Contents

- Introduction
- Classification of wheels
 - Fixed wheel
 - Centered orientable wheel
 - Off-centered orientable wheel
 - Swedish wheel
- Mobile Robot Locomotion
 - Differential Drive
 - Tricycle
 - Synchronous Drive
 - Omni-directional
 - Ackerman Steering
- Kinematics models of WMR
- Summary

Locomotion

- Locomotion is the process of causing an autonomous robot to move
 - In order to produce motion, forces must be applied to the vehicle

Wheeled Mobile Robots (WMR)

Yamabico

MagellanPro

Sojourner

ATRV-2

Hilare 2-Bis

Koy

Wheeled Mobile Robots

 Combination of various physical (hardware) and computational (software) components

A collection of subsystems:

- Locomotion: how the robot moves through its environment
- Sensing: how the robot measures properties of itself and its environment
- Control: how the robot generate physical actions
- Reasoning: how the robot maps measurements into actions
- Communication: how the robots communicate with each other or with an outside operator

Wheeled Mobile Robots

- Locomotion the process of causing an robot to move.
 - In order to produce motion, forces must be applied to the robot
 - Motor output, payload
- Kinematics study of the mathematics of motion without considering the forces that affect the motion.
 - Deals with the geometric relationships that govern the system
 - Deals with the relationship between control parameters and the behavior of a system.
- Dynamics study of motion in which these forces are modeled

The City College of New York

Deals with the relationship between force and motions.

Notation

Posture: position(x, y) and orientation θ

- {X_m,Y_m} moving frame
- {X_b, Y_b} base frame

$$q = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix}$$
 robot posture in base frame

$$R(\theta) = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rotation matrix expressing the orientation of the base frame with respect to the moving frame

Wheels

Steered Wheel

Steered wheel

The orientation of the rotation axis can be controlled

Idealized Rolling Wheel

Non-slipping and pure rolling

Assumptions

- 1. The robot is built from rigid mechanisms.
- 2. No slip occurs in the orthogonal direction of rolling (non-slipping).
- 3. No translational slip occurs between the wheel and the floor (pure rolling).
- 4. The robot contains at most one steering link per wheel.
- 5. All steering axes are perpendicular to the floor.

Robot wheel parameters

- For low velocities, rolling is a reasonable wheel model.
 - This is the model that will be considered in the kinematics models of WMR
- Wheel parameters:
 - -r =wheel radius
 - -v =wheel linear velocity
 - w = wheel angular velocity
 - t = steering velocity

Wheel Types

Fixed wheel

Off-centered orientable wheel (Castor wheel)

Centered orientable wheel

Swedish wheel:omnidirectional property

Fixed wheel

- Velocity of point **P**

$$V = (r \times w)a_x$$

where, $\mathbf{a}\mathbf{x}$: A unit vector to X axis

Restriction to the robot mobility

Point **P** cannot move to the direction perpendicular to plane of the wheel.

The City College of New York

Centered orientable wheels

Velocity of point P

$$V = (r \times w)a_x$$

where, ax : A unit vector of x axis

ay: A unit vector of y axis

Restriction to the robot mobility

Off-Centered Orientable Wheels

Velocity of point P

$$v = (r \times w)a_x + (d \times t)a_y$$

where, ax : A unit vector of x axis

ay: A unit vector of y axis

Restriction to the robot mobility

Swedish wheel

Velocity of point P

$$v = (r \times w)a_x + Ua_s$$

where,

 $\mathbf{a}\mathbf{x}$: A unit vector of x axis

as: A unit vector to the motion of roller

Omnidirectional property

Examples of WMR

Example

Bi-wheel type robot

Omnidirectional robot

- Smooth motion
- Risk of slipping
- Some times use roller-ball to make balance
- Exact straight motion
- Robust to slipping
- Inexact modeling of turning
- Free motion
- Complex structure
- Weakness of the frame

Mobile Robot Locomotion

- Instantaneous center of rotation (ICR) or Instantaneous center of curvature (ICC)
 - A cross point of all axes of the wheels

