numpy.random

```
import numpy as np
In [1]:
        import matplotlib.pyplot as plt
In [2]: x = np.array(range(10))
        array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In [3]:
        np.random.permutation(x)
        array([6, 5, 7, 8, 0, 4, 2, 3, 9, 1])
Out[3]:
In [4]:
        plt.hist(np.random.rand(1000000))
        (array([ 99698., 99393., 99986., 100149., 100856., 100199., 100273.,
Out[4]:
                 99541., 100017.,
                                   99888.]),
         array([6.48776624e-08, 1.00000006e-01, 1.99999948e-01, 2.99999890e-01,
                3.99999831e-01, 4.99999773e-01, 5.99999714e-01, 6.99999656e-01,
                7.99999597e-01, 8.99999539e-01, 9.99999480e-01]),
         <BarContainer object of 10 artists>)
         100000
          80000
          60000 -
          40000
          20000
               0
                   0.0
                              0.2
                                          0.4
                                                      0.6
                                                                  0.8
                                                                             1.0
In [5]: plt.hist(np.random.randn(1000000))
```

```
Out[5]: (array([3.00000e+00, 1.25000e+02, 5.89200e+03, 7.73620e+04, 3.17250e+05, 4.10833e+05, 1.66770e+05, 2.09390e+04, 8.17000e+02, 9.00000e+00]), array([-5.91762037, -4.78393005, -3.65023973, -2.51654941, -1.38285909, -0.24916877, 0.88452155, 2.01821187, 3.15190219, 4.28559252, 5.41928284]), <BarContainer object of 10 artists>)
```



```
In [6]: # random seed
In [7]: np.random.rand(3,4)
         array([[0.21632343, 0.40975505, 0.44695627, 0.3678118],
                [0.6106304 , 0.67284978, 0.54694143, 0.20358173],
                [0.75214624, 0.616271 , 0.10784476, 0.82761636]])
         np.random.rand(3,4)
In [8]:
         array([[0.23074304, 0.67697356, 0.82113735, 0.48783848],
Out[8]:
                [0.58908519, 0.07553509, 0.18206368, 0.25898421],
                [0.22003754, 0.98557442, 0.05747807, 0.96157108]])
 In [9]:
         np.random.seed(44)
         np.random.rand(3,4)
         array([[0.83484215, 0.1047961 , 0.74464048, 0.36050084],
Out[9]:
                [0.35931084, 0.60923838, 0.39377955, 0.40907261],
                [0.50990241, 0.71014799, 0.96052623, 0.45662111]])
In [10]: np.random.seed(44)
         np.random.rand(3,4)
         array([[0.83484215, 0.1047961 , 0.74464048, 0.36050084],
Out[10]:
                [0.35931084, 0.60923838, 0.39377955, 0.40907261],
                [0.50990241, 0.71014799, 0.96052623, 0.45662111]])
```

Lecture 6 Quiz 5

Lecture 7

```
In [16]: import pandas as pd
```

1. From Lists, Dicts, ... to DataFrame

From a list

0 a 1 1 b 2

From a dictionary

```
In [18]: data = {'model': ['a', 'b'], 'price' : [1,2]}
pd.DataFrame(data)
```

```
Out[18]: model price

0 a 1

1 b 2

In [1:
```

2. From Excel to DataFrame

```
In [19]: df = pd.read_csv('store1features.zip')
In [20]: df.head()
                  Date Store Temperature Fuel_Price MarkDown1 MarkDown2 MarkDown3 Mark
Out[20]:
          0 2010-02-05
                                    42.31
                                              2.572
                                                          NaN
                                                                      NaN
                                                                                 NaN
             2010-02-12
                                    38.51
                                              2.548
                                                          NaN
                                                                      NaN
                                                                                 NaN
            2010-02-19
                                    39.93
                                              2.514
                                                          NaN
                                                                      NaN
                                                                                 NaN
            2010-02-26
                                    46.63
                                              2.561
                                                                                 NaN
                                                          NaN
                                                                      NaN
          4 2010-03-05
                                    46.50
                                              2.625
                           1
                                                          NaN
                                                                      NaN
                                                                                 NaN
          type(df)
In [21]:
         pandas.core.frame.DataFrame
Out[21]:
         df.info()
In [22]:
          <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 182 entries, 0 to 181
          Data columns (total 12 columns):
               Column
                              Non-Null Count
                                               Dtype
           0
               Date
                              182 non-null
                                               object
           1
               Store
                              182 non-null
                                               int64
           2
               Temperature
                              182 non-null
                                               float64
           3
                              182 non-null
                                               float64
               Fuel_Price
           4
               MarkDown1
                              90 non-null
                                               float64
           5
               MarkDown2
                                               float64
                              73 non-null
                                               float64
           6
               MarkDown3
                              89 non-null
           7
              MarkDown4
                              90 non-null
                                               float64
           8
               MarkDown5
                              90 non-null
                                               float64
           9
               CPI
                              169 non-null
                                               float64
           10
              Unemployment 169 non-null
                                               float64
               IsHoliday
                              182 non-null
                                               bool
          dtypes: bool(1), float64(9), int64(1), object(1)
          memory usage: 15.9+ KB
```

```
In [23]: print(type(df))
    print(type(df.iloc[:,0]))
    print(type(df.iloc[0,:]))
    print(df.shape)
    print(df.iloc[:,0].shape)

<class 'pandas.core.frame.DataFrame'>
    <class 'pandas.core.series.Series'>
    <class 'pandas.core.series.Series'>
    (182, 12)
    (182,)
```

