(19) World Intellectual Property Organization International Bureau

1000 (0100) (1000) (1000) (1000) (1000) (1000) (1000)

(43) International Publication Date 8 November 2001 (08.11.2001)

PCT

(10) International Publication Number WO 01/83717 A2

(51) International Patent Classification7:

C12N 9/00

- (21) International Application Number: PCT/CA01/00607
- (22) International Filing Date: 2 May 2001 (02.05.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/201,841

3 May 2000 (03.05.2000) U

- (71) Applicant (for all designated States except US): GLY-CODESIGN INC. [CA/CA]; 480 University Avenue, Suite 400, Toronto, Ontario M5G 1V2 (CA).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): RAO, Mohan [IN/CA]; 95 Thorncliffe Park Drive, Apartment 3409, Toronto, Ontario M4H 1L7 (CA). TVAROSKA, Igor [SK/CA]; 65 High Park Avenue, Apartment 2201, Toronto, Ontario M6P 2R7 (CA).

- (74) Agents: VAN ZANT, Joan M. et al.; Swabey Ogilvy Renault, Suite 1600, 1981 McGill College Avenue, Montreal, Québec H3A 2Y3 (CA).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

[Continued on next page]

(54) Title: DESIGNING MODULATORS FOR GALACTOSYLTRANSFERASES

(57) Abstract: The invention relates to structures and models of ligand binding domains of galactosyltransferases, and the ligand binding domains with ligands. The structural coordinates that define the structures and any ligands bound to the structures enable the determination of homologues, the structures of polypeptides with unknown structure, and the identification of modulators of the galactosyltransferases. The invention also relates to structures and models of nucleotide-sugar donors for the galactosyltransferases, and the design of modulators for the galactosyltransferases based on the properties of these structures and models.

01/83717 A2

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/83717 PCT/CA01/00607

TITLE: Designing Modulators for Galactosyltransferases

FIELD OF THE INVENTION

5

10

15

20

25

30

35

The invention relates to structures and models of ligand binding domains of galactosyltransferases, and the ligand binding domains with ligands. The structural coordinates that define the structures and any ligands bound to the structures enable the determination of homologues, the structures of polypeptides with unknown structure, and the identification of modulators of the galactosyltransferases. The invention also relates to structures and models of nucleotide-sugar donors for the galactosyltransferases, and the design of modulators for the galactosyltransferases based on the properties of these structures and models.

BACKGROUND OF THE INVENTION

Carbohydrate groups of glycoproteins are involved in various signaling and molecular recognition processes leading to important biological functions (1) and diseases (2). The processing and synthesis of a large number of both N- and O- linked carbohydrate chains involve the sequential and coordinated action of many different glycosyltransferases. Glycosyltransferases catalyze the transfer of monosaccharide from nucleotide sugars to a specific hydroxyl of various saccharide acceptors that leads to the formation of a new glycosidic linkage. There is at least one distinct glycosyltransferase for every type of glycosidic linkage.

Galactosyltransferases are a class of enzymes that utilize uridine-5'-diphosphogalactose (UDP-Gal) as the donor. Recently, a retaining galactosyltransferase, α -1,3-galactosyltransferase (α -1-3GalT; E.C.2.4.1.151) (4) has attracted much attention due to a problem of organ rejection in xenotransplantation. This enzyme is responsible for the formation of terminal α -Gal sequences in Gal α 1-3 Gal β 1- GlcNAc α 1-R. Oligosaccharide structures with a terminal Gal α 1-3Gal β 3 sequence (α -galactosyl epitopes) are xenoactive antigens (5) and are considered to be the major cause of hyperacute rejections in xenotransplantation. α -1,3-Galactosyltransferase is absent in humans and, conversely, large quantities of natural anti- α -1,3-Gal antibodies exist in the human body which react with the α -Gal epitope, thus providing a barrier to xenotransplant. The appearance of aberrant α -1,3-GalT in human cells is assumed to be responsible for some forms of anti-immune diseases (6).

Galactosyltransferases share a common topology with type II membrane proteins. Type II membrane proteins generally have a large N-terminal catalytic domain, a short stem region and a hydrophobic rich transmembrane domain (3). Although, various groups have performed a host of biochemical studies on this enzyme to understand structure-function relationships, the actual binding and catalytic mechanism of α -1,3-GalT is poorly understood. For an understanding of these important aspects in atomic detail it is essential to have a three-dimensional structure of α -1,3-GalT and structural information about the binding of UDP-Gal and oligosaccharide acceptor in the active site of α -1,3-GalT. Unfortunately, no crystal structure is available on α -1,3-GalT in native or complexed form.

SUMMARY OF THE INVENTION

The present inventors have produced a homology model for galactosyltransferases, and complexes of the enzymes with ligands including UDP and UDP-Gal. The homology model was developed by means of molecular modeling using the SpsA glycosyltransferase structure. In particular, a protein-ligand docking approach was used to model α -1,3-GalT complexed with UDP and UDP-Gal. In the predicted model complex, the diphosphate interacts with a DVD motif (Asp-225, Val-226 and Asp-227) of α -1-3GalT through a Mn²⁺ cation. The uridine part of the UDP binds into the cavity that consists of Phe-134, Tyr-139, Ile-140, Val-136, Arg-194, Arg-202, Lys-209, Asp-

PCT/CA01/00607 WO 01/83717

- 2 -

5

10

15

20

25 .

30

35

40

173, His-218, and Thr-137, in a "canonical conformation". Structural features of the α-1,3-GalT model were compared with available structural data on this class of enzymes and revealed similarities in the UDP binding pocket.

The invention provides a model or secondary, tertiary, and/or quanternary structure of a ligand binding domain of a galactosyltransferase. Binding domains are of significant utility in drug discovery. The association of natural ligands and substrates with the binding domains of galactosyltransferases is the basis of biological mechanisms. The associations may occur with all or any parts of a binding domain. An understanding of these associations will lead to the design and optimization of drugs having more favorable associations with their target enzyme and thus provide improved biological effects. Therefore, information about the shape and structure of galactosyltransferases and their ligand-binding domains is invaluable in designing potential modulators of galactosyltransferases for use in treating diseases and conditions associated with or modulated by the galactosyltransferases.

Ligand binding domains include one or more of the binding domains for a disphosphate group of a sugar nucleotide donor, a nucleotide of a sugar nucleotide donor, a nitrogeneous heterocyclic base (preferably a pyrimidine base, more preferably uracil) of a sugar nucleotide donor, a sugar of the nucleotide of a sugar nucleotide donor, a selected sugar of a sugar nucleotide donor that is transferred to an acceptor, and/or an acceptor. The structure of a ligand binding domain may be defined by selected binding sites in the domain.

Thus, broadly stated the present invention provides a model or a secondary or three dimensional structure of a ligand binding domain of a galactosyltransferase comprising one or more of the amino acid residues shown in Table 1 or Figure 2, 3, 4, or 6.

The invention also relates to a model or a secondary or three dimensional structure of a ligand binding domain of a galactosyltransferase defined by the structural coordinates of one or more of the atomic interactions or contacts of Table 1. Each of the atomic interactions is defined in Table 1 by an atomic contact (more preferably a specific atom where indicated) on the sugar nucleotide donor and an atomic contact (more preferably a specific atom where indicated) on the galactosyltransferase.

In accordance with an aspect of the invention, there is also provided a model of a ligand binding domain designed in accordance with a method of the invention and comprising hydrogen binding partners for the amide hydrogen, carbonyl oxygen in position 4, and the carbonyl oxygen of uracil.

The invention also provides a model of a ligand binding domain that binds the uridine portion of UDP and comprises two or more of Phe-134, Tyr-139, Ile-140, Val-136, Arg-194, Arg-202, Lys-209 (numbered as ATOM 204 in Table 8), Asp-173 (numbered as ATOM 169 in Table 8), His-218 (numbered as ATOM 213 in Table 8), and Thr-137 (numbered as ATOM 132 in Table 8). The invention also provides a model of a ligand binding domain that interacts with a pyrophosphate portion of UDP comprising Asp-225, Val-226, and Asp-227.

The invention provides a model or secondary, tertiary and/or quanternary structure of a galactosyltransferase.

The invention contemplates a model or secondary, tertiary and/or quanternary structure of a galactosyltransferase in association with a ligand or substrate.

The structures and models of the invention provide information about the atomic contacts involved in the interaction between the enzyme and a known ligand which can be used to screen for unknown ligands. Therefore the present invention provides a method of screening for a ligand capable of binding a galactosyltransferase ligand

10

15

20

25

30

35

40

binding domain, comprising the use of a secondary or three-dimensional structure or a model of the invention. For example, the method may comprise the step of contacting a ligand binding domain with a test compound, and determining if the test compound binds to the ligand.

A method of the invention may identify a ligand which can modulate the biological activity of a galactosyltransferase. Such a ligand is referred to herein as a "modulator". In an embodiment, the present invention contemplates a method of identifying a modulator of a galactosyltransferase or a ligand binding domain or binding site thereof, comprising the step of using the structural coordinates of a galactosyltransferase or a ligand binding domain or binding site thereof, or a model of the invention to computationally evaluate a test compound for its ability to associate with the galactosyltransferase or ligand binding domain or binding site thereof. Use of the structural coordinates of a galactosyltransferase structure, ligand binding domain, or binding site thereof, of the invention to identify a ligand or modulator is also provided.

A structure or model of the invention may be used to design, evaluate, and identify ligands of galactosyltransferases other than ligands that associate with a galactosyltransferase. The ligands may be based on the shape and structure of a galactosyltransferase, or a ligand binding domain or atomic interactions, or atomic contacts thereof. Therefore, ligands, in particular modulators, may be derived from ligand binding domains or analogues or parts thereof.

The present invention also contemplates a ligand identified by a method of the invention. A ligand may be a competitive or non-competitive inhibitor of a galactosyltransferase. Preferably, the ligand is capable of modulating the activity of a galactosyltransferase enzyme. Thus the methods of the invention permit the identification early in the drug development cycle of compounds that have advantageous properties.

In an embodiment of the invention, a method is provided for identifying a potential modulator of a galactosyltransferase by determining binding interactions between a test compound and atomic contacts of a binding domain of a galactosyltransferase defined in accordance with the invention comprising:

- (a) generating the atomic contacts on a computer screen;
- (b) generating test compounds with their spatial structure on the computer screen; and
- (c) determining whether the compounds associate or interact with the atomic contacts defining the galactosyltransferase;
- (d) identifying test compounds that are potential modulators by their ability to enter into a selected number of atomic contacts.

Another aspect of the invention provides methods for identifying a potential modulator of a galactosyltransferase function by docking a computer representation of a test compound with a computer representation of a structure of a galactosyltransferase or a ligand binding domain thereof that is defined as described herein. In an embodiment the method comprises the following steps:

- (a) docking a computer representation of a compound from a computer data base with a computer representation of atomic interactions or contacts of a ligand binding domain of a galactosyltransferase to obtain a complex;
- (b) determining a conformation of the complex with a favourable geometric fit and favourable complementary interactions; and
- (c) identifying test compounds that best fit the atomic interactions or contacts as potential modulators of the galactosyltransferase.

PCT/CA01/00607 WO 01/83717

In another embodiment the method comprises the following steps:

5

10

15

20

25

30

35

modifying a computer representation of a test compound complexed with a ligand binding domain (a) of a galactosyltransferase by deleting or adding a chemical group or groups;

- determining a conformation of the complex with a favourable geometric fit and favourable (b) complementary interactions; and
- (c) identifying a test compound that best fits the ligand binding domain as a potential modulator of a galactosyltransferase.

In still another embodiment the method comprises the following steps:

- selecting a computer representation of a test compound complexed with atomic contacts of a (a) binding domain of a galactosyltransferase; and
- (b) searching for molecules in a data base that are similar to the test compound using a searching computer program, or replacing portions of the test compound with similar chemical structures from a data base using a compound building computer program.

The ligands or compounds identified according to the methods of the invention preferably have structures such that they are able to enter into an association with a ligand binding domain. Selected ligands or compounds may be characterized by their suitability for binding to particular binding domains. A ligand binding domain or binding site may be regarded as a type of negative template with which the compounds correlate as positives in the manner described herein and thus the compounds are unambiguously defined. Therefore, it is possible to describe the structure of a compound suitable as a modulator of a galactosyltransferase by accurately defining the atomic interactions to which the compound binds to a ligand binding domain and deriving the structure of the compound from the spacial structure of the target. .

The invention contemplates a method for the design of ligands, in particular modulators, for galactosyltransferases based on the three dimensional structure of a sugar nucleotide donor (or part thereof) defined in relation to its spatial association with the three dimensional structure of the galactosyltransferase or a ligand binding domain thereof. Generally, a method is provided for designing potential inhibitors of a galactosyltransferase comprising the step of using the structural coordinates of a sugar nucleotide donor or part thereof, defined in relation to its spatial association with a three dimensional structure or model of a galactosyltransferase or a ligand binding domain thereof, to generate a compound for associating with a ligand binding domain of the galactosyltransferase. The following steps are employed in a particular method of the invention: (a) generating a computer representation of a sugar nucleotide donor, or part thereof, defined in relation to its spatial association with the three dimensional structure of a galactosyltransferase or a ligand binding domain thereof; (b) searching for molecules in a data base that are similar to the defined sugar nucleotide donor, or part thereof, using a searching computer program, or replacing portions of the compound with similar chemical structures from a database using a compound building computer program.

Therefore the invention further contemplates classes of ligands, in particular modulators, of a galactosyltransferase based on the three-dimensional structure of a sugar nucleotide donor, or part thereof, defined in relation to the sugar nucleotide donor's spatial association with a three dimensional structure of a galactosyltranferase.

WO 01/83717

5 -

It will be appreciated that a ligand or modulator of a galactosyltransferase may be identified by generating an actual secondary or three-dimensional model of a ligand binding domain or binding site, synthesizing a compound, and examining the components to find whether the required interaction occurs.

Modulators which are capable of modulating the activity of galactosyltransferases have therapeutic and prophylactic potential. Therefore, the methods of the invention for identifying modulators may comprise one or more of the following additional steps:

- (a) testing whether the ligand is a modulator of the activity of a galactosyltransferase, preferably testing the activity of the modulator in cellular assays and animal model assays;
- (b) modifying the modulator;

5

10

15

20

25

30

35

- (c) optionally rerunning steps (a) or (b); and
 - (d) preparing a pharmaceutical composition comprising the modulator.

Steps (a), (b) (c) and (d) may be carried out in any order, at different points in time, and they need not be sequential.

There is also provided a pharmaceutical composition comprising a modulator, and a method of treating and/or preventing disease comprising the step of administering a modulator or pharmaceutical composition comprising a modulator to a mammalian patient.

In an aspect, the invention contemplates a method of treating a disease associated with a galactosyltransferase with inappropriate activity in a cellular organism, comprising:

- (a) administering a modulator identified using the methods of the invention in an acceptable pharmaceutical preparation; and
- (b) activating or inhibiting a galactosyltransferase to treat the disease.

The invention provides for the use of a modulator identified by the methods of the invention in the preparation of a medicament to treat a disease associated with a galactosyltransferase with inappropriate activity in a cellular organism. Use of the structural coordinates of a galactosyltransferase structure of the invention to manufacture a medicament is also provided.

Another aspect of the invention provides machine readable media encoded with data representing a model of the invention or the coordinates of a structure of a galactosyltransferase or ligand binding domain or binding site thereof as defined herein, or the three dimensional structure of a sugar nucleotide donor defined in relation to its spatial association with a three dimensional structure of a galactosyltransferase as defined herein. The invention also provides computerized representations of a model of the invention or the secondary or three-dimensional structures of the invention, including any electronic, magnetic, or electromagnetic storage forms of the data needed to define the structures such that the data will be computer readable for purposes of display and/or manipulation. The invention further provides a computer programmed with a homology model of a ligand binding domain of a galactosyltransferase. The invention still further contemplates the use of a homology model of the invention as input to a computer programmed for drug design and/or database searching and/or molecular graphic imaging in order to identify new ligands for galactosyltransferases.

These and other aspects of the present invention will become evident upon reference to the following detailed description and attached drawings.

10

15

20

30

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described in relation to the drawings in which:

- Figure 1. Sequence alignment between SpsA and bovine α -1,3-GalT.
- Figure 2. A superposition of the SpsA structure and the α -1,3-GalT model. The active site residues of SpsA and the corresponding residues of α -1,3-GalT are shown as tubes. SpsA is shown in magenta and α -1,3-GalT is in blue. The side-chains of the α -1,3-GalT model are labeled. The active site modeled metal ion is shown as a red sphere.
- Figure 3. The low-energy computed docking modes of UDP to the α -1,3-GalT. About 60 low energy binding modes of UDP are shown in colored lines. The lowest energy binding mode is shown in thick tube. The critical amino acid residues are shown and labeled. All the low energy binders assume similar binding orientation.
- Figure 4. Possible docking modes of UDP-Gal to the α 1,3-GalT. The lowest-energy docking mode is shown as thick tube and some of the low energy binding modes are shown as thin lines.
- Figure 5. The predicted complex of α -1-3GalT and the inhibitor. Two top ranking docking modes are shown and in both, the inhibitor occupies the acceptor and pyrophosphate binding regions of the α -1,3-GalT. The lowest energy-binding mode is shown in thick tube.

Figure 6 shows the overall view of a docking model of bovine alpha 1,3 galT-UDP complex. GalT is shown in colored ribbon. The UDP is shown in think tubes. The amino acid residues that interact with UDP are shown in tubes and the modeled Mn²⁺ is shown in a sphere. The conserved DVD motif interaction with a metal can be seen.

- Figure 7 shows an overall representation of the UDP-Gal complex.
- Figure 8 shows computed low energy binding modes of UDP-Gal.
- Figure 9 shows lowest energy binding modes of LacNAc- β -Ome to α -1,3-GalT.

DESCRIPTION OF THE TABLES

- Table 1 Atomic interactions between a galactosyltransferase and UDP.
- Table 2 Characterization of the top five binding modes of UDP to α -1,3-galactosyltransfease.
- Table 3 Predicted secondary structures for the α -1,3-GalT sequence that was used for generating a homology model of α -1,3-GalT.
 - Table 4 Structural coordinates of a galactosyltransferase
 - Table 5 Structural coordinates of UDP.
 - Table 6 Structural coordinates of UDP-Gal.
 - Table 7 Structural coordinates of uracil, ribose, and pyrophosphate of UDP.
 - Table 8 Structural coordinates of a galactosyltransferases.

In Table 4, from the left, the second column identifies the atom number; the third identifies the atom type; the fourth identifies the amino acid type; the fifth identifies the residue number; the sixth identifies the x coordinates; the seventh identifies the y coordinates; and the eighth identifies the z coordinates.

35 DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Definitions:

Unless otherwise indicated, all terms used herein have the same meaning as they would to one skilled in the art of the present invention. Practitioners are particularly directed to Current Protocols in Molecular Biology

15

20

25

30

35

40

PCT/CA01/00607

- 7 -

(Ansubel) for definitions and terms of the art. Abbreviations for amino acid residues are the standard 3-letter and/or 1-letter codes used in the art to refer to one of the 20 common L-amino acids.

The term "associate", "association" or "associating" refers to a condition of proximity between a ligand, chemical entity or compound or portions or fragments thereof, and a galactosyltransferase, or portions or fragments thereof (e.g. ligand binding domain). The association may be non-covalent i.e. where the juxtaposition is energetically favored by for example, hydrogen-bonding, van der Waals, or electrostatic or hydrophobic interactions, or it may be covalent.

The term "galactosyltransferase" refers to an enzyme that catalyzes the transfer of a single monosaccharide unit i.e. galactose, from a donor to the hydroxyl group of an acceptor saccharide. The acceptor can be either a free saccharide, glycoprotein, glycolipid, or polysaccharide. The donor can be a sugar nucleotide, preferably UDP-Gal. Galactosyltransferases show a precise specificity for both the sugar acceptor and donor and generally require the presence of a metal cofactor.

Galactosyltransferases are derivable from a variety of sources, including viruses, bacteria, fungi, plants, and animals. In a preferred embodiment the galactosytransferases are derivable from an animal, preferably a mammal including but not limited to bovine, ovine, porcine, murine equine, most preferably a human. The enzyme may be from any source, whether natural, synthetic, semi-synthetic, or recombinant. Preferably the galactosyltransferase is a α1-3 galactosyltransferase, preferably derivable from bovine.

A galactosyltransferase or part thereof in the present invention may be a wild type enzyme, or part thereof, or a mutant, variant or homologue of such an enzyme.

The term "wild type" refers to a polypeptide having a primary amino acid sequence which is identical with the native enzyme (for example, the mammalian enzyme).

The term "mutant" refers to a polypeptide having a primary amino acid sequence which differs from the wild type sequence by one or more amino acid additions, substitutions or deletions. Preferably, the mutant has at least 90% sequence identity with the wild type sequence. Preferably, the mutant has 20 mutations or less over the whole wild-type sequence. More preferably the mutant has 10 mutations or less, most preferably 5 mutations or less over the whole wild-type sequence. A mutant may or may not be functional.

The term "variant" refers to a naturally occurring polypeptide which differs from a wild-type sequence. A variant may be found within the same species (i.e. if there is more than one isoform of the enzyme) or may be found within a different species. Preferably the variant has at least 90% sequence identity with the wild type sequence. Preferably, the variant has 20 mutations or less over the whole wild-type sequence. More preferably, the variant has 10 mutations or less, most preferably 5 mutations or less over the whole wild-type sequence.

The term "part" indicates that the polypeptide comprises a fraction of the wild-type amino acid sequence. It may comprise one or more large contiguous sections of sequence or a plurality of small sections. The "part" may comprise a ligand binding domain as described herein. The polypeptide may also comprise other elements of sequence, for example, it may be a fusion protein with another protein. Preferably the polypeptide comprises at least 50%, more preferably at least 65%, most preferably at least 80% of the wild-type sequence.

The term "homologue" means a polypeptide having a degree of homology with the wild-type amino acid sequence. The term "homology" can be equated with "identity".

In the present context, a homologous sequence is taken to include an amino acid sequence which may be at least 75, 85 or 90% identical, preferably at least 95 or 98% identical to the wild-type sequence. Typically, the WO 01/83717 PCT/CA01/00607

- 8 -

homologues will comprise the same sites (for example ligand binding domain) as the subject amino acid sequence. Although homology can also be considered in terms of similarity (i.e. amino acid residues having similar chemical properties/functions), in the context of the present invention it is preferred to express homology in terms of sequence identity.

Homology comparisons can be conducted by eye, or more usually, with the aid of readily available sequence comparison programs. These commercially available computer programs can calculate % homology between two or more sequences (e.g. Wilbur, W.J. and Lipman, D. J. Proc. Natl. Acad. Sci. USA (1983), 80:726-730).

The term "function" refers to the ability of a modulator to enhance or inhibit the association between a galactosyltransferase and a compound, or the activity of the galactosyltransferase.

"Ligand binding domain" refers to a region of a molecule or molecular complex that as a result of its shape, favourably associates with a ligand or a part thereof. For example, it may be a region of a galactoysltransferase that is responsible for binding a substrate or known modulator.

The term "ligand binding domain" includes homologues of a ligand binding domain or portions thereof. As used herein, the term "homologue" in reference to a ligand binding domain refers to a ligand binding domain or a portion thereof which may have deletions, insertions or substitutions of amino acid residues as long as the binding specificity of the molecule is retained. In this regard, deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues as long as the binding specificity of the ligand binding domain is retained.

As used herein, the term "portion thereof" means the structural coordinates corresponding to a sufficient number of amino acid residues of a galactosyltransferase ligand binding domain (or homologues thereof) that are capable of associating with or interacting with a test compound that binds to the ligand binding domain. This term includes galactosyltransferase ligand binding domain amino acid residues having amino acid residues from about 4Å to about 5Å of a bound compound or fragment thereof. Thus, for example, the structural coordinates provided in the structure may contain a subset of the amino acid residues in the ligand binding domain which may be useful in the modelling and design of compounds that bind to the ligand binding domain.

A ligand binding domain may be defined by its association with a ligand. With reference to the structures and models of the invention, residues in the ligand binding domain may be defined by their spatial proximity to a ligand. For example, such may be defined by their proximity to a substrate or modulator.

A ligand binding domain of the invention may comprise a DVD motif comprising one or more of Asp-225, Val-226, and Asp-227. A ligand binding domain may comprise one or more of Phe-134, Tyr-139, Ile-140, Val-136. Arg-194, Arg-202, Lys-209 (numbered as ATOM 204 in Table 8), Asp-173 (numbered as ATOM 169 in Table 8). His-218 (numbered as ATOM 213 in Table 8), and Thr-137 (numbered as ATOM 132 in Table 8) that binds uriding.

"Ligand" refers to a compound or entity that associates with a ligand binding domain, including substrates or analogues or parts thereof. A ligand may be designed rationally using a model according to the invention. A ligand may be a modulator.

"Modulator" refers to a molecule which changes or alters the biological activity of a galactosyltransferase. A modulator may increase or decrease galactosyltransferase activity, or change its characteristics, or functional or immunological properties. It may be an inhibitor that decreases the biological or immunological activity of the protein. A modulator may include but is not limited to peptides, members of random peptide libraries and

20

15

5

10

25

30

35

40

WO 01/83717

5

10

15

20

25

. 30

35

40

combinatorial chemistry-derived molecular libraries, phosphopeptides (including members of random or partially degenerate, directed phosphopeptide libraries), antibodies, carbohydrates, monosaccharides, oligosaccharides, polysaccharides, glycolipids, saponins, heterocyclic compounds, nucleosides or nucleotides or parts thereof, and small organic or inorganic molecules. A modulator may be an endogenous physiological compound or it may be a natural or synthetic compound. The term "modulator" also refers to a chemically modified ligand or compound, and includes isomers and racemic forms.

The term "structural coordinates" as used refers to a set of values that define the position of one or more amino acid residues with reference to a system of axes. A data set of structural coordinates defines the three dimensional structure of a molecule or molecules. Structural coordinates can be slightly modified and still render nearly identical three dimensional structures. A measure of a unique set of structural coordinates is the root-mean-square deviation of the resulting structure. Structural coordinates that render three dimensional structures that deviate from one another by a root-mean-square deviation of less than 2 Å, preferably less than 0.5 Å, more preferably less than 0.3 Å, may be viewed by a person of ordinary skill in the art as identical.

Variations in structural coordinates may be generated because of mathematical manipulations of the structural coordinates of a galactosyltransferase described herein. For example, the structural coordinates of Table 4 or 8 may be manipulated by crystallographic permutations of the structural coordinates, fractionalization of the structural coordinates, integer additions or substractions to sets of the structural coordinates, inversion of the structural coordinates or any combination of the above.

Variations in structure due to mutations, additions, substitutions, and/or deletions of the amino acids, or other changes in any of the components that make up a structure of the invention may also account for modifications in structural coordinates. If such modifications are within an acceptable standard error as compared to the original structural coordinates, the resulting structure may be the same. Therefore, a ligand that associates with or binds to a ligand binding domain of a galactosyltransferase would also be expected to associate with or bind to another ligand binding domain whose structural coordinates defined a shape that fell within the acceptable error. Such modified structures of a ligand binding domain are also within the scope of the invention.

Various computational analyses may be used to determine whether a ligand or the ligand binding domain thereof is sufficiently similar to all or parts of a ligand or ligand binding domain of the invention. Such analyses may be carried out using conventional software applications and methods as described herein.

The term "modeling" includes the quantitative and qualitative analysis of molecular structure and/or function based on atomic structural information and interaction models. The term includes conventional numeric-based molecular dynamic and energy minimization models, interactive computer graphic models, modified molecular mechanics models, distance geometry, and other structure-based constraint models. Preferably modeling is performed using a computer and may be optimized using known methods. This is called modeling optimization.

The term "substrate" refers to molecules that associate with a galactosyltransferase as it catalyzes the transfer of a selected sugar from a nucleotide sugar donor to an acceptor that leads to the formation of a new glycosidic linkage. A substrate includes a sugar nucleotide donor and acceptor and parts thereof.

A "sugar nucleotide donor" refers to a nucleotide coupled to a selected sugar that is transferred by a galactosyltransferase to an acceptor. The selected sugar may be a monosaccharide or disaccharide, preferably a monosaccharide. A suitable selected sugar includes galactose. The galatose may be modified for example, the hydroxyls may be blocked with acetonide, acylated, or alkylated or substituted with other groups such as halogen.

PCT/CA01/00607 WO 01/83717

- 10 -

5

10

15

20

25

30

35

40

The nucleotide is preferably UDP. The heterocyclic amine base in the nucleotide may be modified. For example, when the base is uridine it may be modified at the C-5 or C-6 position with groups including but not limited to alkyl. aryl, gallic acid, and with electron donating and electron withdrawing groups. The sugar in the nucleotide (e.g. ribose) may be modified at the 2' or 3' position with groups including but not limited to alkyl, aryl, gallic acid, and with electron donating and electron withdrawing groups.

An "acceptor" refers to the part of a carbohydrate structure (e.g. glycoprotein, glycolipid) where the selected sugar of a sugar nucleotide donor is transferred by the galactosyltransferase.

The term "alkyl", alone or in combination, refers to a branched or linear hydrocarbon radical, typically containing from 1 through 20 carbon atoms, preferably 1 through 10 carbon atoms, more preferably 1 to 6 carbon atoms. Typical alkyl groups include but are not limited to methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, tertbutyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, and the like.

The term "alkenyl", alone or in combination, refers to an unsaturated branched or linear group typically having from 2 to 20 carbon atoms and at least one double bond. Examples of such groups include but are not limited to ethenyl, 1-propenyl, 2-propenyl, 1-butenyl, 1,3-butadienyl, 1-hexenyl, 2-hexenyl, 1-pentenyl, 2-pentenyl, and the like.

The term "alkynyl", alone or in combination, refers to an unsaturated branched or linear group having 2 to 20 carbon atoms and at least one triple bond. Examples of such groups include but are not limited to ethynyl, 1propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 1-pentynyl, and the like.

The term "cycloalkyl" refers to cyclic hydrocarbon groups and includes but is not limited to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl.

The term "aryl", alone or in combination, refers to a monocyclic or polycyelic group, preferably a monocyclic or bicyclic group. An aryl group may optionally be substituted as described herein. Examples of aryl groups and substituted aryl groups are phenyl, benzyl, p-nitrobenzyl, p-methoxybenzyl, biphenyl, and naphthyl.

The term "alkoxy" alone or in combination, refers to an alkyl or cycloalkyl linked to the parent molecular moiety through an oxygen atom. The term "aryloxy" refers to an aryl linked to the parent molecular moiety through an oxygen atom. Examples of alkoxy groups are methoxy, ethoxy, propoxy, vinyloxy, allyloxy, butoxy, pentoxy, hexoxy, cyclopentoxy, and cyclohexoxy. Examples of aryloxy groups are phenyloxy, O-benzyl i.e. benzyloxy, O-pnitrobenzyl and O-p-methyl-benzyl, 4-nitrophenyloxy, 4-chlorophenyloxy, and the like.

The term "halo" or "halogen", alone or in combination, means fluoro, chloro, bromo, or iodo.

The term "amino", alone or in combination, refers to a chemical functional group where a nitrogen atom (N) is bonded to three substituents being any combination of hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, or aryl with the general chemical formula -NR₁₄R₁₆ where R₁₄ and R₁₆ can be any combination of hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, or aryl. Optionally one substituent on the nitrogen atom can be a hydroxyl group (-OH) to give an amine known as a hydroxylamine. Examples of amino groups are amino (-NH₂), methylamine, ethylamine, dimethylamine, 2-propylamine, butylamine, isobutylamine, cyclopropylamine, benzylamine, allylamine, hydroxylamine, cyclohexylamino (-NHCH(CH₂)₅), piperidine (-N(CH₂)₅) and benzylamino (-NHCH₂C₅H₅).

The term "thioalkyl", alone or in combination, refers to a chemical functional group where a sulfur atom (S) is bonded to an alkyl. Examples of thioalkyl groups are thiomethyl, thioethyl, and thiopropyl.

. The term "thioaryl", alone or in combination, refers to a chemical functional group where a sulfur atom (S) is bonded to an aryl group with the general chemical formula -SR16 where R16 is an aryl group which may be WO 01/83717

- 11 -

substituted. Examples of thioaryl groups and substituted thioaryl groups are thiophenyl, para-chlorothiophenyl, thiobenzyl, 4-methoxy-thiophenyl, 4-nitro-thiophenyl, and para-nitrothiobenzyl.

Heterocyclic rings are molecular rings where one or more carbon atoms have been replaced by hetero atoms (atoms not being carbon) such as for example, oxygen (O), nitrogen (N) or sulfur (S), or combinations thereof. Examples of heterocyclic rings include ethylene oxide, tetrahydrofuran, thiophene, piperidine (piperidinyl group), pyridine (pyridinyl group), and caprolactam. A carbocyclic or heterocyclic group may be optionally substituted at carbon or nitrogen atoms with for example, alkyl, phenyl, benzyl or thienyl, or a carbon atom in the heterocyclic group together with an oxygen atom may form a carbonyl group, or a heterocyclic group may be fused with a phenyl group.

Three Dimensional Structure of Galactosyltransferases and Ligand Binding Domains of Same

The present invention provides a galactosyltransferase secondary, tertiary and/or quanternary structure. The invention also provides a homology model that represents the secondary, tertiary, and/or quanternary structure of a galactosyltransferase. A model may, for example, be a structural model (or representation thereof), or a computer model. The model itself may be in two or three dimensions. It is possible for a computer model to be in three dimensions despite the constraints imposed by a conventional computer screen, if it is possible to scroll along at least a pair of axes, causing "rotation" of the image.

In accordance with an aspect of the invention a method is provided for designing a homology model of a ligand binding domain of a galactosytransferase wherein the homology model may be displayed as a threedimensional image, the method comprising:

- (i) providing an amino acid sequence and structural coordinates of a ligand binding domain structure of a glycosyltransferase, preferably SpsA glycosyltransferase;
- (ii) modifying said structure to take into account differences between the amino acid configuration of the ligand binding domains of the galactosyltransferase on the one hand and the SpsA glycosyltransferase on the other hand to generate a homology model, and
- (iii) if required refining the homology model.

5

10

15

20

25

30

35

The method may further comprise comparing the homology model with the structures of other, similar, proteins.

A model or structure of a preferred galactosyltransferase of the invention has the atomic structural coordinates as shown in Table 4 or Table 8. Computer representations of the structure i.e. models are illustrated in the Figures.

The structural coordinates in a structure or model of the invention may comprise the amino acid residues of a galactosyltransferase ligand binding domain, or a portion or homolog thereof useful in the modeling and design of test compounds capable of binding to the galactosyltransferase. Therefore, the invention also relates to a secondary and three dimensional structure or model of a ligand binding domain of a galactosyltransferase. Ligand binding domains include the ligand binding domains for a disphosphate group of a sugar nucleotide donor, a nucleotide of a sugar nucleotide donor, a nitrogeneous heterocyclic base (preferably a pyrimidine base, more preferably uracil) of a sugar nucleotide donor, and/or a sugar (e.g. galactose) of a sugar nucleotide donor. The structure of a ligand binding domain may be defined by selected atomic interactions or contacts in the domain, preferably two or more of the atomic interactions or contacts as defined in Table 1.

15

20

25

30

35

40

WO 01/83717 PCT/CA01/00607

- 12 -

It is understood that a structure or model of the invention includes a structure where at least one amino acid residue is replaced with a different amino acid residue or by adding or deleting amino acid residues, and having substantially the same three dimensional structure as the galactosyltransferase as described in Table 4 and the Figures, or the ligand binding domains as described in Table 1 (and further defined by the structural coordinates of the ATOMS in Table 4 or Table 8), i.e. having a set of atomic structural coordinates that have a root mean square deviation of less than or equal to about 2Å, preferably less than 0.5Å, most preferably less than 0.3Å, when superimposed with the atomic structure coordinates of the galactosyltransferase as described in Table 4 or Table 8, or the binding domains as described in Table 1 (and further defined by the structural coordinates of the ATOMS in Table 4) when at least 50% to 100% of the atoms of the sugar nucleotide donor binding domain or binding domains of components of the donor as the case may be, are included in the superimposition.

The invention also features a secondary and three dimensional structure or model of a galactosyltransferase in association with one or more molecules (e.g. substrates such as UDP-Gal, uridine-ribose, monophophate-Mn²⁺, or diphosphate-Mn²⁺). The association may be covalent or non-covalent. The molecule may be any organic molecule, and it may modulate the function of a galactosyltransferase by for example inhibiting or enhancing its function, or it may be an acceptor or donor for the galactosyltransferase. It is preferred that the geometry of the compound and the interactions formed between the compound and the galacytosyltransferase provide high affinity binding between the two molecules.

The structure and model of the galactosyltransferase decribed herein has allowed the identification and characterization of the binding domain of UDP and UDP-Gal. The UDP-Gal binding domain has been subdivided into three sub-sites (the uracil-binding domain, the ribose-binding domain, the diphosphate-Mn²⁺ binding domain, and the Gal binding domain) and characterized.

Therefore, in an embodiment of the invention, a secondary and three dimensional structure or model of a ligand binding domain of a galactosyltransferase that binds a diphosphate of a sugar nucleotide donor is provided comprising at least two of atomic interactions 9, 10, and 11 of Table 1, each atomic interaction defined therein by an atomic contact (more preferably, a specific atom where indicated) on the diphosphate, and an atomic contact (more preferably, a specific amino acid residue where indicated) on the galactosyltransferase (i.e. enzyme atomic contact). In a preferred embodiment, the ligand binding domain comprises atomic interactions 9 and 10, 10 and 11, 9 and 11, or 9, 10, and 11 of Table 1. Preferably, the binding domain is defined by the atoms of the enzyme atomic interactions having the structural coordinates for the atoms listed in Table 4 or Table 8. Therefore, in an embodiment of the invention the binding domain is defined by the structural coordinates referred to as ATOM 1690, and ATOM 1718 of Table 8 most preferably ATOM 1690 to ATOM 1718 inclusive of Table 8. The binding domain of a galactosyltransferase for a diphosphate of a sugar nucleotide donor is also characterized by a DVD motif (Asp-225, Val-226, and Asp-227).

In another embodiment of the invention, a secondary or three dimensional structure or model of a ligand binding domain of a galactosyltransferase that binds a heterocyclic amine base of a sugar nucleotide donor is provided comprising at least two, preferably three, of atomic interactions 1, 2, 3, and 4 of Table 1, each atomic interaction defined therein by an atomic contact (more preferably, a specific atom where indicated) on the heterocyclic amine base, and an atomic contact (more preferably, a specific amino acid residue where indicated) on the galactosyltransferase (i.e. enzyme atomic contact). In a preferred embodiment, the ligand binding domain comprises atomic interactions 1 and 2; 1 and 3; 1 and 4; 2 and 3; 2 and 4; 3 and 4; or 1, 2, and 3; 2, 3, and 4; 1, 3,

10

15

20

25

30

35

and 4; 1, 2, and 4; or 1, 2, 3 and 4 of Table 1. Preferably, the binding domain is defined by the atoms of the enzyme atomic interactions having the structural coordinates for the atoms listed in Table 4 or Table 8. Therefore, in an embodiment of the invention the binding domain is defined by the structural coordinates referred to as ATOM 720, ATOM 1360, ATOM 1490, ATOM 154 to ATOM 155 in Table 8. The ligand binding domain of a galactosyltransferase for a heterocyclic amine base of a sugar nucleotide donor is also characterized by two helices and two β sheets in anti-parallel fashion. A ligand binding domain for uracil can also be characterized by the following three hydrogen bonds: (1) the amide hydrogen of uracil in position 3 and OD1 of Asp-168, (2) the carbonyl oxygen of uracil in position 4 and the side chain of Lys-204, and (3) the carbonyl oxygen of uracil in position 2 and the amide hydrogen of the His-213 side chain.

In another embodiment of the invention, a secondary and three dimensional structure or model of a ligand binding domain of a galactosyltransferase that binds the sugar of the nucleotide (e.g. ribose) of a sugar nucleotide donor is provided comprising at least two, preferably three, of atomic interactions 5, 6, 7, and 8 of Table 1, each atomic interaction defined therein by an atomic contact (more preferably, a specific atom where indicated) on the sugar, and an atomic contact (more preferably, a specific amino acid residue where indicated) on the galactosyltransferase (i.e. enzyme atomic contact). In a preferred embodiment, the binding domain comprises atomic interactions 5 and 6; 5 and 7; 5 and 8; 6 and 7; 6 and 8; 7 and 8; 5, 6, and 7; 5, 6, and 8; 6, 7, and 8; 5, 7, and 8; and 5, 6, 7, and 8 of Table 1. Preferably, the ligand binding domain is defined by the atoms of the enzyme atomic interactions having the structural coordinates for the atoms listed in Table 4 or Table 8. Therefore, in an embodiment of the invention the binding domain is defined by the structural coordinates referred to as ATOM 1690, ATOM 97 to ATOM 115, ATOM 1436 to ATOM 1454 of Table 8.

Atomic interactions 1 through 11 in Table 1 are preferably each characterized by the types of binding and/or the distances between atomic contacts indicated in Table 1.

In another embodiment of the invention, a secondary or three dimensional structure of a ligand binding domain of a galactosyltransferase that binds a nucleotide (preferably UDP) of a sugar nucleotide donor is provided comprising at least two or more of atomic interactions 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11 of Table 1, each atomic interaction defined therein by an atomic contact (more preferably, a specific atom where indicated) on the nucleotide, and an atomic contact (more preferably, a specific amino acid residue where indicated) on the galactosyltransferase (i.e. enzyme atomic contact). In a preferred embodiment, the binding domain comprises atomic interactions 2, 3, 5, 6, 9, 10, and 11; 4, 7, 8, 9, 10, and 11; 1, 2, 3, 5, 6, 9, 10, 11, or 1 to 11 inclusive of Table 1. Preferably, the ligand binding domain is defined by the atoms of the enzyme atomic interactions having the structural coordinates for the atoms listed in Table 4 or Table 8. Therefore, in an embodiment of the invention the ligand binding domain is defined by the structural coordinates referred to as ATOM 720, ATOM 1360, ATOM 1490, ATOM 154, ATOM 155, ATOM 1690, ATOM 97 to ATOM 115, ATOM 1436 to ATOM 1454, and ATOM 1718, of Table 8. The binding domain of a galactosyltransferase for a nucleotide of a sugar nucleotide donor is also characterized by a 100 amino acid nucleotide recognition domain.

A UDP binding domain of a galactosyltransferase is also characterized by an open α,β-sandwich made up of three helices packed against four β-sheets. The following amino acid residues have also been identified to be part of the UDP binding domain: Phe-134, Typ-139, Ile-140, Val-136, Arg-194, Arg-202, Lys-209, Asp-173, His-218, Thr-137, Asp-225, Val-226, and Asp-227.

In yet another embodiment of the invention, a secondary and three dimensional structure or model of a ligand binding domain of a galactosyltransferase that binds a sugar nucleotide donor (preferably UDP-Gal) is provided comprising at least three of the atomic interactions of Table 1, each atomic interaction defined therein by an atomic contact (more preferably, a specific atom where indicated) on the sugar nucleotide donor, and an atomic contact (more preferably, a specific amino acid residue where indicated) on the galactosyltransferase (i.e. enzyme atomic contact). In a preferred embodiment, the binding domain comprises atomic interactions 1 to 11 inclusive of Table 1. Preferably, the ligand binding domain is defined by the atoms of the enzyme atomic interactions having the structural coordinates for the atoms listed in Table 4 or Table 8. Therefore, in an embodiment of the invention the ligand binding domain is defined by the structural coordinates referred to as ATOM 720, ATOM 1360, ATOM 1490, ATOM 154, ATOM 155, ATOM 1690, ATOM 97 to ATOM 115, ATOM 1436 to ATOM 1454, and ATOM 1718 of Table 4.

Identification of Homologues

5

10

15

20

25

30

35

The knowledge of the structures and models of the invention enables one skilled in the art to identify homologues of galactosyltransferases. This is achieved by searches of three-dimensional databases. Since structural folds are conserved to a greater extent than sequence, one may identify homologues with very little sequence identity or similarity. Programs that provide this type of database searching are known in the art and include Dal and the Fold recognition server located at UCLA (8). The structural coordinates of a protein structure are submitted and the program performs a multiple structural alignment with proteins in the protein data bank. Homologues identified in accordance with the present invention may be used in the methods of the invention described herein.

Computer Format of Structures/Models

Information derivable from the structures of the present invention (for example the structural coordinates) or a model of the present invention may be provided in a computer-readable format.

Therefore, the invention provides a computer readable medium or a machine readable storage medium which comprises the models of the invention or structural coordinates of a galactosyltransferase including all or any parts of the galactosyltransfersae (e.g ligand-binding domain), ligands including portions thereof, or substrates including portions thereof. Such storage medium or storage medium encoded with these data are capable of displaying on a computer screen or similar viewing device, a three-dimensional graphical representation of a molecule or molecular complex which comprises the enzyme or ligand binding domains or similarly shaped homologous enzymes or ligand binding domains. Thus, the invention also provides computerized representations of a model or structure of the invention, including any electronic, magnetic, or electromagnetic storage forms of the data needed to define the structures such that the data will be computer readable for purposes of display and/or manipulation.

In an aspect the invention provides a computer for producing a model or three-dimensional representation of a molecule or molecular complex, wherein said molecule or molecular complex comprises a galactosyltransferase or ligand binding domain thereof defined by structural coordinates of galactosyltransferase amino acids or a ligand binding domain thereof, or comprises structural coordinates of atoms of a ligand or substrate, or a three-dimensional representation of a homologue of said molecule or molecular complex, wherein said computer comprises:

(a) a machine-readable data storage medium comprising a data storage material encoded with machine readable data wherein said data comprises the structural coordinates of a galactosyltransferase

- amino acids according to Table 4 or Table 8 or a ligand binding domain thereof, or a ligand according to Table 5, 6, or 7;
- (b) a working memory for storing instructions for processing said machine-readable data;
- (c) a central-processing unit coupled to said working memory and to said machine-readable data storage medium for processing said machine readable data into said three-dimensional representation; and
- (d) a display coupled to said central-processing unit for displaying said three-dimensional representation.

A homologue may comprise a galactosyltransferase or ligand binding domain thereof, or ligand or substrate that has a root mean square deviation from the backbone atoms of not more than 1.5 angstroms.

The invention also provides a computer for determining at least a portion of the structural coordinates corresponding to an X-ray diffraction pattern of a molecule or molecular complex wherein said computer comprises:

- a machine-readable data storage medium comprising a data storage material encoded with machine (a) readable data wherein said data comprises the structural coordinates according to Table 4, 5, 6, 7, or 8;
- (b) a machine-readable data storage medium comprising a data storage material encoded with machine readable data wherein said data comprises an X-ray diffraction pattern of said molecule or molecular complex;
- a working memory for storing instructions for processing said machine-readable data of (a) and (c) (b);
- à central-processing unit coupled to said working memory and to said machine-readable data (d) storage medium of (a) and (b) for performing a Fourier transform of the machine readable data of (a) and for processing said machine readable data of (b) into structural coordinates; and
- a display coupled to said central-processing unit for displaying said structural coordinates of said (e) molecule or molecular complex.

The invention also contemplates a computer programmed with a homology model of a ligand binding domain according to the invention; a machine-readable data-storage medium on which has been stored in machinereadable form a homology model of a ligand binding domain of a galactosyltransferase; and the use of a homology model as input to a computer programmed for drug design and/or database searching and/or molecular graphic imaging in order to identify new ligands for galactosyltransferases.

Structural Determinations

5

10

15

20

25

30

35

The present invention also provides a method for determining the secondary and/or tertiary structures of a polypeptide by using a model according to the invention. The polypeptide may be any polypeptide for which the secondary and or tertiary structure is uncharacterised or incompletely characterised. In a preferred embodiment the polypeptide shares (or is predicted to share) some structural or functional homology to a galactosyltransferase, preferably a \$1,3 galactosyltranferase. For example, the polypeptide may show a degree of structural homology over some or all parts of the primary amino acid sequence. For example the polypeptide may have one or more domains which show homology with a galactosyltransferase domain (Kapitonov and Yu (1999) Glycobiology 9(10): 961-978).

10

15

20

25

30

35

The polypeptide may be a galactosyltransferase with a different specificity for a ligand or substrate. The polypeptide may be a galactosyltransferase which requires a different metal cofactor. Alternatively (or in addition) the polypeptide may be a galactosyltransferase from a different species.

The polypeptide may be a mutant of the wild-type galactosyltransferase. A mutant may arise naturally, or may be made artificially (for example using molecular biology techniques). The mutant may also not be "made" at all in the conventional sense, but merely tested theoretically using the model of the present invention. A mutant may or may not be functional.

Thus, using a model of the present invention, the effect of a particular mutation on the overall two and/or three dimensional structure of a galactosyltransferase and/or the interaction between the enzyme and a ligand or substrate can be investigated. Alternatively, the polypeptide may perform an analogous function or be suspected to show a similar catalytic mechanism to the galactosyltransferase enzyme. For example the polypeptide may transfer a sugar residue from a sugar nucleotide donor.

The polypeptide may also be the same as the polypeptide described herein, but in association with a different ligand (for example, modulator or inhibitor) or cofactor. In this way it is possible to investigate the effect of altering a ligand or compound with which the polypeptide is associated on the structure of a ligand binding domain.

Secondary or tertiary structure may be determined by applying the structural coordinates of the model of the present invention to other data such as an amino acid sequence, X-ray crystallographic diffraction data, or nuclear magnetic resonance (NMR) data. Homology modeling, molecular replacement, and nuclear magnetic resonance methods using these other data sets are described below.

Homology modeling (also known as comparative modeling or knowledge-based modeling) methods develop a three dimensional model from a polypeptide sequence based on the structures of known proteins (e.g. native or mutated galactosyltransferases). In the present invention the method utilizes a computer representation of the structure of a galactosyltransferase, or a binding domain or complex of same as described herein, a computer representation of the amino acid sequence of a polypeptide with an unknown structure (additional native or mutated galactosyltransferases), and standard computer representations of the structures of amino acids. The method in particular comprises the steps of; (a) identifying structurally conserved and variable regions in the known structure; (b) aligning the amino acid sequences of the known structure and unknown structure (c) generating coordinates of main chain atoms and side chain atoms in structurally conserved and variable regions of the unknown structure based on the coordinates of the known structure thereby obtaining a homology model; and (d) refining the homology model to obtain a three dimensional structure for the unknown structure. This method is well known to those skilled in the art (Greer, 1985, Science 228, 1055; Bundell et al 1988, Eur. J. Biochem. 172, 513; Knighton et al., 1992, Science 258:130-135, http://biochem.vt.edu/courses/modeling/ homology.htn). Computer programs that can be used in homology modeling are Quanta and the Homology module in the Insight II modeling package distributed by Molecular Simulations Inc, or MODELLER (Rockefeller University, www.iucr.ac.uk/sinris-top/logical/prgmodeller.html).

In step (a) of the homology modeling method, a known galactosyltransferase structure is examined to identify the structurally conserved regions (SCRs) from which an average structure, or framework, can be constructed for these regions of the protein. Variable regions (VRs), in which known structures may differ in conformation, also must be identified. SCRs generally correspond to the elements of secondary structure, such as

WO 01/83717 PCT/CA01/00607

5

10

15

20

25

30

35

40

alpha-helices and beta-sheets, and to ligand- and substrate-binding sites (e.g. acceptor and donor binding sites). The VRs usually lie on the surface of the proteins and form the loops where the main chain turns.

Many methods are available for sequence alignment of known structures and unknown structures. Sequence alignments generally are based on the dynamic programming algorithm of Needleman and Wunsch [J. Mol. Biol. 48: 442-453, 1970]. Current methods include FASTA, Smith-Waterman, and BLASTP, with the BLASTP method differing from the other two in not allowing gaps. Scoring of alignments typically involves construction of a 20x20 matrix in which identical amino acids and those of similar character (i.e., conservative substitutions) may be scored higher than those of different character. Substitution schemes which may be used to score alignments include the scoring matrices PAM (Dayhoff et al., Meth. Enzymol. 91: 524-545, 1983), and BLOSUM (Henikoff and Henikoff, Proc. Nat. Acad. Sci. USA 89: 10915-'0919, 1992), and the matrices based on alignments derived from three-dimensional structures including that of Johnson and Overington (JO matrices) (J. Mol. Biol. 233: 716-738, 1993).

Alignment based solely on sequence may be used, though other structural features also may be taken into account. In Quanta, multiple sequence alignment algorithms are available that may be used when aligning a sequence of the unknown with the known structures. Four scoring systems (i.e. sequence homology, secondary structure homology, residue accessibility homology, CA-CA distance homology) are available, each of which may be evaluated during an alignment so that relative statistical weights may be assigned.

When generating coordinates for the unknown structure, main chain atoms and side chain atoms, both in SCRs and VRs need to be modeled. A variety of approaches may be used to assign coordinates to the unknown. In particular, the coordinates of the main chain atoms of SCRs will be transferred to the unknown structure. VRs correspond most often to the loops on the surface of the polypeptide and if a loop in the known structure is a good model for the unknown, then the main chain coordinates of the known structure may be copied. Side chain coordinates of SCRs and VRs are copied if the residue type in the unknown is identical to or very similar to that in the known structure. For other side chain coordinates, a side chain rotamer library may be used to define the side chain coordinates. When a good model for a loop cannot be found fragment databases may be searched for loops in other proteins that may provide a suitable model for the unknown. If desired, the loop may then be subjected to conformational searching to identify low energy conformers if desired.

Once a homology model has been generated it is analyzed to determine its correctness. A computer program available to assist in this analysis is the Protein Health module in Quanta which provides a variety of tests. Other programs that provide structure analysis along with output include PROCHECK and 3D-Profiler [Luthy R. et al, Nature 356: 83-85, 1992; and Bowie, J.U. et al, Science 253: 164-170, 1991]. Once any irregularities have been resolved, the entire structure may be further refined. Refinement may consist of energy minimization with restraints, especially for the SCRs. Restraints may be gradually removed for subsequent minimizations. Molecular dynamics may also be applied in conjunction with energy minimization.

The structural coordinates of a galactosyltransferase structure may be applied to nuclear magnetic resonance (NMR) data to determine the three dimensional structures of polypeptides in solution (e.g. additional native or mutated galactosyltransferases). (See for example, Wuthrich, 1986, John Wiley and Sons, New York: 176-199; Pflugrath et al., 1986, J. Molecular Biology 189: 383-386; Kline et al., 1986 J. Molecular Biology 189:377-382). While the secondary structure of a polypeptide may often be determined by NMR data, the spatial connections between individual pieces of secondary structure are not as readily determined. The structural coordinates of a polypeptide can guide the NMR spectroscopist to an understanding of the spatical interactions between secondary

WO 01/83717

- 18 -

structural elements in a polypeptide of related structure. Information on spatial interactions between secondary structural elements can greatly simplify Nuclear Overhauser Effect (NOE) data from two-dimensional NMR experiments. In addition, applying the structural coordinates after the determination of secondary structure by NMR techniques simplifies the assignment of NOE's relating to particular amino acids in the polypeptide sequence and does not greatly bias the NMR analysis of polypeptide structure.

In an embodiment, the invention relates to a method of determining three dimensional structures of polypeptides with unknown structures, preferably a native or mutated galactosyltransferases, by applying the structural coordinates of a galactosyltransferase structure, or ligand binding domain or complex thereof described herein to nuclear magnetic resonance (NMR) data of the unknown structure. This method comprises the steps of: (a) determining the secondary structure of an unknown structure using NMR data; and (b) simplifying the assignment of through-space interactions of amino acids. The term "through-space interactions" defines the orientation of the secondary structural elements in the three dimensional structure and the distances between amino acids from different portions of the amino acid sequence. The term "assignment" defines a method of analyzing NMR data and identifying which amino acids give rise to signals in the NMR spectrum.

15 Screening Method

5

10

20

25

30

35

40

The present invention provides a method of screening for a ligand that associates with a ligand binding domain and/or modulates the function of a galactosyltranssferase, by using a structure or a model according to the present invention. The method may involve investigating whether a test compound is capable of associating with or binding a ligand binding domain.

In accordance with an aspect of the present invention, a method is provided for screening for a ligand capable of associating with or binding to a ligand binding domain, wherein said method comprises the use of a structure or model according to the invention.

In another aspect, the invention relates to a method of screening for a ligand capable of associating with or binding to a ligand binding domain, wherein the ligand binding domain is defined by the amino acid residue structural coordinates given herein, the method comprising contacting the ligand binding domain with a test compound and determining if said test compound binds to said ligand binding domain.

In one embodiment, the present invention provides a method of screening for a test compound capable of interacting with a key amino acid residue of a ligand binding domain of a galactosyltransferase.

Another aspect of the invention provides a process comprising the steps of:

- performing the method of screening for a ligand as described above; (a)
- (b) identifying one or more ligands capable of binding to a ligand binding domain; and
- preparing a quantity of said one or more ligands. (c)

A further aspect of the invention provides a process comprising the steps of:

- performing the method of screening for a ligand as described above; (a)
- (b) identifying one or more ligands capable of binding to a ligand binding domain; and
- preparing a pharmaceutical composition comprising said one or more ligands. (c)

Once a test compound capable of interacting with a key amino acid residue in a galactosyltransferase ligand binding domain has been identified, further steps may be carried out either to select and/or to modify compounds and/or to modify existing compounds, to modulate the interaction with the key amino acid residues in the galactosyltransferase ligand binding domain.

10

15

20

25

30

35

40

Yet another aspect of the invention provides a process comprising the steps of:

- (a) performing the method of screening for a ligand as described above;
- (b) identifying one or more ligands capable of binding to a ligand binding domain;
- (c) modifying said one or more ligands capable of binding to a ligand binding domain;
- (d) performing said method of screening for a ligand as described above;
- (e) optionally preparing a pharmaceutical composition comprising said one or more ligands.

As used herein, the term "test compound" means any compound which is potentially capable of associating with a ligand binding domain. If, after testing, it is determined that the test compound does associate with or bind to the ligand binding domain, it is known as a "ligand".

A "test compound" includes, but is not limited to, a compound which may be obtainable from or produced by any suitable source, whether natural or not. The test compound may be designed or obtained from a library of compounds which may comprise peptides, as well as other compounds, such as small organic molecules and particularly new lead compounds. By way of example, the test compound may be a natural substance, a biological macromolecule, or an extract made from biological materials such as bacteria, fungi, or animal (particularly mammalian) cells or tissues, an organic or an inorganic molecule, a synthetic test compound, a semi-synthetic test compound, a carbohydrate, a monosaccharide, an oligosaccharide or polysaccharide, a glycolipid, a glycopeptide, a saponin, a heterocyclic compound, a structural or functional mimetic, a peptide, a peptidomimetic, a derivatised test compound, a peptide cleaved from a whole protein, or a peptide synthesised synthetically (such as, by way of example, either using a peptide synthesizer or by recombinant techniques or combinations thereof), a recombinant test compound, a natural or a non-natural test compound, a fusion protein or equivalent thereof and mutants, derivatives or combinations thereof.

The test compound may be screened as part of a library or a data base of molecules. Data bases which may be used include ACD (Molecular Designs Limited), NCI (National Cancer Institute), CCDC (Cambridge Crystallographic Data Center), CAST (Chemical Abstract Service), Derwent (Derwent Information Limited), Maybridge (Maybridge Chemical Company Ltd), Aldrich (Aldrich Chemical Company), DOCK (University of California in San Francisco), and the Directory of Natural Products (Chapman & Hall). Computer programs such as CONCORD (Tripos Associates) or DB-Converter (Molecular Simulations Limited) can be used to convert a data set represented in two dimensions to one represented in three dimensions.

Test compounds may be tested for their capacity to fit spatially into a galactosyltransferase ligand binding domain. As used herein, the term "fits spatially" means that the three-dimensional structure of the test compound is accommodated geometrically in a galactosyltransferase ligand binding domain. The test compound can then be considered to be a ligand.

A favourable geometric fit occurs when the surface area of the test compound is in close proximity with the surface area of the cavity or pocket without forming unfavorable interactions or associations. A favourable complementary interaction occurs where the test compound interacts by hydrophobic, aromatic, ionic, dipolar, or hydrogen donating and accepting forces. Unfavourable interactions or associations may be steric hindrance between atoms in the test compound and atoms in the binding site.

In an embodiment of the invention, a method is provided for identifying potential modulators of galactosyltransferase function. The method utilizes the structural coordinates or model of a galactosyltransferase three dimensional structure, or binding domain thereof. The method comprises the steps of (a) docking a computer

10

15

20

25

30

35

40

WO 01/83717 PCT/CA01/00607

- 20 -

representation of a test compound from a computer data base with a computer model of a ligand binding domain of a galactosyltransferase; (b) determining a conformation of a complex between the test compound and binding domain with a favourable geometric fit or favorable complementary interactions; and (c) identifying test compounds that best fit the galactosyltransferase binding domain as potential modulators of galactosyltransferase function. The initial galactosyltransferase structure may or may not have substrates bound to it. A favourable complementary interaction occurs where a compound in a compound-galactosyltransferase complex interacts by hydrophobic, ionic, or hydrogen donating and accepting forces, with the active-site or ligand binding domain of a galactosyltransferase without forming unfavorable interactions.

If a model of the present invention is a computer model, the test compounds may be positioned in a ligand binding domain through computational docking. If, on the other hand, the model of the present invention is a structural model, the test compounds may be positioned in the ligand binding domain by, for example, manual docking.

As used herein the term "docking" refers to a process of placing a compound in close proximity with a galactosyltransferase ligand binding domain, or a process of finding low energy conformations of a test compound/ galactosyltransferase complex.

A screening method of the present invention may comprise the following steps:

- (i) generating a computer model of a galactosyltransferase or a ligand binding domain thereof according to the first aspect of the invention;
- (ii) docking a computer representation of a test compound with the computer model;
- (iii) analysing the fit of the compound in the galactosyltransferase or ligand binding domain thereof. In an aspect of the invention a method is provided comprising the following steps:
 - (a) docking a computer representation of a structure of a test compound into a computer representation of a ligand binding domain of a galactosyltransferase defined in accordance with the invention using a computer program, or by interactively moving the representation of the test compound into the representation of the binding domain;
 - (b) · characterizing the geometry and the complementary interactions formed between the atoms of the ligand binding domain and the test compound; optionally
 - (c) searching libraries for molecular fragments which can fit into the empty space between the compound and ligand binding domain and can be linked to the compound; and
 - (d) linking the fragments found in (c) to the compound and evaluating the new modified compound. In an embodiment of the invention a method is provided which comprises the following steps:
 - docking a computer representation of a test compound from a computer data base with a computer (a) representation of a selected site (e.g. an inhibitor binding domain) on a galactosyltransferase structure or model defined in accordance with the invention to obtain a complex;
 - determining a conformation of the complex with a favourable geometric fit and favourable (b) complementary interactions; and
 - (c) identifying test compounds that best fit the selected site as potential modulators of the galactosyltransferase.

A method of the invention may be applied to a plurality of test compounds, to identify those that best fit the selected site.

10

15

20

25

30

35

40

The model used in the screening method may comprise a galactosyltransferase or ligand binding domain thereof either alone or in association with one or more ligands and/or cofactors. For example, the model may comprise the ligand-binding domain in association with a ligand, substrate, or analogue thereof.

If the model comprises an unassociated ligand binding domain, then the selected site under investigation may be the ligand binding domain itself. The test compound may, for example, mimic a known substrate for the enzyme in order to interact with the ligand binding domain. The selected site may alternatively be another site on the enzyme.

If the model comprises an associated ligand binding domain, for example a ligand binding domain in association with a ligand or substrate molecule or analogue thereof, the selected site may be the ligand binding domain or a site made up of the ligand binding domain and the complexed ligand, or a site on the ligand itself. The test compound may be investigated for its capacity to modulate the interaction with the associated molecule.

A test compound (or plurality of test compounds) may be selected on the basis of its similarity to a known ligand for the galactosyltransferase. For example, the screening method may comprise the following steps:

- generating a computer model of a galactosyltransferase ligand binding domain in complex with a (i)
- (ii) searching for a test compound with a similar three dimensional structure and/or similar chemical groups; and
- evaluating the fit of the test compound in the ligand binding domain. (iii)

Searching may be carried out using a database of computer representations of potential compounds, using methods known in the art.

The present invention also provides a method for designing ligands for a galactosyltransferase. It is well known in the art to use a screening method as described above to identify a test compound with promising fit, but then to use this test compound as a starting point to design a ligand with improved fit to the model. A known modulator can also be modified to enhance its fit with a model of the invention. Such techniques are known as "structure-based ligand design" (See Kuntz et al., 1994, Acc. Chem. Res. 27:117; Guida, 1994, Current Opinion in Struc. Biol. 4: 777; and Colman, 1994, Current Opinion in Struc. Biol. 4: 868, for reviews of structure-based drug design and identification; and Kuntz et al 1982, J. Mol. Biol. 162:269; Kuntz et al., 1994, Acc. Chem. Res. 27: 117; Meng et al., 1992, J. Compt. Chem. 13: 505; Bohm, 1994, J. Comp. Aided Molec. Design 8: 623 for methods of structure-based modulator design).

Examples of computer programs that may be used for structure-based ligand design are CAVEAT (Bartlett et al., 1989, in "Chemical and Biological Problems in Molecular Recognition", Roberts, S.M. Ley, S.V.; Campbell, N.M. eds; Royal Society of Chemistry: Cambridge, pp 182-196); FLOG (Miller et al., 1994, J. Comp. Aided Molec. Design 8:153); PRO Modulator (Clark et al., 1995 J. Comp. Aided Molec. Design 9:13); MCSS (Miranker and Karplus, 1991, Proteins: Structure, Function, and Genetics 8:195); and, GRID (Goodford, 1985, J. Med. Chem. 28:849).

The method may comprise the following steps:

- docking a model of a test compound with a model of a selected ligand binding domain; (i)
- (ii) identifying one or more groups on the test compound which may be modified to improve their fit in the selected ligand binding domain;
- replacing one or more identified groups to produce a modified test compound model; and (iii)

- (iv) docking the modified test compound model with the model of the selected ligand binding domain, Evaluation of fit may comprise the following steps:
- (a) mapping chemical features of a test compound such as by hydrogen bond donors or acceptors, hydrophobic/lipophilic sites, positively ionizable sites, or negatively ionizable sites; and
- (b) adding geometric constraints to selected mapped features.

10

15

20

25

30

35

40

The fit of the modified test compound may then be evaluated using the same criteria.

The chemical modification of a group may either enhance or reduce hydrogen bonding interaction, charge interaction, hydrophobic interaction, Van Der Waals interaction or dipole interaction between the test compound and the key amino acid residue(s) of the selected site. Preferably the group modifications involve the addition, removal, or replacement of substituents onto the test compound such that the substituents are positioned to collide or to bind preferentially with one or more amino acid residues that correspond to the key amino acid residues of the selected site.

Identified groups in a test compound may be substituted with, for example, alkyl, alkoxy, hydroxyl, aryl, cycloalkyl, alkenyl, alkynyl, thiol, thioalkyl, thioaryl, amino, or halo groups. Generally, initial substitutions are conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. It should, of course, be understood that components known in the art to alter conformation should be avoided.

If a modified test compound model has an improved fit, then it may bind to the selected site and be considered to be a "ligand". Rational modification of groups may be made with the aid of libraries of molecular fragments which may be screened for their capacity to fit into the available space and to interact with the appropriate atoms. Databases of computer representations of libraries of chemical groups are available commercially, for this purpose.

A test compound may also be modified "in situ" (i.e. once docked into the potential binding domain), enabling immediate evaluation of the effect of replacing selected groups. The computer representation of the test compound may be modified by deleting a chemical group or groups, replacing chemical groups, or by adding a chemical group or groups. After each modification to a compound, the atoms of the modified compound and potential binding site can be shifted in conformation and the distance between the modulator and the active site atoms may be scored on the basis of geometric fit and favourable complementary interactions between the molecules. This technique is described in detail in Molecular Simulations User Manual, 1995 in LUDI.

Examples of ligand building and/or searching computer programs include programs in the Molecular Simulations Package (Catalyst), ISIS/HOST, ISIS/BASE, and ISIS/DRAW (Molecular Designs Limited), and UNITY (Tripos Associates).

The "starting point" for rational ligand design may be a known ligand for the enzyme. For example, in order to identify potential modulators of a galactosyltransferase, a logical approach would be to start with a known ligand (for example a substrate molecule or inhibitor) to produce a molecule which mimics the binding of the ligand. Such a molecule may, for example, act as a competitive inhibitor for the true ligand, or may bind so strongly that the interaction (and inhibition) is effectively irreversible. Such a method may comprise the following steps:

- generating a computer model of a galactosyltransferase ligand binding domain in complex with a (i) ligand;
- replacing one or more groups on the ligand computer model to produce a modified ligand; and (ii)

(iii) evaluating the fit of the modified ligand in the ligand binding domain.

5

10

15

20

25

30

35

The replacement groups could be selected and replaced using a compound construction program which replaces computer representations of chemical groups with groups from a computer database, where the representations of the compounds are defined by structural coordinates.

In an embodiment, a screening method is provided for identifying a ligand of a galactosyltransferase comprising the step of using the structural coordinates or model of a substrate molecule or component thereof, defined in relation to its spatial association with a galactosyltransferase structure or a ligand binding domain, to generate a compound that is capable of associating with the galactosyltransferase or ligand binding domain.

The invention contemplates a method for the design of modulators for galactosyltransferases based on the three dimensional structure or model of a sugar nucleotide donor (or parts thereof) defined in relation to the three dimensional structure of a ligand binding domain.

In accordance with particular aspects of the invention, a method is provided for designing potential inhibitors of a galactosyltransferase comprising the step of using the structural coordinates of uracil, uridine, or UDP of Table 5, 6, or 7 to generate a compound for associating with the active site of a ligand binding domain of a galactosyltransferase. The following steps are employed in a particular method of the invention: (a) generating a computer representation of uracil, uridine, or UDP defined by structural coordinates of Table 5, 6 or 7; (b) searching for molecules in a data base that are similar to the defined uracil, uridine, or UDP using a searching computer program, or replacing portions of the compound with similar chemical structures from a database using a compound building computer program.

In another embodiment of the invention, a method is provided for designing potential inhibitors of a glycosyltransferase comprising the step of using the structural coordinates of UDP-Gal of Table 6, to generate a compound for associating with the active site of a galactosyltransferase. The following steps are employed in a particular method of the invention: (a) generating a computer representation of UDP-Gal defined by the structural coordinates of Table 6; (b) searching for molecules in a data base that are similar to the defined UDP-Gal using a searching computer program, or replacing portions of the compound with similar chemical structures from a database using a compound building computer program.

The screening methods of the present invention may be used to identify compounds or entities that associate with a molecule that associates with a galactosyltransferase enzyme (for example, a substrate molecule).

Compounds and entities (e.g. ligands) of a galactosyltransferase identified using the above-described methods may be prepared using methods described in standard reference sources utilized by those skilled in the art. For example, organic compounds may be prepared by organic synthetic methods described in references such as March, 1994, Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, New York, McGraw Hill. (See detailed discussion herein.)

Test compounds and ligands which are identified using a model of the present invention can be screened in assays such as those well known in the art. Screening can be, for example, in vitro, in cell culture, and/or in vivo. Biological screening assays preferably centre on activity-based response models, binding assays (which measure how well a compound binds), and bacterial, yeast and animal cell lines (which measure the biological effect of a compound in a cell). The assays can be automated for high capacity-high throughput screening (HTS) in which large numbers of compounds can be tested to identify compounds with the desired activity. The biological assay,

PCT/CA01/00607 WO 01/83717

- 24 -

may also be an assay for the ligand binding activity of a compound that selectively binds to the ligand binding domain compared to other enzymes.

Ligands/Modulators

5

10

15

20

25

30

35

The present invention provides a ligand or compound or entity identified by a screening method of the present invention. A ligand or compound may have been designed rationally by using a model according to the present invention. A ligand or compound identified using the screening methods of the invention specifically associate with a target compound. In the present invention the target compound may be a galactosyltransferase or a molecule that is capable of associating with a galactosyltransferase (for example a substrate molecule). In a preferred embodiment the ligand is capable of binding to the ligand binding domain of a galactosyltransferase.

A ligand or compound identified using a screening method of the invention may act as a "modulator", i.e. a compound which affects the activity of a galactosyltransferase. A modulator may reduce, enhance or alter the biological function of a galactosyltransferase. For example a modulator may modulate the capacity of the enzyme to transfer a sugar from a nucleotide sugar donor to a specific hydroxyl of various saccharide acceptors that leads to the formation of a new glycosidic linkage. An alteration in biological function may be characterised by a change in specificity. For example, a modulator may cause the enzyme to accept a different substrate molecule, to transfer a different sugar, or to work with a different metal cofactor. In order to exert its function, the modulator commonly binds to the ligand binding domain.

A modulator which is capable of reducing the biological function of the enzyme may also be known as an inhibitor. Preferably an inhibitor reduces or blocks the capacity of the enzyme to form new glycosidic linkages. The inhibitor may mimic the binding of a substrate molecule, for example, it may be a substrate analogue. A substrate analogue may be designed by considering the interactions between the substrate molecule and the enzyme (for example by using information derivable from a model of the invention) and specifically altering one or more groups.

In a highly preferred embodiment, a modulator acts as an inhibitor of a galactosyltransferase and is capable of inhibiting N- or O-glycan biosynthesis.

The present invention also provides a method for modulating the activity of a galactosyltransferase within a cell using a modulator according to the present invention. It would be possible to monitor the expression of Nglycans on the cell surface following such treatment by a number of methods known in the art (for example by detecting expression with an N-and O-glycan specific antibody).

In another preferred embodiment, the modulator modulates the catalytic mechanism of the enzyme.

A modulator may be an agonist, partial agonist, partial inverse agonist or antagonist of a galactosyltransferase or a ligand binding domain.

The term "agonist" includes any ligand, which is capable of binding to a ligand binding domain and which is capable of increasing a proportion of active enzyme, resulting in an increased biological response. The term includes partial agonists and inverse agonists.

The term "partial agonist" includes an agonist that is unable to evoke the maximal response of a biological system, even at a concentration sufficient to saturate a specific ligand binding domain.

The term "partial inverse agonist" includes an inverse agonist that evokes a submaximal response to a biological system, even at a concentration sufficient to saturate a specific ligand binding domain. At high concentrations, it will diminish the actions of a full inverse agonist.

WO 01/83717 PCT/CA01/00607

- 25 -

5

10

15

20

25

30

35

40

The invention relates to a galactosyltransferase ligand binding domain antagonist, wherein said ligand binding domain is that defined by the amino acid structural coordinates described herein. For example the ligand may antagonise the inhibition of galactosyltransferase by an inhibitor.

The term "antagonist" includes any agent that reduces the action of another agent, such as an agonist. The antagonist may act at the same site as the agonist (competitive antagonism). The antagonistic action may result from a combination of the substance being antagonised (chemical antagonism) or the production of an opposite effect through a different binding site (functional antagonism or physiological antagonism) or as a consequence of competition for the binding site of an intermediate that links the enzyme to the effect observed (indirect antagonism).

The term "competitive antagonism" refers to the competition between an agonist and an antagonist for a ligand binding domain that occurs when the binding of agonist and antagonist becomes mutually exclusive. This may be because the agonist and antagonist compete for the same binding site or combine with adjacent but overlapping sites. A third possibility is that different sites are involved but that they influence the same macromolecules in such a way that agonist and antagonist molecules cannot be bound at the same time. If the agonist and antagonist form only short lived combinations with the binding site so that equilibrium between agonist, antagonist and binding site is reached during the presence of the agonist, the antagonism will be surmountable over a wide range of concentrations. In contrast, some antagonists, when in close enough proximity to their binding site, may form a stable covalent bond with it and the antagonism becomes insurmountable when no spare receptors remain.

As mentioned above, an identified ligand or compound may act as a ligand model (for example, a template) for the development of other compounds. A modulator may be a mimetic of a ligand or ligand binding domain. A mimetic of a ligand may compete with a natural ligand for a galactosyltransferase and antagonize a physiological effect of the enzyme in an animal. A mimetic of a ligand may be an organically synthesized compound. A mimetic of a ligand binding domain, may be either a peptide, polysaccharide, oligosaccharide, or other biopharmaceutical (such as an organically synthesized compound) that specifically binds to a natural substrate molecule for a galactosyltransferase and antagonize a physiological effect of the enzyme in an animal.

Once a ligand has been optimally selected or designed, substitutions may then be made in some of its atoms or side groups in order to improve or modify its binding properties. Generally, initial substitutions are conservative, i.e., the replacement group will have approximately the same size, shape, hydrophobicity and charge as the original group. It should, of course, be understood that components known in the art to alter conformation should be avoided. Such substituted chemical compounds may then be analyzed for efficiency of fit to a galactosyltransfease ligand binding domain by the same computer methods described above.

Preferably, positions for substitution are selected based on the predicted binding orientation of a ligand to a galactosyltransferase ligand binding domain.

A technique suitable for preparing a modulator will depend on its chemical nature. For example, organic compounds may be prepared by organic synthetic methods described in references such as March, 1994, Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, New York, McGraw Hill. Peptides can be synthesized by solid phase techniques (Roberge JY et al (1995) Science 269: 202-204) and automated synthesis may be achieved, for example, using the ABI 43 1 A Peptide Synthesizer (Perkin Elmer) in accordance with the instructions provided by the manufacturer. Once cleaved from the resin, the peptide may be purified by preparative high performance liquid chromatography (e.g., Creighton (1983) Proteins Structures and Molecular Principles, WH - 26 -

Freeman and Co, New York NY). The composition of the synthetic peptides may be confirmed by amino acid analysis or sequencing (e.g., the Edman degradation procedure; Creighton, supra).

If a modulator is a nucleotide, or a polypeptide expressable therefrom, it may be synthesized, in whole or in part, using chemical methods well known in the art (see Caruthers MH et al (1980) Nuc Acids Res Symp Ser 215-23, Horn T et al (1980) Nuc Acids Res Symp Ser 225-232), or it may be prepared using recombinant techniques well known in the art.

Direct synthesis of a ligand or mimetics thereof can be performed using various solid-phase techniques (Roberge JY et al (1995) Science 269: 202-204) and automated synthesis may be achieved, for example, using the ABI 43 1 A Peptide Synthesizer (Perkin Elmer) in accordance with the instructions provided by the manufacturer. Additionally, the amino acid sequences obtainable from the ligand, or any part thereof, may be altered during direct synthesis and/or combined using chemical methods with a sequence from other subunits, or any part thereof, to produce a variant ligand.

In an alternative embodiment of the invention, the coding sequence of a ligand or mimetics thereof may be synthesized, in whole or in part, using chemical methods well known in the art (see Caruthers MH et al (1980) Nuc Acids Res Symp Ser 215-23, Horn T et al (1980) Nuc Acids Res Symp Ser 225-232).

A wide variety of host cells can be employed for expression of the nucleotide sequences encoding a ligand of the present invention. These cells may be both prokaryotic and eukaryotic host cells. Suitable host cells include bacteria such as E. coli, yeast, filamentous fungi, insect cells, mammalian cells, typically immortalized, e.g., mouse, CHO, human and monkey cell lines and derivatives thereof. Preferred host cells are able to process the expression products to produce an appropriate mature polypeptide. Processing includes but is not limited to glycosylation, ubiquitination, disulfide bond formation and general post-translational modification.

In an embodiment of the present invention, the ligand may be a derivative of, or a chemically modified ligand. The term "derivative" or "derivatised" as used herein includes the chemical modification of a ligand.

A chemical modification of a ligand and/or a key amino acid residue of a ligand binding domain of the present invention may either enhance or reduce hydrogen bonding interaction, charge interaction, hydrophobic interaction, Van Der Waals interaction or dipole interaction between the ligand and the key amino acid residue(s) of a galactosyltransferase ligand binding domain.

Preferably such modifications involve the addition of substituents onto a test compound such that the substituents are positioned to collide or to bind preferentially with one or more amino acid residues that correspond to the key amino acid residues of a galactosyltransferase ligand binding domain. Typical modifications may include, for example, the replacement of a hydrogen by a halo group, an alkyl group, an acyl group or an amino group.

The invention also relates to classes of modulators of galactosyltransferase based on the structure and shape of a substrate, defined in relation to the substrate's molecule's spatial association with a galactosyltransferase structure of the invention or part thereof. Therefore, a modulator may comprise a substrate molecule having the shape or structure, preferably the structural coordinates, of a substrate molecule in an active site binding pocket of a reaction catalyzed by a galactosyltransferase.

Modulators Based on the 3D Structure of a Nucleotide Sugar Donor

One class of modulators defined by the invention are compounds of the following formula I having the structural coordinates of uracil of Table 5, preferably Run 9, Cluster 1 or ATOM 1 to ATOM 9, inclusive of Table 7:

5

10

15

20

25

30

35

wherein R_1 and R_2 are each independently hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, heterocyclic rings, aryl, alkoxy, aryloxy, hydroxyl, thiol, thioaryl, amino, halogen, carboxylic acid or esters or thioesters thereof, amines, sulfate, sulfonic or sulfinic acid or esters thereof, phosphate, pyrophophate, gallic acid, phosphonates, thioamide, and $-OR_{12}$ where R_{12} is alkyl, cycloalkyl, alkenyl, alkynyl, or heterocyclic ring;

and salts and optically active and racemic forms of a compound of the formula I.

Another class of modulators defined by the invention are compounds of the following formula II having the structural coordinates of uridine of Table 5, preferably Run 9, Cluster 1 or ATOMs 1 to 20 inclusive, of Table 7:

10

5

WO 01/83717

wherein R₁, R₂, R₃, R₄, and R₅ are each independently hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, heterocyclic rings, aryl, alkoxy, aryloxy, hydroxyl, thiol, thioaryl, amino, halogen, carboxylic acid or esters or thioesters thereof, amines, sulfate, sulfonic or sulfinic acid or esters thereof, phosphate, pyrophosphate, gallic acid, phosphonates, thioamide, and -OR₁₂ where R₁₂ is alkyl, cycloalkyl, alkynyl, or heterocyclic ring,

15

and salts and optically active and racemic forms of a compound of the formula II.

Yet another class of modulators defined by the invention are compounds of the following formula III having the structural coordinates of UDP in Table 5, preferably Run 9, Cluster 1, or ATOMs 1 to 28 inclusive of Table 7:

20

10

15

20

wherein R_1 , R_2 , R_3 , R_4 , R_6 , and R_{11} are each independently hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, heterocyclic rings, aryl, alkoxy, aryloxy, hydroxyl, thiol, thioaryl, amino, halogen, carboxylic acid or esters or thioesters thereof, amines, sulfate, sulfonic or sulfinic acid or esters thereof, phosphate, gallic acid, phosphonates, thioamide, and $-OR_{12}$ where R_{12} is alkyl, cycloalkyl, alkenyl, alkynyl, or heterocyclic ring, R_6 may be a monosaccharide or disaccharide, preferably a monosaccharide, including galactose, glucose, and mannose,

and salts and optically active and racemic forms of a compound of the formula III.

Yet another class of modulators defined by the invention are compounds of the following formula IV having the structural coordinates of UDP-Gal in Table 6, preferably Run, Cluster 1:

wherein R₁, R₂, R₃, R₄, R₇, R₈, R₉, and R₁₀ are each independently hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, heterocyclic rings, aryl, alkoxy, aryloxy, hydroxyl, thiol, thioaryl, amino, halogen, carboxylic acid or esters or thioesters thereof (e.g. -CH₂OH), amines, sulfate, sulfonic or sulfinic acid or esters thereof, phosphate, gallic acid, phosphonates, thioamide, and -OR₁₂ where R₁₂ is alkyl, cycloalkyl, alkenyl, alkynyl, or heterocyclic ring, and X is a counter-ion including sodium, lithium, potassium, calcium, magnesium, manganese, cobalt ions and the like, as well as nontoxic ammonium, quaternary ammonium, and amine cations, preferably Mn²⁺,

and salts and optically active and racemic forms of a compound of the formula IV.

10

15

20

25

30

35

40

One or more of R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, and/or R₁₀ alone or together, which contain available functional groups as described herein, may be substituted with for example one or more of the following: alkyl, alkoxy, hydroxyl, aryl, cycloalkyl, alkenyl, alkynyl, thiol, thioalkyl, thioaryl, amino, or halo. The term "one or more" used herein preferably refers to from 1 to 2 substituents.

The present invention contemplates all optical isomers and racemic forms thereof of the compounds of the invention, and the formulas of the compounds shown herein are intended to encompass all possible optical isomers of the compounds so depicted.

The present invention also contemplates salts and esters of the compounds of the invention. In particular, the present invention includes pharmaceutically acceptable salts. By pharmaceutically acceptable salts is meant those salts which are suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. Pharmaceutically acceptable salts are well known in the art and are described for example, in S. M. Berge, et al., J. Pharmaceutical Sciences, 1977, 66:1-19.

Compositions and Methods of Treatment

The ligands and the modulators of the invention (e.g. inhibitors) may be used to modulate the biological activity of a galactosyltransferase in a cell, including modulating a pathway in a cell regulated by the galactosyltransferase or modulating a galactosyltransferase with inappropriate activity in a cellular organism.

The present invention thus provides a method for treating a condition in a subject regulated by a galactosyltransferase or involving inapproproriate galactosyltransferase activity comprising administering to a subject an effective amount of a modulator identified using the methods of the invention. The invention still further relates to a pharmaceutical composition which comprises a three dimensional galactosyltransferase of the invention or a portion thereof (e.g. a ligand binding domain), or a modulator of the invention in an amount effective to regulate one or more of the above-mentioned conditions and a pharmaceutically acceptable carrier, diluent or excipient.

The invention also provides the use of a ligand or modulator according to the invention in the manufacture of a medicament to treat and/or to prevent a disease in a patient.

Inhibitors or antagonists of $\alpha 1,3$ -Gal transferase of the present invention may be particularly useful in reducing xenotransplant rejection in an animal patient. Xenograft tissue may be treated with, or derived from an animal that has been treated with an inhibitor to decrease $Gal\alpha(1,3)$ Gal epitopes on the xenograft tissue. This treatment will reduce or avoid an immune reaction between circulating antibodies in the transplant recipient reactive with the epitopes. Preferably the xenograft tissue is of pig origin and the xenograft recipient is a human. The xenograft tissue includes any tissue which expresses antigens having $Gal\alpha(1,3)Gal$ epitopes. The tissue may be in the form of an organ, for example a kidney, heart, lung, or liver, or it may be in the form of parts of organs, cell clusters, glands and the like (e.g. lenses, pancreatic islet cells, skin, and corneal tissue).

The modulators of the invention may be converted using customary methods into pharmaceutical compositions. The pharmaceutical compositions contain the modulators either alone or together with other active substances. Such pharmaceutical compositions can be for oral, topical, rectal, parenteral, local, inhalant, or intracerebral use. They are therefore in solid or semisolid form, for example pills, tablets, creams, gelatin capsules, capsules, suppositories, soft gelatin capsules, liposomes (see for example, U.S. Patent Serial No. 5,376,452), gels, membranes, and tubelets. For parenteral and intracerebral uses, those forms for intramuscular or subcutaneous administration can be used, or forms for infusion or intravenous or intracerebral injection can be used, and can

therefore be prepared as solutions of the modulators or as powders of the modulators to be mixed with one or more pharmaceutically acceptable excipients or diluents, suitable for the aforesaid uses and with an osmolarity which is compatible with the physiological fluids. For local use, those preparations in the form of creams or ointments for topical use or in the form of sprays should be considered; for inhalant uses, preparations in the form of sprays should be considered.

The pharmaceutical compositions can be prepared by <u>per se</u> known methods for the preparation of pharmaceutically acceptable compositions which can be administered to patients, and such that an effective quantity of the active substance is combined in a mixture with a pharmaceutically acceptable vehicle. Suitable vehicles are described, for example, in Remington's Pharmaceutical Sciences (Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, Pa., USA 1985). On this basis, the pharmaceutical compositions include, albeit not exclusively, the modulators in association with one or more pharmaceutically acceptable vehicles or diluents, and contained in buffered solutions with a suitable pH and iso-osmotic with the physiological fluids.

The modulators may be indicated as therapeutic agents either alone or in conjunction with other therapeutic agents or other forms of treatment. By way of example, inhibitors may be used in combination with anti-proliferative agents, antimicrobial agents, immunostimulatory agents, or anti-inflammatories. The modulators may be administered concurrently, separately, or sequentially with other therapeutic agents or therapies.

The compositions containing modulators can be administered for prophylactic and/or therapeutic treatments. In therapeutic applications, compositions are administered to a patient already suffering from a condition as described above, in an amount sufficient to cure or at least alleviate the symptoms of the disease and its complications. An amount adequate to accomplish this is defined as a "therapeutically effective dose". Amounts effective for this use will depend on the severity of the disease, the weight and general state of the patient, the nature of the administration route, the nature of the formulation, and the time or interval at which it is administered.

In prophylactic applications, compositions containing modulators are administered to a patient susceptible to or otherwise at risk of a particular condition. Such an amount is defined to be a "prophylactically effective dose". In this use, the precise amounts depend on the patient's state of health and weight, the nature of the administration route, the nature of the formulation, and the time or interval at which it is administered.

The following non-limiting examples illustrate the invention:

Example 1

5

10

15

20

25

30

35

40

The modeling of bovine α -1,3-GalT was carried out using homology modeling procedures and α -1,3-GalT-ligand complexes were generated using automated docking procedures. These computational modeling approaches allow fairly reasonable predictions of three-dimensional structures of proteins and their complexes with substrates and ligands thereby offering a rational way of investigating structure-function relationships (12). The amino acid sequence of α -1,3-GalT was obtained from a publicly available sequence data bank (13).

Homology modeling. - The basic steps in the construction of a protein model based on a homologous structure are sequentially in the following order: amino acid sequence alignment, copying aligned coordinates, building loops, and refinement. The sequence alignment and secondary structure predictions were carried out using the Fold recognition server located at UCLA (14). The Molecular Simulations Inc. collection of programs was used for all protein modeling (15-17). The template structure chosen was the three-dimensional crystal structure (9) of SpsA determined at a resolution of 1.5 Å. The initial alignment of α -1,3-GalT and SpsA transferase sequences was obtained using the pair-wise alignment with the HOMOLOGY program (15). Multiple alignment of amino acid sequences was

performed using the Needleman and Wunch method (18). This method is capable to provide an optimum alignment of two sequences that represents the best overall balance between the number of good amino acid matches and the least number of required gaps. When necessary, the initial pair-wise sequence alignments were manually modified to obtain structure-oriented alignments. After creating the alignment, the coordinates of the homologous regions were transferred from the SpsA structure to the bovine α -1,3-GalT using the MODELER program (16). The geometry of the generated model was then locally optimized to remove steric side-chain clashes. The builder module of the InsightII program (17) was used to add hydrogen atoms to the enzyme and assign partial charges.

- 31 -

Docking. - Structures of α-1,3-GalT complexes with UDP, UDP-Gal, and a recently design inhibitor (19) were determined using the AutoDock suite of programs (20), which finds favorable docked configurations for a ligand in a protein-binding site starting from in an arbitrary conformation, orientation and position of a ligand molecule. AutoDock combines conformational search methods such as genetic algorithm and stochastic algorithm with a grid based energy calculation using molecular mechanics type force field, including electrostatic, hydrogen bonding, dispersion/repulsion, and solvation and entropic terms. The overall interaction between the enzyme and ligands were computed using the Amber-like force field as implemented in AutoDock (20). A Mn2+ cation position was located. based on the SpsA structure, near the side chain of the Asp227, which belongs to the aspartate-valine-aspartate (DVD) sequence motif. An aspartate-any residue-aspartate (DXD) or the aspartate-any residue-histidine (DXH) motif is common to many glycosyl transferases (21) and is involved in binding metal cations as well as its substrate. Water molecules were not considered in these computations. Positions of all protein atoms were fixed during the docking. The dihedral angles of all ligands were optimized while bond lengths and bond angles were restrained to standard values. Starting structure of UDP was obtained from SpsA-UDP complex and the UDP-Gal was generated using InsightII (17). The conformation of the ribose, galactose and uracil rings were fixed during the docking. In the present work a genetic algorithm was used as the search method. One hundred docking runs were performed for generating, complexes of α -1,3-GalT with each of the chosen ligands. For each docking simulation, the population size was set to 50 and 27,000 generations were run. The docked models are clustered using a root mean square tolerance value of 1.5 A. This approach has been successfully used for a wide variety of structural problems and has been fully described elsewhere (20).

Results and Discussions

10

15

20

25

30

35

Homology model of α -1,3-GalT. - The amino acid sequence alignment of α -1,3-GalT with SpsA and homologous proteins are shown in Figure 1. The highest scoring alignment shows about 40% similarity and 20% identity (45 amino acids are identical). The amino acid residues of SpsA that interact with UDP or located within the UDP binding site are underlined. A clear sequence similarity can be noticed at the active site regions of SpsA and the corresponding aligned residues of α -1,3-GalT. In this figure it can be seen that the residues are well conserved in the region that encompasses the putative UDP binding pocket of SpsA. Table 3 shows the predicted secondary structures for the α -1,3-GalT sequence that was used for generating a homology model of α -1,3-GalT.

The homology model of α -1,3-GalT consists of two compact domains. The predicted N-terminal domain has about 100 residues starting at Gln-125 and ends at Gln-231 and the C-terminus domain has the remaining modeled residues. Figure 2 shows a superposition of the α -1,3-GalT model (blue) and the corresponding SpsA structure (magenta). The amino acid residues of SpsA that interact with the UDP ligand are shown as tubes. The corresponding amino acid residues of α -1,3-GalT are shown as thin tubes. In addition to this overlap at the active site, several exo-

10

15

20

25

30

35

WO 01/83717 PCT/CA01/00607

- 32 -

site residues are homologous and placed in similar positions in the three-dimensional space. It can be seen from Figure 2 that the modeled α -1,3-GalT is a compact structure similar to that of SpsA. The overall size of the model of α -1,3-GalT is about 50 Å x 45 Å x 40 Å. The (ϕ, ψ) angles of the constructed model are well within the allowed region of the Ramachandran maps (22). The UDP binding site is identified at the cleft between the strands of conserved residues and an alpha helix within this domain. This site is very deep and is highly electronegative in nature. The active site consists of an open a, \beta-sandwich made up of three helices packed against four standard \betasheets. The general topology of the modeled α-1,3-GalT resembles those of GnT I and SpsA with the secondary structural elements similarly arranged in space. The following amino acid residues have been identified to be part of the UDP docking pocket of α-1,3-GalT: Phe-134, Tyr-139, Ile-140, Val-136, Arg-194, Arg-202, Lys-209, Asp-173, His-218, Thr-137, Asp-225, Val-226, and Asp-227. The modeled catalytic domain has a core structure common to most of the known transferases (9-11). Moreover, amino acid residues that are involved in the UDP-Gal recognition and in the catalytic mechanism are homologous both in sequence and spatial relationship. As a consequence, the overall electrostatic property of the active site of the α-1,3-GalT is highly comparable with the UDP binding sites of GnTI and SpsA. Thus, the present analysis suggests that although the sequence homologies of SpsA, GnT I and a-1,3-GalT are relatively low, they have a structurally conserved framework of about 100 residues that specifically recognize UDP.

Complex of α -1,3-GalT with UDP and UDP-Gal. — In the GnT I, SpsA, and β 4Gal T1 structures (9-11), the above-described architecture of the secondary structure elements specifically recognizes UDP. In these X-ray structures, a conserved aspartate (Asp39 in SpsA and Asp144 in GnT I) generally interacts though the hydrogen bond interaction with the carbonyl at the 4th position of the uracil ring. The carbonyl at the 2nd position of the uracil favors charge interactions with the conserved His residue that resides at the bottom of the UDP pocket. The ribose ring packs with the conserved hydrophobic residue (Thr-9 in SpsA and Ile-113 in GnT I) that is located at the bottom of the pocket. In the model of α -1,3-GalT, the metal binding site is located at one of the β -strands that contains the conserved DVD (Asp-225, Val-226 and Asp227) motif. These conserved residues are assumed to be located in the vicinity of the pyrophosphate-binding region. The C-terminal portion of the model has a confined groove, which has a stretch of charged residues. The docking studies described below suggest that this region can specifically recognize inhibitors, which are designed based on the acceptor substrate model (19).

Simulation of the α -1,3-GalT-UDP complexes, using an automated docking procedure led to several complex structures that represent different binding modes of UDP, which were clustered to nine groups. Analysis of results revealed that in about 80% of the docking calculations, the UDP binds at the well-defined pocket located at the DVD motif. The low energy docking modes of UDP to the α -1,3-GalT are shown in Figure 3. The α -1,3-GalT structure is presented in ribbon form and the amino acid residues that directly interact with UDP are labeled. Five top ranking clusters are characterized in Table 2 together with the computed binding energy and the estimated inhibition constant. Possible intermolecular contacts in the lowest energy complex are listed in Table 1. In the top three clusters, UDP binds in the deep pocket generally in a similar conformation. This is illustrated in Figure 3, where the preferred binding mode is shown as a thick blue tube. Three hydrogen bonds that are possible between the uracil and α -1,3-GalT characterize this binding mode. These are (1) the amide hydrogen of uracil in position 3 and OD1 of Asp-168, (2) the carbonyl oxygen of uracil in position 4 and the side chain of Lys-204, and (3) the carbonyl oxygen of uracil in position 2 and the amide hydrogen of the His-213 side chain. The hydroxyl groups at the 2 and 3 positions of the

10

15

20

25

30

35

40

WO 01/83717 PCT/CA01/00607

- 33 -

ribose ring forms three hydrogen bonds with the Asp-225 side chain oxygens. The pyrophosphate oxygens interact with the Asp-227 side chain through the metal ion. Apart from these hydrogen bond interactions many favorable hydrophobic interactions are possible between the uridine and the protein. It is clear from Table 1 that the bound UDP generally favors interactions with conserved amino acid residues of the enzyme. However, some of the residues that do not interact directly with UDP but lie in the close vicinity of the UDP docked region are Tyr-139, Ile-140, Val-136, Arg-194, Asp-197, Ile-198, Arg-202, Lys-204, His209 and His-213. It is noteworthy that some of these residues such as Tyr139, Asp-197 are conserved across various species (8). It is possible that these active site side chains may be involved in direct binding interactions with UDP.

The lowest energy cluster consists of about 30% of all the docking runs. The analysis of the other low energy clusters that represent about 70% of docked structures clearly shows that many of the docking modes were very close to the lowest energy-binding mode. However, small variations in the nature of local interactions between the pyrophosphate part and the enzyme were observed. It can be seen from Figure 3 that the 5 and 6 positions of the uracil ring are exposed to the solvent and the remaining positions of the uracil fragment are in contact with the protein.

The structure of the UDP-Gal complex with α -1,3-GalT has been generated using the approach described above. Figure 4 shows the low energy binding modes of this complex. The comparison of the α -1,3-GalT complexes with UDP and UDP-Gal reveals that the uridine portion of the UDP-Gal assumes a similar binding orientation as in the case of the α -1,3-GalT-UDP complex. These results suggest that the addition of the galactopyranose residue to UDP does not alter the binding mode of the uridine, which is tightly bound in the active site. On the contrary, the pyrophosphate is more flexible and its conformation alters upon addition of this monosaccharide unit to the UDP. These data indicate that the design of an inhibitor based on the docking sites of pyrophosphate and donor sugar group fragments of UDP-Gal should consider the possible conformational flexibility of the pyrophosphate group and the corresponding diversity associated with binding interactions.

In the crystal structure of the complex of SpsA with UDP, the UDP is bound at the active site of the enzyme (8). The uracil ring of the bound UDP is placed into the cavity where its carbonyl and amide hydrogens form two hydrogen bonds with side-chains of Arg-71 and Asp-39, respectively. Apart from these hydrogen bond interactions, a favorable stacking interaction between the uracil ring and side chain of Tyr-11 is possible. A strong hydrogen bond interaction is possible between the hydroxyl of ribose in the position 3 and the side chain oxygen of Asp-99. The pyrophosphate conformation is confined to a particular orientation due to the favorable charge interactions with the bound metal ion. Unligil et al (10) has solved a structure of GnT I complexed with UDP-GlcNAc at 1.5 Å resolution. In this crystal structure of the GnT I complex, the uracil ring favors a similar interaction, as observed in the SpsA complex, with the nucleotide binding domain residues consisting of a Lys and an Asp. The ribose portions of the UDP bind into the hydrophobic rich region of the GnT I and thereby gains a stacking energy. Thus, these two structures possess a clear structural and sequence similarity at the UDP binding pocket. However, overall there is no sequence homology between the two proteins. The bound UDP conformation is very similar in these structural complexes. These data suggest that amino acid conservation at the UDP binding pocket is important for the precise recognition of UDP ligands. The homology model of α-1,3-GalT contains these critical amino acids at the identified pocket of the enzyme (Figures 2 and 3). The top ranking docked complexes are in agreement with reported X-ray structures of glycosyltransferases (7, 9, and 11). This suggests that a part of the substrate binding pocket in glycosyltransferases is specifically tailored to bind UDP. It is evident from the computed docking models that the binding modes of UDP

generally favor a standard type of interaction with the enzyme. In the predicted low energy complexes of UDP and UDP-Gal with α -1,3-GalT, the DVD motif of the enzyme interacts with pyrophosphate through the modeled metal cation.

Binding mode of an inhibitor to α -1,3-GalT

Recently, an inhibitor based on the acceptor of α -1,3-GalT has been designed (19). This compound has a disaccharide linked to a bromine substituted naphthamide ring. It has been shown that the removal of the terminal sugar unit in this inhibitor does not inhibit α -1,3-GalT, but instead inhibits β -1,4-GalT. Thus, the determination of the binding mode of this inhibitor to α -1,3-GalT might provide a stereochemical explanation for the observed binding affinities. Using the above described docking procedure, this synthetic inhibitor was docked to the surface of α -1,3-GalT. Docking simulations produced two distinct favorable regions for this molecule located in the active site of the enzyme. In the one, the inhibitor occupies the UDP binding site. Generally, in this low energy binding mode the inhibitor is placed well in the uridine pocket. The second largest cluster of conformations is located at the acceptor site. Figure 5 shows the computed binding mode of the inhibitor at the acceptor-binding region of the protein. In this binding mode, the terminal saccharide binds close to the Asp-227 side chain and the bulky aromatic group of the inhibitor interacts with the side chain of of Ile-283. The bromide atom is located close to the side chain of Asp-227 and the naphthamide ring is placed on the top of Met-224 side chain. It can be seen that the inhibitor not only occupies the acceptor-binding region of the protein but also has considerable interactions at the donor site of the enzyme. Thus, these predicted binding modes of inhibitor could explain its inhibitory activity.

Figures 6 to 9 also show models of α -1,3-GalT and ligand binding domains of the enzyme.

Conclusions

5

10

15

20

25

30

35

Using a combination of homology modeling and molecular docking approaches, the α -1,3- \bar{G} alT structure and its complexes with UDP, UDP-Gal, and a synthetic inhibitor have been modeled. The predicted N-terminal domain of the of the α -1,3- \bar{G} alT has about 100 residues that start at Gln-125 and end at Gln-131. The overall secondary structure arrangements, amino acid properties, spatial arrangement of critical amino acid residues and size of this domain are highly comparable with other GnT structures. The predicted pocket on this domain surface of α -1,3- \bar{G} alT specifically recognizes UDP in a unique binding mode. Structural analysis and comparative studies of the modeled binding site with the GnT I and SpsA structures suggested the high degree of similarity at the UDP binding pocket. This implies a possible structural homology in glycosyltransferases in spite of their low sequence identity and homology. Thus the modeled bovine structure of α -1,3- \bar{G} alT provides a framework to better understand the functional and structural similarities between galactosyltransferases.

While the present invention has been described with reference to what are presently considered to be the preferred examples, it is to be understood that the invention is not limited to the disclosed examples. To the contrary, the invention is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.

All publications, patents and patent applications are herein incorporated by reference in their entirety to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety.

PCT/CA01/00607 **WO** 01/83717

- 35 -

References

5

10

15

20

25

30

35

- Varki A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 1993; 3: 97-130. 1.
- Montreuil J, Vliegenthart JFG, Schachter H. Glycoproteins and Disease; Neuberger A. and van Deenen LLM, 2. editors. Amsterdam: Elsevier; 1995. Vol. 30.
- 3. Paulson JC, Colley KJ. Glycosyltransferases - structure, location, and control of cell type-specific glycosylation. J Biol Chem 1989; 264: 17614-17618.
 - 4. Campbell JA, Davies G J, Bulone V, Henrissat B. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J 1997; 326: 929-942.
 - Chen X, Andreana PR, Wang PG. Carbohydrates in transplantation. Curr Opinion Chem Biol 1999; 3: 650-5. 658.
 - 6. Galili U. 1992. In Bona C, Kaushik AK. editors, Molecular Immunobiology of Self-Reactivity. Marcel Dekker, Inc., New York, NY, pp. 355-373.
 - Vrielink A, Ruger W, Driessen HPC, Freemont PS. Crystal structure of the DNA modifying enzyme β-7. glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose. EMBO J 1994; 13: 3413-3422.
 - 8. Imberty A, Monier C, Bettler E, Morera S, Freemont P, Sippl M, Flockner H, Ruger W, Breton C. Fold recognition study of a3-galactosyltransferase and molecular modeling of the nucleotide sugar-binding domain. Glycobiology 1999; 9: 713-722.
 - Charnock SJ, Davies GJ. Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus 9. subtilis, in native and nucleotide-complexed forms. Biochemistry 1999; 38: 6380-6385.
 - Gastinel LN, Cambillau C, Bourne Y. Crystal structures of the bovine \(\beta 4 \) galactosyltransferase catalytic 10. domain and its complex with uridine diphosphogalactose. EMBO J 1999; 18: 3546-3557.
 - Unligil UM, Zhou S, Yuwaraj S, Sarkar M, Schachter H, Rini JM. X-ray crystal Structure of rabbit N-11. acetylglucosaminyltransferase I: catalytic mechanism and a new protein superfamily. EMBO J 2000; 20: 5269-5280.
 - Zemla A, Venclovas C, Moult J, Fidelis K. Processing and analysis of CASP3 protein structure predictions. 12. Proteins Suppl 1999; 3: 222-9;
 - 13. http://www.ncbi.nlm.nih.gov:80/entrez
 - 14. Rice D, Fischer D, Weiss R, Eisendberg D. (1997). Fold assignments for amino acid sequences of the CASP2 experiment. Proteins Suppl 1: 113-22; http://fold.doe-mci.ucla.edu.
 - 15. HOMOLOGY, User Guide, 1997, San Diego MSI, 1997.
 - MODELER, User Guide, 1997, San Diego MSI, 1997. 16.
 - Insight II, User Guide, 1997, San Diego MSI, 1997. 17.
 - Needlman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid 18. sequence of two proteins. J Mol Biol 1970; 48: 443-453.
 - 19. Chung S, Takayama S, Wong C. Acceptor substrate-based selective inhibition of galactosyltransferases. Bioorg Med Chem 1998; 8: 3359-3364.
 - Morris GM, Goodsell DS, Hallidy RS, Huey R, Hart WE, Belew RK, Olson A.J. Automated Docking Using a 20. Lamarckian Genetic Algorithm and and Empirical Binding Free Energy Function. J Comput Chem 1998; 19: 1639-1662.

WO 01/83717 PCT/CA01/00607

- 36 -

- 21. Hagen FK, Hazes B, Raffo R, deSa D, Tabak LA. Structure-function analysis of the UDP-N-acetyl-d-galactosamine: polypeptide N-acetylgalactosaminyltransferase. J Biol Chem 1999; 274: 6797-6803.
- 22. Ramkrishnan C, Ramachandran GN. Stereochemical criteria for polypetide and protein chain conformations.

