Supplementary information

Raw data plots, diagnostic statistics, and R script

DA McGranahan

Environmental & Conservation Sciences Program; North Dakota State University, Fargo, ND

BN Poling

School of Natural Resource Sciences, Range Science; North Dakota State University, Fargo, ND

Annual crops

Raw data

In the following graphs, different colors indicate the mean and standard error of undusted (orange) and dusted plants (blue). Open blue points indicate measurements 1-2 hours prior to dust application; closed points represent measurements taken 1-2 hours after dust application.

Figure 1: **TOP:** Chlorophyll concentration; **BOTTOM:** Photosynthetic yield.

Figure 2: Stomatal conductance

Figure 3: Raw data for specific leaf area by species. Colors differentiate randomly-assigned blocks.

	npar	AIC	BIC	logLik	deviance	Chisq	Df	Pr(>Chisq)
diff0	2	4292.0	4302.8	-2144.0	4288.0			
diff1	6	4228.8	4261.2	-2108.4	4216.8	71.2	4	0.000

Table 1: Immediate physiological responses to dusting vary among response measurements.

Figure 4: Immediate changes (after dusting values - pre-dusting values) in three physiological responses among 7 annual crop species over 5 dust application events that occurred 3 days apart. Colors indicate two blocks on different greenhouse benches.

Perennial Grasses

Figure 5: Biomass recovery for eight perennial grasses following two rounds of clipping under dusted and undusted conditions.

