```
In [134]:
            import pandas as pd
            import numpy as np
In [135]: data = pd.read csv("Data4Modelling.csv")
In [136]: data = data.replace([np.inf, -np.inf], 0)
In [137]: data
Out[137]:
                              race gender age weight admission_type_id discharge_disposition_id admis
                                   Female
                                                                       5
                 0
                         Caucasian
                                             5
                                                   NaN
                                                                                              18
                  1
                                                   NaN
                                                                       1
                                                                                               1
                         Caucasian
                                   Female
                                             15
                 2
                    AfricanAmerican Female
                                            25
                                                  NaN
                                                                       1
                                                                                               1
                 3
                         Caucasian
                                      Male
                                            35
                                                  NaN
                                                                                               1
                 4
                         Caucasian
                                      Male
                                            45
                                                   NaN
                                                                                               1
                                        ...
                                             ...
             100109 AfricanAmerican
                                                                                               2
                                      Male
                                            75
                                                   NaN
                                                                       1
             100110 AfricanAmerican Female
                                                  NaN
                                                                                               2
                                            85
                                            75
             100111
                         Caucasian
                                      Male
                                                  NaN
                                                                                               1
             100112
                         Caucasian Female
                                            85
                                                   NaN
                                                                                               2
             100113
                         Caucasian
                                      Male
                                            75
                                                  NaN
                                                                       1
                                                                                               1
            100114 rows × 42 columns
```

In [138]: non_numeric_columns = data.select_dtypes(exclude=[float, int])

