Phép toán ma trận, ma trận khả nghịch, định thức và quy tắc Cramer

Dr. Nguyen Van Hoi University of Information Technology

Ngày 8 tháng 9 năm 2023

Phép toán ma trận

 \square Cộng: $A=(a_{ij})_{m imes n}$ và $B=(b_{ij})_{m imes n}$, khi đó

$$A+B=(a_{ij}+b_{ij})_{m\times n}\begin{bmatrix} a_{11}+b_{11} & a_{12}+b_{12} & \cdots & a_{1n}+b_{1n} \\ a_{21}+b_{21} & a_{22}+b_{22} & \cdots & a_{2n}+b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}+b_{m1} & a_{m2}+b_{m2} & \cdots & a_{mn}+b_{mn} \end{bmatrix}$$

 \square Nhân với số thực $\alpha \in \mathbb{R}$,

$$\alpha A = (\alpha a_{ij})_{m \times n} = \begin{bmatrix} \alpha a_{11} & \alpha a_{12} & \cdots & \alpha a_{1n} \\ \alpha a_{21} & \alpha a_{22} & \cdots & \alpha a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha a_{m1} & \alpha a_{m2} & \cdots & \alpha a_{mn} \end{bmatrix}$$

 \square Nhân hai ma trận: $A=(a_{ij})_{m imes p}$ và $B=(b_{ij})_{p imes n}$, khi đó

$$AB = C = (c_{ij})_{m \times n},$$

với

$$c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj} = \begin{bmatrix} a_{i1} & a_{i2} & \cdots & a_{ip} \end{bmatrix} \begin{vmatrix} b_{1k} \\ b_{2k} \\ \vdots \\ b_{pk} \end{vmatrix}.$$

- ☐ Môt số tính chất:
 - (i) $AB \neq BA$ và A(BC) = (AB)C.
- (ii) A(B+C) = AB + AC và kAB = A(kB).

Ma trận chuyển vị

Xét ma trận $A = (a_{ij})_{m \times n}$. Đổi hàng thành cột, cột thành hàng ta được ma trận mới gọi là ma trận chuyển vị của A, kya hiệu là A^T (hoặc A^t).

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 1 & 0 \\ 3 & 0 & 2 & 1 \\ 4 & -1 & 0 & 3 \end{bmatrix} \quad A^{T} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 0 & -1 \\ 3 & 1 & 2 & 0 \\ 4 & 0 & 1 & 3 \end{bmatrix}$$

☐ Tính chất:

(i)
$$(A+B)^T = A^T + B^T$$
; $(kA)^T = kA^T$.

(ii)
$$(AB)^T = B^T A^T$$
; $(A^T)^{-1} = (A^{-1})^T$

(iii) $rank(A) = rank(A^T)$.

Ma trận nghịch đảo

Nghịch đảo của ma trận vuông A cấp n là ma trận vuông B cấp n thỏa

$$AB = \mathbb{I}_n, \qquad BA = \mathbb{I}_n,$$

với \mathbb{I}_n là ma trận đơn vị. Trong trường hợp đó, ta ký hiệu $B=A^{-1}$ và A được gọi là ma trận khả nghịch.

☐ A khả nghịch nếu và chỉ nếu

$$rref(A) = I_n$$

hoặc tương đương

$$rank(A) = n$$
.

Tại sao là khả nghịch và cách tìm ma trận nghịch đảo

 \Box Hệ phương trình tuyến tính: Ax=b. Nếu A khả nghịch thì hệ có nghiệm duy nhất

$$x = A^{-1}b$$
.

Ngược lại thì hệ có vố số nghiệm hoặc vô nghiệm.

- \square Trong trường hợp b=0. Hệ có nghiệm duy nhất x=0 khi A khả nghịch hoặc vô số nghiệm khi A không khả nghịch.
- ☐ Cách tìm ma trận nghịch đảo: dùng các phép biến đối sơ cấp

$$[A \mid I_n]$$
 về $[I_n \mid B]$

khi đó

$$B = A^{-1}$$
.

Ma trận sau có khả nghịch? Tìm ma trận nghịch đảo của nó

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 8 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 8 & 2 \end{bmatrix} - 2(I) \rightarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 5 & -1 \end{bmatrix} - (II) \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - (III) \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I_3 = rref(A)$$

Suy ra A khả nghịch.

