Exercise - 1

(Objective Questions)

Part: (A) Only one correct option

1.	The domain of the function $f(x) = \frac{\sqrt{-\log_{0.3}(x-1)}}{\sqrt{x^2 + 2x + 8}}$ is					
	(A) (1, 4)	(B) (-2, 4)	(C) (2, 4)	(D) [2, ∞)		
2.	The function $f(x) = \cot^{-1} \sqrt{(x+3)x} + \cos^{-1} \sqrt{x^2+3x+1}$ is defined on the set S, where S is equal to:					
	(A) {0, 3}	(B) (0, 3)	(C) $\{0, -3\}$	(D) [-3, 0]		
3.	The range of the function f (x) = $\sin^{-1}\left[x^2 + \frac{1}{2}\right] + \cos^{-1}\left[x^2 - \frac{1}{2}\right]$, where [] is the greatest integer					
	function, is:					
	(A) $\left\{\frac{\pi}{2},\pi\right\}$	(B) $\left\{0, \frac{\pi}{2}\right\}$	(C) { π }	(D) $\left(0, \frac{\pi}{2}\right)$		
4.	Range of $f(x) = \log_{\sqrt{5}} \{\sqrt{2} (\sin x - \cos x) + 3\}$ is					
	(A) [0, 1]	(B) [0, 2]	(C) $\left[0, \frac{3}{2}\right]$	(D) none of these		
5.	Range of $f(x) = 4^x + 2^x + (A)(0, \infty)$	1 is (B) (1, ∞)	(C) (2, ∞)	(D) (3, ∞)		
6.	If x and y satisfy the equation $y = 2[x] + 3$ and $y = 3[x - 2]$ simultaneously, the $[x + y]$ is (A) 21 (B) 9 (C) 30 (D) 12					
7.	The function $f : [2, \infty)$ - (A) $Y = R$	→ Y defined by $f(x) = x^2$ (B) Y = [1, ∞)		e & onto if (D) $Y = [5, \infty)$		
8.	Let S be the set of all triangles and R ⁺ be the set of positive real numbers. Then the function $f: S \to R^+$, $f(\Delta) = \text{area of the } \Delta$, where $\Delta \in S$ is : (A) injective but not surjective (B) surjective but not injective (C) injective as well as surjective (D) neither injective nor surjective					
9.	Let f(x) be a function wh (A) [-4, 1]	nose domain is [– 5, 7]. Le (B) [– 5, 1]	et $g(x) = 2x + 5 $. Then do (C) [-6, 1]	omain of (fog) (x) is (D) none of these		
10.	The inverse of the function $y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ is					
	(A) $\frac{1}{2} \log \frac{1+x}{1-x}$	(B) $\frac{1}{2} \log \frac{2+x}{2-x}$	(C) $\frac{1}{2} \log \frac{1-x}{1+x}$	(D) 2 log (1 + x)		
11.	The fundamental period of the function, $f(x) = x + a - [x + b] + \sin \pi x + \cos 2\pi x + \sin 3\pi x + \cos 4\pi x + \dots + \sin (2n - 1) \pi x$ $+ \cos 2 n\pi x \text{ for every a, } b \in R \text{ is: (where [] denotes the greatest integer function)}$					
	(A) 2	(B) 4	(C) 1	(D) 0		
12.	The period of $e^{\cos^4 \pi x + x}$ (A) 1	$^{-[x] + \cos \pi x}$ is(where	ere [] denotes the greate (C) 3	est integer function) (D) 4		
	(11)	(2) 4	(0)0	\ U / T		

13. If
$$y = f(x)$$
 satisfies the condition $f\left(x + \frac{1}{x}\right) = x^2 + \frac{1}{x^2}$ $(x \ne 0)$ then $f(x) =$

$$(A) - x^2 + 2$$

(B)
$$-x^2-2$$

(C)
$$x^2 + 2$$

(D)
$$x^2 - 2$$

- Given the function $f(x) = \frac{a^x + a^{-x}}{2}$ (a > 0). If f(x + y) + f(x y) = k f(x). f(y) then k has the value equal to: 14.
 - (A) 1

- A function $f: R \to R$ satisfies the condition, $x^2 f(x) + f(1-x) = 2x x^4$. Then f(x) is: 15.

$$(A) - x^2 - 1$$

(B)
$$-x^2 + 1$$

$$(C)$$
 $x^2 - 1$

(D)
$$-x^4 + 1$$

The domain of the function, $f(x) = \sqrt{\frac{1}{(|x|-1)\cos^{-1}(2x+1) \tan 3x}}$ is: 16.

