Rank-Sum Test

STAT 401 - Statistical Methods for Research Workers

Jarad Niemi

Iowa State University

6 September 2013

Do these data look normal?

Raw histogram of mpg for US and Japanese cars.

Do these data look normal?

Compared to best fitting normal curves.

Also referred to as the Wilcoxon rank-sum test and the Mann-Whitney U test:

• Transform the data to ranks

- Transform the data to ranks
- ullet Calculate U, the sum of ranks of the group with a smaller sample size

- Transform the data to ranks
- ullet Calculate U, the sum of ranks of the group with a smaller sample size
- Calculate $E[U] = n_1 \overline{R}$

- Transform the data to ranks
- ullet Calculate U, the sum of ranks of the group with a smaller sample size
- Calculate $E[U] = n_1 \overline{R}$
 - n_1 : sample size of the smaller group

- Transform the data to ranks
- ullet Calculate U, the sum of ranks of the group with a smaller sample size
- Calculate $E[U] = n_1 \overline{R}$
 - n_1 : sample size of the smaller group
 - \overline{R} : average rank

- Transform the data to ranks
- ullet Calculate U, the sum of ranks of the group with a smaller sample size
- Calculate $E[U] = n_1 \overline{R}$
 - n_1 : sample size of the smaller group
 - \overline{R} : average rank
- Calculate $SD(U) = s_R \sqrt{\frac{n_1 n_2}{(n_1 + n_2)}}$

- Transform the data to ranks
- ullet Calculate U, the sum of ranks of the group with a smaller sample size
- Calculate $E[U] = n_1 \overline{R}$
 - n_1 : sample size of the smaller group
 - \overline{R} : average rank
- Calculate $SD(U) = s_R \sqrt{\frac{n_1 n_2}{(n_1 + n_2)}}$
 - n_2 : sample size of the larger group

- Transform the data to ranks
- ullet Calculate U, the sum of ranks of the group with a smaller sample size
- Calculate $E[U] = n_1 \overline{R}$
 - n_1 : sample size of the smaller group
 - \overline{R} : average rank
- Calculate $SD(U) = s_R \sqrt{rac{n_1 n_2}{(n_1 + n_2)}}$
 - n_2 : sample size of the larger group
 - s_R: standard deviation of the ranks

- Transform the data to ranks
- ullet Calculate U, the sum of ranks of the group with a smaller sample size
- Calculate $E[U] = n_1 \overline{R}$
 - n_1 : sample size of the smaller group
 - \overline{R} : average rank
- Calculate $SD(U) = s_R \sqrt{rac{n_1 n_2}{(n_1 + n_2)}}$
 - n_2 : sample size of the larger group
 - s_R: standard deviation of the ranks
- Calculate Z = (U + c E[U])/SD(U) where c, the continuity correction, is either 0.5 or -0.5.

- Transform the data to ranks
- ullet Calculate U, the sum of ranks of the group with a smaller sample size
- Calculate $E[U] = n_1 \overline{R}$
 - n_1 : sample size of the smaller group
 - \overline{R} : average rank
- Calculate $SD(U) = s_R \sqrt{\frac{n_1 n_2}{(n_1 + n_2)}}$
 - n_2 : sample size of the larger group
 - s_R: standard deviation of the ranks
- Calculate Z = (U + c E[U])/SD(U) where c, the continuity correction, is either 0.5 or -0.5.
- Determine the pvalue using a standard normal distribution.

	mpg	country	rank
1	13	US	1
2	15	US	2
3	17	US	3
4	22	US	4
5	26	Japan	5.5
6	26	US	5.5
7	28	US	7
8	32	Japan	8
9	33	Japan	9

	mpg	country	rank
1	13	US	1
2	15	US	2
3	17	US	3
4	22	US	4
5	26	Japan	5.5
6	26	US	5.5
7	28	US	7
8	32	Japan	8
9	33	Japan	9

• U = 22.5

	mpg	country	rank
1	13	US	1
2	15	US	2
3	17	US	3
4	22	US	4
5	26	Japan	5.5
6	26	US	5.5
7	28	US	7
8	32	Japan	8
9	33	Japan	9

- U = 22.5
- E[U] = 15

	mpg	country	rank
1	13	US	1
2	15	US	2
3	17	US	3
4	22	US	4
5	26	Japan	5.5
6	26	US	5.5
7	28	US	7
8	32	Japan	8
9	33	Japan	9

- U = 22.5
- E[U] = 15
- SD[U] = 3.86

	mpg	country	rank
1	13	US	1
2	15	US	2
3	17	US	3
4	22	US	4
5	26	Japan	5.5
6	26	US	5.5
7	28	US	7
8	32	Japan	8
9	33	Japan	9

- U = 22.5
- E[U] = 15
- SD[U] = 3.86
- z = 1.81 (appropriate continuity correction is -0.5)

	mpg	country	rank
1	13	US	1
2	15	US	2
3	17	US	3
4	22	US	4
5	26	Japan	5.5
6	26	US	5.5
7	28	US	7
8	32	Japan	8
9	33	Japan	9

- U = 22.5
- E[U] = 15
- SD[U] = 3.86
- z = 1.81 (appropriate continuity correction is -0.5)
- p = 0.07

Transform data to ranks

SAS code for Wilcoxon rank sum test

```
DATA mpg;
    INFILE 'mpg.csv' DELIMITER=',' FIRSTOBS=2;
    INPUT mpg country $;

PROC NPAR1WAY DATA=mpg WILCOXON;
    CLASS country;
    VAR mpg;
    RUN;
```

Full data Rank sum test

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable mpg Classified by Variable country

country	N	Sum of Scores	Expected Under HO	Std Dev Under HO	Mean Score
US	249	33646.50	40960.50	733.579091	135.126506
Japan	79	20309.50	12995.50	733.579091	257.082278

Average scores were used for ties.

Wilcoxon Two-Sample Test

Statistic 20309.5000

Normal Approximation

9.9696 One-Sided Pr > Z <.0001 Two-Sided Pr > |Z| <.0001

t Approximation

One-Sided Pr > Z <.0001

Two-Sided Pr > |Z| < .0001

Z includes a continuity correction of 0.5.

Kruskal-Wallis Test

Chi-Square 99.4068 DF Pr > Chi-Square <.0001

Conclusion

Average miles per gallon of Japanese cars are significantly different than average miles per gallon of American cars (Wilcoxon rank sum test, p < 0.0001).