Test Plot 1#: GSM 850_Head Left Cheek_Middle

DUT: Mobile Phone; Type: B240; Serial: 18121100520

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.879 S/m; ϵ_r = 42.049; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7329; ConvF(10.01, 10.01, 10.01); Calibrated: 2018/9/30;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn772; Calibrated: 2018/9/28

• Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.240 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.454 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.276 W/kg

SAR(1 g) = 0.137 W/kg; SAR(10 g) = 0.084 W/kg

Maximum value of SAR (measured) = 0.215 W/kg

0 dB = 0.215 W/kg = -6.68 dBW/kg

SAR Plots Plot 1#

Test Plot 2#: GSM 850_Head Left Tilt_Middle

DUT: Mobile Phone; Type: B240; Serial: 18121100520

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.879 S/m; ϵ_r = 42.049; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7329; ConvF(10.01, 10.01, 10.01); Calibrated: 2018/9/30;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn772; Calibrated: 2018/9/28

• Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0525 W/kg

Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.085 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.0590 W/kg

SAR(1 g) = 0.042 W/kg; SAR(10 g) = 0.030 W/kg

Maximum value of SAR (measured) = 0.0527 W/kg

0 dB = 0.0527 W/kg = -12.78 dBW/kg

SAR Plots Plot 2#

Test Plot 3#: GSM 850_Head Right Cheek_Middle

DUT: Mobile Phone; Type: B240; Serial: 18121100520

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.879 S/m; ϵ_r = 42.049; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.01, 10.01, 10.01); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.186 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.914 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.259 W/kg

SAR(1 g) = 0.119 W/kg; SAR(10 g) = 0.072 W/kg

Maximum value of SAR (measured) = 0.181 W/kg

0 dB = 0.181 W/kg = -7.42 dBW/kg

SAR Plots Plot 3#

Test Plot 4#: GSM 850_Head Right Tilt_Middle

DUT: Mobile Phone; Type: B240; Serial: 18121100520

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.879 S/m; ϵ_r = 42.049; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.01, 10.01, 10.01); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0634 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.603 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.0730 W/kg

SAR(1 g) = 0.050 W/kg; SAR(10 g) = 0.037 W/kg

Maximum value of SAR (measured) = 0.0654 W/kg

0 dB = 0.0654 W/kg = -11.84 dBW/kg

SAR Plots Plot 4#

Test Plot 5#: GSM 850_Body Worn Back_Middle

DUT: Mobile Phone; Type: B240; Serial: 18121100520

Communication System: Generic GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 836.6 MHz; σ = 0.958 S/m; ϵ_r = 56.872; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.23, 10.23, 10.23); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.849 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.34 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.51 W/kg

SAR(1 g) = 0.680 W/kg; SAR(10 g) = 0.396 W/kg

Maximum value of SAR (measured) = 1.17 W/kg

0 dB = 1.17 W/kg = 0.68 dBW/kg

SAR Plots Plot 5#

Test Plot 6#: GSM 850_Body Back_Low

DUT: Mobile Phone; Type: B240; Serial: 18121100520

Communication System: Generic GPRS-3 slots; Frequency: 824.2 MHz;Duty Cycle: 1:2.66 Medium parameters used: f = 824.2 MHz; σ = 0.953 S/m; ϵ_r = 57.201; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.23, 10.23, 10.23); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.26 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.89 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 2.32 W/kg

SAR(1 g) = 1.02 W/kg; SAR(10 g) = 0.571 W/kg

Maximum value of SAR (measured) = 1.80 W/kg

0 dB = 1.80 W/kg = 2.55 dBW/kg

SAR Plots Plot 6#

Test Plot 7#: GSM 850_Body Back_Middle

DUT: Mobile Phone; Type: B240; Serial: 18121100520

Communication System: Generic GPRS-3 slots; Frequency: 836.6 MHz;Duty Cycle: 1:2.66 Medium parameters used: f = 836.6 MHz; σ = 0.958 S/m; ϵ_r = 56.872; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.23, 10.23, 10.23); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.41 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 31.02 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 2.67 W/kg

SAR(1 g) = 1.15 W/kg; SAR(10 g) = 0.632 W/kg

Maximum value of SAR (measured) = 2.08 W/kg

0 dB = 2.08 W/kg = 3.18 dBW/kg

SAR Plots Plot 7#

Test Plot 8#: GSM 850_Body Back_High

DUT: Mobile Phone; Type: B240; Serial: 18121100520

Communication System: Generic GPRS-3 slots; Frequency: 848.8 MHz;Duty Cycle: 1:2.66 Medium parameters used: f = 848.8 MHz; σ = 0.971 S/m; ϵ_r = 56.863; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.23, 10.23, 10.23); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 1.51 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 31.99 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 2.80 W/kg

SAR(1 g) = 1.23 W/kg; SAR(10 g) = 0.674 W/kg

Maximum value of SAR (measured) = 2.16 W/kg

0 dB = 2.16 W/kg = 3.34 dBW/kg

SAR Plots Plot 8#

Test Plot 9#: GSM 850_Body Bottom_Middle

DUT: Mobile Phone; Type: B240; Serial: 18121100520

Communication System: Generic GPRS-3 slots; Frequency: 836.6 MHz;Duty Cycle: 1:2.66 Medium parameters used: f = 836.6 MHz; σ = 0.958 S/m; ϵ_r = 56.872; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(10.23, 10.23, 10.23); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (41x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.329 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.99 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.381 W/kg

