Lecture Notes

——School of Science in NJUPT

H.T. Guo

September 1, 2023

Reading List

This is the Refernces and Textbooks.

- **Complex Analysis** by *Lars V. Ahlfors*
- Concise Complex Analysis by Sheng Gong
- Real And Complex Analysis by W.Ruding
- Complex Analysis by Kunihiko Kodaira
- Visual Complex Analysis by Needham T.

September 1, 2023

Contents

1	Complex numbers		
	1.1	Section	2
2	Chapter		10
	2.1	Section	10

Chapter 1

Complex numbers

Here

1.1 Section

Definition 1.1.1: The title

Let \mathcal{O} be a finite union of semisimple conjugacy classes in M(F). Define

$$\begin{split} D_{\mathrm{geom},-}(\tilde{M},\mathcal{O}) &:= \left\{ D \in D_{-}(\tilde{M}) : \tilde{\gamma} \in \mathrm{Supp}(D) \implies \gamma_{\mathrm{ss}} \in \mathcal{O} \right\}, \\ D_{\mathrm{geom},-}(\tilde{M}) &:= \bigoplus_{\mathcal{O} \subset M(F) \\ \mathrm{ss.\ conj.\ class}} D_{\mathrm{geom},-}(\tilde{M},\mathcal{O}) \subset D_{-}(\tilde{M}), \\ D_{\mathrm{unip},-}(\tilde{M}) &:= D_{\mathrm{geom},-}(\tilde{M},\{1\}). \end{split}$$

Counting remarks with respect to the section:

Remark 1. Counter is okay

Counting remarks with respect to the theorem:

Remark 2. Problem: counter is missing and there is not even a break line.

Axiom 1: Axiom of choice

For any set X of nonempty Sets, there exists a choice function f that is defined on X and maps each set of X to an element of that set.

Note.

Theorem 1.1.0.1: Inhomogeneous Linear

Let f be a function whose derivative exists in every point, then f is a continuous function.

Proof. To prove it by contradiction try and assume that the statement is false, proceed from there and at some point you will arrive to a contradiction.

Theorem 1.1.0.2

Given $\mathbf{G}^! \in \mathcal{E}(\tilde{G})$, there exists a linear map

$$\mathcal{F} = \mathcal{F}_{\mathbf{G}^!, \tilde{G}} : \mathcal{I}_{-}(\tilde{G}) \otimes \operatorname{mes}(G) \longrightarrow S\mathcal{I}(G^!) \otimes \operatorname{mes}(G^!)$$

$$f \longmapsto \qquad \qquad f^{G^!}$$

such that for all $\delta \in \Sigma_{G\text{-reg}}(G^!)$, we have

$$\sum_{\delta \in \Gamma_{\text{reg}}(G)} \Delta_{\mathbf{G}^{!}, \tilde{G}}(\delta, \tilde{\gamma}) f_{\tilde{G}}(\tilde{\gamma}) = f^{G^{!}}(\delta)$$

where $\tilde{\gamma} \in \mathbf{p}^{-1}(\gamma)$ is arbitrary, with the aforementioned convention on Haar measures.

When F is Archimedean, \mathcal{T} is continuous and it restricts to

$$\mathscr{I}_{-}(\tilde{G}, \tilde{K}) \otimes \operatorname{mes}(G) \to S\mathscr{I}(G^!, K^!) \otimes \operatorname{mes}(G^!),$$

where $K \subset G(F)$ and $K^! \subset G^!(F)$ are maximal compact subgroups.

Proof. This is [?, Théorème 5.20]. First, it reduces to the case $\mathbf{G}^! \in \mathcal{E}_{\mathrm{ell}}(\tilde{G})$. The continuity in the Archimedean case is addressed in [?, §7.1], which is based on the works of Adams and Renard. The $\tilde{K} \times \tilde{K}$ -finite transfer in the Archimedean case is [?, Theorem 7.4.5].