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 2 & 3 & 2 & 0 & 1 & 0 \\ 3 & 8 & 2 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{-2(I)} \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -2 & 1 & 0 \\ 0 & 5 & -1 & -3 & 0 & 1 \end{bmatrix} \xrightarrow{-5(II)} \begin{bmatrix} 1 & 0 & 1 & 3 & -1 & 0 \\ 0 & 1 & 0 & -2 & 1 & 0 \\ 0 & 0 & -1 & 7 & -5 & 1 \end{bmatrix} \xrightarrow{+(-1)} \begin{bmatrix} 1 & 0 & 1 & 3 & -1 & 0 \\ 0 & 1 & 0 & -2 & 1 & 0 \\ 0 & 0 & 1 & -7 & 5 & -1 \end{bmatrix} \xrightarrow{-1} \begin{bmatrix} 1 & 0 & 1 & 3 & -1 & 0 \\ 0 & 1 & 0 & -2 & 1 & 0 \\ 0 & 0 & 1 & -7 & 5 & -1 \end{bmatrix}.$$

$$B = A^{-1} = \begin{bmatrix} 10 & -6 & 1 \\ -2 & 1 & 0 \\ -7 & 5 & -1 \end{bmatrix}.$$

Định thức

Định thức ma trận
$$B=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 được định nghĩa là
$$\det(B)=ad-bc.$$

B khả nghịch khi và chỉ khi $det(B) \neq 0$.

Cho ma trận A cỡ $m \times n$, ma trận con ứng với phần từ a_{ij} là A_{ij} (thu được từ A bằng cách xóa đi dòng i và cột j)

$$A_{ij} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{jn} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots \\ a_{m1} & a_{m2} & \cdots & a_{mj} & \cdots & a_{mn} \end{bmatrix}$$

☐ Đinh thức của A:

$$\det(A) = \sum_{i=1}^n (-1)^{i+j} \det(A_{ij}) \leftarrow \text{Biến đổi theo dòng } i.$$

$$\det(A) = \sum_{j=1}^m (-1)^{i+j} \det(A_{ij}) \leftarrow \text{Biến đổi theo cột } j.$$

$$A = \begin{bmatrix} 1 & 0 & 1 & 2 \\ 9 & 1 & 3 & 0 \\ 9 & 2 & 2 & 0 \\ 5 & 0 & 0 & 3 \end{bmatrix}$$

Tìm xem dòng (hoặc cột) có nhiều số không nhất

$$\det(A) = -a_{12} \det(A_{12}) + a_{22} \det(A_{22}) - a_{32} \det(A_{32}) + a_{42} \det(A_{42})$$

$$= 1 \begin{vmatrix} 1 & 0 & 1 & 2 \\ 9 & 1 & 3 & 0 \\ 9 & 2 & 2 & 0 \\ 5 & 0 & 0 & 3 \end{vmatrix} - 2 \begin{vmatrix} 1 & 0 & 1 & 2 \\ 9 & 1 & 3 & 0 \\ 9 & 2 & 2 & 0 \\ 5 & 0 & 0 & 3 \end{vmatrix} = 1 \begin{vmatrix} 1 & 1 & 2 \\ 9 & 2 & 0 \\ 5 & 0 & 3 \end{vmatrix} - 2 \begin{vmatrix} 1 & 1 & 2 \\ 9 & 3 & 0 \\ 5 & 0 & 3 \end{vmatrix}$$

$$= 2 \begin{vmatrix} 9 & 2 \\ 5 & 0 \end{vmatrix} + 3 \begin{vmatrix} 1 & 1 \\ 9 & 2 \end{vmatrix} - 2 \left(2 \begin{vmatrix} 9 & 3 \\ 5 & 0 \end{vmatrix} + 3 \begin{vmatrix} 1 & 1 \\ 9 & 3 \end{vmatrix} \right)$$

Định thức của ma trận tam giác

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix} \quad \text{hoặc} \quad A = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}.$$

Khi đó

$$\det(A) = a_{11}a_{22}...a_{nn}$$

- $rac{1}{2}$ Để tìm $\det(A)$, ta áp dụng phép biến đổi sơ cấp để chuyển A về dạng ma trận tam giác hoặc rref(A).
- ightharpoonup Hơn nữa, A khả nghịch nến và chỉ nếu $\det(A) \neq 0$.

