НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО Факультет ПИиКТ

Отчёт по лабораторной работе на тему: Интегрирование Метод Симпсона

> Выполнил студент

Агнистова Алина Юрьевна

Группа № Р3225

Преподаватель: Перл Ольга Вячеславовна

Описание метода и расчётные формулы

Метод Симпсона — метод интегрирования, заключающийся в приближении подынтегральной функции на отрезке [a,b] интерполяционным многочленом второй степени $p_2(x)$:

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} p_{2}(x)dx = \frac{h}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right),$$
где

$$h = b - a$$
 — ширина интервала

Для точности вычислений интеграла интервал разбивают на чётное количество отрезков одинаковой длины и получают формулу Симпсона на отрезках. Значение исходного интеграла – сумма результатов интегрирования на отрезках:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} \left[f(x_0) + 2 \sum_{j=1}^{\frac{N}{2}-1} f(x_{2j}) + 4 \sum_{j=1}^{\frac{N}{2}} f(x_{2j-1}) + f(x_N) \right],$$
где

$$N=2n-$$
 количество отрезков, $h=rac{b-a}{N}-$ величина шага

Блок-схема реализованного метода

Код метода

```
string error message = "";
bool has_discontinuity = false;
double first_function(double x) {
    return 1 / x;
double second function(double x) {
    if (x == 0)
       return 1.0;
    return sin(x) / x;
}
double third_function(double x) {
    return x * x + 2;
double fourth function(double x) {
  return 2 \times x + 2;
double five function(double x) {
   return log(x);
double default function(double x) {
   return 0;
* How to use this function:
  fn t& f = get function(4);
    f(0.0001);
fn_t &get_function(int n) {
    switch (n) {
       case 1:
           return first_function;
        case 2:
           return second_function;
        case 3:
           return third function;
        case 4:
           return fourth function;
        case 5:
           return five function;
        default:
            return default function;
    }
}
 * Complete the 'calculate integral' function below.
 * The function is expected to return a DOUBLE.
 * The function accepts following parameters:
 * 1. DOUBLE a
 * 2. DOUBLE b
 * 3. INTEGER f
   4. DOUBLE epsilon
```

```
double calculate integral(double a, double b, int f, double epsilon) {
   bool neg = false;
    if (a > b) {
        swap(a,b);
       neg = true;
    fn t &func = get function(f);
    int n = 1;
    double h = (b - a);
    double x1 = 0, x2 = 0;
    double s0, s1;
    s1 = (h / 6) * (func(a) + 4 * func((a + b) / 2) + func(b));
    if(isinf(func(a)) || isnan(func(a)) || isinf(func(b)) ||
isnan(func(b))){
        error message = "Integrated function has discontinuity or does
not defined in current interval";
        has discontinuity = true;
        return 0;
    do {
        s0 = s1;
        s1 = 0;
        n = 2 * n;
        h = (b - a) / n;
        double k1 = 0, k2 = 0;
        for (int i = 1; i < n; i += 2) {</pre>
            x1 = func(a + i * h);
            x2 = func(a + (i + 1) * h);
            if(isinf(x1) || isnan(x1) || isinf(x2) || isnan(x2)){
                error message = "Integrated function has discontinuity or
does not defined in current interval";
                has discontinuity = true;
                return 0;
            k1 += x1;
            k2 += x2;
        s1 = h / 3 * (func(a) + 4 * k1 + 2 * k2);
    } while (fabs(s1-s0) > epsilon);
    if (neg) {
        s1 = - s1;
return s1;
```

Примеры и результаты работы программы

Пример 1

Выбранный случай: подынтегральная функция с неустранимым разрывом.

Ожидаемые выходные данные: сообщение об ошибке.

Входные данные:

Выходные данные: сообщение об ошибке.

```
-1
1
1
0.001
Integrated function has discontinuity or does not defined in current interval
Process finished with exit code 0
```

Пример 2

Выбранный случай: подынтегральная функция с устранимым разрывом.

Ожидаемые выходные данные: ~1.89

Входные данные:

-1
1
2
0.001

Выходные данные: 1.89271

```
-1
1
2
8.001
1.89271
Process finished with exit code 0
```

Пример 3

Выбранный случай: стандартная подынтегральная функция.

Ожидаемые выходные данные: ~4.3

Входные данные:

```
1
2
3
0.001
```

Выходные данные: 4.33431

```
1
2
3
0.001
4.33431
Process finished with exit code 0
```

Пример 4

Выбранный случай: Интервал [a, b], где a > b.

Ожидаемые выходные данные: ~ -5

Входные данные:

```
2
1
4
0.001
```

Выходные данные: -5.00098

```
2
1
4
0.001
-5.00098
Process finished with exit code 0
```

Пример 5

Выбранный случай: подынтегральная функция с устранимым разрывом.

Ожидаемые выходные данные: -1

Входные данные:

0	
1	
5	
0.001	

Выходные данные: сообщение об ошибке.

```
0
1
5
0.001
Integrated function has discontinuity or does not defined in current interval
Process finished with exit code 0
```

Проанализировав результаты запуска реализованного метода, можно сделать вывод, что код справляется с основными крайними ситуациями, однако я не учла в коде устранимый разрыв 5 функции (пример 5).

Для оценки метода приведена таблица сравнения метода Симпсона с методом прямоугольников и методом трапеций:

	Метод Симпсона	Метод	Метод трапеций
		прямоугольников	
Описание	Метод,	Метод, основанный	Метод,
	использующий	на аппроксимации	использующий
	параболическую	подграфика функции	линейную
	аппроксимацию	прямоугольниками.	аппроксимацию
	между тремя		между двумя
	точками на каждом		точками на каждом

	интервале.		интервале.
Вычислительная	Высокая	Низкая (требует	Средняя (требует
сложность	(необходимость	большего числа	больше вычислений,
	вычислять большего	интервалов для	чем метод
	числа значений	достижения высокой	прямоугольников, но
	функции)	точности)	меньше, чем метод
			Симпсона)
Применимость	Функции с	Функции, где	Может быть менее
	небольшой	значения меняются	эффективным для
	кривизной, где	медленно.	функций с высокой
	требуется высокая		кривизной.
	точность.		
Численная	Высокая	Может давать	Высокая
стабильность		неточные	
		результаты для	
		функций с большой	
		кривизной	

Таким образом, метод Симпсона будет оптимальным выбором в случаях, когда требуется высокая точность и допускается высокое число вычислений. В случаях, когда допускается точность ниже можно отдать предпочтение методу трапеций. Метод прямоугольников отличается меньшей точностью вычислений, но и вычислительная сложность метода ниже всего.

Временная алгоритмическая сложность метода составляет O(n), так как для вычисления интеграла используется цикл do-while, внутри которого находится цикл, в котором считается сумма.

Метод отличается высокой численной стабильностью, ошибки могут быть вызваны недостаточной точностью программной реализации метода, но в моём случае таких проблем нет.

Вывод

В результате выполнения лабораторной работы была реализовано вычисление интегралов методом Симпсона на языке программирования C++. Программа разделяется на 2 основных аспекта: вычисление сумм и нахождение решения интеграла. Алгоритмическая сложность метода составила O(n).

Метод Гаусса – метод вычисления интегралов, отличающийся высокой эффективностью и точностью, однако может вызвать излишнюю вычислительную сложность в случаях, где допускаются погрешности результата.