0.1 Generalización del grupo fundamental a otras dimensiones

Para poder generalizar el grupo fundamental a otras dimensiones, necesito encontrar otra definición equivalente de la cual resulte obvio generalizar a otras dimensions. Para este fin, considera el siguiente argumento:

Un lazo $\alpha \in \Omega(X, x_0)$ es una función continua $\alpha : I \to X$ tal que $\alpha(0) = x_0 = \alpha(1)$. Esto significa que α se factoriza a través de $I/\partial I$. Más precisamente:

La función $\nu I \to \mathbb{S}^1$ definido por $\nu(t) = e^{2\pi i t}$ es continua y sobre. Además, para toda $U \subseteq \mathbb{S}^1$ se tiene

$$U$$
 es abierto $\iff \nu^{-1}[U]$ es abierto.

Por lo tanto ν es una proyección de espacios topológicos.

Esto quiere decir que \mathbb{S}^1 tiene la topología cociente: sobre I definimos la siguiente relación de equivalencia:

$$s \sim t \iff \nu(s) = \nu(t).$$

Esta relación parte el conjunto en todos los singuletes $\{s\}_{s\neq 0,1}$ y en $\partial I = \{0,1\}$. Por lo tanto el espacio de clases cumple

$$\frac{I}{\partial I} \approx \mathbb{S}^1.$$

Además, cualquier función continua $\alpha:I\to X$ tal que $\alpha(0)=\alpha(1)$, ie. un lazo se factoriza a través de ν :

Por lo tanto hay una biyección natural

$$\left[(\mathbb{S}^1, 1), (X, x_0) \right] \xrightarrow{\Phi} \pi_1(X, x_0) \qquad \text{con} \qquad [\beta] \longmapsto [\beta \circ \nu]$$

con inverso $[\alpha] \mapsto [\tilde{\alpha}]$. Está bien definido por la proposición ??: $\alpha \simeq \beta \implies \alpha \circ \nu \simeq \beta \circ \nu$. Además, esta bivección es un homeomorfismo......

Proposición 1. Si $\Omega(X, x_0)$ y $\operatorname{Map}_*((\mathbb{S}^1, 1), (X, x_0))$ tienen la topología compacto-abierta; si $\pi_1(X, x_0)$ y $[(\mathbb{S}^1, 1), (X, x_0)]$ tienen sus correspondientes topologías cociente, entonces

$$\left[(\mathbb{S}^1, 1), (X, x_0) \right] \approx \pi_1(X, x_0)$$

Proof. Primero pruebo que Φ es continuo. Sea $U \subseteq \pi_1(X, x_0)$, entonces su preimagen \bar{U} en

$$\Omega(X, x_0) = \{I \xrightarrow{\alpha} X \mid \alpha \text{ es continua y } \alpha(0) = \alpha(1)\},\$$

con la topología de subespacio de $C^0(I,Y)$, es abierto, es decir es una unión arbitraria de intersecciones finitas de los abiertos $B_K(U)$:

$$\bar{U} = \bigcup_{j \in J} B_{K_j}(U_j)$$

con $K_j \subseteq I$ compacto y $U_j \subseteq Y$ abierto. Quiero probar que la preimagen bajo Φ de \bar{U} es un abierto. Como Φ es biyectiva, basta probar esto para $\bar{U} = B_K(U)$ (esto es porque la)..

Nota. Puedo intercambiar ($\mathbb{S}^1,1$) por $(I/\partial I,\star)$ donde $\star\in I/\partial I$ es la clase de equivalencia $[\partial I]$ ya que son homeomorfos como espacios basados.

Este resultado motiva la siguiente definición:

Definición 1. El grupo fundamental de dimensión n de un espacio basado (X, x_0) se define como

$$\pi_n(X, x_0) := [(\mathbb{S}^n, 1), (X, x_0)].$$

1

Primero analizamos qué sucede cuando n=0 ya que este caso es distinto a los demás.

Recuerda que $\mathbb{S}^0 = \{x \in \mathbb{R} : |x| = 1\} = \{-1, 1\}$. Llamaré a estos puntos de otra manera para que las cuentas sean más nítidas: sean $1 = \star y - 1 = \bullet$. Con esta notación puedo escribir:

$$M:=\operatorname{Map}_*\left((\mathbb{S}^0,\star),(X,x_0)\right)=\{\mathbb{S}^0 \stackrel{f}{\longrightarrow} X\mid f \text{ es continua y } f(\star)=x_0\}.$$

Entonces la única información que nos falta saber para determinar a f es el valor $f(\bullet) \in X$. Esto nos induce la función:

$$M \xrightarrow{\Psi} X$$
 con $f \longmapsto f(\bullet)$.

