T-SNE

Radek Bartyzal Let's talk ML in Prague 8. 12. 2016

(rbartyzal1@gmail.com)

What is it?

- t-Distributed Stochastic Neighbor Embedding
- dimensionality reduction technique

Stochastic Neighbor Embedding

- convert the high-dimensional Euclidean distances between datapoints into conditional probabilities
- = similarity of x_i to x_j = cond. prob. that x_j would be picked from all other points picked in proportion to their probability density under a Gaussian at x_i

$$p_{j|i} = \frac{\exp(-\|x_i - x_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|x_i - x_k\|^2 / 2\sigma_i^2)}$$

Stochastic Neighbor Embedding

2. calculate the same cond. prob. from distances of points in low-dimensional space

$$q_{j|i} = \frac{\exp(-\|y_i - y_j\|^2)}{\sum_{k \neq i} \exp(-\|y_i - y_k\|^2)}$$

Stochastic Neighbor Embedding

- 3. if simialrity of y_i and y_j corresponds to similarity of x_i and x_j then their cond. prob. would be also similar
- = we are trying to minimize the mismatch between them = minimize Kullback-Leibler divergences over all datapoints using a gradient descent method

$$C = \sum_{i} KL(P_i||Q_i) = \sum_{i} \sum_{j} p_{j|i} \log \frac{p_{j|i}}{q_{j|i}}$$

t-SNE

 calculate the cond. prob. as a Student tdistribution with one degree of freedom

$$q_{ij} = \frac{\left(1 + \|y_i - y_j\|^2\right)^{-1}}{\sum_{k \neq l} \left(1 + \|y_k - y_l\|^2\right)^{-1}}$$

Why Student t-distribution?

- large clusters of points that are far apart interact in the same way as individual points
- much faster than Gaussian (no exp)
- t-SNE gradient more strongly repels dissimilar datapoints that are modeled by a small pairwise distance in the low-dimensional representation

Gradient descent

• equivalent to springs between y_i and y_j whose force is proportional to its length $(y_i - y_j)$, and also its stiffness = mismatch = $(p_{i|i} - q_{i|i} + p_{i|i} - q_{i|i})$

Optimization tricks

- early compression
- = force the map points to stay close together at the start of the optimization
- => it is easy for clusters to move through one another so it is much easier to explore the space of possible global organizations of the data

Optimization tricks

- early exaggeration
- = multiply all of the p_{ii} 's
- => q_{ii}'s are relatively smaller
- => large p_{ij}'s modeled by large q_{ij}'s
- => natural clusters in the data tend to form tight, widely separated clusters in the map
- => a lot of empty space in the map, which makes it much easier for the clusters to move around

Sources

- http://jmlr.org/papers/volume9/vandermaate
 n08a/vandermaaten08a.pdf
- https://lvdmaaten.github.io/tsne/