МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ «МИСиС»

ИНСТИТУТ	ИТКН
КАФЕДРА	
	Информационные системы и технологии
дисциплина	
	СОВАЯ РАБОТА изация алгоритма решения минимаксной задачи размещения
-	тучайных сетей (на примере района "НАЗВАНИЕ РАЙОНА" г.
Москвы	
Студент	Гришина Юлия Васильевна
Руководитель работы	д.т.н., проф Халкачев Руслан Кемалович
Работа принята к защите	

Москва

Работа сдана с оценкой

Цель работы

Применяя теорию случайных сетей разработать алгоритм решения задачи, позволяющей определить оптимальное расположение объектов на заданной территории согласно заданным ограничениям.

Выполнение работы

Исходные данные:

Ограничения, накладываемые на минимаксную задачу размещения объектов. В моем варианте: «Южное Медведково — Бабушкинский».

Для выполнения задания сначала был выбран район и построена карта с остановками в точках 1–7 (Рисунок 1):

Точные адреса остановок:

- 1 вершина: Полярная улица, 7к1 (район Южное медведково)
- 2 вершина: Бабирево
- 3 вершина: Отрадное
- 4 вершина: Лазоревый проезд, 3 Ботанический сад
- 5 вершина: проспект Мира, 211к2 Ростокино
- 6 вершина: улица Амундсена, 17к2 Свиблово
- 7 вершина: Ленская улица, 12 Бабушкинская

Исходя из условия были сделаны следующие допущения:

- Время на преодоление пути из первого пункта во второй равно времени, которое будет потрачено на преодоление пути из второго в первый.
- Значения областей в рамках задачи не имеет никакой роли, так как они преобразуются в вершины
- Геометрический центр также не играет существенной роли

Рисунок 1 - Карта маршрута с точками остановок

Затем был построен граф (Рисунок 2) с вершинами в этих точках остановок. В качестве веса между узлами было принято время, в течение которого потребуется транспортному средству в виде автомобиля добраться от исходного пункта до конечного, взятому из Яндекс Карты.

Так как по допущению путь из вершин туда и обратно одинаковый, то смысла указывать направляющие нету, поэтому граф был построен неориентированным и без весов на ребрах. Весы указаны в таблицах в определенные промежутки времени. Ребра построены по дорогам соединяющие пункты.

Рисунок 2 - Граф маршрута

Рассчитаем эксцентриситеты и найдем центр и диаметр графа.

Рисунок 3 - Исследование графа

Таким образом, центром графа является вершина 4 (Лазоревый проезд, 3 Ботанический сад)

Диаметр равен 6 и радиус равен 3.

Сбор данных

Для сбора данных было измерено время на всех ребрах графа в пяти временных промежутках в каждый день недели, кроме воскресенья. (Таблица 1 - Таблица 3). Для большего разброса брались пути как и из A в B, так и из B в A.

Таблица 1 - Данные взятые в понедельник и вторник

		понеделі	ьник			вторник				
Множество ребер	0:00	5:00	10:00	15:00	20:00	0:00	5:00	10:00	15:00	20:00
(1;2)	7	8	8	9	9	8	7	9	8	9
(1;6)	11	10	7	15	14	12	11	10	14	12
(2;3)	7	7	8	8	9	8	6	10	9	10
(3;4)	17	19	26	23	22	16	18	25	21	22
(4;5)	8	7	12	10	9	7	7	13	10	10
(4;6)	11	12	18	15	15	10	16	17	13	16
(5;6)	11	10	18	16	14	13	12	15	11	10
(6;7)	5	6	9	9	7	8	9	8	7	6
(1;7)	9	9	8	12	15	8	9	9	10	13

Таблица 2 - Данные взятые в среду и четверг Разброс значений получился не большим, так как расстояния достаточно маленькие.

