CSC265 Fall 2021 Homework Assignment 10

due Wednesday, December 8, 2021

Let $f: \mathbb{N}^+ \to \mathbb{N}^+$. A family of undirected graphs \mathcal{F} has an f-labelling scheme if there is an adjacency tester $A: \{0,1\}^+ \times \{0,1\}^+ \to \{0,1\}$ such that, for all graphs $G = (V,E) \in \mathcal{F}$ with $n \geq 1$ vertices, there exists a 1-to-1 labelling function $\ell: V \to \{0,1\}^{f(n)}$ such that, for all $u, v \in V$,

$$A(\ell(u), \ell(v)) = \begin{cases} 1 & \text{if } \{u, v\} \in E \\ 0 & \text{if } \{u, v\} \notin E. \end{cases}$$

For example, consider the adjacency tester $A:\{0,1\}^+ \times \{0,1\}^+ \to \{0,1\}$ where A(x,y)=1 if and only x and y are binary strings of the same length that differ in exactly one bit position. Let V_d be the set of $n=2^d$ vertices in \mathbb{N}^d consisting of the vertices that can be reached from the origin by moving distance 1 in the positive direction along some subset of the dimensions. Let E_d be the subsets $\{u,v\}$ of V_d such that the distance between u and v is exactly 1. Let \mathcal{F} be the family of graphs $\{G_d=(V_d,E_d)\mid d\geq 1\}$. Then, for the labelling function $\ell:V_d\to\{0,1\}^d$ that maps each vertex in V_d to its d coordinates in \mathbb{N}^d , A is an adjacency tester for \mathcal{F} . Here is a picture of G_2 , with the labels on each node.

A labelling scheme is useful for storing a graph in a distributed system, with different parts of the graph stored in different places. Whenever a processor needs to determine whether two vertices are adjacent, it can do so by simply applying the adjacency tester to the labels of the two nodes.

- 1. Prove that the family of all undirected graphs has an f-labelling scheme, where $f(n) = n\lceil \log_2 n \rceil$.
- 2. Prove that the family of all undirected trees has an f-labelling scheme, where $f(n) = 2\lceil \log_2 n \rceil$.
- 3. Prove that if a family of undirected graphs \mathcal{F} has an f-labelling scheme, then, for all positive integers n, there is a graph $G_n = (V_n, E_n)$ with $2^{f(n)}$ vertices such that every graph $G \in \mathcal{F}$ with n vertices is an induced subgraph of G_n .
- 4. Let $f: \mathbb{N}^+ \to \mathbb{N}^+$ be a nondecreasing function. Let \mathcal{G} be a family of undirected graphs. Suppose that, for all positive integers n, there is an unidrected graph $G_n = (V_n, E_n)$ with $2^{f(n)}$ vertices such that every graph $G \in \mathcal{G}$ with n vertices is an induced subgraph of G_n . Prove that \mathcal{G} has an f'-labelling scheme, where $f'(n) = f(n) + \lceil \log_2 n \rceil$.