Αριθμητική Ανάλυση Επίλυση μη γραμμικών εξισώσεων

Αναστάσιος Τέφας

tefas@aiia.csd.auth.gr

2310-991932

Μη-γραμμικές εξισώσεις

Η αδυναμία επίλυσης της πλειοψηφίας των μη γραμμικών εξισώσεων με αναλυτικές μεθόδους, ώθησε στην ανάπτυξη αριθμητικών μεθόδων για την προσεγγιστική επίλυσή τους, π.χ. $\sigma v v(x) = x$, $\eta \mu(x^2) - x - 0.2 = 0$, $\sqrt[3]{x^2} + \sqrt[5]{x} - 5x = 0$, x > 0, κλπ.

Θεώρημα (Bolzano): Εστω $\alpha,b \in \mathbb{R}$, $\alpha \leq b$ και $f(x):[a,b] \to \mathbb{R}$ είναι μία συνεχής συνάρτηση στο κλειστό διάστημα $[\alpha,b]$, με $f(\alpha)$ $f(b) \leq 0$. Τότε, υπάρχει μία τουλάχιστον ρίζα της εξίσωσης f(x)=0 στο ανοικτό διάστημα (α,b) .

Με χρήση του παραπάνω θεωρήματος, δεν γνωρίζουμε αν υπάρχουν περισσότερες της μίας ρίζες, ούτε ποια είναι η τιμή τους.

Ρίζες και βέλτιστα

Συναρτήσεις και ρίζες

Αναζήτηση ριζών

 Η αναζήτηση μπορεί να γίνει σε διαδοχικά διαστήματα με απώλειες ριζών λόγω πολλαπλότητας ή μεγάλου βήματος.

Μέθοδος διχοτόμησης

Μέθοδος διχοτόμησης

Fig. 2.2. A few iterations of the bisection method

Μέθοδος διχοτόμησης

Precisely, the method is started by setting

$$a^{(0)} = a, b^{(0)} = b, I^{(0)} = (a^{(0)}, b^{(0)}), x^{(0)} = (a^{(0)} + b^{(0)})/2.$$

At each step $k \ge 1$ we select the subinterval $I^{(k)} = (a^{(k)}, b^{(k)})$ of the interval $I^{(k-1)} = (a^{(k-1)}, b^{(k-1)})$ as follows:

given $x^{(k-1)} = (a^{(k-1)} + b^{(k-1)})/2$, if $f(x^{(k-1)}) = 0$ then $\alpha = x^{(k-1)}$ and the method terminates;

otherwise,

if
$$f(a^{(k-1)})f(x^{(k-1)}) < 0$$
 set $a^{(k)} = a^{(k-1)}, b^{(k)} = x^{(k-1)}$;

if
$$f(x^{(k-1)})f(b^{(k-1)}) < 0$$
 set $a^{(k)} = x^{(k-1)}, b^{(k)} = b^{(k-1)}$.

Then we define $x^{(k)} = (a^{(k)} + b^{(k)})/2$ and increase k by 1.

Σφάλμα προσέγγισης στην μέθοδο διχοτόμησης

Notice that each subinterval $I^{(k)}$ contains the zero α . Moreover, the sequence $\{x^{(k)}\}$ necessarily converges to α since at each step the length $|I^{(k)}| = b^{(k)} - a^{(k)}$ of $I^{(k)}$ halves. Since $|I^{(k)}| = (1/2)^k |I^{(0)}|$, the error at step k satisfies

$$|e^{(k)}| = |x^{(k)} - \alpha| < \frac{1}{2}|I^{(k)}| = \left(\frac{1}{2}\right)^{\kappa+1}(b-a).$$

In order to guarantee that $|e^{(k)}| < \varepsilon$, for a given tolerance ε it suffices to carry out k_{min} iterations, k_{min} being the smallest integer satisfying the inequality

$$k_{min} > \log_2\left(\frac{b-a}{\varepsilon}\right) - 1$$
 (2.6)

