

TITLE OF THE INVENTION:

DISTORTION CORRECTION METHOD IN OPTICAL CODE READING

The present invention relates to a distortion correction method in optical code reading.

5

The term "optical code" is used below to denote any graphical representation whose function is to store coded information. Specific examples of optical codes are linear or two-dimensional codes wherein the information is coded by suitable combinations of elements of predetermined shape, such as squares, rectangles or hexagons, of dark colour (usually black) separated by light elements (spaces, usually white), such as bar codes, stacked codes (including PDF417), Maxicode, Datamatrix, QR-Code, colour codes etc. The term "optical code" further comprises, more generally, other graphical forms with the aim of coding information, including uncoded characters (letters, figures etc.) and specific patterns (such as stamps, logos, signatures etc.). The information may also be coded by more than two colours, in grey tones for example.

BACKGROUND OF THE INVENTION

As known, for coding information, for optical identification of objects for example, bar codes are currently very widespread and are used in an increasingly wide variety of applications thanks to their compactness, robustness to ambient conditions (which enables them to be automatically decoded even in the presence of high noise) and possibility of automatic reading and interpretation. They do, however, allow storage of relatively few items of information; to overcome this limitation, two-dimensional codes such as the Datamatrix, Maxicode, QR-Code and stacked (e.g. PDF417) codes have recently been proposed, examples whereof are shown in Figs. 1a, 1b, 1c and 1d respectively.

35 Reading two-dimensional codes may be achieved by getting two-dimensional images in a zone where presence of a code is expected and location of the code within the image, for

subsequent decoding. In general, code location comprises a series of steps for initially distinguishing, within the image stored in a computer memory, the region or regions where one or more codes is present from zones where other 5 objects or figures are present; then localizing specific recognition patterns typical to each code, acquiring information of the code type and finally precisely delimiting the code. The delimited image of the code is then processed to extract characteristics necessary to decoding and, 10 finally, the code is decoded.

15 However, because of geometrical distortions caused by lack of parallelism between the plane containing the code (the image whereof is acquired) and the shooting, plane, the quadrilateral inscribing the code in the stored image does not, in general, have a regular geometrical shape. In particular, there may be perspective deformations due to rotations about three spatial axes (presence of pitch, skew and tilt angles). These deformations, which sometimes may not be neglected, transform the code (of rectangular or square shape) into irregular quadrilaterals.

20 A typical deformation example is illustrated in Fig. 2, showing a Datamatrix code type inclined by 50° with respect 25 to the reader plane.

Currently, to eliminate or compensate perspective deformations the acquired image is rescaled by applying roto-translation algorithms to all pixels of the acquired image 30 (or of the image portion where the code has been located and delimited) to obtain a new image wherein the code assumes the initial regular shape.

35 To do this, it is necessary to know specific information of the code being read: in the case of the Maxicode for example, the bull-eye (target formed by a series of concentric circles in the code center) may be analyzed and, if it is elliptical,

correction roto-translation parameters are deduced and roto-translation carried out with the deduced parameters.

The known systems do, however, require many computational complex operations (matrices are used, and all points of the image are transformed); consequently, high calculation capacities are needed, not available to all readers, as well as a considerable calculation time, so that reading is slow.

SUMMARY OF THE INVENTION

Object of the invention is to provide a distortion correction method requiring a lower operation number and less computing time than known methods.

The present invention provides a distortion correction method of a deformed image deriving from reading an optical code, said optical code comprising a plurality of elements and said deformed image comprising a plurality of points, a respective brightness value being associated with each point, characterized by the steps of:

- generating a grid of said deformed image to identify a plurality of characteristic points in said deformed image; and
- generating a transformed image formed by decoding points using a geometrical transformation correlating said characteristic points and said decoding points.

Preferably, the selected characteristic points are the central pixel of each element of the optical code. In this way, only the most significant point of each element, not affected by the border effect caused by adjacent code elements of different colour, is used for decoding; furthermore, the operations required to eliminate the distortion are drastically reduced in number.

