Package 'SDRcausal'

June 23, 2020

Julie 23, 2020
Version 0.3.0
Date 2020-06-11
Title SDRcausal
Author Filip Edstrom [aut, cre]
Maintainer Mohammad Ghasempour < mohammad.ghasempour@umu.se>
$\textbf{Description} \ \ \text{Provides two semiparametric estimators, semipar_imputation and semipar_ipw}.$
Encoding UTF-8
Imports stats, ggplot2
Suggests nloptr
LazyData true
License GPL (>= 2)
RoxygenNote 7.1.0
NeedsCompilation yes

R topics documented:

aipw_variance
alpha_guess
b10_fun
beta0_guess
beta1_guess
b_fun 5
covariates
example_data
imp2_variance
improved_augmented_ipw
impute
imp_dim_red
imp_variance
ipw_augment
ipw_dim_red
ipw_variance
nw_kernel_regress
outcomes
plot_imp
plot_ipw

2 aipw_variance

Index 28

aipw_variance

Estimates Augmented Inverse Probability variance

Description

Variance of the Augmented IPW as in Ghosh, Ma, & De Luna (2020).

Usage

```
aipw_variance(
    x,
    y,
    treated,
    imp,
    ipw,
    bandwidth_scale1,
    bandwidth_scale0,
    bandwidth_scale_pr,
    kernel = "EPAN",
    explicit_bandwidth = TRUE,
    gauss_cutoff = 0.001,
    num_deriv_h = 1e-08,
    verbose = FALSE
)
```

Arguments ×

```
Response vector
У
treated
                  Binary vetor indicating treatment
                  imp_output object from semipar_imputation()
imp
                  ipw_output object from semipar_ipw()
ipw
bandwidth_scale1
                  Scaling of the calculated bandwidth, m1
bandwidth_scale0
                  Scaling of the calculated bandwidth, m0
bandwidth_scale_pr
                  Scaling of the calculated bandwidth, pr
                  Specifies which kernel function to be used
kernel
explicit_bandwidth
```

Covariate matrix

Specifies if bandwidth_scale will be used as the bandwidth or if it will be calculated as $bw = bandwidth_scale * sd(x * beta) * n^(1/5)$.

alpha_guess 3

```
gauss_cutoff Cutoff value for Gaussian kernel
num_deriv_h Step size of numerical derivative.
verbose Specifies if the program should print output while running.
```

Value

The variance of Augmented IPW

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

Examples

```
# Using example data from package SDRcausal
library(SDRcausal)
# Import example data
x <- SDRcausal::covariates
y <- SDRcausal::outcomes
trt <- SDRcausal::treated</pre>
b1 <- SDRcausal::beta1_guess</pre>
b0 <- SDRcausal::beta0_guess</pre>
alp <- SDRcausal::alpha_guess</pre>
# Perform semiparametric imputation
imp <- SDRcausal::semipar_imputation(x, y, trt, b1, b0,</pre>
           explicit_bandwidth = TRUE, bwc_dim_red1 = 1, bwc_impute1 = 1,
           bwc_dim_red0 = 1, bwc_impute0 = 1)
# Perform semiparametric inverse probability weighting
ipw <- SDRcausal::semipar_ipw(x, y, trt, alp, bwc_dim_red = 10,</pre>
           bwc_prop_score = 18)
# Calculate the variance of the Augmented IPW (AIPW)
var <- SDRcausal::aipw_variance(x, y, trt, imp, ipw,</pre>
           bandwidth_scale1 = imp$bw1, bandwidth_scale0 = imp$bw0,
           bandwidth_scale_pr = ipw$bw_pr)
```

alpha_guess

Study 1 dataset.

Description

A dataset containing the initial guess for alpha.

Usage

alpha_guess

Format

A vector with 6 terms:

4 beta0_guess

b10_fun

Calculates B1/0

Description

Calculates Eq 2.8 or 2.10 in Ghosh, Ma, & De Luna (2020).