 II. Allowed conformations for a pair of peptide unit. Biophys J 1965; 5: 909-933.

Table 1
Atomic Interactions between GalT and UDP

Atomic Interaction	Atomic Contact on UDP	Atomic Contact on GalT	Distance Between Atomic Contacts	Nature of Interaction
Anter action	Contact on ODF	on Gair	on GalT and UDP	interaction
1	Uracil NH	Asp-168 OD1	2.1 ± 0.5	НВ
2	Uracil O1	Lys-204 HZ1	3.0 ± 0.5	HB
3	Uracil 02	His-213 NE2	2.7 ± 0.5	НВ
4	Uracil Ring	Phe 134 Ring	4.2 ± 0.5	HP
5	Ribose OH2	Asp-225 OD2	2.2 ± 0.5	НВ
6	Ribose OH3	Asp –225 OD2	2.5 ± 0.5	НВ
7	Ribose ring	Leu 131	4.1 ± 0.5	HP
8	Ribose Ring	Ile-210	4.0 ± 0.5	HP
9	Ola (Diphosphate)	Asp-225 OD2(Mn)	4.6 ± 0.5	MM
10	Ola (diphosphate)	Asp-227 OD2(Mn)	4.5 ± 0.5	MM
11	O2b (diphosphate)	Asp-227 OD2(Mn)	5.1 ± 0.5	MM

HB: hydrogen bond interaction

5

MM: metal mediated interaction

HP: hydrophobic interaction

Cluster Rank	Number of Conformers in Cluster	Computed Free energy in Kcal/mol	Calculated inhibition constant in µM
1	30	-8.72	0.40
2	24	-8.42	0.60
3	16	-8.18	1.00
4	6	-7.63	2.50
5	7	-7.54	2.90

Table 3

alphagt

PHD prediction:

			· ·
detail:		sec sec	1
subset:	prH prE prL	sec sec	000000000000000000000000000000000000
eaneer:	346	sec	dudage=deadededededededededededede
ACCESSI			·
3st:	P_3		eebebebbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
10st:	PHD		9707060000000000000000002060970000000005007006700571200650077
subset:	Rel		551641779865576498879500310241445682221214220301133011110243 ee.eb.bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
subset:	200	acc	,78910,11,12
	AA		G YHEEDGDINEEKEORNEDE.SKLKLSDWFNPEKRPEVVTWTKWKAPVVWEGTYNRA
	PHD	sec	EEEEE EEEEE HH
		sec	863322265433522467767778887544555989999268886267713661255527
detail:			·
	prH		1111111122332342111211100001121110000000000
	prE		013333310000000000000000001221111000000478887411156774322110
subset:	prL		86555456665565567777777888766566989899521011578843124566631
subsec.	SUD	360	
ACCESSI	BILI	ΓY	
3st:	₽_3	aċc	bbbbbbeeeccbeeeeeeeeeeeebebbbbb eee eebbbbbebbbbbbb
10st:		acc	00000067777077677767776770600700579958700000626060007004500
	Rel		210200133340351444144431450220401144513545241101313434201114
subset:	SUB	acc	ee.e.e.ee.ee.eeeeee.ebb.bbeb ,13,14,15,16,17,18
	AA		VLDNYYAKQKITVGLTVFAVGRYIEHYLEEFLTSANKHFMVGHPVIFYINVDDVSRHPLI
		sec	HHHHHHHHHEEE EEEEEEHHHHHHHHHHHHHHHHHHH
•		sec	89999565214740586752259999999999853215544459999997177788246
detail:			
		sec	889986764310000000025799999999998654321110000000000000000000000000000000000
		sec	000000012367646878740000000000000014666668999997510000367
		sec	00000222222124211113320000000000123321122220000001488888522
subset:	SUB	sec	HHHHHHHHHEEEEEEHHHHHHHHHHHHHHHH
ACCESSI	BILT	rΥ	
3st:		acc	bbee bbeeebbbbbbbbbbbbbbbbbbbbbbbbbbb
10st:	PHD	acc	00774007770000000000600600600760060070000006000000
		acc	554410143530507473781228103651542043025452228894874301213135
subset:	SUB	acc	bbeee.e.b.bbb.bbbbe.bb
			,19,20,21,22,23,24
	AA	sec	ELGPLRSFKVFKIKPEKRWQDISMRMKTIGEHIVAHIQHEVDFLFCMDVDQVFQDKFGV
	Rel		548785148888615434587999999996899988764223578998434112157552
detail:	*****	200	75C(1074770000174444441104444440104444444444
400024.	prH	sec	0000001000000123668888899987889988775422110000011232110100
	prE		76111246888874200000000000000000000112245678888655322321123
	prL		238886431011146653211000000002100001112322210001232344467665
subset:	SUB	sec	E.LLLL., ZEEEE.LHHHHHHHHHHHHHHHHHHHHH ZEEEEELLLL.

```
ACCESSIBILITY
            3st:
     P_3 acc
10st:
     PHD acc
            13030212245442346313354232721634294306211505586304112313121
     Rel acc
subset: SUB acc
            ETLGESVAQLQAWWYKADPNDFTYERRKESAAYIPFGEGDFYYHAAIFGGTPTQVLNIT(
     AA
                                          EEEEEEE
     PHD sec.
            ЕЕ НИННИНИНИНИ
                           ннини
                                    BE
     Rel sec |231356899887643138831133211122342214767456787613897458888888
detail:
            013577889887765320134455433433321110000111000111001668888888
     prH sec
            55300000000012322000011122100012454211126778774200000000000
     prE sec
            333321100001111358864333344455553346777621101135898321111100
     prL sec
            subset: SUB sec
ACCESSIBILITY
            3st:
     P_3 acc
            60007000605000070577706575676000006697050000000995066006006
10st:
      PHD acc
            235043452513030401464221512712241510340151249632531011711512
     Rel acc
            subset: SUB acc
            ...,....31...,....32...,.....33...,....34...,....35...,....3
            ECPKGILKDKKNDIBAQWHDESHLNKYFLLNKPTKILSPBYCWDYH, IGLPADIKLVKMS
     AΑ
     PHD sec
                                           ннннн
                                                  HHH EEEE
            нинининин
                      EEE
                            HHHHEEEEE
                                     ĒE
     Rel sec | 99999754246621332352111134555388513174220234432452111216788
detail:
            |999999766521121111223444452222100000001334455553213443221100
     prH sec
            00000011100003455320000111566651024541211121212111111112337788
     prE sec
            000000112467744325565544421101288643586444332224564443431000
     prb sec
            subset: SUB sec
ACCESSIBILITY
            P_3 acc
3st:
            70070006767760700057775057000077767000772007000006000600
     PHD acc
10st:
            464512214154025700133323140340463150134515130154021204236241
     Rel acc
subset: SUB acc
            ...,....37...,...38...,...39...,...,40...,...41...,....42
            | WQTKEYNVVRNNV |
            EE
     PHD sec
            6323432215799
     Rel sec
detail:
            0122232221100
     prH sec
            7531112231000
     prE sec
            1345654446799
     prL sec
            E....LLLL
subset: SUB sec
ACCESSIBILITY
3st:
     P_3 acc
            be ee ebbeeee
            0657736006799
     PHD acc
10st:
     Rel acc
            1206411242333
subset: SUB acc
            ...ee...b...
```

TABLE 4

_	ATOM	1	Ŋ	GLN	129	-4.878	33.589	36.449
5	ATOM	2	HN1	GLN	129	-4.249	34.321	36.811
	ATOM	3	HN2	GLN	129	-4.600	33.343	35.488
	ATOM	4	CA	GLN	129	-4.790	32.431	37.282
	ATOM	5	HA	GLN	129	-5.554	32.501	38.056
	MOTA	6	CB	GLN	129	-5.062	31.113	36.543
10	ATOM	7	HB1	GLN	129	-4.999 -	30.257	37.215
	MOTA	8		GLN	129 .	-4.343	30.949	35.740
	MOTA	9	CG	GLN	129	-6.456	31.098	35.916
	ATOM	10	HG1	GLN	129	-6.680	30.069	35.633
	ATOM	11		GLN	129	-6.432	31.752	35.044
15	ATOM	12	CD	GLN	129	-7.437	31.609	36.963
13	MOTA	13	OE1	GLN	129	-7.663	30.975	37.993
	ATOM	14	NE2	GLN	129	-8.032	32.803	36.697
	ATOM	15	HE2		129	-7.816	33.303	35.822
20	ATOM	16	HE2	GLN	129	-8.700	33.208	37.369
20	ATOM	17	C	GLN	129	-3.430	32.389	37.898
	ATOM	18		GLN	129	-2.451	32.890	37.347
	MOTA	19	N	LYS	130	-3.379	31.794	39.100
	MOTA	20	HN	LYS	130	-4.252	31.369	39.444
	MOTA	21	CA	LYS	130	-2.232	31.691	39.951
25	MOTA	22	HA	LYS	130	-1.740	32.653	40.094
	ATOM	23	CB	LYS	130	-2.600	31.151	41.342
	MOTA	24	HB1	LYS	130	-1.751	31.071	42.021
	MOTA	25	HB2	LYS	130	-3.039	30.153	41.325
	ATOM	26	CG	LYS	130	-3.620	32.014	42.090
30	MOTA	27	HG1	LYS	130	-3.849	31.529	43.039
	ATOM	28	HG2	LYS	130	-4.516	32.095	41.475
	ATOM	29	CD	LYS	130	-3.137	33.432	42.397
	ATOM	30	HD1	LYS	130	-3.945	34.135	42.598
	ATOM	31	HD2	LYS	130	-2.565	33.884	41.586
35	MOTA	- 32	CE	LYS	130	-2.224	33.518	43.622
	MOTA	33	HE1	LYS	130	-2.626	32.907	44.430
	ATOM	34	HE2	LYS	130	-2.152	34.551	43.962
	ATOM	35	NZ	LYS	130	-0.869	33.030	43.278
	ATOM	36	HZ1	LYS	130	-0.261	33.091	44.107
40	ATOM	37	HZ2	LYS	130	-0.925	32.050	42.965
	ATOM	38	HZ3	LYS	130	-0.477	33.609	42.521
	ATOM	39	C	LYS	130	-1.201	30.759	39.397
	ATOM	40	Ö	LYS	130	-0.005	30.974	39.587
	ATOM	41	N	ILE	131	-1.619	29.692	38.694
45	ATOM	42	HN	ILE	131	-2.598	29.601	38.388
43	ATOM	43	CA	ILE	131	-0.643	28.688	38.389
						0.116		39.162
	ATOM	44	HA	ILE	131		28.575	
	ATOM	45	CB	ILE	131	-1.212	27.300	38.320
50	ATOM	46	HB	ILE	131	-1.745	27.101	39.250
50	ATOM	47	CG2		131	-2.172	27.231	37.122
	ATOM	48	HG2	ILE	131	-2.597	26.230	37.054
	ATOM	49		ILE	131	-2.973	27.957	37.257
	ATOM	50	HG2	ILE	131	-1.627	27.458	36.206
	MOTA	51	CG1	ILE	131	-0.082	26.256	38.292
55	MOTA	52	HG1	ILE	131	0.695	26.441	39.033
	MOTA	53	HG1	ILE	131	0.438	26.208	37.335
	MOTA	54	CD1	ILE	131	-0.566	24.832	38.560
	MOTA	55	HD1	ILE	131	0.281	24.147	38.526
	MOTA	56	HD1	ILE	131	-1.030	24.785	39.545
60	ATOM	57	HD1	ILE	131	-1.294	24.546	37.802
	ATOM	58	С	ILE	131	0.108	28.958	37.133
	ATOM	59	0	ILE	131	-0.444	29.257	36.075
	ATOM	60	N	THR	132	1.443	28.868	37.270
	ATOM	61	HN	THR	132	1.826	28.697	38.211
65	ATOM	62	CA	THR	132	2.359	28.998	36.182
	· ATOM	63	HA	THR	132	1.727	29.134	35.304
	ATOM	64	CB	THR	132	3.354	30.109	36.364

	MOTA	65	HB	THR	132	2.812	31.041	36.525
	MOTA	66		THR	132	4.162	30.248	35.205
	ATOM	67		THR	132	4.271	31.247	34.980
	ATOM	68		THR	132	4.232	29.788	37.584
5	ATOM	69	HG2		132	4.960	30.586	37.729
9	ATOM	70		THR	132	3.606	29.703	38.472
	MOTA	71		THR	132	4.755	28.846	37.418
	ATOM	72		THR	132	3.127	27.718	36.179
10	MOTA	73		THR	132	3.437	27.174	37.238
10	ATOM	74		VAL	133	3.424	27.170	34.989
	MOTA	75		VAL	133	3.112	27.603	34.109
	ATOM	76		VAL	133	4.191	25.963	34.990
	MOTA	77	HA	VAL	133	4.260	25.629	36.026
	ATOM	78	CB	VAL	133	3.579	24.853	34.180
15	MOTA	79		VAL	133	3.467	25.193	33.150
	MOTA	80	CG1	VAL	133	4.509	23.630	34.237
	ATOM	81	HG1	VAL	133	4.077	22.817	33.653
	MOTA	82	HG1	VAL	133	5.483	23.894	33.826
	ATOM	83	HG1	VAL	133	4.627	23.310	35.272
20	ATOM	84	CG2	VAL	133	2.171	24.570	34.735
_ •	ATOM	85	HG2		133	1.708	23.768	34.162
	ATOM	86	HG2		133	2,245	24.273	35.781
	ATOM	87	HG2		133	1.561	25.471	34.657
	ATOM	88		VAL	133	5.534	26.296	34.425
25	MOTA	89		VAL	133	5.641	26.933	
23		90			134			33.380
	MOTA		, HM. , HM.	GLY		6.606	25.880	35.122
	MOTA	7.4		GLY	134	6.480	25.331	35.984
	MOTA	92	CA	GLY	134	7.924	26.201	34.664
~~	ATOM	93		GLY	134	8.466	26.642	35.501
30	MOTA	94	HA2		134	7.825	26.909	33.841
	ATOM	95	С	GLY	134	8.565	24.937	34.214
	ATOM	96	0	GLY	134	8.578	23.936	34.928
	MOTA	97	N	LEU	135	9.135	24.962	33.001
	MOTA	98	HN	LEU	135	9.132	25.827	32.441
35	MOTA	99	CA	LEU	135 ~	9.745	23.777	32.495
	MOTA	100	HA	LEU	135	9.529	22.955	33.178
	MOTA	101	CB	LEU	135	9.288	23.401	31.082
	MOTA	102	HB1	LEU	135	9.436	24.224	30.383
	MOTA	103	HB2	LEU	135	B.230	23.142	31.061
40	MOTA	104	CG	LEU	135	10.068	22.194	30.542
	MOTA	105	HG	LEU	135	11.124	22.437	30.425
	ATOM	106	CD2	LEU	135	9.638	21.839	29.113
	ATOM	107	HD2	LEU	135	10.211	20.980	28.764
	MOTA	108	HD2	LEU	135	8.576	21.595	29.102
45	ATOM	109	HD2	LEU	135	9.822	22.689	28.456
	ATOM	110	CD1	LEU	135	9.956	21.005	31.498
	ATOM	111	HD1	LEU	135	10.516	20.161	31.095
	MOTA	112	HD1	LEU	135	10.364	21.280	32.470
	ATOM	113	HD1	LEU	135	8.908	20.725	31.610
50	ATOM	114	С	LEU	135	11.215	23.999	32.405
	ATOM	115	0	LEU	135	11.682	25.098	32.119
	MOTA	116	N	THR	136	11.994	22.945	32.698
	ATOM	117	HN	THR	136	11.563	22.078	33.052
	ATOM	118	CA	THR	136	13.413	23.007	32.527
55	ATOM	119	HA	THR	136	13.609	24.037	32.229
-	ATOM	120	CB	THR	136	14.187	22.632	33.762
	ATOM	121	HB	THR	136	15.253	22.703	33.546
	ATOM	122	OG1	THR	136	13.894	21.296	34.144
			HG1	THR		12.992	21.271	
60	MOTA	123			136 136			34.641
UU	ATOM	124	CG2	THR	136	13.814	23.602	34.899
	ATOM	125		THR	136	14.370	23.339	35.799
	ATOM	126	HG2	THR	136	14.063	24.621	34.604
	ATOM	127	HG2	THR	136	12.745	23.534	35.100
_ E	ATOM	128	C	THR	136	13.710	22.003	31.462
65	ATOM	129	0	THR	136	13.227	20.872	31.523
	MOTA	130	N	VAL	137	14.487	22.397	30.431
	MOTA	131	HN	VAL	137	14.898	23.340	30.399
	ATOM	132	CA	VAL	137	14.718	21.447	29.381

	ATOM	133	/ AH	/AL	137	14.363	20.462	29.683
	MOTA	134		/AL	137	14.014	21.789	28.099
	ATOM	135		/AL	137	14.297	21.056	27.343
	ATOM	136		/AL	137	12.497	21.745	28.349
5	ATOM	137		JAL	137	11.969	21.991	27.427
,	MOTA	138		VAL	137	12.210	20.745	28.675
	MOTA	139		VAL	137	 12.234	22.468	29.121
	MOTA	140		VAL	137	14.536	23.149	27.604
	ATOM	141		VAL	137	14.035	23.413	26.672
10	MOTA	142	HG2 V	VAL	137	14.332	23.912	28.355
,	MOTA	143	HG2 V	JAV	137	15.610	23.086	27.433
	ATOM	144	C 7	VAL	137	16.179	21.363	29.078
	ATOM	145	0 7	VAL	137	16.898	22.362	29.101
	ATOM	146		PHE	138	16.663	20.128	28.828
15	ATOM	147		PHE	138	16.051	19.306	28.928
	ATOM	148		PHE	138	18.025	19.961	28.425
	MOTA	149		PHE	138	18.327	20.795	27.792
	MOTA	150		PHE	138	19.021	19.919	29.599
	ATOM	151	HB1		138	18.676	19.145	30.284
20	MOTA	152		PHE	138	19.009	20.904	30.064
	MOTA	153		PHE	138	20.360	19.595	29.027
	MOTA	154	CD1	PHE	138	21.167	20.575	28.499
	MOTA	155	HD1	PHE	138	20.829	21.612	28.499
	MOTA	156	CD2	PHE	138	20.800	18.291	29.005
25	ATOM	157		PHE	138	20.164	17.504	29.412
	ATOM	158		PHE	138	22.396	20.258	27.971
	ATOM	159		PHE	138	23.030	21.043	27.558
	ATOM	160		PHE	138	22.027	17.965	28.480
		161		PHE	138	22.363	16.928	28.473
20	ATOM						18.954	27.962
30	ATOM	162		PHE	138	22.828		
	MOTA	163		PHE	138	23.804	18.704	27.545
	MOTA	164		PHE	138	18.174	18.680	27.658
	ATOM	165		PHE	138	18.069	17.587	28.211
	MOTA	166		ALA	139	18.436	18.820	26.344
35	ATOM_	167	HN .	ALA	139	18.400	19.778	25.968
	ATOM	168	CA .	ALA	139	18.760	17.776	25.412
	MOTA	169	HA	ALA	139	18.689	18.186	24.405
	ATOM	170	CB	ALA	139	20.209	17.281	25.561
	ATOM	171	HB1	ALA	139	20.401	16.492	24.833
40	MOTA	172		ALA	139	20.896	18.109	25.388
	ATOM	173		ALA	139	20.358	16.889	26.567
	ATOM	174		ALA	139	17.868	16.578	25.473
	MOTA	175		ALA	139	18.359	15.456	25.348
		176		VAL	140	16.546	16.733	25.670
15	ATOM							
45	ATOM	177		VAL	140	16.109	17.634	25.911
	MOTA	178		VAL	140	15.812	15.518	25.511
	ATOM	179		VAL	140	16.520	14.737	25.234
	ATOM	180		VAL	140	15.073	15.043	26.706
	MOTA	181		VAL	140	14.435	15.884	26.977
50	ATOM	182	CG1		. 140	14.311	13.812	26.211
	MOTA	183	HG1		140	13.731	13.389	27.031
	MOTA	184	HG1		140	13.639	14.101	25.402
	ATOM	185	HG1	VAL	140	15.019	13.068	25.846
	ATOM	186	CG2	VAL	140	16.062	14.743	27.846
55	ATOM	187	HG2		140	15.513	14.395	28.721
_	ATOM	188	HG2		140	16.763	13.972	27.526
	ATOM	189	HG2		140	16.611	15.650	28.099
	ATOM	190	c	VAL	140	14.803	15.735	24.437
	ATOM	191	0	VAL	140	13.632	16.009	24.704
60						15.244	15.558	23.183
00	ATOM	192	N	GLY	141			
	ATOM	193	HN	GLY.	141	16.215	15.244	23.042
	MOTA	194	CA	GLY	141	14.425	15.788	22.033
	ATOM	195	HA1		141	15.021	15.687	21.126
-	MOTA	196	HA2		141	14.004	16.793	22.071
65	MOTA	197	С	GLY	141	13.311	14.796	21.995
	MOTA	198	0	GLY	141	12.214	15.108	21.538
	MOTA	199	N	ARG	142	13.579	13.554	22.433
	MOTA	200	HN	ARG	142	14.509	13.337	22.819

	MOTA	201	CA	ARG	142	12.581	12.529	22.365
	ATOM	202	HA	ARG	142	12.172	12.468	21.357
	MOTA	203	CB	ARG	142	13.130	11.135	22.711
	ATOM	204	HB1	ARG	142	12.356	10.368	22.729
5	ATOM	205	HB2	ARG	142	13.609	11.099	23.689
	ATOM	206	CG	ARG	142	14.181	10.646	21.712
	ATOM	207			142	15.085	11.239	21.848
	MOTA	208	HG2	ARG	142	13.783	10.777	20.706
	MOTA	209	CD	ARG	142	14.564	9.175	21.872
10	MOTA	210	HD1	ARG	142	13.654	8.593	21.725
	ATOM	211	HD2		142	14.963	9.060	22.879
	ATOM	212	NE	ARG	142	15.587	8.880	20.830
	MOTA	213	HE	ARG	142	15.303	8.494	19.918
•	MOTA	214	CZ	ARG	142	16.903	9.124	21.093
15	MOTA	215	NH1		142	17.268	9.588	22.323
	ATOM	216		ARG	142		9.775	
						18.260		22.529
	MOTA	217	HH1	ARG	142	16.553	9.752	23.045
	ATOM	218	NH2	ARG	142	17.848	8.912	20.131
	ATOM	219	HH2	ARG	142	18.840	9.098	20.335
20	ATOM	220	HH2	ARG	142	17.568	8.566	19.202
~~								
	MOTA	221	С	ARG	142	11.466	12.829	23.318
	MOTA	222	0	ARG	142	10.302	12.577	23.012
	MOTA	223	N	TYR	143	11.805	13.312	24.527
	ATOM	224	HN	TYR	143	12.795	13.518	24.721
25	ATOM	225	CA	TYR	143	10.834	13.549	25.554
23								
•	MOTA	226	HA	TYR	143	10.121	12.725	25.537
	MOTA	227	CB	TYR	143	11.480	13.520	26.952
	MOTA	228	HB1	TYR	143	10.718	13.833	27.665
	ATOM	229	HB2	TYR	143	12.322	14.212	26.931
30.	ATOM	230	CG	TYR	143	11.927	12.112	27.201
30.								
	MOTA	231	CD1	TYR	143	11.169	11.057	26.750
	MOTA	232	HD1	TYR	143	10.246	11.253	26.203
	ATOM	233	CD2	TYR	143	13.049	11.829	27.950
	ATOM	234	HD2	TYR	143	- 13.633	12.650	28.365
35	ATOM	235		TYR	143	11.559	9.758	26.979
55								
	MOTA	236	HE1	TYR	143	10.957	8.934	26.595
	MOTA	237	CE2	TYR	143	13.447	10.536	28.185
	MOTA	238	HE2	TYR	143	14.351	10.338	28.762
	ATOM	239	CZ	TYR	143	12.704	9.493	27.691
40	ATOM	240	OH	TYR	143	13.106	8.161	27.926
	ATOM		НН		143	12.350	7.654	
		241		TYR				28.408
	MOTA	242	С	TYR	143	10.033	14.831	25.431
	MOTA	243	0	TYR	143	8.809	14.823	25.543
	ATOM	244	N	ILE	144	10.687	15.959	25.108
45	MOTA	245	HN	ILE	144	11.631	15.889	24.702
	ATOM	246	CA	ILE	144	10.110	17.266	25.312
	ATOM	247	HA	ILE	144	9.960	17.404	26.383
	MOTA	248	CB	ILE	144	11.045	18.376	24.925
	ATOM	249	HB	ILE	144	12.013	18.187	25.390
50	ATOM	250	CG2	ILE	144	11.176	18.388	23.394
	ATOM		HG2	ILE		11.852	19.188	
		251			144			23.093
	MOTA	252	HG2	ILE	144	11.572	17.431	23.055
	ATOM	253	HG2	ILE	144	10.196	18.553	22.947
	ATOM	254	CG1	ILE	144	10.563	19.706	25.525
55	ATOM	255	HG1	ILE	144	10.256	19.621	26.567
22			HG1		144			
	MOTA	256		ILE		9.705	20.127	25.002
	ATOM	. 257	CD1	ILE	144	11.630	20.799	25.502
	ATOM	258	HD1	ILE	144	11.225	21.711	25.940
	ATOM	259	HD1	ILE	144	12.496	20.474	26.079
60	ATOM	260	HD1	ILE	144	11.931	20.992	24.473
						8.786		
	ATOM	261	C	ILE	144		17.503	24.644
	MOTA	262	0	ILE	144	7.929	18.176	25.216
	MOTA	263	N	GLU	145	8.559	16.986	-23.427
	MOTA	264	HN	GLU	145	9.270	16.399	22.969
65	ATOM	265	CA	GLU	145	7.311	17.261	22.771
	ATOM .		HA	GLU	145	7.201	18.334	22.616
	ATOM	267	CB	GLU	145	7.200	16.541	21.414
	ATOM	268	HB1	GLU	145	7.489	15.499	21.553

	MOTA	269	HB2	GLU	145	7.869	17.033	20.708
	ATOM	270	CG	GLU	145	5.792	16.557	20.809
		271		GLU	145			
	ATOM		HG1			5.064	16.333	21.588
_	ATOM	272	HG2	GLU	145	5.730	15.806	20.021
5	ATOM	273	CD	GLU	145	5.512	17.933	20.227
	ATOM	274	OE1	GLU	145	5.854	18.943	20.899
	ATOM	275	OE2	GLU	145	4.951	17.992	19.100
	MOTA	27 7	С	GLU	145	6.174	16.771	23.610
	ATOM	278	0	GLU	145	5.182	17.477	23.791
10	ATOM	279	N	HIS	146	6.300	15.550	24.158
10	ATOM	280	HN	HIS	146	7.192	15:044	24.055
	ATOM	281	CA	HIS	146	5.227	14.935	24.880
	MOTA	282	HA	HIS	146	4.330	14.892	24.262
	MOTA	283	ND1		146	3.840	12.371	26.806
15	ATOM	284	HD1	HIS	146	4.262	12.665	27.699
	ATOM	285	CG	HIS	146	4.305	12.661	25.543
	MOTA	286	NE2	HIS	146	2.430	11.416	25.377
	MOTA	287	HE2	HIS	146	1.637	10.885	24.989
	ATOM	288	CD2		146	3.432	12.070	24.683
20	ATOM	289	HD2		146	3.511	12.106	23.596
20				_				
	ATOM	290		HIS	146	2.717	11.624	26.648
	MOTA	291	HE1		146	2.122	11.240	
	MOTA	292	CB	HIS	146	5.530	13.469	25.238
	ATOM	293	HB1	HIS	146	6.169	13.358	26.113
25	MOTA	294	HB2	HIS	146	6.040	12.924	24.443
	ATOM	295	C	HIS	146	4.915	15.719	26.121
	MOTA	296	0	HIS	146	3.747	15.885	26.466
	ATOM	297	N	TYR	147	5.938	16.225	26.842
	ATOM	298	HN	TYR	147	6.915	16.068	26.555
30	ATOM	299	CA	TYR	147	5.630	16.989	28.020
50		300				5.026		
	ATOM		HA	TYR	147		16.397	28.707
	MOTA	301	СВ	TYR	147	6.829	17.505	28.833
	MOTA	302	HB1	TYR	147	7.620	17.877	28.183
	MOTA	303	HB2	TYR	147	7.258	16.717	29.452
35	MOTA	304	CG	TYR	147	6.200	18.589	29645
	MOTA	305	CD1	TYR	147	5.277	18.281	30.619
	MOTA	306	HD1	TYR	147	5.019	17.237	30.798
	MOTA	307	CD2	TYR	147	6.501	19.914	29.422
	ATOM	308	HD2	TYR	147	7.220	20.183	28.649
40	ATOM	309	CE1	TYR	147	4.673	19.260	31.369
	MOTA	310	HE1	TYR	147	3.953	18.993	32.142
				TYR			20.902	30.169
	ATOM	311	CE2		147	5.901		
	ATOM	312	HE2	TYR	147	6.154	21.947	29.991
	MOTA	313	CZ	TYR	147	4.982	20.576	31.140
45	ATOM	314	OH	TYR	147	4.365	21.589	31.905
	MOTA	315	нн	TYR	147	5.006	22.389	31.996
	ATOM	316	С	TYR	147	4.869	18.220	27.653
	MOTA	317	0	TYR	147	3.844	18.528	28.259
•	ATOM	318	N.	LEU	148	5.349	18.934	26.621
50	ATOM	319	HN	LEU	. 148	6.152	18.547	26.105
	ATOM	320	CA	LEU	148	4.823	20.193	26.187
	MOTA	321	HA	LEU	148	4.944	20.910	26.999
	ATOM	322	CB	LEU	148	5.608	20.637	24.935
	MOTA	323	HB1	LEU	148	5.473	19.864	24.178
55	MOTA	324	HB2	LEU	148	6.654	20.733	25.227
	MOTA	325	CG	LEU	148	5.229	21.964	24.264
	MOTA	326	HG	LEU	148	5.245	22.748	25.021
	ATOM	327	CD2	LEU	148	3.801	21.957	23.693
	ATOM	328		LEU	148	3.589	22.921	23.231
60	ATOM	329		LEU	148	3.712	21.169	22.945
	ATOM	330		LEU	148	3.088	21.776	24.497
•	MOTA	331	·CD1		148	6.255	22.258	23.160
	ATOM	332		LEU	148	6.002	23.199	22.670
CE	ATOM	333		LEU	148	7.250	22.333	23.599
65	MOTA	334	HD1		148	6.242	21.452	22.427
	ATOM	335	C	LEU	148	3.371	20.006	25.855
	MOTA	્336	0	LEU	148	2.518	20.774	26.301
	MOTA	337	N	GLU	149 '	3.054	18.939	25.105

							- 0	
	ATOM	338	HN	GLU	149	3.806	18.294	24.822
	ATOM	339	CA	GLU	149	1.714	18.659	24.681
	MOTA	340		GLU	149	1.317	19.494	24.104
_	ATOM	341		GLU	149	1.630	17.377	23.835
5	MOTA	342		GLU	149	2.205	16.546	24.243
	ATOM ATOM	343 344		GLU GLU	149 149	1.997 0.206	17.502	22.816
	ATOM	345		GLU	149	-0.294	16.837 16.880	23.680 24.648
	ATOM	346		GLU	149	0.256	15.805	23.331
10	MOTA	347		GLU	149	-0.536	17.693	22.670
	MOTA	348	OE1	GLU	149	0.137	18.476	21.949
	MOTA	349		GLU	149	-1.789	17.573	22.607
	MOTA	351		GLU	149	0.831	18.435	25.867
1.5	ATOM	352		GLU	149	-0.298	18.921	25.905
15	ATOM ATOM	353 354		GLU	150	1.332	17.710	26.881
	ATOM	355		GLU GLU	150 150	2.321 0.502	17.422 17.335	26.863 27.988
	ATOM	356		GLU	150	~0.343	16.748	27.628
	ATOM	357		GLU	150	1.238	16.472	29.027
20	ATOM	358		GLU	150	1.833	17.063	29.723
	ATOM	359	HB2	GLU	150	1.929	15.760	28.574
	MOTA	360	CG	GLU	150	0.287	15.640	29.891
	MOTA	361	HG1		150	-0.491	16.316	30.242
25	ATOM	362		GLU	150	0.880	15.237	30.713
25	ATOM	363 364	CD OE1	GLU	150	-0.271	14.539 14.660	28.996
	ATOM ATOM	365	OE2		150 150	-0.108 -0.862	13.565	27.752 29.534
	ATOM	367	C	GLU	150	-0.004	18.564	28.674
	ATOM	368		GLU	150	-1.156	18.611	29.106
30	ATOM	369	N	PHE	151	0.859	19.584	28.821
	MOTA	370	HN	PHE	151	1.819	19.495	28.458
	ATOM	371	CA	PHE	151	0.458	20.792	29.476
	ATOM	372	HA	PHE	151	0.018	20.581	30.450
35	MOTA	373 374	CB	PHE	151	1.638	21.741	29.732
99	MOTA -	375	HB1 HB2	PHE PHE	151 151	2.158 2.269	21.863 21.267	28.781 30.483
	ATOM	376	CG	PHE	151	1.063	23.023	30.218
	ATOM	377	CD1	PHE	151	0.595	23.151	31.506
	MOTA	378	HD1	PHE	151	0.642	22.301	32.187
40	MOTA	379	CD2		151	1.003	24.107	29.374
	ATOM	380	HD2	PHE	151	1.375	24.016	28.353
	ATOM	381 382	CE1 HE1	PHE PHE	151	0.069 -0.303	24.346	31.936
	ATOM ATOM	383	CE2	PHE	151 151	0.479	24.440 25.302	32.956 29.800
45	MOTA	384	HE2	PHE	151	0.436	26.153	29.120
	ATOM	385	CZ	PHE	151	0.010	25.422	31.084
	MOTA	386	HZ	PHE	151	-0.406	26.369	31.427
	ATOM	387	C .	PHE	151	-0.559	21.534	28.661
	ATOM	388		PHE	151	-1.590	21.955	29.184
50	ATOM	389	N	LEU	152	-0.310	21.684	27.346
	ATOM.	390 391	HN	LEU	152	0.509 -1.153	21.214 22.480	26.936 26.497
	ATOM ATOM	392	CA HA	LEU LEU	152 152	-1.211	23.501	26.874
	MOTA	393	CB	LEU	152	-0.669	22.514	25.038
55	ATOM	394	HB1	LEU	152	-1.410	23.048	24.442
	ATOM	395	HB2	LEU	152	-0.564	21.487	24.687
•	MOTA	396	CG	LEU	152	0.685	23.218	24.846
	MOTA	397	HG	LEU	152	1.471	22.726	25.418
6 0	MOTA	398		LEU	152	0.667	24.632	25.454
60	ATOM	399 400	HD2 HD2	LEU	152 152	1.637 -0.105	25.105 25.227	25.303 24.968
	ATOM ATOM	401	HD2		152 152	0.458	23.227	24.968
	MOTA	402	CD1		152	1.112	23.214	23.369
	ATOM	403	HD1		152	2.072	23.719	23.267
65	MOTA	404	HD1		152	1.203	22.186	23.020
	MOTA	405	HD1		152	0.363	23.735	22.772
	ATOM	406	C	LEU	152	-2.534	21.905	26.455

152

ATOM

-3.523 22.634 26.528

ATOM

	MOTA	408	N	THR	153	-2.624	20.568	26.352
•	MOTA	409	HN	THR	153	-1.760	20.012	26.416
	MOTA	410	CA	THR	153	-3.865	19.882	26.156
_	ATOM	411	HA	THR	153	-4.395	20.239	25.272
5	MOTA	412	CB	THR	153	-3.685	18.410	25.940
	MOTA	413	HB	THR	153	-2.933	18.254	25.167
	ATOM	414	OG1	THR	153	-4.907	17.832	25.510
	MOTA	415	HG1	THR	153	-5.654	18.539	25.547
	MOTA	416	CG2	THR	153	-3.223	17.764	27.257
10	MOTA	417	HG2	THR	153	-3.089	16.692	27.110
	ATOM	418	HG2	THR	153	-2.278	18.208	27.569
	ATOM	419	HG2	THR	153	-3.975	17.933	28.029
	ATOM	420	С	THR	153	-4.792	20.058	27.316
10	MOTA	421	0	THR	153	-6.002	20.106	27.103
15	MOTA	422	N	SER	154	-4.245	20.151	28.550
	MOTA	423	HN	SER	154	-3.217	20.193	28.608
	MOTA	424	CA	SER	154	-4.981	20.196	29.791
	ATOM	425	AH CD	SER	154	-5.266	19.197	30.123
20	MOTA	426	CB	SER	154	-4.167	20.786	30.955
20	MOTA	427	HB1	SER	154	-4.784	20.840	31.852
	ATOM	428 429	HB2	SER	154 154	-3.826 -3.037	21.790 19.970	30.700 31.221
	ATOM ATOM	429	og Hg	SER SER	154	-3.260	19.311	31.221
	ATOM	430	C	SER	154	-6.234	20.995	29.656
25	ATOM	432	0	SER	154	-6.230	22.221	29.738
23	ATOM	433	Ŋ	ALA	155	-7.353	20.279	29.738
	ATOM	434	HN	ALA	155	-7.289	19.253	29.357
	ATOM	435	CA	ALA	155	-8.627	20.913	29.284
	ATOM	436	HA	ALA	155	-8.526	21.664	28.501
30	ATOM	437	CB	ALA	155	-9.751	19.926	28.929
	ATOM	438	HB1		155	-10.693	20.467	28.833
	``ATOM	439	HB2	ALA	155	-9.518	19.433	27.986
	ATOM	440	нвз	ALA	155	-9.841	19.179	29.717
	MOTA	441	С	ALA	155	-8.963	21.528	30.594
35	ATOM -	442	0	ALA	155	-9.412	22.669	
	ATOM	443	N	ASN	156	-8.754	20.767	31.682
	ATOM	444	HN	ASN	156	-8.421	19.802	31.544
	ATOM	445	CA	ASN	156	-8.972	21.225	33.022
	MOTA	446	HA	ASN	156	-8.595	20.478	33.720
40	ATOM	447	CB	ASN	156	-8.254	22.544	33.350
	ATOM	448	HB1	ASN	156	-8.587	22.875	34.334
	ATOM	449	HB2	ASN	156	-8.520	23.274	32.586
	MOTA	450	CG	ASN	156	-6.756	22.281	33.348
	ATOM	451	OD1		156	-7.736	21.772	33.890
45	MOTA	452	ND2		156	-6.497	23.300	32.486
	ATOM	453		ASN	156	-5.527	23.497	32.199
	MOTA	454		ASN	156	-7.269	23.874	32.120
	MOTA	455	C	ASN	156	-10.432	21.427	33.237
50	MOTA	456	0	ASN	156	-11.114	22.056	32.428
50	MOTA	457	N	LYS	157	-10.963	20.868	34.341
	ATOM	458	HN	LYS	157	-10.386	20.284	34.962
	MOTA	459	CA	LYS	157	-12.342	21.100	34.632
	MOTA	460 461	HA CB	LYS LYS	157 157	-12.892 -12.866	20.888 20.247	33.715 35.799
55	ATOM ATOM	462	HB1	LYS	157	-13.840	20.565	36.170
))	MOTA	463		LYS	157	-12.214	20.255	36.673
	ATOM	464	CG	LYS	157	-13.039	18.769	35.448
	MOTA	465		LYS	157	-13.382	18.168	36.291
	MOTA	466		LYS	157	-12.115	18.301	35.109
60	MOTA	467	CD	LYS	157	-14.056	18.535	34.331
	ATOM	468		LYS	157	-14.141	17.489	34.036
	MOTA	469		LYS	157	-13.822	19.075	33.413
	MOTA	470	CE	LYS	157	-15.476	18.967	34.704
	ATOM	471		LYS	157	-15.486	20.021	34.983
65	ATOM	472		LYS	157	-15.839	18.377	35.545
	ATOM	473	NZ	LYS	157	-16.386	18.770	33.554
	ATOM	474	HZ1		157	-17.338	19.063	33.814
	3.0014	476	1700	T 1/0	167	16 060	10 224	22 756

475 HZ2 LYS 157 -16.060 19.334 32.756

	ATOM	476	HZ3	LYS	157	-16.395	17.774	33.289
		477						
	MOTA		С	LYS	157	-12.453	22.529	35.040
	ATOM	478	0	LYS	157	-13.219	23.300	34.462
	ATOM	479	N	HIS	158	-11.653	22.918	36.051
5	ATOM	480	HN	HIS	158	-11.014	22.238	36.486
	MOTA	481	CA	HIS	158	-11.682	24.265	36.530
	ATOM	482	HA	HIS	158	-12.717	24.551	36.721
	MOTA	483	ND1		158	-12.504	24.615	39.778
	MOTA	484	HD1	HIS	158	-12.842	25.570	39.593
10	ATOM	485	CG	HIS	158	-11.570	23.919	39.043
	ATOM	486	NE2	HIS	. 158	-12.274	22.634	40.759
	ATOM	487	HE2		158	-12.386	21.843	41.409
						-		
	ATOM	488	CD2		158	-11.440	22.711	39.656
	MOTA	489	HD2	HIS	158	-10.774	21.914	39.325
15	MOTA	490	CE1	HIS	158	-12.892	23.800	40.792
	ATOM	491	HE1	HIS	158	-13.628	24.077	41.546
	ATOM	492	СВ	HIS	158	-10.884	24.473	37.830
		493						
	MOTA		HB1		158	-10.697	25.522	38.059
	ATOM	494	HB2		158	-9.901	24.003	37.814
20	MOTA	495	С	HIS	158	-11.090	25.158	35.495
	MOTA	496	0	HIS	158	-11.707	26.144	35.098
	ATOM	497	N	PHE	159	-9.878	24.828	35.004
	ATOM	498	HN	PHE	159	-9.394	23.966	35.293
	MOTA	499	CA	PHE	159	-9.297	25.732	34.065
25	MOTA	500	HA	PHE	159	-9.603	26.738	34.353
	MOTA	501	CB	PHE	159	-7.764	25.681	34.055
	ATOM	502	HB1	PHE	159	-7.466	26.283	33.197
	ATOM	503	HB2	PHE	159	-7.517	24.624	33.951
20	MOTA	504	CG	PHE	159	-7.349	26.262	35.362
30	ATOM	505	CD1		159	-7.253	25.470	36.482
	MOTA	506	HD1	PHE	159	-7.477	24.406	36.411
	ATOM	507	CD2	PHE	159	-7.082	27.607	35.474
	ATOM	508	HD2	PHE	159	-7.170	28.249	34.597
	ATOM	509	CE1		159	-6.877	26.007	37.691
35								
33	ATOM	510		PHE	1 59	-6.798	25.367	38.570
	ATOM	511		PHE	159	-6.707	28.149	36.679
	MOTA	512	HE2	PHE	159	-6.492	29.215	36.753
	ATOM	513	CZ	PHE	159	-6.602	27.349	37.791
	ATOM	514	HZ	PHE	159	-6.301	27.777	38.748
40	MOTA	515	С	PHE	159	-9.814	25.368	32.728
70		516			159	-9.080		
	MOTA		0	PHE			24.820	31.910
	ATOM	517	N	MET	160	-11.096	25.716	32.478
	ATOM	518	HN	MET	160	-11.620	26.224	33.205
	ATOM	519	CA	MET	160	-11.755	25.406	31.246
45	MOTA	520	HA	MET	160	-11.756	24.319	31.165
	ATOM	521	СВ	MET	160	-13.167	26.013	31.157
	ATOM	522		MET	160	-13.568	25.796	30.168
	MOTA	523		MET	160	-13.085	27.088	31.314
	MOTA	524	CG	MET	160	-14.161	25.473	32.186
50	ATOM	525	HG1	MET	160	-13.755	25.649	33.182
	ATOM	526		MET	160	-14.292	24.405	32.009
	ATOM	527	SD	MET	160	-15.803	26.255	32.109
	ATOM	528	CE	MET	160	-15.256	27.848	32.785
	MOTA	529		MET	160	-16.105	28.530	32.842
55	ATOM	530	HE2	MET	160	-14.844	27.698	33.782
	ATOM	531	HE3	MET	160	-14.491	28.276	32.136
	ATOM	532	С	MET	160	-10.959	26.053	30.174
						-10.572		
	ATOM	533	0	MET	160		25.421	29.194
	MOTA	534	N	VAL	161	-10.678	27.353	30.356
60	MOTA	535	HN	VAL	161	-11.032	27.849	31.187
	MOTA	536	CA	VAL	161	-9.885	28.043	29.393
	ATOM	537	HA	VAL	161	-10.403	27.905	28.444
	ATOM	538	СВ	VAL	161	-9.691	29.495	29.724
		539	HB	VAL	161	-9.036	29.936	28.973
65	ATOM							
65	ATOM	540		VAL	161	-11.065	30.186	29.710
	MOTA	541		VAL	161	-10.944	31.243	29.948
	MOTA	542		VAL	161	-11.513	30.087	28.721
	MOTA	543	HG1	VAL	161	-11.715	29.720	30.451
						•		

611 CG2 ILE

166

3.192 26.890 29.088

	ATOM	544	CG2 V		161	-8.949	29.606	31.066
	MOTA	545	HG2 V		161	-8.803	30.657	31.316
	MOTA	546	HG2		161	-9.538	29.125	31.848
5	ATOM ATOM	547 548	HG2	VAL	161 .161	-7.980 -8.553	29.113	30.988 29.439
,	MOTA	549		VAL	161	-7.872	27.384 27.249	28.423
	MOTA	550		GLY	162	-8.163	26.922	30.642
	ATOM	551		GLY	162	-8.791	27.003	31.455
	ATOM	552		GLY	162	-6.879	26.320	30.788
10	MOTA	553	HA1	GLY	162	-6.820	25.592	29.979
	MOTA	554	HA2	GLY	162	-6.893	25.872	31.781
	ATOM	555		GLY	162	-5.917	27.443	30.653
	MOTA	556		GLY	162	-5.095	27.471	29.738
	ATOM	557		HIS	163	-5.986	28.417	31.580
15	ATOM	558 550		HIS	163	-6.644	28.363	32.371
	MOTA	559 560		HIS HIS	163	-5.105	29.529	31.417 30.434
	ATOM ATOM	561	ND1		163 163	-4.633 -4.408	29.544 32.895	32.061
	MOTA	562	HD1		163	-4.423	32.809	33.088
20	ATOM	563		HIS	163	-5.031	32.063	31.157
	ATOM	564	NE2		163	-3.941	33.690	30.038
	MOTA	565	HE2		163	-3.566	34.274	29.276
	MOTA	566	CD2	HIS	163	-4.736	32.563	29.927
	MOTA	567	HD2	HIS	163	-5.079	32.135	28.985
25	MOTA	568	CE1		163	-3.771	33.850	31.338
	MOTA	569	HE1		163	-3.186	34.657	31.779
	MOTA	570		HIS	163	-5.851	30.870	31.539
	MOTA	571	HB1		163	-6.161	30.997	32.576
30	MOTA	572 573	HB2	HIS	163	-6.720 -3.990	30.840 29.528	30.881 32.424
30	MOTA MOTA	574		HIS	163 163	-3.946	30.412	33.279
	ATOM	575		PRO	164	-3.086	28.577	32.396
	ATOM	576		PRO	164	-1.916	28.762	33.206
	ATOM	577		PRO	164	-2.224	29.395	34.038
35	MOTA	578	CD	PRO	164	-3.499	27.180	32.416
	ATOM	579	HD1	PRO	164	-3.821	26.952	31.400
	MOTA	580	HD2		164	-4.310	27.120	33.142
	MOTA	581		PRO	164	-1.484	27.380	33.711
40	MOTA	582	HB1		164	-1.775	27.364	34.761
40	ATOM	583 584	HB2 CG	PRO	164 164	-0.406 -2.261	27.351 26.386	33.553 32.840
	ATOM ATOM	585	HG1		164	-2.527	25.494	33.408
	MOTA	586	HG2		164	-1.668	26.071	31.981
	ATOM	587		PRO	164	-0.906	29.419	32.324
45	ATOM	588		PRO	164	-1.124	29.479	31.114
	MOTA	589		VAL	165	0.192	29.930	32.897
	MOTA	590		VAL	165	0.289	29.907	33.923
	MOTA	591		VAL	165	1.230	30.507	32.104
	ATOM	592		VAL	165	0.798	30.606	31.109
50	MOTA	593		VAL	165	1.744	31.775	32.701
	MOTA	594	HB CG1	VAL	165 165	2.116	31.563	33.703
	ATOM ATOM	595 596	HG1		165 165	2.876 3.261	32.311 33.239	31.816 32.240
	ATOM	597	HG1		165	3.678	31.575	31.765
55	ATOM	598	HG1		165	2.494	32.502	30.813
	ATOM	599	CG2		165	0.563	32.741	32.876
	ATOM	600	HG2		165	0.919	33.675	33.312
	MOTA	601	HG2	VAL	165	0.111	32.943	31.905
	MOTA	602	HG2		165	-0.178	32.293	33.536
60	ATOM	603		VAL	165	2.349	29.530	32.175
	ATOM	604		VAL	165	2.786	29.163	33.262
	MOTA	605	N	ILE	166	2.834	29.042	31.023
	MOTA	606 607	HN CA	ILE	166 166	2.452 3.910	29.317 28.121	30.107 31.152
65	ATOM ATOM	608	HA	ILE	166 166	4.101	27.964	32.213
05	ATOM	609	CB	ILE	166	3.608	26.763	30.571
	ATOM	610	HB	ILE	166	2.794	26.288	31.118
	7.004	C11	~~~	T7 D	1.00	2 100	0.000	20 000

	MOTA	612	HG2	ILE	166	2.977	25.901	28.685
	MOTA	613	HG2	ILE	166	2.301	27.514	29.012
	ATOM	614	HG2	ILE	166	4.003	27.346	28.520
	ATOM	615		ILE	166	4.774	25.800	30.845
5	ATOM	616		ILE	166	5,104	25.833	31.884
-	ATOM	617		ILE	166	5.649	26.024	30.236
	ATOM	618		ILE	166	4.406	24.346	30.555
	ATOM	619		ILE	166	5.263	23.705	30.765
10	MOTA	620		ILE	166	3.569	24.050	31.187
10	ATOM	621		ILE	166	4.124	24.244	29.507
	MOTA	622	C	ILE	166	5.102	28.703	30.488
	ATOM	623	0	ILE	166	5.193	28.742	29.262
	MOTA	624	N	PHE	167	6.061	29.220	31.275
	ATOM	625	HN	PHE	167	5.967	29.345	32.293
15	MOTA	626	CA	PHE	167	7.217	29.573	30.535
	ATOM	627	HA	PHE	167	6.831	29.904	29.571
	MOTA	628	СВ	PHE	167	7.966	30.866	30.928
	ATOM	629	HB1	PHE	167	7.351	31.709	30.612
	ATOM	630		PHE	167	8.926	30.859	30.412
20	ATOM	631	CG	PHE	167	8.264	31.079	32.373
20	ATOM	632		PHE	167	7.278	31.435	33.267
		633		PHE	167	6.250	31.539	32.919
	MOTA					9.558	30.994	32.814
	MOTA	634		PHE	167		30.747	
0.5	ATOM	635	HD2		167	10.354		32.112
25	MOTA	636	CE1	PHE	167	7.569	31.660	34.590
	ATOM	637	HE1	PHE	167	6.776	31.926	35.289
	ATOM	638	CE2	PHE	167	9.859	31.219	34.134
	MOTA	639	HE2	PHE	167	10.890	31.135	34.478
	MOTA	640	CZ	PHE	167	8.865	31.550	35.026
30	ATOM	641	HZ	PHE	167	9.106	31.723	36.074
	MOTA	642	С	PHE	167	8.002	28.333	30.471
	ATOM	643	0	PHE	167	8.859	28.019	31.296
	MOTA	644	N	TYR	168	7.625	27.556	29.446
	MOTA	645	HN	TYR	168	6.935	27.914	28.769
35	ATOM	646	CA	TYR	168	8.154	26.252	29.272
-	ATOM	647	HA	TYR	168	7.814	25.630	30.099
	MOTA	648	СВ	TYR	168	8.061	25.640	27.863
	ATOM	649	HB1	TYR	168	8.769	24.812	27.823
	ATOM	650	HB2	TYR	168	8.321	26.423	27.151
40	MOTA	651	CG	TYR	168	6.765	25.096	27.423
40			CD1	TYR	168	6.214	24.010	28.059
	ATOM	652	HD1	TYR		6.734	23.563	28.907
	ATOM	653			168		25.598	26.300
	ATOM	654	CD2	TYR	168	6.164		
4.5	MOTA	655	HD2		168	6.631	26.412	25.744
45	ATOM	656	CE1	TYR	168	5.018	23.478	27.644
	MOTA	657	HE1	TYR	168	4.569	22.639	28.177
	MOTA	658	CE2	TYR	168	4.974	25.071	25.879
	ATOM	659	HE2	TYR	168	4.479	25.489	25.003
	ATOM	660	CZ	TYR	168	4.397	24.021	26.547
50	MOTA	661	OH	TYR	168	3.166	23.496	26.097
	ATOM	662	HH	TYR	168	2.446	24.232	26.131
	ATOM	663	С	TYR	168	9.607	26.344	29.265
	ATOM	664	0	TYR	168	10.301	25.843	30.143
	ATOM	665	N	ILE	169	10.119	27.032	28.248
55	ATOM	666	HN	ILE	169	9.605	27.716	27.673
	ATOM	667	CA	ILE	169	11.469	26.681	28.081
	MOTA	668	HA	ILE	169	11.592	25.644	28.393
	ATOM	669	СВ	ILE	169	11.935	26.582	26.652
	ATOM	670	HB	ILE	169	11.252	25.950	26.085
60	ATOM	671	CG2	ILE	169	11.969	27.977	26.023
JU			HG2	ILE	169	12.307	27.902	24.989
	MOTA	672				10.970	28.412	26.047
	ATOM	673	HG2	ILE	169	12.655	28.612	26.583
	MOTA	674	HG2	ILE	169		25.868	
CE	ATOM	675	CG1	ILE	169	13.295		26.602
65	ATOM	676	HG1	ILE	169	13.327	24.957	27.200
	ATOM	677	HG1	ILE	169	14.119	26.481	26.968
	ATOM	678	CD1		169	13.704	25.441	25.194
	MOTA	679	HD1	ILE	169	14.673	24.944	25.231

	ATOM	680	HD1	ILE	169	12.958	24.755	24.791
	ATOM	681	HD1	ILE	169	13.772	26.320	24.553
	ATOM	682		ILE	169	12.414	27.491	28.858
	ATOM	683		ILE	169	12.688	28.655	28.578
5	ATOM	684		MET	170	12.900	26.847	29.920
•	ATOM	685		MET	170	12.428	26.010	30.289
	ATOM	686		MET	170	14.075	27.338	30.526
	ATOM	687		MET	170	14.282	28.370	30.320
	MOTA	688		MET	170			
10						14.089	27.212	32.049
10	ATOM	689		MET	170	13.937	26.178	32.361
	ATOM	690		MET	170	13.302	27.813	32.503
	MOTA	691		MET		15.421	27.679	32.631
	MOTA	692		MET	170	16.291	27.235	32.147
	MOTA	693		MET	170	15.541	27.448	33.690
15	MOTA	694	SD	MET	170	15.682	29.472	32.510
	ATOM	695	CE	MET	170	16.169	29.427	30.762
	ATOM	696	HE1	MET	170	16.394	30.438	30.421
	ATOM	697	HE2	MET	170	17.054	28.800	30.646
	ATOM	698	HE3	MET	170	15.353	29.016	30.167
20	ATOM	699	С	MET	170	15.057	26.366	29.975
	ATOM	700		MET	170	15.375	25.353	30.598
	ATOM	701		VAL	171	15.540	26.639	28.752
	ATOM	702		VAL	171	15.301	27.518	28.272
	ATOM	703		VAL	171	16.395	25.677	28.138
25	ATOM	703		VAL	171	16.078	24.685	28.460
23	ATOM	705		VAL	171	16.369	25.696	26.460
	ATOM	706		VAL	171	15.335	25.611	26.304
	MOTA	707		VAL	171	16.975	27.021.	26.149
20	MOTA	708	HG1		171	16.961	27.048	25.060
30	ATOM	709		VAL	171	16.390	27.854	26.540
• • •	ATOM	710			171	18.003	27.103	26.502
	ATOM	711	CG2		171	17.107	24.448	26.125
	MOTA	712		VAL	171	17.099	24.442	25.035
25	ATOM	713		VAL	171	18.137	24.463	26.481
35	MOTA	714		VAL	171	16.608		-26.496
	ATOM	715	С	VAL	171	17.791	25.952	28.574
	MOTA	716	0	VAL	171	18.213	27.101	28.701
	ATOM	717	N	ASP	172	18.537	24.868	28.839
	MOTA	718	HN	ASP	172	18.126	23.932	28.714
40	MOTA	719	CA	ASP	172	19.886	24.984	29.288
	ATOM	720	HA	ASP	172	19.974	25.936	29.810
	ATOM	721	CB	ASP	172	20.295	23.806	30.189
	MOTA	722	HB1	ASP	172	20.368	22.910	29.573
	MOTA	723	HB2	ASP	172	19.534	23.679	30.958
45	MOTA	724	CG	ASP	172	21.638	24.127	30.819
	ATOM	725	OD1	ASP	172	21.805	25.272	31.320
	ATOM	726	OD2	ASP	· 172	22.512	23.221	30.823
	ATOM	727	С	ASP	172	20.766	24.938	28.077
	ATOM	728	0	ASP	172	21.788	24.254	28.079
50	ATOM	729	N	ASP	173	20.413	25.705	27.026
	ATOM	730	HN	ASP	173	19.576	26.302	27.096
	ATOM	731	CA	ASP	173	21.177	25.711	25.809
	ATOM	732	HA	ASP	173	20.653	26.309	25.065
	ATOM	733	CB	ASP	173	22.582	26.326	25.965
55	ATOM	734	HB1		173	23.195	25.647	26.557
-	ATOM	735	HB2		173	22.485	27.288	26.470
	ATOM	736	CG	ASP	173	23.186	26.514	24.577
	ATOM	737	OD1		173	23.330	25.502	23.840
	MOTA	738	QD2		173	23.521	27.679	24.237
60	ATOM	739	C	ASP	173	21.325	24.304	25.323
00								
	ATOM	740	0	ASP	173	22.406	23.721	25.390
	ATOM	741	N	VAL	174	20.215	23.721	24.827
	ATOM	742	HN	VAL	174	19.338	24.259	24.797
45	ATOM	743	CA	VAL	174	20.223	22.371	24.339
65	ATOM	744	HA	VAL	174	20.895	21.773	24.955
	ATOM	745	CB	VAL	174	18.875	21.712	24.363
	ATOM	746	HB	VAL	174	18.968	20.718	23.927
	ATOM	747	CG1	VAL	174	18.404	21.616	25.824

	-							
	ATOM	748	HG1	VAL	174	17.425	21.139	25.861
	MOTA	749	HG1		174	19.117	21.024	26.398
	ATOM	750	HG1		174	18.336	22.617	26.251
	ATOM	751	CG2		174	17.923	22.499	23.446
5	ATOM	752	HG2		174	16.939	22.031	23.454
•	ATOM	753	HG2		174	17.839	23.526	23.803
	MOTA	754	HG2		174	18.316	22.500	22.429
	MOTA	755	C	VAL	174	20.696	22.366	22.921
		756	0		174	20.030		22.328
10	MOTA	757		VAL			23.413	
10	MOTA		N	SER	175	20.822	21.156	22.341 _
	MOTA	758	HN	SER	175	20.560	20.313	22.873
	MOTA	759	CA	SER	175	21.314	21.015	21.004
	MOTA	760	HA	SER	175	22.165	21.680	20.855
	MOTA	761	CB	SER	175	21.834	19.604	20.671
15	MOTA	762	HB1	SER	175	22.615	19.309	21.371
	MOTA	763	HB2	SER	175	22.248	19.577	19.663
	MOTA	764	OG	SER	175	20.783	18.655	20.748
	MOTA	765	HG	SER	175	19.906	19.132	21.002
	MOTA	766	С	SER	175	20.236	21.368	20.034
20	ATOM	767	0	SER	175	19.112	21.700	20.408
	ATOM	768	N	ARG	176	20.596	21.302	18.740
	MOTA	769	HN	ARG	176	21.539	20.946	18.530
	ATOM	770	CA	ARG	176	19.777	21.686	17.628
	ATOM	771	HA	ARG	176	19.491	22.736	17.692
25	MOTA	772	СВ	ARG	176	20.519	21.457	16.302
	ATOM	773	HB1	ARG	176	21.432	22.049	16.237
	ATOM	774	HB2	ARG	176	19.908	21.725	15.440
	ATOM	775	CG	ARG	176	20.926	19.992	16.118
	ATOM	776	HG1		176	20.053	19.434	15.781
30	ATOM	770		ARG	176	21.278	19.611	17.076
50	ATOM	778	CD	ARG	176	22.041	19.774	15.093
		779	HD1			22.352	18.731	15.148
	MOTA				176 176	22.332	20.438	15.345
	MOTA	780	HD2					
25	MOTA	781	NE	ARG	176	21.499	20.094	13.745
35	ATOM	782	HE	ARG	1-76	20.490	20.256	13.615
	ATOM	783	CZ	ARG	176	22.351	20.171	12.682
	ATOM .	784	NH1		176	23.689	19.966	12.865
	ATOM	785	HH1	ARG	176	24.333	20.023	12.064
	ATOM	786	HH1		176	24.053	19.753	13.805
40	ATOM	787		ARG	176	21.872	20.454	11.437
	ATOM	788		ARG	176	22.518	20.512	10.637
	MOTA	789		ARG	176	20.863	20.611	11.297
	ATOM	790	С	ARG	176	18.520	20.876	17.575
	MOTA	791	0	ARG	176	17.433	21.426	17.406
45	ATOM	792	N	MET	177	18.617	19.544	17.731
	MOTA	793	HN	MET	177	19.518	19.105	17.967
	MOTA	794	CA	MET	177	17.434	18.752	17.561
	ATOM	795	HA	MET	177	16.992	18.939	16.583
	ATOM	796	CB	MET	177	17.688	17.234	17.581
50	ATOM	797	HB1	MET	177	17.922	16.864	18.579
	MOTA	798	HB2	MET	177	18.522	16.943	16.942
	ATOM	799	CG	MET	177	16.475	16.432	17.097
	ATOM	800	HG1		177	16.079	16.922	16.208
	MOTA	801		MET	177	15.736	16.422	17.898
55	ATOM	802	SD	MET	177	16.817	14.701	16.654
	ATOM	803	CE	MET	177	17.175	14.161	18.350
	ATOM	804		MET	177	17.422	13.099	18.349
	ATOM	805	HE2		177	18.019	14.730	18.741
		806	HE3		177	16.301	14.330	18.978
60	MOTA	807	C	MET	177	16.426	19.091	18.615
00	MOTA							
	ATOM	808	.0	MET	177	15.230	19.136	18.332 19.830
	ATOM	809	N	PRO	178	16.833	19.309	
	ATOM	810	CA	PRO	178	15.853	19.648	20.824
65	ATOM	811	AH	PRO	178	15.036	18.927	20.853
65	ATOM	812	CD	PRO	178	17.943	18.564	20.396
	MOTA	813	HD1		178	18.829	19.169	20.205
	ATOM	814	HD2		178	17.955	17.611	19.868
	ATOM	815	СВ	PRO	178	16.566	19.506	22.168

	ATOM	816	HB1	PRO	178	15.870	19.206	22.951
	ATOM	817	HB2	PRO	178	17.023	20.448	22.470
	ATOM	818	CG	PRO	178	17.623	18.420	21.894
	MOTA	819	HG1	PRO	178	17.126	17.485	
5	ATOM	820						22.152
5			HG2	PRO	178	18.454	18.676	22.551
	ATOM	821	С	PRO	178	15.239	20.991	20.570
	MOTA	822	0	PRO	178	14.067	21.189	20.890
	ATOM	823	N	LEU	179	16.014	21.921	19.989
	MOTA	824	HN	LEU	179	16.980	21.679	19.727
10	MOTA	825	CA	LEU	179	_15.528	23.241	19.724
	ATOM	826	HA	LEU	179	15.187	23.666	20.668
	ATOM	827	СВ	LEU	179	16.584	24.129	19.044
	ATOM	828	HB1	LEU	179	16.153	25.119	18.897
	ATOM	829	HB2	LEU	179	16.845	23.676	18.087
15	ATOM	830	CG					
13				LEU	179	17.890	24.305	19.845
	ATOM	831	HG	LEU	179	18.373	23.344	20.019
	MOTA	832	CD2	LEU	179	17.630	24.786	21.280
	MOTA	833		LΕU	179	18.579	24.896	21.804
	MOTA	834		LEU	179	17.116	25.748	21.253
20	MOTA	835	HD2	LEU	179	17.009	24.058	21.801
	ATOM	836	CD1	LEU	179	18.881	25.203	19.088
	MOTA	837	HD1	LEU	179	19.794	25.312	19.674
	ATOM	838	HD1	LEU	179	19.119	24.752	18.125
	ATOM	839	HD1	LEU	179	18.434	26.184	18.928
25	ATOM	840	C	LEU	179	14.403	23.127	18.747
23		841	Ö	LEU	179			
	MOTA					13.360	23.759	18.912
	MOTA	842	N	ILE	180	14.597	22.304	17.698
	ATOM	843	HN	ILE	180	15.468	21.757	17.638
	MOTA	844	CA	ILE	180	13.609	22.175	16.662
30	MOTA	845	HA	ILE	180	13.363	23.164	16.275
	ATOM	846	·CB	ILE	180	14.045	21.341	15.484
	MOTA	847	HB	ILE	180	13.225	21.314	14.767
	ATOM	848	CG2	ILE	180	15.289	22.001	14.868
	MOTA	849	HG2	ILE	180	15.625	21.415	14.012
35	ATOM	850	HG2	ILE	180	15.041	23:011	14.542
	ATOM	851	HG2	ILE	180	16.084	22.045	15.612
	ATOM	852	CG1	ILE	180	14.265	19.876	15.882
	ATOM	853	HG1	ILE	180	13.449	19.458	16.470
40	MOTA	854	HG1	ILE	180	15.160	19.718	16.484
40	ATOM	855	CD1	ILE	180	14.418	18.937	14.688
	MOTA	856	HD1	ILE	180	14.570	17.918	15.043
	MOTA	857	HD1	ILE	180	13.517	18.977	14.076
	MOTA	858	HD1	ILE	180	15.276	19.245	14.090
	MOTA	859	С	ILE	180	12.382	21.538	17.227
45	MOTA	860	0	ILE	180	11.264	21.896	16.861
	ATOM	861	N	GLU	181	12.562	20.579	18.155
	ATOM	862	HN	GLU	181	13.513	20.357	18.483
	ATOM	863	CA	GLU	181	11.440	19.864	18.692
	ATOM	864	HA	GLU	181	10.954	19.323	17.880
50	MOTA	865	CB	GLU	181	11.850	18.883	19.805
50	ATOM	866		GLU	181	10.946	18.441	20.225
	ATOM	867		GLU		12.395		
					181		19.437	20.569
	ATOM	868	CG	GLU	181	12.749	17.741	19.325
	ATOM	869		GLU	181	13.188	17.272	20.205
55	ATOM	870		GLU	181	13.518	18.172	18.684
	MOTA	871	CD	GLU	181	11.880	16.760	18.556
	MOTA	872	OE1	GLU	181	11.057	16.057	19.201
	ATOM	873	OE2	GLU	181	12.028	16.705	17.307
	MOTA	875	С	GLU	181	10.498	20.849	19.301
60	MOTA	876	0	GLU	181	9.297	20.797	19.038
	ATOM	877	N	LEU	182	11.011	21.789	20.123
	ATOM	878	HN	LEU	182	12.019	21.823	20.331
	ATOM	879	CA	LEU	182	10.104	22.736	20.697
	ATOM	880	HA	LEU		9.331	22.730	21.209
65					182			
05	ATOM	881	CB	LEU	182	10.717	23.682	21.744
	ATOM	882	HB1		182	10.048	24.499	22.015
	MOTA	883	HB2	LEU	182	11.640	24.149	21.399
	ATOM	884	CG	LEU	182	11.067	22.965	23.056

WO 01/83717 PCT/CA01/00607

							-	
	ATOM	885	HG	LEU	182	10.229	22.368	23.415
	MOTA	.886	CD2	LEU	182	11.230	23.973	24.202
	ATOM	887	HD2	LEU	182	11.478	23.442	25.121
_	MOTA	888		LEU	182	12.031	24.673	23.960
5	MOTA	. 889		TEO	182	10.299	24.522	24.339
	MOTA	890		LEU	182	12.267	22.021	22.871
	ATOM	891		LEU	182	12.491	21.528	23.817
	MOTA	892		LEU	182	12.027	21.270	22.118
10	ATOM	. 893		LEU	182	13.135	22.595	22.547
10	MOTA	894 895		LEU	182	9.546	23.540	19.568
	MOTA MOTA	896		LEU	182	8.354	23.829	19.549
	ATOM	897		GLY GLY	183 183	10.423 11.397	23.888 23.595	18.602 18.764
	MOTA	898		GLY	183	10.193	24.611	17.376
15	ATOM	899		GLY	183	10.272	23.909	16.546
	ATOM	900		GLY	183	10.949	25.392	17.293
	ATOM	901		GLY	183	8.852	25.269	17.284
	ATOM	902		GLY	183	8.682	26.430	17.658
	ATOM	903		PRO	184	7.892	24.554	16.761
20	MOTA	904		PRO	184	6.596	25.124	16.533
	ATOM	905		PRO	184	6.630	25.933	15.804
	ATOM	906	CD	PRO	184	8.149	23.402	15.913
	MOTA	907	HD1	PRO	184	8.339	22.579	16.602
_	MOTA	908		PRO	184	9.018	23.677	15.315
25	MOTA	909		PRO	184	5.789	24.027	15.842
	MOTA	910		PRO	184	5.048	24.453	15.166
	MOTA	911		PRO	184	5.261	23.411	16.571
	MOTA	912	CG	PRO	184	6.865	23.220	15.080
20	ATOM	913		PRO	184	6.910	23.684	14.095
30	MOTA	914		PRO	184	6.487	22.198	15.070
	ATOM ATOM	915 916	С С	PRO PRO	184 184	6.011 5.454	25.688 26.784	17.781 17.734
	MOTA	917		LEU	185	6.103	24.949	18.894
•	MOTA	918	HN	LEU	185	6.491	23.996	18.840
35	ATOM	919	CA	LEU	185	5.673	25.458	20.151
	ATOM	920	HA	LEU	185	4.675	25.876	20.020
	ATOM	921	CB	LEU	185	5.599	24.371	21.228
	MOTA	922	HB1	LEU	185	5.361	24.768	22.214
	MOTA	923	HB2	PEA.	185	6.536	23.826	21.344
40	ATOM	924	CG	LEU	185	4.525	23.305	20.930
	ATOM	925	HG	LEU	185	4.538	22.508	21.673
	ATOM	926	CD2		185	4.850	22.515	19.651
	ATOM	927	HD2		185	4.071	21.773	19.474
45	ATOM	928 929	HD2 HD2		185 185	4.899	23.199 22.012	18.804 19.768
40	ATOM ATOM	930	CD1		185	5.809 3.111	23.915	20.934
	ATOM	931	HD1		185	2.378	23.137	20.721
	ATOM	932	HD1		185	2.905	24.350	21.912
	ATOM	933	HD1	LEU	185	3.048	24.691	20.171
50	ATOM	934	С	LEU	185	6.646	26.513	20.577
	MOTA	935	0	LEU	185	6.236	27.546	21.103
	ATOM	936	N	ARG	186	7.964	26.292	20.360
	ATOM '	937	HN	ARG	186	8.286	25.438	19.883
	ATOM	938	CA	ARG	186	8.900	27.280	20.814
55	ATOM	939	AH	ARG	186	8.472	27.795	21.674
	ATOM	940	CB	ARG	186	10.277	26.738	21.260
	ATOM	941	HB1	ARG	186	10.104	25.959	22.003
	ATOM	942 943	HB2 CG	ARG	186 186	10.840 11.149	27.568 26.124	21.688 20.163
60	MOTA ATOM	944	HG1		186	11.149	26.770	19.289
55	ATOM	945	HG2		186	10.757	25.172	19.803
	ATOM	946	CD	ARG	186	12.579	25.849	20.638
	ATOM	947	HD1		186	13.127	25.518	19.756
	ATOM	948	HD2		186	12.495	25.074	21.399
65	ATOM	949	NE	ARG	186	13.083	27.142	21.181
	MOTA	950	HE	ARG	186	12.411	27.863	21.481
	MOTA	951	CZ	ARG	186	14.421	27.384	21.287
	ATOM	952	NH1	ARG	186	15.325	26.443	20.885

	•							
	ATOM	953	HH1	ARG	186	16.334	26.630	20.967
	ATOM	954	HH1		186	14.997	25.545	20.500
	ATOM	955	NH2		186	14.857		21.778
							28.579	-
_	MOTA	956	HH2		186	15.866	28.765	21.859
5	MOTA	957	HH2		186	14.176	29.296	22.068
	MOTA	958	С	ARG	186	9.149	28.244	19.703
	MOTA	959	0	ARG	186	10.285	28.605	19.399
	ATOM	960	N	SER	187	8.069	28.677	19.042
	ATOM	961	HN	SER	187	7.141	28.274	19.235
10	ATOM	962	CA	SER	187	8.223	29.702	18.069
	ATOM	963	HA	SER	187	8.998	30.409	18.365
	ATOM	964	CB	SER	187	8.560	29.160	16.673
	ATOM	965	HB1		187	7.735	28.544	16.313
	MOTA	966	HB2	SER	187	9.466	28.557	16.725
15	MOTA	967	OG	SER	187	8.764	30.244	15.780
	ATOM	968	HG	SER	187	9.409	30.924	16.207
	ATOM	969	С	SER	187	6.886	30.335	18.027
	ATOM	970	0	SER	187	6.533	30.969	17.033
	ATOM	971	N	PHE	188	6.153	30.173	19.155
20		972					29.660	19.931
20	ATOM		HN	PHE	188	6.595		
	MOTA	973	CA	PHE	188	4.814	30.651	19.366
	MOTA	974	AН	PHE	188	4.707	31.113	20.347
	MOTA	975	CB	PHE	188	4.272	31.696	18.348
	ATOM	976	HB1	PHE	188	3.199	31.542	18.239
25	ATOM	977	HB2	PHE	·188	4.781	31.541	17.397
	ATOM	978	CG	PHE	188	4.485	33.115	
	ATOM	979	CD1	PHE	188	5.654	33.800	18.496
		980		PHE	188	6.477	33.300	17.987
	ATOM				_			
20	ATOM	981		PHE	188	3.454	33.771	19.376
30	MOTA	982		PHE	188	2.521	33.241	19.569
	ATOM	983	CE1	PHE	188	5.786	35.113	18.885
	ATOM	984	HE1	PHE	188	6.716	35.646	18.689
	MOTA	985	CE2	PHE	188	3.578	35.081	19.768
	MOTA	986	HE2	PHE	188	2.751	35.583	20.270
35-	MOTA	987	CZ	PHE	188	4.750	35.755	19.521
	ATOM	988	HZ	PHE	188	4.858	36.795	19.829
	ATOM	989	C	PHE	188	3.825	29.546	19.282
					•	3.879		
	ATOM	990	0	PHE	188		28.548	20.002
40	ATOM	991	N	LYS	189	2.890	29.761	18.338
40	ATOM	992	HN	LYS	189	3.029	30.589	17.742
	ATOM	993	CA	LYS	189	1.726	28.977	18.066
	ATOM	994	HА	LYS	189	1.014	29.568	17.491
	ATOM	995	CB	LYS	189	1.923	27.777	17.123
	ATOM	996	HB1	LYS	189	2.382	26.942	17.652
45	ATOM	997	HB2	LYS	189	2.568	28.047	16.287
	MOTA	998	CG	LYS	189	0.578	27.306	16.558
	ATOM	999	HG1		189	-0.134	27.007	17.327
				LYS	189	0.663	26.444	15.896
	ATOM	1000						
60	ATOM	1001	CD	LYS	189	-0.149	28.380	15.731
50	MOTA	1002		LYS	189	-0.976	27.901	15.207
	MOTA	1003		LYS	189	0.564	28.802	15.023
	ATOM	1004	CE	LYS	189	-0.733	29.545	16.543
	ATOM	1005	HE1	LYS	189	0.051	30.062	17.095
	ATOM	1006		LYS	189	-1.472	29.184	17.258
55	ATOM	1007		LYS	189	-1.392	30.523	15.653
-	ATOM	1008		LYS	189	-1.776	31.295	16.215
				LYS		-0.704	30.896	14.983
	ATOM	1009			189			
	ATOM	1010	HZ3		189	-2.155	30.060	15.138
	ATOM	1011	С	LYS	189	1.098	28.557	19.348
60	MOTA	1012	0	LYS	189	0.681	27.411	19.516
	MOTA	1013	N	VAL	190	1.082	29.508	20.299
	ATOM	1014	HN	VAL	190	1.621	30.366	20.115
	MOTA	1015	CA	VAL	190	0.383	29.431	21.544
	MOTA	1016	HA	VAL	190	-0.655	29.650	21.294
65	ATOM	1017	СВ	VAL	190	0.344	28.073	22.204
	MOTA	1018	HB	VAL	190	0.112	27.289	21.483
	ATOM	1010	CG1		190	1.696	27.728	22.847
	MOTA	1020	uer	VAL	190	1.637	26.745	23.314

	ATOM	1021	HG1 VAL	190	2.472	27.720	22.081
	ATOM	1022	HG1 VAL	190	1.940	28.475	23.603
	MOTA	1023	CG2 VAL	190	-0.856	28.072	23.164
	MOTA	1024	HG2 VAL	190	-0.922	27.106	23.664
5	MOTA	1025	HG2 VAL	190	-0.728	28.858	23.908
	MOTA	1026	HG2 VAL	190	-1.772	28.252	22.601
	ATOM	1027	C VAL	190	1.024	30.470	22.409
	MOTA	1028	O VAL	190	2.221	30.413	22.683
10	ATOM	1029	N PHE	191	0.225 -0.778	31.465 31.392	22.847 22.631
10	MOTA	1030	HN PHE	191 191	0.656	32.620	23.591
	ATOM ATOM	1031 1032	CA PHE	191	1.482	33.101	23.067
	ATOM	1032	CB PHE	191	-0.475	33.640	23.756
	ATOM	1033	HB1 PHE	191	-0.053	34.492	24.289
15	MOTA	1035	HB2 PHE	191	-1.260	33,146	24.328
13	ATOM	1036	CG PHE	191	-0.925	34.005	22.383
	MOTA	1037	CD1 PHE	191	-0.158	34.830	21.595
	ATOM	1038	HD1 PHE	191	0.788	35.216	21.972
	ATOM	1039	CD2 PHE	191	-2.123	33.528	21.902
20	ATOM	1040	HD2 PHE	191	-2.735	32.876	22.527
	MOTA	1041	CE1 PHE	191	-0.581	35.171	20.334
	MOTA	1042	HE1 PHE	191	0.028	35.825	19.711
	MOTA	1043	CE2 PHE	191	-2.556	33.865	20.643
	MOTA	1044	HE2 PHE	191	-3.506	33.486	20.268
25	MOTA	1045	CZ PHE	191	-1.778	34.684	19.860
	MOTA	1046	HZ PHE	191	-2.111	34.950	18.856
	MOTA	1047	C PHE	191	1.107	32.195	24.950
	MOTA	1048	O PHE	191	1.908	32.867	25.601
-00	MOTA	1049	N LYS	192	0.571	31.046	25.387
30	MOTA	1050	HN LYS	192	-0.023	30.539	24.716 26.676
	ATOM	1051	CA LYS	192 192	0.730 0.271	30.441 31.074	27.436
	MOTA	1052 1053	HA LYS	192	0.157	29.021	26.625
	MOTA MOTA	1054	HB1 LYS	192	0.873	28.398	26.088
35	ATOM	1055	HB2 LYS	192	-0.796	29.071	26.100
55	ATOM	1056	CG LYS	192	-0.114	28.323	27.951
	ATOM	1057	HG1 LYS	192	-0.762	28.925	28.589
	ATOM	1058	HG2 LYS	192	0.809	28.141	28.499
	MOTA	1059	CD LYS	192	-0.800	26.971	27.738
40	MOTA	1060	HD1 LYS	192	-1.146	26.607	28.705
	MOTA	1061	HD2 LYS	192	-0.073	26.284	27.305
	MOTA	1062	CE LYS	192	-2.012	27.014	26.799
	MOTA	1063	HE1 LYS		-2.144	26.052	26.305
4.50	MOTA	1064	HE2 LYS	192	-1.874	27.780	26.036
45	MOTA	1065	NZ LYS		-3.244	27.325	27.562
	MOTA	1066	HZ1 LYS		-4.048 -3.398	27.351	26.919 28.276
	MOTA	1067	HZ2 LYS		-3.396	26.600 28.242	28.020
	MOTA ATOM	1068 1069	HZ3 LYS		2.187	30.279	26.980
50	ATOM	1070	O LYS		2.606	30.457	28.122
50	ATOM	1071	N ILE		2.996	29.952	25.954
	ATOM	1072	HN ILE		2.603	29.946	25.002
	ATOM	1073	CA ILE		4.381	29.611	26.127
	ATOM	1074	HA ILE		4.546	29.002	27.016
55	ATOM	1075	CB ILE	193	4.902	28.846	24.948
	ATOM	1076	HB ILE	. 193	4.735	29.444	24.052
	ATOM	1077	CG2 ILE	193	6.402	28.596	25.161
	MOTA	1078	HG2 ILE		6.802	28.040	24.313
	ATOM	1079	HG2 ILE		6.921	29.550	25.246
60	MOTA	1080	HG2 ILE		6.549	28.020	26.075
	MOTA	1081	CG1 ILE		4.067	27.578	24.687
	MOTA	1082	HG1 ILE		3.001	27.784	24.590
	MOTA	1083	HG1 ILE		4.155	26.840	25.485
65	MOTA	1084	CD1 ILE		4.471	26.850	23.397 23.268
65	MOTA	1085	HD1 ILE		3.847 4.336	25.965 27.516	22.546
	ATOM ATOM	1086 1087	HD1 ILE		5.517	26.550	23.461
	ATOM	1088	C ILE		5.253	30.833	26.271
	114 OF	2000			2.233		-

	ATOM	1089		ILE	193	5.089	31.833	25.576
	MOTA	1090		LYS	194	6.213	30.772	27.222
	ATOM	1091		LYS	194	6.246	29.938	27.826
_	ATOM	1092		LYS	194	7.192	31.807	27.438
5	ATOM	1093		LYS	194	7.104	32.498	26.599
	MOTA	1094	CB HB1	LYS	194 194	7.012	32.605	28.750 28.946
	MOTA	1095	HB2		194	7.934	33.154 31.899	29.555
	ATOM	1096 1097		LYS	194	6.807 5.863	31.899	28.716
10	MOTA MOTA	1097	HG1		194	4.970	33.236	28.225
10	ATOM	1099	HG2		194	6.121	34.537	28.186
	ATOM	1100		LYS	194	5.412	34.062	30.117
	ATOM	1101	HD1		194	4.663	33.398	30.550
	ATOM	1102	HD2		194	4.967	35.057	30.126
15	ATOM	1103		LYS	194	6.570	34.110	31.134
	ATOM	1104	HE1		194	7.248	33.267	31.000
	MOTA	1105		LYS	194	6.199	34.075	32.158
	MOTA	1106	NZ	LYS	194	7.369	35.361	30.985
	MOTA	1107	HZ1	LYS	194	8.134	35.365	31.676
20	MOTA	1108	HZ2	LYS	194	7.765	35.406	30.035
	ATOM	1109	HZ3	LYS	194	6.761	36.178	31.142
	ATOM	1110	С	LYS	194	8.530	31.130	27.477
	ATOM	1111	0	LYS	194	8.866	30.363	28.379
	MOTA	1112	N	PRO	195	9.272	31.379	26.438
25	MOTA	1113	CA	PRO	195	10.582	30.791	26.334
	ATOM	1114	HA	PRO	195	10.568	29.829	26.847
	MOTA	1115	CD	PRO	195	8.635	31.518	25.136
	MOTA	1116	HD1	PRO	195	8.172	32.504	25.155
20	ATOM	1117	HD2	PRO	195	7.918	30.699 30.506	25.086 24.844
30	MOTA	1118 1119	CB HB1	PRO	· 195 195	10.801	29.439	24.733
	MOTA MOTA	1120	HB2	PRO	195	11.837	30.786	24.656
	ATOM	1121	CG	PRO	195	9.781	31.395	24.121
	MOTA	1122	HG1	PRO	195	9.449	30.934	23.191
35	ATOM	1123.	HG2	PRO	195	10.212	32.366	23.878
55	ATOM	1124	C	PRO	195	11.681	31.617	26.943
	ATOM	1125	ō	PRO	195	11.522	32.829	27.091
*	ATOM	1126	N	GLU	196	12.794	30.945	27.318
	MOTA	1127	HN	GLU	196	12.765	29.917	27.259
40	ATOM	1128	CA	GLU	196	14.011	31.542	27.79 1
	ATOM	1129	HA	GLU	196	14.120	32.488	27.261
	MOTA	1130	CB	GLU	196	14.103	31.795	29.305
	ATOM	1131	HB1	GLU	196	13.964	30.870	29.865
	ATOM	1132	HB2	GLU	196	13.340	32.501	29.631
45	ATOM	1133	CG	GLU	196	15.470	32.372	29.683
	MOTA	1134		GLU	196	15.666	33.261	29.085
	ATOM	1135		GLU	196	16.243 15.471	31.627 32.742	29.494 31.160
	MOTA MOTA	1136 1137	CD	GLU	196 196	14.584	33.541	31.568
50	ATOM	1137		GLU	196	16.361	32.229	31.895
50	MOTA	1140	C	GLU	196	15.111	30.581	27.467
	MOTA	1141	ō	GLU	196	14.905	29.368	27.468
• •	ATOM	1142	N	LYS	197	16.315	31.112	27.172
	ATOM	1143	HN	LYS	197	16.431	32.135	27.194
55	ATOM	1144	CA	LYS	197	17.441	30.288	26.830
	ATOM	1145	HA	LYS	197	17.260	29.285	27.217
	MOTA	1146	CB	LYS	197	17.702	30.274	25.314
	ATOM	1147	HB1	LYS	197	17.780	31.307	24.976
	MOTA	1148		LYS	197	16.865	29.769	24.833
60	MOTA	1149	CG	LYS	197	18.980	29.555	24.868
	MOTA	1150		LYS	197	18.992	28.509	25.174
	ATOM	1151		LYS	197	19.877	30.013	25.285
	ATOM	1152	CD	LYS	197 197	19.150	29.568	23.345
65	ATOM	1153		LYS LYS	197 197	18.935 18.448	30.575 28.849	22.988 22.920
UJ	MOTA	1154	CE	LYS	197	20.548	29.193	22.846
	ATOM ATOM	1155 1156		LYS	197	21.268	29.266	23.660
	ATOM	1157		LYS	197	20.853	29.867	22.045
	441 OF	110/		_,,0				

	ATOM	1158	NZ LYS	197	20.549	27.804	22.329
	ATOM	1159	HZ1 LYS	197	21.493	27.563	21.996
	ATOM	1160	HZ2 LYS	197	20.275	27.157	23.082
	ATOM	1161	HZ3 LYS	197	19.880	27.727	21.549
5	ATOM	1162	C LYS	197	18.666	30.883	27.456
	ATOM	1163	O LYS	197	18.825	32.101	27.507
	ATOM	1164	N ARG	198	19.574	30.030	27.968
	ATOM	1165	HN ARG	198	19.385	29.018	27.996
	ATOM	1166	CA ARG	198	20.809	30.554	28.475
10	ATOM	1167	HA ARG	198	20.676	31.636	28.498
	ATOM	1168	CB ARG	198	21.118	30.083	29.903
	ATOM	1169	HB1 ARG	198	22.135	30.362	30.179
	ATOM	1170	HB2 ARG	198	21.021	28.999	29.970
	ATOM	1171	CG ARG	198	20.142	30.727	30.894
15	ATOM	1172	HG1 ARG	198	19.146	30.700	30.453
	ATOM	1173	HG2 ARG	198	20.463	31.755	31.064
	ATOM	1174	CD ARG	198	20.054	30.048	32.259
•	ATOM	1175	HD1 ARG	198	20.265	28.986	32.130
	ATOM	1176	HD2 ARG	198	19.046	30.191	32.651
20	ATOM	1177	NE ARG	198	21.057	30.673	33.162
	ATOM	1178	HE ARG	198	21.903	31.115	32.776
	ATOM	1179	CZ ARG	198	20.840	30.651	34.509
	ATOM	1180	NH1 ARG	198	19.689	30.115	35.005
	ATOM	1181	HH1 ARG	198	19.525	30.099	36.022
25	ATOM	1182	HH1 ARG	198	18.983	29.726	34.363
23	ATOM	1183	NH2 ARG	198	21.769	31.166	35.363
	ATOM	1184	HH2 ARG	198	21.601	31.148	36.379
	ATOM	1185	HH2 ARG	198	22.640	31.573	34.993
	ATOM	1186	C ARG	198	21.858	30.110	27.504
30	ATOM	1187	O ARG	198	22.486	29.064	27.662
50	ATOM	1188	N TRP		22.055	30.935	26.454
	ATOM	1189	HN TRP	199	21.571	31.844	26.462
	ATOM	1190	CA TRP	199	22.892	30.634	25.328
	ATOM	1191	HA TRP	199	22.572	29.703	24.859
35	ATOM	1192	CB TRP_	199	22.851	31.783	24.304
55	ATOM ,		HB1 TRP	199	23.539	32.556	24.649
	ATOM	1194	HB2 TRP	199	21.827	32.154	24.265
	ATOM	1195	CG TRP	199	23.247	31.455	22.881
	ATOM	1196	CD2 TRP	199	24.577	31.186	22.406
40	ATOM	1197	CD1 TRP	199	22.425	31.352	21.798
	ATOM	1198	HD1 TRP	199	21.344	31.491	21.819
	ATOM	1199	NE1 TRP	199	23.156	31.046	20.677
	ATOM	1200	HE1 TRP	199	22.778	30.919	19.727
	ATOM	1201	CE2 TRP	199	24.481	30.936	21.036
45	ATOM	1202	CE3 TRP	199	25.778	31.148	23.055
	ATOM	1203	HE3 TRP	199	25.852	31.343	24.125
	ATOM	1204	CZ2 TRP	199	25.588	30.645	20.293
	MOTA	1205	HZ2 TRP	199	25.516	30.451	19.222
	MOTA	1206	CZ3 TRP	199	26.892	30.853	22.300
50	ATOM	1207	HZ3 TRP	199	27.869	30.813	22.783
	ATOM	1208	CH2 TRP	199	26.799	30.607	20.946
	MOTA	1209	HH2 TRP	199	27.703	30.377	20.382
	ATOM	1210	C TRP	199	24.316	30.487	25.766
	ATOM	1211	O TRP	199	24.886	29.398	25.718
55	ATOM	1212	N GLN	200	24.919	31.599	26.223
	ATOM	1213	HN GLN	200	24.369	32.466	26.302
	ATOM	1214	CA GLN	200	26.301	31.616	26.604
	ATOM	1215	HA GLN	200	26.890	31.084	25.856
	ATOM	1216	CB GLN	200	26.879	33.034	26.774
60	MOTA	1217	HB1 GLN	200	27.898	32.945	27.148
	ATOM	1218	HB2 GLN	200	26.253	33.574	27.486
-	ATOM	1219	CG GLN	200	26.930	33.860	25.488
	ATOM	1220	HG1 GLN	200	27.298	33.211	24.693
	MOTA	1221	HG2 GLN	200	27.607	34.697	25.659
65	ATOM	1222	CD GLN	200	25.520	34.344	25.193
	MOTA	1223	OE1 GLN	200	24.781	34.733	26.097
	ATOM	1224	NE2 GLN	200	25.128	34.314	23.891
	ATOM	1225	HE2 GLN	200	25.779	33.982	23.165

	ATOM	1226	HE2	GLN	. 200		24.181	34.624	23.631
	MOTA	1227	С	GLN	200		26.459	30.951	27.925
	MOTA	1228	0	GLN	200		27.535	30.451	28.249
	ATOM	1229		ASP	201		25.376	30.913	28.720
5	MOTA	1230		ASP	201		24.449	31.176	28.356
	MOTA	1231		ASP	201		25.536	30.502	30.078
	MOTA	1232		ASP	201		26.193	31.165	30.641
	ATOM	1233		ASP	201		24.237	30.539	30.900
	MOTA	1234-		ASP	201		23.616	29.705	30.573
10	ATOM	1235	HB2		201	-	23.750	31.495	30.704
	MOTA	1236		ASP	201		24.617	30.403	32.372
	MOTA	1237		ASP	201		25.173	29.339	32.757
	ATOM	1238		ASP	201		24.369	31.378	33.131
1 5	ATOM	1239		ASP	201		26.123	29.134	30.197
15	MOTA	1240 1241		ASP	201		27.102 25.603	28.967 28.107	30.921 29.498
	ATOM	1241		ILE	202		24.837	28.204	28.817
	MOTA	1242	HN CA	ILE	202 202		26.241	26.862	29.814
	ATOM ATOM	1243		ILE	202		27.009	26.996	30.576
20	ATOM	1245	CB	ILE	202		25.355	25.809	30.414
20	ATOM	1246		ILE	202		24.759	26.264	31.206
	ATOM	1247		ILE	202		24.439	25.250	29.314
	ATOM	1248		ILE	202		23.789	24.484	29.736
	ATOM	1249	HG2	ILE	202		23.830	26.056	28.903
25	ATOM	1250		ILE	202		25.037	24.814	28.521
	ATOM	1251		ILE	202		26.233	24.737	31.085
	ATOM	1252		ILE	202		27.005	25.240	31.668
	ATOM	1253	HG1	ILE	202		26.682	24.123	30.304
	ATOM	1254	CD1	ILE	202		25.471	23.808	32.027
30	ATOM	1255	HD1	ILE	202		26.160	23.083	32.459
	ATOM	1256	HD1	ILE	202-	-	25.014	24.394	32.824
	MOTA	1257	HD1	ILE	202		24.694	23.285	31.470
	ATOM	1258	С	ILE	202		26.892	26.272	28.612
	MOTA	1259	0	ILE	202		26.515	26.545	27.474
35-	MOTA	1260	N	SER	203			-25.428	28.878
	ATOM	1261	HN	SER	203		28.135	25.234	29.863
	MOTA	1262	CA	SER	203		28.683	24.788	27.864
	ATOM	1263	HA	SER	203		28.104	24.825	26.941
40	MOTA	1264	CB	SER	203		30.043	25.464	27.606
40	ATOM	1265	HB1	SER	203		29.910	26.501	27.299
	ATOM	1266	HB2	SER	203		30.591	24.947	26.818
	MOTA	1267	OG	SER	203		30.845	25.453	28.778
	ATOM	1268	HG	SER	203		31.198	26.403 23.378	28.963 28.309
45	ATOM	1269	C	SER	203 203		28.920 27.984	22.666	28.667
43	ATOM	1270 1271	0	SER MET	203		30.192	22.935	28.258
	MOTA MOTA	1271	N HN	MET	204		30.132	23.601	27.968
	ATOM	1273	CA	MET	204		30:596	21.596	28.581
	ATOM	1274	HA	MET	204		30.237	20.874	27.847
50	ATOM	1275	CB	MET	204		32.123	21.401	28.594
50	ATOM	1276	HB1		204		32.609	21.685	27.661
	ATOM	1277	HB2	MET	204		32.431	20.370	28.769
	ATOM	1278	CG	MET	204		32.837	22.215	29.675
	ATOM	1279	HG1		204		32.415	21.941	30.642
55	ATOM	1280	HG2		204		32.673	23.273	29.469
	ATOM	1281	SD	MET	204		34.634	21.947	29.766
	ATOM	1282	CE	MET	204		35.008	22.758	28.184
	MOTA	1283	HE1	MET	204		36.082	22.725	28.004
	ATOM	1284	HE2	MET	204		34.488	22.240	27.378
60	ATOM	1285	HE3	MET	204		34.678	23.796	28.221
	ATOM	1286	С	MET	204		30.072	21.159	29.913
	MOTA	1287	0	MET	204		29.383	21.886	30.629
	ATOM	1288	N	MET	205		30.427	19.909	30.266
	MOTA	1289	HN	MET	205		31.067	19.406	29.636
65	MOTA	1290	CA	MET	205		29.990	19.220	31.443
	MOTA	1291	HA	MET	205		28.901	19.171	31.454
	ATOM	1292	CB	MET	205		30.545	17.792	31.508

205

MOTA

1293 HB1 MET

31.619 17.849 31.686

	MOTA	1294	HB2 MET	205		30.340	17.300	30.557
	ATOM	1295	CG MET	205		29.935	16.939	32.614
	ATOM	1296	HG1 MET	205		28.856	16.814	32.517
	ATOM	1297	HG2 MET	205		30.090	17.351	33.611
5	ATOM	1298	SD MET	205		30.610		
,		1299				-	15.257	32.677
	MOTA			205		29.841	14.726	31.118
	ATOM	1300	HE1 MET	205		30.107	13.689	30.916
	MOTA	1301	HE2 MET	205	_	28.758	14.814	31.199
	ATOM	1302	HE3 MET	205		30.197	15.358	30.304
10	_ MOTA	1303	C MET	205		30.466	19.951	32.656
		. 1304	O MET	205		29.792	19.953	33.685
	ATOM	1305	n arg	206		31.649	20.582	32.573
	ATOM	1306	HN ARG	206		32.168	20.584	31.683
	MOTA	1307	CA ARG	206		32.193	21.253	33.719
15	ATOM	1308	HA ARG	206		32.346	20.537	34.526
	MOTA	1309	CB ARG	206		33.535	21.941	33.423
	MOTA	1310	HB1 ARG	206		33.476	22.671	32.616
	ATOM	1311	HB2 ARG	206		34.320	21.245	33.127
	ATOM	1312	CG ARG	206		34.100	22.704	34.620
20	ATOM	1313	HG1 ARG	206		34.234	22.087	35.509
	MOTA	1314	HG2 ARG	206		33.472	23.533	34.947
	ATOM	1315	CD ARG	206		35.472	23.326	34.361
	MOTA	1316	HD1 ARG	206		35.729	23.910	35.245
	ATOM	1317	HD2 ARG	206		35.729	23.910	33.475
25								
25	MOTA	1318	NE ARG	206		36.425	22.203	34.142
	MOTA	1319	HE ARG	206		36.707	21.939	33.187
	ATOM	1320	CZ ARG	206		36.922	21.524	35.218
	MOTA	1321	NH1 ARG	206		36.524	21.865	36.479
	MOTA	1322	HH1 ARG	206		36.898	21.355	37.292
30	ATOM	1323	HH1 ARG	206		35.851	22.632	36.617
	ATOM	1324	NH2 ARG	206		37.806	20.501	35.032
	MOTA	1325	HH2 ARG	206		38.181	19.990	35.844
	MOTA	1326	HH2 ARG	206		38.099	20.240	34.080
	MOTA	1327	C ARG	206		31.245	22.317	34.177
35	ATOM	1328	O _ARG	206		30.931	22.407	35.363
	MOTA	1329	N MET	207		30.745	23.148	33.245
	ATOM	1330	HN MET	207		30.992	23.020	32.253
	ATOM	1331	CA MET	207		29.868	24.212	33.636
	ATOM	1332	HA MET	207		30.358	24.805	34.407
40	ATOM	1333	CB MET	207		29.527	25.178	32.487
	ATOM	1334	HB1 MET	207		28.776	25.915	32.771
	ATOM	1335	HB2 MET	207		29.134	24.663	31.611
	MOTA	1336	CG MET	207		30.747	25.971	32.007
	ATOM	1337	HG1 MET	207		31.400	25.291	31.460
45	ATOM	1338	HG2 MET	207		31.255	26.375	32.883
73	ATOM	1339	SD MET	207		30.371	27.368	30:905
	MOTA	1340	CE MET	207		29.718	28.430	32.219
		1341	HE1 MET	207		29.405	29.384	31.795
	ATOM		HE2 MET	207		28.863	27.944	32.689
50	ATOM	1342				30.493	28.603	
<i>3</i> 0	ATOM	1343	HE3 MET	207			23.622	32.966
	ATOM	1344	C MET	207		28.604		34.165
	MOTA	1345	O MET	207	•	28.017	24.138	35.113
	MOTA	1346	N LYS	208		28.162	22.503	33.568
	MOTA	1347	HN LYS	208		28.721	22.081	32.812
55	ATOM	1348	CA LYS	208		26.932	21.883	33.959
	ATOM	1349	HA LYS	208		26.113	22.595	33.857
	MOTA	1350	CB LYS	208		26.588	20.656	33.100
	MOTA	1351	HB1 LYS	208		25.687	20.147	33.445
	MOTA	1352	HB2 LYS	208		27.383	19.910	33.104
60	MOTA	1353	CG LYS	208		26.344	21.019	31.636
	ATOM	1354	HG1 LYS	208		27.155	21.666	31.304
	MOTA	1355	HG2 LYS	208		25.387	21.537	31.566
	MOTA	1356	CD LYS	208		26.292	19.818	30.696
	ATOM	1357	HD1 LYS	208		25.447	19.160	30.896
65	MOTA	1358	HD2 LYS	208		27.181	19.190	30.762
	ATOM	1359	CE LYS	208		26.171	20.221	29.224
	ATOM	1360	HE1 LYS	208		26.057	19.330	
	MOTA	1361	HE2 LYS	208		27.067	20.759	28.914
	*** OLI	4004		200				

	ATOM	1362	NZ LY	s 208	24.991	21.095	29.040
	ATOM	1363	HZ1 LY	-	24.913	21.363	28.049
	ATOM	1364	HZ2 LY		24.140	20.588	29.326
	ATOM	1365	HZ3 LY		25.096	21.941	29.617
5	ATOM	1366	C LY		27.021	21.436	35.384
,	ATOM	1367	O TX		26.035	21.468	36.113
	ATOM	1368	N TH		28.203	20.970	35.808
		1369			28.996	20.971	35.150
	MOTA						
10	ATOM	1370	CA TH		28.418	20.469	37.137
10	ATOM	1371	HA TH		27.630	19.795	37.471
	MOTA	1372	CB TH		29.652	19.629	37.255
	MOTA	1373	HB TH		29.702	19.268	38.283
	ATOM	1374	OG1 TH		30.816	20.390	36.970
	MOTA	1375	HG1 TH		31.573	20.116	37.613
15	MOTA	1376	CG2 TH		29.514	18.469	36.258
	MOTA	1377	HG2 TH		30.397	17.832	36.315
	MOTA	1378	HG2 TH		28.628	17.883	36.502
	ATOM	1379	HG2 TH		29.418	18.867	35.247
	MOTA	1380	C TH		28.488	21.556	38.171
20	ATOM	1381	O TH		28.309	21.281	39.357
	MOTA	1382	N II	E 210	28.765	22.811	37.770
	ATOM	1383	HN II	E 210	28.804	23.026	36.763
	MOTA	1384	CA II	E 210	29.007	23.858	38.729
	MOTA	1385	HA II	E 210	29.899	23.675	39.327
25	MOTA	1386	CB II	E 210	29.261	25.197	38.087
	ATOM	1387	HB II	E 210	30.064	25.093	37.357
	MOTA	1388	CG2 II		27.975	25.670	37.390
	ATOM	1389	HG2 II		28.150	26.639	36.923
	ATOM	1390	HG2 II		27.687	24.946	36.628
30	MOTA	1391	HG2 II		27.175	25.760	38.125
	ATOM	1392	CG1 II		29.803	26.193	39.125
	ATOM	1393	HG1 II		30.619	25.792	39.726
	ATOM	1394	HG1 II		29.051	26.521	39.844
	ATOM	1395	CD1 II		30.353	27.477	38.506
35	ATOM	1396	HD1 II		30.718	28.134	39.295
25	ATOM	1397	HD1 II		31.172	27.232	37.830
	MOTA	1398	HD1 II		29.562	27.981	37.950
	ATOM	1399	C II		27.869	24.019	39.700
	MOTA	1400	O II		28.106	24.125	40.902
40	MOTA	1401	N GI		26.602	24.043	39.245
70	ATOM	1401	HN GI		26.394	23.941	38.241
		1403	CA GI		25.549	24.214	40.210
	ATOM ATOM	1403	HA1 G		25.282	25.271	40.211
	ATOM		HA2 GI		25.202	23.898	41.176
45		1405		^	24.410	23.362	39.775
45	ATOM	1406	C GI		24.440		38.684
	MOTA	1407		LY 211		23.205	40.640
	ATOM	1408		LU 212		23.626	
	ATOM	1409		LU 212			41.580
60	ATOM	1410		LU 212		22.415	40.163
50	MOTA	1411		LU 212	22.642	21.508	39.670
	ATOM	1412		ΣÜ 212			41.138
	ATOM	1413	HB1 G				41.647
•	ATOM	1414	HB2 G			21.381	41.918
	ATOM	1415		ւս 212		21.415	40.433
55	MOTA	1416	HG1 G				39.389
	MOTA	1417	HG2 G				40.921
	ATOM	1418		LU 212			40.496
	ATOM	1419	OE1 G				41,597
	MOTA	1420	OE2 G				39.448
60	ATOM	1422	C G	ւս 212			39.227
	MOTA	1423	O G	ւս 212			39.669
	ATOM	1424	N H	IS 213			37.916
	MOTA	1425	HN H	IS 213	22.243	22.235	37.604
	MOTA	1426	CA H	IS 213			36.956
65	MOTA	1427	HA H	IS 213	21.693		37.105
	ATOM	1428	ND1 H			23.591	35.496
	MOTA	1429	HD1 H				35.970
	ATOM	1430		IS 213			35.174
		-			•		

	ATOM	1431	NE2	HTS	213	24.756	25.499	34.494
	ATOM	1432		HIS	213	25.306	26.269	34.088
	MOTA	1433		HIS	213	23.379	25.385	34.561
	ATOM	1434	HD2	HIS	213	22.676	26.124	34.176
5	ATOM	1435	CE1	HIS	213	25.206	24.398	35.067
-	ATOM	1436		HIS	213	26.264		35.182
							24.163	
	MOTA	1437		HIS	213	21.659	23.701	35.503
	ATOM	1438	HB1	HIS	213	20.957	24.146	34.797
	ATOM	1439	HB2	HIS	213	21.666	22.625	35.326
10	ATOM	1440		HIS	213	19.789	24.147	37.046
10								
	ATOM	1441	0	HIS	213	19.267	25.255	36.949
	ATOM	1442	N	ILE	214	19.068	23.031	37.257
	MOTA	1443	HN	ILE	214	19.548	22.130	37.389
	ATOM	1444	CA	ILE	214	17.634	23.088	37.302
15	ATOM	1445	HA	ITE.	214	17.275	23.468	36.345
15								
	MOTA	1446	CB	ILE	214	17.022	21.728	37.528
	MOTA	1447	HB	ILE	214	17.416	21.055	36.767
	MOTA	1448	CG2	ILE	214	17.420	21.263	38.937
	ATOM	1449	HG2	ILE	214	16.991	20.280	39.131
20								
20	MOTA	1450	HG2	ILE	214	18.506	21.206	39.008
	MOTA	1451	HG2	ILE	214	17.045	21.974	39.674
	ATOM	1452	CG1	ILE	214	15.503	21.722	37.266
	MOTA	1453	HG1	ILE	214	15.152	20.692	37.326
	MOTA	1454	HG1	ILE	214	15.328	22.132	36.272
25	MOTA	1455	CD1	ILE	214	14.677	22.546	38.254
	ATOM	1456	HD1	ILE	214	13.622	22.481	37.990
	MOTA	1457	HD1	ILE	214	14.823	22.158	39.262
		1458	HD1	ILE	214	14.997	23.587	38.216
	ATOM							
	ATOM	1459	C	ILE	214	17.231	24.007	38.418
30	ATOM	1460	0	ILE	214	16.278	24.771	38.272
	ATOM	1461	N	VAL	215	17.948	23.970	39.561
	ATOM	1462	HN	VAL	215	18.754	23.333	39.636
					215	17.599	24.812	40.677
	ATOM	1463	CA	VAL				
	MOTA	1464	HA	VAL	215	16.578	24.580	40.981
35	MOTA	1465	CB	VAL	215	18.573	24.769	41.818
	MOTA	1466	HB	VAL	215	19.552	25.061	41.437
	ATOM	1467	CG1	VAL	215	18.088	25.753	42.894
	MOTA	1468	HG1	VAL	215	18.779	25.741	43.736
	MOTA	1469	HG1	VAL	215	18.044	26.758	42.474
40	MOTA	1470	HG1	VAL	215	17.095	25.459	43.235
	ATOM	1471	CG2	VAL	215	18.762	23.337	42.309
	ATOM	1472	HG2	VAL	215	19.472	23.327	43.136
	MOTA	1473	HG2	VAL	215	17.806	22.939	42.646
	MOTA	1474	HG2	VAL	215	19.145	22.721	41.495
45	MOTA	1475	С	VAL	215	17.701	26.234	40.249
	ATOM	1476	0	VAL	215	16.816	27.039	40.530
	ATOM			ALA	216	18.811	26.581	39.575
		1477	N					
	MOTA	1478	HN	ALA	216	19.505	25.863	39.324
	ATOM	1479	CA	ALA	216	19.031	27.946	39.204
50	ATOM	1480	HA	ALA	216	18.971	28.588	40.083
	ATOM	1481	CB	ALA	216	20.420	28.184	38.591
							. 29.237	
	MOTA	1482		ALA	216	20.527		38.331
	ATOM	1483		ALA	216	21.189	27.909	39.314
	MOTA	1484	нвз	ALA	216	20.531	27.576	37.694
55	ATOM	1485	С	ALA	216	17.993	28.387	38.213
	ATOM	1486	ō	ALA	216	17.436	29.478	38.331
	ATOM	1487	N	HIS	217	17.693	27.533	37.217
	MOTA	1488	HN	HIS	217	18.138	26.605	37.208
	MOTA	1489	CA	HIS	217	16.774	27.870	36.166
60	ATOM	1490	HA	HIS	217	17.111	28.781	35.671
- •					217	18.889	27.082	34.036
	ATOM	1491		HIS				
	ATOM	1492		HIS	217	18.875	28.112	34.020
	MOTA	1493	CG	HIS	217	17.908	26.255	34.537
	ATOM	1494	NE2	HIS	217	19.599	24.996	33.731
65	ATOM	1495		HIS	217	20.177	24.187	33.465
05						18.357	24.985	34.341
	ATOM	1496		HIS	217			
	MOTA	1497		HIS	217	17.813	24.084	34.625
	MOTA	1498	CE1	HIS	217	19.877	26.277	33.568

	ATOM	1499	HE1	HIS	217 ·	20.794	26.646	33.109
	ATOM	1500	СВ	HIS	217	16.620	26.727	35.147
	ATOM	1501	HB1		217	15.982		
							27.078	34.336
_	ATOM	1502	HB2	HIS	217	16.165	25.876	35.654
5	MOTA	1503	С	HIS	217	15.415	28.088	36.749
	MOTA	1504	0	HIS	217	14.711	29.038	36.403
	ATOM	1505	N	ILE	218	15.017	27.190	37.662
	MOTA	1506	HN	ILE	218	15.676	26.451	37.947
	MOTA	1507	CA	ILE	218	13.717	27.215	38.255
10	MOTA	1508	HA	ILE	218	12.960	27.231	37.471
	ATOM	1509	СВ	ILE	218	13.447	25.975	39.062
	ATOM	1510	HB	ILE	218	13.729		
							25.100	38.477
	ATOM	1511	CG2	ILE	218	14.273	26.027	40.355
	MOTA	1512	HG2	ILE	218	14.082	25.131	40.946
15	ATOM	1513	HG2	ILE	218	15.333	26.079	40.108
	ATOM	1514	HG2	ILE	218	13.992	26.908	40.932
	MOTA	1515	CG1	ILE	218	11.943	25.805	39.298
	MOTA	1516	HG1		218	11.352	26.002	38.404
	MOTA	1517	HG1	ILE	218	11.560	26.476	40.067
20	MOTA	1518	CD1	ILE	218	11.573	24.394	39.747
	ATOM	1519	HD1	ILE	218	10.495	24.331	39.900
	ATOM	1520	HD1	ILE	218	11.873	23.678	38.982
	ATOM	1521	HD1	ILE	218	12.085	24.163	40.681
	MOTA	1522	С	ILE	218	13.579	28.438	39.107
25	ATOM	1523	0	ILE	218	12.496	29.013	39.207
	ATOM	1524	N	GLN	219	14.684	28.884	39.733
	MOTA	1525	HN	GLN	219	15.580	28.394	39.604
	MOTA	1526	CA	GLN	219	14.618	30.040	40.581
	MOTA	1527	HA	GLN	219	13.921	29.807	41.386
30	ATOM	1528	СВ	GLN	219	15.987	30.457	41.145
50		1529						
	ATOM		HB1		219	15.858	31.377	41.715
	ATOM	1530	HB2		219	16.668	30.617	40.309
	MOTA	1531	CG	GLN	219	16.621	29.419	42.072
	ATOM	1532	HG1	GLN	219	16.751	28.501	41.498
35	MOTA	1533	HG2		219		_29.269	42.911
55							-	
	ATOM	1534	CD	GLN	219	17.961	29.975	. 42.536
	ATOM	1535		GLN	219	19.007	29.358	42.344
	ATOM	1536	NE2	GLN	219	17.928	31.177	43.175
	ATOM	1537	HE2	GLN	219	17.030	31.660	43.316
40	MOTA	1538	HE2	GLN	219	18.801	31.602	43.517
	ATOM	1539	C	GLN	219	14.132	31.173	39.740
	MOTA	1540	0	GLN	219	13.303	31.969	40.178
	ATOM	1541	N	HIS	220	14.627	31.261	38.493
	ATOM	1542	HN	HIS	220	15.305	30.562	38.157
45	ATOM	1543	CA	HIS	220	14.212	32.327	37.632
	MOTA	1544	HA	HIS	220	14.492	33.265	38.111
	ATOM	1545		HIS	220	17.279	31.761	36.687
•	ATOM	1546	HD1	HIS	220	17.157	30.847	37.146
	MOTA	1547	CG	HIS	220	16.283	32.567	36.183
50	ATOM	1548		HIS	220	18.280	33.562	35.850
50				HIS		19.002	34.239	
	ATOM	1549			220			35.567
	MOTA	1550		HIS	220	16.912	33.660	35.676
	3 00 034	4	HD2	HIS	220	16.407	34.499	35.197
	ATOM	1551				20.10.		
			CE1	HIS	220		32.404	36.462
55	ATOM	1552		HIS	220 220	18.452	32.404	36.462 36.752
55	MOTA MOTA	1552 1553	HE1	HIS	220	18.452 19.426	32.010	36.752
55	MOTA MOTA MOTA	1552 1553 1554	HE1 CB	HIS HIS	220 220	18.452 19.426 14.821	32.010 32.237	36.752 36.222
55	ATOM ATOM ATOM ATOM	1552 1553 1554 1555	HE1 CB HB1	HIS HIS	220 220 220	18.452 19.426 14.821 14.355	32.010 32.237 32.913	36.752 36.222 35.505
55	MOTA MOTA MOTA	1552 1553 1554	HE1 CB HB1	HIS HIS	220 220	18.452 19.426 14.821	32.010 32.237	36.752 36.222
55	ATOM ATOM ATOM ATOM ATOM	1552 1553 1554 1555	HE1 CB HB1	HIS HIS HIS	220 220 220 220	18.452 19.426 14.821 14.355	32.010 32.237 32.913	36.752 36.222 35.505 35.777
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1552 1553 1554 1555 1556 -1557	HE1 CB HB1 HB2 C	HIS HIS HIS HIS	220 220 220 220 220	18.452 19.426 14.821 14.355 14.739 12.731	32.010 32.237 32.913 31.245 32.222	36.752 36.222 35.505 35.777 37.468
55 60	ATOM MOTA MOTA MOTA MOTA MOTA MOTA	1552 1553 1554 1555 1556 -1557 1558	HE1 CB HB1 HB2 C	HIS HIS HIS HIS HIS	220 220 220 220 220 220	18.452 19.426 14.821 14.355 14.739 12.731 12.014	32.010 32.237 32.913 31.245 32.222 33.218	36.752 36.222 35.505 35.777 37.468 37.543
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1552 1553 1554 1555 1556 -1557 1558 1559	HE1 CB HB1 HB2 C O N	HIS HIS HIS HIS HIS GLU	220 220 220 220 220 220 221	18.452 19.426 14.821 14.355 14.739 12.731 12.014 12.237	32.010 32.237 32.913 31.245 32.222 33.218 30.991	36.752 36.222 35.505 35.777 37.468 37.543 37.255
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1552 1553 1554 1555 1556 -1557 1558 1559 1560	HE1 CB HB1 HB2 C O N	HIS HIS HIS HIS GLU GLU	220 220 220 220 220 220 221 221	18.452 19.426 14.821 14.355 14.739 12.731 12.014 12.237 12.881	32.010 32.237 32.913 31.245 32.222 33.218 30.991 30.187	36.752 36.222 35.505 35.777 37.468 37.543 37.255 37.231
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1552 1553 1554 1555 1556 -1557 1558 1559	HE1 CB HB1 HB2 C O N	HIS HIS HIS HIS HIS GLU	220 220 220 220 220 220 221	18.452 19.426 14.821 14.355 14.739 12.731 12.014 12.237	32.010 32.237 32.913 31.245 32.222 33.218 30.991	36.752 36.222 35.505 35.777 37.468 37.543 37.255
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1552 1553 1554 1555 1556 -1557 1558 1559 1560	HE1 CB HB1 HB2 C O N	HIS HIS HIS HIS GLU GLU GLU	220 220 220 220 220 220 221 221 221	18.452 19.426 14.821 14.355 14.739 12.731 12.014 12.237 12.881	32.010 32.237 32.913 31.245 32.222 33.218 30.991 30.187 30.772	36.752 36.222 35.505 35.777 37.468 37.543 37.255 37.231 37.058
60	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1552 1553 1554 1555 1556 -1557 1558 1559 1560 1561	HE1 CB HB1 HB2 C O N HN CA HA	HIS HIS HIS HIS GLU GLU GLU GLU	220 220 220 220 220 220 221 221 221 221	18.452 19.426 14.821 14.355 14.739 12.731 12.014 12.237 12.881 10.835 10.492	32.010 32.237 32.913 31.245 32.222 33.218 30.991 30.187 30.772 31.344	36.752 36.222 35.505 35.777 37.468 37.543 37.255 37.231 37.058 36.197
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1552 1553 1554 1555 1556 -1557 1558 1559 1560 1561 1562 1563	HE1 CB HB1 HB2 C O N HN CA HA CB	HIS HIS HIS HIS GLU GLU GLU GLU GLU	220 220 220 220 220 220 221 221 221 221	18.452 19.426 14.821 14.355 14.739 12.731 12.014 12.237 12.881 10.835 10.492 10.519	32.010 32.237 32.913 31.245 32.222 33.218 30.991 30.187 30.772 31.344 29.283	36.752 36.222 35.505 35.777 37.468 37.543 37.255 37.231 37.058 36.197 36.819
60	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1552 1553 1554 1555 1556 -1557 1558 1559 1560 1561 1562 1563	HE1 CB HB1 HB2 C O N HN CA HA CB HB1	HIS HIS HIS HIS GLU GLU GLU GLU GLU GLU	220 220 220 220 220 221 221 221 221 221	18.452 19.426 14.821 14.355 14.739 12.731 12.014 12.237 12.881 10.835 10.492 10.519 11.098	32.010 32.237 32.913 31.245 32.222 33.218 30.991 30.187 30.772 31.344 29.283 28.692	36.752 36.222 35.505 35.777 37.468 37.543 37.255 37.231 37.058 36.197 36.819 37.529
60	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1552 1553 1554 1555 1556 -1557 1558 1559 1560 1561 1562 1563 1564 1565	HE1 CB HB1 HB2 C O N HN CA HA CB HB1 HB2	HIS HIS HIS HIS GLU GLU GLU GLU GLU GLU GLU	220 220 220 220 220 221 221 221 221 221	18.452 19.426 14.821 14.355 14.739 12.731 12.014 12.237 12.881 10.835 10.492 10.519 11.098 10.800	32.010 32.237 32.913 31.245 32.222 33.218 30.991 30.187 30.772 31.344 29.283 28.692 29.035	36.752 36.222 35.505 35.777 37.468 37.543 37.255 37.231 37.058 36.197 36.819 37.529 35.795
60	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1552 1553 1554 1555 1556 -1557 1558 1559 1560 1561 1562 1563	HE1 CB HB1 HB2 C O N HN CA HA CB HB1	HIS HIS HIS HIS GLU GLU GLU GLU GLU GLU	220 220 220 220 220 221 221 221 221 221	18.452 19.426 14.821 14.355 14.739 12.731 12.014 12.237 12.881 10.835 10.492 10.519 11.098	32.010 32.237 32.913 31.245 32.222 33.218 30.991 30.187 30.772 31.344 29.283 28.692	36.752 36.222 35.505 35.777 37.468 37.543 37.255 37.231 37.058 36.197 36.819 37.529

	MOTA	1567	HG1 G	LU	221	8.	822	28.111	36.295
	MOTA	1568	HG2 G	LU	221	8.	457	29.805	36.786
	ATOM	1569	CD G	LU	221	8.	863	28.455	38.442
	ATOM	1570	OE1 G	LU	221	9.	899	28.242	39.126
5	ATOM	1571		LU	221		690	28.302	38.875
_	ATOM	1573		LU	221		082	31.210	38.275
	ATOM	1574		LU	221		118	31.968	38.179
		1575							
	ATOM			AL	222		550	30.761	39.453
10	MOTA	1576		AL	222		389	30.164	39.425
10	ATOM	1577		AL	222		989	31.036	40.745
	MOTA	1578		AL	222		193	30.260	41.482
	MOTA	1579		AL	222	10.	606	32.242	41.403
	ATOM	1580	HB V	AL	222	11.	666	32.056	41.575
	ATOM	1581	CG1 V		222	10.	439	33.466	40.485
15	ATOM	1582		AL	222		885	34.340	40.959
	MOTA	1583		AL	222		935	33.277	39.533
	ATOM	1584	HG1 V		222		378	33.648	40.312
	ATOM	1585	CG2 V		222		978	32.417	42.796
20	MOTA	1586		AL	222		415	33.287	43.286
20	MOTA	1587		AL	222		902	32.560	42.695
	MOTA	1588		AL	222		.170	31.527	43.396
	ATOM	1589	C V	AL	222	8.	. 495	31.179	40.730
	MOTA	1590	0 V	AL	222	7.	982	32.255	40.437
	ATOM	1591	N A	SP	223	7.	.777	30.070	41.055
25	MOTA	1592	HN A	SP	223	8.	. 297	29.192	41.194
	ATOM	1593		SP	223		.339	30.030	41.221
	ATOM	1594		SP	223		.009	30.612	42.082
	ATOM	1595		SP	223		. 484	30.685	40.115
		1596		SP	223		.538	30.147	40.060
30	MOTA								
30	ATOM	1597		SP	223		.033	30.606	39.177
	ATOM	1598		SP	223		.261	32.145	40.496
	ATOM	1599		SP	223		. 616	32.509	41.650
	MOTA	1600		SP	223		.737	32.913	39.646
	MOTA	1601	C A	SP	223	5	.830	28.624	41.427
35	MOTA	1602	O _A	SP	223	6	.563	27.742	41.868
	MOTA	1603	N P	HE	224	4	. 523	28.411	41.120
	MOTA	1604	HN P	HE	224	4	.000	29.205	40.723
	MOTA	1605	CA P	HE	224	3	.801	27.176	41.300
	ATOM	1606		HE	224	3	. 677	26.937	42.356
40	ATOM	1607		HE	224		.382	27.181	40.693
	ATOM	1608		HE	224		.020	26.162	40.558
	ATOM	1609		HE	224		.383	27.676	39.722
	ATOM	1610		HE	224		.432	27.903	41.589
4.5	ATOM	1611	CD1 P		224		.441	29.275	41.686
45	MOTA	1612		PHE	224		.157	29.854	41.103
	MOTA	1613	CD2 F		224		. 503	27.192	42.315
	MOTA	1614	HD2 F	PHE	224		. 474	26.106	42.232
	ATOM	1615	CE1 P	HE	224	0	.552	29.923	42.514
	MOTA	1616	HE1 F	PHE	224	0	.574	31.010	42.590
50	ATOM	. 1617	CE2 F	PHE	224	-0	.386	27.833	43.142
	ATOM	1618		PHE	224	-1	.112	27.256	43.716
	ATOM	1619		HE	224		.361	29.203	43.245
•	ATOM	1620		HE	224		.062	29.716	43.902
	ATOM	1621		PHE	224		.517	26.027	40.662
55									
23	MOTA	1622		HE	224		.617	26.154	40.129
	ATOM	1623		EU	225		.841	24.859	40.720
	MOTA	1624		LEU	225		.918	24.898	41.175
	MOTA	1625		ĿΕU	225		.243	23.569	40.227
	MOTA	1626		LEU	225		.881	23.079	40.963
60	MOTA	1627		ĿΕU	225		. 995	22.680	39.996
	ATOM	1628	HB1 I	EU	225	2	.360	23.201	39.279
	ATOM	1629	HB2 I	EU	225		.502	22.561	40.960
	ATOM	1630	CG ,I		225		.186	21.253	39.437
	ATOM	1631		LEU	225		.913	20.712	40.041
65	ATOM	1632	CD2 I		225		.772	21.234	38.017
	MOTA	1633		LEU	225		.881	20.202	37.682
	MOTA	1634	HD2 I		225		.104	21.766	37.340
			HD2 I		225		.748		38.020
	MOTA	1635	1102 1	J	423	4	. / 40	21.719	30.020

	ATOM	1636	CD1	LEU	225 .	1.850	20.498	39.467
	ATOM	1637	HD1		225	1.992	19.492	39.071
	MOTA	1638	HD1		225	1.490	20.436	40.493
	ATOM	1639	HD1	LEU	225	1.119	21.028	38.856
5	MOTA	1640	С	LEU	225	5.000	23.732	38.948
	ATOM	1641	0	LEU	225	4.719	24.655	38.187
	ATOM	1642	N	PHE	226	5.995	22.840	38.693
	ATOM	1643	HN	PHE	226	6.207	22.104	39.381
	ATOM	1644	CA	PHE	226	6.755	22.913	37.471
10	ATOM	1645	HA	PHE	226	6.249	23.571	36.764
	MOTA	1646	CB	PHE	226	8.153	23.549	37.608
	MOTA	1647	HB1	PHE	226	8.092	24.525	38.090
	ATOM	1648	HB2	PHE	226	8.616.	23.685	36.630
	MOTA	1649	CG	PHE	226	9.049	22.690	38.423
15	MOTA	1650	CD1	PHE	226	9.081	22.819	39.790
	MOTA	1651	HD1	PHE	226	8.440	23.552	40.281
	MOTA	1652	CD2	PHE	226	9.861	21.759	37.817
	ATOM	1653	HD2	PHE	226	9.839	21.648	36.733
	MOTA	1654	CE1	PHE	226	9.915	22.030	40.540
20	MOTA	1655	HE1		226	9.934	22.138	41.625
	ATOM	1656	CE2	PHE	226	10.698	20.968	38.565
	ATOM	1657	HE2	PHE	226	11.338	20.234	38.076
	ATOM	1658	CZ	PHE	226	10.727	21.105	39.932
	ATOM	1659	HZ	PHE	226	11.392	20.482	40.530
25	ATOM	1660	C	PHE	226	6.880	21.538	36.870
	ATOM	1661	0	PHE	226	6.370	20.561	37.417
	ATOM	1662	N	CYS	227	7.563	21.439	35.704
	ATOM	1663	HN	CYS	227 227	8.072 7.600	22.263 20.217	35.352 34.941
30	MOTA -	1664 ⁻ 1665	CA HA	CYS	227	7.270	19.370	35.542
30	MOTA	1666	CB	CYS	227	6.745	20.338	33.681
	ATOM	1667	HB1		227	5.700	20.434	33.976
	ATOM	1668	HB2	CYS	227	6.885	19.442	33.076
	ATOM	1669		CYS	227	7.273	21.807	32.758
35	ATOM	1670	HG	CYS	227	8.271	22.414	33.416
	MOTA	1671	С	CYS	227	8.994	19.924	34.456
	MOTA	1672	0	CYS	227	9.930	20.685	34.696
	MOTA	1673	N	MET	228	9.138	18.775	33.746
	MOTA	1674	HN	MET	228	8.300	18.195	33.598
40	MOTA	1675	CA	MET	228	10.384	18.311	33.183
	ATOM	1676	HA	MET	228	11.162	19.057	33.351
	ATOM	1677	CB	MET	228	10.920	16.997	33.783
	MOTA	1678		MET	228	11.690	16.604	33.119
45	ATOM	1679		MET	228	10.092 11.539	16.294	33.866
43	ATOM	1680	CG	MET MET	228 228	10.767	17.159 17.527	35.175 35.850
	ATOM ATOM	1681 1682		MET	228	12.360	17.872	35.102
	ATOM	1683	SD	MET	228	12.208	15.627	35.102
	ATOM	1684	CE	MET	228	13.052	16.449	37.274
50	ATOM	1685		MET	228	13.557	15.702	37.887
	ATOM	1686		MET	228	13.785	17.155	36.885
	ATOM	1687		MET	228	12.321	16.982	37.881
	MOTA	1688	С	MET	228	10.219	18.088	31.698
	ATOM	1689	0	MET	228	9.166	18.384	31.135
55	MOTA	1690	N	ASP	229	11.276	17.543	31.040
	ATOM	1691	HN	ASP	229	12.046	17.175	31.617
	MOTA	1692	CA	ASP	229	11.419	17.432	29.599
	MOTA	1693	HA	ASP	229	11.556	18.408	29.134
C 0	ATOM	1694	CB	ASP	229	12.584	16.502	29.221
60	ATOM	1695		ASP	229	12.660	16.448	28.135
	ATOM	1696		ASP	229	12.396	15.509	29.628
	ATOM	1697	CG	ASP	229	13.877 14.290	17.061 18.175	29.800 29.383
	MOTA MOTA	1698 1699		ASP ASP	229 229	14.230	16.173	30.667
65	ATOM	1700	C	ASP	229	10.209	16.804	28.972
	MOTA	1701	Ö	ASP	229	9.504	17.462	28.217
	ATOM	1702	N	VAL	230	9.990	15.496	29.198
	MOTA	1703	HN	VAL	230	10.766	14.939	29.583

	ATOM	1704	CA VAI	230	8.745	14.819	28.939
	ATOM	1705	HA VAI		7.900	15.498	28.819
	ATOM	1706	CB VAI		8.738	13.658	27.992
	MOTA	1707	HB VAI		9.299	13.902	27.090
5	MOTA	1708	CG1 VAI		9.384	12.421	28.656
	MOTA	1709	HG1 VAI		9.372	11.585	27.957
	MOTA	1710	HG1 VAI		10.414	12.651	28.929
	MOTA	1711	HG1 VAI		8.822	12.154	29.551
	ATOM	1712	CG2 VAI		7.280	13.400	27.600
10	ATOM	1713	HG2 VAI		7.232	12.558	26.909
•	ATOM	1714	HG2 VAI		6.698	13.169	28.493
	ATOM	1715	HG2 VA		6.869	14.288	27.120
	ATOM	1716	C VAI		8.776	14.078	30.176
	MOTA	1717	O VAI		7.814	13.442	30.614
15	MOTA	1718	N ASI		9.954	14.330	30.781
•	MOTA	1719	HN AS		10.552	15.057	30.363
	ATOM	1720	CA ASI		10.438	13.684	31.933
	MOTA	1721	HA ASI		10.691	12.643	31.733
	MOTA	1722	CB ASI		11.666	14.402	32.516
20	MOTA	1723	HB1 AS		11.345	15.332	32.986
	MOTA	1724	HB2 AS		12.368	14.617	31.709
	ATOM	1725	CG AS		12.324	13.501	33.548
	MOTA	1726	OD1 AS		11.583	12.764	34.249
	ATOM	1727	OD2 AS	231	13.580	13.531	33.641
25	MOTA	1728	C AS	P 231	9.293	13.822	32.841
	MOTA	1729	O AS	231	8.864	12.864	33.471
	ATOM	1730	N GL	1 232	8.694	15.019	32.834
	MOTA	1731	HN GL	N 232	9.097	15.815	32.320
	ATOM	1732	CA GL	1 232	7.483	15.146	33.562
30	MOTA	1733	HA GLI		7.365	14.212	34.112
	MOTA	1734	CB GLI		7.467	16.343	34.525
	ATOM	1735	HB1 GL		7.655	17.296	34.030
	MOTA	1736	HB2 GL		8.218	16.273	35.312
2.5	MOTA	1737	CG GL		6.135	16.517	35.249
35	ATOM	1738	HG1 GL		5.387	16.788	
	ATOM	1739	HG2 GL		6.261	17.309	35.987
	ATOM	1740	CD GL		5.797	15.195	35.913
	ATOM ATOM	.1741 1742	OE1 GLI		6.666 4.482	14.480 14.852	36.411 35.907
40	ATOM	1,743	HE2 GL		3.788	15.482	35.479
70	ATOM	1744	HE2 GL		4.180	13.963	36.330
	ATOM	1745	C GL		6.416	15.354	32.546
	ATOM	1746	O GL		6.600	16.091	31.582
	ATOM	1747	N VA		5.289	14.641	32.697
45	ATOM	1748	HN VA		5.217	13.926	33.435
	ATOM	1749	CA VA		4.189	14.887	31.817
	ATOM	1750	HA VA		4.381	15.867	31.380
	ATOM	1751	CB VA		4.004	13.876	30.725
	ATOM	1752	HB VA		3.104	14.130	30.165
50	ATOM	1753	CG1 VA	և 233	5.233	13.915	29.805
	ATOM	1754	HG1 VA	ն 233	5.112	13.185	29.005
	MOTA	1755	HG1 VA	ն 233	5.334	14.911	29.374
	MOTA	1756	HG1 VA		6.127	13.677	30.381
	MOTA	1757	CG2 VA		3.736	12.511	3 r .360
55	MOTA	1758	HG2 VA		3.599	11.766	30.576
	MOTA	. 1759	HG2 VA		4.583	12.228	31.985
	MOTA	1760	HG2 VA		2.835	12.564	31.971
	ATOM	1761	C VA		2.981	14.859	32.678
	MOTA	1762	O VA		2.931	14.124	33.664
60	ATOM	1763	N PH		1.973	15.682	32.341
	ATOM	1764	HN PH		2.042		31.527
	MOTA	1765	CA PH		0.804	15.652	33.158
	ATOM	1766	HA PH		1.148	15.887	34.165
65	ATOM	1767	CB PH		-0.280	16.652	32.721
65	MOTA	1768	HB1 PH		-1.159	16.444	33.331
	MOTA MOTA	1769 1770	HB2 PH		-0.462	16.472 18.014	31.662 32.974
	MOTA	1771	CD1 PH		0.269 0.224	18.559	34.237
	011	4114		_ 231	0.224	10.555	0201

	ATOM	1772	HD1	PHE	234	-0.217	17.989	35.053
	MOTA	1773	CD2	PHE	234	0.831	18.746	31.953
	ATOM	1774		PHE	234	0.874		
							18.328	30.948
_	MOTA	1775	CE1		234	0.730	19.814	34.481
5	MOTA	1776	HE1	PHE	234	0.687	20.233	35.486
	ATOM	1777	CE2	PHE	234	1.339	20.001	32.194
	MOTA	1778	HE2	PHE	234	1.783	20.573	31.379
	ATOM	1779	CZ	PHE				
					234	1.290	20.537	33.458
_	MOTA	1780	HZ	PHE	234	1.692	21.532	33.647
10	MOTA	1781	С	PHE	234	0.268	14.272	33.029
	MOTA	1782	0	PHE	234	-0.201	13.878	31.963
	ATOM	1783	N	GLN	235	0.341	13.500	34.131
	ATOM	1784	HN	GLN	235	0.723	13.894	35.002
	MOTA	1785	CA	GLN	235	-0.104	12.141	34.108
15	ATOM	1786	HA	GLN	235	0.356	11.676	33.236
	ATOM	1787	CB	GLN	235	0.320	11.345	35.362
	ATOM	1788	HB1	GLN	235			
						-0.228	11.744	36.215
	ATOM	1789	HB2	GLN	235	1.394	11.474	35.494
	ATOM	1790	CG	GLN	235	0.048	9.835	35.315
20	ATOM	1791	HG1	GLN	235	-1.024	9.672	35.212
	ATOM	1792	HG2	GLN	235	0.407	9.382	36.238
	MOTA	1793						
			CD	GLN	235	0.781	9.239	34.123
	MOTA	1794	OE1	GLN	235	0.699	9.751	33.008
	MOTA	17.95	NE2	GLN	235	1.523	8.123	34.359
25	MOTA	1796	HE2	GLN	235	1.566	7.725	35.308
	ATOM	1797	HE2	GLN	235	2.042	7.678	33.590
	MOTA	1798	С	GLN	235	-1.590	12.182	34.004
	ATOM	1799	0	GLN	235	-2.166	13.229	33.719
	ATOM	1800	N	ASP	236	-2.248	11.029	34.224
30	ATOM	1801	HN	ASP	236	-1.726	10.189	34.511
••	ATOM	1802	CA	ASP	236			
						-3.662	10.965	34.061
	ATOM	1803	HA	ASP	236	-3.938	10.002	34.490
	MOTA	1804	CB	ASP	236	-4.442	12.107	34.741
	ATOM	1805	HB1	ASP	236	-4.126	13.054	34.302
35	ATOM .	1806		ASP	236	-4.222	12.092	35.808
-	ATOM	1807	CG	ASP	236	-5.932		
•							11.886	34.504
	MOTA	1808		ASP	236	-6.292	10.869	33.855
	ATOM	1809	OD2	ASP	236	-6.733	12.735	34.978
	ATOM	1810	С	ASP	236	-3.866	11.057	32.595
40	ATOM	1811	0	ASP	236	-3.893	10.045	31.898
	ATOM	1812	N	LYS	237	-3.989	12.297	
								32.086
	ATOM	1813	HN	LYS	237	-3.917	13.125	32.693
	ATOM	1814	CA	LYS	237	-4.221	12.436	.30.689
	ATOM	1815	HA	LYS	237	-3.492	11.808	30.175
45	ATOM	1816	CB	LYS	237	-5.666	12.122	30.258
10	ATOM							
		1817		LYS	237	-5.765	12.380	29.204
	MOTA	1818		LYS	237	-6.337	12.723	30.872
	ATOM	1819	CG	LYS	237	-6.105	10.664	30.407
	MOTA	1820	HG1	LYS	237	-5.839	10.240	31.374
50	ATOM	1821		LYS	237	-5.658	10.010	29.659
~°								
	MOTA	1822	CD	LYS	237	-7.619	10.484	30.271
	MOTA	1823	HD1	LYS	237	-7.920	10.835	29.284
	MOTA	1824	HD2	LYS	237	-8.106	11.071	31.050
	ATOM	1825	CE	LYS	237	-8.087	9.037	30.415
55	ATOM	1826		LYS.	237	-7.810	8.655	31.398
33								
	ATOM	1827	HE2		237	-7.621	8.419	29.648
	MOTA	1828	ΝZ	LYS	237	-9.558	8.967	30.266
	ATOM	1829	HZ1	LYS	237	-9.868	7.990	30.364
	ATOM	1830		LYS	237	-10.005	9.544	30.993
60	ATOM	1831	HZ3	LYS	237	-9.826		
00							9.321	29.336
	ATOM	1832	С	LYS	237	-4.039	13.867	30.352
	MOTA	1833	0	LYS	237	-2.991	14.465	30.588
	ATOM	1834	N	PHE	238	-5.131	14.451	29.836
	ATOM	1835	HN	PHE	238	-5.999	13.898	29.784
65	ATOM	1836	CA	PHE	238	-5.162		
55							15.792	29.356
	MOTA	1837	HA	PHE	238	-4.502	15.808	28.488
	ATOM	1838	CB	PHE	238	-6.588	16.254	29.014
	ATOM	1839	HB1	PHE	238	-6.516	17.282	28.660
			-	_				

	MOTA	1840	HB2	PHE	238	-7.176	16.182	29.928
	MOTA	1841	CG	PHE	238	-7.102	15.340	27.953
	MOTA	1842	CD1	PHE	238	-6.804	15.553	26.628
	MOTA	1843	HD1	PHE	238	-6.181	16.401	26.343
5	MOTA	1844	CD2	PHE	238	-7.889	14.263	28.292
	MOTA	1845	HD2	PHE	238	-8.133	14.083	29.339
	MOTA	1846	CE1	PHE	238	-7.284	14.705	25.658
	ATOM	1847	HE1	PHE	238	-7.041	14.884	24.610
	ATOM	1848	CE2		238	-8.372	13.412	27.327
10	ATOM	1849	HE2		238	-8.995	12.563	27.610
	ATOM	1850	CZ	PHE	238	-8.069	13.632.	26.005
	ATOM	1851	HZ	PHE	238	-8.449	12.959	25.236
	ATOM	1852	C	PHE	238	-4.669	16.628	30.474
	ATOM	1853	ŏ	PHE	238	-4.044	17.666	30.275
15	ATOM	1854	N	GLY	239	-4.934	16.190	31.708
13	ATOM	1855	HN	GLY	239	-5.453	15.316	31.705
		1856	CA		239			
	MOTA			GLY		-4.462	16.997	32.776
	ATOM	1857	HA1		239	3.596	17.513	32.363
20	ATOM	1858	HA2		239	-4.219	16.286	33.566
20	ATOM	1859	C	GLY	239	-5.595	17.884	33.094
	ATOM	1860	0	GLY	239	-5.465	18.843	33.854
	ATOM	1861	N	VAL	240	-6.746	17.579	32.470
	MOTA	1862	HN	VAL	240	-6.773	16.823	31.771
	MOTA	1863	CA	VAL	240	-7.924	18.308	32.783
25	MOTA	1864	HА	VAL	240	-7.811	19.364	32.539
	MOTA	1865	СВ	VAL	240	-9.144	17.732	32.124
	ATOM	1866	HB	VAL	240	-9.271	16.701	32.454
	MOTA	1867	CG1	VAL	240	-10.370	18.567	32.528
	MOTA	1868	HG1	VAL	240	-11.262	18.156	32.054
30	MOTA	1869	HG1	VAL	240	-10.489	18.539	33.611
	MOTA	1870	HG1	VAL	240	-10.230	19.599	32.205
	MOTA	1871	CG2	VAL	240	-8.898	17.656	30.608
	ATOM	1872	HG2	VAL	240	-9.778	17.239	30.117
	MOTA	1873	HG2	VAL	240	-8.706	18.656	30.219
35	MOTA	1874	HG2	VAL	240	-8.036	17.018	30.411
	ATOM	1875	С	VAL	240	-8.065	18.086	34.239
	MOTA	1876	Ο.	VAL	240	-8.236	19.017	35.024
	MOTA	1877	N	GLU	241	-7.969	16.804	34.626
	ATOM	1878	HN	GLU	241	-7.844	16.064	33.922
40	MOTA	1879	CA	GLU	241	-8.041	16.465	36.006
	MOTA	1880	HA	GLU	241	-8.906	16.947	36.461
	MOTA	1881	CB	GLU	241	-8.182	14.954	36.261
	MOTA	1882	HB1	GLU	241	-8.092	14.679	37.312
	ATOM	1883	HB2	GLU	241	-7.433	14.353	35.746
45	MOTA	1884	CG	GLU	241	-9.530	14.381	35.813
,,,	ATOM	1885		GLU	241	-9.578	14.441	34.726
	ATOM	1886	HG2		241	-10.319	14.978	36.270
	ATOM	1887	CD	GLU	241	-9.606	12.933	36.280
	ATOM	1888	OE1	GLU	241	-8.880	12.587	37.251
50	ATOM	1889	OE2		241	-10.394	12.156	35.679
50	ATOM	1891	C	GLU	241	-6.800	16.924	36.706
	ATOM	1892	Ö	GLU	241	-6.877	17.477	37.800
	ATOM	1893	N	THR	242	-5.612	16.729	36.094
					242	-5.557	16.729	
55	ATOM	1894 1895	HN	THR	242	-4.428		35.123
23	ATOM		CA			-4.411	17.015	36.856
	ATOM	1896	HA	THR	242	-3.146	16.457	37.792
	ATOM	1897	CB	THR	242		16.638	36.166
	MOTA	1898	HB	THR	242	-2.324	16.779	36.867
	ATOM	1899	OG1	THR	242	-2.916	17.463	35.035
60	MOTA	1900	HG1	THR	242	-2.474	18.344	35.336
	ATOM	1901	CG2	THR	242	-3.242	15.165	35.735
	MOTA	1902	HG2	THR	242	-2.321	14.872	35.231
	ATOM	1903		THR	242	-3.390	14.537	36.614
	ATOM	1904	HG2	THR	242	-4.084	15.039	35.053
65	MOTA	1905	С	THR	242	-4.336	18.468	37.201
	MOTA	1906	0	THR	242	-4.236	18.825	38.373
	MOTA	1907	N	LEU	243	-4.389	19.351	36.190
	MOTA	1908	HN	LEU	243	-4.562	19.024	35.228

