# 第2章 数据的表示和运算





#### 主要内容:

- (一) 数制与编码
  - 1. 进位计数制及其相互转换
  - 2. 真值和机器数
  - 3. BCD 码
  - 4. 字符与字符串
  - 5. 校验码
- (二) 定点数的表示和运算
  - 1. 定点数的表示:无符号数的表示;有符号数的表示。
  - 2. 定点数的运算:定点数的位移运算;原码定点数的加/减运算;补码定点数的加/减运算;定点数的乘/除运算;溢出概念和判别方法。
- (三) 浮点数的表示和运算
  - 1. 浮点数的表示: 浮点数的表示范围; IEEE754 标准
  - 2. 浮点数的加/减运算
- (四) 算术逻辑单元 ALU
  - 1. 串行加法器和并行加法器
  - 2. 算术逻辑单元 ALU 的功能和机构

像的 an 自然不息 ◎厚瓜莲学 知》合一















# 2.3 浮点数的表示和运算



#### 2.3.1 浮点数的表示

#### (1) 浮点数的表示范围

• 浮点数是指小数点位置可浮动的数据,通常以 下式表示:

 $N=M \bullet R^{E}$ 

· 其中, N为浮点数, M为尾数, E为阶码, R称为 "阶的基数(底)",而且R为一常数,一般为 2、8或16。在一台计算机中,所有数据的R都是 相同的,于是不需要在每个数据中表示出来。

梅纳 \$ 11 自然不息 ●厚瓜兰学 如刊合













#### 浮点数的机内表示



浮点数真值:  $N=M \times 2^E$ 

#### 浮点数的一般机器格式:

| 数符 | <u>阶符</u> | · 阶码值 · ·     | 尾数值            |
|----|-----------|---------------|----------------|
| Ms | ЕЈ        | En-1 ····· E0 | M-1····· $M-m$ |

1位 1位 n位

m位

- Ms是尾数的符号位,设置在最高位上。
- E为阶码,有n+1位,一般为整数,其中有一位符号位 $E_J$ ,设置在E的最高位上,用来表正阶或负阶。
- M为尾数,有m位,为一个定点小数。Ms=0,表示正号,Ms=1,表示负。
- 为了保证数据精度,尾数通常用规格化形式表示: 当R=2, 且尾数值不为0时, 其绝对值大于或等于0.5。对非规格化浮点数, 通过将尾数左移或右移, 并修改阶码值使之满足规格化要求。









#### 浮点数的机内表示

- ▶尾数通常为定点小数,原码或补码表示。其<u>位数决</u> 定数的精度。 数符表示数的正负。

#### > 浮点数的规格化

字长固定的情况下提高表示精度的措施:

- 增加尾数位数(但数值范围减小)
- 采用浮点规格化形式

尾数规格化: 1/2≤ |M|<1 最高有效位绝对值为1

像份的1 自然不息圖摩伽笔学 知1/6一









#### 浮点数规格化方法

- ▶ 调整阶码使尾数满足下列关系:
  - · 尾数为原码表示时,无论正负应满足1/2≤ M <1

即:小数点后的第一位数一定要为1。

正数的尾数应为0.1x…x

负数的尾数应为1.1x…x

• 尾数用补码表示时,小数最高位应与数符符号位相反。 正数应满足 1/2 ≤M<1, 即 0.1x···.x

负数应满足 -1/2 >M≥ -1, 即 1.0x….x

浮点数的溢出判断——根据规格化后的阶码判断

- •上溢——浮点数阶码大于机器最大阶码—中断
- •下溢——浮点数阶码小于机器最小阶码——零处理。















# 浮点数的表示范围

上溢 阶码 > 最大阶玛 下溢 阶码 < 最小阶码 按 机器零 处理



#### 例如: 设m=4, n=10





#### 尾数规格化后的浮点数表示范围

最大负数 
$$2^{-1111} \times (-0.1000000000) = -2^{-15} \times 2^{-1} = -2^{-16}$$

10 个









解:  $X=(256.5)_{10}=+(100000000.1)_2=+(0.1000000001\times 2^{+9})_2$ 

8位阶码为: (+9) 补=0000 1001

24位尾数为: (+0.10 0000 0001)补

**=0.**1000 0000 0100 0000 0000 000

X=256.5的浮点表示格式为:

 $Y=-(256.5)_{10}=-(100000000.1)_2=-0.1000000001\times 2^{+9}$ 

8位阶码为: (+9)补=0000 1001

24位尾数为: (-0.10 0000 0001)补

=1.0111 1111 1100 0000 0000 000

Y=-256.5的浮点表示格式为:

