STK-INF 4000 - Week 16

Leftovers & Recap

Dirk Hesse

Google's Rules of ML

Source: http://martin.zinkevich.org/rules of ml/rules of ml.pdf.

- 0. Before Machine Learning
- 1. ML Phase 1: Your First Pipeline
- 2. ML Phase 2: Feature Engineering
- 3. ML Phase 3: Slowed Growth, Optimization Refinement, and Complex Models

Before ML

- Don't be afraid **not** to use ML!
 - Heuristics might work well.
 - You might not have enough data for ML.
- Design and implement metrics first.
 - Easier to get user consent early.
 - Start collecting data early.
 - Better system design if data collection built in.
 - Notice what changes and what doesn't.
- Prefer ML over complex heuristics.

ML Phase 1: Your First Pipeline

- Focus on infrastructure first.
 - Keep models simple.
 - Think about integration of ML part into system.
 - Use simple features.
- Test infrastructure independent from model.
- Be careful when copying pipelines.
 - E.g. dropping historical data.
- Re-use heuristics.
 - Preprocessing.
 - E.g. drop blacklisted domains.
 - Use heuristic as features.
 - Use heuristic's inputs as features.
 - Modify feature using heuristic.

Monitoring

- How often do we need to re-train?
- Test models before exporting.
 - Don't export models with e.g. bad AUC.
- Beware of silent failures.
 - E.g. input table not getting updated.
- Document features.
- Make people responsible for features.

Your first Objective

- Don't overthink your fist choice of objective.
- Choose a simple and observable metric as first objective.
 - Good
 - Did the user click?
 - Did the company go bankrupt?
 - Maybe not at first
 - Did the user come back the next day?
 - How long did the user visit?
 - Bad
 - Is the user happy?
- Start with interpretable models.
- Don't combine tasks.
 - E.g. quality ranking + spam filtering.

Phase 2: Feature Engineering

- Plan for iterations.
 - Don't be afraid to launch a model that's just good enough.
 - Don't be afraid to spend a little time on a model.
- Don't start out with learned features.
 - E.g. clustering, deep learning.
- Prefer features that are generic.
 - E.g. 'like count' makes only sense for older Tweets.
- Don't be afraid of features only applying to few cases.
 - If you have enough data.
 - Can use regularization to remove too specific features.
- Combine and modify features.
 - E.g. discretization, cross-products.
- Rule of thumb for linear models: d = O(N).
 - Of course, provided enough computing power.
- Clean up you feature space.
 - Unused features incur costs!

Human Analysis

- Beware of you biases!
- Measure difference between models.
- Utility is more important than predictive power.
 - What do you use or model for?
 - How good is it at that.
 - If they diverge, re-think model objective.
- Look for patterns in errors.
 - Create features to overcome them.
- Quantify any issues with the model.
 - First measure, then optimize.
- Same short term behavior \neq same long-term behavior.

Training Serving Skew

- Why?
 - Differences in pipelines.
 - Difference in data patterns at serving time.
 - Feedback loops.
- Save serving data + outcomes for later training.
- Sample and weight, don't drop data.
- Beware of changing external factors.
 - E.g. table with weather data.
- Re-use code as much as possible.

Training Serving Skew

- Choose test data for time series data with care!
 - Don't just leave data out randomly.
- Take care when using binary classification for filtering.
 - False positives can't be used for training straight-forwardly.
 - Better: Hold out e.g. 1% of data an let it all pass.
- Ranking = Skew
- Beware of feedback.
 - \circ E.g. higher rank \rightarrow more clicks.
- Measure skew.

Phase 3: Refinement

- Check if you're still optimizing the right thing.
 - Even great features won't save you if you don't!
- Keep the big picture in mind.
- Don't be afraid of ensembles.
 - But keep them simple!
- When performance plateaus, look for new data sources.
 - Don't waste too much time on refining models.
- Personalization ≠ popularity!
- Personalization ≠ personalization!
 - People have same peer group across platforms. Not necessarily same tastes.

What We have Learned...

Moore's Law

By Wgsimon - Own work, Wikimedia

By Wgsimon - Own work, Wikimedia

Tools

Tools ... aren't everything

The Idea

Course Content

Python

- Lists
 - Utility Functions
 - List comprehensions
 - Element access
 - Combining lists
- Tuples
- Strings
- for loops
 - o for-else
- while loops
- Reading data
- Lambdas
- Plotting basics

More Python

- Functions
 - Default arguments
 - o *vargs, **kwargs
- Dictionaries
 - Utility Functions
 - Element access
 - Dict comprehensions
 - o defaultdict, Counter
- Decorators
- Objects
 - Methods
 - Inheritance
- JSON

Web scraping

- Scrapy
- Beautifulsoup

Testing & IO

- Unittests
 - What can & can't be tested?
- REST APIs
- Twitter
 - Search API
 - Streaming API
 - Authentication
- MongoDB
 - Storing
 - Retrieving
 - Modifying
 - Aggregation

