

Sequence Listing

<110> Desnoyers, Luc

Eaton, Dan L.

Goddard, Audrey

Godowski, Paul J.

Gurney, Austin L.

Pan, James

Stewart, Timothy A.

Watanabe, Colin K.

Wood, William I.

Zhang, Zemin

<120> SECRETED AND TRANSMEMBRANE POLYPEPTIDES AND NUCLEIC ACIDS ENCODING THE SAME

<130> P3030R1C8

<150> 60/085579

<151> 1998-05-15

<150> 60/112514

<151> 1998-12-15

<150> 60/113300

<151> 1998-12-22

<150> 60/113430

<151> 1998-12-23

<150> 60/113605

<151> 1998-12-23

<150> 60/113621

<151> 1998-12-23

<150> 60/114140

<151> 1998-12-23

<150> 60/115552

<151> 1999-01-12

<150> 60/116843

<151> 1999-01-22

<151> 1999-04-05

<150> 60/129122
<151> 1999-04-13

<150> 60/130359
<151> 1999-04-21

<150> 60/131270
<151> 1999-04-27

<150> 60/131272
<151> 1999-04-27

<150> 60/131291
<151> 1999-04-27

<150> 60/132371
<151> 1999-05-04

<150> 60/132379
<151> 1999-05-04

<150> 60/132383
<151> 1999-05-04

<150> 60/135750
<151> 1999-05-25

<150> 60/138166
<151> 1999-06-08

<150> 60/144791
<151> 1999-07-20

<150> 60/146970
<151> 1999-08-03

<150> 60/162506
<151> 1999-10-29

<150> 09/311832
<151> 1999-05-14

<150> 09/380142
<151> 1999-08-25

<150> 09/644848
<151> 2000-08-22

<150> 09/747259
<151> 2000-12-20

<150> 09/816744
<151> 2001-03-22

<150> 09/854208
<151> 2001-05-10

<150> 09/854280
<151> 2001-05-10

<150> 09/874503
<151> 2001-06-05

<150> 09/869599
<151> 2001-06-29

<150> 09/908,827
<151> 2001-07-18

<150> PCT/US99/10733
<151> 1999-05-14

<150> PCT/US99/28551
<151> 1999-12-02

<150> PCT/US99/30720
<151> 1999-12-22

<150> PCT/US00/05601
<151> 2000-03-01

<150> PCT/US00/05841
<151> 2000-03-02

<150> PCT/US00/14042
<151> 2000-05-22

<150> PCT/US00/15264
<151> 2000-06-02

<150> PCT/US00/23522
<151> 2000-08-23

<150> PCT/US00/23328
<151> 2000-08-24

<150> PCT/US00/32678
<151> 2000-12-01

<150> PCT/US00/34956
<151> 2000-12-20

<150> PCT/US01/06520
<151> 2001-02-28

<150> PCT/US01/17800
<151> 2001-06-01

<150> PCT/US01/19692
<151> 2001-06-20

<150> PCT/US01/21066
<151> 2001-06-29

<150> PCT/US01/21735

<151> 2001-07-09

<160> 80

<210> 1
<211> 1712
<212> DNA
<213> Homo Sapien

<400> 1
ggcatctgcc cgaggagacc acgctcctgg agctctgctg tcttctcagg 50
gagactctga ggctctgtt agaatcatgc tttggaggca gctcatctat 100
tggcaactgc tggctttgtt tttcctccct ttttgccctgt gtcaagatga 150
atacatggag tctccacaaa ccggaggact acccccagac tgtagtaagt 200
gttgtcatgg agactacagc tttcgaggct accaaggccc ccctgggcca 250
ccgggcccctc ctggcattcc agggaaaccat ggaaacaatg gcaacaatgg 300
agccactggc catgaaggag ccaaagggtga gaagggcgac aaaggtgacc 350
tggggcctcg aggggagcgg gggcagcatg gccccaaagg agagaaggc 400
tacccgggga ttccaccaga acttcagatt gcattcatgg cttctctggc 450
aacccacttc agcaatcaga acagtgggat tatcttcagc agtgttgaga 500
ccaacattgg aaacttctt gatgtcatga ctggtagatt tggggcccca 550
gtatcaggtg tgtatttctt cacccatcg atgatgaagc atgaggatgt 600
tgaggaagtg tatgtgtacc ttatgcacaa tggcaacaca gtcttcagca 650
tgtacagcta tgaaatgaag ggcaaattcag atacatccag caatcatgct 700
gtgctgaagc tagccaaagg ggatgagggt tggctgcgaa tggcaatgg 750
cgctctccat ggggaccacc aacgcttctc caccttgca ggattcctgc 800
tcttgaaac taagtaaata tatgactaga atagctccac tttgggaag 850
actttagtgc gagctgattt gttacgatct gaggaacatt aaagttgagg 900
gttttacatt gctgtattca aaaaatttatt gtttgcaatg ttgttcacgc 950
tacaggtaca ccaataatgt tggacaattc aggggctcag aagaatcaac 1000
cacaaaaatag tcttctcaga tgaccttgac taatatactc agcatctta 1050
tcactcttcc ttggcacct aaaagataat tctcctctga cgcaggttgg 1100
aaatattttt ttcttatcaca gaagtcattt gcaaagaatt ttgactactc 1150
tgcttttaat ttaataccag tttcaggaa cccctgaagt tttaagttca 1200

ttattcttta taacatttga gagaatcgga tgttagtgata tgacagggtc 1250
ggggcaagaa caggggcaact agctgcctta ttagctaatt tagtgcctc 1300
cgtgttcagc ttagcctttg accctttcct tttgatccac aaaatacatt 1350
aaaactctga attcacatac aatgctattt taaagtcaat agattttagc 1400
tataaaagtgc ttgaccagta atgtgggtgt aattttgtgt atgttcccc 1450
acatcgcccc caacttcgga tgtgggtca ggaggtttag gttcactatt 1500
aacaaatgtc ataaatatct catagaggtc cagtgc当地 agatattcaa 1550
atgttgc当地 ttgaccagag ggattttata tctgaagaac atacactatt 1600
aataaatacc ttagagaaaag atttgacct ggctttagat aaaactgtgg 1650
caagaaaaat gtaatgagca atatatggaa ataaacacac ctttgttaaa 1700
gataaaaaaa aa 1712

<210> 2

<211> 246

<212> PRT

<213> Homo Sapien

<400> 2

Met	Leu	Trp	Arg	Gln	Leu	Ile	Tyr	Trp	Gln	Leu	Leu	Ala	Leu	Phe
1														15

Phe	Leu	Pro	Phe	Cys	Leu	Cys	Gln	Asp	Glu	Tyr	Met	Glu	Ser	Pro
														30
20								25						

Gln	Thr	Gly	Gly	Leu	Pro	Pro	Asp	Cys	Ser	Lys	Cys	Cys	His	Gly
														45
35								40						

Asp	Tyr	Ser	Phe	Arg	Gly	Tyr	Gln	Gly	Pro	Pro	Gly	Pro	Pro	Gly
														60
50								55						

Pro	Pro	Gly	Ile	Pro	Gly	Asn	His	Gly	Asn	Asn	Gly	Asn	Asn	Gly
														75
65								70						

Ala	Thr	Gly	His	Glu	Gly	Ala	Lys	Gly	Glu	Lys	Gly	Asp	Lys	Gly
														90
80								85						

Asp	Leu	Gly	Pro	Arg	Gly	Glu	Arg	Gly	Gln	His	Gly	Pro	Lys	Gly
														105
95								100						

Glu	Lys	Gly	Tyr	Pro	Gly	Ile	Pro	Pro	Glu	Leu	Gln	Ile	Ala	Phe
														120
110								115						

Met	Ala	Ser	Leu	Ala	Thr	His	Phe	Ser	Asn	Gln	Asn	Ser	Gly	Ile
														135
125								130						

Ile	Phe	Ser	Ser	Val	Glu	Thr	Asn	Ile	Gly	Asn	Phe	Phe	Asp	Val
														150
140								145						

Met Thr Gly Arg Phe Gly Ala Pro Val Ser Gly Val Tyr Phe Phe
155 160 165
Thr Phe Ser Met Met Lys His Glu Asp Val Glu Glu Val Tyr Val
170 175 180
Tyr Leu Met His Asn Gly Asn Thr Val Phe Ser Met Tyr Ser Tyr
185 190 195
Glu Met Lys Gly Lys Ser Asp Thr Ser Ser Asn His Ala Val Leu
200 205 210
Lys Leu Ala Lys Gly Asp Glu Val Trp Leu Arg Met Gly Asn Gly
215 220 225
Ala Leu His Gly Asp His Gln Arg Phe Ser Thr Phe Ala Gly Phe
230 235 240
Leu Leu Phe Glu Thr Lys
245

<210> 3
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 3
tgtaaaacga cggccagttt aatagacctg caattattaa tct 43

<210> 4
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 4
caggaaacag ctatgaccac ctgcacacct gcaaattccat t 41

<210> 5
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 5
gcaacaatgg agccactgg catg 24

<210> 6
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 6
gcaaagggtgg agaagcgttg gtgg 24

<210> 7
<211> 52
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 7
cccaacttcag caatcagaac agtgggattta tctttcagca gtgtttgaga 50
cc 52

<210> 8
<211> 1579
<212> DNA
<213> Homo Sapien

<400> 8
gagagaatag ctacagattc tccatcctca gtcttgcaa ggcgacagct 50
gtgccagccg ggctctggca ggctcctggc agcatggcag tgaagcttgg 100
gaccctcctg ctggcccttg ccctggcct ggcccagcca gcctctgccc 150
gccggaagct gctgggtttt ctgctggatg gttttcgctc agactacatc 200
agtgtatgagg cgctggagtc attgcctggt ttcaaagaga ttgtgagcag 250
gggagtaaaa gtggattact tgactccaga cttcccttagt ctctcgatc 300
ccaattatta taccctaatacg actggccgcc attgtgaagt ccatcagatg 350
atcgggaact acatgtggga ccccaccacc aacaagtccct ttgacattgg 400
cgtcaacaaa gacagcctaa tgcctcttg gtggaatgga tcagaacctc 450
tgtgggtcac tctgaccaag gccaaaagga aggtctacat gtactactgg 500
ccaggctgtg aggtttagat tctgggtgtc agacccacct actgcctaga 550
atataaaaaat gtcccaacgg atatcaattt tgccaatgca gtcagcgatg 600
ctcttgactc cttcaagagt ggccggcccg acctggcagc catataccat 650
gagcgcattg acgtggaaagg ccaccactac gggcctgcat ctccgcagag 700
gaaagatgcc ctcaaggctg tagacactgt cctgaagtac atgaccaagt 750
ggatccagga gcggggccctg caggaccgcc tgaacgtcat tattttctcg 800
gatcacggaa tgaccgacat tttctggatg gacaaagtga ttgagctgaa 850

taagtacatc agcctgaatg acctgcagca agtgaaggac cgccggcctg 900
ttgtgagcct ttggccggcc cctggaaac actctgagat atataacaaa 950
ctgagcacag tggAACACAT gactgtctac gagAAAGAAG ccatcccAG 1000
caggttctat tacaAGAAAG gaaAGTTGT ctctcTTTG actTTAGTGG 1050
ctgatGAAGG ctggTTcATA actgagaATC gagAGATGCT tccgTTTGG 1100
atgaACAGCA ccggcAGGCG ggaAGGTTGG cagcGTGGAT ggcACGGCTA 1150
cgacaACGAG ctcatGGACA tgccccat cttcctggcc ttccgacCTG 1200
atTTCAAATC caacttcAGA gctgctccta tcaggtcggt ggacgtctac 1250
aatgtcatgt gcaatgtggT gggcatcacc ccgctGCCA acaacggatc 1300
ctggTCCAGG gtgatgtGCA tgctGAAGGG ccgcGCCGGC actgccccGC 1350
ctgtctggCC cagccactgt gccctggCAC tgattcttct cttcctgCTT 1400
gcataactga tcatattgCT tgtctcAGAA aaaaACACCA tcagcaaAGT 1450
gggcctccAA agccAGATGA ttttCATTT atgtgtGAAT aatAGCTTC 1500
ttaacacaAT caagACCATG cacATTGTAa atacATTATT cttggataAT 1550
tctatacata aaagttccta cttgtAAA 1579

<210> 9
<211> 440
<212> PRT
<213> Homo Sapien

<400> 9
Met Ala Val Lys Leu Gly Thr Leu Leu Leu Ala Leu Ala Leu Gly
1 5 10 15
Leu Ala Gln Pro Ala Ser Ala Arg Arg Lys Leu Leu Val Phe Leu
20 25 30
Leu Asp Gly Phe Arg Ser Asp Tyr Ile Ser Asp Glu Ala Leu Glu
35 40 45
Ser Leu Pro Gly Phe Lys Glu Ile Val Ser Arg Gly Val Lys Val
50 55 60
Asp Tyr Leu Thr Pro Asp Phe Pro Ser Leu Ser Tyr Pro Asn Tyr
65 70 75
Tyr Thr Leu Met Thr Gly Arg His Cys Glu Val His Gln Met Ile
80 85 90
Gly Asn Tyr Met Trp Asp Pro Thr Thr Asn Lys Ser Phe Asp Ile
95 100 105
Gly Val Asn Lys Asp Ser Leu Met Pro Leu Trp Trp Asn Gly Ser

110	115	120
Glu Pro Leu Trp Val Thr Leu Thr Lys Ala Lys Arg Lys Val Tyr		
125	130	135
Met Tyr Tyr Trp Pro Gly Cys Glu Val Glu Ile Leu Gly Val Arg		
140	145	150
Pro Thr Tyr Cys Leu Glu Tyr Lys Asn Val Pro Thr Asp Ile Asn		
155	160	165
Phe Ala Asn Ala Val Ser Asp Ala Leu Asp Ser Phe Lys Ser Gly		
170	175	180
Arg Ala Asp Leu Ala Ala Ile Tyr His Glu Arg Ile Asp Val Glu		
185	190	195
Gly His His Tyr Gly Pro Ala Ser Pro Gln Arg Lys Asp Ala Leu		
200	205	210
Lys Ala Val Asp Thr Val Leu Lys Tyr Met Thr Lys Trp Ile Gln		
215	220	225
Glu Arg Gly Leu Gln Asp Arg Leu Asn Val Ile Ile Phe Ser Asp		
230	235	240
His Gly Met Thr Asp Ile Phe Trp Met Asp Lys Val Ile Glu Leu		
245	250	255
Asn Lys Tyr Ile Ser Leu Asn Asp Leu Gln Gln Val Lys Asp Arg		
260	265	270
Gly Pro Val Val Ser Leu Trp Pro Ala Pro Gly Lys His Ser Glu		
275	280	285
Ile Tyr Asn Lys Leu Ser Thr Val Glu His Met Thr Val Tyr Glu		
290	295	300
Lys Glu Ala Ile Pro Ser Arg Phe Tyr Tyr Lys Lys Gly Lys Phe		
305	310	315
Val Ser Pro Leu Thr Leu Val Ala Asp Glu Gly Trp Phe Ile Thr		
320	325	330
Glu Asn Arg Glu Met Leu Pro Phe Trp Met Asn Ser Thr Gly Arg		
335	340	345
Arg Glu Gly Trp Gln Arg Gly Trp His Gly Tyr Asp Asn Glu Leu		
350	355	360
Met Asp Met Arg Gly Ile Phe Leu Ala Phe Gly Pro Asp Phe Lys		
365	370	375
Ser Asn Phe Arg Ala Ala Pro Ile Arg Ser Val Asp Val Tyr Asn		
380	385	390
Val Met Cys Asn Val Val Gly Ile Thr Pro Leu Pro Asn Asn Gly		
395	400	405

Ser Trp Ser Arg Val Met Cys Met Leu Lys Gly Arg Ala Gly Thr
410 415 420

Ala Pro Pro Val Trp Pro Ser His Cys Ala Leu Ala Leu Ile Leu
425 430 435

Leu Phe Leu Leu Ala
440

<210> 10

<211> 1047

<212> DNA

<213> Homo Sapien

<400> 10

gccaggtgtg caggccgctc caagcccagc ctgccccgct gccgcccacca 50

tgacgctcct ccccgccctc ctgtttctga cctggctgca cacatgcctg 100

gcccaccatg acccctccct cagggggcac ccccacagtc acggtacccc 150

acactgctac tcggctgagg aactgcccct cggccaggcc ccccacacc 200

tgctggctcg aggtgccaag tgggggcagg ctttgcctgt agccctggtg 250

tccagcctgg aggcagcaag ccacaggggg aggcacgaga ggcctcagc 300

tacgaccctag tgcccggtgc tgccggcggga ggaggtgttg gaggcagaca 350

ccaccctcgctccatctca ccctggagat accgtgtgga cacggatgag 400

gaccgctatc cacagaagct ggccttcgcc gagtgccctgt gcagaggctg 450

tatcgatgca cggacgggcc gcgagacagc tgcgctcaac tccgtgcggc 500

tgctccagag cctgctggtg ctgcggccgcc ggccctgctc cgcgcacggc 550

tcggggctcc ccacacctgg ggccttgcct ttccacaccc agttcatcca 600

cgtccccgtc ggctgcacct gcgtgctgcc cggtcagtg tgaccgccga 650

ggccgtgggg ccccttagact ggacacgtgt gctccccaga gggcaccccc 700

tatttatgtg tatttattgt tatttatatg cctcccccaa cactaccctt 750

ggggtctggg cattccccgt gtctggagga cagccccca ctgttctcct 800

catctccagc ctcagtagtt gggggtagaa ggagctcagc acctcttcca 850

gcccttaaag ctgcagaaaa ggtgtcacac ggctgcctgt accttggctc 900

cctgtcctgc tcccggttc cttacccta tcactggct caggccccgc 950

aggctgectc ttcccaacct ctttggaaat acccctgttt cttaaacaat 1000

tatttaagtg tacgtgtatt attaaactga tgaacacatc cccaaaaa 1047

<210> 11

<211> 197
<212> PRT
<213> Homo Sapien

<400> 11
Met Thr Leu Leu Pro Gly Leu Leu Phe Leu Thr Trp Leu His Thr
1 5 10 15
Cys Leu Ala His His Asp Pro Ser Leu Arg Gly His Pro His Ser
20 25 30
His Gly Thr Pro His Cys Tyr Ser Ala Glu Glu Leu Pro Leu Gly
35 40 45
Gln Ala Pro Pro His Leu Leu Ala Arg Gly Ala Lys Trp Gly Gln
50 55 60
Ala Leu Pro Val Ala Leu Val Ser Ser Leu Glu Ala Ala Ser His
65 70 75
Arg Gly Arg His Glu Arg Pro Ser Ala Thr Thr Gln Cys Pro Val
80 85 90
Leu Arg Pro Glu Glu Val Leu Glu Ala Asp Thr His Gln Arg Ser
95 100 105
Ile Ser Pro Trp Arg Tyr Arg Val Asp Thr Asp Glu Asp Arg Tyr
110 115 120
Pro Gln Lys Leu Ala Phe Ala Glu Cys Leu Cys Arg Gly Cys Ile
125 130 135
Asp Ala Arg Thr Gly Arg Glu Thr Ala Ala Leu Asn Ser Val Arg
140 145 150
Leu Leu Gln Ser Leu Leu Val Leu Arg Arg Arg Pro Cys Ser Arg
155 160 165
Asp Gly Ser Gly Leu Pro Thr Pro Gly Ala Phe Ala Phe His Thr
170 175 180
Glu Phe Ile His Val Pro Val Gly Cys Thr Cys Val Leu Pro Arg
185 190 195
Ser Val

