

A.A. 2023/2024 Laurea Magistrale Informatica

Progetto Wine Type

Machine Learning – Febbraio 2024

Realizzato da:

Cavaleri Matteo - 875050

Gargiulo Elio - 869184

Piacente Cristian - 866020

Introduzione del Progetto

- Svolgimento di un'analisi esplorativa su un dataset scelto
- Costruzione e allenamento di tre modelli di apprendimento
- Verifica delle prestazioni ed efficacia sul dataset
- Comparazione tra modelli e analisi dei risultati
- Considerazioni e conclusioni

Features Dataset e Target

	type	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	white	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.0010	3.00	0.45	8.8	6
1	white	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.9940	3.30	0.49	9.5	6
2	white	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.9951	3.26	0.44	10.1	6
3	white	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	6
4	white	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	6

- Target: type (binario)
- 11 features continue e 1 categorica (quality intero tra 0 e 10)

La Scelta del Dataset

- Garantire coerenza e rilevanza nelle analisi successive
- Utilizzo di dati sensati anziché fittizi
- Dati principalmente numerici continui
- Non troppo complesso
- Compatibile con PCA

Pulizia e Casting del Dataset

Prima di tutto è stato sistemato il dataset per evitare di riscontrare problemi su dati non conformi all'analisi esplorativa

- Eliminazione di dati nulli
- Eliminazione di dati duplicati
- Casting al tipo booleano del target con Label Encoding (red -> False, white -> True)
- Casting al tipo categoria della quality.

Analisi delle Covariate e Target (1/4)

• Distribuzioni simili a gaussiane

Analisi delle Covariate e Target (2/4)

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

-0.2

- -0.4

- -0.6

 L'unica correlazione rilevante è total sulfur dioxide con free sulfur dioxide

Analisi delle Covariate e Target (3/4)

Target abbastanza sbilanciato

Analisi delle Covariate e Target (4/4)

- Quality non aggiunge informazione sul target type
 - → **Drop** della colonna

Principal Component Analysis (1/2)

	Eigenvalue	Variance Percent	Cumulative Variance Percent
Comp 1	2.991077	27.186472	27.186472
Comp 2	2.476404	22.508515	49.694986
Comp 3	1.585096	14.407246	64.102232
Comp 4	0.953458	8.666165	72.768397
Comp 5	0.742378	6.747617	79.516014

5 componenti spiegano ~ 80% varianza

Principal Component Analysis (2/2)

PCA efficace, componenti non correlate

Operazioni Preliminari

• Suddivisione dei dati ottenuti dalla PCA con dimensione (5295, 5)

Modello Baseline

 Punto di partenza per la costruzione dei modelli

- Classificazione per tutti white
 - → Test accuracy ~ 0.7572

Modelli di Apprendimento

- Rete Neurale
- Support Vector Machines
- Albero di Decisione

- Approccio Naive: immediato
- → Iperparametri di default/comuni
- Approccio Ottimale: complesso
- → Ricerca degli Iperparametri migliori

Rete Neurale Naive

Training Standard con 10 epoche

~ 0.1030

Test Loss

~ 0.1073

Rete Neurale Ottimale

Units	Learning Rate	Layers
480	0.001	1

Training Accuracy	Test Accuracy	Training Loss	Test Loss
~ 0.9906	~ 0.9862	~ 0.0321	~ 0.0591

- Keras Tuner Library
- Obiettivo riduzione dell'overfitting
- Layers di Dropout

Support Vector Machines Naive

Intuizione da PCA

Support Vector Machines Ottimale

Kernel	С	Gamma
rbf	100	0.01

Training Accuracy	Test Accuracy
~ 0.9895	~ 0.9874

 Hyperparameter Tuning con Grid Search

- 500

400

- 300

- 200

- 100

Albero Decisionale Naive

Training Accuracy	Test Accuracy
1.0	~ 0.9836

x[0] <= -1.017 gini = 0.387 samples = 3705 value = [971, 2734]

Albero Decisionale Ottimale

- 500

400

- 300

- 200

- 100

~ 0.9919

~ 0.9862

Valutazione Performance Ottimali (1/6)

Accuracy simili, siamo in presenza di un leggero overfitting

Tempo elevato per la Rete Neurale

Valutazione Performance Ottimali (2/6)

 Rete Neurale Ottimale converge subito con migliori valori, ma maggior overfitting

Valutazione Performance Ottimali (3/6)

Leggero overfitting in SVM ottimale

Valutazione Performance Ottimali (4/6)

Minor overfitting in Albero Decisionale Ottimale

Valutazione Performance Ottimali (5/6)

- Curve ROC ottimali sovrapposte
- AUC vicine ad 1

Valutazione Performance Ottimali (6/6)

UNIVERSITA'
UNIVER

Stratified 10-Fold Cross Validation

 La Rete Neurale ha valori maggiori degli altri due modelli

Considerazioni e Conclusioni

- I modelli ottimali ottenuti riportano buone metriche di performance anche se sono in leggero overfitting
- La Rete Neurale ha valori maggiori degli altri due modelli in cross validation richiedendo però maggior tempo per l'addestramento
- La SVM risulta essere il miglior compromesso tra risultati e complessità
- L'Albero Decisionale risulta essere il modello più veloce e semplice da utilizzare