# Update of $\gamma$ in $B^{\pm} \rightarrow [K^+K^-\pi^+\pi^-]_D h^{\pm}$ with external strong-phase inputs

Martin Tat

University of Oxford

LHCb-UK annual meeting, RAL

8th-10th January 2024





#### Introduction to $\gamma$ and CP violation

- ullet CPV in SM is described by the Unitary Triangle, with angles lpha, eta,  $\gamma$
- The angle  $\gamma = \arg \Big( \frac{V_{ud} \, V_{ub}^*}{V_{cd} \, V_{cb}^*} \Big)$  is very important:
  - Negligible theoretical uncertainties: Ideal SM benchmark
  - Accessible at tree level: Indirectly probe New Physics that enter loops
  - Ompare with a global CKM fit: Is the Unitary Triangle a triangle?





(a) Tree level:  $\gamma = (72.1^{+5.4}_{-5.7})^{\circ}$ 

**(b)** Loop level:  $\gamma = (65.5^{+1.1}_{-2.7})^{\circ}$ 

CKMfitter Group (J. Charles et al.), Eur. Phys. J. C41, 1-131 (2005), updated results and plots available at: http://ckmfitter.in2p3.fr

#### Sensitivity through interference

Measure  $\gamma$  through interference effects in  $B^{\pm} \rightarrow DK^{\pm}$ 



- ullet Superposition of  $D^0$  and  $ar{D^0}$ 
  - ullet Consider  $D^0/ar{D^0}$  decays to the same final state, such as  $D o K^+K^-$
- $b o u \bar{c}s$  and  $b o c \bar{u}s$  interference o Sensitivity to  $\gamma$   $\mathcal{A}(B^-) = \mathcal{A}_B \left( \mathcal{A}_{D^0} + r_B e^{i(\delta_B \gamma)} \mathcal{A}_{\bar{D^0}} \right)$   $\mathcal{A}(B^+) = \mathcal{A}_B \left( \mathcal{A}_{\bar{D^0}} + r_B e^{i(\delta_B + \gamma)} \mathcal{A}_{D^0} \right)$

#### Multi-body D decays

This talk: Discuss  $D \to K^+K^-\pi^+\pi^-$ , where interference effects vary across phase space

- Strong-phase difference  $\delta_D$  is a function of phase space
- Compare yields of  $B^+$  and  $B^-$  and determine the asymmetry in local phase space regions



# Multi-body D decays

- $\bullet$  Interpretation of  $\gamma$  from the multi-body charm decays require external inputs of the charm strong-phase differences
- Measure model-independent strong-phases at a charm factory, such as BESIII, using an optimised binning scheme





Eur. Phys. J. C 83, 547 (2023)

# Phase-space binned $B^{\pm} \rightarrow [K^+K^-\pi^+\pi^-]_D K^{\pm}$

#### Fully charged final state $\implies$ Highly suitable for LHCb





Eur. Phys. J. C 83, 547 (2023)

- $B^{\pm} \rightarrow [K^+K^-\pi^+\pi^-]_D h^{\pm}$  signal yield:
  - $B^{\pm} \to DK^{\pm}$ : 3026 ± 38
  - $B^{\pm} \rightarrow D\pi^{\pm}$ : 44349 + 218

# Phase-space binned $B^{\pm} \rightarrow [K^+K^-\pi^+\pi^-]_D K^{\pm}$

From the phase-space binned asymmetries, we obtain:

$$\gamma = (116^{+12}_{-14})^{\circ}$$



How will this evolve with model-independent BESIII inputs?

#### Reminder of formalism

# Key free parameters in the fit:

- $\gamma$  (obviously)
- $r_B$ ,  $\delta_B$ : Hadronic parameters of  $B^\pm \to DK^\pm$
- $c_i$ ,  $s_i$ : Charm strong-phase parameters

# $B^\pm o DK^\pm$ yield in bin i

$$\hat{N}_{\pm i}^{\pm} = h_{B^{\pm}} \Big( F_i + r_B^2 F_{+i} + 2r_B \sqrt{F_+ F_{-i}} \Big( \cos(\delta_B \pm \gamma) c_i - \sin(\delta_B \pm \gamma) s_i \Big) \Big)$$

In principle straightforward: Fit  $B^\pm$  yields and extract  $\gamma$  Reduce binning to 2  $\times$  4 bins to accommodate BESIII statistics

# Cross check: Model-dependent fit of $\gamma$

Construct log-likelihood function using  $B^{\pm} \to DK^{\pm}$  yields and model-predicted  $c_i$  and  $s_i$ :

$$\mathcal{L} = \frac{1}{2} \sum_{i} \left( \frac{N_i - \hat{N}_i}{\sigma_i} \right)^2$$



#### Simultaneous fit of LHCb and BESIII bin yields

To include the effect of  $c_i$  and  $s_i$  from the BESIII measurement, perform a simultaneous fit:

$$\mathcal{L} = rac{1}{2} \sum_i \left(rac{ extsf{N}_i - \hat{ extsf{N}}_i}{\sigma_i}
ight)^2 + \mathcal{L}_{ extsf{BESIII}}$$

Why not simply assign a systematic uncertainty?

