සියලු ම හිමිකම් ඇව්රිණි / மුழுப் பதிப்புநிமையுடையது /All Rights Reserved]

නව නිර්දේශය/பුනිய பாடத்திட்டம்/New Syllabus

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

க**்குன்ற ගණිතය** I இணைந்த கணிதம் I Combined Mathematics I

පැය තුනයි

மூன்று மணித்தியாலம் Three hours

 අමතර කියවීම් කාලය
 - මිනිත්තු 10 යි

 மேலதிக வாசிப்பு நேரம்
 - 10 நிமிடங்கள்

 Additional Reading Time
 - 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුබත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

විභාග අංකය

උපදෙස්:

🗱 මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).

* A කොටස:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස:

පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- * නියමිත කාලය අවසන් වූ පසු **A කොටසෙහි** පිළිතුරු පතුය, **B කොටසෙහි** පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පතුයෙහි f B **කොටස පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

(10) සංයුකත ගණ	නය <u>I</u>
කොටස	පුශ්න අංකය	ලකුණු
	1	
	2	
	3	
	4	
A	5	
••	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	එකතුව	

(10) ജംഗൂൻത നൽത്യം I

	එකතුව
ඉලක්කමෙන්	
අකුරින්	

	සංකේත අංක
උත්තර පතු පරීක්ෂක	
පරීක්ෂා කළේ: ¹	
අධීක්ෂණය කළේ:	

	A කොටස
1.	ගණිත අභ පුගන මූලධර්මය භාවිතයෙන්, සියලු $n\!\in\!\mathbb{Z}^+$ සඳහා $\sum_{r=1}^n (4r\!+\!1) = n(2n\!+\!3)$ බව සාධනය කරන්න.
2.	එක ම රූප සටහනක $y=3\big x-1\big $ හා $y=\big x\big +3$ හි පුස්තාරවල දළ සටහන් අඳින්න.
	ඒනයින් හෝ අන් අයුරකින් හෝ, $3\left 2x-1\right >2\left x\right +3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන්
	සොයන්න.

