

Virulence

ISSN: 2150-5594 (Print) 2150-5608 (Online) Journal homepage: http://www.tandfonline.com/loi/kvir20

Discovery of a mcr-1-bearing plasmid in commensal colistin-resistant Escherichia coli from healthy broilers in Faisalabad, Pakistan

Jiali Lv, Mashkoor Mohsin, Sheng Lei, Swaminath Srinivas, Raja Talish Wiqar, Jingxia Lin & Youjun Feng

To cite this article: Jiali Lv, Mashkoor Mohsin, Sheng Lei, Swaminath Srinivas, Raja Talish Wigar, Jingxia Lin & Youjun Feng (2018): Discovery of a mcr-1-bearing plasmid in commensal colistin-resistant Escherichia coli from healthy broilers in Faisalabad, Pakistan, Virulence, DOI: 10.1080/21505594.2018.1462060

To link to this article: https://doi.org/10.1080/21505594.2018.1462060

9	© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group© Jiali Lv, Mashkoor Mohsin, Sheng Lei, Swaminath Srinivas, Raja Talish Wiqar, Jingxia Lin, Youjun Feng
+	View supplementary material 🗗
	Accepted author version posted online: 18 Apr 2018.
	Submit your article to this journal 🗹
α	View related articles ぴ
CrossMark	View Crossmark data ☑

Publisher: Taylor & Francis

Journal: Virulence

DOI: http://dx.doi.org/10.1080/21505594.2018.1462060

Discovery of a *mcr-1*-bearing plasmid in commensal colistin-resistant *Escherichia coli* from healthy broilers in Faisalabad, Pakistan

Jiali Lv1#, Mashkoor Mohsin2#, Sheng Lei1,3#, Swaminath Srinivas4, Raja Talish Wiqar2, Jingxia Lin3, Youjun Feng1,3,5*

1 School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China

2 Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan

3 Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China

4 Department of Biochemistry, University of Illinois, Urbana, IL61801, USA

5 College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China

these authors contributed equally to this work

*Corresponding Author: Youjun Feng (fengyj@zju.edu.cn)

Keywords: Lipid A; Gut microbiome; Enteric bacteria; Colistin resistance; *mcr-1*;

Incl2; Poultry; Pakistan

Running title: mcr-1 in healthy broilers in Pakistan

Letter to the Editor

Polymyxins, like colistin (polymyxin E), are a group of cationic antimicrobial cyclic polypeptide, which have been extensively-used as prophylactic feed additives in animal production since the 1960s (1). A strong association has especially been drawn between antimicrobial use and resistance in poultry and pig farms (2-5). The advent and rise of multi-drug resistant bacteria has now prompted the re-introduction of colistin as a last-resort treatment option in human medicine (6, 7). However, the recent emergence and diversity of plasmid-borne mobile colistin resistance determinants (*mcr-1* to *mcr-5*) in *Enterobacteriaceae* has severely challenged its use in a clinical setting (8-12). In the past two years, *mcr-1* has been detected in over 40 countries across 5 of 7 continents worldwide (13-15). Except rare cases of chromosomally-integrated *mcr-1* (16, 17), its prevalent transmission relies on the transfer by diversified plasmids of different replication incompatibilities (18, 19).

Mechanistically, the *mcr-1* gene that encodes phosphoethanolamine transferase mediates the modification of the lipopolysaccharide layer (LPS) of the outer membrane of Gram-negative bacteria through the addition of phosphoethanolamine (PEA) to the 1 (or 4')-phosphate position of lipid A moieties (20, 21). This reduces the affinity of polymyxin antibiotics to their primary target, the

LPS layer. Since its discovery during routine surveillance in China (8), increasingly-accumulated evidence suggested the presence of *mcr-1*-bearing bacteria in food producing animals and humans across the world. To the best of our knowledge, the leading two types of *mcr-1*-harboring plasmids referred to Incl2 (8, 18, 22, 23) and IncX4 (24-26), have greatly facilitated global dissemination of *mcr-1* colistin resistance (14, 27). In Pakistan, the *mcr-1* gene has been identified in *Escherichia coli* (*E. coli*) isolates from human (28), wildlife (29) and a broiler suffering from colibacillosis (30). However, little is known about the prevalence of *mcr-1* and its genetic environment in commensal *E. coli* isolates from poultry in Pakistan.

