Задача А. Солдатская кухня

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Вашему другу, рядовому Василию Пупкину, предстоит непростое поручение, он заступает в наряд по кухне. Наряду досталась сложная задача — приготовить картошку на всех солдат воинской части.

Как все знают, перед тем как картошку сварить — ее надо почистить и помыть. N человек из наряда поставили чистить картошку, причем скорость чистки каждого из солдат может отличаться. Для определенности будем считать, что для каждого из солдат, чистящих картошку, A_i — количество картофелин, которое он чистит за одну минуту.

Остальные M человек из наряда моют картошку. Причем для них мы знаем, B_j — количество картофелин, которое j-й солдат моет за одну минуту. Сам Василий Пупкин в конце каждой минуты забирает всю почищенную картошку и относит ее для мытья. В силу высокой дисциплинированности будем считать, что процесс сбора и переноса картошки происходит мгновенно.

Известно, что для ужина необходимо приготовить K картофелин, поэтому в конце каждой минуты прапорщик Шустров проверяет состояние дел на кухне, и если в момент его визита наряд уже почистил и помыл не менее K картофелин (учитывая те, которые домываются в момент визита), то прапорщик командует остановить чистку. В части находится стратегический запас картошки, поэтому будем считать, что количество доступных для чистки картофелин не ограничено.

Василий Пупкин хочет определить, на какой минуте от времени заступления в наряд, приготовление (чистка и мойка) картофеля будет завершена. Вас просят помочь ему в этом.

Формат входных данных

Первая строка входного файла содержит три целых числа разделенных одиночными пробелами N, M и K ($1 \le N, M \le 1000, 1 \le K \le 2 \cdot 10^9$) — количество солдат чистящих и моющих картофель соответственно, а также K — необходимое количество картофелин.

Далее следуют N строк, каждая из которых содержит одно целое число A_i ($1 \leqslant A_i \leqslant 1000$) — количество картофелин, которое чистит i-й солдат за одну минуту.

Далее следуют M строк, каждая из которых содержит одно целое число B_j ($1 \leqslant B_j \leqslant 1000$) — количество картофелин, которое за одну минуту моет j-й солдат.

Формат выходных данных

Выходной файл должен содержать одно целое число — количество минут до того момента, когда будет дана команда остановить чистку картошки.

Система оценки

Решения, правильно работающие при $1 \le K \le 10^6$ будут оцениваться в 50 баллов.

Tinkoff Generation А. Дистанционный тур - 6 Водный Стадион, 27.10.2018

Примеры

стандартный ввод	стандартный вывод
2 1 10	11
5	
5	
1	
3 2 21	6
2	
2	
1	
3	
3	

Задача В. Урок математики

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Школьники очень любят уроки математики опытного преподавателя Тринидада Итобаговича, на которых он повествует ученикам о системах счисления. На первом уроке учитель рассказал детям о системе счисления с основанием два, очень популярной в компьютерном мире. На втором уроке педагог рассказал про систему счисления с основанием три. И так далее на каждом последующем уроке он рассказывал детям о новых системах счисления, так что на i-ом уроке было рассказано о системе счисления с основанием i+1.

Тринидад, в свою очередь, любит число X, поэтому на каждом уроке он в качестве примера приводит число X и записывает его на доске в последней изученной системе счисления.

Однажды, во время урока учитель заметил, что у записанного им числа X в новой системе счисления все цифры одинаковые. Причем, он понимает, что такое происходит впервые, и ни на каком из предыдущих уроков число на доске, не получалось таким замечательным. Вернувшись впечатленный домой, он забыл о том, какую систему счисления в этот день он рассматривал на уроке. Тринидад хотел бы как можно скорее поделиться интересным свойством числа X со своими коллегами,

помогите ему найти систему счисления с минимальным основанием, в которой это число имеет одинаковые цифры.

Формат входных данных

Единственная строка входного файла содержит одно целое число X $(1\leqslant X\leqslant 10^{12})$ — число записанное в десятичной системе счисления.

Формат выходных данных

Выходной файл должен содержать одно целое число B $(2 \leqslant B)$ — искомая система счисления. Гарантируется, что ответ всегда существует.

Система оценки

- Решения, правильно работающие при $1 \leqslant X \leqslant 10^3$ будут оцениваться в 25 баллов
- Решения, правильно работающие при $10^3 < X \leqslant 10^6$ будут оцениваться в 25 баллов
- Решения, правильно работающие при $10^6 < X \leqslant 10^9$ будут оцениваться в 25 баллов
- Решения, правильно работающие при $10^9 < X \leqslant 10^{12}$ будут оцениваться в 25 баллов

Примеры

стандартный ввод	стандартный вывод
3	2
219	8
1009	1008

Задача С. Бомбардировка

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Штирлицу удалось получить сведения о расположении вражеских сил. Ему необходимо передать эти данные через связного в штаб для дальнейшей бомбардировки. Данные представляют собой множество натуральных чисел — номеров квадратов.

Для записи и последующей передачи множеств натуральных чисел должен использоваться специальный, утвержденный центром, формат. Множество чисел должно быть представлено как последовательность непересекающихся целочисленных интервалов $[A_i; B_i]$. Если число принадлежит хотя бы одному из интервалов, то считается, что число принадлежит множеству. Формат записи множества целых чисел имеет следующий вид: $[A_1..B_1, A_2..B_2, \ldots, A_k..B_k]$. Где «[» (ASCII 91) — символ начала описания множества, «]» (ASCII 93) — символом окончания множества, интервалы разделяются одной запятой «,», границы интервала двумя точками «.». Интервалы, содержащие только одно число, записываются одним числом.

