过程控制仪表和装置

主讲:夏宇栋 博士 副研究员

email: ydxia@hdu.edu.cn

办公地点:2教南132-134

电话: 18667002858

第1章 绪论

- §1-1 过程控制概述
- §1-2 自动化仪表概述
- 第2章 过程参数的检测与变送
- §2-1 参数检测与变送概述 (绝对误差、精度等级、回差等)
- §2-2 温度的检测与变送(热电偶、热电阻)
- §2-3 压力的检测与变送
- §2-4 流量的检测与变送(类型?)
- §2-5 物位的检测与变送

第3章 调节器

- §3-1 调节器调节规律(P、I、D作用)
- §3-2 PID运算电路
- §3-3 DDZ-Ⅲ型模拟式调节器
- §3-4 PID数字控制算法及变形(微分先行、比例先行、混合过程PID)
- 第4章 集散控制系统与现场总线控制系统
- §4-1 DCS系统(分层结构)
- §4-2 现场总线

第5章 执行器

- §5-1 气动执行器(调节阀种类、调节阀流量特性)
- §5-2 电动执行器
- §5-3 转换器及阀门定位器
- §5-4 安全防爆栅
- 第6章 部分常规控制系统设计
- §6-1 简单控制系统设计概述
- §6-2 调节对象动态特性及调节方案
- §6-3 调节规律
- §6-4 调节器参数整定

第2章 过程参数的检测与变送

§2-1 参数检测与变送概述

- 绝对误差与相对误差
- 引用误差
- 精确度及精度等级
- 回差
- 灵敏度、灵敏限及分辩率
- ...

第2章 过程参数的检测与变送

§2-2 温度的检测与变送

- 热电偶测温原理、测试方法
- 补偿导线
- 热电阻测温原理、测试方法

§2-3 压力的检测与变送

- 表压、绝压、真空度
- 压力计测压原理
- 压力计选用和安装

- 1.液柱式压力计
- 2.弹性式压力计
- 3.电气式压力计
- 4.活塞式压力计样

第2章 过程参数的检测与变送

§2-4 流量的检测与变送

- 差压流量计测试原理、测试范围、适用场合
- 转子流量计测试原理、测试范围、适用场合(流量修正)
- 电磁流量计测试原理、测试范围、适用场合
- 涡轮流量计测试原理、测试范围、适用场合
- 涡街流量计测试原理、测试范围、适用场合

•••

第3章 调节器

§3-1 调节器调节规律

● 比例(比例度)、积分(积分时间)、微分(微分时间)调节作用

$$G(s) = K_c \left(1 + \frac{1}{T_I s} + T_D s\right)$$

§3-2 PID运算电路

第3章 调节器

- §3-3 DDZ-Ⅲ型模拟式调节器
 - 几部分组成
 - 各部分功能
- §3-4 PID数字控制算法及变形
 - 位置式PID
 - 增量式PID
 - 变形PID算法(微分先行、比例先行、混合过程PID)

第4章 集散控制系统与现场总线控制系统

§4-1 DCS系统

- 特点
- 逻辑分层
- 现场工作站

§4-2 FCS系统

● 有哪几种常用的现场总线协议

第5章 执行器

§5-1气动执行器

- 基本结构及工作原理
- 调节阀主要类型、适用场合
- 调节阀性能参数(流量系数、可调比)
- 调节阀理想流量特性
- 调节阀工作流量特性(配管系数)

§5-2 电动执行器

● 基本结构及工作原理

第5章 执行器

§5-3 转换器及阀门定位器

- 电-气转换器工作原理
- 阀门定位器工作原理

§5-4 安全防爆栅

- 安全火花防爆系统概念(结构防爆、本质防爆)
- 安全防爆栅分类(电阻式、齐纳式、中继放大器式、光电隔离式、变压器隔离式)

第5章 部分常规控制系统设计

- §6-1 简单控制系统设计概述
 - 简单控制系统定义
 - 被控参数、调节量选择
 - 调节规律(PID)

§6-2 调节对象动态特性及调节方案

- 干扰通道对调节质量影响(干扰时间常数、放大 系数、干扰位置…)
- 被控对象特性对调节质量影响
- 调节方案确定

第5章 部分常规控制系统设计

§6-3 调节规律对控制性能影响

- 纯比例控制(比例系数大小对系统影响)
- 比例积分控制(引入积分对系统影响)
- 比例微分控制(引入微分对系统影响)

