

DÉROULÉ DE LA PRÉSENTATION

Mission 0

Description des données analyses univariées et bivariées. 01.

02.

Mission 1

Analyse en composantes principales

Mission 2

algorithme de classification de type k-nn 03.

04.

Mission 3

Modélisez les données à l'aide d'une régression logistique

O1. Mission 0

Nous allons rechercher la différence entre les vrais et faux billets en utilisant l'analyse descriptive

Diagramme en paire

- La diagonale du faux billet est plus petite que la diagonale du vrai billet.
- La hauteur droite et la hauteur gauche sont corrélées (car le billet est rectangulaire) coefficient de corrélation est de 0.73 et la p-value est < 5%. Ces deux variables n'ont aucune influence sur la nature du billet
- On peut distinguer les vrais billets des faux en mesurant leurs longueurs
- La diagonale et la nature du billet ne sont pas corrélées (variable qualitative et variable quantitative)

 La diagonale est indépendante de la nature du billet car eta² <5%

Eboulis de valeurs propres

Fl représente 47% des données F2 en représente 22%. On peut négliger les autres composantes principales

Cercle des corrélations

On peut interpréter Fl comme étant les caractéristiques du billet.

F2 comme étant la diagonale du billet

Projection des individus

Chaque point représente un billet.

La projection des individus nous montre deux clusters , billets vrai (turquoise) et billets faux (orange)

Charger le modèle depuis sklearn

from sklearn import neighbors

Initialisation du modèle

neighbors.KNeighborsClassifier

Entraîner les données X et y

X = X_projected
y= data['is genuine'].values

Taille du test

20% du jeu de données

Détermination du meilleur k

À l'aide d'un graphique

Entraînement du modèle

classifier knn.fit(X train, y train)

Évaluation de la performance

classifier knn.score(X test, y test)

Prédiction du modèle

classifier_knn.predict(X_test)

Évaluation de la performance : Détermination du meilleur k

Le nombre de voisin optimal est de 8

Pour ce k = 8 et 20% des données test on obtient un score égale à 1

Prédiction du model : Matrice de confusion

FalseTruePrédictionFalse700Is_genuineTrue298

70 billets faux parfaitement prédits 98 billets vrais correctement prédits

Affichage de la région limite

On retrouve bien les deux billets vrais dans la région des faux : Faire une double vérification pour les billets détectés faux par ce modèle

Conclusions

diagonal	height left	height right	margin low	margin up	length	id	proba	prédiction
171.76	104.01	103.54	5.21	3.30	111.42	Al	0.0	False
171.87	104.17	104.13	6.00	3.31	112.09	A 2	0.0	False
172.00	104.58	104.29	4.99	3.39	111.57	АЗ	0.0	False
172.49	104.55	104.34	4,44	3.03	113.20	A 4	1.0	True
171.65	103.63	103.56	3.77	3.16	113.33	A 5	1.0	True

Affichage de la prédiction

Modèle de regréssion logistique

Charger le modèle depuis sklearn

from sklearn.linear_model import LogisticRegression

Initialisation du modèle

LogisticRegression

Entraîner les données X et y

X = X_projected y= data['is genuine'].values

Taille du test

40% du jeu de données

Entraînement du modèle

classifier_logistic.fit(X_train, y_train)

Évaluation de la performance

classifier logistic.score(X test, y test)

Prédiction du model

classifier_logistic.predict(X_test)

Prédiction 15 genuine	False	True
False	68	2
True	2	98

68 billets faux parfaitement prédits 98 billets vrais correctement prédits

Affichage de la région limite

On retrouve bien les deux billets vrais dans la région des faux et à la limite de la région on trouve les deux faux billets. Donc il est nécessaire de calculer la probabilité.

Conclusions

diagonal	height left	height right	margin low	margin up	length	id	proba	prédiction
171.76	104.01	103.54	5.21	3.30	111.42	Al	0.12	False
171.87	104.17	104.13	6.00	3.31	112.09	A 2	0.015	False
172.00	104.58	104.29	4.99	3.39	111.57	АЗ	0.013	False
172.49	104.55	104.34	4.44	3.03	113.20	A 4	0.91	True
171.65	103.63	103.56	3.77	3.16	113.33	A 5	0.99	True

Affichage de la prédiction

Conclusions

Modèle de k-nn

c'est un modèle qui demande beaucoup de ressources pour le mettre en place donc très couteux.

Modèle de régression logistique

C'est un modèle facile à mettre en place qui permet de prédire la probabilité d'un évènement

Bibliographie

https://www.youtube.com/watch?v=DvupLDOLXb8&t=2208s

https://openclassrooms.com/fr/courses/4525306-initiez-vous-a-la-statistique-

<u>inferentielle</u>

https://openclassrooms.com/fr/courses/4525326-realisez-des-modelisations-de-donnees-performantes

https://scikitlearn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier

https://openclassrooms.com/fr/courses/4011851-initiez-vous-au-machine-

learning/4022441-entrainez-votre-premier-k-nn

MERCI POUR VOTRE ATTENTION

DES QUESTIONS?

My france Levasseur

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon and infographics & images by Freepik

Please keep this slide for attribution