From December 2016 to January 2017, cloacal swabs from a total of 100 healthy broiler chicken were obtained from four commercial farms (n=25 each) in the Faisalabad region of Pakistan. To screen the colistin resistant *E. coli*, all the samples were seeded directly onto MacConkey agar supplemented with 4 µg/ml of colistin and were incubated at 37°C for 24 hours. Of 100 birds, colistin resistant E. coli were found in only 8 (8%) samples. A single colony of E. coli was selected per sample and identified using API 20E biochemical strips (bioMérieux, Marcy l'Etoile, France). The presence of mci-1 gene was confirmed among all 8 E. coli isolates by conventional PCR as we recently conducted (19, 31). Subsequently, the minimum inhibitory concentration (MIC) of colistin among these strains was tested by micro-dilution according to the guidelines of Clinical and Laboratory Standards Institute (32, 33). The mcr-1-positive E. coli gave MIC of colistin between 2-8 µg/ml (**Table 1**). Plasmids were extracted from *mcr-1*-positive *E. coli* using alkaline lysis method. To elucidate the genetic context of *mcr-1* on these plasmids, the conventional multiplex PCR with 7 primer sets was performed (**Table S1**) as we recently described (3, 19). The plasmids isolated from the different strains had unexpectedly similar PCR profiles with the exception of pPK112 which lacks the tnpA loci (Fig. 1B). Genetic

context of *mcr-1* shows that all the plasmids lack the insertion element IS*Apl*1 (**Fig. 1A**), which has been responsible for insertion of *mcr-1* in previous studies (34). Also, these plasmids (**Fig. 1A**) are identical to the *mcr-1*-carrying plasmid pE15017 isolated in China (19, 22). These bacteria were subjected to multi-locus sequence typing analyses with the Warwick method (http://mlst.warwick.ac.uk/mlst/). Diversified sequence types were detected, namely, ST10, ST2847, ST155, ST361 and ST6395. Evidently, all strains belonged to different STs with the exception of two strains of ST361 (**Table 1**). Despite that none of these STs have been reported from Pakistan in the past, ST10 and ST155 have been reported in *mcr-1*-harboring *E. coli* isolated from chicken in China (17, 35).

Subsequently, a representative *mcr-1-c*arrying plasmid pPK105 (**Table 1**) was subjected to whole genome sequencing using the method of Illumina HiSeq X-ten. The plasmid sequences were annotated by RAST, and the genome maps were drawn with the Circos program. As a result, the genome size of pPK105 was determined to be 60.499 kb (Acc. no.: MG808035, **Fig. 2A**), encoding hundreds of open reading frames with a GC content of 42.3%. Unlike the prevalent IncX4 type plasmid reported in Pakistan, Plasmid Finder at the web server (https://cge.cbs.dtu.dk/services/PlasmidFinder/) indicated that pPK105 is a member of Inci2-type plasmid family (**Fig. 2B**). Notably, *mcr-1* is the only resistance gene detected in pPK105 (**Fig. 2B**). It is quite different from the scenarios observed in the other *mcr-1*-containing Pakistan isolate coharboring ESBL (extended-spectrum β-lactamase gene) and heavy-metal resistance. Although that IS*Apl1* sequence is missing, pPK105 retains the two conjugative genes *vir* and *pil* (**Fig. 2**). Intriguingly, we noticed that the *mcr-1* gene in pPK105 is next to a *sdrl* gene, a serine-aspartate repeat surface protein known to bind collagen (**Fig. 2B**). However, its relevance

remains unclear. Nevertheless, it has been shown earlier that ISApl1 transposon element is highly unstable in Incl2 plasmid (36).

