Springer Finance

Series Editors

Marco Avellaneda, New York University, New York, NY, USA

Giovanni Barone-Adesi, Universita della Svizzera Italiana, Lugano, Switzerland

Francesca Biagini, Munich University of Applied Sciences, Munich, Germany

Bruno Bouchard, Paris Dauphine University, Paris, France

Mark Broadie, Columbia University, New York, NY, USA

Mark H. A. Davis, Imperial College London, London, UK

Emanuel Derman, Columbia University, New York, NY, USA

Paolo Guasoni, Dublin City University, Dublin, Ireland

Claudia Klüppelberg, TUM, Zentrum f. Mathematik, Garching by Munich, Germany

Mathieu Rosenbaum, École Polytechnique, Palaiseau, France

Walter Schachermayer, Universität Wien, Wien, Austria

The Springer Finance series, launched in 1998, is addressed to students, academic researchers and practitioners working on increasingly technical approaches to the analysis of financial markets. It covers mathematical and computational finance broadly, reaching into foreign exchange, term structure, risk measure and management, portfolio theory, equity derivatives, energy finance and commodities, financial economics.

All titles in this series are peer-reviewed to the usual standards of mathematics and its applications.

More information about this series at http://www.springer.com/series/3674

Time-Inconsistent Control Theory with Finance Applications

Tomas Björk Stockholm School of Economics Stockholm, Sweden Mariana Khapko University of Toronto Toronto, ON, Canada

Agatha Murgoci Ørsted Hellerup, Denmark

ISSN 1616-0533 ISSN 2195-0687 (electronic) Springer Finance ISBN 978-3-030-81842-5 ISBN 978-3-030-81843-2 (eBook) https://doi.org/10.1007/978-3-030-81843-2

Mathematics Subject Classification: 49L20, 49L99, 49N10, 49N90, 60J05, 60J20, 60J70, 91A10, 91A80, 91B02, 91B50, 91B70, 91G10, 91G80, 91-02

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG. The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The purpose of this book is to present an overview of, and introduction to, the time-inconsistent control theory developed by the authors during the last decade. The theory is developed for discrete as well as continuous time, and the kernel of the content is drawn mainly from our journal articles Björk and Murgoci (2014), Björk et al. (2017), and Björk et al. (2014). Starting from these articles, we have included more examples and substantially simplified the exposition of the discrete-time theory compared with that of Björk and Murgoci (2014). Moreover, we have extended our framework to study time-inconsistent stopping problems, including stopping problems with non-exponential discounting, mean-variance objective, and distorted probabilities. Alongside our own results we have included discussions of recent developments in the field. In order to make the text more self-contained we have also added a brief recapitulation of optimal control and stopping in discrete and continuous time.

It is important to recognize that the analysis of time inconsistency has a long history in economics and finance literature. The idea of time consistency was alluded to by Samuelson (1937) when introducing the most commonly used time-discounting method in economics, exponential discounting. Strotz (1955) in his seminal paper pointed out that any other choice of discounting function, apart from the exponential case, will lead to a dynamically inconsistent problem. More generally, in order to achieve dynamic consistency and analyze the agent's problem with a standard toolkit, one needs to make specific and often restrictive assumptions about the objective functional the agent is maximizing (or minimizing). If the agent's objective does not conform to these assumptions (see Remark 1.1), time consistency fails to hold and the usual concept of optimality does not apply. Loosely speaking, this means that the agent's tastes change over time, so that a plan for some future period deemed optimal today is not necessarily optimal when that future period actually arrives.

How can one handle time-inconsistent problems? One approach is to look for a solution that is optimal today, ignoring the time inconsistency. Strotz (1955) refers to an agent who fails to recognize the time inconsistency issue and adopts such an approach as "spendthrift." The term later coined in the literature is "naïve."

vi Preface

The naïve agent's strategies are myopic and constantly changing. Strotz (1955) also outlines two approaches for modeling a "sophisticated" agent who is aware of the time inconsistency of their tastes: the strategy of pre-commitment and that of consistent planning. In the former case, the agent decides on a plan of action that is optimal today and commits to it, ignoring the incentives to revise it in the future. In the latter case, the agent internalizes the incentives to deviate and treats them as a constraint, thus aiming to arrive at a deviation-proof solution. Importantly, in both cases the agent recognizes that their "today self" and their "future selves" may have conflicting tastes.

