```
1. What was the change in price of the stock overtime?
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('whitegrid')
plt.style.use("fivethirtyeight")
%matplotlib inline
# For reading stock data from yahoo
from pandas_datareader.data import DataReader
import yfinance as yf
from pandas_datareader import data as pdr
yf.pdr_override()
# For time stamps
from datetime import datetime
# The tech stocks we'll use for this analysis
tech_list = ['AAPL', 'GOOG', 'MSFT', 'AMZN']
# Set up End and Start times for data grab
tech_list = ['AAPL', 'GOOG', 'MSFT', 'AMZN']
end = datetime.now()
start = datetime(end.year - 1, end.month, end.day)
for stock in tech_list:
```

```
globals()[stock] = yf.download(stock, start, end)
```

Out[2]:

|                                      | Open          | High          | Low           | Close         | Adj Close     | Volume       | company_na<br>me |
|--------------------------------------|---------------|---------------|---------------|---------------|---------------|--------------|------------------|
| Date                                 |               |               |               |               |               |              |                  |
| 2023-<br>01-17<br>00:00:0<br>0-05:00 | 98.68000<br>0 | 98.88999<br>9 | 95.7300<br>03 | 96.05000<br>3 | 96.05000<br>3 | 727550<br>00 | AMAZON           |
| 2023-<br>01-18<br>00:00:0<br>0-05:00 | 97.25000<br>0 | 99.32000<br>0 | 95.3799<br>97 | 95.45999<br>9 | 95.45999<br>9 | 795704<br>00 | AMAZON           |
| 2023-<br>01-19<br>00:00:0<br>0-05:00 | 94.73999      | 95.44000<br>2 | 92.8600<br>01 | 93.68000<br>0 | 93.68000<br>0 | 690027<br>00 | AMAZON           |
| 2023-<br>01-20                       | 93.86000<br>1 | 97.34999<br>8 | 93.1999<br>97 | 97.25000<br>0 | 97.25000<br>0 | 673071<br>00 | AMAZON           |

|                                      | Open           | High           | Low           | Close          | Adj Close      | Volume       | company_na<br>me |
|--------------------------------------|----------------|----------------|---------------|----------------|----------------|--------------|------------------|
| Date                                 |                |                |               |                |                |              |                  |
| 00:00:0<br>0-05:00                   |                |                |               |                |                |              |                  |
| 2023-<br>01-23<br>00:00:0<br>0-05:00 | 97.55999<br>8  | 97.77999<br>9  | 95.8600<br>01 | 97.51999<br>7  | 97.51999<br>7  | 765011<br>00 | AMAZON           |
| 2023-<br>01-24<br>00:00:0<br>0-05:00 | 96.93000<br>0  | 98.08999<br>6  | 96.0000<br>00 | 96.32000<br>0  | 96.32000<br>0  | 669295<br>00 | AMAZON           |
| 2023-<br>01-25<br>00:00:0<br>0-05:00 | 92.55999<br>8  | 97.23999<br>8  | 91.5199<br>97 | 97.18000<br>0  | 97.18000<br>0  | 942616<br>00 | AMAZON           |
| 2023-<br>01-26<br>00:00:0<br>0-05:00 | 98.23999<br>8  | 99.48999<br>8  | 96.9199<br>98 | 99.22000       | 99.22000       | 685236<br>00 | AMAZON           |
| 2023-<br>01-27<br>00:00:0<br>0-05:00 | 99.52999<br>9  | 103.4899<br>98 | 99.5299<br>99 | 102.2399<br>98 | 102.2399<br>98 | 876781<br>00 | AMAZON           |
| 2023-<br>01-30<br>00:00:0<br>0-05:00 | 101.0899<br>96 | 101.7399<br>98 | 99.0100<br>02 | 100.5500<br>03 | 100.5500<br>03 | 705661<br>00 | AMAZON           |

Reviewing the content of our data, we can see that the data is numeric and the date is the index of the data. Notice also that weekends are missing from the records.

**Quick note:** Using globals() is a sloppy way of setting the DataFrame names, but it's simple. Now we have our data, let's perform some basic data analysis and check our data.

Descriptive Statistics about the Data

.describe() generates descriptive statistics. Descriptive statistics include those that summarize the central tendency, dispersion, and shape of a dataset's distribution, excluding NaN values.

Analyzes both numeric and object series, as well as DataFrame column sets of mixed data types. The output will vary depending on what is provided. Refer to the notes below for more detail.

In [3]:

# Summary Stats

AAPL.describe()

Out[3]:

|       | Open       | High       | Low        | Close      | Adj Close  | Volume       |
|-------|------------|------------|------------|------------|------------|--------------|
| count | 251.000000 | 251.000000 | 251.000000 | 251.000000 | 251.000000 | 2.510000e+02 |
| mean  | 152.117251 | 154.227052 | 150.098406 | 152.240797 | 151.861737 | 8.545738e+07 |
| std   | 13.239204  | 13.124055  | 13.268053  | 13.255593  | 13.057870  | 2.257398e+07 |
| min   | 126.010002 | 127.769997 | 124.169998 | 125.019997 | 125.019997 | 3.519590e+07 |
| 25%   | 142.110001 | 143.854996 | 139.949997 | 142.464996 | 142.190201 | 7.027710e+07 |
| 50%   | 150.089996 | 151.990005 | 148.199997 | 150.649994 | 150.400497 | 8.100050e+07 |
| 75%   | 163.434998 | 165.835007 | 160.879997 | 163.629997 | 163.200417 | 9.374540e+07 |
| max   | 178.550003 | 179.610001 | 176.699997 | 178.960007 | 178.154037 | 1.826020e+08 |

We have only 255 records in one year because weekends are not included in the data.

Information About the Data

.info() method prints information about a DataFrame including the index dtype and columns, non-null values, and memory usage.

In [4]:

# General info

AAPL.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 251 entries, 2022-01-31 00:00:00-05:00 to 2023-01-30 00:00:00-05:00

Data columns (total 7 columns):

# Column Non-Null Count Dtype

--- -----

0 Open 251 non-null float64

1 High 251 non-null float64

```
2 Low
             251 non-null float64
3 Close
             251 non-null float64
4 Adj Close 251 non-null float64
5 Volume
               251 non-null int64
6 company_name 251 non-null object
dtypes: float64(5), int64(1), object(1)
memory usage: 23.8+ KB
Closing Price
The closing price is the last price at which the stock is traded during the regular trading day. A stock's
closing price is the standard benchmark used by investors to track its performance over time.
In [5]:
# Let's see a historical view of the closing price
plt.figure(figsize=(15, 10))
plt.subplots_adjust(top=1.25, bottom=1.2)
for i, company in enumerate(company_list, 1):
  plt.subplot(2, 2, i)
  company['Adj Close'].plot()
  plt.ylabel('Adj Close')
  plt.xlabel(None)
  plt.title(f"Closing Price of {tech_list[i - 1]}")
plt.tight_layout()
```



## Volume of Sales

plt.tight\_layout()

Volume is the amount of an asset or security that changes hands over some period of time, often over the course of a day. For instance, the stock trading volume would refer to the number of shares of security traded between its daily open and close. Trading volume, and changes to volume over the course of time, are important inputs for technical traders.

```
In [6]:
# Now let's plot the total volume of stock being traded each day
plt.figure(figsize=(15, 10))
plt.subplots_adjust(top=1.25, bottom=1.2)

for i, company in enumerate(company_list, 1):
    plt.subplot(2, 2, i)
    company['Volume'].plot()
    plt.ylabel('Volume')
    plt.xlabel(None)
    plt.title(f"Sales Volume for {tech_list[i - 1]}")
```



Now that we've seen the visualizations for the closing price and the volume traded each day, let's go ahead and caculate the moving average for the stock.

