

Руководство пользователя

Promobot Robox

Комплект для изучения робототехники

Содержание

Комплектация	4
Описание Robox	5
Описание сервопривода	8
Описание Ranger Сенсора	9
	10

Комплектация

- 1. Кейс
- 2. Сервопривод
- 3. Robox
- 4. Кабель для подключения Robox к ПК
- 5. Кабель для подключения датчика расстояния к Robox
- 6. Кабель для подключения сервопривода к Robox
- 7. Датчик расстояния с подставкой
- 8. Блок питания
- 9. Кабель для подключения блока питания к сети 220 В

Описание Robox

Robox является преобразователем интерфейсов USB-RS485 для подключения к ПК сервоприводов и датчиков расстояния Promobot.

Характеристики:

•	Входное напряжение	~220 E
•	Выходное напряжение	12 E
•	Интерфейс	USB 2.0
	Интерфейс работы с устройствами	RS-485

Преобразователь интерфейсов USB-RS485 для подключения к ПК сервоприводов и датчиков расстояния Promobot — **Сторона A:**

- 1. Кнопка разрыва питания
- 2. USB-разъём для подключения к ПК
- 3. Индикация входного питания
- 4. Разъём питания
- 5. Переключатель режима работы преобразователя
- 6. Разъём UART

Преобразователь интерфейсов USB-RS485 для подключения к ПК сервоприводов и датчиков расстояния Promobot — **Сторона В:**

- 7. Разъёмы для подключения сервопривода
- 8. Индикация выходного питания
- 9. Индикация приёма данных от устройств
- 10. Индикация передачи данных к устройствам
- 11. Разъёмы для подключения датчика расстояния
- 12. Разъемы для подключения датчика расстояния

Описание сервопривода

Сервопривод является высокопроизводительным исполнительным механизмом, разработанным специально для нужд робототехники. Данный сервопривод может использоваться для создания подвижных механизмов повышенной сложности, например, роботов-манипуляторов, pan-tilt модулей и т.п.

Ключевые особенности:

- 1. Возможность последовательного подключения множества сервоприводов (до 250) посредством шины RS-485;
- 2. Контур ПИД-регулирования по положению;
- 3. Контур ПИД-регулирования по скорости;
- 4. Высокое разрешение измерения положения сервопривода (14-бит);
- 5. Высокоточное измерение тока двигателя;
- 6. Быстрая интеграция сервопривода благодаря использованию широко распространённого протокола MODBUS;
- 7. Возможность подключения внешнего датчика углового положения вала для более удобного монтажа;
- 8. Гибкая настройка множества параметров под свои решения;
- 9. Возможность удалённой прошивки сервопривода по шине RS-485.

Характеристики:

•	Напряжение питания	8-40 B
•	Ном. потребление (без нагрузки)	125 мА
•	Ном. потребление (удержание)	2.0 A
•	Крутящий момент удержания (24 В)	35.82 кг/см
•	Передаточное соотношение	1:32
•	Разрешение магнитного энкодера	0.02°
•	Скорость холостого хода (24 В)	80 об/мин
	Macca	500 г

Описание Ranger Сенсора

Ranger_Sensor предназначен для детектирования препятствий и последующего определения расстояния до них. В данном устройстве используются как ультразвуковые (УЗ) сигналы измерения, так и инфракрасные (ИК). Это даёт преимущество в использовании в местах, где одного УЗ-датчика недостаточно (сложная геометрия препятствий, звукопоглощающие поверхности и т.д.)

Ключевые особенности:

- 1. «Гибридный» режим работы. ИК- и УЗ-измерения;
- 2. Возможность последовательного подключения множества датчиков (до 250) посредством шины RS-485;
- 3. Быстрая интеграция датчика благодаря использованию широко распространённого протокола MODBUS;
- 4. Возможность удалённой прошивки датчика по шине RS-485.

Характеристики:

	Напряжение питания	9-12 B
	Ном. потребление (режим измерения)	70 мА
	Частота УЗ-сигнала	40 кГц
-	Звуковое давление УЗ-излучателя	120 дБ
	Чувствительность УЗ-приёмника	64 дБ
	Рабочий угол измерения (УЗ)	30 °
	Макс. измеряемое расстояние (УЗ)	255 см
	Мин. измеряемое расстояние (УЗ	4 см
	Длина волны ИК-излучателя	940 нм
	Макс. измеряемое расстояние (ИК)	200 см
	Мин. измеряемое расстояние (ИК)	2 см
	Рабочий угол ИК-излучателя	35 °
	Рабочий угол ИК-приёмника	25 °

Начало работы

Внимание! Работы необходимо выполнять в строгом порядке, описанном далее.

- Подключить блок питания к сети 220 В;
- 2 Убедиться, что кнопка разрыва питания у Robox в положении «ВЫКЛ»;
- 3 Подключить блок питания к Robox (рис. 1);

4 Подключить кабель для работы с сервоприводом (рис. 2);

Рисунок 2.

5 Подключить кабель для работы с датчиком расстояния (рис. 3);

Рисунок 3.

6 Переключить кнопку разрыва питания в положение «ВКЛ» (рис. 4);

Рисунок 4.

- 7 Проверить индикацию выходного питания Robox;
- В Перевести переключатель режима работы преобразователя в правое положение (RS485) (рис. 5);

Рисунок 5.

9

Подключить Robox к ПК USB-кабелем (рис. 6);

Рисунок 5.

10

Для работы с устройствами через Robox необходимо скачать требуемые репозитории с **github.com/Promobot-education**.

ООО «Промобот»

Россия, г. Пермь Шоссе Космонавтов 111, к. 2 8 (800) 551 65 48 info@promo-bot.ru

