Benefits of studying concepts of programming language:
(1) increasing the ability to describe programs
(2) increasing the ability to choose appropriate programming language
(3) increasing the ability to learn new language
(4) understanding the significance of implementation
(5) improving the design of programming language
Fragramming domains:
(1) Scientific applications _ large numbers
2) Business applications _ decimal arithmetic and character data
(3) artifical intelligence _ symbolic computations
(4) Systems programming _ computer devices and external devices
(5) web software _ markup Ranguage
Evaluating programming languages: (evaluating oriteria)
(1) Readability (2) writability (3) Reliability (4) Haintanability
(5) Efficiency (6) Partability (7) Generality
. Simplicity (simple): if it consists of a small number of basic constructs bloe Pearmed. (readability 1)
. Expressivity lexpressive): if it consists of a set of constructs that porform a lot of computations (writability 1)
· OrtRogonality: if a relatively small set of primitive constructs can be combined in a relatively small number
of ways to define the language behaviour. orthogonality = simplicity + expressivity
· control statements enhances readability and writability
. The presence of goodways to define data types and structures in a language improves readability
. restriction on identifier length _ readability t
· using end loop and endig instead of ? _ readability?
· using special words as variable name _ readability &
· Static / coust _ readability 1
· abstraction _ writability 1
La is the ability to define and then use complicated structures or operations in ways that allow
wany of the details to be ignored
. Type checking is testing for type enrors in a given program, either by the compiler or during programence.
. Exception handling is the ability of a program to intercept runtime error, take corrective actions
and then continue according to the program specifications. (reliability 1)

. Aliasing is having two or were distinct names in a program that can be used to access the same memory cell
La excessive usage of aliasing may reduce reliability & readobality
· Compiler takes a program written in the courie buguage and translates it into a program written in
machine language (the executable). [increase the nuntime officiency of the program] (reliability?)
· Interpreter takes a program written in the source Dunquage and executes its statements line-by-line
- smorpreted programs are much shown town compiled programs.
Programming languages categories:
(1) Imperative / procedual languages _ data and procedures (c)
(2) object - oriented languages - processing with data objects and control access todata (C++)
(3) Scripting languages — interpreted not compiled (python)
(4) Declarative functional / logic languages _ Rule based languages in no particular order (prolog)
(5) Markup languages _ languages used to describe something (XHTML)
(6) Special-purpose languages - languages dedicated for specific applications

· Syntax: is the form of programming languages expressions, statements and programming units.
. Semantic: is the meaning of programming languages expressions, statement and programming units.
· Lexeus: requerce of small units in a statement.
· then: category of the lexens.
· Grammars are formal mechanisms used to describe the syntax of programming languages
· nontorminal is an abstract symbol that helps decribe post of the grammas but cannot appearing mentions.
· Derlivation: generating a specific program (left most derivation)
· parse tree: Vierarchical Structure of a program
· Ambiguity: if there exists a program (or part of program) that has two or more distinct parce tree
compatible with a given grammor.
· operator precedence is the order of associating operands to operations in the same statement.
· precedence determines which operator gets its operandsfirst.
· Operator with higher precedence should appear lower in the parse tree.
· operatorassociativity: is the order of associating operands to operators having the same precedence
L> for operators with equal precedence, associativity determines which operator gets its operands first
· Left associative are associated totheir close operands in their order from left to right.
. Right associative are associated to their close operands in their order from right toleft.
. Extended BNF is a similar grammar to BNF which attempts to improve its readability and writability
. E. I now [] tormore () must choose [] optional "massociativity
· attribute grammars are extensions to BNF grammars that can describe some aspects of syntax.
L> attributes associated with somegrammar symbols
La altribute computation function associated with some gamma rules to specify how attribute values and computed
L> predicates assiociated with some grammar stules to specify additional syntatic stules
· intrinsic attributes associated with leaf nodes and get their values determined from outside the parsetree
. lockup function lockup a variable name in the symbol table and returns the variable's type
· operational semantic is a method to describe the semantics of a program construct
L> readability & writability?

