

US012395588B2

(12) United States Patent

Xiang et al.

(10) Patent No.: US 12,395,588 B2

(45) **Date of Patent:** Aug. 19, 2025

(54) METHOD AND APPARATUS FOR CREATING A DATABASE OF CONTACT CENTER RESPONSE RECORDS

(71) Applicant: Talkdesk, Inc., San Francisco, CA (US)

(72) Inventors: Jiali Xiang, Wuhan (CN); Marta Sofia da Silva Pereira, Oporto (PT); João Ribeiro Marques, Lisbon (PT); Vitor Alves Cardoso, Coimbra (PT); Dina Raquel Dias Barbosa, Lisbon (PT); Haili Zhen, Wuhan (CN); Isa Maria da Silva Costa, Lisbon (PT); Alex

(73) Assignee: Talkdesk, Inc., San Francisco, CA (US)

Harvey Wake, Shrewsbury (GB)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 60 days.

(21) Appl. No.: 18/238,926

(22) Filed: Aug. 28, 2023

(65) Prior Publication Data

US 2025/0080653 A1 Mar. 6, 2025

(51) Int. Cl. *H04M 3/51* (2006.01) *H04M 3/523* (2006.01)

(52) **U.S. CI.** CPC *H04M 3/5175* (2013.01); *H04M 2203/558* (2013.01)

(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,343,518 A 8/1994 Kneipp 5,570,419 A 10/1996 Cave et al. 5,862,203 A 1/1999 Wulkan et al. 5,897,616 A 4/1999 Kanevsky et al. 10/1999 Kibre et al. 5,966,691 A 5,970,124 A 10/1999 Csaszar et al 6,100,891 A 8/2000 Thorne (Continued)

FOREIGN PATENT DOCUMENTS

EP 1 418 519 A1 5/2004 JP 5986065 B2 9/2016 (Continued)

OTHER PUBLICATIONS

Galetto, Molly., "What is Customer DNA?",—NGDATA Product News, Oct. 27, 2015, 10 pages.

(Continued)

Primary Examiner — Harry S Hong (74) Attorney, Agent, or Firm — Potomac Law Group, PLLC; Marc S. Kaufman

(57) ABSTRACT

Methods and systems for creating and using a knowledge base in a contact center. Templates, including responses to specific issues, are made available to agents in dynamic manner to allow agents to be more efficient while performing their daily job. A centralized database of templates is created in a novel manner to be used for multiple digital channels. The templates can be used and reused by multiple systems such as an agent assistant system or a virtual agent system, providing an integrated and consistent experience for responding to communications in a contact center.

10 Claims, 9 Drawing Sheets

Templates © Knowledge BaseiGuide | □ Al Database Channels App Conversation App Agent Assist 203 Configures or edits 204 Articles and add 202 Metadata ADMIN Algorithm processes Configures or edits the content and Content is updated mplate and adds data is refined Metadata ADMIN Searches available records based on the Search inputs Al Search Al Search 210 Returns 2 results Searches templates manually 218 AGENT 216 Search 212 Checks the content results provided by AA 214 **AGENT** Search Uses the reports results retrieved by DB

(56)	Referen	ces Cited	8,76	7,948	В1	7/2014	Riahi et al.
` '	O DATENT	DOCLIN (ENTE		1,597 51,691			Hackbarth et al. De et al.
U	.S. PATENT	DOCUMENTS		59,245			Ranganathan et al.
6,128,415 A	10/2000	Hultgren et al.		8,219	B2	11/2014	Ricci
6,163,607 A	12/2000	Bogart et al.		8,290		11/2014	Siemsgluess
6,230,197 B	5/2001	Beck et al.		9,693 5,172			Frissora et al. Noble, Jr. et al.
6,263,057 B 6,263,065 B		Silverman Durinovic-Johri et al.		5,648			Gibbs et al.
6,345,093 B		Lee et al.		6,509		3/2015	Sundaram
6,373,938 B	31 4/2002	Palacios et al.		0,142			Kosiba et al.
6,377,944 B		Busey et al.		6,431 60,057		5/2015 6/2015	Moreno Mengibar et al.
6,385,584 B 6,411,687 B		Mcalister et al. Bohacek et al.		55,915			Lillard et al.
6,493,695 B		Pickering et al.		2,094		7/2015	Etter et al.
6,560,222 B		Pounds et al.		0,483			Snedden
6,587,831 B		O'Brien		7,450 23,009			Cook et al. Etter et al.
6,639,982 B 6,721,416 B		Stuart et al.		7,366			Medina et al.
6,754,333 B		Flockhart et al.	9,15	2,737	B1	10/2015	Micali et al.
6,859,776 B		Cohen et al.		0,853			Daddi et al.
6,970,829 B		Leamon		78,999 35,222			Hegde et al. Govindarajan et al.
7,023,979 B 7,076,047 B		Wu et al. Brennan et al.		7,232			Williams et al.
7,070,047 B		Heller et al.		0,754		3/2016	Schwartz et al.
7,209,475 B	31 4/2007	Shaffer et al.		6,413			Coates et al.
7,274,787 B		Schoeneberger		0,801			Warford et al. Defusco et al.
7,292,689 B 7,343,406 B		Odinak et al. Buonanno et al.		9,524			Webster
7,343,400 B		Wu et al.		6,152			Riahi et al.
7,382,773 B	82 6/2008	Schoeneberger et al.		7,985			Seger et al.
7,409,336 B		Pak et al.		6,291 3,637			Ouimette et al. Venkatapathy et al.
7,426,268 B 7,466,334 B		Walker et al.		4,463			Grigg et al.
7,478,051 B		Nourbakhsh et al.		5,049			Showers et al.
7,537,154 B		Ramachandran		2,665		3/2017	
7,634,422 B		Andre et al.		9,131 4,361			Placiakis et al. Ristock et al.
7,657,263 B 7,664,641 B		Chahrouri Pettay et al.		9,265			Schwartz et al.
7,672,746 B		Hamilton et al.		4,731			Haltom et al.
7,672,845 B	3/2010	Beranek et al.		7,840			Neuer, III et al.
7,676,034 B		Wu et al.		.3,495 .3,559			Van et al. Noble et al.
7,698,163 B 7,752,159 B		Reed et al. Nelken et al.		3,949			Ristock et al.
7,732,139 B 7,774,790 B		Jirman et al.	9,88	3,037	B1		Lewis et al.
7,788,286 B	8/2010	Nourbakhsh et al.		4,478			Deluca et al.
7,853,006 B		Fama et al.		6,066 6,066			Moran et al. Mammen
7,864,946 B 7,869,998 B		Fama et al. Di Fabbrizio et al.		5,021			Liu et al.
7,949,123 B		Flockhart et al.	RE4	6,852	E		Petrovykh
7,953,219 B	5/2011	Freedman et al.		8,596		6/2018	Dunmire et al.
7,966,187 B		Pettay et al.		9,465 8,788			Fang et al. Khalatian
7,966,369 B 8,060,394 B	31 6/2011 82 11/2011	Briere et al. Woodings et al.	,	4,862			Cai et al.
8,073,129 B		Kalavar	10,07	9,939	B1		Bostick et al.
8,116,446 B	31 2/2012	Kalavar		35,073			Ray et al. Ristock et al.
8,135,125 B		Sidhu et al.		1,974			Fama et al.
8,160,233 B 8,184,782 B		Keren et al. Vatland et al.		5,973			Algard et al.
8,223,951 B		Edelhaus et al.		4,138			Te Booij et al.
8,229,761 B		Backhaus et al.		4,027 5,999			Daddi et al. Naughton et al.
8,243,896 B 8,300,798 B	8/2012	Rae Wu et al.		1,752			Lemay et al.
8,335,704 B		Trefler et al.	10,24	2,019	B1		Shan et al.
8,369,338 B		Peng et al.		6,170			Gruber et al.
8,370,155 B		Byrd et al.		7,745 0,017		4/2019	Araujo et al. Traasdahl et al.
8,391,466 B		Noble, Jr.		1,402			Spector et al.
8,447,279 B 8,488,769 B		Peng et al. Noble et al.		4,677			Mohamed et al.
8,526,576 B		Deich et al.		30,246		8/2019	Clark et al.
8,535,059 B		Noble, Jr. et al.		0,180		10/2019	Jayapalan et al.
8,583,466 B		Margulies et al.		5,742 50,728		10/2019 10/2019	Prendki et al. Anbazhagan et al.
8,594,306 B 8,626,137 B		Laredo et al. Devitt et al.		0.728			Rule et al.
8,635,226 B		Chang et al.		4,590			Cabrera-Cordon et al.
8,644,489 B	31 2/2014	Noble et al.	10,55	4,817	B1	2/2020	Sullivan et al.
8,671,020 B		Morrison et al.		2,879			Hunter et al.
8,688,557 B		Rose et al.		4,822		2/2020	Sheshaiahgari et al. Dwyer et al.
8,738,739 B	oz 3/2014	Makar et al.	10,00	1,992	D2	3/2020	Dwyer et al.