R script

Data available in attached R environment DustEffectsData.Rdata


```
# # # Annual crops
#
# # Short-term responses
# Regression modelling
# Model fitting
# Responses by species
  # Chlorophyll concentration
    conc0 <- lme4::lmer(diff ~ 0 + (1|block:round:pot), REML = F,</pre>
                         data = filter(diff_dat, response == "conc"))
    conc1 <- lme4::lmer(diff ~ 0 + spp + (1|block:round:pot), REML = F,</pre>
                         data = filter(diff_dat, response == "conc"))
    conc_diff_CI <- as.data.frame(confint(conc1)) %>%
                       rownames_to_column("term") %>%
                       slice(-(1:2)) %>%
                       bind_cols(tibble(
                         estimate = lme4::fixef(conc1),
                         response = "Chlorophyll\nconcentration") )
  # Stomatal conductance
    cond0 <- lme4::lmer(diff ~ 0 + (1|block:round:pot), REML = F,</pre>
                         data = filter(diff_dat, response == "cond"))
    cond1 <- lme4::lmer(diff ~ 0 + spp + (1|block:round:pot), REML = F,</pre>
                         data = filter(diff_dat, response == "cond"))
    cond_diff_CI <- as.data.frame(confint(cond1)) %>%
                      rownames_to_column("term") %>%
                       slice(-(1:2)) %>%
                       bind_cols(tibble(
                         estimate = lme4::fixef(cond1),
                         response = "Stomatal\nconductance") )
  # Photosynthetic yield
    yield0 \leftarrow lme4::lmer(diff \sim 0 + (1|block:round:pot), REML = F,
                         data = filter(diff_dat, response == "yield"))
    yield1 <- lme4::lmer(diff ~ 0 + spp + (1|block:round:pot), REML = F,</pre>
                         data = filter(diff_dat, response == "yield"))
    yield_diff_CI <- as.data.frame(confint(yield1)) %>%
                       rownames_to_column("term") %>%
                       slice(-(1:2)) %>%
                       bind_cols(tibble(
                         estimate = lme4::fixef(yield1),
                         response = "Photosynthetic\nyield") )
  # Leaf temperature
```

```
temp0 \leftarrow lme4::lmer(diff \sim 0 + (1|block:round:pot), REML = F,
                          data = filter(diff_dat, response == "temp"))
    temp1 <- lme4::lmer(diff \sim 0 + spp + (1|block:round:pot), REML = F,
                          data = filter(diff_dat, response == "temp"))
    temp_diff_CI <- as.data.frame(confint(temp1)) %>%
      rownames_to_column("term") %>%
      slice(-(1:2)) %>%
      bind_cols(tibble(
        estimate = lme4::fixef(temp1),
        response = "Leaf\ntemperature") )
# Overall responses
    diff0 <- lme4::lmer(diff ~ 0 + (1|block:round:spp:pot),</pre>
                         data= diff_dat, REML = F)
    diff1 <- lme4::lmer(diff ~ 0 + response + (1|block:round:spp:pot),</pre>
                         data= diff_dat, REML = F)
    dmc <- anova(diff0, diff1)</pre>
# Overall differences
st_ov <-
  as.data.frame(confint(diff1)) %>%
                 rownames_to_column("term") %>%
                 slice(-(1:2)) %>%
                 bind_cols(tibble(
                   estimate = lme4::fixef(diff1)) ) %>%
    setNames(c("term", "ciL", "ciU", "estimate"))%>%
    mutate(term = recode(term,
                       responseconc = "Chlorophyll\nconcentration",
                       responsecond = 'Stomatal\nconductance',
                       responseyield = 'Photosynthetic\nyield',
                       responsetemp = 'Leaf\ntemperature'))
# # Long-term responses
# Mixed-effect model fitting
  # Specific leaf area
    sla.null <- lme4::lmer(scale(log(SLA)) ~ 1 + (1|block:pot),</pre>
                            data=SLA2, REML=FALSE)
    sla.spp <- lme4::lmer(scale(log(SLA)) ~ spp + (1|block:pot),</pre>
                           data=SLA2, REML=FALSE)
    sla.treat <- lme4::lmer(scale(log(SLA)) ~ t_c + (1|block),</pre>
                             data=SLA2, REML=FALSE)
    sla.add \leftarrow lme4::lmer(scale(log(SLA)) \sim spp + t_c + (1|block:pot),
                           data=SLA2, REML=FALSE)
    sla.int <- lme4::lmer(scale(log(SLA)) ~ spp * t_c + (1|block:pot),</pre>
                           data=SLA2, REML=FALSE)
  # Stomatal conductance
    conduct.null <- lme4::lmer(scale(lcond) ~ 1 + (1|block:date:pot),</pre>
                                 data=Por, REML=FALSE)
    conduct.spp <- lme4::lmer(scale(lcond) ~ spp + (1|block:date:pot),</pre>
```

```
data=Por, REML=FALSE)
    conduct.treat <- lme4::lmer(scale(lcond) ~ t_c + (1|block:date:pot),</pre>
                                  data=Por, REML=FALSE)
    conduct.add <- lme4::lmer(scale(lcond) ~ spp + t_c + (1|block:date:pot),</pre>
                                data=Por, REML=FALSE)
    conduct.int <- lme4::lmer(scale(lcond) \sim spp * t_c + (1|block:date:pot),
                                data=Por, REML=FALSE)
  # Leaf temperature
    temp.null <- lme4::lmer(scale(temp) ~ 1 + (1|block:date:pot),</pre>
                                 data=Temp, REML=FALSE)
    temp.spp <- lme4::lmer(scale(temp) ~ spp + (1|block:date:pot),</pre>
