Алгоритмы регистрации облаков точек

Немеш Норберт

5 мая 2023 г.

Введение

Трехмерные изображения

В последнее десятилетие стали достаточно распространены и доступны устройства для получения трехмерных изображений.

Трехмерные изображения

В последнее десятилетие стали достаточно распространены и доступны устройства для получения трехмерных изображений.

Основное преимущество — более точное описание объектов.

Трехмерные изображения

В последнее десятилетие стали достаточно распространены и доступны устройства для получения трехмерных изображений.

Основное преимущество — более точное описание объектов.

Применения:

- Восстановление 3D моделей
- Инспекция состояния зданий
- Локализация в робототехнике
- ...

Облака точек

Более распространенное название — облако точек.

Облака точек

Более распространенное название — облако точек.

Облака точек. Определение

Точка — кортеж чисел содержащий координаты точки и возможно некоторые дополнительные атрибуты учитывающие специфику сенсора. Координаты точки даются в системе координат сеносра.

Облака точек. Определение

Точка — кортеж чисел содержащий координаты точки и возможно некоторые дополнительные атрибуты учитывающие специфику сенсора. Координаты точки даются в системе координат сеносра.

Пример: координаты x, y, z и цвет в формате RGB.

Облака точек. Определение

Точка — кортеж чисел содержащий координаты точки и возможно некоторые дополнительные атрибуты учитывающие специфику сенсора. Координаты точки даются в системе координат сеносра.

Пример: координаты x, y, z и цвет в формате RGB.

Облако точек – множество точек и возможно некоторая дополнительная информация учитывающая специфику сенсора из которого получено облако.

$$C=(\{p_1,\ldots,p_n\},\ldots)$$

Пример дополнительной информации: порядок точек в облаке.

Типы облаков точек

Способы получения облаков точек

Структура облака и свойства точек зависят от способа получения.

Способы получения облаков точек

Структура облака и свойства точек зависят от способа получения.

Пассивный способ — используем свет приходящий от объекта и с помощью дополнительных вычислений строим облако точек.

Способы получения облаков точек

Структура облака и свойства точек зависят от способа получения.

Пассивный способ — используем свет приходящий от объекта и с помощью дополнительных вычислений строим облако точек.

Активный способ — излучаем свет и по отражениям восстанавливаем облако точек.

Пассивный способ. Structure from motion

Движемся вокруг объекта и делаем снимки, по изменению положения ключевых точкек на изображении и известной собственной траектории восстанавливаем облако

Пассивный способ. Structure from motion

Движемся вокруг объекта и делаем снимки, по изменению положения ключевых точкек на изображении и известной собственной траектории восстанавливаем облако

Пассивный способ. Multi view stereo

Получаем изображение с двух близкорасположенных камер. Зная взаимное расположение камер и их внутренние характеристики восстанавливаем облако точек.

Пассивный способ. Multi view stereo

Получаем изображение с двух близкорасположенных камер. Зная взаимное расположение камер и их внутренние характеристики восстанавливаем облако точек.

Активный способ. Time of flight

Выпускаем в различных направлениях сигналы, находим время до возврата, оцениваем расстояние до препятствия и восстанавливаем облако точек.

Пример: лидар

Активный способ. Time of flight

Выпускаем в различных направлениях сигналы, находим время до возврата, оцениваем расстояние до препятствия и восстанавливаем облако точек.

Пример: лидар

Активный способ. Structured light

Проецируем на объект свет опрделенного формата, по искажениям восстанавливаем облако точек.

Активный способ. Structured light

Проецируем на объект свет опрделенного формата, по искажениям восстанавливаем облако точек.

Облака точек. Проблемы описания окружения

Ограничения:

- Окклюзии
- Плохое покрытие точками на больших расстояниях
- Ограниченный угол обзора
- Шумные показания сенсоров, неточные координаты
- У лидаров могут быть лишние точки, из-за отраженных лучей

Регистрация облаков точек

Проблемы описания окружения

Проблема: одного облака недостаточно, надо получать трехмерные изображения с разных позиций.

Проблемы описания окружения

Проблема: одного облака недостаточно, надо получать трехмерные изображения с разных позиций.

Проблемы описания окружения

Проблема: одного облака недостаточно, надо получать трехмерные изображения с разных позиций.

Решение: "склеиваем" точки в некоторой общей системе координат.

Более строго этот процесс называется регистрацией облаков.

