## Simulation results

## No MR toggles

## Input parameters

## Population parameters

population\_size = 1000

population\_carrying\_capacity = 3000 # If population creeps above this value, comp is used to punish the population size by increasing the minimum probability of death based on how much higher population size is than the carrying capacity

population\_minimum\_size = 500 # If population falls below this value, there is a 10x increased chance of recruitment

MR\_mean = 0.5 # out of 1

MR sd = 1

disturbance\_chance=0 # chance of a disturbance, increases death and recruitment rate by

disturbance\_impact\_val=5 # impacts base age & MR death factor and recruitment constant

#### ## Parameters

age\_impact = 0.2 # scaled age inflicted increase

mortality\_age\_shift = 100 # at what age does increases in age increase chance of death

#### MR imp = F # toggle on/off for MR inflicted death increase

 $MR\_death\_impact = 0.5 \# linear scaled MR inflicted death increase - scales with comp + age impact value$ 

MR\_age\_impact = 10 # scaled impact of age (value / age) on MR inflicted death increase

#### MR\_recruit\_imp = F # toggle on/off of MR affect on recruitment

MR\_recruit\_impact = 0.05 # impact of MR on recruitment, a multiplier of the individual MR to reduce recruitment chance

comp\_imp = T # toggle on/off for competition due to carrying capacity comp\_impact = 1 # impact of competition due to carrying capacity

#### ## Recruitment parameters

recruitment\_const = 0.001 # base constant for chance of recruitment

recruitment\_age = 7 # age to begin recruiting

recruitment\_mean = 1000 # mean for PDF of normal distribution for number of recruited individuals recruitment\_sd = recruitment\_mean/2 # standard deviation of number of recruited individuals

#### ## Simulation parameters

time\_max = 20 # how long to run sim for

output\_timept = 100 # How often to report visual statistics









## MR toggles - mod

## Input parameters

## Population parameters

population\_size = 1000

population\_carrying\_capacity = 3000 # If population creeps above this value, comp is used to punish the population size by increasing the minimum probability of death based on how much higher population size is than the carrying capacity

population\_minimum\_size = 500 # If population falls below this value, there is a 10x increased chance of recruitment

MR\_mean = 0.5 # out of 1

 $MR_sd = 1$ 

disturbance\_chance=0 # chance of a disturbance, increases death and recruitment rate by

disturbance\_impact\_val=5 # impacts base age & MR death factor and recruitment constant

#### ## Parameters

age\_impact = 0.2 # scaled age inflicted increase

mortality\_age\_shift = 100 # at what age does increases in age increase chance of death

#### MR imp = T # toggle on/off for MR inflicted death increase

MR\_death\_impact = 0.5 # linear scaled MR inflicted death increase - scales with comp + age impact value

MR\_age\_impact = 10 # scaled impact of age (value / age) on MR inflicted death increase MR\_recruit\_imp = T # toggle on/off of MR affect on recruitment

MR\_recruit\_impact = 0.05 # impact of MR on recruitment, a multiplier of the individual MR to reduce recruitment chance

comp\_imp = T # toggle on/off for competition due to carrying capacity comp\_impact = 1 # impact of competition due to carrying capacity

#### ## Recruitment parameters

recruitment\_const = 0.001 # base constant for chance of recruitment

recruitment\_age = 7 # age to begin recruiting

recruitment\_mean = 1000 # mean for PDF of normal distribution for number of recruited individuals recruitment\_sd = recruitment\_mean/2 # standard deviation of number of recruited individuals

#### ## Simulation parameters

time\_max = 20 # how long to run sim for

output\_timept = 100 # How often to report visual statistics









### MR toggles - low

## Input parameters

## Population parameters

population\_size = 1000

population\_carrying\_capacity = 3000 # If population creeps above this value, comp is used to punish the population size by increasing the minimum probability of death based on how much higher population size is than the carrying capacity

population\_minimum\_size = 500 # If population falls below this value, there is a 10x increased chance of recruitment

MR\_mean = 0.5 # out of 1

 $MR_sd = 1$ 

disturbance\_chance=0 # chance of a disturbance, increases death and recruitment rate by

disturbance\_impact\_val=5 # impacts base age & MR death factor and recruitment constant

#### ## Parameters

age\_impact = 0.2 # scaled age inflicted increase

mortality\_age\_shift = 100 # at what age does increases in age increase chance of death

#### MR imp = T # toggle on/off for MR inflicted death increase

MR\_death\_impact = 0.1 # linear scaled MR inflicted death increase - scales with comp + age impact value

