SDS 383D Ex 04: Hierarchical Models

March 22, 2016

Jennifer Starling

Math Tests

The data set in "mathtest.csv" shows the scores on a standardized math test from a sample of 10th-grade students at 100 different U.S. urban high schools, all having enrollment of at least 400 10th-grade students. (A lot of educational research involves "survey tests" of this sort, with tests administered to all students being the rare exception.)

Let θ_i be the underlying mean test score for school i, and let y_{ij} be the score for the jth student in school i. Starting with the "mathtest.R" script, you'll notice that the extreme school-level averages \bar{y}_i (both high and low) tend to be at schools where fewer students were sampled.

Part 1

Briefly explain why this would be.

The extreme school-level averages occur in the schools with smaller sample sizes because we do not do a very good job of estimating the mean when sample size is small. These schools do not have min and max observation values that are more extreme than the other schools; they just have fewer observations to balance out the calculation of the mean. The smaller the sample size, the more influential an extreme observation is over the group mean.

Part 2

Fit a normal hierarchical model to these data via Gibbs sampling:

$$y_{ij} \sim N(\theta_i, \sigma^2)$$

 $\theta_i \sim N(\mu, \tau^2 \sigma^2)$

Decide upon sensible priors for the unknown model parameters (μ, σ^2, τ^2) . The model is as follows.

$$\begin{split} (y_i j | \theta_i, \sigma^2) &\sim N(\theta_i, \sigma^2) \\ (\theta_i | \mu, \sigma^2, \tau^2) &\sim N(\mu, \sigma^2 \tau^2) \\ &\quad \mu \sim I_{\mathbb{R}}(\mu) \text{, a flat prior on the real line} \\ &\quad \tau^2 \sim I_{\mathbb{R}^+}(\tau^2) \text{, a flat prior on the positive real line} \\ &\quad \sigma^2 \sim \left(\frac{1}{\sigma^2}\right) I_{\mathbb{R}^+}(\sigma^2) \text{, Jeffreys prior} \end{split}$$

where

i = 1, ..., p indexes the p groups. $n_i =$ sample size in each group. $j = 1, ..., n_i$ indexes observations in a group. n = total number of observations.

The likelihood is

$$L(y|\theta_{1},...,\theta_{p},\sigma^{2}) \sim \prod_{i=1}^{p} \prod_{j=1}^{n_{i}} \left(\frac{1}{\sigma^{2}}\right)^{\frac{1}{2}} \exp\left[-\frac{1}{\sigma^{2}} \left(y_{ij} - \theta_{i}\right)^{2}\right] = \left(\sigma^{2}\right)^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma^{2}} \sum_{i=1}^{p} \sum_{j=1}^{n_{i}} \left(y_{ij} - \theta_{i}\right)^{2}\right]$$

The full conditionals are as follows.

$$\left(\theta_i|y,\mu,\sigma^2,\tau^2\right)$$

Note that \bar{y}_i is a sufficient statistic for the y's, with $\bar{y}_i \sim N\left(\theta_i, \frac{\sigma^2}{n}\right)$.

$$(\theta_i|y,\mu,\sigma^2,\tau^2) \propto \left(\sigma^2\right)^{-\frac{1}{2}} \exp\left[-\frac{1}{2\sigma^2/n}(\bar{y}_i-\theta_i)^2\right] \left(\tau^2\sigma^2\right)^{-\frac{1}{2}} \exp\left[-\frac{1}{2\sigma^2\tau^2}(\theta_i-\mu)^2\right]$$

This is the normal-normal model, therefore

$$(\theta_{i}|y,\mu,\sigma^{2},\tau^{2}) \sim N(m^{*},v^{*})$$
with
$$v^{*} = \left[\frac{n_{i}}{\sigma^{2}} + \frac{1}{\sigma^{2}\tau^{2}}\right]^{-1} = \left[\frac{n_{i}\tau^{2} + 1}{\sigma^{2}\tau^{2}}\right]^{-1} = \sigma^{2}\left[\frac{\tau^{2}}{n_{i}\tau^{2} + 1}\right]$$

$$m^{*} = v^{*}\left[\left(\frac{n_{i}}{\sigma^{2}}\right)\bar{y}_{i} + \left(\frac{1}{\sigma^{2}\tau^{2}}\right)\mu\right]$$

$$= \sigma^{2}\left[\frac{\tau^{2}}{n_{i}\tau^{2} + 1}\right]\left[\left(\frac{n_{i}}{\sigma^{2}}\right)\bar{y}_{i} + \left(\frac{1}{\sigma^{2}\tau^{2}}\right)\mu\right]$$

$$= \left[\frac{n_{i}\tau^{2}}{n_{i}\tau^{2} + 1}\right]\bar{y}_{i} + \left[\frac{1}{n_{i}\tau^{2} + 1}\right]\mu$$

