Statistica Bayesiana

Vers. 1.1.1

Gianluca Mastrantonio

email: gianluca.mastrantonio@polito.it

La statistica bayesiana si fonda sul teorema di bayes, che dice che data due variabili aleatorie (anche vettoriali) \mathbf{X} e \mathbf{Y} , allora

$$f(\mathbf{x}|\mathbf{y}) = \frac{f(\mathbf{y}, \mathbf{x})}{f(\mathbf{y})} = \frac{f(\mathbf{y}|\mathbf{x})f(\mathbf{x})}{f(\mathbf{y})}$$

dove $f(\mathbf{y}) = \int f(\mathbf{y}, \mathbf{x}) d\lambda(x)$. Il teorema di Bayes permette di passare dalla condizionata di $\mathbf{y}|\mathbf{x}$ a quella di $\mathbf{x}|\mathbf{y}$.

Un altro modo di vedere il teorema di Bayes è di tipo "iterativo"

- ullet ho una distribuzione a-priori su ${f x}$, $f({f x})$
- ullet Osservo una nuova variabile f y, che dipende da f x, tramite f(f y|f x)
- allora l'informazione che ho su x, dopo aver osservato y, cambia in f(x|y).

Facciamo un esempio

Binomiali

Ipotizziamo di avere un dado a 6 facce e di avere il dubbio che sia truccato e tenda a far uscire più spesso numeri pari che dispari. Facciamo un esperimento, lanciamo il dado n volte, e troviamo che per y volte è uscito un pari e n-y un dispari. Abbiamo abbastanza evidenze che sia truccato?

Soluzione:

Usiamo il teorema di bayes e assumiamo che θ sia il parametro di interesse e indichi la probabilità che esca un numero pari, mentre $\mathbf{Y}^* = (Y_1^*, \dots Y_n^*)'$ è il vettore con i risultati dell'esperimento e $Y = \sum Y_i^*$ è la loro somma. Siamo quindi interessati a

$$f(\theta|y) = \frac{f(y|\theta)f(\theta)}{f(y)}$$

Sappiamo che

$$Y|\theta \sim Bin(n,\theta)$$

e per la distribuzione di θ assumiamo una beta

$$\theta \sim Beta(a,b)$$

Non ci resta che calcolare $f(\theta|y)$. Partiamo dal numeratore che è uguale a

$$f(y|\theta)f(\theta) = \binom{n}{y} \theta^{y} (1-\theta)^{n-y} \frac{\theta^{a-1} (1-\theta)^{b-1}}{B(a,b)} = \binom{n}{y} \frac{\theta^{y+a-1} (1-\theta)^{n+b-y-1}}{B(a,b)}$$

dove

$$B(a,b) = \int_{0}^{1} u^{a-1} (1-u)^{b-1} du$$

In questo caso il denominatore è l'integrale del numeratore e quindi

$$f(y) = \int_0^1 \binom{n}{y} \frac{u^{y+a-1}(1-u)^{n+b-y-1}}{B(a,b)} du = \frac{\binom{n}{y}}{B(a,b)} \int_0^1 u^{y+a-1}(1-u)^{n+b-y-1} du$$

Mettendo tutto insieme abbiamo che

$$f(\theta|y) = \frac{\theta^{y+a-1}(1-\theta)^{n+b-y-1}}{\int_0^1 u^{y+a-1}(1-u)^{n+b-y-1}du} = \frac{\theta^{y+a-1}(1-\theta)^{n+b-y-1}}{B(y+a,n+b-y)}$$

che è la densità di una B(y+a,n+b-y).

In statistica Bayesiana, la distribuzione $f(\theta|\mathbf{y})$ è chiamata distribuzione a posteriori di θ , e si compone di tre elementi

- $f(y|\theta)$: la congiunta della osservazioni, che è possibile vedere anche come la verosimiglianza;
- $f(\theta)$: la distribuzione a priori. Questa distribuzione riflette ciò che sappiamo dei parametri prima di osservare il campione y, i.e. non dipende da y;
- f(y): costante di normalizzazione. In genere "poco importante" visto che non dipende da θ .

La scelta delle a-priori è molto importante e bisogna stare attenti. In generale, se possibile, si preferisce utilizzare distribuzioni che sono costanti o molto piatte, e.g.,

- ullet U(a,b) se la variabile è definita su (a,b),
- oppure N(0, 100000) se è definita su \mathbb{R} .

In questo caso è come se stessimo dicendo che non sappiamo, a-priori, che valore può assumere la variabile/parametro, e lasciamo decidere ai dati la a posteriori. Queste prior si chiamano **non-informative** o **debolmente informative** (hanno una varianza elevata e la densità/probabilità è approssimativamente costante).

Se usiamo prior che mettono molta probabilità su particolari valori

- Beta(10, 10) se la variabile è definita su (0, 1),
- oppure N(5,0.1) se è definita su \mathbb{R} .

allora stiamo mettendo molta informazione a priori, e la a posteriori dipenderà molto dalla a priori. Queste si chiamano prior **informative** (hanno una varianza bassa e ci sono punti con densità/probabilità elevata).