In [139]: non_numeric_columns

Out[139]:		race	gender	weight	medical_specialty	diag_1	diag_2	diag_3	
	0	Caucasian	Female	NaN	pediatrics	diabetes	diabetes	diabetes	
	1	Caucasian	Female	NaN	missing	other	other	other	
	2	AfricanAmerican	Female	NaN	missing	pregnecy	pregnecy	other	
	3	Caucasian	Male	NaN	missing	other	other	circulatory	
	4	Caucasian	Male	NaN	missing	neoplasms	neoplasms	diabetes	
					•••				
	100109	AfricanAmerican	Male	NaN	missing	diabetes	diabetes	circulatory	
	100110	AfricanAmerican	Female	NaN	missing	digestive	digestive	digestive	
	100111	Caucasian	Male	NaN	missing	other	other	other	
	100112	Caucasian	Female	NaN	surgery	injury	injury	injury	
	100113	Caucasian	Male	NaN	missing	digestive	digestive	digestive	
	100114	rows × 7 column	S						
In [140]:	_	weight"] = [" eight.value_co		str(i) == str(np.nan) else i	for i in	data["weight	
Out[140]: In [141]:		881 (25) 622 (50) 143 (94) 48 (75) 34		62'					
111 [141].	'[75-16 '[100-1 '[125-1 '[25-56 '[0-25) '[150-1 '[175-2 '>200'	00)': '87', 125)': '112', 150)': '137', 0)': '37', 1': '12', 175)': '162', 100)': '187', 1200', 175, 175, 187', 175, 187', 175, 187',			pply(lambda x :	weightDi	.ct[x])		
In [142]:	data.we	<pre>data.weight = data.weight.astype(float)</pre>							

```
In [143]: | data_checkout = data.copy()
In [144]: | from sklearn.preprocessing import LabelEncoder
          label_encoder = LabelEncoder()
In [145]: for column in data.columns:
              if data[column].dtype == 'object':
                  data[column] = label_encoder.fit_transform(data[column])
In [146]: data['readmitted'].value counts()
Out[146]: readmitted
               88757
          1
               11357
          Name: count, dtype: int64
In [147]: from sklearn.model selection import train test split
In [148]: from sklearn.preprocessing import StandardScaler
          from sklearn.model_selection import train_test_split,KFold,StratifiedKFold,crd
          from sklearn.metrics import classification report
          from sklearn.metrics import confusion matrix
          from sklearn.metrics import accuracy score, f1 score
          from sklearn.linear_model import LogisticRegression
          from sklearn.tree import DecisionTreeClassifier
          from sklearn.neighbors import KNeighborsClassifier
          from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
          from sklearn.naive bayes import GaussianNB
          from sklearn.ensemble import AdaBoostClassifier,GradientBoostingClassifier,Ran
          from lightgbm import LGBMClassifier
          from catboost import CatBoostClassifier
          from xgboost import XGBClassifier
          from tabulate import tabulate
In [149]: def BasedModel():
              basedModels = []
              basedModels.append(('LR'
                                          , LogisticRegression()))
                                          , LinearDiscriminantAnalysis()))
              basedModels.append(('LDA'
              basedModels.append(('RF'
                                          , RandomForestClassifier()))
                                          , GaussianNB()))
              basedModels.append(('NB'
                                          , AdaBoostClassifier()))
              basedModels.append(('AB'
              basedModels.append(('GBM'
                                          , GradientBoostingClassifier()))
              basedModels.append(('ET'
                                          , ExtraTreesClassifier()))
              basedModels.append(('XG'
                                          , XGBClassifier()))
              basedModels.append(('LG'
                                          , LGBMClassifier()))
              basedModels.append(('CAT'
                                           , CatBoostClassifier(silent=True)))
              return basedModels
```

```
In [150]: def BasedLine(df, method, models, drop = False):
              df check = df.copy()
              df check.weight = df check.weight.fillna(method)
              if drop == True:
                  df_check.drop("weight",axis = 'columns', inplace = True)
              y = df check['readmitted']
              X = df_check.drop(columns = 'readmitted')
              # split data into train and validation set
              X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.2,
              # Test options and evaluation metric
              scoring = 'accuracy'
              results, results_weigh = [],[]
              names = []
              scores, scores_weigh = [],[]
              data = []
              for name, model in models:
                  model.fit(X train, y train)
                  cv_results = cross_validate(model, X_train, y_train, scoring=['f1_weig
                  cv weigh = cv results["test f1 weighted"].mean()
                  cv_non = cv_results["test_f1"].mean()
                  score_non = f1_score(model.predict(X_valid), y_valid)
                  score_weigh = f1_score(model.predict(X_valid), y_valid, average='weight

                  results.append(cv_non)
                  results weigh.append(cv weigh)
                  names.append(name)
                  scores.append(score non)
                  scores_weigh.append(score_weigh)
                  data.append([name,cv non, score non, cv weigh,score weigh])
              print(tabulate(data, headers=["Model", "CV F1 Score", "Model F1 Score", "CV
              return names, results, scores
In [151]: | models = BasedModel()
In [152]: | weight mean = data.weight.mean()
          weight_median = data.weight.median()
          weight mode = data.weight.mode()
In [153]: weight_mean, weight_median, weight_mode
Out[153]: (85.84790874524715,
           87.0,
                87.0
           Name: weight, dtype: float64)
```

Median and Mode are the same

Mean Weight Imputation

```
#result for filling with mean
In [155]:
          names,results, scores = BasedLine(df = data, method=weight_mean, models = mode
          C:\Users\user\anaconda3\Lib\site-packages\sklearn\linear_model\_logistic.p
           y:460: ConvergenceWarning: lbfgs failed to converge (status=1):
           STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
           Increase the number of iterations (max iter) or scale the data as shown i
               https://scikit-learn.org/stable/modules/preprocessing.html (https://sc
           ikit-learn.org/stable/modules/preprocessing.html)
           Please also refer to the documentation for alternative solver options:
               https://scikit-learn.org/stable/modules/linear model.html#logistic-reg
           ression (https://scikit-learn.org/stable/modules/linear model.html#logisti
           c-regression)
             n iter i = check optimize result(
           C:\Users\user\anaconda3\Lib\site-packages\sklearn\linear model\ logistic.p
           y:460: ConvergenceWarning: lbfgs failed to converge (status=1):
           STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
           Increase the number of iterations (max_iter) or scale the data as shown i
               Laborator .
                   7.7 21.24 7
                                        / ± 1.7 / 1.7 /
                                                                   2 LE T ZELL
In [156]: data
Out[156]:
                  race gender age weight admission_type_id discharge_disposition_id admission_sour
                0
                     2
                            0
                                5
                                                        5
                                                                             18
                                     NaN
                1
                     2
                            0
                                15
                                     NaN
                                                        1
                                                                             1
                2
                     0
                            0
                                25
                                     NaN
                                                                             1
                                                        1
                3
                     2
                            1
                                35
                                     NaN
                                                                             1
                                45
                4
                     2
                            1
                                     NaN
                                                        1
                                                                             1
                                ...
                                                       ...
                                                                             ...
           100109
                     0
                            1
                                75
                                     NaN
                                                        1
                                                                             2
           100110
                            0
                                85
                                     NaN
                                                                             2
                                                        1
                                75
            100111
                                     NaN
                                                                             1
                                                                             2
            100112
                     2
                            0
                                85
                                     NaN
                                                        1
           100113
                     2
                               75
                            1
                                     NaN
                                                        1
                                                                             1
```

