# Marketing Mix Modeling

Wprowadzenie do tidyverse – część l





essencemediacom business science





### Tidyverse - intro

#### Czym jest tidyverse:

- Jedno z najbardziej znanych zbiorów bibliotek w R, napisana przez <u>Hadleya Wickhama</u> wraz z zespołem
- Tidyverse zawiera biblioteki, które umożliwiają: import, uporządkowanie, przetwarzanie, analizę i wizualizację danych.
- Cechą charakterystyczną tidyversa, jest stosowanie iteracyjnego sposobu pracy z wykorzystaniem danych poprzez stosowanie pipeline'ów (%>%)
- https://www.tidyverse.org/





### Czym są uporządkowane dane (tidy data)

#### Czym są uporządkowane dane (tidy data):

- Uzyskanie danych w formacie tidy wymaga wcześniejszej pracy, ale jest o bardzo opłacalna praca w dłuższej perspektywie czasu,
- Uporządkowanie zarówno danych jak i narzędzi zmniejszy szanse na popełnienie błędu w trakcie przetwarzania danych oraz pozwoli na spędzenie większej ilości czasu na pytaniach analitycznych.

# Po co dbać o porządek w swoich danych? Istnieją dwie główne zalety:

- Istnieje ogólna zaleta wybrania jednego spójnego sposobu przechowywania danych. Jeśli masz spójną strukturę danych, łatwiej jest nauczyć się narzędzi, które z nią współpracują,
- 2. Umieszczanie zmiennych w kolumnach ma szczególną zaletę - większość wbudowanych funkcji języka R działa z wektorami wartości, a operacje zorientowane na wektory są najbardziej wydajne w języku R. Dzięki temu przekształcanie i uporządkowanych danych jest szczególnie proste.



# The tidy tools manifesto

https://cran.r-project.org/web/packages/tidyverse/vignettes/manifesto.html



### Tidy data – 3 warunki do spełnienia

#### Każda zmienna musi mieć własną kolumnę



Każda obserwacja musi mieć swój własny wiersz



observations

Każda wartość musi mieć własną komórkę

|             | year | cases      | population  |
|-------------|------|------------|-------------|
| Afglanstan  | 99   | <b>7</b> 5 | 1998 071    |
| Afg. apstan |      | 666        | 2059 360    |
| Bradil      | 99   | 3(73)7     | 17200 362   |
| Bravil      |      | 8 148 8    | 17450 898   |
| Chila       | 99   | 21(25)8    | 127291,272  |
| Chi         |      | 216766     | 128(42) 583 |

values



### Przykłady tidy & untidy data

```
table1
#> # A tibble: 6 x 4
                       cases population
    country
                  year
    <chr>
                 <int>
                       <int>
                                   <int>
#> 1 Afghanistan
                 1999
                                19987071
                          745
#> 2 Afghanistan
                 2000
                         2666
                                20595360
#> 3 Brazil
                  1999
                        37737
                              172006362
#> 4 Brazil
                              174504898
                  2000
                        80488
#> 5 China
                  1999 212258 1272915272
#> 6 China
                  2000 213766 1280428583
```

```
table2
#> # A tibble: 12 x 4
                 year type
     country
                                      count
     <chr>>
                 <int> <chr>>
                                      <int>
#> 1 Afghanistan 1999 cases
                                        745
#> 2 Afghanistan 1999 population 19987071
#> 3 Afghanistan 2000 cases
                                       2666
#> 4 Afghanistan 2000 population 20595360
#> 5 Brazil
                                      37737
                  1999 cases
#> 6 Brazil
                 1999 population 172006362
#> # ... with 6 more rows
```

```
table3
#> # A tibble: 6 x 3
    country
                 year rate
#> * <chr>
                 <int> <chr>>
#> 1 Afghanistan 1999 745/19987071
#> 2 Afghanistan 2000 2666/20595360
#> 3 Brazil
                 1999 37737/172006362
#> 4 Brazil
                  2000 80488/174504898
#> 5 China
                  1999 212258/1272915272
#> 6 China
                  2000 213766/1280428583
```



### Biblioteki w ramach tidyverse

Import danych

Uporządkowanie danych

Przetwarzanie danych

Programowanie

Wizualizacja



















### **Pipelines**

#### **Pipelines (%>%):**

- Pipe'y ("%>%") są automatycznie ładowane przez bibliotekę tidyverse i służą do sekwencyjnej manipulacji zbiorem danych.
- Służą do wykonywania wielu operacji w jednym kroku.
- dane (argument) przekazywane są do kolejnej funkcji po zastosowaniu "%>%"

#### Pipelines – przykład:





# Import danych - readr

Import danych

Uporządkowanie danych Przetwarzanie danych Programowanie

Vizualizacjo

















### Wczytanie danych do środowiska (pakiety readr i readxl)

#### readr:

- Pakiet readr wykorzystywany jest to wczytania i zapisania niemal wszystkich formatów plików.
- Składnia funkcji: read\_\*, write\_\*, gdzie \* zastępujemy formatem pliku, np. csv, tsv
- Importowane pliki mają strukturę tibble o tym w dalszej części wykładu
- Przykład:read\_csv2(file, ...)

