Departamento de Física da Faculdade de Ciências da Universidade de Lisboa

Física Experimental para Engenharia Informática

2019/2020 (1°. Semestre)

 Nome: Diogo Pinto
 nº 52763
 Turma PL 12

 Nome: Francisco Ramalho
 nº 53472
 Grupo : 3

 Nome: João Funenga
 nº 53504
 Data: 20 / 11 / 2019

Lab #7 – O Indutor e o Circuito LR

Notas **Muitíssimo** Importantes **LEIA-AS** Notas **Muitíssimo** Importantes

- 1. Registe os valores medidos respeitando os algarismos significativos (a.s.) dados pelos aparelhos.
 - a. Nos multímetros escolha sempre a escala que dá mais a.s..
 - b. No osciloscópio escolha as escalas que expandem o sinal ao máximo possível e útil.
- 2. Inclua sempre as unidades de cada valor medido ou calculado.
- 3. Apresente os resultados finais dos cálculos respeitando os a.s. das parcelas.
- 4. Nas leituras na grelha do osciloscópio considere as incertezas $\delta x = \delta y = \pm 0.1 \, div$ (estimado).
- 5. As duas Pontas de Prova do osciloscópio têm o terminal da tensão de referência ("crocodilo") <u>em comum</u> e estão sempre com 0 volts (*e forçam-na*) proveniente da tomada de alimentação de 230V. Selecione o modo "Acoplamento CC" (=DC) nas entradas do osciloscópio.
- 6. Quando se pede "justifique..." => fazer a dedução matemática baseada nas leis dos circuitos.
- 7. As referências a equações usam a numeração no doc que explica a teoria do filtro LR.

Equipamento necessário:

- 1. Gerador de tensão alterna, com frequência, amplitude e offset reguláveis.
- 2. Osciloscópio digital com pontas de prova.
- 3. Resistências de 100Ω , $5k6 \Omega$ e $8k2 \Omega$.
- 4. Indutor de 100 mH.
- 5. Painel de ligações tipo "breadboard".

Objectivos

- Estudar e obter as curvas de carga e descarga do indutor.
- Verificar a resposta em frequência dos circuitos óhmico e do tipo LR.
- Estudar o comportamento em frequência da fase e amplitude do filtro LR.

Experiência 1 - Resposta em frequência das resistências óhmicas.

Objectivo: medir a diferença de fase de um sinal sinusoidal aplicado a um divisor de tensão óhmico.

1. No circuito ao lado as resistências R_1 = 5k6 Ω e R_2 = 100 Ω . Meça as resistências e registe os seus valores e incertezas ΔR .

$$R_1$$
= 5.57 +- 0.01 kΩ R_2 = 97.3 +- 0.1 Ω

Figura 1. Circuito divisor de tensão com resistência óhmicas

2. Regule o gerador de sinais para fornecer um sinal do tipo $V_e(\omega,t) = 7.0 \text{ sen}(\omega t) \text{ V com uma}$ frequência de 8,8 kHz. Registe o valor medido da frequência e da amplitude.

3. Calcule analiticamente a amplitude esperada de V_{R1}(t) e V_{R2}(t), usando os valores medidos de R₁,

$$V_{r1} = \frac{R1}{(R1+R2)} * Vg \Rightarrow V_{r1} = \frac{5570}{(5570+97.3)} * 7 \Rightarrow V_{r2} = 6.88 \text{ V}$$

$$V_{r2} = \frac{R2}{(R1+R2)} * Vg \rightarrow V_{r2} = \frac{97.3}{(5570+97.3)} * 7 \rightarrow V_{r2} = 0.120 \text{ V}$$

Obtém-se V_{r1} aprox igual a V_g porque pela lei de Ohm, V=RI, caso a corrente seja igual, quanto maior for a resistência maior vai ser a queda de tensão. Ou seja, a fórmula do divisor de tensão ficaria aproximadamente $V_{r1} = R_1/(0+R_1) * V_g -> V_{r1} = 1*V_g -> V_{r1} = V_g$.

 R_2 e da amplitude. Porque é que se obtém $V_{R1} \approx V_g$?

- 4. <u>Varie a frequência f</u> de $V_e(\omega,t)$ entre os 400 Hz e os 100 kHz e verifique que os sinais de tensão $V_g(\omega,t)$ (<u>canal 1</u>) e $V_{R2}(\omega,t)$ (<u>canal 2</u>) estão sempre em fase e mantêm a amplitude, para qualquer f. Escolha uma escala vertical adequada para visualizar bem o sinal $V_{R2}(t)$. *Junte as fotos obtidas*.
- 5. <u>No osciloscópio selecione o modo X-Y</u> e repita o procedimento da alínea anterior. Descreva e justifique o que se observa no ecrã enquanto varia a frequência (ver a última página).

