Comparing the Classical and Nonclassical Symmetries of Nonlinear Partial Differential Equations

William Helman and Daniel Sinderson

Southern Oregon University

2023

Introduction

Our research objective for this project was to calculate the classical and nonclassical symmetry groups for the reduced Gibbons-Tsarev equation and the Born-Infeld equation and compare them.

Definitions

Definition

A symmetry is a transformation that leaves an object invariant.

Definitions

Definition

A symmetry is a transformation that leaves an object invariant.

Definition

A symmetry is a change that doesn't change anything.

A Transformation that's not a Symmetry

Example (1)

Let's take the equation x - y = 0.

In slope-intercept form, this is the line y = x.

- For our first transformation, let's define new variables $\bar{x} = x + 1$ and $\bar{y} = y$.
- Now we rewrite our equation using these new variables.

$$ar x-ar y=0$$
 by definition $x+1-y=0$ by substitution $y=x+1$ by rewriting in slope-intercept form

• As we can see, this is NOT a transformation:

$$x - y + 1 \neq x - y$$

A Transformation that is a Symmetry

Example (2)

- Let's define some new variables again $\bar{x} = x + 1$ and $\bar{y} = y + 1$.
- Now we rewrite our equation using these new variables.

$$\begin{array}{c} \bar{x}-\bar{y}=0 & \text{by definition} \\ (x+1)-(y+1)=0 & \text{by substitution} \\ (x-y)+(1-1)=0 & \text{by algebra} \\ x-y=0 & \text{by algebra} \\ y=x & \text{by rewriting in slope-intercept form} \end{array}$$

• As we can see, this IS a transformation:

$$x - y = x - y$$

What is a Differential Equation?

The History of the Born-Infeld and the reduced Gibbons-Tsarev Equations

The Classical Symmetries of the Born-Infeld and the reduced Gibbons-Tsarev Equations

The Nonclassical Symmetries of the Born-Infeld and the reduced Gibbons-Tsarev Equations

Future Work: Does Integrability Imply Equivalence of Classical and Nonclassical Symmetries?

Future Work: Does Equivalence of Classical and Nonclassical Symmetries Imply Integrability?