Degree of Mobility

Degree of mobility

The degree of freedom of the robot motion

Cannot move anywhere (No ICR)

Fixed arc motion (Only one ICR)

• Degree of mobility : 0

• Degree of mobility: 1

Variable arc motion (line of ICRs)

Fully free motion

(ICR can be located at any position)

• Degree of mobility: 2

• Degree of mobility : 3

18

Degree of Steerability

Degree of steerability

The number of centered orientable wheels that can be steered independently in order to steer the robot

No centered orientable wheels

• Degree of steerability: 0

One centered orientable wheel

Two mutually dependent centered orientable wheels

Two mutually independent centered orientable wheels

• Degree of steerability: 1

• Degree of steerability: 2

Degree of Maneuverability

• The overall degrees of freedom that a robot can manipulate:

$$\delta_{M} = \delta_{m} + \delta_{s}$$
Degree of Mobility 3 2 2 1
Degree of Steerability 0 0 1 1

• Examples of robot types (degree of mobility, degree of steerability)

Degree of Maneuverability

$$\delta_{M} = \delta_{m} + \delta_{s}$$

Omnidirectional

$$\delta_{\mathrm{M}} = 3$$
 $\delta_{\mathrm{m}} = 3$

$$\delta_{\rm s}$$
 =(

Differential

$$\delta_{\rm M} = 2$$

$$\delta_{\rm m}^{\rm m} = 2$$

$$\delta_{\rm s}^{\rm m} = 0$$

Omni-Steer

$$\delta_{\rm M}$$
 =3

$$\delta_{\rm m}$$
 =2

$$\delta_{\rm s}^{\rm m} = 1$$

$$\delta_{\rm M} = 2$$

Tricycle
$$\delta_{M} = 2$$
 $\delta_{m} = 1$ $\delta_{s} = 1$

$$\delta_s = 1$$

Two-Steer

$$\delta_{\rm M}$$
 =3

$$\delta_{\rm m}^{\rm m} = 1$$

$$\delta_{\rm s}^{\rm m}$$
 =

Non-holonomic constraint

A non-holonomic constraint is a constraint on the feasible velocities of a body

So what does that mean?

Your robot can move in some directions (forward and backward), but not others (sideward).

Mobile Robot Locomotion

Differential Drive

- two driving wheels (plus roller-ball for balance)
- simplest drive mechanism
- sensitive to the relative velocity of the two wheels (small error result in different trajectories, not just speed)
- Steered wheels (tricycle, bicycles, wagon)
 - Steering wheel + rear wheels
 - cannot turn ±90°
 - limited radius of curvature
- Synchronous Drive
- Omni-directional
- Car Drive (Ackerman Steering)

- Posture of the robot
- $P = \begin{pmatrix} x \\ y \\ \theta \end{pmatrix} (x,y) : \text{Position of the robot}$ $\theta : \text{Orientation of the robot}$ $U = \begin{pmatrix} v \\ w \end{pmatrix} v : \text{Linear velocity of the robot}$ w : Angular velocity of the robot
- Control input

$$U = \begin{pmatrix} v \\ w \end{pmatrix}$$

(notice: not for each wheel)

 $V_R(t)$ – linear velocity of right wheel

 $V_L(t)$ – linear velocity of left wheel

r – nominal radius of each wheel

R – instantaneous curvature radius of the robot trajectory (distance from ICC to the midpoint between the two wheels).

2 drive rolling wheels Property: At each time instant, the left and right wheels must follow a trajectory that moves around the ICC at the same angular rate ω , i.e.,

$$\omega(R + \frac{L}{2}) = V_R$$
 $\omega(R - \frac{L}{2}) = V_L$

 $ICC = (x - R\sin\theta, y + R\cos\theta)$

Posture Kinematics Model: Kinematics model in world frame

• Relation between the control input and speed of wheels

$$egin{aligned} V_L = r \; \pmb{\omega}_L & V_R = r \; \pmb{\omega}_R \ \pmb{\omega} = rac{V_R - V_L}{L} & v = rac{V_R + V_L}{2} \end{aligned}$$

