

Tutorium 1:

Organisatorisches, O-Kalkül, Schleifeninvarianten

Matthias Schimek | 3. Juni 2017

TUTORIUM ZUR VORLESUNG ALGORITHMEN I IM SS17

Gliederung

- Organisatorisches
- Übungsblätter
 - Organisatorisches
 - Stil
 - Pseudocode
- O-Kalkül
- Schleifeninvarianten
- Abschluss

Organisatorisches - Tutorium

- Matthias Schimek, 1.Semester Info Master (vermutlich;))
- **E-Mail:** matthias_schimek@gmx.de
- Schreibt mich für Anregungen, Fragen und Feedback einfach an
- Folien: https://github.com/mschimek/Algo_Tutorium

Organisatorisches - Vorlesung

- Website: https://crypto.iti.kit.edu/index.php?id=799
- ILIAS-Forum: https://ilias.studium.kit.edu/goto.php? target=crs_671935&client_id=produktiv
- Mailingliste: https://lists.ira.uni-karlsruhe.de/ mailman/listinfo/algorithmeni
- Feedback-Kasten auf VL-Website

Organisatorisches - Übungsblätter

- Abgabe: spätestens bis Dienstag 12:45 Uhr eine Woche nach Ausgabe
- Abgabe ist in Zweiergruppe möglich
 - Beide müssen im selben Tut sein
 - Eine Abgabe pro Gruppe
 - Hat jemand noch keinen Partner? ...
- Für die Abgabe das offizielle Deckblatt verwenden

Übungsblätter - Organisatorisches

- Voraussichtlich 11 Blätter à 18 Punkte
- Es gibt einen Klausurbonus

Klausurbonus

- >25% der Punkte ⇒ 1 Bonuspunkt
- >50% der Punkte ⇒ 2 Bonuspunkt
- >75% der Punkte ⇒ 3 Bonuspunkt

Übungsblätter - Stil

- Abgabe handschriftlich und halbwegs ordentlich;)
- keinen Blei- oder Rotstift verwenden
- Aufgaben möglichst kurz und prägnant beantworten
- Beweise und Pseudocode: wichtige Idee aufschreiben

Abschluss

Übungsblätter - Pseudocode

Wichtige Punkte für das Schreiben von Pseudocode:

- Eingabe- und Rückgabeparameter des Algorithmus benennen
- Komplexe Schritte mit Kommentaren versehen
- Mathematische Notation verwenden, um Pseudocode kompakt zu halten
- Kurze Beschreibung der wesentlichen Idee des Algorithmus' in Textform

Ein Beispiel

Beichteibung:

Dec Algorithmus behommt als Esugabe escen Aurag a

uit Zehlen und escen ludex b.

In Ren Schleise in Zeise view sontient er den Aurag a

und gebt Aanach das h-te Element zuwich.

- 1: Genaue Beschreibung der Eingabe und Ausgabe und deren Typen.
- 2: Sinnvolle Wahl von Indizes (i und j kann man meistens schlecht unterscheiden).
- 3: Einzelne Zeilen sind sinnvoll auskommentiert.
- 4: Eine kleine Beschreibung, was der Algorithmus tut, hilft beim Verständnis.
- 5: Wenn in der Beschreibung auf einzelne Zeilen verwiesen wird, dann sollte man die Zeilen auch durchnummerieren.

