

MOMENTO DE INÉRCIA DE FIGURAS PLANAS

PROF. DR. CARLOS AURÉLIO NADAL

CENTRÓIDE DE UMA ÁREA (CG)

Centróides de Áreas

Centro de gravidade de figuras planas

círculo trapézio

$$x_{cg}=0$$

$$y_{co}=0$$

Semicírculo

$$y_{CG} = \frac{4r}{3\pi}$$

¼ de círculo

$$\frac{4R}{3\pi}$$

$$x_{co} = \frac{4r}{3\pi}$$

$$y_{CG} = \frac{4r}{3\pi}$$

$$h_1 = \frac{h}{3} \cdot \frac{a+2b}{a+b}$$

$$h_2 = \frac{h}{3} \cdot \frac{2a+b}{a+b}$$

Exercício: Calcular a posição do centroide das seções transversais dos perfis fornecidos a seguir, as dimensões estão em cm.

Resposta: $\bar{X} = 0.165m$

 $\bar{Y} = 029m$

$$\bar{X} =$$

$$\overline{Y} =$$

$$\bar{X} = 0.165m$$
 $\bar{Y} = 0.029m$

$$S_a = 0.85 \times 0.10 = 0.085 \text{m}^2$$

$$X_a = (0.85/2 + (0.25 - 0.10) = 0.575 \text{m}$$

$$Y_a = (0.10+0.60+0.10/2)=0.75 \text{m}$$

Figura B

$$S_h = 0.10x0.60 = 0.06m^2$$

$$X_b = (0.25 + 0.10/2) = 0.30 \text{m}$$

$$Y_h = 0.10 + 0.60/2 = 0.40 \text{ m}$$

Figura C

$$S_c = 0.85 \times 0.10 = 0.085 \text{ m}^2$$

$$X_c = 0.85/2 = 0.425 \text{m}$$

$$Y_c = 0.10/2 = 0.05 \text{ m}$$

$$\Sigma$$
X.S= 0,575x0,085+0,30x0,06+0,425x0,085

$$\Sigma$$
X.S= 0,0379042625

$$\Sigma$$
S=0,085+0,06+0,085=0,23

$$\Sigma$$
Y.S=0,75x0,085+0,40x0,06+0,05x0,085 = 0,006615125

Centróide – Considera-se o primeiro momento da área em $\int x dA$ relação a um eixo

Momento de Inércia – Integral do Segundo Momento de Inércia $\int x^2 dA$ $\sigma = \kappa z \Rightarrow dF = \sigma dA = kz dA$

 $dM = dFz = kz^2 dA \Longrightarrow M = \kappa \int z^2 dA$

Profa. Salete Souza de Oliveira Home: http://www.professores.uff.br/salete

Momentos de Inércia

$$dI_{x} = \int_{A} y^{2} dA \Rightarrow I_{x} = \int_{A} y^{2} dA$$

$$dI_{y} = \int_{A} x^{2} dA \Rightarrow I_{y} = \int_{A} x^{2} dA$$

Momento Polar de Inércia

$$J_o = \int_A r^2 dA = I_x + I_y$$

Profa. Salete Souza de Oliveira Home: http://www.professores.uff.br/salete

Teorema dos Eixos Paralelos para Uma Área

$$I_x = \int_A (y' + d_y)^2 dA \Rightarrow I_x = \int_A y'^2 dA + 2d_y \int_A y' dA + d_y^2 \int_A dA$$

A primeira integral representa o $I_{x'}$ momento de inércia da área em relação ao eixo que passa pelo centróide.

A segunda integral é zero, uma vez que x' passa através do centróide C da área, isto é,

$$\int y' dA = y \int dA = 0, \ \bar{y} = 0$$

$$I_x = \bar{I_{x'}} + Ad_y^2 \qquad I_y = \bar{I_{y'}} + Ad_x^2$$
$$J_o = \bar{J_c} + Ad^2$$

Profa. Salete Souza de Oliveira Home: http://www.professores.uff.br/salete

Raio de Giração de Uma Área

$$k_x = \sqrt{\frac{I_x}{A}} \quad k_y = \sqrt{\frac{I_y}{A}} \quad k_o = \sqrt{\frac{J_o}{A}}$$

Momentos de Inércia de uma Área por Integração Caso de contornos de áreas planas expressos por funções matemáticas

> Profa. Salete Souza de Oliveira Home: http://www.professores.uff.br/salete

Exemplo 1

Determinar, para a área retangular o momento de inércia I_x em relação ao eixo x e o raio de giração r_x

Adota-se como elemento de área a faixa horizontal de largura b e espessura dy. O momento de inércia da faixa em relação a x é dado por:

$$I_x = \int_A y^2 . dA = \int_A y^2 . (b.dy) = b \int_A y^2 . dy$$
,

mas a integração é de: $y = -\frac{h}{2}$ e $y = +\frac{h}{2}$,

$$I_x = b \int_{-h/2}^{h/2} y^2 dy = \frac{b}{3} [y^3]_{-h/2}^{h/2} = \frac{b}{3} \left| \frac{h^3}{8} + \frac{h^3}{8} \right|,$$

$$I_x = \frac{1}{12}.b.h^3$$
.

