Алгебра и геометрия

Григорян Сергей

5 февраля 2025 г.

Содержание

1	Лекция 1			3
	1.1	Алгеб	ра многочленов	
		1.1.1	Многочлены нескольких переменных	7
		1.1.2	Деление с остатком	7
		1.1.3	Теорема Безу и схема Горнера	Ć
		1.1.4	НОД двух мн-ов. Алгоритм Евклида	10

1 Лекция 1

1.1 Алгебра многочленов

 $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n, n \in \mathbb{N} \cup \{0\}$$

Количество a_i — конечно.

$$\mathbb{R}[x], +, \cdot, \cdot \lambda, \lambda \in \mathbb{R}$$

$$1, x, x^2, \dots$$

$$x^m \cdot x^l = x^{m+l}$$

<u>Определение</u> **1.1. Алгеброй над полем** \mathbb{F} называется множество A с определёнными на нём операциями: $+;\cdot;\cdot\lambda,\lambda\in\mathbb{R}$. Причём выполняются следующие свойства:

- 1) $(A, +, \cdot \lambda) \Pi\Pi$ над \mathbb{F}
- 2) $(A, +, \cdot)$ кольцо (не обязательно коммутативное)

$$\lambda(x \cdot y) = x \cdot (\lambda y) = (\lambda x) \cdot y, \forall \lambda \in \mathbb{F}, x, y \in A$$

<u>Пример.</u> 1. $\mathbb{R}[x]$ — алгебра многочленов (алгебра с единицей, т. к. это кольцо с единицей)

2. $M_n(\mathbb{F})$

Вопрос: что собой представляет $\mathbb{Z}_p[x]$? (p - простое)

Πο MTΦ, $\forall x \neq 0, \overline{x}^{p-1} = 1 \Rightarrow \overline{x}^p = \overline{x}$.

Следовательно, $\overline{x}^p - \overline{x} \equiv 0$ (что очень плохо)

Выход из ситуации: рассм. многочлен как набор коэффициентов.

Положим \tilde{R} — коммутативное кольцо с 1

Определение 1.2. Многочленом над кольцом \tilde{R} с 1 называется последовательность:

$$(a_0, a_1, \ldots, a_n, \ldots)$$

где лишь конечное число коэффициентов (из \tilde{R}) отличны от 0 (такие п-ти называют **финитными**).

Операции:

• Сложение: $A = (a_i), B = (b_i)$:

$$A + B = (a_i + b_i)$$

• Умножение: $A = (a_i), B = (b_i) \mapsto C = (c_i)$:

$$c_k = \sum_{i=0}^k a_i b_{k-i}$$

Пример.

$$(a_0 + a_1 x)(b_0 + b_1 x) = a_0 b_0 + (a_1 b_0 + a_0 b_1)x + a_1 b_1 x^2$$

• Умножение на $\lambda \in \tilde{R}$:

$$(\lambda A) = (\lambda a_i)$$

Утверждение 1.1. Множество $\tilde{R}[x]$ всех многочленов над \tilde{R} является коммутативным кольцом относительно "+, ."

Доказательство. $(\tilde{R}[x],+)$ — абелева группа с нейтральным эл-ом $0=(0,0,0,\ldots)$

 $(\tilde{R}[x],\cdot)$ - коммутативная полугруппа.

$$BA \to c_k' = \sum_{j+i=k} b_i \cdot a_j = c_k$$

$$(A \cdot B) \cdot C \stackrel{?}{=} A \cdot (B \cdot C)$$

$$((A \cdot B) \cdot C)_k = \sum_{i=0}^k (A \cdot B)_i \cdot c_{k-i} = \sum_{i=0}^k \sum_{j=0}^i a_j b_{i-j} c_{k-i}$$
 (1)

$$(A \cdot (B \cdot C))_k = \sum_{s=0}^k a_s (BC)_{k-s} = \sum_{s=0}^k \sum_{t=0}^{k-s} a_s b_t c_{k-s-t}$$
 (2)

$$i = s + t \iff t = i - s, 0 \le t \le k - s \Rightarrow 0 \le i - s \le k - s$$

 $\Rightarrow s < i < k$

$$(2) = \sum_{s=0}^{k} \sum_{i=s}^{k} a_s b_{i-s} c_{k-i} = \left[s \mapsto j \right] = \sum_{j=0}^{k} \sum_{i=j}^{k} a_j b_{i-j} c_{k-i}$$

Диаграмма, показывающая, что суммы пробегают одинаковые пары (i,j)

$$A(B+C)\stackrel{?}{=}AB+AC$$

$$(A(B+C))_k=\sum_{i=0}^ka_i(b+c)_{k-i}=\sum_{i=0}^ka_ib_{k-i}+\sum_{i=0}^ka_ic_{k-i}.$$
 Ч. Т. Д.

