博弈论与信息经济学

5. 完全信息动态博弈(二)

深圳大学经济学院 会计学学术学位硕士研究生 专业选修课(2023-2024)

主讲: 黄嘉平 中国经济特区研究中心讲师 工学博士 经济学博士

办公室:粤海校区汇文楼1510 Email: huangjp@szu.edu.cn

序贯理性

不可信的威胁

 $X_4 \setminus$

(O, oo) 的路径

不可信

Incredible threat

• 序贯行动 BoS 有三个纯策略纳什均衡: (O,oo), (O,of), (F,ff)

Sequential-move BoS

0

参与人 1

参-	与,	人	2

 oo
 of
 fo

 2, 1
 2, 1
 0, 0
 0, 0

 0, 0
 1, 2
 0, 0
 1, 2

序贯理性

Sequential rationality

 如果参与人在自己的每一个信息集都做出最优选择,则称之为满足序贯理性 (sequentially rational)

序贯理性的常用定义出现在第15章。第8章中的定义8.1不准确

- 在序贯行动 BoS 中,只有 (O, of) 中的策略满足序贯理性:
 - 参与人 2 在 x_1 时,o 是最优行动;在 x_2 时,f 是最优行动
 - -参与人 1 可以预见参与人 2 的策略 of,因此 O 是它的最优反应
- 满足序贯理性的纳什均衡不仅能预测均衡路径上的行动, 也可以预测均衡路径外的行动

逆向归纳解

Backward induction solution

- 在扩展式博弈中, 逆向归纳法意味着:
 - 1. 在每个终点前面的节点上,参与人都选择最优行动
 - 2. 在更前面的节点上,参与人都能预见后面的最优行动,并选择最优反应

 任意的有限完美信息博弈都存在逆向归纳解,且满足序贯理性。如果对任意参与人 i , 博弈树的所有终点都对应不同的回报,则逆向归纳解是唯一的

 任意的有限完美信息博弈的逆向归纳解都是纳什均衡,因此有限完美信息博弈一定存在 纯策略纳什均衡。如果对任意参与人 i ,博弈树的所有终点都对应不同的回报,则满足 序贯理性的纯策略纳什均衡是唯一的

逆向归纳法的适用范围

- 考虑右图中的自愿 BoS 博弈:
 - 参与人 1 首先选择是否进行 BoS 博弈
 - 如果参与人 1 选择不进行 (N) ,则双方的回报为 (1.5, 1.5)
 - 如果参与人 1 选择进行(Y),则双方进行同时行动 BoS
- 这个博弈无法适用逆向归纳法,因为参与人 2 的信息集不是单点,不存在最优纯策略
- 逆向归纳法不适用的博弈包括:
 - 不完美信息博弈(任意信息集包含两个或以上节点,或有"自然"参与)
 - 无法确保在有限回合结束的博弈(可能存在无限多个终点)

FIGURE 8.2 The voluntary Battle of the Sexes game.

子博弈

Subgame

由扩展式博弈 Γ 中的单个节点及其所有下行节点组成的部分博弈树 G 如果满足

 $x \in G, x' \in h(x) \Rightarrow x' \in G$ $(x' \in x)$ 所在的信息集中,则 x' 也在 G 中)

则称 G 为 Γ 的子博弈(subgame 或 proper subgame)

FIGURE 8.3 Subgames in a game with perfect information.

FIGURE 8.4 Proper subgames in the voluntary Battle of the Sexes game.

• 双人参与的比大小游戏

- 一副扑克牌中仅包含同等数量的 K 和 A
- 游戏开始前,两个玩家各下注1元
- 玩家 1 抽一张牌,并在看到牌面后 选择:
 - 结束 (N): 玩家 2 赢得 2 元
 - 继续 (Y): 玩家 2 行动
- 玩家 2 无法看到玩家 1 的牌, 他可以选择:
 - 放弃(F):玩家1贏得2元
 - 跟注(*C*):
 每个玩家各自再加注 1 元并翻牌,
 如果牌面是 *K* 则玩家 2 赢得 4 元,
 如果是 *A* 则玩家 1 赢得 4 元

FIGURE 8.5 A game of cards.

