

## Power-Aware Training for Energy-Efficient Printed Neuromorphic Circuits

Haibin Zhao, Priyanjana Pal, Michael Hefenbrock, Michael Beigl, Mehdi B. Tahoori

Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany



#### **Outline**

- Printed Electronics
- Printed Neuromorphic Circuit
- Power-Aware Training
- Experiment
- Conclusions



### The Cliché vs Computational Deserts



high performance resource-intensive general purpose



resource-limited
tailored functionality
disposable,
flexible,
degradable...

#### **Cost Wall**



#### **Electronics**



Java Card: €0.20



Microcontroller: €0.35



RFID Tag: €0.15



#### **Applications**

Milk Carton: €0.01



Adhesive Bandage: €0.02



Packaging Label: €0.02





### **Additive Printed Technologies**

- Maskless, fully additive processes
- Flexible, stretchable, and porous substrates
- Non-toxic, bio-compatible inks and substrates





### **Printed Electronics Technology**







### **Electrolyte-Gated Transistor (EGT)**

- Thin-film transistor
  - Signal routing: indium tin oxide (ITO)
  - Semiconductor: indium oxide (In<sub>2</sub>O<sub>3</sub>)
  - Gate insulator: composite solid polymer electrolyte
  - Top gate: PEDOT:PSS
- Voltage levels:  $\leq 1.5 \text{ V}$ ,  $\approx 100 \text{ }\mu\text{A} 1 \text{ }\text{mA}$
- Frequency range: 100 Hz 1 kHz



(a) top view of nEGT





### **Printed Neuromorphic Circuit**



(a) Exemplary printed neuron

$$V_{\rm z}^{1} = \frac{g_{11}}{G_{1}}V_{\rm in}^{1} + \frac{g_{21}}{G_{1}}V_{\rm in}^{2} + \frac{g_{31}}{G_{1}}V_{\rm in}^{3} + \frac{g_{\rm b1}}{G_{1}}V_{\rm b}$$

where  $g_{ij} = \frac{1}{R_{ij}^C}$ ,  $G_i$  is the sum of  $g_{ij}$ ,  $V_b \equiv 1V$ .



(b) Printed tanh-like circuit

$$V_{\text{out}} = \text{ptanh}(V_{\text{in}})$$
  
=  $\eta_1^{\text{A}} + \eta_2^{\text{A}} \cdot \text{tanh}\left(\left(V_{\text{in}} - \eta_3^{\text{A}}\right) \cdot \eta_4^{\text{A}}\right)$ 

where  $\eta_i^{\text{A}}$  is auxiliary parameter determined by physical quantities  $\boldsymbol{q}^{\text{A}} = \begin{bmatrix} R_1^{\text{A}}, R_2^{\text{A}}, T_1^{\text{A}}, T_2^{\text{A}} \end{bmatrix}$ 



(c) Negative weight circuit

$$\begin{aligned} V_{\mathrm{n}} &= \mathrm{neg}(V_{\mathrm{p}}) \\ &= -\left(\eta_{1}^{\mathrm{N}} + \eta_{2}^{\mathrm{N}} \cdot \mathrm{tanh}\left(\left(V_{\mathrm{p}} - \eta_{3}^{\mathrm{N}}\right) \cdot \eta_{4}^{\mathrm{N}}\right)\right) \end{aligned}$$

where  $\eta_i^{\rm N}$  is auxiliary parameter determined by physical quantities  $\boldsymbol{q}^{\rm N} = \left[R_1^{\rm N}, \dots, T^{\rm N}\right]$ 



### **ML-based Circuit Optimization**







(a) Exemplary printed neuron

(b) Printed tanh-like circuit

(c) Negative weight circuit

$$\begin{split} V_{\mathrm{out}} &= \mathrm{ptanh}_{q^{\mathrm{A}}} \left( V_{\mathrm{in}} \cdot \left( W \odot \mathbb{I}_{\{\mathbf{\Theta} \geq \mathbf{0}\}} \right) + \mathrm{neg}_{q^{\mathrm{N}}} (V_{\mathrm{in}}) \cdot \left( W \odot \mathbb{I}_{\{\mathbf{\Theta} < \mathbf{0}\}} \right) \right) \\ & \text{with } W = |\mathbf{\Theta}| \cdot \mathrm{diag} (\mathbf{\Theta}^{\mathsf{T}} \cdot \mathbf{1})^{-1} \end{split}$$