	ATOM	1909	CA	LEU	243	-4.205	20.747	36.450
	MOTA	1910	HA	LEU	243	-3.282	20.883	37.014
	ATOM	1911	CB	LEU	243	-4.096	21.566	35.146
	ATOM	1912		LEU	243			
			HB1			-5.066	21.538	34.648
5 ·	ATOM	1913	HB2		243	-3.327	21.109	34.524
	MOTA	1914	CG	LEU	243	-3.717	23.051	35.327
	MOTA	1915	HG	LEU	243	-3.512	23.550	34.380
	MOTA	1916	CD2	LEU	243	-2.360	23.187	36.035
	MOTA	1917	HD2		243	-2.115	24.243	36.151
10	ATOM	1918	HD2		243	-2.413	22.717	37.017
	ATOM	1919	HD2					
					243	-1.589	22.699	35.440
	MOTA	1920	CD1		243	-4.827	23.865	36.006
	MOTA	1921	HD1		243	-4.506	24.902	36.108
	MOTA	1922	HD1	LEU	243 .	-5.732	23.823	35.400
15	MOTA	1923	HD1	LEU	243	-5.031	23.450	36.993
	ATOM	1924	С	LEU	243	-5.365	21.249	37.239
	ATOM	1925	Ō	LEU	243	-5.197	21.944	38.240
	ATOM	1926	N		244			
				GLY		-6.586	20.880	36.815
	MOTA	1927	HN	GLY	244	-6.680	20.224	36.026
20	ATOM	1928	CA	GLY	244	-7.756	21.399	37.456
	ATOM	1929	HA1	GLY	244	-8.652	21.054	36.941
	ATOM	1930	HA2	GLY	244	-7.741	22.489	37.442
	MOTA	1931	С	GLY	244	-7.812	20.938	38.877
	ATOM	1932	Ō	GLY	244	-8.095	21.721	39.781
25	MOTA	1933	N .	GLU	245	-7.545	19.641	39.112
23		1934						
	MOTA		HN	GLU	245	-7.240	19.033	38.338
	MOTA	1935	CA	GLU	245	-7.681	19.101	40.431
	MOTA	1936	HА	GLU	245	-8.678	19.294	40.829
	MOTA	1937	CB	GLU	245	-7.485	17.575	40.478
30	MOTA	1938	HB1	GLU	245	-6.471	17.259	40.235
	ATOM	1939	HB2	GLU	245	-8.126	17.033	39.782
	ATOM	1940	CG	GLU	245	-7.777	16.963	41.850
	ATOM	1941		GLU	245	-7.269	17.564	42.604
	MOTA	1942	HG2		245	-7.400	15.940	41.852
35		1942						
33	MOTA	_	CD	GLU	245	-9.285	16.984	42.067
	ATOM	1944	OE1	GLU	245	-10.030	16.900	41.054
	MOTA	1945	OE2		245	-9.712	17.085	43.248
	MOTA	1947	С	GLU	245	-6.683	19.712	41.364
	ATOM	1948	0	GLU	245	-7.024	20.092	42.483
40	MOTA	1949	N	SER	246	-5.418	19.833	40.926
	ATOM	1950	HN	SER	246	-5.179	19.574	39.958
	ATOM	1951	CA	SER	246	-4.403	20.323	41.812
	MOTA	1952	ΗA	SER	246	-4.378	19.722	42.720
	MOTA	1953	CB	SER	246	-2.999	20.278	41.186
15								
45	MOTA	1954	HB1		246	-2.973	20.888	40.283
	MOTA	1955	HB2		246	-2.739	19.251	40.926
	MOTA	1956	OG	SER	246	-2.040	20.776	42.105
	ATOM	1957	HG	SER	246	-1.351	21.354	41.603
	ATOM	1958	С	SER	246	-4.688	21.744	42.180
50	MOTA	1959	0	SER	246	-4.642	22.107	43.356
•	MOTA	1960	N	VAL	247	-5.011	22.586	41.182
	ATOM	1961	HN	VAL	247	-5.104	22.234	40.218
						-5.227		
	ATOM	1962	CA	VAL	247		23.973	41.462
	ATOM	1963	HA	VAL	247	-4.338	24.374	41.948
55	MOTA	1964	CB	VAL	247	-5.493	24.793	40.237
	ATOM	1965	HB	VAL	247	-6.380	24.396	39.742
	MOTA	1966	CG1	VAL	247	-5.725	26.250	40.668
	ATOM	1967	HG1	VAL	247	-5.921	26.863	39.788
	ATOM	1968		VAL	247	-6.581	26.299	41.341
60	ATOM	1969		VAL	247	-4.839	26.624	41.180
	ATOM	1970		VAL	247	-4.314	24.619	39.264
	MOTA	1971		VAL	247	-4.493	25.210	38.366
	ATOM	1972		VAL	247	-3.395	24.956	39.743
	ATOM	1973		VAL	247	-4.218	23.567	38.993
65	MOTA	1974	С	VAL	247	-6.409	24.102	42.364
	MOTA	1975	0	LAV	247	-6.402	24.888	43.310
	ATOM	1976	N	ALA	248	-7.453	23.295	42.119
	MOTA	1977	HN	ALA	248	-7.392	22.581	41.379

	ATOM	1978	CA	ALA	248		-8.656	23.432	42.892
							-9.059		42.743
	ATOM	1979		ALA	248			24.434	
	ATOM	1980		ALA	248		-9.729	22.403	42.504
	ATOM	1981	HB1		248		-10.616	22.552	43.120
5	ATOM	1982	HB2		248		-9.991	22.528	41.454
	MOTA	1983	HB3	ALA	248		-9.342	21.396	42.664
	MOTA	1984	С	ALA	248		-8.330	23.220	44.333
	ATOM	1985	0	ALA	248		-8.797	23.964	45.194
	ATOM	1986		GLN	249		-7.501	22.208	44.644
10	ATOM	1987		GLN	249		-7.065	21.636	43.907
10	ATOM	1988		GLN	249		-7.241	21.946	46.027
	_								
	ATOM	1989		GLN	249		-8.175	21.712	46.538
	ATOM	1990	CB	GLN	249		-6.260	20.780	46.238
	MOTA	1991		GLN	249		-6.012	20.727	47.298
15	MOTA	1992	HB2	GLN	249		-5.366	20.971	45.645
	ATOM	1993	CG	GLN	249		-6.814	19.416	45.821
	ATOM	1994	HG1	GLN	249		-5.981	18.715	45.780
	ATOM	1995	HG2		249		-7.278	19.530	44.841
	ATOM	1996	CD	GLN	249		-7.837	18.989	46.862
20	ATOM	1997		GLN	249		-8.081	19.697	47.839
20									
	MOTA	1998	NE2		249		-8.454	17.796	46.653
	MOTA	1999		GLN	249	•	-8.221	17.234	45.822
	MOTA	2000	HE2	GLN	249		-9.155	17.453	47.326
	MOTA	2001	С	GLN	249		-6.621	23.151	46.659
25	ATOM	2002	0	GLN	249		-7.124	23.660	47.660
	MOTA	2003	N	LEU	250		-5.510	23.653	46.084
	ATOM	2004	HN	LEU	250		-5.155	23.254	45.203
	ATOM	2005	CA	LEU	250		-4.826	24.747	46.710
	ATOM	2005	HA	LEU	250		-4.611	24.549	47.760
20									
30	MOTA	2007	CB	LEU	250		-3.487	25.076	46.023
	ATOM	2008	HB1	LEU	250		-3.058	25.950	46.511
	MOTA	2009	HB2	LEU	250		-3.685	25.281	44.971
	MOTA	2010	CG	LEU	250		-2.444	23.947	46.088
	ATOM	2011	HG	LEU	250		-2.811	23.044	45.600
35	ATOM	2012	CD2	LEU	250	_	-2.222	23.471	47.531
	MOTA	2013	HD2	LEU	250	_	-1.479	22.674	47.540
	MOTA	2014	HD2	LEU	250		-1.868	24.304	48.138
	ATOM	2015	HD2	LEU	250		-3.161	23.097	47.939
	ATOM	2016	CD1	LEU	250		-1.139	24.359	45.390
40	ATOM	2017	HD1	LEU	250		-0.420	23.542	45.452
40			HD1		250		-1.341	24.585	44.344
	MOTA	2018		LEU					
	ATOM	2019	HD1	LEU	250		-0.727	25.242	45.880
	MOTA	2020	С	LEU	250		-5.629	26.012	46.665
	MOTA	2021	0	LEU	250		-5.949	26.596	47.699
45	MOTA	2022	N	GLN	251		-5.992	26.443	45.444
	ATOM	2023	HN	GLN	251		-5.814	25.836	44.631
	MOTA	2024	CA	GLN	251		-6.619	27.716	45.234
	ATOM	2025	HA	GLN	251		-6.095	28.543	45.713
	ATOM	2026	CB	GLN	251		-6.641	28.131	43.752
50	ATOM	2027		GLN	251		-7.358	28.923	43.536
50									43.330
	ATOM	2028	HB2		251		-6.903	27.314	
	MOTA	2029	CG	GLN	251		-5.292	28.656	43.248
	MOTA	2030		GLN	251		-5.026	29.552	43.809
	ATOM	2031	HG2	GLN	251		-5.376	28.895	42.188
55	ATOM	2032	CD	GLN	251		-4.232	27.583	43.455
	MOTA	2033	OE1	GLN	251		-4.397	26.429	43.064
	ATOM	2034	NE2	GLN	251		-3.099	27.976	44.099
	ATOM	2035	HE2	GLN	251		-2.996	28.952	44.412
	ATOM	2036	HE2	GLN	251		-2.344	27.296	44.274
60	ATOM	2037	C	GLN	251		-8.015	27.786	45.754
JU									
	MOTA	2038	0	GLN	251		-8.381	28.778	46.383
	ATOM	2039	N	ALA	252		-8.829	26.738	45.522
	ATOM	2040	HN	ALA	252		-8.463	25.879	45.087
	ATOM	2041	CA	ALA	252		-10.212	26.835	45.888
65	ATOM	2042	HA	ALA	252		-10.659	27.662	45.335
	MOTA	2043	CB	ALA	252		-11.003	25.551	45.588
	ATOM	2044		ALA			-12.042	25.686	45.887
	ATOM	2045		ALA	252		-10.957	25.336	44.520

- 71 -

	ATOM	2046	нвз и	Δ.Τ.Δ	252	-10.570	24.719	46.144	
	ATOM	2047		ALA	252	-10.296	27.082	47.350	
	MOTA	2048		ALA	252	-10.959	28.015	47.800	
	ATOM	2049		TRP	253	-9.598	26.254	48.137	
5	ATOM	2050		TRP	253	-9.055	25.481	47.728	
3									
	ATOM	2051		TRP	253	-9.614	26.455	49.548	
	ATOM	2052		TRP	253	-8.852	25.813	49.992	
	ATOM	2053		TRP	253	-9.299	27.899	49.982	
	MOTA	2054	HB1		253	-10.049	28.560	49.546	
10	MOTA	2055	HB2		253	-8.304	28.158	49.620	
	ATOM	2056		TRP	253	-9.315	28.104	51.479	
	MOTA	2057	CD2		253	-10.480	28.518	52.218	
	MOTA	2058	CD1	TRP	253	-8.316	27.961	52.389	
	MOTA	2059	HD1	TRP	253	-7.297	27.656	52.152	
15	MOTA	2060	NE1 '	TRP	253	-8.777	28.255	53.650	
	MOTA	2061	HE1 '	TRP	253	-8.220	28.222	54.516	
	ATOM	2062	CE2	TRP	253	10.108	28.600	53.561	
	ATOM	2063	CE3 '		253	-11.754	28.804	51.810	
	ATOM	2064	HE3		253	-12.044	28.740	50.761	
20	ATOM	2065	CZ2		253	-11.007	28.970	54.518	
	ATOM	2066	HZ2		253	-10.720	29.035	55.568	
	ATOM	2067	CZ3		253	-12.655	29.178	52.782	
	ATOM	2068	HZ3		253	-13.679	29.415	52.495	
	ATOM	2069	CH2		253	-12.292	29.260	54.109	
25		2070	HH2		253	-13.034	29.559	54.849	
23	ATOM				253 253	-10.965	26.093	50.053	
	ATOM	2071		TRP					
	ATOM	2072		TRP	253	-11.957	26.168	49.329	
	ATOM	2073		TRP	254	-11.027	25.676	51.330	
20	ATOM	2074		TRP	254	-10.153	25.591	51.869	
30	ATOM	2075		TRP	254	-12.265	25.345	51.964	
	MOTA	2076		TRP	254	-12.709	26.302	52.238	
	MOTA	2077		TRP	254	-13.222	24.508	51.098	
	ATOM	2078		TRP	254	-12.845	23.513	50.862	
	ATOM	2079		TRP	254	-13.447	24.958	50.131	
35	ATOM	-2080		TRP	254	-14.568	24.270	51.736	
	MOTA	2081	CD2		254	-15.672		51.614	
	MOTA	2082	CD1		254	-15.005	23.233	52.508	
	MOTA	2083	HD1		254	-14.405	22.369	52.792	
	ATOM	2084	NE1	TRP	254	-16.315	23.440	52.874	
40	ATOM	2085	HE1	TRP	254	-16.884	22.809	53.455	
	ATOM	2086	CE2	TRP	254	-16.736	24.636	52.330	
	ATOM	2087	CE3	TRP	254	-15.785	26.373	50.959	
	ATOM	2088	HE3	TRP	254	-14.950	26.796	50.401	
	ATOM	2089	CZ2	TRP	254	-17.938	25.280	52.402	
45	ATOM	2090	HZ2	TRP	254	-18.773	24.859	52.962	
	ATOM	2091	CZ3		254 ·	-16.998	27.020	51.033	
	ATOM	2092	HZ3		254	-17.127	27.975	50.523	
	ATOM	2093	CH2	TRP	254	-18.055	26.483	51.741	
	ATOM	2094		TRP	254	-19.001	27.022	51.777	
50	ATOM	2095		TRP	254	-11.892	24.510	53.135	
	ATOM	2096		TRP	254	-10.746	24.081	53.258	
	ATOM	2097		TYR	255	-12.848	24.266	54.047	
	ATOM	2098		TYR	255	-13.793	24.665	53.954	
	ATOM	2099		TYR	255	-12.500	23.430	55.151	
55	ATOM	2100		TYR	255	-11.625	23.890	55.611	
22	ATOM	2101		TYR	255	-13.646	23.262	56.162	
	MOTA	2102		TYR	255	-14.489	22.816	55.633	
			HB2		255	-13.897	24.251	56.544	
	MOTA	2103							
۲0	ATOM	2104		TYR	255	-13.159	22.369	57.251	
60	ATOM	2105	CD1		255	-12.398	22.875	58.280	
	ATOM	2106	HD1		255	-12.151	23.937	58 297	
	MOTA	2107	CD2		255	-13.464	21.027	57.247	
	ATOM	2108	HD2		255	-14.067	20.614	56.439	
<i>-</i> -	ATOM	2109	CE1		255	-11.946	22.054	59.289	
65	ATOM	2110	HE1		255	-11.344	22.465	60.099	
	MOTA	2111	CE2		255	-13.016	20.203	58.250	
	ATOM	2112	HE2		255	-13.264	19.142	58.234	
	MOTA	2113	CZ	TYR	255	-12.256	20.715	59.273	

	ATOM	2114	OH	TYR	255	-11.794	19.871	60.306
	ATOM	2115	нн	TYR	255	-12.089	20.249	61.217
	ATOM	2116	C		255	-12.207		54.573
				TYR			22.088	
_	ATOM	2117	0	TYR	255	-11.103	21.563	54.704
5	MOTA	2118	N	LYS	256	-13.211	21.508	53.889
	ATOM	2119	HN	LYS	256	-14.108	22.005	53.789
	ATOM	2120	CA	LYS	256	-13.057	20.216	53.301
	ATOM	2121	HA	LYS	256	-12.623	19.534	54.032
	MOTA	2122	CB	LYS	256	-14.390	19.614	52.820
10	MOTA	2123	HB1	LYS	256	-15.152	19.558	53.597
	ATOM	2124.	HB2	LYS	256	-14.301	18.596	52,441
	ATOM	2125	CG	LYS	256	-15.045	20.400	51.683
	MOTA	2126	HG1	LYS	256	-14.357	20.653	50.876
	MOTA	2127	HG2	LYS	256	-15.472	21.351	52.002
15	MOTA	2128	CD	LYS	256	-16.195	19.651	51.008
	ATOM	2129	HD1	LYS	256	-16.765	20.263	50.308
	ATOM	2130						
				LYS	256	-16.934	19.261	51.708
	MOTA	2131	CE	LYS	256	-15.742	18.436	50.194
	MOTA	2132	HE1	LYS	256	-15.231	17.724	50.841
20	MOTA	2133	HE2	LYS	256	-15.060	18.751	49.404
	ATOM	2134	NZ	LYS	256	-16.914	17.774	49.580
	ATOM	2135		LYS	256	-16.602	16.958	49.034
	MOTA	2136	HZ2	LYS	256	-17.561	17.464	50.320
	MOTA	2137	HZ3	LYS	256	-17.398	18.437	48.958
25	ATOM	2138	С	LYS	256	-12,155	20.315	52.114
20								
	MOTA	2139	0	LYS	256	-11.245	19.503	51.957
	MOTA	2140	N	ALA	257	-12.376	21.329	51.252
	MOTA	2141	HN	ALA	257	-13.096	22.037	51.456
	MOTA	2142	CA	ALA	257	-11.599	21.410	50.048
30	ATOM	2143	HA	ALA	257	-11.784	20.515	49.454
50								
	ATOM	2144	CB	ALA	257	-11.938	22.647	49.200
	MOTA	2145	HB1	ALA	257	-11.318	22.654	48.303
	ATOM	2146	HB2	ALA	257	-12.989	22.617	48.914
	ATOM	2147	HB3	ALA	257	-11.746	23.550	49.780
35	ATOM	2148	С	ALA	257	-10.158	21.498	50.418
55			0.					
	ATOM	2149		ALA	257	-9.392	20.567	50.170
	MOTA	2150	N	ASP	258	-9.744	22.615	51.041
	MOTA	2151	HN	ASP	258	-10.388	23.400	51.215
	MOTA	2152	CA	ASP	258	-8.377	22.671	51.454
40	MOTA	2153	HA	ASP	258	-8.195	21.850	52.147
	ATOM	2154	СВ	ASP	258	-7.380	22.568	50.287
	MOTA	2155	HB1	ASP	258	-7.433	23.495	49.715
	ATOM	2156	HB2	ASP	258	-7.666	21.715	49.672
	ATOM	2157	CG	ASP	258	-5.989	22.372	50.871
45	ATOM	2158	ODI	ASP	258	-5.879	22.319	52.126
				ASP	258	-5.020	22.265	
	ATOM	2159						50.073
	MOTA	2160	С	ASP	258	-8.144	23.982	52.120
	MOTA	2161	0	ASP	258	-8.499	25.035	51.601
	ATOM	2162	N	PRO	259	-7.550	23.942	53.269
50	MOTA	2163	CA	PRO	259	-7.232	25.190	53.902
	ATOM	2164	HA	PRO	259	-7.984	25.946	53.675
	MOTA	2165	CD	PRO	259	-7.971	22.940	54.235
	ATOM	2166	HD1	PRO	259	-7.192	22.177	54.227
	ATOM	2167	HD2	PRO	259	-8.932	22.570	53.878
55	ATOM	2168	СВ	PRO	259	-7.168	24.904	55.399
-			HB1					
	ATOM	2169			259	-7.531	25.757	55.974
	ATOM	2170	HB2		259	-6.145	24.697	55.712
	ATOM	2171	CG	PRO	259	-8.074	23.675	55.580
	ATOM	2172	HG1	PRO	259	-9.100	23.976	55.794
60	ATOM	2173	HG2		259	-7.726	23.053	56.405
						-5.908	25.542	
	ATOM	2174	С	PRO	259			53.327
	ATOM	2175	0	PRO	259	-5.446	24.799	52.464
	ATOM	2176	N	ASN	260	-5.281	26.651	53.759
	ATOM	2177	HN	ASN	260	-5.719	27.281	54.445
65	ATOM	2178	CA	ASN	260	-3.980	26.920	53.225
						-4.106		
	ATOM	2179	AH CD	ASN	260		27.027	52.148
	ATOM	2180	CB	ASN	260	-3.353	28.235	53.743
	MOTA	2181	HB1	ASN	260	-3.969	29.085	53.449

	ATOM	2182	HB2	ASN	260	-2.354	28.363	53.326
	ATOM	2183	CG	ASN	260	-3.251	28.203	55.262
	ATOM	2184		ASN	260	-4.209	27.862	55.954
	ATOM	2185	ND2	ASN	260	-2.054	28.565	55.798
5	ATOM	2186	HD2	ASN	260	-1.278	28.844	55.182
	ATOM	2187		ASN	260	-1.925	28.559	56.820
	MOTA	2188	С	ASN	260	-3.126	25.747	53.586
	MOTA	2189	0	ASN	260	-2.726	25.572	54.737
	ATOM	2190	N	ASP	261	-2.842	24.884	52.593
10	MOTA	2191	HN	ASP	261	-3.151 _.	25.083	51.630
	MOTA	2192	CA	ASP	261	-2.111	23.690	52.879
	MOTA	2193	HA	ASP	261	-1.559	23.824	53.809
	MOTA	2194	CB	ASP	261	-2.994	22.434	53.010
1.5	MOTA	2195		ASP	261	-2.359	21.549	52.988
15	ATOM	2196		ASP	261	-3.699	22.407	52.179
	MOTA	2197	CG	ASP	261	-3.753	22.496	54.330
	ATOM	2198		ASP	261	-3.245	23.148	55.280
	MOTA ATOM	2199 2200	C	ASP ASP	261 261	-4.850 -1.161	21.882 23.420	54.408 51.762
20	MOTA	2200	0	ASP	261	-1.161	24.177	50.797
20	ATOM	2201	N	PHE	262	-0.424	24.177	51.918
	ATOM	2203	HN	PHE	262	-0.588	21.752	52.771
	ATOM	2204	CA	PHE	262	0.566	21.814	51.008
	ATOM	2205	HA	PHE	262	0.703	22.623	50.290
25	MOTA	2206	СВ	PHE	262	1.823	21.407	51.796
	ATOM	2207	HB1	PHE	262	1.645	20.525	52.411
	ATOM	2208	HB2	PHE	262	2.157	22.202	52.462
	ATOM	2209	CG	PHE	262	2.957	21.088	50.893
	ATOM	2210	CD1	PHE	262	3.827	22.077	50.497
30	MOTA	2211	HD1	PHE	262	3.675	23.100	50.844
	MOTA	2212	CD2	PHE	262	3.157	19.800	50.461
•	MOTA	2213	HD2	PHE	262	2.477	19.009	50.776
	ATOM	2214	CE1	PHE	262	4.885	21.789	49.670
	MOTA	2215	HE1	PHE	262	5.569	22.579	49.359
35	ATOM	2216	CE2	PHE	262	4.212	19.509	49.634
	ATOM	2217	HE2	PHE	262	4.363	18.485	49.290
	ATOM	2218	CZ	PHE	262	5.078	20.499	49.236
	ATOM	2219	HZ C	PHE	262 262	5.915 -0.039	20.262 20.576	48.579 50.420
40	ATOM ATOM	2220 2221	0	PHE PHE	262	-0.720	19.836	51.128
70	ATOM	2222	N	THR	263	0.152	20.313	49.109
	ATOM	2223	HN	THR	263	0.725	20.929	48.514
	ATOM	2224	CA	THR	263	-0.479	19.134	48.583
	ATOM	2225	HA	THR	263	-0.713	18.443	49.392
45	ATOM	2226	CB	THR	263	-1.753	19.421	47.846
	ATOM	2227	HB	THR	263	-1.533	20.090	47.014
	ATOM	2228	OG1	THR	263	-2.686	20.055	48.709
	ATOM	2229	HG1	THR	263	-2.364	21.009	48.923
	ATOM	2230	CG2	THR	263	-2.331	18.096	47.324
50	ATOM	2231	HG2	THR	263	-3.259	18.290	46.786
	ATOM	2232	HG2	THR	263	-1.614	17.625	46.652
	ATOM	2233	HG2	THR	263	-2.531	17.430	48.164
	ATOM	2234	,C	THR	263	0.435	18.451	47.613
	MOTA	2235	0	THR	263	1.217	19.096	46.917
55	ATOM	.2236	N	TYR	264	0.361	17.101	47.562
	ATOM	2237	HN	TYR	264	-0.251	16.601	48.221
	ATOM	2238	CA	TYR	264	1.128	16.359	46.603
	MOTA	2239	HA	TYR	264 264	1.472 2.376	17.073 15.650	45.855 47.166
60	MOTA	2240	CB	TYR	264	2.376	16.340	
JU	MOTA MOTA	2241 2242	HB1 HB2	TYR TYR	264	2.999	15.248	47.746 46.363
	ATOM	2242	CG	TYR	264	1.993	14.520	48.058
	ATOM	2244	CD1	TYR	264	1.649	14.735	49.373
	MOTA	2245	HD1	TYR	264	1.647	15.748	49.773
65	ATOM	2246	CD2	TYR	264	1.998	13.233	47.571
	ATOM	2247	HD2	TYR	264	2.276	13.052	46.532
	ATOM	2248	CE1	TYR	264	1.308	13.678	50.184
	MOTA	2249	HE1	TYR	264	1.034	13.856	51.224

- 74 -

					-				
	MOTA	2250	CE2	TYR	264		1.658	12:173	48.377
	ATOM	2251	HE2	TYR	264		1.664	11.159	47.977
	MOTA	2252	CZ	TYR	264		1.311	12.395	49.686
	ATOM	2253	OH	TYR	264		0.963	11.309	50.515
5	MOTA	2254	HH	TYR	264		0.276	11.618	51.217
-									
	MOTA	2255	С	TYR	264		0.210	15.332	46.020
	ATOM	2256	0	TYR	264		-0.838	15.027	46.587
	ATOM	2257	N	GLU	265		0.584	14.773	44.852
	ATOM	2258	HN	GLU	265			14.994	44.453
10									
10	MOTA	2259	CA	GLU	265		-0.291	13.872	44.161
	ATOM	2260	HA	GLU	265		-1.208	13.769	44.741
	ATOM	2261	CB	GLU	265		-0.621	14.429	42.767
	ATOM	2262	HB1		265		0.233	14.234	
									42.120
	ATOM	2263	HB2	GLU	265		-0.800	15.500	42.871
15	ATOM	2264	CG	GLU	265		-1.844	13.843	42.070
	MOTA	2265	HG1	GLU	265		-2.611	13.771	42.841
	ATOM	2266	HG2		265		-1.526		
								12.872	41.691
	MOTA	2267	CD	GLU	265		-2.196	14.831	40.966
	ATOM	2268	OE1	GLU	265		-1.626	15.954	40.985
20	MOTA	2269		GLU	265		-3.036	14.489	40.095
	ATOM	2271	C	GLU	265		0.397	12.546	44.028
	ATOM	2272	0	GLU	265		1.598	12.434	44.271
	MOTA	2273	N	ARG	266		-0.365	11.493	43.665
	ATOM	2274	HN	ARG	266		-1.369	11.637	43.486
25									
25	ATOM	2275	CA	ARG	266		0.189	10.175	43.523
	MOTA	2276	HA	ARG	266.		0.892	10.012	44.340
	ATOM	2277	CB	ARG.	´266		-0.855	9.046	43.540
	ATOM	2278		ARG	266		-0.451	8.069	43.275
	ATOM	2279		ARG	266		-1.682	9.202	42.848
30	MOTA	2280	CG	ARG	266		-1.517	8.839	44.901
	ATOM	2281	HG1	ARG	266		-2.192	9.648	45.183
	•ATOM	2282		ARG	266		-0.805	8.762	45.723
	MOTA	2283	CD	ARG	266		-2.361	7.566	44.981
	MOTA	2284	HD1	ARG	266		-1.734	6.737	44.651
35.	ATOM	2285	HD2	ARG	266	-	-3.220	7.702	44.324
	ATOM	2286	NE	ARG	266		-2.783	7.398	46.400
	ATOM	2287	HE	ARG	266		-2.869	8.221	47.013
	MOTA	2288	CZ	ARG	266		-3.055	6.152	46.886
	ATOM	2289	NH1	ARG	266		-2.958	5.065	46.067
40	MOTA	2290		ARG	266		-3.163	4.124	46.433
-10									
	ATOM	2291		ARG	266		-2.679	5.184	45.083
	MOTA	2292	NH2	ARG	266		-3.413	5.992	48.193
	MOTA	2293	HH2	ARG	266		-3.619	5.052	48.560
	ATOM	2294	HH2	ARG	266		-3.478	6.812	48.813
45			_						
77	ATOM	2295	C	ARG	266		0.881	10.104	42.208
	MOTA	2296	0	ARG	266		0.463	10.727	41.235
	MOTA	2297	N	ARG	267		1.979	9.329	42.154
	MOTA	2298	HN	ARG	267		2.288	8.803	42.984
	ATOM	2299	CA	ARG	267		2.710	9.246	40.932
50									
50	ATOM	2300	HA	ARG	267		2.245	9.909	40.202
	MOTA	2301	CB	ARG	267		4.190	9.606	41.128
	ATOM	2302	HB1	ARG	267		4.777	9.522	40.213
	MOTA	2303		ARG	267		4.693	8.969	41.857
	ATOM	2304	CG	ARG	267		4.400	11.039	41.622
55	ATOM	2305	HG1	ARG	267		3.662	11.363	42.356
	ATOM	2306	HG2	ARG	267		4.354	11.787	40.830
	ATOM	2307	CD	ARG	267		5.754	11.265	42.299
	MOTA	2308		ARG	267		5.861	10.534	43.100
	ATOM	2309	HD2	ARG	267		5.772	12.279	42.697
60	MOTA	2310	NE	ARG	267		6.821	11.084	41.278
	MOTA	2311	HE	ARG	267		6.571	10.906	40.294
						•			
	ATOM	2312	CZ	ARG	267		8.133	11.155	41.650
	MOTA	2313			267		8.459	11.363	42.958
	MOTA	2314	HH1	ARG	267		9.448	11.417	43.241
65	ATOM	2315	нн1		267		7.716	11.466	43.664
	MOTA	2316		ARG	267		9.119	11.022	40.715
	MOTA	2317		ARG	267		10.108	11.076	40.998
	ATOM	2318	HH2	ARG	267		8.874	10.866	39.727

	MOTA	2319	С	ARG	267	. 2.670	7.832	40.447
	ATOM	2320	0	ARG	267	3.493	7.010	40.846
	ATOM	2321	N	LYS	268	1.696	7.504	39.573
	ATOM	2322	HN	LYS	268	0.934	8.168	39.374
5	MOTA	2323	CA	LYS	268	1.725	6.226	38.922
-	ATOM	2324	HA	LYS	268	2.350		39.457
	ATOM	2325					5.512 [·]	
			CB	LYS	268	0.324	5.630	38.681
	ATOM	2326	HB1		268	-0.100	6.107	37.798
	MOTA	2327	HB2		268	-0.285	5.831	39.561
10	MOTA	2328	CG	LYS	268	0.29 <u>8</u>	4.114	38.442
	MOTA	2329	HG1	LYS	268	-0.741	3.808	38.327
	MOTA	2330	HG2	LYS	268	0.752	3.628	39.305
	MOTA	2331	CD	LYS	268	1.053	3.636	37.200
	ATOM	2332	HD1	LYS	268	2.115	3.884	37.210
15	MOTA	2333	HD2		268	0.677	4.058	36.268
	ATOM	2334	CE	LYS	268	1.004	2.121	36.994
	ATOM	2335	HE1	LYS	268	-0.029	1.790	36.904
	ATOM	2336	HE2		268	1.465	1.614	37.843
20	ATOM	2337	NZ	LYS	268	1.735	1.753	35.761
20	ATOM	2338	HZ1	LYS	268	1.697	0.732	35.630
	MOTA	2339	HZ2		268	1.301	2.218	34.951
	ATOM	2340	HZ3		268	2.718	2.052	35.841
	MOTA	2341	C .	LYS	268	2.286	6.620	37.609
	ATOM	2342	0	LYS	268	1.912	6.148	36.538
25	ATOM	2343	N	GLU	269	3.252	7.535	37.708
	ATOM	2344	HN	GLU	269	3.548	7.838	38.648
	ATOM	2345	CA.	GLU	269	3.888	8.108	36.585
	ATOM	2346	HA	GLU	269	3.128	8.660	36.033
	ATOM	2347	СВ	GLU	269	5.011	9.051	37.041
30	ATOM	2348	HB1		269	4.624	9.960	37.503
50	ATOM	2349	HB2	GLU	269	5.645	9.369	36.214
	ATOM	2350	CG	GLU	269	5.932	8.398	38.071
	ATOM	2351	HG1		269	6.587	7.698	37.551
25	ATOM	2352	HG2		269	5.315	7.874	38.801
35	ATOM	_2353	CD	GLU	269	6.747	9.491	38.748
	ATOM	2354	OE1		269	6.550	10.684	38.397
	MOTA	2355	OE2	GLU	269	7.582	9.140	39.624
	ATOM	2357	С	GLU	269	4.445	6.994	35.785
	ATOM	2358	0	GLU	269	4.595	5.872	36.266
40	MOTA	2359	N	SER	270	4.748	7.289	34.511
	ATOM	2360	HN	SER	270	4.513	8.219	34.136
	ATOM	2361	CA	SER	270	5.391	6.332	33.670
	ATOM	2362	HA	SER	270	4.828	5.409	33.807
	ATOM	2363	CB	SER	270	5.425	6.707	32.177
45	ATOM	2364	HB1	SER	270	4.414	6.802	31.783
	ATOM	2365		SER	270	5.947	5.941	31.603
	ATOM	2366	OG	SER	270	6.097	7.942	31.989
			HG			7.063	7.865	
	ATOM	2367		SER	270			32.339
50	ATOM	2368	С	SER	270	6.788	6.252	34.170
50	ATOM	2369	0	SER	270	7.575	5.432	33.704
	ATOM	2370	N	ALA	271	7.150	7.171	35.098
	MOTA	2371	HN	ALA	271	6.456	7.880	35.376
	MOTA	2372	CA	ALA	271	8.442	7.213	35.715
	MOTA	2373	HA	ALA	271	9.145	7.337	34.891
55	MOTA	2374	CB	ALA	271	8.599	8.254	36.825
	MOTA	2375	HB1	ALA	271	9.610	8.207	37.228
	MOTA	2376	HB2	ALA	271	8.416	9.249	36.419
	ATOM	2377		ALA	271	7.882	8.049	37.620
	MOTA	2378	С	ALA	271	8.575	5.925	36.412
60	ATOM	2379	ō	ALA	271	9.693	5.491	36.685
	ATOM	2380	N	ALA	272	7.405	5.344	36.761
	ATOM	2381	HN	ALA	272	6.531	5.865	36.603
	ATOM	2382	CA	ALA	272	7.326	4.044	37.337
	ATOM	2383	HA	ALA	272	7.642	4.176	38.372
65	ATOM	2384	CB	ALA	272	5.925	3.420	37.214
05		2385		ALA	272	5.927	2.430	37.670
	ATOM				272	5.199		
	ATOM	2386		ALA			4.053	37.723
	ATOM	2387	Can	ALA	272	5.656	3.333	36.161

	MOTA	2388	С	ALA	272	8,258	3.213	36.532
	ATOM	2389	0	ALA	272	9.072	2.473	37.074
	ATOM	2390	N	TYR	273	8.199	3.402	35.202
	ATOM	2391	HN	TYR	273	7.478	4.034	34.825
5	ATOM				273			
3		2392	CA	TYR		9.094	2.763	34.289
	MOTA	2393	HA	TYR	273	9.209	1.748	34.668
	MOTA	2394	CB	TYR	273	8.643	2.876	32.821
	MOTA	2395	HB1	TYR	273	9.331	2.333	32.173
	ATOM	2396	HB2	TYR	273	8.623	3.922	32.513
10	ATOM	2397	ÇG	TYR	273	7.278	2.304	32.656
	ATOM	2398	CD1	TYR	273	6.173	3.097	32.864
	MOTA	2399	HD1	TYR	273	6.306	4.140	33.152
	ATOM	2400	CD2	TYR	273	7.095	0.988	32.298
	ATOM	2401	HD2	TYR	273	7.961	0.346	32.134
15	ATOM	2402	CE1	TYR	273	4.904	2.592	
כו								32.713
	MOTA	2403	HE1	TYR	273	4.038	3.232	32.878
	MOTA	2404	CE2	TYR	273	5.827	0.476	32.144
	MOTA	2405	HE2		273	5.692	-0.565	31.856
	ATOM	2406	CZ	TYR	273	4.730	1.278	32.353
20	MOTA	2407	OH	TYR	273	3.429	0.754	32.197
	ATOM	2408	HH	TYR	273	2.736	1.500	32.352
	MOTA	2409	С	TYR	273	10.354	3.569	34.349
	ATOM	2410	O	TYR	273	10.407	4.679	33.822
	ATOM	2411	N	ILE	274	11.407	3.044	35.002
25	ATOM	2412	HN	ILE	274	11.340	2.124	35.459
25								
	ATOM	2413	CA	ILE	274	12.624	3.798	35.044
	ATOM	2414	HA	ILE	274	12.412	4.791	34.648
	MOTA	2415		ILE	274	13.248	3.924	36.406
	ATOM	2416	HB	ILE	274	13.303	2.917	36.820
30	ATOM	2417	CG2	ILE	274	14.642	4.542	36.198
	ATOM	2418	HG2	ILE	274	15.139	4.654	37.162
	MOTA	2419	HG2	ILE	274	15.237	3.890	35.558
	ATOM	2420	HG2	ILE	274	14.541	5.519	35.726
	MOTA	2421.	CG1	ILE	274	12.374	4.755	37.358
35	ATOM	2422	HG1	ILE	274	12.729	4.732	38.388
-	ATOM	2423	HG1	ILE	274	11.340	4.412	37.392
	ATOM	2424	CD1	ILE	274	12.311	6.232	36.971
		2425			274	11.679		
	ATOM		HD1	ILE			6.767	37.680
40	ATOM	2426	HD1	ILE	274	13.315	6.656	36.989
40	ATOM	2427	HD1	ILE	274	11.894	6.328	35.969
	ATOM	2428	C	ILE	274	13.625	3.087	34.206
	ATOM	2429	0	ILE	274	13.749	1.865	34.243
	ATOM	2430	N	PRO	275	14.308	3.853	33.410
	ATOM	2431	CA	PRO	275	15.358	3.271	32.630
45	ATOM	2432	HА	PRO	275	15.019	2.296	32.281
	ATOM	2433	CD	PRO	275	13.627	4.919	32.691
	ATOM	2434	HD1	PRO	275	13.856	5.834	33.236
	ATOM	2435	HD2	PRO	275	12.569	4.660	32.716
	ATOM	2436	CB	PRO	275	15.576	4.204	31.441
50	ATOM	2437	HB1	PRO	275	15.854	3.642	30.550
50			HB2	PRO		16.373		
	ATOM	2438			275		4.919	31.648
	ATOM	2439	CG	PRO	275	14.216	4.902	31.272
	ATOM	2440	HG1	PRO	275	13.678	4.265	30.570
	MOTA	2441	HG2	PRO	275	14.472	5.887	30.880
55	MOTA	2442	С	PRO	275	16.561	3.135	33.500
	ATOM	2443	0	PRO	275	16.674	3.878	34.473
	ATOM	2444	N	PHE	276	17.462	2.188	33.190
	ATOM	2445	HN	PHE	276	17.302	1.551	32.396
	ATOM	2446	CA	PHE	276	18.649	2.082	33.981
60	ATOM	2447	HA	PHE	276	18.748	3.018	34.529
	ATOM	2448	СВ	PHE	276	18.613	0.964	35.044
	ATOM	2449	HB1	PHE	276	17.772	1.094	35.726
			HB2	PHE	276			
	MOTA	2450				19.524	0.957	35.641
CE	ATOM	2451	CG	PHE	276	18.477	-0.377	34.412
65	ATOM	2452	CD1	PHE	276	17.278	-0.790	33.879
	ATOM	2453	HD1	PHE	276	16.417	-0.122	33.908
	MOTA	2454	CD2	PHE	276	19.548	-1.240	34.388
	ATOM	2455	HD2	PHE	276	20.499	-0.933	34.823
								•

							•	
	ATOM	2456	CE1	PHE	276	17.152	-2.035	33.309
	ATOM	2457		PHE	276	16.199		
							-2.347	32.884
	ATOM	2458		PHE	276	19.428	-2.485	33.821
	MOTA	2459	HE2	PHE	276	20.285	-3.158	33.801
5	ATOM	2460	CZ	PHE	276	18.231	-2.885	33.278
	ATOM	2461	HZ	PHE	276	18.137	-3.872	32.826
	ATOM	2462		PHE	276	19.780		
							1.866	33.036
	MOTA	2463		PHE	276	19.649	2.139	31.844
	ATOM	2464	N	GLY	277	20.933	1.399	33.552
10	MOTA	2465	HN	GLY	277	. 20.993	1.171	34.555
	MOTA	2466	CA	GLY	277	22.078	1.219	32.707
	ATOM	2467		GLY	277	22.869	0.759	
								33.300
	MOTA	2468	HA2		277	22.389	2.198	32.342
	ATOM	2469		GLY	277	21.685	0.333	31.573
15	MOTA	2470	0	GLY	277	21.690	0.754	30.417
	ATOM	2471	N	GLU	278	21.332	-0.927	31.877
	ATOM	2472		GLU	278	21.354	-1.255	32.852
	ATOM	2473		GLU				
					278	20.924	-1.806	30.824
	ATOM	2474		GLU	278	21.695	-1.768	30.054
20	MOTA	2475		GLU	278	20.707	-3.257	31.283
	MOTA	2476	HB1	GLU	278	19.940	-3.358	32.051
	ATOM	2477	HB2		278	21.600	-3.716	31.707
	ATOM	2478		GLU	278	20.271	-4.193	30.154
0.5	ATOM	2479		GLU	278	21.078	-4.233	29.422
25	ATOM	2480	HG2	GLU	278	19.363	-3.784	29.711
	MOTA	2481	CD	GLU	278	20.013	-5.565	30.757
	MOTA	2482	OE1	GLU	278	20.174	-5.708	31.998
	ATOM	2483		GLU	278	19.644	-6.489	29.985
	ATOM	2485		GLU	278	19.614		
20							-1.308	30.315
30	ATOM	2486		GLU	278	19.391	-1.243	29.106
	MOTA	2487	N	GLY	279	18.714	-0.913	31.236
	ATOM	2488	HN	GLY	279	18.958	-0.916	32.237
	MOTA	2489	CA	GLY	279	17.415	-0.491	30.809
	ATOM	2490		GLY	279	17.593	0.375	30.172
35	ATOM	2491		GLY				
"					279	16.877	-0.251	31.727
	MOTA	2492		GLY	279	16.847	-1.659	30.077
	ATOM	2493	0	GLY	279	17.294	-2.791	30.256
	MOTA	2494	N	ASP	280	15.838	-1.416	29.222
	ATOM	2495	HN	ASP	280	15.446	-2.191	28.668
40	MOTA	2496		ASP	280	15.300	-0.101	29.069
	ATOM	2497		ASP	280			
						16.143	0.583	28.983
	ATOM	2498		ASP	280	14.374	0.016	27.846
	ATOM	2499	HB1	ASP	280	13.494	-0.606	28.011
	ATOM	2500	HB2	ASP	280	14.914	-0.324	26.963
45	MOTA	2501	CG	ASP	280	13.963	1.472	27.681
	ATOM	2502	OD1		280	14.347	2.304	28.546
			OD2			13.253		
	ATOM	2503			280		1.772	26.683
	ATOM	2504		ASP	280	14.479	0.184	30.284
	ATOM	2505		ASP	280	14.579	1.251	30.884
50	ATOM	2506	N	PHE	281	13.646	-0.795	30.682
	ATOM	2507	HN	PHE	281	13.659	-1.694	30.179
	ATOM	2508		PHE	281	12.741	-0.630	31.782
	ATOM	2509		PHE	281	12.875		
							0.368	32.198
	ATOM	2510		PHE	281	11.293	-0.827	31.297
55	MOTA	2511	HB1	PHE	281	11.206	-1.698	30.647
	ATOM	2512	HB2	PHE	281	10.941	0.036	30.734
	ATOM	2513	CG	PHE	281	10.361	-1.027	32.436
	ATOM	2514	CD1		281	9.885	0.033	33.169
د ٥	ATOM	2515	HD1		281	10.200	1.048	32.926
60	ATOM	2516	CD2		281	9.949	-2.302	32.748
	ATOM	2517	HD2	PHE	281	10.319	-3.145	32.165
	MOTA	2518	CE1	PHE	281	9.013	-0.183	34.208
	ATOM	2519	HE1		281	8.637	0.658	34.788
	ATOM	2520	CE2		281	9.078	-2.525	33.785
65								
00	ATOM	2521	HE2		281	8.757	-3.539	34.025
	MOTA	2522		PHE	281	8.615	-1.461	34.516
	MOTA	2523		PHE	281	7.928	-1.631	35.346
	MOTA	2524	С	PHE	281	13.051	-1.666	32.816

	MOTA	2525	0	PHE	281	12.644	-2.819	32.681
	ATOM	2526	N	TYR	282	13.810	-1.295	33.871
	ATOM	2527	HN	TYR	282	14.179	-0.338	33.954
	ATOM	2528	CA	TYR	282	14.079	-2.287	34.870
5	ATOM	2529	HA	TYR	282	14.418	-3.216	34.411
_	ATOM	2530	СВ	TYR	282	15.293	-1.981	35.778
	MOTA	2531	HB1	TYR	282	16.230	-1.942	35.223
	ATOM	2532	HB2		282	15.431	-2.731	36.557
				TYR				
	MOTA	2533	CG	TYR	282	15.167	-0.672	36.477
10	MOTA	2534		TYR	282	15.505	0.501	35.847
	MOTA	2535	HD1	TYR	282	15.862	0.477	34.817
	MOTA	2536	CD2	TYR	282	14.742	-0.622	37.780
	MOTA	2537	HD2	TYR	282	14.488	-1.547	38.298
	ATOM	2538	CE1	TYR	282	15.397	1.706	36.502
15	ATOM	2539	HE1	TYR	282	15.660	2.631	35.988
13	ATOM		CE2	TYR	282	14.631	0.575	38.441
				TYR		14.283	0.597	39.474
	MOTA	2541	HE2		282			
	ATOM	2542	CZ	TYR	282	14.958	1.744	37.803
	MOTA	2543	OH	TYR	282	14.843	2.972	38.488
20	ATOM	2544	НН	TYR	282	15.739	3.478	38.440
	ATOM	2545	С	TYR	282	12.844	-2.583	35.672
	ATOM	2546	0	TYR	282	12.471	-3.748	35.808
	ATOM	2547	N	TYR	283	12.148	-1.559	36.218
	ATOM	2548	HN	TYR	283	12.481	-0.586	36.153
25	MOTA	2549	CA	TYR	283	10.918	-1.889	36.894
23					283	10.316	-2.679	36.357
	ATOM	2550	HA	TYR				
	ATOM	2551	CB	TYR	283	11.029	-2.502	38.313
	MOTA	2552	HB1	TYR	283	11.706	-3.355	38.358
	MOTA	2553		TYR	283.	10.076	-2.862	38.698
30	MOTA	2554	CG	TYR	283	11.533	-1.535	39.329
	ATOM	2555	CD1	TYR	283	10.709	-0.556	39.836
	MOTA	2556	HD1	TYR	283	9.678	-0.487	39.488
	ATOM	2557	CD2	TYR	283	12.828	-1.607	39.784
	ATOM	2558	HD2	TYR	283	13.494	-2.377	39.395
35	ATOM	2559		TYR	283	11.168	0.336	40.777
33	ATOM	2560		TYR	283	10.505	1.108	41.166
		2561	CE2	TYR	283	13.295	-0.719	40.725
	ATOM					14.325	-0.788	41.076
	MOTA	2562	HE2	TYR	283			
40	ATOM	2563	CZ	TYR	283	12.464	0.254	
40	ATOM	2564	OH	TYR	283	12.941	1.166	42.189
	MOTA	2565	нн	TYR	283	13.805	1.609	41.846
	MOTA	2566	С	TYR	283	10.032	-0.688	36.969
	MOTA	2567	0	TYR	283	10.398	0.392	36.511
	ATOM	2568	N	HIS	284	8.817	-0.883	37.540
45	ATOM	2569	HN	HIS	284	8.615	-1.813	37.932
	ATOM	2570	CA	HIS	284	7.789	0.121	37.635
	ATOM	2571	HA	HIS	284	8.024	0.930	36.944
	MOTA	2572		HIS		6.216	-2.488	35.948
				HIS			-3.176	36.660
50	ATOM	2573			284	6.497		
50	MOTA	2574	CG	HIS	284	6.112	-1.124	36.119
	ATOM	2575		HIS	284	5.564	-1.651	33.995
	MOTA	2576		HIS	284	5.274	-1.572	33.009
	MOTA	2577		HIS	284	5.715	-0.630	34.916
	MOTA	2578	HD2	HIS	284	5.539	0.425	34.707
55	MOTA	2579	CE1	HIS	284	5.876	-2.748	34.660
	ATOM	2580		HIS	284	5.861	-3.748	34.225
	ATOM	2581	СВ	HIS	284		-0.420	37.419
	ATOM	2582		HIS	284	5.676	0.424	37.461
	MOTA	2583		HIS	284	6.154	-1.135	38.214
60			С		284	7.749	0.638	39.040
00	MOTA	2584		HIS				
	ATOM	2585	0	HIS	284	8.007	-0.096	39.993
	MOTA	2586	N	ALA	285	7.424	1.937	39.207
	MOTA	2587	HN	ALA	285	7.259	2.541	38.390
	MOTA	2588	CA	ALA	285	7.310	2.469	40.534
65	MOTA	2589	HA	ALA	285	7.116	1.651	41.228
	MOTA	2590	CB	ALA	285	8.568	3.217	41.007
	ATOM	2591		ALA	285	8.410	3.592	42.018
	ATOM	2592		ALA	285	9.420	2.537	41.001

	MOTA	2593	HB3	ALA	285	8.767	4.054	40.337
	MOTA	2594	С	ALA	285	6.179	3.450	40.570
	MOTA	2595	0	ALA	285	6.114	4.387	39.774
	MOTA	2596	N	ALA	286	5.240	3.250	41.512
5	MOTA	2597	HN	ALA	286	5.293	2.426	42.127
	MOTA	2598	CA	ALA	286	4.165	4.186	41.658
	ATOM	2599	HA	ALA	286	4.386	5.003	40.971
	MOTA	2600	CB	ALA	286	2.776	3.583	41.385
•	MOTA	2601		ALA	286	2.014	4.351	41.516
10	MOTA	2602		ALA	286	2,738	3.204	40.364
	MOTA	2603		ALA	286	2.591	2.766	42.083
	MOTA	2604	С	ALA	286	4.186	4.609	43.083
	MOTA	2605	0	ALA	286	4.231	3.771	43.983
	ATOM	2606	N	ILE	287	4.182	5.928	43.340
15	ATOM	2607	HN	ILE	287	4.190	6.628	42.584
	MOTA	2608	CA	ILE	287	4.165	6.306	44.716
	MOTA	2609	HA	ILE	287	4.350	5.406	45.303
	MOTA	2610	CB	ILE	287	5.221	7.292	45.121
20	MOTA	2611	HB	ILE	287	6.199	6.912	44.827
20	ATOM	2612	CG2	ILE	287	4.954	8.635	44.421
	ATOM	2613	HG2	ILE	287	5.718	9.355	44.712
	ATOM	2614	HG2	ILE	287	4.981	8.494	43.341
	ATOM	2615	HG2	ILE	287	3.973	9.009	44.714
25	ATOM	2616	CG1	ILE	287	5.268	7.370	46.657
25	ATOM	2617	HG1	ILE	287	5.211 4.419	6.356	47.054
	ATOM	2618	HG1	ILE	287	6.536	7.962	46.998 47.203
	ATOM ATOM	2619 2620	HD1	ILE	287 287	6.495	8.015 8.033	47.203
	ATOM	2621	HD1	ILE	287	7.405	7.439	46.882
30	ATOM	2622	HD1	ILE	287	6.617	9.034	46.825
20	ATOM	2623	C	ILE	287	2.824	6.878	45.004
	ATOM	2624	ŏ	ILE	287	2.349	7.780	
	ATOM	2625	N	PHE	288	2.166	6.336	46.041
	ATOM	2626	HN	PHE	288	2.619	5.606	46.610
35	ATOM	2627	CA	·PHE	288	0.844	6.766	46.360
50	ATOM	2628	HA	PHE	288	0.314	7.005	45.438
	MOTA	2629	СВ	PHE	288	0.022	5.701	47.109
	ATOM	2630	HB1		288	-0.024	4.814	46.477
	ATOM	2631	HB2		288	-0.972	6.113	47.284
40	ATOM	2632	CG	PHE	288	0.719	5.411	48.394
	ATOM	2633	CD1	PHE	288	0.473	6.170	49.516
	ATOM	2634	HD1	PHE	288	-0.239	6.993	49.465
	ATOM	2635	CD2	PHE	288	1.622	4.377	48.476
	MOTA	2636	HD2	PHE	288	1.825	3.768	47.596
45	ATOM	2637	CE1	PHE	288	1.118	5.902	50.700
	ATOM	2638	HE1	PHE	288	0.915	6.510	51.581
	ATOM	2639	CE2		288	2.271	4.104	49.658
	ATOM	2640	HE2		288	2.985	3.282	49.710
	MOTA	2641	CZ	PHE	288	2.019	4.867	50.772
50	ATOM	2642	HZ	PHE	288	2.532	4.652	51.710
	MOTA	2643	С	PHE	288	0.919	7.975	47.226
	MOTA	2644	0	PHE	288	1.985	8.365	47.700
	ATOM	2645	N	GLY	289	-0.246	8.614	47.413
	ATOM	2646	HN	GLY	289	-1.081	8.270	46.918
55	MOTA	2647	CA	GLY	289	-0.380	9.751	48.268
	MOTA	2648	HA1		289	-0.452	10.594	47.581
	MOTA	2649	HA2		289	0.528	9.741	48.870
	MOTA	2650	C	GLY	289	-1.627	9.482	49.039
۲۸ .	MOTA	2651	0	GLY	289	-2.633 -1.633	9.061	48.474 50.352
60	ATOM	2652	N	GLY	290	-1.623	9.766	
	ATOM	2653	HN	GLY	290	-0.809	10.219	50.793
	MOTA	2654	CA	GLY	290	-2.781 -2.987	9.422 8.367	51.122 50.938
	MOTA	2655	HA1 HA2		290	-2.987 -3.596	10.058	50.777
65	MOTA	2656 2657	HAZ C	GLY GLY	290 290	-2.450	9.676	52.550
UJ.	MOTA MOTA	2658	0	GLY	290 290	-3.336	9.797	53.394
	MOTA	2659	N	THR	291	-1.144	9.740	52.861
	MOTA	2660	HN	THR	291	-0.430	9.564	52.140
	.11.011	2000	****			5.100		

	ATOM	2661	CA	THR	. 291	-0.752	10.053	54.200
•	MOTA	2662	HA	THR	291	-1.670	10.259	54.751
	ATOM	2663	СВ	THR	291	0.034	8.963	
								54.865
_	MOTA	2664	HB	THR	291	-0.531	8.034	54.798
5	ATOM	2665	OG1	THR	291	0.239	9.270	56.236
	MOTA	2666	HG1	THR	291	0.690	10.193	56.318
	ATOM	2667	CG2	THR	291	1.384	8.819	54.141
	MOTA	2668		THR	291	1.968	8.029	54.615
_	MOTA	2669	HG2		291	1.211	8.565	53.096
10	MOTA	2670	HG2	THR	291	1.931	9.760	54.201
	MOTA	2671	С	THR	291	0.135	11.249	54.113
	MOTA	2672	ō	THR	291	0.847	11.440	53.129
	MOTA	2673	N	PRO	292	0.076	12.091	55.104
	ATOM	2674	CA	PRO	292	0.963	13.219	55.127
15	MOTA	2675	HA	PRO	292	0.975	13.613	54.111
	MOTA	2676	CD	PRO	292	-1.165	12.363	55.802
	ATOM	2677	HD1					
					292	-1.532	11.470	56.306
	MOTA	2678	HD2	PRO	292	-1.937	12.699	55.109
	ATOM	2679	CB	PRO	292	0.343	14.234	56.091
20	MOTA	2680	HB1	PRO	292	-0.012	15.042	55.452
	MOTA	2681	HB2	PRO	292	1.160	14.526	56.751
	MOTA	2682	CG	PRO	292	-0.784	13.464	56.803
	MOTA	2683	HG1	PRO	292	-1.627	14.120	57.018
	MOTA	2684	HG2	PRO	292	-0.433	13.045	57.746
25	ATOM	2685	С	PRO	292	2.291	12.689	55.553
	ATOM	2686	ō	PRO		2.312	11.692	56.272
					292			
	MOTA	2687	N	THR	293.	3.410	13.304	55.125
	MOTA	2688	HN	THR	293	3.372	14.144	54.530
	ATOM	2689	CA	THR	293	4.657	12.730	55.540
30	ATOM	2690	HA	THR	293	4.615	12.530	56.611
50								
	MOTA	2691	CB	THR	293	4.965	11.443	54.826
	ATOM	2692	HB	THR	293	4.086	10.800	54.875
	MOTA	2693	OG1	THR	293	6.043	10.762	55.450
	MOTA	2694	HG1	THR	293	5.950	10.837	56.473
35	ATOM	2695	CG2		293	5.310	11.768	53.361
"			HG2					
	ATOM	2696			293	5.537	10.845	52.828
	ATOM	2697	HG2		293	4.462	12.261	52.888
	MOTA	2698	HG2	THR	293	6.178	12.427	53.330
	ATOM	2699	С	THR	293	5.760	13.698	55.243
40	ATOM	2700	0	THR	293	5.512	14.853	54.898
	ATOM	2701	N	GLN	294		13.232	55.407
						7.018		
	MOTA	2702	HN	GLN	294	7.145	12.267	55.745
	ATOM	2703	CA	GLN	294	8.185	14.020	55.132
	ATOM	2704	HA	GLN	294	7.953	15.029	55.474
45	ATOM	2705	CB	GLN	294	9.463	13.495	55.808
	MOTA	2706		GLN	294	9.376	13.399	56.890
	MOTA	2707		GLN	294	10.333	14.131	55.649
	MOTA	2708	CG	GLN	294	9.889	12.109	55.319
	MOTA	2709	HG1	GLN	294	10.886	11.901	55.706
50	ATOM	2710		GLN	294	9.894	12.118	54.229
50								
	MOTA	2711	CD	GLN	294	8.888	11.089	55.842
	MOTA	2712		GLN	294	8.171	11.339	56.810
	ATOM	2713	NE2	GLN	294	8.837	9.900	55.184
	ATOM	2714	HE2	GLN	294	9.455	9.730	54.378
55	ATOM	2715	HE2		294	8.182	9.168	55.493
-								
	MOTA	2716	С	GLN	294	8.393	13.945	53.656
	MOTA	2717	0	GLN	294	8.364	12.866	53.071
	MOTA	2718	N	VAL	295	8.607	15.117	53.030
	ATOM	2719	HN	VAL	295	8.702	15.963	53.609
60	ATOM	2720	CA	VAL	295	8.711	15.261	51.607
-								
	ATOM	2721	HA	VAL	295	7.868	14.803	51.090
	MOTA	2722	CB	VAL	295	8.762	16.700	51.190
	MOTA	2723	HB	VAL	295	8.832	16.741	50.103
	ATOM	2724		VAL	295	7.476	17.390	51.674
65	ATOM	2725		VAL	·295	7.494	18.440	51.380
55								
	ATOM	2726		VAL	295	6.610	16.903	51.226
	MOTA	2727		VAL	295	7.411	17.319	52.760
	MOTA	2728	CG2	VAL	295	10.060	17.32İ	51.733

	MOTA	2729	HG2 VAL	295	10.113	18.369	51.438
	MOTA	2730	HG2 VAL	295	10.071	17.249	52.820
	ATOM	2731	HG2 VAL	295	10.918	16.786	51.325
	ATOM	2732	C VAL	295	9.952	14.621	51.071
5	MOTA	2733	O VAL	295	9.928	14.073	49.970
	MOTA	2734	N LEU	296	11.061	14.679	51.836
	MOTA	2735 ·	HN LEU	296	10.977	15.056	52.791
	MOTA	2736	CA LEU	296	12.356	14.241	51.387
	ATOM	2737	HA LEU	296	12.801	14.943	50.682
10	MOTA	2738	CB LEU	296	13.389	14.119	52.522
	MOTA	2739	HB1 LEU	296	14.351	13.722	52.197
	MOTA	2740	HB2 LEU	296	. 13.072	13.461	53.332
	MOTA	2741	CG LEU	296	13.720	15.459	53.203
	MOTA	2742	HG LEU	296	14.068	16.197	52.480
15	MOTA	2743	CD2 LEU	296	14.932	15.326	54.138
	ATOM	2744	HD2 LEU	296	15.140	16.289	54.604
	MOTA	2745	HD2 LEU	296	14.716	14.588	54.911
	ATOM	2746	HD2 LEU	296	15.801	15.005	53.563
	MOTA	2747	CD1 LEU	296	12.487	16.049	53.908
20	MOTA	2748	HD1 LEU	296	12.754	16.995	54.379
	ATOM	2749	HD1 LEU	296	11.696	16.218	53.177
	ATOM	2750	HD1 LEU	296	12.135	15.352	54.669
	ATOM	2751	C LEU	296	12.289	12.915	50.698
	ATOM	2752	O LEU	296	12.052	11.878	51.315
25	MOTA	2753	N ASN	297	12.493	12.954	49.365
2,5	ATOM	2754	HN ASN	297	12.601	13.882	48.932
	MOTA	2755	CA ASN	297	12.572	11.812	48.500
	ATOM	2756	HA ASN	297	12.864	12.120	47.496
	ATOM	2757	CB ASN	297	13.619	10.787	48.968
30	ATOM	2758	HB1 ASN	297	13.208	10.221	49.805
50	ATOM	2759	HB2 ASN	297	14.517	11.319	49.280
	ATOM	2760	CG ASN	297	13.941	9.849	47.810
	ATOM	2761	OD1 ASN	297	13.408	9.981	46.709
	ATOM	2762	ND2 ASN		14.848	8.869	48.066
35	ATOM	2763	HD2 ASN	297	15.272	8.7 -9 2	49.001
23	ATOM	2764	HD2 ASN	297	15.110	8.204	47.324
	ATOM	2765	C ASN	297	11.243	11.128	48.424
	MOTA	2766	O ASN	297	11.045	10.241	47.596
	MOTA	2767	N ILE	298	10.283	11.522	49.278
40	ATOM .	2768	HN ILE	298	10.459	12.282	49.951
40	ATOM	2769	CA ILE	298	9.011	10.864	49.235
	ATOM	2770	HA ILE	298	9.169	9.787	49.194
	ATOM	2771	CB ILE	298 [.]	8.166	11.120	50.462
	ATOM	2772	HB ILE	298	8.772	10.947	51.352
45		2773	CG2 ILE	298	7.674	12.576	
43	MOTA			298	7.063	12.770	51.318
	MOTA	2774	HG2 ILE		8.532	13.249	50.434
	ATOM	2775	HG2 ILE	298	7.079		
	ATOM	2776	HG2 ILE CG1 ILE	298	7.023	12.743 10.091	49.538
50	ATOM	2777		298	6.505	10.266	50.579
50	ATOM	2778 2779	HG1 ILE	298	7.461	9.093	51.522
•	ATOM		HG1 ILE	298	5.981		50.557
	ATOM	2780	CD1 ILE	298		10.159	49.463
	ATOM	2781	. HD1 ILE	298	5.218	9.399	49.631
55	MOTA	2782	HD1 ILE	298	5.516	11.145	49.459
55	ATOM	2783	HD1 ILE	298	6.464	9.982	48.503
	ATOM	2784	C ILE	298	8.268	11.317	48.015
	MOTA	2785	O ILE	298	7.655	10.512	47.318
	MOTA	2786	N THR	299	8.326	12.625	47.699
<i>c</i>	ATOM	2787	HN THR	299	8.932	13.260	48.239
60	ATOM	2788	CA THR	299	7.543	13.133	46.612
	ATOM	2789	HA THR	299	7.026	12.300	46.136
	ATOM	2790	CB THR	299	6.540	14.152	47.052
	ATOM	2791	HB THR	299	5.923	13.701	47.829
c =	MOTA	2792	OG1 THR	299	5.705	14.530	45.967
65	ATOM	2793	HG1 THR	299	5.593	15.554	45.960
	ATOM	2794	CG2 THR	299	7.308	15.365	47.594
	ATOM	2795	HG2 THR	299	6.601	16.126	47.923
	MOTA	2796	HG2 THR	299	7.927	15.057	48.436

	MOTA	2797	HG2	THR	299	7.943	15.775	46.808
	ATOM	2798	C	THR	299	8.453	13.799	45.641
	ATOM	2799		THR	299	9.616	14.067	45.944
	ATOM	2800		GLN	300	7.940	14.078	44.424
5	ATOM	2801		GLN	300	6.954	13.873	44.208
-	ATOM	2802		GLN	300	8.798	14.664	43.443
	ATOM	2803		GLN	300	9.843	14.430	43.644
	ATOM	2804		GLN	300	8.600	14.163	42.000
	ATOM	2805	HB1		300	8.658	13.074	42.010
10			HB2			9.392		41.384
10	ATOM	2806			300		14.588 14.540	41.354
	ATOM	2807		GLN	300	7.269		
	ATOM	2808	HG1		300	7.148	15.613	41.499
	ATOM	2809	HG2		300	6.501	13.963	41.869
	ATOM	2810		GLN	300	7.383	14.165	39.881
15	MOTA	2811	OE1		300	7.435	12.990	39.523
	ATOM	2812	NE2		300	7.444	15.195	38.996
	MOTA	2813	HE2		300	7.397	16.167	39.333
	MOTA	2814		GLN	300	7.538	15.003	37.988
	MOTA	2815		GLN	300	8.658	16.155	43.425
20	MOTA	2816		GLN	300	8.025	16.768	44.283
	MOTA	2817		GLU	301	9.270	16.740	42.379
	MOTA	2818	HN	GLU	301	9.648	16.088	41.676
•	ATOM	2819	CA	GLU	301	9.479	18.131	42.090
	ATOM	2820	ΗA	GLU	301	9.979	18.671	42.894
25	ATOM	2821	CB	GLU	301	10.342	18.329	40.834
	ATOM	2822	HB1	GLU	301	10.429	19.398	40.641
	ATOM	2823	HB2	GLU	301	9.852	17.829	39.998
	ATOM	2824	CG	GLU	301	11.754	17.760	40.955
	ATOM	2825			301	12.122	17.992	41.955
30	ATOM	2826	HG2		301	12.370	18.232	40.190
-	ATOM	2827	CD	GLU	301	11.669	16.254	40.738
	ATOM	2828	OE1		301	10.579	15.781	40.319
	ATOM	2829		GLU	301	12.691	15.560	40.985
	ATOM	2831	C	GLU	301	8.209	18.886	41.841
35	ATOM	2832	ō	GLU	301	8.164	20.095	42.059
50	ATOM	2833	N	CYS	302	7.142	18.209	41.388
	ATOM	2834	HN	CYS	302	7.164	17.180	41.372
	ATOM	2835	CA	CYS	302	5.968	18.897	40.924
	ATOM	2836	HA	CYS	302	6.126	19.452	39.999
40	ATOM	2837	СВ	CYS	302	4.808	17.953	40.565
,,	ATOM	2838	HB1		302	3.865	18.485	40.438
	ATOM	2839		CYS	302	4.636	17.198	41.332
	ATOM	2840	SG	CYS	302	5.104	17.053	39.014
	MOTA	2841	HG	CYS	302	4.320	17.554	38.049
45	ATOM	2842	C	CYS	302	5.435	19.912	41.907
73	ATOM	2843	Ö	CYS	302	4.999	20.973	41.470
	ATOM	2844	N	PHE	303	5.435	19.679	43.238
	ATOM	2845	HN	PHE	303	5.871	18.836	43.638
	ATOM	2846	CA	PHE	303	4.793	20.669	44.072
50	ATOM	2847	НA	PHE	303	3.947	21.131	43.564
50			CB	PHE	303	4.165	20.088	45.354
	MOTA	2848			303	4.971	19.862	46.052
	MOTA	2849		PHE	303			45.082
	ATOM	2850		PHE		3.621	19.183	
	ATOM	2851	CG	PHE	303	3.242	21.113	45.921
55	ATOM	2852		PHE	303	2.002	21.321	45.360
	ATOM	2853		PHE	303	1.699	20.734	44.493
	ATOM	2854		PHE	303	3.602	21.857	47.020
	MOTA	2855		PHE	303	4.576	21.700	47.481
	MOTA	2856		PHE	303	1.141	22.260	45.878
60	ATOM	2857		PHE	303	0.164	22.415	45.420
	ATOM	2858		PHE	303	2.745	22.798	47.543
	ATOM	2859		PHE	303	3.045	23.382	48.413
	MOTA	2860	CZ	PHE	303	1.512	23.003	46.972
	ATOM	2861	HZ	PHE	303	0.834	23.750	47.385
65	MOTA	2862	С	PHE	303	5.742	21.766	44.450
	MOTA	2863	0	PHE	303	6.717	21.578	45.178
	MOTA	2864	N	LYS	304	5.433	22.985	43.975
	MOTA	2865	HN	LYS	304	4.581	23.107	43.409

	ATOM	2866	CA	LYS	304		6.268	24.113	44.242
	MOTA	2867	HA	LYS	304		7.253	23.919	43.816
	ATOM	2868	CB	LYS	304		5.737	25.406	43.588
_	MOTA	2869	HB1		304		5.896	25.330	42.512
5	MOTA	2870	HB2	LYS	304		6.292	26.247	44.004
	ATOM	2871	CG	LYS	304		4.245	25.690	43.809
	MOTA	2872	HG1		304		3.698	24.760	43.657
	ATOM	2873	HG2		304		3.935	26.445	43.086
	MOTA	2874	CD	LYS	304		3.878	26.212	45.198
10	ATOM	2875	HD1		304		4.366	27.153	45.455
	MOTA	2876	HD2		304		4.140	25.529	46.006
	ATOM	2877	CE	LYS	304		2.382	26.481	45.378
	MOTA	2878	HE1		304		1.815	25.565	45.212
16	MOTA	2879	HE2		304		2.050	27.236	44.665
15	MOTA	2880	NZ	LYS	304		2.117	26.967 27.146	46.751 46.864
	ATOM ATOM	2881 2882	HZ1 HZ2	LYS	304 304		1.109 2.417	26.255	47.432
	MOTA	2883	HZ3	LYS	304		2.640	27.840	46.913
	ATOM	2884	C	LYS	304		6.361	24.287	45.721
20	ATOM	2885	0	LYS	304		7.430	24.585	46.251
.20	MOTA	2886	N	GLY	305		5.246	24.082	46.441
	MOTA	2887	HN	GLY	305		4.371	23.802	45.976
	MOTA	2888	CA	GLY	305		5.288	24.257	47.860
	MOTA	2889	HA1		305		6.252	23.857	48.172
25	MOTA	2890	HA2	GLY	305		4.441	23.690	48.245
	ATOM	2891	C	GLY	305		5.161	25.719	48.079
	ATOM	2892	ō	GLY	305		5.651	26.503	47.268
	ATOM	2893	N	ILE	306		4.501	26.118	49.184
	ATOM	2894	HN	ILE	306	•	4.123	25.418	49.838
30	ATOM	2895	CA	ILE	306		4.326	27.513	49.449
	ATOM	2896	HA	ILE	306		3.697	27.920	48.658
	ATOM	2897	CB	ILE	306		3.594	27.798	50.731
	MOTA	2898	HB	ILE	306		3.598	28.878	50.880
	MOTA	2899	CG2	ILE	306		2.161	27.263	50.578
35	_ ATOM	2900	HG2	ILE	. 306		1.601	27.454	51.493
	MOTA	2901	HG2	ILE	306		1.673	27.764	49.742
	MOTA	2902	HG2	ILE	306		2.191	26.190	50.389
	MOTA	2903	CG1	ILE	306		4.337	27.222	51.943
	MOTA	2904	HG1	ILE	306		5.393	27.492	51.966
40	ATOM	2905	HG1	ILE	306		4.312	26.133	51.983
	ATOM	2906	CD1	ILE	306		3.763	27.695	53.279
	ATOM	2907	HD1	ILE	306		4.333	27.252	54.096
	ATOM	2908	HD1	ILE	306		3.828	28.781	53.338
45	MOTA	2909	HD1	ILE	306		2.720 5.674	27.389 28.141	53.356 49.449
43	ATOM	2910 2911	. C	ILE	306 306		6.478	27.978	50.364
	MOTA	2911	O N	LEU	306 307		5.941	28.867	48.354
	ATOM ATOM	2913	HN	LEU	307		5.192	28.985	47.656
	MOTA	2914	CA	LEU	307		7.199	29.486	48.098
50	ATOM	2915	HA	LEU	307		7.955	28.703	48.134
50	ATOM	2916	CB	LEU	307		7.210	30.189	46.725
	ATOM	2917	HB1	LEU	307		6.423	30.943	46.727
	MOTA	2918	HB2		307		7.025	29.435	45.960
	ATOM	2919	CG	LEU	307		8.523	30.905	46.351
55	MOTA	2920	НG	LEU	307		8.558	31.200	45.302
	MOTA	2921	CD2	LEU	307		9.714	29.929	46.432
	MOTA	2922	HD2	LEU	307		10.632	30.452	46.165
	MOTA	2923	HD2	LEU	307		9.799	29.543	47.448
	ATOM	2924	HD2	LEU	307		9.554	29.101	45.742
60	MOTA	2925	CD1		307		8.750	32.186	47.158
	MOTA	2926	HD1	LEU	307		9.689	32.648	46.853
	MOTA	2927	HD1		307		7.929	32.880	46.977
	MOTA	2928	HD1	LEU	307		8.793	31.944	48.220
ـ ـ	MOTA	2929	С	LEU	307		7.410	30.505	49.163
65	MOTA	2930	0	LEU	307		8.534	30.723	49.608
	MOTA	2931	N	LYS	308		6.319	31.148	49.609
	MOTA	2932	HN	LYS	308		5.382	30.859	49.292
	MOTA	2933	CA	LYS	308		6.463	32.233	50.524

	-							
	ATOM	2934	HA	LYS	308	7.048	33.047	50.097
	ATOM	2935	CB	LYS	308	5.116	32.858	50.931
	ATOM	2936	HB1	LYS	308	4.471	32.172	51.481
		2937						
-	ATOM		HB2	LYS	308	4.524	33.195	50.080
5	MOTA	2938	CG	LYS	308	5.268	34.086	51.833
	MOTA	2939	HG1	LYS	308	6.044	34.727	51.414
	ATOM	2940	HG2	LYS	308	5.550	33.747	52.830
	ATOM	2941	CD	LYS	308	3.992	34.919	51.965
	ATOM	2942	HD1	LYS	308	3.151	34.365	52.383
10	ATOM	2943	HD2	LYS	308	3.629	35.312	51.015
	ATOM	2944	CE	LYS	308	4.151	36.144	52.868
	ATOM	2945	HE1	LYS	308			52.473
						4.925	36.802	
	MOTA	2946	HE2	LYS	308	4.433	35.833	53.874
	MOTA	2947	NZ	LYS	308	2.877	36.893	52.939
15	ATOM	2948	HZ1	LYS	308	2.994	37.714	53.548
	ATOM	2949	HZ2	LYS	308	2.607	37.202	51.994
	ATOM	2950	HZ3	LYS	308	2.141	36.283	53.323
	MOTA	2951	С	LYS	308	7.153	31.809	51.784
	ATOM	2952	ō	LYS	308	8.133	32.436	52.181
20	ATOM	2953	N	ASP	309	6.702	30.728	52.452
20								
	MOTA	2954	HN	ASP	309	5.948	30.131	52.082
	MOTA	2955	CA	ASP	309	7.337	30.463	53.712
	MOTA	2956	HA	ASP	309	7.338	31.351	54.345
	ATOM	2957	СВ	ASP	309	6.610	29.452	54.635
25	MOTA	2958	HB1	ASP	309	5.567	29.706	54.821
	MOTA	2959	HB2	ASP	309	7.062	29.362	55.623
	ATOM	2960	CG	ASP	309	6.582	28.034	54.079
	ATOM	2961	OD1	ASP	309	6.841	27.841	52.864
		2962	OD2	ASP		6.287	27.111	54.884
20	MOTA							
30	MOTA	2963	С	ASP	309	8.760	30.037	53.518
	ATOM	2964	0	ASP	309	9.643	30.454	54.266
	MOTA	2965	N	LYS	310	9.026	29.208	52.494
	MOTA .	2966	HN	LYS	310	8.267	28.936	51.852
	MOTA	2967	CA	LYS	310	10.346	28.697	52.280
35	ATOM	2968	HA	LYS	310 ,	10.683	28.199	53.189
	MOTA	2969	СВ	LYS	310	10.370	27.637	51.162
	ATOM	2970	HB1	LYS		9.775	26.784	51.487
		2971	HB2	LYS	310	11.406	27.342	50.994
	MOTA					•		
40	ATOM	2972	CG	LYS	310	9.802	28.114	49.824
40	MOTA	2973	HG1	LYS	310	8.928	28.757	49.921
	MOTA	2974	HG2	LYS	310	9.482	27.304	49.169
	MOTA	2975	CD	LYS	310	10.790	28.923	48.989
	MOTA	2976	&HD1	LYS	310	11.586	29.351	49.598
	ATOM	2977	HD2	LYS	310	10.306	29.753	48.474
45	ATOM	2978	CE	LYS	310	11.465	28.072	47.916
	ATOM	2979	HE1	LYS	310	12.233	28.655	47.407
			HE2		310	10.727	27.742	47.184
	ATOM	2980						
	MOTA	2981	NZ	LYS	310	12.094	26.882	48.535
	ATOM	2982	HZ1	LYS	310	12.547	26.314	47.806
50	MOTA	2983	HZ2	LYS	310	12.800	27.185	49.222
	MOTA	2984	HZ3	LYS	310	11.373	26.320	49.010
	ATOM	2985	С	LYS	310	11.256	29.834	51.951
	ATOM	2986	0	LYS	310	12.376	29.917	52.454
	ATOM	2987	N	LYS	311	10.771	30.770	51.125
55	ATOM	2988	HN	LYS	311	9.806	30.685	50.773
55			CA	LYS	311	11.571	31.885	50.723
	ATOM	2989						
	ATOM	2990	HA	LYS	311	12.472	31.502	50.245
	ATOM	2991	СВ	LYS	311	10.833	32.824	49.750
_	ATOM	2992	HB1	LYS	311	9.923	33.258	50.163
60	ATOM	2993	HB2	LYS	311	10.517	32.340	48.826
	ATOM	2994	CG	LYS	311	11.668	34.024	49.298
	ATOM	2995	HG1		311	12.675	33.754	48.979
	ATOM	2996	HG2	LYS	311	11.804	34.774	50.076
	ATOM	2997	CD	LYS	311	11.058	34.776	48.114
65	ATOM	2998	HD1		311	10.065	35.179	48.317
05						10.003	34.162	47.222
	MOTA	2999	HD2		311			
	MOTA	3000	CE	LYS	311	11.886	35.977	47.657
	MOTA	3001	HE1	LYS	311	12.880	35.649	47.350

	ATOM	3002	HE2	LYS	311	11.986	36.693	48.472
	MOTA	3003	NZ	LYS	311	11.225	36.641	46.512
	MOTA	3004	HZ1	LYS	311	11.789	37.448	46.210
	MOTA	3005	HZ2	LYS	311	11.135	35.974	45.732
5	ATOM	3006	HZ3	LYS	311	10.289	36.964	46.795
	ATOM	3007	С	LYS	311	11.913	32.675	51.940
	MOTA	3008	0	LYS	311	13.005	33.229	52.047
	MOTA	3009	N	ASN	312	10.984	32.755	52.905
	MOTA	3010	HN	ASN	312	10.097	32.239	52.827
10	MOTA	3011	CA	ASN	312	11.257	33.575	54.045
	MOTA	3012	HA	ASN	312	11.420	34.609	53.739
	MOTA	3013	СВ	ASN	312	10.099	33.574	55.063
	MOTA	3014	HB1	ASN	312	10.036	32.590	55.527
	MOTA	3015	HB2	ASN	312	9.168	33.801	54.542
15	MOTA	3016	CG	ASN	312	10.372	34.633	56.125
	MOTA	3017.	OD1	ASN	312	11.435	34.669	56.741
	ATOM	3018	ND2	ASN	312	9.373	35.531	56.346
	ATOM	3019	HD2	ASN	312	8.496	35.468	55.809
	ATOM	3020	HD2	ASN	312	9.495	36.273	57.050
20	ATOM	3021	С	ASN	312	12.484	33.089	54.758
	MOTA	3022	0	ASN	312	13.420	33.856	54.976
	MOTA	3023	N	ASP	313	12.519	31.797	55.141
	ATOM	3024	HN	ASP	313	11.753	31.159	54.884
	MOTA	3025	CA	ASP	313	13.633	31.317	55.912
25	MOTA	3026	HA	ASP	313	13.846	31.958	56.767
•	ATOM	3027	CB	ASP	313	13.389	29.912	56.491
	MOTA	3028	HB1	ASP	313	13.397	29.191	55.674
	MOTA	3029	HB2	ASP	313	12.421	29.904	56.992
	MOTA	3030	CG	ASP	313	14.499	29.594	57.485
30	ATOM	3031	OD1	ASP	313	15.396	30.458	57.678
	MOTA	3032	OD2	ASP	313	14.459	28.480	58.071
	MOTA	3033	С	ASP	313	14.893	31.247	55.098
	ATOM	3034	0	ASP	313	15.914	31.818	55.477
	ATOM	3035	N	ILE	314	14.840	30.543	
35	MOTA	3036	-HN	ILE	314	13.931	30.171	53.642
	ATOM	3037	CA	ILE	314	16.001	30.290	53.140
	MOTA	3038	HA	ILE	314	16.848	29.957	53.740
	ATOM	3039	CB	ILE	314	15.818	29.155	52.172
40	ATOM	3040	HB	ILE	314	16.744	29.065	51.605
40	ATOM	3041	CG2	ILE	314	15.534	27.894	53.003
	ATOM	3042	HG2	ILE	314	15.394	27.043	52.337
	ATOM	3043	HG2	ILE	314	16.375	27.699	53.668
	MOTA	3044	HG2	ILE	314	14.631	28.044	53.595
15	ATOM	3045	CG1	ILE	314	14.731	29.445	51.128
45	ATOM	3046	HG1	ILE	314	14.891 13.736	30.396	50.619
	ATOM	3047	HG1	ILE	. 314		29.494 28.373	51.571
	MOTA	3048	CD1	ILE	314	14.672 13.888		50.041 49.326
	ATOM	3049 3050	HD1 HD1	ILE	314 314	15.631	28.623 28.325	49.525
50	ATOM ATOM	3051	HD1	ILE	314	14.455	27.406	50.494
50	ATOM	3052	C	ILE	314	16.439	31.514	52.401
	ATOM	3053	o	ILE	314	17.616	31.642	52.065
	ATOM	3054	N	GLU	315	15.488	32.421	52.112
	MOTA	3055	HN	GLU	315	14.538	32.218	52.456
55	ATOM	3056	CA	GLU	315	15.658	33.644	51.373
33	ATOM	3057	HA	GLU	315	14.725	34.208	51.379
	ATOM	3058	СВ	GLU	315	16.633	34.692	51.965
	ATOM	3059	HB1	GLU	315	16.327	34.881	52.993
	ATOM	3060	HB2		315	16.556	35.593	51.355
60	ATOM	3061	CG	GLU	315	18.119	34.328	52.014
	ATOM	3062	HG1	GLU	315	18.700	35.213	51.754
	ATOM	3063		GLU	315	18.302	33.528	51.297
	ATOM	3064	CD	GLU	315	18.455	33.866	53.426
	ATOM	3065	OE1	GLU	315	17.508	33.744	54.248
65	ATOM	3066	OE2		315	19.662	33.627	53.700
	MOTA	3068	С	GLU	315	16.035	33.328	49.964
	MOTA	3069	0	GLU	315	16.677	34.123	49.280
	ATOM	3070	N	ALA	316	15.620	32.138	49.494

	MOTA	3071	HN	ALA	316	15.141	31.488	50.133
	ATOM	3072	CA	ALA	316	15.825	31.747	48.134
	ATOM	3073	HA	ALA	316	15.932	32.684	47.588
_	ATOM	3074	CB	ALA	316	17.028	30.811	47.931
5	ATOM	3075	HB1		316	17.118	30.559	46.874
	MOTA	3076	HB2		316	17.938	31.311	48.264
	MOTA	3077	HB3	ALA	316	16.882	29.899	48.510
	ATOM	3078	Ç	ALA	316	14.602	30.978	47.770
	MOTA	3079	0	ALA	316	13.837	30.575	48.642
10	MOTA	3080	N	GLN	317	14.355	30.790	46.464
10	ATOM	3081	HN	GLN	317	14.951	31.225	45.745
		3082						
	MOTA		CA	GLN	317	13.244	29.970	46.096
	MOTA	3083	HA	GLN	317	12.404	30.119	46.774
_	MOTA	3084	СВ	GLN	317	12.787	30.170	44.639
15	ATOM	3085	HB1	GLN	317	13.561	29.940	43.907
	MOTA	3086	HB2	GLN	317	12.478	31.191	44.418
	ATOM	3087	CG	GLN	317	11.592	29.294	44.250
	ATOM	3088	HG1	GLN	317	10.703	29.682	44.748
	ATOM	3089	HG2	GLN	317	11.793	28.272	44.571
20		3090	CD			11.423	29.353	
20	ATOM			GLN	317			42.741
	ATOM	3091	OE1	GLN	317	12.182	30.026	42.045
	ATOM	3092	NE2	GLN	317	10.406	28.615	42.219
	ATOM	3093	HE2	GLN	317	9.796	28.067	42.841
	ATOM	3094	HE2	GLN	317	10.246	28.605	41.201
25	ATOM	3095	С	GLN	317	13.799	28.597	46.193
	ATOM	3096	0	GLN	317	14.136	28.135	47.282
	ATOM	3097	N	TRP	318	13.907	27.901	45.049
	ATOM	3098	HN	TRP	318	13.524	28.260	44.162
20	MOTA	3099	CA	TRP	318	14.574	26.649	45.118
30	MOTA	3100	HA	TRP	318	14.080	25.983	45.826
	MOTA	3101	CB	TRP	318	14.701	25.917	43.774
	MOTA	3102	HB1	TRP	318	15.480	25.159	43.868
	ATOM	3103	HB2	TRP	318	14.968	26.645	43.009
	ATOM	3104	CG	TRP	318	13.438	25.227	43.334
35	MOTA	3105	CD2	TRP	318	13.213	23.824	43.520
	ATOM	3106	CD1	TRP	318	12.327	25.721	42.716
	ATOM	3107	HD1	TRP	318	12.181	26.762	42.428
	ATOM	3108	NE1	TRP	318	11.419	24.709	42.511
			HE1		318	10.496		
40	ATOM	3109		TRP			24.810	42.066
40	ATOM	3110	CE2	TRP	318	11.953	23.535	43.000
	MOTA	3111	CE3	TRP	318	13.992	22.855	44.083
	MOTA	3112	HE3	TRP	318	14.976	23.084	44.492
	ATOM	3113	CZ2	TRP	318	11.450	22.267	43.040
	MOTA	3114	HZ2	TRP	318	10.461	22.038	42.642
45	ATOM	3115	CZ3	TRP	318	13.484	21.576	44.113
	ATOM	3116		TRP	318	14.080	20.775	44.550
	ATOM	3117	CH2		318	12.237	21.287	43.602
	ATOM	3118	HH2	TRP	318	11.867	20.263	43.643
		3119				15.934	27.003	
50	ATOM		C	TRP	318			45.561
50	ATOM	3120	0	TRP	318	16.704	27.633	44.839
	MOTA	3121	N	HIS	319	16.265	26.644	46.804
	MOTA	3122	HN	HIS	319	15.590	26.209	47.449
	MOTA	3123	CA	HIS	319	17.609	26.903°	47.178
	ATOM	3124	HA	HIS	319	17.968	27.836	46.744
55	ATOM	3125		HIS	319	19.405	28.897	49.152
	ATOM	3126		HIS	319	18.737	29.653	48.947
	ATOM	3127	CG	HIS	319	19.158	27.543	49.089
•								
	ATOM	3128		HIS	319	21.298	27.881	49.725
~ ^	ATOM	3129		HIS	319	22.271	27.714	50.017
60	MOTA	3130		HIS	319	20.325	26.938	49.441
	ATOM	3131		HIS	319	20.474	25.860	49.493
	ATOM	3132	CE1	HIS	319	20.698	29.042	49.537
	ATOM	3133	HE1	HIS	319	21.186	30.007	49.675
	ATOM	3134	CB	HIS	319	17.831	26.955	48.701
65	ATOM	3135		HIS	319	17.801	25.974	49.176
	ATOM	3136	HB2		319	17.086	27.553	49.226
	ATOM	3137	C	HIS	319	18.318	25.721	46.634
	MOTA	3138	0	HIS	319	17.970	25.193	45.578

	ATOM	3139	N	ASP	320		19.339	25.255	47.343
	ATOM	3140	HN	ASP	320		19.651	25.725	48.205
	MOTA	3141	CA	ASP	320		19.985	24.084	46.866
	ATOM	3142	HA	ASP	320		20.748	23.809	47.594
5	MOTA	3143	CB	ASP	320		19.014	22.906	46.680
	ATOM	3144	HB1	ASP	320		18.406	23.133	45.804
	MOTA	3145	HB2	ASP	320		18.414	22.844	47.588
	MOTA	3146	CG	ASP	320		19.862	21.664	46.475
	MOTA	3147	OD1	ASP	320		21.108	21.797	46.605
10	MOTA	3148	OD2	ASP	320	_	19.287	20.581	46.189
	MOTA	3149	С	ASP	320		20.591	24.410	45.543
	MOTA	3150	0	ASP	320		20.863	23.527	44.734
	ATOM	3151	N	GLU	321		20.805	25.711	45.284
	MOTA	3152	HN	GLU	321		20.507	26.433	45.956
15	MOTA	3153	CA	GLU	321		21.449	26.080	44.064
	ATOM	3154	HA	GLU	321		20.858	25.621	43.272
	MOTA	3155	CB	GLU	321		21.492	27.598	43.819
	MOTA	3156	HB1	GLU	321		20.466	27.955	43.727
	MOTA	3157	HB2	GLÜ	321		22.049	27.776	42.900
20	ATOM	. 3158	CG	GLU	321		22.160	28.416	44.920
	ATOM	3159	HG1	GLU	321		23.186	28.056	44.997
	MOTA	3160	HG2	GLU	321		21.591	28.234	45.832
	MOTA	3161	CD	GLU	321		22.094	29.872	44.482
	ATOM	3162	OE1	GLU	321		22.672	30.192	43.409
25	MOTA	3163	OE2	GLU	321		21.454	30.681	45.206
	MOTA	3165	С	GLU	321		22.827	25.529	44.160
	MOTA	3166	0	GLU	321		23.432	25.205	43.136
	ATOM	3167	N	SER	322		23.347	25.443	45.412
	MOTA	3168	HN	SER	322		22.814	25.829	46.204
30	ATOM	3169	CA	SER	322		24.618	24.827	45.659
	ATOM	3170	HA	SER	322		25.430	25.437	45.262
	ATOM	3171	CB	SER	322		24.927	24.624	47.160
	ATOM	3172	HB1	SER	322		24.996	25.576	47.687
	MOTA	3173	HB2	SER	322		25.872	24.103	47.309
35	_ ATOM	3174	OG	SER	322		23.918	23.859	47.803
	MOTA	3175	HG	SER	322		23.260	24.491	48.282
	MOTA	3176	С	SER	322 _.		24.526	23.521	44.959
	MOTA	3177	0	SER	322		25.115	23.387	43.897
	MOTA	3178	N	HIS	323		23.752	22.560	45.498
40	MOTA	3179	HN	HIS	323		23.409	22.679	46.462
	ATOM	3180	CA	HIS	323		23.388	21.374	44.775
	MOTA	3181	HA	HIS	323		22.610	20.799	45.277
	ATOM	3182	ND1	HIS	323		23.939	19.802	41.804
40	MOTA	3183	HD1	HIS	323		23.138	19.168	41.935
45	ATOM	3184	CG	HIS	323		24.093	21.047	42.361
	ATOM	3185		HIS	323		25.895	20.563	41.076
	ATOM	3186		HIS	323		26.802	20.635	40.593
	ATOM	3187		HIS	323		25.298	21.496	41.902
50	MOTA	3188		HIS	323		25.732 25.041	22.463 19.562	42.154
50	ATOM	3189		HIS HIS	323		25.200		41.048
	ATOM	3190 3191			323 323		23.200	18.644 21.632	40.481 43.306
	MOTA		CB	HIS HIS	323		22.997	22.695	43.300
	ATOM	3192		HIS	323		22.100	21.202	43.010
55	ATOM ATOM	3193 3194		HIS	323		24.526	20.450	44.588
"	ATOM	3195	ŏ .	HIS	323		24.289	19.248	44.451
	ATOM	3196	N	LEU	324		25.759	20.990	44.683
	MOTA	3197	HN	LEU	324		25.853	21.886	45.182
	ATOM	3198	CA	LEU	324		26.948	20.402	44.136
60	ATOM	3199	HA	LEU	324		26.967	20.551	43.057
00	ATOM	3200	CB	LEU	324		28.238	20.916	44.804
	ATOM	3201	HB1		324		29.079	20.386	44.357
	ATOM	3202	HB2		324		28.167	20.708	45.872
	ATOM	3203	CG	LEU	324		28.526	22.420	44.658
65	ATOM	3204	HG	LEU	324		29.405	22.708	45.234
	ATOM	3205	CD2		324		27.446	23.275	45.336
	ATOM	3206	HD2		324		27.687	24.331	45.211
	ATOM	3207		LEU	324		26.478	23.067	44.881
			_	-			_		_

	ATOM	3208	HD2	LEU	324	27.407	23.036	46.399
	MOTA	3209	CD1	LEU	324	28.781	22.792	43.195
	ATOM	3210	HD1	LEU	324	28.982	23.861	43.121
	ATOM	3211	HD1		324	29.641		
5							22.235	42.822
3	ATOM	3212	HD1	LEU	324	27.903	22.546	42.598
	ATOM	3213	С	LEU		26.964	18.949	44.430
•	MOTA	3214	0	LEU	324	27.140	18.135	43.526
	MOTA	3215	N	ASN	325	26.706	18.583	45.693
	ATOM	3216	HN	ASN	325	26.480	. 19.291.	46.406
10	ATOM	3217	CA	ASN	325	26.749	17.198	46.034
	ATOM	3218	HA	ASN	325	27.658	16.729	45.657
	ATOM	3219	СВ	ASN	325	26.815		
							16.936	47.552
	MOTA	3220	HB1		325	27.743	17.346	47.949
	MOTA	3221	HB2		325	26.782	15.862	47.735
15	MOTA	3222	CG	ASN	325	25.629	17.606	48.231
	ATOM	3223	OD1	ASN	325	24.608	16.987	48.528
	ATOM	3224	ND2	ASN	325	25.786	18.928	48.504
	ATOM	3225	HD2		325	26.658	19.409	48.238
	ATOM	3226	HD2		325	25.034	19.450	48.976
20	ATOM	3227	C	ASN	325	25.583	16.464	45.452
20				-				
	MOTA	3228	0	ASN	325	25.266	16.592	44.272
	MOTA	3229	N	LYS	326	24.918	15.656	46.293
	ATOM	3230	HN	LYS	326	25.203	15.646	47.283
	MOTA	3231	CA	LYS	326	23.836	14.806	45.892
25	MOTA	3232	HA	LYS	326	24.162	14.154	45.082
	ATOM	3233	СВ	LYS	326	23.320	13.917	47.038
	ATOM	3234		LYS	326	22.934	14.484	47.885
	ATOM	3235	HB2	LYS	326	24.085	13.262	47.456
		3236	CG	LYS	326			
20	ATOM					22.178	12.989	46.620
30	MOTA	3237	HG1	LYS	326	21.349	13.508	46.138
	MOTA	3238	HG2	LYS	326	21.729	12.448	47.453
	ATOM	3239	CD	LYS	326	22.604	11.907	45.625
	ATOM	3240	HD1	LYS	326	23.383	11.245	46.004
	MOTA	3241	HD2	LYS	326	23.002	12.303	44.691
35	MOTA	3242	CE	LYS	326	21.466	10.976	45.205
	ATOM	3243	HE1	LYS	326	21.801	10.312	44.407
	ATOM	3244	HE2	LYS	326	20.618	11.560	44.845
	ATOM	3245	NZ	LYS	326	21.028	10.157	46.357
		3246		LYS	326	20.262	9.534	
40	MOTA							46.064
40	MOTA	3247	HZ2	LYS	326	21.820	9.592	46.697
	MOTA	3248	HZ3	LYS	326	20.699	10.775	47.112
	MOTA	3249	С	LYS	326	22.690	15.639	45.423
	MOTA	3250	0	LYS	326	21.808	15.145	44.722
	MOTA	3251	N	TYR	327	22.680	16.933	45.786
45	MOTA	3252	HN	TYR	327	23.495	17.331	46.273
	ATOM	3253	CA	TYR	327	21.549	17.763	45.504
	ATOM	3254	HA	TYR	327	20.671	17.418	46.051
	ATOM	3255	CB	TYR	327	21.740	19.220	45.934
50	ATOM	3256	HB1	TYR	327	20.870	19.767	45.570
50	MOTA	3257	HB2	TYR	327	22.666	19.561	45.471
	ATOM	3258	CG	TYR	327	21.821	19.215	47.421
	MOTA	3259	CD1	TYR	327	20.702	18.966	48.183
	ATOM	3260	HD1	TYR	327	19.748	18.769	47.692
	ATOM	3261	CD2	TYR	327	23.010	19.475	48.056
55	ATOM	3262	HD2		327	23.902	19.685	47.465
	ATOM	3263	CE1	TYR	327	20.774	18.963	49.556
	ATOM		HE1		327			50 140
		3264				19.882	18.760	50.149
	ATOM	3265	CE2		327	23.091	19.474	49.429
	MOTA	3266	HE2	TYR	327	24.043	19.678	49.920
60	MOTA	3267	CZ	TYR	327	21.972	19.216	50.182
	ATOM	3268	OH	TYR	327	22.050	19.213	51.590
	MOTA	3269	HH	TYR	327	22.273	20.162	51.924
	ATOM	3270	С	TYR	327	21.228	17.742	44.049
	ATOM	3271	Ō	TYR	327	20.066	17.901	43.680
65	ATOM	3272	N	PHE	328	22.233	17.554	43.175
	ATOM	3273	HN	PHE	328	23.201	17.416	43.497
	ATOM	3274	CA	PHE	328	21.907	17.554	41.779
	MOTA	3275	HA	PHE	328	21.453	18.518	41.551

	MOTA	3276	CB	PHE	328	23.092	17.255	40.855
	MOTA	3277	HB1	PHE	328 `	23.318	16.194	40.961
	MOTA	3278	HB2	PHE	328	23.920	17.881	41.188
	MOTA	3279	CG	PHE	328	22.659	17.596	39.469
5	MOTA	3280	CD1	PHE	328	21.861	16.738	38.747
	MOTA	3281	HD1	PHE	328	21.540	15.796	39.191
	MOTA	3282	CD2	PHE	328	23.059	18.779	38.889
	ATOM	3283	HD2	PHE	328	23.694	19.465	39.449
	ATOM	3284	CE1	PHE	328	21.466	17.060	37.470
10	MOTA	3285	HE1	PHE	328	20.832	16.374	36.908
	ATOM	3286	CE2.	PHE	328	22.666	19.106	37.613
	MOTA	3287	HE2	PHE.	328	22.989	20.047	37.167
	MOTA	3288 -	CZ	PHE	328	21.867	18.245	36.900
	ATOM	3289	HZ	PHE	328	21.553	18.500	35.887
15	MOTA	3290	С	PHE	328	20.956	16.433	41.547
	MOTA	3291	0	PHE	328	19.935	16.596	40.880
	MOTA	3292	N	LEU	329	21.270	15.262	42.130
	ATOM	3293	HN	LEU	329	22.106	15.206	42.730
	ATOM	3294	CA	LEU	329	20.470	14.096	41.933
20	ATOM	3295	HA	LEU	329	20.416	13.895	40.863
	ATOM	3296	CB	LEU	329	21.059	12.859	42.644
	ATOM	3297	HB1	LEU	329	21.110	13.079	43.711
	MOTA	3298	HB2	LEU	329	22.053	12.679	42.234
	ATOM	3299	CG	LEU	329	20.262	11.543	42.491
25	MOTA	3300	HG	LEU	329	20.813	10.667	42.832
	MOTA	3301	CD2	LEU	329	20.060	11.202	41.000
	ATOM	3302	HD2	LEU	329	19.497	10.273	40.912
	ATOM	3303	HD2	LEU	329	19.510	12.008	40.514
	MOTA	3304	HD2	LΕÜ	329	21.031	11.085	40.519
30	ATOM	3305	CD1	LEU	329	18.949	11.540	43.283
	MOTA	3306	HD1		329	18.436	10.590	- 43.134
	MOTA	3307	HD1	LEU	329	19.164	11.674	44.343
	MOTA	3308	HD1	LEU	329	18.313	12.354	42.937
	MOTA	3309	С	LEU	329	19.112	14.364	42.488
-35	MOTA	3310	0	LEU	32,9	18.107	14.056	41.848
	ATOM	3311	N	LEU	330	19.035	14.962	43.688
	MOTA	3312	HN	LEU	330	19.874	15.282	44.193
	MOTA	3313	CA	LEU	330	17.722	15.129	44.223
	ATOM	3314	HA	LEU	330	17.010	14.721	43.506
40	ATOM	3315	CB	LEU	330	17.543		45.576
	ATOM	3316	HB1	LEU	330	17.997	15.041	46.349
	MOTA	3317	HB2	LEU	330	18.036	13.451	45.523
	ATOM	3318	CG	LEU	330	16.072	14.181	45.970
4.5	MOTA	3319	HG	LEU	330	15.976	13.716	46.951
45	ATOM	3320	CD2		330	15.436	13.109	45.072
	MOTA	3321		LEU	330	14.398	12.955	45.368
	ATOM	3322		LEU	330	15.472	13.437	44.033 45.177
	ATOM	3323		LEU	330	15.985 15.262	12.174 15.482	
50	ATOM	3324	CD1	LEU	330	14.233	15.462	46.026 46.308
. 30	ATOM	3325		LEU LEU	330	15.703	16.153	46.763
	ATOM ATOM	3326	HD1 HD1	LEU	330 330	15.703	15.960	45.763
		3327	C	LEU	330	17.487	16.592	44.431
	ATOM ATOM	3328 3329	0	LEU	330	17.444	17.077	45.562
55	ATOM	3330	N	ASN	331	17.328	17.341	43.328
33	ATOM	3331	HN	ASN	331	17.407	16.901	42.400
	ATOM	3332	CA	ASN	331	17.051	18.742	43.424
	MOTA	3333	HA	ASN	331	17.837	19.170	44.047
	MOTA	3334	CB	ASN	331	16.976	19.424	42.048
60	ATOM	3335		ASN	331	16.171	18.958	41.480
50	ATOM	3336		ASN	331	17.933	19.284	41.544
	ATOM	3337	CG	ASN	331	16.694	20.904	42.264
	ATOM	3338		ASN	331	16.194	21.591	41.374
	ATOM	3339		ASN	331	17.027	21.411	43.480
65	ATOM	3340		ASN	331	17.444	20.799	44.197
33	ATOM	3341		ASN	331	16.863	22.407	43.685
	ATOM	3342	C	ASN	331	15.703	18.864	44.050
	ATOM	3343	ō	ASN		15.436	19.785	44.821
	10:1	20.0	_		-	-	· · · -	

	MOTA	3344	N	LYS	332	14.823	17.903	43.713
	ATOM	3345	HN	LYS	332	15.153	17.154	43.086
	ATOM	3346	CA	LYS	332	13.462	17.843	44.159
	ATOM	3347	HA	LYS	332	12.928	18.738	43.841
5	ATOM	3348	СВ	LYS	332	12.715	16.655	43.515
-	ATOM	3349	HB1	LYS	332	12.740	16.788	42.433
	ATOM	3350	HB2		332	11.689	16.662	43.883
	ATOM	3351	CG	LYS	332	13.296		
							15.273	43.816
10	ATOM	3352		LYS	332	13.499	15.128	44.877
10	ATOM	3353	HG2		332	14.239	15.095	43,298
	ATOM	3354	CD	LYS	332	12.355	14.138	43.399
	ATOM	3355	HD1		332	12.076	14.291	42.357
	ATOM	3356	HD2		332	11.475	14.170	44.042
	ATOM	3357		LYS	332	12.963	12.738	43.515
15	MOTA	3358	HE1	LYS	332	13.258	12.543	44.546
	MOTA	3359	HE2	LYS	332	13.841	12.657	42.875
	ATOM	3360	NZ	LYS	332	11.972	11.719	43.099
	ATOM	3361	HZ1	LYS	332	12.389	10.781	43.180
	ATOM	3362	HZ2		332	11.142	11.779	43.706
20	ATOM	3363		LYS	332	11.695	11.888	42.122
20	ATOM	3364	C	LYS	332	13.419	17.754	45.662
	ATOM	3365	Ö	LYS	332	14.399	18.071	46.332
	MOTA	3366	N	PRO				
		3367			333	12.345	17.329	46.275
25	ATOM		CA	PRO	333	12.372	17.351	47.704
25	ATOM	3368	HA	PRO	333	12.569	18.375	48.023
	MOTA	3369	CD	PRO	333 .	10.990	17.562	45.801
	MOTA	3370	HD1	PRO	333	10.839	17.134	44.810
	MOTA	3371	HD2	PRO	333	10.772	18.628	45.737
	ATOM	3372	CB	PRO	333	10.943		48.173
30	MOTA	3373		PRO	333	10.656	17.963	48.728
	ATOM	3374	HB2	PRO	333	11.028	16.175	48.789
	ATOM	3375	CG	PRO	333	10.141	16.860	46.870
	ATOM	3376	HG1	PRO	333	9.148	17.302	46.948
	ATOM	3377	HG2	PRO	333	10.021	15.798	46.654
35	ATOM	3378	С	PRO	333	13.404	16.485	48.328
	MOTA	3379	0	PRO	333	13.222	15.270	48.380
	ATOM	3380	N	THR	334	14.503	17.100	48.802
	MOTA	3381	HN	THR	334	14.657	18.101	48.614
	ATOM	3382	CA	THR	334	15.454	16.361	49.568
40	ATOM	3383	HA	THR	334	14.917	15.955	50.425
	ATOM	3384	CB	THR	334	16.184	15.293	48.819
	ATOM	3385	HB	THR	334	15.468	14.836	48.137
	ATOM	3386	OG1	THR	334	16.744	14.358	49.730
	ATOM	3387	HG1	THR	334	16.396	14.553	50.680
45		3388	CG2	THR	334	17.332	15.979	48.066
45	MOTA							
	ATOM	3389	HG2	THR	334	17.895	15.234	47.503
	ATOM	3390	HG2 HG2	THR	334	16.925	16.721	47.379
	ATOM	3391		THR	334	17.994	16.471	48.779
	ATOM	3392	С	THR	334	16.513	17.324	49.973
50	ATOM	3393	0	THR	334.	17.386	16.980	50.767
	ATOM	3394	N	LYS	335	16.445	18.569	49.459
	ATOM	3395	HN	LYS	335	15.670	18.833	48.834
	ATOM	3396	CA	LYS	335	17.463	19.521	49.793
	ATOM	3397	HA	LYS	335	18.411	19.126	49.429
55	MOTA	3398	CB	LYS	335	17.278	20.909	49.153
	ATOM	3399	HB1	LYS	.335	16.280	21.324	49.291
	ATOM	3400	HB2	LYS	335	17.441	20.918	48.075
	MOTA	3401	CG	LYS	335	18.229	21.970	49.706
	ATOM	3402	HG1	LYS	335	18.105	22.009	50.788
60	ATOM	3403	HG2		335	17.971	22.928	49.255
	ATOM	3404	CD	LYS	335	19.705	21.709	49.420
	MOTA	3405		LYS	335	19.938	21.661	48.356
	ATOM	3406		LYS	335	20.067	20.769	49.837
	ATOM	3407	CE	LYS	335	20.633	22.785	49.987
65	MOTA	3407		LYS	335	20.509	22.855	51.068
U	MOTA		HE2	LYS	335	20.399	23.753	49.542
		3409	nez NZ	LYS	335 335	22.043	22.448	49.542
	MOTA	3410				22.660		
	MOTA	3411	HZ1	LYS	335	22.000	23.178	50.073

						•		
	MOTA	3412	HZ2	LYS	335	22.277	21.541	50.114
	ATOM	3413		LYS	335	22.174		
							22.392	48.668
	MOTA	3414	C	LYS	335	17.466	19.668	51.276
_	MOTA	3415	0	LYS	335	16.479	20.090	51.878
5	MOTA	3416	N	ILE	336	18.609	19.311	51.894
	ATOM	3417	HN	ILE	336	19.416	19.017	51.326
	ATOM	3418	CA	ILE	336	18.728	19.330	53.318
	MOTA	3419	HA	ILE	336	18.033	18.591	53.715
	ATOM	3420	CB	ILE	336	20.119	19.029	53.790
10	ATOM	3421	HB	ILE	336 .	20.798	19.724	53.296
10	ATOM	3422	CG2					
				ILE	336	20.151	19.218	55.317
	MOTA	3423	HG2		336	21.153	19.005	55.689
	MOTA	3424	HG2		336	19.884	20.246	55.562
	MOTA	3425	HG2	ILE	336	19.439	18.537	55.783
15	MOTA	3426	CG1	ILE	336	20.547.	17.623	53.337
	MOTA	3427	HG1	ILE	336	21.559	17.358	53.640
	ATOM	3428	HG1	ILE	336	20.530	17.492	52.255
	ATOM	3429	CDI	ILE	336	19.659	16.509	53.889
	ATOM	3430	HD1		336	20.018	15.545	53.528
20								
20	ATOM	3431	HD1	ILE	336	19.691	16.524	54.978
	MOTA	3432	HD1	ILE	336	18.633	16.662	53.554
	ATOM	3433	С	ILE	336	18.382	20.700	53.777
	MOTA	3434	0	ILE	336	17.575	20.864	54.690
	ATOM	3435	N	LEU	337	18.982	21.729	53.151
25	ATOM	3436	HN	LEU	337	19.674	21.566	52.405
	MOTA	3437	CA	LEU	337	18.631	23.055	53.553
	ATOM	3438	HA	LEU	337	18.867	23.081	54.617
	ATOM	3439	СВ	LEU	337	19.395	24.134	52.758
					337			
20	ATOM	3440	HB1			19.028	24.117	51.732
30	MOTA	3441		LEU	337	20.457	23.889	52.796
	MOTA	3442	CG	LEU	337	19.243	25.585	53.272
	MOTA	3443	HG	LEU	337	19.605	25.670	54.297
	MOTA	3444	CD2	LEU	337	17.779	26.024	53.416
	MOTA	3445	HD2	LEU	337	17.741	27.051	53.780
35	MOTA	3446	HD2	LEU	337	17.284	25.965	52.446
	ATOM	3447	HD2	LEU	337	17.270	25.369	54.123
	ATOM	3448	CD1		337	20.047	26.557	52.396
	ATOM	3449	HD1	LEU	337	19.927	27.573	52.775
	ATOM	3450	HD1	LEU	337	21.102		52.422
40							26.283	
40	ATOM	3451	HD1	LEU	337	19.684	26.508	51.370
	ATOM	3452	С	LEU	337	17.177	23.154	53.246
	MOTA	3453	0	LEU	337	16.363	23.423	54.127
•	MOTA	3454	N	SER	338	16.815	22.904	51.972
	MOTA	3455	HN	SER	338	17.540	22.720	51.263
45	MOTA	3456	CA	SER	338 ·	15.436	22.893	51.593
	ATOM	3457	HA	SER	338	14.985	21.977	51.975
	ATOM	3458	CB	SER	338	14.632	24.099	52.112
	ATOM	3459	HB1	SER	338	15.054	25.026	51.722
•	ATOM	3460	HB2	SER	338	14.663	24.129	53.201
50				SER				
20	ATOM	3461	OG		338	13.279	24.000	51.694
	MOTA	3462	HG	SER	338	12.822	24.919	51.786
	ATOM	3463	С	SER	338	15.360	22.935	50.106
	MOTA	3464	0	SER	338	16.069	23.692	49.445
	MOTA	3465	N	PRO	339	14.516	22.103	49.568
55	ATOM	3466	CA	PRO	339	14.255	22.163	48.161
	ATOM	3467	HА	PRO	339	15.088	22.609	47.617
	ATOM	3468	CD	PRO	339	14.402	20.747	50.076
	ATOM	3469	HD1	PRO	339	13.856	20.842	51.015
60	ATOM	3470	HD2	PRO	339	15.429	20.405	50.202
UU	ATOM	3471	CB	PRO	339	13.990	20.730	47.702
	ATOM	3472	HB1	PRO	339	14.931	20.414	47.251
	MOTA	3473	HB2	PRO	339	13.166	20.822	46.996
	MOTA	3474	CG	PRO	339	13.630	19.980	48.993
	MOTA	3475	HG1	PRO	339	13.939	18.936	48.938
65	ATOM	3476	HG2	PRO	339	12.555	20.001	49.171
	ATOM	3477	С	PRO	339	13.035	23.010	48.130
	ATOM	3478	ō	PRO	339	12.498	23.283	49.203
	ATOM	3479	N	GLU	340	12.566	23.426	46.943

ATOM

3548 HH2 TRP 343

16.385 20.497 58.022

	ATOM	3480	HN	GLU	340	13.039	23.165	46.066
	MOTA	3481	CA	GLU	340	11.393	24.242	46.929
	ATOM	3482	HA	GLU	340	. 11.639	25.128	47.513
	ATOM	3483	CB	GLU	340	10.903	24.629	45.525
5	ATOM	3484	HB1	GLU	340	10.465	23.789	44.985
•	ATOM	3485		GLU	340	11.702	25.011	44.890
	ATOM	3486	CG	GLU	340	9.828	25.719	45.553
	ATOM	3487		GLU	340	10.290	26.661	45.847
	ATOM	3488		GLU	340	9.060	25.437	46.273
10	ATOM	3489	CD	GLU	340	9.220	25.846	44.163
10	ATOM	3490	OE1	GLU	340	9.038	24.792	43.499
	ATOM	3491	OE2	GLU	340	8.910		
	ATOM	3493	C	GLU	340		26.997	43.756
	ATOM	3494	0	GLU		10.319	23.421	47.551
15		3495			340	9.411	23.946	48.192
15	ATOM		N	TYR	341	10.412	22.087	47.387
	MOTA	3496	HN	TYR	341	11.209	21.680	46.877
	ATOM	3497	CA	TYR	341	9.395	21.245	47.929
	ATOM	3498	AH	TYR	341	8.461	21.552	47.458
~^	ATOM	3499	CB	TYR	341	9.632	19.753	47.675
20	ATOM	3500	HB1	TYR	341	10.303	19.407	48.461
	ATOM	3501	HB2	TYR	341	10.081	19.674	46.685
	MOTA	3502	CG	TYR	341	8.300	19.094	47.743
	MOTA	3503	CD1	TYR	341	7.518	19.074	46.613
	MOTA	3504	HD1	TYR	341	7.882	19.541	45.698
25	ATOM	3505	CD2	TYR	341	7.831	18.510	48.895
	MOTA	3506	HD2	TYR	341	8.438	18.525	49.800
	ATOM	3507	CE1	TYR	341	6.284	18.473	46.621
	MOTA	3508	HE1	TYR	341	5.679	18.453	45.714
	MOTA	3509	CE2	TYR	341	.6.594	17.906	48.907
30	ATOM	3510	HE2	TYR	341	6.230	17.433	49.819
	ATOM	3511	CZ	TYR	341	5.816	17.898	47.774
	ATOM	3512	ОН	TYR	341	4.549	17.279	47.794
	ATOM	3513	HH	TYR	341	3.827	17.980	48.016
	ATOM	3514	С	TYR	341.	9.395	21.484	49.404
35	ATOM	3515	0	TYR	341	10.318	22.088	49.946
	ATOM	3516	N	CYS	342	8.345	21.014	50.097
	MOTA	3517	HN	CYS	342	7.623	20.457	49.618
	ATOM	3518	CA	CYS	342	8.225	21.281	51.499
	ATOM	3519	HA	CYS	342	8.441	22.333	51.687
40	MOTA	3520	CB	CYS	342	6.811	20.969	52.020
	MOTA	3521	HB1	CYS	342	6.520	19.927	51.884
	ATOM	3522	HB2	CYS	342	6.031	21.552	51.529
	ATOM	3523	SG	CYS	342	6.610	21.296	53.793
	ATOM	3524	HG	CYS	342	7.043	22.533	54.072
45	MOTA	3525	С	CYS	342	9.196	20.428	52.255
	MOTA	3526	0	CYS	342	8.801	19.459	52.902
	ATOM	3527	N	TRP	343	10.498	20.774	52.202
	MOTA	3528	HN	TRP	343	10.795	21.575	51.627
	MOTA	3529	CA	TRP	343	11.470	20.028	52.947
50	ATOM	3530	HA	TRP	343	11.348	18.981	52.669
	MOTA	3531	CB	TRP	· 343	12.913	20.484	52.698
	MOTA	3532	HB1	TRP	343	13.091	21.526	52.963
	ATOM	3533		TRP	343	13.223	20.397	51.657
	MOTA	3534	CG	TRP	343	13.937	19.696	53.482
55	ATOM	3535		TRP	343	14.489	20.117	54.739
	MOTA	3536	CD1	TRP	343	14.520	18.497	53.186
	ATOM	3537	HD1	TRP	343	14.321	17.909	52.290
	MOTA	3538	NE1	TRP	343	15.394	18.141	54.186
	MOTA	3539	HE1	TRP	343	15.959	17.281	54.213
60	MOTA	3540	CE2	TRP	343	15.387	19.130	55.147
	ATOM	3541	CE3	TRP	343	14.264	21.234	55.492
	ATOM	3542	HE3	TRP	343	13.561	22.002	55.172
	ATOM	3543		TRP	343	16.075	19.245	56.322
	MOTA	3544	HZ2	TRP	343	16.774	18.475	56.647
65	ATOM	3545	CZ3	TRP	343	14.964	21.348	56.673
	ATOM	3546	HZ3		343	14.814	22.228	57.300
	MOTA	3547	CH2	TRP	343		20.373	57.080
	T mose	2540	11110	mp p	242	16 205	20 407	E0 000

	MOTA	3549	C	TRP	343	11.180	20.256	54.394
	MOTA	3550	0	TRP	343	11.151	19.320	55.189
	MOTA	3551	N	ASP	344	10.955	21.527	54.770
	ATOM	3552	HN	ASP	344	11.001	22.283	54.072
5	MOTA	3553	CA	ASP	344	10.650	21.836	56.137
	ATOM	3554	HA	ASP	344	10.573	20.877	56.651
	MOTA	3555	CB	ASP	344	11.687	22.748	56.812
	ATOM	3556	HB1	ASP	344	12.658	22.257	56.752
	ATOM	3557	HB2	ASP	344	11.388	22.890	57.850
10	ATOM	3558	CG	ASP	344	11.704	24.075	56.066
	MOTA	3559	OD1	ASP	344	11.690	24.046	54.807
	ATOM	3560	OD2	ASP	344	11.738	25.136	56.745
	MOTA	3561	С	ASP	344	9.360	22.580	56.111
	ATOM	3562	0	ASP	344	8.754	22.715	55.051
15	MOTA	3563	N	TYR	345	8.913	23.047	57.296
	ATOM	3564	HN	TYR	345	9.471	22.833	58.134
	ATOM	3565	CA	TYR	345	7.713	23.820	57.473
	ATOM	3566	HA	TYR	345	7.873	24.541	58.275
	MOTA	3567	CB	TYR	345	7.279	24.664	56.257
20	ATOM	3568	HB1	TYR	345	6.334	25.147	56.507
	MOTA	3569	HB2	TYR	345	7.163	23.991	55.408
	MOTA	3570	CG	TYR	345	8.344	25.674	55.999
	ATOM	3571	CD1	TYR	345	8.405	26.833	56.739
	MOTA	3572	HDl	TYR	345	7.668	27.013	57.521
25	MOTA	3573	CD2	TYR	345	9.279	25.464	55.012
	MOTA	3574	HD2	TYR	345	9.240	24.552	54.417
	ATOM	3575	CEl	TYR	345	9.387	27.766	56.499
	ATOM	3576	HE1	TYR	345	9.426	28.680	57.092
	ATOM	3577	CE2	TYR	345	10.263	26.393	54.769
30	MOTA	3578	HE2	TYR	345	11.000	26.215	53.985
	ATOM	.3579	CZ	TYR	345	10.318	27.546	55.513
	MOTA	3580	ОН	TYR	345	11.326	28.500	55.264
	ATOM	3581	HH	TYR	345	12.183	28.235	55.769
	MOTA	3582	С	TYR	345	6.593	22.901	57.828
35	MOTA	3583	0	TYR	345	6.663	22.172	58.815
	MOTA	3584	N	HIS	346	5.517	22.921	57.018
	MOTA	3585	HN	HIS	346	5.531	23.508	56.172
	ATOM	3586	CA	HIS	346	4.352	22.138	57.312
40	ATOM	3587	HA	HIS	346	4.231	22.053	58.392
40	ATOM	3588	ND1	HIS	346	2.100	24.270	58.548
	ATOM	3589		HIS	346	1.748	23.531	59.174
	ATOM	3590	CG	HIS	346	2.747	24.090	57.346
	ATOM	3591	NE2	HIS	346	2.559	26.299	57.763
15	ATOM	3592	HE2	HIS	346	2.625	27.323 25.339	57.671 56.880
45	MOTA	3593		HIS	346	3.020	25.553	
	ATOM	3594		HIS	346	3.532		55.942
	MOTA	3595		HIS HIS	346 346	2.013 1.548	25.609 26.064	58.748 59.623
	ATOM	3596.	CB	HIS	346	3.057	22.749	56.750
50	MOTA MOTA	3597 3598		HIS	346	2.184	22.124	56.938
	ATOM	3599		HIS	346	3.098	22.898	55.671
	ATOM	3600	C	HIS	346	4.501	20.774	56.722
	ATOM	3601	Ö	HIS	346	5.584	20.370	56.303
	ATOM	3602	N	ILE	347	3.386	20.016	56.706
55	ATOM	3603	HN	ILE	347	2.511	20.405	57.086
55	ATOM	3604	CA	ILE	347	3.382	18.685	56.175
	ATOM	3605	ΗA	ILE	347	4.426	18.419	56.014
	ATOM	3606	СВ	ILE	347	2.720	17.696	57.097
	ATOM	3607	HB	ILE	347	1.703	18.029	57.308
60	ATOM	3608	CG2		347	2.685	16.317	56.415
-	ATOM	3609	HG2		347	2.206	15.596	57.078
	ATOM	3610		ILE	347	2.121	16.385	55.485
	ATOM	3611	HG2		347	3.703	15.992	56.200
	MOTA	3612	CG1		347	3.452	17.675	58.449
65	ATOM	3613	HG1		347	3.633	18.667	58.862
	MOTA	3614	HG1		347	4.433	17.202	58.406
	ATOM	3615	CD1		347	2.696	16.922	59.541
	MOTA	3616	HD1	ILE	347	3.271	16.948	60.467