Theorem 1.1.0.3

Fix $n \in \mathbb{Z}_{\geq 1}$. Let W (resp. V) be a 2n-dimensional symplectic F-vector space (resp. the quadratic F-vector space giving rise to the split SO(2n+1)). There is a natural bijection $P \leftrightarrow P_{SO}$ (resp. $M \leftrightarrow M_{SO}$) between conjugacy classes of parabolic subgroups (resp. Levi subgroups) of Sp(W) and SO(V,q), such that if $M \simeq \prod_{i \in I} GL(n_i) \times Sp(W^{\flat})$, then $M_{SO} \simeq \prod_{i \in I} GL(n_i) \times SO(V^{\flat}, q^{\flat})$, where $(n_i)_{i \in I} \in \mathbb{Z}_{\geq 1}^I$ satisfies

$$\frac{1}{2}\dim W^{\flat} = n - \sum_{i \in I} n_i = \frac{1}{2} \left(\dim V^{\flat} - 1 \right).$$

The groups W(M) and $W(M_{SO})$ are also identified under this bijection: as groups of outer au-

tomorphisms of $\prod_{i \in I} GL(n_i)$, both are generated by the transpose-inverse of $GL(n_i)$ for various $i \in I$, together with permutations of factors of the same size.

The maximal tori T and T_{SO} are canonically isomorphic with respect to the given bases, compatibly with the identification of their Weyl groups $\mathfrak{S}_n \ltimes \{\pm 1\}^n$.

Proof. Exercise.

Lemma 1

For all $\phi \in T^{\mathscr{E}}(\tilde{G})$ and $f \in \mathscr{I}_{--}(\tilde{G}) \otimes \operatorname{mes}(G)$, we have

$$\mathscr{T}^{\mathscr{E}}(f)(\phi) = \sum_{\tau \in T_{-}(\tilde{G})/\mathbb{S}^{1}} \Delta(\phi, \tau) f_{\tilde{G}}(\tau).$$

Proof. The non-Archimedean case is the main result of [?]. Consider the case $F = \mathbb{R}$ next.

Write $f_{\tilde{G}}(\pi) := \Theta_{\pi}(f_{\tilde{G}})$ for each $\pi \in \Pi_{\text{temp},-}(\tilde{G})$. The local character relation of [**?**, Theorem 7.4.3] yields a function $\Delta_{\text{spec}} : T^{\mathcal{E}}(\tilde{G}) \times \Pi_{\text{temp},-}(\tilde{G}) \to \{\pm 1\}$ satisfying

$$\mathcal{F}^{\mathscr{E}}(f)(\phi) = \sum_{\pi \in \Pi_{\text{temp},-}(\tilde{G})} \Delta_{\text{spec}}(\phi,\pi) f_{\tilde{G}}(\pi)$$
(1.1)

for all ϕ and $f \in \mathscr{I}_{-}(\tilde{G}) \otimes \operatorname{mes}(G)$, and $\Delta_{\operatorname{spec}}(\cdot,\pi)$ (resp. $\Delta_{\operatorname{spec}}(\phi,\cdot)$) has finite support for each π (resp. for each ϕ). These properties characterize $\Delta_{\operatorname{spec}}$.

Choose a representative in $T_{-}(\tilde{G})$ for every class in $T_{-}(\tilde{G})/\mathbb{S}^{1}$. By the theory of R-groups, $T_{-}(\tilde{G})/\mathbb{S}^{1}$ gives a basis of $D_{\text{temp},-}(\tilde{G}) \otimes \text{mes}(G)^{\vee}$: specifically, we may write

$$\Theta_{\tau} = \sum_{\pi} \text{mult}(\tau : \pi) \Theta_{\pi}, \quad \Theta_{\pi} = \sum_{\tau} \text{mult}(\pi : \tau) \Theta_{\tau}$$

for all $\tau \in T_{-}(\tilde{G})/\mathbb{S}^{1}$ with its representative and $\pi \in \Pi_{\text{temp},-}(\tilde{G})$, for uniquely determined coefficients mult (\cdots) . Switching between bases, (1.1) uniquely determines