For further investigation, the chemical modification of lipid A by the *mcr-1* protein product MCR-1, the bacterial LPS was extracted as we conducted earlier (20, 37) and then subjected to matrix-assisted laser desorption ionization—time of flight mass spectrometry (MALDI-TOF MS) (38). In comparison to *E. coli* MG1655 (m/z 1796.29, **Fig. 3A**), a shift in the predominant lipid A species (m/z 1920.136, **Fig. 3A**) was observed in the *mcr-1*-expressing PK105 strain (Δ_{mass} is close to 123) corresponding to the addition of a PEA moiety (**Fig. 3B**). This new peak corresponds to a single modification that may occur at either the 1 or the 4 position (**Fig. 3B**). This highlighted that surface remodeling by the *mcr-1*-encoding phosphoethanolamine transferase contributes to the resultant colistin resistance (14).

The discovery of the *mcr-1* gene, prompted a shift in focus from chromosomal mutations causing collistin-resistance to a transmissible plasmid-borne collistin resistance determinant. In addition to clinical isolates in humans, antimicrobial surveillance programs in Europe have identified *mcr-1* in commensal bacterial populations from broilers, pigs and turkeys (39). This study shows a similar threatening scenario in the Faisalabad region of Pakistan where high rates of *mcr-1* positive *E. coli* were identified in healthy broilers. Retrospectively, the discovery of diverse clonal backgrounds of *E. coli* harboring the plasmid-borne *mcr-1* is similar to scenarios observed earlier in Chinese poultry.

Similarly, data on global population structure of *mcr-1*-positive *E. coli* showed large diversity in STs but limited plasmid types, particularly with regional spread of IncHI2 plasmids in Europe and IncI2 in Asia (14). This indicated the possible spread of a single *mcr-1* colistin resistance gene across large geographical distances. It seems likely that farm animals act as a reservoir for the genetic diversity of *mcr-1* (40).

Funding

This work was supported by National Key R&D Program of China (2017YFD0500202, YF), National Key Basic Research Program of China (2016YFC1200100, YF), and National Natural Science Foundation of China (31570027 & 81772142, YF). Dr. Feng is a recipient of the "Young 1000 Talents" Award.

Author Contributions

YF and MM designed and supervised this project; YF, MM, JL, SL, SS, RW, and J-X L performed experiments; YF, JL, MM, and SL analyzed the data and prepared figures; YF, MM, SS and SL drafted this manuscript.

Disclosure of Potential Conflicts of Interest

We declare that no conflict of interest is present.