	MOTA	3617	HD1	ILE	347	1.726	17.393	59.703
	MOTA	3618	HD1	ILE	347	2.549	15.886	59.234
	MOTA	3619	С	ILE	347	2.603	18.747	54.899
	MOTA	3620	ō	ILE	347	1.826	19.676	54.687
-								
5	MOTA	3621	N	GLY	348	2.806	17.764	53.999
	MOTA	3622	HN	GLY	348	3.450	16.991	54.220
	ATOM	3623	CA	GLY	348	2.130	17.791	52.735
	ATOM	3624		GLY	348	2.777	17.356	51.974
	MOTA	3625		GLY	348	1.898	18.824	52.476
10	MOTA	3626	С	GLY	348	0.865	16.999	52.839
	MOTA	3627	0	GLY	348	0.819	15.955	53.488
	MOTA	3628	N	LEU	349	-0.199	17.489	52.169
		3629			349			
	ATOM		HN	LEU		-0.093	18.365	51.638
	MOTA	3630	CA	LEU	349	-1.474	16.829	52.172
15	MOTA	3631	HA	LEU	349	-1.474	16.133	53.011
	ATOM	3632	CB	LEU	349	-2.666	17.793	52.297
	MOTA	3633	HB1	LEU	349	-3.634	17.298	52.226
	MOTA	3634		LEU	349	-2.683	18.565	51.527
:	MOTA	3635 [.]	CG	LEU	349	-2.701	18.557	53.634
20	MOTA	3636	HG	LEU	349	-3.510	19.288	53.652
	ATOM	3637	CD2		349	-1.462	19.452	53.800
	ATOM	3638	HD2		349	-1.518	19.977	54.754
	ATOM	3639	HD2	LEU	349	-0.563	18.836	53.777
	ATOM	3640	HD2	LEU	349	-1.425	20.178	52.988
25	ATOM	3641	CD1		349	-2.913	17.601	54.819
23								
	MOTA	3642		LEU	349	-2.933	18.172	55.748
	ATOM	3643	HD1	LEU	349	-3.860	17.074	54.697-
	ATOM	3644	HD1	LEU	349	-2.098	16.879	54.854
	ATOM	3645	С	LEU	349	-1.606	16.118	50.863
30	ATOM	3646	ō	LEU	349	-1.295	16.653	49.799
50								
	ATOM	3647	N	PRO	350	-2.044	14.895	50.948
	MOTA	3648	CA	PRO	350	-2.150	14.088	49.763
	ATOM	3649	HA	PRO	350	-1.272	14.281	49.147
	MOTA	3650	CD	PRO	350	-1.680	14.100	52.112
35	ATOM	3651	HD1	PRO	350	-2.555	14.110	52.762
33								
	MOTA	3652	HD2	PRO	350	-0.817	14.601	52.553
	ATOM	3653	CB	PRO	350	-2.095	12.634	50.233
	ATOM	3654	HB1	PRO	350	-1.550	12.120	49.442
	MOTA	3655	HB2	PRO	350	-3.142	12.343	50.318
40	ATOM	3656	CG	PRO	350	-1.349	12.702	51.573
40								
	ATOM	3657	HG1	PRO	350	-0.303	12.561	51.301
	ATOM	3658	HG2	PRO	350	-1.776	11.885	52.154
	ATOM	3659	С	PRO	350	-3.349	14.333	48.904
	ATOM	3660	0	PRO	350	-4.389	14.753	49.409
45								
45	MOTA	3661	N	ALA	351	-3.196		47.590
	MOTA	3662	HN	ALA	351	-2.249	13.861	47.246
	ATOM	3663	CA	ALA	351	-4.271	14.084	46.642
	ATOM	3664	HA	ALA	351	-5.229	14.262	47.131
	ATOM	3665	СВ	ALA	351	-4.081	15.093	45.497
50								
50	MOTA	3666		ALA	351	-4.934	15.041	44.821
	ATOM	3667	HB2	ALA	351	-4.005	16.099	45.909
	ATOM	3668	нвз	ALA	351	-3.169	14.854	44.950
	ATOM	3669	С	ALA	351	-4.186	12.713	46.052
				ALA	351	-3.225		
	ATOM	3670	0				12.399	45.352
55	ATOM	3671	N	ASP	352	-5.192	11.857	46.309
	MOTA	3672	HN	ASP	352	-6.044	12.188	46.784
	MOTA	3673	CA	ASP	352	-5.073	10.481	45.917
			HA	ASP	352	-4.059	10.115	
•	ATOM	3674						46.077
	ATOM	3675	CB	ASP	352	-6.015	9.561	46.717
60	MOTA	3676	HB1	ASP	352	-7.046	9.710	46.396
	MOTA	3677	HB2	ASP	352	-5.942	9.784	47.781
	ATOM	3678	CG	ASP	352	-5.636	8.100	46.493
						-5.393		
	ATOM	3679		ASP	352		7.704	45.322
	MOTA	3680		ASP	352	-5.597	7.354	47.506
65	ATOM	3681	С	ASP	352	-5.401	10.306	44.469
	MOTA	3682	0	ASP	352	-6.490	9.847	44.128
	ATOM	3683	N	ILE	353	-4.451	10.655	43.580
	MOTA	3684	HN	ILE	353	-3.585	11.100	43.918

	ATOM	3685	CA	ILE	353	-4.614	10.421	42.174
	MOTA	3686	HA	ILE	353	-5.130	9.465	42.076
	MOTA	3687	CB	ILE	353	-5.385	11.489	41.444
	MOTA	3688	HB	ILE	353	-5.369	11.263	40.378
5	MOTA	3689	CG2	ILE	353	-6.831	11.495	41.967
	MOTA	3690	HG2	ILE	353	-7.403	12.264	41.447
	MOTA	3691	HG2	ILE	353	-7.287	10.521	41.787
	MOTA	3692	HG2	ILE	353	-6.831	11.703	43.036
	MOTA	3693	CG1	ILE	353	-4.682	12.852	41.552
10	ATOM	3694	HG1	ILE	353	-5.226	13.569	40.939
	MOTA	3695	HG1	ILE	353	-3.659	12.739	41.192
	MOTA	3696	CD1	ILE	353	-4.617	13.407	42.974
	ATOM	3697		ILE	353	-4.106	14.370	42.966
	ATOM	3698	HD1	ILE	353	-5.628	13.537	43.361
15	MOTA	3699	HD1	ILE	353	-4.071	12.712	43.612
	ATOM	3700	C	ILE	353	-3.240	10.386	41.586
,	ATOM	3701	0	ILE	353	-2.372	11.154	41.993
	ATOM	3702	N	LYS	354	-2.986	9.477	40.623
	ATOM	3703	HN	LYS	354	-3.706	8.806	40.319
20	ATOM	3704	CA	LYS	354	-1.676	9.479	40.039
	ATOM	3705	HA	LYS	. 354	-1.013	9.932	40.777
	ATOM	3706	CB	LYS	354	-1.200	8.073	39.637
	MOTA	3707	HB1		354	-0.230	8.069	39.140
	ATOM	3708	HB2		354	-1.877	7.567	38.949
25	ATOM	3709	CG	LYS	354	-1.047	7.120	40.824
23	ATOM	3710	HG1		354	-0.453	7.527	41.643
	ATOM	3711		LYS	354	-0.563	6.176	40.572
	ATOM	3712	CD	LYS	354	-2.375	6.717	41.469
	ATOM	3713		LYS	354	-3.055	6.210	40.784 "
30	ATOM	3714		LYS	354	-2.943	7.561	41.860
50	ATOM	3715	CE	LYS	354	-2.215	5.761	42.652
	ATOM	3716		LYS	354	-1.608	6.227	43.427
	ATOM	3717		LYS	354	-1.729	4.842	42.324
	ATOM	3718	NZ	LYS	354	-3.543	5.428	43.215
35	ATOM	3719		LYS	354	-3.427	4.784	44.011
33	ATOM	3720		LYS	354	-4.006	6.290	43.536
	ATOM	3721		LYS	354	-4.121	4.978	42.491
	ATOM	3722	C	LYS	354	-1.776	10.287	38.791
	ATOM	3723	Ö	LYS	354	-1.149	9.986	37.778
40	ATOM	3724	N	LEU	355	-2.588	11.352	38.843
	ATOM	3725	HN	LEU	355	-3.084	11.560	39.721
	ATOM	3726	CA	LEU	355	-2.787	12.208	37.714
	ATOM	3727	HA	LEU	355	-2.937	11.591	36.828
	ATOM	3728	CB	LEU	355	-3.989	13.145	37.908
45	ATOM	3729		LEU	355	-4.228	13.731	37.021
	ATOM	3730		LEU	355	-3.845	13.875	38.704
	ATOM	3731	CG	LEU	355	-5.290	12.404	38.267
	ATOM	3732	HG	LEU	355	-5.209	11.908	39.234
	ATOM	3733		LEU	355	-5.537	11.204	37.343
50	ATOM	3734		LEU	355	-6.464	10.708	37.629
50	ATOM	3735		LEU	355	-5.613	11.548	36.312
	ATOM	3736		LEU	355	-4.708	10.501	37.430
	ATOM	3737		LEU	355	-6.482	13.372	38.340
	MOTA	3738		LEU	355	-7.385	12.818	38.596
55	ATOM	3739		LEU	355	-6.291	14.127	39.103
,,,	ATOM	3740		LEU	355	-6.615	13.858	37.374
	ATOM	3741	C	LEU	355	-1.577	13.067	37.545
	MOTA	3742	Ö	LEU	355	-1.167	13.390	36.432
	ATOM	3743	N	VAL	356	-0.974	13.447	38.680
60	ATOM	3743		. VAT	356	-1.281	13.447	39.571
UU	ATOM	3744	CA	VAL	356	0.081	14.411	38.695
		3745	HA.	VAL	356 356	-0:239	15.400	38.370
	ATOM		CB	VAL	356 356	0.613	14.654	40.076
	ATOM ATOM	3747 3748	HB	VAL	356	-0.188	15.056	40.696
65				VAL	356	1.113	13.323	40.656
0.5	ATOM ATOM	3749 3750		VAL	356 356	1.113	13.323	41.661
	ATOM	3751		VAL	356	0.289	12.612	40.699
	ATOM	3752		VAL	356 ·	1.905	12.924	40.033
	AT ON	3132	uer	٧ML	220	1.905	16.364	70.021

	MOTA	3753	CG2	WAT.	356		1.686	15.754	39.997
	MOTA	3754	HG2		356		2.085	15.945	40.993
	ATOM	3755	HG2		356		2.492	15.429	39.340
	MOTA	3756		VAL	356		1.242	16.668	39.603
5		3757		VAL	356		1.242	14.042	
)	MOTA								37.801
	ATOM	3758		VAL	356		1.563	14.814	36.907
	ATOM	3759		LYS	357		1.857	12.864	37.971
	. ATOM	3760		LYS	357		1.538	12.139	38.628
• •	MOTA	3761		LYS	357		3.021	12.723	37.145
10	MOTA	3762		LYS	357	•	3.075	13.488	36.370
	ATOM	3763		LYS	357		4.366	12.769	37.900
	MOTA	3764		LYS	357		5.164	12.753	37.158
	MOTA	3765	HB2	LYS	357		4.412	11.894	38.548
	MOTA	3766	CG .	LYS,	. 357		4.616	13.991	38.790
15	ATOM	3767	HG1	LYS	357		4.238	14.919	38.361
	MOTA	3768	HG2	LYS	357		5.673	14.170	38.986
	ATOM	3769	CD	LYS	357		3.959	13.879	40.166
	MOTA	3770	HD1	LYS	357		4.246	12.924	40.606
	ATOM	3771	HD2	LY\$	357		2.878	13.932	40.033
20	ATOM	3772	CE	LYS	357		4.358	14.980	41.150
	ATOM	3773	HE1		357		4.076	15.953	40.750
	ATOM	3774		LYS	357		5.435	14.958	41.312
	ATOM	3775	NZ	LYS	357		3.668	14.770	42.444
	MOTA	3776	HZ1		357		3.940	15.513	43.103
25	ATOM	3777	_	LYS	357		2.649	14.796	42.299
	ATOM	3778		LYS	357		3.936	13.854	42.831
	ATOM	3779	C	LYS	357		3.062	11.409	36.443
	MOTA	3780	Ö	LYS	357		2.441	10.425	36.844
	ATOM	3781	N	MET	358		3.820	11.423	35.329
30	ATOM	3782	HN	MET	358		4.173	12.343	35.030
50	MOTA	3783	CA	MET	358		4.194	10.306	34.514
		3784	HA	MET	358		4.098	9.364	35.054
	ATOM	3785	CB	•	358		3.394	10.245	33.203
	ATOM	3786		MET	358		3.750	11.041	32.550
35	MOTA			MET	358		2.339	10.383	33.441
33	ATOM	3787	HB2						
	ATOM	3788	CG	MET	358		3.524	8.931	32.439
	MOTA	3789		MET	358		3.163	8.127	33.081
	MOTA	3790	HG2		358		4.576	8.785	32.191
40	ATOM	3791	SD	MET	358		2.583	8.851	30.885
40	MOTA	3792	CE	MET	358		3.706	9.922	29.944
	ATOM	3793	HE1		358		3.335	10.032	28.925
	ATOM	3794	HE2	MET	358		3.758	10.901	30.419
•	ATOM	3795	HE3	MET	358		4.700	9.476	29.922
	ATOM	3796	C	MET	358		5.620	10.646	34.193
45	ATOM	3797	0	MET	358		5.921	11.821	33.992
	ATOM	3798	N	SER	359		6.563	9.678	34.147
	MOTA	3799	HN	SER	359		6.347	8.674	34.227
	MOTA	3800	CA	SER	359		7.899	10.188	33.975
	MOTA	3801	HA	SER	359		7.932	11.039	33.296
50	MOTA	3802	CB	SER	359		8.435	10.752	35.314
	ATOM	3803	HB1	SER	359		8.438	10.019	36.121
	MOTA	3804	HB2	SER	359		7.855	11.594	35.691
	ATOM	3805	OG	SER	359		9.770	11.223	35.231
	MOTA	3806	HG	SER	359		10.404	10.542	35.672
55	ATOM	3807	C	SER	359		8.838		33.409
	ATOM .	3808	0	SER	359		8.455	8.052	33.024
	MOTA	3809	N	TRP	360		10.120	9.515	33.241
	ATOM	3810	HN	TRP	360		10.396	10.491	33.419
	MOTA	3811	CA	TRP	360		11.110	8.569	32.818
60	ATOM	3812	HA	TRP	360		10.756	7.591	33.145
	ATOM	3813	СВ	TRP	360		11.354	8.542	31.297
	ATOM	3814	HB1	TRP	360		12.306	8.044	31.111
	ATOM	3815	HB2	TRP	360		11.383	9.570	30.936
	ATOM	3816	CG	TRP	360		10.290	7.809	30.512
65	ATOM	3817	CD2	TRP	360		9.025		30.117
	ATOM	3818	CD1	TRP	360		10.307	6.524	30.054
	ATOM	3819	HD1	TRP	360		11.130	5.823	30.191
	ATOM	3820	NE1	TRP	360		9.135	6.244	29.396
	- • • • • • • • •	2220							

	ATOM	3821	HE1	TRP	360	8.893	5.346	28.952
	ATOM	3822	CE2	TRP	360	8.336	7.367	29.428
	ATOM	3823	CE3	TRP	360	8.482	9.600	30.315
	ATOM	3824	HE3	TRP	360	9.021	10.378	30.857
5	ATOM	3825	CZ2	TRP	360	7.087	7.591	28.924
	MOTA	3826	HZ2	TRP	360	6.545	6.813	28.386
	ATOM	3827	CZ3	TRP	360	7.223	9.824	29.802
	ATOM	3828	HZ3	TRP	360	6.758	10.800	29.938
	ATOM	3829	CH2	TRP	360	6.538	8.840	29.121
10	MOTA	. 3830	HH2	TRP	360	5.544	9.054	28.730
	ATOM	3831	С	TRP	360	12.381	8.970	33.487
	ATOM	3832	0	TRP	360	12.598	10.150	33.753
	ATOM	3833	N	GLN	361	13.264	7.996	33.790
	MOTA	3834	HN	GLN	361	13.084	7.016	33.531
15	ATOM	3835	CA	GLN	361	14.460	8.370	34.486
	MOTA	. 3836	HA	GLN	361	14.467	9.444	34.669
	ATOM	3837	CB	GLN	361	14.621	7.684	35.851
	ATOM	3838	HB1	GLN	361	14.654	6.597	35.790
	MOTA	3839	HB2	GLN	361	13.811	7.906	36.546
20	MOTA	3840	CG	GLN	361	15.902	8.084	36.587
	MOTA	3841	HG1	GLN	361	15.875	9.162	36.749
	ATOM	3842	HG2	GLN	361	16.750	7.806	35.962
	ATOM	3843	CD	GLN	361	15.935	7.338	37.912
	MOTA	3844	OE1	GLN	361	15.019	6.582	38.234
25	MOTA	3845	NE2	GLN	361	17.017	7.555	38.705
	ATOM	3846	HE2	GLN	361	17.762	8.197	38.396
	ATOM	3847	HE2	GLN	361	17.093	7.079	39.615
	MOTA	3848	С	GLN	361	15.662	8.012	33.670
	ATOM	3849	HC	GLN	361	16.428	8.765	33.483
30	ATOM	3850	0	GLN	361	15.798	6.880	33.208
	MOTA	3851	MN	MET	362	15.622	12.956	35.080

- 98 -

Table 5

Residue number will be set to the conformation's cluster rank.

```
MODEL
                  9
     USER
             Run = 9
     USER
             Cluster Rank = 1
     USER
             Number of conformations in this cluster = 30
     USER
10
     USER
             RMSD from reference structure
                                                 =-2.450 A
     USER
     USER
             Estimated Free Energy of Binding
                                                 = -8.72 \text{ kcal/mol} [=(1)+(3)]
             Estimated Inhibition Constant, Ki = +4.04e-07 [Temperature = 298.15 K]
     USER
     USER
15
     USER
             Final Docked Energy
                                                 -11.73 \text{ kcal/mol} = (1)+(2)
      USER
              (1) Final Intermolecular Energy = -10.90 kcal/mol
      USER
              (2) Final Internal Energy of Ligand = -0.82 kcal/mol
      USER
              (3) Torsional Free Energy = +2.18 kcal/mol
      USER
20
      USER
      USER
             DPF = test.dpf
      USER
             NEWDPF move udp_tr.pdbq
NEWDPF about16.792999 18.735001 34.970001
      USER
      USER
25
             NEWDPF tran016.520614 19.803704 34.894085
      USER
              NEWDPF quat0-0.767123 -0.504336 0.396444 20.877983
      USER
             NEWDPF ndihe7
      USER
             NEWDPF dihe0-172.23 93.36 -16.11 -9.99 -31.01 0.20 156.88
      USER
      USER
30
      USER
                                       х
                                               У
                                                       Z
                                                               vdW
                                                                      Elec
                                                                               q
                                                                                      RMS.
                                      18.167 20.363 33.367
                                                               -0.38
                                                                      -0.11
                                                                            -0.211 2.450
                1 N1 UDP
                             1
      MOTA
                2 C2
                      UDP
                                      18.485
                                             21.574
                                                     32.818
                                                               -0.84
                                                                      +0.28
                                                                             +0.396 2.450
      MOTA
                              1
                                             21.872
                                                      32.732
                                                             -0.53
                                                                      -0.40
                                                                             -0.440 2.450
      MOTA
                3 N3
                      UDP
                              1
                                      19.821
                                      20.069 22.789
                                                                             +0.440 2.450
      MOTA
                4 H3
                      UDP
                              1
                                                     32.334
                                                               +0.07
                                                                      +0.53
                                                     33.133 - -0.75 +0.30
                                      20.878 21.052
                                                                             +0.396 2.450
35
      MOTA
                5 C4
                      UDP
                              . 1
                                      20.479 19.798
                                                     33.691
                                                               -0.55 + 0.00
                                                                             +0.000 2.450
      MOTA
                6 C5
                      UDP
                              1
                                      19.174 19.496
                                                     33.774
                                                               -0.49 + 0.00
                                                                             +0.000 2.450
      ATOM
                7 C6
                      UDP
                              1
                8 02
                      UDP
                              1
                                      17.619 22.362
                                                     32.433
                                                               -0.35 -0.26
                                                                             -0.396 2.450
      MOTA
                9 04
                                      22.026 21.474
                                                     32.994
                                                               -0.24
                                                                      -0.27
                                                                             -0.396 2.450
                      UDP
      MOTA
                              1
 40
               10 C1' UDP
                                      16.753 19.988
                                                     33.503
                                                               -0.65
                                                                      +0.07
                                                                             +0.324
                                                                                     2.450
      ATOM
                              1
      MOTA
               11
                  C2'
                      UDP
                              1
                                      16.402
                                             18.617
                                                      32.920
                                                               -0.60
                                                                      +0.00
                                                                             +0.113
                                                                                     2.450
                                      15.116 18.296
      ATOM
               12
                   C3'
                      UDP
                              1
                                                     33.717
                                                               -0.67
                                                                      +0.00
                                                                             +0.113
                                                                                     2.450
                                      15.358 18.950
                                                     35.076
                                                               -0.56
                                                                             +0.113
                                                                      +0.02
      MOTA
               13
                   C4' UDP
                              1
                                                                                     2.450
                  O4' UDP
                                      16.521 19.804
                                                     34.894
                                                               -0.07
                                                                      -0.07
                                                                             -0.227
               14
                              1
                                                                                     2.450
      ATOM
                                      16.102 18.725
                                                     31.548
 45
      MOTA
               15
                   O2' UDP
                              1
                                                               -0.24
                                                                      +0.17
                                                                             -0.537
                                                                                     2.450
                 HO2'UDP
                                      15.697 17.839
                                                     31.214
                                                               -0.28
                                                                      -0.47
                                                                             +0.424 2.450
      ATOM
               16
                                                     33.051
                                                               -0.27
                                      14.035 18.955
      ATOM
               17
                  O3' UDP
                              1
                                                                      +0.16
                                                                             -0.537 2.450
                                      14.102 18.785
                                                     32.037
                                                               -0.17
                                                                      -0.28
                                                                             +0.424 2.450
               18 HO3'UDP
                              1
      MOTA
                                      15.666 17.939
15.126 18.439
               19 C5' UDP
                              1
                                                     36.181
                                                                -0.30
                                                                      +0.04
                                                                             +0.113
                                                                                     2.450
      MOTA
 50
      MOTA
               20
                  O5' UDP
                               1
                                                     37.390
                                                                +0.00
                                                                      -0.18
                                                                             -0.368
                                                                                     2.450
                                      15.642 18.457
                                                     38.881
                                                               -0.61
                                                                      +0.45
                                                                             +1.019
      MOTA
               21 PA
                      UDP
                               1
                                                                                     2.450
                                                                -0.15 -0.08
                                      17.132 18.480 38.845
                                                                             -0.255
               22 O1A UDP
                               1
                                                                                     2.450
      ATOM
                                      14.933 19.550 39.617
               23 O2A UDP
                               1
                                                                -0.24 -0.09
                                                                             -0.255 2.450
      MOTA
                  O3A UDP
                                      15.133 16.987
                                                     39.239
                                                                -0.07
                                                                      -0.23
                                                                             -0.510 2.450
      MOTA
               24
 55
      MOTA
               25 PB UDP
                               1
                                      15.835 15.723
                                                     39.920
                                                                -0.72 + 0.43
                                                                             +1.019
               26 O1B UDP
                                      15.020
                                              14.448
                                                     39.353
                                                                -0.03
                                                                      -0.11
                                                                             -0.255 2.450
                              1
      ATOM
      MOTA
               27
                   O2B UDP
                               1
                                      15.532
                                              15.971
                                                     41.352
                                                                -0.68
                                                                      -0.23
                                                                             -0.255
                                                                                     2,450
      ATOM
               28
                   O3B UDP
                               1
                                      17.233
                                              15.484 39.480
                                                                -0.12
                                                                      -0.06
                                                                             -0.255
      TER
 60
      ENDMDL
      MODEL
                  94
      USER
              Run = 94
              Cluster Rank = 1
      USER
      USER
              Number of conformations in this cluster = 30
 65
      USER
                                                  = 2.311 A
      USER
              RMSD from reference structure
      USER
```

- 99 -

```
= -8.70 kcal/mol [=(1)+(3)]
     USER
            Estimated Free Energy of Binding
     USER
            Estimated Inhibition Constant, Ki
                                                    +4.17e-07
                                                                   [Temperature = 298.15 K]
     USER
                                                = -11.71 \text{ kcal/mol} [=(1)+(2)]
     USER
            Final Docked Energy
     USER
             (1) Final Intermolecular Energy ≈ -10.88 kcal/mol
     USER
     USER
             (2) Final Internal Energy of Ligand ≈ -0.82 kcal/mol
                                            = +2.18 kcal/mol
     USER
             (3) Torsional Free Energy
     USER
     USER
10
     USER
            DPF = test.dp\bar{f}
     USER
            NEWDPF move udp_tr.pdbq
     USER
            NEWDPF about16.792999 18.735001 34.970001
     USER
            NEWDPF tran016.394484 19.723058 34.607480
15
     USER
            NEWDPF guat00.577475 0.654292 -0.488287 -20.995277
     USER
            NEWDPF ndihe7
     USER
            NEWDPF dihe0-101.36 -19.47 179.91 29.29 -15.02 1.94 142.30
     USER
     USER
                                                                      Elec
                                                               Why
                                                                                      RMS
                          Rank
                                      х
                                              У
                                                       Z
20
     MOTA
              1 N1
                     UDP
                            1
                                     18.076 20.461
                                                    33.199
                                                               -0.40 -0.10
                                                                            -0.211 2.311
     MOTA
               2 C2
                     UDP
                                     18.358 21.720
                                                    32.747
                                                               -0.87 + 0.28 + 0.396 2.311
                              1
                                     19.681 22.084 32.744
                                                                            -0.440 2.311
     ATOM
               3 N3
                     UDP
                                                               -0.50 -0.45
                              1
                                     19.900 23.036
                                                   32.419
                                                               +0.10 +0.73
                                                                            +0.440 2.311
     MOTA
               4 H3
                     UDP
                              1
                                     20.757 21.288
20.397 19.982
19.106 19.615
17.472 22.491
                                                                            +0.396
     ATOM
               5
                 C4
                      UDP
                              1
                                                     33.138
                                                               -0.77
                                                                      +0.32
                                                                                     2.311
25
     MOTA
               6
                 C5
                      UDP
                              1
                                                     33.593
                                                               -0.58 + 0.00
                                                                            +0.000
                                                                                     2.311
                                                                            +0.000
     ATOM
               7
                 C6
                      UDP
                              1
                                                    33.595
                                                               -0.51 + 0.00
                                                                                     2.311
                                                                            -0.396
                                                               -0.37 -0.26
     MOTA
               8
                 02
                      UDP
                                                    32.375
                                                                                    2.311
                              1
               9
                                     21.888 21.771 33.081
                                                               -0.27 -0.29
                                                                            -0.396
     MOTA
                 04
                      UDP
                                                                                     2.311
                              1
                                     16.678 20.012 33.244
     MOTA
              10 C1'
                      UDP
                              1
                                                               -0.68 + 0.06 + 0.324
                                                                                     2.311
30
     MOTA
                 C2 1
                      UDP
                              1
                                     16.420 18.670 32.556
                                                               -0.65 -0.01 +0.113
              11
                                                                                     2.311
     MOTA
              12 C3' UDP
                              1
                                     15.118 18.236 33.269
                                                               -0.69 -0.02 +0.113
                                                                                     2.311
                                     15.269 18.807
     MOTA
                              1
                                                    34.678
                                                               -0.55 +0.01 +0.113
              13 C4' UDP
                                                                                     2.311
                                     16.394 19.723
16.175 18.857
                                                    34.607
     MOTA
              14
                 O4' UDP
                              1
                                                               -0.07
                                                                      -0.05
                                                                            -0.227
                                                                                     2.311
     MOTA
              15
                 O2' UDP
                              1
                                                     31.182
                                                               -0.21
                                                                     +0.16
                                                                            -0.537
                                                                                     2.311
                                     15.160 18.851
                                                                            +0.424
35
                 HO2'UDP
                                                    31.009
                                                               -0.25
                                                                      -0.40
     MOTA
              16
                              1
                                                                                     2.311
                                                                            -0.537
                 03' UDP
                                     14.037 18.889 32.598
                                                               -0.19 + 0.23
     ATOM
              17
                              1
                                                                                     2.311
     MOTA
              18
                 HO3'UDP
                              1
                                     14.100 19.905 32.752
                                                               -0.41
                                                                     -0.42 + 0.424 2.311
     MOTA
              19
                 C5' UDP
                              1
                                     15.577 17.738 35.727
                                                               -0.35 +0.04
                                                                            +0.113 2.311
                                     15.265 18.274
                                                    36.999
                                                                            -0.368 2.311
     ATOM
              20 05' UDP
                              1
                                                               +0.05 -0.17
     MOTA
              21
                 PA UDP
                              1
                                     15.981 18.217
                                                    38.403
                                                               -0.56 +0.43 +1.019
                                                                                    2.311
                                     17.432 18.480 38.185
15.236 19.101 39.354
15.744 16.656 38.636
                                                                      -0.08
                 O1A UDP
                                                                            -0.255
     MOTA
              22
                              1
                                                               -0.13
                                                                                    2.311
     MOTA
              23
                 O2A UDP
                              1
                                                               -0.20 -0.11
                                                                            -0.255
                                                                                    2.311
                              1 ·
                                                               +0.01 -0.22 -0.510 2.311
              24 O3A UDP
     ATOM
                                     16.303 15.613 39.711
              25 PB UDP
                                                               -0.67 +0.38
                                                                            +1.019
     ATOM
                              1
                                                                                     2.311
45
     MOTA
              26 O1B UDP
                              1
                                     16.262 16.411 41.115
                                                               -0.60 -0.27
                                                                             -0.255 2.311
     ATOM
              27 O2B UDP
                              1
                                     17.695 15.431
                                                     39.228
                                                               -0.12 -0.05 -0.255
                                                                                     2.311
              28 O3B UDP
     ATOM
                              1
                                     15.428 14.435 39.937
                                                               -0.08 -0.10 -0.255
     TER
     ENDMDL
50
                 92
     MODET.
     USER
             Run = 92
     USER
             Cluster Rank = 1
             Number of conformations in this cluster = 30
     USER
     USER .
55
     USER
             RMSD from reference structure
                                                 = 2.359 A
     USER
     USER
             Estimated Free Energy of Binding
                                                 =
                                                     -8.92 \text{ kcal/mol} = (1) + (3)
             Estimated Inhibition Constant, Ki
     USER
                                                     +2.89e-07
                                                                  [Temperature = 298.15 K]
     USER
60
     USER
             Final Docked Energy
                                                 = -11.69 \text{ kcal/mol} [=(1)+(2)]
     USER
     USER
             (1) Final Intermolecular Energy
                                              - -11.10 kcal/mol
     USER
             (2) Final Internal Energy of Ligand = -0.59 kcal/mol
                                                    +2.18 kcal/mol
     USER
             (3) Torsional Free Energy
65
     USER
     USER
     USER
             DPF = test.dpf
             NEWDPF move udp_tr.pdbq
     USER
```

- 100 -

```
NEWDPF about16.792999 18.735001 34.970001
         USER
         USER
                         NEWDPF tran016.539656 19.734441 34.728197
         USER
                         NEWDPF quat0-0.689836 -0.566725 0.450499 25.546722
         USER
                         NEWDPF ndihe7
         USER
                        NEWDPF dihe0-130.87 -28.43 -171.32 27.28 8.87 -22.44 135.77
    . . USER
          USER
                                                                                                                          vdW
                                                                                                                                       Elec
                                                                                                                                                                      RMS
                                                 Rank
                                                                                                          z
                                                                                                                                                      q
                                                                           x
                                                                                         У
                                                                      18.242 20.356 33.288 -0.37 -0.11 -0.211 2.359
                             1 N1 UDP 1
         MOTA
                                                                   18.519 21.569 32.723 -U.04 TU.2, 2.359
19.837 21.949 32.710 -0.51 -0.42 -0.440 2.359
10.10 +0.55 +0.440 2.359
                                                                       18.519 21.569 32.723 -0.84 +0.27 +0.396 2.359
                                                          1
                             2 C2 UDP
         MOTA
                             3 N3 UDP
10
       MOTA
                          3 N3 UDP 1 19.837 21.949 32.710 -0.51 -0.42 -0.44U 2.359 4 H3 UDP 1 20.052 22.868 32.300 +0.10 +0.55 +0.440 2.359 5 C4 UDP 1 20.914 21.209 33.200 -0.76 +0.32 +0.396 2.359 6 C5 UDP 1 20.559 19.948 33.772 -0.58 +0.00 +0.000 2.359 7 C6 UDP 1 19.273 19.566 33.784 -0.50 +0.00 +0.000 2.359 8 O2 UDP 1 17.631 22.290 32.261 -0.35 -0.24 -0.396 2.359 9 O4 UDP 1 22.040 21.699 33.119 -0.26 -0.29 -0.396 2.359 10 C1' UDP 1 16.848 19.895 33.349 -0.66 +0.07 +0.324 2.359 11 C2' UDP 1 16.619 18.490 32.788 -0.58 +0.00 +0.113 2.359 12 C3' UDP 1 15.308 18.109 33.514 -0.64 -0.01 +0.113 2.359 13 C4' UDP 1 15.423 18.814 34.865 -0.57 +0.02 +0.113 2.359
                                                          1
        MOTA
         MOTA
          MOTA
         MOTA
15
         MOTA
          MOTA
          MOTA
          MOTA
                      12 C3' UDP 1 15.308 18.109 33.514 -0.64 -0.01 +0.113 2.359 13 C4' UDP 1 15.423 18.814 34.865 -0.57 +0.02 +0.113 2.359 14 O4' UDP 1 16.540 19.734 34.728 -0.07 -0.07 -0.227 2.359 15 O2' UDP 1 16.401 18.541 31.398 -0.22 +0.14 -0.537 2.359 16 HO2'UDP 1 15.535 18.034 31.167 -0.34 -0.48 +0.424 2.359 17 O3' UDP 1 14.233 18.680 32.763 -0.29 +0.18 -0.537 2.359 18 HO3'UDP 1 14.190 19.693 32.939 -0.39 -0.32 +0.424 2.359 19 C5' UDP 1 15.722 17.855 36.017 -0.34 +0.04 +0.113 2.359 20 O5' UDP 1 15.522 18.557 37.230 -0.04 -0.17 -0.368 2.359 21 PA UDP 1 15.972 18.295 38.719 -0.53 +0.43 +1.019 2.359 22 O1A UDP 1 17.449 18.480 38.787 -0.16 -0.07 -0.255 2.359 23 O2A UDP 1 15.622 16.738 38.716 +0.00 -0.22 -0.510 2.359 25 PB UDP 1 15.963 15.538 39.716 -0.67 +0.40 +1.019 2.359 26 O1B UDP 1 15.963 15.538 39.716 -0.67 +0.40 +1.019 2.359 26 O1B UDP 1 15.439 15.465 39.574 -0.14 -0.04 -0.255 2.359 28 O3B UDP 1 15.130 14.324 39.526 -0.04 -0.11 -0.255 2.359 28 O3B UDP 1 15.130 14.324 39.526 -0.04 -0.11 -0.255 2.359 28 O3B UDP 1 15.130 14.324 39.526 -0.04 -0.11 -0.255 2.359
          MOTA
         ATOM
          MOTA
          MOTA
          ATOM
          MOTA
          MOTA
          ATOM
          MOTA
          ATOM
          MOTA
30
          ATOM
          MOTA
          MOTA
          MOTA
          ATOM
35
          MOTA
          TER
          ENDMDL
                                 80
          MODEL
                          Run = 80
          USER
40
          USER
                          Cluster Rank = 1
          USER
                          Number of conformations in this cluster = 30
           USER
           USER
                          RMSD from reference structure
                                                                                             ⇒ 2.428 A
          USER
45
                         Estimated Free Energy of Binding = -8.73 \text{ kcal/mol} [=(1)+(3)]
          USER
           USER
                          Estimated Inhibition Constant, Ki = +4.00e-07 [Temperature = 298.15 K]
           USER
                                                                                                = -11.68 \text{ kcal/mol} [=(1)+(2)]
           USER
                          Final Docked Energy
           DSER
                          (1) Final Intermolecular Energy = −10.91 kcal/mol
50
           USER
                          (2) Final Internal Energy of Ligand = -0.77 kcal/mol
           USER
                          (3) Torsional Free Energy = +2.18 kcal/mol
           USER
           USER
           USER
 55
                          DPF = test.dpf
           USER
                          NEWDPF move udp_tr.pdbq
           USER
                          NEWDPF about16.792999 18.735001 34.970001
           USER
                          NEWDPF tran016.264354 19.749050 34.748403
           USER
                          NEWDPF quat0-0.636753 -0.548763 0.541668 23.855418
           USER
 60
                          NEWDPF ndihe7
           USER
                          NEWDPF dihe0-176.64 45.50 -32.26 16.31 -15.69 -5.13 142.41
           USER
           USER
           USER
                                                   Rank
                                                                                                          Z
                                                                                                                           ∀d₩
                                                                                                                                        Elec
                                                                                            У
                          1 N1 UDP 1 17.903 20.465 33.279 -0.41 -0.10 -0.211 2.428 2 C2 UDP 1 18.132 21.705 32.750 -0.88 +0.26 +0.396 2.428 3 N3 UDP 1 19.439 22.119 32.710 -0.52 -0.45 -0.440 2.428 4 H3 UDP 1 19.618 23.057 32.327 +0.10 +0.67 +0.440 2.428 5 C4 UDP 1 20.550 21.389 33.139 -0.77 +0.34 +0.396 2.428
           MOTA
 65
           ATOM
           MOTA
           MOTA
           ATOM
```

```
6 C5 UDP 1 20.244 20.100 33.675 -0.60 +0.00 +0.000 2.428  
7 C6 UDP 1 18.969 19.685 33.713 -0.52 +0.00 +0.000 2.428  
8 O2 UDP 1 17.213 22.419 32.344 -0.37 -0.24 -0.396 2.428  
9 O4 UDP 1 21.660 21.911 33.040 -0.29 -0.30 -0.396 2.428  
10 C1' UDP 1 16.524 19.967 33.367 -0.67 +0.04 +0.324 2.428  
11 C2' UDP 1 16.312 18.577 32.762 -0.63 -0.01 +0.113 2.428  
12 C3' UDP 1 15.035 18.137 33.515 -0.69 -0.01 +0.113 2.428  
13 C4' UDP 1 15.176 18.796 34.886 -0.56 +0.02 +0.113 2.428  
14 O4' UDP 1 16.047 18.672 31.383 -0.22 +0.20 -0.537 2.428  
15 O2' UDP 1 15.803 17.742 31.014 -0.26 -0.50 +0.424 2.428  
17 O3' UDP 1 13.922 18.707 32.819 -0.29 +0.15 -0.537 2.428  
18 HO3'UDP 1 14.264 19.274 32.030 -0.21 -0.34 +0.424 2.428  
19 C5' UDP 1 15.535 17.804 35.993 -0.25 +0.04 +0.113 2.428  
20 O5' UDP 1 15.866 18.342 38.668 -0.54 +0.44 +1.019 2.428  
21 PA UDP 1 15.496 16.815 38.944 -0.03 -0.23 -0.255 2.428  
24 O3A UDP 1 15.496 16.815 38.944 -0.03 -0.23 -0.550 2.428  
25 PB UDP 1 15.384 14.325 39.458 -0.03 -0.21 -0.255 2.428  
26 O1B UDP 1 15.384 14.325 39.458 -0.03 -0.21 -0.255 2.428  
27 O2B UDP 1 15.627 16.164 41.229 -0.68 -0.23 -0.255 2.428  
28 O3B UDP 1 17.556 15.427 39.690 -0.13 -0.03 -0.255 2.428  
28 O3B UDP 1 17.556 15.427 39.690 -0.13 -0.03 -0.255 2.428
                                                                                                                                                                      -0.60 +0.00 +0.000 2.428
                  MOTA
                 MOTA
                 MOTA
                 ATOM
              MOTA
                 ATOM
                  ATOM
                  MOTA
                  ATOM
     10
                 ATOM
                 MOTA
                  ATOM
                  ATOM
                  ATOM
. 15
                  MOTA
                  ATOM
                  ATOM
                  MOTA
                  MOTA
     20
                  ATOM
                  ATOM
                  MOTA
                  ATOM
                  TER
     25 ENDMDL
            MODEL
                                             27
                   USER
                                       Run = 27
                   USER
                                        Cluster Rank = 1
                   USER
                                        Number of conformations in this cluster = 30
     30
               USER
               USER
                                                                                                                                      = 2.268 A
                                        RMSD from reference structure
                   USER Estimated Free Energy of Binding
                                                                                                                                     = -8.56 kcal/mol [=(1)+(3)]
                                       Estimated Inhibition Constant, Ki = +5.27e-07 [Temperature = 298.15 K]
                   USER
     35
                   USER
                                                                                                                                      = -11.63 \text{ kcal/mol} [= (1) + (2)]
                   USER
                                        Final Docked Energy
                   USER
                                       (1) Final Intermolecular Energy = -10.74 kcal/mol
                   USER
                                        (2) Final Internal Energy of Ligand = -0.89 kcal/mol
                   USER
                                        (3) Torsional Free Energy = +2.18 kcal/mol
      40
                   USER
                   USER
                   USER
                                        DPF = test.dpf
                   USER
                                        NEWDPF move udp_tr.pdbq
                   USER
                                        NEWDPF about16.792999 18.735001 34.970001
      45
                   USER
                                        NEWDPF tran016.331560 19.472735 34.565318
                   USER
                   USER
                                        NEWDPF quat0-0.490819 -0.684766 0.538695 25.212334
                                        NEWDPF ndihe7
                   USER
                                        NEWDPF dihe0-131.49 50.61 -168.07 36.57 -13.24 1.80 131.03
                   USER
                                         Rank x y z vdw Elec q RMS

1 N1 UDP 1 18.039 20.309 33.246 -0.38 -0.10 -0.211 2.268

2 C2 UDP 1 18.266 21.581 32.799 -0.85 +0.27 +0.396 2.268

3 N3 UDP 1 19.561 22.029 32.866 -0.52 -0.46 -0.440 2.268

4 H3 UDP 1 19.737 22.991 32.546 +0.05 +0.79 +0.440 2.268

5 C4 UDP 1 20.662 21.305 33.326 -0.76 +0.35 +0.396 2.268

6 C5 UDP 1 20.359 19.981 33.772 -0.58 +0.00 +0.000 2.268

7 C6 UDP 1, 19.097 19.533 33.705 -0.50 +0.00 +0.000 2.268

8 O2 UDP 1 17.354 22.293 32.373 -0.36 -0.23 -0.396 2.268

9 O4 UDP 1 21.761 21.858 33.327 -0.20 -0.36 -0.396 2.268

10 C1' UDP 1 16.672 19.773 33.217 -0.67 +0.05 +0.324 2.268

11 C2' UDP 1 16.538 18.413 32.527 -0.61 -0.01 +0.113 2.268

12 C3' UDP 1 15.228 17.901 33.171 -0.64 -0.02 +0.113 2.268

13 C4' UDP 1 15.264 18.487 34.582 -0.60 +0.02 +0.113 2.268

14 O4' UDP 1 16.332 19.473 34.565 -0.06 -0.05 -0.227 2.268

15 O2' UDP 1 16.359 18.577 31.140 -0.22 +0.17 -0.537 2.268

16 HO2'UDP 1 15.535 18.041 30.834 -0.24 -0.56 +0.424 2.268

17 O3' UDP 1 14.147 18.480 32.436 -0.31 +0.23 -0.537 2.268
      50
                   USER
                   USER
                   ATOM
                   ATOM
                   MOTA
    . 55
                   MOTA
                   MOTA
                   ATOM
                   ATOM
                   ATOM
                   ATOM
                   MOTA
                   ATOM
                   MOTA
                   MOTA
      65
                    MOTA
                    MOTA
                    MOTA
                    MOTA
```

- 102 -

TER

```
      18
      HO3'UDP
      1
      14.521
      19.029
      31.649
      -0.25
      -0.35
      +0.424
      2.268

      19
      C5' UDP
      1
      15.580
      17.445
      35.655
      -0.29
      +0.04
      +0.113
      2.268

      20
      O5' UDP
      1
      15.412
      18.058
      36.919
      +0.06
      -0.17
      -0.368
      2.268

      21
      PA
      UDP
      1
      16.233
      18.008
      38.265
      -0.62
      +0.41
      +1.019
      2.268

      22
      O1A UDP
      1
      17.673
      18.192
      37.926
      -0.15
      -0.07
      -0.255
      2.268

      23
      O2A UDP
      1
      15.608
      18.955
      39.240
      -0.18
      -0.11
      -0.255
      2.268

      24
      O3A UDP
      1
      15.943
      16.468
      38.566
      +0.00
      -0.22
      -0.510
      2.268

      25
      PB UDP
      1
      16.424
      15.469
      39.718
      -0.63
      +0.36
      +1.019
      2.268

      26
      O1B UDP
      1
      16.040
      16.219
      41.097
      -0.67
      -0.23
      -0.255

    14.521
    19.029
    31.649
    -0.25
    -0.35
    +0.424
    2.268

    15.580
    17.445
    35.655
    -0.29
    +0.04
    +0.113
    2.268

    15.412
    18.058
    36.919
    +0.06
    -0.17
    -0.368
    2.268

                MOTA
                                            18 HO3'UDP
                MOTA
                ATOM
               MOTA
               ATOM
                MOTA
                MOTA
                ATOM
                MOTA
               MOTA
                MOTA
                TER
                ENDMDL
                                                37
                MODEL
15
                USER
                                         Run = 37
                USER
                                         Cluster Rank = 1
                                         Number of conformations in this cluster = 30
                 USER
                 USER
                 USER
                                        RMSD from reference structure
                                                                                                                                                      = 2.337 A
20
                USER
                                    Estimated Free Energy of Binding = -8.76 \text{ kcal/mol} [=(1)+(3)]
                USER
                USER Estimated Inhibition Constant, Ki = +3.82e-07 [Temperature = 298.15 K]
                 USER
                 USER Final Docked Energy
                                                                                                                                                          = -11.60 \text{ kcal/mol} [= (1) + (2)]
25
                USER
                USER (1) Final Intermolecular Energy = -10.93 kcal/mol
USER (2) Final Internal Energy of Ligand = -0.66 kcal/mol
USER (3) Torsional Free Energy = +2.18 kcal/mol
                 USER
30
                USER
                                          DPF = test.dpf
                 USER
                 USER
                                          NEWDPF move udp tr.pdbq
                                          NEWDPF about16.792999 18.735001 34.970001
                                          NEWDPF tran016.642481 19.664002 34.683293
                 USER
35
                                         NEWDPF quat00.689785 0.638573 -0.341206 -21.274560
                USER
                                         NEWDPF ndihe7
                 USER
                                         NEWDPF dihe0-143.29 -16.74 -20.40 5.95 -28.82 6.66 151.74
                 USER
                 USER
                                                                                                                                                                   .
Z
                                                                                                               x y z vdW Elec q RMS
18.371 20.252 33.262 -0.36 -0.11 -0.211 2.337
                 USER
                                                                               Rank
                                           1 N1 UDP 1 18.371 20.252 33.262 -0.36 -0.11 -0.211 2.337 2 C2 UDP 1 18.727 21.475 32.765 -0.81 +0.28 +0.396 2.337 3 N3 UDP 1 20.068 21.764 32.759 -0.54 -0.38 -0.440 2.337 4 H3 UDP 1 20.343 22.689 32.400 +0.06 +0.49 +0.440 2.337 5 C4 UDP 1 21.096 20.924 33.191 -0.74 +0.30 +0.396 2.337 6 C5 UDP 1 20.659 19.659 33.692 -0.53 +0.00 +0.000 2.337 7 C6 UDP 1 19.350 19.365 33.697 -0.48 +0.00 +0.000 2.337 8 O2 UDP 1 17.888 22.281 32.358 -0.33 -0.26 -0.396 2.337 9 O4 UDP 1 22.252 21.340 33.125 -0.24 -0.30 -0.396 2.337 10 C1' UDP 1 16.950 19.885 33.312 -0.66 +0.08 +0.324 2.337 11 C2' UDP 1 16.620 18.534 32.673 -0.60 +0.00 +0.113 2.337 12 C3' UDP 1 15.292 18.202 33.391 -0.66 -0.01 +0.113 2.337 13 C4' UDP 1 15.466 18.816 34.779 -0.57 +0.02 +0.113 2.337 14 O4' UDP 1 16.642 19.664 34.683 -0.06 -0.07 -0.227 2.337 15 O2' UDP 1 16.394 18.683 31.291 -0.22 +0.13 -0.537 2.337 16 HO2'UDP 1 15.610 18.081 31.004 -0.31 -0.47 +0.424 2.337 17 O3' UDP 1 14.253 18.888 32.688 -0.24 +0.22 -0.537 2.337 18 HO3'UDP 1 14.399 19.905 32.765 -0.37 -0.36 +0.424 2.337
                                               1 N1 UDP 1
 40
                 ATOM
                 ATOM
                 MOTA
                 ATOM -
                 ATOM
 45
                ATOM
                 ATOM
                 ATOM
                 ATOM
                 ATOM
 50
                 ATOM
                 ATOM
                 ATOM
                  MOTA
                  ATOM
 55
                 MOTA
                 ATOM

    14.253
    18.888
    32.688
    -0.24
    +0.22
    -0.537
    2.337

    14.399
    19.905
    32.765
    -0.37
    -0.36
    +0.424
    2.337

    15.707
    17.771
    35.870
    -0.36
    +0.04
    +0.113
    2.337

    15.214
    18.294
    37.088
    +0.06
    -0.17
    -0.368
    2.337

    15.799
    18.368
    38.552
    -0.54
    +0.44
    +1.019
    2.337

    17.282
    18.480
    38.442
    -0.13
    -0.08
    -0.255
    2.337

    15.062
    19.430
    39.306
    -0.22
    -0.10
    -0.255
    2.337

    15.399
    16.877
    38.955
    +0.00
    -0.23
    -0.510
    2.337

    16.080
    15.778
    39.895
    -0.73
    +0.43
    +1.019
    2.337

    15.467
    14.371
    39.380
    -0.73
    +0.43
    +1.019
    2.337

                  ATOM .
                                              18 HO3'UDP
                                                                                               1
                                              19 C5' UDP 1
                  MOTA
                                            20 O5' UDP 1
21 PA UDP 1
22 O1A UDP 1
23 O2A UDP 1
24 O3A UDP 1
25 PB UDP 1
                 ATOM
  60
                ATOM
                  ATOM
                  MOTA
                 MOTA
                                            25 PB UDP 1 16.080 15.778 39.895 -0.73 +0.43 +1.019 2.337 26 O1B UDP 1 15.467 14.371 39.390 -0.02 -0.11 -0.255 2.337 27 O2B UDP 1 15.536 16.165 41.221 -0.68 -0.23 -0.255 2.337 28 O3B UDP 1 17.545 15.626 39.701 -0.18 -0.03 -0.055
                 ATOM
  65
                  ATOM
                  ATOM
                  ATOM
```

PCT/CA01/00607 WO 01/83717

- 103 -

ENDMDL MODEL 83 USER Run = 83Cluster Rank = 1 USER USER Number of conformations in this cluster = 30 USER USER RMSD from reference structure = 2.261 AUSER USER Estimated Free Energy of Binding = -8.49 kcal/mol [=(1)+(3)]10 Estimated Inhibition Constant, Ki = +5.99e-07 {Temperature = 298.15 K} USER USER USER Final Docked Energy = -11.46 kcal/mol [=(1)+(2)]USER USER (1) Final Intermolecular Energy = -10.67 kcal/mol 15 USER (2) Final Internal Energy of Ligand = -0.79 kcal/mol USER (3) Torsional Free Energy = +2.18 kcal/mol USER USER USER DPF = test.dpf USER NEWDPF move udp_tr.pdbq . 20 NEWDPF about16.792999 18.735001 34.970001 NEWDPF tran016.357985 19.606004 34.816153 USER NEWDPF quat0-0.457891 -0.473843 0.752202 19.873212 USER USER NEWDPF ndihe7 25 USER NEWDPF dihe0-102.27 -10.98 18.83 69.93 -8.93 -8.56 143.76 USER USER Rank vdW Elec 1 N1 UDP 1 17.847 20.520 33.298 -0.42 -0.10 -0.211 2.261 MOTA -0.89 +0.27 +0.396 2.261 MOTA 2 C2 UDP 1 17.991 21.811 32.873 30 MOTA 3 N3 UDP 19.276 22.280 32.771 -0.52 -0.49 -0.440 2.261 19.392 23.256 32.466 20.441 21.560 33.040 20.223 20.216 33.473 18.970 19.747 33.571 17.018 22.522 32.609 4 H3 UDP +0.09 +0.81 +0.440 2.261 MOTA 1 -0.78 +0.35 +0.396 2.261 MOTA 5 C4 UDP . 1 +0.00 +0.000 2.261 UDP -0.61 MOTA 6 C5 1 MOTA 7 C6 UDP 1 -0.52 +0.00 +0.000 2.261 -0.396 35 ATOM _ UDP -0.35 -0.26 8 02 1 21.522 22.133 32.905 -0.29 -0.396 2.261 UDP -0.18 MOTA 9 04 1 16.497 19.961 33.445 MOTA 10 C1' UDP 1 -0.66 +0.04 +0.324 2.261 MOTA . C2' UDP 16.282 18.624 32.730 -0.64 -0.01 +0.113 2.261 11 12 C3' UDP 15.086 18.065 33.535 -0.68 -0.01 +0.113 2.261 MOTA 1 -0.57 +0.02 +0.113 2.261 40 ATOM 13 C4' UDP 1 15.316 18.601 34.948 16.358 19.606 34.816 15.903 18.835 31.391 14.882 18.739 31.303 13.902 18.651 32.985 -0.06 2.261 MOTA 14 O4' UDP 1 -0.06 -0.227 O2' UDP +0.21 -0.537 -0.42 +0.424 MOTA 1 -0.19 15 2.261 HO2'UDP MOTA 16 1 -0.21 2.261 O3' UDP -0.32 +0.11 -0.537 2.261 MOTA 17 1 13.966 19.677 33.045 45 MOTA 18 HO3'UDP 1 -0.44 -0.31 +0.424 2.261 15.797 17.527 35.924 -0.30 +0.04 +0.113 2.261 MOTA 19 C5' UDP 1 20 O5' UDP 15.528 17.981 37.236 ATOM 1 +0.01 -0.17 -0.368 2.261 MOTA 21 PA UDP 1 16.241 17.761 38.626 -0.67 +0.41 +1.019 2.261 17.687 18.081 38.451 15.474 18.500 39.678 16.039 16.179 38.656 O1A UDP -0.20 -0.05 -0.255 2.261 ATOM 22 1 50 23 - O2A UDP 1 -0.24 -0.12 -0.255 MOTA 2.261 MOTA 24 O3A UDP 1 -0.01 -0.22-0.510 2.261 15.854 15.121 39.841 17.108 14.114 39.690 PB UDP -0.63 + 0.38+1.019 MOTA 25 1 2.261 +0.11 -0.05 -0.255 26 O1B UDP 1 ATOM 2.261 ATOM 27 O2B UDP 1 14.581 14.471 39.442 -0.01 -0.09 -0.255 2.261 55 28 O3B UDP 1 16.010 15.692 41.204 MOTA -0.60 -0.19 -0.255 2.261 TER ENDMDL MODEL 65 USER Run = 6560 USER Cluster Rank = 1 Number of conformations in this cluster = 30 USER USER USER RMSD from reference structure = 2.304 AUSER 65 USER Estimated Free Energy of Binding -8.71 kcal/mol [=(1)+(3)]= = +4.12e-07 [Temperature = 298.15 K] Estimated Inhibition Constant, Ki USER USER

= -11.45 kcal/mol = (1)+(2)

USER

Final Docked Energy

- 104 -

```
USER
     USER
             (1) Final Intermolecular Energy = -10.89 kcal/mol
     USER
             (2) Final Internal Energy of Ligand = -0.56 kcal/mol
                                                = +2.18 kcal/mol
     USER
             (3) Torsional Free Energy
     USER
     USER
     USER
             DPF = test.dpf
     USER
             NEWDPF move udp tr.pdbq
             NEWDPF about16.792999 18.735001 34.970001
     USER
10
     USER
             NEWDPF tran016.670987 19.529452 34.985959
     USER
             NEWDPF quat0-0.609578 -0.251836 0.751660 12.309821
             NEWDPF ndihe7
     USER
     USER
             NEWDPF dihe0174.86 35.30 170.27 1.85 94.80 -103.65 115.10
     USER
15
     USER
                          Rank
                                       x
                                                        z
                                                                vdW
                                                                       Elec -
                                                                                        RMS
                                     18.083 20.325 33.334
18.319 21.606 32.917
19.629 21.940 32.687
     ATOM
               1 N1 UDP
                            1
                                                                -0.38
                                                                       -0.10 -0.211 2.304
               2 C2 UDP
                                                                       +0.28 +0.396
-0.41 -0.440
     MOTA
                              1
                                                                -0.85
                                                                                       2.304
               3 N3 UDP
     MOTA
                              1
                                                                -0.53
                                                                                       2.304
               4 H3 UDP
                                     19.816 22.907 32.388
     ATOM
                                                                       +0.65 +0.440
                              1
                                                                +0.07
20
     ATOM
               5 C4 UDP
                              1
                                     20.733 21.096 32.819
                                                                -0.75
                                                                       +0.27 +0.396
                                                                                       2.304
     MOTA
               6 C5 UDP
                                  20.419 19.770 33.251
                                                                       +0.00 +0.000
                              1
                                                                -0.56
                                                                                       2.304
                                  19.140 19.432 33.474
17.406 22.420 32.770
               7 · C6 UDP
     MOTA
                              1
                                                                -0.48
                                                                       +0.00 +0.000
     MOTA
               8
                  O2 UDP
                              1
                                                              -0.33 -0.29 -0.396
     MOTA
               9
                  O4 UDP
                                     21.849 21.556 32.580
                                                                       -0.18 -0.396
                              1
                                                                -0.14
                                                                                       2.304
                                  16.704 19.905
25
     MOTA
              10
                  C1' UDP
                              1
                                                      33.614
                                                                -0.64 +0.07 +0.324
                                                                                       2.304
                                                               -0.62 +0.00 +0.113
-0.65 +0.00 +0.113
-0.55 +0.03 +0.113
     MOTA
              11
                  C2' UDP
                              1
                                     16.275
                                              18.619
                                                      32.904
                                                                                       2.304
                                     15.116 18.166 33.822
                  C3' UDP
     ATOM
              12
                              1
                                                                                       2.304
                  C4' UDP
     MOTA
              13
                                     15.548 18.635 35.210
                              1
                                                                                       2.304
                  O4' UDP
                                     16.671 19.529 34.986
                                                              -0.05 -0.08 -0.227
     ATOM
              14
                              1
                                                                                       2.304
30
                  O2' UDP
    ATOM
              15
                              1
                                     15.784 18.905 31.616 -0.27 +0.21 -0.537 2.304
                  HO2'UDP
     MOTA
             . 16
                                     15.535 18.027 31.140
                                                              -0.35 -0.48 +0.424 2.304
                              1
     MOTA
              17
                  O3' UDP
                                     13.951 18.887 33.410
                                                                -0.22 +0.09 -0.537
                              1
                                                                                       2.304
                                                                -0.35 -0.32 +0.424

-0.40 +0.04 +0.113

-0.03 -0.15 -0.368

-0.70 +0.42 +1.019

-0.14 -0.06 -0.255
                  HO3'UDP
     MOTA
              18
                              1
                                     14.224 19.643 32.767
                                                                                       2.304
     MOTA
              19
                  C5' UDP
                              1
                                     16.010
                                              17.490
                                                      36.112
                                                                                       2.304
                                     16.561 18:057
                  O5' UDP
35
     MOTA
              20
                              1
                                                      37.285
                                                                                       2.304
                  PA UDP
                                     16.153 18.005 38.808
     ATOM
              21
                              1
                                                                                       2.304
     MOTA
              22
                  O1A UDP
                              1
                                     17.382 18.249 39.616
                                                                                       2.304
     ATOM
              23
                  O2A UDP
                                     14.977 18.907 39.017
                                                                -0.21
                                                                       -0.12 -0.255 2.304
                  O3A UDP
     ATOM
              24
                                     15.798 16.450 38.822
                                                                -0.02 -0.22 -0.510 2.304
                              1
     MOTA
              25
                  PB UDP
                              1
                                     16.010 15.288 39.900
                                                                -0.66 +0.39 +1.019
                                                                       -0.25 -0.255
     MOTA
              26
                  O1B UDP
                              1
                                     15.889 16.031
                                                      41.330
                                                                -0.67
                                                                                      2.304
     MOTA
              27
                  O2B UDP
                              1
                                      17.410 14.888
                                                      39.610
                                                                +0.00 -0.04 -0.255
                                                                                      2.304
     MOTA
              28
                  O3B UDP
                              1
                                      14.929 14.270 39.927
                                                                -0.06 -0.10 -0.255 2.304
     TER
45
     ENDMDL
     MODEL
                 14
     USER
             Run = 14
     USER
             Cluster Rank = 1
     USER
             Number of conformations in this cluster = 30
50
     USER
             RMSD from reference structure
     USER
                                                  = 2.451 A
     USER
     USER
             Estimated Free Energy of Binding = -8.42 \text{ kcal/mol} [=(1)+(3)}
             Estimated Inhibition Constant, Ki = +6.69e-07 [Temperature = 298.15 K]
     USER
55
     USER
     USER
             Final Docked Energy
                                                  = -11.42 \text{ kcal/mol} [=(1)+(2)]
     USER
              (1) Final Intermolecular Energy = -10.60 kcal/mol
     USER
             (2) Final Internal Energy of Ligand = -0.82 kcal/mol
     USER
                                               = +2.18 kcal/mol
60
     USER
              (3) Torsional Free Energy
     USER
     USER
     USER
             DPF = test.dpf
     USER
             NEWDPF move udp_tr.pdbq
65
     USER
             NEWDPF about16.792999 18.735001 34.970001
     USER
             NEWDPF tran017.100220 19.724175 34.926891
     USER
             NEWDPF quat00.896782 0.345563 -0.276348 -20.343759
             NEWDPF ndihe7
     USER
```

- 105 -

```
NEWDPF dihe0179.92 79.45 -26.55 -16.81 -42.81 3.24 -180.00
             USER
                             Rank x y z vdW Elec q RMS

1 N1 UDP 1 18.694 20.131 33.299 -0.34 -0.11 -0.211 2.451

2 C2 UDP 1 19.052 21.300 32.688 -0.77 +0.27 +0.396 2.451

3 N3 UDP 1 20.396 21.516 32.524 -0.51 -0.30 -0.440 2.451

4 H3 UDP 1 20.674 22.402 32.079 +0.08 +0.21 +0.440 2.451

5 C4 UDP 1 21.424 20.651 32.904 -0.72 +0.26 +0.396 2.451

6 C5 UDP 1 20.984 19.444 33.531 -0.51 +0.00 +0.000 2.451

7 C6 UDP 1 19.671 19.222 33.690 -0.47 +0.00 +0.000 2.451

8 02 UDP 1 18.212 22.123 32.316 -0.30 -0.27 -0.396 2.451

9 04 UDP 1 22.585 21.000 32.692 -0.24 -0.25 -0.396 2.451

10 C1' UDP 1 17.271 19.844 33.519 -0.61 +0.10 +0.324 2.451

11 C2' UDP 1 16.813 18.475 33.009 -0.53 +0.01 +0.113 2.451

12 C3' UDP 1 15.554 18.259 33.881 -0.59 +0.00 +0.113 2.451

13 C4' UDP 1 15.903 18.947 35.200 -0.55 +0.03 +0.113 2.451

14 O4' UDP 1 17.100 19.724 34.927 -0.05 -0.10 -0.227 2.451

16 H02'UDP 1 16.449 18.550 31.651 -0.21 +0.11 -0.537 2.451

17 O3' UDP 1 14.479 18.955 33.244 -0.22 +0.14 -0.537 2.451

18 H03'UDP 1 14.616 18.939 32.223 -0.09 -0.24 +0.424 2.451
             USER
             USER
                                                                                                                                                                                                                              RMS
             MOTA
            ATOM
             MOTA
             MOTA
             MOTA
             MOTA
10
           MOTA
             MOTA
             MOTA
             MOTA
             MOTA
15
             MOTA
             MOTA
             MOTA
             MOTA
             MOTA
20
          MOTA
                                    17 O3' UDP 1 14.479 18.955 33.244 -0.22 +0.14 -0.537 2.451 18 HO3'UDP 1 14.616 18.939 32.223 -0.09 -0.24 +0.424 2.451 19 C5' UDP 1 16.209 17.961 36.327 -0.46 +0.04 +0.113 2.451 20 O5' UDP 1 15.331 18.241 37.401 +0.04 -0.17 -0.368 2.451 21 PA UDP 1 15.526 18.335 38.963 -0.69 +0.46 +1.019 2.451 22 O1A UDP 1 16.986 18.480 39.231 -0.17 -0.09 -0.255 2.451 23 O2A UDP 1 14.600 19.383 39.497 -0.29 -0.11 -0.255 2.451 24 O3A UDP 1 15.068 16.838 39.267 -0.05 -0.23 -0.510 2.451 25 PB UDP 1 15.770 15.608 40.009 -0.72 +0.42 +1.019 2.451 26 O1B UDP 1 14.899 14.318 39.578 -0.04 -0.10 -0.255 2.451 27 O2B UDP 1 15.542 15.969 41.431 -0.71 -0.24 -0.255 2.451 28 O3B UDP 1 17.140 15.298 39.525 -0.10 -0.06 -0.255 2.451
             MOTA
             MOTA
             ATOM
             ATOM
25
             MOTA
             ATOM
             MOTA
             MOTA
             MOTA
30
             MOTA
             MOTA
             TER
             ENDMDL
             MODEL
                                           99
                                   Run = 99 ·
35
             USER
                                   Cluster Rank = 1
             USER
             USER
                                   Number of conformations in this cluster = 30
              USER
              USER
                                   RMSD from reference structure
                                                                                                                          = 2.336 A
40
             USER
                                   Estimated Free Energy of Binding = -8.47 \text{ kcal/mol} [=(1)+(3)]
Estimated Inhibition Constant, Ki = +6.23e-07 [Temperature = 298.15 K]
              USER
              USER
              USER
                                                                                                                               = -11.36 \text{ kcal/mol} [= (1) + (2)]
             USER
                                   Final Docked Energy
45 USER
                                   (1) Final Intermolecular Energy = -10.65 kcal/mol
              USER
                                   (2) Final Internal Energy of Ligand = -0.71 kcal/mol
                                   (3) Torsional Free Energy = +2.18 kcal/mol
              USER
              USER
50
              USER
              USER
                                   DPF = test.dpf
              USER
                                   NEWDPF move udp tr.pdbq
                                   NEWDPF about16.792999 18.735001 34.970001
              USER
                                   NEWDPF tran016.837146 19.319611 35.006964
              USER
 55
                                   NEWDPF quat0-0.287528 -0.036292 0.957084 6.817381
              USER
              USER
                                   NEWDPF ndihe7
                                   NEWDPF dihe0179.27 74.01 -73.43 -63.66 -99.15 70.88 172.83
              USER
              USER
                                                                                                x y z vdW Elec q RMS
18.200 20.203 33.359 -0.36 -0.10 -0.211 2.336
18.479 21.505 33.049 -0.82 +0.29 +0.396 2.336
            USER
                                                                    Rank
60
              MOTA
                                       1 N1 UDP 1
                                       2 C2 UDP
                                                                              1
              ATOM
                                                                                                 19.791 21.800 32.777 -0.55 -0.39 -0.440 2.336
                                     3 N3 UDP
                                                                              1
              ATOM

      3 N3 UDP
      1
      19.791
      21.800
      32.777
      -0.55
      -0.39
      -0.440
      2.336

      4 H3 UDP
      1
      20.011
      22.781
      32.558
      +0.03
      +0.65
      +0.40
      2.336

      5 C4 UDP
      1
      20.855
      20.897
      32.768
      -0.73
      +0.25
      +0.396
      2.336

      6 C5 UDP
      1
      20.497
      19.552
      33.093
      -0.53
      +0.00
      +0.000
      2.336

      7 C6 UDP
      1
      19.216
      19.253
      33.355
      -0.47
      +0.00
      +0.000
      2.336

      8 O2 UDP
      1
      17.602
      22.371
      33.029
      -0.28
      -0.32
      -0.396
      2.336

      9 O4 UDP
      1
      21.979
      21.327
      32.510
      -0.20
      -0.19
      -0.396
      2.336

              ATOM
              ATOM
65
              ATOM
              ATOM
              ATOM
              ATOM
```

- 106 -

MOTA

```
16.818 19.822 33.676
16.288 18.630 32.876
          MOTA
                              10 C1' UDP
                                                                                                                                     -0.62 +0.08 +0.324 2.336
                                                               1
                                                                                                                                  -0.62 +0.00 +0.113 2.336
-0.65 +0.00 +0.113 2.336
          MOTA
                              11 C2' UDP
                                                               1
                                                                              15.157 18.145 33.812
                              12 C3' UDP
           MOTA
                                                               1
          MOTA
                              13 C4' UDP
                                                                              15.683 18.461 35.211
                                                                                                                                  -0.54 +0.03 +0.113 2.336
          MOTA
                              14 O4' UDP
                                                               1
                                                                              16.837 19.320 35.007 -0.03 -0.08
                                                                                                                                                                  -0.227 2.336
                              15 O2' UDP
          ATOM
                                                                              15.746 19.059 31.649 -0.28 +0.19 -0.537 2.336
                             15 O2' UDP 1
16 HO2'UDP 1
17 O3' UDP 1
18 HO3'UDP 1
19 C5' UDP 1
20 O5' UDP 1
21 PA UDP 1
22 O1A UDP 1
23 O2A UDP 1
24 O3A UDP 1
25 PB UDP 1
26 O1B UDP 1
27 O2B UDP 1
28 O3B UDP 1
                                                               1 .

      15.746
      19.059
      31.649
      -0.28
      +0.19
      -0.537
      2.336

      15.361
      18.251
      31.141
      -0.25
      -0.48
      +0.424
      2.336

      14.010
      18.954
      33.535
      -0.18
      +0.08
      -0.537
      2.336

      14.056
      19.295
      32.564
      -0.26
      -0.27
      +0.424
      2.336

      16.133
      17.215
      35.975
      -0.37
      +0.04
      +0.113
      2.336

      15.535
      17.253
      37.257
      +0.26
      -0.17
      -0.368
      2.336

      15.745
      18.170
      38.524
      -0.58
      +0.44
      +1.019
      2.336

      17.206
      18.434
      38.656
      -0.14
      -0.08
      -0.255
      2.336

      14.819
      19.342
      38.422
      +0.01
      -0.12
      -0.255
      2.336

      15.296
      17.070
      39.589
      -0.16
      -0.24
      -0.510
      2.336

      15.432
      15.660
      41.703
      -0.68
      -0.24
      -0.255
      2.336

      17.435
      16.232
      40.207
      -0.48
      -0.07
      -0.255
      2.336

          MOTA
          ATOM
          ATOM
10
          ATOM
          MOTA
          MOTA
          MOTA
          MOTA
15
          MOTA
           MOTA
           ATOM
          MOTA
          ATOM
20
           TER
           ENDMDL
          MODEL
                                 89
           USER
                            Run = 89
           USER
                            Cluster Rank = 1
           USER
                            Number of conformations in this cluster = 30
           USER
           USER
                            RMSD from reference structure
                                                                                                       = 2.343 A
           USER
           USER
                            Estimated Free Energy of Binding = -8.33 \text{ kcal/mol} = (-1) + (3)
30
                            Estimated Inhibition Constant, Ki = +7.88e-07 [Temperature = 298.15 K]
           USER
           USER
           USER
                            Final Docked Energy
                                                                                                        = -11.35 \text{ kcal/mol} [=(1)+(2)]
           USER
                           (1) Final Intermolecular Energy = -10.51 kcal/mol
(2) Final Internal Energy of Ligand = -0.85 kcal/mol
(3) Torsional Free Energy = +2.18 kcal/mol
           USER
35
           USER
           USER
           USER
           USER
           USER
                            DPF = test.dpf
                                                                                                                                                      4 4 2 4
40
           USER
                            NEWDPF move udp_tr.pdbq
                            NEWDPF about16.792999 18.735001 34.970001
           USER
           USER
                         . NEWDPF tran017.054940 19.477433 34.899250
           USER
                            NEWDPF quat00.673805 0.287903 -0.680513 -10.385254
           USER
                           NEWDPF ndihe7
45
           USER
                            NEWDPF dihe0-157.20 94.24 8.30 -47.60 -85.48 50.85 179.66
           USER
           USER
                                                       Rank
                                                                                                                                      wdW
                                                                                                                                                    Elec
                                                                                                                                                                                     RMS
           ATOM
                            1 N1 UDP 1
                                                                              18.496 20.235 33.255 -0.35 -0.11 -0.211 2.343
                            1 N1 UDP 1
2 C2 UDP 1
3 N3 UDP 1
4 H3 UDP 1
5 C4 UDP 1
6 C5 UDP 1
7 C6 UDP 1
8 O2 UDP 1
9 O4 UDP 1
10 C1' UDP 1
11 C2' UDP 1
12 C3' UDP 1
13 C4' UDP 1
14 O4' UDP 1
15 O2' UDP 1
16 HO2'UDP 1
17 O3' UDP 1
18 HO3'UDP 1
19 C5' UDP 1
20 O5' UDP 1
21 PA UDP 1

    10.496
    20.235
    33.255
    -0.35
    -0.11
    -0.211
    2.343

    18.781
    21.510
    32.850
    -0.81
    +0.29
    +0.396
    2.343

    20.102
    21.797
    32.623
    -0.54
    -0.36
    -0.440
    2.343

    20.326
    22.759
    32.333
    +0.07
    +0.48
    +0.440
    2.343

    21.173
    20.910
    32.747
    -0.74
    +0.25
    +0.396
    2.343

    20.809
    19.593
    33.165
    -0.54
    +0.00
    +0.000
    2.343

    19.518
    19.301
    33.385
    -0.48
    +0.00
    +0.000
    2.343

    17.000
    23.260
    23.271
    -0.26
    -0.272
    -0.272

                               2 C2 UDP
           ATOM
                                                               1
50
           ATOM
           ATOM
           ATOM
           MOTA
          ATOM
                                                                              17.899 22.360 32.711
55
                                                                                                                                     -0.29 -0.31 -0.396 2.343
          ATOM
           MOTA
                                                                              22.306 21.330 32.511 -0.20 -0.19 -0.396 2.343
           MOTA
                                                                              17.102 19.865 33.531 -0.63 +0.09 +0.324 2.343
           ATOM
                                                                              16.625 18.603 32.809 -0.59 +0.00 +0.113 2.343
                                                                              15.449 18.185 33.722
15.898 18.624 35.115
17.055 19.477 34.899
16.145 18.920 31.523
           MOTA
                                                                                                                                     -0.61 +0.00 +0.113 2.343
                                                                              15.898 18.624 35.115 -0.53 +0.03 +0.113 2.343 17.055 19.477 34.899 -0.04 -0.09 -0.227 2.343 16.145 18.920 31.523 -0.25 +0.14 -0.537 2.343 15.461 18.210 31.227 -0.28 -0.43 +0.424 2.343 14.312 18.954 33.318 -0.21 +0.13 -0.537 2.343
60
           ATOM
           ATOM
           MOTA
           ATOM
           ATOM
65
           MOTA
                                                                              14.225 18.926 32.293 -0.16 -0.24 +0.424 2.343
           ATOM
                                                                              16.317 17.454 36.005
                                                                                                                                     -0.40 +0.04 +0.113 2.343
                                                              1
1
                                                                              15.535 17.503 37.184
15.723 18.213 38.580
           MOTA
                                                                                                                                  +0.15 -0.17
                                                                                                                                                                  -0.368 2.343
```

-0.59 +0.44 +1.019 2.343

- 107 -

```
ATOM
                                                                                             17.185 18.409 38.796 -0.16 -0.08 -0.255 2.343 14.832 19.415 38.627 -0.06 -0.11 -0.255 2.343
                                    22 O1A UDP
                                                                     1
             MOTA
                                    23 O2A UDP
                                                                      1
                                   23 O2A UDP 1 14.832 19.415 38.627 -U.U6 -U.11 -U.255 2.343 24 O3A UDP 1 15.209 16.980 39.452 -O.12 -O.23 -O.510 2.343 25 PB UDP 1 15.954 15.754 40.159 -O.78 +O.45 +1.019 2.343 26 O1B UDP 1 15.139 14.446 39.676 -O.06 -O.10 -O.255 2.343 27 O2B UDP 1 15.699 16.058 41.590 -O.72 -O.29 -O.255 2.343 28 O3B UDP 1 17.339 15.516 39.679 -O.16 -O.05 -O.255 2.343
             MOTA
             MOTA
             MOTA
             MOTA
             MOTA
             TER
             ENDMDL
10
            MODEL
                                       75
             USER
                                  Run = 75
             USER
                                  Cluster Rank = 1
             USER
                               Number of conformations in this cluster = 30
             USER
15
                              RMSD from reference structure
             USER
                                                                                                                         = 2.190 A
             USER
             USER Estimated Free Energy of Binding
             USER Estimated Free Energy of Binding = -8.35 \text{ kcal/mol} [=(1)+(3)]
USER Estimated Inhibition Constant, Ki = +7.52e-07 [Temperature = 298.15 K]
            USER Final Docked Energy
20
                                                                                                                            = -11.34 \text{ kcal/mol} [=(1)+(2)]
          USER
                            (1) Final Intermolecular Energy = -10.53 kcal/mol

(2) Final Internal Energy of Ligand = -0.81 kcal/mol

(3) Torsional Free Energy = +2.18 kcal/mol
             USER
             USER
             USER
25
             USER
             USER
             USER
                              DPF = test.dpf
             USER
                                 NEWDPF move udp tr.pdbq
             USER
                                 NEWDPF about16.792999 18.735001 34.970001
30
             USER
                                NEWDPF tran016.649808 19.351573 34.884284
                                 NEWDPF quat00.238273 0.242155 -0.940525 -7.710898
             USER
                                 NEWDPF ndihe7
             USER
                               Rank x y z vdw Elec q RMS

1 N1 UDP 1 18.047 20.259 33.278 -0.38 -0.10 -0.211 2.190

2 C2 UDP 1 18.316 21.566 32.981 -0.84 +0.28 +0.396 2.190

3 N3 UDP 1 19.631 21.879 32.746 -0.54 -0.40 -0.440 2.190

4 H3 UDP 1 19.844 22.864 32.537 +0.04 +0.71 +0.440 2.190

5 C4 UDP 1 20.707 20.990 32.764 -0.74 +0.26 +0.396 2.190

6 C5 UDP 1 20.358 19.639 33.074 -0.54 +0.00 +0.000 2.190

7 C6 UDP 1 19.074 19.323 33.299 -0.48 +0.00 +0.000 2.190

8 O2 UDP 1 17.429 22.420 32.939 -0.30 -0.31 -0.396 2.190

10 C1' UDP 1 16.661 19.859 33.555 -0.66 +0.03 +0.396 2.190

11 C2' UDP 1 16.666 19.859 33.555 -0.66 +0.06 +0.324 2.190

12 C3' UDP 1 15.019 18.160 33.638 -0.68 -0.01 +0.113 2.190

13 C4' UDP 1 15.509 18.477 35.053 -0.56 +0.03 +0.113 2.190

14 O4' UDP 1 15.656 19.090 31.496 -0.23 +0.22 -0.537 2.190

15 O2' UDP 1 15.656 19.909 31.496 -0.23 +0.22 -0.537 2.190

16 H02'UDP 1 15.558 18.281 30.868 -0.28 -0.45 +0.424 2.190

17 O3' UDP 1 15.946 17.234 35.825 -0.35 +0.04 +0.113 2.190

18 H03'UDP 1 15.594 17.249 33.555 33.333 -0.22 +0.10 -0.537 2.190

19 C5' UDP 1 15.656 19.090 31.496 -0.23 +0.22 -0.537 2.190

10 C1' UDP 1 16.637 17.645 37.122 +0.01 -0.15 -0.368 2.190

20 O5' UDP 1 15.946 17.234 35.825 -0.35 +0.04 +0.113 2.190

21 CA UDP 1 15.555 17.236 38.076 -0.65 +0.03 +0.113 2.190

22 O1A UDP 1 16.337 17.645 37.122 +0.01 -0.15 -0.368 2.190

23 O2A UDP 1 15.718 15.879 39.943 -0.73 +0.04 +0.113 2.190

24 O3A UDP 1 15.7796 18.371 39.013 -0.21 -0.03 -0.255 2.190

25 PB UDP 1 15.7718 15.879 39.943 -0.73 +0.44 +1.019 2.190

26 O1B UDP 1 16.601 16.105 41.115 -0.566 -0.24 -0.255 2.190

28 O3B UDP 1 14.849 14.676 39.880 +0.00 -0.08 -0.255 2.190
                               NEWDPF dihe0162.51 45.31 -179.82 136.56 -34.17 0.93 124.87
             USER
             USER
35
            USER
ATOM
             ATOM
             ATOM
             MOTA
40
         ATOM
            ATOM
             ATOM
             ATOM
            ATOM
45
             MOTA
             MOTA
             MOTA
             MOTA
            MOTA
50
        ATOM
            ATOM
            ATOM
            MOTA
            MOTA
55 ATOM
            ATOM
            ATOM
             ATOM
            ATOM
60
            ATOM
             MOTA
             ATOM
             MOTA
             TER
65
             ENDMDL
             MODEL
                                           34
             USER
                                  Run = 34
             USER
                                 Cluster Rank = 1
```

- 108 -

```
USER
             Number of conformations in this cluster = 30
     USER
     USER
             RMSD from reference structure = 2.097 A
     USER
             Estimated Free Energy of Binding = -8.20 \text{ kcal/mol} [=(1)+(3)]
Estimated Inhibition Constant, Ki = +9.82e-07 [Temperature = 298.15 K]
     USER
     USER
     USER
     USER
              Final Docked Energy
                                                    = -11.33 \text{ kcal/mol} [=(1)+(2)]
     USER
10
     USER
              (1) Final Intermolecular Energy = −10.38 kcal/mol
     USER
              (2) Final Internal Energy of Ligand = .-0.96 kcal/mol
     USER
              (3) Torsional Free Energy = +2.18 kcal/mol
     USER
     USER
15
              DPF = test.dpf
     USER
             NEWDPF move udp_tr.pdbq
     USER
             NEWDPF about16.792999 18.735001 34.970001
     USER
     USER
              NEWDPF tran016.582017 19.303584 34.740441
     USER
              NEWDPF quat0-0.262934 -0.600146 0.755440 8.281891
20
             NEWDPF ndihe7
     USER
             NEWDPF dihe0-95.21 12.27 76.12 136.23 -39.68 40.94 148.63
     USER
     USER
     USER
                           Rank
                                                                  vdW
                                                                          Elec
                                                                                           RMS
                                         х
                                                          z
                                                 У
                                                                  -0.37 -0.10 -0.211 2.097
                                       18.079 20.184 33.211
     MOTA
                1 N1 UDP
                               1
                                       18.387 21.485 32.927
                                                                  -0.83 +0.27 +0.396 2.097
                2 C2 UDP
25
     MOTA
                                1
                3 N3 UDP
                                     19.717 21.776 32.764
                                                                  -0.54 -0.39 -0.440 2.097
     MOTA
                                1
                                       19.958 22.757 32.565
                                                                  +0.03 +0.64 +0.440 2.097
     MOTA
                4 H3 UDP
                                1
                                       20.776 20.870 32.842
     MOTA
                5 C4 UDP
                                1.
                                                                  -0.73 +0.26 +0.396 2.097
                                       20.388 19.526 33.135
19.089 19.231 33.290
17.517 22.354 32.836
21.919 21.296 32.678
                                                                  -0.53 +0.00 +0.000 2.097
                6 C5 UDP
     MOTA
                                1
                                                                  -0.47 +0.00 +0.000 2.097
30
     MOTA
                7 C6
                       UDP
                               1
                8
                       UDP
                                1
                                                                  -0.31 -0.30
                                                                                 -0.396
     MOTA
                   02
                                                                                          2.097
                                                                                -0.396
     MOTA
                9
                   04
                       UDP
                                1
                                                                  -0.22
                                                                         -0.22
                                                                                          2.097
                                       16.674 19.807 33.413
     ATOM
               10
                  C1' UDP
                                1
                                                                  -0.65 +0.06 +0.324
                                                                                          2.097
                   C2' UDP
                                       16.208 18.618 32.570
                                                                  -0.66 -0.01 +0.113 2.097
     ATOM
               11
                                1
                                1
1
35
                   C3' UDP
                                       15.002 18.136 33.409
                                                                  -0.70 -0.01 +0.113 2.097
     MOTA
               12
     ATOM :
               13
                   C4' UDP
                                       15.412 18.448 34.848
                                                                -0.57 +0.02 +0.113 2.097
                             , 1
                   O4' UDP
                                       16.582 19.304 34.740
     ATOM
               14
                                                                  -0.04 -0.07 -0.227 2.097
                                       15.770 19.049 31.304
14.756 19.225 31.332
13.885 18.949 33.040
14.208 19.905 32.835
     MOTA
               15
                   O2' UDP
                              1
                                                                  -0.17
                                                                         +0.21 -0.537 2.097
                                                                  -0.30 -0.36 +0.424 2.097
-0.27 +0.14 -0.537 2.097
     MOTA
               16
                   HO2'UDP
                                1
40
                   O3' UDP
     ATOM
               17
                                1
                                                                  -0.40 -0.39 +0.424
-0.31 +0.04 +0.113
               18 HO3'UDP
                                1
     ATOM
                                                                                          2.097
                                       15.793 17.201 35.645
               19 C5' UDP
     MOTA
                                1
                                                                                          2.097
                                                                  +0.14 -0.17 -0.368 2.097
-0.62 +0.39 +1.019 2.097
               20 O5' UDP
                                       15.583 17.480 37.016
     ATOM
                                1
               21 PA UDP
     MOTA
                                1
                                       16.541 17.904 38.195
               22 O1A UDP
                                       17.777 18.479 37.591
45
                                                                  -0.14 -0.08 -0.255 2.097
     ATOM
                                1
                                       15.767 18.746 39.161
16.829 16.419 38.703
16.037 15.420 39.668
16.000 16.175 41.096
               23 O2A UDP
                                1
                                                                  -0.16 -0.11 -0.255 2.097
     MOTA
                                                                  -0.05 -0.18 -0.510 2.097
     MOTA
               24 O3A UDP
                                1
     MOTA
               25
                   PB UDP
                                1
                                                                   -0.65 + 0.40
                                                                                +1.019
                                                                                          2.097
               26 O1B UDP
     ATOM
                                1
                                                                   -0.67 -0.23
                                                                                 -0.255
                                                                                          2.097
50
               27 O2B UDP
                                       16.961 14.258 39.690
                                                                   +0.04 -0.05
                                                                                -0.255
     ATOM
                                1
                                                                                          2.097
               28 O3B UDP
                                       14.606 15.233 39.320
     MOTA
                               1
                                                                   +0.09 -0.09 -0.255 2.097
      TER
     ENDMDL
                  20
     MODEL
              Run = 20
     USER
      USER
              Cluster Rank = 1
              Number of conformations in this cluster = 30
      USER
      USER
      USER
              RMSD from reference structure
                                                    = 2.190 A
60
      USER
      USER
              Estimated Free Energy of Binding
                                                    = -8.37 \text{ kcal/mol} [=(1)+(3)]
              Estimated Inhibition Constant, Ki
      USER
                                                  = +7.36e-07
                                                                   [Temperature = 298.15 K]
      USER
      USER
              Final Docked Energy
                                                    = -11.31 \text{ kcal/mol} [=(1)+(2)]
65
      USER
                                                  = -10.55 \text{ kcal/mol}
      USER
              (1) Final Intermolecular Energy
              (2) Final Internal Energy of Ligand = -0.77 kcal/mol
      USER
                                                  = +2.18 kcal/mol
      USER
              (3) Torsional Free Energy
```

- 109 -

```
USER
      USER
      USER
                 DPF = test.dpf
      USER
                 NEWDPF move udp_tr.pdbq
                 NEWDPF about16.792999 18.735001 34.970001
      USER
                 NEWDPF tran016.600663 19.139251 34.607528
      USER
      USER
                 NEWDPF quat0-0.372510 0.542970 -0.752609 -7.650237
                 NEWDPF ndihe7
      USER
      USER
                 NEWDPF dihe0-104.31 14.83 -107.06 15.47 -94.66 40.90 152.31
10
      USER
      USER
                                                                                           Elec
                                                                                                                RMS
                                 Rank
                                                            У
                                                                      Z
                                                                                  vdW
      MOTA
                   1 N1 UDP
                                                18.075 20.143 33.132
                                                                                 -0.37 -0.09 -0.211 2.190
                                  1
                                                18.384 21.463 32.956
19.713 21.760 32.794
19.956 22.754 32.677
20.768 20.846 32.773
                                                                                 -0.82 +0.27 +0.396 2.190
      ATOM ·
                   2 C2
                            UDP
                                       1
                   3 N3
                                                                                                    -0.440 2.190
      ATOM
                            UDP
                                                                                 -0.54
                                                                                           -0.39
                                       1
15
                   4 H3
                                                                                 +0.03 +0.69 +0.440 2.190
                            UDP
      ATOM
                                       1
                   5 C4
                            UDP
                                                                                 -0.73 +0.25 +0.396 2.190
      MOTA
                                       1
                                             20.377 19.484 32.955 -0.52 +0.00 +0.000 2.190
      MOTA
                   6 C5
                            UDP
                                       1
      MOTA
                   7 C6
                            UDP
                                       1
                                                19.079 19.182 33.109 -0.47 +0.00 +0.000 2.190
      ATOM
                   8 02
                            UDP
UDP
                            UDP
                                                17.518 22.340 32.958 -0.30 -0.31 -0.396 2.190
20
                   9 04
                                                21.910 21.280 32.624
                                                                                 -0.22 -0.21 -0.396 2.190
      MOTA
                                       1

    21.910
    21.280
    32.624
    -0.22
    -0.21
    -0.396
    2.190

    16.671
    19.756
    33.327
    -0.65
    +0.05
    +0.324
    2.190

    16.183
    18.646
    32.394
    -0.68
    -0.02
    +0.113
    2.190

    14.989
    18.099
    33.210
    -0.70
    -0.02
    +0.113
    2.190

    15.428
    18.283
    34.662
    -0.57
    +0.02
    +0.113
    2.190

    16.601
    19.139
    34.608
    -0.02
    -0.06
    -0.227
    2.190

    15.724
    19.189
    31.178
    -0.10
    +0.21
    -0.537
    2.190

    14.695
    19.223
    31.183
    -0.35
    -0.39
    +0.424
    2.190

    13.870
    18.945
    32.934
    -0.23
    +0.16
    -0.537
    2.190

                  10 C1' UDP 1
      MOTA
                  11 C2' UDP
12 C3' UDP
                                       1
      MOTA
                                       1
      ATOM
                  13 C4' UDP
14 O4' UDP
      MOTA
                                       1
                                       1
25
      MOTA
                  15 O2' UDP 1
16 HO2'UDP 1
17 O3' UDP 1
18 HO3'UDP 1
      ATOM
      MOTA
                                                13.870 18.945 32.934 -0.23 +0.16 -0.537 2.190
      ATOM
                                                14.199 19.907 32.765 -0.40 -0.40 +0.424 2.190
      MOTA
                                                15.816 16.969 35.341
15.552 17.100 36.725
16.459 17.421 37.975
17.794 16.803 37.739
                  19 C5' UDP
30
                                       1
                                                                                  -0.37 +0.04 +0.113 2.190
      ATOM
                                                                                  +0.25 -0.17 -0.368 2.190
-0.55 +0.40 +1.019 2.190
-0.04 -0.08 -0.255 2.190
       MOTA
                  20 O5' UDP
                                       1
                                       1 .
       ATOM
                  21 PA UDP
                  22 O1A UDP
      MOTA
                                       1
                                                16.397 18.893 38.244
                                                                                +0.11 -0.11 -0.255 2.190
                  23 O2A UDP
      ATOM
                                       1
35
                                     . 1
                                                15.626 16.531 39.004
                                                                                  -0.05 -0.22 -0.510 2.190
      MOTA
                  24 O3A UDP
      ATOM
                  25 PB UDP
                                       1
                                                15.999 15.820 40.387 -0.80 +0.51 +1.019 2.190
                                                15.099 16.580 41.493 -0.45 -0.30 -0.255 2.190 17.434 16.180 40.511 -0.51 -0.09 -0.255 2.190
                  26 O1B UDP
                                       1
      ATOM
                  27 O2B UDP
      MOTA
                                      1
                                                17.434 16.180 40.511
15.571 14.401 40.484
       MOTA
                  28 O3B UDP
                                       1
                                                                                  -0.15 -0.10 -0.255 2.190
40
       TER
       ENDMDL
                        7
      MODEL
       USER
                 Run = 7
       USER
                 Cluster Rank = 1
45
       USER
                 Number of conformations in this cluster = 30
       USER
       USER
                 RMSD from reference structure
                                                                = 2.106 A
       USER
                 Estimated Free Energy of Binding = -8.01 \text{ kcal/mol} [=(1)+(3)]
       USER
                 Estimated Inhibition Constant, Ki = +1.34e-06 [Temperature = 298.15 K]
50
       USER
       USER
                 Final Docked Energy
                                                                = -11.14 \text{ kcal/mol} [= (1) + (2)]
       USER
       USER
                 (1) Final Intermolecular Energy = -10.19 kcal/mol
       USER
                 (2) Final Internal Energy of Ligand = -0.95 kcal/mol
(3) Torsional Free Energy = +2.18 kcal/mol
55
       USER
       USER
       USER
       USER
       USER
                 DPF = test.dpf
60
                 NEWDPF move udp_tr.pdbq
       USER
                 NEWDPF about16.792999 18.735001 34.970001
       USER
                 NEWDPF tran016.771562 19.240141 34.663676
       USER
                 NEWDPF quat0-0.276654 -0.688269 0.670632 9.784323
       USER
       USER
                 NEWDPF ndihe7
65
                 NEWDPF dihe0179.04 77.47 173.47 135.89 -39.09 46.20 144.65
       USER
       USER
       USER
                                                 x y z vdW Elec q RMS
18.311 20.117 33.175 -0.35 -0.10 -0.211 2.106
                                                                                  vdW
                                                                                            Elec
                                  Rank
                    1 N1 UDP
       MOTA
```

WO 01/83717 PCT/CA01/00607

- 110 -

```
2 C2 UDP 1 18.620 21.418 32.890 -0.81 +0.28 +0.396 2.106
3 N3 UDP 1 19.953 21.715 32.766 -0.54 -0.38 -0.440 2.106
4 H3 UDP 1 20.195 22.696 32.567 +0.03 +0.60 +0.440 2.106
5 C4 UDP 1 21.014 20.815 32.885 -0.73 +0.26 +0.396 2.106
6 C5 UDP 1 20.624 19.471 33.175 -0.52 +0.00 +0.000 2.106
7 C6 UDP 1 19.323 19.171 33.293 -0.46 +0.00 +0.000 2.106
8 O2 UDP 1 17.749 22.281 32.765 -0.31 -0.30 -0.396 2.106
9 O4 UDP 1 22.159 21.247 32.752 -0.23 -0.396 2.106
10 C1' UDP 1 16.469 18.535 32.889 -0.64 +0.07 +0.324 2.106
11 C2' UDP 1 16.469 18.535 32.899 -0.64 +0.07 +0.324 2.106
12 C3' UDP 1 15.604 18.379 34.741 -0.55 +0.02 +0.113 2.106
14 O4' UDP 1 15.604 18.379 34.741 -0.55 +0.02 +0.113 2.106
15 O2' UDP 1 16.069 18.955 31.205 -0.23 +0.16 -0.537 2.106
16 HO2'UDP 1 15.750 18.141 30.661 -0.30 -0.45 +0.424 2.106
17 O3' UDP 1 18.258 19.144 31.902 -0.23 +0.16 -0.537 2.106
18 HO3'UDP 1 14.258 19.144 31.902 -0.23 -0.34 +0.424 2.106
19 C5' UDP 1 15.800 17.459 36.928 +0.08 -0.16 -0.368 2.106
20 O5' UDP 1 16.783 17.981 38.046 -0.62 -0.07 +0.113 2.106
21 PA UDP 1 15.500 18.802 39.024 -0.10 -0.11 -0.255 2.106
23 O2A UDP 1 16.091 18.802 39.024 -0.10 -0.11 -0.255 2.106
24 O3A UDP 1 16.517 15.522 39.619 -0.63 +0.35 +1.019 2.106
25 PB UDP 1 16.575 14.087 39.392 +0.01 -0.09 -0.255 2.106
26 O1B UDP 1 16.759 14.087 39.392 +0.01 -0.09 -0.255 2.106
            ATOM
            MOTA
            MOTA
            MOTA
         ATOM
            ATOM
            ATOM
            ATOM
10
           ATOM
            MOTA
            MOTA
            MOTA
            MOTA
            ATOM
15
            ATOM
             ATOM
             MOTA
            MOTA
20
            MOTA
            MOTA
            MOTA
            MOTA
            MOTA
25
          MOTA
            MOTA
            MOTA
             TER
            ENDMOT.
30
            MODEL
             USER
                                Run = 59
             USER
                                Cluster Rank = 1
             USER
                                Number of conformations in this cluster = 30
             USER
35
             USER
                                RMSD from reference structure = 2.112 A
           USER
                                                                                                                     = -8.37 \text{ kcal/mol} [=(1)+(3)]
            USER
                               Estimated Free Energy of Binding
                               Estimated Inhibition Constant, Ki = +7.26e-07 [Temperature = 298.15 K]
             USER
           USER
                                                                                                                          = -11.13 kcal/mol [=(1)+(2)]
                           Final Docked Energy
40
            USER
             USER
                               (1) Final Intermolecular Energy = -10.55 kcal/mol
             USER
                               (2) Final Internal Energy of Ligand = -0.58 kcal/mol
(3) Torsional Free Energy = +2.18 kcal/mol
             USER
            USER
45
            USER
             USER
                               DPF = test.dpf
             USER
            USER NEWDPF move udp_tr.pdbq
            USER
                                NEWDPF about16.792999 18.735001 34.970001
50
            USER
                                NEWDPF tran016.789117 19.079734 34.943430
            USER
                                NEWDPF quat00.532175 0.338229 0.776138 5.198164
             USER
                                NEWDPF ndihe7
             USER
                               NEWDPF dihe0163.86 24.42 -162.76 -24.87 124.02 -143.97 114.20
            USER
                                                                                              x .
                              Rank x y z vdw Elec q RMS

1 N1 UDP 1 18.129 20.036 33.316 -0.34 -0.10 -0.211 2.112
2 C2 UDP 1 18.455 21.346 33.100 -0.80 +0.27 +0.396 2.112
3 N3 UDP 1 19.767 21.606 32.800 -0.53 -0.37 -0.440 2.112
4 H3 UDP 1 20.024 22.592 32.651 +0.03 +0.61 +0.440 2.112
5 C4 UDP 1 20.789 20.663 32.676 -0.70 +0.24 +0.396 2.112
6 C5 UDP 1 20.382 19.312 32.907 -0.50 +0.00 +0.000 2.112
7 C6 UDP 1 19.100 19.048 33.196 -0.45 +0.00 +0.000 2.112
8 O2 UDP 1 17.618 22.247 33.185 -0.28 -0.32 -0.396 2.112
9 O4 UDP 1 21.921 21.064 32.407 -0.19 -0.19 -0.396 2.112
10 C1' UDP 1 16.743 19.689 33.659 -0.61 +0.07 +0.324 2.112
11 C2' UDP 1 16.131 18.589 32.788 -0.64 -0.01 +0.113 2.112
12 C3' UDP 1 15.014 18.078 33.728 -0.67 +0.00 +0.113 2.112
13 C4' UDP 1 15.605 18.256 35.125 -0.53 +0.03 +0.113 2.112
55
                                                                                                                  У
            USER
                                                             Rank
                                                                                                                                                          AGM
            ATOM
            ATOM
             MOTA
            ATOM
60
            ATOM
            ATOM
             ATOM
            ATOM
            ATOM
65
            MOTA
             ATOM
             ATOM
             MOTA
```

WO 01/83717 PCT/CA01/00607

- 111 -

```
ATOM
                14 04' UDP
                                  1
                                         16.789 19.080 34.943
                                                                       -0.01 -0.08 -0.227 2.112
     MOTA
                   O2' UDP
                                         15.563 19.139 31.622
                                                                       -0.29 +0.22 -0.537 2.112
                15
                                  1
                                         15.357 18.386 30.952
     ATOM
                16
                   HO2'UDP
                                  1
                                                                       -0.19 -0.49 +0.424 2.112
                                                                       -0.18 + 0.07
                                                                                      -0.537 2.112
     ATOM
                17
                    O3' UDP
                                         13.895 18.955 33.563
 5
                    HO3'UDP
                                                                      -0.35 -0.37 +0.424 2.112
     ATOM
                18
                                         14.220 19.862 33.198
                                  1
                                                                      -0.36 +0.04 +0.113 2.112
     ATOM
                19
                   C5' UDP
                                  1
                                         16.026 16.935 35.769
                                                                       +0.04 -0.15 -0.368 2.112
-0.63 +0.40 +1.019 2.112
-0.27 -0.04 -0.255 2.112
-0.10 -0.12 -0.255 _2.112
     ATOM
                20
                   O5' UDP
                                  1
                                         16.746 17.237
                                                           36.949
                                         16.315 17.725 38.386
17.557 17.965 39.176
15.343 18.853 38.235
     MOTA
                        UDP
                21
                   PA
                                  1
     MOTA
                22
                    O1A UDP
                                  1
10
     ATOM
                23 O2A UDP
                                  1
                24 O3A UDP
                                         15.653 16.343 38.828
                                                                       -0.01 -0.22 -0.510 2.112
     ATOM
                                  1
                                         16.007 15.274 39.964
                                                                       -0.67 +0.39 +1.019 2.112
     ATOM
                25 PB UDP
                                  1
    ` ATOM
                26 O1B UDP
                                          15.929 16.105 41.347
                                                                       -0.68 -0.26 -0.255 2.112
                                  1
                27 O2B UDP
                                                                       -0.02 -0.04 -0.255 2.112
     MOTA
                                  1
                                          17.408 14.938 39.608
15
                                          14.997 14.197 40.130
     MOTA
                28 O3B UDP
                                  1
                                                                       -0.09 -0.10 -0.255 2.112
     TER
     ENDMDL
      MODEL
                  98
               Run = 98
      USER
20
               Cluster Rank = 1
      USER
      USER
               Number of conformations in this cluster = 30
      USER
      USER
               RMSD from reference structure
                                                       = 2.109 A
      USER
              Estimated Free Energy of Binding = -7.94 \text{ kcal/mol} [=(1)+(3)]
Estimated Inhibition Constant, Ki = +1.51e-06 [Temperature = 298.15 K]
25
      USER
      USER
      USER
                                                       = -11.08 \text{ kcal/mol} [=(1)+(2)]
      USER
               Final Docked Energy
      USER
               (1) Final Intermolecular Energy = -10.12 kcal/mol
30
      USER
               (2) Final Internal Energy of Ligand = −0.96 kcal/mol
      USER
               (3) Torsional Free Energy = +2.18 kcal/mol
      USER
      USER
35
      USER
               DPF = test.dpf
      USER
               NEWDPF move udp_tr.pdbq
               NEWDPF about16.792999 18.735001 34.970001
      USER
               NEWDPF tran016.893783 19.279399 34.797086
      USER
      USER '
               NEWDPF quat00.214303 0.443762 -0.870143 -7.171696
40
      USER
               NEWDPF ndihe7
      USER
               NEWDPF dihe0-119.38 43.09 -179.96 146.93 -44.48 49.68 150.19
      USER
                                                     у.
                                                                       vdW Elec q RMS
-0.35 -0.10 -0.211 2.109
      USER
                             Rank
                                                              Z
                                            х
                                          18.342 20.174 33.229
                 1 N1 UDP
      MOTA
                               1
                                                                       -0.82 +0.29 +0.396 2.109
-0.54 -0.38 -0.440 2.109
45
                         UDP
                                          18.641 21.478 32.948
                 2 C2
      ATOM
                                  1
                                          19.966 21.769 32.746
      ATOM
                 3 N3
                         UDP
                                  1
                                         19.966 21.769 32.746

20.201 22.752 32.548

21.026 20.862 32.782

20.647 19.515 33.074

19.353 19.220 33.267

17.769 22.347 32.892

22.164 21.290 32.585

16.944 19.796 33.472
                        UDP
                                                                       +0.03 +0.61 +0.440 2.109
      MOTA
                 4 H3
                                  1
                        UDP
      MOTA
                 5 C4
                                  1
                                                                       -0.74 + 0.25 + 0.396 2.109
                 6 C5
                        UDP
      MOTA
                                  1
                                                                       -0.53 +0.00 +0.000 2.109
50
      ATOM
                 7 C6
                         UDP
                                  1
                                                                       -0.47
                                                                               +0.00 +0.000 2.109
                                                                               -0.32 -0.396 2.109
      ATOM
                 R
                   02
                         UDP
                                  1
                                                                       -0.28
                                                                               -0.20 -0.396 2.109
      MOTA
                 9
                   04
                         UDP
                                  1
                                                                       -0.22
                                                                       -0.63 +0.08 +0.324 2.109
                10 C1' UDP
      MOTA
                                  1
                11 C2' UDP
                                          16.451 18.614 32.634
                                                                       -0.63 +0.00 +0.113 2.109
      MOTA
                                  1
                   C3' UDP
55
                                          15.272 18.125 33.506
                                                                       -0.65 -0.01 +0.113 2.109
      MOTA
                12
                                  1
                                          15.727 18.423 34.933
      ATOM
                13
                   C4' UDP
                                  1
                                                                       -0.54 +0.03 +0.113 2.109
                                         16.894 19.279 34.797
15.973 19.058 31.386
14.967 18.852 31.309
14.143 18.941 33.180
14.429 19.672 32.512
                   O4' UDP
                                                                       -0.02 -0.08 -0.227 2.109
      MOTA
                14
                                  1
                                                                       -0.23
      MOTA
                15
                    O2' UDP
                                  1
                                                                               +0.16 -0.537 2.109
                                                                               -0.38 +0.424 2.109
+0.15 -0.537 2.109
-0.32 +0.424 2.109
                    HO2'UDP
                                                                       -0.23
      MOTA
                16
                                  1
60
      MOTA
                17
                    O3' UDP
                                  1
                                                                       -0.24
                18 HO3'UDP
                                  1
                                                                       -0.27
      ATOM
                                         16.133 17.168 35.707
15.932 17.422 37.084
16.853 18.005 38.224
                                                                       -0.38 +0.04 +0.113 2.109
                19 C5' UDP
      ATOM
                                  1
                                                                       +0.05 -0.16 -0.368 2.109
      MOTA
                20 05' UDP
                                  1
                21 PA UDP
                                                                       -0.63 +0.36 +1.019 2.109
      MOTA
                                  1
                                        18.020 18.665 37.572
16.007 18.819 39.152
17.293 16.587 38.809
16.529 15.472 39.664
65
                22 O1A UDP
                               . 1 -
                                                                       -0.11 -0.08 -0.255 2.109
      MOTA
                                  1
                                                                       -0.11 -0.11 -0.255 2.109
      MOTA
                23 O2A UDP
                    O3A UDP
                                  1
                                                                       -0.11
                                                                               -0.14
      MOTA
                24
                                                                                       -0.510
                                                                                                2.109
                                  ĩ.
                                                                       -0.62 +0.35 +1.019 2.109
                25 PB UDP
      MOTA
```

- 112 -

USER

```
15.059 15.383 39.000
                                                                   +0.05 -0.11 -0.255 2.109
       MOTA
                26 O1B UDP
                                 1
       ATOM
                27 O2B UDP
                                         16.487 16.122 40.998
                                                                   -0.59 -0.22 -0.255 2.109
                                 1
                28 O3B UDP
                                         17.078 14.100 39.516
                                                                   +0.06 -0.06 -0.255 2.109
       MOTA
                                1
       TER
       ENDMDL
       MODEL
                   91
       USER
               Run = 91
       USER
               Cluster Rank = 1
       USER
               Number of conformations in this cluster = 30
 10
       USER
       USER
               RMSD from reference structure
                                                     = 2.427 A
       USER
               Estimated Free Energy of Binding = -8.15 \text{ kcal/mol} = (1)+(3)
       USER
               Estimated Inhibition Constant, Ki = +1.05e-06
                                                                      [Temperature = 298.15 \text{ K}]
       USER
 15
       USER
                                                = -11.05 \text{ kcal/mol} = (1) + (2)
       USER
               Final Docked Energy
       USER
               (1) Final Intermolecular Energy = -10.33 kcal/mol
(2) Final Internal Energy of Ligand = -0.72 kcal/mol
       USER
       USER
               (3) Torsional Free Energy = +2.18 kcal/mol
 20
       USER
       USER
       USER
       USER
               DPF = test.dpf
       USER
               NEWDPF move udp_tr.pdbq
               NEWDPF about16.792999 18.735001 34.970001
 25
       USER
       USER
               NEWDPF tran017.439802 19.336859 35.113934
       USER
               NEWDPF quat0-0.853123 -0.282142 0.438836 8.841905
       USER
               NEWDPF ndihe7
               NEWDPF dihe0176.08 67.48 151.37 -55.37 -90.07 58.66 -174.00
       USER
 30
       USER
       USER
                                                            z
                                                                     vdW
                                                                            Elec
                                                                                             RMS
                             Rank
                                                    У
                                                                     -0.32 -0.12 -0.211 2.427
                                         18.914 19.999 33.457
       MOTA
                  1 N1 UDP
                                 1
                                         19.267 21.252 33.040
20.601 21.462 32.804
20.878 22.408 32.505
21.621 20.517 32.931
                                                                            +0.30 +0.396 2.427
-0.33 -0.440 2.427
+0+34 +0.440 2.427
                                                                     -0.78
                  2 C2 UDP
       ATOM
                                  1
                  3 N3 UDP
                                                                     -0.52
                                  1
      MOTA ·
- 35
       MOTA
                  4 H3
                         UDP
                                  1
                                                                     +0.03
                                                                     -0.72 +0.26 +0.396 2.427
                  5
                         UDP
                                  1
       ATOM
                     C4
                                         21.186 19.226 33.363
                                                                     -0.49 + 0.00 + 0.000 2.427
                         UDP
       MOTA
                  6
                    C5
                                  1
                                         19.882 19.010 33.590
                                                                     -0.44
                                                                            +0.00 +0.000 2.427
                  7
                    C6 UDP
       MOTA
                                  1
                                         18.434 22.149 32.898
22.775 20.871 32.687
                                                                     -0.26 -0.36 -0.396 2.427
       MOTA
                  8
                    O2 UDP
                                  1
                                                                     -0.25 -0.27 -0.396 2.427
  40
                  9
                    O4 UDP
                                 1
       ATOM
                                         17.502 19.710 33.742
16.951 18.471 33.033
15.759 18.127 33.955
16.238 18.552 35.342
17.440 19.337 35.114
                 10 C1' UDP
                                                                     -0.57
                                                                            +0.12 +0.324
       ATOM
                                 1
                                                                                             2.427
                                                                            +0.01 +0.113
+0.01 +0.113
                11 C2' UDP
                                                                     -0.51
                                                                                             2.427
       ATOM
                                  1
                                                                     -0.54
                                                                                             2.427
       ATOM
                12 C3' UDP
                                  1
                                                                     -0.50 +0.04 +0.113
       MOTA
                 13
                     C4' UDP
                                  1
                                                                                             2.427
                                                                     -0.02
                                                                            -0.10 -0.227
                     O4' UDP
                                                                                             2.427
  45
       MOTA
                 14
                                  1
                                         16.483 18.804 31.747
16.132 17.957 31.279
                    02' UDP
                                                                   -0.22 +0.08 -0.537 2.427
                 15
                                  1
       ATOM
                 16 HO2'UDP
                                                                   -0.22 -0.27 +0.424 2.427
       MOTA
                                  1
                                                                     -0.16 +0.10 -0.537 2.427
                     O3' UDP
                                  1
                                         14.665 18.955 33.550
       MOTA
                 17
                                                                     -0.09 -0.19 +0.424 2.427
                 18 HO3'UDP
                                         14.824 19.289 32.589
       MOTA
                                  1
                                         16.595 17.367 36.241
15.720 17.387 37.353
15.712 18.191 38.710
17.128 18.476 39.078
                                                                     -0.40 +0.05 +0.113 2.427
                 19 C5' UDP
  50
                                  1
       MOTA
                 20 05' UDP
                                  1
                                                                     +0.13
                                                                            -0.17
                                                                                   -0.368
                                                                                             2.427
       ATOM
                                                                     -0.63 +0.44 +1.019
                     PA UDP
       MOTA
                 21
                                  1
                                                                                             2.427
                                                                     -0.17
                                                                            -0.08 -0.255 2.427
       ATOM
                 22
                     O1A UDP
                                  1
                                         14.768 19.345 38.575
                                                                     -0.07
                                                                            -0.12 -0.255 2.427
                 23 O2A UDP
                                  1
       MOTA
  55
                 24 O3A UDP
                                  1
                                         15.156 16.989 39.600
                                                                     -0.15 -0.24 -0.510 2.427
       ATOM
                                         15.860 15.759 40.340
                                                                     -0.78 + 0.49 + 1.019 2.427
                 25 PB UDP
                                  1
       ATOM
                                                                     -0.47
                                         17.435 16.117 40.322
                                                                            -0.07
                                                                                   -0.255 2.427
       MOTA
                 26 O1B UDP
                                  1
                                         15.543 14.649
                                                          39.405
                                                                     -0.04
                                                                            -0.11 -0.255 2.427
                     O2B UDP
                                 1
       MOTA
                 27
                                         15.531 15.640 41.783
                                                                      -0.74 - 0.25
                                                                                   -0.255 2:427
                 28 O3B UDP
                                  1
       ATOM
  60
       TER
       ENDMDL
       MODEL
                    78
                Run = 78
       USER
       USER
                Cluster Rank = 1
65
                Number of conformations in this cluster = 30
       USER
       USER
                RMSD from reference structure
                                                   = 2.417 A
       USER
```

```
USER
             Estimated Free Energy of Binding
                                                      -8.24 \text{ kcal/mol} = (1)+(3)
     USER
             Estimated Inhibition Constant, Ki
                                                      +9.08e-07
                                                                     [Temperature = 298.15 K]
     USER
     USER
             Final Docked Energy
                                                  = -10.97 \text{ kcal/mol} [= (1) + (2)]
     USER
     USER
              (1) Final Intermolecular Energy
                                                  = -10.42 \text{ kcal/mol}
     USER
              (2) Final Internal Energy of Ligand = -0.55 kcal/mol
     USER
              (3) Torsional Free Energy
                                                     +2.18 kcal/mol
     USER
10
     USER
     USER
             DPF = test.dpf
     USER
             NEWDPF move udp tr.pdbg
             NEWDPF about16.792999 18.735001 34.970001
     USER
     USER
             NEWDPF tran016.577195 19.722656 34.915745
15
     USER
             NEWDPF quat0-0.672356 -0.299327 0.677009 17.193969
     USER
             NEWDPF ndihe7
     USER
             NEWDPF dihe0167.91 -111.85 -172.88 17.96 -34.07 -1.67 163.75
     USER
     USER
                           Rank
                                        х
                                                         Z
                                                                 vdW
                                                                        Elec
                                                                                         RMS
                                                v
                                                       33.266
20
                                      18.021
                                              20.465
                                                                 -0.40
                                                                        -0.10
                                                                               -0.211
     MOTA
               1 N1
                      UDP
                               1
                                                                                        2.417
                                                                 -0.87
     ATOM
               2 C2
                      UDP
                               1
                                      18.220 21.723
                                                      32.770
                                                                        +0.27 +0.396
                                                                                        2.417
                                                      32.566
     ATOM
               3 N3
                      UDP
                                      19.524 22.098
                                                                 -0.51
                                                                        -0.42
                                                                               -0.440
                               1
                                                                                        2.417
     MOTA
                      UDP
                                      19.683 23.050
                                                      32.207
                                                                 +0.14
                                                                        +0.59
                                                                               +0.440
                  нз
                               1
                                                                                        2.417
     ATOM
               5
                  C4
                      UDP
                               1
                                      20.655 21.314
                                                       32.797
                                                                 -0.77
                                                                        +0.28 +0.396
                                                                 -0.59 +0.00
                                                                               +0.000 2.417
25
     ATOM
               6
                  C5
                      UDP
                               1
                                      20.378 20.008
                                                       33.308
                      UDP
     MOTA
               7.
                  C6
                               1
                                      19.106 19.630
                                                       33.506
                                                                 -0.51
                                                                        +0.00
                                                                               +0.000
                                                                                       2.417
     MOTA
               8
                  02
                      UDP
                               1
                                      17.281
                                              22.485
                                                       32.533
                                                                 -0.36
                                                                        -0.26
                                                                               -0.396
                                                                                        2.417
     MOTA
               9
                 0.4
                      UDP.
                               1
                                      21.760 21.805
                                                       32.568
                                                                 -0.08
                                                                        -0.17
                                                                               -0.396
                                                                                        2.417
                  C1' UDP
                                     16.650 20.006
                                                      33.523
                                                                 -0.65
                                                                        +0.06 +0.324
     MOTA
               10
                               1
                                                                                        2.417
30
     MOTA
                  C2' UDP
                                      16.303 18.657
                                                      32.889
                                                                 -0.62
                                                                        +0.00 +0.113
              11
                               1
                                                                                        2.417
     ATOM
               12
                  C3' UDP
                               1
                                      15.127 18.217 33.792
                                                                 -0.66
                                                                        +0.00 +0.113 2.417
                                      15.483 18.798
     MOTA
               13
                  C4' UDP
                               1
                                                       35.160
                                                                 -0.56
                                                                        +0.03 +0.113 2.417
                  O4' UDP
     MOTA
                                      16.577 19.723 34.916
                                                                 -0.06
                                                                        -0.07
                                                                               -0.227 2.417
               14
                               1
                                                       31.567
                                                                               -0.537
     MOTA
               15
                  O2' UDP
                               1
                                      15.852 18.833
                                                                 -0.24
                                                                        +0.21
                                                                                       2.417
35
     ATOM
               16
                  HO2'UDP
                               1
                                      15.770
                                              17.916
                                                       31.106
                                                                 -0.31
                                                                        -0.44
                                                                               +0.424
                                                                                        2.417
     MOTA
               17
                   O3' UDP
                               1
                                      13.951 18.856
                                                       33.289
                                                                 -0.25
                                                                        +0.10
                                                                               -0.537
                                                                                        2.417
                                      13.234 18.888
                                                       34.027
                  HO3'UDP
                                                                 -0.08
                                                                        +0.11 +0.424
     ATOM
               18
                               1
                                                                                        2.417
     ATOM
               19
                  C5' UDP
                               1
                                      15.956 17.738
                                                       36.156
                                                                 -0.39
                                                                        +0.04 +0.113
                                                                                        2.417
                  O5' UDP
                                      15.393 18.045
                                                       37.417
                                                                 +0.07
                                                                        -0.17
     MOTA
               20
                               1
                                                                               -0.368
                                                                                       2.417
40
                                                       38.896
     MOTA
               21
                  PA UDP
                               1
                                      15.935 17.957
                                                                 -0.71
                                                                        +0.44 +1.019
                                                                                        2.417
                                                       38.841
     MOTA
               22
                  O1A UDP
                               1
                                      17.421 18.066
                                                                 -0.22
                                                                        -0.06
                                                                               -0.255 2.417
     ATOM
              23
                  O2A UDP
                               1
                                      15.183 18.939
                                                       39.739
                                                                 -0.23
                                                                        -0.12
                                                                               -0.255 2.417
                                      15.514 16.436
16.010 15.304
                   O3A UDP
                                                       39.126
                                                                 -0.06
                                                                        -0.22
     MOTA
               24
                               1
                                                                               -0.510
                                                                                        2.417
     MOTA
               25
                   PB UDP
                               1
                                                       40.141
                                                                 -0.69
                                                                        +0.40
                                                                               +1.019
                                                                                        2.417
45
                                                       41.590
                  O1B UDP
                               1
                                      15.993
                                              16.019
                                                                 -0.68
     ATOM
               26
                                                                        -0.30
                                                                               -0.255
                                                                                        2.417
     MOTA
               27
                   O2B UDP
                               1.
                                      17.397 15.083
                                                       39.659
                                                                 -0.06
                                                                        -0.04
                                                                               -0.255
                                                                                        2.417
                  O3B UDP
     MOTA
               28
                                      15.076 14.159
                                                      40.290
                                                                 -0.11 -0.11 -0.255 2.417
     TER
     ENDMDL
50
     MODEL
                  67
     USER
              Run = 67
     USER
              Cluster Rank = 1
              Number of conformations in this cluster = 30
     USER
     USER
55
                                                   = 2.230 A
     USER
              RMSD from reference structure
     USER
              Estimated Free Energy of Binding
                                                  =
                                                       -8.10 \text{ kcal/mol} [=(1)+(3)]
     USER
              Estimated Inhibition Constant, Ki
                                                  =
                                                       +1.15e-06
                                                                    [Temperature = 298.15 K]
     USER
     USER
60
     USER
              Final Docked Energy
                                                   = -10.95 \text{ kcal/mol} [= (1) + (2)]
     USER
                                                  = -10.28 \text{ kcal/mol}
     USER
              (1) Final Intermolecular Energy
     USER
              (2) Final Internal Energy of Ligand = -0.67 kcal/mol
     USER
              (3) Torsional Free Energy
                                                       +2.18 kcal/mol
65
     USER
     USER
     USER
              DPF = test.dpf
     USER
              NEWDPF move udp tr.pdbq
```

