Partition of Unity

Definition 1. Let X be a set. A collection \mathcal{T} of subsets of X is a topology of X if it satisfies the followings.

- I. $\emptyset, X \in \mathcal{T}$
- II. $U_{\alpha} \in \mathcal{T} \text{ for } \alpha \in A \implies \bigcup_{\alpha} U_{\alpha} \in \mathcal{T}$
- III. $U, V \in \mathcal{T} \implies U \cap V \in \mathcal{T}$

 (X, \mathcal{T}) is called a 'topological space' and subsets of X contained in \mathcal{T} are 'open' in X.

Definition 2. Let X be a topological space.

- (a) A set E is 'closed' in $X : \iff E^{C} \in \mathcal{T}$
- (b) The 'closure' \bar{E} of a set E is the smallest closed set in X which contains E.
- (c) A set $K \subseteq X$ is 'compact' : \Leftrightarrow every open covering of K has a finite sub-covering.
- (d) A 'neighborhood' of a point $p \in X$ is any open subset of X which contains p.
- (e) X is a 'Hausdorff space' $:\Leftrightarrow \forall p,q\in X,p\neq q$ ∃neighborhoods U of p, and V of q such that $U\cap V=\emptyset$
- (f) X is 'locally compact' : $\Leftrightarrow \forall p \in X \exists a \text{ neighborhood } U \text{ of } p \text{ such that } \overline{U}$ is compact.

Theorem 1. Let X be a topological space, K is compact, and F is closed in X.

If $F \subseteq K$, then F is compact.

Proof. Let $\{V_{\alpha}\}$ be an open covering of F. Then $F \subseteq \bigcup_{\alpha} V_{\alpha}$ implies $X = F^{\mathsf{C}} \cup (\bigcup_{\alpha} V_{\alpha})$. Since $\{V_{\alpha}\} \cup \{F^{\mathsf{C}}\}$ is an open covering of a compact set K, there exists a finite collection $\{V_1, \dots, V_n\}$ such that

$$K \subseteq F^{C} \cup (\bigcup_{i=1}^{n} V_{i})$$

Hence, we get $F \subseteq \bigcup_{i=1}^n V_i$ i.e there is a finite sub-covering $\{V_1, \dots, V_n\}$ of $\{V_\alpha\}$ for F

Therefore, F is compact.

Corollary 1. If $A \subseteq B$ and \bar{B} is compact, then \bar{A} is also compact.

Theorem 2. Let X is a Hausdorff space, $K \subseteq X$ where K is compact, and $p \in K^{\zeta}$.

Then there exist open sets U and V such that $p \in U$, $K \subseteq V$, and $U \cap V = \emptyset$.

Proof. For each $q \in K$, there are open sets U_q and V_q such that $p \in U_q$, $q \in V_q$ and $U_q \cap V_q = \emptyset$.

Since $K \subseteq \bigcup_{q \in K} V_q$, $\{V_q\}$ is an open covering of compact K. Hence there are points q_1, \cdots, q_n such that

$$K \subseteq \bigcup_{i=1}^{n} V_{q_i}$$

Set $U = \bigcap_{i=1}^n U_{q_i}$ and $V = \bigcup_{i=1}^n V_{q_i}$. Then

$$p \in U, K \subseteq V \text{ and } U \cap V = (\bigcap_{i=1}^n U_{q_i}) \cap (\bigcup_{j=1}^n V_{q_j}) = \bigcup_{j=1}^n [(\bigcap_{i=1}^n U_{q_i}) \cap V_{q_j}] = \bigcup_{j=1}^n \emptyset = \emptyset$$

Corollary 2.

- (a) Compact subsets of Hausdorff spaces are closed.
- (b) If F is closed and K is compact in a Hausdorff space, then $F \cap K$ is compact.

Proof. (a): For Theorem 2, let U_p and V_p be such sets for each $p \in K^{\mathbb{C}}$. Since $U_p \cap V_p = \emptyset \Rightarrow U_p \subseteq V_p^{\mathbb{C}}$ and $K \subseteq V_p \Rightarrow V_p^{\mathbb{C}} \subseteq K^{\mathbb{C}}$ for each p, $K^{\mathbb{C}} \subseteq \bigcup_{p \in K^{\mathbb{C}}} U_p \subseteq K^{\mathbb{C}}$. And $\bigcup_{p \in K^{\mathbb{C}}} U_p$ is open. Thus $K^{\mathbb{C}} = \bigcup_{p \in K^{\mathbb{C}}} U_p$ is open.

