Section 11 Math 2202

Triple Integrals: Changing Order of Integration and Changing Coordinates

1. Warm Up Set up an iterated integral for

$$\int \int \int_E x^2 e^y \, dV$$

where E is bounded by the parabolic cylinder $z = 1 - y^2$ and the planes z = 0, x = 1 and x = -1.

Draw two pictures. One should be a "good enough" picture of E and the other a picture of the projection of E onto the coordinate plane corresponding to the order of integration you chose.

2. Changing Order of Integration in Triple Integrals

The figure on page 881 in the text shows the region of integration for the triple integral

$$\int_0^1 \int_0^{1-x^2} \int_0^{1-x} f(x, y, z) \, dy \, dz \, dx.$$

- $z = 1 x^2$ y = 1 x
- (a) Rewrite the integral in the order dy dx dz.
- (b) Rewrite the integral in the order dz dy dx.
- (c) How many integrals are needed if you project the solid into the yz-plane?

- 3. Set up a triple integral to find the volume of the solid bounded by $z=\sqrt{x^2+y^2}$ and $x^2+y^2+z^2=4$.
 - (a) In spherical coordinates

(b) In cylindrical coordinates

(c) In rectangular coordinates¹

¹How does this integral compare with the same question from section last week, where you used a double integral?