Chapter 9 Z TRANSFORM

MOTIVATION BEHIND THE Z TRANSFORM

- Another important mathematical tool in the study of signals and systems is known as the z transform.
- The z transform can be viewed as a *generalization of the (classical)*Fourier transform.
- Due to its more general nature, the z transform has a number of advantages over the (classical) Fourier transform.
- First, the z transform representation exists for some sequences that do not have a Fourier transform representation. So, we can handle some sequences with the z transform that cannot be handled with the Fourier transform.
- Second, since the z transform is a more general tool, it can provide additional insights beyond those facilitated by the Fourier transform.

MOTIVATION BEHIND THE Z TRANSFORM

- Earlier, we saw that complex exponentials are eigensequences of LTI systems.
- In particular, for a LTI system \mathcal{H} with impulse response h, we have that

$$\mathcal{H}\lbrace z^n\rbrace(n)=H(z)z^n$$
 where $H(z)=\sum_{n=-\infty}h(n)z^{-n}.$

- \blacksquare Previously, we referred to H as the system function.
- As it turns out, H is the z transform of h.
- Since the z transform has already appeared earlier in the context of LTI systems, it is clearly a useful tool.
- Furthermore, as we will see, the z transform has many additional uses.

BILATERAL Z TRANSFORM

■ The (bilateral) **z** transform of the sequence x, denoted $\mathcal{Z}x$ or X, is defined as

$$\mathcal{Z}x(z) = X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}.$$

■ The inverse z transform of X, denoted $\mathbb{Z}^{-1}X$ or x, is then given by

$$\mathcal{Z}^{-1}X(n) = x(n) = \frac{1}{2\pi j} \oint_{\Gamma} X(z) z^{n-1} dz,$$

where Γ is a counterclockwise closed circular contour centered at the origin and with radius r such that Γ is in the ROC of X.

• We refer to x and X as a z transform pair and denote this relationship as

$$x(n) \stackrel{\mathsf{zT}}{\longleftrightarrow} X(z).$$

In practice, we do not usually compute the inverse z transform by directly using the formula from above. Instead, we resort to other means (to be discussed later).

BILATERAL AND UNILATERAL Z TRANSFORM

- Two different versions of the z transform are commonly used:
 - the bilateral (or two-sided) z transform; and
 - the *unilateral* (or *one-sided*) z transform.
- The unilateral z transform is most frequently used to solve systems of linear difference equations with nonzero initial conditions.
- As it turns out, the only difference between the definitions of the bilateral and unilateral z transforms is in the *lower limit of summation*.
- In the bilateral case, the lower limit is -∞, whereas in the unilateral case, the lower limit is 0.
- For the most part, we will focus our attention primarily on the bilateral z transform.
- We will, however, briefly introduce the unilateral z transform as a tool for solving difference equations.
- Unless otherwise noted, all subsequent references to the z transform should be understood to mean bilateral z transform.

RELATIONSHIP BETWEEN Z AND FOURIER TRANSFORM

- Let X and X_F denote the z and (DT) Fourier transforms of x, respectively.
- The function X(z) evaluated at $z=e^{j\Omega}$ (where Ω is real) yields $X_{\mathsf{F}}(\Omega)$. That is,

$$X(e^{j\Omega}) = X_{\mathsf{F}}(\Omega).$$

- Due to the preceding relationship, the Fourier transform of x is sometimes written as $X(e^{j\Omega})$.
- The function X(z) evaluated at an arbitrary complex value $z = re^{j\Omega}$ (where r = |z| and $\Omega = \arg z$) can also be expressed in terms of a Fourier transform involving x. In particular, we have

$$X(re^{j\Omega}) = X'_{\mathsf{F}}(\Omega),$$

where X'_{F} is the (DT) Fourier transform of $x'(n) = r^{-n}x(n)$.

- So, in general, the z transform of x is the Fourier transform of an exponentially-weighted version of x.
- Due to this weighting, the z transform of a sequence may exist when the Fourier transform of the same sequence does not.

Region of Convergence (ROC)

DISK

A disk with center 0 and radius r is the set of all complex numbers z satisfying

where r is a real constant and r > 0.

ANNULUS

An annulus with center 0, inner radius r_0 , and outer radius r_1 is the set of all complex numbers z satisfying

$$r_0 < |z| < r_1$$

where r_0 and r_1 are real constants and $0 < r_0 < r_1$.

