ASDS - Applied Statistics with R Fall 2018, YSU

Midterm 2 Material Coverage

Exam Time: December 27, ??:?? - ??:??

1 Parametric Statistics: Point Estimation

- 1. Convergence of a sequence of Random Variables
 - 4 convergence types
 - Relationship between the convergence types
 - Examples
 - The Weak and Strong LLN and CLT
- 2. Some well-known parametric distributions and their characteristics (CDF/PD(M)F, Expectation and Variance):
 - Discrete:
 - Bernoulli(p);
 - Binom(n, p);
 - Geometric(p);
 - $Poisson(\lambda)$;
 - Continuous:
 - Unif[a,b];
 - $Exp(\lambda)$;
 - $\mathcal{N}(\mu, \sigma^2)$
- 3. Parametric Inference and Point Estimation
 - Parametric Families of Distributions
 - Point Estimation, Estimators and Estimates
 - Properties of Estimators
 - Bias and Unbiasedness
 - Asymptotic Unbiasedness
 - Consistency, Strong Consistency, Weak Consistency
 - MSE and Bias-Variance Decomposition of the MSE
 - Comparison of Estimators
 - Efficiency
 - Fisher Information
 - Cramer-Rao Lower bound

2 Methods to Construct Good Estimators

- 1. Methods to Construct Point Estimators
 - Maximum Likelihood Method (MLE)
 - Properties of MLE
 - Method of Moments (MME)

3 Interval Estimation

- 1. Confidence Intervals
 - Definition of Confidence intervals
 - Constructing Confidence Intervals using the Chebyshev Inequality
 - CI for Bernoulli Model
 - Sample size determination for the Bernoulli Model
 - Constructing Confidence Intervals using Pivots
 - The idea of a Pivot
 - Quantiles of the Normal, t- and χ^2 -distributions
 - CI for the Mean of a Normal Distribution, Variance is known
 - CI for the Mean of a Normal Distribution, Variance is unknown
 - CI for the Variance of a Normal Distribution, Mean is known
 - CI for the Variance of a Normal Distribution, Mean is unknown
 - Asymptotic Confidence Intervals using Pivots
 - Asymptotic CI for the Mean of a General Distribution
 - Asymptotic CI for Bernoulli model
 - Prediction Intervals
 - Prediction Interval for the Normal Distribution Model