$$\begin{cases}
\frac{dx}{dt} = \sigma(y - x) \\
\frac{dy}{dt} = x(\rho - z) - y \\
\frac{dz}{dt} = xy - \beta z
\end{cases}$$
(1)

$$F(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} s(x)e^{-ikx} dx$$
 (2)

Tabela 1 – Propriedades das substâncias halogênias

Substância	Aparência na CNTP	Ponto de fusão (°C)	Ponde de ebulição (°C)
$\overline{F_2}$	Gás amarelo claro	-219	-188
Cl_2	Gás verde claro	-101	-34
Br_2	Líquido castanho oleoso	-7	-60
$\overline{I_2}$	Sólido preto-arroxeado lustroso	+114	+185

Tabela 2 – Propriedades das substâncias halogênias.

Substância	Aparência na CNTP	Ponto de fusão (°C)	Ponto de ebulição (°C)
F_2	Gás amarelo claro	-219	-188
Cl_2	Gás verde claro	-101	-34
Br_2	Líquido castanho oleoso	-7	-60
$\overline{I_2}$	Sólido preto-arroxeado lustroso	+114	+185

Fonte: http://www.quimica.ufpr.br/paginas/marcio-peres/wp-content/uploads/sites/6/2018/06/Familia-dos-Halogenios-1.pdf

Figura 1 –