Per esempio, la media di una Beta(a,b) è $\frac{a}{a+b}$ e la varianza è $\frac{ab}{(a+b)^2(a+b+1)^2}$. La Beta non informativa ha parametri a=b=1 (è uniforme), mentre, un esempio di Beta informativa è a=b=1000. Notate che entrambe hanno la stessa media.

La media della a posteriori è

$$\frac{y+a}{a+n+b}$$

che sarà simile come valore a $\frac{y}{n}$ con la prior non informativa (quindi i dati decidono la a posteriori), mentre sarà simile a $\frac{a}{a+b}$ con la prior informativa (la a posteriori è simile alla prior).

Figure: Posterior dell'esempio con diverse priors, $n=20,\,y=15,\,{\rm e}$ probabilità binomiale vera =0.7.

Code: Codice della figura

```
# settiamo dei parametri e vediamo come cambia
# la posterior rispetto alla prior
# ipotizziamo il valore theta_true come valore vero
set.seed(100)
theta_true = 0.7
# i parametri di 3 prior beta
partheta_a_1 = 1
partheta_b_1 = 1
partheta_a_2 = 5
partheta_b_2 = 1
partheta_a_3 = 1
```

```
partheta_b_3 = 5
# numero di campioni
n = 20
# simuliamo delle osservazioni
y = rbinom(1,n,theta_true)
## plottiamo priori e posteriori
xseq = seq(0,1, by=0.01)
dens_prior_1 = dbeta(xseq,partheta_a_1,partheta_b_1)
dens_prior_2 = dbeta(xseq,partheta_a_2,partheta_b_2)
dens_prior_3 = dbeta(xseq,partheta_a_3,partheta_b_3)
dens_post_1 = dbeta(xseq,y+partheta_a_1-1,n-y+partheta_b_1)
dens_post_2 = dbeta(xseq,y+partheta_a_2-1,n-y+partheta_b_2)
```

```
dens_post_3 = dbeta(xseq,y+partheta_a_3-1,n-y+partheta_b_3)
# priors
#pdf(paste(DIR, "BetaPost.pdf", sep=""), width=7*2)
par(mfrow=c(1,2))
plot(xseq,dens_prior_1, col=1,
    ylim=c(0, max(c(dens_prior_1,dens_prior_2,dens_prior_3,
        dens_post_1,dens_post_2,dens_post_3))),
   type="1", lwd=2, main="prior")
lines(xseq,dens_prior_2, col=2, lwd=2)
lines(xseq,dens_prior_3, col=3, lwd=2)
legend("topleft",c("B(1,1)", "B(5,1)","B(1,5)").
    col=1:3, ltv=1, lwd=2)
# posterior
plot(xseq,dens_post_1, col=1,
```

Per capire la differenza tra statistica Bayesiana e frequentista, prendiamo un semplice esempio: il modello lineare.

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
$$\epsilon_i \sim N(0, \sigma^2)$$

Ricordiamo che stiamo quindi assumendo

$$y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$$

con $y_i \perp y_j$, e i parametri di interesse sono $\boldsymbol{\theta} = (\beta_0, \beta_1, \sigma^2)$, oppure, in forma matriciale

$$\mathbf{y} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$$

APPROCCIO FREQUENTISTA:

Nell'approccio frequentista, assumiamo i parametri come "fissi" e ignoti. Calcoliamo la verosimiglianza

$$L(\boldsymbol{\theta}; \mathbf{y}) = \prod_{i=1}^{n} f(y_i | \boldsymbol{\theta})$$

e il valore di θ che la massimizza è lo stimatore. La funzione di verosimiglianza ci dice quanto è verosimile che il campione y sia stato generato da un valore specifico di θ

Essendo lo stimatore funzione delle variabili aleatorie y_i , è anch'esso una variabile aleatoria. In altre parole, noi usiamo una variabile aleatoria (la stima) per dire qualcosa su un parametro non aleatorio (θ) ignoto. Nel caso regressivo abbiamo che

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(x_i - \bar{x})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)}{n}$$

In generale, per la varianza si usa

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)}{n-2}$$

dove il n-2 deriva dal fatto che abbiamo 2 coefficienti, se fossero p, useremmo n-p.

APPROCCIO BAYESIANO:

Nell'approccio Bayesiano heta è una variabile aleatoria, la cui distribuzione può rappresenatre

- la reale o presunta legge di probabilità che genera il parametro
- la nostra incertezza circa il valore del parametro stesso (valore deterministico), prima di osservare i dati.

