Recherche opérationnelle

Master 2 LT, MPM, MIR

Université du Littoral - Côte d'Opale, Pôle Lamartine Laurent SMOCH

 ${\bf (smoch@lmpa.univ\text{-}littoral.fr)}$ Septembre 2013

Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville Université du Littoral, zone universitaire de la Mi-Voix, bâtiment H. Poincarré 50, rue F. Buisson, BP 699, F-62228 Calais cedex

Table des matières

U	Inti	roducti	on generale	1
1	La	progra	mmation linéaire - Méthode graphique	7
	1.1	Introd	uction	7
	1.2	Modél	isation d'un programme linéaire	7
		1.2.1	Exemples	8
		1.2.2	Formule générale d'un programme linéaire	
	1.3	Métho	ode graphique : problème à deux inconnues	
		1.3.1	Régionnement du plan	
		1.3.2	Les ensembles convexes	
		1.3.3	Résolution de systèmes d'inéquations - Exemples	
		1.3.4	Résolution de programmes linéaires	
		1.3.4 $1.3.5$	Cas général	
		1.3.6	Exercices	
		1.5.0	Exercices	22
2	La	progra	mmation linéaire - Méthode du simplexe	31
	2.1		uction	31
	2.2		thode du simplexe	
		2.2.1	Programme linéaire standard	
		2.2.2	L'algorithme du simplexe	
		2.2.3	Détermination d'une solution de base admissible	
		2.2.4	Utilisation de la méthode du simplexe lorsque la solution optimale n'existe pas	
		2.2.4 $2.2.5$	Utilisation de la méthode du simplexe dans un problème de minimisation	
		2.2.6	Exercices récapitulatifs	
		4.4.0		U2

Chapitre 0

Introduction générale

La recherche opérationnelle (aussi appelée "aide à la décision") peut être définie comme l'ensemble des méthodes et techniques rationnelles orientées vers la recherche de la meilleure façon d'opérer des choix en vue d'aboutir au résultat visé ou au meilleur résultat possible.

Elle fait partie des "aides à la décision" dans la mesure où elle propose des modèles conceptuels en vue d'analyser et de maîtriser des situations complexes pour permettre aux décideurs de comprendre et d'évaluer les enjeux et d'arbitrer et/ou de faire les choix les plus efficaces.

Ce domaine fait largement appel au raisonnement mathématique (logique, probabilités, analyse des données) et à la modélisation des processus. Il est fortement lié à l'ingénierie des systèmes, ainsi qu'au management du système d'information.

La recherche opérationnelle trouve son origine au début du XXe siècle dans l'étude de la gestion de stock avec la formule du lot économique (dite formule de Wilson) proposée par Harris en 1913. Mais ce n'est qu'avec la seconde guerre mondiale que la pratique va s'organiser pour la première fois et acquérir son nom. En 1940, Patrick Blackett est appelé par l'état-major anglais à diriger la première équipe de recherche opérationnelle, pour résoudre certains problèmes tels que l'implantation optimale de radars de surveillance ou la gestion des convois d'approvisionnement. Le qualificatif "opérationnelle" vient du fait que la première application d'un groupe de travail organisé dans cette discipline avait trait aux opérations militaires.

Après la guerre, les techniques de RO-AD se sont considérablement développées grâce, notamment, à l'explosion des capacités de calcul des ordinateurs. Les domaines d'application se sont également multipliés.

Citons quelques méthodes:

• Plus court chemin (Shortest path): En théorie des graphes, l'algorithme de Dijkstra sert à résoudre le problème du plus court chemin. Il permet par exemple, de déterminer le plus court chemin pour se rendre d'une ville à une autre connaissant le réseau routier d'une région. Il s'applique à un graphe connexe dont le poids lié aux arêtes est un réel positif. L'algorithme porte le nom de son inventeur, l'informaticien néerlandais Edsger Dijkstra et a été publié en 1959.

Exemple 0.0.1 Un "serial traveller" américain recherche le plus court chemin entre Boston et Los Angeles. On donne dans la carte ci-dessous les différents axes qu'il souhaite emprunter.

FIGURE 1 – Carte des États-Unis

• Voyageur de commerce (TSP - Traveling-Salesman Problem) : En partant d'un groupe de villes données, il consiste à visiter une fois chacune des villes (une seule et unique fois) tout en minimisant la distance de vos déplacements. Ce problème qui paraît à tord élémentaire est effectivement anodin pour un petit nombre de villes, mais, lorsque vous ajoutez d'autres villes, le nombre de chemins possibles crève le plafond. Il ne faut donc pas s'étonner si le problème du voyageur de commerce est classé dans la catégorie des problèmes NP-complets. Dans ce problème, le nombre de chemins hamiltoniens est égal à n!/2 où n correspond au nombre de villes qui composent le problème. Une solution générale efficiente n'a pas encore été découverte. Les mathématiciens ont conclu que le meilleur moyen était d'utiliser un algorithme avec des polynômes variant en rapport avec le nombre de villes. À l'heure actuelle, la meilleure solution varie de façon exponentielle en fonction du nombre de villes. Exemple 0.0.2 Un voyageur de commerce, basé à Toulon, doit visiter ses clients à travers la France :

Figure 2 – Localisation géographique des clients

Quelle tournée le voyageur de commerce doit-il effectuer afin qu'elle soit la plus courte possible?

• Mariages stables (Stable Marriage problem) : On se donne deux ensembles A et B ayant chacun n éléments. On se donne aussi, pour chaque élément de A et B, une fonction de préférence, qui classe les éléments de l'autre ensemble. On cherche alors à associer de façon bijective les éléments de A avec ceux de B, pour qu'il n'existe pas $a \in A$ et $b \in B$ tels que a préfère b à l'élément qui lui est associé, et b préfère a à l'élément qui lui est associé.

Exemple 0.0.3 On considère 3 femmes (Alice, Bénédicte et Camille) et 3 hommes (Dominique, Elie et François) dont voici les préférences respectives :

Préf	éren	ces de	es femmes	Préf	éren	ces d	es hommes
A :	F	D	E	D :	A	В	С
B:	Ε	D	F	E:	В	С	A
C:	F	D	E	F:	A	С	В

Table 1 – Préférences des femmes et des hommes

Comment doit-on organiser les couples?

• L'optimisation des flux et l'algorithme de Ford-Fulkerson : L'algorithme de Ford-Fulkerson, du nom de ses auteurs L.R. Ford et D.R. Fulkerson, consiste en une procédure itérative qui permet de déterminer un flot (ou flux) de valeur maximale (ou minimale) à partir d'un flot constaté. Ce problème d'optimisation peut être représenté par un graphe comportant une entrée (à gauche) et une sortie (à droite). Le flot représente la circulation de l'entrée vers la sortie d'où l'utilisation de cet algorithme dans les problèmes de réseaux. Les applications sont multiples : problèmes informatiques, routiers, ferroviaires, Il s'applique également à tous les autres problèmes de transferts comme les importations/exportations, les flux migratoires, démographiques mais aussi sur les flux plus abstraits tels que

les transferts financiers.

Exemple 0.0.4 Avant d'établir un projet de construction d'autoroute on désire étudier la capacité du réseau autoroutier, représenté par le graphe suivant. On y a évalué le nombre maximal de véhicules que chaque route peut écouler par heure, compte tenu des ralentissements aux traversées des villes et villages, des arrêts aux feux,... Ces évaluations sont indiquées en centaines de véhicules par heure sur les arcs du graphe (nombres entre crochets). Les temps de parcours entre villes sont tels que les automobilistes n'emprunteront que les chemins représentés par le graphe.

FIGURE 3 – Réseau autoroutier et capacités

Quel est le débit horaire total maximum de véhicules susceptibles de s'écouler entre les villes E et S?

- L'ordonnancement et la gestion de projets : De nombreux travaux traitent de l'ordonnancement et de la gestion de projets, mais aussi de logistique (tournées de véhicules, conditionnement...), de planification, et de problèmes d'emploi du temps.
 - La gestion de projet est une démarche visant à organiser de bout en bout le bon déroulement d'un projet. Lorsque la gestion de projet porte sur un ensemble de projets concourant à un même objectif, on parle de gestion de programme.
 - La théorie de l'ordonnancement est une branche de la recherche opérationnelle qui s'intéresse au calcul de dates d'exécution optimales de tâches. Pour cela, il est très souvent nécessaire d'affecter en même temps les ressources nécessaires à l'exécution de ces tâches. Un problème d'ordonnancement peut être considéré comme un sous-problème de planification dans lequel il s'agit de décider de l'exécution opérationnelle des tâches planifiées. Les méthodes couramment utilisées pour ordonnancer un projet sont les méthodes MPM et PERT.

Exemple 0.0.5 La société SGTB (Société des Grands Travaux de la Bièvre) a reçu la maîtrise d'œuvre de la construction d'une piscine olympique sur un campus universitaire. Le tableau des antériorités des tâches est le suivant :

Codes	Tâches	Antériorités	Durée (en jours)	Suivants
A	Excavation	-	5	В,Б
В	Fondation	A	2	С
С	Pose de canalisations	В	4	D
D	Essais en pression	C,G	8	E
Е	Etanchéité	D	9	J

Table 2 – Tableau des tâches et antériorités (Partie 1)

Codes	Tâches	Antériorités	Durée (en jours)	Suivants
F	Mise en place de la station d'épuration	A	6	G
G	Mise en place du chauffage	F	5	D,H
Н	Raccordement électrique	G	4	I
I	Sonorisation sous-marine	Н	5	J
J	Dallage	E,I	6	K,L
K	Construction des vestiaires	J	8	M
L	Construction du solarium	J	2	M
M	Mise en eau	K,L	3	_

Table 3 – Tableau des tâches et antériorités (Partie 2)

Les travaux débutent le 1er avril. Chaque mois comporte 20 jours ouvrables. L'inauguration peut-elle avoir lieu comme prévu le 15 juin?

Beaucoup d'autres problèmes de recherche opérationnelle peuvent être exprimés comme des problèmes d'optimisation linéaire. En optimisation, qui est une branche des mathématiques, un problème d'optimisation linéaire est un problème d'optimisation dans lequel on minimise une fonction linéaire sur un polyèdre convexe. La fonction-coût et les contraintes peuvent donc être décrites par des fonctions linéaires (on devrait dire affines), d'où vient le nom donné à ces problèmes. Ceux-ci ne sont cependant pas linéaires dans le sens où leurs solutions dépendraient linéairement de certaines données; une non-linéarité importante est en effet induite par la présence des inégalités définissant les contraintes (en l'absence d'inégalités, le problème devient linéaire dans ce sens, mais est alors trivial : soit il n'y a pas de solution, soit tous les points admissibles sont solutions). L'optimisation linéaire (OL) est la discipline qui étudie ces problèmes.

Parmi les problèmes d'optimisation avec contraintes d'inégalités, les problèmes linéaires sont simples à résoudre numériquement. On connaît en effet des algorithmes polynomiaux efficaces, requérant donc un nombre d'itérations qui est majoré par un polynôme, fonction des dimensions du problème.

Dans certains problèmes d'OL, on requiert en plus que les variables ne prennent que des valeurs entières (contraintes dites d'intégrité), voire que les valeurs 0 ou 1. On parle alors de problème d'optimisation linéaire en nombres entiers (OLNE). Ces derniers problèmes sont beaucoup plus difficiles à résoudre que les problèmes d'OL à variables continues.

Dans la première partie du cours, nous nous concentrerons sur les problèmes linéaires, c'est-à-dire les problèmes où la fonction objectif et les contraintes sont purement linéaires. Lorsqu'il n'y a que deux variables de décision, un problème linéaire peut être résolu de manière purement graphique. C'est ce que nous verrons dans le chapitre 1. Lorsqu'il y a un plus grand nombre de variables, un algorithme mis en œuvre sous la forme d'un programme informatique s'avère nécessaire. Il s'agit de l'algorithme du simplexe que nous verrons au chapitre 2 sous forme algébrique. Le chapitre 3 est dédié à la traduction matricielle de la méthode du simplexe. Au chapitre 4, nous examinerons une question très importante : à savoir la sensibilité de la solution à des modifications de données. On parle d'analyse post-optimale.

L'objet de la deuxième partie du cours porte sur les problèmes en nombres entiers. On devrait à proprement parler de problèmes linéaires en nombres entiers car on impose, en plus, aux contraintes et à la fonction objectif d'être linéaires. Nous examinerons la question de la formulation de tels problèmes au chapitre 5 tandis que nous verrons au chapitre 6 une technique de résolution de ces problèmes : il s'agit de la méthode de branch and bound.

Lorsque les contraintes et/ou la fonction objectif sont non linéaires, on parle de problèmes non linéaires. C'est l'objet de la troisième partie du cours. Nous verrons au chapitre 7 la formulation et les conditions

d'optimalité d'un problème non linéaire tandis quelques méthodes de résolution de ces problèmes seront présentées au chapitre 8. Il est à remarquer que toutes ces méthodes de résolution étant mises en œuvre dans des logiciels commerciaux, il ne viendrait plus à l'idée de les programmer soi-même. Par exemple, le solveur d'Excel dispose d'une implémentation de ces algorithmes.

Chapitre 1

La programmation linéaire - Méthode graphique

1.1 Introduction

La programmation mathématique recouvre un ensemble de techniques d'optimisation sous contraintes qui permettent de déterminer dans quelles conditions on peut rendre maximum ou minimum une fonction objectif $Z(X_j)$ de n variables X_j liées par m relations ou contraintes $H_i(X_j) \leq 0$.

De nombreux problèmes de l'entreprise peuvent s'exprimer en termes d'optimisation contrainte, aussi rencontre t-on de multiples applications de la programmation mathématique et ceci dans pratiquement tous les domaines de la gestion.

La gestion de production est le domaine où ces applications sont les plus nombreuses. On citera entre-autres :

- l'élaboration de plans de production et de stockage,
- le choix de techniques de production,
- l'affectation de moyens de production,
- la détermination de la composition de produits.

Les applications sont également nombreuses dans le domaine du marketing avec, en particulier :

- le choix de plans-média,
- la détermination de politiques de prix,
- la répartition des efforts de la force de vente,
- la sélection des caractéristiques du produit.

On citera encore des applications en matière financière (choix de programmes d'investissements), en matière logistique (gestion des transports) et en matière de gestion des ressources humaines (affectation de personnel).

Si les applications de la programmation mathématique sont aussi nombreuses, on doit l'attribuer en grande partie à la souplesse de ses techniques en ce qui concerne leur formulation mais aussi à la relative simplicité des méthodes de résolution utilisables dans les cas les plus courants et pour lesquelles existent des programmes informatiques largement répandus.

Parmi les techniques de programmation mathématique la programmation linéaire est la plus classique.

1.2 Modélisation d'un programme linéaire

La formalisation d'un programme est une tâche délicate mais essentielle car elle conditionne la découverte ultérieure de la bonne solution. Elle comporte les mêmes phases quelles que soient les techniques requises ultérieurement pour le traitement (programmation linéaire ou programmation non linéaire):

- 1. La détection du problème et l'identification des variables. Ces variables doivent correspondre exactement aux préoccupations du responsable de la décision. En programmation mathématique, les variables sont des variables décisionnelles.
- 2. La formulation de la fonction économique (ou fonction objectif) traduisant les préférences du décideur exprimées sous la forme d'une fonction des variables identifiées.

3. La formulation des contraintes. Il est bien rare qu'un responsable dispose de toute liberté d'action. Le plus souvent il existe des limites à ne pas dépasser qui revêtent la forme d'équations ou d'inéquations mathématiques.

Le responsable d'une décision ne dispose que de sa compétence pour réaliser une formalisation correcte du problème posé car il n'existe pas de méthode en la matière. Un moyen d'acquérir cette compétence est l'apprentissage comme proposé dans les exemples suivants :

1.2.1 Exemples

Exemple 1.2.1 Une usine fabrique deux produits P_1 et P_2 à l'aide de trois matières premières M_1 , M_2 et M_3 dont on dispose en quantité limitée. On se pose le problème de l'utilisation optimale de ce stock de matières premières c'est-à-dire la détermination d'un schéma, d'un programme de fabrication tel que :

- les contraintes de ressources en matières premières soient respectées,
- le bénéfice réalisé par la vente de la production soit maximum.

Modèle mathématique :

- Données numériques des contraintes. La disponibilité en matières premières est de 18 unités de M_1 , 8 unités de M_2 et 14 unités de M_3 .
- Caractéristiques de fabrication. Elles sont données dans le tableau ci-dessous :

	M_1	M_2	M_3
P_1	1	1	2
P_2	3	1	1

- Hypothèses de linéarité du modèle. La fabrication est à rendement constant, c'est-à-dire que pour fabriquer x_1 unités de P_1 , il faut $1 \times x_1$ unités de M_1 , $1 \times x_1$ unités de M_2 et $2 \times x_1$ unités de M_3 , de même pour la fabrication de x_2 unités de P_2 .
- Linéarité de la fonction économique. On suppose que le bénéfice peut s'exprimer à l'aide des bénéfices unitaires c_1 , c_2 sous la forme :

$$Z(x_1, x_2) = c_1 x_1 + c_2 x_2$$

- Réalisation d'un schéma de production. Un schéma de production est un couple (x_1, x_2) , x_1 et x_2 désignant respectivement les quantités de P_1 et P_2 fabriquées donc vendues, qui doit vérifier les contraintes $x_1 \geq 0$, $x_2 \geq 0$. Deux questions se posent : un tel schéma est-il réalisable? A-t-on suffisamment de matières premières pour assurer une telle production?
- Le programme linéaire :

$$\begin{cases} x_1 \ge 0, x_2 \ge 0 \\ x_1 + 3x_2 \le 18 \\ x_1 + x_2 \le 8 \\ 2x_1 + x_2 \le 14 \\ Z(x_1, x_2) = c_1 x_1 + c_2 x_2 \end{cases}$$

où Z est une fonction économique ou fonction objectif qu'il faut maximiser.

Exemple 1.2.2 L'intendant d'un lycée doit composer un menu qui doit contenir un minimum d'éléments nutritifs et qui doit être le moins coûteux possible. On se limite à une situation simple, deux denrées alimentaires principales D_1 , D_2 et trois éléments nutritifs, les vitamines V, les calories C et les protéines P.

