

Issues Facing Wi-Fi Networks

- Preponderance of short data frames that are not aggregated; large number of users
 - Significantly degrading system efficiency

 Overlapping BSS's in dense deployments unnecessarily blocking each other from transmitting

 Improving performance in outdoor hotspots to better compete with cellular

Goals of the 802.11ax Task Group

- Enhance operation in 2.4 & 5 GHz bands (11ac was only 5 GHz)
- Increase average throughput per station by at least 4x in a dense deployment scenario
 - (11ac was aggregate throughput with no specification of scenario)
- Environments include indoor AND outdoor
- Scenarios include wireless corporate office, outdoor hotspot, dense residential apartments, and stadiums
- Maintain or improve power efficiency of the stations

Timeline

Categories of Enhancements

OFDMA

Orthogonal Frequency Division Multiple Access

- Issue: MAC efficiency drops as STA density increases and when short packets are transmitted (increase in contention, collision, IFS, preambles)
- Aggregation in 11n combines short packets in TIME from a single user, DL MU-MIMO in 11ac combines different users SPATIALLY, OFDMA combines different users together in FREQUENCY
- OFDMA does NOT increase the maximum PHY rate
- Downlink OFDMA: AP groups users to maximize downlink transmission efficiency
- Uplink OFDMA: Users are grouped together and transmit in sync to AP to maximize uplink transmission efficiency
- Transmit power can be adjusted per resource unit (RU) in either UL or DL to improve SINR for specific users

80 MHz BSS

OFDMA Resource Unit Allocation Examples

8 OFDMA assignments in 80MHz BSS

16 OFDMA assignments in 80MHz BSS

RU assignments can vary packet to packet

OFDMA Performance

May 2014 doc.: IEEE 802.11-14/1227r2

OFDMA throughput vs Number of STAs

- More active STAs achieve higher throughput gain
- The number of active STAs restricted by delay and overhead
- 10-20 active STAs can achieve quite good throughput gain
- We use 10 active STAs in the following simulations.

MU-MIMO

Multi-User MIMO

- -802.11ac introduced DL MU-MIMO, but we're experiencing the following issues:
 - Many client devices are single antenna, and many two antenna clients switch to single stream mode for DL MU-MIMO for protection against interference
 - -With 4 antenna AP, gains compared to Single User are modest
 - -Even if we built an 8 antenna AP, groupings are limited to 4 users
 - Channel sounding responses from the users are transmitted serially in time resulting in high overhead
 - TCP/IP on downlink with TCP ACK on uplink is impaired with no UL MU enhancement
- -UL MU-MIMO was initially considered in 11ac, but not included due to implementation concerns
- -802.11ax MU-MIMO enhancements
 - UL MU-MIMO
 - -Sounding frames, data frames, etc can be grouped among multiple users to reduce overhead and increase uplink response time
 - Groups expanded to eight users for both DL and UL
 - Now even with devices in single stream mode, MU-MIMO throughput can be doubled or tripled over single user operation

Uplink Multi User-MIMO

- UL MU-MIMO is mathematically equivalent to UL SU-MIMO
- Why not included in 11ac? To maintain mathematical equivalency in practice requires time synchronization, frequency alignment, and power normalization between all clients in an MU group
- Protocol to address this has been added to 11ax for both UL OFDMA and MU-MIMO (trigger frame)

UL MU Operation

Basic Frame Exchange Sequence for UL MU transmissions

- New Trigger control frame
 - Specifies the length of the UL window
 - Specifies the users that may send during the UL window
 - Allocates resources for the UL-MU PPDUs:
 - RU allocation
 - Spatial stream allocation
 - MCS to be used by the user
 - Supports transmission time, frequency, sampling symbol clock, and power pre-correction by the participating users
- UL MU transmission may be OFDMA or MU-MIMO
- Acknowledgement frame can be
 - DL MU transmission with individually addressed BlockAck frames
 - New "Multi-STA BlockAck" frame contained in Legacy frame or HE MU PPDU
- Trigger frame can be used as a Beamforming Report Poll, MU-BAR, MU-RTS, Buffer Status Report Poll, Bandwidth Query Report Poll...

