Національний технічний університет України "Київський політехнічний інститут"

Елементи векторної алгебри

Факультет інформатики та обчислювальної техніки

Лекції 6-8

Викладач - к. ф.-м. н., асистент Руновська Марина Костянтинівна 6 Геометричні вектори на площині і в просторі. Лінійні операції над векторами. Проекція вектора на вісь. Координати вектора в прямокутній декартовій системі координат. Модуль вектора. Напрямні косинуси

6.1 Основні поняття.

Величини, які повністю визначаються своїм чисельним значенням, називаються скалярними. Наприклад, площа, об'єм, температура, маса. Інші величини, наприклад, сила, швидкість, прискорення, визначаються не тільки своїм чисельним значенням, але й напрямом. Такі величини називаються векторними. Векторна величина геометрично зображається за допомогою вектора.

Означення 6.1. *Вектор* – це напрямлений прямолінійний відрізок, тобто візрізок, який має певну довжину і певний напрямок.

Якщо, точка A – початок вектора, а точка B – його кінець, тоді вектор позначається символом \overrightarrow{AB} або \overrightarrow{a} .

Означення 6.2. Вектор \overrightarrow{BA} (його початок в точці B, а кінець в точці A) називається npomune женим ветору \overrightarrow{AB} . Вектор, протилежний ветору \overrightarrow{a} , позначається $-\overrightarrow{a}$.

Означення 6.3. Довжиною або модулем вектора \overrightarrow{AB} називається довжина відрізка від точки A до точки B, і позначається $|\overrightarrow{AB}|$.

Означення 6.4. Вектор, довжина якого дорівнює нулю, називається *нульовим* ветором і позначається $\overrightarrow{0}$. Нульовий вектор напряму не має.

Означення 6.5. Вектор, довжина якого дорівнює одиниці, називається *одини- чним* вектором і позначається \overrightarrow{e} . Одиничний вектор, напрям якого співпадає з напрямом вектора \overrightarrow{a} , називається *ортом* вектора \overrightarrow{a} і позначається \overrightarrow{a}^0 .

Означення 6.6. Вектори \overrightarrow{a} і \overrightarrow{b} називаються *колінеарними*, якщо вони лежать на одній прямій або на паралельних прямих. Позначення: $\overrightarrow{a}||\overrightarrow{b}|$.

Нульовий вектор вважається колінеарним будь-якому вектору.

Означення 6.7. Вектори \overrightarrow{a} і \overrightarrow{b} називаються *рівними*, якщо вони колінеарні, однаково направлені і мають однакові довжини. Позначення: $\overrightarrow{a} = \overrightarrow{b}$.

3 означення рівності векторів випливає, що вектор можна переносити паралельно самому собі, а початок вектора поміщати в будь яку точку O простору.

Означення 6.8. Три вектори в просторі називаються *компланарними*, якщо вони лежать в одній площині або в паралельних площинах.

Якщо серед трьох векторів хоча б один нульовий або два вектори колінеарні, то такі вектори компланарні.

6.2 Лінійні операції над векторами.

Під лінійними операціями над векторами розуміють операції додавання та віднімання веторів, а також множення вектора на число.

Нехай \overrightarrow{a} та \overrightarrow{b} — два довільних вектори. Візьмемо довільну точку O та побудуємо вектор $\overrightarrow{OA} = \overrightarrow{a}$. Відкладемо від точки A вектор $\overrightarrow{AB} = \overrightarrow{b}$. Вектор \overrightarrow{OB} , що з'єднує початок вектора \overrightarrow{a} та кінець вектора \overrightarrow{b} , називається **сумою** векторів \overrightarrow{a} та \overrightarrow{b} : $\overrightarrow{OB} = \overrightarrow{a} + \overrightarrow{b}$.

Це правило додавання векторів називається *правилом трикутника*. Суму двох векторів можна побудувати також за *правилом паралелограма*:

Під **різницею** векторів \overrightarrow{a} та \overrightarrow{b} розуміють вектор $\overrightarrow{c}=\overrightarrow{a}-\overrightarrow{b}$ такий, що $\overrightarrow{b}+\overrightarrow{c}=\overrightarrow{a}$.

Зауважимо, що у паралелограмі, побудованому на векторах \overrightarrow{a} та \overrightarrow{b} одна направлена діагональ є сумою векторів \overrightarrow{a} та \overrightarrow{b} , а інша — різницею.

Добутком вектора \overrightarrow{a} на скаляр (число) λ називається вектор $\lambda \overrightarrow{a}$, який має довжину $|\lambda| \cdot |\overrightarrow{a}|$, колінеарний вектору \overrightarrow{a} , причому співнаправлений з вектором \overrightarrow{a} , якщо $\lambda > 0$, і протилежного з вектором \overrightarrow{a} напрямку, якщо $\lambda < 0$.

 $\Pi pu\kappa na\partial$ 6.1. Для вектора \overrightarrow{a} на малюнку зображено вектори $-2\overrightarrow{a}$ та $3\overrightarrow{a}$.

Властивості добутку вектора на число:

- 1) Якщо $\overrightarrow{b} = \lambda \overrightarrow{a}$, то $\overrightarrow{b} \parallel \overrightarrow{a}$. Навпаки, якщо $\overrightarrow{b} \parallel \overrightarrow{a}$, $(\overrightarrow{a} \neq \overrightarrow{0})$, то існує деяке число $\lambda \neq 0$ таке, що $\overrightarrow{b} = \lambda \overrightarrow{a}$.
 - **2)** Для будь-якого вектора \overrightarrow{a} виконується $\overrightarrow{a} = |\overrightarrow{a}| \cdot \overrightarrow{a}^0$.

Властивості лінійних операцій над векторами:

1)
$$\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a}$$
;

2)
$$\overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c}) = (\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c};$$

- 3) $\lambda_1(\lambda_2 \overrightarrow{a}) = (\lambda_1 \lambda_2) \overrightarrow{a};$
- 4) $(\lambda_1 + \lambda_2)\overrightarrow{a} = \lambda_1 \overrightarrow{a} + \lambda_2 \overrightarrow{a};$ 5) $\lambda(\overrightarrow{a} + \overrightarrow{b}) = \lambda \overrightarrow{a} + \lambda \overrightarrow{b}.$

Проекція вектора на вісь. 6.3

Нехай у просторі задана вісь l, тобто напрямлена пряма.

Означення 6.9. Проекцією точки M на вісь l називається основа M_1 перпендикуляра MM_1 , опущеного з точки M на вісь l.

Точка M_1 є точкою перетину осі l з площиною, яка проходить через точку Mперпендикулярно осі l.

Якщо точка M лежить на осі l, то проекція точки M співпадає з M.

Нехай \overrightarrow{AB} - довільний вектор $(\overrightarrow{AB} \neq \overrightarrow{0})$. Позначимо через A_1 і B_1 проекції на вісь l відповідно початку A і кінця B вектору \overrightarrow{AB} , і розглянемо вектор $\overrightarrow{A_1B_1}$.

Означення 6.10. Проекцією вектора \overrightarrow{AB} на вісь l називається додатнє число $|\overrightarrow{A_1B_1}|$, якщо ветор $\overrightarrow{A_1B_1}$ та вісь l співнаправлені, і від'ємне число $-|\overrightarrow{A_1B_1}|$, якщо ветор $|\overrightarrow{A_1B_1}|$ та вісь l протилежно направлені. Якщо точки A_1 і B_1 співпадають $(\overrightarrow{A_1B_1} = \overrightarrow{0})$, тоді проекція вектора $|\overrightarrow{AB}|$ на вісь l дорівнює нулю.

Проекція вектора \overrightarrow{AB} на вісь l позначається так: $np_l\overrightarrow{AB}$. Якщо $\overrightarrow{AB}=\overrightarrow{0}$ або $\overrightarrow{AB} \perp l$, to $np_l \overrightarrow{AB} = 0$.

Кут між вектором \overrightarrow{AB} та віссю l будемо позначати φ . Очевидно, $0 \le \varphi \le \pi$.

Властивості проекції вектора на вісь

Властивість 1. Проекція вектора \overrightarrow{a} на вісь l дорівнює добутку модуля вектора \overrightarrow{a} на косинус кута φ між вектором \overrightarrow{a} та віссю l, тобто $np_l \overrightarrow{a} = |\overrightarrow{a}| \cos \varphi$.

Доведення. Якщо $\varphi=(\overrightarrow{a}, \overrightarrow{l})<\frac{\pi}{2}$, то $np_{l}\overrightarrow{a}=+|\overrightarrow{a}_{1}|=|\overrightarrow{a}|\cos\varphi$. Якщо $\varphi=(\overrightarrow{a}, \overrightarrow{l})>\frac{\pi}{2}$, то $np_{l}\overrightarrow{a}=-|\overrightarrow{a}_{1}|=-|\overrightarrow{a}|\cos(\pi-\varphi)=|\overrightarrow{a}|\cos\varphi$. Якщо $\varphi=(\overrightarrow{a}, \overrightarrow{l})=\frac{\pi}{2}$, то $np_{l}\overrightarrow{a}=0=|\overrightarrow{a}|\cos\varphi$.