(b): It follows from Theorem 1 and (a). ■

Theorem 3. Let $\{K_{\alpha}\}$ is a collection of compact subsets of a Hausdorff space such that $\bigcap_{\alpha} K_{\alpha} = \emptyset$.

Then there exists a finite sub-collection $\{K_1, \dots, K_n\}$ such that $\bigcap_{i=1}^n K_i = \emptyset$.

Proof. Put $V_{\alpha} = K_{\alpha}^{\mathbb{C}}$. By Corollary 2 (a), since K_{α} is compact, V_{α} is open for each α . Since $\bigcap_{\alpha} K_{\alpha} = \emptyset$, foe each $p \in K_1$, $\exists \alpha_p$ such that $p \notin K_{\alpha_p}$. Thus, $\{V_{\alpha}\}$ is an open covering of K_1 . Since K_1 is compact, there is a finite sub-covering $\{V_{\alpha_1}, \cdots, V_{\alpha_k}\}$ of K_1 i.e. $K_1 \subseteq \bigcup_{i=1}^k V_{\alpha_k}$. This implies that

$$K_1 \cap K_{\alpha_1} \cap \cdots \cap K_{\alpha_k} = \emptyset$$

Theorem 4. Suppose U is open in a locally compact Hausdorff space X, $K \subseteq U$ and K is compact.

Then there is an open set V such that

$$\bar{V}$$
 is compact and $K \subseteq V \subseteq \bar{V} \subseteq U$

Proof. Since X is locally compact, $\exists G_q$: a neighborhood of q where $\overline{G_q}$ is compact for each $q \in K$. Since $K \subseteq \bigcup_{q \in K} G_q$ and K is compact, there are points $q_1, \dots, q_m \in K$ such that $\{G_{q_1}, \dots, G_{q_m}\}$ covers K.

Note that a finite union of sets with compact closure has a compact closure. Let $G = \bigcup_{j=1}^m G_{q_m}$. Then G is open and has a compact closure. If U = X, take V = G.

Suppose $U \neq X$. Theorem 2 shows that to each $p \in U^{\mathbb{C}}$ there corresponds an open set W_p such that $K \subseteq W_p$ and $p \notin \overline{W_p}$. Hence $\{U^{\mathbb{C}} \cap \overline{G} \cap \overline{W_p}\}_{D \in U^{\mathbb{C}}}$ is a collection of compact sets by Corollary 2 (b). Indeed,

$$\bigcap_{p\in U^{\complement}}U^{\complement}\cap \bar{G}\cap \overline{W_p}=U^{\complement}\cap \bar{G}\cap \bigcap_{p\in U^{\complement}}\overline{W_p}=\emptyset$$

By Theorem 3, there are points $p_1, \dots p_n \in U^{\mathbb{C}}$ such that

$$U^{\mathsf{C}} \cap \bar{G} \cap \bigcap_{i=1}^{n} \overline{W_{p_{i}}} = \emptyset$$

Let $V = G \cap \bigcap_{i=1}^n W_{p_i}$. Then V is open and contains K, and $\overline{V} = \overline{G \cap \bigcap_{i=1}^n W_{p_i}} \subseteq \overline{G} \cap \bigcap_{i=1}^n \overline{W_{p_i}} \subseteq U$. Since $V \subseteq G$ and \overline{G} is compact, \overline{V} is compact by Corollary 1. Therefore, V has the required properties.

Definition 3. Let X be a topological space and $f: X \to \mathbb{R}$ be a function.

- I. f is lower semi-continuous : $\Leftrightarrow \{x \in X | f(x) > \alpha\}$ is open for every $\alpha \in \mathbb{R}$
- II. f is upper semi-continuous $:\Leftrightarrow \{x\in X|f(x)<\alpha\}$ is open for every $\alpha\in\mathbb{R}$
- III. Let $f: X \to Y$ is a function between two topological spaces X and Y.

f is continuous : $\Leftrightarrow f^{-1}(V)$ is open for every open subset $V \subseteq Y$

IV. χ_E is said to be a 'characteristic function' of each subset E of X defined by

$$\chi_E(x) = \begin{cases} 1 & \text{if } x \in E \\ 0 & \text{if } x \notin E \end{cases}$$

Remark.

