

1b. SENZOROVÉ SÍTĚ

Přednášející: prof. Ing. Miroslav Husák, CSc.

husak@fel.cvut.cz

tel.: 2 2435 2267

http//micro.fel.cvut.cz

Cvičení:

Ing. Adam Bouřa, Ph.D.

Ing. Tomáš Teplý

Ing. Alexandr Laposa

? Nakreslete princip vytváření senzorových sítí pro IoT

Rozsáhlá bezdrátová senzorová síť s různými komunikačními standardy

Příklad senzorové sítě pro domácnost

Senzorové sítě - komunikace + automatizace + řízení

Senzorové sítě - komunikace + automatizace + řízení

Senzorové sítě - komunikace + automatizace + řízení

Příklad hardware bezdrátové senzorové sítě (WSN)

Bezdrátové senzorové sítě

Bezdrátové senzorové sítě - Wireless Sensor Networks (WSN)

- Senzorové sítě spojené s bezdrátovou komunikací.
- Velké množství uzlů vybavené různými typy senzorů.
- Senzorové sítě jsou založené na principech počítačových sítí se síťovou strukturou umožňující nové aplikace (životní prostředí, průmysl, automatizace, zdravotnictví nebo v letectví a kosmonautice nebo v armádě).
- WSN jsou omezeny výkonovými zdroji a výpočetní kapacitou.
- WSN mohou být navrhovány pro různé účely, např. ke shromažďování a zpracování dat pro lepší porozumění chování sledované entity, pro monitorování výskytu možných událostí v prostředí a tím i vytvoření možného zpětného akčního působení.

MEMS mikrosenzory v senzorových sítích senzorů

- MEMS senzorové uzle jsou často označované jako Smart dust (Chytrý nebo Inteligentní prach), snímání fyzikálních i biochemických veličin (např. glukóza).
- Spotřeba elektrické energie
- Vývoj autonomních napájecích systémů (piezoelektrické, elektrostatické nebo solární, ale i mikroreaktory apod.), které by umožnily energetickou nezávislost systémů a tím i jejich dlouhý nezávislý provoz.
- Energeticky úsporné algoritmy umožňující senzorům autonomní činnost, tj. sběr a přenos informací podle stupně významu.
- Do senzorových sítí se implementují distribuované systémy řídící jejich činnost.

MEMS mikrosenzory se v sítích senzorů

- Intel vytvořil Open source operační systém s označením TinyOS (Systém umožňuje senzorům a senzorovým sítím získávat shrnující informace nebo jejich různé třídění ze získaných dat, pracuje s programovatelnými routery, které umožňují určení činnosti v okolí senzoru nebo senzorové sítě).
- Senzorové sítě musí být schopné sdílet informace, být dotazovány a programovány prostřednictvím internetu.
- K tomu mají být využívány nastupující standardy vyvinuté organizací
 Open GIS Consortium, které mají vytvořit prostředí, kde všechny
 senzory a senzorové systémy včetně jejich datového vybavení byly
 přístupné a ovladatelné přes webovské rozhraní

Standardizace SML rozhraní (Sensor Model Language)

- V současnosti různé senzorové sítě komunikují různým vlastním jazykem. Tyto sítě jsou sice nezávislé, ale dokáže s nimi pracovat a využívat jejich vlastností jen omezená skupina.
- Standardizace SML rozhraní (Sensor Model Language) podporující současný hardware a software. Představy do budoucnosti jsou ve více autonomních senzorových sítí, které budou samy schopny činnosti a komunikace se senzory.
- Standardizace přinese zaručenou spolupráci senzorových systémů, počítačových systémů, sítí i softwaru, která dnes je ještě značně nedokonalá.

Central Nervous System for the Earth CeNSE (Ústřední nervový systém Země).

- Hewlett-Packard grandiózní projekt globální senzorové sítě.
- Síť senzorů (od milionů až po stovky milionů po celé Zemi).
- Předpokládá se možnost instalace do většiny mobilů (miliardy).
- Využití MEMS senzorů pro monitorování pohybu, zrychlení, vibrací, teploty, srdečního tepu apod.
- Nové komunikační spoje s optickými kabely a sítě mobilních operátorů, třídění a vyhodnocení dat v počítačových centrech.
- Velké množství dat zvýšené požadavky na rychlost komunikace.
- Metody zpracování velkého množství dat (senzorové fúze, agregace dat atd.)
- Klíčovými problémy jsou topologie, rekonfigurování, routing (směrování dat) a protokoly sítě.

