GRAFOS

ESTRUTURAS DE DADOS BÁSICAS

Aula 1.3

Uma matriz $A=[a_{ij}]$ quadrada de ordem n é denominada Matriz de Adjacência de G=(N,M) quando:

 a_{ij} =1, se $(i,j) \in M$ a_{ij} =0 em caso contrário.

Exemplo: Grafo não direcionado

Uma matriz $A=[a_{ij}]$ quadrada de ordem n é denominada Matriz de Adjacência de G=(N,M) quando:

 a_{ij} =1, se $(i,j) \in M$ a_{ij} =0 em caso contrário.

1	0					
	_	0	0	1	0	0
2	0	0	1	1	0	0
3	0	1	0	1	0	0
4	1	1	1	0	1	1
5	0	0	0	1	0	1
6	0	0	0	1	1	0

Exemplo: Grafo não direcionado

Exemplo: Grafo direcionado

 a_{ij} =1, se(i,j) $\in M$ a_{ij} =0 em caso contrário.

Exemplo: Grafo direcionado

 a_{ij} =1, se(i,j) $\in M$ a_{ij} =0 em caso contrário.

Uma matriz $A=[a_{ki}]$ de dimensão $m \times n$ é denominada Matriz de Incidência de um grafo G=(N,M) quando:

 a_{ki} =+1, se a aresta u_k tem origem no vértice i

 a_{ki} =-1, se *i* é o vértice destino da aresta u_k

 a_{ki} = 0, se a aresta u_k não incide no vértice i

Exemplo: Grafo não direcionado

Uma matriz $A=[a_{ki}]$ de dimensão $m \times n$ é denominada Matriz de Incidência de um grafo G=(N,M) quando:

 a_{ki} =+1, se a aresta u_k tem origem no vértice i

 a_{ki} =-1, se *i* é o vértice destino da aresta u_k

 a_{ki} = 0, se a aresta u_k não incide no vértice i

Exemplo: Grafo não direcionado

•	1	2	3	4	5	6
U_1	0	1	1	0	0	0
U ₂	0	1	0	1	0	0
U_3	1	0	0	1	0	0
U_4	0	0	0	1	1	0
$u_{\scriptscriptstyle 5}$	0	0	0	0	1	1
	0	0	1	0	0	1
U_6						

Exemplo: Grafo direcionado

 a_{ki} =+1, se a aresta u_k tem origem no vértice i

 a_{ki} =-1, se *i* é o vértice destino da aresta u_k

 a_{ki} = 0, se a aresta u_k não incide no vértice i

Exemplo: Grafo direcionado

 a_{ki} =+1, se a aresta u_k tem origem no vértice i

 a_{ki} =-1, se *i* é o vértice destino da aresta u_k

 a_{ki} = 0, se a aresta u_k não incide no vértice i

	1	2	3	4	5	6
u ₁	0	-1	1	0	0	0
U_2	0	-1	0	1	0	0
u_{3}	1	0	0	-1	0	0
$u_{\scriptscriptstyle 4}$	0	0	0	-1	1	0
u ₅	0	0	0	0	1	-1
	0	0	-1	0	0	1
u_6						

Lista de Adjacência

A Lista de Adjacência é composta por um vetor V de dimensão n. Cada elemento de V contém dois campos: a identificação de um vértice e um ponteiro para uma lista encadeada contendo os vizinhos do vértice correspondente.

Lista de Adjacência

A Lista de Adjacência é composta por um vetor V de dimensão n. Cada elemento de V contém dois campos: a identificação de um vértice e um ponteiro para uma lista encadeada contendo os vizinhos do vértice correspondente.

São utilizadas:

- duas listas de tamanho m+1 referentes aos arcos
- uma lista de tamanho n+1 contendo inteiros.

O *k*-ésimo elemento da primeira lista de arcos guarda o peso do *k*-ésimo arco.

A
Representação
em Estrela
Direta
ocupa O(m+n)
posições de
memória

A segunda lista contém *m* pares, cada um identificando o vértice inicial e o vértice final do arco correspondente. A posição *m*+1 é somente uma posição de referência.

Na terceira lista, chamada *pont*, o elemento *i* contém o menor índice da lista de **arcos que saem** do vértice *i*.

Caso não existam arcos saindo do vértice *i*, o elemento *pont*[*i*] corresponde ao índice do primeiro arco que sai do *i*+1-ésimo vértice.