AL/2020	1/10	/S_T	INF	W

විභාග	අංකය				

3.	එක ම ආගන්ඩ් සටහනක,
	(i) $\operatorname{Arg}(z+1-3i) = -\frac{\pi}{4} $ $\infty $
	(ii) $ z-2 =\sqrt{2}$
	සපුරාලන z සංකීර්ණ සංඛාා නිරූපණය කරන ලක්ෂාවල පථයන්හි දළ සටහන් අඳින්න.
	ඒ නයින්, මෙම පථයන්හි ඡේදන ලක්ෂා මගින් නිරූපණය කරනු ලබන සංකීර්ණ සංඛාහ ලියා දක්වන්න.
1.	
1.	n \in \mathbb{Z}^+ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්වීපද පුසාරණය ලියා දක්වන්න. ඉහත පුසාරණයේ අනුයාත පද දෙකක සංගුණක සමාන නම්, n ඔත්තේ වන බව පෙන්වන්න.
1.	$n\!\in\! {f Z}^+$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්විපද පුසාරණය ලියා දක්වන්න.
1.	$n \in {\hbox{\bf Z}}^+$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්විපද පුසාරණය ලියා දක්වන්න. ඉහත පුසාරණයේ අනුයාත පද දෙකක සංගුණක සමාන නම්, n ඔත්තේ වන බව පෙන්වන්න.
1.	$n \in {\hbox{\bf Z}}^+$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්විපද පුසාරණය ලියා දක්වන්න. ඉහත පුසාරණයේ අනුයාත පද දෙකක සංගුණක සමාන නම්, n ඔත්තේ වන බව පෙන්වන්න.
1.	$n \in {\hbox{\bf Z}}^+$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්විපද පුසාරණය ලියා දක්වන්න. ඉහත පුසාරණයේ අනුයාත පද දෙකක සංගුණක සමාන නම්, n ඔත්තේ වන බව පෙන්වන්න.
1.	$n \in {\hbox{\bf Z}}^+$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්විපද පුසාරණය ලියා දක්වන්න. ඉහත පුසාරණයේ අනුයාත පද දෙකක සංගුණක සමාන නම්, n ඔත්තේ වන බව පෙන්වන්න.
1.	$n \in {\hbox{\bf Z}}^+$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්විපද පුසාරණය ලියා දක්වන්න. ඉහත පුසාරණයේ අනුයාත පද දෙකක සංගුණක සමාන නම්, n ඔත්තේ වන බව පෙන්වන්න.
1.	$n \in {\hbox{\bf Z}}^+$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්විපද පුසාරණය ලියා දක්වන්න. ඉහත පුසාරණයේ අනුයාත පද දෙකක සංගුණක සමාන නම්, n ඔත්තේ වන බව පෙන්වන්න.
1.	$n \in {\hbox{\bf Z}}^+$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්විපද පුසාරණය ලියා දක්වන්න. ඉහත පුසාරණයේ අනුයාත පද දෙකක සංගුණක සමාන නම්, n ඔත්තේ වන බව පෙන්වන්න.
1.	$n \in {\hbox{\bf Z}}^+$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්විපද පුසාරණය ලියා දක්වන්න. ඉහත පුසාරණයේ අනුයාත පද දෙකක සංගුණක සමාන නම්, n ඔත්තේ වන බව පෙන්වන්න.
1.	$n \in {\hbox{\bf Z}}^+$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්විපද පුසාරණය ලියා දක්වන්න. ඉහත පුසාරණයේ අනුයාත පද දෙකක සංගුණක සමාන නම්, n ඔත්තේ වන බව පෙන්වන්න.
1.	$n \in {\hbox{\bf Z}}^+$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්විපද පුසාරණය ලියා දක්වන්න. ඉහත පුසාරණයේ අනුයාත පද දෙකක සංගුණක සමාන නම්, n ඔත්තේ වන බව පෙන්වන්න.
1.	$n \in {\hbox{\bf Z}}^+$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්විපද පුසාරණය ලියා දක්වන්න. ඉහත පුසාරණයේ අනුයාත පද දෙකක සංගුණක සමාන නම්, n ඔත්තේ වන බව පෙන්වන්න.
1.	$n \in {\hbox{\bf Z}}^+$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්විපද පුසාරණය ලියා දක්වන්න. ඉහත පුසාරණයේ අනුයාත පද දෙකක සංගුණක සමාන නම්, n ඔත්තේ වන බව පෙන්වන්න.
1.	$n \in {\hbox{\bf Z}}^+$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්විපද පුසාරණය ලියා දක්වන්න. ඉහත පුසාරණයේ අනුයාත පද දෙකක සංගුණක සමාන නම්, n ඔත්තේ වන බව පෙන්වන්න.
1.	$n \in {\hbox{\bf Z}}^+$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්විපද පුසාරණය ලියා දක්වන්න. ඉහත පුසාරණයේ අනුයාත පද දෙකක සංගුණක සමාන නම්, n ඔත්තේ වන බව පෙන්වන්න.
1.	$n \in {\hbox{\bf Z}}^+$ යැයි ගනිමු. x හි ආරෝහණ බලවලින් $(1+x)^n$ හි ද්විපද පුසාරණය ලියා දක්වන්න. ඉහත පුසාරණයේ අනුයාත පද දෙකක සංගුණක සමාන නම්, n ඔත්තේ වන බව පෙන්වන්න.

5.	$\lim_{x \to \frac{\pi}{3}} \frac{\sin\left(x - \frac{\pi}{3}\right)}{\left(\sqrt{3x} - \sqrt{\pi}\right)} = \frac{2\sqrt{\pi}}{3} \ \text{බව ලපත්වන්න.}$
	$x \to \frac{\pi}{3} \left(\sqrt{3}x - \sqrt{\pi} \right)$
6.	$y=rac{e^x}{1+e^x},\; x=0,\; x=\ln 3$ හා $y=0$ වකු මගින් ආවෘත වන පෙලෙදස $x-$ අක්ෂය වටා රේඩියන 2π වලින්
6.	
6.	$y=rac{e^x}{1+e^x}$, $x=0$, $x=\ln 3$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x -අක්ෂය වටා රේඩියන 2π වලින් භුමණය කරනු ලැබේ. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $rac{\pi}{4}ig(4\ln 2-1ig)$ බව පෙන්වන්න.
6.	
6.	
6.	
6.	
6.	
6.	
6.	
6.	
6.	
6.	
6.	
6.	
6.	

7.	$\frac{x^2}{25} + \frac{y^2}{9} = 1$ ඉලිප්සයට එය මත $P \equiv (5\cos\theta, 3\sin\theta)$ ලක්ෂායේ දී වූ අභිලම්බ රේඛාවෙහි සමීකරණය
	$5\sin\theta x - 3\cos\theta y = 16\sin\theta\cos\theta$ බව පෙන්වන්න.
	ඉහත ඉලිප්සයට එය මත $\left(rac{5}{2},rac{3\sqrt{3}}{2} ight)$ ලක්ෂායේ දී ඇඳි අභිලම්බ රේඛාවේ $y-$ අන්තඃබණ්ඩය සොයන්න.

8.	$m\in\mathbb{R}$ හා I යන $A=(1,2)$ ලක්ෂායෙ හරහා යන අතතමණය m ව පුරල ලර්බාව යැයි ගතිම
8.	$m\in \mathbb{R}$ හා l යනු $A\equiv (1,2)$ ලක්ෂාය හරහා යන අනුකුමණය m වූ සරල රේඛාව යැයි ගනිමු.
8.	l හි සමීකරණය \emph{m} ඇසුරෙන් ලියා දක්වන්න.
8.	
8.	l හි සමීකරණය m ඇසුරෙන් ලියා දක්වන්න. $B\equiv (2,3)$ ලක්ෂායේ සිට l රේඛාවට ඇති ලම්බ දුර ඒකක $\frac{1}{\sqrt{5}}$ බව දී ඇත.
8.	l හි සමීකරණය m ඇසුරෙන් ලියා දක්වන්න. $B\equiv (2,3)$ ලක්ෂායේ සිට l රේඛාවට ඇති ලම්බ දුර ඒකක $\frac{1}{\sqrt{5}}$ බව දී ඇත.
8.	l හි සමීකරණය m ඇසුරෙන් ලියා දක්වන්න. $B\equiv (2,3)$ ලක්ෂායේ සිට l රේඛාවට ඇති ලම්බ දුර ඒකක $\frac{1}{\sqrt{5}}$ බව දී ඇත.
8.	l හි සමීකරණය m ඇසුරෙන් ලියා දක්වන්න. $B\equiv (2,3)$ ලක්ෂායේ සිට l රේඛාවට ඇති ලම්බ දුර ඒකක $\frac{1}{\sqrt{5}}$ බව දී ඇත.
8.	l හි සමීකරණය m ඇසුරෙන් ලියා දක්වන්න. $B\equiv (2,3)$ ලක්ෂායේ සිට l රේඛාවට ඇති ලම්බ දුර ඒකක $\frac{1}{\sqrt{5}}$ බව දී ඇත.
8.	l හි සමීකරණය m ඇසුරෙන් ලියා දක්වන්න. $B\equiv (2,3)$ ලක්ෂායේ සිට l රේඛාවට ඇති ලම්බ දුර ඒකක $\frac{1}{\sqrt{5}}$ බව දී ඇත.
8.	l හි සමීකරණය m ඇසුරෙන් ලියා දක්වන්න. $B\equiv (2,3)$ ලක්ෂායේ සිට l රේඛාවට ඇති ලම්බ දුර ඒකක $\frac{1}{\sqrt{5}}$ බව දී ඇත.
8.	l හි සමීකරණය m ඇසුරෙන් ලියා දක්වන්න. $B\equiv (2,3)$ ලක්ෂායේ සිට l රේඛාවට ඇති ලම්බ දුර ඒකක $\frac{1}{\sqrt{5}}$ බව දී ඇත.
8.	l හි සමීකරණය m ඇසුරෙන් ලියා දක්වන්න. $B\equiv (2,3)$ ලක්ෂායේ සිට l රේඛාවට ඇති ලම්බ දුර ඒකක $\frac{1}{\sqrt{5}}$ බව දී ඇත.
8.	l හි සමීකරණය m ඇසුරෙන් ලියා දක්වන්න. $B\equiv (2,3)$ ලක්ෂායේ සිට l රේඛාවට ඇති ලම්බ දුර ඒකක $\frac{1}{\sqrt{5}}$ බව දී ඇත.
8.	l හි සමීකරණය m ඇසුරෙන් ලියා දක්වන්න. $B\equiv (2,3)$ ලක්ෂායේ සිට l රේඛාවට ඇති ලම්බ දුර ඒකක $\frac{1}{\sqrt{5}}$ බව දී ඇත.
8.	l හි සමීකරණය m ඇසුරෙන් ලියා දක්වන්න. $B\equiv (2,3)$ ලක්ෂායේ සිට l රේඛාවට ඇති ලම්බ දුර ඒකක $\frac{1}{\sqrt{5}}$ බව දී ඇත.

9.	කේන්දුය $(-2,0)$ ලක්ෂායෙහි තිබෙන හා $(-1,\sqrt{3})$ ලක්ෂාය හරහා යන S වෘත්තයේ සමීකරණය සොයන්න
	$A \equiv (1,-1)$ ලක්ෂායේ සිට S වෘත්තයට ඇඳි ස්පර්ශකවල ස්පර්ශ ජාහයේ සමීකරණය ලියා දක්වන්න. ඒ නයින්, A සිට S ට ඇඳි ස්පර්ශකයන්හි ස්පර්ශ ලක්ෂාවල x –ඛණ්ඩාංක $5x^2 + 8x + 2 = 0$ සමීකරණය තෘප්ත
	කරන බව පෙන්වන්න.
10.	$n \in \mathbb{Z}$ සඳහා $ heta eq (2n+1) rac{\pi}{2}$ යැයි ගනිමු.
	$\cos^2 \theta + \sin^2 \theta = 1$ සර්වසාමාය භාවිතයෙන්, $\sec^2 \theta = 1 + \tan^2 \theta$ බව පෙන්වන්න.
	$\sec \theta + \tan \theta = \frac{4}{3}$ බව දී ඇත. $\sec \theta - \tan \theta = \frac{3}{4}$ බව අපෝහන ය කරන්න.
	$\sec \theta + \tan \theta = \frac{4}{3}$ බව දී ඇත. $\sec \theta - \tan \theta = \frac{3}{4}$ බව අපෝහන ය කරන්න.
	$\sec \theta + \tan \theta = \frac{4}{3}$ බව දී ඇත. $\sec \theta - \tan \theta = \frac{3}{4}$ බව අපෝහන ය කරන්න.
	$\sec \theta + \tan \theta = \frac{4}{3}$ බව දී ඇත. $\sec \theta - \tan \theta = \frac{3}{4}$ බව අපෝහන ය කරන්න.
	$\sec \theta + \tan \theta = \frac{4}{3}$ බව දී ඇත. $\sec \theta - \tan \theta = \frac{3}{4}$ බව අපෝහන ය කරන්න.
	$\sec \theta + \tan \theta = \frac{4}{3}$ බව දී ඇත. $\sec \theta - \tan \theta = \frac{3}{4}$ බව අපෝහන ය කරන්න.
	$\sec \theta + \tan \theta = \frac{4}{3}$ බව දී ඇත. $\sec \theta - \tan \theta = \frac{3}{4}$ බව අපෝහන ය කරන්න.
	$\sec \theta + \tan \theta = \frac{4}{3}$ බව දී ඇත. $\sec \theta - \tan \theta = \frac{3}{4}$ බව අපෝහන ය කරන්න.
	$\sec \theta + \tan \theta = \frac{4}{3}$ බව දී ඇත. $\sec \theta - \tan \theta = \frac{3}{4}$ බව අපෝහන ය කරන්න.
	$\sec \theta + \tan \theta = \frac{4}{3}$ බව දී ඇත. $\sec \theta - \tan \theta = \frac{3}{4}$ බව අපෝහන ය කරන්න.
	$\sec \theta + \tan \theta = \frac{4}{3}$ බව දී ඇත. $\sec \theta - \tan \theta = \frac{3}{4}$ බව අපෝහන ය කරන්න.
	$\sec \theta + \tan \theta = \frac{4}{3}$ බව දී ඇත. $\sec \theta - \tan \theta = \frac{3}{4}$ බව අපෝහන ය කරන්න.
	$\sec \theta + \tan \theta = \frac{4}{3}$ බව දී ඇත. $\sec \theta - \tan \theta = \frac{3}{4}$ බව අපෝහන ය කරන්න.
	$\sec \theta + \tan \theta = \frac{4}{3}$ බව දී ඇත. $\sec \theta - \tan \theta = \frac{3}{4}$ බව අපෝහන ය කරන්න.