WO 01/83717 PCT/CA01/00607

- 114 -

```
USER
                  NEWDPF about16.792999 18.735001 34.970001
       USER
                  NEWDPF tran017.161973 19.546069 34.694746
       USER
                  NEWDPF quat00.907012 0.421046 -0.007048 -17.600431
                  NEWDPF ndihe7
       USER
                  NEWDPF dihe0-150.07 88.07 161.44 45.36 22.65 -28.61 139.40
       USER
       USER
                 USER
                                                                                         vdW
                                                                                                Elec
                                    Rank
                                                       x
                                                                             7.
                                                                                                                         RMS
                                                                  У
                                                   18.821 19.878 33.115 -0.32 -0.10 -0.211 2.230
       MOTA
                   1 N1 UDP
       MOTA
10
       MOTA
       MOTA
       MOTA
       ATOM
       MOTA
15
      MOTA
       ATOM
       MOTA
       MOTA
       MOTA
20
      ATOM
       MOTA
       MOTA
       ATOM
       ATOM
25 ATOM
       MOTA
       MOTA
       MOTA
       MOTA
30
     MOTA
       MOTA
       MOTA
       MOTA
      MOTA
       MOTA
       TER
       ENDMDL
       MODEL
                        4
       USER
                  Run = 4
40
       USER
                   Cluster Rank = 1
                  Number of conformations in this cluster = 30
       USER
       USER
                  RMSD from reference structure = 2.180 A
       USER
       USER
       USER Estimated Free Energy of Binding = -7.94 kcal/mol [=(1)+(3)]
45
                  Estimated Inhibition Constant, Ki = +1.52e-06 [Temperature = 298.15 K]
       USER
       USER
       USER Final Docked Energy
                                                                      = -10.90 \text{ kcal/mol} [=(1)+(2)]
       USER
                  (1) Final Intermolecular Energy = -10.12 kcal/mol
(2) Final Internal Energy of Ligand = -0.79 kcal/mol
(3) Torsional Free Energy = +2.18 kcal/mol
       USER
       USER
       USER
       USER
       USER
55
       USER
                   DPF = test.dpf
                  NEWDPF move udp_tr.pdbq
       USER
                   NEWDPF about16.792999 18.735001 34.970001
       USER
                   NEWDPF tran016.815113 19.444013 34.902784
       USER
                   NEWDPF quat0-0.630271 -0.262187 0.730764 9.610976
       USER
60
                  NEWDPF ndihe7
       USER
                  NEWDPF dihe0-171.96 113.05 85.63 129.04 -22.39 18.54 152.66
       USER
                                                                                         vdW
       USER
                                     Rank
                                                                             Z
                                                                                                 Elec

        N1
        UDP
        1
        18.242
        20.226
        33.257
        -0.36
        -0.10
        -0.211
        2.180

        2
        C2
        UDP
        1
        18.524
        21.507
        32.871
        -0.82
        +0.28
        +0.396
        2.180

        3
        N3
        UDP
        1
        19.844
        21.797
        32.636
        -0.54
        -0.37
        -0.440
        2.180

        4
        H3
        UDP
        1
        20.066
        22.763
        32.359
        +0.06
        +0.53
        +0.440
        2.180

        5
        C4
        UDP
        1
        20.915
        20.907
        32.736
        -0.74
        +0.25
        +0.396
        2.180

       MOTA
       ATOM
       MOTA
       ATOM
       ATOM
```

```
    20.553
    19.584
    33.137
    -0.54
    +0.00
    +0.000
    2.180

    19.264
    19.290
    33.364
    -0.47
    +0.00
    +0.000
    2.180

    17.642
    22.360
    32.753
    -0.31
    -0.30
    -0.396
    2.180

    22.046
    21.330
    32.496
    -0.20
    -0.18
    -0.396
    2.180

    16.850
    19.854
    33.541
    -0.64
    +0.07
    +0.324
    2.180

    16.365
    18.604
    32.803
    -0.62
    +0.00
    +0.113
    2.180

    15.189
    18.172
    33.720
    -0.65
    +0.00
    +0.113
    2.180

                                                                                      1 ·
               ATOM
                                            6 C5 UDP
               MOTA
                                            7 C6 UDP
                                                                                       1
                                           8 02 UDP
               MOTA
                                                                                       1
                                          9 O4 UDP
                                                                                       1
              ATOM
                                       10 C1' UDP 1 16.850 19.854 33.541 -0.64 +0.07 +0.324 2.180 11 C2' UDP 1 16.365 18.604 32.803 -0.62 +0.00 +0.113 2.180 12 C3' UDP 1 15.198 18.172 33.720 -0.65 +0.00 +0.113 2.180 13 C4' UDP 1 15.660 18.589 35.116 -0.55 +0.03 +0.113 2.180 14 O4' UDP 1 15.874 18.941 31.527 -0.25 +0.19 -0.537 2.180 15 O2' UDP 1 15.387 18.131 31.120 -0.23 -0.51 +0.424 2.180 17 O3' UDP 1 15.387 18.131 31.120 -0.23 -0.51 +0.424 2.180 17 O3' UDP 1 14.058 18.948 33.339 -0.21 +0.12 -0.537 2.180 18 HO3'UDP 1 13.771 18.691 32.384 -0.14 -0.17 +0.424 2.180 19 C5' UDP 1 16.085 17.404 35.983 -0.40 +0.04 +0.113 2.180 20 O5' UDP 1 15.837 17.743 37.334 +0.02 -0.16 -0.368 2.180 21 PA UDP 1 16.755 17.840 38.614 -0.68 +0.36 +1.019 2.180 22 O1A UDP 1 18.070 18.398 38.187 -0.18 -0.04 -0.255 2.180 24 O3A UDP 1 16.882 16.265 38.834 -0.16 -0.17 -0.555 2.180 25 PB UDP 1 16.028 15.206 39.673 -0.62 +0.38 +1.019 2.180 26 O1B UDP 1 16.921 14.021 39.621 +0.04 -0.26 -0.255 2.180 27 O2B UDP 1 16.921 14.021 39.621 +0.04 -0.06 -0.255 2.180 28 O3B UDP 1 16.921 14.021 39.621 +0.04 -0.06 -0.255 2.180 28 O3B UDP 1 16.921 14.021 39.621 +0.04 -0.06 -0.255 2.180 28 O3B UDP 1 16.921 14.021 39.621 +0.04 -0.06 -0.255 2.180
          ATOM
                                         10 C1' UDP
                                                                                      1 .
               MOTA
               ATOM
               MOTA
              MOTA
10
              MOTA
               ATOM
               MOTA
               MOTA
               MOTA
15
              MOTA
               ATOM
               ATOM
               ATOM
               ATOM
20
               MOTA
               ATOM
               MOTA
               ATOM
               TER
25
               ENDMDL
               MODEL
                                              68
                                      Run = 68
               USER
               USER
                                       Cluster Rank = 1
               USER
                                       Number of conformations in this cluster = 30
30
               USER
               USER
                                                                                                                                               = 2.052 A
                                      RMSD from reference structure
               USER
                                      Estimated Free Energy of Binding = -8.04 \text{ kcal/mol} [=(1)+(3)]
               USER
                                     Estimated Inhibition Constant, Ki = +1.27e-06 [Temperature = 298.15 K]
35 - USER
               USER
                                     Final Docked Energy
                                                                                                                                              = -10.89 \text{ kcal/mol} [=(1)+(2)]
                USER
                                       (1) Final Intermolecular Energy = -10.22 kcal/mol
               USER
               USER (2) Final Internal Energy of Ligand = -0.67 kcal/mol
USER (3) Torsional Free Energy = +2.18 kcal/mol
40
               USER
               USER
                                      DPF = test.dpf
               USER
                                      NEWDPF move udp_tr.pdbq
45
                                       NEWDPF about16.792999 18.735001 34.970001
               USER
                                      NEWDPF tran017.046913 18.963031 34.725298
               USER
               USER
                                      NEWDPF quat0-0.538364 0.625258 -0.564993 -1.207985
                                      NEWDPF ndihe7
               USER
                                      NEWDPF dihe0177.60 43.09 -156.33 -38.18 133.10 -146.64 118.61
               USER
                                     Rank x y z vdw Elec q RMS

1 N1 UDP 1 18.510 19.778 33.128 -0.31 -0.10 -0.211 2.052
2 C2 UDP 1 18.922 21.058 32.881 -0.73 +0.26 +0.396 2.052
3 N3 UDP 1 20.259 21.229 32.630 -0.50 -0.29 -0.440 2.052
4 H3 UDP 1 20.580 22.192 32.458 +0.03 +0.34 +0.440 2.052
5 C4 UDP 1 21.227 20.224 32.585 -0.66 +0.23 +0.396 2.052
6 C5 UDP 1 20.731 18.909 32.845 -0.47 +0.00 +0.000 2.052
7 C6 UDP 1 19.424 18.731 33.086 -0.43 +0.00 +0.000 2.052
8 O2 UDP 1 18.137 22.008 32.896 -0.26 -0.31 -0.396 2.052
9 O4 UDP 1 22.391 20.549 32.353 -0.22 -0.24 -0.396 2.052
10 C1' UDP 1 17.093 19.525 33.419 -0.59 +0.08 +0.324 2.052
11 C2' UDP 1 16.453 18.431 32.561 -0.62 -0.01 +0.113 2.052
12 C3' UDP 1 15.268 18.022 33.467 -0.64 -0.01 +0.113 2.052
13 C4' UDP 1 15.809 18.217 34.883 -0.51 +0.03 +0.113 2.052
14 O4' UDP 1 15.969 18.969 31.353 -0.23 +0.17 -0.537 2.052
16 HO2' UDP 1 15.535 18.222 30.793 -0.25 -0.50 +0.424 2.052
17 O3' UDP 1 15.535 18.222 30.793 -0.25 -0.50 +0.424 2.052
17 O3' UDP 1 14.212 18.955 33.222 -0.23 +0.14 -0.537 2.052
50
               USER
               USER
               ATOM
               MOTA
               MOTA
55
               ATOM
               МОТА
               MOTA
               MOTA
               MOTA
60
              ATOM
               ATOM
               ATOM
               ATOM
               MOTA
65
               ATOM
                MOTA
                MOTA
                MOTA
```

- 116 -

TER

```
    14.540
    19.681
    32.569
    -0.27
    -0.29
    +0.424
    2.052

    16.123
    16.899
    35.591
    -0.36
    +0.04
    +0.113
    2.052

    16.716
    17.206
    36.838
    +0.04
    -0.15
    -0.368
    2.052

    16.152
    17.782
    38.194
    -0.58
    +0.41
    +1.019
    2.052

    17.314
    18.186
    39.035
    -0.21
    -0.07
    -0.255
    2.052

       ATOM
                    18 HO3'UDP
                                            1
                     19 C5' UDP
       MOTA
                                            1
                     20 O5' UDP
       ATOM
                                             1
                     21 PA UDP
                                            1
       ATOM
                                      1
       MOTA
                     22 O1A UDP
                    23 O2A UDP 1 15.113 18.813 37.878 -0.06 -0.12 -0.255 2.052 24 O3A UDP 1 15.562 16.395 38.718 +0.02 -0.22 -0.510 2.052 25 PB UDP 1 16.071 15.327 39.793 -0.64 +0.39 +1.019 2.052 26 O1B UDP 1 16.010 16.107 41.207 -0.68 -0.24 -0.255 2.052 27 O2B UDP 1 17.471 15.121 39.345 -0.08 -0.05 -0.255 2.052 28 O3B UDP 1 15.166 14.165 39.982 -0.08 -0.11 -0.255 2.052
       MOTA
       ATOM
       MOTA
       MOTA
10
       ATOM
       MOTA
       TER
       ENDMDL
       MODEL
                       69
15
                   Run = 69
       USER
                   Cluster Rank = 1
       USER
                   Number of conformations in this cluster = 30
       USER
                   RMSD from reference structure
       USER
                                                                       = 2.378 A
20
       USER
                   Estimated Free Energy of Binding = -8.23 \text{ kcal/mol} [=(1)+(3)]
Estimated Inhibition Constant, Ki = +9.27e-07 [Temperature = 298.15 K]
       USER
       USER
       USER
       USER.
                   Final Docked Energy
                                                                         = -10.89 \text{ kcal/mol} [=(1)+(2)]
25
       USER
                  (1) Final Intermolecular Energy = -10.41 kcal/mol

(2) Final Internal Energy of Ligand = -0.48 kcal/mol

(3) Torsional Free Energy = +2.18 kcal/mol
       USER
       USER
        USER
        USER
30
       USER
                   DPF = test.dpf
        USER
        USER
                   NEWDPF move udp tr.pdbq
                   NEWDPF about16.792999 18.735001 34.970001
       USER
                   NEWDPF tran016.201952 19.564603 34.695888
35
       USER
                   NEWDPF quat00.514657 0.516195 -0.684595 -28.099016 -
        USER
                  NEWDPF ndihe7
        USER
                   NEWDPF dihe0-150.93 172.72 28.50 65.97 16.78 -26.91 120.36
        USER
                 z vdW Elec
        USER
                                                                     У
                    Rank x y z vdW Elec q RMS
1 N1 UDP 1 17.763 20.463 33.243 -0.42 -0.09 -0.211 2.378
                                      Rank
                                                          x
40
       MOTA
        MOTA
        MOTA
        ATOM
       MOTA
45
       MOTA
       ATOM
        ATOM
       ATOM
       ATOM
50
       MOTA
        MOTA
       ATOM
        ATOM
        ATOM
55
       ATOM
        MOTA
        ATOM
        ATOM
        ATOM
60
       ATOM
        ATOM
        ATOM
        ATOM
        ATOM
65
        ATOM
                     27 O2B UDP 1 14.581 14.697 39.235 -0.01 -0.10 -0.255 2.378 28 O3B UDP 1 15.825 15.967 41.099 -0.63 -0.20 -0.255 2.378
        MOTA
        ATOM
```

- 117 -

```
ENDMDL
     MODEL
                 61
     USER
             Run = 61
     USER
             Cluster Rank = 1
     USER
             Number of conformations in this cluster = 30
     USER
     USER
             RMSD from reference structure
                                                  = 2.557 A
     USER
     USER
             Estimated Free Energy of Binding = -7.87 \text{ kcal/mol} [=(1)+(3)]
                                                                   [Temperature = 298.15 K]
10
     USER
             Estimated Inhibition Constant, Ki
                                                  =
                                                     +1.71e-06
     USER
                                                  = -10.89 \text{ kcal/mol} [=(1)+(2)]
     USER
             Final Docked Energy
     USER
                                               = -10.05 \text{ kcal/mol}
     USER
             (1) Final Intermolecular Energy
     USER
             (2) Final Internal Energy of Ligand = -0.84 kcal/mol
     USER
             (3) Torsional Free Energy
                                                  = +2.18 kcal/mol
     USER
     USER
     USER
             DPF = test.dpf
             NEWDPF move udp_tr.pdbq
NEWDPF about16.792999 18.735001 34.970001
20
     USER
     USER
     USER
             NEWDFF tran016.562668 19.480276 35.364105
             NEWDPF quat00.504391 0.164975 -0.847569 -18.647284
     USER
             NEWDPF ndihe7
     USER
25
             NEWDPF dihe0-178.72 70.98 -178.92 -84.93 -87.09 46.14 171.15
     USER
     USER
     USER
                                                                 Wbv
                                                                        Elec
                                                                                         RMS
                          Rank
                                        х
                                                        z
                                                                 -0.39 -0.10 -0.211 2.557
-0.86 +0.28 +0.396 2.557
                                      17.871 20.369
                                                       33.675
     MOTA
               1 N1
                      UDP
                              1
                                                       33.210 '
                                              21.651
     MOTA
               2
                  C2
                      UDP
                                      17.960
                               1
                                      19.223 22.123 32.959
                                                                        -0.48
30
               3 N3
                                                                 -0.53
                                                                               -0.440
     MOTA
                      UDP
                               1
                                                                                        2.557
                                      19.299 23.093 32.623
                                                                 +0.05 +0.79 +0.440 2.557
     MOTA
               4 H3
                      UDP
                               1
                                      20.415 21.414 33.114
                                                                 -0.78 + 0.34 + 0.396 2.557
     ATOM
               5 C4
                      UDP
                               1
     MOTA
               6
                 C5
                       UDP
                               1
                                      20.254 20.078 33.596
                                                                 -0.59 +0.00 +0.000 2.557
                                                                               +0.000 2.557
                                      19.022 19.606 33.839
               7 C6
                      UDP
                                                                 -0.51 + 0.00
     ATOM
                               1
                                      16.960 22.352 33.040
21.471 21.988 32.850
16.549 19.807 33.979
35
               8 . 02
                       UDP
                               1
                                                                 -0.29 -0.28
                                                                               -0.396 2.557 -
     MOTA
                                                                               -0.396
+0.324
                                                                 -0.19 -0.27
     ATOM
               9
                  04
                       UDP
                               1
                                                                                        2.557
                                                                 -0.60 + 0.06
     ATOM
               10
                  C1 '
                      UDP
                               1
                                                                                        2.557
                                      16.266 18.455 33.319
                                                                 -0.55 +0.00 +0.113
                  C2' UDP
     ATOM
               11
                               1
                                                                                        2.557
                                      15.168 17.908 34.261
                                                                 -0.59
                                                                        +0.01 +0.113 2.557
     ATOM
               12
                  C3' UDP
                               1
40
                                      15.548 18.474 35.629
                                                                 -0.53 +0.04 +0.113 2.557
     MOTA
               13
                  C4' UDP
                               1
     MOTA
               14
                  O4' UDP
                               1
                                      16.563 19.480 35.364
                                                                 -0.04
                                                                        -0.08 -0.227
                                                                                        2.557
                                                                 -0.22 +0.20 -0.537
                                      15.742 18.636 32.025
                               1
     ATOM
               15
                  O2' UDP
                                                                                        2.557
                                      15.492 17.722 31.624
13.928 18.477 33.832
13.998 18.747 32.840
16.139 17.422 36.568
     ATOM
                  HO2'UDP
                               1
                                                                 -0.22
                                                                        -0.46 +0.424
              16
                                                                                        2.557
     MOTA
               17
                  O3' UDP
                               1
                                                                 -0.23
                                                                        -0.03
                                                                               -0.537
                                                                                        2.557
                                                                               +0.424
45
     MOTA
               18
                  HO3'UDP
                               1
                                                                 -0.09 -0.13
                                                                                        2.557
                  C5' UDP
                                                                 -0.38 +0.05 +0.113
                               1
     MOTA
               19
                                                                                        2.557
                                      15.490 17.543 37.819
                                                                 +0.16 -0.17 -0.368 2.557
     MOTA
               20 05' UDP
                               1
                                      15.833 18.324 39.146
                                                                 -0.55 +0.45 +1.019 2.557
     ATOM
               21 PA UDP
                               1
                                                                               -0.255 2.557
               22 O1A UDP
                               1
                                      17.314 18.480 39.212
                                                                 -0.19 -0.07
     ATOM
                                      14.987 19.558 39.205
                                                                 -0.14 -0.10 -0.255 2.557
50
               23 O2A UDP
     MOTA
                               1
                                                                               -0.510 2.557
                  O3A UDP
                               1
                                      15.367 17.162 40.135
                                                                 -0.28 -0.28
               24
     MOTA
                                      15.773
                                              15.623
                                                      40.282
                                                                 -0.75
                                                                               +1.019
     ATOM
               25
                  PB UDP
                               1
                                                                        +0.45
                                                                                        2.557
                                      17.381
     MOTA
               26
                  O1B UDP
                               1
                                               15.607 40.125
                                                                 -0.17
                                                                        -0.04
                                                                               -0.255
                                                                                        2.557
                                               15.041 39.091
               27 O2B UDP
                                                                        -0.11
                                       15.104
                                                                 -0.01
     MOTA
                               1
                                                                               -0.255
                                                                                        2.557
55
               28 O3B UDP
                               1
                                      15.535 15.049 41.631
                                                                 -0.49 -0.17 -0.255 2.557
     MOTA
     TER
     ENDMDL
     MODEL
                   6
              Run = 6
     USER
60
     USER
              Cluster Rank = 1
     USER
              Number of conformations in this cluster = 30
     USER
     USER
              RMSD from reference structure
                                                   = 2.174 A
     USER
65
     USER
              Estimated Free Energy of Binding
                                                   = -8.10 kcal/mol [=(1)+(3)]
             Estimated Inhibition Constant, Ki
                                                 = +1.16e-06
                                                                    [Temperature = 298.15 K]
     USER
     HSER
                                                   = -10.88 \text{ kcal/mol} [=(1)+(2)]
     USER
             Final Docked Energy
```

```
USER
                         (1) Final Intermolecular Energy = -10.28 kcal/mol
(2) Final Internal Energy of Ligand = -0.60 kcal/mol
(3) Torsional Free Energy = +2.18 kcal/mol
         USER
          USER
          USER
          USER
          USER
          USER
                         DPF = test.dpf
          USER
                          NEWDPF move udp tr.pdbq
          USER
                          NEWDPF about16.792999 18.735001 34.970001
                         NEWDPF tran016.843938 19.665299 34.549841
10
          USER
          USER NEWDPF quat0-0.680946 -0.646119 0.344735 19.606725
          USER
                         NEWDPF ndihe7
                         NEWDPF dihe0-164.02 79.05 -46.01 2.37 80.35 -64.66 114.70
          USER
          USER
15
          USER
                                                    Rank
                                                                            x
                                                                                              У
                                                                                                                              Wbv
                                                                                                                                             Elec
                                                                                                                                                                             RMS
                                                                          18.554 20.272 33.114
                                                                                                                             -0.36 -0.11 -0.211 2.174
          MOTA
                          1 N1 UDP 1
                                                                          18.912 21.504 32.639 -0.81 +0.28 +0.396 2.174
          MOTA
                             2 C2 UDP
                                                           1
          MOTA
                             3 N3 UDP
                                                                          20.255 21.782 32.618 -0.53 -0.35 -0.440 2.174

    20.255
    21.762
    32.816
    -0.55
    -0.35
    -0.440
    2.174

    20.531
    22.713
    32.276
    +0.10
    +0.38
    +0.440
    2.174

    21.282
    20.924
    33.014
    -0.75
    +0.28
    +0.396
    2.174

    20.843
    19.651
    33.492
    -0.54
    +0.00
    +0.000
    2.174

    19.532
    19.368
    33.512
    -0.48
    +0.00
    +0.000
    2.174

    18.073
    22.325
    32.265
    -0.33
    -0.27
    -0.396
    2.174

    22.441
    21.332
    32.938
    -0.25
    -0.27
    -0.396
    2.174

    17.131
    19.916
    33.179
    -0.66
    +0.08
    +0.324
    2.174

    16.730
    19.582
    32.514
    -0.61
    +0.00
    +0.2132
    2.2174

                          4 H3 UDP 1
5 C4 UDP 1
6 C5 UDP 1
7 C6 UDP 1
8 O2 UDP 1
9 O4 UDP 1
10 C1' UDP 1
          MOTA
20
          MOTA
          MOTA
          MOTA
          ATOM
          MOTA
                                                            1
          MOTA

      16.779
      18.583
      32.514
      -0.61
      +0.00
      +0.113
      2.174

      15.460
      18.244
      33.247
      -0.64
      -0.01
      +0.113
      2.174

      15.662
      18.825
      34.646
      -0.57
      +0.02
      +0.113
      2.174

      16.844
      19.665
      34.550
      -0.06
      -0.07
      -0.227
      2.174

      16.532
      18.765
      31.140
      -0.20
      +0.10
      -0.537
      2.174

      16.002
      17.960
      30.776
      -0.43
      -0.37
      +0.424
      2.174

      14.416
      18.955
      32.577
      -0.24
      +0.24
      -0.537
      2.174

      14.645
      19.040
      31.576
      -0.24
      -0.35
      +0.424
      2.174

      15.913
      17.753
      35.708
      -0.43
      +0.04
      +0.113
      2.174

      16.283
      18.408
      36.906
      -0.03** -0.15
      -0.368
      2.174

      17.443
      18.479
      39.096
      -0.19
      -0.06
      -0.255
      2.174

      16.272
      16.435
      38.184
      +0.02
      -0.21
      -0.510
      2.174

    <tr
                            11 C2' UDP
                                                                          16.779 18.583 32.514 -0.61 +0.00 +0.113 2.174
          MOTA
                                                            1
                           11 C2 UDP 1
12 C3' UDP 1
13 C4' UDP 1
14 O4' UDP 1
15 O2' UDP 1
16 HO2'UDP 1
17 O3' UDP 1
18 HO3'UDP 1
19 C5' UDP 1
          MOTA
          MOTA
          MOTA
30 ATOM
          MOTA
          MOTA
          ATOM
          MOTA
                            20 O5' UDP - 1
          ATOM
                            21 PA UDP 1
          MOTA
                           21 PA UDP 1
22 O1A UDP 1
23 O2A UDP 1
24 O3A UDP 1
25 PB UDP 1
26 O1B UDP 1
27 O2B UDP 1
28 O3B UDP 1
          MOTA
          MOTA
          MOTA
40
          MOTA
          MOTA
                                                                           16.297 15.342 40.297
                                                                                                                              -0.20 -0.09
                                                                                                                                                          -0.255 2.174
          ATOM
                            28 O3B UDP
                                                                           18.455 15.227 38.895
                                                                                                                           -0.11 -0.04 -0.255 2.174
          MOTA
          TER
45
          ENDMDL
          MODEL
                                  26
          USER
                           Run = 26
                           Cluster Rank = 1
          USER
          USER
                           Number of conformations in this cluster = 30
50
          USER
          USER
                           RMSD from reference structure
                                                                                                  = 2.271 A
                                                                                                  = -8.13 kcal/mol [=(1)+(3)]
                           Estimated Free Energy of Binding
           USER
          USER
                           Estimated Inhibition Constant, Ki = +1.09e-06 [Temperature = 298.15 K]
55
          USER
                                                                                                   = -10.83 \text{ kcal/mol} = (1)+(2)
           USER
                           Final Docked Energy
           USER
                           (1) Final Intermolecular Energy = -10.31 kcal/mol
           USER
                           (2) Final Internal Energy of Ligand = -0.51 kcal/mol
           USER
60
           USER
                           (3) Torsional Free Energy = +2.18 kcal/mol
           USER
           USER
          USER
                           DPF = test.dpf
           USER
                           NEWDPF move udp_tr.pdbq
                           NEWDPF about16.792999 18.735001 34.970001
65
           USER
                           NEWDPF tran016.632623 19.448723 35.340054
           USER
                          NEWDPF quat00.615270 -0.245958 -0.748964 -10.093568
           USER
                           NEWDPF ndihe7
```

```
NEWDPF dihe0174.97 44.52 29.30 28.43 75.61 -90.02 127.13
     USER
     USER
     USER
                                                               vdW
                                                                      Elec
                                                                                      RMS
                          Rank
                                       х
                                                     33.570
     MOTA
                      UDP
                                     17.907
                                             20.223
                                                               -0.37
                                                                      -0.10
                                                                             -0.211
                                                                                     2.271
               1
                 N1
                              1
     MOTA
               2
                 C2
                      UDP
                              1
                                     18.147
                                             21.502
                                                     33.150
                                                               -0.83
                                                                      +0.27
                                                                             +0.396
                                                                                     2.271
                                                                      -0.39
                                                    32.799
                                                               -0.55
                                                                             -0.440
     MOTA
               3
                      UDP
                                     19.440
                                             21.795
                                                                                     2.271
                 ИЗ
                              1
                                             22.760 32.496
                                                               +0.03
                                                                     +0.60
                                                                             +0.440
     MOTA
               4
                 нз
                      UDP
                              1
                                     19.633
                                                                                     2.271
     MOTA
               5
                  C4
                      UDP
                              1
                                     20.521 20.911 32.812
                                                               -0.73
                                                                     +0.26
                                                                             +0.396
                                                                                     2.271
     MOTA
               6
                  C5
                      UDP
                                     20.202
                                             19.590 33.254
                                                               -0.53
                                                                      +0.00
                                                                             +0.000
                                                                                     2.271
                                     18.939 19.292 33.595
                                                               -0.47
                                                                      +0.00
                                                                             +0.000 2.271
10
               7
                  C6
                     UDP
     MOTA
                              1
                                                                             -0.396 2.271
                                     17.254 22.350 33.103
                                                               -0.29
                                                                      -0.30
     MOTA
               Я
                  02
                      UDP
                              1
                                     21.624 21.337
                                                               -0.20
                                                                     -0.19
     MOTA
               9
                  04
                      UDP
                              1
                                                     32.472
                                                                             -0.396 2.271
                     UDP
                                                     33.977
                                                               -0.61
                                                                      +0.06
                                                                             +0.324
     MOTA
              10
                  C1'
                              1
                                     16.547
                                             19.847
                                                                                      2.271
                                     16.006 18.589
                                                                             +0.113 2.271
     MOTA
              11
                  C2' UDP
                              1
                                                     33.294
                                                               -0.60
                                                                      +0.00
15
                                     14.925 18.160
                                                               -0.62
                                                                     +0.01 +0.113 2.271
                                                     34.313
     MOTA
              12
                  C3' UDP
                              1
                  C4' UDP
                                     15.505 18.590 35.660
                                                               -0.52 +0.04 +0.113 2.271
     ATOM
              13
                              1
     ATOM
              14
                  O4' UDP
                              7
                                     16.633 19.449 35.340
                                                               -0.04
                                                                      -0.09 -0.227 2.271
     MOTA
              15
                  O2' UDP
                              1
                                     15.403 18.914 32.063
                                                               -0.26 + 0.22 - 0.537 2.271
                                     15.076 18.053 31.602
                                                               -0.18 -0.46 +0.424 2.271
     ATOM
              16
                  HO2'UDP
                              1
                                                                             -0.537 2.271
                                                               -0.09 -0.03
20
     ATOM
              17
                  O3' UDP
                              1
                                     13.752 18.927 34.026
     ATOM
              18
                  HO3'UDP
                                     13.950 19.584 33.258
                                                               -0.37
                                                                      -0.26 + 0.424 2.271
                              1
                                     16.010 17.414 36.496
                                                               -0.36
                                                                     +0.05
                                                                             +0.113
     ATOM
              19
                  C5' UDP
                              1
                                                                                      2.271 ---
     MOTA
              20
                  O5' UDP
                              1
                                     16.440
                                             17.923
                                                     37.745
                                                               -0.05
                                                                      -0.15
                                                                             -0.368
                                                                                      2.271
                                     16.141 17.518 39.240
                                                                     +0.43 +1.019
                                                               -0.77
     MOTA
              21
                  PA UDP
                              1
                                                                                      2.271
                                     17.435 17.530 39.981
25
                                                               -0.35 -0.07
                                                                             -0.255 2.271
                  O1A UDP
     ATOM
              22
                              1
     MOTA
              23
                  O2A UDP
                              1
                                     15.025 18.373 39.752
                                                               -0.26 -0.13
                                                                            -0.255 2.271
                  O3A UDP
                                     15.720 16.014 38.913
                                                               -0.02 -0.22
                                                                             -0.510 2.271
     ATOM
              24
                              1
                                                    39.827
     MOTA
              25
                  PB UDP
                                     15.458 14.728
                                                               -0.57 + 0.39
                                                                             +1.019 2.271
                                                                      -0.08
                                                                             -0.255 2.271
     MOTA
              26
                  O1B UDP
                              1
                                     16.713 13.754 39.531
                                                               +0.02
                                                                             -0.255 2.271
30
     MOTA
              27
                  O2B UDP
                                     14.207
                                             14.205 39.222
                                                               -0.02
                                                                      -0.10
                              1
                                     15.535 14.985 41.287
                                                               -0.38 -0.14
                                                                             -0.255 2.271
     ATOM
              28
                  O3B UDP
     TER
     ENDMDL
     MODEL
                 44
35 - USER
             Run = 44
     USER
             Cluster Rank = 1
     USER
             Number of conformations in this cluster = 30
     USER
     USER
             RMSD from reference structure
                                                 = 2.334 A
40
     USER
                                                     -8.06 \text{ kcal/mol} [=(1)+(3)]
     USER
             Estimated Free Energy of Binding
                                                 =
             Estimated Inhibition Constant, Ki
                                                     +1.24e-06
     USER
                                                                   [Temperature = 298.15 K]
     USER
     USER
             Final Docked Energy
                                                 = -10.79 \text{ kcal/mol} [=(1)+(2)]
45
     USER
             (1) Final Intermolecular Energy = -10.24 kcal/mol
     USER
             (2) Final Internal Energy of Ligand = -0.55 kcal/mol
(3) Torsional Free Energy = +2.18 kcal/mol
     USER
     USER
     USER
50
     USER
     USER
             DPF = test.dpf
             NEWDPF move udp tr.pdbq
     USER
             NEWDPF about16.792999 18.735001 34.970001
     USER
             NEWDPF tran016.271561 19.593224 34.779030
     USER
             NEWDPF quat00.519881 0.500873 -0.691990 -26.382845
55
     USER
             NEWDPF ndihe7
     USER
     USER
             NEWDPF dihe0-7.19 74.61 -113.35 69.18 12.29 -18.57 135.17
     USER
     USER
                           Rank
                                                               vdW
                                                                       Elec
                                                У
                                                       Z
                                                                                       RMS
                                       х
                                                                                 q
                                      17.817 20.480 33.302
60
     MOTA
               1 N1
                      UDP
                              1
                                                               -0.41
                                                                      -0.10 -0.211
                                                                                      2.334
                                      17.921 21.743 32.788
                      UDP
                                                               -0.89
                                                                      +0.26 +0.396 2.334
     ATOM
               2 C2
                              1
               3 N3
                      UDP
                              1
                                      19.183 22.278 32.739
                                                               -0.53
                                                                      -0.47
                                                                             -0.440 2.334
     ATOM
                                              23.234 32.368
               4
                  нз
                      UDP
                              1
                                      19.268
                                                               +0.08
                                                                      +0.70
                                                                             +0.440
     MOTA
                                                                                      2.334
     MOTA
               5
                  C4
                      UDP
                              1
                                      20.363
                                              21.651
                                                      33.144
                                                               -0.77
                                                                       +0.38
                                                                             +0.396
                                                                                      2.334
65
                      UDP
                                                     33.665
                                                               -0.63
                                                                      +0.00
     MOTA
               6
                  C5
                              1
                                      20.186
                                              20.332
                                                                             +0.000
                                                                                      2.334
                      UDP
                                                               -0.53
                                                                      +0.00
                  C6
                              1
                                      18.957
                                              19.798
                                                     33.711
                                                                              +0.000
     MOTA
               7
                                                                                      2.334
                  02
                       UDP
                              1
                                      16.934
                                              22.372
                                                     32.403
                                                                -0.35
                                                                       -0.22
                                                                             -0.396
     ATOM
               8
                                                                                      2.334
     MOTA
               9 04
                       UDP
                               1
                                      21.418 22.276
                                                     33.040
                                                                -0.41
                                                                      -0.36
                                                                             -0.396 2.334
```

- 120 -

```
16.492 19.853 33.398 -0.66 +0.04 +0.324 2.334
       MOTA
                     10 C1' UDP
                                            1
       ATOM
                     11 C2' UDP
                                             1
                                                       16.403 18.458 32.776 -0.60 +0.00 +0.113 2.334
       MOTA
                     12 C3' UDP
                                                        15.183 17.889 33.537 -0.65 -0.01 +0.113 2.334
                                                        15.279 18.540 34.916 -0.58 +0.02 +0.113 2.334
                     13 C4' UDP .
       ATOM
                                             1
                                                                                              -0.06 -0.05 -0.227 2.334
-0.21 +0.21 -0.537 2.334
-0.05 -0.08 +0.424 2.334
-0.36 +0.11 -0.537 2.334
                     14 04' UDP
       MOTA
                                             1
                                                        16.272 19.593 34.779
                    15 O2' UDP 1
16 HO2'UDP 1
17 O3' UDP 1
18 HO3'UDP 1
19 C5' UDP 1
20 O5' UDP 1
21 PA UDP 1
                                                       16.113 18.546 31.401 -0.21 +0.21 -0.537 2.334 15.957 19.531 31.145 -0.05 -0.08 +0.424 2.334 14.013 18.361 32.862 -0.36 +0.11 -0.537 2.334 14.233 18.530 31.870 -0.10 -0.32 +0.424 2.334 15.744 17.572 36.003 -0.24 +0.04 +0.113 2.334
       MOTA
       MOTA
       MOTA
       ATOM
10
       ATOM
                                                       15.535 18.194 37.257 -0.02 -0.17 -0.368 2.334
       ATOM
                                                        16.149 17.970 38.693 -0.69 +0.42 +1.019 2.334
       ATOM

    16.149
    17.970
    38.693
    -0.69
    +0.42
    +1.019
    2.334

    17.550
    18.480
    38.673
    -0.16
    -0.06
    -0.255
    2.334

    15.204
    18.533
    39.708
    -0.25
    -0.12
    -0.255
    2.334

    16.154
    16.376
    38.613
    -0.01
    -0.21
    -0.510
    2.334

    16.024
    15.225
    39.715
    -0.63
    +0.39
    +1.019
    2.334

    14.558
    14.590
    39.472
    +0.02
    -0.09
    -0.255
    2.334

    16.070
    16.026
    40.965
    -0.59
    -0.20
    -0.255
    2.334

                     22 O1A UDP 1
23 O2A UDP 1
       MOTA
       MOTA
                     24 O3A UDP
15
                                          1
       MOTA
                                            ì
                         PB UDP
       ATOM
                     25
                                            ī
1
                     26 O1B UDP
27 O2B UDP
28 O3B UDP
       MOTA
       MOTA
                                           1
        MOTA
                                                        16.951 14.082
                                                                                39.523 +0.03 -0.07 -0.255 2.334
20
        TER
       ENDMDL
       MODEL
                        93
        USER
                    Run = 93
        USER
                    Cluster Rank = 1
        USER
                    Number of conformations in this cluster = 30
        USER
                                                                          = 2.047 A
        USER
                    RMSD from reference structure
        USER
                                                                          = -7.80 kcal/mol [=(1)+(3)]
        USER
                    Estimated Free Energy of Binding
30
                    Estimated Inhibition Constant, Ki = +1.91e-06
                                                                                                    [Temperature = 298.15 \text{ K}]
        USER
                                                                          = -10.78 \text{ kcal/mol} [=(1)+(2)]
        USER
                    Final Docked Energy
        USER
                    (1) Final Intermolecular Energy = -9.98 kcal/mol
        USER
                    (2) Final_Internal Energy of Ligand = -0.80 kcal/mol
35
        USER
                    (3) Torsional Free Energy = +2.18 kcal/mol
        USER
        USER
        USER
                    DPF = test.dpf
        USER
                    NEWDPF move udp_tr.pdbq
40
        USER
                    NEWDPF about16.792999 18.735001 34.970001
        USER
                    NEWDPF tran017.106934 19.121410 34.610553
        USER
                    NEWDPF quat00.289729 0.319963 -0.902043 -3.357918
        USER
                    NEWDPF ndihe7
        USER
45
        USER
                    NEWDPF dihe0169.72 84.68 85.45 74.96 138.36 -122.86 108.33
        USER
        USER
                                       Rank
                                                                                  Z
                                                                                                vdW
                                                                                                           Elec
                                                          X
                                                       18.546 19.949 32.998
18.907 21.237 32.717
20.238 21.457 32.468
20.521 22.426 32.271
                                                                                               -0.33 -0.10 -0.211 2.047
        MOTA
                    1 N1 UDP 1
                      2 C2 UDP
3 N3 UDP
4 H3 UDP
                                                                                               -0.76 +0.26 +0.396 2.047
-0.51 -0.29 -0.440 2.047
        ATOM
                                             1
                      3 N3 UDP
4 H3 UDP
5 C4 UDP
6 C5 UDP
50
        MOTA
                                              1
                                                                                               +0.06 +0.32 +0.440 2.047
        MOTA
                                              1
                                                   21.246 20.491 32.458
                                                                                               -0.69 +0.22 +0.396 2.047
        ATOM
                                             1
                                                    20.802 19.165 32.752 -0.50 +0.00 +0.000 2.047 19.502 18.940 32.991 -0.45 +0.00 +0.000 2.047
                                             1
        MOTA
        MOTA
                      7
                          C6 UDP
                                                       18.085 22.155 32.701 -0.29 -0.30 -0.396 2.047 22.398 20.856 32.223 -0.24 -0.20 -0.396 2.047 17.138 19.648 33.289 -0.62 +0.08 +0.324 2.047 16.549 18.505 32.459 -0.63 -0.01 +0.113 2.047 15.376 18.073 33.370 -0.63 -0.01 +0.113 2.047 15.900 18.331 34.782 -0.51 +0.02 +0.113 2.047 17.107 10.131 34.611 10.00 -0.00 +0.00 2.047
                     8 O2 UDP 1
55
        MOTA
                     04 UDP 1
10 C1' UDP 1
11 C2' UDP 1
12 C3' UDP 1
13 C4' UDT
        ATOM
        MOTA
        MOTA
        ATOM
                     13 C4' UDP
60
        ATOM
                                                        17.107 19.121 34.611
                                                                                                           -0.08 -0.227 2.047
                           04' UDP 1
                                                                                               +0.00
        ATOM
                     14
                                                       17.107 19.121 34.611
16.052 18.988 31.233
15.773 18.195 30.639
14.285 18.955 33.093
14.263 19.168 32.085
16.262 17.047 35.530
17.045 17.404 36.653
                     15 02' UDP
                                          1
                                                                                               -0.22 +0.16 -0.537 2.047
        MOTA
                     16 HO2'UDP 1
17 O3'UDP 1
18 HO3'UDP 1
19 C5'UDP 1
20 O5'UDP 1
21 PA UDP 1
                                                                                               -0.30
                                                                                                          -0.42 +0.424 2.047
        MOTA
                                                                                               -0.25
                                                                                                           +0.16 -0.537 2.047
        MOTA
        ATOM
                                                                                               -0.19
                                                                                                           -0.31 +0.424 2.047
                                                                                                           +0.04 +0.113 2.047
                                                                                                -0.36
        MOTA
                                                                                               +0.03 -0.15 -0.368
        MOTA
                                                                                                                                 2.047
```

16.709 17.643 38.176

ATOM

-0.62 +0.37 +1.019 2.047

- 121 -

```
22 O1A UDP 1
23 O2A UDP 1
24 O3A UDP 1
25 PB UDP 1
26 O1B UDP 1
                                                                            17.832 18.422 38.771 -0.20 -0.04 -0.255 2.047
15.325 18.205 38.276 -0.06 -0.12 -0.255 2.047
           MOTA
           MOTA
                                                                             16.828 16.111 38.604 -0.03 -0.18 -0.510 2.047
           ATOM
                                                                             16.043 15.207 39.663 -0.62 +0.38 +1.019 2.047
           MOTA
                        . 26 O1B UDP 1
27 O2B UDP 1
           MOTA
                                                                             16.135 16.029 41.051 -0.62 -0.21 -0.255 2.047
           MOTA
                                                                            16.902 13.995 39.690 +0.04 -0.06 -0.255 2.047
                             28 O3B UDP
           ATOM
                                                                            14.585 15.087 39.409 +0.08 -0.08 -0.255 2.047
                                                             1
           TER
           ENDMDL
                                                                                                                             . . . .
10
           MODEL
                                   16 .
           USER
                           Run = 16
           USER
                           Cluster Rank = 1
           USER
                           Number of conformations in this cluster = 30
           USER
15
           USER
                           RMSD from reference structure
                                                                                                     = 1.845 A
           USER
           USER
                           Estimated Free Energy of Binding
                                                                                                    = -7.59 kcal/mol [=(1)+(3)]
           USER
                           Estimated Inhibition Constant, Ki = +2.73e-06 [Temperature = 298.15 K]
           USER
20
           USER
                           Final Docked Energy
                                                                                                     = -10.63 \text{ kcal/mol} [= (1) + (2)]
           USER
                          (1) Final Intermolecular Energy
           USER
                                                                                                 = -9.77 \text{ kcal/mol}
           USER
                           (2) Final Internal Energy of Ligand = -0.86 kcal/mol
           USER
                           (3) Torsional Free Energy = +2.18 kcal/mol
25
           USER
           USER
           USER
                           DPF = test.dpf
                           NEWDPF move udp_tr.pdbq
NEWDPF about16.792999 18.735001 34.970001
           USER
           USER
30
           USER
                           NEWDPF tran016.760984 19.372334 34.613037
                      NEWDPF quat00.476570 0.558632 -0.678831 -10.358588
           USER
                           NEWDPF ndihe7
           USER
                           NEWDPF dihe0-179.67 65.79 64.64 -43.11 -39.67 2.21 151.27
           USER

        x
        y
        z
        vdW
        Elec
        q
        RMS

        18.274
        20.197
        33.068
        -0.36
        -0.10
        -0.211
        1.845

        18.571
        21.487
        32.727
        -0.82
        +0.27
        +0.396
        1.845

        19.901
        21.786
        32.572
        -0.54
        -0.35
        -0.440
        1.845

35
           USER
                                                    Rank
                               1 N1 UDP
2 C2 UDP
           MOTA
                                                       1 .
           ATOM
                                                              1
                               3 N3 UDP
           MOTA
                                                              1

      20.134
      22.759
      32.330
      +0.06
      +0.51
      +0.440
      1.845

      20.968
      20.897
      32.711
      -0.74
      +0.24
      +0.396
      1.845

      20.591
      19.564
      33.061
      -0.54
      +0.00
      +0.000
      1.845

      19.293
      19.261
      33.209
      -0.47
      +0.00
      +0.000
      1.845

      17.693
      22.340
      32.580
      -0.33
      -0.28
      -0.396
      1.845

      22.109
      21.329
      32.545
      -0.21
      -0.19
      -0.396
      1.845

      16.870
      19.813
      33.265
      -0.66
      +0.07
      +0.324
      1.845

      16.432
      18.579
      32.473
      -0.65
      -0.01
      +0.113
      1.845

      15.217
      18.123
      33.314
      -0.67
      -0.02
      +0.113
      1.845

      15.599
      18.509
      34.742
      -0.56
      +0.02
      +0.113
      1.845

      16.761
      19.372
      34.613
      -0.03
      -0.07
      -0.227
      1.845

      15.668
      18.111
      30.681
      -0.27
      -0.50
      +0.424
      1.845

                                                                            20.134 22.759 32.330 +0.06 +0.51 +0.440 1.845
                               4 H3 UDP
           MOTA
                            4 H3 UDP 1
5 C4 UDP 1
6 C5 UDP 1
7 C6 UDP 1
8 O2 UDP 1
9 O4 UDP 1
10 C1' UDP 1
11 C2' UDP 1
12 C3' UDP 1
13 C4' UDP 1
14 O4' UDP 1
15 O2' UDP 1
16 HO2'UDP 1
                                                            1
40
           ATOM
           ATOM
           MOTA
           MOTA
           MOTA
45
           MOTA
           ATOM
           ATOM
           MOTA
           MOTA
50
           ATOM
                            16 HO2'UDP
17 O3' UDP
18 HO3'UDP
                                                             1
           ATOM
           ATOM
                                                              1
           MOTA
                                                              1
                             19 C5' UDP
           Атом
                                                              1
55
                             20 O5' UDP
           ATOM
                                                            1
           MOTA
                             21 PA UDP
                                                                             16.448 17.389 38.312 -0.60 +0.39 +1.019 1.845
                                                            1
                            21 PA UDP 1 16.448 17.389 38.312 -0.60 +0.39 +1.019 1.845 22 O1A UDP 1 17.886 17.155 37.993 -0.10 -0.06 -0.255 1.845 23 O2A UDP 1 16.103 18.502 39.251 -0.18 -0.11 -0.255 1.845 24 O3A UDP 1 15.738 16.001 38.649 +0.03 -0.22 -0.510 1.845 25 PB UDP 1 16.164 14.475 38.440 -0.39 +0.54 +1.019 1.845 26 O1B UDP 1 16.007 14.220 36.852 -0.22 -0.29 -0.255 1.845 27 O2B UDP 1 15.104 13.778 39.211 +0.01 -0.13 -0.255 1.845 28 O3B UDP 1 17.597 14.193 38.713 +0.00 -0.10 -0.255 1.845
           ATOM ·
           ATOM '
           ATOM
60
           MOTA
           · MOTA
           MOTA
           ATOM
65
           ENDMDL
           MODEL
                                 15
           USER
                           Run = 15
                           Cluster Rank = 1
           USER
```

- 122 -

```
Number of conformations in this cluster = 30
      USER
      USER
                                                           = 2.223 A
      USER
               RMSD from reference structure
      USER
 5
               Estimated Free Energy of Binding
      USER
                                                           = -7.66 kcal/mol [=(1)+(3)]
      USER
                                                                +2.43e-06 [Temperature = 298.15 K]
               Estimated Inhibition Constant, Ki =
      USER
      USER
                Final Docked Energy
                                                           = -10.34 \text{ kcal/mol} [= (1) + (2)]
      USER
10
                (1) Final Intermolecular Energy = -9.84 kcal/mol
      USER
      USER
                (2) Final Internal Energy of Ligand = -0.50 kcal/mol
                (3) Torsional Free Energy = +2.18 kcal/mol
      USER
      USER
      USER
15
      USER
               DPF = test.dpf
               NEWDPF move udp_tr.pdbq
NEWDPF about16.792999 18.735001 34.970001
      USER
      USER
      USER
               NEWDPF tran016.863568 19.504418 34.934969
               NEWDPF quat0-0.617758 -0.594434 0.514804 13.202837
      USER
20
      USER
               NEWDPF ndihe7
               NEWDPF dihe0102.16 43.08 -71.59 8.44 90.61 -97.23 107.68
      USER
      USER
      USER
                                                                             vdW
                                                                                      Elec
                                                                                                         RMS
                                Rank
                                               х
                                                         У
                                                                                                 q
      ATOM
                  1 N1 UDP
                                             18.441 20.239 33.409
                                                                             -0.35 -0.11 -0.211 2.223
                                  1
                                             18.760 21.507 33.012
20.096 21.792 32.894
20.345 22.750 32.610
21.152 20.908 33.122
                                                                             -0.82 +0.30 +0.396 2.223
-0.54 -0.41 -0.440 2.223
+0.03 +0.62 +0.440 2.223
25
      MOTA
                  2 C2 UDP
                                    1
      ATOM
                  3 N3
                           UDP
                                    1
                     нз
      MOTA
                  4
                           UDP
                                     1
                                                                                     +0.29 +0.396 2.223
                     C4 UDP
                                                                             -0.74
      MOTA
                  5
                                     1
                                             20.753 19.597 33.528
      MOTA
                  6 C5 UDP
                                                                             -0.53 +0.00 +0.000 2.223
                                     1
30
                                             19.448 19.308 33.641
                                                                            -0.47 +0.00 +0.000 2.223
      MOTA
                  7 C6 UDP
                                     1

    -0.28
    -0.32
    -0.396
    2.223

    -0.25
    -0.27
    -0.396
    2.223

                8 02
      MOTA
                           UDP .
                                     1
                                             17.894 22.354 32.785
                                            22.301 21.325 32.979
17.028 19.872 33.570
16.614 18.599 32.829
15.364 18.194 33.644
15.692 18.654 35.064
      MOTA
                 9 04 UDP
                                     1
                                                                             -0.63 +0.09 +0.324 2.223
      MOTA
                 10 C1' UDP
                                     1
                                                                            -0.59 +0.00 +0.113 2.223
-0.63 +0.00 +0.113 2.223
-0.55 +0.03 +0.113 2.223
                 11 C2' UDP
      MOTA
                                     1
35
      MOTA
                 12
                     C3' UDP
                                     1
                 13 C4' UDP
      MOTA
                                     1
                 14 04' UDP
                                             16.864 19.504 34.935
                                                                             -0.04 -0.08 -0.227
      MOTA
                                     1
                                                                                                        2.223
                                                                            -0.24 +0.12 -0.537 2.223
                 15 02' UDP
                                            16.246 18.896 31.502
      MOTA
                                     1
      MOTA
                 16 HO2'UDP
                                     1
                                             16.994 18.596 30.862
                                                                             -0.02 -0.03 +0.424 2.223
40
      MOTA
                 17 03' UDP
                                             14.267 18.955 33.133
                                                                             -0.24 +0.16 -0.537 2.223
                                     1

    14.607
    19.611
    32.416
    -0.21
    -0.28
    +0.424

    16.032
    17.497
    36.004
    -0.41
    +0.04
    +0.113

    16.661
    18.039
    37.150
    -0.03
    -0.15
    -0.368

    16.337
    17.982
    38.693
    -0.68
    +0.40
    +1.019

    17.627
    18.086
    39.432
    -0.25
    -0.04
    -0.255

                                                                             -0.21 -0.28 +0.424 2.223
                 18 HO3'UDP
      MOTA
                                     1
                      C5' UDP
      MOTA
                 19
                                     1
                                                                                                        2,223
      MOTA
                 20
                      05' UDP
                                     1
                                                                                                        2,223
                 21 PA UDP
      MOTA
                                     1
                                                                                                        2.223
45
                                                                             -0.25 -0.04 -0.255 2.223
                 22 O1A UDP
                                     1
      MOTA
      MOTA
                 23 O2A UDP
                                     1
                                             15.266 18.983 38.992
                                                                             -0.19 -0.11 -0.255 2.223
                 24 O3A UDP
                                             15.837 16.467 38.690
                                                                             +0.00 -0.22 -0.510 2.223
      ATOM
                                     1
                 25 PB UDP
                                        - 15.882 15.298 39.781
      MOTA
                                     1
                                                                             -0.65 +0.39 +1.019 2.223
                                             14.585 14.389 39.460 . -0.02 -0.10 -0.255 2.223
      ATOM
                 26 O1B UDP
                                     1
                                             15.706 16.076 41.033
17.026 14.363 39.633
                                                                             -0.62 -0.20 -0.255 2.223
50
      MOTA
                 27
                      O2B UDP
                                     1
      MOTA
                 28
                      O3B UDP
                                     1
                                                                             +0.04 -0.05 -0.255 2.223
      TER
      ENDMDL
```

- 123 -

Table 6

Residue number will be set to the conformation's cluster rank.

```
5
     MODEL
                  32
              Run = 32
     USER
     USER
              Cluster Rank = 1
     USER
              Number of conformations in this cluster = 3
     USER
10
     USER
              RMSD from reference structure
                                                    = 2.229 A
    · USER
     USER
              Estimated Free Energy of Binding
                                                    = -9.58 kcal/mol [=(1)+(3)]
              Estimated Inhibition Constant, Ki
     USER
                                                    = +9.46e-08
                                                                         [Temperature = 298.15
     K]
15
     USER
     USER
              Final Docked Energy
                                                    = -13.09 \text{ kcal/mol} [=(1)+(2)]
     USER
              (1) Final Intermolecular Energy = -13.94 kcal/mol

(2) Final Internal Energy of Ligand = +0.85 kcal/mol

(3) Torsional Free Energy = +4.36 kcal/mol
     USER
     USER
20
     USER
     USER
     USER
              DPF = udp gal.dpf
     USER .
              NEWDPF move udp_gal.pdbq
     USER
25
              NEWDPF about15.798000 16.955999 35.483002
     USER
     USER
              NEWDPF tran015.935308 17.497402 35.985764
     USER
              NEWDPF quat0-0.511638 0.842288 -0.169640 -0.016065
              NEWDPF ndihe14
     USER
     USER
              NEWDPF dihe00.72 72.20 174.47 61.19 -168.15 179.54 -19.00 -11.55 -110.12 -5.97
30
     49.04 165.23 96.49 -141.60
                                                         z
     USER
                           Rank
                                                                  vdW
                                                                          Elec
                                                                                           RMS
                                       18.011 20.255 33.276
                                                                  -0.38 -0.10 -0.211 2.229
     MOTA
                      IID1
                1 N
                             1
                                       18.286 21.586 32.961
19.609 21.849 32.689
20.671 20.940 32.698
20.312 19.592 33.032
                                                                  -0.84 +0.28 +0.396 2.229
-0.54 -0.39 -0.440 2.229
-0.73 +0.25 +0.396 2.229
     MOTA
                2 C
                       UD1
                                1
35
     MOTA
              · 3 N1 UD1
                                1
     MOTA
                4 C1
                      UD1
                                1
                5 C2 UD1
                                                                  -0.54 +0.00 +0.000 2.229
     ATOM
                                1
                                      19.024 19.298 33.304
                                                                  -0.47 +0.00 +0.000 2.229
     ATOM
                6 C3 UD1
                               1
                       UD1
                                      17.428 22.465 32.926
                                                                  -0.30 -0.31 -0.396 2.229
     ATOM
                7 0
                               1
40
                8 O1 UD1
                                      21.808 21.330 32.427
                                                                  -0.18 -0.17 -0.396 2.229
     MOTA
                              1
                                                                  -0.65 +0.06 +0.324 2.229
                                       16.615 19.895 33.578
     ATOM
               9 C4 UD1
                               1
                                                                          -0.01 +0.113 2.229
               10 C5 UD1
                                       16.077 18.680 32.819
                                                                  -0.65
     ATOM
                               1
                               í·
                                       14.956 18.216 33.749
15.422 18.644 35.144
                      UD1
                                                                  -0.68
                                                                          +0.00 +0.113
     ATOM
               11
                   C6
                                                                                          2.229
                                                                          +0.03 +0.113
     MOTA
               12
                   C7 UD1
                                1
                                                                  -0.56
45
                                       16.524 19.565 34.947
                                                                         -0.07 -0.227
               13 O2 UD1
                                                                  -0.06
     MOTA
                                1
     MOTA
               14 H1
                       UD1
                                       19.844 22.824 32.454
                                                                  +0.05 +0.64 +0.440 2.229
                                1
                                                                  -0.23 +0.22 -0.537 2.229
                                       15.662 19.025 31.511
     ATOM
               15 O3 UD1
                                1
                                       15.060 18.283 31.134
     ATOM
               16 HO3 UD1
                                1
                                                                  -0.10 -0.57 +0.424 2.229
                                       13.664 18.758 33.445
                                                                  -0.27 +0.02 -0.537 2.229
               17 O4 UD1
     ATOM
                                1
                                       13.725 19.337 32.597
15.935 17.497 35.986
16.536 18.003 37.186
                                                                          -0.27 +0.424 2.229
50
               18 HO4 UD1
                                                                   -0.33
     MOTA
                                1
                                                                          +0.04 +0.113 2.229
-0.15 -0.368 2.229
     MOTA
               19
                  C8 UD1
                                1
                                                                   -0.36
               20 05
                      UD1
                                1
                                                                   -0.03
     MOTA
                                       17.675 17.188 37.959
                  PA UD1 .
                                                                  -0.61 +0.28 +1.019
     MOTA
               21
                                1
                   O1A UD1
                                      18.860 18.071 37.912
                                                                   -0.04 +0.00 -0.255 2.229
               22
     MOTA
                                1
                                                                  +0.05 -0.11 -0.255 2.229
55
                                      17.936 15.914 37.242
     ATOM
               23
                   O2A UD1
                                1
               24
                  O3A UD1
                                      17.175 16.955 39.357
                                                                  -0.22 -0.14 -0.510 2.229
     ATOM
                                1
                                      15.787 16.521 39.969
                                                                  -0.81 +0.51 +1.019 2.229
               25 PB UD1
     MOTA
                                1
                                                                   -0.25 -0.14 -0.255 2.229
               26 O1B UD1
                                       14.830 17.653 40.007
     MOTA
                                1
                                                                          -0.22 -0.255 2.229
     ATOM -
               27
                   O2B UD1
                                1
                                       15.957
                                               15.846 41.284
                                                                   -0.64
                                                                         -0.16 -0.368 2.229
+0.12 +0.227 2.229
+0.09 +0.113 2.229
               28 O6 UD1
29 C9 UD1
60
                                       15.245
                                               15.340 39.034
                                                                   +0.01
     MOTA
                                1
                                       15.995 14.191 38.694
     MOTA
                                1
                                                                   -0.41
                                       15.190 13.345 37.718
               30 C14 UD1.
                                                                   -0.35
     ATOM
                                1
                                      15.060 14.028 36.445
15.628 14.888 36.456
                   011 UD1
                                                                   -0.27
                                                                          -0.77 -0.537
     MOTA
               31
                                1
                                                                                          2.229
                                                                   +0.08 +0.38 +0.424 2.229
               32 H11 UD1
     ATOM
                               1
65
                                       13.829 13.117 38.359
                                                                   -0.45
     ATOM
               33 C13 UD1
                                1
                                                                          +0.06
                                                                                +0.113 2.229
     ATOM
               34
                  O10 UD1
                                1
                                       13.011 12.358 37.481
                                                                   -0.06
                                                                          -0.19
                                                                                 -0.537 2.229
                                                                   -0.03 +0.02 +0.424 2.229
      MOTA
               35 HO10UD1
                                1
                                       13.199 12.641 36.508
```

WO 01/83717

- 124 -13.978 12.379 39.705 14.315 11.027 39.382 -0.48 +0.09 +0.113 2.229 ATOM 36 C12 UD1 1 -0.537 +0.05 -0.41 2.229 MOTA 37 0122UD1 1 13.665 10.671 38.667 38 H122UD1 +0.09 +0.30 +0.424 2.229 ATOM 1 MOTA 39 C10 UD1 15.087 12.960 40.605 -0.58 +0.07 +0.113 2.229 1 MOTA 40 C11 UD1 1 15.535 11.852 41.547 -0.54 + 0.09+0.113 2.229 +0.01 16.047 10.737 40.847 -0.38 -0.537 2.229 MOTA 41 08 UD1 1 9.934 40.964 +0.09 +0.424 +0.33 2.229 ATOM 42 H8 UD1 1 15.411 43 O7 UD1 1 . 16.258 13.366 39.840 +0.01 -0.09 -0.227 2.229 MOTA TER 10 ENDMDL MODEL 22 Run = 22USER USER Cluster Rank = 1 USER Number of conformations in this cluster = 3 15 USER USER RMSD from reference structure = 2.268 AUSER = -9.61 kcal/mol [=(1)+(3)] USER Estimated Free Energy of Binding = +9.10e-08 USER Estimated Inhibition Constant, Ki [Temperature = 298.15 20 K] USER USER Final Docked Energy = -12.75 kcal/mol [= (1) + (2)]USER (1) Final Intermolecular Energy = -13.96 kcal/mol USER (2) Final Internal Energy of Ligand = +1.21 kcal/mol (3) Torsional Free Energy = +4.36 kcal/mol 25 USER USER USER USER USER DPF = udp gal.dpf 30 NEWDPF move udp_gal.pdbq USER NEWDPF about15.798000 16.955999 35.483002 USER NEWDPF tran015.906499 17.202339 35.526945 USER USER NEWDPF quat0-0.557219 0.582353 -0.591922 -6.199978 NEWDPF ndihel4 USER 35 NEWDPF dihe0-60.31 98.78 176.75 -59.94 -135.34 13.12 -121.85 63.91 -96.51 -USER 178.60 -155.47 -91.96 33.25 179.90 vdW Elec Z RMS USER Rank x q 17.957 20.246 33.121 -0.38 -0.09 -0.211 2.268 1 N UD1 1 MOTA 40 18.162 21.609 32.903 -0.86 +0.27 +0.396 2.268 ATOM 2 C UD1 1 18.162 21.609 32.903 19.479 21.969 32.733 20.596 21.129 32.758 20.307 19.743 32.989 19.027 19.354 33.159 17.252 22.433 32.863 21.720 21.605 32.583 16.572 19.782 33.312 16.162 18.585 32.450 15.020 17.996 33.277 -0.53 -0.42 -0.440 2.268 3 N1 UD1 1 MOTA -0.75 +0.27 +0.396 2.268 -0.55 +0.00 +0.000 2.268 -0.49 +0.00 +0.000 2.268 -0.31 -0.29 -0.396 2.268 -0.15 -0.19 -0.396 2.268 MOTA 4 C1 UD1 1 5 C2 UD1 MOTA 1 MOTA 6 C3 UD1 1 45 UD1 . 1 MOTA 7 0 01 UD1 MOTA 8 1 9 C4 UD1 -0.66 +0.04 +0.324 2.268 MOTA 1 10 ' -0.67 -0.02 +0.113 2.268 MOTA C5 UD1 1 15.020 17.996 33.277 15.371 18.365 34.722 16.420 19.363 34.650 19.664 22.970 32.570 15.806 18.985 31.140 16.228 18.342 30.458 13.716 18.475 32.923 -0.68 -0.02 +0.113 2.268 11 C6 UD1 1 MOTA -0.58 +0.02 +0.113 2.268 50 MOTA 12 C7 UD1 1 -0.06 -0.227 2.268 +0.77 +0.440 2.268 +0.22 -0.537 2.268 13 O2 UD1 -0.05 1 MOTA +0.04 ATOM 14 H1 UD1 1 MOTA 15 O3 UD1 1 -0.12 -0.17 +0.424 2.268 -0.28 HO3 UD1 MOTA 16 1 -0.40 +0.06 -0.537 2.268 55 04 UD1 1 ATOM 17 13.699 18.716 31.922 -0.19 -0.26 +0.424 2.268 18 HO4 UD1 1 ATOM 15.906 17.202 35.527 -0.37 +0.04 +0.113 2.268 MOTA 19 C8 UD1 1 15.906 17.202 35.527 17.089 17.601 36.234 17.403 17.064 37.708 17.928 18.244 38.428 18.429 15.994 37.630 16.106 16.562 38.278 15.593 16.256 39.738 -0.15 -0.368 2.268 +0.04 20 05 UD1 1 MOTA -0.55 +0.34 +1.019 2.268 -0.21 -0.04 -0.255 2.268 -0.01 -0.09 -0.255 2.268 PA UD1 21 1 MOTA 60 MOTA 22 OlA UD1 1 MOTA 23 O2A UD1 1 -0.21 -0.510 2.268 +0.01 MOTA 24 O3A UD1 1 -0.72 +0.45 +1.019 2.268 PB UD1 1 **ATOM** 25 14.588 17.251 40.183 -0.20 -0.12 -0.255 2.268 ATOM 26 O1B UD1 1 16.724 16.091 40.690 -0.56 -0.16 -0.255 2.268 02B UD1 1 MOTA 27

14.962 14.786 39.682

15.709 13.612 39.431 15.519 13.206 37.976

28 06 UD1

29 C9 UD1

30 C14 UD1

ATOM

MOTA

MOTA

1

1

1

-0.05

-0.13 -0.368 2.268

-0.46 +0.11 +0.227 2.268

-0.34 +0.09 +0.113 2.268

-0.78 +0.49 +1.019 2.343

PCT/CA01/00607 WO 01/83717

```
- 125 -
                                        16.144 14.175 37.095
                                                                   -0.10 -0.54 -0.537 2.268
     MOTA
               31 O11 UD1
               32 H11 UD1
                                        16.693 14.844 37.654
                                                                   +0.10 +0.25 +0.424 2.268
     MOTA
                                1
                                        14.018 13.134 37.737 -0.43 +0.06
                                                                                   +0.113 2.268
     MOTA
               33 C13 UD1
                                1
                                                                     -0.30 -0.27
                                         13.769 12.792 36.381
                                                                                    -0.537 2.268
     ATOM
               34 O10 UD1
                                1
                                        12.822 13.098 36.118
                                                                     -0.17
                                                                            -0.23 +0.424 2.268
                                1
     MOTA
               35 HO10UD1
                                        13.367 12.093 38.668
13.748 10.812 38.160
14.102 10.914 37.199
13.837 12.199 40.133
               36 C12 UD1
                                1
                                                                     -0.48 + 0.07
                                                                                    +0.113 2.268
     MOTA
               37 O122UD1
                                                                     +0.00
                                                                            -0.35
     MOTA
                                1
                                                                                    -0.537
                                                                                             2.268
                   H122UD1
                                                                                    +0.424
                                 1
                                                                     +0.07 +0.27
                                                                                             2.268
     MOTA
               38
                                                                                    +0.113
                                                                     -0.49 + 0.11
     MOTA
               39
                   C10 UD1
                                 1
                                                                                             2.268
               40 C11 UD1
                                        13.635 10.835 40.776
                                                                   -0.33 +0.15
                                                                                     +0.113
10
     ATOM
                                 1
                                                                                             2.268
                                        12.399 10.256 40.411
               41 O8 UD1
                                ī
                                                                    -0.13 -0.83
                                                                                    ~0.537
                                                                                             2,268
     MOTA
                        UD1
                                                 9.812 39.484
                                                                    +0.09 +0.39
     MOTA
               42 H8
                                1
                                        12.486
                                                                                   +0.424
                                                                                             2.268
                                                                     +0.00 -0.15 -0.227
     MOTA
               43 O7 UD1
                               1
                                         15.257 12.509 40.232
     TER
15
     ENDMDL
     MODEL
                  38
     USER
              Run = 38
     USER
              Cluster Rank = 1
     USER
              Number of conformations in this cluster = 3
20
     USER
     USER
              RMSD from reference structure
                                                      = 2.343 A
     USER
              Estimated Free Energy of Binding = -8.52 \text{ kcal/mol} [=(1)+(3)]
     USER
              Estimated Inhibition Constant, Ki = +5.73e-07
                                                                            [Temperature = 298.15
     USER
25
     K] .
     USER
                                                      = -11.93 \text{ kcal/mol} [=(1)+(2)]
      USER
              Final Docked Energy
      USER
             (1) Final Intermolecular Energy = −12.87 kcal/mol
      USER
              (2) Final Internal Energy of Ligand = +0.95 kcal/mol
30
     USER
               (3) Torsional Free Energy = +4.36 kcal/mol
     USER
      USER
      USER
            DPF = udp_gal.dpf
      USER
35
      USER
              NEWDPF move udp gal.pdbq
              NEWDPF about15.798000 16.955999 35.483002
      USER
              NEWDPF tran016.468929 17.225999 35.649499
      USER
              NEWDPF quat00.571135 -0.378482 -0.728393 4.119217
      USER
            NEWDPF ndihe14
      USER
               NEWDPF dihe0135.84 72.34 72.68 26.52 178.87 20.84 -19.04 11.86 -120.48 46.73 -
40
      USER
      26.80 160.70 125.77 -111.68
      USER
                                                           z
      USER
                                                                     vdW
                                                                              Elec
                                                                                              RMS
                            Rank
                                           X
                                                   У
                                                                                        q
                                                                     -0.33 -0.11 -0.211 2.343
                                         18.760 19.976 33.111
                 1 N
      ATOM
                       UD1 1
                                         19.112 21.303 32.859
20.454 21.506 32.633
                 2 C
                                                                     -0.78 +0.28 +0.396 2.343
45
                        UD1
                                 1
      MOTA
      MOTA
                 3 N1 UD1
                                 1
                                                                     -0.52 -0.31 -0.440 2.343
                                         20.454 21.506 32.633

21.467 20.543 32.632

21.029 19.203 32.900

19.721 18.967 33.126

18.302 22.227 32.838

22.630 20.883 32.406

17.339 19.679 33.362
                                                                     -0.71 +0.23 +0.396 2.343
                 4 C1 UD1
      MOTA
                                 1
                                                                     -0.51
                                                                             +0.00 +0.000 2.343
      MOTA
                 5 C2 UD1
                                 1
                                                                     -0.45 +0.00 +0.000 2.343
      ATOM
                 6 C3 UD1
                                 1
                                                                             -0.35 -0.396 2.343
-0.23 -0.396 2.343
                                                                     -0.27
50
      MOTA
                 7 0
                        UD1
                                 1
              8 O1 UD1
      MOTA
                                 1
                                                                     -0.25
                                                                     -0.60 +0.10 +0.324 2.343
                9 C4 UD1
                                 1
      MOTA
                                        16.760 18.526 32.539
                10 C5 UD1
                                                                     -0.60 +0.00 +0.113 2.343
      ATOM
                                 1
                11 C6 UD1
                                        15.591 18.084 33.420
                                                                   -0.60 -0.01 +0.113 2.343
                                 1
      MOTA
                                        16.040 18.432 34.843
                                                                     -0.51 +0.03 +0.113 2.343
      ATOM
                12 C7 UD1
                                 1
                                 1 16.040 18.432 34.843

1 17.193 19.299 34.713

1 20.746 22.476 32.445

1 16.401 18.945 31.237

1 16.159 19.943 31.251

1 14.338 18.706 33.106

1 14.452 19.313 32.282

1 16.469 17.226 35.649

1 16.397 17.525 37.051

1 7.665 17.350 38.010

1 18.004 18.726 38.431
                                                                     -0.01 -0.09 -0.227 2.343
                13 O2 UD1
      MOTA
                                                                     +0.05 +0.37 +0.440 2.343
                14 H1 UD1
      MOTA
                                                                     -0.21 +0.10 -0.537 2.343
+0.00 -0.04 +0.424 2.343
-0.27 +0.13 -0.537 2.343
-0.18 -0.28 +0.424 2.343
                15 O3 UD1
      MOTA
                    HO3 UD1
      MOTA
                16
60
                17
                    O4 UD1
      MOTA
                                                                     -0.18
                18 HO4 UD1
      ATOM
                                                                             +0.04 +0.113 2.343
                19 C8 UD1
                                                                      -0.37
      MOTA
                20 O5 UD1
                                                                     +0.02
                                                                             -0.15 -0.368 2.343
      ATOM
                                                                      -0.63 +0.27 +1.019 2.343
                21 PA UD1
      MOTA
                                                                              -0.04 -0.255 2.343
                                        18.004 18.726 38.431
                                                                      +0.15
65
                22 O1A UD1
      MOTA
                                 1
                               1
                                                                             -0.09 -0.255 2.343
                                        18.780 16.744 37.239
17.232 16.478 39.155
15.873 16.279 39.930
                23 O2A UD1
                                                                      +0.13
      MOTA
                                                                            -0.13 -0.510 2.343
                24 O3A UD1
                                                                      -0.15
      MOTA
```

MOTA

25 PB UD1

WO 01/83717 PCT/CA01/00607

- 126 -

5	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	26 27 28 29 30 31 32 33	O1B UD1 O2B UD1 O6 UD1 C9 UD1 C14 UD1 O11 UD1 H11 UD1 C13 UD1	1 1 1 1 1 1	15.020 16.103 15.153 15.824 15.066 15.159 14.326 13.621	17.490 15.802 15.026 13.846 13.208 14.040 14.642 13.062	39.856 41.320 39.242 38.846 37.691 36.505 36.442 38.146	-0.23 -0.58 -0.03 -0.41 -0.36 -0.26 +0.03 -0.46	-0.13 -0.22 -0.15 +0.12 +0.09 -0.76 +0.20 +0.06	-0.255 -0.255 -0.368 +0.227 +0.113 -0.537 +0.424 +0.113	2.343 2.343 2.343 2.343 2.343 2.343 2.343
	ATOM	34	010 UD1	1	12.847	12.501	37.096	-0.10	-0.09	-0.537	2.343
10	MQTA	35	HO10UD1	1	12.729	13.199	36.347	-0.12	-0.17	+0.424	2.343
	MOTA	36	C12 UD1	1	13.533	12.167	39.398	-0.49	+0.09	+0.113	2.343
	ATOM	37	0122UD1	1	13.775	10.831	38.949	+0.03	-0.40	-0.537	2.343
	MOTA	38	H122UD1	1	13.044	10.555	38.279	+0.09	+0.28	+0.424	2.343
	ATOM	39	C10 UD1	1	14.576	12.517	40.479	-0.51	+0.09	+0.113	2.343
15	ATOM	40	C11 UD1	1	14.796	11.268	41.320	-0.33	+0.12	+0.113	2.343
	ATOM	41	08 UD1	1	15.279	10.188	40.548	+0.04	-0.41	-0.537	2.343
	MOTA	42	H8 UD1	1	16.309	10.214	40.524	+0.09	+0.29	+0.424	2.343
	MOTA	43	07 UD1	1	15.865	12.874	39.903	+0.01	-0.12	-0.227	2.343
20	TER ENDMDL										

WO 01/83717 PCT/CA01/00607

- 127 -

Table 7

	Uracil											
5	MOTA	1	N1	UDP	1	18.167	20.363.	33.367	-0.38	-0.11	-0.211	2.450
	MOTA	2	C2	UDP	1	18.485	21.574	32.818	-0.84	+0.28	+0.396	2.450
	MOTA	3	из	UDP	1	19.821	21.872	32.732	-0.53	-0.40	-0.440	2.450
	MOTA	4	нз	UDP	1	20.069	22.789	32.334	+0.07	+0.53	+0.440	2.450
	ATOM	5	C4	UDP	1	20.878	21.052	33.133	-0.75	+0.30	+0.396	2.450
10	MOTA	6	C5	UDP	1	20.479	19.798	33.691	-0.55	+0.00	+0.000	2.450
	MOTA	7	C6	UDP	1	19.174	19.496	33.774	-0.49	+0.00	+0.000	2.450
	MOTA	8	02	UDP	1	17.619	22.362	32.433	-0.35	-0.26	-0.396	2.450
	ATOM	9	04	UDP	1	22.026	21.474	32.994	-0.24	-0.27	-0.396	2.450
	Ribose											
15	MOTA	10	C1'	UDP	1	16.753	19.988	33.503	-0.65	+0.07	+0.324	2.450
	MOTA	11	C2'	UDP	1	16.402	18.617	32.920	-0.60	+0.00	+0.113	2.450
	ATOM	12	C3'	UDP	1	15.116	18.296	33.717	-0.67	+0.00	+0.113	2.450
	ATOM	13	C4'	UDP	1	15.358	18.950	35.076	-0.56	+0.02	+0.113	2.450
	MOTA	14	04'	UDP	1	16.521	19.804	34.894	-0.07	-0.07	-0.227	2.450
20	MOTA	15	02'	UDP	1	16.102	18.725	31.548	-0.24	+0.17	-0.537	2.450
	MOTA	16		'UDP	1	15.697	17.839	31.214	-0.28	-0.47	+0.424	2.450
	MOTA	17	03'		1	14.035	18.955	33.051	-0.27	+0.16	-0.537	2.450
	MOTA	18		'UDP	1	14.102	18.785	32.037	-0.17	-0.28	+0.424	2.450
	MOTA	19	C5'		1	15.666	17.939	36.181	-0.30	+0.04	+0.113	2.450
25	ATOM	20	05'	UDP	1	15.126	18.439	37.390	+0.00	-0.18	-0.368	2.450
	Pyropho	-										
	MOTA	21	PA	UDP	1	15.642	18.457	38.881	-0.61	+0.45	+1.019	2.450
	MOTA	.22		UDP	1	17.132	18.480	38.845	-0.15	-0.08	-0.255	2.450
	ATOM	23		UDP	1	14.933	19.550	39.617	-0.24	-0.09	-0.255	2.450
30	MOTA	24		UDP	1	15.133	16.987	39.239	-0.07	-0.23	-0.510	2.450
	MOTA	25	PB	UDP	1	15.835	15.723	39.920	-0.72	+0.43	+1.019	2.450
	MOTA	26	01B		1	15.020	14.448	39.353	-0.03	-0.11	-0.255	2.450
	ATOM	27	02B		1	15.532	15.971	41.352	-0.68	-0.23	-0.255	2.450
	MOTA	28	03B	UDP	1	17.233	15.484	39.480	-0.12	-0.06	-0.255	2.450
35								•				•

- 128 -

Table 8

	REMARK	4]	lGAL	COMPL	IES WITH	FORMAT V.	2.0. 12	-JAN-200	0			
5	ATOM	1	N	GLN	125	3.774	29.638	36.504	1.00	0.00		N
-	ATOM	2	CA	GLN	125	2.861	28.997	35.607	1.00	0.00		Ċ
	ATOM	3	C	GLN	125	3.659	28.369	34.516	1.00	0.00		č
	ATOM	4	ŏ	GLN	125	3.480	27.195	34.201	1.00	0.00		Ö
	ATOM	. 5	СВ	GLN	125	1.885	29.988	34.950	1.00	0.00		Ċ
10	ATOM	· 6	CG	GLN	125	0.963	30.690	35.948	1.00	0.00		č
10	ATOM	7	CD	GLN	125	0.056	31.635	35.172	1.00	0.00		Ċ
	ATOM	. 8		GLN	125	-0.698	32.411	35.755	1.00	0.00		Ö
	ATOM	. 9	NE2		125	0.131	31.571	33.815	1.00	0.00		N
	ATOM		1H	GLN	125	4.428		35.967	1.00	0.00		н.
15	ATOM		2H	GLN	125	3.249	30.226	37.166	1.00	0.00		H
	ATOM	12	HA	GLN	125	2.310	28.245	36.172	1.00	0.00		H
	ATOM		1HB	GLN	125	1.217	29.524	34.223	1.00	0.00		H
	ATOM		2HB	GLN	125	2.381	30.792	34.407	1.00	0.00		Н
	ATOM		1HG	GLN	125	1.583	31.242	36.653	1.00	0.00		Н
20	ATOM		2HG	GLN	125	0.377	29.928	36.463	1.00	0.00		H
	ATOM		1HE2		125	-0.457	32.187	33.237	1.00	0.00		H
	ATOM	18	2HE2		125	0.776	30.906	33.365	1.00	0.00		H
	ATOM	19	N	LYS	126	4.583	29.141	33.917	1.00	0.00		N
	ATOM	20	CA	LYS	126	5.373	28.597	32.859	1.00	0.00		Ċ
25	ATOM	21	C	LYS	126	6.430	27.759	33.485	1.00	0.00		č
	ATOM	22	0	LYS	126	6.743	27.906	34.665	1.00	0.00		Ö
	ATOM	23	СВ	LYS	126	6.036	29.676	31.992	1.00	0.00		Ċ
	ATOM	24	CG	LYS	126	5.011	30.426	31.142	1.00	0.00		č
	MOTA	25	CD	LYS	126	3.953	31.165	31.965	1.00	0.00		Ċ
30	ATOM	26	CE	LYS	126	4.502	32.348	32.763	1.00	0.00		Ċ
	ATOM	27	NZ	LYS	126	3.406	33.004	33.511	1.00	0.00		N
	ATOM	28	Н	LYS	126	4.719	30.116	34.218	1.00	0.00		H
•	ATOM		HA	LYS	126	4.707	28.002	32.232	1.00	0.00		H
	MOTA	30	1HB	LYS	126	6.769	29.248	31.308	1.00	0.00		Н
35	ATOM	31	2HB	LYS	126	6.555	30.417	32.599	1.00-	0.00		H
	ATOM	32	1HG	LYS	126	4.444	29.781	30.469	1.00	0.00		H
	ATOM	33	2HG	LYS	126	5.450	31.188	30.498	1.00	0.00		H
	MOTA	34	1HD	LYS	126	3.514	30.461	32.672	1.00	0.00		H
	ATOM	35	2HD	LYS	126	3.192	31.546	31.283	1.00	0.00		H
40	ATOM	36	1HE	LYS	126	4.954	33.073	32.087	1.00	0.00		H
	MOTA	37	2HE	LYS	126	5.256	32.001	33.469	1.00	0.00		H
	ATOM	38	1HZ	LYS	126	2.520	32.513	33.323	1.00	0.00		H
	ATOM		2HZ	LYS	126	3.609	32.970	34.520	1.00	0.00		H
	ATOM	40	3HZ	LYS	126	3.324	33.985	33.210	1.00	0.00		H
45 ·	ATOM	41	N	ILE	127	6.994	26.817	32.713	1.00	0.00		N
	MOTA	42		ILE	127	7.996	25.997	33.310	1.00	0.00		С
	ATOM	43	С	ILE	127	9.165	25.944	32.400	1.00	0.00		С
	ATOM	44	0	ILE	127	9.040	26.043	31.181	1.00	0.00	•	0
50	ATOM	45		ILE	127	7.575	24.578	33.539	1.00	0.00		С
50	ATOM	46		ILE	127	8.654	23.841	34.351	1.00	0.00		С
	ATOM	47		ILE	127	7.271	23.937	32.176	1.00	0.00		С
	ATOM	48		ILE	127	8.211	22.470	34.856	1.00	0.00		C
	ATOM	49	H	ILE	127	6.714	26.691	31.729	1.00	0.00		Н
<i>E E</i>	ATOM	50	HA	ILE	127	8.278	26.436	34.266	1.00	0.00		H
55	ATOM	51		ILE	127	6.684	24.581	34.167	1.00	0.00		H
	ATOM		1HG1		127	8.974	24.379	35.242	1.00	0.00		H
	ATOM		2HG1		127	9.570	23.652	33.791	1.00	0.00		H
-	ATOM		1HG2		127	7.435	24.668	31.385	1.00	0.00		H
60	ATOM		2HG2		127	7.928	23.081	32.021	1.00	0.00		H
60	ATOM		3HG2		127	6.232	23.605	32.153	1.00	0.00		H
	ATOM		1HD1		127	7.188	22.276	34.533	1.00	0.00		H
	ATOM		2HD1		127 127	8.870	21.702	34.451 35.944	1.00	0.00		H
	MOTA MOTA	60	3HD1 N	THR	127	8.257 10.355	22.450 25.811	33.002	1.00 1.00	0.00 0.00		H
65	ATOM	61		THR	128	11.546	25.611	32.234	1.00	0.00		С И
-	ATOM	62		THR	128	11.987	24.261	32.465	1.00	0.00		C
	ATOM	63		THR	128	12.094	23.810	33.605	1.00	0.00		0
	·		-									_

	ATOM	64	CB	THR	128	12.634	26.603	32.656	1.00	0.00			C
	MOTA	65		THR	128	12.906	26.435	34.037	1.00	0.00			0
	MOTA	66	CG2	THR	128	12.179	28.044	32.377	1.00	0.00			С
	ATOM	67	Н	THR	128	10.409	25.815	34.030	1.00	0.00			H
5	ATOM	68		THR	128	11.246	25.860	31.204	1.00	0.00			Н
•	ATOM	69	HB	THR	128	13.534	26.375	32.084	1.00	0.00			Н
	ATOM	70		THR	128	12.856	27.348	34.510	1.00	0.00			Н
	ATOM		1HG2		128	11.179	28.032	31.941	1.00	0.00			H
	ATOM		2HG2		128	12.161	28.607	33.310	1.00	0.00			Н
10	ATOM		3HG2		128	12.872	28.516	31.680	1.00	0.00			Н
10	ATOM	74	N	VAL	129	12.221	23.517	31.369	1.00	0.00	-		N
	ATOM	75		VAL	129	12.615	22.148	31.497	1.00	0.00			C
	MOTA	76		VAL	129	14.091	22.148	31.268	1.00	0.00			c
	ATOM	77	0	VAL	129	14.601	22.747	30.358	1.00	0.00			Ö
1.5	ATOM .	78	CB	VAL				30.338	1.00	0.00			Ċ
15			_		129	11.961	21.255			0.00			c
	MOTA	79	CG1		129	12.454	19.813	30.683	1.00				C
	MOTA	80	CG2		129	10.434	21.408	30.611	1.00	0.00			
	ATOM	81	H	VAL	129	12.116	23.935	30.433	1.00	0.00			Н
20	ATOM	82	HA	VAL	129	12.347	21.838	32.507	1.00	0.00			H
20	MOTA	83	HB	VAL	129	12.228	21.599	29.478	1.00	0.00			H
	ATOM		1HG1		129	13.157	19.783	31.515	1.00	0.00			H
	ATOM		2HG1		129	11.604	19.165	30.902	1.00	0.00			H
	ATOM		3HG1		129	12.949	19.465	29.776	1.00	0.00			H
	MOTA		1HG2		129	10.207	22.120	31.404	1.00	0.00			H
25	MOTA		2HG2		129	10.021	21.770	29.669	1.00	0.00			Н
	MOTA		3HG2		129	9.991	20.441	30.853	1.00	0.00			H
	MOTA	90	N	GLY	130	14.827	21.351	32.109	1.00	0.00			N
	MOTA	91	CA	GLY	130	16.251	21.295	31.941	1.00	0.00			С
	MOTA	92	С	GLY	130	16.576	19.918	31.483	1.00	0.00			С
30	MOTA	93	0	GLY	130	16.223	18.933	32.129	1.00	0.00			0
	MOTA		H	GLY	130	14.371	20.821	32.865	1.00	0.00			Н
	MOTA		1HA	GLY	130	16.691	21.516	32.912	1.00	0.00			Н
	MOTA		2HA	GLY	130	16.509	22.045	31.194	1.00	0.00			H
	MOTA	97	N	LEU	131	17.293	19.816	30.350	1.00	0.00		•	N
35	MOTA		CA	LEU	131	17.552	18.511	29.838	1.00	0.00			C -
	MOTA	99	С	LEU	131	19.040	18.385	29.719	1.00	0.00			С
	MOTA	100	0	LEU	131	19.709	19.308	29.260	1.00	0.00			0
•	MOTA	101	CB	LEU	131	16.969	18.330	28.430	1.00	0.00			С
	MOTA	102	CG	LEU	131	16.783	16.855	28.071	1.00	0.00			C.
40	MOTA	103	CD1		131	15.603	16.268	28.862	1.00	0.00			С
	MOTA	104	CD2		131	16.663	16.648	26.550	1.00	0.00			С
	MOTA	105	H	LEU	131	17.644	20.655	29.866	1.00	0.00			Н
	ATOM		HA	LEU	131	17.135	17.805	30.557	1.00	0.00			Н
	MOTA	107	1HB	LEU	131	17.611	18.762	27.662	1.00	0.00			H
45	MOTA	108		LEU	131	15.993	18.804	28.327	1.00	0.00			Н
	MOTA	109	НG	LEU	131	17.686	16.296	28.314	1.00	0.00			H
	ATOM		1HD1		131		17.040	29.497	1.00	0.00			H
	ATOM.		2HD1		131	14.845	15.903	28.168	1.00	0.00			H
	MOTA		3HD1		131	15.954	15.443	29.481	1.00	0.00			Н
50	MOTA		1HD2		131	16.737	17.611	26.044	1.00	0.00			Н
	MOTA		2HD2		131	17.466	15.995	26.207	1.00	0.00			Н
	MOTA	115	3HD2	LEU	131	15.700	16.190	26.319	1.00	0.00			H
	MOTA	116	N	THR	132	19.607	17.244	30.157	1.00	0.00			N
	ATOM	117	CA	THR	132	21.018	17.037	30.005	1.00	0.00			С
55	MOTA	118	С	THR	132	21.177	15.992	28.951	1.00	0.00			С
	MOTA	119	0	THR	132	20.496	14.967	28.976	1.00	0.00			0
	MOTA	120	CB	THR	132	21.706	16.558	31.252	1.00	0.00			С
	MOTA	121	0G1	THR	132	21.133	15.339	31.699	1.00	0.00			0
	MOTA	122	CG2	THR	132	21.583	17.642	32.338	1.00	0.00			С
60	MOTA	123	H	THR	132	19.026	16.519	30.601	1.00	0.00			Н
	ATOM	124	HА	THR	132	21.437	17.997	29.705	1.00	0.00			H
	MOTA	125	HB	THR	132	22.756	16.372	31.027	1.00	0.00			Н
	MOTA	126		THR		20.160	15.504	31.994	1.00	0.00			Н
	MOTA		1HG2		132	21.028	18.492	31.941	1.00	0.00			Н
65	MOTA		2HG2			21.055	17.234	33.200	1.00	0.00			Н
	MOTA					22.578	17.967	32.641	1.00	0.00			Н
	ATOM	130	N	VAL	133	22.079	16.244	27.979	1.00	0.00			N
	ATOM	131	CA	VAL		22.229	15.303	26.910	1.00	0.00			C
													•

	MOTA	132 C	VAL	133	23.665	14.894	26.786	1.00	0.00		С
	MOTA	133 0	VAL	133	24.595	15.690	26.922	1.00	0.00		0
	MOTA	134 CB	VAL	133	21.830	15.851	25.570	1.00	0.00		С
	MOTA	135 CG1		133	20.354	16.275	25.623	1.00	0.00	•	С
5	ATOM		VAL	133	22.783	16.997	25.201	1.00	0.00		С
	MOTA	137 H	VAL	133	22.650	17.100	28.005	1.00	0.00		Н
	MOTA	138 HA	VAL	133	21.624	14.417	27.105	1.00	0.00		H
	MOTA	139 HB	VAL	133	21.968	15.076	24.815	1.00	0.00		H
	ATOM	140 1HG1		133	19.953	16.076	26.617	1.00	0.00		-H
10	MOTA	141 2HG1		133	20.273	17.340	25.405	1.00	0.00		H
	MOTA	142 3HG1		133	19.786	15.709	24.883	1.00	0.00		H
	ATOM	143 1HG2	VAL	133	23.514	17.133	25.998	1.00	0.00		H
	ATOM	144 2HG2		133	23.299	16.755	24.272	1.00	0.00		H
	ATOM	145 3HG2		133	22.212	17.916	25.070	1,00	0.00		H
15	MOTA	146 N	PHE	134	23.857	13.592	26.526	1.00	0.00		N
	ATOM	147 CA	PHE	134	25.138	13.016	26.297	1.00	0.00		С
	ATOM	148 C	PHE	134	24.939	12.254	25.042	1.00	0.00		С
	MOTA	149 O	PHE	134	23.939	12.454	24.357	1.00	0.00		0
	ATOM	150 CB	PHE	134	25.581	12.031	27.387	1.00	0.00		С
20	ATOM	151 CG	PHE	134	25.779	12.856	28.606	1.00	0.00		C
	MOTA		PHE	134	24.964	12.698	29.703	1.00	0.00		С
	MOTA		PHE	134	26.810	13.759	28.664	1.00	0.00		С
	ATOM		PHE	134	25.156	13.454	30.834	1.00	0.00		С
_	MOTA	155 CE2		134	27.006	14.518	29.790	1.00	0.00		С
25	ATOM	156 CZ	PHE	134	26.179	14.370	30.876	1.00	0.00		С
	ATOM	157 н	PHE	134	23.032	12.975	26.490	1.00	0.00		Н
	ATOM	158 HA	PHE	134	25.901	13.786	26.189	1.00	0.00		Н
	MOTA	159 1HB	PHE	134	26.504	11.585	27.015	1.00	0.00		Н
	MOTA	160 2HB	PHE	134	24.765	11.316	27.479	1.00	0.00		Н
30	MOTA		PHE	134	24.157	11.965	29.674	1.00	0.00		H
	MOTA		PHE	134	27.479	13.875	27.809	1.00	0.00		H
	ATOM	163 HE1		134	24.500	13.328	31.695	1.00	0.00		H
	MOTA	164 HE2		134	27.821	15.241	29.824	1.00	0.00		H
2.5	MOTA	165 HZ	PHE	134	26.334	14.976	31.769	1.00	0.00		Н
35	ATOM	166 N-	ALA	135	25.881	11.365	24.698	-1.00	0.00		N
	ATOM	167 CA	ALA	135	25.736	10.705	23.434	1.00	0.00		C
	ATOM	168 C	ALA	135	24.749	9.589	23.519	1.00	0.00		C
	MOTA	169 O	ALA	135	25.132	8.421	23.496	1.00	0.00		0
40	ATOM	170 CB	ALA	135	27.051	10.116	22.893	1.00	0.00		C
40	ATOM	171 H 172 HA	ALA ALA	135	26.678	11.163	25.318 22.666	1.00	0.00		Н
	MOTA MOTA	172 HA	ALA	135 135	25.389 27.858	11.396 10.321	23.596	1.00	0.00		H H
	ATOM	173 1HB	ALA	135	26.943	9.038	22.769	1.00	0.00		H
	ATOM	174 2HB	ALA	135	27.284	10.570	21.930	1.00	0.00		Н
45	ATOM ·	175 3HB	VAL	136	23.446	9.913	23.642	1.00	0.00		N
45	ATOM	177 CA	VAL	136	22.465	8.870	23.562	1.00	0.00		C
	ATOM	177 CA	VAL	136	21.648	9.153	22.336	1.00	0.00		C
	ATOM	179 0	VAL	136	20.541	9.686	22.389	1.00	0.00		Ö
	ATOM	180 CB	VAL	136	21.574	8.768	24.772	1.00	0.00		c
50	ATOM		VAL	136	20.893	10.116	25.062	1.00	0.00		Ċ
50	ATOM		VAL	136	20.572	7.638	24.501	1.00	0.00		Č
	ATOM	183 H	VAL	136	23.160	10.891	23.790	1.00	0.00		н
	ATOM	184 HA	VAL	136	23.018	7.934		1.00	0.00		H
	ATOM	185 HB	VAL	136	22.149	8.481	25.652	1.00	0.00		H
55	ATOM	186 1HG1		136	21.209	10.850	24.321	1.00	0.00		н
	ATOM	187 2HG1		136	19.810	9.994	25.013	1.00	0.00		Н
	ATOM	188 3HG1		136	21.175	10.459	26.057	1.00	0.00		Н
	ATOM	189 1HG2		136	20.763	7.209	23.517	1.00	0.00		Н
	ATOM	190 2HG2		136	20.681	6.864	25.261	1.00	0.00	•	н
60	ATOM	191 3HG2		136	19.557	8.035	24.532	1.00	0.00		Н
	ATOM	192 N	GLY	137	22.180	8.741	21.176	1.00	0.00		N
	ATOM	193 CA	GLY	137	21.598	9.106	19.921	1.00	0.00		С
	ATOM	194 C	GLY	137	20.249	8.504	19.733	1.00	0.00		С
	MOTA	195 O	GLY	137	19.339	9.157	19.228	1.00	0.00		0
65	MOTA	196 н	GLY		23.023	8.150	21.188	1.00	0.00		Н
	MOTA	197 1HA	GLY		22.206	8.781	19.077	1.00	0.00		Н
	MOTA	198 2HA	GLY		21.476	10.184	19.823	1.00	0.00		H
	MOTA	199 N	ARG	138	20.103	7.223	20.105	1.00	0.00		N

	•	MOTA	200	CA	ARG	. 138	18.884	6.506	19.899	1.00	0.00	c ·
•		MOTA	201	С	ARG	138	17.789	7.041	20.772	1.00	0.00	С
		MOTA	202	0	ARG	138	16.648	7.142	20.331	1.00	0.00	0
		MOTA	203	CB	ARG	138	19.029	5.019	20.256	1.00	0.00	С
	5	ATOM			ARG	138	20.086	4.283	19.440	1.00	0.00	С
		MOTA			ARG	138	19.502	3.245	18.482	1.00	0.00	С
		MOTA			ARG	138	18.334	3.855	17.782	1.00	0.00	N
		MOTA			ARG	138	17.889	3.261	16.637	1.00	0.00	С
		MOTA		NH1		138	18.585	2.201	16.132	1.00	0.00	N
	10	MOTA			ARG .		16.757	3.708	16.016	1.00	0.00	N
		MOTA			ARG	138	20.895	6.740	20.553	1.00	0.00	Н
		MOTA			ARG	138	18.552	6.584	18.863	1.00	0.00	Н
	•	MOTA			ARG	138	18.071	4.528	20.078	1.00	0.00	H
		MOTA	213 2		ARG	138	19.309	4.944	21.306	1.00	0.00	H
	15	MOTA	214 1		ARG	138	20.803	3.735	20.051	1.00	0.00	Н
	-	ATOM			ARG	138	20.688	4.941	18.814	1.00	0.00	Н
		MOTA	216 1		ARG	138	19.188	2.378	19.063	1.00	0.00	Н
		MOTA	217 2		ARG	138	20.274	2.965	17.765	1.00	0.00	Н
	20	MOTA		HE	ARG	138	17.876	4.700	18.152	1.00	0.00	Н
	20	MOTA	219 1			138	19.430	1.863	16.614	1.00	0.00	Н
		ATOM	220 2			138	18.265	1.739	15.268	1.00	0.00	Н
		MOTA	221 1			138	16.231	4.500	16.411	1.00	0.00	Н
		ATOM	222 2			138	16.429	3.252	15.152	1.00	0.00	Н
	25	ATOM ATOM		N CA	TYR	139	18.106	7.327 7.688	22.054 23.058	1.00 1.00	0.00	N C
	23			CA	TYR TYR	139	17.141 16.701	9.138	23.038	1.00	0.00	c
		MOTA	225 226	0	TYR	139 139	15.571	9.413	23.118	1.00	0.00	0
		MOTA MOTA	227	CB	TYR	139	17.606	7.224	24.444	1.00	0.00	c
		ATOM		CG	TYR	139	17.790	5.742	24.314	1.00	0.00	c
	30	MOTA		CD1	TYR	139	16.725	4.947	23.963	1.00	0.00	G.
	50	ATOM		CD2		139		5.136	24.575	1.00	0.00	c
,		ATOM		CE1		139	16.864	3.584	23.834	1.00	0.00	č
		ATOM	232	CE2	TYR	139	19.142	3.774	24.445	1.00	0.00	Ċ
		MOTA		CZ	TYR	139	18.081	2.988	24.068	1.00	0.00	Č
•	35	ATOM	234	OH	TYR	139	18.231	1.587	23.930	1.00	0.00	ō
		MOTA	235	H	TYR	139	19.097	7.284	22.328	1.00	0.00	Н
		ATOM	236	HA	TYR	139	16.242	7.099	22.875	1.00	0.00	H
		ATOM	237 1		TYR	139	16.798	7.505	25.120	1.00	0.00	н
		MOTA		2HB	TYR	139	18.535	7.764	24.624	1.00	0.00	Н
	40	ATOM		HD1	TYR	139	15.752	5.404	23.783	1.00	0.00	Н
		ATOM	240	HD2	TYR	139	19.848	5.741	24.887	1.00	0.00	H
		ATOM	241	HE1	TYR	139	16.007	2.975	23.545	1.00	0.00	Н
		ATOM	242	HE2	TYR	139	20.109	3.313	24.643	1.00	0.00	H
		ATOM	243	HH	TYR	139	17.306	1.154	23.791	1.00	0.00	. Н
	45	ATOM	244	N	ILE	140	17.564	10.112	22.757	1.00	0.00	N
		ATOM	245	CA	ILE	140	17.287	11.521	22.936	1.00	0.00	C
		ATOM	246	С	ILE	140	16.072	11.997	22.202	1.00	0.00	С
		ATOM	247	0	ILE	140	15.317	12.810	22.729	1.00	0.00	0
		ATOM	248	CB	ILE	140	18.430	12.394	22.498	1.00	0.00	С
	50	ATOM	249	CG1		140	18.741	12.087	21.022	1.00	0.00	С
		MOTA	250		ILE	140	19.611	12.229	23.462	1.00	0.00	С
		ATOM	251		ILE	140	19.798	12.984	20.382	1.00	0.00	С
		MOTA	252	H	ILE	140	18.462	9.838	22.333	1.00	0.00	Н
		ATOM	253	HA	ILE	140	17.130	11.708	23.998	1.00	0.00	Н
	55	MOTA	254		ILE	140	18.117	13.438	22.492	1.00	0.00	н
		ATOM	255			140	17.821	12.208	20.449	1.00	0.00	Н
		MOTA	256 2			140	19.103	11.061	20.958	1.00	0.00	Н
		ATOM	257 1			140	19.346	11.515	24.242	1.00	0.00	H
	60	ATOM	258 2			140	20.479	11.862	22.914	1.00	0.00	Н
	60	ATOM	259 3			140	19.847	13.191	23.915	1.00	0.00	Н
		ATOM	260 1			140	20.154	13.707	21.115	1.00	0.00	Н
		ATOM	261 2			140	20.633	12.373	20.038	1.00	0.00	Н
		ATOM	262			140	19.362	13.512	19.534	1.00	0.00	H ₁
	65	ATOM	263	N	GLU	141	15.842 14.778	11.505 11.954	20.979 20.132	1.00	0.00	. N
	UJ.	MOTA	264	CA	GLU GLU	141 141	13.475	11.779	20.132	1.00	0.00	C
		MOTA MOTA	265 266	0	GLU	141	12.644	12.683	20.850	1.00	0.00	C 0
		ATOM	267	СВ	GLU	141	14.738	11.068	18.876	1.00	0.00	C
		ALON	201	75	710	447	14.750		-0.070	2.00	5.50	C

	ATOM	268 C	G GLU	141	13.662	11.398	17.847	1.00	0.00		С
	MOTA	269 CI	D GLU	141	13.763	10.310	16.789	1.00	0.00		С
	ATOM	270 OF	E1 GLU	141	14.828	9.634	16.753	1.00	0.00		0
	MOTA	271 OF	E2 GLU	141	12.782	10.123	16.023	1.00	0.00		0
5	MOTA	272 H	GLU	141	16.464	10.763	20.627	1.00	0.00		H
	MOTA	273 H	A GLU	141	14.932	13.006	19.894	1.00	0.00		Н
	ATOM	274 1H	B GLU	141	14.563	10.041	19.198	1.00	0.00		H
	MOTA	275 2H	B GLU	141	15.699	11.163	18.371	1.00	0.00		Н
	MOTA	276 1H	G GLU	141	13.914	12.388	17.467	1.00	0.00		Н
10	ATOM	277 2H	G GLU	141	12.719	11.377	18.393	1.00	0.00		Н
-	ATOM	278 N	HIS	142	13.289	10.597	21.455	1.00	0.00		N
	MOTA	279 C	A HIS	142	12.086	10.211	22.131	1.00	0.00		С
	MOTA	280 C	HIS	142	11.845	11.099	23.313	1.00	0.00		С
	ATOM	281 0	HIS	142	10.720	11.534	23.559	1.00	0.00		 0
15	MOTA	282 CI	B HIS	142	12.224	8.783	22.670	1.00	0.00		С
	MOTA	283 C	G HIS	142	11.008	8.298	23.379	1.00	0.00		С
	MOTA		D1 HIS	142	10.927	7.058	23.966	1.00	0.00		N
	MOTA		D2 HIS	142	9.808	8.899	23.600	1.00	0.00		С
	MOTA		E1 HIS	142	9.691	6.968	24.514	1.00	0.00		С
20	ATOM		E2 HIS	142	8.975	8.060	24.317	1.00	0.00		N
	MOTA	288 H		142	14.064	9.919	21.432	1.00	0.00		H
	MOTA	289 H		142	11.231	10.288	21.458	1.00	0.00		Н
	MOTA	290 1H		142	13.038	8.666	23.385	1.00	0.00		Н
~ -	MOTA	291 2H		142	12.416	8.043	21.892	1.00	0.00		Н
25	ATOM		D1 HIS	142	11.662	6.337	23.985	1.00	0.00		H
	MOTA		D2 HIS	142	9.541	9.899	23.260	1.00	0.00		H
	ATOM		E1 HIS	142	9.329 8.010	6.094 8.245	25.055 24.628	1.00 1.00	0.00		H H
	ATOM		E2 HIS	142 143	12.917	11.376	24.020	1.00	0.00		N
30	MOTA MOTA	296 N 297 C		143	12.847	12.085	25.311	1.00	0.00		C
30	ATOM	298 C		143	12.362	13.475	25.001	1.00	0.00		Č
	ATOM	299 0		143	11.390	13.953	25.584	1.00	0.00	**	 . 0
	ATOM	300 C		143	14.265	12.216	25.877	1.00	0.00		č
	MOTA	301 C		143	14.353	12.188	27.364	1.00	0.00		Č
35	MOTA		D1 TYR	143	13.642	13.019	28.204	1.00	0.00	•	C
	MOTA		D2 TYR	143	15.190	11.243	27.924	1.00	0.00		С
	ATOM	304 C	E1 TYR	143	13.802	12.925	29.571	1.00	0.00		C
	MOTA	305 .C	E2 TYR	143	15.357	11.146	29.290	1.00	0.00		C
	MOTA	306 C	Z TYR	143	14.662	12.001	30.119	1.00	0.00		C
40	ATOM		H TYR	143	14.825	11.929	31.520	1.00	0.00		0
	MOTA	308 н		143	13.840	11.061	23.740	1.00	0.00		H
	MOTA		A TYR	143	12.146	11.546	25.949	1.00	0.00		H
	ATOM	310 1H		143	14.676	13.168	25.543	1.00	0.00		H
45	ATOM	311 2H		143	14.859	11.384	25.499	1.00	0.00		H
45	ATOM		D1 TYR	143	12.951	13.752	27.786	1.00	0.00		н
	ATOM		ID2 TYR	143 143	15.731 13.240	10.557 13.591	27.271 30.225	1.00 1.00	0.00		Н
	MOTA MOTA		E1 TYR E2 TYR	143	16.032	10.400	29.710	1.00	0.00		H H
	ATOM		H TYR	143	14.815	12.879	31.916	1.00	0.00		Н
50	ATOM	317 N		144	13.012	14.156	24.026	1.00	0.00		N
	ATOM		A LEU	144	12.699	15.521	23.676	1.00	0.00		C
	ATOM	319 C		144	11.328	15.648	23.096	1.00	0.00		Č
	ATOM	320 0		144	10.590	16.568	23.440	1.00	0.00		Ō
	MOTA		B LEU	144	13.708	16.137	22.693	1.00	0.00		С
55	ATOM		G LEU	144	15.006	16.551	23.386	1.00	0.00		С
	ATOM		D1 LEU	144	16.003	17.174	22.393	1.00	0.00	•	С
	ATOM		D2 LEU	144	14.667	17.512	24.538	1.00	0.00		С
	ATOM	325 H	LEU	144	13.764	13.677	23.510	1.00	0.00		Н
	ATOM	326 H	IA LEU	144	12.739	16.182	24.541	1.00	0.00		Н
60	MOTA	327 1H		144	13.313	17.029	22.206	1.00	0.00		Н
	MOTA	328 2H		144	13.983	15.442	21.899	1.00	0.00		Н
	ATOM		IG LEU	144	15.501	15.698	23.851	1.00	0.00		Н
	MOTA		ID1 LEU	144	15.563	17.186	21.395	1.00	0.00		H
<i>(=</i>	MOTA		ID1 LEU	144	16.233	18.194	22.700	1.00	0.00		H
65	ATOM		ID1 LEU	144	16.919	16.583	22.378	1.00	0.00		H
	MOTA		ID2 LEU	144 144	13.588 15.010	17.663 17.085	24.580 25.480	1.00 1.00	0.00		H H
	ATOM ATOM		ID2 LEU	144	15.161	18.468	24.371	1.00	0.00		H
	111 OL1	JJJ JN			. 20.101	20.400					-1

										•	
	ATOM	336 N	GLU	145	10.934	14.706	22.226	1.00	0.00		N
	MOTA	337 CA	GLU	145	9.653	14.803	21.588	1.00	0.00		С
	MOTA	338 C	GLU	145	8.586	14.783	22.637	1.00	0.00		С
	MOTA	339 O	GLU	145	7.560	15.453	22.512	1.00	0.00		0
5	MOTA	340 CB	GLU	145	9.368	13.627	20.636	1.00	0.00		С
	MOTA	341 CG	GLU	145	10.226	13.647	19.371	1.00	0.00		С
	MOTA	342 CD	GLU	145	9.522	14.481	18.306	1.00	0.00		C
	MOTA	343 OE1	GLU	145	8.392	14.096	17.899	1.00	0.00		0
	MOTA	344 OE2	GLU	145	10.111	15.506	17.874	1.00	0.00		0
10	MOTA	345 H	GLU	145	11.553	13.910	22.015	1.00	0.00		H
	MOTA	346 HA	GLU	145	9.607	15.736	21.027	1.00	0.00		H
	MOTA	347 1HB	GLU	145	8.337	13.595	20.282	1.00	0.00		H
	MOTA	348 2HB	GLU	145	9.546	12.650	21.087	1.00	0.00		H
	MOTA	349 1HG	GLU	145	10.358	12.625	19.015	1.00	0.00		H
15	MOTA	350 2HG	GLU	145	11.195	14.086	19.606	1.00	0.00		Н
	MOTA	351 ท	GLU	146	8.791	14.004	23.712	1.00	0.00		N
	ATOM	352 CA	GLU	146	7.727	13.932	24.661	1.00	0.00		C
	ATOM	353 C	GLU	146	7.460	15.289	25.248	1.00	0.00		C
	ATOM	354 O	GLU	146	6.301	15.676	25.417	1.00	0.00		0
20	MOTA	355 CB	GLU	146	7.955	12.919	25.785 26.897	1.00	0.00		C
	MOTA	356 CG 357 CD	GLU	146 146	6.927 5.522	13.058 12.785	26.372	1.00	0.00		c
	ATOM ATOM			146	5.141	13.300	25.282	1.00	0.00		0
	ATOM		GLU	146	4.797	12.056	27.087	1.00	0.00		Ö
25	ATOM	360 H	GLU	146	9.670	13.485	23.844	1.00	0.00		Н
23	ATOM	361 HA	GLU	146	6.816	13.574	24.180	1.00	0.00		н
	ATOM	362 1HB	GLU	146	8.935	13.033	26.247	1.00	0.00		Н
	ATOM	363 2HB	GLU	146	7.894	11.890	25.428	1.00	0.00		H
	MOTA	364 1HG	GLU	146	6.943	14.064	27.315	1.00	0.00		H
30	ATOM	365 2HG	GLU	146	7.131	12.352	27.702	1.00	0.00		H
	ATOM	366 N	PHE	147	8.519	16.052	25.589	1.00	0.00		N
	MOTA	367 CA	PHE	147	8.267	17.365	26.115	1.00	0.00		С
	ATOM	368 C	PHE	147	7.670	18.299	25.118	1.00	0.00		С
	MOTA	369 O	PHE	147	6.691	18.985	25.413	1.00	0.00		0
35	MOTA	370 CB	PHE	147	9.479	18.072	26.751	1.00	0.00		Ç
	MOTA	371 CG	PHE	147	9.295	17.919	28.217	1.00	0.00		C
	MOTA		PHE	147	9.728	16.820	28.917	1.00	0.00		C
	ATOM		PHE	147	8.621	18.916	28.880	1.00	0.00		C
40	ATOM		PHE	147	9.500	16.753 18.852	30.273	1.00	0.00		C
40	ATOM		PHE PHE	147 147	8.396 8.844	17.762	30.231 30.935	1.00	0.00		C
	MOTA	376 CZ 377 Н	PHE	147	9.481	15.703	25.475	1.00	0.00		Н
	ATOM ATOM	377 H 378 HA	PHE	147	7.577	17.369	26.959	1.00	0.00		н
	ATOM	379 1HB	PHE	147	9.416	19.106	26.413	1.00	0.00		H
45	ATOM	380 2HB	PHE	147	10.352	17.544	26.367	1.00	0.00		H
7.5	ATOM		PHE	147	10.246	16.009	28.404	1.00	0.00		H
	ATOM		PHE	147	8.257	19.777	28.319	1.00	0.00		Н
	ATOM		PHE	147	9.846	15.883	30.831	1.00	0.00		н
	ATOM		PHE	147	7.867	19.657	30.740	1.00	0.00		н
50	ATOM	385 HZ	PHE	147	8.680	17.697	32.010	1.00	0.00		H
	MOTA	386 N	LEU	148	8.228	18.345	23.901	1.00	0.00		N
	ATOM	387 CA	LEU	148	7.756	19.335	22.986	1.00	0.00		С
	ATOM	388 C	LEU	148	6.317	19.106	22.646	1.00	0.00		С
	MOTA	389 O	LEU	148	5.555	20.070	22.555	1.00	0.00		0
55	MOTA	390 CB	LEU	148	8.611	19.432	21.719	1.00	0.00		С
	MOTA	391 CG	LEU	148	10.027	19.958	22.036	1.00	0.00		С
	MOTA		LEU	148		20.091	20.763	1.00	0.00		C
	ATOM		LEU	148	9.967	21.255	22.861	1.00	0.00		С
60	ATOM	394 H	LEU	148	8.974	17.687	23.633	1.00	0.00		H
60	ATOM	395 HA	LEU	148	7.845	20.334	23.412	1.00	0.00		Н
	ATOM	396 1HB	LEU	148	8.164	20.108	20.990	1.00	0.00		Н
	ATOM	397 2HB	LEU LEU	148	8.721 10.559	18.459 19.290	21.239 22.713	1.00	0.00 0.00		H
	ATOM	398 HG 399 1HD1		148 148	10.559	19.290	19.899	1.00	0.00		. Н
65	MOTA MOTA	400 2HD1		148	11.185	21.128	20.638	1.00	0.00		H
0,5	ATOM	400 2HD1 401 3HD1		148	11.759	19.457	20.847	1.00	0.00		п Н
	ATOM	401 3HD1 402 1HD2		148	8.926	21.522	23.043	1.00	0.00		Н
	ATOM	403 2HD2		148	10.475	21.104	23.813	1.00	0.00		н
	011				_0.1,0	,					••

	MOTA		2 LEU	148	10.457	22.058	22.311	1.00	0.00		H
	ATOM	405 ท	THR	149	5.881	17.845	22.464	1.00	0.00		N
	ATOM	406 CA	THR	149	4.505	17.686	22.089	1.00	0.00		С
	ATOM	407 C	THR	149	3.639	17.773	23.311	1.00	0.00		С
5	ATOM	408 O	THR	149	2.939	16.829	23.673	1.00	0.00		Ö
J										•	
	ATOM	409 CB	THR	149	4.203	16.400	21.368	1.00	0.00		С
	MOTA	410 OG		149	4.989	16.316	20.188	1.00	0.00		0
	MOTA	411 CG	2 THR	149	2.711	16.386	20.982	1.00	0.00		С
	ATOM	412 H	THR	149	6.504	17.034	22.587	1.00	0.00		H
10	ATOM	413 HA	THR	149	4.224	18.473	21.389	1.00	0.00		Н
10	ATOM	414 HB	THR	149	4.427	15.564	22.031	1.00	0.00		H
	MOTA	415 HG		149	5.121	17.259	19.795	1.00	0.00		H
	MOTA	416 1HG		149	2.238	17.306	21.323	1.00	0.00		H
	MOTA	417 2HG		149	2.616	16.309	19.898	1.00	0.00		H
15	MOTA	418 3HG	2 THR	149	2.222	15.531	21.450	1.00	0.00		H
	ATOM	419 N	SER	150	3.672	18.934	23.987	1.00	0.00		N
	ATOM	420 CA		150	2.792	19.149	25.095	1.00	0.00		С
	ATOM	421 C	SER	150	1.441	19.352	24.478	1.00	0.00		č
	MOTA	422 0	SER	150	1.340	19.828	23.350	1.00	0.00		0
20	MOTA	423 CB	SER	150	3.136	20.402	25.916	1.00	0.00		С
	MOTA	424 OG	SER	150	2.239	20.543	27.008	1.00	0.00		0
	MOTA	425 H	SER	150	4.333	19.672	23.706	1.00	0.00		H
	ATOM	426 HA	SER	150	2.868	18.240	25.692	1.00	0.00		H
	MOTA	427 1HB		150	3.066	21.295	25.295	1.00	0.00		H
25											
25	MOTA	428 2HB		150	4.150	20.333	26.309	1.00	0.00		H
	MOTA	429 HG		150	2.118	21.542	27.226	1.00	0.00		н
	MOTA	430 N	ALA	151	0.353	18.994	25.191	1.00	0.00		N
	ATOM	431 . CA	ALA	151	-0.938	19.093	24.579	1.00	0.00		С
	ATOM	432 C	ALA	151	-1.199	20.514	24.215	1.00	0.00		C
30	ATOM	433 O	ALA	151	-1.451	20.805	23.050	1.00	0.00		Ö
50	ATOM	434 CB		151	-2.081	18.634	25.500	1.00	0.00		č
	MOTA	435 H	ALA	151	0.449	18.655	26.158	1.00	0.00		H
	MOTA	436 HA		151	-0.957	18.473	23.682	1.00	0.00		H
	MOTA	437 1HB		151	-1.670	18.316	26.458	1.00	0.00		H
35	MOTA	438 2HB	ALA	151	-2.775	19.459	25.657	1.00	0.00		Н
	MOTA	439 3HB	ALA	151	-2.608	17.799	25.037	1.00	0.00		H
	ATOM	440 N	ASN	152	-1.074	21.419	25.208	1.00	0.00		N
	ATOM	441 CA	ASN	152	-1.299	22.839	25.124	1.00	0.00		С
	ATOM	442 C	ASN	152	-2.555	23.137	25.881	1.00	0.00		Ċ
40	ATOM	443 0	ASN	152	-2.645	24.149	26.571	1.00	0.00		Ö
70	ATOM	444 CB		152	-1.443	23.453	23.706	1.00	0.00		C
	MOTA	445 CG		152	-2.843	23.286	23.104	1.00	0.00		. с
	MOTA		1 ASN	152	-3.517	22.258	23.159	1.00	0.00		0
	ATOM	447 ND	2 ASN	152	-3.313	24.403	22.485	1.00	0.00		N
45	ATOM	448 H	ASN	152	-0.786	21.054	26.127	1.00	0.00		H
	ATOM	449 HA		152	-0.435	23.331	25.571	1.00	0.00		H.
	ATOM	450 1HB		152	-0.765	23.018	22.971	1.00	0.00		н.
	ATOM	451 2HB		152	-1.246	24.524	23.672	1.00	0.00		H
60	ATOM	452 1HD		152	-4.247	24.397	22.052	1.00	0.00		H
50	ATOM	453 2HD		152	-2.734	25.254	22.449	1.00	0.00		H
	ATOM	454 N	LYS	153	-3.577	22.269	25.770	1.00	0.00		N
	MOTA	455 CA	LYS	153	-4.751	22.505	26.551	1.00	0.00		С
	ATOM	456 C	LYS	153	-4.348	22.302	27.967	1.00	0.00		С
	ATOM	457 O	LYS	153	-4.538	23.175	28.813	1.00	0.00		Ο.
55	ATOM	458 CB		153	-5.884	21.508	26.258	1.00	0.00		Ċ
55	ATOM	459 CG			-6.668	21.807	24.979	1.00	0.00		č
	ATOM	460 CD			-7.456	23.119	25.040	1.00	0.00		C
	MOTA	461 CE		153	-8.706	23.049	25.924	1.00	0.00		C
	MOTA	462 NZ			-9.731	22.186	25.293	1.00	0.00		N
60	ATOM	463 H	LYS		-3.515	21.456	25.139	1.00	0.00	•	H
	ATOM	464 HA	LYS	153	-5.049	23.532	26.341	1.00	0.00		н
•	ATOM	465 1HB	LYS	153	-6.586	21.533	27.090	1.00	0.00		н
	ATOM	466 2HB			-5.447	20.514	26.154	1.00	0.00		Н
	ATOM	467 1HG			-7.404	21.042	24.733	1.00	0.00		H
65	ATOM	468 2HG			-6.037	21.892	24.094	1.00	0.00		Н
	ATOM	469 1HD			-7.819	23.459	24.070	1.00	0.00		H
	ATOM	470 2HD			-6.882	23.958	25.433	1.00	0.00		
									0.00		H
	MOTA	471 1HE	LYS	153	-9.125	24.045	26.063	1.00	0.00		н

	ATOM	472	2HE	LYS	153	-8.453	22.635	26.900	1.00	0.00	j	H
	MOTA	473		LYS	153	-9.372	21.824	24.397	1.00	0.00		H
	ATOM	474		LYS	153	-9.948	21.397	25.918	1.00	0.00		H
	MOTA	475	3HZ	LYS	153	-10.585				0.00		H
5							22.735	25.123	1.00			
3	MOTA	476	N	HIS	154	-3.749	21.128	28.244	1.00	0.00		N
	ATOM	477	CA	HIS	154	-3.330	20.820	29.574	1.00	0.00		С
	ATOM	478	С	HIS	154	-2.229	21.764	29.916	1.00	0.00		С
	MOTA	479	0	HIS	154	-2.313	22.481	30.912	1.00	0.00	(0
	MOTA	480	CB	HIS	154	-2.854	19.366	29.707	1.00	0.00	1	С
10	ATOM	481	CG	HIS	154	-3.979	18.411	29.430	1.00	0.00		С
	ATOM	482	ND1	HIS	154	-3.823	17.066	29.176	1.00	0.00	1	N
	ATOM	483		HIS	154	-5.318	18.647	29.367	1.00	0.00		С
	ATOM	484	CE1		154	-5.066	16.560	28.973	1.00	0.00		c
	ATOM	485	NE2		154	-6.006	17.482	29.079	1.00	0.00		N
15	ATOM	486	H	HIS	154							
13						-3.591	20.445	27.488	1.00	0.00		H
	ATOM	487	HA	HIS	154	-4.195	20.957	30.222	1.00	0.00		Н
	MOTA	488		HIS	154	-2.483	19.171	30.713	1.00	0.00		H
	MOTA	489	2HB	HIS	154	-2.049	19.157	29.001	1.00	0.00		H
	ATOM	490		HIS	154	-2.934	16.545	29.146	1.00	0.00		H
20	MOTA	491	HD2	HIS	154	-5.784	19.620	29.522	1.00	0.00		H
	ATOM	492	HE1	HIS	154	-5.265	15.512	28.748	1.00	0.00		Н
	ATOM	493	HE2	HIS	154	-7.023	17.360	28.971	1.00	0.00		Н
-	MOTA	494	N	PHE	155	-1.165	21.818	29.089	1.00	0.00		N
	ATOM	495	CA	PHE	155	-0.190	22.815	29.405	1.00	0.00		C
25	ATOM	496	C	PHE	155	-0.650	23.984	28.609	1.00	0.00		c
23	ATOM	497	Ö	PHE	155	-0.273	24.133	27.448	1.00	0.00		0
	ATOM	498	CB	PHE	155	1.245	22.479	28.971	1.00	0.00		C
	ATOM	499	CG	PHE	155	2.127	23.357	29.793	1.00	0.00		С
	MOTA	500		PHE	155	2.314	24.682	29.487	1.00	0.00		С
30	MOTA	501		PHE	155	2.767	22.844	30.895	1.00	0.00		С
	MOTA	502	CE1	PHE	155	3.128	25.474	30.263	1.00	0.00	÷	C
	ATOM	503	CE2	PHE	155	3.583	23.629	31.675	1.00	0.00	•	С
	ATOM	504	CZ	PHE	155	3.767	24.952	31.359	1.00	0.00		C .
	ATOM	505	Н	PHE	155	-1.061	21.183	28.284	1.00	0.00		н
35	ATOM	506	HA	PHE	155	-0.175		30.474	1.00	0.00		Н
	ATOM	507		PHE	155	1.288	22.706	27.905	1.00	0.00		H
	ATOM		2HB	PHE	155	1.375	21.418	29.188	1.00	0.00		H
	ATOM	509		PHE	155	1.812	25.111	28.619	1.00	0.00		H
				PHE			21.795			0.00		
40	MOTA	510			155	2.625		31.155	1.00			H
40	MOTA	511		PHE	155	3.266	26.524	30.005	1.00	0.00		H
	MOTA	512		PHE	155	4.083	23.201	32.543	1.00	0.00		H
	ATOM	513	HZ	PHE	155	4.413	25.580	31.971	1.00	0.00		H
	MOTA	514	N	MET	156	-1.446	24.859	29.262	1.00	0.00		N
	MOTA	515	CA	MET	156	-2.169	25.915	28.617	1.00	0.00		С
45	MOTA	516	С	MET	156	-1.274	26.681	27.710	1.00	0.00		С
	ATOM	517	0	MET	156	-1.482	26.694	26.498	1.00	0.00		0
	ATOM	518	CB	MET	156	-2.778	26.915	29.617	1.00	0.00		С
	ATOM	519	CG	MET	156	-3.719	27.936	28.973	1.00	0.00		С
	ATOM	520		MET	156	-5.305	27.249	28.409	1.00	0.00		S
50	ATOM	521	CE	MET	156	-5.925	26.894	30.079	1.00	0.00		c
50	MOTA	522	н	MET	156	-1.538	24.761	30.283	1.00	0.00		H
	MOTA	523		MET	156	-2.991	25.510	28.027	1.00	0.00		
												H
	ATOM		1HB	MET	156	-2.036	27.513	30.146	1.00	0.00		H
	ATOM		2HB	MET	156	-3.370	26.445	30.402	1.00	0.00		H
55	ATOM		1HG	MET	156	-3.217	28.362	28.104	1.00	0.00		H
	ATOM	527	2HG	MET	156	-3.938	28.709	29.708	1.00	0.00		H
	MOTA	528	1HE	MET	156	-5.179	27.195	30.815	1.00	0.00		H
	ATOM	529	2HE	MET	156	-6.848	27.447	30.249	1.00	0.00		H
	ATOM	530	3HE	MET	156	-6.119	25.825	30.175	1.00	0.00		H
60	ATOM	531		VAL	157	-0.237	27.331	28.256	1.00	0.00		N
	ATOM	532		VAL	157	0.589	28.078	27.364	1.00	0.00		c
	ATOM	533		VAL	157	1.258	27.091	26.474	1.00	0.00		c
	ATOM	534	Ö	VAL	157	1.390	27.309	25.271	1.00	0.00		0
		535		VAL	157	1.637	28.902	28.060	1.00	0.00		
65	ATOM			VAL				28.791	1.00			C
0.5	ATOM	536			157	2.615	27.972			0.00		C
	ATOM	537		VAL	157	2.316	29.803	27.016	1.00	0.00		С
	ATOM	538		VAL	157	-0.046	27.293	29.267	1.00	0.00		H
	MOTA	539	HA	LAV	157	-0.071	28.746	26.812	1.00	0.00		H