## 2. What was the moving average of the various stocks?

The moving average (MA) is a simple technical analysis tool that smooths out price data by creating a constantly updated average price. The average is taken over a specific period of time, like 10 days, 20 minutes, 30 weeks, or any time period the trader chooses.

```
In [7]:
ma_day = [10, 20, 50]
```

for ma in ma\_day:

for company in company\_list:
 column\_name = f"MA for {ma} days"
 company[column\_name] = company['Adj Close'].rolling(ma).mean()

```
fig, axes = plt.subplots(nrows=2, ncols=2)
fig.set_figheight(10)
fig.set_figwidth(15)
```

AAPL[['Adj Close', 'MA for 10 days', 'MA for 20 days', 'MA for 50 days']].plot(ax=axes[0,0]) axes[0,0].set\_title('APPLE')

GOOG[['Adj Close', 'MA for 10 days', 'MA for 20 days', 'MA for 50 days']].plot(ax=axes[0,1]) axes[0,1].set\_title('GOOGLE')

MSFT[['Adj Close', 'MA for 10 days', 'MA for 20 days', 'MA for 50 days']].plot(ax=axes[1,0]) axes[1,0].set\_title('MICROSOFT')

AMZN[['Adj Close', 'MA for 10 days', 'MA for 20 days', 'MA for 50 days']].plot(ax=axes[1,1]) axes[1,1].set\_title('AMAZON')

# fig.tight\_layout()



We see in the graph that the best values to measure the moving average are 10 and 20 days because we still capture trends in the data without noise.

3. What was the daily return of the stock on average?

Now that we've done some baseline analysis, let's go ahead and dive a little deeper. We're now going to analyze the risk of the stock. In order to do so we'll need to take a closer look at the daily changes of the stock, and not just its absolute value. Let's go ahead and use pandas to retrieve teh daily returns for the Apple stock.

```
In [8]:
# We'll use pct_change to find the percent change for each day
for company in company_list:
  company['Daily Return'] = company['Adj Close'].pct_change()
# Then we'll plot the daily return percentage
fig, axes = plt.subplots(nrows=2, ncols=2)
fig.set figheight(10)
fig.set_figwidth(15)
AAPL['Daily Return'].plot(ax=axes[0,0], legend=True, linestyle='--', marker='o')
axes[0,0].set_title('APPLE')
GOOG['Daily Return'].plot(ax=axes[0,1], legend=True, linestyle='--', marker='o')
axes[0,1].set_title('GOOGLE')
MSFT['Daily Return'].plot(ax=axes[1,0], legend=True, linestyle='--', marker='o')
axes[1,0].set_title('MICROSOFT')
AMZN['Daily Return'].plot(ax=axes[1,1], legend=True, linestyle='--', marker='o')
axes[1,1].set_title('AMAZON')
fig.tight_layout()
```



Great, now let's get an overall look at the average daily return using a histogram. We'll use seaborn to create both a histogram and kde plot on the same figure.

```
In [9]:
plt.figure(figsize=(12, 9))

for i, company in enumerate(company_list, 1):
    plt.subplot(2, 2, i)
    company['Daily Return'].hist(bins=50)
    plt.xlabel('Daily Return')
    plt.ylabel('Counts')
    plt.title(f'{company_name[i - 1]}')
```



## 4. What was the correlation between different stocks closing prices?

Correlation is a statistic that measures the degree to which two variables move in relation to each other which has a value that must fall between -1.0 and +1.0. Correlation measures association, but doesn't show if x causes y or vice versa — or if the association is caused by a third factor[1].

Now what if we wanted to analyze the returns of all the stocks in our list? Let's go ahead and build a DataFrame with all the ['Close'] columns for each of the stocks dataframes.

In [10]:

# Grab all the closing prices for the tech stock list into one DataFrame

closing\_df = pdr.get\_data\_yahoo(tech\_list, start=start, end=end)['Adj Close']

|                           | AAPL      | AMZN      | GOOG      | MSFT      |
|---------------------------|-----------|-----------|-----------|-----------|
| Date                      |           |           |           |           |
| 2022-01-31 00:00:00-05:00 | NaN       | NaN       | NaN       | NaN       |
| 2022-02-01 00:00:00-05:00 | -0.000973 | 0.010831  | 0.016065  | -0.007139 |
| 2022-02-02 00:00:00-05:00 | 0.007044  | -0.003843 | 0.073674  | 0.015222  |
| 2022-02-03 00:00:00-05:00 | -0.016720 | -0.078128 | -0.036383 | -0.038952 |
| 2022-02-04 00:00:00-05:00 | -0.001679 | 0.135359  | 0.002562  | 0.015568  |

Now we can compare the daily percentage return of two stocks to check how correlated. First let's see a sotck compared to itself.

