2004. Том 45, № 3 Май – июнь С. 497 – 501

УДК 541.49+548.734

СТРУКТУРНАЯ ОРГАНИЗАЦИЯ СЛОЕВ ОКТАКИС-(ТРИМЕТИЛСИЛОКСИ)ОКТАСИЛСЕСКВИОКСАНА И ДОДЕКАКИС-(ТРИМЕТИЛСИЛОКСИ)ЦИКЛОГЕКСАСИЛОКСАНА

© 2004 С.А. Громилов^{1*}, Т.В. Басова¹, Д.Ю. Емельянов², А.В. Кузьмин², С.А. Прохорова¹

Статья поступила 22 апреля 2003 г.

Проведено рентгенографическое (ДРОН-RM4, $R=192\,$ мм, $\mathrm{Cu}K_\alpha$ -излучение) и КР (Triplemate, SPEX) исследование слоев кремнийорганических соединений [(CH₃)₃SiO]₈(SiO_{1,5})₈ и [(CH₃)₃SiO]₁₂(SiO)₆, полученных парофазным осаждением. Установлено, что слои представляют собой идеально ориентированные поликристаллические пленки. Поликристаллы октакис-(триметилсилокси)октасилсесквиоксана ориентированы в одном кристаллографическом направлении [001], а додекакис-(триметилсилокси)циклогексасилоксана — в двух направлениях [$\overline{1}$ 20], [$\overline{1}$ 11]. На основании анализа кристаллических структур в указанных направлениях определен тип плоской решетки, которой следуют молекулы и их ориентация относительно подложки.

Ключевые слова: кремнийорганические соединения, рентгенографическое исследование, комбинационное рассеяние, ориентированные слои.

Кремнийорганические соединения типа октаорганилсилсесквиоксанов являются перспективными материалами для вакуумной литографии и используются в качестве фото-, электроно- и рентгенорезистов [1, 2]. Они могут осаждаться на различные подложки путем термического испарения в вакууме (сублимацией), чувствительны к различным видам облучения, имеют наилучшее разрешение для электронных резистов 50 нм [3].

Несмотря на большое количество работ, посвященных изучению олигоорганилсилсесквиоксанов и широкое их использование, закономерности в ряду "кристаллоструктурная организация слоя — физико-химические свойства" ранее практически не обсуждались. Кристаллохимическое изучение структурной организации адсорбированных слоев, на наш взгляд, может прояснить на молекулярном уровне механизмы процессов, протекающих на поверхности, и использовать их при разработке физико-химических основ получения изделий с заданными характеристиками.

Настоящая работа посвящена исследованию октакис-(триметилсилокси)октасилсескви-оксана $[(CH_3)_3SiO]_8(SiO_{1,5})_8$ и додекакис-(триметилсилокси)циклогексасилоксана $[(CH_3)_3SiO]_{12}\times \times (SiO)_6$. Брутто-формулы этих соединений $C_{36}H_{24}O_{20}Si_{16}$ и $C_{36}H_{108}O_{18}Si_{18}$. Нами получены и исследованы ориентированные поликристаллические образцы указанных соединений. Анализ таких образцов позволяет перейти от трехмерной кристаллической структуры к ее двумерному сечению, т.е. выделенной кристаллографической плоскости. Ранее мы уже показали, что слои $[(CH_3)_3SiO]_8(SiO_{1,5})_8$ ориентированы в одном направлении [4], т.е. они идеально ориентированы. Представлялось интересным изучить закономерности ориентирования циклического комплекса $[(CH_3)_3SiO]_{12}(SiO)_6$. Выводы данной работы базируются на результатах рентгенографического анализа и KP спектроскопии.

_

¹ Институт неорганической химии им А.В. Николаева СО РАН, Новосибирск

² Новосибирский государственный университет

^{*} E-mail: grom@che.nsk.su

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез $[(CH_3)_3SiO]_8(SiO_{1,5})_8$ и $[(CH_3)_3SiO]_{12}(SiO)_6$ описан в работе [5]. Их слои были получены конденсацией паров (вакуумная установка HBA-1 фирмы Carl Zeiss Jena, вакуум $\sim 10^{-5}$ мм рт. ст., источник открытого типа, температура $[140-180\ ^{\circ}C]$ на различных подложках — пластинки Si, подложки из плавленного кварца и др. Подложки имели комнатную температуру. Скорость нанесения составляла $[10-30\ ^{\circ}A/c]$, конечная толщина слоев [5]. Мх слои были получены полученых подложких имели комнатную температуру.