Wollen möglichst allgemeine, aber einfache Aussage über Laufzeit

Asymptotik:

- es existiert n_0 , sodass für all $n > n_0$ gilt A(n) ...
- bekommen Aussage für fast alle Eingabegrößen

Beispiel:

- Algorithmus A mit Laufzeit A(n) = log(n)
- Algorithmus B mit Laufzeit $B(n) = n^{0.0001}$
- Für $n = 10^{100}$: A(n) = 100 $B(n) = 10^{0.01} \approx 1.02329299228$
- \blacksquare \Rightarrow Für fast alle n ist Algo A schneller als Algo B

Wollen möglichst allgemeine, aber einfache Aussage über Laufzeit

Asymptotik:

- es existiert n_0 , sodass für all $n > n_0$ gilt A(n) ...
- bekommen Aussage für fast alle Eingabegrößen

Beispiel:

- Algorithmus A mit Laufzeit $A(n) = \log(n)$
- Algorithmus B mit Laufzeit $B(n) = n^{0,0001}$
- Für $n = 10^{100}$: A(n) = 100 $B(n) = 10^{0.01} \approx 1.02329299228$
- Für $n = 10^{10^{100}}$: $A(n) = 10^{100}$ $B(n) = 10^{10^{96}} = 10^{1000000000...000000}$
- \blacksquare \Rightarrow Für fast alle *n* ist Algo *A* schneller als Algo *B*
- Asymptotische Analyse ~ DENKE IM GROSSEN

Wollen möglichst allgemeine, aber einfache Aussage über Laufzeit

Asymptotik:

- es existiert n_0 , sodass für all $n > n_0$ gilt A(n) ...
- bekommen Aussage für fast alle Eingabegrößen

Beispiel:

- Algorithmus A mit Laufzeit A(n) = log(n)
- Algorithmus B mit Laufzeit $B(n) = n^{0.0001}$
- Für $n = 10^{100}$: A(n) = 100 $B(n) = 10^{0.01} \approx 1.02329299228$ Für $n = 10^{10^{100}}$: $A(n) = 10^{100}$ $B(n) = 10^{10^{96}} = 10^{1000000000...00000}$
- \blacksquare \Rightarrow Für fast alle n ist Algo A schneller als Algo B

Wollen möglichst allgemeine, aber einfache Aussage über Laufzeit

Asymptotik:

- es existiert n_0 , sodass für all $n > n_0$ gilt A(n) ...
- bekommen Aussage für fast alle Eingabegrößen

Beispiel:

- Algorithmus A mit Laufzeit A(n) = log(n)
- Algorithmus B mit Laufzeit $B(n) = n^{0.0001}$
- Für $n = 10^{100}$: A(n) = 100 $B(n) = 10^{0.01} \approx 1.02329299228$ Für $n = 10^{10^{100}}$: $A(n) = 10^{100}$ $B(n) = 10^{10^{96}} = 10^{1000000000...00000}$
- \Rightarrow Für fast alle n ist Algo A schneller als Algo B

Wollen möglichst allgemeine, aber einfache Aussage über Laufzeit

Asymptotik:

- es existiert n_0 , sodass für all $n > n_0$ gilt A(n) ...
- bekommen Aussage für fast alle Eingabegrößen

Beispiel:

- Algorithmus A mit Laufzeit A(n) = log(n)
- Algorithmus B mit Laufzeit $B(n) = n^{0.0001}$
- Für $n = 10^{100}$: A(n) = 100 $B(n) = 10^{0.01} \approx 1.02329299228$ Für $n = 10^{10^{100}}$: $A(n) = 10^{100}$ $B(n) = 10^{10^{96}} = 10^{1000000000...00000}$
- \Rightarrow Für fast alle n ist Algo A schneller als Algo B
- Asymptotische Analyse ~ DENKE IM GROSSEN

O-Kalkül

- Definiert Komplexitätsklassen (= Menge von Funktionen)
- Wozu? Hilfreich bei der Laufzeitanalyse von Algorithmen
 - lacktriangledown Abschätzung der asymptotischen Laufzeit (Eingabelänge $ightarrow\infty$)
 - Abstraktion: konstante Faktoren nicht wichtig
 - Abstraktion: asympt. langsamer wachsende Terme werden ignoriert

$$3 \cdot n^3 + 4,0225 \cdot n^2 + 1,5 \cdot n \cdot \log(n) + \log(\log(n)) \in \mathcal{O}(n^3)$$

