ミーティング

2021-11-02

Hiroaki Akatsuka, Masahiro Hino, TUCAN collaboration

偏極度のモデルを修正

・右図は、横軸 $q=\frac{4\pi\sin\theta_{\mathrm{in}}}{\lambda}$ なので $\mathrm{M1}(\theta\mathrm{in}\sim8~\mathrm{mrad})$ の q -Rの関係をサンプル測定 $(\theta\mathrm{in}\sim12~\mathrm{mrad})$ にそのまま適応することができない

q<0.2で関数が一致していなかったのは、飽和磁化を共通のパラメータとしていなかったっため

 Rup, Rdownの飽和磁化=2 Tと固定 すると、途中まで一致した

波長による反射率

- ・波長に換算した
- 偏極ができていない波長が、変わっている
- M1の角度が変化している?

M1, sample からの距離確認 問題なし

Definition of reflectivity

Definition of reflectivity(修正前)

- ダイレクト測定(偏極ミラー、サンプル、コリメータ2なし)
- 偏極ミラーでの反射と透過(偏極ミラーあり)
- 角度 (89.3295-65.4023)/1439. = 8.313829048 mrad

Definition of reflectivity 修正版

- ダイレクト測定(偏極ミラー、サンプル、コリメータ2なし)
- コリメータ2を通った後の反射(偏極ミラー、サンプル、コリメータ2あり)
- 角度 (89.3295-60.4583)/1439.=10.03516331 mrad

q, Rのグラフで、 $q \times 0.83$ することで、補正可能

$$\frac{(89.3295 - 65.4023)}{(89.3295 - 60.4483)} = 0.8284697312$$

$$q = \frac{4\pi \sin \theta_{\text{in,M1}}}{\lambda}$$

Spline関数で偏極度をモデル化

鉄のフェルミポテンシャル 209.0602 neV 飽和磁化 2 T, 厚さ 94.37 nm (fitしていない)

global fit

 Spline関数を用いてモデルした 偏極度と、up, downの反射率 を用いてフィッティングを行な った

codes/simple2/
fit_check_Spline_global2.C

Chi2	2092.63			
NDf	108			
Edm	1.44933E-07			
NCalls	58			
厚さ nm	97.1283	+/-	0.479315	(limited)
飽和磁化 T	2.05144	+/-	0.00886549	(limited)
VFe neV	209.06			(fixed)