Следствие. $\mathbb{F}[x]$ — бесконечномерная алгебра с базисом: $1, x, x^2, ...$

$$1 = (1, 0, 0, 0, \dots)$$

$$1 \cdot a \stackrel{?}{=} a$$

$$(1 \cdot a)_k = \sum_{i=0}^k 1_i \cdot a_{k-i} = [i = 0] = a_k$$

Вывод: когда \tilde{R} - кольцо с единицей, то и $\tilde{R}[x]$ — кольцо с единицей.

Определение 1.3.

$$x: = (0, 1, 0, 0, \dots)$$

$$x^{2} = x \cdot x = (0, 1, 0, 0, \dots) \cdot (0, 1, 0, 0, \dots)$$

$$(x^{2})_{k} = \sum_{i=0}^{k} x_{i} x_{k-i} = \begin{cases} 1, k = 2 \\ 0, k \neq 2 \end{cases}$$

$$x^{n} = (0, 0, \dots, \underbrace{1}_{n+1}, 0, \dots)$$

$$(a_{0}, a_{1}, \dots, a_{n} + 1, 0, 0, \dots) = a_{0} \cdot 1 + a_{1} \cdot x + \dots + a_{n} \cdot x^{n}$$

Определение 1.4. Последний ненулевой коэффициент многочлена $A=(a_1,\ldots,a_n,0,\ldots)$ называется старшим коэффициентом многочлена A, а его индекс — степень многочлена.

$$\deg A = \max\{i \mid a_i \neq 0\}$$

 $\underline{\mathbf{Sameчaниe}}$. Степень нулевого многочлена обычна неопределена, либо равна $-\infty$

Определение 1.5. Коммутативное кольцо R с единицей $1 \neq 0$ называется областью целостности (или целостностным кольцом), если:

$$\forall a, b \in R \Rightarrow a \cdot b \neq 0, a \neq 0, b \neq 0$$

(T. e. в R нет делителей нуля)

Утверждение 1.2. Пусть R — область целостности. Тогда в R справо правило сокращения:

$$\begin{cases} ab = ac \\ a \neq 0 \end{cases} \Rightarrow b = c$$

Доказательство.

$$a(b-c)=0 \stackrel{\text{Область}}{\Rightarrow} \stackrel{\text{целостности}}{\Rightarrow} b-c=0 \Rightarrow b=c$$

Вопрос: пусть R — коммутативное кольцо с 1, с правилом сокращения. Является ли тогда R — областью целостности.

Утверждение 1.3. Пусть R — коммутативное кольцо c 1.

$$A, B \in R[x]$$

- a) $deg(A + B) \le max(deg A, deg B)$
- b) $\deg(A \cdot B) \le \deg A + \deg B$
- c) Если вдобавок к условию, R область целостности, то:

$$\deg(A \cdot B) = \deg A + \deg B$$

Доказательство. а) Пусть $a=\deg A, b=\deg B$. Покажем, что если $n>\max(a,b),$ то $(A+B)_n=0$

$$(A+B)_n = a_n + b_n = 0 + 0 = 0$$

b) Пусть n > a + b. Покажем, что $(A \cdot B)_n = 0$

$$(A \cdot B)_n = \sum_{i=0}^n a_i b_{n-i} = \sum_{i=0}^a a_i b_{n-i} + \sum_{i=a+1}^n a_i b_{n-i}$$

$$\underbrace{\sum_{i=0}^n a_i b_{n-i}}_{0,\text{t. K. } n-i>b} + \underbrace{\sum_{i=a+1}^n a_i b_{n-i}}_{0,\text{t. K. } i>a}$$

$$i \le a \iff -i \ge -a \Rightarrow n-i \ge n-a > b$$

с) R — область целостности:

$$(A \cdot B)_n = (A \cdot B)_{a+b} = \underbrace{\sum_{i=0}^{a-1} a_i \cdot b_{n-i}}_{0} + \underbrace{(A)_a(B)_b}_{\neq 0} + \underbrace{\sum_{i=a+1}^{n} a_i b_{n-i}}_{0} \neq 0$$

Следствие. Если R — область целостности, то R[x] — тоже область целостности.

1.1.1 Многочлены нескольких переменных

Пусть мы строим многочлен над кольцом $R[x_1]$ (область целостности), тогда можно определить:

$$R[x_1, x_2] = (R[x_1])[x_2]$$

$$R[x_1, \dots, x_n] := \underbrace{(R[x_1, \dots, x_{n-1}])}_{R'}[x_n]$$

Если $(a_0, \ldots, a_n, \ldots)$ содержит бесконечно много ненулевых элементов, то оно принадлежит

R[[x]] — кольцу формальных степенный рядов (ФСР)

1.1.2 Деление с остатком

Пусть \mathbb{F} - поле. $\mathbb{F}[x]$ — кольцо многочленов.

Теорема 1.1. Пусть $A, B \in \mathbb{F}[x], B \neq 0$, тогда:

a) \exists npedcmasnehue.

$$A = Q \cdot B + R$$
, где $Q, R \in \mathbb{F}[x], R = 0$, либо $\deg R < \deg B$

b) Неполное частное Q и остаток R определяются по A и B однозначно.

Доказательство. a) Пусть A = 0 или $\deg A < \deg B$

$$A = 0 \cdot B + A$$
 — наше разложение

Пусть теперь $\deg A \ge \deg B$ (докажем с помощью ММИ по $\deg A$)

$$HT(A) = \alpha x^a$$
 — старший член многочлена A

$$HT(B) = \beta x^{b}$$

$$HT(A) = M \cdot HT(B), M = \frac{\alpha}{\beta} x^{a-b}$$

$$A' = A - MB$$

$$A' = Q'B + R'$$
, разложение существует по индукции $A = MB + A' = MB + Q'B + R' = (M + Q')B + R'$

b) Единственность:

$$A=Q_1B+R_1=Q_2B+R_2$$

$$(Q_1-Q_2)B=R_2-R_1$$

$$R_2-R_1\leq \max(\deg R_1,\deg R_2)<\deg B$$

$$\deg((Q_1-Q_2)B)=\deg(Q_1-Q_2)+\deg B$$
 Пусть $Q_1\neq Q_2\Rightarrow \deg((Q_1-Q_2)B)\geq B$ — противоречие.

<u>Замечание</u>. В кольце, кот. не является областью целостности, есть необратимые элементы \Rightarrow доказательство в этом случае нарушается.

1.1.3 Теорема Безу и схема Горнера

$$f(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_{n-1} x + a_n$$

Определение 1.6. Значением многочлена $f \in \mathbb{F}[x]$ на элементе $c \in \mathbb{F}$ называется:

$$f(c) = a_0 c^n + a_1 c^{n-1} + \dots + a_{n-1} c + a_n$$

Элемент c называется корнем f, если:

$$f(c) = 0$$

Утверждение 1.4. Значение f на элементе $c \in F$ равно остатку от деления f на линейный двучлен x - c.

Доказательство.

$$f(x) = q(x)(x - c) + r(x)$$

 $r(x) = 0$ или $\deg r < 1$
 $f(c) = 0 + r(c) = r(c)$

Теорема 1.2 (Безу). Элемент $c \in \mathbb{F}$ является корнем многочлена $f(x) \in \mathbb{F}[x] \iff (x-c)|f$

Доказательство. c — корень $f \iff f(c) = 0 \iff r = 0 \iff (x-c)|f$

Схема горнера:

Требуется разделить $f(x) = a_0 x^n + \ldots + a_{n-1} x + a_n$ на (x-c). (Лектор демонстрирует алгоритм)

Обоснование схемы Горнера:

$$f(x) = q(x)(x - c) + r = (b_0 x^{n-1} + b_1 x^{n-2} + \dots + b_{n-1})(x - c) + r =$$

$$= b_0 x^n + (b_1 - c \cdot b_0) x^{n-1} + \dots + (b_{n-1} - c \cdot b_{n-2}) x + r - b_{n-1} \cdot c$$

$$\begin{cases} a_0 = b_0 \\ a_1 = b_1 - c \cdot b_0 \\ a_2 = b_2 - c \cdot b_1 \\ \vdots \\ a_{n-1} = b_{n-1} - c \cdot b_{n-2} \\ a_n = r - b_{n-1} \cdot c \end{cases}$$

1.1.4 НОД двух мн-ов. Алгоритм Евклида.