Machine Learning

- Intro
 - Data, input, target.
 - Learning task
 - Types of data
 - Supervised & Unsupervised learning
- Basic probability
 - Expectation values
 - Probability distributions
 - Conditional probability
- Decision theory

$$\circ f(x) = \mathrm{E}(Y|X=x).$$

- Loss function.
- K-Nearest neighbors
 - Bias-variance tradeoff

Pandas

- Series
- Index
- Arithmetic
- Data Frames
- Aggregation
- Pivot/Stack
- Reading data
- Plotting

Linear Regression

- Linear approximation
- Confidence intervals on parameters
- z-Score
- F statistic
- In Python
 - Pure Numpy
 - Scikit-Learn
 - Statsmodels

Variable Selection

- All subsets
- Forward/backward step-wise
- Shrinkage methods
 - Lasso
 - Ridge regression
 - Elastic net

Big(er) Data Quantities

- What is big?
- Inner workings of a computer.
- Storage
 - Latency
 - Bandwidth
 - Size
- CPU speeds
- Clusters

Map Reduce

- By hand.
- Spark.
 - RDDs
 - map, reduce, take, aggregate, (-by key), ...
 - Reading data

Classification

- Decision boundaries.
- Linear classification.
- Discriminant function.
- Categorical inputs.
- Linear/Quadratic Discriminant Analysis.
 - Regularization.
- Logistic regression.
- Objectives
 - False/true positives/negatives
 - Sensitivity, Specificity, Precision, Accuracy.
 - ROC, AUC
- Cover type data set.
- Wine quality data set.

Classification in Spark

- The Spark Data Frame.
 - Operations
 - Creating
 - Selecting data
 - Schema
- Spark ML

Anomaly Detection

- Rule-based systems.
- Outliers, z-score, Chebychev's inequality.
- Clustering
 - Objective, distance functions, Linkage.
 - Hierarchical clustering.
 - Divisive vs. agglomerative.
 - K-Means and others.
 - Knee method and inertia
- Clustering for fraud detection.

Clustering in Spark

- Data frames.
 - Collecting features.
 - Exporting to pandas.
- Clustering in Spark ML

Trees

- Calculating trees.
 - Stopping criteria.
- Regression and classification trees.
- Trees vs. regression.
- Bias-Variance trade-off, again.
 - Train-test split.
- Split functions
 - \circ Misclassification: $1-\hat{p}_{mk(m)}$.
 - \circ Gini index: $\sum_{k=1}^K \hat{p}_{mk} (1 \hat{p}_{mk})$.
 - \circ Cross-entropy: $-\sum_{k=1}^K \hat{p}_{mk} \log \hat{p}_{mk}$.
- Loss matrix.

Ensembles and Boosting

- Forward step-wise additive modeling.
- Adaboost.
- Loss functions
 - Classification
 - Misclassification: $I(\operatorname{sign}(f) \neq y)$.
 - Exponential: $\exp(-yf)$.
 - Binomial: $\log(1 + \exp(-2fy))$.
 - Squared error: $(y-f)^2$.
 - Regression
 - Squared error, $(f(x) y)^2$.
 - lacktriangle Absolute error, |f(x)-y|.
 - Huber loss,

$$L(f(x),y) = egin{cases} (y-f(x))^2 & ext{if } |y-f(x)| \leq \delta \ 2\delta |y-f(x)| - \delta^2 & ext{else}. \end{cases}$$

Gradient boosting

- Gradient descent.
- Fitting gradient descent with trees.
- Advantages:
 - Can use most loss functions.
 - Can use regularization.

Time series

- ARMA models.
- For outlier detection.

Model Evalutation

- Test error.
- Expected prediction error.
- Training error.
- Hyperparameters.
- Closer look at the bias.
 - Model bias
 - Estimation bias
- Generalization error, Akaike IC
- Cross Validation
- Bootstrapping.
- Bagging.
- Random forests.

Pipelines

- In Spark.
- In Sklearn.
- Including validation.
- Parameter tuning in pipelines.

NLP Field Trip

- Types of NLP tasks.
- Regular expressions.
- Tokenization.
- Normalization.
 - Stemming.
 - Lemmatization.
- Language models.
 - Markov assumption.
 - N-Gram models.
 - Calculating N-Gram probabilities.
- Text classification.
 - Naïve Bayes.

Presenting Results

- Flask.
- Javascript.
 - Google charts.

What's missing?

Support Vector Machines

Neural Networks

The Cloud

- AWS
- Google Cloud
- Azure
- Bluemix

Where to go From Here?

- NLP
- Deep Learning
- Machine Learning
- Summer Jobs
- Master Thesis in Industry

Final Presentation

- Don't forget an introduction!
 - What's your goal?
 - What's the main idea?
- Have you solved you original problem?
 - o If not, where are you?
 - Is this enough for some intermediate goal?
- Practical issues.
 - Pipelines.
 - Will you need to scale (Spark)?
- Show what you've done since last time.