<210> 12
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 12
atccacagaa gctggccttc gccg 24

<210> 13
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 13
gggacgtgga tgaactcggt gtgg 24

<210> 14
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 14
tatccacaga agctggcctt cgccgagtgc ctgtgcagag 40

<210> 15
<211> 660
<212> DNA
<213> Homo Sapien

<400> 15
cggccaggc gccgacagcc cgacctcacc aggagaacat gcagctggc 50
actgggctcc tgctggccgc cgtcctgagc ctgcagctgg ctgcagccga 100
agccatatgg tgtcaccagt gcacggcatt cggagggtgc tcccatggat 150
ccagatgcct gagggactcc acccactgtg tcaccactgc caccgggtc 200
ctcagcaaca ccgaggattt gcctctggc accaagatgt gccacatagg 250
ctgccccat atccccagcc tgggcctggg cccctacgta tccatcgctt 300
gctgccagac cagcctctgc aaccatgact gacggctgcc ctccctcagg 350
ccccggacg ctcagcccc acagccccca cagcctggcg ccagggctca 400
cggccgcccc tccctcgaga ctggccagcc cacctctccc ggctctgca 450
gccaccgtcc agcaccgctt gtccttaggaa agtcctgcgt ggagtcttgc 500
ctcaatctgc tgccgtccaa gcctggggcc catcgtgcct gccggccctt 550
caggtcccga cctccccaca ataaaaatgtg attggatcgt gtggtacaaa 600
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 650
aaaaaaaaaa 660

<210> 16
<211> 97

<212> PRT

<213> Homo Sapien

<400> 16

Met Gln Leu Gly Thr Gly Leu Leu Leu Ala Ala Val Leu Ser Leu
1 5 10 15

Gln Leu Ala Ala Ala Glu Ala Ile Trp Cys His Gln Cys Thr Gly
20 25 30

Phe Gly Gly Cys Ser His Gly Ser Arg Cys Leu Arg Asp Ser Thr
35 40 45

His Cys Val Thr Thr Ala Thr Arg Val Leu Ser Asn Thr Glu Asp
50 55 60

Leu Pro Leu Val Thr Lys Met Cys His Ile Gly Cys Pro Asp Ile
65 70 75

Pro Ser Leu Gly Leu Gly Pro Tyr Val Ser Ile Ala Cys Cys Gln
80 85 90

Thr Ser Leu Cys Asn His Asp
95

<210> 17

<211> 2570

<212> DNA

<213> Homo Sapien

<400> 17

ccaggaccag ggcgcacccgg ctcagcctct cacttgtcag aggccgggga 50

agagaagcaa agcgcaacgg tgtggtccaa gccggggctt ctgcttcgcc 100

tcttaggacat acacgggacc ccctaacttc agtccccaa acgcgcaccc 150

tcgaagtctt gaactccagc cccgcacatc cacgcgcggc acaggcgcgg 200

caggcggcag gtcccgcccg aaggcgatgc gcgcaggggg tcgggcagct 250

gggctcgggc ggcgggagta gggcccgca gggaggcagg gaggctgcat 300

attcagagtc gcgggctgct ccctggcag aggccgcct cgctccacgc 350

aacacctgtt gctgccaccc cgccgcgtat agccgcgtgg tctcgctgt 400

gctggcgcc gcgctgtct gcggccacgg agccttctgc cgccgcgtgg 450

tcagcggcca aaaggtgtgt tttgtctact tcaagcatcc ctgtacaaa 500

atggcctact tccatgaact gtccagccga gtgagcttc aggaggcacg 550

cctggcttgt gagagtgagg gaggagtctt cctcagcctt gagaatgaag 600

cagaacagaa gttaatagag agcatgttgc aaaacctgac aaaacccggg 650

acagggattt ctgtatggta tttctggata gggctttgga ggaatggaga 700

tggcaaaaca tctggtgcc gccagatct ctaccagtgg tctgatggaa 750
gcaattccca gtaccgaaac tggtacacag atgaaccttc ctgcggaagt 800
gaaaagtgtg ttgtgatgta tcaccaacca actgccaatc ctggccttgg 850
gggtccctac ctttaccagt ggaatgatga caggtgtaac atgaaggcaca 900
attatatttg caagtatgaa ccagagatta atccaacagc ccctgtagaa 950
aagccttatac ttacaaatca accaggagac acccatcaga atgtggttgt 1000
tactgaagca ggtataattc ccaatctaattt atatgttgtt ataccaacaa 1050
taccctgct cttactgata ctggttgctt ttggAACCTG ttgtttccag 1100
atgctgcata aaagtaaagg aagaacaaaa actagtccaa accagtctac 1150
actgtggatt tcaaagagta ccagaaaaga aagtggcatg gaagtataat 1200
aactcattga cttggttcca gaattttgta attctggatc tgtataagga 1250
atggcatcag aacaatagct tggaatggct tgaaatcaca aaggatctgc 1300
aagatgaact gtaagctccc ctttggggca aatattaaag taatttttat 1350
atgtctatta ttcatTTAA agaatatgct gtgctaataa tggagtgaga 1400
catgcttattt ttgctaaagg atgcacccaa acttcaaact tcaagcaaatt 1450
gaaatggaca atgcagataa agttgttatac aacacgtcg gagttatgt 1500
gttagaagca attcctttta tttcttcac ctttcataag ttgttatcta 1550
gtcaatgtaa tgtatattgt attgaaattt acagtgtgca aaagtatttt 1600
acctttgcat aagtgttga taaaaatgaa ctgttctaatttattttt 1650
atggcatctc attttcaat acatgctttt ttgattaaag aaacttattta 1700
ctgttgtcaa ctgaattcac acacacacaa atatagtacc atagaaaaag 1750
tttggTTTCT cgaaataattt catctttcag cttctctgct tttggtaat 1800
gtcttaggaaa tctcttcaga aataagaagc tatttcatta agtgtgatatt 1850
aaacccctc aaacattttt ctttagggca aggattgtct aatttcaattt 1900
gtgcaagaca tgtgccttat aattttttt agctaaaaat taaacagatt 1950
ttgtataataat gtaactttgt taataggtgc ataaacacta atgcagtcaa 2000
tttgaacaaa agaagtgaca tacacaatataat aatcatatg tcttcacacg 2050
ttgcctatat aatgagaagc agctctctga gggttctgaa atcaatgtgg 2100
tccctctctt gcccactaaa caaagatggt tggtcggggt ttgggattga 2150

cactggaggc agatagttgc aaagtttagtc taagggttcc ctagctgtat 2200
ttagcctctg actatatattag tatacaaaga ggtcatgtgg ttgagaccag 2250
gtgaatagtc actatcagtg tggagacaag cacagcacac agacattta 2300
ggaaggaaag gaactacgaa atcgtgtgaa aatgggttgg aacccatcag 2350
tgatcgata ttcattgatg agggttgct tgagatagaa aatggtggt 2400
cctttctgtc ttatctccta gtttcttcaa tgcttacgcc ttgttcttct 2450
caagagaaag ttgttaactct ctggtcttca tatgtccctg tgctcctttt 2500
aaccaaataa agagttcttg tttctggggg aaaaaaaaaa aaaaaaaaaa 2550
aaaaaaaaaa aaaaaaaaaa 2570

<210> 18
<211> 273
<212> PRT
<213> Homo Sapien

<400> 18
Met Ser Arg Val Val Ser Leu Leu Leu Gly Ala Ala Leu Leu Cys
1 5 10 15
Gly His Gly Ala Phe Cys Arg Arg Val Val Ser Gly Gln Lys Val
20 25 30
Cys Phe Ala Asp Phe Lys His Pro Cys Tyr Lys Met Ala Tyr Phe
35 40 45
His Glu Leu Ser Ser Arg Val Ser Phe Gln Glu Ala Arg Leu Ala
50 55 60
Cys Glu Ser Glu Gly Gly Val Leu Leu Ser Leu Glu Asn Glu Ala
65 70 75
Glu Gln Lys Leu Ile Glu Ser Met Leu Gln Asn Leu Thr Lys Pro
80 85 90
Gly Thr Gly Ile Ser Asp Gly Asp Phe Trp Ile Gly Leu Trp Arg
95 100 105
Asn Gly Asp Gly Gln Thr Ser Gly Ala Cys Pro Asp Leu Tyr Gln
110 115 120
Trp Ser Asp Gly Ser Asn Ser Gln Tyr Arg Asn Trp Tyr Thr Asp
125 130 135
Glu Pro Ser Cys Gly Ser Glu Lys Cys Val Val Met Tyr His Gln
140 145 150
Pro Thr Ala Asn Pro Gly Leu Gly Pro Tyr Leu Tyr Gln Trp
155 160 165
Asn Asp Asp Arg Cys Asn Met Lys His Asn Tyr Ile Cys Lys Tyr

170	175	180
Glu Pro Glu Ile Asn Pro Thr Ala Pro Val Glu Lys Pro Tyr Leu		
185	190	195
Thr Asn Gln Pro Gly Asp Thr His Gln Asn Val Val Val Thr Glu		
200	205	210
Ala Gly Ile Ile Pro Asn Leu Ile Tyr Val Val Ile Pro Thr Ile		
215	220	225
Pro Leu Leu Leu Ile Leu Val Ala Phe Gly Thr Cys Cys Phe		
230	235	240
Gln Met Leu His Lys Ser Lys Gly Arg Thr Lys Thr Ser Pro Asn		
245	250	255
Gln Ser Thr Leu Trp Ile Ser Lys Ser Thr Arg Lys Glu Ser Gly		
260	265	270

Met Glu Val

```

<210> 19
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 19
      caccaaccaa ctgccaatcc tggc 24

<210> 20
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 20
      accacattct gatgggtgtc tcctgg 26

<210> 21
<211> 49
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 21
      gggtccctac ctttaccagt ggaatgtatc caggtgttaac atgaaggcac 49

<210> 22
<211> 3824

```

<212> DNA

<213> Homo Sapien

<400> 22

ggagaatgga gagagcagtg agagtggagt ccggggtcct ggtcggggtg 50
gtctgtctgc tcctggcatg ccctgccaca gccactggc cccaaggttgc 100
tcagcctgaa gtagacacca ccctgggtcg tgtgcgaggc cggcagggtgg 150
gcgtgaaggg cacagaccgc cttgtaatg tctttctggg cattccattt 200
gcccagccgc cactgggccc tgaccggttc tcagccccac acccagcaca 250
gccctggag ggtgtcgaaa atgccagcac tgcccccata atgtgcctac 300
aagacgtgga gagcatgaac agcagcagat ttgtcctcaa cgaaaaacag 350
cagatcttct ccgtttcaga ggactgcctg gtcctcaacg tctatagccc 400
agctgaggta cccgcagggt ccggtaggac ggtcatggta tgggtccatg 450
gaggcgctct gataactggc gctgccacct cctacgatgg atcagctctg 500
gctgcctatg gggatgttgtt cgtggttaca gtccagtacc gccttgggt 550
ccttggcttc ttcagcactg gagatgagca tgcacctggc aaccagggt 600
tcctagatgt ggtagctgct ttgcgctggg tgcaagaaaa catcgcccc 650
ttcgggggtg acctaactg tgtcactgtc tttggtgat ctgccgggtgg 700
gagcatcatc tctggcctgg tcctgtcccc agtggctgca gggctgttcc 750
acagagccat cacacagagt ggggtcatca ccacccagg gatcatcgac 800
tctcaccctt ggccccttagc tcagaaaaatc gcaaacacct tggcctgcag 850
ctccagctcc ccggctgaga tgggtcagtg cttcagcag aaagaaggag 900
aagagctggt ccttagcaag aagctgaaaa atactatcta tcctctcacc 950
gtttagggca ctgtttcccc caaaagcccc aaggaactcc tgaaggagaa 1000
gcccttccac tctgtgcct tcctcatggg tgtcaacaac catgagttca 1050
gctggctcat ccccaggggc tggggtctcc tggatacaat ggagcagatg 1100
agccggagg acatgctggc catctcaaca cccgtcttga ccagtctgg 1150
tgtgccccct gagatgatgc ccaccgtcat agatgaatac ctaggaagca 1200
actcggacgc acaagccaaa tgccaggcgt tccaggaatt catgggtgac 1250
gtattcatca atgttccac cgtcagttt tcaagatacc ttccgagattc 1300
tggaaagccct gtcttttct atgagttcca gcatcgaccc agttctttg 1350

cgaagatcaa acctgcctgg gtgaaggctg atcatgggc cgagggtgct 1400
tttggttcg gaggtccctt cctcatggac gagagctccc gcctggcctt 1450
tccagaggcc acagaggagg agaagcagct aagcctcacc atgatggccc 1500
agtggaccctt ctttgcggcg acaggggacc ccaatagcaa ggctctgcct 1550
ccttggcccc aattcaacca ggccgaacaa tatctggaga tcaacccagt 1600
gccacgggcc ggacagaagt tcagggaggc ctggatgcag ttctggtcag 1650
agacgctccc cagcaagata caacagtggc accagaagca gaagaacagg 1700
aaggcccagg aggacctctg aggccaggcc tgaaccttct tggctgggc 1750
aaaccactct tcaagtggtg gcagagtccc agcacggcag cccgcctctc 1800
ccccgtctga gacttaatc tccaccagcc cttaaagtgt cgccgcctct 1850
gtgactggag ttatgctctt ttgaaatgtc acaaggccgc ctcccacctc 1900
tggggcattt tacaagtct tccctctccc tgaagtgcct ttccctgcttt 1950
cttcgtggta gttcttagca cattcctcta gttcctgga ggactcactc 2000
cccaggaagc cttccctgcc ttctctggc tgtgcggccc cgagtctgcg 2050
tccatttagag cacagtccac ccgaggctag caccgtgtct gtgtctgtct 2100
ccccctcaga ggagctctct caaatgggg attagcctaa cccactctg 2150
tcacccacac caggatcggtt tggacactgg agctaggggg tgtttgctga 2200
gtgagtgagt gaaacacaga atatggaaat ggcagctgct gaacttgaac 2250
ccagagcctt caggtgccaa agccatactc aggccccac cgacattgtc 2300
caccctggcc agaagggtgc atgccaatgg cagagacctg ggatggaga 2350
agtcctgggg cgccaggggg tccagcctag agcagacatt agccctgac 2400
taaggcctca gactagggcg ggaggggtct ctcctctct gctgcccagt 2450
cctggccctt gcacaagaca acagaatcca tcagggccat gagtgtcacc 2500
cagacctgac ctcaccaat tccagccct gaccctcagg acgctggatg 2550
ccagctccca gccccagtgcc cgggtccctcc ctcccttcct ggcttgggg 2600
gaccagtttc tggggagctt ccaagagcac ccaccaagac acagcaggac 2650
aggccagggg agggcatctg gaccaggca tccgtcggc tattgtcaca 2700
gagaaaagaa gagacccacc cactcggct gcaaaagggtg aaaagcacca 2750
agaggttttc agatggaagt gagaggtgac agtgtgctgg cagccctcac 2800

agccctcgct tgctctccct gccgcctctg cctgggctcc cactttggca 2850
gcacttgagg agcccttcaa cccggcgctg cactgttagga gcccctttct 2900
gggctggcca aggccggagc cagctccctc agcttgcggg gaggtgcgga 2950
gggagagggg cgggcagcaa ccggggctgc gcgcagcgct tgcgggccag 3000
agttagttcc gggtgggctg gggctcgccg gggccccact cagagcagct 3050
ggccggcccc aggcagttaga ggccttagca cctgggcccag cagctgttgt 3100
gctcgatttc tcgctggcc ttagctgcct ccccgcgggg cagggctcg 3150
gacctgcagc cctccatgcc tgaccctccc cccacccccc gtgggctcct 3200
gtgcggccgg agcctccca aggagcgccg cccctgctc cacagcgccc 3250
agtcccatcg accacccaag ggctgaggag tgcgggtgca cagcgcggga 3300
ctggcaggca gctccacctg ctgccccagt gctggatcca ctgggtgaag 3350
ccagctgggc tcctgagtt ggtggggact tggagaacct ttatgtctag 3400
ctaagggatt gtaaatcac acatggcac tctgtatcta gctcaagggt 3450
tgtaaacaca ccaatcagca ccctgtgtct agctcagtgt ttgtgaatgc 3500
accaatccac actctgtatc tggctactct ggtggggact tggagaacct 3550
ttgtgtccac actctgtatc tagctaatct agtggggatg tggagaacct 3600
ttgtgtctag ctcagggatc gtaaacgcac caatcagcac cctgtcaaaa 3650
cagaccactt gactctctgt aaaatggacc aatcagcagg atgtgggtgg 3700
ggcgagacaa gagaataaaa gcaggctgcc tgagccagca gtgacaaccc 3750
ccctcgggtc ccctcccacg ccgtggaagc tttgttcttt cgctcttgc 3800
aataaatctt gctactgccc aaaa 3824

<210> 23
<211> 571
<212> PRT
<213> Homo Sapien

<400> 23
Met Glu Arg Ala Val Arg Val Glu Ser Gly Val Leu Val Gly Val
1 5 10 15
Val Cys Leu Leu Leu Ala Cys Pro Ala Thr Ala Thr Gly Pro Glu
20 25 30
Val Ala Gln Pro Glu Val Asp Thr Thr Leu Gly Arg Val Arg Gly
35 40 45
Arg Gln Val Gly Val Lys Gly Thr Asp Arg Leu Val Asn Val Phe

50	55	60
Leu Gly Ile Pro Phe Ala Gln Pro Pro Leu Gly Pro Asp Arg Phe		
65	70	75
Ser Ala Pro His Pro Ala Gln Pro Trp Glu Gly Val Arg Asp Ala		
80	85	90
Ser Thr Ala Pro Pro Met Cys Leu Gln Asp Val Glu Ser Met Asn		
95	100	105
Ser Ser Arg Phe Val Leu Asn Gly Lys Gln Gln Ile Phe Ser Val		
110	115	120
Ser Glu Asp Cys Leu Val Leu Asn Val Tyr Ser Pro Ala Glu Val		
125	130	135
Pro Ala Gly Ser Gly Arg Pro Val Met Val Trp Val His Gly Gly		
140	145	150
Ala Leu Ile Thr Gly Ala Ala Thr Ser Tyr Asp Gly Ser Ala Leu		
155	160	165
Ala Ala Tyr Gly Asp Val Val Val Val Thr Val Gln Tyr Arg Leu		
170	175	180
Gly Val Leu Gly Phe Phe Ser Thr Gly Asp Glu His Ala Pro Gly		
185	190	195
Asn Gln Gly Phe Leu Asp Val Val Ala Ala Leu Arg Trp Val Gln		
200	205	210
Glu Asn Ile Ala Pro Phe Gly Gly Asp Leu Asn Cys Val Thr Val		
215	220	225
Phe Gly Gly Ser Ala Gly Gly Ser Ile Ile Ser Gly Leu Val Leu		
230	235	240
Ser Pro Val Ala Ala Gly Leu Phe His Arg Ala Ile Thr Gln Ser		
245	250	255
Gly Val Ile Thr Thr Pro Gly Ile Ile Asp Ser His Pro Trp Pro		
260	265	270
Leu Ala Gln Lys Ile Ala Asn Thr Leu Ala Cys Ser Ser Ser Ser		
275	280	285
Pro Ala Glu Met Val Gln Cys Leu Gln Gln Lys Glu Gly Glu Glu		
290	295	300
Leu Val Leu Ser Lys Lys Leu Lys Asn Thr Ile Tyr Pro Leu Thr		
305	310	315
Val Asp Gly Thr Val Phe Pro Lys Ser Pro Lys Glu Leu Leu Lys		
320	325	330
Glu Lys Pro Phe His Ser Val Pro Phe Leu Met Gly Val Asn Asn		
335	340	345

