Abschlussklausur

Grundlagen der Informatik (GDI)

6. Februar 2012

ame:	
orname:	
atrikelnummer:	
udiengang:	

Hinweise:

- Tragen Sie zuerst auf allen Blättern (einschließlich des Deckblattes) Ihren Namen, Ihren Vornamen und Ihre Matrikelnummer ein. Lösungen ohne diese Angaben können nicht gewertet werden.
- Schreiben Sie die Lösungen jeder *Teil*aufgabe auf das jeweils vorbereitete Blatt. Sie können auch die leeren Blätter am Ende der Heftung nutzen. In diesem Fall ist ein Verweis notwendig. Eigenes Papier darf nicht verwendet werden.
- Legen Sie bitte Ihren Lichtbildausweis und Ihren Studentenausweis bereit.
- Hilfsmittel sind *nicht* zugelassen.
- Mit Bleistift oder Rotstift geschriebene Ergebnisse werden nicht gewertet.
- Die Bearbeitungszeit dieses Teils der Abschlussklausur beträgt 90 Minuten.
- Stellen Sie sicher, dass Ihr Mobiltelefon ausgeschaltet ist. Klingelnde Mobiltelefone werden als Täuschungsversuch angesehen und der/die entsprechende Student/in wird von der weiteren Teilnahme an der Klausur ausgeschlossen!

Bewertung:

1)	2)	3)	4)	5)	6)	7)	8)	9)	$oldsymbol{\Sigma}$	Note

Abschlussklausur

Grundlagen der Informatik (GDI)

6.2.2012 Dr. Christian Baun

Aufgabe 1 (7+8 Punkte)

- a) Tragen Sie die Namen der Schichten des OSI-Referenzmodells in der Abbildung ein.
- b) Schreiben Sie die folgenden **Protokolle und Verfahren** in der Abbildung neben die betreffenden Schichten.
 - UDP
 - HTTP
 - Modulation
 - MAC
 - Routing
 - CRC
 - TCP
 - FTP
 - IP

Aufgabe 2 (3+3+3 Punkte)

Überprüfen Sie mit Hilfe des **Hamming-Abstands**, ob die folgenden Nachrichten korrekt übertragen wurden und betreiben Sie gegebenenfalls Fehlerkorrektur.

- a) 00111101
- b) 101110100010
- c) 0001101100101101

Aufgabe 3 (6+5+3 Punkte)

- a) Jeder Prozess befindet sich zu jedem Zeitpunkt in einem bestimmten Zustand. Tragen Sie die Namen der Zustände in der Abbildung des 6-Zustands-Prozessmodells ein.
- b) Schreiben Sie in die Abbildung des 6-Zustands-Prozessmodells zu jedem **Zustandsübergang** in wenigen Worten, was beim Zustandsübergang geschieht.
- c) Betriebssysteme speichern 3 Arten von **Kontextinformationen**. Benennen Sie diese und beschreiben Sie in wenigen Worten, was diese Informationen enthalten.

Aufgabe 4 (2+2 Punkte)

Gegeben sei die Zugriffsfolge 0, 1, 2, 3, 0, 1, 4, 0, 1, 2, 3, 4

Zeigen Sie **Belady's Anomalie**, indem Sie die Zugriffsfolge mit der Ersetzungsstrategie FIFO einmal mit einem Datencache mit einer Kapazität von 3 Datenrahmen und einmal mit 4 Datenrahmen durchführen. Geben Sie für beide Szenarien die **Hitrate** und die **Missrate** an.

Aufgabe 5 (4+6 Punkte)

Der Speicher nimmt Daten und die auszuführenden Programme auf und bildet eine Hierarchie (⇒ Speicherpyramide).

- a) Tragen Sie die folgenden Speichertechnologien in der Abbildung ein.
 - ullet Magnetbänder
 - DVD
 - Cache
 - HDD
 - Hauptspeicher
 - CD
 - SSD
 - Register
- b) Beschreiben Sie in wenigen Worten, was **Primärspeicher**, **Sekundärspeicher** und **Tertiärspeicher** jeweils ausmacht. (Gehen Sie auf die Besonderheit der jeweiligen Gruppe ein. 1-2 Sätze genügen.)

Aufgabe 6 (4+7 Punkte)

Mit einer **7-Segmentanzeige** kann man die Dezimalzahlen von 0 bis 9 darstellen. Vervollständigen Sie die **Wahrheitstabelle** der **7-Segmentanzeige**.

