Section 2.2 – Homogeneous Equations with Constant Coefficients

The homogeneous equations of the form:

$$y'' + py' + qy = 0$$
 (*H*: Homogeneous)

Where p and q are continuous functions on some interval I.

The zero function, y(x) = 0 for all $x \in I$, (y = 0) is a solution of the equation (given above).

The zero solution is called *trivial solution*. Any other solution is a *nontrivial* solution.

This is a class of equations that we can solve easily.

Theorem

If y = y(x) is a solution of y'' + py' + qy = 0 and if C is any real number, then u(x) = Cy(x) is also solution of y'' + py' + qy = 0.

Any constant multiple of a solution of y'' + py' + qy = 0 is also a solution of y'' + py' + qy = 0

Proof

$$u'(x) = Cy'(x)$$

$$u''(x) = Cy''(x)$$

$$u'' + pu' + qu = 0$$

$$Cy'' + pCy' + qCy = 0$$

$$\Rightarrow C(y'' + py' + qy) = 0$$

Theorem

If $y = y_1(x)$ and $y = y_2(x)$ are any two solutions of y'' + py' + qy = 0 the $u(x) = y_1(x) + y_2(x)$ is also a solution of y'' + py' + qy = 0.

Any linear combination of solutions of y'' + py' + qy = 0 is also a solution of y'' + py' + qy = 0.

Definition

Let f = f(x) and g = g(x) be functions defined on some interval I, and let C_1 and C_2 be real numbers. The expression

$$C_1 f(x) + C_2 g(x)$$

Is called a linear combination of f and g.

Definition

Let $y = y_1(x)$ and $y = y_2(x)$ are any two solutions of y'' + py' + qy = 0 (H). The function W defined by

$$W[y_1, y_2] = y_1(x)y_2(x) - y_2(x)y_1(x)$$

Is called the Wronskian of y_1 , y_2

Determinant notation:

$$W(x) = y_{1}(x)y'_{2}(x) - y_{2}(x)y'_{1}(x)$$
$$= \begin{vmatrix} y_{1}(x) & y_{2}(x) \\ y'_{1}(x) & y'_{2}(x) \end{vmatrix}$$

Theorem

Let $y = y_1(x)$ and $y = y_2(x)$ be solutions of equation (H), and let W(x) be their Wronskian. Exactly one of the following holds

1. W(x) = 0 for all $x \in I$ and y_1 is a constant multiple of y_2

Example:

$$W(x) = \begin{vmatrix} x^2 & 2x^2 \\ 2x & 4x \end{vmatrix} = 4x^3 - 4x^3 = 0$$

2. $W(x) \neq 0$ for all $x \in I$ and $y = C_1 y_1(x) + C_2 y_2(x)$ is the general solution of (H)

Definition Fundamental Set – Solution basis

A pair of solutions $y = y_1(x)$ and $y = y_2(x)$ of equation (H) forms a *fundamental set of solutions* (also called a *solution basis*) if $W(x) \neq 0$ for all $x \in I$.

The analogous first-order, linear, homogeneous equation:

$$y' + p(t)y = 0$$

It is separable and easily solved, its general solution is

$$y(t) = Ce^{-pt}$$

Let look for a solution of the type

$$y(t) = e^{\lambda t}$$

$$y' = \lambda e^{\lambda t}$$
$$y'' = \lambda^2 e^{\lambda t}$$

$$y'' + py' + qy = \lambda^2 e^{\lambda t} + p\lambda e^{\lambda t} + qe^{\lambda t}$$
$$= (\lambda^2 + p\lambda + q)e^{\lambda t}$$
$$= 0$$

$$\lambda^2 + p\lambda + q = 0$$
 This is called the **characteristic equation**

We can rewrite the differential equation and its characteristic equations

$$y'' + py' + qy = 0$$

$$\lambda^2 + p\lambda + q = 0$$

The roots are:
$$\lambda_{1,2} = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$$

If
$$p^2 - 4q > 0 \implies$$
 Two distinct real roots

If
$$p^2 - 4q < 0 \Rightarrow$$
 Two distinct complex roots

If
$$p^2 - 4q = 0 \implies$$
 One repeated real root

Case 1: Distinct Real Root

If
$$\lambda^2 + p\lambda + q = 0$$
 has two distinct real roots: $\lambda_{1,2} = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$

Then:

$$y_1 = C_1 e^{\lambda_1 t}$$
 and $y_2 = C_2 e^{\lambda_2 t}$ are both solutions.