§6-4 调节器参数整定

- 稳定边界法(闭环)
- 反应曲线法(开环)
- 经验法

例题分析

- **> 某化学反应器工艺操作规定温度为(800±10℃)。为确保生产安全** ,控制中温度最高不得超过850℃。现运行的控制系统,在最大阶跃 扰动下的过渡过程曲线如图所示。
 - (1)分别求出最大偏差、余差、衰减比、过渡时间(温度进入±2%新稳定值即视为系统已稳定)和振荡周期。
 - (2) 说明此温度控制系统是否满足工艺要求,若降低稳态温度该如何操作。
 - (3)若采用K型热电偶测试,测温范围在300-1000℃,将温度信号转换为标准电流信号给调节器,则在845和805摄氏度的时候对应多大电流信号?

最大偏差; 845-805=40<50

余差: 805-800=5<10

衰减比: (845-805)/(815-805)=4

过渡时间: 25min

振荡周期: 20-7=13min

- (2) 说明此温度控制系统是否满足工艺要求,若降低稳态温度该如何操作。 满足工艺要求,使用PI或PID,可先切换成手动,待稳定后再切换到自动
- (3) 若采用K型热电偶测试,测温范围在300-1000℃,将温度信号转换为标准电流信号给调节器,则在845和805摄氏度的时候对应多大电流信号?

选择4~20mA电流为标准信号的变送器,分别对应16.9mA和16.1mA

例题分析

▶ 用镍铬-镍硅热电偶测温,冷端 T_n =20°C, $E_{AB}(T, T_n)$ =40.347mV,求被测对象的实际温度(分度表见下表)。另外,将该热电偶做成精度为1级的测温仪表,测量范围在0-1300°C,那么被测对象的实际温度范围是多少?

K分度号表(温度单位: ℃、电压单位: mV、参考温度点: 0℃)

	10	20	30	40	50	60	70	80	90	100
0	0. 1979	0. 597	1.0002	1. 4071	1.8171	2. 2296	2. 6437	3. 0589	3. 4743	3. 8892
100	4. 3029	4. 7147	5. 1244	5. 5317	5. 9367	6. 3395	6. 7406	7. 1404	7. 5396	7. 9387
200	8. 3384	8. 7391	9. 1411	9. 5447	9. 95	10. 3571	10. 7659	11. 1763	11. 5882	12. 0015
300	12. 4159	12. 8315	13. 248	13. 6654	14. 0837	14. 5028	14. 9226	15. 3431	15. 7642	16. 186
400	16. 6084	17. 0314	17. 4549	17. 8789	18. 3034	18. 7283	19. 1536	19. 5792	20.0051	20. 4312
500	20. 8574	21. 2838	21. 7103	22. 1368	22. 5632	22. 9896	23. 4158	23. 8418	24. 2675	24. 6929
600	25. 1179	25. 5426	25. 9668	26. 3904	26. 8135	27. 236	27. 6579	28. 0791	28. 4996	28. 9194
700	29. 3384	29. 7565	30. 1739	30. 5904	31. 006	31. 4207	31. 8345	32. 2474	32. 6593	33. 0703
800	33. 4803	33. 8893	34. 2973	34. 7044	35. 1104	35. 5155	35. 9196	36. 3226	36. 7247	37. 1258
900	37. 5258	37. 9249	38. 3229	38. 7199	39. 1159	39. 5109	39. 9049	40. 2978	40. 6897	41. 0806
1000	41. 4704	41. 8591	42. 2468	42. 6334	43. 0189	43. 4033	43. 7866	44. 1687	44. 5496	44. 9293
1100	45. 3078	45. 6851	46. 0611	46. 4359	46. 8093	47. 1813	47. 552	47. 9213	48. 2892	48. 6556
1200	49. 0205	49. 384	49. 7459	50. 1062	50. 4651	50. 8223	51. 178	51. 532	51,8845	52. 2354

