2-4 Additional Practice

Complex Numbers and Operations

Use square roots to solve each equation. Write your solutions using the imaginary unit, i.

1.
$$x^2 = -81$$

2.
$$x^2 = -625$$

3.
$$x^2 = -144$$

$$x = \pm 9i$$

$$x = \pm 25i$$

$$x = +12i$$

Simplify each expression.

4.
$$(-2+3i)+(5-2i)$$
 5. $(-6+7i)+(6-7i)$ **6.** $(8+5i)+(6-7i)$

6.
$$(8+5i)+(6-7i)$$

$$3+i$$

$$14 - 2i$$

Write each product in the form a + bi.

7.
$$(4-3i)(-5+4i)$$

8.
$$(2 - i)(-3 + 6i)$$

9.
$$(5-3i)(5+3i)$$

$$-8 + 31i$$

Write the quotient in the form a + bi.

10.
$$\frac{5+2i}{4i}$$

$$\frac{1}{2} - \frac{5i}{4}$$

11.
$$\frac{3-2i}{4-3i}$$

$$\frac{18}{25} + \frac{i}{25}$$

12.
$$\frac{3i}{-2+i}$$

$$\frac{3}{5} - \frac{6i}{5}$$

13. Why does multiplying a + bi by the complex conjugate a - bi eliminate ifrom the expression?

a + bi and a - bi are factors of a difference of two perfect squares. bi - bi = 0, removing the *i* from the middle term. bi times bi is b^2i^2 which is the same as -b because $i^2 = -1$.

Solve the equations below using factoring.

14.
$$x^2 + 360 = 0$$

15.
$$x^2 + 40 = 0$$

16.
$$x^2 + 10 = 0$$

$$x = 6i, x = -6i$$

$$x = 2i, x = -2i$$

$$x = -i$$
, $x = i$

17. The total resistance of a circuit is given by the formula $R_T = \frac{1}{R_1} + \frac{1}{R_2}$. $R_1 = 4 + 6i$ ohms and $R_2 = 2 - 4i$ ohms. What is R_T ?

$$R_T = \frac{23}{130} + \frac{11i}{130}$$
 ohms.