Proposition

If the characteristic equations $\lambda^2 + p\lambda + q = 0$ has two distinct real roots λ_1 and λ_2 , then the *general solution* to y'' + py' + qy = 0 is

$$y(t) = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}$$

Where C_1 and C_2 are arbitrary constants.

Example

Find the general solution to the equation y'' - 3y' + 2y = 0Find the unique solution corresponding to the initial conditions y(0) = 2 and y'(0) = 1**Solution**

The characteristic equation:

$$y'' - 3y' + 2y = 0$$

$$\lambda^2 - 3\lambda + 2 = 0$$

The solution: $\lambda_{1,2} = 1, 2$

The general solution

$$y(t) = C_1 e^t + C_2 e^{2t}$$

$$y' = C_1 e^t + 2C_2 e^{2t}$$

$$y(0) = 2$$
 $y(0) = C_1 e^0 + C_2 e^{2(0)}$
 $2 = C_1 + C_2$

$$y'(0) = 1$$
 $y'(0) = C_1 e^0 + 2C_2 e^{2(0)}$
 $1 = C_1 + 2C_2$

$$C_1 + C_2 = 2$$
 $C_1 + 2C_2 = 1$
 $\Rightarrow C_2 = -1$
 $C_1 = 3$

The unique solution is: $y(t) = 3e^t - e^{2t}$

Case 2: Complex Roots

Proposition

If the characteristic equations $\lambda^2 + p\lambda + q = 0$ has two complex conjugate roots $\lambda = a + ib$ and $\overline{\lambda} = a - ib$.

1. The functions

$$z = e^{(a+ib)t}$$
 and $\overline{z} = e^{(a-ib)t}$

So, the general solution is

$$w(t) = C_1 e^{(a+ib)t} + C_2 e^{(a-ib)t}$$

Where C_1 and C_2 are arbitrary complex constants.

2. The functions

$$y_1(t) = e^{at} \cos(bt)$$
 and $y_2(t) = e^{at} \sin(bt)$

So, the general solution is

$$y(t) = e^{at} \left(A_1 \cos bt + A_2 \sin bt \right)$$

Where A_1 and A_2 are constants.

Example

Find the general solution to the equation y'' + 2y' + 2y = 0

Find the unique solution corresponding to the initial conditions y(0) = 2 and y'(0) = 3

Solution

The characteristic equation: $\lambda^2 + 2\lambda + 2 = 0$

The solution: $\lambda_{1,2} = -1 \pm i = a \pm ib$

$$a = -1; b = 1$$

The general solution

$$y(t) = e^{-t} \left(C_1 \cos t + C_2 \sin t \right)$$

$$y(0) = e^{-(0)} \left(C_1 \cos(0) + C_2 \sin(0) \right)$$

$$2 = 1\left(C_1 + C_2(0)\right) \Rightarrow \boxed{C_1 = 2}$$

$$\begin{split} y' &= -e^{-t} \left(C_1 \cos t + C_2 \sin t \right) + e^{-t} \left(-C_1 \sin t + C_2 \cos t \right) \\ y'(0) &= -e^{-(0)} \left(C_1 \cos(0) + C_2 \sin(0) \right) + e^{-(0)} \left(-C_1 \sin(0) + C_2 \cos(0) \right) \end{split}$$

$$3 = -\left(C_1\right) + \left(C_2\right)$$

$$C_2 - C_1 = 3$$

$$C_2 = 3 + 2 = 5$$

$$y(t) = e^{-t} \left(2\cos t + 5\sin t\right)$$

Example

Find the general solution to the equation y'' - 4y' + 13y = 0

Solution

The characteristic equation: $\lambda^2 - 4\lambda + 13 = 0$

The solutions: $\lambda_{1,2} = \frac{4 \pm \sqrt{16 - 52}}{2} = \frac{4 \pm \sqrt{-36}}{2} = \frac{4 \pm 6i}{2} = \frac{2 \pm 3i}{2}$

a = 2; b = 3

The general solution: $y(x) = e^{2x} (C_1 \cos 3x + C_2 \sin 3x)$

Case 3: Repeated Roots

If the roots of the characteristic equations are repeated and the solutions are independent.

