Short Quiz 4: Solution

Aryaman Maithani

28th August, 2019

Question. Recall that a cubic polynomial is a function $q:\mathbb{R} \to \mathbb{R}$ given by $q(x) = ax^3 + bx^2 + cx + d$ for $a, b, c, d \in \mathbb{R}$ and $a \neq 0$.

State whether the following statement is true or false. Justify your answer.

Every cubic polynomial has an inflection point.

[5 marks]

[2 marks for correct alternative (T/F); 3 marks for correct justification]

[2]Answer. T

Justification:

We will justify our answer using the third derivative test.

First note that a cubic polynomial is thrice differentiable.

[1]

We compute the following derivatives: f''(x) = 6ax + b and f'''(x) = 6a.

As $a \neq 0$, the following quantity is well-defined, $x_0 := -\frac{b}{3a}$. Moreover, $f''(x_0) = 0$ and $f'''(x_0) = 6a \neq 0$.

This is a *sufficient* condition for an inflection point. Thus, we have shown that every cubic polynomial has an inflection point.

Points to be noted -

- 1. We do have an alternate solution which relies only on the function being twice differentiable and checking the sign of f'' around $-\frac{b}{3a}$.
- 2. Half a mark has been deducted for those who simply wrote that f''(x) > 0 for $x > -\frac{b}{3a}$ as this is true only when a > 0.
- 3. Marks have been appropriately deducted when a student has written a wrong statement, some common ones being -
 - (a) f''(c) = 0 is a sufficient condition for an inflection point. Counterexample - $f(x) = x^4$ and c = 0.
 - (b) f''(c) = 0 and $f'''(c) \neq 0$ is a necessary condition for an inflection point.

Counterexample - $f(x) = x^5$ and c = 0.

This is especially wrong as is not even necessary for a function to be continuous at a point of inflection.