Mandatory Assignment 1, Functional Analysis

Peter Lund Andersen, btv124

Problem 1

Part (a)

We first show that $\|\cdot\|_0$ satisfies Lecture notes **definition 1.1** for being a norm, using that $\|\cdot\|_X$ and $\|\cdot\|_Y$ are norms and that $T: X \longrightarrow Y$ is a linear map. Using **Definition 1.1(a)** for $\|\cdot\|_X$ and $\|\cdot\|_Y$ we see for all $x, y \in X$ that

$$\begin{split} \|x+y\|_0 &= \|x+y\|_X + \|T(x+y)\|_Y = \|x+y\|_X + \|T(x)+T(y))\|_Y \\ &\leq \|x\|_X + \|y\|_X + \|T(x)\|_Y + \|T(y)\|_Y \leq \|x\|_0 + \|y\|_0 \end{split}$$

Again using linearity of T and **Definition 1.1(b)** for the two norms, we see that for all $\alpha \in \mathbb{K}$ and all $x \in X$ we have that

$$\left\|\alpha x\right\|_{0}=\left\|\alpha x\right\|_{x}+\left\|T(\alpha x)\right\|_{Y}=\left\|\alpha x\right\|_{x}+\left\|\alpha T(x)\right\|_{Y}=\left|\alpha\right|\left\|x\right\|_{X}+\left|\alpha\right|\left\|T(x)\right\|_{Y}=\left|\alpha\right|\left\|x\right\|_{0}$$

Lastly using linearity of T, so T(0) = 0, and **Definition 1.1(c)** for the two norms, we find that

$$\|0\|_{0} = \|0\|_{X} + \|T(0)\|_{Y} = \|0\|_{X} + \|0\|_{Y} = 0$$

If $||x||_0 = 0$ we see that since $||x||_X > 0$ if and only if $x \neq 0$ and $||T(x)|| \geq 0$ for all $x \in X$ we can therefore conclude x = 0 and then we have proved that $||x||_0 = 0$ if and only if x = 0. We have now showed that $||x||_0 = 0$. have now showed that $\|\cdot\|_0$ is a norm.

Assume that $\|\cdot\|_X$ and $\|\cdot\|_0$ are equivalent. Then there per **Definition 1.4** exit $0 < C_1 \le C_2 < C_1 \le C_2 < C_2 <$ ∞ such that $C_1 ||x||_X \leq ||x||_0 \leq C_2 ||x||_X$, holds for all $x \in X$. We can therefore see that

$$||x||_X + ||T(x)||_Y = ||x||_0 \le C_2 ||x||_X \Rightarrow$$

 $||T(x)||_Y \le (C_2 - 1) ||x||_X$

Which means that T satisfies **Proposition 1.10(3)**, so that means T is bounded. Assume now that T is bounded, then per **Proposition 1.10(c)** we have that there exit a C > 0 such that $||T(x)||_{Y} \leq C ||x||_{X}$ for all $x \in X$. Therefore we get that

$$\|x\|_X \leq \|x\|_X + \|T(x)\|_Y \leq \|x\|_X + C \, \|x\|_X = (C+1) \, \|x\|_X$$

So we have that $\left\|\cdot\right\|_X$ and $\left\|\cdot\right\|_0$ er equivalent.

Part (b)

For a given linear map, $T: X \longrightarrow Y$, we have that since X is finite dimensional we can use **Theorem 1.6** to say that any two norm on X, in particular $\|\cdot\|_X$ and $\|\cdot\|_0$, are equivalent. Then it follows from Mandatory problem 1(a) that T is bounded. I has inhistely many elements

Part (c)