- (a) A real valued function is continuous if and only if it is both upper and lower semi-continuous.
- (b) χ_E is lower semi-continuous if and only if E is open.
- (c) χ_E is upper semi-continuous if and only if E is closed.
- (d) $f := sup \{f_{\alpha}\}$ is lower semi-continuous if every f_{α} is lower semi-continuous.
- (e) $g := inf \{g_{\alpha}\}$ is upper semi-continuous if every g_{α} is upper semi-continuous.

Definition 4. Let X be a topological space and $f: X \to \mathbb{R}$ be a function. The support of f is defined by

$$spt(f) := \overline{\{x \in X | f(x) \neq 0\}}$$

The collection of all continuous real valued function on X whose support is compact is denoted by $C_c(X)$.

Note: $C_c(X)$ is a vector space over $\mathbb R$ since sum of two continuous functions and a scalar multiplication of a continuous function are continuous, $spt(f+g) \subseteq spt(f) \cup spt(g)$ and $spt(\alpha f) = spt(f)$ if $\alpha \neq 0$ and $spt(\alpha f) = \emptyset$ if $\alpha = 0$.

Theorem 5. Let $f: X \to Y$ is a continuous function between two topological spaces X and Y.

If K is a compact subset of X, then f(K) is compact in Y.

Proof. Let $\{V_{\alpha}\}$ be an open covering of f(K). Then $\{f^{-1}(V_{\alpha})\}$ is an open covering of K since f is continuous. Hence $K \subseteq \bigcup_{i=1}^n f^{-1}(V_{\alpha_i})$ for some $\alpha_1, \cdots, \alpha_n$ and therefore

$$f(K) \subseteq f\left(\bigcup_{i=1}^n f^{-1}(V_{\alpha_i})\right) = \bigcup_{i=1}^n V_{\alpha_i}$$

Notation.

- i. $K < f : \Leftrightarrow K$ is compact subset of X, $f \in C_c(X)$, $0 \le f \le 1$, and f(x) = 1 for all $x \in K$.
- ii. $f < V : \Leftrightarrow V$ is open in X, $f \in C_c(X)$, $0 \le f \le 1$, and $spt(f) \subseteq V$.
- iii. $K < f < V : \Leftrightarrow K < f \text{ and } f < V$

Urysohn's Lemma. Suppose X is a locally compact Hausdorff space, V is open in X, $K \subseteq V$, and K is compact. Then there exists a function $f \in C_c(X)$ such that

$$K \prec f \prec V$$

Proof. Put $r_1=0, r_2=1$, and let r_3, r_4, r_5, \cdots be an enumeration of the rationals in (0,1). Applying Theorem 4 twice, we can choose open sets V_0 and V_1 such that they have compact closures and

$$K \subseteq V_1 \subseteq \overline{V_1} \subseteq V_0 \subseteq \overline{V_0} \subseteq V$$

Suppose $n \geq 2$ and V_{r_1}, \cdots, V_{r_n} have been chosen in such a manner that $r_i < r_j$ implies $\overline{V_{r_j}} \subseteq V_{r_i}$. Then one of the numbers r_1, \cdots, r_n , say r_i will be the largest one which is smaller than r_{n+1} , and another, say r_j , will be the smallest one larger than r_{n+1} . Using Theorem 4 again, we can find $V_{r_{n+1}}$ so that

$$\overline{V_{r_j}} \subseteq V_{r_{n+1}} \subseteq \overline{V_{r_{n+1}}} \subseteq V_{r_i}$$

By mathematical induction, we obtain a collection $\{V_r\}_{r\in\mathbb{Q}\cap[0,1]}$ of open sets with the following properties: $K\subseteq V_1, \overline{V_0}\subseteq V$, each $\overline{V_r}$ is compact, and

$$s > r$$
 implies $\overline{V}_s \subseteq V_r$

Define

$$f_r(x) = \begin{cases} r & \text{if } x \in V_r \\ 0 & \text{otherwise} \end{cases}, \qquad g_s(x) = \begin{cases} 1 & \text{if } x \in \overline{V}_s \\ s & \text{otherwise} \end{cases}$$

on X for each $r, s \in \mathbb{Q} \cap [0,1]$, and

$$f(x) = \sup_{r} \{f_r(x)\}, \quad g(x) = \inf_{s} \{g_s(x)\}$$

on X for each $x \in X$.

