LOGICAL DATABASE DESIGN

MSBA 7024 / MACC 7020
Database Design and Management

OBJECTIVES

- Definition of terms
- List the properties of relations
- State properties of candidate keys
- Create tables with entity and relational integrity constraints
- Transform E-R diagrams to relations
- Define first, second, and third normal form
- Use normalization to convert anomalous tables to wellstructured relations
- Describe problems from merging relations

RELATION

 Definition: A relation is a named, two-dimensional table of data

• NOTE: The word **relation** (in relational database) is NOT the same as the word **relationship** (in E-R model)

RELATION

- Table consists of rows (records) and columns (attribute or field)
- Requirements for a table to qualify as a relation:
 - It must have a unique name
 - Every attribute value must be atomic (not multivalued, not composite)
 - Every row must be unique (can't have two rows with exactly the same values for all their fields)
 - Attributes (columns) in tables must have unique names
 - The order of the columns must be irrelevant
 - The order of the rows must be irrelevant

NOTE: all relations are in 1st Normal form

CORRESPONDENCE WITH E-R MODEL

- Relations (tables) correspond with entity types and with many-to-many relationship types
- Rows correspond with entity instances and with many-tomany relationship instances
- Columns correspond with attributes

KEY FIELDS

- Keys are special fields that serve two main purposes:
 - **Primary keys** are <u>unique</u> identifiers of the relation in question. Examples include employee numbers, social security numbers, etc. This is how we can guarantee that all rows are unique
 - Foreign keys are identifiers that enable a <u>dependent</u> relation (on the many side of a relationship) to refer to its <u>parent</u> relation (on the one side of the relationship)
- Keys can be simple (a single field) or composite (more than one field)
- Keys usually are used as indexes to speed up the response to user queries (more on this in the next handout)

Schema for four relations (Pine Valley Furniture Company)

INTEGRITY CONSTRAINTS

- Domain Constraints
 - Allowable values for an attribute. See Table on next slide
- Entity Integrity
 - No primary key attribute may be null. All primary key fields MUST have data
- Action Assertions
 - Business rules. Recall from previous handout

TABLE 4-1 Domain Definitions for INVOICE Attributes

Attribute	Domain Name	Description	Domain
CustomerID	Customer IDs	Set of all possible customer IDs	character: size 5
CustomerName	Customer Names	Set of all possible customer names	character: size 25
CustomerAddress	Customer Addresses	Set of all possible customer addresses	character: size 30
CustomerCity	Cities	Set of all possible cities	character: size 20
CustomerState	States	Set of all possible states	character: size 2
CustomerPostalCode	Postal Codes	Set of all possible postal zip codes	character: size 10
OrderID	Order IDs	Set of all possible order IDs	character: size 5
OrderDate	Order Dates	Set of all possible order dates	date: format mm/dd/yy
ProductID	Product IDs	Set of all possible product IDs	character: size 5
ProductDescription	Product Descriptions	Set of all possible product descriptions	character: size 25
ProductFinish	Product Finishes	Set of all possible product finishes	character: size 15
ProductStandardPrice	Unit Prices	Set of all possible unit prices	monetary: 6 digits
ProductLineID	Product Line IDs	Set of all possible product line IDs	integer: 3 digits
OrderedQuantity	Quantities	Set of all possible ordered quantities	integer: 3 digits

Domain definitions enforce domain integrity constraints

INTEGRITY CONSTRAINTS

- Referential Integrity rule states that any foreign key value (on the relation of the many side) MUST match a primary key value in the relation of the one side. (Or the foreign key can be null)
 - For example: Delete Rules
 - Restrict don't allow delete of "parent" side if related rows exist in "dependent" side
 - Cascade automatically delete "dependent" side rows that correspond with the "parent" side row to be deleted
 - Set-to-Null set the foreign key in the dependent side to null if deleting from the parent side → not allowed for weak entities

Referential integrity constraints (Pine Valley Furniture)

ORDER

OrderID OrderDate CustomerID

ORDER LINE

OrderID ProductID OrderedQuantity

Referential integrity constraints are drawn via arrows from dependent to parent table

PRODUCT

ProductID	ProductDescription	ProductFinish	ProductStandardPrice	ProductLineID
		. readed miler		

SQL table definitions

CREATE TABLE Customer T

(CustomerID NUMBER(11,0) NOT NULL,
CustomerName VARCHAR2(25) NOT NULL,

CustomerAddress VARCHAR2(30), CustomerCity VARCHAR2(20),

CustomerState CHAR(2), CustomerPostalCode VARCHAR2(9),

CONSTRAINT Customer_PK PRIMARY KEY (CustomerID));

