本讲主题

网络层服务

网络层

- ❖ 从发送主机向接收主机传 送数据段(segment)
- ❖ 发送主机:将数据段封装 到数据报(datagram)中
- ❖ 接收主机: 向传输层交付数据段(segment)
- ❖ 每个主机和路由器都运行 网络层协议
- ❖ 路由器检验所有穿越它的 IP数据报的头部域
 - 决策如何处理IP数据报

网络层核心功能-转发与路由

- * 转发(forwarding): 将分组从路由器的输入端口转移到合适的输出端口
- ❖ 路由(routing): 确定 分组从源到目的经 过的路径
 - 路由算法 (routing algorithms)

本讲主题

数据报网络

数据报网络

- ❖ 网络层无连接
- *每个分组携带目的地址
- * 路由器根据分组的目的地址转发分组
 - 基于路由协议/算法构建转发表
 - 检索转发表
 - 每个分组独立选路

路由算法(协议)确定 通过网络的端到端路径

_转发表确定在本路 由器如何转发分组

目的地址范围	链路接口
11001000 00010111 00010 <mark>000 00000000</mark> 至	0
11001000 00010111 00010 <mark>111 1111111</mark>	· ·
11001000 00010111 000110 <mark>00 00000000</mark> 至	1
11001000 00010111 000110 <mark>11 11111111</mark>	•
11001000 00010111 000111 <mark>00 00000000</mark> 至	2
11001000 00010111 000111 <mark>11 11111111</mark>	-
其他	3

Q: 如果地址范围划分的不是这么"完美"会怎么样?

最长前缀匹配优先

例如:

目的地址范围			链路接口	
11001000	00010111	00010***	*****	0
11001000	00010111	00011000	*****	1
11001000	00010111	00011***	*****	2
其他				3

DA: 11001000 00010111 00010<mark>110 10100001</mark>

从哪个接口转发? A:0

DA: 11001000 00010111 00011000 10101010

从哪个接口转发? A:1

最长前缀匹配优先

在检索转发表时,优先选择与分组目的地址匹配<mark>前缀最长</mark>的入口(entry)。

本讲主题

IP协议(1)-IP数据报

Internet网络层

主机、路由器网络层主要功能:

IP数据报(分组)格式

- **※ 版本号**字段占4位: IP协议的版本号
 - E.g. 4→IPv4, 6 → IPv6

- ❖ 首部长度字段占4位: IP分组首部长度
 - 以4字节为单位
 - E.g. 5→IP首部长度为20(5×4)字节

- ❖ 服务类型(TOS)字段占8位: 指示期望获得哪种类型的服务
 - 1998 年这个字段改名为区分服务
 - 只有在网络提供区分服务(DiffServ)时使用
 - 一般情况下不使用,通常IP分组的该字段(第2字节)的值为00H

- ❖ 总长度字段占16位: IP分组的总字节数(首部+数据)
 - 最大IP分组的总长度: 65535B
 - 最小的IP分组首部: 20B
 - IP分组可以封装的最大数据: 65535-20=65515B

- **※ 生存时间(TTL)**字段占8位: IP分组在网络中可以通过的 路由器数(或跳步数)
 - 路由器转发一次分组,TTL减1
 - 如果TTL=0,路由器则丢弃该IP分组

- * 协议字段占8位: 指示IP分组封装的是哪个协议的数据包
 - 实现复用/分解
 - E.g. 6为TCP,表示封装的为TCP段;17为UDP,表示封装的是UDP数据报

- * 首部校验和字段占16位:实现对IP分组首部的差错检测
 - 计算校验和时,该字段置全0
 - 采用反码算数运算求和,和的反码作为首部校验和字段
 - 逐跳计算、逐跳校验

※源IP地址、目的IP地址字段各占32位:分别标识发送分组的源主机/路由器(网络接口)和接收分组的目的主机/路由器(网络接口)的IP地址

- **❖ 选项**字段占长度可变,范围在1~40B之间:携带安全、源 选路径、时间戳和路由记录等内容
 - 实际上很少被使用

❖填充字段占长度可变,范围在0~3B之间:目的是补齐整个首部,符合32位对齐,即保证首部长度是4字节的倍数

本讲主题

IP协议(2)-IP分片

最大传输单元(MTU)

❖ 网络链路存在MTU (最 IF:MTU₁>MTU₂ 大传输单元)—链路层数 据帧可封装数据的上限 ■ 不同链路的MTU不同 MTU_2 IP分组 **MTU**₁ 数据帧 Н **Data** MTU=Max(Data)

IP分片与重组

- ❖ 大IP分组向较小MTU链路转发时,可以被"分片" (fragmented)
 - 1个IP分组分为多片IP分组
 - IP分片到达目的主机后进 行"重组" (reassembled)
- ❖IP首部的相关字段用 于标识分片以及确定 分片的相对顺序
 - 总长度、标识、标志 位和片偏移

- ❖ 标识字段占16位:标识一个IP分组
 - IP协议利用一个计数器,每产生IP分组计数器加1,作为该IP分组的标识

位 16 19 24 31 版本号 首部长度 服务类型(TOS) 总长度 标志位 片偏移 标识(ID) 生存时间(TTL) 协议 首部检验和 源IP地址 目的IP地址 选项字段(长度可变) 填充 数据

- ❖ 标志位字段占3位:
 - DF (Don't Fragment)
 - MF (More Fragment)

- **DF** =1:禁止分片;
 - **DF** =0: 允许分片
- MF =1: 非最后一片;
 - MF =0: 最后一片(或未分片)

- ❖ 片偏移字段占13位: 一个IP分组分片封装原IP分组数据的 相对偏移量
 - 片偏移字段以8字节为单位

本讲主题

IP协议(3)-IP编址

IP编址(addressing)

❖ IP分组:

- 源地址(SA)-从哪儿来
- 目的地址(DA)-到哪儿去
- ❖ 接口(interface): 主机/路 由器与物理链路的连接
 - 实现网络层功能
 - 路由器通常有多个接口
 - 主机通常只有一个或两个 接口 (e.g.,有线的以太网 接口,无线的802.11接口)

IP编址(addressing)

223.1.1.1

❖ IP地址: 32比特(IPv4) 编号标识主机、路由 器的接口

11011111 00000001 00000001 00000001 =223.1.1.1 223 1 1 1

❖ IP地址与每个接口关联

223.1.2.1
223.1.2.9
223.1.3.27
223.1.3.27
223.1.3.2

※ 怎样为接口分配IP地址 呢?

