УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Дисциплина «Дискретная математика»

Курсовая работа

Часть 1 Вариант 59

> Студент Павличенко Софья Алексеевна Р3115

Преподаватель Поляков Владимир Иванович Функция $f(x_0, x_1, x_2, x_3, x_4, x_5)$ принимает значение 1 при $3 \le x_1 x_2 x_3 + x_4 x_5 < 7$ и неопределенное значение при $x_3 x_4 = 2$.

Таблица истинности

№	x_1	x_2	x_3	x_4	x_5	$x_1x_2x_3$	$x_{4}x_{5}$	$x_{3}x_{4}$	f
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	1	0	0
2	0	0	0	1	0	0	2	1	0
3	0	0	0	1	1	0	3	1	1
4	0	0	1	0	0	1	0	2	d
5	0	0	1	0	1	1	1	2	d
6	0	0	1	1	0	1	2	3	1
7	0	0	1	1	1	1	3	3	1
8	0	1	0	0	0	2	0	0	0
9	0	1	0	0	1	2	1	0	1
10	0	1	0	1	0	2	2	1	1
11	0	1	0	1	1	2	3	1	1
12	0	1	1	0	0	3	0	2	d
13	0	1	1	0	1	3	1	2	d
14	0	1	1	1	0	3	2	3	1
15	0	1	1	1	1	3	3	3	1
16	1	0	0	0	0	4	0	0	1
17	1	0	0	0	1	4	1	0	1
18	1	0	0	1	0	4	2	1	1
19	1	0	0	1	1	4	3	1	0
20	1	0	1	0	0	5	0	2	d
21	1	0	1	0	1	5	1	2	d
22	1	0	1	1	0	5	2	3	0
23	1	0	1	1	1	5	3	3	0
24	1	1	0	0	0	6	0	0	1
25	1	1	0	0	1	6	1	0	0
26	1	1	0	1	0	6	2	1	0
27	1	1	0	1	1	6	3	1	0
28	1	1	1	0	0	7	0	2	d
29	1	1	1	0	1	7	1	2	d
30	1	1	1	1	0	7	2	3	0
31	1	1	1	1	1	7	3	3	0

Аналитический вид

Каноническая ДНФ:

 $f = \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, \overline{x_2} \, x_3 \, x_4 \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, x_3 \, x_4 \, x_5 \vee \overline{x_1} \, x_2 \, \overline{x_3} \, \overline{x_4} \, x_5 \vee \overline{x_1} \, x_2 \, \overline{x_3} \, x_4 \, \overline{x_5} \vee \overline{x_1} \, x_2 \, \overline{x_3} \, x_4 \, x_5 \vee \overline{x_1} \, x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2}$

Каноническая КНФ:

 $f = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5) (x_1 \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5}) (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5) (x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5)$ $(\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor x_5) (\overline{x_1} \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5})$ $(\overline{x_1} \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor x_5) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5})$