In our work we choose to follow the consistent planning approach of Strotz (1955) in that an agent's strategies are taken to be the outcome of an intrapersonal game whose players are successive incarnations of the same agent. Essentially, we replace the usual concept of optimality with a more general concept of intrapersonal equilibrium and look for Nash subgame-perfect equilibrium points (Selten, 1965). Using this game-theoretic approach, we present an extension of the standard dynamic programming equation, in the form of a system of nonlinear equations, for determining the intrapersonal equilibrium strategy. This extended system, loosely speaking, accounts for the incentives to deviate as time evolves and an agent's tastes change. This means that, for a general Markov process and a fairly general objective functional, we obtain a plan that the agent will actually follow. We fully acknowledge that, while our focus here is on the game-theoretic approach, the other approaches that have been studied in the literature—the problem of a naïve agent who reoptimizes as time goes by or that of a sophisticated agent who is able to pre-commit—are both interesting and relevant.

The structure of the book is as follows. Following an introductory chapter, in Part I we start by providing a brief review of optimal stochastic control in discrete time. We present the standard results of discrete-time dynamic programming theory and illustrate them by solving a standard linear quadratic regulator problem and a simple discrete-time equilibrium model. Part II contains the main results for stochastic time-inconsistent control problems in discrete time, originally developed in Björk and Murgoci (2014), together with extensions and applications. We first give an account of time-inconsistent control theory and present a number of interesting extensions, including the generalization of the additively separable expected utility model. The rest of the chapters in Part II discuss concrete examples of the general theory. The applications we present include control problems with non-exponential discounting and with mean-variance objective, time-inconsistent regulator problems, and a time-inconsistent version of the simple equilibrium model. In Part III, we summarize the continuous-time optimal control theory.

¹The term "time-inconsistent" control was coined in the literature to emphasize the contrast with optimal control theory, which deals with time-consistent problems. This terminology may seem a bit confusing because, while the problem itself is inherently time inconsistent, the controls that we aim to find are deviation-proof, meaning that they are time consistent. To be as precise as we can be, we are studying time-consistent behavior of non-committed sophisticated agents who are maximizing (or minimizing) a time-inconsistent objective functional.

Preface vii

We first give a brief introduction to standard dynamic programming results in continuous time and then proceed to illustrate the theory with a number of examples. In Part IV, we build on results developed in Björk et al. (2017) for a class of continuous-time stochastic control problems that, in various ways, are time inconsistent. The structure of chapters in this part intentionally parallels that of Part II, reflecting the fact that the discrete-time setting serves as a natural starting point for the limiting arguments we use in the continuous-time case. In Part V, we briefly summarize the standard optimal stopping theory. Then, in Part VI,² we extend our methods in order to tackle time-inconsistent stopping problems in discrete and continuous time, including stopping problems under prospect-type distorted probabilities. Examples studied in this last part include a time-inconsistent version of the simple secretary problem, costly procrastination, and the problem of selling an asset (or investing in a project) that becomes time inconsistent if we allow for non-exponential discounting or mean-variance preferences. Finally, we review some basic concepts from arbitrage theory in the appendix.

This text is intended for graduate students and researchers in finance and economics who are interested in the issues of time inconsistency that prevail in many dynamic choice problems. In this book we aim to give the main arguments on how to handle time-inconsistent problems, outline the guiding intuition, and illustrate the general theory with a number of examples that are relevant in finance. While the continuous-time applications are likely to be the main focus of mathematical finance researchers, the discrete-time examples largely target the economics readership. Our focus on presenting main arguments and ideas means that we often go lightly on some of the more technical issues, so measurability and integrability issues are at times swept under the carpet.

Since the book is intended to be self-contained, it contains a brief summary of optimal control and stopping in discrete and continuous time. The reader comfortable with these standard results is welcome to skip the summary chapters and proceed to the more complicated time-inconsistent framework directly. We acknowledge that there are many excellent textbooks on optimal stopping and control. This is why we keep our discussion of the standard theory brief and refer the reader to the extensive literature on the subject for further information. The summary of the standard results is included for completeness as well as to allow for comparing and contrasting the "intrapersonal equilibrium" results with the standard optimal results in concrete applications.

It is also worth noting that a number of open problems remain for future research. First, we note that existence and/or uniqueness remain to be proved for solutions of the extended Bellman system in a number of settings. Second, the present theory depends critically on the Markovian structure. It is intriguing to follow the new

²Note that Part VI was unfortunately finalized without Tomas Björk. The results presented in this last part of the book are the product of numerous discussions between the authors over the last few years. However, any remaining errors or omissions in this part are the responsibility of Mariana Khapko and Agatha Murgoci.

viii Preface

developments in the literature that operate without this assumption. Third, in this book we present extensions of the standard dynamic programming results for time-inconsistent problems, and it would be very interesting to see whether there exists an efficient martingale formulation for these problems. Further open research problems are discussed in Björk and Murgoci (2014) and Björk et al. (2017).

