AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1. (original): A method for preparing an aryl 5-thio-β-D-aldohexopyranoside derivative of Formula (III), which comprises reacting a 5-thio-D-aldohexopyranose derivative of Formula (I) with Ar-OH of Formula (II) in the presence of a phosphine represented by PR¹¹R¹²R¹³ and an azo reagent represented by R²¹-N=N-R²² in accordance with the following scheme:

wherein

in the above Formulae (I) and (III),

the wavy lines mean containing any stereoisomer selected from D-form, L-form and a mixture thereof,

Y represents -O- or -NH-, and

 R^1 , R^2 , R^3 and R^4 , which may be the same or different, each represent a hydrogen atom, a C_{2-10} acyl group, a C_{1-6} alkyl group, a C_{7-10} aralkyl group, a C_{1-6} alkoxy- C_{7-10} aralkyl group, an

U.S. Appln. No.: 10/512,809

Atty. Docket No.: Q85611

allyl group, a tri(C_{1-6} alkyl)silyl group, a C_{1-6} alkoxy- C_{1-6} alkyl group or a C_{2-6} alkoxycarbonyl group, or

when Y represents -O-, R^1 and R^2 , R^2 and R^3 , or R^3 and R^4 may together form - $C(R^A)(R^B)$ - wherein R^A and R^B , which may be the same or different, each represent a hydrogen atom, a C_{1-6} alkyl group or a phenyl group, in the above Formula (II),

Ar represents an aryl group which may be substituted with any substituent, in $PR^{11}R^{12}R^{13}$,

 R^{11} to R^{13} , which may be the same or different, each represent a phenyl group which may be substituted with a C_{1-6} alkyl group, a pyridyl group or a C_{1-6} alkyl group, and in R^{21} -N=N- R^{22} ,

 R^{21} and R^{22} , which may be the same or different, each represent a C_{2-5} alkoxycarbonyl group, an N,N-di- C_{1-4} alkylaminocarbonyl group or a piperidinocarbonyl group.

2. (original): The method according to claim 1, wherein

U.S. Appln. No.: 10/512,809

Atty. Docket No.: Q85611

Formula (II) is represented by the above Formula (II)' and Formula (III) is represented by the above Formula (III)' wherein Y, R¹, R², R³ and R⁴ are as defined in claim 1, wherein in the above Formulae (II)' and (III)',

A¹ represents an aryl group which may be substituted with the same or different 1 to 4 substituents selected from the group consisting of:

- a halogen atom;
- a hydroxyl group;
- -⁺NH₃;
- -[†]N(CH₃)₃;

a C_{1-6} alkyl group which may be substituted with 1 to 4 substituents selected from the group consisting of a halogen atom and a hydroxyl group;

a group represented by the formula:

$$-(CH2)m-Q$$

wherein m represents an integer of 0 to 4, and Q represents a formyl group, an amino group, a nitro group, a cyano group, a carboxyl group, a sulfonic acid group, a C_{1-6} alkoxy group which may be substituted with 1 to 4 halogen atoms, a C_{1-6} alkoxy- C_{1-6} alkoxy group, a C_{2-10} acyloxy group, a C_{2-10} acyl group, a C_{2-6} alkoxycarbonyl group, a C_{1-6} alkylthio group, a C_{1-6} alkylsulfinyl group, a C_{1-6} alkylsulfonyl group, -NHC(=O)H, a C_{2-10} acylamino group, a C_{1-6} alkylsulfonylamino group, a C_{1-6} alkylamino group, an N,N-di(C_{1-6} alkyl)amino group, a carbamoyl group, an N-(C_{1-6} alkyl)aminocarbonyl group;

a C_{3-7} cycloalkyl group, a C_{3-7} cycloalkyloxy group, an aryl group, a C_{7-10} aralkyl group, an aryloxy group, a C_{7-10} aralkyloxy group, a C_{7-10} aralkylamino group, a heteroaryl group, or a 4- to 6-membered heterocycloalkyl group, provided that each of these groups may be substituted with 1 to 4 substituents selected from the group consisting of a halogen atom, a hydroxyl group, a C_{1-6} alkyl group and a C_{1-6} alkoxy group; and

a group represented by the formula:

$$-X-A^2$$

wherein X represents -(CH₂)n-, -CO(CH₂)n-, -CH(OH)(CH₂)n-, -O-(CH₂)n-, -CONH(CH₂)n-, -NHCO(CH₂)n- wherein n represents an integer of 0 to 3, -COCH=CH-, -S- or -NH-, and A² represents an aryl group, a heteroaryl group or a 4- to 6-membered heterocycloalkyl group, each of which may be substituted with the same or different 1 to 4 substituents selected from:

- a halogen atom;
- a hydroxyl group;
- a C_{1-6} alkyl group which may be substituted with 1 to 4 substituents selected from the group consisting of a halogen atom and a hydroxyl group;
 - a group represented by the formula:

wherein m' represents an integer of 0 to 4, and Q' represents a formyl group, an amino group, a nitro group, a cyano group, a carboxyl group, a sulfonic acid group, a C_{1-6} alkoxy group which may be substituted with 1 to 4 halogen atoms, a C_{1-6} alkoxy- C_{1-6} alkoxy group, a C_{2-10} acyloxy group, a C_{2-10} acyl group, a C_{2-6} alkoxycarbonyl group, a C_{1-6} alkylthio group, a C_{1-6} alkylsulfinyl

Atty. Docket No.: Q85611

group, a C_{1-6} alkylsulfonyl group, -NHC(=O)H, a C_{2-10} acylamino group, a C_{1-6} alkylsulfonylamino group, a C_{1-6} alkylamino group, an N,N-di(C_{1-6} alkyl)amino group, a carbamoyl group, an N-(C_{1-6} alkyl)aminocarbonyl group, or an N,N-di(C_{1-6} alkyl)aminocarbonyl group; and

a C_{3-7} cycloalkyl group, a C_{3-7} cycloalkyloxy group, an aryl group, a C_{7-10} aralkyl group, an aryloxy group, a C_{7-10} aralkyloxy group, a C_{7-10} aralkylamino group, a heteroaryl group, or a 4- to 6-membered heterocycloalkyl group, provided that each of these groups may be substituted with 1 to 4 substituents selected from the group consisting of a halogen atom, a hydroxyl group, a C_{1-6} alkyl group and a C_{1-6} alkoxy group.

3. (original): The method according to claim 2, wherein

Formula (I) is represented by the above Formula (IV) wherein R^1 , R^2 , R^3 and R^4 are as defined in claim 1 and Formula (III)' is represented by the above Formula (V) wherein R^1 , R^2 , R^3 and R^4 are as defined in claim 1, and A^1 is as defined in claim 2.

U.S. Appln. No.: 10/512,809 Atty. Docket No.: Q85611

4. (original): The method according to claim 3, wherein A^1 represents a phenyl group substituted with -X- A^2 wherein X and A^2 are as defined in claim 2, in which the phenyl group may be further substituted with the same or different 1 to 3 substituents selected from:

- a halogen atom;
- a hydroxyl group;
- a C₁₋₆ alkyl group which may be substituted with 1 to 4 substituents selected from the group consisting of a halogen atom and a hydroxyl group;
 - a group represented by the formula:

$$-(CH_2)m-Q$$

wherein m and Q are as defined in claim 2; and

a C_{3-7} cycloalkyl group, a C_{3-7} cycloalkyloxy group, an aryl group, a C_{7-10} aralkyl group, an aryloxy group, a C_{7-10} aralkyloxy group, a heteroaryl group, or a 4- to 6-membered heterocycloalkyl group, provided that each of these groups may be substituted with 1 to 4 substituents selected from the group consisting of a halogen atom, a hydroxyl group, a C_{1-6} alkyl group and a C_{1-6} alkoxy group.