	среда					четверг				
Множество ребер	0:00	5:00	10:00	15:00	20:00	0:00	5:00	10:00	15:00	20:00
(1;2)	6	8	10	9	10	5	7	9	8	9
(1;6)	9	10	13	16	15	8	9	12	20	17
(2;3)	7	8	11	9	8	9	10	18	12	12
(3;4)	15	16	24	24	23	12	11	17	15	14
(4;5)	6	7	13	10	9	8	10	14	12	10
(4;6)	11	12	14	13	15	11	15	18	14	16
(5;6)	10	11	17	12	10	9	13	16	13	14
(6;7)	5	6	12	9	8	7	9	10	8	9
(1;7)	11	9	8	11	13	7	12	8	11	18

Таблица 3 – Данные, взятые в пятницу и субботу

	пятница					суббота				
Множество ребер	0:00	5:00	10:00	15:00	20:00	0:00	5:00	10:00	15:00	20:00
(1;2)	6	8	10	9	7	7	8	8	9	9
(1;6)	9	9	13	16	11	8	7	9	11	14
(2;3)	10	10	14	10	9	7	7	8	8	9
(3;4)	11	13	18	17	12	17	19	26	23	22
(4;5)	7	9	11	11	10	8	7	12	10	9
(4;6)	11	13	14	13	16	11	12	18	15	15
(5;6)	10	9	15	12	15	11	10	18	16	14
(6;7)	6	9	10	8	7	5	6	9	9	7
(1;7)	11	11	9	8	14	8	10	11	8	9

Всего в итоге получилось 30 измерений на каждое ребро. Таким образом, данные собраны.

Расчеты

Следующим шагом мы должны определить к какому виду распределения подчиняются данные на каждом ребре нормальному или равномерному. Для этого были измерены µ по следующей формуле в среде Excel:

=CP3HAЧ(«Диапазон всех значений ребра»);

Формула 1 – Наилучшая оценка:

$$\mu = \frac{\sum_{i=1}^{n} xi}{n}$$

Затем рассчитаем среднее квадратичное отклонение σ по следующей формуле:

=СТАНДОТКЛОН.В(«Диапазон всех значений ребра»);

Формула 2 – Среднеквадратичное отклонение:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (xi - \mu)^2}{n-1}}$$

После этого рассчитываем их разность и сложение. Следующим шагом проверяем данные на попадание в соответствующие четыре бины.

Для O1 следующая формула в Excel:

=СЧЁТЕСЛИМН(«Диапазон всех значений ребра»;"<="& μ-σ);

Формула 3 – бин О1

$$x < \mu - \sigma$$

Для O2 через Excel:

=СЧЁТЕСЛИМН(Диапазон всех значений ребра;">"& μ - σ ; Диапазон всех значений ребра;"<="& μ);

Формула 4 – бин О2

$$\mu - \sigma < x < \mu$$

Для O3 в Excel:

=СЧЁТЕСЛИМН(Диапазон;">"& μ ;Диапазон;"<="& μ + σ);

Формула 5 – бин ОЗ

$$\mu < x < \mu + \sigma$$

Для O4 в Excel:

=СЧЁТЕСЛИМН(Диапазон;">"& μ + σ);

Формула 6 – бин О4

$$\mu + \sigma < x$$

Поскольку мы рассматриваем нормальный закон распределения, то две равные площади P2 и P3 , вместе дают хорошо известное значение 68%, так что вероятность попадания в один из двух центральных бинов составляет 34%, т. е. P2=P3=0.34 . Две внешние площади представляют оставшиеся 32%; таким образом, P1=P4=0.16. Чтобы найти ожидаемые числа Ek , нужно умножить эти вероятности на полное число измерений N=30.

Полученные данные сведем в таблицу (Таблица 4)

Таблица 4 - Расчет для нормального распределения

	Хи-квадрат(нормальный закон распределения											
Множество ребер μ σ μ - σ μ + σ						O2	О3	O4	E1	E2	E3	E4
(1;2)	8,133333333	1,22	6,909057803	9,357608864	3	14	10	3	4,8	10,2	10,2	4,8
(1;6)	11,73	3,18	8,55	14,92	4	12	8	6	4,8	10,2	10,2	4,8
(2;3)	9,266666667	2,40	6,860735299	11,67259803	1	18	7	4	4,8	10,2	10,2	4,8