(56)	Referen	nces Cited	2006/0095575			Sureka et al.
U.S	. PATENT	DOCUMENTS	2006/0126818 2006/0153357			Berger et al. Acharya et al.
0.10			2006/0166669			Claussen
10,623,572 B1		Copeland	2006/0173724 2006/0188086			Trefler et al. Busey et al.
10,635,973 B1 10,636,425 B2		Dirac et al. Naughton et al.	2006/0203994			Shaffer et al.
10,699,303 B2		Ismail et al.	2006/0209797			Anisimov et al.
10,715,648 B1		Vashisht et al.	2006/0215831 2006/0229931			Knott et al. Fligler et al.
10,718,031 B1 10,728,384 B1		Wu et al. Channakeshava et al.	2006/0256953			Pulaski et al.
10,725,584 B1		Johnston	2006/0271361			Vora et al.
10,742,806 B2	8/2020		2006/0274856 2006/0277108			Dun et al. Altberg et al.
10,750,019 B1 10,783,568 B1		Petrovykh et al. Chandra et al.	2007/0011153			Pillai et al.
10,789,956 B1	9/2020		2007/0016565			Evans et al.
10,803,865 B2		Naughton et al.	2007/0036334 2007/0038499			Culbertson et al. Margulies et al.
10,812,654 B2 10,812,655 B1		Wozniak Adibi et al.	2007/0038499			Erhart et al.
10,812,033 B1 10,827,069 B1	11/2020		2007/0061183		3/2007	Seetharaman et al.
10,827,071 B1		Adibi et al.	2007/0078725 2007/0121894		4/2007 5/2007	Koszewski et al.
10,839,432 B1		Konig et al. Langley et al.	2007/0121894			Stoica et al.
10,841,425 B1 10,855,844 B1		Smith et al.	2007/0121903	A1	5/2007	Moore et al.
10,861,031 B2	12/2020	Sullivan et al.	2007/0133760 2007/0136284			Cotignola et al.
10,878,479 B2 10,923,127 B2		Wu et al. Mckenzie et al.	2007/0136284			Cobb et al. Morrison
10,923,127 B2 10,929,796 B1	2/2021		2007/0157021		7/2007	
10,943,589 B2	3/2021	Naughton et al.	2007/0160188		7/2007	Sharpe et al.
10,970,682 B1	4/2021	,	2007/0162296 2007/0198329			Altberg et al. Lyerly et al.
11,017,176 B2 11,089,158 B1		Ayers et al. Holland et al.	2007/0201636			Gilbert et al.
11,272,054 B1		Gerrard et al.	2007/0211881			Parker-Stephen
11,417,343 B2		Cohen et al.	2007/0263810 2007/0265990		11/2007	Sterns Sidhu et al.
11,425,252 B1 2001/0008999 A1	7/2001	Martin et al. Bull	2007/0269031		11/2007	
2001/0024497 A1		Campbell	2007/0280460			Harris et al.
2001/0054072 A1		Discolo et al.	2007/0287430 2008/0002823			Hosain et al. Fama et al.
2002/0019737 A1 2002/0029272 A1		Stuart et al. Weller	2008/0004933		1/2008	Gillespie
2002/0034304 A1	3/2002		2008/0043976		2/2008	Maximo et al.
2002/0038420 A1		Collins et al.	2008/0065902 2008/0095355			Spohrer et al. Mahalaha et al.
2002/0067823 A1 2002/0143599 A1		Walker et al. Nourbakhsh et al.	2008/0115213			Bhatt et al.
2002/0169664 A1		Walker et al.	2008/0126957			Tysowski et al.
2002/0174182 A1		Wilkinson et al.	2008/0205620 2008/0225872			Odinak et al. Collins et al.
2002/0181689 A1 2003/0007621 A1	1/2002	Rupe et al. Graves et al.	2008/0254774		10/2008	
2003/0009520 A1		Nourbakhsh et al.	2008/0255944			Shah et al.
2003/0032409 A1		Hutcheson et al.	2008/0260138 2008/0288770			Chen et al. Kline et al.
2003/0061068 A1 2003/0112927 A1	3/2003 6/2003	Brown et al.	2008/0300955			Hamilton et al.
2003/0126136 A1		Omoigui	2009/0018996			Hunt et al.
2003/0154072 A1		Young et al.	2009/0055920 2009/0080411			Murtagh et al. Lyman
2003/0167167 A1 2004/0044585 A1	9/2003 3/2004	Franco	2009/0086945			Buchanan et al.
2004/0044664 A1		Cash et al.	2009/0086949			Caspi et al.
2004/0062364 A1		Dezonno et al.	2009/0086953 2009/0110182			Vendrow Knight, Jr. et al.
2004/0078257 A1 2004/0098274 A1		Schweitzer et al. Dezonno et al.	2009/0171164		7/2009	Jung et al.
2004/0103051 A1	5/2004	Reed et al.	2009/0222551		9/2009	
2004/0141508 A1 2004/0162724 A1		Schoeneberger et al. Hill et al.	2009/0228264 2009/0234710			Williams et al. Belgaied et al.
2004/0162724 A1 2004/0162753 A1		Vogel et al.	2009/0234732	A1	9/2009	Zorman et al.
2004/0174980 A1	9/2004	Knott et al.	2009/0245479		10/2009	
2004/0215451 A1	10/2004		2009/0285384 2009/0306981			Pollock et al. Cromack et al.
2004/0249650 A1	12/2004	Freedman G06Q 30/0201 705/7.29	2009/0307052		12/2009	Mankani et al.
2005/0033957 A1	2/2005	Enokida	2010/0106568			Grimes
2005/0043986 A1		Mcconnell et al.	2010/0114645 2010/0114646			Hamilton et al. Mcilwain et al.
2005/0063365 A1 2005/0065837 A1		Mathew et al. Kosiba et al.	2010/0114040			Mccord
2005/0071178 A1		Beckstrom et al.	2010/0189249	A1	7/2010	Shah et al.
2005/0105712 A1		Williams et al.	2010/0189250			Williams et al.
2005/0177368 A1 2005/0226220 A1		Odinak et al. Kilkki et al.	2010/0211515 2010/0226490			Woodings et al. Schultz et al.
2005/0228774 A1		Ronnewinkel	2010/0225490			Bennett
2005/0246511 A1	11/2005	Willman et al.	2010/0250196	A1	9/2010	Lawler et al.
2005/0271198 A1	12/2005	Chin et al.	2010/0262549	A1	10/2010	Kannan et al.

