Raport 4

Eksploracja danych

Olaf Masłowski, album 277543

2025-07-09

Spis treści

1	$\mathbf{W}\mathbf{step}$	2
2	Zadanie 1 - Zaawansowane metody klasyfikacji	2
	2.1 Boosting	2
	2.2 Bagging	
	2.3 SVM	
	2.4 Podsumowanie	7
3	Zadanie 2 - Analiza skupień – algorytmy grupujące i hierarchiczne	8
	3.1 PAM (Partition around medoids)	8
	3.2 Agnes (Aglomerative nesting)	11
	3.3 Podsumowanie	18

1 Wstęp

W pierwszej części będę kontynuować analizę danych PimaIndiansDiabetes wykorzystując rodziny klasyfikatorów.

2 Zadanie 1 - Zaawansowane metody klasyfikacji

2.1 Boosting

Wykorzystam funkcję ada(){ada} do implementacji algorytmu metody boosting - Adaboost.

Training Error

Rysunek 1: Błąd klasyfikacji na zbiorze treningowym w zależności od liczby iteracji. Wszystkie zmienne

Training Error

Rysunek 2: Błąd klasyfikacji na zbiorze treningowym w zależności od liczby iteracji. Zmienne glucose i age

Rysunek 3: Wykres rozrzutu z podziałem na wynik klasyfikacji i rzeczywistą etykietkę dla danych uczących z wykorzystaniem wszystkich zmiennych. Liczba iteracji - 50.

	parametry	error
1	train, iter $=20$	0.104
2	train, iter $= 50$	0.077
3	train, iter = 20 , g + a	0.154
4	train, iter = 50 , g + a	0.147
5	test, iter $= 20$	0.203
6	test, iter = 50	0.226
7	test, iter = 20 , g + a	0.241
8	test, iter = 50 , g + a	0.271
9	crossvalidation, iter= 50 , g + a	0.232
_10	crossvalidation, iter $= 50$	0.212

Tabela 1: Zestawienie błądów klasyfikacji

2.2 Bagging

Bagging classification trees with 25 bootstrap replications

Call: bagging.data.frame(formula = diabetes $\tilde{\ }$., data = trainset, nbag = 25, minsplit = 0, cp = 0)

Rysunek 4: Wykres rozrzutu z podziałem na wynik klasyfikacji i rzeczywistą etykietkę dla danych uczących z wykorzystaniem wszystkich zmiennych, nbag=25, minsplit=0, cp=0

-	parametry	error
1	train, nbag 25, ms 0, cp 0	0.000
2	train, nbag 25, ms 0, cp 0.02	0.000
3	train, nbag 25, ms 0, cp 0, $g + a$	0.008
4	train, nbag 25, ms 0, cp 0.02, g $+$ a	0.008
5	test, nbag 25 , ms 0 , cp 0	0.218
6	test, nbag 25, ms 0, cp 0.02	0.233
7	test, nbag 25, ms 0, cp 0, g $+$ a	0.286
8	test, nbag 25, ms 0, cp 0.02, g + a	0.286
9	crossvalidation, nbag 25, ms 0, cp 0	0.209
_10	crossvalidation, nbag 25, ms 0, cp 0, g + a	0.250

Tabela 2: Zestawienie błądów klasyfikacji

2.3 SVM

SVM classification plot

Rysunek 5: Klasyfikacja metodą wektorów nośnych z jądrem radialnym. gamma = 1, cost = 1, dane uczące

Parameter tuning of 'svm':

- sampling method: 10-fold cross validation
- best performance: 0.2161538

Performance of `svm'

Rysunek 6: Wykres (mapa cieplna) skuteczności SVM w zależności od kosztu i gammy

SVM classification plot

Rysunek 7: Klasyfikacja SVM z wykorzystaniem optymalnych parametrów

	parametry	error
1	train, linear, cost 1	0.224
2	train, polynomial, degree 3, cost 1	0.243
3	train, radial, cost 1, gamma 0.5	0.212
4	train, linear, cost 0.5	0.224
5	train, polynomial, degree 10, cost 0.5	0.243
6	train, radial, cost 0.5, gamma 0.5	0.208
7	test, linear, cost 1	0.218
8	test, polynomial, degree 3, cost 1	0.226
9	test, radial, cost 1, gamma 0.5	0.195
10	test, linear, cost 0.5	0.218
11	test, polynomial, degree 10, cost 0.5	0.233
12	test, radial, cost 0.5, gamma 0.5	0.203
13	train, radial, cost tuned (256), gamma tuned (2^-10)	0.216
_14	test, radial, cost tuned (256), gamma tuned (2^-10)	0.203

Tabela 3: Zestawienie błądów klasyfikacji

"Strojenie" parametrów nie przyniosło oszałamiających efektów, ale trzeba mieć na uwadze, że i bez strojenia skuteczność SVM była bardzo dobra. Metoda zdaje się nie być bardzo wrażliwa na dobór odpowiednich parametrów - nawet domyślne wartości zapewniły satysfakcjonujące rezultaty.

