S&DS 365 / 665 Intermediate Machine Learning

Approximate Inference: Gibbs Sampling for DP Mixtures

March 2

Reminders

- Assignment 2 due next Wednesday
- Quiz 2 available starting at 1pm today (CNN, GP, DP)
 - available for 48 hours
 - 30 minutes once started
- Midterm on March 16 in class
 - practice exam next week
 - review week of March 14

For Today

- Recap: Dirichlet process algos and definitions
- Dirichlet process mixtures
- Approximate inference with Gibbs sampling

The Dirichlet Process

- The Dirichlet process is analogous to the Gaussian process
- Every partition of sample space has a Dirichlet distribution (more precise shortly)
- GPs are tools for regression functions; DPs are tools for distributions and densities

Dirichlet process

Each sample from a Dirichlet process prior has a *random collection of weights*, assigned to a *random selection of data*

Sample from DP prior

Stick breaking process

Stick breaking:

• At each step, break off a fraction $V \sim \text{Beta}(1, \alpha)$

"Imaginary data":

At each step, sample X ∼ F₀

Stick breaking process

To draw a single random distribution F from $DP(\alpha, F_0)$:

- ① Draw s_1, s_2, \ldots independently from F_0 .
- ② Draw $V_1, V_2, \ldots \sim \text{Beta}(1, \alpha)$ and set $w_j = V_j \prod_{i=1}^{j-1} (1 V_i)$
- 3 Let F be the discrete distribution that puts mass w_j at s_j

8

Stick breaking process

The mean of Beta $(1, \alpha)$ is $\frac{1}{1+\alpha}$.

- ullet As lpha gets larger, the weights get smaller
- Weights always sum to one

Different α

Different α

Clustering/repeats

Suppose we draw data *F* from a Dirichlet process, and then sample data from *F*:

$$F \sim DP(\alpha, F_0)$$

$$X_1, X_2, \ldots, X_n \mid F \sim F$$

Since F is a mixture model (of point masses), the samples X_i are clustered according to which mixture component they are sampled from.

The "Chinese restaurant process" captures this

Chinese restaurant mnemonic

A customer (data point) comes into the restaurant and either

- lacktriangle sits at an empty table, with probability proportional to α , or
- sits at an occupied table with probability proportional to number of customers already seated at that table

Chinese restaurant process

- **1** Draw $X_1 \sim F_0$.
- 2 Given X_1, X_2, \dots, X_n , sample next point as

$$X_{n+1} \mid X_1, \dots X_n = egin{cases} X \sim F_n & \text{with probability } rac{n}{n+lpha} \ X \sim F_0 & \text{with probability } rac{lpha}{n+lpha} \end{cases}$$

where F_n is the empirical distribution of X_1, \ldots, X_n

This allows us to sample from the marginal distribution over X, without explicitly drawing a distribution F from the DP

Chinese restaurant process

Let X_1^*, X_2^*, \dots denote unique values of X_1, \dots, X_n

Define cluster assignment variables c_1, \ldots, c_n where $c_i = j$ means that X_i takes the value X_i^*

Let $n_j = |\{i: c_j = j\}|$. Then

$$X_{n+1} = egin{cases} X_j^* & \text{with probability } rac{n_j}{n+lpha} \ X \sim F_0 & \text{with probability } rac{lpha}{n+lpha} \end{cases}$$

This allows us to sample from the marginal distribution over X, without explicitly drawing a distribution F from the DP

The posterior distribution

Let $X_1, \ldots, X_n \sim F$ and let F have prior $\pi = DP(\alpha, F_0)$

Then the posterior π for F given X_1, \ldots, X_n is

$$DP\left(\alpha+n,\overline{F}_{n}\right)$$

where

$$\overline{F}_n = \frac{n}{n+\alpha}F_n + \frac{\alpha}{n+\alpha}F_0.$$

Here F_n is the empirical distribution of X_1, \ldots, X_n

This says that the Dirichlet process is conjugate to sampling from the distribution—the posterior is another DP

From DP to DPM

- A DP is a distribution over distributions.
- A Dirichlet process mixture is a distribution over mixture models
- DPMs are Bayesian versions of kernel density estimation
- Subject to the curse of dimensionality!
- In stick breaking we replace X_i by θ_i
- In Chinese restaurant process we replace X_i^* by $heta_i^*$

Recall: KDE

The *kernel density estimate* is the mixture model that places weight $\frac{1}{n}$ on the kernel bump function centered on each data point:

$$\widehat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{X_i - x}{h}\right)$$

Recall: KDE

Recall: KDE

Sample from DP mixture

Nonparametric Bayesian mixture model

$$F \sim DP(\alpha, F_0)$$

 $\theta_1, \dots, \theta_n \mid F \sim F$
 $X_i \mid \theta_i \sim f(x \mid \theta_i), \quad i = 1, \dots, n.$

Stick breaking process for DPM

Stick breaking:

• At each step, break off a fraction $V \sim \text{Beta}(1, \alpha)$

Sample model parameters:

• At each step, sample $\theta \sim F_0$

Stick breaking process for DPM

To draw a single random mixture from $DPM(\alpha, F_0)$:

- **1** Draw $\theta_1, \theta_2, \ldots$ independently from F_0 .
- ② Draw $V_1, V_2, \ldots \sim \text{Beta}(1, \alpha)$ and set $w_j = V_j \prod_{i=1}^{j-1} (1 V_i)$
- 3 Let f be the (infinite) mixture model

$$f(x) = \sum_{j=1}^{\infty} w_j f(x \mid \theta_j)$$

Chinese restaurant process for a DPM

- **1** Draw $\theta_1 \sim F_0$.
- 2 Given $\theta_1, \theta_2, \dots, \theta_n$ sample new model as

$$\theta_{n+1} \mid \theta_1, \dots \theta_{n-1} = \begin{cases} \theta \sim F_n & \text{with probability } \frac{n}{n+\alpha} \\ \\ \theta \sim F_0 & \text{with probability } \frac{\alpha}{n+\alpha} \end{cases}$$

where F_n is the empirical distribution of $\theta_1, \dots \theta_n$

Chinese restaurant process for a DPM

Let $\theta_1^*, \theta_2^*, \dots$ denote unique values of $\theta_1, \dots, \theta_n$

Define cluster assignment variables c_1, \ldots, c_n where $c_i = j$ means that θ_i takes the value θ_i^*

Let $n_j = |\{i : c_j = j\}|$. Then

$$heta_{n+1} = egin{cases} heta_j^* & ext{with probability } rac{n_j}{n+lpha} \ heta \sim F_0 & ext{with probability } rac{lpha}{n+lpha} \end{cases}$$

2

The posterior for a DPM

- The posterior distribution does not have a closed form need to approximate it algorithmically
- Two forms of approximations: Gibbs sampling and variational methods — next topic

Gibbs sampling

We'll use the CRP to approximate the DPM posterior

Let's go to the chalk board!

Summary

- A Dirichlet process mixture is a Bayesian version of kernel density estimation
- The posterior distribution cannot be computed explicitly—must be approximated
- Gibbs sampling approximates posterior by iteratively re-clustering the data
- Bayesian nonparametric methods require a lot of conceptual machinery and computation