Test deg selv! Forkursvariant 2

Oppgave 1. Forkort brøken og skriv så enkelt som mulig: $\frac{1-4x+4x^2}{x-\frac{1}{2}}$.

Oppgave 2. I et kvadrat har diagonalen lengde 1. Finn sidelengden i kvadratet.

Oppgave 3. Regn ut grenseverdien: $\lim_{x\to 0} \frac{\sin x}{\frac{\pi}{2}x}$.

Oppgave 4. Regn ut summen av den uendelige rekka:

$$2-\frac{2}{3}+\frac{2}{9}-\frac{2}{27}+\cdots$$

Oppgave 5. Regn ut f'(x) hvis $f(x) = \frac{\sin x}{\sqrt{x}}$.

Oppgave 6. Regn ut det ubestemte integralet:

$$\int \frac{1}{1+x} + \frac{1}{(1+x)^2} \, dx$$

Oppgave 7. Skriv f(g(x)) så enkelt som mulig, når $f(x) = e^{x+1}$ og $g(x) = \ln x - 1$.

Oppgave 8. Du får oppgitt at x=5 er en løsning i likningen

$$x^3 - 5x^2 - 4x + 20 = 0.$$

Bruk dette til å finne de andre løsningene.

Oppgave 9. Finn den generelle løsningen av differensiallikningen:

$$y' + 2y = 3e^x$$

Oppgave 10. Finn den eksakte verdien av det bestemte integralet:

$$\int_0^{\frac{\pi}{8}} \sin 2x \, dx$$

Oppgave 11. Finn alle reelle løsninger av likningen:

$$(\ln x)^2 + \ln(x^2) = 0$$

Oppgave 12. Finn alle verdier av x i intervallet $[0, \frac{\pi}{2}]$ som tilfredsstiller likningen:

$$2\sin^2 x + \sqrt{3}\cos x = 2$$

Oppgave 13. Skriv uttrykket $\sin 2x - \cos 2x$ på formen $A\sin(2x + \phi)$.

Oppgave 14. Finn en funksjon y = y(x) som tilfredsstiller betingelsene

$$y' \cdot y = 2 \qquad \text{og} \qquad y(0) = 2.$$

Oppgave 15. Finn likningen for tangenten til grafen til $f(x) = \cos^2 x$ i punktet $(\frac{\pi}{4}, \frac{1}{2})$.