Usage

b10_fun(x, treated, dm, beta, kernel, bandwidth, gauss_cutoff)

Arguments

x Projection of covariate matrix on CMS

treated Binary vector indicating treatment.

dm Derivative of imputed values

beta CMS

kernel Specifies which kernel function to be used

bandwidth Specifies if bandwidth_scale will be used as the

gauss_cutoff Cutoff value for Gaussian kernel

Value

B1/0 matrix

beta0_guess

Study 1 dataset.

Description

A dataset containing the initial guess for beta 0.

Usage

beta0_guess

Format

A vector with 6 terms:

beta1_guess 5

beta1_guess Study 1 dataset.

Description

A dataset containing the initial guess for beta 1.

Usage

beta1_guess

Format

A vector with 6 terms:

b_fun Calculates B1/0

Description

Calculates Eq 2.8 or 2.10 in Ghosh, Ma, & De Luna (2020).

Usage

b_fun(x, treated, alpha_hat, h, kernel, bandwidth, bandwidth_pr, verbose)

Arguments

x Projection of covariate matrix on CMS

treated Treated

alpha_hat Derivative of imputed values

h CMS

kernel Specifies which kernel function to be used

bandwidth Kernel bandwidth

bandwidth_pr Kernel bandwidth for probability

verbose Specifies if the program should print output while running.

Value

B1/0 matrix

6 example_data

covariates

Study 1 dataset.

Description

A dataset containing the covariets.

Usage

covariates

Format

A data frame with 1000 rows and 6 variables:

X1 first covariate

X2 second covariate ...

example_data

Example data

Description

Data generated as in paper, study 1. Using the betas in betas data. Use beta1/0 for imputation as the initial guess of the central mean space (CMS) and alpha as the initial guess of the CMS for IPW.

Format

Data used in examples of the SDRcausal package

covariates covariate matrix

outcomes observed outcome vector

treated binary treatment vector

beta1_guess Starting guess for CMS for treated

beta0_guess Starting guess for CMS for untreated

alpha_guess Starting guess for CMS for propensity score

imp2_variance 7

imp2_variance

Estimates IMP2 variance

Description

Variance of IMP2 as in Ghosh, Ma, & De Luna (2020).

Usage

```
imp2_variance(
   x,
   y,
   treated,
   imp,
   ipw,
   bandwidth_scale1,
   bandwidth_scale0,
   kernel = "EPAN",
   explicit_bandwidth = TRUE,
   gauss_cutoff = 0.001
)
```

Arguments

x Covariate matrix y Response vector

treated Binary vetor indicating treatment

imp_output object from semipar_imputation()

ipw ipw_output object from semipar_ipw()

bandwidth_scale1

Scaling of the calculated bandwidth, or in case explicit_bandwidth the actual

bandwidth. For m1 and beta1.

bandwidth_scale0

See bandwidth_scale1. For m0 and beta0.

kernel Specifies which kernel function to be used

explicit_bandwidth

Specifies if bandwidth_scale will be used as the bandwidth or if it will be calcu-

lated as bw = bandwidth_scale * $sd(x * beta) * n^{(1/3)}$.

gauss_cutoff Cutoff value for Gaussian kernel

Value

Variance of IMP

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

Examples

```
# Using example data from package SDRcausal
library(SDRcausal)
# Import example data
x <- SDRcausal::covariates
y <- SDRcausal::outcomes
trt <- SDRcausal::treated</pre>
b1 <- SDRcausal::beta1_guess</pre>
b0 <- SDRcausal::beta0_guess</pre>
alp <- SDRcausal::alpha_guess</pre>
# Perform semiparametric imputation
imp <- SDRcausal::semipar_imputation(x, y, trt, b1, b0,</pre>
           explicit_bandwidth = TRUE, bwc_dim_red1 = 1, bwc_impute1 = 1,
           bwc_dim_red0 = 1, bwc_impute0 = 1)
# Perform semiparametric inverse probability weighting
ipw <- SDRcausal::semipar_ipw(x, y, trt, alp, bwc_dim_red = 10,</pre>
           bwc_prop_score = 18)
# Calculate the variance of the Augmented IPW (AIPW)
var <- SDRcausal::imp_variance(x, y, trt, imp, ipw,</pre>
           bandwidth_scale1 = imp$bw1, bandwidth_scale0 = imp$bw0)
```

```
improved_augmented_ipw
```

Improved Augmented IPW (IAIPW)

Description

Combines IPW and IMP estimators to form the improved augmented IPW, IAIPW as in Ghosh, Ma, & De Luna (2020).