$$\begin{split} \lambda^2 + p\lambda + q &= 0 \\ \left(\lambda - \lambda_1\right)^2 &= 0 \\ \lambda_{1,2} &= -\frac{p \pm \sqrt{p^2 - 4q}}{2} \\ p^2 - 4q &= 0 \implies q = \frac{p^2}{4} \\ \lambda_{1,2} &= -\frac{p}{2} \\ y_1 &= C_1 e^{\lambda_1 t} \\ &= C_1 e^{-pt/2} \\ y_2 &= v(t)y_1(t) \\ &= v(t)e^{-pt/2} \\ y'' + py' + qy &= 0 \\ y'' + py' + \frac{p^2}{4} y &= 0 \\ y_2' &= v'e^{-pt/2} - \frac{p}{2}v'e^{-pt/2} - \frac{p}{2}v'e^{-pt/2} + \frac{p^2}{4}ve^{-pt/2} \\ v''e^{-pt/2} - \frac{p}{2}v'e^{-pt/2} - \frac{p}{2}v'e^{-pt/2} + \frac{p^2}{4}ve^{-pt/2} - \frac{p}{2}ve^{-pt/2} + \frac{p^2}{4}ve^{-pt/2} - \frac{p}{2}ve^{-pt/2} - \frac{p}{2}ve^$$

Proposition

If the characteristic equations $\lambda^2 + p\lambda + q = 0$ has one double root λ_1 , then the *general solution* to y'' + py' + qy = 0 is

$$y(t) = C_1 e^{\lambda_1 t} + C_2 t e^{\lambda_1 t}$$
$$= \left(C_1 + C_2 t\right) e^{\lambda_1 t}$$

Where C_1 and C_2 are arbitrary constants.

Example

Find the general solution to the equation y'' - 2y' + y = 0

Find the unique solution corresponding to the initial conditions y(0) = 2 and y'(0) = -1

Solution

The characteristic equation: $\lambda^2 - 2\lambda + 1 = 0$

The solutions are: $\lambda_{1,2} = 1$

$$y(t) = C_1 e^{\lambda_1 t} + C_2 t e^{\lambda_1 t}$$
$$= C_1 e^t + C_2 t e^t$$

$$y(0) = C_1 e^{(0)} + C_2(0) e^{(0)} \implies 2 = C_1$$

$$y' = C_1 e^t + C_2 e^t + C_2 t e^t$$

$$y'(0) = 2e^{(0)} + C_2 e^{(0)} + C_2 (0) e^{(0)}$$

$$-1 = 2 + C_2 \implies C_2 = -3$$

$$y(t) = 2e^t - 3te^t$$

Example

Find the general solution to the equation y'' - 10y' + 25y = 0

Solution

The characteristic equation: $\lambda^2 - 10\lambda + 25 = (\lambda - 5)^2 = 0$

The solutions are: $\lambda_{1,2} = 5$

The general solution: $y(t) = C_1 e^{5t} + C_2 t e^{5t}$

Higher-Order Equations

In general, to solve an nth-order differential equation, we must solve an nth degree characteristic polynomial equation

$$a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_2 \lambda^2 + a_1 \lambda + a_0 = 0$$

If all roots are real and distinct, then the general solution is

$$y(x) = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x} + \dots + C_n e^{\lambda_n x}$$

If all roots are equal to λ , then the general solution is

$$y(x) = C_1 e^{\lambda x} + C_2 x e^{\lambda x} + C_3 x^2 e^{\lambda x} + \dots + C_n x^{n-1} e^{\lambda x}$$

