

Memory Footprint Reduction Techniques for DNN Training: An Overview

Gennady Pekhimenko, Assistant Professor

EcoSystem Group

Outline

- Background on DNNs and Their Memory Allocations
- Why larger GPU memory?
- A History of Prior Works
- Prior Works on Feature Maps Reduction

1 Forward Pass

E Training Loss

Deep Neural Network

i.e., Graph of Operators

W Model Weights

P[Cool Dog] = 100%

1 Forward Pass

2 Backward Pass

3 Weight Update

$$W = W - \eta \frac{dE}{dW}$$

$$\left[\eta \text{ Learning Rate} \right]$$

• Major GPU memory consumers: Weights & Feature Maps

- Major GPU memory consumers: Weights & Feature Maps
 - Weights (General): weights (1), gradients (2), optimizer states (3)

- Major GPU memory consumers: Weights & Feature Maps
 - Weights (General): weights (1), gradients (2), optimizer states (3)
 - Feature Maps: Data entries stashed by the forward pass to compute the gradients in the backward pass.

Operator y = x + 1, y could **reuse** the storage of x (i.e., in-place).

- 1 Forward Pass
- 2 Backward Pass
- 3 Weight Update

Deep Neural Network
$$Y$$
 $\frac{dE}{dX}$ \longleftarrow Deep Neural Network $\frac{dE}{dY}$

$$W = W - \eta \, \frac{dE}{dW}$$

- Major GPU memory consumers: Weights & Feature Maps
 - Weights (General): weights (1), gradients (2), optimizer states (3)
 - Feature Maps: Data entries stashed by the forward pass to compute the gradients in the backward pass.

- Major GPU memory consumers: Weights & Feature Maps
 - Weights (General): weights (1), gradients (2), optimizer states (3)
 - Feature Maps: Data entries stashed by the forward pass to compute the gradients in the backward pass.

- Major GPU memory consumers: Weights & Feature Maps
 - Weights (General): weights (1), gradients (2), optimizer states (3)
 - Feature Maps: Data entries stashed by the forward pass to compute the gradients in the backward pass.

gradients in the backward pass.

• **Feature Maps**: Data entries stashed by the forward pass to compute the gradients in the backward pass.

GPU Memory Profiler[1] (BERT)

GPU Memory Profiler[1] (BERT)

Feature maps are more important than weights in BERT[2] training

GPU Memory Profiler[1] (BERT)

Feature maps are more important than weights in BERT[2] training

Natural Language Processing[1]

Recommendation^[2]

Natural Language Processing[1]

Recommendation^[2]

Natural Language Processing[1]

Recommendation^[2]

Natural Language Processing^[1]

Recommendation^[2]

Weights become growingly important as DNNs scale up

In 3 years^[1], ...

1000X Larger

ML Models

GPU Memory Capacity

Democratize state-of-the-art machine learning models

 Training throughput saturates as batch size increases

 Training throughput saturates as batch size increases

 Training throughput is limited by the memory capacity^[1, 2]

2015-2016

Weight Pruning for Efficient **Inference**

- [1] T. Chen et al. *DianNao: A Small-Footprint High-Throughput Accelerator for Ubiquitous Machine-Learning*. ASPLOS 2014
- [2] S. Han et al. *EIE: Efficient Inference Engine on Compressed Deep Neural Network*. ISCA 2015
- [3] S. Han et al. *Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding.* ICLR 2015
- [4] Y. Chen et al. Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks. ISCA 2016

14

2015-2016

2016-

Weight Pruning for Efficient **Inference**

Feature Maps Reduction for Efficient **Training**

- [1] T. Chen et al. *DianNao: A Small-Footprint High-Throughput Accelerator for Ubiquitous Machine-Learning*. ASPLOS 2014
- [2] S. Han et al. *EIE: Efficient Inference Engine on Compressed Deep Neural Network.* ISCA 2015
- [3] S. Han et al. *Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding.* ICLR 2015
- [4] Y. Chen et al. Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks. ISCA 2016

- [5] T. Chen et al. *Training Deep Nets with Sublinear Memory Cost*. arXiv 2016
- [6] M. Rhu et al. *vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural Network Design*. MICRO 2016
- [7] A. Jain et al. *Gist: Efficient Data Encoding for Deep Neural Network Training.* ISCA 2018
- [8] B. Zheng et al. *Echo: Compiler-based GPU Memory Footprint Reduction for LSTM RNN Training*. ISCA 2020

15

. . .

