Capítulo 5: Capa de Enlace de Datos

5: Capa Enlace de Datos 5-1

Capítulo 5: La Capa Enlace de Datos

Nuestros obietivos:

- Entender los principios detrás de los servicios de la capa enlace de datos:
 - O Detección y corrección de errores
 - O Compartición de canales broadcast: acceso múltiple
 - O Direccionamiento de la capa enlace
 - O Transferencia de datos confiable y control de flujo: ya
- Descripción e implementación de varias tecnologías de enlace

5: Capa Enlace de Datos 5-2

Capa Enlace de Datos

- □ 5.1 Introducción y servicios
- □ 5.2 Detección y corrección de errores
- □ 5.3 protocolos de acceso múltiple
- 5.4 Direccionamiento de capa enlace
- □ 5.5 Ethernet
- □ 5.6 Hubs y switches
- □ 5.7 PPP
- 5.8 Enlaces Virtuales: ATM y MPLS

5: Capa Enlace de Datos 5-3

Capa Enlace: Introducción Algo de terminología: hosts y routers son nodos Canales de comunicación que conectan nodos adyacentes a lo largo de un camino de comunicación son enlaces Enlaces cableados Enlaces inalámbricos O I ANS □ El paquete de capa 2 es un frame (o trama), encapsula un datagrama La Capa de enlace de datos tiene la responsabilidad

de transferir datagramas desde un nodo al nodo adyacente a través de un enlace

Capa Enlace: contexto

- Los datagramas son transferidos por diferentes protocolos de enlace en diferentes enlaces:
 - o e.g., Ethernet en primer enlace, Frame Relay en enlaces intermedios, 802.11 en último enlace.
- Cada protocolo de enlace provee servicios diferentes
 - o e.g., puede o no proveer transferencia confiable sobre el enlace

Servicios de Capa Enlace

- Construcción de tramas, acceso al enlace:

 - Encapsula el datagrama en trama, agregando encabezados y acoplados (header & trailer)
 Acceso al medio si se trata de un acceso compartido
 Dirección "MAC" usada en encabezados de tramas para identificar fuente y destino
 Diferente de dirección IP!
- Entrega confiable entre nodos adyacentes
 - Ya vimos cómo hacer esto (capa transporte)!
 - Raramente usado en enlaces de bajo error de bits (como fibra, algunos pares de cobre trenzados)
 Enlaces inalámbricos: alta tasa de errores
 - - Q: ¿por qué tener confiabilidad a nivel de enlace y extremo a extremo?

5: Capa Enlace de Datos 5-5

Servicios de Capa Enlace (más)

- Control de Flujo:
 - Paso entre nodos transmisor y receptor adyacentes
- Detección de Errores:
 - O Errores causados por atenuación de señal y ruido.
 - Receptor detecta presencia de errores:
 - Pide al transmisor retransmisión o descartar la trama
- Receptor identifica y corrige error(es) de bit(s) sin solicitar retransmisión
- Half-duplex and full-duplex
 - O Con half duplex, los nodos de ambos extremos pueden transmitir pero no al mismo tiempo

5: Capa Enlace de Datos 5-7

Adaptadores de comunicación

- La capa de enlace es implementada en un 'adaptador" (NIC)
 - Tarjetas Ethernet, PCMCI, ó 802.11
- Lado transmisor:
 - Encapsula el datagrama en una trama
 - Agrega bits de chequeo de errores, control de flujo, etc.
- Lado receptor
- Busca errores, control de fluio, etc.
- Extrae datagrama y lo pasa al nodo receptor
- El adaptador es semiautónomo

5: Capa Enlace de Datos 5-8

Capa Enlace de Datos

- □ 5.1 Introducción y servicios
- □ 5.2 Detección y corrección de errores
- □ 5.3 protocolos de acceso múltiple
- 5.4 Direccionamiento de capa enlace
- □ 5.5 Ethernet
- □ 5.6 Hubs y switches
- □ 5.7 PPP
- 5.8 Enlaces Virtuales: ATM y MPLS

Detección de Errores

EDC= Error Detection and Correction bits (redundancia)

= Datos protegidos por chequeo de errores podría incluir campos de encabezado

- La detección de errores no es 100% confiable!
 - el protocolo puede saltar algunos errores, pero es raro
 Campos EDC grandes conducen a mejor detección y corrección
 - de errores

Chequeo de paridad

Bit de Paridad Simple: Detecta errores simples

Bit de paridad de dos dimensiones: Detecta y corrige errores simples

5: Capa Enlace de Datos 5-11

Cheksum de Internet

Meta: detectar "errores" (e.g., bit invertidos) en segmentos transmitidos (nota: usado en capa transporte *solamente*)

Transmisor:

- Trata el contenido de los segmentos como una secuencia de enteros de 16 bits
- checksum: suma del contenido del segmento (complemento 1 de la suma)
- Tx pone el valor del checksum en el campo correspondiente de UDP o TCP

