Physics Lab

Teacher: Ms. Farzaneh Noor Mohammadi

Student: Mr. Ramtin Kosari

Voltage Division Rule

October 13, 2024

Overview

Here is book of Physics Lab experiment 1, Voltage Divider Rule overview

Experiment Info

- Purpose > Validation of voltage division law
- Necessary Equipment > Selective Resistance, DC Power, Digital Voltmeter, Wires

We have two types of resistors, series and parallel and the voltage division rule for them are:

for series resistors:

$$V_1 = \frac{V_S R_1}{R_1 + R_2}$$

$$V_2 = \frac{V_S R_2}{R_1 + R_2}$$

for parallel resistors:

final parallel resistor:

$$(R_2||R_3) = \frac{R_2 R_3}{R_2 + R_3}$$

$$V_1 = \frac{V_S R_1}{R_1 + (R_2 || R_3)}$$

$$V_1 = \frac{V_S R_1}{R_1 + (R_2 || R_3)}$$
 $V_2 = V_3 = \frac{V_S (R_2 || R_3)}{R_1 + (R_2 || R_3)}$

Division Rule on Series Resistors

First we need to do this experiment on series resistors, R_1 is a selective and R_2 is a box resistor. We conducted 3 experiments to validate Division Rule on series resistors.

Steps

- 1. for experiment $\frac{1}{3}$, We set selective resistor on 7 so output will be $(10-7)*100=300\Omega$ (because of using two black inputs, we used this conversion) but after connecting to multimeter we got $0.299k\Omega$. then we set box resistor on 3400Ω and multimeter showed us $3.410k\Omega$.
- 2. We set source DC power to 14V.
- 3. Turn on DC power and enable output.
- 4. Connected multimeter to R_1 and written down its voltage, then did the same to R_2 .
- 5. Calculated voltage of R_1 and R_2 via formula and written down.
- 6. for experiment $\frac{2}{3}$, We only set DC power to 17.5V and did the previous steps again.
- 7. for last experiment, We set selective resistor on 6 so output will be $(10-6)*100=400\Omega$ but after connecting to multimeter we got $0.399k\Omega$. then we set box resistor on 1500Ω and multimeter showed us $1.516k\Omega$. After that we did the previous steps again.

Next pages are experiments calculations

Division Rule on Series Resistors - Experiments Table

V_{S}	R_{1}	R_2	V ₁ measured	V ₂ _{measured}	$V_{1_{real}}$	$V_{2_{real}}$
14. 0V	$0.299k\Omega$	$3.410k\Omega$	1. 13 <i>V</i>	12.93 <i>V</i>	1. 129 V : α_{1}	12. 871 V : α_2
17.5V	$0.299k\Omega$	$3.410k\Omega$	1. 43 <i>V</i>	16. 18V	$1.411V:\beta_1$	16. $089V : \beta_2$
17.5V	$0.399k\Omega$	$1.516k\Omega$	3. 67 <i>V</i>	13. 91 <i>V</i>	3. 646 <i>V</i> : γ ₁	13. 854 $V: \gamma_2$

Calculations of α , β and γ :

$$\begin{split} V_{\alpha_1} &= \frac{14.0V \times 0.299k\Omega}{0.299k\Omega + 3.41k\Omega} \approx \ 1.\ 129V & V_{\alpha_2} &= \frac{14.0V \times 3.410k\Omega}{0.299k\Omega + 3.41k\Omega} \approx \ 12.\ 871V \\ V_{\beta_1} &= \frac{17.5V \times 0.299k\Omega}{0.299k\Omega + 3.41k\Omega} \approx \ 1.\ 411V & V_{\beta_2} &= \frac{17.5V \times 3.410k\Omega}{0.299k\Omega + 3.41k\Omega} \approx \ 16.\ 089V \\ V_{\gamma_1} &= \frac{17.5V \times 0.399k\Omega}{0.399k\Omega + 1.516k\Omega} \approx \ 3.\ 646V & V_{\gamma_2} &= \frac{17.5V \times 1.516k\Omega}{0.399k\Omega + 1.516k\Omega} \approx \ 13.\ 854V \end{split}$$

Division Rule on Series Resistors - Error Calculations

Error calculations are divided into 3 categories, absolute, relative and systematic errors and my personal task is to calculate errors of **second experiment**:

We get this absolute error for β_1 : $\epsilon_{abs_g} = |1.411V - 1.43V| = 0.019$