Notes on the literature can be found at the end of most chapters. These notes provide discussions of the relevant literature, emphasizing new developments and alternative approaches. They provide the reader with opportunities to explore each topic further. We have tried to keep the reference list as complete as possible, including both the work that has influenced us and also the new papers where our methodology has been used. Any serious omission is unintentional.

Dedication

Here we would like to pay our tribute to Tomas Björk, without whom this book would not exist. Tomas was an internationally recognized figure in financial mathematics, a brilliant scholar and teacher, and a caring colleague. But to us he was so much more. He was our role model, our mentor, and a close friend. We are forever grateful for all the time, guidance, support, and encouragement he so generously bestowed upon us. We miss him, dearly, every day.

In its obituary for Tomas, the Bachelier Finance Society rightly remarked that he "was still active in his beloved mathematics up to the last day." Indeed, this book, putting together a decade of his interest in time-inconsistent problems, was among the last things Tomas was working on. We very much hope that we have been able to complete it in accordance with his vision.

Toronto, ON, Canada Hellerup, Denmark April 2021 Mariana Khapko Agatha Murgoci

Acknowledgements

We are very grateful for helpful comments received from Suleyman Basak, Eric Böse-Wolf, Boualem Djehiche, Ivar Ekeland, Ali Lazrak, Kristoffer Lindensjö, Traian Pirvu, Martin Schweizer, Mogens Steffensen, Xunyu Zhou, and from several anonymous referees at *Finance and Stochastics, Mathematical Finance*, and *Springer Finance*. Finally we would like to express our gratitude to Catriona Byrne, our editor at Springer, for her invaluable advice and patience, and Tom Moss Gamblin, the copy editor who worked on the book, for helping us make the text as clear and understandable as possible.

Contents

1	Introduction			
	1.1	A Standard Control Problem	1	
	1.2	Dynamic Programming and the Concept of Time Consistency	2	
	1.3	Some Disturbing Examples	3	
	1.4	Approaches to Handling Time Inconsistency	5	
	1.5	Stopping Problems and Time Inconsistency	6	
	1.6	The Time-Inconsistent Framework	7	
	1.7	Notes on the Literature	8	
Pa	rt I (Optimal Control in Discrete Time		
2	Dyna	amic Programming Theory	13	
	2.1	Setup	13	
	2.2	Embedding the Problem	14	
	2.3	Time Consistency and the Bellman Principle	15	
	2.4	The Bellman Equation	17	
	2.5	On State Variables	19	
	2.6	Handling the Bellman Equation	20	
	2.7	Notes on the Literature	21	
3	The	The Linear Quadratic Regulator		
	3.1	Problem Formulation	23	
	3.2	Solution	24	
	3.3	Notes on the Literature	25	
4	A Si	Simple Equilibrium Model		
	4.1	Setup	27	
	4.2	The Agent's Problem	28	
	4.3	Optimality	30	
	4.4	Some Results from Arbitrage Theory	32	
	4.5	Identifying the Stochastic Discount Factor	34	
	4.6	Identifying the Martingale Measure	35	

xii Contents

	4.7	Market	t Equilibrium	36			
	4.8	Notes	on the Literature	38			
Par	t II	Time-In	consistent Control in Discrete Time				
5	Tim	e-Incons	istent Control Theory	41			
	5.1	Time C	Consistency	41			
	5.2	Basic I	Problem Formulation	42			
	5.3	The Ga	ame-Theoretic Formulation	43			
	5.4	Depen	dence on the Initial State	45			
		5.4.1	A Useful Function Sequence	45			
		5.4.2	The Recursion for <i>J</i>	46			
		5.4.3	The Extended Bellman System for the				
			State-Dependent Case	47			
		5.4.4	Variations of the Bellman System				
			for the State-Dependent Case	49			
	5.5	Nonlin	ear Function of the Expected Value	49			
		5.5.1	Another Useful Function Sequence	50			
		5.5.2	The Extended Bellman System for the Nonlinear				
			Case	51			
		5.5.3	Variations of the Bellman System for the				
			Nonlinear Case	52			
	5.6	Putting	g the Results Together	53			
		5.6.1	Variations of the Bellman System	54			
	5.7	The Ge	eneral Case	54			
		5.7.1	Variations of the Bellman System for the				
			General Case	55			
6	Ext	ensions a	nd Further Results	57			
	6.1	A Mor	e General Nonlinear Term	57			
	6.2	Infinite	e Horizon	58			
		6.2.1	The General Case	58			
		6.2.2	A Time-Invariant Problem	59			
	6.3	Kihlstr	rom–Mirman Preferences	61			
		6.3.1	The Simplest Model	61			
		6.3.2	Dependence on Present Time	64			
	6.4	Exister	nce and Uniqueness	67			
	6.5	A Scaling Result					
	6.6	An Equivalent Time-Consistent Problem					
7	Non-exponential Discounting						
	7.1	_	al Non-exponential Discounting	71			
		7.1.1	A General Discount Function	72			
		7.1.2	Infinite Horizon	74			