- Calcula el checksum del segmento recibido
- Chequea si este checksum es igual al campo recibido:

 - NO error detectado SI no hay error. *Pero podría* haberlo? Más luego

Sumas de chequeo: Chequeo de redundancia cíclica (CRC)

- Ve bits de datos, D, como números binarios
- Se elige un patrón (generador) de r+1 bits, G
- Objetivo: Elegir r bits de CRC, R, tal que:
 <D,R> sea exactamente divisible por G (módulo 2)
 - Rx conoce G, divide <D,R> por G. Si resto es no cero: hay error
 - O Puede detectar secuencias de errores menores que r+1 bits
- □ Ampliamente usado en la práctica (ATM, HDCL)

CRC: Ejemplo

Queremos:

 $D\cdot 2^r XOR R = nG$ equivalentemente:

 $D \cdot 2^r = nG XOR R$ equivalentemente:

Si dividimos D₂r por G, obtendremos el resto R

 $R = remainder[\frac{D \cdot 2^r}{G}]$

5: Capa Enlace de Datos

Capa Enlace de Datos

- □ 5.1 Introducción y servicios
- □ 5.2 Detección y corrección de errores
- □ 5.3 protocolos de acceso múltiple
- 5.4 Direccionamiento de capa enlace
- □ 5.5 Ethernet
- □ 5.6 Hubs y switches
- □ 5.7 PPP
- □ 5.8 Enlaces Virtuales: ATM y MPLS

Enlaces y Protocolos de Acceso Múltiple

Dos tipos de "enlaces" :

- Punto-a-apunto
- PPP para acceso discado
 - Enlaces punto-a-punto entre switch Ethernet y host (computador)
- broadcast (cable o medio compartido)
 - Ethernet tradicional
 - Flujo de subida en HFC (**H**ybrid **F**iber **C**oax)
 - 802 11 I AN inalámbrica

Protocolos de acceso múltiple

- Usan un canal simple de difusión compartida
- □ Puede haber dos o más transmisiones simultáneas por nodos: => Interferencia
 - o colisión si un nodo recibe dos o más señales al mismo tiempo

Protocolos de acceso múltiple

- Algoritmo distribuido que determinan cómo los nodos comparten el canal, i.e., determina cuándo un nodo puede transmitir
- □ La comunicación para ponerse de acuerdo sobre cómo compartir debe usar el mismo canal!
 - o no hay canal "fuera de banda" para coordinación

Protocolo de Acceso Múltiple Ideal Supongamos un canal broadcast de tasa R bps

- 1. Cuando un nodo quiere transmitir, este puede enviar a tasa R.
- 2. Cuando M nodos quieren transmitir, cada uno puede enviar en promedio una tasa R/M
- 3. Completamente descentralizado:
 - No hay nodo especial para coordinar transmisiones
 - No hay sincronización de reloj o ranuras
- 4. Es simple

5: Capa Enlace de Datos 5-18

Taxonomía de protocolos MAC

Tres clases amplias:

- Canal Subdividido ("particionado")
 - O Divide el canal en pequeños "pedazos" (ranuras de tiempo, frecuencia, código)
 - Asigna pedazos a un nodo para su uso exclusivo

Acceso Aleatorio

- Canal no es dividido, permite colisiones
- Hay que "recuperarse" de las colisiones

"Tomando turnos"

Los nodos toman turnos, pero nodos con más por enviar pueden tomar turnos más largos

5: Capa Enlace de Datos 5-19

Protocolo MAC en canal subdividido: TDMA

TDMA: time division multiple access

- □ Acceso a canales es en "rondas"
- Cada estación obtiene una ranura de largo fijo (largo= tiempo transmisión del paquete) en cada
- □ Ranuras no usadas no se aprovechan
- □ ejemplo: LAN con 6 estaciones, 1,3,4 tienen paquetes, ranuras 2,5,6 no usadas

5: Capa Enlace de Datos 5-20

Protocolos MAC en canal Particionado: FDMA

FDMA: frequency division multiple access

- □ Espectro del canal es dividido en bandas de frecuencia
- Cada estación obtiene una banda de frecuencia fija
- □ Tiempo de transmisión no usado no es aprovechado
- ejemplo: LAN de 6 estaciones, 1,3,4 tiene paquetes, bandas de frecuencias 2,5,6 no se aprovechan

Protocolos de Acceso Aleatorio

- Cuando un nodo tiene paquetes que enviar
 - Transmite a la tasa máxima del canal R.
 - No hay coordinación entre nodos
- □ Si dos o más nodos transmiten se produce "colisión"
- Protocolos de acceso aleatorio especifican:
 - Cómo detectar colisiones
 - Cómo recuperarse de una colisión (e.g., vía retransmisiones retardadas)
- □ Ejemplos de protocolos MAC de acceso aleatorio:
 - ALOHA ranurado
 - ALOHA
 - CSMA, CSMA/CD, CSMA/CA

