Chapter 3 Gate-Level Minimization

Karnaugh Maps
POS Simplification
Don't Care Conditions
NAND and NOR
Exclusive OR

K-Map

- Provide an alternative technique for representing Boolean functions
- Box for every line of the Truth Table
- Karnaugh map's input values must be ordered such that the values for adjacent columns vary by only a single bit, for example, 00, 01, 11, and 10. This is necessary to observe the variable transitions
 - Known as a gray code

Multiple Inputs K-Map

K-Map Method

- The Karnaugh Map (K-Map) method uses a simple procedure for minimizing Boolean functions.
 - The map is a diagram made up of squares with each square representing one minterm of the function.
 - The key is to learn to identify visual patterns.
 - The result is always an expression that is in one of the two standard forms, SOP or POS.
 - Much faster and more more efficient than previous minimization techniques with Boolean algebra.
 - It is possible to find two or more expressions that satisfy the minimization criteria.
 - Rules to consider
 - **₹** Every cell containing a 1 must be included at least once.
 - **%** The largest possible "power of 2 rectangle" must be enclosed.
 - The 1's must be enclosed in the smallest possible number of rectangles.

Two-Variable Map

- A two-variable map holds four minterms for two variables.
 - We mark the squares of the minterms that belong to a given function.

Fig. 3-1 Two-variable Map

Representing 2-Variable Functions

Fig. 3-2 Representation of Functions in the Map

Three-Variable Map

- A three-variable map holds eight minterms for three variables.
 - Again, we mark the squares of the minterms that belong to a given function.
 - Note that the sequence is not arranged in a binary way.
 - The sequence used, similar to Gray code, allows only one bit to change from column to column and row to row.

$_{\rm X}$	^{7Z} 00	01	11	10
0	x'y'z'	x'y'z	x'yz	x'yz'
1	xy'z'	xy'z	хуг	xyz'

$\mathbf{x} \searrow$	^{7Z} 00	01	11	10
0	m_0	$m_{ m l}$	m_3	m_2
1	m4	mς	m7	тб

Three-Variable Map

Fig. 3-3 Three-variable Map

Correction: Columns are yz and not xz in fig 3-3 (book)

Mapping Functions

- When you have already been provided a function, you can map the function into a K-map by remembering
 - the cells of a k-map represent minterms
 - a 1 in a cell indicates that the minterm is part of the function
 - two adjacent 1's represent a two literal term
 - four adjacent 1's represent a one literal term
 - eight adjacent 1's represent a true function, F = 1

Minimization Characteristic in 3-Variable Maps

- Since any two adjacent cells in a 3-variable map represent a change in only a single bit, we use this to do minimization.
 - Consider the two cells for m_0 and m_1 where the difference is the negation of the bit z.

$$- F = m_0 + m_1 = x'y'z' + x'y'z = x'y'(z' + z) = x'y'$$

$x \sim 3$	^{7Z} 00	01	11	10
0	m_0	m_1	mз	m_2
1	m4	m_5	m_7	mб

$x \sim 3$	^{/Z} 00	01	11	10
0	x'y'z'	x'y'z	x'yz	x'yz'
1	xy'z'	ху' z	хуг	xyz'

Minimization Example

 Each of the two adjacent pairs of entries can be simplified by eliminating the changing bit (z in both cases).

$$- F(x,y,z) = x'y' + xy$$

$$F(x, y, z) = \sum (0,1,6,7)$$

x $\stackrel{7}{\sim}$	⁷² 00	01	11	10
0	mo	$ m m_{l}$	mз	m_2
1	m4	ms	m7	mв

Note on Adjacency

- So far, we have assumed that adjacent cells in the map need to touch each other but this is not always the case.
 - m₀ and m₂ are considered adjacent

$$m_0 + m_2 = x'y'z' + x'yz' = x'z'(y' + y) = x'z'$$

- m₄ and m₆ are considered adjacent

$$m_4 + m_6 = xy'z' + xyz' = xz'(y' + y) = xz'$$

$x \sim 3$	^{7Z} 00	01	11	10
0	m_0	$ m m_l$	mз	m_2
1	m4	${ m m}_5$	m7	mв

\times	^{7Z} 00	01	11	10
0	x'y'z'	x'y'z	x'yz	x'yz'
1	xy'z'	xy'z	хуг	xyz'

Another Example

- The four adjacent squares can be combined to give the single literal term z'
- The remaining single term is combined with the adjacent square that was already used to give us the term x'y'
- F = z' + x'y'

$$F(x, y, z) = \sum (0,1,2,4,6)$$

3-Variable Map Patterns

- The number of adjacent squares that may be combined always represent a number that is a power of 2 such as 1, 2, 4, and 8.
 - One square represents one minterm with three literals.
 - Two adjacent squares represents a term of two literals.
 - Four adjacent squares represents a term of one literal.
 - Eight adjacent squares represents the entire map and produces a function that is always equal to 1.