2015-2016 2016- 2019-

Weight Pruning for Efficient **Inference**

Feature Maps Reduction for Efficient **Training**

Weight Placement for **EX-Large Models**

- [1] T. Chen et al. *DianNao: A Small-Footprint High-Throughput Accelerator for Ubiquitous Machine-Learning*. ASPLOS 2014
- [2] S. Han et al. *EIE: Efficient Inference Engine on Compressed Deep Neural Network.* ISCA 2015
- [3] S. Han et al. *Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding.* ICLR 2015
- [4] Y. Chen et al. Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks. ISCA 2016

- [5] T. Chen et al. *Training Deep Nets with Sublinear Memory Cost*. arXiv 2016
- [6] M. Rhu et al. *vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural Network Design*. MICRO 2016
- [7] A. Jain et al. *Gist: Efficient Data Encoding for Deep Neural Network Training.* ISCA 2018
- [8] B. Zheng et al. *Echo: Compiler-based GPU Memory Footprint Reduction for LSTM RNN Training*. ISCA 2020

- [9] M. Naumov et al. *Deep Learning Training in Facebook Data Centers: Design of Scale-up and Scale-out Systems*. arXiv 2020
- [10] S. Rajbhandari et al. ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep Learning. arXiv 2021

..

2015-2016	2016-	2019-
Weight Pruning for Efficient Inference	Feature Maps Reduction for Efficient Training	Weight Placement for EX-Large Models
 [1] T. Chen et al. DianNao: A Small-Footprint High-Throughput Accelerator for Ubiquitous Machine-Learning. ASPLOS 2014 [2] S. Han et al. EIE: Efficient Inference Engine on Compressed Deep Neural Network. ISCA 2015 [3] S. Han et al. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding. ICLR 2015 [4] Y. Chen et al. Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural 	 [5] T. Chen et al. Training Deep Nets with Sublinear Memory Cost. arXiv 2016 [6] M. Rhu et al. vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural Network Design. MICRO 2016 [7] A. Jain et al. Gist: Efficient Data Encoding for Deep Neural Network Training. ISCA 2018 [8] B. Zheng et al. Echo: Compiler-based GPU Memory Footprint Reduction for LSTM RNN Training. ISCA 2020 	 [9] M. Naumov et al. Deep Learning Training in Facebook Data Centers: Design of Scale-up and Scale-out Systems. arXiv 2020 [10] S. Rajbhandari et al. ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep Learning. arXiv 2021
Networks. ISCA 2016		1

Feature Maps Reduction

Feature Maps Reduction

Baseline

Baseline

Baseline

Baseline

Virtualization

Baseline

Virtualization^[1, 2]

- [1] M. Rhu et al. vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural Network Design. MICRO 2016
- [2] M. Rhu et al. Compressing DMA Engine: Leveraging Activation Sparsity for Training Deep Neural Networks. HPCA 2018

Virtualization

Baseline

- ✓ Large Reduction Ratio (up to $20 \times$)[1]
- X High Runtime Overhead (18%)[1]

Virtualization^[1, 2]

- [1] M. Rhu et al. vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural Network Design. MICRO 2016
- [2] M. Rhu et al. Compressing DMA Engine: Leveraging Activation Sparsity for Training Deep Neural Networks. HPCA 2018

Virtualization

- ✓ Large Reduction Ratio (up to $20 \times$)[1]
- X High Runtime Overhead (18%)^[1]

Baseline

Virtualization^[1, 2]

- [1] M. Rhu et al. vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural Network Design. MICRO 2016
- [2] M. Rhu et al. Compressing DMA Engine: Leveraging Activation Sparsity for Training Deep Neural Networks. HPCA 2018

Data Encoding

Baseline

Data Encoding[1, 2]

- [1] A. Jain et al. *Gist: Efficient Data Encoding for Deep Neural Network Training*. ISCA 2018
- [2] J. Chen, L. Zheng et al. *ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training*. ICML 2021

Data Encoding

Baseline

- X Lossless but Layer-Specific^[1]
- X Lossy but Generic^[2]
- ☑ Large Reduction Ratio (up to 1.8×)
- ☑ Low Runtime Overhead (4%)[1]

