MLP-Mixer: An all-MLP Architecture for Vision Ilya

Radek Bartyzal

GLAMI AI

15. 6. 2021

Motivation

Paper is by Google Brain from 2021.

Goal: Learn useful representations of images.

Contribution: Competitive model using only MLPs = fully connected FF layers with non-linearities.

MLP-Mixer

MLP-Mixer overall architecture

- split image to patches 16x16 pixels
- pass each patch through shared FC layer to get embedding
- apply N mixer layers to embeddings

- very similar to Visual Transformers
- mixer block instead of attention between patches
- per patch FC = Conv layer with stride 16x16

Mixer Block

Mixer Block: Token Mixing MLP

- \bullet combine information across patches = channel *i* from all patches
- same = shared MLP for each channel
- each channel is some feature detector because of shared projection of each patch into channels

Mixer Block: Channel Mixing MLP

- combine information across channels = for each patch separately
- ullet same = shared MLP for each patch = 1x1 Conv

7 / 16

MLP Block

Mixer Block

• LayerNorm and skip connections before each per patch operation

- mix information between patches = instead of attention
- mix information between channels = identical to 1x1 Conv
- self-attention in ViT does both

Models

G 10 11	0.100	0.41.6	D /0.0	D.// C	T 100	7.11.6	TT/1 4
Specification	S/32	S/16	B/32	B/16	L/32	L/16	H/14
Number of layers	8	8	12	12	24	24	32
Patch resolution $P \times P$	32×32	16×16	32×32	16×16	32×32	16×16	14×14
Hidden size C	512	512	768	768	1024	1024	1280
Sequence length S	49	196	49	196	49	196	256
MLP dimension D_C	2048	2048	3072	3072	4096	4096	5120
MLP dimension D_S	256	256	384	384	512	512	640
Parameters (M)	19	18	60	59	206	207	431

Fast inference + competitive accuracy

	ImNet top-1	ReaL top-1	Avg 5 top-1	VTAB-1k 19 tasks	Throughput img/sec/core	TPUv3 core-days					
Pre-trained on ImageNet-21k (public)											
• HaloNet [51]	85.8	_	_	_	120	0.10k					
Mixer-L/16	84.15	87.86	93.91	74.95	105	0.41k					
• ViT-L/16 [14]	85.30	88.62	94.39	72.72	32	0.18k					
BiT-R152x4 [22]	85.39	_	94.04	70.64	26	0.94k					
Pre-trained on JFT-300M (proprietary)											
• NFNet-F4+ [7]	89.2	_	_	_	46	1.86k					
Mixer-H/14	87.94	90.18	95.71	75.33	40	1.01k					
BiT-R152x4 [22]	87.54	90.54	95.33	76.29	26	9.90k					
• ViT-H/14 [14]	88.55	90.72	95.97	77.63	15	2.30k					
Pre-trained on unlabelled or weakly labelled data (proprietary)											
• MPL [34]	90.0	91.12	_	_	_	20.48k					
• ALIGN [21]	88.64	_	_	79.99	15	14.82k					

Scales very well with more pretraining data

Token Mixing weights in first, second, third layer

- first layer = edge detector
- $\bullet \ \mathsf{later} \ \mathsf{layers} = \mathsf{more} \ \mathsf{complex} \ \mathsf{detectors} = \mathsf{like} \ \mathsf{CNN} \\$

Embedding projection of the patches = patch channels

- 32x32 learns nice high level patterns
- 16x16 (not shown) learns low level noisy patterns

Conclusion

- uses patches = specific to images, learned projections like CNN
- separate token and channels mixing
- fast inference = faster than big ResNet which has better performance
- competitive accuracy = not a SoTA
- linear scaling with image size = like CNNs
- best scaling with pretraining dataset size = biggest advantage

My 2 cents:

- adds biases toward images = not a general arch.
- interesting for efficiency reasons but does not feel like a direction toward a breakthrough

Sources

1. Tolstikhin, Ilya, et al. "Mlp-mixer: An all-mlp architecture for vision." arXiv preprint arXiv:2105.01601 (2021).

https://arxiv.org/abs/2105.01601