Постановка задачи

У нас есть два облака точек. Мы хотим найти такое преобразвание, которое "наиболее точно встраивало" бы одно облако в другое.

Постановка задачи

У нас есть два облака точек. Мы хотим найти такое преобразвание, которое "наиболее точно встраивало" бы одно облако в другое.

Применения:

- Локализация робота в карте
- Локализация и одновременное построение карты (Simultaneous localization and mapping)
- Виртуальная и дополненная реальность

Постановка задачи

У нас есть два облака точек. Мы хотим найти такое преобразвание, которое "наиболее точно встраивало" бы одно облако в другое.

Применения:

- Локализация робота в карте
- Локализация и одновременное построение карты (Simultaneous localization and mapping)
- Виртуальная и дополненная реальность

Каждое облако задано в системе координат сенсора на момент получения данных. Достаточно найти преобразвания между этими системами координат.

Классификация регистраций. По количеству облаков

Попарная регистрация — нужно зарегистрировать одно облако точек в другом

Классификация регистраций. По количеству облаков

Попарная регистрация — нужно зарегистрировать одно облако точек в другом

Множественная регистрация — есть более двух облаков точек, нужно собрать их вместе в одно большое облако точек. Наивным образом сводится к попарной регистрации.

Классификация регистраций. По точности

Точная регистрация — ошибка должна быть минимальна

Классификация регистраций. По точности

Точная регистрация — ошибка должна быть минимальна

Грубая регистрация — разрешается большая ошибка. Грубая регистрация обычно используется как начальное приближение для точной.

Классификация регистраций. По свойствам объекта

Жесткая регистрация — преобразование между облаками точек должно сохранять расстояния. Чаще всего ищут жесткую регистрацию.

Классификация регистраций. По свойствам объекта

Жесткая регистрация — преобразование между облаками точек должно сохранять расстояния. Чаще всего ищут жесткую регистрацию.

Классификация регистраций. По свойствам объекта

Нежесткая регистрация — преобразование между облаками точек может дополнительно использовать растяжение и инверсию.

Классификация регистраций. По свойствам объекта

Нежесткая регистрация — преобразование между облаками точек может дополнительно использовать растяжение и инверсию.

Классификация регистраций. По алгоритму нахождения

Условно есть 5 типов алгоритмов регистрации:

- Итеративные методы ближайшей точки (Iterative closest point)
- Вероятностные методы
- Методы ключевых точек (Interest points)
- Методы машинного обучения
- Все остальное

Проблемы и ограничения регистраций

С регистрацией облаков точек много проблем и нюансов

- Облака точек могут иметь разное количество точек
- Облака точек могут лишь частично перекрываться
- Облака точек содержат выбросы и координаты зашумлены
- Нахождение регистрации может занимать очень вычислительных ресурсов
- Решение задачи, вообще говоря, неединственно
- Нет однозначного определения близости облаков точек

Преобразования между

облаками точек

Аффинные преобразвания

Любая регистрация определяется аффинным преобразованием

$$T: \mathbb{R}^3 \to \mathbb{R}^3: x \mapsto Rx + t,$$

где $t \in \mathbb{R}^3$, $R \in Mat_{3,3}(\mathbb{R})$.

Аффинные преобразвания

Любая регистрация определяется аффинным преобразованием

$$T: \mathbb{R}^3 \to \mathbb{R}^3: x \mapsto Rx + t,$$

где $t \in \mathbb{R}^3$, $R \in Mat_{3,3}(\mathbb{R})$.

Жесткие регистрации описываются изометриями, т.е. сдвигом и вращением: $R^TR=I$, $\det(R)=1$

Аффинные преобразвания

Любая регистрация определяется аффинным преобразованием

$$T: \mathbb{R}^3 \to \mathbb{R}^3: x \mapsto Rx + t,$$

где $t \in \mathbb{R}^3$, $R \in Mat_{3,3}(\mathbb{R})$.

Жесткие регистрации описываются изометриями, т.е. сдвигом и вращением: $R^TR=I$, $\det(R)=1$

Нежесткие регистрации описываются невырожденными аффинными преобразованиями: $\det(R) \neq 0$.

Итеративные методы

ближайшей точки (ІСР методы)

Схема ІСР алгоритмов

Пусть нам заданы два облака точек $P=\{p_1,\dots,p_n\}$ и $Q=\{q_1,\dots,q_m\}.$ Облако P будем называть референсным, а облако Q текущим.