$$\Delta^{\circ}: T^{\mathscr{E}}(\tilde{G}) \times T_{-}(\tilde{G}) \to \mathbb{S}^{1}$$

such that

$$\Delta^{\circ}(\phi, z\tau) = z\Delta^{\circ}(\phi, \tau), \quad z \in \mathbb{S}^{1},$$

$$\mathcal{T}^{\mathscr{E}}(f)(\phi) = \sum_{\tau \in T_{-}(\tilde{G})/\mathbb{S}^{1}} \Delta^{\circ}(\phi, \tau) f_{\tilde{G}}(\tau)$$

for all f. Specifically, $\Delta^{\circ}(\phi,\tau) = \sum_{\pi \in \Pi_{\text{temp},-}(\tilde{G})} \Delta_{\text{spec}}(\phi,\pi) \text{mult}(\pi:\tau)$ for all $\tau \in T_{-}(\tilde{G})/\mathbb{S}^{1}$.

Our goal is thus to show

$$\Delta^{\circ}(\phi, \tau) = \Delta(\phi, \tau), \quad (\phi, \tau) \in T^{\mathscr{E}}(\tilde{G}) \times T_{-}(\tilde{G}). \tag{1.2}$$

The first step is to reduce to the elliptic setting. We say $\pi \in \Pi_{\text{temp},-}(\tilde{G})$ is *elliptic* if Θ_{π} is not identically zero on $\Gamma_{\text{reg,ell}}(\tilde{G})$. In [?, Definition 7.4.1] one defined a subset $\Pi_{2\uparrow,-}(\tilde{G})$ of $\Pi_{\text{temp},-}(\tilde{G})$. All $\pi \in \Pi_{2\uparrow,-}(\tilde{G})$ are elliptic. Indeed, by [?, Remark 7.5.1] π is a non-degenerate limit of discrete series in the sense of Knapp–Zuckerman, and such representations are known to be elliptic; see *loc. cit.* for the relevant references.

By [?, Proposition 5.4.4], $T_{\text{ell},-}(\tilde{G})/\mathbb{S}^1$ gives a basis for the space spanned by the characters of all elliptic π .

Let $\phi \in T^{\mathscr{E}}(\tilde{G})$. Take $M \in \mathscr{L}(M_0)$ and $\mathbf{M}^! \in \mathscr{E}_{\mathrm{ell}}(\tilde{M})$ such that ϕ comes from $\phi_{M^!} \in \Phi_{\mathrm{bdd},2}(M^!)$ up to $W^G(M)$. Denote the factors relative to \tilde{M} as $\Delta^{\tilde{M}}$, etc. By [?, Theorem 7.4.3],

$$\Delta_{\operatorname{spec}}(\phi, \pi) = \sum_{\pi_M \in \Pi_{2\uparrow, -}(\tilde{M})} \Delta_{\operatorname{spec}}^{\tilde{M}}(\phi_{M^!}, \pi_M) \operatorname{mult}(I_{\tilde{P}}(\pi_M) : \pi)$$

for all $\pi \in \Pi_{\text{temp},-}(\tilde{G})$, where $P \in \mathcal{P}(M)$ and $\text{mult}(I_{\tilde{P}}(\pi_M):\pi)$ denotes the multiplicity of π in $I_{\tilde{P}}(\pi_M)$.

We claim that

$$\Delta^{\circ}(\phi, \tau) = \sum_{\substack{\tau_M \in T_{\text{ell},-}(\tilde{M}) \\ \tau_M \mapsto \tau}} \Delta^{\tilde{M}, \circ}(\phi_{M^!}, \tau_M). \tag{1.3}$$