$$= w\bar{y}_{i} + (1 - w)\mu$$

So full conditional is

$$(\theta_i|y,\mu,\sigma^2,\tau^2) \sim N\left(\left\lceil \frac{n_i\tau^2}{n_i\tau^2+1}\right\rceil \bar{y}_i + \left\lceil \frac{1}{n_i\tau^2+1}\right\rceil \mu,\sigma^2 \left\lceil \frac{\tau^2}{n_i\tau^2+1}\right\rceil\right) \tag{1}$$

$$\left(\mu|\theta,y,\sigma^2,\tau^2\right)$$

$$\begin{split} \left(\mu|\theta,y,\sigma^2,\tau^2\right) &\propto \exp\left[-\frac{1}{2\sigma^2\tau^2}\sum_{i=1}^p(\theta_i-\mu)^2\right] \cdot 1 \\ &= \exp\left[-\frac{1}{2\sigma^2\tau^2}\left\{(\theta_1-\mu)(\theta_1-\mu) + \ldots + (\theta_p-\mu)(\theta_p-\mu)\right\}\right] \\ &= \exp\left[-\frac{1}{2\sigma^2\tau^2}\left\{p\mu^2 - 2\mu\sum_{i=1}^p\theta_i + \sum_{i=1}^p\theta_i^2\right\}\right] \\ &= \exp\left[-\frac{p}{2\sigma^2\tau^2}\left\{\mu^2 - 2\mu\left(\frac{\sum_{i=1}^p\theta_i}{p}\right) + \frac{\sum_{i=1}^p\theta_i^2}{p}\right\}\right] \\ &\propto \exp\left[-\frac{p}{2\sigma^2\tau^2}\left\{\mu^2 - 2\mu\bar{\theta}_i\right\}\right] \end{split}$$

We recognize this as a Normal kernel, therefore

$$\left(\mu|\theta,y,\sigma^2,\tau^2\right) \sim N\left(\bar{\theta}_i,\frac{\sigma^2\tau^2}{p}\right)$$
 (2)

$$(\sigma^{2}|\theta, y, \mu, \tau^{2}) \propto (\sigma^{2})^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma^{2}} \sum_{i=1}^{p} \sum_{j=1}^{n_{i}} (y_{ij} - \theta_{i})^{2}\right] (\sigma^{2})^{-\frac{p}{2}} \exp\left[-\frac{1}{2\sigma^{2}\tau^{2}} \sum_{i=1}^{p} (\theta_{i} - \mu)^{2}\right] (\frac{1}{\sigma^{2}})$$

$$= (\sigma^{2})^{-\frac{(n+p)}{2}-1} \exp\left[-\left(\frac{1}{\sigma^{2}}\right) \cdot \left\{\frac{1}{2} \sum_{i=1}^{p} \sum_{j=1}^{n_{i}} (y_{ij} - \theta_{i})^{2} + \frac{1}{2\tau^{2}} \sum_{i=1}^{p} (\theta_{i} - \mu)^{2}\right\}\right]$$

We recognize this as an Inverse-Gamma kernel, therefore

$$(\sigma^2 | \theta, y, \mu, \tau^2) \sim IG\left(\frac{(n+p)}{2}, \left\{\frac{1}{2} \sum_{i=1}^p \sum_{j=1}^{n_i} (y_{ij} - \theta_i)^2 + \frac{1}{2\tau^2} \sum_{i=1}^p (\theta_i - \mu)^2\right\}\right)$$
 (3)

 $(\tau^2|\theta,y,\mu,\sigma^2)$

$$(\tau^2|\theta, y, \mu, \sigma^2) \propto (\tau^2)^{-\frac{p}{2}} \exp\left[-\frac{1}{2\sigma^2\tau^2} \sum_{i=1}^p (\theta_i - \mu)^2\right] \cdot 1$$

We recognize this as an Inverse Gamma kernel, therefore

$$(\tau^2 | \theta, y, \mu, \sigma^2) \sim IG\left(\frac{p}{2} - 1, \frac{1}{2\sigma^2} \sum_{i=1}^p (\theta_i - \mu)^2\right)$$
 (4)

Part 3

Shrinkage Coefficient as Function of School Sample Size

Figure 1: Shrinkage estimator by school sample size

Figure 2: Histograms of Posteriors

Figure 3: Traces for Gibbs Sampler

Price Elasticity of Demand

Linear Hierarchical Model using Empirical Bayes

Model is specified as

$$\begin{split} log(Q_{it}) &= log(\alpha_i) + \beta_i log(P_{it}) + \gamma_i x_{it} + \theta_i \left[log(P_{it}) * x_{it} \right] + e_{it} \\ \alpha_i &\sim N(\mu_\alpha, \tau_\alpha^2) \\ \beta_i &\sim N(\mu_\beta, \tau_\beta^2) \\ \gamma_i &\sim N(\mu_\gamma, \tau_\gamma^2) \\ \theta_i &\sim N(\mu_\theta, \tau_\theta^2) \\ e_{it} &\sim N(0, \sigma^2) \end{split}$$

Where $i = \{1, 2, ..., 88\}$ indexes stores, and $t = \{1, 2, ..., 68\}$ indexes week (repeated obs on each store).