Data Encoding[1, 2]

- [1] A. Jain et al. *Gist: Efficient Data Encoding for Deep Neural Network Training*. ISCA 2018
- [2] J. Chen, L. Zheng et al. *ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training*. ICML 2021

Checkpointing

Baseline

Checkpointing[1, 2, 3, 4, 5]

- [1] T. Chen et al. Training Deep Nets with Sublinear Memory Cost. arXiv 2016
- [2] R. Kumar et al. Efficient Rematerialization for Deep Networks. NeurIPS 2019
- [3] P. Jain et al. Checkmate: Breaking the Memory Wall with Optimal Tensor Rematerialization. MLSys 2020
- [4] B. Zheng et al. Echo: Compiler-based GPU Memory Footprint Reduction for LSTM RNN Training. ISCA 2020
- [5] M. Kirisame et al. Dynamic Tensor Rematerialization. ICLR 2021

Checkpointing

Baseline

- ✓ Generic
 - Lossless
- ✓ Large Reduction Ratio (up to $3.1\times$)[4]
- (-) Modest Runtime Overhead

Checkpointing[1, 2, 3, 4, 5]

- [1] T. Chen et al. Training Deep Nets with Sublinear Memory Cost. arXiv 2016
- [2] R. Kumar et al. Efficient Rematerialization for Deep Networks. NeurIPS 2019
- [3] P. Jain et al. Checkmate: Breaking the Memory Wall with Optimal Tensor Rematerialization. MLSys 2020
- [4] B. Zheng et al. Echo: Compiler-based GPU Memory Footprint Reduction for LSTM RNN Training. ISCA 2020
- [5] M. Kirisame et al. Dynamic Tensor Rematerialization. ICLR 2021

Summary

- Background on DNNs and Their Memory Allocations
 - Major memory consumers: Weights & Feature Maps
- Why larger GPU memory?
 - Larger models; Higher training throughputs
- A History of Prior Works
 - Weight → Feature Maps → Weights
- Prior Works on Feature Maps Reduction
 - 3 major techniques: Virtualization; Data Encoding; Checkpointing

Example Works

• Gist, ISCA'18

• Echo, ISCA'20

1. Gist: Efficient Data Encoding for Deep Neural Network Training

Limitations of Prior Work

- Focus on DNN inference, i.e., weights
 - · Apply pruning, quantization and Huffman encoding
 - However, weights are a small fraction of memory footprint

- Additionally, techniques are not well suited for training
 - Training requires frequent weight updates
 - Map poorly on the GPU HW

Layer-Specific Encodings

- Key Idea:
 - Use layer-specific compression

Can be both fast and efficient

- Can be even lossless
 - Usually difficult for FP32

Relu Importance

Significant footprint is due to Relu layer CNTK Profiling

Relu -> Pool

Relu Backward Propagation

Relu -> Pool

Relu Backward Propagation

<u>Binarize – 1 bit representation</u> (Lossless)

Relu/Pool -> Conv

Relu/Pool -> Conv

<u>Sparse Storage Dense Compute</u> (Lossless)

Precision reduction in forward pass quickly degrades accuracy

Restricting precision reduction to the 2nd use results in aggressive bit savings with no effect on accuracy

Delayed Precision Reduction Training with Reduced Precision

Delayed Precision Reduction Training with Reduced Precision

<u>Delayed Precision Reduction</u> (Lossy)

Compression Ratio

Up to 2X compression ratio
With minimal performance overhead

Gist Summary

- Systematic memory breakdown analysis for image classification
- Layer-specific lossless encodings
 - Binarization and sparse storage/dense compute
- Aggressive lossy encodings
 - With delayed precision reduction
- Footprint reduction measured on real systems:
 - Up to 2X reduction with only 4% performance overhead
 - Further optimizations more than 4X reduction

2. ECHO: Compiler-based GPU Memory Footprint Reduction for LSTM RNN Training

Bojian Zheng^{1,2}, Nandita Vijaykumar¹, Gennady Pekhimenko^{1,2}

Background: LSTM RNN

- Long-Short-Term-Memory Recurrent Neural Network (LSTM RNN)
- Heavily adopted in sequence analysis (e.g., machine translation (NMT) & speech recognition (DeepSpeech2).
- Its **training** is **inefficient** on the **GPUs**, especially when compared with CNN.[1, 2]

[1] J. Bradbury et al. *Quasi-Recurrent Neural Networks*. ICLR 2016
[2] T. Lei et al. *Simple Recurrent Units for Highly Parallelizable Recurrence*. EMNLP 2018

DeepSpeech2

Training throughput is limited by the memory capacity.

