DESCRIPTION

The TC5563APL is a 65.536 bit static random access memory organized as 8,192 words by 8 bits using CMOS technology, and operates from a single 5V supply. Advanced circuit techniques provide both high speed and low power features with a maximum operating current of 5mA/MHz and maximum access time of 100ns/120ns/150ns.

When CE2 is a logical low or $\overline{\text{CE1}}$ is a logical high, the device is placed in low power standby mode in which standby current is $2\mu\text{A}$ typically. The TC5563APL has three control inputs. Two chip enables ($\overline{\text{CE1}}$, CE2) allow for device selection and data retention control, and an output enable input ($\overline{\text{OE}}$) provides fast memory access. Thus the TC5563APL is suitable for use in various microprocessor application systems where high speed, low power, and battery back up are required. The TC5563APL also features pin compatibility with the 64K bit EPROM (TMM2764D). RAM and EPROM are then interchangeable in the same socket, resulting in flexibility in the definition of the quantity of RAM versus EPROM in microprocessor application systems. The TC5563APL is offered in a dual-in-line 28 pin standard 300 mil plastic package.

FEATURES

- Low Power Dissipation 27.5mW/MHz(Max.) Operating
- Standby Current: 100µA(Max.) Ta=70°C
- · Access Time
 - TC5563APL-10: 100ns(Max.) TC5563APL-12: 120ns(Max.)
 - TC5563APL-15: 150ns(Max.)
- · 5V Single Power Supply
- · Power Down Features: CE2, CE1
- · Fully Static Operation
- Data Retention Supply Voltage: 2.0 ~ 5.5V

- Directly TTL Compatible: All Inputs and
- · Pin Compatible with 2764 type EPROM
- · TC5565APL Family (Package type)

Package Type	Device Name
600 mil DIP	*TC5565APL
300 mil DIP (Slim Package)	TC5563APL
	*TC5565AFL

*: See TC5565APL/AFL Technical Data.

PIN CONNECTION (TOP VIEW) 64k but EPPOM TC5563APL TMM2764D 28 pV DD 28 DVCC 27 DPGM 26 DN.C. VPP d1 N.C . C1 27 FR/W 26 FCE2 A1242 A12 d2 A7 d3 A7 43 25 **þ**A8 A6 4 25 A A8 A5 45 24 A9 23 A11 24 A9 23 All A4 06 22 0 0E 21 1 A10 20 7 CE1 19 1 1/08 22 TOE A3 47 A2 08 21 halo Al 09 A0 010 00 011 01 012 02 013 20 CE A0 110 1907 18 06 1/01 411 18 1/07 17 1 1/06 16 1 1/05 15 1/04 17 05 ĭ∕oā**d**a 16 04 1/03 43 OND 44 GND 14

PIN NAMES	
A0 ∿ A12	Address Inputs
R/W	Read/Write Control Input
ŌĒ	Output Enable Input
CEI, CE2	Chip Enable Inputs
I/01 ∿ I/08	Data Input/Output
$v_{\rm DD}$	Power (+5V)
GND	Ground
N.C.	No Connection

TC5563APL-10, TC5563APL-12 TC5563APL-15

OPERATION MODE

OPEPATION MODE	CE1	CE2	ŌĒ	R/W	I/01 ~ I/08	POWER
Read	L	Н	L	Н	DOUT	IDDO
Write	L	н	*	L	DIN	I _{DDO}
Output Deselect	L	Н	Н	Н	High-Z	IDDO
Standby	Н	*	*	*	High-Z	I _{DDS}
	*	L	*	*	High-Z	IDDS

^{*:} H or L

MAXIMUM RATINGS

SYMBOL	ITEM	RATING	UNIT
v_{DD}	Power Supply Voltage	-0.3 ~ 7.0	v
VIN	Input Voltage	-0.3*√7.0	v
V _{I/O}	Input and Output Voltage	-0.5 √ V _{DD} +0.5	V
P_{D}	Power Dissipation	0.8	W
^T solder	Soldering Temperature	260 • 10	°C • sec
T _{stg}	Storage Temperature	-55 ∿ 150	°c
Topr	Operating Temperature	0 ∿ 70	°C

^{*: -3.0}V at pulse width 50ns Max.

