Pàgina 1 de 9 Física

Proves d'accés a la Universitat 2025. Criteri d'avaluació

SÈRIE 0

Criteris generals d'avaluació i qualificació

- 1. Les respostes s'han d'ajustar a l'enunciat de la pregunta. Es valora sobretot que l'alumnat demostri que té clars els conceptes de caràcter físic sobre els quals tracta cada pregunta.
- 2. Es té en compte la claredat en l'exposició dels conceptes, dels processos, dels passos que cal seguir i de les hipòtesis, l'ordre lògic, l'ús correcte dels termes científics i la conceptualització segons l'enunciat.
- 3. En les respostes cal que l'alumnat mostri una adequada capacitat de comprensió de les qüestions plantejades i organitzi la resposta de manera lògica, tot analitzant i utilitzant les variables en joc. També es valora el grau de pertinença de la resposta, el que l'alumnat diu i les mancances manifestes sobre el tema en qüestió.
- 4. Les respostes s'han de raonar i justificar. Un resultat erroni amb un raonament correcte es valora. Una resposta correcta sense raonament ni justificació es pot valorar amb un 0.
- 5. Un error no es penalitza dues vegades en el mateix problema. Si un apartat necessita un resultat anterior, i aquest resultat és erroni, es valora la resposta independentment del seu valor numèric i es té en compte el procediment de resolució.
- 6. Si la resolució presentada a l'examen és diferent però correcta i s'ajusta al que es demana a l'enunciat, s'avalua positivament, encara que no coincideixi amb la resolució donada a la pauta de correcció.
- 7. Un o més errors d'unitats o no posar-les (resultats intermedis i finals) en un problema es penalitzen amb 0,25 punts en aquest problema.
- 8. Cal resoldre els exercicis fins al final i no es poden deixar indicades les operacions.
- 9. Cal fer la substitució numèrica en les expressions que s'utilitzen per resoldre les preguntes.
- 10. Un o més resultats amb un nombre molt elevat de xifres significatives (6 xifres significatives) o amb només una xifra significativa es penalitzen amb 0,10 punts en aquest problema.

EXERCICI 1, opció 1)

a)

Per trobar l'expressió de la velocitat orbital:

0,10 punts Segons la llei de la gravitació universal, el mòdul de la força sobre el satèl·lit a causa de l'atracció de Mercuri és:

$$F = G \; \frac{M_{MPO} M_M}{r^2}$$

0,10 punts La segona llei de Newton estableix que: $\vec{F} = M_{MPO}\vec{a}$

0,15 punts D'altra banda, considerant que el satèl·lit descriu un moviment circular uniforme al voltant de Mercuri, la seva acceleració és l'acceleració centrípeta: $a = v^2/r$

0,15 punts Com que sobre el satèl·lit només hi actua la força de la gravetat:

$$G \frac{M_{MPO}M_M}{r^2} = M_{MPO}v^2/r \Rightarrow v = \sqrt{G \frac{M_M}{r}}$$

0,25 punts Utilitzant l'expressió obtenim el valor de la velocitat orbital per al *MPO*:

$$v_{MPO} = \sqrt{G \frac{M_M}{r}} = \sqrt{6,67 \times 10^{-11} \frac{3,285 \times 10^{23}}{3,36 \times 10^6}} = 2,55 \times 10^3 \text{ m/s}$$

0,25 punts Per saber el nombre de voltes que fa el *MPO* durant un any terrestre hem de comparar els dos temps.

