Balanço de Carga por Componentes do Sistema Integrado

Este documento apresenta o balanço detalhado de energia e exergia para os componentes do sistema integrado, focando na configuração de **Ciclo Brayton S-CO₂ com Intercooling e Recuperação** (Configuração 3), que foi otimizada para maximizar a eficiência global e o aproveitamento de calor residual. As informações são baseadas nos dados fornecidos nos documentos sprint_3_otimizacao_balanco.md e sprint_4_armazenamento_integracao.md .

1. Balanço Termoenergético do Ciclo S-CO₂ com Intercooling e Recuperação

A análise de exergia é fundamental para identificar as ineficiências e o potencial de recuperação de energia em cada componente. A tabela a seguir detalha o balanço de energia e exergia para os principais componentes do ciclo S-CO₂, considerando uma vazão mássica de 1 kg/s de CO₂ e as condições de contorno otimizadas:

- Temperatura Máxima (t_max) = 600 °C (873.15 K)
- Pressão Máxima (p_max) = 25 MPa
- Pressão Mínima (p_min) = 7.5 MPa
- Pressão Intermediária (p_ic) = 15 MPa
- Eficiência Isentrópica da Turbina (η_t) = 0.92
- Eficiência Isentrópica do Compressor (η_c) = 0.88

Componente	Potência/Calor (kW)	Destruição de Exergia (kW)	Eficiência Exergética (%)
Reator (RHX)	Q_in = 260.2	25.8	88.5%
Turbina (T)	W_t = 170.3	13.6	92.5%
Recuperador (Rec)	Q_rec = 429.5	35.1	92.0%
Cooler Principal	Q_rej = 360.6	40.5	88.8%
Compressor 1 (C-1)	W_c1 = 45.5	5.5	88.1%
Intercooler (IC)	Q_ic = 50.3	8.2	84.0%
Compressor 2 (C-2)	W_c2 = 30.6	3.7	88.0%
TOTAL	W_liq = 94.2	128.4	42.1% (Térmica)

Análise: Conforme a tabela, o Cooler Principal e o Recuperador são os componentes com maior destruição de exergia. No entanto, o calor rejeitado no Intercooler (Q_ic = 50.3 kW por kg/s de CO₂) representa uma fonte de energia de média temperatura que é crucial para a integração com o chiller de absorção.

2. Balanço de Carga do Chiller de Absorção e Sistemas de Armazenamento

O calor recuperado do intercooler é utilizado para acionar um chiller de absorção, que por sua vez fornece refrigeração para o data center. Sistemas de armazenamento de calor e frio garantem a resiliência da operação.

2.1. Heat Storage para Chiller de Absorção

- Calor Requerido pelo Chiller (Q_quente): Para um SMR de 100 MWth, a vazão de CO₂ é de aproximadamente 384 kg/s. O calor extraído no intercooler é de 50.3 kJ/kg.
 Portanto, a potência térmica total disponível para o chiller é de 19.3 MW (50.3 kJ/kg × 384 kg/s).
- Tecnologia: Tanques de água pressurizada.
- **Dimensionamento:** Capacidade para 4 horas de autonomia, resultando em 77.2 MWh de energia armazenada, equivalente a 3,420 m³ de água.

2.2. Chiller de Absorção

- COP (Coefficient of Performance): Assumido como 0.7 para um chiller LiBr-H₂O de simples efeito.
- Potência de Refrigeração Gerada (Q_frio): 13.5 MW (19.3 MW × 0.7).

2.3. Cooling Storage para Data Cloud Server Liquid Cooling

- Tecnologia: Banco de Gelo (Ice Bank).
- **Dimensionamento:** Capacidade para 30 minutos de autonomia, resultando em 6.75 MWh de energia de refrigeração armazenada, equivalente a 72,750 kg de gelo.

3. Balanço de Energia Global do Ecossistema Integrado

O sistema completo, que inclui o SMR, o ciclo S-CO₂, o chiller de absorção e o data center, opera como um hub de energia e serviços. O balanço global de energia demonstra a interação com a rede elétrica (SIN).

Parâmetro	Fluxo	Potência (MW)	Destino / Origem
Potência Térmica do Reator	Entrada	100.0	Reator Nuclear (SMR)
Potência Elétrica Bruta (S-CO ₂ + ORC)	Geração	45.0	Turbinas
Consumo Interno da Planta	Consumo	-3.0	Bombas, Compressores
Potência Elétrica Líquida da Usina	Geração	42.0	Venda para o Grid (SIN
Calor para o Chiller	Transferência	19.3	Intercooler do Ciclo S-C
Potência de Refrigeração Gerada	Geração	13.5	Chiller de Absorção
Carga de Refrigeração do Data Center	Consumo	-13.5	Servidores do Data Cen
Potência Elétrica do Data Center	Consumo	-135.0	Compra do Grid (SIN)
Balanço Final com o Grid (SIN)	Líquido	-93.0	Compra Líquida de En

Conclusão: O balanço global revela que, embora a usina gere 42 MW de eletricidade líquida, o data center de 135 MW que ela suporta requer uma compra líquida de 93 MW do grid. Isso solidifica o modelo de negócio como um **hub de serviços de data center de alta performance**, onde o valor principal reside na capacidade de fornecer refrigeração ultraeficiente e de custo zero (a partir de calor residual) para uma carga de TI massiva, em vez de ser um exportador líquido de eletricidade.