

دانشگاه صنعتی اصفهان دانشکده مهندسی برق و کامپیوتر

عنوان: تكليف تئوري سوم درس كامپايلر

نام و نام خانوادگی: علیرضا ابره فروش شماره دانشجویی: ۹۸۱۶۶۰۳ نیم سال تحصیلی: بهار ۱۴۰۱/۱۴۰۲ مدرّس: دکتر حسین فلسفین

١

Ĩ 1.1

نادرست-چون $LR(1) \subset LR(2)$ است و نه برعکس. به مثال مقابل توجه کنید.

 $E \longrightarrow X_1 Y a | X_2 Y b$

 $X_1 \longrightarrow x$

 $X_2 \longrightarrow x$

 $Y \longrightarrow y$

این گرامر LR(2) است ولی LR(1) نیست.

۲.۱ ب

درست-به ازای هر گرامر LR(k) به طوری که $k \geq 2$ یک گرامر LR(1) وجود دارد که زبان یکسانی را توصیف می کند. توجه شود که پارسرهای این دو زبان لزوما یکسان نمی باشند.

۳.۱ ج

درست الگوریتم CYK هر رشته ی به طول nای را در هر گرامر Context-freeای در زمان $O(n^3)$ تجزیه می کند.

5 4.1

نادرست-به مثال مقابل توجه كنيد.

 $S \longrightarrow L = R$

 $S \longrightarrow R$

 $L \longrightarrow *R$

 $L \longrightarrow id$

 $R \longrightarrow L$

این گرامر غیرمبهم است ولی SLR(1) نیست.

۲

1.7

۱.۱.۲ قدرت

 $SLR(1) \le LALR(1) \le LR(1) \le LR(k)$

9.1199.4

۲.۱.۲ پیادهسازی

SLR(1) = LALR(1) < LR(1) < LR(k)

میزان پیچیدگی حافظه و پیادهسازی به طور نمایی با زیاد شدن k زیاد میشود.

٣

تعداد استیتها در LR(1) و SLR(1) برابر است و بسیار کمتر از LR(1) است.

 $n_1 > n_2 = n_3$

۴

حداکثر تعداد preduce هایی که می تواند توسط یک تجزیه کننده ی پایین به بالا برای یک گرامر بدون قانونهای اپسیلون یا واحد برای تجزیه ی تعداد کننده ی پایین به بالا برای یک گرامر بدون قانونهای اپسیلون یا واحد برای تجزیه ی رشته ی به طول n وجود داشته باشد برابر است با 2n-1. در حالت حداکثر هر تعداد غیر ترمینالهای RHSهای preduction است) توجه شود که تعداد غیر ترمینالهای RHSهای preduction ها به صورت $X \to YZ \to X$ (که X توجه به شرط مسئله X هم نباشد. پس در نهایت در حالت حداکثری به ازای هر سمبل رشته X حواهیم داشت (که به صورت $X \to X$ است) و $X \to X$ است) و reduction X خواهیم داشت. پس در کل تعداد preduction حداکثر برابر با X X است. به مثال زیر توجه کنید.

 $S \longrightarrow AB$

 $A \longrightarrow XY$

 $B \longrightarrow ZW$

 $X \longrightarrow x$

 $Y \longrightarrow y$

 $Z \longrightarrow z$

 $W \longrightarrow w$

برای رشتهی xyzw داریم:

 $S \longrightarrow AB \longrightarrow XYB \longrightarrow XYZW \longrightarrow xYZW \longrightarrow xyZW \longrightarrow xyzW \longrightarrow xyzW$

که معادل ۷ تا reduction است.

۵

۱.۵

۱.۱.۵ نمودار انتقال

شکل ۱

۲.۱.۵ جدول تجزیه

LR table												
State	ACTION						GOTO					
State	a	d	b	f	q	\$	S'	S	A	В	C	Q
0	s3	r5	s5	r5	r5	r5		1	2	4		
1						acc						
2		r7		s7		r7					6	
3		r5	s5	r5	r5	r5				8		
4				r9	s10	r9						9
5		r5	s5	r5	r5	r5				11		
6						r1						
7		r6				r6						
8		r7		s7		r7					12	
9				r3		r3						
10				r8		r8						
11		r4		r4	r4	r4						
12		s13										
13				r2		r2						

۲.۵

Trace								
Step	Stack	Input	Action					
1	0	abbdf\$	s3					
2	0 a 3	bbdf\$	s5					
3	0 a 3 b 5	bdf\$	s5					
4	0 a 3 b 5 b 5	df\$	r5					
5	0 a 3 b 5 b 5 B	df\$	11					
6	0 a 3 b 5 b 5 B 11	df\$	r4					
7	0 a 3 b 5 B	df\$	11					
8	0 a 3 b 5 B 11	df\$	r4					
9	0 a 3 B	df\$	8					
10	0 a 3 B 8	df\$	r7					
11	0 a 3 B 8 C	df\$	12					
12	0 a 3 B 8 C 12	df\$	s13					
13	0 a 3 B 8 C 12 d 13	f\$	r2					
14	0 A	f\$	2					
15	0 A 2	f\$	s7					
16	0 A 2 f 7	\$	r6					
17	0 A 2 C	\$	6					
18	0 A 2 C 6	\$	r1					
19	0 S	\$	1					
20	0 S 1	\$	acc					

٩٨١۶۶٠٣

۶

Ĩ 1.8

شکل ۲

۲.۶ ب

LR table												
64.4.	ACTION							GOTO				
State	a	d	b	e	c	\$	S'	S	A	В		
0	s2		s3					1				
1						acc						
2					s6				4	5		
3					s9				8	7		
4		s10										
5				s11								
6		r5		r6								
7		s12										
8				s13								
9		r6		r5								
10						r1						
11						r3						
12						r2						
13						r4						

۳.۶ ج

استیتهای ۶ و ۹ باید ادغام شوند.

