

POLITECHNIKA BIAŁOSTOCKA Wydział Informatyki Techniki zapewniania poufności w internecie

PRACOWNIA SPECJALISTYCZNA 10-11 MGR INŻ. MACIEJ BRZOZOWSKI

TEMAT: KRYPTOGRAFIA KRZYWYCH ELIPTYCZNYCH.

$$y^{2} = x^{3} - px - q \mod M$$

$$\Delta_{E} = 4p^{3} + 27q^{2} \mod M \neq 0$$

$$P = (x_{P}, y_{P}), Q = (x_{Q}, y_{Q})$$

$$P + \theta = P$$

Dodawanie punktów $R = P + Q = (x_R, y_R)$:

1. jeżeli $x_P \neq x_Q$

$$s = \frac{y_P - y_Q}{x_P - x_Q} \mod M$$

$$x_R = s^2 - x_P - x_Q \mod M, y_R = y_P + s(x_R - x_P) \mod M$$

- 2. jeżeli $x_P = x_Q$
 - (a) jeżeli $y_P = -y_Q$ lub $y_P = y_Q = 0$ wynik równy θ (punkt neutralny bądź w nieskończoności w zależności od tłumaczenia)
 - (b) jeżeli $y_P = y_Q \neq 0$ $R = P + P = 2P = (x_R, -y_R)$ (podwajanie punktu)

$$s = \frac{3x_P^2 - p}{2y_P} \bmod M$$

$$x_R = s^2 - 2x_P, y_R = y_P + s(x_R - x_P) \mod M$$

Wymiana kluczy:

- 1. Użytkownik A generuje klucz prywatny $n_A < M$ oraz na jego podstawie klucz publiczny $P_A = n_A G$ gdzie G jest ustalonym punktem transmisji. Podobnie postępuje użytkownik B.
- 2. Użytkownik A na podstawie klucza publicznego użytkownika B wylicza $K=n_AP_B$ oraz użytkownik B wylicza $K=n_BP_A$.

Szyfrowanie wiadomości $P_m = (x, y)$

- 1. Użytkownik A generuje liczbę k
- 2. Użytkownik A wysyła dwa punkty $C_m = (kG, P_m + kP_B)$

Deszyfrowanie wiadomości:

- 1. Użytkownik B oblicza $P_k = n_B kG$
- 2. Użytkownik Bwykonuje $P_m = \left(P_m + k P_B P_k \right)$

Zadanie: Zaimplementuj system kryptograficzny bazujący na krzywych eliptycznych:

- 1. Generowanie wszystkich punktów krzywej eliptycznej (dla dużych parametrów) dla podanych parametrów,
- 2. Dokonaj wymiany klucza,
- 3. Szyfrowanie oraz deszyfrowanie punktów przy pomocy kluczy z poprzedniego zadania.