1. Enunciar y demostrar el teorema de Caserati-Weierstrass. (1pto)	Sea 2. una singularidad esoncial de f: (-> a hobmo
— Si z_o es una sigularidad esencial de f , probar que no existe $\lim_{z\to z_o} f(z)$ en $\mathbb{C}\cup\{\infty\}$. (0.5 ptos)	2->20 ý fc21-w < €. Yw € D.
	Sea 2. una singularidad esoncial de $f: C \to C$ holomore $2 \to 20$ ý $ f(2) - w < E$ $\forall w \in D$ $\forall 6 > 0$, $\exists E > 0$ Lux $ 2 - 20 < S$
Es decir, que en las praximidades de una singularidad eser	ncial la función se cuproximu curbitrariamente a cualquier si no es un polo (lim faz) = 00) ni un lim faz) = 1
número complejo. Una singularidad se dice esencial	si no es un polo (lim f(z) = 00) ni un lim f(z) -1
R. Abs.	
Si /2-20 < S pero f(2)-w > E y g(2) =	fix)-w holomorta en D excepto en los polos de f
$\Leftrightarrow f(z) = \frac{1}{g(z)} + \omega$ $\lim_{z \to z_0} g(z) = 0 \Rightarrow f(z)$	no es singularidad de f g
1:m => 0+(s) +0 => 20	no es singularidad de f g
1) Asyminos que 3 lim fra = K pero por definición	on de 2 como singularidad esencial limitati 700
y lim/f(2) 7/K /2	on de 20 como singularidad esencial, limítæs 1 ≠00 2->20
2) Asimmos que Ilim fice : co, pero por definición	de 20 como singularidad esencial, limíferol 7K
y lim lf(2) ≠00 4	
Por 111 y 12) => Si zo es singularidad limf(z)	+ K y limfes + 00 =>] limfez) on [U (00)
. ((.)	
2. Sea $f(z) = \frac{\log(\operatorname{senh}(z))}{z^2 + 2}$. Clasificar sus singularidades incluyendo infinito. (1.5 ptos) — Hallar el residuo de sus singularidades aisladas. (0.5 ptos)	
f(z) = log (sinh(z)) singularidades en z2+2=0 (=>	2=-2 <=> z=±iVZ -> Aisladous, polos ordon
him log(sinh(2)) _ jim log(sinh(w)) _ 0 =	Nichola was lim from the
	Aislada, no es un polo porque lim fier 7 00
laps tiene problemas de analiticialad en Reles «	0/ la (sinh(2)) tendra problemas de analiticidad
$sinh(z)$ es holomorta en $C \Rightarrow cundítica en C$	0 / -> log(sinh(2)) tendrai problemas de analiticidad pava sinh(2) <0
oucsinh(0) = 0	• • • • • • • • • • • • • • • • • • • •
falta encontrar cuándo Re(sinh(2))<0	
Re(sin/2))= Re(1/e2-e2))<0 ← Re(e2-e2)<	$10 \Leftrightarrow \text{Re}(e^{2\xi}-1) < 0 \Leftrightarrow \text{Re}(e^{2\xi}) < 1 \Leftrightarrow 1$
€> 2 x < 0 €> x < 0 con 2 = x + yi	
=> Re(2) < 0 singularidades no aisladas	
Res (00, f), Res (iNZ, f), Res (-iNZ, f)	
	$\frac{2^{2}+2=0}{2} = \pm i \sqrt{2} \implies 2^{2}+2=(2-i\sqrt{2})(2+i\sqrt{2})$
Res (ide, f) = $\lim_{z \to idz} (z - idz) + (z) = \lim_{z \to idz} (z - idz) = \frac{\log(\sinh(z))}{z^2 + 2}$	= - ide (2-ide) (2/ide) = lim = bg(sinh(21)) = 2->ide = 5/ide = = = = = = = = = = = = = = = = = = =
100/31/4(C/C/)	
$= \frac{\log(\sinh(id\bar{z}))}{i2d\bar{z}}$ Res(-idz,f) = \left\left\left\left(\sinh(-id\bar{z}))\right\left\left\left\left(\sinh(-id\bar{z}))\right\right\left\left\left(\sinh(-id\bar{z}))\right\right\right\left\left\left\left\left(\sinh(-id\bar{z}))\right\right\right\right\left\left\left\left\left\left\left\lef	$\lim_{\omega \to 0} \frac{\log \left(\sinh \left(\frac{1}{\omega}\right)\right)}{\frac{1}{\omega^2} + 2} = \lim_{\omega \to 0} \frac{\omega^3 \log \left(\sinh \left(\frac{1}{\omega}\right)\right)}{1 + 2\omega^2} = 0$
$10 \cdot 10 \cdot 10^{-10}$	1,2.2