#### readxl:

- Dodatkowy pakiet ze środowiska tidyverse,
- Funkcji w pakiecie umożliwiają import danych do środowiska R zarówno z formatu .xls jak i .xlsx.
- Najbardziej podstawowa funkcja do importu danych to read\_excel(), która rozpoznaje format importowanego pliku po rozszerzeniu.
- Przykład:
  read excel(path, sheet = 1, range = NULL, n max = Inf,skip = 0)



### Tibble vs dataframe - różnice

#### Tibble vs data frame

- Tibble (klasa o nazwie tbl\_df) jest nowoczesnym, bardziej użytecznym type data.frame,
- Tibble robią mniej niż klasyczny data.frame nie zmieniają nazw, typów zmiennych, nie dokonując częściowego dopasowania oraz bardziej narzekają np. gdy zmienna nie istnieje. Skutkuje to wcześniejszym zmierzeniem się z problemami jaki istnieją w plikach co najczęściej prowadzi do czytelniejszego kodu,
- Tibble wyświetlają tylko 10 pierwszych wierszy oraz wszystkie kolumny, które mieszczą się na ekranie – ułatwia to pracę z dużymi danymi. Dodatkowo, wyświetlony jest typ kolumny pod jego nazwą, stosowane są czcionki kolory do podświetlania.

# Największą różnicą po między tibble a data.frame – tibble wykonują znacznie mniej pracy:

- nigdy nie zmienia typu danych wejściowych (np. nigdy nie konwertuje stringów na factor)
- nigdy nie zmienia nazw zmiennych (np. wstawia . zamiast spacji między słowami)
- nigdy nie tworzy nazw wierszy (row.names()) Celem uporządkowanych danych jest przechowywanie zmiennych w spójny sposób



### Przykład tibble vs dataframe

#### > example.data3.df # A tibble: 1,906 x 5 `Ratecard Duration` Metric Value Date Brand <db1> <chr> <dttm> <chr>> <db7> 1 2017-01-11 00:00:00 Brand1 30 Cost 2655323. 2 2017-01-11 00:00:00 Brand1 30 TRP 14.2 3 2017-05-15 00:00:00 Brand2 111461286. 30 Cost 4 2017-05-15 00:00:00 Brand2 30 TRP 2182. 5 2017-05-16 00:00:00 Brand2 30 Cost 212519311. 6 2017-05-16 00:00:00 Brand2 30 TRP 3942. 7 2017-05-17 00:00:00 Brand2 146992783. 30 Cost 8 2017-05-17 00:00:00 Brand2 30 TRP 2972. 9 2017-05-18 00:00:00 Brand2 30 Cost 178000107. 10 2017-05-18 00:00:00 Brand2 30 TRP 1874. # ... with 1.896 more rows

| >  | > example.data3.data.frame.df |        |          |          |        |              |  |
|----|-------------------------------|--------|----------|----------|--------|--------------|--|
|    | Date                          | Brand  | Ratecard | Duration | Metric | Value        |  |
| 1  | 2017-01-11                    | Brand1 |          | 30       | Cost   | 2655323.35   |  |
| 2  | 2017-01-11                    | Brand1 |          | 30       | TRP    | 14.22        |  |
| 3  | 2017-05-15                    | Brand2 |          | 30       | Cost   | 111461285.81 |  |
| 4  | 2017-05-15                    | Brand2 |          | 30       | TRP    | 2181.98      |  |
| 5  | 2017-05-16                    | Brand2 |          | 30       | Cost   | 212519310.62 |  |
| 6  | 2017-05-16                    | Brand2 |          | 30       | TRP    | 3942.10      |  |
| 7  | 2017-05-17                    | Brand2 |          | 30       | Cost   | 146992782.74 |  |
| 8  | 2017-05-17                    | Brand2 |          | 30       | TRP    | 2971.98      |  |
| 9  | 2017-05-18                    | Brand2 |          | 30       | Cost   | 178000107.05 |  |
| 10 | 2017-05-18                    | Brand2 |          | 30       | TRP    | 1873.88      |  |
| 11 | 2017-05-19                    | Brand2 |          | 30       | Cost   | 170921840.40 |  |
| 12 | 2017-05-19                    | Brand2 |          | 30       | TRP    | 3600.82      |  |
| 13 | 3 2017-05-20                  | Brand2 |          | 30       | Cost   | 137344848.34 |  |
| 14 | 2017-05-20                    | Brand2 |          | 30       | TRP    | 3455.46      |  |
| 15 | 2017-05-21                    | Brand2 |          | 30       | Cost   | 132937478.78 |  |
| 10 | 2017 05 21                    | D 1 2  |          | 20       | TOD    | 4200 00      |  |





