

Department of Computer Science and Engineering St. Thomas College of Engineering and Technology

Mattannur

Ergonomic Virtual Keyboard

Author: Supervisor:

ABHISHEK UK (STM21CS006)
ALBIN BINU (STM21CS015)
AYISHA ZOOMI (STM21CS022)
NASLA SAFIYA K (STM21CS045)

Dr. SHINU MATHEW JOHN

Academic Year 2024-25 October 21, 2024

OUTLINE

- OUTLINE
- INTRODUCTION
- PROBLEM DEFINITION
- 4 LITERATURE SURVEY
- **5** PROPOSED SYSTEM
- **6** PROPOSED SYSTEM DESIGN
- CONCLUSION
- 8 REFERENCES

INTRODUCTION

In this project,

- Development of an innovative Virtual Keyboard leveraging computer vision and advanced machine learning techniques.
- Unlike traditional physical or on-screen keyboards, it doesn't rely on single-hand gestures and limited finger interaction.
- The Virtual Keyboard uses a camera or sensor to capture both hands and all finger movements, translating them into text input seamlessly.
- By detecting both hands and tracking the fingertips' trajectories and patterns, the system predicts intended keystrokes with high precision.
- Users interact with this virtual keyboard by mimicking typing motions for a seamless typing experience.

PROBLEM DEFINITION

- The system will use an on-screen keyboard where the current letters will be entered based on hand movements.
- When the index and middle fingers meet on a virtual key, a click is generated, and the desired text is displayed in the corresponding text box.
- Very slow to interact with Computer (Document Typing, Coding, etc.)
- Waste of usable screen area.
- Inconvenient to type in public places.

LITERATURE SURVEY

Virtual Hands: Real Time Keyboard, Desktop & Application Navigation using Gestures

- A contactless Virtual Keyboard and navigation system using a webcam and computer vision.
- Mediapipe's Blaze Palm Detector & Hand Landmark Model detect hand and fingertip positions.
- Supports all essential keys, including alphabet, numbers, and symbols.
- Full Windows and Desktop Navigation using hand gestures.

LITERATURE SURVEY

Voice Guided, Gesture Controlled Virtual Mouse

- A Virtual Mouse developed using hand gestures and voice.
- Reduces dependency on physical peripherals, to avoid contact during the pandemic.
- Calculates Euclidean distance between the point to determine the ratio and finger state.
- The distance between the fingers determines the function to be performed.

EXISTING SYSTEM

Gesture Controlled Virtual Mouse and Keyboard using OpenCV

- Development of a hybrid gesture control system integrating hand, voice, and eye for enhanced computer interaction.
- Utilizes Convolutional Neural Networks (CNN) with MediaPipe for accurate gesture recognition and Pyttsx3 for voice feedback, all operated through a webcam.
- Combines multiple input methods like hand, voice, and eye to improve user flexibility and interaction.
- It is an onscreen keyboard and a single hand is used to access the keys.

PROPOSED SYSTEM

- Uses a Camera or Sensors to detect our finger movements and predict which key is typing.
- By detecting both hands and tracking the fingertip's trajectories and patterns, the system predicts intended keystrokes with high precision, users interact with this virtual keyboard by mimicking typing motions.
- It is convenient to use anywhere.
- Easy to type as Touch typing.
- Can also be used in Mixed Reality applications.
- Can be paired with both small and large devices.

ARCHITECTURE DIAGRAM

USECASE DIAGRAM

GANTT CHART

DFD LEVEL 0

Figure: DFD Level 0

DFD LEVEL 1

Figure: DFD Level 1

DFD LEVEL 2

Figure: DFD Level 2

MODULE DIVISION

Dataset collection and Features Expansion : Ayisha Zoomi

Algorithm Implementation and Training
 Abhishek U K

• Testing, Evaluation, and Quality Assurance Research : Nasla Safiya K

• Interface Implementation and Validation : Albin Binu

CONCLUSION

- The research focuses on developing a model for gesture-controlled computing that integrates with hand gestures.
- This model aims to enhance user interaction with computers by leveraging advanced technologies such as MediaPipe and MLP.
- The primary objective is to create a versatile and efficient control system with significant applications in typing and coding environments.

REFERENCES

Dr. Mohd Nazeer, Shri Akshita G, "Gesture Controlled Virtual Mouse and Keyboard using OpenCV", 2023 International Conference on Emerging Techniques in Computational Intelligence (ICETCI), pp. 199–206, 2023, doi: 10.1109/ICETCI58599.2023.10330954

Harshit Sharma, Richa Saxena, Satendra Kumar, "Virtual Hands: Real Time Keyboard, Desktop & Application Navigation using Gestures", 2022 International Conference on Fourth Industrial Revolution Based Technology and Practices (ICFIRTP), pp. 202–267, 2023, doi: 10.1109/ICFIRTP56122.2022.10059450

Rajat Dudhapachare, Mayur Awatade, Pushpak Kakde, "Voice Guided, Gesture Controlled Virtual Mouse", 2023 4th International Conference for Emerging Technology (INCET), pp. 1-6, 2023, doi: 10.1109/INCET57972.2023.10170317.