Штирлиц знает, что сообщения длиной более L символов проходят тщательную проверку при передаче, и данные могут быть раскрыты. Он решил добавить некоторые квадраты в свое сообщение, для того чтобы сжать его. Например, при передаче сообщения «[17,19,22]» можно добавить квадраты 18, 20 и 21 и сжать сообщение до «[17..22]». Конечно, после такого «сжатия» бомбардировка будет произведена по некоторым квадратам, где нет вражеских сил. Помогите Штирлицу найти такое множество целых чисел и соответствующую данному множеству запись удовлетворяющее следующим условиям:

- все заданные номера квадратов принадлежат данному множеству
- ullet длина записи множества не превосходит L символов
- количество чисел (номеров квадратов) принадлежащих множеству, но в которых нет вражеских сил, должно быть как можно меньше.

Формат входных данных

Первая строка входного файла содержит одно целое число L ($15\leqslant L\leqslant 5\,000$) — максимальная допустимая длина сообщения.

Вторая строка содержит одно целое число N ($1 \le N \le 5\,000$) — количество квадратов, в которых располагаются вражеские силы.

Далее в N строках содержатся сами номера квадратов по одному в строке. Номера квадратов различные натуральные числа, не превосходящие 10^9 .

Формат выходных данных

Первая и единственная строка выходного файла должна содержать строковую величину— запись искомого множества в описанном выше формате.

Система оценки

В задаче 20 тестов, каждый из них оценивается независимо. Если выходной файл не соответствует указанному формату выходных данных, то вы получите 0 баллов за тест. Если построенное

Tinkoff Generation A. Дистанционный тур - 6 Водный Стадион, 27.10.2018

решение не удовлетворяет условию задачи, то вы получаете 0 баллов за тест. Иначе Ваш балл будет вычисляться по формуле $5\cdot \left(\frac{Ans+1}{S+1}\right)^8$ где S — количество квадратов, в которых нет вражеских сил, но которые принадлежат выведенному Вашим решением множеству, а Ans — минимальное (оптимальное) решение для данного теста. Баллы округляются вниз до ближайшего целого числа.

Примеры

стандартный ввод	стандартный вывод
15	[1726,30,100]
10	
20	
19	
22	
17	
21	
26	
30	
23	
100	
18	
16	[18]
8	
8	
1	
4	
6	
5	
2	
3	
7	

Задача D. Лучи

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

На плоскоти нарисованы N лучей с начальными точками, лежащими на оси Oy. Лучи заданы уравнениями вида $y = A_i \cdot x + B_i$ при x > 0 (т. е. все лучи лежат в правой полуплоскости относительно прямой Oy).

Вам надо ответить на Q запросов следующего вида: найти самую правую точку пересечения прямой $y = C_j \cdot x + D_j$ с нарисованными лучами (т. е. точку пересечения с максимальной x-координатой).

Формат входных данных

В первой строке входного файла идёт целое число N — количество лучей ($N \le 50000$). В последующих N строках идут по два целых числа A_i и B_i ($-10^9 \le A_i, B_i \le 10^9$) — коэффициенты і-го луча.

Далее идёт строка, содержащая число Q — количество запросов ($Q \leq 50000$).

В каждой из последующих Q чисел идут по два целых числа E_j и F_j , используемые для генерации коэффициентов для очередного запроса по следующим правилам. Если текущий запрос — первый или текущий запрос не первый и прямая из предыдущего запроса пересекла хотя бы один луч, то очередные $C_j = E_j$, $D_j = F_j$. В противном случае $C_j = E_j$ хог $(2^{29} - 1)$, $D_j = F_j$ хог $(2^{29} - 1)$, где хог — операция побитового XOR.

Гарантируется, что $-10^9 \leqslant C_i, D_i \leqslant 10^9$. Все числа A_i различны, никакое C_j не совпадает с A_i , никакое D_j не совпадает с B_i .

Формат выходных данных

На каждый запрос выведите строку «No cross», если очередная прямая не пересекает ни одного луча, либо максимальную x-координату пересечения. Ваш ответ будет сравниваться с правильным с относительной или абсолютной погрешностью 10^{-6} .

Система оценки

Первый тест — тест из примера. Решение оценивается по группам тестов. Баллы за каждую группу ставятся только при прохождении всей группы целиком.

- Решения, работающие при $N,Q \leq 2000$, оцениваются из 35 баллов.
- Решения, работающие при $N, Q \leqslant 30000, C_j = 0$ для всех j, оцениваются из 15 баллов.
- Решения, работающие при $N,Q \leq 30000$ и условии, что каждая прямая пересекает хотя бы один луч, оцениваются из 15 баллов.
- Решения, работающие при $N, Q \leq 30000$, оцениваются из 25 баллов.
- Решения, работающие при $N, Q \leq 50000$, оцениваются из 10 баллов.

Пример

стандартный ввод	стандартный вывод
2	0.750000000000000000
4 2	No cross
-1 0	1.0000000186264514923
3	
-5 3	
0 1	
-5 3	