- 6. Dado $\alpha \in \mathbb{N}$ y $f(z) = senh(\pi z^{\alpha})$
- i) Calcular formalmente el exponente de convergencia. (0.75 ptos)
- ii) Si $\alpha = 1$, hallar la factorización de Hadamard de f. (1 pto)

$$f(z)=0 \iff \sinh(ilz^{k})=0 \iff z^{k}=\prod_{n\in\mathbb{Z}} h^{n}i^{k}=n i \iff z=0$$
 in $f(z)=0 \iff z^{k}=1$ in $f(z)=0 \iff z^{k}=1$ in $f(z)=0 \iff z^{k}=1$ in $f(z)=0 \iff z^{k}=1$ in $f(z)=0 \iff z^{k}=1$

 $\lim_{n\to\infty} \frac{1}{(ni)^{k/k}}$ converge si $\frac{k}{\infty} > 1 \implies k > \infty \implies M = \infty$

$$\leq 1 \propto -1$$
 $f(z) = \sinh(iiz)$ $f_{(z)} = e^{g(z)} \prod_{k} (1 - \frac{z}{\epsilon_k}) = e^{g(z)} \prod_{k} (1 - \frac{z}{\epsilon_k})$

D' disco centrado en ceno y de rodio uno (disco unidad)

Vamos a usor el Tma de Rouché, que si g, h son holomortos en un dominio simplemente conexo D, 19(2) > 1h(2) en DD, entonces g(2) y g(2)+h(2) tionen el mismo número de ceros en D.

$$f(z) = g(z) + h(z) = e^{z} - 5z^{3} + 2 \implies g(z) = -Sz^{3} \quad h(z) = e^{z} + 2$$
Le holomorta en C por ser un polinomio

$$e^{z} = e^{x+iy}$$
, varificanos holomortía con Cauchy-Riemann $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y}$ $\frac{\partial v}{\partial y}$

$$q(z) = u(x,y) + iv(x,y) = e^{x}cos(y) + ie^{x}sin(y)$$

$$\frac{\partial U}{\partial x} = e^{x}\cos(y) = e^{x}\cos(y) - \frac{\partial V}{\partial y}$$

$$\frac{\partial U}{\partial y} = -e^{x}\sin(y) = -e^{x}\sin(y) = -\frac{\partial V}{\partial x}$$

$$\frac{\partial V}{\partial y} = -e^{x}\sin(y) = -e^{x}\sin(y) = -\frac{\partial V}{\partial x}$$

$$\frac{\partial V}{\partial y} = -e^{x}\sin(y) = -\frac{\partial V}{\partial x}$$

Cano g. h son helomortas en C, le son también en D (=> Poclemos aplicar el Tura de Rouché
El disas unidad es simplemente conexo

Como glè) = -523 es un polinomio de grado 3, por el Tha Fundamental del Álgebro, sabemos que tendrá 3 raíces

g(z)=0=>-5z3=0=>z=0 con multiplicidad 3 y OED => f(z) tiene 3 cevos en D

4. Utilizar el teorema de los resiudos en la siguiente integral
$$\int_{-\infty}^{\infty} \frac{9xsen(\pi x)}{x^4 + 4} dt. \text{ (2 ptos)}$$

$$\int_{-\infty}^{+\infty} \frac{q_{x} \sin(\pi x)}{x^{y} + 4} dx = \int_{-\infty}^{\infty} \frac{q_{x} \left(e^{i\pi x} - e^{-i\pi x}\right)}{2i \left(x^{y} + 4\right)} dx = \frac{q}{2i} \int_{-\infty}^{+\infty} \frac{x e^{i\pi x}}{x^{y} + 4} dx - \frac{q}{2i} \int_{-\infty}^{+\infty} \frac{x e^{i\pi x}}{x^{y} + 4} dx$$
Tendremos problemas de analiticidad cuando $x^{y} + y = 0 \implies x = \pm \sqrt{\pm 2i} \implies x = -i + 4$