• Kinematic equation

$$\begin{pmatrix} \vec{x} \\ \vec{y} \\ \vec{\theta} \end{pmatrix} = \begin{pmatrix} \cos \theta & 0 \\ \sin \theta & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} v \\ \omega \end{pmatrix}$$

Nonholonomic Constraint

$$\left[\sin\theta - \cos\theta\right] \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \dot{x}\sin\theta - \dot{y}\cos\theta = 0$$

Kinematics model in robot frame

---configuration kinematics model

$$\begin{bmatrix} v_{x}(t) \\ v_{y}(t) \\ \dot{\theta}(t) \end{bmatrix} = \begin{bmatrix} r/2 & r/2 \\ 0 & 0 \\ -r/L & r/L \end{bmatrix} \begin{bmatrix} w_{I}(t) \\ w_{r}(t) \end{bmatrix}$$

- w_r(t) angular velocity of right wheel
- w_I(t) angular velocity of left wheel

Basic Motion Control

Instantaneous center of rotation

$$(V_R - V_L)/L = V_R/(R + \frac{L}{2})$$

$$R = \frac{L}{2} \frac{V_R + V_L}{V_R - V_L}$$

R: Radius of rotation

• Straight motion

$$R = Infinity \rightarrow V_R = V_L$$

Rotational motion

$$R = 0$$
 \rightarrow $V_R = -V_L$

Basic Motion Control

• Velocity Profile

$$R = \frac{L}{2} \frac{V_R + V_L}{V_R - V_L} = \frac{L}{2} \frac{W_R + W_L}{W_R - W_L}$$

$$D = \int \frac{V_L + V_R}{2} dt = \frac{1}{2} r \frac{W_L + W_R}{2} (t_3 - t_1 + t_2 - t_1)$$

$$\varphi = \frac{D}{R} = \frac{r}{2L} (W_R - W_L) (t_3 - t_1 + t_2 - t_1)$$

R: Radius of rotation

D: Length of path

 φ : Angle of rotation

- Three wheels and odometers on the two rear wheels
- Steering and power are provided through the front wheel
- control variables:
 - steering direction $\alpha(t)$
 - angular velocity of steering wheel w_s(t)

The ICC must lie on the line that passes through, and is perpendicular to, the fixed rear wheels

 If the steering wheel is set to an angle $\alpha(t)$ from the straight-line direction, the tricycle will rotate with angular velocity $\omega(t)$ about ICC lying a distance R along the line perpendicular to and passing through the rear wheels.

r = steering wheel radius

$$v_s(t) = w_s(t) r$$

linear velocity of steering wheel

$$R(t) = d tg \sqrt[\pi]{2} - \alpha(t)$$

$$w(t) = \frac{w_s(t) r}{\sqrt{d^2 + R(t)^2}}$$
 angular velocity of the moving relative to the base frame

$$w(t) = \frac{v_s(t)}{d} \sin \alpha(t)$$

d: distance from the front wheel to the rear axle

Kinematics model in the robot frame ---configuration kinematics model

$$v_x(t) = v_s(t) \cos \alpha(t)$$
 $v_y(t) = 0$ with no splippage
$$\dot{\theta}(t) = \frac{v_s(t)}{d} \sin \alpha(t)$$

Kinematics model in the world frame ---Posture kinematics model

$$\dot{x}(t) = v_s(t) \cos \alpha(t) \cos \theta(t)$$

$$\dot{y}(t) = v_s(t) \cos \alpha(t) \sin \theta(t)$$

$$\dot{\theta}(t) = \frac{v_s(t)}{d} \sin \alpha(t)$$

$$\begin{bmatrix} \dot{x}(t) \\ \dot{y}(t) \\ \dot{\theta}(t) \end{bmatrix} = \begin{bmatrix} \cos \theta(t) & 0 \\ \sin \theta(t) & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} v(t) \\ w(t) \end{bmatrix}$$

$$v(t) = v_s(t) \cos \alpha(t)$$

$$w(t) = \frac{v_s(t)}{d} \sin \alpha(t)$$

$$v(t) = v_s(t)\cos\alpha(t)$$
$$w(t) = \frac{v_s(t)}{d}\sin\alpha(t)$$

Synchronous Drive

- In a synchronous drive robot (synchronous drive) each wheel is capable of being driven and steered.
- Typical configurations
 - Three steered wheels arranged as vertices of an equilateral
 - triangle often surmounted by a cylindrical platform
 - All the wheels turn and drive in unison
- This leads to a holonomic behavior

