

Generación Automática de Contenidos para Videojuegos mediante Programación Genética

Francisco Fernández de Vega

fcofdez.wordpress.com fcofdez@unex.es

Facultad Informática, UCM 18 Abril 2016

Índice

- El negocio de los videojuegos.
- Videjuegos y CI.
- Generación Procedimental de Contenidos.
- Genetic Terrain Programming.

18 Abril 2016

Índice

- El negocio de los videojuegos.
- Videjuegos y CI.
- Generación Procedimental de Contenidos.
- Genetic Terrain Programming.

Facultad Informática, UCM 18 Abril 2016

Facturación

- En 2014 creción un 31%.
- 83.600 millones en 2014.
 - 413 millones de euros en España y más de 400 empresas censadas.
- GTA V recaudó en 24 horas 815 millones de dólares (Harry Potter recaudó 220 millones en el mismo tiempo)

Libro blanco desarrollo español de videojuegos 2015.

Consumo

- Según la AEVI (Asociación Española de Videojuegos), el consumo global superó en españa los 1000 millones de euros.
- En España, 13 millones de videojugadores.

Facturación

Cuota de Mercado

CUOTA DE MERCADO POR REGIONES

Empresas

DISTRIBUCIÓN TERRITORIAL DE LAS EMPRESAS DE VIDEOJUEG

EN ESPAÑA HAY EN ACTIVO MÁS DE 400 EMPRESAS DE VIDEOJUEGOS Y 180 PROYECTOS EMPRESARIALES

Perfiles profesionales

DISTRIBUCIÓN DE LOS EMPLEADOS DIRECTOS DEL SECTOR POR FUNCIÓN DESEMPEÑADA (% DEL TOTAL DE EMPLEADOS DIRECTOS)

Perfiles profesionales

ESTIMACIÓN DE CONTRATACIÓN POR PERFIL

Videojuegos: Pre-historia • El juego se llamó "Tennis for Two".

- Programó un movimiento balístico, con posibilidad de intercepción.
- La construcción se realizó para una muestra al público de las instalaciones.

http://www.youtube.com/watc h?v=s2E9iSQfGdg

Índice

- El negocio de los videojuegos.
- Videjuegos y Cl.
- Generación Procedimental de Contenidos.
- Genetic Terrain Programming.

Facultad Informática, UCM 18 Abril 2016

Computational Intelligence

- Conjunto de metodologías computacionales inspiradas por la naturaleza que permiten atacar problemas del mundo real.
 - (en los que las matemáticas o el modelado tradicional no sirven).

Algoritmos Evolutivos

 Basados en la teoría de la Evolución mediante selección Natural de Darwin.

El Origen de las Especies. 1859.

¿Evo...qué?

¿Evo...qué?

The Evolution of Mario

*Dates based on US release dates.

Neodarwinismo

Introducción

El Mar de la Inteligencia Artificial

El Mar de la Inteligencia Artificial

¿Cómo funciona un AE?

- Un resumen:
 - **-** T=0;
 - Inicializar y Evaluar [P(t)]
 - While condición fin no alcanzada do
 - P'(t)=variation [P(t)]
 - Evaluate P'(t)
 - P(t+1)=select [P'(t),P(t)]
 - T=t+1
 - end while

Algoritmos Evolutivos

Para que la evolución actúe se deben cumplir cuatro condiciones:

- •Los individuos de la población deben ser capaces de reproducirse.
- •La supervicencia de los individuos depende de curadteres declados por variaciones.
- •Los caracteres pasan de padres a hijos mediante la harricia.
- •Los individuos de la población compiten por la completa de la completa del co

Algoritmos Evolutivos

Algoritmos Evolutivos

Los individuos compiten por los recursos

Los individuos forman la población

Diferentes ocaracteres: ocaracteres

Individuos de la Población: Soluciones Candidatas

Operaciones Básicas

- Evaluación.
- Selección.
- Cruce.
- Mutación.

¿Porqué funcionan?

- Informalmente, los AEs realizan dos tareas:
 - Exploración del espacio de búsqueda.
 - Explotación de zonas "buenas".
- Formalmente, existen estudios de convergencia para cada uno de los algoritmos englobados en los AEs.

Problemas abordados

¿AEs y Videojuegos?

Ms PacMan Competition

CIG 2016 → SUBMISSIONS → CONFERENCE PROGRAM → VENUE SOCIAL EVENTS CONTACT

IEEE CIG 2016 - SANTORINI, GREECE, SEPTEMBER 20-23

IEEE COMPUTATIONAL INTELLIGENCE AND GAMES CONFERENCE

SUBMIT TO THE CONFERENCE

7th Workshop on Procedural Content Generation

¿Cuánto cuesta?

- Licencia plataforma 11%
- Otras licencias 12%
- Programación 20%
- Diseño y producción 25%
- Márketing 12%
- Edición y distribución 8%
- Márgenes venta 20%

¿Cuánto cuesta?