Example

Find the general solution of y''' + 3y'' - 4y = 0

Solution

$$\lambda^{3} + 3\lambda^{2} - 4 = 0 \qquad \text{Solve for } \lambda$$

$$\lambda_{1} = 1, \quad \lambda_{2, 3} = -2$$

$$y(x) = C_{1}e^{x} + (C_{2} + C_{3}x)e^{-2x}$$

$$(\lambda - 1)(\lambda + 2)(\lambda - a) = 0$$

$$(-1)(2)(-a) = -4 \implies a = -2$$

Example

Find the general solution of $\lambda^4 (\lambda + 1)(\lambda + 2)^2 (\lambda^2 + 4) = 0$

Solution

$$\lambda^2 + 4 = 0 \implies \lambda^2 = -4 \implies \lambda = \pm 2i$$

The solution: $\lambda = 0$, 0, 0, 0, -1, -2, -2, $\pm 2i$

$$y(x) = C_1 + C_2 x + C_3 x^2 + C_4 x^3 + C_5 e^{-x} + (C_6 + C_7 x) e^{-2x} + C_8 \cos 2x + C_9 \sin 2x$$

Summary

The equation: y'' + py' + qy = 0

The characteristic equations $\lambda^2 + p\lambda + q = 0$

$If p^2 - 4q > 0$	$y_1(t) = C_1 e^{\lambda_1 t}$ and $y_1(t) = C_2 e^{\lambda_2 t}$	$y(t) = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}$
If $p^2 - 4q < 0$	$y_1(t) = e^{at} \cos bt$ and $y_1(t) = e^{at} \sin bt$	$y(t) = e^{at} \left(A_1 \cos bt + A_2 \sin bt \right)$
If $p^2 - 4q = 0$	$y_1 = e^{\lambda t}$ and $y_1 = te^{\lambda t}$	$y(t) = \left(C_1 + C_2 t\right) e^{\lambda_1 t}$

Exercises Section 2.2 – Linear, Homogeneous Equations with Constant **Coefficients**

(Exercises 1-4) Decide whether the equation is linear or nonlinear. For the linear equation, state whether the equation is homogenous or inhomogeneous.

35.
$$t^2y'' = 4y' - \sin t$$

36.
$$ty'' + (\sin t)y' = 4y - \cos 5t$$

37.
$$t^2y'' + 4yy' = 0$$

38.
$$y'' + 4y' + 7y = 3e^{-t}\sin t$$

(Exercises 5-6) Show by direct substitution that the given functions $y_1(t)$ and $y_2(t)$ are solutions of the given differential equation. Then verify by direct substitution, that any linear combination $C_1 y_1(t) + C_2 y_2(t)$ of the 2 given solutions is also a solution.

39.
$$y'' + 4y = 0$$
; $y_1(t) = \cos 2t$ $y_2(t) = \sin 2t$

40.
$$y'' - 2y' + 2y = 0$$
; $y_1(t) = e^t \cos t$ $y_2(t) = e^t \sin t$

41. Explain why $y_1(t)$ and $y_2(t)$ are linearly independent solutions. Calculate Wronskian and use it to explain the independence of the given solutions.

$$y'' + 9y = 0;$$
 $y_1(t) = \cos 3t$ $y_2(t) = \sin 3t$

42. Show that $y_1(t) = e^t$ and $y_2(t) = e^{-3t}$ form a fundamental set of solutions for y'' + 2y' - 3y = 0, then find a solution satisfying y(0) = 1 and y'(0) = -2.

Find the general solution of the second order differential equation

43.
$$y'' + y' = 0$$

44.
$$y'' - 4y = 0$$

45.
$$y'' + 8y = 0$$

46.
$$y'' - 36y = 0$$

47.
$$y'' + 9y = 0$$

48.
$$y'' - 9y = 0$$

49.
$$y'' + 16y = 0$$

50. $y'' + 25y = 0$

51.
$$y'' - 64y = 0$$

52.
$$y'' + y' + y = 0$$

53.
$$y'' + y' - y = 0$$

54.
$$y'' - y' - 2y = 0$$

55.
$$y'' - y' - 6y = 0$$

56.
$$y'' + y' - 6y = 0$$

57.
$$y'' - y' - 11y = 0$$

58.
$$y'' - y' - 12y = 0$$

59.
$$y'' + 2y' + y = 0$$

60.
$$y'' + 2y' + 3y = 0$$

61.
$$y'' + 2y' - 3y = 0$$

61.
$$y + 2y - 3y = 0$$

62.
$$y'' - 2y' - 3y = 0$$

63. $y'' - 2y' + 3y = 0$

64.
$$y'' + 2y' + 4y = 0$$

65.
$$y'' - 2y' + 5y = 0$$

66.
$$y'' + 2y' - 15y = 0$$

67.
$$y'' + 2y' + 17y = 0$$

68.
$$y'' - 3y' + 2y = 0$$

69.
$$y'' + 3y' - 4y = 0$$

70.
$$y'' + 4y' - y = 0$$

71.
$$y'' - 4y' + 4y = 0$$

72.
$$y'' + 4y' + 4y = 0$$

73.
$$y'' - 4y' + 5y = 0$$

74.
$$y'' + 4y' + 5y = 0$$

75.
$$y'' + 4y' - 5y = 0$$

76.
$$y'' + 4y' + 7y = 0$$

77.
$$y'' + 4y' + 9y = 0$$

78.
$$y'' + 5y' = 0$$

79.
$$y'' + 5y' + 6y = 0$$

80.
$$v'' + 6v' + 9v = 0$$

81.
$$y'' - 6y' + 9y = 0$$

82.
$$y'' - 6y' + 25y = 0$$

83.
$$y'' + 8y' + 16y = 0$$

84.
$$y'' + 8y' - 16y = 0$$

85.
$$y'' - 9y' + 20y = 0$$

86.
$$y'' - 10y' + 25y = 0$$

87.
$$y'' + 14y' + 49y = 0$$

88.
$$2y'' - y' - 3y = 0$$

89.
$$2y'' + y' - y = 0$$

90.
$$2y'' + 2y' + y = 0$$

91.
$$2y'' + 2y' + 3y = 0$$

92.
$$2y'' - 3y' - 2y = 0$$

$$93. \quad 2y'' - 3y' + 4y = 0$$

94.
$$2y'' - 4y' + 8y = 0$$

95.
$$2y'' + 5y' = 0$$

96.
$$2y'' - 5y' - 3y = 0$$

97.
$$2y'' + 7y' - 4y = 0$$

98.
$$3y'' + y = 0$$

99.
$$3y'' - y' = 0$$

100.
$$3y'' + 2y' + y = 0$$

101.
$$3y'' + 11y' - 7y = 0$$

102.
$$3y'' - 20y' + 12y = 0$$

103.
$$4y'' + y' = 0$$

104.
$$4y'' + 4y' + y = 0$$

105.
$$4y'' - 4y' + y = 0$$

106.
$$4y'' + 4y' + 2y = 0$$

107.
$$4y'' - 4y' + 13y = 0$$

108.
$$4y'' - 8y' + 7y = 0$$

109.
$$4y'' - 12y' + 9y = 0$$

110.
$$4y'' + 20y' + 25y = 0$$

111.
$$6y'' + 5y' - 6y = 0$$

112.
$$6y'' + y' - 2y = 0$$

113.
$$6y'' - 7y' - 20y = 0$$

114.
$$6y'' + 13y' - 5y = 0$$

115.
$$6y'' + 13y' + 7y = 0$$

116.
$$6y'' - 13y' + 7y = 0$$

117.
$$8y'' - 10y' - 3y = 0$$

118.
$$9y'' - y = 0$$

