Задание 3

Связанные понятия: 1. Образом подмножества $M\subset L)_K$ относительно линейного отображения A называется множество . 2. Ядром линейного отображения называется подмножество $AM=\{A_x:x\in M\}$ A, которое отображается в нуль: $\ker f=\{x\in A|f(x)=0$

Ядро линейного отображения образует подпространство в линейном пространстве LargeA.

3. Образом линейного отображения f называется следующее подмножество $LargeB\colon \mathbf{f}=\{\mathbf{f}(\mathbf{x})\in \mathbf{B}|\mathbf{x}\in \mathbf{A}$

Образ линейного отображения образует подпространство в линейном пространстве B . 4. Отображение $f: A \times B \to C$ прямого произведения линейных пространств A и B в линейное пространство C называется билинейным, если оно линейно по обоим своим аргументам. Отображение прямого произведения большего числа линейных пространств $f: A_1 \times ... \times A_n \in B$ называется полилинейным, если оно линейно по всем своим аргументам.

5. Оператор \tilde{L} называется линейным (или), если он имеет вид $\tilde{L}=L+v$ где — L линейный оператор, а v — вектор. 6. Пусть $A:L_K\to L_K$. Подпространство $M\subset L_K$ называется относительно линейного отображения, если $\forall x\in M, Ax\in M$

Критерий инвариантности. Пусть $M\subset L_K$ — подпространство, такое что X разлагается в прямую сумму: . Тогда M инвариантно относительно линейного отображения A тогда и только тогда, когда $P_MAP_M=AP_M$, где P_M - проектор на подпространство M . 7. — . Пусть $A:L_K\to L_K$ — линейный оператор и пусть M — некоторое инвариантное относительно этого оператора подпространство. Образуем фактор-пространство L_K/\sim^M по подпространству M . Тогда — называется оператор A^+ действующий на L_K/\sim^M по правилу: $\forall x^+ \in L_K/\sim^M$, $A^+x^+ = [Ax]$, где [Ax] — класс из фактор-пространства, содержащий Ax. Примеры линейных однородных операторов:

- оператор дифференцирования: $L\{x(\dot{j}\}=y(t)=\frac{dx(t)}{dt};$
- \bullet оператор интегрирования: $y(t) = \int\limits_0^t x(\tau) d\tau$
- оператор умножения на определённую функцию $\varphi(t): y(t) = \varphi(t)x(t);$
- оператор интегрирования с заданным «весом» $\varphi(t):y(t)=\int\limits_0^t x(\tau)\varphi(\tau)$
- оператор взятия значения функции f в конкретной точке x_0 : $L\{f\} = f(x_0)$
- оператор умножения вектора на матрицу: b = Ax;
- оператор поворота вектора.

Примеры линейных неоднородных операторов:

• Любое аффинное проеобразование;

- $y(t) = \frac{dx(t)}{dt} + \varphi(t);$
- $y(t) = \int_{0}^{t} x(\tau)d\tau + \varphi(t);$
- $y(t) = \varphi_1(t)x(t) = \varphi_2(t);$

где φ , φ_1 , φ_2 — вполне определённые функции, а x(t) — преобразуемая оператором функция.