唯一子博弈是原博弈自身

子博弈完美纳什均衡

Subgame-perfect Nash equilibrium

 泽尔腾(Reinhard Selten)在 1975 年提出了子博弈完美纳什均衡的概念,并于 1994 年和海撒尼 (John C. Harsanyi)、纳什(John F. Nash Jr.) 一起获得诺贝尔经济学奖,获奖理由为"对非合作博弈的均衡分析的开创性贡献"

令 Γ 为 n 人扩展式博弈。如果行为策略 $\sigma^* = (\sigma_1^*, \sigma_2^*, ..., \sigma_n^*)$ 在 Γ 的任意子博弈 G 上都是纳什均衡,则称 σ^* 为**子博弈完美(纳什)均衡(subgame–perfect (Nash) equilibrium)**,可简写为 SPE

- SPE 要求均衡策略在那些偏离了均衡路径的子博弈上也要是纳什均衡
- 对于有限完美信息博弈,纯策略 SPE 等价于逆向归纳纳什均衡
- SPE 将纳什均衡的集合缩小了,因此称之为纳什均衡的一种精炼(refinement)

定理(Selten): 任意有限完美回忆博弈都存在子博弈完美均衡

The voluntary Battle of the Sexes game. FIGURE 8.2

- 纯策略纳什均衡为: (YO, o), (NO, f), (NF, f)
- 其中 SPE 为: (YO, o), (NF, f)

Voluntary BoS

参与人 2

0 0, 0 YO <u>2, 1</u> YF 0, 0 1, <u>2</u> 参与人 1 1.5, <u>1.5</u> <u>1.5</u>, <u>1.5</u> NO <u>1.5, 1.5</u> NF 1.5, <u>1.5</u>

蜈蚣博弈

The centipede game

- 如图所示,根据逆向归纳法,
 - 参与人 2 在最终回合应当选择 n
 - \Rightarrow 参与人 1 在第三回合应当选择 N
 - ⇒ 参与人 2 在第二回合应当选择 n
 - ⇒ 参与人 1 在第一回合应当选择 N

FIGURE 8.8 The Centipede Game.

- 逆向归纳纳什均衡为 (NN, nn),结果是参与人 1 在第一回合选择 N,双方的回报为 (1, 1)
- 最终回合参与人 2 选择 c 带来的回报是怕累托最优结果,且帕累托优于纳什均衡的结果 (1,1)

斯塔克尔伯格竞争模型

Stackelberg competition

- 斯塔克尔伯格竞争模型是古诺双寡头模型的序贯行动版
- 需求函数 $p = 100 q_1 q_2$,可变成本 $c(q_i) = 10q_i$
- 假设参与人 1 首先选择产量 q_1 ,参与人 2 在观察到 q_1 后选择自己的产量 q_2

• 逆向归纳解

- 在已知 q_1 的情况下,参与人 2 选择令利润 $(100-q_1-q_2)q_2-10q_2$ 最大的产量 q_2 ,即 $q_2^*=(90-q_1)/2$
- 参与人 1 选择令利润 $(100-q_1-q_2^*)q_1-10q_1$ 最大的产量 q_1 , 即 $q_1^*=45$
- $\Rightarrow q_2^* = 22.5 \Rightarrow$ 回报为 (1012.5, 506.25)
- 古诺模型下的纳什均衡为 $(q_1^*, q_2^*) = (30, 30) \Rightarrow 回报为 (900, 900)$ 斯塔克尔伯格模型解释了先行者优势(first-mover advantage)

$$(100 - q_1 - q_2)q_1 - 10q_1$$

 $(100 - q_1 - q_2)q_2 - 10q_2$

斯塔克尔伯格竞争模型

Stackelberg competition

• 逆向归纳解也是 SPE

(确认 $q_1 = 45$ 不是 $q_2 = 22.5$ 的最优反应)

• 注意: $(q_1,q_2) = (45,22.5)$ 不是 SPE 的正确写法,而应该写成

$$(q_1, q_2) = \left(45, \frac{90 - q_1}{2}\right)$$

因为对于参与人 2,每一个可能的 q_1 都对应一个子博弈

- $(q_1, q_2) = (30, 30)$ 在斯塔克尔伯格模型中也是纳什均衡!
- 存在无限多个纳什均衡! 例如,

$$q_1 = c \in [0, 90], \quad q_2 = \begin{cases} (90 - c)/2 & \text{if } q_1 = c \\ 100 & \text{if } q_1 \neq c \end{cases}$$

