目录

1				1			
	1.1			1			
		1.1.1	Estimating class probabilities in multiclass classification				
			via the softmax function	1			
		1.1.2	Broadening the output spectrum using a hyperbolic tangent	1			
2	Classifying Images with Deep Convolutional Neural Networks						
	2.1	The building blocks of CNNs					
		2.1.1	Discrete convolutions in one dimension	3			
		2.1.2	Subsampling layers	3			

ii

Chapter 1

1.1

1.1.1 Estimating class probabilities in multiclass classification via the softmax function

The softmax function is a soft form of the argmax function; instead of giving a single class index, it provides the probability of each class. Therefore, it allows us to compute meaningful class probabilities in multiclass settings (multinomial logistic regression).

In softmax, the probability of a particular sample with net input z belonging to the ith class can be computed with a normalization term in the denominator, that is, the sum of the exponentially weighted linear functions:

$$p(z) = \sigma(z) = \frac{e^{z_i}}{\sum_{j=1}^{M} e^{z_j}}$$
 (1.1)

1.1.2 Broadening the output spectrum using a hyperbolic tangent

Another sigmoidal function that is often used in the hidden layers of artificial NNs is the hyperbolic tangent (commonly known as tanh), which can be interpreted as a rescaled version of the logistic function:

$$\sigma_{logistic}(z) = \frac{1}{1 + e^{-z}}$$

$$\sigma_{tanh}(z) = 2 \times \sigma_{logistic}(2z) - 1 = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$
(1.2)

2 CHAPTER 1.

Activation fu	nction	Equation		Example	1D graph
Linear		$\sigma(z) = z$		Adaline, linear regression	
Unit step (Heaviside function)	σ(z)=	$\begin{cases} 0 \\ 0.5 \\ 1 \end{cases}$	z < 0 z = 0 z > 0	Perceptron variant	
Sign (signum)	σ(z)=	$\begin{cases} -1 \\ 0 \\ 1 \end{cases}$	z < 0 z = 0 z > 0	Perceptron variant	
Piece-wise linear	$\sigma(z) = \begin{cases} $	0 z+½ - 1	$z \le -\frac{1}{2}$ $\frac{1}{2} \le z \le \frac{1}{2}$ $z \ge \frac{1}{2}$	Support vector machine	
Logistic (sigmoid)	σ(z)=	e ^{-z}	Logistic regression, multilayer NN	
Hyperbolic tangent (tanh)	σ(z	$= \frac{e^{z} - e^{z}}{e^{z} + e^{z}}$	e ^{-z}	Multilayer NN, RNNs	
ReLU	σ(z	$=\begin{cases}0\\z\end{cases}$	z < 0 z > 0	Multilayer NN, CNNs	

图 1.1: The activation functions covered

The advantage of the hyperbolic tangent over the logistic function is that it has a broader output spectrum ranging in the open interval (-1,1), which can improve the convergence of the backpropagation algorithm.

Note that using torch.sigmoid(x) produces results that are equivalent to torch. nn.Sigmoid()(x). torch.nn.Sigmoid is a class to which you can pass in parameters to construct an object in order to control the behavior. In contrast, torch.sigmoid is a function.

Chapter 2

Classifying Images with Deep Convolutional Neural Networks

2.1 The building blocks of CNNs

2.1.1 Discrete convolutions in one dimension

Determining the size of the convolution output

The output size of a convolution is determined by the total number of times that we shift the filter, w, along the input vector. Let's assume that the input vector is of size n and the filter is of size m. Then, the size of the output resulting from y = x * w, with padding p and stride s, would be determined as follows:

$$o = \left\lfloor \frac{n+2p-m}{s} \right\rfloor + 1 \tag{2.1}$$

2.1.2 Subsampling layers

Subsampling is typically applied in two forms of pooling operations in CNNs: max-pooling and mean-pooling (also known as average-pooling). The pooling layer is usually denoted by $P_{n_1 \times n_2}$.

4CHAPTER 2. CLASSIFYING IMAGES WITH DEEP CONVOLUTIONAL NEURAL NETWORKS

The advantage of pooling is twofold:

- Pooling (max-pooling) introduces a local invariance. This means that small changes in a local neighborhood do not change the result of max-pooling. Therefore, it helps with generating features that are more robust to noise in the input data.
- Pooling decreases the size of features, which results in higher computational efficiency. Furthermore, reducing the number of features may reduce the degree of overfitting as well.

Overlapping versus non-overlapping pooling

Traditionally, pooling is assumed to be non-overlapping. Pooling is typically performed on non-overlapping neighborhoods, which can be done by setting the stride parameter equal to the pooling size. For example, a non-overlapping pooling layer, $P_{n_1 \times n_2}$, requires a stride parameter $s = (n_1, n_2)$. On the other hand, overlapping pooling occurs if the stride is smaller than the pooling size.