Remedial Measures

If the SLR model is not appropriate for data, there are two basic choices.

- 1) Using a more general regression modul (multiple linear, Polynomia)
- 2) Using some transformations on X or Y or both such that the SLR modul is appropriate for froms form duta.

Transformations

* For non-linear relations

When the relation bulueen X and Y is not linear (but the distribution of the error term is mormal with constant error variance), X should be tomstormed.

Basic Rull: pattern

Transformation x1 = log X OR $x^{l} = \int X$ or

x' = ln(x).

$$x' = x^{2}$$

$$x' = e^{x} \rho(x)$$

$$x' = \frac{1}{x}$$

$$x' = exp(-x)$$

* Non-normality and unequal error variance

If error term is not normal and variance is not constant (usually appear together), the response Y should be transformed.

- * Some times we may have to transform both X and Y.
- k Several fromsformation Should be tried, then choose the belter one comparing Scatter plat and the residual plots.
- * Some times it is difficult to delermine troms formation from the Plots. Box-cox transformation can be used for those casses.

Box-cox transformation

Transformation $Y'=Y^{\lambda}$, where λ is a parameter to be dudermined from duta.

The following are transformations based on the value of X.

λ	transor mution	
λ= 2 λ= 2	y' = y2 y' = Jy	(he definition)
>= 0	y'=logeY=lny	- (by the definition)
λ=-0·2	y' = 1/4	
X=-1	y' = 1/7.	

New regression model

$$Y_i^{\lambda} = \beta_0 + \beta_1 X_i + \beta_i$$
, $\beta_i \stackrel{2id}{\sim} N(0, \delta^2)$

How estimate 2?

The Box-cox transformation Procedure uses MLE of λ as well as Other parameters Bo, B, and b2.

* Simple way to find RMLE.

Steps:

Dhoose the values for λ in the interval (-2,2)

Ey: -2, -1.75, -1.5, ---- , 1

2) For each A, Stambardize Yi observations as follows,

$$W_i = \begin{cases} K_1(Y_i^{\lambda} - 1) & \lambda \neq 0, \\ K_2(\log Y_i) & \lambda = 0, \end{cases}$$

where $K_1 = \left(\frac{1}{11}Y_i\right)^{N_1}$ and $K_2 = \frac{1}{\lambda K_1^{\lambda-1}}$.

3) For each A, fit a SLR modul for WI gmd X and calculate SSE.

(Here the value of SSE does not depend on λ , because we use Stomdondize responses).

4) Chose the value of A for which SSE is minimum. That is the MLE of A.

Simultaneous Inderences and other topics Chapter - 4: in Regression Analysis.

Joint estimation of Bo and PI

Joint estimation is needed when we wont 1- & (Eg-95%) considence that the conclusions for poto so und BI, are connect.

So it we consider both Bo and BI together, the confidence coefficient may be less than 95%.

This is called the family confidence coefficient.

How to find e: 1: s for both Bo and BI with family contidence interval 1-0.

Answer: use Bonferroni Mednod.

Edea:

then,

$$P(0 \text{ is not connect}) = P(A_1) = X$$

$$P(0)$$
 is mot correct) = $P(A_2) = \infty$
 A_2

$$= P(Ai) + P(A2) - P(A1NA2).$$

$$\Rightarrow \rho(both correct) = \rho(\overline{A_1} n \overline{A_2})$$

$$\Rightarrow p(\overline{A_1} \cap \overline{A_2}) = (-p(A_1) - p(A_2) + \underbrace{p(A_1 \cap A_2)}_{}$$

But P(A(NA)) >0,

$$= 1 - \alpha - \alpha = 1 - 2\alpha$$

(lower bound for the joint (family) confidence coefficient).

$$-\frac{1-\alpha}{c: limit} = \frac{\alpha}{2}$$

$$\frac{\alpha}{2} + \beta$$

$$\frac{\alpha}{2} + \beta$$

Bonserroni C: I:; for Bo and BI are the C: Is with confidence coefficient 1- 0/2"

Note:

more generally 1-x family considence intervals for Bo and BI can be obtained by dividing of into "oxy-p" and 1/2+p (0=== 1/2).