His	Glu	Phe	Ser	Trp	Leu	Ile	Pro	Arg	Gly	Trp	Gly	Leu	Leu	Asp
				350					355					360
Thr	Met	Glu	Gln	Met	Ser	Arg	Glu	Asp	Met	Leu	Ala	Ile	Ser	Thr
	365								370					375
Pro	Val	Leu	Thr	Ser	Leu	Asp	Val	Pro	Pro	Glu	Met	Met	Pro	Thr
	380								385					390
Val	Ile	Asp	Glu	Tyr	Leu	Gly	Ser	Asn	Ser	Asp	Ala	Gln	Ala	Lys
	395								400					405
Cys	Gln	Ala	Phe	Gln	Glu	Phe	Met	Gly	Asp	Val	Phe	Ile	Asn	Val
	410								415					420
Pro	Thr	Val	Ser	Phe	Ser	Arg	Tyr	Leu	Arg	Asp	Ser	Gly	Ser	Pro
	425								430					435
Val	Phe	Phe	Tyr	Glu	Phe	Gln	His	Arg	Pro	Ser	Ser	Phe	Ala	Lys
	440								445					450
Ile	Lys	Pro	Ala	Trp	Val	Lys	Ala	Asp	His	Gly	Ala	Glu	Gly	Ala
	455								460					465
Phe	Val	Phe	Gly	Gly	Pro	Phe	Leu	Met	Asp	Glu	Ser	Ser	Arg	Leu
	470								475					480
Ala	Phe	Pro	Glu	Ala	Thr	Glu	Glu	Glu	Lys	Gln	Leu	Ser	Leu	Thr
	485								490					495
Met	Met	Ala	Gln	Trp	Thr	His	Phe	Ala	Arg	Thr	Gly	Asp	Pro	Asn
	500								505					510
Ser	Lys	Ala	Leu	Pro	Pro	Trp	Pro	Gln	Phe	Asn	Gln	Ala	Glu	Gln
	515								520					525
Tyr	Leu	Glu	Ile	Asn	Pro	Val	Pro	Arg	Ala	Gly	Gln	Lys	Phe	Arg
	530								535					540
Glu	Ala	Trp	Met	Gln	Phe	Trp	Ser	Glu	Thr	Leu	Pro	Ser	Lys	Ile
	545								550					555
Gln	Gln	Trp	His	Gln	Lys	Gln	Lys	Asn	Arg	Lys	Ala	Gln	Glu	Asp
	560								565					570
Leu														

<210> 24
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 24
gcaaagctct gcctccttgg cc 22

<210> 25
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 25
gggtggactg tgctctaattt gacgc 25

<210> 26
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 26
cgtggcactg ggtttgatc 18

<210> 27
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 27
gatgcagttc tggtcagaga cgctcccccag caagatacaa cagtg 45

<210> 28
<211> 1342
<212> DNA
<213> Homo Sapien

<400> 28
catggaggct cttgcagctt acccgctaaa atgttccggg cccagagcaa 50
aggatattgc agttttgctg tctatagttc tatgcacagt aacgctattt 100
cttctacaac taaaattcct caaacctaaa atcaacagct tttatgcctt 150
tgaagtgaag gatgcaaaag gaagaactgt ttctctgaa aagtataaaag 200
gcaaaagtttc actagttgta aacgtggcca gtgactgccaa actcacagac 250
agaaaattact tagggctgaa ggaactgcac aaagagttt gaccatcccc 300
cttcagcgtg ttggcttttc cctgcaatca gtttggagaa tcggagcccc 350
gcccaagcaa ggaagttagaa tctttgcaa gaaaaaaacta cggagtaact 400
ttccccatct tccacaagat taagattcta ggatctgaag gagaacctgc 450
attttagattt cttgttgatt cttaaaagaa ggaaccaagg tgaaattttt 500

ggaagtatct tgtcaaccct gagggtcaag ttgtgaagtt ctggaggcca 550
gaggagccca ttgaagtcat caggcctgac atagcagctc tggtagaca 600
agtgatcata aaaaagaaag aggatctatg agaatccat tgcgttctca 650
atagaacaga gaaatgtctc catgagggtt tggctcatt ttaaacattt 700
tttttttgg aacagtgtct cactctgtca cccaggctgg agtgcagtag 750
tgcgttctca gtcattgca acctctgcct ttttaaacat gctattaaat 800
gtggcaatga aggattttt ttaatgtta tcttgctatt aagtggtaat 850
aatgttccc agcatgagga tgtaaccaa agcaaaaatc aagagtagcc 900
aaagaatcaa catgaaatat attaactact tcctctgacc atactaaaga 950
attcagaata cacagtgacc aatgtgcctc aatatcttat tggtaactt 1000
gacatttctt aggactgtac ttgatgaaaa tgccaaacaca ctagaccact 1050
ctttggattc aagagcactg tgtatgactg aaatttctgg aataactgta 1100
aatggttatg ttaatgaaat aaaacacaaa tgtaaaaaaa tgtaaaaat 1150
atatacatag attcaaatcc ttatatatgt atgcttgttt tgtgtacagg 1200
attttgttt ttcttttaa gtacaggttc ctagtgttt actataactg 1250
tcactatgta tgtaactgac atatataat agtcatttat aaatgaccgt 1300
attataacat ttgaaaaagt cttcatcaaa aaaaaaaaaaa aa 1342

<210> 29
<211> 209
<212> PRT
<213> Homo Sapien

<400> 29

Met	Glu	Pro	Leu	Ala	Ala	Tyr	Pro	Leu	Lys	Cys	Ser	Gly	Pro	Arg
1														15
Ala	Lys	Val	Phe	Ala	Val	Leu	Leu	Ser	Ile	Val	Leu	Cys	Thr	Val
														30
Thr	Leu	Phe	Leu	Leu	Gln	Leu	Lys	Phe	Leu	Lys	Pro	Lys	Ile	Asn
														45
Ser	Phe	Tyr	Ala	Phe	Glu	Val	Lys	Asp	Ala	Lys	Gly	Arg	Thr	Val
														60
Ser	Leu	Glu	Lys	Tyr	Lys	Gly	Lys	Val	Ser	Leu	Val	Val	Asn	Val
														75
Ala	Ser	Asp	Cys	Gln	Leu	Thr	Asp	Arg	Asn	Tyr	Leu	Gly	Leu	Lys
														90

Glu	Leu	His	Lys	Glu	Phe	Gly	Pro	Ser	His	Phe	Ser	Val	Leu	Ala
				95					100					105
Phe	Pro	Cys	Asn	Gln	Phe	Gly	Glu	Ser	Glu	Pro	Arg	Pro	Ser	Lys
					110				115					120
Glu	Val	Glu	Ser	Phe	Ala	Arg	Lys	Asn	Tyr	Gly	Val	Thr	Phe	Pro
					125				130					135
Ile	Phe	His	Lys	Ile	Lys	Ile	Leu	Gly	Ser	Glu	Gly	Glu	Pro	Ala
					140				145					150
Phe	Arg	Phe	Leu	Val	Asp	Ser	Ser	Lys	Lys	Glu	Pro	Arg	Trp	Asn
					155				160					165
Phe	Trp	Lys	Tyr	Leu	Val	Asn	Pro	Glu	Gly	Gln	Val	Val	Lys	Phe
					170				175					180
Trp	Arg	Pro	Glu	Glu	Pro	Ile	Glu	Val	Ile	Arg	Pro	Asp	Ile	Ala
					185				190					195
Ala	Leu	Val	Arg	Gln	Val	Ile	Ile	Lys	Lys	Lys	Glu	Asp	Leu	
					200				205					

```

<210> 30
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 30
atccctccaac atggagcctc ttgc 24

<210> 31
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 31
gtatcttgtc aaccctgagg 20

<210> 32
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 32
taaccagagc tgctatgtca ggcc 24

<210> 33

```

<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 33
aggcaaagtt tcactatgg taaacgtggc cagtgactgc caactcacag 50

<210> 34
<211> 3721
<212> DNA
<213> Homo Sapien

<400> 34
tgtcgccctgg ccctcgccat gcagaccccg cgagcgtccc ctccccgccc 50
ggccctcctg cttctgctgc tgctactggg gggcgccac ggcctttc 100
ctgaggagcc gccgcccgtt agcgtggccc ccagggacta cctgaaccac 150
tatcccggtt ttgtggcag cgggcccggaa cgcctgaccc ccgcagaagg 200
tgctgacgac ctcaacatcc agcagtcct gcgggtcaac aggacgctgt 250
tcattgggaa cagggacaac ctctaccgca tagagctgaa gccccccacg 300
tccacggagc tgcgttacca gaggaagctg acctggagat ctaacccag 350
cgacataaac gtgtgtcgaa tgaaggcaaa acaggaggc gagtgtcgaa 400
acttcgtaaa ggtgctgctc cttcggacg agtccacgct ctttgtgtc 450
ggttccaacg cttcaaccc ggtgtcgcc aactacagca tagacaccct 500
gcagcccgtc ggagacaaca tcagcggtat ggcccgctgc ccgtacgacc 550
ccaagcacgc caatgttgcc ctcttctctg acgggatgct cttcacagct 600
actgttaccg acttccttagc cattgatgct gtcatactacc gcagcctcg 650
ggacaggccc accctgcgca ccgtgaaaca tgactccaag tggttcaaag 700
agccttactt tgtccatgca gtggagtggg gcagccatgt ctacttcttc 750
ttccgggaga ttgcgtatggaa gtttaactac ctggagaagg tgggtgtgc 800
ccgcgtggcc cgagtgtgca agaacgacgt gggaggctcc ccccgctgc 850
tggagaagca gtggacgtcc ttccctgaagg cgcggctaa ctgctctgt 900
cccgagact cccatttcta ctcaacgtc ctgcaggctg tcacggcgt 950
ggtcagcctc gggggccggc ccgtggctct ggccgtttt tccacgccc 1000
gcaacagcat ccctggctcg gctgtctgca ccttgacact gacacaggtg 1050

gcagctgtgt ttgaaggccg cttccgagag cagaagtccc ccgagtccat 1100
ctggacgccc gtgccggagg atcaggtgcc tcgaccggcg cccgggtgct 1150
gcgcagcccc cgggatgcag tacaatgcct ccagccctt gccggatgac 1200
atcctaact ttgtcaagac ccaccctctg atggacgagg cggtgccctc 1250
gctggccat gcgcctgga tcctgcggac cctgatgagg caccagctga 1300
ctcgagtggc tgtggacgtg ggagccggcc cctggggcaa ccagaccgtt 1350
gtcttcctgg gttctgaggc gggacggtc ctcaagttcc tcgtccggcc 1400
caatgccagc acctcagggc cgtctggct cagtgtcttc ctggaggagt 1450
ttgagaccta ccggccggac aggtgtggac ggcccggcg tggcgagaca 1500
gggcagcggc tgctgagctt ggagctggac gcagcttcgg gggcctgct 1550
ggctgccttc ccccgtcg tggccgagt gcctgtggct cgctgccagc 1600
agtactcggg gtgttatgaag aactgtatcg gcagtcagga cccctactgc 1650
gggtggggccc ccgacggctc ctgcatcttc ctcagcccg gcaccagagc 1700
cgccttgag caggacgtgt ccggggccag cacctcagggc ttagggact 1750
gcacaggact cctgcgggcc agcctctccg aggaccgcgc gggctggtg 1800
tcggtaacc tgctggtaac gtcgtcggtg gcggccttcg tggtgggagc 1850
cgtggtgtcc ggcttcagcg tggctggtt cgtgggcctc cgtgagcggc 1900
gggagctggc ccggcgcaag gacaaggagg ccattctggc gcacggggcg 1950
ggcgaggccg tgctgagcgt cagccgcctg ggcgagcgc gggcgaggg 2000
tccccggggc cggggcggag gcgggtggcg tggcgccgg gttccccgg 2050
aggccctgct ggcccccctg atgcagaacg gctggccaa ggccacgctg 2100
ctgcagggcg ggccccacga cctggactcg gggctgctgc ccacccccga 2150
gcagacgccc ctgcccaga agccgcctgcc cactccgcac ccgcaccccc 2200
acgcctggg cccccggcc tgggaccacg gccacccct gctccggcc 2250
tccgcctcat cctccctct gctgctggcg cccgccccgg ccccgagca 2300
gccccccgcg cctggggagc cgaccccgaa cggccgcctc tatgctgccc 2350
ggccccggccg cgccctccac ggcgacttcc cgctcacccc ccacgcccagc 2400
ccggaccggcc ggcgggtggt gtccgcggcc acggggccct tggaccacg 2450
ctcagccgcc gatggcctcc cgcggccctg gagcccgccc ccgacggca 2500

gcctgaggag gccactgggc ccccacgccc ctccggccgc caccctgcgc 2550
cgcacccaca cggtcaacag cggcgaggcc cggcctgggg accgccaccg 2600
cggtgtccac gcccggccgg gcacagactt ggcccaccta ctcccctatg 2650
ggggggcgga caggactgcg ccccccgtgc cctaggccgg gggccccccg 2700
atgccttggc agtgccagcc acggaaacca ggagcgagag acggtgccag 2750
aacgccgggg cccggggcaa ctccgagtgg gtgctcaagt ccccccgcg 2800
accacccgc ggagtgggg gccccctccg ccacaaggaa gcacaaccag 2850
ctcgccctcc ccctaccggg gcgcgcagga cgctgagacg gtttgggggt 2900
gggtgggcgg gaggacttg ctatggattt gaggttgaac ttatgcgcgt 2950
aggttttgtt tttttttgc agtttttgtt tcttttgccg ttttctaacc 3000
aattgcacaa ctccgttctc ggggtggcgg caggcagggg aggcttggac 3050
gccgggtgggg aatggggggc cacagctgca gacctaagcc ctcccccacc 3100
cctggaaagg tccctccca acccaggccc ctggcgtgtg tgggtgtgcg 3150
tgcgtgtgcg tgccgtgttc gtgtgcaagg ggccggggag gtgggcgtgt 3200
gtgtgcgtgc cagcgaaggc tgctgtggc gtgtgtgtca agtgggcccac 3250
gcgtgcaggg tgtgtgtcca cgagcgcacga tcgtggtggc cccagcggcc 3300
tggcggttgg ctgagccgac gctggggctt ccagaaggcc cgggggtctc 3350
cgaggtgccg gtaggagtt tgaacccccc ccactctgca gagggaaagcg 3400
gggacaatgc cggggtttca ggcaggagac acgaggaggg cctgcccgg 3450
agtcacatcg gcagcagctg tctaaaggc ttgggggcct gggggcggc 3500
gaaggtgggt gggcccccctc tgtaataacg gccccaggggt ggtgagagag 3550
tcccatgcca cccgtccccct tggacacctcc cccctatgac ctccagctga 3600
ccatgcatgc cacgtggctg gctgggtcct ctgccccttt tggagttgc 3650
ctccccccagc cccctccca tcaataaaaac tctgtttaca accaaaaaaaa 3700
aaaaaaaaaaaa aaaaaaaaaa a 3721

<210> 35
<211> 888
<212> PRT
<213> Homo Sapien

<400> 35
Met Gln Thr Pro Arg Ala Ser Pro Pro Arg Pro Ala Leu Leu Leu
1 5 10 15

Leu	Leu	Leu	Leu	Leu	Gly	Gly	Ala	His	Gly	Leu	Phe	Pro	Glu	Glu
					20				25				30	
Pro	Pro	Pro	Leu	Ser	Val	Ala	Pro	Arg	Asp	Tyr	Leu	Asn	His	Tyr
					35				40				45	
Pro	Val	Phe	Val	Gly	Ser	Gly	Pro	Gly	Arg	Leu	Thr	Pro	Ala	Glu
					50				55				60	
Gly	Ala	Asp	Asp	Leu	Asn	Ile	Gln	Arg	Val	Leu	Arg	Val	Asn	Arg
					65				70				75	
Thr	Leu	Phe	Ile	Gly	Asp	Arg	Asp	Asn	Leu	Tyr	Arg	Val	Glu	Leu
					80				85				90	
Glu	Pro	Pro	Thr	Ser	Thr	Glu	Leu	Arg	Tyr	Gln	Arg	Lys	Leu	Thr
					95				100				105	
Trp	Arg	Ser	Asn	Pro	Ser	Asp	Ile	Asn	Val	Cys	Arg	Met	Lys	Gly
					110				115				120	
Lys	Gln	Glu	Gly	Glu	Cys	Arg	Asn	Phe	Val	Lys	Val	Leu	Leu	Leu
					125				130				135	
Arg	Asp	Glu	Ser	Thr	Leu	Phe	Val	Cys	Gly	Ser	Asn	Ala	Phe	Asn
					140				145				150	
Pro	Val	Cys	Ala	Asn	Tyr	Ser	Ile	Asp	Thr	Leu	Gln	Pro	Val	Gly
					155				160				165	
Asp	Asn	Ile	Ser	Gly	Met	Ala	Arg	Cys	Pro	Tyr	Asp	Pro	Lys	His
					170				175				180	
Ala	Asn	Val	Ala	Leu	Phe	Ser	Asp	Gly	Met	Leu	Phe	Thr	Ala	Thr
					185				190				195	
Val	Thr	Asp	Phe	Leu	Ala	Ile	Asp	Ala	Val	Ile	Tyr	Arg	Ser	Leu
					200				205				210	
Gly	Asp	Arg	Pro	Thr	Leu	Arg	Thr	Val	Lys	His	Asp	Ser	Lys	Trp
					215				220				225	
Phe	Lys	Glu	Pro	Tyr	Phe	Val	His	Ala	Val	Glu	Trp	Gly	Ser	His
					230				235				240	
Val	Tyr	Phe	Phe	Phe	Arg	Glu	Ile	Ala	Met	Glu	Phe	Asn	Tyr	Leu
					245				250				255	
Glu	Lys	Val	Val	Val	Ser	Arg	Val	Ala	Arg	Val	Cys	Lys	Asn	Asp
					260				265				270	
Val	Gly	Gly	Ser	Pro	Arg	Val	Leu	Glu	Lys	Gln	Trp	Thr	Ser	Phe
					275				280				285	
Leu	Lys	Ala	Arg	Leu	Asn	Cys	Ser	Val	Pro	Gly	Asp	Ser	His	Phe
					290				295				300	
Tyr	Phe	Asn	Val	Leu	Gln	Ala	Val	Thr	Gly	Val	Val	Ser	Leu	Gly

