PSI 3442&Skyrarts apresentam: Drones

Elementos Básicos

José Colombini

Tiago Takeda

Emanuel Iwanow

1 O que é um Drone

66

É todo e qualquer tipo de aeronave que pode ser controlada nos 3 eixos e que não necessite de pilotos embarcados para ser guiada (DECEA, 2010).

U\$ 100 bi

Market value 2016-2020 Goldman Sachs Research Drones? Sistemas Embarcados?

- Sistema embarcado complexo:
 - 6 graus de liberdade
 - Limite de peso e bateria
 - FCU e SBCs.

Montagem

Quais peças?

Como programar?

Sentido de rotação das hélices

Estrutura e componentes de um multicopter

Motor

Ampla utilização de motores brushless, buscando altas potências com pouco peso

Hélice

As hélices devem ser elementos resistentes porém não muito caros, pois são os elementos mais vulneráveis em acidentes

ESC

Eletronic-speed-co ntrolers. Realizam o controle de velocidade dos motores por PWM a partir de um fonte CC

PX4 e NuttX

- Nuttx é um sistema operacional de tempo real (RTOS) para controladores
- PX4 autopilot é um firmware para controle de aeronaves automáticas de forma segura e eficiente

Multicopter Position Controller

Fixed-Wing Attitude Controller

 $\Psi = [\phi \ \theta \ \psi]^T$ - attitude vector (NED)

 $\mathbf{\omega}^b$ - body rate vector (FRD)

u - actuators output

 V_T - true airspeed

 V_I - indicated airspeed

 \mathbf{J}_l^b - Jacobian matrix from local to body

δ - actuator deflection

P - proportional gain

PI - proportional + integral controller

FF - feed-forward gain

Mix - mixer (control allocation)

Scaler - Scales controllers outputs using airspeed

(x) - derivative of x

 $\widehat{(x)}$ - estimated value of x (EKF)

 $(x)_{sp}$ - setpoint of x

FCU - Flight Control Unit

- Pixhawk Computador de tempo real com sistema operacional NuttX
 - o Compatível com:
 - PX4
 - Mavlink
 - Mavros
- Sensores:
 - Barômetro
 - Acelerômetro
 - o etc

SBC - Single Board Computer

Computador embarcado

- Processamento onboard
- Elimina a latência de comunicação com uma central

Bateria Li-Po (Lithium-Polymer)

- Ótima relação Volumétrica X
 Densidade energética
- Recarregáveis
- Alta taxa de descarga
- Vida útil curta
- Explosiva
- Armazenamento, carregamento e descarregamento

Software do Drone

Robot Operating System

Middleware para o controle de robôs.
Permite programação descentralizada e interfaceamento com múltiplos computadores

MAVLink

Protocolo de comunicação leve para para drones

- Eficiente
- Confiável
- Suporte para diversas microcontroladores e SO's
- Suporta até 255 sistemas na rede
- Permite processamento
 Onboard e Offboard

Gazebo

Simulador de robótica.

- Simulação em ambiente 3D
- Sensores e Atuadores
 - Opção de Plugins customizados
- SDF Simulation Description
 Format
 - XML descreve objetos e ambientes
- Simulações em outros servidores
 - Google Protobuf
- Simulação em Cloud

Gazebo

Gazebo - Swarm

Gazebo - Swarm

Câmera

- Leve, pouco consumo de energia, muita informação
- Muito complexa
- Identificação de cores, formatos, nuvens de pontos, etc.

Aplicação CV

Outros sensores

LIDAR - LightDetection andRanging

• GPS

Depth Camera

Aplicação - Lidar 360

RVIZ

- Visualizador 3D para ROS
 - Interface gráfica
- Sensores
 - Logs
 - Calibrações
- Algoritmos de mapeamento
 - SLAM
 - ORB-SLAM
 - Depth Cameras

RVIZ

RVIZ

O que faremos

Instalação do linux

Uso de ROS

Simulação com Gazebo e CV

Obrigado!

Questões?

Podem entrar em contato com os monitores pelo grupo da disciplina ou pelo inbox ou pelo moodle.

