## Graduate Homework In Mathematics

AlgebraicGeometry 7

白永乐

202011150087

202011150087@mail.bnu.edu.cn

2023年11月8日



ROBEM I Assume k is an infinite field.  $f \in k[x_0, \dots, x_n]$ . knd  $\forall t \in t, f(tx_0, \dots, tx_n) = t^d f(x_0, \dots, x_n)$ , where  $d \in \mathbb{N}$  is a constant. Prove f is homogeneous.

SOUTION. Consider  $g(t, x_0, \dots, x_n) = f(tx_0, \dots tx_n) - t^d f(x_0, \dots x_n) \in k[t, x_0, \dots, x_n]$ . We get for  $p \in \mathbb{A}^n_k, g(p) = 0$ . Since k is infinite, we get g = 0. Assume  $f(x_0, \dots, x_n) = \sum_i a_i x_1^{i_1} x_2^{i_2} \dots x_n^{i_n}$ . Then we get  $g(t, x_0, \dots x_n) = \sum_i (t^d - t^{|i|}) x_1^{i_1} x_2^{i_2} \dots x_n^{i_n} = 0$ . Where  $|i| = \sum_{j=1}^n i_j$ . So we get  $\sum_{j=1}^n i_j = d$ . So f is homogeneous with degree d.

ROBEM II For an ideal I of  $k[x_0, \dots, x_n]$ , prove following to definition of homogeneous ideal is equivalent.

- 1.  $\forall f \in I, f = \sum_t f_t$ , where  $f_t$  are homogeneous poly with different degree. then  $f_t \in I, \forall t$ .
- 2.  $\exists g_1, \dots g_n$  are homogeneous such that  $I = (g_1, \dots, g_n)$ .
- SOUTION. 1. II.1  $\Longrightarrow$  II.2: Assume  $I=(f_1,f_2,\cdots,f_n)$  and  $f_k=\sum_{t=1}^{a_k}g_{kt}$ , where  $g_{kt}$  are homogeneous. Then  $I=(g_{kt}:k=1,2,\cdots,n,t=1,2,\cdots,a_k)$ .
  - 2.  $II.2 \implies II.1$ : Assume  $I = (g_1, \dots, g_n)$ , where  $g_k$  are homogeneous. Now consider  $f \in I$ . Assume  $f = \sum_{j=1}^n h_j g_j$ . Assume  $h_j = \sum_{i=1}^{b_j} l_{ij}$ , where  $l_{ij}$  are homogeneous. Then  $f = \sum_{j=1}^n \sum_{i=1}^{b_j} l_{ij} g_j$ . Assume  $l_{ij} g_j$  has degree  $d_{ij}$ , then we have  $f = \sum_d (\sum_{i,j:d_{ij}=d} l_{ij} g_j)$  is the homogeneous deconposition of f. Easily  $\sum_{i,j:d_{ij}=d} l_{ij} g_j \in I$  since  $g_j \in I$ .

## ROBEM III

- 1. Assume  $J_{\lambda}$  are homogeneous ideal. Prove that  $\mathbb{V}(\sum_{\lambda} J_{\lambda}) = \bigcap_{\lambda} \mathbb{V}(J_{\lambda})$ .
- 2. Assume  $J_1, J_2$  are homogeneous ideal, then  $\mathbb{V}(J_1 \cap J_2) = \mathbb{V}(J_1) \cup \mathbb{V}(J_2)$ .
- SOUTION. 1. On one hand, assume  $p \in \mathbb{V}(J_{\lambda}), \forall \lambda$ , to prove  $p \in \mathbb{V}(\sum_{\lambda} J_{\lambda})$ . Consider  $f \in \sum_{\lambda} J_{\lambda}, f = \sum_{t=1}^{n} f_{t}$ , where  $f_{t} \in J_{\lambda_{t}}$  for some  $\lambda_{t}$ . Then  $f(p) = \sum_{t=1}^{n} f_{t}(p) = 0$ . So we get  $p \in \mathbb{V}(\sum_{\lambda} J_{\lambda})$ .

On the other hand, assume  $p \in \mathbb{V}(\sum_{\lambda} J_{\lambda})$ , to prove  $p \in \mathbb{V}(J_{\lambda}), \forall \lambda$ . Since  $J_{\lambda} \subset \sum_{\lambda} J_{\lambda}$ , we get  $\mathbb{V}(\sum_{\lambda} J_{\lambda}) \subset \mathbb{V}(J_{\lambda})$ . So  $p \in \mathbb{V}(J_{\lambda})$ .

