Arpon Basu, School: AECS-4, Mumbai-400094

Solution for Problem U373

We define $a_k = 1 + \frac{1}{1+2+3+...+k+(k+1)} = 1 + \frac{2}{k+1} - \frac{2}{k+2}$, where $1 \le k \le n-1$.

Applying the AM-GM inequality to the numbers $a_1, a_2, a_3, ..., a_{n-1}$, we get that:- $(\frac{a_1 + a_2 + a_3 + ... + a_{n-1}}{n-1})^{n-1} > a_1 a_2 a_3 ... a_{n-1}$ (Note that a strict inequality holds because $a_1 \neq a_2 \neq a_3 \neq ... \neq a_{n-1}$ for $n \geq 2$). Now, $(\frac{a_1 + a_2 + a_3 + ... + a_{n-1}}{n-1})^{n-1} = (\frac{(n-1) + 2(\frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + ... + \frac{1}{n} - \frac{1}{n+1})}{n-1})^{n-1} = (1 + \frac{1}{2n+2})^{n-1} < (1 + \frac{1}{n-1})^{n-1}$. But, the upper bound of $(1 + \frac{1}{n-1})^{n-1}$ as $n \to \infty$ is e, where e is the base of natural logarithms. And since e < 3, we get that: $a_1 a_2 a_3 ... a_{n-1} < (\frac{a_1 + a_2 + a_3 + ... + a_{n-1}}{n-1})^{n-1} < e < 3$.