Write legibly. Show your work. Graph neatly. Use a ruler for all straight lines.

- (1) By reading values from the given graph of g(x), use \underline{six} rectangles to estimate $\int_{-2}^{4} g(x) dx$. In each case, carefully draw the rectangles that you use. (Pay attention to the scale on the graph!)
 - a. Left endpoints:

b. Right endpoints:

$$R_6 = 1 \left(-1.5 + 0 + 1.5 + 0.5 + -1 + 0.5 \right)$$

c. Midpoints:

$$M_6 = 1(-1.1+-1+1+1+0+-0.5)$$

$$M_6 = -0.6$$

Most people say -0.5, bcs read 1st rectangle as (2) A table of values for an increasing function f is shown. Use the table to find lower and upper estimates for $\int_{0}^{30} f(x) dx$. Use five subintervals.

х	10	14	18	22	26	30
f(x)	-12	-6	-2	1	3	8

a. Lower estimate: (Bes for is increasing, lower est = L5)

$$L_5 = 4(-12+-6+-2+1+3)$$

$$L_5 = -64$$

b. Upper estimate: (R₅)

$$R_s = 4(-6+-2+1+3+8)$$
 $R_s = 16$

(3) Use a calculator or computer to make a table of values of midpoint Riemann sums (M_n) for the integral $\int_0^\pi \sin(x) dx$. (Don't round your answers.)

n	Mn			
5	2.033281477			
10	2.008248408			
50	2.000329025,			
100	2.000082249			

(4) What number does the integral $\int_{0}^{x} \sin(x) dx$ look like it's going to be?

$$\int_{0}^{\pi} \sin(x) dx = 2$$