	10	20	30	40	50	60	70	80	90	100
0	0. 1979	0. 597	1.0002	1. 4071	1.8171	2. 2296	2. 6437	3. 0589	3. 4743	3. 8892
100	4. 3029	4. 7147	5. 1244	5. 5317	5. 9367	6. 3395	6. 7406	7. 1404	7. 5396	7. 9387
200	8. 3384	8. 7391	9. 1411	9. 5447	9. 95	10. 3571	10. 7659	11. 1763	11. 5882	12. 0015
300	12. 4159	12. 8315	13. 248	13. 6654	14. 0837	14. 5028	14. 9226	15. 3431	15. 7642	16. 186
400	16. 6084	17. 0314	17. 4549	17. 8789	18. 3034	18. 7283	19. 1536	19. 5792	20. 0051	20. 4312
500	20. 8574	21. 2838	21. 7103	22. 1368	22. 5632	22. 9896	23. 4158	23. 8418	24. 2675	24. 6929
600	25. 1179	25. 5426	25. 9668	26. 3904	26. 8135	27. 236	27. 6579	28. 0791	28. 4996	28. 9194
700	29. 3384	29. 7565	30. 1739	30. 5904	31. 006	31. 4207	31. 8345	32. 2474	32. 6593	33. 0703
800	33. 4803	33. 8893	34. 2973	34. 7044	35. 1104	35. 5155	35. 9196	36. 3226	36. 7247	37. 1258
900	37. 5258	37. 9249	38. 3229	38. 7199	39. 1159	39. 5109	39. 9049	40. 2978	40. 6897	41.0806
1000	41. 4704	41.8591	42. 2468	42. 6334	43. 0189	43. 4033	43. 7866	44. 1687	44. 5496	44. 9293
1100	45. 3078	45. 6851	46. 0611	46. 4359	46. 8093	47. 1813	47. 552	47. 9213	48. 2892	48. 6556
1200	49. 0205	49. 384	49. 7459	50. 1062	50. 4651	50. 8223	51. 178	51. 532	51. 8845	52. 2354

根据热电偶的热电势原理有 $E_{AB}(T,T_n) = e_{AB}(T) - e_{AB}(T_n)$

$$e_{AB}(T) = E_{AB}(T, T_n) + e_{AB}(T_n) = 40.347 + 0.597 = 40.944 mV$$

插值法 $40.6897mV(900^{\circ}C) < 40.944mV < 41.0806mV(1000^{\circ}C)$

温度: $990 + (40.944 - 40.6897) / \left(\frac{(41.0806 - 40.6897)}{10} \approx 997 + 997 \pm 13^{\circ} C$

例题分析

- ▶ 右图为某反应釜系统示意图,两种或多种化工原料由进料口送进反应釜进行搅拌 并在其中发生放热化学反应,最终生成某种化工产品。为保证产品的质量和设备 安全,需要通过冷却水从反应釜外壁对其降温,以维持反应釜内温度在某一设定 值。根据上述工艺试完成以下题目:
 - 1)试绘制反应釜温度控制系统的框图,并标明系统中的控制器、被控对象、传感器、执行器和扰动。

例题分析

- ▶ 右图为某反应釜系统示意图,两种或多种化工原料由进料口送进反应釜进行搅拌 并在其中发生放热化学反应,最终生成某种化工产品。为保证产品的质量和设备 安全,需要通过冷却水从反应釜外壁对其降温,以维持反应釜内温度在某一设定 值。根据上述工艺试完成以下题目:
 - 2)假设反应釜内温度范围为100-300摄氏度,要求测量误差在 \pm 10摄氏度以内;冷却水流量范围为0-5 m^3/s ,要求测量误差为 \pm 0.2 m^3/s 以内,你认为应采用什么样的测温和测流量方式?相应的仪表精度等级如何选择?

温度测量方式:由于温度较高,可采用热电偶进行测温;

流量测量方式:由于流量较大可采用涡街流量计或者电磁流量计;

温度仪表等级: ±10/(300-100)= ±5% 因此精度要高于5级;

流量仪表等级: ±0.2/(5-0)= ±4% 因此精度等级要高于4级。

例题分析

- ▶ 右图为某反应釜系统示意图,两种或多种化工原料由进料口送进反应釜进行搅拌 并在其中发生放热化学反应,最终生成某种化工产品。为保证产品的质量和设备 安全,需要通过冷却水从反应釜外壁对其降温,以维持反应釜内温度在某一设定 值。根据上述工艺试完成以下题目:
 - 3)假设冷却水控制阀为气动类型,为避免反应釜内温度过高,该控制阀应选用气开还是气关 类型?为什么?

答:气关型。

在气源出现故障时可减温阀全开,保证釜内温度不会超温,避免生产事故。