Είναι φανερό ότι σε κάθε επανάληψη των βημάτων 1-3, το εύρος του αρχικού διαστήματος όπου υπάρχει η ρίζα υποδιπλασιάζεται, διότι το ένα από τα δύο άκρα του νέου διαστήματος, μεταφέρεται ακριβώς στο μέσον του ακριβώς προηγούμενου διαστήματος. Συνεπώς, μετά από N επαναλήψεις των βημάτων 1-3, το εύρος (μήκος) l(N) του διαστήματος I_N είναι:

$$l(N) = \frac{b-a}{2^{N-1}}.$$

Αν λοιπόν τερματίσουμε τη διαδικασία μετά από N επαναλήψεις, <u>δεν</u> θα έχουμε υπολογίσει την ακριβή ρίζα ρ , αλλά μία προσέγγισή της m_N . Επειδή όμως και οι δύο τιμές ρ , m_N θα βρίσκονται εντός του διαστήματος I_N (μάλιστα η m_N είναι το μέσον του I_N), θα ισχύει:

$$|\varepsilon_{\rho}| = |\rho - m_N| \le \frac{l(N)}{2} = \frac{b-a}{2^N},$$

που προφανώς είναι ένα άνω φράγμα για το απόλυτο σφάλμα.

Σφάλμα προσέγγισης στην μέθοδο διχοτόμησης

$$|\varepsilon_a| = \left| \frac{x_r^{\text{new}} - x_r^{\text{old}}}{x_r^{\text{new}}} \right| 100\%$$

Συνήθως τερματίζουμε τη διαδικασία όταν το εύρος του διαστήματος I_N γίνει μικρότερο από μία θετική παράμετρο ανοχής ε . Θέτουμε λοιπόν

$$|\varepsilon_{\rho}| < \varepsilon \Rightarrow \frac{b-a}{2^N} < \varepsilon$$

και λύνοντας την παραπάνω ανίσωση ως προς N προσδιορίζουμε εκ των προτέρων το πλήθος των επαναλήψεων που απαιτούνται, ώστε να έχουμε αποτέλεσμα με την επιθυμητή ακρίβεια ε:

$$N > \frac{\ln(b-a) - \ln \varepsilon}{\ln 2}.$$

Παραδείγματα

Παράδειγμα 1 Εστω f(x) συνεχής συνάρτηση στο κλειστό διάστημα [a,b], $a \le b$ και έστω ότι δίνεται ο ακόλουθος πίνακας:

x	α	b	$(\alpha+b)/2$	$(\alpha+3b)/4$
Πρόσημο των τιμών <i>f(x)</i>		+		+

Να υπολογίσετε με τη μέθοδο διχοτόμησης μία ρίζα της εξίσωσης f(x) = 0 για N = 3 επαναλήψεις και να υπολογίσετε το σφάλμα, εάν b- $\alpha = 0.4$.

Παράδειγμα 2 Να υπολογίσετε με τη μέθοδο διχοτόμησης τη μοναδική ρίζα της εξίσωσης $2x + 2 = e^x$ στο διάστημα (1,2). Η διαδικασία να σταματήσει όταν το εύρος του τελικού διαστήματος γίνει μικρότερο του 0.04.

Μέθοδος σταθερού σημείου

Μέθοδος σταθερού σημείου

Κάθε εξίσωση της μορφής f(x) = 0, μπορεί να γραφεί ισοδύναμα στη μορφή $x = \varphi(x)$ με πολλούς τρόπους. Σε τέτοιες παραστάσεις βασίζονται οι λεγόμενες επαναληπτικές μέθοδοι.

Ορισμός 2.2.1 Ένα σημείο x^* του πεδίου ορισμού μιας συνάρτησης φ καλείται σταθερό σημείο της, αν ισχύει $\varphi(x^*) = x^*$.

Στις επαναληπτικές μεθόδους, γράφουμε την εξίσωση f(x) = 0 στη μορφή $x = \varphi(x)$ και ξεκινώντας από μία αρχική τιμή x_0 , υπολογίζουμε μία ακολουθία προσεγγίσεων ενός σταθερού σημείου της φ από τη σχέση $x_n = \varphi(x_{n-1})$. Αν λοιπόν $x_n \to x^*$ και αν η $\varphi(x)$ είναι συνεχής στο σημείο x^* , τότε το x^* είναι σταθερό σημείο της φ . Πράγματι:

$$x^* = \lim_{n \to \infty} x_n = \lim_{n \to \infty} \varphi(x_{n-1}) = \varphi(\lim_{n \to \infty} x_{n-1}) = \varphi(x^*).$$

