The Integral
$$\int_{-1}^{\omega} \frac{1}{\sqrt[4]{1-\lambda^2}} \mathrm{d}\lambda$$

BY STEPHEN CROWLEY July 28, 2025

Theorem 1. [Integral of $(1-y^2)^{-1/4}$] For $\lambda \in [-1,1]$, the definite integral

$$\int_{-1}^{\lambda} \sqrt{\frac{1}{\sqrt{1-y^2}}} \, dy \tag{1}$$

can be expressed in terms of incomplete elliptic integrals of the second kind as:

$$\int_{-1}^{\lambda} \sqrt{\frac{1}{\sqrt{1-y^2}}} \ dy = 2 \left[\text{EllipticE} \left(\frac{\arcsin \lambda}{2} \middle| 2 \right) - \text{EllipticE} \left(-\frac{\pi}{4} \middle| 2 \right) \right]$$
 (2)

where $\mathrm{EllipticE}(\phi|m)$ denotes the incomplete elliptic integral of the second kind.

Proof. We proceed in several steps.

Step 1: Simplify the integrand.

$$\sqrt{\frac{1}{\sqrt{1-y^2}}} = \left(\frac{1}{\sqrt{1-y^2}}\right)^{1/2} = (1-y^2)^{-1/4} \tag{3}$$

Therefore, our integral becomes:

$$I = \int_{-1}^{\lambda} (1 - y^2)^{-1/4} dy \tag{4}$$

Step 2: Apply the trigonometric substitution $y = \sin \theta$.

Under this substitution:

$$dy = \cos\theta \ d\theta \tag{5}$$

$$1 - y^2 = 1 - \sin^2 \theta = \cos^2 \theta \tag{6}$$

$$(1-y^2)^{-1/4} = (\cos^2 \theta)^{-1/4} = |\cos \theta|^{-1/2}$$
(7)

For $\theta \in [-\pi/2, \pi/2]$, we have $\cos \theta \ge 0$, so $|\cos \theta| = \cos \theta$.

The limits of integration transform as:

$$y = -1 \Rightarrow \theta = \arcsin(-1) = -\frac{\pi}{2} \tag{8}$$

$$y = \lambda \Rightarrow \theta = \arcsin(\lambda) \tag{9}$$

Step 3: Transform the integral.

$$I = \int_{-\pi/2}^{\arcsin \lambda} (\cos \theta)^{-1/2} \cos \theta \ d\theta = \int_{-\pi/2}^{\arcsin \lambda} (\cos \theta)^{1/2} \ d\theta \tag{10}$$

Step 4: Express in terms of elliptic integrals.

It is a known result that:

$$\int \sqrt{\cos \theta} \ d\theta = 2 \operatorname{EllipticE}\left(\frac{\theta}{2} \middle| 2\right) + C \tag{11}$$

where EllipticE($\phi|m$) is the incomplete elliptic integral of the second kind.

Step 5: Evaluate the definite integral.

$$I = \left[2 \operatorname{EllipticE} \left(\frac{\theta}{2} \middle| 2 \right) \right]_{-\pi/2}^{\arcsin \lambda} \tag{12}$$

$$= 2 \operatorname{EllipticE}\left(\frac{\arcsin \lambda}{2} \middle| 2\right) - 2 \operatorname{EllipticE}\left(\frac{-\pi/2}{2} \middle| 2\right) \tag{13}$$

$$= 2 \left[\text{EllipticE} \left(\frac{\arcsin \lambda}{2} \middle| 2 \right) - \text{EllipticE} \left(-\frac{\pi}{4} \middle| 2 \right) \right]$$
 (14)

This completes the proof.