matRiks

An R package for the automatic generation of Raven-like matrices

Ottavia M. Epifania, Andrea Brancaccio, Debora de Chiusole

Universty of Padova, IT

Meeting of European Mathematical Psychology Group, 2023

- 1 Introduction
- 2 Generating rules
- 3 The matRiks package
- 4 Why?

Assessment of fluid intelligence or abstract reasoning Job recruitment, clinical assessment

Introduction

00000

An example

An example

Why?

An example

An example: The matrix

An example: The matrix

An example: The matrix

Repetition

Repetition of a cell adjacent to the blank space

Repetition

Difference

Repetition of a cell adjacent to the blank space

Different in appearance from every element of the matrix

Repetition

5

Difference

Wrong Principle

Repetition of a cell adjacent to the blank space

Different in appearance from every element of the matrix

Copy of a cell or combination of cells

Repetition

5

Difference

Wrong Principle

Incomplete Correlate

Repetition of a cell adjacent to the blank space

Different in appearance from every element of the matrix

Copy of a cell or combination of cells

Almost the correct response

- 1 Introduction
- 2 Generating rules
- 3 The matRiks package
- 4 Why?

Rule name	Definition
•	Visually merge two elements
,	
Movement	With a steady background, the movement is created by changing the position of an object across the cells
Rotation	The spatial orientation of the figure changes across the cells
Mental trans-	The third cell results from the application of the charac-
formation	teristics in the second cell to the figures in the first cell.
Numeric pro-	Quantitative increase or decrease in the number of fea-
gression	tures from cell to cell
Changes in	The figures change across cells
shape	
Changes in	The shading of the figures changes across cells
shade	
Changes in size	The size of the figures changes across cells
Changes in	The margins of the figures change across cells
margins	
AND	The third cell contains ONLY the elements that appeared
	in both the first and second cells
OR	The third cell contains ALL the elements in the first and
	second cells
XOR	The third cell contains the elements in the first cell not
	present in the second cell and viceversa
	Mental transformation Numeric progression Changes in shape Changes in shade Changes in size Changes in size Changes in Margins AND OR

1 Introduction

- 2 Generating rules
- 3 The matRiks package
- 4 Why?

Object

Object

Rule

rotate

The matRiks architecture: Response options generator

Sq1 Sq2 Sq3Sq4 Sq5 Sq6Sq7 Sq8 Sq9

The matRiks architecture: Response options generator

The matRiks architecture: Response options generator

Why?

(Some) of the available figures

Visuospatial rules

Rotate

Shade

Shape

Size

. . .

Logical rules

AND (∩)

OR (∪)

 $XOR(\Delta)$

- 1 Introduction
- 2 Generating rules
- 3 The matRiks package

4 Why?

PsycAssist

PsycAssist

Sample

n = 600 children aged 4-11, recruited in Italian schools

F=48%

30% preschoolers

PsycAssist

Sample

n = 600 children aged 4-11, recruited in Italian schools

F=48%

30% preschoolers

Stimuli

40 Raven-like matrices:

- 5 Mono images
- 2 × 2 matrices
- 3 × 3 matrices

Rasch validation

- Monotonicity check
- Fit the Rasch model:
 - 1 Item infit and outfit
 - 2 Local dependence

Rasch validation

- Monotonicity check
- Fit the Rasch model:
 - 1 Item infit and outfit
 - 2 Local dependence

Note

- 2 matrices were eliminated because of technical issues
- 4 matrices were eliminated because a lack of monotonicity

Why?

Starting model

The starting model included 34 matrices:

Madcov	SRMR	SRMSR	MADaQ3	<i>p</i> -value
0.97	0.06	0.08	0.05	< 0.001

Oufit statistic suggested the underfit of one matrix (item 21) \rightarrow removed and refitted the model

- ullet Check for infit/outfit o no matrices were identified as underfitting
- Check for local dependence:
 - Matrix 37 − 36 → Matrix 37 eliminated
 - Matrix $28 40 \rightarrow Matrix 40$ eliminated

The final model

Madcov	SRMR	SRMSR	MADaQ3	<i>p</i> -value
0.96	0.06	0.08	0.05	< 0.001

The final model

Madcov	SRMR	SRMSR	MADaQ3	<i>p</i> -value
0.96	0.06	0.08	0.05	< 0.001

- 1 Introduction
- 2 Generating rules
- 3 The matRiks package
- 4 Why?

- Generate similar but different matrices \rightarrow parallel forms
- Formalization of the matrix generation and response options generation processes
- Reproducibility of the stimuli
- Ease of use (for useR)

- Formalization of the matrix generation and response options generation processes
- · Reproducibility of the stimuli
- Ease of use (for useR)