Note that the sum is actually over an orbit $W^G(M)\tau_M$ if such a τ_M exists. We may assume τ is the representative of some element from $T_-(\tilde{G})/\mathbb{S}^1$; we also choose representatives in $T_-(\tilde{M})$ for $T_-(\tilde{M})/\mathbb{S}^1$ compatibly with induction. We have

$$\begin{split} \Delta^{\circ}(\phi,\tau) &= \sum_{\pi \in \Pi_{\text{temp},-}(\tilde{G})} \Delta_{\text{spec}}(\phi,\pi) \text{mult}(\pi:\tau) \\ &= \sum_{\pi} \sum_{\pi_{M} \in \Pi_{2\uparrow,-}(\tilde{M})} \sum_{\tau_{M} \in T_{\text{ell},-}(\tilde{M})/\mathbb{S}^{1}} \\ &\cdot \text{mult}(\tau_{M}:\pi_{\tilde{M}}) \text{mult}(I_{\tilde{P}}(\pi_{\tilde{M}}):\pi) \text{mult}(\pi:\tau) \Delta^{\tilde{M},\circ}(\phi_{M^{!}},\tau_{M}). \end{split}$$

Given τ_M , the sum over (π, π_M) of the triple products of mult (\cdots) is readily seen to be 1 if $\tau_M \mapsto \tau$, otherwise it is zero. This proves (1.3).

Observe that (1.3) take the same form as the induction formula in Definition $\ref{eq:condition}$. In order to prove (1.2), we may assume $\phi \in T_{\mathrm{ell}}^{\mathscr{E}}(\tilde{G})$, in which case $\Delta^{\circ}(\phi,\tau) = 0$ unless $\tau \in T_{\mathrm{ell},-}(\tilde{G})$, and ditto for $\Delta(\phi,\tau)$. It is thus legitimate to take $f \in \mathscr{I}_{--,\mathrm{cusp}}(\tilde{G}) \otimes \mathrm{mes}(G)$ in the characterization of $\Delta^{\circ}(\phi,\cdot)$. All in all, $\Delta^{\circ}(\phi,\cdot)$ and $\Delta(\phi,\cdot)$ have the same characterization, whence (1.2).

The case $F = \mathbb{C}$ is even simpler because it reduces to the case of split maximal tori via parabolic induction: see [?, §7.6].

Corollary 1

Let $i_{M^!}^{G^![s]}(\epsilon[s])$ be as in (??). We have

$$i_{M^!}\left(\tilde{G},G^![s]\right)i_{M^!}^{G^![s]}(\epsilon[s])\cdot \left\|\check{\beta}\right\| = \left(Z_{\tilde{M}^{\vee}}^{\hat{\alpha}^*}:Z_{\underline{\tilde{M}}^{\vee}}^{\circ}\right)^{-1}i_{\underline{M}^!}\left(\tilde{G},G^![s]\right)\cdot \left\|\check{\alpha}\right\|.$$

Proof. Use [**?**, Lemma 1.1] to obtain the natural surjection $Z_{\tilde{M}^{\vee}}^{\circ}/Z_{\tilde{G}^{\vee}}^{\circ} \rightarrow Z_{(M^!)^{\vee}}/Z_{G^![s]^{\vee}}$. Denote its kernel as K_1 . One readily checks that $|K_1|^{-1} = i_{M^!}(\tilde{G}, G^![s])$ as in [**?**, p.230 (2)].

We contend that the image of $Z_{\tilde{M}^{\vee}}^{\hat{\alpha}^*}/Z_{\tilde{G}^{\vee}}^{\circ}$ is contained in $Z_{(M^!)^{\vee}}^{\check{\beta}}/Z_{G^![s]^{\vee}}$. When α is short, $\check{\alpha}$ transports to $\check{\beta}$ under $T^! \simeq T$; in this case $Z_{\tilde{M}^{\vee}}^{\hat{\alpha}^*}/Z_{\tilde{G}^{\vee}}^{\circ}$ is actually the preimage of $Z_{(M^!)^{\vee}}^{\check{\beta}}/Z_{G^![s]^{\vee}}$. When α is long, $\check{\alpha}$ transports to $\frac{1}{2}\check{\beta}$, and the containment is clear.

