Weighted Model Integration Using Knowledge Compilation

Pedro Zuidberg Dos Martires, Anton Dries, Luc De Raedt pedro.zuidbergdosmartires@cs.kuleuven.be

Probabilistic Inference

Probabilistic inference algorithms are targeted towards:

- either continuous distributions: symbolic inference, Hamilton
 Monte Carlo, variational Bayesian Inference, ...
- ▶ or discrete distributions: SAT, weighted model counting, ...

We want to combine state-of-the-art from both

→ best of both worlds!

We tackle the problem starting from a discrete perspective.

Knowledge Compilation¹

State-of-the-art technique for probabilistic inference in discrete domain.

Probabilistic inference is #P-complete.

 $working \leftrightarrow cooling \lor low_t$

offline: compile theory (expensive)
online: fast inference (cheap)

- evaluation in linear time
- conditioning in poly-time
- repeated querying

Adnan Darwiche. Modeling and reasoning with Bayesian networks.

SMT: Satisfiability Modulo Theory

working
$$\leftrightarrow$$
 (cooling \land (t² < 30)) \lor (t < 5)

More complex expressions allowed:

$$\left(t^2 < s + 10\right)$$

WMI: Probability of SMT Formulas

working
$$\leftrightarrow$$
 (cooling \land (t² < 30)) \lor (t < 5)
$$p(\text{cooling}) = 0.99$$

$$t \sim N_t(20,5)$$

Question:

In general:

$$p(x|e) = \frac{p(e|x)p(x)}{\oint_{x} p(x,e)}$$

	MA	, C.< Droh	Droy 34 S	CUT WOTH 8>
knowledge compilation	1	X	√ / X	√
density functions	X	1	X	1
exact	1	Х	✓	1
approximate		1	X	1
polynomials	Х	1	√	1
non-linear	X	/	X	1

² Mark Chavira and Adnan Darwiche. "On Probabilistic Inference by Weighted Model Counting".

 $^{^3}$ Timon Gehr, Sasa Misailovic, and Martin Vechev. "PSI: Exact Symbolic Inference for Probabilistic Programs".

⁴Davide Nitti, Tinne De Laet, and Luc De Raedt. "Probabilistic logic programming for hybrid relational domains".

 $^{^{\}bf 5} {\tt Brian} \ {\tt Milch, \, Bhaskara \, Marthi, \, and \, Stuart \, Russell. \, "BLOG: \, Relational \, modeling \, with \, unknown \, objects".}$

Samuel Kolb et al. "Efficient Symbolic Integration for Probabilistic Inference".

⁷ Paolo Morettin, Andrea Passerini, and Roberto Sebastiani. "Efficient Weighted Model Integration via SMT-Based Predicate Abstraction".

Contribution

- 1. Handle probability density functions while applying state-of-the-art knowledge compilation techniques.
- 2. Two new solvers:
 - Exact solver Symbo: PSI-Solver⁸ in back-end (probabilistic computer algebra system)
 - Approximate solver Sampo: Edward⁹ in back-end (probabilistic TensorFlow)

⁸Gehr, Misailovic, and Vechev, "PSI: Exact Symbolic Inference for Probabilistic Programs"

Dustin Tran et al. "Edward: A library for probabilistic modeling, inference, and criticism".

1. Abstract theory.

working
$$\leftrightarrow$$
 (cooling \land (t² < 30)) \lor (t < 5)
working \leftrightarrow (cooling \land abs_{t²<30}) \lor abs_{t<5}

Introduce fresh Boolean variables for conditions.

1. Abstract theory.

2. Compile formula. AND $(cooling \land abs_{t^2 < 30}) \lor abs_{t < 5} \leftrightarrow$ NOT AND cooling

working

 $(cooling \land (t^2 < 30)) \lor (t < 5)$

Avoid double counting.

- Abstract theory.
- 2. Compile formula.
- 3. To arithmetic circuit.

 $(cooling \land (t^2 < 30)) \lor (t < 5)$

 $(cooling \land (t^2 < 30)) \lor (t < 5)$

- 1. Abstract theory.
- 2. Compile formula.
- 3. To arithmetic circuit.
- 4. Label the leaves.