CREATE TABLE Order T

(OrderID NUMBER(11,0) NOT NULL,
OrderDate DATE DEFAULT SYSDATE,

CustomerID NUMBER(11,0),

CONSTRAINT Order_PK PRIMARY KEY (OrderID),

CONSTRAINT Order_FK FOREIGN KEY (CustomerID) REFERENCES Customer_T (CustomerID))

CREATE TABLE Product T

(ProductID NUMBER(11,0) NOT NULL,

ProductDescription VARCHAR2(50),
ProductFinish VARCHAR2(20),
ProductStandardPrice DECIMAL(6,2),
ProductLineID NUMBER(11,0),

CONSTRAINT Product_PK PRIMARY KEY (ProductID));

CREATE TABLE OrderLine_T

(OrderID NUMBER(11,0) NOT NULL, ProductID NUMBER(11,0) NOT NULL,

OrderedQuantity NUMBER(11,0),
CONSTRAINT OrderLine PK PRIMARY KEY (OrderID, ProductID),

CONSTRAINT OrderLine_FK1 FOREIGN KEY (OrderID) REFERENCES Order_T (OrderID),

CONSTRAINT OrderLine_FK2 FOREIGN KEY (ProductID) REFERENCES Product_T (ProductID));

Referential
integrity
constraints are
implemented with
foreign key to
primary key
references

TRANSFORMING ER DIAGRAMS INTO RELATIONS

Mapping Regular Entities to Relations

- Simple attributes: E-R attributes map directly onto the relation
- 2. Composite attributes: Use only their simple, component attributes
- 3. Multivalued Attribute: Becomes a separate relation with a foreign key taken from the superior entity

(a) CUSTOMER entity type with simple attributes

CUSTOMER

Customer ID

Customer Name

Customer Address

Customer Postal Code

(b) CUSTOMER relation

CUSTOMER

CustomerID CustomerName CustomerAddress CustomerPostalCode

Mapping a composite attribute

(a) CUSTOMER entity type with composite attribute

CUSTOMER

Customer ID

Customer Name

Customer Address

(CustomerStreet, CustomerCity, CustomerState)

Customer Postal Code

(b) CUSTOMER relation with address detail

CUSTOMER

CustomerID	CustomerName	CustomerStreet	CustomerCity	CustomerState	CustomerPostalCode
------------	--------------	----------------	--------------	---------------	--------------------

Mapping an entity with a multivalued attribute

Multivalued attribute becomes a separate relation with foreign key

One-to-many relationship between original entity and new relation

16

TRANSFORMING ER DIAGRAMS INTO RELATIONS (CONT.)

Mapping Weak Entities

- Becomes a separate relation with a foreign key taken from the superior entity
- Primary key composed of:
 - Partial identifier of weak entity
 - Primary key of identifying relation (strong entity)

a) Weak entity DEPENDENT

Claims

DEPENDENT Dependent Name

(First Name, Middle Initial, Last Name) Date of Birth Gender

Example of mapping a weak entity (cont.)

b) Relations resulting from weak entity

EMPLOYEE

EmployeeID EmployeeName

NOTE: the domain constraint for the foreign key should NOT allow *null* value if DEPENDENT is a weak entity

DEPENDENT

FirstName

MiddleInitial Las

LastName

EmployeeID

Foreign key

DateOfBirth

Gender

Composite primary key

TRANSFORMING ER DIAGRAMS INTO RELATIONS (CONT.)

Mapping Binary Relationships

- One-to-Many Primary key on the one side becomes a foreign key on the many side
- Many-to-Many Create a new relation with the primary keys of the two entities as its primary key
- One-to-One Primary key on the mandatory side becomes a foreign key on the optional side

Example of mapping a 1:M relationship

a) Relationship between customers and orders

b) Mapping the relationship

a) Completes relationship (M:N)

The Completes relationship will need to become a separate relation

Example of mapping an M:N relationship (cont.) b) Three resulting relations

Example of mapping a binary 1:1 relationship

a) In charge relationship (1:1)

Often in 1:1 relationships, one direction is optional.

Example of mapping a binary 1:1 relationship (cont.)

b) Resulting relations

Foreign key goes in the relation on the optional side, Matching the primary key on the mandatory side

TRANSFORMING ER DIAGRAMS INTO RELATIONS (CONT.)