MU Performance

Downlink MU Performance

March 2015 doc.: IEEE 802.11-15/0333r0

Analysis Results for DL

Observations

- Packet size:
 - Large packet: MU-MIMO is the most efficient at high SNR ranges
 - Small packet: OFDMA is the most efficient over entire SNR range

Slide 10

SNR: At low SNRs, OFDMA always outperforms MU-MIMO

Uplink MU Performance

March 2015 doc.: IEEE 802.11-15/0333r0

Analysis results for UL, Scheme 2

Observations

- For Scheme 2 (short control frame exchange), the performance gain over SU transmission is not as dependent on the control frame size as Scheme 1
- Packet size:

Submission

- Large packet: MU-MIMO is most efficient at high SNR ranges
- Small packet: OFDMA is most efficient over entire SNR operation range

Spatial Reuse

BSS Coloring

- To increase capacity in dense environment, we need to increase frequency reuse between BSS's
 - However, with existing medium access rules, devices from one BSS will defer to another co-channel BSS, with no increase in network capacity
- BSS Coloring was a mechanism introduced in 802.11ah to assign a different "color" per BSS, which will be extended to 11ax
- New channel access behavior will be assigned based on the color detected

Low Frequency Reuse (w/ 20 MHz channels)

Increased Frequency Reuse (w/ 80 MHz channels) - All same-channel BSS blocking

Same-channel BSS only blocked on Color Match

20

Spatial Reuse Channel Access Rules

- BOTH the AP and clients can now differentiate between intra-BSS frames and OBSS frames with use of BSS Color bits and apply less sensitive CCA threshold to OBSS frames
 - Higher CCA value leads to more simultaneous transmissions, but potentially lowers SINR
 - The goal is to increase the reuse, while not causing a significant reduction to selected MCS due to interference
- Adaptive CCA
 - 802.11 signal detect and TXPWR threshold may be adjusted dynamically by both AP and clients

Spatial Reuse Capacity Improvement

January 2014 doc.: IEEE 802.11-14/0082r0

2x1 11nB, 4 dB shadow, 100% DL vs. 50% DL traffic

With mix of UL/DL traffic, UL Tput lower than DL due to lower power

Effect only shows up when CCA threshold high enough to enable meaningful interference

Submission Slide 16 Ron Porat, Broadcom

PHY Enhancements

Long OFDM Symbol

312.5 kHz

- The OFDM FFT size for 20 MHz for 802.11a/g/n/ac is 64 (for 17+ years)
- 802.11a guard interval is 0.8 usec, which decreased in 802.11n with the short guard interval for shorter indoor environments
- 802.11ax is adding
 - 1.6 and 3.2 usec guard interval for outdoor
 - OFDMA, whereby users get assigned smaller sections of the channel bandwidth (resource units)
- 256pt FFT enables
 - 4x longer OFDM symbol for more efficient symbol time-(even with longer guard intervals)
 - finer granularity of OFDMA resource units

 More efficient utilization Narrower and 4x more subcarriers to allow for
 - More efficient utilization of the data subcarriers

11n/ac

		802.11a/g	802.11n/ac	802.11ax
	FFT size in 20 MHz	64	64	256
	Subcarrier frequency spacing	20MHz/64= 312.5 kHz	20MHz/64= 312.5 kHz	20MHz/256= 78.125 kHz
	# of data subcarriers	48	52	234
	efficiency	75%	.81%	91%
	OFDM symbol	1/312.5kHz= 3.2 usec	1/312.5kHz= 3.2 usec	1/78.125kHz= _12.8 usec
4	Guard interval	Ö.8 usec	0.8, 0.4 usec	0.8, 1.6, 3.2 usec
	Symboltime	4.0 usec	4.0, 3.6 usec	13.6, 14.4, 16.0 usec
	efficiency	80%	80%, 89%	94%, 89%, 80%

78.125 kHz

Outdoor / Longer range features

- One of the goals of 802.11ax task group is to address improved performance in outdoor environment
 - One of the issues in an outdoor environment is propagation conditions with delay spreads potentially longer delays spreads than the 11a/n/ac guard interval of 0.8 usec
 - 802.11ax modifies the guard intervals options to 0.8, 1.6, and 3.2 usec
 - In an outdoor environment, there could be multipath bounces off high speed vehicles. A Doppler bit is included in the signal field to indicate TBD Doppler mode of transmission
- To expand the coverage and robustness of an outdoor hotspot
 - New extended range packet format with more robust (longer) preamble
 - L-STF/L-LTF/HE-STF/HE-LTF are boosted by 3 dB
 - L-SIG and HE-SIG-A are repeated twice
 - Dual Carrier Modulation (DCM) replicate the same information on different subcarriers for diversity gain and narrow band interference protection, ~3.5 dB gain
 - Narrower transmission bandwidth for Data field 106 tones (~8 MHz) can be used to reduce noise bandwidth