Наслідок 1 *з властивості* 1: Проекція вектора на вісь додатня (від'ємна), якщо вектор утворює з віссю гострий (тупий) кут, і дорівнює нулю, якщо цей кут — прямий.

Наслідок 2 *з властивості* 1: Проекції рівних векторів на одну і ту саму вісь є рівними між собою.

Властивість 2. Проекція суми векторів на одну і ту ж саму вісь дорівнює сумі їх проекцій на цю вісь, тобто $np_l(\overrightarrow{d} + \overrightarrow{b}) = np_l \overrightarrow{d} + np_l \overrightarrow{b}$.

 \mathcal{A} оведення. Нехай задано два вектори \overrightarrow{a} і \overrightarrow{b} . Помістимо початок вектора \overrightarrow{b} у кінець вектора \overrightarrow{a} . Якщо $\varphi_1=(\overrightarrow{a},l)<\frac{\pi}{2}$, і $\varphi_2=(\overrightarrow{b},l)<\frac{\pi}{2}$, то $np_l\overrightarrow{a}=+|\overrightarrow{a}_1|$, і $np_l\overrightarrow{b}=+|\overrightarrow{b}_1|$. Крім того, $np_l(\overrightarrow{a}+\overrightarrow{b})=|\overrightarrow{a}_1|+|\overrightarrow{b}_1|$. Отже, властивість 2) у цьому випадку виконується.

Якщо $\varphi_1 = (\overrightarrow{d}, \overrightarrow{l}) > \frac{\pi}{2}$, і $\varphi_2 = (\overrightarrow{b}, \overrightarrow{l}) > \frac{\pi}{2}$, то, очевидно, $np_l \overrightarrow{d} = -|\overrightarrow{d}_1|$ і $np_l \overrightarrow{b} = -|\overrightarrow{b}_1|$. Крім того, $np_l(\overrightarrow{d} + \overrightarrow{b}) = -|\overrightarrow{d}_1| - |\overrightarrow{b}_1|$. Отже, властивість 2) у цьому випадку також виконується.

випадку також виконується.
Аналогічно, якщо
$$\varphi_1 = (\overrightarrow{a}, \overrightarrow{l}) < \frac{\pi}{2}$$
, а $\varphi_2 = (\overrightarrow{b}, \overrightarrow{l}) > \frac{\pi}{2}$, то $np_l \overrightarrow{a} = |\overrightarrow{a}_1|$ і $np_l \overrightarrow{b} = -|\overrightarrow{b}_1|$. Крім того, $np_l(\overrightarrow{a} + \overrightarrow{b}) = |\overrightarrow{a}_1| - |\overrightarrow{b}_1|$.

Властивість 3. При множенні вектора \overrightarrow{a} на число λ його проекція на вісь l також множиться на це число, тобто $np_l(\lambda \overrightarrow{a}) = \lambda \cdot np_l \overrightarrow{a}$.

Доведення. При
$$\lambda > 0$$
 маємо $np_l(\lambda \cdot \overrightarrow{a}) = |\lambda \cdot \overrightarrow{a}| \cdot \cos \varphi = \lambda \cdot |\overrightarrow{a}| \cdot \cos \varphi = \lambda \cdot np_l \overrightarrow{a}$. При $\lambda < 0$ маємо $np_l(\lambda \cdot \overrightarrow{a}) = |\lambda \cdot \overrightarrow{a}| \cdot \cos(\pi - \varphi) = -\lambda \cdot |\overrightarrow{a}| \cdot (-\cos \varphi) = \lambda \cdot np_l \overrightarrow{a}$. При $\lambda = 0$, справедливість властивості 3) очевидна.

Таким чином, лінійні операції над векторами породжують відповідні лінійні операції над їх проекціями.

6.4 Розклад вектора по ортах координатних осей. Модуль вектора. Напрямні косинуси.

Розглянемо у просторі \mathbb{R}^3 прямокутну декартову систему координат Oxyz. Виділимо на осях Ox, Oy, Oz одиничні вектори (орти), які позначаються \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} відповідно. Виберемо довільний вектор \overrightarrow{a} простору та перенесемо його початок у початок координат: $\overrightarrow{a} = \overrightarrow{OM}$.

Знайдемо проекції вектора \overrightarrow{d} на координатні осі. Для цього проведемо через кінець M вектора \overrightarrow{OM} площини, паралельні координатним площинам. Точки перетину цих площин з координатними осями позначимо M_1 , M_2 та M_3 відповідно.

Отримаємо прямокутний паралелепіпед, однією з діагоналей якого є вектор \overrightarrow{OM} . Тоді $np_{Ox}\overrightarrow{a}=|\overrightarrow{OM_1}|,\ np_{Oy}\overrightarrow{a}=|\overrightarrow{OM_2}|$ та $np_{Oz}\overrightarrow{a}=|\overrightarrow{OM_3}|$. Крім того,

$$\overrightarrow{a} = \overrightarrow{OM_1} + \overrightarrow{OM_2} + \overrightarrow{OM_3}.$$

Але $\overrightarrow{OM_1} = |\overrightarrow{OM_1}| \cdot \overrightarrow{i}$, $\overrightarrow{OM_2} = |\overrightarrow{OM_2}| \cdot \overrightarrow{j}$, $\overrightarrow{OM_3} = |\overrightarrow{OM_3}| \cdot \overrightarrow{k}$. Позначимо $|\overrightarrow{OM_1}| = a_x$, $|\overrightarrow{OM_2}| = a_y$ та $|\overrightarrow{OM_3}| = a_z$. Тоді

$$\overrightarrow{a} = a_x \overrightarrow{i} + a_y \overrightarrow{j} + a_z \overrightarrow{k}. \tag{6.1}$$

Рівність (6.1) називається розкладом вектора по ортах координатних осей, а числа a_x , a_y , a_z — координатами вектора. Таким чином, координати вектора є його проекції на відповідні координатні осі. Рівність (6.1) часто записують у скороченій формі наступним чином: $\overrightarrow{a} = (a_x, a_y, a_z)$.

За відомими координатами вектора легко знайти його модуль. Оскільки вектор \overrightarrow{a} є діагоналлю прямокутного паралелепіпеда, то $|\overrightarrow{OM}|^2 = |\overrightarrow{OM_1}|^2 + |\overrightarrow{OM_2}|^2 + |\overrightarrow{OM_3}|^2$, тобто

$$|\overrightarrow{a}|^2 = |a_x|^2 + |a_y|^2 + |a_z|^2$$

звідки

$$|\overrightarrow{a}| = \sqrt{|a_x|^2 + |a_y|^2 + |a_z|^2}.$$

Отже, модуль вектора дорівнює квадратному кореню з суми квадратів його проекцій на координатна осі.

Нехай кути вектора \overrightarrow{a} з осями Ox, Oy та Oz відповідно дорівнюють α , β та γ . З властивості 1 проекції вектора на вісь, маємо

$$a_x = |\overrightarrow{a}| \cdot \cos \alpha, \quad a_y = |\overrightarrow{a}| \cdot \cos \beta, \quad a_z = |\overrightarrow{a}| \cdot \cos \gamma.$$

Звідси випливає, що

$$\cos \alpha = \frac{a_x}{|\overrightarrow{a}|}, \quad \cos \beta = \frac{a_y}{|\overrightarrow{a}|}, \quad \cos \gamma = \frac{a_z}{|\overrightarrow{a}|}.$$

Числа $\cos \alpha$, $\cos \beta$, $\cos \gamma$ називаються напрямними косинусами вектора \overrightarrow{a} . Напрямні косинуси вектора задавольняють співвідношення:

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1.$$

Підкреслимо, що координатами орта \overrightarrow{a}^0 вектора \overrightarrow{a} є напрямні косинуси вектора \overrightarrow{a} , тобто $\overrightarrow{a}^0 = (\cos \alpha, \cos \beta, \cos \gamma)$.

Зауважимо, що згідно з введеним поняттям координат геометричного вектора, орти осей Ox, Oy, Oz відповідно мають координати: $\overrightarrow{i}=(1,0,0), \ \overrightarrow{j}=(0,1,0), \ \overrightarrow{k}=(0,0,1).$

6.5 Дії над векторами, заданими проекціями.

