

Dr. Christian Czymara

FORSCHUNGSPRAKTIKUM I UND II: LÄNGSSCHNITTDATENANALYSE IN R

Linear regression with cross-sectional and longitudinal data session iii

AGENDA

- A run through the OLS estimator
- ... and its assumptions
- ... and while panel data may violate some
- Specification of linear model

THE ORDINARY LEAST SQUARES ESTIMATOR

LINEAR REGRESSION

- •We model y as a function of other variable(s) x
- •With real-world data, y is never a perfect function of x: ε_i

$$y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_k x_{ki} + \varepsilon_i$$

- i = 1, ..., n units; k variables
- (Simple cross-sectional model)

LINEAR REGRESSION

$$y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_k x_{ki} + \varepsilon_i$$

Systematic part Stochastic part

 $\blacksquare \beta_0, \beta_1, \beta_k$ are the parameters which have to be estimated

ORDINARY LEAST SQUARES (OLS) ESTIMATOR

- •Which values for unknown parameters β_0 and β_1 ?
- OLS minimizes (squared) differences between the observed and the predicted values
- •Gauss–Markov theorem: OLS is BLUE, given certain assumptions
 - Best: most efficient (lowest standard errors)
- Linear
- Unbiased: estimated parameters identical with "true" parameters
- Estimator

$y_i = \beta_0 + \beta_1 x_{1i} + \varepsilon_i$ Variance left → (squared and) unexplained minimized by OLS Total variance Variance explained by x

OLS ASSUMPTIONS

ASSUMPTIONS

- 1. (For inference statistics) random sample
- 2. Model linear in its parameters $\beta_0, \beta_1, ..., \beta_k$
- 3. x neither constant nor linear combinations of other x

ASSUMPTIONS

- 5. Error not correlated with x (strict exogeneity): $E(\varepsilon_i|x_{1i}...x_{ki})=0$
- 6. Error has constant variance across all x (homoscedasticity): $var(\varepsilon_i|x_{1i}...x_{ki}) = \sigma^2$
- 7. Error uncorrelated: $corr(\varepsilon_i, \varepsilon_j | x_{1i} ... x_{ki}) = 0$
- 8. Error normally distributed with mean 0 and variance σ^2 : $\varepsilon_i \sim Normal(0, \sigma^2)$

EXOGENEITY ASSUMPTION

EXOGENEITY ASSUMPTION

- •Assumption 5 means that the error term is independent from x
- Model includes all relevant variables and has correct functional form (correctly specified)
- \rightarrow Measurement error is random (does not depend on x)
- Ensures unbiased estimates
- Crucial assumption for estimating "true" (i.e. unbiased) parameters

MODEL SPECIFICATION

- ullet A correctly specified model includes all relevant x
- Which x are relevant?
- •Those that are conceptually or theoretically (!) cause both y and the x of interest
- •Not including (omitting) relevant x_2 in a regression model will lead to a biased estimate of β_1
- •This is because β_1 in this case carries part of the effect of β_2 on y
- Avoiding bias is the main point of all statistical analyses!

OMITTED VARIABLE BIAS

- •True model: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + e$
- •Unbiased estimation: $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$
- New situation: x_2 unobserved
- Biased estimation: $\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x_1$
- •Omitted variable bias: $Bias(\tilde{\beta}_1) = E(\tilde{\beta}_1) \beta_1 = \beta_2 \frac{cov(x_1, x_2)}{Var(x_1)}$
- Hence no bias if
 - $\beta_2 = 0$
- $\circ r \frac{\widehat{cov}(x_1, x_2)}{\widehat{Var}(x_1)} = 0$

OMITTED VARIABLE BIAS

$$\beta_2 = 0$$

$$\frac{\widehat{cov}(x_1, x_2)}{\widehat{Var}(x_1)} = 0$$

SPECIFYING MODELS IN LINEAR REGRESSION

STATISTICALLY CONTROLLING

- •Confounder x_2 leads to a spurious correlation between x_1 and y
- The most common way to account for this in crosssectional quantitative studies is statistical controlling
- •This means netting out the effect of x_2 / adjusting for x_2
- •The result is the effect of x_1 on y which does not depend on x_2
- •The motivation behind this is to remove other "common causes" of x and y

VARIANCE COMPONENTS OF TRIVARIATE REGRESSION

 $Var(\hat{y})$ explained neither by x_1 nor x_2

 $Var(\hat{y})$ explained by x_1 as well as x_2

By definition, residuals will always be uncorrelated with explanatory variables in OLS

STATISTICALLY CONTROLLING

- •The effect of x_1 which does not depend on x_2
- •The effect of x_1 on y controlling for x_2 (trivariate regression)
- •Interpretation: "a one unit increase in x_1 implies a β_1 increase in y controlling for / net of x_2 "

EXAMPLE FROM TUTORIAL

EFFECT OF CHILDREN ON LIFE SATISFACTION

- "Do children make happy? We are interested in the impact of having children (x: no_kids) on life satisfaction (y: satisf_org)."
- Control variables: education, health and sex
- With the proposed model, is the effect causal?

ASSUMED MODEL

- ■All control variables are confounders
- No conditioning on colliders or mediators ✓
- ■No unobservables ✓
- →Causal effect

ALTERNATIVE SCENARIO 1

- Now education and health are post-treatment, making them mediators
- → Direct causal path from children to life satisfaction
- Indirect causal path flowing from children through education and through health
- Total causal effect of children: direct + indirect effects
- Controlling education and health would lead to overcontrol bias

ALTERNATIVE SCENARIO 2

- Now health is post-treatment and post-outcome, making it a collider
- The causal effect of children can be estimated by controlling sex and education – but not health
- •Controlling health would open the non-causal path $C\rightarrow H\leftarrow LS$

ALTERNATIVE SCENARIO 3

- Age and class are confounders, but are not observed
- Causal effect of children on life satisfaction not estimable
- No easy solution (with common cross-sectional models)
- •One of the most common critiques of empirical studies ("You should control for ...")

WHICH MODEL IS CORRECT?

- You tell me
- With the initial model, we assume that neither age nor class (or anything else) affect children and life satisfaction
- If one buys this assumption, we have estimated a causal effect
- •Given existing research, however, this is a strong assumption that is hard to defend
- Scenario 3 more likely to be convincing

SCENARIO 4

 Same data, same DAG but we are actually not interested in the effect of children but in the effect of education

ASSUMED MODEL

- If the DAG we assumed before is correct...
- Children is a mediator on the causal path from education to life satisfaction and should not be controlled
- •Even worse, Children is a collider blocking the non-causal paths Education → Children ← Sex → Life satisfaction and Education → Children ← Health → Life satisfaction and, thus, must not be controlled (unless Sex and Health are controlled as well)
- •Since we assume no association between either Sex or Health and Education, controlling both would neither induce nor remove bias (as long as Children is not controlled)
- Different research question require different modelling strategies

LIMITS OF STATISTICAL CONTROLLING

- Within the standard linear regression framework, one can only control variables that are in the data
- Many things, however, are not observed
- Especially when working with secondary data
- Some techniques for longitudinal data analysis can tackle this problem
- Tbc.

ASSUMPTION OF UNCORRELATED ERRORS

PANEL DATA

- Panel data means the same individuals are observed over time (interviewed repeatedly)
- Person A is interviewed in time point 1 and in time point 2
- \rightarrow For each variable x, there are two data points for person A $(x_{A1} \text{ and } x_{A2})$
- \rightarrow Same for person B (x_{B1} and x_{B2})
- In contrast to cross-sectional data analysis, the units of analysis are not individuals, but individual interviews!
- •... because each individual is in the data multiple times (as often as she was interviewed)

OLS WITH PANEL DATA

- It is reasonable to assume that data points are not independent
- x_{A1} is likely to have more in common with x_{A2} than with x_{B1} (or x_{B2})
- •For example, income of person A in 2015 is not independent from her income in 2014 (chances are high it's actually the same)
- Put differently, observations (interviews) cluster within individuals
- •... which separates them from interviews of other individuals
- Likely a violation of the assumption of independent errors

ASSUMPTION OF INDEPENDENT ERRORS

- Violation of the assumption of independent errors means observations are not statistically independent
- Sample size is inflated
- There is less information in the data than it seems (because it is partly correlated)
- More data leads to lower standard errors (erroneously, in this case)
- Underestimated standard errors lead to wrong p-values and confidence intervals
- Results look "too significant"
- Should be modelled

LITERATURE

 Cinelli, Forney & Pearl (forthcoming). A crash course in good and bad controls. Sociological Methods and Research.