Introduction
Method
Results
Conclusion
Questions
References

Modeling Quantum Dots using Geometric Primitives

J. M. Calderon

Department of Computer Science University of York

19-9-2011 / MSc NC Presentation

- Introduction
 - Explaining Quantum Dots
- 2 Method
 - Approximating the kinetic energy
 - Potential Energy Matrix
 - Combining The Two
- Results
 - Results

- Introduction
 - Explaining Quantum Dots
- 2 Method
 - Approximating the kinetic energy
 - Potential Energy Matrix
 - Combining The Two
- Results
 - Results

The Schödinger Equation

$$E\psi = -\frac{\hbar^2}{2m}\nabla^2\psi + V\psi$$

Where

$$\nabla^2 = \left(\frac{\partial^2}{\partial x} + \frac{\partial^2}{\partial y} + \frac{\partial^2}{\partial z}\right)$$

and

 $\psi \rightarrow$ the wave equation for the particle

Understanding Potential Wells Potential Wells

Free particles like to reside where the potential energy is low

Normally a function describing this function can be complex (the red line), so physicists approximate it using a trivial

Quantum Confinement

Infinitely deep well \rightarrow quantum confinement

Quantum Dots as Artificial Atoms

Quantum Confinement in 3D -> Artificial atom

- Question: What atomic properties are we looking to exploit?
- Answer: Fluorescence.

Quantum Dots as Artificial Atoms

Quantum Confinement in 3D -> Artificial atom

- Question: What atomic properties are we looking to exploit?
- Answer: Fluorescence.

Fluorescence

Fluorescence 1

How fluorescence works

A photon 'hits' an electron into its excited state.

Fluorescence

Fluorescence 2

How fluorescence works

When the electron comes back 'down' form the excited state light is emitted [2].

- Introduction
 - Explaining Quantum Dots
- Method
 - Approximating the kinetic energy
 - Potential Energy Matrix
 - Combining The Two
- Results
 - Results

Remembering the Schrödinger equation

$$E\psi = -\frac{\hbar^2}{2m}\nabla^2\psi + \mathbf{V}\psi$$

Let us first model the kinetic energy part

$$K = -rac{\hbar^2}{2m}\nabla^2$$

where

$$\nabla^2 = \left(\frac{\partial^2}{\partial x} + \frac{\partial^2}{\partial y} + \frac{\partial^2}{\partial z}\right)$$

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

and

$$f''(x) \approx \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

This gives us the following matrix for f''(x)

$$\begin{bmatrix} -2 & 1 & 0 & 0 & \cdots & 0 \\ 1 & -2 & 1 & 0 & \cdots & 0 \\ 0 & 1 & -2 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & 1 & -2 \end{bmatrix}$$

This works fine for a one dimensional function like this one

But what about higher dimensionality?

This is what we want!

Luckily, we can use the tensor product to achieve this.

For 2 dimensions

$$K = X \otimes I + I \otimes Y$$

For 3 dimensions

$$K = X \otimes I \otimes I + I \otimes Y \otimes I + I \otimes I \otimes Z$$

This process gives us the appropriate approximation of the kinetic energy matrix.

- Introduction
 - Explaining Quantum Dots
- 2 Method
 - Approximating the kinetic energy
 - Potential Energy Matrix
 - Combining The Two
- Results
 - Results

Now we can create our potential energy matrix.

- Have a set of defined primitives
- Iterate through the set of sample points
- For each point determine if it is inside any of the primitves
- Place results along the diagonal of a matrix.

Set of primitives

- Sphere
- Rectangular Prism
- Cylinder

Determining if a point is inside a prism

- Introduction
 - Explaining Quantum Dots
- Method
 - Approximating the kinetic energy
 - Potential Energy Matrix
 - Combining The Two
- Results
 - Results

Now that we have both matrices we can add them together and solve for the eigenvalues.

$$\mathbf{E}\psi = \mathbf{K}\psi + \mathbf{V}\psi$$

The eigenvalues of *E* codify the spectral information of the quantum dot.

- Introduction
 - Explaining Quantum Dots
- Method
 - Approximating the kinetic energy
 - Potential Energy Matrix
 - Combining The Two
- Results
 - Results

Having an implementation, we can now compare its results to an analytical solution (of a very simple case).

Two comparisons can be made

- First ten eigenvalues should be 3, 6, 6, 6, 9, 9, 9, 11, 11, 11
- For a cube of .8 the length of the sample cube, the lowest eigenvalue should be 46.2638

Percent error of the first ten eigenvalues (increasing the sample rate)

Value of first eigenvalue with cube of .8 the length of the sample cube.

Conclusion

- By using primitives we can abstract away from the sample-point level.
- Using the approximation methods based on the Taylor series provides a simple yet effective approximation of the energy levels.
- Finding computers that had sufficient memory resources proved to be a problem.
- Outlook
 - Run more tests, including the variation of the potential field (changing the surrounding electric field)
 - Use this to create an evolutionary algorithm to find optimal shapes for desired spectral properties.

Introduction
Method
Results
Conclusion
Questions
References

Questions

- P. Harrison, Quantum Wells, Wires, and Dots.
 Wiley-Interscience, John Wiley and Sons Inc, 2005.
- [2] S. Gasiorowicz, *Quantum Physics*. John Wiley and Sons Inc, 1996.