Advantageously, the structure of the code being read is initially determined, to identify the number of rows and columns in the code. The grid generation step is then carried

out; this comprises the steps of constructing a rectangular grid formed by lines unambiguously defining the coordinates of notable points associated with the central point of each code element; determining the geometrical transformation linking reference points of known position on the deformed image and corresponding points on the deformed image; and calculating the coordinates of characteristic points associated with the notable points because of the geometrical transformation.

10 BRIEF DESCRIPTION OF THE DRAWINGS

Further features of the invention will emerge from the description of a preferred embodiment, provided purely by way of non-exhaustive example and shown in the accompanying drawings wherein:

- Figs. 1a, 1b, 1c and 1d show examples of two-dimensional codes of known type;
- Fig. 2 shows an example of an image acquired by a code reader, before processing;
- Fig. 3 shows a flowchart relating to reading an optical code from two-dimensional images;
- Fig. 4 shows a flowchart relating to image distortion correction, according to the present invention;
- Fig. 5 shows an example of a two-dimensional code of a first type during a step of the distortion correction method according to the invention;
- Fig. 6 shows an example of a two-dimensional code of a second type during the step of Fig. 5;
- Fig. 7 shows the plot of the signal obtained in a subsequent step of the present method;
- Fig. 8 shows an example of a grid generated according to the present method;
- Fig. 9 shows another example of a grid generated according to the present method;
- Fig. 10 shows the image of a two-dimensional code acquired by a reader, with a grid according to the present invention superimposed;
- Fig. 11 shows the relationship between a rectangular grid

and the associated transformed grid; and

- Fig. 12 shows an example of a code and the associated starting points for generating the grid according to a variant of the present method.

5 **DETAILED DESCRIPTION OF THE INVENTION**

According to the flowchart of Fig. 3, to read a code from a two-dimensional image, the image of a space portion where at least one data code is sought is initially acquired and stored (block 10). In particular, the image may be acquired 10 with any type of telecamera or photographic instrument capable of outputting a digitalized image in grey tones, formed by a plurality of pixels, each representing the brightness of the image in the considered point and preferably coded by at least 8 bits (at least 256 grey levels). The digitalized image is then stored in a suitable memory (not shown) for subsequent processing.

Interest regions potentially containing an optical code are then sought inside the stored image (block 11). For example, for this purpose the regions of high contrast are sought, since codes are formed by a matrix of elements (element denoting the smallest component of the code) characterized by at least two different reflectivity values (typically black and white), the specific alternation of which codes the 25 information.

Then, for each of these interest regions, the code is located precisely and so-called recognition patterns are determined, block 12. The localizing step 12, per se known, requires 30 different methods according to the code type. For example, for Datamatrix (Fig. 1a), the coordinates of the L shape (bordering the left-hand and lower sides of the code in Fig. 1a) may be determined, using a corner detection algorithm described, for example, in D. Montgomery, G.C. Runger: 35 "Applied Statistics and Probability for Engineers", Wiley, 1994, in R. Jain, R. Kasturi, B.G. Shunek: "Machine vision", McGraw Hill, 1995 or using the standard method proposed by

the AIM specifications (AIM specifications for Datamatrix), based on searching two segments of minimum size (the size whereof is known from the application specifications) which are the two sides of the L shape.

5 As far as Maxicode is concerned (Fig. 1b), the localizing step 12 comprises determining the coordinates of the code center or Bull Eye, using, for example, the standard method described in the AIM specification (AIM specifications for Maxicode) based on searching the template formed by alternating black and white pixels characteristic of the bull eye.

10 15 20 25 30 35 40 For QR-Code, the coordinates of the vertices of three squares located on three of the four corners of the code (Fig. 1c) are determined, using the standard method proposed by the AIM specifications for the QR-Code for example.

45 In case of linear (bar codes) or stacked (PDF417, Fig. 1d) codes, at least three bars of the code are determined with known segment recognition algorithms (see for example the above cited text of D. Montgomery, G. C. Runger, or R. Jain, R. Kasturi, B. G. Shunek).

50 55 60 65 70 75 80 85 90 95 100 In the localizing step 12, information is also extracted about code geometrical structure and dimensions and is used subsequently. In case of Maxicode for example, the dimensions of the hexagons forming it are estimated.

