Matthew Wilder

MATH 307 - Spring 2022 Assignment #2 Due Friday, 01-28-22, 16:00 CST

For each problem, include the statement of the problem. Leave a blank line. At the beginning of the next line, write **Solution** or **Proof** – as appropriate.

- 1. Label the following statements as being true or false. Provide some justification from the text for your label.
 - (a) If V is a vector space and W is a subset of V that is a vector space, then W is a subspace of V.

Solution:

True, by Definition 1.32 (page 18), $U \subseteq V$ is called a **subspace** of V if U is also a *vector space*.

(b) The empty set is a subspace of every vector space.

Solution:

False, by 1.34 (page 18) Conditions for a subspace, a subspace must contain the additive identity, 0, but $0 \notin \{\}$. Therefore, the empty set is not a subspace.

(c) If V is a vector space other than the zero vector space $\{0\}$, then V contains a subspace W such that $W \neq V$.

Solution:

True. $\{0\}$ is a vector space, therefore it is always a subspace of an arbitrary vector space V, since by our assumptions $V \supset \{0\}$ and every vector space must contain 0 by definition. Letting $W \equiv \{0\}$ then |V| > |W| = 1 for all $V \neq \{0\}$. The set of order 0, the empty set $\{\}$, is not a subspace by part (b). Thus V cannot have order 1 or 0, and therefore $|V| \geq 2$. The trivial zero vector space is a proper subspace $(W \neq V)$ since $|V| \neq |W|$.

(d) The intersection of any two subsets of V is a subspace of V.

Solution:

False. Suppose $V \equiv \mathbb{R}^2$. Then Suppose U and W are subsets of V such that $U \equiv \{\}$ and $W \equiv \mathbb{R}^2$. Then $U \cap W = \{\}$, but by 1b the empty set is not a vector space and thus cannot be a subspace by definition of subspace.

2. Prove that the intersection of two subspaces U and W of a vector space V is a subspace of V.

Proof. We need to show that all 3 conditions for a subspace (theorem 1.34) hold for the subset $U \cap W$ of V.

We will first show that $0 \in U \cap W$. Since $0 \in U$ and $0 \in W$, then by the definition of intersection, $0 \in U \cap W$.

Next we show that $U \cap W$ is closed under addition. Taking two arbitrary vectors, $u, w \in U \cap W$. Then by the definition of intersection, $u, w \in U$ and $u, w \in W$. Since U is a subspace, $u + w \in U$. Similarly, since W is a subspace, $u + w \in W$. Thus $u + w \in U \cap W$ and it is closed under addition.

Last, we show that it closed under scalar multiplication. For some scalar $a \in \mathbb{F}$ and $u \in U \cap V$. Then $u \in U$ and $u \in W$. By definition of U and W being subspaces, $au \in U$ and $au \in W$, therefore $au \in U \cap W$ and $U \cap W$ is closed under scalar multiplication.

All three subspace conditions hold from Theorem 1.34, therefore $U \cap W$ is a subspace of V.

3. Prove that the union of two subspaces U and W of a vector space V is a subspace of V if and only if one of the subspaces is contained in the other.

Proof. (\Longrightarrow) If $U \cup W$ is a subspace of V, then $(U \subseteq W) \vee (W \subseteq U)$.

Suppose the contrary, that is, if $(U \not\subseteq W) \land (W \not\subseteq U)$, then $(\exists u \in U \mid u \not\in W) \land (\exists w \in W \mid w \not\in U)$.

If $u + w \in U \cup W \Rightarrow (u + w \in U) \vee (u + w \in W)$ by union definition

Case: $u + w \in U \Rightarrow u + w + (-u) = w \in U$ which is a contradiction. Case: $u + w \in W \Rightarrow u + w + (-w) = u \in W$ which is a contradiction.

 $(U \subseteq W) \vee (W \subseteq U)$

 (\Leftarrow) If $(U \subseteq W) \vee (W \subseteq U)$ then $U \cup W$ is a subspace of V

Case: $U \subseteq W \Rightarrow U \cup W = W$, which is by definition a subspace of V Case: $W \subseteq U \Rightarrow U \cup W = U$, which is by definition a subspace of V

 $\therefore U \cup W$ is a subspace of V

4. Let V be the vector space of 2×2 matrices with the usual operation of addition and scalar multiplication as seen in MTH 207. (We are *not* considering multiplication of matrices in this exercise.)

Let W_1 be the set of matrices in V of the form $\begin{bmatrix} x & -x \\ y & z \end{bmatrix}$ and let W_2 be the set of matrices in V of the form $\begin{bmatrix} a & b \\ -a & c \end{bmatrix}$.

(a) Prove that W_1 and W_2 are subspaces of V.

Solution: We will show each separately. Need to show that W_1 contains the additive identity, closed under addition, and closed under scalar multiplication (Theorem 1.34).

Identity:

$$\left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right] \in W_1$$

Closed under addition: Let $u, v \in W_1$ be defined as

$$u = \left[\begin{array}{cc} x & -x \\ y & z \end{array} \right] \qquad v = \left[\begin{array}{cc} \alpha & -\alpha \\ \beta & \gamma \end{array} \right]$$

Then $u + v \in W_1$ since

$$\left[\begin{array}{cc} x & -x \\ y & z \end{array}\right] + \left[\begin{array}{cc} \alpha & -\alpha \\ \beta & \gamma \end{array}\right] = \left[\begin{array}{cc} x + \alpha & -x - \alpha \\ y + \beta & z + \gamma \end{array}\right] = \left[\begin{array}{cc} x + \alpha & -(x + \alpha) \\ y + \beta & z + \gamma \end{array}\right] \in W_1$$

Closed under scalar multiplication: Let $a \in \mathbb{F}$, $u \in W_1$, then

$$au = a \begin{bmatrix} x & -x \\ y & z \end{bmatrix} = \begin{bmatrix} ax & -ax \\ ay & az \end{bmatrix} = \begin{bmatrix} ax & -(ax) \\ ay & az \end{bmatrix} \in W_1$$

Therefore W_1 is a subspace of V since $W_1 \subseteq V$ and all 3 conditions hold.

We will now show the same for W_2

Identity:

$$\left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right] \in W_2$$

Closed under addition: Let $u, v \in W_2$ be defined as

$$u = \left[\begin{array}{cc} a & b \\ -a & c \end{array} \right] \qquad v = \left[\begin{array}{cc} x & y \\ -x & z \end{array} \right]$$

Then $u + v \in W_2$ since

$$\left[\begin{array}{cc} a & b \\ -a & c \end{array}\right] + \left[\begin{array}{cc} x & y \\ -x & z \end{array}\right] = \left[\begin{array}{cc} a+x & b+y \\ -a-x & c+z \end{array}\right] = \left[\begin{array}{cc} a+x & b+y \\ -(a+x) & c+z \end{array}\right] \in W_2$$

Closed under scalar multiplication: Let $r \in \mathbb{F}$, $u \in W_2$, then

$$ru = r \begin{bmatrix} a & b \\ -a & c \end{bmatrix} = \begin{bmatrix} ra & rb \\ -ra & rc \end{bmatrix} = \begin{bmatrix} ra & rb \\ -(ra) & rc \end{bmatrix} \in W_2$$

Therefore W_2 is a subspace of V since $W_2 \subseteq V$ and all 3 conditions hold.

(b) Describe the subspace $W_1 \cap W_2$.

Solution: The subspace of $W_1 \cap W_2$ would be all $M_{2,2}(\mathbb{F})$ of the form

$$\left[\begin{array}{cc} x & -x \\ -x & y \end{array}\right]$$

Since W_1 requires that m_{12} be $-m_{11}$, whereas row 2 has no restrictions, and W_2 requires m_{21} be $-m_{11}$ placing a new restriction on m_{21} , and column 2 adds no restrictions. Thus, the restrictions applied to $W_1 \cap W_2$ are that $m_{11} = -m_{12} = -m_{21}$

(c) Show that the subspace $W_1 + W_2$ is all of V.

Solution.