O raio de giração é dado por:

$$r_{x} = \sqrt{\frac{I_{x}}{A}} ,$$

e substituindo I_x determinado acima nesta equação, encontra-

se:

$$r_x = \frac{h.\sqrt{3}}{6}$$

Determinar para a área circular, figura abaixo, o momento de inércia polar J_0 e os momentos inerciais I_x e I_y .

$$J_0 = \int_A \rho^2 . dA \Rightarrow dA = 2.\pi . \rho . d\rho$$
,

$$J_0 = \int_A \rho^2 (2.\pi \cdot \rho \cdot d\rho) = 2.\pi \cdot \int_0^r \rho^3 \cdot d\rho = \frac{2.\pi}{4} \left[\rho^4 \right]_0^r = \frac{\pi \cdot r^4}{2}.$$

Da equação 4.20, e devido a simetria da área circular $(I_x=I_y)$, vem que:

$$J_0 = I_x + I_y = 2.I_x \Rightarrow I_x = \frac{J_0}{2} \Rightarrow I_x = I_y = \frac{\pi \cdot r^4}{4}$$
.

Utilizando a formulação de mudança de eixos

Momento de inércia do retângulo em relação ao seu CG $\rightarrow I_{x,CG} = \frac{b \cdot h^3}{12}$

$$I_x = I_{x_{CG}} + A \cdot y_{CG}^2$$

$$I_x = \frac{b \cdot h^3}{12} + bh \cdot \left(\frac{h}{2}\right)^2$$

$$I_x = \frac{b \cdot h^3}{12} + \frac{b \cdot h^3}{4} = \frac{bh^3 + 3 \cdot bh^3}{12}$$

$$I_x = \frac{4b \cdot h^3}{12} \implies I_x = \frac{b \cdot h^3}{3}$$

Módulo Resistente

Define-se módulo resistente de uma superfície plana em relação aos eixos que contém o CG como sendo a razão entre o momento de inércia relativo ao eixo que passa pelo CG da figura e a distância máxima entre o eixo e a extremidade da seção estudada.

$$W_{x} = \frac{I_{CG}}{y_{\max}}$$

$$W_y = \frac{I_{CG}}{x_{\max}}$$

onde:

ICG = momento de inércia da peça em relação ao CG da figura

x, y = distância entre o eixo do CG da figura e a extremidade da peça.

A unidade do módulo resistente é $\frac{[L]^4}{[L]} = [L]^3$.

O módulo resistente é utilizado para o dimensionamento de peças submetidas à flexão.

Para o retângulo, tem-se:

$$I_x = \frac{b \cdot h^3}{12} \qquad A = b \cdot$$

$$I_x = \frac{b \cdot h^3}{12}$$
 $A = b \cdot h$ $W_x = \frac{\frac{b \cdot h^3}{12}}{\frac{h}{2}} = \frac{b \cdot h^3}{12} \cdot \frac{2}{h} = \frac{b \cdot h^2}{6}$

Figura	Momento de Inércia	Momento Resistente	Raio de Giração				
Quadrado	$I_x = \frac{h^4}{12}$	$W_x = \frac{h^3}{6}$	$i_x = \frac{h}{\sqrt{12}}$				
Retângulo CG x cc	$I_{x_{co}} = \frac{bh^3}{12}$	$W_x = \frac{b \cdot h^2}{6}$	$i_x = \frac{h}{\sqrt{12}}$				

$$I_{x_{CG}} = \frac{bh^3}{36}$$

$$I_{x_{co}} = \frac{bh^3}{36} \qquad W_x = \frac{b \cdot h^2}{12} \qquad i_x = \frac{h \cdot \sqrt{2}}{6}$$

$$i_x = \frac{h \cdot \sqrt{2}}{6}$$

Circulo

$$I_{x_{CG}} = \frac{\pi d^4}{64}$$

$$W_x = \frac{\pi \cdot D^3}{32}$$

$$i_x = \frac{D}{A}$$

Círculo vazado

$$I_{x_{co}} = \frac{\pi (D^4 - d^4)}{64}$$
 $W_x = \frac{\pi (D^3 - d^3)}{32}$ $i_x = \frac{1}{4} \sqrt{D^2 + d^2}$

$$W_x = \frac{\pi \left(D^3 - d^3\right)}{32}$$

$$i_x = \frac{1}{4} \sqrt{D^2 + d^2}$$

Área momento de inercia

-	<u>b</u>	A=b.h
h	c•-	<u> </u>
	b	

$$\bar{I}_x = \frac{bh^3}{12} \quad \bar{I}_y = \frac{b^3h}{12} \quad \bar{I}_{xy} = 0$$

$$I_x = \frac{bh^3}{3} \quad I_y = \frac{b^3h}{3} \quad I_{xy} = \frac{b^2h^2}{4}$$