Нехай вектори $\overrightarrow{a}=(a_x,a_y,a_z)$ та $\overrightarrow{b}=(b_x,b_y,b_z)$ задані своїми проєкціями на осі координат $Ox,\,Oy,\,Oz,$ або що теж саме

$$\overrightarrow{a} = a_x \overrightarrow{i} + a_y \overrightarrow{j} + a_z \overrightarrow{k}, \quad \overrightarrow{b} = b_x \overrightarrow{i} + b_y \overrightarrow{j} + b_z \overrightarrow{k}.$$

Лінійні операції над векторами зводяться до відповідних лінійних операцій над їх проекціями, тобто

1) $\overrightarrow{a} \pm \overrightarrow{b} = (a_x \pm b_x)\overrightarrow{i} + (a_y \pm b_y)\overrightarrow{j} + (a_z \pm b_z)\overrightarrow{k}$, або скорочено $\overrightarrow{a} \pm \overrightarrow{b} = (a_x \pm b_x, a_y \pm b_y, a_z \pm b_z)$;

 $(a_x \pm b_x, a_y \pm b_y, a_z \pm b_z);$ 2) $\lambda \overrightarrow{a} = \lambda a_x \overrightarrow{i} + \lambda a_y \overrightarrow{j} + \lambda a_z \overrightarrow{k}$, або скорочено $\lambda \overrightarrow{a} = (\lambda a_x, \lambda a_y, \lambda a_z).$

Рівність векторів. Два вектора $\overrightarrow{a}=(a_x,a_y,a_z)$ та $\overrightarrow{b}=(b_x,b_y,b_z)$ рівні тоді і тільки тоді, коли

$$a_x = b_x$$
, $a_y = b_y$, $a_z = b_z$.

Умова колінеарності векторів. Оскільки $\overrightarrow{a}||\overrightarrow{b}$, то існує деяке число λ таке, що $\overrightarrow{a}=\lambda \overrightarrow{b}$, тобто

$$a_x \overrightarrow{i} + a_y \overrightarrow{j} + a_z \overrightarrow{k} = \lambda b_x \overrightarrow{i} + \lambda b_y \overrightarrow{j} + \lambda b_z \overrightarrow{k}.$$

Звідси отримаємо, що $a_x=\lambda b_x, \ a_y=\lambda b_y, \ a_z=\lambda b_z,$ а отже

$$\frac{a_x}{b_x} = \frac{a_y}{b_y} = \frac{a_z}{b_z} = \lambda.$$

Таким чином, проекції колінеарних векторів пропорційні. Обернене твердження також вірне: якщо вектори мають пропорційні координати, то вони колінеарні.

6.6 Координати точки.

Розглянемо у просторі прямокутну систему координат Oxyz. Для будь-якої точки M простору координати вектора \overrightarrow{OM} називаються координатами точки M. Ве-

ктор \overrightarrow{OM} називається радіус-вектором точки M та позначається $\overrightarrow{OM} = \overrightarrow{r}$. Таким чином, координати точки — це координати її радіус-вектора $\overrightarrow{r} = (x,y,z)$:

$$\overrightarrow{r} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$$
.

Координати точки M записуються у вигляді: M(x, y, z).

6.7 Координати вектора.

Знайдемо координати вектора \overrightarrow{AB} , якщо відомі координати точок $A(x_1,y_1,z_1)$ та $B(x_2,y_2,z_2)$. Маємо

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (x_2 \overrightarrow{i} + y_2 \overrightarrow{j} + z_2 \overrightarrow{k}) - (x_1 \overrightarrow{i} + y_1 \overrightarrow{j} + z_1 \overrightarrow{k}) =$$

$$= (x_2 - x_1) \overrightarrow{i} + (y_2 - y_1) \overrightarrow{j} + (z_2 - z_1) \overrightarrow{k}.$$

Таким чином, координати вектора дорівнюють різниці відповідних координат його кінця та початку:

$$\overrightarrow{AB} = ((x_2 - x_1), (y_2 - y_1), (z_2 - z_1)).$$

7 Лінійна залежність, назалежність системи векторів. База (базис) системи векторів. Базис на площині і в просторі. Скалярний добуток векторів, його властивості

7.1 Лінійна залежність і незалежність системи векторів.

У минулій лекції розглядалися геометричні вектори, задані переважно у просторі \mathbb{R}^3 . Для таких векторів було встановлено, що вектор однозначно задається своїми проекціями (координатами) у введеній системі координат. Таким чином, можна вважати, що вектор у просторі \mathbb{R}^3 — це впорядкований набір трьох чисел, записаних у вигляді рядка: $\overrightarrow{a} = (a_x, a_y, a_z)$.

Узагальнимо поняття вектора. Нехай у деякому просторі введено систему координат. Під вектором будемо розуміти впорядкований набір n чисел (координат), записаних у вигляді рядка: $\overrightarrow{a} = \left(a_1, a_2, ..., a_n\right)$. Якщо вектор має n координат будемо казати, що він заданий у деякому n-вимірному просторі.

Нехай у деякому n-вимірному просторі із введеною системою координат задано вектори $\overrightarrow{a}_1, \overrightarrow{a}_2, ..., \overrightarrow{a}_m$.

Означення 7.1. Система векторів \overrightarrow{a}_1 , \overrightarrow{a}_2 ,..., \overrightarrow{a}_m називається *лінійно залежною*, якщо існують такі дійсні числа c_1 , c_2 ,..., c_m , хоча б одне з яких не дорівнює нулю, що

$$c_1 \overrightarrow{a}_1 + c_2 \overrightarrow{a}_2 + \dots + c_m \overrightarrow{a}_m = \overrightarrow{0}. \tag{7.1}$$

Якщо рівність (7.1) виконується тільки, коли всі $c_1 = c_2 = ... = c_m = 0$, то система векторів \overrightarrow{a}_1 , \overrightarrow{a}_2 ,..., \overrightarrow{a}_m називається лінійно незалежною.

Властивості лінійної залежності і незалежності векторів

Властивість 1. Якщо серед векторів \overrightarrow{a}_1 , \overrightarrow{a}_2 ,..., \overrightarrow{a}_m є нульовий вектор, то система векторів є лінійно залежною.

Доведення. Нехай вектор $\overrightarrow{a}_m = \overrightarrow{0}$. Тоді існують дійсні числа $c_1, c_2,...,c_{m-1}, c_m,$ причому принаймні одне з них не рівне нулю: $c_m \neq 0$ (наприклад, покладемо $c_m =$

1), що

$$c_1 \overrightarrow{a}_1 + c_2 \overrightarrow{a}_2 + \dots + c_{m-1} \overrightarrow{a}_{m-1} + 1 \cdot \overrightarrow{0} = \overrightarrow{0}.$$

Отже, вектори \overrightarrow{a}_1 , \overrightarrow{a}_2 ,..., \overrightarrow{a}_m — лінійно залежні.

Властивість 2. Якщо вектори \overrightarrow{a}_1 , $\overrightarrow{a}_2,...,\overrightarrow{a}_k$, $(k \leq m)$ системи векторів \overrightarrow{a}_1 , $\overrightarrow{a}_2,...,\overrightarrow{a}_m$ є лінійно залежними, то і всі вектори \overrightarrow{a}_1 , $\overrightarrow{a}_2,...,\overrightarrow{a}_m$ цієї системи є лінійно залежними.

 \mathcal{A} оведення. Оскільки вектори \overrightarrow{a}_1 , \overrightarrow{a}_2 ,..., \overrightarrow{a}_k — лінійно залежні, то за означенням існують такі дійсні числа c_1 , c_2 ,..., c_k , серед яких є принаймні одне число не рівне нулю, що

$$c_1 \overrightarrow{a}_1 + c_2 \overrightarrow{a}_2 + \dots + c_k \overrightarrow{a}_k = \overrightarrow{0}$$
.

Покладемо $c_{k+1} = c_{k+2} = \dots = c_m = 0$. Тоді

$$c_1 \overrightarrow{a}_1 + c_2 \overrightarrow{a}_2 + \dots + c_k \overrightarrow{a}_k + 0 \overrightarrow{a}_{k+1} + 0 \overrightarrow{a}_{k+2} + \dots + 0 \overrightarrow{a}_m = \overrightarrow{0}.$$

Таким чином, система векторів $\overrightarrow{a}_1, \ \overrightarrow{a}_2, ..., \overrightarrow{a}_m$ — лінійно залежна.

Безпосередньо з властивості 2) випливає, що якщо до системи векторів, які є лінійно залежними, додати будь-які вектори, то система векторів залишиться лінійно залежною.

Теорема 7.1. Для того, щоб вектори \overrightarrow{a}_1 , \overrightarrow{a}_2 ,..., \overrightarrow{a}_m були лінійно залежними, необхідно і достатньо, щоб один з них був лінійною комбінацією інших векторів системи.

 \mathcal{A} оведення. Доведемо необхідність. Нехай вектори \overrightarrow{a}_1 , \overrightarrow{a}_2 ,..., \overrightarrow{a}_m — лінійно залежні. Тоді за означенням існують такі числа c_1 , c_2 ,..., c_m , серед яких хоча б одне не рівне нулю, що

$$c_1 \overrightarrow{a}_1 + c_2 \overrightarrow{a}_2 + \dots + c_m \overrightarrow{a}_m = \overrightarrow{0}.$$

Не обмежуючи загальності, будемо вважати, що $c_m \neq 0$. Тоді

$$\overrightarrow{a}_m = -\frac{c_1}{c_m} \overrightarrow{a}_1 - \frac{c_2}{c_m} \overrightarrow{a}_2 - \dots - \frac{c_{m-1}}{c_m} \overrightarrow{a}_{m-1},$$

тобто вектор \overrightarrow{a}_m є лінійною комбінацією векторів $\overrightarrow{a}_1, \ \overrightarrow{a}_2, ..., \overrightarrow{a}_{m-1}.$

Доведемо достатність. Нехай вектор \overrightarrow{d}_m є лінійною комбінацією векторів $\overrightarrow{d}_2,...,\overrightarrow{d}_{m-1},$ тобто

$$\overrightarrow{a}_m = c_1 \overrightarrow{a}_1 + c_2 \overrightarrow{a}_2 + \dots + c_{m-1} \overrightarrow{a}_{m-1},$$

для деяких дійсних чисел $c_1, c_2, ..., c_{m-1}$. Але тоді

$$c_1 \overrightarrow{a}_1 + c_2 \overrightarrow{a}_2 + \dots + c_{m-1} \overrightarrow{a}_{m-1} - \overrightarrow{a}_m = \overrightarrow{0},$$

звідки випливає, що вектори \overrightarrow{a}_1 , \overrightarrow{a}_2 ,..., \overrightarrow{a}_m — лінійно залежні.

