Question 1 - 9231/May/June/22/12 Q3

The sequence of positive numbers u_1, u_2, u_3, \dots is such that $u_1 > 4$ and, for $n \ge 1$,

$$u_{n+1} = \frac{u_n^2 + u_n + 12}{2u_n}.$$

(a) By considering $u_{n+1}-4$, or otherwise, prove by mathematical induction that $u_n > 4$ for all positive integers n. [5]

let
$$P_k$$
 be the statement that for an integer $1=k$, $u_k>4$

$$u_{k+1}=\frac{u_k^2+u_k+12}{2u_k}=\frac{u_k}{2}+\frac{1}{2}+\frac{6}{u_k}$$

$$= u_{k+1}-4=\frac{u_k}{2}+\frac{1}{2}+\frac{6}{u_k}-4$$

 $=\frac{4k}{2}+\frac{6}{4u}-\frac{7}{2}$

42>4. P₁ is true. A some that, for some integers k such that k≥1, Pk is true

$$\frac{1}{2} + \frac{6}{4} - \frac{7}{2} > 0$$

... This implies 4+1-4>0 => 4+1>4

· · As P₁ is true and P_k=> P_{k+1}, u_n>4 for n≥1