					•							-
	ATOM	540	НВ	VAL	157	1.157	29.565	28.780	1.00	0.00		Н
	ATOM		HG1		157	2.318	26.935	28.632	1.00	0.00		H
	ATOM	542 2			157	3.621	28.124	28.402	1.00	0.00		H
	ATOM		HG1		157	2.600	28.194	29.857	1.00	0.00		H
5	ATOM		HG2		157	1.872	29.622	26.036	1.00	0.00		H
,	ATOM		HG2		157	2.175	30.848	27.291	1.00	0.00		H
	ATOM		HG2		157	3.381	29.577	26.979	1.00	0.00		H
	ATOM								1.00	0.00		
		547	N	GLY	158	1.682	25.952	27.051	1.00	0.00		N
10	MOTA	548	CA	GLY	158	2.374	24.964	26.287				C
10	ATOM		C	GLY	158	3.693	25.566	25.964	1.00	0.00		С
	MOTA	550		GLY	158	4.422	25.074	25.105	1.00	0.00		0
	ATOM	551	H	GLY	158	1.505	25.791	28.053	1.00	0.00		H
	MOTA		LHA	GLY	158	1.754	24.790	25.407	1.00	0.00		Н
1.5	MOTA	553 2		GLY	158	2.447	24.092	26.938	1.00	0.00		H
15	MOTA	554	И	HIS	159	4.039	26.665	26.659	1.00	0.00		N
	MOTA		CA	HIS	159	5.280	27.303	26.363	1.00	0.00		C
	ATOM	556	С	HIS	159	6.185	27.184	27.537	1.00	0.00		C
	MOTA	557	0	HIS	159	6.237	28.065	28.394	1.00	0.00		0
	ATOM	558		HIS	159	5.130	28.805	26.067	1.00	0.00		С
20	ATOM	559		HIS	159	6.430	29.485	25.748	1.00	0.00		С
	MOTA	560	ND1		159	7.012	29.494	24.501	1.00	0.00		N
	ATOM	561	CD2		159	7.268	30.197	26.553	1.00	0.00	-	С
	ATOM	562	CE1		159	8.162	30.205	24.609	1.00	0.00		С
	ATOM	563	NE2		159	8.361	30.653	25.836	1.00	0.00		N
25	MOTA	564	H	HIS	159	3.418	27.038	27.391	1.00	0.00		Н
	ATOM	565	HA	HIS	159	5.735	26.820	25.498	1.00	0.00		H
	MOTA	566 1		HIS	159	4.708	29.371	26.897	1.00	0.00		H
	MOTA		2HB	HIS	159	4.481	29.017	25.217	1.00	0.00		H
	MOTA	568	HD1		159	6.644	29.046	23.649	1.00	0.00		Н
30	MOTA	569	HD2		159	7.100	30.381	27.614	1.00	0.00		H
	MOTA	570		HIS	159	8.844	30.386	23.778	1.00	0.00		Н
	MOTA	571	HE2		159	9.151	31.215	26.181	1.00	0.00		н
	MOTA	572	N	PRO	160	6.878	26.091	27.621	1.00	0.00		N
	MOTA	573	CA	PRO	160	7.881	25.999	28.636	1.00	0.00		С
35	MOTA	574	С	PRO	160	9.130	26.444	27.9 5 7	1.00	0.00		С
	ATOM	575	0	PRO	160	9.143	26.496	26.728	1.00	0.00		0
	MOTA	576	CB	PRO	160	7.936	24.532	29.067	1.00	0.00		С
	MOTA	577	CG	PRO	160	7.240	23.770	27.930	1.00	0.00		С
	ATOM	578	CD	PRO	160	6.260	24.803	27.361	1.00	0.00		С
40	ATOM	579	HA	PRO	160	7.532	26.674	29.417	1.00	0.00	•	H
	ATOM	580		PRO	160	7.395	24.504	30.013	1.00	0.00		H
	MOTA	581 2		PRO	160	8.999	24.313	29.159	1.00	0.00		H
	MOTA	582		PRO	160	6.723	22.887	28.308	1.00	0.00		Н
	MOTA	583		PRO	160	7.960	23.440	27.181	1.00	0.00		H
45	ATOM	584		PRO	160	6.156	24.753	26.277	1.00	0.00		Н
	ATOM	585	2HD	PRO	160	5.306	24.835	27.888	1.00	0.00		Н
	ATOM	586	N	VAL	161	10.179	26.798	28.715	1.00	0.00		N
	ATOM	587	CA	VAL	161	11.414	27.057	28.050	1.00	0.00		С
	ATOM	588	C	VAL	161	12.184	25.811	28.276	1.00	0.00		С
50	ATOM	589	0	VAL	161	12.576	25.516	29.404	1.00	0.00		0
	MOTA	590	СВ	VAL	161	12.211	28.183	28.640	1.00	0.00		С
	ATOM	591		VAL	161	13.571	28.240	27.924	1.00	0.00		С
	MOTA	592		VAL	161	11.394	29.479	28.519	1.00	0.00		С
	ATOM	593	H	VAL	161	10.095	26.879	29.738	1.00	0.00		Н
55	MOTA	594	HA	VAL	161	11.255	27.250	26.989	1.00	0.00		н
	ATOM	595	HB	VAL	161	12.345	27.987	29.703	1.00	0.00		H
	MOTA	596			161	13.618	27.453	27.170	1.00	0.00		H
	MOTA	597			161	13.688	29.211	27.443	1.00	0,00		H
	ATOM	598	3HG1	VAL	161	14.370	28.095	28.650	1.00	0.00		Н
60	ATOM	599			161	10.440	29.264	28.036	1.00	0.00		н
	MOTA	600			161	11.213	29.889	29.512	1.00	0.00		Н
	MOTA	601			161	11.947	30.203	27.921	1.00	0.00		н
	MOTA	602	N	ILE	162	12.401	25.022	27.213	1.00	0.00		N
	MOTA	603	CA	ILE	162	13.098	23.805	27.455	1.00	0.00		С
65	ATOM	604	С	ILE	162	14.534	24.031	27.149	1.00	0.00		С
	MOTA	605	0	ILE	162	14.913	24.289	26.011	1.00	0.00		0
	MOTA	606	CB	ILE	162	12.561	22.641	26.660	1.00	0.00		C
	ATOM	607	CG1	ILE	162	13.202	21.326	27.125	1.00	0.00		С

	ATOM	608	CG2	ILE	162			.22.921	25.157	1.00	0.00			С
	MOTA	609	CD1	ILE	162		12.483	20.090	26.587	1.00	0.00			С
	ATOM	610		ILE	162		12.079	25.283	26.270	1.00	0.00			H
_	MOTA	611		ILE	162		12.959	23.541	28.503	1.00	0.00			H
5	ATOM	612		ILE	162		11.507	22.485	26.892	1.00	0.00			H
	ATOM		1HG1		162		13.208	21.216	28.209	1.00	0.00			H
	ATOM		2HG1		162		14.240	21.225	26.810	1.00	0.00			H
	ATOM		1HG2		162		13.162	23.899	25.011	1.00	0.00			Н
10	ATOM		2HG2 3HG2		162 162		13.332 11.719	22.154 22.907	24.702 24.689	1.00 1.00	0.00			H H
10	ATOM ATOM		IHD1	_	162		11.719	20.399	25.967	1.00	0.00			Н
	ATOM		2HD1		162		13.175	19.498	25.988	1.00	0.00			Н
	ATOM ·		3HD1		162		12.118	19.489	27.420	1.00	0.00		•	н.
	ATOM	621		PHE	163		15.381	23.965	28.191	1.00	0.00			N
15	ATOM			PHE	163		16.786	24.084	27.985	1.00	0.00			C
1.5	ATOM	623		PHE	163		17.125	22.659	27.726	1.00	0.00			Ċ
	ATOM	624		PHE	163		17.897	22.033	28.449	1.00	0.00			ō
	ATOM	625		PHE	163		17.495	24.524	29.276	1.00	0.00			C
	ATOM	626		PHE	163		18.695	25.330	28.926	1.00	0.00			С
20	ATOM	627	CD1		163		19.891	24.765	28.556	1.00	0.00			С
	MOTA	628	CD2	PHE	163		18.592	26.700	28.988	1.00	0.00			С
	ATOM	629	CE1	PHE	163		20.963	25.573	28.249	1.00	0.00	• • •		С
	MOTA	630	CE2	PHE	163		19.659	27.508	28.683	1.00	0.00			С
	ATOM	631	CZ	PHE	163		20.852	26.942	28.311	1.00	0.00			С
25	MOTA	632	Н	PHE	163		15.012	23.827	29.143	1.00	0.00			H
	ATOM	633	HA	PHE	163		17.020	24.740	27.146	1.00	0.00			H
	MOTA		1HB	PHE	163		17.797	23.640	29.838	1.00	0.00			H
	MOTA		2HB	PHE	163		16.810	25.125	29.874	1.00	0.00			H
	ATOM	636	HD1		163		19.991	23.680	28.505	1.00	0.00			Н
30	ATOM	637	HD2		163		17.645	27.152	29.284	1.00	0.00			H
	ATOM	638	HEL		163		21.910	25.122	27.953	1.00	0.00			H
	ATOM	639	HE2		163		19.559 21.706	28.592 27.573	28.736 28.066	1.00 1.00	0.00			H H
	MOTA MOTA	640 641	HZ N	PHE	163 164		16.533	22.115	26.649	1.00	0.00			N
35	MOTA	642	CA	TYR	164		16.658	20.723	26.383	1.00	0.00			Ċ
33	MOTA	643	C	TYR	164	-	18.087	20.449	26.152	1.00	0.00		-	c
	ATOM	644	Ö	TYR	164		18.573	19.357	26.444	1.00	0.00			ō
	ATOM	645	СВ	TYR	164		15.861	20.235	25.146	1.00	0.00			C
	ATOM	646	CG	TYR	164		16.389	20.821	23.873	1.00	0.00			С
40	MOTA	647	CD1	TYR	164		17.522	20.314	23.271	1.00	0.00			Ç
	ATOM	648	CD2	TYR	164		15.731	21.861	23.256	1.00	0.00			С
	ATOM	649	CE1	TYR	164		18.005	20.845	22.098	1.00	0.00		•	C
	MOTA	650	CE2	TYR	164		16.207	22.397	22.081	1.00	0.00			С
	MOTA	651	CZ	TYR	164		17.347	21.893	21.500	1.00	0.00			С
45	MOTA	652	OH	TYR	164		17.836	22.443	20.297	1.00	0.00			0
	MOTA	653	н	TYR	164		15.984	22.710	26.011	1.00	0.00			H
	ATOM	654	HA	TYR	164		16.284	20.191	27.258	1.00	0.00			H
	ATOM			TYR	164		14.807	20.507	25.206	1.00	0.00			Н
50	MOTA	656		TYR	164		15.901	19.151	25.036	1.00	0.00			Н
50	ATOM	657		TYR TYR	164 164		18.044 14.822	19.476 22.264	23.733 23.703	1.00	0.00			H H
	ATOM ATOM	658 659		TYR	164		18.907	20.435	21.643	1.00	0.00			Н
	ATOM	660		TYR	164		15.677	23.224	21.608	1.00	0.00			Н
	ATOM	661	нн	TYR	164		18.333	23.321	20.498	1.00	0.00			Н
55	ATOM	662	N	ILE	165		18.824	21.440	25.631	1.00	0.00			N
	ATOM	663	CA	ILE	165		20.121	20.985	25.289	1.00	0.00			C
	ATOM	664	Ċ	ILE	165		21.181	21.517	26.199	1.00	0.00			C
	ATOM	665	o ·	ILE	165		21.709	22.613	26.027	1.00	0.00			0
	ATOM	666	CB	ILE	165		20.447	21.230	23.830	1.00	0.00			C
60	ATOM	667		ILE	165		21.665	20.408	23.365	1.00	0.00			С
	ATOM	668	CG2	ILE	165		20.533	22.742	23.568	1.00	0.00			С
	ATOM	669		ILE	165		22.997	20.777	24.012	1.00	0.00			С
	MOTA	670	H	ILE	165		18.491	22.405	25.497	1.00	0.00			Н
~-	ATOM	671	HA	ILE	165		20.212	19.899	25.326	1.00	0.00			Н
65	ATOM	672	HB	ILE	165		19.666	20.798	23.203	1.00	0.00			H
	MOTA		1HG1		165		21.778	20.553	22.290	1.00	0.00			H
	ATOM		2HG1		165 [°]		21.472	19.360	23.598	1.00	0.00			H
	ATOM	0/5	1HG2	نتلط	165		20.339	23.283	24.494	1.00	0.00			Н

	ATOM	676	2HG2	ILE	165	21.529	22,992	23,203	1.00	0.00		Н
	ATOM	677			165	19.791	23.024	22.820	1.00	0.00		Н
	MOTA	678	1HD1		165	22.844	21.592	24.719	1.00	0.00		Н
	ATOM	679	2HD1	ILE	165	23.398	19.910	24.537	1.00	0.00		Н
5	ATOM	680	3HD1	ILE	165	23.700	21.092	23.241	1.00	0.00		Н
	MOTA	681	N	MET	166	21.499	20.724	27.236	1.00	0.00		N
	ATOM	682	CA	MET	166	22.695	20.976	27.973	1.00	0.00		C
	MOTA	683	С	MET	166	23.516	19.802	27.587	1.00	0.00		С
	ATOM	684	0	MET	166	23.480	18.760	28.239	1.00	0.00		0
<u>1</u> 0	MOTA	685	CB	MET	166	22.531	20.969	29.497	1.00	0.00		С
	MOTA	686	CG	MET	166	21.894	22.253	30.014	1.00	0.00		С
	ATOM	687	SD	MET	166	22.909	23.743	29.768	1.00	0.00		S
	ATOM	688	CE	MET	166	24.234	23.246	30.907	1.00	0.00		С
	MOTA	689	H	MET	166	20.884	19.940	27.497	1.00	0.00		H
15	ATOM	690	HА	MET	166	23.152	21.922	27.685	1.00	0.00		H
	MOTA		1HB	MET	166	23.485	20.865	30.013	1.00	0.00		H
	MOTA		2HB	MET	166	21.900	20.148	29.840	1.00	0.00		H
	MOTA		1HG	MET	166	21.721	22.142	31.084	1.00	0.00		H
	MOTA		2HG	MET	166	20.951	22.403	29.487	1.00	0.00		Н
20	MOTA		1HE	MET	166	23.997	22.273	31.338	1.00	0.00		Н
	MOTA		2HE	MET	166	25.176	23.182	30.363	1.00	0.00		H
	ATOM	697		MET	166	24.324	23.983	31.704	1.00	0.00		Н
	MOTA	698		VAL	167	24.282	19.947	26.494	1.00	0.00		N
	MOTA	699	-	VAL	167	24.972	18.801	25.997	1.00	0.00		С
25	MOTA	700	С	VAL	167	26.352	18.808	26.540	1.00	0.00		С
	MOTA	701	0	VAL	167	26.993	19.851	26.660	1.00	0.00		0
	ATOM	702		VAL	167	25.078	18.751	24.502	1.00	0.00		C
	MOTA	703		VAL	167	26.003	19.894	24.048	1.00	0.00		С
•	MOTA	704		VAL	167	25.571	17.354	24.093	1.00	0.00		С
30	MOTA	705	H	VAĻ	167	24.369	20.860	26.026	1.00	0.00		Н
	ATOM	706	HA	VAL	167	24.440	17.907	26.323	1.00	0.00		Н
	MOTA	707		VAL	167	24.078	18.875	24.086	1.00	0.00		Н
	MOTA	708			167	26.348	20.450	24.919	1.00	0.00		Н
	MOTA		2HG1		167	26.861	19.479	23.519	1.00	0.00		Н
35	MOTA		3HG1		167	25.455	20.562	23.383		0.00.		H
	MOTA		1HG2		167	25.721	16.745	24.984	1.00	0.00		H
	MOTA		2HG2		167	24.828	16.879	23.451	1.00	0.00		Н
	MOTA	713			167	26.513	17.444	23.552	1.00	0.00		H
	ATOM	714		ASP	168	26.836	17.613	26.917	1.00	0.00		N
40	MOTA	715		ASP	168	28.165	17.525	27.426	1.00	0.00		С
	MOTA	716		ASP	168	29.058	17.306	26.251	1.00	0.00		С
	MOTA	717		ASP	168	29.868	16.381	26.249	1.00	0.00		0
	MOTA	718		ASP	168	28.387	16.336	28.371	1.00	0.00		С
45	MOTA	719		ASP	168	29.851	15.945	28.259	1.00	0.00		C
45	MOTA	720		ASP	168	30.612	16.679	27.573	1.00	0.00		0
	MOTA	721		ASP	168	30.235	14.914	28.870	1.00	0.00		0
	ATOM	722		ASP	168	26.252	16.767	26.839	1.00	0.00		H
	ATOM	723		ASP		28.369	18.470	27.927	1.00	0.00		H
50	ATOM		1HB	ASP		27.728	15.536	28.038	1.00	0.00		H
30	ATOM		2HB	ASP ASP		28.136 28.943	16.676 18.184	29.377	1.00	0.00		Н
	ATOM	726 727		ASP		29.722	18.092	25.234 24.032	1.00	0.00		N
	ATOM			ASP		29.722	16.694	23.501	1.00			C
	ATOM	728		ASP		30.666	15.958			0.00		C
55	ATOM ATOM	729 730		ASP		31.194	18.496	23.583 24.209	1.00	0.00		O C
33	ATOM	731		ASP		32.052	17.421	23.556		0.00		
	ATOM	732		ASP		32.403	17.591	22.357	1.00	0.00		C
	MOTA	733		ASP		32.363	16.413	24.244	1.00	0.00		0
	MOTA	734		ASP		28.266		25.323	1.00	0.00		
60	MOTA	735		ASP		29.323	18.767	23.275	1.00	0.00		H
00	ATOM		5 1HB	ASP		31.393	18.562	25.278	1.00	0.00		H
	ATOM		2HB	ASP		31.334	19.460	23.722	1.00	0.00		Н
	ATOM	738		VAL		28.531	16.285	22.936	1.00	0.00	•	H
	ATOM	739		VAL		28.426	14.963	22.396	1.00	0.00		N C
65	ATOM	740		VAL		28.652	15.052	20.924	1.00	0.00		C
35	ATOM	740		VAL		28.473	16.106	20.324	1.00	0.00		0
	MOTA	742		VAL		27.084	14.333	22.627	1.00	0.00		C
	MOTA	743		VAL		27.074	12.924	22.011	1.00	0.00		C
	111011	, 3.		. ****	1.0	27.074	~~		1.50	0.00		C

	MOTA	744	CG2	VAL	170	26.794	14.357	24.139	1.00	0.00		С
	ATOM	745	н	VAL	170	27.724	16.924	22.892	1.00	0.00		н
	ATOM	746	HA	VAL	170	29.187	14.346	22.873	1.00	0.00		H
	ATOM	747	HB	VAL	170	26.314	14.945	22.157	1.00	0.00		H
5	ATOM		1HG1		170	28.042	12.719	21.554	1.00	0.00		H
_	ATOM	749			170	26.877	12.187	22.790	1.00	0.00		H
	ATOM		3HG1		170	26.294	12.864	21.251	1.00	0.00		H
	ATOM		1HG2		170	27.629	14.822	24.662	1.00	0.00		н
	ATOM	752			170	25.885	14.928	24.326	1.00	0.00	•	н
10	ATOM	753	3HG2		170	26.662	13.337	24.500	1.00	0.00		н
10	ATOM	754	N	SER	171	29.090	13.940	20.310	1.00	0.00		N
	ATOM	755	CA	SER	171	29.316	13.919	18.897	1.00	0.00		C
	MOTA	756	CA	SER	171	27.985	13.651	18.275	1.00	0.00		c
				SER	171				1.00	0.00		0
15	MOTA	757 758	0	SER	171	26.978 30.306	13.649 12.816	18.980	1.00	0.00		C
13	ATOM		CB					18.459		0.00		
	MOTA	759	og 	SER	171	30.577	12.901	17.067	1.00			0
	ATOM	760	H	SER	171	29.265	13.090	20.864	1.00	0.00		H
	ATOM	761	HA	SER	171	29.710	14.903	18.644	1.00	0.00		H ·
20	ATOM		1HB	SER	171	29.900	11.825	18.662	1.00	0.00		H
20	ATOM	763		SER	. 171	31.252	12.908	18.992	1.00	0.00		H
	ATOM	764	HG	SER	171	30.700	13.888	16.800	1.00	0.00		H
	ATOM	765	N	ARG	172	27.978	13.425	16.942	1.00	0.00		N
	ATOM	766	CA	ARG	172	26.839	13.151	16.103	1.00	0.00		,C
~-	MOTA	767	- C	ARG	172	25.594	13.778	16.650	1.00	0.00		C
25	MOTA	768	0	ARG	172	24.658	13.096	17.058	1.00	0.00		0
	ATOM	769	СВ	ARG	172	26.582	11.647	15.910	1.00	0.00		. C.
	ATOM	770	CG	ARG	172	25.412	11.334	14.976	1.00	0.00	•	С
	ATOM	771	CD	ARG	172	25.168	9.834	14.794	1.00	0.00		C
	ATOM	. 772	NE	ARG	172	24.011	9.670	13.869	1.00	0.00		N
30	MOTA	773	CZ	ARG	172	23.678	8.427	13.414	1.00	0.00		С
	MOTA	774		ARG	172	24.396	7.338	13.815	1.00	0.00		N
	MOTA	775			172	22.625	8.271	12.560	1.00	0.00	,	· N
	ATOM	776	H	ARG	172	28.893	13.451	16.471	1.00	0.00		H
	ATOM	777	HA	ARG	172	26.985	13.538	15.094	1.00	0.00		Н
35	ATOM	778		ARG	172	26.359	11.208	16.882	1.00	0.00		- H
	ATOM		2HB	ARG	172	27.478	11.196	15.484	1.00	0.00		Н
	MOTA		1HG	ARG	172	25.546	11.729	13.969	1.00	0.00		Н
	MOTA	781		ARG	172	24.462	11.741	15.323	1.00	0.00		. Н
	MOTA		1HD	ARG	172	24.949	9.410	15.774	1.00	0.00		H
40	MOTA		2HD	ARG	172	26.073	9.398	14.371	1.00	0.00		Н
	MOTA	784	HE	ARG	172	23.464	10.491	13.574	1.00	0.00		н
	MOTA		1HH1		172	25.189	7,453	14.461	1.00	0.00		H
	ATOM		2HH1		172	24.144	6.400	13.471	1.00	0.00		. Н
	ATOM		1HH2		172	22.080	9.091	12.258	1.00	0.00		Н
45	MOTA	788			172	22.374	7.332	12.217	1.00	0.00		H
	MOTA	789		MET	173	25.574	15.121	16.643	1.00	0.00		N
	MOTA	790		MET	173	24.514	15.985	17.080	1.00	0.00		С
	MOTA	791		MET	173	23.271	15.956	16.207	1.00	0.00		С
	MOTA	792		MET	173	22.220	16.236	16.781	1.00	0.00		0
5 0	MOTA	793		MET	173	24.965	17.453	17.143	1.00	0.00		С
	MOTA	794		MET	173	26.131	17.692	18.105	1.00	0.00		С
	ATOM	795		MET	173	27.725	17.037	17.523	1.00	0.00		S
	MOTA	796		MET	173	27.899	18.244	16.176	1.00	0.00		C
	MOTA	797		MET	173	26.419	15.585	16.281	1.00	0.00		H
55	ATOM .	798		MET	173	24.217	15.679	18.083	1.00	0.00		H
	MOTA		1HB	MET	173	24.180	18.134	17.470	1.00	0.00		H
	MOTA		2HB	MET	173	25.301	17.845	16.183	1.00	0.00		H
	ATOM		1HG	MET	173	25.898	17.205	19.052	1.00	0.00		H
	ATOM		2HG	MET	173	26.245	18.767	18.244	1.00	0.00		H
60	ATOM	803	1HE	MET	173	27.038	18.913	16.173	1.00	0.00		Н
	ATOM		2HE	MET	. 173	28.809	18.824	16.323	1.00	0.00		Н
	ATOM		3HE	MET	173	27.953	17.719	15.222	1.00	0.00		H
	MOTA	806		PRO		23.232	15.682	14.906	1.00	0.00		N
	MOTA	807		PRO	174	22.027	15.893	14.140	1.00	0.00		С
65	MOTA	808		PRO		20.773	15.279	14.674	1.00	0.00		С
	MOTA	809		PRO		19.710	15.754	14.285	1.00	0.00		0
	ATOM	810		PRO		22.314	15.362	12.737	1.00	0.00		С
	MOTA	811	CG	PRO	174	23.324	14.239	12.993	1.00	0.00		C

	ATOM	812 CD	PRO	174	24.105	14.737	14.215	1.00	0.00		С
	ATOM	813 HA	PRO	174	21.852	16.967	14.086	1.00	0.00		H
	ATOM	814 1HB	PRO	174	22.727	16.142	12.098	1.00	0.00		H
	MOTA	815 2HB	PRO	174	21.404	14.991	12.263	1.00	0.00		Н
5	ATOM	816 1HG	PRO	174	23.973	14.092	12.129	1.00	0.00		Н
•	ATOM	817 2HG	PRO	174	22.817	13.295	13.193	1.00	0.00		Н
	ATOM	818 1HD	PRO	174	24.317	13.937	14.925	1.00	0.00		H
	MOTA	819 2HD	PRO	174	25.000	15.292	13.936	1.00	0.00		Н
	ATOM	820 N	LEU	175	20.820	14.229	15.513	1.00	0.00		N
10											
10	MOTA	821 CA	LEU	175	19.557	13.719	15.967	1.00	0.00		С
	MOTA	822 C	LEU	175	18.856	14.813	16.709	1.00	0.00		С
	ATOM	823 O	LEU	175	17.668	15.054	16.501	1.00	0.00		0
	ATOM	824 CB	LEU	175	19.682	12.496	16.893	1.00	0.00		Ċ
	MOTA	825 CG	LEU	175	20.153	11.228	16.156	1.00	0.00		С
15	MOTA	826 CD1	LEU	175	19.103	10.760	15.135	1.00	0.00		С
	ATOM		LEU	175	21.543	11.421	15.532	1.00	0.00		С
	MOTA	828 H	LEU	175	21.713	13.813	15.813	1.00	0.00		Н
	MOTA	829 HA	LEU	175	18.983	13.412	15.092	1.00	0.00		Н
	MOTA	830 1HB	LEU	175	18.740	12.226	17.372	1.00	0.00		Н
20	ATOM	831 2HB	LEU	175	20.393	12.646	17.704	1.00	0.00		H
20											
	MOTA	832 HG	LEU	175	20.326	10.410	16.855	1.00	0.00		Н
	ATOM	833 1HD1	LEU	175	18.247	11.435	15.157	1.00	0.00		H
	MOTA	834 2HD1	TJEIT	175	19.540	10.761	14.136	1.00	0.00		Н
									0.00		
	ATOM	835 3HDI			18.775	9.751	15.386	1.00			H
25	MOTA	836 1HD2	2 LEU	175	21.902	12.427	15.747	1.00	0.00		Н
	ATOM	837 2HD2	LEU	175	22.234	10.691	15.952	1.00	0.00		Н
	ATOM		2 LEU	175	21.479	11.281	14.452	1.00	0.00		Н
	MOTA	839 и	ILE	176	19.582	15.505	17.603	1.00	0.00		N
	MOTA	840 CA	ILE	176	19.021	16.602	18.332	1.00	0.00		С
30	ATOM	841 C	ILE	176	18.856	17.761	17.396	1.00	0.00		С
	ATOM	842 0	LLE	176	17.894	18.522	17.484	1.00	0.00		ō
1		•									
	ATOM	843 CB	ILE	176	19.889	17.028	19.481	1.00	0.00		С
	ATOM	844 CG1	LILE	176	19.109	17.948	20.433	1.00	0.00		С
	ATOM	845 CG2	2 ILE	176	21.181	17.642	18.914	1.00	0.00		С
35			l ILE		19.795	18.154	21.784	1.00	0.00		C
33	ATOM						_				
	ATOM	847 H	ILE	176	20.563	15.240	17.767	1.00	0.00		H
	MOTA	848 HA	ILE	176	18.054	16.294	18.730	1.00	0.00		Н
	ATOM	849 HB	ILE	176	20.117	16.149	20.085	1.00	0.00		Н
	MOTA	850 1HG		176	18.111	17.580	20.675	1.00	0.00		H
40	ATOM	851 2HG	LILE	176	18.952	18.952	20.038	1.00	0.00		Н
	MOTA	852 1HG2	2 ILE	176	21.148	17.616	17.824	1.00	0.00		Н
	ATOM	853 2HG		176	21.271	18.674	19.250	1.00	0.00		Н
						•					
	ATOM	854 3HG		176	22.040	17.070	19.264	1.00	0.00		Н
	ATOM	855 1HD:	1 ILE	176	20.728	17.592	21.807	1.00	0.00		Н
45	ATOM	856 2HD	1 ILE	176	20.005	19.213	21.927	1.00	0.00		Н
	ATOM	857 3HD		176	19.140	17.803	22.581	1.00	0.00		Н
	MOTA	858 N	GLU		19.806	17.900	16.455	1.00	0.00		Ŋ
	ATOM	859 CA	GLU	177	19.880	19.007	15.542	1.00	0.00	•	С
	ATOM	860 C	GLU	177	18.707	19.040	14.608	1.00	0.00		С
50	ATOM	861 0	GLU		18.246	20.115	14.227	1.00	0.00		ō
50											
	ATOM	862 CB	GLU		21.183	18.981	14.714	1.00	0.00		С
	ATOM	863 CG	GLÜ	177	21.468	20.288	13.969	1.00	0.00		С
	MOTA	864 CD	GLU	177	22.934	20.298	13.545	1.00	0.00		С
	ATOM		1 GLU		23.550	19.200	13.498	1.00	0.00		ŏ
55	ATOM		2 GLU	177	23.457	21.411	13.266	1.00	0.00		0
	ATOM	867 H	GLU	177	20.526	17.166	16.384	1.00	0.00		Н
	ATOM	868 HA			19.897	19.963	16.064	1.00	0.00		H
		869 1HB									
	ATOM		GLU		21.198	18.211	13.942	1.00	0.00		H
	MOTA	870 2HB	GLU		22.078	18.798	15.308	1.00	0.00		H
60	ATOM	871 1HG	GLU	177	21.262	21.122	14.639	1.00	0.00		Н
-	ATOM	872 2HG	GLU		20.820	20.338	13.093	1.00	0.00		Н
	ATOM	873 N	LEU		18.171	17.867	14.229	1.00	0.00		N
	MOTA	874 CA	LEU		17.164	17.780	13.210	1.00	0.00		С
	MOTA	875 C	LEU	178	15.945	18.581	13.544	1.00	0.00		С
65	MOTA	876 0	LEU		15.455	19.334	12.706	1.00	0.00		ō
05									0.00		
	ATOM	877 CB	LEU		16.678	16.342	12.969	1.00			C
	ATOM	878 CG	LEU		17.748	15.383	12.413	1.00	0.00		С
	MOTA	879 CD	1 LEU	178	17.169	13.975	12.197	1.00	0.00		С

	MOTA		LEU	178	18.4		5.956	11.154	1.00	0.00			С
	MOTA	881 H	LEU	178	18.4		7.001	14.685	1.00	0.00			H
	MOTA	882 HA	LEU	178	17.5		8.144	12.245	1.00	0.00			H
_	ATOM	883 1HB	LEU	178	15.8		6.375	12.247	1.00	0.00			H -
5	ATOM	884 2HB	LEU	178	16.3	-	5.934	13.920	1.00 1.00	0.00			H H
	MOTA MOTA	885 HG 886 1HD1	LEU	178 178	18.5 16.1		.5.296 .3.965	13.099 12.487	1.00	0.00			H
	MOTA	887 2HD1		178	17.2		3.702	11.145	1.00	0.00			Н
	ATOM	888 3HD1		178	17.7		3.257	12.804	1.00	0.00			Н
10	ATOM	889 1HD2		178	17.9		6.930	10.923	1.00	0.00			Н
	ATOM	890 2HD2	LEU	178	19.4		6.065	11.330	1.00	0.00			H
	MOTA	891 3HD2	LEU	178	18.2	256 1	5.279	10.315	1.00	0.00			H
	MOTA	892 N	GLY	179	15.4		8.479	14.776	1.00	0.00			N
	ATOM	893 CA	GLY	179	14.1		9.139	14.949	1.00	0.00			С
15	ATOM	894 C	GLY	179	14.1		0.110	16.075	1.00	0.00			С
	ATOM	895 O	GLY	179	13.6		21.225	15.954	1.00	0.00			0
	ATOM	896 H 897 1HA	GLY	179	15.8		.7.965 .8.426	15.538 15.163	1.00 1.00	0.00			H H
	ATOM ATOM	898 2HA	GLY GLY	179 179	13.3 13.8		19.690	14.053	1.00	0.00			H
20	ATOM	899 N	PRO	180	14.7		19.733	17.174	1.00	0.00			N
20	ATOM	900 CA	PRO	180	14.7		20.627	18.289	1.00	0.00			Ċ
	ATOM	901 C	PRO	180	15.4		21.892	18.046	1.00	0.00			Ċ
	MOTA	902 O	PRO	180	15.1		22.883	18.711	1.00	0.00			0
	MOTA	903 CB	PRO	180	15.1		19.808	19.511	1.00	0.00			С
25	ATOM	904 CG	PRO	180	15.4		18.403	18.955	1.00	0.00			C
	MOTA	905 CD	PRO	180	14.7		18.351	17.613	1.00	0.00			С
	MOTA	906 HA	PRO	180	13.		20.933	18.565	1.00	0.00			H
	MOTA	907 1HB	PRO	180	14.3		19.829	20.178	1.00	0.00			H
20	MOTA	908 2HB	PRO	180	16.0		20.329	19.905	1.00	0.00			H
30	ATOM ATOM	909 1HG 910 2HG	PRO PRO	180 180	15.0 16.5		17.721 18.390	19.709 18.863	1.00	0.00			H H
	MOTA	911 1HD	PRO	180	15.2		17.700	16.894	1.00	0.00			H
	ATOM	912 2HD	PRO	180	13.		17.995	17.72B	1.00	0.00			H
	MOTA	913 N	LEU	181	16.4		21.893	17.121	1.00	0.00			N
35 .	ATOM	914 CA	LEU	181	17.3	165	23.111	16.833	1.00	0.00		_	С
	ATOM	915 C	LEU	181	16.3	199 :	24.075	16.231	1.00	0.00			С
	MOTA	916 O	LEU	181	16.		25.266	16.537	1.00	0.00	-		0
	ATOM	917 CB	LEU	181	18.		22.920	15.859	1.00	0.00			С
40	ATOM	918 CG	LEU	181	19.		22.321	16.546	1.00	0.00			С
40	MOTA		LEU	181 181	20.: 19.:		23.397 21.138	17.335 17.444	1.00	0.00			C
	ATOM ATOM	920 CD2	LEU	181	16.		21.136	16.622	1.00	0.00			Н
	ATOM	922 HA	LEU	181	17.		23.504	17.766	1.00	0.00			Н
	ATOM	923 1HB	LEU	181	18.		23.859	15.408	1.00	0.00			Н
45	MOTA	924 2HB	LEU	181	18.		22.251	15.035	1.00	0.00			H
	MOTA	925 HG	LEU	181	20.	258	21.891	15.813	1.00	0.00			H
	MOTA	926 1HD1		181	19.		24.355	17.231	1.00	0.00			H
	MOTA	927 2HD1		181	20.		23.118	18.388	1.00	0.00			H
~ 0	ATOM	928 3HD1		181	21.		23.481	16.945	1.00	0.00			Н
50	ATOM	929 1HD2		181	18.		20.986	17.393	1.00	0.00			H
	ATOM	930 2HD2 931 3HD2		181 181	19. 19.		20.236 21.350	17.103 18.473	1.00 1.00	0.00			H
	ATOM ATOM	931 3HD2	ARG	182	15.		23.579	15.363	1.00	0.00			H N
	ATOM	933 CA	ARG	182	14.		24.458	14.756	1.00	0.00			C
55	ATOM	934 C	ARG	182	13.		25.045	15.861	1.00	0.00			Ċ
	MOTA	935 O	ARG	182	13.	199	26.227	15.836	1.00	0.00			0
	ATOM	936 CB	ARG	182	13.	385	23.745	13.789	1.00	0.00			С
	MOTA	937 CG	ARG	182	12.	366	24.688	13.144	1.00	0.00			C
	MOTA	938 CD	ARG	182	11.		24.028	12.065	1.00	0.00			С
60	MOTA	939 NE	ARG	182	12.		23.836	10.860	1.00	0.00			N
	ATOM	940 CZ	ARG	182	11.		23.000	9.857	1.00	0.00			C
	ATOM		L ARG	182	10.		22.314	9.967	1.00	0.00			N
	MOTA MOTA	942 NH2 943 H	ARG ARG	182 182	12. 15.		22.850 22.574	8.745 15.136	1.00	0.00			N
65	ATOM	943 R 944 HA	ARG	182			25.216	14.218	1.00	0.00			H H
95	ATOM	945 1HB	ARG	182	12.		22.963	14.267	1.00	0.00			H
	ATOM	946 2HB	ARG	182	13.		23.255	12.957	1.00	0.00			H
	MOTA	947 1HG	ARG	182			25.512	12.679	1.00	0.00			Н

	ATOM	948 2	HG .	ARG	182	11.699	25.058	13.922	1.00	0.00		H
	MOTA	949 1		ARG	182	10.669	24.698	11.856	1.00	0.00		Н
	ATOM	950 2	HD .	ARG	182	11.155	23.073	12.461	1.00	0.00		H
	ATOM	951	HE .	ARG	182	13.257	24.335	10.783	1.00	0.00		H
5	ATOM	952 1	HH1	ARG	182	10.199	22.426	10.806	1.00	0.00		н
	MOTA	953 2	HH1	ARG	182	10.483	21.683	9.210	1.00	0.00		H
	MOTA	954 1			182	13.622	23.367	8.662	1.00	0.00		Н
	ATOM	955 2			182	12.435	22.219	7.988	1.00	0.00		H
	ATOM			SER	183	13.226	24.222	16.878	1.00	0.00		N
10	MOTA			SER	183	12.450	24.713	17.975	1.00	0.00		C
	ATOM			SER	183	13.184	25.875	18.559	1.00	0.00		С
	ATOM			SER	183	14.397	25.840	18.757	1.00	0.00		0
	ATOM			SER	183	12.239	23.679	19.093	1.00	0.00		C
1.5	ATOM			SER	183	11.487	22.579	18.603	1.00	0.00		0
15	MOTA			SER	183	13.543	23.242	16.866	1.00	0.00		H
	MOTA MOTA			SER SER	183 183	11.479 11.699	25.013 24.132	17.580 19.924	1.00 1.00	0.00		H H
	ATOM			SER	183	13.201	23.316	19.452	1.00	0.00		Н
	ATOM		HG	SER	183	10.552	22.902	18.314	1.00	0.00		H
20	ATOM		N	PHE	184	12.430	26.948	18.842	1.00	0.00		N
20	ATOM			PHE	184	12.934	28.161	19.411	1.00	0.00		c
	ATOM			PHE	184	13.337	27.865	20.818	1.00	0.00		Č
	ATOM			PHE	184	14.090	28.618	21.433	1.00	0.00		ō
	ATOM			PHE	184	11.890	29.294	19.429	1.00	0.00		C
25	ATOM			PHE	184	10.758	28.871	20.300	1.00	0.00		С
	MOTA	973	CD1	PHE	184	10.795	29.107	21.654	1.00	0.00		C
	MOTA	974	CD2	PHE	184	9.659	28.240	19.763	1.00	0.00		С
	MOTA		CE1		184	9.754	28.719	22.463	1.00	0.00		С
	MOTA	976	CE2	PHE	184	8.614	27.849	20.567	1.00	0.00		С
30	MOTA		CZ	PHE	184	8.660	28.088	21.920	1.00	0.00		C
	MOTA		Н	PHE	184	. 11.422	26.895	18.636	1.00	0.00		H
	MOTA		HA	PHE	184	13.788	28.475	18.811	1.00	0.00		Н
	MOTA	980 1		PHE	184	11.548	29.459	18.407	1.00	0.00		Н
~~	MOTA	981 2		PHE	184	12.366	30.190	19.825	1.00	0.00		H
35	MOTA	•	HD1		184	11.659	29.607	22.090	1.00	0.00		Н
	MOTA		HD2		184	9.616	28.048	18.690	1.00	0.00		Н
	MOTA		HE1 HE2		184	9.795 7.748	28.911 27.349	23.535	1.00	0.00		H
	MOTA MOTA	985 986	HZ	PHE	184 184	7.748	27.349	22.559	1.00	0.00	,	H H
40	ATOM	987	N	LYS	185	12.840	26.733	21.350	1.00	0.00		N
40	ATOM	988	CA	LYS	185	12.976	26.395	22.738	1.00	0.00		C
	ATOM	989	C	LYS	185	14.390	26.554	23.216	1.00	0.00		č
	ATOM	990	ō	LYS	185	14.618	27.336	24.138	1.00	0.00		ŏ
	ATOM	991	СВ	LYS	185	12.595	24.932	23.006	1.00	0.00		č
45	ATOM	992	CG	LYS	185	11.125	24.603	22.741	1.00	0.00		C
	ATOM	993	CD	LYS	185	10.152	25.346	23.658	1.00	0.00		С
	MOTA	994	CE	LYS	185	8.684	25.009	23.392	1.00	0.00		С
	ATOM	995	NZ	LYS	185	7.824	25.699	24.378	1.00	0.00		N
	ATOM	996	Н	LYS	185	12.338	26.078	20.732	1.00	0.00		H
50	ATOM	997	HA	LYS	185	12.352	27.025	23.372	1.00	0.00		H
	ATOM	998 1		LYS	185	12.798	24.712	24.054	1.00	0.00		Н
	ATOM	999 2		LYS	185	13.197	24.297	22.356	1.00	0.00		H
	ATOM	1000 1		LYS	185	10.880	23.548	22.870	1.00	0.00		H
	MOTA	1001 2		LYS	185	10.796	24.844	21.730	1.00	0.00		Н
55	ATOM	1002 1		LYS	185	10.214	26.430	23.571	1.00	0.00		H
	ATOM	1003 2		LYS	185	10.304	25.135	24.716	1.00	0.00		H
	ATOM	1004 1 1005 2		LYS	185 185	8.530 8.406	23.933 25.331	23.475 22.388	1.00	0.00		Н
	ATOM ATOM	1005 2		LYS	185	8.411	26.250	25.020	1.00	0.00		H H
60	ATOM	1007 2		LYS	185	7.171	26.326	23.886	1.00	0.00		Н
00	ATOM	1008 3		LYS	185	7.289	25.001	24.915	1.00	0.00		Н
•	ATOM	1009	N	VAL	186	15.396	25.856	22.641	1.00	0.00		N
	ATOM	1010	CA	VAL	186	16.684	26.128	23.228	1.00	0.00		C
	ATOM	1011	C	VAL	186	17.800	25.513	22.438	1.00	0.00		č
65	ATOM	1012	0	VAL	186	17.576	24.723	21.522	1.00	0.00		ō
	ATOM	1013	CB.	VAL	186	16.866	25.589	24.611	1.00	0.00		c
	MOTA	1014	CG1	VAL	186	17.191	24.091	24.500	1.00	0.00		С
	ATOM	1015	CG2	VAL	186	17.939	26.411	25.342	1.00	0.00		С

WO 01/83717 PCT/CA01/00607

	ATOM	1016	Н	VAL	186	15.255	25.196	21.862	1.00	0.00		н
	MOTA	1017	HA	VAL	186	16.887	27.197	23.285	1.00	0.00		н
	ATOM	1018	HB	VAL	186	15.937	25.744	25.159	1.00	0.00		Н
	MOTA	1019	1HG1	VAL	186	17.207	23.799	23.450	1.00	0.00		H
5	MOTA		2HG1		186	18.166	23.896	24.945	1.00	0.00		H
	MOTA		3HG1		186	16.430	23.513	25.025	1.00	0.00		Н
1	MOTA		1HG2		186	18.313	27.191	24.679	1.00	0.00		H
	MOTA		2HG2		186	17.504	26.867	26.231	1.00	0.00		H
	MOTA	1024	3HG2	VAL	186	18.761	25.758	25.633	1.00	0.00		Н
10	MOTA	1025	N	PHE	187	19.048	25.904	22.793	1.00	0.00		N
	MOTA	1026	CA	PHE	187	20.262	25.391	22.216	1.00	0.00		С
	MOTA	1027	С	PHE	187	21.286	26.460	22.477	1.00	0.00		С
	MOTA	1028	0	PHE	187	21.009	27.384	23.239	1.00	0.00		0
	MOTA	1029	CB	PHE	187	20.152	25.175	20.689	1.00	0.00		С
15	MOTA	1030	CG	PHE	187	21.285	24.332	20.203	1.00	0.00		С
	MOTA	1031	CD1		187	21.291	22.977	20.443	1.00	0.00		С
	ATOM	1032	CD2		187	22.322	24.87.7	19.478	1.00	0.00		С
	MOTA	1033	CE1		187	22.324	22.185	19.996	1.00	0.00		C
20	MOTA	1034	CE2	PHE	187	23.357	24.091	19.029	1.00	0.00		C
20	ATOM	1035	CZ	PHE	187	23.362	22.742	19.291	1.00	0.00		C
	MOTA	1036	H	PHE	187	19.133	26.619	23.528	1.00	0.00		H
	MOTA	1037	HA	PHE	187	20.448	24.460	22.752	1.00	0.00		H
	ATOM	1038 1039		PHE	187	20.181	26.132	20.169	1.00	0.00		H
25	MOTA MOTA	1039		PHE	187 187	19.215	24.674	20.445	1.00	0.00		H
23	ATOM	1040		PHE	187	20.466 22.322	22.524 25.944	20.994 19.257	1.00	0.00		H
	ATOM	1041		PHE	187	22.322	21.114	20.201	1.00	0.00		H H
	ATOM	1042		PHE	187	24.174	24.538	18.464	1.00	0.00		Н
	ATOM	1044	HZ	PHE	187	24.174	22.118	18.941	1.00	0.00		. н
30	ATOM	1045	N	LYS	188	22.500	26.319	21.890	1.00	0.00		N
30	ATOM	1046	CA	LYS	188	23.583	27.276	21.893	1.00	0.00		C
	ATOM	1047	C	LYS	188	24.870	26.565	22.163	1.00	0.00		C
	ATOM	1048	ō.	LYS	188	24.885	25.410	22.586	1.00	0.00		ō
	ATOM	1049	СВ	LYS	188	23.496	28.450	22.890	1.00	0.00		c
35	ATOM	1050	CG	LYS	188	22.508	29.554	22.501	1.00	0.00		E
	ATOM	1051	CD	LYS	188	22.239	30.545	23.634	1.00	0.00		Č
	ATOM	1052	CE	LYS	188	21.535	29.916	24.838	1.00	0.00		Ċ
	MOTA	1053	NZ	LYS	188	21.318	30.934	25.890	1.00	0.00		N
	ATOM	1054	Н	LYS	188	22.668	25.435	21.388	1.00	0.00		н
40	MOTA	1055	HA	LYS	188	23.632	27.767	20.921	1.00	0.00		н
	ATOM	1056	1HB	LYS	188	24.483	28.906	22.964	1.00	0.00		Н
	MOTA	1057	2HB	LYS	188	23.179	28.053	23.854	1.00	0.00		н
	MOTA	1058	1HG	LYS	188	21.530	29.169	22.209	1.00	0.00		н
	MOTA	1059	2HG	LYS	188	22.849	30.156	21.659	1.00	0.00		Н
45	MOTA	1060	1HD	LYS	188	21.606	31.381	23.337	1.00	0.00		Н
	MOTA	1061	2HD	LYS	188	23.144	30.999	24.036	1.00	0.00		H
	MOTA	1062	1HE	LYS	188	22.142	29.110	25.249	1.00	0.00		Н
	ATOM	1063	2HE	LYS	188	20.569	29.509	24.537	1.00	0.00	-	H
	MOTA	1064		LYS	188	21.691	31.840	25.573	1.00	0.00		Н
50	MOTA	1065		LYS	188	20.309	31.025	26.077	1.00	0.00		н
	MOTA	1066	3HZ	LYS	188	21.802	30.646	26.752	1.00	0.00		Н
	ATOM	1067	N	ILE	189	25.996	27.260	21.897	1.00	0.00		N
	MOTA	1068	CA	ILE	189	27.304	26.713	22.113	1.00	0.00		С
	MOTA	1069	С	ILE	189	27.526	26.621	23.583	1.00	0.00		С
55	MOTA	1070		ILE	189	28.132	25.670	24.075	1.00	0.00		0
	MOTA	1071	СВ	ILE	189	28.414	27.572	21.575	1.00	0.00		С
	MOTA	1072		ILE	189	28.312	27.716	20.048	1.00	0.00		С
	MOTA	1073		ILE	189	29.747	26.968	22.052	1.00	0.00		С
~ 0	ATOM	1074		ILE	189	29.257	28.773	19.478	1.00	0.00		С
60	MOTA	1075	H	ILE	189	25.912	28.217	21.525	1.00	0.00		Н
	MOTA	1076		ILE	189	27.335	25.726	21.651	1.00	0.00		Н
	ATOM	1077		ILE	189	28.274	28.578	21.968	1.00	0.00		Н
	ATOM		1HG1		189	27.316	28.002	19.708	1.00	0.00		H
65	MOTA		2HG1		189	28.547	26.796	19.512	1.00	0.00		H
ره	MOTA		1HG2		189	29.549	26.080	22.652	1.00	0.00		Н
	MOTA		2HG2		189	30.352	26.694	21.187	1.00	0.00		Н
	ATOM		3HG2		189 180	30.284	27.701	22.653	1.00	0.00		H
	MOTA	1083	1HD1	تلايد	189	29.828	29.224	20.288	1.00	0.00		н

H

	MOTA	1084 2HD1	ILE	189	29.940	28.305	18.768	1.00	0.00		H
	MOTA	1085 3HD1	ILE	189	28.677	29.543	18.969	1.00	0.00		H
	MOTA	1086 N	LYS	190	27.035	27.629	24.324	1.00	0.00		N
	ATOM	1087 CA	LYS	190	27.213	27.664	25.745	1.00	0.00		С
5	ATOM	1088 C	LYS	190	26.543	26.467	26.343	1.00	0.00		С
•	ATOM	1089 0	LYS	190	27.070	25.870	27.280	1.00	0.00		ō
			LYS	190	26.635	28.933	26.394	1.00	0.00		Ċ
	ATOM										Ċ
	MOTA	1091 CG	LYS	190	26.988	29.068	27.877	1.00	0.00		
	MOTA	1092 CD	LYS	190	26.785	30.479	28.432	1.00	0.00		C
10	ATOM	1093 CE	LYS	190	27.971	31.413	28.171	1.00	0.00		С
	MOTA	1094 NZ	LYS	190	28.057	31.738	26.730	1.00	0.00		N
	MOTA	1095 Н	LYS	190	26.520	28.391	23.860	1.00	0.00		H
	MOTA	1096 HA	LYS	190	28.280	27.646	25.964	1.00	0.00		H
	ATOM	1097 1HB	LYS	190	25.547	28.982	26.349	1.00	0.00		Н
15	ATOM	1098 2HB	LYS	190	26.986	29.853	25.927	1.00	0.00		Н
	MOTA	1099 1HG	LYS	190	28.025	28.823	28.104	1.00	0.00		н
	ATOM	1100 2HG	LYS	190	26.398	28.423	28.528	1.00	0.00		H
	ATOM	1101 1HD	LYS	190	26.633	30.502	29.511	1.00	0.00		H
	ATOM	1101 1HD	LYS	190	25.919	30.990	28.010	1.00	0.00		н
20					28.900	30.934	28.478	1.00	0.00		H
20	ATOM	1103 1HE	LYS	190							
	MOTA	1104 2HE	LYS	190	27.850	32.339	28.732	1.00	0.00		H
	ATOM	1105 1HZ	LYS	190	27.297	31.261	26.224	1.00	0.00		H
	MOTA	1106 2HZ	LYS	190	27.968	32.756	26.601	1.00	0.00		Н
	MOTA	1107 3HZ	LYS	190	28.965	31.423	26.360	1.00	0.00		Н
25	MOTA	1108 N	PRO	191	25.406	26.078	25.838	1.00	0.00		N
	MOTA	1109 CA	PRO	191	24.785	24.909	26.381	1.00	0.00		С
	ATOM	1110 C	PRO	191	25.649	23.721	26.128	1.00	0.00		С
	ATOM	1111 0	PRO	191	25.410	22.675	26.728	1.00	0.00		0
	ATOM	1112 - CB-			23.391	24.869	25.766	1.00	0.00		С
30	ATOM	1113 CG	PRO	191	23.050	26.360	25.589	1.00	0.00		Ċ
50	ATOM	1114 CD	PRO	191	24.413	27.047	25.405	1.00	0.00		Č
		1114 CD	PRO	191	24.647	25.033	27.455	1.00	0.00		Н
	ATOM					24.364		1.00	0.00		Н
	ATOM	1116 1HB	PRO	191	22.684		26.425			•	
0.5	MOTA	1117 2HB	PRO	191	23.396	24.336	24.815	1.00	0.00		H
35	MOTA	1118 1HG	PRO	191	22.537	26.633	26.511-	1.00	0.00		H
	MOTA	1119 2HG	PRO	191	22.415	26.391	24.703	1.00	0.00		H
	MOTA	1120 1HD	PRO	191	24.642	27.260	24.361	1.00	0.00		Н
	MOTA	1121 2HD	PRO	191	24.541	27.913	26.053	1.00	0.00		H
	ATOM	1122 N	GLU	192	26.651	23.854	25.242	1.00	0.00		N
40	ATOM	1123 CA	GLU	192	27.569	22.774	25.046	1.00	0.00		С
	ATOM	1124 C	GLU	192	28.727	23.091	25.928	1.00	0.00		С
	ATOM	1125 0	GLU	192	29.185	24.232	25.968	1.00	0.00		0
	ATOM	1126 CB	GLU	192	28.119	22.653	23.615	1.00	0.00		С
	ATOM	1127 CG	GLU	192	27.073	22.223	22.586	1.00	0.00		Ċ
45	ATOM	1128 CD	GLU	192	27.796	21.960	21.272	1.00	0.00		č
73	MOTA		GLU	192	28.458	22.898	20.753	1.00	0.00		Ö
			GLU	192	27.705	20.807	20.772	1.00	0.00		Ö
	ATOM		GLU	192	26.757	24.728	24.707	1.00	0.00	•	Н
	MOTA										
50	ATOM	1132 HA	GLU	192	27.020	21.881	25.348	1.00	0.00		H
50	MOTA	1133 1HB	GLU	192	28.924	21.926	23.513	1.00	0.00		H
	MOTA	1134 2HB	GLU	192	28.530	23.582	23.221	1.00	0.00		Н
	ATOM	1135 1HG	GLU	192	26.354	23.036	22.483	1.00	0.00		Н
	ATOM	1136 2HG	GLU	192	26.593	21.318	22.958	1.00	0.00		H
	ATOM	1137 N	LYS	193	29.226	22.090	26.676	1.00	0.00		N
55	MOTA	1138 CA	LYS	193	30.300	22.366	27.583	1.00	0.00		С
	MOTA	1139 C	LYS	193	31.517	22.676	26.770	1.00	0.00		С
	MOTA	1140 O	LYS	193	32.251	21.775	26.365	1.00	0.00		0
	MOTA	1141 CB	LYS	193	30.616	21.189	28.517	1.00	0.00		C
	ATOM	1142 CG	LYS	193	29.422	20.775	29.380	1.00	0.00		Č
60	ATOM	1142 CD	LYS	193	28.864	21.913	30.235	1.00	0.00		Ċ
50	ATOM	1143 CE	LYS	193	28.068	22.942	29.429	1.00	0.00		Č
		1144 CE 1145 NZ	LYS	193	27.558	24.004	30.323	1.00	0.00		N
	ATOM		LYS	193	28.840	21.137	26.597	1.00	0.00		H
	ATOM	1146 H							0.00		
CE	MOTA	1147 HA	LYS	193	30.008	23.220	28.194	1.00			H
65	ATOM	1148 1HB	LYS	193	31.425	21.405	29.214	1.00	0.00		H
	ATOM	1149 2HB	LYS	193	30.919	20.290	27.980	1.00	0.00		H
	ATOM	1150 1HG	LYS	193	29.651	19.975	30.084	1.00	0.00		Н
	MOTA	1151 2HG	LYS	193	28.573	20.410	28.801	1.00	0.00		Н

					•								
	ATOM	1152	1HD	LYS	193.	29.636	22.484	30.750	1.00	0.00			H
	ATOM	1153		LYS	193	28.186	21.572	31.017	1.00	0.00			Н
	ATOM	1154		LYS	193	27.222	22.460	28.937	1.00	0.00			Н
	ATOM	1155		LYS	193	28.704	23.396	28.669	1.00	0.00			Н
5	ATOM	1156			193			31.290	1.00	0.00			
,				LYS		27.854	23.811						H
	ATOM	1157		LYS	193	27.934	24.915	30.024	1.00	0.00			H
	ATOM	1158		LYS	193	26.529	24.026	30.277	1.00	0.00			H
	MOTA	1159	N	ARG	194	31.741	23.979	26.494	1.00	0.00			N
	MOTA	1160	CA	ARG	194	32.867	24.397	25.713	1.00	0.00			С
10	ATOM	1161	С	ARG	194	34.107	24.240	26.526	1.00	0.00			С
	MOTA	1162	0	ARG	194	35.099	23.690	26.051	1.00	0.00			0
	ATOM	1163	CB	ARG	194	32.793	25.871	25.273	1.00	0.00			С
	MOTA	1164	CG	ARG	194	32.765	26.874	26.429	1.00	0.00			C.
	ATOM	1165	CD	ARG	194	32.708	28.332	25.962	1.00	0.00			C
15	ATOM	1166	NE	ARG	194	32.685	29.199	27.173	1.00	0.00			N
	ATOM	1167	CZ	ARG	194	32.910	30.540	27.058	1.00	0.00			C
	ATOM	1168	NH1		194	33.179	31.085	25.836	1.00	0.00			N
	ATOM	1169	NH2		194	32.863	31.338	28.165	1.00	0.00			
	ATOM	1170											N
20			H	ARG	194	31.086	24.688	26.853	1.00	0.00			H
20	MOTA	1171	HA	ARG	194	32.928	23.777	24.818	1.00	0.00			H
	MOTA	1172		ARG	194	31.880	26.009	24.693	1.00	0.00			Н
	ATOM	1173		ARG	194	33.671	26.091	24.665	1.00	0.00			Н
	ATOM	1174		ARG	194	33.640	26.809	27.075	1.00	0.00			H
	MOTA	1175		ARG	194	31.906	26.745	27.088	1.00	0.00			H·
25	MOTA	1176		ARG	194	31.799	28.459	25.372	1.00	0.00			H
	MOTA	1177	2HD	ARG	194	33.595	28.525	25.359	1.00	0.00			H
	MOTA	1178	HE	ARG	194	32.499	28.785	28.098	1.00	0.00			Н
	MOTA	1179	1HH1	ARG	194	33.212	30.484	25.000	1.00	0.00			H
	MOTA	1180	2HH1	ARG	194	33.348	32.097	25.749	1.00	0.00			H
30	ATOM	1181	1HH2	ARG	194	32.657	30.927	29.087	1.00	0.00			Н
	ATOM	1182	2HH2	ARG	194	33.033	32.350	28.077	1.00	0.00			Н
	MOTA	1183	N	TRP	195	34.072	24.705	27.790	1.00	0.00			N
	ATOM	1184	CA	TRP	195	35.243	24.637	28.613	1.00	0.00			С
-	ATOM	1185	C	TRP	195	35.661	23.212	28.692	1.00	0.00			C
35	ATOM	1186	0	TRP	195	.36.778	22.858	28.320	1.00	0.00		_	ō
	ATOM	1187	CB	TRP	195	34.987	25.126	30.050	1.00	0.00		•	Ċ
	ATOM	1188	CG	TRP	195	36.189	25.050	30.963	1.00	0.00			Č
	ATOM	1189	CD1		195	37.206	25.941	31.148	1.00	0.00			c
	ATOM	1190		TRP	195	36.447	23.951	31.849	1.00	0.00			c
40	ATOM	1191	NE1		195	38.082	25.461	32.093	1.00	0.00			N
70	ATOM	1192	CE2		195	37.626	24.236	32.535	1.00	0.00			
													С
	ATOM	1193	CE3	TRP	195	35.753	22.796	32.075	1.00	0.00			С
	ATOM	1194	CZ2		195	38.133	23.369	33.460	1.00	0.00			С
45	ATOM	1195		TRP	195	36.266	21.921	33.007	1.00	0.00			С
45	ATOM	1196		TRP	195	37.433	22.203	33.686	1.00	0.00			С
	MOTA	1197	н -	TRP	195	33.202	25.109	28.165	1.00	0.00			H
	MOTA	1198	HA	TRP	195	36.015	25.246	28.144	1.00	0.00			H
	MOTA	1199		TRP	195	34.202	24.507	30.486	1.00	0.00			H
	ATOM	1200		TRP	195	34.673	26.169	30.004	1.00	0.00			H
50	MOTA	1201	HD1	TRP	195	37.308	26.891	30.624	1.00	0.00			Н
	ATOM	1202	HE1	TRP	195	38.936	25.936	32.416	1.00	0.00			H
	MOTA	1203	HE3	TRP	195	34.829	22.575	31.539	1.00	0.00			Н
•	ATOM	1204	HZ2	TRP	195	39.054	23.590	33.998	1.00	0.00			H
	ATOM	1205		TRP	195	35.740	20.988	33.211	1.00	0.00			H
55	ATOM	1206		TRP	195	37.810	21.488	34.417	1.00	0.00			Н
	ATOM	1207	N	GLN	196	34.753	22.348	29.172	1.00	0.00			N
	ATOM	1208	CA	GLN	196	35.083	20.963	29.256	1.00	0.00			Ċ
	ATOM	1209	C	GLN	196	34.251	20.260	28.238	1.00	0.00	•		C
	MOTA	1210	ŏ	GLN	196	33.074	19.982	28.453	1.00	0.00			
60	ATOM	1211	CB	GLN	196	34.819	20.372	30.657	1.00	0.00			0
00	ATOM	1212	CG	GLN		33.366	20.482	31.127	1.00	0.00			C
			CD	GLN	196 196	33.276	19.909	32.534				•	С
	MOTA	1213							1.00	0.00			С
	MOTA	1214		GLN	196	33.699	18.784	32.794	1.00	0.00			0
65	ATOM	1215		GLN	196	32.713	20.713	33.475	1.00	0.00			N
65	MOTA	1216	H	GLN	196	33.827	22.681	29.476	1.00	0.00			Н
	MOTA	1217	HA	GLN	196	36.148	20.879	29.041	1.00	0.00			Н
	ATOM	1218		GLN	196	35.439	20.906	31.375	1.00	0.00			Н
	MOTA	1219	2HB	GLN	196	35.079	19.313	30.636	1.00	0.00			H

	ATOM	1220 1HG	GLN	196	32.741	19.912	30.438	1.00	0.00		Н
								1.00	0.00		
	ATOM	1221 2HG	GLN	196	33.084	21.535	31.121				H
	MOTA	1222 1HE		196	32.628	20.385		1.00	0.00		н
	MOTA	1223 2HE	2 GLN	196	32.371	21.649	33.214	1.00	0.00		H
5	MOTA	1224 N	ASP	197	34.851	19.958	27.074	1.00	0.00		N
_	ATOM	1225 CA	ASP	197	34.088	19.298	26.062	1.00	0.00		C
	MOTA	1226 C	ASP	197	33.661	17.997	26.650	1.00	0.00		С
	MOTA	1227 0	ASP	197	32.490	17.632	26.567	1.00	0.00		0
	ATOM	1228 CB	ASP	197	34.906	19.015	24.791	1.00	0.00		С
10	ATOM	1229 CG	ASP	197		20.352	24.123	1.00	0.00		С
. 10						_					
	MOTA		l ASP	197	34.612	21.375	24.562	1.00	0.00		0
	MOTA	1231 OD	2 ASP	197	36.027	20.370	23.170	1.00	0.00		0
	MOTA	1232 H	ASP	197	35.840	20.197	26.914	1.00	-0.00		H
	MOTA	1233 HA	ASP	197	33.246	19.955	25.841	1.00	0.00		Н
15		1234 1HB	ASP	197				1.00	0.00		
15	ATOM				34.303	18.377	24.143				H
	MOTA	1235 2HB	ASP	197 ·	35.825	18.513	25.092	1.00	0.00		H
	ATOM	1236 N	ILE	198	34.631	17.292	27.269	1.00	0.00	•	N
	MOTA	1237 CA	ILE	198	34.499	16.047	27.977	1.00	0.00		С
	ATOM	1238 C	ILE	198	35.358	15.067	27.250	1.00	0.00		Ċ
00											
20	MOTA	1239 O	ILE	198	36.124	15.447	26.367	1.00	0.00		0
	MOTA	1240 CB	ILE	198	33.112	15.470	28.097	1.00	0.00		С
	MOTA	1241 CG:	1 ILE	198	33.053	14.434	29.233	1.00	0.00		С
	MOTA	1242 CG		198	32.712	14.897	26.728	1.00	0.00		С
						15.040					
	MOTA	1243 CD:		198	33.296		30.609	1.00	0.00		С
25	MOTA	1244 H	ILE	198	35.578	17.693	27.229	1.00	0.00		H
	MOTA	1245 HA	ILE	198	34.847	16.239	28.991	1.00	0.00		H
	MOTA	1246 HB	ILE	198	32.435	16.271	28.393	1.00	0.00		H
	ATOM	1247 1HG		198	33.793	13.640	29.128	1.00	0.00		Н
	MOTA	1248 2HG		198	32.089	13.928	29.302	1.00	0.00		н
30	MOTA	1249 1HG	2 ILE	198	33.524	15.049	26.018	1.00	0.00		H
	MOTA	1250 2HG	2 ILE	198	32.510	13.830	26.824	1.00	0.00		H
	MOTA	1251 3HG		198	31.816	15.404	26.368	1.00	0.00		Н
	ATOM	1252 1HD		198	33.467	16.111	30.509	1.00	0.00		·H
	MOTA	1253 2HD		198	32.424	14.868	31.241	1.00	0.00		H
35	MOTA	1254 3HD	1 ILE	198	34.170	14.573	31-062	1.00	0.00		н
•	MOTA	1255 N	SER	199	35.246	13.772	27.596	1.00	0.00		N
	ATOM	1256 CA		199	36.063	12.779	26.971	1.00	0.00		C
	ATOM	1257 C	SER	199	35.305	11.490	26.984	1.00	0.00		С
	MOTA	1258 O	SER	199	34.076	11.470	26.954	1.00	0.00		0
40	ATOM	1259 CB	SER	199	37.403	12.539	27.688	1.00	0.00		С
	ATOM	1260 OG		199	38.210	13.704	27.614	1.00	0.00		0
			SER	199	34.565	13.493		1.00	0.00		
	ATOM	1261 H					28.317				Н
	ATOM	1262 HA		199	36.263	13.106	25.950	1.00	0.00		H
	ATOM	1263 1HB	SER	199	37.934	11.711	27.219	1.00	0.00		H
45	ATOM	1264 2HB	SER	199	37.227	12.297	28.736	1.00	0.00		Н
	ATOM	1265 HG		199	39.202	13.440	27.692	1.00	0.00		
											H
	MOTA	1266 N	MET	200	36.051	10.370	27.007	1.00	0.00		Ń
	MOTA	1267 CA	MET	200	35.486	9.053	26.947	1.00	0.00		С
	ATOM	1268 C	MET	200	34.786	8.725	28.228	1.00	0.00		С
50	MOTA	1269 O	MET	200	34.360	9.603	28.976	1.00	0.00		ō
50											
	ATOM	1270 CB		200	36.541	7.967	26.686	1.00	0.00		С
	MOTA	1271 CG	MET	200	37.206	8.112	25.316	1.00	0.00		С
	MOTA	1272 SD	MET	200	38.530	6.916	24.972	1.00	0.00		S
	ATOM	1273 CE		200	38.888	7.568	23.315	1.00	0.00		Ċ
55			MET	200	37.074	10.462	27.070	1.00	0.00		
22	MOTA										Н
	ATOM	1275 HA		200	34.765	8.984	26.132	1.00	0.00		H
	MOTA	1276 1HB	MET	200	36.122	6.961	26.716	1.00	0.00		H
	MOTA	1277 2HB	MET	200	37.347	7.982	27.419	1.00	0.00		н
	ATOM	1278 1HG		200	37.643	9.108	25.255	1.00	0.00		
۲0											H
60	ATOM	1279 2HG		200	36.440	7.978	24.552	1.00	0.00		Н
	ATOM	1280 1HE		200	38.224	8.406	23.102	1.00	0.00		H
	MOTA	1281 2HE	MET	200	39.923	7.904	23.272	1.00	0.00		H
	ATOM	1282 3HE		200	38.730	6.784	22.573	1.00	0.00		Н
	MOTA	1283 N	MET	201	34.643	7.410	28.486	1.00	0.00		
	A (L 1171	TCOJ IN									N
CE		1004	F 4								
65	ATOM	1284 CA		201	33.949	6.882	29.621	1.00	0.00		С
65		1284 CA 1285 C	MET MET	201	34.632	7.330	30.868	1.00	0.00		C
65	ATOM ATOM			201		7.330					С
65	ATOM	1285 C	MET MET	201 201	34.632		30.868	1.00	0.00		

	MOTA	1288 CG	MET	201	35.265	4.683	29.484	1.00	0.00		С
	ATOM	1289 SD	MET	201	35.204	2.915	29.066	1.00	0.00		S
	ATOM	1290 CE	MET	201	34.620	3.186	27.367	1.00	0.00		С
	ATOM	1291 H	MET	201	35.060	6.741	27.823	1.00	0.00		H
5	MOTA	1292 HA	MET	201	32.921	7.244	29.615	1.00	0.00		н
_	ATOM	1293 1HB	MET	201	33.319	4.946	28.751	1.00	0.00		Н
	ATOM	1294 2HB	MET	201	33.433	4.907	30.477	1.00	0.00		Н
	ATOM	1295 1HG	MET	201	35.768	4.780	30.445	1.00	0.00		Н
	ATOM	1296 2HG	MET	201	35.831	5.190	28.702	1.00	0.00		Н
10	ATOM		MET	201	34.510	4.255	27.186	1.00	0.00		Н
	ATOM	1298 2HE	MET	201	35.341	2.770	26.663	1.00	0.00		Н
	ATOM	1299 3HE	MET	201	33.656	2.694	27.230	1.00	0.00		H
	ATOM	1300 N	ARG	202	35.975	7.374	30.873	1.00	0.00		N
	ATOM	1301 CA	ARG	202	36.676	7.778	32.060	1.00	0.00		С
15	MOTA	1302 C	ARG	202	36.273	9.176	32.395	1.00	0.00		С
	MOTA	1303 0	ARG	202	35.972	9.491	33.545	1.00	0.00		0
	MOTA	1304 CB	ARG	202	38.197	7.887	31.873	1.00	0.00		С
	MOTA	1305 CG	ARG	202	38.943	6.593	31.561	1.00	0.00		С
	MOTA	1306 CD	ARG	202	40.437	6.852	31.353	1.00	0.00		С
20	MOTA	1307 NE	ARG	202	41.109	5.558	31.053	1.00	0.00		N
	MOTA	1308 CZ	ARG	202	41.993	5.490	30.016	1.00	0.00		С
	ATOM		ARG	202	42.188	6.583	29.219	1.00	0.00	•	N
	ATOM		ARG	202	42.678	4.335	29.770	1.00	0.00		N
25	MOTA	1311 H	ARG	202	36.501	7.118	30.025	1.00	0.00		H
25	MOTA	1312 HA	ARG	202	36.405	7.099	32.869	1.00	0.00		H
	ATOM	1313 1HB	ARG	202 202	38.617	8.277 8.565	32.799	1.00	0.00		Н
	MOTA	1314 2HB	ARG ARG	202	38.380 38.558	6.125	31.040 30.654	1.00	0.00	••	H H
	MOTA MOTA	1315 1HG 1316 2HG	ARG	202	38.841	5.873	32.373	1.00	0.00		H
30	ATOM	1317 1HD	ARG	202	40.846	7.286	32.264	1.00	0.00		Н
50	ATOM	1318 2HD	ARG	202	40.559		30.518	1.00	0.00		·H
	ATOM	1319 HE	ARG	202	40.908	4.723	31.622	1.00	0.00		H
	ATOM		L ARG	202	41.668	7.453	29.402	1.00	0.00		Н
	ATOM	1321 2HH		202	42.854	6.536	28.435	1.00	0.00		H
35	ATOM	1322 1HH2		202 -	42.528	3.510	30.368	1.00	0.00		Н
	ATOM	1323 2HH2	2 ARG	202	43.344	4.288	28.985	1.00	0.00		Н
	MOTA	1324 N	MET	203	36.247	10.050	31.374	1.00	0.00		N
	MOTA	1325 CA	MET	203	36.017	11.448	31.587	1.00	0.00		С
	MOTA	1326 C	MET	203	34.664	11.639	32.181	1.00	0.00		С
40	MOTA	1327 0	MET	203	34.483	12.426	33.106	1.00	0.00		0
	MOTA	1328 CB	MET	203	36.040	12.247	30.275	1.00	0.00		C
	ATOM	1329 CG	MET	203	36.305	13.743	30.460	1.00	0.00		C
	ATOM	1330 SD	MET	203	38.063	14.190	30.635	1.00	0.00		S
4.0	MOTA	1331 CE	MET	203	38.429	13.087	32.030	1.00	0.00		С
45	MOTA	1332 H	MET	203	36.396	9.706	30.414	1.00	0.00		H
	MOTA	1333 HA	MET	203	36.774	11.837	32.267	1.00	0.00		H
	ATOM	1334 1HB	MET MET	203 203	35.069 36.831	12.138 11.845	29.790 29.642	1.00	0.00		H
	ATOM ATOM	1335 2HB 1336 1HG	MET	203	35.791	14.070	31.364	1.00	0.00		H H
50	ATOM	1330 ING	MET	203	35.918	14.267	29.586	1.00	0.00		Н
50	ATOM	1338 1HE	MET		37.528	12.537	32.305	1.00	0.00	<i>i</i> .	H
	ATOM	1339 2HE	MET		39.210	12.383	31.742	1.00	0.00		H
	ATOM	1340 3HE	MET		38.767	13.677	32.881	1.00	0.00		Н
	ATOM	1341 N	LYS		33.657	10.928	31.660	1.00	0.00		N
55	ATOM	1342 CA	LYS		32.345	11.162	32.170	1.00	0.00		C
	ATOM	1343 C	LYS		32.172	10.597	33.542	1.00	0.00		C
	ATOM	1344 O	LYS		31.300	11.030	34.287	1.00	0.00	-	0
	ATOM	1345 CB	LYS	204	31.205	10.660	31.289	1.00	0.00		С
	ATOM	1346 CG	LYS	204	29.883	11.352	31.643	1.00	0.00		С
60	MOTA	1347 CD	LYS		29.808	12.801	31.166	1.00	0.00		С
	MOTA	1348 CE	LYS		29.989	12.939	29.654	1.00	0.00		С
	ATOM	1349 NZ	LYS		29.112	11.989	28.941	1.00	0.00		N
	ATOM	1350 н	LYS		33.823	10.235	30.916	1.00	0.00		Н
	MOTA	1351 HA	LYS		32.117	12.226	32.233	1.00	0.00		H
65	MOTA	1352 1HB	LYS		31.057	9.586	31.407	1.00	0.00		H
	MOTA	1353 2HB	LYS		31.406	10.851	30.235	1.00	0.00		H
	ATOM	1354 1HG	LYS		29.688	11.393	32.714	1.00	0.00		H
	MOTA	1355 2HG	LYS	204	29.008	10.864	31.212	1.00	0.00		H

	MOTA	1356		LYS	204	30.571	13.435	31.616	1.00	0.00		H
	MOTA	1357		LYS	204	28.853	13.273	31.396	1.00	0.00		H
	MOTA	1358		LYS	204	31.022	12.732	29.374	1.00	0.00		H
5	MOTA MOTA	1359 1360		LYS	204 204	29.738 28.570	13.949	29.331 29.624	1.00	0.00		H
,	ATOM	1361		LYS	204	28.466	11.441 12.509	28.329	1.00	0.00		H H
	ATOM	1362		LYS	204	29.686	11.352	28.370	1.00	0.00		Н
	MOTA	1363	N	THR	205	32.937	9.558	33.895	1.00	0.00		N
	ATOM	1364	CA	THR	205	32.820	8.959	35.191	1.00	0.00		C
10	ATOM	1365	C.	THR	205	33.421	9.841	36.234	1.00	0.00		C
	ATOM	1366	ō	THR	205	33.103	9.701	37.413	1.00	0.00		Ö
	ATOM	1367	СВ	THR	205	33.476	7.622	35.274	1.00	0.00		Ċ
	ATOM	1368	OG1	THR	205	34.878	7.724	35.072	1.00	0.00		ō
	ATOM	1369	CG2	THR	205	32.847	6.772	34.170	1.00	0.00		Č
15	MOTA	1370	H	THR	205	33.621	9.182	33.223	1.00	0.00		Н
	MOTA	1371	HА	THR	205	31.772	8.793	35.444	1.00	0.00		H
	MOTA	1372	HB	THR	205	33.259	7.240	36.271	1.00	0.00		H
	MOTA	1373		THR	205	35.287	8.327	35.799	100	0.00		Н
	ATOM .		1HG2		205	32.105	7.363	33.633	1.00	0.00		H
20	ATOM		2HG2	THR	205	33.621	6.445	33.476	1.00	0.00		H
	MOTA	_	3HG2		205	32.365	5.899	34.612	1.00	0.00		Н
	MOTA	1377	N	ILE	206	34.329	10.754	35.842	1.00	0.00		N
	ATOM	1378	CA	ILE	206	35.034	11.535	36.816	1.00	0.00		С
25	ATOM	1379	C	ILE	206	34.105	12.396	37.621	1.00	0.00		С
25	MOTA	1380 1381	0	ILE	206	34.317	12.542	38.819	1.00	0.00		0
	ATOM ATOM	1382	CB	ILE	206 206	36.137	12.392 13.519	36.249	1.00	0.00		С
	ATOM	1383	CG2		206	35.624 37.115	11.439	35.338 35.546	1.00	0.00		C
	ATOM	1384	CD1		206	35.054	14.729	36.079	1.00	0.00		Ç
30	ATOM	1385	Н	ILE	206	34.518	10.892	34.838	1.00	0.00		Ĥ
	ATOM	1386	НA	ILE	206	35.578	10.908	37.522	1.00	0.00		H
	ATOM	1387	HB	ILE	206	36.597	12.905	37.093	1.00	0.00		Н
	ATOM		1HG1		206	34.830	13.114	34.710	1.00	0.00		H
	ATOM	1389	2HG1	ILE	206	36.456	13.869	34.728	1.00	0.00		Н
35	ATOM_	1390	1HG2	ILE	206	36.757	10.414	35.642	1.00	0.00		н
	ATOM	1391	2HG2	ILE	206	37.183	11.701	34.490	1.00	0.00		H
	ATOM		3HG2		206	38.099	11.524	36.005	1.00	0.00		H·
	ATOM		1HD1		206	35.119	14.561	37.154	1.00	0.00		H
40	MOTA		2HD1		206	35.624	15.619	35.815	1.00	0.00		Н
40	ATOM	1395			206	34.010	14.870	35.797	1.00	0.00		Н
	ATOM	1396	N	GLY	207	33.051	12.996	37.034	1.00	0.00		N
	ATOM -	1397 1398	CA	GLY GLY	207	32.264	13.845	37.883 37.728	1.00	0.00		C
	ATOM ATOM	1399	C O	GLY	207 207	30.833 30.434	13.516 12.850	36.776	1.00	0.00		C
45	ATOM	1400	н	GLY	207	32.824	12.854	36.039				0
45	ATOM \	1401		GLY	207	32.424	14.888	37.610	1.00	0.00		H H
	ATOM	1402		GLY	207	32.555	13.697	38.922	1.00	0.00		Н
	ATOM	1403	N	GLU	208	30.014	13.978	38.690	1.00	0.00		N
	ATOM	1404	CA	GLU	208	28.631	13.734	38.496	1.00	0.00		C
50	ATOM	1405	С	GLU	208	28.284	14.781	37.488	1.00	0.00		Ċ
	ATOM	1406	0	GLU	208	27.981	15.916	37.843	1.00	0.00		0
	ATOM	1407	CB	GLU	208	27.794	13.968	39.758	1.00	0.00		С
	ATOM	1408	ÇG	GLU	208	28.261	13.090	40.923	1.00	0.00		С
	ATOM	1409	CD	GLU	208	28.611	11.716	40.364	1.00	0.00		С
55	ATOM	1410		GLU	208	27.837	11.214	39.505	1.00	0.00		0
	ATOM	1411		GLU	208	29.656	11.152	40.786	1.00	0.00		0
	MOTA	1412	H	GLU	208	30.369	14.478	39.516	1.00	0.00		Н
	MOTA	1413	HA	GLU	208	28.451	12.723	38.128	1.00	0.00		H
60	ATOM	1414		GLU	208	26.740	13.744	39.593	1.00	0.00		Н
60	ATOM	1415 1416		GLU	208	27.850	15.002	40.096	1.00	0.00		H
	ATOM ATOM	1415		GLU	208 208	27.443 29.135	13.022	41.640	1.00	0.00		H
	ATOM	1417	ZHG N	HIS	208	28.353	13.563	41.370 36.189	1.00	0.00		H
	ATOM	1419	CA	HIS	209	28.205	15.402	35.146	1.00	0.00		N
65	ATOM	1420	C	HIS	209	26.837	15.990	35.140	1.00	0.00		C C
	ATOM	1421	ŏ	HIS	209	26.701	17.181	34.811	1.00	0.00		0
	ATOM	1422	СВ	HIS	209	28.616	14.926	33.740	1.00	0.00		c
•	ATOM	1423	CG	HIS	209	30.061	15.227	33.463	1.00	0.00		C

	MOTA	1424 NO	Ol HIS	209	30.499	16.447	32.996	1.00	0.00		N
	ATOM	1425 C	2 HIS	209	31.178	14.464	33.616	1.00	0.00		С
	MOTA	1426 CE	E1 HIS	209	31.847	16.367	32.896	1.00	0.00		С
	MOTA	1427 NE	E2 HIS	209	32.306	15.182	33.258	1.00	0.00		N
5	MOTA	1428 H	HIS	209	28.514	13.440	35.940	1.00	0.00		Н
_	ATOM	1429 HZ		209	28.883	16.248	35.252	1.00	0.00		Н
	ATOM	1430 1HE		209	28.023	15.415	32.967	1.00	0.00		H
	ATOM	1431 2HE		209	28.476	13.850	33.629	1.00	0.00		Н
	ATOM		ol HIS	209	29.913	17.263	32.767	1.00	0.00		н
10	MOTA		D2 HIS	209	31.183	13.433	33.970	1.00	0.00		Н
	MOTA		E1 HIS	209	32.480	17.186	32.555	1.00	0.00		H
	ATOM	1435 H	E2 HIS	209	33.285	14.863	33.270	1.00	0.00		H
	MOTA	1436 N	ILE	210	25.788	15.189	35.333	1.00	0.00		N
	MOTA	1437 CA	A ILE	210	24.456	15.709	35.250	1.00	0.00		С
15	ATOM	1438 C	ILE	210	24.317	16.825	36.239	1.00	0.00		Ċ
	ATOM	1439 0		210	23.712	17.852	35.936	1.00	0.00		Ö
	ATOM	1440 CF		210	23.410	14.681	35.589	1.00	0.00		c
	ATOM		31 ILE	210	23.451	13.504					
							34.604	1.00	0.00		C
~~	ATOM		32 ILE	210	22.049	15.384	35.643	1.00	0.00		C
20	MOTA		D1 ILE	210	22.594	12.326	35.062	1.00	0.00		С
	ATOM	1444 H	ILE	210	25.941	14.201	35.583	1.00	0.00		H
	MOTA	1445 H		210	24.289	16.076	34.237	1.00	0.00		H
	MOTA	1446 H	B ILE	210	23.660	14.248	36.557	1.00	0.00		H
	ATOM	1447 1HC	31 ILE	210	24.457	13.110	34.463	1.00	0.00		H
25	ATOM	1448 2H	31 ILE	210	23.089	13.775	33.612	1.00	0.00		H.
	ATOM		32 ILE	210	22.178	16.444	35.424	1.00	0.00		H
	ATOM	1450 2H		210	21.380	14.940	34.905	1.00	0.00		н
	ATOM		G2 ILE	210	21.619	15.268	36.638	1.00	0.00		H
	ATOM	1452 1H		210-	22.120	12.568		1.00	0.00		
20							36.013				H
30	ATOM	1453 2HI		210	21.826	12.122	34.315	1.00	0.00		Н
	MOTA		D1 ILE	210	23.223	11.444	35.184	1.00	0.00		H
	MOTA	1455 N		211	24.869	16.664	37.456	1.00	0.00		N
	MOTA	1456 C		211	24.693	17.704	38.431	1.00	0.00		С
	MOTA	1457 C	VAL	211	25.417	18.932	37.989	1.00	0.00		С
35	ATOM	1458 O	VAL	211	24.936	20.045	38.195	1.00	0.00		- 0
	ATOM	1459 CI	B VAL	211	25.127	17.349	39.819	1.00	0.00		С
	ATOM	1460 C	G1 VAL	211	24.270	16.147	40.226	1.00	0.00		C
	ATOM ·		G2 VAL	211	26.648	17.145	39.891	1.00	0.00		c
	ATOM	1462 H		211	25.405	15.814	37.683	1.00	0.00		H
40	ATOM	1463 H		211	23.631	17.929	38.537	1.00	0.00		H
-10	ATOM	1464 HI		211	24.932	18.234	40.424	1.00	0.00		H
	ATOM	1465 1H		211	23.595	15.888	39.409	1.00	0.00		
											H
	ATOM		G1 VAL	211	24.916	15.297	40.446	1.00	0.00		H
4.5	ATOM	1467 3H	- -	211	23.687	16.398	41.112	1.00	0.00		Н
45	ATOM	1468 1H		211	27.083	17.305	38.904	1.00	0.00		H
	MOTA	1469 2H		211	27.077	17.855	40.597	1.00	0.00		H
	MOTA	1470 3H	G2 VAL	211	26.863	16.129	40.222	1.00	0.00		H
	MOTA	1471 N	ALA	212	26.600	18.777	37.366	1.00	0.00		N
	ATOM	1472 C	A ALA	212	27.310	19.959	36.980	1.00	0.00		C
50	ATOM	1473 C	ALA	212	26.495	20.728	35.979	1.00	0.00		C
	ATOM	1474 0		212	26.306	21.937	36.114	1.00	0.00		0
	ATOM	1475 C		212	28.679	19.661	36.344	1.00	0.00		Ċ
	ATOM	1476 H		212	26.981	17.839	37.173	1.00	0.00		Н
	MOTA	1477 H		212	27.486	20.579	37.858	1.00	0.00		
55											Н
22	ATOM	1478 1H		212	28.839	18.583	36.313	1.00	0.00		H
	MOTA	1479 2H		212	28.703	20.060	35.330	1.00	0.00		Н
	ATOM	1480 3H		212	29.465	20.127	36.937	1.00	0.00		Н
	MOTA	1481 N		213	25.966	20.037	34.952	1.00	0.00		N
	MOTA	1482 C		213	25.230	20.689	33.902	1.00	0.00		C
60	ATOM	1483 C		213	23.947	21.271	34.410	1.00	0.00		С
	MOTA	1484 O	HIS	213	23.565	22.378	34.030	1.00	0.00		0
	ATOM	1485 C	B HIS	213	24.836	19.741	32.759	1.00	0.00		C
	ATOM	1486 C		213	25.993	19.281	31.927	1.00	0.00		Č
	ATOM		D1 HIS	213	25.864	18.426	30.856	1.00	0.00		N
65	ATOM		D2 HIS	213	27.319	19.575	32.011	1.00	0.00		C
	ATOM		E1 HIS	213	27.108	18.249	30.345	1.00	0.00		c
	ATOM		E2 HIS	213	28.025	18.926		1.00	0.00		N
	MOTA	1491 H	•	213	26.023	19.015	34.917	1.00	0.00	-	
	ALON	T47T U	1123	213	20.031	17.013	J-1.J1	1.00	0.00		Н

	ATOM	1492	на	HIS	213	25.802	21.503	33.458	1.00	0.00		н
	ATOM	1493		HIS	213	24.140	20.263	32.102	1.00	0.00		Н
	ATOM	1494	2HB	HIS	213	24.364	18.858	33.191	1.00	0.00		н
	ATOM	1495	HDl	HIS	213	24.991	18.002	30.509	1.00	0.00		H
5	MOTA	1496	HD2	HIS	213	27.763	20.230	32.760	1.00	0.00		Н
	ATOM	1497	HE1	HIS	213	27.326	17.620	29.481	1.00	0.00		н
	MOTA	1498	HE2	HIS	213	29.038	18.962	30.831	1.00	0.00		Н
	MOTA	1499	N	ILE	214	23.233	20.532	35.275	1.00	0.00		N
	MOTA	1500	CA	ILE	214	21.952	20:991		1.00	.0.00		С
10	MOTA	1501	С	ILE	214	22.133	22.235	36.526	1.00	0.00		С
	ATOM	1502	0	ILE	214	21.288	23.128	36.492	1.00	0.00		0
	MOTA	1503	CB	ILE	214	21.221	20.006	36.587	1.00	0.00		С
	MOTA	1504	CG1		214	21.026	18.672	35.855	1.00	0.00		C
1.0	MOTA	1505	CG2		214	19.879	20.645	36.977	1.00	0.00		C
15	MOTA	1506	CD1		214	20.453	17.586	36.763	1.00	0.00		C
	MOTA	1507	H	ILE	214	23.606	19.634	35.615	1.00	0.00		H
	MOTA	1508 1509	HA HB	ILE	214	21.322	21.197	34.859	1.00	0.00		H
	MOTA MOTA		1HG1	ILE	214 214	21.842 21.959	19.815 18.275	37.462 35.455	1.00 1.00	0.00		H · H
20	ATOM		2HG1		214	20.342	18.756	35.433	1.00	0.00		Н
20	ATOM		1HG2		214	19.805	21.637	36.531	1.00	0.00		H
	ATOM	1513		ILE	214	19.060	20.023	36.614	1.00	0.00		H
	ATOM		3HG2		214	19.817	20.728	38.062	1.00	0.00		H
	ATOM		1HD1	ILE	214	20.298	17.991	37.762	1.00	0.00		H
25	ATOM		2HD1		214	19.500	17.240	36.360	1.00	0.00		н
	ATOM	1517	3HD1		214	21.150	16.749	36.814	1.00	0.00		H
	ATOM	1518	N	GLN	215	23.248	22.330	37.270	1.00	0.00		N
	ATOM	1519	CA	GLN	215	23.456	23.479	38.098	1.00	0.00		C
	MOTA	1520	С	GLN	215	23.439	24.675	37.208	1.00	0.00		С
30	MOTA	1521	0 .	GLN	215	22.818	25.688	37.526	1.00	0.00		0
	ATOM	1522	CB	GLN	215	24.809	23.448	38.840	1.00	0.00		C
	MOTA	1523	CG	GLN	215	25.064	24.664	39.737	1.00	0.00		С
	MOTA	1524	CD	GLN	215	25.576	25.823	38.890	1.00	0.00		C
	MOTA	1525		GLN	215	25.486	26.981	39.294	1.00	0.00		0
35	MOTA	1526		GЪN	215	26.139	25.506	37.£93	1.00	0.00		N
	ATOM	1527	Н	GLN	215	23.951	21.577	37.244	1.00	0.00		Н
	MOTA	1528	HA	GLN	215	22.642	23.507	38.822	1.00	0.00		Н
	MOTA	1529		GLN	215	25.605	23.411	38.097	1.00	0.00		Н
40	ATOM	1530		GLN	215	24.832	22.560	39.471	1.00	0.00		H
40	MOTA	1531		GLN	215	25.808	24.410	40.491	1.00	0.00		Н
	ATOM	1532	1HE2	GLN GLN	215 215	24.135	24.955 26.250	40.227 37.085	1.00	0.00		H
	ATOM ATOM		2HE2		215	26.510 26.193	24.521	37.394	1.00	0.00		H H
	ATOM	1535	N	HIS	216	24.099	24.574	36.042	1.00	0.00		N
45	ATOM	1536	CA	HIS	216	24.140	25.700	35.162	1.00	0.00		C
1.5	ATOM	1537	C	HIS	216	22.738	26.055	34.766	1.00	0.00		. c
	ATOM	1538	ō	HIS	216	22.360	27.225	34.780	1.00	0.00		Ö
	ATOM	1539	СВ	HIS	216	24.936	25.429	33.871	1.00	0.00		č
	ATOM	1540	CG	HIS	216	26.420	25.354	34.086	1.00	0.00		c
50	MOTA	1541	ND1	HIS	216	27.091	24.230	34.514	1.00	0.00		N
	MOTA	1542	CD2	HIS	216	27.373	26.311	33.914	1.00	0.00		С
	ATOM	1543	CE1	HIS	216	28.406	24.559	34.579	1.00	0.00		С
	ATOM	1544	NE2	HIS	216	28.626	25.812	34.223	1.00	0.00	•	N
	ATOM	1545	Н	HIS	216	24.570	23.694	35.785	1.00	0.00		H
55	MOTA	1546	HA	HIS	216	24.605	26.536	35.683	1.00	0.00		H
	ATOM	1547		HIS		24.798	26.193	33.105	1.00	0.00		Н
	ATOM	1548		HIS	216	24.671	24.489	33.385	1.00	0.00		H
	MOTA	1549		HIS	216	26.674	23.315	34.741	1.00	0.00		H
	ATOM .	1550		HIS	216	27.176	27.329	33.579	1.00	0.00		Н
60	ATOM	1551		HIS	216	29.190	23.868	34.889	1.00	0.00		H
	ATOM	1552		HIS	216	29.528	26.306	34.184	1.00	0.00	•	Н
	ATOM	1553	N	GLU	217	21.919	25.045	34.418	1.00	0.00		N
	MOTA	1554	CA	GLU	217	20.587	25.304	33.946	1.00	0.00		C
65	MOTA MOTA	1555 1556	C O	GLU GLU	217 217	19.754 19.127	25.956 26.983	35.006 34.752	1.00	0.00		C
J	ATOM	1557	СВ	GLU	217	19.127	24.022	33.548	1.00	0.00		0
	ATOM	1558	CG	GLU	217	20.439	23.309	32.340	1.00	0.00		C
	ATOM	1559		GLU	217	19.599	22.072	32.051	1.00	0.00		C
	AL OH	1009	25	ULU	~ /	20.000	22.012	52.051	1.00	0.00		C

	ATOM	1560	OE1	GLU	217	19.277	21.335	33.021	1.00	0.00		0
	ATOM	1561		GLU	217	19.267	21.845	30.856	1.00	0.00		0
	ATOM	1562	Н	GLU	217	22.251	24.073	34.491	1.00	0.00		н
	MOTA	1563	HA	GLU	217	20.597	25.965	33.079	1.00	0.00		Н
5	ATOM	1564	1HB	GLU	217	18.793	24.187	33.284	1.00	0.00		H
	MOTA	1565	2HB	GLU	217	19.811	23.267	34.333	1.00	0.00		H
	MOTA	1566	1HG	GLU	217	21.464	23.030	32.584	1.00	0.00		H
	MOTA	1567	2HG	GLU	217	20.417	23.995	31.493	1.00	0.00		H
	MOTA	1568	N	VAL	218	19.761	25.387	36.228	1.00	0.00		N
10	MOTA	1569	CA	VAL	218	18.946	25.841	37.325	1.00	0.00		С
	MOTA	1570	С	VAL	218	17.557	26.178	36.853	1.00	0.00		С
	MOTA	1571	0	VAL	218	17.279	27.310	36.461	1.00	0.00		0
	MOTA	1572	CB	VAL	218	19.537	27.001	38.086	1.00	0.00		С
	MOTA	1573		VAL	218	19.787	28.182	37.131	1.00	0.00	• •	C
15	MOTA	1574		VAL	218	18.595	27.337	39.254	1.00	0.00		С
	MOTA	1575	H	VAL	218	20.384	24.582	36.386	1.00	0.00		H
	ATOM	1576	HA	VAL	218	18.867	25.070	38.091	1.00	0.00		H
	ATOM	1577	HB	VAL	218	20.482	26.704	38.539	1.00	0.00		H
20	ATOM	1578	1HG1		218	19.478	27.906	36.122	1.00	0.00		H
20	ATOM	1579	2HG1		218	19.211	29.046	37.462	1.00	0.00		H
	MOTA	1580			218	20.848	28.430	37.130	1.00	0.00		H
	MOTA MOTA		1HG2 2HG2		218 218	17.742	26.658 27.227	39.240	1.00	0.00		H
	MOTA .	1583	3HG2		218	19.130 18.243	28.363	40.196	1.00	0.00		H
25	ATOM	1584	N	ASP	219	16.632	25.186	39.153 36.896	1.00	0.00		H N
23	ATOM	1585	CA	ASP	219	15.285	25.100	36.422	1.00	0.00		C
	MOTA	1586	C	ASP	219	14.295	24.575	37.206	1.00	0.00		C
	ATOM	1587	ŏ	ASP	219	14.647	23.982	38.225	1.00	0.00		0
	ATOM	1588	СВ	ASP		15.116	25.023	34.944	1.00	0.00		C
30	ATOM	1589	CG	ASP	219	15.806	26.077	34.089	1.00	0.00		č
	ATOM	1590		ASP	219	15.722	27.280	34.453	1.00	0.00		ő
	ATOM	1591		ASP	219	16.430	25.693	33.063	1.00	0.00		ō
	ATOM	1592	H	ASP	219	16.892	24.262	37.270	1.00	0.00		Н
	ATOM	1593	HA	ASP	219	15.008	26.459	36.532	1.00	0.00		Н
35	MOTA	1594	1HB	ASP	219 .	14.050	24.985	34.718	1.00	0.00	-	н
	ATOM	1595	2HB	ASP	219	15.574	24.046	34.790	1.00	0.00		Н
	ATOM	1596	N	PHE	220	13.010	24.525	36.743	1.00	0.00		N
	MOTA	1597	CA	PHE	220	11.964	23.735	37.359	1.00	0.00		C
4.0	MOTA	1598	С	PHE	220	12.327	22.298	37.204	1.00	0.00		С
40	MOTA	1599	0	PHE	220	13.502	21.949	37.134	1.00	0.00		0
	ATOM	1600	CB	PHE	220	10.563	23.849	36.720	1.00	0.00		С
	ATOM	1601	CG	PHE	220	9.831	25.056	37.198	1.00	0.00		C
*	MOTA	1602		PHE	220	9.388	25.119	38.500	1.00	0.00		C
15	ATOM	1603		PHE	220	9.535	26.093	36.344	1.00	0.00		C
45	ATOM ATOM	1604 1605		PHE	220 220	8.696 8.842	26.216	38.955	1.00	0.00		C
	ATOM	1605	CEZ	PHE	220	8.425	27.193 27.257	36.793 38.101	1.00 1.00	0.00		C
	MOTA	1607	H	PHE	220	12.772	25.080	35.908	1.00	0.00		C H
	ATOM	1608	HA	PHE	220	11.910	24.014	38.411	1.00	0.00		H
50	ATOM	1609		PHE	220	9.939	22.986	36.952	1.00	0.00		H
	ATOM	1610		PHE	220	10.616	23.919	35.633	1.00	0.00		Н
	ATOM	1611		PHE	220	9.588	24.289	39.177	1.00	0.00		H
	ATOM	1612		PHE	220	9.852	26.042	35.302	1.00	0.00		Н
	ATOM	1613		PHE	220	8.362	26.259	39.991	1.00	0.00		Н
55	MOTA	1614	HE2	PHE	220	8.623	28.014	36.110	1.00	0.00		н
	ATOM	1615	HZ	PHE	220	7.881	28.130	38.459	1.00	0.00		н
	ATOM	1616	N	LEU	221	11.300	21.423	37.148	1.00	0.00		N
	ATOM	1617	CA	LEU	221	11.526	20.012	37.009	1.00	0.00		С
	ATOM	1618	C	LEU	221	12.371	19.845	35.793	1.00	0.00		· C
60	ATOM	1619	0	LEU	221	12.331	20.695	34.908	1.00	0.00		0
	ATOM	1620	CB	LEU	221	10.240	19.203	36.758	1.00	0.00		С
	MOTA	1621	CG	LEU	221	9.188	19.334	37.871	1.00	0.00		С
	MOTA	1622		LEU	221	8.666	20.776	37.969	1.00	0.00		С
<i>c</i> -	ATOM	1623		LEU	221	8.055	18.312	37.689	1.00	0.00		С
65	ATOM	1624	H	LEU	221	10.333	21.775	37.206	1.00	0.00		H
	MOTA	1625	HA	LEU	221	12.035	19.695	37.919	1.00	0.00		Н
	MOTA	1626		LEU	221	10.507	18.149	36.676	1.00	0.00		н
	MOTA	1627	Zub	LEU	221	9.788	19.556	35.831	1.00	0.00		H

	ATOM	1628	HG	LEU	221	9.608	19.063	38.839	1.00	0.00		Н
	ATOM		1HD1		221	9.161	21.394	37.220	1.00	0.00		Н
	ATOM		2HD1		221	7.590	20.786	37.793	1.00	0.00		Н
	ATOM		3HD1		221	8.875	21.172	38.962	1.00	0.00		Н
5	MOTA		1HD2		221	8.246	17.710	36.800	1.00	0.00		Н
-	ATOM		2HD2		221	8.006	17.662	38.563	1.00	0.00		Н
	ATOM		3HD2		221	7.106	18.836	37.574	1.00	0.00		Н
	ATOM	1635	N	PHE	222	13.170	18.758	35.719	1.00	0.00		N
	ATOM	1636	CA	PHE	222	14.012	18.591	34.568	1.00	0.00		С
10	ATOM	1637	С	PHE	222	13.954	17.178	34.077	1.00	0.00		С
	ATOM	1638	0	PHE	222	13.414	16.287	34.732	1.00	0.00		0
	MOTA	1639	CB	PHE	222	15.491	18.954	34.813	1.00	0.00		С
	ATOM	1640	CG	PHE	222	16.042	18.085	35.894	1.00	0.00		С
•	ATOM	1641		PHE	222	15.894	18.442	37.214	1.00	0.00		С
15	ATOM	1642	CD2	PHE°	222	16.713	16.922	35.590	1.00	0.00		С
	MOTA	1643	CE1		222	16.404	17.652	38.216	1.00	0.00		С
	MOTA	1644			222	17.225	16.126	36.589	1.00	0.00	•	С
	ATOM	1645	CZ	PHE	222	17.071	16.492	37.904	1.00	0.00		С
•	ATOM	1646	н	PHE	222	13.175	18.060	36.476	1.00	0.00		Н
20	MOTA	1647	HA	PHE	222	13.690	19.249	33.761	1.00	0.00		Н
	MOTA	1648	1HB	PHE	222	15.562	19.999	35.113	1.00	0.00		H
	MOTA	1649	2HB	PHE	222	16.058	18.798	33.895	1.00	0.00		H
	MOTA	1650	HD1	PHE	222	15.366	19.361	37.468	1.00	0.00		Н
	MOTA	1651	HD2	PHE	222	16.840	16.628	34.547	1.00	0.00		Н
25	MOTA	1652	HE1	PHE	222	16.279	17.945	39.258	1.00	0.00		Н
	ATOM	1653	HE2	PHE	222	17.752	15.205	36.337	1.00	0.00		Н
	MOTA	1654	ΗZ	PHE	222	17.476	15.864	38.697	1.00	0.00		H
	MOTA	1655	N	CYS	223	14.495	16.954	32.860	1.00	0.00		N
	ATOM	1656	CA	CYS	223	14.523	15.645	32.272	1.00	0.00		C.
30	MOTA	1657	C	CYS	223	15.892	15.430	31.711	1.00	0.00		С
	ATOM	1658	0	CYS	223	16.741	16.317	31.765	1.00	0.00		0
	MOTA	1659	CB	CYS	223	13.513	15.449	31.131	1.00	0.00		С
	MOTA	1660	SG	CYS	223	11.804	15.347	31.734	1.00	0.00		S
	MOTA	1661	H	CYS	223	14.899	17.745	32.338	1.00	0.00		Н
35	ATOM-	1662	HA	CYS	223	14.301		33.059	1.00	0.00		Н
	MOTA	1663		CYS	223	13.697	14.534	30.567	1.00	0.00		Н
	MOTA	1664	2HB	CYS	223	13.538	16.266	30.410	1.00	0.00		H
	MOTA	1665	HG	CYS	223	11.311	16.583	31.894	1.00	0.00		Н
	MOTA	1666	N	MET	224	16.151	14.223	31.171	1.00	0.00		N
40	MOTA	1667	CA	MET	224	17.462	13.955	30.656	1.00	0.00		С
	MOTA	1668	С	MET	224	17.336	13.567	29.227	1.00	0.00		Ç
	MOTA	1669	0	MET	224	16.274	13.636	28.638	1.00	0.00		0
	MOTA	1670	CB	MET	224	18.205	12.807	31.356	1.00	0.00		С
	MOTA	1671	CG	MET	224	18.579	13.131	32.805	1.00	0.00		Ç
45	ATOM	1672		MET	224	19.743	11.963	33.559	1.00	0.00	-	S
•	MOTA	1673		MET	224	21.132	12.454	32.499	1.00	0.00		С
	ATOM	1674		MET	224	15.416	13.502	31.128	1.00	0.00		H
	ATOM	1675		MET	224	18.062	14.859	30.753	1.00	0.00		H
~ A	ATOM	1676		MET	224	19.139	12.540	30.862	1.00	0.00		H
50	ATOM	1677		MET	224	17.622	11.886	31.400	1.00	0.00		H
	ATOM	1678		MET	224	17.667	13.121	33.403	1.00	0.00		H
	MOTA	1679		MET	224	19.041	14.117	32.825	1.00	0.00		Н
	ATOM	1680		MET	224	20.807	13.236	31.813	1.00	0.00		Н
~~	ATOM	1681		MET	224	21.947	12.828	33.117	1.00	0.00		Н
55	ATOM	1682		MET	224	21.476	11.591	31.928	1.00	0.00		Н
	ATOM	1683		ASP	225	18.477	13.306	28.585	1.00	0.00		N
	ATOM	1684		ASP	225	18.574	12.743	27.269	1.00	0.00		С
	ATOM	1685		ASP	225	18.441	11.266	27.412	1.00	0.00		С
۷۸	ATOM	1686		ASP	225	17.947	10.561	26.527	1.00	0.00		0
60	ATOM	1687		ASP	225	19.958	13.023	26.656	1.00	0.00		C
	ATOM	1688		ASP	225	21.036	12.366	27.527	1.00	0.00		C
	ATOM	1689		ASP	225	20.926	12.417	28.783	1.00	0.00		0
	ATOM	1690		ASP	225	21.989	11.795	26.930	1.00	0.00		0
65	ATOM	1691		ASP	225	19.357	13.526	29.072	1.00	0.00		H
Ç,	ATOM	1692		ASP	· 225 225	17.761 20.120	13.165 14.100	26.678 26.617	1.00 1.00	0.00		H
	ATOM	1693		ASP		19.993						H
	ATOM	1694		ASP			12.607	25.648	1.00	0.00		H
	MOTA	1695	N	VAL	226	18.856	10.834	28.623	1.00	0.00		N

	ATOM	1696	CA	VAL	226	19.158	9.502	29.031	1.00	0.00		С
	MOTA	1697	С	VAL	226	18.347	8.518	28.280	1.00	0.00		С
	MOTA	1698	0	VAL	226	18.884	7.845	27.398	1.00	0.00		0
	MOTA	1699	CB	VAL	226	18.990	9.296	30.517	1.00	0.00		С
5	MOTA	1700	CG1	VAL	226	17.611	9.798	30.968	1.00	0.00		С
	MOTA	1701	CG2		226	19.236	7.806	30.813	1.00	0.00		С
	MOTA	1702	H	VAL	226	18.968	11.560	29.344	1.00	0.00		H
	MOTA	1703	HA	VAL	226	20.208	9.267	28.859	1.00	0.00		H
	MOTA	1704	HB	VAL	226	19.758	9.844	31.061	1.00	0.00		H
10	ATOM		1HG1		226	17.067	10.189	30.108	1.00	0.00		. H
	ATOM		2HG1		226	17.049	8.973	31.407	1.00	0.00		H
	MOTA		3HG1		226	17.735	10.587	31.708	1.00	0.00		Н
	ATOM		1HG2		226	19.466	7.283	29.884	1.00	0.00		H
1.5	ATOM		2HG2		226	20.073	7.705	31.503	1.00	0.00		H
15	MOTA		3HG2		226	18.342	7.371	31.261	1.00	0.00		H
	MOTA	1711	N	ASP	227	17.039	8.440	28.569	1.00	0.00		. С
	MOTA MOTA	1712 1713	CA C	ASP ASP	227 227	16.309 14.967	7.427 7.350	27.888 28.528	1.00	0.00		c
	ATOM	1714	0	ASP	227	14.329	6.298	28.509	1.00	0.00		0
20	ATOM	1715	СВ	ASP	227	16.952	6.035	28.074	1.00	0.00		c
20	MOTA	1716	CG	ASP	227	17.128	5.778	29.562	1.00	0.00		c
	ATOM	1717		ASP	227	17.242	6.775	30.322	1.00	0.00		Ö
	ATOM	1718		ASP	227	17.127	4.585	29.966	1.00	0.00		ő
	MOTA	1719	Н	ASP	227	16.590	9.075	29.243	1.00	0.00		н
25	ATOM	1720	HA	ASP	227	16.241	7.728	26.842	1.00	0.00	•	H
	MOTA	1721		ASP	227	17.919	6.029	27.571	1.00	0.00		Н
	ATOM	1722		ASP	227	16.292	5.286	27.635	1.00	0.00		H
	ATOM ·	1723	N	GLN	228	14.479	8.462	29.110	1.00	0.00		N
	MOTA	1724	CA	GLN	228	13.185	8.299	29.701	1.00	0.00		С
30	MOTA	1725	С	GLN	228	12.303	9.423	29.286	1.00	0.00		С
	MOTA	1726	0	GLN	228	12.746	10.488	28.871	1.00	0.00		0
	MOTA	1727	CB	GLN	228	13.189	8.205	31.239	1.00	0.00		С
	MOTA	1728	CG	GLN	228	13.694	9.436	31.978	1.00	0.00		С
	MOTA	1729	CD	GLN	228	12.506	10.256	32.470	1.00	0.00		С
35	MOTA	1730		GLN	228	11.525	10.507	31.769	1.00	0.00		0
	MOTA	1731		GLN	228	12.609	10.695	33.753	1.00	0.00		N
	ATOM	1732	H	GLN	228	14.993	9.354	29.128	1.00	0.00		Н
	ATOM	1733	HA	GLN	228	12.749	7.356	29.370	1.00	0.00		Н
40	MOTA	1734 1735		GLN GLN	228 228	13.834 12.163	7.373 8.032	31.522 31.566	1.00	0.00		H
40	ATOM ATOM	1736		GLN	228	14.299	10.041	31.303	1.00	0.00		H H
	ATOM	1737		GLN	228	14.299	9.125	32.829	1.00	0.00		Н
	ATOM	1738	1HE2		228	11.851	11.256	34.167	1.00	0.00		н
	ATOM		2HE2		228	13.444	10.465	34.310	1.00	0.00		н
45	ATOM	1740	N	VAL	229	10.985	9.216	29.302	1.00	0.00		N
	ATOM	1741	CA	VAL	229	10.265	10.409	29.007	1.00	0.00		C
	ATOM	1742	С	VAL	229	8.943	10.261	29.650	1.00	0.00		C
	ATOM	1743	0	VAL	229	8.623	9.181	30.145	1.00	0.00		0
	MOTA	1744	CB	VAL	229	10.113	10.706	27.554	1.00	0.00		С
50	ATOM	1745	CG1	VAL	229	8.812	10.093	27.020	1.00	0.00		C
	MOTA	1746	CG2	VAL	229	10.297	12.218	27.396	1.00	0.00		C
	MOTA	1747	H	VAL	229	10.543	8.307	29.502	1.00	0.00		H
	MOTA	1748	HA	VAL	229	10.847	11.227	29.430	1.00	0.00		Н
	MOTA	1749		VAL	229	10.950	10.289	26.994	1.00	0.00		н
55	MOTA		1HG1		229	8.293	9.578	27.828	1.00	0.00		н
	ATOM		2HG1		229	8.173	10.882	26.624	1.00	0.00		H
	MOTA		3HG1		229	9.043	9.382	26.226	1.00	0.00		H
	ATOM		1HG2		229	10.486	12.665	28.371	1.00	0.00		H
60	ATOM		2HG2		229	11.142	12.414	26.736	1.00	0.00		Н
60	ATOM		3HG2	PHE	229	9.393 8.137	12.651	26.967	1.00 1.00	0.00		H
	ATOM ATOM	1756		PHE	230 230	6.941	11.336 11.031	29.699 30.407	1.00	0.00		N
	MOTA	1757 1758		PHE	230	6.080	10.040	29.682	1.00	0.00		C
	MOTA	1759		PHE	230	5.747	10.180	28.506	1.00	0.00		0
65	ATOM	1760		PHE	230	6.180	12.166	31.153	1.00	0.00		c
	ATOM	1761		PHE	230	6.085	13.496	30.474	1.00	0.00		. c
	ATOM	1762		PHE	230	5.393	13.701	29.304	1.00	0.00	•	Č
	ATOM	1763		PHE	230	6.665	14.576	31.097	1.00	0.00		Ċ

	ATOM	1764	CE1	PHE	230 ·	5.326	14.963	28.755	1.00	0.00		С
	ATOM	1765		PHE	230	6.606	15.837	30.560	1.00	0.00		Ċ
	ATOM	1766	CZ	PHE	230	5.934	16.030	29.377	1.00	0.00		С
	MOTA	1767	H	PHE	230	8.354	12.252	29.282	1.00	0.00		H
5	MOTA	1768	HA	PHE	230	7.134	10.603	31.390	1.00	0.00		Н
	MOTA	1769	1HB	PHE	230	6.692	12,337	32.099	1.00	0.00		Н
	ATOM	1770		PHE	230	5.156	11.825	31.311	1.00	0.00		H
	ATOM	1771	HD1		230	4.897	12.865	28.810	1.00	0.00		H
	ATOM	1772	HD2	PHE	230	7.185	14.426	32.042	1.00	0.00		H
10	MOTA	1773	HE1	PHE	230	4.787	15.117	27.820	1.00	0.00		Н.
	ATOM	1774	HE2	PHE	230	7.086	16.675	31.065	1.00	0,00		н
	ATOM	1775	HZ	PHE	230	5.882	17.024	28.932	1.00	0.00		
												H
	MOTA	1776	N	GLN	231	5.783	8.965	30.445	1.00	0.00		N
	MOTA	1777	CA	GLN	231	5.096	7.740	30.141	1.00	0.00		С
15	ATOM	1778	С	GLN	231	3.686.	8.004	29.740	1.00	0.00		C
	ATOM	1779	0	GLN	231	3.205	7.413	28.775	1.00	0.00		Ō
	ATOM	1780	CB	GLN	231	5.053	6.853	31.396	1.00	0.00		
												С
	MOTA	1781	CG	GLN	231	4.363	5.498	31.242	1.00	0.00		С
	MOTA	1782	CD	GLN	231	4.308	4.877	32.635	1.00	0.00		С
20	ATOM	1783	OE1	GLN	231	3.298	4.306	33.045	1.00	0.00		0
	ATOM	1784	NE2		231	5.432	4.995	33.394	1.00	0.00		N
	MOTA	1785	Н	GLN	231	6.107	9.036	31.420	1.00	0.00		Н
	ATOM	1786	HA	GLN	231	5.583	7.211	29.322	1.00	0.00		Н
	ATOM	1787	1HB	GLN	231	4.514	7.397	32.171	1.00	0.00		H
25	MOTA	1788	2HB	GLN	231	6.080	6.653	31.699	1.00	0.00		Н
	ATOM	1789		GLN	231	4.974	4.914	30.554	1.00	0.00		
		-										H
	MOTA	1790		GLN	231	3.369	5.699	30.840	1.00	0.00		H
	MOTA		1HE2	GLN	231	5.455	4.599	34.344	1.00	0.00		H
	ATOM	1792	2HE2	GLN	231	6.259	5.479	33.017	1.00	0.00		Н
30	MOTA	1793	N	ASP	232	2.981	8.885	30.475	1.00	0.00		N
• •	ATOM	1794	CA	ASP	232	1.612	9.139	30.151	1.00	0.00		C
	MOTA	1795	С	ASP	232	1.582	10.076	28.998	1.00	0.00		С
	ATOM	1796	0	ASP	232	1.205	11.239	29.130	1.00	0.00		0
	MOTA	1797	CB	ASP	232	0.813	9.726	31.322	1.00	0.00	•	С
35	ATOM	1798	CG	ASP	232	0.596	8.588	32.310	1.00	0.00		C
	ATOM	1799		ASP	232	-0.379	7.816	32.104	1.00	0.00		Ö
	MOTA	1800		ASP	232	1.392	8.476	33.280	1.00	0.00		0
	ATOM	1801	Н	ASP	232	3.425	9.372	31.265	1.00	0.00		H
	ATOM	1802	· HA	ASP	232	1.146	8.187	29.893	1.00	0.00		H
40	ATOM	1803	1 HB	ASP	232	-0.123	10.094	30.903	1.00	0.00		Н
	ATOM	1804		ASP	232	1.422	10.527	31.741	1.00	0.00		
												H
	MOTA	1805	N	LYS	233	1.911	9.483	27.834	1.00	0.00		. N
	MOTA	1806	CA	LYS	233	2.059	9.917	26.474	1.00	0.00		C
	ATOM	1807	С	LYS	233	2.031	11.393	26.237	1.00	0.00		С
45	ATOM	1808	0	LYS	233	2.270	12.236	27.099	1.00	0.00		Ö
						0.968						
	ATOM	1809	СВ	LYS	233		9.331	25.555	1.00	0.00		С
	ATOM	1810	CG	LYS	233	0.905	7.803	25.516	1.00	0.00		С
	ATOM	1811	CD	LYS	233	-0.411	7.293	24.923	1.00	0.00		C]
	ATOM	1812	CE	LYS	233	-1.647	7.734	25.715	1.00	0.00		С
50	ATOM	1813	NZ	LYS	233	-2.871	7.215	25.066	1.00	0.00		N
50												
	ATOM	1814	H	LYS	233	2.102	8.477	27.947	1.00	0.00		Н
	MOTA	1815	HA	LYS	233	3.022	9.557	26.113	1.00	0.00		Н
	ATOM	1816	1HB	LYS	233	1.160	9.675	24.538	1.00	0.00		H
	MOTA	1817	2HB	LYS	233	0.000	9.687	25.907	1.00	0.00		Н
55	ATOM	1818		LYS	233	0.990	7.361	26.508	1.00	0.00		H
55												
	ATOM	1819		LYS	233	1.705	7.372	24.913	1.00	0.00		Н
	ATOM	1820	1HD	LYS	233	-0.472	6.205	24.876	1.00	0.00		H
	ATOM	1821	2HD	LYS	233	-0.587	7.634	23.902	1.00	0.00		Н
	MOTA	1822		LYS	- 233-	-1.695	8.822	25.749	1.00	0.00		H
60	ATOM	1823		LYS	233	-1.591	7.347	26.732	1.00	0.00		
-												H
	ATOM	1824		LYS	233	-2.613	6.674	24.228	1.00	0.00		H
	ATOM	1825	2HZ	LYS	233	-3.377	6.606	25.724	1.00	0.00		H
	ATOM	1826	3HZ	LYS	233	-3.475	8.002	24.793	1.00	0.00		H
	ATOM	1827	N	PHE	234	1.777	11.710	24.954	1.00	0.00		N
65	ATOM	1828	CA	PHE	234	1.759	13.034	24.418	1.00	0.00		
0.5											•	C
	MOTA	1829	С	PHE	234	0.709	13.786	25.149	1.00	0.00		С
	ATOM	1830	0	PHE	234	0.895	14.969	25.441	1.00	0.00		0
	ATOM	1831	CB	PHE	234	1.375	13.047	22.928	1.00	0.00		С
				_			 •					-

	ATOM	1832	CG	PHE	234	2.317	12.149	22.193	1.00	0.00		С
	ATOM	1833	CD1		234	3.608	12.540	21.919	1.00	0.00		Č
	ATOM	1834	CD2		234	1.899	10.909	21.762	1.00	0.00		č
	ATOM	1835	CE1		234	4.466	11.707	21.239	1.00	0.00		č
5	ATOM	1836	CE2		234	2.752	10.072	21.081	1.00	0.00		č
_	ATOM	1837	CZ	PHE	234	4.040	10.469	20.818	1.00	0.00		Č
	ATOM	1838	Н	PHE	234	1.579	10.934	24.305	1.00	0.00		H
	MOTA	1839	HA	PHE	234	2.749	13.459	24.582	1.00	0.00		H
	ATOM	1840		PHE	234	1.456	14.070	22.562	1.00	0.00		H
10	ATOM		2HB	PHE	234	0.350	12.686	22.835	1.00	0.00		H
	ATOM	1842	HD1		234	3.954	13.520	22.244	1.00	0.00		H
	ATOM	1843	HD2		234	0.877	10.586	21.963	1.00	0.00		Н
	ATOM	1844	HE1		234	5.486	12.029	21.033	1.00	0.00		H
	ATOM	1845	HE2		234	2.405	9.093	20.749	1.00	0.00		H
15	ATOM	1846	HZ	PHE	234	4.719	9.808	20.279	1.00	0.00		н
	ATOM	1847	N	GLY	235	-0.428	13.104	25.425	1.00	0.00		N
	ATOM	1848	CA	GLY	235	-1.482	13.680	26.208	1.00	0.00		C
	MOTA	1849	С	GLY	235	-0.783	14.173	27.418	1.00	0.00		C
	MOTA	1850	0	GLY	235	-0.341	13.387	28.255	1.00	0.00		0
20	ATOM	1851 '	Н	GLY	235	-0.538	12.146	25.062	1.00	0.00		Н
	ATOM	1852	1HA	GLY	235	-2.238	12.934	26.454	1.00	0.00		н
	ATOM		2HA	GLY	235	-1.972	14.489	25.667	1.00	0.00	-	н
	MOTA	1854	N	VAL	236	-0.631	15.508	27.495	1.00	0.00		N
	ATOM	1855	CA	VAL	236	0.170	16.056	28.538	1.00	0.00		С
25	MOTA	1856	С	VAL	236	-0.596	16.087	29.799	1.00	0.00		С
	ATOM	1857	0	VAL	236	-0.662	17.109	30.481	1.00	0.00		0
	ATOM	1858	CB	VAL	236	0.648	17.440	28.268	1.00	0.00		С
	MOTA	1859	CG1	VAL	236	1.634	17.359	27.103	1.00	0.00		С
	MOTA	1860	CG2	VAL	236	-0.576	18.339	28.023	1.00	0.00		С
30	ATOM	1861	H	VAL	236 ·	-1.087	16.125	26.808	1.00	0.00		Н
	MOTA	1862	HA	VAL	236	1.062	15.447	28.681	1.00	0.00		H
	ATOM	1863	HB	VAL	236	1.129	17.798	29.177	1.00	0.00		Н
	ATOM	1864	1HG1	VAL	236	1.728	16.322	26.778	1.00	0.00		н
	MOTA	1865			236	1.269	17.967	26.275	1.00	0.00		H
35	MOTA	1866	3HG1	VAL	236	2.607	17.729	27.424	1.00	0.00	•	H
•	MOTA	1867			236	-1.486	17.745	28.106	1.00	0.00		H
	ATOM	1868			236	-0.594	19.138	28.764	1.00	0.00		Н
	ATOM	1869	3HG2		236	-0.515	18.771	27.024	1.00	0.00		H
	MOTA	1870	N	GLU	237	-1.195	14.948	30.156	1.00	0.00		N
40	MOTA	1871	CA	GLU	237	-1.760	14.911	31.454	1.00	0.00		С
	MOTA	1872	С	GLU	237	-0.560	15.055	32.317	1.00	0.00		С
	MOTA	1873	O	GLU	237	-0.590	15.716	33.347	1.00	0.00		. 0
	MOTA	1874	CB	GLU	237	-2.441	13.574	31.794	1.00	0.00		С
	MOTA	1875	CG	GLU	237	-3.838	13.423	31.190	1.00	0.00		С
45	ATOM	1876	CD	GLU	237	-4.819	14.039	32.179	1.00	0.00		С
	MOTA	1877		GLU	237	-4.564	15.189	32.625	1.00	0.00		0
	MOTA	1878		GLU	237	-5.825	13.359	32.515	1.00	0.00		0
	ATOM	1879	H	GLU	237	-1.243	14.138	29.520	1.00	0.00		Н
50	ATOM	1880	HA	GLU	237	-2.474	15.721	31.599	1.00	0.00		H
50	ATOM	1881		GLU	237	-2.579	13.411	32.862	1.00	0.00		Н
	ATOM	1882		GLU	237	-1.890	12.699	31.446	1.00	0.00		H
	ATOM	1883		GLU	237	-4.013	12.355	31.056	1.00	0.00		H
	MOTA	1884		GLU	237	-3.832	13.955	30.238 31.880	1.00	0.00		H
55	ATOM	1885 1886	N CA	THR	238 238	0.559 1.759	14.451	32.658	1.00	0.00		N
33	ATOM ATOM	1887	CA	THR THR	238	2.244	14.474 15.878	32.867	1.00	0.00		C
	ATOM	1888	0	THR	238	2.386	16.320	34.006	1.00	0.00		C
	ATOM	1889	CB	THR	238	2.848	13.716	31.974	1.00	0.00	•	0
	ATOM	1890		THR	238	3.071	14.280	30.692	1.00	0.00		C
60	ATOM	1891		THR	238	2.418	12.248	31.829	1.00			0
00	ATOM	1892	H	THR	238	0.551	13.964	30.972	1.00	0.00		С Н
	ATOM	1893	HA	THR	238	1.601	14.029	33.640	1.00	0.00		
	ATOM	1894	HB	THR	238	3.755	13.781	32.574	1.00	0.00		H H
	ATOM	1895		THR	238	3.733	15.205	30.795	1.00	0.00		H
65	ATOM	1896			238	1.425	12.115	32.259	1.00	0.00		H
0,5	ATOM	1897			238	2.394	11.978	30.773	1.00	0.00		Н
	ATOM	1898			238	3.128	11.607	32.351	1.00	0.00		H
	ATOM	1899	N	LEU	239	2.493	16.631	31.778	1.00	0.00		N
			•		-							• •

