应用密码学期中大作业: RSA

吴奕鸣 2023213895

使用说明

使用提供的 exe 可以直接在 Windows x64 上运行。若需要编译,需要安装 Rust nightly 环境,然后在提交目录下运行 cargo build -r 即可。注意 -r 为必须,否则将编译 Debug 版本,性能极差。

程序界面如图,从上到下分别是:

- 公钥、私钥及密钥长度
- 功能按钮、操作用时
- 输入、<-按钮、输出
 - 。 <-按钮将输出覆盖到输入,并清空输出

生成密钥

如图,按 "Generate Key" 可以生成指定长度的密钥(最大支持 2048 位),并显示生成用时。或者,也可以手动在公钥、私钥栏填写本程序生成的密钥,按 "Set Key" 设置它,此时密钥长度将自动校准。

加密、解密

可以在输入框中输入任意英文、数字、符号、空格、换行,然后按下加密,获得加密结果。可以按<-按钮,然后尝试解密,获得原本的内容。

签名、验证签名

可以在输入框中输入**单行**文本,按下签名获得结果。结果第一行为原输入,第二行为签名。可以按<-按钮,然后尝试验证签名,若成功第一行输出 true,否则输出 false,第二行为验签算法解出的消息。

签名验证尚不稳定,有时会失败,这是由于验签结果转换为 utf8 字符串后因为某些原因,可能不与原消息完全一致,而不是算法实现的原因,因为时间原因,难以继续 debug。可以人工查看输出第二行是否与输入相符。

代码实现亮点

- 使用巴雷特模乘实现快速的大数模运算。(algorithms.rs:6)
- 使用 Miller Rabin 素数检测算法。(algorithms.rs:87)
 - 。 在使用此算法检测前,首先尝试 1-10000 内所有的质数作为快速筛查。
 - o 参考 OpenSSL 实现进行 64 次检测,达到速度和可靠性之间的平衡。

参考论文信息

Barrett, P. (1986). "Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor". Advances in Cryptology – CRYPTO' 86. Lecture Notes in Computer Science. Vol. 263. pp. 311–323. doi:10.1007/3-540-47721-7_24. ISBN 978-3-540-18047-0. 清华图书馆链接

性能评估

所有时间数据的单位为 us。

密钥生成

各尝试生成 10 次长度为 768、1024、2048 的密钥,结果如下。

次数	768	1024	2048
0	186365	399581	3539867
1	154260	435534	3488552
2	128152	293717	5454345
3	147983	327278	5401610
4	195945	399160	3851312
5	186458	310278	4998486
6	162464	381288	6553158
7	156556	411334	5067605
8	157545	368934	3359612
9	134199	521221	4345142
平均	146426.8182	349940.8182	4187430.636

加密

使用 2048 位密钥, 尝试加密长度为 100, 1000, 10000 个字符的消息各 10 次, 结果如下。

次数	100	1000	10000
0	1101	5718	56127
1	1080	5729	58905
2	1094	5741	60486
3	1091	5939	60557
4	1087	6423	61004
5	1103	5724	58629
6	1097	5802	58683
7	1097	6302	58558
8	1101	5820	59164
9	1095	5947	59264
平均	1094.6	5914.5	59137.7

实验收获

通过这次实验,我学习了 RSA 算法的基本原理和实现步骤,掌握了如何生成公钥和私钥,如何用公钥加密信息,如何用私钥解密信息。我也了解了 RSA 算法的优点和缺点,例如它的安全性高,但是速度慢,需要选择合适的密钥长度和加密模数等参数。我感受到了密码学的魅力,也体会到了编程的乐趣。我更加深刻地感受到了密码学在信息安全中的基础性作用。