

LECTURE NOTES

COLLEGE OF ENGINE.

LLCTOIL NOTES
Campus: PCE Course BTECH Class/Section: CS-III - C Section Date 22-02-22
Name of Faculty Rovern Kunar Yadar Name of Subject: Machine Cearning (ade 6054-02
Date (Prep.): 22-04-22 Date (Del.): 16-03-24 Unit No./Topic: 4 Lect. No. 05
OBJECTIVE: To be written before talling the lecture (Pl. write in bullet points the main topics concepts etc. which will be taught in this lecture)
Support Vector Machine
IMPORTANT & RELEVANT QUESTIONS:
O what is support Vector Machine? Explain in detail.
alac.
FEED BACK QUESTIONS (AFTER 20 MINUTES):
1 what is Support Vector.
3 what is Margin in SVM?
OUTCOME OF THE DELIVERED LECTURE: To be written after taking the lecture (Pl. write in bullet points about students' feedback on this lecture, level of understanding of this lecture by students etc.)
REFERENCES: Text/Ref. Book with Page No. and relevant Internet Websites:
sum, simpli Leoun.

C Marginal Distance) Hyperplane support vectors Hyperplane Marginal Distance Linear Seperable Non-Linear Separable 27 × convert low Dimension into high Dimensional Try to

classify.

so that we easily can

POORIJIMA COLLEGE OF ENGINEERING

DETAILED LECTURE NOTES

PAGE NO. ...

largest margin coman width margin).

(Maximal margin Hyperplane should be relected which decreases over rate and deere increases accuracy.

um is a supervised learning method that looks at data and sort it one of the two category.

OLLEGE OF ENGINEERING DETAILED LECTURE NOTES

PAGE NO.

Application of support Vector Machine: - Face delection classification of images.

- Bioinformatics.

OR

Geonetic Intition-II .

bull for sil + re prints

and - ve prints

Conver polgon 7 All point 3 pind the shortest line connecting their hulls

3 bisect the line (Margin max plane).

wtx, +b = -bwtx, $+b = \pm i$ coptimization Funt $(w^{\dagger}, b^{\dagger}) \text{ man } 2/$ $(w^{\dagger}, b^{\dagger}) \text{ man } 2/$ ||w||outh that ||w|| = 2 ||w|| ||w|| ||w|| ||w||

INTITUTION !-

$$eq^{-n}$$
, of Hyproplane
 $y = w_x + b = 0$

origin)

$$y = w^{T}x + 0$$

$$= \begin{bmatrix} -L \\ 0 \end{bmatrix} \begin{bmatrix} -4 & 0 \end{bmatrix}$$

Thewise for other point is always going

=[-1][4,4]

For Mp-2 -WX+ b = -L W K2+ P = T WT (K2 - K1) = 2 WT (22 - 24) = ? This is optimization Function we need to maximize it optimization Function cw*, b*) argman 2 cw,6) 11 w11 inother way cw*, 6*) argman / 2 yi * w'zi + bi 21 (w, 6) { | | w| | / [For correctly classified point] Take a receprocal otherwise its an mis classification of the function Regularization Regularization + 'C & & 'X

+ 'C & & '2000

2000

2000 arginin , TIWII Zeta of C dentetas. How many errors? we considered in the model P is further away from the correct 4i * (wTxi + 5) = 0.5 in inscreet = 1- (0.5) divy y yi (wxit6)= 1.5 if Eb>0 (0.5 units away for plane) =1-(2.5) yit (wTxitb)=0.5 if E = 0 means classified =1 - (1.5) ==