105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775 9780 9785 9790 9795 9800 9805 9810 9815 9820 9825 9830 9835 9840 9845 9850 9855 9860 9865 9870 9875 9880 9885 9890 9895 9900 9905 9910 9915 9920 9925 9930 9935 9940 9945 9950 9955 9960 9965 9970 9975 9980 9985 9990 9995 9999

"Algorithms" by R. Sedgewick, Ed. Addison Wesley), using the location information just obtained and using the presence of quiet zones round the code. For a Maxicode, for example, it is possible to apply region growing from the external circle of the Bull Eye, having an estimate of the dimensions of the individual hexagons and the total area occupied by the code. At the end of the segmentation step 13, therefore, an image indicated below as segmented image is obtained.

10 A distortion correction and decoding characteristics calculation step is then carried out, block 14. In this step, described in detail below with reference to Fig. 4, starting from the segmented image, which is deformed and the points whereof are associated with grey tones, for each element making up the code the perspective distortion is corrected, the grey values are extracted and the binarized value (white or black, defining the decoding characteristics or features) necessary to the decoding algorithm is determined, thus obtaining a transformed and digitalized image, also called decoding image. For this purpose, as below described in detail, a code grid is generated, thereby the number of pixels to be processed is drastically reduced and code reading becomes faster.

25 Finally, using the decoding features supplied according to a predetermined sequence, decoding is carried out (block 15) in known manner, thereby extracting the coded information.

30 To correct the perspective errors it is assumed that the imaged code is physically arranged on a plane. Furthermore, as stated above, at the start of the decoding features extraction step 14, the following information is available:
35 1. code type: this information is useful for differentiating the grid-producing operations according to the code type;
2. code orientation: the majority of codes do not have a symmetrical structure, so that it is necessary to know the precise code orientation in the image. This information can

be expressed by the position of the recognition pattern (e.g. the L of the Datamatrix code).

3. coordinates of the four vertices V1, V2, V3, V4 of the quadrilateral inscribing the code (Fig. 11).

5

With reference to Fig. 4, therefore, the step of distortion correction and decoding features extraction 14 initially comprises the step of calculating a binarization threshold later required, block 20. To this end, the cumulative histogram of the grey levels of each pixel belonging to an image portion containing the located code, preferably the central part of the code, is generated. The size of this portion must be such as to contain a pixel number sufficiently large to be statistically significant. Typically it is necessary to have at least a thousand pixels available; groups of 50x50 or 60x60 pixels are considered, for example. The histogram is then analyzed and an average grey value, defining a grey threshold, is calculated. The method used to determine the threshold may be one of the many known in literature (see, for example, the text by R. Gonzales, R.E. Woods, "Digital Image Processing", Addison Wesley, 1992, or the text by D. Montgomery, G.C. Runger, above cited).

25 The structure of the code, determined by the code orientation (already known, as indicated above) and the number of elements present in each row and column, is then detected. For codes of fixed size, such as the Maxicode, the number of elements of each row and the number of rows are known a priori. In other codes, however, they are not known a priori 30 but must be determined from the specific read code.

35 Consequently the method checks whether the segmented image supplied by the segmentation step 13 belongs to a Maxicode, block 21; if not, output NO, specific scans of the segmented image are carried out, block 22; the number of elements in each row and each column is calculated, block 23 and then the step of generating an image grid is carried out (blocks 24-

26); if so (output YES from block 21), the step of generating an image grid (blocks 24-26) is directly carried out.

If specific scans are carried out, block 22, the procedure is 5 different according to the code type. For Datamatrix codes the clock data located on the sides opposite the recognition pattern (L shape that borders the left-hand and lower sides of the code in Fig. 1a) are determined; in each of these sides there is, in fact, a regular structure, composed of 10 single, alternately black and white elements for establishing the number of elements per row and column of the code. In particular, by precisely knowing the coordinates of the vertices V1-V4 of the code, and in particular the three 0 vertices V1-V3 delimiting the two sides opposite the 5 identification pattern (see Fig. 5 showing an example of a Datamatrix code), the pixels arranged along the two above- 10 mentioned opposite sides (see the two scan lines 40 and 41 in Fig. 5) are acquired from the segmented image.

