Machine Learning for Official Statistics and SDGs

Statistical learning: *You've seen this before*

► This course is for (present or future) Data Scientists

- ► This course is for (present or future) Data Scientists
- ► This course uses both statistical and computational concepts

- ► This course is for (present or future) Data Scientists
- ► This course uses both statistical and computational concepts
- ► This course uses many applied examples and a very progressive approach

- ► This course is for (present or future) Data Scientists
- ► This course uses both statistical and computational concepts
- ► This course uses many applied examples and a very progressive approach

 Data Scientist: "Person who is better at statistics than any software engineer and

 better at software than any statistician."

J. Wills (2012)

" Statistical learning refers to a vast set of tools for understanding data"

Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani (2021)

- " Statistical learning refers to a vast set of tools for understanding data" Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani (2021)
- ► Involves building statistical models

"Statistical learning refers to a vast set of tools for understanding data"

Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani (2021)

- ► Involves building statistical models
- Goals are estimation or prediction

Two main learning problems:

Two main learning problems:

 \blacktriangleright We observe **both** the outcome *y* and regressors (also called features) xs

Two main learning problems:

- \blacktriangleright We observe **both** the outcome *y* and regressors (also called features) *x*s

Two main learning problems:

- \blacktriangleright We observe **both** the outcome *y* and regressors (also called features) xs

Introduction

Most of the examples and applications are supervised learning

Two main learning problems:

Introduction

- ▶ We observe **both** the outcome *y* and regressors (also called features) *x*s
- Most of the examples and applications are supervised learning
- ► We **do not** observe the outcome *y* but **only** several *x*s

Two main learning problems:

- \blacktriangleright We observe **both** the outcome *y* and regressors (also called features) xs
- → Supervised learning
 Most of the examples and applications are supervised learning
- ightharpoonup We **do not** observe the outcome *y* but **only** several *x*s

Two main learning problems:

- \blacktriangleright We observe **both** the outcome y and regressors (also called features) xs
- → Supervised learning
 Most of the examples and applications are supervised learning
- ightharpoonup We **do not** observe the outcome *y* but **only** several *x*s

STATISTICAL LEARNING ON AN EXAMPLE

Scatter plot of Food Share vs Log(exp)

STATISTICAL LEARNING ON AN EXAMPLE

Scatter plot of Food Share vs Log(exp)

We may be interested in the relationship between the two variables

Understanding = estimate $f(\cdot)$

Linear regression

UNDERSTANDING = ESTIMATE $f(\cdot)$

Linear regression

 $f(\cdot)$ is the regression line

► Inference

► Inference

Understand the nature of the relationship between X and Y

► Inference

Understand the nature of the relationship between *X* and *Y* Identify "important" variables to understand *Y*

► Inference

Understand the nature of the relationship between *X* and *Y* Identify "important" variables to understand *Y*

► Prediction

► Inference

Introduction

000000000000

Understand the nature of the relationship between *X* and *Y* Identify "important" variables to understand *Y*

► Prediction

Predict y for any new x using $f(\cdot)$

► Inference

Introduction

000000000000

Understand the nature of the relationship between *X* and *Y* Identify "important" variables to understand *Y*

- ▶ Prediction
 - Predict *y* for any new *x* using $f(\cdot)$
- ▶ In practice we must estimate $f(\cdot)$ using a model:

► Inference

Introduction

000000000000

Understand the nature of the relationship between *X* and *Y* Identify "important" variables to understand *Y*

- ▶ Prediction
 - Predict *y* for any new *x* using $f(\cdot)$
- ▶ In practice we must estimate $f(\cdot)$ using a model:

$$y = f(x) + \varepsilon$$

WHY ESTIMATING $f(\cdot)$?

Inference

Introduction

000000000000

Understand the nature of the relationship between X and Y Identify "important" variables to understand Y

- ► Prediction
 - Predict y for any new x using $f(\cdot)$
- ▶ In practice we must estimate $f(\cdot)$ using a model:

$$y = f(x) + \varepsilon$$

We denote by $\widehat{f(\cdot)}$ the estimate of $f(\cdot)$

► Parametric methods

► Parametric methods Specify a form for $f(\cdot)$, for example linear:

▶ Parametric methods Specify a form for $f(\cdot)$, for example linear:

$$y = \beta_0 + \beta_1 x_+ \varepsilon$$

Introduction

0000000000000

► Parametric methods

Specify a form for $f(\cdot)$, for example linear:

$$y = \beta_0 + \beta_1 x_+ \varepsilon$$

▶ The goal is to find the line that is **minimizing** the distance to the observed points (x_i, y_i) . The distance is computed as the Mean Square Error (MSE):

$$MSE(\beta_0, \beta_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$

Introduction

0000000000000

► Parametric methods

Specify a form for $f(\cdot)$, for example linear:

$$y = \beta_0 + \beta_1 x_+ \varepsilon$$

▶ The goal is to find the line that is **minimizing** the distance to the observed points (x_i, y_i) . The distance is computed as the Mean Square Error (MSE):

$$MSE(\beta_0, \beta_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$

▶ The regression line, defined by β_0 and β_1 , is simply the solution of:

$$Min_{(\beta_0,\beta_1)} MSE(\beta_0,\beta_1)$$

K-NN

Wrap-up

How to estimate $f(\cdot)$?

Introduction

0000000000000

► Parametric methods

Specify a form for $f(\cdot)$, for example linear:

$$y = \beta_0 + \beta_1 x_+ \varepsilon$$

▶ The goal is to find the line that is **minimizing** the distance to the observed points (x_i, y_i) . The distance is computed as the Mean Square Error (MSE):

$$MSE(\beta_0, \beta_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$

▶ The regression line, defined by β_0 and β_1 , is simply the solution of:

$$Min_{(\beta_0,\beta_1)} MSE(\beta_0,\beta_1)$$

The MSE it is the *cost function* used to estimate $(\hat{\beta}_0, \hat{\beta}_1)$

HOW TO ESTIMATE $f(\cdot)$: IN PRACTICE

Linear regression

In red, the distance to the regression line for some observations

How to estimate $f(\cdot)$: In practice

Linear regression

The regression line is found by minimizing the sum of all distances or MSE

$$\text{Results:}\, \widehat{f(\cdot)}$$

0000000000000

From the result and the estimated parameters $(\widehat{\beta}_0, \widehat{\beta}_1)$, we see that there is a relation, and that it is decreasing.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1.75	0.04	41.09	0
ltexp	-0.20***	0.01	-31.84	0

The quality of the adjustment may be measured by the $R^2 = 0.478$

► Is the line fitting the data?

► Is the line fitting the data?

One may always find a relation between two variables

► Is the line fitting the data?

One may always find a relation between two variables Statistical test help asses the significance of a variable

Introduction

- ► Is the line fitting the data? One may always find a relation between two variables Statistical test help asses the significance of a variable
- \blacktriangleright How good is the linear adjustment: R^2

- ► Is the line fitting the data?
 - One may always find a relation between two variables Statistical test help asses the significance of a variable
- \blacktriangleright How good is the linear adjustment: R^2

$$R^2 = \frac{TSS - RSS}{TSS}$$

Introduction

0000000000000

- ► Is the line fitting the data?
 - One may always find a relation between two variables Statistical test help asses the significance of a variable
- ▶ How good is the linear adjustment: R^2

$$R^2 = \frac{TSS - RSS}{TSS}$$

with:
$$TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$$
 and $RSS = \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$

Introduction

0000000000000

- ► Is the line fitting the data?
 - One may always find a relation between two variables Statistical test help asses the significance of a variable
- ► How good is the linear adjustment: R^2

$$R^2 = \frac{TSS - RSS}{TSS}$$

with:
$$TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$$
 and $RSS = \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$

 $ightharpoonup R^2$ is a very popular measure. The closer to 1, the better.

Introduction

0000000000000

- ► Is the line fitting the data?
 - One may always find a relation between two variables Statistical test help asses the significance of a variable
- ► How good is the linear adjustment: R^2

$$R^2 = \frac{TSS - RSS}{TSS}$$

with:
$$TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$$
 and $RSS = \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$

- $ightharpoonup R^2$ is a very popular measure. The closer to 1, the better.
- $ightharpoonup R^2$ can be very misleading

Wrap-up

BEWARE OF R^2 : ANSCOMBE QUARTET (1973)

Introduction

BEWARE OF R^2 : ANSCOMBE QUARTET (1973)

BEWARE OF R^2 : ANSCOMBE QUARTET (1973)

In all these data sets the R^2 is 0.67

" ...make both calculations and graphs. Both sorts of output should be studied; each will contribute to understanding."

F. J. Anscombe (1973)

" ...make both calculations and graphs. Both sorts of output should be studied; each will contribute to understanding."

F. J. Anscombe (1973) See also the datasaurus

" ...make both calculations and graphs. Both sorts of output should be studied; each will contribute to understanding."

