MLP

15 종류의 폐기물들의 feature 들을 담은 train.pkl, test.pkl 파일과 그에 따른 label 을 담고 있는 Ytrain.pkl, Ytest.pkl 파일을 사용해 train accuracy 와 test accuracy 를 측정했다.

1. N (hidden layer size)의 변화에 따른 accuracy 는 아래 표와 같다. hidden layer 의 크기가 증가함에 따라 몇 초에서 몇 십 초까지 실행시간이 증가했지만, 정확도에는 유의미한 변화가 보이지 않았으며, 때문에 이후 다른 parameter 들의 영향을 측정할 때, hidden layer size 는 75 로 고정하였다.

	N = 50	N = 75	N = 100	N = 150	N = 300
Train accuracy	0.856	0.856	0.855	0.856	0.856
Test accuracy	0.856	0.856	0.853	0.856	0.856

2. Activation function 을 relu, identity, logistic 3 가지 값으로 설정하고 모델을 테스트한 결과는 아래 표와 같다.

	Identity	Logistic	relu
Train accuracy	0.833	0.856	0.856
Test accuracy	0.829	0.856	0.857

Identity 에서만 유난히 accuracy 가 떨어지는 것을 확인할 수 있다. training/test 데이터셋으로 폐기물에 대한 feature 4 가지가 0 부터 1 사이의 값으로 제공되는데, Identity 는 나머지 두 activation function 과 다르게 f(x) = x 를 리턴하기 때문에, 각 feature 들에 대한 값의 차이가 상대적으로 적게 반영되었을 것으로 추측된다.

SVM

MLP 와 마찬가지로 15 종류의 폐기물 정보가 담긴 dataset, label 을 활용하여 모델을 학습시키고, 여러 parameter 들의 값을 바꿔가며 테스트했다.

1. Kernel function 으로 linear, poly, rbf, sigmoid 4 가지 값을 부여하며 테스트했다. feature 의 개수가 5 가지이고, 각 폐기물 class 의 feature 들이 linear 하게 존재할 가능성이 적다고 생각했기 때문에 linear 가 적합하지 않을 것이라고 예상했으며, 결과는 아래 표와 같다.

	Linear	Poly	Rbf	sigmoid
Train accuracy	0.835	0.856	0.856	0.785
Test accuracy	0.852	0.856	0.856	0.783

linear 함수가 poly, rbf 함수보다 약간 accuracy 가 떨어지긴 했지만, 예상외로 sigmoid 함수를 적용했을 때 accuracy 가 크게 떨어지는 것을 볼 수 있었다.

2. 실수형 C parameter 를 부여할 수 있는데, 이 값이 커질수록 training 과정에서 오류를 허용하지 않는 마진을 구하게 되고(hard margin), 이 값이 작을수록 outlier 들을 허용하는 마진(soft margin)을 구하게 된다. C parameter 의 값을 바꿔가며 테스트하다 보면, 일정 수준 이상의 값에서 train accuracy 는 높아지고, test accuracy 는 비교적 낮아지는 현상(overfitting)이 발생할 것이라고 예상했다. 결과는 아래 표와 같다.

	C = 0.005	C = 0.01	*C = 1	C = 10	C = 100	C = 1000
Train accuracy	0.812	0.825	0.856	0.85617	0.85628	0.85657
Test accuracy	0.808	0.823	0.856	0.85598	0.85684	0.85684

C 값이 작아질수록 accuracy 가 감소하는 모습을 보였지만, C 값이 증가할 때는 예상했던 overfitting 현상이 나타나지 않았다.

train accuracy 와 test accuracy 둘 다 증가하는 추세를 보이고, C=1000 이상부터는 두 accuracy 가 수렴하여 더 이상 변화를 보이지 않았다.

Comparison

MLP 와 SVM 사이에서 accuracy 에 대해 큰 차이가 보이진 않았으며, 어떠한 방식이 더 좋다고 말할 수는 없을 것 같다.

모델이 예측한 값이 label 과 다를 때를 출력해봤을 때, Label 2 = 1 z, Label 1 = 2 z 잘못 예상하는 경우가 다른 경우들에 비해 압도적으로 많았다. 이는 MLP, SVM 두 모델에서 동일하게 나타났다.

dataset 의 feature 들에서 대략적인 이유를 찾을 수 있었는데, 먼저 Label 1 과 2 는 각각 가구류/의자,

고철류/고철이다. 이 2 개의 사물이 5 개의 feature 에 대해 가지는 값을 예상해보면 겹치는 부분이 상당 수 생길 수 있다. (훼손 정도, 불투명, 딱딱함 등)

다른 class 임에도 여러 feature 들에서 비슷한 값을 가지게 되고, 그에 따라 많은 misprediction 이 발생했다고 추측된다.

추가로, dataset 이 줄어들었을 때의 성능을 보기 위해 label 14, 15 번에 대해서만 training 시키고 test accuracy 를 측정해봤다. 1, 2 번 Label 같은 경우 겹치는 feature 가 많아 정확한 classification 이 힘들다는 것을 앞에서 살펴봤기 때문에, 14 번 15 번 Label 을 선택했다.

테스트해 본 결과, MLP 와 SVM 둘 다 98.9%의 정확도를 보였다. 5 가지의 feature 가 작은 수의 class 를 판별하기에는 충분하지만, 15 개의 class 를 판별하기에는 다소 부족할 수 있다고 생각한다. 앞에서 본 1, 2 번 Label 같은 경우도 재질, 무게 등 다른 feature 를 이용할 수 있다면 misprediction 을 꽤 줄일 수 있었을 것이다.

Environment

- Python 3.9.0
- scikit-learn 1.0.2