Ao variarmos a frequência no gerador, verificamos que em nada altera a R_2 , nem a tensão nem a fase. Por os sinais V_g e V_{r2} terem uma relação direta, no modo X-Y observamos uma reta.

6. Com o resultado da alínea anterior e a Lei de Ohm, demonstre que o sinal $V_{R2}(t)$ é proporcional e aproximado em valor, à corrente que passa no circuito i(t). Por isso, poderá concluir que "a corrente elétrica que passa no circuito está sempre em fase com $V_g(\omega,t)$ "?

$$V_g = RI -> V_g = (R_1 + R_2)^*I -> I = V_g/(R_1 + R_2) -> I = V_g/(R_1 + R_2) -> I = 1/(R_1 + R_2)^*A$$
 sen (wt)

Como verificamos, o I é igual ao sinal do gerador multiplicado por uma constante que apenas poderá alterar ligeiramente a amplitude do sinal na resistência. Como R_2 é muito pequena, pela fórmula do divisor de tensão verificamos que a queda de tensão em R_2 é muito pequena logo a amplitude irá apenas ser ligeiramente inferior. Em relação à frequência, esta manter-se-á igual, porque como sabemos, a corrente é I=V/R e sendo R uma constante, em caso algum os sinais estarão desfasados.

 $V_{r2} = R_2^*I$, e como R_2 é constante, $V_{r2} = k^*I$.

Experiência 2 - Resposta do Indutor a um sinal quadrado. O circuito LR.

Objectivo: medir a tensão $V_R(t)$ durante a descarga de L e obter a constante de tempo.

No circuito representado na figura 2 os componentes têm o valor nominal R = 5,6 k Ω e L = 100 mH. Os geradores de sinal têm uma impedância interna Z_g = 50 Ω .

Meça R_L (=resistência óhmica do indutor quando sujeito a corrente contínua) com o multímetro e registe o seu valor..
 R_L = 67.4 +- 0.1 Ohms

Figura 2. Diagrama do circuito LR. A tensão $V_R(t)$ mostra o processo de "carga e descarga" da energia no indutor se o sinal proveniente do gerador $V_g(t)$ for quadrado.

2. Calcule a constante de tempo τ (em ms) com os valores de L e de R medido com o multímetro.

 $tau = L/R \rightarrow tau = 0.100/5570 \rightarrow tau = 1.795E-5 s \rightarrow 0.01795 ms$

- 3. <u>Regule o gerador</u> para um sinal quadrado de frequência 6,0 kHz e tensão entre $0 \le V_e \le V_m = 4 V$ (sinal *sempre positivo*! Use a opção *Medições* \rightarrow *mín* para medir bem os 0V).
- 4. Registe o valor de f e calcule o período T do sinal, em *milissegundos*.

f medido =
$$6.002 +- 0.001 \text{ KHz}$$

T = $1/f -> T = 1/6002 -> T = 1.6661E-4 s -> T = 0.16661 \text{ ms}$

5. Calcule o valor de $T/2\tau$ e mostre que ao fim do tempo t = T/2 o indutor está quase completamente descarregado: $V_R(T/2) \approx 0V$.

$$T/2$$
tau = 1.6661E-4/2*1.795E-5 = 4.641

$$V_r(T/2) = 4 * e^{-(-0.000083305)}$$

= 3.9996

$$V_{ind} = V_{fonte} - V_{res}$$

= 4-3.9996
= 0.0004 V

- 6. <u>Monte o circuito representado na figura 2</u>, utilizando os componentes especificados. Observe no osciloscópio os sinais $V_e(t)$ do gerador e $V_R(t)$ aos terminais de R.
- 7. Regule a base de tempo do osciloscópio para $10\mu s/div$ e a escala vertical do canal com V_R para 0.5V/div, de modo a visualizar a (parte que interessa da) curva de descarga do indutor no máximo do ecrã. Se necessário ajuste o trigger manualmente e as posições X e Y. Na figura ao lado há um exemplo do observado no ecrã.
- 8. No menu de "Cursores" pressione "Tipo" \rightarrow "Tempo" para o canal de V_R . Rode o botão de funções múltiplas que movimenta os cursores e meça os valores $\{t, V_R\}$ em 8

pontos distintos ao longo da curva exponencial negativa **entre** $V_{m\acute{a}x}$ **e** $V_{m\acute{a}x}$ **l** Registe esses valores na folha de cálculo.