Минимизация булевой функции методом Квайна-Мак-Класки

Кубы различной размерности и простые импликанты

	$K^0(f)$		K	$^{-1}(f)$		$K^2(f)$	
m_{16}	10000	$\overline{}$	m_4 - m_5	0010X	√	m_4 - m_5 - m_6 - m_7 001XX	
m_4	00100	✓	m_4 - m_6	001X0	\checkmark	m_4 - m_5 - m_{12} - m_{13} 0X10X	√
m_3	00011	√	m_4 - m_{12}	0X100	\checkmark	m_4 - m_6 - m_{12} - m_{14} 0X1X0	\checkmark
m_6	00110	√	m_{16} - m_{17}	1000X	\checkmark	m_{16} - m_{17} - m_{20} - m_{21} 10X0X	
m_9	01001	√	m_{16} - m_{18}	100X0		m_{16} - m_{20} - m_{24} - m_{28} 1XX00	
m_{10}	01010	√	m_{16} - m_{20}	10X00	\checkmark	m_4 - m_5 - m_{20} - m_{21} X010X	\checkmark
m_{17}	10001	<i>\</i>	m_{16} - m_{24}	1X000	✓	m_4 - m_{12} - m_{20} - m_{28} XX100	✓
m_{18}	10010	<i>\</i>	m_4 - m_{20}	X0100	√	m_{12} - m_{13} - m_{14} - m_{15} 011XX	<u> </u>
m_{24}	11000	√	m_6 - m_7	0011X	$\overline{}$	m_{10} - m_{11} - m_{14} - m_{15} 01X1X	
m_5	00101	✓	m_5 - m_7	001X1	✓	m_9 - m_{11} - m_{13} - m_{15} 01XX1	
m_{12}	01100	✓	m_3 - m_7	00X11	✓	m_6 - m_7 - m_{14} - m_{15} 0X11X	✓
m_{20}	10100	✓	m_{10} - m_{11}	0101X	✓	m_5 - m_7 - m_{13} - m_{15} 0X1X1	✓
m_7	00111	· /	m_9 - m_{11}	010X1	√	m_3 - m_7 - m_{11} - m_{15} 0XX11	•
m_{11}	01011	√	m_{12} - m_{13}	0110X	√	m_{20} - m_{21} - m_{28} - m_{29} 1X10X	\checkmark
m_{14}	011110	√	$m_{12} - m_{14}$	011X0	√	m_{12} - m_{13} - m_{28} - m_{29} X110X	√
m_{13}	01101	<i>\</i>	m_9 - m_{13}	01X01	✓	m_5 - m_{13} - m_{21} - m_{29} XX101	· ✓
m_{21}	10101	<i>\</i>	m_{10} - m_{14}	01X10	✓		
m_{28}	11100	√	m_3 - m_{11}	0X011	√		
m_{15}	01111	<u> </u>	m_5 - m_{13}	0X101	√		
m_{29}	11101	√	m_6 - m_{14}	0X110	√		
11029	11101		m_{20} - m_{21}	1010X	✓		
			m_{17} - m_{21}	10X01	✓		
			m_{24} - m_{28}	11X00	√		
			m_{20} - m_{28}	1X100	\		
			m_5 - m_{21}	X0101	✓		
			m_{12} - m_{28}	X1100	√		
			m_{14} - m_{15}	0111X	√		
			m_{13} - m_{15}	011X1	✓		
			m_{11} - m_{15}	01X11	√		
			m_7 - m_{15}	0X111	✓		
			m_{28} - m_{29}	1110X	√		
			m_{21} - m_{29}	1X101	√		
			m_{13} - m_{29}	X1101	√		
			1329	$K^3(f)$	•	Z(f)	
	m.4-	m.=-m	n_6 - m_7 - m_{12} - r	(* /	m.1 =	$\begin{array}{c c} \hline 0X1XX & \hline 100X0 \\ \hline \end{array}$	
			m_{12} - m_{13} - m_{20}			XX10X 10X0X	
	1,104	, 11	-1213 //020		5 ··•∠9	1XX00	
						01X1X	
						01XX1	
						0XX11	
						0X1XX	
						XX10X	

Таблица импликант

Вычеркнем строки, соответствующие существенным импликантам (это те, которые покрывают вершины, не покрытые другими импликантами), а также столбцы, соответствующие вершинам, покрываемым существенными импликантами. Затем вычеркнем импликанты, не покрывающие ни одной вершины.