El període del MPO:
$$T = \frac{2\pi r}{v} = \frac{2\pi 3.36 \times 10^6}{2.55 \times 10^3} = 8.28 \times 10^3 \text{ s}$$

0,25 punts I un any amb segons: $t_{any} = 365,25 \ dies \frac{24h}{1 \ dia} \frac{3600 \ s}{1 \ h} = 3,16 \times 10^7 \ s$

$$n_{voltes/any} = \frac{t_{any}}{T} = \frac{3.16 \times 10^7}{8.28 \times 10^3} = 3816 \ voltes$$

b)

0,50 punts L'energia mecànica és la suma de l'energia cinètica i la potencial:

$$E_{m} = E_{c} + E_{p} = \frac{1}{2} M_{MPO} v^{2} - G \frac{M_{MPO} M_{M}}{r} = \frac{1}{2} M_{MPO} G \frac{M_{M}}{r} - G \frac{M_{MPO} M_{M}}{r} = -\frac{G M_{MPO} M_{M}}{2r}$$

Càlcul de la massa:

0,50 punts Per escapar del camp gravitatori de Mercuri, l'energia mecànica final ha de ser nul·la. Per tant, l'increment d'energia necessari és:

$$\Delta E_m = E_{m \, final} - E_{m \, inicial} = 0 + \frac{GM_{MPO}M_M}{2r}$$

0,25 punts El màxim increment d'energia mecànica possible és l'energia que pot proporcionar el combustible. Per tant: $\Delta E_m = 4.5 \times 10^9 J = \frac{GM_{MPO}M_M}{2r}$

I la massa màxima del MPO: $M_{MPO} = \frac{\Delta E_m 2r}{GM_M} = 1,38 \times 10^3 \ kg$

0 alternativament

0,25 punts El treball fet pels motors amb el combustible és igual a l'increment d'energia mecànica $W_{motors} = \Delta E_m$ i, per tant, $W_{motors} = E_{m \, final} - E_{m \, inicial}$

0,50 punts Per tant,
$$W_{motors} = 4.5 \times 10^9 J = 0 + \frac{GM_{MPO}M_M}{2r}$$

I la massa màxima del MPO és: $M_{MPO} = \frac{W_{motors} 2r}{GM_M} = 1,38 \times 10^3 \ kg$

Pàgina 3 de 9

Física

Proves d'accés a la Universitat 2025. Criteri d'avaluació

EXERCICI 1, opció 2)

a)

Per trobar l'expressió de la velocitat orbital:

0,10 punts Segons la llei de la gravitació universal, el mòdul de la força sobre l'EEI és:

$$F = G \frac{M_T M_{EEI}}{r^2}$$

0,10 punts La segona llei de Newton estableix que: $\vec{F} = M_{EEI}\vec{a}$

0,15 punts D'altra banda, considerant que l'estació espacial descriu un moviment circular uniforme al voltant de la Terra, la seva acceleració és l'acceleració centrípeta: $a = v^2/r$

0,15 punts Com que sobre el satèl·lit només hi actua la força de la gravetat:

$$G \frac{M_T M_{EEI}}{r^2} = M_{EEI} v^2 / r \Rightarrow v = \sqrt{G \frac{M_T}{r}}$$

0,25 punts Utilitzant l'expressió obtenim el valor de la velocitat orbital per a l'estació espacial:

$$v_{EEI} = \sqrt{G \frac{M_T}{r}} = \sqrt{6,67 \times 10^{-11} \frac{5,98 \times 10^{24}}{4,00 \times 10^5 + 6,37 \times 10^6}} = 7,68 \times 10^3 \text{ m/s}$$

0,25 punts Per saber el nombre de voltes que fa l'estació cada dia hem de comparar els dos temps.

El període de l'EEI:
$$T = \frac{2\pi r}{v} = \frac{2\pi 6,77 \times 10^6}{7,68 \times 10^3} = 5,54 \times 10^3 \text{ s}$$

0,25 punts I un dia en segons: $t_{dia} = 24h \frac{3600 \text{ s}}{1h} = 8,64 \times 10^5 \text{ s}$

$$n_{voltes/dia} = \frac{t_{dia}}{T} = \frac{8,64 \times 10^5}{5.54 \times 10^3} = 15 \ voltes$$

b)