	305	310	315
Gly Arg Pro Val Val Leu Ala Val Phe Ser Thr Pro Ser Asn Ser			
320	325	330	
Ile Pro Gly Ser Ala Val Cys Ala Phe Asp Leu Thr Gln Val Ala			
335	340	345	
Ala Val Phe Glu Gly Arg Phe Arg Glu Gln Lys Ser Pro Glu Ser			
350	355	360	
Ile Trp Thr Pro Val Pro Glu Asp Gln Val Pro Arg Pro Arg Pro			
365	370	375	
Gly Cys Cys Ala Ala Pro Gly Met Gln Tyr Asn Ala Ser Ser Ala			
380	385	390	
Leu Pro Asp Asp Ile Leu Asn Phe Val Lys Thr His Pro Leu Met			
395	400	405	
Asp Glu Ala Val Pro Ser Leu Gly His Ala Pro Trp Ile Leu Arg			
410	415	420	
Thr Leu Met Arg His Gln Leu Thr Arg Val Ala Val Asp Val Gly			
425	430	435	
Ala Gly Pro Trp Gly Asn Gln Thr Val Val Phe Leu Gly Ser Glu			
440	445	450	
Ala Gly Thr Val Leu Lys Phe Leu Val Arg Pro Asn Ala Ser Thr			
455	460	465	
Ser Gly Thr Ser Gly Leu Ser Val Phe Leu Glu Glu Phe Glu Thr			
470	475	480	
Tyr Arg Pro Asp Arg Cys Gly Arg Pro Gly Gly Glu Thr Gly			
485	490	495	
Gln Arg Leu Leu Ser Leu Glu Leu Asp Ala Ala Ser Gly Gly Leu			
500	505	510	
Leu Ala Ala Phe Pro Arg Cys Val Val Arg Val Pro Val Ala Arg			
515	520	525	
Cys Gln Gln Tyr Ser Gly Cys Met Lys Asn Cys Ile Gly Ser Gln			
530	535	540	
Asp Pro Tyr Cys Gly Trp Ala Pro Asp Gly Ser Cys Ile Phe Leu			
545	550	555	
Ser Pro Gly Thr Arg Ala Ala Phe Glu Gln Asp Val Ser Gly Ala			
560	565	570	
Ser Thr Ser Gly Leu Gly Asp Cys Thr Gly Leu Leu Arg Ala Ser			
575	580	585	
Leu Ser Glu Asp Arg Ala Gly Leu Val Ser Val Asn Leu Leu Val			
590	595	600	

Thr Ser Ser Val Ala Ala Phe Val Val Gly Ala Val Val Ser Gly
 605 610 615
 Phe Ser Val Gly Trp Phe Val Gly Leu Arg Glu Arg Arg Glu Leu
 620 625 630
 Ala Arg Arg Lys Asp Lys Glu Ala Ile Leu Ala His Gly Ala Gly
 635 640 645
 Glu Ala Val Leu Ser Val Ser Arg Leu Gly Glu Arg Arg Ala Gln
 650 655 660
 Gly Pro Gly Gly Arg Gly Gly Gly Gly Gly Ala Gly Val
 665 670 675
 Pro Pro Glu Ala Leu Leu Ala Pro Leu Met Gln Asn Gly Trp Ala
 680 685 690
 Lys Ala Thr Leu Leu Gln Gly Gly Pro His Asp Leu Asp Ser Gly
 695 700 705
 Leu Leu Pro Thr Pro Glu Gln Thr Pro Leu Pro Gln Lys Arg Leu
 710 715 720
 Pro Thr Pro His Pro His Pro His Ala Leu Gly Pro Arg Ala Trp
 725 730 735
 Asp His Gly His Pro Leu Leu Pro Ala Ser Ala Ser Ser Ser Leu
 740 745 750
 Leu Leu Leu Ala Pro Ala Arg Ala Pro Glu Gln Pro Pro Ala Pro
 755 760 765
 Gly Glu Pro Thr Pro Asp Gly Arg Leu Tyr Ala Ala Arg Pro Gly
 770 775 780
 Arg Ala Ser His Gly Asp Phe Pro Leu Thr Pro His Ala Ser Pro
 785 790 795
 Asp Arg Arg Arg Val Val Ser Ala Pro Thr Gly Pro Leu Asp Pro
 800 805 810
 Ala Ser Ala Ala Asp Gly Leu Pro Arg Pro Trp Ser Pro Pro Pro
 815 820 825
 Thr Gly Ser Leu Arg Arg Pro Leu Gly Pro His Ala Pro Pro Ala
 830 835 840
 Ala Thr Leu Arg Arg Thr His Thr Phe Asn Ser Gly Glu Ala Arg
 845 850 855
 Pro Gly Asp Arg His Arg Gly Cys His Ala Arg Pro Gly Thr Asp
 860 865 870
 Leu Ala His Leu Leu Pro Tyr Gly Gly Ala Asp Arg Thr Ala Pro
 875 880 885
 Pro Val Pro

<210> 36
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 36
gaggacctac cggccggaca g 21

<210> 37
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 37
atacaccccg agtactgctg gcag 24

<210> 38
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 38
agacaggcga gcggctgctg agcttgagc tggacgcagc tt 42

<210> 39
<211> 2014
<212> DNA
<213> Homo Sapien

<400> 39
agcaactcaa gttcatcatt gtcctgagag agaggagcag cgccgttctc 50
ggccgggaca gcagaacgcc aggggaccct cacctggcg cgccgggca 100
cgggcttga ttgtcctgg gtcgcggaga cccgcgcgcc tgccctgcac 150
gccgggcggc aaccttgca gtcgcgttgg ctgctgcgat cggccggcgg 200
gtccctgccc aaggctcggc tgcttctgtc cacctcttac acttcttcat 250
ttatcggtgg atcatttcga gagtccgtct tgtaaatgtt tggactttg 300
ctactttatt gcttcttct ggcgacagtt ccagcactcg ccgagaccgg 350
cggagaaaagg cagctgagcc cggagaagag cgaaatatgg ggacccggc 400
taaaagcaga cgtcgccctt cccgccccgtt atttcttatat tcaggcagtg 450

gatacatcag ggaataaatt cacatcttct ccaggcgaaa aggtcttcca 500
ggtaaaagtc tcagcaccag aggagcaatt cactagagtt ggagtccagg 550
tttagaccg aaaagatggg tccttcata tagatacag aatgtatgca 600
agctacaaaa atctgaaggt ggaaattaaa ttccaagggc aacatgtggc 650
caaatccccca tatatttaa aagggccggt ttaccatgag aactgtgact 700
gtcctctgca agatagtgc a gcctggctac gggagatgaa ctgccctgaa 750
accattgctc agattcagag agatctggca cattccctg ctgtggatcc 800
agaaaagatt gcagtagaaa tccaaaaag atttggacag aggcagagcc 850
tatgtcacta caccttaaag gataacaagg tttatatcaa gactcatggt 900
gaacatgtag gttttagaat tttcatggat gccatactac ttttttgac 950
tagaaaggta aagatgccag atgtggagct ctttgttaat ttgggagact 1000
ggcctttgga aaaaaagaaa tccaaattcaa acatccatcc gatctttcc 1050
tggtgtggct ccacagattc caaggatatc gtgatgccta cgtacgattt 1100
gactgattct gttctggaaa ccatggccg ggtaagtctg gatatgatgt 1150
ccgtgcaagc taacacgggt cctccctggg aaagcaaaaa ttccactgcc 1200
gtctggagag ggcgagacag ccgcaaagag agactcgagc tggtaact 1250
cagtagaaaa cacccagaac tcatagacgc tgcttcacc aacttttct 1300
tctttaaaca cgatgaaaac ctgtatggc ccattgtgaa acatattca 1350
tttttgatt tcttcaagca taagtatcaa ataaatatcg atggcactgt 1400
agcagcttat cgcctgcccattt atttgcttagt tggtgacagt gtttgctga 1450
agcaggattc catctactat gaacattttt acaatgagct gcagccctgg 1500
aaacactaca ttccagttaa gagcaacctg agcgatctgc tagaaaaact 1550
taaatggcg aaagatcacg atgaagaggc caaaaagata gcaaaagcag 1600
gacaagaatt tgcaagaaat aatctcatgg gcgatgacat attctgttat 1650
tatttcaaac tttccagga atatgccaat ttacaagtga gtgagccca 1700
aatccgagag ggcattgaaaa ggtagaacc acagactgag gacgacctct 1750
tcccttgtac ttgccatagg aaaaagacca aagatgaact ctgatatgca 1800
aaataacttc tattagaata atggtgctct gaagactt cttaactaaa 1850
aagaagaatt ttttaagta ttaattccat ggacaatata aaatctgtgt 1900

gattgttgc agtatgaaga cacatttcta cttatgcagt attctcatga 1950
ctgtacttta aagtacattt ttagaatttt ataataaaac cacctttatt 2000
ttaaaggaaa aaaa 2014

<210> 40
<211> 502
<212> PRT
<213> Homo Sapien

<400> 40
Met Phe Gly Thr Leu Leu Leu Tyr Cys Phe Phe Leu Ala Thr Val
1 5 10 15
Pro Ala Leu Ala Glu Thr Gly Gly Glu Arg Gln Leu Ser Pro Glu
20 25 30
Lys Ser Glu Ile Trp Gly Pro Gly Leu Lys Ala Asp Val Val Leu
35 40 45
Pro Ala Arg Tyr Phe Tyr Ile Gln Ala Val Asp Thr Ser Gly Asn
50 55 60
Lys Phe Thr Ser Ser Pro Gly Glu Lys Val Phe Gln Val Lys Val
65 70 75
Ser Ala Pro Glu Glu Gln Phe Thr Arg Val Gly Val Gln Val Leu
80 85 90
Asp Arg Lys Asp Gly Ser Phe Ile Val Arg Tyr Arg Met Tyr Ala
95 100 105
Ser Tyr Lys Asn Leu Lys Val Glu Ile Lys Phe Gln Gly Gln His
110 115 120
Val Ala Lys Ser Pro Tyr Ile Leu Lys Gly Pro Val Tyr His Glu
125 130 135
Asn Cys Asp Cys Pro Leu Gln Asp Ser Ala Ala Trp Leu Arg Glu
140 145 150
Met Asn Cys Pro Glu Thr Ile Ala Gln Ile Gln Arg Asp Leu Ala
155 160 165
His Phe Pro Ala Val Asp Pro Glu Lys Ile Ala Val Glu Ile Pro
170 175 180
Lys Arg Phe Gly Gln Arg Gln Ser Leu Cys His Tyr Thr Leu Lys
185 190 195
Asp Asn Lys Val Tyr Ile Lys Thr His Gly Glu His Val Gly Phe
200 205 210
Arg Ile Phe Met Asp Ala Ile Leu Leu Ser Leu Thr Arg Lys Val
215 220 225
Lys Met Pro Asp Val Glu Leu Phe Val Asn Leu Gly Asp Trp Pro

230	235	240
Leu Glu Lys Lys Lys Ser Asn Ser Asn Ile His Pro Ile Phe Ser		
245	250	255
Trp Cys Gly Ser Thr Asp Ser Lys Asp Ile Val Met Pro Thr Tyr		
260	265	270
Asp Leu Thr Asp Ser Val Leu Glu Thr Met Gly Arg Val Ser Leu		
275	280	285
Asp Met Met Ser Val Gln Ala Asn Thr Gly Pro Pro Trp Glu Ser		
290	295	300
Lys Asn Ser Thr Ala Val Trp Arg Gly Arg Asp Ser Arg Lys Glu		
305	310	315
Arg Leu Glu Leu Val Lys Leu Ser Arg Lys His Pro Glu Leu Ile		
320	325	330
Asp Ala Ala Phe Thr Asn Phe Phe Phe Lys His Asp Glu Asn		
335	340	345
Leu Tyr Gly Pro Ile Val Lys His Ile Ser Phe Phe Asp Phe Phe		
350	355	360
Lys His Lys Tyr Gln Ile Asn Ile Asp Gly Thr Val Ala Ala Tyr		
365	370	375
Arg Leu Pro Tyr Leu Leu Val Gly Asp Ser Val Val Leu Lys Gln		
380	385	390
Asp Ser Ile Tyr Tyr Glu His Phe Tyr Asn Glu Leu Gln Pro Trp		
395	400	405
Lys His Tyr Ile Pro Val Lys Ser Asn Leu Ser Asp Leu Leu Glu		
410	415	420
Lys Leu Lys Trp Ala Lys Asp His Asp Glu Glu Ala Lys Lys Ile		
425	430	435
Ala Lys Ala Gly Gln Glu Phe Ala Arg Asn Asn Leu Met Gly Asp		
440	445	450
Asp Ile Phe Cys Tyr Tyr Phe Lys Leu Phe Gln Glu Tyr Ala Asn		
455	460	465
Leu Gln Val Ser Glu Pro Gln Ile Arg Glu Gly Met Lys Arg Val		
470	475	480
Glu Pro Gln Thr Glu Asp Asp Leu Phe Pro Cys Thr Cys His Arg		
485	490	495
Lys Lys Thr Lys Asp Glu Leu		
500		

<210> 41
<211> 26

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 41
gaaggtggaa attaaattcc aaggc 26

<210> 42
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 42
cgataagctg ctacagtgc atcg 24

<210> 43
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 43
gtgactgtcc tctgcaagat agtgcagcct ggctacggga 40

<210> 44
<211> 2395
<212> DNA
<213> Homo Sapien

<400> 44
cctggagccg gaagcgcggc tgcagcaggg cgaggctcca ggtggggtcg 50
gttccgcatc cagcctagcg tgtccacgat gcggctggc tccgggactt 100
tcgctacctg ttgcgttagcg atcgaggtgc tagggatcgc ggtcttcctt 150
cggggattct tcccggctcc cgttcggtcc tctgccagag cgaaacacgg 200
agcggagccc ccagcgcggc aaccctcggc tggagccagt tctaactgga 250
ccacgctgcc accacctctc ttcatcaaag ttgttattgt tctgatagat 300
gccttgagag atgattttgt gtttgggtca aagggtgtga aatttatgcc 350
ctacacaact taccttgtgg aaaaaggagc atctcacagt tttgtggctg 400
aagcaaagcc acctacagtt actatgcctc gaatcaaggc attgatgacg 450
gggagccttc ctggcttgc cgacgtcatc aggaacctca attctcctgc 500
actgctggaa gacagtgtga taagacaagc aaaagcagct ggaaaaagaa 550

tagtctttta tggagatgaa acctgggtta aattattccc aaagcatttt 600
gtggaatatg atggaacaac ctcattttc gtgtcagatt acacagaggt 650
ggataataat gtcacgaggc atttgataa agtattaaaa agaggagatt 700
gggacatatt aatcctccac tacctgggc tggaccacat tggccacatt 750
tcagggccca acagccccct gattggcag aagctgagcg agatggacag 800
cgtgctgatg aagatccaca cctcaactgca gtcgaaggag agagagacgc 850
ctttacccaa tttgctggtt ctttgtggtg accatggcat gtctgaaaca 900
ggaagtcacg gggcctcctc caccgaggag gtgaatacac ctctgatttt 950
aatcagttct gcgtttgaaa ggaaacccgg tgatatccga catccaaagc 1000
acgtccaata gacggatgtg gctgcgacac tggcgatagc acttggctta 1050
ccgattccaa aagacagtgt agggagcctc ctattcccag ttgtggaagg 1100
aagaccaatg agagagcagt tgagatttt acatttgaat acagtgcagc 1150
ttagtaaact gttgcaagag aatgtgccgt catatgaaaa agatcctggg 1200
tttgagcagt ttaaaatgtc agaaagattg catggaaact ggatcagact 1250
gtacttggag gaaaagcatt cagaagtccct attcaacctg ggctccaagg 1300
ttctcaggca gtacctggat gctctgaaga cgctgagctt gtccctgagt 1350
gcacaagtgg cccagttctc accctgctcc tgctcagcgt cccacaggca 1400
ctgcacagaa aggctgagct ggaagtccca ctgtcatctc ctgggtttc 1450
tctgctctt tatttggtga tcctggttct ttcggccgtt cacgtcattg 1500
tgtgcacctc agctgaaagt tcgtgctact tctgtggcct ctcgtggctg 1550
gcggcaggct gccttcgtt taccagactc tggttgaaca cctggtgtgt 1600
gccaagtgct ggcagtgcctc tggacagggg gcctcaggga aggacgtgga 1650
gcagccttat cccaggcctc tgggtgtccc gacacaggtg ttcacatctg 1700
tgctgtcagg tcagatgcct cagttcttgg aaagcttaggt tcctgcact 1750
gttaccaagg tgattgtaaa gagctggcgg tcacagagga acaagcccc 1800
cagctgaggg ggtgtgtgaa tcggacagcc tcccagcaga ggtgtggag 1850
ctgcagctga gggagaaga gacaatcgcc ctggacactc aggagggtca 1900
aaaggagact tggtcgcacc actcatcctg ccaccccccag aatgcaccc 1950
gcctcatcag gtccagattt ctttccaagg cggacgtttt ctgttggaaat 2000

tcttagtcct tggcctcgga cacccatt cgttagctgg ggagtggtgg 2050
 tgaggcagtg aagaagaggc ggtggcac actcagatcc acagagccca 2100
 ggatcaaggg acccactgca gtggcagcag gactgttggg cccccacccc 2150
 aaccctgcac agccctcatc ccctcttggc ttgagccgtc agaggccctg 2200
 tgctgagtgt ctgaccgaga cactcacagc tttgtcatca gggcacaggc 2250
 ttcctcgag ccaggatgat ctgtgccacg cttgcacctc gggcccatct 2300
 gggctcatgc tctctctcct gctattgaat tagtacctag ctgcacacag 2350
 tatgttgtta caaaaagaat aaacggcaat aattgagaaa aaaaa 2395

<210> 45

<211> 310

<212> PRT

<213> Homo Sapien

<400> 45

Met	Arg	Leu	Gly	Ser	Gly	Thr	Phe	Ala	Thr	Cys	Cys	Val	Ala	Ile
1				5					10					15
Glu	Val	Leu	Gly	Ile	Ala	Val	Phe	Leu	Arg	Gly	Phe	Phe	Pro	Ala
				20				25						30
Pro	Val	Arg	Ser	Ser	Ala	Arg	Ala	Glu	His	Gly	Ala	Glu	Pro	Pro
				35				40						45
Ala	Pro	Glu	Pro	Ser	Ala	Gly	Ala	Ser	Ser	Asn	Trp	Thr	Thr	Leu
				50				55						60
Pro	Pro	Pro	Leu	Phe	Ser	Lys	Val	Val	Ile	Val	Leu	Ile	Asp	Ala
				65				70						75
Leu	Arg	Asp	Asp	Phe	Val	Phe	Gly	Ser	Lys	Gly	Val	Lys	Phe	Met
				80				85						90
Pro	Tyr	Thr	Thr	Tyr	Leu	Val	Glu	Lys	Gly	Ala	Ser	His	Ser	Phe
				95				100						105
Val	Ala	Glu	Ala	Lys	Pro	Pro	Thr	Val	Thr	Met	Pro	Arg	Ile	Lys
				110				115						120
Ala	Leu	Met	Thr	Gly	Ser	Leu	Pro	Gly	Phe	Val	Asp	Val	Ile	Arg
				125				130						135
Asn	Leu	Asn	Ser	Pro	Ala	Leu	Leu	Glu	Asp	Ser	Val	Ile	Arg	Gln
				140				145						150
Ala	Lys	Ala	Ala	Gly	Lys	Arg	Ile	Val	Phe	Tyr	Gly	Asp	Glu	Thr
				155				160						165
Trp	Val	Lys	Leu	Phe	Pro	Lys	His	Phe	Val	Glu	Tyr	Asp	Gly	Thr
				170				175						180

Thr Ser Phe Phe Val Ser Asp Tyr Thr Glu Val Asp Asn Asn Val
185 190 195
Thr Arg His Leu Asp Lys Val Leu Lys Arg Gly Asp Trp Asp Ile
200 205 210
Leu Ile Leu His Tyr Leu Gly Leu Asp His Ile Gly His Ile Ser
215 220 225
Gly Pro Asn Ser Pro Leu Ile Gly Gln Lys Leu Ser Glu Met Asp
230 235 240
Ser Val Leu Met Lys Ile His Thr Ser Leu Gln Ser Lys Glu Arg
245 250 255
Glu Thr Pro Leu Pro Asn Leu Leu Val Leu Cys Gly Asp His Gly
260 265 270
Met Ser Glu Thr Gly Ser His Gly Ala Ser Ser Thr Glu Glu Val
275 280 285
Asn Thr Pro Leu Ile Leu Ile Ser Ser Ala Phe Glu Arg Lys Pro
290 295 300
Gly Asp Ile Arg His Pro Lys His Val Gln
305 310

<210> 46

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 46

cgggactttc gctacctgtt gc 22

<210> 47

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 47

catcatattc cacaaaatgc tttggg 26

<210> 48

<211> 38

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 48

ccttcgggga ttcttcccggtccccgttcgttcctctg 38

<210> 49
<211> 918
<212> DNA
<213> Homo Sapien

<400> 49
agccaggcag cacatcacag cgggaggagc tgtcccaggt ggcccagctc 50
agcaatggca atgggggtcc ccagagtcat tctgctctgc ctctttgggg 100
ctgcgctctg cctgacaggg tcccaagccc tgcagtgcta cagcttttag 150
cacacctact ttggccctt tgacctcagg gccatgaagc tgcccagcat 200
ctcctgtcct catgagtgct ttgaggctat cctgtctctg gacaccgggt 250
atcgcgccgc ggtgaccctg gtgcggaaagg gctgctggac cgggcctcct 300
gcgggccaga cgcaatcgaa cccggacgctg ctgcccggactactcggt 350
ggtgcgcggc tgcacaactg acaaattgca cgcacccatc atgactcatg 400
acgcacccccc caacctgagc caagcacccg acccgccgac gctcagcggc 450
gccgagtgct acgcctgtat cgggtccac caggatgact gcgctatcgg 500
caggtcccga cgagtccagt gtcaccagga ccagaccgccc tgcttccagg 550
gcagtgccag aatgacagtt ggcaatttct cagtcctgt gtacatcaga 600
acctgccacc ggccctcctg caccaccgag ggcaccacca gcccctggac 650
agccatcgac ctccagggtc cctgctgtga ggggtacctc tgcaacagga 700
aatccatgac ccagcccttc accagtgttt cagccaccac ccctccccga 750
gcactacagg tcctggccct gctcctccca gtcctcctgc tggggggct 800
ctcagcatag accgccccctc caggatgctg gggacaggc tcacacaccc 850
cattttgtct gcttcagccc ctatcacata gtcactggaa aaatgtatgtt 900
aaagtaagaa ttgcaaaa 918

<210> 50
<211> 251
<212> PRT
<213> Homo Sapien

<400> 50
Met Ala Met Gly Val Pro Arg Val Ile Leu Leu Cys Leu Phe Gly
1 5 10 15
Ala Ala Leu Cys Leu Thr Gly Ser Gln Ala Leu Gln Cys Tyr Ser
20 25 30

Phe	Glu	His	Thr	Tyr	Phe	Gly	Pro	Phe	Asp	Leu	Arg	Ala	Met	Lys
					35			40					45	
Leu	Pro	Ser	Ile	Ser	Cys	Pro	His	Glu	Cys	Phe	Glu	Ala	Ile	Leu
					50			55					60	
Ser	Leu	Asp	Thr	Gly	Tyr	Arg	Ala	Pro	Val	Thr	Leu	Val	Arg	Lys
					65			70					75	
Gly	Cys	Trp	Thr	Gly	Pro	Pro	Ala	Gly	Gln	Thr	Gln	Ser	Asn	Pro
					80			85					90	
Asp	Ala	Leu	Pro	Pro	Asp	Tyr	Ser	Val	Val	Arg	Gly	Cys	Thr	Thr
					95			100					105	
Asp	Lys	Cys	Asn	Ala	His	Leu	Met	Thr	His	Asp	Ala	Leu	Pro	Asn
					110			115					120	
Leu	Ser	Gln	Ala	Pro	Asp	Pro	Pro	Thr	Leu	Ser	Gly	Ala	Glu	Cys
					125			130					135	
Tyr	Ala	Cys	Ile	Gly	Val	His	Gln	Asp	Asp	Cys	Ala	Ile	Gly	Arg
					140			145					150	
Ser	Arg	Arg	Val	Gln	Cys	His	Gln	Asp	Gln	Thr	Ala	Cys	Phe	Gln
					155			160					165	
Gly	Ser	Gly	Arg	Met	Thr	Val	Gly	Asn	Phe	Ser	Val	Pro	Val	Tyr
					170			175					180	
Ile	Arg	Thr	Cys	His	Arg	Pro	Ser	Cys	Thr	Thr	Glu	Gly	Thr	Thr
					185			190					195	
Ser	Pro	Trp	Thr	Ala	Ile	Asp	Leu	Gln	Gly	Ser	Cys	Cys	Glu	Gly
					200			205					210	
Tyr	Leu	Cys	Asn	Arg	Lys	Ser	Met	Thr	Gln	Pro	Phe	Thr	Ser	Ala
					215			220					225	
Ser	Ala	Thr	Thr	Pro	Pro	Arg	Ala	Leu	Gln	Val	Leu	Ala	Leu	Leu
					230			235					240	
Leu	Pro	Val	Leu	Leu	Leu	Val	Gly	Leu	Ser	Ala				
					245			250						

<210> 51

<211> 3288

<212> DNA

<213> Homo Sapien

<400> 51

cccacgcgtc cgggacagat gaacttaaaa gagaagcttt agctgccaaa 50

gattggaaa gggaaaggac aaaaaagacc cctggctac acggcgtagg 100

tgcagggttt cctactgctg ttctttatg ctggagctg tggctgtaac 150

caactaggaa ataacgtatg cagcagctat ggctgtcaga gagttgtgct 200

tcccaagaca aaggcaagtc ctgtttctt ttcttttg gggagtgtcc 250
ttggcagggtt ctgggtttgg acgttattcg gtgactgagg aaacagagaa 300
aggatcctt gtggtaatc tggcaaagga tctggacta gcagaggggg 350
agctggctgc aagggaacc agggtggttt ccgatgataa caaacaatac 400
ctgctcctgg attcacatac cggaatttgc ctcacaatg agaaactgga 450
ccgagagaag ctgtgtggcc ctaaagagcc ctgtatgctg tatttccaaa 500
tttaatgga tgatccctt cagattacc gggctgagct gagagtcaagg 550
gatataaatg atcacgcgcc agtatttcag gacaaagaaa cagtcttaaa 600
aatatcagaa aatacagctg aaggacacg attagacta gaaagagcac 650
aggatccaga tggaggactt aacggtatcc aaaactacac gatcagcccc 700
aactctttt tccatattaa cattagtggc ggtgatgaag gcatgatata 750
tccagagcta gtgttggaca aagcactgga tcgggaggag cagggagac 800
tcagcttaac cctcacagcg ctggatggtg ggtctccatc caggtctggg 850
acctctactg tacgcatcgt tgttggac gtcaatgaca atgccccaca 900
gttgcccag gctctgtatg agacccaggc tccagaaaac agccccattt 950
gttcccttat tgttaaggta tggcagaag atgtagactc tggagtcaac 1000
gcggaagtat cctattcatt tttgatgcc tcagaaaata ttcgaacgac 1050
cttcaaatc aatcctttt ctggggaaat ctttctcaga gaattgctt 1100
attatgagtt agtaaattct tacaaaataa atatacaggc aatggacgg 1150
ggaggcctt ctgcaagatg tagggttttgcgtt gacacacaa 1200
tgacaatccc cctgaactga tcgtatcatc atttccaac tctgttgctg 1250
agaattctcc tgagacgccc ctggctgttt ttaagattaa tgacagagac 1300
tctggagaaa atggaaagat ggtttgctac attcaagaga atctgccatt 1350
cctactaaaa cttctgtgg agaattttta catcctaatt acagaaggcg 1400
cgctggacag agagatcaga gccgagtaca acatcactat caccgtcact 1450
gacttgggga cacccaggct gaaaaccgag cacaacataa cggcctgg 1500
ctccgacgtc aatgacaacg ccccccctt cacccaaacc tcctacaccc 1550
tgttcgtccg cgagaacaac agccccgccc tgcacatcgg cagcgtcagc 1600
gccacagaca gagactcggg caccaacgccc caggtcacct actcgctgct 1650

gccggcccaa gacccgcacc tgcccctcgc ctccctggtc tccatcaacg 1700
cgagacaacgg ccacaccttgc gccctcagggt cgctggacta cgaggccctg 1750
caggctttcg agttccgcgt gggcgccaca gaccgcggct ccccccgcgt 1800
gagcagagag gcgctggtgc gcgtgctggt gctggacgcc aacgacaact 1850
cgcccttcgt gctgtacccg ctgcagaacg gctccgcgcc ctgcaccgag 1900
ctggtgcccc gggcgccga gccgggctac ctggtgacca aggtggtggc 1950
ggtggacggc gactcgggcc agaacgcctg gctgtcgta cagctgctca 2000
aggccacgga gcccggctg ttccggtgtgt gggcgcacaa tggggaggtg 2050
cgcacccgcca ggctgctgag cgagcgcgac gcagccaagc acaggctcgt 2100
ggtgcttgct aaggacaatg gcgagcctcc tcgctggcc accgccacgc 2150
tgcacttgct cctggtgac ggcttctccc agccctacct gcctctcccg 2200
gaggcggccc cgcccggcaggc ccaggccgag gccgacttgc tcaccgtcta 2250
cctggtggtg gcgttggcct cgggtgtttc gctttcctc ctctcggtgc 2300
tcctgttcgt ggccgtgcgg ctgtgcagga ggagcagggc ggctcggtg 2350
ggtcgctgct cgggtcccgaa gggcctttt ccagggcatc tggtgacgt 2400
gagggcgcgt gagaccctgt cccagagcta ccagtatgag gtgtgtctga 2450
cgggaggccc cgggaccagt gagttcaagt tcttgaacc agttatttcg 2500
gatattcagg cacaggccc tgggaggaag ggtgaagaaa attccacatt 2550
ccgaaatagc tttggattta atattcagta aagtctgttt ttagttcat 2600
atactttgg tgtgttacat agccatgttt ctattagtt actttaaat 2650
ctcaaattta agttattatg caacttcaag cattatttc aagtagtata 2700
cccctgtggc tttacaatgt ttcatcattt ttttgcatta ataacaactg 2750
ggtttaattt aatgagtatt ttttctaaa tgatagtgtt aaggtttaa 2800
ttctttccaa ctgcccagg aattaattac tattatatct cattacagaa 2850
atctgagggtt ttgattcatt tcagagcttgc catctcatga ttctaatcac 2900
ttctgtctat agtgtacttgc ctctattaa gaaggcatat ctacatttcc 2950
aaactcatttc taacattcta tatattcgtt tttgaaaacc atgtcattta 3000
tttctacatc atgtatttaa aaagaaaatat ttctctacta ctatgctcat 3050
gacaaaaatga aacaaagcat attgtgagca atactgaaca tcaataatac 3100

ccttagttta tatacttatt attttatctt taagcatgct acttttactt 3150
ggccaatatt ttcttatgtt aacttttgct gatgtataaa acagactatg 3200
ccttataatt gaaataaaaat tataatctgc ctgaaaatga ataaaaataa 3250
aacatttga aatgtgaaaa aaaaaaaaaa aaaaaaaaa 3288

<210> 52
<211> 800
<212> PRT
<213> Homo Sapien

<400> 52
Met Ala Val Arg Glu Leu Cys Phe Pro Arg Gln Arg Gln Val Leu
1 5 10 15

Phe Leu Phe Leu Phe Trp Gly Val Ser Leu Ala Gly Ser Gly Phe
20 25 30

Gly Arg Tyr Ser Val Thr Glu Glu Thr Glu Lys Gly Ser Phe Val
35 40 45

Val Asn Leu Ala Lys Asp Leu Gly Leu Ala Glu Gly Glu Leu Ala
50 55 60

Ala Arg Gly Thr Arg Val Val Ser Asp Asp Asn Lys Gln Tyr Leu
65 70 75

Leu Leu Asp Ser His Thr Gly Asn Leu Leu Thr Asn Glu Lys Leu
80 85 90

Asp Arg Glu Lys Leu Cys Gly Pro Lys Glu Pro Cys Met Leu Tyr
95 100 105

Phe Gln Ile Leu Met Asp Asp Pro Phe Gln Ile Tyr Arg Ala Glu
110 115 120

Leu Arg Val Arg Asp Ile Asn Asp His Ala Pro Val Phe Gln Asp
125 130 135

Lys Glu Thr Val Leu Lys Ile Ser Glu Asn Thr Ala Glu Gly Thr
140 145 150

Ala Phe Arg Leu Glu Arg Ala Gln Asp Pro Asp Gly Gly Leu Asn
155 160 165

Gly Ile Gln Asn Tyr Thr Ile Ser Pro Asn Ser Phe Phe His Ile
170 175 180

Asn Ile Ser Gly Gly Asp Glu Gly Met Ile Tyr Pro Glu Leu Val
185 190 195

Leu Asp Lys Ala Leu Asp Arg Glu Glu Gln Gly Glu Leu Ser Leu
200 205 210

Thr Leu Thr Ala Leu Asp Gly Gly Ser Pro Ser Arg Ser Gly Thr
215 220 225

Ser Thr Val Arg Ile Val Val Leu Asp Val Asn Asp Asn Ala Pro
 230 235 240
 Gln Phe Ala Gln Ala Leu Tyr Glu Thr Gln Ala Pro Glu Asn Ser
 245 250 255
 Pro Ile Gly Phe Leu Ile Val Lys Val Trp Ala Glu Asp Val Asp
 260 265 270
 Ser Gly Val Asn Ala Glu Val Ser Tyr Ser Phe Phe Asp Ala Ser
 275 280 285
 Glu Asn Ile Arg Thr Thr Phe Gln Ile Asn Pro Phe Ser Gly Glu
 290 295 300
 Ile Phe Leu Arg Glu Leu Leu Asp Tyr Glu Leu Val Asn Ser Tyr
 305 310 315
 Lys Ile Asn Ile Gln Ala Met Asp Gly Gly Gly Leu Ser Ala Arg
 320 325 330
 Cys Arg Val Leu Val Glu Val Leu Asp Thr Asn Asp Asn Pro Pro
 335 340 345
 Glu Leu Ile Val Ser Ser Phe Ser Asn Ser Val Ala Glu Asn Ser
 350 355 360
 Pro Glu Thr Pro Leu Ala Val Phe Lys Ile Asn Asp Arg Asp Ser
 365 370 375
 Gly Glu Asn Gly Lys Met Val Cys Tyr Ile Gln Glu Asn Leu Pro
 380 385 390
 Phe Leu Leu Lys Pro Ser Val Glu Asn Phe Tyr Ile Leu Ile Thr
 395 400 405
 Glu Gly Ala Leu Asp Arg Glu Ile Arg Ala Glu Tyr Asn Ile Thr
 410 415 420
 Ile Thr Val Thr Asp Leu Gly Thr Pro Arg Leu Lys Thr Glu His
 425 430 435
 Asn Ile Thr Val Leu Val Ser Asp Val Asn Asp Asn Ala Pro Ala
 440 445 450
 Phe Thr Gln Thr Ser Tyr Thr Leu Phe Val Arg Glu Asn Asn Ser
 455 460 465
 Pro Ala Leu His Ile Gly Ser Val Ser Ala Thr Asp Arg Asp Ser
 470 475 480
 Gly Thr Asn Ala Gln Val Thr Tyr Ser Leu Leu Pro Pro Gln Asp
 485 490 495
 Pro His Leu Pro Leu Ala Ser Leu Val Ser Ile Asn Ala Asp Asn
 500 505 510
 Gly His Leu Phe Ala Leu Arg Ser Leu Asp Tyr Glu Ala Leu Gln

	515	520	525
Ala Phe Glu Phe Arg Val Gly Ala Thr Asp Arg Gly Ser Pro Ala			
530	535	540	
Leu Ser Arg Glu Ala Leu Val Arg Val Leu Val Leu Asp Ala Asn			
545	550	555	
Asp Asn Ser Pro Phe Val Leu Tyr Pro Leu Gln Asn Gly Ser Ala			
560	565	570	
Pro Cys Thr Glu Leu Val Pro Arg Ala Ala Glu Pro Gly Tyr Leu			
575	580	585	
Val Thr Lys Val Val Ala Val Asp Gly Asp Ser Gly Gln Asn Ala			
590	595	600	
Trp Leu Ser Tyr Gln Leu Leu Lys Ala Thr Glu Pro Gly Leu Phe			
605	610	615	
Gly Val Trp Ala His Asn Gly Glu Val Arg Thr Ala Arg Leu Leu			
620	625	630	
Ser Glu Arg Asp Ala Ala Lys His Arg Leu Val Val Leu Val Lys			
635	640	645	
Asp Asn Gly Glu Pro Pro Arg Ser Ala Thr Ala Thr Leu His Leu			
650	655	660	
Leu Leu Val Asp Gly Phe Ser Gln Pro Tyr Leu Pro Leu Pro Glu			
665	670	675	
Ala Ala Pro Ala Gln Ala Gln Ala Glu Ala Asp Leu Leu Thr Val			
680	685	690	
Tyr Leu Val Val Ala Leu Ala Ser Val Ser Ser Leu Phe Leu Leu			
695	700	705	
Ser Val Leu Leu Phe Val Ala Val Arg Leu Cys Arg Arg Ser Arg			
710	715	720	
Ala Ala Ser Val Gly Arg Cys Ser Val Pro Glu Gly Pro Phe Pro			
725	730	735	
Gly His Leu Val Asp Val Arg Gly Ala Glu Thr Leu Ser Gln Ser			
740	745	750	
Tyr Gln Tyr Glu Val Cys Leu Thr Gly Gly Pro Gly Thr Ser Glu			
755	760	765	
Phe Lys Phe Leu Lys Pro Val Ile Ser Asp Ile Gln Ala Gln Gly			
770	775	780	
Pro Gly Arg Lys Gly Glu Glu Asn Ser Thr Phe Arg Asn Ser Phe			
785	790	795	
Gly Phe Asn Ile Gln			
800			

<210> 53
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 53
ctggggagtg tccttggcag gttc 24

<210> 54
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 54
cagatacacag ggctcttttag ggcacac 27

<210> 55
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 55
cggtgactga ggaaacagag aaaggatcct ttgtggtcaa tctggc 46