		0-кубы										
		ф	Ф	0	0	0	Ф	0	1	1	1	1
	φ	ф	φ	1	1	1	1	1	0	0	0	1
Простые импликанты	0	1	1	0	0	0	1	1	0	0	0	0
	1	1	1	0	1	1	1	1	0	0	1	0
	1	ф	1	1		1	0	1		1	0	0
	3	6	7	9	10	11	14	15	16	17	18	24
100X0									X		X	
10X0X									Х	Х		
1XX00									X			Х
01X1X					X	Х	Х	Х				
01XX1				Х		X		Х				
0XX11	Х		Х			Х		Х				
0X1XX		X	Х				Х	Х				
XX10X												

Ядро покрытия:

$$T = \begin{cases} 0XX11\\ 0X1XX\\ 01XX1\\ 01X1X\\ 10X0X\\ 100X0\\ 1XX00 \end{cases}$$

Вся таблица вычеркнулась, следовательно ядро покрытия является минимальным покрытием

Рассмотрим следующее минимальное покрытие:

$$C_{\min} = \begin{cases} 0XX11\\ 0X1XX\\ 01XX1\\ 01X1X\\ 10X0X\\ 100X0\\ 1XX00 \end{cases}$$

$$S^a = 21$$

$$S^b = 28$$

Этому покрытию соответствует следующая МДНФ:

$$f = \overline{x_1} \, x_4 \, x_5 \vee \overline{x_1} \, x_3 \vee \overline{x_1} \, x_2 \, x_5 \vee \overline{x_1} \, x_2 \, x_4 \vee x_1 \, \overline{x_2} \, \overline{x_4} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_5} \vee x_1 \, \overline{x_4} \, \overline{x_5}$$

Минимизация булевой функции на картах Карно

Определение МДНФ

 $f = \overline{x_1} \, x_4 \, x_5 \vee \overline{x_1} \, x_3 \vee \overline{x_1} \, x_2 \, x_5 \vee \overline{x_1} \, x_2 \, x_4 \vee x_1 \, \overline{x_2} \, \overline{x_4} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_5} \vee x_1 \, \overline{x_4} \, \overline{x_5}$

Определение МКНФ

 $f = (x_1 \lor x_2 \lor x_4) \ (x_1 \lor x_2 \lor x_3 \lor x_5) \ (x_1 \lor x_4 \lor x_5) \ (\overline{x_1} \lor \overline{x_4} \lor \overline{x_5}) \ (\overline{x_1} \lor \overline{x_3}) \ (\overline{x_1} \lor \overline{x_2} \lor \overline{x_5}) \ (\overline{x_1} \lor \overline{x_2} \lor \overline{x_4})$

Преобразование минимальных форм булевой функции

Факторизация и декомпозиция МДНФ

$$f = \overline{x_1} \, x_4 \, x_5 \vee \overline{x_1} \, x_3 \vee \overline{x_1} \, x_2 \, x_5 \vee \overline{x_1} \, x_2 \, x_4 \vee x_1 \, \overline{x_2} \, \overline{x_4} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_5} \vee x_1 \, \overline{x_4} \, \overline{x_5} \qquad S_Q = 28 \quad \tau = 2$$

$$f = \overline{x_1} \, (x_3 \vee x_4 \, (x_2 \vee x_5) \vee x_2 \, x_5) \vee x_1 \, \overline{x_4} \, (\overline{x_2} \vee \overline{x_5}) \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_5} \qquad S_Q = 23 \quad \tau = 5$$

$$\varphi = x_2 \, x_5$$

$$\overline{\varphi} = \overline{x_2} \vee \overline{x_5}$$

$$f = \overline{x_1} \, (x_3 \vee x_4 \, (x_2 \vee x_5) \vee \varphi) \vee x_1 \, \overline{x_4} \, \overline{\varphi} \vee x_1 \, \overline{x_2} \, \overline{x_3} \, \overline{x_5} \qquad S_Q = 22 \quad \tau = 5$$

