

Κατευθυνόμενοι Γράφοι (Digraphs-Δίγραφοι)

- Ένας δίγραφος είναιένας γράφος με όλεςτις ακμέςκατευθυνόμενες
 - Συντομία του "directed graph"
- Εφαρμογές
 - δρόμοι μιας κατεύθυνσης
 - πτήσεις
 - χρονοδρομολόγηση

Ιδιότητες Δίγραφων

- □ 'Eva γράφος G=(V,E) έτσι ώστε
 - Κάθε ακμή έχει μια κατεύθυνση:
 - Η ακμή (a,b) πάει από το a στο b, αλλά όχι από το b στο a
- □ Av o G είναι απλός, $m ≤ n \cdot (n-1)$
- Αν καταχωρούμε τις ακμές που προσπίπτουν και αυτές που φεύγουν σε ξεχωριστές λίστες γειτνίασης, μπορούμε να καταγράψουμε τις προσπίπτουσες και τις πλευρές που φεύγουν σε χρόνο ανάλογο του μεγέθους τους

Εφαρμογή

© 2010 Goodrich, Tamassia

 Δρομολόγηση: η πλευρά (a,b) σημαίνει ότι η εργασία α πρέπει να ολοκληρωθεί πριν

Κατευθυνόμενο DFS

- Μπορούμε να εξειδικεύσουμε τους αλγόριθμους σάρωσης (DFS και BFS) σε δίγραφους σαρώνοντας τις ακμές μόνο κατά την φορά τους
 - Στο κατευθυνόμενο DFS αλγόριθμο, έχουν τεσσάρων ειδών τύπους ακμών
 - ακμές που έχουν ανακαλυφθεί
 - ακμές οπισθοχώρησης
 - ακμές προώθησης
 - ακμές διασταύρωσης
 - Ένα κατευθυνόμενο DFS που ξεκινάει από την κορυφή s καθορίζει τις κορυφές που είναι προσπελάσιμες από το s

Προσβασιμότητα

Το DFS δένδρο με ρίζα στο ν: οι προσβάσιμες κορυφές από την ν μέσω κατευθυνόμενων διαδρομών

Ισχυρή συνεκτικότητα

 Κάθε κορυφή μπορεί να φθάσει σε όλες τις άλλες κορυφές

Αλγόριθμος Ισχυρής Συνεκτικότητας

- Επιλέγουμε νια κορυφή ν στον G
- Εκτελούμε μια DFS από την ν στον G
 - Αν υπάρχει κάποια κορυφή w που δεν έχουμε επισκεφθεί, τύπωσε 'όχι'
- Έστω G' ο γράφος G με τις ακμές αντεστραμμένες
- Εκτέλεση ενός DFS από την ν στο G'
 - Αν υπάρχει κάποια κορυφή w που δεν έχουμε επισκεφθεί, τύπωσε 'όχι'
 - Διαφορετικά, τύπωσε "vai"
- □ Χρόνος τρεξίματος: O(n+m)

Ισχυρά Συνδεδεμένες Συνιστώσες

- Μaximal υπογράφοι έτσι που κάθε κορυφή μπορεί να προσπελάσει όλες τις άλλες κορυφές
- Μπορεί να γίνει σε χρόνο O(n+m) με DFS, αλλά είναι πιό πολύπλοκο

Μεταβατική Κλειστότητα

- Δίδεται ένας δίγραφος G, η μεταβατική κλειστότητα του *G* είναι ο δίγραφος *G** έτσι ώστε
 - G* έχει τις ίδιες κορυφές με τον G
 - αν ο G έχει μια κατευθυνόμενη διαδρομή από την u στη v ($u \neq v$), ο G^* έχει μια κατευθυνόμενη ακμή από $T\eta \vee u \ OT\eta \ v$
- Η μεταβατική κλειστότητα παρέχει πληροφορίες προσβασιμότητας για το **δίγραφο** © 2010 Goodrich, Tamassia

Υπολογισμός Μεταβατικής Κλειστότητας

Μπορούμε να εκτελέσουμε DFS ξεκινώντας σε κάθε κορυφή

O(n(n+m))

Αν υπάρχει τρόπος να πάμε από το Α στο Β και από το Β στο C, τότε υπάρχει τρόπος και από το Α στο C

Εναλλακτικά ... Χρήση δυναμικού προγραμματισμού: Ο αλγόριθμος Floyd-Warshall

WWW.GENIUS COM

11

Floyd-Warshall Μεταβατική Κλειστότητα

Δ Ιδέα #1: Αρίθμησε τις κορυφές 1, 2, ..., n.

