<u>Useful and not so useful formulas and constants (not all are necessary for solving the problems):</u>

Pulse signal $s(t) = \Pi(t) \times Ae^{2i \pi \int_0^t t}$

Pulse signal $s(t) = \Pi(t) \times Ae^{2i\pi (f + \Delta ft/2T)t}$

Signal to noise ratio: SNR= $\xi^2 A^2 T/\sigma$

Resolution: R=cT/2

Resolution: $R = 2.44 \lambda H/D$

Angular resolution: $\Theta = 1.22 \text{ }\lambda\text{/D}$

Bragg's law: $n\lambda_d = 2 \lambda_w \sin\theta$

The speed of light $c = 3.10^8 \text{m/s}$

Gravitational acceleration at sea level $g = 9.81 \text{m/s}^2$

Distance $s = s_0 + vt + at^2/2$

X i deciBel (dB): $X_{dB} = 10log_{10}(X_{lin})$

Thermal absorption of a sphere: $P_{abs} = \alpha \cdot S \cdot \pi \cdot r^2$

Thermal radiation of a sphere: $P_{em} = \epsilon \cdot \sigma \cdot 4 \cdot \pi \cdot r^2 \cdot T^4$

Solar constant: S= 1355W/m²

Stephan Boltzmann's constant: $\sigma = 5.67 \cdot 10^{-8} \text{ W/m}^2 \text{K}^4$

Coating material	α	3
White paint	0.20	0.90
Black paint	0.95	1.05
Gold	0.25	5.00
Optical sun reflector	0.15	0.10
Solar panels	0.80	0.90

$$x = (-b \pm \sqrt{b^2 - 4ac})/2a$$