TAUTOLOGIAS, CONTRADIÇÕES E CONTIGÊNCIAS

Lógica Matemática

DEFINIÇÃO

- Y Uma tautologia é toda proposição composta P(p,q,r,...) cujo valor lógico é sempre V (verdade), quaisquer que sejam os valores lógicos das proposições simples componentes p,q,r,....
- X Chama-se tautologia toda proposição cuja última coluna da sua tabela-verdade (Método1) possui somente valor lógico V (verdade).
- X As tautologias são também denominadas proposições tautológicas ou proposições logicamente verdadeiras.

Exemplos:

X As seguintes proposições são tautologias (Princípio de identidade):

$$p \rightarrow p$$

$$p \leftrightarrow p$$

EXEMPLO 1

X Considere a proposição:

$$H = \neg(p \land \neg p) \quad (1)$$

Ordem das operações

- X Identifique as proposições simples e a ordem das operações lógicas.
- X Identifique as subfórmulas associadas as operações lógicas.

$$A = \neg p$$

$$B = (p \wedge A)$$

$$H = \neg B$$

X Construa a tabela-verdade correspondente.

	A	\boldsymbol{B}	H
p	$\neg p$	$(p \wedge A)$	$\neg B$
V	F	F	V
F	V	F	V

- X A proposição é tautológica conforme a sua tabela-verdade.
- X Observe que a proposição é uma forma de representar o Princípio do terceiro excluído. Por tanto, afirmar que uma proposição ou é verdadeira ou é falsa é sempre verdadeiro.

EXEMPLO 2

X Considere a proposição:

Ordem das operações

$$H = (p \lor \neg p) \qquad (2)$$

- X Identifique as proposições simples e a ordem das operações lógicas.
- X Identifique as subfórmulas associadas as operações lógicas.

$$A = \neg p$$
$$H = (p \lor A)$$

X Construa a tabela-verdade correspondente.

	A	Н
p	$\neg p$	$(p \lor A)$
V	F	V
F	V	V

- X A proposição é tautológica conforme a sua tabela-verdade.
- X Observe que a proposição é outra forma de representar o Princípio do terceiro excluído. Por tanto, afirmar que uma proposição ou é verdadeira ou é falsa é sempre verdadeiro.

EXEMPLO 3

X Considere a proposição:

$$H = p \lor \neg (p \land q) \tag{3}$$

Ordem das operações

- X Identifique as proposições simples e a ordem das operações lógicas.
- X Identifique as subfórmulas associadas as operações lógicas.

$$A = (p \land q)$$

$$B = \neg A$$

$$H = p \vee B$$

X Construa a tabela-verdade correspondente.

		A	В	Н
p	q	$(p \wedge q)$	$\neg A$	$p \lor B$
V	V	V	F	V
V	F	F	V	V
F	V	F	V	V
F	F	F	V	V

X A proposição é tautológica conforme a suo tabela-verdade.

EXEMPLO 4

X Considere a proposição:

$$H = p \land q \to (p \leftrightarrow q) \tag{4}$$

Ordem das operações

- X Identifique as proposições simples e a ordem das operações lógicas.
- X Identifique as subfórmulas associadas as operações lógicas.

$$A = (p \leftrightarrow q)$$

$$B = p \wedge q$$

$$H = B \rightarrow A$$

X Construa a tabela-verdade correspondente.

		\boldsymbol{A}	B	H
p	q	$(p \leftrightarrow q)$	$p \wedge q$	$B \to A$
V	V	V	V	V
V	F	F	F	V
F	V	F	F	V
F	F	V	F	V

X Mostra-se que a proposição é tautológica.

EXEMPLO 5

Considere a proposição: X

$$H = p \lor (q \land \neg q) \leftrightarrow p \tag{5}$$

Ordem das operações

X

- Identifique as proposições simples e a ordem das operações lógicas.
- Identifique as subfórmulas associadas X as operações lógicas.

$$A = \neg q$$

$$B = (q \wedge A)$$

$$C = p \vee B$$

$$H = C \leftrightarrow p$$

X Construa a tabela-verdade correspondente.

