Contrôle 2: Analyse I

Cours de mathématiques spéciales (CMS)

11 janvier 2018 Semestre d'automne ID: -999

(écrire lisiblement s.v.p)
Nom:
Prénom:
Groupe:

Question	Barème	Points
1	21/2	
2	31/2	
3	31/2	
4	6	
5	41/2	
Total	20	

Indications

- Durée de l'examen : 105 minutes.
- Posez votre carte d'étudiant sur la table.
- La réponse à chaque question doit être rédigée à l'encre sur la place réservée à cet effet à la suite de la question.
 - Si la place prévue ne suffit pas, vous pouvez demander des feuilles supplémentaires aux surveillants; chaque feuille supplémentaire doit porter nom, prénom, n° du contrôle, branche, groupe, ID et date. Elle ne peut être utilisée que pour une seule question.
- Les feuilles de brouillon ne sont pas à rendre : elles **ne seront pas** corrigées ; des feuilles de brouillon supplémentaires peuvent être demandées en cas de besoin auprès des surveillants.
- Les feuilles d'examen doivent être rendues agrafées.

Question 1 (à $2\frac{1}{2}$ points)

Points obtenus: (laisser vide)

Déterminer, si elle existe, la limite suivante :

$$\lim_{x \to -\infty} \left[x + \frac{x^2}{\sqrt{x^2 + x}} \right].$$

Réponse à la question 1:

laisser la marge vide

laisser la marge vide

Question 2 (à $3\frac{1}{2}$ points)

Points obtenus: (laisser vide)

La fonction f définie par

$$f(x) = \left[\cos(2x) + \sin(x)\right] \cdot \tan^2(x)$$

est-elle prolongeable par continuité en $x_0 = \frac{\pi}{2}$?

R'eponse à la question 2:

laisser la marge vide

laisser la marge vide

Question 3 (à $3\frac{1}{2}$ points)

Points obtenus: (laisser vide)

Pour quelles valeurs du paramètre $\ p \in \mathbb{Z}\,,\$ la fonction $\ g\$ définie par

$$g(x) = (x + \sqrt[3]{x})^p \cdot \sin(\frac{1}{x^2})$$
 si $x \neq 0$ et $g(0) = 0$,

est-elle dérivable en $x_0 = 0$?

Réponse à la question 3:

laisser la marge vide

laisser la marge vide

ID: -999

Question 4 (à 6 points)

Points obtenus: (laisser vide)

On considère la courbe Γ décrite ci-dessous paramétriquement :

$$\Gamma: \begin{cases} x(t) = \frac{t}{\sqrt{2t-3}} \\ y(t) = \frac{2}{\sqrt{2t-3}}. \end{cases}$$

Déterminer les équations cartésiennes des normales à Γ passant par l'origine.

Réponse à la question 4:

laisser la marge vide

laisser la marge vide

laisser la marge vide

ID: -999

Question 5 (à $4\frac{1}{2}$ points)

Points obtenus: (laisser vide)

On considère la parabole Γ_1 d'équation

$$\Gamma_1: \quad y = f(x) = x^2$$

et la courbe Γ_2 définie implicitement par

$$\Gamma_2: \quad y^2 + 4\frac{y}{x} + c = 0 \qquad (x \neq 0),$$

où c est un paramètre réel.

Déterminer c tel que Γ_1 et Γ_2 soient tangentes l'une à l'autre.

Réponse à la question 5:

laisser la marge vide

laisser la marge vide

laisser la marge vide

Réponses

1.
$$\lim_{x \to -\infty} \left[x + \frac{x^2}{\sqrt{x^2 + x}} \right] = \frac{1}{2}$$
.

2. Oui :
$$\hat{f}(\frac{\pi}{2}) = \frac{3}{2}$$
.

3.
$$p \ge 4$$
.

4. Equation de la normale :
$$x - 2y = 0$$
.

5.
$$c = 3$$
.