9. Represente os N resultados experimentais de $\{t(ms), ln(V_R)\}$ num gráfico linear e ajuste uma linha reta. Registe aqui os valores do declive m e da ordenada na origem b, com as suas incertez as.

10. Linearize em ordem a t a Equação 9 aplicando o logaritmo natural à igualdade. Identifique os termos assim obtidos com o declive m e a ordenada na origem b da alínea anterior. A partir do ajuste determine o valor da constante de tempo τ e deduza o valor de L. Compare este valor com o obtido na alínea 2 e comente. Atenção às unidades e aos a.s..

$$ln(Vr(t)) = ln(Vm * e^{-t/tau}) => ln(Vr(t)) = ln(Vm) + ln(e^{-t/tau}) => ln(Vr(t)) = ln(Vm) + (-t/tau)$$

$$ln(Vr(t)) = ln(Vm) - (t/tau) => ln(Vr(t)) = -(1/tau)*t + ln(Vm)$$

$$-1/tau = m = tau = -1/-56.535 = 0.0177ms$$

$$tau = L/R \implies L = tau^*R \implies L = 0.0177*5570 = 98.59 \text{ mH}$$

$$|(100-98.5)/100| = 0.015 <=> 1.5\%$$

Existe uma diferença de 1.5% entre o valor medido e o calculado

Turma PL 12 nº 52763 nº 53472 nº 53504 Grupo: 3 Data: 20/11/2019

Experiência 3 – Resposta de LR a um sinal sinusoidal: o desfasamento.

Objectivo: Estudar o desfasamento entre a corrente e a tensão no circuito LR.

- 1. Para estudar o desfasamento entre sinais em função da frequência selecione o gerador para: $V_e(\omega,t) = A_e sen(\omega t) com A_e = 8,0 volts (antes de o ligar ao circuito LR).$
 - → Use a ponta de prova em "x10" e no osciloscópio escolha "Acoplamento" → CA + "Atenuação" → 10X.
- 2. Não altere a amplitude no gerador, no circuito LR <u>utilize a resistência R= 8k2 Ω e proceda à medição da diferença de fase</u> ϕ para cada uma das 11 frequências:

```
f = (50, 170, 500) Hz , (1, 2, 4, 9, 17, 30, 46, 80) kHz.
```

Nota: O desfasamento entre os sinais mede-se pela diferença de tempo Δt <u>entre os zeros</u> dos dois sinais: $\phi_{med} = \Delta t/T$, onde T é o período do sinal. <u>Registe os valores</u> dos períodos usados.

<u>Procedimento</u>: No menu "*Cursores*" do osciloscópio selecione "*Tipo*" → "*Tempo*" e meça a diferença de tempo ∆t entre as passagens a 0∨ "em fase" dos dois sinais. *Guarde as imagens de cada medição*.

- 3. Com os valores medidos faça o gráfico ϕ_{med} (em graus) versus f, ou seja, X=f (Hz) e $Y=\phi^{o}_{med}$, com o eixo X em escala logarítmica. Note que $\phi^{o}_{med}=360^{\circ}$ $\Delta t/T$.
- 4. Na folha de cálculo acrescente uma coluna com os valores teóricos obtidos da equação (16), $\varphi(\omega)$, em graus, para 40 Hz $\leq f \leq 90$ kHz. Acrescente ao gráfico a série dos pontos teóricos $\{f, \varphi^{0}_{\text{teórico}}\}$, com as opções (no Excel) de "nenhum marcador" e curva "suavizada" vermelha a unir ospontos.
- 5. <u>No osciloscópio selecione a opção X-Y</u> e repita o procedimento da alínea 2, <u>sem fazer medições</u>. O que observa no ecrã enquanto varia a frequência? Interprete o que observa (*ver pág. 7*).

Ao variarmos a frequência, observa-se, algo diferente que na outra experiência. Quando a frequência é muito elevada, a diferença de fase entre V_r e V_g é de 90° logo observa-se uma circunferência.

Para frequências muito baixas, os dois sinais estão em fase, logo observa-se uma linha reta entre os dois sinais.

Para frequências que não são nem muito altas nem muito baixas, observamos uma elipse.

6. A comprovação do desfasamento foi feita com a medição do sinal $V_R(t)$ em vez de i(t). Por isso, baseando-se nos resultado obtidos, justifique e explique a afirmação "a corrente eléctrica que passa no circuito tem um desfasamento para $V_e(\omega,t)$ que depende da freguência".

