

DISC 2012-10-20, Yvonne-Anne Pignolet¹, Stefan Schmid ², Gilles Tredan³

Brief Announcement Do VNet Embeddings Leak Information about ISP Topology?

¹ABB Corporate Research Switzerland, ²TU Berlin & T-Labs Germany, ³CNRS-LAAS France

VNet Embedding

Information Leak?

VNet Request Complexity

How many requests are necessary to infer the ISP's topology?

Assumptions in this BA:

- Request topologies are simple, undirected graphs with unit demands
- ISP topology is a simple, undirected graph with unit capacity
- Virtual links over multiple ISP nodes cost E>0 at each relay
- ISP replies with «YES» if request embeddable, «NO» otherwise

Results (not all contained in BA)

Lower bound

• Given enough time, the topology can be inferred: Request complexity for arbitrary graphs is $\Omega(n^2)$

Algorithms

- O(n) requests for trees and (with some extensions and careful analysis) cactus and generalized block graphs
- O(n²) request for arbitrary graphs

Power and productivity for a better world™

Cactus Graph Inference

Theorem:

Cactus topologies can be discovered with request complexity Θ (n).