20 In contrast, in case of QR-Code (see Fig. 6) there are two 25 lines joining sides of the three characteristic squares 30 having the same purpose (lines 44, 45). Here, the coordinates 35 of the three vertices mutually facing the three squares (points A, B and C) are known from the localizing step 12; consequently, analogously to the foregoing, the value of the 40 pixels arranged on the segments of lines 44, 45 joining the 45 vertices A-C are acquired from the segmented image.

In practice, in both cases, at least one scan is carried out 30 on each characteristic zone of the code. In this way a waveform (shown in Fig. 7) is obtained representing the plot 35 of the brightness L in a generic scan direction x. This waveform is then used to calculate the number of elements on 40 each row and the number of rows of the code, in step 23. In 45 particular, since the waveform is similar to that obtained 50 scanning a bar code with a laser beam (with the advantage 55 that the structure of the read pattern is known a priori), it

is possible to use a known method for decoding bar codes. For example, it is possible initially to calculate the mean value of the obtained brightness L (line 46 of Fig. 7) and record the number of times the brightness signal crosses the mean value line 46. At the end, the number N_1 of elements in each row (number of columns) and the number N_2 of rows of the code being read are obtained.

The grid generating procedure comprises a first sub-step 24 wherein an ideal rectangular grid formed by an array of notable points is generated, a second sub-step 25 wherein the homograph is determined which transforms the rectangular grid into the deformed grid corresponding to the segmented image using a number of points, whose position is known within the code (reference points) and a third sub-step 26 wherein a deformed grid corresponding to the ideal grid is generated, using the just determined homograph.

The rectangular grid is generated so that the coordinates of its points (called notable point) correspond to the center of the elements forming the code to be read, using a grid formed by vertical and horizontal lines unambiguously correlated, as described below, to the notable points, considering the possible perspective distortion and the code type to be read.

In practice, for all code types, a rectangular grid is defined with a pitch that is optionally different for each direction but constant, with as many rows and columns as in the code.

Specifically, for Datamatrix and QR-Code codes the grid is generated so that the intersections of the grid rows and columns represent the center of each code element. To this end, the outlines of the desired decoding image, i.e. of the image containing the decoding features, are fixed freely. For example, the coordinates of the four vertices V_1' , V_2' , V_3' , V_4' (Fig. 11) of the decoding image are fixed freely, e.g.

5 (0,0), (0,1), (1,1), (1,0), to obtain a decoding image having sides of unitary length and a pitch optionally different in the horizontal and vertical, or (0,0), (0,N1), (N2,N1), (N2,0) wherein N1 and N2 have the meaning defined above, to obtain a decoding image having sides of optionally different length (if $N1 \neq N2$) and an equal pitch in the horizontal and vertical.

10 Once the length of the horizontal and vertical sides of the decoding image has been fixed, on the basis of the number of rows and columns of the decoding image (equal, as has been stated, to the number of rows and columns of the code being read), the coordinates of the individual rows and columns, whose intersections represent the points of the decoding image to be subsequently associated with the corresponding binarized brightness values, are automatically derived therefrom. For example, Fig. 8 shows the rectangular grid obtained in the purely exemplary case of $N1 = N2 = 5$, once the coordinates of the four vertices $V1'$, $V2'$, $V3'$, $V4'$ of the decoding image have been fixed. The crosses in Fig. 8 show the intersections of rows and columns of the decoding image, the coordinates whereof may be obtained immediately once the length of the sides of the decoding image has been fixed. For example, setting the length of the sides $l = 5$, the obtained coordinates are (0.5, 0.5), (0.5, 1.5), ..., (1.5, 0.5), (1.5, 1.5) etc.

