I. Állítsuk elő két halmaz metszetét!

Specifikáció

$$A = (x:set(E), y:set(E), z:set(E))$$

$$Ef = (x = x' \land y = y')$$

$$Uf = (z = x' \cap y') = (z = \bigcup_{e \in x' \cup y'} f(e))$$

$$ahol f: E \rightarrow 2^F \text{ és}$$

$$f(e) = \begin{cases} \emptyset & \text{ha} \quad e \in x' \land e \notin y' \\ \emptyset & \text{ha} \quad e \notin x' \land e \in y' \end{cases}$$

$$\{e\} & \text{ha} \quad e \in x' \land e \in y'$$

Összegzés

$$e \in t$$
 ~ $e \in x \cup y$ (halmaz elemeinek felsorolása)
 $H, +, 0$ ~ $2^E, \cup, \emptyset$

Algoritmus váz

A $z:=z \cup f(Current())$ részfeladat felbontható az e:=Current() és a $z:=z \cup f(e)$ részfeladatok szekvenciájára, a $z:=z \cup f(e)$ részfeladat pedig egy elágazás lesz:

enor(E) (olyan, mintha az $x \cup y$ elemeit kellene felsorolni, amit közvetlenül nem lehet)

Algoritmus egyben

A $z:=z \cup f(e)$ és a Next() elágazásai egybevonhatók:

z:=Ø					
	$x\neq\emptyset\lor y\neq\emptyset$				
	<i>x</i> ≠ Q	5	/		
e:=mem	e:=mem(x)				
$e \in x \land e \notin y$	$e \notin x \land $	e∈y			
_	_		$z:=z\cup\{e\}$		
$x := x - \{e\}$	y:=y-	{ <i>e</i> }	$x := x - \{e\}$		
			$y := y - \{e\}$		

Egyszerűsíthető a fenti program:

$$l:= t.End()$$
 $\sim l:= x=\emptyset \lor y=\emptyset$
 $e:=t.Current()$ $\sim e:=mem(x)$
 $t.Next()$ $\sim egyik ága felesleges.$

<i>z</i> :=Ø			
$x\neq\emptyset \land y\neq\emptyset$			
e:=m	nem(x)		
$ e \in x \land e \notin y $			
_	$z:=z\cup\{e\}$		
$x := x - \{e\}$	$x, y := x - \{e\}, y - \{e\}$		

<u>Megjegyzés</u>: Gondoljuk át, mi lenne a megoldás, a két halmaz különbségét, esetleg szimmetrikus differenciáját vagy unióját kell előállítani.

II. Dolgozzuk fel két rendezett és egyértelmű felsorolás elemeit!

$$A = (x:enor(E), y:enor(E), z: F^*)$$
 ahol $f: E \to F^*$ és
$$Ef = (x = x' \land y = y' \land x \uparrow \land y \uparrow)$$

$$Uf = (z = \bigoplus_{e \in x' \cup y'} f(e))$$

$$f(e) = \begin{cases} f_1(e) & ha & e \in \{x'\} \land e \notin \{y'\} \\ f_2(e) & ha & e \notin \{x'\} \land e \in \{y'\} \\ f_3(e) & ha & e \in \{x'\} \land e \in \{y'\} \end{cases}$$
 és az $f_1, f_2, f_3: E \to F^*$ adott függvények

Az utófeltételben az $e \in x \cup y$ szimbólum arra utal, hogy az x és y felsorolásában szereplő elemeket kell felsorolni. Az $\{x\}$ az x felsorolás elemeinek halmazát jelöli.

Algoritmus váz

A megoldás az x és y elemeinek közös (összefuttatott) felsorolására (t:enor(E)) épített összegzés.

$$z:=<> t.First()$$

$$\neg t.End()$$

$$z:=z \oplus f(t.Current())$$

$$t.Next()$$

A felsorolás során lényeges, hogy a *t.Current()* által visszaadott elemről meg tudjuk mondani, hogy az csak az *x*, csak az *y*, vagy mindkét felsorolásban szerepel-e.

Összefuttatott felsoroló: enor(E)

E^*	t.First()	t.Next()	<i>l</i> := <i>t</i> . <i>End</i> ()	e:= t.Current()
x: enor(E)	x.First()	lásd később	$l:=x.End() \land y.End()$	lásd később
y: enor(E)	y.First()			

Nyilvánvaló, hogy az összefuttatás a két felsorolóra épül: azokkal reprezentáljuk az összefuttatott felsorolót. Az összefuttatáshoz kezdetben mindkét felsorolást el kell indítani (lásd *First()*), és akkor áll le, ha mindkettő befejeződött (lásd *End()*). Kihasználva, hogy külön-külön mindkét felsorolás szigorúan növekedően rendezett, az alábbi elágazással mindig kiválaszthatunk olyan elemet (*e*), amelyről megmondható, hogy az csak az *x*, csak az *y*, vagy mindkét felsorolásnak eleme-e.

e:=Current()

$y.End() \lor (\neg x.End() \land x.Current() < y.Current())$	$x.End() \lor (\neg y.End() \land x.Current() \gt y.Current())$	$\neg x.End() \land \neg y.End() \land x.Current() = y.Current()$
e:=x.Current()	e:=y.Current()	e:=x.Current()

A *Next()* műveletnek a *Current()* műveletben kiválasztott elemet kell "kivennie" mindkét felsorolásból, azaz attól függően, hogy a kiválasztott elem csak az *x*, csak az *y*, vagy mindkét felsorolásban szerepel, a megfelelő felsorolásokban tovább kell lépni.

t.Next()

$y.End() \lor (\neg x.End() \land x.Current() < y.Current())$	$x.End() \lor (\neg y.End() \land x.Current() \gt y.Current())$	$\neg x.End() \land \neg y.End() \land x.Current() = y.Current()$
x.Next()	y.Next()	x. Next(); y.Next()

Megjegyzés: Az összefuttatás az $\{x\} \cup \{y\}$ elemeit rendezettségük sorrendjében sorolja fel.

