Lógica Computacional

Tabela Verdade

Prof^a. Ms. Adriane Ap. Loper

- Unidade de Ensino: Tabela Verdade
- Competência da Unidade: desenvolver e praticar o raciocínio lógico utilizando a tabela verdade para que, ao final da unidade, você conheça e saiba aplicar os seus conceitos e fundamentos a partir de cases e aplicações computacionais.
- Resumo: Aplicação de tabelas verdade na solução computacional.
- · Palavras-chave: tabela verdade, conectores, verdadeiro
- · Título da Teleaula: Tabela Verdade
- Teleaula nº: 04

Contextualizando

Como funcionário *trainee* na área de *analytics* de uma empresa de varejo, você deve ser capaz de resolver os problemas propostos pela equipe a fim de ajudá-la e, em breve, ser promovido a júnior. Seu primeiro desafio consiste em construir uma tabela

Seu primeiro desafio consiste em construir uma tabela verdade com os resultados dos conectores de conjunção, disjunção e negação para *insights* de vendas.

disjunção e negação para *insights* de vendas. Seu segundo desafio é completar a tabela verdade com novos *insights*, baseados no conector de implicação, a fim de direcionar uma campanha promocional. Após completar as duas primeiras etapas, você deverá

Após completar as duas primeiras etapas, você deverá utilizar os novos dados recebidos para extrair *insights* para uma campanha promocional personalizada.

Fonte: Shutterstock

Contextualizando

Para solucionar os desafios propostos, você aprenderá a construir tabelas verdades com os conectores lógicos, analisar os resultados obtidos e solucionar fórmulas mais complexas.

Fonte: Shutterstock

Construção da Tabela Verdade

Lógica Computacional

- Assim como no hardware, o software também possui operações lógicas. Por exemplo, podemos escrever um programa que irá somar dois valores se, e somente se, ambos forem positivos. Nesse caso, teremos que construir o algoritmo utilizando o operador AND.
- √ Como você pode ver, tanto o hardware como o software computacional dependem da Lógica Formal.
- ✓ Sabemos que os fundamentos da lógica computacional estão baseados nas proposições e nos conectivos (ou operadores) lógicos, mas como podemos organizar os resultados das operações lógicas para facilitar nosso trabalho? Podemos seguir a sugestão de Silva, Finger e Melo (2017) e construir matrizes de conectivos.

Matrizes de Conectivos - AND

Como você pode ver, tanto o hardware como o software computacional dependem da Lógica Formal. Sabemos que os fundamentos da lógica computacional

Sabemos que os fundamentos da lógica computacional estão baseados nas proposições e nos conectivos (ou operadores) lógicos, mas como podemos organizar os resultados das operações lógicas para facilitar nosso trabalho?

Podemos seguir a sugestão de Silva, Finger e Melo (2017) e construir matrizes de conectivos, conforme mostra o Quadro 4.1. No canto superior esquerdo, temos a operação lógica a ser feita, no caso AND (E).

Nas linhas abaixo da operação, temos a proposição "P" e os possíveis valores que ela pode assumir, ou seja, verdadeira / falsa.

Matrizes de Conectivos - AND

Nas colunas ao lado da operação, temos os valores da proposição "Q", ou seja, também verdadeira / falsa. No centro da matriz estão os possíveis resultados lógicos para a operação AND.

Veja que, quando $P \to Q$ são verdadeiras, o resultado é V. Para todos os demais casos, o resultado é falso (F).

	Quadro 4.1.	
P AND Q	Q = V	Q = F
P = V	v	F
P = F	F	F

A representação dos resultados lógicos por meio de matrizes de conectores ajuda na organização, porém, limita uma operação por matriz. Como meio de organizar os resultados e facilitar a operação entre vários conectores em uma mesma estrutura, podemos utilizar a Tabela Verdade.

