次の問8は必須問題です。必ず解答してください。

問8 次のアルゴリズムの説明を読んで、設問1~3に答えよ。

セルを1列に連続して並べた領域がある。この領域中のセルについて、割当てと解放の処理を行う。

各セルには、セル位置を指定するための連続する整数が対応している。領域のセル 数や、対応する整数の範囲には、特に制限がない。

各セルは, "空き"又は"割当済み"のいずれかの状態にある。現在, 領域中のどのセルが"空き"の状態にあるかという情報を, 空きリストとして保持している。

関数 Alloc(始点,終点) は、引数で指定した始点から終点までの連続した"空き"セルを"割当済み"として、空きリストから取り除く。関数 Free(始点,終点)は、引数で指定した始点から終点までの連続した"割当済み"セルを"空き"として、空きリストに戻す。

## [空きリストの説明]

空きリストの形式を, 次に示す。

{{始点1,終点1},{始点2,終点2},…,{始点N,終点N}}

 $\{ \text{ 始点}_i, \text{ 終点}_i \}$  (始点 $_i \leq \text{ 終点}_i$ ) は,一つの連続した"空き"セルの先頭位置と終端位置の組(以下,組という)で,始点 $_1 < \text{始点}_2 < \cdots < \text{始点}_N$ である。

割当て・解放の処理と空きリストの状態の例を、次の  $(1) \sim (3)$  に示す。ここで、セル  $\square$  中の数字は、セル位置を表す。また、 $\square$  は "空き" を、 $\square$  は "割当済み" を、それぞれ表す。

(1) 領域の初期状態は、全セルが空いている。空きリストは { { -∞, +∞ } } で表す。



ここで、記号" $-\infty$ "は、領域中のどのセル位置の値よりも小さい整数を表し、記号" $+\infty$ "は、領域中のどのセル位置の値よりも大きい整数を表すものとする。また、セル位置  $-\infty \sim +\infty$  のうち、領域外の部分には"空き"セルが並んでいるもの

とする。

(2) 関数 Alloc で "割当済み" としたセルは、空きリストから取り除く。例えば、

(1) の初期状態から、Alloc(1,2) と Alloc(6,8) を実行すると、次のようになる。

実行後, 空きリスト中の組の個数は3となる。

(3) 関数 Free で解放したセルは、空きリストに戻す。例えば、(2) の実行後の状態から、Free(6,7) を実行すると、次のようになる。



実行後,解放された"空き"セルの組 $\{6,7\}$ は,実行前の"空き"セルの組 $\{3,5\}$ とつながって一つの連続した"空き"セルの組 $\{3,7\}$ となるので,空きリスト中の組の個数は3となる。

## 〔関数 Alloc の説明〕

関数 Alloc(始点 p, 終点 p) の処理手順は、次のとおりである。

なお、引数の値は、 $-\infty$  < 始点  $_p$   $\leq$  終点  $_p$  <  $+\infty$  を満たしているものとする。

- (1) 空きリスト中に、始点 $_{i}$   $\leq$  始点 $_{p}$  かつ 終点 $_{p}$   $\leq$  終点 $_{i}$  を満たす組 $_{i}$  そ 後点 $_{i}$  。 移点 $_{i}$  が存在すれば $_{i}$  (2) へ進む。存在しなければ、"一部又は全体が割当済み"を表示して、処理を終了する。
- (2) 割当てが可能であるので、表 1 に従って、引数の状況に対応した空きリストの 更新処理を実行して、処理を終了する。

