WOJSKOWA AKADEMIA TECHNICZNA IM. JAROSŁAWA DĄBROWSKIEGO W WARSZAWIE

Zadanie laboratoryjne z przedmiotu "Niezawodność oprogramowania"

Autor: Jakub Kapusta

Grupa: 19B2S4

Prowadzący: dr hab. inż. Kazimierz Worwa

1. Opis problemu i sformułowanie zadania

Zaprojektować i zaimplementować (w dowolnym języku i środowisku) aplikację programową, która dla zadanej dokładności obliczeń i wskazanego zbioru danych, zawierającego 240 odstępów czasowych pomiędzy wykryciem kolejnych błędów, umożliwia wyznaczenie wartości estymatorów parametrów N, Φ następujących modeli:

Jelińskiego-Morandy,

☐ Schicka-Wolvertona.

Wykorzystując wyznaczone wartości parametrów N, Φ dla każdego z ww. modeli obliczyć wartość oczekiwaną czasu, jaki upłynie do momentu wykrycia kolejnego (241.) błędu.

a) Model Jelińskiego-Morandy

Wartości estymatorów parametrów N oraz Φ można obliczyć na podstawie równania:

$$\sum_{i=1}^{n} \frac{1}{N - (i-1)} = \frac{n \sum_{i=1}^{n} t_i}{N \sum_{i=1}^{n} t_i - \sum_{i=1}^{n} (i-1)t_i}$$
(*)

,gdzie:

- n to liczba wykrytych błędów w trakcie testowania programu (w przypadku tego zadania n = 240),
- t_i oznaczają długość przedziały czasu pomiędzy wykryciem kolejnego błędu.

Warto dodać, że wzór na Φ przedstawia się następująco:

$$\Phi = \frac{n}{N \sum_{i=1}^{n} t_i - \sum_{i=1}^{n} (i-1)t_i}$$

Wykorzystując ten wzór, równanie (*) można napisać w następującej postaci:

$$\sum_{i=1}^{n} \frac{1}{N - (i-1)} = \Phi \sum_{i=1}^{n} t_i \ (**)$$

Oszacowanie parametrów N oraz Φ można przedstawić w następujących krokach:

- 1) Zdefiniowanie dokładności obliczeń ε .
- 2) Zdefiniowanie początkowej wartość N. Zarówno dla modelu Jelińskiego-Morandy oraz Schicka-Wolvertona jako wartość początkową wybrałem N=241. Wybór ten uzasadniam tym, że jest to numer kolejnego błędu do wykrycia.
- 3) Obliczenie lewej oraz prawej strony równania (**).
- 4) Sprawdzenie czy wartość bezwzględna różnicy lewej oraz prawej strony równania (**) (błąd bezwzględny) jest większa od zdefiniowanej dokładności. Warunek można zapisać w postaci nierówności:

$$\left| \sum_{i=1}^{n} \frac{1}{N - (i-1)} - \Phi \sum_{i=1}^{n} t_i \right| > \varepsilon (***)$$

5) W przypadku, gdy nierówność (***) jest spełniona, należy zwiększyć wartość N o 1 oraz powtórzyć kroki 3) – 4). W przypadku, gdy nie jest spełniona, to otrzymano estymatory parametrów N oraz Φ .

Wykorzystując wyznaczone wartości parametrów N, Φ - wartość oczekiwaną czasu, jaki upłynie do momentu wykrycia kolejnego (241.) błędu można obliczyć na podstawie wzoru:

$$E[T_{241}] = \frac{1}{\Phi (N - 241)}$$

b) Model Schicka-Wolvertona

Wartości estymatora parametru Φ można obliczyć podstawie zależności:

$$\Phi = 2 \sum_{i=1}^{n} \frac{1}{[N - (i-1)]T} (*)$$

,zaś wartości estymatora parametru N można obliczyć podstawie zależności:

$$N = \frac{2n}{\Phi T} + \frac{\sum_{i=1}^{n} (i-1)t_i^2}{T} (**)$$

,gdzie

- n to liczba wykrytych błędów w trakcie testowania programu (w przypadku tego zadania n = 240),
- t_i oznaczają długość przedziały czasu pomiędzy wykryciem kolejnego błędu,
- $T = \sum_{i=1}^n t_i^2$.