Construção da Tabela Verdade

Esquema geral de uma tabela verdade:

Tabela-verdade

Recurso empregado na avaliação do valor lógico de uma proposição a partir dos valores lógicos

Construção de Tabela -verdade

Segundo Jacob Daghlian (2006), para se construir a tabela-verdade de uma proposição composta dada, procede-se da seguinte maneira:

- a) Determina-se o número de linhas da tabela-verdade que se quer construir; $2^{\rm n}$
- b) Observa-se a precedência entres os conectivos, isto é, determina-se a forma das proposições que ocorrem no problema;
- c)Aplicam-se as definições das operações lógicas que o problema exigir.

Tabela verdade

Estamos criando uma aplicação que precisa informar se uma determinada pessoa irá pagar imposto ou não, a depender da sua renda, de acordo com a seguinte regra: Se o salário for superior a 5 mil e a idade menor que 40 anos, a pessoa pagará de imposto 10% do seu salário. Considere as seguintes proposições:

A: o salário é maior que R\$ 5 mil.

B: a idade é menor que 40 anos. Com base na tabela verdade da conjunção (E), vamos analisar qual seria o resultado da fórmula A ^B para uma pessoa que recebe um salário de R\$ 4 mil e possui 32

Avaliando a proposição A para o caso, temos um resultado F

Avaliando a proposição A para o caso, temos um resultado ((pois não ganha salário de 5 mil).

A proposição B possui resultado V (a idade é menor que 40 anos). Ao consultarmos a terceira linha da Figura 4.3, vemos que o resultado de A^B para tais entradas é falso. Portanto, para o caso analisado, o resultado da fórmula é F.

Tabela Verdade

Sua missão

Você foi recentemente contratado como um funcionário trainee na área de analytics e almeja se tornar júnior em breve, mas para isso deve cumprir seus desafios e ajudar a

Dadas as seguintes proposições:

p: o cliente é do sexo feminino,

q: o cliente tem idade entre 20 e 30 anos, o seu desafio é construir uma Tabela Verdade que generalize a solução fazendo a conjunção e a disjunção para as proposições p e q, além de criar os resultados para a negação de ambas as fórmulas.

Sua missão

Após criar a tabela verdade, você poderá analisar cada registro informando se o resultado é verdadeiro ou falso para cada um dos conectores lógicos propostos na Tabela 4.1. Tal resultado ajudará a equipe de vendas a criar rotinas para tomada decisões.

Tabelas-verdade

Tabela-verdade da negação:

p	~p
V	F
F	V

p: Montevidéu é a capital da Espanha. (F)

q: As baleias são peixes. (F)

r: A metade de 12 é 6. (V)

Conjunção (e)

O conector lógico de conjunção (AND - E) é utilizado para realizar uma operação binária entre duas proposições, quando se deseja obter um resultado verdadeiro se, e somente se, as duas proposições forem verdadeiras.

Disjunção (ou)

O conector lógico de disjunção (OR - OU) é utilizado para realizar uma operação binária entre duas proposições quando se deseja obter um resultado falso se, e somente se, as duas proposições forem falsas.

Tabela verdade de clientes

Como membro da equipe de *analytics* de uma empresa de varejo, dadas as seguintes proposições: p: o cliente é do sexo feminino e q: o cliente tem idade entre 20 e 30 anos, você foi encarregado de construir uma Tabela Verdade para as operações de conjunção e disjunção, além de criar a negação para as fórmulas. Com a Tabela Verdade criada, você deve avaliar os registros de clientes que foi lhe passado na Tabela 4.1, completando as colunas E/OU com V ou F.

A Tabela Verdade pode ser usada como um gabarito para as operações lógicas, pois contempla todas as entradas possíveis e suas combinações para as fórmulas em estudo. Com esse gabarito em mãos, podemos passar para a segunda etapa do desafio, que é fazer a valoração das fórmulas $p^{\wedge}q$ e pV q para cada registro da base de clientes. Pois bem, vejamos na Tabela 4.2, como ficaram os resultados.

Р	q	$p \wedge q$	p∨q	$\neg(p \land q)$	¬(p∨q)
V	v	v	V	F	F
V	F	F	v	v	F
F	V	F	v	V	F
F	F	F	F	v	V

Quadro 4.2 | Tabela Verdade para time de analytics

Na linha 1, o cliente Karly é do sexo feminino, portanto, p é verdadeiro, e tem 40 anos, logo, a proposição q é falsa para esse cliente. Nesse caso, ao consultar a Tabela Verdade, a conjunção com entradas VF tem como resultado F, mas a disjunção tem resultado V, pois basta que uma proposição seia V

Na linha 2, o cliente é do sexo masculino e possui 49 anos; nesse caso, tanto p quanto q são falsas, logo, ambas fórmulas são valoradas como F.

