T2.6 Teoría de la decisión Bayesiana

Índice

1 Conceptos básicos

- 1.1 Conceptos básicos
- 1.2 Conceptos (un poco menos) básicos

2 Problemas de clasificación

- 2.1 Problemas de clasificación: pérdida 01
- 2.2 Matrices de confusión multiclase
- 3 Problemas de regresión
- 4 Problemas de predicción probabilística

1 Conceptos básicos

Inferencia Bayesiana: cálculo de la posterior $p(H \mid x)$ mediante la regla de Bayes actualizar nuestras creencias sobre cantidades ocultas H a partir de datos x

Teoría de la decisión Bayesiana: usa la inferencia para decidir cuál es la mejor de las posibles acciones a realizar

1.1 Conceptos básicos

Agente: debe escoger una acción de un conjunto de acciones posibles, ${\mathcal A}$

Estado de la naturaleza: $h \in \mathcal{H}_{t}$ condiciona los costes y beneficios que se derivan de tomar cada acción posible

Función de pérdida: indica el coste incurrido al tomar la acción $a\in\mathcal{A}$ cuando el estado de la naturaleza es $h\in\mathcal{H}$

 $\ell(h,a)$

Riesgo (pérdida) esperado a posteriori: de a tras observar ${m x}$

$$R(a \mid oldsymbol{x}) = \mathbb{E}_{p(h \mid oldsymbol{x})}[\ell(h, a)] = \sum_{h \in \mathcal{U}} \ell(h, a) \, p(h \mid oldsymbol{x}).$$

Política óptima o estimador de Bayes: obtiene una acción de mínimo riesgo por cada observación posible

$$\pi^*(oldsymbol{x}) = rgmin_{a \in \mathcal{A}} \ R(a \mid oldsymbol{x})$$

1.2 Conceptos (un poco menos) básicos

Función de utilidad: deseabilidad de cada acción posible en cada posible estado, esto es, riesgo con signo cambiado

$$U(h,a) = -\ell(h,a)$$

Principio de utilidad esperada máxima: estimador de Bayes expresado en términos de utilidad

$$\pi^*(oldsymbol{x}) = rgmax_{a \in \mathcal{A}} \; \mathbb{E}_h[U(h,a)]$$

Sensibilidad al riesgo: asumimos que el agente es **neutral,** esto es, insensible al riesgo, pero podría no ser así; por ejemplo, nos da igual obtener 50 EUR con seguridad, o con 50% de probabilidad de 0 y 100 EUR

2 Problemas de clasificación

2.1 Problemas de clasificación: pérdida 01

Estados de la naturaleza y acciones: etiquetas de clase, $\mathcal{H}=\mathcal{Y}=\{1,\dots,C\}$ y $\mathcal{A}=\mathcal{Y}$

Pérdida 01 para dos clases: $\mathcal{Y} = \{0,1\}$

$$\ell_{01}(y^*,\hat{y}) = egin{bmatrix} |& \hat{y} = 0 & \hat{y} = 1 \ \hline y^* = 0 & 0 & 1 \ y^* = 1 & 1 & 0 \end{bmatrix} = \mathbb{I}(y^*
eq \hat{y})$$

Pérdida esperada a posteriori: la probabilidad de error a posteriori es uno menos la de acertar a posteriori

$$R(\hat{y} \mid oldsymbol{x}) = \sum_{y} \ell_{01}(y, \hat{y}) \, p(y \mid oldsymbol{x}) = \sum_{y
eq \hat{y}} p(y \mid oldsymbol{x}) = 1 - p(\hat{y} \mid oldsymbol{x})$$

Esstimador de Bayes: estimador máximo a posteriori (MAP), esto es, la etiqueta más probable o moda de la probabilidad a posteriori

$$\pi(oldsymbol{x}) = rgmax_{y \in \mathcal{Y}} \; p(y \mid oldsymbol{x})$$

2.2 Matrices de confusión multiclase

Datos: conjunto de pares etiqueta real-predicha, $\mathcal{D}=\{(y_m,\hat{y}_m)\}_{m=1}^M,$ obtenidos al clasificar M muestras (de test)

Matriz de confusión para C clases: $\mathbf{M} = [M_{y,\hat{y}}]$ con $M_{y,\hat{y}} = \sum_m \mathbb{I}(y_m = \hat{y})\mathbb{I}(\hat{y}_m = \hat{y})$

y	î	$\hat{2}$	• • •	\hat{C}	Suma fila
1	$M_{1,\hat{1}}$	$M_{1,\hat{2}}$		$M_{1,\hat{C}}$	$M_{1,:}$
2	$M_{2,\hat{1}}$	$M_{2,\hat{2}}$		$M_{2,\hat{C}}$	$M_{2,:}$
÷	÷	÷	:	÷	:
С	$M_{C,\hat{1}}$	$M_{C,\hat{2}}$	• • •	$M_{C,\hat{C}}$	$M_{C,:}$
Suma:	$M_{:,\hat{1}}$	$M_{:,\hat{2}}$		$M_{:,\hat{C}}$	M

Normalización por filas: estimación empírica de $p(\hat{y} \mid y)$

Normalización por columnas: estimación empírica de $p(y \mid \hat{y})$

Normalización por filas y columnas: estimación empírica de $p(y,\hat{y})$

Análisis de una clase específica: se reduce a matriz binaria considerando el resto de clases como una única clase (negativa)

3 Problemas de regresión

Estados de la naturaleza y acciones: reales, $\mathcal{H}=\mathcal{A}=\mathcal{Y}=\mathbb{R}$

