Teoremario de Topología

Wilfredo Gallegos

30 de mayo de 2023

1. Contenido

Definición 1.1 Sea $X \neq \emptyset$ una clase τ de subconjuntos de X es una Topolog'ia sobre X si cumple:

- 1. \emptyset , $X \in \tau$
- 2. La uni'on de una clase arbitraria de conjuntos en τ es un miembro de τ
- 3. La intersecci'on de una clase finita de miembres de τ est'a en τ Los miembros de τ son los abiertos de X

Nota:

- 1. El par (X, τ) es un espacio topolog'ico
- 2. a los elementos de X se le llaman puntos

2. Teoremas-Lemas-Corolarios

Teorema 1 Los enunciados siguientes so nequivalentes

- 1. Una familia β de subconjuntos abiertos del espacio topol'ogico (X, τ) es una base para τ si cada abierto de τ es uni'on de miembros de β
- 2. $\beta \subset \tau$ es una base para τ , ssi $\forall G \in \tau$, $\forall p \in G \exists B_p \in \beta \ni p \in B_p \subset G$

Teorema 2 Sea β una familia de subconjuntos de un conjunto no vacio X. Entonces β es una clase para una topolog'ia τ sobre X ssi se cumplen

- 1. $X=\cup_{b\in\beta}B$
- 2. $\forall B, B^* \in \beta$ se tiene que $B \cap B^*$ la uni'on de miembros de $\beta \Leftrightarrow si \ p \in B \cap B^* \exists B_p \in \beta \ni p \in B_p \subset B \cap B^*$

Teorema 3 Sea X cualquier conjunto no vac'io y sea S una clase arbitriaria de subconjuntos de X, Entonces S puede construirse en la subbase abierta para una topolog'ia sobre X en el sentido que las intersecciones finitas de los miembros de S producen una base para dicha topolog'ia.

Lema 1 Si S es subbase de las topolog'ias τ y τ^* sobre $X \tau = \tau^*$

Teorema 4 Sea X un subconjunto no vacio y sea S una clase de subconjuntos de X. La topolog'ia τ sobre X, generado por S, y la intersecci'on de todoas las topolog'ias sobre X que contienen a S.

Teorema 5 Lindelof Sea X un espacio segundo contable si un abierto no-vacio G de X se puede representar como uni'on de una clase $\{G_1\}$

Referencias