Set $K'_1 := K_1 \cap (Z^{\hat{\alpha}^*}_{\tilde{M}^{\vee}}/Z^{\circ}_{\tilde{G}^{\vee}})$; we have just seen that $K_1 = K'_1$ if α is short. From these and Lemma **??**, we obtain the following commutative diagram of abelian groups, with exact rows:

where K_2 , K_3 (resp. C_1 , C_2) are defined to be the kernels (resp. cokernels); they are all finite. The second and the third columns are readily seen to be exact, hence so is the first column by the Snake Lemma.

Next, observe that $|K_3|^{-1} = i_{M^!}(\tilde{G}, G^![s])$ as in the case of $|K_1|^{-1}$. Hence

$$\begin{split} i_{M^!}(\tilde{G},G^![s]) &= |K_1|^{-1} = |K_1'|^{-1}(K_1:K_1')^{-1} \\ &= |K_2|^{-1}|K_3|^{-1}(K_1:K_1')^{-1} \\ &= |K_2|^{-1}i_{M^!}(\tilde{G},G^![s])(K_1:K_1')^{-1}. \end{split}$$

It remains to prove that

$$|K_2|(K_1:K_1') = \left(Z_{\tilde{M}^\vee}^{\hat{\alpha}^*}: Z_{\underline{\tilde{M}}^\vee}^{\circ}\right) i_{M^!}^{G^![s]}(\epsilon[s]) \cdot \frac{\|\check{\beta}\|}{\|\check{\alpha}\|}.$$

Using the third row of the diagram and (??), we see $|K_2| = \left(Z_{\underline{\tilde{M}}^{\vee}}^{\hat{a}^*}: Z_{\underline{\tilde{M}}^{\vee}}^{\circ}\right) i_{M^!}^{G^![s]}(\epsilon[s])|C_2|$, thus we are reduced to proving

$$|C_2|(K_1:K_1') = \frac{\|\check{\beta}\|}{\|\check{\alpha}\|}.$$

When α is short, we have seen that $K_1 = K_1'$, $\|\check{\alpha}\| = \|\check{\beta}\|$ whilst $C_2 = \{1\}$ (upon replacing \tilde{G} by $\underline{\tilde{M}}$). The required equality follows at once.

Hereafter, suppose that α is long. Write $\tilde{G} = \prod_{i \in I} \operatorname{GL}(n_i) \times \operatorname{\widetilde{Sp}}(2n)$. Without loss of generality, we may express $\alpha = 2\epsilon_i$ under the usual basis for $\operatorname{Sp}(2n)$. The index i must fall under a GL-factor of M that embeds into $\operatorname{Sp}(2n)$. Moreover, $\check{\alpha} = \check{\epsilon}_i$ and $\check{\beta} = 2\check{\epsilon}_i$. It is clear that

$$\begin{split} Z_{\tilde{M}^{\vee}}^{\circ} &= Z_{(M^!)^{\vee}}^{\circ}, \quad Z_{\tilde{M}^{\vee}}^{\hat{\alpha}^*} &= Z_{\underline{\tilde{M}}^{\vee}}^{\circ} = Z_{(\underline{M}^!)^{\vee}}^{\circ}, \\ (K_1:K_1') &= \Big(Z_{(M^!)^{\vee}}^{\circ} \cap Z_{G^![s]^{\vee}}: Z_{(M^!)^{\vee}}^{\circ} \cap Z_{G^![s]^{\vee}}\Big). \end{split}$$

Thus it remains to verify in this case that

$$\left(Z_{(M^!)^{\vee}}^{\check{\beta}}: Z_{(\underline{M}^!)^{\vee}}\right) \left(Z_{(M^!)^{\vee}}^{\circ} \cap Z_{G^![s]^{\vee}}: Z_{(M^!)^{\vee}}^{\circ} \cap Z_{G^![s]^{\vee}}\right) = 2. \tag{1.4}$$

Observe that (1.4) involves only the objects on the endoscopic side. We may write

$$G^{!}[s] = \prod_{i \in I} GL(n_i) \times SO(2n'+1) \times SO(2n''+1), \quad n'+n'' = n.$$

The first step is to reduce to the case $I = \emptyset$ and n'' = 0. Indeed, $M^!$ and $\underline{M}^!$ decompose accordingly, and the construction of $\underline{M}^!$ takes place inside either SO(2n'+1) or SO(2n''+1), on which β lives. Hence we may rename $G^![s]$ to $G^!$ and assume $G^! = SO(2n+1)$.

