CS100 Final Project

Mariel Pacada 12/7/2019

Data Cleaning

```
# Mis-typed number of employees
survey[survey$no employees == "6/25/2019"] <- as.factor(6-25)
survey[survey$no_employees == "1/5/2019" ] <- as.factor(1-5)</pre>
unique_gender <- unique(survey$Gender)</pre>
levels(survey$Gender)[43] <- "Queer"</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "M", "Male")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "male", "Male")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "m", "Male")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "Male-ish", "Male")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "maile","Male")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "something kinda male?", "Male")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "Cis Male", "Male")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "Mal", "Male")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "Male (CIS)", "Male")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "Make", "Male")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "Guy (-ish) ^_^", "Male")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "male leaning androgynous", "Male")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "Male ", "Male")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "Man", "Male")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "msle", "Male")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "Mail", "Male")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "cis male", "Male")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "Malr", "Male")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "Cis Man", "Male")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "ostensibly male, unsure what that really mean
survey$Gender <- replace(survey$Gender, survey$Gender == "female", "Female")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "Trans-female", "Female")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "Cis Female", "Female")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "F", "Female")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "Woman", "Female")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "f", "Female")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "Femake", "Female")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "woman", "Female")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "Female", "Female")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "cis-female/femme", "Female")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "Trans woman", "Female")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "Female (trans)", "Female")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "Female (cis)", "Female")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "femail", "Female")
survey$Gender <- replace(survey$Gender, survey$Gender == "queer/she/they", "Queer")</pre>
```

```
survey$Gender <- replace(survey$Gender, survey$Gender == "non-binary", "Queer")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "Nah", "Queer")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "All", "Queer")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "Enby", "Queer")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "fluid", "Queer")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "Genderqueer", "Queer")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "Androgyne", "Queer")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "Agender", "Queer")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "Neuter", "Queer")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "A little about you", "Queer")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == "p", "Queer")</pre>
survey$Gender <- replace(survey$Gender, survey$Gender == NA, "Queer")</pre>
survey <- survey %>%
             filter(Age > 16 & Age < 80)
survey$Timestamp <- as.character(survey$Timestamp)</pre>
for (i in 1:nrow(survey)) {
  survey$Timestamp[i] <- substring(survey$Timestamp[i], 1, 4)</pre>
survey$Timestamp <- as.numeric(survey$Timestamp)</pre>
colnames(survey)[1] <- "Year"</pre>
survey <- survey %>%
             filter(Year == 2014 | Year == 2015)
colnames(countries)[5] <- "Country"</pre>
countries$Country[200] <- "Russia"</pre>
survey_countries <- unique(survey$Country)</pre>
survey_countries <- matrix(survey_countries, ncol = 1, byrow = TRUE)</pre>
survey_countries <- as.data.frame(survey_countries, stringsAsFactors = FALSE)</pre>
colnames(survey_countries) <- c("Country")</pre>
survey_countries <- merge(survey_countries, countries, by = "Country")</pre>
survey_countries <- survey_countries %>%
                        select(Country, Country.Code)
```

Part 1: Exploratory Data Analysis

```
data(wrld_simpl)
map_countries = wrld_simpl@data$NAME %in% survey_countries$Country

plot(wrld_simpl, col = c(gray(.80), "red")[map_countries+1], main = "Countries represented in the datas"
```

Countries represented in the dataset

Tech Company Binary

Is your employer primarily a tech company/organization?

ggplot(survey, aes(x = Gender)) + geom_bar(fill = "#1D97BF") + labs(y = "Number of Respondents", title

ggplot(survey, aes(x = Age))+ geom_histogram(binwidth = 2, fill = "#1D97BF") + labs(y = "Number of Res

Part 2: Categorical Data Analysis

Correlation between Family History and Treatment

Do you feel your employer takes mental health as seriously as physical hea

How easy is it for you to take medical leave for a mental health condition?

ggplot(survey, aes(x = Gender, y = 1, fill = treatment)) + geom_bar(position = "fill", stat = "identity")

Male

Gender

0.00 -

Female

ggplot(survey, aes(x = Gender, y = 1, fill = care_options)) + geom_bar(position = "fill", stat = "ident

Queer

Do you know the options for mental health care your employer provides?

How easy is it for you to take medical leave for a mental health condition?

Have you sought treatment for a mental health condition?


```
state_benefits <- survey %>% select(state, benefits) %>% na.omit()
states <- unique(state_benefits$state)</pre>
benefit_ratio <- c()</pre>
for (i in 1:length(states)){
  total_states <- nrow(state_benefits %>% filter(state == states[i]))
  total_yes <- nrow(state_benefits %>% filter(state == states[i] & benefits =="Yes"))
  new_ratio <- total_yes/total_states</pre>
  benefit_ratio <- append(benefit_ratio, new_ratio)</pre>
}
states <- data.frame(states)</pre>
benefit_ratio <- data.frame(benefit_ratio)</pre>
states <- cbind(states, benefit_ratio)</pre>
states <- states %>% rename(state = states)
plot_usmap(data = states, values = "benefit_ratio") +
  scale_fill_continuous(name = "Ratio of 'Yes' Respondents", label = scales::comma, low = "white", high
                         "darkgreen") + theme(legend.position = "right") +
                         labs(title = "Does your company provide mental health benefits?")
```

Does your company provide mental health benefits?

Part 3: Classification

Part 4: Hypothesis Testing

```
gender_vs_treatment <- survey %>%
                        select(Gender, treatment) %>%
                        filter(Gender != "Queer")
gender_table <- with(gender_vs_treatment, table(Gender, treatment))</pre>
gender_table <- gender_table[c(16, 30), 1:2]</pre>
gender_t_test <- fisher.test(gender_table)</pre>
gender_t_test
##
   Fisher's Exact Test for Count Data
##
##
## data: gender_table
## p-value = 2.114e-11
\#\# alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.2753241 0.5080557
## sample estimates:
## odds ratio
```

```
##
     0.375182
gender_chi_test <- chisq.test(gender_table)</pre>
gender_chi_test
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: gender_table
## X-squared = 43.381, df = 1, p-value = 4.506e-11
country_table <- with(survey, table(Country, benefits))</pre>
country_table <- addmargins(country_table, FUN = list(Total = sum), quiet = TRUE)</pre>
country_table <- country_table[, 2:3]</pre>
north america <- country table[8,] + country table[46,]
not_north_america <- country_table[49,] - north_america</pre>
country_table <- matrix(c(north_america, not_north_america), ncol = 2, byrow = TRUE)</pre>
colnames(country_table) <- c("No", "Yes")</pre>
rownames(country_table) <- c("North America", "Other")</pre>
country_table <- as.table(country_table)</pre>
country_t_test <- fisher.test(country_table)</pre>
country_t_test
##
## Fisher's Exact Test for Count Data
##
## data: country_table
## p-value < 2.2e-16
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.04623651 0.09883596
## sample estimates:
## odds ratio
## 0.06809495
country_chi_test <- chisq.test(country_table)</pre>
country_chi_test
```

```
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: country_table
## X-squared = 256.25, df = 1, p-value < 2.2e-16</pre>
```