SAR(1 g) = 0.204 W/kg; SAR(10 g) = 0.123 W/kg

Maximum value of SAR (measured) = 0.302 W/kg

0 dB = 0.302 W/kg = -5.20 dBW/kg

SAR Plots Plot 9#

Test Plot 10#: GSM 1900_Head Left Cheek_Middle

DUT: Mobile Phone; Type: B240; Serial: 18121100520

Communication System: Generic GSM; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.37 S/m; ϵ_r = 40.442; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7329; ConvF(8.1, 8.1, 8.1); Calibrated: 2018/9/30;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn772; Calibrated: 2018/9/28

• Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.272 W/kg

Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.262 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.312 W/kg

SAR(1 g) = 0.173 W/kg; SAR(10 g) = 0.096 W/kg

Maximum value of SAR (measured) = 0.245 W/kg

0 dB = 0.245 W/kg = -6.11 dBW/kg

SAR Plots Plot 10#

Test Plot 11#: GSM 1900_Head Left Tilt_Middle

DUT: Mobile Phone; Type: B240; Serial: 18121100520

Communication System: Generic GSM; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.37 S/m; ϵ_r = 40.442; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7329; ConvF(8.1, 8.1, 8.1); Calibrated: 2018/9/30;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn772; Calibrated: 2018/9/28

• Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.118 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.476 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.138 W/kg

SAR(1 g) = 0.089 W/kg; SAR(10 g) = 0.053 W/kg

Maximum value of SAR (measured) = 0.117 W/kg

0 dB = 0.117 W/kg = -9.32 dBW/kg

SAR Plots Plot 11#

Test Plot 12#: GSM 1900_Head Right Cheek_Middle

DUT: Mobile Phone; Type: B240; Serial: 18121100520

Communication System: Generic GSM; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.37 S/m; ϵ_r = 40.442; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

• Probe: EX3DV4 - SN7329; ConvF(8.1, 8.1, 8.1); Calibrated: 2018/9/30;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn772; Calibrated: 2018/9/28

• Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412

• Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.147 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.398 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.171 W/kg

SAR(1 g) = 0.101 W/kg; SAR(10 g) = 0.056 W/kg

Maximum value of SAR (measured) = 0.142 W/kg

0 dB = 0.142 W/kg = -8.48 dBW/kg

SAR Plots Plot 12#

Test Plot 13#: GSM 1900_Head Right Tilt_Middle

DUT: Mobile Phone; Type: B240; Serial: 18121100520

Communication System: Generic GSM; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.37 S/m; ϵ_r = 40.442; ρ = 1000 kg/m³; Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(8.1, 8.1, 8.1); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: 1412
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.107 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.524 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.117 W/kg

SAR(1 g) = 0.079 W/kg; SAR(10 g) = 0.047 W/kg

Maximum value of SAR (measured) = 0.104 W/kg

0 dB = 0.104 W/kg = -9.83 dBW/kg

SAR Plots Plot 13#

Test Plot 14#: GSM 1900_Body Worn Back_Middle

DUT: Mobile Phone; Type: B240; Serial: 18121100520

Communication System: Generic GSM; Frequency: 1880 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.485 S/m; ϵ_r = 54.152; ρ = 1000 kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.7, 7.7, 7.7); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.726 W/kg

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.63 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.17 W/kg

SAR(1 g) = 0.490 W/kg; SAR(10 g) = 0.234 W/kg

Maximum value of SAR (measured) = 0.833 W/kg

0 dB = 0.833 W/kg = -0.79 dBW/kg

SAR Plots Plot 14#

Test Plot 15#: GSM 1900_Body Back_Middle

DUT: Mobile Phone; Type: B240; Serial: 18121100520

Communication System: Generic GPRS-3 slots; Frequency: 1880 MHz; Duty Cycle: 1:2.66 Medium parameters used: f = 1880 MHz; $\sigma = 1.485$ S/m; $\epsilon_r = 54.152$; $\rho = 1000$ kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.7, 7.7, 7.7); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (91x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.13 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.17 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 1.67 W/kg

SAR(1 g) = 0.693 W/kg; SAR(10 g) = 0.319 W/kg

Maximum value of SAR (measured) = 1.22 W/kg

0 dB = 1.22 W/kg = 0.86 dBW/kg

SAR Plots Plot 15#

Test Plot 16#: GSM 1900_Body Bottom_Middle

DUT: Mobile Phone; Type: B240; Serial: 18121100520

Communication System: Generic GPRS-3 slots; Frequency: 1880 MHz; Duty Cycle: 1:2.66 Medium parameters used: f = 1880 MHz; $\sigma = 1.485$ S/m; $\epsilon_r = 54.152$; $\rho = 1000$ kg/m³; Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7329; ConvF(7.7, 7.7, 7.7); Calibrated: 2018/9/30;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn772; Calibrated: 2018/9/28
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1130
- Measurement SW: DASY52, Version 52.8 (8);

Area Scan (41x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.767 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.06 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 0.687 W/kg

SAR(1 g) = 0.354 W/kg; SAR(10 g) = 0.191 W/kg

Maximum value of SAR (measured) = 0.567 W/kg

0 dB = 0.567 W/kg = -2.46 dBW/kg

SAR Plots Plot 16#