Self-adjoint operator

Wu Yuhan

Oct. 4, 2020

1 Preparation

In this article, we mainly discuss linear operators in Hilbert space.

Let's review these two concepts

- 1. Hilbert space
- 2. Linear operator

Firstly, hilbert space **X** is an infinite dimensional vector space equipped with inner product $\langle \cdot | \cdot \rangle$ And, \mathcal{A} is a linear operator, iff $\forall u, v \in \mathbf{X}$ and $k \in \mathbf{F}$

- 1. $\mathcal{A}(ku) = k\mathcal{A}u$
- $2. \ \mathcal{A}(u+v) = \mathcal{A}u + \mathcal{A}v$

2 Definition of adjoint operator

Motivation : A is a linear operator in Hilbert space. Then suppose that there is a linear operator A^* such that

$$\langle \mathcal{A}^* u | v \rangle = \langle u | \mathcal{A} v \rangle \tag{1}$$

Let's start. First step, observe the equation of $w \in \mathbf{X}$, and $u \in \mathbf{X}$ is fixed

$$\langle u|\mathcal{A}v\rangle = \langle w|v\rangle \quad \forall v \in \mathbf{X}$$
 (2)

Proposition 1 If the equation

$$\langle u|\mathcal{A}v\rangle = \langle w|v\rangle \quad \forall v \in \mathbf{X}$$
 (3)

has a solution, then the solution is unique.

Proof Suppose there are two solutions w_1 and w_2 that satisfy the equation. Then

$$\langle w_1|v\rangle = \langle u|\mathcal{A}v\rangle = \langle w_2|v\rangle$$

And we can yield,

$$\langle w_1|v\rangle = \langle w_2|w\rangle \implies \langle w_1 - w_2|v\rangle = 0 \forall u \in \mathbf{X}$$

Here we can choose $v = w_1 - w_2$, then

$$\langle w_1 - w_2 | w_1 - w_2 \rangle = 0 \implies ||w_1 - w_2|| = 0 \implies w_1 = w_2$$

Therefore \mathcal{A}^* is well-defined by $\mathcal{A}^*u = w$, then let's check the property of \mathcal{A}^*

Proposition 2 1. $A^* : D(A^*) \subseteq X \to X$ is linear.

2.
$$(\alpha A)^* = \bar{\alpha} A^*$$

First of all, I need to introduce a very simple, but extremely important lemma : *Variational lemma*. To emphasize its importance, I will note it as a theorem.

Theorem 1 Variational lemma: $u, v \in \mathbf{X}$, \mathbf{X} is a Hilbert space, and if

$$\langle w|u\rangle = \langle w|v\rangle \quad \forall w \in \mathbf{X}$$

then

$$u = v$$

The proof is very simple, just apply the same procedure in proof of proposition above.

Proof

$$\langle w|u\rangle = \langle w|v\rangle \quad \forall w \in \mathbf{X}$$

$$\langle w|u-v\rangle = 0 \quad \forall w \in \mathbf{X}$$

$$Let \ w = u-v$$

$$\langle u-v|u-v\rangle = 0 \implies ||u-v|| = 0$$

$$\implies u = v$$

QED

To prove \mathcal{A}^* is a linear operator, we need to check:

$$\mathcal{A}^*(a_1v_1 + a_2v_2) = a_1\mathcal{A}^*v_1 + a_2\mathcal{A}^*v_2$$

By Variational lemma, we only need to prove

$$\langle \mathcal{A}^*(a_1v_1 + a_2v_2)|u\rangle = \langle a_1\mathcal{A}^*v_1 + a_2\mathcal{A}^*v_2|u\rangle \quad \forall u \in \mathbf{X}$$

Proof By definition of adjoint operator:

$$\langle \mathcal{A}^*(a_1v_1 + a_2v_2)|u\rangle = \langle a_1v_1 + a_2v_2|\mathcal{A}u\rangle$$

$$= a_1\langle v_1|\mathcal{A}u\rangle + a_2\langle v_2|\mathcal{A}u\rangle$$

$$= a_1\langle \mathcal{A}^*v_1|u\rangle + a_2\langle \mathcal{A}^*v_2|u\rangle$$

$$= \langle a_1\mathcal{A}^*v_1 + a_2\mathcal{A}^*v_2|u\rangle$$

QED

Then let's finish another proof: $(\alpha A)^* = \bar{\alpha} A^*$

Proof

$$\langle (\alpha \mathcal{A})^* v | u \rangle = \langle v | \alpha \mathcal{A} u \rangle = \alpha \langle v | \mathcal{A} u \rangle = \alpha \langle \mathcal{A}^* v | u \rangle = \langle \bar{\alpha} \mathcal{A}^* v | u \rangle$$

QED

Lat's have a look on adjoint operator in finite space.

