# ENGPHYS 2A04 Winter 2022 – Assignment 8

Due Monday MONDAY March 21, 8AM

1. **Boundary Conditions.** If  $E = 200 \hat{R}$  (V/m) at the surface of a 10-cm conducting sphere centered at the origin, what is the total charge Q on the sphere's surface?

#### **Solution:**

From Table 4-3,  $\hat{n} \cdot (D_1 - D_2) = \rho_s$ .  $E_2$  inside the sphere is zero, since we assume it is a perfect conductor. Hence, for a sphere with surface area  $S=4\pi a^2$ ,

$$D_{1R} = \rho_s$$

$$E_{1R} = \frac{\rho_s}{\varepsilon_0}$$

$$= \frac{Q}{S\varepsilon_0}$$

$$Q = E_R S \varepsilon_0$$

$$= (200)4\pi (0.1)^2 \varepsilon_0$$

$$= 8\pi \varepsilon_0$$

# 2. Boundary Conditions.

a. Find  $E_1$  given,

$$E_2 = 5\hat{x} + 7\hat{y} + 3\hat{z}$$

 $E_2=5\widehat{\pmb x}+7\widehat{\pmb y}+3~\widehat{\pmb z}$   $\varepsilon_1=3\varepsilon_0,~\varepsilon_2=16\varepsilon_0$ , and the boundary has a surface charge density  $\rho_s=$  $6.25 \times 10^{-11}$  (C/m<sup>2</sup>).

b. What angle does E2 make with the z axis?

## Solution:

Recall that  ${\pmb E}_{1t} = {\pmb E}_{2t}$  for any 2 media. Hence,

$$\begin{aligned} \mathbf{\textit{E}}_{1t} &= \mathbf{\textit{E}}_{2t} \\ &= 5\widehat{\mathbf{\textit{x}}} + 7\widehat{\mathbf{\textit{y}}} \end{aligned}$$

Recall  $(\boldsymbol{D_1} - \boldsymbol{D_2}) \cdot \widehat{\boldsymbol{n}} = \rho_s$  (from Table 4.3). Hence,  $\varepsilon_1(\boldsymbol{E}_1 \cdot \widehat{\boldsymbol{n}}) - \varepsilon_2(\boldsymbol{E}_1 \cdot \widehat{\boldsymbol{n}}) = \rho_s$ 

$$E_{1z} = \frac{\rho_s + \varepsilon_2 E_{2z}}{\varepsilon_1}$$

$$= \frac{\rho_s + \varepsilon_2 E_{2z}}{\varepsilon_1}$$

$$= \frac{6.25 \times 10^{-11}}{3\varepsilon_0} + \frac{16\varepsilon_0(3)}{3\varepsilon_0}$$

$$= \frac{6.25 \times 10^{-11}}{3\varepsilon_0} + 16$$

$$= 18.35 (V/m)$$

$$E_1 = 5\widehat{x} + 7\widehat{y} + 18.35\,\widehat{z}$$

Finding the angle  $E_2$  makes with the z-axis can be found by:

$$E_2 \cdot \hat{\mathbf{z}} = |E_2| \cos \theta$$

$$3 = \sqrt{5^2 + 7^2 + 3^2} \cos \theta$$

$$\theta = \cos^{-1} \left(\frac{3}{\sqrt{83}}\right)$$

$$= 70.8^{\circ}$$

$$= 1.24 \text{ rad}$$

3. **Capacitance.** Given the two parallel, conducting plates separated by a distance d illustrated in the diagram below. The space between the plates contains two adjacent dielectrics, one with permittivity  $\varepsilon_1$  and surface area  $A_1$  and another with  $\varepsilon_2$  and  $A_2$ .

Given:

$$C = C_1 + C_2$$

$$C_1 = \frac{\varepsilon_1 A_1}{d}, \qquad C_2 = \frac{\varepsilon_2 A_2}{d}$$



Find the following:

- a. Find the electric fields  $\boldsymbol{E}_1$  and  $\boldsymbol{E}_2$  in the two dielectric layers.
- b. Calculate the energy stored in each section.
- c. Draw a circuit diagram of the above the dielectric section

## **Solutions**

a. Find the electric fields  ${\it E}_1$  and  ${\it E}_2$  in the two dielectric layers.

$$E_1 = E_2 = \frac{V}{d}$$

b. Find an expression the energy stored in each section (1) and the total energy

$$W_{e_1} = \frac{1}{2}CV^2$$

$$C_1 = \frac{\varepsilon_1 A_1}{d}$$

$$W_{e_1} = \frac{1}{2} \frac{V^2 \varepsilon_1 A_1}{d}$$

$$W_{e_2} = \frac{1}{2}CV^2$$
$$C_2 = \frac{\varepsilon_2 A_2}{d}$$

$$W_e = W_{e_1} + W_{e_2}$$
  
=  $\frac{1}{2} \frac{V^2}{d} (\varepsilon_1 A_1 + \varepsilon_2 A_2)$ 

c. Draw a circuit diagram of the above the dielectric section



- 4. **Capacitance.** An electron with charge  $Q_e = -1.6 \times 10^{-19} C$  and mass  $m_e = 9.1 \times 10^{-31}$  kg is injected at a point adjacent to the negatively charged plate in the region between the plates of an air-filled, parallel-plate capacitor with separation of 50 cm and rectangular plates each 50 cm<sup>2</sup> in area (Fig. P4.54). If the voltage across the capacitor is 80 V, find the following:
  - a. The force acting on the electron,
  - b. The acceleration of the electron,

#### Solutions

a. The force acting on the electron,

$$F = Q_e E$$
=  $Q_e \frac{V}{d}$ 
=  $-1.6 \times 10^{-19} \frac{80}{0.5}$ 
=  $-2.56 \times 10^{-17} N$ 

The force is directed from the negatively charged plate towards the positively charged plate.

b. The acceleration of the electron,

$$a = \frac{F}{m}$$

$$= \frac{-2.56 \times 10^{-17}}{9.1 \times 10^{-31}}$$

$$= 2.81 \times 10^{13} \text{ m/s}^2$$

c. The time it takes the electron to reach the positively charged plate, assuming that it starts from rest.

$$t = \sqrt{\frac{2d}{a}}$$

$$= \sqrt{\frac{2(0.5)}{2.81 \times 10^{13}}}$$

$$= 1.89 \times 10^{-7} \text{ s}$$

**Bonus.** In no more than 100 words, explain how a super capacitor functions. What are the advantages and disadvantages of a super capacitor compared to a traditional battery?

#### **ASSIGNMENT SUBMISSION INSTRUCTIONS**

- Each question is worth equal marks (except bonus questions).
- Show all your work for full marks.
- Clearly label your name and student number at the top of the first page of your assignment.
- All assignments should be submitted in pdf format to the assignments drop box on Avenue to Learn.
- No late assignments will be accepted. A grade of 0% will be given for late assignments. If you
  have completed part of the assignment, submit the portion you have completed before the
  deadline for partial marks.