(B)
$$(-1, 0) - \left\{-\frac{\pi}{6}\right\}$$

(C)
$$(-1, 0] - \left\{-\frac{\pi}{6}, -\frac{\pi}{2}\right\}$$

(D)
$$\left(-\frac{\pi}{6},0\right)$$

- If f (x) = 2 [x] + cos x, then f: R \rightarrow R is: (where [] denotes greatest integer function) 17.
 - (A) one-one and onto

(B) one-one and into

(C) many-one and into

- (D) many-one and onto
- If $q^2 4pr = 0$, p > 0, then the domain of the function, $f(x) = log(px^3 + (p+q)x^2 + (q+r)x + r)$ is: 18.

(A) R
$$-\left\{-\frac{q}{2p}\right\}$$

(B) R
$$-\left[(-\infty, -1] \cup \left\{-\frac{q}{2p}\right\}\right]$$

(C) R -
$$\left[(-\infty, -1) \cap \left\{ -\frac{q}{2p} \right\} \right]$$

- If $[2\cos x] + [\sin x] = -3$, then the range of the function, $f(x) = \sin x + \sqrt{3}\cos x$ in $[0, 2\pi]$ is: 19. (where [] denotes greatest integer function)

$$(A)[-2,-1)$$

(B)
$$(-2, -1]$$

$$(C)(-2,-1)$$

(D)
$$[-2, -\sqrt{3}]$$

- The domain of the function f (x) = $\log_{1/2} \left(-\log_2 \left(1 + \frac{1}{4\sqrt[4]{\mathbf{v}}} \right) 1 \right)$ is: 20.
 - (A) 0 < x < 1
- (B) $0 < x \le 1$
- (D) null set
- The range of the functions f (x) = $\log_{\sqrt{2}} \left(2 \log_2 \left(16\sin^2 x + 1\right)\right)$ is 21.
 - $(A) (-\infty, 1)$
- (B) $(-\infty, 2)$
- (D) $(-\infty, 2]$
- The domain of the function, f (x) = $\sin^{-1} \left(\frac{1 + x^3}{2x^{3/2}} \right) + \sqrt{\sin{(\sin{x})}} + \log_{(3(x)+1)}{(x^2 + 1)}$, 22.

where {x} represents fractional part function is:

- (A) $x \in \{1\}$
- (B) $x \in R \{1, -1\}$ (C) $x > 3, x \ne I$
- (D) none of these