(56)	Referen	ices Cited	2014/0278605			Borucki et al.
	DATENIT	DOCUMENTS	2014/0278649 2014/0279045			Guerinik et al. Shottan et al.
U.S.	PATENT	DOCUMENTS	2014/02/9043			Makar et al.
2010/0266115 A1	10/2010	Fedorov et al.	2014/0314225			Riahi et al.
2010/0266116 A1		Stolyar et al.	2014/0335480			Asenjo et al.
2010/0274618 A1		Byrd et al.	2014/0372171			Martin et al.
2010/0287131 A1		Church	2014/0379424 2015/0006400		1/2014	Eng et al.
2010/0293033 A1 2010/0299268 A1		Hall et al. Guha et al.	2015/0000400			Erel et al.
2010/0239208 A1 2010/0332287 A1		Gates et al.	2015/0012278			Metcalf
2011/0014932 A1		Estevez	2015/0016600			Desai et al.
2011/0022461 A1		Simeonov	2015/0023484 2015/0030151			Ni et al. Bellini et al.
2011/0071870 A1	3/2011		2015/0030151			Waxman et al.
2011/0077994 A1 2011/0082688 A1		Segev et al. Kim et al.	2015/0051957			Griebeler et al.
2011/0002008 A1 2011/0116618 A1		Zyarko et al.	2015/0066632			Gonzalez et al.
2011/0125697 A1		Erhart et al.	2015/0071418			Shaffer et al.
2011/0143323 A1		Cohen	2015/0078538 2015/0100473		3/2015	Manoharan et al.
2011/0182283 A1 2011/0185293 A1		Van et al. Barnett et al.	2015/0117632			Konig et al.
2011/0183293 A1 2011/0194684 A1		Ristock et al.	2015/0127400			Chan et al.
2011/0216897 A1		Laredo et al.	2015/0127441			Feldman
2011/0264581 A1	10/2011	Clyne	2015/0127677 2015/0142704			Wang et al. London
2011/0267985 A1		Wilkinson et al.	2015/0142/04			Quast et al.
2011/0286592 A1 2011/0288897 A1		Nimmagadda Erhart et al.	2015/0178371			Seth et al.
2012/0046996 A1		Shah et al.	2015/0195406			Dwyer et al.
2012/0051537 A1	3/2012	Chishti et al.	2015/0213454		7/2015	
2012/0084217 A1		Kohler et al.	2015/0215464 2015/0222751			Shaffer et al. Odinak et al.
2012/0087486 A1 2012/0095835 A1		Guerrero et al. Makar et al.	2015/0256677			Konig et al.
2012/0093833 A1 2012/0109830 A1	5/2012		2015/0262188		9/2015	Franco
2012/0257116 A1		Hendrickson et al.	2015/0262208			Bjontegard et al.
2012/0265587 A1		Kinkead	2015/0269377			Gaddipati
2012/0290373 A1		Ferzacca et al.	2015/0271334 2015/0281445			Wawrzynowicz Kumar et al.
2012/0300920 A1 2012/0321073 A1		Fagundes et al. Flockhart et al.	2015/0281449			Milstein et al.
2013/0023235 A1		Fan et al.	2015/0281450			Shapiro et al.
2013/0060587 A1		Bayrak et al.	2015/0281454			Milstein et al.
2013/0073361 A1	3/2013		2015/0287410 2015/0295788			Mengibar et al. Witzman et al.
2013/0085785 A1 2013/0090963 A1		Rogers et al. Sharma et al.	2015/0296081		10/2015	
2013/0090903 A1 2013/0124361 A1		Bryson	2015/0302301			Petersen
2013/0136252 A1		Kosiba et al.	2015/0334230		11/2015	
2013/0223608 A1		Flockhart et al.	2015/0339446 2015/0339620			Sperling et al.
2013/0223610 A1		Kohler et al.	2015/0339020			Esposito et al. Deoliveira et al.
2013/0236002 A1 2013/0257877 A1	10/2013	Jennings et al.	2015/0347900			Bell et al.
2013/0304581 A1		Soroca et al.	2015/0350429			Kumar et al.
2013/0325972 A1	12/2013	Boston et al.	2015/0350440			Steiner et al.
2014/0012603 A1		Scanlon et al.	2015/0350442 2015/0350443			O'connor Kumar et al.
2014/0016762 A1 2014/0039944 A1		Mitchell et al. Humbert et al.	2015/0379562			Spievak et al.
2014/0039944 A1 2014/0039962 A1		Nudd et al.	2016/0026629	A1		Clifford et al.
2014/0067375 A1		Wooters	2016/0034260			Ristock et al.
2014/0079195 A1		Srivastava et al.	2016/0034995 2016/0036981			Williams et al. Hollenberg et al.
2014/0079207 A1 2014/0099916 A1		Zhakov et al. Mallikarjunan et al.	2016/0036981			Korolev et al.
2014/0099910 A1 2014/0101261 A1		Wu et al.	2016/0042419		2/2016	Singh
2014/0136346 A1	5/2014		2016/0042749		2/2016	
2014/0140494 A1		Zhakov	2016/0055499			Hawkins et al. Nagpal et al.
2014/0143018 A1		Nies et al.	2016/0057284 2016/0065739			Brimshan et al.
2014/0143249 A1 2014/0161241 A1		Cazzanti et al. Baranovsky et al.	2016/0080567			Hooshiari et al.
2014/0164502 A1		Khodorenko et al.	2016/0085891			Ter et al.
2014/0177819 A1	6/2014	Vymenets et al.	2016/0112867			Martinez
2014/0188477 A1		Zhang	2016/0124937 2016/0125456			Elhaddad Wu et al.
2014/0200988 A1 2014/0219132 A1		Kassko et al. Delveaux et al.	2016/0123430			Jacobson et al.
2014/0219132 A1 2014/0219438 A1		Brown et al.	2016/0140627			Moreau et al.
2014/0233719 A1		Vyemenets et al.	2016/0150086			Pickford
2014/0244712 A1	8/2014	Walters et al.	2016/0155080			Gnanasambandam et al.
2014/0254790 A1		Shaffer et al.	2016/0162478			Blassin et al.
2014/0257908 A1		Steiner et al.	2016/0171422			Wicaksono et al.
2014/0270108 A1 2014/0270138 A1		Riahi et al. Uba et al.	2016/0173692 2016/0180381			Wicaksono et al. Kaiser et al.
2014/0270138 A1 2014/0270142 A1		Bischoff et al.	2016/0191699		6/2016	Agrawal et al.
2014/0270145 A1		Erhart et al.	2016/0191709		6/2016	Pullamplavil et al.