Usage

```
improved_augmented_ipw(y, treated, imp, ipw)
```

Arguments

У	Observed response
treated	Binary vetor indicating treatment
imp	imp_output object from semipar_imputation()

Observed response

ipw ipw_output object from semipar_ipw()

Value

Average treatment effect (ATE) for the improved augmented IPW (IAIPW)

impute 9

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

Examples

```
# Using example data from package SDRcausal
library(SDRcausal)
# Import example data
x <- SDRcausal::covariates
y <- SDRcausal::outcomes
trt <- SDRcausal::treated</pre>
b1 <- SDRcausal::beta1_guess</pre>
b0 <- SDRcausal::beta0_guess</pre>
alp <- SDRcausal::alpha_guess</pre>
# Perform semiparametric imputation
imp <- SDRcausal::semipar_imputation(x, y, trt, b1, b0,</pre>
           explicit_bandwidth = TRUE, bwc_dim_red1 = 1, bwc_impute1 = 1,
           bwc_dim_red0 = 1, bwc_impute0 = 1)
# Perform semiparametric inverse probability weighting
ipw <- SDRcausal::semipar_ipw(x, y, trt, alp, bwc_dim_red = 10,</pre>
           bwc_prop_score = 18)
# Calculate the variance of the Augmented IPW (AIPW)
iaipw <- SDRcausal::improved_augmented_ipw(y, trt, imp, ipw)</pre>
```

impute

Estimates imputed values based on CMS

Description

Performs semiparametric imputation based on the CMS calculated by imp_dim_red, as in Ghosh, Ma, & De Luna (2020).

Usage

```
impute(
    x,
    y,
    treated,
    beta_hat,
    kernel = "EPAN",
    explicit_bandwidth = FALSE,
    bandwidth_scale = 1,
    gauss_cutoff = 0.001,
    to_extrapolate = TRUE,
    to_truncate = TRUE,
    extrapolation_basis = as.integer(5),
    verbose = FALSE
)
```

impute impute

Arguments

x Covariate matrixy Response vector

treated Binary vetor indicating treatment

beta_hat Locally efficient CMS

kernel Specifies which kernel function to be used

explicit_bandwidth

Specifies if bandwidth_scale will be used as the bandwidth or if it will be calcu-

lated as bw = bandwidth_scale * $sd(x * beta) * n^{(1/3)}$

bandwidth_scale

Kernel bandwidth

gauss_cutoff Cutoff value for Gaussian kernel
to_extrapolate Specifies wheter to extrapolate or not
to_truncate Specifies wheter to extrapolate or not
extrapolation_basis

Number of data point to base extrapolation on.

verbose Specifies if the program should print output while running

Value

A list containing the reduced space xb, the imputed values and their derivatives.

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

```
# Using example data from package SDRcausal
library(SDRcausal)
# Import example data
x <- SDRcausal::covariates
y <- SDRcausal::outcomes</pre>
trt <- SDRcausal::treated</pre>
b1 <- SDRcausal::beta1_guess</pre>
b0 <- SDRcausal::beta0_guess</pre>
# Using example data from package SDRcausal
library(SDRcausal)
# Import example data
x <- SDRcausal::covariates
y <- SDRcausal::outcomes</pre>
trt1 <- SDRcausal::treated</pre>
n <- as.integer(dim(x)[1])</pre>
trt0 <- as.integer(rep(1, times = n) - trt1)</pre>
b1 <- SDRcausal::beta1_guess</pre>
b0 <- SDRcausal::beta0_guess</pre>
```

imp_dim_red 11

imp_dim_red

Estimates the Central Mean Space (CMS)

Description

Semiparametric estimation of the Central Mean Space (CMS) as in Ghosh, Ma, & De Luna (2020). To be used with SDRcausal::impute().

