Regressions- och tidsserieanalys Föreläsning 4 - Multipel regression

Mattias Villani

Statistiska institutionen Stockholms universitet

Institutionen för datavetenskap Linköpings universitet

Översikt

- Multipel regression
- \blacksquare Hypotesttest ($t \operatorname{cch} F$)
- Intro till regularisering
- Modellutvärdering

Cykeluthyrning revisited

Fler förklarande variabler - multipel regression

- Dåligt: skatta enkel regression för varje förklarande variabel.
- Bra: skatta multipel regression med alla förklarande variabler.
- Regressionanpassning med två förklarande variabler

$$y = a + b_1 x_1 + b_2 x_2$$

- b_1 talar om hur y förändras när vi ändrar x_1 med en enhet (utan att ändra x_2).
- b_2 talar om hur y förändras när vi ändrar x_2 med en enhet (utan att ändra x_1).
- I multipel regression kontrollerar man för (tar hänsyn till) de andra förklarande variablernas effekt på y.

Mattias Villani ST123G

Minsta kvadrat-skattningar

- **Stickprov**: (y_i, x_{1i}, x_{2i}) för i = 1, ..., n.
- x_{1i} är t ex den i:te observationens värde på x_1 -variabeln.
- Hitta a, b_1 och b_2 som minimerar residualkvadratsumman

$$Q = \sum_{i=1}^{n} (y_i - a - b_1 x_{1i} - b_2 x_{2i})^2$$

- Vi får nu tre ekvationer (från partialderivatorna) som ska lösa med avseende på a, b_1 och b_2 . Se AJÅ.
- lacksquare Med k förklarande variabler får k+1 ekvationer att lösa.

$$y = a + b_1 x_1 + b_2 x_2 + \ldots + b_k x_k$$

Använd dator! (enkelt programmera själv med linjär algebra).

Enkel regression temp - SAS

Analysis of Variance							
Sum of Mean Source DF Squares Square F Value Pr							
Model	1	1078688585	1078688585	473.47	<.0001		
Error	729	1660846807	2278254				
Corrected Total	730	2739535392					

Root MSE	1509.38845	R-Square	0.3937
Dependent Mean	4504.34884	Adj R-Sq	0.3929
Coeff Var	33.50958		

Parameter Estimates								
Variable DF Estimate Standard t Value Pr								
Intercept	1	1214.64212	161.16353	7.54	<.0001			
temp	1	6640.71000	305.18803	21.76	<.0001			

■ Skattad modell

antal uthyrningar $= 1214.64 + 6640.71 \cdot \text{temperatur}$

SAS-kod finns på webbsidan.

Mattias Villani

Multipel regression temp och hum - SAS

Analysis of Variance							
Source DF Squares Square F Value Pr							
Model	2	1169231889	584615944	271.03	<.0001		
Error	728	1570303503	2157010				
Corrected Total	730	2739535392					

Root MSE	1468.67638	R-Square	0.4268
Dependent Mean	4504.34884	Adj R-Sq	0.4252
Coeff Var	32.60574		

Parameter Estimates									
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t				
Intercept	1	2657.89512	272.42279	9.76	<.0001				
temp	1	6886.97373	299.37906	23.00	<.0001				
hum	1	-2492.85413	384.76433	-6.48	<.0001				

Skattad modell:

antal uthyrningar $= 2657.9 + 6886.97 \cdot \text{temperatur} - 2492.85 \cdot \text{luftfuktighet}$

Mattias Villani

ST1230

Multipel regression temp, hum, wind - SAS

Analysis of Variance							
Source DF Squares Square F Value Pr							
Model	3	1262638191	420879397	207.18	<.0001		
Error	727	1476897201	2031495				
Corrected Total	730	2739535392					

Root MSE	1425.30539	R-Square	0.4609
Dependent Mean	4504.34884	Adj R-Sq	0.4587
Coeff Var	31.64287		

Parameter Estimates							
Variable DF Estimate Standard From t Value P							
Intercept	1	4084.36338	337.86220	12.09	<.0001		
temp	1	6625.53271	293.08535	22.61	<.0001		
hum	1	-3100.12313	383.99161	-8.07	<.0001		
windspeed	1	-4806.92932	708.90424	-6.78	<.0001		

Skattad modell:

antal uthyrningar $=4084.4+6625.5 \cdot temp -3100.1 \cdot hum -4806.9 \cdot wind$

