Get the Best of Both Worlds: Improving Accuracy and Transferability by Grassmann Class Representation

Grassmann Class Representation

Grassmann Class Representation is to represent classes as linear subspaces in classification. The definition of **logit** is $l_i = \|\operatorname{proj}_{S_i} \boldsymbol{x}\|,$

where S_i is a linear subspace representing the *i*-th class. Numerically, S_i is written as a matrix consisting of its orthonormal bases.

Motivation

- > Hypothesis of **neural collapse**: features will reach minimal intra-class variability and maximal inter-class separability.
- > Observation in recent literature: the **collapse** of intra-class variability **hurts** performance of feature transfer.

Question

How to **increase intra-class variability** while at the same time maintain inter-class separability?

Answer

Model class as subspace. Allow features vary within class.

Haoqi Wang*

Zhizhong Li*

Wayne Zhang

TL:DR Represent a class by a subspace in classification

Riemannian Optimization

 $\mathcal{G}(1,2)$: lines in 2d plane

 $\max_{S \in \mathcal{G}(1,2)} \|\operatorname{proj}_{S} \boldsymbol{x_0}\|$

The set of k-dim subspaces in n-dim Euclidean space form a Grassmann manifold G(k, n).

We use **Riemannian SGD** to optimize class subspaces.

- Euclidean gradient to Riemannian gradient by projection
- 2. Update momentum
- 3. Move along geodesic toward gradient *G* $S(t) = (SV \cos(t\Sigma) + U \sin(t\Sigma))V^{T}$ where $\boldsymbol{G} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^T$ is thin SVD.

Angles Between Classes

The pair-wise angles between 1000 classes of ImageNet-1K.

class as vector

class as 8-dim subspace, principal angles

Classification Improvements

Softmax [8] 78.04 93.89 vector class representation CosineSoftmax [19] 78.30 94.07 1-dim subspace ArcFace [11] 76.66 92.98 1-dim subspace with margin MultiFC 77.34 93.65 8 fc layers ensembled SoftTriple [38] 75.55 92.62 8 centers weighted average SubCenterArcFace [10] 77.10 93.51 8 centers with one activated							
Softmax [8] 78.04 93.89 vector class representation 81 CosineSoftmax [19] 78.30 94.07 1-dim subspace 80 ArcFace [11] 76.66 92.98 1-dim subspace with margin 79.5 MultiFC 77.34 93.65 8 fc layers ensembled 79 SoftTriple [38] 75.55 92.62 8 centers weighted average 78.5 SubCenterArcFace [10] 77.10 93.51 8 centers with one activated	Setting	Top1	Top5	Class Representation	81.5		
	Softmax [8] CosineSoftmax [19] ArcFace [11] MultiFC SoftTriple [38] SubCenterArcFace [10] GCR (Ours)	78.30 76.66 77.34 75.55 0] 77.10	94.07 92.98 93.65 92.62 93.51	1-dim subspace 1-dim subspace with margin 8 fc layers ensembled 8 centers weighted average 8 centers with one activated	81 — 80.5 — 80 — 79.5 — 79 — 78.5 —	Grassmann	■ Gras

Different class representations trained on ImageNet-1K, ResNet50-D is used unless otherwise specified

Setting						Vector Class Representation				Grassmann Class Representation $(k = 8)$					
Architecture	n	BS E	Epoch	Lr Policy	Loss	Optimizer	Top1	Top5	Loss	Optimizer	Top1	Top5			
ResNet50 [16]	2048	256	100	Step	CE	SGD	76.58	93.05	CE	RSGD+SGD	77.77 (†1.19)	93.67 (†0.62)			
ResNet50-D [17]	2048	256	100	Cosine	CE	SGD	78.04	93.89	CE	RSGD+SGD	79.26 (†1.22)	94.44 (†0.55)			
ResNet101-D [17]	2048	256	100	Cosine	CE	SGD	79.32	94.62	CE	RSGD+SGD	80.24 (↑0.92)	94.95 (†0.33)			
ResNet152-D [17]	2048	256	100	Cosine	CE	SGD	80.00	95.02	CE	RSGD+SGD	80.44 (†0.44)	95.21 (†0.19)			
ResNeXt50 [52]	2048	256	100	Cosine	CE	SGD	78.02	93.98	CE	RSGD+SGD	79.00 (†0.98)	94.28 (†0.30)			
VGG13-BN [42]	4096	256	100	Step	CE	SGD	72.02	90.79	CE	RSGD+SGD	73.40 (†1.38)	91.30 (†0.51)			
Swin-T [26]	768	1024	300	WarmCos	LS	AdamW	81.06	95.51	LS	RSGD+AdamW	81.63 (†0.57)	95.77 (†0.26)			
Deit3-S [45]	384	2048	800	WarmCos	BCE	Lamb	81.53	95.21	CE	RSGD+Lamb	82.18 (†0.65)	95.73 (†0.52)			

Different backbones and training schedules. Networks are trained on ImageNet-1K.

Feature Transfer Improvements

Table 3: Linear transfer using SVM for different losses. ResNet50-D is used as the backbone, and model weights are pre-trained on ImageNet-1K. Variability measures the intra-class variability, and R^2 measures class separation.

Setting		Imag	geNet	Analy	sis	Linear Transfer (SVM)						
Name	k	Top-1	Top-5	Variability	R^2	CIFAR10	CIFAR100	Food	Pets	Cars	Flowers	Avg.
Softmax [8]		78.04	93.89	60.12	0.495	90.79	67.76	72.13	92.49	51.55	93.17	77.98
CosineSoftmax [1	9]	78.30	94.07	56.87	0.528	89.34	65.32	64.79	91.68	43.92	87.28	73.72
LabelSmoothing [44]	78.07	94.10	54.79	0.577	89.14	63.22	66.02	91.72	43.58	91.01	74.12
Dropout [43]		77.92	93.80	55.40	0.565	89.27	64.33	66.74	91.38	43.99	88.59	74.05
Sigmoid [5]		78.04	93.81	60.20	0.491	91.09	69.26	71.71	91.98	51.75	92.86	78.11
	1	78.42	94.14	56.50	0.534	89.98	66.34	64.34	91.37	42.97	86.85	73.64
	4	78.68	94.32	61.48	0.459	90.56	67.45	67.58	91.37	50.24	90.08	76.21
GCR (Ours)	8	79.26	94.44	63.49	0.430	90.13	67.90	70.06	91.85	53.25	92.64	77.64
	16	79.21	94.37	65.79	0.395	91.09	69.58	71.28	91.99	55.93	93.80	78.95
	32	78.63	94.05	67.74	0.365	91.35	69.49	71.80	92.47	58.05	95.04	79.70

Takeaway

- > GCR is an effective way to modeling classes as subspaces
- Riemannian SGD is effective to learn subspaces
- > GCR enhances accuracy and transferability simultaneously