Usage

```
imp_dim_red(
 х,
 у,
  treated,
 beta_initial,
  solver = "optim",
 kernel = "EPAN",
 explicit_bandwidth = FALSE,
 bandwidth_scale = 1,
 gauss_cutoff = 0.001,
 penalty = 10,
 n_before_pen = 1,
 root_tol = 0.001,
 n_{threads} = 1,
 verbose = FALSE,
)
```

Arguments

x Covariate matrix
 y Response vector
 treated Binary vetor indicating treatment
 beta_initial Initial guess of CMS

imp_dim_red

solver Specifies which solver to be used. Current options optim and cobyla (from nloptr

package).

kernel Specifies which kernel function to be used, current options are: "EPAN", "QUAR-

TIC", and "GAUSSIAN".

explicit_bandwidth

Specifies if bandwidth_scale will be used as the bandwidth or if it will be calcu-

lated as bw = bandwidth_scale * $sd(x * beta) * n^{(1/5)}$

bandwidth_scale

Scaling of the bandwidth or the actual bandwidth if explicit bandwidth.

gauss_cutoff cutoff value for Gaussian kernel

penalty Penalty for the optimizer if local linear regression fails. Added to the function

value in solver as: penalty^(n - n_before_pen), where n is the number of llr fails.

n_before_pen Number of probabilities outside the range (0, 1) to accept during dimension

reduction.

root_tol Tolerance which makes the program warn if optim stops at at a value higher than

root_tol.

n_threads Sets number of threads for parallel run. Set to 0 serial. If n_threads exceeds max-

imum number of threads, sets n threads to max threads - 1. To use max threads,

set to n_threads to max_threads of system.

verbose Specifies if the program should print output while running.

... Additional parameters passed to optim.

Value

A list containing the final beta, the bandwidth used, a warning if optim does not converge or converges to a value that is larger than root_tol, and the output of optim.

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

See Also

[stats::optim]

imp_variance 13

imp_variance

Estimates IMP variance

Description

Variance of the IMP as in Ghosh, Ma, & De Luna (2020).

Usage

```
imp_variance(
    x,
    y,
    treated,
    imp,
    ipw,
    bandwidth_scale1,
    bandwidth_scale0,
    kernel = "EPAN",
    explicit_bandwidth = TRUE,
    gauss_cutoff = 0.001
)
```

Arguments

x Covariate matrix y Response vector

treated Binary vetor indicating treatment

imp imp_output object from semipar_imputation()

ipw ipw_output object from semipar_ipw()

 $bandwidth_scale1$

Scaling of the calculated bandwidth, or in case explicit_bandwidth the actual

bandwidth. For m1 and beta1.

 $bandwidth_scale0$

See bandwidth_scale 1. For m0 and beta0.

kernel Specifies which kernel function to be used

explicit_bandwidth

Specifies if bandwidth_scale will be used as the bandwidth or if it will be calcu-

lated as bw = bandwidth_scale * $sd(x * beta) * n^{(1/3)}$.

gauss_cutoff Cutoff value for Gaussian kernel

Value

Variance of IMP

14 ipw_augment

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

Examples

```
# Using example data from package SDRcausal
library(SDRcausal)
# Import example data
x <- SDRcausal::covariates</pre>
y <- SDRcausal::outcomes</pre>
trt <- SDRcausal::treated</pre>
b1 <- SDRcausal::beta1_guess</pre>
b0 <- SDRcausal::beta0_guess</pre>
alp <- SDRcausal::alpha_guess</pre>
# Perform semiparametric imputation
imp <- SDRcausal::semipar_imputation(x, y, trt, b1, b0,</pre>
            explicit_bandwidth = TRUE, bwc_dim_red1 = 1, bwc_impute1 = 1,
            bwc_dim_red0 = 1, bwc_impute0 = 1)
# Perform semiparametric inverse probability weighting
ipw \leftarrow SDRcausal::semipar_ipw(x, y, trt, alp, bwc_dim_red = 10,
            bwc_prop_score = 18)
# Calculate the variance of the Augmented IPW (AIPW)
var <- SDRcausal::imp_variance(x, y, trt, imp, ipw,</pre>
            bandwidth_scale1 = imp$bw1, bandwidth_scale0 = imp$bw0)
```

ipw_augment

Combines IPW and IMP estimators to form the augmented IPW, AIPW

Description

Augmented IPW (AIPW) as in Ghosh, Ma, & De Luna (2020).