Le tableau suivant indique le nombre d'éléments nutritifs par unité d'aliment :

	V	С	Р
D_1	1	1	3
D_2	5	2	2

Une unité de D_1 contient 1 unité de V, 1 unité de C et 3 unités de P.

Modèle mathématique :

- Contraintes diététiques. Le menu doit comporter au minimum 5 unités de V, 4 unités de C, 6 unités de P. Les coûts unitaires sont 20 pour D_1 , 25 pour D_2 .
- Réalisation du menu. Un menu contenant x_1 unités de D_1 , x_2 unités de D_2 est réalisable si le couple (x_1, x_2) vérifie :

$$\begin{cases} x_1 \ge 0, x_2 \ge 0 \\ x_1 + 5x_2 \ge 5 \\ x_1 + 2x_2 \ge 4 \\ 3x_1 + x_2 \ge 6 \end{cases}$$

- Le programme linéaire. Le problème consiste à déterminer deux nombres x_1 et x_2 tels que :

$$\begin{cases} x_1 \ge 0, x_2 \ge 0 \\ x_1 + 5x_2 \ge 5 \\ x_1 + 2x_2 \ge 4 \\ 3x_1 + x_2 \ge 6 \\ Z(x_1, x_2) = 20x_1 + 25x_2 \end{cases}$$

où Z est la fonction objectif à minimiser.

1.2.2 Formule générale d'un programme linéaire

De façon générale, un problème de programmation mathématique met en jeu quatre catégories d'éléments:

- des variables ou activités,
- des coefficients économiques,
- des ressources,
- des coefficients techniques.

Les activités sont les variables de décision du problème étudié. Il s'agit pour l'entreprise de sélectionner le meilleur programme d'activités $X=(x_1,\ldots,x_n)$, c'est-à-dire celui qui est le plus conforme à ses objectifs. Les coefficients économiques mesurent le degré de réalisation de l'objectif de l'entreprise, associé à une valeur unitaire de chacune des variables. À chaque variable x_j est ainsi associé un coefficient économique c_j . L'évaluation des coefficients c_j dépend du type d'objectif poursuivi : selon le cas ce sera un prix de vente, une marge brute, un coût variable unitaire, etc.

Les ressources peuvent être également de nature très diverse selon le problème rencontré. Dans tous les cas, ce sont les éléments qui limitent le calcul économique de l'entreprise : des capacités de production limitées, des normes à respecter, des potentiels de vente, etc. Dans tout problème, il faudra ainsi prendre en considèration un vecteur de ressources $B = (b_1, \ldots, b_m)$ donné.

Par coefficient technique on désignera le degré de consommation d'une ressource par une activité. A la ressource i et à l'activité j correspondra le coefficient technique a_{ij} . Dans la mesure où le problème étudié met en jeu n activités et m ressources, il faudra considérer $m \times n$ coefficients techniques que l'on pourra regrouper dans un tableau du type suivant :

Activités Ressources	1		j		n
1	a_{11}		a_{1j}		a_{1n}
<u>:</u>	:	٠	:	٠.	:
i	a_{i1}		a_{ij}		a_{in}
:	:	٠	:	٠	
m	a_{m1}		a_{mj}		a_{mn}

Si les variables sont continues, si les coefficients économiques et techniques sont indépendants des valeurs des variables, alors le problème peut être formalisé à l'aide d'un programme linéaire.

Un même programme peut être traduit sous une forme canonique ou sous une forme standard; l'une et l'autre pouvant adopter soit la notation algébrique classique soit la notation matricielle que l'on ne traitera pas ici.

Voyons tout d'abord la forme canonique. Elle se caractérise par des contraintes présentées sous la forme d'inéquations telles que

$$\begin{cases} x_1 \ge 0, x_2 \ge 0, \dots, x_n \ge 0 \\ a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le \text{ ou } \ge \text{ ou } = b_1 \\ \vdots \\ a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le \text{ ou } \ge \text{ ou } = b_i \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le \text{ ou } \ge \text{ ou } = b_m \end{cases}$$

$$(1.1)$$

et par une forme linéaire

$$Z(x_1, x_2, \dots, x_n) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$
(1.2)

Résoudre le programme linéaire consiste à déterminer les n-uplets (x_1, x_2, \ldots, x_n) qui optimisent Z (maximisent ou minimisent) Z ou à montrer que de tels n-uplets n'existent pas.

On se donne les définitions suivantes :

Définition 1.2.1

- On appelle **solution réalisable** tout n-uplet (x_1, x_2, \dots, x_n) vérifiant le système d'inéquations précédent.
- On appelle solution optimale toute solution réalisable qui optimise Z.
- On appelle fonction objectif la forme linéaire

$$Z(x_1, x_2, \dots, x_n) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

 L'ensemble des solutions réalisables du programme linéaire P est appelé domaine des solutions réalisables. Lorsque ce domaine est non vide, on dit que P est réalisable.

Résoudre un programme linéaire consiste à déterminer les valeurs des variables qui permettent d'optimiser la fonction économique.

Il existe diverses techniques de résolution parmi lesquelles la méthode graphique se montre à l'évidence la plus rapide et la plus simple mais aussi la plus limitée, car dès lors que le nombre de variables ou de contraintes dépasse 2, elle devient impraticable. C'est pourquoi divers chercheurs se sont efforcés de mettre au point une méthode de calcul algorithmique qui permet de détecter la solution optimale (si elle existe) quel que soit le nombre des variables et des contraintes.

Bien que très efficace, cette méthode connue sous le nom d'algorithme du simplexe, exige des calculs longs et fastidieux. C'est pourquoi ceux-ci sont de plus en plus confiés à l'outil informatique. Dès lors une question se pose : puisque les logiciels correspondants sont largement répandus, est-il nécessaire pour appliquer la méthode, d'en connaître les ressorts? Deux raisons essentielles justifient une réponse affirmative :

- d'abord, la compréhension des principes de résolution est une aide précieuse pour, en amont, analyser et formaliser le problème et pour, en aval, interpréter et exploiter la solution obtenue;
- ensuite parce que la démarche algorithmique présente en elle-même un intérêt formateur non négligeable.

1.3 Méthode graphique : problème à deux inconnues

1.3.1 Régionnement du plan

Le régionnement du plan revient à étudier le signe de ax + by + c avec $(a, b) \neq (0, 0)$.

Si on considère la droite D dont une équation est ax + by + c = 0 avec $a \neq 0$ ou $b \neq 0$, cette droite partage le plan en deux demi-plans (I) et (II) de frontière D:

- Pour tout point M(x, y) situé sur D, on a ax + by + c = 0.
- Pour tous les points M(x, y) situés dans le demi-plan (I), ax+by+c a le même signe et si ax+by+c>0 (respectivement < 0) alors tous les points N(x, y) situés dans le demi-plan (II) vérifient ax+by+c<0 (respectivement > 0).

Exemple 1.3.1

- Signe de x + y - 1:

On trace la droite d'équation x + y - 1 = 0. À l'origine, x + y - 1 = (0) + (0) - 1 = -1 < 0 donc pour tous les points M(x,y) situés dans le demi-plan (II), x + y - 1 < 0 et pour tous les points N(x,y) situés dans le demi-plan (I), x + y - 1 > 0. Pour les points P(x,y) de la droite D, x + y - 1 prend la valeur 0.

- Signe de -x + y:

On trace la droite D d'équation -x + y = 0, cette droite contient l'origine du repère. Pour le point A(1,0), x - y = 1 > 0 donc pour tous les points M(x,y) situés dans le demi-plan (I), x - y > 0 et pour tous les points N(x,y) situés dans le demi-plan (II), x - y < 0. Pour les points P(x,y) de la droie D, x - y prend la valeur 0.

1.3.2 Les ensembles convexes

Définition 1.3.1 Un ensemble E est dit convexe si pour M_1 et M_2 deux points quelconques de E, tous les points du segment $[M_1, M_2]$ appartiennent à E.

Exemple 1.3.2

• Le disque est un ensemble convexe :

• Le rectangle est un ensemble convexe :

• Le cercle n'est pas un ensemble convexe : les points du segment $]M_1, M_2[$ n'appartiennent pas au cercle.

• Cet ensemble n'est pas convexe.

1.3.3 Résolution de systèmes d'inéquations - Exemples

Exemple 1.3.3 On considère le système suivant :

$$\begin{cases} x_1 \ge 0, x_2 \ge 0 \\ -x_1 - x_2 \le -1 \\ x_1 + 4x_2 \le 2 \\ 6x_1 + x_2 \le 2 \end{cases}$$

Comme $x_1 \ge 0$ et $x_2 \ge 0$, les points $M(x_1, x_2)$ seront choisis dans le quart du plan :

L'ensemble des solutions est représenté par la surface grise. On considère ensuite le système partiel

$$\begin{cases} x_1 \ge 0, \ x_2 \ge 0 \\ x_1 + 4x_2 \le 2 \end{cases}$$

On trace la droite D_1 d'équation $x_1 + 4x_2 = 2$. Comment déterminer le demi-plan qui convient? Il suffit de prendre un point quelconque du plan et d'observer si ses coordonnées vérifient l'inéquation. Si c'est le cas, le point se situe dans le bon demi-plan. Considérons par exemple l'origine, $x_1 + 4x_2 = 0 + 4 \times 0 = 0 \le 2$ donc l'origine est solution et tous les points situés dans le demi-plan contenant l'origine sont solutions.

On considère ensuite le système

$$\begin{cases} x_1 \ge 0, \ x_2 \ge 0 \\ x_1 + 4x_2 \le 2 \\ -x_1 - x_2 \le -1 \end{cases}$$

On trace la droite D_2 d'équation $-x_1 - x_2 = -1$. Considérons l'origine, $-x_1 - x_2 = 0 - 0 = 0 > -1$ donc l'origine n'est pas solution, les solutions du système sont par conséquent les points du triangle ABC et son intérieur avec A(1,0), B(2,0) et $C\left(\frac{2}{3},\frac{1}{3}\right)$.

On considère enfin le système de départ

$$\begin{cases} x_1 \ge 0, \ x_2 \ge 0 \\ x_1 + 4x_2 \le 2 \\ -x_1 - x_2 \le -1 \\ 6x_1 + x_2 \le 2 \end{cases}$$

On trace la droite D_3 d'équation $6x_1 + x_2 = 2$. Considérons le point origine, $6x_1 + x_2 = 6 \times 0 + 0 = 0 < 2$ donc l'origine est solution de l'inéquation. On sélectionne le demi-plan qui convient et on observe finalement que le système n'admet pas de solution (la partie grise est inexistante).

Exemple 1.3.4 On considère le système suivant :

$$\begin{cases} x_1 \ge 0, x_2 \ge 0 \\ x_1 + x_2 \le 1 \\ -3x_1 + x_2 \le -3 \end{cases}$$

On sélectionne l'intersection des deux demi-plans $x_1 \ge 0$ et $x_2 \ge 0$.

On considère la droite d'équation $D_1: x_1 + x_2 = 1$. Le demi-plan qui convient est repéré grâce, par exemple, à l'origine.

On considère la droite d'équation $D_2: -3x_1 + x_2 = -3$. Le demi-plan qui convient est repéré une fois de plus grâce à l'origine. L'ensemble solution se restreint à un seul point, le couple solution (1,0).

Exemple 1.3.5 On considère le système suivant :

$$\begin{cases} x_1 \ge 0, x_2 \ge 0 \\ x_1 + 5x_2 \ge 5 \\ x_1 + 2x_2 \ge 4 \\ 3x_1 + 2x_2 \ge 6 \end{cases}$$

Comme $x_1 \geq 0$ et $x_2 \geq 0$, les points $M(x_1, x_2)$ seront choisis dans le quart du plan :

On considère la droite d'équation $D_1: x_1+5x_2=5$. Le demi-plan qui convient est repéré grâce, par exemple, à l'origine.

On considère la droite d'équation $D_2: x_1+2x_2=4$. Le demi-plan qui convient est repéré grâce, par exemple, à l'origine.

On considère la droite d'équation $D_3: 3x_1+2x_2=6$. Le demi-plan qui convient est repéré grâce, par exemple, à l'origine.

Exemple 1.3.6 On considère le système suivant :

$$\begin{cases} x_1 \ge 0, x_2 \ge 0 \\ x_1 + 3x_2 \le 18 \\ x_1 + x_2 \le 8 \\ 2x_1 + x_2 \le 14 \end{cases}$$

Soient les droites d'équations respectives

$$D_1: x_1 + 3x_2 = 18, D_2: x_1 + x_2 = 8 \text{ et } D_3: 2x_1 + x_2 = 14.$$

L'ensemble solution est un polyèdre convexe limité par la ligne polygonale OABCD.

1.3.4 Résolution de programmes linéaires

Exemple 1.3.7 On reprend le système de l'exemple 1.3.4 auquel on ajoute une fonction objectif :

$$\begin{cases} x_1 \ge 0, x_2 \ge 0 \\ -3x_1 + x_2 \le -3 \\ x_1 + x_2 \le 1 \\ Z(x_1, x_2) = 3x_1 + x_2 \text{ à maximiser} \end{cases}$$

On rappelle que le domaine des solutions réalisables est donné graphiquement par :

Le programme linéaire admet une unique solution réalisable (1,0) qui est d'ailleurs la solution optimale. Z est maximum pour le couple (1,0) et vaut $Z(1,0)=3\times 1+0=3$.

Exemple 1.3.8 On reprend le système de l'exemple 1.3.3 auquel on ajoute une fonction objectif :

$$\begin{cases} x_1 \ge 0, x_2 \ge 0 \\ x_1 + 4x_2 \le 2 \\ -x_1 - x_2 \le -1 \\ 6x_1 + x_2 \le 2 \\ Z(x_1, x_2) = 6x_1 + x_2 \text{ à maximiser} \end{cases}$$

L'ensemble solution est donné graphiquement par :

Ce programme n'a pas de solution réalisable. Le domaine des solutions réalisables est le vide.

Exemple 1.3.9 On reprend le système de l'exemple 1.3.6 auquel on ajoute une fonction objectif :

$$\begin{cases} x_1 \ge 0, x_2 \ge 0 \\ x_1 + 3x_2 \le 18 \\ x_1 + x_2 \le 8 \\ 2x_1 + x_2 \le 14 \\ Z(x_1, x_2) = 2x_1 + 4x_2 \text{ à maximiser} \end{cases}$$

Le domaine des solutions réalisables est donné graphiquement par :

Le domaine des solutions réalisables est un domaine plan, délimité par le polygone OABCD. Le domaine plan est un ensemble convexe.

On détermine ensuite les couples (x_1, x_2) de solutions réalisables tels que $Z(x_1, x_2) = 2x_1 + 4x_2$ soit maximum. Pour tout nombre Z, on note D_Z la droite d'équation

$$Z = 2x_1 + 4x_2$$

appelée généralement droite d'isovaleur de la fonction objectif. Un vecteur directeur de cette droite D_Z est $\vec{v}\begin{pmatrix} -4\\2 \end{pmatrix}$ ou $\vec{w}\begin{pmatrix} -2\\1 \end{pmatrix}$. Son coefficient directeur est $-\frac{1}{2}$. En effet, $x_2=-\frac{1}{2}x_1+\frac{Z}{4}$. Lorsque Z varie, ces droites D_Z ayant même coefficient directeur sont parallèles entre elles. L'ordonnée à l'origine des droites D_Z est $\frac{Z}{4}$. Maximiser Z est équivalent à maximiser $\frac{Z}{4}$. Le problème consiste donc à déterminer une ou plusieurs droites D_Z qui rencontrent le domaine des solutions réalisables et ayant une ordonnée à l'origine maximale. Lorsque Z augmente, la droite D_Z se déplace parallèlement à elle même vers le haut :

La droite D_Z qui rencontre le domaine des solutions réalisables et qui a une ordonnée à l'origine maximale est celle qui contient le point C.

Le programme linéaire a une seule solution maximale, le couple (3,5).

En conclusion, pour $x_1 = 3$, $x_2 = 5$, la fonction objectif est maximale et vaut

$$Z(3,5) = 2 \times 3 + 4 \times 5 = 26.$$

Remarque 1.3.1 La fonction objectif atteint son maximum en un des sommets du polygone.

Exemple 1.3.10 On considère le système

$$\begin{cases} x_1 \ge 0, x_2 \ge 0 \\ x_1 + x_2 \ge 2 \\ 2x_1 + x_2 \ge 3 \\ Z(x_1, x_2) = -x_1 + x_2 \text{ à minimiser} \end{cases}$$

Le domaine des solutions réalisables est donné graphiquement par :

Le domaine des solutions réalisables est convexe. Minimisons la fonction objectif : pour Z donné, on trace la droite D_Z d'équation $-x_1+x_2=Z\Leftrightarrow x_2=x_1+Z$. Lorsque Z varie, ces droites D_Z de vecteur directeur $\begin{pmatrix} 1\\1 \end{pmatrix}$ (de coefficient directeur 1) sont parallèles entre elles. On recherche une ou plusieurs droites D_Z ayant une ordonnée à l'origine Z minimale. Pour toute valeur de Z ($\in \mathbb{R}$), D_Z rencontre le domaine des solutions réalisables. Le programme linéaire n'a pas de solution minimale.

Exemple 1.3.11 On reprend le système de l'exemple 1.3.5 auquel on ajoute une fonction objectif:

$$\begin{cases} x_1 \ge 0, x_2 \ge 0 \\ x_1 + 5x_2 \ge 5 \\ x_1 + 2x_2 \ge 4 \\ 3x_1 + 2x_2 \ge 6 \\ Z(x_1, x_2) = 20x_1 + 25x_2 \text{ à minimiser} \end{cases}$$

Le domaine des solutions réalisables est donné graphiquement par :

Pour Z donné, on trace la droite D_Z d'équation $Z(x_1, x_2) = 20x_1 + 25x_2$ ou encore $x_2 = -\frac{4}{5}x_1 + \frac{Z}{25}$. Cette droite D_Z a pour coefficient directeur $-\frac{4}{5}$, pour vecteur directeur $\vec{v} \begin{pmatrix} -25 \\ 20 \end{pmatrix}$ ou $\vec{w} \begin{pmatrix} -5 \\ 4 \end{pmatrix}$ et pour ordonnée à l'origine $\frac{Z}{25}$. On trace des droites D_Z de coefficient directeur $-\frac{4}{5}$ et on recherche une ou plusieurs droites D_Z , rencontrant le domaine des solutions réalisables et ayant une ordonnée à l'origine $\frac{Z}{25}$ minimale. La droite D_Z rencontrant le domaine des solutions réalisables et ayant une ordonnée à l'origine minimale est celle qui contient le point $C\left(1,\frac{3}{2}\right)$. La fonction objectif atteint son minimum pour le couple $\left(1,\frac{3}{2}\right)$ et vaut $Z\left(1, \frac{3}{2}\right) = 20 \times 1 + 25 \times \frac{3}{2} = \frac{115}{2}.$

Exemple 1.3.12 On considère le système mis en place dans le cadre de l'exemple 1.3.6:

$$\begin{cases} x_1 \ge 0, x_2 \ge 0 \\ x_1 + 3x_2 \le 18 \\ x_1 + x_2 \le 8 \\ 2x_1 + x_2 \le 14 \\ Z(x_1, x_2) = c_1 x_1 + c_2 x_2 \end{cases}$$

où Z est une fonction économique ou fonction objectif qu'il faut maximiser et c_1 et c_2 sont les bénéfices unitaires.