(56) References Cited			2018/0189273			Campos et al.
II C	DATENT	DOCUMENTS	2018/0190144 2018/0198917			Corelli et al. Ristock et al.
0.3	. FAIENI	DOCUMENTS	2018/0205825			Vymenets et al.
2016/0191712 A1	6/2016	Bouzid et al.	2018/0248818			Zucker et al.
2016/0234386 A1		Wawrzynowicz	2018/0248895			Watson et al.
2016/0247165 A1		Ryabchun et al.	2018/0260857			Kar et al.
2016/0261747 A1		Thirugnanasundaram et al.	2018/0285423 2018/0286000			Ciano et al. Berry et al.
2016/0295018 A1 2016/0295020 A1		Loftus et al. Shaffer et al.	2018/0293327			Miller et al.
2016/0300573 A1		Carbune et al.	2018/0293532			Singh et al.
2016/0335576 A1	11/2016		2018/0300295			Maksak et al.
2016/0349960 A1		Kumar et al.	2018/0300641			Donn et al.
2016/0358611 A1	12/2016		2018/0308072 2018/0309801		10/2018	Smith et al.
2016/0360033 A1 2016/0360336 A1	12/2016	Kocan Gross et al.	2018/0349858			Walker et al.
2016/0378569 A1		Ristock et al.	2018/0361253		12/2018	
2016/0370303 A1 2016/0381222 A1		Ristock et al.	2018/0365651			Sreedhara et al.
2017/0004178 A1	1/2017	Ponting et al.	2018/0367672			Ristock et al.
2017/0006135 A1		Siebel et al.	2018/0372486 2018/0376002			Farniok et al. Abraham
2017/0006161 A9		Riahi et al.	2019/0013017			Kang et al.
2017/0011311 A1 2017/0024762 A1		Backer et al. Swaminathan	2019/0020757			Rao et al.
2017/0024/02 A1 2017/0032436 A1		Disalvo et al.	2019/0028587	A1	1/2019	Unitt et al.
2017/0034226 A1		Bostick et al.	2019/0028588			Shinseki et al.
2017/0068436 A1		Auer et al.	2019/0037077			Konig et al.
2017/0068854 A1	3/2017		2019/0042988 2019/0043106			Brown et al. Talmor et al.
2017/0098197 A1 2017/0104875 A1		Yu et al.	2019/0043100			Konig et al.
2017/0104873 A1 2017/0111505 A1		Im et al. Mcgann et al.	2019/0104092			Koohmarey et al.
2017/0111503 A1		McGann et al.	2019/0108834	A1	4/2019	Nelson et al.
2017/0111509 A1		Mcgann et al.	2019/0124202			Dubey et al.
2017/0116173 A1		Lev-Tov et al.	2019/0130329 2019/0132443			Fama et al. Munns et al.
2017/0118336 A1		Tapuhi et al.	2019/0132443			Ramachandran et al.
2017/0132536 A1 2017/0148073 A1		Goldstein et al. Nomula et al.	2019/0147045		5/2019	
2017/0155766 A1		Kumar et al.	2019/0172291			Naseath
2017/0161439 A1		Raduchel et al.	2019/0180095			Ferguson et al.
2017/0162197 A1		Cohen	2019/0180747 2019/0182383			Back et al. Shaev et al.
2017/0169325 A1 2017/0207916 A1		Mccord et al. Luce et al.	2019/0196676			Hillis et al.
2017/0214795 A1		Charlson	2019/0197568			Li et al.
2017/0220966 A1	8/2017	Wang	2019/0205389			Tripathi et al.
2017/0223070 A1	8/2017		2019/0236205 2019/0238680			Jia et al. Narayanan et al.
2017/0236512 A1 2017/0286774 A1	8/2017 10/2017	Williams et al.	2019/0253553			Chishti
2017/0288866 A1		Vanek et al.	2019/0258825			Krishnamurthy
2017/0308794 A1		Fischerstrom	2019/0287517			Green et al.
2017/0316386 A1		Joshi et al.	2019/0295027			Dunne et al. Portman et al.
2017/0323344 A1	11/2017		2019/0306315 2019/0335038			Alonso Y Caloca et al.
2017/0337578 A1 2017/0344754 A1		Chittilappilly et al. Kumar et al.	2019/0341030			Hammons et al.
2017/0344988 A1		Cusden et al.	2019/0342450			Kulkarni et al.
2017/0359421 A1		Stoops et al.	2019/0349477		11/2019	
2017/0372436 A1		Dalal et al.	2019/0377789 2019/0378076			Jegannathan et al. O'Gorman et al.
2018/0018705 A1 2018/0032997 A1		Tognetti Gordon et al.	2019/0375076			Katsamanis et al.
2018/0052664 A1		Zhang et al.	2019/0386917		12/2019	Malin
2018/0053401 A1		Martin et al.	2019/0392357			Surti et al.
2018/0054464 A1		Zhang et al.	2019/0394333			Jiron et al.
2018/0060830 A1		Abramovici et al.	2020/0005375 2020/0007680			Sharan et al. Wozniak
2018/0061256 A1 2018/0077088 A1		Elchik et al. Cabrera-Cordon et al.	2020/0012697			Fan et al.
2018/0077250 A1		Prasad et al.	2020/0012992	A1	1/2020	Chan et al.
2018/0083898 A1	3/2018	Pham	2020/0019893		1/2020	
2018/0097910 A1		D'Agostino et al.	2020/0028968 2020/0050788			Mendiratta et al. Feuz et al.
2018/0114234 A1		Fighel Mccord et al.	2020/0050788			Generes, Jr. et al.
2018/0121766 A1 2018/0137472 A1		Gorzela et al.	2020/0058299			Lee et al.
2018/0137555 A1		Clausse et al.	2020/0076947		3/2020	
2018/0146093 A1		Kumar et al.	2020/0097544			Alexander et al.
2018/0150749 A1		Wu et al.	2020/0104801			Kwon et al.
2018/0152558 A1 2018/0164259 A1		Chan et al. Liu et al.	2020/0118215 2020/0119936			Rao et al. Balasaygun et al.
2018/0165062 A1		Yoo et al.	2020/0115930			Liu et al.
2018/0165691 A1		Heater et al.	2020/0126126			Briancon et al.
2018/0165692 A1		Mccoy	2020/0128130		4/2020	
2018/0165723 A1		Wright et al.	2020/0134492			Copeland
2018/0174198 A1	6/2018	Wilkinson et al.	2020/0134648	AI	4/2020	Qi et al.

