Homework 2

Xie Zejian 11810105@mail.sustech.edu.cn

Department of Finance, SUSTech

Last compiled on 23:00, 06 November, 2021

Theorem 0.1 (Lévy-Khintchine Formula). Let X be a Levy process in \mathbb{R}^d , there uniquely exist a triplet $(\mathbf{A}, \gamma, \nu)$ of

$$\begin{cases} \mathbf{A} & \in \mathbb{R}^{d \times d} \geq 0 \\ \gamma & \in \mathbb{R}^d \\ \nu & a \ L\'{e}vy \ measure \ on \ \mathbb{R}^d \end{cases}$$

determine the process X, that is, $\mathbb{E} e^{i\mathbf{u}'X_t} = e^{-t\psi(\mathbf{u})}$, where

$$\psi(\mathbf{u}) = \frac{1}{2} \left\langle \mathbf{u}, \mathbf{A} \mathbf{u} \right\rangle - i \left\langle \mathbf{u}, \boldsymbol{\gamma} \right\rangle + \int_{\mathbb{R}^d} \left(1 + \mathbf{1}_{|x| \le 1} i \left\langle \mathbf{u}, \mathbf{x} \right\rangle - e^{i \left\langle \mathbf{u}, \mathbf{x} \right\rangle} \right) \nu(d\mathbf{x})$$

If $\gamma_0 = \gamma - \int_{|\mathbf{x}| < 1} d\nu$ is well-defined and finite, the we can rewrite above formula by $(\mathbf{A}, \gamma_0, \nu)_0$:

$$\psi(\mathbf{u}) = \frac{1}{2} \left\langle \mathbf{u}, \mathbf{A} \mathbf{u} \right\rangle - i \left\langle \mathbf{u}, \pmb{\gamma_0} \right\rangle + \int_{\mathbb{R}^d} \left(1 - e^{i \left\langle \mathbf{u}, \mathbf{x} \right\rangle} \right) \nu(d\mathbf{x})$$

If $\gamma_1 = \gamma + \int_{|\mathbf{x}|>1} d\nu$ is well-defined and finite,the we can rewrite above formula by $(\mathbf{A}, \gamma_1, \nu)_1$:

$$\psi(\mathbf{u}) = \frac{1}{2} \left\langle \mathbf{u}, \mathbf{A} \mathbf{u} \right\rangle - i \left\langle \mathbf{u}, \boldsymbol{\gamma_1} \right\rangle + \int_{\mathbb{R}^d} \left(1 - e^{i \left\langle \mathbf{u}, \mathbf{x} \right\rangle} + i \left\langle \mathbf{u}, \mathbf{x} \right\rangle \right) \nu(d\mathbf{x})$$

Exercise 0.1 (11).

Solution. Since $\mathbb{E}\,e^{iuZ_t}=e^{-t\psi(u)}$ and $\psi(u)=\int (1-e^{iux})\nu(dx),\ Z_t$ is Lévy process with generating triplet $(0,0,\nu)_0$ and d=1 in theorem 0.1.

Exercise 0.2 (12).

Solution. As compound Poisson process is Levy and thus for $t \geq s$

$$\mathop{\mathbb{E}}_s Z_t = \mathop{\mathbb{E}}_s \left(Z_t - Z_s + Z_s \right) = Z_s + \mathop{\mathbb{E}} Z_{t-s}$$

and Wald's equation yields

$$\mathbb{E} \, Z_t = \mathbb{E} \, N_t \, \mathbb{E} \, U_1 = \lambda t \, \mathbb{E} \, U_1$$

thus Z is integrable and

$$\mathop{\mathbb{E}}_{s}\left(Z_{t}-\lambda t\mathop{\mathbb{E}} U_{1}\right)=\mathop{\mathbb{E}}_{s}Z_{t}-\lambda t\mathop{\mathbb{E}} U_{1}=Z_{s}-\lambda s\mathop{\mathbb{E}} U_{1}$$

completes the proof.

Exercise 0.3 (17).

Solution. Note that the X is a cadlag and [0,t] is a close set in \mathbb{R} , thus compact in \mathbb{R} . Fix some $\omega \in \Omega$, we can choose a subsequence $\{s_n\} \subset \mathbb{R}$ of the sequence whose jump is larger than ϵ s.t. $\lim_{n \to \infty} s_n = s$ for some $s \in [0,t]$ and for each $n, s_n \leq s_{n+1}$. By the assumption, there exists a $\delta \geq 0$ s.t. when $|k-s| \leq \delta$, $|X_k - X_{s-}| \leq \epsilon/3$, and $|X_{k-} - X_{s-}| \leq \epsilon/3$. And as the assumption, for some n s.t. $|s_n - s| \leq \delta$,

$$\left|X_{s_n}-X_{s-}\right|=\left|X_{s_n-}+\Delta X_{s_n}-X_{s-}\right|>2\epsilon/3$$

which leads to a contradiction.

By the discussion above, we can just pick $\epsilon = 1/n$ for each n and note that the set $\{s \in [0,t] : |\Delta X_s| > 0\} = \bigcup_{n \in \mathbb{N}} \{s \in [0,t] : |\Delta X_s| > 1/n\}$ and each set of the right side is finite, thus the set of jumps is countable.

Exercise 0.4 (18).

Solution. By corollary of theorem 36 and theorem 37 (Protter 2005), we have J^{ε} and $Z - J^{\varepsilon}$ are Lévy, the independency follows from noting

$$\psi_{J^{\varepsilon}} + \psi_{Z - J^{\varepsilon}} = \psi_Z$$

in theorem 0.1.

Exercise 0.5 (19).

Solution. Let $\tau_n = \inf\{t > 0 : |X_t| > n\}$, it's series of stopping times since (n, ∞) is borel. Then let $\sigma_n = \tau_n \mathbf{1}_{X_0 \le n}$, note

$$\{\sigma_n \leq t\} = \{\tau_n \leq t\} \cup \{X_0 > n\} \in \mathcal{F}_t$$

hence σ_n is stopping time. Then by the continuity of X, $\{\sigma_n\}$ justify that X is locally bounded.

Exercise 0.6 (24).

Exercise 0.7 (25).

Solution. Fix ε and t, note

$$\left\{ \left| \Delta Z_t \right| > \varepsilon \right\} = \bigcup_n \bigcap_{n \geq m} \left\{ \left| Z_t - Z_{t - \frac{1}{n}} \right| > \varepsilon \right\}$$

hence

$$\begin{split} \mathbb{P}\left\{\left|\Delta Z_{t}\right|>\varepsilon\right\} &= \mathbb{P}\liminf_{n}\left\{\left|Z_{t}-Z_{t-\frac{1}{n}}\right|>\varepsilon\right\} \\ &\leq \liminf_{n}\mathbb{P}\left\{\left|Z_{t}-Z_{t-\frac{1}{n}}\right|>\varepsilon\right\} \\ &\leq \lim_{n\to\infty}\mathbb{P}\left\{\left|Z_{t}-Z_{t-\frac{1}{n}}\right|>\varepsilon\right\} = 0 \end{split}$$

Reference

Protter, Philip E. 2005. Stochastic Differential Equations. Springer.