Résolvons ce problème linéaire, on discutera bien-sûr des valeurs attribuées à c_1 et c_2 .

Le domaine des solutions réalisables est le domaine convexe délimité par le polygone OABCD. Les coordonnées des sommets sont obtenues en déterminant les intersections des droites donc en résolvant des systèmes de deux équations à deux inconnues.

Étude de cas particuliers

•
$$c_1=1, c_2=4$$
: on trace les droites D_Z d'équations:
$$x_1+4x_2=Z \Leftrightarrow x_2=-\frac{1}{4}x_1+\frac{Z}{4}$$

de vecteur directeur $\vec{v_1} \begin{pmatrix} -4 \\ 1 \end{pmatrix}$. La droite qui a une ordonnée à l'origine maximale est celle qui contient le point $D\begin{pmatrix} 0 \\ 6 \end{pmatrix}$. La fonction objectif est maximale pour le couple (0,6) et vaut $Z(0,6) = 0+4\times 6 = 24$. • $c_1 = 2, c_2 = 4$: on trace les droites D_Z d'équations:

$$2x_1 + 4x_2 = Z \Leftrightarrow x_2 = -\frac{1}{2}x_1 + \frac{Z}{4}$$

de vecteur directeur $\vec{v_2} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$. La droite qui a une ordonnée à l'origine maximale est celle qui contient le point $C\begin{pmatrix} 3 \\ 5 \end{pmatrix}$. La fonction objectif atteint son maximum au point (3,5) et vaut Z(3,5) =

$$2x_1 + 2x_2 = Z \Leftrightarrow x_2 = -x_1 + \frac{Z}{2}$$

• $c_1=2, c_2=2$: on trace les droites D_Z d'équations: $2x_1+2x_2=Z \Leftrightarrow x_2=-x_1+\frac{Z}{2}$ de vecteur directeur $\vec{v_3}\left(\begin{array}{c} -1\\ 1 \end{array}\right)$. Cette droite D_Z est parallèle au côté (BC) du polygone. La fonction objectif atteint son maximum en tous les points du côté (BC). La fonction objectif atteint donc ce maximum pour tous les couples (x_1, x_2) tels que $x_1 + x_2 = 8$ et $3 \le x_1 \le 6$. Z vaut alors $2x_1 + 2x_2 = 16$.

• $c_1 = 3$, $c_2 = 2$: on trace les droites D_Z d'équations:

$$3x_1 + 2x_2 = Z \Leftrightarrow x_2 = -\frac{3}{2}x_1 + \frac{Z}{2}$$

de vecteur directeur $\vec{v_4} \begin{pmatrix} -2 \\ 3 \end{pmatrix}$. La droite qui a une ordonnée à l'origine maximale est celle qui contient le point $B\begin{pmatrix} 6\\2 \end{pmatrix}$. La fonction objectif atteint son maximum au point (6,2) et vaut $Z(6,2)=3\times 6+2\times 2=22$.

$$5x_1 + x_2 = Z \Leftrightarrow x_2 = -5x_1 + Z$$

 $c_1 = 5$, $c_2 = 1$: on trace les droites D_Z d'équations: $5x_1 + x_2 = Z \Leftrightarrow x_2 = -5x_1 + Z$ de vecteur directeur $\vec{v_5} \begin{pmatrix} -1 \\ 5 \end{pmatrix}$. La droite qui a une ordonnée à l'origine maximale est celle qui contient le point $A\begin{pmatrix} 7\\0 \end{pmatrix}$. La fonction objectif atteint son maximum au point (7,0) et vaut Z(7,0)= $5 \times 7 + 1 \times 0 = 35$

Remarque 1.3.2 En fonction des différentes valeurs attribuées à c_1 et c_2 , la fonction objectif atteint son maximum en différents sommets du polygone. Le programme linéaire a soit une unique solution soit une infinité de solutions (lorsque la droite D_Z est parallèle à l'un des côtés du polygone).

Étude du cas général

$$D_Z$$
: $c_1x_1 + c_2x_2 = Z \Leftrightarrow x_2 = -\frac{c_1}{c_2}x_1 + \frac{Z}{c_2}$ avec $c_1 > 0, c_2 > 0$.

Ces droites D_Z ont pour vecteur directeur $\vec{v}\begin{pmatrix} -c_2 \\ c_1 \end{pmatrix}$, pour coefficient directeur $m=-\frac{c_1}{c_2}$ et pour ordonnée à l'origine $p = \frac{Z}{c_2}$.

Maximiser Z est équivalent à maximiser $\frac{Z}{C_2}$. On recherche une ou plusieurs droites D_Z rencontrant le domaine des solutions réalisables et ayant une ordonnée à l'origine maximale.

- Le côté (AB) a pour équation $2x_1 + x_2 = 14$, le coefficient directeur est -2 et $6 \le x_1 \le 7$.
- Le côté (BC) a pour équation $x_1 + x_2 = 8$, le coefficient directeur est -1 et $3 \le x_1 \le 6$.
- Le côté (CD) a pour équation $x_1 + 3x_2 = 18$, le coefficient directeur est $-\frac{1}{3}$ et $0 \le x_1 \le 3$.

La droite D_Z a pour coefficient directeur $-\frac{c_1}{c_2}$, on compare ensuite ce coefficient aux pentes des droites contenant les côtés (AB), (BC) et (CD).

$$\bullet \ -\frac{c_1}{c_2} < -2 \Leftrightarrow \frac{c_1}{c_2} > 2 \Leftrightarrow c_1 > 2c_2$$

Dans ce cas, la droite des bénéfices est plus "pointue" que le côté (AB). Le maximum est atteint au point A(7,0) et en ce point seulement. Le programme linéaire admet une seule solution maximale (7,0) qui est un sommet, avec $x_2 = 0$ on ne produit que P_1 .

$$\bullet \quad -\frac{c_1}{c_2} = -2 \Leftrightarrow c_1 = 2c_2$$

-2 est la pente du côté (AB). Les droites $D_Z: c_1x_1+c_2x_2=Z$ sont parallèles au côté (AB). Il y a

$$[AB] : \begin{cases} 2x_1 + x_2 = 14 \\ 6 \le x_1 \le 7 \end{cases}$$

Tous les couples (x_1,x_2) tels que $\begin{cases} 6 \le x_1 \le 7 \\ 2x_1+x_2=14 \\ 6 \le x_1 \le 7 \end{cases}$ Tous les couples (x_1,x_2) tels que $\begin{cases} 6 \le x_1 \le 7 \\ 2x_1+x_2=14 \end{cases}$ sont solutions optimales, le bénéfice vaut alors $14c_2. \text{ En effet, } Z(x_1,x_2)=c_1x_1+c_2x_2=2c_2x_1+c_2x_2=c_2(2x_1+x_2).$ • $-2<-\frac{c_1}{c_2}<-1 \Leftrightarrow 1<\frac{c_1}{c_2}<2$ -1 est la pente du $-2x_1$

•
$$-2 < -\frac{c_1}{c_2} < -1 \Leftrightarrow 1 < \frac{c_1}{c_2} < 2$$

-1 est la pente du côté (BC), -2 celle de (AB). Le maximum est atteint en un seul point B qui est

aussi un sommet.
•
$$-\frac{c_1}{c_2} = -1 \Leftrightarrow \frac{c_1}{c_2} = 1 \Leftrightarrow c_1 = c_2$$

Les droites D_Z sont parallèles au côté (BC). Il y a une infinité de solutions optimales représentées par tous les points du segment [BC] défini par :

$$[BC] : \begin{cases} x_1 + x_2 = 8 \\ 3 \le x_1 \le 6 \end{cases}$$

tous les points du segment [20] $[BC] : \begin{cases} x_1 + x_2 = 8 \\ 3 \le x_1 \le 6 \end{cases}$ Tous les couples (x_1, x_2) tels que $\begin{cases} 3 \le x_1 \le 6 \\ x_1 + x_2 = 8 \end{cases}$ sont solutions optimales, le bénéfice vaut alors $8c_1$.

•
$$-1 < -\frac{c_1}{c_2} < -\frac{1}{3}$$

 $-\frac{1}{3}$ est la pente du côté (CD), -1 celle du côté (BC). Le programme linéaire a un seule solution optimale soit le point C(3,5) qui est un sommet.

$$\bullet \ -\frac{c_1}{c_2} = -\frac{1}{3} \Leftrightarrow c_2 = 3c_1$$

Les solutions optimales sont tous les points du segment [CD] d'où une infinité de solutions. $[CD] \ : \ \begin{cases} x_1+3x_2=18\\ 0\leq x_1\leq 3 \end{cases}$

$$[CD]$$
:
$$\begin{cases} x_1 + 3x_2 = 18 \\ 0 \le x_1 \le 3 \end{cases}$$

La fonction objectif atteint son maximum pour tous les couples (x_1, x_2) tels que

$$\begin{cases} x_1 + 3x_2 = 18 \\ 0 \le x_1 \le 3 \end{cases}$$

et le bénéfice vaut $Z = 18c_1$.

$$\bullet \ \ -\frac{1}{3} < -\frac{c_1}{c_2} < 0 \Leftrightarrow 0 < \frac{c_1}{c_2} < \frac{1}{3}$$

Il existe une seule solution optimale c'est-à-dire le point D(0,6) qui est un sommet; x_1 étant nul, on ne produit que P_2 .

Exemple 1.3.13 Considérons l'exemple suivant faisant intervenir trois dimensions :

$$\begin{cases} x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \\ 2x_1 + x_2 + 2x_3 \le 4 \\ Z(x_1, x_2, x_3) = x_1 + x_2 \text{ à maximiser} \end{cases}$$

On trace le plan d'équation $2x_1 + x_2 + 2x_3 = 4$. Ce plan rencontre les axes de coordonnées aux points $M_1\begin{pmatrix} 2\\0\\0 \end{pmatrix}, M_2\begin{pmatrix} 0\\4\\0 \end{pmatrix}, M_3\begin{pmatrix} 0\\0\\2 \end{pmatrix}$.

Le domaine des solutions réalisables est représenté par l'intérieur de la pyramide $OM_1M_2M_3$. La fonction objectif est $Z(x_1, x_2, x_3) = x_1 + x_2$. Lorsque Z varie, $x_1 + x_2 = Z$ est l'équation d'un plan parallèle à $(0, \vec{k})$, ce plan rencontre le plan (O, \vec{i}, \vec{j}) suivant la droite d'équation Z = 0 et $x_1 + x_2 = Z$. Le plan P_Z qui rencontre

le domaine des solutions réalisables et tel que Z soit maximum est celui qui contient le point $M\begin{pmatrix}0\\4\\0\end{pmatrix}$. La

fonction objectif atteint son maximum en un seul point qui est d'ailleurs un des sommets, c'est-à-diré M_2 .

1.3.5 Cas général

Soit un programme linéaire \mathcal{P} . On admettra les résultats suivants :

- 1. Le domaine des solutions réalisables de tout programme linéaire à n variables est soit l'ensemble vide \emptyset soit une partie convexe de \mathbb{R}^n .
- 2. Dans le cas d'un programme linéaire à deux variables, le domaine des solutions réalisables, lorsqu'il n'est pas vide, est une partie D du plan délimité par un polygone convexe, possédant éventuellement des côtés de longueur infinie.

Dans chaque cas, l'ensemble des solutions optimales (lorsqu'il n'est pas vide) contient un sommet de D, c'est-à-dire que si la fonction objectif a un maximum ou un minimum, il est atteint en au moins un des sommets du polygone délimitant le domaine des solutions réalisables.

3. On admettra que ces résultats se généralisent à un programme linéaire à n variables.

1.3.6 Exercices

Exercice 1) Formaliser les situations suivantes :

1. La société *Bonvin*, S.A., qui pratique le négoce en vins propose à sa clientèle deux vins de table : l'un est dénommé "Extra", l'autre "Supérieur". Ces produits sont obtenus par coupage de crus issus de diverses régions : un vin de l'Hérault, un vin du Bordelais et un vin d'Italie.

Les coupages sont réalisés selon les proportions fixes suivantes :

	Vin "Extra"	Vin "Supérieur"
Vin de l'Hérault	0,5	0,2
Vin du Bordelais	0,3	0,6
Vin d'Italie	0,2	0,2
Total	1	1

Après les vendanges, la société dispose en stock dans ses cuves des quantités suivantes de crus d'origine :

Vin de l'Hérault .. 13600 hectolitres Vin du Bordelais .. 12000 hectolitres Vin d'Italie ... 10400 hectolitres

Ces quantités constituent les ressources disponibles pour la production de l'année à venir. En outre, compte tenu des capacités techniques de mise en bouteille existantes, cette production ne peut pas dépasser 36000 hectolitres au total dans l'année.

L'activité de cette entreprise comporte des coûts qui ont été classés en deux catégories :

- Une partie est considérée comme fixe; elle correspond aux approvisionnements, puisque ceux-ci sont déja constitués, ainsi qu'aux frais de personnel. Ces coûts s'élèvent à 12000000 euros pour l'année.
- L'autre partie correspond aux frais de mise en bouteille, d'emballage et de commercialisation. Cette seconde partie est proportionnelle aux quantités produites : soit 100 euros par hectolitre de vin quelle que soit la qualité de celui-ci.

Une étude de marché révèle que celui-ci ne saurait absorber plus de

- 20000 hectolitres de vin "Extra" à 500 euros par hectolitre,
- et 16000 hectolitres de vin "Supérieur" à 600 euros l'hectolitre.

Le problème de cette entreprise peut être formulé ainsi :

Quelles quantités faut-il produire de vin "Extra" et "Supérieur" afin de rendre maximum le bénéfice total?

- 2. Considérons désormais :
 - que le vin "Extra" doit contenir au moins 30% de cru du Bordelais et au plus 20% de cru d'Italie,
 - et que le vin "Supérieur" doit être composé d'au moins 60% de cru du Bordelais et d'au moins 20% de cru de l'Hérault.

Toutes les autres caractéristiques du problème restent identiques au cas précédent.

Le problème peut s'exprimer sous la forme :

Quelle quantité de chaque vin d'origine affecter à chaque qualité de produit fini?

3. On considère un coût d'approvisionnement qui n'est plus fixe. Transport inclus, il s'élève à :

vin de l'Hérault : 230 euros l'hectolitre, vin du Bordelais : 250 euros l'hectolitre, vin d'Italie : 180 euros l'hectolitre.

Il subsiste néanmoins un coût fixe constitué pour l'essentiel de frais de personnel, égal à 4000000 euros. Le problème présent comporte trois questions :

- $\ Quelle \ quantit\'e \ produire \\ \ Quelle \ composition \ adopter \ \right\} \ pour \ chaque \ vin, \ "Extra" \ et \ "Sup\'erieur",$
- Quelle quantité de matières premières acquérir auprès des fournisseurs?

Remarque 1.3.3 Ces trois questions sont liées et on peut constater que le fait de connaître la quantité de chaque matière première incorporée dans chaque produit permet de déterminer simultanément l'approvisionnement nécessaire, la composition adéquate des produits et la quantité à produire.

4. Les produits de la société sont conditionnés dans des récipients de 0,75 litre et de 3 litres. Afin de pouvoir satisfaire la clientèle, *Bonvin* se fixe comme objectif annuel de disposer d'au moins 400000 bouteilles de 3 litres et d'au moins 3200000 bouteilles de 0,75 litre.

Pour produire ces récipients Bonvin dispose de deux ateliers dont les rendements sont différents :

Nombre de récipients par heure de fonctionnement

	Atelier A	Atelier B
0,75 litre 3 litres	500 400	400 320

Chaque atelier fonctionne au maximum 4000 heures dans l'année. Les prévisions de coût variable de production de chaque type de récipient donnent comme résultats :

Coûts variables de production

	Atelier A	Atelier B
0,75 li 3 litre	$0,4 \\ 0,75$	$0,55 \\ 0,85$

Mais Bonvin peut également sous-traiter la fabrication de ces récipients à la société Corec qui propose comme tarif :

0,5 euro la bouteille de 0,75 litre 1 euro la bouteille de 3 litres

Les dirigeants de Bonvin S.A. se posent trois questions

- faut-il produire des bouteilles et en quelles quantités?
- en utilisant quelle technique de production (atelier A et/ou atelier B)?
- faut-il sous-traiter tout ou partie de la production à Corec?

qui peuvent être condensées en une seule :

Quelles filières utiliser pour obtenir les bouteilles nécessaires?

Exercice 2 Une entreprise stocke successivement deux types de polystyrènes A_1 et A_2 dans trois entrepôts distincts E_1 , E_2 et E_3 afin qu'ils y subissent des traitements particuliers. Le coût de fonctionnement de l'entrepôt E_1 est de 200 euros par jour, celui de l'entrepôt E_2 est de 400 euros et celui de l'entrepôt E_3 est de 300 euros. Les temps de stockage pour une tonne de polystyrène A_1 sont de 3 jours dans l'entrepôt E_1 , de 1 jour dans l'entrepôt E_2 et d'une demi-journée dans l'entrepôt E_3 . Ils sont pour le polystyrène A_2 de 2 jours dans chacun des 3 entrepôts.

Les coûts de fabrication des polystyrènes A_1 et A_2 sont respectivement de 600 euros et 400 euros la tonne. Les prix de vente d'une tonne des polystyrènes fabriqués sont de 1950 euros pour A_1 et de 2440 euros pour A_2 .