Схема ІСР алгоритмов

Пусть нам заданы два облака точек $P=\{p_1,\ldots,p_n\}$ и $Q=\{q_1,\ldots,q_m\}$. Облако P будем называть референсным, а облако Q текущим.

Задача регистрации заключается в нахождении аффинного преобразвания T такого, что облако $T(Q) \stackrel{def}{=} \{T(q_1), \dots, T(q_n)\}$ будет "мало отличаться" от P.

Отличие облаков оценивается некотрой функцией потерь L, а цель алгоритма минимизировать эту функцию итеративно подбирая преобразование T.

Схема ІСР алгоритмов

Алгоритм ICP состоит из шагов

- Выбор точек из облаков (point selection)
- Нахождение связок между точками (point matching)
- Отклонение связок (point rejection)
- Минимизация ошибки

Шаги повторяются пока алгоритм не сойдется (например, превышено максимальное количество итераций)

Схема ІСР алгоритмов. Выбор точек

Выбор точек (downsampling) в ICP алгоритме помогает

- Снизить количество точек которые надо обрабатывать
- Выкинуть шумы и выбросы для увеличения точности алгоритма

Схема ІСР алгоритмов. Выбор точек

Выбор точек (downsampling) в ICP алгоритме помогает

- Снизить количество точек которые надо обрабатывать
- Выкинуть шумы и выбросы для увеличения точности алгоритма

Схема ІСР алгоритмов. Выбор точек

Стратегии выбора точек:

- Случайный выбор (random sampling)
- Каждый раз выбираем новую точку которая находится на некотором расстоянии от предыдущей (distance limit)
- Разобъем пространство на ячейки в каждой ячеке все точки заменим одной - средним всех точек ячейки (uniform sampling)

Нахождение связок необходимо для вычисления функции потерь.

Нахождение связок необходимо для вычисления функции потерь.

В связку попадают точка p из референсного облака и точка q из текущего облака, причем просле преобразования T точка T(q) — ближайшая к p в смысле какой-то метрики.

Лобовое решение имело бы сложность $O(n \cdot m)$, где n — количество точек в референсном облаке, m — в текущем облаке.

Лобовое решение имело бы сложность $O(n \cdot m)$, где n — количество точек в референсном облаке, m — в текущем облаке.

Конечно, нужно что-то побыстрее. Обычно ускорения добиваются предварительным подсчетом над точками референсного облака. Строится какая-нибудь структура данных которая позволит бысро находить соседнюю точку для заданной. Обычно получаем ускорение до $O(m \log n)$. Примеры таких структур данных:

- multi-z-buffer
- kd-tree
- octree

Схема ICP алгоритмов. Нахождение связок. Multi-z-buffer

- Разрезаем прострнство на ячейки (воксели)
- ullet Для каждой точки за O(1) находим ее ячейку
- В ячейке любым способом ищем соседей

Схема ICP алгоритмов. Нахождение связок. Multi-z-buffer

- Разрезаем прострнство на ячейки (воксели)
- ullet Для каждой точки за O(1) находим ее ячейку
- В ячейке любым способом ищем соседей

Схема ICP алгоритмов. Нахождение связок. Kd-tree

- Разрезаем пространство 'пополам' каждый раз переключая нормаль плоскости разрезания (Ox, Oy, Oz)
- Этот процесс описывает построение некоторого бинарного дерева
- Поиск ближайшей точки похож на поиск в бинарном дереве

Схема ICP алгоритмов. Нахождение связок. Octree

- Разрезаем пространство на 8 октантов
- В тех октантах где есть точки повторяем предыдущйи шаг
- Поиск ближайшей точки похож на поиск в 8-арном дереве

Схема ІСР алгоритмов. Удаление связок

Одной точке из текущего облака может соответствовать несколько точек из референсного. Нам это будет мешать, от таких связок надо избавляться.

Схема ІСР алгоритмов. Удаление связок

Существует несколько алгоритмов удаления связок:

- Удаление определенного процента самых длинных связок
- Удаление связок с длиной больше заданной
- Удаление связок в которых есть задваивание точек
- Удаление связок с длиной больше медианной
- Удаление связок с несогласованными нормалями
- ..

Схема ІСР алгоритмов. Удаление связок

Существует несколько алгоритмов удаления связок:

- Удаление определенного процента самых длинных связок
- Удаление связок с длиной больше заданной
- Удаление связок в которых есть задваивание точек
- Удаление связок с длиной больше медианной
- Удаление связок с несогласованными нормалями
- ...

