1 要旨

サーミスタの温度による抵抗値の値を求めることにより、温度と抵抗値の相関を調べる.また、 結果からグラフを作成し、サーミスタの特性を確認する.

2 目的

今回の実験では、ホイーンストンブリッジ回路を用いて、サーミスタの温度による抵抗値の変化 を調べる.結果からグラフを作成し、温度と抵抗の相関について調べることを目的とする.

3 実験方法

追加資料 pp.1-4 を参照する.

4 実験結果

この章では測定したデータ、およびグラフを示す.

4.1 測定データ

表 1: 測定データ

No.	t(°C)	T(K)	1/T	$1/T - 1/T_0$	$R(\Omega)$
1	78.0	351.2	2.847×10^{-3}	-8.136×10^{-4}	1710
2	71.0	344.2	2.905×10^{-3}	-7.557×10^{-4}	2060
3	65.2	338.4	2.955×10^{-3}	-7.059×10^{-4}	2440
4	62.8	336.0	2.976×10^{-3}	-6.848×10^{-4}	2720
5	53.8	327.0	3.058×10^{-3}	-6.029×10^{-4}	3660
6	43.6	316.8	3.157×10^{-3}	-5.044×10^{-4}	5260
7	36.5	309.7	3.229×10^{-3}	-4.321×10^{-4}	6630
8	29.8	303.0	3.300×10^{-3}	-3.607×10^{-4}	8620
9	22.4	295.6	3.383×10^{-3}	-2.780×10^{-4}	1139×10^{1}
10	14.4	287.6	3.477×10^{-3}	-1.839×10^{-4}	1544×10^{1}
11	8.5	281.7	3.550×10^{-3}	-1.111×10^{-4}	1960×10^{1}
12	3.6	276.8	3.613×10^{-3}	-4.828×10^{-5}	2340×10^1

t は水温, T は絶対温度, T_0 は 0 °Cの絶対温度, R はサーミスタの抵抗値を表す.

4.2 グラフ

ここでは、測定したデータをもとに作成した普通グラフと片対数グラフを示す.

4.2.1 普通グラフ

ここでは、測定したデータをもとに作成した普通グラフをグラフ1に示す.

4.3 片対数グラフ

ここでは、測定したデータをもとに作成した片対数グラフをグラフ2に示す.

表のデータを以下の式に代入する.

$$\frac{1}{T} - \frac{1}{T_0}$$

$$y = \ln R, \quad a = \ln R_0, \quad b = B, \quad x = \frac{1}{T} - \frac{1}{T_0}$$

と置くことで

$$y = a + bx$$

の形で表すことができ,

測定データと最小二乗法を用いて,値はおよそ $a=10.28,\ b=3468$ となる. よって,傾き $B=3468,\ 切片$ $R_0=2.924\times 10^4$ に近い値になると考えられる.

5 考察

本実験では、サーミスタの温度変化に伴う抵抗値の変化を測定し、得られたデータをもとに、温度と抵抗の関係をグラフ化・数式化することで、サーミスタの特性を確認した.

片対数グラフを作成し、変数変換によって $y=\ln R$, $x=\frac{1}{T}-\frac{1}{T_0}$ とおくことで、関係式は線形 y=a+bx の形に変換された.この線形回帰から得られたパラメータは、切片 $a=\ln R_0\approx 10.28$, 傾き $b=B\approx 3468$ であり、これにより $R_0\approx 2.924\times 10^4$ と求められた.

この結果は、サーミスタの特性を表す式 $R = R_0 \exp\left(\frac{B}{T}\right)$ の形式に一致しており、理論的にも妥当であるといえる。特に、プロットしたデータがほぼ直線上に分布していたことからも、変換後の線形関係が成り立つことが確認できた。

ただし、いくつかのデータ点では直線からのずれが見られた.この原因としては、以下のような要因が考えられる:

- 水温の測定誤差:温度計の読み取りや、水中の温度むらによる影響。
- 抵抗測定の誤差:マルチメータの精度や接触不良による誤差.
- サーミスタの個体差:理想的なモデルとの乖離.

今後の改善点としては、温度の安定化のために撹拌器を用いる、より高精度な測定器を使用する、測定点数を増やすなどが挙げられる.

総じて、本実験を通してサーミスタの温度依存性を定量的に理解することができ、また、データ 処理によって非線形関係を線形化し、解析を容易にする手法の有効性も確認できた.