5. (original): The method according to claim 3, wherein A¹ is represented by the following formula:

U.S. Appln. No.: 10/512,809

Atty. Docket No.: Q85611

$$R^{32}$$
 R^{30}
 R^{44}
 R^{43}
 R^{42}
 R^{41}
 R^{40}
 R^{41}
 R^{40}
 R^{41}

wherein

X represents - $(CH_2)n$ -, - $CO(CH_2)n$ -, - $CH(OH)(CH_2)n$ -, - $O-(CH_2)n$ -, - $CONH(CH_2)n$ -, - $CONH(CH_2)n$ -, - $CONH(CH_2)n$ -, -COCH=CH-, -COCH=C

R³⁰, R³¹, R³² and R³³, which may be the same or different, each represent:

- a hydrogen atom;
- a halogen atom;
- a hydroxyl group;
- -⁺NH₃;
- $-^{+}N(CH_{3})_{3};$

a C₁₋₆ alkyl group which may be substituted with 1 to 4 substituents selected from the group consisting of a halogen atom and a hydroxyl group;

a group represented by the formula:

wherein m represents an integer of 0 to 4, and Q represents a formyl group, an amino group, a nitro group, a cyano group, a carboxyl group, a sulfonic acid group, a C_{1-6} alkoxy group which may be substituted with 1 to 4 halogen atoms, a C_{1-6} alkoxy- C_{1-6} alkoxy group, a C_{2-10} acyloxy group, a C_{2-10} acyl group, a C_{2-6} alkoxycarbonyl group, a C_{1-6} alkylthio group, a C_{1-6} alkylsulfinyl group, a C_{1-6} alkylsulfonyl group, -NHC(=O)H, a C_{2-10} acylamino group, a C_{1-6}

Atty. Docket No.: Q85611

alkylsulfonylamino group, a C₁₋₆ alkylamino group, an N,N-di(C₁₋₆ alkyl)amino group, a carbamoyl group, an N-(C₁₋₆ alkyl)aminocarbonyl group, or an N,N-di(C₁₋₆ alkyl)aminocarbonyl group; or

a C_{3-7} cycloalkyl group, a C_{3-7} cycloalkyloxy group, an aryl group, a C_{7-10} aralkyl group, an aryloxy group, a C_{7-10} aralkyloxy group, a C_{7-10} aralkylamino group, a heteroaryl group, or a 4- to 6-membered heterocycloalkyl group, provided that each of these groups may be substituted with 1 to 4 substituents selected from the group consisting of a halogen atom, a hydroxyl group, a C₁₋₆ alkyl group and a C₁₋₆ alkoxy group, and

R⁴⁰, R⁴¹, R⁴², R⁴³ and R⁴⁴, which may be the same or different, each represent:

- a hydrogen atom;
- a halogen atom;
- a hydroxyl group;
- a C_{1-6} alkyl group which may be substituted with 1 to 4 substituents selected from the group consisting of a halogen atom and a hydroxyl group;
 - a group represented by the formula:

wherein m' represents an integer of 0 to 4, and Q' represents a formyl group, an amino group, a nitro group, a cyano group, a carboxyl group, a sulfonic acid group, a C₁₋₆ alkoxy group which may be substituted with 1 to 4 halogen atoms, a C_{1-6} alkoxy- C_{1-6} alkoxy group, a C_{2-10} acyloxy group, a C₂₋₁₀ acyl group, a C₂₋₆ alkoxycarbonyl group, a C₁₋₆ alkylthio group, a C₁₋₆ alkylsulfinyl group, a C₁₋₆ alkylsulfonyl group, -NHC(=O)H, a C₂₋₁₀ acylamino group, a C₁₋₆

alkylsulfonylamino group, a C₁₋₆ alkylamino group, an N,N-di(C₁₋₆ alkyl)amino group, a carbamoyl group, an N-(C₁₋₆ alkyl)aminocarbonyl group, or an N,N-di(C₁₋₆ alkyl)aminocarbonyl group; or

a C₃₋₇ cycloalkyl group, a C₃₋₇ cycloalkyloxy group, an aryl group, a C₇₋₁₀ aralkyl group, an aryloxy group, a C₇₋₁₀ aralkyloxy group, a C₇₋₁₀ aralkylamino group, a heteroaryl group, or a 4- to 6-membered heterocycloalkyl group, provided that each of these groups may be substituted with 1 to 4 substituents selected from the group consisting of a halogen atom, a hydroxyl group, a C_{1-6} alkyl group and a C_{1-6} alkoxy group.