<210> 56
<211> 2242
<212> DNA
<213> Homo Sapien

<220>
<221> unsure
<222> 2181
<223> unknown base

<400> 56
gaatgaatac ctccgaagcc gctttgttct ccagatgtga atagctccac 50
tataccagcc tcgtcttcct tccggggac aacgtgggtc agggcacaga 100
gagatattta atgtcacccct cttggggctt tcatgggact ccctctgcca 150
cattttttgg aggttgggaa agttgctaga ggcttcagaa ctccagccta 200
atggatccca aactcgggag aatggctgctg tccctgctgg ctgtgctgct 250
gctgctgctg gagcgcggca tgttctcctc accctccccg ccccccggcgc 300
tgttagagaa agtcttccag tacattgacc tccatcagga tgaatttgtg 350

cagacgctga aggagtgggt ggcacatcgag agcgactctg tccagcctgt 400
gcctcgcttc agacaagagc tcttcagaat gatggccgtg gctgcggaca 450
cgctgcagcg cctgggggcc cgtgtggcct cggtggacat gggtcctcag 500
cagctgcccgc atggtcagag tcttccaata cctccgtca tcctggccga 550
actggggagc gatcccacga aaggcaccgt gtgcttctac ggccacttgg 600
acgtgcagcc tgctgaccgg ggcgatgggt ggctcacgga cccctatgtg 650
ctgacggagg tagacggaa actttatgga cgaggagcga ccgacaacaa 700
aggccctgtc ttggcttgga tcaatgctgt gagcgccttc agagccctgg 750
agcaagatct tcctgtgaat atcaaattca tcattgaggg gatggaagag 800
gctggctctg ttgcccctgga ggaacttgtg gaaaaagaaa aggaccgatt 850
cttctcttgt gtggactaca ttgtaatttc agataacctg tggatcagcc 900
aaaggaagcc agcaatcaact tatggaaccc gggggAACAG ctacttcattg 950
gtggaggtga aatgcagaga ccaggatttt cactcaggaa cctttgggg 1000
catccttcattt gaaccaatgg ctgatcttgt tgctcttc ggttagcctgg 1050
tagactcgtc tggtcataatc ctggccctg gaatctatga tgaagtgggtt 1100
cctcttacag aagagggaaat aaatacatac aaagccatcc atctagaccc 1150
agaagaatac cggaatagca gccgggttga gaaatttctg ttcgatacta 1200
aggaggagat tctaattgcac ctctggaggt acccatctt ttctattcat 1250
gggatcgagg gcgcgtttga tgagcctgga actaaaacag tcatacctgg 1300
ccgagttata ggaaaatttt caatccgtct agtccctcac atgaatgtgt 1350
ctgcggtgga aaaacaggtg acacgacatc ttgaagatgt gttctccaaa 1400
agaaaatagtt ccaacaagat ggttggccatgactcttag gactacaccc 1450
gtggattgca aatattgtatg acacccagta tctcgacgca aaaagagcga 1500
tcagaacagt gtttggaaaca gaaccagata tgatccggga tggatccacc 1550
attccaatttgc ccaaaatgtt ccaggagatc gtccacaaga gcgtgggtgt 1600
aattccgctg ggagctgttg atgatggaga acattcgacg aatgagaaaa 1650
tcaacaggtg gaactacata gagggAACCA aattatttgc tgccttttc 1700
tttagagatgg cccagctcca ttaatcacaa gaaccttctta gtctgatctg 1750
atccactgac agattcaccc cccccacatc cctagacagg gatggaatgt 1800

aaatatccag agaatttggg tctagtatag tacattttcc cttccattta 1850
aaatgtcttg ggatatctgg atcagtaata aaatatttca aaggcacaga 1900
tgttggaaat ggttaaggt cccccactgc acaccccttca caagtcata 1950
ctgcttgcag caacttgatt tccccaagtc ctgtgcaata gcccccaggat 2000
tggattcctt ccaacctttt agcatatctc caacccctgca atttgattgg 2050
cataatcact ccggtttgct ttcttaggtcc tcaagtgctc gtgacacata 2100
atcattccat ccaatgatcg ccttgcttt accactctt ccttttatct 2150
tattaataaa aatgttggtc tccaccactg nctcccaaaaa aaaaaaaaaa 2200
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aa 2242

<210> 57

<211> 507

<212> PRT

<213> Homo Sapien

<400> 57

Met	Asp	Pro	Lys	Leu	Gly	Arg	Met	Ala	Ala	Ser	Leu	Leu	Ala	Val
1				5				10						15
Leu	Leu	Leu	Leu	Leu	Glu	Arg	Gly	Met	Phe	Ser	Ser	Pro	Ser	Pro
					20			25						30
Pro	Pro	Ala	Leu	Leu	Glu	Lys	Val	Phe	Gln	Tyr	Ile	Asp	Leu	His
					35			40						45
Gln	Asp	Glu	Phe	Val	Gln	Thr	Leu	Lys	Glu	Trp	Val	Ala	Ile	Glu
				50				55						60
Ser	Asp	Ser	Val	Gln	Pro	Val	Pro	Arg	Phe	Arg	Gln	Glu	Leu	Phe
				65				70						75
Arg	Met	Met	Ala	Val	Ala	Ala	Asp	Thr	Leu	Gln	Arg	Leu	Gly	Ala
				80				85						90
Arg	Val	Ala	Ser	Val	Asp	Met	Gly	Pro	Gln	Gln	Leu	Pro	Asp	Gly
				95				100						105
Gln	Ser	Leu	Pro	Ile	Pro	Pro	Val	Ile	Leu	Ala	Glu	Leu	Gly	Ser
				110				115						120
Asp	Pro	Thr	Lys	Gly	Thr	Val	Cys	Phe	Tyr	Gly	His	Leu	Asp	Val
				125				130						135
Gln	Pro	Ala	Asp	Arg	Gly	Asp	Gly	Trp	Leu	Thr	Asp	Pro	Tyr	Val
				140				145						150
Leu	Thr	Glu	Val	Asp	Gly	Lys	Leu	Tyr	Gly	Arg	Gly	Ala	Thr	Asp
				155				160						165
Asn	Lys	Gly	Pro	Val	Leu	Ala	Trp	Ile	Asn	Ala	Val	Ser	Ala	Phe

170	175	180
Arg Ala Leu Glu Gln Asp Leu Pro Val Asn Ile Lys Phe Ile Ile		
185	190	195
Glu Gly Met Glu Glu Ala Gly Ser Val Ala Leu Glu Glu Leu Val		
200	205	210
Glu Lys Glu Lys Asp Arg Phe Phe Ser Gly Val Asp Tyr Ile Val		
215	220	225
Ile Ser Asp Asn Leu Trp Ile Ser Gln Arg Lys Pro Ala Ile Thr		
230	235	240
Tyr Gly Thr Arg Gly Asn Ser Tyr Phe Met Val Glu Val Lys Cys		
245	250	255
Arg Asp Gln Asp Phe His Ser Gly Thr Phe Gly Gly Ile Leu His		
260	265	270
Glu Pro Met Ala Asp Leu Val Ala Leu Leu Gly Ser Leu Val Asp		
275	280	285
Ser Ser Gly His Ile Leu Val Pro Gly Ile Tyr Asp Glu Val Val		
290	295	300
Pro Leu Thr Glu Glu Glu Ile Asn Thr Tyr Lys Ala Ile His Leu		
305	310	315
Asp Leu Glu Glu Tyr Arg Asn Ser Ser Arg Val Glu Lys Phe Leu		
320	325	330
Phe Asp Thr Lys Glu Glu Ile Leu Met His Leu Trp Arg Tyr Pro		
335	340	345
Ser Leu Ser Ile His Gly Ile Glu Gly Ala Phe Asp Glu Pro Gly		
350	355	360
Thr Lys Thr Val Ile Pro Gly Arg Val Ile Gly Lys Phe Ser Ile		
365	370	375
Arg Leu Val Pro His Met Asn Val Ser Ala Val Glu Lys Gln Val		
380	385	390
Thr Arg His Leu Glu Asp Val Phe Ser Lys Arg Asn Ser Ser Asn		
395	400	405
Lys Met Val Val Ser Met Thr Leu Gly Leu His Pro Trp Ile Ala		
410	415	420
Asn Ile Asp Asp Thr Gln Tyr Leu Ala Ala Lys Arg Ala Ile Arg		
425	430	435
Thr Val Phe Gly Thr Glu Pro Asp Met Ile Arg Asp Gly Ser Thr		
440	445	450
Ile Pro Ile Ala Lys Met Phe Gln Glu Ile Val His Lys Ser Val		
455	460	465

Val Leu Ile Pro Leu Gly Ala Val Asp Asp Gly Glu His Ser Gln
470 475 480

Asn Glu Lys Ile Asn Arg Trp Asn Tyr Ile Glu Gly Thr Lys Leu
485 490 495

Phe Ala Ala Phe Phe Leu Glu Met Ala Gln Leu His
500 505

<210> 58
<211> 1470
<212> DNA
<213> Homo Sapien

<400> 58
ctcggctgga tttaaggttg ccgctagccg cctggaaatt taaggaccc 50
acactaccc cccgaagttt aaggcaagcg gtgattgttt gtagacggcg 100
ctttgtcatg ggacctgtgc gggtggaaat attgcttttc cttttttgg 150
ccgtgcacga ggcttggct gggatgttga aggaggagga cgatgacaca 200
gaacgcttgc ccagcaaatg cgaagtgtgt aagctgctga gcacagagct 250
acaggcggaa ctgagtcgca ccggtcgatc tcgagaggtg ctggagctgg 300
ggcaggtgct ggatacaggc aagaggaaga gacacgtgcc ttacagcggtt 350
tcagagacaa ggcttggaaaga ggccttagag aatttatgtg agcggatcct 400
ggactatagt gttcacgctg agcgcaaggg ctcactgaga tatgccaagg 450
gtcagagtca gaccatggca acactgaaag gcctagtgca gaagggggtg 500
aagggtggatc tggggatccc tctggagctt tggggatgagc ccagcgtgga 550
ggtcacatac ctcagaagaagc agtgtgagac catgttggag gagtttgaag 600
acattgtggg agactggtagt ttccaccatc aggagcagcc cctacaaaat 650
tttctctgtg aaggtcatgt gctcccagct gctgaaactg catgtctaca 700
ggaaacttgg actggaaagg agatcacaga tggggaaagag aaaacagaag 750
gggaggaaga gcaggaggag gaggaggaag aggaggaaga ggaagggggta 800
gacaagatga ccaagacagg aagccacccc aaacttgacc gagaagatct 850
ttgacccttg cctttgagcc cccaggaggg gaagggatca tggagagccc 900
tctaaagcct gcactctccc tgctccacag ctttcagggt gtgtttatga 950
gtgactccac ccaagcttgt agctgttctc tcccatctaa cctcaggcaa 1000
gatcctggtg aaacacgcatg acatggcttc tgggggtggag ggtgggggtg 1050
gaggtcctgc tcctagagat gaactctatc cagcccccta attggcaggt 1100

gtatgtgctg acagtaactga aagtttcct ctttaactga tcccaccc 1150
accaaaaagt cagcagtggc actggagctg tgggcttgg ggaagtcact 1200
tagctccta aggtctgtt ttagaccctt ccaaggaaga ggccagaacg 1250
gacattctct gcgatctata tacattgcct gtatccagga ggctacacac 1300
cagcaaaccg tgaaggagaa tggcacactg ggtcatggcc tggagttgct 1350
gataattnag gtgggataga tacttggtct acttaagctc aatgtaaacc 1400
agagcccacc atatagtttt ataggtgctc aactttctat atcgctatta 1450
aacttttttc tttttttcta 1470

<210> 59

<211> 248

<212> PRT

<213> Homo Sapien

<400> 59

Met Gly Pro Val Arg Leu Gly Ile Leu Leu Phe Leu Phe Leu Ala
1 5 10 15

Val His Glu Ala Trp Ala Gly Met Leu Lys Glu Glu Asp Asp Asp
20 25 30

Thr Glu Arg Leu Pro Ser Lys Cys Glu Val Cys Lys Leu Leu Ser
35 40 45

Thr Glu Leu Gln Ala Glu Leu Ser Arg Thr Gly Arg Ser Arg Glu
50 55 60

Val Leu Glu Leu Gly Gln Val Leu Asp Thr Gly Lys Arg Lys Arg
65 70 75

His Val Pro Tyr Ser Val Ser Glu Thr Arg Leu Glu Glu Ala Leu
80 85 90

Glu Asn Leu Cys Glu Arg Ile Leu Asp Tyr Ser Val His Ala Glu
95 100 105

Arg Lys Gly Ser Leu Arg Tyr Ala Lys Gly Gln Ser Gln Thr Met
110 115 120

Ala Thr Leu Lys Gly Leu Val Gln Lys Gly Val Lys Val Asp Leu
125 130 135

Gly Ile Pro Leu Glu Leu Trp Asp Glu Pro Ser Val Glu Val Thr
140 145 150

Tyr Leu Lys Lys Gln Cys Glu Thr Met Leu Glu Glu Phe Glu Asp
155 160 165

Ile Val Gly Asp Trp Tyr Phe His His Gln Glu Gln Pro Leu Gln
170 175 180

Asn Phe Leu Cys Glu Gly His Val Leu Pro Ala Ala Glu Thr Ala
185 190 195
Cys Leu Gln Glu Thr Trp Thr Gly Lys Glu Ile Thr Asp Gly Glu
200 205 210
Glu Lys Thr Glu Gly Glu Glu Gln Glu Glu Glu Glu Glu Glu
215 220 225
Glu Glu Glu Gly Asp Lys Met Thr Lys Thr Gly Ser His
230 235 240
Pro Lys Leu Asp Arg Glu Asp Leu
245

<210> 60
<211> 890
<212> DNA
<213> Homo Sapien

<400> 60
aagtacttgt gtccgggtgg tggactggat tagctgcgga gccctggaag 50
ctgcctgtcc ttctccctgt gcttaaccag aggtgcccat gggttggaca 100
atgaggctgg tcacagcagc actgttactg ggtctcatga tgggtggcac 150
tggagacgag gatgagaaca gcccgtgtgc ccatgaggcc ctcttggacg 200
aggacaccct ctttgccag ggccttgaag ttttctaccc agagttgggg 250
aacattggct gcaagggttgt tcctgattgt aacaactaca gacagaagat 300
cacctcctgg atggagccga tagtcaagtt cccgggggcc gtggacggcg 350
caacctatat cctggtgatg gtggatccag atgcccctag cagagcagaa 400
cccagacaga gattctggag acattggctg gtaacagata tcaagggcgc 450
cgacctgaag aaagggaaaga ttcagggcca ggagttatca gcctaccagg 500
ctccctcccc accggcacac agtggcttcc atcgctacca gttcttgtc 550
tatcttcagg aaggaaaagt catctcttc cttcccaagg aaaacaaaac 600
tcgaggctct tggaaaatgg acagatttct gaaccgcctc cacctggcg 650
aacctgaagc aagcacccag ttcatgaccc agaactacca ggactcacca 700
accctccagg ctcccagagg aagggccagc gagcccaagc aaaaaaccag 750
gcagagatag ctgcctgcta gatagccggc tttgccatcc gggcatgtgg 800
ccacactgct caccaccgac gatgtggta tggaaccccc tctggataca 850
gaacccttc tttccaaat taaaaaaaaa aatcatcaaa 890

<210> 61

<211> 223
 <212> PRT
 <213> Homo Sapien

<400> 61

Met	Gly	Trp	Thr	Met	Arg	Leu	Val	Thr	Ala	Ala	Leu	Leu	Gly
1				5				10					15

Leu Met Met Val Val Thr Gly Asp Glu Asp Glu Asn Ser Pro Cys
 20 25 30

Ala His Glu Ala Leu Leu Asp Glu Asp Thr Leu Phe Cys Gln Gly
 35 40 45

Leu Glu Val Phe Tyr Pro Glu Leu Gly Asn Ile Gly Cys Lys Val
 50 55 60

Val Pro Asp Cys Asn Asn Tyr Arg Gln Lys Ile Thr Ser Trp Met
 65 70 75

Glu Pro Ile Val Lys Phe Pro Gly Ala Val Asp Gly Ala Thr Tyr
 80 85 90

Ile Leu Val Met Val Asp Pro Asp Ala Pro Ser Arg Ala Glu Pro
 95 100 105

Arg Gln Arg Phe Trp Arg His Trp Leu Val Thr Asp Ile Lys Gly
 110 115 120

Ala Asp Leu Lys Lys Gly Lys Ile Gln Gly Gln Glu Leu Ser Ala
 125 130 135

Tyr Gln Ala Pro Ser Pro Pro Ala His Ser Gly Phe His Arg Tyr
 140 145 150

Gln Phe Phe Val Tyr Leu Gln Glu Gly Lys Val Ile Ser Leu Leu
 155 160 165

Pro Lys Glu Asn Lys Thr Arg Gly Ser Trp Lys Met Asp Arg Phe
 170 175 180

Leu Asn Arg Phe His Leu Gly Glu Pro Glu Ala Ser Thr Gln Phe
 185 190 195

Met Thr Gln Asn Tyr Gln Asp Ser Pro Thr Leu Gln Ala Pro Arg
 200 205 210

Gly Arg Ala Ser Glu Pro Lys His Lys Thr Arg Gln Arg
 215 220

<210> 62
 <211> 1321
 <212> DNA
 <213> Homo Sapien

<400> 62
 gtcgacccac gcgtccgaag ctgctggagc cacgatttag tccccctggac 50

tgtagataaa gacccttct tgccaggtgc tgagacaacc acactatgag 100
aggcactcca ggagacgctg atggtgagg aagggccgtc tatcaatcaa 150
tcactgttgc tgttatcaca tgcaagtatc cagaggctct tgagcaaggc 200
agaggggatc ccatttattt gggaatccag aatccagaaa tgtgtttgta 250
tttgtgagaag gttggagaac agcccacatt gcagctaaaa gagcagaaga 300
tcatggatct gtatggccaa cccgagcccg tgaaacccctt cctttctac 350
cgtgccaaga ctggtaggac ctccacccctt gagtctgtgg cttcccgga 400
ctggttcatt gcctcctcca agagagacca gcccatcatt ctgacttcag 450
aacttggaa gtcatacaac actgccttg aattaaatat aaatgactga 500
actcagccta gaggtggcag cttggcttt gtcttaagt ttctggcc 550
caatgtgtt tcgtctacat tttcttagtg tcattttcac gctggtgctg 600
agacaggagc aaggctgctg ttatcatctc attttataat gaagaagaag 650
caattacttc atagcaactg aagaacagga tgtggcctca gaagcaggag 700
agctgggtgg tataaggctg tcctctcaag ctggtgctgt gtaggccaca 750
aggcatctgc atgagtgact ttaagactca aagaccaaac actgagctt 800
cttctagggg tgggtatgaa gatgcttcag agctcatgcg cgttacccac 850
gatggcatga ctagcacaga gctgatctct gtttctgtt tgctttattc 900
cctctggga tgatatcatc cagtcttat atgttgccaa tatacctcat 950
tgtgtgtaat agaaccttct tagcattaag accttgtaaa caaaaataat 1000
tcttgggttg ggtatgaaga tgcttcagag ctcatgcgcg ttacccacga 1050
tggcatgact agcacagagc tgatctctgt ttctgttttgc ttatttccc 1100
tcttggatg atatcatcca gtcttataat gttgccaata tacctcatttgc 1150
tgtgtatag aaccttctta gcattaagac cttgtaaaca aaaataattc 1200
ttgtgttaag ttaaatcatt tttgtcctaa ttgtatgtg taatcttaaa 1250
gttaaataaaa ctttgtgtat ttatataata ataaagctaa aactgatata 1300
aaataaagaa agagtaaact g 1321