 $\Theta$  learnable surrogate conductance,  $|\Theta|$  printable conductance, sign( $\Theta$ ) requirement of negative weight circuit



### **ML-based Circuit Optimization**



Θ learnable surrogate conductance,

 $|\Theta|$  printable conductance,

 $sign(\Theta)$  requirement of negative weight circuit

 $\eta_i^{\rm A}$  in ptanh(·) can be determined by physical quantities  ${\pmb q}^{\rm A}$  through a surrogate nonlinear circuit model [1]

 $\eta_i^{\rm N}$  in  ${\rm neg}(\cdot)$  can be determined by physical quantities  ${\boldsymbol q}^{\rm N}$  through a surrogate nonlinear circuit model [1]



28.09.23 Haibin Zhao



Target applications of pNCs







- Printed batteries with limited power
- Supplied by energy harvesters
- Low-power design
  - Develop differentiable power model of pNCs
  - Integrate power model into training objective





- Power Model
  - Power of a single resistor

$$P = (V_{\rm in} - V_{\rm out})^2 \cdot g$$

• Power of the crossbar

$$P^{\mathsf{C}} = \left( \left( \mathbf{V}_{\mathsf{in}} \odot \mathbb{I}_{\{\mathbf{\Theta} \geq \mathbf{0}\}} + \mathbf{V}_{\mathsf{in}} \odot \mathbb{I}_{\{\mathbf{\Theta} < \mathbf{0}\}} \right) - \mathbf{V}_{\mathsf{z}} \right)^{2} \odot \mathbf{\Theta}$$







- Power Model
  - Power of the crossbar

$$P^{C} = \left( \left( \mathbf{V}_{\text{in}} \odot \mathbb{I}_{\{\mathbf{\Theta} \geq \mathbf{0}\}} + \mathbf{V}_{\text{in}} \odot \mathbb{I}_{\{\mathbf{\Theta} < \mathbf{0}\}} \right) - \mathbf{V}_{z} \right)^{2} \odot \mathbf{\Theta}$$

- Power of the nonlinear circuits
  - Estimating power consumptions  $P^{A}$  and  $P^{N}$  from physical quantities  $\boldsymbol{q}^{A}$  and  $\boldsymbol{q}^{N}$  is complicated
  - Employ NN-based models as surrogate power consumption models, denoted by  $SP(\cdot)$ 
    - Sampled 10 000  $oldsymbol{q}_i^{
      m A}$  and  $oldsymbol{q}_i^{
      m N}$  with Quasi-Monte Carlo
    - Simulated their power  $P_i^{\rm A}$  and  $P_i^{\rm N}$  based on SPICE with pPDK [2]
    - Trained NN to estimate  $P_i$  by  $\boldsymbol{q}_i$ , i.e.,  $SP(\cdot)$ :  $\boldsymbol{q}_i \mapsto P_i$



[2] Rasheed, et al. "Variability modeling for printed inorganic electrolyte-gated transistors and circuits." IEEE transactions on electron devices 66.1 (2018): 146-152.



Power of the crossbar

$$P^{C} = \left( \left( \mathbf{V}_{\text{in}} \odot \mathbb{I}_{\{\mathbf{\Theta} \geq \mathbf{0}\}} + \mathbf{V}_{\text{in}} \odot \mathbb{I}_{\{\mathbf{\Theta} < \mathbf{0}\}} \right) - \mathbf{V}_{z} \right)^{2} \odot \mathbf{\Theta}$$

- Power of the nonlinear circuits
  - Employ NN-based models as surrogate power consumption models, denoted by  $SP(\cdot)$



$$P^{A} = SP^{A}(\boldsymbol{q}^{A})$$
  
 $P^{N} = SP^{N}(\boldsymbol{q}^{N})$ 



**VDD** 



- Power Model
  - Power of the crossbar

$$P^{C} = \left( \left( \mathbf{V}_{\text{in}} \odot \mathbb{I}_{\{\mathbf{\Theta} \geq \mathbf{0}\}} + \mathbf{V}_{\text{in}} \odot \mathbb{I}_{\{\mathbf{\Theta} < \mathbf{0}\}} \right) - \mathbf{V}_{z} \right)^{2} \odot \mathbf{\Theta}$$

