Mendel's mechanism

02 October 2023

Taking attendance

[INSERT CODE HERE]

Predicting genotype and phenotype frequencies

- 2 alleles for flower colour
 - ► B (dominant)
 - b (recessive)
- ▶ 3 possible genotypes
 - BB
 - ► Bb
 - ▶ bb
- ▶ 2 possible phenotypes
 - Pink (BB, Bb)
 - White (bb)

¹Image: Public Domain

Predicting genotype and phenotype frequencies

- Punnett squares can predict genotype and phenotype frequencies
- Summary of all possible combinations of maternal and paternal alleles
- Predict probabilities of different genotypes given a cross

¹Image: Public Domain

Dominant-recessive: BB vs Bb

Incomplete dominance: Snapdragon

Antirrhinum majus

- Flower colour shows incomplete dominance
 - ► Homozygous red (C^RC^R) makes red flowers
 - ► Homozygous white (CWCW) makes white flowers
 - ► Heterozygous (*C*^R*C*^W) makes pink flowers
- Letter C with superscript indicates neither allele is dominant

¹Image: Public Domain

Incomplete dominance C^RC^W vs C^RC^W

Incomplete dominance: Snapdragon

Phenotypes

- ► Red:
- ► Pink:
- ► White:

Codominance

Three total alleles

- 2 dominant (A, B)
- ▶ 1 recessive (i)

Dominant alleles caused by production of A or B antigens

Other antigens (Rh) determine positive or negative status

¹Image: Public Domain

Codominant I^AI^B vs I^AI^B

Codominant I^AI^B vs I^AI^B

Phenotypes

- **A**:
- **▶** B:
- ► AB:
- **O**:

Codominant I^A i vs I^B i

Codominant I^AI^B vs I^AI^B

Phenotypes

- **A**:
- **▶** B:
- ► AB:
- **O**:

Haemophilia X-linked recessive

- Absence of blood clotting proteins
- ▶ Dominant allele X^H , recessive X^h
- ► No allele on the *Y* chromosome

¹Image: Public Domain

Sex-linked $X^{H}X^{h}$ vs $X^{H}Y$

Sex-linked $X^H X^h$ vs $X^H Y$

Phenotypes

- Unaffected:
- ► Affected:
- ► Carrier:

Dominant-recessive dihybrid cross

Consider multiple phenotypes at once

¹Image: Public Domain

Dominant-recessive dihybrid cross

Flower colour

- ► Purple (P)
- ► White (p)

Seed form

- ► Round (R)
- ► Wrinkled (r)

What are the different possible combinations of flower colour and seed form?

Dominant-recessive dihybrid cross: PpRr vs PpRr

Dominant-recessive dihybrid cross: PpRr vs PpRr

Phenotype ratios

- Purple Flowers, Round Seeds:
- ► Purple Flowers, Wrinkled Seeds:
- ▶ White Flowers, Round Seeds:
- ► White Flowers, Wrinkled Seeds:

Dominant-recessive trihybrid cross

Colour (P, p), Seed (R, r), Size (L, I)

¹Image: Public Domain