### Biblioteki w ramach tidyverse

Import danych Uporządkowanie danych

rzetwarzanie danych Programowanie

Vizualizacjo



















# Tworzenie uporządkowanego zbioru danych

#### Funkcje w ramach biblioteki tidyr:

| Funkcje        | Opis                                                                                                   |
|----------------|--------------------------------------------------------------------------------------------------------|
| pivot_wider()  | Funkcja "rozszerzają" wiele kolumn ze zbioru danych i konwertuje je na pary klucz-wartość<br>— POZIOMO |
| pivot_longer() | Funkcja zajmuje dwie kolumny i "wydłuża" je w kilka kolumn - PIONOWO                                   |
| separate()     | Oddziela / dzieli pojedynczą kolumnę na wiele kolumn                                                   |
| unite()        | W przeciwieństwie do separate() - łączy dwie lub więcej kolumn w jedną                                 |





### Biblioteki w ramach tidyverse

Import danych

uporząakowanie danych Przetwarzanie danych

Programowanie Programowanie

Vizualizacjo



















# Przetwarzanie danych z wykorzystaniem biblioteki dplyr

#### Uporządkowany zbiór czasowników:

| Verbs:      | Description                                         |
|-------------|-----------------------------------------------------|
| mutate()    | dodaje nową zmienną przy pomocy dodatkowych funkcji |
| select()    | wybiera zmienną na podstawie jej nazwy              |
| filter()    | filtruje zmienne na podstawie ich wartości          |
| arrange()   | zmienia kolejność wierszy                           |
| group_by()  | grupuje na podstawie zadanych zmiennych             |
| summarise() | na podstawie group_by tworzy agregaty zmiennych     |
| rename()    | zmienia nazwy kolumn                                |



### Przykład wykorzystania wszystkich czasowników

| *  | Sepal.Length <sup>‡</sup> | Sepal.Width | Petal.Length <sup>‡</sup> | Petal.Width <sup>‡</sup> | Species <sup>‡</sup> |
|----|---------------------------|-------------|---------------------------|--------------------------|----------------------|
| 1  | 5.1                       | 3.5         | 1.4                       | 0.2                      | setosa               |
| 2  | 4.9                       | 3.0         | 1.4                       | 0.2                      | setosa               |
| 3  | 4.7                       | 3.2         | 1.3                       | 0.2                      | setosa               |
| 4  | 4.6                       | 3.1         | 1.5                       | 0.2                      | setosa               |
| 5  | 5.0                       | 3.6         | 1.4                       | 0.2                      | setosa               |
| 6  | 5.4                       | 3.9         | 1.7                       | 0.4                      | setosa               |
| 7  | 4.6                       | 3.4         | 1.4                       | 0.3                      | setosa               |
| 8  | 5.0                       | 3.4         | 1.5                       | 0.2                      | setosa               |
| 9  | 4.4                       | 2.9         | 1.4                       | 0.2                      | setosa               |
| 10 | 4.9                       | 3.1         | 1.5                       | 0.1                      | setosa               |
| 11 | 5.4                       | 3.7         | 1.5                       | 0.2                      | setosa               |
| 12 | 4.8                       | 3.4         | 1.6                       | 0.2                      | setosa               |
| 13 | 4.8                       | 3.0         | 1.4                       | 0.1                      | setosa               |
| 14 | 4.3                       | 3.0         | 1.1                       | 0.1                      | setosa               |
| 15 | 5.8                       | 4.0         | 1.2                       | 0.2                      | setosa               |
| 16 | 5.7                       | 4.4         | 1.5                       | 0.4                      | setosa               |
| 17 | 5.4                       | 3.9         | 1.3                       | 0.4                      | setosa               |
| 18 | 5.1                       | 3.5         | 1.4                       | 0.3                      | setosa               |
| 19 | 5.7                       | 3.8         | 1.7                       | 0.3                      | setosa               |

| <b>1</b> setosa 232.8 3.463043     | n.max | n.mean <sup>‡</sup> Sepal.sum.max | Sepal.Length.sum | Species <sup>‡</sup> | ^ |
|------------------------------------|-------|-----------------------------------|------------------|----------------------|---|
|                                    | 10.1  | 3.463043                          | 232.8            | setosa               | 1 |
| <b>2</b> versicolor 296.8 2.770000 | 10.2  | 2.770000                          | 296.8            | versicolor           | 2 |
| <b>3</b> virginica 329.4 2.974000  | 11.7  | 2.974000                          | 329.4            | virginica            | 3 |





### essence**mediacom**

business science

Jarek Dejneka, Managing Partner jaroslaw.dejneka@essencemediacom.com

Bartek Kowalski, Business Science Director bartosz.kowalski@essencemediacom.com

- mbs@mediacom.com
- @MBSWarsaw
- @MBSWarsaw
- business-science.pl

"An investment in knowledge always pays the best interest"

Benjamin Franklin