References

- 1. Li J, Nation RL, Turnidge JD, Milne RW, Coulthard K, Rayner CR, Paterson DL. 2006. Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect Dis 6:589-601.
- 2. Nguyen NT, Nguyen HM, Nguyen CV, Nguyen TV, Nguyen MT, Thai HQ, Ho MH, Thwaites G, Ngo HT, Baker S, Carrique-Mas J. 2016. Use of Colistin and Other Critical Antimicrobials on Pig and Chicken Farms in Southern Vietnam and Its Association with Resistance in Commensal Escherichia coli Bacteria. Applied and Environmental Microbiology 82:3727-3735.
- 3. Li Z, Tan C, Lin J, Feng Y. 2016. Diversified variants of the *mcr-1*-carrying plasmid reservoir in the swine lung microbiota. Sci China Life Sci 59:971-3.
- 4. Gao R, Li Y, Lin J, Tan C, Feng Y. 2016. Unexpected complexity of multidrug resistance in the *mcr-1*-harbouring *Escherichia coli*. Sci China Life Sci 59:732-4.
- 5. Zhang H, Seward CH, Wu Z, Ye H, Feng Y. 2016. Genomic insights into the ESBL and MCR-1-producing ST648 *Escherichia coli* with multi-drug resistance. Sci Bull (Beijing) 61:875-878.
- 6. Falagas ME, Kasiakou SK. 2005. Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis 40:1333-41.
- 7. Caniaux I, van Belkum A, Zambardi G, Poirel L, Gros MF. 2017. MCR: modern colistin resistance. Eur J Clin Microbiol Infect Dis 36:415-420.
- 8. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu JH, Shen J. 2016. Emergence of plasmid mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16:161-8.
- 9. Yin W. Li H, Shen Y, Liu Z, Wang S, Shen Z, Zhang R, Walsh TR, Shen J, Wang Y. 2017. Novel plasmid-mediated colistin resistance gene *mcr-3* in *Escherichia coli*. mBio 8:e00543-17.
- 10. Carattoli A, Villa L, Feudi C, Curcio L, Orsini S, Luppi A, Pezzotti G, Magistrali CF. 2017. Novel plasmid-mediated colistin resistance *mcr-4* gene in *Salmonella* and *Escherichia coli*, Italy 2013, Spain and Belgium, 2015 to 2016. Euro Surveill 22:pii: 30589.
- 11. Borowiak M, Fischer J, Hammerl JA, Hendriksen RS, Szabo I, Malorny B. 2017. Identification of a novel transposon-associated phosphoethanolamine transferase gene, *mcr-5*, conferring colistin resistance in d-tartrate fermenting *Salmonella enterica* subsp. enterica serovar Paratyphi B. J Antimicrob Chemother 72:3317-3324.
- 12. Xavier BB, Lammens C, Ruhal R, Kumar-Singh S, Butaye P, Goossens H, Malhotra-Kumar S. 2016. Identification of a novel plasmid-mediated colistin-resistance

- gene, *mcr-2*, in *Escherichia coli*, Belgium, June 2016. Euro Surveill 21:.ES.2016.21.27.30280.
- 13. Sun J, Zhang H, Liu YH, Feng Y. 2018. Towards understanding MCR-like colistin resistance. Trends Microbiol doi:10.1016/j.tim.2018.02.006:Epub ahead of print.
- 14. Feng Y. 2018. Transferability of MCR-1/2 polymyxin resistance: Complex dissemination and genetic mechanism. ACS Infect Dis 4:291-300.
- 15. Wang X, Zhang H, Sun J, Liu YH, Feng Y. 2017. The MCR-1 colistin resistance: A new challenge to global public health. Chinese Science Bulletin 62:1018-1029.
- 16. Sun J, Li XP, Fang LX, Sun RY, He YZ, Lin J, Liao XP, Feng Y, Liu YH. 2018. Co-occurence of *mcr-1* in the chromosome and IncHI2 plasmid: persistence of colistin resistance in *Escherichia coli*. Int J Antimicrob Agents doi:10.1016/j.ijantimicag.2018.01.007:pii: S0924-8579(18)30010-4.
- 17. Zhou HW, Zhang T, Ma JH, Fang Y, Wang HY, Huang ZX, Wang Y, Wu C, Chen GX. 2017. Occurrence of plasmid- and chromosome-encoded *mcr-1* in water-borne Enterobacteriaceae in China. Antimicrob Agents Chemother doi:10.1128/AAC.00017-17.
- 18. Wang Q, Sun J, Li J, Ding Y, Li XP, Lin J, Hassan B, Feng Y. 2017. Expanding landscapes of the diversified *mcr-1*-bearing plasmid reservoirs. Microbiome 5:70.
- 19. Ye H, Li Y, Li Z, Gao R, Zhang H, Wen R, Gao GF, Hu Q, Feng Y. 2016. Diversified *mcr-1*-harbouring plasmid reservoirs confer resistance to colistin in human gut microbiota. mBio 7:e001/7.
- 20. Xu Y, Lin J, Cui T, Srinivas S. Feng Y. 2018. Mechanistic insights into transferable polymyxin resistance among gut bacteria. J Biol Chem 293:4350-4365.
- 21. Sun J, Xu Y, Gao R, Lin J, Wei W, Srinivas S, Li D, Yang RS, Li XP, Liao XP, Liu YH, Feng Y. 2017. Deciphering MCR-2 colistin resistance. mBio 8:pii: e00625-17.
- 22. Gao R, Hu Y, Li Z, Sun J, Wang Q, Lin J, Ye H, Liu F, Srinivas S, Li D, Zhu B, Liu YH, Tian GB, Feng Y. 2016. Dissemination and mechanism for the MCR-1 colistin resistance. PLoS Pathog 12:e1005957.
- Wang Y, Tian GB, Zhang R, Shen Y, Tyrrell JM, Huang X, Zhou H, Lei L, Li HY, Doi Y, Fang Y, Ren H, Zhong LL, Shen Z, Zeng KJ, Wang S, Liu JH, Wu C, Walsh TR, Shen J. 2017. Prevalence, risk factors, outcomes, and molecular epidemiology of *mcr-1*-positive Enterobacteriaceae in patients and healthy adults from China: an epidemiological and clinical study. Lancet Infect Dis 17:390-399.
- 24. Wang Q, Sun J, Ding Y, Li XP, Liu YH, Feng Y. 2017. Genomic insights into *mcr-1*-positive plasmids carried by colistin-resistant *Escherichia coli* isolates from inpatients. Antimicrob Agents Chemother 61:pii: e00361-17.

