# Data Mining / Intelligent Data Analysis: Metrics

Martin Russell

School of Computer Science, University of Birmingham

February 12, 2019



## Overview

- Motivation
  - Structure in Data
- 2 Metrics
  - Properties of metrics
  - The Euclidean metric
  - The *L<sup>p</sup>* metrics
  - Unit spheres
- Clustering
  - Centroids
  - Distortion
- Summary



# Discovering Structure in Data

Figure: Examples of structured data: spherically distributed single cluster (left), multiple-source data (centre), shifted correlated data (right)







- For example, each data point might be a vector of measurements from an array of sensors in a structure or a train. The clusters in the centre figure might correspond to different states of the structure/train
- Clustering discovers structure in multi-source data (center)



## What is a metric?

- Let X be a set of vectors.  $X \times X$  denotes the set of pairs  $X \times X = \{(x, y) : x, y \in X\}$
- A **metric** is a function  $d: X \times X \to \mathbb{R}^+$  such that

$$d(x,y) \geq 0, \forall x, y \in X \tag{1}$$

$$d(x, y) = 0$$
, if and only if  $x = y$  (2)

$$d(x,y) = d(y,x), \forall x, y \in X$$
 (3)

$$d(x,y) \leq d(x,z) + d(z,y), \forall x,y,z \in X$$
 (4)

Property (3) indicates that a metric must be bf symmetric. Property (4) is the **triangle inequality**.

- ullet R<sup>+</sup> is the set of **positive** real numbers
- A metric is sometimes called a **distance function**



### The Euclidean metric

• Suppose  $X = \mathbb{R}^N$  is N-dimensional space and  $x, y \in X$ , where

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{bmatrix} \tag{5}$$

The **Euclidean metric** is given by

$$d_2(x,y) = \sqrt{\sum_{n=1}^{N} (x_n - y_n)^2}$$
 (6)

This is the normal notion of distance in Euclidean space



## The **squared** Euclidean metric

- Sometimes the square root is ommitted.
- The results is the squared Euclidean metric

$$d_2^{sq}(x,y) = \sum_{n=1}^{N} (x_n - y_n)^2$$
 (7)

 This is useful, for example, if all that is needed is to find the closest point to a reference point

## The $L^p$ metrics

- The Euclidean metric is one of a family of metrics called the  $L_p$  metrics, denoted by  $d_p$
- In general, for any positive integer p

$$d_p(x,y) = (\sum_{n=1}^{N} (x_n - y_n)^p)^{\frac{1}{p}}$$
 (8)

The cases p=1 and  $p=\infty$  are most common

$$d_1(x,y) = \sum_{n=1}^{N} |x_n - y_n|$$
 (9)

$$d_{\infty}(x,y) = \max_{n=1,\dots,N} |x_n - y_n| \tag{10}$$

 $d_1$  is referred to as the **City Block** metric



# Unit spheres for $d_1$ , $d_2$ and $d_{\infty}$

• The **unit sphere** for a metric *d* is the set

$$U_d = \{x : d(x,0) = 1\}$$
 (11)

Figure: Unit spheres for  $d_1$ ,  $d_2$  and  $d_{\infty}$ 



# Unite spheres (3D)

Figure: Unit spheres in 3-dimensions for the City-Block  $L^1$  metric (left) and  $L^\infty$  metric (right)



## Representing clusters as centroids

Figure: Good (L) and poor (R) representation of clusters with centroids





- Centroids are data points located to represent a set of clusters
- Requires correct number of centroids in correct locations
- In general, the number and location of the clusters is unknown



#### Distortion

- Distortion is a measure of how well a set of centroids  $C = \{c_1, ..., c_K\}$  fits a set of data  $X = \{x_1, ..., x_N\}$
- Let d be a metric
- Let  $c_{i(n)}$  be the closest centroid to  $x_n$  (n = 1, ..., N)

$$d(x_n, c_{i(n)}) = \min_{k=1,\dots,K} d(x_n, c_k)$$
 (12)

• The *Distortion* for the centroids *C* relative to the data set *X* is

$$Dist(C, X) = \frac{1}{N} \sum_{n=1}^{N} d(x_n, c_{i(n)})$$
 (13)

#### Distortion

- Dist(C, X) is the average distance between  $x_n$  and its closest centroid
- The best centroid set is the set  $\bar{C}$  where

$$Dist(\bar{C}, X) = min_C Dist(C.X)$$
 (14)

- How do we find  $\bar{C}$  the best set of centroids?
- In general we can't, but we can use a clustering algorithm to find a set of centroids that is locally optimal
- We'll see how to do this in the next lecture K-means clustering



# Summary

- Motivation cluster analysis
- Properties of a metric
- The L<sup>p</sup> family of metrics
- Centroids and distortion