

Schletter, Inc.		25° Tilt w/o Seismic Design
HCV	Standard PVMini Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

2.2 Snow Loads

Ground Snow Load, $P_g =$	30.00 psf	
Sloped Roof Snow Load, P _s =	18.56 psf	(ASCE 7-05, Eq. 7-2)
I _s =	1.00	
C ₀ =	0.82	

 $C_e = 0.90$ $C_t = 1.20$

2.3 Wind Loads

Design Wind Speed, V =	120 mph	Exposure Category = C
Heiaht ≤	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 22.61 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ TOP	=	1.1	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	1.1 1.7 <i>(Pressure)</i>	testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP	=	-2.2 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1 (Suction)	applied away from the surface.

2.4 Seismic Loads - N/A

Ss	= 0.0	0	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
S_{DS}	= 0.0	0	$C_S = 0$	may be used to calculate the base shear, C_s , of
S_1	= 0.0	0	$\rho = 1.3$	structures under five stories and with a period, T,
S_{D1}	= 0.0	0	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
T _a	= 0.0	0	$C_d = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions	<u>Location</u>
M13	Тор	M3	Outer	N7	Outer
M16	Bottom	M7	Inner	N15	Inner
		M11	Outer	N23	Outer
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions	Location
M1	Outer	M2	Outer	N8	Outer
M5	Inner	M6	Inner	N16	Inner
M9	Outer	M10	Outer	N24	Outer
Front Struts	Location	Bracing	1		
M4	Outer	M15	5		
M8	Inner	M16A	4		
M12	Outer				

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

Purlin Type =	<u>ProfiPlus</u>	
Aluminum Type =	6105-T5	
$F_{ty} =$	35	ksi
L _b =	<u>48</u>	in
$\Phi F_{ty STRONG-AXIS} =$	29.75	ksi
$\Phi F_{ty WEAK-AXIS} =$	28.47	ksi
$S_y =$	0.51	in ³
$S_x =$	0.37	in ³
E =	10100	ksi
I _y =	0.60	in ⁴
I _x =	0.29	in ⁴
A =	0.90	in ²
g =	1.08	lbs/ft
$M_y =$	0.374	k-ft
$M_z =$	0.033	k-ft
$M_{y \text{ allowable}} =$	1.266	k-ft
M _{z allowable} =	0.871	k-ft
Utilization =	<u>33%</u>	

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

Brace Type = Aluminum Type = $F_{ty} =$	1.5x0.25 6061-T6 35 ksi	
Φ =	0.90	
S _y =	0.02 in^3	
Ë =	10100 ksi	
$I_y =$	33.25 in ⁴	
A =	0.38 in^2	
g =	0.45 lbs/f	t
$M_y =$	0.002 k-ft	
P _n =	0.096 k	
$M_{y \text{ allowable}} =$	0.046 k-ft	
P _{n allowable} =	11.813 k	
Utilization =	<u>5%</u>	

A cross brace kit is required every 38 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	Rear	
Tensile Load =	<u>178.73</u>	1620.25	k
Compressive Load =	<u>1087.33</u>	1074.38	k
Lateral Load =	<u>1.54</u>	848.24	k
Moment (Weak Axis) =	0.00	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 24082.4 in-lbs Resisting Force Required = 802.75 lbs A minimum 60in long x 21in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1337.91 lbs to resist overturning. Minimum Width = Weight Provided = 1903.13 lbs Sliding 203.88 lbs Force = Use a 60in long x 21in wide x 18in tall Friction = 0.4 Weight Required = 509.69 lbs ballast foundation to resist sliding. Resisting Weight = 1903.13 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 203.88 lbs Cohesion = 130 psf Use a 60in long x 21in wide x 18in tall 8.75 ft² Area = ballast foundation. Cohesion is OK. Resisting = 951.56 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. f'c = 2500 psi Length = 8 in

Bearing Pressure

 $\frac{\text{Ballast Width}}{21 \text{ in}} = \frac{22 \text{ in}}{23 \text{ in}} = \frac{24 \text{ in}}{2175 \text{ lbs}}$ $P_{\text{ftg}} = (145 \text{ pcf})(5 \text{ ft})(1.5 \text{ ft})(1.75 \text{ ft}) = \frac{1903 \text{ lbs}}{2193 \text{ lbs}} = \frac{2084 \text{ lbs}}{2175 \text{ lbs}}$

ASD LC	1.0D + 1.0S			0D + 1.0S 1.0D + 1.0W			1.0D + 0.75L + 0.75W + 0.75S				0.6D + 1.0W					
Width	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in
FA	353 lbs	353 lbs	353 lbs	353 lbs	428 lbs	428 lbs	428 lbs	428 lbs	556 lbs	556 lbs	556 lbs	556 lbs	-84 lbs	-84 lbs	-84 lbs	-84 lbs
FB	246 lbs	246 lbs	246 lbs	246 lbs	464 lbs	464 lbs	464 lbs	464 lbs	511 lbs	511 lbs	511 lbs	511 lbs	-778 lbs	-778 lbs	-778 lbs	-778 lbs
F _V	28 lbs	28 lbs	28 lbs	28 lbs	362 lbs	362 lbs	362 lbs	362 lbs	291 lbs	291 lbs	291 lbs	291 lbs	-408 lbs	-408 lbs	-408 lbs	-408 lbs
P _{total}	2503 lbs	2594 lbs	2684 lbs	2775 lbs	2794 lbs	2885 lbs	2976 lbs	3066 lbs	2970 lbs	3061 lbs	3152 lbs	3242 lbs	279 lbs	334 lbs	388 lbs	443 lbs
M	250 lbs-ft	250 lbs-ft	250 lbs-ft	250 lbs-ft	497 lbs-ft	497 lbs-ft	497 lbs-ft	497 lbs-ft	541 lbs-ft	541 lbs-ft	541 lbs-ft	541 lbs-ft	634 lbs-ft	634 lbs-ft	634 lbs-ft	634 lbs-ft
е	0.10 ft	0.10 ft	0.09 ft	0.09 ft	0.18 ft	0.17 ft	0.17 ft	0.16 ft	0.18 ft	0.18 ft	0.17 ft	0.17 ft	2.27 ft	1.90 ft	1.63 ft	1.43 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft
f _{min}	251.8 psf	250.2 psf	248.8 psf	247.5 psf	251.2 psf	249.7 psf	248.3 psf	247.0 psf	265.3 psf	263.1 psf	261.1 psf	259.3 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	320.3 psf	315.7 psf	311.4 psf	307.5 psf	387.5 psf	379.8 psf	372.7 psf	366.2 psf	413.7 psf	404.8 psf	396.6 psf	389.1 psf	463.0 psf	202.4 psf	155.9 psf	138.3 psf

Maximum Bearing Pressure = 463 psf Allowable Bearing Pressure = 1500 psf Use a 60in long \times 21in wide \times 18in tall ballast foundation for an acceptable bearing pressure.

Weak Side Design

Overturning Check

 $M_O = 0.0 \text{ ft-lbs}$

Resisting Force Required = 0.00 lbs S.F. = 1.67

Weight Required = 0.00 lbs Minimum Width = 21 in in Weight Provided = 1903.13 lbs A minimum 60in long x 21in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

							•			
ASD LC	1	.238D + 0.875	5E	1.1785	D+0.65625E	+ 0.75S	0	.362D + 0.875	iΕ	
Width		21 in			21 in			21 in		
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	52 lbs	127 lbs	49 lbs	173 lbs	494 lbs	170 lbs	15 lbs	37 lbs	14 lbs	
F _V	0 lbs	0 lbs	0 lbs	1 lbs	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs	
P _{total}	2408 lbs	2483 lbs	2405 lbs	2416 lbs	2737 lbs	2413 lbs	704 lbs	726 lbs	703 lbs	
М	0 lbs-ft	0 lbs-ft	0 lbs-ft	1 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.29 ft	1.75 ft	1.75 ft	1.75 ft	1.75 ft	1.75 ft	1.75 ft	1.75 ft	1.75 ft	
f _{min}	275.1 sqft 283.7 sqft 274.8 sqft		275.8 sqft	312.6 sqft	275.6 sqft	80.4 sqft	83.0 sqft	80.4 sqft		
f _{max}	275.2 psf	283.8 psf	274.9 psf	276.4 psf	312.9 psf	275.9 psf	80.5 psf	83.0 psf	80.4 psf	

Maximum Bearing Pressure = 313 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 21in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 21in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6. DESIGN OF JOINTS AND CONNECTIONS

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	0.836 k	Maximum Axial Load =	1.085 k
M8 Bolt Capacity =	5.692 k	M8 Bolt Capacity =	5.692 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>15%</u>	Utilization =	<u>19%</u>
Diagonal Strut		<u>Bracing</u>	
Maximum Axial Load =	0.447 k	Maximum Axial Load =	0.096 k
	· · · · · · · · · · · · · · · · · · ·	Maximam / Mai Edad =	0.000 K
M8 Bolt Shear Capacity =	5.692 k	M10 Bolt Capacity =	8.894 k
M8 Bolt Shear Capacity = Strut Bearing Capacity =	******		
	5.692 k	M10 Bolt Capacity =	8.894 k

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 30.83 \text{ in} \\ \text{Allowable Story Drift for All Other} & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta = \{ & 0.617 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.005 \text{ in} \\ \hline \frac{N\!/\!A}{} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus**

Strong Axis:

3.4.14

$$L_{b} = 48.00 \text{ in}$$

$$J = 0.255$$

$$124.989$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$C2 \left(\frac{C_{c}}{c}\right)^{2}$$

$$\begin{split} S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= 1701.56 \\ \phi F_L &= \phi b [Bc-1.6Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2}))]} \\ \phi F_L &= 29.7 \text{ ksi} \end{split}$$

3.4.16

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F c y$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 <u>Not Use</u>

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

4.14
$$L_b = 48.00 \text{ in}$$

$$J = 0.255$$

$$129.794$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)}}]$$

$$\phi F_L = 29.7$$

3.4.16

b/t = 23.9

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.5 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

$$h/t = 23.9$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 30$$

$$Cc = 30$$

$$k_1Bbr$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi F_C \varphi$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.7 \text{ ksi}$$

$$Ix = 250988 \text{ mm}^4$$

$$0.603 \text{ in}^4$$

$$y = 30 \text{ mm}$$

$$Sx = 0.511 \text{ in}^3$$

$$M_{max} St = 1.266 \text{ k-ft}$$

3.4.18

 $M_{max}Wk =$

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 20$$

$$Cc = 20$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.5 \text{ ksi}$$

0.871 k-ft

Compression

3.4.9

b/t = 7.4 S1 = 12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi y F c y$ $\phi F_L = 33.3$ ksi b/t = 23.9

 $\begin{array}{lll} b/t = & 23.9 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.5 \text{ ksi} \end{array}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

 $\begin{array}{ll} \phi F_{L} = & 28.47 \text{ ksi} \\ A = & 578.06 \text{ mm}^2 \\ & 0.90 \text{ in}^2 \\ P_{max} = & 25.51 \text{ kips} \end{array}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

$\begin{array}{lll} \textbf{3.4.11} & & & \\ \textbf{L}_{b} = & & 33.78 \text{ in} \\ \textbf{ry} = & & 1.374 \\ \textbf{Cb} = & & 1.33 \\ & & & 21.3453 \end{array}$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

S2 = 79.2

$$\phi F_L = \phi b[Bc-Dc^*Lb/(1.2^*ry^*\sqrt(Cb))]$$

 $\phi F_L = 29.8 \text{ ksi}$

3.4.15

N/A for Strong Direction

Weak Axis:

3.4.11

$$\begin{array}{lll} \mathsf{L_b} = & 33.78 \text{ in} \\ \mathsf{ry} = & 1.374 \\ \mathsf{Cb} = & 1.33 \\ & 24.5845 \\ & \\ S1 = & \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc} \\ \mathsf{S1} = & 1.37733 \\ S2 = & 1.2C_c \\ & \\ \mathsf{S2} = & 79.2 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-Dc^*Lb/(1.2^*ry^*\sqrt{(Cb))})} \end{array}$$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{LIT} = 9.4 \text{ ksi}$$

 $\phi F_1 = 29.8 \text{ ksi}$

3.4.16

$$b/t = 4.29$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16

N/A for Strong Direction

3.4.16

N/A for Weak Direction

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

3.4.16.1 Not Used
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

3.4.16.1

N/A for Weak Direction

3.4.16.2

N/A for Strong Direction

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.2

3.4.18

h/t =

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 9.37 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 13.5 \text{ ksi} \end{array}$$

4.29

3.4.18

$$h/t = 24.46$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$m = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 13.5 \text{ ksi}$$

$$\psi = 217168 \text{ mm}^4$$

$$0.522 \text{ in}^4$$

 $\begin{array}{lll} \phi F_L St = & 29.8 \text{ ksi} \\ Ix = & 364470 \text{ mm}^4 \\ & 0.876 \text{ in}^4 \\ y = & 37.77 \text{ mm} \\ Sx = & 0.589 \text{ in}^3 \\ M_{max} St = & 1.461 \text{ k-ft} \end{array}$

x = 29 mm $Sy = 0.457 \text{ in}^3$ $M_{max}Wk = 0.513 \text{ k-ft}$

Compression

$$\lambda = 0.46067$$

$$r = 1.374 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.90326$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 30.1251 \text{ ksi}$$

3.4.8

$$\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))/(5.1b/t)} \\ \phi F_L = & 10.4 \text{ ksi} \end{array}$$

3.4.9

b/t = 4.29
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\varphi F_L = \varphi \varphi F c y$$

 $\varphi F_L = 33.3 \text{ ksi}$
b/t = 24.46
S1 = 12.21
S2 = 32.70

3.4.9.1

 $\phi F_L =$

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 10.43 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 14.3 \text{ ksi} \end{array}$$

0.0

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

28.2 ksi

3.4.10

Rb/t =

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = 31.2 \text{ ksi}$

$$\varphi F_L = 31.2 \text{ ks}$$

Weak Axis: 3.4.14

$$L_b = 18.00 \text{ in}$$
 $J = 0.16$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.2$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi F Cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_1 = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 31.2 \text{ ksi}$$

$$k = 39958.2 \text{ mm}^4$$

0.096 in⁴

0.163 in³

15 mm

3.4.18

h/t =

$$mDbr$$
 $S1 = 36.9$
 $m = 0.65$
 $C_0 = 15$
 $Cc = 15$
 $S2 = \frac{k_1Bbr}{mDbr}$
 $S2 = 77.3$
 $\phi F_L = 1.3\phi y F c y$
 $\phi F_L = 43.2 \text{ ksi}$
 $\phi F_L = 39958.2 \text{ mm}^4$
 $\phi F_L = 15 \text{ mm}$
 $\phi F_L = 15 \text{ mm}$

 $M_{max}Wk = 0.423 \text{ k-ft}$

7.75

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$

y =

 $M_{max}St = 0.423 \text{ k-ft}$

Sx=

SCHLETTER

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 0.77182 \\ r = & 0.437 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.83792 \\ & \phi F_L = \phi cc(Bc-Dc^*\lambda) \end{array}$$

 $\phi F_L = 24.5226 \text{ ksi}$

3.4.9

b/t = 7.75
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 7.75
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.3 \text{ ksi}$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{3y}{\theta_b}Fcy}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 12.31 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14
$$L_{b} = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{\frac{\theta_{b}}{\theta_{b}}Fcy}\right)^{2}$$

$$S1 = \left(\frac{Bc - \frac{cy}{\theta_b}Fcy}{1.6Dc}\right)$$
$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

$$\phi F_L = 29.8 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 1.17 \phi y F C y$$
 $\phi F_L = 38.9 \text{ ksi}$

7.75

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} \, 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$
 $lx = 39958.2 \text{ mm}^4$
 0.096 in^4
 $y = 15 \text{ mm}$

$$Sx = 0.163 \text{ in}^3$$

$$M_{max}St = 0.404 \text{ k-ft}$$

Weak Axis:

3.4.14

$$L_{b} = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

S2 =
$$1701.56$$

 $\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}]}$

$\phi F_L =$ 29.8

3.4.16

b/t = 7.75

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ Iy = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ x = & 15 \text{ mm} \\ Sy = & 0.163 \text{ in}^3 \\ M_{max} W k = & 0.450 \text{ k-ft} \end{array}$$

SCHLETTER

Compression

3.4.7

$$\lambda = 1.98863$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.85841$$

$$\phi F_L = (\phi ccFcy)/(\lambda^2)$$

$$\phi F_L = 7.59722 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^{\frac{1}{2}}$$
S1 = 6.87

$$\phi F_L {=} \; \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$
 $A = 323.87 \text{ mm}^2$

$$0.50 \text{ in}^2$$

$$P_{max} = 3.81 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14 $L_b =$

$$L_b = 36.18 \text{ in}$$
 $J = 0.16$
 94.9139

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 30.2 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$c2 k_1Bp$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$
$$S2 = 46.7$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Not Used

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S3 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

 $Cc = 15$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi \varphi F_C y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 30.2 \text{ ksi}$$

$$lx = 39958.2 \text{ mm}^4$$

0.096 in⁴

$$y = 15 \text{ mm}$$

 $Sx = 0.163 \text{ in}^3$

$$M_{max}St = 0.410 \text{ k-ft}$$

Weak Axis:

3.4.14

$$L_b = 36.18 \text{ in}$$
 $J = 0.16$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 30.2$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$k_1Bn$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_1 = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$
$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 39958.2 \text{ mm}^4$$

$$Sy = 0.163 \text{ in}^3$$

SCHLETTER

Compression

3.4.7
$$\lambda = 1.5514$$

$$r = 0.437 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.7972$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 11.5927 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 7.75 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \\ b/t = & 7.75 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 11.59 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 5.82 \text{ kips}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F] End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-51.748	-51.748	0	0
2	M16	Υ	-51.748	-51.748	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-69.356	-69.356	0	0
2	M16	V	-107.187	-107.187	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F] End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	138.712	138.712	0	0
2	M16	V	63.051	63.051	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	183.185	2	262.493	2	.003	10	0	10	0	1	0	1
2		min	-219.144	3	-393.793	3	156	3	0	3	0	1	0	1
3	N7	max	0	15	293.608	1	.018	10	0	10	0	1	0	1
4		min	119	2	-30.925	3	495	1	0	1	0	1	0	1
5	N15	max	0	15	836.408	1	.134	9	0	9	0	1	0	1
6		min	-1.187	2	-137.482	3	592	3	0	3	0	1	0	1
7	N16	max	590.067	2	826.449	2	0	11	0	9	0	1	0	1
8		min	-652.496	3	-1246.345	3	-75.652	3	0	3	0	1	0	1
9	N23	max	0	15	293.793	1	.703	1	.001	1	0	1	0	1
10		min	119	2	-30.383	3	018	10	0	10	0	1	0	1
11	N24	max	183.185	2	264.873	2	76.277	3	0	9	0	1	0	1
12		min	-219.615	3	-392.905	3	003	10	0	3	0	1	0	1
13	Totals:	max	955.012	2	2682.222	2	0	1						
14		min	-1091.44	3	-2231.834	3	0	3						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
1	M2	1	max	214.653	1	.645	4	.121	1	0	10	0	15	0	1
2			min	-354.471	3	.152	15	087	3	0	1	0	1	0	1
3		2	max	214.769	1	.599	4	.121	1	0	10	0	15	0	15
4			min	-354.383	3	.141	15	087	3	0	1	0	3	0	4
5		3	max	214.886	1	.553	4	.121	1	0	10	0	9	0	15
6			min	-354.296	3	.13	15	087	3	0	1	0	3	0	4
7		4	max	215.002	1	.508	4	.121	1	0	10	0	9	0	15
8			min	-354.209	3	.12	15	087	3	0	1	0	3	0	4
9		5	max	215.119	1	.462	4	.121	1	0	10	0	9	0	15
10			min	-354.122	3	.109	15	087	3	0	1	0	3	0	4
11		6	max	215.235	1	.416	4	.121	1	0	10	0	9	0	15
12			min	-354.034	3	.098	15	087	3	0	1	0	3	0	4
13		7	max	215.351	1	.371	4	.121	1	0	10	0	1	0	15
14			min	-353.947	3	.087	15	087	3	0	1	0	3	0	4
15		8	max	215.468	1	.325	4	.121	1	0	10	0	1	0	15
16			min	-353.86	3	.077	15	087	3	0	1	0	3	0	4
17		9	max	215.584	1	.279	4	.121	1	0	10	0	1	0	15
18			min	-353.772	3	.066	15	087	3	0	1	0	3	0	4
19		10	max	215.701	1	.234	4	.121	1	0	10	0	1	0	15
20			min	-353.685	3	.055	15	087	3	0	1	0	3	0	4
21		11	max	215.817	1	.188	4	.121	1	0	10	0	1	0	15
22			min	-353.598	3	.044	15	087	3	0	1	0	3	0	4
23		12	max		1	.142	4	.121	1	0	10	0	1	0	15
24			min	-353.51	3	.034	15	087	3	0	1	0	3	0	4
25		13	max	216.05	1	.104	2	.121	1	0	10	0	1	0	15
26			min	-353.423	3	.018	12	087	3	0	1	0	3	0	4
27		14	max	216.166	1	.069	2	.121	1	0	10	0	1	0	15
28			min	-353.336	3	002	3	087	3	0	1	0	3	0	4
29		15	max	216.283	1	.033	2	.121	1	0	10	0	1	0	15
30			min	-353.249	3	029	3	087	3	0	1	0	3	0	4
31		16	max		1	002	2	.121	1	0	10	0	1	0	15
32			min	-353.161	3	056	3	087	3	0	1	0	3	0	4
33		17	max	216.515	1	02	15	.121	1	0	10	0	1	0	15
34			min	-353.074	3	086	4	087	3	0	1	0	3	0	4
35		18	max		1	031	15	.121	1	0	10	0	1	0	15
36			min	-352.987	3	132	4	087	3	0	1	0	3	0	4
37		19	max		1	041	15	.121	1	0	10	0	1	0	15
					•										

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

38		Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft	1 LC y	/-y Mome		z-z Mome	. LC
40										3			0	3	0	
41	39	M3	1	max	137.106	2	1.779	4	.003	10	0	10	0	1	0	4
42	40			min	-128.77	3	.418	15	15	1	0	1	0	10	0	15
43	41		2	max	137.038	2	1.602	4	.003	10	0	10	0	1	0	2
44	42			min	-128.822	3	.377	15	15	1	0	1	0	10	0	12
46	43		3	max	136.969	2	1.425	4	.003	10	0	10	0	1	0	2
46	44			min	-128.873	3	.335	15	15	1	0	1	0	10	0	3
46	45		4	max	136.901	2	1.248	4	.003	10	0	10	0	1	0	15
47				min	-128.925	3	.294	15	15	1	0	1	0	10	0	4
48			5			2			.003	10	0	10	0	1	0	15
49	48			min		3		15				1	0	10	0	
So	49		6	max	136.763	2	.893	4	.003	10	0	10	0	1	0	15
ST				min									0	10		
Secondary Color			7	max	136.695	2					0	10	0		0	15
S3														10		
54			8							10	0	10	0		0	15
55								15			0		0	10	001	
Second Color			9													
57														_		
58			10													
11 max 136.42 2 .029 2 .003 10 0 10 0 1 0 .15			'													
60			11													_
61															_	
62			12													
63			12				-								_	
64 min -129.388 3 347 4 15 1 0 1 0 10 001 4 65 14 max 136.215 2 123 15 .003 10 0 10 0 1 0 15 .001 4 66 min -129.439 3 -524 4 15 1 0 1 0 10 .001 4 67 15 max 136.146 2 165 15 .003 10 0 10 0 9 0 15 68 min -129.494 3 702 4 15 1 0 1 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0			13							-						
65			13											-		
66			1.1													
67 15 max 136.146 2 165 15 .003 10 0 10 0 9 0 15 68 min -129.491 3 702 4 15 1 0 1 0 10 0 10 0 4 69 16 max 136.077 2 206 15 .003 10 0 10 0 10 0 14 0 4 4 15 1 0 1 0 1 0 4 15 1 0 1 0 1 0 4 15 1 0 1 0 1 0 4 15 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1			14											_	_	
68			15													
69 16 max 136.077 2 206 15 .003 10 0 10 0 10 0 15 70 min -129.542 3 879 4 15 1 0 1 0 1 0 4 71 17 max 136.009 2 248 15 .003 10 0 10 0 10 0 10 0 15 72 min -129.594 3 -1.056 4 15 1 0 1 <td></td> <td></td> <td>15</td> <td></td>			15													
TO			16													_
71 17 max 136.009 2 248 15 .003 10 0 10 0 10 0 10 0 15 72 min -129.594 3 -1.056 4 15 1 0 1 0 1 0 4 73 18 max 135.94 2 29 15 .003 10 0 10 0 10 0 14 0 4 4 -15 1 0 </td <td></td> <td></td> <td>16</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>			16										-			
72 min -129.594 3 -1.056 4 15 1 0 1 0 4 73 18 max 135.94 2 29 15 .003 10 0 10 0 10 0 15 74 min -129.645 3 -1.233 4 15 1 0 1 0 1 0 4 75 19 max 135.872 2 331 15 .003 10 0 10 0 1			47											_		
73 18 max 135.94 2 29 15 .003 10 0 10 0 10 0 15 74 min -129.645 3 -1.233 4 15 1 0 1 0 1 0 4 75 19 max 135.872 2 331 15 .003 10 0 10 0 10 0 1 0 4 521 1 0 <td< td=""><td></td><td></td><td>17</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			17													
74 min -129.645 3 -1.233 4 15 1 0 1 0 1 0 4 75 19 max 135.872 2 331 15 .003 10 0 10 0 10 0 1 76 min -129.697 3 -1.41 4 15 1 0			4.0							-						
75 19 max 135.872 2 331 15 .003 10 0 10 0 10 0 1 76 min -129.697 3 -1.41 4 15 1 0 1 0 1 0 1 77 M4 1 max 292.444 1 0 1 .018 10 0 1 0 3 0 1 78 min -31.799 3 0 1 -521 1 0 1 0 2 0 1 80 min -31.755 3 0 1 -521 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1			18												_	
76 min -129.697 3 -1.41 4 15 1 0 1 0 1 77 M4 1 max 292.444 1 0 1 .018 10 0 1 0 3 0 1 78 min -31.799 3 0 1 521 1 0 1 0 2 0 1 79 2 max 292.508 1 0 1 .018 10 0 1			40											_		
77 M4 1 max 292.444 1 0 1 .018 10 0 1 0 3 0 1 78 min -31.799 3 0 1 521 1 0 1 0 2 0 1 79 2 max 292.508 1 0 1 .018 10 0 1			19													
78 min -31.799 3 0 1 521 1 0 1 0 2 0 1 79 2 max 292.508 1 0 1 .018 10 0 1 0 15 0 1 80 min -31.75 3 0 1 521 1 0 1		N 4 4														
79 2 max 292.508 1 0 1 .018 10 0 1 0 15 0 1 80 min -31.75 3 0 1 521 1 0 1 0 1 0 1 81 3 max 292.573 1 0 1 .018 10 0 1 0		<u>IVI4</u>	1		292.444			1				1 1				
80 min -31.75 3 0 1 521 1 0 1 0 1 81 3 max 292.573 1 0 1 .018 10 0 1 </td <td></td> <td>$\overline{}$</td>																$\overline{}$
81 3 max 292.573 1 0 1 .018 10 0 1 0			2													
82 min -31.702 3 0 1 521 1 0 1			_											_		
83 4 max 292.638 1 0 1 .018 10 0 1 0 10 0 1 84 min -31.653 3 0 1 521 1 0 1 0 1 0 1 85 5 max 292.703 1 0 1 .018 10 0 1 <td< td=""><td></td><td></td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			3													
84 min -31.653 3 0 1 521 1 0 1							_	_		-						•
85 5 max 292.703 1 0 1 .018 10 0 1 0 10 0 1 86 min -31.605 3 0 1 521 1 0 1 0 1 0 1 87 6 max 292.767 1 0 1 .018 10 0 1 0			4													_
86 min -31.605 3 0 1 521 1 0 1 0 1 0 1 87 6 max 292.767 1 0 1 .018 10 0 1 0 1 0 0 1 88 min -31.556 3 0 1 521 1 0 1 0 1 0 1 89 7 max 292.832 1 0 1 .018 10 0 1 0 1 0 1 90 min -31.508 3 0 1 521 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1										_						_
87 6 max 292.767 1 0 1 .018 10 0 1 0 10 0 1 88 min -31.556 3 0 1 521 1 0 1 0 1 0 1 89 7 max 292.832 1 0 1 .018 10 0 1 0 1 0 1 90 min -31.508 3 0 1 521 1 0 1 0 1 0 1 91 8 max 292.897 1 0 1 .018 10 0 1 </td <td></td> <td></td> <td>5</td> <td></td>			5													
88 min -31.556 3 0 1 521 1 0 1																
89 7 max 292.832 1 0 1 .018 10 0 1 0 10 0 1 90 min -31.508 3 0 1 521 1 0 1 0 1 0 1 91 8 max 292.897 1 0 1 .018 10 0 1 0 1 0 1 92 min -31.459 3 0 1 521 1 0 1 0 1 0 1 93 9 max 292.961 1 0 1 .018 10 0 1 0 1 0 1			6													_
90 min -31.508 3 0 1 521 1 0 1 0 1 0 1 91 8 max 292.897 1 0 1 .018 10 0 1 0 1 0 1 92 min -31.459 3 0 1 521 1 0 1 0 1 0 1 93 9 max 292.961 1 0 1 0 1 0 1 0 1														_		
91 8 max 292.897 1 0 1 .018 10 0 1 0 10 0 1 92 min -31.459 3 0 1 521 1 0 1 0 1 0 1 93 9 max 292.961 1 0 1 .018 10 0 1 0 1 0 1			7			1_	0				0		-		_	1
92 min -31.459 3 0 1 521 1 0 1 0 1 0 1 93 9 max 292.961 1 0 1 0 1 0 1 0 1						3	0	1		1	0	1	0	_	0	1
93 9 max 292.961 1 0 1 .018 10 0 1 0 10 0 1			8	max		1	0	1		10	0	1	0	10	0	1
				min		3	0	1		1		1	0		0	1
94 min -31.411 3 0 1 521 1 0 1 0 1 0 1			9	max			0	1		10	0	1	0	10	0	
	94			min	-31.411	3	0	1	521	1	0	1	0	1	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	_LC
95		10	max	293.026	1	0	1	.018	10	0	1	0	10	0	1
96			min	-31.362	3	0	1	521	1	0	1	0	1	0	1
97		11	max	293.091	1	0	1	.018	10	0	1	0	10	0	1
98			min	-31.314	3	0	1	521	1	0	1	0	1	0	1
99		12	max	293.155	1	0	1	.018	10	0	1	0	10	0	1
100		10	min	-31.265	3	0	1	521	1	0	1	0	1	0	1
101		13	max	293.22	1	0	1	.018	10	0	1	0	10	0	1
102			min	-31.217	3	0	1	521	1	0	1	0	1	0	1
103		14	max	293.285	1	0	1	.018	10	0	1	0	10	0	1
104		4.5	min	-31.168	3	0	1	521	1	0	1	0	1	0	1
105		15	max	293.35	1	0	1	.018	10	0	1	0	10	0	1
106		1.0	min	-31.12	3	0	1	521	1	0	1	0	1	0	1
107		16	max	293.414	1	0	1	.018	10	0	1	0	10	0	1
108			min	-31.071	3	0	1	521	1	0	1	0	1	0	1
109		17	max	293.479	1	0	1	.018	10	0	1	0	10	0	1
110		40	min	-31.023	3	0	1	521	1	0	1	0	1	0	1
111		18	max		1	0	1	.018	10	0	1	0	10	0	1
112		40	min	-30.974	3	0	1	521	1	0	1	0	1	0	1
113		19	max		1	0	1	.018	10	0	1	0	10	0	1
114	NAC	4	min	-30.925	3	0	1	521	1	0	1	0	1	0	1
115	<u>M6</u>	1	max		1	.643	4	.028	9	0	3	0	3	0	1
116			min	-1085.172	3	.151	15	268	3	0	2	0	2	0	1
117		2	max		1	.597	4	.028	9	0	3	0	3	0	15
118			min	-1085.084	3	.141	15	268	3	0	2	0	2	0	4
119		3	max	672.258	1	.552	4	.028	9	0	3	0	3	0	15
120		4	min		3	.13	15	268	3	0	2	0	2	0	4
121		4	max		1	.506	4	.028	9	0	3	0	3	0	15
122		-		-1084.91	3	.119	15	268	3	0	2	0	2	0	4
123		5		672.491	1	.46	4	.028	9	0	3	0	3	0	15
124		6	min	-1084.822	3	.108	15	268	9	0	2	0	_	0	4
125		6		672.607 -1084.735	3	.415	15	.028	3	0	3	0	9	0	15
126 127		7	min			.098	2	268		0	2		9	-	15
			max	-1084.648	1	.378	12	.028	9	0	3	0	3	0	15
128		0	min		<u>3</u> 1	.085	2	268	9		2	0	9	0	4
129 130		8	max	672.84 -1084.56	3	.342 .067	12	.028 268	3	0	2	0	3	0	15
131		9			1	.307	2	.028	9	0	3	0	9	0	15
132		9	max min	-1084.473	3	.049	12	268	3	0	2	0	3	0	4
133		10		673.073	1	.271	2	.028	9	0	3	0	9	0	15
134		10	min	-1084.386	3	.031	12	268	3	0	2	0	3	0	4
135		11		673.189	1	.235	2	.028	9	0	3	0	9	0	15
136				-1084.299	3	.014	12	268	3	0	2	0	3	0	4
137		12		673.306	1	.2	2	.028	9	0	3	0	9	0	15
138		12		-1084.211	3	012	3	268	3	0	2	0	3	0	2
139		13		673.422	1	.164	2	.028	9	0	3	0	9	0	12
140		'0		-1084.124	3	039	3	268	3	0	2	0	3	0	2
141		14		673.539	1	.129	2	.028	9	0	3	0	9	0	12
142		17		-1084.037	3	066	3	268	3	0	2	0	3	0	2
143		15		673.655	1	.093	2	.028	9	0	3	0	9	0	12
144		10	min	-1083.949	3	092	3	268	3	0	2	0	3	0	2
145		16		673.771	1	.057	2	.028	9	0	3	0	9	0	12
146		10	min	-1083.862	3	119	3	268	3	0	2	0	3	0	2
147		17	max		1	.022	2	.028	9	0	3	0	9	0	12
148			min		3	146	3	268	3	0	2	0	3	0	2
149		18	max	674.004	1	014	2	.028	9	0	3	0	9	0	12
150		'0	min		3	172	3	268	3	0	2	0	3	0	2
151		19		674.121	1	042	15	.028	9	0	3	0	9	0	12
.01		10	mux	VI 1.121		.072	, .0	.020							

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]		Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
152			min	-1083.6	3	199	3	268	3	0	2	0	3	0	2
153	M7	1	max	447.125	2	1.78	4	.022	3	0	9	0	1	0	2
154			min	-354.844	3	.419	15	015	1	0	3	0	3	0	12
155		2	max	447.057	2	1.603	4	.022	3	0	9	0	1	0	2
156			min	-354.895	3	.377	15	015	1	0	3	0	3	0	3
157		3	max	446.988	2	1.426	4	.022	3	0	9	0	1	0	2
158			min	-354.947	3	.335	15	015	1	0	3	0	3	0	3
159		4	max	446.919	2	1.248	4	.022	3	0	9	0	1	0	2
160			min	-354.998	3	.294	15	015	1	0	3	0	3	0	3
161		5	max	446.851	2	1.071	4	.022	3	0	9	0	1	0	15
162			min	-355.05	3	.252	15	015	1	0	3	0	3	0	3
163		6	max	446.782	2	.894	4	.022	3	0	9	0	1	0	15
164			min	-355.101	3	.21	15	015	1	0	3	0	3	0	4
165		7	max	446.714	2	.717	4	.022	3	0	9	0	1	0	15
166			min	-355.152	3	.169	15	015	1	0	3	0	3	0	4
167		8	max	446.645	2	.54	4	.022	3	0	9	0	1	0	15
168			min	-355.204	3	.127	15	015	1	0	3	0	3	001	4
169		9	max	446.576	2	.362	4	.022	3	0	9	0	1	0	15
170			min	-355.255	3	.085	15	015	1	0	3	0	3	001	4
171		10	max	446.508	2	.214	2	.022	3	0	9	0	1	0	15
172			min	-355.307	3	.026	12	015	1	0	3	0	3	001	4
173		11	max	446.439	2	.076	2	.022	3	0	9	0	1	0	15
174			min	-355.358	3	069	3	015	1	0	3	0	3	001	4
175		12	max	446.371	2	04	15	.022	3	0	9	0	1	0	15
176			min	-355.41	3	173	3	015	1	0	3	0	3	001	4
177		13	max		2	081	15	.022	3	0	9	0	1	0	15
178			min	-355.461	3	346	4	015	1	0	3	0	3	001	4
179		14	max	446.233	2	123	15	.022	3	0	9	0	1	0	15
180			min	-355.513	3	524	4	015	1	0	3	0	3	001	4
181		15	max	446.165	2	164	15	.022	3	0	9	0	1	0	15
182			min	-355.564	3	701	4	015	1	0	3	0	3	0	4
183		16	max		2	206	15	.022	3	0	9	0	1	0	15
184			min	-355.616	3	878	4	015	1	0	3	0	3	0	4
185		17	max	446.028	2	248	15	.022	3	0	9	0	1	0	15
186			min	-355.667	3	-1.055	4	015	1	0	3	0	3	0	4
187		18	max		2	289	15	.022	3	0	9	0	9	0	15
188			min	-355.718	3	-1.232	4	015	1	0	3	0	3	0	4
189		19	max	445.89	2	331	15	.022	3	0	9	0	9	0	1
190			min	-355.77	3	-1.41	4	015	1	0	3	0	3	0	1
191	M8	1	max	835.244	1	0	1	.142	9	0	1	0	2	0	1
192				-138.356	3	0	1	579	3	0	1	0	3	0	1
193		2		835.308	1	0	1	.142	9	0	1	0	9	0	1
194					3	0	1	579	3	0	1	0	3	0	1
195		3		835.373	1	0	1	.142	9	0	1	0	9	0	1
196			min	-138.259	3	0	1	579	3	0	1	0	3	0	1
197		4		835.438	1	0	1	.142	9	0	1	0	9	0	1
198			min	-138.21	3	0	1	579	3	0	1	0	3	0	1
199		5		835.503	1	0	1	.142	9	0	1	0	9	0	1
200				-138.162	3	0	1	579	3	0	1	0	3	0	1
201		6	max		1	0	1	.142	9	0	1	0	9	0	1
202					3	0	1	579	3	0	1	0	3	0	1
203		7		835.632	1	0	1	.142	9	0	1	0	9	0	1
204				-138.065	3	0	1	579	3	0	1	0	3	0	1
205		8		835.697	_ <u></u>	0	1	.142	9	0	1	0	9	0	1
206			min	-138.016	3	0	1	579	3	0	1	0	3	0	1
207		9		835.761	<u> </u>	0	1	.142	9	0	1	0	9	0	1
208		3		-137.967	3	0	1	579	3	0	1	0	3		1
200			ППП	-137.907	J	U		579	J	U		U	J	0	

Model Name

Schletter, Inc.HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
209		10	max	835.826	1	0	1	.142	9	0	1	0	9	0	1
210			min	-137.919	3	0	1	579	3	0	1	0	3	0	1
211		11	max	835.891	1	0	1	.142	9	0	1	0	9	0	1
212			min	-137.87	3	0	1	579	3	0	1	0	3	0	1
213		12	max	835.956	1	0	1	.142	9	0	1	0	9	0	1
214			min	-137.822	3	0	1	579	3	0	1	0	3	0	1
215		13	max	836.02	1	0	1	.142	9	0	1	0	9	0	1
216			min	-137.773	3	0	1	579	3	0	1	0	3	0	1
217		14		836.085	1	0	1	.142	9	0	1	0	9	0	1
218				-137.725	3	0	1	579	3	0	1	0	3	0	1
219		15	max		1	0	1	.142	9	0	1	0	9	0	1
220				-137.676	3	0	1	579	3	0	1	0	3	0	1
221		16		836.214	1	0	1	.142	9	0	1	0	9	0	1
222				-137.628	3	0	1	579	3	0	1	0	3	0	1
223		17		836.279	1	0	1	.142	9	0	1	0	9	0	1
224		- ' '		-137.579	3	0	1	579	3	0	1	0	3	0	1
225		18		836.344	1	0	1	.142	9	0	1	0	9	0	1
226		10		-137.531	3	0	1	579	3	0	1	0	3	0	1
227		19		836.408	_ <u></u>	0	1	.142	9	0	1	0	9	0	1
228		19		-137.482	3	0	1	579	3	0	1	0	3	0	1
229	M10	1		216.114	<u> </u>	.645	4	<u>379</u> 0	10	0	1	0	1	0	1
	IVITO							106	1		_				
230		2		-296.423	3	.152	15			0	3	0	3	0	1
231		2		216.231	1_	.599	4	0	10	0	1	0	1	0	15
232				-296.336	3	.141	15	106	1	0	3	0	3	0	4
233		3		216.347	1_	.553	4	0	10	0	1	0	1	0	15
234				-296.249	3	.13	15	106	1	0	3	0	3	0	4
235		4		216.463	_1_	.508	4	0	10	0	1	0	1	0	15
236		_		-296.161	3_	.12	15	106	1	0	3	0	3	0	4
237		5	max	216.58	_1_	.462	4	0	10	0	1	0	1	0	15
238				-296.074	3	.109	15	106	1	0	3	0	3	0	4
239		6	max		_1_	.416	4	0	10	0	1	0	1	0	15
240				-295.987	3_	.098	15	106	1	0	3	0	3	0	4
241		7	max	216.813	_1_	.371	4	0	10	0	1	0	9	0	15
242			min	-295.899	3	.087	15	106	1	0	3	0	3	0	4
243		8			_1_	.325	4	0	10	0	1	0	10	0	15
244			min	-295.812	3	.077	15	106	1	0	3	0	3	0	4
245		9		217.045	_1_	.279	4	0	10	0	1	0	10	0	15
246			min	-295.725	3	.066	15	106	1	0	3	0	3	0	4
247		10	max	217.162	1	.234	4	0	10	0	1	0	10	0	15
248			min	-295.638	3	.055	15	106	1	0	3	0	3	0	4
249		11	max	217.278	1	.188	4	0	10	0	1	0	10	0	15
250				-295.55	3	.044	15	106	1	0	3	0	3	0	4
251		12		217.395	1	.142	4	0	10	0	1	0	10	0	15
252				-295.463	3	.034	15	106	1	0	3	0	3	0	4
253		13		217.511	1	.104	2	0	10	0	1	0	10	0	15
254				-295.376	3	.023	15	106	1	0	3	Ö	3	0	4
255		14		217.627	1	.069	2	0	10	0	1	0	10	0	15
256				-295.288	3	.012	12	106	1	0	3	0	3	0	4
257		15	max		1	.033	2	0	10	0	1	0	10	0	15
258		13		-295.201	3	01	3	106	1	0	3	0	3	0	4
259		16	max		<u> </u>	003	2	0	10	0	1	0	10	0	15
		10												_	
260		17	_	-295.114	3_	04	4	106	1	0	3	0	3	0	4
261		17		217.977	1	02	15	0	10	0	1	0	10	0	15
262		40		-295.026	3	086	4	106	1	0	3	0	3	0	4
263		18		218.093	1_	031	15	0	10	0	1	0	10	0	15
264				-294.939	3	132	4	106	1	0	3	0	3	0	4
265		19	max	218.21	<u>1</u>	041	15	0	10	0	1	0	10	0	15

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]			LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	
266			min	-294.852	3	177	4	106	1	0	3	0	3	0	4
267	M11	1	max		2	1.779	4	.158	1	0	3	0	3	0	4
268			min	-129.514	3	.418	15	042	3	0	10	0	1	0	15
269		2	max	136.626	2	1.602	4	.158	1	0	3	0	3	0	2
270			min	-129.566	3	.377	15	042	3	0	10	0	1	0	12
271		3	max	136.557	2	1.425	4	.158	1	0	3	0	3	0	2
272			min	-129.617	3	.335	15	042	3	0	10	0	1	0	3
273		4	max	136.488	2	1.248	4	.158	1	0	3	0	3	0	15
274			min	-129.668	3	.293	15	042	3	0	10	0	1	0	3
275		5	max	136.42	2	1.07	4	.158	1	0	3	0	3	0	15
276			min	-129.72	3	.252	15	042	3	0	10	0	1	0	4
277		6	max		2	.893	4	.158	1	0	3	0	3	0	15
278				-129.771	3	.21	15	042	3	0	10	0	1	0	4
279		7	max	136.283	2	.716	4	.158	1	0	3	0	3	0	15
280				-129.823	3	.169	15	042	3	0	10	0	1	0	4
281		8	max		2	.539	4	.158	1	0	3	0	3	0	15
282				-129.874	3	.127	15	042	3	0	10	0	1	001	4
283		9		136.145	2	.362	4	.158	1	0	3	0	3	0	15
284				-129.926	3	.085	15	042	3	0	10	0	1	001	4
285		10			2	.184	4	.158	1	0	3	0	3	0	15
286		10		-129.977	3	.044	15	042	3	0	10	0	1	001	4
287		11			2	.028	2	.158	1	0	3	0	3	<u>001</u> 0	15
			max				3		3	0	10	0	1	001	
288		40		-130.029	3	031		042							4
289		12	max	135.94	2	04	15	.158	1	0	3	0	3	0	15
290		40	min	-130.08	3	17	4	042	3	0	10	0	1	001	4
291		13	max		2	081	15	.158	1	0	3	0	3	0	15
292		4.4		-130.132	3	347	4	042	3	0	10	0	1	<u>001</u>	4
293		14		135.802	2	123	15	.158	1	0	3	0	3	0	15
294				-130.183	3_	524	4	042	3	0	10	0	1	001	4
295		15	max	135.734	2	165	15	.158	1	0	3	0	3	0	15
296		4.0		-130.234	3	702	4	042	3	0	10	0	11	0	4
297		16		135.665	2	206	15	.158	1	0	3	0	3	0	15
298				-130.286	3	879	4	042	3	0	10	0	10	0	4
299		17	max	135.597	2	248	15	.158	1	0	3	0	3	0	15
300				-130.337	3	-1.056	4	042	3	0	10	0	10	0	4
301		18	max		2	29	15	.158	1	0	3	0	3	0	15
302			min	-130.389	3	-1.233	4	042	3	0	10	0	10	0	4
303		19	max	135.459	2	331	15	.158	1	0	3	0	3	0	1
304			min	-130.44	3	-1.41	4	042	3	0	10	0	10	0	1
305	M12	1	max		1	0	1	.739	1	0	1	0	2	0	1
306			min	-31.257	3	0	1	018	10	0	1	0	3	0	1
307		2	max	292.693	1	0	1	.739	1	0	1	0	1	0	1
308			min	-31.208	3	0	1	018	10	0	1	0	15	0	1
309		3	max	292.758	1	0	1	.739	1	0	1	0	1	0	1
310			min	-31.16	3	0	1	018	10	0	1	0	10	0	1
311		4	max		1	0	1	.739	1	0	1	0	1	0	1
312			min		3	0	1	018	10	0	1	0	10	0	1
313		5	max		1	0	1	.739	1	0	1	0	1	0	1
314			min	-31.063	3	0	1	018	10	0	1	0	10	0	1
315		6	max	292.952	1	0	1	.739	1	0	1	0	1	0	1
316			min	-31.014	3	0	1	018	10	0	1	0	10	0	1
317		7	max		1	0	1	.739	1	0	1	0	1	0	1
318			min	-30.966	3	0	1	018	10	0	1	0	10	0	1
319		8		293.082	<u>ა</u> 1	0	1	.739	1	0	1	0	1	0	1
		0	max		3	0	1		10	0	1	0	10	0	1
320		0	min	-30.917				018				_			-
321		9	max	293.146	1	0	1	.739	1	0	1	0	1	0	1
322			min	-30.869	3	0	1	018	10	0	1	0	10	0	1

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC :	z-z Mome	LC
323		10	max	293.211	1	0	_1_	.739	1	0	1	0	1	0	1
324			min	-30.82	3	0	1	018	10	0	1	0	10	0	1
325		11	max	293.276	1	0	1	.739	1	0	1	0	1	0	1
326			min	-30.772	3	0	1	018	10	0	1	0	10	0	1
327		12	max	293.34	1	0	1	.739	1	0	1	0	1	0	1
328			min	-30.723	3	0	1	018	10	0	1	0	10	0	1
329		13	max	293.405	1	0	1	.739	1	0	1	0	1	0	1
330			min	-30.675	3	0	1	018	10	0	1	0	10	0	1
331		14	max	293.47	1	0	1	.739	1	0	1	0	1	0	1
332			min	-30.626	3	0	1	018	10	0	1	0	10	0	1
333		15	max	293.535	1	0	1	.739	1	0	1	0	1	0	1
334			min	-30.578	3	0	1	018	10	0	1	0	10	0	1
335		16	max	293.599	1	0	1	.739	1	0	1	.001	1	0	1
336			min	-30.529	3	0	1	018	10	0	1	0	10	0	1
337		17	max	293.664	1	0	1	.739	1	0	1	.001	1	0	1
338			min	-30.48	3	0	1	018	10	0	1	0	10	0	1
339		18	max	293.729	1	0	1	.739	1	0	1	.001	1	0	1
340			min	-30.432	3	0	1	018	10	0	1	0	10	0	1
341		19	max	293.793	1	0	1	.739	1	0	1	.001	1	0	1
342			min	-30.383	3	0	1	018	10	0	1	0	10	0	1
343	M1	1	max	71.379	1	334.434	3	.307	10	0	2	.034	1	0	2
344			min	2.663	15	-224.156	2	-17.087	1	0	3	0	10	0	3
345		2	max	71.497	1	334.245	3	.307	10	0	2	.03	1	.049	2
346			min	2.699	15	-224.409	2	-17.087	1	0	3	0	10	073	3
347		3	max	59.456	3	4.256	9	.308	10	0	3	.026	1	.097	2
348			min	-9.697	10	-19.328	2	-17.016	1	0	1	0	10	144	3
349		4	max	59.545	3	4.045	9	.308	10	0	3	.022	1	.101	2
350			min	-9.599	10	-19.582	2	-17.016	1	0	1	0	10	14	3
351		5	max	59.633	3	3.834	9	.308	10	0	3	.019	1	.105	2
352			min	-9.501	10	-19.835	2	-17.016	1	0	1	0	10	136	3
353		6	max	59.722	3	3.623	9	.308	10	0	3	.015	1	.11	2
354			min	-9.402	10	-20.088	2	-17.016	1	0	1	0	10	133	3
355		7	max	59.81	3	3.412	9	.308	10	0	3	.011	1	.114	2
356			min	-9.304	10	-20.341	2	-17.016	1	0	1	0	10	129	3
357		8	max	59.899	3	3.202	9	.308	10	0	3	.007	1	.118	2
358			min	-9.206	10	-20.594	2	-17.016	1	0	1	0	10	125	3
359		9	max	59.987	3	2.991	9	.308	10	0	3	.004	1	.123	2
360		- 3	min	-9.107	10	-20.847	2	-17.016	1	0	1	0	10	121	3
361		10	max	60.076	3	2.78	9	.308	10	0	3	.002	3	.127	2
362		10	min	-9.009	10	-21.1	2	-17.016	1	0	1	0	10	117	3
363		11		60.164	3	2.569	9	.308	10	0	3	0	3	.132	2
364			min	-8.911	10	-21.353	2	-17.016	1	0	1	004	1	113	3
365		12	max		3	2.358	9	.308	10	0	3	004 0	10	.137	2
366		12	min	-8.812	10	-21.606	2	-17.016	1	0	1	007	1	109	3
367		13	max	60.341	3	2.147	9	.308	10	0	3	007 0	10	<u>109</u> .141	2
368		13	min	-8.714	10	-21.859	2	-17.016	1	0	1	011	1	105	3
369		14	max	60.43	3	1.936	9	.308	10	0	3	<u>011</u> 0	10	.146	2
370		14	min	-8.616	10	-22.112	2	-17.016	1	0	1	015	1	101	3
371		15						.308	10	0	3	<u>015</u> 0	10	<u> 101</u> .151	2
		10	max	60.518	3	1.725 -22.365	9		1		1		10		
372 373		16	min	<u>-8.517</u> 84.119	10 2	83.212	2	<u>-17.016</u> .31	10	<u> </u>	1	018 0	10	097 .155	2
		10	max				3					022	10		3
374		17	min	-19.624	3	-121.287		-17.152	10	0	10		_	092	
375		17	max	84.237	2	82.959	2	.31	10	0	1	0	10	.137	2
376		40	min	-19.535	3	-121.476	3	-17.152	1	0	10	026	1	065	3
377		18	max	-2.698	15	317.18	2	.328	10	0	3	0	10	.069	2
378		40	min	-71.482	1_	-150.523	3	-17.684	1	0	2	03	1	033	3
379		19	max	-2.662	15	316.926	2	.328	10	0	3	0	10	00	2

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]			LC	Torque[k-ft]	LC		LC	z-z Mome	
380			min	-71.364	1	-150.713	3	-17.684	1	0	2	034	1	0	3
381	M5	1	max	175.572	1	1070.696	3	0	11	0	9	.01	3	0	3
382			min	-1.707	3	-710.122	2	-68.533	3	0	3	0	11	0	2
383		2	max	175.69	1	1070.506	3	0	11	0	9	0	9	.154	2
384			min	-1.618	3	-710.375	2	-68.533	3	0	3	005	3	232	3
385		3	max	157.725	3	5.262	9	7.398	3	0	3	0	9	.305	2
386			min	-25.011	10	-66.525	2	164	9	0	1	019	3	459	3
387		4	max		3	5.051	9	7.398	3	0	3	0	9	.319	2
388			min	-24.913	10	-66.778	2	164	9	0	1	017	3	445	3
389		5	max	157.902	3	4.84	9	7.398	3	0	3	0	9	.334	2
390			min	-24.815	10	-67.031	2	164	9	0	1	016	3	432	3
391		6			3	4.629	9	7.398	3		3	<u>010</u> 0	9		2
		6	max							0				.349	
392		-	min	-24.716	10	-67.284	2	164	9	0	1	014	3	418	3
393		7	max	158.079	3	4.418	9	7.398	3	0	3	0	9	.363	2
394			min	-24.618	10	-67.537	2	164	9	0	1	<u>013</u>	3	404	3
395		8	max		3	4.207	9	7.398	3	0	3	0	9	.378	2
396			min	-24.52	10	-67.79	2	164	9	0	1	011	3	391	3
397		9	max	158.256	3	3.996	9	7.398	3	0	3	0	9	.393	2
398			min	-24.421	10	-68.043	2	164	9	0	1	009	3	377	3
399		10	max	158.345	3	3.785	9	7.398	3	0	3	0	2	.407	2
400			min	-24.323	10	-68.296	2	164	9	0	1	008	3	363	3
401		11	max	158.433	3	3.574	9	7.398	3	0	3	0	2	.422	2
402			min	-24.225	10	-68.549	2	164	9	0	1	006	3	349	3
403		12	max	158.522	3	3.364	9	7.398	3	0	3	0	2	.437	2
404			min	-24.126	10	-68.802	2	164	9	0	1	005	3	335	3
405		13	max	158.61	3	3.153	9	7.398	3	0	3	0	2	.452	2
406			min	-24.028	10	-69.055	2	164	9	0	1	003	3	321	3
407		14	max		3	2.942	9	7.398	3	0	3	0	11	.467	2
408		17	min	-23.929	10	-69.309	2	164	9	0	1	001	3	308	3
409		15	max	158.787	3	2.731	9	7.398	3	0	3	0	3	.482	2
410		15	min	-23.831	10	-69.562	2	164	9	0	1	0	9	294	3
		16							3		3				2
411		16	max		2	280.993	2	7.369		0		.001	3	.494	
412		47	min	-62.415	3	-343.021	3	164	9	0	2	0	9	277	3
413		17	max	266.11	2	280.74	2	7.369	3	0	3	.003	3	.433	2
414		1.0	min	-62.327	3	-343.211	3	164	9	0	2	0	9	203	3
415		18	max	-2.825	12	1007.032	2	6.793	3	0	3	.004	3	.218	2
416			min	-175.727	1	-469.305	3	03	1	0	9	0	9	101	3
417		19	max	-2.766	12	1006.779	2	6.793	3	0	3	.006	3	0	3
418			min	-175.609	1	-469.495	3	03	1	0	9	0	9	0	2
419	M9	1	max	71.294	1	334.362	3	72.635	3	0	3	0	10	0	2
420			min	2.656	15	-224.156	2	307	10	0	2	033	1	0	3
421		2	max	71.412	1	334.172	3	72.635	3	0	3	0	10	.049	2
422			min	2.692	15	-224.409	2	307	10	0	2	03	1	073	3
423		3	max	59.006	3	4.243	9	16.832	1	0	1	.014	3	.097	2
424			min	-9.367	10	-19.304	2	-2.625	3	0	10	026	1	144	3
425		4	max		3	4.032	9	16.832	1	0	1	.013	3	.101	2
426			min	-9.269	10	-19.557	2	-2.625	3	0	10	022	1	14	3
427		5	max	59.183	3	3.821	9	16.832	1	0	1	.013	3	.105	2
428			min	-9.171	10	-19.81	2	-2.625	3	0	10	018	1	136	3
429		6	max	59.272	3	3.611	9	16.832	1	0	1	.012	3	.11	2
430			min	-9.072	10	-20.063	2	-2.625	3	0	10	015	1	133	3
431		7				3.4	9	16.832			1	.012			2
432			max	59.36	3				1	0		012 011	3	.114	
		0	min	-8.974	10	-20.317	2	-2.625	3	0	10			129	3
433		8	max	59.449	3	3.189	9	16.832	1	0	1	.011	3	.118	2
434			min	-8.876	10	-20.57	2	-2.625	3	0	10	007	1	125	3
435		9	max	59.537	3	2.978	9	16.832	1	0	1	.01	3	.123	2
436			min	-8.777	10	-20.823	2	-2.625	3	0	10	004	1	121	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]	LC		LC	Torque[k-ft]	LC :	y-y Mome		z-z Mome	LC
437		10	max	59.626	3	2.767	9	16.832	1	0	1	.01	3	.127	2
438			min	-8.679	10	-21.076	2	-2.625	3	0	10	0	1	117	3
439		11	max	59.715	3	2.556	9	16.832	1	0	1	.009	3	.132	2
440			min	-8.581	10	-21.329	2	-2.625	3	0	10	0	10	113	3
441		12	max	59.803	3	2.345	9	16.832	1	0	1	.009	3	.137	2
442		4.0	min	-8.482	10	-21.582	2	-2.625	3	0	10	0	10	109	3
443		13	max	59.892	3	2.134	9	16.832	1	0	1	.011	1	.141	2
444		4.4	min	-8.384	10	-21.835	2	-2.625	3	0	10	0	10	105	3
445		14	max	59.98	3	1.923	9	16.832	1	0	1	.015	1	.146	2
446		4.5	min	-8.286	10	-22.088	2	-2.625	3	0	10	0	10	101	3
447		15	max	60.069	3	1.712	9	16.832	1	0	1	.018	1	.151	2
448		4.0	min	-8.187	10	-22.341	2	-2.625	3	0	10	0	10	097	3
449		16	max	84.258	2	82.915	2	16.975	3	0	10	.022	10	.155	2
450 451		17	min	-20.53 84.376	2	-121.77 82.662	2	-2.658 16.975	1	0	10	<u> </u>	1	092 .137	3
452		17	max min	-20.441	3	-121.96	3	-2.658	3	0 0	3	0	10	065	3
453		18	max	-2.691	15	317.18	2	17.716	1	0	2	.03	1	.069	2
454		10	min	-71.39	1	-150.514	3	-2.235	3	0	3	<u>.05</u>	10	033	3
455		19	max	-2.656	15	316.927	2	17.716	1	0	2	.033	1	0	2
456		13	min	-71.272	1	-150.704	3	-2.235	3	0	3	0	10	0	3
457	M13	1	max	72.63	3	224.08	2	-2.656	15	0	2	.033	1	0	2
458	IWITO		min	307	10	-334.404	3	-71.29	1	0	3	0	10	0	3
459		2	max	72.63	3	159.773	2	-2.014	15	0	2	.013	3	.127	3
460		_	min	307	10	-237.768	3	-53.61	1	0	3	002	10	085	2
461		3	max	72.63	3	95.467	2	-1.372	15	0	2	.01	3	.211	3
462			min	307	10	-141.132	3	-35.93	1	0	3	014	1	142	2
463		4	max	72.63	3	31.16	2	.334	10	0	2	.007	3	.253	3
464			min	307	10	-44.496	3	-18.249	1	0	3	026	1	17	2
465		5	max	72.63	3	52.139	3	2.793	2	0	2	.004	3	.251	3
466			min	307	10	-33.147	2	-5.148	3	0	3	03	1	17	2
467		6	max	72.63	3	148.775	3	17.111	1	0	2	.002	3	.206	3
468			min	307	10	-97.454	2	-4.214	3	0	3	027	1	141	2
469		7	max	72.63	3	245.411	3	34.792	1	0	2	0	3	.119	3
470			min	307	10	-161.76	2	-3.279	3	0	3	015	1	083	2
471		8	max	72.63	3	342.047	3	52.472	1	0	2	.006	2	.005	1
472			min	307	10	-226.067	2	-2.345	3	0	3	0	3	012	3
473		9	max	72.63	3	438.682	3	70.152	1	0	2	.031	1	.118	2
474		40	min	307	10	-290.374	2	-1.411	3	0	3	001	3	185	3
475		10	max	72.63	3	-7.618	15	87.833	1	0	2	.067	1	.261	2
476		4.4	min	307	10	-535.318	3	.596	12	0	3	012	3	402	3
477		11	max		1	290.374		2.188	3	0	3	.031	1	.118	2
478		12	min	307	10	-438.682	3	<u>-70.067</u>	1	0	2	011	3	185	3
479 480		12			1	226.067	2	3.122	3	0	3 2	.006	2	.005	1
481		12	min	307	10	-342.047 161.76	3	<u>-52.387</u> 4.056	3	0	3	01 0	3	012	3
482		13	max min	17.116 307	10	-245.411	3	-34.707	1	0	2	015	10	.119 083	2
483		1/	max		1	97.454	2	4.991	3	0	3	0	15	.206	3
484		14	min	307	10	-148.775	3	-17.027	1	0	2	027	1	141	2
485		15	max	17.116	1	33.147	2	5.925	3	0	3	02 <i>1</i> 001	15	.251	3
486		13	min	307	10	-52.139	3	-2.793	2	0	2	03	1	17	2
487		16	max	17.116	1	44.496	3	18.334	1	0	3	03	12	.253	3
488		10	min	307	10	-31.16	2	333	10	0	2	026	1	17	2
489		17	max	17.116	1	141.132	3	36.014	1	0	3	.002	3	.211	3
490			min	307	10	-95.467	2	1.379	15	0	2	014	1	142	2
491		18	max	17.116	1	237.768	3	53.695	1	0	3	.006	3	.127	3
492		0	min	307	10	-159.773	2	2.021	15	0	2	002	10	085	2
493		19	max		1	334.404	3	71.375	1	0	3	.034	1	0	2
					•	, 55 10 /						.551			

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]		y-y Mome	LC	z-z Mome	<u>LC</u>
494			min	307	10	-224.08	2	2.663	15	0	2	0	10	0	3
495	M16	1	max	2.238	3	317.019	2	-2.656	15	0	3	.033	1	0	2
496			min	-17.686	1	-150.726	3	-71.276	1	0	2	0	10	0	3
497		2	max	2.238	3	225.811	2	-2.013	15	0	3	.006	1	.057	3
498			min	-17.686	1	-107.894	3	-53.596	1	0	2	002	10	121	2
499		3	max	2.238	3	134.602	2	-1.371	15	0	3	0	3	.096	3
500			min	-17.686	1	-65.061	3	-35.916	1	0	2	014	1	201	2
501		4	max	2.238	3	43.393	2	.33	10	0	3	0	15	.115	3
502			min	-17.686	1	-22.229	3	-18.235	1	0	2	026	1	24	2
503		5	max	2.238	3	20.603	3	2.787	2	0	3	001	15	.116	3
504			min	-17.686	1	-47.815	2	-3.328	3	0	2	03	1	239	2
505		6	max	2.238	3	63.436	3	17.125	1	0	3	0	15	.097	3
506			min	-17.686	1	-139.024	2	-2.394	3	0	2	027	1	198	2
507		7	max	2.238	3	106.268	3	34.806	1	0	3	0	10	.059	3
508			min	-17.686	1	-230.233	2	-1.459	3	0	2	015	1	116	2
509		8	max	2.238	3	149.101	3	52.486	1	0	3	.006	2	.007	2
510			min	-17.686	1	-321.442	2	525	3	0	2	006	3	0	15
511		9	max	2.238	3	191.933	3	70.166	1	0	3	.031	1	.17	2
512		 	min	-17.686	1	-412.65	2	.406	12	0	2	006	3	073	3
513		10	max	.328	10	-7.615	15	87.847	1	0	15	.067	1	.374	2
514		10	min	-17.686	1	-503.859	2	-2.481	3	0	2	006	3	168	3
515		11		.328	10	412.65	2	-1.114	12	0	2	.031	1	.17	2
516			max	-17.655	1	-191.933	3	-70.074	1	0	3	001	3	073	3
		12	min						12						2
517		12	max	.328	10	321.442	2	491	1	0	2	.006	2	.007	
518		13	min	-17.655	1	-149.101	3	-52.394	3	0	2	002	3	0	15
519		13	max	.328	10	230.233	2	.323		0		0	10	.059	3
520		4.4	min	-17.655	1	-106.268	3	-34.713	1	0	3	015	1	116	2
521		14	max	.328	10	139.024	2	1.257	3	0	2	0	12	.097	3
522		4.5	min	-17.655	1	-63.436	3	-17.033	1	0	3	027	1	198	2
523		15	max	.328	10	47.815	2	2.191	3	0	2	0	12	.116	3
524		10	min	-17.655	1	-20.603	3	-2.786	2	0	3	03	1	239	2
525		16	max	.328	10	22.229	3	18.327	1	0	2	0	3	.115	3
526		-	min	-17.655	1	-43.393	2	329	10	0	3	026	1	24	2
527		17	max	.328	10	65.061	3	36.008	1	0	2	.002	3	.096	3
528			min	-17.655	1	-134.602	2	1.378	15	0	3	014	1	201	2
529		18	max	.328	10	107.894	3	53.688	1	0	2	.006	1	.057	3
530			min	-17.655	1	-225.811	2	2.02	15	0	3	002	10	121	2
531		19	max	.328	10	150.726	3	71.368	1	0	2	.034	1	0	2
532			min	-17.655	1	-317.019	2	2.662	15	0	3	0	10	0	3
533	<u>M15</u>	1	max	0	1	.83	3	.133	3	0	1	0	1	0	1
534			min	-95.166	3	0	1	0	1	0	3	0	3	0	1
535		2	max		1	.737	3	.133	3	0	1	0	1	0	1
536			min	-95.231	3	0	1	0	1	0	3	0	3	0	3
537		3	max	0	1	.645	3	.133	3	0	1	0	1	0	1
538			min	-95.296	3	0	1	0	1	0	3	0	3	0	3
539		4	max	0	1	.553	3	.133	3	0	1	0	1	0	1
540			min	-95.362	3	0	1	0	1	0	3	0	3	0	3
541		5	max	0	1	.461	3	.133	3	0	1	0	1	0	1
542			min	-95.427	3	0	1	0	1	0	3	0	3	0	3
543		6	max	0	1	.369	3	.133	3	0	1	0	1	0	1
544			min	-95.492	3	0	1	0	1	0	3	0	3	0	3
545		7	max	0	1	.277	3	.133	3	0	1	0	3	0	1
546			min	-	3	0	1	0	1	0	3	0	1	0	3
547		8	max	0	1	.184	3	.133	3	0	1	0	3	0	1
548			min	-95.622	3	0	1	.133	1	0	3	0	1	0	3
549		9	max	0	1	.092	3	.133	3	0	1	0	3	0	1
550			min	-95.688	3	0	1	0	1	0	3	0	1	001	3
JJU			1111111	-90.000	J	U		U		U	J	U		001	J