Observa que si $f, g \in M$ son homotópicos, existe una función continua $H : \{\star, \bullet\} \times I \to X$ donde $H_o = f$ y $H_1 = g$. Esto significa que la función $F_{\bullet} : I \to X$ definida por $F_{\bullet}(t) = H(\bullet, t)$, es continua. Además $F_{\bullet}(0) = H_0(\bullet) = f(\bullet) = \Psi(f)$ y $F_{\bullet}(1) = H_1(\bullet) = g(\bullet) = \Psi(g)$. Es decir F_{\bullet} es una trayectoria de $\Psi(f)$ a $\Psi(g)$ en X. Decimos que $\Psi(f)$ y $\Psi(g)$ son conectables por trayectorias.

Con esto podemos definir una relación de equivalencia natural en X: para todas $x, y \in X$

$$x \sim y \iff x \text{ yy son conectables por trayectorias} \iff \exists \sigma: I \to X \text{ continua tal que } \sigma(0) = x \text{ y } \sigma(1) = y.$$

Por lo tanto, el argumento del párrafo anterior nos dice que:

$$f \simeq g \implies \Psi(f) \sim \Psi(g)$$

y así, puedo definir Ψ para clases de equivalencia:

$$\Psi([f]_{\simeq}) = [\Psi(f)]_{\sim}$$
 está bien definida.

Debería de cambiar de notación a algo como $\hat{\Psi}$, pero no creo que cause problemas. Observa que $[f]_{\simeq} \in M/_{\simeq}$ que es precisamente $\pi_0(X, x_0)$. Por lo tanto $\Psi : \pi_0(X, x_0) \to X/_{\sim}$.

Pruebo que Ψ es biyectiva:

Para toda $[x]_{\sim} \in X/_{\sim}$, toma $f_x \in M$ definida por $f(\bullet) = x$. Claramente

$$\Psi([f_x]_{\simeq}) = [\Psi(f)]_{\sim} = [f(\bullet)] = [x]_{\sim},$$

y así Ψ es sobreyectiva.

Sean $[\alpha], [\beta] \in \pi_0(X, x_0)$ tales que que $\Psi([\alpha]) = Psi([\alpha])$, es decir que $\alpha(\bullet)$ y $\beta(\bullet)$ son conectables por trayectorias; supongamos que es mediante la trayectoria $\sigma: I \to X$. Defino la siguiente homotopía entre α y β :

$$H(s,t) := \begin{cases} x_0 & \text{si } s = \star \\ \sigma(t) & \text{si } s = \bullet \end{cases}$$

Esta es una homotopía porque es la unión disjunta de funciones continuas y es una calca de la homotopía F que construí para definir la relación de equivalencia en X. Por lo tanto $\alpha \simeq \beta$, entonces $[\alpha] = [\beta]$ y concluyo que Ψ es inyectiva.

Por último observa que $X/_{\sim}$ se puede ver como el espacio de componentes conexas del espacio X ya que al hacer cociente reducimos toda una componente conexa (arco-conexa) a un punto sobre ella.

Con todo esto he probado que

Proposición 2.

$$\pi_0(X, x_0) \xrightarrow{\Psi} \left\{ \begin{array}{l} \text{componentes} \\ \text{conexas de } X \end{array} \right\} \qquad \text{es biyectiva.}$$

Los demás grupos fundamentales son muy parecidos a $\pi_1(X, x_0)$. La única diferencia es que los lazos ahora están definidos sobre $I^n/\partial I^n$ en lugar de sobre $I/\partial I$. Si defino la operación como:

$$(\alpha * \beta)(s_1, \dots, s_n) := \begin{cases} \alpha(2s_1, s_2, \dots, s_n) & \text{si } 0 \le s_1 \le \frac{1}{2} \\ \alpha(2s_1 - 1, s_2, \dots, s_n) & \text{si } \frac{1}{2} \le s_1 \le 1 \end{cases}$$

donde $\alpha, \beta: I^n \to X$, entonces todas las propiedades de grupo de $\pi_n(X, x_0)$ son idénticas a las propiedades de $\pi_1(X, x_0)$. Las enumero para tenerlas a la mano:

$$(\pi_n(X, x_0), *)$$
 es un grupo
 $[e] = [e_{x_0}]$ es el neutro
 $\forall [\alpha], [\alpha]^{-1} = [\bar{\alpha}]$

También observa que

$$(X, x_0) \xrightarrow{\mathcal{F}} \pi_n(X, x_0) \qquad \left\{ (X, x_0) \xrightarrow{f} (Y, y_0) \right\} \longmapsto \left\{ \pi_n(X, x_0) \xrightarrow{f_\#} \pi_n(Y, y_0) \right\}$$

es un funtor (covariante) de la categoría \mathbf{Top}_* a la categoría de grupos. La prueba de esto es la misma que en el Teorema $\ref{eq:top}$.