සියලු ම හිමිකම් ඇවිරිණි /(மුගුට பதிப்புரிமையுடையது /All Rights Reserved)

නව නිඊදේශය/புதிய பாடத்திட்டம்/New Syllabus

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

සංයුක්ත ගණිතය

இணைந்த கணிதம்

Combined Mathematics

R කොටස

* පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න.

 $11.(a) \ f(x) = x^2 + px + c$ හා $g(x) = 2x^2 + qx + c$ යැයි ගනිමු; මෙහි $p, q \in \mathbb{R}$ හා c > 0 වේ. f(x) = 0 හා g(x) = 0 සඳහා α පොදු මූලයක් ඇති බව දී ඇත. $\alpha = p - q$ බව පෙන්වන්න.

p හා q ඇසුරෙන් c සොයා,

- (i) p > 0 නම් p < q < 2p බව,
- (ii) f(x) = 0 හි විවේචකය $(3p-2q)^2$ බව

අපෝහනය කරන්න.

eta හා γ යනු පිළිවෙළින් f(x)=0 හි හා g(x)=0 හි අනික් මූල යැයි ගනිමු. $eta=2\gamma$ බව පෙන්වන්න. තව ද eta හා γ මූල වන වර්ගජ සමීකරණය $2x^2+3(2p-q)x+(2p-q)^2=0$ මගින් දෙනු ලබන බව පෙන්වන්න.

(b) $h(x) = x^3 + ax^2 + bx + c$ යැයි ගතිමු; මෙහි $a, b, c \in \mathbb{R}$ වේ. $x^2 - 1$ යන්න h(x) හි සාධකයක් බව දී ඇත. b = -1 බව පෙන්වන්න.

h(x) යන්න x^2-2x මගින් බෙදූ විට ශේෂය 5x+k බව ද දී ඇත; මෙහි $k\in\mathbb{R}$ වේ. k හි අගය සොයා h(x) යන්න $(x-\lambda)^2$ $(x-\mu)$ ආකාරයෙන් ලිවිය හැකි බව පෙන්වන්න; මෙහි $\lambda,\,\mu\in\mathbb{R}$ වේ.