0,20 punts L'energia mecànica és la suma de l'energia cinètica i la potencial:

$$E_m = E_c + E_p = \frac{1}{2}M_{EEI}v^2 - G\frac{M_T M_{EEI}}{r}$$

0,10 punts La velocitat a la nova òrbita és

$$v_{EEI} = \sqrt{G \frac{M_T}{r}} = \sqrt{6,67 \times 10^{-11} \frac{5,98 \times 10^{24}}{2,80 \times 10^5 + 6,37 \times 10^6}} = 7,74 \times 10^3 \text{ m/s}$$

0,10 punts L'energia cinètica és:

$$E_c = \frac{1}{2} M_{EEI} v^2 = 1,29 \times 10^{13} \,\mathrm{J}$$

0,10 punts L'energia potencial és:

$$E_p = -G \frac{M_T M_{EEI}}{r} = -2,57 \times 10^{13} \,\mathrm{J}$$

0,10 punts I l'energia mecànica de l'EEI en aquesta òrbita és:

$$E_m = E_c + E_p = -1.29 \times 10^{13} \,\mathrm{J}$$

0,20 punts L'energia mecànica mínima necessària per escapar de l'òrbita de la Terra és 0 J. Atès que l'EEI orbita al voltant de la Terra, la seva energia mecànica ha de ser menor i, per tant, negativa.

Pàgina 4 de 9

Física

Proves d'accés a la Universitat 2025. Criteri d'avaluació

0,10 punts L'energia potencial quan l'estació arriba a la superfície de la Terra és:

$$E_p = -G \frac{M_T M_{EEI}}{r} = -2,69 \times 10^{13} \,\mathrm{J}$$

0,10 punts Si negligim el fregament, l'energia mecànica es conserva. Llavors: $E_c=E_m-E_p=1,\!40\times 10^{13}~{\rm J}$

$$E_c = E_m - E_p = 1,40 \times 10^{13}$$

0,15 punts I, finalment, la velocitat és:

$$v_{EEI} = \sqrt{\frac{2E_c}{M_{EEI}}} = 8,80 \times 10^3 \text{ m/s}$$

EXERCICI 2)

a)

0,50 punts El camp magnètic màxim a 10 cm = 0,1 m el calculem a partir de la intensitat màxima 10⁵ A i l'expressió del mòdul del camp magnètic creat per un fil infinit:

$$B_{max} = \frac{\mu_0 I_{max}}{2\pi r} = \frac{4\pi \cdot 10^{-7} \cdot 10^5}{2\pi \cdot 0.1} = 0.2 \text{ T}$$

Dibuix:

0,10 punts La transferència de càrrega negativa del núvol cap a terra.

0,20 punts La direcció de la intensitat de corrent cap amunt.

0,20 punts Les línies de camp són línies concèntriques al voltant d'un fil infinit.

0,25 punts El sentit de les línies de camp magnètic al voltant del parallamps ens el dona la regla de la mà dreta o equivalent.

b)

0,75 punts Gràfica. Calculem alguns punts del camp per representar-lo.

Per exemple:
$$B(0,1 \text{ m}) = 0.2 \text{ T}$$
, $B(0,2 \text{ m}) = 0.1 \text{ T}$, $B(0,3 \text{ m}) = 0.0667 \text{ T}$, $B(0,4 \text{ m}) = 0.05 \text{ T}$, $B(0,5 \text{ m}) = 0.04 \text{ T}$

No incloure títol a l'eix resta 0,10 punts. No incloure unitats a l'eix resta 0,2 punts.

0,25 punts La força magnètica sobre l'electró és: $\vec{F} = q\vec{v} \times \vec{B}$. El camp magnètic i la velocitat són

perpendiculars i, per tant, el mòdul de la força magnètica serà: $|\vec{F}|=qvB=1,602\cdot 10^{-19}\cdot 10^3\cdot 0,2=3,2\cdot 10^{-17}~N$

0,25 punts La regla de la mà dreta (o equivalent) i el signe de la càrrega ens indica que la força serà en la direcció i el sentit cap al parallamps.

