

# DD-DeCaF: Bioinformatics Services for Data-Driven Design of Cell Factories and Communities

# DD-DeCaF Workshop at DSM

Session 4: Cameo and DD-DeCaF platforms
Nikolaus Sonnenschein
niso@biosustain.dtu.dk
DTU



# https://goo.gl/sWRfGH





# The problem with traditional metabolic

engineering

#### **Commercial:**

Product titre > 10 g/L > 25 FTE for > 5 years Cost > \$50M

#### **Academic:**

Product titre < 100 mg/L 2 FTE for 3 years Cost \$1M





# Bridging the valley of death





#### **Academic:**

Product titre < 100 mg/L 2 FTE for 3 years Cost \$1M

#### Omics Commercial:











# iLoop Core Unit at DTU Biosustain





# The strain engineering problem





Growth yield





# http://opencobra.github.io/cobrapy/





# DD-DeCaF: Bioinformatics Services for Data-Driven Design of Cell Factories and Communities

# Came

Computer Aided Metabolic Engineering and Optimization of Cell Factories <a href="http://cameo.bio">http://cameo.bio</a>

# Workflow





# Memote – metabolic model test suite









# Memote – metabolic model test suite







mem**ø**te

Test Report



## H2020: Data-Driven Design of Cell Factories and Communities

http://dd-decaf.eu/





#### Horizon 2020: Data-Driven Design of Cell Factories and Communities



# THE STATE OF THE S

# Consortium





### Platform demo



















Moritz



Nace

Danny





Matyas





# Interactive pathway visualizations + predictions





# Uploading data





# Gecko/ecYeast7 model demo (from WP5)





# Next steps

- Registration via Google, Twitter, Github, Facebook, ORCID, ...
- Bring your own models
- Mine (meta)genomic data for enzymes

More types of omics data and

A munity modeling















#### High-level strain design

"Delete native genes A, B, C, and D. Add foreign genes X, Y, Z. Increase flux through reaction F by twofold while reducing flux through reaction G by threefold. Remove product inhibition in pathway Q ..."





# Import into Genetic Constructor (by Autodesk)

#### **AUTODESK.** LIFE SCIENCES







# Export Genotype Specification Language (GSL)

#### **AUTODESK.** LIFE SCIENCES





# Automate all the things

#### High-level strain design

This proje

research

"Delete native genes A, B, C, and D. Add foreign genes X, Y, Z. Increase flux through reaction F by twofold while reducing flux through reaction G by threefold. Remove product inhibition in pathway Q ..."







## Order button









# So many tools ...

- Programing skills required
- Detailed understanding of models required



- No programming skills required
- Detailed understanding of models required

- No programming skills required
- No in-depth understanding of models required



To be covered in Session 5



app.dd-decaf.eu

Poweruser capabilities & learning barrier



# https://workshop.dd-decaf.eu/hub/home





# https://workshop.dd-decaf.eu/hub/home





# https://workshop.dd-decaf.eu/hub/home





# Practical part

- Gentle introduction to Python + Jupyter notebooks (5 min)
- Cobrapy
  - https://github.com/DD-DeCaF/tutorials/blob/master/cobrapy-01-getting-started.ipynb (5 min)
  - https://github.com/DD-DeCaF/tutorials/blob/master/cobrapy-02-genome-scale-metabolic-models.ipynb (10 min)
  - https://biosustain.github.io/cell-factory-design-course/08-Theoretical-maximum-yields/ (15 min)
- Cameo
  - https://github.com/DD-DeCaF/tutorials/blob/master/cameo-01-predict-heterologous-pathways.ipynb (15 min)
  - https://github.com/DD-DeCaF/tutorials/blob/master/cameo-02-generating-gene-knockoutstrategies.ipynb (15 min OptGene example)
- DD-DeCaF
  - Download workshop.zip from JupyterHub
  - https://app.dd-decaf.eu (User: workshop@dsm.nl, Password: DSMNL2017)
  - Manipulate the data to your liking
  - Upload data in the following order: medium, strain, (samples, physiology), fluxes

