1 Applicazioni alle derivate

1.1 Studio di funzioni

Definiamo i punti di massimo e di minimo relativo. Sia f(x) definita in un intervallo [a, b].

Figure 1: f(x)

- $x_1 \in [a, b]$ è un punto di **massimo relativo** per f nell'intervallo [a, b] se il valore $f(x_1)$ è più grande dei valori f(x) per ogni x nell'intervallo [a, b] vicino ad x_1 . Più precisamente se $\exists \delta > 0$ tale che $f(x_1) \geq f(x)$ per ogni $x \in [a, b]$ tale che $|x x_1| < \delta$.
- x_2 è un punto di massimo assoluto per f se $f(x_2) \ge f(x)$ per ogni $x \in [a, b]$.

Analogamente per i punti di minimo con \leq al posto di \geq .

Osservazione: Tutti i punti di massimo o minimo interni all'intervallo [a,b] (cioè $\in (a,b)$) hanno retta tangente orizzontale in quel punto cioè del tipo:

$$y = q$$

(Non vale per gli estremi per gli estremi dell'intervallo x=a,b, ma con $x_0\in(a,b)$). Ricordando la retta tangente al grafico di una funzione in x_0

$$y = f(x_0) + f'(x_0)(x - x_0)$$

questa retta è orizzontale $\iff f'(x_0) = 0.$

1.2 Teorema di Fermat

Sia f una funzione definita in [a, b] e sia x_0 un punto di massimo o di minimo relativo interno ad [a, b]. Se f è derivabile in x_0 , allora risulta:

$$f'(x_0) = 0$$

Dimostrazione: Supponiamo che x_0 sia un punto di massimo relativo, quindi $\exists \delta > 0$ tale che:

$$f(x_0) \ge f(x_0 + h)$$
 (*) $\forall h |h| < \delta \iff f(x_0) \ge f(x_0 + h)$ $\forall x : |x - x_0| < \delta$

Valuto il rapporto incrementale:

$$\frac{f(x_0+h)-f(x_0)}{h}$$

il numeratore è sempre negativo perchè x_0 è massimo in (\star) .

E risulta:

$$\begin{cases} \leq 0 & \text{se } 0 < h < \delta \\ \geq 0 & \text{se } -\delta < h < 0 \end{cases}$$

e passando al limite per $h \to 0^{\pm}$.

$$f'(x_0) = \lim_{h \to 0^{\pm}} \frac{f(x_0 + h) - f(x_0)}{h} \le 0$$

$$f'(x_0) = \lim_{h \to 0^{\pm}} \frac{f(x_0 + h) - f(x_0)}{h} \ge 0$$

(f derivabile per ipotesi, quindi i due limiti devono coincidere).

Quindi $f'(x_0) = 0$.

Osservazione: Quindi conseguenza del teorema di Fermat è che l'annullamento della derivata prima di una funzione derivabile in un punto x_0 del dominio è condizione **necessaria** affichè x_0 sia un punto di massimo o di minimo per la funzione.

1.3 Teorema di Rolle

Sia f una funzione continua in [a, b] e derivabile in (a, b).

Se f(a) = f(b), allora $\exists x_0 \in (a, b)$ tale che $f'(x_0) = 0$.

Dimostrazione: Sia f una funzione continua in [a, b] quindi per il teorema di Weierstrass f ammette massimo e minimo in [a, b], cioè $\exists x_1, x_2 \in [a, b]$ tali che:

$$f(x_1) \le f(x) \le f(x_2) \quad \forall x \in [a, b] \quad (\star)$$

Se almeno uno fra x_1 e x_2 è un punto interno all'intervallo [a,b] allora per il teorema di Fermat $f'(x_0) = 0$.

Rimane da esaminare il caso in cui entrambi i punti x_1 e x_2 non sono interni, cioè:

$$x_1 = a \ e \ x_2 = b$$

Quindi da (\star) :

$$f(a) \le f(x) \le f(b) \ \forall x \in [a, b]$$

Ma dato che per ipotesi f(a) = f(b), \implies significa che f(x) è costante e la sua derivata è ovunque nulla.

*

1.4 Interpretazione geometrica

f(x) continua in [a,b] e derivabile in (a,b) con f(a)=f(b), \Longrightarrow esiste un punto con tangente orizzontale. Situazione più generale:

 \exists un punto $x_0 \in (a,b)$, in cui la retta tangente è parallela alla corda che congiunge gli estremi del grafico (f(a) con f(b)).