EXERCICI 3)

a)

0,25 punts L'equació de la posició vertical és la component del vector posició de la massa respecte al centre del disc, que podem escriure en funció de l'angle θ respecte a l'eix vertical y. L'angle augmenta linealment amb el temps i proporcionalment a la velocitat angular $\theta = \omega t + \varphi_0$: $y(t) = A\cos(\theta) = A\cos(\omega t + \varphi_0)$

O alternativament amb el sinus: $y(t) = A\sin(\theta) = A\sin(\omega t + \varphi_0)$

0,25 punts Per escriure l'equació, necessitem l'amplitud, que és el radi A = 0,19 m, la velocitat angular, $\omega = 6,41$ rad/s, i la fase inicial, que obtenim de l'instant inicial t = 0, on la posició és -A.

0,25 punts Càlcul de la posició:

Si considera el sentit positiu cap amunt:

$$y(0) = -A = A\cos(\varphi_0) \text{ i } -1 = \cos(\varphi_0), \varphi = \arccos(-1) = \pi \, rad$$

I per tant: $y(t) = 0.19 \cos(6.41 t + \pi) m i t$ en segons.

0 també: $y(t) = -0.19 \cos(6.41 t) m$ i t en segons.

Si considera el sentit positiu cap avall:

$$y(0) = A = A\cos(\varphi_0)$$
 i $1 = \cos(\varphi_0)$, $\varphi = \arccos(1) = 0$ rad

I per tant: $y(t) = 0.19 \cos(6.41 t) m$ i t en segons.

0 també: $y(t) = -0.19 \cos(6.41 t + \pi) m$ i t en segons.

0,25 punts Les velocitats angulars de les dues masses són iguals. Per tant: $\omega = \sqrt{\frac{k}{m}}$ i

$$k = \omega^2 m = 6.41^2 \cdot 0.5 = 20.54 N/m$$
.

0,25 punts L'energia mecànica és: $E_m = \frac{1}{2}kA^2 = 0.5 \cdot 20.54 \cdot 0.19^2 = 0.371 J$

b)

0,25 punts Càlcul de la velocitat:

Si considera el sentit positiu cap amunt:

$$v(t) = \frac{dy}{dt} = -0.19 \cdot 6.41 \sin(6.41 t + \pi) = -1.218 \sin(6.41 t + \pi) m/s$$

Si considera el sentit positiu cap avall:

$$v(t) = \frac{dy}{dt} = -0.19 \cdot 6.41 \sin(6.41 t) = -1.218 \sin(6.41 t) m/s$$

0,25 punts L'energia cinètica:

$$E_c = \frac{1}{2}mv^2 = \frac{1}{2}0.5 \cdot 1.218^2 \sin^2(6.41 t + \pi) = 0.371 \sin^2(6.41 t + \pi) J$$

0 bé:
$$E_c = \frac{1}{2}mv^2 = \frac{1}{2}0.5 \cdot 1.218^2 \sin^2(6.41 t) = 0.371 \sin^2(6.41 t) J$$

Pàgina 7 de 9 **Física**

Proves d'accés a la Universitat 2025. Criteri d'avaluació

Gràfica:

$$E_m = 0.371\,J$$
 , $E_p = \frac{1}{2}ky^2 = 10.27y^2\,J$,

$$E_c = E_m - E_p = 0.371 - 10.27y^2 J$$

 $\begin{array}{ll} \textbf{0,25 punts} & \text{representació de l'}E_m. \\ \textbf{0,25 punts} & \text{representació de l'}E_p. \\ \textbf{0,25 punts} & \text{representació de l'}E_c. \\ \end{array}$

Si l'escalatge no és correcte, resta 0,25 punts.