Mattias Villani

ST1230

Multipel regression

 \blacksquare Multipel regression med k förklarande variabler:

$$y = a + b_1 x_1 + b_2 x_2 + \ldots + b_k x_k$$

Residualvariansen mäter graden av spridning kring linjen

$$s_e^2 = \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n - (k+1)},$$

där de predikterade värden ges av regressionekvationen

$$\hat{y}_i = a + b_1 x_{1i} + b_2 x_{2i} + \ldots + b_{ki} x_k.$$

Andel förklarad variation

$$R^{2} = \frac{\text{SSR}}{\text{SST}} = \frac{\sum (\hat{y}_{i} - \bar{y})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

Alternativt sätt (kom ihåg att SST = SSR + SSE)

$$R^{2} = \frac{\text{SSR}}{\text{SST}} = \frac{\text{SST} - \text{SSE}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

Multipel regression som sannolikhetsmodell

Populationsmodell för regression med två förklarande variabler:

$$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$
, $\varepsilon \sim N(0, \sigma_{\varepsilon}^2)$

Populationsmodell för multipel regression med k förklarande variabler:

$$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + \varepsilon, \quad \varepsilon \sim N(0, \sigma_{\varepsilon}^2)$$

- β_i talar om hur y förändras när vi ändrar x_i med en enhet (utan att ändra de andra x-variablerna).
- Samma antaganden som tidigare:
 - \triangleright Feltermerna ε_i har **samma varians** σ_{ε}^2 (homoskedastiticitet)
 - Feltermerna är normalfördelade
 - Feltermerna är oberoende.

Konfidensintervall

lacksquare Exakt 95% konfidensintervall för eta_j

$$b_j \pm t_{0.975}(n-k-1) \cdot s_{b_j}$$

där s_{b_i} är standardfelet för b_j (liknande b, men mer komplex).

Cykeluthyrning med k = 3 förklarande variabler

$$t_{0.975}(n-k-1) = t_{0.975}(727) = 1.963$$

p-värdet beräknas på samma sätt som i enkel regression, men från $t_{0.975}(n-k-1)$ fördelningen.

Parameter Estimates								
Variable DF Estimate Standard Error t Value								
Intercept	1	4084.36338	337.86220	12.09	<.0001			
temp	1	6625.53271	293.08535	22.61	<.0001			
hum	1	-3100.12313	383.99161	-8.07	<.0001			
windspeed	1	-4806.92932	708.90424	-6.78	<.0001			

Mattias Villani

ST123G

Signifikanstest för en regressionkoefficient t-test

Nollhypotes som testar om x_j är en signifikant variabel

$$H_0: \beta_j = 0$$
$$H_1: \beta_j \neq 0$$

Teststatistiska

$$t = \left| \frac{b_j - 0}{s_{b_j}} \right|$$

lacksquare Vi förkastar nollhypotesten på signifikansnivån lpha=0.05 om

$$t_{\rm obs} > t_{\rm crit} = t_{0.975} (n-k-1)$$
 (från tabell).

Cykeluthyrning. Testa om windspeed är en signifikant variabel:

$$t_{\rm obs} = |(-4806.92 - 0)/708.90| = 6.780$$

och $t_{\rm crit}=t_{0.975}(727)=1.963$. Eftersom $t_{\rm obs}>t_{\rm crit}$ så förkastar vi H_0 på 5% signifikansnivå.

ANOVA - medelversionen

Mean Squared Error (MSE)

MSE =
$$\frac{\text{SSE}}{n - (k+1)} = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n - (k+1)} = s_e^2$$

■ Mean Square Regression (MSR)

$$MSR = \frac{SSR}{k}$$

■ Mean Square Total (MST)

$$MST = \frac{SST}{n-1}$$

Notera att frihetsgraderna summerar också

$$df(SST) = df(SSE) = df(SSR)$$

$$n-1 = n - (k+1) + k$$

Signifikanstest för flera regressionkoefficienter

F-test statistiska

$$F = \frac{\text{MSR}}{\text{MSE}}$$

Nollhypotesen om ingen regression

$$H_0: \beta_1 = \beta_2 = \ldots = \beta_k = 0$$

 $H_1: \text{åtminstone något } \beta_i \neq 0$

Under H_0 följer F en F-fördelning med k och n-(k+1) frihetsgrader.

$$F \sim F(k, n-k-1)$$

Cykeluthyrningsdata: $F_{\rm obs} = 207.18$. $F_{0.95}(3,727) = 2.617$. Vi tokförkastar nollhypotesen om ingen regression!