D.C. RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
v_{DD}	Power Supply Voltage	4.5	5.0	5.5	
VIH	Input High Voltage	2.2	-	V _{DD} +0.3	
V _{IL}	Input Low Voltage	-0.3*	<u> </u>	0.8	V
v _{DH}	Data Retention Supply Voltage	2.0	-	5.5	

^{*: -3.0}V at pulse width 50ns Max.

D.C. and OPERATING CHARACTERISTICS (Ta=0 \sim 70°C, V_{DD} =5V±10%)

SYMBOL	PARAMETER	TES	r CONDIT	ION		MIN.	TYP.	MAX.	UNIT
IIL	Input Leakage Current	$V_{IN}=0 \sim V_{DD}$				-	-	±1.0	μA
IОН	Output High Current	V _{OH} =2.4V		· · · · · · · · · · · · · · · · · · ·		-1.0	-	-	mA
IOL	Output Low Current	V _{OL} =0.4V				4.0	-		mA
ILO	Output Leakage Current							±1.0	μA
		V _{DD} =5.5V	tcycle=	1.0µs		-	-	10	mA
	Operating Current	CE1=V _{IL} CE2=V _{IH} Other input= V _{IH} /V _{IL} I _{OUT} =OnnA	TC5563A	PL-10	t _{cycle} =100ns	-	•	45	mA
I _{DD01}			TC5563A	PL-12	t _{cycle} =120ns		-	40	mA
			TC5563A	PL-15	t _{cycle} =150ns	-	-	35	mA
	operating ourrent	V _{DD} =5.5V	t _{cycle=1.0µs}		-	-	5	mΛ	
_		CE1=0.2V CE2=V _{DD} -0.2V Other input=	TC5563A	PL-10	t _{cycle} =100ns		1	40	mA
I _{DDO2}			TC5563A	PL-12	t _{cycle} =120ns	_	-	35	mΑ
		V_{DD} -0.2V/0.2V I_{OUT} =0mA	TC5563A	PL-15	t _{cycle} =150ns		-	30	mA
IDDS1	Standby Current	CE1=VIH or CE2	2=V _{IL}			-	-	3	mΛ
* Innaa	Standby Current	$\overline{CE1} = V_{DD} - 0.2V$ $V_{DD} = 5$		5.50	-	2	100		
I _{DDS2}	out telle	or CE2=0.2V		v _{DD} =:	3.0V	-	1	50	μΛ

^{*:} In standby mode with $\overline{CE}1 \ge V_{DD}-0.2V$, these specification limits are guaranteed under the condition of $CE2 \ge V_{DD}-0.2V$ or $CE2 \le 0.2V$.

CAPACITANCE (Ta=25°C)

SYMBOL	PARAMETER	TEST CONDITION	MAX.	UNIT
CIN	Input Capacitance	V _{IN} =GND	10	-T
COUT	Output Capacitance	V _{OUT} =GND	10	pF

Note: This parameter is periodically sampled and is not 100% tested.

TC5563APL-10, TC5563APL-12 TC5563APL-15

A.C. CHARACTERISTICS (Ta=0 \sim 70°C, V_{DD} =5V±10%)

READ CYCLE

SYMBOL	PARAMETER	TC5563APL-10L		TC5563APL-12L		TC5563APL-15L		UNIT
STINDOL	TAKHILIEK	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	ONII
tRC	Read Cycle Time	100	-	120	_	150	-	
tACC	Address Access Time	-	100	-	120	-	150	1
t _{CO1}	CEI Access Time	-	100	-	120	_	150	1
t _{CO2}	CE2 Access Time	-	100	-	120	-	150	1
^t OE	Output Enable to Output Valid	-	50	-	60	_	70	İ
	Chip Enable (CEI, CE2) to Output in Low-Z	10	-	10	-	15	-	ns
t _{OEE}	Output Enable to Output in Low-Z	5	-	5	-	5	-	İ
toD	Chip Enable ($\overline{\text{CEI}}$, CE2) to Output in High-Z	-	35	-	40	-	50	
	Output Enable to Output in High-Z	-	35	-	40	-	50	
t _{OH}	Output Data Hold Time	20	-	20	-	20	-	