For a X that is infinite dimensional we know that there exits a normalized Hamel basis, $(e_i)_{i\in I}$ with $||e_i||_X = 1$ for all $i \in I$. We also know that I has infinite elements, which means that $\operatorname{card}(I) \geq \operatorname{card}(\mathbb{N})$. Hence there exits a surjective function, $f: I \longrightarrow \mathbb{N}$. Since Y is a non-zero normed vector space, choose $0 \neq y \in Y$ and let $y_i = f(i)y$ for all $i \in I$. We now have (from the hint) that there exits precisely one linear map $T: X \longrightarrow Y$ such that $T(e_i) = y_i$ for all $i \in I$. For a given C > 0 let $\lceil \frac{C+1}{\|y\|} \rceil = N_C \in \mathbb{N}$ then since f is surjective there exits a $i_0 \in I$ such that $f(i_0) = N_C$. We now have that

$$C \|e_{i_0}\|_X = C < N_C \cdot \|y\|_Y = \|N_C y\|_Y = \|f(i_0)y\| = \|T(e_{i_0})\|$$

Hence the linear map $T: X \longrightarrow Y$ cannot be bounded by any constant C > 0.

Part (d)

let $Y = \mathbb{K}$ (so either $\mathbb{K} = \mathbb{R}$ or \mathbb{C}) and let $\|\cdot\|_Y = |\cdot|$ (modulus). Then we have a non-zero normed vector space over \mathbb{K} . Define $T: X \longrightarrow \mathbb{K}$ using **Mandatory problem 1(c)** so T is a linear map that is not bounded. Let $\|x\|_0 = \|x\|_X + \|T(x)\|_Y$ (a norm per Mandatory problem 1(a)). We have trivally that $\|x\|_X \leq \|x\|_0$ for all $x \in X$. Since T is not bounded it follows that for all C > 0 there exits a $x \in X$ such that $\|T(x)\|_Y > C \|x\|_X$, so therefore we have that the two norms cannot be equivalent. If $(X, \|\cdot\|_X)$ is a Banach space then it follows from contraposition of **Homework week 3, problem 1** that $(X, \|\cdot\|_0)$ cannot be complete.

Part (e)

Take $(X, \|\cdot\|) = (\ell_1(\mathbb{N}), \|\cdot\|_1)$ and let $\|\cdot\|' = \|\cdot\|_{\infty} = \sup\{|x(k)| : k \geq 1\}$. Then we know from Riesz-fischer completeness theorem (**Schilling, Theorem 13.7**) that $(\ell_1(\mathbb{N}), \|\cdot\|_1)$ is complete. We also note that $\|x\|_{\infty} \leq \|x\|_1$ for all $x \in \ell_1(\mathbb{N})$ and therefore we also have that $\|x\|_{\infty} < \infty$ for all $x \in (\ell_1(\mathbb{N}), \infty)$, so it is a norm on $(\ell_1(\mathbb{N}), \infty)$. Consider the sequence in $(x_n)_{n \in \mathbb{N}} \subset (\ell_1(\mathbb{N}))$ given by $x_n = (\frac{1}{1}, \frac{1}{2}, \dots, \frac{1}{n}, 0, 0, \dots)$. Then for all $\epsilon > 0$ we can choose $N_{\epsilon} = \lceil \frac{1}{\epsilon} \rceil$ such that for all $n, m \geq N_{\epsilon}$ and

$$||x_n - x_m||_{\infty} = \sup\{|x_n(k) - x_m(k)| : k \ge 1\} = \frac{1}{\min\{m, n\} + 1} \le \frac{1}{N_{\epsilon} + 1} < \epsilon$$