Training throughput **saturates** as batch size increases.

Training throughput is limited by the **memory capacity**.

Memory capacity limits the NMT training throughout

GPU Memory Profiling Results

MXNet GPU Memory Profiler

GPU Memory Profiling Results

MXNet GPU Memory Profiler

- Feature Map
- Weights
- Workspace
- Untrackable

Feature maps dominate the GPU memory footprint.

• **Key Idea**: Trade **runtime** with **memory**.

The recomputation path should only involve lightweight operators.

For each recomputation to be efficient, need to estimate its effect on the **global footprint**.

Example: $Z = \tanh(X + Y)$

For each recomputation to be efficient, need to estimate its effect on the global footprint.

performance degradation!

- (-) increased memory footprint &
- (-) performance degradation!

For each recomputation to be efficient, need to estimate its effect on the **global footprint**.

Selective Recomputation causes:

(+) feature maps: $T^2N \rightarrow 2TN$

Global Footprint Analysis:

- 1. shapes and types
- 2. reuse Challenging!

Example: $Z_i = \tanh(X + Y_i)$, $i \in [1, T]$

For each recomputation to be efficient, need to estimate its effect on the **runtime overhead**.

- Compute-Heavy
 - 50% of the NMT training time
- Excluded in prior works

For each recomputation to be efficient, need to estimate its effect on the **runtime overhead**.

- Compute-Heavy
 - 50% of the NMT training time
- Excluded in prior works

For each recomputation to be efficient, need to estimate its effect on the **runtime overhead**.

- Compute-Heavy
 - 50% of the NMT training time
- Excluded in prior works

For each recomputation to be efficient, need to estimate its effect on the **runtime overhead**.

Layer-Specific Property:

$$\frac{dE}{dX} = \frac{dE}{dY} W \& \frac{dE}{dW} = \frac{dE}{dY}^{T} X$$
(NO Dependency on Y)

- Compute-Heavy
 - 50% of the NMT training time
- Excluded in prior works

For each recomputation to be efficient, need to estimate its effect on the **runtime overhead**.

Layer-Specific Property:

$$\frac{dE}{dX} = \frac{dE}{dY} W \& \frac{dE}{dW} = \frac{dE}{dY} X$$
(NO Dependency on Y)

- Compute-Heavy
 - 50% of the NMT training time
- Excluded in prior works

ECHO: A Graph Compiler Pass

• Integrated in the MXNet NNVM^[1] module

^[1] https://github.com/apache/incubator-mxnet/tree/master/src/nnvm

- Integrated in the MXNet NNVM^[1] module
- Fully Automatic & Transparent
 - Requires NO changes in the training source code.

- Integrated in the MXNet NNVM^[1] module
- Fully Automatic & Transparent
 - Requires NO changes in the training source code.
- Addresses the 2 key challenges of Selective Recomputation:

[1] https://github.com/apache/incubator-mxnet/tree/master/src/nnvm

- Integrated in the MXNet NNVM^[1] module
- Fully Automatic & Transparent
 - Requires NO changes in the training source code.
- Addresses the 2 key challenges of Selective Recomputation:
 - 1 Accurate Footprint Estimation
 - Bidirectional Dataflow Analysis

[1] https://github.com/apache/incubator-mxnet/tree/master/src/nnvm

- Integrated in the MXNet NNVM^[1] module
- Fully Automatic & Transparent
 - Requires NO changes in the training source code.
- Addresses the 2 key challenges of Selective Recomputation:
 - 1 Accurate Footprint Estimation
 - Bidirectional Dataflow Analysis
 - 2 Non-Conservative Overhead Estimation

[1] https://githul.gy/epic.Specific.Qptimizations

ECHO: Bidirectional Dataflow Analysis

Storage Reuse

Causes ALL correlated operators to forward propagate simultaneously.