Termine de analisar suas respostas comparando os resultados com a Tabela Verdade.

Tabela 4.2 | Valoração das fórmulas p^q e pVq

p: o cliente é do sexo feminino e q: o cliente tem idade entre 20 e 30 anos,

linha	codi- go_cli	nome_cli	gene- ro_cli	idade_cli	valor_compra	E	ou
1	53682	Karly Dillon	F	40	74,84		
2	58246	Channing Vazquez	М	49	98,04		
3	27022	Adria Key	F	47	65,93		
4	82075	Ella Nelson	F	34	94,01		
5	90657	Arden Battle	M	48	21,73		
6	80330	Brittany Ramirez	F	38	42,23		
7	53989	Moses Graham	M	42	37,20		
8	61370	Jin Fuller	M	49	65,60	21	
9	41807	Phelan Blair	M	46	77,40		
10	94269	Porter West	М	22	67,19		

linha	codi- go_cli	nome_cli	gene- ro_cli	idade_cli	valor_compra	E	OU
1	53682	Karly Dillon	F	40	74,84	F	v
2	58246	Channing Vazquez	M	49	98,04	F	F
3	27022	Adria Key	F	47	65,93	F	V
4	82075	Ella Nelson	F	34	94,01	F	V
5	90657	Arden Battle	M	48	21,73	F	F
6	80330	Brittany Ramirez	F	38	42,23	F	V
7	53989	Moses Graham	M	42	37,20	F	F
8	61370	Jin Fuller	M	49	65,60	F	F
9	41807	Phelan Blair	М	46	77,40	F	F
10	94269	Porter West	М	22	67,19	F	v

Resultados na Tabela Verdade

Sua missão

Como funcionário *trainee* na área de *analytics* de uma empresa de varejo, você deve ajudar a equipe de marketing em uma campanha para o dia internacional da mulher. Dadas as proposicões:

Dadas as proposições: A: o cliente é do sexo feminino.

B: o cliente fez um compra com valor superior a R\$ 50,00.

C: ganhar cupom com 10% de desconto.

Seu desafio consiste primeiro em avaliar a fórmula A^B para cada um dos registros da Tabela 4.3.

Essa avaliação lhe permitirá classificar a proposição C para cada um dos clientes, ou seja, se o cliente ganhará ou não o cupom de 10% de desconto.

Sua missão

Após a classificação, você deverá generalizar, por meio de do conector de implicação, bem como outros importantes resultados da Tabela Verdade

codigo_cli	nome_cli	genero_cli	idade_cli	valor_compra	cupons_10
53682	Karly Dillon	F	40	74,84	
58246	Channing Varquez	м	49	98,04	1
27022	Adria Key	F	47	65,93	1
80330	Beittany Ramirez	р	38	42,23	
53909	Moses Graham	м	42	37,20	
61370	Jin Fuller	М	49	65,60	- 2
41807	Phelan Blair	м	46	77,40	t.
94269	Porter West	М	22	67,19	1
56516	Zena Skinner	- 1	54	73.98	
38904	Teagan Rios	м	34	61,57	

Tabela 4.1 | Dados de compra dos clientes

Condicional (se....então)

- ✓ As proposições podem ser combinadas na forma "se proposição 1, então proposição 2".
 ✓ O conectivo lógico dessa combinação é o condicional, representado por ->, e significa que se a proposição 1 é verdadeira, implicará na verdade da proposição 2 (GERSTING, 2017).
- ✓ Em outras palavras, podemos dizer que dada uma sequência de proposições, a partir da operação condicional é possível chegar a uma conclusão (um resultado), que é uma nova proposição. A primeira parte, antes do conector, é chamada de
- antecedente, e a segunda de consequente.