So we have that $(x_n)_{n\in\mathbb{N}}$ is a Cauchy sequence in $\|\cdot\|_{\infty}$. But we also know that $x_n\to x$ where $x=\left(1,\frac{1}{2},\frac{1}{3},\ldots\right)$ and $x\in\mathbb{N}$ and $x\in\mathbb{N}$ where $x\in\mathbb{N}$ and $x\in\mathbb{N}$ are $x\in\mathbb{N}$ and $x\in\mathbb{N}$ and $x\in\mathbb{N}$ and $x\in\mathbb{N}$ where $x\in\mathbb{N}$ and $x\in\mathbb{N}$ are $x\in\mathbb{N}$ and $x\in\mathbb{N}$ and $x\in\mathbb{N}$ are $x\in\mathbb{N}$ and $x\in\mathbb{N}$ and $x\in\mathbb{N}$ are $x\in\mathbb{N}$ and $x\in\mathbb{N}$ and $x\in\mathbb{N}$ are $x\in\mathbb{N}$ are $x\in\mathbb{N}$ and $x\in\mathbb{N}$ are $x\in\mathbb{N}$ and $x\in\mathbb{N}$ are $x\in\mathbb{N}$ and $x\in\mathbb{N}$ are $x\in\mathbb{N}$ and $x\in\mathbb{N}$ are $x\in\mathbb{N}$ are $x\in\mathbb{N}$ and $x\in\mathbb{N}$ are $x\in\mathbb{N}$ and $x\in\mathbb{N}$ are $x\in\mathbb{N}$ are $x\in\mathbb{N}$ are $x\in\mathbb{N}$ and $x\in\mathbb{N}$ are $x\in\mathbb{N}$ are $x\in\mathbb{N}$ are $x\in\mathbb{N}$ and $x\in\mathbb{N}$ are $x\in\mathbb{N}$ are $x\in\mathbb{N}$ and $x\in\mathbb{N}$ are $x\in\mathbb{N$

$$||x||_1 = \sum_{k=1}^{\infty} |x(k)| = \sum_{k=1}^{\infty} \frac{1}{k} = \infty$$

So we have that $x \notin \ell_1(\mathbb{N})$ and the sequence can therefore not converges in $\ell_1(\mathbb{N})$. We can now conclude that $(\ell_1(\mathbb{N}), \|\cdot\|_{\infty})$ is not complete.

Problem 2

Part (a)

We first note that $f: M \longrightarrow \mathbb{C}$ is a linear map and the norm on \mathbb{C} is modulus. We have that since $|\cdot|$ satisfies the triangle inequality we have for all $m = (a, b, 0, 0, \ldots) \in M$

$$|f(m)|^p = |a+b|^p \le (|a|+|b|)^p \le (2\max\{|a|,|b|\})^p \le 2^p (|a|^p + |b|^p) = 2^p ||m||_p^p$$

So $|f(m)| \leq 2 \|m\|_p$ for all $m \in M$ and therefore f is bounded. Let $m = (a, b, 0, 0, \ldots) \in M \subset \ell_p(\mathbb{N})$ and let $y = (1, 1, 0, 0, \ldots) \in \ell_q(\mathbb{N})$ where $q = \frac{p-1}{p}$ for p > 1 and $q = \infty$ for p = 1. Then we have that $f_y(m) = \sum_{k=1}^{\infty} y(k)m(k) = m(1) + m(2) = a + b = f(m)$ for all $m \in M$. Using Hölders inequality (Schilling, Theorem 13.2) we have that

$$|f(m)| = |f_y(m)| = |\sum_{k=1}^{\infty} y(k)m(k)| \le ||m||_p ||y||_q$$

Be more explicit in that the culculations only held for 75%, but the formula helds

Where we have that $\|y\|_q = (\sum_{n=1}^{\infty} |y_n|^q)^{\frac{1}{q}} = (1+1)^{\frac{1}{q}} = 2^{\frac{p-1}{p}}$, which holds for all $p \in [1,\infty)$, since for p=1 we have that $\|y\|_{\infty} = 1 = 2^0$. We now see per **Remark 1.11** that

$$\left\|f\right\|=\sup\left\{\left|f(m)\right|:\left\|m\right\|_{p}\leq1\right\}\leq\sup\left\{\left\|m\right\|_{p}\left\|y\right\|_{q}:\left\|m\right\|_{p}\leq1\right\}\leq\left\|y\right\|_{q}=2^{\frac{p-1}{p}}$$