1 0000 1001 0111 1111 1100 0000 0000 000

梅纳 6 n 自強不息 ◎ 厚瓜莲学 取们合一













#### (2) IEEE754标准



根据IEEE 754国际标准,常用的浮点数有两种格式:

- 单精度浮点数(32位),阶码8位,尾数24位(内含1位符号位)。
- 双精度浮点数(64位),阶码11位,尾数53位(内含1位符号位)。
- 由于IEEE754标准约定尾数用原码表示,在小数点左部有一位隐含位,从而实 际使得<mark>尾数</mark>的有效值变为1.M。例如,最小为x1.0···0,最大为x1.1···1。规格 化表示,故小数点左边的位恒为1,可省去。
- 阶码部分采用移码表示,移码值127, 1~254 经移码为-126~+127。 其中 00000000 11111111有特点含义,不用做阶码。
- $\triangleright$  格式:  $(-1)^S \times 2^E \times (M_0, M_{-1}, \dots, M_{-(P-1)})$ 
  - 最高是数符S,占1位,0表示正、1表示负。
  - 指数项E, 基数是2, 是一个带有一定偏移量的无符号整 数(移码)。
  - 尾数部分M, 是一个带有一位整数位的二进制小数真值 形式(原码)。其规格化形式应调整阶码使其尾数整数 位Mo为1且与小数点一起隐含掉。













微机中三种不同类型浮点数的格式

|            |                          | <i></i>                    | 1949 - 2019 |
|------------|--------------------------|----------------------------|-------------|
| 参数         | 单精度                      | 双精度                        | 中华人民才通过一个   |
| 浮点数长度(位)   | 32                       | 64                         | 80          |
| 符号位数       | 1                        | 1                          | 1           |
| 尾数长度 P(位)  | 23+1 (隐)                 | 52+1 (隐)                   | 64          |
| 阶码 E 长度(位) | 8                        | 11                         | 15          |
| 最大阶码       | +127                     | +1023                      | +16383      |
| 最小阶码       | -126                     | -1022                      | -16382      |
| 阶码偏移量      | +127                     | +1023                      | +16383      |
| 表示数范围      | $10^{-38} \sim 10^{+38}$ | $10^{-308} \sim 10^{+308}$ |             |

单精度浮点数最大表示范围: ±3.40282×1038

- (1.1111...1) <sub>2</sub>×2<sup>+127</sup> ~ (1.1111...1) <sub>2</sub>×2<sup>+127</sup>)

接近于0的最小值:单精度浮点数可以表示1.175×10-38

((1.00...01) $_2 imes 2^{-126}$ )的数据而不损失精 $_{ar{k}}$   $_{ar{k}}$   $_{ar{k}}$   $_{ar{k}}$   $_{ar{k}}$ 









#### 微机中浮点数的三种表示形式





| 单精度「  | 31        | 30        | 23        | <u>22</u> |                      | <u> </u> |
|-------|-----------|-----------|-----------|-----------|----------------------|----------|
|       | 符号位       | 阶         | 码         |           | 尾数有效位                |          |
|       | 1, 3,12   | 121       | 1         | •         | / U >>   1 / >>   LL |          |
|       |           |           |           |           |                      |          |
| •     | !         |           |           |           |                      |          |
|       |           |           |           |           |                      |          |
|       | <b>63</b> | <b>62</b> | <b>52</b> | <b>51</b> |                      | 0        |
| 双精度   | かロル       | 阶         | 7.11      |           | <b>日坐去</b> 粉片        |          |
| 八八十八又 | 符号位       | 1 191     | 码         |           | 尾数有效位                |          |

扩展精度

| 79  | 78 | 64 | 63    |
|-----|----|----|-------|
| 符号位 | 阶  | 码  | 尾数有效位 |
|     |    |    |       |

像伽るn 自強不息@厚瓜笃学 知们合一















# 【例】将十进制数178.125表示成微机中的单精度浮点数。

解:178.125=10110010.001B

 $=1.0110010001B\times 2^{7}$ 

指数E=7+127=0111+01111111=134=1000 0110 B

127是 单精度浮点数应加的指数偏移量。

完整的浮点数形式为:

0 1000 0110 011 0010 0010 0000 0000 0000

= 43322000H

隐含

像份 5 n 自然不息 ◎ 厚瓜茑学 知外合一









# 【例】将Pentium机中的单精度浮点数3F580000H表示成十进制数,其真值是多少?

解: 3F580000H=

0011 , 1111, 0101, 1000, 0000, 0000, 0000, 0000 B

数符:0 (正数)

