

Presentation Plan

- 1. Why Nanopore?
- 2. How to basecall the reads in "super accuracy" mode?
- 3. How to assess run / read quality?

The Nanopore Technology

- Basecalling is Al based (Deep Neural Network).
- Performed from 5-mers

https://nanoporetech.com/platform/technology/basecalling

Two Families of Sequencers

- MinION Mk1B
- Flongle
- GridION
- Cheaper

- PromethION
- P2 Solo
- P2i
- Higher yield and Q-score

https://store.nanoporetech.com/

Do You Believe in Nanopore?

Pros

- \$1k / 87g
- 20bp 100+kb
- Native DNA / RNA
- Real-time sequencing
- Reusable flowcells
- Adaptive sequencing
- Growing community

Cons

- Keeps changing (QA)
- Error-prone
- Hard to analyze
 - Computationally intensive (GPU)
 - Somewhat specialized tools

Accuracy

- Can't quite resolve with accuracy long homopolymers stretches
- Leads to lots of INDELs
- Often long with more errors is better than short with less errors
- AMR SNP-based: (
- AMR functional gene:

Evolution of Basecallers

• Albacore: 2017 – 2018

• Guppy: 2018 – 2023

Dorado: 2023 – present

Wick RR, Judd LM, Holt KE. Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol. 2019 Jun 24;20(1):129. doi: 10.1186/s13059-019-1727-y. PMID: 31234903; PMCID: PMC6591954.

Read Accuracy Keeps Improving

- In 2024
 - R10.4.1 v14
 - Dorado v0.6
 - Super accuracy mode
- Simplex: 99.5% (Q23)
- Duplex: >99.9% (Q30)
- More Q15 Q20

https://nanoporetech.com/platform/accuracy

To Guppy or not to Guppy

- Why you'd still want to use Guppy
 - Don't know how to run Dorado
 - You have an easier way to run Guppy
 - Part of your current SOP / certified workflow
 - Downstream analysis requirements
 - "Old" tools with "old" data (e.g. base modification)
 - Lower end GPU (< 8GB VRAM)
- Why you don't want to use Guppy anymore
 - Legacy (no more updates)
 - Slower
 - Less accurate
 - New chemistries won't be supported

Basecalling Recommendations

- While sequencing: "Fast" mode
 - Enables more real-time run metrics
 - Do not overload host computer

- Post sequencing: "Super accuracy" mode
 - Higher Q-scores
 - Less "fail" reads
 - Better barcode assignment
 - Need computer with high-end GPU
 - Lose real-time benefit

Guppy - Legacy

- Input: Fast5 and kits ("final_summary")
- Output: Fastq and "sequencing_summary"

- https://cdn.oxfordnanoportal.com/software/analysis/ontguppy_6.5.7_linux64.tar.gz
- https://github.com/duceppemo/basecall_nanopore

Dorado – Two Flavours

Standalone

- Input: Pod5 | Fast5
- Output: a single uBAM | SAM | Fastq
- Needs to be demultiplexed separately
- Fastq headers only contain "ReadID"
- https://github.com/nanoporetech/dorado (v0.6.0)

Dorado – Two Flavours

Basecall Server

- Input: Pod5 | Fast5
- Output: Fastq and "sequencing_summary.txt"
- Demultiplexing built in
- Fastq headers with "all" info (like Guppy)
- https://cdn.oxfordnanoportal.com/software/analysis/ont-doradoserver_7.3.9_linux64.tar.gz

Nanopore read QC

- pycoQC v2 (https://github.com/a-slide/pycoQC)
 - Designed for Guppy
 - Can work with Dorado
 - Standalone: need to run additional commands to generate a compatible "seq_summaray.txt" file
 - Server: as is

Added Features

- pycoQC v3 (https://github.com/duceppemo/pycoQC)
 - Work in progress
 - Designed to accept all dorado output file types
 - Additional scripts:
 - Pod5_to_seq_summary (no basecall information)
 - Bam_to_seq_summary (slow)
 - Fastq_to_seq_summary (recommended)
 - Starting from Fastq triggers additional GC plots
 - Display "All", "Pass" or "Fail" reads

Suboptimal Loading

- High quality library
- Not enough loaded
 - Ran out after 10h

- High quality library
- Run stopped too early

Suboptimal Sample Normalization

- Uneven barcode distribution
 - Poor normalization
 - Adapter ligation problems
 - Wrong molarity
- Equal barcode distribution
 - MinKNOW now uses adaptive sequencing to help balance barcodes

Run Diagnosis

- Very useful to find what went wrong
 - DNA extraction (contaminants, short DNA fragments, etc.)
 - Library prep (adapter-to-DNA ratio, sample normalization, etc.)
 - Sequencing (flowcell quality, amount loaded, overheating, script error, etc.)

You Can Do It!

 Github repo with basic code to install and run Dorado basecall server

 https://github.com/OLF-Bioinformatics/2024-04-22_GRDI_basecalling_presentation

Nanopore Metagenomics Resources

- https://github.com/duceppemo/mashID
 - Quick species ID from metagenomics samples
 - Raw reads or assemblies
 - Pre-compiled DB available for bacteria
- https://github.com/duceppemo/seqcounter
 - Ultra-rapid preliminary AMR detection from raw reads

Take-Home Message

- Switch to Dorado!
- Why basecall you runs using Dorado SUP?
 - Access higher accuracy
 - It keeps getting better (chemistry and software)
 - Better downstream analysis results
- DNA quality (and its size) matters
 - Garbage in = garbage out
 - The longer the better
 - Amplified DNA sequences better (number of reads and q-score)
- Bioinformaticians are not magicians
 - Bad runs need to be scraped (like for diagnostics)
- The truth is in the reads
 - Read QC will help you find what went wrong and areas of improvement

Do it.

Thank You!