$$sizeof\left(\sum_{i} FeatureMaps_{new}\right) \le sizeof\left(\sum_{i} FeatureMaps_{old}\right)$$

Example: $Z_i = \tanh(X + Y_i)$, $i \in [1, T]$

ECHO: Bidirectional Dataflow Analysis

Storage Reuse

Causes ALL correlated operators to forward propagate simultaneously.

$$sizeof\left(\sum_{i} FeatureMaps_{new}\right) \le sizeof\left(\sum_{i} FeatureMaps_{old}\right)$$

Example: $Z_i = \tanh(X + Y_i)$, $i \in [1, T]$

46

ECHO: Bidirectional Dataflow Analysis

Evaluation: Benchmarks

Sockeye^[1]

[1] F. Hieber et al. *Sockeye: A Toolkit for Neural Machine Translation*. Arxiv Preprint 2017

 State-of-the-Art Neural Machine Translation Toolkit under MXNet

Evaluation: Benchmarks

Sockeye^[1]

[1] F. Hieber et al. *Sockeye: A Toolkit for Neural Machine Translation*. Arxiv Preprint 2017

- State-of-the-Art Neural Machine Translation Toolkit under MXNet
- Datasets:
 - IWSLT'15 English-Vietnamese (Small)
 - WMT'16 English-German (Large)

Evaluation: Benchmarks

Sockeye^[1]

[1] F. Hieber et al. *Sockeye: A Toolkit for Neural Machine Translation*. Arxiv Preprint 2017

- State-of-the-Art Neural Machine Translation Toolkit under MXNet
- Datasets:
 - IWSLT'15 English-Vietnamese (Small)
 - WMT'16 English-German (Large)
- Key Metrics:
 - Training Throughput
 - GPU Memory Consumption
 - Training Time to
 Validation BLEU Score

Evaluation: Systems

Baseline	Baseline System without
	Selective Recomputation

Evaluation: Systems

Baseline	Baseline System without Selective Recomputation
Mirror	T. Chen et al.[1] [1] T. Chen et al. Training Deep Nets with Sublinear Memory Cost. Arxiv Preprint 2016

Evaluation: Systems

Baseline	Baseline System without Selective Recomputation
Mirror	T. Chen et al.[1] [1] T. Chen et al. Training Deep Nets with Sublinear Memory Cost. Arxiv Preprint 2016
ЕСНО	Compiler-based Automatic and Transparent Optimizations

Large Dataset, Multi-GPU Experiment, Same Number of Training Steps

- + Same Validation BLEU Score
- + Faster Convergence
- + Fewer Compute Devices

Large Dataset, Multi-GPU Experiment, Same Number of Training Steps

- + Same Validation BLEU Score
- + Faster Convergence
- + Fewer Compute Devices

Large Dataset, Multi-GPU Experiment, Same Number of Training Steps

- + Same Validation BLEU Score
- + Faster Convergence
- + Fewer Compute Devices

Large Dataset, Multi-GPU Experiment, Same Number of Training Steps

- + Same Validation BLEU Score
- + Faster Convergence
- + Fewer Compute Devices

Large Dataset, Multi-GPU Experiment, Same Number of Training Steps

- + Same Validation BLEU Score
- + Faster Convergence
- + Fewer Compute Devices

Large Dataset, Multi-GPU Experiment, Same Number of Training Steps

- + Same Validation BLEU Score
- + Faster Convergence
- + Fewer Compute Devices

Large Dataset, Multi-GPU Experiment, Same Number of Training Steps

- + Same Validation BLEU Score
- + Faster Convergence
- + Fewer Compute Devices

My Students: EcoSystem Research Group

- Bojian Zheng (PhD)
- Alexandra Tsvetkova (PhD)
- James Gleeson (PhD)
- Anand Jayarajan (PhD)
- Shang (Sam) Wang (PhD)
- Jiacheng Yang (PhD)
- Pavel Golikov (MSc)
- Yaoyao Ding (MASc)
- Daniel Snider (MSc)
- Kevin Song (MASc)
- Xin Li (MASc)
- Jasper Zhu (MSc)
- Peiming Yang (MASc)
- Yu Bo Gao (BSc)
- Qingyuan Qie (BSc)
- Chenhao Jiang (BSc)
- Murali Andoorveedu (BASc)

Thank you! Questions?