	MOTA	1900	CA	LEU	239	3.068	17.938		1.00	0.00	С
	MOTA	1901	С	LEU	239	2.048	18.842	32.531	1.00	0.00	С
	MOTA	1902	0	LEU	239	2.335	19.584	33.470	1.00	0.00	0
	MOTA	1903	CB	LEU	239	3.477	18.540	30.565	1.00	0.00	С
5	MOTA	1904	CG	LEU	239	4.523	19.673	30.645	1.00	0.00	С
	ATOM	1905	CD1	LEU	239	4.601	20.450	29.321	1.00	0.00	С
	ATOM	1906	CD2		239	4.347	20.565	31.882	1.00	0.00	Ċ
	ATOM	1907	Н	LEU	239	2.270	16.268	30.840	1.00	0.00	н
	ATOM	1908	HA	LEU	239	3.941	17.863	32.570	1.00	0.00	
10											Н
10	MOTA	1909		LEU	239	. 2.584	18.951	30.093	1.00	0.00	H
	MOTA	1910		LEU	239	3.903	17.743	29.955	1.00	0.00	Н
	MOTA	1911	HG	LEU	239	5.516	19.276	30.856	1.00	0.00	Н
	MOTA	1912			239	3.893	20.026	28.608	1.00	0.00	H
	MOTA	1913	2HD1	LEU	239	4.354	21.496	29.498	1.00	0.00	H
15	ATOM	1914	3HD1	LEU	239	5.610	20.378	28.916	1.00	0.00	Н
	MOTA	1915			239	3.499	20.210	32.468	1.00	0.00	н
	MOTA	1916			239	5.250	20.526	32.490	1.00	0.00	Н
	MOTA	1917			239	4.165	21.592	31.566	1.00	0.00	Н
	ATOM	1918	N	GLY	240		18.774	32.009	1.00	0.00	
20						0.810					N
20	MOTA	1919	CA	GLY	240	-0.223	19.663	32.444	1.00	0.00	C
	MOTA	1920	С	GLY	240	-0.528	19.425	33.885	1.00	0.00	С
	ATOM	1921	0	GLY	240	-0.675	20.370	34.658	1.00	0.00	0
	MOTA	1922	H	GLY	240	0.602	18.071	31.285	1.00	0.00	Н
	MOTA	1923	1HA	GLY	240	-1.127	19.497	31.859	1.00	0.00	H
25	MOTA	1924	2HA	GLY	240	0.096	20.697	32.316	1.00	0.00	Н
	ATOM	1925	N	GLU	241	-0.636	18.149	34.289	1.00	0.00	N
	ATOM	1926	CA	GLU	241	-1.010	17.853	35.642	1.00	0.00	C
	ATOM	1927	C	GLU	241	0.040	18.318	36.594	1.00	0.00	č
	ATOM	1928	ŏ	GLU	241	-0.278	18.862	37.650	1.00	0.00	Ö
30	ATOM	1929	СВ	GLU	241	-1.230	16.361	35.924	1.00	0.00	
50											C
	ATOM	1930	CG	GLU	241	-1.628	16.065	37.370	1.00	0.00	C
	ATOM	1931	CD	GLU	241	-1.804	14.559	37.469	1.00	0.00	C
	ATOM	1932		GTA	241	-1.731	13.902	36.397	1.00	0.00	0
	ATOM	1933	OE2		241	-2.014	14.044	38.601	1.00	0.00	0
35	MOTA	1934	Η,	GLU	241	-0.450	17.382	- 33.627	1.00	0.00	H
	ATOM	1935	HA	GLU	241	-1.946	18.347	35.900	1.00	0.00	H
	ATOM	1936	1HB	GLU	241	-0.347	15.748	35.741	1.00	0.00	н
	ATOM	1937	2HB	GLU	241	-2.016	15.914	35.315	1.00	0.00	H
	ATOM	1938		GLU	241	-2.558	16.602	37.550	1.00	0.00	н
40	ATOM	1939		GLU	241	-0.812	16.427	37.995	1.00	0.00	H
10	ATOM	1940	N	SER	242	1.327	18.111	36.263	1.00	0.00	
	ATOM	1941		SER		2.331	18.491				N
			CA		242			37.212	1.00	0.00	C
	ATOM	1942	C	SER	242	2.290	19.972	37.418	1.00	0.00	C
40	ATOM	1943	0	SER	242	2.237	20.450	38.551	1.00	0.00	0
45	MOTA	1944	CB	SER	242	. 3.752			1.00	0.00	С
	ATOM	1945	OG	SER	242	3.879	16.704	36.680	1.00	0.00	0
	ATOM	1946	H	SER	242	1.582	17.693	35.357	1.00	0.00	Н
	ATOM	1947	HA	SER	242	2.144	17.988	38.161	1.00	0.00	Н
	ATOM	1948	1HB	SER	242	4.483	18.502	37.466	1.00	0.00	н
50	ATOM	1949	2HB	SER	242	3.951	18.545	35.773	1.00	0.00	Н
	ATOM	1950	HG	SER	242	2.944	16.278	36.604	1.00	0.00	H
	ATOM	1951	N	VAL	243	2.292	20.747	36.317	1.00	0.00	N
	ATOM	1952	CA	VAL	243	2.308	22.172	36.473	1.00	0.00	C
	ATOM	1953	C	VAL	243	1.029	22.598				
55								37.118	1.00	0.00	C
55	MOTA	1954	0	VAL	243	1.021	23.439	38.016	1.00	0.00	0
	MOTA	1955	CB	VAL	243	2.446	22.904	35.165	1.00	0.00	С
	MOTA	1956		VAL	243	2.403	24.420	35.439	1.00	0.00	С
	ATOM	1957	CG2	VAL	243	3.745	22.442	34.483	1.00	0.00	С
	MOTA	1958	H	VAL	243	2.282	20.323	35.378	1.00	0.00	Н
60	MOTA	1959	HA	VAL	243	3.156	22.445	37.100	1.00	0.00	Н
	ATOM	1960	HB	VAL	243	1.620	22.615	34.513	1.00	0.00	Н
	ATOM		1HG1		243	2.283	24.593	36.508	1.00	0.00	Н
	ATOM		2HG1		243	3.331	24.877	35.098	1.00	0.00	н
	ATOM		3HG1		243	1.563	24.862	34.903	1.00	0.00	н
65	ATOM		1HG2		243	4.242	21.702	35.110	1.00	0.00	Н
03			2HG2		243	3.510	21.702	33.516	1.00	0.00	
	ATOM										H
	MOTA		3HG2		243	4.404	23.297	34.338	1.00	0.00	H
	MOTA	190/	N ·	wnw	244	-0.089	21.991	36.686	1.00	0.00	N

	ATOM	1968	CA	ALA	244	-1.381	22.364	37.178	1.00	0.00		С
	MOTA	1969	С	ALA	244	-1.464	22.089	38.641	1.00	0.00		С
	MOTA	1970	0	ALA	244	-1.979	22.906	39.397	1.00	0.00		0
	MOTA	1971		ALA	244	-2.522	21.587	36.498	1.00	0.00		С
5	MOTA	1972		ALA	244	-0.015	21.240	35.984	1.00	0.00		H
	MOTA	1973		ALA	244	-1.550	23.426	37.004	1.00	0.00		Н
	MOTA	1974		ALA	244	-2.105	20.896	35.764	1.00	0.00		H
	ATOM	1975		ALA	244	-3.078	21.026	37.249	1.00	0.00		H
10	ATOM	1976		ALA	244	-3.191	22.287	35.997	1.00	0.00	•	Н
10	MOTA	197.7		GLN	245	-0.932	20.945	39.095		0.00		N
	MOTA	.1978		GLN	245 245	~1.081	20.586	40.472	1.00	0.00		C C
	ATOM ATOM	1979 1980		GLN GLN	245	-0.434 -0.974	21.623 22.004	41.326 42.364	1.00	0.00		0
	MOTA	1981		GLN	245	-0.444	19.224	40.788	1.00	0.00		c
15	MOTA	1982	CG	GLN	245	-0.680	18.744	42.219	1.00	0.00		c
15	ATOM	1983	CD	GLN	245	-0.143	17.325	42.312	1.00	0.00		č
	ATOM	1984	OE1		245	0.422	16.805	41.351	1.00	0.00		ŏ
	ATOM	1985	NE2		245	-0.323	16.683	43.496	1.00	0.00		N
	ATOM	1986	Н	GLN	245	-0.416	20.325	38.453	1.00	0.00		Н
20	ATOM	1987	HA	GLN	245	-2.141	20.521	40.715	1.00	0.00		Н
	MOTA	1988	1HB	GLN	245	0.632	19.305	40.637	1.00	0.00		H
	ATOM	1989	2HB	GLN	245	-0.869	18.481	40.113	1.00	0.00		Н
	MOTA	1990	1HG	GLN	245	-1.754	18.779	42.398	1.00	0.00		Н
	MOTA	1991	2HG	GLN	245	-0.140	19.422	42.880	1.00	0.00		Н
25	MOTA	1992	1HE2	GLN	245	0.020	15.719	43.616	1.00	0.00		H
	ATOM	1993			245	-0.802	17.160	44.272	1.00	0.00		H
	ATOM	1994	N	LEU	246	0.738	22.131	40.904	1.00	0.00		N
	MOTA	1995	CA	LEU	246	1.420	23.068	41.744	1.00	0.00		C
20	ATOM	1996	С	LEU	246	0.544	24.255	41.995	1.00	0.00		C
30	MOTA	1997	0	LEU	246	0.235	24.566	43.143	1.00	0.00		0
	ATOM	1998	CB CG	LEU LEU	246	2.728 3.804	23.589 22.505	41.122 40.924	1.00	0.00		C
	ATOM ATOM	1999 2000		LEU	246 246	5.081	23.092	40.304	1.00	0.00		C
	MOTA	2001		LEU	246	4.072	21.740	42.227	1.00	0.00	-	C
35	ATOM	2002	Н	LEU	246	1.136	21.851	39.996	1.00	0.00-		Н
55	ATOM	2003	HA	LEU	246	1.667	22.598	42.696	1.00	0.00		Н
	ATOM	2004		LEU	246	3.141	24.351	41.781	1.00	0.00		Н
	ATOM	2005		LEU	246	2.498	24.012	40.144	1.00	0.00		Н
	ATOM	2006	HG ·	LEU	246	3.451	21.712	40.263	1.00	0.00		Н
40	MOTA	2007	1HD1	LEU	246	4.946	24.160	40.137	1.00	0.00		H
	MOTA	2008			246	5.920	22.933	40.981	1.00	0.00		Н
	MOTA	2009			246	5.283	22.598	39.353	1.00	0.00		H
	MOTA	2010			246	3.435	22.135	43.018	1.00	0.00		H
4.5	ATOM	2011			246	3.853	20.682	42.079	1.00	0.00		H
45	ATOM	2012			246	5.117	21.858	42.510	1.00	0.00		Н
	ATOM	2013	N	GLN	247	0.093	24.944	40.933	1.00	0.00		N
	ATOM	2014 2015	CA C	GLN GLN	247 247	-0.684 -2.052	26.129 25.791	41.168 41.680	1.00	0.00		C
	ATOM ATOM	2015	Ö	GLN	247	-2.532	26.370	42.654	1.00	0.00		Ö
50	MOTA	2017	CB	GLN	247	-0.881	26.986	39.907	1.00	0.00		c
50	ATOM	2018	CG	GLN	247	-1.694	26.296	38.811	1.00	0.00		c
	ATOM	2019	CD	GLN	247	-1.848	27.279	37.660	1.00	0.00		Č
	ATOM	2020		GLN	247	-2.517	26.995	36.668	1.00	0.00		ō
	MOTA	2021		GLN	247	-1.214	28.474	37.797	1.00	0.00		N
55	MOTA	2022	Н	GLN	247	0.299	24.630	39.974	1.00	0.00		H
	MOTA	2023	HA	GLN	247	-0.207	26.775	41.904	1.00	0.00		Н
	MOTA	2024		GLN	247	0.100	27.223	39.495	1.00	0.00		H
	MOTA	2025		GLN	247	-1.407	27.897	40.189	1.00	0.00		H
~ ^	ATOM	2026		GLN	247	-2.662	26.030	39.233	1.00	0.00		H
60	ATOM	2027		GLN	247	-1.144	25.408	38.499	1.00	0.00		H
	ATOM	2028			247	-1.284	29.182	37.052	1.00	0.00		Н
•	ATOM	2029			247	-0.663	28.670 24.812	38.645	1.00	0.00		H
	MOTA	2030	N CA	ALA ALA	248 248	-2.695 -4.067	24.812	41.023 41.207	1.00	0.00		N
65	ATOM ATOM	2031 2032	C	ALA	248	-4.356	23.822	42.539	1.00	0.00		C C
U	ATOM	2032	0	ALA	248	-5.467	24.009	43.033	1.00	0.00		0
	ATOM	2034	СВ	ALA	248	-4.564	23.434	40.146	1.00	0.00		č
	MOTA	2035	Н	ALA	248	-2.153	24.285	40.322	1.00	0.00		н

	ATOM	2036	HA	ALA	248 .	-4.686	25.323	41.108	1.00	0.00		Н
	MOTA	2037	1HB	ALA	248	-3.755	23.209	39.450	1.00	0.00		H
	MOTA	2038	2HB	ALA	248	-4.887	22.514	40.634	1.00	0.00		H
	MOTA	2039	3HB	ALA	248	-5.401	23.869	39.600	1.00	0.00		H
5	MOTA	2040	N	TRP	249	-3.392	23.071	43.125	1.00	0.00		N
	ATOM	2041	CA	TRP	249	-3.588	22.300	44.332	1.00	0.00		С
	MOTA	2042	С	TRP	249	-4.401	23.052	45.341	1.00	0.00		С
	MOTA	2043	0	TRP	249	-4.442	24.282	45.333	1.00	0.00		0
	ATOM	2044	CB	TRP	249	-2.297	21.836	45.028	1.00	0.00		. С
10	ATOM	2045	CG	TRP	249	2.564	20.972	46.241	1.00	0.00		С
	ATOM	2046	CD1		249	-2.739	21.331	47.546	1.00	0.00		C
	MOTA	2047	CD2		249	-2.704	19.543	46.192	1.00	0.00		С
	ATOM	2048	NE1		249	-2.978	20.216	48.314	1.00	0.00		N
15	MOTA	2049	CE2	TRP	249	-2.959	19.109	47.493	1.00	0.00		C
13	ATOM ATOM	2050 2051	CE3	TRP TRP	249 249	-2.628 -3.143	18.666 17.783	45.150 47.771	1.00	0.00		C
	ATOM	2052	CZ3		249	-2.812	17.783	45.433	1.00	0.00		C
	ATOM .	2053	CH2	TRP	249	-3.064	16.898	46.718	1.00	0.00		C
	ATOM	2054	H	TRP	249	-2.462	23.048	42.682	1.00	0.00		Н
20	ATOM	2055	HA	TRP	249	-4.108	21.363	44.130	1.00	0.00	,	H
	ATOM	2056		TRP	249	-1.685	22.666	45.379	1.00	0.00		H
	ATOM	2057		TRP	249	-1.654	21.245	44.374	1.00	0.00		Н
	ATOM	2058		TRP	249	-2.695	22.352	47.924	1.00	0.00		Н
	ATOM	2059	HE1	TRP	249	-3.143	20.209	49.330	1.00	0.00		Н
25	ATOM	2060	HE3	TRP	249	-2.429	19.008	44.134	1.00	0.00		Н
	ATOM	2061	HZ2	TRP	249	-3.344	17.439	48.785	1.00	0.00		Н
	ATOM	2062	HZ3	TRP	249	-2.757	16.600	44.625	1.00	0.00		H
	MOTA	2063	HH2	TRP	249	-3.203	15.833	46.904	1.00	0.00		Н
	MOTA	2064	N	TRP	250	-5.066	22.282	46.230	1.00	0.00		N
30	ATOM	2065	CA	TRP	250	-5.997	22.750	47.219	1.00	0.00		С
	ATOM	2066	C	TRP	250	-5.505	24.012	47.835	1.00	0.00		С
	ATOM	2067	0	TRP	250	-4.711	24.006	48.775	1.00	0.00		0
	ATOM	2068	CB	TRP	250	-6.252	21.725	48.339	1.00	0.00		C
35	ATOM	2069	CG	TRP TRP	250 250	-7.228 -7.802	22.179	49.396	1.00	0.00		C
22	MOTA MOTA	2070 2071		TRP	250 250	-7.744	23.402 21.323	49.587 50.426	1.00	0.00		C
	ATOM	2071		TRP	250	-8.646	23.361	50.420	1.00	0.00		N
	MOTA	2072		TRP	250	-8.620	22.086	51.197	1.00	0.00		C
	ATOM	2074		TRP	250	-7.510	20.007	50.703	1.00	0.00		c
40	ATOM	2075		TRP	250	-9.280	21.540	52.262	1.00	0.00		č
	ATOM	2076		TRP	250	-8.174	19.460	51.779	1.00	0.00		c
	ATOM	2077		TRP	250	-9.043	20.212	52.543	1.00	0.00		С
	MOTA	2078	H	TRP	250	-4.889	21.267	46.195	1.00	0.00		Ĥ
	MOTA	2079	HA	TRP	250	-6.968	22.940	46.763	1.00	0.00		Н
45	ATOM	2080		TRP	250	-5.303	21.518	48.834	1.00	0.00		H
	ATOM	2081		TRP	250	-6.655	20.819	47.886	1.00	0.00		H
	MOTA	2082		TRP	250	-7.618	24.281	48.970	1.00	0.00		н
•	MOTA	2083		TRP	250	-9.203	24.149	51.031	1.00	0.00		Н
50	ATOM	2084		TRP	250	-6.825	19.413	50.097	1.00	0.00		н
50	ATOM	2085		TRP	250	-9.967 -8.000	22.132	52.865	1.00	0.00		Н
	MOTA	2086		TRP	250 250	-8.009 -9.552	18.412 19.745	52.031	1.00 1.00	0.00		Н
	MOTA MOTA	2087 2088	nnz N	TRP TYR	250 251	-5.973	25.140	53.386 47.277	1.00	0.00		H
	ATOM	2089		TYR	251	-5.632	26.446	47.746	1.00	0.00		N C
55	ATOM	2090		TYR	251	-6.001	27.329	46.598	1.00	0.00		c
55	ATOM	2091	ŏ	TYR	251	-6.391	26.827	45.546	1.00	0.00		ŏ
	ATOM	2092		TYR	251	-4.122	26.588	48.038	1.00	0.00		č
	ATOM	2093		TYR		-3.855	27.870	48.753	1.00	0.00		Ċ
	ATOM	2094		TYR		-4.004	27.935	50.120	1.00	0.00		C
60	ATOM	2095		TYR	251	-3.457	29.002	48.078	1.00	0.00		С
	ATOM	2096		TYR	251	-3.762	29.104	50.802	1.00	0.00		С
	MOTA	2097		TYR	251	-3.213	30.175	48.753	1.00	0.00		С
	MOTA	2098		TYR		-3.365	30.227	50.118	1.00	0.00		С
	ATOM	2099		TYR		-3.116	31.430	50.814	1.00	0.00		0
65	ATOM	2100		TYR		-6.609	25.060	46.471	1.00	0.00		Н
	ATOM	2101		TYR		-6.191	26.697	48.646	1.00	0.00		н
	MOTA	2102		TYR		-3.557	26.581	47.105	1.00	0.00		Н
	MOTA	2103	21115	TYR	251	-3.780	25.761	48.660	1.00	0.00		Н

	MOTA	2104	HD1		251	-4.3		27.047	50.669	1.00	0.00		H
	ATOM	2105			251	-3.3		28.968	46.995	1.00	0.00		H
	MOTA	2106	HE1	TYR	251	-3.8		29.139	51.884	1.00	0.00		Н
	MOTA	2107	HE2	TYR	251	-2.8	399	31.063	48.205	1.00	0.00		Н
5	MOTA	2108	HH	TYR	251	-2.2	228	31.838	50.488	1.00	0.00		H
	MOTA	2109	N	LYS	252	-5.9	927	28.662	46.765	1.00	0.00		N
	ATOM	2110	CA	LYS	252	-6.2	222	29.485	45.633	1.00	0.00		С
	ATOM	2111	C	LYS	252	-5.2		29.112	44.610	1.00	0.00		Ċ
	ATOM	2112	ŏ	LYS	252	-5.5		28.799	43.465	1.00	0.00		ŏ
10	MOTA	2113	CB	LYS	252	-6.0		30.989	45.931	1.00	0.00		C
10													
	ATOM	2114	CG	LYS	252	-7.:		31.532	46.869	1.00	0.00		С
	ATOM	2115	CD	LYS	252	-7.0		30.987	48.297	1.00	0.00		C
	ATOM	2116	CE	LYS	252	-6.0		31.707	49.174	1.00	0.00		С
	MOTA	2117	NZ	LYS	252	-6.0		31.160	50.549	1.00	0.00		N
15	ATOM	2118	H	LYS	252	-5.		29.073	47.672	1.00	0.00		Н
	ATOM	2119	HA	LYS	252	-7.3	240 .	29.219	45.350	1.00	0.00		H
	ATOM	2120	1HB	LYS	252	-6.	133	31.616	45.041	1.00	0.00		Н
	ATOM	2121	2HB	LYS	252	-5.	133	31.250	46.405	1.00	0.00		H
	ATOM	2122	1HG	LYS	252	-8.3	134	31.258	46.464	1.00	0.00		Н
20	ATOM	2123		LYS	252	-7.		32.615	46.920	1.00	0.00		Н
	ATOM	2124		LYS	252	-6.		29.934	48.350	1.00	0.00		Н
	ATOM	2125		LYS	252	-8.		31.057	48.848	1.00	0.00		Н
	ATOM	2126		LYS	252	-6.		32.773	49.211	1.00	0.00		Н
	ATOM	2127		LYS	252	-5.		31.569	48.765	1.00	0.00		Н
25	ATOM	2128		LYS	252	-6.°		30.416	50.604	1.00	0.00		
25									50.789				H
	MOTA	2129		LYS	252	-5.		30.771		1.00	0.00		H
	ATOM	2130		LYS	252	-6.		31.911	51.211	1.00	0.00		H
	ATOM	2131	N	ALA	253	-3.		29.121	45.036	1.00	0.00		N
20	ATOM	2132	CA	ALA	253	-2.		28.699	44.224	1.00	0.00		C
30	MOTA	2133	С	ALA	253	-1.		28.363	45.213	1.00	0.00		С
	MOTA	2134	0	ALA	253	-1.		29.233	45.965	1.00	0.00		0
	MOTA	2135	CB	ALA	253	-2.		29.807	43.315	1.00	0.00		С
	MOTA	2136	H	ALA	253	3.		29.447	45.993	1.00	0.00		Н
	MOTA	2137	HA	ALA	253	-3.		27.835	43.617	1.00	0.00		H
35	. ATOM	2138		ALA-	253	-2.	837	30.724	43.470	1.00	0.00		Н
	MOTA	2139	2HB	ALA	253	-1.	221	29.982	43.557	1.00	0.00		H
	MOTA	2140	3HB	ALA	253	-2.	355	29.499	42.272	1.00	0.00		Н
	MOTA	2141	N	ASP	254	-1.	325	27.092	45.273	1.00	0.00		N
	MOTA	2142	CA	ASP	254	-0.	364	26.857	46.306	1.00	0.00		С
40	ATOM	2143	С	ASP	254	0.	945	26.444	45.725	1.00	0.00		С
	ATOM	2144	0	ASP	254	1.	185	25.290	45.380	1.00	0.00		0
	ATOM	2145	CB	ASP	254	-0.	826	25.827	47.354	1.00	0.00		С
-	MOTA	2146	CG	ASP	254	-1.	081	24.488	46.688	1.00	0.00		С
	ATOM	2147		ASP	254	-1.		24.467	45.453	1.00	0.00		O
45	ATOM	2148		ASP	254		024	23.463	47.416	1.00	0:00		ō
	ATOM	2149		ASP	254		649	26.354	44.631	1.00	0.00		Н
	ATOM	2150		ASP	254		204	27.758	46.897	1.00	0.00		Н
	ATOM	2151		ASP	254		746	26.166	47.829	1.00	0.00		H
	ATOM	2152		ASP	254		058	25.702	48.117	1.00	0.00		Н
50	ATOM	2153	N	PRO	255		799	27.413	45.598	1.00	0.00		Ν.
30	ATOM	2154	CA	PRO	255		131	27.150	45.144	1.00	0.00		C
			C	PRO	255		913	26.561	46.271	1.00	0.00		
	ATOM	2155											C
	ATOM	2156		PRO	255		002	26.041	46.034	1.00	0.00		0
	ATOM	2157	CB	PRO	255		682	28.485	44.632	1.00	0.00		С
55	ATOM	2158		PRO	255		680	29.543	45.131	1.00	0.00		C
	ATOM	2159		PRO	255		368	28.760	45.269	1.00	0.00		.C.
	MOTA	2160		PRO	255		084	26.448	44.310	1.00	0.00		Н
	ATOM	2161		PRO	255		704	28.380	43.547	1.00	0.00		Н
	ATOM	2162		PRO	255		670	28.570	45.083	1.00	0.00	٠.	. Н
60	MOTA	2163		PRO	255		587	30.360	44.416	1.00	0.00		Н
	ATOM	2164	2HG	PRO	255		999	29.964	46.083	1.00	0.00		H
	MOTA	2165	1HD	PRO	255	0.	737	29.170	46.057	1.00	0.00		Н
	ATOM	2166	2HD	PRO	255	0.	795	28.769	44.341	1.00	0.00		H
	MOTA	2167	N	ASN	256	3.	382	26.645	47.505	1.00	0.00		N
65	ATOM	2168		ASN	256	4.	103	26.175	48.650	1.00	0.00		С
	ATOM	2169		ASN	256	4.	282	24.693	48.576	1.00	0.00		С
	ATOM	2170		ASN	256		364	24.186	48.865	1.00	0.00		0
	ATOM	2171		ASN	256	3.	409	26.489	49.988	1.00	0.00		С

	MOTA	2172	CG	ASN	256	2.086	25.743	50.031	1.00	0.00	C
	ATOM	2173		ASN	256	1.248	25.897	49.145	1.00	0.00	Ċ
	ATOM	2174		ASN	256		24.904			0.00	N
						1.893		51.084	1.00		
_	ATOM	2175	H	ASN	256	2.444	27.052	47.627	1.00	0.00	H
5	MOTA	2176	HA	ASN	256	5.086	26.643	48.695	1.00	0.00	H
	MOTA	2177		ASN	256	3.241	27.564	50.046	1.00	0.00	· H
	MOTA		2HB	ASN	256	4.058	26.160	50.799	1.00	0.00	H
	ATOM	2179	1HD2	ASN	256	1.017	24.367	51.161	1.00	0.00	H
	MOTA	2180	2HD2	ASN	256	2.622	24.805	51.804	1.00	0.00	H
10	MOTA	2181	N	ASP	257	3.235	23.948	48.173	1.00	0.00	. N
	ATOM	2182	CA	ASP	257	3.373	22.521	48.199	1.00	0.00	
	ATOM	2183									
			C	ASP	257	4.172	22.062	47.023	1.00	0.00	
	MOTA	2184	0	ASP	257	4.248	22.734	45.995	1.00	0.00	C
	MOTA	2185	CB	ASP	257	2.036	21.752	48.210	1.00	0.00	C
15	ATOM	2186	CG	ASP	257	1.274	22.042	46.925	1:00	0.00	C
	ATOM	2187	OD1	ASP	257	1.721	22.934	46.156	1.00	0.00	C
	ATOM	2188	OD2	ASP	257	0.230	21.375	46.697	1.00	0.00	C
	MOTA	2189	Н	ASP	257	2.360	24.390	47.855	1.00	0.00	H
	ATOM	2190	HA	ASP	257	3.880	22.211	49.112	1.00	0.00	H
20	ATOM	2191		ASP	257	1.440	22.071	49.065	1.00	0.00	
20	ATOM	2192									H
				ASP	257	2.233	20.682	48.282	1.00	0.00	H
	ATOM	2193	N	PHE	258	4.823	20.892	47.190	1.00	0.00	N
	ATOM	2194	CA	PHE	258	5.592	20.266	46.156	1.00	0.00	C
	MOTA	2195	С	PHE	258	4.993	18.915	45.937	1.00	0.00	C
25	MOTA	2196	0	PHE	258	4.476	18.303	46.870	1.00	0.00	C
	ATOM	2197	CB	PHE	258	7.071	20.059	46.515	1.00	0.00	C
	MOTA	2198	CG	PHE	- 258	7.636	19.177	45.458	1.00	0.00	Ċ
	MOTA	2199		PHE	258	7.941	19.671	44.211	1.00	0.00	Č
	ATOM	2200		PHE	258	7.855	17.846	45.722	1.00	0.00	Č
30	ATOM	2201		PHE	258						
20						8.460	18.842	43.243	1.00	0.00	C
	MOTA	2202		PHE	258	8.375	17.016	44.760	1.00	0.00	C
	MOTA	2203	CZ	PHE	258	8.679	17.514	43.517	1.00	0.00	, c
	MOTA	2204	H	PHE	258	4.764	20.425	48.106	1.00	0.00	· E
	ATOM	2205	HA	PHE	258·	5.505	20.902	45.275	1.00	0.00	H
35-	MOTA	2206	1HB	PHE	258	7.082	19.591	47.499	1.00	0.00	H
	MOTA	2207	2HB	PHE	258	7.525	21.049	46.518	1.00	0.00	F
	MOTA	2208	HD1	PHE	258	7.770	20.724	43.988	1.00	0.00	
	ATOM	2209		. PHE	258	7.613	17.445	46.706	1.00	0.00	·
	ATOM	2210		PHE	258	8.697	19.240	42.256	1.00	0.00	H
40	ATOM	2211		PHE	258	8.546	15.962				
70		2212						44.982	1.00	0.00	H
	ATOM		HZ	PHE	258	9.092	16.858	42.750	1.00	0.00	H
	ATOM	2213	N	THR	259	5.027	18.416	44.685	1.00	0.00	I.
	ATOM	2214	CA	THR	259	4.421	17.142	44.438	1.00	0.00	C
	MOTA	2215	С	THR	259	5.332	16.310	43.599	1.00	0.00	C
45	MOTA	2216	٥.	THR	259	6.119	16.829	42.810	1.00	0.00	C
	ATOM	2217	CB	THR	259	3.119	17.232	43.697	1.00	0.00	C
	ATOM	2218	OG1	THR	259	2.494	15.958	43.645	1.00	0.00	
	ATOM	2219		THR	259	3.392	17.757	42.279	1.00	0.00	Ċ
	ATOM	2220	Н	THR	259	5.479	18.939	43.922	1.00	0.00	H
50	ATOM	2221	HA	THR	259	4.238	16.635	45.385	1.00		
50					259					0.00	H
	ATOM	2222	HB	THR		2.458	17.915	44.229	1.00	0.00	H
	ATOM	2223		THR	.259	1.471	16.077		1.00	0.00	H
	MOTA		1HG2		259	4.460	17.935	42.156	1.00	0.00	H
	MOTA	2225	2HG2	THR	259	3.061	17.019	41.547	1.00	0.00	H
55	ATOM	2226	3HG2	THR	259	2.848	18.689	42.125	1.00	0.00	H
	MOTA	2227	N	TYR	260	5.261	14.975	43.780	1.00	0.00	N
	ATOM	2228	CA	TYR	260	6.022	14.083	42.957	1.00	0.00	
	ATOM	2229	С	TYR	260	5.075	13.034	42.471	1.00	0.00	Ċ
	ATOM	2230	ŏ	TYR	260	4.032	12.797	43.079	1.00	0.00	
60	ATOM	2231	CB	TYR	260	7.210	13.401		1.00		C
00								43.665		0.00	C
	ATOM	2232	CG	TYR	260	6.732		44.769	1.00	0.00	C
	ATOM	2233		TYR	260	6.376	13.049	45.988	1.00	0.00	C
	ATOM	2234		TYR	260	6.661	11:158	44.588	1.00	0.00	C
	MOTA	2235		TYR	260	5.945	12.233	47.007	1.00	0.00	C
65	ATOM	2236	CE2	TYR	260	6.231	10.336	45.603	1.00	0.00	C
	MOTA	2237	CZ	TYR	260	5.872	10.874	46.815	1.00	0.00	C
	ATOM	2238	ОН	TYR	260	5.431	10.033	47.859	1.00	0.00	Ċ
	MOTA	2239		TYR	260	4.652	14.592	44.518	1.00	0.00	н
											11

WO 01/83717 PCT/CA01/00607

		0040		0.00							
	ATOM	2240 HA	TYR	- 260	6.427	14.679	42.139	1.00	0.00		H
	ATOM	2241 1HB	TYR	260	7.884	14.144	44.091	1.00	0.00		H
	ATOM	2242 2HB	TYR	260	7.778	12.789	42.963	1.00	0.00		Н
	ATOM		TYR	260	6.436	14.125	46.147	1.00	0.00		H
_											
5	MOTA		TYR	260	6.948	10.725	43.629	1.00	0.00		H
	MOTA	2245 HE1	TYR	260	5.661	12.663	47.967	1.00	0.00		H
	MOTA	2246 HE2	TYR	260	6.175	9.258	45.446	1.00	0.00		н
	MOTA	2247 HH	TYR	260	4.745	10.536	48.439	1.00	0.00		Н
	MOTA	2248 N	GLU	261	5.408	12.390	41.336	1.00	0.00		Ŋ
10	MOTA	2249 CA	GLU	261	4.521	11.412	40.775	1.00	0.00		С
	MOTA	2250 C	GLU	261	5.158	10.065	40.886	1.00	0.00		С
	ATOM	2251 0	GLU	261	6.286	9.925	41.356	1.00	0.00		ō
		•									
	MOTA	2252 · CB	GLU	261	4.219	11.655	39.286	1.00	0.00		С
	MOTA	2253 CG	GLU	261	3.389	12.917	39.035	1.00	0.00		С
15	MOTA	2254 CD	GLU	261	4.257	14.127	39.348	1.00	0.00		C
	ATOM		GLU	261	5.409	14.181	38.841	1.00	0.00		Ō
	MOTA		GLU	261	3.779	15.013	40.106	1.00	0.00		0
	MOTA	2257 H	GLU	261	6.301	12.600	40.869	1.00	0.00		H
	ATOM	2258 HA	GLU	261	3.582	11.430	41.329	1.00	0.00		н
20	ATOM	2259 1HB	GLU	261	3.659	10.843	38.821	1.00	0.00		Н
20											
	MOTA	2260 2HB	GLU	261	5.116	11.772	38.678	1.00	0.00		H
	MOTA	2261 1HG	GLU	261	2.518	12.887	39.689	1.00	0.00		Н
	MOTA	2262 2HG	GLU	261	3.084	12.921	37.988	1.00	0.00		H
	ATOM	2263 N	ARG	262	4.409	9.024	40.474	1.00	0.00		N
25											
23	MOTA	2264 CA	ARG	262	4.912	7.682	40.478	1.00	0.00		C
	MOTA	2265 C	ARG	262	5.836	7.571	39.313	1.00	0.00		C
	ATOM	2266 O	ARG	262	5.746	8.344	38.359	1.00	0.00		0
	ATOM	2267 CB	ARG	262	3.821	6.611	40.302	1.00	0.00		Ċ
							41.475				-
~~	MOTA		ARG	262	2.842	6.530		1.00	0.00		С
30	MOTA	2269 CD	ARG	262	1.728	5.502	41.266	1.00	0.00		С
	MOTA	2270 NE	ARG	262	0.894	5.979	40.127	1.00	0.00		N
	ATOM	2271 CZ	ARG	262	-0.207	5.271	39.738	1.00	0.00		С
•	ATOM		ARG	262	-0.549	4.125	40.395	1.00	0.00		
											N
	MOTA		ARG	262	-0.967	5.711	38.692	1.00	0.00		N
35	ATOM	2274 Н	ARG	262	3.447	9.197	40.146	1.00	0.00-		Н
•	ATOM	2275 HA	ARG	262	5.428	7.546	41.428	1.00	0.00		H
	ATOM	2276 1HB	ARG	262	4.212	5.599	40.193	1.00	0.00		н
	MOTA	2277 2HB	ARG	262	3.193	6.763	39.423	1.00	0.00		Н
	ATOM	2278 1HG	ARG	262	2.330	7.471	41.677	1.00	0.00		H
40	ATOM	2279 2HG	ARG	262	3.316	6.252	42.416	1.00	0.00		H-
	ATOM	2280 1HD	ARG	262	1.153	5.454	42.191	1.00	0.00		н
	ATOM	2281 2HD	ARG	262	2.205	4.548	41.041	1.00	0.00		H
	MOTA	2282 HE	ARG	262	1.148	6.845	39.631	1.00	0.00		H
	ATOM	2283 1HH1	ARG	262	0.023	3.793	41.184	1.00	0.00		Н
45	ATOM	2284 2HH1	ARG	262	-1.379	3.591	40.101	1.00	0.00		,H
		•								•	
	MOTA	2285 1HH2		262	-0.709	6.576	38.196	1.00	0.00		H
	MOTA	2286 2HH2	ARG	262	-1.797	5.177	38.398	1.00	0.00		H
	ATOM	2287 N	ARG	263	6.773	6.608	39.364	1.00	0.00		N
	ATOM	2288 CA	ARG	263	7.701	6.525	38.280	1.00	0.00		С
50		2289 C	ARG	263							
30	ATOM				8.128	5.105	38.141	1.00	0.00		C
	MOTA	2290 O	ARG	263	8.055	4.322	39.086	1.00	0.00		0
	MOTA	2291 CB	ARG	263	8.985	7.313	38.573	1.00	0.00		С
	MOTA	2292 CG	ARG	263	8.733	8.781	38.921	1.00	0.00		С
	ATOM	2293 CD	ARG	263	9.924	9.441	39.615	1.00	0.00		Č
<i>E E</i>											С
55	MOTA	2294 NE	ARG	263	10.023	8.832	40.972	1.00	0.00		N
	MOTA	2295 CZ	ARG	263	9.671	9.547	42.081	1.00	0.00		С
	ATOM	2296 NH1	ARG	263	9.233	10.835	41.951	1.00	0.00		N
	ATOM		ARG	263	9.768	8.978	43.318	1.00	0.00		N
	ATOM	2298 Н	ARG	263	6.820	5.952	40.157	1.00	0.00		H
60	MOTA	2299 HA	ARG	263	7.198	6.866	37.375	1.00	0.00		Н
	ATOM	2300 1HB	ARG	263	9.682	7.333	37.735	1.00	0.00		H
	ATOM	2301 2HB	ARG	263	9.557	6.915	39.411	1.00	0.00		н
	MOTA	2302 1HG	ARG	263	7.884	8.918	39.591	1.00	0.00		H
	MOTA	2303 2HG	ARG	263	8.522	9.394	38.045	1.00	0.00		H
65	MOTA	2304 1HD	ARG	263	9.709	10.508	39.660	1.00	0.00		H
	ATOM	2305 2HD	ARG	263	10.801	9.226	39.005	1.00	0.00		H
	ATOM	2306 HE	ARG	263	10.359	7.863	41.074	1.00	0.00		
											H
	MOTA	2307 1нн1	AKG	263	9.168	11.265	41.017	1.00	0.00		Н

	ATOM	2308 2HH1		263	8.967	11.375	42.786	1.00	0.00		H	
	MOTA MOTA	2309 1HH2 2310 2HH2		263 263	10.106 9.502	8.010 ₂ 9.516	43.414 44.154	1.00	0.00		H H	
	ATOM	2310 2MH2 2311 N	LYS	264	8.570	4.726	36.929	1.00	0.00		N	
5	ATOM	2312 CA	LYS	264	9.148	3.428	36.808	1.00	0.00		C	
	MOTA	2313 C	LYS	264	10.578	3.670	37.133	1.00	0.00		С	
	MOTA	2314 0	LYS	264	11.396	3.925	36.250	1.00	0.00		0	
	MOTA	2315 CB	LYS	264	9.070	2.837	35.390	1.00	0.00		С	
10	ATOM	2316 CG 2317 CD	LYS LYS	264 264	7.655	2.407	35.004 35.923	1.00	0.00		С	
10	MOTA MOTA	2317 CD 2318 CE	LYS	264	7.088 5.672	1.325 0.882	35.551	1.00	0.00	-	C C	
	ATOM	2319 NZ	LYS	264	5.215	-0.179	36.476	1.00	0.00		N	
	ATOM	2320 H	LYS	264	8.493	5.352	36.115	1.00	0.00	•	H	
	MOTA	2321 HA	LYS	264	8.685	2.725	37.501	1.00	0.00		H	
15	ATOM	2322 1HB	LYS	264	9.695	1.953	35.265	1.00	0.00		Н	
	MOTA MOTA	2323 2HB 2324 1HG	LYS LYS	264 264	9.389	3.540	34.620 33.995	1.00	0.00		H	
	ATOM	2325 2HG	LYS	264	7.594 6.937	1.999 3.226	35.035	1.00	0.00		H H	
	ATOM	2326 1HD	LYS	264	7.021	1.627	36.968	1.00	0.00		Н	
20	MOTA	2327 2HD	LYS	264	7.675	0.406	35.933	1.00	0.00		Н	
	ATOM	2328 1HE	LYS	264	5.658	0.493	34.532	1.00	0.00		Н	
	ATOM	2329 2HE	LYS	264	4.988	1.728	35.616	1.00	0.00		Н	
	ATOM	2330 1HZ	LYS	264	5.956	-0.379 0.136	37.162	1.00	0.00		H	
25	ATOM ATOM	2331 2HZ 2332 3HZ	LYS LYS	264 264	4.367 5.003	-1.033	36.968 35.941	1.00	0.00		H H	
23	MOTA	2333 N	GLU	265	10.901	3.614	38.438	1.00	0.00		N	
	MOTA	2334 CA	GLU	265	12.232	3.911	38.861	1.00	0.00		С	
	MOTA	2335 C	GLU	265	12.640	2.838	39.810	1.00	0.00		С	
-00	MOTA	2336 0	GLU	265	12.170	1.706	39.718	1.00	0.00		0	
30	ATOM	2337 CB	GLU	265	12.346	5.273	39.569	1.00	0.00		C	
	ATOM ATOM	2338 CG 2339 CD	GLU GLU	265 265	13.781 14.355	5.779 6.111	39.744 38.376	1.00	0.00		C C	
	ATOM		GLU	265	13.820	5.593	37.362	1.00	0.00		ŏ	
	ATOM	2341 OE2		265	15.347	6.890	38.332	1.00	0.00		ō	
35	MOTA	2342 H	GLU.	265	10.186	. 3.356	39.133	1.00	0.00		H	
	MOTA	2343 HA	GLU	265	12.857	3.919	37.968	1.00	0.00		H	
	ATOM	2344 1HB	GLU	265	11.906	5.179	40.561 38.977	1.00	0.00		Н	
	MOTA MOTA	2345 2HB 2346 1HG	GLU	265 265	11.805 14.374	6.011 4.997	40.219	1.00	0.00		H H	
40	ATOM	2347 2HG	GLU	265	13.766	6.671	40.370	1.00	0.00		н	
	ATOM	2348 N	SER	266	13.547	3.167	40.747	1.00	0.00		N	
	MOTA	2349 CA	SER	266	14.033	2.159	41.627	1.00	0.00		С	
	ATOM	2350 C	SER	266	14.768	1.245	40.725	1.00	0.00		C	
45	ATOM	2351 O 2352 CB	SER	266 266	15.774 12.920	1.622 1.371	40.125 42.340	1.00	0.00		0	
43	ATOM ATOM	2352 CB 2353 OG	SER SER	266	12.320	2.227	43.218	1.00	0.00		С 0	
	ATOM	2354 H	SER	266	13.885	4.136	40.826	1.00	0.00		Н	
	ATOM	2355 HA	SER	266	14.684	2.585	42.389	1.00	0.00		Н	
	ATOM	2356 1HB	SER	266	13.352	0.554	42.917	1.00	0.00		H	
50	ATOM	2357 2HB	SER	266	12.227	0.957	41.607	1.00	0.00		H	
	MOTA MOTA	2358 HG 2359 N	SER ALA	266 267	12.615 14.271	3.170 0.007	43.190 40.598	1.00	0.00		H	
	ATOM	2360 CA	ALA	267	14.900	-0.876	39.675	1.00	0.00		C	
	ATOM	2361 C	ALA	267	14.689	-0.281	38.319	1.00	0.00		c	
55	ATOM	2362 O	ALA	267	15.627	-0.183	37.530	1.00	0.00		0	
	MOTA	2363 CB	ALA	267	14.283	-2.286	39.676	1.00	0.00		С	
	MOTA	2364 H	ALA	267	13.457	-0.296	41.152	1.00	0.00		Н	
	ATOM	2365 HA	ALA	267 267	15.952	-0.911 -2.326	39.957	1.00	0.00		Н	•
60	MOTA MOTA	2366 1HB 2367 2HB	ALA ALA	267 267	13.469 13.896	-2.526	40.400 38.682	1.00	0.00		H H	
	ATOM	2368 3HB	ALA	267	15.045	-3.016	39.945	1.00	0.00		Н	
	ATOM	2369 N	ALA	268	13.439	0.145	38.027	1.00	0.00		N	
	MOTA	2370 CA	ALA	268	13.096	0.696	36.748	1.00	0.00		С	
	MOTA	2371 C	ALA	268	12.964	-0.484	35.852	1.00	0.00		С	
65	ATOM	2372 O	ALA	268	12.531	-1.550	36.284	1.00	0.00		0	
	MOTA MOTA	2373 CB 2374 H	ALA ALA	268 268	14.139 12.707	1.664 0.071	36.163 38.748	1.00	0.00		C H	
	ATOM	2375 HA	ALA	268	12.159	1.226	36.917	1.00	0.00		Н	

С

WO 01/83717

ATOM 2376 1HB ALA 268 14.977 1.756 36.853 1.00 0.00 ATOM 2378 3HB ALA 268 13.683 2.642 36.012 1.00 0.00 ATOM 2378 3HB ALA 268 13.683 2.642 36.012 1.00 0.00 ATOM 2381 C TWR 269 13.332 -0.332 34.568 1.00 0.00 ATOM 2381 C TWR 269 13.332 -1.887 33.563 1.00 0.00 ATOM 2382 C TWR 269 14.732 -1.897 33.563 1.00 0.00 ATOM 2382 C TWR 269 15.522 -1.202 32.926 1.00 0.00 ATOM 2385 CD TWR 269 15.522 -1.202 32.926 1.00 0.00 ATOM 2385 CD TWR 269 15.522 -1.202 32.926 1.00 0.00 ATOM 2385 CD TWR 269 10.355 -2.032 32.926 1.00 0.00 ATOM 2385 CD TWR 269 10.355 -2.032 32.926 1.00 0.00 ATOM 2386 CD TWR 269 10.355 -2.032 32.926 1.00 0.00 ATOM 2386 CD TWR 269 10.355 -2.032 32.757 1.00 0.00 ATOM 2386 CD TWR 269 10.355 -2.032 32.757 1.00 0.00 ATOM 2386 CD TWR 269 9.019 -1.800 32.990 1.00 0.00 ATOM 2386 CZ TWR 269 9.019 -1.800 32.990 1.00 0.00 ATOM 2388 CZ TWR 269 9.019 -1.800 32.990 1.00 0.00 ATOM 2388 CZ TWR 269 9.419 0.541 32.907 1.00 0.00 ATOM 2389 HZ TWR 269 9.419 0.541 32.907 1.00 0.00 ATOM 2389 HZ TWR 269 13.621 0.586 34.202 1.00 0.00 ATOM 2393 HB TWR 269 13.621 0.586 34.202 1.00 0.00 ATOM 2393 HB TWR 269 13.621 0.586 34.202 1.00 0.00 ATOM 2393 HB TWR 269 12.712 -2.228 34.261 1.00 0.00 ATOM 2393 HB TWR 269 12.712 -2.228 34.261 1.00 0.00 ATOM 2393 HB TWR 269 12.702 -0.380 31.930 1.00 0.00 ATOM 2393 HB TWR 269 13.621 0.586 32.700 1.00 0.00 ATOM 2393 HB TWR 269 12.702 -0.380 31.930 1.00 0.00 ATOM 2394 HB TWR 269 10.722 -3.056 32.700 1.00 0.00 ATOM 2395 HB TWR 269 10.722 -3.056 32.700 1.00 0.00 ATOM 2395 HB TWR 269 10.722 -3.056 32.700 1.00 0.00 ATOM 2395 HB TWR 269 10.722 -3.056 32.700 1.00 0.00 ATOM 2395 HB TWR 269 10.752 -3.056 32.700 1.00 0.00 ATOM 2395 HB TWR 269 10.752 -3.056 32.700 1.00 0.00 ATOM 2400 N ILE 270 15.955 -5.950 33.801 1.00 0.00 0.00 ATOM 2400 RB LE 270 15.955 -5.950 33.801 1.00 0.00 0.00 ATOM 2400 RB LE 270 15.955 -5.950 33.801 1.00 0.00 0.00 ATOM 2401 HB LE 270 16.566 -4.007 35.641 1.00 0.00 0.00 ATOM 2403 HB LE 270 16.566 -4.007 33.161 1.00 0.00 0.00 ATOM 2413 HBC2 ILE 270 16.596 -4.007 33.596 1.00 0.00 0.00 ATOM 2		
ATOM 2378 3HB ALA 268	н	
ATOM 2398 CA TYR 269	H	
S	H	
ATOM 2381 C TYR 269	n C	
ATOM 2382 O TYR 269	· C	
ATOM 2383 CB TYR 269 12.681 -1.244 32.345 1.00 0.00	o	
ATOM	C	
10	C	
ATOM 2387 CE1 TYR 269 9.019 -1.800 32.990 1.00 0.00	С	С
ATOM	Ċ	С
ATOM	, С	
15	C	
ATOM	C	
ATOM	0	H
ATOM 2393 IHB TYR 269 12.854 -2.156 31.774 1.00 0.00 ATOM 2395 HD1 TYR 269 10.722 -3.056 32.700 1.00 0.00 ATOM 2396 HD2 TYR 269 10.722 -3.056 32.700 1.00 0.00 ATOM 2397 HE1 TYR 269 11.438 1.142 32.554 1.00 0.00 ATOM 2398 HE2 TYR 269 9.050 1.565 32.965 1.00 0.00 ATOM 2399 HH TYR 269 7.012 0.745 33.348 1.00 0.00 ATOM 2401 CA ILE 270 15.098 -3.047 34.160 1.00 0.00 ATOM 2401 CA ILE 270 16.461 -3.480 34.110 1.00 0.00 ATOM 2403 O ILE 270 16.554 -4.571 33.104 1.00 0.00 ATOM 2403 CB ILE 270 16.566 -4.007 35.424 1.00 0.00 ATOM 2404 CB ILE 270 16.966 -4.007 35.424 1.00 0.00 ATOM 2405 CGI ILE 270 16.966 -4.007 35.424 1.00 0.00 ATOM 2406 CG2 ILE 270 16.966 -4.007 35.424 1.00 0.00 ATOM 2407 CDI ILE 270 16.956 -5.602 33.165 1.00 0.00 ATOM 2408 H ILE 270 16.956 -5.602 33.165 1.00 0.00 ATOM 2409 RA ILE 270 16.966 -4.007 35.424 1.00 0.00 ATOM 2409 RA ILE 270 16.956 -5.602 33.165 1.00 0.00 ATOM 2409 HA ILE 270 16.956 -5.602 33.165 1.00 0.00 ATOM 2409 HA ILE 270 16.956 -7.891 37.041 1.00 0.00 ATOM 2409 HA ILE 270 16.952 -2.849 36.435 1.00 0.00 ATOM 2409 HA ILE 270 16.952 -1.946 36.653 1.00 0.00 ATOM 2409 HA ILE 270 17.093 -2.632 33.822 1.00 0.00 ATOM 2410 IB ILE 270 17.093 -2.632 33.822 1.00 0.00 ATOM 2411 IHGI ILE 270 16.952 -1.946 35.948 1.00 0.00 ATOM 2412 ING ILE 270 16.952 -1.946 35.948 1.00 0.00 ATOM 2413 ING ILE 270 16.950 -1.97 35.069 1.00 -0.00 ATOM 2413 ING ILE 270 16.900 -5.979 35.087 1.00 0.00 ATOM 2414 2HG2 ILE 270 16.900 -5.979 37.884 1.00 0.00 ATOM 2413 SHG2 ILE 270 16.900 -5.997 37.884 1.00 0.00 ATOM 2414 SHG2 ILE 270 16.900 -5.997 37.884 1.00 0.00 ATOM 2413 SHG2 ILE 270 16.900 -5.997 37.884 1.00 0.00 ATOM 2412 CG PRO 271 17.430 -4.532 32.159 1.00 0.00 ATOM 2413 SHG2 ILE 270 16.900 -5.997 37.884 1.00 0.00 ATOM 2412 CG PRO 271 18.881 -6.547 32.655 1.00 0.00 ATOM 2420 C PRO 271 18.881 -6.547 32.655 1.00 0.00 ATOM 2421 C PRO 271 18.881 -6.547 32.655 1.00 0.00 ATOM 2422 C PRO 271 18.881 -6.547 32.655 1.00 0.00 ATOM 2422 C PRO 271 18.895 -3.423 32.359 1.00 0.00 ATOM 2422 RB PRO 271	Н	
ATOM		н
ATOM 2395 HD1 TYR 269 10.722 -3.056 32.700 1.00 0.00 ATOM 2397 HE1 TYR 269 8.333 -2.638 33.115 1.00 0.00 ATOM 2398 HE2 TYR 269 8.333 -2.638 33.115 1.00 0.00 ATOM 2399 HH TYR 269 9.050 1.565 32.965 1.00 0.00 ATOM 2400 N LE 270 15.098 -3.047 34.160 1.00 0.00 ATOM 2401 CA LE 270 16.461 -3.480 34.110 1.00 0.00 ATOM 2402 C LE 270 16.574 -4.571 33.165 1.00 0.00 ATOM 2402 C LE 270 16.594 -4.571 33.165 1.00 0.00 ATOM 2402 C LE 270 16.595 -5.602 33.165 1.00 0.00 ATOM 2404 CB LE 270 16.966 -4.007 33.424 1.00 0.00 ATOM 2405 CG1 LE 270 16.966 -4.007 33.424 1.00 0.00 ATOM 2406 CG2 LE 270 16.966 -4.007 33.424 1.00 0.00 ATOM 2407 CD1 LE 270 16.952 -2.849 36.435 1.00 0.00 ATOM 2407 CD1 LE 270 16.965 -4.571 33.104 1.00 0.00 ATOM 2409 HA LE 270 16.791 -5.991 37.041 1.00 0.00 ATOM 2409 HA LE 270 17.083 -2.632 33.822 1.00 0.00 ATOM 2410 HB LE 270 17.083 -2.632 33.822 1.00 0.00 ATOM 2411 HG1 LE 270 16.592 -3.979 35.087 1.00 0.00 ATOM 2412 2HG1 LE 270 16.592 -1.946 35.948 1.00 0.00 ATOM 2412 2HG1 LE 270 16.592 -1.946 35.948 1.00 0.00 ATOM 2413 HG2 LE 270 16.593 -3.103 37.270 1.00 0.00 ATOM 2414 2HG2 LE 270 16.592 -1.946 35.948 1.00 0.00 ATOM 2412 2HG1 LE 270 16.592 -1.946 35.948 1.00 0.00 ATOM 2413 3HG2 LE 270 16.593 -7.916 36.803 1.00 0.00 ATOM 2413 3HG2 LE 270 16.593 -7.916 36.803 1.00 0.00 ATOM 2418 3HD1 LE 270 16.593 -7.916 36.803 1.00 0.00 ATOM 2418 3HD1 LE 270 16.965 -5.252 31.096 1.00 0.00 ATOM 2422 CR PRO 271 18.595 -5.252 31.096 1.00 0.00 ATOM 2422 CR PRO 271 18.		Н
ATOM 2397 HEI TYR 269 8.333 -2.638 33.115 1.00 0.00 ATOM 2398 HEZ TYR 269 9.050 1.565 32.965 1.00 0.00 ATOM 2400 N ILE 270 15.098 -3.047 33.348 1.00 0.00 ATOM 2401 CA ILE 270 15.098 -3.047 34.160 1.00 0.00 ATOM 2402 C ILE 270 16.574 -4.571 33.104 1.00 0.00 ATOM 2403 O ILE 270 16.574 -4.571 33.104 1.00 0.00 ATOM 2404 CB ILE 270 15.905 -5.602 33.165 1.00 0.00 ATOM 2404 CB ILE 270 16.966 -4.007 35.424 1.00 0.00 ATOM 2405 CG1 ILE 270 16.966 -4.007 35.424 1.00 0.00 ATOM 2406 CG2 ILE 270 16.952 -2.849 36.435 1.00 0.00 ATOM 2407 CD1 ILE 270 16.791 -5.991 37.041 1.00 0.00 ATOM 2408 H ILE 270 16.791 -5.991 37.041 1.00 0.00 ATOM 2409 HA ILE 270 14.395 -3.616 34.653 1.00 0.00 ATOM 2401 HB ILE 270 17.093 -2.632 33.822 1.00 0.00 ATOM 2411 IHG1 ILE 270 16.520 -5.979 35.087 1.00 0.00 ATOM 2412 2HG1 ILE 270 16.520 -5.979 35.087 1.00 0.00 ATOM 2413 3HG2 ILE 270 16.582 -1.946 35.948 1.00 0.00 ATOM 2413 3HG2 ILE 270 16.582 -1.946 35.948 1.00 0.00 ATOM 2413 3HG2 ILE 270 16.582 -1.946 35.948 1.00 0.00 ATOM 2413 3HG1 ILE 270 16.690 -5.997 37.884 1.00 0.00 ATOM 2414 SHD1 ILE 270 16.690 -5.997 37.884 1.00 0.00 ATOM 2413 3HD1 ILE 270 16.690 -5.997 37.884 1.00 0.00 ATOM 2414 SHD1 ILE 270 16.993 -7.016 36.738 1.00 0.00 ATOM 2424 CG PRO 271 17.430 -4.325 32.159 1.00 0.00 ATOM 2422 CB PRO 271 18.881 -6.5547 32.635 1.00 0.00 ATOM 2422 CB PRO 271 18.891 -6.552 31.691 1.00 0.00 ATOM 2422 CB PRO 271 18.892 -3.025 30.891 1.00 0.00 ATOM 2422 HB PRO 271 18		н
ATOM 2398 HEZ TYR 269		Н
ATOM		H
ATOM		Н
ATOM 2401 CA ILE 270 16.461 -3.480 34.110 1.00 0.00 ATOM 2402 C ILE 270 16.574 -4.571 33.104 1.00 0.00 ATOM 2403 O ILE 270 15.905 -5.602 33.165 1.00 0.00 ATOM 2404 CB ILE 270 16.966 -4.007 35.424 1.00 0.00 ATOM 2405 CG1 ILE 270 16.966 -4.007 35.424 1.00 0.00 ATOM 2406 CG2 ILE 270 16.952 -2.849 36.435 1.00 0.00 ATOM 2407 CD1 ILE 270 16.781 -5.991 37.041 1.00 0.00 ATOM 2408 H ILE 270 16.781 -5.991 37.041 1.00 0.00 ATOM 2409 HA ILE 270 17.083 -2.632 33.822 1.00 0.00 ATOM 2409 HA ILE 270 17.083 -2.632 33.822 1.00 0.00 ATOM 2410 HB ILE 270 17.979 -4.377 35.269 1.00 -0.00 ATOM 2411 HG1 ILE 270 16.502 -5.979 35.087 1.00 0.00 ATOM 2411 HG1 ILE 270 16.582 -1.946 35.269 1.00 0.00 ATOM 2412 2HG1 ILE 270 16.582 -1.946 35.948 1.00 0.00 ATOM 2413 HG2 ILE 270 16.582 -1.946 35.948 1.00 0.00 ATOM 2413 HG2 ILE 270 16.582 -1.946 35.948 1.00 0.00 ATOM 2415 3HG2 ILE 270 17.963 -2.675 36.803 1.00 0.00 ATOM 2416 HD1 ILE 270 17.963 -2.675 36.803 1.00 0.00 ATOM 2416 HD1 ILE 270 17.963 -2.675 36.803 1.00 0.00 ATOM 2418 3HD1 ILE 270 16.090 -5.997 37.884 1.00 0.00 ATOM 2418 3HD1 ILE 270 16.090 -5.997 37.884 1.00 0.00 ATOM 2418 3HD1 ILE 270 16.090 -5.997 37.884 1.00 0.00 ATOM 2419 ZHD1 ILE 270 16.993 -7.016 36.738 1.00 0.00 ATOM 2412 ATOM 2419 THD ILE 270 16.993 -7.016 36.738 1.00 0.00 ATOM 2412 ATOM 2419 THD ILE 270 16.993 -7.016 36.738 1.00 0.00 ATOM 2412 ATOM 2419 THD ILE 270 16.993 -7.016 36.738 1.00 0.00 ATOM 2421 C PRO 271 17.430 -4.355 32.159 1.00 0.00 ATOM 2422 C PRO 271 18.891 -6.552 31.691 1.00 0.00 ATOM 2423 CB PRO 271 18.891 -6.552 31.691 1.00 0.00 ATOM 2424 CG PRO 271 18.891 -6.552 31.691 1.00 0.00 ATOM 2422 CB PRO 271 18.891 -6.552 31.691 1.00 0.00 ATOM 2422 CB PRO 271 18.891 -6.552 31.691 1.00 0.00 ATOM 2423 CB PRO 271 18.895 -5.252 31.995 1.00 0.00 ATOM 2424 CG PRO 271 18.895 -5.494 32.359 1.00 0.00 ATOM 2422 HB PRO 271 18.550 -3.493 31.395 1.00 0.00 ATOM 2423 CB PRO 271 18.550 -3.493 32.359 1.00 0.00 ATOM 2423 CB PRO 271 18.550 -3.493 32.359 1.00 0.00 ATOM 2423 CB PRO 271 18.550 -3.493 32.359 1.00 0.00 ATOM 2423 HB PRO 271		Н
ATOM 2402 C ILE 270 16.574 -4.571 33.104 1.00 0.00 ATOM 2404 CB ILE 270 15.905 -5.602 33.165 1.00 0.00 ATOM 2405 CG1 ILE 270 16.966 -4.007 35.424 1.00 0.00 ATOM 2406 CG2 ILE 270 16.956 -5.234 35.872 1.00 0.00 ATOM 2406 CG2 ILE 270 16.952 -2.849 36.435 1.00 0.00 ATOM 2407 CD1 ILE 270 16.781 -5.234 35.872 1.00 0.00 ATOM 2408 H ILE 270 14.395 -3.616 34.653 1.00 0.00 ATOM 2409 HA ILE 270 14.395 -3.616 34.653 1.00 0.00 ATOM 2410 HB ILE 270 17.979 -4.377 35.269 1.00 0.00 ATOM 2411 HG1 ILE 270 16.020 -5.979 35.087 1.00 0.00 ATOM 2412 HG2 ILE 270 15.141 -4.988 36.202 1.00 0.00 ATOM 2413 HG2 ILE 270 16.582 -1.946 35.948 1.00 0.00 ATOM 2414 2HG2 ILE 270 16.582 -1.946 35.948 1.00 0.00 ATOM 2415 3HG2 ILE 270 16.582 -1.946 35.948 1.00 0.00 ATOM 2416 HD1 ILE 270 16.900 -3.106 37.270 1.00 0.00 ATOM 2418 3HD1 ILE 270 16.900 -3.106 37.270 1.00 0.00 ATOM 2419 N PRO 271 17.083 -2.675 36.803 1.00 0.00 ATOM 2419 N PRO 271 17.430 -4.325 32.159 1.00 0.00 ATOM 2420 CA PRO 271 17.665 -5.252 31.096 1.00 0.00 ATOM 2422 C PRO 271 18.094 -6.552 31.691 1.00 0.00 ATOM 2423 CB PRO 271 18.797 -4.642 30.276 1.00 0.00 ATOM 2424 CG PRO 271 18.797 -4.642 30.276 1.00 0.00 ATOM 2425 HA PRO 271 18.797 -4.642 30.276 1.00 0.00 ATOM 2426 HA PRO 271 18.592 -3.423 32.359 1.00 0.00 ATOM 2427 1HB PRO 271 18.592 -3.423 32.359 1.00 0.00 ATOM 2428 CB PRO 271 18.592 -3.423 32.359 1.00 0.00 ATOM 2429 LGG PRO 271 18.592 -3.423 32.359 1.00 0.00 ATOM 2428 CB PRO 271 18.592 -3.423 32.359 1.00 0.00 ATOM 2428 CB PRO 271 18.592 -3.423 32.359 1.00 0.00 ATOM 2428 CB PRO 271 18.592 -3.423 32.359 1.00 0.00 ATOM 2428 CB PRO 271 18.592 -3.575 33.395 1.00 0.00 ATOM 2429 LGG PRO 271 18.592 -3.575 33.395 1.00 0.00 ATOM 2423 CB PRO 271 18.592 -3.575 33.395 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.555 1.00 0.00	и С	
ATOM 2403 O ILE 270 15.905 -5.602 33.165 1.00 0.00 ATOM 2404 CB ILE 270 16.966 -4.007 35.424 1.00 0.00 ATOM 2405 CGI ILE 270 16.956 -4.007 35.424 1.00 0.00 ATOM 2406 CG2 ILE 270 16.952 -2.849 36.435 1.00 0.00 ATOM 2407 CDI ILE 270 16.952 -2.849 36.435 1.00 0.00 ATOM 2408 H ILE 270 16.781 -5.991 37.041 1.00 0.00 ATOM 2409 HA ILE 270 17.083 -2.632 33.822 1.00 0.00 ATOM 2410 HB ILE 270 17.083 -2.632 33.822 1.00 0.00 ATOM 2411 HGI ILE 270 17.979 -4.377 35.269 1.00 -0.00 ATOM 2412 2HGI ILE 270 15.141 -4.988 36.202 1.00 0.00 ATOM 2413 1HG2 ILE 270 16.582 -1.946 35.948 1.00 0.00 ATOM 2414 2HG2 ILE 270 16.582 -1.946 35.948 1.00 0.00 ATOM 2415 3HG2 ILE 270 16.582 -1.946 35.948 1.00 0.00 ATOM 2416 1HDI ILE 270 17.7963 -2.675 36.803 1.00 0.00 ATOM 2417 2HDI ILE 270 17.7963 -2.675 36.803 1.00 0.00 ATOM 2418 3HDI ILE 270 16.090 -5.997 37.884 1.00 0.00 ATOM 2419 N PRO 271 17.430 -4.325 32.159 1.00 0.00 ATOM 2420 CA PRO 271 17.465 -5.252 31.096 1.00 0.00 ATOM 2421 C PRO 271 18.881 -6.552 31.691 1.00 0.00 ATOM 2422 C PRO 271 18.881 -6.552 31.691 1.00 0.00 ATOM 2424 CG PRO 271 18.881 -6.547 32.635 1.00 0.00 ATOM 2424 CG PRO 271 18.881 -6.547 32.635 1.00 0.00 ATOM 2426 HA PRO 271 18.881 -5.375 30.536 1.00 0.00 ATOM 2427 1HB PRO 271 18.881 -5.375 30.536 1.00 0.00 ATOM 2428 2HB PRO 271 18.890 -5.375 30.536 1.00 0.00 ATOM 2428 1HG PRO 271 18.890 -5.375 30.536 1.00 0.00 ATOM 2428 1HG PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2428 1HG PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2428 1HG PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2431 1HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2432 1HG PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.6762 31.155 1.00 0.00	C	
ATOM		ō
ATOM	C	
ATOM 2407 CD1 ILE 270 16.781 -5.991 37.041 1.00 0.00 ATOM 2408 H ILE 270 14.395 -3.616 34.653 1.00 0.00 ATOM 2409 HA ILE 270 17.083 -2.632 33.822 1.00 0.00 ATOM 2410 HB ILE 270 17.979 -4.377 35.269 1.00 -0.00 ATOM 2411 1HG1 ILE 270 16.020 -5.979 35.087 1.00 0.00 ATOM 2412 2HG1 ILE 270 16.582 -1.946 35.948 1.00 0.00 ATOM 2413 2HG2 ILE 270 16.582 -1.946 35.948 1.00 0.00 ATOM 2414 2HG2 ILE 270 16.582 -1.946 35.948 1.00 0.00 ATOM 2415 3HG2 ILE 270 16.300 -3.103 37.270 1.00 0.00 ATOM 2415 3HG2 ILE 270 17.963 -2.675 36.803 1.00 0.00 ATOM 2416 1HD1 ILE 270 17.708 -5.499 37.335 1.00 0.00 ATOM 2417 2HD1 ILE 270 16.090 -5.997 37.884 1.00 0.00 ATOM 2418 3HD1 ILE 270 16.090 -5.997 37.884 1.00 0.00 ATOM 2418 3HD1 ILE 270 16.993 -7.016 36.738 1.00 0.00 ATOM 2419 N PRO 271 17.430 -4.325 32.159 1.00 0.00 ATOM 2420 CA PRO 271 17.665 -5.252 31.096 1.00 0.00 ATOM 2421 C PRO 271 18.094 -6.552 31.691 1.00 0.00 ATOM 2422 O PRO 271 18.891 -6.547 32.635 1.00 0.00 ATOM 2423 CB PRO 271 18.891 -6.547 32.635 1.00 0.00 ATOM 2424 CG PRO 271 18.797 -4.642 30.276 1.00 0.00 ATOM 2424 CG PRO 271 18.797 -4.642 30.276 1.00 0.00 ATOM 2424 CG PRO 271 18.552 -3.423 32.359 1.00 0.00 ATOM 2424 CG PRO 271 18.797 -4.642 30.276 1.00 0.00 ATOM 2424 CG PRO 271 18.552 -3.423 32.359 1.00 0.00 ATOM 2424 CG PRO 271 18.552 -3.423 32.359 1.00 0.00 ATOM 2424 CG PRO 271 18.552 -3.423 32.359 1.00 0.00 ATOM 2424 CG PRO 271 18.552 -3.423 32.359 1.00 0.00 ATOM 2424 HB PRO 271 18.552 -3.423 32.359 1.00 0.00 ATOM 2424 HB PRO 271 18.552 -3.423 32.359 1.00 0.00 ATOM 2424 HB PRO 271 18.552 -3.423 32.359 1.00 0.00 ATOM 2424 HB PRO 271 18.410 -3.980 29.501 1.00 0.00 ATOM 2423 LB PRO 271 18.552 -3.423 32.359 1.00 0.00 ATOM 2424 HB PRO 271 18.850 -3.575 33.395 1.00 0.00 ATOM 2423 LB PRO 271 18.850 -3.575 33.395 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00	С	С
ATOM 2408 H ILE 270 14.395 -3.616 34.653 1.00 0.00 ATOM 2409 HA ILE 270 17.083 -2.632 33.822 1.00 0.00 35 ATOM 2410 HB ILE 270 17.979 -4.377 35.269 1.00 -0.00 ATOM 2411 1HG1 ILE 270 16.020 -5.979 35.087 1.00 0.00 ATOM 2412 2HG1 ILE 270 15.141 -4.988 36.202 1.00 0.00 ATOM 2413 1HG2 ILE 270 16.582 -1.946 35.948 1.00 0.00 ATOM 2414 2HG2 ILE 270 16.300 -3.103 37.270 1.00 0.00 ATOM 2415 3HG2 ILE 270 17.963 -2.675 36.803 1.00 0.00 ATOM 2416 1HD1 ILE 270 17.708 -5.499 37.335 1.00 0.00 ATOM 2416 3HD1 ILE 270 16.993 -7.016 36.738 1.00 0.00 ATOM 2418 3HD1 ILE 270 16.993 -7.016 36.738 1.00 0.00 ATOM 2419 N PRO 271 17.430 -4.325 32.159 1.00 0.00 ATOM 2420 CA PRO 271 17.665 -5.525 31.096 1.00 0.00 ATOM 2421 C PRO 271 18.094 -6.552 31.096 1.00 0.00 ATOM 2423 CB PRO 271 18.881 -6.547 32.635 1.00 0.00 ATOM 2424 CG PRO 271 18.797 -4.642 30.276 1.00 0.00 ATOM 2423 CB PRO 271 18.797 -4.642 30.276 1.00 0.00 ATOM 2424 CG PRO 271 18.797 -4.642 30.276 1.00 0.00 ATOM 2424 CG PRO 271 18.797 -4.642 30.276 1.00 0.00 ATOM 2424 CG PRO 271 18.797 -4.642 30.276 1.00 0.00 ATOM 2424 CG PRO 271 18.797 -4.642 30.276 1.00 0.00 ATOM 2424 CG PRO 271 18.552 -3.423 32.359 1.00 0.00 ATOM 2424 CG PRO 271 18.552 -3.423 32.359 1.00 0.00 ATOM 2424 CG PRO 271 18.552 -3.423 32.359 1.00 0.00 ATOM 2424 CG PRO 271 19.610 -3.876 31.337 1.00 0.00 ATOM 2424 CG PRO 271 19.610 -3.876 31.337 1.00 0.00 ATOM 2424 CG PRO 271 18.410 -3.980 29.501 1.00 0.00 ATOM 2428 2HB PRO 271 18.410 -3.980 29.501 1.00 0.00 ATOM 2429 1HG PRO 271 19.389 -5.414 29.786 1.00 0.00 ATOM 2429 1HG PRO 271 19.389 -5.414 29.786 1.00 0.00 ATOM 2431 1HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2432 2HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2432 2HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00	C	С
ATOM 2409 HA ILE 270 17.083 -2.632 33.822 1.00 0.00 ATOM 2411 1HG1 ILE 270 17.979 -4.377 35.269 1.00 -0.00 ATOM 2412 2HG1 ILE 270 16.020 -5.979 35.087 1.00 0.00 ATOM 2413 1HG2 ILE 270 16.582 -1.946 35.948 1.00 0.00 ATOM 2414 2HG2 ILE 270 16.582 -1.946 35.948 1.00 0.00 ATOM 2415 3HG2 ILE 270 16.300 -3.103 37.270 1.00 0.00 ATOM 2415 3HG2 ILE 270 17.963 -2.675 36.803 1.00 0.00 ATOM 2416 1HD1 ILE 270 17.708 -5.499 37.335 1.00 0.00 ATOM 2417 2HD1 ILE 270 16.090 -5.997 37.884 1.00 0.00 ATOM 2418 3HD1 ILE 270 16.090 -5.997 37.884 1.00 0.00 ATOM 2419 N PRO 271 17.430 -4.325 32.159 1.00 0.00 ATOM 2420 CA PRO 271 17.665 -5.252 31.096 1.00 0.00 ATOM 2421 C PRO 271 18.094 -6.552 31.691 1.00 0.00 ATOM 2422 O PRO 271 18.881 -6.547 32.635 1.00 0.00 ATOM 2423 CB PRO 271 18.797 -4.642 30.276 1.00 0.00 ATOM 2424 CG PRO 271 19.610 -3.876 31.337 1.00 0.00 ATOM 2425 CD PRO 271 18.552 -3.423 32.359 1.00 0.00 ATOM 2426 HA PRO 271 18.552 -3.423 32.359 1.00 0.00 ATOM 2427 1HB PRO 271 18.552 -3.423 32.359 1.00 0.00 ATOM 2428 2HB PRO 271 19.389 -5.414 29.786 1.00 0.00 ATOM 2428 2HB PRO 271 19.389 -5.414 29.786 1.00 0.00 ATOM 2431 1HD PRO 271 19.389 -5.414 29.786 1.00 0.00 ATOM 2431 1HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2432 2HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2431 1HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2432 2HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2432 2HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00		С
ATOM		Н
ATOM 2411 1HG1 ILE 270 16.020 -5.979 35.087 1.00 0.00 ATOM 2412 2HG1 ILE 270 15.141 -4.988 36.202 1.00 0.00 ATOM 2413 1HG2 ILE 270 16.582 -1.946 35.948 1.00 0.00 ATOM 2414 2HG2 ILE 270 16.300 -3.103 37.270 1.00 0.00 ATOM 2415 3HG2 ILE 270 17.963 -2.675 36.803 1.00 0.00 ATOM 2416 1HD1 ILE 270 17.708 -5.499 37.335 1.00 0.00 ATOM 2417 2HD1 ILE 270 16.090 -5.997 37.884 1.00 0.00 ATOM 2418 3HD1 ILE 270 16.090 -5.997 37.884 1.00 0.00 ATOM 2419 N PRO 271 17.430 -4.325 32.159 1.00 0.00 ATOM 2420 CA PRO 271 17.665 -5.252 31.096 1.00 0.00 ATOM 2421 C PRO 271 18.094 -6.552 31.691 1.00 0.00 ATOM 2422 O PRO 271 18.881 -6.547 32.635 1.00 0.00 ATOM 2423 CB PRO 271 18.894 -6.5547 32.635 1.00 0.00 ATOM 2424 CG PRO 271 18.894 -6.5547 32.635 1.00 0.00 ATOM 2424 CG PRO 271 18.894 -6.5547 32.635 1.00 0.00 ATOM 2424 CG PRO 271 18.610 -3.876 31.337 1.00 0.00 ATOM 2425 CD PRO 271 18.610 -3.876 31.337 1.00 0.00 ATOM 2426 HA PRO 271 18.610 -3.876 31.337 1.00 0.00 ATOM 2427 1HB PRO 271 18.410 -3.880 29.501 1.00 0.00 ATOM 2428 2HB PRO 271 18.410 -3.880 29.501 1.00 0.00 ATOM 2428 1HG PRO 271 19.389 -5.414 29.786 1.00 0.00 ATOM 2429 1HG PRO 271 19.389 -5.414 29.786 1.00 0.00 ATOM 2421 1HD PRO 271 19.389 -5.414 29.786 1.00 0.00 ATOM 2431 1HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2431 1HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00		H
ATOM 2412 2HG1 ILE 270	H	
ATOM 2413 1HG2 ILE 270 16.582 -1.946 35.948 1.00 0.00 ATOM 2414 2HG2 ILE 270 16.300 -3.103 37.270 1.00 0.00 ATOM 2415 3HG2 ILE 270 17.963 -2.675 36.803 1.00 0.00 ATOM 2416 1HD1 ILE 270 17.708 -5.499 37.335 1.00 0.00 ATOM 2417 2HD1 ILE 270 16.090 -5.997 37.884 1.00 0.00 ATOM 2418 3HD1 ILE 270 16.090 -7.016 36.738 1.00 0.00 ATOM 2419 N PRO 271 17.430 -4.325 32.159 1.00 0.00 ATOM 2420 CA PRO 271 17.665 -5.252 31.096 1.00 0.00 ATOM 2421 C PRO 271 18.094 -6.552 31.691 1.00 0.00 ATOM 2422 O PRO 271 18.094 -6.552 31.691 1.00 0.00 ATOM 2423 CB PRO 271 18.797 -4.642 30.276 1.00 0.00 ATOM 2424 CG PRO 271 18.797 -4.642 30.276 1.00 0.00 ATOM 2425 CD PRO 271 19.610 -3.876 31.337 1.00 0.00 ATOM 2426 HA PRO 271 18.552 -3.423 32.359 1.00 0.00 ATOM 2427 1HB PRO 271 18.552 -3.423 32.359 1.00 0.00 ATOM 2428 2HB PRO 271 18.410 -3.980 29.501 1.00 0.00 ATOM 2428 2HB PRO 271 19.389 -5.414 29.786 1.00 0.00 ATOM 2428 1HG PRO 271 20.358 -4.522 31.795 1.00 0.00 ATOM 2429 1HG PRO 271 19.389 -5.414 29.786 1.00 0.00 ATOM 2431 1HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2432 2HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00		H H
ATOM 2414 2HG2 ILE 270		Н
40 ATOM 2415 3HG2 ILE 270 17.963 -2.675 36.803 1.00 0.00 ATOM 2416 1HD1 ILE 270 16.090 -5.499 37.335 1.00 0.00 ATOM 2417 2HD1 ILE 270 16.090 -5.997 37.884 1.00 0.00 ATOM 2418 3HD1 ILE 270 16.993 -7.016 36.738 1.00 0.00 ATOM 2419 N PRO 271 17.430 -4.325 32.159 1.00 0.00 ATOM 2420 CA PRO 271 17.665 -5.252 31.096 1.00 0.00 ATOM 2421 C PRO 271 18.094 -6.552 31.096 1.00 0.00 ATOM 2422 O PRO 271 18.881 -6.547 32.635 1.00 0.00 ATOM 2423 CB PRO 271 18.797 -4.642 30.276 1.00 0.00 ATOM 2424 CG PRO 271 18.797 -4.642 30.276 1.00 0.00 ATOM 2424 CG PRO 271 19.610 -3.876 31.337 1.00 0.00 ATOM 2425 CD PRO 271 18.552 -3.423 32.359 1.00 0.00 ATOM 2426 HA PRO 271 18.552 -3.423 32.359 1.00 0.00 ATOM 2427 1HB PRO 271 16.738 -5.375 30.536 1.00 0.00 ATOM 2428 2HB PRO 271 18.410 -3.980 29.501 1.00 0.00 ATOM 2429 1HG PRO 271 19.389 -5.414 29.786 1.00 0.00 ATOM 2429 1HG PRO 271 20.126 -3.025 30.891 1.00 0.00 ATOM 2430 2HG PRO 271 18.852 -3.025 30.891 1.00 0.00 ATOM 2430 2HG PRO 271 18.852 -3.025 30.891 1.00 0.00 ATOM 2431 1HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2432 2HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2432 2HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00 ATOM 2434 CA PHE 272 17.579 -7.672 31.155 1.00 0.00		Н
ATOM 2417 2HD1 ILE 270 16.090 -5.997 37.884 1.00 0.00 ATOM 2418 3HD1 ILE 270 16.993 -7.016 36.738 1.00 0.00 ATOM 2419 N PRO 271 17.430 -4.325 32.159 1.00 0.00 45 ATOM 2420 CA PRO 271 17.665 -5.252 31.096 1.00 0.00 ATOM 2421 C PRO 271 18.094 -6.552 31.691 1.00 0.00 ATOM 2422 O PRO 271 18.881 -6.547 32.635 1.00 0.00 ATOM 2423 CB PRO 271 18.797 -4.642 30.276 1.00 0.00 ATOM 2424 CG PRO 271 19.610 -3.876 31.337 1.00 0.00 ATOM 2425 CD PRO 271 19.610 -3.876 31.337 1.00 0.00 ATOM 2426 HA PRO 271 18.552 -3.423 32.359 1.00 0.00 ATOM 2427 1HB PRO 271 16.738 -5.375 30.536 1.00 0.00 ATOM 2428 2HB PRO 271 18.410 -3.980 29.501 1.00 0.00 ATOM 2428 2HB PRO 271 19.389 -5.414 29.786 1.00 0.00 ATOM 2429 1HG PRO 271 20.126 -3.025 30.891 1.00 0.00 ATOM 2431 1HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2432 2HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2432 2HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00 ATOM 2434 CA PHE 272 17.579 -7.672 31.155 1.00 0.00		Н
ATOM 2418 3HD1 ILE 270 16.993 -7.016 36.738 1.00 0.00 ATOM 2419 N PRO 271 17.430 -4.325 32.159 1.00 0.00 45 ATOM 2420 CA PRO 271 17.665 -5.252 31.096 1.00 0.00 ATOM 2421 C PRO 271 18.094 -6.552 31.691 1.00 0.00 ATOM 2422 O PRO 271 18.881 -6.547 32.635 1.00 0.00 ATOM 2423 CB PRO 271 18.797 -4.642 30.276 1.00 0.00 ATOM 2424 CG PRO 271 19.610 -3.876 31.337 1.00 0.00 ATOM 2425 CD PRO 271 19.610 -3.876 31.337 1.00 0.00 ATOM 2426 HA PRO 271 18.552 -3.423 32.359 1.00 0.00 ATOM 2427 1HB PRO 271 16.738 -5.375 30.536 1.00 0.00 ATOM 2428 2HB PRO 271 18.410 -3.980 29.501 1.00 0.00 ATOM 2428 2HB PRO 271 19.389 -5.414 29.786 1.00 0.00 ATOM 2429 1HG PRO 271 20.126 -3.025 30.891 1.00 0.00 ATOM 2431 1HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2432 2HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00 ATOM 2434 CA PHE 272 17.987 -8.973 31.590 1.00 0.00	. н	H
ATOM 2419 N PRO 271 17.430 -4.325 32.159 1.00 0.00 ATOM 2420 CA PRO 271 17.665 -5.252 31.096 1.00 0.00 ATOM 2421 C PRO 271 18.094 -6.552 31.691 1.00 0.00 ATOM 2422 O PRO 271 18.881 -6.547 32.635 1.00 0.00 ATOM 2423 CB PRO 271 18.797 -4.642 30.276 1.00 0.00 ATOM 2424 CG PRO 271 19.610 -3.876 31.337 1.00 0.00 ATOM 2425 CD PRO 271 18.552 -3.423 32.359 1.00 0.00 ATOM 2426 HA PRO 271 16.738 -5.375 30.536 1.00 0.00 ATOM 2427 1HB PRO 271 18.410 -3.980 29.501 1.00 0.00 ATOM 2428 2HB PRO 271 19.389 -5.414 29.786 1.00 0.00 ATOM 2429 1HG PRO 271 20.126 -3.025 30.891 1.00 0.00 ATOM 2431 1HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2432 2HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2432 2HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00		H
45 ATOM 2420 CA PRO 271 17.665 -5.252 31.096 1.00 0.00 ATOM 2421 C PRO 271 18.094 -6.552 31.691 1.00 0.00 ATOM 2422 O PRO 271 18.881 -6.547 32.635 1.00 0.00 ATOM 2423 CB PRO 271 18.797 -4.642 30.276 1.00 0.00 ATOM 2424 CG PRO 271 19.610 -3.876 31.337 1.00 0.00 ATOM 2425 CD PRO 271 18.552 -3.423 32.359 1.00 0.00 ATOM 2426 HA PRO 271 18.552 -3.423 32.359 1.00 0.00 ATOM 2426 HA PRO 271 16.738 -5.375 30.536 1.00 0.00 ATOM 2427 1HB PRO 271 18.410 -3.980 29.501 1.00 0.00 ATOM 2428 2HB PRO 271 19.389 -5.414 29.786 1.00 0.00 ATOM 2429 1HG PRO 271 20.126 -3.025 30.891 1.00 0.00 55 ATOM 2430 2HG PRO 271 20.358 -4.522 31.795 1.00 0.00 ATOM 2431 1HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2432 2HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00 ATOM 2434 CA PHE 272 17.987 -8.973 31.590 1.00 0.00		H
ATOM 2421 C PRO 271 18.094 -6.552 31.691 1.00 0.00 ATOM 2422 O PRO 271 18.881 -6.547 32.635 1.00 0.00 ATOM 2423 CB PRO 271 18.797 -4.642 30.276 1.00 0.00 ATOM 2424 CG PRO 271 19.610 -3.876 31.337 1.00 0.00 ATOM 2425 CD PRO 271 18.552 -3.423 32.359 1.00 0.00 ATOM 2426 HA PRO 271 18.552 -3.423 32.359 1.00 0.00 ATOM 2427 1HB PRO 271 16.738 -5.375 30.536 1.00 0.00 ATOM 2428 2HB PRO 271 18.410 -3.980 29.501 1.00 0.00 ATOM 2428 2HB PRO 271 19.389 -5.414 29.786 1.00 0.00 ATOM 2429 1HG PRO 271 20.126 -3.025 30.891 1.00 0.00 ATOM 2431 1HD PRO 271 20.358 -4.522 31.795 1.00 0.00 ATOM 2432 2HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2432 2HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00 ATOM 2434 CA PHE 272 17.987 -8.973 31.590 1.00 0.00		N
ATOM 2422 O PRO 271 18.881 -6.547 32.635 1.00 0.00 ATOM 2423 CB PRO 271 18.797 -4.642 30.276 1.00 0.00 ATOM 2424 CG PRO 271 19.610 -3.876 31.337 1.00 0.00 50 ATOM 2425 CD PRO 271 18.552 -3.423 32.359 1.00 0.00 ATOM 2426 HA PRO 271 16.738 -5.375 30.536 1.00 0.00 ATOM 2427 1HB PRO 271 18.410 -3.980 29.501 1.00 0.00 ATOM 2428 2HB PRO 271 19.389 -5.414 29.786 1.00 0.00 ATOM 2429 1HG PRO 271 20.126 -3.025 30.891 1.00 0.00 ATOM 2430 2HG PRO 271 20.358 -4.522 31.795 1.00 0.00 ATOM 2431 1HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2432 2HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00 ATOM 2434 CA PHE 272 17.987 -8.973 31.590 1.00 0.00		C
ATOM 2423 CB PRO 271 18.797 -4.642 30.276 1.00 0.00 ATOM 2424 CG PRO 271 19.610 -3.876 31.337 1.00 0.00 50 ATOM 2425 CD PRO 271 18.552 -3.423 32.359 1.00 0.00 ATOM 2426 HA PRO 271 16.738 -5.375 30.536 1.00 0.00 ATOM 2427 1HB PRO 271 18.410 -3.980 29.501 1.00 0.00 ATOM 2428 2HB PRO 271 19.389 -5.414 29.786 1.00 0.00 ATOM 2429 1HG PRO 271 20.126 -3.025 30.891 1.00 0.00 ATOM 2430 2HG PRO 271 20.358 -4.522 31.795 1.00 0.00 ATOM 2431 1HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2432 2HD PRO 271 18.150 -2.429 32.161 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00 ATOM 2434 CA PHE 272 17.987 -8.973 31.590 1.00 0.00		C 0
ATOM 2424 CG PRO 271 19.610 -3.876 31.337 1.00 0.00 ATOM 2425 CD PRO 271 18.552 -3.423 32.359 1.00 0.00 ATOM 2426 HA PRO 271 16.738 -5.375 30.536 1.00 0.00 ATOM 2427 1HB PRO 271 18.410 -3.980 29.501 1.00 0.00 ATOM 2428 2HB PRO 271 19.389 -5.414 29.786 1.00 0.00 ATOM 2429 1HG PRO 271 20.126 -3.025 30.891 1.00 0.00 ATOM 2430 2HG PRO 271 20.358 -4.522 31.795 1.00 0.00 ATOM 2431 1HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2432 2HD PRO 271 18.150 -2.429 32.161 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00 ATOM 2434 CA PHE 272 17.987 -8.973 31.590 1.00 0.00		c
50 ATOM 2425 CD PRO 271 18.552 -3.423 32.359 1.00 0.00 ATOM 2426 HA PRO 271 16.738 -5.375 30.536 1.00 0.00 ATOM 2427 1HB PRO 271 18.410 -3.980 29.501 1.00 0.00 ATOM 2428 2HB PRO 271 19.389 -5.414 29.786 1.00 0.00 ATOM 2429 1HG PRO 271 20.126 -3.025 30.891 1.00 0.00 ATOM 2430 2HG PRO 271 20.358 -4.522 31.795 1.00 0.00 ATOM 2431 1HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2432 2HD PRO 271 18.150 -2.429 32.161 1.00 0.00 ATOM 2433 N PHE <td>Č</td> <td>Č</td>	Č	Č
ATOM 2427 1HB PRO 271 18.410 -3.980 29.501 1.00 0.00 ATOM 2428 2HB PRO 271 19.389 -5.414 29.786 1.00 0.00 ATOM 2429 1HG PRO 271 20.126 -3.025 30.891 1.00 0.00 55 ATOM 2430 2HG PRO 271 20.358 -4.522 31.795 1.00 0.00 ATOM 2431 1HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2432 2HD PRO 271 18.150 -2.429 32.161 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00 ATOM 2434 CA PHE 272 17.987 -8.973 31.590 1.00 0.00	C	C
ATOM 2428 2HB PRO 271 19.389 -5.414 29.786 1.00 0.00 ATOM 2429 1HG PRO 271 20.126 -3.025 30.891 1.00 0.00 ATOM 2430 2HG PRO 271 20.358 -4.522 31.795 1.00 0.00 ATOM 2431 1HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2432 2HD PRO 271 18.150 -2.429 32.161 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00 ATOM 2434 CA PHE 272 17.987 -8.973 31.590 1.00 0.00	Н	Н
ATOM 2429 1HG PRO 271 20.126 -3.025 30.891 1.00 0.00 55 ATOM 2430 2HG PRO 271 20.358 -4.522 31.795 1.00 0.00 ATOM 2431 1HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2432 2HD PRO 271 18.150 -2.429 32.161 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00 ATOM 2434 CA PHE 272 17.987 -8.973 31.590 1.00 0.00		Н
55 ATOM 2430 2HG PRO 271 20.358 -4.522 31.795 1.00 0.00 ATOM 2431 1HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2432 2HD PRO 271 18.150 -2.429 32.161 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00 ATOM 2434 CA PHE 272 17.987 -8.973 31.590 1.00 0.00		Н
ATOM 2431 1HD PRO 271 18.852 -3.575 33.395 1.00 0.00 ATOM 2432 2HD PRO 271 18.150 -2.429 32.161 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00 ATOM 2434 CA PHE 272 17.987 -8.973 31.590 1.00 0.00		Н
ATOM 2432 2HD PRO 271 18.150 -2.429 32.161 1.00 0.00 ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00 ATOM 2434 CA PHE 272 17.987 -8.973 31.590 1.00 0.00		Н
ATOM 2433 N PHE 272 17.579 -7.672 31.155 1.00 0.00 ATOM 2434 CA PHE 272 17.987 -8.973 31.590 1.00 0.00		H H
ATOM 2434 CA PHE 272 17.987 -8.973 31.590 1.00 0.00	N	
	Ċ	Ć
60 ATOM 2435 C PHE 272 19.382 -9.159 31.106 1.00 0.00	Č	
ATOM 2436 O PHE 272 20.182 -9.874 31.707 1.00 0.00		ō
ATOM 2437 CB PHE 272 17.132 -10.094 30.977 1.00 0.00	С	С
ATOM 2438 CG PHE 272 17.811 -11.395 31.241 1.00 0.00	С	С
ATOM 2439 CD1 PHE 272 17.702 -12.023 32.459 1.00 0.00	C	C
65 ATOM 2440 CD2 PHE 272 18.557 -11.993 30.252 1.00 0.00 ATOM 2441 CE1 PHE 272 18.331 -13.224 32.689 1.00 0.00	C	C
ATOM 2441 CE1 PHE 272 18.331 -13.224 32.689 1.00 0.00 ATOM 2442 CE2 PHE 272 19.189 -13.194 30.473 1.00 0.00	C	C
ATOM 2442 CE2 FRE 272 19.076 -13.812 31.695 1.00 0.00		C

19.076 -13.812 31.695 1.00 0.00

ATOM

	MOTA	2444	Н	PHE	272 [.]		16.871	-7.591	30.410	1.00	0.00		н
	MOTA	2445	HA	PHE	272		17.922	-8.967	32.678	1.00	0.00		Н
	MOTA	2446 1	LHB	PHE	272		17.050	-9.912	29.905	1.00	0.00		H
	ATOM	2447 2	2HB	PHE	272		16.149	-10.069	31.448	1.00	0.00		Н
5	MOTA	2448	HD1	PHE	272		17.110	-11.563	33.251	1.00	0.00		Н
	MOTA	2449	HD2	PHE	272		18.648	-11.508	29.280	1.00	0.00		н
	MOTA	2450	HE1	PHE	272		18.238	-13.710	33.660	1.00	0.00		н
	MOTA	2451	HE2	PHE	272		19.778	-13.654	29.680	1.00	0.00		Н
	MOTA	2452	ΗZ	PHE	272		19.574	-14.764	31.875	1.00	0.00		Н
10	ATOM	2453	N	GLY	273	-	19.703	-8.479	29.994	1.00	0.00		N
	MOTA	2454	CA	GLY	273		20.971	-8.629	29.354	1.00	0.00		С
	MOTA	2455	С	GLY	273		20.614	-9.133	28.003	1.00	0.00		С
	MOTA	2456	0	GLY	273		21.319	-8.908	27.020	1.00	0.00		0
	MOTA	2457	H	GLY	273		19.013	-7.829	29.589	1.00	0.00		н
15	MOTA	2458 1	lha	GLY	273		21.602	-9.333	29.895	1.00	0.00		Н
	ATOM	2459 2	2HA	GLY	273		21.499	-7.677	29.304	1.00	0.00		H
	ATOM	2460	N	GLU	274		19.476	-9.846	27.948	1.00	0.00		N
	ATOM	2461	CA	GLU	274		18.940	-10.319	26.713	1.00	0.00		С
	MOTA	2462	С	GLU	274		18.518	-9.086	25.998	1.00	0.00		С
20	MOTA	2463	0	GLU	274		. 18.538	-9.015	24.769	1.00	0.00		. O.
	ATOM	2464	CB	GLU	274		17.706	-11.220	26.903	1.00	0.00		С
	MOTA	2465	CG	GLU	274		17.361	-12.077	25.680	1.00	0.00		С
	MOTA	2466	CD	GLU	274		16.616	-11.235	24.652	1.00	0.00		С
	ATOM	2467	OE1	GLU	274		16.177	-10.108	25.002	1.00	0.00		0
25	MOTA	2468	OE2	GLU	274		16.471	-11.719	23.497	1.00	0.00		0
	MOTA	2469	H	GLU	274		18.975	-10.057	28.823	1.00	0.00		H
	MOTA	2470	HA	GLU	274		19.770	-10.844	26.241	1.00	0.00		Н
	MOTA	2471 :	1HB	GLU	274		16.846	-10.584	27.115	1.00	0.00		H
	MOTA	2472 2	2HB	GLU	274		17.899	-11.894	27.737	1.00	0.00		H
30	MOTA	2473	1HG	GLU	274		16.730	-12.913	25.980	1.00	0.00		H
	MOTA	2474 2	2HG	GLU	274		18.275	-12.463	25.229	1.00	0.00		H
	MOTA	2475	N	GLY	275		18.144	-8.054	26.782	1.00	0.00		N
	MOTA	2476	CA	GLY	275		17.694	-6.818	26.215	1.00	0.00		С
	MOTA	2477	С	GLY	275		16.234	-6.719	26.466	1.00	0.00		С
35 -	MOTA	2478	0	GLY	275		15.637	-5.654	26.331	1.00	0.00		0
	MOTA	2479	H	GLY	275		18.182	-8.156	27.806	1.00	0.00	•	H
	ATOM	2480		GLY	275		17.913	-6.849	25.147	1.00	0.00		н
	ATOM	2481	2HA	GLY	275		18.238	-6.014	26.710	1.00	0.00		H
	ATOM	2482	N	ASP	276		15.608	-7.849	26.850	1.00	0.00		N
40	ATOM	2483	CA	ASP	276		14.200	-7.829	27.109	1.00	0.00		С
	MOTA	2484	С	ASP	276		14.038	-7.181	28.442	1.00	0.00		С
	ATOM	2485	0	ASP	276		15.007	-6.698	29.028	1.00	0.00		0
	ATOM	2486	СВ	ASP	276		13.559		27.167	1.00	0.00		С
	ATOM	2487	CG	ASP	276		13.557	-9.785	25.755	1.00	0.00		C
45	MOTA	2488	OD1		276		13.760			1.00	0.00		0
	MOTA	2489	OD2		276			-11.023	25.614	1.00	0.00		0
	ATOM	2490	H	ASP	276		16.140		26.956	1.00	0.00		Н
	ATOM	2491	HA	ASP	276		13.755		26.301	1.00	0.00		H
~ 0	ATOM	2492		ASP	276		12.543		27.543	1.00	0.00		H
50	ATOM	2493		ASP	276		14.157		27.838	1.00	0.00		H
	ATOM	2494	N	PHE	277		12.795		28.960	1.00	0.00		N
	ATOM	2495	CA	PHE	277		12.576		30.226	1.00	0.00		C
	ATOM	2496	C	PHE	277		12.671		31.252	1.00	0.00		C
5.5	ATOM	2497	0	PHE	277		11.708		31.486	1.00	0.00		0
55	ATOM	2498	CB	PHE	277		11.166		30.358	1.00	0.00		C
	ATOM	2499	CG	PHE	277		11.010		29.273	1.00	0.00		C .
	MOTA	2500	CD1		277		10.651		28.006 29.513	1.00	0.00		C
	. ATOM	2501	CD2		277		11.226			1.00	0.00		C
60	ATOM	2502	CE1		277 277		10.506		26.992	1.00	0.00		C
60	ATOM	2503	CE2		277 277		11.083		28.502	1.00	0.00		C
	ATOM	2504	CZ	PHE PHE	277		10.722 12.007		27.240 28.443	1.00	0.00		C
	ATOM	2505	H	PHE	277					1.00	0.00		Н
	MOTA	2506	HA 1 HB	PHE	277		13.356 11.099		30.348 31.344	1.00	0.00		H
65	MOTA MOTA	2507 2508		PHE	277		10.452		30.248	1.00	0.00		H H
0.5	ATOM	2508	HD1		277		10.452		27.803	1.00	0.00		H H
	ATOM	2509 2510	HD2		277		11.512		30.511	1.00	0.00		n H
	ATOM	2510	HE1		277		10.220		25.993	1.00	0.00		н
	AT ON	2311			211		10.220	4.132	20.333	1.00	5.00		п

	ATOM	2512	HE2		277	11.256	-1.601	28.702	1.00	0.00	•	Н
	ATOM	2513	HZ	PHE	277	10.607	-2.337	26.439	1.00	0.00		H
	ATOM	2514	N	TYR	278	13.860	-7.772	31.864	1.00	0.00		N
	ATOM	2515	CA	TYR	278	13.996	-8.805	32.842	1.00	0.00		-C
5	ATOM	2516	С	TYR	278	13.234	-8.444	34.075	1.00	0.00		С
	ATOM	2517	0	TYR	278	12.479	-9.261	34.604	1.00	0.00		Ó
	ATOM	2518	СВ	TYR	278	15.446	-9.075	33.265	1.00	0.00		Ċ
	ATOM	2519	CG	TYR	278	15.368		34.268	1.00	0.00		Č
		2520										
10	ATOM			TYR	278	15.168		33.857	1.00	0.00		C
10	ATOM_	2521		TYR	278	15.494	-9.912	35.614	1.00	0.00		C
	ATOM	2522		TYR	278	15.092		34.766	1.00	0.00		С
	MOTA	2523	CE2	TYR	278	15.419	-10.935	36.532	1.00	0.00		С
	MOTA	2524	CZ	TYR	278	15.217	-12.228	36.107	1.00	0.00		С
	ATOM	2525	OH	TYR	278	15.140	-13.277	37.047	1.00	0.00		0
15	ATOM	2526	Н	TYR	278	14.656	-7.161	31.631	1.00	0.00		Н
	MOTA	2527	HA	TYR	278	13.607	-9.744	32.448	1.00	0.00		Н
	ATOM	2528	1HB	TYR	278	15.805	-8.135	33.684	1.00	0.00	•	Н
	ATOM	2529		TYR	278	15.965	-9.364	32.351	1.00	0.00		Н
	ATOM	2530		TYR	278	15.068		32.793	1.00	0.00		H
20	ATOM	2531	HD2		278	15.654	-8.889	35.954	1.00	0.00		H
20	ATOM	2532		TYR	278							
		2532					-13.515	34.423	1.00	0.00		H
	ATOM		HE2		278		-10.720	37.596	1.00	0.00		H
	ATOM	2534	HH	TYR	278	14.399		37.732	1.00	0.00		H
~ ~	ATOM	2535	N	TYR	279	13.398	-7.197	34.562	1.00	0.00		N
25	ATOM	2536	CA	TYR	279	12.758	-6.824	35.794	1.00	0.00		С
	ATOM	2537	С	TYR	279	12.053	-5.524	35.575	1.00	0.00		С
	ATOM	2538	0	TYR	279	12.429	-4.747	34.697	1.00	0.00		0
	ATOM	2539	CB	TYR	279	13.767	-6.632	36.943	1.00	0.00		C
	ATOM	2540	CG	TYR	279	13.033	-6.261	38.186	1.00	0.00		С
30	MOTA	2541	CD1	TYR	279	12.472	-7.237	38.976	1.00	0.00	•	С
	ATOM	2542	CD2	TYR	279	12.914	-4.944	38.571	1.00	0.00		С
	ATOM	2543	CE1	TYR	. 279	11.797	-6.907	40.130	1.00	0.00		С
	ATOM	2544	CE2	TYR	279	12.242	-4.608	39.722	1.00	0.00		С
	ATOM	2545	CZ	TYR	279	11.681	-5.589	40.503	1.00	0.00		C
35	ATOM	2546	OH ·	-TYR	279	10.992	-5.247	41.685	1.00	0.00		.0
	ATOM	2547	Н	TYR	279	13.979	-6.515	34.053	1.00	0.00		H
	ATOM	2548	HA	TYR	279	12.050	-7.609	36.058	1.00	0.00		H
	ATOM	2549		TYR	279	14.466	-5.838	36.679	1.00	0.00		Н
	ATOM	2550		TYR	279	14.311	-7.562	37.102	1.00	0.00		Н
40	ATOM	2551		TYR	279	12.562	-8.283	38.685	1.00	0.00		H
40	ATOM	2552		TYR	279	13.357	-4.160	37.956	1.00	0.00		
	ATOM	2553		TYR	279	11.355	-7.689	40.746		0.00		H
									1.00			H
	ATOM	2554	HE2		279	12.154	-3.561	40.015	1.00	0.00		H
4 =	ATOM	2555	нн	TYR	279	11.059	-4.231	41.840	1.00	0.00		Ή
45	ATOM	2556	N	HIS	280	10.989	-5.267	36.363	1.00	0.00	-	N
	ATOM	2557	CA	HIS	280	10.235	-4.059	36.201	1.00	0.00		С
	MOTA	2558	С	HIS	280	10.105	-3.437	37.556	1.00	0.00		С
	ATOM	.2559	0	HIS	280	9.822	-4.127	38.534	1.00	0.00		0
	ATOM	2560	CB	HIS	280	8.801	-4.330	35.718	1.00	0.00		С
50	ATOM	2561	CG	HIS	280	8.752	-5.281	34.558	1.00	0.00		C
	ATOM	2562		HIS	280	8.694	-6.650	34.703	1.00	0.00		N
	ATOM	2563	CD2	HIS	280	8.759	-5.050	33.217	1.00	0.00		С
	ATOM	2564	CE1	HIS	280	8.669	-7.176	33.453	1.00	0.00		С
	ATOM	2565	NE2	HIS	280	8.707	-6.244	32.518	1.00	0.00		N
55	ATOM	2566	Н	HIS	280	10.715	-5.945	37.088	1.00	0.00		H
	ATOM	2567	HA	HIS	280	10.794	-3.421	35.516	1.00	0.00		H
	ATOM	2568		HIS	280	8.290	-3.424	35.388	1.00	0.00		Н
	ATOM	2569		HIS	280	8.172	-4.766	36.494	1.00	0.00		Н
	ATOM	2570		HIS	280	8.673	-7.173	35.590	1.00	0.00		
60	ATOM	2571		HIS	280	8.799	-4.062	32.757	1.00			H
-										0.00		. Н
	ATOM	2572		HIS	280	8.622	-8.244	33.244	1.00	0.00		Н
	ATOM	2573		HIS	280	8.699	-6.376	31.496	1.00	0.00		H
	ATOM	2574	N	ALA	281	10.314	-2.108	37.663	1.00	0.00		N
65	ATOM	2575	CA	ALA	281	10.175	-1.508	38.958	1.00	0.00		C
65	ATOM	2576	С	ALA	281	9.410	-0.232	38.819	1.00	0.00		С
	ATOM	2577	0	ALA	281	9.697	0.591	37.950	1.00	0.00		0
	ATOM	2578	CB	ALA	281	11.516	-1.162	39.624	1.00	0.00		С
	MOTA	2579	Н	ALA	281	10.565	-1.542	36.839	1.00	0.00		H

	ATOM	2580	HA	ALA	281	9.638	-2.197	39.609	1.00	0.00	н
	ATOM	2581		ALA	281	12.334	-1.448	38.963	1.00	0.00	Н
	ATOM	2582		ALA	281	11.561	-0.089	39.814	1.00	0.00	Н
	ATOM	2583		ALA	281	11.604	-1.702	40.566	1.00	0.00	Н
5	ATOM	2584	N	ALA	282	8.394	-0.044	39.684	1.00	0.00	N
	ATOM	2585	CA	ALA	282	7.641	1.175	39.659	1.00	0.00	С
	ATOM	2586	С	ALA	282	7.535	1.640	41.070	1.00	0.00	С
	ATOM	2587	0	ALA	282	7.371	0.838	41.987	1.00	0.00	0
	ATOM	2588	СВ	ALA	282	6.206	1.006	39.131	1.00	0.00	С
10	MOTA	2589	н	ÅLА	282	8.157	-0.779	40.365	1.00	0.00	. н
	ATOM	2590	HA	ALA	282	8.199	1.874	39.036	1.00	0.00	Н
	MOTA	2591	1HB	ALA	282	6.034	-0.038	38.870	1.00	0.00	Н
	MOTA	2592	2HB	ALA	282	5.496	1.308	39.901	1.00	0.00	Н
	MOTA	2593	ЗНВ	ALA	282	6.068	1.627	38.246	1.00	0.00	H
15	MOTA	2594	N	ILE	283	7.655	2.960	41.291	1.00	0.00	N
	MOTA	2595	CA	ILE	283	7.501	3.417	42.634	1.00	0.00	С
	MOTA	2596	С	ILE	283	6.273	4.261	42.670	1.00	0.00	С
	MOTA	2597	0	ILE	283	6.094	5.159	41.847	1.00	0.00	0
	ATOM	2598	CB	ILE	283	8.655	4.217	43.170	1.00	0.00	С
20	MOTA	2599	CG1		283	8.501	4.389	44.691	1.00	0.00	С
	ATOM	2600	CG2		283	8.755	5.538	42.391	1.00	0.00	С
	MOTA	2601	CD1	ILE	283	9.765	4.892	45.386	1.00	0.00	С
	MOTA	2602	Н	ILE	283	7.850	3.616	40.521	1.00	0.00	Н
	MOTA	2603	HA	ILE	283	7.402	2.532	43.263	1.00	0.00	Н
25	ATOM	2604	HB	ILE	283	9.573	3.643	43.046	1.00	0.00	H
	MOTA	2605		ILE	283	8.243	3.468	45.214	1.00	0.00	. Н
	ATOM	2606			283	7.724	5.098	44.977	1.00	0.00	H
	ATOM	2607		ILE	283	7.967	5.577	41.638	1.00	0.00	H
20	ATOM	2608		ILE	283	8.641	6.375	43.079	1.00	0.00	н
30	ATOM	2609		ILE	283	9.727	5.599	41.901	1.00	0.00	Н
	ATOM	2610			283	10.553	5.035	44.647	1.00	0.00	Н
	ATOM ATOM	2611 2612			283	9.555 ⁻ 10.089	5.839 4.160	45.881 46.125	1.00	0.00	H
	ATOM	2612	N	PHE	283 284	5.379	3.963	43.629	1.00	0.00	H N
- 35	ATOM	2614	CA	PHE	284	4.153	4.691	43.748	1.00	0.00	C
33	ATOM	2615	C	PHE	284	4.420	5.967	44.469	1.00	0.00	c
	ATOM	2616	ŏ	PHE	284	5.515	6.204	44.978	1.00	0.00	Ö
	ATOM	2617	СВ	PHE	284	3.069	3.986	44.587	1.00	0.00	c
	ATOM	2618	CG	PHE	284	2.427	2.887	43.816	1.00	0.00	č
40	ATOM	2619	CD1		284	3.011	1.645	43.722	1.00	0.00	c
	MOTA	2620		PHE	284	1.215	3.104	43.202	1.00	0.00	Ċ
	ATOM	2621		PHE	284	2.397	0.640	43.012	1.00	0.00	Ċ
	ATOM	2622	CE2		284	0.596	2.103	42.491	1.00	0.00	Ċ
	ATOM	2623	CZ	PHE	284	1.189	0.867	42.395	1.00	0.00	C
45	MOTA	2624	Н	PHE	284	5.580	3.198	44.288	1.00	0.00	H
	ATOM	2625	HA	PHE	284	3.768	4.898	42.749	1.00	0.00	Н
	MOTA	2626	1HB	PHE	284	2.288	4.685	44.885	1.00	0.00	н
	MOTA	2627	2HB	PHE	284	3.494	3.554	45.493	1.00	0.00	H
	ATOM	2628	HD1	PHE	284	3.965	1.456	44.213	1.00	0.00	H
50	MOTA	2629		PHE	- 284	0.739	4.081	43.280	1.00	0.00	H
	ATOM	2630		PHE	284	2.869	-0.339	42.938	1.00	0.00	H
	ATOM	2631		PHE	284	-0.361	2.289	42.005	1.00	0.00	H
	MOTA	2632	HZ	PHE	284	0.703	0.069	41.832	1.00	0.00	H
	MOTA	2633	N	GLY	285	3.397	6.842	44.485	1.00	0.00	N
55	MOTA	2634	CA	GLY	285	3.440	8.052	45.247	1.00	0.00	С
	ATOM	2635	С	GLY	285	2.218	7.984	46.105	1.00	0.00	С
	MOTA	2636	0	GLY	285	1.216	8.645	45.834	1.00	0.00	0
	MOTA	2637	Н	GLY	285	2.554	6.633	43.929	1.00	0.00	H
<i>c</i> o	MOTA	2638		GLY	285	3.416	8.839	44.494	1.00	0.00	H
60	ATOM	2639		GLY	285	4.378	7.985	45.797	1.00	0.00	H
	MOTA	2640	N CD	GLY	286	2.279	7.135	47.151	1.00	0.00	N
	ATOM	2641	CA	GLY	286 286	1.177	6.887	48.036	1.00	0.00	С
	ATOM	2642	C O	GLY GLY	286 286	0.923 -0.225	8.016	48.986	1.00 1.00	0.00	C
65	MOTA MOTA	2643 2644	Н	GLY	286 286	3.164	8.408 6.637	49.189 47.324	1.00	0.00	0
95	ATOM	2645		GLY	286	1.320	6.004	47.524	1.00	0.00	H H
	ATOM	2646		GLY		0.235	6.726	47.510	1.00	0.00	H H
	MOTA	2647	N	THR	287	1.982	8.558	49.621	1.00	0.00	N N
							3.333				14

	ATOM	2648	CA	THR	287	1.737	9.563	50.617	1.00	0.00	C
	ATOM	2649	С	THR	287	2.959	10.420	50.730	1.00	0.00	d
	MOTA	2650	0	THR	287	3.998	10.130	50.140	1.00	0.00	Ö
	ATOM	2651	CB	THR	287	1.472	8.963	51.971	1.00	0.00	Ċ
5	ATOM	2652	OG1	THR	287	0.994	9.942	52.881	1.00	0.00	Ō
	ATOM	2653	CG2	THR	287	2.779	8.343	52.493	1.00	0.00	Ċ
	MOTA	2654	H	THR	287	2.941	8.258	49.397	1.00	0.00	H
	ATOM	2655	HA	THR	287	0.879	10.156	50.300	1.00	0.00	н
	ATOM	2656	HB	THR	287	0.703	8.197	51.864	1.00	0.00	н
10	MOTA	2657	HG1	THR	287	1.547	10.804	.52.780	1.00	0.00	Н
	MOTA	2658	1HG2	THR	287	3.570	8.490	51.758	1.00	0.00	· H
	MOTA	2659			287	3.060	8.823	53.430	1.00	0.00	Н
	MOTA	2660	3HG2		287	2.633	7.275	52.661	1.00	0.00	H
	MOTA	2661	N	PRO	288	2.838	11.501	51.452	1.00	0.00	N
15	ATOM	2662	CA	PRO	288	3.990	12.335	51.656	1.00	0.00	C
•	MOTA	2663	С	PRO	288	4.929	11.677	52.612	1.00	0.00	C
	MOTA	2664	0	PRO	288	4.465	10.951	53.489	1.00	0.00	0
	MOTA	2665	CB	PRO	288	3.458	13.680	52.144	1.00	0.00	C
20	ATOM	2666	CG	PRO	288	2.056	13.759	51.515	1.00	0.00	C
20	ATOM	2667	CD	PRO	288	1.618	12.292	51.375	1.00	0.00	C
	ATOM	2668	HA	PRO	288	4.502	12.496	50.707	1.00	0.00	H
	ATOM	2669	1HB	PRO	288	4.097	14.497	51.810	1.00	0.00	Н
	ATOM	2670		PRO	288	3.414	13.711	53.232	1.00	0.00	Н
25	MOTA	2671		PRO	288	2.214	14.268	50.564	1.00	0.00	Н
23	ATOM	2672		PRO	288	1.469	14.331	52.233	1.00	0.00	Н
	ATOM	2673	1HD	PRO	288	0.991	11.958	52.202	1.00	0.00	H
•	ATOM ATOM	2674 2675	2HD N	PRO	288	1.180	12.073	50.400	1.00	0.00	Н
	ATOM	2676	CA	THR	289 289	6.250	11.901	52.461	1.00	0.00	N
30	ATOM	2677	CA	THR	289	7.166 8.535	11.281 11.823	53.373 53.093	1.00	0.00	C
50	ATOM	2678	Ö	THR	289 -	8.677		52.479	1.00 1.00	0.00	C
	MOTA	2679	CB	THR	289	7.214	9.785	53.233	1.00	0.00	0
	ATOM	2680	OG1		289	7.893	9.199	54.335	1.00	0.00	C
	ATOM	2681		THR	289	7.927	9.436	51.916	1.00	0.00	0
35	ATOM	2682	H	THR	289	6.595	12.507	51.703	1.00	-0.00	. н
	ATOM	2683	HA	THR	289	6.849	11.527	54.386	1.00	0.00	
	ATOM	2684	HB	THR	289	6.193	9.402	53.222	1.00	0.00	Н
	ATOM	2685		THR	289	7.656	9.711	55.196	1.00	0.00	H
	MOTA	2686	1HG2	THR	289	8.222	10.353	51.407	1.00	0.00.	
40	ATOM	2687	2HG2	THR	289	8.813	8.838	52.129	1.00	0.00	Н
	ATOM	2688	3HG2	THR	289	7.251	8.868	51.276	1.00	0.00	Н
	ATOM	2689	N	GLN	290	9.578	11.106	53.571	1.00	0.00	N
	ATOM	2690	CA	GLN	290	10.946	11.488	53.362	1.00	0.00	C
	ATOM	2691	С	GLN	290	11.307	11.065	51.975	1.00	0.00	C
45	MOTA	2692	0	GLN	290	11.184	9.898	51.607	1.00	0.00	0
	MOTA	2693	CB	GLN	290	11.927	10.823	54.345	1.00	0.00	C
	MOTA	2694	CG	GLN	290	11.799	11.334	55.783	1.00	0.00	C
	ATOM	2695	CD	GLN	290	12.408	12.729	55.844	1.00	0.00	C
50	ATOM	2696		GLN	290	12.950	13.230	54.860	1.00	0.00	0
50	ATOM	2697		GLN	290	12.323	13.376	57.038	1.00	0.00	N
	ATOM	2698	H	GLN	290	9.382	10.249	54.108	1.00	0.00	Н
	ATOM	2699	HA	GLN	290	10.994	12.570	53.483	1.00	0.00	Н
	ATOM	2700		GLN	290	12.975	10.972	54.086	1.00	0.00	Н
55	MOTA	2701		GLN	290	11.807	9.742	54.419	1.00	0.00	Н
55	ATOM	2702		GLN	290	12.337	10.646	56.434	1.00	0.00	H
·	ATOM ATOM	2703		GLN	290	10.739	11.361	56.038	1.00	0.00	H
	ATOM		1HE2 2HE2		290 290	12.721 11.860	12.921	57.141	1.00	0.00	H
	ATOM	2705	N	VAL	290 291	11.752	12.921	57.838		0.00	Н
60	ATOM	2707	CA	VAL	291 291	12.052	11.906	51.171 49.776	1.00	0.00	N
-	ATOM	2708	CA	VAL	291	13.310	11.142	49.776	1.00	0.00	C
	ATOM	2709	Ö	VAL	291	13.433	10.541	49.519	1.00	0.00	C
	ATOM	2710	СВ	VAL	291	12.204	13.227	49.097	1.00	0.00	0 C
	ATOM	2711		VAL	291	10.858	13.966	49.175	1.00	0.00	c
65	ATOM	2712		VAL	291	13.372	13.971	49.761	1.00	0.00	c
	ATOM	2713	н	VAL	291	11.888	12.977	51.592	1.00	0.00	н
	ATOM	2714	HA	VAL	291	11.274	11.382	49.220	1.00	0.00	H
	ATOM	2715	HB	VAL	291	12.484	13.047	48.059	1.00	0.00	н

	ATOM	2716	1HG1	VAL	291	10.132	13.346	49.702	1.00	0.00		H
	ATOM	2717	2HG1		291	10.989	14.906	49.710	1.00	0.00		H
	ATOM		3HG1		291	10.495	14.169	48.167	1.00	0.00		H
		2719										
-	ATOM				291	13.793	13.353	50.554	1.00	0.00		H
5	MOTA	2720			291	14.140	14.179	49.016	1.00	0.00		H
	MOTA	2721	3HG2		291	13.012	14.909	50.183	1.00	0.00		H
	MOTA	2722	N	LEU	292	14.277	11.164	50.462	1.00	0.00		N
	MOTA	2723	CA	LEU	292	15.569	10.575	50.237	1.00	0.00		С
	MOTA	2724	C	LEU	292	15.457	9.193	49.670	1.00	0.00		С
10	ATOM	2725	0	LEU	292	14.870	8.285	50.255	1.00	0.00		0
• •	ATOM	2726	СВ	LEU	292	16.488	10.588	51.485	1.00	0.00		Č
	ATOM	2727	CG	LEU	292	15.978	9.868	52.755	1.00	0.00		C
	ATOM	2728		LEU	292	14.588	10.374	53.161	1.00	0.00		С
	MOTA	2729		LEU	292	16.112	8.339	52.686	1.00	0.00		С
15	MOTA	2730	H	LEU	292	14.083	11.615	51.367	1.00	0.00		H
	MOTA	2731	HA	LEU	292	16.163	11.162	49.537	1.00	0.00		H
	MOTA	2732	1HB	LEU	292	16.648	11.629	51.762	1.00	0.00		H
	MOTA	2733	2HB	LEU	292	17.423	10.102	51.208	1.00	0.00		H
	ATOM	2734	HG	LEU	292	16.648	10.032	53.598	1.00	0.00		Н
20	ATOM	2735	1HD1		292	14.259	11.139	52.457	1.00	0.00		H
20	ATOM	2736			292	13.881	9.544	53.150	1.00	0.00		H
			3HD1									
	ATOM	2737			292	14.634	10.798	54.163	1.00	0.00		H
	MOTA	2738	1HD2		292	16.551	8.055	51.730	1.00	0.00		Н
	MOTA	2739	2HD2		292	16.752	7.992	53.497	1.00	0.00		H
25	MOTA	2740	3HD2	LEU	292	15.126	7.882	52.781	1.00	0.00		H
	ATOM	2741	N	ASN	293	15.983	9.054	48.437	1.00	0.00		N
	MOTA	2742	CA	ASN	293	16.061	7.821	47.709	1.00	0.00		С
	MOTA	2743	С	ASN	293	14.705	7.432	47.211	1.00	0.00		С
	ATOM	2744	Ö	ASN	293	14.585	6.761	46.187	1.00	0.00		ŏ
30	ATOM	2745	СВ	ASN	293	16.617	6.667	48.565	1.00	0.00		c
30			CG	ASN	293			47.662		0.00		c
	ATOM	2746				16.899	5.473		1.00			
	MOTA	2747		ASN	293	15.993	4.858	47.102	1.00	0.00		0
	ATOM	2748		ASN	293	18.208	5.136	47.513	1.00	0.00		N
	ATOM	2749	н	ASN	293	16.358	9.898	47.982	1.00	0.00		Н
35	MOTA	2750	HA	ASN	293	16.731	- 7.931	46.856	1.00	0.00		H
	ATOM	2751	1HB	ASN	293	15.877	6.397	49.319	1.00	0.00		H
	ATOM	2752	2HB	ASN	293	17.537	6.995	49.046	1.00	0.00		Н
	ATOM	2753	1HD2		293	18.469	4.340	46.913	1.00	0.00		Н
	ATOM	2754			293	18.937	5.676	47.999	1.00	0.00		H
40	ATOM	2755	N	ILE	294	13.638	7.863	47.904	1.00	0.00		N
40					294	12.326						
	ATOM	2756	CA	ILE			7.463	47.488	1.00	0.00		С
	ATOM	2757	C	ILE	294	11.915	8.198	46.246	1.00	0.00		С
	MOTA	2758	0	ILE	294	11.329	7.610	45.338	1.00	0.00		0
	ATOM	2759	CB	ILE	294	11.275	7.676	48.544	1.00	0.00		С
45	ATOM	2760	CG1	ILE	294	9.992	6.906	48.184	1.00	0.00	·	С
	MOTA	2761	CG2	ILE	294	11.064	9.187	48.729	1.00	0.00		С
	ATOM	2762	CD1		294	9.010	6.779	49.349	1.00	0.00		С
	MOTA	2763	Н	ILE	294	13.761	8.473	48.724	1.00	0.00		H
	ATOM	2764	HA	ILE	294	12.297	6.394	47.275	1.00	0.00		H
50	ATOM	2765	HB	ILE	294	11.620	7.225	49.474	1.00	0.00		H
50					294	10.176		47.854				
	ATOM		1HG1				5.883		1.00	0.00		H
	ATOM		2HG1		294	9.420	7.366	47.378	1.00	0.00		H
	MOTA		1HG2		294	11.723	9.731	48.053	1.00	0.00		H
	MOTA	2769	2HG2	ILE	294	10.027	9.439	48.505	1.00	0.00		Н
55	MOTA	2770	3HG2	ILE	294	11.291	9.462	49.758	1.00	0.00		H
	MOTA	2771	1HD1	ILE	294	9.423	7.272	50.228	1.00	0.00		Н
	ATOM		2HD1		294	8.064	7.249	49.080	1.00	0.00		Н
	ATOM		3HD1		294	8.841	5.724	49.569	1.00	0.00		H
			N	THR	295	12.229	9.505	46.162	1.00	0.00		
60	MOTA	2774			295					0.00		N
60	ATOM	2775	CA	THR		11.793	10.311	45.055	1.00			C
	ATOM	2776	.C	THR	295	12.858	10.330	44.009	1.00	0.00		C
	MOTA	2777	0	THR		13.954	9.813	44.216	1.00	0.00		0
	MOTA	2778	CB	THR	295	11.534	11.733	45.450	1.00	0.00		С
	ATOM	2779	OG1		295	12.727	12.310	45.957	1.00	0.00		0
65	ATOM	2780	CG2	THR	295	10.429	11.764	46.521	1.00	0.00		С
	ATOM	2781	н	THR		12.794	9.936	46.907	1.00	0.00		Н
	ATOM	2782	HA	THR		10.878	9.887	44.639	1.00	0.00		Н
	ATOM	2783	HB	THR		11.214	12.294	44.571	1.00	0.00		Н
	011	2,03		- 111/			14.673	31.571	2.00	5.00		41