Usage

```
ipw_augment(y, treated, imp, ipw)
```

Arguments

у	Observed response
treated	Binary vetor indicating treatment
imp	imp_output object from semipar_imputation()
ipw	ipw output object from semipar ipw()

Value

Average treatment effect (ATE) for the augmented IPW (AIPW)

ipw_dim_red 15

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

Examples

```
# Using example data from package SDRcausal
library(SDRcausal)
# Import example data
x <- SDRcausal::covariates
y <- SDRcausal::outcomes
trt <- SDRcausal::treated</pre>
b1 <- SDRcausal::beta1_guess</pre>
b0 <- SDRcausal::beta0_guess</pre>
alp <- SDRcausal::alpha_guess</pre>
# Perform semiparametric imputation
imp \leftarrow SDRcausal::semipar_imputation(x, y, trt, b1, b0,
           explicit_bandwidth = TRUE, bwc_dim_red1 = 1, bwc_impute1 = 1,
           bwc_dim_red0 = 1, bwc_impute0 = 1)
# Perform semiparametric inverse probability weighting
ipw <- SDRcausal::semipar_ipw(x, y, trt, alp, bwc_dim_red = 8,</pre>
           bwc_prop_score = 8)
# Calculate the variance of the Augmented IPW (AIPW)
aipw <- SDRcausal::improved_augmented_ipw(y, trt, imp, ipw)</pre>
```

ipw_dim_red

Estimates the Central Mean Space (CMS)

Description

Semiparametric estimation of the Central Mean Space (CMS) as in Ghosh, Ma, & De Luna (2020). To be used with SDRcausal::propensity_score().

Usage

```
ipw_dim_red(
    x,
    treated,
    alpha_initial,
    solver = "optim",
    kernel = "EPAN",
    explicit_bandwidth = FALSE,
    bandwidth_scale = 1,
    gauss_cutoff = 0.001,
    penalty = 10,
    n_before_pen = 5,
    root_tol = 0.001,
    n_threads = 1,
```

ipw_dim_red

```
verbose = FALSE,
...
)
```

Arguments

x Covariate matrix

treated Binary vetor indicating treatment

alpha_initial Initial guess of CMS

solver Specifies which solver to be used. Current options optim and cobyla (from nloptr

package).

kernel Specifies which kernel function to be used, current options are: "EPAN", "QUAR-

TIC", and "GAUSSIAN".

explicit_bandwidth

Specifies if bandwidth_scale will be used explicitly as the bandwidth.

bandwidth_scale

Scaling of the calculated bandwidth, or in case of explicit_bandwidth = TRUE

the bandwidth.

gauss_cutoff cutoff value for Gaussian kernel

penalty Penalty for the optimizer if a probability is outside (0, 1). Added to the function

value in optim as: penalty^(n), where n is the number of probabilities outside

(0, 1).

n_before_pen Number of probabilities outside the range (0, 1) to accept during dimension

reduction.

root_tol Tolerance which makes the program warn if optim stops at at a value higher than

root_tol.

n_threads Sets number of threads for parallel run. Set to 0 serial. If n threads exceeds max-

imum number of threads, sets n_threads to max_threads - 1. To use max_threads,

set to $n_threads$ to $max_threads$ of system.

verbose Specifies if the program should print output while running.

... Additional parameters passed to solver.

Value

A list containing the final alpha, bandwwidth used, and the output of optim

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

See Also

[stats::optim]

ipw_variance 17

Examples

ipw_variance

Estimates IPW variance

Description

Variance of the IPW as in Ghosh, Ma, & De Luna (2020).

