Exercise MODIS. MODIS along-scan ΔS and along-track ΔT ground pixel sizes can be derived as functions of θ from the following relationships:

$$\Delta S = R_e s \left(\frac{\cos \theta}{\sqrt{\left(\frac{R_e}{r}\right)^2 - \sin^2 \theta}} - 1 \right) \tag{1}$$

$$\Delta T = rs \left(\cos \theta - \sqrt{\left(\frac{R_e}{r}\right)^2 - \sin^2 \theta} \right) \tag{2}$$

where $R_e = 6378.137$ km (radius of the Earth), h = 705 km (altitude of the satellite), $r = R_e + h$, $s = \frac{px}{h}$, px is the pixel nadir resolution in kilometers, and θ is the scan angle for the given pixel.

Express θ in terms of ΔS and ΔT .

Proof. Starting here

Step 1: Let
$$\gamma = \sqrt{\left(\frac{R_e}{r}\right)^2 - \sin^2 \theta}$$

Step 2: Substitute γ into Eq. (2), and rearrange for γ

$$\Delta T = rs \left(\cos \theta - \sqrt{\left(\frac{R_e}{r} \right)^2 - \sin^2 \theta} \right)$$

$$\Delta T = rs \left(\cos \theta - \gamma \right)$$

$$\frac{\Delta T}{rs} = \cos \theta - \gamma$$

$$\gamma = \left(\cos \theta - \frac{\Delta T}{rs} \right)$$
(3)

Step 3: Substitute γ and Eq. (3) into Eq. (1).

$$\Delta S = R_e s \left(\frac{\cos \theta}{\sqrt{\left(\frac{R_e}{r}\right)^2 - \sin^2 \theta}} - 1 \right)$$

$$\Delta S = R_e s \left(\frac{\cos \theta}{\gamma} - 1 \right)$$

$$\Delta S = R_e s \left(\frac{\cos \theta}{\left(\cos \theta - \frac{\Delta T}{rs}\right)} - 1 \right)$$

$$\frac{\Delta S}{R_e s} = \frac{\cos \theta}{\left(\cos \theta - \frac{\Delta T}{rs}\right)} - 1$$

Step 4: Let
$$\alpha = \frac{\Delta T}{rs}$$
 and $\beta = \frac{\Delta S}{R_e s}$, and solve for θ .

$$\frac{\Delta S}{R_e s} = \frac{\cos \theta}{\left(\cos \theta - \frac{\Delta T}{r s}\right)} - 1$$

$$\beta = \frac{\cos \theta}{\left(\cos \theta - \alpha\right)} - 1$$

$$\beta + 1 = \frac{\cos \theta}{\left(\cos \theta - \alpha\right)}$$

$$(\beta + 1)\left(\cos \theta - \alpha\right) = \cos \theta$$

$$\beta \cos \theta - \alpha \beta + \cos \theta - \alpha = \cos \theta$$

$$\beta \cos \theta - \alpha \beta - \alpha = 0$$

$$\beta \cos \theta = \alpha \beta + \alpha$$

$$\beta \cos \theta = \alpha (\beta + 1)$$

$$\cos \theta = \frac{\alpha (\beta + 1)}{\beta}$$

$$\therefore \theta = \cos^{-1}\left(\frac{\alpha (\beta + 1)}{\beta}\right)$$

where
$$\alpha = \frac{\Delta T}{rs}$$
 and $\beta = \frac{\Delta S}{R_e s}$.

Exercise VIIRS. VIIRS along-scan ΔS and along-track ΔT ground pixel sizes can be derived as functions of θ from the following relationships:

$$\Delta S = R_e s \left(\frac{\cos \theta}{\sqrt{\left(\frac{R_e}{r}\right)^2 - \sin^2 \theta}} - 1 \right)$$
 (3)

$$\Delta T = rs \left(\cos \theta - \sqrt{\left(\frac{R_e}{r}\right)^2 - \sin^2 \theta} \right) \tag{4}$$

where $R_e = 6378.137$ km (radius of the Earth), h = 834 km (altitude of the satellite), $r = R_e + h$, $s = \frac{px}{h}$, px is the pixel nadir resolution in kilometers, and θ is the scan angle for the given pixel.

Unlike MODIS, VIIRS has an automatic Bowtie adaption that automatically changes the size of the along-scan ΔS dimensions, rendering it unusable in the estimation of θ . Given this, derive θ from ΔT alone.

Proof. Starting here

$$\Delta T = rs \left(\cos \theta - \sqrt{\left(\frac{R_e}{r}\right)^2 - \sin^2 \theta} \right)$$

$$\frac{\Delta T}{rs} = \cos \theta - \sqrt{\left(\frac{R_e}{r}\right)^2 - \sin^2 \theta}$$

$$\frac{\Delta T}{rs} - \cos \theta = -\sqrt{\left(\frac{R_e}{r}\right)^2 - \sin^2 \theta}$$

$$\cos \theta - \frac{\Delta T}{rs} = \sqrt{\left(\frac{R_e}{r}\right)^2 - \sin^2 \theta}$$

$$\left(\cos \theta - \frac{\Delta T}{rs} \right)^2 = \left(\sqrt{\left(\frac{R_e}{r}\right)^2 - \sin^2 \theta} \right)^2$$

$$\left(\cos \theta - \frac{\Delta T}{rs} \right) \left(\cos \theta - \frac{\Delta T}{rs} \right) = \left(\frac{R_e}{r}\right)^2 - \sin^2 \theta$$

$$\cos^2 \theta - \cos \theta \frac{\Delta T}{rs} - \cos \theta \frac{\Delta T}{rs} + \left(\frac{\Delta T}{rs}\right)^2 = \left(\frac{R_e}{r}\right)^2 - \sin^2 \theta$$

$$\cos^2 \theta - 2\cos \theta \frac{\Delta T}{rs} + \left(\frac{\Delta T}{rs}\right)^2 = \left(\frac{R_e}{r}\right)^2 - \sin^2 \theta$$

$$\cos^2 \theta - 2\cos \theta \frac{\Delta T}{rs} + \left(\frac{\Delta T}{rs}\right)^2 = \left(\frac{R_e}{r}\right)^2$$

$$(\cos^2 \theta + \sin^2 \theta) - 2\cos \theta \frac{\Delta T}{rs} + \left(\frac{\Delta T}{rs}\right)^2 = \left(\frac{R_e}{r}\right)^2$$

$$1 - 2\cos \theta \frac{\Delta T}{rs} + \left(\frac{\Delta T}{rs}\right)^2 = 2\cos \theta \frac{\Delta T}{rs}$$

$$1 - \left(\frac{R_e}{r}\right)^2 + \left(\frac{\Delta T}{rs}\right)^2 = 2\cos \theta \frac{\Delta T}{rs}$$

$$\frac{rs \left(1 - \left(\frac{R_e}{r}\right)^2 + \left(\frac{\Delta T}{rs}\right)^2\right)}{2\Delta T} = \cos \theta$$

$$\therefore \theta = \cos^{-1} \left(\frac{rs \left(1 - \left(\frac{R_e}{r}\right)^2 + \left(\frac{\Delta T}{rs}\right)^2\right)}{2\Delta T}\right)$$