Non ha allora senso massimizzare la verosimiglianza, e quello che possiamo chiederci è, avendo osservato un particolare campione y come è fatta la distribuzione di θ ; vogliamo trovare la distribuzione condizionata

$$f(\boldsymbol{\theta}|\mathbf{y})$$

che secondo il teorema di Bayes è

$$f(\boldsymbol{\theta}|\mathbf{y}) = \frac{f(\mathbf{y}|\boldsymbol{\theta})f(\boldsymbol{\theta})}{\int f(\mathbf{y}|\boldsymbol{\theta})f(\boldsymbol{\theta})d\boldsymbol{\theta}} = \frac{f(\mathbf{y}|\boldsymbol{\theta})f(\boldsymbol{\theta})}{f(\mathbf{y})}$$

Lavorare con $f(\theta|\mathbf{y})$ non è facile, dato che generalmente non appartiene a una famiglia di distribuzioni note. Quando $f(\theta|\mathbf{y})$ è una distribuzione nota, si dice che la a priori e la verosimiglianza sono *coniugate* (https://en.wikipedia.org/wiki/Conjugate_prior)

Likelihood	Model parameters	Conjugate prior distribution	Prior hyperparameters	Posterior hyperparameters ^[note 1]	Interpretation of hyperparameters	Posterior predictive ^[note 2]
Bernoulli	p (probability)	Beta	$\alpha, \beta \in \mathbb{R}$	$\alpha + \sum_{i=1}^n x_i, \beta + n - \sum_{i=1}^n x_i$	α successes, β failures[note 3]	$p(\tilde{x} = 1) = \frac{\alpha'}{\alpha' + \beta'}$
Binomial with known number of trials, m	p (probability)	Beta	$\alpha, \beta \in \mathbb{R}$	$\alpha + \sum_{i=1}^n x_i, \beta + \sum_{i=1}^n N_i - \sum_{i=1}^n x_i$	α successes, β failures $^{[\text{note 3}]}$	$\operatorname{BetaBin}(\tilde{x} \alpha',\beta')$ (beta-binomial)
Negative binomial with known failure number, r	p (probability)	Beta	$\alpha, \beta \in \mathbb{R}$	$\alpha + rn, \ \beta + \sum_{i=1}^n x_i$	$\frac{\alpha \text{ total successes, } \beta \text{ failures}^{[\text{note 3}]} \text{ (i.e., }}{\frac{\beta}{r} \text{ experiments, assuming } r \text{ stays fixed)}}$	$\operatorname{BetaNegBin}(\tilde{x} \alpha',\beta')$ (beta-negative binomial)
Poisson	λ (rate)	Gamma	$k, heta \in \mathbb{R}$	$k + \sum_{i=1}^n x_i, \ \frac{\theta}{n\theta + 1}$	k total occurrences in $\frac{1}{\theta}$ intervals	$\operatorname{NB}\left(\tilde{x}\mid k', \frac{1}{\theta'+1}\right)$ (negative binomial)
			α , $\beta^{[\text{note 4}]}$	$\alpha + \sum_{i=1}^n x_i, \ \beta + n$	lpha total occurrences in eta intervals	$\operatorname{NB}\!\left(\tilde{x}\mid \alpha', \frac{\beta'}{1+\beta'}\right)$ (negative binomial)
Categorical	p (probability vector), k (number of categories; i.e., size of p)	Dirichlet	$oldsymbol{lpha} \in \mathbb{R}^k$	$oldsymbol{lpha} + (c_1, \dots, c_k),$ where c_i is the number of observations in category i	$lpha_i$ occurrences of category $i^{[\text{note 3}]}$	$p(\bar{x} = i) = \frac{\alpha_i'}{\sum_i \alpha_i'}$ $= \frac{\alpha_i + c_i}{\sum_i \alpha_i + n}$
Multinomial	p (probability vector), k (number of categories; i.e., size of p)	Dirichlet	$oldsymbol{lpha} \in \mathbb{R}^k$	$\alpha + \sum_{i=1}^{n} \mathbf{x}_{i}$	$lpha_i$ occurrences of category $i^{(\text{note 3})}$	$\operatorname{DirMult}(\tilde{\mathbf{x}} \mid \boldsymbol{\alpha}')$ (Dirichlet-multinomial)
Hypergeometric with known total population size, N	M (number of target members)	Beta-binomial ^[3]	n=N,lpha,eta	$\alpha + \sum_{i=1}^n x_i, \beta + \sum_{i=1}^n N_i - \sum_{i=1}^n x_i$	$lpha$ successes, eta failures $^{[\text{note 3}]}$	
Geometric	p ₀ (probability)	Beta	$\alpha, \ \beta \in \mathbb{R}$	$\alpha+n,\beta+\sum_{i=1}^n x_i$	α experiments, β total failures ^[note 3]	