Also we get this absolute error for β_2 : $\epsilon_{abs_{\beta_2}} = |16.089V - 16.18V| = 0.091$

from relative formula:

$$Relative\ Error = \frac{|real\ value - measured\ value|}{real\ value}$$

We get this absolute error for
$$\boldsymbol{\beta}_1$$
 :

$$\varepsilon_{rel_{\beta_1}} = \frac{0.019V}{1.411V} \approx 0.016$$

Also we get this absolute error for
$$\boldsymbol{\beta}_2$$
 :

$$\varepsilon_{rel_{\beta}} = \frac{0.091V}{16.089V} \approx 0.006$$

for systematic formula, We must do several mathematics operations:

1. Consider we have formula
$$V = \frac{V_{\rm S} R_{\alpha}}{R_{\alpha} + R_{\rm B}}$$
.

- 2. Take the *ln* from both sides.
- Take the differential from both sides.
- 4. Convert differentials to delta (Δ).
- 5. Convert every to +.
- 6. accuracy of **Analog Device** is equal to the lowest shown range on the device.
- 7. Error of **Analog Device** is equal to the lowest shown range on device multiplied by 0.5.
- 8. accuracy of **Digital Device** is equal to 10^{-x} where x is float level on the screen.
- 9. Error of **Digital Device** is equal to 10^{-x} where x is float level on the screen.

Now we can calculate systematic error using main formula:

$$V = \frac{V_{S}R_{1}}{R_{1} + R_{2}}$$
 $V_{2} = \frac{V_{S}R_{2}}{R_{1} + R_{2}}$

$$V_2 = \frac{V_S R_2}{R_1 + R_2}$$

for V_1 :

Step 2:
$$ln(V_1) = ln(V_2) + ln(R_1) - ln(R_1 + R_2)$$

Step 3:
$$\frac{dV_1}{V_1} = \frac{dV_s}{V_s} + \frac{dR_1}{R_1} - \frac{d(R_1 + R_2)}{R_1 + R_2}$$

Step 4:
$$\frac{\Delta V_1}{V_1} = \frac{\Delta V_s}{V_s} + \frac{\Delta R_1}{R_1} - \frac{\Delta (R_1 + R_2)}{R_1 + R_2}$$

Step 5:
$$\frac{\Delta V_1}{V_1} = \frac{\Delta V_s}{V_s} + \frac{\Delta R_1}{R_1} + \frac{\Delta (R_1) + \Delta (R_2)}{R_1 + R_2}$$

Step
$$6 \sim : \Delta V_S = 10^{-1} \qquad \Delta R_1 = 10^{-3} \qquad \Delta R_2 = 10^{-3}$$

Final:
$$\frac{\Delta V_1}{V_1} = \frac{10^{-1}V}{17.5V} + \frac{10^{-3}k\Omega}{0.299k\Omega} + \frac{10^{-3}k\Omega + 10^{-3}k\Omega}{0.299k\Omega + 3.410k\Omega} = 0.0096$$

$$\Rightarrow \varepsilon_{Sys_{\beta_1}} = 0.0096$$

for V_2 :

Step 2:
$$ln(V_2) = ln(V_S) + ln(R_2) - ln(R_1 + R_2)$$

Step 3:
$$\frac{dV_2}{V_2} = \frac{dV_s}{V_s} + \frac{dR_2}{R_2} - \frac{d(R_1 + R_2)}{R_1 + R_2}$$

Step 4:
$$\frac{\Delta V_2}{V_2} = \frac{\Delta V_s}{V_s} + \frac{\Delta R_2}{R_2} - \frac{\Delta (R_1 + R_2)}{R_1 + R_2}$$

Step 5:
$$\frac{\Delta V_2}{V_2} = \frac{\Delta V_s}{V_s} + \frac{\Delta R_2}{R_2} + \frac{\Delta (R_1) + \Delta (R_2)}{R_1 + R_2}$$

Step
$$6 \sim : \Delta V_{s} = 10^{-1} \qquad \Delta R_{1} = 10^{-3} \qquad \Delta R_{2} = 10^{-3}$$

Final:
$$\frac{\Delta V_2}{V_2} = \frac{10^{-1}V}{17.5V} + \frac{10^{-3}k\Omega}{3.410k\Omega} + \frac{10^{-3}k\Omega + 10^{-3}k\Omega}{0.299k\Omega + 3.410k\Omega} = 0.0065$$

$$\Rightarrow \varepsilon_{sys_{\beta}} = 0.0065$$

Division Rule on Parallel Resistors

Next we need to do this experiment on parallel resistors, R_1 and R_2 are the same as the previous experiment and we add R_3 as a box resistor. We conducted 2 experiments to validate Division Rule on parallel resistors.