Pérdidas L2 (ℓ_2 , cuadrática o error cuadrático), L1 (ℓ_1) y Huber: Huber combina L1 y L2 de acuerdo con un parámetro $\delta \geq 0$

$$\ell_2(h,a)=(h-a)^2 \qquad \qquad \ell_1(h,a)=|h-a| \qquad \qquad \ell_\delta(h,a)=\left\{egin{array}{ccc} rac{(h-a)^2}{2} & ext{si } |h-a| \leq \delta \ \end{array}
ight.$$

 $||a| ||a| - |a|| - \frac{1}{2}$ Si ||a - a|| > 0

Comparación gráfica: L2, L1 y Huber en función de la desviación de la verdad, $\,h-a\,$

```
import numpy as np; import matplotlib.pyplot as plt
e = np.linspace(-3.0, 3.0, 100) # e = h - a (error)
L1 = abs(e); L2 = np.square(e); delta = 1.5; i = abs(e) <= delta
Huber = (abs(e)<=delta) * 0.5*L2 + (abs(e)>delta) * delta*(L1-delta/2);
plt.figure(figsize=(4, 4)); plt.xlim((-2, 2)); plt.ylim((-0.1, 4)); plt.grid();
plt.plot(e, L1, 'b'); plt.plot(e, L2, 'r'); plt.plot(e, Huber, 'g'); plt.legend(['L1', 'L2', 'Huber']);
```


Observaciones que se derivan de la comparación gráfica:

- L1 penaliza linealmente las desviaciones de la verdad
- L2 penaliza cuadráticamente las desviaciones de la verdad, por lo que es más sensible a outliers que L1
- Huber representa un compromiso entre L1 y L2

Pérdida L2 esperada a posteriori:

$$R(a \mid oldsymbol{x}) = \mathbb{E}[(h-a)^2 \mid oldsymbol{x}] = \mathbb{E}[h^2 \mid oldsymbol{x}] - 2a\mathbb{E}[h \mid oldsymbol{x}] + a^2$$

Regresor de Bayes L2 o minimum mean squared error (MMSE): media a posteriori

$$rac{\partial}{\partial a} R(a \mid oldsymbol{x}) = -2 \mathbb{E}[h \mid oldsymbol{x}] + 2a = 0 \quad \Rightarrow \quad \pi(oldsymbol{x}) = \mathbb{E}[h \mid oldsymbol{x}] = \int h \, p(h \mid oldsymbol{x}) \, dh$$

Pérdida L1 esperada a posteriori:

$$R(a\mid oldsymbol{x}) = \mathbb{E}[|h-a|\mid oldsymbol{x}] = \int \! |h-a| \, p(h\mid oldsymbol{x}) \, dh = \int_{\infty}^a (a-h) \, p(h\mid oldsymbol{x}) \, dh + \int_a^{\infty} (h-a) \, p(h\mid oldsymbol{x}) \, dh$$

Regresor de Bayes L1: mediana a posteriori

$$a: \ P(h < a \mid {m x}) = P(h \geq a \mid {m x}) = 0.5$$

Pérdidas para \mathbb{R}^D : las pérdidas usuales para \mathbb{R} pueden extenderse fácilmente a \mathbb{R}^D y usarse para calcular los parámetros óptimos que debe devolver un estimador, la acción óptima que debe realizar un robot, etc.

4 Problemas de predicción probabilística

Estados de la naturaleza y acciones: distribuciones de probabilidad; $h = p(Y \mid \boldsymbol{x})$ y buscamos una $a = q(Y \mid \boldsymbol{x})$ que minimice $\mathbb{E}[\ell(p,q)]$ para un \boldsymbol{x} dado

Función de pérdida: divergencia de Kullback-Leibler (KL), en función de la entropía de p, $\mathbb{H}(p)$, y la entropía cruzada entre p y q, $\mathbb{H}(p,q)$

$$\mathbb{KL}(p\|q) = -\mathbb{H}(p) + \mathbb{H}(p,q)$$

La minimización de KL equivale a minizar la entropía cruzada:

$$egin{aligned} q^*(Y \mid oldsymbol{x}) &= rgmin_q & \mathbb{KL}(p(Y \parallel oldsymbol{x}), q(Y \mid oldsymbol{x})) \ &= rgmin_q & -\mathbb{H}(p) + \mathbb{H}(p(Y \mid oldsymbol{x}), q(Y \mid oldsymbol{x})) \ &= rgmin_q & \mathbb{H}(p(Y \mid oldsymbol{x}), q(Y \mid oldsymbol{x})) \ &= rgmin_q & -\sum_{y \in \mathcal{Y}} p(y \mid oldsymbol{x}) \log q(y \mid oldsymbol{x}) \end{aligned}$$

En clasificación equivale a usar la log-pérdida: si h es one-hot, $h=p(Y\mid m{x})=\delta(Y=c)$

$$\mathbb{H}(\delta(Y=c),q) = -\sum_{y \in \mathcal{Y}} \delta(y=c) \log q(y \mid oldsymbol{x}) = -\log q(c \mid oldsymbol{x})$$

Regla de puntuación propia: pérdida $\ell(p,q)$ cuya minimización en q converge a p

Puntuación de Brier: regla propia menos sensible a eventos raros que la entropía cruzada

$$\ell(p,q) = rac{1}{C} \sum_{c=1}^{C} \left(q(y = c \mid oldsymbol{x}) - p(y = c \mid oldsymbol{x})
ight)^2$$