CIRCLE EXTERIOR

■ The exterior of a circle with center 0 and radius *r* is the set of all complex numbers *z* satisfying

$$|z| > r$$
,

where r is a real constant and r > 0.

EXAMPLE: SET INTERSECTION

EXAMPLE: SCALAR MULTIPLE OF A SET

EXAMPLE: RECIPROCAL OF A SET

REGION OF CONVERGENCE (ROC)

- As we saw earlier, for a sequence x, the complete specification of its z transform X requires not only an algebraic expression for X, but also the ROC associated with X.
- Two very different sequences can have the same algebraic expressions for X.
- Now, we examine some of the constraints on the ROC (of the z transform) for various classes of sequences.

PROPERTY 1: GENERAL FORM

- The ROC of a z transform consists of concentric circles centered at 0 in the complex plane.
- That is, if a point z_0 is in the ROC, then the circle centered at 0 passing through z_0 (i.e., $|z| = |z_0|$) is also in the ROC.
- Some examples of sets that would be either valid or invalid as ROCs are shown below.

PROPERTY 2: RATIONAL Z TRANSFORMS

- If a z transform X is a rational function, then the ROC of X does not contain any poles and is bounded by poles or extends to infinity.
- Some examples of sets that would be either valid or invalid as ROCs of rational z transforms are shown below.

PROPERTY 3: FINITE DURATION SEQUENCES

- If a sequence x is finite duration and its z transform X converges for at least one point, then X converges for all points the complex plane, except possibly 0 and/or ∞.
- Some examples of sets that would be either valid or invalid as ROCs for X, if x is finite duration, are shown below.

PROPERTY 4: RIGHT SIDED SEQUENCES

- If a sequence x is *right sided* and the circle $|z| = r_0$ is in the ROC of $X = \mathcal{Z}x$, then all (finite) values of z for which $|z| > r_0$ will also be in the ROC of X (i.e., the ROC contains the exterior of a circle centered at 0, possibly including ∞).
- Thus, if x is right sided but not left sided, the ROC of X is the exterior of a circle centered at 0, possibly including ∞.
- Examples of sets that would be either valid or invalid as ROCs for X, if x is right sided but not left sided, are shown below.

PROPERTY 5: LEFT SIDED SEQUENCES

- If a sequence x is *left sided* and the circle $|z| = r_0$ is in the ROC of $X = \mathcal{Z}x$, then all values of z for which $0 < |z| < r_0$ will also be in the ROC of X (i.e., the ROC contains a disk centered at 0, possibly excluding 0).
- Thus, if x is left sided but not right sided, the ROC of X is a disk centered at 0, possibly excluding 0.
- Examples of sets that would be either valid or invalid as ROCs for X, if x is left sided but not right sided, are shown below.

PROPERTY 6: TWO SIDED SEQUENCES

- If a sequence x is *two sided* and the circle $|z| = r_0$ is in the ROC of X = 2x, then the ROC of X will consist of a ring that contains this circle (i.e., the ROC is an *annulus centered at* 0).
- Examples of sets that would be either valid or invalid as ROCs for X, if x is two sided, are shown below.

PROPERTY 7: MORE ON RATIONAL Z TRANSFORM

- If a sequence x has a rational z transform X (with at least one pole), then:
 - If x is *right sided*, then the ROC of X is the region outside the circle of radius equal to the largest magnitude of the poles of X (i.e., *outside the outermost pole*), possibly including ∞ .
 - If x is *left sided*, then the ROC of X is the region inside the circle of radius equal to the smallest magnitude of the nonzero poles of X and extending inward to, and possibly including, 0 (i.e., *inside the innermost nonzero pole*).
- This property is implied by properties 1, 2, 4, and 5.
- Some examples of sets that would be either valid or invalid as ROCs for X, if X is rational and x is left/right sided, are given below.

GENERAL FORM OF THE ROC

To summarize the results of properties 3, 4, 5, and 6, if the z transform X of the sequence x exists, the ROC of X depends on the left- and right-sidedness of x as follows:

x			
left sided	right sided	ROC of X	
yes	yes	everywhere, except possibly 0 and/or ∞	
no	yes	exterior of circle centered at 0, possibly including ∞	
yes	no	disk centered at 0, possibly excluding 0	
no	no	annulus centered at 0	

- Thus, we can infer that, if X exists, the ROC can only be of one of the forms listed above.
- For example, the sets shown below would not be valid as ROCs.

