In the claims:

1. (currently amended): A polymer comprising a repeating unit of the formula

(I); and/or-

(II), wherein

- R¹ [[,]] and R², R³, R⁴ and R⁵ are independently of each other an organic substituent, which optionally can be substituted,
- X^{1} [[,]] and X^{2} and X^{3} are independently of each other a divalent linking group.
- 2. (previously presented) A polymer according to claim 1, wherein X¹ and X² are independently of

$$R^7$$

$$R^7$$
 R^6 R^6

$$R^7$$
 R^6
 R^7

$$R^6$$
 R^7

n1, n2, n3, n4, n5, n6 and n7 are integers of 1 to 10, R^6 and R^7 are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkyl, which is substituted by E, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by E, C_2 - C_{18} alkenyl, C_2 - C_{18} alkoxy which is substituted by E and/or interrupted by D, C_7 - C_{25} aralkyl, or -CO- R^{28} .

 R^8 is C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, or C_7 - C_{25} aralkyl,

 R^9 and R^{10} are independently of each other C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by E, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, or C_7 - C_{25} aralkyl, or R^9 and R^{10} form a ring, which may optionally be substituted by R^6 .

 $R^{14'}$ and $R^{15'}$ are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl which is substituted by E,

D is -CO-, -COO-, -S-, -SO-, -SO₂-, -O-, -NR²⁵-, -SiR³⁰R³¹-, -POR³²-, -CR²³=CR²⁴-, or -C≡C-, and E is -OR²⁹, -SR²⁹, -NR²⁵R²⁶, -COR²⁸, -COOR²⁷, -CONR²⁵R²⁶, -CN, -OCOOR²⁷, or halogen, wherein

10/531,779 - 3 - EL/2-22875/A/PCT

r, di

 R^{23} , R^{24} , R^{25} and R^{26} are independently of each other H, C_6 - C_{18} aryl, C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl which is interrupted by -O-, or

 R^{25} and R^{26} together form a five or six membered ring, R^{27} and R^{28} are independently of each other H, C_6 - C_{18} aryl, C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl which is interrupted by $-O_7$,

 R^{29} is H, C_6 - C_{18} aryl, C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl which is interrupted by -O-,

 R^{30} and R^{31} are independently of each other C_1 - C_{18} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl, and

 R^{32} is C_1 - C_{18} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl.

3. (previously presented) A polymer according claim 2, wherein R¹ and R² are independently of each other H, C₁-C₁8alkyl, C₁-C₁8alkyl which is substituted by E and/or interrupted by D, C₂-C18alkenyl, C₂-C18alkynyl, C₁-C18alkoxy, C₁-C18alkoxy which is substituted by E and/or

interrupted by D, $R^{15'}$, X^4 , X^4 , X^4 , X^4 , X^4 , X^5 , X^5 , X^5 , X^5 , X^6 , X^6 , X^6 , X^6 , X^7 -C₂₅aralkyl, X^6 -C₂₄aryl or C₂-C₂₀heteroaryl, which optionally can be substituted,

 X^4 is C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, which optionally can be substituted,

 X^5 is C_1 - C_{18} alkyl, C_6 - C_{24} aryl, C_6 - C_{24} aryl substituted by -OC₁- C_{18} alkyl or -OC₆- C_{24} aryl.

4. (currently amended) A polymer according to any of-claim [[[s]] 1, comprising a co-monomer T

$$\begin{bmatrix} R^{14} \\ R^{15} \end{bmatrix}_s = \begin{bmatrix} \vdots \\ \vdots \\ R^{15} \end{bmatrix}_s$$

which is selected from the group consisting of

10/531,779 - 4 - EL/2-22875/A/PCT

$$R^{\delta}$$
 R^{δ}
 R^{δ}

 R^{16} is H, C_6 - C_{18} aryl, C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl, C_7 - C_{25} aralkyl, or C_1 - C_{18} alkyl which is interrupted by -O-,

p is an integer from 1 to 10,

q is an integer from 1 to 10,

s is an integer from 1 to 10,

 R^6 and R^7 are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkyl, which is substituted by E, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by E, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, C_7 - C_{25} aralkyl, or -CO- R^{28} ,

R⁸ is C₁-C₁₈alkyl, C₁-C₁₈alkyl which is substituted by E and/or interrupted by D, C₆-C₂₄ aryl, or C₇-C₂₅aralkyl,

 R^9 and R^{10} are independently of each other C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by E, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, or C_7 - C_{25} aralkyl, or

 R^9 and R^{10} form a five- or six-membered ring, which may optionally be substituted by R^6 , $R^{14'}$ and $R^{15'}$ are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl which is substituted by E,

D is -CO-, -COO-, -S-, -SO-, -SO₂-, -O-, -NR²⁵-, -SiR³⁰R³¹-, -POR³²-, -CR²³=CR²⁴-, or -C \equiv C-, and E is -OR²⁹, -SR²⁹, -NR²⁵R²⁶, -COR²⁸, -COR²⁷, -CONR²⁵R²⁶, -CN, -OCOOR²⁷, or halogen, wherein

 R^{23} , R^{24} , R^{25} and R^{26} are independently of each other H, C_6 - C_{18} aryl, C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl which is interrupted by 0-, or

 R^{25} and R^{26} together form a five or six membered ring, R^{27} and R^{28} are independently of each other H, C_6 - C_{18} aryl, C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl which is interrupted by $-O_7$.