20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
25

30 For the Maxicode codes (formed by hexagonal elements arranged like a honeycomb), in contrast, the rectangular grid is generated so that the intersection of the horizontal and vertical lines (similar in concept to the rows and columns of the Datamatrix and QR-Code codes) represent the centers of the hexagons of the odd rows while the median points between two successive intersection points represent the center of the hexagons of the even rows. In this way, generating a rectangular matrix of constant but different pitch (H in the horizontal direction and V in the vertical direction for

35

example, see Fig. 9) in the two directions and analyzing it row by row, the notable points (again denoted by crosses in Fig. 9) are alternatively in the intersections of the rectangular grid and in the intermediate points of the intersections. It is important to emphasize that in this 5 step, all coordinates of the code element centers necessary for decoding (and therefore the value of the pitch H and V , apart from the precise orientation, given that there is an uncertainty of 90°) are known, as well as the (fixed) number 10 of rows and columns, so that generation of the rectangular grid is particularly simple.

Once the step of determining the coordinates of all the notable points is complete it is necessary to "map" the rectangular grid on the real segmented image, by calculating the coordinates of the points (pixel) on the segmented image corresponding to the notable points of the rectangular grid. The problem is complicated by the geometrical deformation of the code. This problem is solved by recourse to transformations known from traditional geometry, particularly homography. If the coordinates of the four vertices V_1 , V_2 , V_3 , V_4 of the quadrilateral inscribing the code in the stored image (or the four vertices of the segmented image) are known and the coordinates of the four corresponding vertices V'_1 , V'_2 , V'_3 , V'_4 of the decoding image are fixed so as to respect the code geometry (original rectangular grid), the homograph transforming the coordinates of vertices V'_1 , V'_2 , V'_3 , V'_4 in the plane of the decoding image into the coordinates of corresponding vertices V_1 , V_2 , V_3 , V_4 in the 20 plane containing the segmented image is unambiguously identified (homograph determination step 25). In practice, coefficients of a matrix C are determined, which provide the 25 coordinates (T , X , Y) of the corresponding vertex V_1 , V_2 , V_3 , V_4 on the segmented image when multiplied by the coordinates (1 , x , y) of the vertices V'_1 , V'_2 , V'_3 , V'_4 . Furthermore, as 30 known, this homograph enables all points in the plane of the decoding image to be transformed into corresponding points in 35

the plane containing the segmented image.

In particular, for Maxicode codes, the inverse transform (matrix C^{-1}), necessary to correctly orient the ideal grid with respect to the code, is also calculated (since here the orientation resulting from the recognition pattern is known with an error of $\pm 90^\circ$, as noted above).

Once the homograph is known, it is applied to all notable points of the rectangular grid (obtained in the grid generation step 24). In practice, the coordinates of the segmented image points are calculated, called characteristic points below, corresponding to the notable points of the rectangular grid, obtaining a matrix (transformed grid calculation step 26). On the point, reference is made to Figs. 10 and 11 respectively showing the transformed grid corresponding to the rectangular grid (because of the homograph) superimposed on the code of Fig. 2, and the relationship between a rectangular grid and a transformed grid. Furthermore, Fig. 10 shows pairs of scan lines 40, 41 and a rectangle 50 used in the threshold calculation step 20.

Subsequently, for the characteristic points just identified and corresponding, in ideal conditions, to the center of each code element, the brightness value associated thereto in the segmented image is acquired and this value is binarized, using the threshold value calculated in the threshold calculation step 20 (value binarization step 27). The binarized value just found is then associated to the corresponding notable point on the rectangular grid, generating, point by point, a matrix of points representing the decoding features (decoding image reconstruction step 28).

In the above description, reference was made in particular only to Datamatrix, Maxicode and QR-Code codes. In fact, the decoding feature extraction for linear and stacked codes is

carried out more easily in other ways. The present method is, however, also applicable to these codes and is also advantageously applied in the case of codes spoiled or with missing parts.

5

In particular, for linear codes it is possible to apply the grid generation technique and average the data obtained for several rows, adapting the grid generation procedure described above to use a grid with a minimum number of 10 preselected rows.

10

For stacked codes it is necessary to adapt the grid generation step and select the number of rows to always ensure at least one transformation for every useful row of the stacked code.