Properties of the z Transform

PROPERTIES OF THE Z TRANSFORM

Property	Time Domain	Z Domain	ROC
Linearity	$a_1x_1(n) + a_2x_2(n)$	$a_1X_1(z) + a_2X_2(z)$	At least $R_1 \cap R_2$
Translation	$x(n-n_0)$	$z^{-n_0}X(z)$	R except possible addition/deletion of 0
Modulation	$a^n x(n)$	$X(a^{-1}z)$	a R
Conjugation	$x^*(n)$	$X^*(z^*)$	R
Time Reversal	x(-n)	X(1/z)	R^{-1}
Upsampling	$(\uparrow M)x(n)$	$X(z^M)$	$R^{1/M}$
Downsampling	$(\downarrow M)x(n)$	$\frac{1}{M} \sum_{k=0}^{M-1} X \left(e^{-j2\pi k/M} z^{1/M} \right)$	R^{M}
Convolution	$x_1 * x_2(n)$	$X_1(z)X_2(z)$	At least $R_1 \cap R_2$
Z-Domain Diff.	nx(n)	$-z\frac{d}{dz}X(z)$	R
Differencing	x(n) - x(n-1)	$(1-z^{-1})X(z)$	At least $R \cap z > 0$
Accumulation	$\sum_{k=-\infty}^{n} x(k)$	$\frac{z}{z-1}X(z)$	At least $R \cap z > 1$

Property	
Initial Value Theorem	$x(0) = \lim_{z \to \infty} X(z)$
Final Value Theorem	$\lim_{n\to\infty} x(n) = \lim_{z\to 1} [(z-1)X(z)]$

Z TRANSFORM PAIR

Pair	x(n)	X(z)	ROC
1	$\delta(n)$	1	All z
2	u(n)	$\frac{z}{z-1} = \frac{1}{1-z^{-1}}$	z > 1
3	-u(-n-1)	$\frac{z}{z-1} = \frac{1}{1-z^{-1}}$	z < 1
4	nu(n)	$\frac{z}{(z-1)^2} = \frac{z^{-1}}{(1-z^{-1})^2}$	z > 1
5	-nu(-n-1)	$\frac{z}{(z-1)^2} = \frac{z^{-1}}{(1-z^{-1})^2}$	z < 1
6	$a^n u(n)$	$\frac{z}{z-a} = \frac{1}{1-az^{-1}}$	z > a
7	$-a^nu(-n-1)$	$\frac{z}{z-a} = \frac{1}{1-az^{-1}}$	z < a
8	$na^nu(n)$	$\frac{az}{(z-a)^2} = \frac{az^{-1}}{(1-az^{-1})^2}$	z > a
9	$-na^nu(-n-1)$	$\frac{az}{(z-a)^2} = \frac{az^{-1}}{(1-az^{-1})^2}$	z < a
10	$\frac{(n+1)(n+2)\cdots(n+m-1)}{(m-1)!}a^{n}u(n)$	$\frac{z^m}{(z-a)^m} = \frac{1}{(1-az^{-1})^m}$	z > a
11	$-\frac{(n+1)(n+2)\cdots(n+m-1)}{(m-1)!}a^nu(-n-1)$	$\frac{z^m}{(z-a)^m} = \frac{1}{(1-az^{-1})^m}$	z < a

