CS 446: Machine Learning Homework

Due on Tuesday, April 17, 2018, 11:59 a.m. Central Time

- 1. [2 points] KL Divergence
 - (a) [1 point] What is the expression of the KL divergence $D_{KL}(q(x)||p(x))$ given two continuous distributions p(x) and q(x) defined on the domain of \mathbb{R}^1 ?

Your answer:

(b) [1 point] Show that the KL divergence is non-negative. You can use Jensen's inequality here without proving it.

Your answer:

2. [3 points] In the class, we derive the following equality:

$$\log p_{\theta}(x) = \int_{z} q_{\phi}(z|x) \log \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} dz + \int_{z} q_{\phi}(z|x) \log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)} dz$$

Instead of maximizing the log likelihood $\log p_{\theta}(x)$ w.r.t. θ , we find a lower bound for $\log p_{\theta}(x)$ and maximize the lower bound.

(a) [1 point] Use the above equation and your result in 1(b) to give a lower bound for $\log p_{\theta}(x)$.

Your answer:

(b) [1 point] What do people usually call the bound?

Your answer:

(c) [1 point] In what condition will the bound be tight?

Your answer:

3. [2 points] Given $z \in \mathbb{R}^1$, $p(z) \sim \mathcal{N}(0,1)$ and $q(z|x) \sim \mathcal{N}(\mu_z, \sigma_z^2)$, write $D_{KL}(q(z|x)||p(z))$ in terms of σ_z and μ_z .

Your answer:

4. [1 points] In VAEs, the encoder computes the mean μ_z and the variance σ_z^2 of $q_{\phi}(z|x)$ assuming $q_{\phi}(z|x)$ is Gaussian. Explain why we usually model σ_z^2 in log space, i.e., modeling $\log \sigma_z^2$ instead of σ_z^2 when implementing it using neural nets?

Your answer:

5. [1 points] Why do we need the reparameterization trick when training VAEs instead of directly sampling from the latent distribution $\mathcal{N}(\mu_z, \sigma_z^2)$?

Your answer: