(last updated in Apr. 2024)

Research Experience

2024.02 - Present	JSPS Overseas Fellow	Harvard-Smithsonian Center for Astrophysics
2022.04 - 2024.01	Postdoctoral Researcher	Max Planck Institute for Astronomy
2019.04 - 2022.03	JSPS Research Fellow (PD)	National Astronomical Observatory of Japan
2018.04 - 2019.03	JSPS Research Fellow (DC2)	Tokyo Institute of Technology

Education —

2016.04 – 2019.03	Doctor of Science	Tokyo Institute of Technology
2018.05 - 2018.10	JSPS Overseas Challenge Program for Young Researchers	Max Planck Institute for Astronomy
2014.04 - 2016.03	Master of Science	Tokyo Institute of Technology
2009.04 - 2014.03	Bachelor of Science	Tokyo Institute of Technology

Teaching Experience —

2019.10 – 2024.03	Adjunct Lecturer	Earth and Space Sciences, Tokyo Institute of Technology
2016	Teaching Assistant	Computational Planetary Science, Tokyo Institute of Technology
2015	Teaching Assistant	Physical Mathematics (EPS course), Tokyo Institute of Technology
2014	Teaching Assistant	Mechanics (EPS course), Tokyo Institute of Technology
2014	Teaching Assistant	Quantum Mechanics (EPS course), Tokyo Institute of Technology

Researcher IDs

ORC ID <u>0000-0003-4902-222X</u>

Reserchmap ID R000039720

Languages —

Native Japanese
Fluent English
Basic German

2024.02 - 2026.01	JSPS Overseas Research Fellowships	15,000,000 JPY
2021.09 - 2021.10	NAOJ Overseas Visit Program for Young Researchers	730,000 JPY
2019.04 - 2022.03	JSPS Research Grant	3,500,000 JPY
2018.05 - 2018.10	JSPS Overseas Challenge Program for Young Researchers	1,400,000 JPY
2018.04 - 2020.03	JSPS Research Grant	2,100,000 JPY

(last updated in Apr. 2024)

Publications —

Refereed papers: 12 lead-author (corresponding author) papers + 8 co-author papers

Astrophysics Data System (ADS), Google Scholar

International journals

[1] Fragile Porous Dust in Gravitationally Self-Regulated Disk around IM Lup

Takahiro Ueda, Ryo Tazaki, Satoshi Okuzumi, Mario Flock, Prakruti Sudarshan

Accepted for publication in Nature Astronomy

[2] The inner disk rim of HD 163296: linking radiative hydrostatic models with infrared interferometry

Ondřej Chrenko, Mario Flock, Takahiro Ueda et al.

Accepted for publication in Astronomical Journal

[3] Dust enrichment and grain growth in a smooth disk around the DG Tau protostar revealed by

ALMA triple bands frequency observations

Satoshi Ohashi, ..., Takahiro Ueda et al.

The Astrophysical Journal, 2023, 954, 110

[4] Porous Dust Particles in Protoplanetary Disks: Application to the HL Tau Disk

Shangjia Zhang, Zhaohuan Zhu, **Takahiro Ueda**, Akimasa Kataoka, Anibal Sierra, Carlos Carrasco-Gonzalez, Enrique Macias

The Astrophysical Journal, 2023, 953, 96

[5] Probing the Temperature Structure of the Inner Region of a Protoplanetary Disk

Takahiro Ueda, Satoshi Okuzumi, Akimasa Kataoka and Mario Flock

Astronomy and Astrophysics, 2023, 675, A176

[6] <u>Discovery of Line Pressure Broadening and Direct Constraint on Gas Surface Density in a</u>

Protoplanetary Disk

Tomohiro C. Yoshida, Hideko Nomura, Takashi Tsukagoshi, Kenji Furuya and Takahiro Ueda

The Astrophysical Journal Letters, 2022, 937, L14

[7] The Molecular Composition of Shadowed Protoplanetary Disk Midplanes beyond the Water

Snowline

Shota Notsu, Kazumasa Ohno, Takahiro Ueda, Catherine Walsh, Christian Eistrup and Hideko Nomura

The Astrophysical Journal, 2022, 936, 188

[8] A global two-layer radiative transfer model for axisymmetric shadowed protoplanetary disks

Satoshi Okuzumi, Takahiro Ueda and Neal J. Turner

Publications of the Astronomical Society of Japan, 2022, 74, 828

[9] Massive compact dust disk with a gap around CW Tau revealed by ALMA multiband observations

Takahiro Ueda, Akimasa Kataoka and Takashi Tsukagoshi

The Astrophysical Journal, 2022, 930, 56

[10] Probing Inner-Edge of Dead Zones in Protoplanetary Disks with ALMA and Next Generation Very

Large Array

(last updated in Apr. 2024)

Takahiro Ueda, Luca Ricci, Mario Flock and Zachary Castro

The Astrophysical Journal, 2022, 928, 110

[11] Early Initiation of Inner Solar System Formation at Dead-Zone Inner Edge

Takahiro Ueda, Masahiro Ogihara, Eiichiro Kokubo and Satoshi Okuzumi

The Astrophysical Journal Letters, 2021, 921, L5

[12] <u>Jupiter's "Cold" Formation in the Protosolar Disk Shadow: An Explanation for the Planet's</u>
Uniformly Enriched Atmosphere

Kazumasa Ohno and Takahiro Ueda

The Astronomy and Astrophysics Letters, 2021, 651, L2

[13] Thermal Wave Instability as an Origin of Gap and Ring Structures in Protoplanetary Disks

Takahiro Ueda, Mario Flock and Tilman Birnstiel

The Astrophysical Journal Letters, 2021, 914, L38

[14] Impact of Differential Dust Settling on the SED and Polarization: Application to the Inner Region of the HL Tau Disk

Takahiro Ueda, Akimasa Kataoka, Shangjia Zhang, Zhaohuan Zhu, Carlos Carrasco-Gonzalez and Anibal Sierra

The Astrophysical Journal, 2021, 913, 117

[15] <u>Scattering-induced intensity reduction: large mass content with small grains in the inner region</u> of the TW Hya disk

Takahiro Ueda, Akimasa Kataoka and Takashi Tsukagoshi

The Astrophysical Journal, 2020, 893, 125

[16] <u>Dust-Pileup at the Dead-Zone Inner Edge and Implications for the Disk Shadow</u>

Takahiro Ueda, Mario Flock, and Satoshi Okuzumi

The Astrophysical Journal, 2019, 871, 10

[17] Effect of Dust Radial Drift on Viscous Evolution of Gaseous Disk

Kazuhiro D. Kanagawa, Takahiro Ueda, Takayuki Muto, and Satoshi Okuzumi

The Astrophysical Journal, 2017, 844, 142

[18] Analytic Expressions for the Inner-Rim Structure of Passively Heated Protoplanetary Disks

Takahiro Ueda, Satoshi Okuzumi, and Mario Flock

The Astrophysical Journal, 2017, 843, 49

[19] Size Dependence of Dust Distribution around the Earth Orbit

Takahiro Ueda, Hiroshi Kobayashi, Taku Takeuchi, Daisuke Ishihara, Toru Kondo, and Hidehiro Kaneda

The Astronomical Journal, 2017, 153, 232

(last updated in Apr. 2024)

Japanese journals

[1] 円盤ミリ波観測から制約する惑星形成論 (Planet formation theories constrained from millimeter disk observations)

植田 高啓 (Takahiro Ueda)

招待総説,日本惑星科学会「遊・星・人」,第31巻,第1号

Invited review article for publication in Planetary People published by the Japanese Society for Planetary Sciences

Non-refereed papers

[1] A Collection of German Science Interests in the Next Generation Very Large Array

Matthias Kadler, ..., Takahiro Ueda, ..., et al. 2023

Corresponding author in Chapter 2.34-2.36 and co-author in Chapter 2.4 and 2.14

[2] Grain Growth Probed by ngVLA Polarimetric Observations

Takahiro Ueda, Satoshi Ohashi and Akimasa Kataoka,

ngVLA-J memo series, Chapter: Unveiling the Formation of Solar System Analogues on Terrestrial Scales, Article ID: 5

(last updated in Apr. 2024)

Other Achievements —

Accepted observing proposals

- [1] <u>Testing the vortex hypothesis in a protoplanetary disk</u>
 Ruobing Dong, Akimasa Kataoka, **Takahiro Ueda**, ALMA Cycle 9, Grade B, 21.9hrs
- [2] Does scattering reduce the apparent dust mass in protoplanetary disks?
 Takahiro Ueda (PI), Akimasa Kataoka and Takashi Tsukagoshi, ALMA Cycle 7, Grade B, 4.5hrs

Articles

[1] 「キャリア教育に活きる!仕事ファイル 30」、株式会社小峰書店 中学生向け教育教材にて、天文学者としてインタビュー記事を掲載 (interviewed as an astronomer in Japanese textbook for junior high school students)

(last updated in Apr. 2024)

Presentations in International Conferences —

No.	Title	Conference	Oral/Poster	Time/Location
23	Probing the Formation of Rocky Planets with ngVLA	German Science Opportunities for the ngVLA	Invited talk	September 2023 Germany
22	Probing the Planet Formation at the Innermost Region of Disks	Protostars and Planets VII	Poster	April 2023 Japan
21	Modeling the inner dusty disks	GRAVITY YSO Meeting	Invited talk	November 2022 Virtual
20	The structure of the inner region of protoplanetary disks	Inside 2022 The Inner Regions of Protoplanetary Disks	Invited review talk	September 2022 Germany
19	Compact massive dust disk with a gap around CW Tau revealed by ALMA multi-band observation	East Asian ALMA Science Workshop 2022	Oral	January 2022 Virtual
18	Impact of the differential settling of dust grains on the SED and polarimetric observations on the inner region of the HL Tau disk	East Asian ALMA Science Workshop 2021	Oral	February 2021 Virtual
17	Scattering-Induced Intensity Reduction: Large Mass Content with Small Grains in the Inner Region of the TW Hya Disk	Building Blocks of Planets 2020	Invited talk	April 2020 Virtual
16	Scattering-Induced Optical Depth Reduction: Application to the Inner Region of the TW Hya Disk	East-Asian ALMA Science Workshop 2020	Oral	February 2020 Taiwan
15	Scattering-Induced Intensity Reduction: Large Mass Content with Small Grains in the Inner Region of the TW Hya Disk	Planet Formation Workshop	Poster	November 2019 Japan
14	Formation of Building Blocks of the Terrestrial Planets at the Dead-zone Inner Edge	Planet2/RESCEU Symposium 2019	Oral	October 2019 Japan
13	Effect of Scattering on the Apparent Disk Brightness: Application to the Inner Region of the TW Hya Disk	next generation VLA Workshop	Oral	September 2019 Japan
12	Planetesimal Formation at the inner	Extreme Solar	Poster	August 2019

(last updated in Apr. 2024)

	edge of the dead-zone: Implication for the diversity in the planetary systems	Systems IV		Iceland
11	Rocky Planetesimal Formation at the inner edge of the dead-zone: Implication for the inner solar system formation	Turbulence and Structure Formation in Protoplanetary Disks	Invited talk	July 2019 Germany
10	Inner Solar System Formation via the Dust-Pileup at the Dead-Zone Inner Edge	Gordon Research Conference	Poster	June 2019 USA
9	Dust-pileup at the Dead-zone Inner Edge and Implications for the Disk Shadow	Take a Closer Look	Poster	October 2018 Germany
8	Dust-pileup at the Dead-zone Inner Boundary and Its Effect on the Disk Structures	Japanese-German Meeting on Exoplanets and Planet Formation	Oral	August 2018 Germany
7	Planetesimal Formation at the Dead- zone Inner Boundary and Its Observational Signatures	Origins: From the Protosun to the First Steps of Life, IAU General Assembly	Poster	August 2018 Austria
6	Planetesimal Formation at the Dead- zone Inner Boundary and Its Observational Signatures	From Prestellar Cores to Solar Nebulae	Oral	May 2018 France
5	Analytic Solutions for the Inner-Rim Structure of Passively Heated Protoplanetary Disks	Japan-Germany Planet & Disk workshop	Poster	September 2016 Japan
4	Physical Properties of Zodiacal Dust Estimated from AKARI Observations and Orbital Calculations	The 9th meeting on Cosmic Dust	Poster	August 2016 Japan
3	The Size Dependence of the Dust Distribution around the Earth Orbit	JpGU International Symposium	Oral	May 2016 Japan
2	The Origin and Physical Properties of Interplanetary Dust Particles Estimated from AKARI Observations	International Workshop on Exoplanets and Disks	Poster	February 2016 Japan
1	Migration of a Giant Planet Induced by Eccentricity Damping and Gravitational Turbulence	German-Japanese- Meeting 2014 Disks & Exoplanets	Poster	November 2014 Germany

(last updated in Apr. 2024)