	Empowering India					
23.	The minimum value of $f(x) = a \tan^2 x + b \cot^2 x$ equals the maximum value of $g(x) = a \sin^2 x + b \cos^2 x$ where $a > b > 0$, when					
	(A) $4a = b$	(B) 3a = b	(C) a = 3b	(D) a = 4b		
24.	Let f (2, 4) \rightarrow (1, 3) be a function defined by f (x) = x $-\left[\frac{x}{2}\right]$ (where [.] denotes the greatest integer					
	function), then $f^{-1}(x)$ is equal to:					
	(A) 2x	(B) $x + \left[\frac{x}{2}\right]$	(C) x + 1	(D) x – 1		
25.	The image of the interval R when the mapping f: R \rightarrow R given by f(x) = cot ⁻¹ (x ² - 4x + 3) is					
	$(A) \left[\frac{\pi}{4}, \frac{3\pi}{4} \right]$	(B) $\left[\frac{\pi}{4},\pi\right]$	(C) (0, π)	$(D)\left(0,\frac{3\pi}{4}\right]$		
26.	If the graph of the funct	of the function $f(x) = \frac{a^x - 1}{x^n (a^x + 1)}$ is symmetric about y-axis, then n is equal to:				
	(A) 2	(B) 2 / 3	(C) 1 / 4	(D) – 1 / 3		
	(11) 2	(b) 27 0	(0) 17 4	(b) 170		
27.	If $f(x) = \cot^{-1}x$	$: R^{+} \to \left(0, \frac{\pi}{2}\right)$		·		
	and $g(x) = 2x - x^2$: R \rightarrow R. Then the range of the function $f(g(x))$ wherever define is					
	(A) $\left(0, \frac{\pi}{2}\right)$	(B) $\left(0, \frac{\pi}{4}\right)$	(C) $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$	(D) $\left(\frac{\pi}{4}\right)$		
28.	Let $f: (e^2, \infty) \to R$ be defined by $f(x) = \ln (\ln(\ln x))$, then (A) f is one one but not onto (B) f is on to but not one - one					
	(C) f is one-one and onto		(D) f is neither one-one nor onto			
29.						
23.	Let $f: (e, \infty) \to R$ be defined by $f(x) = \ln (\ln(\ln x))$, then (A) f is one one but not onto (B) f is on to but not one - one					
	(C) f is one-one and onto (D) f is neither one-one nor onto			nor onto		
30.		et $f(x) = \sin x$ and $g(x) = \ln x $ if composite functions $f(x)$ and $f(x)$ are defined and have ranges $f(x)$ are spectively then.				
	(A) $R_1 = \{u: -1 < u < 1\}$		$R_2 = \{v: 0 < v < \infty\}$			
	(B) $R_1 = \{u: -\infty < u \le 0\}$ (C) $R_1 = \{u: 0 \le u < \infty\}$		$R_2 = \{v: -1 \le v \le 1\}$ $R_2 = \{v: -1 < v < 1; v \ne 0\}$			
	(D) $R_1 = \{u: -1 \le u \le 1\}$		$R_2 = \{v: 0 \le v < \infty\}$	~ j		
24	Function $f(x) = f(x) = f(x) = f(x) = f(x) = f(x) = f(x)$					
31.	Function $f: (-\infty, 1) \to (0, e^5]$ defined by $f(x) = e^{-(x^2 - 3x + 2)}$ is (A) many one and onto (B) many one and into (C) one one and onto (D) one one and into					
32.	The number of solutions of the equation $[\sin^{-1} x] = x - [x]$, where [.] denotes the greatest integer function is					

(A) 0 (B) 1 (C) 2 (D) infinitely many

The function $f(x) = \frac{x}{e^x - 1} + \frac{x}{2} + 1$ is 33.

> (A) an odd function (B) an even function

(C) neither an odd nor an even function (D) a periodic function

Part: (B) May have more than one options correct

For the function $f(x) = \ln (\sin^{-1} \log_2 x)$, 34.

(A) Domain is
$$\left[\frac{1}{2}, 2\right]$$

(B) Range is $\left(-\infty, \lambda n \frac{\pi}{2}\right]$

(C) Domain is (1, 2]

(D) Range is R

35. A function 'f' from the set of natural numbers to integers defined by,

$$f(n) = \begin{cases} \frac{n-1}{2} & \text{, when n is odd} \\ -\frac{n}{2} & \text{, when n is even} \end{cases}$$
 is:

(A) one-one

(B) many-one

(C) onto

(D) into

Domain of $f(x) = \sin^{-1} [2 - 4x^2]$ where [x] denotes greatest integer function is: 36.

$$(A) \left(-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2} \right) - \{0\} \quad (B) \left[-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2} \right] - \{0\} \quad (C) \left[-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2} \right]$$

$$(D) \left(-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2} \right)$$

If $F(x) = \frac{\sin \pi [x]}{\{x\}}$, then F(x) is: (A) periodic with fundamental period 1 37.

(B)

(C) range is singleton

identical to sgn $\left(\operatorname{sgn} \frac{\{x\}}{\sqrt{\{x\}}} \right) - 1$, where $\{x\}$ denotes fractional part function and [] denotes greatest integer function and sgn (x) is a signum function.

 $D \equiv [-1, 1]$ is the domain of the following functions, state which of them are injective. 38.