For all $p \in [1, \infty)$ we have that if $m_1 = \left((\frac{1}{2})^{\frac{1}{p}}, (\frac{1}{2})^{\frac{1}{p}}, 0, 0, \ldots \right)$ then we see that $||m_1||_p = \left(\left((\frac{1}{2})^{\frac{1}{p}} \right)^p + \left((\frac{1}{2})^{\frac{1}{p}} \right)^p \right)^{\frac{1}{p}} = \left(\frac{1}{2} + \frac{1}{2} \right)^{\frac{1}{p}} = 1$. We calculate that $|f(m_1)| = |(\frac{1}{2})^{\frac{1}{p}} + (\frac{1}{2})^{\frac{1}{p}}| = 2(\frac{1}{2})^{\frac{1}{p}} = 2(\frac{1}{2})^{\frac{1}{p}} = 2(\frac{1}{2})^{\frac{1}{p}}$. Since $||f|| = \sup \left\{ |f(m)|; ||m||_p \le 1 \right\} \ge |f(m_1)|$ we can therefore conclude that $||f|| \ge 2^{\frac{p-1}{p}}$. Combining this with the other inequality we have that $||f|| = 2^{\frac{p-1}{p}}$ for all $p \in [1, \infty)$.

Part (b)

Using **Homework week 1**, **problem 5** we have that for all $p \in (1, \infty)$ that $(\ell_p(\mathbb{N}))^* \cong \ell_q(\mathbb{N})$ where $q = \frac{p}{p-1}$. We also have from **Homework week 1**, **problem 5** that all linear functionals $F \in (\ell_p(\mathbb{N}))^*$ can be given by $F(y) = f_x(y) = \sum_{k=1}^{\infty} x(k)y(k)$ for all $y \in \ell_p(\mathbb{N})$, where $x \in \ell_q(\mathbb{N})$.

We want to show that $f_x|_M = f$ if and only if x(1) = 1 and x(2) = 1. If x(1) = 1 and x(2) = 1 we have that for all $m = (a, b, 0, 0, \ldots) \in M$ that $f_x(m) = \sum_{k=1}^{\infty} x(k)m(k) = x(1)m(1) + x(2)m(2) = a + b = f(m)$ and therefore $f_x|_M = f$. If $x(1) \neq 1$ choose $m_1 = (1, 0, 0, \ldots) \in M$, then we have that $f_x(m_1) = \sum_{k=1}^{\infty} x(k)m_1(k) = x(1) \neq 1 = f(m_1)$ and hence $f_x|_M \neq f$. The argument for $x(2) \neq 1$ follows with the same idea where $m_2 = (0, 1, 0, 0, \ldots) = M$ and then $f_x(m_2) = x(2) \neq 1 = f(m_2)$.

If we look at $x_1 = (1, 1, 0, 0, \ldots) \in \ell_q(\mathbb{N})$ we must have that $f_{x_1}|_M = f$ and that $||x_1||_q = (|1|^q + |1|^q)^{1/q} = 2^{\frac{p-1}{p}}$. Since $(\ell_p(\mathbb{N}))^* \cong \ell_q(\mathbb{N})$ we have that $||f_{x_1}|| = ||x_1||_q = 2^{\frac{p-1}{p}} = ||f||$. Hence the linear functional f_{x_1} on $\ell_p(\mathbb{N})$ is a extension of f and satisfies $||f_{x_1}|| = ||f||$. Let $x_2 \in \ell_q(\mathbb{N})$ such that $f_{x_2}|_M = f$ and assume that $x_2 \neq x_1$. Then we have that $x_2(1) = 1$ and $x_2(2) = 1$ but there must exits a $n \in \mathbb{N}$ such that $x_2(n) \neq 0 = x_1(n)$, otherwise $x_1 = x_2$. Hence we have that

$$||f|| = 2^{\frac{p-1}{p}} = 2^{\frac{1}{q}} < (1+1+|x(n)|^q)^{\frac{1}{q}} \le \left(\sum_{k=1}^{\infty} |x_2(k)|^q\right)^{\frac{1}{q}} = ||x||_q = ||f_{x_2}||$$

Therefore any linear functional F on $\ell_p(\mathbb{N})$ extending f that is different form f_{x_1} has ||F|| > ||f|| and we now conclude that f_{x_1} must be the unique extension where $||f_{x_1}|| = ||f||$.