Page 6

(56)	Referer	ices Cited	OTHER PUBLICATIONS
U.S. F	PATENT	DOCUMENTS	Fan et al., "Demystifying Big Data Analytics for Business Intelligence Through the Lens of Marketing Mix", Big Data Research,
2020/0137097 A1	4/2020	Zimmermann et al.	vol. 2, Issue 1, Mar. 1, 2015, 16 pages.
2020/0154170 A1		Wu et al.	An et al., Towards Automatic Persona Generation Using Social
2020/0160870 A1		Baughman et al. Lee et al.	Media Aug. 1, 2016, 2016 IEEE 4th International Conference on
2020/0175478 A1 2020/0193335 A1		Sekhar et al.	Future Internet of Things and Cloud Workshops (FiCloudW), 2
2020/0193983 A1	6/2020	Choi	pages.
2020/0211120 A1	7/2020	Wang et al.	Bean-Mellinger, Barbara., "What Is the Difference Between Mar-
2020/0218766 A1 2020/0219500 A1		Yaseen et al. Bender et al.	keting and Advertising?", available on Feb. 12, 2019, retrieved from
2020/0219300 A1 2020/0242540 A1		Rosati et al.	https://smallbusiness.chron .com/difference-between-marketing-
2020/0250272 A1		Kantor et al.	advertising-2504 7 .html, Feb. 12, 2019, 6 pages.
2020/0250557 A1		Kishimoto et al.	Twin, Alexandra., "Marketing", URL: https://www.investopedia.
2020/0257996 A1 2020/0280578 A1		London Hearty et al.	com/lerms/m/marketing.asp, Mar. 29, 2019, 5 pages.
2020/0280635 A1		Barinov et al.	dictionary.com, "Marketing", URL: https://www.dictionary.com/browse/marketing, Apr. 6, 2019, 7 pages.
2020/0285936 A1	9/2020		Ponn et al., "Correlational Analysis between Weather and 311
		Baumann et al.	Service Request Volume", eil.mie.utoronto.ca., Jan. 1, 2017, 16
		Dumaine Lou et al.	pages.
		Lepore et al.	Zhang et al., "A Bayesian approach for modeling and analysis of
	11/2020		call center arrivals", Jan. 1, 2013 Winter Simulations Conference
	11/2020	Liu et al.	(WSC), ieeexplore.ieee.org, pp. 713-723. Mehrotra et al., "Call Center Simulation Modeling: Methods, Chal-
		Ji et al.	lenges, and Opportunities" Proceedings of the 2003 Winter Simu-
2020/0380451 A1	12/2020		lation Conference, vol. 1, Jan. 1, 2003, pp. 135-143.
		Cohen et al.	Mandelbaum et al., "Staffing Many-Server Queues with Impatient
2021/0004536 A1		Jones et al. Adibi et al.	Customers: Constraint Satisfaction in Call Center", Operations
2021/0005206 A1	1/2021	Adibi et al.	Research, SepOct. 2009, vol. 57, No. 5 (Sep. 1-Oct. 2009), pp. 1189-1205.
2021/0042839 A1		Adamec	Fukunaga et al., "Staff Scheduling for Inbound Call Centers and
2021/0056481 A1 2021/0067627 A1		Wicaksono et al. Delker et al.	Customer Contact Centers", AI Magazine, Winter, vol. 23, No. 4,
2021/0073819 A1		Hernandez et al.	Jan. 1, 2002, pp. 30-40.
2021/0081869 A1		Zeelig et al.	Feldman et al., "Staffing of Time-Varying Queues to Achieve
2021/0081955 A1 2021/0082417 A1		Zeelig et al. Zeelig et al.	Time-Stable Performance", Management Science, Feb. 1, 2008, vol.
2021/0082417 A1 2021/0082418 A1		Zeelig et al. Zeelig et al.	54, No. 2, Call Center Management, pp. 324-338. Business Wire, "Rockwell SSD announces Call Center Simulator",
2021/0084149 A1	3/2021	Zeelig et al.	Feb. 4, 1997, 4 pages.
2021/0089762 A1		Rahimi et al.	Stearns, "Using skills-based routing to the advantage of your
2021/0090570 A1 2021/0091996 A1		Aharoni et al. Mcconnell et al.	contact center", Customer Inter@ction Solutions, Technology Mar-
2021/0105361 A1		Bergher et al.	keting Corporation, May 1, 2001, vol. 19 No. 11, pp. 54-56. Aksin et al., "The Modern Call Center: A Multi-Disciplinary
2021/0124843 A1		Vass et al. Adibi	Perspective on Operations Management Research", Production and
2021/0125275 A1 2021/0133763 A1		Adibi et al.	Operations Management, 2007, vol. 16, No. 6, pp. 665-688.
2021/0133765 A1		Adibi et al.	Aldor-Noiman, et al., "Workload forecasting for a call center:
2021/0134282 A1		Adibi et al.	Methodology and a case study." The Annals of Applied Statistics 3.4
2021/0134283 A1 2021/0134284 A1		Adibi et al. Adibi et al.	(2009); 1403-1447. Buesing et al., "Getting the Best Customer Service from your IVR:
2021/0136198 A1		Leavitt et al.	Fresh eyes on an old problem," [online] McKinsey and Co.,
2021/0136204 A1	5/2021	Adibi et al.	published on Feb. 1, 2019, available at: < https://www.nnckinsey.
2021/0136205 A1		Adibi et al.	conn/business-functions/operations/our-insights/ getting-the-best-
2021/0136206 A1 2021/0201244 A1		Adibi et al. Sella et al.	customer-service-from-your-ivr-fresh-eyes (Year: 2019).
2021/0201359 A1		Sekar et al.	Chiu et al., "A multi-agent infrastructure for mobile workforce
2021/0295237 A1	9/2021	Taher et al.	management in a service oriented enterprise", Proceedings of the 38th annual Hawaii international conference on system sciences,
2021/0405897 A1		Hansalia	IEEE, 2005, pp. 10.
2022/0114200 A1* 2022/0114593 A1		Johnston H04M 3/527 Johnson et al.	Krishnan, Krish, "Data Warehousing in the Age of Big Data",
2022/0114594 A1		Nunes et al.	Morgan Kaufmann, Chapter 5, 2013, 28 pages.
2022/0116415 A1		Burgis et al.	Diimitrios et al., "An overview of workflow management: From process modeling to workflow automation infrastructure," Distrib-
2022/0122182 A1		Marshall et al.	uted and parallel Databases, 1995, vol. 3, No. 2 pp. 119-153.
2022/0129905 A1 2022/0398682 A1		Sethumadhavan et al. Tam et al.	Ernst et al. "An Annotated Bibliography of Personnel Scheduling
2023/0007123 A1		Krucek et al.	and Rostering", CSIRO Mathematical and Information Sciences,
2023/0107335 A1		Garyani et al.	2003, 155 pages.
			Ernst et al., "Staff scheduling and rostering: A review of applica- tions, methods and models," European Journal of Operational
FOREIG	n pate	ENT DOCUMENTS	Research, 2004, vol. 153, pp. 3-27.
SU 1732	352 A1	5/1992	Federal Register, vol. 72, No. 195, Oct. 10, 2007, pp. 57526-57535.
WO 2006/037	836 A1	4/2006	Federal Register, vol. 75, No. 169, Sep. 1, 2010, pp. 53643-53660.
WO 2012/024	316 A2	2/2012	Federal register, vol. 79, No. 241 issued on Dec. 16, 2014, p. 74629,
WO 2015/099 WO 2019142		7/2015 7/2019	col. 2, Gottschalk v. Benson. Federal Register, vol. 84, No. 4, Jan. 7, 2019, pp. 50-57.
2017142	. 15 AI	.,2015	2 33334 Acegavier, 1011 0 1, 1101 1, 0441 1, 2019, pp. 30-57.

(56) References Cited

OTHER PUBLICATIONS

Federal Register, vol. 84, No. 4, Jan. 7, 2019, p. 53-55.

