Obligatorisk Innlevering

Eirik Isene

12. november 2013

Oppgave 20.15

- a) Ikke en ekvivalensrelasjon, mangler $\langle e, e \rangle$
- b) Er en ekvivalensrelasjon, $[a] = \{a, b\}$
- c) Ikke en ekvivalensrelasjon, mangler $\langle c, d \rangle$ og $\langle d, c \rangle$
- d) Ikke en ekvivalensrelasjon, mangler $\langle c, a \rangle$, $\langle c, b \rangle$, $\langle a, b \rangle$ og $\langle b, a \rangle$
- e) Er en ekvivalensrelasjon, $[a] = \{a\}$
- f) Er en ekvivalensrelasjon, $[a] = \{a, c\}$

Oppgave 20.16

Oppgave a)

- 1. La \sim være en ekvivalensrelasjon på de naturlige tallene
- 2. La *E* være [0]
- 3. Vis at $E \neq \emptyset$
- 4. Siden \sim er en ekvivalensrelasjon (1), er det en refleksiv relasjon
- 5. Siden \sim er en refleksiv relasjon (4), så er $\langle 0, 0 \rangle \in \sim$
- 6. Siden $\langle 0, 0 \rangle \in \sim (5)$, så er $0 \in [0]$
- 7. Dermed er det vist at $E \neq \emptyset$ fordi E = [0] (2) og $[0] \neq \emptyset$ (6)

Oppgave b)

- 1. La \sim være en ekvivalensrelasjon på de naturlige tallene
- 2. La E være [0]
- 3. La $x, y \in E$
- 4. Siden $x, y \in E$ (3) så er $(0, x), (0, y) \in \sim$
- 5. Siden $(0,x) \in \sim (4)$ så følger det av symmetri at $(x,0) \in \sim (\sim \text{ er en ekvivalensrelasjon } (1))$
- 6. siden $\langle x,0\rangle\in\sim$ (5) og $\langle 0,y\rangle\in\sim$ (4) så følger det av transitivitet at $\langle x,y\rangle\in\sim$ (\sim er en ekvivalensrelasjon (1))
- 7. dermed er det bevist at alle naturlige tall x og y som er elementer i E er det slik at $x \sim y$ (6)

Oppgave c)

Ja, definisjonen av en ekvivalensklasse sier at alle elementer i en ekvivalensklasse er relatert til hverandre i ekvivalensrelasjonen som skaper ekvivalensklassene, da kan man ut fra definisjonen si at dersom [x] = [y] så vil $x \sim y$ også være tilfelle!

Oppgave 21.16

Det finnes $5^5 = 3125$ funksjoner fra S til S, og 5! = 120 av disse er bijeksjoner.