Since $f_r = r\chi_{V_r}$ and V_r is open for each r, f_r is lower semi-continuous. Since $\overline{V_s}$ is compact in a Hausdorff space, $\overline{V_s}$ is closed by Corollary 1 and so g_s is upper semi-continuous for each s. Thus f is lower semi-continuous and g is upper semi-continuous by Remark.

Note that $0 \le f \le 1$, that f(x) = 1 if $x \in K$, and that $spt(f) \subseteq \overline{V_0} \subseteq V$. It remains to show that f = g and then it implies f is continuous by Remark (a).

Suppose $f_r(x) > g_s(x)$ for some $x \in X$, r and s. Then $x \in V_r$, $x \notin V_s$, and r > s. It contradicts to construction of $\{V_r\}_{r \in \mathbb{Q} \cap [0,1]}$. Thus $f_r \leq g_s$ for all r and s, so $f \leq g$.

Suppose f(x) < g(x) for some x. Then there are rationals r and s such that f(x) < r < s < g(x). Since $sup_r\{f_r(x)\} = f(x) < r$, we have $x \notin V_r$. Since $s < g(x) = inf_s\{g_s(x)\}$, we have $x \in V_s$. It contradicts to construction of $\{V_r\}_{r \in \mathbb{Q} \cap [0,1]}$. Hence f = g, so f is continuous.

Therefore, $f \in C_c(X)$ with $spt(f) \subseteq \overline{V_0} \subseteq V$ (: Since $\overline{V_0}$ is compact and spt(f) is a closure of some set,

by corollary 1), $0 \le f \le 1$, f(x) = 1 for all $x \in K$, we conclude that K < f < V.

Partition of Unity for Locally Compact Hausdorff Space.

Suppose V_1, \cdots, V_n are open subsets of a locally compact Hausdorff space X, K is compact, and

$$K \subseteq \bigcup_{i=1}^{n} V_i$$

Then there exist functions $h_i \prec V_i$ $(i = 1, \dots, n)$ such that

$$\sum_{i=1}^{n} h_i(x) = 1 \text{ for all } x \in K$$

The collection $\{h_1, \dots, h_n\}$ is called a 'partition of unity' on K, subordinate to the cover $\{V_1, \dots, V_n\}$.

Proof. By Theorem 4, for each $x \in K$, taking $\{x\} (\subseteq V_i)$ as the compact set, \exists a neighborhood of x, W_x with compact closure $\overline{W_x} \subseteq V_i$ for some i (depending on x). Since $K \subseteq \bigcup_{x \in K} W_x$, there are points x_1, \dots, x_m such that $K \subseteq \bigcup_{j=1}^m W_{x_j}$. If $1 \le i \le n$, let

$$H_i := \bigcup_{\overline{W_{x_j}} \subseteq V_i} \overline{W_{x_j}}$$

be the finite union of those $\overline{W_{x_j}}$ which lie in V_i . Then H_i is compact and $K \subseteq H_i \subseteq V_i$ for each $i=1,\cdots,n$. By Urysohn's Lemma, there are functions g_i such that $H_i \prec g_i \prec V_i$. Define

$$h_1 = g_1$$

 $h_2 = (1 - g_1)g_2$

$$h_n = (1 - g_1)(1 - g_2) \cdots (1 - g_{n-1})g_n$$

Suppose $h_i(x) \neq 0$ for some $x \in X$. Then $g_i(x) \neq 0$. This means that $spt(h_i) \subseteq spt(g_i) \subseteq V_i$. Since $0 \leq g_i \leq 1$, $0 \leq h_i \leq 1$. And $g_i \in C_c(X)$ implies $h_i \in C_c(X)$ ($\because f(x)g(x) = 0 \Leftrightarrow f(x) = 0$ or g(x) = 0 and union of closure is closure of union. Thus $spt(fg) = spt(f) \cup spt(g)$). Thus $h_i \prec V_i$ for each $i = 1, \cdots, n$. By mathematical induction, we easily get

$$h_1 + h_2 + \dots + h_n = 1 - (1 - g_1)(1 - g_2) \dots (1 - g_n)$$

Since $K \subseteq \bigcup_{i=1}^n H_i$, $x \in K$ implies that at least one H_i contains x. Since $H_i < g_i$, at least one $g_i(x) = 1$ at each point $x \in K$. Therefore, we conclude that

$$\sum_{i=1}^{n} h_i(x) = 1 \text{ for all } x \in K$$

Reference. Rudin, Real and Complex Analysis, 1987