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
551		10	max	0	1	0	1	.133	3	0	1	0	3	0	1
552			min	-95.753	3	0	1	0	1	0	3	0	1	001	3
553		11	max	0	1	0	1	.133	3	0	1	0	3	0	1
554			min	-95.818	3	092	3	0	1	0	3	0	1	001	3
555		12	max	0	1	0	1	.133	3	0	1	0	3	0	1
556		40	min	-95.883	3	184	3	0	1	0	3	0	1	0	3
557		13	max	0	1	0	1	.133	3	0	1	0	3	0	1
558		4.4	min	<u>-95.948</u>	3	277	3	0	1	0	3	0	1	0	3
559		14	max	0 00 04 4	1	0	1	.133	3	0	1	0	3	0	1
560		4.5	min	<u>-96.014</u>	3	369	3	0	1	0	3	0	1	0	3
561		15	max	000070	1	0	1	.133	3	0	1	0	3	0	1
562		4.0	min	-96.079	3	461	3	0	1	0	3	0	1	0	3
563		16	max	0 00 1 1 1	1	0	1	.133	3	0	1	0	3	0	1
564		47	min	-96.144	3	553	3	0		0	3	0		0	3
565		17	max	0 -96.209	1	0	1	.133	3	0	1	0	3	0	3
566		4.0	min		3	645	3	0		0	3	0		0	-
567		18	max	0 06 274	3	727	1	.133	3	0	1	0	3	0	1
568		40	min	-96.274		737	3	0	1	0	3	0	1	0	3
569		19	max	0 00 000	1	0	1	.133	3	0	1	0	3	0	
570	MAGA	1	min	-96.339	2	83	3	.041	1	0	3	0	1	0	1
571	M16A		max	0	3	1.42	2	054	3		3	0	3	0	1
572		2	min	-94.939	2	1 262				0	_		_		_
573		2	max	0 04 074		1.262	4	.041	3	0	3	0	3	0	2
574		2	min	-94.874	3	0	2	054		0		0		0	4
575		3	max	0	2	1.104	4	.041	3	0	3	0	3	0	2
576		4	min	-94.809	3	0	2	054		0		0		0	4
577		4	max	0 742	2	.946	4	.041	1	0	3	0	3	0	2
578		_	min	-94.743	3	700	2	054	3	0	1	0	1	0	4
579		5	max	0 04 070	2	.789	4	.041	1	0	3	0	3	0	2
580		6	min	<u>-94.678</u> 0	2	.631	4	054 .041	1	0	3	0	3	001 0	2
581 582		0	max	-94.613	3	0	2	054	3	0	1	0	1	001	4
		7	min		2	.473		.041	1		_	0	3	001 0	_
583			max	0 -94.548			2	054	3	0	3	0	1	002	2
584		0	min		2	.315			1	_		0		002 0	2
585 586		8	max	0 -94.483	3	.315	2	.041 054	3	0	3	0	3	002	4
587		9	min	-94.463 0	2	.158	4	.041	1	0	3	0	3	002 0	2
588		9	max	-94.417	3		2	054	3	0	1	0	1	002	4
		10	min	_ -94.417 0	2	0	1	.041	1	0	3	0	3	002 0	2
589		10	max min	-94.352	3	0	1	054	3	0	1	0	1	002	4
590 591		11	max		2	0	2	.041	1	0	3	0	3	002 0	2
592		11	min	-94.287	3	158	4	054	3	0	1	0	1	002	4
593		12	max	.075	13	0	2	.041	1	0	3	0	3	002 0	2
594		12	min	-94.222	3	315	4	054	3	0	1	0	1	002	4
595		13	max	.164	13	315 0	2	.041	1	0	3	0	1	002 0	2
596		13	min	-94.157	3	473	4	054	3	0	1	0	4	002	4
597		14	max	.254	13	473 0	2	.041	1	0	3	0	1	002 0	2
598		14	min	<u>.254</u> -94.091	3	631	4	054	3	0	1	0	3	001	4
599		15	max	.344	13	0	2	.041	1	0	3	0	<u>3</u>	001 0	2
600		13	min	-94.026	3	789	4	054	3	0	1	0	3	001	4
601		16	max	.433	13	/69 0	2	.041	1	0	3	0	1	001 0	2
602		10	min	-93.961	3	946	4	054	3	0	1	0	3	0	4
603		17	max	<u>-93.961</u> .54	4	946 0	2	.041	1	0	3	0	1	0	2
604		17	min	-93.896	3	-1.104	4	054	3	0	1	0	3	0	4
605		18		<u>-93.696</u> .652	4	0	2	.041	1	0	3	0	1	0	2
606		10	max	-93.831	3	-1.262	4	054	3	0	1	0	3	0	4
607		19	min				2			0	3	0			-
וטט		19	max	.763	4	0	<u> </u>	.041	_ 1_	U	<u> </u>	U	1	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
608			min	-93 766	3	-1 42	4	- 054	3	0	1	0	3	0	1

Envelope Member Section Deflections

	siope ivicini		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	on Dene											
	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M2	1	max	.002	1	.008	2	.003	1	5.038e-6	10	NC	3	NC	1
2			min	003	3	008	3	002	3	-2.656e-4	1	4655.349	2	NC	1
3		2	max	.002	1	.007	2	.002	1	4.798e-6	10	NC	3	NC	1
4			min	003	3	007	3	002	3	-2.537e-4	1	5075.448	2	NC	1
5		3	max	.002	1	.007	2	.002	1	4.559e-6	10	NC	1	NC	1
6			min	003	3	007	3	002	3	-2.419e-4	1	5574.236	2	NC	1
7		4	max	.002	1	.006	2	.002	1	4.32e-6	10	NC	1	NC	1
8		4		003	3	007	3	001	3	-2.301e-4	1	6170.699	2	NC	1
			min												
9		5_	max	.002	1	.005	2	.002	1	4.08e-6	10	NC	1	NC	1
10			min	002	3	006	3	001	3	-2.182e-4	1_	6890.149	2	NC	1
11		6	max	.001	1	.005	2	.002	1	3.841e-6	10	NC	1	NC	1
12			min	002	3	006	3	001	3	-2.064e-4	_1_	7766.895	2	NC	1
13		7	max	.001	1	.004	2	.001	1	3.602e-6	10	NC	_1_	NC	1
14			min	002	3	006	3	0	3	-1.946e-4	1_	8848.348	2	NC	1
15		8	max	.001	1	.004	2	.001	1	3.362e-6	10	NC	1	NC	1
16			min	002	3	005	3	0	3	-1.827e-4	1	NC	1	NC	1
17		9	max	.001	1	.003	2	.001	1	3.123e-6	10	NC	1	NC	1
18			min	002	3	005	3	0	3	-1.709e-4	1	NC	1	NC	1
19		10	max	0	1	.003	2	0	1	2.884e-6	10	NC	1	NC	1
20			min	002	3	005	3	0	3	-1.591e-4	1	NC	1	NC	1
21		11	max	0	1	.002	2	0	1	2.644e-6	10	NC	1	NC	1
22			min	001	3	004	3	0	3	-1.473e-4	1	NC	1	NC	1
23		12	max	0	1	.002	2	0	1	2.405e-6	10	NC	1	NC	1
24		12	min	001	3	004	3	0	3	-1.354e-4	1	NC NC	1	NC	1
		40									•		1		
25		13	max	0	1	.001	2	0	1	2.166e-6	<u>10</u>	NC NC		NC	1
26		4.4	min	001	3	003	3	0	3	-1.236e-4	1_	NC NC	1	NC	1
27		14	max	0	1	.001	2	0	1	1.926e-6	<u>10</u>	NC	1	NC	1
28			min	0	3	003	3	0	3	-1.118e-4	_1_	NC	1_	NC	1
29		15	max	0	1	0	2	0	1	1.687e-6	10	NC	_1_	NC	1
30			min	0	3	002	3	0	3	-9.993e-5	1_	NC	1	NC	1
31		16	max	0	1	0	2	0	1	1.448e-6	10	NC	1	NC	1
32			min	0	3	002	3	0	3	-8.81e-5	1	NC	1	NC	1
33		17	max	0	1	0	2	0	1	1.208e-6	10	NC	1	NC	1
34			min	0	3	001	3	0	3	-7.628e-5	1	NC	1	NC	1
35		18	max	0	1	0	2	0	1	9.691e-7	10	NC	1	NC	1
36			min	0	3	0	3	0	3	-6.445e-5	1	NC	1	NC	1
37		19	max	0	1	0	1	0	1	7.298e-7	10	NC	1	NC	1
38			min	0	1	0	1	0	1	-5.262e-5	1	NC	1	NC	1
39	M3	1	max	0	1	0	1	0	1	2.455e-5	1	NC	1	NC	1
40	IVIO			0	1	0	1			-3.428e-7		NC	1	NC	1
		2	min					0	10						
41		2	max	0	3	0	2	0	10		1	NC NC	1	NC NC	1
42			min	0	2	0	3	0	1	-4.97e-7	10	NC NC	1_	NC NC	1
43		3	max	0	3	0	2	0	10		1_	NC	1	NC	1
44			min	0	2	002	3	0	1	-6.512e-7	10	NC	1_	NC	1
45		4	max	0	3	0	2	0	10	4.979e-5	_1_	NC	_1_	NC	1
46			min	0	2	002	3	0	1	-8.053e-7	10	NC	1	NC	1
47		5	max	0	3	0	2	0	3	5.821e-5	1_	NC	1_	NC	1
48			min	0	2	003	3	0	9	-9.595e-7	10	NC	1	NC	1
49		6	max	0	3	0	2	0	3	6.662e-5	1	NC	1	NC	1
50			min	0	2	004	3	0	9	-1.114e-6	10	NC	1	NC	1
51		7	max	0	3	0	2	0	3	7.504e-5	1	NC	1	NC	1
			,an												

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC) LC
52			min	0	2	005	3	0	9	-1.268e-6	10	NC	1_	NC	1
53		8	max	0	3	00	2	0	3	8.345e-5	_1_	NC	_1_	NC	1
54			min	0	2	005	3	0	9	-1.422e-6	10	NC	<u>1</u>	NC	1
55		9	max	0	3	.001	2	0	3	9.186e-5	_1_	NC	1_	NC	1
<u>56</u>		4.0	min	0	2	006	3	0	10	-1.576e-6	10	NC	1_	NC	1
57		10	max	0	3	.001	2	0	1	1.003e-4	1	NC	1	NC	1
58		44	min	0	2	006	3	0	10	-1.73e-6	10	NC NC	1_	NC NC	1
59		11	max	0	3	.002	2	0	1	1.087e-4	1	NC NC	1_	NC	1
60		40	min	0	2	007	3	0		-1.884e-6	10	NC NC	1_	NC NC	1
61 62		12	max	<u> </u>	3	.002	3	0 0	1	1.171e-4	1	NC NC	<u>1</u> 1	NC NC	1
63		13	min	0	3	007			10	-2.039e-6	10	NC NC	1	NC NC	1
64		13	max	001	2	.003 007	3	<u> </u>	10	1.255e-4 -2.193e-6	<u>1</u> 10	NC NC	1	NC NC	1
65		14	min max	.001	3	.007	2	.001	1	1.339e-4	1	NC NC	1	NC NC	1
66		14	min	001	2	007	3	0	10	-2.347e-6	10	NC NC	1	NC	1
67		15	max	.001	3	.005	2	.001	1	1.423e-4	1	NC	1	NC	1
68		10	min	001	2	007	3	0	10	-2.501e-6	10	NC	1	NC	1
69		16	max	.001	3	.005	2	.002	1	1.508e-4	1	NC	1	NC	1
70		10	min	001	2	008	3	0		-2.655e-6		8483.966	2	NC	1
71		17	max	.001	3	.006	2	.002	1	1.592e-4	1	NC	1	NC	1
72		<u> </u>	min	001	2	008	3	0	10			7245.522	2	NC	1
73		18	max	.001	3	.007	2	.002	1	1.676e-4	1	NC	1	NC	1
74			min	001	2	008	3	0	10	-2.964e-6		6287.741	2	NC	1
75		19	max	.001	3	.008	2	.002	1	1.76e-4	1	NC	3	NC	1
76			min	002	2	007	3	0	10	-3.118e-6	10	5539.216	2	NC	1
77	M4	1	max	.001	1	.009	2	0	10	3.701e-6	10	NC	1	NC	1
78			min	0	3	008	3	002	1	-2.08e-4	1	NC	1	NC	1
79		2	max	.001	1	.008	2	0	10	3.701e-6	10	NC	1	NC	1
80			min	0	3	007	3	002	1	-2.08e-4	1	NC	1	NC	1
81		3	max	.001	1	.008	2	0	10	3.701e-6	10	NC	1_	NC	1
82			min	0	3	007	3	001	1	-2.08e-4	1_	NC	1_	NC	1
83		4	max	.001	1	.007	2	0	10	3.701e-6	10	NC	1_	NC	1
84			min	0	3	006	3	001	1	-2.08e-4	1_	NC	1_	NC	1
85		5	max	.001	1	.007	2	0	10	3.701e-6	10	NC	_1_	NC	1
86			min	0	3	006	3	001	1	-2.08e-4	_1_	NC	1_	NC	1
87		6	max	.001	1	.006	2	0	10	3.701e-6	<u>10</u>	NC	_1_	NC	1
88		<u> </u>	min	0	3	005	3	0	1	-2.08e-4	1_	NC	1_	NC	1
89		7	max	0	1	.006	2	0	10	3.701e-6	10	NC	1_	NC	1
90			min	0	3	005	3	0	1	-2.08e-4	1_	NC	1_	NC	1
91		8	max	0	1	.005	2	0	10	3.701e-6	10	NC NC	1_	NC NC	1
92			min	0	3	005	3	0		-2.08e-4		NC NC	1	NC NC	1
93		9	max	0	3	.005	2	0	10		<u>10</u>	NC NC	1_1	NC NC	1
94		10	min	0	1	004	2	0	1	-2.08e-4	1	NC NC	<u>1</u> 1	NC NC	1
95		10	max	<u> </u>	3	.004	3	0 0	10		<u>10</u>	NC NC	1	NC NC	1
96		11	min max	0	1	004 .004	2	0	10	-2.08e-4 3.701e-6	<u>1</u> 10	NC NC	1	NC NC	1
98			min	0	3	003	3	0	1	-2.08e-4	1	NC	1	NC	1
99		12	max	0	1	.003	2	0	10		10	NC	1	NC	1
100		12	min	0	3	003	3	0	1	-2.08e-4	1	NC	1	NC	1
101		13	max	0	1	.003	2	0	10	3.701e-6	10	NC NC	1	NC NC	1
101		13	min	0	3	003	3	0	1	-2.08e-4	1	NC NC	1	NC NC	1
103		14	max	0	1	.002	2	0	10		10	NC	1	NC	1
104		14	min	0	3	002	3	0	1	-2.08e-4	1	NC NC	1	NC	1
105		15	max	0	1	.002	2	0	10		10	NC	1	NC	1
106		10	min	0	3	002	3	0	1	-2.08e-4	1	NC	1	NC	1
107		16	max	0	1	.002	2	0	10	3.701e-6	10	NC	1	NC	1
108			min	0	3	001	3	0	1	-2.08e-4	1	NC	1	NC	1
					_					T	_		_		