W przeciwieństwie do modelu Jelińskiego-Morandy w modelu Schicka-Wolvertona nie ma równania, na podstawie którego można oszacować wartość estymatorów N oraz Φ przy zadanej dokładności ε . W tym celu należy z zależności (**) wyznaczyć Φ , a następnie utworzyć równanie z (*).

$$N = \frac{2n}{\Phi T} + \frac{\sum_{i=1}^{n} (i-1)t_i^2}{T} (**)$$

$$N = \frac{2n + \Phi \sum_{i=1}^{n} (i-1)t_i^2}{\Phi T}$$

$$\Phi TN = 2n + \Phi \sum_{i=1}^{n} (i-1)t_i^2$$

$$\Phi \left(TN - \sum_{i=1}^{n} (i-1)t_i^2\right) = 2n$$

$$\Phi = \frac{2n}{TN - \sum_{i=1}^{n} (i-1)t_i^2}$$

Postać utworzonego równania przedstawia się następująco:

$$2\sum_{i=1}^{n} \frac{1}{[N-(i-1)]T} = \frac{2n}{TN-\sum_{i=1}^{n} (i-1)t_{i}^{2}} (***)$$

Oszacowanie parametrów N oraz Φ można przedstawić w następujących krokach:

- 1) Zdefiniowanie dokładności obliczeń ε .
- 2) Zdefiniowanie początkowej wartość N = 241.
- 3) Obliczenie lewej oraz prawej strony równania (***).
- 4) Sprawdzenie czy wartość bezwzględna różnicy lewej oraz prawej strony równania (***) (błąd bezwzględny) jest większa od zdefiniowanej dokładności. Warunek można zapisać w postaci nierówności:

$$\left| 2 \sum_{i=1}^{n} \frac{1}{[N - (i-1)]T} - \frac{2n}{TN - \sum_{i=1}^{n} (i-1)t_{i}^{2}} \right| > \varepsilon \ (****)$$

5) W przypadku, gdy nierówność (****) jest spełniona, należy zwiększyć wartość N o 1 oraz powtórzyć kroki 3) – 4). W przypadku, gdy nie jest spełniona, to otrzymano estymatory parametrów N oraz Φ .

Wykorzystując wyznaczone wartości parametrów N, Φ - wartość oczekiwaną czasu, jaki upłynie do momentu wykrycia kolejnego (241.) błędu można obliczyć na podstawie wzoru:

$$E[T_{241}] = \sqrt{\frac{\pi}{2\Phi (N - 241)}}$$

2. Specyfikacja wymagań

a) Wymagania funkcjonalne

- 1) Możliwość zdefiniowania dokładności obliczeń ε .
- 2) Możliwość wyboru pliku z danymi dotyczącymi długości przedziałów czasu pomiędzy wykryciem kolejnych błędów.
- 3) Obliczenie estymatorów parametrów N, Φ oraz wartości oczekiwanej czasu, jaki upłynie do momentu wykrycia kolejnego (241.) błędu dla modelu Jelińskiego-Morandy.
- 4) Obliczenie estymatorów parametrów N, Φ oraz wartości oczekiwanej czasu, jaki upłynie do momentu wykrycia kolejnego (241.) błędu dla modelu Schicka-Wolvertona.
- 5) Wyświetlenie obliczeń dla modelu Jelińskiego-Morandy oraz Schicka-Wolvertona.

b) Wymagania pozafunkcjonalne

- 1) Aplikacja posiada graficzny interfejs użytkownika (GUI).
- Aplikacja informuje użytkownika o nieuzupełnionych danych koniecznych do zrealizowanie wymagań funkcjonalnych 3) oraz 4) (niewybranym pliku lub niezdefiniowanej dokładności).
- 3) Aplikacja informuje użytkownika o złym formacie podanej dokładności. Powinna to być liczba dodatnia.
- 4) Aplikacja informuje użytkownika o wyborze pliku, który jest pusty (nie zawiera danych).

- 5) Aplikacja umożliwia wybór pliku poprzez okno, za pomocą którego możemy wskazać do niego ścieżkę.
- 6) Aplikacja informuje użytkownika o wybranej ścieżce do pliku .csv.
- 7) Aplikacja umożliwia wybór pliku tylko z rozszerzeniem .csv. Wartości w plikach muszą posiadać separator ";" (średnik), ponieważ dzięki temu można je edytować w programie Excel.
- 8) Wartości w pliku .csv powinny być liczbami dodatnimi całkowitymi.
- 9) Aplikacja wyświetla domyślną wartość dokładności (0,001). W przypadku, gdy użytkownik jej nie zmieni, zostanie ona wzięta pod uwagę w trakcie obliczeń.

3. Specyfikacje projektowe

Rysunek 1 Okno aplikacji po jej uruchomieniu

Rysunek 2 Okno do wyboru pliku .csv.