■ ⇒ Macht Formel für die Laufzeit handlich

• Vereinbarung: betrachtete Funktionen $f: \mathbb{N} \to \mathbb{N}$

O-Kalkül

Schleifeninvarianten

Organisatorisches

- Vereinbarung: betrachtete Funktionen $f: \mathbb{N} \to \mathbb{N}$
- $\mathcal{O}(f(n)) = \text{Menge aller Funkt. (asympt.) höchstens so groß wie f}$
- $\Omega(f(n)) = \text{Menge aller Funkt. (asympt.) mindestens so groß wie f}$
- $\Theta(f(n)) = \text{Schnitt von } \mathcal{O}(f(n)) \text{ und } \Omega(f(n))$
- o(f(n)) = Menge aller Funkt. (asympt.) echt kleiner als f
- $\omega(f(n)) = \text{Menge aller Funtk. (asympt.) echt größer als f}$

Beweise oder widerlege:

■ $n^2 \in o(n^3)$

Organisatorisches

- $n^3 \in \Omega(n^2), n \in \Theta(\sqrt{n}), 2^{n+1} \in \mathcal{O}(2^n)$

O-Kalkül

 $\forall c \in \mathbb{N} \forall f : \mathbb{N} \to \mathbb{N} : (f(n))^c \in \mathcal{O}(f(n))$

Beweise oder widerlege:

■ $n^2 \in o(n^3)$

Organisatorisches

- $n^3 \in \Omega(n^2), n \in \Theta(\sqrt{n}), 2^{n+1} \in \mathcal{O}(2^n)$

O-Kalkül

Beweise oder widerlege:

■ $n^2 \in o(n^3)$

Organisatorisches

- $n^3 \in \Omega(n^2), n \in \Theta(\sqrt{n}), 2^{n+1} \in \mathcal{O}(2^n)$
- $\forall c_1, c_2 \in \mathbb{N}_+ \forall f : \mathbb{N} \to \mathbb{N}_+ : c_1 \cdot f(n) + c_2 \in \mathcal{O}(f(n))$

O-Kalkül

Beweise oder widerlege:

- $n^2 \in o(n^3)$
- $n^3 \in \Omega(n^2), n \in \Theta(\sqrt{n}), 2^{n+1} \in \mathcal{O}(2^n)$
- $\forall c_1, c_2 \in \mathbb{N}_+ \forall f : \mathbb{N} \to \mathbb{N}_+ : c_1 \cdot f(n) + c_2 \in \mathcal{O}(f(n))$
- $\forall c_1, c_2 \in \mathbb{N}_+ \forall f : \mathbb{N} \to \mathbb{N} : c_1 \cdot f(n) + c_2 \in \mathcal{O}(f(n))$

Beweise oder widerlege:

- $n^2 \in o(n^3)$
- $n^3 \in \Omega(n^2), n \in \Theta(\sqrt{n}), 2^{n+1} \in \mathcal{O}(2^n)$
- $\forall c_1, c_2 \in \mathbb{N}_+ \forall f : \mathbb{N} \to \mathbb{N}_+ : c_1 \cdot f(n) + c_2 \in \mathcal{O}(f(n))$
- $\forall c_1, c_2 \in \mathbb{N}_+ \forall f : \mathbb{N} \to \mathbb{N} : c_1 \cdot f(n) + c_2 \in \mathcal{O}(f(n))$
- $\forall c \in \mathbb{N} \forall f : \mathbb{N} \to \mathbb{N} : (f(n))^c \in \mathcal{O}(f(n))$

Logarithmus

Regeln

- $\log(a/b) = \log(a) \log(b)$
- $\log_a(a) = 1$
- $a^{\log_a(b)} = b$

Aufgaben

Schleifeninvarianten

Abschluss

Logarithmus

Regeln

- $\log(a \cdot b) = \log(a) + \log(b)$
- $\log(a/b) = \log(a) \log(b)$
- $\log_a(a) = 1$
- $= a^{\log_a(b)} = b$

Aufgaben

■ $\log(10 \cdot n) \in \mathcal{O}(\log(n)), \quad n^n \in \Theta(2^{n\log(n)})$?

