Exercise 6.4: Supervised Machine Learning: Regression

Import Libraries

```
In [1]: # Import necessary Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
import numbers
```

Data cleaning

```
In [2]: # Load the dataset
gun_violence_df = pd.read_csv('gun-violence-data_01-2013_03-2018.csv')
gun_violence_df.head(4)
```

Out[2]:

	incident_id	date	state	city_or_county	address	n_killed	n_injured	
0	461105	2013- 01-01	Pennsylvania	Mckeesport	1506 Versailles Avenue and Coursin Street	0	4	http://www.gunvic
1	460726	2013- 01-01	California	Hawthorne	13500 block of Cerise Avenue	1	3	http://www.gunvio
2	478855	2013- 01-01	Ohio	Lorain	1776 East 28th Street	1	3	http://www.gunvio
3	478925	2013- 01-05	Colorado	Aurora	16000 block of East Ithaca Place	4	0	http://www.gunvio
4 r	ows × 29 col	umns						
4								X

Statistical Overview of the Data

In [3]: gun_violence_df.describe() ##describes only numeric data

Out[3]:

lc	latitude	congressional_district	n_injured	n_killed	incident_id	
231754	231754.000000	227733.000000	239677.000000	239677.000000	2.396770e+05	count
-89	37.546598	8.001265	0.494007	0.252290	5.593343e+05	mean
14	5.130763	8.480835	0.729952	0.521779	2.931287e+05	std
-171	19.111400	0.000000	0.000000	0.000000	9.211400e+04	min
-94	33.903400	2.000000	0.000000	0.000000	3.085450e+05	25%
-86	38.570600	5.000000	0.000000	0.000000	5.435870e+05	50%
-80	41.437375	10.000000	1.000000	0.000000	8.172280e+05	75%
97	71.336800	53.000000	53.000000	50.000000	1.083472e+06	max
•						4

Check for Missing Data

```
In [4]: # Function to describe more information for all the attributes
        def brief(data):
            df = data.copv()
            print("This dataset has {} Rows {} Attributes".format(df.shape[0],df.shape
            print('\n')
            real valued = {}
            symbolics = {}
            for i,col in enumerate(df.columns, 1):
                Missing = len(df[col]) - df[col].count()
                counter = 0
                for val in df[col].dropna():
                    if isinstance(val, numbers.Number):
                            counter += 1
                if counter != len(df[col].dropna()):
                    arity = len(df[col].dropna().unique())
                    symbolics[i] = [i, col, Missing, arity]
                else:
                    Mean, Median, Sdev, Min, Max = df[col].mean(), df[col].median(), d
                    real valued[i] = [i, col, Missing, Mean, Median, Sdev, Min, Max]
            #Create array containing list of real valued
            real valued array = [real valued[keys] for keys in real valued.keys()]
            real_valued_transformed = np.array(real_valued_array).T
            symbolic array = [symbolics[keys] for keys in symbolics.keys()]
            symbolic transformed = np.array(symbolic array).T
            # return symbolic transformed
            real_cols = ['Attribute_ID', 'Attribute_Name', 'Missing', 'Mean', 'Median'
            sym_cols = ['Attribute_ID', 'Attribute_Name', 'Missing','arity']
            index = range(1, len(real valued.keys())+1)
            real val df = pd.DataFrame(data={unit[0]:unit[1] for unit in zip(real cols
            index sym = range(1, len(symbolics.keys())+1)
            sym_val_df = pd.DataFrame(data={unit[0]:unit[1] for unit in zip(sym_cols,
            text = ("real valued attributes" + "\n" + "-----"
                    + "\n" + str(real_val_df) + "\n" + "non-real valued attributes"
                    + "\n" + "-----" + "\n" + str(sym val df))
            return text
```

```
In [5]: %time
    print(brief(gun_violence_df))
```

CPU times: total: 0 ns

Wall time: 0 ns

This dataset has 239677 Rows 29 Attributes

real valued attributes

	Attribute_ID	Attribute_Name	Missing	Mean		
1	1	<pre>incident_id</pre>	0	559334.3464037017		
2	6	n_killed	0	0.25228953967214207		
3	7	n_injured	0	0.4940065171042695		
4	10	<pre>incident_url_fields_missing</pre>	0	0.0		
5	11	<pre>congressional_district</pre>	11944	8.001264638853394		
6	15	latitude	7923	37.54659822311588		
7	17	longitude	7923	-89.33834822915676		
8	18	n_guns_involved	99451	1.3724416299402393		
9	28	<pre>state_house_district</pre>	38772	55.44713172892661		
10	29	<pre>state_senate_district</pre>	32335	20.477110281563792		

