Homework 3 - Boolean Algebra - Gates / Error Detection

Due Wednesday Mon 24 - by end of class. You can turn in parts 4,5,6 on paper - 1,2,3 should be uploaded (Upload source code only).

Points total: 200

Testing you are expected to produce a unit test for each of the following. The test should print out "PASS" if it is successful and run at least 4 examples of good and bad values for each.

- 1. 50pts Implement a Luhn Verifier. Implement in your choice of { C, C++, Python, Go, Haskell, F#, Swift, Kotlin }.
- 2. 35pts Implement a Verhoeff verifier in { C, C++, Python, Go, Haskell, F#, Swift, Kotlin }. (Go steal the code in C see link and give credit, note the license you want an original that is MIT or 3 clause BSD then copy like crazy). This is the JavaScript(node.js) and Go version that I have on github.com. Search google for "verhoeff algorithm".

https://github.com/pschlump/verhoeff_algorithm Java script:

https://github.com/yuyudhan/verhoeff.git Do not copy this - it is proprietary code - No LICENSE file at all. Other solutions: License CC Attribution:

https://en.wikibooks.org/wiki/Algorithm_Implementation/Checksums/Verhoeff_Algorithm Look at the LICENSE - is it OK to use? What is a BSD 3 calause, an Apache Foundation version 2, a MIT License? Use GOOGLE!

- 3. 35pts write a short C Program to calculate the Hamming distance between 0x43 and 0x121.
- 4. 25pts Provide the circuit diagram in mixed logic for

Dec1 = (A & !B & !C & !D) & !X & Y

Dec2 = (A & !B & !C & !D) & X & !Y

Dec3 = (A & !B & !C & !D) & X & Y

(A&!B&!C&!D) is a commmon sub-expression in the hardware.

5. 25pts - Derive the truth table for:

6. 30pts - Given the following truth table show the circuit for: An examlle of a 7 segment decoder is: 74ls47 7-segment LED decoder - see https://buzztech.in/bcd-to-seven-segment-decoder-program-in-vhdl/ Do note that it will not handle 10...15 the same way - it is not decoded to an E.

I, J, K, L are inputs

a, b, c, d, e, f, g are outputs

Decimal Digit	Hex	I	J	K	L	а	b	С	d	е	f	g	Display Pattern
0	0x0	0	0	0	0	1	1	1	1	1	1	0	8
1	0x1	0	0	0	1	0	1	1	0	0	0	0	8
2	0x2	0	0	1	0	1	1	0	1	1	0	1	8
3	0x3	0	0	1	1	1	1	1	1	0	0	1	8
4	0x4	0	1	0	0	0	1	1	0	0	1	1	8
5	0x5	0	1	0	1	1	0	1	1	0	1	1	8
6	0x6	0	1	1	0	1	0	1	1	1	1	1	8
7	0x7	0	1	1	1	1	1	1	0	0	0	0	8
8	0x8	1	0	0	0	1	1	1	1	1	1	1	8
9	0x9	1	0	0	1	1	1	1	1	0	1	1	8
10	0xA	1	0	1	0	1	0	0	1	1	1	1	8
11	0xB	1	0	1	1	1	0	0	1	1	1	1	8
12	0xC	1	1	0	0	1	0	0	1	1	1	1	8
13	0xD	1	1	0	1	1	0	0	1	1	1	1	8
14	0xE	1	1	1	0	1	0	0	1	1	1	1	8

Decimal Digit	Hex	ı	J	K	L	а	b	С	d	е	f	g	Display Pattern
15	0xF	1	1	1	1	1	0	0	1	1	1	1	8

Copyright

7 Segment Display is modified from Wikimedia Commons CC Attribution license.

Copyright © University of Wyoming, 2020.