Summer Research 2019 Week 2

Joe Sato, Katherine Liu June 26, 2019

Review: Prediction

Prediction

- Assumes: data follow \(y_i = f(x_i) + \epsilon_i\)
 - $(y_i = f(x_i))$: true pattern
 - \(\epsilon_i\): noise (random)
- Seeks true pattern from data, differentiating it from noise
 - then use it to predict

Ways to Estimate the True Pattern

Linear Regression

- · Can fit ANY functions, if coefficients are linear
- Can produce prediction intervals
- Must specify the function in advance

Random Forests

- Works for ANY underlying patterns, even for non-linear coefficients
- No need to specify the function
- Needs: large data set (for training)
- Maybe can produce prediction interval?

Review: 95% Prediction interval

95% Prediction Interval

- · W.r.t. a single data point yet to be observed
- Say: we estimated the true pattern from \ ({(x_1,f(x_1)),...,(x_n, f(x_n))}\)
- 95% PI of $(f(x_{n+1}))$: [a,b] such that
 - $(f(x_{n+1})) ((in) [a,b] by 95%$

95% Confidence Interval

- W.r.t. the entire set of points of the same true pattern
- 95% CI: [a,b] such that
 - (avg. of all points in the entire set) \(\in\) [a,b] by 95%

Objective

To figure out:

- If Random Forests can accurately produce Prediction intervals
- For what kind of data LR & RF are appropriate?

Comparison: Method

- Generated datasets using a specific \(y=f(x)\) \
 (+\) \(\epsilon\)
 - Linear & Single-variable
 - Non-Linear & Single-variable
- 2. Applied LR & RF and examined:
 - Accuracy of PI-s: Coverage rate
 - Prediction Accuracy: MSE
 - How informative PI-s are: width of PI-s

Simulation 1: $(Y_i=f(X_i)+\epsilon_i)$ where (ϵ_i) (\epsilon_i \sim \mathcal{N}(0, 5^{2})\)

What is form of f? - linear - quadratic - trigonometric -

Simulation 1: $(Y_i = 2X_i + 3 + epsilon_i)$

True function: $(Y_i = 2X_i + 3 + epsilon_i)$ Linear Regression Model: $(Y_i = 2.01658 X_i + 2.96383 + epsilon_i)$

Simulation 1 Radom Forest

Simulation 2: $(Y_i=f(X_i)+\epsilon_i)$ where (ϵ_i) (\epsilon_i \sim \mathcal{N}(0, 5^{2})\)

What is form of f? - linear - quadratic - trigonometric -

True function: $(Y_i = 0.1(x-7)^2 - 3\cos(x) + 5\log(|x|) + 3 + \epsilon(x)$

Simulation 2 Linear Regression Model

Simulation 2 Radom Forest

Simulations 3 & 4

```
Simulation 3(Multivariate Linear): \(Y_i = 2X_1i + 3X_2i + 4X_3i - 3X_4i + X_5i + \epsilon_i\)
```

Simulation 4(Multivariate Nonlinear): $(Y_i = (X_1i - 6)^2 + 12\cos(X_2i) + (X_3i - 5)^*(X_4i - 3) + 0.02(X_5i - 5)^5 + epsilon_i$

Results

*	MSPE [‡]	PlWidth [‡]	CoverageRate [‡]
Sim1 LR	25.45479	19.65005	0.9491
Sim1 RF	27.19786	18.84627	0.9032
Sim2 LR	26.56509	20.11342	0.9496
Sim2 RF	27.24953	18.88412	0.9027
Sim3 LR	25.41646	19.72029	0.9496
Sim3 RF	29.19473	19.42861	0.9042
Sim4 LR	58.75659	24.97114	0.9489
Sim4 RF	36.76771	21.11574	0.9040

Next Steps

- tune parameters in RF
- · learn new PI method
- apply to real datasets