2. On one hand, assume  $p \in \mathbb{V}(J_1 \cap J_2)$ , to prove  $p \in \mathbb{V}(J_1) \vee p \in \mathbb{V}(J_2)$ . If not, assume  $f_1 \in J_1, f_2 \in J_2, f_1(p), f_2(p) \neq 0$ , then we get  $f_1 f_2(p) \neq 0$ . But  $f_1 f_2 \in J_1 \cap J_2$ , contradiction! On the other hand, assume  $p \in \mathbb{V}(J_1) \cup \mathbb{V}(J_2)$ , to prove  $p \in \mathbb{V}(J_1 \cap J_2)$ . Without loss of generality we assume  $p \in \mathbb{V}(J_1)$ , then since  $J_1 \cap J_2 \subset J_1$  we get  $p \in \mathbb{V}(J_1 \cap J_2)$ .

ROBEM IV Assume  $C = \{(x,y) \in \mathbb{C}^2 : y^2 = x(x-1)(x-2)\}$  and  $\hat{C} = \{[z,x,y] : y^2z = x(x-z)(x-2z)\} \in \mathbb{P}^2_{\mathbb{C}}$ . Prove  $\hat{C}$  is one point compactification of C.

SOLTION. Write  $C = \{[z, x, y] : y^2z = x(x - z)(x - 2z), z \neq 0\} \subset \mathbb{P}^2_{\mathbb{C}}$ . Then  $\hat{C} \setminus C = \{[z, x, y] : y^2z = x(x - z)(x - 2z), z = 0\} = \{[0, x, y] : x^3 = 0\} = \{[0, 0, y]\} = \{[0, 0, 1]\}$ . So  $\hat{C}$  is one point compactification of C.

ROBEM V Assume  $X \subset \mathbb{P}_k^n$  is an algebraic set, then  $\mathbb{V}(\mathbb{I}(X)) = X$ .

SOUTON. Assume  $X = \mathbb{V}(J)$  for some homogeneous ideal J. Easily we get  $X \subset \mathbb{V}(\mathbb{I}(X))$  and  $J \subset \mathbb{I}(\mathbb{V}(J))$ . So we get  $\mathbb{V}(J) \supset \mathbb{V}(\mathbb{I}(\mathbb{V}(J))) = \mathbb{V}(\mathbb{I}(X))$ . So  $X = \mathbb{V}(\mathbb{I}(X))$ .

ROBEM VI Assume J is a homogeneous ideal, then  $\sqrt{J}$  is homogeneous ideal, too.

SOUTON. Consider  $g \in \sqrt{J}$  and  $g = \sum_{t=1}^n g_t$  and  $g_t$  are homogeneous poly with different degree. Without loss of generality assume  $d_1 < d_2 < \cdots < d_n$ , where  $d_t$  is the degree of  $g_t$ . Now we need to prove  $g_t \in \sqrt{J}$ . If not, assume j is the least such that  $g_j \notin \sqrt{J}$ . Let  $g' = g - \sum_{t=1}^{j-1} g_t$ , then  $g' \in \sqrt{J}$  because  $g_j \in \sqrt{J}$  for t < j. Assume  $g'^m \in J$ , then  $(\sum_{t=j}^n g_t)^m \in J$ . We consider the homogeneous deconposition of  $g'^m$  with degree  $md_j$ . Since  $d_j < d_{j+1} < \cdots < d_n$ , we get the part is  $g_j^m$ . Since J is homogeneous, we get  $g_j^m \in J$ , i.e.,  $g_j \in \sqrt{J}$ , contradiction! So finally we get  $\forall t, g_t \in \sqrt{J}$ 

ROBEM VII Assume J is a homogeneous ideal, then  $\sqrt{J} \subset \mathbb{I}(\mathbb{V}(J))$ .

SOLION. Assume  $f \in \sqrt{J}$ ,  $f^n \in J$ . From ?? we know  $\sqrt{J}$  is homogeneous, so we only need to prove  $\forall p \in \mathbb{V}(J)$ , f(p) = 0. Since  $f^n \in J$  we get  $f^n(p) = 0$ . So f(p) = 0. So we obtain  $\sqrt{J} \subset \mathbb{I}(\mathbb{V}(J))$ .