Part (c) and again IFI-INg.

Again using **Homework week 1**, **problem 5** we have that $(\ell_1(\mathbb{N}))^* \cong \ell_\infty(\mathbb{N})$ and again we use that all linear functionals $F \in (\ell_1(\mathbb{N}))^*$ can be given by $F(y) = f_x(y) = \sum_{k=1}^{\infty} x(k)y(k)$ for all $y \in \ell_1(\mathbb{N})$, where $x \in \ell_\infty(\mathbb{N})$. Let $x_n \in \ell_\infty(\mathbb{N})$ be given by $x_n = (1, 1, \ldots, 1, 0, 0, \ldots)$ where the first n places are ones and the rest are zero. Then we have that $||x_n||_{\infty} = 1$ for all $n \in \mathbb{N}$. For $n \geq 2$ we see that for any $m = (a, b, 0, 0, \ldots) \in M$ we get $f_{x_n}(m) = \sum_{k=1}^{\infty} x_n(k)m(k) = a + b = f(m)$. Since we have that $(\ell_1(\mathbb{N}))^* \cong \ell_\infty(\mathbb{N})$ we get that for all $n \geq 2$ we find that $||f_{x_n}|| = ||x_n||_{\infty} = 1 = ||f||$ and since $f_{x_n}|_{M} = f$ we have infinitely many linear functionals f_{x_n} on $\ell_1(\mathbb{N})$ extending f and satisfying $||f_{x_n}|| = ||f||$.

Problem 3

Part (a)

messy Notatian Let $(e_i)_{i\in I}$ be a hamel basis for X. We have that $\operatorname{card}(\{1,2,\ldots,n+1\}) \leq \operatorname{card}(I)$ and hence there exits a injective map $F:\{1,2,\ldots,n+1\} \longrightarrow I$. Now define the subset $\{e_1,e_2,\ldots,e_{n+1}\} \subset (e_i)_{i\in I}$ by $e_k = e_{f(k)}$ for $k=1,2,\ldots,n+1$. We now set $\operatorname{span}\{e_1,e_2,\ldots,e_n,e_{n+1}\} = X_{n+1} \subset X$ so let $F_{n+1}:X_{n+1} \longrightarrow \mathbb{K}^n$ be the restriction of F to the set X_{n+1} . Then F_{n+1} is also a linear map and it holds that $\ker(F_{n+1}) \subset \ker(F)$. Using results from basic linear algebra we have that $n+1 = \dim(X_{n+1}) = \dim(\ker(F_{n+1})) + \dim(F_{n+1}(X_{n+1}))$. Since $\dim(F_{n+1}(X_{n+1})) \leq \dim(\mathbb{K}^n) = n$ this means that $\dim(\ker(F_n+1)) \geq 1$ so especially $\ker(F_{n+1}) \neq \{0\}$ and therefore $\ker(F) \neq \{0\}$. We know that a linear map, F, is injective if and only if $\ker(F) = \{0\}$, which means that F cannot be injective.