Usage

```
ipw_variance(
    x,
    y,
    treated,
    imp,
    ipw,
    bandwidth_scale,
    kernel = "EPAN",
    explicit_bandwidth = TRUE,
    gauss_cutoff = 0.001,
    num_deriv_h = 0.001,
    verbose = FALSE
)
```

Arguments

x Covariate matrixy Response vector

treated Binary vetor indicating treatment

imp_output object from semipar_imputation()

ipw ipw_output object from semipar_ipw()

 $bandwidth_scale$

Scaling of the calculated bandwidth, or in case of

kernel Specifies which kernel function to be used

18 nw_kernel_regress

```
explicit_bandwidth
```

Specifies if bandwidth_scale will be used as the bandwidth or if it will be calcu-

lated as bw = bandwidth_scale * $sd(x * beta) * n^{(1/3)}$.

gauss_cutoff Cutoff value for Gaussian kernel num_deriv_h Step size of numerical derivative.

verbose Specifies if the program should print output while running.

Value

The variance of IPW

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

Examples

```
# Using example data from package SDRcausal
library(SDRcausal)
# Import example data
x <- SDRcausal::covariates</pre>
y <- SDRcausal::outcomes
trt <- SDRcausal::treated</pre>
b1 <- SDRcausal::beta1_guess</pre>
b0 <- SDRcausal::beta0_guess</pre>
alp <- SDRcausal::alpha_guess</pre>
# Perform semiparametric imputation
imp <- SDRcausal::semipar_imputation(x, y, trt, b1, b0,</pre>
           explicit_bandwidth = TRUE, bwc_dim_red1 = 1, bwc_impute1 = 1,
           bwc_dim_red0 = 1, bwc_impute0 = 1)
# Perform semiparametric inverse probability weighting
ipw <- SDRcausal::semipar_ipw(x, y, trt, alp, bwc_dim_red = 10,</pre>
           bwc_prop_score = 18)
# Calculate the variance of the Augmented IPW (AIPW)
var <- SDRcausal::ipw_variance(x, y, trt, imp, ipw,</pre>
           bandwidth_scale = ipw$bw_pr)
```

nw_kernel_regress

The Nadaraya-Watson kernel estimator

Description

Gives the expected value of Y given X = x by kernel regression according to the Nadaraya-Watson kernel estimator to get E(Y|X). Note that y and x may be vectors or matrices, as long as dim(x)[1] = dim(y)[1].

outcomes 19

Usage

```
nw_kernel_regress(
   y,
   x,
   bandwidth = 1,
   kernel = "EPAN",
   gauss_cutoff = 0.001,
   verbose = FALSE
)
```

Arguments

 $\begin{array}{ll} y & Y \text{ in } E(Y|X) \\ x & X \text{ in } E(Y|X) \\ \text{bandwidth} & \text{Kernel bandwidth} \end{array}$

kernel Indicates which kernel function to be used

gauss_cutoff Cutoff value for Gaussian kernel

verbose Specifies if the program should print output while running.

Value

Value of kernel regression

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

Examples

```
# Using example data from package SDRcausal
library(SDRcausal)

# Import example data
x <- SDRcausal::covariates
y <- SDRcausal::outcomes

# Extimating y given x, E(y | x)
k <- nw_kernel_regress(y, x, bandwidth = 1)</pre>
```

outcomes

Study 1 dataset.

Description

A dataset containing the outcome.

Usage

outcomes

20 plot_imp

Format

A vector with 1000 terms:

plot_imp Plots imputation output

Description

Plot function for visualisation of imputation output from semipar_imputation. Note: The function requires ggplot2.

Usage

```
plot_imp(x, y, treated, imp)
```

Arguments

x Covariate matrixy Response vector

treated Binary vetor indicating treatment

imp imp_output object from semipar_imputation()

Value

A list of ggplot plots of observed and imputed values (pl_imp), imputed treated values vs CMS (pl_m1), and imputed untreated values vs CMS (pl_m0).

plot_ipw 21

plot_ipw

Plots IPW output

Description

Plot function for visualisation of IPW output from semipar_ipw. Note: The function requires gg-plot2.

