Lecture 10: Conditioning and Stability

Amos Ron

University of Wisconsin - Madison

February 22, 2021

Outline

- Conditioning
 - Introduction to the notion of conditioning
 - The condition number of a matrix
- Stability
 - Stability of factorization algorithms
 - Stability of QR-factorization

Outline

- Conditioning
 - Introduction to the notion of conditioning
 - The condition number of a matrix
- Stability
 - Stability of factorization algorithms
 - Stability of QR-factorization

Introduction to the notion of conditioning

The condition number of a matrix

Blank page

Solving a linear system in a finite precision environment

We are given a square invertible $m \times m A$, and two equations:

An equation

$$Ax = b_0, \quad x_0 := A^{-1}b_0.$$

An equation

$$Ax = b_1, \quad x_1 := A^{-1}b_1,$$

with $||x_0||$ and $||x_1||$ of about the same order.

Solving a linear system in a finite precision environment

We are given a square invertible $m \times m A$, and two equations:

An equation

$$Ax = b_0, \quad x_0 := A^{-1}b_0.$$

An equation

$$Ax = b_1, \quad x_1 := A^{-1}b_1,$$

with $||x_0||$ and $||x_1||$ of about the same order.

Question:

How large/small can the ratio

$$\frac{||b_0||}{||b_1||}$$

be?

Solving a linear system in a finite precision environment

Why should we care about such question? Assume, for example, that

$$\frac{||b_0||}{||b_1||} = 10^{12}$$

Choose $b_2 = 10^{-4}b_1$. Then

• Denote $x_2 := A^{-1}b_2$, then $x_2 = 10^{-4}x_1$, therefore, more or less,

$$||x_2|| \approx 10^{-4} ||x_0||$$
.

But:

$$||b_2|| = 10^{-4}||b_1|| = 10^{-16}||b_0||.$$

Summary of the current discussion

• We assumed that, for the given A, there exist x_0, x_1 , such that

$$||x_0|| \approx ||x_1||$$
, and $||Ax_0|| \approx 10^{12} ||Ax_1||$.

• We concluded that there exist b_0 , b_2 , such that

$$||b_0|| \approx 10^{16} ||b_2||$$
 and $||A^{-1}b_0|| \approx 10^4 ||A^{-1}b_2||$.

Solving a linear system in a finite precision environment

Summary of the current discussion

• We assumed that, for the given A, there exist x_0, x_1 , such that

$$||x_0|| \approx ||x_1||$$
, and $||Ax_0|| \approx 10^{12} ||Ax_1||$.

• We concluded that there exist b_0 , b_2 , such that

$$||b_0|| \approx 10^{16} ||b_2||$$
 and $||A^{-1}b_0|| \approx 10^4 ||A^{-1}b_2||$.

This is a disaster!

Consider the two equations $Ax = b_0$, and $Ax = b_0 + b_2$. In Matlab, the two systems are the same. But the solutions of the two systems are very different!

The definition of condition number

Definition: Condition Number

A is any matrix (not neccesarily square). $||\cdot||$ is some norm.

$$\operatorname{cond}(A) := \frac{\max\{||A\nu|| : ||\nu|| = 1\}}{\min\{||A\nu|| : ||\nu|| = 1\}}.$$

The definition of condition number

Definition: Condition Number

A is any matrix (not neccesarily square). $||\cdot||$ is some norm.

$$\operatorname{cond}(A) := \frac{\max\{||Av|| : ||v|| = 1\}}{\min\{||Av|| : ||v|| = 1\}}.$$

Note: If A is square and invertible, then

$$cond(A) = ||A||||A^{-1}||.$$

The 2-condition number

Example: A is 2X2

$$cond(A) = s(1)/s(2)$$
.

The 2-condition number

Example: Q is orthogonal

$$cond(Q) = 1.$$

Conditioning and linear systems

Theorem

A is square invertible. $b_1, b_2 \in \mathbb{R}^m$, and $x_i = A^{-1}b_i$, i = 1, 2. $||\cdot||$ is some norm. Then:

$$\frac{||x_1 - x_2||}{||x_1||} \le \operatorname{cond}(A) \frac{||b_1 - b_2||}{||b_1||}.$$

Conditioning and linear systems

Theorem

A is square invertible. $b_1, b_2 \in \mathbb{R}^m$, and $x_i = A^{-1}b_i$, i = 1, 2. $||\cdot||$ is some norm. Then:

$$\frac{||x_1 - x_2||}{||x_1||} \le \operatorname{cond}(A) \frac{||b_1 - b_2||}{||b_1||}.$$

Proof: We just need to find two vectors v_1, v_2 such that

$$\frac{||x_1 - x_2||}{||x_1||} \frac{||b_1||}{||b_1 - b_2||} = \frac{||Av_1||}{||v_1||} \frac{||v_2||}{||Av_2||}.$$

However, the LHS above is

$$\frac{||x_1 - x_2||}{||b_1 - b_2||} \frac{||b_1||}{||x_1||} = \frac{||Ax_1||}{||x_1||} \frac{||x_1 - x_2||}{||A(x_1 - x_2)||}.$$

Outline

- Conditioning
 - Introduction to the notion of conditioning
 - The condition number of a matrix
- Stability
 - Stability of factorization algorithms
 - Stability of QR-factorization

Condition numbers in the context of factorization algorithms

When solving Ax = b, we factored A = BC. We need now to solve

- By = b.
- \bullet Cx = y.

So, the condition numbers that matter are of *B* and of *C*!

Condition numbers in the context of factorization algorithms

When solving Ax = b, we factored A = BC. We need now to solve

- By = b.
- \bullet Cx = v.

So, the condition numbers that matter are of B and of C! Not hard to show:

$$cond(A) \le cond(B)cond(C)$$
.

The problem is that it is possible that

$$cond(A) << cond(B)cond(C)$$
.

In this case the factorization algorithm is unstable.

Stability of *QR*-factorization

Theorem: QR-factorization is as stable as it gets!

Assume A = QR, then:

- \circ cond(A) = cond(R).
- cond(Q) = 1.