Part (b)

For a given $n \in \mathbb{N}$ define $F: X \longrightarrow \mathbb{K}^n$ by $F(x) = (f_1(x), f_2(x), \dots, f_n(x))$ for all $x \in X$. We have that F is linear since we can use linearity of the f_i 's to get that for all $\alpha, \beta \in \mathbb{K}$ and all $x, y \in X$:

$$F(\alpha x + \beta y) = (f_1(\alpha x + \beta y), \dots, f_n(\alpha x + \beta y)) = (\alpha f_1(x) + \beta f_1(y), \dots, \alpha f_n(x) + \beta f_n(x))$$
$$= \alpha (f_1(x), \dots, f_n(x)) + \beta (f_1(y), \dots, f_n(y)) = \alpha F(x) + \beta F(y)$$

It now follows from **Mandatory problem 3(a)** that F cannot be injective which for a linear map is equivalent to $\ker(F) \neq \{0\}$. Since F(x) = 0 if and only if $f_i(x) = 0$ for all $i = 1, \ldots, n$ we have that $\bigcap_{j=1}^n \ker(f_j) = \ker(F)$ and therefore $\bigcap_{j=1}^n \ker(f_j) \neq \{0\}$.

Part (c)

If $x_i = 0$ then it is trivial that $= ||y - x_i|| = ||y|| \ge 0 = ||x_i||$, so assume that $x_1, \ldots, x_n \in X$ are all different from 0. Then it follows from **Theorem 2.7(b)** that for all $x_j, j = 1, 2, \ldots, n$ there exits $f_j \in X^*$ such that $||f_j|| = 1$ and $f_j(x_j) = ||x_j||$. Since per **Mandatory problem 3(b)** $\cap_{j=1}^n \ker(f_j) \ne \{0\}$, we can find $0 \ne y' \in \cap_{j=1}^n \ker(f_j) = \ker(F)$. Since $\ker(F)$ is a subspace we can normalize y' and still be in $\ker(F)$, so let $y = \frac{y'}{||y'||} \in \cap_{j=1}^n \ker(f_j) = \ker(F)$ with ||y|| = 1 We now have for all $j = 1, 2, \ldots, n$

$$||x_j|| = f_j(x_j) = f_j(x_j) - 0 = f_j(x_j) - f_j(y) = f_j(x_j - y) \le ||f_j|| \cdot ||x_j - y|| = ||y - x_j||$$

Where we used linearity of f_j , that $y \in \ker(f_j)$ and the properties of f_j that $f_j(x_j) = ||x_j||$ and $||f_j|| = 1$

Part(d)

Given a finite familiy of closed ball $\overline{B(x_j, r_j)}$ index form j = 1, 2, ..., n with center x_j and radius r_j and where none of them contain 0. This means that $r_j < \|x_j\|$ because otherwise $\|x_j - 0\| = \|x_j\| \le r_j$ and then $0 \in \overline{B(x_j, r_j)}$. Since x_j cannot be equal to 0 for any j = 1, ..., n, let y be from **Mandatory problem 3(c)**. Then we have that $\|y\| = 1$ so $y \in S = \{x \in X : \|x\| = 1\}$, but for all j = 1, 2, ..., n we have that $r_j < \|x_j\| \le \|y - x_j\|$ so $y \notin \overline{B(x_j, r_j)}$ and therefore $S = \{x \in X : \|x\| = 1\} \not\subset \bigcup_{j=1}^n \overline{B(x_j, r_j)}$

Part (e)

Assume for contradiction that S is compact. Let $B(x, r = \frac{\|x\|}{2})$ be the ball centered at x with radius $\frac{\|x\|}{2}$, then $0 \notin \overline{B(x, \frac{\|x\|}{2})}$ if $x \neq 0$. We have that $S \subset \bigcup_{x \in S} B(x, \frac{\|x\|}{2})$ so from assumption of compactness we have that there exits a finite set, $A \subset S$, such that $S \subset \bigcup_{x \in A} B(x, \frac{\|x\|}{2})$ (Folland, Section 4.4). Then since $B(x, \frac{\|x\|}{2}) \subset \overline{B(x, \frac{\|x\|}{2})}$ we have that $S \subset \bigcup_{x \in A} B(x, \frac{\|x\|}{2}) \subset \bigcup_{x \in A} \overline{B(x, \frac{\|x\|}{2})}$. But we have that $0 \notin \overline{B(x, r = \frac{\|x\|}{2})}$ for all $x \in S$ so especially for all $x \in A \subset S$. Then we have a contradiction with Mandatory problem 3(d) and therefore S is non-compact. Since S is a closed set of the closed unit ball in S it follows from contraposition of Folling, proposition 4.22 that the closed unit ball cannot be compact.

