MATH4302 Algebra II, HKU, 2022

Outline

In this file

Normal Extensions.

Means every actis

Definition. An algebraic field extension $K \subset L$ is said to be normal if every irreducible polynomial in K[x] that has a root in L splits over L.

Examples.

• K is a normal extension of itself.

•
$$\mathbb{Q}[\sqrt[3]{2}]$$
 is NOT a normal extension of \mathbb{Q} .

Let $P(x) \in K[x]$ be irreducible.

Let $p(x) \in K[x]$ be irreducible.

Then p has a root in $k \in dep = 1$ p(x) = ax + b $a,b \in K$

§2.2.5: Normal Extensions

Lemma. A finite normal extension of K must be a splitting field of some $f(x) \in K[x]$.

Proof. Let a_1, \ldots, a_n be a basis of L over K.

- Each a_i is algebraic over K. Let $p_i \in K[x]$ be the minimal polynomial of a_i over K.
- Let $f = p_1 \cdots p_n$. By assumption, each p_i completely splits over L, so f completely splits over L.
- Let R be the set of all roots of f in L. Then $P(a_i) = 0$

$$\{\underline{a_1,\ldots,a_n}\}\subset R.$$

- $L = K(a_1, \ldots, a_n) \subset K(R) \subset L$, so L = K(R).
- By definition, L is a splitting field of f over K.

Q.E.D.

Theorem. Any splitting field over K is a normal extension.

Proof. Let L be a splitting field of $f(x) \in K[x]$, and let $p(x) \in K[x]$ be irreducible. Let $\alpha \in L$ be a root of p. Want to prove that ρ has k roots

- Let M be a splitting field of g(x) = f(x)p(x) over K. Then both fand p completely split over M. Indeed, is f(x)p(x) is a product of linear factors in M[x], uniqueness of prime factorization implies that both f and p are projects of linear factors in M[x].
- By Extension Lemma, can identify $K \subset L \subset M$ Want to prove all roots of p in M are in L.
- Want to prove all roots of p in M are in L.
- Let $\beta \in M$ be any root of p. Want to show that $\beta \in L$.

P(x) EK[x] irred.

§2.2.5: Normal Extensions

Proof cont'd:

• Both $\alpha \in \mathcal{L}$ and $\beta \in \mathcal{M}$ are roots of p, so have isomorphism

$$\varphi: \underbrace{\cancel{K}(\alpha)} \longrightarrow K[x]/\langle p(x)\rangle - \underbrace{\cancel{K}(\beta)} \subset M$$
 with $\varphi|_K = \operatorname{Id}$ and $\varphi(\alpha) = \beta$.

• L is a splitting field of f over K(a) By Extension Lemma again, $\exists \ \tilde{\varphi} : L \to M \text{ such that}$

$$\tilde{\varphi}|_{K(\alpha)} = \varphi : K(\alpha) \longrightarrow K(\beta).$$

So $\tilde{\varphi}|_{\mathcal{K}} = \mathrm{Id}$ and $\tilde{\varphi}(\alpha) = \varphi(\alpha) = \beta$.

• Now $K \subset M$ is extended to two embeddings $(\mathcal{D} \subset M)$ and $(\tilde{\varphi}: L \to M)$. Extension Lemma implies that $\tilde{\varphi}(L) = L$, so

$$\beta = \underline{\tilde{\varphi}(\alpha)} \in L$$

 $\underline{\beta} = \underline{\tilde{\varphi}(\alpha)} \in L.$ Thus all roots of p in M are in L. $\uparrow \qquad \overleftarrow{\tilde{\varphi}(L)} = L$

$$\tilde{\varphi}(L) = L$$

Q.E.D.

§2.2.5: Normal Extensions

Conclusion.

Theorem

Splitting fields over $K \Leftrightarrow \text{finite and normal extensions.} \not\leftarrow K$

Example.
$$\mathbb{Q}[\sqrt[3]{2}]$$
 is not the splitting field of any $f \in \mathbb{Q}[x]$.

Easy to check that $\mathbb{Q}[\sqrt[3]{2}]$ is not the splitting field of $f(x) = \chi^3 - 2 \in \mathbb{Q}[x]$.

Then $\forall f \in K[x]$

58: If K is a subfield of (), then \(\) fek[x], \(\) K(R_f) \(\) C is the splitting field of f/K. \(\) R_f: the set of all roots of f in ().