Usage

```
plot_ipw(treated, ipw)
```

Arguments

treated Binary vetor indicating treatment

ipw __output object from semipar_ipw()

Value

ggplot plot of the propensity score vs CMS.

Examples

propensity_score

Estimates propensity score

Description

Semiparametric estimation of the propensity score as in Ghosh, Ma, & De Luna (2020). To be used with SDRcausal::ipw_dim_red().

22 propensity_score

Usage

```
propensity_score(
    x,
    treated,
    alpha_hat,
    kernel = "EPAN",
    explicit_bandwidth = FALSE,
    bandwidth_scale = 1,
    verbose = FALSE
)
```

Arguments

x Covariate matrix

treated Binary vetor indicating treatment

alpha_hat Locally efficient CMS kernel Kernel specification

explicit_bandwidth

Specifies if bandwidth_scale will be used as the bandwidth or if it will be calcu-

lated as bw = bandwidth_scale * $sd(x * beta) * n^{(1/3)}$.

bandwidth_scale

Scaling of calculated bandwidth, or if explicit_bandwidth = TRUE used as the

banddwidth.

verbose Specifies if the program should print output while running.

Value

A list containing the estimated propensity scores values and their derivatives, and the bandwidth used.

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

semipar_imputation 23

semipar_imputation

Estimates Average Treatment Effect (ATE) by imputation (IMP)

Description

Semiparametric estimation of the average treatment effect based on the imputation method described in Ghosh, Ma, & De Luna (2020).

Usage

```
semipar_imputation(
 Х,
 у,
  treated1,
 beta_guess1,
 beta_guess0,
  solver = "optim",
 kernel = "EPAN",
 explicit_bandwidth = FALSE,
 recalc_bandwidth = FALSE,
 bwc_dim_red1 = 1,
 bwc_impute1 = 1,
 bwc_dim_red0 = 1,
 bwc_impute0 = 1,
 gauss_cutoff = 0.001,
 penalty = 10,
 n_before_pen = 5,
 to_extrapolate = TRUE,
  to_truncate = TRUE,
 extrapolation_basis = 5,
 n_{threads} = 1,
 verbose = TRUE,
)
```

Arguments

Χ	Covariate matrix
У	Response vector
treated1	Binary vector indicating treatment.
beta_guess1	Initial guess of beta for m1
beta_guess0	Initial guess of beta for m0
solver	Specifies which solver to be used. Current options optim and cobyla (from nloptr package).
kernel	Specifies which kernel function to be used, current options are: "EPAN", "QUARTIC", and "GAUSSIAN".

24 semipar_imputation

explicit_bandwidth

Specifies if bandwidth_scale will be used as the bandwidth or if it will be calculated as bw = bandwidth_scale * $sd(x * beta) * n^{(1/3)}$.

recalc_bandwidth

bwc_dim_red1

Specifies wheter the bandwidth should be recalculated after the estimation of alpha (ipw_dim_red).

Scaling of calculated bandwidth, or if explicit_bandwidth = TRUE used as the

banddwidth. For dimension reduction (imp_dim_red).

bwc_impute1 Scaling of calculated bandwidth, or if explicit_bandwidth = TRUE used as the

bandwidth. Recalculated if explicit_bandwidth = FALSE and recalc_bandwidth

= TRUE. For imputation.

bwc_dim_red0 See bwc_dim_red1
bwc_impute0 See bwc_impute1

gauss_cutoff Cutoff value for Gaussian kernel

penalty Penalty for the optimizer if local linear regression fails. Added to the function

value in solver as: penalty^(n - n_before_pen), where n is the number of llr fails.

n_before_pen Number of probabilities outside the range (0, 1) to accept during dimension

reduction.

to_extrapolate Specifies wheter to extrapolate or not to_truncate Specifies wheter to extrapolate or not

extrapolation_basis

Number of data point to base extrapolation on.

n_threads Sets number of threads for parallel run. Set to 0 serial. If n_threads exceeds max-

imum number of threads, sets n_threads to max_threads - 1. To use max_threads,

set to n threads to max threads of system.

verbose Specifies if the program should print output while running.

