Elementare LTI-Systeme: P-Glied (Proportionalglied)

Differentialgleichung

$$y = K_P \cdot x$$

Übertragungsfunktion H(s)

$$\underline{H}(s) = K_P$$

PN-Diagramm

keine Nullstellen, keine Pole

Sprungantwort g(t) und Impulsantwort h(t)

Frequenzgang (Bode-Diagramm)

 ω_B : beliebig

Eigenschaften:

kausal, stabil, speicherfrei

Quellen: R. Sattler, Vorlesung "Signale und Systeme" an der OTH im WS2021/22 sowie A. Seher, Vorlesung "Signale und Systeme" an der OTH im WS2020/21 Robert Huber, SUS, OTH Regensburg

19

SUS: Systeme

Elementare LTI-Systeme: D-Glied (Differenzierer)

Differentialgleichung

$$y = K_D \cdot \dot{x}$$

Übertragungsfunktion $\underline{H}(s)$

$$\underline{H}(s) = K_D \cdot s$$

PN-Diagramm

eine Nullstelle bei s_o=0 (Ursprung)

Sprungantwort g(t) und Impulsantwort h(t)

 $h(t) = K_D \cdot \dot{\delta}(t)$

Frequenzgang (Bode-Diagramm)

 $\Omega = \frac{\omega}{\omega_B}$ ω_B : beliebig $\widetilde{K}_D = \omega_B K_D$

- Eigenschaften:
- akausal, instabil, speicherbehaftet

Elementare LTI-Systeme: I-Glied (Integrierer)

Differentialgleichung

$$\dot{y} = K_I \cdot x$$

$$y = K_I \cdot \int_{-\infty}^t x(\tau) \, d\tau$$

Übertragungsfunktion H(s)

$$\underline{H}(s) = \frac{K_I}{s}$$

PN-Diagramm

keine Nullstellen eine Polstelle bei sx=0 (Ursprung)

Sprungantwort g(t) und Impulsantwort h(t)

$$g(t) = K_I \cdot t \cdot \varepsilon(t)$$

Frequenzgang (Bode-Diagramm)

$$\varphi(\omega) = -90^{\circ}$$

Eigenschaften:

kausal, instabil, speicherbehaftet

Quellen: R. Sattler, Vorlesung "Signale und Systeme" an der OTH im WS2021/22 sowie A. Seher, Vorlesung "Signale und Systeme" an der OTH im WS2020/21 Robert Huber, SUS, OTH Regensburg

21

SUS: Systeme

Elementare LTI-Systeme: PT₁-Glied (Tiefpass 1. Ordnung)

Differentialgleichung

$$T \cdot \dot{y} + y = K_P \cdot x$$

T: Zeitkonstante

Übertragungsfunktion $\underline{H}(s)$

$$\underline{H}(s) = \frac{K_P}{T \cdot s + 1} = \frac{K_P \cdot \omega_E}{s + \omega_E}$$

$$\omega_E = \frac{1}{T}$$
: Eckfrequenz

PN-Diagramm

keine Nullstellen eine Polstelle bei s_x= -1/T

Sprungantwort g(t) und Impulsantwort h(t)

Frequenzgang (Bode-Diagramm)

- üblich: $\omega_B = \omega_E$

- Eigenschaften:
- kausal, stabil, speicherbehaftet

Elementare LTI-Systeme: PT₂-Glied (Tiefpass 2. Ordnung)

Differentialgleichung

$$T^2 \cdot \ddot{y} + 2\vartheta T \cdot \dot{y} + y = K_P \cdot x$$

T: Kennzeit (Zeitkonstante)

 $\underline{H}(s) = \frac{K_P}{T^2 s^2 + 2\vartheta T s + 1} = \frac{K_P \cdot \omega_0^2}{s^2 + 2\vartheta \omega_0 s + \omega_0^2}$ $\omega_0 = \frac{1}{T}: \text{Kennkreisfreq., Polfreq.}$ $\vartheta = \frac{\delta}{\omega_0}: \text{Dämpfungsgrad, -maß } (\vartheta = D)$ Übertragungsfunktion $\underline{H}(s)$ Im Pole: $s_{x1,2} = \frac{1}{T} \left(-\vartheta \pm \sqrt{\vartheta^2 - 1} \right)$ Schwingung: konjugiert komplexes Polpaar $\underline{H}(s) = \frac{K_P}{T^2} \frac{1}{(s - s_{x1})(s - s_{x2})}$ The last sequence ω_d The last sequence ω

PN-Diagramm

 $0 < \vartheta < 1$

$$\underline{H}(s) = \frac{K_P}{T^2} \frac{1}{(s - s_{x1})(s - s_{x2})}$$

$$\underline{H}(s) = K_P \frac{1}{(1+sT)^2}$$

$$\underline{H}(s) = K_P \frac{1}{(1+sT)^2}$$
aperiod. Dämpfung: zwei versch. reelle Pole $s_{x1,2} = \omega_0(-\vartheta \pm \sqrt{\vartheta^2 - 1})$

$$\underline{H}(s) = K_P \frac{1}{1+sT_1} \frac{1}{1+sT_2} \quad \text{mit: } T_{1,2} = -\frac{1}{s_{x1,2}} = \frac{T}{\vartheta \mp \sqrt{\vartheta^2 - 1}} = T(\vartheta \pm \sqrt{\vartheta^2 - 1})$$

Frequenzgang (Bode-Diagramm)

$$\underline{H}(\omega) = \frac{K_P}{1 - \omega^2 T^2 + j\omega 2\vartheta T}$$

Eigenschaften:

kausal, stabil, speicherbehaftet

Quellen: R. Sattler, Vorlesung "Signale und Systeme" an der OTH im WS2021/22 sowie A. Seher, Vorlesung "Signale und Systeme" an der OTH im WS2020/2-Robert Huber, SUS, OTH Regensburg

SUS: Systeme

Elementare LTI-Systeme: PT2-Glied (Tiefpass 2. Ordnung)

Sprungantwort g(t) und Impulsantwort h(t)

 $0 < \vartheta < 1$ Schwingung

$$g(t) = \left(1 - \frac{1}{\sqrt{1 - \vartheta^2}} \cdot e^{-\vartheta\omega_0 t} \cdot \cos(\omega_d t - \Theta)\right) K_P \cdot \varepsilon(t)$$

 $mit \Theta = asin(\theta)$

$$artheta=1$$
 aperiod. Grenzfall $g(t)=\left(1-\left(1+rac{t}{T}
ight)\cdot e^{-rac{t}{T}}
ight)K_P\cdot arepsilon(t)$

 $h(t) = K_P \cdot \frac{t}{T^2} e^{-\frac{t}{T}} \cdot \varepsilon(t)$

 $\vartheta > 1$ aperiod. Dämpfung

$$g(t) = \left(1 - \frac{T_1}{T_1 - T_2} \cdot e^{-\frac{t}{T_1}} + \frac{T_2}{T_1 - T_2} \cdot e^{-\frac{t}{T_2}}\right) K_P \cdot \varepsilon(t)$$

 $h(t) = \frac{K_P \omega_0}{\sqrt{1 - \omega^2}} \cdot e^{-\vartheta \omega_0 t} \cdot \sin(\omega_d t) \, \varepsilon(t)$

