конспект гранде

October 23, 2024

Abstract Это всего лишь неловкие попытки совместить приятное с полезным - освоить большую часть матмематических команд и фукнций I ^A TEXa и заодно повторить (ну или выучить) материал к коллоку. Если вам эта штукенция попалась в руки - не обращайте		1 T	8.1 Окрестности для разных интервалов 6 8.2 Свойства окрестностей 6
		гь 10 1и ге	последовательности. Ограниченные и неограниченные последовательности. Примеры 6
внимания, проходите мимо и не осуждайте неточности и грубость изложения			10 Определение предела последовательности, геометрический смысл. Сходящиеся и расходящиеся
Contents			последовательности. Примеры. 7 10.1 Частные случаи определения предела
1		1 1	последовательности
	1.2 Бином Ньютона	2	1 Число сочетаний, свойства.
2	Принцип математической индукции,		Бином Ньютона. Примеры.
_	примеры. Неравенство Бернулли.	2 2	Презентация по теме: 03.09.24, гл. 1, пар. 1
3	3.1 Манипуляции с множествами	2 2	Сразу - тут могло бы быть определение факториала, но его нет в вопросе, потому нет так нет. Но для общего развития: ϕ акториал - это та штучка с восклицательным знаком около числа; обозначает последовательное перемножение всех чисел от 1 до данного числа. Типа, факториал числа 5 (5!) это перемножение всех чисел от 1 до пяти: $1*2*3*4*5=120$.
E	•	3	Числом сочетаний из n по k называется число равное $\frac{n!}{k!(n-k)!}$, при $n \leq k$. Оно обозначается как C_n^k . Так же является числом неупорядоченных из k элементов множества, состоящего из n элементов. (Есть мешок из 5 яблок, мы в абсолютно случайном
5	Конечные, бесконечные, счетные, не более чем счетные и несчетные множества. Примеры	4	порядке хотим вытащить 3 яблока - $C_5^3 = \frac{5!}{3!(5-3)!}$), это так называемый комбинаторный смысл числа сочетаний.
6	6.1 Вещественные числа		$egin{aligned} {f 1.1} & {f C}$ войства числа сочетаний ${\bf 1.} & C_n^k = C_n^{n-k} \\ {\bf 2.} & C_n^0 = C_n^n = 1 \\ {\bf 3.} & C_n^1 = C_n^{n-1} = n \end{aligned}$
7	Лемма о вложенных сегментах.	5	4. $C_n^{k-1} + C_n^k = C_{n+1}^k$
8	Окрестности. ε -окрестности, их геометрический смысл, запись в виде неравенства. Свойства окрестностей.		В основном, чаще всего мы вспоминаем про первое и третье - особенно полезно помнить при раскрытиях биномов Ньютона, так как они объясняют

симметричность коэффициентов; про второе никто не вспоминает, но всеми ими пользуются (те самые единицы в треугольнике Паскаля как раз появляются из-за них), но да ладно.

Вопроса на докозательство этих штук нет! Чему я безусловно рада, но доказываются они буквально через раскрытие всех выражений через формулу, а дальше простая арифметика. Потому не теряемся если спросит!

1.2 Бином Ньютона

А, кстати, о нем.

$$(a+b)^n = a^n + C_n^1 a^{n-1} b + C_n^2 a^{n-2} b^2 + \dots + C_n^{n-1} a b^{n-1} + b^n$$

Или же!

$$(a+b)^n = \sum_{k=0}^n C_n^k a^{n-k} b^k$$

Тут добавить более нечего, на деле. Это буквально все по теме, что было включено в презентацию, помимо примеров, до которых вы и сами додумаетесь если вспомните квадраты или кубы сумм или разностей.

2 Принцип математической индукции, примеры. Неравенство Бернулли.

Презентация по теме: 05.09.24, гл. 1, пар. 2

Принцип математической индукции: пусть $\rho_n, n \leq 1$ - последовательность утверждений. Если

- 1. Утверждение ρ_1 верное
- 2. Из того, что ρ_n верно, следует, что ρ_{n+1} верно. Тогда утверждение ρ_n верно при всех $n \leq 1$

Предположение о том, что ρ_n верно (первая часть второго пункта) называют индукционным предположением. Переход от истинности ρ_n к истинности ρ_{n+1} (сам второй пункт полностью) - индукционным переходом. Вся логика мат. индукции строится на том, что любое множество, состоящее из натуральных чисел, имеет наименьший элемент (собственно, потому она начинается с первого элемента и проверки истинности выражения на единице).