Можно применить сразу несколько алгоритмов

Схема ІСР алгоритмов. Удаление связок по длине

Удаление связок с длиной больше заданной интуитивно понятно, но требует подбора максмального значения. Можно высчитывать медианную длину связок по всему облаку или по окрестности

Схема ІСР алгоритмов. Удаление связок по длине

Удаление связок с длиной больше заданной интуитивно понятно, но требует подбора максмального значения. Можно высчитывать медианную длину связок по всему облаку или по окрестности

Схема ІСР алгоритмов. Удаление связок с задваиванием

Удаление связок с задваиванием, гарантирует, что у нас каждой точке текущего облака будет соответствовать одна точка из референсного. Не факт, что это будет "удачная" точка.

Схема ІСР алгоритмов. Удаление связок с задваиванием

Удаление связок с задваиванием, гарантирует, что у нас каждой точке текущего облака будет соответствовать одна точка из референсного. Не факт, что это будет "удачная" точка.

Схема ІСР алгоритмов. Удаление связок по нормалям

Удаление связок с по нормалям, убирает точки у которых нормали к поверхности "сильно" разнонаправлены.

Схема ІСР алгоритмов. Удаление связок по нормалям

Удаление связок с по нормалям, убирает точки у которых нормали к поверхности "сильно" разнонаправлены.

Схема ІСР алгоритмов. Функция потерь

Ошибку регистрации облаков можно посчитать когда для каждой точки q_i из текущего облака Q найдена связанная точка p_i из референсного облака P.

Схема ІСР алгоритмов. Функция потерь

Ошибку регистрации облаков можно посчитать когда для каждой точки q_i из текущего облака Q найдена связанная точка p_i из референсного облака P.

Обзначим эту ошибку L(P,Q,T), тогда искомое преобразование для жесткой регистрации находится из оптимизационной задачи

$$\hat{T} = \operatorname{argmin}_{T \in \operatorname{Isometry}(\mathbb{R}^3)} L(P, Q, T)$$

Схема ІСР алгоритмов. Функции потерь

Типы функций потерь:

• Точка к точке

$$L(P, Q, T) = \sum_{i=1}^{m} ||p_i - T(q_i)||^2$$

• Точка к плоскости

$$L(P, Q, T) = \sum_{i=1}^{m} (n_i(p_i - T(q_i)))^2$$

- Точка к проекции. Находм ближашую точку в референсном облаке по направлению собственной нормали
- ...

Известные ICP алгоритмы

Go-ICP — ищет оптимальное преобразование по всему пространству $\mathit{Isometry}(\mathbb{R}^3)$ используя метод ветвей и границ

Figure 3. Left: BnB and ICP collaboratively update the upper

Известные ІСР алгоритмы

GICP (Generalized-ICP) — вводит вероятностную модель на распределение точек в облаке. Варьируя параметры вероятностной модели можно получить ICP алгоритмы с функцией потерь точка к точке или точека к плоскости

Известные ІСР алгоритмы

VGICP (voxelized GICP) — модфикация GICP в которой пространство разбивается на воксели и по точкам в вокселе оцениваются параметры вероятностного распределения GICP. Хорошо адаптируется для видеокарт.

ICP алгоритмы

Плюсы:

- Хорошо параллелизуются
- Стабильные и робастные
- Не требуют feature-инжениринга
- Обобщаются на многомерный случай
- Могут быть использованы в связке с другими алгоритмами

ICP алгоритмы

Минусы:

- Требуется начальное приближение
- Требуются предварительные вычисления (например построение kd-дерева)
- Медленные из-за необходимости построения связок
- Во время оптимизации могут застрять в локальном минимуме

Вероятностные методы

Вероятностные методы

Основная идея:

- Все облака являются выборками из некоторого вероятностного распределения
- Обычно вероятностное распределение это смесь Гауссовых распределений (Gaussian mixture model)
- Оптимальное преобразвание минимизирует "расстояние" между этими распределениями

Вероятностные методы

Мы обсудим два метода:

- Смесь гауссовских распределений (Gaussian mixture model, GMM)
- Преобразование нормальных распределений (Normal distributions transform, NDT)

Для начала нам потребуется несколько предварительных сведений

Любое облако C можно описать как смесь гауссовых распределений.