Figure: Distribuzioni coniugate

Likelihood	Model parameters	Conjugate prior distribution	Prior hyperparameters	Posterior hyperparameters ^[note 1]	Interpretation of hyperparameters	Posterior predictive ^[note 5]
Normal with known variance σ^2	μ (mean)	Normal	μ_0,σ_0^2	$\frac{1}{\frac{1}{\sigma_0^2}+\frac{n}{\sigma^2}}\left(\frac{\mu_0}{\sigma_0^2}+\frac{\sum_{i=1}^n x_i}{\sigma^2}\right),\left(\frac{1}{\sigma_0^2}+\frac{n}{\sigma^2}\right)^{-1}$	mean was estimated from observations with total precision (sum of all individual precisions) $1/\sigma_0^2$ and with sample mean μ_0	$\mathcal{N}(ilde{x} \mu_0',\sigma_0^{2'}+\sigma^2)^{[4]}$
Normal with known precision τ	μ (mean)	Normal	μ_0,τ_0^{-1}	$rac{ au_0\mu_0 + au \sum_{i=1}^n x_i}{ au_0 + n au}, (au_0 + n au)^{-1}$	mean was estimated from observations with total precision (sum of all individual precisions) τ_0 and with sample mean μ_0	$\mathcal{N}\left(\bar{x} \mid \mu_0', \frac{1}{ au_0'} + \frac{1}{ au} ight)^{[4]}$
Normal with known mean µ	σ² (variance)	Inverse gamma	α,eta [note 6]	$\alpha + \frac{n}{2}, \beta + \frac{\sum_{i=1}^n (x_i - \mu)^2}{2}$	variance was estimated from 2α observations with sample variance β/α (i.e. with sum of squared deviations 2β , where deviations are from known mean μ)	$t_{2lpha'}(ar x \mu,\sigma^2=eta'/lpha')^{[4]}$
Normal with known mean μ	o² (variance)	Scaled inverse chi- squared	ν , σ_0^2	$ u + n, \frac{\nu \sigma_0^2 + \sum_{i=1}^n (x_i - \mu)^2}{\nu + n} $	variance was estimated from ν observations with sample variance σ_0^2	$t_{\nu'}(\bar{x} \mu,\sigma_0^{2'})^{[4]}$
Normal with known mean µ	τ (precision)	Gamma	α , β note 4]	$\alpha + \frac{n}{2}, \beta + \frac{\sum_{i=1}^n (x_i - \mu)^2}{2}$	precision was estimated from 2α observations with sample variance β/α (i.e. with sum of squared deviations 2β , where deviations are from known mean μ)	$t_{2lpha'}(ilde{x}\mid \mu,\sigma^2=eta'/lpha')^{[4]}$
Normal ^[note 7]	μ and σ² Assuming exchangeability	Normal-inverse gamma	$\mu_0, \nu, \alpha, \beta$	$\begin{split} & \frac{\nu\mu_0 + n\bar{x}}{\nu + n}, \ \nu + n, \ \alpha + \frac{n}{2}, \\ & \beta + \frac{1}{2}\sum_{i=1}^n (x_i - \bar{x})^2 + \frac{n\nu}{\nu + n} \frac{(\bar{x} - \mu_0)^2}{2} \\ & \bullet \bar{x} \text{ is the sample mean} \end{split}$	mean was estimated from ν observations with sample mean μ_0 ; variance was estimated from 2α observations with sample mean μ_0 and sum of squared deviations 2β	$t_{2lpha'}\left(ar{x}\mid\mu',rac{eta'(u'+1)}{ u'lpha'} ight)$ [4]
Normal	μ and τ Assuming exchangeability	Normal-gamma	$\mu_0, \nu, \alpha, \beta$	$\begin{split} & \frac{\nu\mu_0 + n\bar{x}}{\nu + n}, \ \nu + n, \ \alpha + \frac{n}{2}, \\ & \beta + \frac{1}{2}\sum_{i=1}^n (x_i - \bar{x})^2 + \frac{n\nu}{\nu + n} \frac{(\bar{x} - \mu_0)^2}{2} \\ & \bullet \bar{x} \text{ is the sample mean} \end{split}$	mean was estimated from ν observations with sample mean μ_0 , and precision was estimated from 2α observations with sample mean μ_0 and sum of squared deviations 2β	$t_{2\alpha'}\left(\bar{x}\mid \mu', \frac{\beta'(\nu'+1)}{\alpha'\nu'}\right)^{[4]}$