Steps

- 8. for experiment ½, We set selective resistor on 6 so output will be $(10-6)*100=400\Omega \ (\text{because of using two black inputs, we used this conversion})$ but after connecting to multimeter we got $0.399k\Omega$. then we set box resistor R_2 on 1500Ω and multimeter showed us $1.516k\Omega$. then we set R_3 on $2400k\Omega$ and multimeter showed us $2.420k\Omega$.
- 9. We set source DC power to 17.5V and turn on DC power and enable output.
- 10. Connected multimeter to R_1 and written down its voltage, then did the same to R_2 and R_3 .
- 11. Calculated voltage of $R_{\rm 1}$, $R_{\rm 2}$ and $R_{\rm 3}$ via formula and written down.
- 12. for last experiment, We set selective resistor on 3 so output will be $(10-3)*100=700\Omega \text{ but after connecting to multimeter we got } 0.699k\Omega. \text{ then we set box resistor } R_2 \text{ on } 1300\Omega \text{ and multimeter showed us } 1.365k\Omega. \text{ After that we did the}$

Division Rule on Parallel Resistors - Experiments Table

V_{S}	R_{1}	R_{2}	R_3	V 1 _{measured}	$V_{3_{measured}}$	$V_{1_{real}}$	$V_{3_{real}}$
17.5V	$0.399k\Omega$	$1.516k\Omega$	$2.400k\Omega$	5. 28 <i>V</i>	12. 24 <i>V</i>	5. 246 <i>V</i> : α ₁	12.254V : α ₃
17.5 <i>V</i>	$0.699k\Omega$	$1.365k\Omega$	$2.400k\Omega$	7. 90 <i>V</i>	9. 69 <i>V</i>	$7.783V:\beta_1$	9.717 $V: \beta_3$

Consider that we have these formulas:

$$V_{1} = \frac{V_{S}R_{1}}{R_{1} + (R_{2}||R_{3})} \qquad V_{2} = V_{3} = \frac{V_{S}(R_{2}||R_{3})}{R_{1} + (R_{2}||R_{3})} \qquad (R_{2}||R_{3}) = \frac{R_{2}R_{3}}{R_{2} + R_{3}}$$

Calculations of α and β :

$$V_{\alpha_{1}} = \frac{17.5V \times 0.399k\Omega}{0.399k\Omega + \frac{1.516k\Omega \times 2.400k\Omega}{1.516k\Omega + 2.400k\Omega}} \approx 5.246V \quad V_{\alpha_{3}} = \frac{17.5V \times \frac{1.516k\Omega \times 2.400k\Omega}{1.516k\Omega + 2.400k\Omega}}{0.399k\Omega + \frac{1.516k\Omega \times 2.400k\Omega}{1.516k\Omega + 2.400k\Omega}} \approx 12.254V$$

$$V_{\beta_{1}} = \frac{17.5V \times 0.699k\Omega}{0.699k\Omega + \frac{1.365k\Omega \times 2.400k\Omega}{1.365k\Omega + 2.400k\Omega}} \approx 7.783V \quad V_{\beta_{3}} = \frac{17.5V \times \frac{1.365k\Omega \times 2.400k\Omega}{1.365k\Omega + 2.400k\Omega}}{0.699k\Omega + \frac{1.365k\Omega \times 2.400k\Omega}{1.365k\Omega + 2.400k\Omega}} \approx 9.717V$$

Division Rule on Parallel Resistors - Error Calculations

Error calculations are divided into 3 categories, absolute, relative and systematic errors and my personal task is to calculate errors of **second experiment**:

from absolute formula: $Absolute Error = |real \ value - measured \ value|$

We get this absolute error for β_1 : $\epsilon_{abs_{\beta_1}} = |7.783V - 7.90V| = 0.117$

Also we get this absolute error for β_3 : $\epsilon_{abs_{\beta_3}} = |9.717V - 9.69V| = 0.027$

from relative formula:

$$Relative\ Error = \frac{|real\ value - measured\ value|}{real\ value}$$

We get this absolute error for
$$\boldsymbol{\beta}_1$$
 :

$$\varepsilon_{rel_{g}} = \frac{0.117V}{7.783V} \approx 0.015$$

Also we get this absolute error for
$$\boldsymbol{\beta}_2$$
 :

$$\varepsilon_{rel_{\beta}} = \frac{0.027V}{9.717V} \approx 0.003$$

for systematic formula, We must do several mathematics operations:

- 1. Take the *ln* from both sides.
- 2. Take the differential from both sides.
- 3. Convert differentials to delta (Δ).
- 4. Convert every to +.
- 5. accuracy of **Analog Device** is equal to the lowest shown range on the device.
- 6. Error of **Analog Device** is equal to the lowest shown range on device multiplied by 0.5.
- 7. accuracy of **Digital Device** is equal to 10^{-x} where x is float level on the screen.
- 8. Error of **Digital Device** is equal to 10^{-x} where x is float level on the screen.

