Algoritmo de Dijkstra

O algoritmo de Dijkstra é o mais famoso dos algoritmos para cálculo de caminho de custo mínimo entre vértices de um grafo e, na prática, o mais empregado.

Escolhido um vértice como raiz da busca, este algoritmo calcula o custo mínimo deste vértice para todos os demais vértices do grafo. O algoritmo pode ser usado sobre grafos orientados (dígrafos), ou não, e admite que todas as arestas possuem pesos não negativos (nulo é possível). Esta restrição é perfeitamente possível no contexto de redes de transportes, onde as arestas representam normalmente distâncias ou tempos médios de percurso; poderão existir, no entanto, aplicações onde as arestas apresentam pesos negativos, nestes casos o algoritmo não funcionará corretamente.

Funcionamento do algoritmo

Assumiremos um conjunto, chama-lo-emos *PERM*, que contém inicialmente apenas o vértice fonte (raiz da busca) *s*. A qualquer momento *PERM* contém todos os vértices para os quais já foram determinados os menores caminhos usando apenas vértices em *PERM* a partir de *s*. Para cada vértice *z* fora de *PERM* matemos a menor distância *dist[z]* de *s* a *z* usando caminhos onde o único vértice que não está em *PERM* seja *z*. É necesssário também armazenar o vértice adjacente (precedente) a *z* neste caminho em *path[z]*.

Como fazer com que *PERM* cresça, ou seja, qual vértice deve ser incluído em *PERM* a seguir ? Tomamos o vértice, entre todos os que ainda não pertencem a *PERM*, com menor distância *dist*. Acrescentamos então este vértice, chamemo-lo de *current*, a *PERM*, e recalculamos as distâncias (*dist*) para todos os vértices adjacentes a ele que não estejam em *PERM*, pois pode haver um caminho menor a partir de *s*, passando por *current*, do que aquele que havia antes de *current* ser agregado a *PERM*. Se houver um caminho mais curto precisamos também atualizar *path[z]* de forma a indicar que *current* é o vértice adjacente a *z* pelo novo caminho mínimo.

Vejamos o funcionamento do algoritmo sob uma outra representação:

1) Defini-se inicialmente o nó de origem (raiz), neste caso s, e inclui-se este nó em *PERM*. Atribui-se zero a sua distância (*dist[s]*) porque o custo de ir de s a s é obviamente 0. Todos os outros nós i tem suas distâncias (*dist[i]*) inicializadas com um valor bastante grande ("infinito").

vértice	Perm	Dist	Path
S	sim	0	-
u	não	00	_
×	não	00	-
v	não	00	-
У	não	00	-

2) A partir de s consulta-se os vértices adjacentes a ele, que no grafo G são u e x. Para todos os vértices adjacentes, que chamaremos z, calcula-se:

	vértice	Perm	Dist	Path
	S	sim	0	ı
	u	não	10	S
	х	não	5	S
	٧	não	00	-
,	У	não	00	ı

3) Dentre todos os vértices não pertencentes a *PERM* escolhe-se aquele com a menor distância. Neste caso é o vértice x, pois dist[x] = 5.

vértice	Perm	Dist	Path
5	sim	0	-
u	não	10	S
×	não	5	S
v	não	60	-
У	não	00	-

4) Então, inclui-se x em PERM e a partir de x consulta-se os vértices adjacentes a ele que não estão em PERM, que no grafo G são u, v e y. Para todos os vértices adjacentes, que chamaremos z, calcula-se:

Se
$$dist[z] > dist[x] + peso(x, z)$$

 $dist[z] = dist[x] + peso(x, z)$
 $path[z] = x$
Fim Se

vértice	Perm	Dist	Path
S	sim	0	-
u	não	8	×
×	sim	5	s
٧	não	14	×
У	não	7	×

5) Dentre todos os vértices não pertencentes a *PERM* escolhe-se aquele com a menor distância. Neste caso é o vértice y, pois dist[y] = 7.

vértice	Perm	Dist	Path
S	sim	0	-
u	não	8	×
×	sim	5	S
v	não	14	×
У	não	7	Х

6) Inclui-se então y em PERM e a partir de y consulta-se os vértices adjacentes a ele que não estão em PERM, que no grafo G é apenas o vértice v.

Se
$$dist[v] > dist[y] + peso(y, v)$$

 $dist[v] = dist[y] + peso(y, v)$
 $path[v] = y$
Fim Se

	vértice	Perm	Dist	Path
	S	sim	0	ı
	u	não	8	×
	×	sim	5	s
	٧	não	13	У
1	У	sim	7	×

7) Dentre todos os vértices não pertencentes a *PERM* escolhe-se aquele com a menor distância. Neste caso é o vértice u, pois dist[u] = 8.

vértice	Perm	Dist	Path
S	sim	0	ı
u	não	8	×
×	sim	5	s
V	não	13	У
У	sim	7	×

8) Inclui-se então u em PERM e a partir de u consulta-se os vértices adjacentes a ele que não estão em PERM, que no grafo G é apenas o vértice v.

Se
$$dist[v] > dist[u] + peso(u, v)$$

 $dist[v] = dist[u] + peso(u, v)$
 $path[v] = u$
Fim Se

	vértice	Perm	Dist	Path
	S	sim	0	-
	u	sim	8	х
1	×	sim	5	S
	v	não	9	u
Υ	У	sim	7	×

9) Dentre todos os vértices não pertencentes a *PERM* escolhe-se aquele com a menor distância. Neste caso é o único vértice restante v e dist[v] = 9.

vértice	Perm	Dist	Path
S	sim	0	-
u	sim	8	×
×	sim	5	s
v	não	9	u
У	sim	7	×

10) Por fim faz-se *v* pertencer a *PERM*. Neste ponto, todos os vértices já estão em *PERM* e a busca é finalizada.

vértice	Perm	Dist	Path
S	sim	0	-
u	sim	8	×
×	sim	5	S
٧	sim	9	u
У	sim	7	×