Определение 1.7. f делится на g, если:

$$f = q \cdot g, q \in \mathbb{F}[x]$$

Обозначение: f:g или g|f

Определение 1.8. $f,g \in \mathbb{F}[x]$ называются **ассоциированными**, если:

$$f$$
 $:$ g и g $:$ f

$$f = q_1 \cdot g, \deg f = \deg q_1 + \deg g \Rightarrow \deg f \ge \deg g$$

 $g = q_2 \cdot f \Rightarrow \deg g \ge \deg f$
 $\Rightarrow \deg g = \deg f$
 $\deg q_1 = \deg q_2 = 0$

Определение 1.9 (НОД). Мн-н $d \in \mathbb{F}[x]$ наз-ся наибольшим общим делителем f и g, (НОД(f, g) = d), если:

- a) f:d и g:d
- b) Если d' общий делитель f и g, то $d\dot{\cdot}d'$

 $\underline{\mathbf{Замечание}}$. $HO\mathcal{A}(f,g)$ определён c точностью до ассоциированности.

$$d\ u\ d' - \partial ea\ HOДa$$

 $\Rightarrow d:d'.d':d \Rightarrow d \sim d'$

Определение 1.10. HOД(f,g) называется нормализованным, если его старший коэффициент равен 1.

<u>Теорема</u> **1.3** (О сущ-ии НОД). Пусть $f, g \in \mathbb{F}[x]$, причём хотя бы один из них ненулевой. Тогда:

а) HOД(f,g) существует, $HOД(f,g) \in \mathbb{F}[x]$

b) Echu $d = HO \mathcal{A}(f, g)$, mo $\exists u, v \in \mathbb{F}[x]$:

$$u \cdot f + v \cdot g = d$$

Доказательство. a) Доказательство конструктивное (изложение алгоритма Евклида).

$$-f=0, g \neq 0 \Rightarrow \text{HOД}(f,g)=g$$

$$0 \cdot f + 1 \cdot q = q - \Pi K$$

- $f \neq 0, g \neq 0$:
 - 1) $f = q_1 \cdot g + r_1$, где $r_1 = 0$ или $\deg r_1 < \deg g$
 - 2) $g = q_2 \cdot r_1 + r_2, \dots$
 - 3) $r_1 = q_3 \cdot r_2 + r_3, \dots$

:

$$n) \quad r_{n-2} = q_n \cdot r_{n-1} + r_n, r_n \neq 0$$

$$(n+1) \ r_{n-1} = q_{n+1} r_n$$

Получаем убывающую последовательность натуральных чисел:

$$\deg r_1 > \deg r_2 > \dots$$

Где $r_i = 0$ или $\deg r_i = 0$

Покажем, что r_n - искомый НОД.

$$r_{n-1}: r_n \Rightarrow r_{n-2}: r_n \Rightarrow \ldots \Rightarrow f: r_n, g: r_n$$

Пусть f:d' и g:d'. Покажем, что $r_n:d'$.

Из Рав-ва (1) получаем, что и $r_1 : d' \Rightarrow r_2 : d' \Rightarrow \ldots \Rightarrow r_n : d'$

b) Покажем, что все остатки r_i являются ЛК f и g. r_1 — очев. явл-ся ЛК f и g. Далее:

$$r_2 = g - q_2 r_1 = g - q_2 (f - q_1 g) = (1 - q_1)g - q_2 f$$

$$r_{n-2} = u'' f + v'' g$$

$$r_{n-1} = u' f + v' g$$

$$r_n = r_{n-2} - q_n r_{n-1} = u'' f + v'' g - q_n u' f - q_n v' g =$$
$$= (u'' - q_n u') f + (v'' - q_n v') g$$

Ч. Т. Д.

 $\frac{\mbox{Определение}}{\mbox{eсли}\mbox{ HOД}(f,g)}\!\!=1$

<u>Замечание</u>. f u g $взаимнопросты \iff \exists u,v \in \mathbb{F}[x]$:

$$u \cdot f + v \cdot g = 1$$

<u>Замечание</u>. Схему горнера можно обобщить, когда степень делителя = 2.