2.1 Неравенство Бернулли

$$(1+x)^n \le 1 + nx, x \le -1 textn \le 1$$

А теперь, самое веселое, доказательство:

1. Проверим истинность выражения для n = 1:

$$(1+x)^1 \le 1 + 1 * x \Leftrightarrow 1 + x \le 1 + x$$

2. Если оно верно для n=1, предположим что оно верно для n, тогда докажем его верность для n+1

$$(x+1)^{n+1} \le 1 + (n+1)x \Leftrightarrow$$

$$(x+1)(x+1)^n \le (1+nx)(1+x)$$

$$\leq (1+nx) + x = 1 + (n+1)x$$

ч.т.д. (допишу потом пояснения)

3 Множества, их объединение, пересечение, разность и декартово произведение. Геометрический смысл этих понятий. Примеры.

Презентация по теме: 05.09.24, гл. 1, пар. 3

Множество - набор, собрание, коллекция предметов определенной природы. Эти предметы называются элементами множества. Множество, не содержащее ни одного элемента, называется пустым и обозначается \emptyset . Как правило, они обозначаются прописными латинскими буквами (A,B,C,...Z), элементы же строчными (a,b,c,...z). Принадлежность элемента a множеству A обозначается при помощи значка \in и записывается как $a \in A$, непринадлежность же - $a \notin A$ (просто перечеркнули, да). Если нужно просто перечислить множество некоторых элементов, эти элементы заключают в фигурные скобки, т.е. $\{a,b,c,...z\}$.

Теперь о более сложном - предположим, $\rho(x)$ - некоторое логическое высказывание, а в некотором множестве A для всех элементов это высказывание истинно. Такое высказывание будет записываться как $\{x\in A|\rho(x)\}$ или $\{x|\rho(x)\}$

Из примеров множеств - любое числовое множество от мало до велика $(\mathbb{N},\mathbb{Z},\mathbb{R})$, ну или что-то более произвольное прозаическое - например, множество положительных рациональных чисел $\{x\in\mathbb{R}|x>0\}$. Сути не имеет, главное чтобы это был какой-то набор чисел, даже необязательно имеющих какое-то правило, которому они соотвествуют. (это уже были бы последовательности, например.. но об этом позже). Если каждый элемент множества A является элементом множества B или, как еще говорят, содержится, то A уазывают подмножеством B и обозначают $A \subset B$. Ну, или, если оно не содержится, то опять весьма просто перечеркивают $A \not\subset B$

Ну и о простом, если множества A и B состоят одни из одних и тех же элементов, то данные множества равны и обозначают это как A=B

3.1 Манипуляции с множествами

Объединением множеств A и B называется множество, состоящее из всех элементов, принадледащих множествам A и B - иными словами, тупо все элементы этих двух множеств. Обозначается как $A \cup B$.

Пересечением множеств A и B называется множество, состоящее из элементов принадлежащих как множеству A, так и множеству B. Обозначается как $A \cap B$.

Разностью множесвом A и B называется множество, состоящее из элементов принадлежащих множеству A, но не принадлежащих множеству B. Обозначается как $A \setminus B$.

И о самом сложном: пусть A и B - множества. Тогда множество $A \times B = ^{def} \{(a,b)|a \in A \wedge b \in B\}$ называется декартовым произведением множества A и B (по картинке правда яснее).

Соотвественно, все приведенные выше картинки и есть *геометрические* смыслы данных операций над множествами; если у вас появились внезапные ассоциации с 9-11 классом и кругами Эйлера - не беспокойтесь, они полностью оправданы, вставьте вместо квадратов круги и грубо говоря будете правы.