3. The index

```
In [24]: df = pd.read_csv('store1features.zip')
df
```

Out[24]:		Date	Store	Temperature	Fuel_Price	MarkDown1	MarkDown2	MarkDown3	Ма
	0	2010-02-05	1	42.31	2.572	NaN	NaN	NaN	
	1	2010-02-12	1	38.51	2.548	NaN	NaN	NaN	
	2	2010-02-19	1	39.93	2.514	NaN	NaN	NaN	
	3	2010-02-26	1	46.63	2.561	NaN	NaN	NaN	
	4	2010-03-05	1	46.50	2.625	NaN	NaN	NaN	
	•••								
	177	2013-06-28	1	83.94	3.495	4205.98	796.70	6.84	
	178	2013-07-05	1	79.85	3.422	7649.99	3503.29	1766.77	
	179	2013-07-12	1	83.12	3.400	6089.94	1362.42	209.62	
	180	2013-07-19	1	79.26	3.556	3117.04	1060.39	199.05	
	181	2013-07-26	1	81.54	3.620	332.17	673.19	1.00	

182 rows × 12 columns

```
In [25]: df['Date'] = pd.to_datetime(df['Date'])
```

```
df.index = df['Date']
In [26]:
         df.head()
```

Out[26]: Date Store Temperature Fuel_Price MarkDown1 MarkDown2 MarkDov Date 2010-02-05 2010-02-05 1 42.31 2.572 NaN NaN **2010-02-12** 2010-02-12 38.51 2.548 NaN NaN **2010-02-19** 2010-02-19 39.93 2.514 NaN NaN **2010-02-26** 2010-02-26 46.63 2.561 NaN NaN **2010-03-05** 2010-03-05 46.50 2.625 NaN NaN

In [27]: df.info()

<class 'pandas.core.frame.DataFrame'> DatetimeIndex: 182 entries, 2010-02-05 to 2013-07-26 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
		102 non null	
0	Date	182 non-null	datetime64[ns]
1	Store	182 non-null	int64
2	Temperature	182 non-null	float64
3	Fuel_Price	182 non-null	float64
4	MarkDown1	90 non-null	float64
5	MarkDown2	73 non-null	float64
6	MarkDown3	89 non-null	float64
7	MarkDown4	90 non-null	float64
8	MarkDown5	90 non-null	float64
9	CPI	169 non-null	float64
10	Unemployment	169 non-null	float64
11	IsHoliday	182 non-null	bool
dty	pes: bool(1), d	latetime64[ns](1)	, float64(9), int64(1)
	47.0	LCD	

memory usage: 17.2 KB

4. Indexing & Slicing DataFrames

```
In [28]: df[2:3] # Access rows
Out[28]:
                           Date Store Temperature Fuel_Price MarkDown1 MarkDown2 MarkDow
                Date
          2010-02-19 2010-02-19
                                            39.93
                                                       2.514
                                                                   NaN
                                                                              NaN
                                                                                          ١
         df[-5:]
In [29]:
          # df.tail(5)
```