119.
$$9y'' + 6y' + y = 0$$

120.
$$9y'' - 12y' + 4y = 0$$

121.
$$9y'' + 24y' + 16y = 0$$

122.
$$12y'' - 5y' - 2y = 0$$

123.
$$16y'' - 8y' + 7y = 0$$

124.
$$16y'' - 12y' - 4y = 0$$

125.
$$16y'' - 24y' + 9y = 0$$

126.
$$25y'' + 10y' + y = 0$$

127.
$$25y'' - 10y' + y = 0$$

128.
$$35y'' - y' - 12y = 0$$

Find the general solution of the given higher-order differential equation

129.
$$y''' + 3y'' + 3y' + y = 0$$

130.
$$y''' + 3y'' - y' - 3y = 0$$

131.
$$y^{(3)} + 3y'' - 4y = 0$$

132.
$$3y''' - 19y'' + 36y' - 10y = 0$$

133.
$$y''' - 6y'' + 12y' - 8y = 0$$

134.
$$y''' + 5y'' + 7y' + 3y = 0$$

135.
$$y^{(3)} + y' - 10y = 0$$

136.
$$y''' + y'' - 6y' + 4y = 0$$

137.
$$y''' - 6y'' - y' + 6y = 0$$

138.
$$y''' + 2y'' - 4y' - 8y = 0$$

139.
$$y''' - 7y'' + 7y' + 15y = 0$$

140.
$$y''' + 3y'' - 4y' - 12y = 0$$

141.
$$y''' - 4y'' - 5y' = 0$$

142.
$$y''' - y = 0$$

143.
$$y''' - 5y'' + 3y' + 9y = 0$$

144.
$$y''' + 3y'' - 4y' - 12y = 0$$

145.
$$y''' + y'' - 2y = 0$$

146.
$$y''' - y'' - 4y = 0$$

147.
$$y''' + 3y'' + 3y' + y = 0$$

148.
$$y''' - 6y'' + 12y' - 8y = 0$$

149.
$$y^{(4)} + y''' + y'' = 0$$

150.
$$y^{(4)} - 2y'' + y = 0$$

151.
$$16y^{(4)} + 24y'' + 9y = 0$$

152.
$$y^{(4)} - 7y'' - 18y = 0$$

153.
$$y^{(4)} + 2y'' + y = 0$$

154.
$$y^{(4)} + y''' + y'' = 0$$

155.
$$y^{(4)} + 4y = 0$$

156.
$$y^{(4)} + 2y''' + 9y'' - 2y' - 10y = 0$$

157.
$$x^{(4)} - 4x^{(3)} + 7x'' - 4x' + 6x = 0$$

158.
$$x^{(4)} + 8x^{(3)} + 24x'' + 32x' + 16x = 0$$

159.
$$x^{(4)} - 4x'' + 16x' + 32x = 0$$

160.
$$x^{(4)} + 4x^{(3)} + 6x'' + 4x' + x = 0$$

161.
$$y^{(4)} - y^{(3)} + y'' - 3y' - 6y = 0$$

162.
$$y^{(4)} + y^{(3)} - 3y'' - 5y' - 2y = 0$$

163.
$$x^{(5)} - x^{(4)} - 2x^{(3)} + 2x'' + x' - x = 0$$

164.
$$x^{(5)} + 5x^{(4)} + 10x^{(3)} + 10x'' + 5x' + x = 0$$

165.
$$y^{(5)} + 5y^{(4)} - 2y''' - 10y'' + y' + 5y = 0$$

166.
$$2y^{(5)} - 7y^{(4)} + 12y''' + 8y'' = 0$$

167.
$$y^{(5)} - 2y^{(4)} + 17y''' = 0$$

168.
$$x^{(6)} - 5x^{(4)} + 16x^{(3)} + 36x'' - 16x' - 32x = 0$$

169.
$$\left(D^2 + 6D + 13\right)^2 y = 0$$

170.
$$\lambda^3 (\lambda - 1)(\lambda - 2)^3 (\lambda^2 + 9) = 0$$

Find the solution of the given initial value problem.

