COMP318 Ontologies and Semantic Web

Dr Valentina Tamma

V.Tamma@liverpool.ac.uk

Alignment approaches

Types of alignment approaches

• Element-level vs Structure-level:

 analyse entities in isolation, or how they appear together in the ontology structure.

Syntactic vs semantic

 analyse lexical and/or structural characteristics of the entities and/ or employ formal semantics

Internal vs External

- rely solely on the information contained in the ontologies to match, or use external (background) knowledge sources to assist in the matching.
 - Use external thesauri or multi-lingual resources (e.g WordNet)

Schema vs Instance

 relate schema-level entities and/ or instance-level entities.

Types of alignment approaches

- Similarity vs Logical relationship:
 - assert similarity between ontology entities and/or formally assert a logic relation (e.g., OWL axiom)
- Atomic vs Complex

- relate individual entities and/or combinations of entities (possibly in complex expressions).
- Homogeneous vs
 Heterogeneous
 - relate only entities of the same kind or allow relations between an individual with a class, for example

Alignment pipeline

Challenges in using alignments

- Large ontology size
- Rich and complex vocabularies
- Different modelling views
- Use of background knowledge
- Combination with ML techniques
- Quality vs Quantity: coverage vs best
- User involvement
- Need for complex mappings beyond atomic equivalence/subsumption

Aligning large ontologies

- - The matching problem has quadratic complexity: Size(\mathcal{O}_1) Size(\mathcal{O}_2) potential candidates.

- Strategies:
 - Pruning: avoid comparing all entities - e.g. hash-based searching
 - Dividing the matching tasks into independent subtasks - parallelise
 - Partitioning: split into vertical blocks.
 - Modularization: identify overlapping selfcontained sub-ontologies.

Aligning large ontologies

- Division (facilitate parallelization):
 - Partitioning: divides ontologies into (vertical) partitions.
 - Modularisation: extracts self-contained sub-ontologies preserving logical properties.

P. Doran, V. Tamma, T.R. Payne, I. Palmisano: Dynamic Selection of Ontological Alignments: A Space Reduction Mechanism. IJCAI 2009

Exploiting rich and complex vocabularies

- How can we handle different types of labels?
 - UBERON_0000948
 - rdfs:label: "heart"
 - exact synonyms: "vertebrate heart", "chambered heart"
 - narrow synonym: "branchial heart"
 - related synonym: "cardium"
 - Existing synonymous can derive
 - new synonyms
 - e.g., "stomach" "gastric"

C. Pesquita et al. What's in a 'nym'? Synonyms in Biomedical Ontology Matching 2013

Alignment repair

- The integration of different models can cause unsatisfiabilities.
- The integration of different models can lead to unintended logical consequences (others than unsatisfiabilities).
 - Possible solution: repair/remove mappings.

E. Jiménez-Ruiz, T. R. Payne, A. Solimando, and V. Tamma. Limiting logical violations in ontology alignment through negotiation. In Proc. KR'16, 2016.

A. Solimando, E. Jiménez-Ruiz, G. Guerrini: Minimizing conservativity violations in ontology alignments: algorithms and evaluation. Knowl. Inf. Syst. 2017

COM

Machine learning & Alignment

- ML models to learn mappings:
 - Supervised.
 - Distant-supervision.
- Source of embeddings
 - Embeddings: vector representation capturing the context/semantics of a word or entity
 - Use of pre-trained language models to obtain word embeddings for the entity labels.
 - Ontology embedding techniques.

P. Kolyvakis et al. Biomedical ontology alignment: an approach based on representation learning. J. of Biomed. Semantics 2018

J. Chen et al. Augmenting Ontology Alignment by Semantic Embedding and Distant Supervision. ESWC 2021

External resources & background knowledge

- Third ontology as mediator
 - WordNet thesaurus
 - UMLS metathesaurus (life sciences)
 - Repository of ontologies (e.g., BioPortal)
 - Pre-trained embeddings.
 - Online multilingual translators
 - BabelNet multilingual semantic network.

User involvement in ontology alignment

H Li et al. User validation in ontology alignment: functional assessment and impact. KER 2019 J. da Silva et al. Alin: improving interactive ontology matching by interactively revising mapping suggestions. KER 2020

COMI UIU

Complex ontology alignment

 Links across ontologies involving complex constructors, potentially complex transformations (extends the

mapping definition)

Source entity	rel.	Target construction	type
cmt:ExternalReviewer	=	$\exists conference:invited_by. \top$	CAE
$conference: Submitted_contribution$	=	$\exists cmt:submitPaper^{-}. \top$	CIAE
cmt: Program Committee Member	=	$\exists conference: was_a_member_of. \\ conference: Program_committee$	CAT
$conference: Conference_part$	=	$\exists ekaw:hasPart^{-}.\ ekaw:Conference$	CIAT
ekaw: Scientific Event	=	$conference:Conference_part \sqcup \\ conference:Conference$	union(c)
ekaw: Submitted Paper	⊒	$conference:Submitted_contribution \sqcap \\ conference:Paper$	inters(c)
cmt: has Program Committee Member	=	$conference:has_members. \\ conference:Program_committee. \top$	dom(rel)
ekaw:reviewerOfPaper	=	$conference : contributes \circ conference : reviews$	chain(rel)
cmt:writeReview	=	$ekaw:reviewWrittenBy^-$	inv(rel)

E. Thiéblin et al. Survey on complex ontology matching. Semantic Web 2020

Quality or Quantity

- Use game theoretic mechanisms to decide whether to go for a maximal alignment:
 - global solutions vs stable solutions

Zhi, N., Payne, T.R., Krysta. P., Li, M. Truthful Mechanisms for Multi Agent Self-Interested Correspondence Selection. In ISWC 2019

Payne T.R., and Tamma, V. A Dialectical Approach to Selectively Reusing Ontological Correspondences. In EKAW2014

/.Tamma

COMP318 Ontologies and Semantic Web

Dr Valentina Tamma

V.Tamma@liverpool.ac.uk