- 1. (a) Calculer le coût de stockage d'une tonne de polystyrène A_1 et d'une tonne de polystyrène A_2 .
 - (b) Déterminer le bénéfice réalisé par la fabrication, le stockage et la vente d'une tonne de chacun des produits.
 - (c) En déduire que le bénéfice total Z pour la production, le stockage et la vente de x tonnes de polystyrène A_1 et de y tonnes de polystyrène A_2 est donné par Z(x,y) = 200x + 240y.
- 2. La logistique des stockages est telle que l'entrepôt E_1 peut fonctionner au maximum 360 jours dans l'année, l'entrepôt E_2 peut fonctionner au maximum 160 jours par an, l'entrepôt E_3 ne peut fonctionner annuellement plus de 120 jours.

La demande est telle que la production de polystyrène A_1 ne peut dépasser 120 tonnes, celle de A_2 50 tonnes.

(a) Déterminer les nombres x et y de tonnes des deux produits fabriqués pour que l'entrepôt E_1 fonctionne exactement 360 jours et l'entrepôt E_3 exactement 120 jours. Cette production est-elle possible?

- (b) On veut maintenant déterminer les nombres x et y de tonnes des deux produits fabriqués, stockés et vendus qui donneraient à l'entreprise le bénéfice maximum.
 - i. Donner les 7 contraintes de production ainsi que la fonction à maximiser sous la forme d'un programme linéaire du type

$$\begin{cases} x \leq \cdots & \text{et/ou } \geq \cdots \\ y \leq \cdots & \text{et/ou } \geq \cdots \\ \vdots & \\ Z(x,y) = \cdots & \text{à maximiser} \end{cases}$$

- ii. Représenter sur le graphique ci-joint le domaine des solutions réalisables en justifiant.
- iii. À l'aide d'une résolution graphique, déterminer <u>en justifiant</u> la production qui assurera le bénéfice maximal. Quel sera alors son prix?

Exercice 3 Une entreprise possède deux unités de production U_1 et U_2 . Elle commercialise ses produits à l'aide de trois entrepôts distincts E_1 , E_2 et E_3 situés dans différentes zones de consommation. Le tableau cidessous indique pour chaque entrepôt, les proportions de stockage d'unités x et y provenant respectivement de U_1 et U_2 .

U_i E_i	E_1	E_2	E_3
U_1	1	2	1
U_2	2	3	1

Ces valeurs signifient par exemple que les structures de l'entrepôt E_1 permettent de stocker 2 fois plus d'unités provenant de U_2 que d'unités provenant de U_1 .

L'organisation actuelle des entrepôts est telle que E_1 ne peut stocker au total plus de 120 unités, E_2 ne peut stocker au total plus 200 unités et E_3 ne peut stocker au total plus 90 unités.

Les productions journalières de U_1 et de U_2 sont limitées respectivement à 80 et 50 unités.

On sait que le bénéfice réalisé par l'entreprise est de 50 euros pour la vente d'une unité de U_1 et 80 euros pour la vente d'une unité de U_2 .

On veut déterminer maintenant les nombres x et y d'unités provenant de U_1 et U_2 , qui permettraient à l'entreprise de réaliser un bénéfice journalier maximum.

- 1. Donner les 7 contraintes portant sur x et y ainsi que la fonction à maximiser sous la forme d'un programme linéaire
- 2. Résolution graphique
 - (a) Représenter sur le graphique de la page suivante, le domaine des solutions réalisables <u>en justifiant</u> vos démarches.
 - (b) À l'aide d'une résolution graphique, déterminer <u>en justifiant</u>, la production qui assurera le bénéfice maximal. À quoi sera alors égal ce bénéfice?

Exercice 4) Le gérant d'un entrepôt souhaite renouveler le matériel de sécurité de son établissement. Il a besoin au minimum de

- 90 paires de chaussures de sécurité,
- 240 casques de sécurité,
- 240 paires de gants.

Une première entreprise de vente lui propose un lot A comprenant 2 paires de chaussures, 4 casques et 8 paires de gants pour 200 euros. Une deuxième entreprise vend pour 400 euros un lot B de 3 paires de chaussures, 12 casques et 6 paires de gants.

Pour répondre à ses besoins, le gérant achète x lots A et y lots B.

1. Traduire par un système d'inéquations les contraintes auxquelles satisfont x et y.

On considère un plan P rapporté à un repère orthonormé (O, \vec{i}, \vec{j}) . A tout couple (x, y) on associe le point M de P de coordonnées (x, y), en prenant comme unité 1 cm pour 10 lots.

2. Représenter dans P l'ensemble des points M(x,y) satisfaisant aux inéquations :

$$\begin{cases} x \ge 0 \text{ et } y \ge 0\\ 2x + 3y \ge 90\\ x + 3y \ge 60\\ 4x + 3y \ge 120 \end{cases}$$

On hachurera la partie du plan formée des points pour lesquels les contraintes ne sont pas respectées.

- 3. Exprimer en fonction de x et de y la dépense en euros occasionnée par l'achat de x lots A et de y lots B.
- 4. Est-il possible de procéder aux achats nécessaires avec 5000 euros? Justifier la réponse.
- 5. Déterminer graphiquement, en précisant la démarche suivie, le nombres de lots A et de lots B à acheter pour avoir une dépense minimale.
- 6. Quelle est cette dépense minimale?

Exercice 5) Un artisan fabrique des objets A et des objets B. On dispose des informations suivantes :

- La réalisation d'un objet A demande 30 euros de matière première et 125 euros de main-d'œuvre.
- La réalisation des objets B demande 70 euros de matière première et 75 euros de mains-d'œuvre.
- Les profits réalisés sont de 54 euros par objets A, et de 45 euros par objet B.

On note x le nombre d'objets A fabriqués et y le nombre d'objets B fabriqués, en une journée. La dépense journalière en matière première ne doit pas dépasser 560 euros. La dépense journalière en main-d'œuvre ne doit pas dépasser 1250 euros.

- 1. Traduire mathématiquement ces deux hypothèses.
- 2. Le plan est rapporté à un repère orthonormé (unité graphique = 1 cm). Représenter graphiquement l'ensemble des points M(x,y) dont les coordonnées vérifient ces hypothèses. Exprimer le bénéfice

journalier Z de l'entreprise en fonction de x et de y, puis la production journalière d'objets A et B qui assurerait un bénéfice maximum. On précisera, graphiquement, et par le calcul, cette production journalière.

3. En déduire le montant de ce bénéfice.

Exercice 6 Résoudre le problème de la société *Bonvin S.A.* dans sa forme initiale à l'aide de la méthode graphique.

Exercice 7 Nous prenons un exemple tiré de Hillier et Lieberman. Il s'agit d'une entreprise de fabrication de chassis qui envisage la production de deux nouveaux modèles au moyen des capacités résiduelles de ses trois ateliers. Il s'agit respectivement d'un chassis en aluminium et d'un chassis en bois. Le premier produit nécessite le passage dans le premier atelier pour fabriquer le cadre en aluminium et dans le troisième atelier où le verre est monté sur le chassis. Tandis que le second produit nécessite le passage dans le deuxième atelier pour fabriquer le cadre en bois et dans le troisième atelier où le verre est monté sur le chassis. Les marges unitaires, les temps de fabrication de chacun des produits dans chacun des ateliers ainsi que les capacités hebdomadaires résiduelles de ces ateliers sont donnés au tableau ci-dessous. Combien faut-il produire

	Produit 1 (heures/produit)	Produit 2 (heures/produit)	Capacité disponible (heures/semaine)
Atelier 1	1	0	4
Atelier 2	0	2	12
Atelier 3	3	2	18
Marge	3\$	5\$	

de chassis de chaque type par semaine pour maximiser le profit net?

Exercice 8 Une société de tri de déchets et recyclage de papier peut se fournir en déchets auprès de deux villes. Son rôle consiste à séparer les listes d'ordinateur et les journaux. La répartition entre ménages et sociétés est différente d'une ville à l'autre expliquant un pourcentage différent de listes d'ordinateur et de journaux dans les déchets. Ces pourcentages ainsi que la quantité maximum de déchets que peuvent fournir par an ces deux villes sont reprises au tableau suivant : La société offre aux villes un prix de 35€ par tonne

	Listes (%)	Journaux (%)	Offre (tonnes par an)
Ville 1	5	20	10000
Ville 2	15	30	20000

de déchet. Elle doit décider du montant optimal de déchets à acheter à chaque ville pour minimiser son coût d'achat. Pour couvrir ses frais fixes, la société doit au moins collecter 1500 tonnes de listing d'ordinateur par an. La société ne desire pas collecter plus de 6000 tonnes de journaux par an. Combien la société doit-elle acheter de déchets par an à chacune des villes?

- 1. Formuler mathématiquement le problème (choix des variables, expression des contraintes et de l'objectif).
- 2. Déterminer graphiquement le plan d'achat optimal et en déduire le coût d'achat minimum.

Exercice 9 Une entreprise fabrique deux produits P_1 et P_2 . Chaque produit doit passer les deux ateliers d'usinage et de finition. Le mois dernier, 500 unités de P_1 ont été produites grâce à 750 heures d'usinage et 250 heures de finition. De même, 700 unités de P_2 ont été produites, nécessitant 700 heures d'usinage et 350 heures de finition. Une partie du coût de production est indépendante du nombre d'heures passées à la production (les frais fixes), une partie est directement proportionnelle au nombre d'heures passées à la production (les frais variables). Le mois passé, on a observé la répartition suivante entre frais fixes et frais variables : Il y a un coût de conditionnement de $8 \in l$ 'unité pour P_1 et de $6 \in l$ pour P_2 . Les prix de vente sont

Section	Frais fixes	Frais variables
Usinage	60000	11600
Finition	40000	6000

de 55€ et 43€ respectivement.

- 1. Calculer les marges sur coûts variables (différence entre prix de vente et coût variable de production) par unité de chacun des deux produits. Indication : calculer d'abord le prix de l'heure dans chacun des ateliers et le temps nécessaire dans chacun des ateliers par produit.
- 2. Les capacités de production sont de 1200 heures par mois pour l'usinage et de 500 heures pour la finition. Formuler le programme linéaire correspondant à la maximisation de la marge sur coûts variables.
- 3. Déterminer graphiquement la solution optimale.

Chapitre 2

La programmation linéaire - Méthode du simplexe

2.1 Introduction

L'algorithme du simplexe fut proposé en 1947 par G. B. Dantzig comme méthode de résolution générale des programmes linéaires. La solution optimale est approchée par étapes ou itérations successives. Chaque étape correspond au calcul de la valeur économique d'une solution. Comme il existe une infinité de solutions admissibles, la méthode propose de n'explorer qu'un nombre limité de solutions parmi lesquelles se trouve à coup sûr la solution optimale.

2.2 La méthode du simplexe

La méthode du simplexe repose sur le théorème fondamental suivant :

Théorème 2.2.1

- Si un programme linéaire admet une solution possible finie, alors il admet au moins une solution de base.
- Si ce programme linéaire admet une solution optimale, il admet au moins une solution de base optimale (ce qui signifie qu'une solution de base au moins est optimale).

La solution optimale étant une solution de base, l'algorithme du simplexe consiste à :

- 1. déterminer une solution de base,
- 2. faire subir un test d'optimalité à cette solution de base pour déterminer s'il s'agit ou non de la solution optimale,
 - s'il s'agit de la solution optimale, le problème est terminé,
 - s'il ne s'agit pas de la solution optimale, on passe à l'étape 3.,
- 3. changer de solution de base puis reprendre la procédure au 1. jusqu'à l'obtention de la solution optimale. Chaque changement de solution de base constitue une itération.

Afin de réaliser les opérations successives de l'algorithme du simplexe, il convient de mettre le programme sous une **forme standard**.

2.2.1 Programme linéaire standard

Exemple 2.2.1 On se donne le problème suivant :

$$\begin{cases} x_1 \ge 0, x_2 \ge 0 \\ 5x_1 - x_2 \le 3 \\ x_1 + 4x_2 \le 4 \\ Z(x_1, x_2) = 2x_1 + 3x_2 \text{ à optimiser,} \end{cases}$$

programme linéaire exprimé sous sa forme canonique.

On introduit des variables auxiliaires positives ou nulles appelées variables d'écart de la façon suivante :

$$5x_1 - x_2 \le 3 \Leftrightarrow \begin{cases} 5x_1 - x_2 + e_1 = 3 \\ e_1 \ge 0 \end{cases}$$

$$x_1 + 4x_2 \le 4 \Leftrightarrow \begin{cases} x_1 + 4x_2 + e_2 = 4 \\ e_2 \ge 0 \end{cases}$$

Le programme linéaire peut se réécrire alors :

$$\begin{cases} x_1 \ge 0, x_2 \ge 0, e_1 \ge 0, e_2 \ge 0 \\ 5x_1 - x_2 + e_1 = 3 \\ x_1 + 4x_2 + e_2 = 4 \\ Z(x_1, x_2) = 2x_1 + 3x_2 \text{ à optimiser} \end{cases}$$

Le programme est écrit sous sa forme standard et les variables e_1 et e_2 sont des variables d'écart.

Exemple 2.2.2 On se donne le programme linéaire ci-dessous :

$$\begin{cases} x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \\ x_1 + x_2 \le 1 \\ x_1 + 2x_2 + 3x_3 \le 5 \\ x_2 - 4x_3 \le 2 \\ x_1 + x_2 + x_3 = 5 \\ Z(x_1, x_2, x_3) = 2x_1 + x_2 + x_3 \text{ à optimiser.} \end{cases}$$

On remplace les 3 inégalités par 3 égalités en introduisant 3 variables d'écart e_1 , e_2 et e_3 . Le programme linéaire standard est alors

$$\begin{cases} x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, e_1 \ge 0, e_2 \ge 0, e_3 \ge 0 \\ x_1 + x_2 + e_1 = 1 \\ x_1 + 2x_2 + 3x_3 + e_2 = 5 \\ x_2 - 4x_3 + e_3 = 2 \\ x_1 + x_2 + x_3 = 5 \\ Z(x_1, x_2, x_3) = 2x_1 + x_2 + x_3 \text{ à optimiser.} \end{cases}$$

Cas général

Soit un programme linéaire à n variables. On remplace chaque inégalité

$$\boxed{a_1x_1 + a_2x_2 + \ldots + a_nx_n \le b_1}$$

par l'égalité

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n + e_1 = b_1 \text{ avec } e_1 \ge 0$$

et

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n \ge b_1$$

par

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n - e_1 = b_1 \text{ avec } e_1 \ge 0$$

On obtient alors le programme linéaire standard qu'on cherche à résoudre.

2.2.2 L'algorithme du simplexe

Exemple 2.2.3 (solution unique)

1. Enoncé

Un ébéniste fabrique des bureaux sous forme standard ou luxe. Des études de marché ont montré que pour l'année à venir, les possibilités de vente s'élèvent à 300 unités pour le modèle luxe et à 400 unités pour le modèle standard. L'approvisionnement en bois est suffisant pour fabriquer annuellement 500 bureaux quel que soit le type. Par ailleurs, le temps de fabrication d'un modèle luxe est le double de celui d'un bureau de modèle standard. La capacité annuelle de fabrication est telle que, si tous les bureaux fabriqués étaient de type standard, on pourrait en fabriquer 700 au maximum. La vente d'un bureau sous le modèle luxe conduit à une marge unitaire sur coût variable égale à 7, celle d'un bureau de type standard égale à 5. On se propose de rechercher le programme annuel de fabrication conduisant au profit global maximum.

2. Mise en équation

Soit x_1 le nombre de bureaux de type luxe, x_2 le nombre de bureaux de type standard. Le programme linéaire est

$$\begin{cases} x_1 \ge 0, x_2 \ge 0 \\ x_1 \le 300 \\ x_2 \le 400 \\ x_1 + x_2 \le 500 \\ 2x_1 + x_2 \le 700 \\ Z(x_1, x_2) = 7x_1 + 5x_2 \text{ à maximiser} \end{cases}$$

3. Domaine des solutions réalisables

4. Forme standard

On introduit les variables d'écart x_i avec $i \in \{3, 4, 5, 6\}$ positives ou nulles.

$$\begin{cases} x_1 + x_3 = 300 \\ x_2 + x_4 = 400 \\ x_1 + x_2 + x_5 = 500 \\ 2x_1 + x_2 + x_6 = 700 \\ Z(x_1, x_2) = 7x_1 + 5x_2 \text{ à maximiser} \end{cases}$$

5. Variables hors-base, variable dans la base

Une solution de base est avant tout une solution admissible; elle satisfait l'ensemble des contraintes et conditions de signe. Toute solution de base comporte deux catégories de variables.

- Des variables ayant une valeur prédéterminée nulle : ces variables nulles sont dites variables horsbase (ou variables exclues). Il y a au moins autant de variables hors-base que le problème comporte de variables réelles.
- Des variables ayant une valeur non nulle : ce sont les variables dans la base (ou variables retenues).
 Leur nombre est au plus équivalent au nombre de variables d'écart.

De façon générale, si un problème comprend m contraintes et n variables réelles, pour qu'une solution soit solution de base il faut et il suffit

- qu'elle soit solution admissible,
- qu'elle admette au moins n variables hors base et au plus m variables dans la base.

Pour amorcer l'algorithme du simplexe, il est nécessaire de connaître une solution de base.

La solution de base de départ de l'ébéniste consiste à ne rien produire : $x_1 = x_2 = 0$. Ces variables x_1, x_2 qui sont nulles sont hors-base. Dans ce cas, $x_3 = 300, x_4 = 400, x_5 = 500, x_6 = 700.$ Les variables x_3, x_4, x_5, x_6 non nulles sont dans la base. La valeur de la fonction économique est $Z(0,0) = 7 \times 0 + 5 \times 0 = 0.$

Notation:

VDB	VHB
x_3	x_1
x_4	x_2
x_5	
x_6	

Tableau initial:

VHB VDB	x_1	x_2	x_3	x_4	x_5	x_6	cste	
x_3	1	0	1	0	0	0	300	$x_1 + x_3 = 300$
x_4	0	1	0	1	0	0	400	$x_2 + x_4 = 400$
x_5	1	1	0	0	1	0	500	$x_1 + x_2 + x_5 =$
x_6	2	1	0	0	0	1	700	$2x_1 + x_2 + x_6 =$
Z	7	5	0	0	0	0	0	$Z = 7x_1 + 5x_2$

$$x_1 + x_3 = 300$$

$$x_2 + x_4 = 400$$

$$x_1 + x_2 + x_5 = 500$$

$$2x_1 + x_2 + x_6 = 700$$

6. Première itération

La solution de base de départ consiste à ne rien produire soit $x_1 = x_2 = 0$. On étudie ensuite, à partir de cette solution, jusqu'à quel niveau on peut porter x_1 ou x_2 conformément aux contraintes de façon à accroître au maximum le profit. Il se pose le problème du choix de la variable x_1 ou x_2 qui va passer de la valeur 0 à une valeur strictement positive. La variable choisie sera appelée variable entrante.