Aufgabe 7 (2+2+2+2 Punkte)

Vereinfachen Sie die Schaltfunktionen durch Anwendung der Rechenregeln (Axiome).

- a) $y = \overline{a} + b + \overline{b} + c$
- b) $y = m\overline{n} + mn\overline{m}$
- c) $y = b + \overline{a}bc + \overline{b}$
- d) $y = x * (\overline{x} + s)$
- e) $y = a + \overline{b} * (\overline{a + \overline{b} + c})$

Aufgabe 8 (2+2+2+2 Punkte)

Berechnen Sie schriftlich (Gesucht ist das Ergebnis im Dualsystem und der Rechenweg!):

- a) $1101111_2 + 1011110_2$
- b) $111001_2 + 11110_2$
- c) 1111₂ * 10101₂
- d) $1101100110_2 : 1010_2$

Aufgabe 9 (3+3+3 Punkte)

- a) Wandeln Sie die Dezimalzahl 327_{10} in eine Dualzahl, Oktalzahl und Hexadezimalzahl um.
- b) Wandeln Sie die Hexadezimalzahl 124_{16} in eine Dezimalzahl, Dualzahl und Oktalzahl um.
- c) Wandeln Sie die Dualzahl 100011000011 $_2$ in eine Dezimalzahl, Oktalzahl und Hexadezimalzahl um.

Name: Vorname:	Matr.Nr.:
----------------	-----------

Aufgabe	1)

	OSI-Referenzmodell	Protokolle und Verfahren
Schicht 7		
Schicht 6		
Schicht 5		
Schicht 4		
Schicht 3		
Schicht 2		
Schicht 1		

Name:	Vorname:	Matr.Nr.:
Aufgabe	2)	Punkte:

Aufgabe 3)

Punkte:

Name:	Vorname:	Matr.Nr.:	
-------	----------	-----------	--

Aufgabe 4)

Punkte:

Cache-Anfrage: 0 1 2 3 0 1 4 0 1 2 3 4

- 1. Datenrahmen:
- 2. Datenrahmen:
- 3. Datenrahmen:

- 1. Datenrahmen:
- 2. Datenrahmen:
- 3. Datenrahmen:
- 4. Datenrahmen:

→ Fehler

Name: Vorname: Matr.Nr.:

Aufgabe 5)

Punkte:

Name:	Vorname:	Matr.Nr.:

Aufgabe 6)

Anzeige	Ein	gangs	variab	len		, i	Ausga	ngsvai	riabler	1	
	x_3	x_2	x_1	x_0	s_1	s_2	s_3	s_4	s_5	s_6	s_7
2											
3											
4											
5											
6											
٦											
В											
9		•	•			•		•	•	•	•

Vorname: Matr.Nr.:

Aufgabe 7)

Name:

Axiom	Formel
Kommutativgesetze	$a \wedge b = b \wedge a$
	$a \lor b = b \lor a$
Assoziativgesetze	$a \wedge (b \wedge c) = (a \wedge b) \wedge c$
	$a \lor (b \lor c) = (a \lor b) \lor c$
Idempotenzgesetze	$a \wedge a$
	$a \lor a$
Distributivgesetze	$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$
	$a \lor (b \land c) = (a \lor b) \land (a \lor c)$
Komplementärgesetze	$a \wedge \neg a = 0$
	$a \lor \neg a = 1$
Neutralitätsgesetze	$a \wedge 1 = a$
(Identitätsgesetze)	$a \lor 0 = a$
Extremalgesetze	$a \wedge 0 = 0$
(Null-/Einsgesetze)	$a \lor 1 = 1$
Dualitätsgesetze	$\neg 0 = 1$
	abla 1 = 0
Doppeltes Negationsgesetz	aggreent eg(aggreentation a) = a
Verschmelzungsgesetze	$a \lor (a \land b) = a$
(Absorptionsgesetze)	$a \wedge (a \vee b) = a$
De Morgansche Gesetze	$\neg(a \land b) = \neg a \lor \neg b$
	$\neg(a \lor b) = \neg a \land \neg b$

Name:	Vorname:	Matr.Nr.:
Aufgabe 8)		Punkte:

Name:	Vorname:	Matr.Nr.:
A C 1	0)	
Aufgabe	9)	Punkte: