PHYS2350: Acceleration in 1D

Dr. Wolf

Fall 2024

Summary: Motion with decreasing speed

Making a velocity diagram:

- All velocity vectors point up the ramp
- All change in velocity vectors $\Delta \vec{v} = \vec{v}_f \vec{v}_i$ point down the ramp

Summary: Motion with decreasing speed

Making a velocity diagram:

- Acceleration vector is constant in magnitude and direction
- Acceleration is $\vec{a} = \frac{\Delta \vec{v}}{\Delta t}$ and points down the ramp

Motion with increasing speed

Motion with increasing speed

Motion with increasing speed

Summary:

- \bullet $\Delta \vec{v}$ is always in the same direction as \vec{v}
- ullet $ec{a}$ is always in the same direction as $ec{v}$
- $\Delta \vec{v}$ and \vec{a} are always pointing down the ramp.

Motion that includes a change in direction

Consider the velocity at instants 5 and 7:

Find the *change in velocity* vector, Δv for this scenario

Motion that includes a change in direction

Consider the velocity at instants 5 and 7:

Find the *change in velocity* vector, Δv for this scenario

Motion that includes a change in direction

Consider the velocity at instants 5 and 7:

Find the *change in velocity* vector, Δv for this scenario

Direction of $\Delta \vec{v}$ and \vec{a}

- $\Delta \vec{v}$ and \vec{a} are always pointing in the same direction.
- $\Delta \vec{v}$ and \vec{a} are always pointing down the ramp.

Make a graph

For the motion of the ball on the ramp, make graphs of x vs. t, v vs. t, and a vs. t. Choose the +x direction to be *down the ramp*

Kinematic equations in 1D

Also called the "Constant acceleration equations".

$$x(t) = x_i + v_i t + \frac{1}{2} a t^2 \tag{1}$$

$$v(t) = v_i + at (2)$$

$$v_f^2 - v_i^2 = 2a(x_f - x_i) (3)$$

Equation (3) is obtained by solving (2) for t and plugging into (1), then simplifying. It assumes $x(t) = x_f$ and $v(t) = v_f$.