Z TRANSFORM PAIR

Pair	x(n)	X(z)	ROC
12	$\cos(\Omega_0 n)u(n)$	$\frac{z(z-\cos\Omega_0)}{z^2-2z\cos\Omega_0+1} = \frac{1-(\cos\Omega_0)z^{-1}}{1-(2\cos\Omega_0)z^{-1}+z^{-2}}$	z > 1
13	$-\cos(\Omega_0 n)u(-n-1)$	$\frac{z(z-\cos\Omega_0)}{z^2-2z\cos\Omega_0+1} = \frac{1-(\cos\Omega_0)z^{-1}}{1-(2\cos\Omega_0)z^{-1}+z^{-2}}$	z < 1
14	$\sin(\Omega_0 n)u(n)$	$\frac{z\sin\Omega_0}{z^2 - 2z\cos\Omega_0 + 1} = \frac{(\sin\Omega_0)z^{-1}}{1 - (2\cos\Omega_0)z^{-1} + z^{-2}}$	z > 1
15	$-\sin(\Omega_0 n)u(-n-1)$	$\frac{z\sin\Omega_0}{z^2 - 2z\cos\Omega_0 + 1} = \frac{(\sin\Omega_0)z^{-1}}{1 - (2\cos\Omega_0)z^{-1} + z^{-2}}$	z < 1
16	$a^n \cos(\Omega_0 n) u(n)$	$\frac{z(z - a\cos\Omega_0)}{z^2 - 2az\cos\Omega_0 + a^2} = \frac{1 - (a\cos\Omega_0)z^{-1}}{1 - (2a\cos\Omega_0)z^{-1} + a^2z^{-2}}$	z > a
17	$a^n \sin(\Omega_0 n) u(n)$	$\frac{az\sin\Omega_0}{z^2 - 2az\cos\Omega_0 + a^2} = \frac{(a\sin\Omega_0)z^{-1}}{1 - (2a\cos\Omega_0)z^{-1} + a^2z^{-2}}$	z > a
18	u(n) - u(n - M), M > 0	$\frac{z(1-z^{-M})}{z-1} = \frac{1-z^{-M}}{1-z^{-1}}$	z > 0
19	$a^{ n }, a < 1$	$\frac{(a-a^{-1})z}{(z-a)(z-a^{-1})}$	$ a < z <\left a^{-1}\right $

LINEARITY

- If $x_1(n) \stackrel{z_{\mathsf{T}}}{\longleftrightarrow} X_1(z)$ with ROC R_1 and $x_2(n) \stackrel{z_{\mathsf{T}}}{\longleftrightarrow} X_2(z)$ with ROC R_2 , then $a_1x_1(n) + a_2x_2(n) \stackrel{z_{\mathsf{T}}}{\longleftrightarrow} a_1X_1(z) + a_2X_2(z)$ with ROC R containing $R_1 \cap R_2$, where a_1 and a_2 are arbitrary complex constants.
- This is known as the linearity property of the z transform.
- The ROC always contains the intersection but could be larger (in the case that pole-zero cancellation occurs).

TRANSLATING

If $x(n) \stackrel{\text{ZT}}{\longleftrightarrow} X(z)$ with ROC R, then

$$x(n-n_0) \stackrel{\text{\tiny ZT}}{\longleftrightarrow} z^{-n_0}X(z)$$
 with ROC R' ,

where n_0 is an integer constant and R' is the same as R except for the possible addition or deletion of zero or infinity.

■ This is known as the **translation** (or **time-shifting**) **property** of the z transform.

Z-DOMAIN SCALING

If $x(n) \stackrel{\text{ZT}}{\longleftrightarrow} X(z)$ with ROC R, then

$$a^n x(n) \stackrel{\text{zt}}{\longleftrightarrow} X(z/a)$$
 with ROC $|a|R$,

where a is a nonzero constant.

- This is known as the **z-domain scaling property** of the z transform.
- As illustrated below, the ROC R is scaled by |a|.

TIME REVERSAL

■ If $x(n) \stackrel{\text{\tiny ZT}}{\longleftrightarrow} X(z)$ with ROC R, then

$$x(-n) \stackrel{\text{\tiny ZT}}{\longleftrightarrow} X(1/z)$$
 with ROC $1/R$.

- This is known as the time-reversal property of the z transform.
- As illustrated below, the ROC R is reciprocated.

UPSAMPLING

■ Define $(\uparrow M)x(n)$ as

$$(\uparrow M)x(n) = egin{cases} x(n/M) & n/M \text{ is an integer} \\ 0 & \text{otherwise.} \end{cases}$$

■ If $x(n) \stackrel{\text{ZT}}{\longleftrightarrow} X(z)$ with ROC R, then

$$(\uparrow M)x(n) \stackrel{\mathsf{zT}}{\longleftrightarrow} X(z^M)$$
 with ROC $R^{1/M}$.

■ This is known as the **upsampling** (or time-expansion) property of the z transform.

DOWNSAMPLING

If $x(n) \stackrel{\text{ZT}}{\longleftrightarrow} X(z)$ with ROC R, then

$$(\downarrow M)x(n) \stackrel{\text{\tiny ZT}}{\longleftrightarrow} \frac{1}{M} \sum_{k=0}^{M-1} X\left(e^{-j2\pi k/M} z^{1/M}\right) \quad \text{with ROC } R^M.$$

This is known as the downsampling property of the z transform.

