# **ENR-325/325L Principles of Digital Electronics and Laboratory**

Xiang Li Fall 2025



### Hamming codes can be done in the CS way







#### Hamming codes can be done in the EE way

Before that, we need to acquire some basic skill sets.

Pre-step: Data forms

Step 1: Data manipulation

Step 2: Information storage

Step 3: Interface



#### **Pre-step: Data forms**

Say bye-bye to base 10:

Base 10 (0,1,2,3,4,5,6,7,8,9):  

$$(4321)_{10} =$$

$$4 \times 3 \times 2 \times 1 \times$$

$$+10^{3} + 10^{2} + 10^{1} + 10^{0}$$

Base 2 (0,1): Base 16 (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F): 
$$(1011)_2 = (FF12)_{16} = \\ 1 \times 0 \times 1 \times 1 \times \\ +2^3 + 2^2 + 2^1 + 2^0 + 2^0 + 16^3 + 16^2 + 16^1 + 16^0$$

Looking up how we do base conversions manually and in python.



## The calculation of base 2 are pretty boring compared to base 10

| Base 10<br>324 | Base 2      | Base 10     | Base        |
|----------------|-------------|-------------|-------------|
|                | 110         | 324         | 11          |
| <u>+123</u>    | <u>+101</u> | <u>×123</u> | <u>× 10</u> |

We will revisit more binary arithmetic operation later, after the logic gates!



#### Discuss: the origin of base 16?



### Discuss: the origin of base 16?

#### My theory:

An easy and fair way to compute with a weightless balance scale.



https://commons.wikimedia.org/w/index.php?curid=79229218



https://www.inchcalculator.com/how-to-read-a-ruler/



#### Discuss: why CS loves Hex(decimal) coding

0b:00111001001011111010

0x:392FA



### Example: why CS loves Hex(decimal) coding

Example: RGB (8bit) color code or Hex code



#F36753

R:

Bin(243)=<u>1111</u>0011

G:

Bin(103)=<u>0110</u>0111

B: Bin(83)=01010011



https://www.figma.com/color-wheel/