Użytkownik w celu realizacji wymagania funkcjonalnego *5) Wyświetlenie obliczeń dla modelu Jelińskiego-Morandy oraz Schicka-Wolvertona* powinien wykonać następujące czynności:

- Zdefiniowanie dokładności obliczeń (ε) poprzez wpisanie jej w pole oznaczone etykietą "Dokładność obliczeń (epsilon)". W przypadku pominięcia tego kroku, w obliczeniach zostanie uwzględniona wartość domyślna 0.001 przedstawiona na Rysunek 1.
- 2) Wybranie pliku z danymi poprzez kliknięcie przycisku "Wybierz plik z danymi". Użytkownik po jego kliknięciu powinien wybrać ścieżkę do pliku za pomocą okna przedstawionego na **Rysunek** 2.
- 3) Zatwierdzenie parametrów za pomocą przycisku "Zatwierdź parametry" przedstawionego na **Rysunek** 1. Wyniki obliczeń zostaną po chwili wyświetlone na białym obszarze okna.

Warto również wspomnieć o przykładowej zawartości pliku .csv. Zawartość pliku testowy_zbior_danych.csv (widocznego na Rysunek 2) po otwarciu w programie Excel przedstawia Rysunek 3 - wartości w pliku należy czytać wierszami. Po ewentualnej modyfikacji pliku i jego zapisaniu separatorem w pliku będzie nadal ";".

	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0
1	772	822	903	1003	1067	960	1069	838	1055	906	1061	1241	1025	1001	962
2	1272	1322	1403	1503	1567	1460	1569	1338	1555	1406	1561	1741	1525	1501	1462
3	1472	1522	1603	1703	1767	1660	1769	1538	1755	1606	1761	1941	1725	1701	1662
4	1672	1722	1803	1903	1967	1860	1969	1738	1955	1806	1961	2141	1925	1901	1862
5	1772	1822	1903	2003	2067	1960	2069	1838	2055	1906	2061	2241	2025	2001	1962
6	1872	1922	2003	2103	2167	2060	2169	1938	2155	2006	2161	2341	2125	2101	2062
7	1972	2022	2103	2203	2267	2160	2269	2038	2255	2106	2261	2441	2225	2201	2162
8	2072	2122	2203	2303	2367	2260	2369	2138	2355	2206	2361	2541	2325	2301	2262
9	2172	2222	2303	2403	2467	2360	2469	2238	2455	2306	2461	2641	2425	2401	2362
10	2272	2322	2403	2503	2567	2460	2569	2338	2555	2406	2561	2741	2525	2501	2462
11	2372	2422	2503	2603	2667	2560	2669	2438	2655	2506	2661	2841	2625	2601	2562
12	2472	2522	2603	2703	2767	2660	2769	2538	2755	2606	2761	2941	2725	2701	2662
13	2572	2622	2703	2803	2867	2760	2869	2638	2855	2706	2861	3041	2825	2801	2762
14	2672	2722	2803	2903	2967	2860	2969	2738	2955	2806	2961	3141	2925	2901	2862
15	2772	2822	2903	3003	3067	2960	3069	2838	3055	2906	3061	3241	3025	3001	2962
16	2972	3022	3103	3203	3267	3160	3269	3038	3255	3106	3261	3441	3225	3201	3162

Rysunek 3 Zawartość pliku testowy_zbior_danych.csv po otwarciu w programie Excel

4. Opis implementacji (w tym opis wykorzystanych technik, technologii i narzędzi)

Językiem użytym do implementacji została Java wykorzystywana w ramach zintegrowanego środowiska programistycznego (IDE) *IntelliJ IDEA*. Aplikacja posiada graficzny interfejs użytkownika, w związku z czym konieczne było użycie biblioteki umożliwiającej tworzenie GUI – wybrałem *JavaFX*. Za jej pomocą zostały zdefiniowane wszystkie elementy przedstawione na **Rysunek** *1*. Biblioteka *Swing* została natomiast użyta do wyboru pliku *.csv* (**Rysunek** *2*).

W związku z wykorzystaniem biblioteki *JavaFX*, konieczne było zdefiniowanie okna głównego aplikacji w pliku *.fxml* (w tym projekcie jest to *layout.fxml*). Kontrolerem, który łączy ze sobą logikę aplikacji oraz jej wygląd jest plik *Controller.java*. Logikę aplikacji realizują pliki: *JelinskiMoranda.java* (odpowiedzialny za realizację obliczeń dla modelu Jelińskiego-Morandy), *SchickWolverton.java* (odpowiedzialny za realizację obliczeń dla modelu Schicka-Wolvertona) oraz *CsvReader.java* (odpowiedzialny za wybór pliku *.csv* oraz jego import).