		A	В	С	H
p	q	$\neg q$	$(q \wedge A)$	$p \lor B$	$C \leftrightarrow p$
V	V	F	F	V	V
V	F	V	F	V	V
F	V	F	F	F	V
F	F	V	F	F	V

Mostra-se que a proposição é tautológica. X

EXEMPLO 6

X Considere a proposição:

$$H = p \land r \to \neg q \lor r \qquad (6)$$

Ordem das operações

- X Identifique as proposições simples e a ordem das operações lógicas.
- X Identifique as subfórmulas associadas as operações lógicas.

$$A = \neg q$$

$$B = p \wedge r$$

$$C = A \vee r$$

$$H = B \rightarrow C$$

X Construa a tabela-verdade correspondente.

			A	В	$\boldsymbol{\mathcal{C}}$	Н
p	q	r	$\neg q$	$p \wedge r$	$A \lor r$	$B \rightarrow C$
V	V	V	F	V	V	V
V	V	F	F	F	F	V
V	F	V	V	V	V	V
V	F	F	V	F	V	V
F	V	V	F	F	V	V
F	V	F	F	F	F	V
F	F	V	V	F	V	V
F	F	F	V	F	V	V

X Mostra-se que a proposição é tautológica.

EXEMPLO 7

Considere a proposição:

$$H = ((p \to q) \to r) \to (p \to (q \to r)) \quad (7)$$

Ordem das operações

- X Identifique as proposições simples e a ordem das operações lógicas.
- Identifique as subfórmulas associadas X as operações lógicas.

$$A = (p \to q)$$

$$B = (q \rightarrow r)$$

$$C = (A \rightarrow r)$$

$$D = (p \to B)$$

$$H = (C \to D)$$

Construa a tabela-verdade correspondente. X

			A	В	C	D	Н
p	q	r	$(p \rightarrow q)$	$(q \rightarrow r)$	$(A \rightarrow r)$	$(p \rightarrow B)$	$(C \rightarrow D)$
V	V	V	V	V	V	V	V
V	V	F	V	F	F	F	V
V	F	V	F	V	V	V	V
V	F	F	F	V	V	V	V
F	V	V	V	V	V	V	V
F	V	F	V	F	F	V	V
F	F	V	V	V	V	V	V
F	F	F	V	V	F	V	\overline{V}

X Mostra-se que a proposição é tautológica.

PRINCÍPIO DE SUBSTITUIÇÃO

- X Seja H(p,q,r,...) uma tautologia e sejam $P_0(p,q,r,...)$, $Q_0(p,q,r,...)$, $R_0(p,q,r,...)$, ... proposições quaisquer.
- X A nova proposição obtida pela substituição de p por P_0 , q por Q_0 , r por R_0 , ... na tautologia P(p,q,r,...) também será uma tautologia.
- X Podemos denotar a nova proposição de $H(P_0,Q_0,R_0,...)$.

- X Subsiste para as tautologias o chamado princípio de substituição seguinte:
- X Se H(p,q,r,...) é uma tautologia, então $H(P_0,Q_0,R_0,...)$ também é uma tautologia, quaisquer que sejam as proposições $P_0,Q_0,R_0,...$

PRINCÍPIO DE SUBSTITUIÇÃO - EXEMPLO 1

X Podemos exemplificar o princípio da substituição considerando a seguinte proposição tautológica:

$$H = (p \vee \neg p)$$

 ${\it X}$ Podemos substituir p por qualquer outra proposição envolvendo p e a nova proposição continuará sendo tautológica, por exemplo:

$$P_0 = (p \to p)$$

X Substituindo temos:

$$H_0 = ((p \to p) \lor \neg (p \to p))$$

X Que é também uma proposição tautológica.

X A tabela-verdade para a proposição H_0 é a seguinte:

	A	В	Н
p	$p \rightarrow p$	$\neg A$	$(A \lor B)$
V	V	F	V
F	V	F	V

Observe que o importante para garantir a tautologia é a estrutura da proposição.

