GANPAT UNIVERSITY U. V. PATEL COLLEGE OF ENGINEERING B.TECH. SEM-I

2ES103: BASIC OF ELECTRICAL ENGINEERING CH. 3 MAGNETIC CIRCUIT 6: ASSIGNMENT &TUTORIAL

Part – I Multiple Objective Questions (MCQ)

1. The induced voltage across a coil with 250 is changing at a rate of 8 Wb/s is			250 turns t	hat is located in a magnetic field that
	A)	1,000 V	B)	2,000 V
	C)	31.25 V	D)	2,000 V 3,125 V
2.				,
4.	\mathcal{E}			
	A)		,	decreases the flux density
	C)	increases the flux density		causes no change in flux density
3.	If the cross-sectional area of a magnetic field increases, but the flux remains the sam			
	the flux o	•		_
	A)	Increases	B)	decreases
	C)	remains the same	D)	doubles
4.	The unit for reluctance is			
	A)	Tesla	B)	At/Wb
	C)	At/m	D)	Wb
5.	There is 900 mA of current through a wire with 40 turns. What is the reluctance of the			
	circuit if the flux is 400 µWb?			
	A)	14,400 AT/Wb	B)	1,440 AT/Wb
	C)	9,000 AT/Wb	D)	90,000 AT/Wb
6.	What is the magnetomotive force in a 75-turn coil of wire when there are 4 A of curre			
	through i	<u> </u>		
	A)	18.75 AT	B)	30 AT
	C)	300 AT	\mathbf{D}	187 AT
7.	The ability of a material to remain magnetized after removal of the magnetizing force			
	known as	•		
	A)	Permeability	B)	reluctance
	C)	Hysteresis	D)	retentivity
8.	The B-H curve of will not a straight line.			
•	A)	Air	B)	Copper
	C)	Wood	D)	Soft iron
9.	What is the flux density in a magnetic field in which the flux in 0.1 m ² is 600 μ Wb?			
).	A)	6,000 μT	B)	6,00 μT
	C)	6,0 μΤ	D)	6 μΤ
10.	,	nit of reluctance is	D)	σμι
10.	A)	AT/Wb	B)	AT/m
	C)	AT	D)	N/Wb
	C)	AI	D)	IN/ WY U

<u>Part – II Shorts Questions</u>(1 & 2 Marks)(Only for Preparation)

- 1. What do you mean by magnetic circuit?
- **2.** Define following terms:
 - (i) Useful flux

- (ii) Leakage Flux
- (iii) Reluctance
- (iv) Magnetic fringing
- (v) Magnetic flux density
- (vi) Magnetic field intensity
- (vii) Permeability
- **3.** Only write the relation between B and H.
- **4.** What is difference between reluctance and permeance?

Part - IIIExamples

1. Find the AT required to magnetise up to 1.6 Wb/m² a soft iron ring made of round iron 5 cm thick and 50 cm mean diameter. Permeability μ_r of soft iron is 800.

ANS: $25 \times 10^4 \text{ AT}$

2. An iron ring of mean diameter 10 cm and area of cross section 2.5 cm² has a saw cut of 2 mm in it. The ring is wound with a coil of 1000 turns carrying a current 0.1 A. Assuming relative permeability of iron to be 800, determine the flux density in the air gap. Neglect leakage.

ANS: 0.05257 Wb/m²

3. A ring composed of three sections. The cross-sectional area is 0.001 m^2 for each section. The mean arc length are la = 0.3 m, lb = 0.2 m, lc = 0.1 m. An air-gap length of 0.1 mm is cut in the ring. μ r for sections a, b, c are 5000, 1000, and 10,000 respectively. Flux in the air gap is 7.5×10^{-4} Wb. Find (i) mmf (ii) exciting current if the coil has 100 turns.

ANS:(i) 221 amp-turns (ii) 2.21 amp

<u>Part – IV Long Questions</u>(Only For Preparation)

- 1. Derive an expression for ampere turns for simple & composite magnetic circuit.
- **2.** Explain B-H curve for magnetic material.
- 3. Bring out the analogy between electric and magnetic circuit.
- **4.** What is leakage coefficient? How does it affect the magnetic circuit? What are its disadvantages?

*Notes: Students have to write only Part I and Part III.