Università di Pisa

NICOLETTA DE FRANCESCO

Algoritmi e strutture dati

a.a. 2019/2020

Grafi

Grafi orientati

GRAFO ORIENTATO = (N, A)
N = insieme di nodi
A ⊆ N x N = insieme di archi
(coppie ordinate di nodi)

•Se (p,q) ∈ A, diciamo che p è predecessore di q e q è successore di p.

n=|N| numero dei nodim=|A| numero degli archi.

Un grafo orientato con n nodi ha al massimo n² archi

Cammini e Cicli

Un *cammino* è una sequenza di nodi (n_1, \ldots, n_k) , $k \ge 1$ tale che esiste un arco da n_i a n_i+1 per ogni $1 \le i < k$.

La lunghezza del cammino è data dal numero degli archi.

Un *ciclo* è un cammino che comincia e finisce con lo stesso nodo.

Un grafo è aciclico se non contiene cicli.

rappresentazione in memoria dei grafi: liste di adiacenza

```
struct Node{
        int NodeNumber;
        Node * next;
};
Node *graph[N];
```

- Viene definito un array con dimensione uguale al numero dei nodi.
- Ogni elemento dell'array rappresenta un nodo con i suoi successori.

rappresentazione in memoria dei grafi: matrici di adiacenza

int graph [N][N];

	U	1	2	3
0	0	1	0	1
1	0	1	1	1
2	1	0	0	1
3	0	1	0	0

- Nella realizzazione con matrici di adiacenza, il grafo viene rappresentato con una matrice quadrata $n \times n$.
- L'elemento della matrice di indici i, j è 1 se c'è un arco dal nodo i al nodo j e 0 altrimenti.

Grafi con nodi e archi etichettati : Liste di adiacenza

Con nodi e archi etichettati : matrici di adiacenza

ArcType graph [N][N];

NodeType nodeLabels [N];

nodeLabels

NodeType = char ArcType=int

visita in profondità

```
void NodeVisit (nodo) {
 esamina il nodo;
 marca il nodo;
 applica NodeVisit ai successori non marcati del nodo;
Void DepthVisit Graph(h) {
       per tutti i nodi:
        se il nodo non è marcato applica nodeVisit;
            Complessità?
```

n=|N| numero dei nodi

m=|A| numero degli archi

Una classe per i grafi

```
class Graph{
struct Node {
  int nodeNumber;
  Node* next;
};
Node* graph [N];
NodeType nodeLabels [N];
int mark[N];
void nodeVisit( int i) {
  mark[i]=1;
  <esamina nodeLabels[i]>;
  Node* g; int j;
  for (g=graph[i]; g; g=g->next){
       j=g->nodeNumber;
      if (!mark[j]) nodeVisit(j);
```

```
public:
void depthVisit() {
  for (int i=0; i<N; i++)
       mark[i]=0;
  for (i=0; i<N; i++)
       if (! mark[i])
               nodeVisit (i);
};
```

visita in profondità: esempio

1 B
2 C
3 D

Visita?

Grafi non orientati

grafo non orientato = (N, A),

N = insieme di nodi

A = insieme di coppie non ordinate di nodi

 Se (p,q) ∈ A, p è diverso da q, diciamo che è adiacente a q e viceversa.

Un grafo non orientato con n nodi ha al massimo n(n-1)/2 archi

Esempio di grafo non orientato

- Un cammino in un grafo non orientato è una sequenza di nodi (n₁, . . . , n_k), k ≥ 1 tale che n_i è adiacente a n_i+1 per ogni i.
- Un ciclo è un cammino che inizia e termina con lo stesso nodo e non ha ripetizioni, eccettuato l'ultimo nodo.
- Un grafo non orientato è connesso se esiste un cammino fra due nodi qualsiasi del grafo.

Rappresentazione in memoria dei grafi non orientati

Un grafo non orientato può essere visto come un grafo orientato tale che, per ogni arco da un nodo p a un nodo q, ne esiste uno da q a p.

La rappresentazione in memoria dei grafi non orientati può essere fatta con le matrici o con le liste di adiacenza tenendo conto di questa equivalenza.

Naturalmente ogni arco del grafo non orientato sarà rappresentato due volte (la matrice di adiacenza è sempre simmetrica).

Multi-grafi orientati

Multi-grafo non orientato = (N, A),

N = insieme di nodi

A = multi-insieme di coppie non ordinate di nodi

Non c'è relazione fra il numero di nodi e il numero di archi

Analogamente si definiscono i multi-grafi non orientati

Multi-grafi orientati : matrice di adiacenza

int graph [N][N];

Esempio di multi-grafo non orientato

Minimo albero di copertura

Componente connessa

Albero di copertura

Componenti connesse massimali

Minimo albero di copertura

Minimo albero di copertura

- Un grafo non orientato è connesso se esiste un cammino fra due nodi qualsiasi del grafo
- Componente connessa: sottografo connesso
- Componente connessa massimale: nessun nodo è connesso ad un'altra componente connessa
- Albero di copertura: insieme di componenti connesse massimali acicliche
- Minimo albero di copertura: la somma dei pesi degli archi è minima

algoritmo di Kruskal per trovare il minimo albero di coperura

- 1. Ordina gli archi del grafo in ordine crescente
- 2. Scorri l'elenco ordinato degli archi: per ogni arco a if (a connette due componenti non connesse) { scegli a; unifica le componenti; }

Lunghezza: 17

Bibliografia

Demetrescu:

Paragrafo Cormen:

Capitolo

Esercizio 1

Indicare la sequenza di nodi ottenuta visitando in profondita' il grafo orientato seguente memorizzato con liste di adiacenza.

Supporre che nelle liste di adiacenza i nodi compaiano in ordine crescente.

0: 3

1: 0 -> 2-> 3

2: 3->4

3: 4->5

4: 1-> 2-> 6

5: 4->6

6:

7:8

8: 7

Esercizio 2

Trovare il minimo albero di copertura del grafo seguente con l'algoritmo di Kruskal, indicando le component connesse ad ogni passaggio

Arco	Componenti connesse
	connesse

Dimensione: ?