Наслідок 7.1. Система, що складається з одного вектора, лінійно залежна тоді і тільки тоді, коли цей вектор — нульовий.

Доведення. Безпосередньо випливає з теореми 7.1, оскільки $\lambda \cdot \overrightarrow{0} = \overrightarrow{0}$ для будьякого $\lambda \in \mathbb{R}$.

Наслідок 7.2. Система двох векторів є лінійно залежною тоді і тільки тоді, коли ці вектори - колінеарні.

Доведення. Безпосередньо випливає з теореми 7.1, оскільки два ненульових вектори \overrightarrow{a} та \overrightarrow{b} колінеарні $(\overrightarrow{a} || \overrightarrow{b})$ тоді і тільки тоді, коли існує деяке дійсне число $\lambda \neq 0$ таке, що $\overrightarrow{a} = \lambda \overrightarrow{b}$.

Наслідок 7.3. Система трьох векторів \overrightarrow{a} , \overrightarrow{b} та \overrightarrow{c} є лінійно залежною тоді і тільки тоді, коли ці вектори компланарні. При цьому, третій вектор є лінійною комбінацією двох інших, тобто існують $\alpha, \beta \in \mathbb{R}$ такі, що $\overrightarrow{c} = \alpha \overrightarrow{a} + \beta \overrightarrow{b}$.

 \mathcal{A} оведення. Доведемо необхідність. Нехай три вектори \overrightarrow{a} , \overrightarrow{b} та \overrightarrow{c} — лінійно залежні. Тоді α_1 \overrightarrow{a} + α_2 \overrightarrow{b} + α_3 \overrightarrow{c} = $\overrightarrow{0}$, для деяких дійсних чисел α_1 , α_2 , α_3 . Не обмежуючи загальності, будемо вважати, що $\alpha_3 \neq 0$. Звідси випливає, що $\overrightarrow{c} = \alpha \overrightarrow{a} + \beta \overrightarrow{b}$, де $\alpha = -\frac{\alpha_1}{\alpha_3}$, $\beta = -\frac{\alpha_2}{\alpha_3}$. Отже, вектор \overrightarrow{c} розкладається за векторами \overrightarrow{a} і \overrightarrow{b} . Звідси випливає, що вектори \overrightarrow{a} , \overrightarrow{b} та \overrightarrow{c} компланарні.

Доведемо достатність. Нехай вектори \overrightarrow{a} , \overrightarrow{b} та \overrightarrow{c} компланарні. Якщо серед трьох векторів є принаймні два колінеарних, то з властивості 2 та наслідку 2 випливає, що всі три вектори є лінійно залежними. Тому будемо припускати, що вектори \overrightarrow{a} , \overrightarrow{b} та \overrightarrow{c} не є попарно колінеарними. Помістимо початки векторів \overrightarrow{a} , \overrightarrow{b} та \overrightarrow{c} у спільну точку O площини.

Проведемо через кінець C вектора \overrightarrow{c} пряму, паралельну вектору \overrightarrow{b} , до перетину в точці P з прямою, на якій лежить вектор \overrightarrow{a} . Тоді $\overrightarrow{OC} = \overrightarrow{OP} + \overrightarrow{PC}$, причому вектори \overrightarrow{OP} і \overrightarrow{PC} колінеарні відповідно векторам \overrightarrow{a} та \overrightarrow{b} . Таким чином, існують числа $\alpha, \beta \in \mathbb{R}$ такі, що $\overrightarrow{OP} = \alpha \overrightarrow{a}$ и $\overrightarrow{PC} = \beta \overrightarrow{b}$. Отже, $\overrightarrow{c} = \alpha \overrightarrow{a} + \beta \overrightarrow{b}$, тобто вектори \overrightarrow{a} , \overrightarrow{b} та \overrightarrow{c} — лінійно залежні.

З наслідку 7.3 випливає, що *будь-який вектор площини можна розкласти за двома неколінеарними векторами*. Отже, будь-які три вектори, що лежать у одній площині, — лінійно залежні.

Наслідок 7.4. Будь-які чотири вектори \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} та \overrightarrow{d} простору \mathbb{R}^3 е лінійно залежними, тобто четвертий вектор є лінійною комбінацією трьох інших:

$$\overrightarrow{d} = \alpha \overrightarrow{a} + \beta \overrightarrow{b} + \gamma \overrightarrow{c},$$

для деяких $\alpha, \beta, \gamma \in \mathbb{R}$.

Доведення. Нехай вектори \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} — некомпланарні. Інакше за наслідком 3 вони є лінійно залежними, а значить і всі чотири вектори є лінійно залежними.

Помістимо початки всіх векторів у спільну точку O простору та проведемо через кінець D вектора \overrightarrow{d} пряму, паралельну вектору \overrightarrow{c} , до перетину у точці P з площиною, на якій лежать вектори \overrightarrow{d} і \overrightarrow{b} .

Тоді $\overrightarrow{OD} = \overrightarrow{OP} + \overrightarrow{PD}$, причому \overrightarrow{OP} компланарний векторам \overrightarrow{a} і \overrightarrow{b} , а \overrightarrow{PD} колінеарний вектору \overrightarrow{c} . Але згідно з наслідком 7.3 вектор \overrightarrow{OP} розкладається за векторами

 \overrightarrow{d} і \overrightarrow{b} , а вектор \overrightarrow{PD} — за вектором \overrightarrow{c} . Таким чином, існують числа $\alpha,\beta,\gamma\in\mathbb{R}$ такі, що $\overrightarrow{d}=\alpha\overrightarrow{d}+\beta\overrightarrow{b}+\gamma\overrightarrow{c}$, тобто вектори \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , \overrightarrow{d} — лінійно залежні. \square

7.2 База (базис) системи векторів.

Означення 7.2. *Базою* або *базисом* системи векторів \overrightarrow{a}_1 , \overrightarrow{a}_2 ,..., \overrightarrow{a}_m називається така її підсистема \overrightarrow{a}_1 , \overrightarrow{a}_2 ,..., \overrightarrow{a}_k $(k \le m)$, що

- а) вектори цієї підсистеми є лінійно незалежними;
- б) будь-який інший вектор системи є лінійною комбінацією векторів \overrightarrow{a}_1 , $\overrightarrow{a}_2,...,\overrightarrow{a}_k$, тобто для всіх $k+1\leq l\leq m$,

$$\overrightarrow{a}_{l} = c_{1} \overrightarrow{a}_{1} + c_{2} \overrightarrow{a}_{2} + \dots + c_{k} \overrightarrow{a}_{k}, \tag{7.2}$$

де $c_1, c_2,...,c_k$ — деякі дійсні числа.

При цьому рівність (7.2) називається розкладом вектора \overrightarrow{a}_l за базисом \overrightarrow{a}_1 , $\overrightarrow{a}_2,...,\overrightarrow{a}_k$, числа $c_1, c_2,...,c_k - \kappa oop \partial u hamamu вектора <math>\overrightarrow{a}_l$ у цьому базисі.

Теорема 7.2. Система m векторів $\overrightarrow{a}_1 = (a_{11}, a_{12}, ..., a_{1n}), \overrightarrow{a}_2 = (a_{21}, a_{22}, ..., a_{2n}), ..., \overrightarrow{a}_m = (a_{m1}, a_{m2}, ..., a_{mn})$ містить базис, що складається з k векторів системи $(k \leq m)$, якщо ранг матриці, рядками якої є координати векторів системи,

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

дорівнює k. При цьому до базису входять ті вектори системи, координати яких утворюють базисний мінор матриці A.

Приклад 7.1. З'ясувати, які з векторів системи: $\overrightarrow{a}_1 = (1, 2, 0, 0)$, $\overrightarrow{a}_2 = (1, 2, 3, 4)$, $\overrightarrow{a}_3 = (3, 6, 0, 0)$ утворюють базис.