Отображение множества XY. Образ множество прообраз. Инъективное, сюръективное биективное И отображения. Примеры. Обратное отображение, критерий существования обратного отображения

Презентация по теме: 10.09.24, гл. 1, пар. 4

Отображением f множества X во множество Y называется правило, сопоставляющее каждому элементу $x \in X$ единственный элемент $y \in Y$. Факт отображения f записывается как $f: X \to Y$ или $X \to^f Y$, а факт сопоставления элемента x элементу y записывается в виде y = f(x) или же $x \to^f y$. Внимательные могли заметить что выбор буквы для обозначения отображения и сама формулировка кажется больно знакмой - оно и верно, ибо если $Y = \mathbb{R}$, то f называется ϕ ункцией.

Пусть $f:X\to Y$ и $E\subset X$. Тогда множество $f(E)=^{def}\{f(x)|x\in E\}$ называется **образом** множества E при отображении f.

И соотвественно, пусть $f: X \to Y$ и $F \subset Y$. Тогда множество $f^{-1}(F) = ^{def} \{x \in X | f(x) \in F\}$ называется **прообразом** множества F при отображении f.

В общем и целом, по-простому, по-людски, так сказать, образ - это множество значений функции от x на некотором участке E. Прообраз - обратное действие, дающее значение всех y в неком подмножестве F. Геометрические значения даны выше.

Отображением $f: X \to Y$ называется **инъекцией**, если для любых двух различных $x_1 \in X$ и $x_2 \in X$ верно то, что $f(x_1) \neq f(x_2)$; ну или же по более умному: $(\forall (x_1 \in X \land x_2 \in X) : x_1 \neq x_2) \Rightarrow f(x_1) \neq f(x_2)$

Отображение $f: X \to Y$ называется **сюрьекцией**, если для любого $y \in Y$ найдется $x \in X$ такой, что f(x) = y; иначе же - $\forall y \in Y \exists x \in X : f(x) = y$

По-простому же - иньекция - это ситуация, при котором для любого x существует собственный уникальный y, в то время как сюрьекция - это про то, что для любого x этот самый y в целом существует. В тех случаях же, когда при отображении $f:X\to Y$ выполняются оба правила - такое отображение будет называться **биекцией**

В качестве примера можно просто и незамысловато привести квадратичную функцию $f(x)=x^2$ и рассмотреть ее при разных на разных областях определения и значения: так, например, при $X=\mathbb{R},Y=\mathbb{R}$ не происходит ни сюрьекции, ни иньекции, зато при $X=\mathbb{R}_+,Y=\mathbb{R}$ происходит сюрьекция, а при $X=\mathbb{R}_+,Y=\mathbb{R}_+$ происходит биэкция. Самое сложное во всем этом не путаться

между определениями, но с картинками все намного проше...

Не уверена, будет ли определение композиции отображения, потому на всякий случай замечание - композиция отображения это отображение сложной функции, которое обозначается как $f\circ g(x)=^{def}f(g(x)).$ То бишь, $x\to^g y\to^f Z$ Пусть $f:X\to Y.$ Отображение $g:Y\to X$ называется обратным отображением к f, если $g(f(x))=x, \forall x\in X$ и $f(g(x))=y, \forall y\in Y.$ Обратное отображение g обозначается f^{-1} (то есть $f^{-1}=g$). Да, это обратная операция к отображению. Да, как $x\to^f y,$ но $y\to^{f^{-1}}x.$

Критерий существования обратного отображения до ужасного прост - отображение $f: X \to Y$ должно быть биэктивно. (теорема 4.1)

5 Конечные, бесконечные, счетные, не более чем счетные и несчетные множества. Примеры

Презентация по теме: 10.09.24, 12.09.24, гл. 1, пар. 5

Пусть $m \in \mathbb{N}$. Множество A состоит из m элементов, если существует биэкция между множеством A и множеством \mathbb{N}_m . Иными слвоами, элементы этого множества можно просто пронумеровать, тип раз элемент, два элемент. пресловутый элемент номер m - мы просто определяем, что воообще значит множество состоит из стольких-то элементов.

Множество называется конечным, если оно пустое или состоит из m элементов для некоторого натурального m. Множество называется бесконечным, если оно не является конечным. (тупо конечное если оно имеет конец и бесконечное, если нет лмао)

А теперь кайнда конфьюзинг моментс - множество A называется **счетным**, если существует биэкция между данным множеством и множеством \mathbb{N} . Их можно посчитать, но вопрос конечности - вопрос исключительно отдельный. Если оно конечно или бесконечно, но все элементам можно присвоить свой номер, мы называем такое множество не более чем счетным, в противном случае оно несчетное.