Факторизация и декомпозиция МКНФ

$$f = (x_1 \vee x_2 \vee x_4) (x_1 \vee x_2 \vee x_3 \vee x_5) (x_1 \vee x_4 \vee x_5) (\overline{x_1} \vee \overline{x_4} \vee \overline{x_5})$$

$$(\overline{x_1} \vee \overline{x_3}) (\overline{x_1} \vee \overline{x_2} \vee \overline{x_5}) (\overline{x_1} \vee \overline{x_2} \vee \overline{x_4})$$

$$S_Q = 28 \quad \tau = 2$$

$$f = (\overline{x_1} \vee \overline{x_3} (\overline{x_4} \vee \overline{x_2} \overline{x_5}) (\overline{x_2} \vee \overline{x_5})) (x_1 \vee x_4 \vee x_2 x_5) (x_1 \vee x_2 \vee x_3 \vee x_5)$$

$$S_Q = 23 \quad \tau = 5$$

$$\varphi = x_2 x_5$$

$$\overline{\varphi} = \overline{x_2} \vee \overline{x_5}$$

$$f = (\overline{x_1} \vee \overline{x_3} (\overline{x_4} \vee \overline{x_2} \overline{x_5}) \overline{\varphi}) (x_1 \vee x_4 \vee \varphi) (x_1 \vee x_2 \vee x_3 \vee x_5)$$

$$S_Q = 22 \quad \tau = 5$$

Синтез комбинационных схем

Будем анализировать схемы на следующих наборах аргументов:

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 0]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 1]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1, x_5 = 1]) = 1$$

$$f([x_1 = 0, x_2 = 0, x_3 = 1, x_4 = 1, x_5 = 0]) = 1$$

Булев базис

Схема по упрощенной МДНФ:

$$f = \overline{x_1} (x_3 \lor x_4 (x_2 \lor x_5) \lor \varphi) \lor x_1 \overline{x_4} \overline{\varphi} \lor x_1 \overline{x_2} \overline{x_3} \overline{x_5} (S_Q = 22, \tau = 5)$$
$$\varphi = x_2 x_5$$

Схема по упрощенной МКНФ:

$$f = (\overline{x_1} \vee \overline{x_3} (\overline{x_4} \vee \overline{x_2} \overline{x_5}) \overline{\varphi}) (x_1 \vee x_4 \vee \varphi) (x_1 \vee x_2 \vee x_3 \vee x_5) \quad (S_Q = 22, \tau = 5)$$

$$\varphi = x_2 x_5$$

Сокращенный булев базис (И, НЕ)

Схема по упрощенной МДНФ в базисе И, НЕ:

$$f = \overline{\overline{\overline{x_1}} \overline{\overline{x_3}} \overline{\overline{x_4}} \overline{\overline{\overline{x_2}} \overline{\overline{x_5}}} \overline{\varphi}} \overline{x_1 \overline{x_4} \overline{\varphi}} \overline{x_1 \overline{x_2} \overline{x_3} \overline{x_5}} \quad (S_Q = 29, \tau = 10)$$

$$\varphi = x_2 x_5$$

Схема по упрощенной МКНФ в базисе И, НЕ:

$$f = \overline{x_1 \overline{x_3} \overline{x_4} \overline{x_2} \overline{x_5}} \overline{\varphi} \overline{x_1 x_4} \overline{\varphi} \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_5} \quad (S_Q = 28, \tau = 9)$$
$$\varphi = x_2 x_5$$

Универсальный базис (И-НЕ, 2 входа)

Схема по упрощенной МДН Φ в базисе И-НЕ с ограничением на число входов:

$$f = \overline{\overline{x_1} \overline{\overline{x_2}} \overline{\overline{x_4}} \overline{\overline{x_3}} \overline{\overline{x_5}}} \overline{\overline{x_4}} \overline{\overline{x_5}} \overline{\overline{x_1}} \overline{\overline{x_3}} \overline{\overline{\overline{x_2}}} \overline{\overline{\overline{x_4}} \overline{x_5}} \overline{\overline{x_4}} \overline{x_5}} (S_Q = 28, \tau = 7)$$

Схема по упрощенной МКН Φ в базисе И-НЕ с ограничением на число входов:

