Exercícios - 7

Circuitos em regime sinusoidal

(de "Exercícios Parte 2 AC A", João Nuno Matos, 2015)

1- Converta os seguintes números complexos para a forma polar

a)
$$z = 5 + j5$$

b)
$$z = 10e^{-t/10}\cos(\pi t + \pi/4) + j100e^{-t/10}\sin(\pi t + \pi/4)$$

c)
$$z = 1/(5 + j5)$$

2- Converta os seguintes números complexos para a forma cartesiana.

a)
$$z = 5e^{j\frac{\pi}{4}}$$

a)
$$z = 5e^{-\tau}$$

b) $z = 4e^{j(2\pi + 3\pi/4)} + 5e^{[(t/10) + j\pi t]}$
c) $z = 1/[5e^{j(2\pi + \pi/4)}]$

c)
$$z = 1/[5e^{j(2\pi t + \pi/4)}]$$

3- Calcule a impedância vista entre os terminais A e B dos circuitos da fig. 1. Admita que os circuitos estão a ser operados em regime sinusoidal com $\omega = 1Mrad/s$. Considere $R_1 = R_3 = IK\Omega$, $R_2 = 2K\Omega$, $C_1 = C_2 =$ 10nF, $L_1 = 200\mu H$ e $L_2 = 100\mu H$.

4- Considere os circuitos da fig. 2. Sabendo que Vi = $V_m cos(\omega t)$ [V], calcule Vo(t) para cada um dos casos.

5- Para o circuito da fig. 3 calcule i(t) e v(t). Considere $V_s = 17\cos(3t)$ [V], $R=5/3\Omega$, L=5H e C=(1/25)F.

6- Determine I_1 e I_2 no circuito da fig. 4, sabendo que $V_1 = 250\sqrt{2}e^{-j30^{\circ}}/V$ Z = 78 + j45 $[\Omega]$, $V_2 = 250\sqrt{2}e^{-j90^{\circ}}$ [V].

7- Considere o circuito da fig. 5. Os valores eficazes das correntes I_1 , I_2 , e I_S são, respectivamente, 18, 15 e $30A. R_2 = 4\Omega.$

Determine R_I e o valor da impedância da bobina L_I .

8- Determine o equivalente de Thévenin do circuito da fig. 6 entre os terminais A e B.

Considere $\omega = 5 \text{ rad/s}$, $V_s = 9 \angle 0^o[V]$, $R_I = 6\Omega$, $R_2 = 3\Omega$, $C_I = (1/15)F$ e $A_V = 2$.

9- Determine o equivalente de Norton do circuito da fig. 7 entre os terminais A e B.

Considere $i_s(t) = 20\cos(10^4 t)[A]$, $R_1 = 10K\Omega$, $L_1 = 2H$ e $C_1 = 10nF$.

10- Para o circuito da fig. 8, calcule os valores instantâneos de V_a , I_a e da potência absorvida pelo elemento A, no instante t = 2.5ms.

Considere $\omega = 1000 \text{ rad/s}$, $V_s = 150 \angle 0^o[V]$, $I_I = 6 + j$ [A], $I_2 = 2 - j5$ [A] e $V_I = 100 - j40$ [V].

Respostas

1- a) $5\sqrt{2} \angle 45^{\circ}$;

b)
$$10e^{-t/10}\sqrt{\left[\cos(\pi t + \pi/4)\right]^2 + \left[10\sin(\pi t + \pi/4)\right]^2}$$
, $\angle artcg[10tg(\pi t + \pi/4)]$

c)
$$(1/10)\sqrt{2} \angle -45^{\circ}$$

2-a)
$$5\frac{\sqrt{2}}{2} + j5\frac{\sqrt{2}}{2}$$
;

b)
$$\frac{4\cos(2\pi t + 3\pi/4) + 5e^{t/10}\cos(\pi t) + }{+j\left[4\sin(2\pi t + 3\pi/4) + 5e^{t/10}\sin(\pi t)\right]},$$

c)
$$\frac{1}{5}\cos(2\pi t + \pi/4) - j\frac{1}{5}\sin(2\pi t + \pi/4)$$
.

3- a)
$$Z = (1667 + j250)\Omega$$
; **b)** $Z = (990 - j200)\Omega$

4-

a)
$$Vo(t) = \frac{V_m}{\sqrt{1 + (\omega L / R)^2}} \cos(\omega t - arctg(\omega L / R));$$

b)
$$Vo(t) = \frac{V_m}{\sqrt{1 + (1/\omega RC)^2}} \cos(\omega t - arctg(1/\omega RC));$$

5-
$$i(t) = \frac{3\sqrt{17}}{5}\cos(3t - 76^{\circ})[A];$$

 $v(t) = 5\sqrt{17}\cos(3t - 166^{\circ})[V]$

6-
$$I_1 = 6.5 \angle -25.23^{\circ}[A], I_2 = 6.8 \angle -150^{\circ}[A]$$

7-
$$R_1 = 5.13\Omega$$
, $jX_L = j4.39\Omega$

8-
$$V_{TH} = 3.71 \angle -16^{\circ}[V]$$
, $Z_{TH} = 2.47 \angle -16^{\circ}[\Omega]$

9-
$$I_{TH} = 17.9 \angle -116.6^{\circ} [A], Z_{TH} = 10 \angle -36.9^{\circ} [K\Omega]$$

10-
$$V_a(2.5ms) = -64V$$
; $I_a(2.5ms) = -4A$; $P_a(2.5ms) = 256W$.