Немножка логичных следствий:

- 1. Подмножество счетного множества не более чем счетно
- 2. Образ счетного множества не более чем счетен
- 3. Объединение двух счетных множеств счетно
- 4. Декартово произведение двух счетных множеств счетно
- 5. Объединение счетного числа счетных множеств счетно

Так получилось, что тут про континуальность мы не говорим. А жаль.

6 Вещественные числа, их 6.2 свойства. Верхняя и нижняя оча грани числовых множеств. Точные грани. Примеры. Нача Модуль вещественного числа, его свойства.

Презентация по теме: 12.09.24, 17.09.24, гл. 1, пар. 6, 7

6.1 Вещественные числа

Множества вещественных чисел обозначается \mathbb{R} . А их свойства:

- 1. a + b = b + a
- 2. (a+b) + c = a + (b+c)
- 3. a + 0 = a
- 4. a + (-a) = 0
- 5. a * b = b * a
- 6. (a*b)*c = a*(b*c)
- 7. a * 1 = a
- 8. $a * a^{-1} = 1$
- 9. (a+b)*c = a*c + b*c
- 10. если a < b, b < c, то a < c
- 11. если a < b, то a + c < b + c
- 12. если a < b, c > 0, то a * c < b * c
- 13. если числовое множество A расположено левее числового множества B, то найдется число c, лежащее между ними (свойство непрерывности). ну или же:

$$((\forall A \neq \emptyset \land \forall B \neq \emptyset) : (\forall a \in A \land \forall b \in B \Rightarrow a \leq b))$$

$$\Rightarrow (\exists c \in \mathbb{R} : (\forall a \in A \land \forall b \in B \Rightarrow a \leq c \leq b))$$

 $(\forall a \in R \land b \in \mathbb{R} : a < b) \Rightarrow (\exists r \in \mathbb{Q} : a < r < b),$ иными словами, в любом не пустом интервале найдется рациональное число).

Определение модуля числа:

$$|x| = \{x, x \gg 0$$
$$-x, x < 0$$

He уверена, будет ли это в вопросе, но *неравенство* треугольница:

$$|a+b| \le |a| + |b|$$

И обрвтное неравенство треугольника

$$||a| - |b|| \le |a - b|$$

 $\overline{\mathbb{R}}=\{-\infty\}\cup\mathbb{R}\cup\{+\infty\}$ - расширенная вещественная прямая

6.2 Точные грани числовых множеств

Очарование данной темы в том, что оно наполнено рядами *пар* определений - аналогичные определения для чего-то большого и чего-то малого. Ситуативно начало у одного из них может как опускаться, так и нет - но суть остается той же и, вероятнее всего, каждое второе определение составлено по подобию каждого первого.

Пусть $A \subset \mathbb{R}, m \in \mathbb{R}$. Если при любом $a \in A$ выполняется неравенство $a \leq m$, то число m называетя **верхнью гранью множества** A. Если же $k \in \mathbb{R}$ и $a \geq k$, то k называется **нижнью гранью числвого множества** A. Данные грани определны неоднозначно и любое число выходящее за них (больше верхнего или меньше нижней) является данной гранью.

Числовое множество называется ограниченным сверху, если у этого множества существует верхняя грань. Числовое множество называется ограниченным снизу, если у этого множества есть нижняя грань. Числовое множество называется ограниченным, если оно ограничено и сверху, и снизу. Оно так же может быть неограниченным, да, та же логика (из примеров $\mathbb{N}, \mathbb{Q}, \mathbb{R}$)

Пусть $A \subset \mathbb{R}$. Если $q \in A$ и при любом $a \in A$ выполняется неравенство $a \leq p$, то число pназывается максимальным (наибольшим) элементом множества А. Максимальный элемент Если при тех же вводных обозначается $\max A$. выполняется неравенство $a \geq q$, то число q называется минимальным (наименьшим) элементом множества A. Минимальный элемент обозначается min A.Данные элементы не всегда существуют, например если A = [0, 1) наименьший элемент будет равен 0, а наибольшего не сущесвтует.