Schleifeninvarianten

Schleifeninvariante:

- gilt vor und nach Ausführung des Schleifenkörpers
- kann häufig mit vollst. Induktion bewiesen werden
- Finden der Schleifeninvariante erforder Kreativität/Intuition
 - ⇒ das ist meistens der schwierige Teil
- Wichtig: für totale Korrektheit beweisen, dass Algorithmus/Schleife terminiert

- Function $f(n:\mathbb{N}):\mathbb{N}$
- $a=1:\mathbb{N}$
- $i = 0 : \mathbb{N}$
- while $i < n \, do$
 - a := a + ai := i + 1
 - end

Organisatorisches

- return a-1
- Was berechnet der Algorithmus?

O-Kalkül

3. Juni 2017

Schleifeninvarianten

000

- Function $f(n:\mathbb{N}):\mathbb{N}$
- $a=1:\mathbb{N}$
- $i = 0 : \mathbb{N}$
- while $i < n \, do$
 - a := a + ai := i + 1
- end

Organisatorisches

- return a-1
- Was berechnet der Algorithmus?
- Wie ist die (asymptotische) Laufzeit des Algorithmus?

O-Kalkül

Schleifeninvarianten

000


```
Function f(n:\mathbb{N}):\mathbb{N}
```

```
a=1:\mathbb{N}
i = 0 : \mathbb{N}
while i < n \, do
    a := a + a
    i := i + 1
end
```

return a-1

- Was berechnet der Algorithmus?
- Wie ist die (asymptotische) Laufzeit des Algorithmus?
- Beweise die Korrektheit des Algorithmus mithilfer einer geeigneten Schleifeninvariante (Schleifeninvariante abhängig von *i*).

Matthias Schimek - Tutorium 1:Organisatorisches, O-Kalkül, Schleifeninvarianten


```
Function f(n:\mathbb{N}):\mathbb{N}
    a=1:\mathbb{N}
    i=0:\mathbb{N}
    while i < n \, do
         invariant a=2^i
         a := a + a
         i := i + 1
    end
    return a-1
```

Organisatorisches

- Was berechnet der Algorithmus?
- Wie ist die (asymptotische) Laufzeit des Algorithmus?
- Beweise die Korrektheit des Algorithmus mithilfer einer geeigneten Schleifeninvariante (Schleifeninvariante abhängig von i).

O-Kalkül

00.00

Schleifeninvarianten - Beweis

Schleifeninvariante: $a = 2^i$

Beweis:

- **IA.:** Vor 1. Schleifendurchlauf gilt $a = 2^0 = 1$ wegen Initialisierung
- **IV.:** Vor dem *j*-ten Schleifendurchlauf gelte $a = 2^i$
- **IS.:** Zeile 6: $a := a + a \stackrel{IV.}{=} 2^i + 2^i = 2^{i+1}$ Zeile 7: i := i + 1
 - \Rightarrow Nach j. Schleifendurchlauf und damit vor j + 1-ten Schleifendurchlauf gilt $a = 2^{j}$
- ⇒ Die Schleifeninvariante gilt vor/nach jedem Schleifendurchlauf
- Schleife terminiert, da *i* hochgezählt wird und *n* endlich

Zusammenfassung

- **Pseudocode:** Beschreibt Algo kompakt und präzise auf abstraker Ebene
- O-Kalkül: Hiermit lässt sich die (asymptotische) Laufzeit von Algorithmen gut beschreiben
- Schleifeninvariante: Hilfreich um die Korrektheit eines Algorithmus zu beweisen
- Wer sucht noch einen Partner für die Übungsblattabgabe?