The method according to claim 5, wherein A¹ is represented by the 6. (original): following formula:

wherein

X is as defined in claim 5,

R^{30A}, R^{31A}, R^{32A} and R^{33A}, which may be the same or different, each represent:

a hydrogen atom;

a halogen atom;

a hydroxyl group;

U.S. Appln. No.: 10/512,809 Atty. Docket No.: Q85611

a C₁₋₆ alkyl group which may be substituted with 1 to 4 substituents selected from the group consisting of a halogen atom and a hydroxyl group;

a group represented by the formula:

$$-(CH_2)m^A-Q^A$$

wherein m^A represents an integer of 0 to 4, and Q^A represents a formyl group, a carboxyl group, a C_{1-6} alkoxy group which may be substituted with 1 to 4 halogen atoms, a C_{1-6} alkoxy- C_{1-6} alkoxy group, a C_{2-10} acyloxy group, a C_{2-10} acyloxy group, a C_{2-10} acyloxy group, a C_{2-10} acylomino group; or

a C_{3-7} cycloalkyl group, a C_{7-10} aralkyl group, an aryl group, a C_{7-10} aralkyl group, an aryloxy group, a C_{7-10} aralkyloxy group, or a C_{7-10} aralkylamino group, provided that each of these groups may be substituted with 1 to 4 substituents selected from the group consisting of a halogen atom, a hydroxyl group, a C_{1-6} alkyl group and a C_{1-6} alkoxy group, and

 $R^{40},\,R^{41},\,R^{42},\,R^{43}$ and R^{44} are as defined in claim 5.

7. (original): The method according to claim 3, wherein the compound of Formula (V) is a compound represented by the following formula:

U.S. Appln. No.: 10/512,809

Atty. Docket No.: Q85611

wherein R^{30B} , R^{31B} , R^{32B} and R^{33B} , which may be the same or different, each represent a hydrogen atom, a halogen atom, a C_{1-6} alkyl group, a C_{1-6} alkoxy group, a C_{1-6} alkoxy- C_{1-6} alkoxy group, a carboxyl group, a C_{2-6} alkoxycarbonyl group, a hydroxyl group or a hydroxy- C_{1-4} alkyl group, R^C represents a hydrogen atom, a halogen atom, a C_{1-6} alkyl group, a C_{1-6} alkyl group, a hydroxy- C_{1-4} alkyl group, a halogen-substituted C_{1-6} alkyl group or a C_{1-6} alkylthio group, R^{4A} represents a hydrogen atom, a C_{2-6} alkoxycarbonyl group or a C_{2-6} alkanoyl group, and R^{1A} to R^{3A} , which may be the same or different, each represent a hydrogen atom, a C_{2-8} alkanoyl group or a benzoyl group.

8. (original): The method according to claim 3, wherein the compound of Formula (V) is a compound represented by the following formula:

wherein R^D represents a hydrogen atom, a halogen atom, a C_{1-6} alkyl group or a hydroxy- C_{1-4} alkyl group, and R^E represents a hydrogen atom, a halogen atom, a C_{1-6} alkyl group, a C_{1-6} alkoxy group or a hydroxy- C_{1-4} alkyl group.

U.S. Appln. No.: 10/512,809

9. (original): The method according to claim 1, wherein Ar is an aryl group substituted with 1 to 4 electron-withdrawing groups.

Atty. Docket No.: Q85611

- 10. (currently amended): The method according to any one of claims 2-to 4, wherein A¹ is an aryl group substituted with 1 to 4 electron-withdrawing groups.
- 11. (original): The method according to claim 5, wherein at least one of R^{30} , R^{31} , R^{32} and R^{33} is an electron-withdrawing group.
- 12. (original): The method according to claim 6, wherein at least one of R^{30A} , R^{31A} , R^{32A} and R^{33A} is an electron-withdrawing group.
- 13. (original): The method according to claim 7, wherein at least one of R^{30B} , R^{31B} , R^{32B} and R^{33B} is an electron-withdrawing group.
- 14. (original): The method according to any one of claims 9 to 13, wherein the electron-withdrawing group is selected from a formyl group, a nitro group, a cyano group, a carboxyl group, a sulfonic acid group, -\(^+NH_3\), -\(^+N(CH_3)_3\), -CF_3, -CCl_3, -COCH_3, -CO_2CH_3, -CO_2C_2H_5, -COPh, -SO_2CH_3 and a halogen atom.