Now we can calculate systematic errors for both \boldsymbol{V}_1 and \boldsymbol{V}_3 :

for $V_{_1}$:

Step 1:
$$ln(V_1) = ln(V_S) + ln(R_1) - ln(R_1 + (R_2||R_3))$$

Step 2:
$$\frac{dV_1}{V_1} = \frac{dV_s}{V_s} + \frac{dR_1}{R_1} - \frac{d(R_1 + (R_2||R_3))}{R_1 + (R_2||R_2)}$$

Step 3:
$$\frac{\Delta V_1}{V_1} = \frac{\Delta V_s}{V_s} + \frac{\Delta R_1}{R_1} - \frac{\Delta (R_1 + (R_2||R_3))}{R_1 + (R_2||R_3)}$$

Step 4:
$$\frac{\Delta V_1}{V_1} = \frac{\Delta V_s}{V_s} + \frac{\Delta R_1}{R_1} + \frac{\Delta (R_1) + \Delta ((R_2||R_3))}{R_1 + (R_2||R_3)}$$

Step
$$5 \sim : \Delta V_S = 10^{-1} \qquad \Delta R_1 = 10^{-3} \qquad \Delta (R_2 || R_3) = 10^{-3}$$

Final:
$$\frac{\Delta V_2}{V_2} = \frac{10^{-1}V}{17.5V} + \frac{10^{-3}k\Omega}{0.699k\Omega} + \frac{10^{-3}k\Omega + 10^{-3}k\Omega}{0.699k\Omega + 0.873k\Omega} \approx 0.0084$$
$$\Rightarrow \varepsilon_{Sys_{\beta}} \approx 0.0084$$

for V_3 :

Step 1.1:
$$ln(V_3) = ln(V_5) + ln((R_2||R_3)) - ln(R_1 + (R_2||R_3))$$

Step 1.2:
$$ln(V_3) = ln(V_5) + ln(R_2) + ln(R_3) - ln(R_2 + R_3) - ln(R_1 + (R_2||R_3))$$

Step 2:
$$\frac{dV_3}{V_3} = \frac{dV_s}{V_s} + \frac{dR_2}{R_2} + \frac{\Delta R_3}{R_3} - \frac{d(R_2 + R_3)}{R_2 + R_3} - \frac{d(R_1 + (R_2||R_3))}{R_1 + (R_2||R_3)}$$

Step 3:
$$\frac{\Delta V_3}{V_3} = \frac{\Delta V_s}{V_s} + \frac{\Delta R_2}{R_2} + \frac{\Delta R_3}{R_3} - \frac{\Delta (R_2 + R_3)}{R_2 + R_3} - \frac{\Delta (R_1 + (R_2 || R_3))}{R_1 + (R_2 || R_3)}$$

Step 4:
$$\frac{\Delta V_3}{V_3} = \frac{\Delta V_s}{V_s} + \frac{\Delta R_2}{R_2} + \frac{\Delta R_3}{R_3} + \frac{\Delta (R_2) + \Delta (R_3)}{R_2 + R_3} + \frac{\Delta (R_1) + \Delta ((R_2||R_3))}{R_1 + (R_2||R_3)}$$

Step
$$5 \sim$$
: $\Delta V_S = 10^{-1}$ $\Delta R_1 = \Delta R_2 = \Delta R_3 = 10^{-3}$ $\Delta (R_2 || R_3) = 10^{-3}$

Final:

$$\frac{\Delta V_3}{V_3} = \frac{10^{-1}V}{17.5V} + \frac{10^{-3}k\Omega}{1.365k\Omega} + \frac{10^{-3}k\Omega}{2.420k\Omega} + \frac{10^{-3}k\Omega + 10^{-3}k\Omega}{1.365k\Omega + 2.420k\Omega} + \frac{10^{-3}k\Omega + 10^{-3}k\Omega}{0.699k\Omega + 0.873k\Omega} \approx 0.0086$$

$$\Rightarrow \varepsilon_{sys_{\beta_3}} \approx 0.0086$$

Result

- 1. in parallel experiment table row No.2 in real we set parallel box resistor R_2 to $1.300k\Omega$, but after measuring via multimeter it showed us $1.365k\Omega$ and that's why we got $\varepsilon_{abs_{\beta}}=0.117$.
- 2. If we measure resistors with the wrong multimeter, errors will be higher, in this experiment, the highest multimeter did not measured as well.
- 3. We proved the division rule for both parallel and series resistors.