Figure: Distribuzioni coniugate

Multivariate normal with known covariance matrix \$\mathcal{E}\$	μ (mean vector)	Multivariate normal	μ_0, Σ_0	$\begin{split} & \left(\boldsymbol{\Sigma}_0^{-1} + n\boldsymbol{\Sigma}^{-1}\right)^{-1} \left(\boldsymbol{\Sigma}_0^{-1}\boldsymbol{\mu}_0 + n\boldsymbol{\Sigma}^{-1}\bar{\mathbf{x}}\right), \\ & \left(\boldsymbol{\Sigma}_0^{-1} + n\boldsymbol{\Sigma}^{-1}\right)^{-1} \\ & \cdot \bar{\mathbf{x}} \text{ is the sample mean} \end{split}$	mean was estimated from observations with total precision (sum of all individual precisions) $\mathbf{\Sigma}_0^{-1}$ and with sample mean $\boldsymbol{\mu}_0$	$\mathcal{N}(\mathbf{\tilde{x}} \mid \boldsymbol{\mu}_0{}', \boldsymbol{\Sigma}_0{}' + \boldsymbol{\Sigma})^{[4]}$
Multivariate normal with known precision matrix A	μ (mean vector)	Multivariate normal	μ_0, Λ_0	$\begin{split} & \left(\mathbf{\Lambda}_0 + n \mathbf{\Lambda} \right)^{-1} \left(\mathbf{\Lambda}_0 \boldsymbol{\mu}_0 + n \mathbf{\Lambda} \mathbf{\bar{\mathbf{x}}} \right), \left(\mathbf{\Lambda}_0 + n \mathbf{\Lambda} \right) \\ & \bullet \mathbf{\bar{\mathbf{x}}} \text{ is the sample mean} \end{split}$	mean was estimated from observations with total precision (sum of all individual precisions) Λ_0 and with sample mean μ_0	$\mathcal{N}\left(\tilde{\mathbf{x}}\mid oldsymbol{\mu}_0{}', oldsymbol{\Lambda}_0{}'^{-1} + oldsymbol{\Lambda}^{-1} ight)^{[4]}$
Multivariate normal with known mean µ	Σ (covariance matrix)	Inverse-Wishart	ν , Ψ	$n + \nu$, $\Psi + \sum_{i=1}^{n} (\mathbf{x_i} - \boldsymbol{\mu})(\mathbf{x_i} - \boldsymbol{\mu})^T$	covariance matrix was estimated from ν observations with sum of pairwise deviation products Ψ	$t_{\nu'-p+1}\left(\tilde{\mathbf{x}} \boldsymbol{\mu},\frac{1}{\nu'-p+1}\boldsymbol{\Psi}'\right)^{[4]}$
Multivariate normal with known mean µ	A (precision matrix)	Wishart	ν , V	$n + \nu$, $\left(\mathbf{V}^{-1} + \sum_{i=1}^{n} (\mathbf{x}_i - \boldsymbol{\mu})(\mathbf{x}_i - \boldsymbol{\mu})^T\right)^{-1}$	covariance matrix was estimated from ν observations with sum of pairwise deviation products ${f V}^{-1}$	$t_{ u'-p+1}\left(\tilde{\mathbf{x}}\mid \boldsymbol{\mu}, \frac{1}{ u'-p+1}\mathbf{V}^{\prime-1}\right)^{[4]}$
Multivariate normal	μ (mean vector) and Σ (covariance matrix)	normal-inverse- Wishart	$\mu_0, \kappa_0, \nu_0, \Psi$	$\begin{split} & \frac{\kappa_0 \mu_0 + n \overline{\mathbf{x}}}{\kappa_0 + n}, \ \kappa_0 + n, \ \nu_0 + n, \\ & \Psi + \mathbf{C} + \frac{\kappa_0 n}{\kappa_0 + n} (\overline{\mathbf{x}} - \boldsymbol{\mu}_0) (\overline{\mathbf{x}} - \boldsymbol{\mu}_0)^T \\ & \bullet \overline{\mathbf{x}} \text{ is the sample mean} \\ & \bullet \mathbf{C} = \sum_{i=1}^{n} (\mathbf{x}_i - \overline{\mathbf{x}}) (\mathbf{x}_i - \overline{\mathbf{x}})^T \end{split}$	mean was estimated from κ_0 observations with sample mean μ_0 ; covariance matrix was estimated from ν_0 observations with sample mean μ_0 and with sum of pairwise deviation products $\Psi=\nu_0 \Sigma_0$	$t_{v_0'-p+1}\left(\hat{\mathbf{x}} \boldsymbol{\mu}_0',\frac{\kappa_0'+1}{\kappa_0'(\nu_0'-p+1)}\boldsymbol{\Psi}'\right)^{[4]}$
Multivariate normal	μ (mean vector) and Λ (precision matrix)	normal-Wishart	$\mu_0, \kappa_0, \nu_0, \mathbf{V}$	$\begin{split} & \kappa_0 \mu_0 + n \bar{\mathbf{X}} \\ & \kappa_0 + n , \kappa_0 + n, \nu_0 + n, \\ & \left(\mathbf{V}^{-1} + \mathbf{C} + \frac{\kappa_0 n}{\kappa_0 + n} (\bar{\mathbf{X}} - \boldsymbol{\mu}_0) (\bar{\mathbf{X}} - \boldsymbol{\mu}_0)^T \right)^{-1} \\ & * \bar{\mathbf{X}} \text{ is the sample mean} \\ & * \mathbf{C} = \sum_{i=1}^n (\mathbf{x}_i - \bar{\mathbf{X}}) (\mathbf{x}_i - \bar{\mathbf{X}})^T \end{split}$	mean was estimated from κ_0 observations with sample mean μ_0 ; covariance matrix was estimated from μ_0 observations with sample mean μ_0 and with sum of pairwise deviation products \mathbf{V}^{-1}	$t_{\nu_0'-p+1}\left(\hat{\mathbf{x}}\mid \boldsymbol{\mu}_0', \frac{\kappa_0'+1}{\kappa_0'(\nu_0'-p+1)}\mathbf{V}'^{-1}\right)$
Uniform	$U(0, \theta)$	Pareto	x_m, k	$\max\{x_1,, x_n, x_m\}, k + n$	\boldsymbol{k} observations with maximum value \boldsymbol{x}_m	