- Abstract theory.
- 2. Compile formula.
- 3. To arithmetic circuit.
- 4. Label the literals.
- 5. Evaluate.

$$[t<5] + 0.99[t^2<30][t\ge5]$$

$$(cooling \land (t^2 < 30)) \lor (t < 5)$$

Algebraic Model Counting¹⁰

Generalized framework for probabilistic inference:

- ▶ define specific semiring $(A, \oplus, \otimes, e^{\oplus}, e^{\otimes})$ for specific task Link to belief propagation:
 - ▶ sum-product: ⊕ is normal addition
 - ▶ max-product: ⊕ is maximization

We defined a custom probability density semiring with custom elements:

$$A := \{(a, V(a))\}$$

$$a = [t<5] + 0.99[t^2<30][t\ge5]$$

 $V(a) = \{t\}$

Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt. "Algebraic Model Counting".

- 1. Abstract theory.
- 2. Compile formula.
- 3. To arithmetic circuit.
- 4. Label the leaves.
- 5. Evaluate.
- 6. Multiply by the weight of the continuous variables.
- 7. Integrate.

$$p(working) = \int ([t<5] + 0.99[t^2<30][t\ge5]) N_t(20,5) dt$$

Integrals become easily intractable.

Sampo: Approximate MC Inference

Sampo: Approximate MC Inference

$$\begin{split} \begin{bmatrix} [2.8 < 5] \\ [35.1 < 5] \\ [5.4 < 5] \\ [22.2 < 5] \\ [21.4 < 5] \end{bmatrix} + \begin{bmatrix} [2.8 \ge 5] \\ [35.1 \ge 5] \\ [5.4 \ge 5] \\ [22.2 \ge 5] \\ [21.4 \ge 5] \end{bmatrix} \times \begin{bmatrix} 0.99 \\ 0.99 \\ 0.99 \\ 0.99 \end{bmatrix} \times \begin{bmatrix} [7.84 < 30] \\ [1232.01 < 30] \\ [29.16 < 30] \\ [492.84 < 30] \\ [457.96 < 30] \end{bmatrix} \\ &= \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} \times \begin{bmatrix} 0.99 \\ 0.99 \\ 0.99 \\ 0.99 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0.99 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0.99 \\ 0 \end{bmatrix} \\ &= \begin{bmatrix} 1 \\ 0 \\ 0.99 \\ 0 \end{bmatrix} \\ &= \begin{bmatrix} 1 \\ 0 \\ 0.99 \\ 0.99 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 0.99 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0.99 \\ 0 \end{bmatrix} \\ &= \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \\ &= \begin{bmatrix} 1 \\ 0$$

This is pure vector calculus and can be executed on the GPU!

- → cheap probabilistic inference
- → embarrassingly parallelizable

Symbo vs. PSI¹¹

How does symbolico-logic inference compare to pure symbolic inference?

- Symbo is faster on 9/10 benchmark problems than PSI, excluding knowledge compilation
- Symbo is faster on 7/10 benchmark problems than PSI, including knowledge compilation

Logical reasoning generally improves symbolic inference!

¹¹ Gehr, Misailovic, and Vechev, "PSI: Exact Symbolic Inference for Probabilistic Programs"

Sampo vs. DC¹² vs. BLOG¹³

Sampling on the GPU → constant time complexity Avoid sampling categorical variables → reduction in variance

¹² Nitti, De Laet, and De Raedt, "Probabilistic logic programming for hybrid relational domains"

¹³ Milch, Marthi, and Russell, "BLOG: Relational modeling with unknown objects"

Constributions

- Unified framework for knowledge compilation and weighted model integration based on semirings and AMC.
- Introduced two solvers that beat state-of-the-art.
- Sampo is the first sampling based algorithm for WMI.

Future Work

- Integrate Symbo and Sampo into full-fledged probabilistic programming language
- ▶ investigate thoroughly relationship to related work¹⁴ ¹⁵.

¹⁴ Kolb et al., "Efficient Symbolic Integration for Probabilistic Inference"

¹⁵ Morettin, Passerini, and Sebastiani, "Efficient Weighted Model Integration via SMT-Based Predicate Abstraction"