Presentations in Japanese Conferences —

No.	タイトル	会議名	発表形態	時期・場所
27	IM Lup 円盤の近赤外線・ミリ波観測に	日本天文学会 2024 年	口頭	2024年3月
21	基づく包括的な重力不安定円盤モデル	春季年会	口頭	オンライン
26	ALMA 多波長観測で探る CW Tau 円盤内	日本天文学会 2023 年	口商	2023年3月
	側領域の赤道面温度	春季年会	口頭	オンライン
	ALMA 多波長観測で探る	新学術領域「星・惑星		2023 年 2 月
25	原始惑星系円盤の赤道面加熱	形成」2022 年度大研究	ポスター	オンライン
	<u> </u>	会		22 2 1 2
24	Class∥円盤は本当に軽いか?	惑星形成討論会	口頭	2022 年 3 月
27	CW Tau 円盤の詳細解析とその示唆	心生が残り而五	口坝	オンライン
23	ALMA 多波長観測で明らかにした CW	日本天文学会 2022 年	口頭	2022年3月
	Tau 周りの大質量コンパクト円盤	春季年会	口头	オンライン
22	熱波不安定性による原始惑星系円盤のミ	日本天文学会 2021 年	口頭	2021年9月
	リ波リング・ギャップ形成	秋季年会	口坝	オンライン
21	ngVLA の偏光観測で探る原始惑星系円	日本天文学会 2021 年	ポスター	2021年3月
	盤中のダスト成長	春季年会	3.7.7	オンライン
20	HL Tau 円盤の SED および偏光観測が	· 惑星系形成若手研究会	口頭	2021年2月
20	示唆する円盤内側領域の極弱乱流	心生水が残石」前が五	口娱	オンライン
19	デッドゾーン内側境界での微惑星形成:	2020年日本惑星科学会	口頭	2020年11月
13	太陽系地球型惑星形成への示唆	秋季講演会	口头	オンライン
18	デッドゾーン内側境界での局所的微惑星	新学術星惑星形成 2020	口頭	2020年10月
10	形成:太陽系地球型惑星形成への示唆	年度大研究会	口头	オンライン
17	ミリ波散乱減光が原始惑星系円盤の質量	日本天文学会 2020 年	口頭	2020年9月
1,	推定に与える影響	秋季年会	口头	オンライン
16	原始惑星系円盤質量推定における sub-	ngVLA sub-working	口頭	2020年5月
10	cm 波の有用性	group meeting		オンライン
15	ミリ波散乱減光の原始惑星系円盤ダスト	理論懇シンポジウム 理論懇シンポジウム	口頭	2019年12月
	質量推定への影響			東京
14	デッドゾーン内側境界における岩石質ダ	日本天文学会 2018 年	口頭	2018年3月
	ストの濃集	春季年会		千葉
13	原始惑星系円盤内縁のダスト濃集領域が	日本天文学会 2018 年	ポスター	2018年3月
	作り出す円盤表層の影構造	春季年会	•	千葉
12	デッドゾーン内縁における岩石ダストの	2017年日本惑星科学会	口頭	2017年9月
	濃集不安定性	秋季講演会	口坎	大阪
11	原始惑星系円盤内縁構造とデッドゾーン	基研研究会 原始惑星系	口頭	2017年7月
11	内側境界におけるダスト濃集	円盤		京都

(last updated in Apr. 2024)

10	ダストからの摩擦反作用を考慮した原始	JpGU-AGU Joint	口話	2017年5月
10	惑星系円盤のガス・ダスト共進化	Meeting 2017	口頭	千葉
9	デッドゾーン内側境界周辺における円盤	日本天文学会 2017 年	ポスター	2017年3月
	構造とダストの濃集	春季年会		福岡
8	原始惑星系円盤内縁領域の温度構造の解	日本惑星科学会 2016	ポスター	2016年9月
0	析解	年度秋季講演会	ル スメ	岡山
7	惑星間塵における小惑星・彗星起源ダス	日本天文学会 2016 年	口商	2016年3月
_ ′	トの存在比	春季年会	口頭	東京
6	黄道光の非対称性から推定する惑星間塵	サイズ分布ビッグピク	口頭	2016年2月
0	のサイズとその起源	チャー研究会		東京
5	黄道光分布から読み取る小惑星の衝突破	日本惑星科学会 2015	口頭	2015年10月
	壊で生じるダストの典型的サイズ	年度秋季講演会		東京
4	黄道光の空間非軸対称性から推定するダ	日本天文学会 2015 年	口頭	2015 年 9 月
4	ストサイズ分布	秋季年会		兵庫
3	離心率の減少にともなう巨大ガス惑星の	日本地球惑星科学連合	口頭	2015年5月
3	軌道進化	2015 年大会		東京
2	自己重力不安定な円盤における巨大ガス	日本天文学会 2014 年	口頭	2014年9月
	惑星の軌道進化	秋季年会		山形
1	自己重力不安定な円盤における巨大ガス	日本惑星科学会 2014	口頭	2014年9月
1	惑星の軌道進化	年度秋季講演会		仙台