Figure: Distribuzioni coniugate

Pareto with known minimum x _m	k (shape)	Gamma	α, β	$\alpha + n, \beta + \sum_{i=1}^n \ln \frac{x_i}{x_{\mathrm{m}}}$	α observations with sum β of the order of magnitude of each observation (i.e. the logarithm of the ratio of each observation to the minimum x_m)	
Weibull with known shape β	θ (scale)	Inverse gamma ^[3]	a, b	$a+n,b+\sum_{i=1}^nx_i^\beta$	a observations with sum b of the β th power of each observation	
Log-normal	Same as for the i	normal distribution after	applying the natural I	ogarithm to the data for the posterior hyperparameters	Please refer to Fink (1997, pp. 21–22) to	see the details.
Exponential	λ (rate)	Gamma	α , β ^[note 4]	$\alpha + n, \beta + \sum_{i=1}^{n} x_i$	$lpha-1$ observations that sum to $eta^{ ext{(5)}}$	$\operatorname{Lomax}(\tilde{x}\mid\beta',\alpha')$ (Lomax distribution)
Gamma with known shape α	β (rate)	Gamma	α_0, β_0	$\alpha_0 + n\alpha, \beta_0 + \sum_{i=1}^n x_i$	$lpha_0/lpha$ observations with sum eta_0	$\frac{\operatorname{CG}(\check{\mathbf{x}}\mid\alpha,\alpha_0{'},\beta_0{'})=\beta'(\check{\mathbf{x}} \alpha,\alpha_0{'},1,\beta_0{'})}{\scriptscriptstyle [\operatorname{note 8}]}$
Inverse Gamma with known shape α	β (inverse scale)	Gamma	α_0,β_0	$lpha_0+nlpha,eta_0+\sum_{i=1}^nrac{1}{x_i}$	$lpha_0/lpha$ observations with sum eta_0	
Gamma with known rate β	α (shape)	$\propto \frac{a^{\alpha-1}\beta^{ac}}{\Gamma(\alpha)^b}$	a, b, c	$a\prod_{i=1}^n x_i, b+n, c+n$	b or c observations (b for estimating $\alpha,$ c for estimating $\beta)$ with product a	
Gamma ^[3]	α (shape), β (inverse scale)	$\propto \frac{p^{\alpha-1}e^{-\beta q}}{\Gamma(\alpha)^r\beta^{-\alpha s}}$	p,q,r,s	$p\prod_{i=1}^{n}x_{i},q+\sum_{i=1}^{n}x_{i},r+n,s+n$	α was estimated from r observations with product $p;\beta$ was estimated from s observations with sum q	
Beta	α, β	$\propto \frac{\Gamma(\alpha + \beta)^k p^{\alpha} q^{\beta}}{\Gamma(\alpha)^k \Gamma(\beta)^k}$	p, q, k	$p\prod_{i=1}^{n}x_{i},q\prod_{i=1}^{n}(1-x_{i}),k+n$	α and β were estimated from k observations with product p and product of the complements q	

Figure: Distribuzioni coniugate

Kernel e costante di normalizzazione

Per capire e implementare i modelli Bayesiani, è fondamentale capire il concetto di kernel e costante di normalizzazione. Ipotizziamo di star lavorando con una densità $f(\mathbf{x}|\mathbf{y})$ generale, dove \mathbf{y} potrebbero essere parametri o no.

Attenzione: ricordate che nel Bayesiano non c'è differenza tra parametri e osservazioni, nel senso che sono entrambe variabili aleatorie

La densità $f(\mathbf{x}|\mathbf{y})$ si può dividere in due parti

$$f(\mathbf{x}|\mathbf{y}) = \frac{k(\mathbf{x}|\mathbf{y})}{C(\mathbf{y})}$$

dove $k(\mathbf{x}|\mathbf{y})$, chiamato kernel, che dipende dalla variabile aleatoria alla sinistra (quella di cui stiamo calcolando la densità), e una costante di normalizzazione $C(\mathbf{y})$ che non

dipende dalla variabile aleatoria (x). Una distribuzione è totalmente descritta dal solo kernel visto che

$$1 = \int_{\mathcal{X}} f(\mathbf{x}|\mathbf{y}) d\mathbf{x} = \int_{\mathcal{X}} \frac{k(\mathbf{x}|\mathbf{y})}{C(\mathbf{y})} d\mathbf{x} = \frac{1}{C(\mathbf{y})} \int_{\mathcal{X}} k(\mathbf{x}|\mathbf{y}) d\mathbf{x}$$

e quindi deve essere

$$\int_{\mathcal{X}} k(\mathbf{x}|\mathbf{y}) d\mathbf{x} = C(\mathbf{y})$$

е

$$f(\mathbf{x}|\mathbf{y}) \propto k(\mathbf{x}|\mathbf{y})$$

vediamo alcuni kernel:

•
$$X\sim G(a,b)$$
, $f(x)=\frac{b^a}{\Gamma(a)}x^{a-1}\exp{(-bx)}$,
$$k(x|a,b)=x^{a-1}\exp{(-bx)}$$

