$$2 \times (d)(f)(h) = X^2 - dfh$$

 $2 d_2 - fh 2 d(x)$

M

matec

Conjuntos Numéricos

 $\chi^{2}(4ab) + (2c)$

X2 + X3 (ac)

$x^2 = 2 \times b^2$

Origem dos números

Contagem
Primitiva

Uso de pedras, ossos, desenhos, dedos para contar

Representar e entender o mundo ao redor

Base para desenvolver os conjuntos numéricos modernos

 $\frac{\chi^{2}(4ab)+(2ab)}{\chi^{2}+\chi^{3}(ac)}$

$\frac{x^{2}(4ab) + 2c}{x^{2} + x^{3}(ac)} = \frac{4x^{2}(ac)}{3x^{2} + dn}$

Naturais (N)

$$\mathbb{N} = \{0, 1, 2, 3, 4, [...]\}$$

$$f = (x^2) + (2x) dh + abc (2x) = 15^\circ$$

$$z^2 = (x^2)(x^3) + (abc) - (2x)$$

 $x^2 - 2b - ac_2(x^3)$

Propriedades dos Naturais

- Fechamento: A soma ou produto de dois naturais resulta em um natural -> 2 + 2 = 4 (natural)
- Comutativa: A ordem dos fatores não altera o resultado -> 3x2 = 2x3

 $\times^2 = 2 \times b^2$

$$z^2 = (x^2)(x^3) + (abc) - (2x)$$

 $x^2 - 2b - ac_2(x^2)$

$$\frac{4x^{2}(af)}{3x^{2}+dn}$$
Inteiros (Z)

$$\mathbb{Z}$$
+* = {1, 2, 3, 4, [...]}

 $z^2 = (x^2)(x^3) + (abc) - (2x)$

 $X^{2}-2b-\alpha C_{2}(X^{2})$

$$f = (x^2) + (2x) dh + abc (2x) = 15^\circ$$

Todo número que pode ser escrito em forma de fração!

RACIONAIS

1,2,3,.. 4,75

0,3333...
$$\frac{-2}{3}$$

-1 $\frac{5}{2}$

$$\times^2 = 2 \times b^2$$

$$f = (x^2) + (2x) dh + abc (2x) = 15°$$

$$z^2 = (x^2)(x^3) + (abc) - (2x)$$

 $x^2 - 2b - ac_2(x^2)$

4x²(af)

 $\times^2 = 2 \times b^2$

Racionais (Q)

Problema no conjunto:

Como representar o $\underline{\pi}$?

Irracionais (I)

Contrário dos racionais

Todo número que NÃO pode ser escrito em forma de fração!

Raízes não exatas -> $\sqrt{2}$ ≈ 1,414213... Números trascendentes -> π ≈ 3,141592...

$$f = (x^2) + (2x) dh + abc (2x) = 15^\circ$$

$$z^2 = (x^2)(x^3) + (abc) - (2x)$$

 $x^2 - 2b - ac_2(x^2)$

4x2(af) Reais (R) R Números Reais Números Irracionais R = Q U I **Números Racionais** Números Inteiros **Números Naturais** $Z^2 = (x^2)(x^3) + (abc) - (2x)$ $f = (x^2) + (2x) dh + abc (2x) = 15°$ $X^{2}-2b-\alpha c_{2}(X^{2})$

$$\frac{\times^{2}(4ab)+(2c)}{\times^{2}+\times^{3}(ac)}$$

Obrigado!

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by Freepik

$$z^{2} = (x^{2})(x^{3}) + (abc) - (2x)$$

 $x^{2} - 2b - ac_{2}(x^{2})$

$$2\times(d)(f)(h) = \frac{\chi^2 - dfh}{2d^2 - fh^2d(x)}$$

 $X^{2}-2b-ac_{1}(X^{2})$

 $\frac{\chi^{2}(4ab) + (2c)}{\chi^{2} + \chi^{3}(ac)} = \frac{4\chi^{2}(af)}{3\chi^{2} + dh}$