In [11]:

# Comparing Google to itself should show a perfectly linear relationship
sns.jointplot(x='GOOG', y='GOOG', data=tech\_rets, kind='scatter', color='seagreen')
Out[11]:

<seaborn.axisgrid.JointGrid at 0x7f63e33d4990>



In [12]:

# We'll use joinplot to compare the daily returns of Google and Microsoft sns.jointplot(x='GOOG', y='MSFT', data=tech\_rets, kind='scatter')
Out[12]:

<seaborn.axisgrid.JointGrid at 0x7f63dba49210>



So now we can see that if two stocks are perfectly (and positivley) correlated with each other a linear relationship bewteen its daily return values should occur.

Seaborn and pandas make it very easy to repeat this comparison analysis for every possible combination of stocks in our technology stock ticker list. We can use sns.pairplot() to automatically create this plot

In [13]:

# We can simply call pairplot on our DataFrame for an automatic visual analysis
# of all the comparisons

sns.pairplot(tech\_rets, kind='reg')

Out[13]:

<seaborn.axisgrid.PairGrid at 0x7f63c3f952d0>



Above we can see all the relationships on daily returns between all the stocks. A quick glance shows an interesting correlation between Google and Amazon daily returns. It might be interesting to investigate that individual comaprison.

While the simplicity of just calling sns.pairplot() is fantastic we can also use sns.PairGrid() for full control of the figure, including what kind of plots go in the diagonal, the upper triangle, and the lower triangle. Below is an example of utilizing the full power of seaborn to achieve this result.

In [14]:

# Set up our figure by naming it returns\_fig, call PairPLot on the DataFrame return\_fig = sns.PairGrid(tech\_rets.dropna())

# Using map\_upper we can specify what the upper triangle will look like.
return\_fig.map\_upper(plt.scatter, color='purple')

# We can also define the lower triangle in the figure, inclufing the plot type (kde)
# or the color map (BluePurple)
return\_fig.map\_lower(sns.kdeplot, cmap='cool\_d')

# Finally we'll define the diagonal as a series of histogram plots of the daily return return\_fig.map\_diag(plt.hist, bins=30)

Out[14]: <seaborn.axisgrid.PairGrid at 0x7f63dbee8c10>



In [15]:
# Set up our figure by naming it returns\_fig, call PairPLot on the DataFrame

```
returns_fig = sns.PairGrid(closing_df)

# Using map_upper we can specify what the upper triangle will look like.

returns_fig.map_upper(plt.scatter,color='purple')

# We can also define the lower triangle in the figure, inclufing the plot type (kde) or the color map (BluePurple)

returns_fig.map_lower(sns.kdeplot,cmap='cool_d')

# Finally we'll define the diagonal as a series of histogram plots of the daily return returns_fig.map_diag(plt.hist,bins=30)

Out[15]:
```

<seaborn.axisgrid.PairGrid at 0x7f63bb2df7d0>



Finally, we could also do a correlation plot, to get actual numerical values for the correlation between the stocks' daily return values. By comparing the closing prices, we see an interesting relationship between Microsoft and Apple.

```
In [16]: plt.figure(figsize=(12, 10))
```

```
plt.subplot(2, 2, 1)
sns.heatmap(tech_rets.corr(), annot=True, cmap='summer')
plt.title('Correlation of stock return')
```

```
plt.subplot(2, 2, 2)
```

sns.heatmap(closing\_df.corr(), annot=True, cmap='summer')
plt.title('Correlation of stock closing price')

## Out[16]:

Text(0.5, 1.0, 'Correlation of stock closing price')





Just like we suspected in our PairPlot we see here numerically and visually that Microsoft and Amazon had the strongest correlation of daily stock return. It's also interesting to see that all the technology comapnies are positively correlated.