(确认当 c = 40 时,此策略是纳什均衡)

$$(100 - q_1 - q_2)q_1 - 10q_1$$

 $(100 - q_1 - q_2)q_2 - 10q_2$

Mutually assured destruction

- 假设两个国家间发生冲突, 其中国家 2 首先攻击了国家 1
- 关于两国今后的策略选择可以考虑右图中的博弈:
 - 1. 国家 1 可以选择息事宁人 I 或备战 E
 - 2. 如果国家 1 选择备战,国家 2 可以选择让步 B,或进一步升级冲突 N
 - 3. 如果国家 2 选择升级冲突,则双方进行同时行动博弈国家 1 可以选择让步 R 或战争 D 国家 2 可以选择让步 r 或战争 d

如果双方都选择攻击,则会两败俱伤,给双方造成不可挽回的损失

• 此博弈为非完美信息博弈

FIGURE 8.11 Mutually assured destruction.

Mutually assured destruction

• 首先,我们尝试找出纯策略纳什均衡

		国家 2				
		Br	Bd	Nr	Nd	
国家 1	IR	0, <u>0</u>	0, <u>0</u>	<u>0, 0</u>	<u>0, 0</u>	
	ID	0, <u>0</u>	0, <u>0</u>	<u>0, 0</u>	<u>0, 0</u>	
	ER	<u>10</u> , –10	<u>10</u> , –10	-5, <u>-5</u>	-100, -100	
	ED	<u>10, –10</u>	<u>10, –10</u>	-100, -100	-100, -100	

纯策略纳什均衡包括: (IR, Nr), (IR, Nd), (IR, Nr), (ID, Nd), (ED, Br), (ED, Bd)

FIGURE 8.11 Mutually assured destruction.

Mutually assured destruction

- 从纯策略纳什均衡 (*IR*, *Nr*), (*IR*, *Nd*), (*IR*, *Nr*),
 (*ID*, *Nd*), (*ED*, *Br*), (*ED*, *Bd*) 中找出子博弈完美均衡
- 共有三个子博弈(如右图中所示)
 - 子博弈 A 的纳什均衡为: (R, r), (D, d)

- 子博弈 B 和 C 中, 双方可以考虑两种情形:
 - 1. 双方在子博弈 A 中选择均衡 (R, r)
 - 2. 双方在子博弈 A 中选择均衡 (D,d)

FIGURE 8.11 Mutually assured destruction.

Mutually assured destruction

- 子博弈 B 和 C 中,
 - 1. 双方在子博弈 A 中选择均衡 (R, r) 此时,国家 2 在子博弈 B 中的最优对应是 N,国家 1 在子博弈 C 中的最优对应是 I
 - 2. 双方在子博弈 A 中选择均衡 (D,d) 此时,国家 2 在子博弈 B 中的最优对应是 B, 国家 1 在子博弈 C 中的最优对应是 E
- 因此, SPE 包括 (IR, Nr), (ED, Bd)
- (IR, Nr) 的均衡路径为国家 1 在第一时间选择息事宁人
- (*ED*, *Bd*) 的均衡路径为国家 1 开始备战后,国家 2 预见到同归于尽的结局,因此选择了让步并支付较少的赔偿

FIGURE 8.11 Mutually assured destruction.

练习:混合策略 SPE

- 考虑自愿 BoS 博弈,并回答下列问题
 - 1. 找到所有的混合策略纳什均衡
 - 2. 找到唯一混合策略 SPE

FIGURE 8.2 The voluntary Battle of the Sexes game.

Voluntary BoS 参与人 2 o f YO 2, 1 0, 0 YF 0, 0 1, 2 からします 1.5, 1.5 1.5, 1.5 NF 1.5, 1.5 1.5, 1.5

课后练习:兄弟间的博弈

- 兄弟俩针对看电影进行下面的博弈
- 哥哥有 20 元钱。在第一回合,他可以选择给弟弟 20 元,或给弟弟 10 元(自己留下 10 元)
- 在第二回合,兄弟俩就看哪部电影进行 BoS 博弈:
 - 右表中的回报是看电影带来的,在此基础上,兄弟俩可以用自己拥有的钱在电影院买零食,每1元钱相当于1单位的回报
- 回答下面的问题:
 - 1. 画出整体博弈的博弈树
 - 2. 找到所有的纳什均衡(纯策略和混合策略)
 - 3. 找到所有的 SPE (纯策略和混合策略)

