Department of Mathematics and Statistics, IIT Kanpur MSO202A Final Examination 2017-I

Maximum Marks: 70

Time: 2 Hours

Note: 1. Write your Name and Roll Number on the answer sheet, otherwise 3 marks will be deducted.

- 2. Number the pages of your answer booklet.
- 3. Answer all parts of a question in one place.
- 4. Make a table on the front page of the answer booklet indicating the page number on which each question has been answered.

1a. Find the principal value of $(-i)^{i/3}$. $u_1 = v_y$ $u_{r} = v_s$ [4]

- 1b. Suppose that the functions $z \to f(z)$ and $z \to \overline{f(z)}$ are both analytic on an open connected subset D in \mathbb{C} . Show that f is identically constant on D. [5]
- 1c. Find the Laurent series expansion for the function $f(z) = \frac{z}{(z-1)(z-3)}$ valid in $\{z \in \mathbb{C} : 0 < |z-1| < 2\}$, mentioning the general m-term. [5]
- 2a. Is it possible to find a polynomial P(z) with complex coefficients such that $P(n) = (-1)^n$? Give reasons for your answer. Does there exist an entire function with the same property? Justify your answer.
- 2b. Let C be the positively oriented circle |z| = 3. For $w \in \mathbb{C}$, such that $|w| \neq 3$, let $g(w) = \int_C \frac{2z^3 z 2}{(z w)^3} dz$. Find the value of g(2) and the value of g(w), for w such that |w| > 4.

Give an example of a function with removable singularity at $z = \pi$, a pole of order 2 with residue equal to 1 at z = 0, and an essential singularity with residue equal to 0 at z = -1. Explain it briefly. $\underbrace{e^{\frac{z}{2}} e^{\frac{z}{2}}}_{z^2} \quad \underbrace{\frac{1}{2}}_{z^2} \quad \underbrace{\frac{\lambda^2}{2}}_{z^2} \quad \underbrace{\frac{\lambda^2}{2}}_{z^2$

3a Let $f(z) = \sin z$, $g(z) = \sin 2z$ and $a_n = n\pi$. Then $f(a_n) = g(a_n)$ for $n = 1, 2, 3, \cdots$ but $f \neq g$ on \mathbb{C} . Does this contradict the identity theorem. Justify your answer. [4]

36. Let $f: \mathbb{C} \to \mathbb{C}$ be a non-constant entire function. Show that the image of f intersects the set $A = \{z : |z| \le 1\}$. [5]

Sc. Prove or disprove. $\int_0^{2\pi} e^{e^{i\theta}} d\theta = 2\pi.$ [5]

 $e^{e^{i\theta}}d\theta$ $e^{i\theta}=2$ $e^{\frac{1}{2}}d\theta$ $e^{e^{i\theta}}d\theta$ $e^{i\theta}=2$ $e^{\frac{1}{2}}d\theta$ $e^{\frac{1}{2}}d\theta$ $e^{\frac{1}{2}}d\theta$ $e^{\frac{1}{2}}d\theta$ $e^{\frac{1}{2}}d\theta$

4a. For a>1, evaluate the integral $\int_C \frac{dz}{z^2+2az+1}$: around the counter-clockwise oriented circle C:|z|=1.

4b. Evaluate the integral $\int_C \frac{e^{-1/z^2}}{z^3} dz$: around the counter-clockwise oriented circle C: $|z - \frac{1}{2}| = 1$. [3]

4c. Let D be a simply connected domain and let $f: D \to \mathbb{C}$ be analytic except for a pole of order m at z=a. Let C_r be the circle |z-a|=r, oriented counterclockwise. Show that the function $\frac{f'(z)}{f(z)}$ has a simple pole at z=a and hence conclude that $\lim_{r\to 0} \int_{C_r} \frac{f'(z)}{f(z)} dz = -2\pi i m$. [7]

5a. Let p(z) be a non-constant polynomial with complex coefficients satisfying |p(z)| = 1 whenever |z| = 1. Show that p(z) has a root in the unit disc $\mathbb{D} = \{z : |z| < 1\}$. [6]

56. For a > 0 and $\xi > 0$, show that $\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{a}{a^2 + x^2} e^{-2\pi i x \xi} dx = e^{-2\pi a \xi}$. [8]

$$\frac{g}{(z-a)^{m}} = \frac{g(z)}{(z-a)^{m}}$$

$$\frac{g'(z)}{(z-a)^{m}} = \frac{g(z)}{(z-a)^{m-1}}$$

$$\frac{g'(z)}{(z-a)^{m}} = \frac{g(z)}{(z-a)^{m-1}}$$

$$\frac{g'(z)}{(z-a)^{m}} = \frac{g(z)}{(z-a)^{m-1}}$$

$$\frac{6}{6} = \frac{9'(2)}{9(2)} - \frac{m}{2-a}$$