 $log(Q_{it})$ = Response; log-volume for store i at week t

 $log(P_{it}) = Log$ -price for store i at week t

 $log(\alpha_i)$ = Intercept for each store

 x_{it} = Indicator variable for ad display (displayed ad = 1)

 $log(P_{it}) * x_{it}$ = Interaction; shape may change depending on whether ad in store

Variance estimates using lmer to fit the model were as follows.

$$\hat{\tau}_{\alpha}^2 = 5.0478$$

$$\hat{\tau}_{\beta}^2 = 4.6658$$

$$\hat{\tau}_{\gamma}^2 = 0.9634$$

$$\hat{\tau}_{\theta}^2 = 0.7004$$

$$\hat{\sigma}^2 = 0.06733$$

Residual plot does not show evidence of major model mis-fit.

Figure 4: Residual plot for hierarchical model

Model summary:

```
Linear mixed model fit by REML ['lmerMod']
Formula: logQ ~ (logP + disp + disp:logP | store)
   Data: data
REML criterion at convergence: 1811.9
Scaled residuals:
   Min 1Q Median 3Q
-7.0245 -0.4898 -0.0317 0.4348 12.2358
Random effects:
Groups Name
                   Variance Std.Dev. Corr
 store (Intercept) 5.0478 2.2467
         logP
                4.6658 2.1600 -0.94
                   0.9634 0.9816 0.47 -0.55
         disp
         logP:disp 0.7004 0.8369 -0.32 0.38 -0.97
                    0.0675 0.2598
Residual
Number of obs: 5555, groups: store, 88
Fixed effects:
           Estimate Std. Error t value
(Intercept) 8.18711 0.07794
                                 105
```

Fully Bayesian Hierarchical Linear Model

Model

Define the following variables.

 $y_i = log(Q)$, a $(n_s x 1)$ vector of log-volume observations for each of the s stores.

$$X_i = W_i = \begin{bmatrix} & & & & & & & & & \\ & 1 & & log P_{it} & & ad_{it} & & log P_{it}*ad_{it} \end{bmatrix}$$
, a $(n_s x p)$ matrix of covariates for each store.

where

s =Number of stores. Stores are indexed by $i = \{1, 2, ..., s\}$

 n_i = Number of observations (weeks) within store i.

We can write the model as follows. This model includes an overall mean of each covariate β_j , plus store-varying offsets.

$$y_i = X_i \beta + W_i b_i + e_i$$
, with $e_i \sim N(0, \sigma^2 I_{n_i})$
 $\beta \sim N_1(\mu_\beta, V_\beta)$
 $b_i \sim N_p(0, \Sigma)$
 $\sigma^2 \sim \frac{1}{\sigma^2}$
 $\Sigma \sim IW(d, C)$

Likelihood

$$y_i \sim N_{n_i}(X_i\beta + W_ib_i, \sigma^2 I_{n_i})$$

$$y_i \propto \left(\sigma^2\right)^{-\frac{n_i}{2}} \exp\left[-\frac{1}{2\sigma^2}\left(y_i - X_i\beta - W_ib_i\right)^T\left(y_i - X_i\beta - W_ib_i\right)\right]$$

$$y_1, \dots, y_s \propto \left(\sigma^2\right)^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma^2}\sum_{i=1}^s\left(y_i - X_i\beta - W_ib_i\right)^T\left(y_i - X_i\beta - W_ib_i\right)\right]$$

Full Conditionals

 $(b_i|\ldots)$

$$\begin{split} (b_i|\ldots) &\propto \exp\left[-\frac{1}{2}b_i^T\Sigma^{-1}b_i\right] \cdot \exp\left[-\frac{1}{2\sigma^2}\left(y_i - X_i\beta - W_ib_i\right)^T\left(y_i - X_i\beta - W_ib_i\right)\right] \\ &\propto \exp\left[-\frac{1}{2}b_i^T\Sigma^{-1}b_i\right] \cdot \exp\left[-\frac{1}{2\sigma^2}\left(b_i^TW_i^TW_ib_i - 2b_i^TW_i^Ty_i - 2b_i^TW_i^TX_i\beta\right)\right] \\ &\propto \exp\left[-\frac{1}{2}b_i^T\Sigma^{-1}b_i\right] \cdot \exp\left[-\frac{1}{2\sigma^2}\left(b_i^TW_i^TW_ib_i - 2b_i^TW_i^T\left(y_i - X_i\beta\right)\right)\right] \end{split}$$

