Übungsblatt 6

Aufgabe 16 (1.5+2+1.5). (i) Wir betrachten $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^4 - x^2 + y^2$. Die Lösungsmenge von f(x,y) = 0 ist eine Lemniskate/figure-eight Kurve.

Ist die Lemniskate eine Untermannigfaltigkeit? Wenn nicht, was ist die maximale Teilmenge, die eine Untermannigfaltigkeit ist. Begründen Sie.

(ii) Sei $a \in \mathbb{R}$ und $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^3 - 3ax - y^2$. Finden Sie alle Werte b, so dass $f^{-1}(b)$ eine Untermannigfaltigkeit von \mathbb{R}^2 ist. Skizzieren Sie $f^{-1}(b)$ für einige Werte a und b, so dass qualitativ alle 'Typen' von Mengen $f^{-1}(b)$ abgebildet werden.

(iii)

Sei ein Doppelpendel wie im Bild gegeben (d.h. der Aufhängepunkt im Ursprung ist fest, die Längen ℓ_1 und ℓ_2 der Stäbe ist fest, sonst ist alles frei beweglich). Sei $M \subset \mathbb{R}^2 \times \mathbb{R}^2 \cong \mathbb{R}^4$ die Menge aller $(p_1, p_2) \in \mathbb{R}^4$, die durch diese Konstruktion erreichbar sind. Bestimmen Sie M und zeigen Sie, dass M eine Untermannigfaltigkeit von \mathbb{R}^4 ist. Was ist die Dimension?

Aufgabe 17 (2.5+2.5). Geben Sie genügend lokale Parametrisierungen an, um zu sehen, dass folgende Mengen nach Satz 1.3.4 Untermannigfaltigkeiten sind. Skizzieren Sie die Mengen. Was ist jeweils die Dimension?

- (i) $S^m = \{x = (x_1, \dots, x_{m+1})^T \in \mathbb{R}^{m+1} \mid \sum_{i=1}^{m+1} x_i^2 = 1\}$
- (ii) $G = \{x = (x_1, ..., x_{m+1}, ..., x_{m+k})^T \in \mathbb{R}^{m+k=n} \mid x_{m+i} = f_i(x_1, ..., x_m)\}$ für eine glatte Funktion $f : \mathbb{R}^m \to \mathbb{R}^k$.

Aufgabe 18. Die blaue Fläche habe die Massenverteilung $\rho(x,y) = |y-5|$. Berechnen Sie den Schwerpunkt.

Abgabe bis Mittwoch 07.12.22 8:00 Uhr online oder in den Briefkasten im Untergeschoss