LaMEM short course

17-21 02 2025 Heidelberg

Nicolas Riel- nriel@uni-mainz.de

How to compute density diagram for LaMEM using MAGEMin?

MAGEMinApp.jl

using MAGEMinApp

(https://github.com/ComputationalThermodynamics)

id=8f2d4938-37a9-4151-ba1b-07a8347f58d2, MAGEMinApp GUI v=0.1.

Julia –t 5 #threaded Julia>] add MAGEMinApp Julia> using MAGEMinApp Julia> App()

http://127.0.0.1:8050/

web browser

- Select database,
- 2. select P-T range \rightarrow 200 to 1200 $^{\circ}$ C 2 to 24 kbar,
- 3. select levels of refinement = 4,
- choose MORB composition

Compute diagram (wait a few minutes)

Gives a low-resolution diagram (enough for density)

2. Change field to rho and colormap to jet

Gives a low-resolution diagram (enough for density)

Export to LaMEM

Now it can be added to your LaMEM julia script as rho_ph = "SM89_oxidised..."

- 3-4 refinements are enough for a LaMEM density diagram
- Can be done for any custom rock composition and PT conditions
- Make sure you use the right database
- Set minimum pressure > 0.0, e.g. 0.01!
- If your LaMEM simulation goes outside the computed diagram range, it will extrapolate the density from the used phase diagram

MAGEMin – how to choose database

Upper mantle density diagram (Peridotite.in)

