Exercice 1 (Cours). Donner les variations de la fonction carré, et celles de la fonction inverse. (4)

Exercice 2. Déterminer les fonctions affines f et g dont les représentations graphiques sont les deux droites (AB) et (CD) ci-dessous. (4)



**Exercice 3.** Déterminer les tableaux de signes des des fonction f et g définies sur  $\mathbb{R}$  par f(x) = 2x - 3 (4) et g(x) = 5 - 2x.

**Exercice 4.** On sait que le nombre réel x vérifie :  $x \in [7; 8]$ . Déterminer (par un raisonnement détaillé **(2)** ou à l'aide d'un tableau de variations) :

- 1. un encadrement de  $x^2$ .
- 2. un encadrement de  $\frac{1}{x}$ .

Exercice 5. Les affirmations suivantes sont-elles vraies ou fausses? Les réponses seront justifiées: (4)

- par une référence au cours cité à l'exercice 1 pour une affirmation vraie,
- par un contre-exemple pour une affirmation fausse.
- 1. Pour tout nombre réel x, si  $x \ge 0, 5$ , alors  $\frac{1}{x} \le 2$ .
- 2. Pour tout nombre réel x, si  $x \le 10^3$ , alors  $x^2 \le 10^6$ .
- 3. Pour tout nombre réel x, si  $x^2 \ge 1$ , alors  $x \ge 1$ .
- 4. Pour tout nombre réel x, si  $x \ge 99$ , alors  $\frac{1}{x} \le 0,01$ .

**Exercice 6.** On admet que l'on a :  $3 - \sqrt{5} > 3 - \sqrt{7} > 3 - \sqrt{11} > 3 - \sqrt{13}$ . Classer les 4 nombres suivants par ordre croissant :  $\frac{1}{3 - \sqrt{5}}$ ,  $\frac{1}{3 - \sqrt{7}}$ ,  $\frac{1}{3 - \sqrt{11}}$  et  $\frac{1}{3 - \sqrt{13}}$ . Justifier soigneusement toutes les inégalités utilisées.