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

110

115

120

125

130

135

140

145

150

155

160

165

170

175

180

185

190

195

200

205

210

215

220

225

230

235

240

245

250

255

260

265

270

275

280

285

290

295

300

305

310

315

320

325

330

335

340

345

350

355

360

365

370

375

380

385

390

395

400

405

410

415

420

425

430

435

440

445

450

455

460

465

470

475

480

485

490

495

500

505

510

515

520

525

530

535

540

545

550

555

560

565

570

575

580

585

590

595

600

605

610

615

620

625

630

635

640

645

650

655

660

665

670

675

680

685

690

695

700

705

710

715

720

725

730

735

740

745

750

755

760

765

770

775

780

785

790

795

800

805

810

815

820

825

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

905

910

915

920

925

930

935

940

945

950

955

960

965

970

975

980

985

990

995

1000

The advantages of the described method are as follows.

First it is highly robust with respect to geometrical deformations and enables decoding of codes acquired with skew and/or pitch angles up to 50°. In particular it is very advantageous for manual readers.

Furthermore, the present method is highly reliable, since for each element of the code it seeks only the central point or pixel, or the point less affected by edge effects. In fact, the pixels arranged on the edge of the code elements adjacent to code elements of a different colour are subject to blurring associated both with printing and image acquisition operations; consequently separate or cumulative processing of the brightness levels of the edge pixels causes a degrading of the obtainable data. The present method thus eliminates this degradation by operating solely on theoretically less sensitive pixel.

35

The method is fast if compared to standard AIM methods. In fact, for extracting the decoding features in Maxicode codes,

the standard method operates in the frequency space and requires a two-dimensional FFT of the entire image and then an inverse FFT. In contrast, according to the present invention, there is no operation in the frequency space and the transformation operations in the space (homography) are carried out only on few pixels of the image.

10 The present method is also independent of code dimensions and orientation. In fact, it succeeds in decoding codes of very varied dimensions. This advantage is particularly important in case of Datamatrix, QR-Code and PDF codes, since they have extremely variable dimensions.

0 As noted above, within certain limits the present method also
15 allows reading and decoding codes spoiled or with missing
20 parts, e.g. arranged along the rows or columns containing the
25 clock data. In fact it allows calculation of the length
30 (module) of each element and detection of erroneous elements
35 having, for example, lengths equal to a multiple (or a
40 fraction) of most of clock line elements and thus correction
45 of the detected number of rows and columns on the basis of
50 the obtained module information.

5 Finally it is clear that many modifications and variants may
10 be introduced to the method described and illustrated herein,
15 all of which come within the scope of the invention, as
20 defined in the accompanying claims. In particular, it is
25 emphasized that, though the described correction method is
30 capable of correcting perspective deformations associated
35 only with lack of parallelism between the plane of the code
40 and the shooting plane, as noted above, it may optionally be
45 associated with other algorithms for compensating other
50 deformations due, for example, to a curvature of the surface
55 of the label.

35 Furthermore, the noted features and the described step
40 sequence may be replaced by others technically equivalent.

For example, it is stressed that the homograph may be obtained from any group of four reference points of the deformed image having a known position in the code (in the original rectangle). In particular, in case of QR-Code, it is possible to use the four points marked with a cross in Fig. 5 12, that is the terminal points of the scans carried out during step 22.

Furthermore, the binarization threshold calculation step 20 10 may be carried out subsequently to the grid generating step, immediately before the binarization step 27. Similarly, the homograph determination step 25 may be carried out before the grid generation step 24 and the steps of transformed grid generation 26, binarization 27 and decoding image generation 28 may be carried out point by point instead of, each one, for the group of notable points; for example, as soon as the coordinates of a first notable point have been determined, the corresponding transformed point on the segmented image may be determined and the brightness value associated therewith be binarized; the procedure then continues in the same way, iteratively, for each identified notable point.

Finally, the grid generating step may be carried out to determine, instead of the sole center of each code element, 25 a small sub-set of pixels arranged near the center, and then calculate the mean value of the brightness of the sub-set pixels, to the detriment of the rapidity and simplicity of the operations for extracting the decoding feature.