Sabendo que o valor da resistência é constante, temos que a corrente que passa por ela é dada por $Vr(t) = R^*i(t) = Vr(t)/R$. Assim, à medida que a frequência aumenta, o desfasamento também aumentará em relação ao V_g tendendo para um desfasamento de 90° . Como a corrente que passa no circuito é proporcional a Vr(i(t) = Vr(t)/R) e V_r vai ficar desfasado face ao V_g , então a corrente (que é proporcional à tensao) também sofrerá um desfasamento em relacao a V_r .

Experiência 4 – O filtro "passa baixo" LR: resposta em amplitude.

Objectivo: Estudar a amplitude de "saída" V_R, no circuito LR, em função da frequência.

- 1. Para estudar a resposta do circuito LR mede-se a amplitude A_R para várias frequências de $V_e(\omega,t)$. Assim, antes de ligar ao circuito selecione o gerador para: $V_e(\omega,t) = A_g \operatorname{sen}(\omega t) \operatorname{com} A_g = 8,0 \operatorname{volt}$.
- 2. Não altere a amplitude no gerador e proceda à medição das grandezas pedidas para cada uma destas frequências: f = (50, 170, 500) Hz, (1, 2, 4, 9, 17, 30, 46, 80) kHz.

 → Meça as amplitudes A_R (de V_R) e A_g (note que A_g diminuirá um pouco a baixas frequências).

Procedimento: Use o botão "Medidas" ("Measures") do osciloscópio para obter diretamente as amplitudes

Turma PL 12 nº 52763 nº 53472 nº 53504 Grupo : 3 Data: 20/11/2019

- 3. Com os 11 valores registados construa o gráfico $(f, A_R/A_g)$ com o eixo X em escala logarítmica.
- 4. Usando o valor de A_R/A_g dado pela equação (23), acrescente à folha de cálculo uma coluna com este valor teórico, para cada frequência f medida.
- 5. Acrescente ao gráfico anterior uma nova série com os pontos teóricos $\{f, (A_R/A_g)_{teórico}\}$, escolhendo as opções (no Excel) de "nenhum marcador" e curva "suavizada" vermelha a unir os pontos.
- 6. Comente os resultados obtidos, *baseando-se na equação 5*, e justifique a designação de "filtro passa baixo" (em frequência) para o circuito LR.

Como observámos, à medida que vamos aumentando a frequência, a razão Ar/Ag vai diminuindo, tendendo para 0 daí ser chamado de filtro "passa baixo". Quando a frequência é alta, a tensão na resistência é praticamente nula. Pelo contrário, quando é baixa, a tensão na resistência é praticamente igual à do gerador. Resumidamente, R só terá tensões elevadas quando a frequência do sinal do gerador for baixa.

 Com os 3 valores medidos (R, R_L e L) para este filtro, calcule qual é a atenuação (equação 24) que existe aos 2,2 kHz e aos 22 kHz.

```
f = 2.2 kHz

Ar = R/ (sqrt( (R+ Rl+Rg)^2+L^2+w^2)) * Ag
= 8200/( sqrt( (8200+67.4+50)^2 +0.1^2 + (2pi*2200)) * 8
= 4.01 V

At = 20log (4.01/8.00)

At = 20log(0.50)

At = -6.00 dB

f = 22kHz

Ar = R/ (sqrt( (R+ Rl+Rg)^2+L^2+w^2)) * Ag
= 8200/( sqrt( (8200+67.4+50)^2 +0.1^2 + (2pi*22000)) * 8
= 0.47 V

At = 20log (0.47/8.00)

At = 20log(0.059)

At = -24.58 dB
```

8. Usando a Equação 24 calcule: i) A razão de amplitudes V_R/V_e correspondente a uma atenuação de -3,0103 db e compare-a com $\sqrt{2}$; ii) A frequência f_c em que existe uma atenuação de -3,0103 db.

```
At = 20log(Ar/At)

-3.0103 = 20log(Ar/At)

-3.0103/20 = log(Ar/At)

-0.15 = log(Ar/At)

Ar/At = 10^(-0.15)

Ar/At = 0.707

(Ar/At) = 1/(sqrt 2)

Ar/Ag = R/ (Rt * sqrt(1+ (w*tau)^2))

0.707 = 8200/ (8317.4 * sqrt(1+ (2pi*fc * 0.1/8200)^2))

fc = 12685.29 Hz
```

NOTA: o modo X-Y do osciloscópio. Obtenção de Figuras de Lissajous na razão 1:1

- Neste modo o osciloscópio digital utiliza o sinal V_1 do canal 1 para o varrimento do eixo X, em vez de usar a base de tempo que fica inoperativa. O sinal V_2 do canal 2 mantém-se no eixo Y. Assim o modo X-Y é na prática canal2 vs canal1 ou seja, V_2 versus V_1 (Y versus X).