 R^{29} is H, C_6 - C_{18} aryl, C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl which is interrupted by -O-,

 R^{30} and R^{31} are independently of each other C_1 - C_{18} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl, and

 R^{32} is C_1 - C_{18} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl, or

R⁹ and R¹⁰ together form a group of formula =CR¹⁰⁰R¹⁰¹, wherein

złęju:

10/531,779 - 6 - EL/2-22875/A/PCT

 R^{100} and R^{101} are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, or C_2 - C_{20} heteroaryl, or C_2 - C_{20} heteroaryl which is substituted by E, and

 R^{14} and R^{15} are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, or C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by E.

5. (currently amended) A polymer according to claim 1, comprising repeating units of formula la or lb,

$$\begin{array}{c|c}
 & X^{2} \\
 & X^{1} \\
 & X^{2} \\
 & X^{2} \\
 & X^{2} \\
 & X^{1} \\
 & X^{2} \\$$

wherein R1 is a group of formula

wherein R² is H,

 R^6 and R^7 are independently of each other H, C_1 - C_{12} alkyl, C_5 - C_{12} cycloalkyl, C_6 - C_{24} aryl, which can be substituted by -O- C_1 - C_{12} alkyl, or C_1 - C_{18} alkoxy,

 R^8 is C_1 - C_{18} alkyl, C_1 - C_{18} alkyl interrupted by one or two oxygen atoms, or C_6 - C_{12} aryl, which optionally can be substituted by C_1 - C_{12} alkyl, or C_1 - C_{12} alkoxy,

 R^{9} and R^{10} are independently of each other H, $C_{1}\text{-}C_{12}\text{alkyl},$ or $C_{1}\text{-}C_{12}\text{alkoxy},$

 R^9 and R^{10} are independently of each other C_1 - C_{18} alkyl, especially C_4 - C_{12} alkyl, which can be interrupted by one or two oxygen atoms.

10/531,779

6.(previously presented) A polymer according to claim 5, comprising a co-monomer T which is selected from the group consisting of

R⁹ and R¹⁰ are independently of each other C₁-C₁₈alkyl, which can be interrupted by one or two oxygen atoms, or

 R^9 and R^{10} form a five or six membered carbocyclic ring, which optionally can be substituted by C_1 - C_8 alkyl.

7. (previously presented) A polymer according to claim 1, comprising a repeating unit of formula

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\$$

x is in the range of 0.005 to 1, and y is in the range of 0.995 to 0, wherein the sum of x and y is 1,

$$X^6$$
, or X^6 , or X^6 , wherein

R¹ is a group of formula

X⁶ is H, C₁-C₁₈alkyl, cyclohexyl, or C₁-C₁₈alkoxy,

R² is H.

$$\mathbb{R}^6$$

:.;..

X¹ and X² are independently of each other a group of formula

$$- \bigvee_{\mathsf{R}^7}^{\mathsf{R}^6} \bigvee_{\mathsf{R}^7}^{\mathsf{R}^6}$$

and

T is a group of formula

, wherein s is one or two, and R⁹ and R¹⁰ are independently of each other C₁-C₁₈alkyl, which can be interrupted by one or two oxygen atoms,

 R^6 and R^7 are independently of each other H, C_1 - C_{12} alkyl, C_5 - C_{12} cycloalkyl, C_6 - C_{24} aryl, which can be substituted by -O-C₁-C₁₂alkyl, or C₁-C₁₈alkoxy. ***

8-11. (cancelled)

- 12. (previously presented) An optical device or a component therefore, comprising a substrate and a polymer according to claim 1.
- 13 .(original) An optical device according to claim 12, wherein the optical device comprises an electroluminescent device.
- 14 .(previously presented) An optical device according to claim 13, wherein the electroluminescent device comprises
 - (a) a charge injecting layer for injecting positive charge carriers,
 - (b) a charge injecting layer for injecting negative charge carriers,
 - (c) a light-emissive layer located between the layers (a) and (b) comprising a polymer according to claim 1.