(A)
$$f(x) = x^2$$

(B)
$$g(x) = x^3$$

(C)
$$h(x) = \sin 2x$$

(D)
$$k(x) = \sin(\pi x/2)$$

Exercise - 2

(Subjective Questions)

Find the domain of the function $f(x) = \frac{1}{\log_{10}(1-x)} + \sqrt{x+2}$ 1.

Find the domain of the function $f(x) = \sqrt{1-2x} + 3 \sin^{-1} \left(\frac{3x-1}{2} \right)$ 2.

Find the inverse of the following functions. $f(x) = \ln(x + \sqrt{1 + x^2})$ 3.

Let $f: \left[-\frac{\pi}{3}, \frac{\pi}{6}\right] \to B$ defined by $f(x) = 2\cos^2 x + \sqrt{3}\sin 2x + 1$. Find the B such that f^{-1} exists. Also find 4. $f^{-1}(x)$.

5. Find for what values of x, the following functions would be identical.

 $f(x) = \log(x - 1) - \log(x - 2)$ and $g(x) = \log\left(\frac{x - 1}{x - 2}\right)$.

6. If
$$f(x) = \frac{4^x}{4^x + 2}$$
, then show that $f(x) + f(1 - x) = 1$

7. Let
$$f(x)$$
 be a polynomial function satisfying the relation $f(x)$. $f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right) \ \forall \ x \in R - \{0\}$ and $f(3) = -26$. Determine $f'(1)$.

8. Find the domain of definitions of the following functions.

(i)
$$f(x) = \sqrt{3-2^x-2^{1-x}}$$

(ii)
$$f(x) = \sqrt{\frac{x-2}{x+2}} + \sqrt{\frac{1-x}{1+x}}$$

(iii)
$$f(x) = \log_{10} (1 - \log_{10} (x^2 - 5x + 16))$$

9. Find the range of the following functions.

(i)
$$f(x) = \frac{x^2 - 2x + 4}{x^2 + 2x + 4}$$

(ii)
$$f(x) = \sin \log \left(\frac{\sqrt{4 - x^2}}{1 - x} \right)$$

(iii)
$$f(x) = x^4 - 2x^2 + 5$$

(iv)
$$f(x) = \sin^2 x + \cos^4 x$$

- Solve the following equation for x (where [x] & {x} denotes integral and fractional part of x) $2x + 3[x] 4{-x} = 4$
- 11. Draw the graph of following functions where [.] denotes greatest integer function and { .} denotes fractional part function.

(i)
$$y = \{ \sin x \}$$

(ii)
$$y = [x] + \sqrt{x}$$

- Draw the graph of the function $f(x) = |x^2 4|x| + 3$ and also find the set of values of 'a' for which the equation f(x) = a has exactly four distinct real roots.
- **13.** Examine whether the following functions are even or odd or none.

(i)
$$f(x) = \frac{(1+2^x)^7}{2^x}$$

(ii)
$$f(x) = \begin{cases} x \mid x \mid, & x \le -1 \\ [1+x] + [1-x], & -1 < x < 1 \\ -x \mid x \mid, & x \ge 1 \end{cases}$$

(iii) $f(x) = \frac{2x \left(sinx + tanx \right)}{2 \left\lceil \frac{x + 2\pi}{\pi} \right\rceil - 3}, \text{ where [] denotes greatest integer function.}$

14. Find the period of the following functions.

(i)
$$f(x) = 1 - \frac{\sin^2 x}{1 + \cot x} - \frac{\cos^2 x}{1 + \tan x}$$

(ii)
$$f(x) = \tan \frac{\pi}{2} [x]$$
, where [.] denotes greatest integer function.

(iii)
$$f(x) = \frac{1}{2} \left(\frac{|\sin x|}{\cos x} + \frac{\sin x}{|\cos x|} \right)$$

(iv)
$$f(x) = \frac{\sin x + \sin 3x}{\cos x + \cos 3x}$$

15. If
$$f(x) = \begin{bmatrix} 1+x^2 & x \le 1 \\ x+1 & 1 < x \le 2 \end{bmatrix}$$
 and $g(x) = 1-x$; $-2 \le x \le 1$ then define the function $fog(x)$.