G: Suppose Jamily e:c: is 90% them,

$$\beta = 0.03$$
 $\beta = 0.03$ (37.).

* This method can be applied for more general regression models. Suppose there are "g" parameters to estimate. If the family considence coefficient is $1-\alpha$, then considence coefficient for each parameter is $1-\alpha/g$.

Simultaneous Estimation for Mean Response

Some times we have to estimate the mean response E(Y) at a numer of X-levals.

Let family considence coefficient is I- a.

There are two methods:

1 Working - Hoteling Procedure

This is a more general method and this gives a confidence band for the regression line (This gives confidence intervals for all the X values in the range with family c:c: 1-X).

C: I: is given by $\hat{\gamma}_n \pm WS\{\hat{\gamma}_n\} \text{ for all } X,$ where $W = \int 2F(1-\alpha,2,n-2).$

2) Bonfersoni Procedure

1-X, Bondorron: contidence limits for "g" levels one

where B = t (1- 2/29: n-2).

Mofe:

- * Working- Hoteling confidence limits do not change with number of intervals(9). But Bonformoni gets wider with 9.
- k Both methods provide lower bound for the family confidence Coefficients.
- + Crium a dula sut, calculate c: Is using both methods (ie calculate W and B), and men chase the most efficient one.

Simultaneous Prediction Intervals

Consider the Simultaneous prediction limits for 9 new observations at g different X-levels with family cicil-a.

There are two method:

1) Scheffe Procedure

where
$$S = \int g F(i-\kappa : g : n-2)$$
.

Regression through the Origin

$$Y_i = \beta_i X_i + \beta_i$$
, $\beta_i \stackrel{iid}{\sim} N(0.5^2)$

Least Square Estimator of Bi

$$Q = \sum (Y_i - \beta_i x_i)^2$$

$$0 = \sum_{i=1}^{N} (Y_i - b_i X_i) = 0$$

$$\Rightarrow b_i = \sum_{i=1}^{N} X_i Y_i$$

$$\Rightarrow b_1 = \frac{\sum x_i y_i}{\sum x_i^2}$$

$$k$$
 2^{4} m fitted value = $\hat{\gamma}_i = b_1 X_i$

$$S^2 = MSE = \frac{2(Y_i - \hat{Y_i})^2}{n-1} = \frac{2(Y_i - \hat{Y_i})^2}{n-1}$$

Note:

$$r = \frac{\sum X_{i,j}}{\sum X_{i,j}}$$
 and $r = \frac{\sum X_{i,j}}{\sum X_{i,j}}$

$$k \quad \delta^2 \{\hat{Y}_n\} = \frac{\chi_n^2 \delta^2}{\sum \chi_i^2} \quad \text{and} \quad \delta^1 \{\hat{Y}_n\} = \frac{\chi_n^2 \text{ mSE}}{\sum \chi_i^2}$$

$$b^2 \left\{ \text{ Pred } \right\} = b^2 \left\{ 1 + \frac{\times n^2}{\mathbb{Z} \times n^2} \right\}, \text{ and } S^2 \left\{ \hat{\gamma}_n \right\} = \text{MSE} \left(1 + \frac{\times n^2}{\mathbb{Z} \times n^2} \right).$$

Proof - HWI.

Interval Estimators:

paramuter	considence limit
BI ELYN] Ynincwi	b, ± + 5 { b, }
	9n ± t S { mgn }
	In + + SEpred 3,
	where t = t,- 1/2: 1-1.

Note:

- 1) \(\hat{2}\) e; \(\dagger \) (in general).
- 2) $\sum_{i=1}^{n} X_{i}e_{i} = 0$ 3) $SSE = \sum_{i=1}^{n} e_{i} \ge SSTO = \sum_{i=1}^{n} (Y_{i} \widehat{Y}_{i})^{2}$
- 4) $R^2 = 1 \frac{SSE}{SS70}$ may be negative.

So residuals can not be used to check the quality of the fit. We always try to avoid using regression throng the origin.