Healthcare Analysis

Problem: The World Health Organization (WHO) is committed to preventing disease and promoting better global health. The organization seeks to improve its understanding of stroke risk factors and trends.

Approach: To meet the World Health Organization goal, I will use SQL to extract insights to predict whether a patient is likely to get stroke based on input parameters like gender, age, various diseases, and smoking status.

Attribute Information

- 1) id: unique identifier
- 2) gender: "Male", "Female" or "Other"
- 3) age: age of the patient
- 4) hypertension: 0 if the patient doesn't have hypertension, 1 if the patient has hypertension
- 5) heart_disease: 0 if the patient doesn't have any heart diseases, 1 if the patient has a heart disease
- 6) ever_married: "No" or "Yes"
- 7) work type: "children", "Govt jov", "Never worked", "Private" or "Self-employed"
- 8) Residence type: "Rural" or "Urban"
- 9) avg_glucose_level: average glucose level in blood
- 10) bmi: body mass index
- 11) smoking_status: "formerly smoked", "never smoked", "smokes" or "Unknown"*
- 12) stroke: 1 if the patient had a stroke or 0 if not

High risk groups

```
SELECT gender, age, work_type, COUNT(*) as stroke_count
FROM stroke_prediction
WHERE stroke = 1
GROUP BY gender, age, work_type
ORDER BY stroke_count DESC;
```

	gender	age	work_type	stroke_count
0	Female	79.0	Private	9
1	Female	78.0	Private	7
2	Male	78.0	Self-employed	7
3	Female	80.0	Self-employed	5
4	Male	58.0	Private	5
128	Male	73.0	Govt_job	1
129	Male	73.0	Self-employed	1
130	Male	74.0	Self-employed	1
131	Male	76.0	Self-employed	1
132	Male	77.0	Self-employed	1

133 rows x 4 columns

Geographical

```
SELECT Residence_type, COUNT(*) as stroke_count
FROM stroke_prediction
WHERE stroke = 1
GROUP BY Residence_type;
```

Residence_type stroke_count Rural 114 Urban 135

Stoke based on gender.

```
SELECT gender,
COUNT(*) as gender_strokes
FROM stroke_prediction
WHERE stroke = 1
GROUP BY gender;
```

gender	gender_strokes	
Female	141	
Male	108	

Stroke based on work type

```
SELECT work_type,
COUNT(*) as work_type_strokes
FROM stroke_prediction
WHERE stroke = 1
GROUP BY work_type;
```

work_type work_type_strokes Govt_job 33 Private 149 Self-employed 65 children 2

Average BMI of individuals who had a stroke based on gender

```
SELECT gender, AVG(bmi) as avg_bmi_stroke
FROM stroke_prediction
WHERE stroke = 1
GROUP BY gender;
```

gender	avg_bmi_stroke
Female	30.218333
Male	30.812360

Percentage of Individuals with Hypertension Who Had a Stroke based on gender

```
SELECT gender, hypertension, COUNT(*) as hypertension_strokes,
Round((COUNT(*) * 100.0 / SUM(COUNT(*)) OVER (PARTITION BY gender)),2) as
percentage
FROM stroke_prediction
WHERE stroke = 1
GROUP BY gender, hypertension;
```

gender	hypertension	hypertension_strokes	percentage
Female	0	102	72.34
Female	1	39	27.66
Male	0	81	75.00
Male	1	27	25.00

Average Glucose Level and BMI of Individuals Who Had a Stroke based on Smoking Status

```
SELECT smoking_status,
Round(AVG(avg_glucose_level),1) as avg_glucose_stroke,
AVG(bmi) as avg_bmi_stroke
FROM stroke_prediction
WHERE stroke = 1
GROUP BY smoking_status;
```

smoking_status	avg_glucose_stroke	avg_bmi_stroke
Unknown	124.8	29.351724
formerly smoked	132.8	31.014035
never smoked	132.9	30.439286
smokes	140.0	30.579487

Stroke percentage for each age group

```
SELECT
  CASE
    WHEN age BETWEEN 0 AND 9 THEN '0-9'
    WHEN age BETWEEN 10 AND 19 THEN '10-19'
    WHEN age BETWEEN 20 AND 29 THEN '20-29'
    WHEN age BETWEEN 30 AND 39 THEN '30-39'
    WHEN age BETWEEN 40 AND 49 THEN '40-49'
    WHEN age BETWEEN 50 AND 59 THEN '50-59'
    WHEN age BETWEEN 60 AND 69 THEN '60-69'
    WHEN age BETWEEN 70 AND 79 THEN '70-79'
    WHEN age BETWEEN 80 AND 89 THEN '80-89'
    ELSE '90+'
  END AS age_group,
  round((COUNT(*) * 100.0 / (SELECT COUNT(*) FROM stroke_prediction WHERE
stroke = 1)),1) as percentage_strokes
FROM stroke_prediction
WHERE stroke = 1
GROUP BY age_group
ORDER BY age_group;
```

age_group	percentage_strokes
0-9	0.4
10-19	0.4
30-39	2.4
40-49	4.8
50-59	19.3
60-69	18.9
70-79	37.8
80-89	16.1

Distribution of stroke based on Martial status.

SELECT

```
ever_married,
  COUNT(*) as stroke_count
FROM stroke_prediction
WHERE stroke = 1
GROUP BY ever_married
order by ever_married desc;
```

ever_married	stroke_count
Yes	220
No	29

Glucose Level and BMI for Individuals Who Had a Stroke based on residence and gender.

SELECT

```
Residence_type,gender,
Round(AVG(avg_glucose_level),2) as avg_glucose_stroke,
Round(AVG(bmi),2) as avg_bmi_stroke
FROM stroke_prediction
```

WHERE stroke = 1
GROUP BY Residence_type, gender;

Residence_type	gender	avg_glucose_stroke	avg_bmi_stroke
Rural	Female	119.90	29.19
Rural	Male	143.28	31.24
Urban	Female	128.16	31.15
Urban	Male	143.06	30.41