Складемо матрицю з координат векторів системи і зведемо її до східчастого вигляду:

$$A = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 1 & 2 & 3 & 4 \\ 3 & 6 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Ранг матриці r(A)=2, а отже з трьох заданих векторів \overrightarrow{a}_1 , \overrightarrow{a}_2 , \overrightarrow{a}_3 базис утворюють вектори \overrightarrow{a}_1 і \overrightarrow{a}_2 , а вектор \overrightarrow{a}_3 лінійно виражається через вектори \overrightarrow{a}_1 і \overrightarrow{a}_2 , тобто існують дійсні числа α і β такі, що $\overrightarrow{a}_3=\alpha\overrightarrow{a}_1+\beta\overrightarrow{a}_2$. Очевидно, в цьому випадку $\alpha=3$ і $\beta=0$.

Наслідок 7.5. Система п векторів $\overrightarrow{a}_1 = (a_{11}, a_{12}, ..., a_{1n}), \overrightarrow{a}_2 = (a_{21}, a_{22}, ..., a_{2n}), ..., \overrightarrow{a}_n = (a_{n1}, a_{n2}, ..., a_{nn})$ є лінійно незалежною, тобто сама є базисом, тоді і тільки тоді, коли визначник, рядками якого є координати векторів системи, не дорівнює нулю, тобто

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} \neq 0.$$

З наслідків 7.1–7.4 випливає, що серед всіх векторів, заданих у одновимірному просторі (на прямій) базис складається з одного ненульового вектора. Серед всіх векторів, заданих на площині, базис складається з двох неколінеарних векторів. Серед всіх векторів, заданих у тривимірному просторі, базис складається з трьох некомпланарних векторів.

Серед найрізноманітніших базисів особливу роль відіграють ті, у яких базисні вектори взаємно перпендикулярні і мають одиничну довжину. Такі базиси називають *ортонормованими*. На площині — це система двох векторів $\overrightarrow{e}_1 = (1,0)$ і $\overrightarrow{e}_2 = (0,1)$. У просторі \mathbb{R}^3 — це система трьох векторів $\overrightarrow{i} = (1,0,0)$, $\overrightarrow{j} = (0,1,0)$, $\overrightarrow{k} = (0,0,1)$.

Приклад 7.2. Переконатися, що система векторів $\overrightarrow{a}=(2,3,1), \ \overrightarrow{b}=(5,7,0), \ \overrightarrow{c}=(3,-2,4)$ утворює базис у множині всіх векторів простору, і знайти розклад вектора $\overrightarrow{d}=(4,12,-3)$ у цьому базисі.

Зауважимо, що всі чотири вектори задані у ортонормованому базисі $\overrightarrow{i} = (1,0,0), \overrightarrow{j} = (0,1,0), \overrightarrow{k} = (0,0,1): \overrightarrow{a} = 2\overrightarrow{i} + 3\overrightarrow{j} + \overrightarrow{k}, \overrightarrow{b} = 5\overrightarrow{i} + 7\overrightarrow{j}, \overrightarrow{c} = 3\overrightarrow{i} - 2\overrightarrow{j} + 4\overrightarrow{k}, i \overrightarrow{d} = 4\overrightarrow{i} + 12\overrightarrow{j} - 3\overrightarrow{k}.$

Спочатку переконаємось, що вектори \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} є лінійно незалежними тобто утворюють базис. Для цього складемо і обчислимо визначник з координат векторів

 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} :

$$\begin{vmatrix} 2 & 3 & 1 \\ 5 & 7 & 0 \\ 3 & -2 & 4 \end{vmatrix} = -63 \neq 0.$$

Тому за наслідком 7.5 вектори \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} є лінійно незалежними, тобто утворюють базис у множині всіх векторів простору.

Нехай α,β,γ — координати вектора \overrightarrow{d} у базисі \overrightarrow{d} , \overrightarrow{b} , \overrightarrow{c} , тобто

$$\overrightarrow{d} = \alpha \overrightarrow{a} + \beta \overrightarrow{b} + \gamma \overrightarrow{c}.$$

Розпишемо цю рівність

$$(4, 12, -3) = \alpha(2, 3, 1) + \beta(5, 7, 0) + \gamma(3, -2, 4),$$

звідки

$$\begin{cases} 2\alpha + 5\beta + 3\gamma = 4, \\ 3\alpha + 7\beta - 2\gamma = 12, \\ \alpha + 4\gamma = -3. \end{cases}$$

Розв'язуючи цю СЛАР, отримаємо $\alpha=1,\,\beta=1,\,\gamma=-1,$ тобто розклад вектора \overrightarrow{d} за базисом $\overrightarrow{d},\,\overrightarrow{b},\,\overrightarrow{c}$ має вигляд:

$$\overrightarrow{d} = \overrightarrow{a} + \overrightarrow{b} - \overrightarrow{c}$$
.

7.3 Скалярний добуток векторів, його властивості.

Означення 7.3. Скалярним добутком двох ненульових векторів \overrightarrow{a} та \overrightarrow{b} називається число, що дорівнює добутку модулів цих векторів на косинус кута між ними (позначається $\overrightarrow{a} \cdot \overrightarrow{b}$ або $(\overrightarrow{a}, \overrightarrow{b})$), тобто

$$\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \cos \varphi,$$

де
$$\varphi = (\widehat{\overrightarrow{a}, \overrightarrow{b}}).$$

З означення проеції вектора на вісь випливає, що $|\overrightarrow{a}| \cdot \cos \varphi = np_{\overrightarrow{b}} \overrightarrow{a}$, і $|\overrightarrow{b}| \cdot \cos \varphi = np_{\overrightarrow{d}} \overrightarrow{b}$, а отже

$$\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{b}| \cdot np_{\overrightarrow{b}} \overrightarrow{a} = |\overrightarrow{a}| \cdot np_{\overrightarrow{d}} \overrightarrow{b},$$

тобто скалярний добуток двох векторів дорівнює модулю одного з них, помноженому на проекцію цього вектора на вісь співнаправлену з іншим вектором.

Властивості скалярного добутку

Властивість 1. $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$ (комутативність скалярного добутку).

$$\mathcal{A}$$
оведення. Дійсно, $\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \cos(\widehat{\overrightarrow{a}}, \overline{\overrightarrow{b}}) = |\overrightarrow{b}| \cdot |\overrightarrow{a}| \cdot \cos(\widehat{\overrightarrow{b}}, \overline{a}) = \overrightarrow{b} \cdot \overrightarrow{a}$. \square

Властивість 2. $(\lambda \overrightarrow{a}) \cdot \overrightarrow{b} = \lambda \cdot (\overrightarrow{a} \cdot \overrightarrow{b})$ (асоціативність скалярного добутку відносно числового множника).

Доведення.
$$(\lambda \overrightarrow{a}) \cdot \overrightarrow{b} = |\overrightarrow{b}| \cdot np_{\overrightarrow{b}}(\lambda \overrightarrow{a}) = \lambda \cdot |\overrightarrow{b}| \cdot np_{\overrightarrow{b}}(\overrightarrow{a}) = \lambda \cdot |\overrightarrow{b}| \cdot |\overrightarrow{a}| \cdot \cos(\overrightarrow{a}, \overrightarrow{b}) = \lambda \cdot (\overrightarrow{a} \cdot \overrightarrow{b}).$$

Властивість 3. $\overrightarrow{a} \cdot (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{a} \cdot \overrightarrow{c}$ (дистрибутивність скалярного добутку).

Доведення. Дійсно,
$$\overrightarrow{a} \cdot (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \cdot np_{\overrightarrow{a}}(\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \cdot np_{\overrightarrow{a}}\overrightarrow{b} + \overrightarrow{a} \cdot np_{\overrightarrow{a}}\overrightarrow{b} + \overrightarrow{a} \cdot np_{\overrightarrow{a}}\overrightarrow{c} = \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{a} \cdot \overrightarrow{c}$$
.

Властивість 4. $\overrightarrow{a}^2 = |\overrightarrow{a}|^2$.

$$\mathcal{A}$$
оведення. Дійсно, $\overrightarrow{a}^2 = \overrightarrow{a} \cdot \overrightarrow{a} = |\overrightarrow{a}| \cdot |\overrightarrow{a}| \cdot \cos 0^\circ = |\overrightarrow{a}| \cdot |\overrightarrow{a}| = |\overrightarrow{a}|^2$.

Зокрема, з властивості 4 випливає, що для будь-якого вектора \overrightarrow{d} скалярний добуток $\overrightarrow{a} \cdot \overrightarrow{a} \geq 0$. При цьому, $\overrightarrow{a} \cdot \overrightarrow{a} = 0$ тоді і тільки тоді, коли $\overrightarrow{a} = \overrightarrow{0}$. Крім того, з властивості 4 випливає, що $\overrightarrow{i}^2 = \overrightarrow{j}^2 = \overrightarrow{k}^2 = 1$. Вектори \overrightarrow{a} та \overrightarrow{b} перпендикулярні, тоді і тільки тоді, коли їх

скалярний добуток дорівнює нулю, тобто

$$\overrightarrow{a} \perp \overrightarrow{b} \Leftrightarrow \overrightarrow{a} \cdot \overrightarrow{b} = 0.$$

Доведення. Не обмежуючи загальності, будемо вважати, що $\overrightarrow{a} \neq \overrightarrow{0}$ і $\overrightarrow{b} \neq \overrightarrow{0}$.

