Data Outsourcing in Cloud Computing: Reliability, Security and Privacy

Ning Cao

WalmartLabs Engineering Manager

CNUTCon 2017 全球运维技术大会

上海·光大会展中心大酒店 | 2017.9.10-11

智能时代的新运维

大数据运维

DevOps

安全

SRE

Kubernetes

Serverless

游戏运维

AlOps

智能化运维

基础架构

监控

互联网金融

实践驱动的IT教育

http://www.stuq.org

斯达克学院(StuQ), 极客邦旗下实践驱动的IT教育平台。通过线下和线上多种形式的综合学习解决方案,帮助IT从业者和研发团队提升技能水平。

10大职业技术领域课程

SPEAKER INTRODUCE

曹宁 Walmar

WalmartLabs Engineering Manager

- Ning Cao is an engineering manager in search runtime team at WalmartLabs. Prior to that, he worked at Google, Huawei.
- Ning received his Ph.D. in Electrical and Computer Engineering at Worcester Polytechnic Institute. His publications have 4000+ citations.

TABLE OF

CONTENTS 大纲

- Data Outsourcing in Cloud Computing
- Reliable Data Outsourcing
- Search over Encrypted Cloud Data

- Cloud Computing
 - great flexibility
 - economic savings

- Public Cloud in China
 - IAAS: fast growing
 - 70%: cloud host, cloud storage

公共云细分市场规模(单位: 亿元人民币)

- Cloud Customers
 - Current: internet companies
 - · Game, e-commerce, mobile, social, etc
 - Next/Ongoing: traditional industries
 - Government, finance/bank, health/medical/hospital, manufacturing, transport, etc.

- Sensitive data outsourcing in public/hybrid Cloud
 - Data owner: government, finance/bank, health/medical/ hospital, etc.
 - · Requirement: data ownership, responsibility
 - · Concerns: reliability, availability, security, privacy, integrity, etc.

TABLE OF

CONTENTS 大纲

- Data Outsourcing in Cloud Computing
- Reliable Data Outsourcing
- Search over Encrypted Cloud Data

Unreliability of Cloud Storage

- Byzantine failures
 - hardware errors
 - cloud maintenance personnel' s misbehaviors
- External attacks
 - natural disasters, like fire and earthquake
 - · malicious hacking, e.g., pollution attack, or replay attack

Reliable Data Outsourcing

- How to ensure data reliability?
 - Adding data redundancy to multiple servers

TABLE OF

CONTENTS 大纲

- Data Outsourcing in Cloud Computing
- Reliable Data Outsourcing
 - Redundancy Techniques
 - Fountain Codes Based Reliable Storage
- Search over Encrypted Cloud Data

- Replication-based
 - Pros: simple data management
 - Cons: high storage cost

low throughput

- Erasure codes-based
 - Pros: much less data redundance

high throughput

Cons: less repair communication

- Network coding-based
 - networking technique
 - increase network throughput

- Network coding-based
 - Pros: less repair communication
 - Cons: high decoding cost

availability

- Network coding-based
 - Pros: less repair communication
 - Cons: high decoding cost

decreasing availability after rep

Data availabity after functional repair as in LTNC.

Data Reliability

- How to perform data repair and data retrieval at minimal cost in cloud?
 - Both data storage and transmission are charged
 - "pay-as-you-use"
 - low storage, computation and communication cost

TABLE OF

CONTENTS 大纲

- Data Outsourcing in Cloud Computing
- Reliable Data Outsourcing
 - Existing Redundancy Techniques
 - Fountain Codes Based Reliable Storage
- Search over Encrypted Cloud Data

Fountain Codes

- LT code (Luby transform code)
 - File M is split into m original packets, M1, . . . , Mm
 - Generate nα encoded packets following LT codes (bitwise XOR)
 - α is the number of packets outsourced to each storage server
 - $\alpha = m/k(1+\epsilon)$
 - Any k servers have totally m(1+ε) encoded packets

Fountain Codes

- LT code (Luby transform code)
 - Near-optimal erasure codes
 - all m original packets can be recovered from any m(1+ ϵ) encoded packets with probability 1- δ
 - Efficient decoding O(m*Inm): Fast Belief Propagation decoder
- Challenges to utilize LT code: Decodability; Efficient data repair

Data Decodability

- How to satisfy the data availability requirement in cloud storage?
 - Goal: all m original packets can be recovered from any m(1+ ϵ) encoded packets with probability 100% (vs. 1- δ)
 - Divide all the encoded packets equally into n groups
 - Run the Belief Propagation decoder on every k-combination of n groups
 - · If decoding fails, regenerate encoded packets until successful

Data Repair

- Exact repair
 - generate exactly same packets as those previously stored in corrupted servers
 - · do not introduce linear dependence: maintain the data availability
- Functional repair
 - generates correct encoded packets, but not exactly same as those corrupted
 - random linear recoding cannot satisfy the degree requirement in LT codes

Data Repair

- How to do exact repair?
 - A straightforward data repair method
 - recover all original data packets if a storage server is corrupted
 - · do the encoding to generate coded packets
 - Introduce much cost of both computation and communication!