表1 関数 Alloc の空きリスト更新処理

| 引数の状況                                                                     | 空きリストの更新処理                                                                     |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 始点 <sub>i</sub> = 始点 <sub>p</sub> かつ<br>終点 <sub>p</sub> = 終点 <sub>i</sub> | 組 { 始点 i, 終点 i } を取り除く。                                                        |
| 始点 <sub>i</sub> = 始点 <sub>p</sub> かつ<br>終点 <sub>p</sub> < 終点 <sub>i</sub> | 組 { 始点 i, 終点 i } を組 で置き換える。                                                    |
| 始点 <sub>i</sub> < 始点 <sub>p</sub> かつ<br>終点 <sub>p</sub> = 終点 <sub>i</sub> | 組 { 始点 i, 終点 i } を組 で置き換える。                                                    |
| 始点 <sub>i</sub> < 始点 <sub>p</sub> かつ<br>終点 <sub>p</sub> < 終点 <sub>i</sub> | 組 $\{ 始点_i, 終点_i \}$ を二つの組 $\{ 始点_i, 始点_p-1 \}$ と $\{ 終点_p+1, 終点_i \}$ で置き換える。 |

注記 網掛けの部分は表示していない。

## 〔関数 Free の説明〕

関数 Free(始点  $_p$ , 終点  $_p$ ) の処理手順は、次のとおりである。 なお、引数の値は、 $^+\infty$  < 始点  $_p$   $\le$  終点  $_p$  <  $^+\infty$  を満たしているものとする。

- (1) 空きリスト中に、終点 $_{\rm i}$  < 始点 $_{\rm p}$  かつ 終点 $_{\rm p}$  < 始点 $_{\rm i+1}$  を満たす連続する二つの 組 { 始点 $_{\rm i}$  , 終点 $_{\rm i}$  } と { 始点 $_{\rm i+1}$  , 終点 $_{\rm i+1}$  } が存在すれば (2) へ進む。存在しなければ、"一部又は全体が割当済みでない"を表示して、処理を終了する。
- (2) 解放が可能であるので、表 2 に従って、引数の状況に対応した空きリストの更新処理を実行して、処理を終了する。

表 2 関数 Free の空きリスト更新処理

| 引数の状況                                                                            | 空きリストの更新処理                                                                                           |  |  |  |  |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|--|
| 終点 $_{i}$ = 始点 $_{p}$ -1かつ<br>終点 $_{p}$ +1 = 始点 $_{i+1}$                         | 二つの組 { 始点 <sub>i</sub> ,終点 <sub>i</sub> } と { 始点 <sub>i+1</sub> ,終点 <sub>i+1</sub> } を一つの組 a で置き換える。 |  |  |  |  |
| 終点 <sub>i</sub> = 始点 <sub>p</sub> -1かつ<br>終点 <sub>p</sub> +1 < 始点 <sub>i+1</sub> | 組 { 始点 <sub>i</sub> , 終点 <sub>i</sub> } を組 { 始点 <sub>i</sub> , 終点 <sub>p</sub> } で置き換える。             |  |  |  |  |
| 終点 $_{i}$ < 始点 $_{p}$ -1かつ<br>終点 $_{p}$ +1 = 始点 $_{i+1}$                         | 組 $\{$ 始点 $_{i+1},$ 終点 $_{i+1}\}$ を組 $\{$ 始点 $_{p},$ 終点 $_{i+1}\}$ で置き換える。                           |  |  |  |  |
| 終点 <sub>i</sub> < 始点 <sub>p</sub> -1かつ<br>終点 <sub>p</sub> +1 < 始点 <sub>i+1</sub> | 組 { 始点 i, 終点 i } の直後に組 b を挿入する。                                                                      |  |  |  |  |

| 設問 1  | 本文中                | 0        | ]に入れる | る正しい       | )答えを,  | 解答群の中  | から選べ。   |      |
|-------|--------------------|----------|-------|------------|--------|--------|---------|------|
| a, bに | 関する解               | ¥<br>答群  |       |            |        |        |         |      |
| ア     | {始点 <sub>i</sub> , | 終点 i+1 } |       | 1          | {始点i,  | 終点 p } |         |      |
| ウ・    | {始点 p,             | 終点 i+1 } |       | エ          | {始点 p, | 終点 p } |         |      |
| 設問 2  | 次のフ                | ゜ログラム中の  |       | <b>一</b> に | 入れる正   | しい答えを, | 解答群の中から | う選べ。 |