Доведемо необхідність. Нехай вектори \overrightarrow{a} та \overrightarrow{b} перпендикулярні, тобто $\varphi = \frac{\pi}{2}$. Тоді $\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \cos \frac{\pi}{2} = 0.$

Доведемо достатність. Нехай
$$\overrightarrow{a} \cdot \overrightarrow{b} = 0$$
. Оскільки $|\overrightarrow{a}| \neq 0$, і $|\overrightarrow{b}| \neq 0$, то $\cos(\overrightarrow{a}, \overrightarrow{b}) = 0$. Звідси $\varphi = (\overrightarrow{a}, \overrightarrow{b}) = \frac{\pi}{2}$ або $\varphi = (\overrightarrow{a}, \overrightarrow{b}) = \frac{3\pi}{2}$, тобто $\overrightarrow{a} \perp \overrightarrow{b}$.

Зокрема, з властивості 5 випливає, що $\overrightarrow{i} \cdot \overrightarrow{j} = \overrightarrow{i} \cdot \overrightarrow{k} = \overrightarrow{j} \cdot \overrightarrow{k} = 0$. Властивість 6. $|\overrightarrow{a} \cdot \overrightarrow{b}| \le |\overrightarrow{a}| \cdot |\overrightarrow{b}|$ (нерівність Коші-Буняковського для скалярного добутку).

Доведення. Очевидно випливає з означення скалярного добутку.

Скалярний добуток векторів, заданих координатами у просторі \mathbb{R}^3

Нехай вектори \overrightarrow{a} та \overrightarrow{b} задані своїми координатами, тобто $\overrightarrow{a}=a_x\overrightarrow{i}+a_y\overrightarrow{j}+a_z\overrightarrow{k}$, і $\overrightarrow{b}=b_x\overrightarrow{i}+b_y\overrightarrow{j}+b_z\overrightarrow{k}$. Тоді

$$\overrightarrow{a} \cdot \overrightarrow{b} = (a_x \overrightarrow{i} + a_y \overrightarrow{j} + a_z \overrightarrow{k}) \cdot (b_x \overrightarrow{i} + b_y \overrightarrow{j} + b_z \overrightarrow{k}) =$$

$$= a_x \cdot b_x \cdot \overrightarrow{i} \cdot \overrightarrow{i} + a_x \cdot b_y \cdot \overrightarrow{i} \cdot \overrightarrow{j} + a_x \cdot b_z \cdot \overrightarrow{i} \cdot \overrightarrow{k} +$$

$$+ a_y \cdot b_x \cdot \overrightarrow{j} \cdot \overrightarrow{i} + a_y \cdot b_y \cdot \overrightarrow{j} \cdot \overrightarrow{j} + a_y \cdot b_z \cdot \overrightarrow{j} \cdot \overrightarrow{k} +$$

$$+ a_z \cdot b_x \cdot \overrightarrow{k} \cdot \overrightarrow{i} + a_z \cdot b_y \cdot \overrightarrow{k} \cdot \overrightarrow{j} + a_z \cdot b_z \cdot \overrightarrow{k} \cdot \overrightarrow{k} =$$

$$= a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z.$$

Отже,

$$\overrightarrow{a} \cdot \overrightarrow{b} = a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z,$$

тобто скалярний добуток двох векторів, заданих своїми координатами, дорівнює сумі добутків їх координат.

Деякі застосування скалярного добутку векторів

1) Кут між векторами. Нехай $\overrightarrow{a}=(a_x,a_y,a_z)$ та $\overrightarrow{b}=(b_x,b_y,b_z)$ — два ненульових вектора. Тоді

$$\cos(\overrightarrow{a}, \overrightarrow{b}) = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|} = \frac{a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z}{\sqrt{|a_x|^2 + |a_y|^2 + |a_z|^2} \cdot \sqrt{|b_x|^2 + |b_y|^2 + |b_z|^2}}.$$

Зокрема, звідси випливає, що

$$\overrightarrow{a} \perp \overrightarrow{b}$$
 \Leftrightarrow $a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z = 0.$

2) Проекція вектора на вектор. Проекція вектора \overrightarrow{a} на вектор \overrightarrow{b} обчислюється за формулою:

$$np_{\overrightarrow{b}}\overrightarrow{a} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|} = \frac{a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z}{\sqrt{|b_x|^2 + |b_y|^2 + |b_z|^2}}.$$

3) Робота сталої сили. Нехай матеріальна точка рухається прямолінійно з точки A в точку B під дією сталої сили \overrightarrow{F} , що утворює кут φ з напрямком \overrightarrow{AB} . З фізики відомо, що робота A сили \overrightarrow{F} при переміщенні \overrightarrow{AB} дорівнює

$$\mathcal{A} = |\overrightarrow{F}| \cdot |\overrightarrow{AB}| \cdot \cos \varphi = \overrightarrow{F} \cdot \overrightarrow{AB}.$$

8 Векторний добуток векторів, його властивості та застосування. Мішаний добуток векторів його властивості та застосування

8.1 Векторний добуток векторів, його властивості та застосування.

Трійку векторів \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} будемо позначати у фігурних дужках: $\{\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}\}$.

Означення 8.2. Векторним добутком векторів \overrightarrow{a} та \overrightarrow{b} (позначається $\overrightarrow{a} \times \overrightarrow{b}$ або $[\overrightarrow{a}, \overrightarrow{b}]$) називається вектор \overrightarrow{c} такий, що

- 1) $\overrightarrow{c} \perp \overrightarrow{d}$ і $\overrightarrow{c} \perp \overrightarrow{b}$, тобто \overrightarrow{c} перепендикулярний векторам \overrightarrow{d} та \overrightarrow{b} ;
- 2) $|\overrightarrow{c}| = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \sin \varphi$, де $\varphi = (\overrightarrow{a}, \overrightarrow{b})$, тобто вектор \overrightarrow{c} має довжину, що дорівнює площі паралелограма, побудованого на векторах \overrightarrow{a} та \overrightarrow{b} ;
- 3) вектори \overrightarrow{a} , \overrightarrow{b} та \overrightarrow{c} утворюють праву трійку векторів.

З означення векторного добутку безпосередньо випливають наступні співвідношення для ортів координатних осей:

$$\overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k}, \quad \overrightarrow{j} \times \overrightarrow{k} = \overrightarrow{i} \quad \overrightarrow{k} \times \overrightarrow{i} = \overrightarrow{j}.$$

Це випливає з того, що вектори \overrightarrow{i} , \overrightarrow{j} та \overrightarrow{k} утворюють праву трійку векторів; $\overrightarrow{k} \perp \overrightarrow{i}$, $\overrightarrow{k} \perp \overrightarrow{j}$ і $\overrightarrow{i} \perp \overrightarrow{j}$. Крім того, $\overrightarrow{i} \times \overrightarrow{j} = |\overrightarrow{i}| \cdot |\overrightarrow{j}| \cdot \sin \frac{\pi}{2} = 1$, $\overrightarrow{j} \times \overrightarrow{k} = |\overrightarrow{j}| \cdot |\overrightarrow{k}| \cdot \sin \frac{\pi}{2} = 1$, і $\overrightarrow{k} \times \overrightarrow{i} = |\overrightarrow{k}| \cdot |\overrightarrow{i}| \cdot \sin \frac{\pi}{2} = 1$.

Властивості векторного добутку

Властивість 1. $\overrightarrow{a} \times \overrightarrow{b} = -\overrightarrow{b} \times \overrightarrow{a}$.

 \mathcal{A} оведення. Зрозуміло, що вектори $\overrightarrow{a} \times \overrightarrow{b}$ і $\overrightarrow{b} \times \overrightarrow{a}$ колінеарні та мають однакову довжину. Але трійки векторів $\{\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{a} \times \overrightarrow{b}\}$ та $\{\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{b} \times \overrightarrow{a}\}$ є протилежними. Одна з них є правою, а інша лівою. Таким чином, $\overrightarrow{a} \times \overrightarrow{b} = -\overrightarrow{b} \times \overrightarrow{a}$.

Властивість 2. $\lambda \cdot (\overrightarrow{a} \times \overrightarrow{b}) = (\lambda \overrightarrow{a}) \times \overrightarrow{b} = \overrightarrow{a} \times (\lambda \overrightarrow{b}).$

 \mathcal{A} оведення. Доведемо, що $\lambda \cdot (\overrightarrow{a} \times \overrightarrow{b}) = (\lambda \overrightarrow{a}) \times \overrightarrow{b}$. Рівність $\lambda \cdot (\overrightarrow{a} \times \overrightarrow{b}) = \overrightarrow{a} \times (\lambda \overrightarrow{b})$ доводиться аналогічно.

