Marwin B. Alejo 2020-20221 EE274_ProgEx03

Table of Contents

A.1-2. The Bilateral Z-Transform	1
Sequence (a) $x(n) = (\frac{4}{3})^n u(1-n)$	1
Sequence (b) $x(n) = 2^{- n } + (\frac{1}{3})^{ n }$	
A.3. $x(n) = (\frac{1}{3})^n u(n-2) + (0.9)^{n-3} u(n)$	
· ····	_

Also accessible through http://www.github.com/soymarwin/ee274/EE274_ProgEx03; for history tracking.

A.1-2. The Bilateral Z-Transform

Sequence (a) $x(n) = (\frac{4}{3})^n u(1-n)$

Manual Solution

$$\begin{split} x(n) &= (\frac{4}{3})^n u(-n+1) \\ X(z) &= \sum_{n=-\infty}^{\infty} x(n) z^{-n} \\ X(z) &= \sum_{n=-\infty}^{\infty} (\frac{4}{3})^n u(-n+1) z^{-n} \\ X(z) &= \sum_{n=-\infty}^{\infty} (\frac{4}{3})^n u(-n+1) z^{-n} \\ Let \ k &= -n+1 \ and \ n = 1-k \\ X(z) &= \sum_{n=-\infty}^{\infty} (\frac{4}{3})^{1-k} u(k) z^{k-1} \\ X(z) &= \sum_{n=0}^{\infty} (\frac{4}{3}) \cdot ((\frac{4}{3})^{-1})^k \cdot ((1/z)^{-1})^k \cdot z^{-1} \\ X(z) &= (\frac{4z^{-1}}{3}) \ \sum_{n=0}^{\infty} (\frac{3}{4z^{-1}})^k \\ X(z) &= (\frac{4z^{-1}}{3}) \cdot (\frac{1}{1-\frac{3}{4z^{-1}}}), \ 0 \ < |z| < \frac{4}{3} \\ or \ X(z) &= \frac{-16z^{-2}}{9+12z^{-1}}, \ 0 \ < |z| < \frac{4}{3} \\ or \ X(z) &= \frac{-16z^{-2}}{9-12z^{-1}}, \ 0 \ < |z| < \frac{4}{3} \end{split}$$

z-plane for 1.(a)

A1_a_a=[-9, 12, 0]; A1_a_b=[0, 0, -16]; zplane(A1_a_b,A1_a_a);

Verification of z-transform v. original sequence with first 8-coef.

```
[delta,n]= impseq(0,0,7);  A_a_Xz=filter(A1_a_b,A1_a_a,delta) \ A_a_Xz \ is \ z-transform \ sequence \\ A_a_Xn=[(4/3).^n].*stepseq(1,0,7) \\ A_a_Xn \ is \ the \ original \ sequence, \ see \ stepseq.m
```

 $A_a_Xz =$

Columns 1 through 7

0 0 1.7778 2.3704 3.1605 4.2140 5.6187

Column 8

7.4915

 $A_a_Xn =$

Columns 1 through 7

Marwin B. Alejo 2020-20221 EE274_ProgEx03

0 0 1.7778 2.3704 3.1605 4.2140 5.6187

Column 8

7.4915

Therefore, based on coef values generated from X(z) and x(n), the z-transform for sequence(a) is correct.

Sequence (b) $x(n) = 2^{-|n|} + (\frac{1}{3})^{|n|}$

$$X(z) = \sum_{n=0}^{\infty} 2^{-n} z^{-n} + \sum_{n=0}^{\infty} (\frac{1}{3})^n z^{-n}$$

$$X(z) = \sum_{n=0}^{\infty} (\frac{z^{-1}}{2})^n + \sum_{n=0}^{\infty} (\frac{z^{-1}}{3})^n$$

$$X(z) = \frac{1}{1 - \frac{z^{-1}}{2}} + \frac{1}{1 - \frac{z^{-1}}{3}}$$

$$X(z) = \frac{2}{2-z^{-1}} + \frac{3}{3-z^{-1}}$$

$$X(z) = \frac{12 - 5z^{-1}}{(2 - z^{-1})(3 - z^{-1})}, \ \frac{1}{3} \ < \mid z \mid < \ \frac{1}{2}$$

$$orX(z) = \frac{12-5z^{-1}}{6-5z^{-1}+z^{-2}}, \ \frac{1}{3} \ < \mid z \mid < \ \frac{1}{2}$$

z-plane for 1.(b)

Verification of z-transform v. original sequence with first 8-coef.

0.0083

A_b_Xz =

Columns 1 through 7

2.0000 0.8333 0.3611 0.1620 0.0748 0.0354 0.0170

Column 8

A_b_Xn =

Columns 1 through 7

2.0000 0.8333 0.3611 0.1620 0.0748 0.0354 0.0170

Column 8

0.0083

Therefore, based on coef values generated from X(z) and x(n), the z-transform for sequence(b) is correct.

A.3
$$x(n) = (\frac{1}{3})^n u(n-2) + (0.9)^{n-3} u(n)$$

$$X(z) = \frac{3z^{-2}}{27 - 9z^{-1}} + \frac{1.3717}{1 - 0.9z^{-1}}$$

$$X(z) = \frac{37.0359 - 12.3453z^{-1} + 3z^{-2} - 2.7z^{-3}}{27 - 33.3z^{-1} + 8.1z^{-2}} \ \mid z \mid \ > \ \frac{1}{3} \ \cap \ \mid z \mid \ > \ 0.9$$

z-plane for A.3

A3_b=[37.0359, -12.3453, 3, -2.7]; A3_a=[27, -33.3, 8.1]; zplane(A3_b,A3_a);

Verification of z-transform v. original sequence with first 20-coef.

Marwin B. Alejo 2020-20221 EE274_ProgEx03

$A3_Xz =$									
C	Columns 1 through 7								
	1.3717	1.2345	1.2222	1.0370	0.9123	0.8141	0.7303		
Columns 8 through 14									
	0.6565	0.5906	0.5315	0.4783	0.4305	0.3874	0.3487		
Columns 15 through 20									
	0.3138	0.2824	0.2542	0.2288	0.2059	0.1853			
$A3_Xn =$									
Columns 1 through 7									
	1.3717	1.2346	1.2222	1.0370	0.9123	0.8141	0.7304		
Columns 8 through 14									
	0.6566	0.5906	0.5315	0.4783	0.4305	0.3874	0.3487		
Columns 15 through 20									
	0.3138	0.2824	0.2542	0.2288	0.2059	0.1853			

Therefore, based on coef values generated from X(z) and x(n), the z-transform for sequence in (A.3.) is correct.

Published with MATLAB® R2020a