In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" – a series of pasteboard cards with holes punched in them. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). In the 1880s, Herman Hollerith invented the concept of storing data in machine-readable form. High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware. The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. For example, when a bug in a compiler can make it crash when parsing some large source file, a simplification of the test case that results in only few lines from the original source file can be sufficient to reproduce the same crash. Many factors, having little or nothing to do with the ability of the computer to efficiently compile and execute the code, contribute to readability. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. Allen Downey, in his book How To Think Like A Computer Scientist, writes: Many computer languages provide a mechanism to call functions provided by shared libraries. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. It is usually easier to code in "high-level" languages than in "low-level" ones. However, because an assembly language is little more than a different notation for a machine language, two machines with different instruction sets also have different assembly languages. Programming languages are essential for software development. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. Following a consistent programming style often helps readability. For example, when a bug in a compiler can make it crash when parsing some large source file, a simplification of the test case that results in only few lines from the original source file can be sufficient to reproduce the same crash. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less guickly. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. Integrated development environments (IDEs) aim to integrate all such help. While these are sometimes considered programming, often the term software development is used for this larger overall process with the terms programming, implementation, and coding reserved for the writing and editing of code per se. A similar technique used for database design is Entity-Relationship Modeling (ER Modeling). Scripting and breakpointing is also part of this process. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. Different programming languages support different styles of programming (called programming paradigms).