Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	- <u>i</u> kr5+2 k ³ r5	$\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$	0	$\frac{6k^2r_5+t_1}{(1+2k^2)^2r_5t_1}$
$\tau_{1^-}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}$	0	0	0	$-\frac{1}{\sqrt{2} (k^2 r_5 + 2 k^4 r_5)}$	$\frac{6 k^2 r_5 + t_1}{2 (k + 2 k^3)^2 r_5 t_1}$	0	$-\frac{i(6k^2r_5+t_1)}{\sqrt{2}k(1+2k^2)^2r_5t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 r_5}$	$-\frac{1}{\sqrt{2} (k^2 r_5 + 2 k^4 r_5)}$	0	$\frac{i}{k r_5 + 2 k^3 r_5}$
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1 + k^2 t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + ^{lphaeta}$	$\sigma_1^{\#2} + \alpha^{\beta}$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#_1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$

	$\sigma_{2^{+}lphaeta}^{\#1}$	$\tau_{2}^{\#1}_{\alpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2+}^{\#1}\dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2^+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0	0	<u>t</u> 1 2

					kt_1		
$f_{1}^{\#2}$	0	0	0	<u>ikt1</u> 3	$\frac{1}{3}$ i $\sqrt{2}$	0	$\frac{2k^2t_1}{3}$
$f_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	$\frac{\epsilon}{\tau_2}$	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$
$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	$k^2 r_5 + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}$ ikt_1
$f_1^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#2}{}_+ \alpha \beta$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\!$	$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
	$\omega_{1}^{\#1} + \alpha^{eta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_1^{\#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#_1} +^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1^{\bar{-}1}}^{\#1} +^{\alpha}$	$f_1^{\#2} +^{\alpha}$
	3	3					

Source constraints/gauge generators				
SO(3) irreps	Multiplicities			
$\tau_{0^{+}}^{\#2} == 0$	1			
$\tau_{0+}^{\#1} == 0$	1			
$\sigma_{0+}^{\#1} == 0$	1			
$\tau_1^{\#2\alpha} + 2ik \sigma_1^{\#2\alpha} == 0$	3			
$\tau_1^{\#1\alpha} == 0$	3			
$\tau_{1+}^{\#1}{}^{\alpha\beta} + ik \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3			
$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 i k \sigma_{2+}^{\#1}{}^{\alpha\beta} == 0$	5			
Total constraints:	17			

	$\omega_{0}^{\#1}$	$f_{0^{+}}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}$ †	0	0	0	0
$f_{0}^{#1}\dagger$	0	0	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_0^{\#1}$ †	0	0	0	$k^2 r_2 - t_1$

Massive and massless spectra

,?	
? \	
k^{μ}	
?	
\sim	
\	
i ,	
.,	

 $-\frac{1}{r_2} > 0$

 $\left|\frac{t_1}{r_2} > 0\right|$

Odd

Quadratic pole				
Pole residue:	$-\frac{1}{r_5 t_1^2} > 0$			
Polarisations:	2			

Unitarity conditions

 $r_2 < 0 \&\& r_5 < 0 \&\& t_1 < 0$