- 25. Sun J, Fang LX, Wu Z, Deng H, Yang RS, Li XP, Li SM, Liao XP, Feng Y, Liu YH. 2017. Genetic analysis of the IncX4 plasmids: Implications for a unique pattern in the *mcr-1* acquisition. Sci Rep 7:424.
- 26. Li R, Xie M, Zhang J, Yang Z, Liu L, Liu X, Zheng Z, Chan EW, Chen S. 2017. Genetic characterization of *mcr-1*-bearing plasmids to depict molecular mechanisms underlying dissemination of the colistin resistance determinant. J Antimicrob Chemother 72:393-401.
- 27. Matamoros S, van Hattem JM, Arcilla MS, Willemse N, Melles DC, Penders J, Vinh TN, Thi Hoa N, consortium C, de Jong MD, Schultsz C. 2017. Global phylogenetic analysis of *Escherichia coli* and plasmids carrying the *mcr-1* gene indicates bacterial diversity but plasmid restriction. Sci Rep 7:15364.
- 28. Mohsin M, Raza S, Roschanski N, Guenther S, Ali A, Schierack P. 2017. Description of the first *Escherichia coli* clinical isolate harboring the colistin resistance gene *mcr-1* from the indian subcontinent. Antimicrob Agents Chemother 61: pii: e01945-16.
- 29. Mohsin M, Raza S, Roschanski N, Schaufler K, Guenther S. 2016. First description of plasmid-mediated colistin-resistant extended-spectrum beta-lactamase-producing *Escherichia coli* in a wild migratory bird from Asia. Int J Antimicrob Agents 48:463-4.
- 30. Azam M, Ehsan I, Sajjad Ur R, Saleemi MK, Javed MR, Mohsin M. 2017. Detection of the colistin resistance gene *mcr-1* in avian pathogenic *Escherichia coli* in Pakistan. J Glob Antimicrob Resist 11:152-153.
- 31. Wang Q, Li Z, Lin J, Wang X, Deng X, Feng Y. 2016. Complex dissemination of the diversified *mcr-1*-harbouring plasmids in *Escherichia coli* of different sequence types. Oncotarget 7:82112-82122.
- 32. Galani I, Kontopidou F, Souli M, Rekatsina PD, Koratzanis E, Deliolanis J, Giamarellou H. 2008. Colistin susceptibility testing by Etest and disk diffusion methods. Int J Antimicrob Agents 31:434-9.
- 33. Bakthavatchalam YD, Veeraraghavan B. 2017. Challenges, Issues and Warnings from CLSI and EUCAST Working Group on Polymyxin Susceptibility Testing. J Clin Diagn Res 11:DL03-DL04.
- 34. Snesrud E, McGann P, Chandler M. 2018. The birth and demise of the IS*Apl1-mcr-1-ISApl1* composite transposon: the vehicle for transferable colistin resistance. mBio 9.
- 35. Yang YQ, Li YX, Song T, Yang YX, Jiang W, Zhang AY, Guo XY, Liu BH, Wang YX, Lei CW, Xiang R, Wang HN. 2017. Colistin resistance gene *mcr-1* and its variant in *Escherichia coli* isolates from chickens in China. Antimicrob Agents Chemother 61:pii: e01204-16.