Val av förklarande variabler

- Ju fler förklarande variabler desto mer förklarar regressionen.
- R² kan inte minska när man lägger till fler förklarande variabler. Se upp för överanpassning!
- R²_{adjusted} ("justerad R-2"), se AJÅ, kan minska om en förklarande variabel bara reducerar variationen marginellt.
- Andra vanliga informationskriterier: AIC, BIC.
- Full sökning: Gå igenom alla möjliga kombinationer av förklarande variabler och välj modell med högst R_{adjusted}^2 . Beräkningstungt.

Stepwise selection and beyond

Forward selection:

- Börja med bara interceptet.
- 2 Lägg till x-variabeln med högst $t_{\rm obs}$, om $t_{\rm obs} > 2$, annars stanna.
- 3 Lägg till x-variabeln med högst $t_{\rm obs}$, givet att valda variabeln i Steg 2 ingår i modellen, om $t_{\rm obs} > 2$, annars stanna.
- 4 Fortsätt tills ingen ny förklarande variabel har $t_{
 m obs} > 2$ i modellen där alla tidigare variabler ingår.
- **Backward selection**. Starta med alla variabler i modellen. Ta bort den variabel som har lägst $t_{\rm obs}$. Skatta modellen utan denna variabel. Fortsätt tills alla variabler som är kvar har $t_{\rm obs} > 2$.
- Det finns massor av andra (bättre) variabelselektionsstrategier. Bayesian variable selection. Bayesian Learning 7.5 hp.

L2-regularisering (Ridge regression)

- För många förklarande variabler ⇒ MK-metoden överanpassar data. Modellen är överparametriserad.
- Variabelselektion försöker minska antalet skattade parametrar.
- L2-regularisering (ridge regression) behåller alla variabler i modellen men minimerar en straffad residualkvadratsumma:

$$Q_{-} = \sum_{i=1}^{n} (y_{i} - a - b_{1}x_{1i} - \ldots - b_{k}x_{ki})^{2} + \lambda \cdot \sum_{j=1}^{k} b_{j}^{2}$$

Straff/kostnad för att introducera en variabel i modellen

$$\lambda \cdot \sum_{j=1}^{k} b_j^2$$

- Hur hårt vi straffar bestäms av regulariseringsparametern λ .
- Stort λ kommer krympa estimaten av b_j mot noll. Biased, men lägre varians. Bias-Variance trade-off.
- lacksquare Vi kan bestämma λ själva, eller skatta via korsvalidering.

L1-regularisering (Lasso regression)

■ L1-regularisering (Lasso) straffar med absolutbelopp:

$$Q_{-} = \sum_{i=1}^{n} (y_{i} - a - b_{1}x_{1i} - \ldots - b_{k}x_{ki})^{2} + \lambda \cdot \sum_{j=1}^{k} |b_{j}|$$

- Lasso har två effekter:
 - \triangleright krymper b_j mot noll (shrinkage)
 - \blacktriangleright kan sätta vissa b_i exakt till noll (selection)
- SAS GLMSELECT med SELECTION=LASSO som option gör Lasso regression.
- glmnet paketet i R gör Lasso och mycket mer.
- Lasso är extremt populär. Go-to när man har väldigt många förklarande variabler.

Prognosförmåga på testdata

- Välj den modell som ger bäst prediktioner på nya (test) data.
- Dela upp observationer i två delmängder:
 - ► Träningsdata för att skatta modellens parametrar.
 - ► Testdata för att utvärdera modellens prediktioner.
- Modellen får aldrig chans att anpassa sig till testdata.
- Prediktionsmått: kvadrerade prediktionsfel på testdata

$$Q_{\text{test}} = \sum_{j=1}^{n_{\text{test}}} (y_j - \hat{y}_j)^2$$

- Observera:
 - > summan är över observationerna i testdata.
 - \blacktriangleright modellen som ger \hat{y}_j är skattad enbart på träningsdata.
 - ▶ överanpassning på träningsdata ⇒ dåliga prediktioner på testdata.

Korsvalidering

- Vilka observationer ska vara i träning respektive test? Korsvalidering.
- Mått på modellens prognosförmåga: genomsnittligt Q_{test} över alla K=3 testdataset.

Maskininlärning 7.5 hp.