Grefen et al., "A reference architecture for workflow management systems", Data & Knowledge Engineering, 1998, vol. 27, No. 1, pp. 31-57

https://www.uspto.gov/patent/laws-and-regulations/examination-policy/examination-guidelines-training-materials-view- ksr, signed Aug. 20, 2010.

Huang et al., "Agent-based workflow management in collaborative product development on the Internet", Computer-Aided Design, 2000, vol. 32, No. 2, pp. 133-144.

Janarthanam, "Hands on Chatbots and conversational UI development: Build chatbots and voice user interfaces with Chatfuel, Dialogflow, Microsoft Bot Framework, Twilio, and Alexa Skills" Dec. 2017

Koole, et al., "An overview of routing and staffing algorithms in multi-skill customer contact centers." 2006.

Myers et al., "At the Boundary of Workflow and AI", Proc. AAAI 1999 Workshop on Agent-Based Systems in the Business Context, 1999, 09 pages.

Niven, "Can music with prosocial lyrics heal the working world? A field intervention in a call center." Journal of Applied Social Psychology, 2015; 45(3), 132-138. doi: 10.1111/jasp.12282).

On Hold Marketing, "Growing Your Business with Customized on-Hold Messaging" (Published on Apr. 5, 2018 at https://adhq.com/about/ad-news/growing-your-business-with-customized-on-hold-messaging) (Year: 2018).

U.S. Appl. No. 16/668,214, NFOA mailed Nov. 10, 2021.

U.S. Appl. No. 16/668,215, NFOA mailed Dec. 7, 2021.

Van Den Bergh et al. "Personnel scheduling: A literature review", European journal of operational research, 2013, vol. 226, No. 3 pp. 367-385.

United States Patent and Trademark Office, Non-Final Office Action for U.S. Appl. No. 16/550,961 mailed Mar. 2, 2020.

United States Patent and Trademark Office, Final Office Action for U.S. Appl. No. 16/550,961 mailed Jun. 17, 2020.

An, J., Kwak, H. and Jansen, B.J., ip.com, Nov. 2016. "Validating social media data for automatic persona generation", English Abstract, In 2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA), 2 pages.

European Search Report in corresponding European Application No. 22178124 dated Oct. 20, 2022.

* cited by examiner

FIG.

FIG. 2

<u>.</u>

Aug. 19, 2025

FIG. 4

Aug. 19, 2025

FIG. 5

FIG. 8

Aug. 19, 2025

METHOD AND APPARATUS FOR CREATING A DATABASE OF CONTACT CENTER RESPONSE RECORDS

BACKGROUND

Contact centers, in which incoming communications from inquiring parties (such as customers) are routed to agents, are well known. FIG. 1 is an example system architecture of a cloud-based contact center platform. Customers 110, i.e., 10 parties originating incoming communications to a contact center, interact with the contact center 150 using voice, email, text, web, chat and other channels to communicate with the agents 120 through a network 130. Note that the term "customer", as used herein, refers to a party contacting 15 the contact center for service, information, or the like and includes actual purchasers, potential purchasers, and other parties.

Contact center **150** includes computing modules for the routing communications from customers **110** to agents **120** 20 for the contact center **150**. These modules are referred to herein as the contact routing system **140**. The contact routing system **140** could be any of a contact center as a service (CCaaS) system, an automated call distributor (ACD) system, or a case system, for example.

Agents 120 may be remote from the contact center 150 and handle communications (also referred to as "conversations" herein) with customers 110 on behalf of an enterprise or other entity. Agents 120 may utilize devices, such as work stations, desktop computers, laptops, telephones, a mobile 30 smartphone and/or a tablet. Similarly, customers 110 may communicate using a plurality of devices, including but not limited to, a telephone, a mobile smartphone, a tablet, a laptop, a desktop computer, or other devices. For example, telephone communication may traverse networks such as a 35 public switched telephone networks (PSTN), Voice over Internet Protocol (VOIP) telephony (via the Internet), a Wide Area Network (WAN) or a Large Area Network (LAN). The network types are provided by way of example and are not intended to limit types of networks used for 40 communications.

Agents 120 may be assigned to one or more "queues" representing communication categories and/or agent skill levels. Agents 120 assigned to a queue may handle communications that are placed in the queue by the contact routing system 140. For example, there may be queues associated with a language capability of the agent (e.g., English or Chinese), topic (e.g., technical support or billing), or a particular country of origin. When a communication is received by the contact routing system 140, the communication may be placed in a relevant queue, and one of agents 120 associated with the relevant queue may handle the communication. The communications may be assigned to an agent ("push communications") or selected by the agent out of the queue ("pull communications").

Agents 120 may be further organized into one or more teams based on a variety of factors including skills, location, experience, assigned queues, associated or assigned customers 110, and shift. The purpose of communication routing system 140 is to route communications to an agent who is 60 likely to be able to handle the communication in an efficient manner and to the satisfaction of the customer who originated the communication.

Also It is known to use pre-defined messages, i.e., templates, when replying to customers to increase the agent's 65 efficiency and present harmonized responses that are not dependent on the capabilities of the agent. Instead of writing

2

all the messages from scratch, agents can use a library of predefined responses, stored in a knowledge base, to assist them while composing the answers for the communications. To be effective, template responses should be aligned with the company speech and the information must be as updated and accurate as possible, to make sure that the contact center is sharing the correct information with various systems.

"Virtual Agent" systems have been developed recently to provide fully automated answers, through messaging channels for example, to customers without the need for intervention by a human agent. Information changes rapidly and it is very cumbersome to get the information updated consistently when the same content is used for several different purposes in several different applications. If a customer changes the information to be shared with the agent, they need to get this information updated in several different systems, such as in virtual agent systems and live agent assist systems, in order to avoid inconsistency of data.

SUMMARY OF THE INVENTION

The disclosed implementations make templates available to agents in dynamic manner to allow agents to be more efficient while performing their daily job. A centralized database of templates is created in a novel manner to be used for multiple digital channels. The templates can be used and reused by multiple systems such as an agent assistant system or a virtual agent system, providing an integrated and consistent experience for responding to communications in a contact center. Templates can be initially created by content creators or administrators within a contact center system. These templates serve as pre-defined messages or responses for agents to use during customer interactions. During template creation, tags and metadata can be assigned to the templates to identify the intent and purpose of the template content. The tagging process ensures that templates are properly categorized and can be easily retrieved based on specific criteria. A guide API plays a role in integrating the template database with the contact center system and applications. The guide API enables seamless communication and synchronization between the template database and various components, such as an agent assist component and a virtual agent component. Once the templates are created, tagged, and stored in the database, the templates can be used by both an agent assist component and a virtual agent component. These AI-driven features utilize the tags and metadata to propose relevant template answers or responses to agents during customer interactions. This proactively assists agents by suggesting the most suitable template based on the context and intent of the conversation. As new customer interactions occur, feedback is collected from agents and customers. This feedback is then used to refine and improve the existing templates or create new ones. The database is updated accordingly to reflect these changes, 55 ensuring that it remains up-to-date and aligned with evolving customer needs.

