# Optimizing Resolution – Most General Unifiers

The most efficient way to avoid unnecessary search in a first-order derivation is to keep the search as general as possible.

#### For example:

the clause  $c_1$  contains the literal P(g(x),f(x),z)the clause  $c_2$  contains the literal  $\neg P(y,f(w),a)$ 

For unification, we may have the substitution

$$\theta_1 = \{x/b, y/g(b), z/a, w/b\}$$

or

$$\theta_2 = \{x/f(z), y/g(f(z)), z/a, w/f(z)\}$$

or ...

$$P(g(x),f(x),z) \theta_1 = P(y,f(w),a) \theta_1 \qquad \theta_1 = \{x/b,y/g(b),z/a,w/b\}$$

We can try to derive the empty clause using  $\theta_1$ ; if it doesn't work, we can try with  $\theta_2$  and so on.

 $\theta_1$  and  $\theta_2$  are more specific than they should be (it is not necessary to give a value for x).

The substitution  $\theta_3 = \{y/g(x), z/a, w/x\}$  unifies  $c_1$  and  $\overline{c_2}$  without making unnecessary arbitrary choices that might exclude a path to the empty clause.

 $\theta_3$  is a most general unifier (MGU).

It may not be unique – for example  $\theta_4 = \{y/g(w), z/a, x/w\}$  is also an MGU.

**Def.** A most general unifier  $\theta$  of literals  $\rho_1$  and  $\rho_2$  is a unifier that has the property that for any other unifier  $\theta'$ , there is a substitution  $\theta^*$  such that  $\theta' = \theta \cdot \theta^*$ .

By  $\theta \cdot \theta^*$  we mean that we first apply  $\theta$  and then apply  $\theta^*$  to the result.

For example, from  $\theta_3$  we can get to  $\theta_1$  by further applying x/b:

$$\rho_1 = P(g(x),f(x),z)$$

$$\rho_2 = P(y,f(w),a)$$

$$\{y/g(x),z/a,w/x\}\cdot\{x/b\} \Rightarrow \theta_1 = \{x/b,y/g(b),z/a,w/b\}$$

$$\theta_3$$

Similarly, from  $\theta_3$  to  $\theta_2$  by applying x/f(z); and to  $\theta_4$  by applying x/w.

By limiting resolution to MGUs, the completeness is maintained and the number of resolvents is drastically reduced.

The procedure for computing an MGU:

Input: literals  $\rho_1$  and  $\rho_2$ 

Output: a substitution  $\theta$ 

- 1.  $\theta = \{\}$
- 2. If  $\rho_1\theta = \rho_2\theta$  then exit
- 3. Determine the disagreement set DS, which is the pair of terms in the first place (from left to right) where the two literals disagree. For example:

```
If \rho_1\theta = P(a, f(a, \underline{g(z)}, ...)

\rho_2\theta = P(a, f(a, \underline{u}, ...) then DS = \{u, g(z)\}
```

- 4. Find a variable v∈DS and a term t∈DS not containing v; if none then fail.
- 5. Otherwise, set  $\theta = \theta \cdot \{v/t\}$  and go to 2.

The procedure for computing an MGU:

Input: literals  $\rho_1$  and  $\rho_2$ 

Output: a substitution  $\theta$ 

- 1.  $\theta = \{\}$
- 2. If  $\rho_1\theta = \rho_2\theta$  then exit
- 3. Determine the disagreement set DS, which is the pair of terms in the first place (from left to right) where the two literals disagree. For example:

If 
$$\rho_1\theta = P(a, f(a, \underline{g(z)},...)$$
  
 $\rho_2\theta = P(a, f(a, \underline{u},...)$  then DS={u,g(z)}

- 4. Find a variable v∈DS and a term t∈DS not containing v; if none then fail.
- 5. Otherwise, set  $\theta = \theta \cdot \{v/t\}$  and go to 2.

# Example $\theta = \{\}; \ \rho_1\theta = P(\underline{x},f(a,g(z))) \Rightarrow \theta = \{x/h(y)\}; \ \rho_1\theta = P(h(y),f(\underline{a},g(z))) \Rightarrow \theta = \{x/h(\underline{a}),y/a\}; \ \rho_1\theta = P(h(a),f(a,\underline{g(z)})) \Rightarrow \theta = \{x/h(a),y/a,u/g(z)\}\}$ $\rho_2\theta = P(\underline{h(y)},f(y,u)) \qquad \qquad \rho_2\theta = P(h(y),f(y,u)) \qquad \qquad \rho_2\theta = P(h(a),f(a,\underline{u})) \qquad \text{Output}$

The procedure is very efficient in practice. All resolution-based systems use MGUs.

#### **Clause elimination**

There are types of clauses that do not participate in the (shortest) derivation to the empty set:

- -pure clauses contain some literal  $\rho$  such that  $\bar{\rho}$  does not appear anywhere else;
- -tautologies contain both  $\rho$  and  $\bar{\rho}$  and they can be bypassed in any derivation;
- -subsumed clauses clauses for which there already exists another clause with a subset of the literals, possible after a substitution.
- For example, if  $[P(x)] \in KB$  then we do not need [P(a),Q(b)] for the shortest derivation of [].
- If we have [p,r], we don't need [p,q,r].