12.(a) පියානෝ වාදකයින් පස්දෙනකු, ගිටාර් වාදකයින් පස්දෙනකු, ගායිකාවන් තුන්දෙනකු හා ගායකයින් හත්දෙනකු අතුරෙන් හරියටම පියානෝ වාදකයින් දෙදෙනකු ද **අඩු තරමින්** ගිටාර් වාදකයින් හතරදෙනකු ද අතුළත් වන පරිදි සාමාජිකයන් එකොළොස්දෙනකුගෙන් සමන්විත සංගීත කණ්ඩායමක් තෝරා ගැනීමට අවශාව ඇත. තෝරා ගත හැකි එවැනි වෙනස් සංගීත කණ්ඩායම් ගණන සොයන්න.

මේවා අතුරෙන් හරියටම ගායිකාවන් දෙදෙනකු සිටින සංගීත කණ්ඩායම් ගණන ද සොයන්න.

(b) $r\in \mathbb{Z}^+$ සඳහා $U_r=rac{3r-2}{r(r+1)(r+2)}$ හා $V_r=rac{A}{r+1}-rac{B}{r}$ යැයි ගනිමු; මෙහි $A,B\in \mathbb{R}$ වේ.

 $r\!\in\!\mathbb{Z}^+$ සඳහා $U_r=V_r-V_{r+1}$ වන පරිදි A හා B හි අගයන් සොයන්න.

ඒ නයින්, $n\in\mathbb{Z}^+$ සඳහා $\sum_{r=1}^n U_r = \frac{n^2}{(n+1)(n+2)}$ බව පෙන්වන්න.

 $\sum_{r=1}^\infty U_r$ අපරිමිත ශ්‍රේණිය අභිසාරී බව පෙන්වා එහි ඓකාංය සොයන්න.

දැන්, $r\in \mathbb{Z}^+$ සඳහා $W_r=U_{r+1}-2U_r$ යැයි ගනිමු. $\sum_{r=1}^n W_r=U_{n+1}-U_1-\sum_{r=1}^n U_r$ බව පෙන්වන්න.

 $\sum_{r=1}^{W_r}$ අපරිමිත ශේුණිය අභිසාරී බව **අපෝහනය** කර එහි ඓකාය සොයන්න.

$$\mathbf{13.}(a) \ \mathbf{A} = \left(egin{array}{ccc} a+1 & 0 \\ 1 & 1 \\ 0 & 1 \end{array} \right), \ \mathbf{B} = \left(egin{array}{ccc} 1 & 0 \\ 0 & 1 \\ a & 2 \end{array} \right)$$
 හා $\mathbf{C} = \left(egin{array}{ccc} a & 1 \\ a & 2 \end{array} \right)$ හැ $\mathbf{C} = \left(egin{array}{ccc} a & 1 \\ a & 2 \end{array} \right)$ හැ $\mathbf{C} = \left(egin{array}{ccc} a & 1 \\ a & 2 \end{array} \right)$ හැ $\mathbf{C} = \left(egin{array}{ccc} a & 1 \\ a & 2 \end{array} \right)$ හැ $\mathbf{C} = \left(egin{array}{ccc} a & 1 \\ a & 2 \end{array} \right)$ හැ

 ${f A}^{
m T}{f B}-{f I}={f C}$ බව පෙන්වන්න; මෙහි ${f I}$ යනු ගණය ${f 2}$ වන ඒකක නාහසය වේ.

 ${f C}^{-1}$ පවතින්නේ a
eq 0 ම නම් පමණක් බව ද පෙන්වන්න.

දැන්, a=1 යැයි ගනිමු. ${f C}^{-1}$ ලියා දක්වන්න.

 $\mathbf{CPC} = 2\mathbf{I} + \mathbf{C}$ වන පරිදි \mathbf{P} නාහසය සොයන්න.

