# Deep Neural Networks

**Activation Functions and Depth Analysis** 

Tigist W.

#### Introduction

- This mini project explores the impact of different activation functions and the role of network depth in ANNs.
- We compare Sigmoid, Tanh, and ReLU activations.
- Investigate ReLU variants: Leaky ReLU and Parametric ReLU.
- Analyze network performance for different depths.





#### **Activation Functions Overview**

- Sigmoid: Output range (0,1); suffers from vanishing gradients.
- Tanh: Output range (-1,1); still suffers from vanishing gradients.
- ReLU: Allows unbounded positive values; mitigates vanishing gradient issues.
- Leaky ReLU & Parametric ReLU: Fix the dying ReLU problem by allowing small negative slopes.



#### **Experiment Setup**

- Dataset: MNIST (Handwritten digits classification)
- Model: Fully Connected DNN
- Evaluation: Loss, gradient magnitude, and accuracy
- Tools: PyTorch, Matplotlib for visualizations

### Activation Function Comparison

#### **Gradient Magnitude Analysis**



#### Performance Visualization

Loss curves: Show that ReLU converges faster than Sigmoid & Tanh.



#### **Depth of ANNs**

- Testing different network depths:
  - 2-layer shallow network
  - 3-layer moderate network
  - 5-layer deep network
  - 7-layer very deep network
  - 9-layer extra deep network



#### Depth vs. Performance

- Shallow networks: Struggle with feature extraction.
- Deep networks (5-7 layers): Achieve optimal accuracy.
- Extra deep networks (10+ layers): Show degradation due to vanishing gradients & overfitting.



## **/**

### Depth vs. Performance





Thank You!