Condicional

Tabela de desconto

Você foi encarregado da missão de direcionar a equipe de marketing em uma campanha para o dia internacional da mulher. Dadas as proposições:

A: o cliente é do sexo feminino.

B: o cliente fez um compra com valor superior a R\$ 50,00.

C: ganhar cupom com 10% de desconto.

linha	codigo_cli	codigo_cli nome_cli		idade_cli	valor_ compra	cupom_10
1	53682	Karly Dillon	F	40	74,84	
2	58246	Channing Vazquez	М	49	98,04	
3	27022	Adria Key	F	47	65,93	
4	82075	Ella Nelson	F	34	94,01	
5	90657	Arden Battle	М	48	21,73	
6	80330	Brittany Ra- mirez	F	38	42,23	
7	53989	Moses Graham	М	42	37,20	
8	61370	Jin Fuller	М	49	65,60	-
9	41807	Phelan Blair	M	46	77,40	
10	94269	Porter West	М	22	67,19	
11	56516	Zena Skinner	F	54	73,98	
12	38904	Teagan Rios	M	34	61,57	

Você foi encarregado da missão de direcionar a equipe de marketing em uma campanha para o dia internacional da mulher.

Dada as proposições:

A: o cliente é do sexo feminino.

B: o cliente fez um compra com valor superior a R\$ 50,00.

C: ganhar cupom com 10% de desconto. Você deve primeiro avaliar a fórmula *A^B* para cada um dos registros da Tabela 4.3 classificando a proposição C, como V ou F, para cada um dos clientes, ou seja, se o cliente ganhará ou não o cupom de 10% de desconto.

Pois bem, vamos analisar o primeiro registro: A: O cliente é do sexo feminino. (SIM – V)

B: O cliente fez um compra com valor superior a R\$ 50,00. (SIM - V)

Portanto, para o primeiro registro a fórmula A^B resulta em V,

 $V^{\wedge}V=V$, então a proposição C é V.

Já para o segundo registro, temos F V F=, pois o cliente é do sexo masculino. Então a proposição C é falsa para esse caso. Ao analisar todos os registros, você deve chegar ao resultado da Tabela 4.4.

linha	codigo_cli	nome_cli	genero_cli	idade_cli	valor_ compra	cupom_10
1	53682	Karly Dillon	F	40	74,84	v
2	58246	Channing Vazquez	М	49	98,04	F
3	27022	Adria Key	F	47	65,93	v
4	82075	Ella Nelson	F	34	94,01	v
5	90657	Arden Battle	M	48	21,73	F
6	80330	Brittany Ra- mirez	F	38	42.23	F
7	53989	Moses Graham	M	42	37,20	F
8	61370	Jin Fuller	M	49	65,60	F
9	41807	Phelan Blair	М	46	77,40	F
10	94269	Porter West	M	22	67,19	F
11	56516	Zena Skinner	F	54	73,98	v
12	38904	Teagan Rios	M	34	61,57	F

Tabela 4.4 | Resultado para equipe de marketing

Aplicações Tabela Verdade

Sua missão

Como funcionário trainee na área de analytics de uma empresa de varejo, você deve dar continuídade em seu trabalho, fornecendo novos insights para a equipe de marketing realizar sua campanha promocional. Para esse novo desafio foi enviada a você uma base com novas informações, conforme ilustra a Tabela 4.5. Nessa base é possível encontrar o valor gasto na última compra do cliente, o total de compras já feito por ele e o ticket médio (valor médio gasto em cada compra). A partir desses dados você deve usar as regras da lógica para classificar se o cliente tem potencial para comprar na nova campanha e, se tiver, então ele ganhará um cupom com desconto de 10%. Caso não seja um cliente com potencial então ele ganhará

Sua missão

somente um cupom com 5%.