171.
$$y'' + y = 0$$
; $y\left(\frac{\pi}{3}\right) = 0$, $y'\left(\frac{\pi}{3}\right) = 2$

172.
$$y'' + y = 0$$
; $y(0) = 0$, $y'(\frac{\pi}{2}) = 0$

173.
$$y'' + y' = 0$$
; $y(0) = 2$, $y'(0) = 1$

174.
$$y'' - y' - 2y = 0$$
; $y(0) = -1$, $y'(0) = 2$

175.
$$y'' + y' + 2y = 0$$
; $y(0) = 0$, $y'(0) = 0$

176.
$$y'' + 2y' + y = 0$$
; $y(0) = 1$, $y'(0) = -3$

177.
$$y'' - 2y' + y = 0$$
, $y(0) = 5$, $y'(0) = 10$

178.
$$y'' - 2y' - 2y = 0$$
; $y(0) = 0$, $y'(0) = 3$

179.
$$y'' - 2y' + 2y = 0$$
; $y(0) = 1$, $y(\pi) = 1$

180.
$$y'' - 2y' - 3y = 0$$
; $y(0) = 2$, $y'(0) = -3$

181.
$$y'' + 2y' - 8y = 0$$
; $y(0) = 3$, $y'(0) = -12$

182.
$$y'' - 2y' + 17y = 0$$
; $y(0) = -2$, $y'(0) = 3$

183.
$$y'' + 2\sqrt{2}y' + 2y = 0$$
; $y(0) = 1$, $y'(0) = 0$

184.
$$y'' + 3y' - 10y = 0$$
; $y(0) = 4$, $y'(0) = -2$

185.
$$y'' + 4y = 0$$
; $y(0) = 0$, $y(\pi) = 0$

186.
$$y'' + 4y = 0$$
; $y\left(\frac{\pi}{4}\right) = -2$, $y\left(\frac{\pi}{4}\right) = 1$

187.
$$y'' + 4y' + 2y = 0$$
; $y(0) = -1$, $y'(0) = 2$

188.
$$y'' - 4y' + 3y = 0$$
; $y(0) = 1$, $y'(0) = \frac{1}{2}$

189.
$$y'' - 4y' + 4y = 0$$
, $y(1) = 1$, $y'(1) = 1$

190.
$$y'' + 4y' + 4y = 0$$
, $y(0) = 1$, $y'(0) = 3$

191.
$$y'' - 4y' + 5y = 0$$
; $y(0) = 1$, $y'(0) = 5$

192.
$$y'' + 4y' + 5y = 0$$
; $y(0) = 1$, $y'(0) = 0$

193.
$$y'' + 4y' + 5y = 0$$
; $y\left(\frac{\pi}{2}\right) = \frac{1}{2}$, $y'\left(\frac{\pi}{2}\right) = -2$

194.
$$y'' - 4y' - 5y = 0$$
, $y(1) = 0$, $y'(1) = 2$

195.
$$y'' - 4y' - 5y = 0$$
, $y(-1) = 3$, $y'(-1) = 9$

196.
$$y'' - 4y' + 9y = 0$$
, $y(0) = 0$, $y'(0) = -8$

197.
$$y'' - 4y' + 13y = 0$$
; $y(0) = -1$, $y'(0) = 2$

198.
$$y'' - 5y' + 6y = 0$$
; $y(1) = e^2$, $y'(1) = 3e^2$

199.
$$y'' + 6y' + 9y = 0$$
; $y(0) = 2$, $y'(0) = -2$

200.
$$y'' + 6y' + 5y = 0$$
, $y(1) = 0$, $y'(0) = 3$

201.
$$y'' - 6y' + 5y = 0$$
; $y(0) = 3$, $y'(0) = 11$

202.
$$y'' - 6y' + 9y = 0$$
, $y(0) = 2$, $y'(0) = \frac{25}{3}$

203.
$$y'' - 6y' + 9y = 0$$
; $y(0) = 0$, $y'(0) = 5$

204.
$$y'' + 8y' - 9y = 0$$
; $y(1) = 2$, $y'(1) = 0$

205.
$$y'' - 8y' + 17y = 0$$
; $y(0) = 4$, $y'(0) = -1$

206.
$$y'' - 9y = 0$$
, $y(0) = 2$, $y'(0) = -1$

207.
$$y'' - 10y' + 25y = 0$$
, $y(0) = 1$, $y'(1) = 0$

208.
$$y'' + 10y' + 25y = 0$$
; $y(0) = 2$, $y'(0) = -1$

209.
$$y'' + 11y' + 24y = 0$$
; $y(0) = 0$, $y'(0) = -7$

210.
$$y'' + 12y = 0$$
, $y(0) = 0$, $y'(0) = 1$

211.
$$y'' + 16y = 0$$
, $y(0) = 2$, $y'(0) = -2$

212.
$$y'' + 16y = 0$$
, $y(\pi) = 2$, $y'(0) = -2$

213.
$$y'' + 16y = 0$$
, $y\left(\frac{\pi}{2}\right) = -10$, $y'\left(\frac{\pi}{2}\right) = 3$