Out[29]:		Date	Store	Temperature	Fuel_Price	MarkDown1	MarkDown2	MarkDo
	Date							
	2013-06-28	2013-06-28	1	83.94	3.495	4205.98	796.70	•
	2013-07-05	2013-07-05	1	79.85	3.422	7649.99	3503.29	176
	2013-07-12	2013-07-12	1	83.12	3.400	6089.94	1362.42	20!
	2013-07-19	2013-07-19	1	79.26	3.556	3117.04	1060.39	199
	2013-07-26	2013-07-26	1	81.54	3.620	332.17	673.19	
In [30]:	df['CPI']	# Access co	olumns					
Out[30]:	Date 2010-02-05 2010-02-12 2010-02-19 2010-03-05 2013-06-28 2013-07-05 2013-07-12 2013-07-19 2013-07-26 Name: CPI,	211.242 211.289 211.319 211.356	2170 2143 2643 2143 NaN NaN NaN NaN	ype: float64				
In [31]:	df['CPI']['2010-02-05	5']					
	211.096358							

Out[31]: 211.0963582

7 of 38

```
In [32]: df[['CPI', 'Unemployment']] # Multiple columns
Out[32]:
                            CPI Unemployment
                Date
          2010-02-05 211.096358
                                         8.106
          2010-02-12 211.242170
                                         8.106
          2010-02-19 211.289143
                                         8.106
          2010-02-26 211.319643
                                         8.106
          2010-03-05 211.350143
                                         8.106
          2013-06-28
                           NaN
                                          NaN
          2013-07-05
                           NaN
                                          NaN
          2013-07-12
                           NaN
                                          NaN
          2013-07-19
                           NaN
                                          NaN
          2013-07-26
                           NaN
                                          NaN
         182 rows × 2 columns
In [33]: df.iloc[0:2,[1,2]]
Out[331:
                     Store Temperature
                Date
          2010-02-05
                                  42.31
                         1
          2010-02-12
                         1
                                  38.51
          df.iloc[0,0]
In [34]:
          Timestamp('2010-02-05 00:00:00')
Out[34]:
In [35]: df.iloc[0, :]
          Date
                           2010-02-05 00:00:00
Out[35]:
          Store
                                              1
          Temperature
                                          42.31
          Fuel_Price
                                          2.572
          MarkDown1
                                            NaN
          MarkDown2
                                            NaN
          MarkDown3
                                            NaN
          MarkDown4
                                            NaN
          MarkDown5
                                            NaN
          CPI
                                    211.096358
          Unemployment
                                          8.106
          IsHoliday
                                          False
          Name: 2010-02-05 00:00:00, dtype: object
```

8 of 38

```
In [36]: df.iloc[:, 0]
         Date
Out[36]:
         2010-02-05
                       2010-02-05
         2010-02-12
                       2010-02-12
         2010-02-19
                      2010-02-19
         2010-02-26
                       2010-02-26
         2010-03-05
                       2010-03-05
         2013-06-28
                       2013-06-28
         2013-07-05
                       2013-07-05
         2013-07-12
                       2013-07-12
         2013-07-19
                       2013-07-19
                       2013-07-26
         2013-07-26
         Name: Date, Length: 182, dtype: datetime64[ns]
In [37]: df.loc['2010-02-05', ['Temperature', 'Fuel_Price']]
         Temperature
                         42.31
Out[37]:
                         2.572
         Fuel_Price
         Name: 2010-02-05 00:00:00, dtype: object
In [38]:
         df.loc['2010-02-05']
                          2010-02-05 00:00:00
         Date
Out[38]:
         Store
                                            1
         Temperature
                                        42.31
         Fuel_Price
                                        2.572
         MarkDown1
                                          NaN
         MarkDown2
                                          NaN
         MarkDown3
                                          NaN
         MarkDown4
                                          NaN
         MarkDown5
                                          NaN
         CPI
                                   211.096358
                                        8.106
         Unemployment
                                        False
         IsHoliday
         Name: 2010-02-05 00:00:00, dtype: object
```

Quiz 1

1. How to get the first row without using labels

```
In [42]: cars[:1]
Out[42]: model price HP
        model
                  P 1.5 110
In [43]: cars.iloc[0,:]
Out[43]: model P price 1.5 HP 110
        Name: P, dtype: object
In [44]: cars.iloc[:1,:]
Out[44]: model price HP
        model
            P P 1.5 110
        2. How to get the last row?
In [45]: cars
Out[45]: model price HP
        model
            P P 1.5 110
            F
                F 2.5 245
In [46]: cars[-1:]
Out[46]: model price HP
        model
            F F 2.5 245
In [47]: cars.iloc[-1,:]
        model
                F
Out[47]:
        price 2.5
HP 245
                 245
        Name: F, dtype: object
In [48]: cars.loc['F']
        model
Out[48]:
        price
HP
                 2.5
                 245
        Name: F, dtype: object
```

