

Nilo

Quieres transportar N objetos a través del Nilo. Los objetos están numerados del 0 al N-1. El peso del objeto i ($0 \le i < N$) es W[i].

Para transportar los objetos, tienes botes especiales. Cada bote puede cargar **a lo más dos** objetos.

- Si decides poner únicamente un objeto en un bote, el peso puede ser el que sea.
- Si decides poner dos objetos en un bote, tienes que asegurarte de que el bote esté balanceado. Especificamente, puedes enviar los objetos p y q ($0 \le p < q < N$) en el mismo bote si y solo si la diferencia absoluta entre sus pesos es a lo más D, en otras palabras $|W[p]-W[q]| \le D$.

Para transportar un objeto, tienes que pagar un costo que depende en el número de objetos que van en el mismo bote. El costo de transportar el objeto i ($0 \le i < N$) es:

- A[i], si pusiste el objeto en su propio bote, o
- B[i], si lo pusiste en un bote junto a otro objeto.

Nótese que en el segundo caso, tienes que pagar por los dos objetos en el bote. Específicamente, si decides mandar objetos p y q ($0 \le p < q < N$) en el mismo bote, necesitas pagar B[p] + B[q].

Mandar un objeto en un bote por sí mismo siempre es más costoso que mandarlo en un bote con otro objeto, es decir B[i] < A[i] para todo i tal que $0 \le i < N$.

Desafortunadamente, el río es bastante impredecible y el valor de D cambia constantemente. Tu tarea es responder Q preguntas numeradas de 0 a Q-1. Las preguntas vienen en un arreglo E de longitud Q. La respuesta a la pregunta j ($0 \le j < Q$) es el costo mínimo total de transportar todos los N objetos cuando el valor de D es igual a E[j].

Detalles de implementación

Tienes que implementar la siguiente función.

```
std::vector<long long> calculate_costs(
    std::vector<int> W, std::vector<int> A,
    std::vector<int> B, std::vector<int> E)
```

- W, A, y B: son arreglos de longitud N, describiendo el peso de los objetos, así como los costos de transportarlos solos o acompañados, respectivamente.
- E: es un arreglo de enteros de longitud Q describiendo el valor de D para cada pregunta.
- Tu función debe de regresar un arreglo R con Q enteros conteniendo el costo mínimo total de transportar los objetos, donde R[j] contiene el costo cuando el valor de D es E[j] (para cada j tal que $0 \le j < Q$).
- Esta función se llama exactamente una vez para cada caso de prueba.

Límites

- $1 \le N \le 100000$
- $1 \le Q \le 100\,000$
- $1 \leq W[i] \leq 10^9$ para cada i tal que $0 \leq i < N$
- $1 \leq B[i] < A[i] \leq 10^9$ para cada i tal que $0 \leq i < N$
- $1 \leq E[j] \leq 10^9$ para cada j tal que $0 \leq j < Q$

Subtareas

Subtarea	Puntos	Condiciones adicionales
1	6	$Q \leq$ 5; $N \leq$ 2000 ; $W[i] = 1$ para cada i tal que $0 \leq i < N$
2	13	$Q \leq 5$; $W[i] = i+1$ para cada i tal que $0 \leq i < N$
3	17	$Q \leq 5$; $A[i] = 2$ y $B[i] = 1$ para cada i tal que $0 \leq i < N$
4	11	$Q \leq$ 5; $N \leq 2000$
5	20	$Q \leq 5$
6	15	$A[i] = 2$ y $B[i] = 1$ para cada i tal que $0 \leq i < N$
7	18	Sin condiciones adicionales.

Ejemplo

Considera la siguiente llamada a tu función.

En este ejemplo tenemos N=5 objetos y Q=3 preguntas.

En la primera pregunta, D=5, puedes mandar objetos 0 y 3 en el mismo bote (ya que $|15-10|\leq 5$) y los demás objetos en sus propios botes. Esto nos da el costo mínimo de

transportar todos los objetos, el cual es 1+4+5+3+3=16.

En la segunda pregunta, D=9, Puedes mandar a los objetos 0 y 1 en el mismo bote (ya que $|15-12|\leq 9$) y mandar a los objetos 2 y 3 en el mismo bote (ya que $|2-10|\leq 9$). El objeto restante se puede mandar en su propio bote. Esto nos da el costo mínimo de transportar todos los objetos, el cual es 1+2+2+3+3=11.

En la última pregunta, D=1. necesitas mandar a cada objeto en su propio bote. Esto nos da el costo mínimo de transportar todos los objetos, el cual es 5+4+5+6+3=23.

Entonces, tu función debe de regresar [16, 11, 23].

Evaluador de ejemplo

Formato de entrada:

```
N
W[0] A[0] B[0]
W[1] A[1] B[1]
...
W[N-1] A[N-1] B[N-1]
Q
E[0]
E[1]
...
E[Q-1]
```

Formato de salida:

```
R[0]
R[1]
...
R[Q-1]
```