We recognize this as the multivariate normal kernel.

$$(b_i|\ldots) \sim N(m^*, V^*)$$
, with (5)

$$V^* = \left[\Sigma^{-1} + \frac{1}{\sigma^2} W_i^T W_i \right]^{-1} \tag{6}$$

$$m^* = V^* \left[\frac{1}{\sigma^2} W_i^T \left(y_i - X_i \beta \right) \right] \tag{7}$$

 $(\beta|\ldots)$

$$\begin{split} (\beta|\ldots) &\propto \exp\left[-\frac{1}{2}\left(\beta-\mu_{\beta}\right)^{T}V_{\beta}^{-1}\left(\beta-\mu_{\beta}\right)\right] \cdot \exp\left[-\frac{1}{2\sigma^{2}}\sum_{i=1}^{s}\left(y_{i}-X_{i}\beta-W_{i}b_{i}\right)^{T}\left(y_{i}-X_{i}\beta-W_{i}b_{i}\right)\right] \\ &\propto \exp\left[-\frac{1}{2}\left(\beta^{T}V_{\beta}^{-1}\beta-2\beta^{T}V_{\beta}^{-1}\mu_{\beta}\right)-\frac{s}{2\sigma^{2}}\left(\beta^{T}\left(\sum_{i=1}^{s}X_{i}^{T}X_{i}\right)\beta-2\beta^{T}\left(\sum_{i=1}^{s}X_{i}^{T}y_{i}-\sum_{i=1}^{s}X_{i}^{T}W_{i}b_{i}\right)\right)\right] \\ &=\exp\left[-\frac{1}{2}\left(\beta^{T}V_{\beta}^{-1}\beta-2\beta^{T}V_{\beta}^{-1}\mu_{\beta}\right)-\frac{s}{2\sigma^{2}}\left(\beta^{T}\left(\sum_{i=1}^{s}X_{i}^{T}X_{i}\right)\beta-2\beta^{T}\left(\sum_{i=1}^{s}X_{i}^{T}\left(y_{i}-W_{i}b_{i}\right)\right)\right)\right] \end{split}$$

We recognize this as the univariate normal kernel.

$$(\beta|\ldots) \sim N_p(m^*, V^*)$$
, with (8)

$$V^* = \left[V_{\beta}^{-1} + \left(\frac{1}{\sigma^2} \right) \sum_{i=1}^s X_i^T X_i \right]^{-1} \tag{9}$$

$$m^* = V^* \left[V_{\beta}^{-1} \mu_{\beta} + \left(\frac{1}{\sigma^2} \right) \sum_{i=1}^{s} X_i^T \left(y_i - W_i b_i \right) \right]$$
 (10)

 $(\sigma^2|\ldots)$

$$(\sigma^{2}|\ldots) \propto \left(\frac{1}{\sigma^{2}}\right) \left(\sigma^{2}\right)^{-\frac{n}{2}} \exp \left[-\frac{1}{2\sigma^{2}} \sum_{i=1}^{s} \left(y_{i} - X_{i}\beta - W_{i}b_{i}\right)^{T} \left(y_{i} - X_{i}\beta - W_{i}b_{i}\right)\right]$$

We recognize this as the inverse gamma kernel.

$$(\sigma^2|\ldots) \sim IG\left(\frac{n}{2}, \frac{RSS_{\sigma^2}}{2}\right)$$
 (11)

 $(\Sigma|\ldots)$

$$(\sigma^{2}|\ldots) \propto |\Sigma|^{-\left(\frac{d+p+1}{2}\right)} \exp\left[-\frac{1}{2}tr\left(C\Sigma^{-1}\right)\right] \cdot |\Sigma|^{-\left(\frac{s}{2}\right)} \exp\left[-\frac{1}{2}\sum_{i=1}^{s}b_{i}^{T}\Sigma^{-1}b_{i}\right]$$

$$= |\Sigma|^{-\left(\frac{d+s+p+1}{2}\right)} \exp\left[-\frac{1}{2}tr\left(C\Sigma^{-1}\right) - \frac{1}{2}tr\left(\sum_{i=1}^{s}b_{i}b_{i}^{T}\Sigma^{-1}\right)\right]$$

We recognize this as the Inverse Wishart kernel.

$$(\sigma^2|\ldots) \sim IW\left(d+s,C+\sum_{i=1}^s b_i b_i^T\right)$$
 (12)

The demand curves for the 88 stores are as follows. Stores are ordered in decreasing order by average price.

Figure 5: Demand Curves for 88 Stores

Figure 6: Demand Curves for 88 Stores

Figure 7: Demand Curves for 88 Stores

A Hierarchical Probit Model via Data Augmentation

Gene Expression Over Time