FMI, Info, Anul I Semestrul I, 2016/2017 Logică matematică și computațională Laurențiu Leuștean, Alexandra Otiman, Andrei Sipoș

Seminar 10

(S10.1) Fie $n \in \mathbb{N}^*$. Notăm cu $Form_n$ mulțimea acelor $\varphi \in Form$ ce verifică faptul că

$$Var(\varphi) = \{v_0, ..., v_{n-1}\}.$$

Calculați numărul de elemente al mulțimii cât $Form_n/\sim$.

(S10.2) Să se testeze dacă următoarele mulțimi de clauze sunt satisfiabile:

- (i) $\{\{\neg v_0, v_1, \neg v_3\}, \{\neg v_2, \neg v_1\}, \{v_0, v_2\}, \{v_0\}, \{v_2\}, \{v_3\}\};$
- (ii) $\{\{v_0, v_1\}, \{\neg v_1, v_2\}, \{\neg v_0, v_2, v_3\}\}.$

(S10.3) Să se determine mulțimea $Res(C_1, C_2)$ în fiecare din următoarele cazuri:

- (i) $C_1 := \{v_1, \neg v_4, v_5\}; C_2 := \{v_4, v_5, v_6\};$
- (ii) $C_1 := \{v_3, \neg v_4, v_5\}; C_2 := \{\neg v_3, v_1, v_6, v_4\};$
- (iii) $C_1 := \{v_1, \neg v_3\}; C_2 := \{v_1, \neg v_2\}.$
- (S10.4) Derivați prin rezoluție clauza $C := \{v_0, \neg v_2, v_3\}$ din mulțimea

$$\mathcal{S} := \{\{v_0, v_4\}, \{\neg v_1, \neg v_2, v_0\}, \{\neg v_4, v_0, v_1\}, \{\neg v_0, v_3\}\}.$$

(S10.5) Să se deriveze prin rezoluție clauza $C := \{ \neg v_0, v_2 \}$ din forma clauzală a unei formule în FNC echivalente semantic cu:

$$\varphi := ((v_0 \wedge v_1) \to v_2) \wedge (v_0 \to v_1)$$

(S10.6) Să se arate, folosind rezoluția, că formula:

$$\varphi := (v_0 \vee v_2) \wedge (v_2 \to v_1) \wedge \neg v_1 \wedge (v_0 \to v_4) \wedge \neg v_3 \wedge (v_4 \to v_3)$$

este nesatisfiabilă.

(S10.7) Să se ruleze algoritmul Davis-Putnam pentru intrarea:

$$\{\{\neg v_0, \neg v_1, v_2\}, \{\neg v_3, v_1, v_4\}, \{\neg v_0, \neg v_4, v_5\}, \{\neg v_2, v_6\}, \{\neg v_5, v_6\}, \{\neg v_0, v_3\}, \{v_0\}, \{\neg v_6\}\}.$$

- (S10.8) Există o derivare prin rezoluție a lui \square din mulțimea de clauze $\mathcal{S} := \{C_1 := \{v_0, \neg v_1\}, C_2 := \{\neg v_0, v_1\}\}$? Justificați.
- (S10.9) Demonstrați, folosindu-vă de proprietățile satisfacerii semantice și de aplicarea sistematică (i.e., via algoritmul Davis-Putnam) a regulii rezoluției:

$$\{\neg v_2, v_2 \to \neg v_3, v_3 \to v_4\} \vDash (\neg v_3 \to \neg (v_1 \to v_2)) \lor (v_1 \to (v_3 \land v_4)) \lor v_4.$$