Proof. For $v \in V$, let $v = \begin{bmatrix} v_1 & v_2 \\ v_3 & v_4 \end{bmatrix}$. For $w \in W_1$ and $w_2 \in W_2$. Let $v = w_1 + w_2$, then

$$w_1 = \begin{bmatrix} a & -a \\ b & c \end{bmatrix} \qquad w_2 = \begin{bmatrix} d & e \\ -d & f \end{bmatrix}$$

$$v = \begin{bmatrix} v_1 & v_2 \\ v_3 & v_4 \end{bmatrix} = \begin{bmatrix} a+d & -a+e \\ b-d & c+f \end{bmatrix} = w_1 + w_2$$

Therefore,

$$v_1 = a + d$$
 $v_2 = -a + e$ $v_3 = b - d$ $v_4 = c + f$

Let d = f = 0 then,

$$v_1 = a$$
 $v_2 = -a + e$ $v_3 = b$ $v_4 = c$

Solving for a, b, c, d, e, f in terms of v_1, v_2, v_3, v_4 , we get

$$a = v_1$$
 $b = v_3$ $c = v_4$ $d = 0$ $e = v_1 + v_2$ $f = 0$

From the equations, $v = w_1 + w_2 \ \forall \ v \in V, w_1 \in W_1, w_2 \in W_2$. Thus $V \subseteq W_1 + W_2$. Since $w_1, w_2 \in V$ by definition of subset, then $w_1 + w_2 \in V : W_1 + W_2 \subseteq V$.

Hence,
$$W_1 + W_2 = V$$

5. Prove or give a counterexample: if U_1, U_2, W are subspaces of the vector space V such that $V = U_1 \oplus W$ and $V = U_2 \oplus W$, then $U_1 = U_2$.

False by counterexample.

Proof. Let $V = \mathbb{R}^2$, U_1, U_2, W be subspaces such that

$$U_1 = \{(x,0) : x \in \mathbb{R}\}$$
 $U_2 = \{(0,y) : y \in \mathbb{R}\}$ $W = \{(x,x) : x \in \mathbb{R}\}$

Then the condition that $V = U_1 \oplus W$ and $V = U_2 \oplus W$ holds. To show that, let $v \in V$, $u_1 \in U_1$, and $w \in W$, then $U_1 \cap W = \{0\}$ and spans V since

$$v = \underbrace{(x - y, 0)}_{u_1 \in U_1} + \underbrace{(y, y)}_{w \in W} = (x, y)$$

Similarly for $U_2 \oplus W = V$, with $v \in V$, $u_2 \in U_2$, and $w \in W$, with $U_2 \cap W = \{0\}$, it spans V since

$$v = \underbrace{(0, y - x)}_{u_2 \in U_2} + \underbrace{(x, x)}_{w \in W} = (x, y)$$

All the assumed conditions have been satisfied, but $U_1 \neq U_2$ since $U_1 \cap U_2 = \{0\}$. Thus the original claim is false.

6. Let $V = \mathbb{R}^3$ – the usual 3D space from Calc III. Let U be the x-axis. Define W to be the subspace spanned by (1,0,1). Show that the usual xz-plane is the direct sum $U \oplus W$.

Solution: Rewriting U and W in set notation we get

$$U = \{(a, 0, 0) : a \in \mathbb{R}\}$$
 $W = \{(b, 0, b) : b \in \mathbb{R}\}$

For some $v \in xz$ -plane, it can be written as

$$v = \underbrace{(x-z,0,0)}_{u \in U} + \underbrace{(z,0,z)}_{w \in W} = (x,0,z) \in xz$$
-plane

To show that it is a direct sum, we need $U \cap W = \{0\}$.

$$U \cap W = \{(a,0,0)\} \land \{(b,0,b)\} = \{(a=b,0,b=0)\} \Rightarrow a=b=0 \Rightarrow \{(0,0,0)\}$$

7. Suppose that the vectors v_1, v_2, v_3, v_4 span the vector space V. Show that the vectors $v_1 - v_2, v_1 + v_2, v_3 + v_4, v_4$ also span V.

Proof. Let S denote span($(v_1 - v_2), (v_1 + v_2), (v_3 + v_4), v_4$) We need to show that $\{v_1, v_2, v_3, v_4\} \in S$

$$v_1 = \frac{1}{2} [(v_1 - v_2) + (v_1 + v_2)] = \frac{1}{2} [2v_1] = v_1$$

 $\therefore v_1 \in S$

$$v_2 = (v_1 + v_2) + \underbrace{(-v_1)}_{\in S} = v_2$$
$$\therefore v_2 \in S$$

 $v_4 \in S$ without computation

$$v_3 = (v_3 + v_4) + \underbrace{(-v_4)}_{\in S} = v_3$$
$$\therefore v_3 \in S$$

Since $\{v_1, v_2, v_3, v_4\} \in S$ and span $(v_1, v_2, v_3, v_4) = V$, then $S \supseteq V$