... Additional parameters passed to optim.

Value

A list containing the average treatment effect of the combination of observed and imputed values (ate), the average treatment effect based on the imputed values only (ate2), the imputed values for treated (m1) and untreated treated (m0), the and the output from optim (op).

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

See Also

[stats::optim]

```
# Using example data from package SDRcausal
library(SDRcausal)
```

```
# Import example data
x <- SDRcausal::covariates</pre>
```

semipar_ipw 25

semipar_ipw

Estimates average treatment effect through IPW

Description

Semiparametric estimation of the average treatment effect based on the IPW method described in Ghosh, Ma, & De Luna (2020).

Usage

```
semipar_ipw(
 Х,
 у,
  treated,
 alpha_initial,
 kernel = "EPAN",
 explicit_bandwidth = FALSE,
  recalc_bandwidth = TRUE,
 bwc_dim_red = 1,
 bwc_prop_score = 10,
  gauss_cutoff = 0.001,
 penalty = 10,
 n_before_pen = 1,
 n_{threads} = 1,
 verbose = TRUE,
)
```

Arguments

x Covariate matrixy Response vector

treated Binary vector indicating treatment.

alpha_initial Initial guess of beta for m1

kernel Specifies which kernel function to be used, current options are: "EPAN", "QUAR-

TIC", and "GAUSSIAN".

explicit_bandwidth

Specifies if bandwidth_scale will be used as the bandwidth or if it will be calculated as bw = bandwidth_scale * $sd(x * beta) * n^{(1/3)}$.

26 semipar_ipw

recalc_bandwidth

Specifies wheter the bandwidth should be recalculated after the estimation of

alpha (ipw_dim_red)

bwc_dim_red Scaling of calculated bandwidth, or if explicit_bandwidth = TRUE used as the

banddwidth. For dimension reduction (ipw_dim_red).

bwc_prop_score Scaling of calculated bandwidth, or if explicit_bandwidth = TRUE used as the

banddwidth. Recalculated if explicit_bandwidth = FALSE and recalc_bandwidth

= TRUE. For propensity score.

gauss_cutoff cutoff value for Gaussian kernel

penalty Penalty for the optimizer if a probability is outside (0, 1) during dimension re-

duction. Added to the function value in solver as: penalty^(n - n_before_pen),

where n is the number of probabilities outside (0, 1).

n_before_pen Number of probabilities outside the range (0, 1) to accept during dimension

reduction.

n_threads Sets number of threads for parallel run. Set to 0 serial. If n_threads exceeds max-

imum number of threads, sets n_threads to max_threads - 1. To use max_threads,

set to n_threads to max_threads of system.

verbose Specifies if the program should print output while running.

... Additional parameters passed to optim.

Value

A list containing the average treatment effect (ate), the propensity score (pr), the final alpha (fa), and the output from optim (op).

References

Ghosh, T., Ma, Y., & De Luna, X. (2020). Sufficient dimension reduction for feasible and robust estimation of average causal effect. Statistica Sinica, accepted.

See Also

[stats::optim]

treated 27

treated

Study 1 dataset.

Description

A dataset containing the treatment.

Usage

treated

Format

A vector with 1000 terms:

Index

```
*Topic datasets
    alpha_guess, 3
    beta0_guess, 4
    beta1_guess, 5
    covariates, 6
    outcomes, 19
    treated, 27
*Topic data
    example_data, 6
aipw_variance, 2
{\tt alpha\_guess}, {\tt 3}
b10_fun, 4
b_fun, 5
beta0_guess, 4
beta1_guess, 5
covariates, 6
example_data, 6
imp2_variance, 7
imp_dim_red, 11
imp_variance, 13
improved\_augmented\_ipw, 8
impute, 9
ipw_augment, 14
ipw_dim_red, 15
ipw_variance, 17
nw_kernel_regress, 18
outcomes, 19
\verb"plot_imp", 20
plot_ipw, 21
propensity_score, 21
semipar_imputation, 23
semipar_ipw, 25
treated, 27
```