

Reconciling forecasts: the hts and thief packages

Rob J Hyndman

Spectacle sales

- Monthly UK sales data from 2000 2014
- Provided by a large spectacle manufacturer
- Split by brand (26), gender (3), price range (6), materials (4).
- Split by region, city and stores (600)
- About 1 million bottom-level series

Hierarchical time series

A hierarchical time series is a collection of several time series that are linked together in a hierarchical structure.

Examples

Sales by region, city, store

Grouped time series

A grouped time series is a collection of time series that can be grouped together in a number of non-hierarchical ways.

Examples

■ Sales by brand, gender, material, stores, etc.

The problem

- How to forecast time series at all nodes such that the forecasts add up in the same way as the original data?
- Can we exploit relationships between the series to improve the forecasts?

The problem

- How to forecast time series at all nodes such that the forecasts add up in the same way as the original data?
- Can we exploit relationships between the series to improve the forecasts?

The solution

- Forecast all series at all levels of aggregation using an automatic forecasting algorithm (e.g., ets, auto.arima, ...)
- Reconcile the resulting forecasts so they add up correctly using least squares optimization (i.e., find closest reconciled forecasts to the original forecasts).
- This is all available in the hts package in R.

The solution

- Forecast all series at all levels of aggregation using an automatic forecasting algorithm (e.g., ets, auto.arima,...)
- Reconcile the resulting forecasts so they add up correctly using least squares optimization (i.e., find closest reconciled forecasts to the original forecasts).
- This is all available in the hts package in R.

The solution

- Forecast all series at all levels of aggregation using an automatic forecasting algorithm (e.g., ets, auto.arima, ...)
- 2 Reconcile the resulting forecasts so they add up correctly using least squares optimization (i.e., find closest reconciled forecasts to the original forecasts).
- This is all available in the **hts** package in R.

hts package for R

hts: Hierarchical and Grouped Time Series

Methods for analysing and forecasting hierarchical and grouped time series

Version: 5.0

Depends: R (\geqslant 3.0.2), forecast (\geqslant 5.0), SparseM, Matrix, matrixcalc

Imports: parallel, utils, methods, graphics, grDevices, stats

LinkingTo: Rcpp (≥ 0.11.0), RcppEigen

Suggests: testthat Published: 2016-04-06

Author: Rob J Hyndman, Earo Wang, Alan Lee, Shanika Wickramasuriya

Maintainer: Rob J Hyndman < Rob. Hyndman at monash.edu>

BugReports: https://github.com/robjhyndman/hts/issues

License: GPL (\geqslant 2)

Example using R

library(hts)

```
# bts is a matrix containing the bottom level time series
# nodes describes the hierarchical structure
y <- hts(bts, nodes=list(2, c(3,2)))</pre>
```

Example using R

library(hts)

```
# bts is a matrix containing the bottom level time series
# nodes describes the hierarchical structure
y <- hts(bts, nodes=list(2, c(3,2)))</pre>
```


Example using R

```
library(hts)

# bts is a matrix containing the bottom level time series
# nodes describes the hierarchical structure
y <- hts(bts, nodes=list(2, c(3,2)))

# Forecast 10-step-ahead using WLS combination method
# ETS used for each series by default
fc <- forecast(y, h=10)</pre>
```


gts function

```
Usage
```

```
gts(y, characters)
```

Arguments

y Multivariate time series containing the bottom

level series

characters Vector of integers, or list of vectors, showing

how column names indicate group structure.

Example

```
bnames <-
  c("VIC1F","VIC1M","VIC2F","VIC2M","VIC3F","VIC3M",
     "NSW1F","NSW1M","NSW2F","NSW2M","NSW3F","NSW3M")
bts <- matrix(ts(rnorm(120)), ncol = 12)
colnames(bts) <- bnames
x <- gts(bts, characters = c(3, 1, 1))</pre>
```

Australian tourism

Australian tourism

Australian tourism

Training sets

Test sets h = 1

Training sets

Test sets h = 1

Training sets

Test sets h = 1

Hierarchy: states, zones, regions

Forecast horizon							
RMSE	h = 1	h = 2	h = 3	h = 4	h = 5	h = 6	Ave
Australia							
Base	1762.04	1770.29	1766.02	1818.82	1705.35	1721.17	1757.28
Bottom	1736.92	1742.69	1722.79	1752.74	1666.73	1687.43	1718.22
OLS	1747.60	1757.68	1751.77	1800.67	1686.00	1706.45	1741.69
WLS	1705.21	1715.87	1703.75	1729.56	1627.79	1661.24	1690.57
GLS	1704.64	1715.60	1705.31	1729.04	1626.36	1661.64	1690.43
States							
Base	399.77	404.16	401.92	407.26	395.38	401.17	401.61
Bottom	404.29	406.95	404.96	409.02	399.80	401.55	404.43
OLS	404.47	407.62	405.43	413.79	401.10	404.90	406.22
WLS	398.84	402.12	400.71	405.03	394.76	398.23	399.95
GLS	398.84	402.16	400.86	405.03	394.59	398.22	399.95
Regions							
Base	93.15	93.38	93.45	93.79	93.50	93.56	93.47
Bottom	93.15	93.38	93.45	93.79	93.50	93.56	93.47
OLS	93.28	93.53	93.64	94.17	93.78	93.88	93.71
WLS	93.02	93.32	93.38	93.72	93.39	93.53	93.39
GLS	92.98	93.27	93.34	93.66	93.34	93.46	93.34

Temporal hierarchies

Basic idea

- Forecast series at each available frequency.
- Optimally reconcile forecasts within the same year.

Temporal hierarchies

Basic idea:

- Forecast series at each available frequency.
- Optimally reconcile forecasts within the same year.

Monthly series

- k = 2, 4, 12 nodes
- k = 3, 6, 12 nodes
- Why not k = 2, 3, 4, 6, 12 nodes?

Monthly series

- *k* = 2, 4, 12 nodes
- k = 3, 6, 12 nodes
- Why not k = 2, 3, 4, 6, 12 nodes?

Monthly series

- *k* = 2, 4, 12 nodes
- k = 3, 6, 12 nodes
- Why not k = 2, 3, 4, 6, 12 nodes?

thief package for R

thief: Temporal HIErarchical Forecasting

Usage

thief(y)

```
thief(y, m = frequency(y), h = m*2,
  comb = c("struc", "mse", "ols", "bu", "shr", "sam"),
  usemodel = c("ets", "arima", "theta", "naive", "snaive"),
  forecastfunction = NULL, ...)
```

More information

Rob J Hyndman, Alan J Lee, and Earo Wang (2016). "Fast computation of reconciled forecasts for hierarchical and grouped time series". *Computational Statistics & Data Analysis* **97**, 16–32.

Shanika L Wickramasuriya, George Athanasopoulos, and Rob J Hyndman (2015). Forecasting hierarchical and grouped time series through trace minimization. Working paper 15/15. Monash University

George Athanasopoulos, Rob J Hyndman, Nikolaos Kourentzes, and Fotios Petropoulos (2015). Forecasting with temporal hierarchies. Working paper. Monash University

Rob J Hyndman, Alan J Lee, Earo Wang, and Shanika Wickramasuriya (2016). hts: Hierarchical and Grouped Time Series. R package v5.0 on CRAN.

Rob J Hyndman and Nikolaos Kourentzes (2016). thief: Temporal Hierarchical Forecasting. R package v0.2 on CRAN.

More information

Rob J Hyndman, Roman A Ahmed, George Athanasopoulos, and Han Lin Shang (2011). "Optimal combination forecasts for hierarchical time series". *Computational Statistics & Data Analysis* **55**(9), 2579–2589.

Rob J Hyndman, Alan J Lee, and Earo Wang (2016). "Fast computation of reconciled forecasts for hierarchical and grouped time series". *Computational Statistics & Data Analysis* **97**, 16–32.

Shanika L Wickramasuriya, George Athanasopoulos, and Rob J Hyndman (2015). Forecasting hierarchical and grouped time series through trace minimization. Working paper 15/15. Monash University

George Athanasopoulos, Rob J Hyndman, Nikolaos Kourentzes, and Fotios Petropoulos (2015). Forecasting with temporal hierarchies. Working paper. Monash University

Rob J Hyndman, Alan J Lee, Earo Wang, and Shanika Wickramasuriya (2016). hts: Hierarchical and Grouped Time Series. R package v5.0 on CRAN.

Rob J Hyndman and Nikolaos Kourentzes (2016). thief: Temporal Hierarchical Forecasting. R package v0.2 on CRAN.

More information: robihyndman.com