	Median	Sdev	Min	Max
1	543587.0	293128.684285221	92114	1083472
2	0.0	0.52177887298012	0	50
3	0.0	0.7299522740842754	0	53
4	0.0	0.0	False	False
5	5.0	8.480834796700318	0.0	53.0
6	38.5706	5.130763162136701	19.1114	71.3368
7	-86.2496	14.35954557699743	-171.429	97.4331
8	1.0	4.678202195031997	1.0	400.0
9	47.0	42.04811689079994	1.0	901.0
10	19.0	14.20455963079257	1.0	94.0

non-real valued attributes

-						
	Attribute_ID	Attribute_Name	Missing	arity		
1	2	date	0	1725		
2	3	state	0	51		
3	4	city_or_county	0	12898		
4	5	address	16497	198037		
5	8	incident_url	0	239677		
6	9	source_url	468	213989		
7	12	<pre>gun_stolen</pre>	99498	349		
8	13	gun_type	99451	2502		
9	14	<pre>incident_characteristics</pre>	326	18126		
1	0 16	location_description	197588	27595		
1	1 19	notes	81017	136652		
1	2 20	participant_age	92298	18951		
1	3 21	participant_age_group	42119	898		
1	4 22	participant_gender	36362	873		
1	5 23	participant_name	122253	113488		
1	6 24	participant_relationship	223903	284		
1	7 25	participant_status	27626	2150		
1	8 26	participant_type	24863	259		
1	9 27	sources	609	217280		

\

Based on the analysis presented above, you can deduce that certain properties, such as participant_name and participant_relationship, are missing almost as many values as the total number of records contained in the dataset.

In [6]: gun_violence_df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 239677 entries, 0 to 239676

Data columns (total 29 columns):

#	Column	Non-Null Count	Dtype	
0	incident_id	239677 non-null	 int64	
1	date	239677 non-null	object	
2	state	239677 non-null	object	
3	city_or_county	239677 non-null	object	
4	address	223180 non-null	object	
5	n killed	239677 non-null	int64	
6	n injured	239677 non-null	int64	
7	incident_url	239677 non-null	object	
8	source_url	239209 non-null	object	
9	incident_url_fields_missing	239677 non-null	bool	
10	congressional_district	227733 non-null	float64	
11	gun_stolen	140179 non-null	object	
12	gun_type	140226 non-null	object	
13	<pre>incident_characteristics</pre>	239351 non-null	object	
14	latitude	231754 non-null	float64	
15	location_description	42089 non-null	object	
16	longitude	231754 non-null	float64	
17	n_guns_involved	140226 non-null	float64	
18	notes	158660 non-null	object	
19	participant_age	147379 non-null	object	
20	participant_age_group	197558 non-null	object	
21	participant_gender	203315 non-null	object	
22	participant_name	117424 non-null	object	
23	participant_relationship	15774 non-null	object	
24	participant_status	212051 non-null	object	
25	participant_type	214814 non-null	object	
26	sources	239068 non-null	object	
27	state_house_district	200905 non-null	float64	
28	state_senate_district	207342 non-null	float64	
dtypes: bool(1), float64(6), int64(3), object(19)				
memory usage: 51.4+ MB				

Cleaning Data

State your hypothesis.

The number of people injured as a result of gun violence is significantly higher than the number of people who have lost their lives to such violence

Select the relevant variables

```
In [8]: # Select the relevant variables
predictor_column = 'n_injured' # Select the column you want to use as the pred
target_column = 'n_killed' # Select the column you want to predict
```

Prepare your data for a regression analysis

```
In [9]: # Prepare your data for regression analysis
X = gun_violence_filtered[[predictor_column]].values
y = gun_violence_filtered[target_column].values
```

Split the data into two sets: a training set and a test set

```
In [10]: # Split the data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random
```

X and y are the arrays representing the independent variable(s) and the dependent variable, respectively. In this case, X contains the values of the predictor column, and y contains the values of the target column.

train_test_split is a function from the sklearn.model_selection module that splits the data into training and test sets.

The test_size parameter specifies the proportion of the data that should be allocated to the test set. In this case, it's set to 0.2, meaning that 20% of the data will be used for testing, and 80% will be used for training.

The random_state parameter is used to control the random shuffling of the data before splitting. Setting a specific value (e.g., random_state=42) ensures that the random splitting is reproducible, which is useful for consistent results across different runs.

X_train and y_train represent the features and target values in the training set, respectively.

X_test and y_test represent the features and target values in the test set, respectively.

