to E^*$ is an isometric isomorphism, where E^* and F^* are each Banach spaces with the operator norm. In particular, we have said that when (X, Σ, μ) is a σ -finite measure space, then the map $\phi: L^{\infty}(\mu) \to (L^1(\mu))^*$ defined for $g \in L^{\infty}(\mu)$ by

$$\phi_g(f) = \int_X fg d\mu, \qquad f \in L^1(\mu),$$

is an isometric isomorphism, and hence $\phi^*:(L^1(\mu))^{**}\to (L^\infty(\mu))^*$ is an isometric isomorphism. Therefore, for $E=L^1(\mu)$ we have that

$$\phi^* \circ i : L^1(\mu) \to (L^{\infty}(\mu))^* \tag{1}$$

is an isometric linear map. For $f \in L^1(\mu)$ and $g \in L^{\infty}(\mu)$,

$$(\phi^* \circ i)(f)(g) = (\phi^*(i(f)))(g)$$
$$= (i(f) \circ \phi)(g)$$
$$= i(f)(\phi_g)$$
$$= \phi_g(f).$$

The **Eberlein-Smulian theorem** states that if E is a normed space and A is a subset of E, then A is weakly compact if and only if A is weakly sequentially compact.⁴

³V. I. Bogachev, *Measure Theory*, volume I, p. 9, Proposition 1.3.3.

⁴Robert E. Megginson, An Introduction to Banach Space Theory, p. 248, Theorem 2.8.6.

3 Equi-integrability

Let (X, Σ, μ) be a probability space and let \mathscr{F} be a subset of $L^1(\mu)$. We say that \mathscr{F} is **equi-integrable** if for every $\epsilon > 0$ there is some $\delta > 0$ such that for any $A \in \Sigma$ with $\mu(A) \leq \delta$ and for all $f \in \mathscr{F}$,

$$\int_{A} |f| d\mu \le \epsilon.$$

If $\mathscr F$ is a bounded subset of $L^1(\mu)$, it is a fact that $\mathscr F$ being equi-integrable is equivalent to

$$\lim_{C \to \infty} \sup_{f \in \mathscr{F}} \int_{\{|f| > C\}} |f| d\mu = 0. \tag{2}$$

The following theorem gives a condition under which a sequence of integrable functions is bounded and equi-integrable. 5

Theorem 2. Let (X, Σ, μ) be a probability space and let f_n be a sequence in $L^1(\mu)$. If for each $A \in \Sigma$ the sequence $\int_A f_n d\mu$ has a finite limit, then $\{f_n\}$ is bounded in $L^1(\mu)$ and is equi-integrable.

4 The Dunford-Pettis theorem

A subset A of a topological space X is said to be **relatively compact** if A is contained in some compact subset of X. When X is a Hausdorff space, this is equivalent to the closure of A being a compact subset of X.

The following is the **Dunford-Pettis theorem**.⁶

Theorem 3 (Dunford-Pettis theorem). Suppose that (X, Σ, μ) is a probability space and that \mathscr{F} is a bounded subset of $L^1(\mu)$. \mathscr{F} is equi-integrable if and only if \mathscr{F} is a relatively compact subset of $L^1(\mu)$ with the weak topology.

Proof. Suppose that \mathscr{F} is equi-integrable, and let $T = \phi^* \circ i : L^1(\mu) \to (L^{\infty}(\mu))^*$ be the isometric linear map in (1), for which

$$T(f)(g) = \int_X fg d\mu, \qquad f \in L^1(\mu), \quad g \in L^\infty(\mu).$$

Then $T(\mathscr{F})$ is a bounded subset of $(L^{\infty}(\mu))^*$, so is contained in some closed ball B in $(L^{\infty}(\mu))^*$. By the Banach-Alaoglu theorem, B is weak-* compact, and therefore the weak-* closure \mathscr{H} of $T(\mathscr{F})$ is weak-* compact. Let $F \in \mathscr{H}$.

⁵V. I. Bogachev, *Measure Theory*, volume I, p. 269, Theorem 4.5.6.

⁶V. I. Bogachev, *Measure Theory*, volume I, p. 285, Theorem 4.7.18; Fernando Albiac and Nigel J. Kalton, *Topics in Banach Space Theory*, p. 109, Theorem 5.2.9; R. E. Edwards, *Functional Analysis: Theory and Applications*, p. 274, Theorem 4.21.2; P. Wojtaszczyk, *Banach Spaces for Analysts*, p. 137, Theorem 12; Joseph Diestel, *Sequences and Series in Banach Spaces*, p. 93; François Trèves, *Topological Vector Spaces*, *Distributions and Kernels*, p. 471, Theorem 46.1.