3. How to get the second element of column "HP"

```
In [49]: cars[1:2]['HP']
         model
Out[49]:
         Name: HP, dtype: int64
In [50]: cars['HP'][1:2]
         model
Out[50]:
              245
         Name: HP, dtype: int64
In [51]: cars.iloc[1]['HP']
         245
Out[51]:
In [52]: # cars.loc[1,'HP']
         4. How to get the value of "HP" for model "F"
In [53]: cars['HP']['F']
Out[53]: 245
In [54]: cars.loc['F','HP']
         245
Out[54]:
         5. Boolean Indexing
In [55]: | cars = pd.DataFrame([['P',1.5,110],['F',2.5,245]],columns = ['model','price']
         cars
            model price HP
Out[55]:
         0
                    1.5 110
                F
                    2.5 245
In [56]: cars[ (cars['HP'] > 200) ]
Out[56]:
            model price HP
                    2.5 245
In [57]: cars[ (cars['HP'] > 100) & (cars['price'] < 2) ]</pre>
Out[57]:
            model price HP
                    1.5 110
```

```
In [58]: cars[ (cars['model'] == 'P') | (cars['HP']> 200) ]
Out[58]:
            model price
                       HP
                    1.5 110
                    2.5 245
In [ ]:
In [59]: cars.loc[ (cars['HP'] > 200)]
Out[59]:
            model price HP
         1
               F
                    2.5 245
In [60]: cars.loc[ (cars['HP'] > 100) & (cars['price'] < 2) , 'HP']</pre>
              110
Out[60]:
         Name: HP, dtype: int64
In [61]: cars.loc[ (cars['model'] == 'P') | (cars['HP']> 200) ]
Out[61]:
            model price HP
         0
                    1.5 110
                F
                    2.5 245
         6. .isin() Example
In [62]: data = pd.DataFrame({'model': ['a', 'b', 'c'],
                               'price' : [1,2,3]})
         data
            model price
Out[62]:
         0
                      1
          1
                b
                     2
         2
                С
                      3
In [63]: | # data[ (data['model'] == 'a') | (data['model'] == 'c')]
In [64]: data['model'].isin(['a','c'])
               True
Out[64]:
         1
              False
               True
         Name: model, dtype: bool
In [65]: data[data['model'].isin(['a','c'])]['price']
```

```
Out[65]: 0 1
2 3
```

Name: price, dtype: int64

7. Modifying DataFrames

Out[66]:		Date	Store	Fuel_Price	MarkDown1	MarkDown2	MarkDown3	MarkDow
	Date							
	2010-02-05	2010-02-05	1	2.572	NaN	NaN	NaN	N
	2010-02-12	2010-02-12	1	2.548	NaN	NaN	NaN	٨
	2010-02-19	2010-02-19	1	2.514	NaN	NaN	NaN	Ν
	2010-02-26	2010-02-26	1	2.561	NaN	NaN	NaN	Ν
	2010-03-05	2010-03-05	1	2.625	NaN	NaN	NaN	Ν
	2013-06-28	2013-06-28	1	3.495	4205.98	796.70	6.84	3816
	2013-07-05	2013-07-05	1	3.422	7649.99	3503.29	1766.77	9454
	2013-07-12	2013-07-12	1	3.400	6089.94	1362.42	209.62	2367
	2013-07-19	2013-07-19	1	3.556	3117.04	1060.39	199.05	1012
	2013-07-26	2013-07-26	1	3.620	332.17	673.19	1.00	38

182 rows × 11 columns

```
In [67]: df.insert(0,'Temperature',temperature)
    df
```

Out[67]:	Temperature		Date	Store	Fuel_Price	MarkDown1	MarkDown2	MarkDoı	
	Date								
	2010-02-05	42.31	2010-02-05	1	2.572	NaN	NaN		
	2010-02-12	38.51	2010-02-12	1	2.548	NaN	NaN		
	2010-02-19	39.93	2010-02-19	1	2.514	NaN	NaN	1	
	2010-02-26	46.63	2010-02-26	1	2.561	NaN	NaN		
	2010-03-05	46.50	2010-03-05	1	2.625	NaN	NaN		
		•••				•••			
	2013-06-28	83.94	2013-06-28	1	3.495	4205.98	796.70	(
	2013-07-05	79.85	2013-07-05	1	3.422	7649.99	3503.29	176	
	2013-07-12	83.12	2013-07-12	1	3.400	6089.94	1362.42	20!	
	2013-07-19	79.26	2013-07-19	1	3.556	3117.04	1060.39	199	
	2013-07-26	81.54	2013-07-26	1	3.620	332.17	673.19		
	182 rows × 12	2 columns							

```
In [68]: df1 = pd.DataFrame([['a', 1], ['b', 2]], columns = ['model', 'price'])
df1
```

```
In [69]: df2 = pd.DataFrame([[4, 'd'], [3, 'c']], columns = ['price', 'model'])
df2
```

```
0 4 d
1 3 c
```

```
In [70]: # When ignore_index is set to True,
# it resets the index of the resulting DataFrame
# to have a continuous range of row labels starting from 0.
# dfl.append(df2, ignore_index=True)
```

```
In [71]: concatenated_df = pd.concat([df1,df2])
    concatenated_df
```

```
0 a 1
1 b 2
0 d 4
1 c 3
```

```
In [72]: # Reset the index
    concatenated_df.reset_index(drop=True, inplace=True)
    concatenated_df
```

