#### **Model Flexibility - Takeaways**

- If you don't have too many samples, you should prefer a simpler model
- If you have many samples, you can afford a more complex model
- ► We'll need some sort of mechanism to tell which regime we're in
- Examples of different model families
  - Useful tutorial: <u>pyGAM</u>

#### **Model Flexibility - Takeaways**

- If you don't have too many samples, you should prefer a simpler model
- If you have many samples, you can afford a more complex model
- ► We'll need some sort of mechanism to tell which regime we're in
- Examples of different model families
  - Useful tutorial: <u>pyGAM</u>
- **Reading:** <u>ISLR</u> 2.1, 3.2.1, 3.5

- K fixed and given
- Samples:  $(x_i, y_i)_{i=1}^N$
- Estimate data generating function:  $\hat{f}(x) = \frac{1}{K} \sum_{i \in N_K(x)} y_i$
- $\triangleright$   $N_K$ : K nearest neighbors of x within the training set

- K fixed and given
- Samples:  $(x_i, y_i)_{i=1}^N$
- Estimate data generating function:  $\hat{f}(x) = \frac{1}{K} \sum_{i \in N_K(x)} y_i$
- $\triangleright$   $N_K$ : K nearest neighbors of x within the training set



- K fixed and given
- Samples:  $(x_i, y_i)_{i=1}^N$
- Estimate data generating function:  $\hat{f}(x) = \frac{1}{K} \sum_{i \in N_K(x)} y_i$
- $\triangleright$   $N_K$ : K nearest neighbors of x within the training set





- K fixed and given
- Samples:  $(x_i, y_i)_{i=1}^N$
- Estimate data generating function:  $\hat{f}(x) = \frac{1}{K} \sum_{i \in N_K(x)} y_i$
- $\triangleright$   $N_K$ : K nearest neighbors of x within the training set



- K fixed and given
- Samples:  $(x_i, y_i)_{i=1}^N$
- Estimate data generating function:  $\hat{f}(x) = \frac{1}{K} \sum_{i \in N_K(x)} y_i$
- $\triangleright$   $N_K$ : K nearest neighbors of x within the training set



Model complexity is controlled by the size of the neighborhood

- Model complexity is controlled by the size of the neighborhood
  - ightharpoonup Large  $K \longrightarrow$  Lower variance, larger bias
  - $\longrightarrow$  Small  $K \longrightarrow$  Higher variance, smaller bias

- Model complexity is controlled by the size of the neighborhood
  - ightharpoonup Large  $K \longrightarrow$  Lower variance, larger bias
  - $\longrightarrow$  Small  $K \longrightarrow$  Higher variance, smaller bias
  - Larger K learns smoother functions; smaller K can match more complex functions when the sampling density is high enough

# Curse of dimensionality

## Curse of dimensionality

The density of samples decreases with increase in dimension

# Curse of dimensionality

The density of samples decreases with increase in dimension

