Question 1:

Suppose that END_1 were decidable. Let M be a Turing Machine that decides it. We can use M to construct a Turing Machine that decides A_{TM} as follows: Input is $\langle X, w \rangle$ where X is Turing Machine code and w is a string. Construct new Turing Machine Y as follows:

- Input is a binary string, s.
- If the start of the string is a 0 and the end of the string there is a 1, accept, else reject.

Run M on input $\langle Y \rangle$, if M accepts, accept, if M rejects, reject.

If Y accepts s, we know that s is in the language and vice-versa if Y rejects or loops. Therefore we can say that M decides A_{TM} which is a contradiction since we know that A_{TM} is undecidable and therefore END_1 must be undecidable.

Question 2:

Suppose that $BLANK_{TM}$ were decidable. Let M be a Turing Machine that decides it. We can use M to construct a Turing Machine that decides A_{TM} as follows:

Input is $\langle X, w \rangle$ where X is Turing Machine code and w is a string. Construct new Turing Machine Y as follows:

- Input is a binary string, s.
- At each character, erase it
- If s ends, accept, else reject.

Run M on input $\langle Y \rangle$, if M accepts, accept, if M rejects, reject.

If Y accepts s, we know that Y finished computation with a completely blank tape and vice-versa if Y rejects or loops. Therefore we can say that M decides A_{TM} which is a contradiction since we know that A_{TM} is undecidable and therefore $BLANK_{TM}$ must be undecidable.

Question 3:

3.1

$$S \to XY|YX|\epsilon \\ X \to ZXZ|a|\epsilon \\ Y \to ZYZ|b\epsilon \\ Z \to a|b$$

The grammar describes an arbitrary collection of a's and b's in a string w, $w \in \{a, b\}^*$.

3.2

The following TM, X, maps from D to our grammer, L:

Input is $\langle M, w \rangle$ where M is a Turing Machine and w is a string in our grammar above:

• Replace each instance of the letter 0 with a, and replace 1 with b. "

What is left on the tape is now $\{a,b\}^*$, so we can say D maps to L. However since we know, D is not context-free. Claim 1 must be false.

3.3

The following TM, Y, maps from our grammer, L to D:

Input is $\langle M, w \rangle$ where M is a Turing Machine and w is a string in D:

• Replace each instance of the letter a with 0, and replace 0 with 1. "

What is left on the tape is now $\{0,1\}^*$, so we can say L maps to D. However since we know, L is context-free. Claim 2 must be false.