Vamos às regras: para ser classificado como um cliente com potencial de compra, não importa o gênero (pode ser feminino ou masculino), o cliente deve ter idade entre 30 e 45 anos, ter feito acima de 10 compras e ter um ticket médio acima de R\$ 50,00. Seu desafio é montar uma fórmula que traduza essa regra e, então preencher a coluna "cliente_potencial" com o resultado da fórmula para cada

Dada a classificação, você deve escrever uma nova fórmula que traduza "Se o cliente tem potencial de compra, então ele deve ganhar um cupom com 10% de desconto", e outra fórmula que traduza "Se é falso que o cliente tem potencial

Sua missão

ele deve ganhar um cupom com 5% de desconto". Por fim, use a lógica de programação para preencher as colunas "cupom_10" e "cupom_5" valorando as condicionais.

codi- go_ch	nome_ch	pene- ro_ch	tda- de_ch	valor_ ultima_ compra	com-	medica	to_po- tenctal	cupom _10	cupom _5
53682	Karly Dillon		40	74,84		45,00			*
58246	Chan- ning Varques	м	49	on.os	20	200,00		(*)	*
27022	Adria Ney	31	47	65,03	12	34,00			
n2075	Fills Notson		3-4	94,01	16	150,00	*	*	*
90657	Anten	M	48	21.73	4	23,00	,	*	
80330	Hentre.		346	42.23		42.23			*
53989	Moses	м	42	37,20	39	45.00			*:
	In Puller	24	31	86,00	3.5	123,00			
41807	Photan Blair	M	45	27,40	23	95,00		*	
94269	Porter West	M	22	67,19	-	35,00			
56516	Nama	P.	54	73,08	15	60,00			*
38904	Tragan	м	34	61.67	1.7	21.00			

Exemplificando

Exemplo: $(n \to a) \to (\sim a \to \sim n)$

LVCI	Exemplo. $(p \rightarrow q) \rightarrow (\sim q \rightarrow \sim p)$											
p	q	~p	~q	$p \rightarrow q$	$\sim p \rightarrow \sim q$	$(p \rightarrow q)$						
						$\rightarrow (\sim q \rightarrow \sim p)$						
V	V	F	F	V	V	V						
V	F	F	V	F	F	V						
F	V	V	F	V	V	V						
F	F	V	V	, V	V	V						
_		1			$\overline{}$							

Construção com duas proposições simples

T(p,q): (p $\land \sim$ q)V (q $\land \sim$ p) É necessário determinar o numero de linhas da tabelaverdade, sabendo que para duas proposições são $2^2=4$ linhas, pois temos a proposição p e q. Montando a tabela com 4 linhas:

р	q
V	V
V	F
F	V
F	F

Resultados das validações

Quando trabalhamos com proposições compostas, é comum realizarmos a validação entre as suas proposições, mesmo que cada proposição seja composta por outras proposições combinadas por conectivos.

Os resultados das validações recebem nomes especiais; tautologia, contradição e contingência.

Tautologia

Proposições compostas que sempre assumem valor lógico verdadeiro.

Proposição composta cuja última coluna de sua tabela-verdade assume o valor lógico verdadeiro, independentemente dos valores lógicos das proposições simples que a constituam.

Exemplo:

$$(p \to q) \to (\sim\! q \to \sim\! p)$$

Contradição

Proposições compostas que sempre assumem valor lógico falso.

Proposição composta cuja última coluna de sua tabela-verdade assume o valor lógico falso, independentemente dos valores lógicos das proposições simples que a constituam. Exemplo:

 $p\leftrightarrow \sim \! p$

Contingência

Proposição que não é tautologia e nem uma contradição.

Proposição composta que pode assumir tanto valores lógicos verdadeiros quanto falsos, em função dos valores das proposições simples que a constituam.

Exemplo:

$$\sim p \rightarrow q$$

Descontos

Caro estudante, chegou o momento de resolvermos mais um desafio. Como funcionário na área de *analytics* de uma empresa de varejo, você recebeu uma nova base de dados e precisa identificar os clientes que têm potencial de comprar ${\sf comp}$ na nova campanha. A regra para dizer se o cliente tem ou não potencial para comprar é dada pelas seguintes condições.

Não importa o gênero (pode ser feminino ou masculino). Ele ou ela deve ter idade entre 30 e 45 anos.

Ele ou ela deve ter feito acima de 10 compras. Ele ou ela deve ter um ticket médio acima de R\$ 50,00.