Synchronous Drive

Synchronous Drive

- All the wheels turn in unison
- All of the three wheels point in the same direction and turn at the same rate
 - This is typically achieved through the use of a complex collection of belts that physically link the wheels together
 - Two independent motors, one rolls all wheels forward, one rotate them for turning
- The vehicle controls the direction in which the wheels point and the rate at which they roll
- Because all the wheels remain parallel the synchro drive always rotate about the center of the robot
- The synchro drive robot has the ability to control the orientation θ of their pose directly.

Synchronous Drive

- Control variables (independent)
 - $-v(t), \omega(t)$

$$x(t) = \int_{0}^{t} v(\sigma) \cos(\theta(\sigma)) d\sigma$$
$$y(t) = \int_{0}^{t} v(\sigma) \sin(\theta(\sigma)) d\sigma$$
$$\theta(t) = \int_{0}^{t} w(\sigma) d\sigma$$

- The ICC is always at infinity
- Changing the orientation of the wheels manipulates the direction of ICC

Synchronous Drive

Particular cases:

- v(t)=0, w(t)=w during a time interval Δt , The robot rotates in place by an amount $w \Delta t$.
- v(t)=v, w(t)=0 during a time interval Δt , the robot moves in the direction its pointing a distance $v \Delta t$.

Omidirectional

Swedish Wheel

40

Car Drive (Ackerman Steering)

- Used in motor vehicles, the inside front wheel is rotated slightly sharper than the outside wheel (reduces tire slippage).
- Ackerman steering provides a fairly accurate dead-reckoning solution while supporting traction and ground clearance.
- Generally the method of choice for outdoor autonomous vehicles.

Ackerman Steering

where

d =lateral wheel separation

l =longitudinal wheel separation

 θi = relative steering angle of inside wheel

 θo = relative steering angle of outside wheel

R=distance between ICC to centerline of the vehicle

Ackerman Steering

• The Ackerman Steering equation:

$$-: \cot \theta_i - \cot \theta_o = \frac{d}{l}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

$$\cot \theta_i - \cot \theta_o$$

$$= \frac{R - d/2}{l} - \frac{R + d/2}{l}$$

$$= \frac{d}{l}$$

Ackerman Steering

Equivalent:

Kinematic model for car-like robot

- Control Input
- Driving type: Forward wheel drive

Kinematic model for car-like robot

$$\dot{x} = u_1 \cos \theta$$

$$\dot{y} = u_1 \sin \theta$$

$$\dot{\theta} = \frac{u_1}{l} \tan \varphi$$

$$\dot{\boldsymbol{\varphi}} = u_2$$

non-holonomic constraint:

$$\dot{x}\sin\theta - \dot{y}\cos\theta = 0$$

 u_1 : forward velocity

 u_2 : steering velocity

Dynamic Model

Dynamic model

$$\begin{pmatrix} m & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & I \end{pmatrix} \begin{pmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{\theta} \end{pmatrix} = \begin{pmatrix} \sin \theta \\ \cos \theta \\ 0 \end{pmatrix} \lambda + \begin{pmatrix} \cos \theta & 0 \\ \sin \theta & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}$$

Summary

- Mobot: Mobile Robot
- Classification of wheels
 - Fixed wheel
 - Centered orientable wheel
 - Off-centered orientable wheel (Caster Wheel)
 - Swedish wheel
- Mobile Robot Locomotion
 - Degrees of mobility
 - 5 types of driving (steering) methods
- Kinematics of WMR
- Basic Control