Math138 - January 20'th, 2016 Volumes of Revolution - Washers, Disks, Cylinders

Washers / Disks

Summary: If the cross-section is:

A disk: Find the radius and use $a = \pi r^2$

A Washer: Find inner outer radius and use $A = \pi(\text{outer}^2 - \text{inner}^2)$

Examples

Find the volume of the solid obtained by rotating:

1) $y = \sqrt{x-1}$ about the x axis from x = 1 to x = 5.

$$A(x) = \pi(x-1)$$

Volume =
$$\int_{1}^{5} \pi(x - 1) dx$$
$$= \pi \int_{1}^{5} x - 1 dx$$
$$= \vdots$$
$$= 8\pi$$

2) The area between $y = x^2$ and $y = \sqrt{x}$ about y = 1.

This is a washer question. Inner radius = $1 - x^2$, outer radius = $1 - \sqrt{x}$.

$$A = \pi((1 - x^2)^2 - (1 - \sqrt{x})^2)$$
$$= \pi(x^4 - 2x^2 - x + 2\sqrt{x})$$

$$V = \int_0^1 A(x) dx$$

$$= \pi \int_0^1 x^4 - 2x^2 - x + 2\sqrt{x}$$

$$= \vdots$$

$$= 11\pi/30$$

Method # 2: Cylinder Shells

Cylinder shells are good for rotating functions of x around vertical lines or functions of y around horizontal lines.

Ex. Rotate $y = 2x^2 - x^3$ about the y axis from x = 0 to x = 2.

Radius: x, Height = $2x^2 - x^3$

$$A = 2\pi x (2x^2 - x^3)$$

$$A = 2\pi \int_0^2 2x^3 - x^4$$

$$= \vdots$$

$$= \frac{167}{5}$$

Ex. Rotate $y = x^2$ and $y = 6x - 2x^2$ about the y-axis.

Radius = x, Height = $-3x^2 + 6x$

$$v = 2\pi \int_0^2 x(-3x^2 + 6x) \ dx$$

$$=$$

$$=8\pi$$