- $f'(x_0)$ coefficiente angolare della retta tangente in x_0 .
- $\frac{f(b) f(a)}{b a}$ coefficiente angolare della corda.

1.5 Teorema di Lagrange

Sia f(x) una funzione continua in [a,b] e derivabile in (a,b). Esiste un punto $x_0 \in (a,b)$ per cui

$$f'(x_0) = \frac{f(b) - f(a)}{b - a}$$

Dimostrazione: Si considera la funzione ausiliaria:

$$g(x) = f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)]$$
in $x = a$ $g(a) = f(a) - [f(a) + \frac{f(b) - f(a)}{b - a}(a - a)] = 0$
in $x = b$ $g(b) = f(b) - [f(a) + \frac{f(b) - f(a)}{b - a}(b - a)] = 0$

$$\implies g(a) = g(b) = 0$$

Posso quindi utilizzare il teorema di Rolle,

$$\exists x_0 \in (a, b)$$
 tale che $g'(x_0) = 0$

e

$$g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a} \quad \forall x \in (a, b)$$

in $x_0 \implies$

$$f'(x_0) - \frac{f(b) - f(a)}{b - a} \quad \clubsuit$$

1.6 Conseguenze del teorema di Lagrange

1.6.1 Criterio di monotonia

Sia f una funzione continua in [a, b] e derivabile in (a, b), allora:

$$\bullet f'(x) \ge 0 \ \forall x \in (a,b) \iff f \text{ è crescente in } [a,b]$$

$$\bullet f'(x) \leq 0 \ \forall x \in (a,b) \iff f \text{ è decrescente in } [a,b]$$

Dimostrazione (per la prima): Supponiamo che $f'(x) \ge 0$ in $(a,b) \ \forall x \in (a,b)$, dobbiamo dimostrare che se $a \le x_1 < x_2 \le b$ risulta $f(x_1) \le f(x_2)$.

Applichiamo il Teorema di Lagrange nell'intervallo $[x_1, x_2]$:

$$\exists x_0 \in (x_1, x_2)$$
 tale che $f'(x_0) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$

Dato che $f'(x) \ge 0$ e $x_2 > x_1$ risulta $f(x_2) \ge f(x_1)$ e quindi f è crescente.

Ora supponiamo f crescente in [a,b] e consideriamo x e $x+h \in (a,b)$ (h>0) allora $f(x+h) \geq f(x)$ per ipotesi e quindi:

$$\frac{f(x+h) - f(x)}{h} \ge 0$$

e passando al limite:

$$f'(x) > 0 \quad \forall x \in (a,b)$$

1.6.2 Caratterizzazione delle funzioni costanti in un intervallo

Una funzione è costante in un intervallo $[a,b] \iff$ è derivabile in [a,b] e la derivata è ovunque nulla.

Dimostrazione: Hp: f(x) è costante in $[a,b] \implies f'(x) = 0$, lo abbiamo già visto con il rapporto incrementale

$$\frac{c-c}{h} = \frac{f(x+h) - f(x)}{h} = f(x) = c$$

 (\iff) Se f(x) è tale che f'(x) = 0 allora la funzione è costante.

Applico il Teorema di Lagrange nell'intervallo $[a,x] \implies \exists x_0 \in (a,x)$ tale che:

$$0 = f'(x_0) = \frac{f(x) - f(a)}{x - a} \implies f(x) = f(a)$$
 cioè è costante

1.7 Funzioni concave e convesse

Si dice che una funzione è **convessa** in un intervallo [a, b], se per ogni punto $x_0 \in [a, b]$, il grafico della funzione è **al di sopra** della retta tangente al grafico nel punto $(x_0.f(x_0))$

Si dice che una funzione concava in un intervallo [a, b], se per ogni punto $x_0 \in [a, b]$ il grafico della funzione è al di sotto della retta tangente al grafico nel punto $(x_0, f(x_0))$.

f convessa in $[a, b] \iff$

$$\begin{cases} f(x) \ge f(x_0) + f'(x_0)(x - x_0) \\ \forall x \in [a, b] \end{cases}$$

f concava in $[a, b] \iff$

$$\begin{cases} f(x) \le f(x_0) + f'(x_0)(x - x_0) \\ \forall x \in [a, b] \end{cases}$$

Un punto in cui f(x) cambia la sua concavità è detto **punto di flesso**.

1.7.1 Criterio di convessità

Sia f(x) una funzione derivabile in [a,b] e che ammetta derivata seconda in (a,b). Allora: f(x) è convessa in $[a,b] \iff$

$$f''(x) \ge 0 \quad \forall x \in (a,b)$$

Osservazione: $\iff f(x)$ è crescente in [a,b] per il criterio di monotonia.

1.8 Criterio per determinare se un punto è di massimo o minimo relativo per una funzione derivabile due volte

- $f'(x_0) = 0, f''(x_0) > 0 \implies x_0$ è un punto di minimo relativo.
- $f'(x_0) = 0$, $f''(x_0) < 0 \implies x_0$ è un punto di massimo relativo.

Vediamo la prima, $f'(x_0) = 0$ e $f''(x_0) > 0$. SUpponendo che la derivata seconda sia continua in un intorno di x_0 (per il teorema della permanenza del segno) f''(x) è positiva in un intorno di x_0 , cioè in $(x_0 - \delta, x_0 + \delta)$ con $\delta > 0$.

 \implies Quindi f è convessa in tale intorno, per il criterio di convessità.

$$f(x) \ge f(x_0) \ \forall x \in (x_0 - \delta, x_0 + \delta)$$

 $\implies x_0$ è un punto di minimo relativo per f.

1.9 Metodo di Newton per il calcolo delle radici di un'equazione

E' un metodo per calcolare le radici di un'equazione f(x) = 0 con f(x) funzione continua in un intervallo [a,b] e tale che f(a) < 0 e f(b) > 0.

1.10 Metodo di Newton per il calcolo numerico approssimato degli zeri di una funzione

In [a,b], si sceglie un punto x_1 e si traccia la retta tangente al grafico della funzione per $x=x_1$.

Tale retta tangente incontrerà l'asse x in un punto x_2 , che sarà una approssimazione dello "zero" x_0 di f(x).

L'equazione della retta tangente per $x = x_1$,

$$y = f(x_1) + f'(x_1)(x - x_1)$$

Come si determina x_2 ? E' soluzione di

$$f(x_1) + f'(x_1)(x_2 - x_1) = 0$$

$$\implies x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

Iteriamo. A partire da x_2 si considera nuovamente l'equazione della retta tangente al grafico di f(x) per $x = x_2$:

$$y = f(x_2) + f'(x_2)(x - x_2)$$

e si determina il punto x_3 , dove questa retta tangente interseca l'asse x, come prima:

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$$

e

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Si determina quindi una successione x_n di approssimazioni del punto x_0 .

In ipotesi abbastanza generali si dimostra che $x_n \to x_0$ per $n \to \infty$.

Si tratta di una successione definita per ricorrenza.

Applichiamo il metodo di Newton al calcolo approssimato delle cifre decimale di $\sqrt{2}$.

1.11 Applicazione del metodo di Newton

1.11.1 Step 1

Scegliamo, ad esempio, $x_1 = 2$ in [0,4], $f(x) = x^2 - 2$.

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 2 - \frac{2^2 - 2}{2 \cdot 2} = \frac{3}{2} = 1.5$$

 $\implies x_2 = 1.5$ è un'approssimazione per eccesso di $x_0 = \sqrt{2}$, cioè $x_2 > x_0$ perchè f(x) è **convessa** (f'(x) = 2) e il suo grafico è **al di sopra** di ogni sua retta tangente.

1.11.2 Step 2

Ripartiamo da $x_2 = 1.5$ e calcoliamo x_3 :

1.11.3 Step n

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

con $f(x) = x^2 - 2$ si trovano i valori:

x_n	approx
x_1	2
x_2	1.5
x_3	1.4166666666666667
x_4	1.4142156862745097
x_5	1.4142135623746899
x_6	1.414213562373095

La convergenza di x_n a x_0 , per $n \to \infty$ è molto rapida.

$$\sqrt{2} = 1.414213562373095\dots$$

1.12 Teorema

Sia f(x) una funzione derivabile in [a,b], con derivata continua e sia convessa in tale intervallo. Supponiamo che f(a) < 0 e f(b) > 0 per ogni $x \in [a,b]$. Allora la successione definita per ricorrenza

$$x_1 = b$$
 $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

converge decrescendo all'unica soluzione $x_0 \in [a, b]$ dell'equazione f(x) = 0. Nel caso studiato per il calcolo delle cifre decimali di $\sqrt{2}$, la successione

$$x_{n+1} = x_n - \frac{x_n^2 - 2}{2x_n} \text{ con } f(x) = x^2 - 2 \text{ e } f'(x) = 2x$$

$$x_{n+1} = x_n - \frac{x_n^2 - 2}{2x_n} = x_n - \frac{x_n}{2} + \frac{1}{x_n}$$

$$\implies \begin{cases} x_1 = 2\\ x_{n+1} = \frac{1}{2}x_n + \frac{1}{x_n} \end{cases} (\star)$$

