Homework 8

John Carlyle

November 22, 2013

1.

b.

$$S \rightarrow SS \mid bS \mid a$$

 $\{x | x \text{ does not end in } b\}$

c.

$$S \rightarrow SaS \mid b$$

 $\{x|\ x \text{ contains alternating } a \text{ and } b \text{ starting and ending with } b\}$

e.

$$S \to TT$$

$$T \to Ta \mid aT \mid b$$

$$\{x|\ n_b(x)=2\}$$

f.

$$S \rightarrow aSa \mid bSb \mid aAb \mid bAa$$

$$A \rightarrow aAa \mid bAb \mid a \mid b \mid \lambda$$

$$\{x|\ x\neq aa,bb,\lambda\}$$

 $\mathbf{g}.$

$$S \to aT \mid bT \mid \lambda$$
$$T \to aS \mid bS$$

$$\{x|\ |x| = \text{even}\ \}$$

h.

$$S \rightarrow aT \mid bT$$

$$T \rightarrow aS \mid bS \mid \lambda$$

$$\{x \mid |x| = \text{odd }\}$$

3.

a. The set of odd-length strings in $\{a,b\}^*$ with middle symbol a.

$$S \rightarrow aSa \mid aSb \mid bSa \mid bSb \mid a$$

b. The set of even-length strings in $\{a,b\}^*$ with two middle symbols equal.

$$S \rightarrow aSa \mid aSb \mid bSa \mid bSb \mid aa \mid bb$$

c. The set of odd-length strings in $\{a,b\}^*$ whose first, middle and last symbols are the same.

$$S \rightarrow aAaAa \mid bAbAb \mid a \mid b$$

$$A \rightarrow aA \mid bA \mid \lambda$$

4.

a.

Let G be the grammar defined by $S \to SabS \mid SbaS \mid \lambda$. Prove that $\forall x \in L(G)$ that $n_a(x) = n_b(x)$

Proof. (by structural induction)

Base Case:

The only derivation with one step is $S \Rightarrow \lambda$

 $\therefore w = \lambda$ and $n_a(\lambda) = n_b(\lambda)$, So the base case holds.

Inductive Hypothesis:

Assume for all derivations $S \Rightarrow^* w$ where $|w| = n \ge 1$ steps that $n_a(w) = n_b(w)$.

Inductive Step:

We must show for every derivation $S \Rightarrow^* w$ with n+1 steps that $n_a(w) = n_b(w)$.

Let $S \Rightarrow^* w$ be a derivation with n+1 steps. Since n+1>1, the first step cannot be $S \Rightarrow \lambda$

 \therefore the first step must be $S \Rightarrow SabS$ or $S \Rightarrow SbaS$.

Case 1:

 $w = w_1 a b w_2$ where w_1, w_2 are derived from S in the remaining n steps.

 \therefore by the I.H. $w_1, w_2 \in L(G)$

$$\therefore n_a(w) = n_a(w_1 a b_w 2) = n_a(w_1) + n_a(w_2) + 1$$

$$\therefore n_b(w) = n_b(w_1 a b_w 2) = n_b(w_1) + n_b(w_2) + 1$$

But because of I.H. $n_a(w_1) + n_a(w_2) = n_b(w_1) + n_b(w_2)$

So we are left with two values that are the same, each with 1 added to it.

$$\therefore n_a(w) = n_b(w)$$

Case2:

Case 1 can be repeated without loss of generality. The order of a and b are simply switched and addition is commutative.

Example of a string in L(G) but not in the grammar: aabb

b.

Let G be the grammar defined by $S \to aSb \mid bSa \mid abS \mid baS \mid Sab \mid Sba \mid \lambda$. Prove that $\forall x \in L(G)$ that $n_a(x) = n_b(x)$

Proof. (by structural induction)

Base Case:

The only derivation with one step is $S \Rightarrow \lambda$

$$\therefore w = \lambda \text{ and } n_a(\lambda) = n_b(\lambda), \text{ So } w \in L(G).$$

Inductive Hypothesis:

Assume for all derivations $S \Rightarrow^* w$ where $|w| = n \ge 1$ steps that $w \in L(G)$.

Inductive Step:

We must show for every derivation $S \Rightarrow^* w$ with n+1 steps that $w \in L(G)$.

Let $S \Rightarrow^* w$ be a derivation with n+1 steps. Since n+1>1, the first step cannot be $S \Rightarrow \lambda$

 \therefore the first step must be $S \Rightarrow aSb$ or $S \Rightarrow bSa$ or $S \Rightarrow abS$ or $S \Rightarrow baS$ or $S \Rightarrow Sab$ or (finally) $S \Rightarrow Sba$.

Case 1:

 $w = aw_1b$ where w_1 is derived from S in the remaining n steps.

 \therefore by the I.H. $w_1 \in L(G)$

$$n_a(w) = n_a(aw_1b) = n_a(w_1) + 1$$

$$n_b(w) = n_b(aw_1b) = n_b(w_1) + 1$$

But because of I.H. $n_a(w_1) = n_b(w_1)$

So we are left with two values that are the same, each with 1 added to it.

$$w \in L(G)$$

Case 2-6:

These can be repeated without loss of generality. Which case only affects which order the terms are added together. Because addition is commutative this changes nothing meaningful.