8. Converting Data to the Right Type

```
In [73]: df = pd.read_csv('store1features.csv')
df
```

Out[73]:		Date	Store	Temperature	Fuel_Price	MarkDown1	MarkDown2	MarkDown3	Ма
	0	2010-02-05	1	42.31	2.572	NaN	NaN	NaN	
	1	2010-02-12	1	38.51	2.548	NaN	NaN	NaN	
	2	2010-02-19	1	39.93	2.514	NaN	NaN	NaN	
	3	2010-02-26	1	46.63	2.561	NaN	NaN	NaN	
	4	2010-03-05	1	46.50	2.625	NaN	NaN	NaN	
	177	2013-06-28	1	83.94	3.495	4205.98	796.70	6.84	
	178	2013-07-05	1	79.85	3.422	7649.99	3503.29	1766.77	
	179	2013-07-12	1	83.12	3.400	6089.94	1362.42	209.62	
	180	2013-07-19	1	79.26	3.556	3117.04	1060.39	199.05	
	181	2013-07-26	1	81.54	3.620	332.17	673.19	1.00	

182 rows × 12 columns

```
In [74]: # df.loc['2010-02', ['Temperature', 'Fuel_Price']]
In [75]: # df.index = df['Date']
# df.loc['2010-02', ['Temperature', 'Fuel_Price']]
```

```
In [76]: | df.index = pd.to_datetime(df['Date'])
          df.loc['2010-02', ['Temperature', 'Fuel_Price']]
Out[76]:
                      Temperature Fuel_Price
                Date
          2010-02-05
                            42.31
                                       2.572
          2010-02-12
                             38.51
                                       2.548
          2010-02-19
                            39.93
                                       2.514
          2010-02-26
                            46.63
                                       2.561
```

In [77]:	# only select February data	
	<pre>df.loc[df.index.month == 2]</pre>	

Out[77]:		Date	Store	Temperature	Fuel_Price	MarkDown1	MarkDown2	MarkDo
	Date							
	2010-02-05	2010-02-05	1	42.31	2.572	NaN	NaN	
	2010-02-12	2010-02-12	1	38.51	2.548	NaN	NaN	1
	2010-02-19	2010-02-19	1	39.93	2.514	NaN	NaN	I
	2010-02-26	2010-02-26	1	46.63	2.561	NaN	NaN	
	2011-02-04	2011-02-04	1	42.27	2.989	NaN	NaN	
	2011-02-11	2011-02-11	1	36.39	3.022	NaN	NaN	I
	2011-02-18	2011-02-18	1	57.36	3.045	NaN	NaN	I
	2011-02-25	2011-02-25	1	62.90	3.065	NaN	NaN	
	2012-02-03	2012-02-03	1	56.55	3.360	34577.06	3579.21	160
	2012-02-10	2012-02-10	1	48.02	3.409	13925.06	6927.23	10
	2012-02-17	2012-02-17	1	45.32	3.510	9873.33	11062.27	•
	2012-02-24	2012-02-24	1	57.25	3.555	9349.61	7556.01	;
	2013-02-01	2013-02-01	1	56.46	3.244	9290.91	1359.90	26!
	2013-02-08	2013-02-08	1	56.67	3.417	32355.16	729.80	280
	2013-02-15	2013-02-15	1	49.66	3.475	72937.29	6665.52	4
	2013-02-22	2013-02-22	1	50.25	3.597	20107.75	3163.89	4:

9. Sorting

```
In [78]: df = pd.read_csv('store1features.csv')
    df.index = pd.to_datetime(df['Date'])
    df = df[['Temperature', 'Fuel_Price', 'IsHoliday']]
    df.head()
```

```
Temperature Fuel_Price IsHoliday
Out[78]:
                 Date
          2010-02-05
                             42.31
                                        2.572
                                                   False
                                                   True
           2010-02-12
                             38.51
                                        2.548
           2010-02-19
                             39.93
                                        2.514
                                                   False
          2010-02-26
                             46.63
                                         2.561
                                                   False
          2010-03-05
                             46.50
                                        2.625
                                                   False
In [79]: df_h = df.head()
          df_h
Out[791:
                       Temperature Fuel_Price IsHoliday
                 Date
          2010-02-05
                             42.31
                                        2.572
                                                   False
           2010-02-12
                             38.51
                                        2.548
                                                   True
           2010-02-19
                             39.93
                                        2.514
                                                   False
          2010-02-26
                             46.63
                                         2.561
                                                   False
          2010-03-05
                             46.50
                                        2.625
                                                   False
          compare sort_values() vs sort()
         df_h.sort_values(by='Temperature')
In [80]:
                       Temperature Fuel_Price IsHoliday
Out[80]:
                 Date
           2010-02-12
                              38.51
                                        2.548
                                                   True
           2010-02-19
                             39.93
                                         2.514
                                                   False
          2010-02-05
                             42.31
                                        2.572
                                                   False
          2010-03-05
                             46.50
                                        2.625
                                                   False
          2010-02-26
                             46.63
                                                   False
                                         2.561
          df_h_n = np.array(df_h.iloc[:,:2])
In [81]:
          df_n.sort(axis = 0)
          df_h_n
          array([[38.51 , 2.514],
                  [39.93, 2.548],
                  [42.31 , 2.561],
                  [46.5, 2.572],
                  [46.63 , 2.625]])
         df.sort_values(by='Temperature', ascending=[False]).head()
In [82]:
```

Out[82]:		Temperature	Fuel_Price	IsHoliday
	Date			
	2011-08-05	91.65	3.684	False
	2011-08-12	90.76	3.638	False
	2011-08-19	89.94	3.554	False
	2011-07-15	88.54	3.575	False
	2011-08-26	87.96	3.523	False
In [83]:	df.sort_va	lues(by=['Is	sHoliday',	'Tempera
Out[83]:		Temperature	Fuel_Price	IsHoliday
	Date			
	2012-09-07	83.96	3.730	True
	2010-09-10	78.69	2.565	True
	2011-09-09	76.00	3.546	True
	2010-11-26	64.52	2.735	True
	2011-11-25	60.14	3.236	True
	2010-02-05	42.31	2.572	False
	2011-02-04	42.27	2.989	False
	2013-01-04	41.73	3.161	False
	2010-02-19	39.93	2.514	False
	2011-01-14	35.40	2.983	False

182 rows × 3 columns

10. Sorting the index

```
subdf = df.sample(n=5)
           # This is random, so the result will change every time you run it
Out[84]:
                       Temperature Fuel_Price IsHoliday
                 Date
           2011-01-07
                              48.27
                                         2.976
                                                    False
           2010-07-16
                              83.15
                                         2.623
                                                    False
           2011-03-18
                              62.76
                                         3.488
                                                    False
           2012-08-31
                              80.49
                                         3.638
                                                    False
           2011-10-14
                              71.74
                                         3.274
                                                    False
In [85]:
          subdf.sort_index()
Out[85]:
                       Temperature Fuel_Price IsHoliday
                 Date
           2010-07-16
                              83.15
                                         2.623
                                                    False
           2011-01-07
                              48.27
                                         2.976
                                                    False
           2011-03-18
                              62.76
                                                    False
                                         3.488
           2011-10-14
                              71.74
                                         3.274
                                                    False
           2012-08-31
                                                    False
                              80.49
                                         3.638
```

11. Numerical operations

```
In [86]: df = pd.read_csv('store1features.zip')
In [87]: (df['Temperature'] - 32)*5/9 # Farenheit to Celsius # panda series
                  5.727778
Out[87]:
                  3.616667
         2
                  4.405556
         3
                  8.127778
         4
                  8.055556
         177
                 28.855556
         178
                 26.583333
         179
                 28.400000
         180
                 26.255556
         181
                 27.522222
         Name: Temperature, Length: 182, dtype: float64
In [88]: ~df['IsHoliday']
```

```
True
Out[88]:
          1
                 False
          2
                  True
          3
                  True
          4
                  True
          177
                  True
          178
                  True
          179
                  True
          180
                  True
          181
                  True
         Name: IsHoliday, Length: 182, dtype: bool
         df['Temperature'] > 90
                 False
Out[89]:
          1
                 False
          2
                 False
          3
                 False
          4
                 False
          177
                 False
          178
                 False
          179
                 False
                 False
          180
                 False
          181
         Name: Temperature, Length: 182, dtype: bool
In [90]:
         df['Temperature'] * df['CPI']
                 8931.486915
Out[90]:
          1
                 8134.935959
          2
                 8436.775476
          3
                 9853.834948
          4
                 9827.781645
          177
                         NaN
          178
                         NaN
          179
                         NaN
          180
                         NaN
                         NaN
          181
         Length: 182, dtype: float64
```

