

Decisions under uncertainty

A likelihood approach

Ruben Camilo Wißkott

December 19, 2020

Table of contents

- 1 Overview
- 2 Fundamentals
 - Structur of decision problems
 - Types of uncertainty
 - Example
- **3** Highlighting
- 4 Lists
- 5 Effects
- 6 References

Structur of decision problems

A decision problem is given by the tripel (\mathcal{D})

- Set \mathcal{D} with $d \in \mathcal{D}$ denotes our *decisions* or *actions*
- Set Θ with $\vartheta \in \Theta$ denotes our *environmental conditions* or *parameters*

Types of uncertainty

Generation of environmental conditions $\theta \in \Theta$ We distinguishing between type I and type II

- Type I: perfect random mechanism
- Type II: Gegenspieler

Mathematics

Theorem (Fermat's little theorem)

For a prime p and $a \in \mathbb{Z}$ it holds that $a^p \equiv a \pmod{p}$.

Proof.

The invertible elements in a field form a group under multiplication. In particular, the elements

$$1,2,\ldots,p-1\in\mathbb{Z}_p$$

form a group under multiplication modulo p. This is a group of order p-1. For $a\in\mathbb{Z}_p$ and $a\neq 0$ we thus get $a^{p-1}=1\in\mathbb{Z}_p$. The claim follows.

Mathematics

Example

The function $\varphi \colon \mathbb{R} \to \mathbb{R}$ given by $\varphi(x) = 2x$ is continuous at the point $x = \alpha$, because if $\epsilon > 0$ and $x \in \mathbb{R}$ is such that $|x - \alpha| < \delta = \frac{\epsilon}{2}$, then

$$|\varphi(x)-\varphi(\alpha)|=2|x-\alpha|<2\delta=\epsilon.$$

Highlighting

Highlighting

Some times it is useful to highlight certain words in the text.

Important message

If a lot of text should be highlighted, it is a good idea to put it in a box.

It is easy to match the colour theme.

Lists

- Bullet lists are marked with a grey box.
- Numbered lists are marked with a white number inside a grey box.

Description highlights important words with grey text.

Items in numbered lists like 1 can be referenced with a grey box.

Example 1

■ Lists change colour after the environment.

Effects that control

Use textblock for arbitrary placement of objects.

- Effects that control
- 2 when text is displayed

Use **textblock** for arbitrary placement of objects.

Theorem

This theorem is only visible on slide number 2.

- Effects that control
- when text is displayed
- 3 are specified with <> and a list of slides.

Use **textblock** for arbitrary placement of objects.

- Effects that control
- when text is displayed
- 3 are specified with <> and a list of slides.

Use **textblock** for arbitrary placement of objects.

- Effects that control
- when text is displayed
- 3 are specified with <> and a list of slides.

Use **textblock** for arbitrary placement of objects.

It creates a box with the specified width (here in a percentage of the slide's width) and upper left corner at the specified coordinate (x, y) (here x is a percentage of width and y a percentage of height).

References I

- Hartshorne, R. Algebraic Geometry. Springer-Verlag, 1977.
 - Helsø, M. 'Rational quartic symmetroids'. *Adv. Geom.*, 20(1):71–89, 2020.
- Helsø, M. and Ranestad, K. Rational quartic spectrahedra, 2018. https://arxiv.org/abs/1810.11235
- Atiyah, M. and Macdonald, I.
 Introduction to commutative algebra.
 Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969

References II

[5] Artin, M.

'On isolated rational singularities of surfaces'.

Amer. J. Math., 80(1):129-136, 1966.