Rules:

- Unless otherwise stated, all answers must be mathematically justified.
- Partial answers will be graded.
- Your submission has to be uploaded to Gradescope. In Gradescope, indicate the page on which each problem is written.
- You can work in groups but each student must write his/her/their own solution based on his/her/their own understanding of the problem. Please list on your submission the students you work with for the homework (this will not affect your grade).
- Problems with a (*) are extra credit, they will not (directly) contribute to your score of this homework. However, for every 4 extra credit questions successfully answered your lowest homework score get replaced by a perfect score.
- If you have any questions, feel free to ask them on Brightspace (so that everyone can benefit from the answer) or stop at the office hours.

Problem 1.1 (3 points). Are the following sets subspaces of \mathbb{R}^2 ? Draw a picture and justify your answer using the definition of a subspace. If yes, indicate the dimension of the subspace and a basis, add the basis vectors on your drawing.

- (a) $E_1 = \{(x, y) \in \mathbb{R}^2 \mid 3x y = 0\}.$
- (b) $E_2 = \{(x, y) \in \mathbb{R}^2 \mid 3x y = -1\}.$
- (c) $E_3 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 0\}.$
- (d) $E_4 = \{(x, y) \in \mathbb{R}^2 \mid x + y \ge 0\}.$

Problem 1.2 (2 points). Are the following sets subspaces of \mathbb{R}^3 ? Justify your answer using the definition of a subspace. If yes, indicate the dimension of the subspace and a basis.

- (a) $E_5 = \{(x, y, z) \in \mathbb{R}^3 \mid x = 0 \text{ and } y z = 0\}.$
- (b) $E_6 = \{(x, y, z) \in \mathbb{R}^3 \mid x = 0 \text{ or } y z = 0\}.$

Problem 1.3 (2 points). Let us define the vectors $e_1, \ldots, e_n \in \mathbb{R}^n$ by

$$e_1 = (1, 0, 0, \dots, 0)$$

 $e_2 = (0, 1, 0, \dots, 0)$
 \vdots
 $e_n = (0, 0, 0, \dots, 1).$

- (a) Verify that the family (e_1, \ldots, e_n) is a basis of \mathbb{R}^n . This basis is called the "canonical basis" of \mathbb{R}^n . What is the dimension of \mathbb{R}^n ?
- (b) Give an example of hyperplane and an example of a line of \mathbb{R}^n using spans of subsets of (e_1, \ldots, e_n) .
- **Problem 1.4** (3 points). (a) Consider $v_1, \ldots, v_p \in \mathbb{R}^n$. Prove that $\operatorname{Span}(v_1, \ldots, v_p)$ is the smallest subspace which contains v_1, \ldots, v_p (i.e., it is a subspace which contains v_1, \ldots, v_p , and it is contained in any other such subspace).

- (b) Let V, W be two subspaces of \mathbb{R}^n . Show that $V \cap W$ is a subspace of \mathbb{R}^n .
- (c) Let V, W be two subspaces of \mathbb{R}^n . Show that $V \cup W$ may not be a subspace of \mathbb{R}^n with a counter-example.

Problem 1.5 (*). Let V be a vector space of dimension n and let $x_1, \ldots, x_n \in V$. Show that:

- (a) If x_1, \ldots, x_n are linearly independent, then (x_1, \ldots, x_n) is a basis of V.
- (b) If $\operatorname{Span}(x_1,\ldots,x_n)=V$, then (x_1,\ldots,x_n) is a basis of V.