Множество ребер	μ	σ	μ-σ	μ+σ	O1	O2	О3	O4	E1	E2	E3	E4
(3;4)	18,6	4,59	14,00164947	23,19835053	6	10	9	5	4,8	10,2	10,2	4,8
(4;5)	9,533333333	2,09	7,436811857	11,62985481	7	7	10	6	4,8	10,2	10,2	4,8
(4;6)	14	2,31	11,68066597	16,31933403	6	10	10	4	4,8	10,2	10,2	4,8
(5;6)	12,83333333	2,70	10,12850581	15,53816086	8	7	9	6	4,8	10,2	10,2	4,8
(6;7)	7,766666667	1,69	6,07116891	9,462164424	8	5	14	3	4,8	10,2	10,2	4,8
(1;7)	10,3	2,479	7,820428291	12,77957171	1	16	8	5	4,8	10,2	10,2	4,8

Таким образом, составив таблицу рассчитаем X^2 для нормального распределения по формулам:

Формула $7 - X^2$ для нормального распределения:

$$X^2 = \sum_{k=1}^n \frac{(Ok - Ek)^2}{Ek}$$

 χ^2 служит показателем того, насколько хорошо согласуются наблюдаемое и ожидаемое распределения. А также были найдены $P(X^2)=[X^2]$ прив) для каждого ребра:

 $= XИ2. PAC\Pi.\Pi X((X^2) прив; 1)$

Таблица 5 - Х^2 приведенный

Множество ребер	(Х^2)прив	P(X^2>=[X^2]прив)
(1;2)	2,7696078	0,096069695
(1;6)	1,2254902	0,268285884
(2;3)	10,110294	0,001474434
(3;4)	0,4534314	0,500709938
(4;5)	2,3161765	0,128034398
(4;6)	0,4411765	0,506555169
(5;6)	3,5784314	0,0585344
(6;7)	6,875	0,008740976
(1;7)	6,7892157	0,009171019

Из этого можно сделать вывод что

Также рассчитаем для равномерного распределения аналогично μ и σ по формулам (Формула 1 и Формула 2).

Для проверки данных на предмет согласования с равномерным законом распределения также можно воспользоваться хи-квадрат критерием. Порядок проведения вычислений практически идентичен вышеприведенному, отличаясь границами бинов, а следовательно, и вероятностями попадания случайной величины в заданные бины. Так для данных, относительно которых проверяется гипотеза о равномерном распределении, можно задать следующие границы бинов:

Формула 8 – O1:

Формула 9 – O2:

$$a < x < \mu$$

Формула 10 – О3:

$$\mu < x < b$$

Формула 11 – О4:

Где а и b:

$$a = x - \sqrt{3} * \sigma$$
, $b = x + \sqrt{3} * \sigma$

При таком разбиении вероятности попадания случайной величины в данные бины будут равными P1=P2=0,49 и P3=P4=0,01.

Таблица 6 - Расчет для равномерного распределения

	Хи-квадрат	г(равномерны	й закон распр	еделения)								
Множество ребер	μ	σ	a	ь	01	O2	О3	04	E1	E2	Е3	E4
(1;2)	8,133333	1,2242755	6,0128259	10,25384	3	14	13	0	0,3	14,7	14,7	0,3
(1;6)	11,73333	3,1832897	6,2197138	17,24695	0	16	13	1	0,3	14,7	14,7	0,3
(2;3)	9,266667	2,4059314	5,0994713	13,43386	0	19	9	2	0,3	14,7	14,7	0,3
(3;4)	18,6	4,5983505	10,635423	26,56458	0	16	14	0	0,3	14,7	14,7	0,3
(4;5)	9,533333	2,0965215	5,9020516	13,16462	0	14	15	1	0,3	14,7	14,7	0,3
(4;6)	14	2,319334	9,9827956	18,0172	0	16	14	0	0,3	14,7	14,7	0,3
(5;6)	12,83333	2,7048275	8,1484346	17,51823	0	15	13	2	0,3	14,7	14,7	0,3
(6;7)	7,766667	1,6954978	4,8299784	10,70335	0	13	16	1	0,3	14,7	14,7	0,3
(1;7)	10,3	2,4795717	6,0052558	14,59474	0	17	11	2	0,3	14,7	14,7	0,3

Таким образом X^2 и $P(X^2)=[X^2]$ прив) посчитаем по (Формула 7 и Формула 8)

