

Data Analysis and Basic Statistics

Module Content

- PROC MEANS
- PROC SUMMARY
- PROC UNIVARIATE
- PROC CORR


```
✓ What does the MEANS Procedure do?
✓ Provides summary statistics (descriptive) for variables across observations and within groups Means Procedure -- Syntax
✓ PROC MEANS <other option(s)> <statistic-keywords>;
BY <DESCENDING> variable 1 ........ <DESCENDING> variable n;
VAR variable(s);
CLASS variable(s);
OUTPUT <OUT = SAS-dataset> <output-statistic-specification>;
```

Example

Find average credit limit and average risk score in performance data

```
proc means data=perf;
var credit_lmt rscore;
run;
```

Find sum of credit limit for each segment proc means data=perf sum; class segment; var credit_lmt rscore; run;

Means on Credit Limit and Risk Score

The MEANS Procedure					
Variable	N	Mean	Std Dev	Minimum	Maximum
credit_lmt rscore	50 50	4450.00 742.6600000	1761.52 141.6165576	1000.00 511.0000000	7800.00 998.0000000

Total Credit Limit by Each Segment

The MEANS Procedure

Analysis Variable : credit_lmt

segment	N Obs	Sum
S1	11	52600.00
S2	18	77700.00
S3	21	92200.00

- Similar to Proc Means
- No output is given unless 'print' or 'output' option is specified
- VAR statement is necessary. In Proc Means if you omit var statement, it gives statistics for all numeric variable in the data

Example

Analyze average credit limit, spend and utilization by combination of Risk Levels and customer segment


```
data new;
set perf;
if rscore > 800 then risk_level='L';
else if rscore > 600 then risk level='M';
else risk level='H';
run;
proc summary data=new nway missing;
class segment risk level;
var credit Imt rscore spend;
output out=summ sum=;
run;
proc contents data=summ;
run;
proc print data=summ;
run;
```

Example

- Omit 'Nway' in the proc summary option and notice the change in output
- Missing- Would treat 'missing' values in class variables as a separate category
- Sum= specifies that 'sum' needs to be output for variables

Contents of Summ Data Se

#	Variable	Type	Len	Format	Informat
4	_FREQ_	Num	8		
3	_TYPE_	Num	8		
5	credit_lmt	Num	8	BEST12.	BEST32.
2	risk_level	Char	1		
6	rscore	Num	8	BEST12.	BEST32.
1	segment	Char	2	\$2.	\$2.
7	spend	Num	8	BEST12.	BEST32.

Print - Summ Data Set

0bs	segment	risk_ level	_TYPE_	_FREQ_	credit_lmt	rscore	spend
1	S1	н	3	1	4000	573	2480
2	S1	L	3	4	25000	3521	13976
3	S1	M	3	6	23600	4396	13932
4	S2	н	3	3	7100	1667	2903
5	S2	L	3	6	34600	5290	20806
6	S2	M	3	9	36000	6266	21570
7	S3	н	3	5	8600	2616	5513
8	S3	L	3	8	51000	7326	31645
9	83	М	3	8	32600	5478	19406

Excel Computation

Row Labels	Sum of _FREQ_ Su	um of Avg Credit Limit	Sum of Avg Spend	Sum of Utilization
■L	18	\$6,144	\$3,690	60%
S1	4	\$6,250	\$3,494	56%
S2	6	\$5,767	\$3,468	60%
S3	8	\$6,375	\$3,956	62%
■ M	23	\$4,009	\$2,387	60%
S1	6	\$3,933	\$2,322	59%

Proc Univariate

- Produces statistics describing distribution of a variable
- Statistics include:
 - Moments (mean, standard deviation, skewness, etc..)
 - Basic Statistical measures (mean , median , mode, range etc)
 - Quantiles (Q1, Q3, Med etc ..)
 - Extreme values
- Syntax

```
proc univariate data=<dataset>;
class <class variables>;
var variable list;
run;
```

Example

Look at the distribution of risk score across performance data

```
proc univariate data=perf;
var rscore;
run;
```

Proc Univariate – SAS Output

The UNIVARIATE Procedure Variable: rscore

Moments

N	50	Sum Weights	50
Mean	742.66	Sum Observations	37133
Std Deviation	141.616558	Variance	20055.2494
Skewness	0.08571506	Kurtosis	-0.9438483
Uncorrected SS	28559901	Corrected SS	982707.22
Coeff Variation	19.0688279	Std Error Mean	20.0276056

Basic Statistical Measures

Mean	742.6600	Std Deviation	141.61656
Median	740.5000	Variance	20055
Mode	668.0000	Range	487.00000
		Interquartile Range	231.00000

NOTE: The mode displayed is the smallest of 5 modes with a count of 2.

Tests for Location: Mu0=0

Test	-St	atistic-	p Val	ue
Student's t	t	37.08182	Pr > t	<.0001
Sign	M	25	Pr >= M	<.0001
Signed Rank	S	637.5	Pr >= S	<.0001

Quantiles (I	Definition 5)
Quantile	Estimate
100% Max	998.0
997	998.0
95%	981.0
90%	948.0
75% Q3	852.0
50% Median	740.5
25% Q1	621.0
10%	533.5
57	521.0
17	511.0
0% Min	511.0

Extreme Observations

Lowest		Highest		
Value	0bs	Value	0bs	
511	17	951	47	
517	50	973	38	
521	23	981	35	
528	16	990	49	
530	3	998	20	

Proc CORR - Pearson Correlation

The correlation or strength of a linear relationship between two continuous numeric variables can be assessed using PROC CORR. This is also known as Pearson Correlation.

PROC CORR

DATA=sashelp.class PLOTS=SCATTER(NVAR=all);

VAR height weight;

RUN	,
------------	---

Simple Statistics							
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum	Label
Weight	376	181.03157	42.74968	68068	101.71000	350.07000	Weight
Height	408	68.03176	5.32566	27757	55.00000	84.41000	Height

Pearson Correlation Coefficients Prob > r under H0: Rho=0 Number of Observations							
	Weight	Height					
Weight	1.00000	0.51326					
Weight		<.0001					
	A 376	B 354					
Height	0.51326	1.00000					
Height	<.0001	_					
	© 354	408					

THANK YOU