関数 Alloc の説明に基づいて、プログラムを作成した。

空きリスト中の現在の組の個数は大域整数型変数 N に格納されている。空きリスト  $\{\{ \text{始点}_1, \text{終点}_1 \}, \{ \text{始点}_2, \text{終点}_2 \}, \cdots, \{ \text{始点}_N, \text{終点}_N \} \}$  については、始点 $_{\rm i}$  ( $_{\rm i}$ : 1, 2, …, N) の値は大域整数型配列 始点 の要素 始点 $_{\rm i}$  に、終点 $_{\rm i}$  ( $_{\rm i}$ : 1, 2, …, N) の値は大域整数型配列 終点 の要素 終点 $_{\rm i}$  に、それぞれ格納されている。これらの配列は、十分に大きいものとする。

```
[プログラム]
    ○関数: Alloc(整数型: 始点 P, 整数型: 終点 P)
    ○整数型: I, L
     • I ← 1
    ■ 終点P > 終点[I]
      • I ← I+1
     ▲ 始点[I] ≦ 始点 P
      ▲ (始点[I] = 始点 P) and (終点 P = 終点[I])
        ■ L: I+1, L ≦ N, 1
         • 始点[L-1] ← 始点[L]
        • 終点[L-1] ← 終点[L]
        • N ← N-1
        (始点[I] = 始点 P) and (終点 P < 終点[I])
       (始点[I] < 始点P) and (終点P = 終点[I])
      ♠ (始点[<u>I] < 始点 P) an</u>d (終点 P < 終点[I])
       ■ L: e
         • 始点[L+1] ← 始点[L]

    終点[L+1] ← 終点[L]

        • 始点[I+1] ← 終点 P+1

    終点[I+1] ← 終点[I]

        • 終点[I] ← 始点 P-1
      • print("一部又は全体が割当済み") /* " 内の文字列を表示 */
c, dに関する解答群
                         イ 始点[I] ← 終点P+1
 ア 始点[I] ← 始点 P-1
 ウ 終点[I] ← 始点P-1
                          工 終点[I] ← 終点P+1
eに関する解答群
 P = I+1, L < N, 1
                          イ I+1, L ≦ N, 1
 \dot{D} N, L \geq I+1, −1
                          工 N, L > I+1, -1
```

| 設問 3 | 次の記述中の                                                                                                                    | ]に <i>)</i>                  | 入れる適切な答えを,解答郡         | €の□                 | から選べ。                                     |
|------|---------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------|---------------------|-------------------------------------------|
|      | <ul> <li>…, {始点 N, 終点 N} } の</li> <li>ている。このような設定を挙げられる。</li> <li>また, このアルゴリズムセル数が E 個であるとす</li> <li>g となる。また,</li> </ul> | から<br>をすって<br>で<br>る。<br>E 個 | をリスト { { 始点 1, 終点 1 } | +®<br>f<br>が変<br>の組 | をそれぞれ設定したいう特徴がないである。領域中のの個数は、最大ではなったとき、空き |
| f に関 | する解答群                                                                                                                     |                              |                       |                     |                                           |
| ア    | 空きリストが空(組の個数                                                                                                              | (が(                          | )) にならない              |                     |                                           |
| 1    | 関数 Free の実行時に空き                                                                                                           | リス                           | ト中の組の個数が2以上で          | ある                  | ことが保証される                                  |
| ウ    | 始点1又は終点Nの値が変                                                                                                              | わら                           | ない限り領域中に"空き"          | セル                  | が残っている                                    |
| エ    | 領域中の一つの連続した'                                                                                                              | '空き                          | き"セルが幾ら長くても一つ         | の組                  | 1で表せる                                     |
|      |                                                                                                                           |                              |                       |                     |                                           |
| g, h | に関する解答群                                                                                                                   |                              |                       |                     |                                           |
| ア    | 1                                                                                                                         | 1                            | 2                     | ウ                   | $E \div 2 + 1$                            |
| エ    | $(E+1) \div 2 + 1$                                                                                                        | 才                            | E+1                   | 力                   | E+2                                       |