Unit 0. Course Overview,

Course > Homework 0, Project 0 (1 week)

> Homework 0 > 3. Matrices

3. Matrices

Given a matrix, A, we denote its transpose as A^T and its determinant as $\det(A)$. The transpose of a matrix is equivalent to writing its

rows as columns, or its columns as rows. Then, $A^{T}{}_{i,j}=A_{j,i}$. Let $A=egin{bmatrix}1&2&3\\4&5&6\\1&2&1\end{bmatrix}$

3. (a)

1/1 point (graded) Compute $det\left(A^{T}\right)$.

6

✓ Answer: 6

STANDARD NOTATION

Solution:

First compute A^T by writing the first row as the first column. This gives us $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ as the first column. Repeat with rows 2 and 3 to arrive at the solution. Then compute the determinant as follows: 1(5-12)-4(2-6)+1(12-15)=6.

Submit

You have used 1 of 2 attempts

- Answers are displayed within the problem
- 3. (b)

1/1 point (graded) Compute $\det(A)$.

6

✓ Answer: 6

STANDARD NOTATION

Solution:

 $\det(A) = 1(5-12) - 2(4-6) + 3(8-5) = 6$. Note that $\det(A) = \det(A^T)$. This is not a coincidence. In fact, this useful property holds for all matrices.

Submit

You have used 1 of 2 attempts

- **1** Answers are displayed within the problem
- 3. (c)

1/1 point (graded)

Let $g = [2 \quad 1 \quad 3]$. Can we compute gA?

● yes ✔
O no
STANDARD NOTATION
Solution:
The dimension of g is 1×3 and the dimension of A is 3×3 . Since the number of columns in g equals the number of rows in A , the product exists.
Submit You have used 1 of 1 attempt
• Answers are displayed within the problem
3. (d)
1/1 point (graded) Let g be as above. Can we compute Ag ?
yes
● no ✔
STANDARD NOTATION
Solution:
Unlike part c), the dimension of A is 3×3 and the dimension of g is 1×3 . Since the number of columns in A does not equal the number of rows in g , the product does not exist. Note that this example shows that matrix multiplication is not commutative, i.e., $AB \neq BA$.
Submit You have used 1 of 1 attempt
Answers are displayed within the problem
3. (e)
1/1 point (graded) Let $B = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 4 & 4 \\ 5 & 6 & 4 \end{bmatrix}$. Determine the rank of B. Recall that the rank of a matrix is the number of linearly independent rows or columns.
2 ✓ Answer: 2
STANDARD NOTATION

Solution:

Note that the first two rows of B are linearly independent since they are not multiples of each other. Now solve the $\lceil 2a+b=5c \rceil$	•
$egin{bmatrix} a+4b=6c\ 4b=4c \end{bmatrix}$. Recall that these three vectors will be linearly independent if the only solution to this set of equa	tions is the zero vector.
ГэТ	
Since we find that this system has the solution $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$, these vectors are not linearly independent and the rank of the	e matrix is 2.
Submit You have used 1 of 3 attempts	
Answers are displayed within the problem	
3. (f)	
1/1 point (graded) Let M^{-1} denote the inverse of a matrix M . Let A be as defined above. Compute A^{-1} . What matrix does the product of A	uct AA^{-1} produce?
● identity matrix ✔	
o zero matrix	
STANDARD NOTATION	
Solution:	
For any matrix A , $AA^{-1}=A^{-1}A=\mathit{I}$, where I is the identity matrix.	
Submit You have used 1 of 1 attempt	
Answers are displayed within the problem	
Discussion	Show Discussion
Topic: Unit 0. Course Overview, Homework 0, Project 0 (1 week):Homework 0 / 3. Matrices	
	© All Rights Reserved