CONJUGATION

If $x(n) \stackrel{\text{ZT}}{\longleftrightarrow} X(z)$ with ROC R, then

$$x^*(n) \stackrel{\text{ZT}}{\longleftrightarrow} X^*(z^*)$$
 with ROC R .

■ This is known as the conjugation property of the z transform.

CONVOLUTION

- If $x_1(n) \stackrel{\text{ZT}}{\longleftrightarrow} X_1(z)$ with ROC R_1 and $x_2(n) \stackrel{\text{ZT}}{\longleftrightarrow} X_2(z)$ with ROC R_2 , then $x_1 * x_2(n) \stackrel{\text{ZT}}{\longleftrightarrow} X_1(z) X_2(z)$ with ROC containing $R_1 \cap R_2$.
- This is known that the convolution (or time-domain convolution) property of the z transform.
- The ROC always contains the intersection but can be larger than the intersection (if pole-zero cancellation occurs).
- Convolution in the time domain becomes multiplication in the z domain.
- This can make dealing with LTI systems much easier in the z domain than in the time domain.

Z-DOMAIN DIFFERENTIATION

If $x(n) \stackrel{\text{ZT}}{\longleftrightarrow} X(z)$ with ROC R, then

$$nx(n) \stackrel{z_{\mathsf{T}}}{\longleftrightarrow} -z \frac{d}{dz} X(z)$$
 with ROC R .

This is known as the z-domain differentiation property of the z transform.

DIFFERENCING

■ If $x(n) \stackrel{\text{ZT}}{\longleftrightarrow} X(z)$ with ROC R, then

$$x(n)-x(n-1) \stackrel{\text{\tiny ZT}}{\longleftrightarrow} (1-z^{-1})X(z)$$
 for ROC containing $R \cap |z| > 0$.

- This is known as the <u>differencing property</u> of the z transform.
- Differencing in the time domain becomes multiplication by $1-z^{-1}$ in the z domain.
- This can make dealing with difference equations much easier in the z domain than in the time domain.

ACCUMULATION

If $x(n) \stackrel{\text{ZT}}{\longleftrightarrow} X(z)$ with ROC R, then

$$\sum_{k=-\infty}^{n} x(k) \overset{z_{\mathsf{T}}}{\longleftrightarrow} \frac{z}{z-1} X(z) \text{ for ROC containing } R \cap |z| > 1.$$

This is known as the accumulation property of the z transform.

INITIAL VALUE THEOREM

For a sequence x with z transform X, if x is causal, then

$$x(0) = \lim_{z \to \infty} X(z).$$

This result is known as the initial-value theorem.

FINAL VALUE THEOREM

For a sequence x with z transform X, if x is causal and $\lim_{n\to\infty} x(n)$ exists, then

$$\lim_{n\to\infty} x(n) = \lim_{z\to 1} [(z-1)X(z)].$$

This result is known as the final-value theorem.

Determination of Inverse z Transform

FINDING THE INVERSE Z TRANSFORM

Recall that the inverse z transform x of X is given by

$$x(n) = \frac{1}{2\pi j} \oint_{\Gamma} X(z) z^{n-1} dz,$$

where Γ is a counterclockwise closed circular contour centered at the origin and with radius r such that Γ is in the ROC of X.

- Unfortunately, the above contour integration can often be quite tedious to compute.
- Consequently, we do not usually compute the inverse z transform directly using the above equation.
- For rational functions, the inverse z transform can be more easily computed using partial fraction expansions.
- Using a partial fraction expansion, we can express a rational function as a sum of lower-order rational functions whose inverse z transforms can typically be found in tables.

z Transform and LTI Systems

SYSTEM FUNCTION OF LTI SYSTEMS

- Consider a LTI system with input x, output y, and impulse response h, and let X, Y, and H denote the z transforms of x, y, and h, respectively.
- Since y(n) = x * h(n), the system is characterized in the z domain by

$$Y(z) = X(z)H(z)$$
.

- As a matter of terminology, we refer to H as the system function (or transfer function) of the system (i.e., the system function is the z transform of the impulse response).
- When viewed in the z domain, a LTI system forms its output by multiplying its input with its system function.
- A LTI system is completely characterized by its system function H.
- If the ROC of H includes the unit circle |z|=1, then $H(e^{j\Omega})$ is the frequency response of the LTI system.

