Face Mask Detection – Transfer Learning Raporu

1. Kullanılan Model Mimarisi

Bu projede, insan yüzlerinde maske tespiti yapmak amacıyla **ResNet50 tabanlı transfer learning modeli** kullanılmıştır. Model mimarisi:

- Base Model: ResNet50 (imagenet ağırlıkları, include_top=False, frozen)
- Eklenen Katmanlar:
 - Flatten
 - o Dense (128 units, ReLU)
 - Dropout (0.5)
 - Dense (1 unit, Sigmoid)

Not: ResNet50, 50 katmanlı bir residual CNN mimarisidir ve derinliği sayesinde yüksek doğruluk sağlar. Bu projede pretrained katmanlar dondurularak (freeze) sadece eklenen dense katmanlar eğitilmiştir.

🗱 2. Eğitim Süreci ve Metrikler

- Veri Seti: Face Mask Detection Dataset
 - with_mask (maske takılı)
 - without_mask (maske takılı değil)
- Data Split: %80 eğitim, %20 doğrulama
- Görsel Boyutu: 224 x 224 px
- Normalization: 0-1 arası
- Loss Function: binary_crossentropy
- **Optimizer:** Adam (learning_rate=0.0001)
- **Epochs:** 10
- Batch Size: 32

📊 Eğitim Sonuçları (Grafik)

Eğitim ve doğrulama loss/accuracy grafikleri aşağıda gösterilmiştir. (A Buraya koddan çizdiğin grafik görsellerini ekle.)

Gözlemler:

• Eğitim ve validation accuracy, epoch boyunca istikrarlı şekilde artış göstermiştir.

• Overfitting gözlenmemiştir, loss değerleri paralel seyretmektedir.

3. Confusion Matrix ve Yorum

(**A** Buraya confusion matrix heatmap görselini ekle)

Yorum:

- Model, genel olarak yüksek doğruluk göstermektedir. Ancak bazı durumlarda maskeli yüzleri maskesiz olarak tahmin etme eğilimi gözlenmiştir.
- Bunun sebebi dataset dengesizliği, maskelerin farklı açılarda olması veya training epoch sayısının az olması olabilir.

Precision, Recall, F1-score:

(Buraya classification_report çıktısını ekle)

4. Görsel Tahmin Sonuçları

Aşağıdaki görseller, modelin tahmin performansını göstermektedir:

(A Buraya 5 örnek tahmin görselini yan yana koyan kod çıktısını ekle)

Yorum:

- Gerçek ve tahmin label'larının çoğunlukla örtüştüğü görülmektedir.
- Yanlış tahminler, düşük ışık, maske görünürlüğü azlığı veya yüzün eğik olduğu durumlarda meydana gelmiştir.

🛕 5. Karşılaşılan Zorluklar ve Çözüm Yolları

Zorluk	Çözüm Yolu
Class label mapping ters çıktı	train_generator.class_indices ile kontrol edilip class_names dizisi düzenlendi.
GPU memory hatası	Batch size düşürülerek veya Google Colab GPU kullanılarak çözüldü.
Kütüphane import sorunları (IDE alt çizgileri)	VSCode Python interpreter doğrulandı, environment sorunu giderildi.
Model düşük doğruluk (ilk denemede)	Learning rate optimize edildi, epoch sayısı arttırıldı, augmentation eklendi.

✓ Sonuç

Bu proje kapsamında transfer learning kullanılarak, düşük veri miktarıyla maske tespiti başarıyla gerçekleştirilmiştir. ResNet50 mimarisi sayesinde, eğitim süresi kısa tutulmasına rağmen yüksek doğruluk elde edilmiştir.