Conjuntos y Números

Lista 7 Curso 2019-20

- 1) Hallar el cociente C(X) y el resto R(X) que resultan de dividir el polinomio $P(X) = 3X^5 + 2X^3 + X + 1 \text{ entre el } Q(X) = 3X^2 + 1.$ Hallarlos primero en $\mathbb{Q}[X]$ y luego en $\mathbb{Z}_5[X]$.
- 2) Sean $P, Q \in \mathbb{Q}[X]$. Probar que P y Q son coprimos si y sólo si P+Q , $P\cdot Q$ también lo son.
- 3) Calcular el máximo común divisor D(X) de los polinomios

$$P(X) = X^5 - 5X^3 + 4X$$
 y $Q(X) = X^3 - 2X^2 - 5X + 6$

Encontrar dos polinomios A(X) y B(X) tales que: $A(X) \cdot P(X) + B(X) \cdot Q(X) = D(X)$.

4) Encontrar polinomios A(X) y B(X) en $\mathbb{Q}[X]$ tales que:

$$A(X)(X^{2} + 2X - 2) + B(X)(X^{2} + X - 1) = 1.$$

- 5) Hallar un polinomio $P(X) \in \mathbb{Q}[X]$ tal que $X^2 + 1$ divida a P(X), y $X^3 + 1$ divida a P(X) 1, siendo el grado de P el mínimo posible.
- 6) Hallar los ceros racionales del polinomio $P(X) = 20X^3 56X^2 + 33X + 9$.
- 7) Hallar todos los ceros de $P(X) = X^4 + 7X^3 + 9X^2 27X 54$, con sus multiplicidades. Razonar y comprobar lo que esos ceros implican para el máximo común divisor de P(X) y su derivada P'(X).
- 8) Los números $2+\sqrt[3]{3}$, $\sqrt{2}+\sqrt{3}$, son, cada uno de ellos, cero de algún polinomio de $\mathbb{Z}[X]$. Hallar esos polinomios.
- 9) a) Demostrar que para cualquier cuerpo conmutativo \mathbb{K} , existen infinitos polinomios irreducibles en $\mathbb{K}[X]$.

Sugerencia: recordar la prueba de Euclides de que hay en $\mathbb Z$ infinitos números primos.

- b) Deducir que si \mathbb{K} es un cuerpo con un número finito de elementos (por ejemplo $\mathbb{K} = \mathbb{Z}_p$ para p primo) habrá en $\mathbb{K}[X]$ polinomios irreducibles de grado arbitrariamente grande.
- 10) a) Deducir aplicando el criterio de irreducibilidad de Eisenstein que $\forall n > 1$ existen infinitos polinomios de grado n que son irreducibles en $\mathbb{Q}[X]$.
 - b) Descomponer $P(X) = X^5 X^4 + 2X^3 2$ en factores irreducibles en $\mathbb{Q}[X]$.

- 11) a) Probar que un polinomio $P(X) \in \mathbb{K}[X]$ es irreducible si y solamente si es irreducible el polinomio Q(X) = P(X + a) para cualquier $a \in \mathbb{K}$.
 - b) Aplicar el resultado anterior con a=1 para demostrar que el polinomio ciclotómico

$$\frac{X^{p}-1}{X-1} = X^{p-1} + X^{p-2} + \dots + 1 \in \mathbb{Q}[X],$$

donde p es un número primo, es irreducible.

- 12) a) Determinar los polinomios mónicos irreducibles en $\mathbb{Z}_2[X]$ de grados 1, 2, 3 y 4.
 - b) Demostrar que el polinomio $P(X) = X^4 + 3X^3 + 5X^2 + 7X + 1$ es irreducible en $\mathbb{Q}[X]$
- 13) Descomponer el polinomio $p(X) = X^4 + 3X^2 + 4$ en sus factores irreducibles en $\mathbb{Q}[X], \mathbb{R}[X], \mathbb{C}[X]$ y en $\mathbb{Z}_p[X]$, para p = 2, 3, 5 y 7.
- 14*) Sean \mathbb{K} un cuerpo conmutativo y $P(X) \in \mathbb{K}[X]$. Se denota por $\mathbb{K}[X]/(P(X))$ el conjunto cociente de $\mathbb{K}[X]$ por la relación de equivalencia

$$Q_1(X) \mathcal{R} \ Q_2(X) \Leftrightarrow Q_1(X) - Q_2(X) = A(X)P(X) \text{ para algún } A(X) \in \mathbb{K}[X],$$

dotado de las operaciones

+)
$$\overline{Q_1(X)} + \overline{Q_2(X)} = \overline{Q_1(X) + Q_2(X)}$$
,

$$\cdot) \ \overline{Q_1(X)} \cdot \overline{Q_2(X)} = \overline{Q_1(X)Q_2(X)}.$$

 $\mathbb{K}[X]/(P(X))$ adquiere una estructura de anillo (de la misma forma que lo hacía el conjunto cociente $\mathbb{Z}/(m)$, donde ahora $\mathbb{K}[X]$ juega el papel de \mathbb{Z} y P(X) el de m).

- a) Deducir del ejercicio 4 que $\overline{X^2 + 2X 2}$ es una unidad de $\mathbb{Q}[X]/(X^2 + X 1)$ y que $\overline{X^2 + X 1}$ lo es de $\mathbb{Q}[X]/(X^2 + 2X 2)$.
- b) Más generalmente, probar que si $P(X), Q(X) \in \mathbb{K}[X]$ son primos entre sí, entonces $\overline{P(X)}$ es una unidad de $\mathbb{K}[X]/(Q(X))$ y que $\overline{Q(X)}$ lo es de $\mathbb{K}[X]/(P(X))$.
- c) Deducir que si $P(X) \in \mathbb{K}[X]$ es irreducible entonces $\mathbb{K}[X]/(P(X))$ es un cuerpo.
- d) Demostrar que $\mathbb{R}[X]/(X^2+1)$ es un cuerpo (isomorfo al cuerpo \mathbb{C} de los números complejos).
- 15*) Dado p primo, consideramos \mathbb{Z}_p , el cuerpo finito con p elementos.
 - a) Demostrar que $\mathbb{Z}_2[X]/(X^2+1)$ no es un cuerpo y que $\mathbb{Z}_2[X]/(X^2+X+1)$ sí lo es.
 - b) Escribir los 4 elementos del cuerpo $\mathbb{Z}_2[X]/(X^2+X+1)$. (Sugerencia: $\overline{X^2}=\overline{X+1}$).
 - c) Señalar en $\mathbb{Z}_2[X]/(X^2+1)$ un elemento no nulo que no tenga inverso multiplicativo.
 - d) Señalar en $\mathbb{Z}_2[X]/(X^2+X+1)$ el inverso multiplicativo de cada elemento no nulo.
 - e) Construir un cuerpo con 2^3 elementos como un cociente adecuado de $\mathbb{Z}_2[X]$.
 - f) Construir cuerpos con 3^2 y 3^3 elementos como cocientes adecuados de $\mathbb{Z}_3[X]$.