ARIMA Modeling

Learning Objectives

- Describe the purpose of the autoregressive and moving average components.
- Define hyperparameters p, d, and q.
- Describe AIC.
- Find the right value of p and q using AIC.
- Find the right value of d using the augmented Dickey-Fuller test.
- Complete a manual GridSearch.
- Fit an ARIMA model.

We have multiple approaches to work with time series data.

Linear **Models**

ARIMA Models Exponential Smoothing Methods Recurrent Neural Networks (RNNs)

Note: This is not an exhaustive list of models, but lists the most common ones!

Why ARIMA?

- Among the most common approaches to time series modeling
- Highly flexible; it can model time series with varying characteristics
 - It takes information from both long-term trends and sudden shocks
- Can easily be extended into more advanced models
- Tends to perform well with moderate amounts of data

Downsides of ARIMA Models

- ARIMA models are best suited for short-term forecasts
- They will quickly start predicting the mean if forecasts are extended past the short-term
 - Some extensions to ARIMA models can handle this better

What is an ARIMA model?

ARIMA

What is an ARIMA model?

ARIMA

Autoregressive Integrated Moving Average

RECALL: What is autocorrelation?

Autoregressive models

Autoregressive means we regress a variable on itself. We'll regress newer values on older values.

AR(p): An autoregressive model of order p

$$Y_t = eta_0 + eta_1 Y_{t-1} + eta_2 Y_{t-2} + \dots + eta_p Y_{t-p}$$

$$= eta_0 + \sum_{k=1}^p eta_p Y_{t-p}$$

AR(p): An autoregressive model of order p

$$Y_t = eta_0 + eta_1 Y_{t-1} + eta_2 Y_{t-2} + \dots + eta_p Y_{t-p}$$

$$= eta_0 + \sum_{k=1}^p eta_p Y_{t-p}$$

Purpose: An autoregressive model explains long-term trends in our data.

Hyperparameter: *p*, the number of previous values of *Y* to put into our model.

We'll GridSearch to find this value!

What is an ARIMA model?

ARIMA

Autoregressive Integrated Moving Average

Moving Average Models

- A moving average model takes previous error terms as inputs
 - Not an actual rolling/moving average, name possibly because a zero-mean moving average process can be modeled by a weighted moving average of error terms
- Use recent forecast errors as a component in the model

MA(q): A moving average model of order q

$$Y_t = \mu + w_1 \varepsilon_{t-1} + w_2 \varepsilon_{t-2} + \dots + w_p \varepsilon_{t-q}$$
 $= \mu + \sum_{l=1}^q w_q \varepsilon_{t-q}$

MA(q): A moving average model of order q

$$Y_t = \mu + w_1 arepsilon_{t-1} + w_2 arepsilon_{t-2} + \cdots + w_p arepsilon_{t-q} \ = \mu + \sum_{k=1}^q w_q arepsilon_{t-q}$$

Purpose: A moving average model explains sudden shocks in our data.

Hyperparameter: q, the number of previous errors ε to put into our model.

We'll **GridSearch** to find this value!

How do we GridSearch to find the best values of p and q?

- Because we're working in statsmodels, we will **manually GridSearch** values of p and q to see which gives us the **lowest AIC**
- AIC, or Akaike Information Criterion, is a common way to evaluate time series models. (AIC is an attribute in statsmodels)
- Remember that a model is a simplification of reality?
 - AIC attempts to measure how much information we lose when we simplify reality with a model

$$AIC = 2 \times [\text{\# of model parameters}] - 2 \times \log(\text{likelihood})$$

What is an ARIMA model?

ARIMA

Autoregressive Integrated Moving Average

Differencing

- Many time series models require stationarity
- If the data are non-stationary, model the **differenced** data
- Usually difference with order of 1 or 2
 - Extremely rare to need more than 2 differences, and over-differencing will lead to poor models

ARIMA equation

$$Y_t^{(d)} = eta_0 + \sum_{k=1}^p eta_k Y_{t-k}^{(d)} + \sum_{i=1}^q w_i arepsilon_{t-i} + arepsilon_t$$

At this point, it's helpful to see what an ARIMA model is.

Autoregressive Integrated Moving Average

ARIMA Cheat Sheet

	AR	I	MA
Stands for:	Autoregressive	Integrated	Moving Average
Summary:	Regress future values on past values .	Differences our Y variable.	Regress future values on past errors.
Looks Like:	$ig eta_0 + \sum_{k=1}^p eta_k Y_{t-k}^{(d)}$	$Y_t^{(d)}$	$eta_0 + \sum_{i=1}^q w_i arepsilon_{t-i} + arepsilon_t$
Purpose:	Long-term trends.	Ensure stationarity.	Sudden shocks.
Hyperparameter:	р	d	q
Find good value of hyperparameter by:	GridSearch	Augmented Dickey-Fuller Test	GridSearch