Contents xiii

	7.2	Quasi-Hyperbolic Discounting	76
		7.2.1 The Extended Bellman Equation	76
		7.2.2 An Example with Logarithmic Utility	77
		7.2.3 Two Equivalent Standard Problems	80
	7.3	Generalized Euler Equation	81
		7.3.1 A Variational Equation	81
		7.3.2 The Harris and Laibson Model	83
	7.4	Notes on the Literature	84
8	Mear	n-Variance Portfolios	87
	8.1	Portfolios with Constant Risk Aversion	87
	8.2	Portfolios with State-Dependent Risk Aversion	91
	8.3	Notes on the Literature	94
9	Time	e-Inconsistent Regulator Problems	95
	9.1	A Quadratic Expectation Term	95
	9.2	A State-Dependent Quadratic Term	98
	9.3	Notes on the Literature	100
10	A Ti	me-Inconsistent Equilibrium Model	101
10	10.1	Setup	101
	10.1	The Problem of the Agent	102
	10.3	Equilibrium Definitions	103
	10.4	Intrapersonal Equilibrium	104
		10.4.1 First-Order Conditions	104
		10.4.2 Identifying the Stochastic Discount Factor	105
	10.5	Market Equilibrium	106
Par	t III	Optimal Control in Continuous Time	
11	Dvna	nmic Programming Theory	111
	11.1	Setup	111
	11.2	The Infinitesimal Operator	114
	11.3	Embedding the Problem	117
	11.4	Time Consistency and the Bellman Principle	118
	11.5	The Hamilton–Jacobi–Bellman Equation	119
	11.6	Verification Theorem	122
	11.7	A Generalized HJB Equation	125
	11.8	Handling the HJB Equation	127
	11.9	Notes on the Literature	128
12	The	Continuous-Time Linear Quadratic Regulator	129
	12.1	Problem Formulation	129
	12.2	Solution	130
	12.3	Notes on the Literature	132

xiv Contents

13	Optio	mal Consumption and Investment	133
	13.1	Setup	133
	13.2	The Problem of the Agent	134
	13.3	Optimality	135
	13.4	Notes on the Literature	137
14	A Sin	nple Equilibrium Model	139
	14.1	Setup	139
	14.2	Market Equilibrium	141
	14.3	Notes on the Literature	144
Par	t IV	Time-Inconsistent Control in Continuous Time	
15	Time	-Inconsistent Control Theory	147
	15.1	The Model	147
	15.2	Problem Formulation	148
	15.3	An Informal Derivation of the Extended HJB Equation	151
		15.3.1 Deriving the Equation	151
		15.3.2 Existence and Uniqueness	155
	15.4	A Verification Theorem	155
	15.5	The General Case	160
	15.6	Notes on the Literature	162
16	•	ial Cases and Extensions	163
	16.1	The Case when $G = 0$	163
	16.2	The Case with No State Dependence	164
	16.3	Generalizing H and G	164
	16.4 16.5	A Driving Point Process	165 165
	16.6	A Scaling Result.	166
	16.7	An Equivalent Time-Consistent Problem	169
		-	
17		exponential Discounting	171
	17.1	The General Case	171
	17.2 17.3	Infinite Horizon.	173 174
	17.3	Optimal Investment and Consumption for Log Utility Notes on the Literature	174
18		1-Variance Control	179
	18.1	The Simplest Case	179
	18.2	A Point Process Extension	184
	18.3	Mean-Variance with Wealth-Dependent Risk Aversion	189 190
		18.3.2 A Special Choice of $\gamma(x)$	190
	18 4	Notes on the Literature	190