• Critère de sélection de la variable entrante : Cette sélection doit s'accompagner d'une augmentation de la fonction économique

$$Z(x_1, x_2) = 7x_1 + 5x_2$$

La sélection portera sur x_1 qui par unité rapporte le plus. Cette règle est appelée règle du plus grand gain marginal:

Le critère de sélection de Dantzig de la variable entrante consiste, dans la fonction économique exprimée exclusivement en fonction des variables hors-base, à sélectionner la variable affectée du coefficient strictement positif le plus élevé.

• On exprime ensuite x_3, x_4, x_5, x_6 et Z en fonction des variables hors-base x_1 et x_2

$$\begin{cases} x_3 = 300 - x_1 \\ x_4 = 400 - x_2 \\ x_5 = 500 - x_1 - x_2 \\ x_6 = 700 - 2x_1 - x_2 \\ Z = 7x_1 + 5x_2 \end{cases}$$

La variable x_2 reste hors-base donc nulle, la variable x_1 entre en base. On reporte $x_2 = 0$ dans ce système, on obtient:

$$\begin{cases} x_3 = 300 - x_1 \\ x_4 = 400 \\ x_5 = 500 - x_1 \\ x_6 = 700 - 2x_1 \\ Z = 7x_1 \end{cases}$$

On cherche jusqu'à quel niveau il est possible de porter x_1 , de façon compatible avec les contraintes $x_3 \ge 0$, $x_4 \ge 0$, $x_5 \ge 0$, $x_6 \ge 0$. Les contraintes de positivité donnent

$$x_1 \le 300, x_1 \le 500, x_1 \le 350.$$

La valeur maximale prise par x_1 est donc 300. On remplace x_1 par 300 dans le système et on obtient $x_3 = 0$, $x_4 = 400$, $x_5 = 200$, $x_6 = 100$ et Z(300, 0) = 2100.

La variable x_3 est devenue nulle, elle est sortie de la base, x_3 est appelée variable sortante. Les variables x_1 et x_3 ont permuté.

$$\begin{array}{c|c} VDB & VHB \\ \hline x_1 & \leftrightarrow & x_3 \\ x_4 & & x_2 \\ x_5 & & \\ x_6 & & & \end{array}$$

On exprime le programme standard en fonction des nouvelles variables hors-base x_2, x_3 :

$$\begin{cases} x_1 + x_3 = 300 \\ x_2 + x_4 = 400 \\ x_1 + x_2 + x_5 = 500 \\ 2x_1 + x_2 + x_6 = 700 \\ Z = 7x_1 + 5x_2 \end{cases} \Leftrightarrow \begin{cases} x_1 = 300 - x_3 \\ x_4 = 400 - x_2 \\ x_5 = 500 - (300 - x_3) - x_2 \\ x_6 = 700 - 2(300 - x_3) - x_2 \\ Z = 7(300 - x_3) + 5x_2 \end{cases} \Leftrightarrow \begin{cases} x_1 + x_3 = 300 \\ x_2 + x_4 = 400 \\ x_2 - x_3 + x_5 = 200 \\ x_2 - 2x_3 + x_6 = 100 \\ Z = 5x_2 - 7x_3 + 2100 \end{cases}$$

On exprime ce nouveau programme à l'aide d'un second tableau. Pour l'obtenir, on remplace impérativement dans le premier tableau la variable x_3 par la variable x_1 (x_1 et x_3 ont permuté) et ceci dans la colonne "variables dans la base".

VHB	x_1	x_2	x_3	x_4	<i>x</i> ₅	<i>x</i> ₆	cste	
x_1	1	0	1	0	0	0	300	$x_1 + x_3 = 300$
x_4	0	1	0	1	0	0	400	$x_2 + x_4 = 400$
x_5	0	1	-1	0	1	0	200	$x_2 - x_3 + x_5 = 200$
x_6	0	1	-2	0	0	1	100	$x_2 - 2x_3 + x_6 = 100$
Z	0	5	-7	0	0	0	-2100	$Z = 5x_2 - 7x_3 + 2100$

On a pris la colonne des variables dans la base du premier tableau et on y a remplacé x_3 par x_1 . Pour la fonction économique Z, le coefficient constant 2100 est affecté impérativement du signe "—" et on place -2100.

7. Deuxième itération

• Sélection de la variable entrante :

$$Z = 5x_2 - 7x_3 + 2100$$

On sélectionne x_2 ; en effet, toute augmentation de x_3 à partir de la valeur 0 provoquerait une diminution de la fonction économique Z.

• Sélection de la variable sortante : la variable x_3 reste hors-base donc nulle, on remplace x_3 par 0 dans le système précédent, on obtient $x_1 = 300$, $x_4 = 400 - x_2 \ge 0$, $x_5 = 200 - x_2 \ge 0$ et $x_6 = 100 - x_2 \ge 0$. Les contraintes de positivité imposent

$$x_2 \le 400, x_2 \le 200 \text{ et } x_2 \le 100.$$

Jusqu'à quel niveau peut-on porter x_2 ? La valeur maximale prise par x_2 est 100. Dans ce cas,

$$x_1 = 300, x_4 = 300, x_5 = 100 \text{ et } x_6 = 0.$$

La variable sortante est x_6 .

Les variables hors-base sont alors x_3 et x_6 , les variables dans la base sont x_1 , x_2 , x_4 et x_5 . Cette itération conduit au sommet B(300, 100). Pour cette solution, la fonction économique prend la valeur 2600.

$$\begin{array}{c|ccc}
VDB & VHB \\
\hline
x_1 & x_3 \\
x_2 & \longleftrightarrow x_6 \\
x_4 & & \\
x_5 & & & \\
\end{array}$$

 x_2 et x_6 ont permuté. On exprime les variables dans la base en fonction des nouvelles variables hors-base x_3 et x_6

$$\begin{cases} x_1 + x_3 = 300 \\ x_2 + x_4 = 400 \\ x_1 + x_2 + x_5 = 500 \\ 2x_1 + x_2 + x_6 = 700 \\ Z = 7x_1 + 5x_2 \end{cases} \Leftrightarrow \begin{cases} x_1 = 300 - x_3 \\ x_2 = 700 - 2(300 - x_3) - x_6 = 100 + 2x_3 - x_6 \\ x_4 = 400 - (100 + 2x_3 - x_6) \\ x_5 = 500 - (300 - x_3) - (100 + 2x_3 - x_6) \\ Z = 7(300 - x_3) + 5(100 + 2x_3 - x_6) \end{cases}$$

Le programme linéaire se réécrit finalement :

$$\begin{cases} x_1 + x_3 = 300 \\ x_2 - 2x_3 + x_6 = 100 \\ 2x_3 + x_4 - x_6 = 300 \\ x_3 + x_5 - x_6 = 100 \\ Z = 2600 + 3x_3 - 5x_6 \end{cases}$$

				T				
VDB	x_1	x_2	x_3	x_4	x_5	x_6	cste	
x_1	1	0	1	0	0	0	300	$x_1 + x_3 = 300$
x_4	0	0	2	1	0	-1	300	$2x_3 + x_4 - x_6 = 300$
x_5	0	0	1	0	1	-1	100	$x_3 + x_5 - x_6 = 100$
x_2	0	1	-2	0	0	1	100	$x_2 - 2x_3 + x_6 = 100$
Z	0	0	3	0	0	-5	-2600	$Z = 3x_3 - 5x_6 + 2600$

On a pris la colonne des variables dans la base du second tableau et on y a remplacé x_6 par x_2 (ces deux variables permutent).

Pour la fonction économique Z, le coefficient constant 2600 est affecté du signe "-" et on place -2600.

8. Troisième itération

• Sélection de la variable entrante :

$$Z = 3x_3 - 5x_6 + 2600$$

 x_3 sera la variable entrante car toute augmentation de x_6 entraîne une diminution de la fonction économique Z.

• Sélection de la variable sortante : on exprime les variables dans la base en fonction des variables hors-base x_3 et x_6 .

$$\begin{cases} x_1 = 300 - x_3 \\ x_2 = 100 + 2x_3 - x_6 \\ x_4 = 300 - 2x_3 + x_6 \\ x_5 = 100 - x_3 + x_6 \end{cases}$$

La variable x_6 reste hors-base donc nulle, on remplace x_6 par 0. On obtient $x_1 = 300 - x_3 \ge 0$, $x_2 = 100 + 2x_3 \ge 0$, $x_4 = 300 - 2x_3 \ge 0$ et $x_5 = 100 - x_3 \ge 0$. Les contraintes de positivité donnent $x_3 \le 300$, $x_3 \ge -50$, $x_3 \le 150$ et $x_3 \le 100$.

La valeur maximale prise par x_3 est 100. Pour $x_3 = 100$, on obtient

$$x_1 = 200, x_2 = 300, x_4 = 100 \text{ et } x_5 = 0.$$

La variable qui sort de la base est x_5 .

Cette itération conduit au sommet C(200,300). La valeur de la fonction économique est Z=2900.

$$\begin{array}{c|cccc}
VDB & VHB \\
\hline
x_3 & \leftrightarrow & x_5 \\
x_1 & & x_6 \\
x_2 & & & \\
x_4 & & & & \\
\end{array}$$

Les variables x_3 et x_5 ont permuté.

On exprime les variables dans la base en fonction des variables hors-base x_5 et x_6 .

$$\begin{cases} x_3 = 100 - x_5 + x_6 \\ x_1 = 300 - (100 - x_5 + x_6) = 200 + x_5 - x_6 \\ x_2 = 100 + 2(100 - x_5 + x_6) = 300 - 2x_5 + x_6 \\ x_4 = 300 - 2(100 - x_5 + x_6) = 100 + 2x_5 - x_6 \\ Z = 2600 + 3(100 - x_5 + x_6) = 2900 - 3x_5 - 2x_6 \end{cases} \Leftrightarrow \begin{cases} x_3 + x_5 - x_6 = 100 \\ x_1 - x_5 + x_6 = 200 \\ x_2 + 2x_5 - x_6 = 300 \\ x_4 - 2x_5 + x_6 = 100 \\ Z = 2900 - 3x_5 - 2x_6 \end{cases}$$

On obtient le tableau :

VHB VDB	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	x_5	x_6	cste	
x_1	1	0	0	0	-1	1	200	$x_1 - x_5 + x_6 = 200$
x_4	0	0	0	1	-2	1	100	$x_4 - 2x_5 + x_6 = 100$
x_3	0	0	1	0	1	-1	100	$x_3 + x_5 - x_6 = 100$
x_2	0	1	0	0	2	-1	300	$x_2 + 2x_5 - x_6 = 300$
Z	0	0	0	0	-3	-2	-2900	$Z = 2900 - 3x_5 - 2x_6$

On a pris la colonne des variables dans la base du troisième tableau et on y a remplacé x_5 par x_3 . Pour la fonction économique Z, le coefficient constant 2900 est affecté du signe "—" et on place -2900. Conclusion:

$$Z = 2900 - 3x_5 - 2x_6$$

 x_5 et x_6 sont hors-base donc nulles, toute augmentation de x_5 ou x_6 entraı̂ne une diminution de Z. Il n'est plus possible d'améliorer la fonction économique, la solution $(x_1 = 200, x_2 = 300)$ est la solution optimale. On interprète les résultats de la manière suivante :

- . $x_1 = 200$ bureaux de modèle luxe,
- . $x_2 = 300$ bureaux de modèle standard,
- . $x_3 = 100$, il reste une possibilité de fabriquer 100 bureaux de modèle luxe,
- . $x_4 = 100$, il reste une possibilité de fabriquer 100 bureaux de modèle standard,
- . $x_5 = 0$, tout le bois disponible est utilisé,
- . $x_6 = 0$, tout le temps disponible est utilisé.

Z est maximum pour $x_1 = 200, x_2 = 300$ et vaut 2900.

Disposition pratique des tableaux :

Afin de systématiser et de simplifier les calculs, ceux-ci peuvent être présentés sous forme de tableaux. Un tableau correspond à une solution de base et une itération représente une modification du tableau.

- Tableau initial

VHB VDB	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	cste
x_3	1	0	1	0	0	0	300
x_4	0	1	0	1	0	0	400
x_5	1	1	0	0	1	0	500
x_6	2	1	0	0	0	1	700
Z	7	5	0	0	0	0	0

 $x_1 = x_2 = 0$ représente le sommet origine et Z = 0. On a de plus, $x_3 = 300$, $x_4 = 400$, $x_5 = 500$ et $x_6 = 700$.

On sélectionne dans la fonction économique la variable affectée du coefficient strictement positif le plus grand. La variable x_1 entre en base. Quelle est la variable sortante?

On considère la colonne C obtenue en divisant les coefficients constants par la colonne des coefficients de la variable x_1 qui entre en base.

	x_1	constante	C
x_3	1	300	$\frac{300}{1} = 300$
x_4	0	400	$\frac{400}{0} = +\infty$
x_5	1	500	$\frac{500}{1} = 500$
x_6	2	700	$\frac{700}{2} = 350$

On sélectionne dans cette colonne le plus petit nombre strictement positif 300. La variable x_3 sort de la base. Les deux variables x_1 et x_3 ont permuté. Le *pivot* est situé à l'intersection de la colonne variable entrante et de la ligne variable sortante et est égal à 1.

- Deuxième tableau :

Impérativement dans la colonne des variables dans la base du tableau initial, on remplace la variable x_3 qui sort de la base par la variable x_1 qui entre en base, on recopie les autres variables d'où la disposition du second tableau

VHB VDB	x_1	x_2	x_3	x_4	<i>x</i> ₅	<i>x</i> ₆	cste
x_1							
x_4							
x_5							
x_6							
Z							

Comment remplit-on le tableau?

On recopie la ligne L_p du pivot (avec un pivot a = 1) dans la ligne L_{x_1} :

On doit exprimer le programme en fonction des nouvelles variables hors-base x_2 et x_3 .

. Pour la ligne L_{x_4} ,

$$x_2 + x_4 = 400.$$

 x_4 s'exprime bien en fonction de x_2 et x_3 . On recopie cette ligne.

. Pour la ligne L_{x_5} ,

$$x_1 + x_2 + x_5 = 500.$$

Par une combinaison linéaire de la ligne L_{x_5} et de la ligne pivot L_p , on élimine la variable x_1 qui est entrée en base :

L_{x_5}	1	1	0	0	1	0	500
L_p	1	0	1	0	0	0	300
$L_{x_5} - L_p$	0	1	-1	0	1	0	200

On recopie ensuite cette nouvelle ligne L_{x_5} :

$$x_2 - x_3 + x_5 = 200$$

. Pour la ligne L_{x_6}

L_{x_6}	2	1	0	0	0	1	700
L_p	1	0	1	0	0	0	300
$L_{x_6} - 2L_p$	0	1	-2	0	0	1	100

On recopie cette nouvelle ligne L_{x_6} :

$$x_2 - 2x_3 + x_6 = 100$$

. Pour la ligne de la fonction économique L_Z

L_Z	7	5	0	0	0	0	0
L_p	1	0	1	0	0	0	300
$L_Z - 7L_p$	0	5	-7	0	0	0	-2100

d'où la fonction économique exprimée en fonction des variables hors-base :

 $Z = 5x_2 - 7x_3 + 2100$

On obtient donc le second tableau :

On a $x_2 = x_3 = 0$. Comme $x_1 = 300$, on atteint le sommet A(300, 0) et Z = 2900. On a de plus, $x_4 = 400$, $x_5 = 200$, $x_6 = 100$.

- Troisième tableau :

$$Z = 5x_2 - 7x_3 + 2100,$$

la variable entrante est x_2 (une augmentation de x_3 entraı̂ne une diminution de Z). Déterminons la variable sortante : la colonne C est donnée par :

	x_2	constante	C
x_1	0	300	$\frac{300}{0} = +\infty$
x_4	1	400	$\frac{400}{1} = 400$
x_5	1	200	$\frac{200}{1} = 200$
x_6	1	100	$\frac{100}{1} = 100$

On sélectionne dans cette colonne C le coefficient strictement positif le plus petit c'est-à-dire 100, la variable x_6 sort de la base. Les variables x_2 et x_6 ont permuté. Le pivot est situé à l'intersection de la colonne variable entrante et de la ligne variable sortante. Ce pivot vaut 1.

On remplit le troisième tableau : dans la colonne des variables dans la base du deuxième tableau, on remplace la variable x_6 qui sort de la base par la variable x_2 qui entre en base. On recopie la ligne pivot avec le pivot de 1 :

$$L_p: 1.x_2 - 2.x_3 + 1.x_6 = 100$$

VHB	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6	cste
x_1							
x_4							
x_5							
x_2	0	1	-2	0	0	1	100
Z							

Par des combinaisons avec la ligne pivot, on exprime le système en fonction des variables hors-base x_3

et x_6 c'est-à-dire qu'on élimine la variable x_2 qui est entrée en base :

. pour la ligne L_{x_4} :

L_{x_4}	0	1	0	1	0	0	400
L_p	0	1	-2	0	0	1	100
$L_{x_4} - L_p$	0	0	2	1	0	-1	300

. pour la ligne L_{x_5} :

L_{x_5}	0	1	-1	0	1	0	200
L_p	0	1	-2	0	0	1	100
$L_{x_5} - L_p$	0	0	1	0	1	-1	100

. pour la ligne L_Z :

L_Z	0	5	-7	0	0	0	-2100
L_p	0	1	-2	0	0	1	100
$L_Z - 5L_p$	0	0	3	0	0	-5	-2600

Une fois le tableau rempli, on obtient :

VHB	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6	cste
x_1	1	0	1	0	0	0	300
x_4	0	0	2	1	0	-1	300
x_5	0	0	1	0	1	-1	100
x_2	0	1	-2	0	0	1	100
Z	0	0	3	0	0	-5	-2600

On a $x_3 = x_6 = 0$. Comme $x_1 = 300$ et $x_2 = 100$, on est passé du sommet A(300, 0) au sommet B(300, 100). On a de plus $x_4 = 300$, $x_5 = 100$ et Z vaut 2600.