- $|z-w|^2=|z|^2-2\,{
 m Re}\,z\overline{w}+|w|^2$ බව පෙන්වා, එය z-w ට යෙදීමෙන් $|z-w|^2=|z|^2-2\,{
 m Re}\,z\overline{w}+|w|^2$ බව පෙන්වන්න. $|1-z\overline{w}|^2$ සඳහා ද එවැනි පුකාශනයක් ලියා දක්වා, $|z-w|^2-|1-z\overline{w}|^2=-\Big(1-|z|^2\Big)\Big(1-|w|^2\Big)$ බව පෙන්වන්න |w|=1 හා $z\neq w$ නම් $\left|\frac{z-w}{1-z\overline{w}}\right|=1$ බව **අපෝහනය** කරන්න.
- (c) $1+\sqrt{3}i$ යන්න $r(\cos\theta+i\sin\theta)$ ආකාරයෙන් පුකාශ කරන්න; මෙහි r>0 හා $0<\theta<\frac{\pi}{2}$ වේ. $(1+\sqrt{3}i)^m(1-\sqrt{3}i)^n=2^8$ බව දී ඇත; මෙහි m හා n ධන නිඛිල වේ. ද මුවාවර් පුමේයය යෙදීමෙන්, m හා n හි අගයන් නිර්ණය කිරීමට පුමාණවත් සමීකරණ ලබා ගන්න.
- **14.**(a) $x \neq 3$ සඳහා $f(x) = \frac{x(2x-3)}{(x-3)^2}$ යැයි ගනිමු.

f(x) හි වසුත්පන්නය, f'(x) යන්න $x \neq 3$ සඳහා $f'(x) = \frac{9(1-x)}{(x-3)^3}$ මගින් දෙනු ලබන බව පෙන්වන්න.

ඒ නයින්, f(x) වැඩි වන පුාත්තරය හා f(x) අඩු වන පුාත්තර සොයන්න.

f(x) හි හැරුම් ලක්ෂායේ ඛණ්ඩාංක ද සොයන්න.

$$x \neq 3$$
 සඳහා $f''(x) = \frac{18x}{(x-3)^4}$ බව දී ඇත.

y=f(x) හි පුස්තාරයේ නතිවර්තන ලක්ෂායේ ඛණ්ඩාංක සොයන්න.

ස්පර්ශෝන්මුඛ, හැරුම් ලක්ෂාය හා නතිවර්තන ලක්ෂාය දක්වමින් y=f(x) හි පුස්තාරයේ දළ සටහනක් අඳින්න.

(b) යාබද රූපයෙන් දූවිලි එකතු කරනයක මීට රහිත කොටස දැක්වේ. සෙන්ටිමීටරවලින් එහි මාන රූපයේ දැක්වේ. එහි පරිමාව x^2h cm 3 යන්න $4500~{\rm cm}^3$ බව දී ඇත. එහි පෘෂ්ඨ වර්ගඵලය $S~{\rm cm}^2$ යන්න $S=2x^2+3xh$ මගින් දෙනු ලැබේ. S අවම වන්නේ x=15 වන විට බව පෙන්වන්න.

15.(a) සියලු
$$x \in \mathbb{R}$$
 සඳහා $x^3 + 13x - 16 = A(x^2 + 9)(x + 1) + B(x^2 + 9) + 2(x + 1)^2$
වන පරිදි A හා B නියන පවතින බව දී ඇත.

 $m{A}$ හා $m{B}$ හි අගයන් සොයන්න.

ඒ නයින්,
$$\frac{x^3 + 13x - 16}{(x+1)^2 (x^2 + 9)}$$
 යන්න භින්න භාගවලින් ලියා දක්වා,

$$\int \frac{x^3 + 13x - 16}{(x+1)^2 (x^2 + 9)} \, \mathrm{d}x$$
 මසායන්න.