Wśród narzędzi używanych w trakcie implementacji należy wymienić program Excel, który przydał się do przygotowania danych do importu. Przydatny również był system kontroli wersji *Git* oraz serwis *Github*, gdzie możliwe było przechowywanie repozytorium.

5. Opis testowania, w tym na zbiorze danych udostępnionym przez prowadzącego

Zbiór danych udostępniony przez prowadzącego przedstawia **Rysunek** 3.

Rysunek 4 Wynik testowania na zbiorze danych udostępnionym przez prowadzącego ($\epsilon = 0,001$)

Tabela 1 Wynik testowania na zbiorze danych udostępnionym przez prowadzącego (ε=0,001)

Metoda	Jelińskiego-Morandy	Shicka-Wolvertona					
Wybrana dokładność	0,001						
Liczba dotychczas	240						
wykrytych błędów							
Wyznaczony parametr N	411	242					
Wyznaczony parametr Φ	1.5986132136945414E-6	6.8813460648623974E-9					
Wyznaczona wartość	3679.6599019607843	15108.56575080473					
oczekiwana czasu,							
jaki upłynie do momentu							
wykrycia 241 błędu							

Na podstawie **Tabela** I można stwierdzić, że wyznaczanie estymatorów dla modelu Shicka-Wolvertona wymagało mniejszej liczby iteracji (242 < 411).

Wyznaczona wartość oczekiwana czasu, jaki upłynie do momentu wykrycia 241 błędu dla modelu Jelińskiego-Morandy jest mniejsza niż dla Shicka-Wolvertona i bardziej zbliżona do ostatniej z wartości przedstawionej na **Rysunek** *3* (3162).

Rysunek 5 Wynik testowania na zbiorze danych udostępnionym przez prowadzącego (ϵ =0,1)

Tabela 2 Wynik testowania na zbiorze danych udostępnionym przez prowadzącego (ε=0,1)

Metoda	Jelińskiego-Morandy	Shicka-Wolvertona					
Wybrana dokładność	0,1						
Liczba dotychczas	240						
wykrytych błędów							
Wyznaczony parametr N	310	242					
Wyznaczony parametr Φ	2.529319982626944E-6	6.8813460648623974E-9					
Wyznaczona wartość	5729.901207729469	15108.56575080473					
oczekiwana czasu,							
jaki upłynie do momentu							
wykrycia 241 błędu							

Na podstawie **Tabela 2** można stwierdzić, że zmniejszenie dokładności obliczeń spowodowało przyspieszenie obliczenia parametrów dla modelu Jelińskiego-Morandy. Pomimo tego, wymagało to większej liczby iteracji niż w przypadku modelu Shicka-Wolvertona (310 > 242).

Mniejsza dokładność spowodowała również mniej dokładne obliczenie wartości oczekiwanej czasu, jaki upłynie do momentu wykrycia 241 błędu. Wartość 5729.901207729469 znacznie odbiega od ostatniej z wartości przedstawionej na **Rysunek** *3* (3162), choć nie w tak dużym stopniu jak wartość z modelu Shicka-Wolvertona (15108.56575080473).

Rysunek 6 Wynik testowania po wybraniu pustego pliku. Na Rysunek 2 jest to plik pusty_zbior_danych.csv.

6. Opis instalacji aplikacji

W celu instalacji aplikacji należy:

- 1) Wypakować archiwum z projektem w dowolnym miejscu.
- 2) Kliknąć dwukrotnie lewym przyciskiem myszy na pliku *uruchomienie_aplikacji.bat* po chwili powinno pojawić się okno aplikacji. Ważne jest to, aby pliki *uruchomienie_aplikacji.bat* oraz *Zadanie_laboratoryjne_No.jar* znajdowały się w tym samym miejscu (folderze). Tylko te dwa pliki są konieczne do uruchomienia aplikacji (niewymagane są pliki z kodem źródłowym lub inne związane z projektem).

7. Załącznik. Kod źródłowy aplikacji programowej.

Wśród załączników wyróżnić można archiwum () zawierające:

- 1) Foldery: .idea, out, src oraz plik Zadanie_laboratoryjne_No.iml dotyczące projektu z IDE.
- 2) Pliki *testowy_zbior_danych.csv* oraz *pusty_zbior_danych.csv* używane do testów.
- 3) Pliki *uruchomienie_aplikacji.bat* oraz *Zadanie_laboratoryjne_No.jar* potrzebne do uruchomienia aplikacji.