- Quatrième tableau :

$$Z = 3x_3 - 5x_6 + 2600$$

La variable entrante est x_3 (toute augmentation de x_6 entraı̂ne une diminution de Z). Déterminons la variable sortante : la colonne C est donnée par

	x_3	constante	C
x_1	1	300	$\frac{300}{1} = 300$
x_4	2	300	$\frac{300}{2} = 150$
x_5	1	100	$\frac{100}{1} = 100$
x_2	-2	100	$\frac{100}{-2} = -50$

On sélectionne dans cette colonne C le coefficient strictement positif le plus petit c'est-à-dire 100, la variable x_5 sort de la base. Les variables x_3 et x_5 ont permuté. Le pivot est 1, il est situé à l'intersection de la colonne x_3 et de la ligne x_5 . On remplit le quatrième tableau : dans la colonne des variables dans la base du troisième tableau, on remplace la variable x_5 qui sort de base par la variable x_3 qui entre en base. On recopie la ligne pivot avec un pivot de 1 :

	$L_p: x_3 + x_5 - x_6 = 100$											
VHB VDB	x_1	x_2	<i>x</i> ₃	x_4	x_5	x_6	cste					
x_1												
x_4												
x_3	0	0	1	0	1	-1	100					
x_2												
7												

Par des combinaisons avec la ligne pivot, on exprime le système en fonction des variables hors-base x_5 et x_6 c'est-à-dire qu'on élimine la variable x_3 qui est entrée en base :

. pour la ligne L_{x_1} :

L_{x_1}	1	0	1	0	0	0	300
L_p	0	0	1	0	1	-1	100
$L_{x_1} - L_p$	1	0	0	0	-1	1	200

. pour la ligne L_{x_4} :

L_{x_4}	0	0	2	1	0	-1	300
L_p	0	0	1	0	1	-1	100
$L_{x_4} - 2L_p$	0	0	0	1	-2	1	100

. pour la ligne L_{x_2} :

L_{x_2}	0	1	-2	0	0	1	100
L_p	0	0	1	0	1	-1	100
$L_{x_2} + 2L_p$	0	1	0	0	2	-1	300

. pour la ligne L_Z :

L_Z	0	0	3	0	0	-5	-2600
L_p	0	0	1	0	1	-1	100
$L_Z - 3L_p$	0	0	0	0	-3	-2	-2900

On peut ensuite remplir le quatrième tableau :

VHB	x_1	x_2	<i>x</i> ₃	x_4	x_5	x_6	cste
x_1	1	0	0	0	-1	1	200
x_4	0	0	0	1	-2	1	100
x_3	0	0	1	0	1	-1	100
x_2	0	1	0	0	2	-1	300
Z	0	0	0	0	-3	-2	-2900

Conclusion, la fonction économique s'écrit $Z = 2900 - 3x_5 - 2x_6$ où x_5 et x_6 sont les variables hors-base donc nulles. Toute augmentation de x_5 et x_6 conduit à une diminution de Z. Donc $x_1 = 200$, $x_2 = 300$, $x_3 = 100$, $x_4 = 100$ et Z = 2900. La fonction économique atteint son maximum au point C(200, 300) et vaut 2900.

Exemple 2.2.4 (solution unique)

On considère le programme linéaire suivant

$$\begin{cases} x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \\ x_1 + 3x_2 + 2x_3 \le 40 \\ 3x_1 + 2x_2 + x_3 \le 45 \\ x_1 + x_2 + 4x_3 \le 38 \\ Z(x_1, x_2, x_3) = 10x_1 + 14x_2 + 12x_3 \text{ à maximiser} \end{cases}$$

1. Programme standard:

$$\begin{cases} x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0, x_6 \ge 0 \\ x_1 + 3x_2 + 2x_3 + x_4 = 40 \\ 3x_1 + 2x_2 + x_3 + x_5 = 45 \\ x_1 + x_2 + 4x_3 + x_6 = 38 \\ Z(x_1, x_2, x_3) = 10x_1 + 14x_2 + 12x_3 \text{ à maximiser} \end{cases}$$

La solution de base de départ du programme correspond au sommet 0, c'est la solution nulle qui consiste à ne rien produire : $x_1 = x_2 = x_3 = 0$ et Z(0,0,0) = 0. Les variables x_1, x_2, x_3 sont hors-base donc nulles, les autres variables x_4, x_5, x_6 sont dans la base.

2. Tableau initial:

0	caa muua.								
	VHB	x_1	x_2	x_3	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	cste	
	x_4	1	3	2	1	0	0	40	$x_1 + 3x_2 + 2x_3 + x_4 = 40$
	x_5	3	2	1	0	1	0	45	$3x_1 + 2x_2 + x_3 + x_5 = 45$
	x_6	1	1	4	0	0	1	38	$x_1 + x_2 + 4x_3 + x_6 = 38$
	Z	10	14	12	0	0	0	0	$Z = 10x_1 + 14x_2 + 12x_3$

- Choix de la variable entrante : on sélectionne la variable affectée du coefficient strictement positif le plus grand dans la fonction économique, la variable x_2 entre en base.
- \bullet Choix de la variable sortante : on détermine la colonne C :

	x_2	constante	C
x_4	3	40	$\frac{40}{3} \simeq 13,33$
x_5	2	45	$\frac{45}{2} = 22,5$
x_6	1	38	$\frac{38}{1} = 38$

On sélectionne le coefficient strictement positif le plus petit dans la colonne C, la variable x_4 sort de la base.

$$\begin{array}{c|c} \text{VDB} & \text{VHB} \\ \hline x_2 & \leftrightarrow & x_4 \\ x_5 & & x_1 \\ x_6 & & x_3 \\ \hline \end{array}$$

• Le pivot : il est situé à l'intersection de la colonne variable qui entre en base et de la ligne variable qui sort de la base, ce pivot est 3. Afin d'obtenir un pivot de 1, on divise tous les coefficients de la ligne pivot par ce pivot 3. On obtient la nouvelle ligne pivot :

$$L_p: \frac{1}{3}x_1 + x_2 + \frac{2}{3}x_3 + \frac{1}{3}x_4 = \frac{40}{3}$$

soit

L_p	$\frac{1}{3}$	1	$\frac{2}{3}$	1	0	0	$\frac{40}{3}$
-------	---------------	---	---------------	---	---	---	----------------

3. Deuxième tableau :

VHB	x_1	<i>x</i> ₂	x_3	x_4	<i>x</i> ₅	<i>x</i> ₆	cste
x_2	$\frac{1}{3}$	1	$\frac{2}{3}$	$\frac{1}{3}$	0	0	$\frac{40}{3}$
x_5							
x_6							
Z							

- On recopie la ligne du pivot avec le pivot de 1.
- Pour remplir ce second tableau, par des combinaisons avec la ligne pivot, on élimine la variable x_2 qui est entrée en base :
 - . pour la ligne L_{x_5} :

L_{x_5}	3	2	1	0	1	0	45
L_p	$\frac{1}{3}$	1	$\frac{2}{3}$	$\frac{1}{3}$	0	0	$\frac{40}{3}$
$L_{x_5} - 2L_p$	$\frac{7}{3}$	0	$-\frac{1}{3}$	$-\frac{2}{3}$	1	0	$\frac{55}{3}$

. pour la ligne L_{x_6} :

L_{x_6}	1	1	4	0	0	1	38
L_p	$\frac{1}{3}$	1	$\frac{2}{3}$	$\frac{1}{3}$	0	0	$\frac{40}{3}$
$L_{x_6} - L_p$	$\frac{2}{3}$	0	$\frac{10}{3}$	$-\frac{1}{3}$	0	1	$\frac{74}{3}$

. pour la ligne L_Z :

L_Z	10	14	12	0	0	0	0
L_p	$\frac{1}{3}$	1	$\frac{2}{3}$	$\frac{1}{3}$	0	0	$\frac{40}{3}$
$L_Z - 14L_p$	$\frac{16}{3}$	0	$\frac{8}{3}$	$-\frac{14}{3}$	0	0	$-\frac{560}{3}$

Le deuxième tableau s'écrit alors :

VHB VDB	x_1	<i>x</i> ₂	x_3	x_4	<i>x</i> ₅	<i>x</i> ₆	cste
x_2	$\frac{1}{3}$	1	$\frac{2}{3}$	$\frac{1}{3}$	0	0	$\frac{40}{3}$
x_5	$\frac{7}{3}$	0	$-\frac{1}{3}$	$-\frac{2}{3}$	1	0	$\frac{55}{3}$
x_6	$\frac{2}{3}$	0	$\frac{10}{3}$	$-\frac{1}{3}$	0	1	$\frac{74}{3}$
Z	$\frac{16}{3}$	0	$\frac{8}{3}$	$-\frac{14}{3}$	0	0	$-\frac{560}{3}$

On a par conséquent

$$Z = \frac{16}{3}x_1 + \frac{8}{3}x_3 - \frac{14}{3}x_4 + \frac{560}{3}$$

4. Troisième tableau :

- La variable entrante est x_1 ; en effet, $\frac{16}{3}$ est le coefficient strictement positif le plus grand dans la fonction économique.
- $\bullet\,$ La variable sortante est déterminée à l'aide de la colonne C :

	x_1	constante	C
x_2	$\frac{1}{3}$	$\frac{40}{3}$	$\frac{40}{3} / \frac{1}{3} = 40$
x_5	$\frac{7}{3}$	$\frac{55}{3}$	$\frac{55}{3} / \frac{7}{3} = \frac{55}{7}$
x_6	$\frac{2}{3}$	$\frac{74}{3}$	$\frac{74}{3}/\frac{2}{3} = 37$

On choisit le coefficient strictement positif le plus petit dans la colonne C soit $\frac{55}{7}$, la variable x_5 sort de la base.

• Le pivot est $\frac{7}{3}$, situé à l'intersection de la colonne variable qui entre en base et de la ligne variable qui sort de la base. Pour obtenir un pivot de 1, on divise la ligne pivot par ce pivot $\frac{7}{3}$, on obtient

$$L_p = x_1 - \frac{1}{7}x_3 - \frac{2}{7}x_4 + \frac{3}{7}x_5 = \frac{55}{7}$$

soit

$$oxed{L_p \mid 1 \mid 0 \mid -\frac{1}{7} \mid -\frac{2}{7} \mid \frac{3}{7} \mid 0 \mid \frac{55}{7}}$$

- On exprime le système en fonction des nouvelles variables hors-base x_3 et x_4 et on élimine x_1 qui est entrée en base.
 - . Pour la ligne L_{x_2} :

L_{x_2}	$\frac{1}{3}$	1	$\frac{2}{3}$	$\frac{1}{3}$	0	0	$\frac{40}{3}$
L_p	1	0	$-\frac{1}{7}$	$-\frac{2}{7}$	$\frac{3}{7}$	0	$\frac{55}{7}$
$L_{x_2} - \frac{1}{3}L_p$	0	1	$\frac{5}{7}$	$\frac{3}{7}$	$-\frac{1}{7}$	0	$\frac{75}{7}$

. Pour la ligne L_{x_6} :

L_{x_6}	$\frac{2}{3}$	0	$\frac{10}{3}$	$-\frac{1}{3}$	0	1	$\frac{74}{3}$
L_p	1	0	$-\frac{1}{7}$	$-\frac{2}{7}$	$\frac{3}{7}$	0	$\frac{55}{7}$
$L_{x_6} - \frac{2}{3}L_p$	0	0	$\frac{24}{7}$	$-\frac{1}{7}$	$-\frac{2}{7}$	1	$\frac{136}{7}$

. Pour la ligne L_Z :

L_Z	$\frac{16}{3}$	0	$\frac{8}{3}$	$-\frac{14}{3}$	0	0	$-\frac{560}{3}$
L_p	1	0	$-\frac{1}{7}$	$-\frac{2}{7}$	$\frac{3}{7}$	0	$\frac{55}{7}$
$L_Z - \frac{16}{3}L_p$	0	0	$\frac{24}{7}$	$-\frac{22}{7}$	$-\frac{16}{7}$	0	$-\frac{1600}{7}$

On peut maintenant remplir le troisième tableau :

VHB VDB	x_1	<i>x</i> ₂	x_3	x_4	x_5	<i>x</i> ₆	cste
x_2	0	1	$\frac{5}{7}$	$\frac{3}{7}$	$-\frac{1}{7}$	0	$\frac{75}{7}$
x_1	1	0	$-\frac{1}{7}$	$-\frac{2}{7}$	$\frac{3}{7}$	0	$\frac{55}{7}$
x_6	0	0	$\left\lfloor \frac{24}{7} \right\rfloor$	$-\frac{1}{7}$	$-\frac{2}{7}$	1	$\frac{136}{7}$
Z	0	0	$\left rac{24}{7} ight $	$-\frac{22}{7}$	$-\frac{16}{7}$	0	$-\frac{1600}{7}$

5. Quatrième tableau:

$$Z = \frac{24}{7}x_3 - \frac{22}{7}x_4 - \frac{16}{7}x_5 + \frac{1600}{7}$$

• Variable entrante : on sélectionne le coefficient $\frac{24}{7}$, la variable x_3 entre en base.

• Variable sortante :

	x_3	Constante	C
x_2	$\frac{5}{7}$	$\frac{75}{7}$	$\frac{75}{7}/\frac{5}{7} = 15$
x_1	$-\frac{1}{7}$	$\frac{55}{7}$	$\frac{55}{7}/-\frac{1}{7} = -55$
x_6	$\frac{24}{7}$	$\frac{136}{7}$	$\frac{136}{7} / \frac{24}{7} = \frac{17}{3}$

La variable x_6 sort de base.

• Le pivot est $\frac{24}{7}$, on divise la ligne pivot par ce pivot et on obtient la nouvelle ligne pivot :

$$L_p : x_3 - \frac{1}{24}x_4 - \frac{1}{12}x_5 + \frac{7}{24}x_6 = \frac{17}{3}$$

$$L_p \mid 0 \mid 0 \mid 1 \mid -\frac{1}{24} \mid -\frac{1}{12} \mid \frac{7}{24} \mid \frac{17}{3}$$

Dans la colonne variables dans la base du troisième tableau, on remplace la variable x_6 par la variable x_3 et on y recopie la nouvelle ligne pivot

VHB VDB	x_1	<i>x</i> ₂	<i>x</i> ₃	x_4	x_5	x_6	cste
x_2							
x_1							
x_3	0	0	1	$-\frac{1}{24}$	$-\frac{1}{12}$	$\frac{7}{24}$	$\frac{17}{3}$
Z							

On exprime le système en fonction des variables hors-base x_4 , x_5 et x_6 . On élimine la variable x_3 qui est entrée en base :

. pour la ligne L_{x_2} :

L_{x_2}	0	1	$\frac{5}{7}$	$\frac{3}{7}$	$-\frac{1}{7}$	0	$\frac{75}{7}$
L_p	0	0	1	$-\frac{1}{24}$	$-\frac{1}{12}$	$\frac{7}{24}$	$\frac{17}{3}$
$L_{x_2} - \frac{5}{7}L_p$	0	1	0	$\frac{11}{24}$	$-\frac{1}{12}$	$-\frac{5}{24}$	$\frac{20}{3}$

. pour la ligne L_{x_1} :

L_{x_1}	1	0	$-\frac{1}{7}$	$-\frac{2}{7}$	$\frac{3}{7}$	0	$\frac{55}{7}$
L_p	0	0	1	$-\frac{1}{24}$	$-\frac{1}{12}$	$\frac{7}{24}$	$\frac{17}{3}$
$L_{x_1} + \frac{1}{7}L_p$	1	0	0	$-\frac{7}{24}$	$\frac{5}{12}$	$\frac{1}{24}$	$\frac{26}{3}$

. pour la ligne L_Z :

L_Z	0	0	$\frac{24}{7}$	$-\frac{22}{7}$	$-\frac{16}{7}$	0	$-\frac{1600}{7}$
L_p	0	0	1	$-\frac{1}{24}$	$-\frac{1}{12}$	$\frac{7}{24}$	$\frac{17}{3}$
$L_Z - \frac{24}{7}L_p$	0	0	0	-3	-2	-1	-248

Le quatrième tableau est finalement donné par :

VHB	x_1	x_2	<i>x</i> ₃	x_4	x_5	x_6	cste
x_2	0	1	0	$\frac{11}{24}$	$-\frac{1}{12}$	$-\frac{5}{24}$	$\frac{20}{3}$
x_1	1	0	0	$-\frac{7}{24}$	$\frac{5}{12}$	$\frac{1}{24}$	$\frac{26}{3}$
x_3	0	0	1	$-\frac{1}{24}$	$-\frac{1}{12}$	$\frac{7}{24}$	$\frac{17}{3}$
Z	0	0	0	-3	-2	-1	-248

6. Conclusion:

$$Z = -3x_4 - 2x_5 - x_6 + 248$$

Les trois variables x_4 , x_5 et x_6 sont affectées de coefficients négatifs, toute augmentation de x_4 , x_5 ou x_6 diminuerait la valeur de Z. Il n'est plus possible d'améliorer la fonction économique.

Z est maximum pour $x_4=0$, $x_5=0$, $x_6=0$, $x_1=\frac{20}{3}$, $x_2=\frac{26}{3}$, $x_3=\frac{17}{3}$, atteint son maximum au point $\left(\frac{20}{3},\frac{26}{3},\frac{17}{3}\right)$ et vaut $Z\left(\frac{20}{3},\frac{26}{3},\frac{17}{3}\right)=248$. De plus, comme $x_4=0$, $x_5=0$ et $x_6=0$, les trois matières premières sont utilisées en totalité.