- Licencia plataforma 11%
- Otras licencias 12%
- Programación 20%
- Diseño y producción 25%
- Márketing 12%
- Edición y distribución 8%
- Márgenes venta 20%

Generación Procedimental de Contenidos

- ¿Porqué PCG?
 - ¿Cuál es el coste del desarrollo de contenidos?
 - Escenarios.
 - Dinámicas del juego.
 - Objetivos.
 - Guión.
 - Música...

(Ganador Hummies 2012)

Generación Procedimental de Contenidos

- No es algo nuevo:
 - Se utilizó ya en los años 80.

Akalabeth, world of doom.

AEs+Videojuegos

• ¿Qué podemos hacer?

- Generación de Contenidos.
- Inteligencia Computacional.

Diseño Evolutivo

Evolutionary Design by Computers, P. Bentley. MIT Press.

The Art of Artificial Evolution, J. Romero, P. Machado. Springer.

Diseño Evolutivo

Karl Sims:

- Primordial Dance: http://es.youtube.com/watch?v=vIVjEkWTEX
- Panspermia: http://es.youtube.com/watch?v=AgeuRukfZL
- Virtual Creatures: http://es.youtube.com/watch?v=F0OHycypS0

Artifical Evolution for Computer Graphics"
Computer Graphics (Siggraph '91 proceedings), July 1991, pp.319-328

Karl Sims: www.genarts.com

Curso Internacional de Verano: 15, 16 Julio, Almendralejo, Badajoz.

John Collomose (University of Bath)

John Collomose

John Collomose

Índice

- El negocio de los videojuegos.
- Videjuegos y CI.
- Generación Procedimental de Contenidos.
- Genetic Terrain Programming.

18 Abril 2016

Videojuegos y CI

Diseño de Terrenos.

Diseño de Terrenos

- Medición real (remote sensing).
- Modelado artístico (Blender).
- Procedimentales:
 - Fractales (Terragen).
 - Evolutivo: Diseño evolutivo utilizado con otros fines.

Terragen

http://www.planetside.co.uk/terragen/

Creatividad Computacional

Cybernetic Serendipity Exhibition, London, 1968.

http://cyberneticserendipit

Creatividad Computacional

- Evolución Interactiva.
- Programación Genética.

Programación Genética

- Popularizada por Koza en los 90s.
- Aplica evolución en procesos de generación automática de programas.
- Trabaja con estructura de árboles.

Programación Genética

Operadores Genéticos:

- •Cruce.
- Mutación.
- Selección.
- •Reproducción.

Función de Aptitud

T50

Programación Genética

Programación Genética

Un ejemplo

• Regresión simbólica.

- ¿GP para diseñar terrenos?
- Objetivos:
 - Capaz de generar diferentes tipos de terrenos.
 - Extensible.
 - Interactivo e Intuitivo.
 - Generación de familias de terrenos.

- ¿Qué necesitamos?
 - Funciones y Terminales + Operadores.

Genetic Terrain Programming

- GTP (Frade, Fernández and Cotta).
- Funciones: plus2; minus2; multiply2; sin1; cos1; tan1; atan1;
- myLog1; myPower2; myDivide2; myMod2; mySqrt1;
- negative1; FFT1; smooth1; gradientX1; gradientY1

Genetic Terrain Programming:

- IEA + GP.

Name	Description
$plus(h_1, h_2)$ $minus(h_1, h_2)$ $multiply(h_1, h_2)$	arithmetical functions
sin(h) $cos(h)$ $tan(h)$ $atan(h)$	trigonometric functions
myLog(h)	returns 0 if $h = 0$ and $log(abs(h))$ otherwise
$myPower(h_1, h_2)$	returns 0 if $h_1^{h_2}$ is NaN or Inf , or has imaginary part, otherwise returns $h_1^{h_2}$
$myDivide(h_1, h_2)$	returns h_1 if $h_2 = 0$ and $h_1 \div h_2$ otherwise
$myMod(h_1, h_2)$	returns 0 if $h_2 = 0$ and $mod(h_1, h_2)$ otherwise
mySqrt(h)	returns $sqrt(abs(h))$
negative(h)	returns $-h$
FFT(h)	2-D discrete Fourier Transform
smooth(h)	circular averaging filter with $r = 5$
gradientX(h) gradientY(h)	returns the gradient $(dh/dx \text{ or } dh/dy)$ of a hight map h . Spacing between points is assumed to be 1

Name	Description
rand	map with random heights between 0 and 1
fftGen	spectral synthesis based hight map, whose spectrum depends on a REC: $1/(f^{REC})$
gauss	gaussian bell shape hight map, whose wideness depends on a REC
plane	flat inclined plane hight map whose orientation depends on a REC within 8 values
step	step shape hight map whose orientation depends on a REC within 4 values
sphere	semi-sphere hight map whose centre location is random and the radius depends on a REC

Interactive EA

• IEA: An evolutionary Algorithm with a human being in charge of fitness evaluation.