#### **Ordering strategies**

- -choose a predefined order to perform resolution to maximize the chance of deriving the empty clause.
- -the best strategy up-to-date is "unit preference", that is, to use unit clauses first.

A unit clause + a clause with k literals  $\Rightarrow$  a clause of length k-1...

#### **Special treatment of equality**

The explicit use of the axioms of equality can generate many resolvents. A way to avoid this is by introducing a second rule of inference in addition to resolution, called Paramodulation.

We are given two clauses:

c<sub>1</sub> U t=s where t and s are terms

 $c_2 \cup \rho[...,t',...]$  containing the term t' as argument

If necessary, we rename the variables in the two clauses to be distinct.

We assume that there is a substitution  $\theta$  such that  $t\theta = t'\theta$ .

Then we can infer the clause  $(c_1Uc_2Up[...,s,...])\theta$ , which eliminates =, replaces t' by s and perform substitution  $\theta$ .

**Example** (no. 4 in the previous course)

Question: Married(bill,mother(john))

$$\underbrace{[father(john)=bill]}_{t} \quad \underbrace{[Married(father(x),mother(x))]}_{\rho}$$

$$c_1=[] c_2=[]$$
  
 $\theta=\{x/john\}$ 

We can derive [Married(bill,mother(john)] in a single Paramodulation step.

#### Horn clauses

Horn clauses are a subset of FOL, where the resolution procedure works well. This subset is sufficiently expressive for many problems.

In a resolution-based system, the clauses are used for two purposes:

- To express disjunctions like [Rain,Sleet,Snow] to represent incomplete knowledge;
- To express a conditional disjunctions like [¬Child,¬Male,Boy] although
  it can be read as "someone is not a child, or is not a male, or is a boy", it is
  more natural to be understood as a conditional "if someone is a child and a
  male then is a boy".

#### Horn clauses

**Def.** A Horn clause contains at most one positive literal. A clause with no positive literals is called a negative Horn clause.

**Obs.** The empty clause is a negative Horn clause.

The positive Horn clause  $[\neg p_1,...,\neg p_n,q]$  can be read "if  $p_1$  and ...and  $p_n$  then q".

It is called "rule" and it is written as  $p_1 \wedge ... \wedge p_n \Rightarrow q$  to emphasize the conditional.

**Obs.** Two negative clauses cannot resolve together.

A negative and a positive clause produce a negative clause by resolution.

Two positive clauses produce a positive clause.

Resolution over Horn clauses involves always a positive clause.

**Prop.** Given S a set of Horn clauses and  $S \vdash c$ , where c is a negative clause, then there exists a derivation of c where all the new clauses is the derivation (i.e., clauses not in S) are negative.

Proof.

 $[c_1,...,c_n=c \text{ is a derivation iff } c_i \in S \text{ or } c_i \text{ is a resolvent of two previous clauses in the sequence}]$ 

Suppose that we have a derivation with new positive clauses. Let c' be the last one (from left to right):

$$c_1,...,c',...,c_n=c$$
positive negative

Instead of producing negative clauses using c', we will generate these negative clauses using the positive parents of c'.



The derivation still produces  $c_{neg}$ , but without using c'. We remove c' from the derivation and repeat this for every new positive clause introduced.

Thus, we eliminate all of them.

**Prop.** Given S a set of Horn clauses and  $S \vdash c$ , where c is a negative clause, then there exists a derivation of c, where each new clause derived is negative and is a resolvent of the previous negative one in the derivation and a clause from S.



and we discard all the clauses that are not in this chain.

**Prop.** Given S a set of Horn clauses and  $S \vdash c$ , where c is a negative clause, then there exists a derivation of c, where each new clause derived is negative and is a resolvent of the previous negative one in the derivation and a clause from S.



and we discard all the clauses that are not in this chain.

Given S a set of Horn clauses, there is a derivation of a negative clause (including []) iff there is one where each new clause in the derivation is a negative resolvent of the previous negative clause in the derivation and a clause from S.

# SLD Resolution – Selected literals, Linear pattern, over Definite clauses

It is a restricted form of resolution, where each new clause is a resolvent of the previous clause and a clause from the original set S. This version of resolution is sufficient for Horn clauses.

**Def.** If S is a set of clauses (not necessarily Horn), an SLD derivation is a sequence  $c_1, ..., c_n = c$ , where  $c_1 \in S$  and  $c_{i+1}$  is a resolvent of  $c_i$  and a clause in S. We write  $S \vdash_{SLD} c$ .



Except for  $c_1$ , the elements of S are not explicitly mentioned.

. . . .

## **SLD** Resolution

It is clear that if  $S \vdash_{SLD} []$  then  $S \vdash []$  but the converse doesn't hold.

For example, for  $S=\{[p,q], [\neg p,q], [p, \neg q], [\neg p, \neg q]\}$ , we have that  $S \vdash []$ .