Пусть $A \subset \mathbb{R}$ - непустое. Если A ограничено сверху, то его точной верхней гранью (лат. supremum - наибольший) будем называть наименьшую из верхних граней множества A. Если A неограничено сверху, то его точной верхней гранью будем считать $+\infty$. Точная верхняя грань обозначается $\sup A$. И, опять-таки, при тех же началах, если A ограничено снизу, то его точной нижней гранью (лат. infinum - наименьший) будем называть наибольшую из нижних граней множества A, если оно неограничено, нижняя грань - $-\infty$, точная грань обозначается $\inf A$. Типа, $\sup[0,1)=1,\inf[0,1)=0$.

У любого непустого числового множества существует точные верхняя и нижняя грани.

7 Лемма о вложенных сегментах.

Презентация по теме: 17.09.24, гл. 1, пар. 7

 $oldsymbol{\Pi}$ емма о вложенных сегментах: пусть $[a_n,b_n], n\in\mathbb{N}$ замкнутные промежутки такие, что

1. $[a_n, b_n] \supset [a_{n+1}, b_{n+1}]$ при всех $n \ge 1$

Тогда $\exists c \in \mathbb{R}$ такое, что при всех $n \geq 1$ выполнено

 $c \in [a_n, b_n]$. Если дополнительно предположить,

 $2. infb_n - a_n | n \in \mathbb{N} = 0$

то такое число с единственно.

Теперь страшное. Доказательство:

8 Окрестности. ε -окрестности, их геометрический смысл, запись в виде неравенства. Свойства окрестностей.

Презентация по теме: 17.09.24, 19.09.24, гл. 1, пар. 8

Точно так же, как и с точными гранями множеств, тут будут ряды однотипных определений, только в несколько раз хуже - это будут не пары, а натурально ряды для разных случаев под разные возможности. Опять-таки, порой начало будет опускаться и из-за этого будет казаться более сжатым или непонятным. Просто держите в голове это.

Пусть $a \in \mathbb{R}$. Интервал, содержащий точку a, называется **окрестностью** a. Окрестности обозначаются U(a), V(a), W(a)

Пусть теперь $\lambda \in \mathbb{R}$. Интервал $(\lambda, +\infty)$ называется окрестностью $+\infty$. Аналогично интервал $(-\infty, \mu)$ при $\mu \in \mathbb{R}$ называется окрестностью $-\infty$. Если же интервал $(-\infty, \mu) \cup (\lambda, +\infty)$ - он называется окрестностью ∞ .

8.1 Окрестности для разных интервалов

1. Пусть $a\in\mathbb{R}, \varepsilon>0$. Интервал $(a-\varepsilon,a+\varepsilon)$ называется ε - окрестностью a.

$$x \in U_{\varepsilon}(a) \Leftrightarrow |x - a| < \varepsilon$$

$$x \in \overset{\circ}{U}_{\varepsilon}(a) \Leftrightarrow 0 < |x - a| < \varepsilon$$

2. Пусть $\varepsilon>0$. Интервал $(\varepsilon,+\infty)$ называется ε - окрестностью $+\infty$.

$$x \in U_{\varepsilon}(+\infty) \Leftrightarrow x > \varepsilon$$

3. Пусть $\varepsilon > 0$. Интервал $(-\infty, -\varepsilon)$ называется $\varepsilon > 0$ - окрестностью $-\infty$.

$$x \in U_{\varepsilon}(-\infty) \Leftrightarrow x < -\varepsilon$$

4. Пусть $\varepsilon > 0$. Интервал $(-\infty, -\varepsilon) \cup (\varepsilon, +\infty)$ называется ε - окрестностью ∞ .

$$x \in U_{\varepsilon}(\infty) \Leftrightarrow |x| > \varepsilon$$

Небольшая перебивочка на объяснение некоторых обозначений. Пусть $A \subset \mathbb{R}, B \subset \mathbb{R}, \alpha \in \mathbb{R}$, тогда

- 1. $\alpha * A \stackrel{def}{=} \{\alpha * a | a \in A\}$
- 2. $A + B \stackrel{def}{=} \{a + b | a \in A, b \in B\}$
- 3. $A * B \stackrel{def}{=} \{a * b | a \in A, b \in B\}$
- 4. $A^{-1} \stackrel{def}{=} \{ \frac{1}{a} | a \neq 0, a \in A \}$