5: Capa Enlace de Datos 5-22

ALOHA ranurado

Suposiciones

- □ Todos las tramas tienen igual tamaño
- □ Tiempo es dividido en igual tamaño de ranura, = tiempo para enviar una trama
- Nodos comienzan a transmitir sólo al inicio de cada ranura
- Nodos están sincronizados
- □ Si 2 o más nodos transmiten en una ranura todos los nodos detectan la colisión

- Cuando un nodo obtiene una trama nueva a enviar, éste transmite en próxima ranura
- Si no hay colisión, el nodo puede enviar una nueva trama en próxima ranura
- Si hay colisión, el nodo retransmite la trama en cada ranura subsiguiente con probabilidad p hasta transmisión

5: Capa Enlace de Datos 5-23

ALOHA ranurado

- Un único nodo activo puede transmitir continuamente a tasa máxima del canal
- Altamente descentralizado: sólo cada nodo requiere sincronización en ranuras
- Simple

Desventajas

- colisiones, ranuras desperdiciadas
 Ranuras no ocupadas
 - Nodos podrían detectar la colisión en menor tiempo que el de transmitir un paquete
- Sincronización de relojes
- En mejor caso se logra 37% de utilización

ALOHA Puro (no ranurado)

- ☐ Aloha no ranurado: más simple, no hay sincronización
- Cuando una trama debe ser enviada
 - o transmitir inmediatamente
- □ Probabilidad de colisión aumenta:
 -) Trama enviada a t_0 colisiona con otras tramas enviadas en $[t_0-1,t_0+1]$
- ☐ Probabilidad de éxito de transmisión de un nodo 18%

CSMA (Carrier Sense Multiple Access)

CSMA: Sensa portadora antes de transmitir:

- □ Si el canal se sensa a libre, se transmite la trama entera
- □ Si el canal se sensa ocupado, postergar transmisión
- Analogía humana: no interrumpir a otros!

5: Capa Enlace de Datos 5-26

CSMA/CD (Detección de Colisiones)

CSMA/CD: carrier sensing, similar a CSMA

- o colisiones son detectadas en corto tiempo
- Transmisiones en colisión son abortadas, reduciendo el mal uso del canal
- □ Detección de colisiones:
 - Fácil en LANs cableadas: se mide la potencia de la señal, se compara señales transmitidas con recibidas
 - Difícil LANs inalámbricas: receptor es apagado mientras se transmite
- ☐ Analogía humana: Conversadores respetuosos

5: Capa Enlace de Datos 5-28

CSMA/CD detección de colisiones

5: Capa Enlace de Datos 5-29

Protocolos MAC de "toma de turnos"

Protocolos MAC que particionan el canal:

- Se comparte el canal eficientemente y equitativamente en alta carga
- Son ineficiente a baja carga: Hay retardo en acceso al canal, 1/N del ancho de banda es asignado aún si hay sólo un nodo activo!

Protocolos de acceso aleatorio

- Son eficientes a baja carga: un único canal puede utilizar completamente el canal
- O Alta carga: ineficiencias por colisiones

Protocolos de "toma de turnos"

O Buscan lo mejor de ambos mundos!

Protocolos MAC de "Toma de turnos"

Consulta:

- Nodo maestro "invita" a nodos esclavos a transmitir en turnos
- preocupaciones:
 - Overhead de la consulta

 - Punto único de falla (maestro)

Paso de Testimonio:

- Token (testimonio) de control es pasado de nodo en nodo secuencialmente.
 Hay un mensaje con el
- token
- preocupaciones:

 - Overhead del token
 latencia
 Punto único de falla (el token)

5: Capa Enlace de Datos 5-31

Capa Enlace de Datos

- □ 5.1 Introducción y servicios
- □ 5.2 Detección y corrección de errores
- □ 5.3 Protocolos de acceso múltiple
- 5.4 Direccionamiento de capa enlace
- □ 5.5 Ethernet
- □ 5.6 Hubs y switches
- □ 5.7 PPP
- □ 5.8 Enlaces Virtuales: ATM y MPLS

5: Capa Enlace de Datos 5-33

Resumen de protocolos MAC

- □ ¿Qué hacemos en un medio compartido?
 - O Subdivisión del canal: por tiempo, frecuencia, o código
 - O Subdivisión aleatoria (dinámica),
 - ALOHA, ALOHA-R, CSMA, CSMA/CD
 - Sensado de portadora: fácil en algunas tecnologías (cable), difícil en otras (inalámbricas)
 - CSMA/CD es usado en Ethernet
 - CSMA/CA (collision avoidance) es usado en 802.11
 - Toma de turnos
 - Consultas desde un sitio central, o pasando un token