A first aspect is a method for creating a database of contact center template response records which can be used to provide contact center agents with responses to communications from customers, the method comprising: creating at least one response template data structure including at least one potential response to a customer communication; for each of the at least one response template data structure: (1) associating metadata with each of the at least one response template data structures, the metadata including one or more channels of communication relating to the at least one response template data structure, at least one

keyword from the response of the at least one response template data structure, and a template group indicator; and (2) associating an intent tag with each of the at least one response template data structures, the intent tag being determined by an AI intent engine analyzing a specific communication between a contact center agent and a customer for which the contact center agent used the potential response of the at least one response template data structures as a response to the specific communication; and storing each of the at least one response template data structures with corresponding metadata and intent tags in a database of a knowledge management system that is used to provide contact center agents with responses to communications from customers.

A second aspect of the invention is a computer system for creating a database of contact center template response records which can be used to provide contact center agents with responses to communications from customers, the method comprises computer processors executing instruc- 20 tions that are stored in memory to accomplish a method of: creating at least one response template data structure including at least one potential response to a customer communication; for each of the at least one response template data structure: (1) associating metadata with each of the at least 25 one response template data structures, the metadata including one or more channels of communication relating to the at least one response template data structure, at least one keyword from the response of the at least one response template data structure, and a template group indicator; and 30 (2) associating an intent tag with each of the at least one response template data structures, the intent tag being determined by an AI intent engine analyzing a specific communication between a contact center agent and a customer for which the contact center agent used the potential response of 35 the at least one response template data structures as a response to the specific communication; and storing each of the at least one response template data structures with corresponding metadata and intent tags in a database of a knowledge management system that is used to provide 40 contact center agents with responses to communications from customers.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary, as well as the following detailed description of the invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there are shown in the appended drawings various illustrative embodiments. It 50 should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown. In the drawings:

- FIG. 1 is a block diagram of a contact center platform architecture.
- FIG. 2 is a flowchart of template workflows in accordance with disclosed implementations.
- FIG. 3 is a flowchart of a process for creating database records in accordance with disclosed implementations.
- FIG. 4 is a computing system for creating database 60 records in accordance with disclosed implementations.
- FIG. 5 illustrates an example of a user interface in accordance with disclosed implementations.
- FIG. 6 illustrates and example of a user interface in accordance with disclosed implementations.
- FIG. 7 illustrates and example of a user interface in accordance with disclosed implementations.

4

FIG. $\bf 8$ illustrates an example of a user interface in accordance with disclosed

FIG. 9 illustrates an example of a user interface in accordance with disclosed implementations.

DETAILED DESCRIPTION

Disclosed implementations create and enhance templates as records in a database using tags that identify the intent of the content. The tags can be gathered from various remote systems. These tags are then used in live agent assist systems and/or in virtual agent systems. The templates can be used to propose content to live agents (thereby proactively assisting the contact center agent) and can be used as automated responses by virtual agents. Interactions by the live agents are used to enhance the tags and update the template records. FIG. 2 illustrates a workflow implementing templates in accordance with disclosed implementations. FIG. 2 illustrates three separate but related The first workflow is initiated by an administrator, at 202, to create a database record. At 204, an administrator uses an application having a user interface to configure or edit a template and/or add metadata to the template in the manner described in detail below. At 206, a database template record, including the response and the metadata is created and/or updated. At 208, the record is supplied to an artificial intelligence (AI) model and the AI model analyzes the intent and/or sentiment of the communications for which the template is used (in the workflows described below) and the AI database is updated based on the record to associate new content with the specific intent. Similarly, the administrator can configure or edit content records, such as relevant articles in the database at 203. The second workflow is initiated, at 210, by a live agent, during a communication for example, to retrieve a response from the database based on the communication that is being handled by the agent. At 212, an agent searches the database based using a query based on a current communication. At 214, the agent receives templates and/or other content (such as relevant articles) as search results and uses the search results to address an issue raised in the communication.

Stated differently, the query is used to locate one or more templates or other content records having a response or other information relevant to the communication and the response or other information is returned to the live agent to assist the live agent in addressing an issue raised in the communication being handled by the live agent. For example, the query can include keywords and topics from the conversation between the live agent and a customer. The third workflow is initiated at 216 by an agent who, for example, is not currently on a communication. At 218, this agent searches that database for articles and templates. In each instance, templates and other content, such as articles are enhanced by the AI algorithm and stored in the database.

The metadata that is stored in the record in association
with the response language can include a channel indicator
(channels can include voice, text, IM, chat . . .), keywords,
and collection information (such as links to related records).
Further, the AI engine is used to determine the sentiment
and/or intent of a communication and sentiment and/or
intent data is stored as record metadata. This allows an AI
engine, such as an AI engine used for a virtual assistant, to
leverage a Knowledge Management (KM) database that is
created for live agent assist applications, thus enhancing the
data records in the KM database and allowing a virtual
assistant AI engine to leverage the KM database. Stated
differently, templates are created using tags that help identify
the intent of the content. These tags are then used in live

agent assist systems and/or virtual agent systems when proposing the content to the agent, pro-actively, assisting the contact center agent. All of these operations can be supported by an API.

Intent metadata added to the KM database can be indexed 5 by the AI Search which adds AI capability to templates. AI search can leverage APIs that are used not just as a federated search over different knowledge bases (internal like Knowledge Management or external imported like Confluence, Zendesk, or even from external databases) but contains AI 10 capabilities over searching and knowledge context, e.g., a cognitive search. Since the templates are built on top of the KM database suite, templates leverage KM capabilities.

FIG. 3 illustrates a method for creating the database records which can be used to provide contact center agents 15 with responses to communications from customers. At step **302**, at least one response template data structure, is created. The data structure includes at least one potential response to a customer communication. Steps 304 and 306 are then accomplished for each template data structure. At step 304, 20 metadata is associated with the response in the template at which, when executed by processor 460 can accomplish the method of FIG. 3. Each code portion includes instructions which, when executed by processor 430 comprise a module that accomplishes a step of the method of FIG. 3. The code 25 portions include code portion 402 corresponding to step 302 of FIG. 3, code portion 404 corresponding to step 304 of FIG. 3, code portion 406 corresponding to step 306 of FIG. 3, and code portion 408 corresponding to step 308 of FIG. 3. KB system 140 is illustrated as being part of contact 30 center 150. However, KB system 140 can be separate from contact center 150 and provide a knowledge base for contact center 150 as a service, through a network and appropriate APIs and protocols. Various data from the remote systems of the contact center can be used by KB system 140 to enhance 35

During a communication, the agent can access the knowledge base of templates by activating a user interface element, such as using a hotkey in an Email editor. When composing the outbound message, and without having the 40 need to go to the templates list, the agent can activate the user interface element and/or enter a keyword and a list of templates associated with that keyword (through tags) will be listed. Since this is a cross-channel feature, only the templates suitable for the channel in context will be presented to the agent.

By activating a user interface element, such as clicking on a "Preview" button, the agent can check the template details and confirm if the template includes information relevant to the communication. Templates can be generic, which means 50 that the same content can be used for different channels. Each template can be associated with one or more channels. An administrator can have the ability to order the templates so that the templates can be presented in a preferred order to the agents (live agent) or customer (virtual agent). The 55 administrator can group templates together to aid in organizing and managing content that should be consistent. Manual tags can be added to templates during creation of management thereof by an administrator. Each template can belong to a collection and each collection can be associated 60 with a specified language. This approach allows the templates to be grouped by the pair collection/language, which will allow administrators to organize the content correctly.