2.4 Podsumowanie

Każda z powyższych metod cechuje się wysoką dokładnością - wyższą, niż można oczekiwać większości standardowych metod stosowanych w klasyfikacji. Metoda SVM wyróżnia się przede wszystkim dobrymi efektami niezależnie od dobranych parametrów. Metoda boosting osiąga dobre wyniki dla większej ilości iteracji, jednak dłuższy czas działania jest odczuwalny. Metoda bagging działa dobrze, ale nie jest łatwo wybrać odpowiednie parametry. Biorąc pod uwagę powyższe, oceniam, że najlepszą skuteczność wykazała metoda wektorów nośnych.

3 Zadanie 2 - Analiza skupień – algorytmy grupujące i hierarchiczne

3.1 PAM (Partition around medoids)

Silhouette plot of pam(x = dissmatrix, k = 2, diss = TRUE)

Average silhouette width: 0.18

Rysunek 8: Wykres sillhouette - PAM

PAM wykres rozrzutu po redukcji wymiarów

Rysunek 9: Wykres rozrzutu po redukcji wymiarów PCA z podziałem na wynik grupowania i rzeczywistą etykietkę

Rysunek 10: Wykres rozrzutu z zaznaczonymi klastrami

Rysunek 11: Wykres zależności średniej wartości silhouette od liczby klastrów

Zgodnosc partycji dla PAM w porównaniu z faktycznymi etykietami

Rysunek 12: Wykres zależności zgodności partycji od liczby klastrów

	1	2
neg	55	78
pos	58	9

Tabela 4: Macierz pomyłek dla metody PAM

3.2 Agnes (Aglomerative nesting)

Cluster Dendrogram

Rysunek 13: Dendrogram Agnes, average linkage.

Cluster Dendrogram

Rysunek 14: single linkage

Cluster Dendrogram

Rysunek 15: complete linkage

Agnes – complete wykres rozrzutu po skalowaniu wielowymiarowym 2 klastry

Rysunek 16: Wykres rozrzutu dla algorytmu Agnes z metodą najdalszego sąsiada. Liczba klastrów - 2

Agnes – complete wykres rozrzutu po skalowaniu wielowymiarowym 3 klastry

Rysunek 17: Wykres rozrzutu dla algorytmu Agnes z metodą najdalszego sąsiada. Liczba klastrów - 3

Agnes – complete wykres rozrzutu po skalowaniu wielowymiarowym 5 klastrów

Rysunek 18: Wykres rozrzutu dla algorytmu Agnes z metodą najdalszego sąsiada. Liczba klastrów - $5\,$

Rysunek 19: Wykres zależności średniej wartości silhouette od liczby klastrów dla algorytmu Agnes z metodą najdalszego sąsiada

Rysunek 20: Wykres zależności średniej wartości silhouette od liczby klastrów dla algorytmu Agnes z metodą odległości średniej

Rysunek 21: Wykres zależności średniej wartości silhouette od liczby klastrów dla algorytmu Agnes z metodą najbliższego sąsiada

Zgodnosc partycji dla AGNES w porównaniu z faktycznymi etykietami

Rysunek 22: Wykres zgodności klastrów z faktycznymi etykietami (diabetes) z podziałem na metody łączenia klastrów

3.3 Podsumowanie

Rysunek 23: Zestawienie wykresów z podziałem na klastry algorytmu PAM.

PAM wykres rozrzutu po redukcji wymiarów

Rysunek 24: Wykres rozrzutu (rys9) z zaznaczonymi medoidami

Rysunek 25: Zestawienie wykresów z podziałem na klastry algorytmu Agnes

Agnes – Average wykres rozrzutu po skalowaniu wielowymiarowym 5 klastrów

Rysunek 26: Zestawienie wykresów z podziałem na klastry algorytmu PAM.

	pregnant	glucose	pressure	triceps	insulin	mass	pedigree	age	diabetes
245	-0.405	0.757	0.427	0.557	0.319	0.728	-0.562	-0.183	neg
278	-1.028	-0.604	-0.533	-0.584	-0.337	-0.752	-0.200	-0.771	neg

Tabela 5: Cechy medoidów

Obie badane metody nie poradziły sobie dobrze jeśli chodzi o zestawienie z oryginalnymi etykietkami - ledwo (w najlepszym wypadku) udało im się osiągnąć poziom skuteczności związany z przydzieleniem wszystkich przypadków do większej kategorii. Klastry uzyskane za pomocą algorytmu agnes cechowały się wyższymi wartościami silhouette, co sugeruje lepszą zwartość i separację, lecz analiza wykresów składowych głównych podsuwa odwrotne wnioski. W przypadku algorytmu agnes dopiero przy ok. pięciu klastrach pojawiały się liczniejsze grupy. W związku z tym - i wcześniejszymi wykresami - oceniam, że optymalną liczbą klastrów dla agnes jest 5, a metodą - odległość średnia. Algorytm PAM daje najlepsze efekty zarówno pod kątem silhouette, jak i zgodności dla dwóch klastrów. Medoidy zdają się znajdować w centrum klastrów, jednak ciężko dostrzec coś szczególnego, jeśli chodzi o wartości ich cech.