Tendremos problemas de analiticidad cuando
$$x^4 + 4 = 0 \Rightarrow x = \pm 1/\pm 21 \Rightarrow x_3 = -i - 1$$

Solo tendremos en cuento $x_1 y x_4 + 1/\pm 21 \Rightarrow x_4 = i - 1$

Res $(f, x_i) = \lim_{x \to x_i} \frac{(x - x_i)}{x^4 + 4} = \lim_{x \to i + 1} \frac{(x - i - 1)(x + i - 1)(x + i + 1)(x - i + 1)}{(x - i - 1)(x + i - 1)(x + i + 1)(x - i + 1)}$

Res
$$(f, x_i) = \lim_{x \to x_i} \frac{xe^{i\Omega_x}}{x^2+4} = \lim_{x \to i+A} \frac{x-i-A}{(x-i-1)(x+i-1)(x+i+A)(x-i+A)}$$

$$= \lim_{X \to i+4} \frac{xe^{i\pi lx}}{(x+i-1)(x+i+4)(x-i+4)} = \frac{(i+4)e^{-i\pi l(i-1)}}{2i[2i+2)\cdot 2} = \frac{e^{\pi l(i-1)}}{8i}$$

$$Res(f,x_{i}) = \lim_{\substack{x \to i-4 \\ x \to i-4}} (x-i+1) \frac{xe^{i\pi x}}{(x-i-1)(x+i-1)(x-i+1)} = \frac{(i-i)e^{-\pi(i+1)}}{-2\cdot|2i-2|2i} = \frac{e^{-\pi(i+1)}}{-8i}$$

$$\int_{-\infty}^{+\infty} \frac{xe^{i\pi x}}{x^{4}y^{4}} dx = \frac{2\pi i}{8i} \left(e^{\pi(i-1)} - e^{-\pi(i+1)} \right) = \frac{\pi}{4} \left(e^{\pi(i-1)} - e^{-\pi(i+1)} \right)$$

$$\int_{-\infty}^{+\infty} \frac{x e^{i \pi x}}{x^4 + y} dx = \frac{2\pi i}{8i} \left(e^{\pi(i-i)} - e^{-\pi(i+i)} \right) = \frac{\pi}{4} \left(e^{\pi(i-i)} - e^{-\pi(i+i)} \right)$$

Analogomente para
$$g(x) = \frac{xe^{-i\pi x}}{x^{4}+4}$$

Res $(q,x_{1}) = \lim_{x \to i+1} \frac{xe^{i\pi x}}{(x+i-4)(x+i+4)(x-i+4)} = \frac{e^{-\pi(i-1)}}{8i}$

Res $(q,x_{1}) = \lim_{x \to i+1} \frac{xe^{i\pi x}}{(x+i-4)(x+i+4)(x-i+4)} = \frac{e^{-\pi(i-1)}}{8i}$

Res $(q,x_{1}) = \lim_{x \to i+1} \frac{xe^{i\pi x}}{(x+i-4)(x+i+4)(x-i+4)} = \frac{e^{-\pi(i-1)}}{8i}$

Res $(q,x_{1}) = \lim_{x \to i+1} \frac{xe^{i\pi x}}{(x+i-4)(x+i+4)(x-i+4)} = \frac{e^{-\pi(i-1)}}{8i}$

Res $(q,x_{1}) = \lim_{x \to i+1} \frac{xe^{i\pi x}}{(x+i-4)(x+i+4)(x-i+4)} = \frac{e^{-\pi(i-1)}}{8i}$

Res $(q,x_{1}) = \lim_{x \to i+1} \frac{xe^{i\pi x}}{(x+i-4)(x+i+4)(x-i+4)} = \frac{e^{-\pi(i-1)}}{8i}$

Res $(q,x_{1}) = \lim_{x \to i+1} \frac{xe^{i\pi x}}{(x+i-4)(x+i+4)(x-i+4)} = \frac{e^{-\pi(i-1)}}{8i}$

Res $(q,x_{1}) = \lim_{x \to i+1} \frac{xe^{i\pi x}}{(x+i-4)(x+i+4)(x-i+4)} = \frac{e^{-\pi(i-1)}}{8i}$

Res $(q,x_{1}) = \lim_{x \to i+1} \frac{xe^{i\pi x}}{(x+i-4)(x+i+4)(x-i+4)} = \frac{e^{-\pi(i-1)}}{8i}$