100114 rows × 42 columns

Median Weight Imputation

```
C:\Users\user\anaconda3\Lib\site-packages\sklearn\linear_model\_logistic.py:4
60: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html (https://sciki
t-learn.org/stable/modules/preprocessing.html)
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regres
sion (https://scikit-learn.org/stable/modules/linear model.html#logistic-regr
ession)
  n iter i = check optimize result(
C:\Users\user\anaconda3\Lib\site-packages\sklearn\linear model\ logistic.py:4
60: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html (https://sciki
t-learn.org/stable/modules/preprocessing.html)
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear model.html#logistic-regres
sion (https://scikit-learn.org/stable/modules/linear model.html#logistic-regr
ession)
  n iter i = check optimize result(
C:\Users\user\anaconda3\Lib\site-packages\sklearn\linear_model\_logistic.py:4
60: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max iter) or scale the data as shown in:
   https://scikit-learn.org/stable/modules/preprocessing.html (https://sciki
t-learn.org/stable/modules/preprocessing.html)
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear model.html#logistic-regres
sion (https://scikit-learn.org/stable/modules/linear model.html#logistic-regr
ession)
  n_iter_i = _check_optimize result(
C:\Users\user\anaconda3\Lib\site-packages\sklearn\linear_model\_logistic.py:4
60: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html (https://sciki
t-learn.org/stable/modules/preprocessing.html)
Please also refer to the documentation for alternative solver options:
   https://scikit-learn.org/stable/modules/linear model.html#logistic-regres
sion (https://scikit-learn.org/stable/modules/linear model.html#logistic-regr
ession)
  n_iter_i = _check_optimize_result(
C:\Users\user\anaconda3\Lib\site-packages\sklearn\linear_model\_logistic.py:4
60: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html (https://sciki
t-learn.org/stable/modules/preprocessing.html)
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear model.html#logistic-regres
```

sion (https://scikit-learn.org/stable/modules/linear_model.html#logistic-regr
ession)

n_iter_i = _check_optimize_result(

C:\Users\user\anaconda3\Lib\site-packages\sklearn\linear_model_logistic.py:4
60: ConvergenceWarning: lbfgs failed to converge (status=1):

STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
 https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-learn.org/stable/modules/preprocessing.html)

Please also refer to the documentation for alternative solver options:

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regres
sion (https://scikit-learn.org/stable/modules/linear_model.html#logistic-regr
ession)

n_iter_i = _check_optimize_result(

Model	CV F1 Score	Model F1 Score	l	CV F1 Weighted	Model F1
Weighted					
+	+		+	+	
LR	0.0310411	0.0266437	l	0.836322	
0.936712					
LDA	0.0738366	0.0664775	l	0.840131	
0.929524					
RF	0.0239893	0.0216169	j	0.835545	
0.937412	· · · · · · · · · · · · · · · · · ·				
NB	0.211293	0.207757	l	0.823763	
0.822954	ī				
AB	0.0237583	0.0241796		0.835488	
0.937356	•			1	
GBM _	0.0206729	0.0104895		0.83531	
0.938554					
ET .	0.0272913	0.0224428		0.835834	
0.937171					
XG	0.0401864	0.0297746		0.836966	
0.935172					
LG	0.0189771	0.00614574		0.835098	
0.939029					
CAT	0.0310322	0.0224138		0.83629	
0.93695					

In []:

Without Weight Imputation

In [158]: #result for filling with mean
names,results, scores = BasedLine(df = data,method=weight_mode, models = model

```
C:\Users\user\anaconda3\Lib\site-packages\sklearn\linear_model\_logistic.py:4
60: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html (https://sciki
t-learn.org/stable/modules/preprocessing.html)
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regres
sion (https://scikit-learn.org/stable/modules/linear model.html#logistic-regr
ession)
  n iter i = check optimize result(
C:\Users\user\anaconda3\Lib\site-packages\sklearn\linear model\ logistic.py:4
60: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html (https://sciki
t-learn.org/stable/modules/preprocessing.html)
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear model.html#logistic-regres
sion (https://scikit-learn.org/stable/modules/linear model.html#logistic-regr
ession)
  n iter i = check optimize result(
C:\Users\user\anaconda3\Lib\site-packages\sklearn\linear_model\_logistic.py:4
60: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html (https://sciki
t-learn.org/stable/modules/preprocessing.html)
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear model.html#logistic-regres
sion (https://scikit-learn.org/stable/modules/linear model.html#logistic-regr
ession)
  n_iter_i = _check_optimize result(
C:\Users\user\anaconda3\Lib\site-packages\sklearn\linear_model\_logistic.py:4
60: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html (https://sciki
t-learn.org/stable/modules/preprocessing.html)
Please also refer to the documentation for alternative solver options:
   https://scikit-learn.org/stable/modules/linear model.html#logistic-regres
sion (https://scikit-learn.org/stable/modules/linear model.html#logistic-regr
ession)
  n_iter_i = _check_optimize_result(
C:\Users\user\anaconda3\Lib\site-packages\sklearn\linear_model\_logistic.py:4
60: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
   https://scikit-learn.org/stable/modules/preprocessing.html (https://sciki
t-learn.org/stable/modules/preprocessing.html)
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear model.html#logistic-regres
```

sion (https://scikit-learn.org/stable/modules/linear_model.html#logistic-regr
ession)

n_iter_i = _check_optimize_result(

C:\Users\user\anaconda3\Lib\site-packages\sklearn\linear_model_logistic.py:4
60: ConvergenceWarning: lbfgs failed to converge (status=1):

STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in:
 https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-learn.org/stable/modules/preprocessing.html)

Please also refer to the documentation for alternative solver options:

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regres
sion (https://scikit-learn.org/stable/modules/linear_model.html#logistic-regr
ession)

n_iter_i = _check_optimize_result(

Model	CV F1 Score	Model F1 Score		CV F1 Weighted Model F1
Weighted				
	+		+	
LR	0.0298246	0.0207254	ı	0.836231
0.937134	•		•	·
LDA	0.073835	0.0664506		0.840131
0.929452				
RF	0.026061	0.0258621		0.835748
0.937172	•			
NB	0.211187	0.208157		0.823906
0.822986				
AB	0.0239732	0.0241796		0.835524
0.937356	0.0400000	0.00700700		0.005465
GBM	0.0198089	0.00788782	ı	0.835165
0.938838	0.0272026	0.0100330		0 02502 I
ET	0.0272836	0.0190229	ı	0.83582
0.937246 XG	0.0425175	0.0372881	ı	0.83716
0.935025 l	0.0423173	0.0372881	ı	0.83710
LG	0.0185404	0.00876808	ĺ	0.835031
0.938967	0.0103404	0.00070000	1	0.033031
CAT	0.0308211	0.0215703	1	0.836254
0.937042	3.0300211	0.0213703	1	0.03023.

In []: