Komparasi Algoritma Support Vector Machine dan Naïve Bayes untuk Analisa Sentimen Komentar Aplikasi

Dosen Pembimbing: Desi Ramayanti, S.Kom., MT.

Disusun Oleh:

Jody 41517010040

Agenda

Latar Belakang

Rumusan Masalah

Bagaimana cara PT Sinergi Digital Teknologi dapat melihat review pengguna ?

Bagaimana cara menentukan algoritma deteksi emosi terbaik dari Support Vector Machine dan Naïve Bayes?

Bagaimana mengimplementasikan algoritma tersebut untuk melakukan deteksi emosi ?

Bagaimana membuat sebuah aplikasi monitoring review produk?

Metodologi

Tahapan Penelitian

Tahap Pengumpulan Data

Data dari API Google Play dan App Store

Atribut	Keterangan
Username	Username pengguna yang memberikan komentar
User image	Link gambar profil pengguna
Tanggal review	Tanggal diberikannya komentar
Rating	Nilai yang diberikan pengguna dengan nilai terendah 1 dan tertinggi 5
Text	Isi komentar yang diberikan pengguna

Tahap Pengolahan Data Awal (1)

Case Folding

Tahap mengubah kata yang memiliki huruf kapital menjadi huruf kecil

Potongan Source Code Case Folding

Tabel Case Folding

Teks				Hasil						
Saya ı	mau	Tanya	tentar	g	saya	mau	ı t	anya	tent	ang
transfera	n ke E	B <mark>ank</mark> lain	yg belu	n	transfe	eran	ke	bank	lain	уg
sampai2	.Dan	sampai s	krng ga	k	belum	sam	npaiz	.da	n san	npai
ada solus	si.				skrng	gak ad	da sc	lusi.		
						-				

Tahap Pengolahan Data Awal (2)

Penghapusan Angka Dan Tanda Baca

Potongan Source Code Penghapusan Tanda Baca

```
tokenizer = RegexpTokenizer(r'\w+')
text = tokenizer.tokenize(text)
text = " ".join(text)
```

Tabel Penghapusan Tanda Baca

				Hasi					
saya	mau	tanya	tentang	saya	mau	taı	nya	tenta	ang
transfe	eran ke l	oank lain	yg belum	transfe	ran k	e b	ank	lain	уg
sampa	i2 .dan	sampai s	skrng gak	belum	samp	ai2	dan	sam	pai
ada so	lusi.			skrng g	gak ada	solu	ısi		

Tahap Pengolahan Data Awal (2.5)

Potongan Source Code Penghapusan Angka

```
text = re.sub(r"\d+", "", text)
```

Tabel Penghapusan Angka

Teks						Ha	sil		
saya	mau	tanya	tentang	saya	mau	1	tanya	tent	ang
transfe	ran ke l	bank lain	yg belum	transf	eran	ke	bank	lain	уg
sampai	i <mark>2</mark> dan	sampai s	krng gak	belum	samp	ai d	an sam	pai sk	rng
ada sol	usi			gak ac	da solu	ısi			
				_					

Tahap Pengolahan Data Awal (3)

Tokenisasi

Tahap pemotongan teks komentar berdasarkan setiap kata yang menyusunnya.

Potongan Source Code Tokenisasi

Tabel Tokenisasi

	Teks					Н	lasil		
saya	mau	tanya	tentang	[ˈsaya	a', 'm	าลบ', '	tany	ya', 'ter	ntang',
transf	eran ke l	bank lain	yg belum	'trans	sfera	n', 'k	œ',	'bank',	'lain',
sampa	ai dan sai	mpai skrn	g gak ada	'yg',	'bel	um',	'sa	mpai',	'dan',
solusi				'sam	pai',	'skrr	ng',	'gak',	'ada',
				'solus	si']				

Tahap Pengolahan Data Awal (4)

Normalisasi

Tahap memperbaiki kata pada teks komentar karena menggunakan bahasa masa kini.

Potongan Source Code Normalisasi

Tabel Normalisasi

Teks	Hasil
['saya', 'mau', 'tanya', 'tentang',	saya mau tanya tentang
'transferan', 'ke', 'bank', 'lain', 'yg',	transferan ke bank lain yang
'belum', 'sampai', 'dan', 'sampai',	belum sampai dan sampai
' <mark>skrng</mark> ', 'gak', 'ada', 'solusi']	sekarang tidak ada solusi

Tahap Pengolahan Data Awal (5)

Stemming

Tahap mengubah kata pada teks komentar ke dalam bahasa bakunya.

Potongan Source Code Stemming

text = stemmer.stem(reformed)

Tabel Stemming

Teks						Hasil			
saya	mau	tanya	te	ntang	saya	mau	tanya	te	entang
transfer	an ke	bank	lain	yang	transfe	er ke	bank	lain	yang
belum	sampa	ai dar	n sa	ampai	belum	sam	pai da	n s	ampai
sekarang tidak ada solusi					sekara	ng tida	k ada so	olusi	

Tahap Pengolahan Data Awal (6)

Stopword Removal

Tahap menghapus kata henti pada teks komentar.

Potongan Source Code Stopword Removal

Tabel Stopword Removal

Teks	Hasil
saya mau tanya tentang transfer	mau tentang ke lain belum dan
ke bank lain yang belum sampai	sekarang tidak ada solusi
dan sampai sekarang tidak ada	
solusi	

Ektraksi Data

Tahap ini mengubah teks komentar pengguna menjadi sebuah vektor agar mudah untuk dibaca dan dihitung oleh sistem. Ekstraksi Data ini menggunakan metode TF-IDF. Perhitungan TF-IDF menggunakan persamaan berikut.

$$tf_{t,d} = \frac{f_{t,d}}{n_d}$$

$$idf_t = \log \frac{N}{df_t}$$

 $W_{t,d} = t f_{t,d} \cdot i d f_{t,d}$

Potongan Source Code Ekstraksi Data

```
vectorizer = TfidfVectorizer(min_df=3, max_df=0.3, use_idf=True)
train_vectors = vectorizer.fit_transform(preprocessData1)
test_vectors = vectorizer.transform(preprocessData2)
```

Analisa Sentimen (1)

Algoritma Naïve Bayes

Teorema Bayes ini sendiri merupakan teorema yang lebih fokus pada konsep probabilitas bersyarat berdasarkan pengalaman masa lalu. Secara umum teorema dari Bayes dirumuskan dalam persamaan berikut.

$$P(A|B) = \frac{P(A).P(B|A)}{P(B)}$$

Potongan Source Code Algoritma Naïve Bayes

```
# model algoritma multinominal naive bayes
Naive = naive_bayes.MultinomialNB()
# training data
Naive.fit(train_vectors, Y_train)
# testing data
predictions_NB = Naive.predict(test_vectors)
```

Analisa Sentimen (2)

Algoritma Support Vector Machine

Sedangkan SVM merupakan metode memprediksi dalam pengklasifikasian dan regresi. Dengan mencari *hyperplane* untuk memaksimalkan margin antar kelas data. *Hyperplane* berguna untuk memisahkan 2 kelompok kelas yaitu -1 dan +1. Persamaan Algoritma SVM terdapat pada persamaan berikut.

$$\vec{w} \cdot \vec{x} + b = 0$$
 (Hyperplane)
$$\vec{w} \cdot \vec{x} + b < 0$$
 (Kelas -1)
$$\vec{w} \cdot \vec{x} + b \ge 0$$
 (Kelas +1)

Potongan Source Code Algoritma Support Vector Machine

```
# model algoritma support vector machine
SVM = svm.SVC(kernel='linear')
# training data
SVM.fit(train_vectors, Y_train)
# testing data
predictions_SVM = SVM.predict(test_vectors)
```

Hasil Analisa Sentimen dan Perbandingan (1)

Hasil Pengujian Algoritma Support Vector Machine

Jumlah Data Latih	Jumlah Data Uji	Sentimen	Precision SVM (%)	Recall SVM (%)	F1-Score SVM (%)	Accuracy SVM (%)
800	200	Pos	100	100	100	100
		Neg	100	100	100	100
700	300	Pos	97	93	95	20
		Neg	99	100	99	99
600	400	Pos	92	85	89	07.75
		Neg	98	99	99	97.75
500	500	Pos	93	80	86	27.40
		Neg	98	99	99	97.40

Hasil Analisa Sentimen dan Perbandingan (2)

Hasil Pengujian Algoritma Naïve Bayes

Jumlah	Jumlah		Precision	Recall	F1-Score	Accuracy
Data	Data	Sentimen	Naïve	Naïve	Naïve	Naïve
Latih	Uji	Jentimen	Bayes	Bayes	Bayes	Bayes
Latiii	Oji		(%)	(%)	(%)	(%)
800	200	Pos	100	67	80	0.7
		Neg	97	100	98	97
700	300	Pos	100	67	80	0.7
		Neg	96	100	98	97
600	400	Pos	93	63	75	05.75
		Neg	96	99	98	95.75
500	500	Pos	97	55	70	05.20
		Neg	95	100	97	95.20

Hasil Analisa Sentimen dan Perbandingan (2)

Perbandingan Algoritma Support Vector Machine dan Naïve Bayes

Support Vector Machine memperoleh hasil:

Akurasi rata-rata = 98.53%

Rata-rata *precisio*n = 97.12%

➤ Rata-rata *Recall* = 94.5%

➤ Rata-rata *f1-score* = 95.87%

➤ Waktu eksekusi algoritma = 0.0015 second

Naïve Bayes memperoleh hasil:

➤ Akurasi rata-rata = 96.23%

➤ Rata-rata *precisio*n = 96.75%

➤ Rata-rata *Recall* = 81.37%

Rata-rata f_1 -score = 87%

Waktu eksekusi algoritma = 0.002 second

Kesimpulan : Algoritma Support Vector Machine lebih baik dari segi akurasi, *Precision, Recall, f1-score* dan waktu eksekusinya dibandingkan dengan Algoritma Naïve Bayes

Hasil Analisa Sentimen dari Sisi Aplikasi (1)

```
"values": [
        "aplikasi": "Lenna Virtual Assistant",
        "id": 1620,
        "link_review": "https://play.google.com/store/apps/details?id=ai.lenna.assistant&reviewId=gp:AOqpTOHHtwrU1fZ_Sfb
            -vSoOU9oVthPN46ubwiUcmcQ_Y4xycGjWcig_LDCwh6IAhNAoiT1cQR564scd_tH9cKk",
        "post": "Mantap",
        "rating": "5",
        "sentiment": 1,
        "sumber": "Google Play",
        "tanggal_post": "2020-10-13",
        "user_avatar": "https://play-lh.googleusercontent.com/a-/AOh14Gj0Iq6jd3Zoi9zW9IUoZrG-x3wJPRPvjH3FQHN9",
        "user name": "Arfan Ian"
        "aplikasi": "Lenna Virtual Assistant",
        "id": 1621,
        "link_review": "https://play.google.com/store/apps/details?id=ai.lenna.assistant&reviewId=qp:AOqpTOHMO7p-moX9pmod
            -MDQx_ZielK6hRsr3QxKDV95ddITF3KTH060HGBIRoFdw0woy3XmntbWK-0",
        "post": "ini apk sdh ga di urus ...sdh tdk ada petugas IT... Buang2 kuota... login sdh benar..di bilang salah..",
        "rating": "1",
        "sentiment": 0,
        "sumber": "Google Play",
        "tanggal_post": "2020-09-05",
        "user_avatar": "https://play-lh.googleusercontent.com/a-/AOh14GhXrFjlkrSZROmQ1Tewu0GLU_qZHZ5p3oa4w1cY",
        "user name": "FAMILY dlai24"
```

Hasil Komentar dan Prediksi Sentimen dari Response API

Hasil Analisa Sentimen dari Sisi Aplikasi (1)

Account	Post	Date	Source	Rating	Sentiment
YOHTAMA Yogi Wahyu Pratama	Apps yang bisa membantu dalam membuat asuransi semua barang berharga supaya aman dan hati tenang	27 Jun 2020	Google Play	5	positive
asrul purnama	Bagus	23 Jun 2020	Google Play	5	positive
Edgina Triana Dewi Dewi	Aplikasinya sangat mudah dimengerti dan sangat membantu	15 Jun 2020	Google Play	5	positive
Ahmad Muzaqi	Mantul	14 Jun 2020	Google Play	5	positive
dewi aulia	Mantappp sekali aplikasinya, sekarang sdah tidak susah lgi cari asuransi yg twpat. Semuanya lengkap d sni	12 Jun 2020	Google Play	5	positive
dwi Sugesti	Memudahkan kita dalam berasuransi	09 Jun 2020	Google Play	5	positive
fedora tehnik	Siiipmantapmaju teruuus tripa	08 Jun 2020	Google Play	5	positive

Hasil Komentar dan Prediksi Sentimen dari Website Lenna Analytic