Texas State University

MATH 3323: Differential Equations

Instructor: Nestor Guillen

Problem Set 2

(1) Write down a explicit formula for the solution x(t) of each initial value problem

a)
$$\dot{x} = (1 - 2t)x^2$$
, $x(0) = -3$

b)
$$\dot{x} = \frac{tx}{\sqrt{1+t^2}}, \ x(0) = 1$$

c)
$$\dot{x} = 5t^{-1}x$$
, $x(0) = 5$

(2) Find the function y(x) such that y(0) = 0 and which solves the equation

$$y'(x) = \frac{2 - e^x}{3 + 2y(x)}$$

Once you find y(x), find the value of x where it attains its maximum value.

(3) Consider the nonlinear differential equation

$$\dot{x} = \frac{1}{3}x(\frac{7}{23} - x)$$

Then

- (a) Find the general formula for the solution (in terms of the initial value x(0)).
- (b) When x(0) = 1, what happens with x(t) as $t \to \infty$?
- (c) Find a solution x(t) of the equation which is constant in time.
- (d) Give an example of initial value x(0) so that $\lim_{t\to\infty} x(t) = 0$.
- (4) (BONUS) Let $x_1(t)$ and $x_2(t)$ be two solutions to the equation

$$\dot{x} = f(x),$$

where all know about f(x) is there is some L > 0 such that

$$f(x) - f(y) \le L(y - x)$$
 whenever $x < y$.

Show the following "differential inequality" holds

$$\frac{d}{dt}(x_1 - x_2)^2 \le -2L(x_1 - x_2)^2.$$

Use this to show the following inequality for solutions

$$|x_1(t) - x_2(t)| \le e^{-Lt}|x_1(0) - x_2(0)|$$
, for $t > 0$.

What do you think is the significance of this inequality? For the sake of concreteness, think for a second $x_1(t)$ and $x_2(t)$ represent the state of some physical system, what does this last inequality say about the behavior of the state of the system as time increases?

Hint: Once you obtain the differential inequality, use problem 5 from Problem Set 1.