<210> 63
<211> 134
<212> PRT

<213> Homo Sapien

<400> 63

Met	Arg	Gly	Thr	Pro	Gly	Asp	Ala	Asp	Gly	Gly	Arg	Ala	Val	
1				5				10			15			
Tyr	Gln	Ser	Ile	Thr	Val	Ala	Val	Ile	Thr	Cys	Lys	Tyr	Pro	Glu
				20				25			30			
Ala	Leu	Glu	Gln	Gly	Arg	Gly	Asp	Pro	Ile	Tyr	Leu	Gly	Ile	Gln
				35				40			45			
Asn	Pro	Glu	Met	Cys	Leu	Tyr	Cys	Glu	Lys	Val	Gly	Glu	Gln	Pro
				50				55			60			
Thr	Leu	Gln	Leu	Lys	Glu	Gln	Lys	Ile	Met	Asp	Leu	Tyr	Gly	Gln
				65				70			75			
Pro	Glu	Pro	Val	Lys	Pro	Phe	Leu	Phe	Tyr	Arg	Ala	Lys	Thr	Gly
				80				85			90			
Arg	Thr	Ser	Thr	Leu	Glu	Ser	Val	Ala	Phe	Pro	Asp	Trp	Phe	Ile
				95				100			105			
Ala	Ser	Ser	Lys	Arg	Asp	Gln	Pro	Ile	Ile	Leu	Thr	Ser	Glu	Leu
				110				115			120			
Gly	Lys	Ser	Tyr	Asn	Thr	Ala	Phe	Glu	Leu	Asn	Ile	Asn	Asp	
				125				130						

<210> 64

<211> 999

<212> DNA

<213> Homo Sapien

<400> 64

```

gcgaggctgc accagcgcct ggcaccatga ggacgcctgg gcctctgcc 50
gtgctgctgc tgctccctggc gggagcccc gcccgcgcggc ccactcccc 100
gacctgctac tcccccatgc gggccctgag ccaggagatc acccgcgact 150
tcaacctcct gcaggtctcg gagccctcgg agccatgtgt gagatacctg 200
cccaggctgt acctggacat acacaattac tgtgtgctgg acaagctgcg 250
ggactttgtg gcctcgcccc cgtgttgaa agtggccag gtagattcct 300
tgaaggacaa agcacggaag ctgtacacca tcatgaactc gttctgcagg 350
agagatttgg tattcctgtt ggttgactgc aatgccttgg aatacccaat 400
cccagtgtact acggtcctgc cagatcgtca gcgctaaggg aactgagacc 450
agagaaaagaa cccaagagaa ctaaagttat gtcagctacc cagacttaat 500
ggcccgagac catgaccctc acaggtcttg tgtagtgtt atctgaaact 550
gttatgtatc tctctacctt ctggaaaaca gggctggat tcctacccag 600
gaacctccctt tgagcataga gtttagcaacc atgcttctca ttcccttgac 650

```

tcatgtcttg ccaggatgg tagatacaca gcatgttgat ttggtaacta 700
aaaagaagaa aaggactaac aagcttcaact tttatgaaca actatggaa 750
gaacatgcac aatagtatgt ttttattact ggtaatgg agtaatggta 800
cttttattct ttcttgatag aaacctgctt acatccaacc aagcttctat 850
tatgccttt tctaacadag actttttca ctgtcttca tttaaaaaga 900
aattaatgct cttaaagatata atatttacg tagtgctgac aggacccact 950
ctttcattga aagggtatga aaatcaaata aagaatctt tcacatgg 999

<210> 65

<211> 136

<212> PRT

<213> Homo Sapien

<400> 65

Met	Arg	Thr	Pro	Gly	Pro	Leu	Pro	Val	Leu	Leu	Leu	Leu	Ala
1													15

Gly	Ala	Pro	Ala	Ala	Arg	Pro	Thr	Pro	Pro	Thr	Cys	Tyr	Ser	Arg
													30	

Met	Arg	Ala	Leu	Ser	Gln	Glu	Ile	Thr	Arg	Asp	Phe	Asn	Leu	Leu
													45	

Gln	Val	Ser	Glu	Pro	Ser	Glu	Pro	Cys	Val	Arg	Tyr	Leu	Pro	Arg
													60	

Leu	Tyr	Leu	Asp	Ile	His	Asn	Tyr	Cys	Val	Leu	Asp	Lys	Leu	Arg
													75	

Asp	Phe	Val	Ala	Ser	Pro	Pro	Cys	Trp	Lys	Val	Ala	Gln	Val	Asp
													90	

Ser	Leu	Lys	Asp	Lys	Ala	Arg	Lys	Leu	Tyr	Thr	Ile	Met	Asn	Ser
													105	

Phe	Cys	Arg	Arg	Asp	Leu	Val	Phe	Leu	Leu	Asp	Asp	Cys	Asn	Ala
													120	

Leu	Glu	Tyr	Pro	Ile	Pro	Val	Thr	Thr	Val	Leu	Pro	Asp	Arg	Gln
													135	

Arg

<210> 66

<211> 1893

<212> DNA

<213> Homo Sapien

<400> 66

gtctccgcgt cacaggaact tcagcaccca cagggcggac agcgctcccc 50

tctacctgga gacttgactc ccgcgcgccc caaccctgct tatcccttga 100
ccgtcgagtg tcagagatcc tgcagccgcc cagtcccgcc ccctctcccg 150
ccccacaccc accctcctgg ctcttcctgt ttttactcct cctttcatt 200
cataacaaaa gctacagctc caggagccca gcgcgggct gtgacccaag 250
ccgagcgtgg aagaatgggg ttcctcgga ccggcacttg gattctggtg 300
ttagtgctcc cgattcaagc tttcccaaa cctggaggaa gccaaagacaa 350
atctctacat aatagagaat taagtgcaga aagaccttg aatgaacaga 400
ttgctgaagc agaagaagac aagattaaaa aaacatatcc tccagaaaaac 450
aagccaggc agagcaacta ttctttgtt gataacttga acctgctaaa 500
ggcaataaca gaaaaggaaa aaattgagaa agaaagacaa tctataagaa 550
gctccccact tgataataag ttgaatgtgg aagatgttga ttcaaccaag 600
aatcgaaaac tgatcgatga ttatgactt actaagagtg gattggatca 650
taaatttcaa gatgatccag atggcttca tcaacttagac gggactcctt 700
taaccgctga agacattgtc cataaaatcg ctgccaggat ttatgaagaa 750
aatgacagag ccgtgtttga caagattgtt tctaaactac ttaatctcg 800
ccttatcaca gaaagccaag cacatacact ggaagatgaa gtagcagagg 850
ttttacaaaa attaatctca aaggaagcca acaattatga ggaggatccc 900
aataagccca caagctggac tgagaatcag gctggaaaaa taccagagaa 950
agtgactcca atggcagcaa ttcaagatgg tcttgcttga ggagaaaacg 1000
atgaaacagt atctaacaca ttaaccttga caaatggctt ggaaaggaga 1050
actaaaacct acagtgaaga caactttgag gaactccaat atttcccaaa 1100
tttctatgcg ctactgaaaa gtattgattc agaaaaagaa gcaaaagaga 1150
aagaaacact gattactatc atgaaaacac tgattgactt tgtgaagatg 1200
atggtaaat atggaacaat atctccagaa gaaggtgttt cctaccttga 1250
aaacttggat gaaatgattt ctcttcagac caaaaacaag ctagaaaaaa 1300
atgctactga caatataagc aagctttcc cagcaccatc agagaagagt 1350
catgaagaaa cagacagtac caaggaagaa gcagctaaga tggaaaagga 1400
atatggaagc ttgaaggatt ccacaaaaga tgataactcc aaccaggag 1450
gaaagacaga tgaacccaaa ggaaaaacag aagccttattt ggaagccatc 1500

agaaaaaaaata ttgaatggc ttgaaacat gacaaaaagg gaaataaaga 1550
agattatgac ctttcaaaga tgagagactt catcaataaa caagctgatg 1600
cttatgtgga gaaaggcatc cttgacaagg aagaagccga gccatcaag 1650
cgcatttata gcagcctgta aaaatggcaa aagatccagg agtcttcaa 1700
ctgtttcaga aaacataata tagcttaaaa cacttcta at tctgtgatta 1750
aaatttttg acccaagggt tattagaaag tgctgaattt acagtagtta 1800
accttttaca agtggtaaa acatagctt cttcccgtaa aaactatctg 1850
aaagtaaaagt tgtatgttaag ctgaaaaaaaaaaaaaaa aaa 1893

<210> 67

<211> 468

<212> PRT

<213> Homo Sapien

<400> 67

Met	Gly	Phe	Leu	Gly	Thr	Gly	Thr	Trp	Ile	Leu	Val	Leu	Val	Leu
1									10					15
Pro	Ile	Gln	Ala	Phe	Pro	Lys	Pro	Gly	Gly	Ser	Gln	Asp	Lys	Ser
									25					30
Leu	His	Asn	Arg	Glu	Leu	Ser	Ala	Glu	Arg	Pro	Leu	Asn	Glu	Gln
									40					45
Ile	Ala	Glu	Ala	Glu	Glu	Asp	Lys	Ile	Lys	Lys	Thr	Tyr	Pro	Pro
									55					60
Glu	Asn	Lys	Pro	Gly	Gln	Ser	Asn	Tyr	Ser	Phe	Val	Asp	Asn	Leu
									70					75
Asn	Leu	Leu	Lys	Ala	Ile	Thr	Glu	Lys	Glu	Lys	Ile	Glu	Lys	Glu
									85					90
Arg	Gln	Ser	Ile	Arg	Ser	Ser	Pro	Leu	Asp	Asn	Lys	Leu	Asn	Val
									100					105
Glu	Asp	Val	Asp	Ser	Thr	Lys	Asn	Arg	Lys	Leu	Ile	Asp	Asp	Tyr
									115					120
Asp	Ser	Thr	Lys	Ser	Gly	Leu	Asp	His	Lys	Phe	Gln	Asp	Asp	Pro
									130					135
Asp	Gly	Leu	His	Gln	Leu	Asp	Gly	Thr	Pro	Leu	Thr	Ala	Glu	Asp
									145					150
Ile	Val	His	Lys	Ile	Ala	Ala	Arg	Ile	Tyr	Glu	Glu	Asn	Asp	Arg
									155					165
Ala	Val	Phe	Asp	Lys	Ile	Val	Ser	Lys	Leu	Leu	Asn	Leu	Gly	Leu
									170					180
									175					

Ile	Thr	Glu	Ser	Gln	Ala	His	Thr	Leu	Glu	Asp	Glu	Val	Ala	Glu
				185				190					195	
Val	Leu	Gln	Lys	Leu	Ile	Ser	Lys	Glu	Ala	Asn	Asn	Tyr	Glu	Glu
	200						205					210		
Asp	Pro	Asn	Lys	Pro	Thr	Ser	Trp	Thr	Glu	Asn	Gln	Ala	Gly	Lys
	215							220				225		
Ile	Pro	Glu	Lys	Val	Thr	Pro	Met	Ala	Ala	Ile	Gln	Asp	Gly	Leu
	230							235				240		
Ala	Lys	Gly	Glu	Asn	Asp	Glu	Thr	Val	Ser	Asn	Thr	Leu	Thr	Leu
	245							250				255		
Thr	Asn	Gly	Leu	Glu	Arg	Arg	Thr	Lys	Thr	Tyr	Ser	Glu	Asp	Asn
	260							265				270		
Phe	Glu	Glu	Leu	Gln	Tyr	Phe	Pro	Asn	Phe	Tyr	Ala	Leu	Leu	Lys
	275							280				285		
Ser	Ile	Asp	Ser	Glu	Lys	Glu	Ala	Lys	Glu	Lys	Glu	Thr	Leu	Ile
	290							295				300		
Thr	Ile	Met	Lys	Thr	Leu	Ile	Asp	Phe	Val	Lys	Met	Met	Val	Lys
	305							310				315		
Tyr	Gly	Thr	Ile	Ser	Pro	Glu	Glu	Gly	Val	Ser	Tyr	Leu	Glu	Asn
	320							325				330		
Leu	Asp	Glu	Met	Ile	Ala	Leu	Gln	Thr	Lys	Asn	Lys	Leu	Glu	Lys
	335							340				345		
Asn	Ala	Thr	Asp	Asn	Ile	Ser	Lys	Leu	Phe	Pro	Ala	Pro	Ser	Glu
	350							355				360		
Lys	Ser	His	Glu	Glu	Thr	Asp	Ser	Thr	Lys	Glu	Glu	Ala	Ala	Lys
	365							370				375		
Met	Glu	Lys	Glu	Tyr	Gly	Ser	Leu	Lys	Asp	Ser	Thr	Lys	Asp	Asp
	380							385				390		
Asn	Ser	Asn	Pro	Gly	Gly	Lys	Thr	Asp	Glu	Pro	Lys	Gly	Lys	Thr
	395							400				405		
Glu	Ala	Tyr	Leu	Glu	Ala	Ile	Arg	Lys	Asn	Ile	Glu	Trp	Leu	Lys
	410							415				420		
Lys	His	Asp	Lys	Lys	Gly	Asn	Lys	Glu	Asp	Tyr	Asp	Leu	Ser	Lys
	425							430				435		
Met	Arg	Asp	Phe	Ile	Asn	Lys	Gln	Ala	Asp	Ala	Tyr	Val	Glu	Lys
	440							445				450		
Gly	Ile	Leu	Asp	Lys	Glu	Glu	Ala	Glu	Ala	Ile	Lys	Arg	Ile	Tyr
	455							460				465		
Ser	Ser	Leu												

<210> 68
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 68
cgtcacagga acttcagcac cc 22

<210> 69
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 69
gtcttggctt cctccaggtt tgg 23

<210> 70
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 70
ggacagcgct cccctctacc tggagacttg actcccg 38

<210> 71
<211> 2379
<212> DNA
<213> Homo Sapien

<400> 71
gttgctccgg cgccgctcgg ggagggagcc agcagccatg ggcctaggcc 50
cgggccacca tggcgctgcc tccaggccca gccgcctcc ggcacacact 100
gctgctcctg ccagcccttc tgagctcagg ttggggggag ttggagccac 150
aaatacatgg tcagacctgg gctgagcggg cacttcggga gaatgaacgc 200
cacgccttca cctgcccgggt ggcagggggg cctggcaccc ccagattggc 250
ctggtatctg gatggacagc tgcaggaggc cagcacctca agactgctga 300
gcgtgggagg ggaggcccttc tctggaggca ccagcacctt cactgtcact 350
gcccatcggg cccagcatga gctcaactgc tctctgcagg accccagaag 400
tggccgatca gccaacgcct ctgtcatcct taatgtcaa ttcaagccag 450

agattgccca agtcggcgcc aagtaccagg aagctcaggg cccaggcctc 500
ctgggtgtcc tgtttgcctt ggtgcgtgcc aacccgcccgg ccaatgtcac 550
ctggatcgac caggatggc cagtgactgt caacacctct gacttcctgg 600
tgctggatgc gcagaactac ccctggctca ccaaccacac ggtgcagctg 650
cagctccgca gcctggcaca caacctctcg gtggtgccca ccaatgacgt 700
gggtgtcacc agtgcgtcgc ttccagcccc aggcccctcc cgccacccat 750
ctctgatatac aagtgactcc aacaacctaa aactcaacaa cgtgcgcctg 800
ccacgggaga acatgtccct cccgtccaac cttagtgcata atgacctcac 850
tccagattcc agagcagtga aaccagcaga cccgcagatg gctcagaaca 900
acagccggcc agagcttctg gacccggagc cccgcggcct cctcaccagc 950
caaggtttca tccgcctccc agtgcgtggc tatatactatc gagtgtccag 1000
cgtgagcagt gatgagatct ggctctgagc cgagggcgag acaggagat 1050
tctcttggcc tctggacacc ctcccatattcc tccaggcat cctctaccta 1100
gcttaggtcac caacgtgaag aagttatgcc actgccactt ttgcttgccc 1150
tcctggctgg ggtgcctcc atgtcatgca cgtgatgcat ttcaactggc 1200
tgtaacccgc aggggcacag gtatcttgg caaggctacc agtggacgt 1250
aagccctca tgctgactca gggggggccc tgcattgtat gactggggcc 1300
ttccagaggg agctcttgg ccaggggtgt tcagatgtca tccagcatcc 1350
aagtgtggca tggcctgtcg tataccccac cccagttactc cacagcacct 1400
tgtacagtag gcatgggggc gtgcctgtgt gggggacagg gagggccctg 1450
catggatttt ctccttcct atgctatgtt gccttgcgttcc ctcaggtaaa 1500
attttaggacc ctgcttagctg tgcagaaccc aattgccctt tgcacagaaa 1550
ccaaacctg acccagcgtt accggccaag cacaaacgtc cttttgctg 1600
cacacgtctc tgcccttcac ttcttcctt ctgtccccac ctcctttgg 1650
gaattctagg ttacacgttg gaccttctct actacttac tgggcactag 1700
acttttctat tggcctgtgc catcgcccaag tattagcaca agttagggag 1750
gaagaggcag gcatgtgatc tagtagcacc caggacggct tgttagctatg 1800
catcattttc ctacggcggtt agcactttaa gcacatcccc taggggaggg 1850
ggtgagtgag gggcccaagag cccttttgtt ggcttccca cgtttggcct 1900

tctgggattc actgtgagtg tcctgagctc tcggggttga tggttttct 1950
ctcagcatgt ctcctccacc acgggacccc agccctgacc aaccatggt 2000
tgcctcatca gcaggaaggt gcccttcctg gaggatggtc gccacaggca 2050
cataattcaa cagtgtggaa gctttagggg aacatggaga aagaaggaga 2100
ccacataccc caaagtgacc taagaacact ttaaaaagca acatgtaaat 2150
gattggaaat taatatagtc cagaatatat ttttcccttg ttgagatctt 2200
cttttgtaat gttttcatg ttactgccta gggcggtgct gagcacacag 2250
caagtttaat aaacttgact gaattcattt aaaaaaaaaa aaaaaaaaaa 2300
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 2350
aaaaaaaaaa aaaaaaaaaa aaaaaaaaa 2379

<210> 72

<211> 322

<212> PRT

<213> Homo Sapien

<400> 72

Met	Ala	Leu	Pro	Pro	Gly	Pro	Ala	Ala	Leu	Arg	His	Thr	Leu	Leu
1									10					15
Leu	Leu	Pro	Ala	Leu	Leu	Ser	Ser	Gly	Trp	Gly	Glu	Leu	Glu	Pro
				20					25					30
Gln	Ile	Asp	Gly	Gln	Thr	Trp	Ala	Glu	Arg	Ala	Leu	Arg	Glu	Asn
				35				40						45
Glu	Arg	His	Ala	Phe	Thr	Cys	Arg	Val	Ala	Gly	Gly	Pro	Gly	Thr
				50				55						60
Pro	Arg	Leu	Ala	Trp	Tyr	Leu	Asp	Gly	Gln	Leu	Gln	Glu	Ala	Ser
				65				70						75
Thr	Ser	Arg	Leu	Leu	Ser	Val	Gly	Gly	Glu	Ala	Phe	Ser	Gly	Gly
					80			85						90
Thr	Ser	Thr	Phe	Thr	Val	Thr	Ala	His	Arg	Ala	Gln	His	Glu	Leu
				95				100						105
Asn	Cys	Ser	Leu	Gln	Asp	Pro	Arg	Ser	Gly	Arg	Ser	Ala	Asn	Ala
				110				115						120
Ser	Val	Ile	Leu	Asn	Val	Gln	Phe	Lys	Pro	Glu	Ile	Ala	Gln	Val
				125				130						135
Gly	Ala	Lys	Tyr	Gln	Glu	Ala	Gln	Gly	Pro	Gly	Leu	Leu	Val	Val
				140				145						150
Leu	Phe	Ala	Leu	Val	Arg	Ala	Asn	Pro	Pro	Ala	Asn	Val	Thr	Trp
				155				160						165

