INUC et ISM

Mardi 28 février 2014

Contrôle Programmation Python n°2 (durée 1h30)

Le cours est autorisé. La correction des exercices de TP n'est pas autorisée. Vous devez rendre toutes vos solutions dans un unique fichier, le fichier joint nom_prenom.py et en plaçant votre nom et prénom dans le nom du fichier (uniquement des lettres et le caractère _ et sans placer d'espaces ou d'accents). L'énoncé comporte 3 exercices.

1. Sous-listes d'une liste (7 points)

On donne une liste L d'entiers entre 0 et 9, par exemple

$$L = [5, 5, 0, 8, 1, 4, 2, 3, 7, 8, 1, 4, 2, 3, 3]$$

On observe que cette liste contient exactement à deux reprises la sous-liste M = [8, 1, 4, 2]: en effet, les chiffres 8, 1, 4, 2 apparaissent les uns à la suite des autres dans L en exactement deux endroits.

Ecrire une fonction nb_sous_listes(L, M) qui renvoie le nombre de sous-listes identiques à M et qui sont présentes dans L. Avec l'exemple ci-dessus, la fonction doit renvoyer 2.

2. Tourner une matrice d'un quart de tour (7 points)

1)a) Ecrire une fonction $\mathtt{rotate}(\texttt{M})$ qui étant donné une matrice carrée M de taille $n \times n$ renvoie la matrice N déduite de M par rotation d'un quart de tour dans le sens des aiguilles d'une montre.

Par exemple, voici une matrice M et la matrice N = rotate(M):

- b) En déduire une fonction antiRotate(M) qui renvoie la matrice déduite de M par rotation d'un quart de tour dans le sens *inverse* des aiguilles d'une montre.
- 2) On se propose d'obtenir $\mathbb N$ par une autre méthode. On rappelle que la transpos'ee d'une matrice A est la matrice dont les lignes sont exactement les colonnes de A.

On considère par ailleurs la matrice J de taille $n \times n$ dont tous les termes valent 0 sauf les termes de la diagonale secondaire qui eux valent tous 1. Par exemple,

si
$$n=3$$
 alors $J=\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$. La diagonale secondaire est la diagonale qui

joint le coin inférieur gauche au coin supérieur droit.

- a) Ecrire une fonction matriceJ(n) qui renvoie la matrice J de taille $n \times n$. On utilisera les fonctions matriceNulle et afficher du fichier matrices.py.
- b) On admettra alors que si T est la transposée de la matrice M alors le produit de matrices T x J est la matrice M déduite de M par rotation d'un quart de tour dans le sens des aiguilles d'une montre.

Ecrire une fonction rotation(M) qui renvoie la matrice N en utilisant la méthode que l'on vient de décrire. On utilisera les fonctions dimensions, transpose, produit et afficher du fichier matrices.py.

3. Le plus petit et le plus grand (6 points)

Soient une liste L d'entiers, de longueur n>0 et k un entier tel que $1\leq k\leq n$. Ecrire une fonction récursive $\min_{\tt} \max(L, k)$ qui renvoie la liste de deux éléments [m, M] constituée

- du plus petit élément m
- du plus grand élément M

choisis parmi les k premiers éléments de la liste L.

Voici quelques exemples de comportements de la fonction :

$$L = [42, 81, 31, 81, 12, 99, 81], k = 4 \longrightarrow [31, 81]$$

 $L = [42, 81, 31, 81, 12, 99, 81], k = 2 \longrightarrow [42, 81]$
 $L = [42], k = 1 \longrightarrow [42, 42]$
 $L = [42, 42, 42, 42], k = 3 \longrightarrow [42, 42]$

Explication du premier exemple. Comme k=4, on recherche le plus petit et le plus grand élément des 4 premiers éléments de la liste L autrement dit, le plus petit et le plus grand élément de la liste [42, 81, 31, 81]. Le plus petit élément est bien 31 et le plus grand est bien 81 d'où la réponse [31, 81].