- 16. Find the set of real x for which the function, $f(x) = \frac{1}{[|x-1|] + [|12-x|] 11}$ is not defined, where [x] denotes the greatest integer not greater than x.
- 17. Given the functions $f(x) = e^{\cos^{-1}\left(\sin\left(x + \frac{\pi}{3}\right)\right)}$, $g(x) = \csc^{-1}\left(\frac{4 2\cos x}{3}\right)$ & the function h(x) = f(x) defined only for those values of x, which are common to the domains of the functions f(x) and g(x). Calculate the range of the function h(x).
- 18. Let 'f' be a real valued function defined for all real numbers x such that for some positive constant 'a' the equation $f(x+a) = \frac{1}{2} + \sqrt{f(x) (f(x))^2}$ holds for all x. Prove that the function f is periodic.

19. If
$$f(x) = -1 + |x-2|, 0 \le x \le 4$$

 $g(x) = 2 - |x|, -1 \le x \le 3$

Then find fog (x), gof (x), fof(x) & gog(x). Draw rough sketch of the graphs of fog (x) & gof (x).

20. Find the integral solutions to the equation [x][y] = x + y. Show that all the non-integral solutions lie on exactly two lines. Determine these lines. Here [.] denotes greatest integer function.

Exercise # 1

- 1. D 2. C 3. C 4. B 5. B 6. C 7. B
- 8. B 9. C 10. A 11. A 12. B 13. D 14. E
- 15. B 16. D 17. C 18. B 19. D 20. D 21. D
- 22. D 23. D 24. C 25. D 26. D 27. C 28. A
- 29. C 30. D 31. D 32. B 33. B 34. BC
- **35.** AC **36.** B **37.** ABCD **38.** BD

Exercise # 2

- **1.** $[-2, 0) \cup (0, 1)$ **2.** $\left[-\frac{1}{3}, \frac{1}{2}\right]$
- 3. $f^{-1} = \frac{e^x e^{-x}}{2}$
- **4.** B = [0, 4]; $f^{-1}(x) = \frac{1}{2} \left(\sin^{-1} \left(\frac{x-2}{2} \right) \frac{\pi}{6} \right)$
- **5.** (2, ∞) **7.** -3 **8.** (i) [0, 1] (ii) φ (iii) (2, 3)
- **9.** (i) $\left[\frac{1}{3}, 3\right]$ (ii) [-1, 1] (iii) $[4, \infty)$ (iv) $\left[\frac{3}{4}, 1\right]$
- **10.** $\left\{ \frac{3}{2} \right\}$

- 13. (i) neither even nor odd (ii) even (iii) odd
- **14.** (i) π (ii) 2 (iii) 2 π (iv) π
- **15.** $f(g(x)) = \begin{bmatrix} 2 2x + x^2 & 0 \le x \le 1 \\ 2 x & -1 \le x < 0 \end{bmatrix}$
- **16.** (0, 1) U {1, 2,....., 12} U (12, 13) **17.** $\left[e^{\frac{\pi}{6}}, e^{\pi}\right]$
- **18.** Period 2 a
- **19.** fog (x) = $\begin{cases} -(1+x) & , & -1 \le x \le 0 \\ x-1 & , & 0 < x \le 2 \end{cases}$;
 - $gof(x) = \begin{cases} x+1 & , & 0 \le x < 1 \\ 3-x & , & 1 \le x \le 2 \\ x-1 & , & 2 < x \le 3 \\ 5-x & , & 3 < x \le 4 \end{cases}$
 - $\text{fof (x)} = \begin{cases} x &, \quad 0 \leq x \leq 2 \\ 4-x &, \quad 2 < x \leq 2 \end{cases};$
 - $gog(x) = \begin{cases} -x & , & -1 \le x \le 0 \\ x & , & 0 < x \le 2 \\ 4 x & , & 2 < x \le 3 \end{cases}$
 - **20.** Integral solution (0, 0); (2, 2). x + y = 6, x + y = 0