                                data=Temp, REML=FALSE)
    temp.treat <- lme4::lmer(scale(temp) ~ t_c + (1|block:date:pot),</pre>
                                  data=Temp, REML=FALSE)
    temp.add <- lme4::lmer(scale(temp) ~ spp + t_c + (1|block:date:pot),</pre>
                                data=Temp, REML=FALSE)
    temp.int <- lme4::lmer(scale(temp) ~ spp * t_c + (1|block:date:pot),</pre>
                                data=Temp, REML=FALSE)
  # Chlorophyll content
    conc.null <- lme4::lmer(scale(lconc) ~ 1 + (1|block:date),</pre>
                              data=CCM, REML=FALSE)
    conc.spp <- lme4::lmer(scale(lconc) ~ spp + (1|block:date:pot),</pre>
                             data=CCM, REML=FALSE)
    conc.treat <- lme4::lmer(scale(lconc) ~ t_c + (1|block:date:pot),</pre>
                               data=CCM, REML=FALSE)
    conc.add <- lme4::lmer(scale(lconc) ~ spp + t_c + (1|block:date:pot),</pre>
                             data=CCM, REML=FALSE)
    conc.int <- lme4::lmer(scale(lconc) ~ spp*t_c + (1|block:date:pot),</pre>
                             data=CCM, REML=FALSE)
  # Quantum yield
    yield.null <- lme4::lmer(scale(yield)~ 1 + (1|block:date:pot),</pre>
                               data=OS1, REML=FALSE)
   yield.spp <- lme4::lmer(scale(yield)~ spp + (1|block:date:pot),</pre>
                              data=OS1, REML=FALSE)
    yield.treat <- lme4::lmer(scale(yield)~ t_c + (1|block:date:pot),</pre>
                                data=OS1, REML=FALSE)
    yield.add <- lme4::lmer(scale(yield)~ spp + t_c + (1|block:date:pot),</pre>
                              data=OS1, REML=FALSE)
    yield.int <- lme4::lmer(scale(yield) ~ spp*t_c + (1|block:date:pot),</pre>
                              data=OS1, REML=FALSE)
# AICc-based model selection
  # Specific leaf area
    sla.mod.names <- c("sla.null", "sla.spp",</pre>
                        "sla.treat", "sla.add",
                        "sla.int")
    sla.mods <- lst( )</pre>
    for(i in 1:length(sla.mod.names)) {
      sla.mods[[i]] <- get(sla.mod.names[i]) }</pre>
      sla_aic_tab <- AICcmodavg::aictab(cand.set = sla.mods,</pre>
                                          modnames = sla.mod.names)
  # Stomatal conductance
```

```
conduct.mod.names <- c("conduct.null", "conduct.spp",</pre>
                             "conduct.treat", "conduct.add",
                             "conduct.int")
    conduct.mods <- lst( )</pre>
    for(i in 1:length(conduct.mod.names)) {
      conduct.mods[[i]] <- get(conduct.mod.names[i]) }</pre>
      cond_aic_tab <- AICcmodavg::aictab(cand.set = conduct.mods,</pre>
                                            modnames = conduct.mod.names)
  # Leaf temeprature
    temp.mod.names <- c("temp.null", "temp.spp",</pre>
                             "temp.treat", "temp.add",
                             "temp.int")
    temp.mods <- lst( )</pre>
    for(i in 1:length(temp.mod.names)) {
        temp.mods[[i]] <- get(temp.mod.names[i]) }</pre>
          temp_aic_tab <- AICcmodavg::aictab( cand.set = temp.mods,</pre>
                                                 modnames = temp.mod.names)
  # Chlorophyll
    conc.mod.names <- c("conc.null", "conc.spp",</pre>
                          "conc.treat", "conc.add",
                          "conc.int")
    conc.mods <- lst( )</pre>
    for(i in 1:length(conc.mod.names)) {
      conc.mods[[i]] <- get(conc.mod.names[i]) }</pre>
       conc_aic_tab <- AICcmodavg::aictab(cand.set = conc.mods,</pre>
                                             modnames = conc.mod.names)
  # Photosynthetic yield
    yield.mod.names <- c("yield.null", "yield.spp",</pre>
                           "yield.treat", "yield.add",
                           "yield.int")
    yield.mods <- lst( )</pre>
    for(i in 1:length(yield.mod.names)) {
      yield.mods[[i]] <- get(yield.mod.names[i]) }</pre>
        yld_aic_tab <- AICcmodavg::aictab(cand.set = yield.mods,</pre>
                                             modnames = yield.mod.names)
# Estimating regression coefficients & 95% CIs
# By crop species
  cond_CI <- as.data.frame(confint(conduct.int)) %>%
                       rownames_to_column("term") %>%
                          slice(-(1:9)) %>%
                     bind_cols(tibble(
                                  estimate = lme4::fixef(conduct.int)[8:14],
                                  response = "Stomatal\nconductance") )
  temp_CI <- as.data.frame(confint(temp.int)) %>%
                       rownames_to_column("term") %>%
                         slice(-(1:9)) %>%
                     bind_cols(tibble(
```

```
estimate = lme4::fixef(temp.int)[8:14],
                                 response = "Leaf\ntemperature") )
  conc_CI <- as.data.frame(confint(conc.int)) %>%
                      rownames_to_column("term") %>%
                         slice(-(1:9)) %>%
                 bind_cols(tibble(estimate = lme4::fixef(conc.int)[8:14],
                                   response = "Chlorophyll\ncontent"))
 yield_CI <- as.data.frame(confint(yield.int)) %>%