Komunikační architektura senzorových sítí

Jednotlivé vrstvy

- zajišťují činnost sítě
- jsou podporované protokoly

Protokoly

- zajišťují správnou činnost a směrování dat
- integrují data
- komunikují efektivně prostřednictvím bezdrátového média
- podporují spolupráci senzorových uzlů

Komunikační architektura senzorových sítí

Dílčí části sítí

Transportní vrstva - udržuje tok dat.

Síťová vrstva - směrování dat poskytnutých transportní vrstvou.

Fyzická vrstva – zajišťuje jednoduchou, ale robustní modulaci, přenosové a přijímací techniky.

Řízení spotřeby - napájení a řízení spotřeby senzorových uzlů.

Mobilita managementu - detekuje a zaznamenává pohyb senzorových uzlů pro nastavení cesty k uživateli a zachování informace o stopě uzlu ve vztahu k sousedním uzlům. Ze znalostí sousedních uzlů může daný uzel vyvážit výkon a zajišťované úkoly.

Management úkolů - vyvažuje a časuje snímací úkoly ve specifické oblasti (zajišťuje, aby senzorové uzly pracovaly společně výkonově účinným způsobem, směrování dat v mobilní senzorové síti a sdílení zdroje dat mezi jednotlivými uzly).

Uzly senzorových sítí

Standard IEEE 1451 a inteligentní senzor

Koncept inteligentního senzoru – definován na základě standardu IEEE 1451

Uzly senzorových sítí

Senzorový uzel (typicky nazývané *mote, node*)

Hlavní součásti:

- Senzorová část
- Zpracování signálu
- Vysílač pasivní nebo aktivní (optický systém nebo RF systém).
- Napájení
- Popř. další komponenty (určení polohy, autonomní napájení, pohyb senzorového uzlu – mobilizer).

Uzly senzorových sítí

- Komerční výroba řadou malých a středních podniků
- Aktuálně více než 127 milionů motes po celém světě.
- Výzkum hardwarových konfiguracích a 3D pouzdření např. v:
- Výrobní podniky (typické):

Tyndall National Institute, Fraunhofer-IZM, IMEC, Harvard, Imperial College London, UC Berkeley, ETH Zürich, MIT, Sandia National Laboratories, Yale, Intel, apod.

Určení:

většina je určena pro specifické aplikace, jako je životní prostředí, energie, monitoring, lékařské aplikace apod.

Hardware Mica

- Pravděpodobně nejvíce používaná platforma.
- Systém byl vyvinutý na UNI Berkeley
- Základní deska obsahuje řízení výkonu, procesor, bezdrátové vysílače a antény.
- Mica byl navržena s cílem optimalizovat senzorové rozhraní, univerzální platforma pro bezdrátovou senzorovou síť.
- Používá jednoduchou modulaci RFM rozhlasového vysílače
- Verze Mica2 a Mica2Dot, byly navrženy s optimalizací spotřeby.
- MicaZ je navržena jako kompatibilní k IEEE 802.15.4.

Bezdrátové senzorové uzly Mica2, Mica2Dot and TMote Sky

Motes od Intel

- navrženy pro náročnější aplikace z hlediska množství zpracovávaných informací s využitím fúze a agregace dat
- Platforma Intel Mote2 pracuje se ZigBee 802.15.4
- V roce 2005 Intel Digital Health Group vytvořila mote SHIMMER orientovaný na lékařské aplikace

Intel I-Mote a I-Mote2

Intel SHIMMER Mote

BT node (ETH v Zurich)

- autonomní bezdrátová komunikační a výpočetní platforma založenou na Bluetooth s nízkpříkonovým přijímačem a mikrokontrolerem.
- Výhoda platformy potenciál k činnosti v heterogenní síti, uzel může dokonce sloužit jako most mezi Bluetooth systémem a nízkopříkonovými sítěmi.