214.
$$y'' + 25y = 0$$
; $y(0) = 1$, $y'(0) = -1$

215.
$$2y'' - 2y' + y = 0$$
; $y(-\pi) = 1$, $y'(-\pi) = -1$

216.
$$3y'' + y' - 14y = 0$$
, $y(0) = 2$, $y'(0) = -1$

217.
$$3y'' + 2y' - 8y = 0$$
, $y(0) = -6$, $y'(0) = -18$

218.
$$4y'' - 4y' + y = 0$$
, $y(0) = 4$, $y'(0) = 4$

219.
$$4y'' - 4y' + y = 0$$
, $y(1) = -4$, $y'(1) = 0$

220.
$$4y'' - 4y' - 3y = 0$$
, $y(0) = 1$, $y'(0) = 5$

221.
$$4y'' + 4y' + 5y = 0$$
, $y(\pi) = 1$, $y'(\pi) = 0$

222.
$$4y'' + 4y' + 17y = 0$$
, $y(0) = -1$, $y'(0) = 2$

223.
$$4y'' - 5y' = 0$$
, $y(-2) = 0$, $y'(-2) = 7$

224.
$$4y'' + 12y' + 9y = 0$$
, $y(0) = 2$, $y'(0) = 1$

225.
$$4y'' + 24y' + 37y = 0$$
, $y(\pi) = 1$, $y'(\pi) = 0$

226.
$$9y'' + y = 0; \quad y\left(\frac{\pi}{2}\right) = 4, \quad y'\left(\frac{\pi}{2}\right) = 0$$

227.
$$9y'' + \pi^2 y = 0$$
; $y(3) = 2$, $y'(3) = -\pi$

228.
$$9y'' - 6y' + y = 0$$
; $y(3) = -2$, $y'(3) = -\frac{5}{3}$

229.
$$9y'' + 6y' + 2y = 0$$
; $y(3\pi) = 0$, $y'(3\pi) = \frac{1}{3}$

230.
$$9y'' - 12y' + 4y = 0$$
, $y(0) = -1$, $y'(0) = 1$

231.
$$12y'' + 5y' - 2y = 0$$
, $y(0) = 1$, $y'(0) = -1$

232.
$$16y'' - 8y' + y = 0$$
; $y(0) = -4$, $y'(0) = 3$

233.
$$25y'' + 20y' + 4y = 0$$
; $y(5) = 4e^{-2}$, $y'(5) = -\frac{3}{5}e^{-2}$

234.
$$y''' + 12y'' + 36y' = 0$$
, $y(0) = 0$, $y'(0) = 1$, $y''(0) = -7$

235.
$$y''' + 2y'' - 5y' - 6y = 0$$
, $y(0) = 0$, $y'(0) = 0$, $y''(0) = 1$

236. The roots of the characteristic equation of a certain differential equation are:

$$3, -5, 0, 0, 0, 0, -5, 2 \pm 3i$$
 and $2 \pm 3i$

Write a general solution of this homogeneous differential equation.

- 237. $y(x) = C_1 e^{2x} + C_2 e^{-2x} + C_3 \cos 2x + C_4 \sin 2x$ is the general solution of a homogeneous equation. What is the equation?
- **238.** Show that the second differential equation y'' + 4y = 0
 - a) Has no solution to the boundary value y(0) = 0, $y(\pi) = 1$
 - b) There are infinitely many solutions to the boundary value y(0) = 0, $y(\pi) = 0$
- **239.** Show that the general solution of the equation

$$y'' + Py' + Qy = 0$$

(where P and Q are constant) approaches 0 as $x \to \infty$ if and only if P and Q are both positive.