MR\_age\_impact = 10 # scaled impact of age (value / age) on MR inflicted death increase MR\_recruit\_imp = T # toggle on/off of MR affect on recruitment

MR\_recruit\_impact = 0.01 # impact of MR on recruitment, a multiplier of the individual MR to reduce recruitment chance

comp\_imp = T # toggle on/off for competition due to carrying capacity comp\_impact = 1 # impact of competition due to carrying capacity

#### ## Recruitment parameters

recruitment\_const = 0.001 # base constant for chance of recruitment recruitment\_age = 7 # age to begin recruiting

recruitment\_mean = 1000 # mean for PDF of normal distribution for number of recruited individuals recruitment\_sd = recruitment\_mean/2 # standard deviation of number of recruited individuals

#### ## Simulation parameters

time\_max = 20 # how long to run sim for

output\_timept = 100 # How often to report visual statistics









## MR toggles - high

## Input parameters

## Population parameters

population\_size = 1000

population\_carrying\_capacity = 3000 # If population creeps above this value, comp is used to punish the population size by increasing the minimum probability of death based on how much higher population size is than the carrying capacity

population\_minimum\_size = 500 # If population falls below this value, there is a 10x increased chance of recruitment

MR\_mean = 0.5 # out of 1

 $MR_sd = 1$ 

disturbance\_chance=0 # chance of a disturbance, increases death and recruitment rate by disturbance impact

disturbance\_impact\_val=5 # impacts base age & MR death factor and recruitment constant

#### ## Parameters

age\_impact = 0.2 # scaled age inflicted increase

mortality\_age\_shift = 100 # at what age does increases in age increase chance of death

#### MR imp = T # toggle on/off for MR inflicted death increase

MR\_death\_impact = 1.0 # linear scaled MR inflicted death increase - scales with comp + age impact value

MR\_age\_impact = 10 # scaled impact of age (value / age) on MR inflicted death increase MR\_recruit\_imp = T # toggle on/off of MR affect on recruitment

MR\_recruit\_impact = 0.1 # impact of MR on recruitment, a multiplier of the individual MR to reduce recruitment chance

comp\_imp = T # toggle on/off for competition due to carrying capacity comp\_impact = 1 # impact of competition due to carrying capacity

#### ## Recruitment parameters

recruitment\_const = 0.001 # base constant for chance of recruitment

recruitment\_age = 7 # age to begin recruiting

recruitment\_mean = 1000 # mean for PDF of normal distribution for number of recruited individuals recruitment\_sd = recruitment\_mean/2 # standard deviation of number of recruited individuals

#### ## Simulation parameters

time\_max = 20 # how long to run sim for

output\_timept = 100 # How often to report visual statistics









# MR toggles – mod + increased seedling pressure

## Input parameters

## Population parameters

population\_size = 1000

population\_carrying\_capacity = 3000 # If population creeps above this value, comp is used to punish the population size by increasing the minimum probability of death based on how much higher population size is than the carrying capacity

population\_minimum\_size = 500 # If population falls below this value, there is a 10x increased chance of recruitment

MR\_mean = 0.5 # out of 1

 $MR_sd = 1$ 

disturbance\_chance=0 # chance of a disturbance, increases death and recruitment rate by disturbance impact

disturbance\_impact\_val=5 # impacts base age & MR death factor and recruitment constant

#### ## Parameters

age\_impact = 0.2 # scaled age inflicted increase

mortality\_age\_shift = 100 # at what age does increases in age increase chance of death

#### MR imp = T # toggle on/off for MR inflicted death increase

 $MR\_death\_impact = 0.5 \# linear scaled MR inflicted death increase - scales with comp + age impact value$ 

MR\_age\_impact = 50 # scaled impact of age (value / age) on MR inflicted death increase MR\_recruit\_imp = T # toggle on/off of MR affect on recruitment

MR\_recruit\_impact = 0.05 # impact of MR on recruitment, a multiplier of the individual MR to reduce recruitment chance

comp\_imp = T # toggle on/off for competition due to carrying capacity comp\_impact = 1 # impact of competition due to carrying capacity

#### ## Recruitment parameters

recruitment\_const = 0.001 # base constant for chance of recruitment

recruitment\_age = 7 # age to begin recruiting

recruitment\_mean = 1000 # mean for PDF of normal distribution for number of recruited individuals recruitment\_sd = recruitment\_mean/2 # standard deviation of number of recruited individuals

#### ## Simulation parameters

time\_max = 20 # how long to run sim for

output\_timept = 100 # How often to report visual statistics