•
$$X \sim IG(a,b)$$
, $f(x) = \frac{b^a}{\Gamma(a)} x^{-a-1} \exp\left(-\frac{b}{x}\right)$,

$$k(x|a,b) = x^{-a-1} \exp\left(-\frac{b}{x}\right)$$

•
$$X \sim Beta(a,b)$$
, $f(x) = \frac{x^{a-1}(1-x)^{b-1}}{B(a,b)}$,

$$k(x|a,b) = x^{a-1}(1-x)^{b-1}$$

•
$$X \sim Bin(n,p)$$
, $f(x) = \binom{n}{x} p^x (1-p)^{n-x}$,

$$k(x|n,p) = \frac{1}{x!(n-x)!}p^{x}(1-p)^{n-x}$$

•
$$X \sim N(\mu, \sigma^2)$$
, $f(x) = (2\pi\sigma^2)^{-0.5} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$,

$$k(x|\mu, \sigma^2) = \exp\left(-\frac{x^2 - 2x\mu}{2\sigma^2}\right)$$

•
$$\mathbf{X} \sim N_m(\boldsymbol{\mu}, \boldsymbol{\Sigma}), f(x) = (2\pi)^{-\frac{m}{2}} |\boldsymbol{\Sigma}|^{-\frac{1}{2}} \exp\left(-\frac{(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})}{2}\right),$$

$$k(x|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \exp\left(-\frac{\mathbf{x}^T \boldsymbol{\Sigma}^{-1} \mathbf{x} - 2\mathbf{x}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}}{2}\right)$$

L'importanza del kernel si può capire riprendendo l'esempio binomiale. Ricordiamo che la a posteriori è

$$f(\theta|y) = \frac{f(y|\theta)f(\theta)}{f(y)}$$

ma in questo caso f(y) è la costante di normalizzazione di $f(\theta|y)$, e $f(y|\theta)f(\theta)$ il kernel. Dobbiamo quindi solo calcolare il kernel

$$f(\theta|y) \propto f(y|\theta)f(\theta)$$

e vedere se riusciamo a ricondurlo a qualche distribuzioni conosciuto. Nel caso di prima abbiamo che

$$f(y|\theta)f(\theta) = \binom{n}{y} \frac{\theta^{y+a-1}(1-\theta)^{n+b-y-1}}{B(a,b)} \propto \theta^{y+a-1}(1-\theta)^{n+b-y-1}$$

che possiamo immediatamente riconoscere come il kernel di una beta di parametri y+a e n+b-y, senza dover calcolare il denominatore.

Il kernel ci sarà utile quando introdurremo gli algoritmo \mathbf{MCMC} (Markov Chain Monte Carlo)

Prendiamo un'altro esempio di distribuzioni coniugate:

$$\mathbf{y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$$

 $\boldsymbol{\beta} \sim N_p(\mathbf{M}, \mathbf{V}).$

assumendo σ^2 noto. Noi siamo interessati alla posteriori $f(\pmb{\beta}|\mathbf{y})$ Abbiamo che

$$f(\mathbf{y}|\boldsymbol{\beta}) = (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left(-\frac{1}{2\sigma^2}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})\right)$$
$$f(\boldsymbol{\beta}) = (2\pi)^{-\frac{p}{2}}|\mathbf{V}|^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\boldsymbol{\beta} - \mathbf{M})^T\mathbf{V}^{-1}(\boldsymbol{\beta} - \mathbf{M})\right)$$

I calcoli si semplificano ricordando che per trovare la distribuzione possiamo guardare solo al kernel (tutto ciò che dipende dalla variabile aleatorie). In questo caso la variabile aleatoria è β , dato che stiamo cercando la sua a posteriori. Abbiamo quindi che

$$f(\boldsymbol{\beta}|\mathbf{y}) \propto \exp\left(-\frac{1}{2\sigma^2} \left(\boldsymbol{\beta}^T \mathbf{X}^T \mathbf{X} \boldsymbol{\beta} - 2\boldsymbol{\beta}^T \mathbf{X}^T \mathbf{y}\right)\right) \times$$

$$\exp\left(-\frac{1}{2} \left(\boldsymbol{\beta}^T \mathbf{V}^{-1} \boldsymbol{\beta} - 2\boldsymbol{\beta}^T \mathbf{V}^{-1} \mathbf{M}\right)\right) =$$

$$\exp\left(-\frac{1}{2} \left(\boldsymbol{\beta}^T \left(\frac{1}{\sigma^2} \mathbf{X}^T \mathbf{X} + \mathbf{V}^{-1}\right) \boldsymbol{\beta} - 2\boldsymbol{\beta}^T \left(\frac{1}{\sigma^2} \mathbf{X}^T \mathbf{y} + \mathbf{V}^{-1} \mathbf{M}\right)\right)\right)$$

Se definiamo

$$\mathbf{V}_p = \left(\frac{1}{\sigma^2} \mathbf{X}^T \mathbf{X} + \mathbf{V}^{-1}\right)^{-1}$$
$$\mathbf{M}_p = \mathbf{V}_p \left(\frac{1}{\sigma^2} \mathbf{X}^T \mathbf{y} + \mathbf{V}^{-1} \mathbf{M}\right)$$

abbiamo che

$$f(\boldsymbol{\beta}|\mathbf{y}) \propto \exp\left(-\frac{1}{2}\left(\boldsymbol{\beta}^T\mathbf{V}_p^{-1}\boldsymbol{\beta} - 2\boldsymbol{\beta}^T\mathbf{V}_p^{-1}\mathbf{M}_p\right)\right)$$

che è il kernel di una normale multivariata, quindi

$$\boldsymbol{\beta}|\mathbf{y} \sim N_p(\mathbf{M}_p, \mathbf{V}_p)$$

Attenzione anche in questo semplice esempio, siamo in grado di scrivere la a posteriori in forma chiusa, solo perchè abbiamo assunto σ^2 nota, altrimenti, non sarebbe stato possibile.

