

Formal Methods and Functional Programming

Exercise Sheet 10: Big Step Semantics

Submission deadline: May 5th, 2014

Assignment 1 (Applying Big-Step Semantics)

Consider the following **IMP** statement s:

```
while n # 0 do
    (a := a+n;
    b := b*n);
    n := n-1
end
```

Let σ be a state such that $\sigma(a)=0$, $\sigma(b)=1$, and $\sigma(n)=2$. Prove using the natural semantics that there is some state σ' with $\sigma'(a)=3$, $\sigma'(b)=2$, and $\sigma'(n)=0$ such that $\langle s,\sigma\rangle\to\sigma'$.

Provide the complete derivation tree. Don't forget to write the names of the rules you apply explicitly, at each derivation step.

Assignment 2 (Reversing loop-unrolling)

(Note: in the lectures, you have seen the proof of this result in the other direction).

Prove that: For all σ, σ', b, s :

$$\vdash \langle \text{if } b \text{ then } s; \text{ while } b \text{ do } s \text{ end else skip end}, \sigma \rangle \to \sigma' \\ \Rightarrow \\ \vdash \langle \text{while } b \text{ do } s \text{ end}, \sigma \rangle \to \sigma'$$

Assignment 3 (Execution only affects free variables)

Prove that:

$$\forall s, \sigma, \sigma', x. (\; \vdash \langle s, \sigma \rangle \to \sigma' \; \land \; x \not\in \mathit{FV}(s) \;\; \Rightarrow \;\; \sigma'(x) = \sigma(x))$$

(Hint: the statement to prove is equivalent to the following (T ranges over derivation trees):

$$\forall T, s, \sigma, \sigma', x. ((root(T) = \langle s, \sigma \rangle \to \sigma') \land x \notin FV(s) \Rightarrow \sigma'(x) = \sigma(x))$$

Assignment 4 (Adding for-loop to IMP)

Consider an extension of the IMP programming language with a for statement:

for
$$x := e_1$$
 to e_2 do s end

The execution of the statement should first evaluate e_1 and assign the result to variable x. Then, while the value of x is not equal to that of e_2 , it should repeatedly execute x and increase x by one.

There are two possible interpretations of the above statement: (i) e_2 is evaluated once, (ii) e_2 is evaluated before each comparison to the value of x.

- (a) Provide derivation rules in natural semantics for both (i) and (ii). For this question, do *not* the while construct (or any IMP extensions from your exercise session) in your derivation rules.
- (b) Consider the case of semantics (ii) only. Show that, for all $x, e_1, e_2, s, \sigma, \sigma'$:

$$\vdash \langle \text{for } x := e_1 \text{ to } e_2 \text{ do } s \text{ end}, \sigma \rangle \to \sigma'$$

$$\Rightarrow$$

$$\vdash \langle x := e_1; \text{ while } x\#e_2 \text{ do } s; x := x+1 \text{ end }, \sigma \rangle \to \sigma'$$

Note: This exercise is a bit more involved (and the proof depends on how you formulate rules for for loops).

Assignment 5 (Big-Step IMP Interpreter)

In this assignment you will write a simple interpreter for **IMP** programs in the programming language Haskell. The interpreter is based on the big-step semantics of **IMP** that you have seen in the lecture, and reuses the implementation of the **IMP** syntax from assignment 4 of sheet 9. The following steps are necessary:

- 1. **Syntax.** Make sure you have an implementation of the **IMP** syntax together with evaluation functions of arithmetic and boolean expressions ready. You can either take your solution from assignment 4 of sheet 9, or use the master solution for that exercise provided on the website. You should implement a data type for IMP statements, too.
- 2. **States.** Implement (or reuse) a data type for states. Recall that states are functions from variable names to integers. Furthermore, implement a constant allZeroState that represents the all-zeros state (where every variable evaluates to zero); this state will be used as the initial state for our example programs. Finally, implement a function updateState that implements a state update, as defined in the lectures. That is, given a state σ , a variable x and a value y, it returns a new state representing $\sigma[x \mapsto y]$.
- 3. Configurations. In big-step semantics, a configuration is either final or non-final. A final configuration consists simply of a state. A non-final configuration consists of an IMP program (statement) and a state on which we start to run the given IMP program. Implement a data type for configurations.

- 4. **Transition function.** Implement a transition function transNS to implement the bigstep semantics as a function from configurations to configurations. Recall that in big-step semantics, transitions always go from non-final configurations to final configurations. Hint: your implementation should probably define one case for every rule in big-step semantics.
- 5. **Interpreter.** Implement a function run that takes an **IMP** program, runs that program starting in the state allZeroState and returns the resulting final state. In our programs, by convention we use a variable with the name "result" to indicate the overall result of the program. Write a function result that executes a program using run, and then returns the value of the result variable in the last state.
- 6. **Tests.** Write the simple programs from below in your Haskell data type of the **IMP** syntax and define a constant for each of them. The expected output for all programs is indicated, and you can use the result function to see if your interpreter computes the correct result.

Test programs

```
n := 2;
b := 1;
while n # 0 do
    a := a+n;
    b := b*n;
    n := n-1
end;
result := a
```

Expected result is 3, which you already proved in assignment 1 of this sheet.

```
result := 1;
n := 10;
while n > 1 do
    result := result*n;
    n := n-1
end
```

Expected result is 3628800.

```
x := 15648;
y := 3;
z := 0;
v := 0;
while v < x do
v := 1;
i := 0;
while i < y do
v := v * (z+1);
i := i+1</pre>
```

```
end;
if v <= x then
   z := z+1
else
   skip
end
end;
result := z</pre>
```

The expected result is 25. The program computes $\lfloor \sqrt[3]{15648} \rfloor$ (in general, the while loops compute $\lfloor \sqrt[y]{x} \rfloor$).

Submission

Please mail your solution of this assignment together with the test cases to your tutor. The email addresses of the tutors are:

Alex Summers alexander.summers@inf.ethz.ch
Milos Novacek milos.novacek@inf.ethz.ch
Uri Juhasz uri.juhasz@inf.ethz.ch
Alex Viand vianda@student.ethz.ch
Cyril Steimer csteimer@student.ethz.ch

Assignment 6 (Adding Break statement to IMP)

Extend the big-step semantics of **IMP** to support a break statement. That is, define suitable extra syntax and derivation rules to define the big-step semantics of this syntax. The break statement should stop the execution of the inner-most surrounding while loop that is being executed, as in C/Java. Execution should then resume immediately after the loop. You may assume that break will never appear outside of a while loop.

Hint: You might want to change the definition of *states* to help you to define this extension. **Note**: This exercise is a bit more involved.