Problem 4

Part (a)

For a given $n \in \mathbb{N}$ let $f(x) = x^{\frac{-1}{3}} \mathbf{1}_{(0,1]}$. Then we have that $f \in L_1([0,1],m)$ since $\int_{[0,1]}^{\infty} |f| dm = \int_{0}^{\infty} \int_{0}^{\infty} x^{\frac{-1}{3}} dx = \frac{3}{2} < \infty$ but for all t > 0 we have that $\int_{[0,1]} |t^{-1}f|^3 dm = t^{-3} \int_{0}^{1} x^{-1} d(x) = \infty$ and hence $t^{-1}f \notin E_n$ for all $n \in \mathbb{N}$. It now follows from the notes that E_n cannot be absorbing even if it is convex.

Part(b)

We are going to proof it by contradiction. So for all $n \in \mathbb{N}$ assume that $(E_n)^{\circ} \neq \emptyset$ then there exits a $f \in (E_n)^{\circ}$ so we can construct a open ball around f with radius $\epsilon > 0$ contanied in E_n , so $B(f,\epsilon) = \{g \in L_1([0,1],m) : \|f-g\|_1 < \epsilon\} \subset E_n$. For a given $g \in L_1([0,1],m)$ different from 0 we have that $f + \frac{g}{\|g\|_1} \frac{\epsilon}{2} \in B(f,\epsilon)$ since $\|f - (f + \frac{g}{\|g\|_1} \frac{\epsilon}{2})\|_1 = \frac{\epsilon}{2} \|\frac{g}{\|g\|_1}\|_1 = \frac{\epsilon}{2} < \epsilon$. So since $B(f,\epsilon) \subset E_n \subset L_3([0,1],m)$ we can use linearity of $L_3([0,1],m)$ to get that $f + \frac{g}{\|g\|_1} \frac{\epsilon}{2} - f = \frac{g}{\|g\|_1} \frac{\epsilon}{2} \in L_3([0,1],m)$ and then $\frac{g}{\|g\|_1} \frac{\epsilon}{2} \cdot \frac{2}{\epsilon} \|g\|_1 = g \in L_3([0,1],m)$ so we get that $L_1([0,1],m) \subset L_3([0,1],m)$ which is a contradiction with **Homework week 2, problem 2(b)** and therefore $(E_n)^{\circ} = \emptyset$ for all $n \in \mathbb{N}$.

Part (c)

For at given $n \in \mathbb{N}$ let $(f_k)_{k \in \mathbb{N}}$ be a given convergent sequence in E_n , $f_k \to f$ we have that since E_n is a subset of $L_1([0,1],m)$ this means that $f_k \stackrel{L_1}{\to} f$. We now know (Schilling, Corollary 13.8) that there exits a subsequence $(f_{k_p})_{p \in \mathbb{N}}$ such that $f_{k_p}(x) \to f(x)$ m-almost everywhere. Then we also have that $\lim_{p\to\infty} |f_{k_p}(x)|^3 = \limsup_{p\to\infty} |f_{k_p}(x)|^3 = |f(x)|^3 m$ -almost everywhere. So we get that

$$\int_{[0,1]} |f|^3 dm = \int_{[0,1]} \liminf_{p \to \infty} |f_{k_p}|^3 dm \le \liminf_{p \to \infty} \int_{[0,1]} |f_{k_p}|^3 dm \le \liminf_{p \to \infty} n = n$$

Where we used Fatous lemma (**Schilling, Theorem 9.11**) and lastly used that $f_{k_p} \in E_n$. Then we see that $f \in E_n$ for all convergent sequences $f_n \to f$ and hence E_n is closed.

