Omega Notation (Lower Bound on Order of Growth)

 $f(n) = \Omega(g(n))$ if there exist positive constants c and n_0 such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$

Example: f(n) = 2n + 3 can written as $\Omega(n)$.

Place,
$$c = 1$$

$$\Rightarrow$$
 cg(n) = n

$$\Rightarrow$$
 n \le 2n + 3 n₀ = 0

$$f(n) = 2n^2 + 3n + 6$$

= $\Omega(n^2)$

- 1. $\{n/4, n/2, 2n, 3n, 2n + 3, n^2, 2n^2,, n^n\} \subseteq \Omega(n)$
- 2. If $f(n) = \Omega(g(n))$, then g(n) = O(f(n))
- 3. Omega notation is useful when we have lower bound on time complexity.