10/531,779 -9-EL/2-22875/A/PCT

15. (currently amended) A monomer of the formula

$$X^{1} = \begin{bmatrix} R^{1} & N & N \\ R^{2} & X^{2} & X^{2} \end{bmatrix} X^{11}$$
(III), [[or]]

wherein

 R^1 , R^2 , R^3 , R^4 and R^5 are independently of each other an organic substituent, especially C_{2^-} C_{30} aryl or a C_{2^-} C_{26} heteroaryl, which optionally can be substituted,

X¹, X², and X³ are independently of each other a divalent linking group, and

 X^{11} is independently in each occurrence a halogen atom, or $-B(OH)_2$, $-B(OY^1)_2$ or wherein Y^1 is independently in each occurrence a C_1 - C_{10} alkyl group and Y^2 is independently in each occurrence a C_2 - C_{10} alkylene group, which may be substituted 1-20 times by a C_1 - C_{10} alkyl groupwith the proviso that 2-phenyl-4,6-bis(p-bromophenyl)pyrimidine and 2,4,6-tris(p-bromophenyl)pyrimidine are excluded.

16. (previously presented) A polymer according to claim 3, wherein when R^1 or R^2 is R^{15}

$$X^{4}$$
, X^{4} , X^{5} , X^{6} - X^{5} , X^{6} - X^{2} , X^{6} - X^{6} -

 $\{r_{i}\}_{i=1}^{n}$

wherein m1, m2, m3, m4, m5, m6 and m7 are integers of 1 to 10,

 X^6 is H, C₁-C₁₈alkyl, C₁-C₁₈alkyl which is substituted by E and/or interrupted by D, C₆-C₃₀aryl, which optionally can be substituted, C₂-C₂₆heteroaryl, which optionally can be substituted, C₂-C₁₈alkenyl, C₂-C₁₈alkynyl, C₁-C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D, or C₇-C₂₅aralkyl,

 R^{11} , R^{12} and R^{13} are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, or C_7 - C_{25} aralkyl.

17. (previously presented) A polymer according to claim 7, comprising a repeating unit of formula

x is in the range of 0.4 to 0.6, and y is in the range of 0.6 to 0.4, wherein the sum of x and y is 1.

11.1

18. (cancelled)

19. (currently amended) A monomer according to claim 15 of the formula

$$X^{11} - X^{1} - X^{11} - X^$$

20. (new) A monomer of formula (III) according to claim 15, wherein X¹ and X² are independently of

each other a group of the formula
$$R^{1s}$$
, or R^{7} , R^{1s} ,

n1, n2, n3, n4, n5, n6 and n7 are integers of 1 to 10, R^6 and R^7 are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkyl, which is substituted by E, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by E, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 -

 C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, C_7 - C_{25} aralkyl, or -CO- R^{28} ,

 R^8 is C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, or C_7 - C_{25} aralkyl,

 R^9 and R^{10} are independently of each other C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by E, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, or C_7 - C_{25} aralkyl, or

R⁹ and R¹⁰ form a ring, which may optionally be substituted by R⁶,

 $R^{14'}$ and $R^{15'}$ are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl which is substituted by E,

D is -CO-, -COO-, -S-, -SO-, -SO₂-, -O-, -NR²⁵-, -SiR³⁰R³¹-, -POR³²-, -CR²³=CR²⁴-, or -C≡C-, and E is -OR²⁹, -SR²⁹, -NR²⁵R²⁶, -COR²⁸, -COR²⁷, -CONR²⁵R²⁶, -CN, -OCOOR²⁷, or halogen, wherein

 R^{23} , R^{24} , R^{25} and R^{26} are independently of each other H, C_6 - C_{18} aryl, C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl which is interrupted by $-C_1$ - C_1

 R^{25} and R^{26} together form a five or six membered ring, R^{27} and R^{28} are independently of each other H, C_6 - C_{18} aryl, C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl which is interrupted by $-O_7$,

 R^{29} is H, C₆-C₁₈aryl, C₆-C₁₈aryl, which is substituted by C₁-C₁₈alkyl, C₁-C₁₈alkoxy, C₁-C₁₈alkyl, or C₁-C₁₈alkyl which is interrupted by -O-,

 R^{30} and R^{31} are independently of each other C_1 - C_{18} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is ± 1 substituted by C_1 - C_{18} alkyl, and

 R^{32} is C_1 - C_{18} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl.

21. (new) A monomer according claim 20, wherein R¹ and R² are independently of each other H, C₁-C₁₈alkyl, C₁-C₁₈alkyl which is substituted by E and/or interrupted by D, C₂-C₁₈alkenyl, C₂-C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D,

-@-.

$$R^{14'}$$
 X^4 $X^{15'}$ X^4 $X^{15'}$ X^5 , C_7 - C_{25} aralkyl, C_6 - C_{24} aryl or C_2 - C_{20} heteroaryl, which optionally can be substituted,

 X^4 is C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, which optionally can be substituted,

 X^5 is C_1 - C_{18} alkyl, C_6 - C_{24} aryl, C_6 - C_{24} aryl substituted by -OC₁- C_{18} alkyl or -OC₆- C_{24} aryl.

EL/2-22875/A/PCT

10/531,779

- 15 -