EXERCICI 4, opció 1)

a)

0,50 punts Si imposem la conservació del nombre de nucleons i de la càrrega elèctrica, tenim:

$$^{210}_{84}Po \rightarrow ^{4}_{2}He + ^{206}_{82}Pb$$

0,25 punts Per trobar l'activitat després d'una setmana utilitzem l'equació de l'activitat $A(t)=A_0~e^{-\lambda t}$, on l'activitat inicial: $A_0=1,66\cdot 10^{14}\frac{Bq}{q}\cdot 5\cdot 10^{-3}~g=8,3\cdot 10^{11}~Bq$,

0,25 punts Necessitem el coeficient de desintegració λ , que obtenim del temps de semidesintegració:

$$A(t) = \frac{A_0}{2} = A_0 e^{-\lambda t_{1/2}}$$
. Per tant: $t_{1/2} = \frac{\ln 2}{\lambda}$.

Directament obtenim: $\lambda = \frac{ln2}{t_{1/2}} = \frac{ln2}{138} = 5,023 \cdot 10^{-3} dies^{-1}$

0,25 punts L'activitat al cap de 7 dies: $A = A_0 e^{-\lambda t} = 8,3 \cdot 10^{11} e^{-5,023 \cdot 10^{-3} \cdot 7} = 8,01 \cdot 10^{11} Bq$

b)

0,25 punts El treball efectuat pel camp elèctric és menys l'increment d'energia potencial:

$$W = -\Delta U = -q \cdot \Delta V$$

0,25 punts En portar el primer electró des de l'infinit (distància molt gran), el camp elèctric i potencial elèctric existents són els creats per la partícula alfa. El potencial inicial és nul, $V_i=0$, i el final serà $V_{f1}=k\frac{q_\alpha}{r}$, on r és la distància final, $r=0.6\times 10^{-10}$ m. Per tant:

 $\Delta V_1 = 8,99 \cdot 10^9 \cdot \frac{2 \cdot 1,602 \cdot 10^{-19}}{0,6 \cdot 10^{-10}} = 48,006 \ V. \ \text{I el treball efectuat pel camp elèctric durant el desplaçament del primer electró és:} \ W_{e1} = - q_e \cdot \Delta V_1 = 1,602 \cdot 10^{-19} \cdot 48,006 = 7,69 \cdot 10^{-18} \ \text{J}$

0,25 punts En portar el segon electró des de l'infinit, el potencial elèctric existent és el creat per la partícula alfa i l'electró. El potencial inicial és nul i el final serà: $V_{f2} = k \frac{q_{\alpha}}{r} + k \frac{q_{e}}{2r}$.

Per tant: $\Delta V_2 = 8,99 \cdot 10^9 \cdot \frac{2 \cdot 1,602 \cdot 10^{-19}}{0,6 \cdot 10^{-10}} - 8,99 \cdot 10^9 \cdot \frac{1,602 \cdot 10^{-19}}{2 \cdot 0,6 \cdot 10^{-10}} = 36,005 \ V.$ I el treball efectuat pel segon electró és: $W_{e2} = -q_e \cdot \Delta V_2 = 1,602 \cdot 10^{-19} \cdot 36,005 = 5,77 \cdot 10^{-18} \ J$ L'energia potencial final:

0,50 punts L'energia potencial de la configuració final és menys el treball total efectuat pel camp, ja que l'energia potencial inicial era nul·la:

$$W_{total} = W_{e1} + W_{e2} = 7,69 \cdot 10^{-18} + 5,77 \cdot 10^{-18} = 1.346 \cdot 10^{-17} J$$

 $\Delta U = U_f - U_i = -W$. Per tant, l'energia potencial final: és $U_f = -1.346 \cdot 10^{-17} J$

O alternativament:

0,50 punts Calculem l'energia potencial electroestàtica del sistema final com a suma dels termes d'energia potencial per parelles:

$$\begin{split} &U_{Sistema} = U_{e-He} + U_{e-He} + U_{e-e} = 2U_{e-He} + U_{e-e} \\ &U_{Sistema} = 2k\frac{q_{\alpha}q_{e}}{r} + k\frac{q_{e}q_{e}}{2r} = 2 \cdot 8,99 \cdot 10^{9} \cdot \frac{2 \cdot 1,602 \cdot 10^{-19} \cdot (-1,602 \cdot 10^{-19})}{0,6 \cdot 10^{-10}} + 8,99 \cdot 10^{9} \cdot \frac{(-1,602 \cdot 10^{-19})^{2}}{2 \cdot 0,6 \cdot 10^{-10}} = -1.346 \cdot 10^{-17} \, J \end{split}$$