Mapping Associative Entities

- Identifier Not Assigned
 - Default primary key for the association relation is composed of the primary keys of the two entities (as in M:N relationship)
 - Default identifier may not be unique
- Identifier Assigned
 - It is natural and familiar to end-users

Example of mapping an associative entity

a) An associative entity

Example of mapping an associative entity (cont.) b) Three resulting relations

Composite primary key formed from the two foreign keys

Example of mapping an associative entity with an identifier

a) SHIPMENT associative entity

Example of mapping an associative entity with an identifier (cont.)

b) Three resulting relations

TRANSFORMING ER DIAGRAMS INTO RELATIONS (CONT.)

Mapping Unary Relationships

- One-to-Many Recursive foreign key in the same relation
- Many-to-Many Two relations:
 - One for the entity type
 - One for an associative relation in which the primary key has two attributes, both taken from the primary key of the entity

Mapping a unary 1:N relationship

(b)
EMPLOYEE
relation with
recursive
foreign key

Mapping a unary M:N relationship

ItemNo ItemDescription ItemUnitCost

COMPONENT

ItemNo ComponentNo Quantity

relations

TRANSFORMING ER DIAGRAMS INTO RELATIONS (CONT.)

Mapping Ternary (and n-ary)
Relationships

- One relation for each entity and one for the associative entity
- Associative entity has foreign keys to each entity in the relationship

Mapping a ternary relationship

a) PATIENT TREATMENT Ternary relationship with associative entity

Mapping a ternary relationship (cont.)

b) Mapping the ternary relationship PATIENT TREATMENT

Remember that the primary key MUST be unique

This is why treatment date and time are included in the composite primary key

But this makes a very cumbersome key...

It would be better to create a surrogate key like Treatment#

TRANSFORMING ER DIAGRAMS INTO RELATIONS (CONT.)

Mapping Supertype/Subtype Relationships

- One relation for supertype and for each subtype
- Supertype attributes (including identifier and subtype discriminator) go into supertype relation
- Subtype attributes go into each subtype; primary key of supertype relation also becomes primary key of subtype relation
- 1:1 relationship established between supertype and each subtype, with supertype as primary table

Supertype/subtype relationships

Mapping Supertype/subtype relationships to relations

These are implemented as one-to-one relationships

DATA NORMALIZATION

- Primarily a tool to validate and improve a logical design so that it satisfies certain constraints that avoid unnecessary duplication of data
- The process of decomposing relations with anomalies to produce smaller, well-structured relations

WELL-STRUCTURED RELATIONS

- A relation that contains minimal data redundancy and allows users to insert, delete, and update rows without causing data inconsistencies
- Goal is to avoid anomalies
 - Insertion Anomaly—adding new rows forces user to create duplicate data
 - Deletion Anomaly—deleting rows may cause a loss of data that would be needed for other future rows
 - Modification Anomaly—changing data in a row forces changes to other rows because of duplication

General rule of thumb: A table should not pertain to more than one entity type

EXAMPLE

EMPLOYEE2

EmpID	Name	DeptName	Salary	CourseTitle	DateCompleted
100	Margaret Simpson	Marketing	48,000	SPSS	6/19/201X
100	Margaret Simpson	Marketing	48,000	Surveys	10/7/201X
140	Alan Beeton	Accounting	52,000	Tax Acc	12/8/201X
110	Chris Lucero	Info Systems	43,000	Visual Basic	1/12/201X
110	Chris Lucero	Info Systems	43,000	C++	4/22/201X
190	Lorenzo Davis	Finance	55,000		
150	Susan Martin	Marketing	42,000	SPSS	6/19/201X
150	Susan Martin	Marketing	42,000	Java	8/12/201X

Question—Is this a relation?

Answer–Yes: Unique rows and no

multivalued attributes

Question—What's the primary key?

Answer–Composite: Emp_ID, Course_Title

ANOMALIES IN THIS TABLE

- Insertion—can't enter a new course without having an employee taking it
- **Deletion**—if we remove employee 140, we lose information about the existence of a Tax Acc class
- Modification—giving a salary increase to employee 100 forces us to update multiple records

Why do these anomalies exist?