Example of a string in L(G) but not in the grammar: Since the G has all possible permutations of a, b, S G is capable of generating any possible set of strings with the property $n_b = n_a$.

7. Describe the language generated by the CFG with productions:

$$S \rightarrow ST \mid \lambda$$

$$T \rightarrow aS \mid bT \mid b$$

The above CFG describes the language $L = \{a, b\}^*$

Proof. $L(G) \subseteq \{a, b\}^*$

This is trivially true since any language that uses $\Sigma = \{a,b\}$ is going to be a subset of $\{a,b\}^*$

Proof.
$$L(G) \supseteq \{a, b\}^*$$

Base Case: Let $w = \lambda$ then w can be derived by using the production $S \Rightarrow \lambda$ and $\lambda \in \{a, b\}^*$ hence the base case holds.

Inductive Hypothesis: Assume $w \in \{a, b\}^*$ and $w \in L$.

Inductive Step: We must show that $x\sigma \in L(G)$ where $\sigma \in \{a,b\}$. Since G has only two terminating symbols (λ,b) , and σ can only be a or b, hence there are four cases.

- Case 1: The rightmost derivation of w is $S \to \lambda$ and $\sigma = a$ Since $S \Rightarrow \lambda$ is the rightmost derivation: $\alpha S \Rightarrow \alpha \lambda$. We can replace this derivation with $\alpha S \Rightarrow \alpha ST \Rightarrow \alpha \lambda T \Rightarrow \alpha \lambda aS \Rightarrow \alpha \lambda a\lambda \Rightarrow \alpha a$ hence $w\sigma \in L(G)$.
- Case 2: The rightmost derivation of w is $S \to \lambda$ and $\sigma = b$ Since $S \Rightarrow \lambda$ is the rightmost derivation: $\alpha S \Rightarrow \alpha \lambda$. We can replace this derivation with $\alpha S \Rightarrow \alpha ST \Rightarrow \alpha Sb \Rightarrow \alpha \lambda b \Rightarrow \alpha b$ hence $w\sigma \in L(G)$.
- Case 3: The rightmost derivation of w is $S \to b$ and $\sigma = a$ Since $\alpha T \Rightarrow \alpha b$. We can replace this derivation with $\alpha T \Rightarrow \alpha b T \Rightarrow \alpha b a S \Rightarrow \alpha b a \lambda \Rightarrow \alpha b a$. hence $w\sigma \in L(G)$.
- Case 4: The rightmost derivation of w is $S \to b$ and $\sigma = b$ Sinc $\alpha T \Rightarrow \alpha b$. We can replace this derivation with $\alpha T \Rightarrow \alpha BT \Rightarrow \alpha bT \Rightarrow \alpha ba$ hence $w\sigma \in L(G)$.

Hence every $w\sigma \in L(G)$.

10.

a.

$$S \Rightarrow AB \mid \lambda$$
$$A \Rightarrow aAB \mid a \mid \lambda$$
$$B \Rightarrow bB \mid b$$

b.

$$S \Rightarrow ABB \mid \lambda$$
$$A \Rightarrow aAB \mid a \mid \lambda$$
$$B \Rightarrow bB \mid b$$

21. Proof that every language that is regular, is also a CFL.

Proof. Let R be the set of regular languages.

Base Case: There are two base cases:

- 1. $\lambda \in R$ by definition. λ can be represented by a CFG with the single production $S \to \lambda$ Hence this case holds.
- 2. Let $\sigma \in \Sigma$. $\sigma \in R$ by definition. Similar to case 1: σ can be represented by a CFG with the single production rule $S \to \sigma$. Hence the second base case holds.

Inductive Hypothesis: Suppose L_1 and L_2 are regular languages that can also be represented by a CFG.

Inductive Step: There are three cases:

- 1. $L_1L_2 \in R$ by definition of regular languages. By the Inductive Hypothesis L_1, L_2 are both expressable by CFG as well. And by Theorem 4.9 L_1L_2 is also expressable by some CFG.
- 2. $L_1 \cup L_2 \in R$ by definition of regular languages. By the Inductive Hypothesis L_1, L_2 are both expressable by CFG as well. And by Theorem 4.9 $L_1 \cup L_2$ is also expressable by some CFG.
- 3. $L_1^* \in R$ by definition of regular languages. By the Inductive Hypothesis L_1 is expressable by a CFG as well. And by Theorem 4.9 L_1^* is also expressable by some CFG.

23. Not done because the material was not taught. I have about 3 pages of notes and many hours of wasted time.

26.

a.

b.

27. Figure 4.33 in the book represented as a grammar.

$$A \Rightarrow aB \mid bD \mid \lambda$$

$$B \Rightarrow aB \mid bC$$

$$C \Rightarrow aB \mid bC \mid \lambda$$

$$D \Rightarrow aD \mid bD$$