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC			(n) L/z Ratio LC	
109		17	max	0	1	0	2	0	10	3.701e-6	10	NC	1_	NC	1_
110			min	0	3	0	3	0	1	-2.08e-4	_1_	NC	1_	NC	1
111		18	max	0	1	0	2	0	10	3.701e-6	10	NC	1_	NC	1
112			min	0	3	0	3	0	1	-2.08e-4	1	NC	1	NC	1
113		19	max	0	1	0	1	0	1	3.701e-6	10	NC	1_	NC	1_
114			min	0	1	0	1	0	1	-2.08e-4	1	NC	1_	NC	1
115	M6	1	max	.006	1	.025	2	0	9	4.099e-4	3	NC	3	NC	1
116			min	01	3	022	3	005	3	-8.435e-8	2	1444.667	2	6672.031	3
117		2	max	.006	1	.024	2	0	9	3.982e-4	3	NC	3	NC	1
118			min	009	3	021	3	005	3	-7.968e-8	2	1545.704	2	7106.457	3
119		3	max	.005	1	.022	2	0	9	3.865e-4	3	NC	3	NC	1
120			min	009	3	02	3	005	3	-1.558e-6	1	1661.476	2	7619.929	3
121		4	max	.005	1	.02	2	0	9	3.748e-4	3	NC	3	NC	1
122			min	008	3	019	3	004	3	-3.148e-6	1	1794.947	2	8229.708	3
123		5	max	.005	1	.019	2	0	9	3.632e-4	3	NC	3	NC	1
124			min	008	3	018	3	004	3	-4.739e-6	1	1949.94	2	8958.642	3
125		6	max	.004	1	.017	2	0	9	3.515e-4	3	NC	3	NC	1
126			min	007	3	017	3	004	3	-6.329e-6	1	2131.462	2	9837.443	3
127		7	max	.004	1	.015	2	0	9	3.398e-4	3	NC	3	NC	1
128			min	006	3	015	3	003	3	-7.919e-6	1	2346.197	2	NC	1
129		8	max	.004	1	.014	2	0	9	3.281e-4	3	NC	3	NC	1
130			min	006	3	014	3	003	3	-9.509e-6	1	2603.269	2	NC	1
131		9	max	.003	1	.012	2	0	9	3.165e-4	3	NC	3	NC	1
132			min	005	3	013	3	003	3	-1.11e-5	1	2915.458	2	NC	1
133		10	max	.003	1	.011	2	0	9	3.048e-4	3	NC	3	NC	1
134		10	min	005	3	012	3	002	3	-1.269e-5		3301.231	2	NC	1
135		11	max	.003	1	.012	2	0	9	2.931e-4	3	NC	3	NC	1
136			min	004	3	01	3	002	3	-1.428e-5		3788.293	2	NC	1
137		12	max	.002	1	.008	2	<u>002</u> 0	9	2.815e-4	3	NC	3	NC	1
138		12		004	3	009	3	002	3	-1.587e-5	1	4420.185	2	NC	1
139		13	min max	.002	1	.007	2	<u>002</u> 0	9	2.698e-4	3	NC	3	NC NC	1
		13	min	003	3	008	3	001	3	-1.746e-5		5269.474	2	NC	1
140		11			1		2				<u>1</u>		1	NC NC	
141		14	max	.002	3	.006		0	9	2.581e-4	3	NC	2		1
142		4.5	min	003		007	3	001	3	-1.905e-5	1_	6466.773		NC NC	1
143		15	max	.001	1	.004	2	0	9	2.464e-4	3	NC 0070 004	1_	NC NC	1
144		10	min	002	3	005	3	0	3	-2.064e-5	1_	8273.291	2	NC NC	1
145		16	max	.001	1	.003	2	0	1	2.348e-4	3_	NC NC	1	NC	1
146			min	002	3	004	3	0	3	-2.223e-5		NC	1_	NC	1
147		17	max	0	1	.002	2	0	1	2.231e-4	3_	NC	1_	NC	1
148		1.0	min	001	3	003	3	0	3	-2.382e-5	1_	NC	1_	NC	1
149		18	max	0	1	.001	2	0	1	2.114e-4		NC	1_	NC	1
150			min	0	3	001	3	0	3	-2.541e-5		NC	1_	NC	1
151		19	max	0	1	0	1	0	1	1.997e-4	3	NC	1_	NC	1
152			min	0	1	0	1	0	1	-2.7e-5	1_	NC	1_	NC	1
153	<u>M7</u>	1	max	0	1	0	1	0	1	1.254e-5	_1_	NC	1_	NC	1_
154			min	0	1	0	1	0	1	-9.249e-5	3	NC	1	NC	1
155		2	max	0	3	.001	2	0	3	1.165e-5	<u>1</u>	NC	<u>1</u>	NC	1_
156			min	0	2	002	3	0	1	-7.024e-5	3	NC	1	NC	1
157		3	max	0	3	.002	2	0	3	1.076e-5	1	NC	1	NC	1
158			min	0	2	003	3	0	1	-4.798e-5	3	NC	1	NC	1
159		4	max	0	3	.004	2	.001	3	9.867e-6	1	NC	1	NC	1
160			min	0	2	005	3	0	1	-2.573e-5	3	NC	1	NC	1
161		5	max	0	3	.005	2	.002	3	8.974e-6	1	NC	1	NC	1
162			min	001	2	007	3	0	1	-3.48e-6	3	9855.249	2	NC	1
163		6	max	.001	3	.006	2	.002	3	1.877e-5	3	NC	1	NC	1
164			min	001	2	008	3	0	1	0	2	7897.557	2	NC	1
165		7	max	.001	3	.007	2	.002	3	4.102e-5	3	NC	1	NC	1
50			,an	.001		.001		.002			<u> </u>		_		

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	_LC_	y [in]	LC	z [in]	LC	x Rotate [r	LC				
166			min	002	2	01	3	0	1	0	5	6554.328	2	NC	1
167		8	max	.002	3	.008	2	.002	3	6.328e-5	3	NC	3	NC	1
168			min	002	2	011	3	0	1	-1.374e-7	13	5566.534	2	NC	1
169		9	max	.002	3	.01	2	.003	3	8.553e-5	3	NC	3	NC	1
170			min	002	2	013	3	0	1	-7.416e-7	9	4805.233	2	NC	1
171		10	max	.002	3	.011	2	.003	3	1.078e-4	3	NC	3	NC	1
172			min	003	2	014	3	0	1	-1.915e-6	9	4198.977	2	NC	1
173		11	max	.002	3	.012	2	.003	3	1.3e-4	3	NC	3	NC	1
174			min	003	2	015	3	0	1	-3.088e-6	9	3704.824	2	NC	1
175		12	max	.002	3	.014	2	.003	3	1.523e-4	3	NC	3	NC	1
176		1	min	003	2	016	3	0	1	-4.261e-6	9	3295.22	2	NC	1
177		13	max	.003	3	.016	2	.003	3	1.745e-4	3	NC	3	NC	1
178		10	min	003	2	018	3	0	9	-5.433e-6	9	2951.498	2	NC	1
179		14	max	.003	3	.017	2	.003	3	1.968e-4	3	NC	3	NC	1
180		17	min	004	2	018	3	0	9	-6.606e-6	9	2660.423	2	NC	1
181		15	max	.003	3	.019	2	.003	3	2.19e-4	3	NC	3	NC	1
182		10	min	004	2	019	3	0	9	-7.779e-6	9	2412.252	2	NC	1
183		16	max	.003	3	.021	2	.003	3	2.413e-4	3	NC	3	NC	1
184		10	min	004	2	02	3	<u>.003</u>	9	-8.952e-6	9	2199.589	2	NC NC	1
185		17	max	.004	3	.023	2	.003	3	2.635e-4	3	NC	3	NC	1
186		17	min	005	2	023	3	<u>.003</u>	9	-1.013e-5	9	2016.682	2	NC	1
187		18	max	.004	3	.025	2	.003	3	2.858e-4	3	NC	3	NC	1
188		10	min	005	2	022	3	<u>.003</u>	9	-1.13e-5	9	1858.98	2	NC	1
189		19		.004	3	.027	2	.003	3	3.08e-4	3	NC	3	NC	1
190		19	max		2		3			-1.247e-5		1722.83		NC NC	1
191	M8	1	min	005 .004	1	023 .028	2	<u> </u>	9		9	NC	<u>2</u> 1	NC NC	1
	IVIO		max	_						-9.59e-8	<u>10</u>				
192		-	min	0	3	023	3	002	3	-2.3e-4	3	NC NC	1_	NC NC	1
193		2	max	.004	1	.027	2	0	9	-9.59e-8	<u>10</u>	NC NC	1_	NC NC	1
194		_	min	0	3	021	3	002	3	-2.3e-4	3	NC NC	1_	NC NC	1
195		3	max	.004	3	.025	2	0	9	-9.59e-8	10	NC NC	1	NC NC	1
196		4	min	0		02	3	002	3	-2.3e-4	3	NC NC	1_	NC NC	
197		4	max	.003	1	.024	2	0	9	-9.59e-8	10	NC	1	NC	1
198		+-	min	0	3	019	3	001	3	-2.3e-4	3	NC NC	1_	NC NC	1
199		5	max	.003	1	.022	2	0	9	-9.59e-8	10	NC		NC	1
200			min	0	3	018	3	001	3	-2.3e-4	3	NC	1_	NC NC	1
201		6	max	.003	1	.021	2	0	9	-9.59e-8	10	NC	1	NC	1
202		+	min	0	3	016	3	001	3	-2.3e-4	3_	NC	1_	NC	1
203		7	max	.003	1	.019	2	0	9	-9.59e-8	10	NC	1_	NC	1
204		_	min	0	3	01 <u>5</u>	3	0	3	-2.3e-4	3	NC	1_	NC	1
205		8	max	.002	1	.017	2	0	9	-9.59e-8	10	NC	1_	NC	1
206			min	0	3	014	3	0	3	-2.3e-4	3	NC	1	NC	1
207		9	max	.002	1	.016	2	0	9	-9.59e-8	<u>10</u>	NC	1	NC	1
208		1.0	min	0	3	013	3	0	3	-2.3e-4	3	NC	1_	NC	1
209		10	max	.002	1	.014	2	0	9	-9.59e-8	10	NC	1_	NC	1
210			min	0	3	011	3	0	3	-2.3e-4	3	NC	1_	NC	1
211		11	max	.002	1	.013	2	0	9	-9.59e-8	10	NC	1	NC	1
212			min	0	3	01	3	0	3	-2.3e-4	3	NC	_1_	NC	1
213		12	max	.002	1	.011	2	0	9	-9.59e-8	<u>10</u>	NC	1_	NC	1
214			min	0	3	009	3	0	3	-2.3e-4	3	NC	1_	NC	1
215		13	max	.001	1	.009	2	0	9	-9.59e-8	10	NC	1	NC	1
216			min	0	3	008	3	0	3	-2.3e-4	3	NC	1_	NC	1
217		14	max	.001	1	.008	2	0	9	-9.59e-8	10	NC	1_	NC	1
218			min	0	3	006	3	0	3	-2.3e-4	3	NC	1_	NC	1
219		15	max	0	1	.006	2	0	9	-9.59e-8	10	NC	_1_	NC	1
220			min	0	3	005	3	0	3	-2.3e-4	3	NC	1_	NC	1
221		16	max	0	1	.005	2	0	9	-9.59e-8	10	NC	_1_	NC	1
222			min	0	3	004	3	0	3	-2.3e-4	3	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratic) LC
223		17	max	0	1	.003	2	0	9	-9.59e-8	10	NC	1_	NC	1
224			min	0	3	003	3	0	3	-2.3e-4	3	NC	1_	NC	1
225		18	max	00	1	.002	2	0	9	-9.59e-8	10	NC	_1_	NC	1
226			min	0	3	001	3	0	3	-2.3e-4	3_	NC	1_	NC	1
227		19	max	0	1	0	1	0	1	-9.59e-8	10	NC	_1_	NC	1
228	1440		min	0	1	0	1	0	1	-2.3e-4	3	NC NC	1_	NC NC	1
229	M10	1	max	.002	1	.008	2	0	3	2.659e-4	1_	NC 1000 015	3_	NC	1
230			min	003	3	007	3	001	1	-4.992e-4	3	4660.915	2	NC NC	1
231		2	max	.002	1	.007	2	0	3	2.53e-4	1_	NC FOOA CZ4	3	NC	1
232		2	min	003	3	007	2	<u>001</u>	3	-4.831e-4 2.401e-4	3	5081.671 NC	<u>2</u> 1	NC NC	1
233		3	max	.002 002	3	.007	3	0 001	1		1_2	5581.27		NC NC	1
235		4	min	002 .002	1	007 .006	2	<u>001</u> 0	3	-4.669e-4 2.273e-4	3	NC	<u>2</u> 1	NC NC	1
236		4	max	002	3	007	3	001	1	-4.508e-4	3	6178.742	2	NC NC	1
237		5		.002	1	.007	2	<u>001</u> 0	3	2.144e-4	<u>ა</u> 1	NC	1	NC NC	1
238		1 5	max	002	3	005	3	001	1	-4.346e-4	3	6899.459	2	NC	1
239		6	max	.002	1	.005	2	0	3	2.015e-4	1	NC	1	NC	1
240			min	002	3	006	3	001	1	-4.185e-4	3	7777.818	2	NC	1
241		7	max	.001	1	.004	2	0	3	1.886e-4	1	NC	1	NC	1
242			min	002	3	006	3	0	1	-4.023e-4	3	8861.354	2	NC	1
243		8	max	.001	1	.004	2	0	3	1.758e-4	1	NC	1	NC	1
244			min	002	3	005	3	0	1	-3.862e-4	3	NC	1	NC	1
245		9	max	.001	1	.003	2	0	3	1.629e-4	1	NC	1	NC	1
246			min	001	3	005	3	0	1	-3.7e-4	3	NC	1	NC	1
247		10	max	0	1	.003	2	0	3	1.5e-4	1	NC	1	NC	1
248			min	001	3	005	3	0	1	-3.539e-4	3	NC	1	NC	1
249		11	max	0	1	.002	2	0	3	1.372e-4	1	NC	1	NC	1
250			min	001	3	004	3	0	1	-3.377e-4	3	NC	1	NC	1
251		12	max	0	1	.002	2	0	3	1.243e-4	1	NC	1	NC	1
252			min	001	3	004	3	0	1	-3.216e-4	3	NC	1_	NC	1
253		13	max	0	1	.001	2	0	3	1.114e-4	1_	NC	_1_	NC	1
254			min	0	3	003	3	0	1	-3.054e-4	3	NC	1_	NC	1
255		14	max	0	1	.001	2	0	3	9.855e-5	1_	NC	1_	NC	1
256			min	0	3	003	3	0	1	-2.893e-4	3	NC	1_	NC	1
257		15	max	0	1	0	2	0	3	8.568e-5	_1_	NC	_1_	NC	1
258		40	min	0	3	002	3	0	1	-2.731e-4	3	NC	1_	NC NC	1
259		16	max	0	1	0	2	0	3	7.281e-5	1_	NC	1_	NC	1
260		47	min	0	3	002	3	0	1	-2.57e-4	3	NC NC	1_	NC NC	1
261		17	max	0	1	0	2	0	3	5.994e-5	1_	NC NC	1_	NC	1
262 263		10	min max	0	3	001	2	0	3	-2.408e-4	3	NC NC	<u>1</u> 1	NC NC	1
		10			3	0	3	0	1	4.707e-5		NC NC	1	NC NC	1
264 265		19	min	<u> </u>	1			0	1	-2.247e-4 3.42e-5	3	NC NC	1	NC NC	1
266		19	max min	0	1	<u> </u>	1	0	1	-2.085e-4	3	NC NC	1	NC NC	1
267	M11	1		0	1	0	1	0	1	9.718e-5	3	NC	1	NC	1
268	IVI I		max min	0	1	0	1	0	1	-1.608e-5	1	NC	1	NC	1
269		2	max	0	3	0	2	0	1	7.524e-5	3	NC	1	NC	1
270			min	0	2	0	3	0	3	-2.623e-5	1	NC	1	NC	1
271		3	max	0	3	0	2	0	1	5.33e-5	3	NC	1	NC	1
272		J	min	0	2	002	3	0	3	-3.637e-5	1	NC	1	NC	1
273		4	max	0	3	<u>.002</u>	2	0	11	3.136e-5	3	NC	1	NC	1
274			min	0	2	002	3	001	3	-4.652e-5	1	NC	1	NC	1
275		5	max	0	3	0	2	0	11	9.419e-6	3	NC	1	NC	1
276			min	0	2	003	3	002	3	-5.667e-5	1	NC	1	NC	1
277		6	max	0	3	<u>.005</u>	2	0	11	1.159e-6	10	NC	1	NC	1
278		Ĭ	min	0	2	004	3	002	3	-6.681e-5	1	NC	1	NC	1
279		7	max	0	3	0	2	0		1.322e-6	10	NC	1	NC	1
			,an							,	. •			<u> </u>	