BLOCK DIAGRAM REPRESENTATION OF LTI SYSTEMS

- Consider a LTI system with input x, output y, and impulse response h, and let X, Y, and H denote the z transforms of x, y, and h, respectively.
- Often, it is convenient to represent such a system in block diagram form in the z domain as shown below.

Since a LTI system is completely characterized by its system function, we typically label the system with this quantity.

INTERCONNECTION OF LTI SYSTEMS

The *series* interconnection of the LTI systems with system functions H_1 and H_2 is the LTI system with system function $H = H_1H_2$. That is, we have the equivalences shown below.

The *parallel* interconnection of the LTI systems with impulse responses H_1 and H_2 is a LTI system with the system function $H = H_1 + H_2$. That is we have the equivalence shown below.

CAUSALITY

- If a LTI system is causal, its impulse response is causal, and therefore right sided. From this, we have the result below.
- **Theorem.** A LTI system is *causal* if and only if the ROC of the system function is:
 - the exterior of a circle, including ∞; or
 - the entire complex plane, including ∞ and possibly excluding 0.
- Theorem. A LTI system with a rational system function H is causal if and only if:
 - the ROC of *H* is the exterior of a (possibly degenerate) circle *outside the outermost pole* of *H* or, if *H* has no poles, the entire complex plane; and
 - If is proper (i.e., when H(z) is expressed as a ratio of polynomials in z, the order of the numerator polynomial does not exceed the order of the denominator polynomial).

BIBO STABILITY

- Whether or not a system is BIBO stable depends on the ROC of its system function.
- **Theorem.** A LTI system is *BIBO stable* if and only if the ROC of its system function contains the *unit circle* (i.e., |z| = 1).
- **Theorem.** A *causal* LTI system with a *rational* system function *H* is BIBO stable if and only if all of the poles of *H* lie inside the unit circle (i.e., each of the poles has a *magnitude less than one*).

INVERTIBILITY

■ A LTI system \mathcal{H} with system function H is invertible if and only if there exists another LTI system with system function H_{inv} such that

$$H(z)H_{inv}(z)=1,$$

in which case H_{inv} is the system function of \mathcal{H}^{-1} and

$$H_{\mathsf{inv}}(z) = \frac{1}{H(z)}.$$

- Since distinct systems can have identical system functions (but with differing ROCs), the inverse of a LTI system is not necessarily unique.
- In practice, however, we often desire a stable and/or causal system. So, although multiple inverse systems may exist, we are frequently only interested in one specific choice of inverse system (due to these additional constraints of stability and/or causality).

LTI SYSTEMS AND DIFFERENCE EQUATIONS

- Many LTI systems of practical interest can be represented using an Nth-order linear difference equation with constant coefficients.
- Consider a system with input x and output y that is characterized by an equation of the form

$$\sum_{k=0}^{N} b_k y(n-k) = \sum_{k=0}^{M} a_k x(n-k) \quad \text{where} \quad M \le N.$$

- Let *h* denote the impulse response of the system, and let *X*, *Y*, and *H* denote the z transforms of *x*, *y*, and *h*, respectively.
- One can show that H(z) is given by

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} a_k z^{-k}}{\sum_{k=0}^{N} b_k z^{-k}}.$$

Observe that, for a system of the form considered above, the system function is always rational.

Application: Analysis of Control Systems

FEEDBACK CONTROL SYSTEMS

- input: desired value of the quantity to be controlled
- output: actual value of the quantity to be controlled
- error: difference between the desired and actual values
- plant: system to be controlled
- sensor: device used to measure the actual output
- controller: device that monitors the error and changes the input of the plant with the goal of forcing the error to zero

STABILITY ANALYSIS OF FEEDBACK CONTROL SYSTEMS

- Often, we want to ensure that a system is BIBO stable.
- The BIBO stability property is more easily characterized in the z domain than in the time domain.
- Therefore, the z domain is extremely useful for the stability analysis of systems.

Unilateral z Transform

UNILATERAL Z TRANSFORM

■ The unilateral z transform of the sequence x, denoted $\mathcal{Z}_{u}x$ or X, is defined as

$$\mathcal{Z}_{u}x(z) = X(z) = \sum_{n=0}^{\infty} x(n)z^{-n}.$$

The unilateral z transform is related to the bilateral z transform as follows:

$$\mathcal{Z}_{\mathsf{u}}x(z) = \sum_{n=0}^{\infty} x(n)z^{-n} = \sum_{n=-\infty}^{\infty} x(n)u(n)z^{-n} = \mathcal{Z}\{xu\}(z).$$

- In other words, the unilateral z transform of the sequence x is simply the bilateral z transform of the sequence xu.
- Since $\mathcal{Z}_{u}x = \mathcal{Z}\{xu\}$ and xu is always a *right-sided* sequence, the ROC associated with $\mathcal{Z}_{u}x$ is always the *exterior of a circle*.
- For this reason, we often do not explicitly indicate the ROC when working with the unilateral z transform.