Part (d)

We have trivially that for all $n \in \mathbb{N}$ it holds that $E_n \subset L_3([0,1],m)$, since $n < \infty$. Therefore we get $\bigcup_{n=1}^{\infty} E_i \subset L_3([0,1])$. For a given $f \in L_3([0,1],m)$ there exits a C > 0 such that $\int_{[0,1]} |f|^3 dm \leq C$. Let $N_C = \lceil C \rceil$, then we have that all $f \in E_{N_C}$ and therefore also that

 $f \in \bigcup_{n=1}^{\infty} E_n$. Hence we have that $L_3([0,1],m) \subset \bigcup_{n=1}^{\infty} E_n$ and therefore $L_3([0,1],m) = \bigcup_{n=1}^{\infty} E_n$. It now follows from **Definition 3.12(ii)** that since E_n is a sequence of nowhere dense and closed such that $L_3([0,1],m) = \bigcup_{n=1}^{\infty} E_n$, then $L_3([0,1],m)$ is of first category in $L_1([0,1],m)$

Problem 5

Part (a)

If $x_n \to x$ in norm, as $n \to \infty$ then it holds that $||x_n - x|| \to 0$. Using the reverse triangle inequality we get that for all $n \in \mathbb{N}$ we have that

$$0 \le |\|x_n\| - \|x\|| \le \|x_n - x\|$$

Since $||x_n - x|| \to 0$ we get that $|||x_n|| - ||x||| \to 0$ which is convergens in \mathbb{R} . So we have that $||x_n|| \to ||x||$ for $n \to \infty$

Part (b)

A counterexample is to look at an ortohormal basis $(e_n)_{n\in\mathbb{N}}$ for H. We have from **Homework week 2, problem 1** that for all $f \in H^*$ there exits a $y \in H$ such that $f(x) = \langle x, y \rangle$ for all $x \in H$. For a given $y \in H$ we have from Bessel's inequality (**Schilling, Theorem 26.19(iii)**) that $\sum_{n=1}^{\infty} |\langle y, e_n \rangle|^2 \leq ||y||^2 < \infty$. Since it is a convergent sum we must have that $|\langle y, e_n \rangle|^2 \to 0$ for $n \to \infty$, which only happens if $\langle y, e_n \rangle \to 0$, which again is equivalent to $\langle e_n, y \rangle = \overline{\langle y, e_n \rangle} \to 0$. Since it holds for all $y \in H$ that $\langle e_n, y \rangle$ goes to 0, then it holds that $f(e_n)$ converges to 0 = f(0) for all $f \in H^*$. We have from **Homework week 4, problem 2(a)** that a sequence x_n converges weakly to x if and only if $f(x_n)$ converges to f(x) for all $f \in H^*$. So we see that e_n convergens weakly to 0, but it does not hold for its norm. Since it is a orthonormal basis we have that $||e_n|| = 1$ for all $n \in \mathbb{N}$. Which means that $||e_n|| \to 1 \neq 0 = ||0||$ concluding the counterexample.

Part (c)

Assume that $x \neq 0$ (since $||x|| = 0 \leq 1$ if x = 0) then it follows from **Theorem 2.7(b)** that there exits $f \in H^*$ such that ||f|| = 1 and f(x) = ||x||. Since we have that x_n converges weakly to x for $n \to \infty$ we know from **Homework week 4**, **problem 2(a)** that then $f(x_n)$ converges to f(x), so it also holds that $|f(x_n)| \to |f(x)|$. We now see that

$$||x|| = ||x||| = |f(x)| = \lim_{n \to \infty} |f(x_n)| \le \lim_{n \to \infty} 1 = 1$$

Where we use that $|f(x_n)| \le ||f|| ||x_n|| \le 1 \cdot 1 = 1$ for all $n \in \mathbb{N}$