Verifichiamo che, se x_n ammette limite finito, allora il limite è $\sqrt{2}$. Infatti se $x_n \to x_0$, anche $x_{n+1} \to x_0$ e passando al limite in (\star) :

$$x_0 = \frac{1}{2}x_0 + \frac{1}{x_0} \implies 2x_0^2 = x_0^2 + 2 \implies x_0^2 = 2$$

 \implies Quindi $x_0 = \pm \sqrt{2}$, ma essendo una successione a termini positivi (se $x_n > 0 \implies x_{n+1} = \frac{1}{2}x_n + \frac{1}{x_n} > 0$) $\implies x_0 = \sqrt{2}$.

1.13 Teorema di l'Hôpital

Siano f e g funzioni derivabili in un intorno di x_0 (eventualmente anche non in x_0) tali che:

$$\lim_{x \to x_0} = 0 \qquad \lim_{x \to x_0} g(x) = 0$$

Allora:

$$\frac{0}{0} \quad \lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

Se risulta $g(x) \neq 0$ e $g'(x) \neq 0$ in un intorno di $x_0, x \neq x_0$ e purchè esista il secondo limite.

Osservazione: Vale anche per forme indeterminate del tipo $\frac{\infty}{\infty}$. (Se $f(x), g(x) \to \infty$ per $x \to x_0$).

1.14 Studio del grafico di una funzione

- 1. Determinare il Dominio della funzione
- 2. Verificare la presenza di simmetria
 - f(x) = f(-x) funzione pari
 - f(-x) = -f(x) funzione dispari
 - f(x+T) = f(x) funzione periodica
- 3. Si determinano gli eventuali asintoti

1.14.1 Asintoti Verticali

Una funzione ammette asintoto verticale, se calcolando il limite per $x \to x_0$ (oppure $x \to x_0^+$ e $x \to x_0^-$) si ottiene $\pm \infty$.

$$x = x_0$$
 as
intoto verticale $\iff \lim_{x \to x_0} f(x) = \pm \infty$

1.14.2 Asintoti Orizzontali

Una funzione ammette asintoto orizzontale, se calcolando il limite per $x \to \pm \infty$ si ottiene un valore finito.

$$y = l$$
 as into to orizzontale $\iff \lim_{x \to +\infty} f(x) = l \in \mathbb{R}$

1.14.3 Asintoti Obliqui

Un asintoto obliquo per $x \to \pm \infty$ è una retta di equazione

$$y = mx + q$$

$$\lim_{x \to \pm \infty} [f(x) - (mx + q)] = 0 \quad (\star)$$

(cioè per $x \to \pm \infty$ il grafico della funzione è vicino alla retta).

Dobbiamo determinare $m \in q$.

Se $(\star) \to 0$, anche

$$\lim_{x \to \pm \infty} \frac{f(x) - (mx + q)}{x} = 0$$

$$= \lim_{x \to \pm \infty} \frac{f(x)}{x} - m = 0$$

$$\implies m = \lim_{x \to \pm \infty} \frac{f(x)}{x}$$

$$\implies q = \lim_{x \to \pm \infty} [f(x) - mx]$$

Osservazione: Se f(x) ammette asintoto orizzontale allora non può ammettere asintoto obliquo, infatti:

$$\text{HP} \quad \lim_{x \to +\infty} = l \text{ ammette as into to orizzontale}$$

allora

$$m = \lim_{x \to \pm \infty} \frac{f(x)}{x} == 0$$

$$\implies q = \lim_{x \to \pm \infty} [f(x) - mx] = \lim_{x \to \pm \infty} f(x) = l$$

4. Determinare gli intervalli dove la funzione è crescente o descrescente, i punti di massimo e di minimo relativo, studiando il segno della derivata prima.

5.	 Si determinano gli intervall della derivata seconda. 	i dove la funzione è co	onvessa o concava e	e gli eventuali punt	i di flesso, studiand	o il segno