Образцы представляли собой тонкий ровный сплошной бесцветный прозрачный слой (диаметр пятна примерно 1 см) на указанных подложках. Подложки крепили при помощи пластилина в углублении кварцевой кюветы из набора гониометра ГУР-8. Плоскость образца и верхней поверхности указанной кюветы совмещали с помощью стеклянной пластинки.

Рентгенографическое исследование проведено на дифрактометре ДРОН-RM4 (R=192 мм, CuK_{α} -излучение, Ni-фильтр, детектор сцинтилляционный с амплитудной дискриминацией) в области углов 20 от 5 до 40° при комнатной температуре. Полученные дифрактограммы показаны на рис. 1 и 2. Как видно, дифрактограмма [(CH_3) $_3SiO$] $_8$ ($SiO_{1,5}$) $_8$ представлена порядками отражений только от одной кристаллографической плоскости. На дифрактограмме [(CH_3) $_3SiO$] $_{12}$ (SiO) $_6$ имеются отражения от двух семейств плоскостей. Это свидетельствует об идеальной ориентации всех кристаллитов относительно подложки у [(CH_3) $_3SiO$] $_8$ ($SiO_{1,5}$) $_8$ и двукомпозиционной ориентации кристаллитов [(CH_3) $_3SiO$] $_{12}$ (SiO) $_6$.

Поляризованные КР спектры пленок были получены на приборе Triplemate SPEX, снабженном ССD детектором и микроскопом для регистрации спектров в геометрии обратного рассеяния с возбуждением линией 488 нм аргонового лазера. Плоскость поляризации рассеянного света задавали поляроидом, помещенным во входном канале спектрометра.

На рис. 3, a представлены поляризованные КР спектры пленок соединения $[(CH_3)_3SiO]_8(SiO_{1,5})_8$, зарегистрированные в параллельных (ii) и перекрестных (ij) поляризациях падающего и рассеянного света. Расчет и отнесение полос в колебательных спектрах этого соединения проведены в работе [6]. Были измерены отношения интенсивностей колебаний I_{ii}/I_{ij} каждого типа симметрии в спектрах, зарегистрированные в параллельных (ii) и перекрестных (ij) поляризациях падающего и рассеянного света.

Рис. 1. Дифрактограмма образца $[(CH_3)_3SiO]_8(SiO_{1,5})_8$ на полированной поверхности Si подложки. На выноске показан участок 2θ 10— 40°

 $Puc.\ 2.\ Дифрактограмма образца [(CH₃)₃SiO]₁₂(SiO)₆$

Моды 296 и 616 см $^{-1}$ представляют собой полносимметричные колебания, их интенсивность резко понижается в (ij) спектрах по сравнению с (ii) спектрами (см. рис. 3, a). Отношение интенсивностей I_{ii}/I_{ij} для колебаний типа F_{1g} в области 166, 227 и 691 см $^{-1}$ близко к 1. Такое отношение интенсивностей колебаний в КР спектрах пленки, отличное от отношения интенсивностей колебаний в КР спектрах пленки, отличное от отношения интенсивностей колебаний в КР спектрах пленки, отличное от отношения интенсивностей колебаний в КР спектрах пленки, отличное от отношения интенсивностей колебаний в КР спектрах пленки, отличное от отношения интенсивностей колебаний в КР спектрах пленки, отличное от отношения интенсивностей колебаний в КР спектрах пленки, отличное от отношения интенсивностей колебаний в КР спектрах пленки, отличное от отношения интенсивностей в класи в

ностей в спектрах мелкодисперсных порошков или растворов, свидетельствует о том, что пленка $[(CH_3)_3SiO]_8 \times (SiO_{1.5})_8$ является ориентированной.