Mapping Functions (Example)

Given the function

$$- F = x'z + xy' + xy'z + yz$$

- Map the function
- Determine the sum of minterms equation
- Determine the minimum sum of products expression

- Sum of minterms: $F = \sum (1, 3, 4, 5, 7)$
- Minimum sum of products: $\vec{F} = z + xy$

- Each of the two adjacent pairs of entries can be simplified by eliminating the changing bit.
 - x is eliminated in column 2
 - y is eliminated in the other pair.
 - F = y'z + x'z'

$$F(x, y, z) = \sum (0,1,2,5)$$

- Two variable maps.
 - F = AB + A'B + AB'

- Three variable maps.
 - F=AB'C' +AB 'C +ABC +ABC ' + A'B'C + A'BC'

$$G(A,B,C) = A$$

$$F(A,B,C) = \sum m(0,4,5,7) = AC + B'C'$$

- Simplify boolean function $F(x,y,z) = \Sigma(2,3,4,5)$

- 1 is marked in each minterm that represents the function
- Find the possible adjacent squares and mark them with rectangles
- The upper right rectangle represents the area enclosed closed by x'y (eliminating the changing bit)
- Similarly lower left rectangle represents xy'
- The logical sum of these two terms gives:

$$F = x'y + xy'$$

Fig. 3-4 Map for Example 3-1; $F(x, y, z) = \Sigma(2, 3, 4, 5) = x'y + xy'$

 $- F(x,y,z) = \Sigma(3,4,6,7)$

- 1 is marked in each minterm that represents the function
- Find the possible adjacent squares and mark them with rectangles
- Two adjecent squares are combined in the third column to give a two-literal term yz
- The remaining two squares with 1's are enclosed in half rectangles. This gives twoliteral term xz'
- The logical sum of these two terms gives:

$$F = yz + xz'$$

Fig. 3-5 Map for Example 3-2; $F(x, y, z) = \Sigma(3, 4, 6, 7) = yz + xz'$

- $F(x,y,z) = \Sigma(0,2,4,5,6)$

- 1 is marked in each minterm that represents the function
- Find the possible adjacent squares and mark them with rectangles
- We combine four adjacent squares to get a single literal term z' as m₀+m₂+m₄+m₆

$$= x'y'z'+x'yz'+xy'z'+xyz'$$

$$= x'z'(y'+y) + xz'(y'+y)$$

$$= x'z' + xz' = z'$$

- The remaining two squares with 1's are enclosed by a rectangle (with one square that is already used once). This gives two-literal term xy'
- The logical sum of these two terms gives:

$$F = z' + xy'$$

$^{\mathrm{X}}$	^{7Z} 00	01	11	10
0	m_0	m_1	mз	m_2
1	m4	mς	m7	mв

Fig. 3-6 Map for Example 3-3; $F(x, y, z) = \Sigma(0, 2, 4, 5, 6) = z' + xy'$

- F = A'C + A'B + AB'C + BC
- express it in sum of minterms
 find the minimal sum of products expression

- The two squares corresponding to the first term A'C. (A' first row and C two middle columns)
- A'B has 1's in squares 011 and 010 in the same way
- AB'C has 1 square 101 and BC has two 1's in squares 011 and 111
- The function has total of 5 minterms as shown in figure
- Find the possible adjacent squares and mark them with rectangles as shown in the map
- It can be simplified with only two terms giving:

$$F = C + A'B$$

$x \sim 3$	^{7Z} 00	01	11	10
0	m_0	$ m m_l$	mз	m_2
1	m4	mς	m7	m ₆

Fig. 3-7 Map for Example 3-4; A'C + A'B + AB'C + BC = C + A'B