Lehrstuhl für Steuerungs- und Regelungs-
technik / Lehrstuhl für Informationstech-
nische Regelung

Technische Universität München

4. Übung

Aufgabe 1:

Bild 1

Bild 1 zeigt die schematische Darstellung eines Roboters mit zwei gleichlangen Gliedern der Länge l.

- 1.1 Zeichnen Sie in die Skizze das Gelenkkoordinatensystem S_1 gemäß Denavit-Hartenberg-Vereinbarung sowie die Gelenkwinkel Θ_1 und Θ_2 ein.
- 1.2 Geben Sie d_i, a_i und α_i für i=1,2 an und bestimmen Sie die Vorwärtslösung ${}^0T_2(\underline{q})$ des Manipulators. Was bedeutet das Ergebnis?
- 1.3 Ermitteln Sie die RWL des Manipulators mittels geometrischer Überlegungen am Dreieck ABC. Diskutieren Sie die Frage der Existenz und Eindeutigkeit der RWL.
- 1.4 Geben Sie die Jacobi-Matrix des Manipulators an und diskutieren Sie deren Eigenschaften als Funktion von Θ_1 und Θ_2 (Singularitäten, Degeneration von Freiheitsgraden).

Aufgabe 2:

Der Roboter der 1. Aufgabe werde nun um eine Drehachse (Θ_3) und eine Schubachse (σ) ergänzt:

Bild 2

- 2.1 Zeichnen Sie in Bild 1 und Bild 2 die Gelenkkoordinatensysteme S_3 und S_4 sowie die Gelenkkoordinaten Θ_3 und σ ein.
- 2.2 Geben Sie die Vorwärtslösung ${}^0T_4(\underline{q})$ des kompletten 4-achsigen SCARA-Roboters an, indem Sie das Ergebnis aus 1.2 entsprechend ergänzen.
- 2.3 Bestimmen Sie die RWL des SCARA-Roboters.

Aufgabe 3:

Der Roboter der 1. Aufgabe arbeitet nun in der x/z-Ebene und kann zur Erweiterung des Arbeitsraumes auf einer mobilen Plattform in x-Richtung bewegt werden.

- Bild 3
 - 3.1 Bestimmen Sie die Vorwärtslösung ${}^0T_3(\underline{q})$ des mobilen Manipulators mit Hilfe der Ergebnisse aus Aufgabe 1.2.
 - 3.2 Geben Sie die Jacobi-Matrix des mobilen Manipulators an und interpretieren Sie das Ergebnis.

- 3.3 Geben Sie die differentielle Rückwärtslösung mit Hilfe des verallgemeinerten Inversen (Pseudo-Inverse-Jacobi-Matrix) an für $\Theta_1=90^0$, $\Theta_2=-90^0$ und l=1.
- 3.4 Wie muss die mobile Plattform positioniert werden, um maximale Manipulierbarkeit an der Stelle $(x_3,\,z_3)=(2l,\,l/2)$ zu gewährleisten? Skizzieren Sie dazu die optimale Manipulator-Konfiguration.
- 3.5 Bestimmen Sie die differentielle Rückwärtslösung unter Zuhilfenahme einer zusätzlichen kinematischen Bedingung, z. B. $\Theta_1 + \Theta_2 = 90^0$.