					_						
	MOTA	2784			295	13.410	12.412	45.193	1.00	0.00	H
	MOTA MOTA	2785 2786			295 295	10.100 10.818	10.746 12.218	46.734 47.432	1.00	0.00	H H
	MOTA		3HG2		295	9.584	12.216	46.155	1.00	0.00	н
5	MOTA	2788	N	GLN	296	12.554	10.945	42.843	1.00	0.00	N
	MOTA	2789		GLN	296	13.513	10.934	41.777	1.00	0.00	С
	MOTA	2790	С	GLN	296	13.855	12.321	41.328	1.00	0.00	С
	MOTA	2791	0	GLN	296	13.503	13.320	41.952	1.00	0.00	0
10	MOTA MOTA	2792 2793	CB CG	GLN	296 296	13.059 12.877	10.149 8.659	40.537 -40.827	1.00	0.00	C
10	ATOM	2794	CD	GLN	296	14.158	8.135	41.460	1.00	0.00	C
	ATOM	2795	OE1		296	14.149	7.631	42.583	1.00	0.00	ō
	ATOM	2796	NE2	GLN	296	15.289	8.241	40.712	1.00	0.00	N
	ATOM	2797	H	GLN	296	11.645	11.415	42.722	1.00	0.00	Н
15	ATOM	2798	HA	GLN	296	14.443	10.453	42.078	1.00	0.00	Н
	MOTA MOTA	2799 2800		GLN GLN	296 296	13.774 12.106	10.219 10.506	39.717 40.146	1.00 1.00	0.00	H H
	MOTA	2801		GLN	296	12.678	8.148	39.884	1.00	0.00	H
	ATOM	2802		GLN	296	12.036	8.543	41.510	1.00	0.00	н
20	MOTA	2803			296	16.185	7.891	41.081	1.00	0.00	H
	MOTA		2HE2		296	15.249	8.670	39.776	1.00	0.00	Н
	MOTA	2805 2806	N	GLU	297	14.554	12.362 13.472	40.176 39.516	1.00	0.00	И
	MOTA ATOM	2807	CA C	GLU GLU	297 297	15.187 14.220	14.506	39.044	1.00	0.00	C
25	ATOM	2808	Ö	GLU	297	14.611	15.656	38.850	1.00	0.00	Ö
	MOTA	2809	CB	GLU	297	15.974	13.048	38.267	1.00	0.00	С
	ATOM	2810	CG	GLU	297	15.075		37.152	1.00	0.00	С
	ATOM	2811	CD	GLU	297	15.952	12.171	35.955	1.00	0.00	С
30	ATOM ATOM	2812 2813	OE1 OE2		297 297	16.938 15.653	11.409 12.677	36.142 34.841	1.00 1.00	0.00	0
50	ATOM	2814	Н	GLU	297	14.649	11.457	39.693	1.00	0.00	н
	MOTA	2815	HA	GLU	297	15.893	14.004	40.152	1.00	0.00	Н
	ATOM	2816		GLU	297	16.702	12.263	38.470	1.00	0.00	, Н
25	ATOM		2HB	GLU	297	16.537	13.868	37.822	1.00	0.00	Н
35	ATOM ATOM			-GLU GLU	297 297	14.348 14.573	13.275 11.611	36.894 37.523	1. 0 0 1.00	0.00	H H
	ATOM	2820	N	CYS	298	12.944	14.139	38.848	1.00	0.00	N
	ATOM	2821	CA	CYS	298	11.986	14.986	38.195	1.00	0.00	C
	MOTA	2822	С	CYS	298	11.981	16.390	38.760	1.00	0.00	С
40	ATOM	2823	0	CYS	298	11.900	17.327	37.968	1.00	0.00	0
	ATOM ATOM	2824 2825	CB SG	CYS CYS	298 298	10.550 9.335	14.445 15.519	38.303 37.481	1.00	0.00	C S
	ATOM	2826	Н	CYS	298	12.639	13.212	39.179	1.00	0.00	Н
	ATOM	2827	HA	CYS	298	12.179	15.083	37.126	1.00	0.00	Н
45	ATOM	2828		CYS	298	10.216	14.344	39.335	1.00	0.00	Н
•	MOTA	2829		CYS	298	10.438	13.459	37.851	1.00	0.00	Н
	MOTA MOTA	2830 2831	HG N	CYS PHE	298 299	9.782 12.054	16.782 16.616	37.481 40.098	1.00	0.00	H N
	ATOM	2832	CA	PHE	299	12.065	17.995	40.533	1.00	0.00	C
50	ATOM	2833	С	PHE	299	12.861	18.123	41.799	1.00	0.00	Ċ
	MOTA	2834	0	PHE	299	14.090	18.050	41.787	1.00	0.00	0
	ATOM	2835	CB	PHE	299	10.656	18.565	40.804	1.00	0.00	C
	MOTA MOTA	2836 2837	CG CD1	PHE PHE	299 299	10.768 11.026	20.044	41.001 39.930	1.00 1.00	0.00	C C
55	ATOM	2838		PHE	299	10.589	20.618	42.240	1.00	0.00	c
	ATOM	2839		PHE	299	11.124	22.231	40.096	1.00	0.00	Ċ
	MOTA	2840		PHE	299	10.687	21.978	42.414	1.00	0.00	С
	ATOM	2841	CZ	PHE	299	10.958	22.789	41.340	1.00	0.00	С
60	MOTA MOTA	2842 2843	H HA	PHE PHE	299 299	12.099 12.515	15.839 18.621	40.772 39.763	1.00	0.00	Н
00	ATOM	2844		PHE	299	10.256	18.093	41.701	1.00	0.00	H H
	ATOM	2845		PHE	299	10.020	18.345	39.946	1.00	0.00	H
	ATOM	2846	HD1	PHE	299	11.154	20.437	38.937	1.00	0.00	Н
	MOTA	2847		PHE	299	10.365	19.983	43.097	1.00	0.00	H
65	ATOM	2848		PHE PHE	299	11.334	22.869	39.237	1.00	0.00	Н
	ATOM ATOM	2849 2850	HZ	PHE	299 299	10.549 11.040	22.412 23.867	43.404 41.473	1.00	0.00	H H
	ATOM	2851	N	LYS		12.152	18.377	42.919	1.00	0.00	N N
						· -	_	_			

	MOTA	2852 CA	LYS	300	12.711	18.546	44.231	1.00	0.00		С
	ATOM	2853 C	LYS	300	11.842	19.526	44.938	1.00	0.00		Ċ
	ATOM	2854 O	LYS	300	10.626	19.541	44.767	1.00	0.00		ō
	ATOM	2855 CB	LYS	300	14.135	19.134	44.286	1.00	0.00		Ċ
5	ATOM	2856 CG	LYS	300	14.273	20.503	43.618	1.00	0.00		č
	ATOM	2857 CD	LYS	300	15.543	21.248	44.032	1.00	0.00		C.
	MOTA	2858 CE	LYS	300	15.398	22.016	45.347	1.00	0.00		C
	ATOM	2859 NZ	LYS	300	15.336	21.070		1.00	0.00		N
							46.484				
10	MOTA	2860 H	LYS	300	11.129	18.455	42.825	1.00	0.00		H
10	MOTA	2861 HA	LYS	3 0 0	12.695	17.563	44.703	1.00	0.00		H
	MOTA	2862 1HB	LYS	300	14.809	18.446		1.00	0.00		Н
	ATOM	2863 2HB	LYS	300	14.419	19.245	45.332	1.00	0.00		Н
	ATOM	2864 1HG	LYS	300	13.448	21.177	43.850	1.00	0.00		H
	ATOM	2865 2HG	LYS	300	14.307	20.446	42.530	1.00	0.00		Н
15	ATOM	2866 1HD	LYS	300	15.868	21.989	43.302	1.00	0.00		Н
	MOTA	2867 2HD	LYS	300	16.402	20.593	44.177	1.00	0.00		Н
	MOTA	2868 1HE	LYS	300	14.485	22.611	45.334	1.00	0.00		Н
	MOTA	2869 2HE	LYS	300	16.250	22.680	45.488	1.00	0.00		Н
	MOTA	2870 1HZ	LYS	300	15.404	20.104	46.132	1.00	0.00	•	H
20	ATOM	2871 2HZ	LYS	300	16.117	21.256	47.129	1.00	0.00		н
	MOTA	2872 3HZ	LYS	300	14.443	21.190	46.983	1.00	0.00		Н
	MOTA	2873 พ	GLY	301	12.461	20.372	45.778	1.00	0.00		N
	ATOM	2874 CA	GLY	301	11.731	21.382	46.474	1.00	0.00		С
	ATOM	2875 C	GLY	301	12.122	22.678	45.854	1.00	0.00		С
25	ATOM	2876 O	GLY	301	12.740	22.704	44.791	1.00	0.00		0
	MOTA	2877 Н	GLY	301	13.477	20.290	45.922	1.00	0.00		H
	MOTA	2878 1HA	GLY	301	12.033	21.310	47.518	1.00	0.00		Н
	MOTA	2879 2HA	GLY	301	10.676	21.149	46.327	1.00	0.00	•	H
	MOTA	2880 N	ILE	302	11.773	23.795	46.516	1.00	0.00		N
30	ATOM	2881 CA	ILE	302	12.113	25.074	45.979	1.00	0.00		С
	ATOM	2882 C	ILE	302	13.590	25.101	45.795	1.00	0.00		С
	ATOM	2883 O	ILE	302	14.361	24.917	46.735	1.00	0.00		0
	ATOM	2884 CB	ILE	302	11.700	26.223	46.852	1.00	0.00		· c
	MOTA	2885 CG	1 ILE	302	12.017	27.565	46.171	1.00	0.00		C
35	ATOM	2886 CG	2 ILE	302	12. 3 47	26.031	48.230	1.00	0.00		C
	ATOM	2887 CD	1 ILE	302	11.371	28.767	46.859	1.00	0.00		Ċ
	ATOM	2888 H	ILE	302	11.261	23.728	47.407	1.00	0.00		Н
	ATOM	2889 на	ILE	302	11.590	25.177	45.028	1.00	0.00		Н
	MOTA	2890 HB	ILE	302	10.612	26.215	46.930	1.00	0.00		H
40	ATOM	2891 1HG	1 ILE	302	11.682	27.617	45.134	1.00	0.00		Н
	ATOM	2892 2HG		302	13.081	27.795	46.137	1.00	0.00		H
	ATOM	2893 1HG		302	12.939	25.116	48.229	1.00	0.00		Н
	ATOM	2894 2HG		302	12.992	26.881	48.450	1.00	0.00		H
	ATOM	2895 3HG		302	11.569	25.959	48.990	1.00	0.00		Н
45	ATOM	2896 1HD		302	10.796	28.427	47.721	1.00	0.00		H
	ATOM	2897 2HD		302	12.147	29.457	47.189	1.00	0.00		Н
	ATOM	2898 3HD		302	10.708	29.274	46.158	1.00	0.00		н
	ATOM	2899 N	LEU		14.007	25.313	44.536	1.00	0.00		N
	ATOM	2900 CA		303	15.389	25.330	44.179	1.00	0.00		c
50	ATOM	2901 C	LEU	303	16.008	26.457		1.00	0.00		č
•	MOTA	2902 0	LEU	303	17.130	26.353	45.418	1.00	0.00		Ö
	ATOM	2903 CB	LEU	303	15.605	25.636	42.686	1.00	0.00		Ç.
	ATOM	2904 CG		303	14.969	24.617	41.721	1.00	0.00		c
	ATOM		1 LEU	303	15.618	23.232	41.852	1.00	0.00		c
55	ATOM		2 LEU	303	13.439	24.583	41.865	1.00	0.00		C
55	ATOM	2907 H	LEU	303	13.303	25.469	43.800	1.00	0.00		н
	ATOM	2908 HA		303	15.800	24.365	44.476	1.00	0.00		H
	ATOM	2909 1HB		303	16.677	25.646	42.492	1.00	0.00		Н
	MOTA	2910 2HB		303	15.165	26.610	42.471	1.00	0.00		
60	MOTA	2910 ZHB		303	15.076	24.926	40.681	1.00	0.00		H
00	ATOM	2912 1HD		303	16,400	23.267	42.610	1.00	0.00		Н
	ATOM	2912 IND 2913 2HD		303	14.862	22.502	42.010	1.00	0.00		H
	MOTA	2913 2HD		303	16.052	22.941	42.143	1.00	0.00		Н
	ATOM	2914 JRD		303	13.129	25.296	42.628	1.00	0.00		H
65	MOTA	2916 2HD		303	12.978	24.847	40.913	1.00	0.00		H
03	ATOM	2916 2HD		303	13.123	23.581	42.155	1.00	0.00		H
	ATOM	2917 3RD 2918 N	LYS	303	15.123	27.569	45.034	1.00	0.00		H
		2918 N 2919 CA		304			45.650	1.00	0.00		N
	ATOM	ZJIJ CA	μīδ	304	10.163.	28.750	13.030	1.00	0.00		С

	ATOM	2920	С	LYS	304	16.148	28.473	47.072	1.00	0.00		С
	MOTA	2921	0	LYS	304	17.219	28.875	47.520	1.00	0.00		0
	ATOM	2922	CB	LYS	304	14.786	29.922	45.653	1.00	0.00		C
	ATOM	2923	CG	LYS	304	14.564	30.544	44.272	1.00	0.00		С
5	MOTA	2924		LYS	304	13.849	29.625	43.280	1.00	0.00		С
	MOTA	2925		LYS	304	13.634	30.266	41.907	1.00	0.00		С
	ATOM	2926		LYS	304	12.942	29.318	41.007	1.00	0.00		N
•	ATOM	2927		LYS	304	14.299	27.571	44.668	1.00	0.00		Н
10	ATOM	2928		LYS	304	16.673	29.090	45.120	1.00	0.00		Н
10	ATOM	2929 1		LYS	304	15.088	30.752	46.290	1.00	0.00		Н
	ATOM	2930 2		LYS	304	13.790	29.648	46.001	1.00	0.00		Н
	ATOM ATOM	2931 1 2932 2	-	LYS LYS	304 304	15.536	30.796	43.849	1.00	0.00		H H
	MOTA	2933 .1		LYS	304	13.954 12.857	31.439 29.317	44.393 43.613	1.00	0.00		Н
15	ATOM	2934 2		LYS	304	14.388	28.698	43.013	1.00	0.00		Н
13	ATOM	2935 1		LYS	304	14.593	30.534	41.465	1.00	0.00		Н
	ATOM	2936 2		LYS	304	13.026	31.165	42.005	1.00	0.00		Н
	ATOM	2937 1		LYS	304	12.760	28.437	41.509	1.00	0.00		Н
	ATOM	2938 2		LYS	304	12.048	29.727	40.698	1.00	0.00		Н
20	MOTA	2939 3	3HZ	LYS	304	13.534	29.128	40.186	1.00	0.00		Н
	ATOM	2940	N	ASP	305	15.287	27.767	47.827	1.00	0.00		N
	ATOM	2941	CA	ASP	305	15.607	27.592	49.215	1.00	0.00		С
	MOTA	2942	С	ASP	305	16.862	26.797	49.367	1.00	0.00		С
_	MOTA	2943	0	ASP	305	17.726	27.159	50.165	1.00	0.00		0
25	MOTA	2944	CB	ASP	305	14.513	26.886	50.034	1.00	0.00		С
	MOTA	2945	CG	ASP	305	13.392	27.890	50.267	1.00	0.00		С
	ATOM	2946	OD1		305	13.596	29.090	49.942	1.00	0.00		0
	ATOM	2947	OD2		305	12.319	27.471	50.778	1.00	0.00		0
20	ATOM	2948	H	ASP	305	14.428	27.366	47.423	1.00	0.00		Н
30	ATOM	2949	HA	ASP	305	15.751	28.558	49.698	1.00	0.00	·	Н
	ATOM ATOM	2950 1 2951 2		ASP ASP	305 305	14.960 14.164	26.567 26.032	50.975 49.452	1.00	0.00		Н
	MOTA	2952	N N	LYS	305	17.018	25.697	48.606	1.00	0.00		H N
	ATOM	2953	CA	LYS	306	18.190	24.902	48.824	1.00	0.00		C
35	ATOM	2954 -		LYS	306	19.398	25.699	48.455	1.00	0.00		c
	ATOM	2955	0	LYS	306	20.406	25.684	49.158	1.00	0.00		ō
	ATOM	2956	СВ	LYS	306	18.210	23.580	48.037	1.00	0.00		C
	ATOM	2957	CG	LYS	306	18.354	23.727	46.523	1.00	0.00		C,
	ATOM	2958	CD	LYS	306	18.700	22.400	45.844	1.00	0.00		С
40	MOTA	2959	CE	LYS	306	18.844	22.501	44.327	1.00	0.00		Ç
	MOTA	2960	NZ	LYS	306	19.175	21.174	43.761	1.00	0.00		N
	ATOM	2961	H	LYS	306	16.320	25.436	47.893	1.00	0.00		Н
	ATOM	2962	HA	LYS	306	18.240	24.620	49.875	1.00	0.00		Η
15	ATOM	2963		LYS	306	17.270	23.060	48.225	1.00	0.00		Ή
45	ATOM	2964 2 2965 3		LYS LYS	306 306	19.056 19.140	22.990 24.431	48.388	1.00	0.00		Н
	ATOM	2966		LYS	306	17.437	24.431	46.250 46.055	1.00 1.00	0.00		H H
	ATOM	2967		LYS	306	17.903	21.686	46.056	1.00	0.00		Н
	ATOM	2968		LYS	306	19.648	22.044	46.246	1.00	0.00		Н
50	ATOM	2969		LYS	306	19.639	23.202	44.074	1.00	0.00		Н
	ATOM	2970		LYS	306	17.910	22.850	43.886	1.00	0.00		Н
	MOTA	2971		LYS	306	19.233	20.481	44.520	1.00	0.00		Н
	MOTA	2972	2HZ	LYS	306	18.441	20.891	43.095	1.00	0.00		Н
	ATOM	2973		LYS	306	20.080	21.224	43.272	1.00	0.00		Н
55	MOTA	2974	N	LYS	307	19.311	26.450	47.347	1.00	0.00		N
	MOTA	2975	CA	LYS	307	20.430	27.216	46.887	1.00	0.00		С
	ATOM	2976	C	LYS	307	20.794	28.205	47.945	1.00	0.00		С
	MOTA	2977	0	LYS	307	21.972	28.465	48.185	1.00	0.00		0
60	MOTA	2978	CB CG	LYS LYS	307 307	20.118 21.337	27.988	45.591	1.00	0.00		C
UU	ATOM ATOM	2979 2980	CD	LYS	30 <i>1</i> 307	21.337	28.616 29.699	44.908 45.732	1.00 1.00	0.00		C
	ATOM	2981	CE	LYS	307	23.252	30.313	45.732	1.00	0.00		C
	MOTA	2982	NZ	LYS	307	23.851	31.358	45.895	1.00	0.00		N
	ATOM	2983	H	LYS	307	18.426	26.476	46.819	1.00	0.00		Н
65	ATOM	2984	HA	LYS	307	21.261	26.535	46.699	1.00	0.00		Н
	ATOM	2985		LYS	307	19.426	28.795	45.834	1.00	0.00		Н
	MOTA	2986		LYS	307	19.666	27.293	44.882	1.00	0.00		Н
	MOTA	2987	1HG	LYS	307	21.007	29.072	43.974	1.00	0.00		Н

MOTA

3055 2HG GLU

311

						•					•	
	ATOM	2988	2HG	LYS	307	22.064	27.827	44.714	1.00	0.00		Н
	MOTA	2989	1HD	LYS	307	22.413	29.344	46.691	1.00	0.00		Н
	ATOM	2990	2HD	LYS	307	21.396	.30.546	45.977	1.00	0.00		H
	MOTA	2991	1HE	LYS	307	22.949	30.761	44.088	1.00	0.00		H
5	ATOM	2992	2HE	LYS	307	23.997	29.541	44.841	1.00	0.00		H
	MOTA	2993	1HZ	LYS	307	23.312	31.434	46.769	1.00	0.00		Н
	ATOM	2994	2HZ	LYS	307	24.825	31.106	46.113	1.00	0.00		H
	ATOM	2995	3HZ	LYS	307	23.832	32.261	45.401	1.00	0.00		Н
	ATOM	2996	N	ASN	308	19.788	28.784	48.622	1.00	0.00		N
10	ATOM	2997	CA	ASN	308	20.100	29.798	49.585	1.00	0.00		C
	ATOM	2998	C .	ASN	308	21.006	29.231	50.635	1.00	0.00		Ċ
	ATOM	2999	ō	ASN	308	22.071	29.785	50.906	1.00	0.00		ō
	ATOM	3000	СВ	ASN	308	18.848	30.327	50.307	1.00	0.00		c
	ATOM	3001	CG	ASN	308	19.247	31.528	51.153	1.00	0.00		Ċ
15	ATOM	3002		ASN	308	20.366	32.029	51.054	1.00	0.00		ō
	ATOM	3003		ASN	308	18.309	32.003	52.016	1.00	0.00		N
	ATOM	3004	Н	ASN	308	18.811	28.504	48.451	1.00	0.00		Н
	ATOM	3005	HA	ASN	30B	20.597	30.631	49.089	1.00	0.00		Н
	ATOM	3006		ASN	308	18.450	29.533	50.939	1.00	0.00		Н
20	ATOM	3007		ASN	308	18.112	30.618	49.557	1.00	0.00		Н
	ATOM	3008			308	18.524	32.811	52.617	1.00	0.00		Н
	ATOM		2HD2		308	17.383	31.554	52.068	1.00	0.00		Н
	ATOM	3010	N	ASP	309	20.605	28.106	51.258	1.00	0.00		N
	ATOM	3011	CA	ASP	309	21.388	27.540	52.320	1.00	0.00		C
25	ATOM	3012	C	ASP	309	22.665	26.942	51.803	1.00	0.00		Ċ
	ATOM	3013	ŏ	ASP	309	23.747	27.246	52.304	1.00	0.00		ō
	ATOM	3014	СВ	ASP	309	20.635	26.430	53.073	1.00	0.00		C
	MOTA	3015	CG	ASP	309	19.471	27.076	53.813	1.00	0.00		Ċ
	ATOM	3016		ASP	309	19.395	28.333	53.812	1.00	0.00		ō
30	MOTA	3017		ASP	309	18.644	26.320	54.390	1.00	0.00		0
	ATOM	3018	H	ASP	309	19.728	27.647	50.969	1.00	0.00		Н
	MOTA	3019	HA	ASP	309	21.657	28.292	53.061	1.00	0.00		Н
	MOTA	3020	1HB	ASP	309	21.333	25.966	53.769	1.00	0.00		Н
	MOTA	3021	2HB	ASP	309	20.279	25.709	52.336	1.00	0.00		Н
35	MOTA	3022	N	ILE	310	22.562	26.078	50.772	1.00	0.00		N
	MOTA	3023	CA	ILE	310	23.688	25.341	50.263	1.00	0.00		С
	MOTA	3024	С	ILE	310	24.679	26.236	49.592	1.00	0.00		С
	MOTA	3025	0	ILE	310	25.879	26.087	49.814	1.00	0.00		0
	MOTA	3026		ILE	310	23.289	24.288	49.273	1.00	0.00		С
40	MOTA	'3027		ILE	310	22.391	23.238	49.948	1.00	0.00		C
	MOTA	3028		ILE	310	24.575	23.700	48.668	1.00	0.00		С
	ATOM	3029			310	23.080	22.501	51,096	1.00	0.00		С
	ATOM	3030	H	ILE	310	21.641	25.940	50.331	1.00	0.00		Н
15	ATOM	3031	HA	ILE	310	24.218	24.814	51.056	1.00	0.00		H
45	ATOM	3032		ILE	310	22.677	24.765	48.507	1.00	0.00		H
	ATOM		1HG1		310	22.051	22.458	49.266	1.00	0.00		H
	ATOM		2HG1		310	21.483	23.659	50.379	1.00	0.00		Н
	ATOM		1HG2		310	25.442	24.192 22.631	49.107	1.00	0.00		H
50	ATOM		2HG2 3HG2		310 310	24.620 24.575	23.858	48.877 47.589	1.00	0.00		Н
50	MOTA MOTA		1HD1		310	24.097	22.876	51.210	1.00	0.00		H
	ATOM		2HD1		310	22.525	. 22.667	52.019	1.00	0.00		H H
	ATOM		3HD1		310	23.109	21.433	50.877	1.00	0.00		Н
	MOTA	3041		GLU	311	24.186	27.194	48.779	1.00	0.00		N
55	ATOM	3042		GLU	311	24.943	28.128	47.983	1.00	0.00		C
-	ATOM	3043		GLU	311	25.034	27.561	46.604	1.00	0.00		c
	ATOM	3044		GLU	311	25.245	28.291	45.636	1.00	0.00	•	ŏ
	ATOM	3045		GLU	311	26.400	28.389	48.424	1.00	0.00		c
	ATOM	3046		GLU	311	27.404	27.341	47.930	1.00	0.00		c
60	ATOM	3047		GLU	311	28.788	27.726	48.434	1.00	0.00		Č
	ATOM	3048		GLU	311	28.894	28.759	49.148	1.00	0.00		o
	ATOM	3049		GLU	311	29.759	26.993	48.108	1.00	0.00		ō
	ATOM	3050		GĻU	311	23.160	27.265	48.721	1.00	0.00		Н
	ATOM	3051		GĹU		24.401	29.073	47.993	1.00	0.00		Н
65	ATOM	3052		GLU	311	26.432	28.391	49.513	1.00	0.00		Н
	ATOM	3053	2HB	GLU	311	26.709	29.356	48.028	1.00	0.00		Н
	MOTA	3054	1HG	GLU	311	27.383	27.331	46.840	1.00	0.00		Н
	2001	2055	0110	~	211	07 140	26 260	40 226	1 00	^ ^^		

27.110 26.369 48.326 1.00 0.00

										•	
	ATOM	3056 N	ALA	312	24.867	26.231	46.477	1.00	0.00		N
			ALA	312	24.906	25.633	45.176	1.00	0.00		Ċ
	MOTA	3057 CA									
	MOTA	3058 C	ALA	312	23.634	24.875	45.010	1.00	0.00		C
_	MOTA	3059 O	ALA	312	23.143	24.248	45.948	1.00	0.00		0
5	MOTA	3060 CB	ALA	312	26.064	24.640	44.983	1.00	0.00		С
	MOTA	3061 H	ALA	312	24.712	25.646	47.311	1.00	0.00		H
	MOTA	3062 HA	ALA	312	24.991	26.446	44.456	1.00	0.00		H
	MOTA	3063 1HB	ALA	312	26.649	24.580	45.900	1.00	0.00		H
	ATOM	3064 2HB	ALA.	312	25.662	23.655	44.744	1.00	0.00		H
10	ATOM	3065 3HB	ALA	312	26.702	24.979	44.166	1.00	0.00		H
10							43.810	1.00	0.00		
	MOTA	3066 N	GLN	.313	23.033	24.961					N
	MOTA	3067 CA		313	21.840	24.209	43.578	1.00	0.00		С
	MOTA	3068 C	GLN	313	22.262	22.783	43.604	1.00	0.00		С
	ATOM	3 069 O	GLN	313	21.709	21.961	44.335	1.00	0.00		0
15	MOTA	3070 CB	GLN	313	21.222	24.531	42.204	1.00	0.00		С
	ATOM	3071 CG	GLN	313	19.914	23.796	41.908	1.00	0.00		С
	ATOM	3072 CD		313	19.409	24.248	40.546	1.00	0.00		C
	ATOM	3073 OE		313	20.146	24.834	39.754	1.00	0.00		ŏ
	ATOM	3074 NE		313	18.107	23.967	40.266	1.00	0.00		Ŋ
20											
20	MOTA	3075 н	GLN	313	23.426	25.559	43.069	1.00	0.00		H
	MOTA	3076 на		313	21.168	24.474	44.394	1.00	0.00		H
	MOTA	3077 1HB		313	21.939	24.249	41.433	1.00	0.00		H
	MOTA	3078 2HB	GLN	313	21.014	25.600	42.165	1.00	0.00		H
	MOTA	3079 1HG	GLN	313	19.194	24.049	42.686	1.00	0.00		H
25	ATOM	3080 2HG	GLN	313	20.115	22.724	41.906	1.00	0.00		H.
	ATOM	3081 1HE		31:3	17.702	24.247	39.361	1.00	0.00		Н
-	ATOM	3082 2HE		313	17.526	23.474	40.959	1.00	0.00		H
	ATOM	3083 N	TRP	314	23.311	22.485	42.818	1.00	0.00		N
20	ATOM	3084 CA		314	23.881	21.180	42.738	1.00	0.00		C
30	MOTA	3085 C	TRP	314	25.260	21.370	43.255	1.00	0.00		С
	MOTA	3086 O	TRP	314	26.227	21.379	42.499	1.00	0.00		0
	MOTA	3087 CE	TRP	314	23.999	20.710	41.282	1.00	0.00		С
•	MOTA	3088 CG	TRP	314	22.655	20.632	40.606	1.00	0.00		С
	ATOM	3089 CD	1 TRP	314	21.909	21.637	40.066	1.00	0.00		С
35 -	ATOM	3090 CD		314	21.902	-19.424	40.433	1.00	0.00		C
	ATOM		1 TRP	314	20.730	21.131	39.578	1.00	0.00		N
	MOTA		2 TRP	314	20.714	19.769	39.793	1.00			C
	MOTA		3 TRP	314	22.179	18.135	40.779	1.00	0.00		С
	MOTA	3094 CZ		314	19.777	18.824	39.487	1.00	0.00		С
40	MOTA	3095 Cz		314	21.234	17.182	40.471	1.00	0.00		С
	MOTA	3096 CH	2 TRP	314	20.057	17.522	39.839	1.00	0.00		, C
	MOTA	3097 H	TRP	314	23.723	23.235	42.245	1.00	0.00		H
	MOTA	3098 HA	TRP	314	23.317	20.470	43.343	1.00	0.00		H
	ATOM	3099 1HE	TRP	314	24.448	19.719	41.209	1.00	0.00		· H
45	MOTA	3100 2HE		314	24.615	21.383	40.686	1.00	0.00		Н
73	MOTA		1 TRP	314	22.204	22.685	40.027	1.00	0.00		´ H
	ATOM		1 TRP	314	19.982	21.677	39.126	1.00	0.00		Н
	MOTA		3 TRP	314	23.110	17.869	41:279	1.00	0.00		H
	MOTA		2 TRP	314	18.846	19.088	38.985	1.00	0.00		Н
50	ATOM		3 TRP	314	21.419	16.140	40.731	1.00	0.00		H
	MOTA	3106 H	2 TRP	314	19.330	16.741	39.612	1.00	0.00		H
	ATOM	3107 N	HIS	315	25.394	21.550	44.575	1.00	0.00		N
	ATOM	3108 CA		315	26.710	21.750	45.084	1.00	0.00		С
	ATOM	3109 C	HIS	315	27.413	20.459	44.874	1.00	0.00		č
55	ATOM	3110 0	HIS	315	28.636	20.413	44.749	1.00	0.00		Ö
))					26.750	22.063	46.589				
	ATOM	3111 CF		315				1.00	0.00		C
	MOTA	3112 C		315	28.077	22.611	47.025	1.00	0.00		С
	MOTA		1 HIS	315	29.203	21.848	47.241	1.00	0.00		N
	MOTA		2 HIS	315	28.448	23.898	47.276	1.00	0.00		С
60	ATOM	3115 CF	:1 HIS	315	30.191	22.703	47.607	1.00	0.00		С
	ATOM		2 HIS	315	29.780	23.959	47.642	1.00	0.00		N
	ATOM	3117 H	HIS		24.575	21.544	45.200	1.00	0.00		H
	ATOM	3118 HZ			27.126	22.567	44.495	1.00	0.00		H
	ATOM	3119 1H		315	26.565	21.181	47.202	1.00	0.00		Н
65							46.880				
65	ATOM	3120 2H			26.002	22.800		1.00	0.00		H
	MOTA		1 HIS		29.280	20.825	47.143	1.00	0.00		H
	MOTA		2 HIS		27.786	24.760	47.198	1.00	0.00		Н
	MOTA	3123 H	E1 HIS	315	31.207	22.390	47.845	1.00	0.00		H

	MOTA	3124 HE	2 HIS	315	30.328	24.795	47.887	1.00	0.00		J	Н
	ATOM	3125 N	ASP	316	26.632	19.363	44.820	1.00	0.00		1	N
	ATOM	3126 CA		316	27.255	18.084	44.726	1.00	0.00			С
	ATOM	3127 C	ASP	316	27.668	17.819	43.324	1.00	0.00			c
5	ATOM	3128 0	ASP	316	27.269	16.820	42.727	1.00	0.00			0
2								1.00	0.00			c
	MOTA	3129 CB		316	26.354	16.932	45.193					
	MOTA	3130 CG		316	26.248	17.068	46.702	1.00	0.00			С
	MOTA		1 ASP	316	26.964	17.944	47.256	1.00	0.00			0
	MOTA	3132 OD	2. ASP	316	25.459	16.310	47.324	1.00	0.00			0
10	MOTA	3133 H	ASP	316	25.605	19.447	44.846	1.00	0.00]	H
	ATOM	3134 HA	ASP	316	28.137	18.049	45.365	1.00	0.00		J	Н
	ATOM	3135 1HB	ASP	316	26.856	16.014	44.887	1.00	0.00		J	Н
	ATOM	3136 2HB		316	25.397	17.075	44.689	1.00	0.00		Ţ	Н
	ATOM	3137 N	GLU.		28.494	18.714	42.758	1.00	0.00			N
15	ATOM	3138 CA		317	29.027	18.404	41.475	1.00	0.00			С
13	ATOM	3139 C	GLU	317	29.978	17.306	41.754	1.00	0.00			c
		3140 0	GLU	317	30.193	16.472	40.869	1.00	0.00			o
	ATOM											
	ATOM	3141 CB		317	29.769	19.557	40.766	1.00	0.00			C
	ATOM	3142 CG		317	31.038	20.061	41.451	1.00	0.00			C
20	MOTA	3143 CD		317	31.668	21.086	40.513	1.00	0.00			С
	ATOM		1 GLU	317	32.161	20.672	39.430	1.00	0.00			0
	ATOM	3145 OE	2 GLU	317	31.658	22.296	40.865	1.00	0.00			0
	MOTA	3146 H	GLU	317	28.733	19.594	43.235	1.00	0.00			H
	MOTA	3147 HA	GLU	317	28.239	18.091	40.789	1.00	0.00			Н
25	MOTA	3148 1HB	GLU	317	29.085	20.403	40.699	1.00	0.00		,	Н
	ATOM	3149 2HE		317	30.058	19.208	39.774	1.00	0.00			H
	ATOM	3150 1HG		317	31.681	19.193	41.599	1.00	0.00			H
	ATOM	3151 2HG		317	30.729	20.507	42.396	1.00	0.00			H
	MOTA	3152 N	SER	318	30.507	17.340	43.021	1.00	0.00			N
30	ATOM	3153 CA		318	31.471	16.482	43.681	1.00	0.00			C
30		3154 C	SER	318	31.683	15.359	42.781	1.00	0.00			c
	ATOM				31.131	14.271	42.940	1.00	0.00	-		o
	ATOM	3155 0	SER	318								
	MOTA	3156 CE		318	30.999	15.951	45.046	1.00	0.00			C
	MOTA	3157 00		318	30.898	17.022	45.973	1.00	0.00			0
35	MOTA	3158 н	_SER	318	30.156	18.112	43.605	1.00	0.00			H
	MOTA	3159 HA		318	32.365	17.090	43.817	1.00	0.00			H
	MOTA	3160 1HE		318	31.711	15.218	45.425	1.00	0.00			H
	MOTA	3161 2HE	SER	318	30.022	15.477	44.942	1.00	0.00			Н
	MOTA	3162 HG	SER	318	31.605	17.736	45.751	1.00	0.00			Н
40	MOTA	3163 N	HIS	319	32.511	15.687	41.781	1.00	0.00			N
	ATOM	3164 CF	A HIS	319	32.640	14.944	40.586	1.00	0.00			С
	ATOM	3165 C	HIS	319	32.692	13.484	40.840	1.00	0.00			С
	MOTA	3166 0	HIS	319	31.715	12.770	40.611	1.00	0.00			0
	ATOM	3167 CE		319	33.869	15.405	39.763	1.00	0.00			Ç
45	ATOM	3168 CG		319	34.885	16.229	40.506	1.00	0.00			Ċ
	ATOM		ol HIS	319	35.774	15.739	41.436	1.00	0.00			N
	ATOM		2 HIS	319	35.149	17.562	40.405	1.00	0.00			C
			E1 HIS	319	36.528	16.792	41.848	1.00	0.00			c
	ATOM							1.00	0.00			
50	MOTA		E2 HIS	319	36.185	17.919	41.250					N
50	MOTA	3173 H	HIS	319	33.089	16.532	41.889	1.00	0.00			Н
	ATOM	3174 HZ		319	31.806	15.114	39.905	1.00	0.00			Н
	ATOM	3175 1HE		319	33.507	16.013	38.933	1.00	0.00			Н
	ATOM	3176 2H		319	34.382	14.514	39.399	1.00	0.00			Н
	MOTA		ol HIS	319	35.852	14.763	41.757	1.00	0.00			Н
55	MOTA	3178 HI	02 HIS	319	34.617	18.251	39.749	1.00	0.00			Н
	ATOM	3179 H	El HIS	319	37.325	16.715	42.587	1.00	0.00			Н
	ATOM	3180 H	E2 HIS	319	36.596	18.853	41.383	1.00	0.00			Н
	ATOM	3181 N	LEU	320	33.829	13.006	41.338	1.00	0.00			N
	MOTA	3182 C	A LEU	320	33.960	11.594	41.453	1.00	0.00			С
60	ATOM	3183 C	LEU	320	33.221	11.019	42.623	1.00	0.00			Ċ
•	ATOM	3184 0		320	32.483	10.042	42.489	1.00	0.00			ō
	ATOM	3185 CF		320	35.438	11.190	41.608	1.00	0.00			č
	ATOM	3186 C		320	36.349	11.636	40.441	1.00	0.00			c
		-	Ol LEU		36.495	13.166	40.370	1.00	0.00			c
45	MOTA		D2 LEU				40.509	1.00	0.00			
65	MOTA			320	37.714	10.938						С
	ATOM	3189 H	LEU		34.588	13.636	41.630	1.00	0.00			H
	MOTA	3190 HZ			33.586		40.584	1.00	0.00			Н
	MOTA	3191 1H	3 LEU	320	35.490	10.103	41.670	1.00	0.00			H

	ATOM	3192 2HB	3 LEU	320	- 35.823	11.646	42.519	1.00	0.00	H
	ATOM	3193 H		320	35.965	11.314	39.473	1.00	0.00	H
	ATOM	3194 1HI		320	35.915	13.624	41.171	1.00	0.00	H
	ATOM	3195 2HI		320	37.545	13.436	40.480	1.00	0.00	Н
5	MOTA	3196 3HI		320	36.128	13.522	39.407	1.00	0.00	Н
,	ATOM		D2 LEU	320	37.740	10.274	41.373	1.00	0.00	Н
	ATOM		D2 LEU	320	37.740	10.356	39.600	1.00	0.00	H
							40.601	1.00	0.00	H
	MOTA		D2 LEU	320	38.501	11.686				
	MOTA	3200 N	ASN	321	33.369	11.655	43.800	1.00	0.00	N
10	MOTA	3201 C		321	32.981	11.026	45.032	1.00	0.00	C
	ATOM	3202 C	ASN	321	31.507	10.933	45.227	1.00	0.00	C
	MOTA	3203 0		321	30.830	11.938	45.420	1.00	0.00	0
	MOTA	3204 CI		321	33.583	11.700	46.279	1.00	0.00	С
	MOTA	3205 C		321	33.564	10.699	47.429	1.00	0.00	C
15	MOTA		D1 ASN	321	34.621	10.221	47.835	1.00	0.00	0
	MOTA		D2 ASN	321	32.356	10.377	47.969	1.00	0.00	N
	MOTA	3208 H	ASN	321	33.765	12.605	43.817	1.00	0.00	H
	MOTA	3209 H	A ASN	321	33.382	10.012	45.041	1.00	0.00	H
	MOTA	3210 1H	B ASN	321	32.980	12.573	46.526	1.00	0.00	H
20	ATOM	3211 2H	B ASN	321	34.606	11.997	46.052	1.00	0.00	H
	MOTA	3212 1H	D2 ASN	321	32.303	9.707	48.750	1.00	0.00	H
	ATOM	3213 2H	D2 ASN	321	31.495	10.802	47.596	1.00	0.00	H
	ATOM	3214 N		322	31.016	9.677	45.216	1.00	0:00	N
	MOTA	3215 C		322	29.662	9.267	45.453	1.00	0.00	 C
25	ATOM	3216 C		322	29.164	8.606	44.218	1.00	0.00	C
20	ATOM	3217 0		322	29.905	7.895	43.539	1.00	0.00	ō
	ATOM	3218 C		322	28.655	10.351	45.921	1.00	0.00	Ċ
	ATOM	3219 C		322	28.204	11.408	44.904	1.00	0.00	c
	MOTA	3220 C		322	26.891	12.077	45.310	1.00	0.00	, c
30	MOTA	3220 C		322	26.960	12.783	46.661	1.00	0.00	Ċ
30		3221 C		322	27.034	14.246	46.472		0.00	N
	MOTA	3222 N		322	31.691	8.925	45.014	1.00	0.00	H
	MOTA					8.573	46.294	1.00	0.00	
	MOTA	3224 H		322	29.665		46.741		0.00	H
25	ATOM	3225 1H		322	29.122 27.751	10.896 9.835	46.247	1.00 1.00	0.00	H H
_ 35	MOTA	3226 2H		322		10.984	43.912	1.00	0.00	H
	MOTA	3227 1H		322	28.044					
	ATOM	3228 2H		322	28.937	12.206	44.786	1.00	0.00	H
	MOTA	3229 1H		322	26.056	11.381	45.394	1.00	0.00	H
40	MOTA	3230 2H		322	26.556	12.839	44.606	1.00	0.00	H
40	MOTA	3231 1H		322	27.842	12.458	47.213	1.00	0.00	H
	ATOM	3232 2H		322	26.074	12.553	47.253	1.00	0.00	H
	ATOM	3233 1H		322	27.022	14.463	45.465	1.00	0.00	H
	ATOM	3234 2H		322	26.226	14.693	46.928	1.00	0.00	Н
	ATOM	3235 3H	Z LYS	322	27.905	14.603	46.890	1.00	0.00	Н
45	MOTA	3236 N		323	27.877	8.812	43.892	1.00	0.00	N
	MOTA	3237 C			27.365	8.140	42.748	1.00	0.00	C
	MOTA	3238 C		323	26.560	9.116	41.954	1.00	0.00	С
	ATOM	3239 0		323	26.111	10.140	42.466	1.00	0.00	0
	ATOM		B TYR	323	26.425	6.999	43.149	1.00	0.00	С
50	MOTA		G TYR	323	27.172	6.143	44.116	1.00	0.00	0.0
	ATOM	3242 C	D1 TYR	323	27.955	5.095	43.699	1.00	0.00	С
	MOTA	3243 C	D2 TYR	323	27.091	6.394	45.468	1.00	0.00	С
	ATOM	3244 C	E1 TYR	323	28.639	4.317	44.599	1.00	0.00	С
	ATOM	3245 C	E2 TYR	323	27.769	5.623	46.380	1.00	0.00	С
55	MOTA	3246 C	Z TYR	323	28.544	4.576	45.946	1.00	0.00	С
	ATOM	3247 C	H TYR	323	29.242	3.783	46.876	1.00	0.00	0
	ATOM	3248 H	TYR		27.280	9.436	44.452	1.00	0.00	H
	MOTA		A TYR		28.207	7.770	42.163	1.00	0.00	H
	MOTA	3250 1H			26.175	6.459	42.235	1.00	0.00	· H
60	ATOM	3251 2H			25.547	7.457	43.604	1.00	0.00	н
•	ATOM		D1 TYR		28.034	4.877	42.634	1.00	0.00	Н
	ATOM		D2 TYR		26.476	7.221	45.821	1.00	0.00	H
	ATOM		E1 TYR		29.258	3.492	44.245	1.00	0.00	H
	MOTA		E2 TYR		27.692	5.841	47.445	1.00	0.00	Н
65	ATOM		H TYR		28.865	3.948	47.820	1.00	0.00	H
05	ATOM	3250 N			26.404	8.832	40.650	1.00	0.00	N
	ATOM		A PHE		25.571	9.646	39.823	1.00	0.00	C
	ATOM	3259 C			24.186	9.469	40.336	1.00	0.00	C
	AION	J2J9 4	mc	243	54.100	2.403		4.00	2.00	C

	MOTA	3260	0	PHE	324	23.420	10.424	40.441	1.00	0.00		0
	ATOM	3261	СВ	PHE	324	25.516	9.189	38.347	1.00	0.00		C
	ATOM	3262	CG	PHE	324	26.667	9.706	37.536	1.00	0.00		С
	ATOM	3263	CD1	PHE	324	27.847	9.007	37.410	1.00	0.00		С
5	MOTA	3264	CD2	PHE	324	26.543	10.913	36.882	1.00	0.00		С
	MOTA	3265	CE1	PHE	324	28.882	9.508	36.654	1.00	0.00		С
	MOTA	3266	CE2	PHE	324	27.571	11.421	36.123	1.00	0.00		С
	ATOM	3267	CZ	PHE	324	28.744	10.718	36.010	1.00	0.00		С
	ATOM	3268	H	PHE	324	26.889	8.019	40.243	1.00	0.00		H
10	MOTA	3269	HA	PHE	324	25.936	10.666	39.940	1.00	0.00		H
	MOTA	3270		PHE	324	24.613	9.523	37.835	1.00	0.00		Н
	ATOM	3271		PHE	324	25.536	8.104	38.240	1.00	0.00		H
	MOTA	3272	HD1		324	27.962	8.047	37.914	1.00	0.00		Н
	MOTA	3273	HD2		324	25.613	11.475	36.968	1.00	0.00		H
15	MOTA	3274	HEL		324	29.812	8.946	36.564	1.00	0.00		H
	MOTA	3275	HE2		324	27.454	12.377	35.613	1.00	0.00		H
	ATOM	3276	HZ	PHE	324	29.564	11.115	35.412	1.00	0.00		H
	ATOM	3277	N	LEU	325	23.861	8.213	40.695	1.00	0.00		N
20	MOTA	3278	CA	LEU	325	22.565	7.783	41.130	1.00	0.00		C
20	ATOM	3279 3280	C	LEU	325	22.154	8.523 8.948	42.366 42.497	1.00	0.00		С 0
	MOTA	3281	O CB	LEU	325 325	21.008 22.578	6.295	42.497	1.00	0.00		C
	ATOM ATOM	3282	CG	LEU	325	21.243	5.784	42.071	1.00	0.00	-	C
	ATOM	3283		LEU	325	20.119	5.791	41.021	1.00	0.00		c
25	ATOM	3284		LEU	325	21.435	4.421	42.755	1.00	0.00		c
23	ATOM	3285	H	LEU	325	24.605	7.502	40.653	1.00	0.00		Н
	ATOM	3286	HA	LEU	325	21.821	7.967	40.354	1.00	0.00		н
	MOTA	3287		LEU	325	23.346	6.135	42.257	1.00	0.00		Н
	ATOM	3288	2HB	LEU	325	22.800	5.718	40.603	1.00	0.00		Н
30	ATOM	3289	HG	LEU	325	20.890	6.389	42.905	1.00	0.00		H
-	MOTA		1HD1		325	20.508	6.163	40.073	1.00	0.00		н
	ATOM	3291	2HD1	LEU	325	19.741	4.777	40.885	1.00	0.00		H
	MOTA	3292	3HD1	LEU	325	19.309	6.437	41.359	1.00	0.00		H
	ATOM '	3293	1HD2	LEU	325	22.480	4.121	42.681	1.00	0.00		H
35	MOTA	3294	2HD2	LEU	325	· 21.152	4.497	43.804	1.00	0_00		Н
	MOTA		3HD2		325	20.808	3.676	42.264	1.00	0.00		H
	MOTA	3296	N	LEU	326	23.075	8.667	43.330	1.00	0.00		N
	MOTA	3297	CA	LEU	326	22.749	9.347		1.00	0.00		С
	MOTA	3298	C	LEU	326	22.616	10.799	44.259	1.00	0.00		C
40	MOTA	3299	0_	LEU	326	21.899	11.523	44.946	1.00	0.00		0
	MOTA	3300	CB	LEU	326	23.812	9.146	45.642	1.00	0.00		C
	MOTA	3301	CG	LEU	326	23.773	7.738	46.252	1.00	0.00		C
	ATOM	3302		LEU	326 326	22.500 23.909	7.562 6.638	47.098 45.177	1.00	0.00		C
45	ATOM	3303 3304	H	LEU	326	24.022	8.286		1.00	0.00		н
43	ATOM ATOM	3304		LEU	326	21.808	8.948	44.927	1.00	0.00		Н
	ATOM	3306		LEU	326	23.693	9.840	46.474	1.00	0.00		H
	ATOM	3307		LEU	326	24.827	9.287	45.271	1.00	0.00		H
	ATOM	3308		LEU	326	24.642	7.580	46.889	1.00	0.00		Н
50	ATOM		1HD1		326	21.914	8.481	47.070	1.00	0.00		Н
	MOTA		2HD1		326	21.906	6.741	46.695	1.00	0.00		Н
	ATOM		3HD1		326	22.776	7.338	48.128	1.00	0.00		Н
	MOTA		1HD2		326	24.005	7.099	44.194	1.00	0.00		н
	MOTA		2HD2		326	24.793	6.035	45.383	1.00	0.00		H
55	MOTA	3314	3HD2	LEU	326	23.024	6.001	45.193	1.00	0.00		Н
	ATOM	3315	N	ASN	327	23.303	11.267	43.211	1.00	0.00		N
	ATOM	3316	CA	ASN	327	23.370	12.670	42.986	1.00	0.00		. C
	MOTA	3317		ASN	327	22.005	13.254	42.709	1.00	0.00		С
	ATOM	3318		ASN	327	21.752	14.368	43.167	1.00	0.00		0
60	MOTA	3319		ASN	327	24.390	13.029	41.895	1.00	0.00		С
	ATOM	3320		ASN	327	25.049	14.313	42.368	1.00	0.00		С
	MOTA	3321		ASN	327	26.049	14.787	41.831	1.00	0.00		0
	ATOM	3322		ASN	327	24.471	14.901	43.446	1.00	0.00		N
65	MOTA	3323		ASN	327	23.780	10.615	42.571	1.00	0.00		H
65	MOTA	3324		ASN	327 327	23.777	13.195	43.849 40.983	1.00	0.00		Н
	ATOM	3325		ASN ASN	327 327	23.805 25.076	13.155 12.183	40.983	1.00	0.00		Н
	MOTA	3326	1HD2		327 327 ·	25.076	15.767	43.835	1.00	0.00		H H
	MOTA	3321	TUDS	MON	341	24.009	19.707	-20.000	1.00	0.00		n

ent of a

							•				
	ATOM	3328 2HD2	ASN	. 327	23.633	14.481	43.874	1.00	0.00		н
	ATOM	3329 N	LYS	328	21.089	12.555	41.978	1.00	0.00		N
	ATOM		LYS	328	19.771	13.121	41.767	1.00	0.00		Ċ
								1.00	0.00		C
-	ATOM		LYS	328	19.211	13.426	43.104				
5	ATOM		LYS	328	19.463	12.693	44.050	1.00	0.00		0
	ATOM		LYS	328	18.750	12.263	40.983	1.00	0.00		С
	MOTA	3334 CG	LYS	328	18.902	10.751	41.124	1.00	0.00		С
	MOTA	3335 CD	LYS	328	20.036	10.188	40.268	1.00	0.00		С
	MOTA	3336 CE	LYS	328	19.653	10.045	38.792	1.00	0.00		С
10	MOTA	3337 NZ	LYS	328	18.515	9.110	38.650	1.00	0,00		N
	ATOM	3338 н	LYS	328	21.331	11.636	41.580	1.00	0.00	-	Н
	ATOM	3339 HA	LYS	328	19.902	14.022	41.168	1.00	0.00		H
									0.00		
	ATOM	3340 1HB	LYS	328	18.857	12.498	39.924	1.00			H
	ATOM	3341 2HB	LYS	328	17.752	12.519	41.340	1.00	0.00		H
15	MOTA	3342 1HG	LYS	328	18.004	10.207	40.828	1.00	0.00		H
	MOTA	3343 2HG	LYS	328	19.116	10.442	42.147	1.00	0.00		н
	ATOM	3344 1HD	LYS	328	20.358	9.197	40.589	1.00	0.00		H
	ATOM	3345 2HD	LYS	328	20.929	10.812	40.285	1.00	0.00		н
	ATOM	3346 1HE	LYS	328	20.498	9.659	38.221	1.00	0.00		Н
20	ATOM	3347 2HE	LYS	328	19.365	11.013	38.384	1.00	0.00		H
20						8.764	39.579	1.00	0.00		H
	MOTA	3348 1HZ	LYS	328	18.235						
	MOTA	3349 2HZ	LYS	328	17.720	9.599	38.213	1.00	0.00		Н
	MOTA	3350 3HZ	LYS	328	18.795	8.314	38.058	1.00	0.00		H
	MOTA	3351 N	PRO	329	18.490	14.528	43.136	1.00	0.00		N
25	MOTA	3352 CA	PRO	329	17.995	15.142	44.344	1.00	0.00		С
	ATOM	3353 C	PRO	329	17.563	14.144	45.354	1.00	0.00		С
	ATOM	3354 0	PRO	329	16.396	13.757	45.352	1.00	0.00		0
	ATOM	3355 CB	PRO	329	16.840	16.054	43.919	1.00	0.00		Ċ
		3356 CG	PRO	329	16.999	16.206	42.397	1.00	0.00		Č
20	ATOM										
30	ATOM	3357 CD	PRO	329	17.707	14.917	41.977	1.00	0.00		C
	MOTA	3358 HA	PRO	329	18.743	15.765	44.832	1.00	0.00		H
	ATOM	3359 1HB	PRO	329	16.999	16.980	44.471	1.00	0.00		Н
	MOTA	3360 2HB	PRO	329	15.938	15.517	44.214	1.00	0.00		H
* *	MOTA	3361 1HG	PRO	329	17.591	17.088	42.153	1.00	0.00		Н
35	ATOM	3362 2HG	PRO	329	16.028	16.308	41.911	1.00	0.00		Н
	ATOM	3363 1HD	PRO	329	17.028	14.081	41.804	1.00	0.00		Н
	ATOM	3364 2HD	PRO	329	18.437	15.058	41.180	1.00	0.00		H
			THR	330	18.507	13.736	46.223	1.00	0.00		N
	ATOM										
40	ATOM	3366 CA	THR	330	18.272	12.783	47.254	1.00	0.00		C
40	MOTA	3367 C	THR	330	19.467	12.850	48.135	1.00	0.00		С
	ATOM	3368 O	THR	330	19.475	12.264	49.215	1.00	0.00		0
	ATOM	3369 CB	THR	330	18.217	11.350	46.783	1.00	0.00		С
	ATOM	3370 OG1	THR	330	19.439	10.996	46.151	1.00	0.00		0
	MOTA		THR	330	17.033	11.140	45.823	1.00	0.00		С
45	ATOM	3372 H	THR	330	19.452	14.135	46.137	1.00	0.00		H
	ATOM	3373 HA	THR	330	17.356	13.108	47.747	1.00	0.00		H
		3374 HB	THR	330	18.096	10.672	47.628	1.00	0.00		Н
	ATOM			330	19.492	11.449	45.228	1.00	0.00		
	ATOM		THR					1.00			H
	MOTA	3376 1HG2		330	16.495	12.079	45.697		0.00		H
50	MOTA	3377 2HG2		330	17.404	10.802	44.855	1.00	0.00		H
	ATOM	3378 3HG2		330	16.359	10.388	46.235	1.00	0.00		H
	MOTA	3379 N	LYS	331	20.510	13.596	47.715	1.00	0.00		N
	ATOM	3380 CA	LYS	331	21.658	13.604	48.564	1.00	0.00		С
	ATOM	3381 C	LYS	331	21.219	14.380	49.761	1.00	0.00		С
55	ATOM	3382 0	LYS	331	20.372	15.265	49.651	1.00	0.00		0
55	ATOM	3383 CB	LYS	331	22.912	14.261	47.976	1.00	0.00		Ċ
				331		13.648	48.472	1.00	0.00		
	MOTA	3384 CG	LYS		24.225						C
	MOTA	3385 CD	LYS	331	24.389	13.572	49.985	1.00	0.00		C
	MOTA	3386 CE	LYS	331	25.663	12.842	50.413	1.00	0.00		C
60	MOTA	3387 NZ	LYS	331	25.531	12.388	51.815	1.00	0.00		N
	MOTA	3388 н	LYS	331	20.479	14.128	46.833	1.00	0.00		H
	MOTA	3389 HA	LYS	331	21.850	12.549	48.759	1.00	0.00		H
	ATOM	3390 1HB	LYS	331	22.910	15.315	48.253	1.00	0.00		H
	ATOM	3391 2HB	LYS	331	22.881	14.151	46.892	1.00	0.00		Я
65	ATOM	3392 1HG	LYS	331	25.045	14.256	48.089	1.00	0.00		H
95			LYS	331	24.285	12.628	48.090	1.00	0.00		Н
	MOTA	3393 2HG						1.00	0.00		
	MOTA	3394 1HD	LYS	331	23.569	13.047	50.477				H
	MOTA	3395 2HD	LYS	331	24.438	14.552	50.458	1.00	0.00		H

	MOTA	3396	1HE	LYS	331 .	26.516	13.514	50.332	1.00	0.00	н
	MOTA	3397		LYS	331	25.825	11.977	49.769	1.00	0.00	н
	MOTA	3398	1HZ	LYS	331	24.610	12.668	52.181	1.00	0.00	Н
	MOTA	3399	2HZ	LYS	331	25.618	11.362	51.853	1.00	0.00	Н
5	MOTA	3400	3HZ	LYS	331	26.272	12.817	52.386	1.00	0.00	H
	MOTA	3401	N	ILE	332	21.784	14.062	50.939	1.00	0.00	N
	ATOM	3402	CA	ILE	332	21.342	14.644	52.172	1.00	0.00	С
	MOTA	3403	С	ILE	332	21.553	16.121	52.152	1.00	0.00	С
	MOTA	3404	0	ILE	332	20.758	16.862	52.728	1.00	0.00	. 0
10	MOTA	3405	CB	ILE	332	22.072	14.114	_53.379	1.00	0.00	С
	MOTA	3406	CG1	ILE	332	23.561	14.495	53.330	1.00	0.00	С
	MOTA	3407	CG2	ILE	332	21.826	12.596	53.459	1.00	0.00	С
	MOTA	3408	CD1	ILE	332	24.290	14.284	54.658	1.00	0.00	С
	MOTA	3409	H	ILE	332	22.556	13.380	50.955	1.00	0.00	Н
15	MOTA	3410	HА	ILE	332	20.281	14.445	52.324	1.00	0.00	. Н
	MOTA	3411	HB	ILE	332	21.677	14.617	54.261	1.00	0.00	н
	MOTA	3412	1HG1	ILE	332	23.735	15.540	53.073	1.00	0.00	н
	MOTA	3413	2HG1	ILE	332	24.132	13.924	52.598	1.00	0.00	Н
	MOTA	3414	1HG2	ILE	332	21.190	12.286	52.629	1.00	0.00	н
20	ATOM	3415	2HG2	ILE	332	22.778	12.069	53.402	1.00	0.00	н
	MOTA	3416	3HG2	ILE	332	21.334	12.356	54.401	1.00	0.00	Н
	MOTA	3417	1HD1	ILE	332	23.591	13.894	55.398	1.00	0.00	Н
	ATOM	3418	2HD1	ILE	332	25.103	13.572	54.517	1.00	0.00	н
	MOTA	3419	3HD1	ILE	332	24.694	15.234	55.005	1.00	0.00	H
25	ATOM	3420	N	LEU	333	22.615	16.605	51.481	1.00	0.00	N
	MOTA	3421	CA	LEU	333	22.866	18,011	51.586	1.00	0.00	С
	ATOM	3422	C	LEU	333	22.334	18.740	50.390	1.00	0.00	C
	ATOM	3423	0	LEU	333	21.128	18.814	50.188	1.00	0.00	0
	ATOM	3424	CB	LEU	333	24.348	18.375	51.772	1.00	0.00	C
30	ATOM	3425	CG	LEU	333	24.550	19.883	52.016	1.00	0.00	C
	MOTA	3426	CD1	LEU	333	23.819	20.341	53.291	1.00	0.00	C
	MOTA	3427	CD2	reu	333	26.039	20.259	52.035	1.00	0.00	C
	MOTA	3428	Н	LEU	333	23.220	15.991	50.917	1.00	0.00	H
	MOTA	3429	HA	LEU	333	22.388	18.426	52.473	1.00	0.00	. н
35	ATOM		1HB	-LEU	333	24.947	18.116	50.899	1.00	0.00	н
	ATOM			LEU	333	24.794	17.858	52.621	1.00	0.00	H
	ATOM	3432	HG	LEU	333	24.165	20.470	51.182	1.00	0.00	H
	ATOM	3433			333	23.313	19.489	53.746	1.00	0.00	H
40	ATOM	3434			333	24.540	20.753	53.995	1.00	0.00	Н
40	ATOM	3435	3HD1		333	23.084	21.104	53.034	1.00	0.00	н
	ATOM	3436			333	26.641	19.366	51.869	1.00	0.00	н
	ATOM ATOM	3437 3438	2HD2 3HD2		333 333	26.241 26.292	20.984	51.247 53.002	1.00 1.00	0.00	н
	ATOM	3439	N	SER	334	23.227	19.303	49.556	1.00	0.00	H N
45	ATOM	3440	CA	SER	334	22.815	20.174	48.490	1.00	0.00	
43	ATOM	3441	CA	SER	334	21.764	19.543	47.615	1.00	0.00	C
	ATOM	3442	Ö	SER	334	20.758	20.197	47.345	1.00	0.00	
	ATOM	3443	СВ	SER	334	23.992	20.643	47.610	1.00	0.00	0 C
	ATOM	3444	OG	SER	334	23.529	21.501	46.579	1.00	0.00	0
50	ATOM	3445	н	SER	334	24.229	19.105	49.684	1.00	0.00	н
50	MOTA	3446	HA	SER	334	22.392	21.107	48.861	1.00	0.00	H
	ATOM			SER	334	24.488	19.788	47.151	1.00	0.00	H
	ATOM	3448	2HB	SER	334	24.722	21.186	48.209	1.00	0.00	H
	ATOM	3449	HG	SER	334	24.003	22.412	46.650	1.00	0.00	H
55	ATOM	3450	N	PRO	335	21.899	18.330	47.158	1.00	0.00	N
	MOTA	3451	CA	PRO	335	20.859	17.820	46.305	1.00	0.00	C
	MOTA	3452	C	PRO	335	19.605	17.492	47.041	1.00	0.00	C
	ATOM	3453	0	PRO	335	18.686	16.997	46.388	1.00	0.00	ō
	MOTA	3454	СВ	PRO	335 .	21.468	16.684	45.479	1.00	0.00	
60	ATOM	3455	CG	PRO	335	22.905	16.541	46.006	1.00	0.00	C
	MOTA	3456	CD	PRO	335	23.197	17.884	46.680	1.00	0.00	C
	ATOM	3457	HA	PRO	335	20.564	18.519	45.523	1.00	0.00	Н
	ATOM	3458	1HB	PRO	335	21.412	17.029	44.446	1.00	0.00	H
	MOTA	3459	2HB	PRO	335.	20.837	15.819	45.686	1.00	0.00	Н
65	ATOM	3460		PRO	335	23.502	16.352	45.113	1.00	0.00	н
	MOTA	3461		PRO	335	22.857	15.698	46.695	1.00	0.00	H
	MOTA	3462		PRO	335	23.801	17.809	47.583	1.00	0.00	н
	MOTA	3463	2HD	PRO	335	23.512	18.670	45.994	1.00	0.00	Н

	MOTA	3464	N	GLU	336	19.575	17.755	48.372	1.00	0.00		N
	ATOM	3465	CA	GLU	336	18.470	17.548	49.279	1.00	0.00		C
	MOTA	3466	С	GLU	336	17.185	17.642	48.537	1.00	0.00		С
	MOTA	3467	0	GLU	336	16.692	18.732	48.246	1.00	0.00		0
5	ATOM	3468	·CB	GLU	336	18.418	18.586	50.418	1.00	0.00		C
	MOTA	3469	CG	GLU	336	18.453	20.030	49.901	1.00	0.00		С
	ATOM	3470	CD	GLU	336	18.762	20.971	51.059	1.00	0.00		С
	MOTA	3471	OE1	GLU	336	18.934	20.470	52.202	1.00	0.00		0
	MOTA	3472	OE2	GLU	336	18.828	22,206	50.814	1.00	0.00		0
10	MOTA	3473	H.	GLÜ	336	20.435	18.145	48.780	1.00	0.00		H
	ATOM	3474	HA	GLU	336	18.547	16.561	49.736	1.00	0.00		Н
	MOTA	3475		GLU	336	19.254	18.490	51.109	1.00	0.00		H
	MOTA	3476		GLU	336	17.513	18.500	51.020	1.00	0.00		H
	MOTA	3477		GLU	336	17.483	20.281	49.472	1.00	0.00		H
15	MOTA	3478		GLU	336	19.226	20.120	49.138	1.00	0.00		H
	ATOM	3479	N 	TYR	337	16.633	16.466	48.185	1.00	0.00		N
	ATOM	3480	CA	TYR	337	15.420	16.433	47.432	1.00	0.00		С
	MOTA	3481	C	TYR	337	14.430	17.194	48.240	1.00	0.00		C
20	ATOM	3482	0	TYR	337	13.956	18.250	47.828	1.00	0.00		0
20	MOTA	3483	CB CG	TYR TYR	337	14.899	15.002	47.283	1.00	0.00		C
	ATOM ATOM	3484 3485		TYR	337 337	13.666 12.443	15.028 15.315	46.458 47.015	1.00 1.00	0.00		C
	ATOM	3486		TYR	337	13.746	14.753	45.113	1.00	0.00		C
	MOTA	3487	CE1		337	11.311	15.328	46.234	1.00	0.00		C
25	ATOM	3488		TYR	337	12.621	14.762	44.327	1.00	0.00		C
23	ATOM	3489	CZ	TYR	337	11.402	15.050	44.891	1.00	0.00		C
	ATOM	3490	ОН	TYR	337	10.242	15.060	44.090	1.00	0.00		ŏ
	ATOM	3491	н	TYR	337	17.088	15.584	48.460	1.00	0.00		Н
	MOTA	3492	HA	TYR	337	15.654	16.910	46.480	1.00	0.00		Н
30	ATOM	3493		TYR	337	14.680	14.604	48.274	1.00	0.00		Н
	MOTA	3494		TYR	337	15.665	14.399	46.795	1.00			Н
	ATOM	3495	HD1	TYR	337	12.369	15.533	48.080	1.00	0.00		Н
	MOTA	3496	HD2	TYR	337	14.713	14.525	44.666	1.00	0.00		Н
	MOTA	3497	HE1	TYR	337	10.343	15.558	46.679	1.00	0.00		Н
35	ATOM	3498	HE2	TYR	337	12.694	14.542	43.262	1.00	0.00		H
	MOTA	3499	HH	TYR	337	9.966	16.033	43.896	1.00	0.00	•	Н
	MOTA	3500	N	CYS	338	14.109	16.673	49.435	1.00	0.00		N
	MOTA	3501	CA	CYS	338	13.277	17.399	50.342	1.00	0.00		С
	MOTA	3502	С	CYS	338	13.989	17.315	51.643	1.00	0.00		С
40	ATOM	3503	0	CYS	338	13.386	17.395	52.712	1.00	0.00		0
	ATOM	3504	CB	CYS	338	11.876	16.792	50.529	1.00	0.00		С
	ATOM	3505	SG	CYS	338	10.811	17.035	49.076	1.00	0.00		S
	ATOM	3506	H	CYS	338	14.464	15.743	49.699	1.00	0.00		H
45	ATOM	3507	HA	CYS	. 338 338	13.233	18.404	49.923	1.00	0.00		H
43	ATOM	3508 3509		CYS CYS	338	11.341 11.906	17.226 15.717	51.374 50.707	1.00	0.00		Н
	ATOM ATOM	3510	HG	CYS	338	10.717	18.343		1.00	0.00		H
	ATOM	3511	N	TRP	339	15.323	17.158	51.567	1.00	0.00		H N
	ATOM	3512	CA	TRP	339	16.108	17.085	52.757	1.00	0.00		C
50	ATOM	3513	C	TRP	339	16.105	18.421	53.421	1.00	0.00		C
	ATOM	3514	ō	TRP	339	16.115	18.507	54.647	1.00	0.00		ŏ
	ATOM	3515	CB	TRP	339	17.569	16.664	52.521	1.00	0.00		Ċ
	ATOM	3516	CG	TRP	339	17.763	15.170	52.415	1.00	0.00		Ċ
	ATOM	3517	CD1	TRP	339	17.577	14.320	51.364	1.00	0.00		С
55	MOTA	3518	CD2	TRP	339	18.216	14.366	53.514	1.00	0.00		С
	MOTA	3519		TRP	339	17.880	13.033	51.744	1.00	0.00		N
	MOTA	3520		TRP	339	18.277	13.048	53.066	1.00	0.00		С
	ATOM	3521		TRP	339	18.552	14.701	54.795	1.00	0.00		С
<i>-</i> ^	ATOM	3522		TRP	339	18.678	12.039	53.897	1.00	0.00		С
60	ATOM	3523		TRP	339	18.958	13.684	55.629	1.00	0.00		С
	ATOM	3524		TRP	339	19.019	12.378	55.188	1.00	0.00		С
	ATOM	3525	H	TRP	339	15.779	17.090	50.646	1.00	0.00		H
	ATOM	3526	HA	TRP	339	15.674	16.337	53.421	1.00	0.00		Н
65	ATOM	3527		TRP	339	18.250	16.978	53.311	1.00	0.00		Н
U.J	ATOM ATOM	3528 3529		TRP TRP	339 339	18.000 17.238	17.067 14.616	51.604 50.371	1.00	0.00		H
	ATOM	3530		TRP	339	17.238	12.198	51.143	1.00	0.00		H
	ATOM	3531		TRP	339	18.500	15.732	55.142	1.00 1.00	0.00		H
	AT OF	7771	دننن	TYLE	337	20.500		22.172	1.00	5.00		Н

	MOTA	3532	HZ2	TRP	339	18.726	11.006	53.551	1.00	0.00		H
	ATOM	3533	HZ3		339	19.236	13.914	56.657	1.00	0.00		Н
	MOTA	3534	HH2		339	19.344	11.597	55.876	1.00	0.00		H
	MOTA	3535	N	ASP	340	16.084	19.507	52.626	1.00	0.00		N
5	MOTA	3536	CA	ASP	340	16.220	20.808	53.210	1.00	0.00		С
	ATOM	3537	С	ASP	340	15.106	21.092	54.169	1.00	0.00		С
			_			15.311				0.00		ŏ
	MOTA	3538	0	ASP	340		21.083	55.381	1.00			
	MOTA	3539	CB	ASP	340	16.200	21.927	52.156	1.00	0.00		С
	MOTA	3540	CG	ASP	340	16.861	23.152	52.768	1.00	0.00		С
10	MOTA	3541	OD1	ASP	340	17.663	22.967	53.721	1.00	0.00		0
	ATOM	3542	OD2		340	16.587	24.283	52.284	1.00	0.00		Ō
	MOTA	3543	Н	ASP	340	15.971	19.403	51.607	1.00	0.00		Н
	MOTA	3544	HA	ASP	340	17.158	20.899	53.757	1.00	0.00		Н
	ATOM	3545	1HB	ASP	340	15.158	22.127	51.903	1.00	0.00		Н
15	MOTA	3546	2HB	ASP	340	16.754	21.574	51.286	1.00	0.00		н
15		3547			341	13.880	21.325	53.655	1.00	0.00		N
	MOTA		N	TYR								
	MOTA	3548	CA	TYR	341	12.811	21.631	54.562	1.00	0.00		С
	ATOM	3549	С	TYR	341	11.534	21.445	53.812	1.00	0.00		С
	ATOM	3550	0	TYR	341	10.693	22.343	53.811	1.00	0.00		0
20	ATOM	3551	CB	TYR	341	12.732	23.114	54.977	1.00	0.00		Ċ
20												
	MOTA	3552	CG	TYR	341	14.018	23.591	55.556	1.00	0.00		C
	ATOM	3553	CD1	TYR	341	14.307	23.445	56.892	1.00	0.00		С
	ATOM	3554	CD2	TYR	341	14.940	24.202	54.740	1.00	0.00		С
	ATOM	3555	CE1	TYR	341	15.503	23.901	57.399	1.00	0.00		С
25		3556	CE2		341	16.134	24.661	55.240	1.00	0.00		Č
23	MOTA											
	ATOM	3557	CZ	TYR	341	16.418	24.510	56.574	1.00	0.00		С
	MOTA	3558	ОН	TYR	341	17.643	24.979	57.094	1.00	0.00		0
	MOTA	3559	Н	TYR	341	13.716	21.284	52.638	1.00	0.00		H
	ATOM	3560	HA	TYR	341	12.893	20.937	55.398	1.00	0.00		Н
30		3561		TYR	341	11.958	23.280	55.726	1.00	0.00	•	H
30	MOTA											
	ATOM		2HB	TYR	341	12.502	23.757	54.127	1.00	0.00		H
	MOTA	3563	HD1	TYR	341	13.585	22.965	57.553	1.00	0.00		H
	MOTA	3564	HD2	TYR	341	14.720	24.324	53.679	1.00	0.00		H
	ATOM	3565	HE1		341	15.725	23.778	58.459	1.00	0.00		Н
35					341	16.853	25.143	54.579	1.00	0.00	_	Н
33	ATOM	3566	HE2								·	
	MOTA	3567	нн	TYR	341	18.264	25.250	56.318	1.00	0.00		H
	ATOM	3568	N	HIS	342	11.324	20.291	53.157	1.00	0.00		N
	MOTA	3569	CA	HIS	342	10.090	20.217	52.432	1.00	0.00		С
	ATOM	3570	C	HIS	342	9.505	18.855	52.578	1.00	0.00		C
40				HIS	342	10.209	17.874	52.807	1.00	0.00		Ö
40	MOTA	3571	0.									
	MOTA	3572	CB	HIS	342	10.247	20.457	50.920	1.00	0.00		С
	MOTA	3573	CG	HIS	342	10.701	21.845	50.578	1.00	0.00		С
	MOTA	3574	ND1	HIS	342	9.855	22.924	50.450	1.00	0.00		N
	ATOM	3575		HIS	342	11.951	22.322	50.329	1.00	0.00		C
15												
45	MOTA	3576		HIS	342	10.629	23.992	50.131	1.00	0.00		С
	ATOM	3577	NE2	HIS	342	11.908	23.676	50.046	1.00	0.00		N
	MOTA	3578	H	HIS	342	12.001	19.515	53.174	1.00	0.00		H
	MOTA	3579	HA	HIS	342	9.389	20.954	52.824	1.00	0.00		H
	ATOM	3580		HIS	342	9.323	20.313	50.358	1.00	0.00		H
50									1.00			
50	MOTA	3581		HIS	342	10.973	19.795	50.447		0.00		, H
	ATOM	3582		HIS	342	8.832	22.921	50.572	1.00	0.00		H
	ATOM	3583	HD2	HIS	342	12.860	21.720	50.349	1.00	0.00		H
	ATOM	3584		HIS	342	10.239	24.996	49.964	1.00	0.00		Н
				HIS	342	12.697	24.298	49.819	1.00	0.00		H
	ATOM	3585										
55	MOTA	3586	N	ILE	343	8.165	18.783	52.464	1.00	0.00		N
	MOTA	3587	CA	ILE	343	7.472	17.533	52.467	1.00	0.00		С
	MOTA	3588	С	ILE	343	6.905	17.422	51.092	1.00	0.00		С
	MOTA	3589	Ō	ILE	343	6.523	18.429	50.498	1.00	0.00		Ō
	MOTA	3590	CB	ILE	343	6.331	17.470	53.441	1.00	0.00		С
60	MOTA	3591	CG1	ILE	343	5.808	16.029	53.559	1.00	0.00		С
	ATOM	3592	CG2	ILE	343	5.269	18.490	52.999	1.00	0.00		С
	ATOM	3593		ILE	343	6.816	15.065	54.185	1.00	0.00		Ċ
	ATOM	3594	H	ILE	343	7.623	19.654	52.371	1.00	0.00		Н
	MOTA	3595	HA	ILE	343	8.244	16.797	52.690	1.00	0.00		H
65	MOTA	3596	HB	ILE	343	6.716	17.716	54.430	1.00	0.00		H
	MOTA	3597	1HG1	ILE	343	5.543	15.583	52.600	1.00	0.00		н
	MOTA	3598			343	4.910	15.941	54.171	1.00	0.00		н
	MOTA	3599			343	5.607	18.999	52.096	1.00	0.00		Н
	UT OU	3333	-1102		243	3.007	10.333	52.050		5.50		n

	ATOM	3600 2HG2	ILE	. 343	4.331	17.973	52.794	1.00	0.00		Н
	MOTA	3601 3HG2	ILE	343	5.114	19.221	53.792	1.00	0.00		H
	ATOM	3602 1HD1		343	7.730	15.604	54.430	1.00	0.00		H
	ATOM	3603 2HD1		343	6.393	14.635	55.093	1.00	0.00		H
5	MOTA	3604 3HD1		343	7.043	14.267	53.478	1.00	0.00		H
	MOTA	3605 N	GLY	344	6.844	16.203	50.527	1.00	0.00		N
	MOTA	3606 CA	GLY	344	6.372	16.128	49.176	1.00	0.00		С
	ATOM	3607 C	GLY	344	5.021	15.494	49.159	1.00	0.00		C
10	ATOM	3608 0	GLY	344	4.800	14.458	49.783	1.00	.0.00		0
10	MOTA	3609 H	GLY	344	7.125	15.357	51.044	1.00	0.00	•	H
	ATOM	3610 1HA	GLY	344	7.064	15.529	48.584	1.00	0.00		Н
	MOTA	3611 2HA	GLY	344	6.309	17.133	48.759	1.00	0.00		H
	MOTA	3612 N 3613 CA	LEU LEU	345	4.076	16.108	48.418	1.00	0.00		N
15	MOTA		LEU	345	2.764 2.718	15.541	48.315 47.024	1.00	0.00		C
13	ATOM ATOM	3614 C 3615 O	LEU	345 345	3.242	14.786 15.217	45.998	1.00	0.00		0
	ATOM	3616 CB	LEU	345	1.617	16.577	48.385	1.00	0.00		c
	ATOM	3617 CG	LEU	345	1.585	17.639	47.268	1.00	0.00		C
	ATOM		LEU	345	1.188	17.040	45.911	1.00	0.00		C
20	ATOM		LEU	345	0.699	18.832	47.661	1.00	0.00		C
	ATOM	3620 H	LEU	345	4.297	16.985	47.925	1.00	0.00		Н
	ATOM	3621 HA	LEU	345	2.634	14.884	49.175	1.00	0.00		Н
	ATOM	3622 1HB	LEU	345	1.709	17.112	49.329	1.00	0.00		Н
	MOTA	3623 2HB	LEU	345	0.673	16.033	48.333	1.00	0.00		Н
25	ATOM	.3624 HG	LEU	345	2.554	18.116	47.127	1.00	0.00		Н
	MOTA	3625 1HD1		345	1.008	15.970	46.023	1.00	0.00		Н
	MOTA	3626 2HD1	LEU	345	0.280	17.524	45.551	1.00	0.00		Н
	ATOM	3627 3HD1	LEU	345	1.992	17.199	45.193	1.00	0.00		Н
	MOTA	3628 1HD2	LEU	345	0.282	18.664	48.654	1.00	0.00		H
30	MOTA	3629 2HD2		345	1.297	19.743	47.667	1.00	0.00		Н
	MOTA	3630 3HD2		345	-0.112	18.935	46.940	1.00	0.00		H
	MOTA	3631 N	PRO	346	2.140	13.624	47.084	1.00	0.00		N
	MOTA	3632 CA	PRO	346	2.120	12.778	45.921	1.00	0.00		С
2.5	ATOM	3633 C	PRO	346	1.045	13.032	44.913	1.00	0.00		C
35	ATOM	3634 0	PRO	346	-0.015	13.551	45.259	1.00	0.00		0
	ATOM	3635 CB	PRO	346	2.103	11.337	46.440,	1.00	0.00		C
	MOTA	3636 CG	PRO	346	1.688	11.458	47.915	1.00	0.00		C
	ATOM ATOM	3637 CD 3638 HA	PRO PRO	346 346	2.191 3.070	12.852 12.906	48.314 45.403	1.00	0.00		C
40	ATOM	3639 1HB	PRO	346	3.122	10.979	46.298	1.00	0.00		H H
70	ATOM	3640 2HB	PRO	346	1.368	10.826	45.817	1.00	0.00		Н
	ATOM	3641 1HG	PRO	346	2.149	10.674	48.516	1.00	0.00		Н
	ATOM	3642 2HG	PRO	346	0.607	11.371	48.025	1.00	0.00		H
	ATOM	3643 1HD	PRO	346	1.527	13.382	48.997	1.00	0.00		Н
45	ATOM	3644 2HD	PRO	346	3.240	12.875	48.608	1.00	0.00		Н
	MOTA	3645 N	ALA	347	1.340	12.674	43.647	1.00	0.00		N
	ATOM	3646 CA	ALA	347	0.397	12.667	42.568	1.00	0.00	•	С
	ATOM	3647 C	ALA	347	0.458	11.247	42.104	1.00	0.00		С
	ATOM	3648 O	ALA	347	1.475	10.809	41.569	1.00	0.00	•	0
50	MOTA	3649 CB	ALA	347	0.792	13.567	41.385	1.00	0.00		С
	ATOM	3650 H	ALA	347	2.307	12.386	43.441	1.00	0.00		H
	MOTA	3651 HA	ALA	347	-0.599	12.946	42.910	1.00	0.00		Н
	MOTA	3652 1HB	ALA		1.743	14.053	41.599	1.00	0.00		Н
	ATOM	3653 2HB	ALA		0.889	12.961	40.483	1.00	0.00		H
55	MOTA	3654 3HB	ALA		0.023	14.324	41.231	1.00	0.00		Н
	ATOM	3655 N	ASP		-0.637	10.488	42.298	1.00	0.00		N
	ATOM	3656 CA	ASP	348	-0.598	9.075	42.046	1.00	0.00		С
	ATOM	3657 C	ASP	348	-0.710	8.788	40.583	1.00	0.00		С
60	MOTA	3658 O	ASP	348	-1.773	8.384	40.115	1.00	0.00		0
60	ATOM	3659 CB	ASP	348	-1.752	8.323	42.738	1.00	0.00		C
	ATOM	3660 CG	ASP	348	-1.502	6.825	42.631	1.00	0.00		С
	ATOM		ASP		-0.449	6.363	43.146	1.00	0.00		0
	MOTA MOTA	3662 OD2 3663 H	ASP ASP	348 348	-2.357 -1.509	6.125 10.924	42.025 42.629	1.00 1.00	0.00		0
65	ATOM	3664 HA	ASP		0.336	8.640	42.401	1.00	0.00		H H
05	ATOM	3665 1HB	ASP		-2.689	8.579	42.244	1.00	0.00		H
	ATOM	3666 2HB	ASP	348	-1.790	8.619	43.786	1.00	0.00		H
	ATOM	3667 N	ILE	349	0.387	8.972	39.819	1.00	0.00		N
				- 	5.557						44

							•		**	
	ATOM	3668 C	A ILE	349	0.35	1 8.623	38.427	1.00	0.00	С
	ATOM	3669 C	ILE	349	1.76		37.997	1.00	0.00	Ċ
	ATOM	3670 O		349	2.68		38.502	1.00	0.00	Ö
										Č
-	ATOM	3671 CI		349	-0.19		37.543	1.00	0.00	
5	ATOM		G1 ILE	349	-1.62		37.963	1.00	0.00	C
	MOTA		G2 ILE	349	-0.08		36.094	1.00	0.00	c
	MOTA		D1 ILE	349	-2.14		37.315	1.00	0.00	С
	MOTA	3675 H		349	1.24		40.232	1.00	0.00	Н
	ATOM	3676 H	A ILE	349	-0.25	9 7.724	38.336	1.00	0.00	Н
10	ATOM	3677 H	B ILE	349	0.42	1 10.592	37.704	1.00	0.00	H
	MOTA	3678 1H	G1 ILE	349	-1.63	8 10.216	39.043	1.00	0.00	н
	ATOM	3679 2H	G1 ILE	349	-2.28	6 9.258	37.675	1.00	0.00	H
	ATOM	3680 1H		349	0.34		36.084	1.00	0.00	Н
	ATOM	3681 2H		349	-1.08		35.649	1.00	0.00	Н
15	ATOM	3682 3H		349	0.54		35.518	1.00	0.00	H
15 .	ATOM	3683 1H		349	-1.38		36.660	1.00	0.00	н
	MOTA	3684 2H		349	-3.03		36.731	1.00	0.00	H
			D1 ILE	349					0.00	
	ATOM				-2.39		38.090	1.00		Н
	MOTA	3686 N		350	1.97		37.047	1.00	0.00	N
20	MOTA	3687 C		350	3.31		36.606	1.00	0.00	C
	MOTA	3688 C		350	3.60		35.522	1.00	0.00	С
	MOTA	3689 O		350	4.01		34.421	1.00	0.00	0
	MOTA	3690 C	B LYS	350	3.47		36.012	1.00	0.00	С
	MOTA	3691 C	G LYS	350	3.18		37.025	1.00	0.00	С
25	ATOM	3692 C	D LYS	350	2.94	9 3.297	36.387	1.00	0.00	С
	MOTA	3693 C	E LYS	350	1.58	1 3.161	35.710	1.00	0.00	С
	MOTA	3694 N	Z LYS	350	1.43	0 1.810	35.120	1.00	0.00	N
	ATOM	3695 н	LYS	350	1.18		36.643	1.00	0.00	Н
	ATOM	3696 H		350	3.96		37.473	1.00	0.00	н
30	MOTA	3697 1H		350	4.47		35.638	1.00	0.00	Н
- ·	MOTA	3698 2H		350	2.80		35.171	1.00	0.00	н
,	ATOM	3699 1H		350	2.29		37.634	1.00	0.00	
	ATOM	3700 2H		350	3.98		37.742	1.00	0.00	Н
	ATOM	3701 1H		350	2.99		37.096	1.00	0.00	H
35	ATOM	3701 1H		350 -	3.67		35.612	1.00	0.00	н
	ATOM	3702 241 3703 1H		350	1.47		34.916	1.00	0.00	. H
	ATOM	3704 2H		350	0.78		36.435	1.00	0.00	н
	ATOM	3705 1H		350	2.28		35.297	1.00	0.00	н
40	MOTA	3706 2H		350	0.62		35.547	1.00	0.00	н
40	ATOM	3707 3H		350	1.28		34.104	1.00	0.00	Н
	MOTA	3708 N		351	3.38		35.824	1.00	0.00	N
	ATOM		A LEU	351	3.57		34.888	1.00	0.00	C
	MOTA	3710 C		351	5.03		34.635	1.00	0.00	С
	MOTA	3711 O	-	351	5.46		33.495	1.00	0.00	0
45	MOTA		B PĚA	351	3.08		35.443	1.00	0.00	С
	ATOM	3713 C	G LEU	351	1.57		35.740	1.00	0.00	C
	ATOM	3714 C	D1 LEU	351	1.19	9 13.347	36.283	1.00	0.00	С
	MOTA	3715 C	D2 LEU	351	0.74	11.549	34.514	1.00	0.00	С
	ATOM	3716 н	LEU	351	3.06	9.700	36.774	1.00	0.00	H
50	MOTA	3717 H	A LEU	351	3.08	17 10.305	33.943	1.00	0.00	. H
	ATOM	3718 1H	B LEU	351	3.30	7 12.656	34.706	1.00	0.00	Н
	MOTA	3719 2H		351	3.60	8 12.076	36.378	1.00	0.00	Н
	ATOM		G LEU	351	1.29		36.483	1.00	0.00	Н
	ATOM	3721 1H		351	2.09		36.335	1.00	0.00	H
55	ATOM	3722 2H		351	0.46		35.619	1.00	0.00	H
-	ATOM	3723 3H		351	0.76		37.279	1.00	0.00	H
	ATOM	3724 1H		351	1.40		33.689	1.00	0.00	н
	ATOM	3725 2H		351	0.12		34.764	1.00	0.00	н
	ATOM	3726 3H		351	0.09		34.218	1.00	0.00	H
60					5.82		35.724	1.00	0.00	
00	ATOM			352						N
	MOTA		A VAL	352.	7.19		35.687	1.00	0.00	C
	MOTA	3729 C		352	7.95		34.586	1.00	0.00	С
	MOTA	3730 0		352	8.43			1.00	0.00	0
<i>,</i> -	ATOM		B VAL	352	7.94		36.950	1.00	0.00	C
65	ATOM		G1 VAL	352	9.42		36.731	1.00	0.00	C
	ATOM		G2 VAL	352	7.28		38.106	1.00	0.00	С
	MOTA	3734 H		352	5.42			1.00	0.00	H
	MOTA	3735 н	IA VAL	352	7.29	96 12.203	35.542	1.00	0.00	H

WO 01/83717 PCT/CA01/00607

	ATOM	3736	HB	VAL	352	7.830	9.766	37.170	1.00	0.00		Н
	ATOM	3737	1HG1	VAL	352	9.559	11.563	35.718	1.00	0.00		H
	ATOM		2HG1		352	9.722	11.947	37.448	1.00	0.00		H
	ATOM		3HG1		352	10.034	10.293	36.870	1.00	0.00		Н
5	MOTA		1HG2		352	6.439	12.172	37.727	1.00	0.00		Н
	ATOM		2HG2		352	6.936	10.894	38.861	1.00	0.00		H
	ATOM		3HG2		352	8.013	12.277	38.550	1.00	0.00		H
	MOTA	3743	N	LYS	353	8.094	9.151	34.606	1.00	0.00		N
10	ATOM ATOM	3744 3745	CA	LYS	353	9.002	8.687	33.610	1.00	0.00		C
10	ATOM	3745	C O	LYS LYS	. 353 353	8.806 8.176	7.241 6.499	33.319 34.070	1.00 1.00	0.00	-	С 0
	MOTA	3747	СВ	LYS	353	10.454	8.836	34.075	1.00	0.00		c
	ATOM	3748	CG	LYS	353	10.710	8.059	35.379	1.00	0.00		Ċ
	ATOM	3749	CD	LYS		12.154	8.085	35.881	1.00	0.00		č
15	ATOM	3750	CE	LYS	353	12.405	9.180	36.921	1.00	0.00		č
	ATOM	3751	NZ	LYS	353	13.702	8.961	37.600	1.00	0.00		N
	ATOM	3752	H	LYS	353	7.603	8.531	35.266	1.00	0.00		Н
	MOTA	3753	HA	LYS	353	8.877	9.224	32.670	1.00	0.00		Н
	MOTA	3754		LYS	353	10.710	9.877	34.280	1.00	0.00		H
20	MOTA			LYS	353	11.161	B.465	33.343	1.00	0.00		Н
	MOTA	3756		LYS	353	10.445	7.016	35.204	1.00	0.00		Н
	MOTA	3757		LYS	353	10.086	8.491	36.161	1.00	0.00		н
	ATOM	3758		LYS	353	12.877	8.260	35.085	1.00	0.00		H
25	MOTA MOTA	3759 3760		LYS	353 .353	12.456 11.616	7.151 9.178	36.355 37.673	1.00 1.00	0.00		H H
23	ATOM	3761		LYS	353	12.425	10.160	36.444	1.00	0.00		H
	MOTA	3762		LYS	353	14.150	8.115	37.219	1.00	0.00		H
	MOTA	3763		LYS	353	14.314	9.774	37.442	1.00	0.00		H
	ATOM	3764		LYS	353	13.544	8.840	38.610	1.00	0.00		н
30	MOTA	3765	N	MET	354	9.354	6.847	32.154	1.00	0.00		N
	ATOM	3766	CA	MET	354	9.425	5.496	31.689	1.00	0.00		С
	ATOM	3767	С	MET	354	10.824	5.357	31.183	1.00	0.00		С
	MOTA	3768	0	MET	354	11.259	6.172	30.372	1.00	0.00		0
	ATOM	3769	СВ	MET	354	8.512	5.217	30.480	1.00	0.00		С
35	MOTA	3770	CG	MET	354	8.587	3.776	29.968	1.00	0.00		C-
	ATOM	3771	SD	MET	354	7.756	2.535	31.007	1.00	0.00		S
	ATOM	3772	CE	MET	354	6.075	3.003	30.504	1.00	0.00		C
	ATOM ATOM	3773 3774	H HA	MET MET	354 354	9.754 9.207	7.577 4.897	31.548 32.574	1.00 1.00	0.00		H H
40	MOTA	3775		MET	354	8.734	5.833	29.609	1.00	0.00		H
***	ATOM	3776		MET	354	7.453	5.387	30.678	1.00	0.00		н
	ATOM	3777		MET	354	9.638	3.494	29.905	1.00	0.00		н
	ATOM	3778		MET	354	8.117	3.742	28.985	1.00	0.00		H
	ATOM	3779	1HE	MET	354	6.124	3.824	29.788	1.00	0.00		Н
45	ATOM	3780	2HE	MET	354	5.582	2.147	30.041	1.00	0.00		Н
	ATOM	3781		MET	354	5.507	3.318	31.379	1.00	0.00		Н
	MOTA	3782	N	SER	355	11.596	4.352	31.648	1.00	0.00		N
	ATOM	3783	CA	SER	355	12.917	4.301	31.093	1.00	0.00		С
50	ATOM	3784	C	SER	355	13.571	2.984	31.369	1.00	0.00		C
50	ATOM	3785	0	SER	355	13.150	2.232	32.246	1.00	0.00		0
	ATOM ATOM	3786 378 7	CB OG	SER SER	355 355	13.859 14.104	5.371 5.120	31.662 33.038	1.00 1.00	0.00		C
	ATOM	3788	Н	SER	355	11.261	3.674	32.347	1.00	0.00		н
	ATOM	3789	HA	SER	355	12.897	4.439	30.012	1.00	0.00		H
55	ATOM	3790		SER	355	13.408	6.358	31.557	1.00	0.00		н
	ATOM	3791		SER	355	14.807	5.356	31.125	1.00	0.00		H
	MOTA	3792	НG	SER	355	13.991	5.993	33.572	1.00	0.00		Н
	ATOM	3793	N	TRP	356	14.625	2.669	30.584	1.00	0.00		N
	ATOM	3794	CA	TRP	356	15.405	1.496	30.852	1.00	0.00		С
60	MOTA	3795	С	TRP	356	16.875	1.764	30.729	1.00	0.00		C
	MOTA	3796	0	TRP	356	17.302	2.676	30.022	1.00	0.00		0
	ATOM	3797	CB	TRP	356	14.971	0.189	30.139	1.00	0.00		C
	MOTA	3798	CG	TRP	356 356	14.288	0.285	28.795	1.00	0.00		C
65	ATOM ATOM	3799		TRP	356 356	12.945	0.377 0.228	28.575	1.00 1.00	0.00		C
UJ	ATOM	3800 3801		TRP TRP	356 356	14.905 12.682	0.228	27.497 27.230	1.00	0.00		С N
	ATOM	3802		TRP	356	13.878	0.370	26.553	1.00	0.00		C
	MOTA	3803		TRP	356	16.215	0.128	27.121	1.00	0.00		c
									-			_

WO 01/83717 PCT/CA01/00607

- 184 -

	ATOM	3804	CZ2	TRP	356	14.143	0.230	25.215	1.00	0.00	С
	MOTA	3805	CZ3	TRP	356	16.478	0.094	25.768	1.00	0.00	С
	MOTA	3806	CH2	TRP	356	15.463	0.142	24.835	1.00	0.00	С
	ATOM	3807	H	TRP	356	14.869	3.275	29.788	1.00	0.00	H
5	ATOM	3808	HA	TRP	356	15.233	1.116	31.859	1.00	0.00	н
	MOTA	3809	HC	TRP	356	17.579	1.138	31.276	1.00	0.00	. Н
	MOTA	3810	1HB	TRP	356	14.267	-0.319	30.798	1.00	0.00	H
	MOTA	3811	2HB	TRP	356	15.871	-0.403	29.977	1.00	0.00	Н
	MOTA	3812	HD1	TRP	356	12.189	0.446	29.357	1.00	0.00	Н
10	MOTA	3813	HE1	TRP	356	11.748	0.423	26.798	i.00	0.00	Н
	MOTA	3814	HE3	TRP	356	17.016	0.077	27.858	1.00	0.00	H
	ATOM	3815	HZ2	TRP	356	13.341	0.259	24.477	1.00	0.00	H
	MOTA	3816	HZ3	TRP	356	17.511	0.027	25.427	1.00	0.00	Н
	MOTA	3817	HH2	TRP	356	15.711	0.109	23.774	1.00	0.00	н
15	ATOM	3818	MG	MET	357	21.729	10.606	29.309	1.00	0.00	С
	TER										

WE CLAIM

10

15

30

40

- 1. A model for a ligand binding domain of a galactosyltransferase.
- A model as claimed in claim 1 wherein the ligand binding domain is a binding domain for a disphosphate group of a sugar nucleotide donor, a nucleotide of a sugar nucleotide donor, a nitrogeneous heterocyclic base of a sugar nucleotide donor, a sugar of a nucleotide of a sugar nucleotide donor, a selected sugar of a sugar nucleotide donor that is transferred to an acceptor, or an acceptor.
 - 3. A model of a ligand binding domain as claimed in any of the preceding claims wherein the model comprises one or more of the amino acid residues shown in Table 1 or Figure 2, 3, or 4.
 - 4. A model of a ligand binding domain as claimed in claim 1 comprising hydrogen binding partners for the amide hydrogen, carbonyl oxygen in position 4 and the carbonyl oxygen of uracil.
 - 5. A model of a ligand binding domain as claimed in claim 1 that binds the uridine portion of UDP and comprises Phe-134, Tyr-139, Ile-140, Val-136, Arg-194, Arg-202, Lys-209, Asp-173, His-218, and Thr-137.
 - 6. A model of a ligand binding domain as claimed in claim 1 that interacts with a pyrophosphate portion of UDP comprising Asp-225, Val-226, and Asp-227 of a galactosyltransferase.
 - A model or secondary, tertiary and/or quanternary structure of a galactosyltransferase for an α1,3galactosyltransferase.
- 8. A model according to any preceding claims wherein the galactosyltransferase is characterized by the atomic contacts of a galactosyltransferase as shown in Table 1.
 - 9. A model as claimed in claim 8 wherein the atomic contacts are defined by the structural coordinates of the atomic contacts as shown in Table 4 or Table 8.
 - 10. A model according to any preceding claims in association with a ligand or substrate.
- A model according to any preceding claims having the structural coordinates shown in Table 4 or Table 8.
 - 12. A computer readable medium having stored thereon a model according to any preceding claim.
 - 13. A computerized representation of a model according to any of the preceding claims.
 - 14. A method of screening for a ligand capable of binding a ligand binding domain of a galactosyltransferase comprising the use of a model according to any preceding claim.
 - 15. A ligand identified by a method according to claim 14.
 - 16. A ligand according to claim 15 that is capable of associating with one or more atomic contacts of a galactosyltransferase as shown in Table 1.
- 17. A secondary and three dimensional structure or model of a ligand binding domain of a galactosyltransferase that associates with a diphosphate of a sugar nucleotide donor comprising atomic interactions 9, 10, and 11 of Table 1, each atomic interaction defined therein by an atomic contact on the diphosphate, and an atomic contact on the galactosyltransferase.
 - 18. A ligand binding domain of a galactosyltransferase that associates with uracil characterized by the following three hydrogen bonds: (1) the amide hydrogen of uracil in position 3 and OD1 of Asp-168 of the galactosyltransferase, (2) the carbonyl oxygen of uracil in position 4 and the side chain of Lys-

PCT/CA01/00607 WO 01/83717

- 186 -

204 of the galactosyltransferase, and (3) the carbonyl oxygen of uracil in position 2 and the amide hydrogen of the His-213 side chain of the galactosyltransferase.

- 19. A secondary or three dimensional structure or model of a ligand binding domain of a galactosyltransferase that associates with a heterocyclic amine base of a sugar nucleotide donor comprising atomic interactions 1, 2, 3, and 4 of Table 1, each atomic interaction defined therein by an atomic contact on the heterocyclic amine base, and an atomic contact on the galactosyltransferase.
- 20. A secondary and three dimensional structure or model of a ligand binding domain of a galactosyltransferase that associates with a ribose of a sugar nucleotide donor comprising atomic interactions 5, 6, 7, and 8 of Table 1, each atomic interaction defined therein by an atomic contact on the sugar, and an atomic contact on the galactosyltransferase.
- 21. A secondary or three dimensional structure of a ligand binding domain of a galactosyltransferase that associates with UDP comprising atomic interactions 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11 of Table 1, each atomic interaction defined therein by an atomic contact on the nucleotide, and an atomic contact on the galactosyltransferase.
- 22. A secondary and three dimensional structure or model of a ligand binding domain of a galactosyltransferase that associates with UDP-Gal comprising atomic interactions 1 through 11 of Table 1, each atomic interaction defined therein by an atomic contact on the UDP of the UDP-Gal, and an atomic contact on the galactosyltransferase.
 - 23. A method of identifying a modulator of a galactosyltransferase or a ligand binding domain thereof comprising the step of using the structural coordinates of a galactosysltransferase or a ligand binding domain thereof as shown in Table 4 or 8, or a model according to any preceding claim to computationally evaluate a test compound for its ability to associate with the galactosyltransferase or binding domain or binding site thereof.
 - 24. A method for identifying a potential modulator of a galactosyltransferase by determining binding interactions between a test compound and atomic contacts of a ligand binding domain of a galactosyltransferase comprising:
 - (a) generating the atomic contacts on a computer screen
 - (b) generating test compounds with their spatial structure on the computer screen;
 - (c) determining whether the compounds associate or interact with the atomic contacts defining the galactosyltransferase; and
 - identifying test compounds that are potential modulators by their ability to enter into a (d) selected number of atomic contacts.
 - A method for identifying a potential modulator of a galactosyltransferase function by docking a 25. computer representation of a test compound with a computer representation of a structure of a galactosyltransferase or a ligand binding domain thereof having the amino acid residues of a galactosytransferase or a ligand binding domain thereof as shown in Table 1 or Figures 3, 4, or 5.
 - 26. A method for the design of ligands for galactosyltransferases based on the three dimensional structure of a sugar nucleotide donor or part thereof comprising using the structural coordinates shown in Table 5, 6, or 7.

10

5

15

20

25

30

35

5

10

15

20

- 27. A method as claimed in claim 26 comprising (a) generating a computer representation of a sugar nucleotide donor, or part thereof, defined by the structural coordinates shown in Table 5, 6, or 7; (b) searching for molecules in a data base that are similar to the defined sugar nucleotide donor, or part thereof, using a searching computer program, or replacing portions of the compound with similar chemical structures from a database using a compound building computer program.
- 28. A method as claimed in claim 27 comprising one or more of the following additional steps:
 - testing whether a ligand is a modulator of the activity of a galactosyltransferase in cellular assays and animal model assays;
 - (b) modifying the ligand;
 - (c) optionally rerunning steps (a) or (b); and
 - (d) preparing a pharmaceutical composition comprising the modulator.
- 29. A modulator identified by a method of claim 23, 24, 25, or 28.
- 30. Compounds of the formula I having the structural coordinates of uracil of Table 5, preferably Run 9, Cluster 1 or ATOM 1 to ATOM 9, inclusive of Table 7:

wherein R_1 and R_2 are each independently hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, heterocyclic rings, aryl, alkoxy, aryloxy, hydroxyl, thiol, thioaryl, amino, halogen, carboxylic acid or esters or thioesters thereof, amines, sulfate, sulfonic or sulfinic acid or esters thereof, phosphate, pyrophophate, gallic acid, phosphonates, thioamide, and $-OR_{12}$ where R_{12} is alkyl, cycloalkyl, alkenyl, alkynyl, or heterocyclic ring;

31. Compounds of the following formula II having the structural coordinates of uridine of Table 5, preferably Run 9, Cluster 1 or ATOM 1 to 20 inclusive, of Table 7:

5

10

wherein R_1 , R_2 , R_3 , R_4 , and R_5 are each independently hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, heterocyclic rings, aryl, alkoxy, aryloxy, hydroxyl, thiol, thioaryl, amino, halogen, carboxylic acid or esters or thioesters thereof, amines, sulfate, sulfonic or sulfinic acid or esters thereof, phosphate, pyrophosphate, gallic acid, phosphonates, thioamide, and $-OR_{12}$ where R_{12} is alkyl, cycloalkyl, alkenyl, alkynyl, or heterocyclic ring, and salts and optically active and racemic forms of a compound of the formula II.

32. Compounds of the formula III having the structural coordinates of UDP in Table 5, preferably Run 9, Cluster 1, or ATOM 1 to 28 inclusive of Table 7:

wherein R_1 , R_2 , R_3 , R_4 , R_6 , and R_{11} are each independently hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, heterocyclic rings, aryl, alkoxy, aryloxy, hydroxyl, thiol,

15 33. Compounds of the formula IV having the structural coordinates of UDP-Gal in Table 6, preferably Run, Cluster 1:

wherein R_1 , R_2 , R_3 , R_4 , R_7 , R_8 , R_9 , and R_{10} are each independently hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, heterocyclic rings, aryl, alkoxy, aryloxy, hydroxyl, thiol, thioaryl, amino, halogen, carboxylic acid or esters or thioesters thereof (e.g. -CH₂OH), amines, sulfate, sulfonic or sulfinic acid or esters thereof, phosphate, gallic acid, phosphonates, thioamide, and -OR₁₂ where R_{12} is alkyl, cycloalkyl, alkenyl, alkynyl, or heterocyclic ring, and X is a counter-ion including sodium, lithium, potassium, calcium, magnesium, manganese, cobalt ions and the like, as well as nontoxic ammonium, quaternary ammonium, and amine cations, preferably Mn^{2+} , and salts and optically active and racemic forms of a compound of the formula IV.

10

15

5

34. A pharmaceutical composition comprising a ligand, modulator, or compound according to any preceding claim, and a pharmaceutically acceptable carrier, diluent, excipient, or adjuvant or any combination thereof

35.

A method of treating and/or preventing disease comprising the step of administering a pharmaceutical composition according to claim 34 to a mammalian patient.
 A method of treating a disease associated with a galactosyltransferase with inappropriate activity in a

36. A metho

(b)

cellular organism, comprising:

(a) administering a pharmaceutical composition as claimed in claim 34; and

activating or inhibiting a galactosyltransferase to treat the disease.

(a) aummisterm

20

37. Use of a modulator or compound as claimed in any of the preceding claims in the preparation of a medicament to treat a disease associated with a galactosyltransferase with inappropriate activity in a cellular organism.

centular organi

38. Use of the structural coordinates of a galactosyltransferase structure as shown in Table 1 or 8, or the structural coordinates of a ligand as shown in Table 5, 6, or 7 to manufacture a medicament.

25

39. A computer for producing a model or three-dimensional representation of a molecule or molecular complex, wherein said molecule or molecular complex comprises a galactosyltransferase or ligand binding domain thereof defined by structural coordinates of galactosyltransferase amino acids or a ligand binding domain thereof, or comprises structural coordinates of atoms of a ligand or substrate, or a three-

PCT/CA01/00607

5

10

dimensional representation of a homologue of said molecule or molecular complex, wherein said computer comprises:

- (a) a machine-readable data storage medium comprising a data storage material encoded with machine readable data wherein said data comprises the structural coordinates of a galactosyltransferase amino acids according to Table 4 or 8 or a ligand binding domain thereof, or a ligand according to Table 5, 6, or 7;
- (b) a working memory for storing instructions for processing said machine-readable data;
- (c) a central-processing unit coupled to said working memory and to said machine-readable data storage medium for processing said machine readable data into said three-dimensional representation; and
- (d) a display coupled to said central-processing unit for displaying said three-dimensional representation.

```
GALT ( 5)
SPSA ( ---> )
            5) gkvilsmlvvstvivvfweyihspegslfwinpsrnpev (43
GALT ( \cdot 44) ggssiqkgwwlprwfnngyheedgdineekeqrnedesk (82 SPSA ( ---> )
GALT ( 83)
SPSA ( ---> )
         83) lklsdwfnpfkrpevvtmtkwkapvvwegtynravldny (121
          122) yakqkitvgltvfavgryiehyleefltsankhfmvghp (160 A2) P---KVSVIMTSYNKSDYVAKSISSILSQT---F--SDF (A32
GALT (
SPSA (
           161) vifyimvddvsr--mplielgplrsfkv-fkikpekrwq (196 )
A33) ELF-IMDDNSNEETLNVIRP-FLNDNRVRF---YOS--- ( gap )
GALT (
SPSA (
           197) dismmrmktigehivahiqhevd----fl-fcmdvdqv (229
GALT (
           A64) DISGVKERTEKTRYAALINQAIEMAEGEYITYATD-DNI (A101
SPSA (
         230) fqdkfgvetlgesvaqlqawwykadpnd-ftyerrkesa(267 ) A102) Y--MP--DRLLKMVRELDT-----HPEKAVIYSASK---( gap ).
GALT (
SPSA (
         268) ay ipfgeg-dfyyhaai fggtpt-qvlnitqec-----f (299 A129) TYHL---N | DIVKETVRPAAQVTWNAPCAIDHCSVMHRY (A166
GALT (
SPSA (
GALT ( 300) kgilkdkkndieaqwhdeshlnkyfllnkptkilspeyc (338 ) SPSA (gap )-SVLEKVKEKFGSYW-DES-PA-FYRIGD-AR---F-F- (gap )
        339) w---dyhiglpadiklvkmswqtkeynvvrnnv (368
A196) wRVnHFYPFYPLDEEL-DLNYIT|EF--VRNLPPQRNCR (A244
SPSA (
                                                                                    <----)
                                                                                   (A256 )
SPSA ( A245) ELRESLKKLGMG
```


9/9

(19) World Intellectual Property Organization
International Bureau

- 1881) (1881) (1881) (1881) (1881) (1881) (1881) (1881) (1881) (1881) (1881) (1881) (1881) (1881)

(43) International Publication Date 8 November 2001 (08.11.2001)

PCT

(10) International Publication Number WO 01/083717 A3

- (51) International Patent Classification⁷: C12N 9/10,
 G06F 19/00, C07D 239/54, C07H 19/073, 19/10, A61K
 31/513, 31/7072, C07H 19/06, G06F 17/50
- (21) International Application Number: PCT/CA01/00607
- (22) International Filing Date: 2 May 2001 (02.05.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/201,841

3 May 2000 (03.05.2000) US

- (71) Applicant (for all designated States except US): GLY-CODESIGN INC. [CA/CA]; 480 University Avenue, Suite 400, Toronto, Ontario M5G 1V2 (CA).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): RAO, Mohan [IN/CA]; 95 Thorncliffe Park Drive, Apartment 3409, Toronto, Ontario M4H 1L7 (CA). TVAROSKA, Igor

[SK/CA]; 65 High Park Avenue, Apartment 2201, Toronto, Ontario M6P 2R7 (CA).

- (74) Agents: VAN ZANT, Joan M. et al.; Swabey Ogilvy Renault, Suite 1600, 1981 McGill College Avenue, Montreal, Québec H3A 2Y3 (CA).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

[Continued on next page]

(54) Title: DESIGNING MODULATORS FOR ALPHA-1, 3 GALACTOSYLTRANSFERASES BASED ON A STRUCTURAL MODEL

(57) Abstract: The invention relates to structures and models of ligand binding domains of galactosyltransferases, and the ligand binding domains with ligands. The structural coordinates that define the structures and any ligands bound to the structures enable the determination of homologues, the structures of polypeptides with unknown structure, and the identification of modulators of the galactosyltransferases. The invention also relates to structures and models of nucleotide-sugar donors for the galactosyltransferases, and the design of modulators for the galactosyltransferases based on the properties of these structures and models.

01/083717 A3

WO 01/083717 A3

(88) Date of publication of the international search report: 8 August 2002 For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

nai Application No PCT/CA 01/00607

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C12N9/10 G06F19/00

A61K31/513

C07D239/54 A61K31/7072 C07H19/06

C07H19/073 G06F17/50

CO7H19/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 C12N G06F G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, BIOSIS, EMBL, CHEM ABS Data

Category °	Citation of document, with indication, where appropriate, of the	e relevant passages	Relevant to claim No.
ζ	CHARNOCK SIMON J ET AL: "Stru nucleotide-diphospho-sugar tra SpsA from Bacillus subtilis, i nucleotide-complexed forms" BIOCHEMISTRY, AMERICAN CHEMICA EASTON, PA, US,	n native and	18,32
	vol. 38, no. 20, 18 May 1999 (pages 6380-6385, XP001038468 ISSN: 0006-2960	1999-05-18),	
Υ _	pages 6381-6382 and Figure 4	-	14,23-28
		-/	
X Furl	ther documents are listed in the continuation of box C.	χ Patent family members are listed	in annex.
<u> </u>	ther documents are listed in the continuation of box C. ategories of cited documents;	· · · · · · · · · · · · · · · · · · ·	
* Special ca *A* docum consider	ategories of cited documents : nent defining the general state of the art which is not dered to be of particular relevance	Patent family members are listed T later document published after the Interpretation or priority date and not in conflict with cited to understand the principle or the invention	ernational filing date the application but
A docum conside *E* earlier filing (ategories of cited documents: nent defining the general state of the art which is not dered to be of particular relevance document but published on or after the International date ent which may throw doubts on priority claim(s) or	"T" later document published after the Integration or priority date and not in conflict with cited to understand the principle or the invention "X" document of particular relevance; the cannot be considered novel or canno	ernational filing date the application but eory underlying the claimed invention to be considered to
° Special ca °A° docum consis °E° earlier filing o °L° docum which citatio	ategories of cited documents: nent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international date ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another on or other special reason (as specified)	"T" later document published after the Interior priority date and not in conflict with cited to understand the principle or the invention "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the document of particular relevance; the cannot be considered to involve an inventive step when the document of particular relevance; the	ernational filing date the application but eory underlying the claimed invention to be considered to current is taken alone claimed invention yentive step when the
Special commonsion "A" docume consider "E" earlier filing of the citation "O" docume other "P" docume	ategories of cited documents: nent defining the general state of the art which is not dered to be of particular relevance document but published on or after the International date ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another on or other special reason (as specified) nent referring to an oral disclosure, use, exhibition or means sent published prior to the international filing date but	"T" later document published after the Interior priority date and not in conflict with cited to understand the principle or the invention. "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the document of particular relevance; the cannot be considered to involve an indocument is combined with one or ments, such combination being obvious the ext.	emational filing date the application but eory underlying the claimed invention t be considered to cument is taken alone claimed invention ventive step when the one other such docu— us to a person skilled
"A" docum consider earlier filing of the docum which citatio "O" docum other "P" docum later t	ategories of cited documents: ment defining the general state of the art which is not dered to be of particular relevance document but published on or after the international date ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another on or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means	"T' later document published after the Interior priority date and not in conflict with cited to understand the principle or the invention." X' document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the document of particular relevance; the cannot be considered to involve an indocument is combined with one or ments, such combination being obvious priority.	emational filing date the application but eory underlying the claimed invention t be considered to cument is taken alone claimed invention ventive step when the pre other such docu- us to a person skilled
"A" docum conside "E" earlier filing o "L" docum which citatio "O" docum other "P" docum later t	ategories of cited documents: ment defining the general state of the art which is not dered to be of particular relevance document but published on or after the International date ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another on or other special reason (as specified) nent referring to an oral disclosure, use, exhibition or means sent published prior to the international filing date but than the priority date claimed	"T" later document published after the Integration or priority date and not in conflict with cited to understand the principle or the invention." "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the document of particular relevance; the cannot be considered to involve an indocument is combined with one or ments, such combination being obvious in the art. "&" document member of the same patent."	emational filing date the application but eory underlying the claimed invention t be considered to cument is taken alone claimed invention ventive step when the pre other such docu- us to a person skilled

I Inal Application No PCT/CA 01/00607

C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	<u> </u>
Category °		Relevant to claim No.
X	IMBERTY ANNE ET AL: "Fold recognition study of alpha3-galactosyltransferase and molecular modeling of the nucleotide sugar-binding domain." GLYCOBIOLOGY,	18,33
	vol. 9, no. 7, July 1999 (1999-07), pages 713-722, XP001026527 ISSN: 0959-6658	
Υ	abstract, Fig 1, page 717, Fig. 3 and page 719	14,23-28
Y	JOZIASSE D H ET AL: "BOVINE ALPHA-1-3 GALACTOSYLTRANSFERASE ISOLATION AND CHARACTERIZATION OF A COMPLEMENTARY DNA CLONE IDENTIFICATION OF HOMOLOGOUS SEQUENCES IN HUMAN GENOMIC DNA" JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 264, no. 24, 1989, pages 14290-14297, XP001026521 ISSN: 0021-9258 abstract, fig. 2 and page 14296	18,35,36
Υ	DATABASE EMBL 'Online! accession P14769, protein EC 2.4.1.151, 1 April 1990 (1990-04-01) JOZIASSE DH ET AL.: "bovine alpha 1-3 galactosyltransferase gene" XP002186993 the whole document	18
X .	DATABASE SIGMA-ALDRICH 'Online! Products for Life Science, "search for UDP" retrieved from HTTP://WWW.SIGMA-ALDRICH.COM XP002186994 Uracil, Uridine 5'-diphosphogalactose, Uridine, etc are common products listed in different providers catalog	30-33
X	GASTINEL LOUIS NOEL ET AL: "Crystal structures of the bovine beta4galactosyltransferase catalytic domain and its complex with uridine diphosphogalactose." EMBO (EUROPEAN MOLECULAR BIOLOGY ORGANIZATION) JOURNAL, vol. 18, no. 13, 1 July 1999 (1999-07-01), pages 3546-3557, XP002186991 ISSN: 0261-4189	18,33
Υ	page 3548-50, Fig 2, 4 ,5 and page 3554	23-28
	-/	·

II nal Application No
PCT/CA 01/00607

Continua (ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	ASZODI ANDRAS ET AL: "Protein modeling by multiple sequence threading and distance geometry." PROTEINS, no. SUPPL. 1, 1997, pages 38-42, XP001038475 ISSN: 0887-3585 the whole document	18,23-28
Y	CHUNG S J ET AL: "Acceptor substrate-based selective inhibition of galactosyltransferases" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, vol. 8, no. 23, 1 December 1998 (1998-12-01), pages 3359-3364, XP004143758 ISSN: 0960-894X Fig 1, table 1, page 3362	23-28, 35,36
Y .	BRETON CHRISTELLE ET AL: "Structure/function studies of glycosyltransferases." CURRENT OPINION IN STRUCTURAL BIOLOGY, vol. 9, no. 5, October 1999 (1999-10), pages 563-571, XP001026532 ISSN: 0959-440X page 566 and Fig. 4	18,23
A	US 5 849 991 A (CRAWFORD ROBERT J ET AL) 15 December 1998 (1998-12-15) columns 2,4,6,8	18,23-28
4	THODEN JAMES B ET AL: "Structural analysis of UDP-sugar binding to UDP-galactose 4-epimerase from Escherichia coli." BIOCHEMISTRY, vol. 36, no. 21, 1997, pages 6294-6304, XP001038467 ISSN: 0006-2960 page 2558, Figure 4, 6, 7.	30-33
Ρ,Υ	UNLIGIL ULUG M ET AL: "X-ray crystal structure of rabbit N-acetylglucosaminyltransferase I: Catalytic mechanism and a new protein superfamily." EMBO (EUROPEAN MOLECULAR BIOLOGY ORGANIZATION) JOURNAL, vol. 19, no. 20, 16 October 2000 (2000-10-16), pages 5269-5280, XP001026132 ISSN: 0261-4189 pp5270 left column, Fig. 2 and 4.	18
		1

nal Application No PCT/CA 01/00607

0.00	Mari DOUBLESTO CONDUCTOR TO BE SEE STANK	PCI/CA UI,	
C.(Continue Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages		Polyant to claim No.
Carefork 2	Chance of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
T	RAO MOHAN ET AL: "Structure of bovine alpha-1,3-galactosyltransferase and its complexes with UDP and UDPGal inferred from molecular modeling." PROTEINS, vol. 44, no. 4, 1 September 2001 (2001-09-01), pages 428-434, XP001038482 ISSN: 0887-3585 the whole document		18,23-28
		ļ	
	·		
	•	•	
			- -
	·		
			<u> </u>

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 1-13,17,19-22, 29, 34-39

Presentation of information:

The claims 1-13, 17, 19-22, 38-39 relate to, or comprise, a three dimensional homology model for the ligand binding domain of a galactosyltransferase or its production which is considered to be a subject-matter encompassed by Rule 39.1(v) and/or (vi) PCT, being subject-matter which the ISA is not required to search under Art. 17(2)(a)(i) PCT. The above mentioned claims relate to a presentation of information (protein model structure coordinates) identified as a coordinates listings and their possible use -claim 38- (using appropriate molecular modelling software), or information stored on a computer (claim 39 and 13) or computer readable media (claim 12). Thus, said claims will not be searched.

Enzyme "ligand/s" or "modulator/s" and their use: Present claims 15-16, 29, 34-37 relate to a compound (and its use in pharmaceutical composition or in methods of treatment) defined by reference to a its binding property to a glycosyltransferase (a "ligand" or a "modulator" of alpha 1-3 glycosyltransferase). The claims cover all products having this characteristic or property, whereas the application provides support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT for NONE such products. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Independent of the above reasoning, the claims also lack clarity (Article 6 PCT). A meaningful search cannot be established because it is not possible to determine if any of the presently known substances is falling under the terms of these "modulator" product claims. Besides it is noted, that the compounds of claims 15-16 and 29 are not rendered novel just because of the fact that they have been identified by the method of claims 23-28. e.g. such compounds can already exist.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

PCT/CA 01/00607

Patent document dted in search report		Publication date		Patent family member(s)	Publication date
US 5849991	A	15-12-1998	AU BR CA EP AU AU WO JP	695373 B2 9506652 A 2181433 A1 0755451 A1 1544595 A 711144 B2 7742898 A 9520661 A1 9508277 T	13-08-1998 02-09-1997 03-08-1995 29-01-1997 15-08-1995 07-10-1999 01-10-1998 03-08-1995 26-08-1997