Contents xv

19	The I	Inconsistent Linear Quadratic Regulator	195	
	19.1	Problem Formulation	195	
	19.2	Solution	196	
	19.3	Notes on the Literature	197	
20	A Tir	A Time-Inconsistent Equilibrium Model		
	20.1	The Model	199	
	20.2	Equilibrium Definitions	201	
		20.2.1 Intrapersonal Equilibrium	201	
		20.2.2 Market Equilibrium	201	
	20.3	Main Goals of the Chapter	202	
	20.4	The Extended HJB Equation	202	
	20.5	Determining Market Equilibrium	203	
	20.6	Summary of Standard Results	204	
	20.7	The Stochastic Discount Factor	205	
		20.7.1 A Representation Formula for <i>M</i>	207	
		20.7.2 Interpreting the Representation Formula	209	
	20.8	Equilibrium with Non-exponential Discounting	211	
		20.8.1 Generalities	212	
		20.8.2 Logarithmic Utility Function	213	
		20.8.3 Power Utility Function	215	
D	437 (D. 45		
		Optimal Stopping Theory		
21	-	** 0	219	
	21.1		219	
			219	
		e	220	
		1 23	220	
	21.2	1	221	
	21.2	1	222	
		E	222	
			223	
	21.2		223	
	21.3	1 1 2	224	
			224	
			226	
	21.4	Notes on the Literature	226	
22	Optin		227	
	22.1		227	
		1	227	
		22.1.2 The Snell Envelope Theorem	228	
	22.2	Specializing to a Diffusion Setting	229	
		22.2.1	229	
		22.2.1 Setup	22)	

xvi Contents

		22.2.3	Variational Inequalities	233
		22.2.4	Connections to the General Case	233
	22.3	Exampl	le: Optimal Time to Sell an Asset	234
	22.4	Notes o	on the Literature	236
Par	t VI	Time-In	consistent Stopping Problems	
23	Time	-Inconsi	stent Stopping in Discrete Time	239
	23.1	Problem	n Formulation	239
	23.2	Useful	Function Sequences	241
	23.3	The Re	cursion for J	242
	23.4	The Re	cursion for V	243
	23.5	The Ge	neral Case	244
	23.6	Variatio	ons of the Bellman System	245
	23.7	Non-ex	ponential Discounting	246
		23.7.1	Finite Horizon	246
		23.7.2	Infinite Horizon	248
		23.7.3	Quasi-Hyperbolic Discounting	249
	23.8	Exampl	les	250
		23.8.1	Time-Inconsistent Secretary Problem	250
		23.8.2	Costly Procrastination	251
	23.9	Notes o	on the Literature	253
24	Time	-Inconsi	stent Stopping in Continuous Time	255
	24.1		n Formulation	255
	24.2	Time-In	nconsistent Variational Inequalities	257
		24.2.1		257
		24.2.2	A Verification Argument	261
		24.2.3	The General Case	265
	24.3	Special	Cases	267
		24.3.1	The Case when $G = 0$	267
		24.3.2	Non-exponential Discounting	267
		24.3.3	The Case with No State Dependence	270
	24.4	Exampl	les	271
		24.4.1	Selling an Asset with Non-exponential Discounting	271
		24.4.2	Selling an Asset with Mean-Variance Preferences	275
	24.5	Notes o	on the Literature	277
25	Time	-Inconsi	stent Stopping Under Distorted Probabilities	279
	25.1		e Time	279
		25.1.1	Setup	279
		25.1.2	Defining the Game	280
		25.1.3	The Basic Recursion	282
		25.1.4	The Recursion for <i>G</i>	284
		25.1.5	Putting the Results Together	285
		25.1.6	The Algorithm for a Finite Horizon	286
			<u> </u>	

Contents xvii

		25.1.7 A Verification Theorem	287
		25.1.8 Connections to the Snell Envelope	290
	25.2	Continuous Time	292
		25.2.1 Setup	293
		25.2.2 Defining the Game	293
		25.2.3 Time-Inconsistent Variational Inequalities	294
	25.3	Notes on the Literature	298
A	Basic	Arbitrage Theory	299
	A.1	Portfolios	299
	A.2	Arbitrage	301
	A.3	Girsanov and the Market Price of Risk	303
	A.4	Martingale Pricing	304
	A.5	Hedging	305
	A.6	Stochastic Discount Factors	307
	A.7	Dividends	309
	A.8	Consumption	311
	A.9	Replicating a Consumption Process	312
Ref	ference	·s	315
Ind	lex		323