Signal Processing for a Cause

Emily Prentice Bethel Tech Data Science Student

A Little About Emily

- **Current Employment**
 - Parkview Christian Academy, 1st Grade Teacher / Worship Team Leader
- **Prior Education**
 - **Bethel School of Supernatural Ministry**
 - **Bethel Music College, Musician Track**
 - Carthage College, B.A. Biology
- **Volunteer Experience**
 - **Harvest Chapel, Keyboardist & Audio Engineer**
 - Convoy of Hope, Missions Trips to Haiti & **Honduras**
 - Paw Paw IL Fire Department, EMT-Basic

Honduras, 2018

Project Background - The Audio Engineer Experience

- Much of what audio engineers do is clean up audio signals before they are outputted to the audience
- The cleaner the audio, the more enjoyable the listening experience
- Microphones often pick up more than the desired signal, creating muddy audio and unpleasant listening experiences
- Noise gates can be used to counteract this, but they are far from perfect

Source: harmonycentral.com

Project Background - Problem to be Solved

- If a microphone could detect the desired signal at the source, it would create less work for the audio engineers to detect the desired audio signal at the source.
 - A singer's microphone would only capture their voice
 - Drum mics would only capture drum sounds
- Through the use of machine learning and deep neural networks, microphones could be implanted with A.I. that could detect the desired audio signal
- From there, only the desired audio signal would be sent on to audio interface and eventually onto the audience

Project Background - Implications

- Immediate
 - Faster and easier clean up of various audio signals
 - Clearer, more concise sounds
 - Overall improved listening enjoyability for the listener, especially for music and/or speaking engagements
- Long-Term Thinking
 - These microphones could be used by / donated to those in less than ideal circumstances who need to get a clear message across
 - Missionaries, doctors in third-world clinics, natural disaster relief efforts

Methods - Data

Data used to train the model:

Male Vocal Audio - 250 wav file clips

Average Clip Length: 8.42 sec

Source: VocalSet: A Singing Voice Dataset | Zenodo

Female Vocal Audio - 250 wav file clips

Average Clip Length: 7.07 sec

Source: VocalSet: A Singing Voice Dataset | Zenodo

Drum Kit Audio - 250 wav file clips

Average Clip Length: 2.39 sec

Source: Kaggle: Drum Kit Sound Samples

Methods - Data

- Data ran through the model:
 - Recordings from Worship Team Rehearsal at Harvest Chapel
 - Shayne Audio (Male Vocal)
 - Chayce Audio (Male Vocal)
 - Jess D Audio (Female Vocal)
 - Jess O Audio (Female Vocal)
 - Drum Kit Audio
 - Each type of recording consisted of 5 samples, 183 sec (3.05 mins)
 in length

Methods - Workflow

- Convert audio data to waveform
 - This is where the audio data is converted into a numerical representation
- 2. Transform waveform to spectrogram
 - A spectrogram can be defined as a, "picture of sound"
 - This conversion will allow for the use of a convolutional neural networks
 - This will allow for the training of a convolutional neural networks
- 3. Classify the desired signal
 - Once the model is trained, sliding window classification will be used
 - The larger audio clips will be ran through the neural network and specific times the desired audio signal is present will be recorded

Methods - Languages & Packages Used

- Language:
 - Python via Google Colab
- Packages Used:
 - Tensorflow
 - Audio processing
 - Running Cuda enabled GPU
 - Building our deep learning model
 - Matplotlib
 - Visualizing results
 - Os
- Directory navigation

Results - Signal Plots of Male Vocal & Drum Kit Wav Files

Results - Signal Plots of Male Vocal & Female Vocal Way Files

Results - Male Vocal & Drum Kit Spectrogram

Results - Male Vocal & Female Vocal Spectrogram

Results - Training & Validation Model Epoch Results

Male Vocal & Drum Kit	Training Loss	Training Precision	Training Recall	Validation Loss	Validation Precision	Validation Recall
Epoch 1	1.694	0.922	0.893	0.002	1.000	1.000
Epoch 2	0.005	1.000	1.000	0.038	1.000	0.968
Epoch 3	0.067	0.995	0.984	0.015	1.000	0.984
Epoch 4	0.038	0.989	0.995	0.159	1.000	0.986
Male Vocal & Female Vocal	Training Loss	Training Precision	Training Recall	Validation Loss	Validation Precision	Validation Recall
Epoch 1	4.474	0.790	0.811	0.292	0.949	0.849
Epoch 2	4.474 0.228	0.790 0.966	0.811	0.292	0.949	0.849
•						

Results - Model Training Loss Plots

Results - Model Training Precision Plots

Results - Model Training Recall Plots

Results - Predictions on a Single Clip

Drum Kit & Male Vocal

yhat [0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1] y_test.astype(int) array([0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1])

Female Vocal & Male Vocal

```
yhat
[0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1]

y_test.astype(int)
array([0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1])
```

Results - Signal Density

Female Vocal Signal Density

Recording	Female_Vocal_Sign
Chayce Audio (1) 1.r	11
Chayce Audio (2) 1.r	10
Chayce Audio (3) 1.r	7
Chayce Audio (5) 1.r	10
Chayce Audio (4) 1.r	5
Shayne Audio (1) 1.r	13
Shayne Audio (2) 1.r	16
Shayne Audio (3) 1.r	7
Shayne Audio (4) 1.r	11
Shayne Audio (5) 1.r	11
Jess D Audio (1) 1.m	9
Jess D Audio (2) 1.m	6
Jess D Audio (3) 1.m	6
Jess D Audio (4) 1.m	4
Jess D Audio (5) 1.m	1
Jess O Audio (1) 1.m	8
Jess O Audio (2) 1.m	12
Jess O Audio (3) 1.m	6
Jess O Audio (4) 1.m	4
Jess O Audio (5) 1.m	7

Drum Kit Signal Density

Recording	Drum_Kit_Signal
Chayce Audio (1) 1.r	2
Chayce Audio (2) 1.r	7
Chayce Audio (3) 1.r	4
Chayce Audio (4) 1.r	5
Chayce Audio (5) 1.r	1
Drum Kit (2) 1.mp3	1
Drum Kit (1) 1.mp3	1
Drum Kit (3) 1.mp3	4
Drum Kit (4) 1.mp3	4
Drum Kit (5) 1.mp3	2
Shayne Audio (1) 1.r	2
Shayne Audio (2) 1.r	0
Shayne Audio (3) 1.r	7
Shayne Audio (4) 1.r	7
Shayne Audio (5) 1.r	5

Summary

- Both deep learning models are working with precision and accuracy
 - Drum Kit & Male Vocal:
 - Training Partition 99% recall, 99% precision
 - Validation Partition 99% recall, 100% precision
 - Female Vocal & Male Vocal:
 - Training Partition 98% recall, 99% precision
 - Validation Partition 100% recall, 96% precision
- One model is able to accurately detect the amount of drum kit signal density
- The other model accurately detects the amount of female audio signal.

Conclusion

- Both models and their data can be used to engineer A.I. for the microphone
- As more data is collected, more models will be able to be created, which will lead to greater efficiency in detecting the desired signal
- This will, inturn, increase the A.I.'s ability within the microphone to detect the desired audio signal and only allow that signal through

Questions?

References

- Nicholas Renotte "Build a Deep Audio Classifier with Python and Tensorflow" (April 16, 2022)
 - Youtube Video
 - Github
- Seth Adams Audio Classification (November 8, 2020)
 - o <u>Github</u>
- Valerio Velardo Audio Signal Processing for Machine Learning (June 18, 2020)
 - Youtube Playlist