PRINCÍPIO DE SUBSTITUIÇÃO - EXEMPLO 2

X Considere a seguinte proposição tautológica:

$$H = p \land q \to (p \leftrightarrow q)$$

X Podemos substituir p e q por qualquer outra proposição composta envolvendo p e q, por exemplo:

$$P_0 = (p \land q) \qquad Q_0 = (p \lor q)$$

X Substituindo temos:

$$H_0 = P_0 \land Q_0 \to (P_0 \leftrightarrow Q_0)$$

$$H_0 = (p \land q) \land (p \lor q) \to ((p \land q) \leftrightarrow (p \lor q))$$

X Que é também uma proposição tautológica.

 ${\bf X}$ A tabela-verdade para a proposição H_0 é a seguinte:

		A	В	$\boldsymbol{\mathcal{C}}$	D	H_0
p	q	$p \wedge q$	$p \lor q$	$A \wedge B$	$A \leftrightarrow B$	$C \to D$
V	V	V	V	V	V	V
V	F	F	V	F	F	V
F	V	F	V	F	F	V
F	F	F	F	F	V	V

X Observe que o importante para garantir a tautologia é a estrutura da proposição.

DEFINIÇÃO

- X Uma contradição é toda proposição composta P(p,q,r,...) cujo valor lógico é sempre F (falsidade), quaisquer que sejam os valores lógicos das proposições simples componentes p,q,r,....
- X Chama-se contradição toda proposição composta cuja última coluna (Método1) da sua tabela-verdade possui somente valor lógico F (falsidade).
- X As contradições são também denominadas proposições contraválidas ou proposições logicamente falsas.

- X Como uma tautologia é sempre verdadeira (V), a negação de uma tautologia é sempre falsa (F), ou seja, é uma contradição e viceversa.
- X Portanto, P(p,q,r,...) é uma tautologia se e somente se $\neg P(p,q,r,...)$ é uma contradição, e P(p,q,r,...) é uma contradição se se somente se $\neg P(p,q,r,...)$ é uma tautologia.

CONTRADIÇÃO PRINCÍPIO DE SUBSTITUIÇÃO

- X Para as contradições também vale o princípio de substituição semelhante ao que foi descrito para as tautologias.
- X Se $H(p,q,r,\dots)$ é uma contradição, então $H(P_0,Q_0,R_0,\dots)$ também é uma contradição, quaisquer que sejam as proposições P_0,Q_0,R_0,\dots

CONTRADIÇÃO EXEMPLO 1

X Considere a proposição:

$$H = p \land \neg p \qquad (1)$$

Ordem das operações

- X Identifique as proposições simples e a ordem das operações lógicas.
- X Identifique as subfórmulas associadas as operações lógicas.

$$A = \neg p$$
$$H = p \wedge A$$

X Construa a tabela-verdade correspondente.

	A	H
p	$\neg p$	$p \wedge A$
V	F	F
F	V	F

- X A proposição é uma contradição conforme a sua tabela-verdade.
- ${\sf X}$ Por tanto, afirmar que uma proposição p pode ser simultaneamente verdadeira e falsa é sempre falso.

Exemplo 2

X Considere a proposição:

$$H = p \leftrightarrow \neg p \qquad (2)$$

Ordem das operações

- X Identifique as proposições simples e a ordem das operações lógicas.
- X Identifique as subfórmulas associadas as operações lógicas.

$$A = \neg p$$
$$H = p \leftrightarrow A$$

X Construa a tabela-verdade correspondente.

	A	H
p	$\neg p$	$p \leftrightarrow A$
V	F	F
F	V	F

X A proposição é uma contradição conforme a sua tabela-verdade.

Exemplo 3

X Considere a proposição:

$$H = (p \land q) \land \neg (p \lor q) \tag{3}$$

Ordem das operações

- Identifique as proposições simples e a ordem das operações lógicas.
- X Identifique as subfórmulas associadas as operações lógicas.

$$A = (p \wedge q)$$

$$B = (p \lor q)$$

$$C = \neg B$$

$$H = A \wedge C$$

X Construa a tabela-verdade correspondente.

		A	B	C	Н
p	q	$(p \wedge q)$	$(p \lor q)$	$\neg B$	$A \wedge C$
V	V	V	V	F	F
V	F	F	V	F	F
F	V	F	V	F	F
F	F	F	F	V	F

X A proposição é uma contradição conforme a sua tabela-verdade.