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC	(n) L/z Ratio	LC
280			min	0	2	005	3	002	3	-7.696e-5	1	NC	1	NC	1
281		8	max	0	3	0	2	0	10	1.486e-6	10	NC	1_	NC	1
282			min	0	2	005	3	002	3	-8.711e-5	1_	NC	1_	NC	1
283		9	max	0	3	.001	2	0	10	1.649e-6	10	NC	1_	NC	1
284		4.0	min	0	2	006	3	003	3	-9.726e-5	1_	NC	1_	NC	1
285		10	max	0	3	.001	2	0	10	1.812e-6	<u>10</u>	NC	1	NC	1
286		44	min	0	2	006	3	003	3	-1.074e-4	1_	NC	1_	NC	1
287		11	max	0	3	.002	2	0	10	1.975e-6	<u>10</u>	NC	1_	NC NC	1
288		40	min	0	2	007	3	003	3	-1.222e-4	3	NC NC	1_	NC NC	1
289		12	max	<u> </u>	3	.002	3	003	10	2.138e-6 -1.442e-4	<u>10</u>	NC NC	<u>1</u> 1	NC NC	1
290 291		13	min	0	3	007 .003	2	003 0	10	2.301e-6	<u>3</u> 10	NC NC	1	NC NC	1
292		13	max	001	2	003	3	003	3	-1.661e-4	3	NC NC	1	NC NC	1
293		14	max	.001	3	.007	2	<u>003</u> 0	10	2.464e-6	<u> </u>	NC NC	1	NC NC	1
294		14	min	001	2	007	3	003	3	-1.88e-4	3	NC	1	NC	1
295		15	max	.001	3	.005	2	<u>003</u> 0	10	2.627e-6	10	NC	1	NC	1
296		10	min	001	2	008	3	003	3	-2.1e-4	3	NC	1	NC	1
297		16	max	.001	3	.005	2	<u>.005</u>	10	2.79e-6	10	NC	-	NC	1
298		10	min	001	2	008	3	003	3	-2.319e-4	3	8494.918	2	NC	1
299		17	max	.001	3	.006	2	<u>.000</u>	10	2.953e-6	10	NC	1	NC	1
300		<u> </u>	min	001	2	008	3	003	3	-2.539e-4	3	7253.969	2	NC	1
301		18	max	.001	3	.007	2	0	10	3.116e-6	10	NC	1	NC	1
302			min	001	2	008	3	003	1	-2.758e-4	3	6294.446	2	NC	1
303		19	max	.001	3	.008	2	0	10	3.279e-6	10	NC	3	NC	1
304			min	002	2	008	3	003	1	-2.977e-4	3	5544.686	2	NC	1
305	M12	1	max	.001	1	.009	2	.002	1	3.123e-4	3	NC	1	NC	2
306			min	0	3	008	3	0	10	-3.893e-6	10	NC	1	8168.829	1
307		2	max	.001	1	.008	2	.002	1	3.123e-4	3	NC	1	NC	2
308			min	0	3	007	3	0	10	-3.893e-6	10	NC	1	8909.841	1
309		3	max	.001	1	.008	2	.002	1	3.123e-4	3	NC	1_	NC	2
310			min	0	3	007	3	0	10	-3.893e-6	10	NC	1_	9791.839	1
311		4	max	.001	1	.007	2	.002	1	3.123e-4	3	NC	1_	NC	1
312			min	0	3	006	3	0	10	-3.893e-6	10	NC	1_	NC	1
313		5	max	.001	1	.007	2	.002	1	3.123e-4	3_	NC	_1_	NC	1
314			min	0	3	006	3	0	10	-3.893e-6	10	NC	_1_	NC	1
315		6	max	.001	1	.006	2	.001	1	3.123e-4	3	NC	_1_	NC	1
316		<u> </u>	min	0	3	005	3	0	10	-3.893e-6	10	NC	1_	NC	1
317		7	max	0	1	.006	2	.001	1	3.123e-4	3_	NC	1_	NC	1
318			min	0	3	00 <u>5</u>	3	0	10	-3.893e-6	10	NC	1_	NC	1
319		8	max	0	1	.005	2	.001	1	3.123e-4	3	NC NC	1_	NC NC	1
320			min	0	3	005	3	0		-3.893e-6			1	NC NC	1
321		9	max	0	3	.005	2	0	1	3.123e-4	3	NC	1	NC NC	1
322		10	min	0	1	004	2	0		-3.893e-6	10	NC NC	<u>1</u> 1	NC NC	1
323		10	max	0	3	.004	3	0 0	1	3.123e-4	3	NC NC	1	NC NC	1
324		11	min	<u> </u>	1	004 .004	2	0	10	-3.893e-6 3.123e-4	<u>10</u> 3	NC NC	1	NC NC	1
326			max min	0	3	003	3	0	10	-3.893e-6	10	NC	1	NC	1
327		12	max	0	1	.003	2	0	1	3.123e-4	3	NC	1	NC	1
328		12	min	0	3	003	3	0	10	-3.893e-6	10	NC	1	NC	1
329		13		0	1	.003	2	0	1	3.123e-4	3	NC	1	NC	1
330		13	max min	0	3	003	3	0	10	-3.893e-6	10	NC NC	1	NC NC	1
331		14	max	0	1	.002	2	0	1	3.123e-4	3	NC	1	NC	1
332			min	0	3	002	3	0	10	-3.893e-6	10	NC	1	NC	1
333		15	max	0	1	.002	2	0	1	3.123e-4	3	NC	1	NC	1
334		10	min	0	3	002	3	0	10	-3.893e-6	10	NC	1	NC	1
335		16	max	0	1	.002	2	0	1	3.123e-4	3	NC	1	NC	1
336			min	0	3	001	3	0	10	-3.893e-6	10	NC	1	NC	1
000					_	1001			- 10	3.0000					

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC	(n) L/z Ratio	LC
337		17	max	0	1	0	2	0	1	3.123e-4	3	NC	1	NC	1
338			min	0	3	0	3	0	10	-3.893e-6	10	NC	1	NC	1
339		18	max	0	1	0	2	0	1	3.123e-4	3	NC	1	NC	1
340			min	0	3	0	3	0	10	-3.893e-6	10	NC	1	NC	1
341		19	max	0	1	0	1	0	1	3.123e-4	3	NC	1	NC	1
342			min	0	1	0	1	0	1	-3.893e-6	10	NC	1	NC	1
343	M1	1	max	.007	3	.023	3	.003	3	5.883e-3	2	NC	1	NC	1
344			min	007	2	019	2	0	9	-8.395e-3		NC	1	NC	1
345		2	max	.007	3	.013	3	.002	3	2.902e-3	2	NC	4	NC	1
346			min	007	2	011	2	002	1	-4.13e-3	3	4989.118	3	NC	1
347		3	max	.007	3	.004	3	.002	3	5.59e-5	3	NC	4	NC	1
348		J	min	007	2	003	2	003	1	-1.297e-4	1	2587.642	3	NC	1
		4		.007	3	.004	2	.003	3	5.592e-5	3	NC	4	NC	1
349		4	max		2						-		3		1
350		-	min	007		003	3	003	1	-1.069e-4	1_	1848.542		NC NC	
351		5	max	.007	3	.01	2	.001	3	5.594e-5	3	NC 4.407.000	4_	NC NC	1
352			min	007	2	01	3	003	1	-8.402e-5	1_	1497.036	3	NC	1
353		6	max	.007	3	.015	2	0	3	5.596e-5	3	NC	_4_	NC	1
354			min	007	2	015	3	003	1	-6.117e-5		1301.725	3	NC	1
355		7	max	.007	3	.019	2	0	3	5.598e-5	3	NC	4	NC	1
356			min	007	2	018	3	003	1	-4.078e-5	9	1162.135	2	NC	1
357		8	max	.007	3	.022	2	0	3	5.6e-5	3	NC	4	NC	1
358			min	007	2	021	3	002	1	-2.373e-5	9	1073.688	2	NC	1
359		9	max	.007	3	.024	2	0	3	5.602e-5	3	NC	4	NC	1
360			min	007	2	022	3	001	1	-6.673e-6	9	1021.425	2	NC	1
361		10	max	.007	3	.025	2	0	3	5.604e-5	3	NC	4	NC	1
362			min	007	2	023	3	0	9	-3.424e-7	10	997.438	2	NC	1
363		11	max	.007	3	.025	2	0	3	5.606e-5	3	NC	4	NC	1
364			min	007	2	022	3	0	9	-7.919e-7		998.891	2	NC	1
365		12	max	.007	3	.023	2	0	1	7.589e-5	1	NC	4	NC	1
366		12	min	007	2	02	3	0	10	-1.241e-6		1026.961	2	NC	1
367		13	max	.007	3	.02	2	.002	1	9.873e-5	1	NC	4	NC	1
368		13	min	007	2	017	3	0	10	-1.691e-6			2	NC NC	1
		1.1													
369		14	max	.007	3	.016	2	.002	1	1.216e-4	1	NC 4400.004	4_	NC NC	1_
370		4.5	min	007	2	014	3	0	10	-2.14e-6	10	1193.831	2	NC NC	1
371		15	max	.007	3	.011	2	.002	1	1.444e-4	1_	NC	4_	NC	1_
372			min	007	2	009	3	0	10	-2.589e-6	10	1375.447	2	NC	1
373		16	max	.007	3	.004	2	.002	1	1.611e-4	_1_	NC	_4_	NC	_1_
374			min	007	2	003	3	0	10	-2.922e-6		1704.146	2	NC	1
375		17	max	.007	3	.003	3	.002	1	5.665e-5	3	NC	4	NC	1
376			min	007	2	005	2	0	10			2408.917	2	NC	1
377		18	max	.007	3	.01	3	0	1	4.065e-3	2	NC	4	NC	1
378			min	007	2	014	2	0	10	-2.051e-3	3	4664.739	2	NC	1
379		19	max	.007	3	.018	3	0	3	8.193e-3	2	NC	1	NC	1
380			min	007	2	025	2	0	9	-4.198e-3	3	NC	1	NC	1
381	M5	1	max	.021	3	.071	3	.003	3	6.308e-6	3	NC	1	NC	1
382			min	024	2	061	2	0	9	0	1	NC	1	NC	1
383		2	max	.021	3	.04	3	.004	3	1.125e-4	3	NC	4	NC	1
384			min	024	2	034	2	0	9	-1.548e-5		1590.687	3	NC	1
385		3	max	.021	3	.012	3	.005	3	2.167e-4	3	NC	5	NC	1
386			min	024	2	009	2	0	9	-3.075e-5		825.454	3	NC NC	1
387		4		024 .021	3	.013	2	.006	3	2.109e-4	3	NC	5	NC NC	1
		4	max			011									
388		-	min	024	2		3	0	9	-2.919e-5		590.424	3_	NC NC	1
389		5	max	.021	3	.033	2	.007	3	2.051e-4	3	NC	5	NC NC	1
390			min	024	2	031	3	0	9	-2.763e-5		478.783	3_	NC NC	1
391		6	max	.021	3	.049	2	.007	3	1.993e-4	3_	NC	5	NC	1_
392			min	024	2	<u>046</u>	3	0	9	-2.607e-5		409.202	2	9671.707	3
393		7	max	.021	3	.062	2	.007	3	1.935e-4	3	NC	5	NC	1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
394			min	024	2	058	3	0	9	-2.451e-5	9	364.731	2	9192.856	
395		8	max	.021	3	.071	2	.007	3	1.877e-4	3	NC	5	NC	1
396			min	024	2	066	3	0	9	-2.295e-5	9	336.873	2	9089.49	3
397		9	max	.02	3	.077	2	.007	3	1.819e-4	3	NC	_5_	NC	1
398		40	min	024	2	07	3	0	9	-2.139e-5	9	320.399	2	9290.789	
399		10	max	.02 024	3	.08 071	2	.007	3	1.761e-4	3	NC 312.817	5	NC 0700 0FC	1
400		11	min		3		2	0	3	-1.983e-5 1.703e-4	3	NC	2	9788.856 NC	
401			max	.02 024	2	.079 068	3	.006	9	-1.827e-5	9	313.234	<u>5</u> 2	NC NC	1
403		12	max	.024	3	.074	2	.005	3	1.645e-4	3	NC	5	NC NC	1
404		12	min	024	2	063	3	.005	9	-1.671e-5	9	322.014	2	NC NC	1
405		13	max	.024	3	.065	2	.005	3	1.587e-4	3	NC	5	NC	1
406		13	min	024	2	054	3	0	9	-1.515e-5	9	340.985	2	NC	1
407		14	max	.02	3	.051	2	.004	3	1.529e-4	3	NC	5	NC	1
408		17	min	024	2	042	3	0	9	-1.359e-5	9	374.355	2	NC	1
409		15	max	.02	3	.034	2	.003	3	1.471e-4	3	NC	5	NC	1
410		10	min	024	2	027	3	0	9	-1.203e-5	9	431.362	2	NC	1
411		16	max	.02	3	.012	2	.003	3	1.373e-4	3	NC	5	NC	1
412			min	024	2	01	3	0	9	-1.147e-5	9	534.574	2	NC	1
413		17	max	.02	3	.01	3	.002	3	3.226e-5	3	NC	5	NC	1
414			min	024	2	015	2	0	9	-3.474e-5	9	756.081	2	NC	1
415		18	max	.02	3	.032	3	.001	3	1.48e-5	3	NC	4	NC	1
416			min	024	2	046	2	0	9	-1.777e-5	9	1464.635	2	NC	1
417		19	max	.02	3	.054	3	0	3	0	15	NC	1	NC	1
418			min	024	2	079	2	0	9	-9.993e-7	3	NC	1	NC	1
419	M9	1	max	.007	3	.022	3	.003	3	8.408e-3	3	NC	1_	NC	1
420			min	007	2	019	2	0	9	-5.883e-3	2	NC	1_	NC	1
421		2	max	.007	3	.012	3	.001	3	4.153e-3	3	NC	4	NC	1
422			min	007	2	011	2	0	10	-2.902e-3	2	4991.483	3	NC	1
423		3	max	.007	3	.004	3	.001	1	7.712e-5	1_	NC	4_	NC	1
424			min	007	2	003	2	0	3	-2.375e-5	3	2588.894	3	NC	1
425		4	max	.007	3	.004	2	.002	1	5.661e-5	1_	NC	4	NC	1
426			min	007	2	004	3	001	3	-3.131e-5	3	1849.419	3	NC	1
427		5	max	.007	3	.01	2	.002	1	3.611e-5	1_	NC	4_	NC	1
428			min	007	2	01	3	002	3	-3.887e-5	3	1497.7	3	NC NC	1
429		6	max	.007	3	.015	2	.002	1	1.96e-5	11	NC	4	NC	1
430		7	min	007	3	015	2	003	3	-4.643e-5	3	1302.25 NC	3	8991.841	3
431			max	.007	2	.019	3	.002	3	9.311e-6	11	1162.419	2	NC 8229.067	1
432		8	min	007 .007	3	019 .022	2	004 0	1	-5.4e-5 -4.183e-7	<u>3</u> 10	NC	4	NC	1
434		0	max min		2	021	3	004		-4.163e-7				7812.01	3
435		9	max	.007	3	.024	2	0	11	0	10	NC	4	NC	1
436		9	min	007	2	023	3	004	3	-6.912e-5	3	1021.694	2	7641.64	3
437		10	max	.007	3	.025	2	0	11	4.645e-7	10	NC	4	NC	1
438		10	min	007	2	023	3	004	3	-7.668e-5	3	997.71	2	7676.391	3
439		11	max	.007	3	.025	2	0	10	9.059e-7	10	NC	4	NC	1
440			min	007	2	022	3	004	3	-8.693e-5	1	999.171	2	7910.258	
441		12	max	.007	3	.023	2	0	10		10	NC	4	NC	1
442			min	007	2	02	3	004	3	-1.074e-4	1	1027.257	2	8368.55	3
443		13	max	.007	3	.02	2	0	10	1.789e-6	10	NC	4	NC	1
444			min	007	2	017	3	004	3	-1.279e-4	1	1087.791	2	9116.806	_
445		14	max	.007	3	.016	2	0	10	2.23e-6	10	NC	4	NC	1
446			min	007	2	014	3	003	3	-1.484e-4	1	1194.188	2	NC	1
447		15	max	.007	3	.011	2	0	10		10	NC	4	NC	1
448			min	007	2	009	3	003	1	-1.69e-4	1	1375.861	2	NC	1
449		16	max	.007	3	.004	2	0	10	2.988e-6	10	NC	4	NC	1
							3								