Tính chất của đinh thức

• Nếu B = (1/k)A, thì

$$\det(A) = k \det(B).$$

• Nếu B nhận được từ A bằng cách đối chỗ 2 dòng, thì

$$\det(A) = -\det(B).$$

 Nếu B nhân được từ A bằng cách nhân 1 dòng của A với số thực và công với dòng khác thì

$$\det(A) = \det(B)$$
.

- Định thức ma trận chuyển vị: $det(A^T) = det(A)$.
- Định thức của tích ma trận: $\det(AB) = \det(A) \det(B)$. Định thức của ma trận nghịch đảo $\det(A^{-1}) = \frac{1}{\det(A)}$.

$$\det \begin{bmatrix} 0 & 7 & 5 & 3 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 2 & -1 \\ 1 & 1 & 1 & 2 \end{bmatrix}.$$

$$A = \begin{bmatrix} 0 & 7 & 5 & 3 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 2 & -1 \\ 1 & 1 & 1 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 2 & 1 \\ 0 & 7 & 5 & 3 \\ 1 & 1 & 2 & -1 \\ 1 & 1 & 1 & 2 \end{bmatrix} - (I) \longrightarrow$$

$$\begin{bmatrix} 1 & 1 & 2 & 1 \\ 0 & 7 & 5 & 3 \\ 0 & 0 & 0 & -2 \\ 0 & 0 & -1 & 1 \end{bmatrix} \longrightarrow B = \begin{bmatrix} 1 & 1 & 2 & 1 \\ 0 & 7 & 5 & 3 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$

14 / 18

Định thức và ma trận khả nghịch

Cho $A=(a_{ij})_{n\times n}$ thỏa $\det(A)\neq 0$. Khi đó,

$$A^{-1} = \frac{1}{\det(A)}C^T$$

trong đó $C=(c_{ij})_{n\times n}$ với $c_{ij}=(-1)^{i+j}|A_{ij}|$.

Tìm ma trận nghịch đảo của

$$A = \begin{bmatrix} 2 & 1 & 4 \\ 1 & 3 & -3 \\ -3 & 2 & -1 \end{bmatrix}.$$

Quy tắc Cramer

Xét hệ phương trình tuyến tính Ax = b với A là ma trận vuông cấp n và b vec tơ cột cấp n. Giả sử $\det(A) \neq 0$ khi đó hệ có nghiệm duy nhất $x = A^{-1}b$ tức là

$$x_j = \frac{\det(A_j)}{\det(A)}$$

Trong đó A_j là ma trận suy ra từ A bằng cách thay cột j bởi b.

$$\begin{cases} x_1 + 2x_3 = 6 \\ -3x_1 + 4x_2 + 6x_3 = 30 \\ -x_1 - 2x_2 + 3x_3 = 8 \end{cases}$$

Giải

$$A = \begin{bmatrix} 1 & 0 & 2 \\ -3 & 4 & 6 \\ -1 & -2 & 3 \end{bmatrix} \quad b = \begin{bmatrix} 6 \\ 30 \\ 8 \end{bmatrix}$$

$$A_1 = \begin{bmatrix} 6 & 0 & 2 \\ 30 & 4 & 6 \\ 8 & -2 & 3 \end{bmatrix}, A_2 = \begin{bmatrix} 1 & 6 & 2 \\ -3 & 30 & 6 \\ -1 & 8 & 3 \end{bmatrix} A_3 = \begin{bmatrix} 1 & 0 & 6 \\ -3 & 4 & 30 \\ -1 & -2 & 8 \end{bmatrix}$$

 $\det(A) = 44 \neq 0$; $\det(A_1) = -40$, $\det(A_2) = 72$, $\det(A_3) = 152$.

Suy ta hệ có nghiệm duy nhất

$$x_1 = \frac{-40}{44}, \ x_2 = \frac{72}{44}, \ x_3 = \frac{152}{44}.$$

Thank you for listening!

Nguyen Van Hoi

hoinv@uit.edu.vn