5 4.8

خیر - چون برای سمبلهای d و e کانفلیکتِ r5 reduce-reduce وجود دارد.

٧

Ĩ 1.Y

$$S' \longrightarrow S\$$$

$$S \longrightarrow aS|AS$$

$$A \longrightarrow a$$

شکل ۳

کانفلیکت در استیت ۲.

۲.۷ ب

 $S' \longrightarrow S$ \$

 $S \longrightarrow aR|AT$

 $R \longrightarrow a$

 $T \longrightarrow a$

شکل ۴

کانفلیکت در استیت ۵.

٨

به ازای رولهای به شکلِ

 $S \longrightarrow A_i b_i$

که منتج به کاهش میشوند هر کدام دو (نظیر حالات ممکن قرار گرفتن نقطه) آیتم LR(0) داریم. پس تا اینجا حداقل 2n آیتم داریم.

به ازای رولهای به شکلِ

 $A_i \longrightarrow a_i$

که منتج به کاهش میشوند هر کدام دو (نظیر حالات ممکن قرار گرفتن نقطه) آیتم LR(0) داریم. پس $2rac{n(n-1)}{2}$ آیتم دیگر هم داریم.

به ازای رولهای به شکل

 $A_i \longrightarrow a_j A_i$

که منتج به کاهش میشوند 2^n تا آیتم داریم. پس در مجموع حداقل تعداد آیتمها برابر است با:

 $2^n + n^2 + n$

٩

آ ۱.۹

جدول تجزیهی LALR(1) به صورت زیر است و هیچ کانفلیکتی در آن وجود ندارد.

LR table									
C4 - 4 -		A	GOTO						
State	a	b	c	d	\$	S'	S	A	
0	s5	s3		s4			1	2	
1					acc				
2	s6								
3	s5			s8				7	
4	r6		s9						
5	r5		r5						
6					rl				
7			s10						
8	s11		r6						
9					r3				
10					r2				
11					r4				

با مشاهده ی بخشی از نمودار حالت SLR(1) و SLR(1) و SLR(1) است، میبینیم که یک کانفلیکتِ SLR(1) در استیت SLR(1) و جود دارد که نشان میدهد این گرامر SLR(1) نیست.

شکل ۵

۲.۹ ب

شکل ۶

همانطور که در ماشین حالت بالا مشخص است، هیچ استیتی دارای کانفلیکت نیست. اما برای تجزیه ی LALR(1) باید استیتهای Δ و Δ ادغام شوند که باعث ایجاد کانفلیکت reduce-reduce می شود.

1.

1.1.

ابتدا سمبلهای مختلف گرامر را به شکل زیر دستهبندی می کنیم.

Terminal	$\{(,,,),a,b,\$\}$
Non-terminal	$\{S', S, A\}$

که S' استیت شروع است.

با توجه به اینکه GOTO(0,S) برابر ۱ است پس داریم:

 $S' \longrightarrow S$

با توجه به اینکه GOTO(0,A) برابر ۳ است، می دانیم که یکی از production با A آغاز می شود و از آن جایی که تنها COTO(0,A) استیت ۳ دارای طول ۱ است داریم:

 $S \longrightarrow A$

با توجه به استیتهای ۰، ۶، ۸، ۹، ۸، و مقادیر shift ،ACTION ،GOTO و reduceشان داریم:

 $S \longrightarrow (A, S)$

با توجه به استیتهای ۰، ۴، و ۷ داریم:

 $A \longrightarrow aS$

و با توجه به استیتهای ۰۰ و ۵ داریم:

 $A \longrightarrow b$

پس در نهایت گرامری که جداول سوال از روی آن تولید شده است، به صورت زیر است:

 $S' \longrightarrow S$

 $S \longrightarrow (A, S)$

 $S \longrightarrow A$

 $A \longrightarrow aS$

 $A \longrightarrow b$

۲.۱۰ ب

مراحل تجزیه به صورت زیر میباشد:

Trace								
Step	Stack	Input	Action					
1	0	(aab,b)\$	s2					
2	0(2	a a b , b) \$	s4					
3	0 (2 a 4	ab,b)\$	s4					
4	0 (2 a 4 a 4	b,b)\$	s5					
5	0 (2 a 4 a 4 b 5	,b)\$	r4					
6	0 (2 a 4 a 4 A	, b)\$	3					
7	0 (2 a 4 a 4 A 3	,b)\$	r2					
8	0 (2 a 4 a 4 S	, b)\$	7					
9	0 (2 a 4 a 4 S 7	, b)\$	r3					
10	0 (2 a 4 A	, b)\$	3					
11	0 (2 a 4 A 3	, b)\$	r2					
12	0 (2 a 4 S	, b)\$	7					
13	0 (2 a 4 S 7	, b)\$	r3					
14	0 (2 A	, b)\$	6					
15	0 (2 A 6	, b)\$	s8					
16	0(2A6,8	b)\$	s5					
17	0(2A6,8b5)\$	r4					
18	0(2A6,8A)\$	3					
19	0(2A6,8A3)\$	r2					
20	0(2A6,8S)\$	9					
21	0(2A6,8S9)\$	s10					
22	0(2A6,8S9)10	\$	rl					
23	0 S	\$	1					
24	0 S 1	\$	acc					