Company Designer Job Number Model Name Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
451		17	max	.007	3	.003	3	0	10		3	NC	4	NC	1
452			min	007	2	005	2	002	1	-8.531e-5	1	2409.583	2	NC	1
453		18	max	.007	3	.01	3	0	10	2.099e-3	3	NC	4	NC	1
454			min	007	2	014	2	002	1	-4.066e-3	2	4665.987	2	NC	1
455		19	max	.007	3	.018	3	0	3	4.196e-3	3	NC	1	NC	1
456			min	007	2	025	2	0	9	-8.193e-3	2	NC	1	NC	1
457	M13	1	max	0	9	.022	3	.007	3	3.642e-3	3	NC	1	NC	1
458			min	003	3	019	2	007	2	-3.186e-3	2	NC	1	NC	1
459		2	max	0	9	.065	3	.005	3	4.514e-3	3	NC	4	NC	1
460			min	003	3	05	2	006	2	-3.957e-3	2	2213.773	3	NC	1
461		3	max	0	9	.102	3	.007	9	5.385e-3	3	NC	4	NC	2
462			min	003	3	075	2	006	2	-4.728e-3	2	1202.761	3	9658.379	
		1													
463		4	max	0	9	.127	3	.01	9	6.257e-3	3_	NC 047,400	5_	NC 7040,000	2
464		-	min	003	3	093	2	006	10	-5.498e-3	2	917.402	3	7010.336	
465		5_	max	0	9	.138	3	.011	9	7.128e-3	3	NC	_5_	NC	2
466			min	003	3	102	2	007	2	-6.269e-3	2	830.899	3	6641.359	
467		6	max	0	9	.135	3	.01	3	8.e-3	3	NC	5_	NC	2
468			min	003	3	101	2	01	2	-7.04e-3	2	852.62	3	8182.083	1
469		7	max	0	9	.121	3	.013	3	8.871e-3	3	NC	5	NC	1
470			min	003	3	093	2	014	2	-7.811e-3	2	976.49	3	NC	1
471		8	max	0	9	.1	3	.016	3	9.743e-3	3	NC	4	NC	1
472			min	003	3	08	2	019	2	-8.582e-3	2	1237.27	3	8508.055	2
473		9	max	0	9	.08	3	.018	3	1.061e-2	3	NC	4	NC	1
474			min	003	3	067	2	022	2	-9.353e-3	2	1662.76	3	6403.388	2
475		10	max	0	9	.071	3	.021	3	1.149e-2	3	NC	4	NC	4
476			min	003	3	061	2	024	2	-1.012e-2	2	1981.253	3	5779.607	2
477		11	max	0	9	.08	3	.022	3	1.062e-2	3	NC	4	NC	1
478			min	003	3	067	2	022	2	-9.353e-3	2	1662.759	3	6231.56	3
479		12		0	9	<u>007</u> .1	3	.023	3	9.747e-3	3	NC	4	NC	1
		12	max	003	3	079	2		2		2	1237.268	3		3
480		13	min		9	<u>079</u> .121		019 .022		-8.582e-3		NC	<u>5</u>	6085.072	1
481		13	max	0			3		3	8.877e-3	3			NC	_
482		4.4	min	003	3	093	2	014	2	-7.811e-3	2	976.489	3_	6401.482	
483		14	max	0	9	.135	3	.02	3	8.007e-3	3	NC	5_	NC	2
484			min	003	3	101	2	01	2	-7.04e-3	2	852.619	3	7243.845	
485		15	max	0	9	.138	3	.018	3	7.138e-3	3_	NC	_5_	NC	2
486			min	003	3	102	2	007	2	-6.269e-3	2	830.898	3	6644.864	
487		16	max	0	9	.127	3	.015	3	6.268e-3	3	NC	5_	NC	2
488			min	003	3	093	2	006	10	-5.499e-3	2	917.402	3	7020.631	1
489		17	max	0	9	.102	3	.012	3	5.398e-3	3	NC	4	NC	2
490			min	003	3	075	2	006	2	-4.728e-3	2	1202.76	3	9683.613	1
491		18	max	0	9	.066	3	.009	3	4.529e-3	3	NC	4	NC	1
492			min	003	3	05	2	006	2	-3.957e-3	2	2213.772	3	NC	1
493		19	max	0	9	.023	3	.007	3	3.659e-3	3	NC	1	NC	1
494		1.0	min	003	3	019	2	007	2	-3.186e-3	2	NC	1	NC	1
495	M16	1	max	0	9	.018	3	.007	3	3.925e-3	2	NC	1	NC	1
496	IVITO		min	0	3	025	2	007	2	-2.834e-3	3	NC	1	NC	1
497		2			9		3	.009	3	4.879e-3	2	NC	4	NC	1
			max	0		.04									
498		_	min	0	3	067	2	006	2	-3.483e-3	3	2267.806	2	NC NC	1
499		3	max	0	9	.058	3	.012	3	5.832e-3	2	NC	4_	NC 0745 047	2
500			min	0	3	103	2	006	2	-4.132e-3	3	1229.138	2	9715.647	1
501		4	max	0	9	.071	3	.015	3	6.786e-3	2	NC	_5_	NC	2
502			min	0	3	128	2	006	2	-4.782e-3	3	933.542	2	7054.954	
503		5	max	0	9	.078	3	.017	3	7.74e-3	2	NC	5_	NC	2
504			min	0	3	139	2	007	2	-5.431e-3	3	839.818	2	6693.594	1
505		6	max	0	9	.079	3	.019	3	8.693e-3	2	NC	5	NC	2
506			min	0	3	137	2	01	2	-6.08e-3	3	852.67	2	7920.583	
507		7	max	0	9	.074	3	.02	3	9.647e-3	2	NC	5	NC	1
		<u> </u>						·							

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio		T	
508			min	0	3	125	2	014	2	-6.729e-3	3	960.113	2	7103.756	3
509		8	max	0	9	.066	3	.021	3	1.06e-2	2	NC	4	NC	1
510			min	0	3	106	2	019	2	-7.379e-3	3	1183.663	2	6752.375	3
511		9	max	0	9	.058	3	.021	3	1.155e-2	2	NC	4	NC cooz co	1
512		40	min	0	3	088	2	022	2	-8.028e-3	3	1528.794	2	6397.83	2
513		10	max	0	9	.054	3	.02	3	1.251e-2	2	NC	4	NC	4
514		4.4	min	0	3	079	2	024	2	-8.677e-3	3	1771.634	2	5775.178	2
515		11	max	0	9	.058	3	.019	3	1.155e-2	2	NC 4539.704	2	NC	1
516		40	min	0	3	088	2	022	2	-8.026e-3	3	1528.794	_	6397.842	2
517		12	max	0	9	.066	3	.018	3	1.06e-2	3	NC	4	NC 8497.787	2
518		40	min	0		106		019	3	-7.375e-3		1183.663	2	NC	1
519		13	max	0	9	.074	3	.016		9.647e-3	2	NC	5		_
520		4.4	min	0		125	2	014	2	-6.724e-3	3	960.113	2	NC NC	1
521		14	max	0	9	.079	3	.015	3	8.694e-3	2	NC 852.67	5	NC	2
522		15	min	0	9	137	3	01 .013	3	-6.073e-3	3	NC	2	8286.843	2
523 524		15	max	0	3	.078			2	7.74e-3 -5.422e-3	2	839.818	5	NC 6706.622	1
		16	min	0	9	139	3	007	3		3		2	NC	2
525		16	max	0	3	.071 128		.011		6.787e-3	2	NC	<u>5</u>		4
526		17	min	0			2	006	2	-4.772e-3	3	933.542		7075.469	
527 528		17	max	<u> </u>	9	.058 103	3	.009 006	2	5.833e-3 -4.121e-3	3	NC 1229.138	2	NC 9756.992	1
529		18	min	0	9	.039	3	.008	3	4.88e-3	2	NC	4	NC	1
530		10	max	0	3			007	2		3	2267.806	2	NC NC	1
		10	min	-		067	3			-3.47e-3 3.926e-3			1		1
531		19	max	<u>0</u> 	9	.018	2	.007	2		2	NC NC	1	NC NC	1
532 533	M15	1	min	0	1	025	1	007	1	-2.819e-3	3	NC NC	1	NC NC	1
534	IVITO		max	0	1	0	1	<u> </u>	1	3.736e-4 -4.469e-5	2	NC NC	1	NC NC	1
		2	min	0	3	0	15		1	7.767e-4	3	NC NC	1	NC NC	1
535			max		2	003	4	<u> </u>	3	-4.434e-4	2	NC NC	1	NC NC	1
536 537		3	min	0	3	003 001	15	.003	1	1.18e-3		NC NC	1	NC NC	1
538		3	max	<u> </u>	2	005	4	003	3	-8.422e-4	<u>3</u>	NC NC	1	NC NC	1
539		4	max	0	3	003	15	.005	1	1.583e-3	3	NC	+	NC	4
540		4	min	0	2	002	4	006	3	-1.241e-3	2	8373.921	4	5687.287	3
541		5	max	0	3	002	15	.009	1	1.986e-3	3	NC	3	NC	4
542		-	min	0	2	002	4	011	3	-1.64e-3	2	6534.255	4	3733.581	3
543		6	max	0	3	003	15	.012	2	2.389e-3	3	NC	5	NC	4
544			min	0	2	011	4	015	3	-2.038e-3	2	5499.266	4	2718.926	3
545		7	max	0	3	003	15	.016	2	2.792e-3	3	NC	5	NC	4
546			min	001	2	013	4	02	3	-2.437e-3	2	4876.857	4	2125.686	3
547		8	max	<u>001</u> 0	3	003	15	.02	2	3.195e-3	3	NC	5	NC	4
548			min	001	2		4	025		-2 8366-3		4503.318			
549		9	max	0	3	003	15	.023	2	3.598e-3	3	NC	5	NC	4
550			min	002	2	014	4	029	3	-3.235e-3	2	4302.257	4	1508.781	3
551		10	max	0	3	003	15	.026	2	4.001e-3	3	NC	5	NC	4
552		10	min	002	2	014	4	032	3	-3.633e-3	2	4238.651	4	1347.733	3
553		11	max	0	3	003	15	.027	2	4.404e-3	3	NC	5	NC	4
554			min	002	2	014	4	035	3	-4.032e-3	2	4302.257	4	1245.538	
555		12	max	0	3	003	15	.028	1	4.808e-3	3	NC	5	NC	5
556		12	min	002	2	014	4	035	3	-4.431e-3	2	4503.318	4	1190.233	3
557		13	max	.002	3	003	15	.027	1	5.211e-3	3	NC	5	NC	4
558		10	min	002	2	013	4	035	3	-4.83e-3	2	4876.857	4	1178.341	3
559		14	max	.002	3	003	15	.025	1	5.614e-3	3	NC	5	NC	4
560			min	003	2	011	4	032	3	-5.228e-3	2	5499.266	4	1214.993	
561		15	max	.001	3	002	15	.021	1	6.017e-3	3	NC	3	NC	4
562		13	min	003	2	002	4	026	3	-5.627e-3	2	6534.255	4	1319.057	3
563		16	max	.001	3	002	12	.015	1	6.42e-3	3	NC	1	NC	4
564		10	min	003	2	002	4	018	3	-6.026e-3	2	8373.921	4	1541.785	
JU-			111001	.000		.000	7	.010	J	0.0206-0		0010.021	7	10-1.703	J

Company Designer Job Number Model Name Schletter, Inc.

HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
565		17	max	.001	3	0	2	.007	1	6.823e-3	3	NC	1	NC	4
566			min	003	2	005	4	007	3	-6.425e-3	2	NC	1	2043.98	3
567		18	max	.001	3	.002	2	.007	3	7.226e-3	3	NC	1	NC	4
568			min	003	2	003	4	01	2	-6.823e-3	2	NC	1	3639.102	3
569		19	max	.002	3	.005	2	.025	3	7.629e-3	3	NC	1	NC	1
570			min	004	2	001	9	025	2	-7.222e-3	2	NC	1	NC	1
571	M16A	1	max	0	2	.001	2	.008	3	2.2e-3	3	NC	1	NC	1
572			min	002	3	0	9	008	2	-2.232e-3	2	NC	1	NC	1
573		2	max	0	2	0	15	.001	3	2.114e-3	3	NC	1	NC	1
574			min	001	3	003	4	003	2	-2.13e-3	2	NC	1	NC	1
575		3	max	0	2	001	15	.003	1	2.028e-3	3	NC	1	NC	4
576			min	001	3	005	4	004	3	-2.028e-3	2	NC	1	5738.962	3
577		4	max	0	2	002	15	.006	1	1.943e-3	3	NC	1	NC	4
578			min	001	3	008	4	007	3	-1.926e-3	2	8373.921	4	4366.168	3
579		5	max	0	2	002	15	.008	1	1.857e-3	3	NC	3	NC	4
580			min	001	3	01	4	01	3	-1.823e-3	2	6534.255	4	3772.071	3
581		6	max	0	2	003	15	.009	1	1.771e-3	3	NC	5	NC	4
582			min	001	3	011	4	012	3	-1.721e-3	2	5499.266	4	3513.716	3
583		7	max	0	2	003	15	.01	1	1.685e-3	3	NC	5	NC	4
584			min	001	3	013	4	012	3	-1.619e-3	2	4876.857	4	3452.5	3
585		8	max	0	2	003	15	.01	1	1.6e-3	3	NC	5	NC	4
586			min	0	3	014	4	012	3	-1.517e-3	2	4503.318	4	3541.347	3
587		9	max	0	2	003	15	.009	1	1.514e-3	3	NC	5	NC	4
588			min	0	3	014	4	012	3	-1.415e-3	2	4302.257	4	3774.547	3
589		10	max	0	2	003	15	.008	1	1.428e-3	3	NC	5	NC	4
590			min	0	3	014	4	011	3	-1.312e-3	2	4238.651	4	4176.398	3
591		11	max	0	2	003	15	.007	1	1.342e-3	3	NC	5	NC	4
592			min	0	3	014	4	009	3	-1.21e-3	2	4302.257	4	4806.837	3
593		12	max	0	2	003	15	.006	1	1.257e-3	3	NC	5	NC	4
594			min	0	3	014	4	007	3	-1.108e-3	2	4503.318	4	5785.206	3
595		13	max	0	2	003	15	.005	1	1.171e-3	3	NC	5	NC	2
596			min	0	3	012	4	006	3	-1.006e-3	2	4876.857	4	7351.46	3
597		14	max	0	2	003	15	.003	1	1.085e-3	3	NC	5	NC	1
598			min	0	3	011	4	004	3	-9.033e-4	2	5499.266	4	NC	1
599		15	max	0	2	002	15	.002	1	9.995e-4	3	NC	3	NC	1_
600			min	0	3	009	4	002	3	-8.011e-4	2	6534.255	4	NC	1
601		16	max	0	2	002	15	.001	9	9.137e-4	3	NC	1_	NC	1
602			min	0	3	007	4	0	3	-6.989e-4	2	8373.921	4	NC	1
603		17	max	0	2	001	15	0	4	8.28e-4	3	NC	_1_	NC	1
604			min	0	3	005	4	0	2	-5.966e-4	2	NC	1_	NC	1
605		18	max	0	2	0	15	0	4	7.423e-4	3	NC	_1_	NC	1
606			min	0	3	003	4	0	2	-4.944e-4	2	NC	1	NC	1
607		19	max	0	1	0	1	0	1	6.565e-4	3	NC	1_	NC	1
608			min	0	1	0	1	0	1	-3.921e-4	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location:

Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 405

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N _b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,l}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253 92	256.00	0 995	1.00	1 000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 K_{sat}

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

τ_{k,cr} (psi)

1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a))		
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{grout}\phi V_{sa}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

l _e (in)	da (in)	λ	f'_c (psi)	Ca1 (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cby} = \phi (A_V$	$_{/c}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,V}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)				
Avc (in ²)	Avco (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
238.44	288.00	0.897	1.000	1.000	8488	0.70	4411	

Shear perpendicular to edge in x-direction:

V _{bv} =	7(1./	$(d_0)^{0.2}$	2 da 2	Vf'acas	1.5 (F	a. D-24)
v bx -	' I Vie/	uai	VUa/L	VI CLAI	100	J. D-241

l _e (in)	d _a (in)	λ	f_c (psi)	c _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / Avco) Yed, v Yc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)	
--	--

l _e (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) Yed, v	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\mathit{CP}} = \phi \min |k_{\mathit{CP}} N_{\mathit{a}} \; ; \; k_{\mathit{CP}} N_{\mathit{Cb}}| = \phi \min |k_{\mathit{CP}} (A_{\mathit{Na}} / A_{\mathit{NaO}}) \, \Psi_{\mathit{ed},\mathit{Na}} \, \Psi_{\mathit{P},\mathit{Na}} N_{\mathit{aO}} \; ; \; k_{\mathit{CP}} (A_{\mathit{Nc}} / A_{\mathit{NcO}}) \, \Psi_{\mathit{ed},\mathit{N}} \, \Psi_{\mathit{CP},\mathit{N}} N_{\mathit{b}}| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m p,Na}$	N _{a0} (lb)	Na (lb)	, ,	
2.0	109.66	109.66	1.000	1.000	9755	9755		
A _{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No

Anchors only resisting wind and/or seismic loads: No

Project description:

Location:

Fastening description:

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Z

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 3>

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	732.5	499.5	0.0	499.5	
2	732.5	499.5	0.0	499.5	
Sum	1465.0	999.0	0.0	999.0	

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

<i>k</i> _c	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	5.333	10469				
$\phi N_{cbg} = \phi (A_I)$	Nc / A_{Nco}) $\Psi_{ec,N}$ Ψ_{ed}	$_{l,N} arPsi_{c,N} arPsi_{cp,N} N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\mathscr{V}_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
314.72	256.00	1.000	0.865	1.00	1.000	10469	0.65	7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	,Na $\Psi_{ec,Na}\Psi_{p,Na}N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d$	la) ^{0.2} √daλ√f'c C a1 ^{1.}	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$arPhi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f'c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec,V}$	V $\Psi_{\text{ed,V}} \Psi_{\text{c,V}} \Psi_{\text{h,V}}$	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$arPsi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{\textit{CPG}} = \phi \min[k_{\textit{CP}} N_{\textit{eg}} \; ; \; k_{\textit{CP}} N_{\textit{CbG}}] = \phi \min[k_{\textit{CP}} (A_{\textit{Na}} / A_{\textit{Na0}}) \; \Psi_{\textit{ed},\textit{Na}} \; \Psi_{\textit{g},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{p},\textit{Na}} N_{\textit{a0}} \; ; \; k_{\textit{CP}} (A_{\textit{Nc}} / A_{\textit{Nco}}) \; \Psi_{\textit{ed},\textit{N}} \; \Psi_{\textit{c},\textit{N}} \; \Psi_{\textit{c},\textit{N}} N_{\textit{b}}] \; (\text{Eq. D-30b})$								
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3	0.20	0.25	45.0 %	1.2	Pass
------------	------	------	--------	-----	------

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.