第一章 真题与模拟题

真题全刷结束后才开始套卷练习(8月)

真题卷要保证刷 3 遍 (9 月,10 月,11 月) 各一次

模拟卷从 25 年开始往前刷

数学真题一网打尽 1.1

$$1. \star \stackrel{?}{x} \lim_{n \to \infty} \left(\frac{\sin \frac{\pi}{n}}{n+1} + \frac{\sin \frac{2\pi}{n}}{n+\frac{1}{2}} + \ldots + \frac{\sin \pi}{n+\frac{1}{n}} \right)$$

2. ** 设函数 f(x) 在区间 [0,1] 连续,则 $\int_0^1 f(x) dx = ()$

(A)
$$\lim_{n \to \infty} \sum_{k=1}^{n} f\left(\frac{2k-1}{2n}\right) \cdot \frac{1}{2n}$$
 (B)
$$\lim_{n \to \infty} \sum_{k=1}^{n} f\left(\frac{2k-1}{2n}\right) \cdot \frac{1}{n}$$

(B)
$$\lim_{n\to\infty} \sum_{k=1}^{n} f\left(\frac{2k-1}{2n}\right) \cdot \frac{1}{n}$$

(C).
$$\lim_{n \to \infty} \sum_{k=1}^{n-1} f\left(\frac{k-1}{2n}\right) \cdot \frac{1}{2n}$$
 (D). $\lim_{n \to \infty} \sum_{k=1}^{n-1} f\left(\frac{k}{2n}\right) \cdot \frac{2}{n}$

(D).
$$\lim_{n \to \infty} \sum_{k=1}^{n} f\left(\frac{k}{2n}\right) \cdot \frac{2}{n}$$

3. ** 设
$$f(x)$$
 是区间 $[0, +\infty)$ 上单调递减且非负的连续函数, $a_n = \sum_{k=1}^n f(k) - \int_1^n f(x) dx (n = 1, 2, ...)$ 证明数列 $\{a_n\}$ 极限存在

- 4. (I) 证明方程 $x^n+x^{n-1}+\ldots+x=1(n>1,n\in \mathbb{N})$ 在区间 $\left(\frac{1}{2},1\right)$ 内仅有一个实根
 - (II) ** 记 (I) 中的实根为 x_n 证明 $\lim_{n\to\infty} x_n$ 存在, 并求出此极限
- 5. ** 设函数 $f(x) = \ln x + \frac{1}{x}$
 - (1) 求 f(x) 的最小值
 - (2) 设数列 $\{x_n\}$ 满足 $\ln x_n + \frac{1}{x_{n+1}} < 1$ 证明 $\lim_{n \to \infty} x_n$ 存在, 并求此极限
- 6. ** 当 $x \to 0$ 时, $\alpha(x)$, $\beta(x)$ 是非零无穷小量,则下列命题中
 - (1) 若 $\alpha(x) \sim \beta(x)$, 则 $\alpha^2(x) \sim \beta^2(x)$
 - (2) 若 $\alpha^2(x) \sim \beta^2(x)$, 则 $\alpha(x) \sim \beta(x)$

- (3) 若 $\alpha(x) \sim \beta(x)$, 则 $\alpha(x) \beta(x) = o(\alpha(x))$
- (4) 若 $\alpha(x) \beta(x) = o(\alpha(x))$, 则 $\alpha(x) \sim \beta(x)$
- A.1,3B.1,4 C.1,3,4D.2,3,4
- 7. ** 设对任意的 x, 总有 $\varphi(x) \leq f(x) \leq g(x)$, 且 $\lim_{n \to \infty} [g(x) \varphi(x)] = 0$, 则 $\lim_{n \to \infty} f(x)$ ()
 - A. 存在且等于零
- B. 存在但不一定为零
- C. 一定不存在
- D. 不一定存在
- 8. ** 设函数 f(x) 在 $(0,+\infty)$ 内具有二阶导数, 且 f''(x) > 0, 令 $u_n = f(n)(n = 1,2,...)$ 则 下列结论正确的是()
 - A. 若 $u_1 > u_2$, 则 $\{u_n\}$ 必收敛 B. 若 $u_1 > u_2$, 则 $\{u_n\}$ 必发散
 - C. 若 $u_1 < u_2$, 则 $\{u_n\}$ 必收敛 D. 若 $u_1 < u_2$, 则 $\{u_n\}$ 必发散
- 9. *** 设 $\lim_{n\to\infty} a_n = a$ 且 $a\neq 0$ 则当 n 充分大的时候, 有()
- A. $|a_n| > \frac{|a|}{2}$ B. $|a_n| < \frac{|a|}{2}$ C. $a_n > a \frac{1}{n}$ D. $a_n < a + \frac{1}{n}$
- 10. ** 设有数列 $\{x_n\}, -\frac{\pi}{2} \le x_n \le \frac{\pi}{2}$ 则 ()
 - A. 若 $\lim_{n\to\infty}\cos(\sin x_n)$ 存在, 则 $\lim_{n\to\infty}x_n$ 存在
 - B. 若 $\lim_{n\to\infty} \sin(\cos x_n)$ 存在, 则 $\lim_{n\to\infty} x_n$ 存在
 - C. 若 $\lim_{n\to\infty}\cos(\sin x_n)$ 存在, 则 $\lim_{n\to\infty}\sin x_n$ 存在, 但 $\lim_{n\to\infty}x_n$ 不存在
 - C. 若 $\lim_{n\to\infty} \sin(\cos x_n)$ 存在,则 $\lim_{n\to\infty} \cos x_n$ 存在,但 $\lim_{n\to\infty} x_n$ 不存在
- 11. * 已知 $a_n = \sqrt[n]{n} \frac{(-1)^n}{n} (n = 1, 2, ...)$ 则 $\{a_n\}()$
 - A. 有最大值与最小值
- B. 有最大值无最小值
- C. 有最小值无最大值
- D. 无最大值与最小值

计算机基础真题套卷 1.2

合工大 1.3