Pàgina 9 de 9

Física

Proves d'accés a la Universitat 2025. Criteri d'avaluació

EXERCICI 4, opció 2)

a)

0, 25 punts La longitud d'ona llindar $\lambda_0 = 650 \cdot 10^{-9} \, m$ és la longitud d'ona més alta per a la qual tenim efecte fotoelèctric. Correspon a una freqüència: $f_0 = \frac{c}{\lambda} = \frac{3,0 \cdot 10^8}{650 \cdot 10^{-9}} = 4,62 \times 10^{14} \, \text{Hz}.$

0, 25 punts El treball d'extracció del metall és l'energia mínima per extreure l'electró: $hf = E_C + W_0$. Per tant, per a $E_c = 0$, $W_0 = hf_0$. Fent el càlcul obtenim:

$$W_0 = hf_0 = 6,626 \times 10^{-34} \cdot 4,62 \times 10^{14} = 3,06 \cdot 10^{-19} J = 1,91 \text{ eV}$$

0, 25 punts El potencial de frenada és el voltatge que necessitem aplicar per frenar els electrons amb més energia cinètica: $\Delta U = |e|\Delta V = Ec$

0, 25 punts Calculem l'energia cinètica amb la qual surten els electrons per a 300 nm. Primer, calculem la freqüència corresponent: $f = \frac{c}{\lambda} = \frac{3,0\cdot 10^8}{300\cdot 10^{-9}} = 1,00 \times 10^{15}$ Hz. Tot seguit, l'energia cinètica a la qual surten és:

$$E_C = hf - W_0 = 6{,}626 \times 10^{-34} \cdot 1{,}00 \times 10^{15} - 3{,}06 \cdot 10^{-19} = 3{,}57 \cdot 10^{-19} J$$

0,25 punts L'energia cinètica es contraresta amb una energia potencial elèctrica d'igual mòdul: $\Delta U = q \cdot \Delta V$. Per tant, el potencial de frenada ha de ser: $\Delta V = \frac{Ec}{|e|} = \frac{3,57 \cdot 10^{-19}}{1,602 \cdot 10^{-19}} = 2,23 V$

b)

0,50 punts A partir de l'equació de l'energia cinètica ja utilitzada tenim: $E_C = \frac{1}{2}mv^2 = hf - W_0$. I posant la freqüència en funció de la longitud d'ona s'obté: $v = \sqrt{\frac{2}{m}(\frac{hc}{\lambda} - W_0)}$.

Introduint els valors corresponents: $v(\lambda) = \sqrt{\frac{2}{9,11 \cdot 10^{-31}} (\frac{6,626 \cdot 10^{-34} \cdot 3 \cdot 10^8}{\lambda} - 3,06 \cdot 10^{-19})} \frac{m}{s}$.

Per tant, l'expressió és: $v(\lambda) = \sqrt{\frac{4,36 \cdot 10^5}{\lambda} - 6,72 \cdot 10^{11}} \frac{m}{s}$

0,25 punts La velocitat per a 500 nm: $v(500 nm) = \sqrt{\frac{4,36 \cdot 10^5}{500 \cdot 10^{-9}} - 6,72 \cdot 10^{11}} = 4,47 \cdot 10^5 \frac{m}{s}$

0,50 punts La longitud d'ona de De Broglie la calculem a partir de la quantitat de moviment de l'electró i la relació de De Broglie: $p = mv = \frac{h}{\lambda}$.

Per tant:
$$\lambda = \frac{h}{mv} = \frac{6,626 \cdot 10^{-34}}{9,11 \cdot 10^{-31} \cdot 4,47 \cdot 10^5} = 1,63 \cdot 10^{-9} m = 1,63 nm$$