

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н. Э. Баумана)

ПРЕЗЕНТАЦИЯ К КУРСОВОЙ РАБОТЕ НА ТЕМУ:

Разработка программного обеспечения для моделирования упругих столкновений объектов в пространстве

Дисциплина: Компьютерная графика

Студент: Рунов Константин Алексеевич ИУ7-54Б

Научный руководитель: Павельев Александр Анатольевич

Москва, 2023 г.

Цель

Цель работы — разработка программы для моделирования упругих столкновений объектов в пространстве.

 Описать свойства объекта, которыми он должен обладать для моделирования его движения и столкновения с другими объектами.

- Описать свойства объекта, которыми он должен обладать для моделирования его движения и столкновения с другими объектами.
- Проанализировать существующие алгоритмы обнаружения коллизий и модели освещения и выбрать те из них, которые будут использованы при проектировании и разработке программы.

- Описать свойства объекта, которыми он должен обладать для моделирования его движения и столкновения с другими объектами.
- Проанализировать существующие алгоритмы обнаружения коллизий и модели освещения и выбрать те из них, которые будут использованы при проектировании и разработке программы.
- ► На формальном языке описать выбранные алгоритмы, а также общие алгоритмы работы программы.

- Описать свойства объекта, которыми он должен обладать для моделирования его движения и столкновения с другими объектами.
- Проанализировать существующие алгоритмы обнаружения коллизий и модели освещения и выбрать те из них, которые будут использованы при проектировании и разработке программы.
- ► На формальном языке описать выбранные алгоритмы, а также общие алгоритмы работы программы.
- Выбрать типы и структуры данных, которые будут использованы при разработке программы.

- Описать свойства объекта, которыми он должен обладать для моделирования его движения и столкновения с другими объектами.
- Проанализировать существующие алгоритмы обнаружения коллизий и модели освещения и выбрать те из них, которые будут использованы при проектировании и разработке программы.
- ► На формальном языке описать выбранные алгоритмы, а также общие алгоритмы работы программы.
- Выбрать типы и структуры данных, которые будут использованы при разработке программы.
- Разработать программное обеспечение для решения поставленной задачи.

- Описать свойства объекта, которыми он должен обладать для моделирования его движения и столкновения с другими объектами.
- Проанализировать существующие алгоритмы обнаружения коллизий и модели освещения и выбрать те из них, которые будут использованы при проектировании и разработке программы.
- ► На формальном языке описать выбранные алгоритмы, а также общие алгоритмы работы программы.
- Выбрать типы и структуры данных, которые будут использованы при разработке программы.
- Разработать программное обеспечение для решения поставленной задачи.
- Провести анализ зависимости времени генерации кадра от количества треугольников, их которых состоят модели объектов сцены; количества столкновений объектов сцены; количества вызовов функций графического ускорителя.

Для визуализации объекта, он должен содержать следующую информацию.

▶ Геометрическая информация, какую форму имеет объект.

Для визуализации объекта, он должен содержать следующую информацию.

- Геометрическая информация, какую форму имеет объект.
- Информация о местоположении в пространстве.

Для визуализации объекта, он должен содержать следующую информацию.

- ▶ Геометрическая информация, какую форму имеет объект.
- ▶ Информация о местоположении в пространстве.
- Информация о цвете и/или текстуре объекта.

Для моделирования движения и столкновения объектов, объекты должны содержать следующую информацию.

▶ Информация о «коллайдере».

Для моделирования движения и столкновения объектов, объекты должны содержать следующую информацию.

- Информация о «коллайдере».
- Информация о физических свойствах объекта.

Выбор алгоритмов обнаружения коллизий

Таблица: Сравнение алгоритмов обнаружения коллизий

	Алгоритм	Алгоритм ААВВ	Алгоритм ОВВ	Алгоритм GJK
	обнаруже- ния колли-	AADD	ODD	GJK
	зий сферы			
	относитель-			
	но сферы			
Вычислитель-	1	1	2	3
ная нагрузка				
Точность об-	3	3	2	1
наружения				
коллизий				
у сложных				
объектов				
Сложность	1	1	2	3
реализации				

Выбор: Алгоритм ААВВ

Выбор модели освещения

Таблица: Сравнение моделей освещения

	Простая мо-	Модель	Модель
	дель освеще-	освещения	Фонга
	ния	Гуро	
Реалистич-	3	2	1
ность изоб-			
ражения			
Вычислитель-	1	2	3
ная нагрузка			
Сложность	1	2	2
реализации			

Выбор: Модель Фонга

Алгоритм ААВВ

Модель Фонга

В модели освещения Фонга учитываются три составляющих отражённого света:

- Рассеянная.
- Фоновая.
- Зеркальная.

Модель Фонга. Рассеянный свет

$$I_d = k_d I_I \cos \theta = k_d I_I |\boldsymbol{n} \cdot \boldsymbol{I}| \tag{1}$$

Модель Фонга. Фоновое освещение

$$I_a = k_a I_0 \tag{2}$$

Модель Фонга. Зеркальный свет

$$I_s = k_s I_I \cos^n \alpha = k_s I_I |\mathbf{r} \cdot \mathbf{v}|^n$$
 (3)

Общий алгоритм работы программы

Общий алгоритм обнаружения и разрешения коллизий

Общий алгоритм генерации и отображения кадра