Таблица 7 - Расчет Х^2

Множество ребер	(Х^2)прив	P(X^2>=[X^2]прив)
(1;2)	24,82993	6,26175E-07
(1;6)	2,244898	0,134055751
(2;3)	13,40136	0,000251442
(3;4)	0,748299	0,387015211
(4;5)	1,972789	0,160152124
(4;6)	0,748299	0,387015211
(5;6)	10,13605	0,00145397
(6;7)	2,244898	0,134055751
(1;7)	11,22449	0,00080725

Из этого сделаем вывод к какому виду распределения относятся данные на каждом ребре и из этого выбираем какой генератор случайных чисел будет использован. Если вероятность $P(X^2)=[X^2]$ прив) у нормально распределения больше, чем вероятность у равномерного, то будет применен генератор для нормального распределения, в обратном случае генератор для равномерного распределения. (Таблица 8)

Таблица 8 - Генератор случайных чисел

Множество ребер	Вывод	Параметры	ГСЧ НР		Параметры	ı PP		
	Тип ГСЧ	μ	σ	Z	a	ь	r1	r2
(1;2)	Нормальный	8,133333	1,224276	-0,35492	-	-	0,553073	0,031191
(1;6)	Нормальный	7,401355	5,713047	0,556652			0,755613	0,88388
(2;3)	Нормальный	9,266667	2,405931	0,241145	-	-	0,815634	0,383673
(3;4)	Нормальный	18,6	4,598351	0,590795	-	-	0,615327	0,264544
(4;5)	Равномерный	-	-	-0,02438	5,902052	13,16462	0,854381	0,548383
(4;6)	Нормальный	14	2,319334	-0,48127	-	-	0,913835	0,136451
(5;6)	Нормальный	12,83333	2,704828	-1,5921	-	-	0,175369	0,929516
(6;7)	Равномерный	-	-	0,014695	4,829978	10,70335	0,257895	0,276971
(1;7)	Нормальный	7,371822	5,417091	-2,4455			0,597351	0,145008

Где z рассчитывается по формуле:

$$z = \sqrt{-2 * \ln r1} * \cos(2 * \pi * r2)$$

Таблицу генераций случайной внешней сети заполняем следующим образом: если между вершинами есть ребро считаем значение по формуле

Формула 12 – Генерация значения для нормального распределения

$$\mu + a \times z$$

Для ребер с равномерным распределением следующая формула:

Формула 13 – Генерация значения для равномерного распределения

$$a + (a - b) * r1$$

Если вершины не имеют общего ребра, то пишем 0. Таким образом получаем следующую таблицу, по диагонали также 0. (Таблица 9)

Таблица 9 - Генератор внешней сети

	1	2	3	4	5	6	7
1	0	9,508015	0	0	0	10,58154	10,77067
2	9,5080152	0	10,68538	0	0	0	0
3	0	10,68538	0	10,87782	0	0	0
4	0	0	10,87782	0	10,01577	14,45998	0
5	0	0	0	10,01577	0	18,04444	0
6	10,581537	0	0	14,45998	18,04444	0	9,591556
7	10,77067	0	0	0	0	9,591556	0

Считаем матрицу расстояний. Для этого посчитаем путь до каждой вершины. Так как по упущению у нас что в одну, что в другую сторону одно время, то матрица получается симметричная.

Формула 14 – Число внешнего разделения

$$s0(x_i) = \max \left[v_j \, d(x_i, x_j) \right]$$

Формула 15 – Число внутреннего разделения

$$st(x_i) = \max [v_i d(x_i, x_i)]$$

Числа внешних и внутренних разделений приведены в присоединенных к матрице столбце и строке соответственно.

Таблица 10 - Матрица расстояний

	1	2	3	4	5	6	7	S0(xi)
1	0	9,508015	20,1934	31,07122	41,08699	10,58154	10,77067	41,08699
2	9,5080152	0	10,68538	21,5632	31,57898	36,02319	45,61474	45,61474
3	20,193397	10,68538	0	10,87782	20,89359	25,33781	34,92936	34,92936
4	31,071219	21,5632	10,87782	0	10,01577	14,45998	24,05154	31,07122
5	41,086991	31,57898	20,89359	10,01577	0	18,04444	27,636	41,08699
6	10,581537	36,02319	25,33781	14,45998	18,04444	0	9,591556	36,02319
7	10,77067	45,61474	34,92936	24,05154	27,636	9,591556	0	45,61474
St(xi)	41,086991	45,61474	34,92936	31,07122	41,08699	36,02319	45,61474	

Таким образом получаем следующие результаты моделирования. У графа может быть несколько (больше, чем один) внешних и внутренних центров. Таким образом они образуют множества внешних и внутренних центров соответственно.