8.2 Свойства окрестностей

- 1. Пусть $a\in\overline{\mathbb{R}}$. Тогда для любой окрестности U(a) точки а найдется $\varepsilon>0$ такое, что $V_\varepsilon\subset U(a)$
- 2. Если $a,b\in \mathbb{R}$ и $a\neq b$, то существуют окрестности U(a) и V(b) такие что $U(a)\cap V(b)=\emptyset$
- 3. Если U(a) и V(b) окрестности точки a, то $U(a) \cap V(a)$ окрестности точки a
- 4. Если $p,q \in U(a)$, то $[p,q] \subset U(a)$
- 5. Пусть $a,b,c\in\mathbb{R}$ и a=b+c. Тогда для любой окрестности U(a) найдутся окрестности V(b) и W(c) такие, что $V(b)+W(c)\subset U(a)$
- 6. Пусть $a,b,c\in\mathbb{R}$ и a=b*c. Тогда для любой окрестности U(a) найдутся окрестности V(b) и W(c) такие, что $V(b)*W(c)\subset U(a)$
- 7. Пусть $a\in\mathbb{R}$ и $a\neq0$. Тогда для любой окрестности $U(\frac1a)$ найдется окрестности V(a) такая, что $(V(a))^{-1}\subset U(\frac1a)$

Там включены доказательства, но опять-таки ни слова о том, что это будет спрашиваться - но, де-юре, упражнения на раскрытие определения окрестностей и последующую арифметику.

9 Понятие последовательности, монотонные последовательности. Ограниченные и неограниченные последовательности. Примеры

Презентация по теме:19.09.24, гл. 2, пар. 1

Отображение $x:\mathbb{N}\to\mathbb{R}$ из множества натуральных чисел называется **числовой последовательностью**.

 $x_n \stackrel{def}{=} x(n)$ называют n-ым (или общим) членом последовательности, а саму последовательность обозначают как $\{x_n\}_{n=1}^{\infty}$. n - натуральное число, переменная, принимающие сколь угодно большие значения, но не меньшая чем 1.

Пусть $\{x_n\}_{n=1}^{\infty}$ - числовая последовательность, $m\in\mathbb{N}$. Обозначим за $y_n=x_{n+m}$. Тогда последовательность $\{y_n\}_{n=1}^{\infty}$ называется (m-ым) остатком последовательности $\{x_n\}_{n=1}^{\infty}$. Или жеостаток - это те члены последовательности, которые остались после отбрасывания первых m членов.

А теперь, **определения ограниченностей**, господи боже:

- Последовательность $\{x_n\}_{n=1}^{\infty}$ называется ограниченной сверху, если найдется такое число A, что при
- Последовательность $\{x_n\}_{n=1}^{\infty}$ называется ограниченной снизу, если найдется такое число B, что при любом натуральном п выполняется неравенство $x_n \geq B$
- Последовательность $\{x_n\}_{n=1}^{\infty}$ называется ограниченной, если она ограничена сверху и снизу
- Последовательность $\{x_n\}_{n=1}^{\infty}$ называется неограниченной, если она не является ограниченной

Про возрастания-убывания-прочие:

- Последовательность $\{x_n\}_{n=1}^{\infty}$ называется возрастающей, если $x_n < x_{n+1}$ при любом натуральном n.
- Последовательность $\{x_n\}_{n=1}^{\infty}$ называется убывающей, если $x_n > x_{n+1}$ при любом натуральном n.
- Последовательность $\{x_n\}_{n=1}^{\infty}$ называется неубывающей, если $x_n \leq x_{n+1}$ при любом натуральном n.
- Последовательность $\{x_n\}_{n=1}^{\infty}$ называется невозрастающей, если $x_n \geq x_{n+1}$ при любом натуральном n.

Последовательность называется монотонной, если она что угодно из тех четырех определений вверху; последовательность называется строго монотонной только если она либо возрастающая, либо убывающая. $\{x_n\}_{n=1}^{\infty}$ - числовая последовательность, $\{n_k\}_{k=1}^\infty$ - возрастающая последовательность чисел. Обозначим натуральных Тогда $\{y_k\}_{k=1}^{\infty}$ последовательность x_{nk} . $\{x_n\}_{n=1}^{\infty}$. подпоследовательностю называется подпоследовательность получается ИЗ исходной последовательности вычеркиванием каких-либо из членов последовательности, да, сюда входят остатки последовательносей.