Data Repair

- Exact repair
 - One repair server Sn+1

Complexity Analysis

· Theoretical complexity analysis (introduce repair server)

	Network Coding	Reed-Solomon	LTCS
Total server storage	$O((2n/(k+1))\cdot \mathcal{M})$	$O((1+n/k)\cdot \mathcal{M})$	$O((1 + n(1 + \varepsilon)/k) \cdot \mathcal{M})$
Encoding computation	$O(2nm^2/(k+1))$	$O(nm^2/k)$	$O((nm(1+\varepsilon)\ln m)/k)$
Retrieval communication	$O(\mathcal{M})$	$O(\mathcal{M})$	$O(\mathcal{M})$
Retrieval computation	$O(m^2)$	$O(m^2)$	$O(m \ln m)$
Repair communication	$O(2T/(k+1)\cdot \mathcal{M})$	$O(T(1/k+1/n)\cdot \mathcal{M})$	$O(T((1+\varepsilon)/k+1/n)\cdot \mathcal{M})$

Experimental Evaluation

Experimental Evaluation

Experimental Evaluation

TABLE OF

CONTENTS 大纲

- Data Outsourcing in Cloud Computing
- Reliable Data Outsourcing
- Search over Encrypted Cloud Data
 - Searchable Encryption
 - Predicate Encryption

- Sensitive Data have to be encrypted before outsourcing
 - protect data privacy and combat unsolicited accesses
- Encryption makes data utilization a challenging task
 - traditional plaintext search -> no privacy guarantees
 - downloading all data and decrypting locally -> impractical

TABLE OF

CONTENTS 大纲

- Data Outsourcing in Cloud Computing
- Reliable Data Outsourcing
- Search over Encrypted Cloud Data
 - Searchable Encryption
 - Predicate Encryption

Searchable Encryption

Two Categories based on the data contribution

Single Data Contributor Multiple Data Contributor

Single Data Contributor

- Data contributor (data owner) encrypts and outsources data to semi-trusted server;
- Trusted authority (data owner) gives authorized users the search capability (e.g. trapdoors);
- Authorized users send search capability to server who will execute search over encrypted data;

Single Data Contributor

- Applications
 - Private email -- email server
 - Remote storage -- storage server
 - Medical records -- data server
 - Public health monitoring
 - Stock trading via semi-trusted brokers

Multiple Data Contributors

- Data contributors encrypts and outsources data to semi-trusted server;
- Trusted authority (data owner) gives authorized users the search capability (e.g. trapdoors);
- Authorized users send search capability to server who will execute search over encrypted data;

Multiple Data Contributors

- Applications
 - Email server, Email gateway
 - Credit card payment gateway
 - Database
 - Medical records
 - Audit logs -- network, financial
 - network gateway/financial institutions, authorized auditor

Privacy Issues

Functionality

• IR Rank Technique

Index construction

Crypto Technique

TABLE OF

CONTENTS 大纲

- Data Outsourcing in Cloud Computing
- Reliable Data Outsourcing
- Search over Encrypted Cloud Data
 - Searchable Encryption
 - Predicate Encryption

- Traditional encryptions: only owner of secret key can decrypt
- Attribute-based Encryption(ABE): fine-grained access control
 - E.g., Ciphertext-Policy based ABE
 - Access policy embedded in ciphertext
 - Key associated with attributes
 - Ciphertext could be decrypted if key's attributes satisfy access policy

- Predicate Encryption:
 - plaintext m, attribute I -> ciphertext C
 - predicate/function f_y() -> trapdoor/token/key F_y()
 - cipher text C could be decrypted as m iff $F_y(C) = f_y(I) = 1$

- Predicate-only Encryption:
 - attribute I -> ciphertext C
 - predicate/function f_y() -> trapdoor/token/key F_y()
 - $F_y(C) = 1$ iff $f_y(I) = 1$

- Existing works:
 - Identity-based encryption: equality tests
 - Attribute-based encryption: conjunctions, range queries
 - Predicate encryption: disjunctions, inner products, etc
- Cons: computation complexity
 - bilinear map: e: $G \times G \rightarrow G_T$, e(ua, vb) = e(u, v)ab

THANKS

让创新技术推动社会进步

HELP TO BUILD A BETTER SOCIETY WITH INNOVATIVE TECHNOLOGIES

Geek Dang >. 极客邦技

专注中高端技术人员的技术媒体

高端技术人员学习型社交平台

实践驱动的IT教育平台