IP子网 (Subnets)

❖IP地址:

- 网络号(NetID) 高位比特
- ■主机号(HostID) 低位比特

NetID

HostID

❖IP子网:

- IP地址具有相同网络号的设备接口
- 不跨越路由器(第三及以 上层网络设备)可以彼此 物理联通的接口

IP子网 (Subnets)

图中网络有多少个IP子网?

本讲主题

IP协议(4)-有类IP地址

IP子网 (Subnets)

❖IP地址:

- 网络号(NetID) 高位比特
- ■主机号(HostID) 低位比特

NetID

HostID

❖IP子网:

- ■IP地址具有相同网络号的设备接口
- 不跨越路由器(第三及以 上层网络设备)可以彼此 物理联通的接口

特殊IP地址

NetID	HostID	作为IP分组 源地址	作为IP分组 目的地址	用途
全0	全0	可以	不可以	在本网范围内表示本机;在 路由表中用于表示默认路由 (相当于表示整个Internet网络)
全0	特定值	不可以	可以	表示本网内某个特定主机
全1	全1	不可以	可以	本网广播地址(路由器不转发)
特定值	全0	不可以	不可以	网络地址,表示一个网络
特定值	全1	不可以	可以	直接广播地址,对特定网络 上的所有主机进行广播
127	非全 0 或 非全 1 的 任何数	可以	可以	用于本地软件环回测试,称为环回地址

私有(Private)IP地址

Class	NetIDs	Blocks
A	A 10	
В	172.16 to 172.31	16
С	192.168.0 to 192.168.255	256

本讲主题

IP协议(5)-IP子网划分与子网掩码

IP子网 (Subnets)

❖IP地址:

- 网络号(NetID) 高位比特
- ■主机号(HostID) 低位比特

NetID

HostID

❖IP子网:

- ■IP地址具有相同网络号的设备接口
- 不跨越路由器(第三及以 上层网络设备)可以彼此 物理联通的接口

子网划分(Subnetting)?

- ❖如何区分一个IP子网更小范围网络(子网)?
 - 子网划分

子网划分?

❖IP地址:

- 网络号(NetID) 高位比特
- ■子网号(SubID) 原网络主机号部分比特
- ■主机号(HostID) 低位比特

子网划分?

❖IP地址:

- 网络号(NetID) 高位比特
- ■子网号(SubID) 原网络主机号部分比特
- ■主机号(HostID) 低位比特

- ❖ 如何确定是否划分了子网?利用多 少位划分子网?
 - 子网掩码

子网掩码

NetID

- ❖形如IP地址:
 - 32位
 - ■点分十进制形式
- ❖ 取值:
 - NetID、SubID位全取1
 - HostID位全取0

子网地址+子网掩码

HostID

SubID

→准确确定子网大小

❖例如:

- ■A网的默认子网掩码为: 255.0.0.0
- ■B网的默认子网掩码为: 255.255.0.0
- ■C网的默认子网掩码为: 255.255.255.0
- 借用3比特划分子网的B网的子网掩码为: 255.255.224.0

子网划分

❖例如:

■子网201.2.3.0, 255.255.255.0, 划分为等长的4个子网

❖路由器如何确定应该将IP分组转发到哪个子网?

子网掩码的应用

- ❖将IP分组的目的IP地址与子网掩码按位与运算, 提取子网地址
- ❖例如:
 - ■目的IP地址: 172.32.1.112, 子网掩码: 255.255.254.0

- ■子网地址: 172.32.0.0(子网掩码: 255.255.254.0)
- 地址范围: 172.32.0.0~172.32.1.255
- ■可分配地址范围: 172.32.0.1~172.32.1.254
- ■广播地址: 172.32.1.255

一个C类网络划分子网举例

子网	SubID (二进制)	HostID取值范围 (二进制)	第4八位组取值范围 (十进制)
1#	000	00000 thru 11111	.0 thru .31
2#	001	00000 thru 11111	.32 thru .63
3#	010	00000 thru 11111	.64 thru .95
4#	011	00000 thru 11111	.96 thru .127
5#	100	00000 thru 11111	.128 thru .159
6#	101	00000 thru 11111	.160 thru .191
7#	110	00000 thru 11111	.192 thru .223
8#	111	00000 thru 11111	.224 thru .255

一个C类网络划分子网举例

子网	SubID (二进制)	HostID取值范围 (二进制)	第4八位组取值范围 (十进制)
1#	000	00000 thru 11111	.0 thru .31
2#	001	00000 thru 11111	.32 thru .63
3#	010	00000 thru 11111	.64 thru .95
4#	011	00000 thru 11111	.96 thru .127
5#	100	00000 thru 11111	.128 thru .159
6#	101	00000 thru 11111	.160 thru .191
7#	110	00000 thru 11111	.192 thru .223
8#	111	00000 thru 11111	.224 thru .255