Para efeito de consistência da estrutura, pont[1] = 1 e pont[n+1] = m+1.

Exemplo

Arcos	Peso do Arco	(início,fim)	pont	Vértico
1				1
2				2
3				3
4				4
5				5
6				
7				
8	-	(-,-)		
		,		I

Considere que a lista de arcos que saem do vértice *i* está entre os índices *j* e *k*.

Portanto, a lista do arcos que saem do vértice *i* está entre os índices *pont*[*i*] e *pont*[*i*+1] – 1.

Estrela Direta

Exemplo

Arcos	Peso do Arco	(início,fim)	pont	Vértice
1	3	(1,2)	1	1
2	2	(1,3)	3	2
3	1	(2,3)	5	3
4	2	(2,5)	5	4
5	1	(4,3)	7	5
6	3	(4,5)	8	
7	4	(5,4)		
8	-	(-,-)		

Considere que a lista de arcos que saem do vértice *i* está entre os índices *j* e *k*.

Portanto, a lista do arcos que saem do vértice *i* está entre os índices *pont*[*i*] e *pont*[*i*+1] – 1.

Estrela Direta

Exemplo

Arcos	Peso do Arco	(início,fim)	pont	Vértice
1	3	(1,2)	1	1
2	2	(1,3)	3	2
3	1	(2,3)	5	3
4	2	(2,5)	5	4
5	1	(4,3)	7	5
6	3	(4,5)	8	
7	4	(5,4)		
8	-	(-,-)		

Estrela Direta

Exemplo

Arcos	Peso do Arco	(início,fim)	pont	Vértice
1	3	(1,2)	1	1
2	2	(1,3)	3	2
3	1	(2,3)	5	3
4	2	(2,5)	5	4
5	1	(4,3)	7	5
6	3	(4,5)	8	
7	4	(5,4)		
8	-	(-,-)		

Exemplo

Arcos	Peso do Arco	(início,fim)	pont	Vértice
1	3	(1,2)	1	1
2	2	(1,3)	3	2
3	1	(2,3)	5	3
4	2	(2,5)	5	4
5	1	(4,3)	7	5
6	3	(4,5)	8	
7	4	(5,4)		
8	-	(-,-)		

Estrela Direta

Exemplo

Arcos	Peso do Arco	(início,fim)	pont	Vértice
1	3	(1,2)	1	1
2	2	(1,3)	3	2
3	1	(2,3)	5	3
4	2	(2,5)	5	4
5	1	(4,3)	7	5
6	3	(4,5)	8	
7	4	(5,4)		
8	-	(-,-)		

Estrela Direta

Exemplo

Arcos	Peso do Arco	(início,fim)	pont	Vértice
1	3	(1,2)	1	1
2	2	(1,3)	3	2
3	1	(2,3)	5	3
4	2	(2,5)	5	4
5	1	(4,3)	7	5
6	3	(4,5)	8	
7	4	(5,4)		
8	-	(-,-)		

Estrela Direta

Exemplo

Arcos	Peso do Arco	(início,fim)	pont	Vértice
1	3	(1,2)	1	1
2	2	(1,3)	3	2
3	1	(2,3)	5	3
4	2	(2,5)	5	4
5	1	(4,3)	7	5
6	3	(4,5)	8	
7	4	(5,4)		
8	-	(-,-)		

Estrela Direta

São utilizadas:

- duas listas de tamanho m+1 referentes aos arcos
- uma lista de tamanho n+1 contendo inteiros.

O k-ésimo elemento da primeira lista guarda o peso do k-ésimo arco.

A segunda lista contém *m* pares, cada um identificando o vértice inicial e o vértice final do arco correspondente. A posição *m*+1 é somente uma posição de referência.

Na terceira lista, chamada **rpont**, o elemento *i* contém o menor índice da lista de **arcos que chegam ao vértice** *i*. Caso não existam arcos chegando ao vértice *i*, o elemento **pont**[*i*] corresponde ao índice do primeiro arco que chega ao *i*+1-ésimo vértice.

Para efeito de consistência da estrutura, pont[1] = 1 e pont[n+1] = m+1.

