t-SNE

t-distributed Stochastic Neighbor Embedding

t-distributed Stochastic Neighbor Embedding

Primary purpose is for visualizing high parameter data It is a form of non-linear dimensionality reduction

Pro: Retains both global and local data structure

Con: Computationally expensive

Con: Data point crowding in 2 dimensional space, sometimes may require clustering algorithm to see fine-grained boundaries between populations

Perplexity

t-SNE has a perplexity variable which is how much you vary the attention between global and local aspects of your data

Training

t-SNE has an epsilon which is described by a learning rate, or how much it learns from each iteration

You can also stop it before it becomes stable

Cluster sizes mean nothing.

Distances between clusters might not mean anything

Shapes and patterns can be seen in noise:

Multi-dimensional data

Original

Perplexity: 2 Step: 5,000

Perplexity: 5 Step: 5,000

Perplexity: 30 Step: 5,000

Perplexity: 50 Step: 5,000

Perplexity: 100 Step: 5,000

Original

Perplexity: 2 Step: 5,000

Perplexity: 5 Step: 5,000

Perplexity: 30 Step: 5,000

Perplexity: 50 Step: 5,000

Perplexity: 100 Step: 5,000

Word2Vec Visualization