. special words are used to make programs more readable
inflequents that can be redefined to be used in other purposes, which reduces readability
(2) reserved words that cannot be used for any other purposes, buch as variable names
. A name is a string of characters used to identify some entity in a program.
r> reversed many connet be used as a name r> posses genders. 12 moreove readdonilla
· Two common naming styles are my small chack and the count notation mysmall stack.
. Some brodusing sindrades bace naming unes combines according that Line Lyman forces.
1. To Q To # At in strata has in colorina and # Ation right town 949 in colorina and
· case sensitive: uppercase and lowercase fitters in names are considered distinct (readdoility 4)
. A program variable is an abstraction of a computer memory cell 5- readability
L> variables were used as names for memory lastions replacing abedute numeric memory addresses
(1) name (may be accessed by Anowing its address
(2) type (type of a variable determines its size)
(3) address: is the madrine memory address with which it is associated (l-value) I left hand side of =
(4) value: is the contents of the memory cell associated with the variable (17-value) variable (constratue
(5) scope: range of statements where the variable is visible in source program (spatial)
(6) lifetime: isthe time durations at execution which the variable physically exists in memory (temporal)
· Constant Value has no address
. Alianen: Variablen having the name type and address
. named constants is a variable that is assigned aconstant value only once before runtime and remains
unchanged during every execution of the program (readability?)
. readouty variable is assigned a value in its constructor and does not change until its destruction
. named constants differs from read only variable (C++ doesnot have both, readability)
· binding is an association fetween an entity and an attribute
. binding time is the time atwhich binding takes place
(1) compile time: binding occurs during compilations (static) lunchanged to voughout program execution
(static) were binding occurs when the program is fooded into memory and ready to sum (static)
(B) run time: binding occurs while the program is running (dynamic) (can change)
• Type binding:
(1) Static type binding: variables may bind statically before nuntime
Lexplicit declaration: a statement in a program that explicitly declares a variable and its type
Le implicit declaration: type of avaniable is implicitly deduced from the first appearance of the variable name

(2) Dynamic type binding: avariable binds to its type only when an assignment statement having the Variables as its LHS is executed during run time. (writability 1 reliability 1) . Dynamic type binding is must costly linefficient than static type binding · Allocation: the process of binding a variable to its memory cell thein-between is lifetime · deallocation: the process of unbinding a variable from its memory cell · Storage binding: (1) Static variables: food time -> execution termination (global variables & name constants) L> can be accessed by direct addressing I no allocation or deallocation I does not support necursive adoption (2) Stack-dynamic variables: nuntime __ called function terminates its execution L> Elaboration of adeclaration statement refers to the storage allocation and binding process indicated by the decl. (3) Explicit heap-dynamic variables; nambers variables are allocated by explicit run-time instructions. L> bind statically to their types, but they bind dynamically to storage (new I delete) L> C++ must be explicit, in Java are implicitly deallocated by the Java run-time garloage collector (4) implicit heap-dynamic variables: bind to heap storage only when they are assigned values · value binding: at runtime except when a static variable is initialized (load time) sold provided with a particular occurrence of a name is associated with a variable . Referencing environment of a statement is the collection of all variables that are visible in that statement . Docal variable: if it is declared there , non local variable: visible within the program unit or block but are not declared thore (global variables) . Static scoping: the scope of avariable can be statically determined prior be execution . Dynamic scoping is based on the calling sequence of subgrograms at nun time La readability & reliability & efficiency & . Typechecking: is the activity of ensuring that they are of comptible types. . Compatible type: to be implicitly converted by the compiler or interpreter to a legal type · Coercion: automatic conversion . type error: if there is an incompatible type . Static type checking is better than dynamic type checking (reliability?) . Type equivalence: Ithey are considered compatible without coercion Ly name type equivalence: if they are defined in declarations that use the name type Ly structure type equivalence, if their types have identical structure . Side effet: occurs when the function changes either one of its parameters or aglobal variable . Short-circuit evaluation, the result is defermined without evaluating all parts of the expression