Főprogram

A $z:=z \oplus f(t.Current())$ értékadást az e:=Current() és a $z:=z \oplus f(e)$ összevonásával kapjuk:

,	$y.End() \lor (\neg x.End() \land x.Current() < y.Current())$	$x.End() \lor (\neg y.End() \land x.Current() \gt y.Current())$	$\neg x.End() \land \neg y.End() \land x.Current() = y.Current()$
	$z:=z\oplus f_I(x.Current())$	$z:=z\oplus f_2(y.Current())$	$z:=z\oplus f_3(x.Current())$

Ezt összevonhatjuk a t.Next() elágazásával, és összességében az alábbi programhoz jutunk.

z:=<>; x.First(); y.First()			
$\neg x.End() \lor \neg y.End()$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$z:=z \oplus f_1(x.Current())$ $z:=z \oplus f_2(x.Current())$ $z:=z \oplus f_3(x.Current())$			
x.Next()	y.Next()	x. Next(); y.Next()	

Megjegyzés

Az f függvény ismeretében egyszerűsíthető a fenti program. Ha például csak a közös elemeket kell változtatás nélkül kigyűjteni, akkor egyszerűsödik a ciklusfeltétel ($\neg x.End() \land \neg y.End()$), és emiatt az elágazás feltételek is.

z:=<>; x.First(); y.First()			
$\neg x.End() \land \neg y.End()$			
x.Current() < y.Current() $x.Current() > y.Current() $ $x.Current() = y.Current()$			
$- \qquad \qquad z := z \oplus \langle x.Current(z) \rangle$			
x.Next()	y.Next()	x. Next(); y.Next()	

Alkalmazások:

a) Kik voltak azok az alapító atyák közül származó USA elnökök, akik nem voltak a virginiai klán tagjai?

$$A = (x:infile(String), y:infile(String), z:outfile(String))$$

$$Ef = (x=x' \land y=y' \land x \uparrow \land y \uparrow)$$

$$Uf = (z = \bigoplus_{e \in x' \cup y'} f(e))$$

ahol $f:String \rightarrow String * és$

$$f(e) = \begin{cases} \langle e \rangle & ha & e \in \{x'\} \land e \notin \{y'\} \\ \langle \rangle & ha & e \notin \{x'\} \land e \in \{y'\} \\ \langle \rangle & ha & e \in \{x'\} \land e \in \{y'\} \end{cases}$$

$z := <> \\ sx, dx, x: read; sy, dy, y: read;$				
$sx=norm \lor sy=norm$				
$\begin{array}{c} sy = abnorm \lor \\ (sx = norm \land dx < dy) \end{array}$	$sx = abnorm \lor (sy = norm \land dx > dy)$	$sx=norm \land sy=norm$ $\land dx=dy$	$\frac{sx=norm}{sx=abnorm}$	
z:write(dx)	-	-		
sx,dx,x:read	sy,dy,y:read	sx,dx,x:read; sy,dy,y:read		

b) Hány olyan elnöke volt az USA-nak, aki az alapító atyák közé tartozott vagy a virginiai klán tagja volt, és a nevében hétnél kevesebb betű van?

$$A = (x:infile(String), y: infile(String), s:\mathbb{N})$$

$$Ef = (x=x' \land y=y' \land x \uparrow \land y \uparrow)$$

$$Uf = (s = \sum_{\substack{e \in x' \cup y' \\ |e| < 7}} 1)$$

s := 0 sx,dx,x:read; sy,dy,y:read;					
	SX=	$= norm \lor sy = r$	ıorm		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-		
dx < 1	7 /	dy < 7		dx < 7	
s:=s+1	_	s:=s+1	_	s:=s+1	_
sx,dx,x:re	ead	sy,dy,y:read		sx,dx,x:rea sy,dy,y:rea	-

c) Keressünk olyan USA elnököt, aki vagy az alapító atyák közé tartozott, de nem volt a virginiai klán tagja, vagy a virginiai klán tagja volt, de nem volt alapító atya!

$$A = (x:infile(String), y: infile(String), l: \mathbb{L}, e:String)$$

$$Ef = (x=x' \land y=y' \land x \uparrow \land y \uparrow)$$

$$Uf = (l, elem = \underset{e \in x' \cup y'}{search} e \in \{x'\} \circ \{y'\})$$

	l := hamis sx,dx,x:read; sy,dy,y:read;			
$sv=abnorm \lor$				
l, elem:=igaz, dx	l, elem:=igaz, dy	_		
sx,dx,x:read	sy,dy,y:read	sx,dx,x:read; sy,dy,y:read		