5. How much value do we put at risk by investing in a particular stock?

There are many ways we can quantify risk, one of the most basic ways using the information we've gathered on daily percentage returns is by comparing the expected return with the standard deviation of the daily returns.

plt.annotate(label, xy=(x, y), xytext=(50, 50), textcoords='offset points', ha='right', va='bottom',

arrowprops=dict(arrowstyle='-', color='blue', connectionstyle='arc3,rad=-0.3'))

```
In [17]:
    rets = tech_rets.dropna()

area = np.pi * 20

plt.figure(figsize=(10, 8))
plt.scatter(rets.mean(), rets.std(), s=area)
plt.xlabel('Expected return')
plt.ylabel('Risk')

for label, x, y in zip(rets.columns, rets.mean(), rets.std()):
```



# 6. Predicting the closing price stock price of APPLE inc:

In [18]:

# Get the stock quote

df = pdr.get\_data\_yahoo('AAPL', start='2012-01-01', end=datetime.now())

# Show teh data

df

# Out[18]:

|                                      | Open      | High      | Low       | Close     | Adj Close | Volume    |
|--------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Date                                 |           |           |           |           |           |           |
| 2012-01-<br>03<br>00:00:00-<br>05:00 | 14.621429 | 14.732143 | 14.607143 | 14.686786 | 12.519278 | 302220800 |
| 2012-01-<br>04                       | 14.642857 | 14.810000 | 14.617143 | 14.765714 | 12.586559 | 260022000 |

|                                      | Open       | High       | Low        | Close      | Adj Close  | Volume    |
|--------------------------------------|------------|------------|------------|------------|------------|-----------|
| Date                                 |            |            |            |            |            |           |
| 00:00:00-<br>05:00                   |            |            |            |            |            |           |
| 2012-01-<br>05<br>00:00:00-<br>05:00 | 14.819643  | 14.948214  | 14.738214  | 14.929643  | 12.726295  | 271269600 |
| 2012-01-<br>06<br>00:00:00-<br>05:00 | 14.991786  | 15.098214  | 14.972143  | 15.085714  | 12.859331  | 318292800 |
| 2012-01-<br>09<br>00:00:00-<br>05:00 | 15.196429  | 15.276786  | 15.048214  | 15.061786  | 12.838936  | 394024400 |
|                                      |            |            |            |            |            |           |
| 2023-01-<br>24<br>00:00:00-<br>05:00 | 140.309998 | 143.160004 | 140.300003 | 142.529999 | 142.529999 | 66435100  |
| 2023-01-<br>25<br>00:00:00-<br>05:00 | 140.889999 | 142.429993 | 138.809998 | 141.860001 | 141.860001 | 65799300  |
| 2023-01-<br>26<br>00:00:00-<br>05:00 | 143.169998 | 144.250000 | 141.899994 | 143.960007 | 143.960007 | 54105100  |
| 2023-01-<br>27<br>00:00:00-<br>05:00 | 143.160004 | 147.229996 | 143.080002 | 145.929993 | 145.929993 | 70492800  |
| 2023-01-<br>30                       | 144.960007 | 145.550003 | 142.850006 | 143.000000 | 143.000000 | 63947600  |

|                    | Open | High | Low | Close | Adj Close | Volume |
|--------------------|------|------|-----|-------|-----------|--------|
| Date               |      |      |     |       |           |        |
| 00:00:00-<br>05:00 |      |      |     |       |           |        |

2787 rows × 6 columns

```
In [19]:
plt.figure(figsize=(16,6))
plt.title('Close Price History')
plt.plot(df['Close'])
plt.xlabel('Date', fontsize=18)
plt.ylabel('Close Price USD ($)', fontsize=18)
plt.show()
```



```
In [20]:
```

# Create a new dataframe with only the 'Close column

data = df.filter(['Close'])

# Convert the dataframe to a numpy array

dataset = data.values

# Get the number of rows to train the model on

training\_data\_len = int(np.ceil( len(dataset) \* .95 ))

training\_data\_len

Out[20]:

2648

```
In [21]:
# Scale the data
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature_range=(0,1))
scaled_data = scaler.fit_transform(dataset)
scaled_data
Out[21]:
array([[0.00439887],
    [0.00486851],
    [0.00584391],
    [0.7735962],
    [0.78531794],
    [0.767884]])
In [22]:
# Create the training data set
# Create the scaled training data set
train_data = scaled_data[0:int(training_data_len), :]
# Split the data into x_train and y_train data sets
x_train = []
y_train = []
for i in range(60, len(train_data)):
  x_train.append(train_data[i-60:i, 0])
  y_train.append(train_data[i, 0])
  if i<= 61:
    print(x_train)
    print(y_train)
    print()
```

```
# Convert the x_train and y_train to numpy arrays
x_train, y_train = np.array(x_train), np.array(y_train)
# Reshape the data
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))
#x_train.shape
unfold_moreShow hidden output
In [23]:
from keras.models import Sequential
from keras.layers import Dense, LSTM
# Build the LSTM model
model = Sequential()
model.add(LSTM(128, return_sequences=True, input_shape= (x_train.shape[1], 1)))
model.add(LSTM(64, return_sequences=False))
model.add(Dense(25))
model.add(Dense(1))
# Compile the model
model.compile(optimizer='adam', loss='mean_squared_error')
# Train the model
model.fit(x_train, y_train, batch_size=1, epochs=1)
2023-01-31 12:54:26.137995: I tensorflow/core/common_runtime/process_util.cc:146] Creating new
thread pool with default inter op setting: 2. Tune using inter_op_parallelism_threads for best
performance.
2023-01-31 12:54:26.831521: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:185]
None of the MLIR Optimization Passes are enabled (registered 2)
Out[23]:
<keras.callbacks.History at 0x7f639802c810>
```

```
In [24]:
# Create the testing data set
# Create a new array containing scaled values from index 1543 to 2002
test_data = scaled_data[training_data_len - 60: , :]
# Create the data sets x_test and y_test
x_test = []
y_test = dataset[training_data_len:, :]
for i in range(60, len(test_data)):
  x_test.append(test_data[i-60:i, 0])
# Convert the data to a numpy array
x_test = np.array(x_test)
# Reshape the data
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1 ))
# Get the models predicted price values
predictions = model.predict(x_test)
predictions = scaler.inverse_transform(predictions)
# Get the root mean squared error (RMSE)
rmse = np.sqrt(np.mean(((predictions - y_test) ** 2)))
rmse
Out[24]:
4.982936594544208
In [25]:
# Plot the data
train = data[:training_data_len]
valid = data[training_data_len:]
valid['Predictions'] = predictions
# Visualize the data
```

```
plt.figure(figsize=(16,6))
plt.title('Model')
plt.xlabel('Date', fontsize=18)
plt.ylabel('Close Price USD ($)', fontsize=18)
plt.plot(train['Close'])
plt.plot(valid[['Close', 'Predictions']])
plt.legend(['Train', 'Val', 'Predictions'], loc='lower right')
plt.show()
/opt/conda/lib/python3.7/site-packages/ipykernel_launcher.py:4: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user\_guide/indexing.html#returning-a-view-versus-a-copy

after removing the cwd from sys.path.



# In [26]: # Show the valid and predicted prices valid

## Out[26]:

|                           | Close      | Predictions |
|---------------------------|------------|-------------|
| Date                      |            |             |
| 2022-07-13 00:00:00-04:00 | 145.490005 | 146.457565  |

|                           | Close      | Predictions |
|---------------------------|------------|-------------|
| Date                      |            |             |
| 2022-07-14 00:00:00-04:00 | 148.470001 | 146.872879  |
| 2022-07-15 00:00:00-04:00 | 150.169998 | 147.586197  |
| 2022-07-18 00:00:00-04:00 | 147.070007 | 148.572937  |
| 2022-07-19 00:00:00-04:00 | 151.000000 | 148.995255  |
|                           |            |             |
| 2023-01-24 00:00:00-05:00 | 142.529999 | 138.565536  |
| 2023-01-25 00:00:00-05:00 | 141.860001 | 140.022110  |
| 2023-01-26 00:00:00-05:00 | 143.960007 | 141.225128  |
| 2023-01-27 00:00:00-05:00 | 145.929993 | 142.469315  |
| 2023-01-30 00:00:00-05:00 | 143.000000 | 143.833130  |

139 rows × 2 columns

linkcode

Summary

In this notebook, you discovered and explored stock data.

Specifically, you learned:

- How to load stock market data from the YAHOO Finance website using yfinance.
- How to explore and visualize time-series data using Pandas, Matplotlib, and Seaborn.
- How to measure the correlation between stocks.
- How to measure the risk of investing in a particular stock.