A primeira parte do desafio consiste em escrever uma fórmula que traduza essas regras e, então classificar o resultado da fórmula para cada registro da base da dados. Primeiro ponto importante para montar a fórmula é entender que

todas as condições precisam ser satisfeitas, ou seja, estamos diante de conjunções. Como não importa o gênero – pode ser F ou M –, usaremos a disjunção. Agora é montar essa disjunção com as várias conjunções, utilizando os parênteses para indicar a ordem da valoração. Vamos começar escrevendo os itens já em fórmulas:

(feminino OU masculino). (idade >=30 E idade <=45). (compra >= 10). (ticket médio >= 50). Agora é só juntar os itens com a conjunção:

(feminino **OU** masculino) **E** (idade >=30 **E** idade <=45) **E** (compra >=10) **E** (ticket médio >=50).

Veja que temos conectores que não são tão evidentes, como no caso da idade, em que precisamos usar a conjunção para delimitar a idade procurada. Agora vamos avaliar a fórmula

os dados. Observe os resultados na coluna "cliente_potencial" na Tabela 4.7. Vamos analisar juntos alguns registros. Na linha 1, o gênero,

a idade e o valor da última compra são satisfeitos, porém, o total de compras e o ticket médio não são, o que resulta em falso para a coluna que indica se o cliente é ou não potencial. Já na linha 4, todos os itens são atendidos, logo o cliente é classificado como V, ou seja, é um cliente com potencial de compra na campanha.

(feminino OU masculino) E (idade >=30 E idade <=45) E (compra >=10) E

linha	codi- go_cli	nome_ di	gene- ro_cli	ida- de_cli	valor_ ultima_ compra	com- pras	ticket_ medio	te_po- tencial	cupom _10	cupom _5
1	53682	Karly Dillon	F	40	74,84	5	45,00	P		
2	58246	Chan- ning Vazquez	м	49	98,04	20	200,00	P		
3	27022	Adria Key	P	47	65,93	12	34,00	P		
4	82075	Ella Nelson	P	34	94,01	16	150,00	v		
5	90657	Arden Battle	м	48	21,73	4	23,00	Р		
6	80330	Brittany Rami- rez	P.	38	42,23	1	42,23	Р	-	
7	53989	Moses Graham	м	42	37,20	29	45,00	P		
8	61370	Jin Fuller	м	31	86,00	35	123,00	v		
9	41807	Phelan Blair	м	45	77,40	23	95,00	v		
10	94269	Porter West	м	22	67,19	6	35,00	Р		
11	56516	Zena Skinner	P	54	73,98	15	60,00	Р		
12	38904	Teagan Rios	м	34	61,57	17	71,00	v	- 1	

linha	codi- go_cli	nome_ di	gene- ro_cli	ida- de_cli	valor_ ultima_ compra	total_ com- pras	ticket_ medio	clien- te_po- tencial	cupom _10	cupom _5
1	53682	Karly Dillon	F	40	74,84	5	45,00	F	F	v
2	58246	Chan- ning Vazquez	м	49	98,04	20	200,00	ъ	Р	v
3.	27022	Adria Key	F	47	65,93	12	34,00	F	F	v
4	82075	Ella Nelson	ъ	34	94,01	16	150,00	v	v	F
5	90657	Arden Battle	м	48	21,73	4	23,00	F	F	v
6	80330	Brittany Rami- rez	F	38	42,23	1	42,23	F	F	v
7	53989	Moses Graham	М	42	37,20	29	45,00	Р	P	v
8	61370	Jin Fuller	м	31	86,00	35	123,00	v	v	F
9	41807	Phelan Blair	м	45	77,40	23	95,00	v	v	F
10	94269	Porter West	М	22	67,19	6	35,00	ъ	ъ	v
11	56516	Zena Skinner	F	54	73,98	15	60,00	ъ	F	v
12	38904	Teagan Rios	м	34	61,57	17	71,00	v	v	P

Compreenderam a importância das tabelas verdade? Viram como a lógica é importante e as diversas situações surgem diferente do que imaginamos?

Fonte: https://gifer.com/en/XIOL

Recapitulando

- ✓Definição de tabela-verdade;
- ✓Construção de tabela-verdade;
- √Validação entre as suas proposições;