Московский Физико-Технический Институт (государственный университет)

Лабораторная работа по курсу общей физики \mathbb{N}^2 4.4.1

Амплитудная дифракционная решетка

Автор:

Лепарский Роман Б01-003

Долгопрудный, 2021

1 Аннотация

Цель работы: знакомство с работой и настройкой гониометра $\Gamma 5$, определение спектральных характеристик амплитудной решетки.

В работе используются: гониометр, дифракционная решетка, ртутная лампа.

2 Теоретические сведения

Основное соотношение приближенной теории дифракционной решётки:

$$d\sin\varphi_m = m\lambda. \tag{1}$$

Угловая дисперсия D характеризует угловое расстояние между близкими спектральными линиями:

$$D = \frac{d\varphi}{d\lambda} = \frac{m}{d\cos\varphi} = \frac{m}{\sqrt{d^2 - m^2\lambda^2}}.$$
 (2)

3 Экспериментальная установка

При работе с дифракционной решёткой основной задачей является точное измерение углов, при которых наблюдаются главные максимумы для различных длин волн. В нашей работе для измерения углов используется гониометр Г5. Принципиальная схема экспериментальной установки приведена на рис. ??.

Рис. 1: Схема установки.

4 Обработка результатов

Запишем угловые координаты линий ± 1 порядка. Погрешность измерений составляет 5'' или $2\cdot 10^{-5}$ рад. Поскольку невозможно точно настроиться на центр полосы.

Цвет	λ , HM	φ_{+1} , рад	φ_{-1} , рад	$\sin \varphi_{+1}$	$\sin \varphi_{-1}$
красный	-	0,31735	-0,30785	0,31205	-0,30301
красный	-	0,31444	-0,30495	0,30929	-0,30024
желтый	579,1	0,29971	-0,29037	0,29524	-0,28631
желтый	577,0	0,29957	-0,29029	0,29511	-0,28623
зеленый	546,1	0,28217	-0,27350	0,27844	-0,27010
голубой	491,6	0,25310	-0,24618	0,25041	-0,24370
фиолетовый	404,7	0,22399	-0,21922	0,22212	-0,21747

Погрешность синуса найдем следующим образом:

$$\sigma_{\rm sin} = \sqrt{\left(\frac{\partial \sin \varphi}{\partial \varphi} \cdot \sigma_{\varphi}\right)^2} = |\cos \varphi \cdot \sigma_{\varphi}| \approx 2 \cdot 10^{-5}$$

Для линий спектра с известной длиной волны построим график зависимости $\sin\varphi$ от $\lambda.$

Коэффициент наклона $k = (41 \pm 2) \cdot 10^{-5} \; \text{нм}^{-1}$

$$d=rac{1}{k}=2,\!43\pm0,\!11$$
 мкм $\sigma_d=rac{\sigma_k}{k^2}$

Значение шага, написанное на амплитудной решетке: 2 мкм.

Рассчитаем угловую дисперсию для спектров разного порядка. Для желтого дублета $\delta\lambda=2,1$ нм.

m	φ_{+1} , рад	φ_{-1} , рад	$\delta \varphi$, рад	D, $1/HM$
-1	-0,29009	-0,29037	0,00028	0,00013
-2	-0,59780	-0,59949	0,00169	0,00080
+1	0,29957	0,29980	0,00023	0,00010
+2	0,64297	0,64586	0,00289	0,00137

$$\sigma_D = rac{\sigma_{\delta arphi}}{\delta \lambda} = 1 \cdot 10^{-5} \,\, 1/$$
нм

График зависимости угловой дисперсии от порядка спектра

Формула (2) дает значения для 1 порядка $D_1=5\cdot 10^{-4}$ 1/нм, и для 2 порядка $D_2=12\cdot 10^{-4}$ 1/нм. Полученные значения совпадают по порядку.

Оценим разрешимый спектральный интервал $\delta\lambda$

$$\delta\lambda = \frac{\Delta\varphi}{D}$$

m	φ_{+1} , рад	φ_{-1} , рад	$\delta \varphi$, 10^{-5} рад	$\delta\lambda$, HM
-1	-0,29037	-0,29038	1	0,075
-2	-0,59798	-0,59796	2	0,024
+1	0,30005	0,30004	1	0,091
+2	0,64619	0,64616	3	0,021

Усредняя получим

$$\delta\lambda=0.05\pm0.03$$
 нм

Тогда, разрешающая способность

$$R = \frac{\lambda}{\delta \lambda} = 11000 \pm 7000$$

Найдем число эффективно работающих штрихов N=R/m

m	$N, 10^3$
1	11 ± 7
2	5 ± 3

Тогда эффективный размер решетки l=Nd:

m	l, mm
1	22 ± 14
2	11 ± 7

Можно оценить, что желтая линия наложится на фиолетовую при m=6 для желтого и m=8 для фиолетового. Поскольку

$$0,29971 \cdot 6 - 0,22399 \cdot 8 = 0,00634$$

5 Вывод

В данной работе мы познакомились с устройством гониометра, а так же определили спектральные характеристики амплитудной решетки.