Interactive Evolutionary Algorithms

- Standard EA:
 - Fitness Evaluation.
 - Selection.
 - Crossover+Mutation.

- Interactive EA:
 - Fitness Evaluation (human made).
 - Selection.
 - Crossover+Mutation.

Evolutionary

• Collaborative works...: Picbreeder (Secretan et al).

Evolutionary A

Endless forms (Clune & Lipson)

EvoEco

 EvoEco is an experimental piece of software for the creation of abstract images using simple virtual drawing creatures.

Kowaliw, Dorin, McCormack

Interfaz de Usuario.

Resultados.

(2)

 $TP = -myLog(myLog(cos(minus(fftGen(2.00),fftGen(3.75))))) \ .$

Acantilados

Montañas.

TP3 = times(sin(fftGen(3.00)), smooth(times(sin(cos(sin(cos(times(fftGen(1.75), fftGen(0.75)))))),

Objetivos Estéticos.

GTP: Niveles de detalle

GTP: Niveles de detalle

GTP: Niveles de detalle

TP = times(sin(fftGen(s, 3.00)), smooth(times(sin(cos(sin(cos(times(fftGen(s, 1.75), fftGen(s, 0.75)))))), fftGen(s, 0.50)))).

GTP

Miguel Frade, F. Fernandez de Vega, Carlos Cotta, Modelling Video Games' Landscapes by Means of Genetic Terrain Programming - A New Approach for Improving Users' Experience. Lecture Notes in Computer Science 4974, 485-490.

GTP

M. Frade, F. Fernández, C. Cotta, Genetic Terrain Programming - an Aesthetic Approach to Terrain Generation, Computer Games and Allied Technology (CG&AT 2008).

(Seleccionado entre los 6 mejores artículos del congreso).

- ¿Podemos automatizar GTPi?
- Evitar la interacción con medidas del terreno:
 - Accesibilidad: Fácil de medir.
 - Proceso:
 - Generar mapas de elevación a partir del TP
 - Medir pendientes y Conectividad.
 - Evaluar.

• Utilización de funciones de *ruido* en lugar de valores random.

Paisaje generado con la función NOISE disponible en Blender.

Conjunto de funciones

Table 1 (P function	on set
-----------	------------	--------

Name	Description	
plus(a, b), minus(a, b),	Arithmetical functions	
multiply(a, b)		
sin(a), $cos(a)$,	Trigonometric functions	
tan(a), atan(a)		
exp(a)	Returns e^{α}	
myLog(a)	Returns 0 if $a = 0$ and	
	log(lal) otherwise	
myPower(a, b)	Returns 1 if $b = 0$, 0 if	
	$a = 0$ and lal^b otherwise	
myDivide(a, b)	Returns a if $b = 0$	
	and $a \div b$ otherwise	
mySqrt(a)	Returns $\sqrt{ a }$	
negative(a)	Returns $-a$	

Terminal set: orgBlenderNoise, x, y, ERC.

GTPa: Fitness function

Slope (%) = $100 \times \sqrt{\left(\frac{\partial f}{\partial x}\right)^2}$	$+\left(\frac{\partial f}{\partial y}\right)^2$
$\frac{\partial f}{\partial x} \approx \frac{(z_3 + 2z_6 + z_9) - (z_1 + z_9)}{8\Delta x}$	$2z_4 + z_7$
CA 62A	
$\partial f = (z_7 + 2z_8 + z_9) - (z_1 +$	$2z_2 + z_3$
$\frac{\partial f}{\partial y} \approx \frac{(z_7 + 2z_8 + z_9) - (z_1 + z_8)}{8\Delta y}$	<u></u>

$z_{_{I}}$	z_2	z_3
Z_4	z_{5}	z_6
z_{7}	z_8	z_{g}

• Utilización de funciones y terminales:

 TP = cos(atan(minus(exp(X),myDivide(multiply(0.07358, 0.93756), myDivide(X,myLog(myLog(sin(Y)))))))

- M. Frade. F. Fernández, C. Cotta, "Evolution of Artificial Terrains for Video Games Based on Accessibility". Evo* 2010 (LNCS 6024).
- Miguel Frade, Francisco Fernández de Vega, Carlos Cotta, Automatic evolution of programs for procedural generation of terrains for video games - Accessibility and edge length constraints. Soft
 put. 16(11): 1893-1914 (2012)

Resultados

- Grupo de Evolución Artificial.
- Claroscuro Digital:
 - http://www.vimeo.com/2333108
 - http://www.vimeo.com/2994880
 - http://www.vimeo.com/4997211

¿CI y Videojuegos en Extremadura?

Forja Chapas

https://forja.unex.es/projects/chapa