- $\bullet$  Contribution of  $\gamma$  uncertainty from BESIII could be large, and may move the central value of  $\gamma$
- 2 Uncertainties of  $s_i$  are expected to be very non-Gaussian, which could propagate into non-Gaussian uncertainties of  $\gamma$

#### Simultaneous fit of LHCb and BESIII bin yields

Run toys using expected BESIII yields and bin yields from  $B^{\pm} \rightarrow [K^+K^-\pi^+\pi^-]_D h^{\pm}$  paper:

Simultaneous BESIII and LHCb γ fit pulls



Stable fit with minimal bias and small undercoverage

#### Simultaneous fit of LHCb and BESIII bin yields

Study expected  $\gamma$  uncertainty, after correcting for coverage:



#### Conclusion from toy studies:

- Well behaved fit, with expected sensitivity of  $\sigma(\gamma)=16^\circ$
- Only small corrections to bias and coverage required
- **3** Will update  $\gamma$  result once BESIII meausurement is released

The non-zero mass difference between  $D^0$  and  $\bar{D^0}$  was measured using the multi-body decay  $D o K_S^0 \pi^+ \pi^-$ 



Phys. Rev. Lett 127, 111801 (2021)

Charm strong-phase differences were crucial for this measurement!

Mixing equations depend on x and y, but also  $c_i$  and  $s_i$ :

#### 1. Charm mixing equations

$$\begin{array}{l} N_{D^0}(+i,\langle t\rangle_j) = K_{+i} - \sqrt{K_{+i}K_{-i}}\langle t\rangle_j(yc_i + xs_i) \\ N_{D^0}(-i,\langle t\rangle_j) = K_{-i} - \sqrt{K_{+i}K_{-i}}\langle t\rangle_j(yc_i - xs_i) \end{array}$$

- Fit the mixing equations
- Fit the ratio of mixing equations

#### 2. Charm mixing ratio (bin-flip)

$$R_i = \frac{K_{+i} - \sqrt{K_{+i}K_{-i}} \langle t \rangle_j (yc_i + xs_i)}{K_{-i} - \sqrt{K_{+i}K_{-i}} \langle t \rangle_j (yc_i - xs_i)}$$



Alternative strategy: Fix x and y, and measure  $c_i$  and  $s_i$ 

#### 1. Charm mixing equations

$$\begin{split} N_{D^0}(+i,\langle t\rangle_j) &= K_{+i} - \sqrt{K_{+i}K_{-i}}\langle t\rangle_j(yc_i + xs_i) \\ N_{D^0}(-i,\langle t\rangle_j) &= K_{-i} - \sqrt{K_{+i}K_{-i}}\langle t\rangle_j(yc_i - xs_i) \end{split}$$

- Two independent equations per bin, two observables per bin
- Similar statistical sensitivity to  $c_i$  and  $s_i$ , in contrast to BESIII





Can also use bin-flip method to fit  $s_i$ , but  $c_i$  must be fixed

#### 2. Charm mixing ratio (bin-flip)

$$R_i = \frac{K_{+i} - \sqrt{K_{+i}K_{-i}}\langle t \rangle_j (yc_i + xs_i)}{K_{-i} - \sqrt{K_{+i}K_{-i}}\langle t \rangle_j (yc_i - xs_i)}$$

- Only one independent equation per bin
- Sensitivity found to be similar to fitting mixing equations directly





Sensitivity to  $c_i$ : Similar between BESIII and charm mixing at LHCb  $c_i$  sensitivity studies



Sensitivity to  $s_i$ : Significant improvements expected!



# Summary and future prospects

#### Summary:

- Measurement of  $\gamma$  in  $B^{\pm} \rightarrow [K^+K^-\pi^+\pi^-]_D h^{\pm}$  is ready to be combined with **model-independent** strong-phase inputs
- ② BESIII strong-phase inputs can be further constrained using charm-mixing measurements at LHCb, and provide comparable sensitivity to  $s_i$

# Summary and future prospects

#### Future prospects:

- Measurement is still statistically limited, and will be significantly improved with LHCb Upgrade I
- Additional BESIII data and charm-mixing measurements from LHCb will bring strong-phase systematics down further
- On extend this strategy to many more four-body modes
  - Studies of  $D \to \pi^+\pi^-\pi^+\pi^-$  show similar results

# Thanks for your attention!