КР спектры пленки соединения $[(CH_3)_3SiO]_{12}(SiO)_6$, представленные на рис. 3, δ , свидетельствуют об отсутствии в ней идеальной ориентации кристаллитов.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ И ВЫВОДЫ

Индицирование дифрактограмм проведено по данным работы [6]. Используя результаты этого исследования для $[(CH_3)_3SiO]_8(SiO_{1,5})_8$ (a=11,046, b=11,104, c=13,554 Å, $\alpha=77,68$, $\beta=82,08$, $\gamma=84,04^\circ$, пространственная группа $P\overline{1}$) была рассчитана (программа XPOW) теоретическая дифрактограмма. Сравнивая ее с экспериментальной диф-

Рис. 3. Поляризованные спектры КР пленок соединений $[(CH_3)_3SiO]_8(SiO_{1,5})_8$ (a) и $[(CH_3)_3SiO]_{12}(SiO)_6$ (б), зарегистрированные в параллельных (ii) и перекрестных (ij) поляризациях падающего и рассеянного света

Рис. 4. Организация выделенных слоев в кристаллической структуре $[(CH_3)_3SiO]_8(SiO_{1,5})_8$ перпендикулярно направлению [001]

рактограммой, мы сделали вывод об идеальной ориентированности кристаллитов $[(CH_3)_3SiO]_8(SiO_{1,5})_8$ в направлении [001]. Особо следует отметить, что выделенное направление характеризуется наибольшим из имеющихся в кристаллической решетке межплоскостным расстоянием d=13,15 Å, соответственно эти слои наиболее заселены атомами.

Установленная ориентация кристаллитов, а также рентгеноструктурные данные [7] для $[(CH_3)_3SiO]_8(SiO_{1,5})_8$ позволяют провести анализ структурной организации их верхних наиболее развитых граней. Для этого в кристаллической структуре $[(CH_3)_3SiO]_8(SiO_{1,5})_8$ выделим плоскость, нормаль к которой совпадает или близка к выделенному направлению [001]. На рис. 4 показан слой, параллельный семейству кристаллографических плоскостей (001), выделенное направление перпендикулярно плоскости рисунка — хорошо видно, что к поверхности подложки ориентированы концевые метильные группы. Рост слоя происходит за счет повторения таких слоев через межплоскостное расстояние d_{001} .

Из сравнения теоретической дифрактограммы с экспериментальной для $[(CH_3)_3SiO]_{12}(SiO)_6$ ($a=25,338,\ c=10,907$ Å, пространственная группа $R\overline{3}$) было установлено, что кристаллиты в образце ориентированы в двух направлениях $[\overline{1}20]$ и $[\overline{1}11]$. Расположение молекул в кристаллической решетке в данных направлениях можно увидеть на рис. 5.

Результаты KP спектроскопии подтвердили, что все кристаллиты в образце $[(CH_3)_3SiO]_8(SiO_{1,5})_8$ ориентированы в одном направлении. Поляризованные KP спектры пленки

Puc. 5. Организация кристаллической структуры $[(CH_3)_3SiO]_{12}(SiO)_6$ в направлениях $[\overline{1}11]$ и $[\overline{1}20]$

 $[(CH_3)_3SiO]_{12}(SiO)_6$ не позволяют сделать однозначный вывод о предпочтительной ориентировке кристаллитов в образце. Действительно, полученные рентгенографические данные свидетельствуют, что имеется два преимущественных направления. В направлении $[\overline{1}\,20]$ молекулы $[(CH_3)_3SiO]_{12}(SiO)_6$ располагаются перпендикулярно плоскости образца, в направлении $[\overline{1}\,11]$ они составляют с ней угол $26,4^\circ$.

Авторы выражают благодарность д.х.н. Р.Г. Мирскову за любезно предоставленные соединения.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Проблемы* электронного материаловедения / Под ред. акад. Ф.А. Кузнецова. Новосибирск: Наука, 1986.-162 с.
- 2. *Трофимов Б.А., Цветков Ю.Д., Лешина Т.В. и др.* Интеграционные программы фундаментальных исследований. Новосибирск: Изд-во СО РАН, 1998. С. 468 477.
- 3. Литвин Л.В., Гаврилова Т.А., Плотников А.Е. // Микроэлектроника. 1997. 26, № 6. С. 451 457.
- 4. Громилов С.А., Емельянов Д.Ю., Кузьмин А.В., Прохорова С.А. // Журн. структур. химии. -2003. -44, № 4. С. 766-768.
- 5. Калмычков Г.В., Рахлин В.И., Гостевский Б.А. и др. // Докл. АН. 1998. **362**, № 3. С. 359 361.
- 6. Колесов Б.А., Мартынова Т.Н., Чупахина Т.И. // Журн. структур. химии. 1988. **29**, № 6. С. 77 81
- 7. *Larson K.* // Arkiv Kemi. 1960. **16**. P. 203.
- 8. Auner N., Ziemer B., Herrschaft B. et al. // Eur. J. Inorg. Chem. 1999. P. 1087 1094.