Exemplo

Arcos	Peso do Arco	(início,fim)	rpont	Vértices
1	3	(1,2)		1
2	2	(1,3)		2
3	1	(2,3)		3
4	1	(4,3)		4
5	4	(5,4)		5
6	2	(2,5)		
7	3	(4,5)		
8	-	(-,-)		

Considere que a lista de arcos que chegam ao vértice *i* está entre os índices *j* e *k*.

Portanto, a lista do arcos que chegam ao vértice *i* está entre os índices *rpont*[*i*] e *rpont*[*i*+1] – 1.

Exemplo

Arcos	Peso do Arco	(início,fim)	rpont	Vértices
1	3	(1,2)	1	1
2	2	(1,3)	1	2
3	1	(2,3)	2	3
4	1	(4,3)	5	4
5	4	(5,4)	6	5
6	2	(2,5)	8	
7	3	(4,5)		
8	-	(-,-)		

Considere que a lista de arcos que chegam ao vértice *i* está entre os índices *j* e *k*.

Portanto, a lista do arcos que chegam ao vértice *i* está entre os índices *rpont*[*i*] e *rpont*[*i*+1] – 1.

Exemplo

Arcos	Peso do Arco	(início,fim)	rpont	Vértices
1	3	(1,2) <	— 1	1
2	2	(1,3)	1	2
3	1	(2,3)	2	3
4	1	(4,3)	5	4
5	4	(5,4)	6	5
6	2	(2,5)	8	
7	3	(4,5)		
8	-	(-,-)		
				1

Exemplo

Arcos	Peso do Arco	(início,fim)	rpont	Vértices
1	3	(1,2)	1	1
2	2	(1,3)	1	2
3	1	(2,3)	2	3
4	1	(4,3)	5	4
5	4	(5,4)	6	5
6	2	(2,5)	8	
7	3	(4,5)		
8	-	(-,-)		
				1

Exemplo

Arcos	Peso do Arco	(início,fim)	rpont	Vértices
1	3	(1,2)	1	1
2	2	(1,3)	1	2
3	1	(2,3)	2	3
4	1	(4,3)	5	4
5	4	(5,4)	6	5
6	2	(2,5)	8	
7	3	(4,5)		
8	-	(-,-)		
				1

Exemplo

Arcos	Peso do Arco	(início,fim)	rpont	Vértices
1	3	(1,2)	1	1
2	2	(1,3)	1	2
3	1	(2,3)	2	3
4	1	(4,3)	5	4
5	4	(5,4)	6	5
6	2	(2,5)	8	
7	3	(4,5)		
8	-	(-,-)		
				1

Exemplo

Arcos	Peso do Arco	(início,fim)	rpont	Vértices
1	3	(1,2)	1	1
2	2	(1,3)	1	2
3	1	(2,3)	2	3
4	1	(4,3)	5	4
5	4	(5,4)	6	5
6	2	(2,5)	8	
7	3	(4,5)		
8	-	(-,-)		
				J

Exemplo

Arcos	Peso do Arco	(início,fim)	rpont	Vértices
1	3	(1,2)	1	1
2	2	(1,3)	1	2
3	1	(2,3)	2	3
4	1	(4,3)	5	4
5	4	(5,4)	6	5
6	2	(2,5)	8	
7	3	(4,5)		
8	-	(-,-)		
				1

Considere T = (V_T, E_T) uma árvore rotulada em vértices, onde $|V_T| = n$. O código de Prüffer para T é uma sequência de n-2 inteiros.

Algoritmo:

Retira as folhas de menor rótulo da árvore até sobrarem apenas 2 vértices.

No i-ésimo passo, a folha com o menor rótulo é removida.

O i-ésimo elemento da sequência de Prüffer é o rótulo do vértice adjacente a i-ésima folha removida.

Exemplo:

Vértice adjacente

3							
1	2	3	4	5	6	7	8

Exemplo:

3	3						
1	2	3	4	5	6	7	8

Exemplo:

Folha de menor rótulo

3	3	3					
1	2	3	4	5	6	7	8

Exemplo:

3	3	3	6				
1	2	3	4	5	6	7	8

Exemplo:

3	3	3	6	6	6		
1	2	3	4	5	6	7	8

3	3	3	6	6	6	9	
	2						

Exemplo:

3	3	3	6	6	6	9	9
1	2	3	4	5	6	7	8

Folha de menor rótulo

Exemplo:

Até restar 2 vértices

Exemplo:

Obs. O grau de cada vértice da árvore é igual ao número de vezes que o vértice aparece no código de Prüffer + 1.