10 Определение предела последовательности, геометрический смысл. Сходящиеся и расходящиеся последовательности. Примеры.

Презентация по теме: 19.09.24, 26.09.24, гл. 2, пар. 2

Пусть $\{x_n\}_{n=1}^{\infty}$ - числовая последовательность $a \in \mathbb{R} \cup \{\infty\}$. а называют **пределом** последовательности $\{x_n\}_{n=1}^{\infty}$ при стремлении п $\kappa + \infty$ и обозначают $\lim_{n \to \infty} x_n = a$, если

$$\forall U(a) \exists N_{\varepsilon} \in N : (\forall n > N \Rightarrow x_n \in U(a))$$

Замечание 2.1 (геометрический смысл для $a \in \mathbb{R}$)

Для любой окрестности U(a) найдется номер N (зависящий от U(a)) после которого члены последовательности попадают внутрь этой окрестности.

 $a=\lim_{n\to\infty}x_n\Leftrightarrow \mathrm{B}$ любой окрестености точки а содержаться все члены последовательности за исключением конечного числа.

10.1 Частные случаи определения предела последовательности

• Пусть $\{x_n\}_{n=1}^{\infty}$ - числовая последовательность $a \in \mathbb{R}$. а называют пределом последовательности $\{x_n\}_{n=1}^{\infty}$ при стремлении п к $+\infty$ и обозначают $\lim_{n\to\infty} x_n = a$, если

$$\forall \varepsilon > 0 \exists N_{\varepsilon} : (\forall n > N_{\varepsilon} \Rightarrow |x_n - a| < \varepsilon)$$

• Пусть $\{x_n\}_{n=1}^{\infty}$ - числовая последовательность. $+\infty$ называют пределом последовательности $\{x_n\}_{n=1}^{\infty}$ при стремлении п к $+\infty$ и обозначают $\lim_{n\to\infty}x_n=+\infty$, если

$$\forall \varepsilon > 0 \exists N_{\varepsilon} : (\forall n > N_{\varepsilon} \Rightarrow x_n < \varepsilon)$$

• Пусть $\{x_n\}_{n=1}^{\infty}$ - числовая последовательность. $-\infty$ называют пределом последовательности $\{x_n\}_{n=1}^{\infty}$ при стремлении п к $+\infty$ и обозначают $\lim_{n\to\infty} x_n = -\infty$, если

$$\forall \varepsilon > 0 \exists N_{\varepsilon} : (\forall n > N_{\varepsilon} \Rightarrow x_n < -\varepsilon)$$

• Пусть $\{x_n\}_{n=1}^{\infty}$ - числовая последовательность. ∞ называют пределом последовательности $\{x_n\}_{n=1}^{\infty}$ при стремлении п к $+\infty$ и обозначают $\lim_{n\to\infty} x_n = \infty$, если

$$\forall \varepsilon > 0 \exists N_{\varepsilon} : (\forall n > N_{\varepsilon} \Rightarrow |x_n| < \varepsilon)$$

И только заметила, но удивительно нигде не дано объяснение тому, что такое *сходящееся* последовательность. Так вот, это та последовательность, у которой есть предел.

Пусть $\{x_n\}_{n=1}^{\infty}$ и $\{y_n\}_{n=1}^{\infty}$ - сходящиеся последовательности. Тогда

- 1. Если $\alpha \in \mathbb{R}$, то $\lim_{n \to \infty} (\alpha * x_n) = \alpha * \lim_{n \to \infty} (x_n)$
- 2. $\lim_{n\to\infty} (x_n + y_n) = \lim_{n\to\infty} (x_n) + \lim_{n\to\infty} (y_n)$
- 3. $\lim_{n\to\infty} (x_n * y_n) = \lim_{n\to\infty} (x_n) * \lim_{n\to\infty} (y_n)$
- 4. Если $\lim_{n\to\infty}(y_n)\neq 0$, то $\lim_{n\to\infty}\frac{x_n}{y_n}=\frac{\lim_{n\to\infty}(x_n)}{\lim_{n\to\infty}(y_n)}$