Example 1 Cⁿ is finite dimensional vector space, choose an orthogonal basis $\{e_i\}, i = 1, \dots, n$. \mathcal{A} is a linear operator on \mathbf{C}^n and it has a matrix representation \mathbf{A} , i.e.

$$\mathcal{A}(e_1, \dots, e_n) = (e_1, \dots, e_n)\mathbf{A}$$
 i.e. $\mathcal{A}e_i = \sum_i A_{ji}e_j$

Similarly, the adjoint operator \mathcal{A}^* has a matrix representation \mathbf{A}^* . Specifically, $\mathcal{A}^*e_i = \sum_j A_{ji}^*e_j$ Therefore

$$\langle \mathcal{A}^* e_i | e_j \rangle = \langle e_i | \mathcal{A} e_j \rangle$$

$$\langle \sum_k A_{ki}^* e_k | e_j \rangle = \langle e_i | \sum_k A_{kj} e_k \rangle$$

$$\sum_k \bar{A}_{ki}^* \langle e_k | e_j \rangle = \sum_k A_{kj} \langle e_i | e_k \rangle$$

$$\bar{A}_{ji}^* = A_{ij}$$

$$\bar{\mathbf{A}}^{\mathbf{T}} = \mathbf{A}^*$$
(4)

 $To\ conclude$

3 Self-adjoint operator and skew-adjoint operator

3.1Self-adjoint operator

In vector space \mathbf{X} , linear operator \mathcal{A} is self-adjoint operator, iff $\mathcal{A} = \mathcal{A}^*$, i.e. $\forall u, v \in \mathbf{X}$,

$$\langle \mathcal{A}u|v\rangle = \langle u|\mathcal{A}v\rangle \tag{5}$$

In many cases, self-adjoint operator is also known as Hermitian operator. Here is an example of self-adjoint operator.

Example 2 Integral operator. Suppose $A:[a,b]\times[a,b]\to \mathbf{C}$ is a continuous function. Define

$$(\mathcal{A}u)(x) = \int_{a}^{b} A(x,y)u(y)dy \quad \forall x \in [a,b]$$
 (6)

and set $\mathbf{X} = \mathbf{L_2}([a, b]), u \in \mathbf{X}$.

Our task is to find the adjoint operator of the integral operator.

$$\begin{split} \langle v|\mathcal{A}u\rangle &= \int_a^b \overline{v(x)} (\int_a^b A(x,y)u(y)dy)dx \\ &= \int_a^b \int_a^b \overline{v(x)} A(x,y)u(y)dxdy \quad \textit{Fubini Thm} \\ &= \int_a^b u(y) (\int_a^b A(x,y)\overline{v(x)}dx)dy \\ &= \int_a^b (\int_a^b \overline{\overline{A(y,x)}v(y)}dy)u(x)dx \quad \textit{exchange x,and y} \\ &= \langle A^*v|u\rangle \end{split}$$

where \mathcal{A}^*v are defined as $\mathcal{A}^*v=\int_a^b\overline{A(y,x)}v(y)dx$. Therefore, if $A(x,y)=\overline{A(y,x)}$, then $\mathcal{A}=\mathcal{A}^*$. To conclude, the integral operator \mathcal{A} is a self-adjoint operator, iff the integral kernel A(x,y) satisfies

$$A(x,y) = \overline{A(y,x)}$$

Skew-adjoint operator

Define, \mathcal{A} is a skew-adjoint operator, iff $\mathcal{A} = -\mathcal{A}^*$, i.e. for all $u, v \in \mathbf{X}$, $\langle v | \mathcal{A}u \rangle = -\langle \mathcal{A}v | u \rangle$. Let's have a look on differential operator:

Example 3 Let's consider $\mathbf{X} = C_0^{\infty}(\mathbf{R}) \cap L_2^{\mathbf{C}}(\mathbf{R})$, which means $\forall u \in \mathbf{X}$, $u^{(n)}(\pm \infty) = 0$, for all n, and $\int_{\mathbf{R}} |u|^2 < \infty$. We define the differential operator $\mathcal{A}u(x) = u'(x)$

$$\begin{split} \langle v|\mathcal{A}u\rangle &= \int_{\mathbf{R}} \bar{v}u'dx \\ &= \bar{v}u|_{-\infty}^{+\infty} - \int_{\mathbf{R}} \overline{v'}udx \quad integral \ by \ part \\ &= -\langle \mathcal{A}v|u\rangle \end{split}$$

Conclude, differential operator A is a skew-adjoint operator

Proposition 3 If A is a self-adjoint operator, then iA is a skew-adjoint operator. Conversely, id A is a skew-adjoint operator, then iA is a self-adjoint operator.

This can be easily verified by $(\alpha \mathcal{A})^* = \overline{\alpha} \mathcal{A}^*$. The momentum operator $\hat{p} = \frac{\hbar}{i} \frac{\partial}{\partial x}$ is a self-adjoint operator. In other words, \hat{p} is a Hermitian operator.