Exemplo:

3	3	3	6	6	6	9	9	
	2							

O código nos dá de imediato duas informações:

O número de vértices da árvore

e

O grau de cada vértice

Algoritmo para recuperar a árvore a partir do código de Prüffer

Considere $p_1, p_2, ..., p_{n-2} \in \{1,2,...,n\}^{n-2}$ um código de Prüffer.

- 1. Calcular o grau de cada vértice e colocar na lista *L.* (O grau de cada vértice da árvore é igual ao número de vezes que ele aparece no código de Prüffer + 1.) Iniciar i com 1.
- 2. Encontre na lista L o nó v de grau 1 com o menor rótulo. (v,p_i) é uma aresta da árvore.
- 3. Decremente os graus de $v \in p_i$; Incremente i
- 4. Repita os passos 2 e 3 até todos os nós terem grau 0, a menos de 2 com grau 1. Estes dois formam a última aresta da árvore

Exemplo:

O grau de cada vértice da árvore é igual ao número de vezes que ele aparece no código de Prüffer + 1. Iniciar *i* com 1.

- 2. Encontre o nó v de grau 1 com o menor rótulo. (v,p_i) é uma aresta da árvore.
- 3. Decremente os graus de $v \in p_i$; Incremente i

1	1	4	1	1	4	1	1	3	1
									10

Graus dos vértices da árvore

- 2. Encontre o nó v de grau 1 com o menor rótulo. (v,p_i) é uma aresta da árvore.
- 3. Decremente os graus de $v \in p_i$; Incremente i

- 2. Encontre o nó v de grau 1 com o menor rótulo. (v,p_i) é uma aresta da árvore.
- 3. Decremente os graus de $v \in p_i$; Incremente i

- 2. Encontre o nó v de grau 1 com o menor rótulo. (v,p_i) é uma aresta da árvore.
- 3. Decremente os graus de $v \in p_i$; Incremente i

Exemplo:

4. Repita os passos 2 e 3 até todos os nós terem grau 0, a menos de 2 com grau 1. Estes dois formam a última aresta da árvore

Graus dos vértices da árvore

Uma implementação eficiente deste algoritmo utiliza uma heap para manter os nós com grau 1.

O algoritmo tem complexidade O(nlogn)

Estruturas de Dados

Pontos a Ponderar na Escolha da Estrutura

1. Tamanho do grafo

n = 100

10000 entradas na matriz de adjacência

n = 10000

100.000.000 entradas na matriz de adjacência

Matrizes de adjacência são uma escolha adequada para grafos pequenos

Estruturas de Dados

Pontos a Ponderar na Escolha da Estrutura

2. Densidade do grafo

Grafos densos fazem com que a complexidade em espaço das listas de adjacência seja $\theta(n^2)$

Matrizes de adjacência são uma escolha adequada para grafos muito densos. Estrela Direta e Reversa é adequada tanto para grafo denso como para grafo esparso.

Estruturas de Dados

Pontos a Ponderar na Escolha da Estrutura

3. Algoritmos que serão implementados

Alguns algoritmos são mais fáceis de implementar com matrizes de adjacência e outros com lista de adjacência

4. O grafo será constantemente modificado?

Se inserções e remoções serão realizadas repetidas vezes, a matriz de adjacência é a escolha mais adequada. Se os atributos de vértices e arestas serão frequentemente modificados, a melhor opção, uma boa alternativa é trabalhar com campos extra para tais atributos nas matrizes de adjacência.

Exercícios

- (1)Crie um programa para criação e manipulação de um grafo simples, incluindo as funções de inserir vértice, excluir vértice e imprimir grafo. Execute a instância do primeiro exemplo desta aula.
- (2)Dada uma representação de um grafo não direcionado por matriz de adjacência, faça um algoritmo que represente o grafo em lista de adjacência.
- (3)Dada uma representação de um grafo direcionado por matriz de adjacência, faça um algoritmo que represente o grafo em matriz de incidência.
- (4)Dada uma representação de um grafo direcionado por matriz de adjacência, faça um algoritmo que represente o grafo em estrela direta e outro em estrela reversa.
- (5)Dada uma representação de uma árvore por matriz de adjacência, faça um algoritmo que produza o código de Prüffer.

Analise a complexidade dos algoritmos das questões 2 a 5.