Once the data is split, the model is trained on the training set using the X_train and y_train data. Then, the model's performance is evaluated on the test set using the X_test data. This helps us understand how well the model generalizes to unseen data and avoids overfitting (performing well on training data but poorly on new data).

a linear regression model

Make predictions on the test data

```
In [12]: # Make predictions on the test data
y_pred = model.predict(X_test)
```

A plot of the regression line on the test set

```
In [13]: # Create a plot of the regression line on the test set
plt.scatter(X_test, y_test, color='blue', label='Actual')
plt.plot(X_test, y_pred, color='red', linewidth=2, label='Regression Line')
plt.xlabel(predictor_column)
plt.ylabel(target_column)
plt.title('Regression Line')
plt.legend()
plt.show()
```


The scatter plot with the red regression line illustrates the relationship between the predicted values (represented by the red line) and the actual values (depicted by the blue points) in the test set. This plot allows us to visually assess how well the linear regression model fits the data.

From the plot, we can observe that the red regression line runs through the center of the blue points, indicating that the model is capturing the general trend of the data. However, it's important to note that there's some variability in the data points around the regression line. This variability suggests that while the model provides a reasonable fit, it might not perfectly capture all the variations in the data.

In summary, the regression line provides a reasonable approximation of the relationship between the predictor variable (n_injured) and the target variable (n_killed). The closeness of the data points to the line suggests a moderate level of fit, implying that the model is capturing the general trend but might not predict each data point with high precision. Further analysis and evaluation metrics are needed to quantify the model's performance more precisely.

Model performance statistics

```
In [14]: # Check model performance statistics
    mse = mean_squared_error(y_test, y_pred)
    r2 = r2_score(y_test, y_pred)
    print('Mean Squared Error:', mse)
    print('R-squared:', r2)
```

Mean Squared Error: 0.4746348774468394 R-squared: -0.3951036385483162

Compare predicted vs actual values in a DataFrame

```
In [15]:
        # Compare predicted vs actual values in a DataFrame
        comparison_df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
        print(comparison df)
               Actual Predicted
        0
                   0 0.294585
        1
                    0 0.294585
                    0 0.294585
        2
                    0 0.122526
                    1
        4
                       0.294585
        47931
                  0 0.294585
        47932
                   1 0.208556
        47933
                   0 0.294585
        47934
                   0 0.208556
                0 0.294585
        47935
        [47936 rows x 2 columns]
```

Evaluation of model performance on the test set

Regression Analysis Results and Interpretation

Regression Line Plot:

The scatter plot above displays the regression line (in red) on the test set data points (in blue). This visualization allows us to visually evaluate how well the linear regression model fits the data. The red regression line represents the predictions made by the model based on the predictor variable (n_injured), and the blue points represent the actual values of the target variable (n_killed).

Interpretation of Fit:

From the plot, we can observe that the red regression line roughly follows the trend of the blue data points, indicating that the model is capturing the overall relationship between the number of injured individuals and the number of killed individuals. However, it's evident that there is a significant amount of scatter around the regression line, suggesting that the model's predictions do not perfectly align with the actual values. This scatter implies that while the model provides a reasonable fit, there is inherent variability in the data that the model might not be capturing accurately.

Model Performance Statistics:

The model performance is assessed using two metrics:

- Mean Squared Error (MSE): The calculated MSE is approximately 0.475. The MSE
 measures the average squared difference between the predicted and actual values. A lower
 MSE indicates a better fit of the model. In this case, the relatively small value of MSE
 suggests that the model's predictions are reasonably close to the actual values, on
 average.
- R-squared (R2) Score: The R-squared score is around -0.395. R2 measures how well the
 model explains the variability in the target variable. A value closer to 1 indicates a better fit,
 while a negative value suggests that the model does not capture the variability as well as a
 horizontal line would. In this case, the negative R2 score indicates that the model is not
 performing well in explaining the variability in the data.

Comparison of Predicted vs. Actual Values:

The DataFrame presented above compares the predicted and actual values of the target variable (n_killed) in the test set. Each row represents a data point in the test set, with the "Actual" column showing the true number of killed individuals and the "Predicted" column displaying the values predicted by the model.

Model Performance Assessment and Data Bias:

Overall, the model's performance appears to be limited, as evidenced by the scatter in the regression line plot and the negative R2 score. The model does not perfectly capture the relationship between the number of injured and killed individuals. Potential data biases and limitations in the predictor variable could be contributing to the suboptimal performance. Further exploration, feature engineering, and consideration of additional variables could enhance the model's accuracy and reliability.

In []:	