Допустим, что облако точек C описывается смесью N_C гауссовских распределений. Пусть

- ullet вес i-го рапределения $\phi_i^{\mathcal{C}}$
- плотность і-го гауссовского распределения

$$f_i^{C}(r) = \Gamma(r; \mu_i^{c}, \Sigma_i^{C})$$

Тогда плотность распределения облака

$$f^{\mathcal{C}}(r) = \sum_{i=1}^{N_{\mathcal{C}}} \phi_i^{\mathcal{C}} f_i^{\mathcal{C}}(r)$$

Если к облаку применить преобразование T задаваемое сдвигом t и матрицей R, то плотность распределения изменится следующим образом

$$f^{T(C)}(r) = \sum_{i=1}^{N_c} \phi_i^C f_i^{T(C)}(r)$$

где

$$f_i^{T(C)}(r) = \Gamma(r; \mu_i^C + t, R\Sigma_i^C R^T)$$

Мы хотим найти преобразование T при котором распределение f^P референсного облака как можно меньше отличалось от распределения $f^{T(Q)}$ преобразованного текущего облака Q.

В методе GMM расстояние между вероятностными распределениями вычисляется как интегральная L_2 норма

$$d(f_1, f_2) = \int_{\mathbb{R}^3} (f_1(r) - f_2(r))^2 dr$$

В итоге мы получаем задачу минимизации

$$\hat{\mathcal{T}} = \operatorname{argmin}_{\mathcal{T} \in \mathsf{Isometry}(\mathbb{R}^3)} \int_{\mathbb{R}^3} (f^{\mathcal{T}(Q)}(r) - f^{\mathcal{P}}(r))^2 dr$$

Поскольку величины

$$\int_{\mathbb{R}^3} f^P(r)^2 dr \quad \text{ } \text{ } \text{ } \text{ } \int_{\mathbb{R}^3} f^{T(Q)}(r)^2 dr$$

не зависят от ${\mathcal T}$ то задача минимизации сводится к следующей

$$\hat{T} = \operatorname{argmin}_{T \in \operatorname{Isometry}(\mathbb{R}^3)} \int_{\mathbb{R}^3} (-2 \cdot f^{T(Q)}(r) \cdot f^P(r)) dr$$

Эта задача может быть решена EM-алгоритмом или с помощью SVM.

Алгоритм вычислительно тяжелый. Поэтому люди искали альтернативы

Идея метода NDT похожа на GMM, но мы делаем несколько инженерных упрощений:

- Мы разбиваем референсное облако на воксели и считаем, что внутри вокселя точки распределены как смесь нормального и равномерного распределения
- Параметры нормального распределения оцениваются по координатам точек вокселя
- Для нахождения оптимального преобразвания мы применяем метод максимального правдоподобия к облаку T(Q) и используем плотность распределения референсного облака

Обсудим алгоритм подробнее.

Пусть референсное облако разбито на воксели $\{V_1, \dots, V_N\}$.

Рассмотрим произвольный воксель V. Пусть он содержит точки x_1,\dots,x_{k_V}

Будем считать, что внутри вокселя распределение точек является смесью нормального и равномерного.

$$p_V(r) = \phi_1 \Gamma(r; \mu_V, \Sigma_V) + \phi_2 p_2$$

причем

$$\mu_V = \frac{1}{k_V} \sum_{i=1}^{k_V} x_i$$
 $\Sigma_V = \frac{1}{k_V - 1} \sum_{i=1}^{k_V} (x_i - \mu_V)(x_i - \mu_V)^T$

Искомое преобразование T должно максимизировать вероятность того что облако T(Q) получено из распределения облака P.

Таким образом мы получаем задачу оптимизации

$$\hat{T} = \operatorname{argmin}_{T \in \operatorname{Isometry}(\mathbb{R}^3)} \prod_{i=1}^m p_{V(T(q_i))}(T(q_i))$$

где V(r) это воксель в который попадает точка с радиус вектором r

В алгоритме NDT минимизируемую функцю p_V заменяют на функцию вида

$$\tilde{p}_V(r) = c_1 \exp\left(\frac{-c_2}{2}(r - \tilde{\mu}_v)^T \tilde{\Sigma}_V^{-1}(r - \tilde{\mu}_V)\right)$$

Она ведет себя похожим образом, и более того такая "замена" позволяет записать простые аналитические выражения для градиента и гессиана минимизируемой функции.