Розглянемо випадок $\lambda > 0$. Вектор $\lambda \cdot (\overrightarrow{a} \times \overrightarrow{b})$ перпендикулярний векторам \overrightarrow{a} та \overrightarrow{b} . Вектор $(\lambda \overrightarrow{a}) \times \overrightarrow{b}$ також перпендикулярний векторам \overrightarrow{a} та \overrightarrow{b} . Звідси випливає, що вектори $\lambda \cdot (\overrightarrow{a} \times \overrightarrow{b})$ та $(\lambda \overrightarrow{a}) \times \overrightarrow{b}$ колінеарні. Крім того, зрозуміло, що вони співнаправлені, оскільки $\lambda > 0$. Нарешті, ці вектори мають однакові довжини, оскільки

$$|\lambda \cdot (\overrightarrow{a} \times \overrightarrow{b})| = \lambda \cdot |\overrightarrow{a} \times \overrightarrow{b}| = \lambda \cdot |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \sin(\widehat{\overrightarrow{a}, \overrightarrow{b}}),$$

i

$$|(\lambda \overrightarrow{a}) \times \overrightarrow{b}| = |\lambda \overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \sin(\lambda \overrightarrow{a}, \overrightarrow{b}) = \lambda \cdot |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \sin(\widehat{\overrightarrow{a}}, \overrightarrow{b}).$$

Отже, ми довели, що для $\lambda > 0$, $\lambda(\overrightarrow{a} \times \overrightarrow{b}) = (\lambda \overrightarrow{a}) \times \overrightarrow{b}$.

Для $\lambda < 0$ доведення аналогічне.

Властивість 3. $\overrightarrow{a} \parallel \overrightarrow{b}$ тоді і тільки тоді, коли $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0}$.

 \mathcal{A} оведення. Доведемо необхідність. Якщо $\overrightarrow{a} \parallel \overrightarrow{b}$, то кут φ між векторами \overrightarrow{a} та \overrightarrow{b} або дорівнює 0 або дорівнює π . Тоді $\sin \varphi = 0$. Таким чином, $|\overrightarrow{a} \times \overrightarrow{b}| = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot 0 = 0$, а отже $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0}$.

Доведемо достатність. Не обмежуючи загальності, будемо вважати, що вектори \overrightarrow{a} та \overrightarrow{b} ненульові. Якщо $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0}$, то $|\overrightarrow{a} \times \overrightarrow{b}| = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \sin \varphi = 0$. Тому з останнього співвідношення випливає, що $\sin \varphi = 0$, звідки $\varphi = 0$ або $\varphi = \pi$. Таким чином, $\overrightarrow{a} \parallel \overrightarrow{b}$.

Властивість 4. $(\overrightarrow{a} + \overrightarrow{b}) \times \overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{b} \times \overrightarrow{c}$.

Приймемо цю властивість без доведення.

Векторний добуток векторів, заданих координатами у просторі \mathbb{R}^3

Нехай вектори \overrightarrow{a} та \overrightarrow{b} задані своїми координатами, тобто $\overrightarrow{a}=a_x\overrightarrow{i}+a_y\overrightarrow{j}+a_z\overrightarrow{k}$, і $\overrightarrow{b}=b_x\overrightarrow{i}+b_y\overrightarrow{j}+b_z\overrightarrow{k}$. Тоді

$$\overrightarrow{a} \times \overrightarrow{b} = (a_x \overrightarrow{i} + a_y \overrightarrow{j} + a_z \overrightarrow{k}) \times (b_x \overrightarrow{i} + b_y \overrightarrow{j} + b_z \overrightarrow{k}) =$$

$$= a_x \cdot b_x \cdot (\overrightarrow{i} \times \overrightarrow{i}) + a_x \cdot b_y \cdot (\overrightarrow{i} \times \overrightarrow{j}) + a_x \cdot b_z \cdot (\overrightarrow{i} \times \overrightarrow{k}) +$$

$$+ a_y \cdot b_x \cdot (\overrightarrow{j} \times \overrightarrow{i}) + a_y \cdot b_y \cdot (\overrightarrow{j} \times \overrightarrow{j}) + a_y \cdot b_z \cdot (\overrightarrow{j} \times \overrightarrow{k}) +$$

$$+ a_z \cdot b_x \cdot (\overrightarrow{k} \times \overrightarrow{i}) + a_z \cdot b_y \cdot (\overrightarrow{k} \times \overrightarrow{j}) + a_z \cdot b_z \cdot (\overrightarrow{k} \times \overrightarrow{k}) =$$

$$= \overrightarrow{0} + a_x \cdot b_y \cdot \overrightarrow{k} - a_x \cdot b_z \cdot \overrightarrow{j} - a_y \cdot b_x \cdot \overrightarrow{k} + \overrightarrow{0} + a_y \cdot b_z \cdot \overrightarrow{i} + a_z \cdot b_x \cdot \overrightarrow{j} - a_z \cdot b_y \cdot \overrightarrow{i} + \overrightarrow{0} =$$

$$= \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix} \overrightarrow{k},$$

тобто

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix} \overrightarrow{k}.$$

Цю рівність зручно записувати у наступній операторній формі, яка легко запам'ятовується:

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}.$$

 $\Pi puклад$ 8.1. Знайти векторний добуток векторів $\overrightarrow{a}=2\overrightarrow{i}+\overrightarrow{j}-\overrightarrow{k}$ та $\overrightarrow{b}=-4\overrightarrow{i}-2\overrightarrow{j}+\overrightarrow{k}$.

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & 1 & -1 \\ -4 & -2 & 1 \end{vmatrix} = \begin{vmatrix} 1 & -1 \\ -2 & 1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 2 & -1 \\ -4 & 1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} 2 & 1 \\ -4 & -2 \end{vmatrix} \overrightarrow{k} = .$$

$$= -\overrightarrow{i} + 2\overrightarrow{j} + 0\overrightarrow{k} = -\overrightarrow{i} + 2\overrightarrow{j}.$$

Деякі застосування векторного добутку векторів

1) Встановлення колінеарності векторів. З властивості 3 випливає, що $\overrightarrow{a} \parallel \overrightarrow{b}$ тоді і тільки тоді, коли $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0}$, тобто

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = \overrightarrow{0} \qquad \Leftrightarrow \qquad \frac{a_x}{b_x} = \frac{a_y}{b_y} = \frac{a_z}{b_z} \qquad \Leftrightarrow \qquad \overrightarrow{a} \parallel \overrightarrow{b}.$$

2) Знаходження площ паралелограма та трикутника, побудованих на двох векторах. Згідно з означенням векторного добутку для двох векторів \overrightarrow{a} та \overrightarrow{b} , $|\overrightarrow{a} \times \overrightarrow{b}| = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \sin(\overrightarrow{a}, \overrightarrow{b})$, тобто

$$S_{\text{паралелограма}} = |\overrightarrow{a} \times \overrightarrow{b}|.$$

Зокрема, звідси випливає, що

$$S_{\text{трикутника}} = \frac{1}{2} |\overrightarrow{a} \times \overrightarrow{b}|.$$

3) Визначення момента сили відносно точки.

Нехай у точці A прикладена деяка сила $\overrightarrow{F} = \overrightarrow{AB}$, і нехай O- деяка точка простору. З фізики відомо, що моментом сили \overrightarrow{F} відносно точки O називається вектор \overrightarrow{M} (див. малюнок), який проходить через точку O і задовольняє такі умови:

1) перпендикулярний площині, у якій лежать точки O, A, B;

2) чисельно дорівнює добутку сили на плече, тобто $|\overrightarrow{M}| = |\overrightarrow{F}| \cdot |ON| = |\overrightarrow{F}| \cdot |\overrightarrow{r}| \cdot \sin \varphi = |\overrightarrow{F}| \cdot |\overrightarrow{OA}| \cdot \sin(\overrightarrow{F}, \overrightarrow{OA});$

3) утворює праву трійку з векторами \overrightarrow{OA} та \overrightarrow{AB} .

Таким чином, $\overrightarrow{M} = \overrightarrow{OA} \times \overrightarrow{F}$.

4) Знаходження лінійної швидкості обертання.

Швидкість \overrightarrow{V} точки M твердого тіла, що обертається з кутовою швидкістю $\overrightarrow{\omega}$ навколо нерухомої осі, визначається формулою Ейлера $\overrightarrow{V} = \overrightarrow{\omega} \times \overrightarrow{r}$, де $\overrightarrow{r} = \overrightarrow{OM}$, а O- деяка нерухома точка осі (див. малюнок).

Подвійний векторний добуток

Означення 8.3. Нехай дано три довільних вектори \overrightarrow{a} , \overrightarrow{b} та \overrightarrow{c} . Розглянемо векторний добуток векторів \overrightarrow{b} та \overrightarrow{c} : $\overrightarrow{b} \times \overrightarrow{c}$. Векторний добуток вектора \overrightarrow{a} на вектор $\overrightarrow{b} \times \overrightarrow{c}$ (позначається: $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})$) називається nodeiйним векториним dofymком векторів \overrightarrow{a} , \overrightarrow{b} та \overrightarrow{c} .

Для довільних векторів \overrightarrow{a} , \overrightarrow{b} та \overrightarrow{c} подвійний векторний добуток $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})$ є вектором, компланарним з векторами \overrightarrow{b} та \overrightarrow{c} і знаходиться за формулою:

$$\overrightarrow{a}\times(\overrightarrow{b}\times\overrightarrow{c})=\overrightarrow{b}(\overrightarrow{a}\cdot\overrightarrow{c})+\overrightarrow{c}(\overrightarrow{a}\cdot\overrightarrow{b}).$$

8.2 Мішаний добуток векторів, його властивості та застосування.

