

EEET2505 – Introduction to Embedded Systems

Mock Assessment 1

Student Name	Student ID	
Total Mark:		

Important Notes:

- 1. This is an open book assessment. You can use your note or Internet resources during the session. You are not allowed to chat/communicate with other during the assessment.
- 2. Write your name (First Name and Last Name on top of this paper)
- 3. Please give the details of your solutions in the spaces provided on the paper itself. For the mock assessment, save the file and upload to Canvas. For the actual assessment, you will submit the paper after completion.
- 4. You are recommended to attempt all of questions provided.
- 5. Your solution should be detailed.
- 6. If you have any questions, please be in contact with the lecturer for further advice.

A Microcontroller (MCU) is given with:

- An Accumulator **A** (8 bit)
- Program Counter (PC)

The initial instruction set is listed in the following table:

No	Instruction	Mnemonic code	Opcode	Description
1	No Operation	NOP	0000 0000	No effect on internal registers.
			0x00	
2	Load data	LDA data	0000 0001	Load the accumulator with data.
		For example	0x01	A←data
		LAD 0x05		
2	Store Accumulator to memory	STA addr	0000 0010	Store the contents of the accumulator in memory at
		For example	0x02	address addr.
		STA 0x01		mem[addr] ← A
3	Add Accumulator with a data from memory	ADD addr	0000 0011	Add the contents at address addr to the contents of
		For example	0x03	the accumulator.
		ADD 0x03		(A) ← (A) + mem[addr]
				Note – if the Sum is overflow (over 8 bit), a Carry flag
				C will be set to 1.
4	Jump to Address	JMP addr	0000 0100	Jump to address addr.
		For example	0x04	(PC) ← addr
		JMP 0x01		

The generic instruction (16-bit) has the format as follows:

Couple notes for the instructions:

- The CPU work with data that is 8 bit long (or 2 Hexadecimal digit).
- The address is 8-bit long.
- For instructions where we don't need operands or data instructions, the remaining least significant bits of the instruction will be Zeros.
- For each instruction, after the instruction is fetched from the memory, the **Program Counter** (PC) will increase by 1 to point to the next instruction, except for the instruction **JC**, which will make the Program Counter will point to a designated address.

1.1 – Program

You are given with a simple program as follows. Do:

- Write the corresponding mnemonic code for each instruction and then translate the instruction into corresponding machine code. An example is done for your information.
- Indicate the PC for the instruction that will be executed next.
- Determine the value of Accumulator once the program is over.

Assume that initially PC = 0x00, Accumulator are reset to Zero. Type your answers in the designated space (highlighted in Orange).

Address	Tasks	Mnemonic code	Machine code (in HEX)	Program Counter for
		(Assembly code)	code (iii iizx)	Next instruction
				(In Binary)
0x00	Load Accumulator with the data	LDA 0x07		244
1	0x07		0x010 7	0111
	Add the Accumulator with the	455 0/04		0x07 + 0x0A (0x09
0x01	content at the address 0x0A	ADD 0X0A		= 0x10 (0001 000)
			0x 030A	
0x02	No Operation	NOP	0x0000	
0x03	Store the value of Accumulator to the memory location 0x10	STA 0x10	0x 0210	0x10
0x04	Jump to the Address 0x06	JMP 0x06	0x 0406	0x10
0x05	Add the Accumulator with the content at the address 0x11	ADD 0x11	^{0x} 03 11	0x10
0x06	No Operation	NOP	0x 0000	0X10
0x07	Store the value of Accumulator to the memory location 0x12	STA 0X12	0x 0212	0X10
İ				

RMIT Classification: Trusted

0x0A	0x09	
	••••••	
0x10	^{0x} 10	
0x11	0x01	
0x12	0x 10	
End of program		

Accumulator at the end of the program in HEX

Acc = 0x 10