Step-1

Given that the first *m* and the last *m* components of the vector $y = F_n c$ are

$$y_{j} = y'_{j} + w'_{n} y''_{j}, \quad j = 0, 1, ..., m - 1$$

$$y_{j+m} = y'_{j} - w'_{n} y''_{j}, \quad j = 0, 1, ..., m - 1$$
..... (1)

For n = 2, we have to write y_0 from the first line of equation (1) and y_1 from the second line. And also, for n = 4, use the first line; we have to find y_0 and y_1 , and the second to find y_2 and y_3 , all in terms of y' and y''.

Step-2

For n=2

First line of equation (1) is $y_j = y_j' + w_2^{\ j} y_j'', j = 0, 1, ..., m-1$

If j = 0, then

$$y_0 = y_0' + w_2^0 y_0''$$

$$\Rightarrow y_0 = y_0' + y_0''$$

Step-3

Second line of equation (1) is $y_{j+m} = y_j' - w_2^{\ j} y_j'', j = 0, 1, ..., m-1$

If j = 0, m = 1,

$$y_{0+1} = y_0' - w_2^0 y_0''$$

$$\Rightarrow y_1 = y_0' - y_0''$$

Step-4

For n=4

First line of equation (1) is $y_j = y_j' + w_4^{\ j} y_j'', j = 0, 1, ..., m-1$

If j = 0,

then
$$y_0 = y_0' + w_4^0 y_0''$$

$$\Rightarrow y_0 = y_0' + y_0''$$

Step-5

If
$$j = 1$$
,
then $y_1 = y_1' + w_4' y_1''$

$$w_4 = e^{\frac{2\pi i}{4}}$$

$$= \cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$$

$$= i$$

Therefore
$$y_1 = y_0' + iy_0''$$

Step-6

Second line of equation (1) is $y_{j+m} = y'_j - w_4^j y''_j$, j = 0,1,...,m-1

If
$$j = 0, m = 2$$
,
then $y_{0+2} = y_0' - w_4^0 y_0''$
$$\Rightarrow y_2 = y_0' - y_0''$$

Step-7

If
$$j = 1, m = 2$$
,
then $y_{1+2} = y_1' - w_4' y_1''$
 $\Rightarrow y_3 = y_1' - iy_1''$