EXEMPLO 4

$$H = \neg p \land (p \land \neg q) \qquad (4)$$

Ordem das operações

- X Identifique as proposições simples e a ordem das operações lógicas.
- Identifique as subfórmulas associadas X as operações lógicas.

$$A = \neg p$$

$$B = \neg q$$

$$C = (p \wedge B)$$

$$H = A \wedge C$$

X Construa a tabela-verdade correspondente.

		A	В	$\boldsymbol{\mathcal{C}}$	H
p	q	$\neg p$	$\neg q$	$(p \wedge B)$	$A \wedge C$
V	V	F	F	F	F
V	F	F	V	V	F
F	V	V	F	F	F
F	F	\overline{V}	\overline{V}	F	F

A proposição é uma contradição conforme a sua tabela-verdade.

DEFINIÇÃO

- X Uma contingência é toda proposição composta P(p,q,r,...) que não é tautologia nem contradição.
- Chama-se contingência a toda proposição composta cuja última coluna da sua tabela-verdade (Método1) possui tanto valores lógicos V (verdadeiros) quanto F (falsos), cada um pelo menos uma vez.
- X As contingências são também denominadas proposições contingentes ou proposições indeterminadas.

EXEMPLO 1

X Considere a proposição:

$$H = p \to \neg p \qquad (1)$$

Ordem das operações

- X Identifique as proposições simples e a ordem das operações lógicas.
- X Identifique as subfórmulas associadas as operações lógicas.

$$A = \neg p$$
$$H = p \to A$$

X Construa a tabela-verdade correspondente.

	A	Н
p	$\neg p$	$p \to A$
V	F	F
F	V	V

X A proposição é uma contingência conforme mostra a sua tabela-verdade.

EXEMPLO 2

X Considere a proposição:

$$H = p \lor q \to p \qquad (2)$$

Ordem das operações

- Identifique as proposições simples e a ordem das operações lógicas.
- X Identifique as subfórmulas associadas as operações lógicas.

$$A = p \vee q$$

$$H = A \rightarrow p$$

X Construa a tabela-verdade correspondente.

		A	H
p	q	$p \lor q$	$A \rightarrow p$
V	V	V	V
V	F	V	V
F	V	V	F
F	F	F	V

X A proposição é uma contingência conforme mostra a sua tabela-verdade.

Exemplo 3

X Considere a proposição:

$$x = 3 \land (x \neq y \rightarrow x \neq 3) \tag{3}$$

X Identifique as proposições simples. Como a expressão se encontra em linguagem matemática, vale a pena identificar as proposições simples e substituir por letras proposicionais.

$$p: x = 3$$
 $\neg p: x \neq 3$

$$q: x = y \qquad \neg q: x \neq y$$

Temos assim:

$$H = p \land (\neg q \to \neg p) \quad (3)$$

Ordem das operações

Identifique a ordem das operações lógicas. X

Identifique as subfórmulas associadas as operações lógicas.

$$A = \neg q$$

$$A = \neg q \qquad \qquad C = (A \to B)$$

$$B = \neg p$$

$$B = \neg p$$
 $H = p \wedge C$

X Construa a tabela-verdade correspondente.

H

p	q	$\neg q$	$\neg p$	$(A \rightarrow B)$	$p \wedge C$
V	V	F	F	V	V
V	F	V	F	F	F
F	V	F	V	V	F
F	F	V	V	V	F

A proposição é uma contingência conforme mostra a sua tabela-verdade.

CONCLUSÃO

- Y Vimos que as proposições podem ser classificadas em três categorias:
 - Tautologias;
 - o Contradições;
 - o **Contingências**.
- Vimos também o princípio da substituição que afirma que o valor lógico de uma tautologia ou de uma contradição não muda quando as proposições simples são substituídas por proposições compostas que dependem do mesmo conjunto de proposições simples.

REFERÊNCIAS

<u>De Alencar Filho, Edgar</u>. Iniciação à Lógica Matemática. Capítulo 4. Editora Nobel. São Paulo. 1975. Reimpresso em 2015.