Each template can include a topic and messages/responses for each channel to allow different content to be surfaced for 65 each channel. The agent can use a search interface to search for templates that contain specified keywords, topics, and/or 6

contexts. Multiple templates can be selected by an agent to compose a more complex and complete response. Agents can search and select templates in a first language and the corresponding template responses in a second language can be presented to the customer to effectively provide communication translation. Various metrics can be gathered to more efficiently surface the most relevant template, such as how many times each agent accesses the template and how satisfied customers are with the associated response.

The disclosed implementations are an improvement over conventional systems because they provide:

Centralization and Reusability: By using a centralized Knowledge Management/Guide system, templates are stored in a single location. This centralized approach enables easy access and reuse of templates across multiple contact center applications. This eliminates the need for redundant content creation in different places, ensuring consistency and efficiency.

Consistency and Harmonization: The use of tags and metadata allows for consistent classification and organization of templates, ensuring that the same set of tags can be shared across different applications, databases, and technologies. This harmonization facilitates a standardized communication approach, regardless of the channel or agent handling the interaction.

Proactive Assistance and Efficiency: The integration of agent assist and virtual agent functionalities with the same database provides proactive assistance to agents. The AI-driven capabilities leverage the tags and metadata to suggest the most appropriate templates based on the context and intent of the conversation. This streamlines the agent's workflow, increases efficiency, and improves response accuracy.

Scalability and Agility: This approach offers scalability and agility, allowing for easy updates, additions, and modifications to templates. As customer needs change or new scenarios arise, the content can be adapted and expanded accordingly. This flexibility ensures that the templates remain relevant and effective over time.

FIG. 5 shows an example of user interface 500 presented to an agent displaying one or more templates 502 to an agent that are relevant to question 504 asked by a customer over an sms channel. FIG. 6 shows an example of user interface 600 showing content details 602 of a template selected by the agent. FIG. 7 shows an example of user interface 700 from which record 702 is retrieved from an agent assist component. FIG. 8 shows an example of user interface 800 showing the back office/admin for templates management alongside the agent assist window wherein the same content is available in both virtual agent templates and agent assist templates. FIG. 9 shows an example of user interface 800 for searching templates in the agent assist mode.

The disclosed implementations can be implemented by various computing devices programmed with software and/ or firmware to provide the disclosed functions and modules of executable code implemented by hardware. The software and/or firmware can be stored as executable code on one or more non-transient computer-readable media. The computing devices may be operatively linked via one or more electronic communication links. For example, such electronic communication links may be established, at least in part, via a network such as the Internet and/or other networks.

A given computing device may include one or more processors configured to execute computer program modules. The computer program modules may be configured to enable an expert or user associated with the given computing

platform to interface with the system and/or external resources. By way of non-limiting example, the given computing platform may include one or more of a server, a desktop computer, a laptop computer, a handheld computer, a tablet computing platform, a Smartphone, a gaming console, and/or other computing platforms.

The various data and code can be stored in electronic storage devices which may comprise non-transitory storage media that electronically stores information. The electronic storage media of the electronic storage may include one or 10 both of system storage that is provided integrally (i.e., substantially non-removable) with the computing devices and/or removable storage that is removably connectable to the computing devices via, for example, a port (e.g., a USB port, a firewire port, etc.) or a drive (e.g., a disk drive, etc.). 15 The electronic storage may include one or more of optically readable storage media (e.g., optical disks, etc.), magnetically readable storage media (e.g., magnetic tape, magnetic hard drive, floppy drive, etc.), electrical charge-based storage media (e.g., EEPROM, RAM, etc.), solid-state storage 20 media (e.g., flash drive, etc.), and/or other electronically readable storage media.

Processor(s) of the computing devices may be configured to provide information processing capabilities and may include one or more of a digital processor, an analog 25 processor, a digital circuit designed to process information, an analog circuit designed to process information, a state machine, and/or other mechanisms for electronically processing information. As used herein, the term "module" may refer to any component or set of components that perform 30 the functionality attributed to the module. This may include one or more physical processors during execution of processor readable instructions, circuitry, hardware, storage media, or any other components.

It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to 40 cover modifications within the spirit and scope of the present invention as defined by the appended claims.

What is claimed:

- 1. A method for creating a database of contact center response records which can be used to provide contact 45 center agents with responses to communications from customers, the method comprising:
 - creating at least one response template data structure including at least one potential response to a customer communication:
 - for each of the at least one response template data structure:
 - associating metadata with each of the at least one response template data structures, the metadata including one or more channels of communication 55 relating to the at least one response template data structure, at least one keyword from the at least one potential response of the at least one response template data structure, and a template group indicator; and
 - associating an intent tag with each of the at least one response template data structures, the intent tag identifying the intent of a communication and being determined by an Al intent engine analyzing a communication between a contact center agent and a 65 customer for which the contact center agent used one or more of the at least one potential response of the

8

- at least one response template data structures as a response to the communication; and
- storing each of the at least one response template data structures with corresponding metadata and intent tags in a database of a knowledge management system that is used to provide contact center agents with responses to communications from customers.
- 2. The method of claim 1, further comprising:
- analyzing the content of a communication between a contact center agent and a customer;
- conducting a search of the database with the Al engine to identify at least one response template data structure that corresponds to the communication; and
- presenting the potential response of the at least one response template data structure that corresponds to the communication as a response to the communication.
- 3. The method of claim 1, wherein the step of associating an intent tag is repeated for multiple specific communications between contact center agents and customers.
- **4**. The method of claim **1**, wherein the database includes data records from additional resources.
- 5. The method of claim 4, wherein the additional resources are at least one of a CRM system, an accounting system, and an interaction records system.
- **6**. A distributed computing system for creating a database of contact center response records which can be used to provide contact center agents with responses to communications from customers, the system comprising:
 - at least one computer hardware processor; and
 - at least one memory device operatively coupled to the at least one computer hardware processor and storing computer-readable instructions which, when executed by the at least one computer hardware processor, carry out a method of:
 - creating at least one response template data structure including at least one potential response to a customer communication;
 - for each of the at least one response template data structure:
 - associating metadata with each of the at least one response template data structures, the metadata including one or more channels of communication relating to the at least one response template data structure, at least one keyword from the response of the at least one response template data structure, and a template group indicator; and
 - associating an intent tag with each of the at least one response template data structures, the intent tag being determined by an Al intent engine analyzing a communication between a contact center agent and a customer for which the contact center agent used the potential response of the at least one response template data structures as a response to the communication; and
 - storing each of the at least one response template data structures with corresponding metadata and intent tags in a database of a knowledge management system that is used to provide contact center agents with responses to communications from customers.
- 7. The computing system of claim 6, the method further comprising:
 - analyzing the content of a communication between a contact center agent and a customer;
 - conducting a search of the database with the Al engine to identify at least one response template data structure that corresponds to the communication; and

presenting the potential response of the at least one response template data structure that corresponds to the communication as a response to the communication.

9

- 8. The computing system of claim 6, wherein the step of associating an intent tag is repeated for multiple communications between contact center agents and customers.
- **9**. The computing system of claim **6**, wherein the database includes data records from additional resources.
- 10. The computing system of claim 9, wherein the additional resources are at least one of a CRM system, an 10 accounting system, and an interaction records system.

* * * * *