Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supplementary Information

A red-emitting fluorescent probe for detecting Hg²⁺ in aqueous medium, living cells and organism with a large Stokes shift

Lei Yang, a‡ Yuanan Su, a‡ Yani Geng, a Haiqing Xiong, a Jinliang Han, a Qian Fang and Xiangzhi Song a*

Table S1	2
Table S2	3
Fig. S1	4
Fig. S2	4
Fig. S3	5
Fig. S4	5
Fig. S5	6
Fig. S6	6
Fig. S7	7
Fig. S8	7
Fig. S9	8
Fig. S10	8
Fig. S11	9
Fig. S12	9
Fig. S13	10
Fig. S14	10
Fig. S15	
E:- C16	11

^a College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan Province, P. R. China, 410083.

^{*} To whom correspondence should be addressed. Fax: +86-731-88836954; Tel: +86-731-88836954; E-mail: song@rowland.harvard.edu

[‡] These authors contributed equally to this work.

 $\textbf{Table S1} \ \ \text{Comparison of Fluorescent Probes for } Hg^{2+}.$

Probe	λex/λem (nm)	Stokes shift (nm)	Detection limit (nM)	Analytical applications	Literature
HOOC N-NH ₂	520/573	53	97	River water, pond water and living cells	Analytica Chimica Acta, 2016, 934, 218- 225
N O S	487/511	24	1700	No	Chem. Commun., 2009, 3560-3562
N-N OH	509/529	20	39	Living cells	Talanta, 2017, 170, 103–110
s=sssoo	370/418	48	50	No	Chem. Commun., 2005, 2161–2163
S NH NH NH S NH	520/583	63	304	Pond water and tap water	Dyes and Pigments, 2016, 127, 94-99
N N N N N N N N N N N N N N N N N N N	365/500	135	100	No	Org. Lett., 2011, 13, 3422-3425
S-S N	380/458	78	80	No	Org. Lett., 2012, 14, 6084-6087
NC NC CN	560/613	53	10	River water and living cells	Sensors and Actuators B, 2014, 191, 605– 611
S N N N N N N N N N N N N N N N N N N N	534/566	32	39	Living cells	Chem. Commun., 2010, 46, 3529–3531

O N O NH ₂	420/480	66	50	No	Org. Lett., 2010, 22, 5310-5313
N CN CN	475/625	150	7.1	Water samples, living cells and organism	This work

Table S2 Determination of Hg²⁺ in water samples.

Sample	$HgCl_2$ spiked (μ M)	$HgCl_2$ recovered (μM)	Recovery (%)
	0	not detected	
	2	2.07 ± 0.03	103
	4	3.82 ± 0.12	95
	6	5.78 ± 0.13	96
Tap water	8	7.78 ± 0.09	97
	10	10.50 ± 0.07	105
	12	12.61 ± 0.21	105
	14	13.48 ± 0.19	96
	16	16.51 ± 0.14	103
	18	17.74 ± 0.19	99
	20	19.48 ± 0.03	97
	0	not detected	
	2	2.24 ± 0.09	109
	4	3.82 ± 0.05	96
	6	5.69 ± 0.12	95
Yangtze River water	8	7.76 ± 0.20	97
	10	10.18 ± 0.16	102
	12	12.64 ± 0.19	105
	14	13.95 ± 0.22	100
	16	16.37 ± 0.06	102
	18	17.47 ± 0.08	97
	20	19.90 ± 0.15	99
Xiang River water	0	not detected	
	2	1.82 ± 0.13	91
	4	3.81 ± 0.21	95
	6	5.48 ± 0.19	91
	8	7.69 ± 0.07	96
	10	10.23 ± 0.06	102
	12	12.36 ± 0.08	103
	14	13.75 ± 0.11	98
	16	16.34 ± 0.12	102
	18	17.92 ± 0.07	99
	20	19.86 ± 0.20	99

Fig. S1 Absorption spectra of Probe **1** (10.0 μ M) in the presence/absence of Hg²⁺ (5.0 equiv.) in HEPES buffer (20 mM, pH=7.4, containing 30% EtOH) incubation at room temperature for 60 min. Inset: photographs of Probe **1** without (left) and with (right) 5.0 equiv. of Hg²⁺.

Fig. S2 Absorption (black) and emission spectra (red) of dye 5 (10.0 μ M) in HEPES buffer (20 mM, pH=7.4, containing 30% EtOH).

Fig. S3 Absorbance at 495 nm of Probe **1** (10.0 μ M) versus the concentration of Hg²⁺ in HEPES buffer (20 mM, pH=7.4, containing 30% EtOH). Inset: the linear relationship between the absorbance of the solution of Probe **1** and Hg²⁺ concentration (0.0-25.0 μ M).

Fig. S4 ¹H NMR spectrum of compound 3 in CDCl₃.

Fig. S5 ¹³C NMR spectrum of compound 3 in CDCl₃.

Fig. S6 HRMS spectrum of compound 3.

Fig. S7 ¹H NMR spectrum of compound 4 in CDCl₃.

Fig. S8 $^{\rm 13}C$ NMR spectrum of compound 4 in CDCl3.

Fig. S9 HRMS spectrum of compound 4.

Fig. S10 ¹H NMR spectrum of Probe 1 in CDCl₃.

Fig. S11 ¹³C NMR spectrum of Probe 1 in CDCl₃.

Fig. S12 HRMS spectrum of compound Probe 1.

Fig. S13 Plot of the natural log of fluorescence intensity change for Probe 1 (10.0 μ M) with Hg²⁺ (5.0 equiv.) as a function of the reaction time in HEPES buffer (20 mM, pH=7.4, containing 30% EtOH). $k_{obs} = 0.04579 \text{ min}^{-1}$.

Fig. S14 1 H NMR spectrum of the reaction product between Probe 1 and Hg $^{2+}$ in CDCl $_3$.

Fig. S15 HRMS spectrum of the reaction product between Probe 1 and $Hg^{2+}\!.$

Fig. S16 Cytotoxicity assay of Probe 1 at different concentration for HeLa cells.