Anche se il modello Bayesiano e Frequentista sono diversi, non ci aspettiamo di trovare grandi differenze, soprattutto se i dati sono molti e le prior sono "poco informative". Per esempio. Sappiamo che lo stimatore di massima verosimiglianza di β è

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

che è distribuito normalmente Adesso, supponiamo che ${\bf V}$ sia diagonale e con varianze molto elevate. Allora ${\bf V}^{-1}\approx 0{\bf I}$ e quindi

$$\mathbf{V}_p pprox (rac{1}{\sigma^2}\mathbf{X}^T\mathbf{X})^{-1}$$
 $\mathbf{M}_p pprox \mathbf{V}_p (rac{1}{\sigma^2}\mathbf{X}^T\mathbf{y}) = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$

quindi la media della a posteriori è uguale allo stimatore di massima verosimiglianza.

Il risultato non è certo una coincidenza, e per capirne il motivo, riprendiamo la a posteriori

$$f(\theta|\mathbf{y}) = \frac{f(\mathbf{y}|\theta)f(\theta)}{f(\mathbf{y})}$$

se prendiamo una distribuzione a priori $f(\theta)$ che è approssimativamente costante

$$f(\theta) \approx c$$

allora

$$f(\theta|\mathbf{y}) = \frac{f(\mathbf{y}|\theta)c}{f(\mathbf{y})} \propto f(\mathbf{y}|\theta)$$

Notate che se θ è continua e il suo dominio non limitato, $f(\theta)$ non può essere costante. Sappiamo anche che

$$f(\mathbf{y}|\theta) = L(\theta|\mathbf{y})$$

e quindi la a-posteriori è proporzionale alla verosimiglianza e i massimi delle due corrispondono. Ricordate che $L(\theta|\mathbf{y})$ non è una densità, e questo lo si vede dalla formula precedente, visto che per diventare una densità deve essere moltiplicata per $c/f(\mathbf{y})$. In altre parole, la verosimiglianza può essere vista come il kernel della a posteriori quando le a priori sono non informative.

Prima di passare ai casi più generali, concludiamo con un semplice esempio che mostra come il modello Bayesiano è un modo generale per fare update dell'informazione ogni volta che si fa un esperimento.

Ipotizziamo che il parametro di interesse sia θ e che abbiamo osservato un campione \mathbf{x}_1 da $f(\mathbf{x}_1|\theta)$. Siamo allora interessati alla a-posteriori

$$f(\theta|\mathbf{x}_1) = \frac{f(\mathbf{x}_1|\theta)f(\theta)}{f(\mathbf{x}_1)}$$

Se invece di x_1 avessimo osservato x_1 e x_2 , allora la a posteriori di riferimento sarebbe

$$f(\theta|\mathbf{x}_1,\mathbf{x}_2) = \frac{f(\mathbf{x}_1,\mathbf{x}_2|\theta)f(\theta)}{f(\mathbf{x}_1,\mathbf{x}_2)} = \frac{f(\mathbf{x}_2|\mathbf{x}_1\theta)f(\mathbf{x}_1|\theta)f(\theta)}{f(\mathbf{x}_2|\mathbf{x}_1)f(\mathbf{x}_1)} = \frac{f(\mathbf{x}_2|\mathbf{x}_1\theta)f(\theta|\mathbf{x}_1)}{f(\mathbf{x}_2|\mathbf{x}_1)}$$

quindi la a-posteriori $f(\theta|\mathbf{x}_1)$ può essere vista come la nuova a-priori se osserviamo un nuovo dato \mathbf{x}_2 .

Più schematicamente:

- osservo x₁
- ullet la mia informazione a priori sul parametro è f(heta)
- ullet tramite la verosimiglianza $f(\mathbf{x}_1|\theta)$ passo dalla a-priori $f(\theta)$ alla a-posteriori $f(\theta|\mathbf{x}_1)$

- ullet osservo \mathbf{x}_2
- ullet la mia nuova informazione a priori sul parametro è data da $f(heta|\mathbf{x}_1)$
- utilizzando la verosimiglianza $f(\mathbf{x}_2|\mathbf{x}_1\theta)$ passo dalla a priori $f(\theta|\mathbf{x}_1)$ alla a-posteriori $f(\theta|\mathbf{x}_1,\mathbf{x}_2)$
- $f(\theta|\mathbf{x}_1,\mathbf{x}_2)$ può essere vista come la a priori su θ per futuri esperimenti