

Life Long Learning Hung-yi Lee 李宏毅

Life Long Learning (終身學習)

https://world.edu/lifelong-learning-part-time-undergraduate-provision-crisis/

What people think about AI ...

Life Long Learning (LLL), Continuous Learning, Never Ending Learning, Incremental Learning

Life Long Learning in real-world applications

Example

The network has enough capacity to learn both tasks.

Example

- QA: Given a document, answer the question based on the document.
- There are 20 QA tasks in bAbi corpus.

Task 5: Three Argument Relations

Mary gave the cake to Fred.
Fred gave the cake to Bill.
Jeff was given the milk by Bill.
Who gave the cake to Fred? A: Mary

Who did Fred give the cake to? A: Bill

Task 15: Basic Deduction

Sheep are afraid of wolves.

Cats are afraid of dogs.

Mice are afraid of cats.

Gertrude is a sheep.

What is Gertrude afraid of? A:wolves

Train a QA model through the 20 tasks

Example

Task 5 Accuracy

Learning 20 tasks sequentially

Accuracy of all 20 tasks

Learning 20 tasks simultaneously

Not because machine are not able to do it, but it just didn't do it.

是不為也 非不能也

Catastrophic Forgetting

Wait a minute

Multi-task training can solve the problem!

Using all the data for training Computation issue

 Multi-task training can be considered as the upper bound of LLL.

Wait a minute

Train a model for each task

- > Eventually we cannot store all the models ...
- > Knowledge cannot transfer across different tasks

Life-Long v.s. Transfer

Transfer Learning:

I can do task 2 because I have learned task 1.

(We don't care whether machine can still do task 1.)

Life-long Learning:

Even though I have learned task 2, I do not forget task 1.

Evaluation

First of all, we need a sequence of tasks.

Evaluation

 $R_{i,j}$: after training task i, performance on task j

If
$$i > j$$
,

After training task i, does task j be forgot

If
$$i < j$$
,

Can we transfer the skill of task i to task j

		Test on					
		Task 1		Task 2	•••••	Task T	
Rand Init.		$R_{0,1}$		$R_{0,2}$		$R_{0,T}$	
After Training	Task 1	$R_{1,1}$		$R_{1,2}$		$R_{1,T}$	
	Task 2	F ,1		$R_{2.2}$		$R_{2,T}$	
	i i			1			
	Task T-1	R_{7}	-1,1	R_T 1,2		$R_{T-1,T}$	
	Task T	$R_{T.1}$		$R_{T.2}$		$R_{T,T}$	

Accuracy =
$$\frac{1}{T}\sum_{i=1}^{T} R_{T,i}$$

Backward Transfer
$$=\frac{1}{T-1}\sum_{i=1}^{T-1}R_{T,i}-R_{i,i}$$
 (It is usually negative.)

Evaluation

 $R_{i,j}$: after training task i, performance on task j

If
$$i > j$$
,

After training task i, does task j be forgot

If
$$i < j$$
,

Can we transfer the skill of task i to task j

		Test on				
		Task 1	Task 2	•••••	Task T	
Rand Init.		$R_{0,1}$	$R_{0,2}$		$R_{0,T}$	
After Training	Task 1	$R_{1,1}$	$R_{1,2}$		R	
	Task 2	$R_{2,1}$	$R_{2,2}$		R_T	
	:					
	Task T-1	$R_{T-1,1}$	$R_{T-1,2}$		$R_{T-1,T}$	
	Task T	$R_{T,1}$	$R_{T,2}$		$R_{T,T}$	

Accuracy =
$$\frac{1}{T}\sum_{i=1}^{T} R_{T,i}$$

Backward Transfer =
$$\frac{1}{T-1}\sum_{i=1}^{T-1}R_{T,i}-R_{i,i}$$

Forward Transfer =
$$\frac{1}{T-1}\sum_{i=2}^{T}R_{i-1,i}-R_{0,i}$$

Research Directions

突觸的

可塑性

Regularizationbased Approach

Selective Synaptic Plasticity

Additional Neural Resource Allocation

Memory Reply

Why Catastrophic Forgetting?

The error surfaces of tasks 1 & 2. (darker = smaller loss)

Basic Idea: Some parameters in the model are important to the previous tasks. Only change the unimportant parameters.

 $oldsymbol{ heta}^{oldsymbol{b}}$ is the model learned from the previous tasks.

Each parameter θ_i^b has a "guard" b_i

Loss for current task

How important this parameter is

$$\underline{L'(\boldsymbol{\theta})} = \underline{L(\boldsymbol{\theta})} + \lambda \sum_{i} \underline{b_i} (\underline{\theta_i} - \underline{\theta_i^b})^2$$

Loss to be optimized

Parameters to be learning

Parameters learned from previous task

Basic Idea: Some parameters in the model are important to the previous tasks. Only change the unimportant parameters.

 $oldsymbol{ heta}^{oldsymbol{b}}$ is the model learned from the previous tasks.

Each parameter θ_i^b has a "guard" b_i

 $oldsymbol{ heta}$ should be close to $oldsymbol{ heta}^{oldsymbol{b}}$ in certain directions.

$$L'(\boldsymbol{\theta}) = L(\boldsymbol{\theta}) + \lambda \sum_{i} b_{i} (\theta_{i} - \theta_{i}^{b})^{2}$$

If $b_i = 0$, there is no constraint on θ_i

Catastrophic Forgetting

If $b_i = \infty$, θ_i would always be equal to $\theta_i^b \longrightarrow$ Intransigence

 b_1 is small, while b_2 is large. (We can modify θ_1 , but do not change θ_2 .)

- Elastic Weight Consolidation (EWC)
 - https://arxiv.org/abs/1612.00796
- Synaptic Intelligence (SI)
 - https://arxiv.org/abs/1703.04200
- Memory Aware Synapses (MAS)
 - https://arxiv.org/abs/1711.09601
- RWalk
 - https://arxiv.org/abs/1801.10112
- Sliced Cramer Preservation (SCP)
 - https://openreview.net/forum?id=BJge3TNKwH

Task 1

https://arxiv.org/abs/ 1706.08840

Task 2

: negative gradient of current task

: negative gradient of previous task

: update direction

Need the data from the previous tasks

Research Directions

Selective Synaptic Plasticity

Additional Neural Resource Allocation

Memory Reply

Progressive Neural Networks

PackNet

https://arxiv.org/abs/1711.05769

Compacting, Picking, and Growing (CPG)

Research Directions

Selective Synaptic Plasticity

Additional Neural Resource Allocation

Memory Reply

Generating Data

https://arxiv.org/abs/1705.08690 https://arxiv.org/abs/1711.10563 https://arxiv.org/abs/1909.03329

Generating pseudo-data using generative model for previous tasks

Adding new classes

Learning without forgetting (LwF) https://arxiv.org/abs/1606.09282

Class 1

Class 3

data

class-incremental learner

Target:

model (a)'s response for

old tasks

new task

ground truth

iCaRL: Incremental Classifier and Representation Learning https://arxiv.org/abs/1611.07725

Three scenarios for continual learning

Input:

new task

Class 2

https://arxiv.org/abs/1904.07734

Concluding Remarks

Memory Reply

Additional Neural Resource Allocation

Curriculum Learning: what is the proper learning order?