Exemple 2.2.5 (infinité de solutions)

On se donne le programme linéaire suivant :

$$\begin{cases} x_1 \ge 0, x_2 \ge 0 \\ x_2 \le 45 \\ 3x_1 + x_2 \le 120 \\ x_1 + 2x_2 \le 100 \\ x_1 + x_2 \le 60 \\ \text{Maximiser } Z(x_1, x_2) = x_1 + 2x_2 \end{cases}$$

1. Résolution graphique

Les côtés du polygone sont définis de la manière suivante :

- le segment $[AB]: x_2 = 45, 0 \le x_1 \le 10$
- le segment $[BC]: x_1 + 2x_2 = 100, 10 \le x_1 \le 20$
- le segment $[CD]: x_1 + x_2 = 60, 20 \le x_1 \le 30$
- le segment $[DE]: 3x_1 + x_2 = 60, 30 \le x_1 \le 40$

On trace les droites D_Z d'équations $Z = x_1 + 2x_2$, ces droites ont pour vecteur directeur $\vec{v} \begin{pmatrix} -2 \\ 1 \end{pmatrix}$. Elles sont parallèles entre-elles et de plus, elles sont parallèles au côté (BC) d'équation $x_1 + 2x_2 = 100$, $10 \le x_1 \le 20$. La droite D_Z qui rencontre le domaine des solutions réalisables et qui a une ordonnée à l'origine maximale est la droite qui contient B et C, d'équation $x_1 + 2x_2 = 100$. La fonction économique atteint son maximum 100 en tous les points du segment [BC]: $\begin{cases} x_1 + 2x_2 = 100 \\ 10 \le x_1 \le 20 \end{cases}$

2. Le simplexe

Comment fait-on apparaître cette infinité de couples solutions dans les tableaux du simplexe?

(a) Tableau initial: les variables hors-base sont x_1 et x_2 , le programme standard est donné par :

$$\begin{cases} x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0, x_6 \ge 0 \\ x_2 + x_3 = 45 \\ 3x_1 + x_2 + x_4 = 120 \\ x_1 + 2x_2 + x_5 = 100 \\ x_1 + x_2 + x_6 = 60 \\ Z(x_1, x_2) = x_1 + 2x_2 \text{ à maximiser} \end{cases}$$

Le tableau initial peut s'écrire sous la forme :

VHB VDB	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	cste	C
x_3	0	1	1	0	0	0	45	$\frac{45}{1} = 45$
x_4	3	1	0	1	0	0	120	$\frac{120}{1} = 120$
x_5	1	2	0	0	1	0	100	$\frac{100}{2} = 50$
x_6	1	1	0	0	0	1	60	$\frac{60}{1} = 60$
Z	1	2						

(b) Première itération

On sélectionne la variable x_2 qui entre en base, la variable qui sort de base est x_3 . Le pivot est 1, la ligne pivot est

les variables x_2 et x_3 permutent

. Pour la ligne L_{x_4} :

L_{x_4}	3	1	0	1	0	0	120
L_p	0	1	1	0	0	0	45
$L_{x_4} - L_p$	3	0	-1	1	0	0	75

. Pour la ligne L_{x_5} :

L_{x_5}	1	2	0	0	1	0	100
L_p	0	1	1	0	0	0	45
$L_{x_5} - 2L_p$	1	0	-2	0	1	0	10

. Pour la ligne L_{x_6} :

L_{x_6}	1	1	0	0	0	1	60
L_p	0	1	1	0	0	0	45
$L_{x_6} - L_p$	1	0	-1	0	0	1	15

. Pour la ligne L_Z :

L_Z	1	2					
L_p	0	1	1	0	0	0	45
$L_Z - 2L_p$	1	0	-2	0	0	0	-90

VHB VDB	x_1	<i>x</i> ₂	x_3	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	cste	C
x_2	0	1	1	0	0	0	45	$\frac{45}{0} = +\infty$
x_4	3	0	-1	1	0	0	75	$\frac{75}{3} = 25$
x_5	1	0	-2	0	1	0	10	$\frac{10}{1} = 10$
x_6	1	0	-1	0	0	1	15	$\frac{15}{1} = 15$
Z	1	0	-2	0	0	0	-90	

Cette première itération conduit du sommet O(0,0) au sommet A(0,45) et Z(0,45)=90.

(c) Deuxième itération

$$Z = x_1 - 2x_3 + 90,$$

la variable x_1 entre en base, la variable x_5 sort de base, le pivot est 1, la ligne pivot est

$$L_p : x_1 - 2x_3 + x_5 = 10$$

soit

L_p	1	0	-2	0	1	0	10
P							

les variables x_1 et x_5 permutent

L_{x_2}	0	1	1	0	0	0	45
L_p	1	0	-2	0	1	0	10
L_{x_2}	0	1	1	0	0	0	45

L_{x_4}	3	0	-1	1	0	0	75
L_p	1	0	-2	0	1	0	10
$L_{x_4} - 3L_p$	0	0	5	1	-3	0	45

L_{x_6}	1	0	-1	0	0	1	15
L_p	1	0	-2	0	1	0	10
$L_{x_6} - L_p$	0	0	1	0	-1	1	5

L_Z	1	0	-2	0	0	0	-90
L_p	1	0	-2	0	1	0	10
$L_Z - L_p$	0	0	0	0	-1	0	-100

VHB VDB	x_1	<i>x</i> ₂	x_3	<i>x</i> ₄	x_5	<i>x</i> ₆	cste	C
x_2	0	1	1	0	0	0	45	$\frac{45}{1} = 45$
x_4	0	0	5	1	-3	0	45	$\frac{45}{5} = 9$
x_1	1	0	-2	0	1	0	10	$\frac{10}{-2} = -5$
x_6	0	0	1	0	-1	1	5	$\frac{5}{1} = 5$
Z	0	0	0	0	-1	0	-100	

Les variables hors-base sont x_3 , x_5 et

$$Z = 0.x_3 + (-1).x_5 + 100 = -x_5 + 100.$$

Pour $x_3 = x_5 = 0$, on obtient $x_1 = 10$, $x_2 = 45$, $x_4 = 45$ et $x_6 = 5$. On atteint le sommet B(10, 45). Dans la fonction économique, la variable hors-base x_3 est affectée du coefficient 0. Si on augmente x_3 , Z sera invariant et égal à 100.

(d) Troisième itération

On fait entrer en base $x_3,\,x_6$ sort de base, le pivot est 1, la ligne pivot est

$$L_p: x_3 - x_5 + x_6 = 5$$

soit

 x_3 et x_6 ont permuté

L_{x_2}	0	1	1	0	0	0	45
L_p	0	0	1	0	-1	1	5
$L_{x_2} - L_p$	0	1	0	0	1	-1	40

L_{x_4}	0	0	5	1	-3	0	45
L_p	0	0	1	0	-1	1	5
$L_{x_4} - 5L_p$	0	0	0	1	2	-5	20

L_{x_1}	1	0	-2	0	1	0	10
L_p	0	0	1	0	-1	1	5
$L_{x_1} + 2L_p$	1	0	0	0	-1	2	20

L_Z	0	0	0	0			
L_p	0	0	1	0	-1	1	5
$L_Z + 0.L_p$	0	0	0	0	-1	0	-100

VHB VDB	x_1	<i>x</i> ₂	<i>x</i> ₃	x_4	x_5	x_6	cste
x_2	0	1	0	0	1	-1	40
x_4	0	0	0	1	2	-5	20
x_1	1	0	0	0	-1	2	20
x_3	0	0	1	0	-1	1	5
Z	0	0	0	0	-1	0	-100

La fonction économique s'écrit :

$$Z = -1.x_5 + 0.x_6 + 100 = -x_5 + 100$$

Les variables hors-base sont x_5 , x_6 . Pour $x_5 = x_6 = 0$, on obtient $x_1 = 20$, $x_2 = 40$, $x_3 = 5$, $x_4 = 20$ et Z = 100. Z est maximum pour le deuxième sommet C(20, 40). On a obtenu Z maximum pour deux sommets adjacents B(10, 45) et C(20, 40). On admettra que la fonction économique atteint son maximum en tous les points du segment [BC].

Remarque 2.2.1

1. La présence d'un zéro dans la ligne pivot entraîne l'invariance de la colonne correspondante.

Reprenons le tableau initial de l'exemple 2.2.3 :

VHB VDB	x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	<i>x</i> ₆	cste	C
x_3	1	0	1	0	0	0	300	$\frac{300}{1} = 300$
x_4	0	1	0	1	0	0	400	$\frac{400}{0} = +\infty$
x_5	1	1	0	0	1	0	500	$\frac{500}{1} = 500$
x_6	2	1	0	0	0	1	700	$\frac{700}{2} = 350$
Z	7	5	0	0	0	0	0	

Le pivot est 1, dans la ligne pivot, les variables x_2 , x_4 , x_5 , x_6 sont affectées du coefficient 0. Ces quatre colonnes seront invariantes dans le tableau suivant, on peut donc recopier ces quatre colonnes sans effectuer de calculs.

VHB VDB	x_1	x_2	x_3	<i>x</i> ₄	x_5	<i>x</i> ₆	cste
x_1	1	0	1	0	0	0	300
x_4		1		1	0	0	
x_5		1		0	1	0	
x_6		1		0	0	1	
Z		5		0	0	0	

On peut aussi recopier la ligne pivot. De plus, le système doit s'exprimer en fonction des variables hors-base x_2 , x_3 donc x_4 s'exprime en fonction de x_2 , x_3 ainsi que x_5 , x_6 et Z d'où les compléments dans le tableau "encadrés". On peut donc, sans effectuer de calculs, remplir certaines cases du tableau.

2. La présence d'un zéro dans la colonne du pivot entraîne l'invariance de la ligne correspondante.

On reprend le second tableau de l'exemple 2.2.3. En utilisant les deux remarques 1. et 2., on obtient

VHB VDB	x_1	x_2	x_3	x_4	<i>x</i> ₅	<i>x</i> ₆ ●	cste	C
x_1	1	0	1	0	0	0	300	$\frac{300}{1} = 300$
x_4	0	1	0	1	0	0	400	$\frac{400}{1} = 400$
x_5	0	1	-1	0	1	0	200	$\frac{200}{1} = 200$
x_6	0	1	-2	0	0	1	100	$\frac{100}{1} = 100$
Z	0	5	-7	0	0	0	-200	

 x_2 entre en base, x_6 sort de base, le pivot est 1, la ligne pivot est

- . Dans la ligne du pivot, les variables x_1 , x_4 ou x_5 sont affectées du coefficient 0, on recopiera ces trois colonnes.
- . On recopie la ligne du pivot.
- . Dans la colonne du pivot apparaît un zéro, on recopie la ligne L_{x_1} .

Ces remarques permettent donc d'obtenir deux lignes et trois colonnes du tableau suivant :

VHB VDB	x_1	x_2	x_3	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	cste
x_1	1	0	1	0	0	0	300
x_4	0			1	0		
x_5	0			0	1		
x_2	0	1	-2	0	0	1	100
Z	0			0	0		

Les variables hors-base étant x_2 , x_3 , le système s'écrit en fonction des variables hors-base seulement d'où les compléments dans le tableau "encadrés'.

Il reste neuf cases à remplir dans le tableau.

3. Si deux coefficients positifs dans la fonction économique sont égaux, on pourra déterminer dans chaque colonne correspondante le pivot éventuel et le rapport associé. On choisira comme pivot celui qui correspond au plus grand rapport.

Exemple 2.2.6 On se donne le programme linéaire suivant :

$$\begin{cases} x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \\ 3x_1 + 5x_2 + x_3 \le 150 \\ x_1 + 4x_2 + 2x_3 + x_5 \le 80 \\ Z(x_1, x_2, x_3) = 2x_1 + 2x_2 + x_3 \text{ à maximiser} \end{cases}$$

Le programme standard s'écrit

$$\begin{cases} x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0 \\ 3x_1 + 5x_2 + x_3 + x_4 = 150 \\ x_1 + 4x_2 + 2x_3 + x_5 = 80 \\ Z(x_1, x_2, x_3) = 2x_1 + 2x_2 + x_3 \text{ à maximiser} \end{cases}$$

VHB	x_1	x_2	x_3	<i>x</i> ₄	<i>x</i> ₅	cste
x_4	3	5	1	1	0	150
x_5	1	4	2	0	1	80
Z	2	2	1			

1. Si l'on choisit comme variable sortante x_1 , la colonne C est alors

	x_1		C
x_4	3	150	$\frac{150}{3} = 50$
x_5	1	80	$\frac{80}{1} = 80$

La variable sortante est x_4 , le pivot est égal à 3, le rapport vaut 50.

2. Si l'on choisit comme variable sortante x_2 , la colonne C est donnée par :

	x_2		C
x_4	5	150	$\frac{150}{5} = 30$
x_5	4	80	$\frac{80}{4} = 20$

La variable sortante est alors x_5 , le pivot est égal à 4 et le rapport vaut 20.

On choisit comme variable sortante celle qui correspond au plus grand rapport. Dans l'exemple, 50 > 20, la variable sortante est x_4 , la variable entrante x_1 , le pivot est 3.

La règle d'entrée du plus grand gain marginal nous propose une méthode qui permet d'obtenir la valeur optimale de Z, mais rien n'indique que cette méthode propose le plus court chemin.

Exemple 2.2.7 Soit le programme linéaire

$$\begin{cases} x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \\ x_1 \le 5 \\ 4x_1 + x_2 \le 25 \\ 8x_1 + 4x_2 + x_3 \le 125 \\ Z(x_1, x_2, x_3) = 4x_1 + 2x_2 + x_3 \text{ à maximiser} \end{cases}$$

Le programme standard s'écrit

$$\begin{cases} x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0, x_6 \ge 0 \\ x_1 + x_4 = 5 \\ 4x_1 + x_2 + x_5 = 25 \\ 8x_1 + 4x_2 + x_3 + x_6 = 125 \\ Z(x_1, x_2, x_3) = 4x_1 + 2x_2 + x_3 \text{ à maximiser} \end{cases}$$

On a le tableau:

VHB	x_1	x_2	x_3	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	cste	C
x_4	1	0	0	1	0	0	5	5
x_5	4	1	0	0	1	0	25	$\frac{25}{4} = 6,25$
x_6	8	4	1	0	0	1	125	$\frac{125}{8} = 15,625$
Z	4	2	1	0	0	0	0	

On se trouve au sommet origine $O(0,0), x_4=5, x_5=25, x_6=125$ et Z=0.

On applique la règle du plus grand gain marginal, x_1 entre en base, x_4 sort de base, le pivot est 1. On obtient le tableau suivant

VHB	x_1	x_2	x_3	x_4	<i>x</i> ₅	<i>x</i> ₆	cste	C
x_4	1	0	0	1	0	0	5	$\frac{5}{0} = +\infty$
x_5	0	1	0	-4	1	0	5	$\frac{5}{1} = 5$
x_6	0	4	1	-8	0	1	85	$\frac{85}{4} = 21,25$
Z	0	2	1	-4	0	0	-20	

On se trouve au sommet A_1 de coordonnées (5,0,0) avec $x_4=0,\,x_5=5,\,x_6=85$ et Z=20.

 x_2 entre en base, x_5 sort de base, le pivot est 1.

VHB	x_1	x_2	x_3	x_4	x_5	<i>x</i> ₆	cste	C
x_1	1	0	0	1	0	0	5	$\frac{5}{1} = 5$
x_2	0	1	0	-4	1	0	5	$-\frac{5}{4}$
x_6	0	0	1	8	-4	1	65	$\frac{65}{8} = 8,125$
Z	0	0	1	4	-2	0	-30	

On se trouve au sommet A_2 de coordonnées (5,5,0) avec $x_4=0, x_5=0, x_6=65$ et Z=30.

 x_4 entre en base, x_1 sort de base, le pivot est 1.

VHB	x_1	<i>x</i> ₂	x_3	<i>x</i> ₄	x_5	<i>x</i> ₆	cste	C
x_4	1	0	0	1	0	0	5	$+\infty$
x_2	4	1	0	0	1	0	25	$+\infty$
x_6	-8	0	1	0	-4	1	25	25
Z	-4	0	1	0	-2	0	-50	

On se trouve au sommet A_3 de coordonnées (0, 25, 0) avec $x_4 = 5$, $x_5 = 0$, $x_6 = 25$ et Z = 50.

 x_3 entre en base, x_6 sort de base, le pivot est 1.

VHB VDB	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	x_5	x_6	cste	C
x_4	1	0	0	1	0	0	5	5
x_2	4	1	0	0	1	0	25	6, 25
x_3	-8	0	1	0	-4	1	25	-3,125
Z	4	0	0	0	-2	-1	-75	

On se trouve au sommet A_4 de coordonnées (0, 25, 25) avec $x_4 = 5$, $x_5 = 0$, $x_6 = 0$ et Z = 75.

 x_1 entre en base, x_4 sort de base, le pivot est 1.

VHB VDB	x_1	<i>x</i> ₂	<i>x</i> ₃	x_4	x_5	x_6	cste	C
x_1	1	0	0	1	0	0	5	$+\infty$
x_2	0	1	0	-4	1	0	5	5
x_3	0	0	1	8	-4	1	65	-16, 25
Z	0	0	0	-4	2	-1	-95	

On se trouve au sommet A_5 de coordonnées (5,5,65) avec $x_4=0,\,x_5=0,\,x_6=0$ et Z=95.

 x_5 entre en base, x_2 sort de base, le pivot est 1.

VHB	x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	x_6	cste	C
x_1	1	0	0	1	0	0	5	5
x_5	0	1	0	-4	1	0	5	-1,25
x_3	0	4	1	-8	0	1	85	-10,625
Z	0	-2	0	4	0	-1	-105	

On se trouve au sommet A_6 de coordonnées (5,0,85) avec $x_4=0, x_5=5, x_6=0$ et Z=105. x_4 entre en base, x_1 sort de base, le pivot est 1.

VHB VDB	x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	x_6	C
x_4	1	0	0	1	0	0	5
x_5	4	1	0	0	1	0	25
x_3	8	4	1	0	0	1	125
Z	-4	-2	0	0	0	-1	-125

On se trouve au sommet A_7 de coordonnées (0,0,125) avec $x_4=5, x_5=25, x_6=0$ et Z=125.

La fonction économique s'écrit alors :

$$Z = -4x_1 - 2x_2 - x_6 + 125,$$

les variables hors-base x_1 , x_2 et x_6 sont affectées de coefficients négatifs, Z atteint son maximum au point $A_7(0,0,125)$ et vaut 125.

La règle du plus grand gain marginal nous a contraint au chemin $OA_1A_2A_3A_4A_5A_6A_7$ de coordonnées respectives (0,0,0), (5,0,0), (5,5,0), (0,25,25), (5,5,65), (5,0,85), (0,0,125).