Vejamos alguns exemplos.

- Se o sinal V_2 = k. V_1 obtém-se Y= k.X, que dá uma reta com declive k. Se k=1 => recta a 45°. Contudo, a reta só fica a 45° no ecrã se as escalas V/div forem iguais nos dois canais.
- Se os sinais forem periódicos do tipo $X=V_1=A_1 sen(\omega t+\phi)$ e $Y=V_2=A_2 sen(\omega t)$ obtém-se:
- i) uma reta a $\pm 45^{\circ}$ se $A_1 = A_2$ e $\varphi = 0^{\circ}$ ou $180^{\circ} \Rightarrow$ sinais em fase ou em oposição de fase.
- *ii*) uma circunferência se ϕ =90° → sinais em quadratura. Caso de Y=V₂=sen(ω t) e X=V₁=cos(ω t).
- iii) Nos valores intermédios de φ obtêm-se elipses com excentricidade "e" e inclinações variáveis do eixo maior da elipse. A excentricidade vai de *e*=1 para a linha reta até *e*=0 na circunferência.
- Na realidade, para sinais em fase (ϕ =0°) o ângulo de inclinação α da reta é obtido por tg(α)=A₁/A₂ e temse α = 45° se A₁ = A₂. Porém, no osciloscópio as amplitudes A₁ e A₂ ocupam distâncias diferentes consoante as escalas dos canais 1 e 2 => o ângulo α depende destas escalas.

Assim, só se as escalas V/div forem iguais nos dois canais é que se obtém uma reta (ϕ =0°), ou uma circunferência nos casos de ϕ =90° acima indicados.

- Como no circuito LR a amplitude de saída A_R diminui com a frequência, ao mesmo tempo que o desfasamento ϕ aumenta (de 0º para 90º), é preciso ir ajustando a escala vertical do canal respetivo para se obter aproximadamente uma circunferência, no modo XY. Os gráficos de V_R vs V_e em baixo apresentados (estão na mesma escala) mostram muito bem esta perda de amplitude.
- No circuito LR e para frequências baixas, tem-se que $A_R \approx A_e$ e $\phi \approx 0^o$, o que permite obter uma linha reta quase a 45° de inclinação se as escalas verticais V/div forem iguais nos dois canais.

Vejam-se os exemplos em baixo, referentes a f = 50 Hz, 6 kHz e 65 kHz. A inclinação da reta a vermelho é indicativa do ângulo φ de desfasamento entre V_R e V_e (= V_q), cujo valor está a amarelo entre ().

Entrega obrigatória do relatório na Semana Seguinte

ANEXOS

Normal

XY Mode

20-Nov-19 13:55

CH1 2.00V CH2 50.0mV

Experiência 2 - Exercício 3

Experiência 2 - Exercício 7

Experiência 2 - Exercício 9

t(microS)	Vr(V)
583	3,9
588	3,1
590	2,68
592	2,38
595	2,02
598	1,7
601	1,44
603	1,28

Vr(V)	In(Vr)	t(ms)
3,90	1,36098	0,583
3,10	1,13140	0,588
2,68	0,98582	0,59
2,38	0,86710	0,592
2,02	0,70310	0,595
1,70	0,53063	0,598
1,44	0,36464	0,601
1,28	0,24686	0,603

Experiência 3 - Exercício 4

f(Hz)	deltaT(microS)	deltaT(s)	Periodo(s)	qmed
50	420	0,00042000	0,02	7,56
170	42	0,00004200	0,00588235	2,5704
500	18	0,00001800	0,002	3,24
1000	13,6	0,00001360	0,001	4,896
2000	11,2	0,00001120	0,0005	8,064
4000	11,3	0,00001130	0,00025	16,272
9000	10,4	0,00001040	0,00011111	33,696
17000	8,8	0,00000880	5,8824E-05	53,856
30000	6,2	0,00000620	3,3333E-05	66,96
46000	4,64	0,00000464	2,1739E-05	76,8384
80000	2,94	0,00000294	0,0000125	84,672

Experiência 4 - Exercício 2

Turma PL 12 n° 52736 n° 53472 n° 53504 Grupo : 3 Data: 20/11/2019

Experiência 4 – Exercício 4

f(Hz)	Ar/Ag
50	0,5000
170	0,5000
500	0,5000
1000	0,5000
2000	0,5000
4000	0,4878
9000	0,4207
17000	0,3171
30000	0,2297
46000	0,1402
80000	0,0823