Θεώρημα 2.2.1 Εστω φ :[a,b] \rightarrow [a,b] συνεχής πραγματική συνάρτηση τέτοια ώστε:

$$\upsilon\pi\dot{\alpha}\rho\chi\varepsilon\iota \ 0 < C < 1: \ |\varphi(x) - \varphi(y)| \le C \ |x - y| \ \forall x, y \in [a, b],$$

(μία τέτοια συνάρτηση καλείται συστολή), τότε η συνάρτηση φ έχει μοναδικό σταθερό σημείο x^* . Επιπλέον, για οποιαδήποτε αρχική τιμή $x_0 \in [a,b]$, η ακολουθία x_n με αναδρομικό τύπο $x_n = \varphi(x_{n-1})$ συγκλίνει προς το x^* . Τέλος, για κάθε φυσικό αριθμό n ισχύει:

$$|x_n - x^*| \le C |x_{n-1} - x^*|.$$
 (2.1)

Τάξη σύγκλισης ακολουθίας

Η σχέση (2.1), υπονοεί ότι η ακολουθία x_n συγκλίνει (τουλάχιστον) γραμμικά στο σταθερό σημείο x^* της $\varphi(x)$. Γενικότερα, θα λέμε ότι η σύγκλιση είναι (τουλάχιστον) τάξης p, p > 1, αν ισχύει

$$|x_n - x^*| \le C |x_{n-1} - x^*|^p$$
, για κάθε φυσικό αριθμό n .

Θεώρημα 2.2.2 Εστω ότι $x_n \neq x^*$ για κάθε φυσικό αριθμό n και έστω ότι ισχύει:

$$\lim_{n\to\infty} \frac{x_{n+1} - x^*}{(x_n - x^*)^p} = a \neq 0,$$

τότε η τάξη σύγκλισης της ακολουθίας x_n είναι ακριβώς p.

Ας υποθέσουμε τώρα ότι πλέον των υποθέσεων του θεωρήματος συστολής 2.2.1, έχουμε ότι η συνάρτηση $\varphi(x)$ είναι συνεχώς παραγωγίσιμη στο $[\alpha,b]$. Τότε, από το θεώρημα μέσης τιμής του διαφορικού λογισμού, υπάρχει τιμή ξ_n μεταξύ των x_n και x:

$$x_{n+1} - x^* = \varphi(x_n) - \varphi(x^*) = \varphi'(\xi_n)(x_n - x^*).$$

Εφόσον $x_n \to x^*$, θα ισχύει ότι $\xi_n \to x^*$ και λόγω συνέχειας της $\varphi'(x)$ έχουμε:

$$\lim_{n\to\infty}\frac{x_{n+1}-x^*}{x_n-x^*}=\varphi'(x^*).$$

Αν λοιπόν $0<\left|\varphi'(x^*)\right|<1$, τότε η τάξη σύγκλισης που παράγει η επαναληπτική μέθοδος $x_n=\varphi(x_{n-1})$ είναι ακριβώς ένα. Για να πάρουμε λοιπόν επαναληπτικές μεθόδους $x_n=\varphi(x_{n-1})$ με τάξη σύγκλισης μεγαλύτερη του 1, θα πρέπει να αναζητήσουμε μεθόδους για τις οποίες ισχύει

$$\varphi'(x*)=0.$$

Παράδειγμα 3 Εστω πραγματική συνάρτηση f, τέτοια ώστε x^* είναι απλή ρίζα της f(x) = 0 και η f είναι δύο φορές συνεχώς παραγωγίσιμη σε μία περιοχή του x^* . Να δειχθεί ότι η επαναληπτική μέθοδος

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)},$$

συγκλίνει στο x* και να υπολογισθεί η τάξη σύγκλισης.

Θεώρημα 2.2.3 Εστω μία πραγματική συνάρτηση f(x):

- (α) η f(x) είναι δύο φορές παραγωγίσιμη στο διάστημα [a,b], με $f'(x), f''(x) \neq 0$ για κάθε $x \in [a,b]$,
- (β) $f(\alpha) f(b) \le 0$,

τότε υπάρχει μοναδική ρίζα x^* της εξίσωσης f(x)=0 στο ανοικτό διάστημα (a,b), η οποία είναι το όριο της αναδρομικής ακολουθίας:

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}, n = 1, 2, ...,$$

όπου το αρχικό σημείο x_0 της αναδρομικής σχέσης εκλέγεται έτσι ώστε

$$f(x_0)f''(x_0) > 0$$
.