UNILATERAL Z TRANSFORM

- With the unilateral z transform, the same inverse transform equation is used as in the bilateral case.
- The unilateral z transform is only invertible for causal sequences. In particular, we have

$$\mathcal{Z}_{u}^{-1} \{\mathcal{Z}_{u}\{x\}\}(n) = \mathcal{Z}_{u}^{-1} \{\mathcal{Z}\{xu\}\}(n)$$

$$= \mathcal{Z}^{-1} \{\mathcal{Z}\{xu\}\}(n)$$

$$= x(n)u(n)$$

$$= \begin{cases} x(n) & n \ge 0 \\ 0 & \text{otherwise.} \end{cases}$$

- For a noncausal sequence x, we can only recover x(n) for $n \ge 0$.
- Due to the close relationship between the unilateral and bilateral z transforms, these two transforms have some similarities in their properties.
- Since these two transforms are not identical, however, their properties differ in some cases, often in subtle ways.

PROPERTIES OF THE UNILATERAL Z TRANSFORM

Property	Time Domain	Z Domain
Linearity	$a_1x_1(n) + a_2x_2(n)$	$a_1X_1(z) + a_2X_2(z)$
Time Delay	x(n-1)	$z^{-1}X(z) + x(-1)$
Time Advance	x(n+1)	zX(z) - zx(0)
Modulation	$a^n x(n)$	$X(a^{-1}z)$
	$e^{j\Omega_0 n}x(n)$	$X(e^{-j\Omega_0}z)$
Conjugation	$x^*(n)$	$X^*(z^*)$
Upsampling	$(\uparrow M)x(n)$	$X(z^M)$
Downsampling	$(\downarrow M)x(n)$	$\frac{1}{M} \sum_{k=0}^{M-1} X \left(e^{-j2\pi k/M} z^{1/M} \right)$
Convolution	$x_1 * x_2(n), x_1 \text{ and } x_2 \text{ are causal}$	$X_1(z)X_2(z)$
Z-Domain Diff.	nx(n)	$-z\frac{d}{dz}X(z)$
Differencing	x(n) - x(n-1)	$(1-z^{-1})X(z)-x(-1)$
Accumulation	$\sum_{k=0}^{n} x(k)$	$\frac{1}{1-z^{-1}}X(z)$

Property	
Initial Value Theorem	$x(0) = \lim_{z \to \infty} X(z)$
Final Value Theorem	$\lim_{n \to \infty} x(n) = \lim_{z \to 1} [(z-1)X(z)]$

UNILATERAL Z TRANSFORM PAIR

Pair	$x(n), n \ge 0$	X(z)
1	$\delta(n)$	1
2	1	$\frac{z}{z-1}$
3	n	$\frac{z}{(z-1)^2}$
4	a^n	$\frac{z}{z-a}$
5	$a^n n$	$\frac{az}{(z-a)^2}$
6	$\cos(\Omega_0 n)$	$\frac{z(z-\cos\Omega_0)}{z^2-2(\cos\Omega_0)z+1}$
7	$\sin(\Omega_0 n)$	$\frac{z\sin\Omega_0}{z^2-2(\cos\Omega_0)z+1}$
8	$ a ^n\cos(\Omega_0 n)$	$\frac{z(z- a \cos\Omega_0)}{z^2-2 a (\cos\Omega_0)z+ a ^2}$
9	$ a ^n\sin(\Omega_0 n)$	$\frac{z a (\cos 2z_0)z+ a }{z a \sin \Omega_0}$ $\frac{z^2-2 a (\cos \Omega_0)z+ a ^2}{z^2-2 a (\cos \Omega_0)z+ a ^2}$

SOLVING DIFFERENCE EQUATIONS USING THE UNILATERAL Z-T

- Many systems of interest in engineering applications can be characterized by constant-coefficient linear difference equations.
- One common use of the unilateral z transform is in solving constant-coefficient linear difference equations with nonzero initial conditions.

EXAMPLE