Retour sur le tableau initial:

VHB VDB	x_1	x_2	x_3	x_4	x_5	<i>x</i> ₆	cste	C
x_4	1	0	0	1	0	0	5	$+\infty$
x_5	4	1	0	0	1	0	25	$+\infty$
x_6	8	4	1	0	0	1	125	125
Z	4	2	1	0	0	0	0	

Si on n'utilise pas la règle du plus grand gain marginal et si on décide de faire entrer x_3 en base, x_6 sort de base et le pivot est 1 :

VHB VDB	x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	x_6	cste
x_4	1	0	0	1	0	0	5
x_5	4	1	0	0	1	0	25
x_3	8	4	1	0	0	1	125
Z	-4	-2	0	0	0	-1	-125

les variables hors-base x_1 , x_2 et x_6 sont affectées de coefficients négatifs, Z atteint son maximum au point $A_7(0,0,125)$ et vaut 125. Le résultat est cette fois-ci atteint en une seule itération à l'aide de ce qu'on appelle la règle du plus petit gain marginal. Il conviendra de choisir alors parmi les deux règles proposées afin de minimiser les temps de calculs.

2.2.3 Détermination d'une solution de base admissible

Reprenons l'exercice 1 et le cas de l'entreprise Bonvin (1.) mais avec des spécifications supplémentaires : Bonvin s'est engagée à fournir à sa clientèle :

- au moins 15000 hectolitres de vin "Extra",
- et au moins 5000 hectolitres de vin "supérieur".

Sous sa forme canonique le programme linéaire s'écrit :

$$\begin{cases} X_1, X_2 \ge 0 \\ 0, 5X_1 + 0, 2X_2 \le 13600 \\ 0, 3X_1 + 0, 6X_2 \le 12000 \\ 0, 2X_1 + 0, 2X_2 \le 10400 \\ X_1 \le 20000 \\ X_2 \le 16000 \\ X_1 \ge 15000 \\ X_2 \ge 5000 \\ \max Z \text{ avec } Z(X_1, X_2) = 400X_1 + 500X_2 \end{cases}$$

Les données supplémentaires ont été traduites par les deux dernières contraintes qui sous leur forme standard s'écrivent :

$$X_1 - e_6 = 15000$$
 $X_2 - e_7 = 5000$ avec $e_6, e_7 \ge 0$.

Dans cette hypothèse, il n'existe plus de base naturelle évidente pour amorcer les calculs car si $X_1 = X_2 = 0$ alors

$$e_6 = -15000$$
 et $e_7 = -5000$

ce qui est en contradiction avec les conditions de non-négativité.

Une solution consiste alors à annuler au hasard n variables parmi les m + n variables que comporte le problème (dans le cas de l'exemple précédent, 2 variables parmi 9).

Il y a alors C_{m+n}^n solutions de base envisageables (ici $C_9^2 = 36$). Mais toutes ne sont pas admissibles et, de plus, si le nombre de variables et de contraintes est important, il devient fastidieux de s'en remettre au hasard.

C'est pourquoi une procédure plus méthodique consiste :

- 1. À introduire dans chaque contrainte h qui pose problème une variable artificielle a_h affectée d'un coefficient égal à 1.
- 2. À infliger à chaque variable artificielle une *pénalité* sous la forme d'un coefficient négatif (dans le cas d'un problème de maximisation) et de valeur absolue très élevée dans la fonction économique originelle.

Ainsi, l'introduction de variables artificielles permet de déterminer simplement une base, certes artificielle, mais admissible pour amorcer l'algorithme.

Les pénalités ont pour objet de provoquer l'élimination des variables artificielles au fil des itérations. La méthode consiste donc ensuite

- 3. À retenir comme solution de base initiale la base artificielle telle que :
 - toutes les variables artificielles sont en base (c'est-à-dire non nulles);
 - toutes les autres variables des contraintes où figurent des variables artificielles (réelles et d'écart) sont hors base (c'est-à-dire nulles).
- 4. À appliquer l'algorithme du simplexe jusqu'à ce que toutes les variables artificielles soient supprimées.

Dans le cas étudié, après introduction des variables artificielles a_6 et a_7 respectivement dans les contraintes 6 et 7, le problème s'écrit :

$$\begin{cases} X_1, X_2, e_1, \dots, e_7, a_6, a_7 \ge 0 \\ 0, 5X_1 + 0, 2X_2 + e_1 = 13600 \\ 0, 3X_1 + 0, 6X_2 + e_2 = 12000 \\ 0, 2X_1 + 0, 2X_2 + e_3 = 10400 \\ X_1 + e_4 = 20000 \\ X_2 + e_5 = 16000 \\ X_1 - e_6 + a_6 = 15000 \\ X_2 - e_7 + a_7 = 5000 \\ \max Z \text{ avec } Z(X_1, X_2) = 400X_1 + 500X_2 - Ga_6 - Ga_7 \end{cases}$$

Les tableaux ci-dessous montrent qu'après deux itérations, une solution de base admissible est obtenue. Cette base n'est plus artificielle mais réelle. La procédure doit ensuite être poursuivie jusqu'à l'obtention de l'optimum, sans tenir compte des colonnes concernant les variables artificielles.

VHB	X_1	X_2	e_1	e_2	e_3	e_4	e_5	e_6	e_7	<i>a</i> ₆ ●	<i>a</i> ₇ ●	cste	C
e_1	0,5	0,2	1	0	0	0	0	0	0	0	0	13600	68000
e_2	0,3	0,6	0	1	0	0	0	0	0	0	0	12000	20000
e_3	0,2	0,2	0	0	1	0	0	0	0	0	0	10400	52000
e_4	1	0	0	0	0	1	0	0	0	0	0	20000	$+\infty$
e_5	0	1	0	0	0	0	1	0	0	0	0	16000	16000
a_6	1	0	0	0	0	0	0	-1	0	1	0	15000	$+\infty$
a_7	0	1	0	0	0	0	0	0	-1	0	1	5000	5000
Z	400	500	0	0	0	0	0	0	0	-G	-G	0	

VHB VDB	X_1	X_2	e_1	<i>e</i> ₂ ●	<i>e</i> ₃ ●	<i>e</i> ₄ ●	<i>e</i> ₅ ●	e_6	e_7	<i>a</i> ₆ ●	cste	C
e_1	0,5	0	1	0	0	0	0	0	0,2	0	12600	25200
e_2	0,3	0	0	1	0	0	0	0	0,6	0	9000	30000
e_3	0,2	0	0	0	1	0	0	0	0,2	0	9400	47000
e_4	1	0	0	0	0	1	0	0	0	0	20000	20000
e_5	0	0	0	0	0	0	1	0	1	0	11000	$+\infty$
a_6	1	0	0	0	0	0	0	-1	0	1	15000	15000
X_2	0	1	0	0	0	0	0	0	-1	0	5000	$+\infty$
Z	400	0	0	0	0	0	0	0	500	-G	-2500000	

VHB VDB	X_1	<i>X</i> ₂	<i>e</i> ₁	<i>e</i> ₂ •	<i>e</i> ₃	e ₄	e ₅	e_6	e_7	cste	C
e_1	0	0	1	0	0	0	0	0,5	0,2	5100	
e_2	0	0	0	1	0	0	0	0,3	0,6	4500	
e_3	0	0	0	0	1	0	0	0,2	0,2	6400	
e_4	0	0	0	0	0	1	0	1	0	5000	
e_5	0	0	0	0	0	0	1	0	1	11000	
X_1	1	0	0	0	0	0	0	-1	0	15000	
X_2	0	1	0	0	0	0	0	0	-1	5000	
Z	0	0	0	0	0	0	0	400	500	-8500000	

On peut alors démarrer l'algorithme du simplexe avec la solution admissible $X_1 = 15000$ et $X_2 = 5000$.

2.2.4 Utilisation de la méthode du simplexe lorsque la solution optimale n'existe pas

On considère l'exemple suivant :

Exemple 2.2.8

$$\begin{cases} x \geq 0, \ y \geq 0 \\ x - y \leq 30 \\ y - x \leq 40 \\ \text{Maximiser } Z(x, y) = 2x + 6y \end{cases}$$

En résolvant graphiquement ce problème on remarque que la solution optimale n'existe pas puisque l'ensemble convexe des solutions réalisables n'est pas borné et la fonction objectif peut augmenter dans ce cas sans limite.

Appliquons l'algorithme du simplexe à cet exemple : la solution (x, y) = (0, 0) est admissible.

VHB VDB	x	y	e_1	e_2	cste	C
e_1	1	-1	1	0	30	-30
y	-1	1	0	1	40	40
Z	2	6	0	0	0	

VHB VDB	x	<i>y</i>	<i>e</i> ₁	e_2	cste	C
e_1	0	0	1	1	70	$+\infty$
y	-1	1	0	1	40	-40
Z	8	0	0	-6	-240	

Aucun coefficient de la colonne sélectionnée n'est positif donc la colonne C ne donne aucune valeur positive non infinie, x peut donc augmenter indéfiniment et la fonction objectif Z également. On dira dans ce cas que la valeur maximale n'existe pas.

2.2.5 Utilisation de la méthode du simplexe dans un problème de minimisation

On considère l'exemple suivant :

Exemple 2.2.9

$$\begin{cases} x \ge 0, \ y \ge 0 \\ x - 3y \ge -1 \\ x - y \le 1 \\ \text{Minimiser } Z(x, y) = -2x + y \end{cases}$$

On définit dans ce cas une façon de transformer les problèmes de minimisation en problèmes de maximisation. On formule le principe suivant :

$$\boxed{\text{minimiser } Z = -\text{ maximiser}(-Z)}$$

Le problème de minimisation précédent devra donc être transformé en un problème de maximisation soit

$$\begin{cases} x \ge 0, \ y \ge 0 \\ x - 3y \ge -1 \\ x - y \le 1 \\ \text{Maximiser } - Z(x, y) = 2x - y \end{cases}$$

Appliquons l'algorithme du simplexe à cet exemple : la solution (x,y) = (0,0) est admissible.

VHB	x	y	e_1	e_2	cste	C
e_1	1	-3	-1	0	-1	-1
e_2	1	-1	0	1	1	1
-Z	2	-1	0	0	0	

VHB VDB	<i>x</i>	y	<i>e</i> ₁	e_2	cste	C
e_1	0	-2	-1	-1	-2	1
x	1	-1	0	1	1	-1
-Z	0	1	0	-2	-2	

VHB VDB	x	<i>y</i>	e_1	e_2	cste	C
y	0	1	$\frac{1}{2}$	$\frac{1}{2}$	1	
x	1	0	$\frac{1}{2}$	$\frac{3}{2}$	2	
-Z	0	0	$-\frac{1}{2}$	$-\frac{5}{2}$	-3	

L'algorithme s'arrête, la solution maximale est -Z=3 si x=2 et y=1. La solution minimale sera donc Z=-3 si x=2 et y=1.

2.2.6 Exercices récapitulatifs

Exercice 10 Une entreprise fabrique 3 produits P_1 , P_2 et P_3 à partir des 3 composants C_1 , C_2 et C_3 . Les composants sont acheminés vers l'usine par l'intermédaire d'une société de transport qui facture le coût de transport à l'unité. Les données sont rassemblées dans les tableaux ci-dessous :

	P	rodui	ts
	P_1	P_2	P_3
Nombre de composants C_1	1	2	4
Nombre de composants C_2	2	1	2
Nombre de composants C_3	3	2	2

Par exemple, pour fabriquer une unité de produit P_3 , il faut 4 composants C_1 , 2 composants C_2 et 2 composants C_3 .

On se donne ensuite les coûts unitaires transport et hors transport en euros des différents composants :

	C_1	C_2	C_3
Coûts unitaires hors-transport (en euros)	20	25	25
Coûts unitaires transport (en euros)	7	6	5

Les contraintes d'approvisionnement sont telles que l'entrepôt dispose chaque semaine de 70 composants C_1 , 80 composants C_2 et 60 composants C_3 .

Les marges sur coûts variables unitaires sont de 3 euros pour P_1 , 5 euros pour P_2 et 6 euros pour P_3 . On note respectivement x, y et z les nombres d'unités de P_1 , P_2 et P_3 fabriquées au cours d'une semaine.

1. Quels sont les coûts totaux hors-transport ainsi que les coûts totaux de transport pour chacun des composants utilisés?

- 2. Présenter la forme canonique du programme linéaire permettant de maximiser la marge sur coûts variables hebdomadaires.
- 3. Présenter la forme standard du programme linéaire permettant de maximiser la marge sur coûts variables hebdomadaires.
- 4. Déterminer le programme optimal de production. Quelle est la marge correspondante?
- 5. Si l'entreprise fabrique le programme optimal, combien reste t-il de composants de chaque sorte?

Exercice 11 Suite à l'incendie d'un entrepôt, une société fait appel à vos compétences pour reconstituer un programme linéaire retrouvé sur place, dans un état malheureusement assez délabré. Les seules informations dont vous disposez consistent en le tableau donné ci dessous :

VDB VHB	x	y	z	e_1	e_2	e_3	cste	C
e_1	1	0	0	1	0	0	400	
e_2	2	1	1	0	1	0	1000	
e_3	2	2	3	0	0	1	2000	
Z	20	16	12	0	0	0	0	

- 1. À l'aide du tableau, déterminer le programme linéaire réalisé par l'entrepôt.
- 2. Recréer un contexte économique d'entrepôt utilisant les données du tableau précédent.
- 3. Résoudre le programme linéaire précédent.
- 4. Comment procède t-on afin de minimiser la fonction objectif?

Exercice 12 Une entreprise fabrique trois types de piles : sèches de type 1 (PS1), sèches de type 2 (PS2) et à combustible (PC). Le processus de fabrication comporte trois étapes :

- l'assemblage,
- un test de qualité,
- un traitement d'isolation.

Seules les piles satisfaisant le test de qualité sont soumises au traitement d'isolation. Les piles qui ratent le test de qualité sont mises au rebut.

Au cours du mois prochain, l'entreprise disposera en temps-machine de 9000 heures pour l'assemblage, de 1200 heures pour les tests de qualité et de 8500 heures pour le traitement d'isolation. Le tableau suivant résume les informations pertinentes du procédé de fabrication :

Type	Assemblage (seconde/unité)	Test (s/unité)	Isolation (s/unité)	Profit (euros/unités)	Taux d'échec	Perte (euros/unité)
PS1	33	3	15	1,25	3%	0,6
PS2	25	4, 5	22	1	1%	0,55
PC	24	4	21	1,1	2%	0,75

- 1. Quel type de problème reconnaît-on?
- 2. Modéliser cet exercice de façon à pouvoir répondre aux questions suivantes :
 - (a) Quel est le nombre optimal de piles de chaque type à fabriquer le mois prochain si l'entreprise est assurée de vendre toute sa production?

(b) Quel sera le profit?

Exercice 13 La société SUPERSTOCK désire stocker dans son nouvel entrepôt trois types de produits à savoir des coussins (produit P_1), des traversins (produit P_2) et des couvertures (produit P_3) à l'aide de trois conditionnements particuliers C_1 (sacs), C_2 (palettes) et C_3 (cartons). Les données sont rassemblées dans les tableaux ci-dessous :

	Conditionnement		
	C_1	C_2	C_3
Nombre de coussins P_1	20	40	80
Nombre de traversins P_2	40	20	40
Nombre de couvertures P_3	60	40	40

Les contraintes de fabrication sont telles que l'entreprise stocke journalièrement 1400 coussins, 1600 traversins et 1200 couvertures. Les gains relatifs au stockage et au transport pour les trois conditionnements sont donnés ci-dessous :

	C_1	C_2	C_3
Gains relatifs au stockage (en euros)	46	55	105
Gains relatifs au transport (en euros)	14	45	15

- 1. Donner la forme canonique du programme linéaire associé.
- 2. Une résolution graphique du programme linéaire précédent est-elle possible? Si oui, comment s'y prendre pour trouver la solution optimale?
- 3. À l'aide de la méthode du simplexe, résoudre le programme linéaire proposé en utilisant la règle du plus grand gain marginal.
- 4. Retrouver cette solution à l'aide du plus petit gain marginal.
- 5. Préciser la valeur maximale de la fonction objectif ainsi que les quantités restantes de coussins, traversins et couvertures.

Exercice 14 Notion de solutions de bases adjacentes. On considère le problème introductif rappelé ci-dessous :

$$\begin{cases} x_1 \ge 0, \ x_2 \ge 0 \\ x_1 \le 4 \\ 2x_2 \le 12 \\ 3x_1 + 2x_2 \le 18 \\ \max z = 3x_1 + 5x_2 \end{cases}$$

- 1. Écrire le problème sous forme d'égalités en ajoutant les variables d'écart.
- 2. Considérer toutes les bases possibles en complétant le tableau suivant :

Valeurs variables VHB	(x_1,x_2)	(x_3, x_4, x_5)	sommet ? (oui/non)
x_1, x_2			
x_1, x_3			
x_1, x_4			
x_1, x_5			
x_2, x_3			
x_2, x_4			
x_2, x_5			
x_3, x_4			
x_3, x_5			
x_4, x_5			

(Pour rappel, une base est obtenue en cherchant l'intersection de deux contraintes prises à l'égalité.) Vérifier la propriété suivante : "Toute solution de base réalisable correspond à un sommet de la région réalisable".

3. Considérer toutes les solutions de base réalisables. Donner les couples de bases adjacentes en complétant le tableau suivant :

Adjacentes? (oui/non)	(0,0)	(0,6)	(4,0)	(4,3)	(2,6)
(0,0)	_				
(0,6)		_			
(4,0)			_		
(4,3)				_	
(2,6)					_

Exercice 15) Planification de production.

Une compagnie fabrique deux produits dans ses deux ateliers. Les marges unitaires sont respectivement de 2 pour le premier produit et de 1 pour le second. Le temps passé (en heures) dans chacun des ateliers pour fabriquer un produit de chaque type est donné au tableau ci-dessous.

Produit Atelier Produit	Produit 1	Produit 2
Atelier 1	1h	0h
Atelier 2	1h	1h

Les capacités résiduelles sont de 4,5 heures par jour dans l'atelier 1 et de 6 heures par jour dans l'atelier 2. Les productions non entières sont permises.

- 1. Formuler mathématiquement le problème.
- 2. Déterminer la solution optimale au moyen de l'algorithme du simplexe. Préciser, pour chaque itération, la solution de base courante et justifier le choix des variables entrantes et sortantes.
- 3. Illustrer sur un graphique le chemin suivi par l'algorithme du simplexe.