阶码: E=(0111 1110)<sub>2</sub>-127=126-127= -1

尾数: D=(1.1011)<sub>2</sub> (此处小数点前的1 不是符号位。)

 $X = (1.1011)_2 \times 2^{-1} = (0.11011)_2 = 0.84375$ 

解题技巧: 首先将十六进制数转换为二进制数,并分离出符号位、阶码和尾数。然后按照IEEE 754 短浮点数的格式可以得出结果。













#### 【例】将十进制数+76.75存入某微机中,写出它在一中的事情, 度浮点形式。

解:表示成规格化二进制真值格式为

 $+76.75=+1001100.11B=+1.0011\ 0011B\times 2^{+110B}$ 

表示成规格化尾数格式为: (将整数位的1隐含)

+1.0011 0011—— **0** 0011 0011

计算出阶码为: 尾数符号

110+0111 1111=1000 0101 (6+127=133)

于是该数的短浮点数格式为:

计算机组成原理 丁男

0100 0010 1001 1001 1000 0000 0000 0000

=42998000H

做做的 自強不息圖厚低寫學 知外合一





# 2.3.2 浮点数的加/减运算





▶ 两数首先均为规格化数,进行规格化浮点数的加减运算需 经过5步完成:

(1) 对阶操作:低阶向高阶补齐,使阶码相等。

(2) 尾数 运算: 阶 码对齐后 直接对尾 数运算。 (3) 结果规格化: 对运算结果进行规格化处理(使补码尾数的最高位和尾数符号相反)。如溢出则需右规; 如不是规格化时应左规。

(5) 判断溢出: 判断阶码是 否溢出, 下溢则将运算结果置 0(机器0), 上溢则中断。 (4) 舍入操作: 丢失 位进行0舍1入或恒置1 处理。

梅纳百Ⅱ 自強不息圖厚化蓋學 取补合一















#### 具体说明





对阶运算(小阶向大阶对齐)

尾数为原码时,尾数右移,符号位不动,最高位补0 尾数为补码时,尾数右移,符号也移位,最高位补符号位。

#### (1) 求阶差

$$\Delta j = j_x - j_y = egin{cases} = \mathbf{0} & j_x = j_y & ext{已对齐} \ > \mathbf{0} & j_x > j_y & y 向 x 看齐 & S_y o 1, & j_y + 1 \ < \mathbf{0} & j_x < j_y & x 向 y 看齐 & S_x o 1, & j_x + 1 \end{cases}$$

#### (2) 对阶原则

小阶向大阶看齐

|各份 \$ 1 | 自強不息 ◎ 厚瓜茑学 知知







中华 民共和国成立70周年 大连理工大 3 kb 70周年

小阶对大阶  $0.1101 \times 2^3 + 0.0010 \times 2^3 = 0.1111 \times 2^3$  舍掉的是  $0.0001 \times 2$  如大阶对小阶  $0.0100 \times 2 + 0.1001 \times 2 = 0.1101 \times 2$  则舍掉的是  $0.1100 \times 2^3$ 

像伽 5 n 自強不息 ◎ 厚卧笔学 知 1 合一









[例] 
$$x = (0.1101)_2 \times 2^{(01)_2}$$
  $y = (-0.1010)_2 \times 2^{(11)_2}$  求  $x + y$ 

解:  $[x]_{3} = 00,01;00.1101$   $[y]_{3} = 00,11;11.0110$ 

(1) 对阶(设阶码的符号也为双符号位)