There is a net $F_{\alpha} = T(f_{\alpha})$ in $T(\mathscr{F})$, $\alpha \in I$, such that for each $g \in L^{\infty}(\mu)$, $F_{\alpha}(g) \to F(g)$, i.e.,

$$\int_{X} f_{\alpha} g d\mu \to F(g), \qquad g \in L^{\infty}(\mu). \tag{3}$$

Let $\epsilon > 0$. Because \mathscr{F} is equi-integrable, there is some $\delta > 0$ such that when $A \in \Sigma$ and $\mu(A) \leq \delta$,

$$\sup_{\alpha \in I} \int_{A} |f_{\alpha}| d\mu \le \epsilon,$$

which gives

$$|F(\chi_A)| = \lim_{\alpha} \left| \int_X f_{\alpha} \chi_A d\mu \right| = \lim_{\alpha} \left| \int_A f_{\alpha} d\mu \right| \leq \sup_{\alpha \in I} \int_A |f_{\alpha}| d\mu \leq \epsilon.$$

By Theorem 1, this tells us that there is some $f \in L^1(\mu)$ for which

$$F(g) = \int_X gfd\mu, \qquad g \in L^{\infty}(\mu),$$

and hence F = T(f). This shows that $\mathscr{H} \subset T(L^1(\mu))$, and

$$\int_X f_{\alpha} g d\mu \to \int_X f g d\mu, \qquad g \in L^{\infty}(\mu)$$

tells us that $f_{\alpha} \to f$ in $\sigma(L^1(\mu), (L^1(\mu))^*)$, in other words $T^{-1}(F_{\alpha})$ converges weakly to T(F). Thus $T^{-1}: \mathscr{H} \to L^1(\mu)$ is continuous, where \mathscr{H} has the subspace topology $\tau_{\mathscr{H}}$ inherited from $(L^{\infty}(\mu))^*$ with the weak-* topology and $L^1(\mu)$ has the weak topology. $(\mathscr{H}, \tau_{\mathscr{H}})$ is a compact topological space, so $T^{-1}(\mathscr{H})$ is a weakly compact subset of $L^1(\mu)$. But $\mathscr{F} \subset T^{-1}(\mathscr{H})$, which establishes that \mathscr{F} is a relatively weakly compact subset of $L^1(\mu)$.

Suppose that \mathscr{F} is a relatively compact subset of $L^1(\mu)$ with the weak topology and suppose by contradiction that \mathscr{F} is not equi-integrable. Then by (2), there is some $\eta > 0$ such that for all C_0 there is some $C \geq C_0$ such that

$$\sup_{f\in\mathscr{F}}\int_{\{|f|>C\}}|f|d\mu>\eta,$$

whence for each n there is some $f_n \in \mathscr{F}$ with

$$\int_{\{|f_n| > n\}} |f_n| d\mu \ge \eta,\tag{4}$$

On the other hand, because \mathscr{F} is relatively weakly compact, the Eberlein-Smulian theorem tells us that \mathscr{F} is relatively weakly sequentially compact, and so there is a subsequence $f_{a(n)}$ of f_n and some $f \in L^1(\mu)$ such that $f_{a(n)}$ converges weakly to f. For $A \in \Sigma$, as $\chi_A \in L^{\infty}(\mu)$ we have

$$\lim_{n \to \infty} \int_A f_{a(n)} d\mu = \int_A f d\mu,$$

and thus Theorem 2 tells us that the collection $\{f_{a(n)}\}$ is equi-integrable, contradicting (4). Therefore, \mathscr{F} is equi-integrable.

Corollary 4. Suppose that (X, Σ, μ) is a probability space. If $\{f_n\} \subset L^1(\mu)$ is bounded and equi-integrable, then there is a subsequence $f_{a(n)}$ of f_n and some $f \in L^1(\mu)$ such that

$$\int_X f_{a(n)}gd\mu \to \int_X fgd\mu, \qquad g \in L^\infty(\mu).$$

Proof. The Dunford-Pettis theorem tells us that $\{f_n\}$ is relatively weakly compact, so by the Eberlein-Smulian theorem, $\{f_n\}$ is relatively weakly sequentially compact, which yields the claim.

5 Separable topological spaces

It is a fact that if E is a separable topological vector space and K is a compact subset of $(E^*, \sigma(E^*, E))$, then K with the subspace topology inherited from $(E^*, \sigma(E^*, E))$ is metrizable. Using this and the Banach-Alaoglu theorem, if E is a separable normed space it follows that $\{\lambda \in E^* : \|\lambda\|_{op} \leq 1\}$ with the subspace topology inherited from $(E, \sigma(E^*, E))$ is compact and metrizable, and hence is sequentially compact. In particular, when E is a separable normed space, a bounded sequence in E^* has a weak-* convergent subsequence.

If X is a separable metrizable space and μ is a σ -finite Borel measure on X, then the Banach space $L^p(\mu)$ is separable for each $1 \leq p < \infty$.

Theorem 5. Suppose that X is a separable metrizable space and μ is a σ -finite Borel measure on X. If $\{g_n\}$ is a bounded subset of $L^{\infty}(\mu)$, then there is a subsequence $g_{a(n)}$ of g_n and some $g \in L^{\infty}(\mu)$ such that

$$\int_X fg_{a(n)}d\mu \to \int_X fgd\mu, \qquad f \in L^1(\mu).$$

 $^{^7}$ A second-countable T_1 space is compact if and only if it is sequentially compact: Stephen Willard, General Topology, p. 125, 17G.

⁸René L. Schilling, Measures, Integrals and Martingales, p. 270, Corollary 23.20.