BT Node

Tyndall Mote (Irsko)

- kompaktní, vysoce rekonfigurovatelný a modulární mote
- řada kompatibilních zákaznicky navržených vrstev
- Komunikační vrstva obsahuje ZigBee kompatibilní, 2,4 GHz, 868 MHz a 433 MHz, ATmega128L a rozsáhlou knihovnou C ovladače slučitelných s TinyOS a dalších standardních operačních systémů

Projekt Smart Dust (Inteligentní prach) UNI Berkeley

- projekt měl využít pokrok v mikroelektronice a bezdrátové komunikaci, projekt počítá s nízkopříkonovým počítačem o objemu mm³.
- Tento Mote s objemem mm³ by měl obsahovat baterie, obousměrnou komunikaci, digitální logické obvody a senzory.

Projekt e-Grain (Fraunhofer institut)

- Mikrosystémové vrstvové technologie
- Každý funkční blok realizovaný jako miniaturní modul
- Jednotlivé moduly obsahují senzory, obvody úpravy signálu, komunikaci, napájení apod.
- Projekt je zaměřen na rozvoj potřebné systémové integrace a technologií k dosažení distribuovaného mikrosystému.

e-Grain,
modulární
stavební bloky
senzorového
uzlu k
zařazení do
inteligentní
senzorové sítě

Ultraminiaturní senzorový uzel pro snímání informace okolí a komunikaci

eCubes Fraunhofer Institut a TU Berlín

- Využití pro realizaci cenově efektivního mikrominiaturního, autonomního systému pro zařazení do inteligentní sítě.
- Pro realizaci se využívají mikrosystémové 3D technologie.
- 3D systém funkčních submodulů, z nichž každý je sám o sobě 3D systém různých (heterogenní) funkčních vrstev.
- Cílový objem systému e-kostky menší než 1 cm³.
- Využití se předpokládá především v oblastech zdraví, letectví a kosmonautika a automobilový průmysl a další.

eCubes - koncepce

Aplikace WSN Transportation and logistics Smart buildings Industrial (e.g. indoor climate applications control) Precision Smart grids agriculture and energy and animal tracking control systems **Applications** of wireless sensor networks Health care Environmental (health monitoring, monitoring medical diagnostics) Urban terrain Security tracking and civil and surveillance structure monitoring Entertainment

Senzorové sítě v biomedicíně

Biotelemetrické senzorové systémy

CHARACTERIZATION OF ON-BODY CHANNEL

- ➤ The human body is hostile to electromagnetic waves propagation due to it's lossy dielectric properties.
- Being a dispersive medium dielectric properties of human body change with frequency and it influences channel characteristics.
- ➤ Being electrically large compared to the operating microwave frequency, body parts will scatter and absorb the propagating waves.

prevence

nemocnice

3 Tire Architecture:

Imlantovaná senzorová síť BAN

- BAN zařízení malé, přenosné a implantovatelné systémy pro monitorování pacienta nebo zdravotního stavu sportovců, vojáků...
- Uplatnění kontinuální monitorování stavu pacienta, popř. kde je obtížně dostupný lékař
- Implantované senzory BAN sledování parametrů srdce, mozku a míchy, systémy umožňují aktivní stimulaci a fyziologické monitorování, nezbytné pro diagnostiku některých chronických onemocnění (např. mozková stimulace pro léčení Parkinsonovy choroby, páteřní stimulátory pro léčení chronických bolestí nebo stimulátory močového měchýře pro inkontinenci moči)

Nevýhoda

- Biokompatibilita pro činnost v blízkosti nebo uvnitř lidského těla
- Odolnost vůči rušení rádiových frekvencí (proti WiFi sítě, μW trouby, mobil)

Závěr

Operation Properties

Bezdrátové senzorové systémy jsou klíčové prvky hardwarové platformy potřebné ke konstrukci WSN, byly umožněny důsledkem rozvoje mikrotechnologií:

- Pokrok ve VLSI technologiích směrující k nanotechnologiím vedl k vývoji miniaturních, laciných nízkopříkonových mikrokontrolérů.
- Pokroky v RF technologiích současně s CMOS technologiemi vedly k vývoji
 vysoce integrovaných a výkonných RF přijímačů s jednočipovými
 integrovanými funkčními bloky.
- MEMS technologie umožnily vývoj laciných, nízkopříkonových, mikrominiaturních senzorů a dalších součástí funkčních bloků.

® Negativní:

Napájecí zdroje resp. baterie jsou nejslabším článkem v rozvoji WSN

Otázky ke zkoušce

- 1. Nakreslete princip vytváření senzorových sítí pro IoT
- 2. Nakreslete princip činnosti senzorového uzlu a jeho a zapojení do senzorové sítě