To generate [], the last step in resolution should involve [ $\rho$ ] and [ $\bar{\rho}$ ] for some literal  $\rho$ . But S does not contain any unit clauses, so there is no element from S in the last step of the resolution. That means that S  $\forall_{SLD}$  [ ].

But for S a set of Horn clauses, then  $S \vdash_{SLD} []$  iff  $S \vdash []$ .

Moreover, each of the new clauses in the derivation  $c_2,...,c_n$  can be assumed to be negative.

 $c_2$  has a negative and a positive parent, so  $c_1$  can be chosen to be the negative one.

Thus, for Horn clauses, SLD derivations of the empty clause begin with a negative clause in S.

## **SLD** Resolution

Toddler
Toddler⊃Child
Infant⊃Child
Child^Female⊃Girl
Child^Male⊃Boy
Female

Question: Girl

Obs. [ $\neg$ Girl] is the only negative clause in S, so  $c_1=[\neg Girl]$ 



SLD derivation: c<sub>1</sub>, c<sub>2</sub>, c<sub>3</sub>, c<sub>4</sub>, c<sub>5</sub>

Given KB, a set of positive Horn clauses, we want to determine whether a set of atoms can be entailed from KB.

The case considered here consists of determining the satisfiability of a set of Horn clauses containing exactly one negative clause.

#### **Backward chaining**

Input: KB and a finite list of atomic sentences q<sub>1</sub>,...,q<sub>n</sub>

Output: YES or NOT – whether or not KB entails all q

```
procedure SOLVE(q_1,...,q_n)

[if n=0 the return YES]

for each clause c \in KB

if (c = [q_1, \neg p_1,..., \neg p_m] and SOLVE(p_1,...,p_m,q_2,...,q_n)) then return YES return NO
```

The search goes backward, from goals to facts in KB



if it fails, it tries with another clause in KB whose positive literal is  $q_1$ . If none is found then return NO

The procedure works in a depth-first manner, as it attempts to solve the new goals  $p_i$  before the old ones  $q_i$ .

It is called left-to-right because it solves the goals  $q_1,...,q_n$  in order 1,2,...,n. This is how PROLOG solves goals.

Toddler Child^Female⊃Girl

Toddler⊃Child Child^Male⊃Boy

Infant⊃Child Female

Question: Girl

The goal Girl reduces to the subgoals Child and Female

The goal Child reduces to Toddler – Toddler is proven (it is fact in KB)

The goal Female is proven (it is fact in KB)

Return YES

**Obs.** The procedure can go into a infinite loop (even in the propositional case!).



In other cases, the procedure can be exponential.

For example,

$$\begin{bmatrix} p_{i-1} \Rightarrow p_i \\ p_{i-1} \Rightarrow q_i \\ q_{i-1} \Rightarrow p_i \\ q_{i-1} \Rightarrow q_i \end{bmatrix} 0 < i \le n, n > 0$$
 
$$4(n+1) - 4 \text{ clauses}$$
 
$$q_{i-1} \Rightarrow q_i$$

Question: p<sub>n</sub> (or q<sub>n</sub>) - neither is entailed by KB



Assume that for n=k-1 at least 2<sup>k-1</sup> steps are necessary

$$\begin{array}{ll} p_{k\text{-}1} \Rightarrow p_k & \text{at least } 2^{k\text{-}1}\text{+}2^{k\text{-}1}\text{=}2^k \text{ steps necessary to show} \\ q_{k\text{-}1} \Rightarrow p_k & \text{that } p_k \text{ is not entailed by KB.} \end{array}$$

# Forward chaining – a more efficient approach for the propositional case

The procedure works from the facts in a Horn KB towards the goals.

Input: KB and a finite list of atomic sentences q<sub>1</sub>,...,q<sub>n</sub>

Output: YES or NOT – whether or not entails all q

#### Procedure

- 1. If (all the goals q<sub>i</sub> are solved) then return YES
- 2. Check if there is a clause  $[p, \neg p_1, ..., \neg p_m]$  in KB, such that all of its negative atoms  $p_1, ..., p_m$  are marked as solved and the positive atom p is not solved.
- 3. If (there is such a clause) then mark p as solved and go to step 1 else return NO

# Forward chaining

Toddler Child^Female⊃Girl

Toddler⊃Child Child^Male⊃Boy

Infant⊃Child Female

Question: Girl

[Toddler] has no negative atoms – it is marked as solved

[Child, ¬Toddler] – Child is marked

[Female] – has no negative atoms – it is marked

[Girl, ¬Child, ¬Female] – Girl is marked – return YES

The forward chaining has a much better overall behavior than the backward chaining.

At each iteration, we search for a clause in KB with an atom that has not been marked. The overall result will not be exponential.

#### Horn clauses in FOL

In the propositional case, we can always determine whether or not a Horn KB entails an atom (with forward chaining).

But the problem of determining whether a set of Horn clauses in FOL entails an atom remains undecidable.

**Backward chaining** – infinite branches

KB:  $\forall x \forall y. LessThan(succ(x), y) \supset LessThan(x, y)$ 

Question: LessThan(zero,zero)

Forward chaining – doesn't terminate

Question: LessThan(5,7)