Círculo

Semicírculo

$$A = \pi R^2$$

$$I_x = I_y = \frac{\pi R^4}{4} \qquad I_{xy} = 0$$

Media parabólica complementaria $y = h\left(\frac{x}{b}\right)^{2} \qquad \bar{x} = \frac{3b}{4}$ $\bar{y} = \frac{3h}{10}$

$$\bar{I}_x = \frac{37bh^3}{2100}$$
 $I_x = \frac{bh^3}{21}$
 $\bar{I}_y = \frac{b^3h}{80}$ $I_y = \frac{b^3h}{5}$
 $\bar{I}_{xy} = \frac{b^2h^2}{120}$ $I_{xy} = \frac{b^2h^2}{12}$

$$\bar{I}_x = \frac{bh^3}{36}$$
 $\bar{I}_y = \frac{b^3h}{36}$ $\bar{I}_{xy} = -\frac{b^2h^2}{72}$

$$I_x = \frac{bh^3}{12}$$
 $I_y = \frac{b^3h}{12}$ $I_{xy} = \frac{b^2h^2}{24}$

$$\bar{I}_x = 0.1098R^4$$
 $\bar{I}_{xy} = 0$
 $I_x = I_y = \frac{\pi R^4}{8}$ $I_{xy} = 0$

Media parábola

$$\bar{I}_x = \frac{8bh^3}{175}$$
 $I_x = \frac{2bh^3}{7}$

$$\bar{I}_y = \frac{19b^3h}{480}$$
 $I_y = \frac{2b^3h}{15}$

$$\bar{I}_{xy} = \frac{b^2h^2}{60}$$
 $I_{xy} = \frac{b^2h^2}{6}$

Tabela de Perfis Laminados I e H

Dimensões e Propriedades Geométricas

d - altura do perfil d´ - altura livre da alma

WAX DE TO

h - altura interna

bf - largura da aba

tf - espessura da aba

tw - espessura da alma

BITOLA mm x kg/m	Massa		b _f	ESPESSURA			1		EIXO X - X			EIXO Y - Y				-	Esbeltez			26.0		
	Linear Kg/m			t _w	t _f mm	h	d.	Area n cm²	- 1×	W _x r	r _x	r _x Z _x cm cm ³	I _y cm ⁴	W _y cm ³	r _y cm	Z _y	r _t cm	cm ⁴	Aba - 1 Alma - 1 W		-w	
						mm	mm				cm								b _f /2t _f	d'/t _w	cm ⁶	m²/m
W 150 x 13,0	13,0	148	100	4,3	4,9	138	118	16,6	635	85,8	6,18	96,4	82	16,4	2,22	25,5	2,60	1,72	10,20	27,49	4.181	0,67
W 150 x 18,0	18,0	153	102	5,8	7,1	139	119	23,4	939	122,8	6,34	139,4	126	24,7	2,32	38,5	2,69	4,34	7,18	20,48	6.683	0,69
W 150 x 22,5 (H)	22,5	152	152	5,8	6,6	139	119	29,0	1229	161,7	6,51	179,6	387	50,9	3,65	77,9	4,10	4,75	11,52	20,48	20.417	0,88
W 150 x 24,0	24,0	160	102	6,6	10,3	139	115	31,5	1384	173,0	6,63	197,6	183	35,9	2,41	55,8	2,73	11,08	4,95	17,48	10.206	0,69
W 150 x 29,8 (H)	29,8	157	153	6,6	9,3	138	118	38,5	1739	221,5	6,72	247,5	556	72,6	3,80	110,8	4,18	10,95	8,23	17,94	30.227	0,90
W 150 x 37,1 (H)	37,1	162	154	8,1	11,6	139	119	47,8	2244	277,0	6,85	313,5	707	91,8	3,84	140,4	4,22	20,58	6,64	14,67	39.930	0,91

Exercício

Você vai projetar uma peça de aço para ser utilizada em topografia e adota uma peça com seção retangular de h=0,20m e b=0,40m. Alguém levanta a hipótese que uma peça com h=0,40m e b=0,20m é mais resistente a flexão. Prove que esta hipótese é verdadeira ou não.

$$I_{xG} = 0.4 \times 0.2^{3}/12$$
 $I_{xG} = 0.00027 \text{m}^{4}$
 $W_{xG} = 0.4 \times 0.2^{2}/6$
 $W_{xG} = 0.00267 \text{m}^{3}$
 $I_{xG} = 0.0014 \text{m}$

$$I_{xG} = 0.2 \times 0.4^{3}/12$$
 $I_{xG} = 0.00107 \text{m}^{4}$
 $W_{xG} = 0.2 \times 0.4^{2}/6$
 $W_{xG} = 0.00533 \text{m}^{3}$
 $I_{xG} = 0.0028 \text{m}$

$$I_{xG} = bh^3/12$$

$$W_{xG} = bh^2/6$$

$$i_{xG} = h/\sqrt{12}$$