12. Automatic index alignment

```
model shop sales price
Out[91]:
          0
                      1
                            1
                                 -1
                а
          1
                b
                      1
                            2
                                  2
                            3
          2
                      2
                                 -1
                а
                b
                      2
                            4
                                  2
In [92]: print(sales['sales'] * sales['price'])
              -1
          1
               4
          2
              -3
          3
               8
         dtype: int64
In [93]: prices = pd.DataFrame([[-1],[2]], columns = ['price'], index = ['a','b'])
          prices
Out[93]:
            price
               -1
               2
          b
In [94]: sales['sales'] * prices['price']
             NaN
Out[94]:
          1
             NaN
          2
             NaN
          3
             NaN
             NaN
             NaN
         dtype: float64
In [95]: sales.index = sales['model'] # We index by model.
          sales
Out[95]:
                model shop sales price
          model
                          1
                                1
                                     -1
                    а
                                2
                          2
                                3
                                     -1
                    а
              b
                    b
                          2
                                      2
In [96]: sales['sales'] * prices['price'] # Now it works!
              -1
Out[96]:
              -3
          а
               4
          b
          b
               8
          dtype: int64
```

```
In [ ]:
In [97]: prices = pd.DataFrame([[-1],[2],[3]], columns = ['price'], index = ['a','b',
         prices
Out[97]:
            price
              -1
         b
               2
               3
In [98]: sales['sales'] * prices['price']
             -1.0
Out[98]:
             -3.0
         b
              4.0
         b
              8.0
              NaN
         dtype: float64
         13. Applying methods to DataFrame
In [99]: import numpy as np
In [100... df3 = pd.DataFrame(dict(a=np.arange(1,5),
                                 b=np.arange(-1,-5, -1),
                                 c=np.arange(6, 2, -1))
         df3
             a b c
Out[100]:
          0 1 -1 6
          1 2 -2 5
          2 3 -3 4
          3 4 -4 3
In [101...
         df3.mean()
               2.5
Out[101]:
              -2.5
               4.5
          dtype: float64
In [102... df3.abs()
```

```
0 1 1 6
1 2 2 5
2 3 3 4
3 4 4 3
```

14 Aggregations: DataFrames Axis

In [107... df.apply(np.mean, axis='columns')
df.apply(np.mean, axis=1)

```
df = pd.DataFrame(dict(a=np.arange(1,5),
In [105...
                                 b=np.arange(-1,-5, -1),
                                 c=np.arange(6, 2, -1)))
         df
Out[105]: a b c
          0 1 -1 6
          1 2 -2 5
          2 3 -3 4
          3 4 -4 3
In [106... df.apply(np.mean)
               2.5
Out[106]:
              -2.5
              4.5
          dtype: float64
```

```
Out[1071: 0 2.000000

1 1.666667

2 1.333333

3 1.000000

dtype: float64

In [108... df.apply(np.mean, axis='index')

# df.apply(np.mean, axis=0)

Out[108]: a 2.5

b -2.5

c 4.5

dtype: float64
```

15. Pandas uses NumPy internally

Data Visualization

```
In [111... import matplotlib
import matplotlib.pyplot as plt
plt.style.use('ggplot')
```

16. Visualisation

```
import pandas as pd
df = pd.read_csv('store1features.csv')
df.index = pd.to_datetime(df.pop('Date'))
df.head(100)
```

Out[112]:

:		Store	Temperature	Fuel_Price	MarkDown1	MarkDown2	MarkDown3	MarkD
	Date							
	2010-02-05	1	42.31	2.572	NaN	NaN	NaN	
	2010-02-12	1	38.51	2.548	NaN	NaN	NaN	
	2010-02-19	1	39.93	2.514	NaN	NaN	NaN	
	2010-02-26	1	46.63	2.561	NaN	NaN	NaN	
	2010-03-05	1	46.50	2.625	NaN	NaN	NaN	
	•••							
	2011-12-02	1	48.91	3.172	5629.51	68.00	1398.11	20
	2011-12-09	1	43.93	3.158	4640.65	19.00	105.02	36
	2011-12-16	1	51.63	3.159	5011.32	67.00	347.37	2
	2011-12-23	1	47.96	3.112	2725.36	40.48	634.70	
	2011-12-30	1	44.55	3.129	5762.10	46011.38	260.36	9