				Variable durations per HE-LTF symbol						
8µs	8µs	4µs	4µs	16µs	4µs		_)	
L-STF	L-LTF	L-SIG	RL-SIG	HE-SIG-A	HE-STF	HE-LTF		HE-LTF	Data	PE

1024 QAM – 25% increase in PHY data rate

11ac - 256 QAM 8 bits per symbol

TX EVM MCS9 = -32 dBMin Sens MCS9 (20 MHz, 80 MHz) = -57, -51 dBm 11ax – 1024 QAM 10 bits per symbol

TX EVM MCS11 = -35 dB Min Sens MCS11 (20 MHz, 80 MHz) = -52, -46 dBm

Example of New PHY Data Rates

		11ax		11ac		
	Data rate (Mbps)	Mode	gain	Data rate (Mbps)	Mode	
Min	0.375	1SS, MCS0, DCM, 26-tone		6.5	1SS, MCS0, 20 MHz	
Max, 20 MHz	143.4*NSS	1024-QAM, r=5/6, 13.6 usec symbol	65%	86.7*NSS	256-QAM, r=3/4 (256-QAM, r=5/6 only valid for NSS=3,6), 3.6 usec symbol	
Max, 40 MHz	286.8*NSS	1024-QAM, r=5/6, 13.6 usec symbol	43%	200*NSS	256-QAM, r=5/6, 3.6 usec symbol	
Max, 80 MHz	600.4*NSS	1024-QAM, r=5/6, 13.6 usec symbol	39%	433.3*NSS	256-QAM, r=5/6, 3.6 usec symbol	
Max, 160 MHz	600.4*2* NSS	1024-QAM, r=5/6, 13.6 usec symbol	39%	433.3*2*NSS	256-QAM, r=5/6, 3.6 usec symbol	

Power Saving

Target Wake Time

- Target Wake Time (TWT) is a power saving mechanism in 802.11ah, negotiated between a STA and its AP, which allows the STA to sleep for periods of time, and wake up in pre-scheduled (target) times to exchange information with its AP
- 802.11ah TWT mechanism modified to support triggeredbased uplink transmissions
- New Broadcast TWT operation added in 802.11ax to support non-AP STAs that have not negotiated any implicit agreement with HE AP

July 2012 doc.: IEEE 802.11-12/0823r0

SM: Sleep Mode LM: Listen Mode RM: Receive Mode TM: Transmit Mode

Baseline PS-POLL

Beacon-based access

TWT-based access

Submission Slide 14 Matthew Fischer, et al.

20 MHz-only Clients

- Provide support for low power, low complexity devices (IOT): wearable devices, sensors and automation, medical equipment, etc.
- Such devices do not need high bandwidth operation
- In actuality, this only applies to 5
 GHz, as only 20 MHz support is mandatory in 2.4 GHz
 - "Normal" clients still required to support 80 MHz in 5 GHz

July, 2016 doc.: IEEE 802.11-16/0907r3

- AP may choose the BW operation, with either
 - One or multiple 20MHz-only STAs in 20 MHz SU/OFDMA, or
 - 80MHz capable STAs group, without 20MHz-only, or
 - Mixed group of 20MHz-only and 80MHz-capable STAs, where 20MHzonly STAs are only in the primary channel

Submission Joonsuk Kim (Apple)

Other Power Saving Features

- Receive Operating Mode indication is a procedure to dynamically adapt the number of active receive chains and channel width for reception of the subsequent PPDUs, by using a field in the MAC header of a Data frame,
 - rather than Operating Mode Notification management frame exchange (e.g. 11ac)
 - Minimal impact on channel efficiency
- Transmit Operating Mode indication is a procedure for client devices to dynamically adapt their transmit capability:
 - Channel width & maximum number of spatial streams
 - SU vs UL MU operation
- Use of BSS Color field and UL/DL flag in preamble to enable intra PPDU power saving

Thank you