Ιδέα #2: Θεωρείστε τις διαδρομές που χρησιμοποιούν μόνο κορυφές αριθμημένες
 1, 2, ..., k, σαν ενδιάμεσες κορυφές:

Χρήση μόνο κορυφών αριθμημένων 1,...,k (προσθήκη αυτής της ακμής "'αν, δεν είναι ήδη μέσα)

Χρησιμοποιεί μόνο κορυφές αριθμημένες 1,...,k-1

Χρησιμοποιεί μόνο κορυφές αριθμημένες 1,...,k-1

Κατευθυνόμενοι Γράφοι

12

Αλγόριθμος Floyd-Warshall

- \Box Αρίθμησε τις κορυφές $v_1, ..., v_n$
- \Box Υπολόγισε τους δίγραφους G_0 , ..., G_n
 - \blacksquare $G_0 = G$
 - $o G_k$ έχει την κατευθυνόμενη ακμή (v_i, v_j) αν ο G έχει μια κατευθυνόμενη διαδρομή από την v_i στην v_j με ενδιάμεσες κορυφές στις $\{v_1, ..., v_k\}$
- □ Έχουμε ότι $G_n = G^*$
- \Box Στην φάση k, υπολογίζεται ο δίγραφος G_k από τον G_{k-1}
- υποθέτοντας ότι η areAdjacent είναι O(1) (δηλ., πίνακας γειτνίασης)

```
Algorithm FloydWarshall(G)
   Input δίγραφος G
   Output μεταβατική κλειστότητα G* του G
  i \leftarrow 1
  for all v \in G.vertices()
      denote v as v_i
     i \leftarrow i + 1
  G_0 \leftarrow G
  for k \leftarrow 1 to n do
     G_k \leftarrow G_{k-1}
      for i \leftarrow 1 to n \ (i \neq k) do
         for j \leftarrow 1 to n \ (j \neq i, k) do
            if G_{k-1}.areAdjacent(v_i, v_k) \land
                   G_{k-1}.areAdjacent(v_k, v_i)
                if \neg G_k.areAdjacent(v_i, v_i)
                   G_k.insertDirectedEdge(v_i, v_i, k)
      return G_n
```


Floyd-Warshall, Ολοκλήρωση

Κατευθυνόμενοι γράφοι χωρίς κύκλους και Τοπολογική Ταξινόμηση

- Ένας ἀκυκλος κατευθυνόμενοςγράφος (DAG) είναι ένας δίγραφοςχωρίς κατευθυνόμενους κύκλους
- Μια τοπολογική διάταξη ενόςδίγραφου είναι μια αρίθμηση

$$v_1, ..., v_n$$

των κορυφών έτσι που για κάθε ακμή (v_i, v_j) , έχουμε i < j

 Παράδειγμα: σε ένα δίγραφο δρομολόγησης εργασιών, μια τοπολογική διάταξη είναι μια ακολουθία εργσιών που ικανοποιεί τους κανόνες προτεραιότητας

Θεώρημα

Ένας δίγραφος έχει τοπολογική διάταξη αν και μόνον αν είναι DAG

Τοπολογική Ταξινόμηση

 Αρίθμηση των κορυφών, έτσι που αν η (u,v) ανήκει στο Ε συνεπάγεται u < v

23

Αλγόριθμος για Τοπολογική Ταξινόμηση

```
Algorithm TopologicalSort(G)

H \leftarrow G // Προσωρινό αντίγραφο του G

n \leftarrow G.numVertices()

while H is not empty do

Let v be a vertex with no outgoing edges

Label v \leftarrow n

n \leftarrow n - 1

Remove v from H
```

□ Χρόνος τρεξίματος: O(n + m)

Υλοποίηση με DFS

- Προσομοίωση του
 αλγόριθμου με χρήση
 αναζήτησης με προτεραιότητα
 βάθους
- □ O(n+m) time.

Algorithm *topologicalDFS*(*G*)

Input dag G

Output topological ordering of G $n \leftarrow G.numVertices()$

for all $u \in G.vertices()$

setLabel(u, UNEXPLORED)

for all $v \in G.vertices()$

if getLabel(v) = UNEXPLOREDtopologicalDFS(G, v)

```
Algorithm topologicalDFS(G, v)
  Input γράφος G και μια κορυφή
εκκίνησης ν του G
  Output επίθεση ετικετών στις κορυφές
του G στη συνεκτική συνιστώσα του v
  setLabel(v, VISITED)
  for all e \in G.outEdges(v)
     { outgoing edges }
     w \leftarrow opposite(v,e)
    if getLabel(w) = UNEXPLORED
       { e is a discovery edge }
       topologicalDFS(G, w)
     else
       { e is a forward or cross edge }
  Label v with topological number n
   n \leftarrow n - 1
```


35