① 求阶差 
$$[\Delta j]_{\hat{N}} = [j_x]_{\hat{N}} - [j_y]_{\hat{N}} = 00,01$$
  
+ 11,01  
11,10

阶差为负 (-2)  $: S_x \rightarrow 2$   $j_x + 2$ 

- ② 对阶  $[x]_{*k'} = 00, 11; 00.0011$
- (2) 尾数求和

- ■规格化:原码尾数值高位为1,补码尾数值高位与符号 相反
  - (1) 规格化数的定义

$$r=2 \qquad \frac{1}{2} \leq |S| < 1$$

(2) 规格化数的判断

原码 不论正数、负数,第一数位为1 补码 符号位和最高数值位不同

# 特例



$$S = -\frac{1}{2} = -0.100 \cdots 0$$

$$[S]_{\mathbb{R}} = 1.100 \cdots 0$$

$$[S]_{3} = [1.1]00 \cdots 0$$

 $\therefore \left[-\frac{1}{2}\right]_{i}$  不是规格化的数,须用原码表示

$$S = -1$$

$$[S]_{3} = 1.000 \cdots 0$$

∴ [-1] 是规格化的数

格的 \$ 11 自強不息 ◎厚瓜兰学 知》合一







## (3) 左规



#### 尾数左移1位,阶码减1,直到数符和第一数位不同为止

上例  $[x+y]_{*} = 00, 11; 11.1001$ 

左规后  $[x+y]_{**} = 00, 10; 11.0010$ 

$$x + y = (-0.1110)_2 \times 2^{(10)}$$

(4) 右规

当尾数溢出(>1)时,需右规

即尾数出现 01. ×× ···×或 10. ×× ···×时

尾数右移1位,阶码加1

像的 b n 自然不息 ◎ 厚瓜兰学 知介合一









$$x = 0.1101 \times 2^{10}$$
  $y = 0.1011 \times 2^{01}$ 

$$[x]_{3} = 00, 010; 00. 110100$$

$$[y]_{*} = 00,001;00.101100$$

#### ① 对阶 (设阶码的符号也为双符号位)

$$[\Delta j]_{\stackrel{?}{\Rightarrow}} = [j_x]_{\stackrel{?}{\Rightarrow}} - [j_y]_{\stackrel{?}{\Rightarrow}} = 00,010$$

$$+ 11,111$$

$$= 100,001$$

阶差为 +1

$$: S_y \longrightarrow 1, j_y+1$$

$$\therefore [y]_{\dagger b'} = 00, 010; 00. 010110$$

#### ② 尾数求和

$$[S_r]_{\lambda} = 00.110100$$

$$+ [S_v]_{*h'} = 00.010110$$

对阶后的 $[S_v]_{\lambda_v}$ 

01.001010

尾数溢出需右规

# ③ 右规



$$[x+y]_{\downarrow \downarrow} = 00, 010; 01.001010$$

右规后

$$[x+y]_{\nmid k} = 00, 011; 00. 100101$$

$$\therefore x+y=0.100101\times 2^{11}$$

■舍入操作: 0舍1入 或 恒置1

在对阶和右规过程中,可能出现尾数末位丢失引起误差,需考虑舍入

像份 5 n 自然不息 ◎ 厚任笔学 如外合一













 $x = (-\frac{5}{8}) \times 2^{-5}$   $y = (\frac{7}{8}) \times 2^{-4}$ 



 $\vec{x} x - y$  (除阶符、数符外,阶码取 3 位,尾数取  $\vec{6}$  位)

解: 
$$x = (-0.101000) \times 2^{-101}$$
  $y = (0.111000) \times 2^{-100}$ 

$$[x]_{3} = 11,011; 11.011000$$
  $[y]_{3} = 11,100; 00.111000$ 

① 对阶

$$[\Delta j]_{\dagger h} = [j_x]_{\dagger h} - [j_y]_{\dagger h} = 11,011 + 00,100 11,111$$

阶差为
$$-1$$
  $\therefore S_x \longrightarrow 1$ ,  $j_x+1$ 

$$\therefore$$
 [x]<sub>\$\frac{1}{2}\$</sub> = 11, 100; 11. 101100

(尾数右移:第一符号位不变。) 像份的 自然不息 圖春 医多量 数价合一









# ② 尾数求和



## ③右规

$$[x-y]_{36} = 11, 100; 10. 110100$$

右规后

 $[x-y]_{\lambda} = 11, 101; 11.011010 (采用0舍1入方式,$ 无进位。)将其转换二进制真值后为:

$$x - y = (-0.100110) \times 2^{-11} = (-\frac{19}{32}) \times 2^{-3}$$

梅纳 6 n 自強不息 ◎ 厚瓜茑学 知们合一









## 浮点数加/减运算小结





#### 加减法执行下述五步完成运算:

#### ① "对阶"操作

比较两浮点数阶码的大小,求出其 差ΔE,保留其大值E,E=max(Ex, Ey)。当ΔE≠0时,将阶码小的尾数 右移ΔE位,并将其阶码加上ΔE, 使两数的阶码值相等。对阶原则: 小阶向大阶看齐。

② 尾数加减运算 执行对阶之后, 两尾数进行加减 操作。 ③ 规格化操作 规格化的目的是 使得尾数部分的 绝对值尽可能以 最大值的形式出 现。

#### ⑤ 检查阶码是否溢出

阶码溢出表示浮点数溢出。在规格 化和舍入时都可能发生溢出,若阶 码正常,加/减运算正常结束。若阶 码下溢,则设置机器运算结果为机 器零,若上溢,则设置溢出标志。

#### 4) 舍入

在执行右规或者对阶时,尾数的低位会被移掉,使数值的精度受到影响,常用"0"舍"1"入法。当移掉的部分最高位为1时,在尾数的末尾加1,如果加1后又使得尾数溢出,则要再进行一次右规。











