

Given directed graph with weights on the edges, the goal is to compute all shortest paths from a specific node s to all other nodes.

The weights on the edges can be positive or negative.

Recall Dijkstra:

Input: Directed graph G = (V, E), edge lengths c_e for each $e \in E$, source vertex $s \in V$.

Goal: For every destination $v \in V$, compute the length (sum of edge costs) of a shortest s-v path.

DIJKSTRA ALGORITHM

Facts:

- O(m+n)logn (n = number of vertices, <math>m = number of edges)
- $O(m \log n)$ running time using heaps
- Not always correct with negative edge lengths
 - \circ Application: if edges \rightarrow financial transactions

Solution: The Bellman-Ford algorithm

NEGATIVE CYCLES

Question: How to define shortest path when G has a negative cycle?

Solution #1: Compute the shortest s-v path, in the presence of cycles.

Problem: Undefined or $-\infty$. [will keep traversing negative cycle]

Solution #2: Compute shortest cycle-free s-v path [in the presence of –ve cycles]

Problem: NP-hard (no polynomial algorithm) [to be discussed later]

Solution #3: Assume input graph has no negative cycles [overall cycle cost].

Given a graph G with n nodes and m edges and no negative cycles, which of the following statement is the strongest:

- 1.) For every v, there is a shortest path s-v with ≤n-1 edges
- 2. For every v, there is a shortest path s-v with \leq n edges
- 3. For every v, there is a shortest path s-v with \leq m edges
- 4. No limit can be applied on the shortest path

Input: Directed graph G = (V, E), edge lengths c_e [possibly negative], source vertex $s \in V$.

Goal: For all destinations $v \in V$, compute the length of a shortest s-v path

DYNAMIC PROG SOLUTION

- Intuition: Requires some kind of ordering to divide the problem into smaller subproblems
- Issue: Not clear how to define "smaller" & "larger" subproblems.
- Solution: Exploit sequential nature of paths. Subpath of a shortest path should itself be shortest.
- Key idea: Artificially restrict the number of edges in a path.
- Subproblem size ←⇒ Number of permitted edges
- Example:
 - Shortest path with 2 or less edges from s to t
 - 3 or less

OPTIMAL SUBSTRUCTURE

Lemma: Let G = (V, E) be a directed graph with edge lengths c_e and source vertex s.

For every $v \in V$, $i \in \{1, 2, ...\}$, let

 $P = \text{shortest } s - v \text{ path } \underline{\text{with at most } i \text{ edges}}.$ (Cycles are permitted.)

Case 1: If P has $\leq (i-1)$ edges, it is a shortest s-v path with $\leq (i-1)$ edges.

Case 2: If P has i edges with last hop (w, v), then P^{J} is a shortest s-w path with $\leq (i-1)$ edges.

OPTIMAL SUBSTRUCTURE

Case 1: By (obvious) contradiction [assume there is a shorter i-1 path, H, then H<P, so H should be the shortest i path-Contradiction].

Case 2: If Q (from s to w, $\leq (i-1)$ edges) is shorter than P^J then Q + (w, v) (from s to v, $\leq i$ edges) is shorter than $P^J + (w, v)$ (= P) which contradicts the optimality of P. QED!

Given all shortest paths of length \leq i-1 from S. How many candidate paths of legth \leq i do we have to a node v:

- 1. 5
- 2. 1+ in-degree(v)3. n
- 4. m
- 5. n-1

RECURRENCE

Notation: Let $L_{i,v}$ = minimum length of a s-v path with $\leq i$ edges.

- Defined as +∞ if no s-v paths with ≤ i edges

Recurrence: For every $v \in V$, $i \in \{1,2,...\}$

$$L_{i,v} = \min \begin{cases} L & \text{Case 1} \\ (i-1),v \\ \min_{(w,v) \in E} \{L_{(i-1),w} + c_{wv}\} \end{cases}$$
 Case 2

Correctness: Brute-force search from the only (1+in-deg(v)) candidates (by the optimal substructure lemma).

RECURRENCE

Now: Recall that graph G has no negative cycles.

⇒ Shortest paths do not have cycles

[removing a cycle only decreases length]

 \Rightarrow Have $\leq (n-1)$ edges

Point: If G has no negative cycle, only need to solve subproblems up to i = n - 1.

Subproblems: Compute $L_{i,v}$ for all $i \in \{0, 1, ..., n-1\}$ and all $v \in V$.

The Bellman-Ford Algorithm

Let A = 2-D array (indexed by i and v)

Base case: A[s, 0] = 0; $A[v, 0] = +\infty$ for all $v \neq s$

For
$$i = 1, 2, ..., n - 1$$

For each $v \in V$

	1	 	n-1
v_1			
.			
v_n			

$$A[v, i] = \min \begin{cases} A[v, i-1] \\ \min_{(w,v) \in E} \{A[w, i-1] + c_{wv}\} \end{cases}$$

As discussed: If G has no negative cycle, then algorithm is correct [with final answers = A[v, n-1]'s]

Example

$$A[v, i] = \min$$

$$\begin{cases} A[v, i-1] \\ \min_{(w,v) \in E} \{A[w, i-1] + c_{wv}\} \end{cases}$$

i = 0