- 36. Snesrud E, Ong AC, Corey B, Kwak YI, Clifford R, Gleeson T, Wood S, Whitman TJ, Lesho EP, Hinkle M, McGann P. 2017. Analysis of serial isolates of *mcr-1*-positive *Escherichia coli* reveals a highly active IS*Apl1* transposon. Antimicrob Agents Chemother 61:pii: e00056-17.
- 37. Xu Y, Wei W, Lei S, Lin J, Srinivas S, Feng Y. 2018. An evolutionarily conserved mechanism for intrinsic and transferable polymyxin resistance. mBio 9:e02317-17.
- 38. Liu YY, Chandler CE, Leung LM, McElheny CL, Mettus RT, Shanks RM, Liu JH, Goodlett DR, Ernst RK, Doi Y. 2017. Structural modification of lipopolysaccharide conferred by *mcr-1* in Gram-negative ESKAPE pathogens. Antimicrob Agents Chemother 61:pii: e00580-17.
- 39. Perrin-Guyomard A, Bruneau M, Houee P, Deleurme K, Legrandois P, Poirier C, Soumet C, Sanders P. 2016. Prevalence of *mcr-1* in commensal *Escherichia coli* from French livestock, 2007 to 2014. Euro Surveill 21:6-8.
- 40. Monte DF, Mem A, Fernandes MR, Cerdeira L, Esposito F, Galvao JA, Franco B, Lincopan N, Landgraf M. 2017. Chicken meat as a reservoir of colistin-resistant *Escherichia coli* strains carrying *mcr-1* genes in South America. Antimicrob Agents Chemother 61:pii: e02718-16.

Table 1 Characteristics of *mcr-1*-positive *E. coli* isolates from healthy broilers in Faisalabad, Pakistan

Strains	Source	Date	MIC (µg/ml)	MLST	Farm no.
PK102	cloacal	27/12/2016	≥8	ST10	1
PK103	cloacal	27/12/2016	≥ 4	ST2847	1
PK105	cloacal	27/12/2016	≥ 8	ST155	1
PK107	cloacal	27/12/2016	≥ 8	New ST	1
- PK109	cloacal	27/12/2016	≥ 4	ST361	1
PK110	cloacal	30/01/2017	≥ 4	ST6395	3
PK111	cloacal	30/01/2017	≥ 2	ST361	3
PK112	cloacal	30/01/2017	≥ 8	New ST	3

Figure Legends

Figure 1 Genetic analyses of *mcr-1*-harboring plasmids in this study

- **A.** Scheme of different *mcr-1*-bearing plasmids
- **B.** PCR assays of *mcr-1* and neighboring loci in plasmids

16S rDNA is specific to the *E. coli* specie.

Figure 2 The representative *mcr-1*-bearing plasmid in a colistin resistant *E. coli* isolate PK105

A. Diagram for the *mcr-1*-positive plasmid (pPK105) that exists in the E. coli isolate PK105

B. Colinear comparison of the Incl2-type plasmid pPK105 with two closely-related plasmids *mcr-1*-postive M18 and *mcr-1*-negative pColR644SK1

Figure 3 MALDI-TOF MS analyses of lipid A pools of *E. coli* strains with (or without) *mcr-1*

A. MS profile of the LPS-lipid A in the negative control strain *E. coli* MG1655 **B.** MS spectrum of the LPS-lipid A in PK105, a representative strain of *E. coli* carrying *mcr-1*. A single modification may occur at the 1 (or 4') position. The position indicated here is suggestive (20).