Это в свою очередь позволяет быстро решить задачу оптимизации с помощью методов второго порядка.

Вероятностные алгоритмы

Плюсы:

- Хорошо параллелизуются
- Стабильные и робастные
- Не требуют feature-инжиниринга
- Обобщается на многомерный случай
- Могут быть использованы в связке с другими алгоритмами
- Работают быстрее ICP так как не требуют вычисления связок точек

Вероятностные алгоритмы

Минусы:

- Требуется начальное приближение
- Во время оптимизации могут застрять в локальном минимуме

Часто в облаке не все точки полезны и нужны.

Пример: большая часть точек на ровной стене не несет полезной информации.

Часто в облаке не все точки полезны и нужны.

Пример: большая часть точек на ровной стене не несет полезной информации.

Идея: найти "интресные" точки и оставить в облаке только их.

Часто в облаке не все точки полезны и нужны.

Пример: большая часть точек на ровной стене не несет полезной информации.

Идея: найти "интресные" точки и оставить в облаке только их.

Какие точки "интересные"?

- Углы объектов
- Переход цвета или интенсивности
- Границы объектов

Часто в облаке не все точки полезны и нужны.

Пример: большая часть точек на ровной стене не несет полезной информации.

Идея: найти "интресные" точки и оставить в облаке только их.

Какие точки "интересные"?

- Углы объектов
- Переход цвета или интенсивности
- Границы объектов

Далее "интересные" точки будет называть ключевыми.

Методы ключевых точек. Дескрипторы

Какие найти ключевые точки?

- Посчитать геометрические характеристики ее окретсности
- Переход цвета или интенсивности
- Границы объектов

Методы ключевых точек. Дескрипторы

Какие найти ключевые точки?

- Посчитать геометрические характеристики ее окретсности
- Переход цвета или интенсивности
- Границы объектов

Такие характеристики называются локальными дескрипторами.

Методы ключевых точек. Дескрипторы

Какие найти ключевые точки?

- Посчитать геометрические характеристики ее окретсности
- Переход цвета или интенсивности
- Границы объектов

Такие характеристики называются локальными дескрипторами.

Основное требование к дескрипторам — они должны быть инвариантны относительно преобразований используемых в регистрации. Так как мы чаще всего используем жесткие регистрации, то требуется инвариантность относительно изометрий.

Методы ключевых точек. Простешие дескрипторы

Примеры локальных дескрипторов:

- нормаль к поверхности в точке
- кривизны поверхности в точке
- плотность точек в окрестности

Методы ключевых точек. Простешие дескрипторы

Примеры локальных дескрипторов:

- нормаль к поверхности в точке
- кривизны поверхности в точке
- плотность точек в окрестности

Методы ключевых точек. Продвинутые дескрипторы

Придумано множество дескрипторов:

- Point Feature Histogram (PFH)
- Signature of Histograms OrienTations (SHOT)
- Intinsic shape signature (ISS)
- BOrder Aware Repeatable Directions (BOARD)
- ...

Методы ключевых точек. Продвинутые дескрипторы

Для примера обсудим SHOT дескриптор. Он вычисляется следующим образом:

- Для каждой точки облака подсчитать какую либо характеристику (например угол между нормалью в точке и осью z)
- Для каждой точки выбрать окрестность и по всем точкам из окрестности построить гистограмму выбранной характеристики
- Данная гистограмма и будет дескрипторам точки

Методы ключевых точек. Продвинутые дескрипторы

Методы ключевых точек. Регистрация

- Как только получены дескрипторы всех точек можно начинать процесс регистрации.
- Теперь сопоставлять между собой мы будем не сами координаты точек, а их локальные дескрипторы.
- Сопоставляя дескрипторы мы получаем связки между точками
- Перед сопоставлением дескрипторов можно уменьшить количество точек в референсном и текущем облаке, например с помощью кластеризации.
- Как только получены связки можно вернутся к шагам алгоритма ICP

Плюсы:

- Дают хорошее начальное приближение
- Большой набор готовых дескрипторов
- Можно использовать как начальное приближение для более точных алгоритмов регистрации

Минусы:

- Не дают точного решения
- Медленно работают

В этом обзоре мы не обсудили регистрации точек методами машинного обучения, но это слишком большая тема чтобы уместить ее в этой презентации. Здесь стоит сказать, что лидерами в этой области являются нейронные сети.

Спасибо за внимание!