МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

ПРЕОБРАЗОВАТЕЛИ КОДОВ

ОТЧЕТ

гудента 3 курса 331 группы
пециальности 10.05.01 — Компьютерная безопасность
акультета КНиИТ
ородина Артёма Горовича
роверил

аспирант

А. А. Мартышкин

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
Задание 1	4
Задание 2	5
Задание 3	7
Задание 4	8
Тестовые задания	
ЗАКЛЮЧЕНИЕ	0

введение

Целью данной работы служит ознакомление с устройством и функционированием регистров и регистровой памяти, а также испытание интегрального универсального регистра сдвига.

Задание 1.

Запустить лабораторный комплекс Labworks и среду MS10. Открыть файл **33.4.ms10**, размещенный в папке **Circuit Design Suite 10.0** среды MS10, или собрать на рабочем поле среды MS10 схему для испытания *универсального регистра сдвига* и установить в диалоговых окнах компонентов их параметры или режимы работы. **Скопировать** схему в отчет.

Рисунок 1 – Схема универсального регистра сдвига.

Задание 2.

Составить план исследования параллельного регистра сдвига, заполнив ячейки памяти генератора слова **XWG1** на основе правил функционирования регистра **74HC194_4V**, отраженных в табл. 1.

Входы										Выходы			
Сброс	Старт	Режим		Послед. вход		Параллельный вход							
CLR	CLX	S0	S 1	SR	SL	A	В	С	D	QA	QB	QC	QD
0	х	х	х	х	х	х	х	х	х	0	0	0	0
1	0	Х	х	х	Х	Х	Х	Х	Х	QA_0	QB_0	QC_0	QD_0
1	1	1	1	х	х	A	В	С	D	A	В	С	D
1	1	1	0	1	х	X	х	Х	х	1	QA_n	QB_n	QC_n
1	1	1	0	0	Х	X	х	х	х	0	QA_n	QB_n	QC_n
1	1	0	1	х	1	X	X	х	х	QB_n	QC_n	QD_n	1
1	1	0	1	х	0	Х	Х	Х	Х	QB_n	QC_n	QD_n	0
1	х	0	0	х	Х	х	х	х	х	QA_0	QB_0	QC_0	QD_0

Примечание. 0 — низкий уровень; 1 — высокий уровень; x — любое состояние; \uparrow — положительный перепад (с низкого уровня на высокий); QA_0 , QB_0 , QC_0 , QD_0 — стационарные уровни A, B, C, D до установки указанных состояний на входах; QA_n , QB_n , QC_n , QD_n — соответственно уровни A, B, C, D перед началом прохождения фронта самого последнего тактового импульса.

Рисунок 2 – Основы правил функционирования регистра **74HC194 4V**.

Запустить программу моделирования параллельного регистра, **скопировать** в отчет программу и временные диаграммы сигналов на входах и выходах регистра.

Рисунок 3 – Ячейка памяти генератора слов **XWG1**.

Рисунок 4 — Временные диаграммы сигналов на входах и выходах первой части последовательности.

Рисунок 5 — Временные диаграммы сигналов на входах и выходах второй части последовательности.

Задание 3.

Открыть файл **33.7.ms10**, размещенный в папке **Circuit Design Suite 10.0** среды MS10, или собрать на рабочем поле среды MS10 схему для испытания *последовательного регистра сдвига* и установить в диалоговых окнах компонентов их параметры или режимы работы. **Скопировать** схему в отчет.

Рисунок 6 – Схема последовательного регистра сдвига.

Задание 4.

Составить план исследования последовательного регистра **74HC194_4V**, заполнив ячейки памяти генератора **XWG1** произвольными 4-разрядными кодовыми комбинациями, вводимыми последовательно в регистр A.

Рисунок 7 – Ячейки памяти генератора **XWG1**.

Запустить программу моделирования последовательного регистра, **ско-пировать** в отчет временные диаграммы сигналов на входах и выходах регистра при сдвиге данных влево и вправо.

Рисунок 8 – Временные диаграммы сигналов на входах и выходах регистра при сдвиге данных.

Тестовые задания

- 1. Укажите функции, которые в общем случае может выполнять регистр: 1) обнуление (очистку) хранимой информации, запись входной информации в последовательном или в параллельном коде, 2) преобразование информации путём её сдвига под воздействием тактовых импульсов, 3) Хранение информации, её сдвиг вправо и влево, выдачу хранимой информации в последовательном или в параллельном коде;
- 2. В параллельном регистре с приходом каждого тактового импульса информация на выходах поразрядно сдвигается в направлении от выхода **QD** к выходу **QA**. Укажите, как **называют** такой регистр: **регистр прямого сдвига**;
- 3. Укажите, какие регистры выполняют со **статическим** управлением: **последовательные**;
- 4. Укажите, при каких **уровнях сигналов** на управляющих входах S0 и S1 информационные входы реверсивного регистра $74HC194_4V$ недоступны: S0 = 0, S1 = 0;
- 5. Укажите, в какой **разряд** вводится информация последовательного регистра **74HC194_4V** при **S0** = 1, **S1** = 0 на управляющих входах и сигналах $\mathbf{SR} = 1$ и $\overline{CLR} = 1$: в рязряд **A**;
- 6. Укажите, при **каких уровнях** управляющих сигналов **S0** и **S1** разрешена запись информации в параллельный регистр **74HC194_4V**: **S0 = 1, S1 = 1**;
- 7. Укажите, разрешено ли последовательное **перемещение** сигналов в триггерной подсистеме параллельного регистра **74HC194_4V** во время записи информации: **нет**;
- 8. Укажите, сколько **входов** имеет последовательный регистр с динамическим управлением: **три: один информационный, вход для тактовых импульсов и установочный вход**;
- 9. Укажите, чем отличается динамическое управление регистрами от статического управления: при динамическом управлении запоминание сигналов, действующих на информационных входах регистра, происходит во входных емкостях МДП- транзисторов в момент изменения значения сигнала на входе синхронизации, а в статических регистрах, построенных, например, на RS-триггерах, сигналы действуют в момент их поступления на информационные входы.

ЗАКЛЮЧЕНИЕ

В ходе лабораторной работы мы ознакомились с устройством и функционированием регистров и регистровой памяти, а также испытали интегральный универсальный регистр сдвига на практике.