Res $(q,x_{1}) = \lim_{x \to i+1} \frac{xe^{i\pi x}}{(x+i-4)(x+i+4)(x-i+4)} = \frac{e^{-\pi(i-1)}}{8i}$

Res $(q,x_{1}) = \lim_{x \to i+1} \frac{xe^{i\pi x}}{(x+i-4)(x+i+4)(x-i+4)} = \frac{e^{-\pi(i-1)}}{8i}$

Res $(q,x_{1}) = \lim_{x \to i+1} \frac{xe^{i\pi x}}{(x+i-4)(x+i+4)(x-i+4)} = \frac{e^{-\pi(i-1)}}{8i}$

Res $(q,x_{1}) = \lim_{x \to i+1} \frac{xe^{i\pi x}}{(x+i-4)(x+i+4)(x-i+4)} = \frac{e^{-\pi(i-1)}}{8i}$

Res $(q,x_{1}) = \lim_{x \to i+1} \frac{xe^{i\pi x}}{(x+i-4)(x+i+4)(x-i+4)} = \frac{e^{-\pi(i-1)}}{8i}$

Res $(q,x_{1}) = \lim_{x \to i+1} \frac{xe^{i\pi x}}{(x+i-4)(x+i+4)(x-i+4)} = \frac{e^{-\pi(i-1)}}{8i}$

Res $(q,x_{1}) = \lim_{x \to i+1} \frac{xe^{i\pi x}}{(x+i-4)(x+i+4)(x-i+4)} = \frac{e^{-\pi(i-1)}}{8i}$

Res $(q,x_{1}) = \lim_{x \to i+1} \frac{xe^{i\pi x}}{(x+i-4)(x+i+4)(x-i+4)} = \frac{e^{-\pi(i-1)}}{8i}$

Res $(q,x_{1}) = \lim_{x \to i+1} \frac{xe^{i\pi x}}{(x+i-4)(x+i+4)(x-i+4)} = \frac{e^{-\pi(i-1)}}{8i}$

Res $(q,x_{1}) = \lim_{x \to i+1} \frac{xe^{i\pi x}}{(x+i-4)(x+i+4)(x-i+4)} = \frac{e^{-\pi(i-1)}}{8i}$

Res $(q,x_{1}) = \lim_{x \to i+1} \frac{xe^{i\pi x}}{(x+i-4)(x+i+4)(x-i+4)} = \frac{e^{-\pi(i-1)}}{8i}$

Res $(q,x_{1}) = \lim_{x \to i+1} \frac{xe^{i\pi x}}{(x+i-4)(x+i+4)(x-i+4)} = \frac{e^{-\pi(i-1)}}{8i}$

Res $(q,x_{1}) = \lim_{x \to i+1} \frac{xe^{i\pi x}}{(x+i-4)(x+i+4)(x+i+4)} = \frac{e^{-\pi(i-1)}}{8i}$

Res $(q,x_{1}) = \lim_{x \to i+1} \frac{xe^{i\pi x}}{(x+i-4)(x+i+4)(x$

i)
$$\int_{C(i,3)} \frac{1}{(z^2+9)^3} dz$$
 mediante fórmulas de Cauchy. (1 pto)

$$(z^2+q)^3=0 \implies z^2+q=0 \implies z=\pm 3c$$

Dos polos de orden 1

$$\int_{C(i,3)} \frac{1}{(z^2+q)^3} dz = \int_{C(i,3)} \frac{1}{(z-3i)(z+3i)^3} dz = \int_{C(i,3)} \frac{1}{(z-3i)^3} dz = \int_{C(i,3)} \frac{1}{(z-3i)$$

$$\frac{A}{(z-3i)^3} + \frac{B}{(z+3i)^3} = \frac{A(z+3i)^3 + B(z-3i)^3}{(z-3i)^3(z+3i)^3} \implies A(z+3i)^3 + B(z-3i)^3 = A \implies$$

$$\Rightarrow A(z^3 + 9iz^2 - 27z - 27i) + B(z^3 - 9iz^2 - 27z + 27i) \implies A(z^3 - 27z) + B(z^3 - 27z) = A \implies$$

$$\iff A = B = \frac{A}{2z(z^2 - 27i)}$$

$$=\int_{C(i,3)}^{2} \frac{1}{2^{2}(z^{2}-27)(2-3i)^{3}} dz + \int_{C(i,3)}^{2} \frac{1}{2^{2}(z^{2}-27)(2+3i)^{3}} dz =$$