

Al & Deep Learning Bootcamp

Sayed Husain Mohamed

Introduction to Machine Learning

Al vs. ML vs. DL

General AI vs. Narrow AI

AGI: A Speculation of a worst-case scenario

AGI: A Speculation of a best-case scenario

Typical Programming vs. Machine Learning

Typical Programming

- Developer pass the inputs and the rules, and the program returns the outputs.
- The developer must be able to fully and clearly breakdown the problem.
- Difficulties in dealing with non-numerical data.

Machine learning

- Developer pass the inputs and outputs, and the program figures out the rules.
- A fully breakdown of the problem is not required.
- Ability to work with non-numerical data.

Vs

Why ML: History of Data

4000 BC

01

Physical Records

Giant shelves containing huge number of papers.

1960s

02

Spreadsheets Applications

Spreadsheets applications like Excel and csy files.

1970s

Relational **Databases**

06

Structured databases in the form of tables.

03

1980s

04

SQL

SOL became the standard query language.

1990s

05

Advancement of databases

The Internet led to exponential growth of the data industry

2000s

NoSQL - Big Data

Big data that cannot be saved in a structured form.

Today

07

Clouds

Exponential growth of datasets gone to the clouds.

Why ML: Computation Power

01 Accelerating Algorithms

The growth in computation power enables faster execution of complex machine learning algorithms.

02 Parallel Processing

Modern processors and GPUs are designed for parallel processing, allowing multiple calculations to occur simultaneously.

03 Deep Learning and Neural Networks

Deep learning models with multiple layers require substantial computational resources for training.

04 Cloud and Quantum Computing Synergy

Cloud computing provides on-demand scalable resources, and emerging quantum computing can revolutionize computations.

Introduction to Machine Learning

Basic AI program

What is a ML Model

Al: Math vs. Magic

Deep Learning (DL)

DL uses Artificial Neural Networks

Types of Machine Learning

Supervised learning

Classification

- Email spam detection
- Diagnostics
- Image classification

Regression

- Risk assessment
- Score prediction

Unsupervised learning

Clustering

- Customer segmentation
- Recommendation systems

Reinforcement learning

- Video games bots
- Autonomous cars
- Robots

Machine Learning Data types

Types of ML datasets

Structured Data

Tables containing columns and rows, every row being a single example/value.

For Example: Spreadsheets

Unstructured Data

Data not saved in structured format:

- Images
- Text
- Audio
- Videos

Machine Learning modelling data

Definitions of Train, Validation, and Test Datasets

Train data

The data that the model is going to train on

Can be thought of as the exercises that a student solve to learn the subject

Validation Data

The data used to optimize and tune the model based on

Can be thought of as the practice test a student take before the actual test

Test Data

The data used to evaluate our model

Can be thought of as the actual test that the student is assessed based on.

Generalization: Overfitting and Underfitting

Generalization: Overfitting and Underfitting

Our Machine Learning WorkFlow

Evaluate the model

Evaluate the model using testing data

Train a model

Train the model using training data

Introduction to Machine Learning

Technologies we are going to use

Pandas

Data manipulation and analysis library

Numpy

Scientific and numerical computing

Matplotlib

Data visualization and plotting library

Scikit-Learn

Machine learning library for Python

ChatGPT vs. Bard Al

Introduction to Machine Learning

AI Promises

01 Efficiency and Automation

Automates tasks, enhances efficiency, etc...

03 Problem Solving

Drives innovation and advanced problem-solving.

05 Personalization

Provide personalized experiences.

07 Educational Advancements

Enhances education through smart tutoring systems.

Accelerates medical research for breakthroughs.

Accessibility 04

Improves accessibility in various fields.

Environmental Impact 06

Offers potential solutions for environmental issues.

Predictive Analytics 08

Utilizes data for informed decision-making.

AI Challenges

Ethical Concerns

Addresses ethical considerations, including bias and privacy.

Main issues with AI development

Job Displacement

Manages potential impacts on employment.

Transparency

Ensures transparency and interpretability of AI systems.

Regulatory Frameworks

Develops robust regulatory frameworks for ethical Al use.

Thanks for listening

More than happy to listen to your questions, concerns, and comments

