## 中国科学技术大学

## 2020 - 2021 学年第 一 学期考试试卷

| 考试科目: 数字逻辑 | <b>揖电路</b> | 得分: |  |  |  |
|------------|------------|-----|--|--|--|
|            |            |     |  |  |  |
| 学生所在院系:    | 姓名:        | 学号: |  |  |  |

1、(6 分) 试用公式法将逻辑函数式 Y = AC + B'C + BD' + CD' + AB + A'BCD' + AC' 化 简成最简与或式,并将最简与或式转换为"或非-或非"形式。

2、(6分) 试用卡诺图化简法对一组多输出逻辑函数进行化简, 函数式如下:

$$\begin{cases} Y_1(A, B, C, D) = \sum (3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15) \\ Y_2(A, B, C, D) = \sum (2, 3, 4, 6, 7, 12, 14) \\ Y_3(A, B, C, D) = \sum (2, 6, 8, 9) \end{cases}$$

3、(6分) 试给出下图所示电路的真值表与标准与或式。注:图中门电路均为 CMOS 器件。



4、(6分) 试用2片3线-8线译码器(74HC138)扩展成4线-16线译码器,将输入的4位 二进制代码  $D_3D_2D_1D_0$  译成低电平信号  $Z_0'\sim Z_{15}'$  , 74HC138 功能表与框图如下。

|       | 输             | 入     |             |       |        |        |        | 输      | 出      |        |        |        |
|-------|---------------|-------|-------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|
| $S_1$ | $S_2' + S_3'$ | $A_2$ | $A_{\rm l}$ | $A_0$ | $Y_0'$ | $Y_1'$ | $Y_2'$ | $Y_3'$ | $Y_4'$ | $Y_5'$ | $Y_6'$ | $Y_7'$ |
| 0     | X             | X     | X           | X     | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      |
| X     | 1             | X     | X           | X     | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 1      |
| 1     | 0             | 0     | 0           | 0     | 0      | 1      | 1      | 1      | 1      | 1      | 1      | 1      |
| 1     | 0             | 0     | 0           | 1     | 1      | 0      | 1      | 1      | 1      | 1      | 1      | 1      |
| 1     | 0             | 0     | 1           | 0     | 1      | 1      | 0      | 1      | 1      | 1      | 1      | 1      |
| 1     | 0             | 0     | 1           | 1     | 1      | 1      | 1      | 0      | 1      | 1      | 1      | 1      |
| 1     | 0             | 1     | 0           | 0     | 1      | 1      | 1      | 1      | 0      | 1      | 1      | 1      |
| 1     | 0             | 1     | 0           | 1     | 1      | 1      | 1      | 1      | 1      | 0      | 1      | 1      |
| 1     | 0             | 1     | 1           | 0     | 1      | 1      | 1      | 1      | 1      | 1      | 0      | 1      |
| 1     | 0             | 1     | 1           | 1     | 1      | 1      | 1      | 1      | 1      | 1      | 1      | 0      |





2020-2021 学年 第一学期 第 2 页(共 8 页)

、(6分)试用双 4 选 1 的器件 74HC153 实现逻辑函数 Y = AC'D + A'B'CD + BC + A'B'C,在下图器件上画出完整的电路图。4 选 1 数据选择器功能表及双 4 选 1 器件框图如下。

| S' | $A_I$ | $A_0$ | Y            |
|----|-------|-------|--------------|
| 1  | ×     | ×     | 0            |
| 0  | 0     | 0     | $D_{\theta}$ |
| 0  | 0     | 1     | $D_{I}$      |
| 0  | 1     | 0     | $D_2$        |
| 0  | 1     | 1     | $D_3$        |



、 $(6\,\%)$  主从电路结构、正脉冲触发的 JK 触发器的 J、K 端输入波形如下图所示,试画出 Q 端对应的波形,设 Q 的初始状态为 0。



7、(6分) 二进制计数器 74161 的功能表如下所示,试给出下图电路的状态转换图,并说明该电路实现的具体功能。

| CLK | $R'_D$ | LD' | EP | ET | 工作状态      |
|-----|--------|-----|----|----|-----------|
| ×   | 0      | ×   | ×  | ×  | 置零        |
| 1   | 1      | 0   | ×  | ×  | 预置数       |
| ×   | 1      | 1   | 0  | 1  | 保持        |
| ×   | 1      | 1   | ×  | 0  | 保持, $C=0$ |
| 1   | 1      | 1   | 1  | 1  | 计数        |



8、(6分) 试分析下图电路, 写出逻辑函数式并给出该电路的逻辑功能。



9、(6分)下图为一移位反馈寄存器型的计数器电路,试写出该电路的驱动方程和状态方程,画出状态转换图,分析该电路的循环长度是多少,并说明电路能否自启动。



2020-2021 学年 第一学期 第 4 页(共 8 页)

10、(6分) 倒 T 型电阻网络 DAC 如下图所示, 试回答:

- (1) 为保证 $V_{\it REF}$  偏离标准值引起的误差小于 ${1\over 2} \it LSB$ ,计算 $V_{\it REF}$  的相对稳定度 ${\Delta V_{\it REF}\over V_{\it REF}}$  ;
- (2) 说明 $v_o$ 端出现以下两种误差的原因:
  - ① 误差值与输入二进制数无关,在一定温度下为一常数;
  - ② 随着输入二进制数的变化, 误差无规律变化。



11、(6 分) 试分析下图所示的逐次逼近 ADC 在开始工作后第 2 个时钟上升沿到达后的  $Q_AQ_BQ_C$  的值,并给出完成一次模数转换需要多少时钟周期。设  $V_I$ =3.7V,DAC 的参考电压 2020-2021 学年 第一学期 第 5 页(共 8 页)

 $V_{\text{REF}}$  = -8V,  $\Delta$  是 1 LSB 对应的电压值,初始时  $Q_1Q_2Q_3Q_4Q_5$  = 10000。



- 12、(10 分) 已知 555 定时器的电路结构如图 12-1 所示,555 定时器组成的脉冲电路如图 12-2 所示,图中  $R_1=51k\Omega$ ,  $R_2=47k\Omega$ ,  $C=0.01\mu F$ 。
  - (1) 第一片 555 接成了什么电路, 求出该电路的关键参数;
  - (2) 第二片 555 接成了什么电路, 求出该电路的关键参数;
  - (3) 已知输入 $v_I$ 的波形如图 12-3 所示,画出图中输出电压 $v_{O1}$ 和 $v_{O2}$ 的波形。



2020-2021 学年 第一学期 第 6 页(共 8 页)



- 13. (8分) 某体育学校男生体能测试规定,3000米跑必须达标(10分钟以内),同时以下三项至少两项达标:引体向上20个、立定跳远2.5米、100米短跑12秒。针对该规则试对问题进行逻辑抽象并设计体测合格判定电路,给出:
  - (1) 真值表;
- (2) 逻辑函数式 (最简与或式);
- (3) 以与非门画出该逻辑电路图。

14、(16分) 试使用上升沿触发的 T 触发器设计一同步时序逻辑电路,要求: 该电路可实现带进位输出的 10 进制计数器功能,状态编码采用 4 位格雷码 (限定选取从 0000 起始的连续的 10 个代码),4 位码统一用  $Q_3Q_2Q_1Q_0$  表示,其中  $Q_3$  为最高位。

- (1) 列出状态转换表;
- (2) 写出满足自启动要求的驱动方程、状态方程和输出方程;
- (3) 画出完整电路图。