Ile	Asp	Gln	Asp	Gly	Pro	Val	Thr	Val	Asn	Thr	Ser	Asp	Phe	Leu
					170				175					180
Val	Leu	Asp	Ala	Gln	Asn	Tyr	Pro	Trp	Leu	Thr	Asn	His	Thr	Val
					185				190					195
Gln	Leu	Gln	Leu	Arg	Ser	Leu	Ala	His	Asn	Leu	Ser	Val	Val	Ala
					200				205					210
Thr	Asn	Asp	Val	Gly	Val	Thr	Ser	Ala	Ser	Leu	Pro	Ala	Pro	Gly
					215				220					225
Pro	Ser	Arg	His	Pro	Ser	Leu	Ile	Ser	Ser	Asp	Ser	Asn	Asn	Leu
					230				235					240
Lys	Leu	Asn	Asn	Val	Arg	Leu	Pro	Arg	Glu	Asn	Met	Ser	Leu	Pro
					245				250					255
Ser	Asn	Leu	Gln	Leu	Asn	Asp	Leu	Thr	Pro	Asp	Ser	Arg	Ala	Val
					260				265					270
Lys	Pro	Ala	Asp	Arg	Gln	Met	Ala	Gln	Asn	Asn	Ser	Arg	Pro	Glu
					275				280					285
Leu	Leu	Asp	Pro	Glu	Pro	Gly	Gly	Leu	Leu	Thr	Ser	Gln	Gly	Phe
					290				295					300
Ile	Arg	Leu	Pro	Val	Leu	Gly	Tyr	Ile	Tyr	Arg	Val	Ser	Ser	Val
					305				310					315
Ser	Ser	Asp	Glu	Ile	Trp	Leu								
					320									

<210> 73
 <211> 843
 <212> DNA
 <213> Homo Sapien

<400> 73
 cggggacgga agcggccctt gggcccgagg ggctggagcc gggccggggc 50
 gatgtggagc gcgggcccgcg gcggggctgc ctggccgtg ctgttggggc 100
 tgctgctggc gctgttagtg ccgggcggtg gtgccgcca aaccggtgcg 150
 gagctcgtga cctgcgggtc ggtgctgaag ctgctcaata cgccaccacgg 200
 cgtgcggctg cactcgacag acatcaaata cggatccggc agcggccacgc 250
 aatcggtgac cggcgtagag gcgtcggacg acgccaatag ctactggcg 300
 atcccgccggc gtcggaggg cgggtgcccc cgccgggtccc cggtgcgctg 350
 cgggcaggcg gtgaggctca cgcatgtgct tacggcaag aacctgcaca 400
 cgcaccactt cccgtcgccg ctgtccaaca accaggaggt gagtgccttt 450
 gggaaagacg gcgaggcgca cgacctggac ctatggacag tgcgctgctc 500

tggacagcac tgggagcgtg aggctgctgt gcgcctccag catgtggca 550
cctctgtgtt cctgtcagtc acgggtgagc agtatggaag ccccatccgt 600
gggcagcatg aggtccacgg catgccagt gccaacacgc acaatacgtg 650
gaaggccatg gaaggcatct tcataagcc tagtgtggag ccctctgcag 700
gtcacgatga actctgagtg tgtggatgga tgggtggatg gagggtggca 750
ggtggggcgt ctgcagggcc actcttggca gagacttgg gtttgttaggg 800
gtcctaagt gccttgtga ttaaagaatg ttggtctatg aaa 843

<210> 74
<211> 221
<212> PRT
<213> Homo Sapien

<400> 74

Met	Trp	Ser	Ala	Gly	Arg	Gly	Gly	Ala	Ala	Trp	Pro	Val	Leu	Leu
1				5				10					15	
Gly	Leu	Leu	Leu	Ala	Leu	Leu	Val	Pro	Gly	Gly	Gly	Ala	Ala	Lys
	20						25						30	
Thr	Gly	Ala	Glu	Leu	Val	Thr	Cys	Gly	Ser	Val	Leu	Lys	Leu	Leu
	35					40						45		
Asn	Thr	His	His	Arg	Val	Arg	Leu	His	Ser	His	Asp	Ile	Lys	Tyr
	50						55					60		
Gly	Ser	Gly	Ser	Gly	Gln	Gln	Ser	Val	Thr	Gly	Val	Glu	Ala	Ser
	65						70					75		
Asp	Asp	Ala	Asn	Ser	Tyr	Trp	Arg	Ile	Arg	Gly	Gly	Ser	Glu	Gly
	80						85					90		
Gly	Cys	Pro	Arg	Gly	Ser	Pro	Val	Arg	Cys	Gly	Gln	Ala	Val	Arg
	95						100					105		
Leu	Thr	His	Val	Leu	Thr	Gly	Lys	Asn	Leu	His	Thr	His	His	Phe
	110						115					120		
Pro	Ser	Pro	Leu	Ser	Asn	Asn	Gln	Glu	Val	Ser	Ala	Phe	Gly	Glu
			125					130					135	
Asp	Gly	Glu	Gly	Asp	Asp	Leu	Asp	Leu	Trp	Thr	Val	Arg	Cys	Ser
	140							145					150	
Gly	Gln	His	Trp	Glu	Arg	Glu	Ala	Ala	Val	Arg	Phe	Gln	His	Val
			155					160					165	
Gly	Thr	Ser	Val	Phe	Leu	Ser	Val	Thr	Gly	Glu	Gln	Tyr	Gly	Ser
	170						175					180		
Pro	Ile	Arg	Gly	Gln	His	Glu	Val	His	Gly	Met	Pro	Ser	Ala	Asn
	185						190					195		

Thr His Asn Thr Trp Lys Ala Met Glu Gly Ile Phe Ile Lys Pro
200 205 210

Ser Val Glu Pro Ser Ala Gly His Asp Glu Leu
215 220

<210> 75

<211> 1049

<212> DNA

<213> Homo Sapien

<400> 75

gttgctatgt tgcccaggct ggtcttgaag tgccttgacc tcctaaagtg 50
ttggaaccac agacgtgagc cactccaccc agcctaaaac ttcatcttct 100
ttggatgaga tgaacacttt taacaagaga acaggactct atataaatcg 150
ctgtgggctc accacacctta aggaggagca ctgactgaag acagaaaaat 200
tgatgaactg aagaagacat ggtccattat gccttacaaa cttacacagt 250
gcttggaa ttccaaagta ctcagtggag agaggtgttt caggagccgt 300
agagccagat cgtcatcatg tctgcattgt ggctgctgct gggcctcctt 350
gccctgatgg acttgtctga aagcagcaac tggggatgct atgaaacat 400
ccaaaggctg gacaccctg gagcatcttgc tgggattgga agacgtcacg 450
gcctgaacta ctgtggagtt cgtgcttctg aaaggctggc tgaatagac 500
atgccatacc tcctgaaata tcaacccatg atgcaaacca ttggccaaaa 550
gtactgcatg gatcctgccc tgcattgtgg tgtcttgcc aggaagtctc 600
ccggtgacaa aattctggtc aacatggcg ataggactag catggtcag 650
gaccctggct ctcaagctcc cacatcctgg attagttagt ctcaggttcc 700
ccagacaact gaagttctga ctactagaat caaagaaatc cagaggaggt 750
ttccaacctg gaccctgac cagtagctga gaggtggact ctgtgcctac 800
agtgggggtg ctggctatgt ccgaagcagc caggacctga gctgtgactt 850
ctgcaatgat gtcattgcac gagccaagta cctcaagaga catggcttct 900
aacatctcag atgaaaccca agaccatgat cacatatgca gcctcaaattg 950
ttacacagat aaaactagcc aagggcacct gtaactggta atctgagttt 1000
gacctaaaag tcattaaaat aacatgaatc ccattaaaaaa aaaaaaaaaa 1049

<210> 76

<211> 194

<212> PRT

<213> Homo Sapien

<400> 76

Met	Ser	Ala	Leu	Trp	Leu	Leu	Gly	Leu	Leu	Ala	Leu	Met	Asp	
1			5				10					15		
Leu	Ser	Glu	Ser	Ser	Asn	Trp	Gly	Cys	Tyr	Gly	Asn	Ile	Gln	Ser
			20				25					30		
Leu	Asp	Thr	Pro	Gly	Ala	Ser	Cys	Gly	Ile	Gly	Arg	Arg	His	Gly
			35				40					45		
Leu	Asn	Tyr	Cys	Gly	Val	Arg	Ala	Ser	Glu	Arg	Leu	Ala	Glu	Ile
			50				55					60		
Asp	Met	Pro	Tyr	Leu	Leu	Lys	Tyr	Gln	Pro	Met	Met	Gln	Thr	Ile
			65				70					75		
Gly	Gln	Lys	Tyr	Cys	Met	Asp	Pro	Ala	Val	Ile	Ala	Gly	Val	Leu
			80				85					90		
Ser	Arg	Lys	Ser	Pro	Gly	Asp	Lys	Ile	Leu	Val	Asn	Met	Gly	Asp
			95				100					105		
Arg	Thr	Ser	Met	Val	Gln	Asp	Pro	Gly	Ser	Gln	Ala	Pro	Thr	Ser
			110				115					120		
Trp	Ile	Ser	Glu	Ser	Gln	Val	Ser	Gln	Thr	Thr	Glu	Val	Leu	Thr
			125				130					135		
Thr	Arg	Ile	Lys	Glu	Ile	Gln	Arg	Arg	Phe	Pro	Thr	Trp	Thr	Pro
			140				145					150		
Asp	Gln	Tyr	Leu	Arg	Gly	Gly	Leu	Cys	Ala	Tyr	Ser	Gly	Gly	Ala
			155				160					165		
Gly	Tyr	Val	Arg	Ser	Ser	Gln	Asp	Leu	Ser	Cys	Asp	Phe	Cys	Asn
			170				175					180		
Asp	Val	Leu	Ala	Arg	Ala	Lys	Tyr	Leu	Lys	Arg	His	Gly	Phe	
			185				190							

<210> 77
<211> 899
<212> DNA
<213> Homo Sapien

<400> 77

ttgaaaaatct	actctatcag	ctgctgtgg	tgcaccatt	ctcaggaccc	50
tgcacatgaa	agcccttatg	ctgctcaccc	tgtctgtct	gctctgctgg	100
gtctcagctg	acattcgctg	tcactcctgc	tacaagggcc	ctgtgctgg	150
ctgtgtggac	cggcagtcc	gccgcctgga	gccaggacag	caatgcctga	200
caacacatgc	ataccttgg	aagatgtgg	ttttctccaa	tctgcgtgt	250
ggcacacccag	aagagccctg	tcaggaggcc	ttcaacccaaa	ccaaccgcaa	300

gctgggtctg acatataaca ccacccgtcg caacaaggac aactgcaaca 350
gcgcaggacc ccggccccact ccagccctgg gccttgcctt ctttacactcc 400
ttggctggcc ttggcctctg gctgctgcac tgagactcat tccattggct 450
gcccccctc ccacccgtcg tggcctgagc ctctctccct gtgtctctgt 500
atcccccgtgc tttacagaat cgtctctccc tagctcccat ttcttaatt 550
aaacactgtt ccgagtggtc tcctcatcca tccttccac ctcacaccct 600
tcactctcct ttttctgggt cccttccac ttccttccag gacctccatt 650
ggctcctaga agggctcccc actttgcttc ctatactctg ctgtccccta 700
cttgaggagg gattgggatc tggcctgaa atggggcttc tgtgttgtcc 750
ccagtgaagg ctcccacaag gacctgatga cctcactgta cagagctgac 800
tccccaaacc caggctccca tatgtacccc atccccata ctcacccctt 850
tccatttga gtaataaaatg tctgagtctg gaaaaaaaaaaa aaaaaaaaaa 899

<210> 78
<211> 125
<212> PRT
<213> Homo Sapien

<400> 78
Met Lys Ala Leu Met Leu Leu Thr Leu Ser Val Leu Leu Cys Trp
1 5 10 15
Val Ser Ala Asp Ile Arg Cys His Ser Cys Tyr Lys Val Pro Val
20 25 30
Leu Gly Cys Val Asp Arg Gln Ser Cys Arg Leu Glu Pro Gly Gln
35 40 45
Gln Cys Leu Thr Thr His Ala Tyr Leu Gly Lys Met Trp Val Phe
50 55 60
Ser Asn Leu Arg Cys Gly Thr Pro Glu Glu Pro Cys Gln Glu Ala
65 70 75
Phe Asn Gln Thr Asn Arg Lys Leu Gly Leu Thr Tyr Asn Thr Thr
80 85 90
Cys Cys Asn Lys Asp Asn Cys Asn Ser Ala Gly Pro Arg Pro Thr
95 100 105
Pro Ala Leu Gly Leu Val Phe Leu Thr Ser Leu Ala Gly Leu Gly
110 115 120
Leu Trp Leu Leu His
125

<210> 79

>
<211> 1977
<212> DNA
<213> Homo Sapien

<400> 79
acgggccgca gcggcagtga cgtagggttg ggcacggat ccgttgcggc 50
tgcagctctg cagtcgggcc gttccttcgc cgccgccagg gtagcggtg 100
tagctgcgca gcgtcgcgcg cgctaccgca cccaggtcg gcccgttaggc 150
gtctggcagc ccggcgccat cttcatcgag cgccatggcc gcagcctgctg 200
ggccgggagc ggccgggtac tgcttgctcc tcggcttgca ttgtttctg 250
ctgaccgcgg gccctgcctt gggctggaac gaccctgaca gaatgttgc 300
gcgggatgta aaagctctta ccctccacta tgaccgctat accacccc 350
gcaggctgga tccccatccca cagttgaaat gtgttgagg cacagctgg 400
tgtgattctt ataccccaa agtcatacag tgtcagaaca aaggctgg 450
tgggtatgat gtacagtggg aatgtaagac ggacttagat attgcataca 500
aatttggaaa aactgtggtg agctgtgaag gctatgagtc ctctgaagac 550
cagtatgtac taagaggttc ttgtggcttg gagtataatt tagattatac 600
agaacttggc ctgcagaaac tgaaggagtc tggaaagcag cacggctttg 650
cctctttctc tgattattat tataagtggc ctcggcgga ttccctgtAAC 700
atgagtggat tgattaccat cgtggtaactc cttggatcg ctttggatgt 750
ctataagctg ttccctgagtg acgggcagta ttctccctcca ccgtactctg 800
agtatccctcc attttcccac cgtaaccaga gattcaccaa ctcagcagga 850
cctccctcccc caggctttaa gtctgagttc acaggaccac agaatactgg 900
ccatggtgca acttctggtt ttggcagtgc ttttacagga caacaaggat 950
atgaaaattc aggaccaggg ttctggacag gcttggaaac tggggataa 1000
ctaggatatt tgtttggcag caatagagcg gcaacacct tctcagactc 1050
gtggtaactac ccgtcctatc ctccctccata ccctggcagc tggaaatagg 1100
cttactcacc ctttcatggc ggctcgccca gctattcggt atgttcaaac 1150
tcagacacga aaaccagaac tgcatacggc tatggtgta ccaggagacg 1200
ataaaatgtaa aagttggagt caaacactgg atgcagaaat ttggatTTT 1250
tcatcacttt ctcttagaa aaaaagtact acctgttaac aattggaaa 1300
agggatatt caaaagtct gtgggttat gtccagtgta gcttttgta 1350

ttctattatt tgaggctaaa agttgatgtg tgacaaaata cttatgtgtt 1400
gtatgtcagt gtaacatgca gatgtatatt gcagttttg aaagtatca 1450
ttactgtgga atgctaaaaa tacattaatt tctaaaaacct gtatgccct 1500
aagaagcatt aagaatgaag gtgttgtact aatagaaact aagtacagaa 1550
aatttcagtt ttaggtgggtt gtagctgatg agttattacc tcatalogac 1600
tataatattc tatttggat tatattattt gatgttgct gttttcaaa 1650
catttaaatc aagctttgga ctaattatgc taatttgc gttctgatca 1700
cttttgagct ctgaagctt gaatcattca gtgggtggaga tggccttctg 1750
gtaactgaat attaccttct gtaggaaaag gtggaaaata agcatctaga 1800
aggttggtgt gaatgactct gtgctggcaa aaatgcttga aacctctata 1850
tttcttcgt tcataagagg taaaggtcaa attttcaac aaaagtcttt 1900
taataacaaa agcatgcagt tctctgtgaa atctcaaata ttgttgaat 1950
agtctgttcc aatctaaaaa agaatca 1977

<210> 80
<211> 339
<212> PRT
<213> Homo Sapien

<400> 80
Met Ala Ala Ala Cys Gly Pro Gly Ala Ala Gly Tyr Cys Leu Leu
1 5 10 15
Leu Gly Leu His Leu Phe Leu Leu Thr Ala Gly Pro Ala Leu Gly
20 25 30
Trp Asn Asp Pro Asp Arg Met Leu Leu Arg Asp Val Lys Ala Leu
35 40 45
Thr Leu His Tyr Asp Arg Tyr Thr Thr Ser Arg Arg Leu Asp Pro
50 55 60
Ile Pro Gln Leu Lys Cys Val Gly Gly Thr Ala Gly Cys Asp Ser
65 70 75
Tyr Thr Pro Lys Val Ile Gln Cys Gln Asn Lys Gly Trp Asp Gly
80 85 90
Tyr Asp Val Gln Trp Glu Cys Lys Thr Asp Leu Asp Ile Ala Tyr
95 100 105
Lys Phe Gly Lys Thr Val Val Ser Cys Glu Gly Tyr Glu Ser Ser
110 115 120
Glu Asp Gln Tyr Val Leu Arg Gly Ser Cys Gly Leu Glu Tyr Asn
125 130 135

Leu Asp Tyr Thr Glu Leu Gly Leu Gln Lys Leu Lys Glu Ser Gly
140 145 150

Lys Gln His Gly Phe Ala Ser Phe Ser Asp Tyr Tyr Tyr Lys Trp
155 160 165

Ser Ser Ala Asp Ser Cys Asn Met Ser Gly Leu Ile Thr Ile Val
170 175 180

Val Leu Leu Gly Ile Ala Phe Val Val Tyr Lys Leu Phe Leu Ser
185 190 195

Asp Gly Gln Tyr Ser Pro Pro Pro Tyr Ser Glu Tyr Pro Pro Phe
200 205 210

Ser His Arg Tyr Gln Arg Phe Thr Asn Ser Ala Gly Pro Pro Pro
215 220 225

Pro Gly Phe Lys Ser Glu Phe Thr Gly Pro Gln Asn Thr Gly His
230 235 240

Gly Ala Thr Ser Gly Phe Gly Ser Ala Phe Thr Gly Gln Gln Gly
245 250 255

Tyr Glu Asn Ser Gly Pro Gly Phe Trp Thr Gly Leu Gly Thr Gly
260 265 270

Gly Ile Leu Gly Tyr Leu Phe Gly Ser Asn Arg Ala Ala Thr Pro
275 280 285

Phe Ser Asp Ser Trp Tyr Tyr Pro Ser Tyr Pro Pro Ser Tyr Pro
290 295 300

Gly Thr Trp Asn Arg Ala Tyr Ser Pro Leu His Gly Gly Ser Gly
305 310 315

Ser Tyr Ser Val Cys Ser Asn Ser Asp Thr Lys Thr Arg Thr Ala
320 325 330

Ser Gly Tyr Gly Gly Thr Arg Arg Arg
335