Accordingly, we can write $M^! = \prod_{j=1}^k \operatorname{GL}(m_j) \times \operatorname{SO}(2m+1)$ where $m \in \mathbb{Z}_{\geq 0}$, such that $\check{\beta}$ factors through the dual of $\operatorname{GL}(m_1)$, so that $\underline{M}^!$ is obtained by merging $\operatorname{GL}(m_1)$ with $\operatorname{SO}(2m'+1)$ to form a larger Levi subgroup of $G^!$.

• Suppose m = 0, then the first index in (1.4) is 1 since

$$Z_{(M^!)^{\vee}}^{\check{\beta}} = \{\pm 1\} \times \prod_{j \ge 2} \mathbb{C}^{\times} = Z_{(\underline{M}^!)^{\vee}}.$$

On the other hand, $Z_{(M^!)^{\vee}}^{\circ} \cap Z_{(G^!)^{\vee}} = \{\pm 1\}$ and $Z_{(\underline{M}^!)^{\vee}}^{\circ} \cap Z_{(G^!)^{\vee}} = \{1\}$, so the second index is 2. Hence (1.4) is verified.

• Suppose $m \ge 1$, then

$$Z_{(M^!)^\vee}^{\check\beta} = \{\pm 1\} \times \prod_{j \ge 2} \mathbb{C}^\times \times \{\pm 1\},$$

whilst $Z_{(\underline{M}^!)^\vee}$ has only one $\{\pm 1\}$ -factor diagonally embedded, so the first index is 2. On the other hand,

$$Z_{(M^!)^{\vee}}^{\circ} = \prod_{i \ge 1} \mathbb{C}^{\times} \times \{1\}$$

intersects trivially with $Z_{(G^!)^{\vee}} \simeq \{\pm 1\}$, so the second index is 1. Again, (1.4) is verified.

Summing up, the case of long roots is completed.

Definition 1.1.2:

In view of Proposition $\ref{eq:proposition}$, we may define the *collective geometric transfer* $\mathcal{T}^{\mathscr{E}}$ as

mapping f to $\left(\mathcal{T}_{\mathbf{G}^!,\tilde{G}}(f)\right)_{\mathbf{G}^!\in\mathscr{E}_{\mathrm{ell}}(\tilde{G})}$. When F is Archimedean, it is continuous and restricts to

$$\mathcal{T}_{\mathbf{G}^{!}\tilde{G}}: \mathcal{I}_{-}(\tilde{G}, \tilde{K}) \otimes \operatorname{mes}(G) \to \mathcal{I}^{\mathscr{E}}(\tilde{G}, \tilde{K});$$

ditto for the case with subscripts "cusp" (see Theorem ??).

Taking transpose yields the collective transfer of distributions

$$\check{\mathcal{T}}^{\mathscr{E}}: \bigoplus_{\mathbf{G}^! \in \mathscr{E}_{\mathrm{ell}}(\tilde{G})} SD(G^!) \otimes \mathrm{mes}(G^!)^{\vee} \to D_{-}(\tilde{G}) \otimes \mathrm{mes}(G)^{\vee}.$$

These notions extend immediately to groups of metaplectic type.

Example 1

This is an example.

Hint. There is No solution.

Solution. test.

Proposition 1: Dirichlet BVP on the Upper Half Plane.