Πόρισμα 2.2.1 Με τις προϋποθέσεις του προηγούμενου θεωρήματος, το σφάλμα κατά την προσέγγιση της μοναδικής ρίζας της εξίσωσης f(x) = 0 με τη μέθοδο Newton-Raphson από τον όρο x_n δίνεται από τη σχέση

$$|x_n - x^*| \le \frac{M}{2m} |x_n - x_{n-1}|^2$$

όπου $m = \min_{x \in [a,b]} |f'(x)|, M = \max_{x \in [a,b]} |f''(x)|.$

Newton-Raphson

$$x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})}, \qquad k \ge 0$$

Newton-Raphson

Fig. 2.3. The first iterations generated by the Newton method with initial guess $x^{(0)}$ for the function $f(x) = x + e^x + 10/(1 + x^2) - 5$

Newton-Raphson - μειονεκτήματα

 Αρχική σχεδόν μηδενική παράγωγος οδηγεί μακριά από την λύση δίνοντας αργή σύγκλιση.

Παραδείγματα αργής σύγκλισης

Παράδειγμα 4 Να προσεγγισθεί με τη μέθοδο Newton – Raphson η μοναδική ρίζα της εξίσωσης $2x - e^{-x} = 0$ στο ανοικτό διάστημα (0,1) για N = 3 επαναλήψεις και να υπολογισθεί το σφάλμα της μεθόδου.

Μέθοδος τέμνουσας

Η μέθοδος Newton-Raphson απαιτεί γνώση της f'(x). Στην περίπτωση που η παράγωγος δεν είναι γνωστή ή είναι δύσκολο να υπολογισθεί, καταφεύγουμε συνήθως στη μέθοδο της τέμνουσας.

Ας θεωρήσουμε τον αναδρομικό τύπο της μεθόδου Newton-Raphson:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \ n = 0, 1, ...$$

και ας θυμηθούμε ότι

$$f'(x) \approx \frac{f(x+h) - f(x)}{(x+h) - x}, \ h \ \mu \iota \kappa \rho \dot{o}.$$

Για $x = x_n$, $x_{n+1} = x_n + h$, έχουμε:

$$f'(x_n) \approx \frac{f(x_{n+1}) - f(x_n)}{x_{n+1} - x_n}.$$

Αν λοιπόν στον αναδρομικό τύπο Newton-Raphson αντικαταστήσουμε αντί της παραγώγου $f'(x_n)$, το δεξιό μέλος της παραπάνω ισότητας, προκύπτει η μέθοδος της τέμνουσας

$$x_{n+1} = x_n - \frac{f(x_n)(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}, n = 1,...,$$

η οποία χρειάζεται προφανώς δύο αρχικές συνθήκες x_0, x_1 . Η μέθοδος

Θεώρημα 2.3.1 Εστω μία πραγματική συνάρτηση f(x):

- (α) η f(x) είναι δύο φορές παραγωγίσιμη στο διάστημα [a,b], με $f'(x), f''(x) \neq 0$ για κάθε $x \in [a,b]$,
- (β) $f(\alpha) f(b) \le 0$,

τότε υπάρχει μοναδική ρίζα x^* της εξίσωσης f(x)=0 στο ανοικτό διάστημα (a,b), η οποία είναι το όριο της αναδρομικής ακολουθίας:

$$x_{n+1} = x_n - \frac{f(x_n)(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}, n = 1,...,$$

όπου ως αρχικά σημεία x_{0} , x_{1} της αναδρομικής σχέσης μπορούν να θεωρηθούν για ευκολία τα άκρα του διαστήματος (a,b), δηλαδή $x_{0}=a$,

 x_l =b. Η τάξη σύγκλισης της μεθόδου είναι $p = \frac{1+\sqrt{5}}{2} \cong 1.62$.

Παράδειγμα 5 Να προσεγγισθεί με τη μέθοδο τέμνουσας μία προσέγγιση της $\sqrt{3}$ στο ανοικτό διάστημα (1,2), για N=3 επαναλήψεις.