Problema 1:

Sea un procesador con el siguiente conjunto de instrucciones:

	Instrucción	Formato de la instrucción	
Mnemónico	Significado	(XXXX-No usado)	
ADD1 rs, rf	$rs \leftarrow ADD(rs,rf)$	00 <i>rs</i> <i>rf</i> XXXX 00	
ADD2 rs, #cte	$rs \leftarrow ADD(rs,cte)$	00 rs cte 01	
ADD3 rs, (rf)	$rs \leftarrow ADD(rs,M[rf])$	00 rs rf XXXX 10	
ADD4 rs, dir	$rs \leftarrow ADD(rs,M[PC+1+dir])$	00 rs dir 11	
JZ desp	$Si Z==1 PC \leftarrow ADD(PC+1, desp)$	10 <i>desp</i>	

- Las características del procesador son las siguientes:
 - Tamaño de palabra de 16 bits; Banco de registros de 16 registros; cte, desp y dir están representados en C2; los 2 últimos bits de las instrucciones ADD indican el modo de direccionamiento del segundo operando; PC se incrementa en 1
- Dibuja el datapath del procesador.
- Diseña la unidad de control suponiendo un procesador monociclo
- Añade al diseño la siguiente instrucción:

LAC
$$rd$$
 $rd \leftarrow M[AC]$ 11||xxxxxxx||rd (AC es un registro de propósito especifico)

Problema 2:

 Diseñar la unidad de datos y de control (versión monociclo) de una máquina que ejecuta las siguientes instrucciones:

Mnemónico	Descripción
LOAD X	Transfiere el contenido de la posición X al acumulador:
	$AC \leftarrow MEM(X)$
STORE X	Transfiere el contenido del acumulador a la posición X:
	$MEM(X) \leftarrow AC$
ADD X	Suma al acumulador el contenido de la posición X:
	$AC \leftarrow AC + MEM(X)$
AND X	AND lógica del acumulador con el contenido de la posición
	$X: AC \leftarrow AC \land MEM(X)$
JUMP X	Salto incondicional a la dirección X: $PC \leftarrow X$
JUMPZ X	Salta a la dirección X si el resultado fue cero:
	$siZ \Rightarrow PC \leftarrow X$
COMP	Complemento lógico del acumulador: $AC \leftarrow \overline{AC}$
RSHIFT	Desplazamiento a la derecha del acumulador:
	$AC \leftarrow 0, AC[15:1]$

- El tamaño de palabra del procesador es de 16 bits y las memorias son de tamaño 8K x16
- La ALU realiza las siguientes operaciones: suma y AND lógica de dos operandos, desplazamiento a la derecha y complemento lógico del operando que entra por el puerto B.

Problema 3:

Modifica la unidad de datos y de control del procesador MIPS para añadir la siguiente instrucción:

Instrucción LUI:LUI rd, constante : rd ← constante,0..0

	101111	00000	rd	constante
31	26	25 21		5 15 0

Problema 3: Solución

Modifica la unidad de datos y de control del procesador MIPS para añadir la siguiente instrucción: LUI rd, constante : rd ← constante,0..0

	101111	00000	rd	constante
31	26	25 21	20 16	15 0

Problema 4:

Supongamos que tenemos el procesador del problema 1. Dados los contenidos de memoria principal que se muestran en la tabla (en hexadecimal) y suponiendo que PC contiene 0045_{16} y que el contenido de todos los registros es 0, mostrar como evolucionan los contenidos de los elementos de memoria (traza) en la tabla vacía

Instrucción		Formato de la instrucción (XXXX-No usado)	
Mnemónico Significado			
ADD1 rs, rf	$rs \leftarrow ADD(rs,rf)$	00 rs rf XXXX 00	
ADD2 rs, #cte	$rs \leftarrow ADD(rs,cte)$	00 rs cte 01	
ADD3 rs, (rf)	$rs \leftarrow ADD(rs,M[rf])$	00 rs rf XXXX 10	
ADD4 rs, dir	$rs \leftarrow ADD(rs,M[PC+1+dir])$	00 rs dir 11	
JZ desp	$Si Z==1 PC \leftarrow ADD(PC+1,desp)$	10 desp	

dir.	contenido
29 ₁₆	0033 ₁₆
$2A_{16}$	0042 ₁₆
$2B_{16}$	0008 ₁₆
41 ₁₆	0023 ₁₆
42_{16}	$000A_{16}$
43_{16}	$0C01_{16}$
44_{16}	0001_{16}
45_{16}	1793_{16}

dir.	contenido
46 ₁₆	0542 ₁₆
47_{16}	$0BD5_{16}$
48_{16}	0480_{16}
49_{16}	0405_{16}
$4A_{16}$	8002 ₁₆
$4B_{16}$	0801 ₁₆
$4C_{16}$	$0C01_{16}$
$4D_{16}$	1001_{16}
$4E_{16}$	1401_{16}

Dirección comienzo	mnemónico ensamblador	Operando/s fuente	operando destino	valor a escribir

Problema 4:Solución

Instrucción		Formato de la instrucción	
Mnemónico Significado		(XXXX-No usado)	
ADD1 rs, rf	$rs \leftarrow ADD(rs,rf)$	00 rs rf XXXX 00	
ADD2 rs, #cte	$rs \leftarrow ADD(rs,cte)$	00 rs cte 01	
ADD3 rs, (rf)	$rs \leftarrow ADD(rs, M[rf])$	00 <i>rs</i> <i>rf</i> XXXX 10	
ADD4 rs, dir	$rs \leftarrow ADD(rs, M[PC+1+dir])$	00 rs dir 11	
JZ desp	$Si Z==1 PC \leftarrow ADD(PC+1,desp)$	10 desp	

dir.	contenido
29 ₁₆	0033 ₁₆
$2A_{16}$	0042_{16}
$2B_{16}$	0008_{16}
41_{16}	0023_{16}
42_{16}	$000A_{16}$
43_{16}	$0C01_{16}$
44_{16}	0001_{16}
45_{16}	1793_{16}

contenido
0542_{16}
$0BD5_{16}$
0480_{16}
0405_{16}
8002 ₁₆
0801_{16}
$0C01_{16}$
1001_{16}
1401_{16}

Dirección comienzo	mnemónico ensamblador	Operando/s fuente	operando destino	valor a escribir
0045 _H	ADD4 R5, -28 ₁₀	R5, M[2A _H]	R5	0042 _H
0046 _H	ADD3 R1, (R5)	R1, M[42 _H]	R1	000A _H
0047 _H	ADD2 R2, # -11 ₁₀	R2, -11 ₁₀	R2	FFF5 _H
0048 _H	ADD1 R1, R2	R1, R2	R1	FFFF _H
0049 _H	ADD2 R1, # 1	R1, 1	R1	0000 _H
004A _H	JZ 2	PC, Z	PC	004D _H
004D _H	ADD2 R4, # 0	R4, 0	R4	0000 _H