Theory of Computation Course Code: 10B11CI513

Tutorial-3

.....

1. Find its equivalent DFA for the NDFA shown in the figure below.

2. Find the equivalent Mealy machine for the following Moore machine:

Present	Next State			
State	a = 0	a = 1	Output	
→a	d	b	1	
b	а	d	0	
С	С	С	0	
d	b	а	1	

State table of a Moore Machine

3. Let us consider the following Mealy Machine, find its equivalent Moore machine.

Present State	Next State				
	a = 0		a = 1		
	Next State	Output	Next State	Output	
→a	d	0	b	1	
b	a	1	d	0	
С	С	1	С	0	
d	b	0	а	1	

State table of a Mealy Machine

- 4. The one's complement of an input bit string is a string that has 1 wherever there was a 0, and a 0 wherever there was a 1; for example, the one's complement of 001 is 110. Construct a Mealy machine that computes the one's complement.
- 5. Construct a nondeterministic finite automaton accepting {ab, ba}, and use it to find a deterministic automaton accepting the same set.
- 6. Construct a nondeterministic finite automaton accepting {ab, ba}, and use it to find a deterministic automaton accepting the same set.