                      rownames_to_column("term") %>%
                        slice(-(1:9)) %>%
                 bind_cols(tibble(estimate = lme4::fixef(yield.int)[8:14],
                                   response = "Photosynthetic\nyield"))
  sla_CI <- as.data.frame(confint(sla.int)) %>%
                      rownames_to_column("term") %>%
                         slice(-(1:9)) %>%
                 bind_cols(tibble(estimate = lme4::fixef(sla.int)[8:14],
                                   response = "Specific\nleaf area"))
  # Combine CIs
   sppCIs <- bind_rows( cond_CI,</pre>
                        conc_CI,
                        yield_CI,
                        sla_CI,
                        temp_CI) %>%
             setNames(c("term", "cil", "ciU",
                         "estimate", "response")) %>%
             mutate(term = factor(term,
                   levels=c("t_cT", "sppDW:t_cT",
                             "sppC0:t_cT", "sppS0:t_cT",
                             "sppLE:t_cT", "sppPB:t_cT",
                             "sppSF:t_cT"),
                  labels=c("Barley (C3)", "Wheat (C3)",
                            "Maize (C4)", "Sorghum (C4)",
                            "Lentil", "Pinto bean",
                            "Sunflower")) )
# Overall dust effects
  # Specific leaf area (using model averaging)
  sla.mod.names.top <- c("sla.spp", "sla.add")</pre>
  sla.mods.top <- lst( )</pre>
     for(i in 1:length(sla.mod.names.top)) {
    sla.mods.top[[i]] <- get(sla.mod.names.top[i]) }</pre>
   sla.av <- AICcmodavg::modavg(parm = paste('t_cT'),</pre>
               cand.set = sla.mods.top,
               modnames = sla.mod.names.top)
sla_dust_CI <- tibble( term = 't_cT',</pre>
                             `2.5 %` = round(sla.av$Lower.CL, 3),
                             `97.5 %` = round(sla.av$Upper.CL, 3),
                             estimate = round(sla.av$Mod.avg.beta, 2),
                             response = "Specific\nleaf area")
```

```
# Other responses from additive models alone
  conduct_dust_CI <- as.data.frame(confint(conduct.add)) %>%
                      rownames_to_column("term") %>%
                         filter(term == "t_cT") %>%
                    as_tibble() %>%
              mutate(estimate = lme4::fixef(conduct.add)
                             [length(lme4::fixef(conduct.add))] ,
                                 response = "Stomatal\nconductance")
  temp_dust_CI <- as.data.frame(confint(temp.add)) %>%
                      rownames_to_column("term") %>%
                         filter(term == "t_cT") %>%
                    as_tibble() %>%
              mutate(estimate = lme4::fixef(temp.add)
                           [length(lme4::fixef(temp.add))] ,
                                 response = "Leaf\ntemperature")
  conc_dust_CI <- as.data.frame(confint(conc.add)) %>%
                      rownames_to_column("term") %>%
                         filter(term == "t_cT") %>%
                    as_tibble() %>%
              mutate(estimate = lme4::fixef(conc.add)
                           [length(lme4::fixef(conc.add))] ,
                                   response = "Chlorophyll\ncontent")
  yield_dust_CI <- as.data.frame(confint(yield.add)) %>%
                      rownames_to_column("term") %>%
                         filter(term == "t_cT") %>%
                    as_tibble() %>%
              mutate(estimate = lme4::fixef(yield.add)
                           [length(lme4::fixef(yield.add))] ,
                                   response = "Photosynthetic\nyield")
  # Combine CIs
   cropCIs <- bind_rows(conduct_dust_CI,</pre>
                        conc_dust_CI,
                        yield_dust_CI,
                        temp_dust_CI,
                        sla_dust_CI) %>%
              rename(lwr = ^2.5 \%), upr = ^97.5 \%)
# Perennial grasses
# Model fitting
  gr_null <- lme4::lmer(recovery~ 1 + (1|block:event:pot),</pre>
                           data=recovery.dat, REML = F)
  gr_trt <- lme4::lmer(recovery ~ trt + (1|block:event:pot),</pre>
                          data=recovery.dat, REML = F)
  gr_spp <- lme4::lmer(recovery ~ 0 + species*trt + (1|block:event:pot),</pre>
                           data=recovery.dat, REML = F)
  gr_photo <- lme4::lmer(recovery~ 0 + photo*trt + (1|block:event:pot),</pre>
                            data=recovery.dat, REML = F)
```

```
# AICc-based model selection
  rcv.mod.names <- c("gr_null", "gr_trt",</pre>
                       "gr_spp", "gr_photo")
  rcv.mods <- lst( )</pre>
   for(i in 1:length(rcv.mod.names)) {
    rcv.mods[[i]] <- get(rcv.mod.names[i]) }</pre>
   grass_aic_tab <- AICcmodavg::aictab(cand.set = rcv.mods,</pre>
                                           modnames = rcv.mod.names)
# Parameter extraction
  gr_params <- bind_cols(</pre>
                   confint(gr_spp) %>%
                     as.data.frame %>%
                     rownames_to_column("term") %>%
                     slice(-c(1:2)),
                   enframe(lme4::fixef(gr_spp)) %>%
                     select(value) )
```