屠龙勇士 (dragon)

【题目描述】

小 D 最近在网上发现了一款小游戏。游戏的规则如下:

- 游戏的目标是按照编号 1~n 顺序杀掉 n 条巨龙,每条巨龙拥有一个初始的生命值 a_i。同时每条巨龙拥有恢复能力,当其使用恢复能力时,它的生命值就会每次增加 p_i,直至生命值非负。只有在攻击结束后且当生命值恰好为 0 时它才会死去。
- 游戏开始时玩家拥有 m 把攻击力已知的剑,每次面对巨龙时,玩家只能选择一把剑,当杀死巨龙后这把剑就会消失,但作为奖励,玩家会获得全新的一把剑。

小 D 觉得这款游戏十分无聊,但最快通关的玩家可以获得 ION2018 的参赛资格, 于是小 D 决定写一个笨笨的机器人帮她通关这款游戏,她写的机器人遵循以下规则:

- 每次面对巨龙时,机器人会选择当前拥有的,攻击力不高于巨龙初始生命值中攻击力最大的一把剑作为武器。如果没有这样的剑,则选择攻击力最低的一把剑作为武器。
- 机器人面对每条巨龙,它都会使用上一步中选择的剑攻击巨龙**固定的** x 次,使巨龙的生命值减少 $x \times ATK$ 。
- 之后,巨龙会不断使用恢复能力,每次恢复 p_i 生命值。若在使用恢复能力前或某一次恢复后其生命值为 0 ,则巨龙死亡,玩家通过本关。

那么显然机器人的**攻击次数**是决定能否最快通关这款游戏的关键。小 D 现在得知了每条巨龙的所有属性,她想考考你,你知道应该将机器人的攻击次数 x 设置为多少,才能用最少的攻击次数通关游戏吗?

当然如果无论设置成多少都无法通关游戏,输出-1即可。

【输入格式】

从文件 dragon.in 中读入数据。

第一行一个整数 T ,代表数据组数。

接下来 T 组数据,每组数据包含 5 行。

- 每组数据的第一行包含两个整数, n 和 m , 代表巨龙的数量和初始剑的数量;
- 接下来一行包含 n 个正整数, 第 i 个数表示第 i 条巨龙的初始生命值 a_i ;
- 接下来一行包含 n 个正整数,第 i 个数表示第 i 条巨龙的恢复能力 p_i :
- 接下来一行包含 n 个正整数,第 i 个数表示杀死第 i 条巨龙后奖励的剑的攻击力:
- 接下来一行包含 m 个正整数,表示初始拥有的 m 把剑的攻击力。

【输出格式】

输出到文件 dragon.out 中。

一共T行。

第 i 行一个整数,表示对于第 i 组数据,能够使得机器人通关游戏的最小攻击次数 x ,如果答案不存在,输出**-1**。

【样例1输入】

2

3 3

3 5 7

4 6 10

7 3 9

1 9 1000

3 2

3 5 6

4 8 7

1 1 1

1 1

【样例1输出】

59

-1

【样例1解释】

第一组数据:

- 开始时拥有的剑的攻击力为 {1,9,10}, 第 1 条龙生命值为 3, 故选择攻击力为 1 的剑, 攻击 59 次,造成 59 点伤害,此时龙的生命值为-56,恢复 14 次后生命值恰好为 0,死亡。
- 攻击力为 1 的剑消失,拾取一把攻击力为 7 的剑,此时拥有的剑的攻击力为 {7,9,10},第 2 条龙生命值为 5,故选择攻击力为 7 的剑,攻击 59 次,造成 413 点伤害,此时龙的生命值为-408,恢复 68 次后生命值恰好为 0,死亡。
- 此时拥有的剑的攻击力为 {3,9,10}, 第 3 条龙生命值为 7, 故选择攻击力为 3 的 剑, 攻击 59 次,造成 177 点伤害,此时龙的生命值为-170,恢复 17 次后生命值 恰好为 0,死亡。
- 没有比 59 次更少的通关方法, 故答案为 59。

第二组数据:

• 不存在既能杀死第一条龙又能杀死第二条龙的方法,故无法通关,输出-1。

【样例 2】

见选手目录下的 dragon/dragon2.in 与 dragon/dragon2.ans。

【子任务】

测试点编号	n	m	p_i	a_i	攻击力	其他限制
1 2	$\leq 10^5$	= 1	= 1	≤ 10 ⁵	= 1	无
$\frac{3}{4}$					$\leq 10^5$	
$\frac{5}{6}$	$\leq 10^3$	$\leq 10^3$	$\leq 10^{5}$			特性 1、特性 2
8 9 10 11 12 13	= 1	= 1	≤ 10 ⁸	≤ 10 ⁸		特性 1
14 15	$=10^{5}$	$=10^{5}$	= 1		$\leq 10^6$	无特殊限制
16 17	$\leq 10^5$	$\leq 10^5$	所有 p _i 是质数	$\leq 10^{12}$		特性 1
			无特殊限制			

特性 1 是指:对于任意的 i, $a_i \leq p_i$ 。

特性 2 是指: $LCM(p_i) \le 10^6$ 即所有 p_i 的最小公倍数不大于 10^6 。

对于所有的测试点, $T \le 5$,所有武器的攻击力 $\le 10^6$,所有 p_i 的最小公倍数 $\le 10^{12}$ 。

【提示】

你所用到的中间结果可能很大,注意保存中间结果的变量类型。