100 rows × 11 columns

In [113... df['Temperature'].plot()

Out[113]: <Axes: xlabel='Date'>


```
In [114... df[ ['Temperature', 'CPI', 'Unemployment'] ].plot()
```

Out[114]: <Axes: xlabel='Date'>


```
In [115... df.plot.scatter(x = 'Temperature', y = 'CPI')
Out[115]: <Axes: xlabel='Temperature', ylabel='CPI'>
```


In [116... df.iloc[1][['Temperature', 'Fuel_Price', 'Unemployment']].plot.bar()
Out[116]: <Axes: >

In [117... df.loc[:,['MarkDown1','MarkDown2','MarkDown3','MarkDown4']].plot.box() # Son
Out[117]: <Axes: >

In [118... df.boxplot(column = ['Temperature'], by = 'IsHoliday') # Some versions of Pa
df.plot.box(column = ['Temperature'], by = 'IsHoliday') # Some versions of

<Axes: title={'center': 'Temperature'}, xlabel='IsHoliday'>

17. Matplotlib step-by-step

```
import numpy as np
    df = pd.read_csv('store1features.csv')
    df.index = pd.to_datetime(df.pop('Date'))
    df
```

Out[119]:		Store	Temperature	Fuel_Price	MarkDown1	MarkDown2	MarkDown3	MarkD
	Date							
	2010-02-05	1	42.31	2.572	NaN	NaN	NaN	
	2010-02-12	1	38.51	2.548	NaN	NaN	NaN	
	2010-02-19	1	39.93	2.514	NaN	NaN	NaN	
	2010-02-26	1	46.63	2.561	NaN	NaN	NaN	
	2010-03-05	1	46.50	2.625	NaN	NaN	NaN	
	2013-06-28	1	83.94	3.495	4205.98	796.70	6.84	38
	2013-07-05	1	79.85	3.422	7649.99	3503.29	1766.77	94
	2013-07-12	1	83.12	3.400	6089.94	1362.42	209.62	23
	2013-07-19	1	79.26	3.556	3117.04	1060.39	199.05	10
	2013-07-26	1	81.54	3.620	332.17	673.19	1.00	

182 rows × 11 columns

```
In [120... plt.figure(figsize=(10,4), facecolor = 'lightgray')
         plt.subplot(2, 1, 1)
         plt.plot_date(df.index, df['CPI'], 'b')
         plt.subplot(2, 1, 2)
         plt.plot_date(df.index,df['Temperature'],'r--')
         # You're adding an axis that starts 20% from the left of the figure and 68%
         # with a width and height both equal to 20% of the figure's dimensions.
         plt.axes([.2, .68, .2, .2])
         plt.boxplot(df["Temperature"], labels=["Temperature"])
          {'whiskers': [<matplotlib.lines.Line2D at 0x13246bdd0>,
Out[120]:
            <matplotlib.lines.Line2D at 0x132474a90>],
           'caps': [<matplotlib.lines.Line2D at 0x132475710>,
            <matplotlib.lines.Line2D at 0x132476190>],
           'boxes': [<matplotlib.lines.Line2D at 0x1321a7490>],
           'medians': [<matplotlib.lines.Line2D at 0x132476c50>],
           'fliers': [<matplotlib.lines.Line2D at 0x132474810>],
           'means': []}
```


In []:

18. One-shot vs. Re-usability

Re-usability


```
import matplotlib.pyplot as plt

class CustomPlotter:
    def __init__(self, data):
        self.data = data

def plot_date_boxplot(self, column, figsize=(6, 4), style='b', bxp_loc=|
        plt.style.use('ggplot')
        plt.figure(figsize=figsize)
        plt.plot_date(self.data.index, self.data[column], style)
        plt.axes(bxp_loc + [0.2, 0.2])
        plt.boxplot(self.data[column].dropna(), labels=[column])

custom_plotter = CustomPlotter(df)

custom_plotter.plot_date_boxplot('CPI', figsize = (8,5))
    custom_plotter.plot_date_boxplot('Temperature', style = 'r', bxp_loc = [.2, custom_plotter.plot_date_boxplot('CPI', style = 'g+', bxp_loc = [.6, .2])
```


In []:

38 of 38