- (b) කොටස් වශයෙන් අනුකලනය භාවිතයෙන්, $\int\limits_0^1 e^x \sin^2 \pi x \,\mathrm{d} x$ අගයන්න.
- (c) a නියතයක් වන $\int\limits_0^a f(x)\,\mathrm{d}x=\int\limits_0^a f(a-x)\,\mathrm{d}x$ සූතුය භාවිතයෙන්,

$$\int\limits_0^\pi x \cos^6 x \sin^3 x \, \mathrm{d}x = \frac{\pi}{2} \int\limits_0^\pi \cos^6 x \sin^3 x \, \mathrm{d}x$$
 බව පෙන්වන්න.

ඒ නයින්,
$$\int_{0}^{\pi} x \cos^{6} x \sin^{3} x \, dx = \frac{2\pi}{63}$$
 බව පෙන්වන්න.

16.
$$A \equiv (1,2)$$
 හා $B \equiv (3,3)$ යැයි ගනිමු.

A හා B ලක්ෂා හරහා යන l සරල රේඛාවේ සමීකරණය සොයන්න.

එක එකක් l සමග $\frac{\pi}{4}$ ක සුළු කෝණයක් සාදමින් A හරහා යන l_1 හා l_2 සරල රේඛාවල සමීකරණ සොයන්න.

l මත ඕනෑම ලක්ෂායක ඛණ්ඩාංක (1+2t,2+t) ආකාරයෙන් ලිවිය හැකි බව පෙන්වන්න; මෙහි $t\in \mathbb{R}$ වේ.

 l_1 හා l_2 යන දෙකම ස්පර්ශ කරන හා කේන්දුය l මත වූ මුළුමනින්ම පළමුවන වෘත්ත පාදකයේ පිහිටන අරය $\frac{\sqrt{10}}{2}$ වන, C_1 වෘත්තයේ සමීකරණය $x^2+y^2-6x-6y+\frac{31}{2}=0$ බව ද පෙන්වන්න.

විෂ්කම්භයක අන්ත A හා B වූ C_2 වෘත්තයේ සමීකරණය ලියා දක්වන්න.

 C_1 හා C_2 වෘත්ත පුලම්බව ඡේදනය චේ දැයි නිර්ණය කරන්න.

- 17. (a) $\sin A, \cos A, \sin B$ හා $\cos B$ ඇසුරෙන් $\sin (A-B)$ ලියා දක්වන්න.
 - (i) $\sin(90^{\circ} \theta) = \cos\theta$, නා
 - (ii) $2\sin 10^\circ = \cos 20^\circ \sqrt{3} \sin 20^\circ$
 - බව **අපෝහනය** කරන්න.
 - (b) සුපුරුදු අංකනයෙන්, ABC තිකෝණයක් සඳහා **සයින් නිතිය** පුකාශ කරන්න.

රූපයේ දක්වා ඇති ABC තිුකෝණයේ $A\hat{B}C=80^\circ$ හා $A\hat{C}B=20^\circ$ වේ. D ලක්ෂාය BC මත පිහිටා ඇත්තේ AB=DC වන පරිදි ය. $A\hat{D}B=lpha$ යැයි ගතිමු.

සුදුසු තිකෝණ සඳහා **සයින් නීතිය** භාවිතයෙන්, $\sin 80^\circ \sin (\alpha - 20^\circ) = \sin 20^\circ \sin \alpha$ බව පෙන්වන්න. $\sin 80^\circ = \cos 10^\circ \, \text{වන්නේ ඇයිදැයි පැහැදිලි කර, } \textbf{\emph{5} නයින්, } \tan \alpha = \frac{\sin 20^\circ}{\cos 20^\circ - 2\sin 10^\circ} \,$ බව පෙන්වන්න. ඉහත (a)(ii) හි පුතිඵලය භාවිතයෙන් $\alpha = 30^\circ$ බව **අපෝහනය** කරන්න.

(c) $\tan^{-1}(\cos^2 x) + \tan^{-1}(\sin x) = \frac{\pi}{4}$ සමීකරණය විසඳන්න.