Число внешнего разделения вершины x0, являющейся внешним центром, называется внешним радиусом: $\rho 0 = s*0(x0)$; число внутреннего разделения внутреннего центра называется внутренним радиусом: $\rho t = st(xt)$. То есть мы берем минимальное значение St(xi) и S0(xi), которые должны совпасть так как матрица симметрична.

Таблица 11 - Радиусы

Внешний радиус	31,071219
Внутренний радиус	31,071219
Внешне-внутренний радиус	62,142439

Вершина х*0, для которой

Формула 16 - $s_0(x_0^*)$

$$s_0(x_0^*) = min(s_0(x_i))$$

называется внешним центром графа. Она отмечена красным в таблице (Таблица 12)

Таблица 12 - Вершина центр

Внешневнутренний центр	Внешневнутренний радиус
1	82,17398
2	91,22949
3	69,85873
4	62,14244

Внешневнутренний	Внешневнутренний
центр	радиус
5	82,17398
6	72,04638
7	91,22949

Таким образом из заключающей таблицы можно видеть, что при данной генерации центральной вершиной является вершина 4 (Лазоревый проезд, 3 Ботанический сад).

Вывод

Таким образом, внешневнутренний радиус (62,142439): Этот параметр является суммой внешнего и внутреннего радиусов. В данном случае он равен удвоенному внешнему (и внутреннему) радиусу. Это свидетельствует о симметричной структуре графа.

Внешневнутренний центр (Вершина 4): это означает, что данная вершина находится в центре графа относительно радиусов, что может иметь значение при принятии решений о размещении ресурсов или разработке стратегий в рамках данной структуры.

Из того, что центр находится в четвёртой вершине, можно сделать следующие выводы относительно маршрутов:

Эффективность маршрутов: Вершина 4 является центром, значит пункт выдачи «А» в пункт «Б» логичнее разместить там, что может обеспечивать более эффективные маршруты внутри графа. Путевые задачи и перемещения между другими вершинами, возможно, будут более прямыми и быстрыми.

Централизованный доступ: Передвижение от вершины 4 к другим вершинам может быть более удобным и централизованным. Это может быть важным фактором при принятии решений о планировании маршрутов.

Равенство расстояний: Учитывая равенство внешнего и внутреннего радиусов, можно ожидать, что расстояния от центра до остальных вершин примерно одинаковы, что может способствовать равномерному покрытию и обслуживанию структуры.

Лёгкость обслуживания: Структура, в которой центр находится в четвёртой вершине, может облегчить обслуживание и управление маршрутами, поскольку управление может быть сосредоточено в центре.

Список использованных источников

1. Монография, учебники и т.п.: 1. Горбатов В.А. Дискретная математика. – М.: Изд-во АСТ: Астрель, 2003. – 447с.;

- 2. Спирина М.С. Дискретная математика. М.: Академия, 2014. 368с.;
- 3. Елисеева И.И. Общая теория статистики. М.: Финансы и статистика, 2008. 656с.
- 4. Халкачев Р.К. Лекции по дисциплине Алгоритмы дискретной математики 2022–№8,10;
- 5. <u>Практика_№1_задача_размещения_1_часть.pdf/Халкачев Р.К. / Алгрритмы</u> дискретной математики [Электронный ресурс]
- 6. Научная библиотека/3. Центр и радиус [Электронный ресурс] 2023г
- 7. <u>StudFiles/studfile.net/Лекция 6 размещение центра и медиан на графах [Электронный ресурс] 2021г.</u>
- 8. <u>Курсовой проект/Запись собрания.mp4/ Яндекс Диск [Элекронный ресурс] 2023</u>
 <u>г.</u>
- 9. StudFile/studfile.net/preview/8.2 Размещение экстренных пунктов обслуживания [Электронный ресурс] 2023г.