Because there are two themes (entity types) in this one relation. This results in data duplication and an unnecessary dependency between the entities

43

FUNCTIONAL DEPENDENCIES AND KEYS

- Functional Dependency: The value of one attribute (the determinant) determines the value of another attribute
- Candidate Key:
 - A unique identifier. One of the candidate keys will become the primary key
 - E.g. perhaps there is both credit card number and HKID in a table...in this case both are candidate keys
 - Each non-key field is functionally dependent on every candidate key

Steps in normalization

FIRST NORMAL FORM

- No multivalued attributes
- Every attribute value is atomic
- All relations are in 1st Normal Form

Table with multivalued attributes, not in 1st normal form

OrderID	Order Date	Customer ID	Customer Name	Customer Address	ProductID	Product Descriptio n	Product F inish	Product StandardPrice	Ordered Quantity
1006	10/24/2010	2	Value Furniture	Plano, TX	7	Dining Table	Natural Ash	800.00	2
					5	Writer's Desk	Cherry	325.00	2
					4	Entertainment Center	Natural Maple	650.00	1
1007	10/25/2010	6	Furniture Gallery	Boulder, CO	11	4–Dr Dresser	Oak	500.00	4
					4	Entertainment Center	Natural Maple	650.00	3

Note: this is NOT a relation

Table with no multivalued attributes and unique rows, in 1st normal form

OrderID	Order Date	Customer ID	Customer Name	Customer Address	ProductID	Product Description	Product Finish	Product StandardPrice	Ordered Quantity
1006	10/24/2010	2	Value Furniture	Plano, TX	7	Dining Table	Natural A sh	800.00	2
1006	10/24/2010	2	Value Furniture	Plano, TX	5	Writer's Desk	Cherry	325.00	2
1006	10/24/2010	2	Value Furniture	Plano, TX	4	Entertainment Center	Natural Maple	650.00	1
1007	10/25/2010	6	Furniture Gallery	Boulder, CO	11	4–Dr Dresser	Oak	500.00	4
1007	10/25/2010	6	Furniture Gallery	Boulder, CO	4	Entertainment Center	Natural Maple	650.00	3

Note: this is relation, but not a well-structured one

ANOMALIES IN THIS TABLE

- Insertion—if new product is ordered for order 1007 of existing customer, customer data must be re-entered, causing duplication
- **Deletion**—if we delete the Dining Table from Order 1006, we lose information concerning this item's finish and price
- Update—changing the price of product ID 4 requires update in several records

Why do these anomalies exist?

Because there are multiple themes (entity types) in one relation. This results in duplication and an unnecessary dependency between the entities

SECOND NORMAL FORM

- 1NF PLUS every non-key attribute is fully functionally dependent on the ENTIRE primary key
 - Every non-key attribute must be defined by the entire key, not by only part of the key
 - No partial functional dependencies

Functional dependency diagram for INVOICE

OrderID OrderDate, CustomerID, CustomerName, CustomerAddress

CustomerID CustomerName, **CustomerAddress**

ProductID → **ProductDescription**, **ProductFinish**, **ProductStandardPrice**

OrderID, **ProductID** → **OrderQuantity**

Therefore, NOT in 2nd Normal Form

Removing partial dependencies

Partial dependencies are removed, but there are still transitive dependencies

THIRD NORMAL FORM

- 2NF PLUS no transitive dependencies (functional dependencies on non-primary-key attributes)
- Note: This is called transitive, because the primary key is a determinant for another attribute, which in turn is a determinant for a third
- Solution: Non-key determinant with transitive dependencies go into a new table; non-key determinant becomes primary key in the new table and stays as foreign key in the old table

Removing transitive dependencies

Transitive dependencies are removed

MERGING RELATIONS

- View Integration—Combining entities from multiple ER models into common relations
- Issues to watch out for when merging entities from different ER models:
 - Synonyms—two or more attributes with different names but same meaning
 - Homonyms—attributes with same name but different meanings
 - Transitive dependencies—even if relations are in 3NF prior to merging, they may not be after merging
 - Supertype/subtype relationships—may be hidden prior to merging

ENTERPRISE KEYS

- Primary keys that are unique in the whole database, not just within a single relation
- Corresponds with the concept of an object ID in object-oriented systems

Enterprise keys

OBJECT (OID, ObjectType)
EMPLOYEE (OID, EmpID, EmpName, DeptName, Salary)
CUSTOMER (OID, CustID, CustName, Address)

a) Relations with enterprise key

b) Sample data with enterprise key

OBJECT

OID	ObjectType			
1	EMPLOYEE			
2	CUSTOMER			
3	CUSTOMER			
4	EMPLOYEE			
5	EMPLOYEE			
6	CUSTOMER			
7	CUSTOMER			

EMPLOYEE

OID	EmpID	EmpName	DeptName	Salary
1	100	Jennings, Fred	Marketing	50000
4	101	Hopkins, Dan	Purchasing	45000
5	102	Huber, Ike	Accounting	45000

CUSTOMER

OID	CustID	CustName	Address
2	100	Fred's Warehouse	Greensboro, NC
3	101	Bargain Bonanza	Moscow, ID
6	102	Jasper's	Tallahassee, FL
7	103	Desks 'R Us	Kettering, OH