

Matemática

Aula VIII: Limite e Derivadas – Parte II

Data: 10/05/2024

Derivadas

Regras de Derivação: Suponha que k uma constante qualquer e que f e g são funções deriváveis em $x = x_0$. Então:

a)
$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$
;

b)
$$(kf)'(x_0) = k.f'(x_0)$$
;

c)
$$(f.g)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0);$$

d)
$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2};$$

e)
$$(f(x)^n)' = nf(x_0)^{n-1}f'(x_0) \rightarrow Regra\ da\ Cadeia$$

Derivadas

Exemplo: Calcule a derivada das seguintes funções:

a)
$$f(x) = (x^2 + 3x - 1)(x^4 - 8x)$$
;

b)
$$f(x) = \frac{x-2}{x+1}$$
;

c)
$$f(x) = (x^3 - 4x^2 + 1)^5$$

Derivadas

Derivabilidade e Continuidade: A função f(x) = |x| não é derivável em p = 0. Entretanto, esta função é contínua em p = 0.

Logo, continuidade não implica derivabilidade.

Teorema: Se f for derivável em p, então f será contínua em p.

Função Derivada e Derivadas de Ordem Superior

Se f(x) é uma função diferenciável, sua derivada f'(x)_é outra função de x – que associa a cada ponto x a inclinação da reta tangente ao gráfico de f em (x, f(x)).

Se a função derivada f'(x) for contínua de x, então a função f(x) é **continuamente diferenciável**.

Neste caso, pode-se avaliar se a função derivada f'(x) possui ou não derivada em um ponto qualquer. Se esta existir, ela é denominada **derivada segunda** de f em x_0 , e é denotada por:

$$f''(x_0) = d^2 f(x_0) / dx^2$$

Exemplo: Seja $y = \begin{cases} x^3, & x < 1 \\ 3x - 2, & x \ge 1 \end{cases}$, determine se a função é continuamente diferenciável e se existe derivadas de ordem superiores.

Regra da Cadeia Para Derivação de Função Composta

Sejam y = f(x) e x = g(t) duas funções deriváveis, onde a $Img \subset D_f$, então a função h(t) = f(g(t)) é derivável e vale a **regra da cadeia**:

$$h'(t) = f'(g(t))g'(t), t \in D_g$$

Regra da Cadeia Para Derivação de Função Composta

Regra da cadeia: h'(t) = f'(g(t))g'(t), $t \in D_g$

Exemplo: O comportamento otimizador de uma firma, via de regra, é descrito a partir da função lucro Π , o qual está diretamente associado ao nível de produção y. Já o nível de produção de uma firma está relacionado ao *insumo* trabalho L empregado.

Regra da Cadeia Para Derivação de Função Composta

Regra da cadeia: h'(t) = f'(g(t))g'(t), $t \in D_g$

Exemplo:

Logo, $\pi = \Pi(y)$ e y = f(L), onde $Imy \subset D_{\pi}$, o que resulta em uma associação indireta entre o nível de trabalho e o lucro observado da empresa:

$$\pi(L) = \Pi(f(L))$$

Seja $\pi = -y^4 + 6y^2 - 5$ e $f(L) = 5L^{2/3}$, calcule a derivada da função composta:

Teorema: Suponha que a função $f \in C^1$ em x_0 . Então

- (a) Se $f'(x_0) > 0$, existe um intervalo aberto contendo x_0 no qual f é crescente;
- (b) Se $f'(x_0) < 0$, existe um intervalo aberto contendo x_0 no qual f é decrescente

Expansão do Teorema: Suponha que a função $f \in \mathcal{C}^1$ em seu domínio $D \subset \mathbb{R}^1$

- (a) Se $f'(x_0) > 0$ no intervlao (a, b) $\subset D$, então f é crescente em (a, b)
- (b) Se $f'(x_0) < 0$ no intervlao $(a,b) \subset D$, então f é decrescente em (a,b)

Derivada Segunda e a Convexidade

Se a função f for não-linear, além de estabelecer onde ela cresce ou decresce, é necessário estudar também a curvatura da função.

Teorema – Derivada Segunda: Suponha que a função f é C^2 em seu domínio $D \subset \mathbb{R}^1$. Então

- (a) Se $f''(x_0) > 0$ no intervlao $(a, b) \subset D$, então f' é crescente em (a, b)
- (b) Se $f''(x_0) < 0$ no intervlao $(a,b) \subset D$, então f' é decrescente em (a,b)

Derivada Segunda e a Convexidade

Função Côncava para cima (Convexa): Reta secante sempre fica acima do gráfico

Em um intervalo I, a função é côncava para cima se, e somente se: $f[(t)a + (1-t)b] \le tf(a) + (1-t)f(b) \ \forall t \in [0,1]$

Função Côncava para baixo (Côncava): Reta secante sempre fica abaixo do gráfico

Em um intervalo I, a função é côncava para cima se, e somente se: $f[(t)a + (1-t)b] \ge atf(a) + (1-t)f(b) \ \forall t \in [0,1]$

Exemplo: Avalie se as seguintes funções são côncavas ou convexas entre os valores a=2 e b=4, e tome $t=\frac{1}{2}$:

a)
$$f(x) = x^2$$

a)
$$f(x) = x^2$$

b) $f(x) = \sqrt{x}$