WRITE CYCLE

SYMBOL	PARAMETER	TC5563APL-10L		TC5563APL-12L		TC5563APL-15L		
	TARMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNIT
tWC	Write Cycle Time	100	-	120	-	150	-	
t _{WP}	Write Pulse Width	60	-	70	-	90	-	1
tcw	Chip Selection to End of Write	80	-	85	-	100	_	ĺ
tAS	Address Set up Time	0	-	0	-	0	-	1
twR	Write Recovery Time	0	-	0	-	0	-	ns
toDW	R/W to Output High-Z		35	-	40	_	50	Í
t _{OEW}	R/W to Output Low-Z	5	_	5		10	_	
t _{DS}	Data Set up Time	40	_	50	-	60	-	
tDH	Data Hold Time	0	-	0	_	0	_	

A.C. TEST CONDITION

Output Load : 100pF + 1 TTL Gate

Input Pulse Level : 0.6V, 2.4V Timing Measurement Reference Level V_{OUT} : 0.8V, 2.2V

 t_r , t_f : 5ns

TIMING WAVEFORMS

READ CYCLE (1)

WRITE CYCLE 1 (4) (R/W Controlled Write)

WRITE LYCLE 2 (4) (CEI Controlled Write)

Note 1. R/W is High for Read Cycle.

- 2. Assuming that CEI Low transition or CE2 High transition occurs coincident with or after R/W Low transition, Outputs remain in a high impedance state.
- 3. Assuming that $\overline{\text{CEI}}$ High transition or CE2 Low transition occurs coincident with or prior to R/W High transition, Outputs remain in a high impedance state.
- 4. Assuming that $\overline{\text{OE}}$ is High for Write Cycle, Outputs are in high impedance state during this period.

DATA RETENTION CHARACTERISTICS (Ta=0 ~ 70°C)

SYMBOL	PARAMETER		MIN.	TYP.	MAX.	UNIT
v_{DH}	Data Retention Supply Voltage		2.0	-	5.5	V
Innaa	Standby Supply Current	V _{DD} =3.0V	-	-	50	
I _{DDS2}	VDD=5.5V			-	100	μA
^t CDR	Chip Deselection to Data Retention	Mode	0	-	-	μв
tR	Recovery Time		tRC*	-	-	μв

^{*:} Read cycle time.

CET Controlled Data Retention Mode (1)

CE2 Controlled Data Retention Mode (3)

- Note 1: In CEI controlled data retention mode, minimum standby current mode is achieved under the condition of CE2 ≤ 0.2V or CE2 ≥ VDD-0.2V.
 - 2: If the V_{IH} of \overline{CEI} is 2.2V in active operation, I_{DDS1} current flows during the period that the V_{DD} voltage is going down from 4.5V to 2.4V.
 - 3: In CE2 controlled data retention mode, minimum standby current mode is achieved under the condition of $CE2 \le 0.2V$.

DEVICE INFORMATION

The TC5563APL is an asynchronous RAM using address activated circuit technology, thus the internal operation is synchronous. Then once row address change occur, the precharge operation is executed by internal pulse generated from row address transient. Therefore the peak current flows only after row address change, as shown in the following figure.

This peak current may induce the noise on V_{DD}/GND lines. Thus the use of about 0.1 μF decoupling capacitor for every device is recommended to eliminate such noise.

Fig. Typical Current Waveforms

OUTLINE DRAWINGS (DIP28-P-300B)

Unit in mm

Note: Package width and length do not include mold protrusion, allowable mold protrusion is 0.15mm.