- Power of the nonlinear circuits
  - Employ NN-based models as surrogate power consumption models, denoted by  $SP(\cdot)$

$$P^{A} = SP^{A}(\boldsymbol{q}^{A})$$
  
 $P^{N} = SP^{N}(\boldsymbol{q}^{N})$ 

Power overhead

$$\mathcal{P}^{A} = N^{A} \cdot SP^{A}(\boldsymbol{q}^{A})$$
$$\mathcal{P}^{N} = N^{N} \cdot SP^{N}(\boldsymbol{q}^{N})$$







#### Power Model

Power of the crossbar

$$P^{C} = \left( \left( \mathbf{V}_{\text{in}} \odot \mathbb{I}_{\{\mathbf{\Theta} \geq \mathbf{0}\}} + \mathbf{V}_{\text{in}} \odot \mathbb{I}_{\{\mathbf{\Theta} < \mathbf{0}\}} \right) - \mathbf{V}_{z} \right)^{2} \odot \mathbf{\Theta}$$

- Power of the nonlinear circuits
  - Employ NN-based models as surrogate power consumption models, denoted by  $SP(\cdot)$
  - Power overhead

$$\mathcal{P}^{A} = N^{A} \cdot SP^{A}(q^{A})$$

$$\mathcal{P}^{N} = (N^{N}) \cdot SP^{N}(q^{N})$$

• Soft-Count

$$N^{N} = \sum_{\text{column max}} \{\mathbb{I}_{\{\mathbf{0}<\mathbf{0}\}}\}$$

$$\frac{\partial N_{\text{soft}}^{N}}{\partial \Theta} = \frac{\partial \sum_{\text{column max}} \{1 - \text{sigmoid}(\mathbf{0})\}}{\partial \Theta}$$



forward backward



#### **Experiment**

Training objective

$$\mathcal{L} = (1 - \alpha) \cdot \text{CELoss} + \alpha \cdot \mathcal{P}$$

- CELoss: cross-entropy for classification accuracy
- $\mathcal{P}$ : overall power consumption of the pNC
- 13 benchmark datasets
- 100 different  $\alpha$  values in [0,1]
- Baseline:  $\alpha = 0$  (power-unaware training)
- Evaluation metric
  - Accuracy
    - Normalized accuracy (by baseline)
    - Averaged normalized accuracy (across all datasets)
  - Power
    - normalized power (by baseline)
    - Averaged normalized power (across all datasets)





#### Result

- Normalized Accuracy vs. lpha
- Normalized Power vs.  $\alpha$
- ullet Averaged normalized accuracy and power vs. lpha





#### Result

#### Pareto analysis



| Accuracy | Power |      |
|----------|-------|------|
| 100%     | 100%  | 1×   |
| 95%      | 50%   | 2×   |
| 90%      | 40%   | 2.5× |
| 85%      | 34%   | 3×   |
| 80%      | 28%   | 3.6× |
| 75%      | 23%   | 4.4× |
| 70%      | 18%   | 5.5× |



#### Conclusion

- Printed electronics provides complementary advantages, i.e.,
  - flexibility, bio-degradability, high customization, ultra-low cost, ...
- Printed neuromorphic circuits (pNCs)
  - implement effective computational functionalities as in ANNs
  - through interconnection of simple-structured circuit primitives
  - favored for circuit design, optimization, and manufacturing
- Power-aware training for pNCs
  - derive analytical power model for the resistor crossbar
  - develop surrogate power models to precisely estimate the power of nonlinear circuits
  - propose soft-count to enable the reduce the number of required negative weight circuits
  - achieve 2× power-saving of the whole pNC with only 5% loss in classification accuracy



# Thank you for your attention

## Power-Aware Training for Energy-Efficient Printed Neuromorphic Circuits

Haibin Zhao, Priyanjana Pal, Michael Hefenbrock Michael Beigl, Mehdi B. Tahoori

Karlsruhe Institute of Technology (KIT)