Означення 8.4. Нехай дано три довільних вектори \overrightarrow{a} , \overrightarrow{b} та \overrightarrow{c} . Розглянемо векторний добуток векторів \overrightarrow{a} та \overrightarrow{b} : $\overrightarrow{a} \times \overrightarrow{b}$. Скалярний добуток вектора $\overrightarrow{a} \times \overrightarrow{b}$ на вектор \overrightarrow{c} називається векторно-скалярним або мішаним добутком векторів \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} . Мішаний добуток позначається: $(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}$ або $(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})$, або $\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}$.

З означення зрозуміло, що мішаний добуток трьох векторів — це число.

Геометричний зміст мішаного добутку

З'ясуємо геометричний зміст мішаного добутку. Побудуємо паралеленінед, ребрами якого є задані вектори \overrightarrow{a} , \overrightarrow{b} та \overrightarrow{c} . Побудуємо також вектор $\overrightarrow{d} = \overrightarrow{a} \times \overrightarrow{b}$. Тоді $(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = \overrightarrow{d} \cdot \overrightarrow{c} = |\overrightarrow{d}| \cdot np_{\overrightarrow{d}} \overrightarrow{c}$, причому $|\overrightarrow{d}| = |\overrightarrow{a} \times \overrightarrow{b}| = S$, де S — площа паралелограма, побудованого на векторах \overrightarrow{a} і \overrightarrow{b} . Крім того, $np_{\overrightarrow{d}} \overrightarrow{c} = H$ для правої трійки векторів \overrightarrow{a} , \overrightarrow{b} та \overrightarrow{c} , і $np_{\overrightarrow{d}} \overrightarrow{c} = -H$ для лівої трійки векторів \overrightarrow{a} , \overrightarrow{b} та \overrightarrow{c} , де H — висота паралеленіпеда.

Таким чином, $(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = S \cdot (\pm H)$, тобто $(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = \pm V$, де V - об'єм паралеленінеда, побудованого на векторах \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} .

Отже, мішаний добуток трьох векторів дорівнює об'єму паралелепіпеда, побудованого на цих векторах, взятого зі знаком "+", якщо вектори утворюють праву трійку, і зі знаком "-", якщо вектори утворюють ліву трійку.

Зауважимо, що з трьох векторів \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} можна скласти шість впорядкованих трійок, при цьому три трійки утворюють ліву трійку і три праву. А саме, трійки $\{\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}\}$, $\{\overrightarrow{b}, \overrightarrow{c}, \overrightarrow{a}\}$, $\{\overrightarrow{c}, \overrightarrow{a}, \overrightarrow{b}\}$ є однаково орієнтованими, тобто одночасно утворюють праву трійку або ліву. Інші трійки, а саме $\{\overrightarrow{a}, \overrightarrow{c}, \overrightarrow{b}\}$, $\{\overrightarrow{b}, \overrightarrow{a}, \overrightarrow{c}\}$, $\{\overrightarrow{c}, \overrightarrow{b}, \overrightarrow{a}\}$ також є однаково орієнтованими, тобто одночасно утворюють праву або ліву трійку.

Виходячи з геометричної інтерпретації, зрозуміло, що мішаний добуток трьох векторів \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} можна еквівалентно означати як число, рівне об'єму орієнтованого (зі знаком) паралелепіпеда, побудованого на векторах \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} .

Властивості мішаного добутку

1) $(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = (\overrightarrow{b} \times \overrightarrow{c}) \cdot \overrightarrow{a} = (\overrightarrow{c} \times \overrightarrow{a}) \cdot \overrightarrow{b}$, тобто мішаний добуток не змінюється при циклічній перестановці множників.

Доведення. Властивість 1) очевидна, оскільки в цьому випадку не змінюється ні об'єм паралелепіпеда, ні його орієнтація в просторі (знак). □

2) $(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = \overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c})$, тобто мішаний добуток не змінюється при перестановці місцями знаків векторного і скалярного множення.

Доведення. Випливає з властивості 1) та того, що для скалярного добутку двох векторів виконується властивість комутативності. □

3)
$$(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = -(\overrightarrow{a} \times \overrightarrow{c}) \cdot \overrightarrow{b},$$

 $(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = -(\overrightarrow{b} \times \overrightarrow{a}) \cdot \overrightarrow{c},$
 $(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = -(\overrightarrow{c} \times \overrightarrow{b}) \cdot \overrightarrow{a},$

тобто мішаний добуток змінює знак при перестановці місцями будь-яких двох векторів.

Доведення. Випливає з властивості 1) та того, що при перестановці множників у векторному добутку цей добуток змінює знак на протилежний (див. властивість 1 векторного добутку). \Box

4) Мішаний добуток трьох ненульових векторів дорівнює нулю тоді і тільки тоді, коли ці вектори компланарні.

Доведення. Доведемо необхідність. Нехай $(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = 0$, тобто об'єм паралелепіпеда, побудованого на векторах \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , дорівнює нулю. Припустимо, що \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} — не компланарні. Тоді можна побудувати паралелепіпед на цих векторах з об'ємом, не рівним нулю. А це протирічить умові.

Доведемо достатність. Нехай вектори \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} — компланарні, тобто лежать в одній площині. Тоді вектор $\overrightarrow{a} \times \overrightarrow{b}$ перпендикулярний вектору \overrightarrow{c} , а отже $(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = 0$.

Мішаний добуток векторів, заданих координатами у просторі \mathbb{R}^3

Нехай вектори \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} задані своїми координатами, тобто $\overrightarrow{a} = a_x \overrightarrow{i} + a_y \overrightarrow{j} + a_z \overrightarrow{k}$, $\overrightarrow{b} = b_x \overrightarrow{i} + b_y \overrightarrow{j} + b_z \overrightarrow{k}$, $\overrightarrow{c} = c_x \overrightarrow{i} + c_y \overrightarrow{j} + c_z \overrightarrow{k}$. Тоді

$$(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = \left(\begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix} \overrightarrow{k} \right) \cdot (c_x \overrightarrow{i} + c_y \overrightarrow{j} + c_z \overrightarrow{k}) =$$

$$= \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} \cdot c_x - \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} \cdot c_y + \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix} \cdot c_z = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}.$$

Отже,

$$(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix},$$

тобто мішаний добуток трьох векторів дорівнює значенню визначника, складеного з координат векторів зі збереженням порядку.

Деякі застосування мішаного добутку векторів

- 1) Визначення орієнтації векторів у просторі. Для трьох заданих векторів \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , якщо $(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} > 0$, то ці вектори утворюють праву трійку. Якщо $(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} < 0$, то ці вектори утворюють ліву трійку.
- **2)** Встановлення компланарності векторів. Три ненульових вектора \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} компланарні тоді і тільки тоді, коли $(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = 0$, тобто

$$\begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} = 0.$$

3) Знаходження об'ємів паралелепіпеда та трикутної піраміди. Об'єм паралелепіпеда, побудованого на векторах $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$:

$$V_{\text{паралеленіпеда}} = |(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}|.$$

Об'єм трикутної піраміди, побудованої на векторах \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} :

$$V_{ ext{піраміди}} = \frac{1}{6} | (\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} |.$$

 $\Pi pu\kappa na\partial$ 8.2. Знайти площу основи ABC, о'бєм та довжину висоти трикутної піраміди, вершинами якої є точки A(1,2,3), B(0,-1,1), C(2,5,2), D(3,0,-2).

Складемо три вектори, які мають спільний початок (вершина A): $\overrightarrow{a} = \overrightarrow{AB} = (-1, -3, -2), \ \overrightarrow{b} = \overrightarrow{AC} = (1, 3, -1), \ \overrightarrow{c} = \overrightarrow{AD} = (2, -2, -5).$

Тоді з властивостей векторного добутку матимемо, що

$$S_{ABC} = \frac{1}{2} |\overrightarrow{a} \times \overrightarrow{b}|.$$

Знайдемо окремо

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} -3 & -2 \\ 3 & -1 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} -1 & -2 \\ 1 & -1 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} -1 & -3 \\ 1 & 3 \end{vmatrix} \overrightarrow{k} = 9 \overrightarrow{i} - 3 \overrightarrow{j}.$$

Тоді $S_{ABC} = \frac{1}{2}\sqrt{9^2 + 3^2} = \frac{3}{2}\sqrt{10}$.

Об'єм піраміди:

$$V_{ABCD} = \frac{1}{6} |(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}| = \begin{vmatrix} -1 & -3 & -2 \\ 1 & 3 & -1 \\ 2 & -2 & 5 \end{vmatrix} = \frac{1}{6} \cdot 24 = 4.$$

Знайдемо висоту піраміди, опущеної з вершини D:

$$H = \frac{3V_{ABCD}}{S_{ABC}} = \frac{3 \cdot 4}{\frac{3}{2}\sqrt{10}} = \frac{8}{\sqrt{10}}.$$