FICHE DE COURS 10

Approche énergétique de la mécanique

Ce que je dois être capable de faire après avoir appris mon cours

ш	Dennir i energie cinetique d'un point materiel.
	Définir la puissance d'une force.
	Définir le travail élémentaire d'une force algébriquement reçu par un point matériel.
	Définir le travail total d'une force algébriquement reçu par un point matériel.
	Démontrer le théorème de la puissance cinétique.
	Démontrer le théorème de l'énergie cinétique.
	Définir une force conservative à partir du travail d'une force ou de l'énergie potentielle associée.
	Établir les expressions des énergies potentielles des forces conservatives usuelles : gravitationnelle, pesanteur, électrostatique (2 particules ou champ uniforme), rappel élastique.
	Définir l'énergie mécanique d'un point matériel.
	Démontrer les théorèmes de la puissance mécanique et de l'énergie mécanique.
	Utiliser le théorème de la puissance mécanique pour établir l'équation du mouvement.
	Établir la valeur de l'énergie mécanique d'un système grâce aux conditions initiales du système dans un problème conservatif.
	Analyser graphiquement la courbe d'énergie potentielle dans un problème conservatif pour étudier qualitativement le mouvement d'un système.
	Relier les positions d'équilibre aux extrema de l'énergie potentielle pour un problème conservatif.
	Associer le caractère stable d'une position d'équilibre à un minimum d'énergie potentielle pour un problème conservatif.
	Tracer plusieurs trajectoires du portrait de phase d'un pendule simple à partir de l'étude graphique de l'énergie potentielle et de plusieurs valeurs possibles d'énergie mécanique.
	Mettre en évidence les effets non-linéaires du puits de potentiel.
	$ Effectuer \ une \ approximation \ harmonique \ au \ voisinage \ d'une \ position \ d'équilibre \ stable \ pour \ un \ système \ quel-conque. $
	Étudier les mouvements de petites oscillations autour d'une position d'équilibre stable.

Les relations sur lesquelles je m'appuie pour développer mes calculs

☐ Énergie cinétique et énergie mécanique :

$$E_c(M/\mathcal{R}) = \frac{1}{2}m \|\overrightarrow{v}(M/\mathcal{R})\|^2 \qquad \text{et} \qquad E_m(M)_{/\mathcal{R}} = E_c(M)_{/\mathcal{R}} + E_p(M)_{/\mathcal{R}}$$

 $\hfill \square$ Théorèmes de la puis sance cinétique et de l'énergie cinétique :

$$\underbrace{\frac{\mathrm{d}E_c(M/\mathcal{R}_g)}{\mathrm{d}t} = \mathcal{P}(\overrightarrow{F_{\mathrm{rés}}})}_{\mathrm{r}} = \underbrace{P(\overrightarrow{F_{\mathrm{rés}}})}_{\mathrm{r}} \qquad \text{et} \qquad \underbrace{\frac{\Delta}{A \underset{\Gamma}{\rightarrow} B} E_c(M/\mathcal{R}_g) = E_c(t_B) - E_c(t_A) = \underset{\Gamma}{W}(\overrightarrow{F}_{\mathrm{rés}})}_{\mathrm{r}}$$

 $\hfill \Box$ Force dérivant d'une énergie potentielle pour un problèem à un degré de liberté :

$$\overrightarrow{F}(\alpha) = f(\alpha)\overrightarrow{u}_{\alpha}$$
 avec
$$f(\alpha) = -\frac{\mathrm{d}E_p}{\mathrm{d}\alpha}$$

☐ Energies potentielles usuelles (attention aux hypothèses dans chaque cas) :

$$E_{p_{\text{pes}}} = mgz + cste \qquad \text{(pesanteur)}$$

$$E_{p_{\text{grav}}} = -\mathcal{G}\frac{m_O m_M}{r} + cste \qquad \text{(gravitationnelle)}$$

$$E_{p_{\text{elec.1}}} = \frac{1}{4\pi\epsilon_0} \frac{q_O q_M}{r} + cste \qquad \text{(électrostatique, 2 particules)}$$

$$E_{p_{\text{elec.2}}} = -qE_0 x + cste \qquad \text{(électrostatique, champ uniforme)}$$

$$E_{p_{\text{elas}}} = \frac{1}{2}k \left(\ell - \ell_0\right)^2 + cste \qquad \text{(élastique)}$$

 $\hfill \square$ Théorèmes de la puissance et de l'énergie mécanique :

$$\frac{\mathrm{d}E_m(M/\mathcal{R}_g)}{\mathrm{d}t} = \mathcal{P}(\overrightarrow{F_{\mathrm{r\acute{e}s}}}^{nc}) \quad \text{et} \quad \left(\underbrace{\begin{array}{c} \Delta \\ A \to B \\ \Gamma \end{array}} E_m(M/\mathcal{R}_g) = \underset{\Gamma}{W}(\overrightarrow{F_{\mathrm{r\acute{e}s}}}^{nc}) \end{array} \right)$$

☐ Équilibre et stabilité pour un problème conservatif à 1 degré de liberté :

$$\left[\begin{array}{c|c} \frac{\mathrm{d}E_p}{\mathrm{d}\alpha} \bigg|_{\alpha=\alpha_{\mathrm{\acute{e}q}}} = 0 & (\acute{\mathrm{e}quilibre}) \end{array} \right] \text{ et } \left[\begin{array}{c|c} \frac{\mathrm{d}^2E_p}{\mathrm{d}\alpha^2} \bigg|_{\alpha=\alpha_{\mathrm{\acute{e}q}}} > 0 & (\mathrm{stabilit\acute{e}}) \end{array} \right]$$

☐ Approximation harmonique autour d'une position d'équilibre stable :

$$E_p(x) = E_p(x_{\text{éq}}) + (x - x_{\text{éq}}) \underbrace{\frac{dE_p}{dx}}_{x_{\text{éq}}} + \underbrace{\frac{1}{2}(x - x_{\text{éq}})^2 \underbrace{\frac{d^2E_p}{dx^2}}_{x_{\text{éq}}} + o(x - x_{\text{éq}})^2}_{>0}$$