Suppose that $f: \mathbb{R} \to \mathbb{R}$ is continuous and both $\lim_{x \to -\infty} f(x)$ and $\lim_{x \to +\infty} f(x)$ exist and are finite. Then $u: \mathbb{H} \to \mathbb{R}$ define by the integral

$$u(z) = \operatorname{Re}(\frac{1}{\pi i}) \int_{-\infty}^{+\infty} \frac{f(t)}{t - z} dt,$$

is the unique solution to the Dirichlet BVP:

$$\nabla^2 u = 0$$
 in \mathbb{H} $u = f$ on $\partial \mathbb{H}$

Proof. For any $z_0 \in \mathbb{H}$, consider the biholomorphism

$$\psi(z) = \frac{z - z_0}{z - \bar{z}_0}$$

which maps $\mathbb H$ onto $\mathbb D$, $(-\infty, +\infty)$ onto $\partial \mathbb D \setminus \{1\}$, and z_0 to 0. Then $\psi \circ f$ is continuous on $\partial \mathbb D \setminus \{1\}$ and bounded on $\partial \mathbb D$. By Theorem 4.79 and the remark after it, there exists a unique bounded harmonic function $v: \mathbb D \to \mathbb R$ such that $v = \psi \circ f$ on $\partial \mathbb D \setminus \{1\}$. Hence $u:=\psi^{-1} \circ v$ is the unique solution to the Dirichlet BVP on $\mathbb H$. Now we turn to the computation of the explicit formula of the solution. By mean value property we have

$$v(0) = \frac{1}{2\pi} \int_0^{2\pi} v(e^{i\theta}) d\theta$$

Since ψ maps $(-\infty, +\infty)$ onto $\partial \mathbb{D} \setminus \{1\}$,

$$e^{i\theta} = \frac{t - z_0}{t - \bar{z}_0} \Rightarrow \theta = -i\log\left(\frac{t - z_0}{t - \bar{z}_0}\right)$$

Take the differential:

$$\mathrm{d}\theta = -\mathrm{i}\frac{t - \bar{z}_0}{t - z_0} \cdot \left(-\frac{\bar{z}_0 - z_0}{(t - \bar{z}_0)^2} \right) \mathrm{d}t = \mathrm{i}\frac{\bar{z}_0 - z_0}{(t - z_0)(t - \bar{z}_0)} \mathrm{d}t = \frac{2\operatorname{Im}z_0}{t^2 - 2t\operatorname{Re}z_0 + |z_0|^2} \, \mathrm{d}t = \operatorname{Re}\left(\frac{2}{\mathrm{i}(t - z_0)}\right) \mathrm{d}t$$

Since $v(0) = u(z_0)$, we have

$$u(z_0) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(t) \operatorname{Re}\left(\frac{2}{\mathrm{i}(t - z_0)}\right) \mathrm{d}t = \operatorname{Re}\left(\frac{1}{\pi \mathrm{i}} \int_{-\infty}^{+\infty} \frac{f(t)}{t - z} \, \mathrm{d}t\right)$$

, Therefore the proposition is proved.

Property 1.1.1

If $x \in \text{open set } V \text{ then } \exists \delta > 0 \text{ such that } B_{\delta}(x) \subset V$

Claim 1. THIS IS CLAIM.

Exercise 1.1.1

This is The Exercise of the Textbook

Claim **2.** the propostion is Trival.

Proof of claim. start.

Chapter 2

Chapter

Here

2.1 Section

Definition 2.1.1: The title

Let \mathcal{O} be a finite union of semisimple conjugacy classes in M(F). Define

$$\begin{split} D_{\mathrm{geom},-}(\tilde{M},\mathcal{O}) &:= \left\{ D \in D_{-}(\tilde{M}) : \tilde{\gamma} \in \mathrm{Supp}(D) \implies \gamma_{\mathrm{ss}} \in \mathcal{O} \right\}, \\ D_{\mathrm{geom},-}(\tilde{M}) &:= \bigoplus_{\mathcal{O} \subset M(F) \\ \mathrm{ss.\ conj.\ class}} D_{\mathrm{geom},-}(\tilde{M},\mathcal{O}) \subset D_{-}(\tilde{M}), \end{split}$$

$$D_{\mathrm{unip},-}(\tilde{M}) := D_{\mathrm{geom},-}(\tilde{M},\{1\}).$$