F. J. Anscombe (1973) See also the datasaurus

► Practice of Statistical learning can be challenging

" ...make both calculations and graphs. Both sorts of output should be studied; each will contribute to understanding."

F. J. Anscombe (1973) See also the datasaurus

- ► Practice of Statistical learning can be challenging
- → Need to compute good indicators

Wrap-up

PRACTICE OF STATISTICAL LEARNING

"...make both calculations and graphs. Both sorts of output should be studied; each will contribute to understanding."

F. J. Anscombe (1973) See also the datasaurus

Introduction

000000000000

- Practice of Statistical learning can be challenging
- → Need to compute good indicators
- \hookrightarrow Need to understand the indicators computed

" ...make both calculations and graphs. Both sorts of output should be studied; each will contribute to understanding."

F. I. Anscombe (1973) See also the datasaurus

Introduction

000000000000

- ► Practice of Statistical learning can be challenging
- \rightarrow Need to compute good indicators
- → Need to understand the indicators computed
- → Need to go beyond linearity

000000000000

Machine Learning for Official Statistics and SDGs

Statistical learning: *Beyond linearity*

Introduction

► A linear model may be unadapted or too simple

The fit (measured by R^2) is: $R^2 = 0.478$

Introduction

► A Polynomial model may be better adapted: **Quadratic** model

Do we have a better fit? $R^2 = 0.484$

Introduction

► Polynomial may be better adapted: **Cubic** model

Do we have a better fit? $R^2 = 0.490$

► Polynomial models may be useful

► Polynomial models may be useful

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_p x^p + \varepsilon$$

Introduction

► Polynomial models may be useful

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_p x^p + \varepsilon$$

How to choose the degree p?

Introduction

► Polynomial models may be useful

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_p x^p + \varepsilon$$

How to choose the degree p?

Collinearity of x^p and x^q for $p \neq q$?

▶ Linear and polynomial models are determined by parameters $(\beta_0, \beta_2, \dots, \beta_p)$

- \blacktriangleright Linear and polynomial models are determined by parameters $(\beta_0, \beta_2, \cdots, \beta_p)$
- ▶ Other methods more flexible

- \blacktriangleright Linear and polynomial models are determined by parameters $(\beta_0, \beta_2, \cdots, \beta_p)$
- ► Other methods more flexible
- ► Nearest neighbors (or k-NN)

- \blacktriangleright Linear and polynomial models are determined by parameters $(\beta_0, \beta_2, \cdots, \beta_p)$
- ▶ Other methods more flexible
- Nearest neighbors (or k-NN)

 The goal is to estimate $f(\cdot)$ not β_s !

PARAMETRIC VS NONPARAMETRIC MODELS

- \blacktriangleright Linear and polynomial models are determined by parameters $(\beta_0, \beta_2, \cdots, \beta_p)$
- Other methods more flexible
- Nearest neighbors (or k-NN)

The goal is to estimate $f(\cdot)$ not β_s ! Similar in spirit to moving average

Machine Learning project

- \blacktriangleright Linear and polynomial models are determined by parameters $(\beta_0, \beta_2, \cdots, \beta_p)$
- Other methods more flexible
- ► Nearest neighbors (or k-NN)

The goal is to estimate $f(\cdot)$ not β_s ! Similar in spirit to moving average

$$\widehat{f}(x_i) = \frac{1}{k} \sum_{\substack{j \in \{k-nearest \\ neighbours \ of \ x_i\}}} y$$

Machine Learning project

- \blacktriangleright Linear and polynomial models are determined by parameters $(\beta_0, \beta_2, \cdots, \beta_p)$
- Other methods more flexible
- Nearest neighbors (or k-NN)

The goal is to estimate $f(\cdot)$ not β_s ! Similar in spirit to moving average

$$\widehat{f}(x_i) = \frac{1}{k} \sum_{\substack{j \in \{k-nearest \\ neighbours of \ x_i\}}} y_j$$

k is the number of neighbors of x_i taken into account in the estimation.

Machine Learning project

PARAMETRIC VS NONPARAMETRIC MODELS

- \blacktriangleright Linear and polynomial models are determined by parameters $(\beta_0, \beta_2, \cdots, \beta_n)$
- Other methods more flexible
- ► Nearest neighbors (or k-NN)

The goal is to estimate $f(\cdot)$ not β_s ! Similar in spirit to moving average

$$\widehat{f}(x_i) = \frac{1}{k} \sum_{\substack{j \in \{k-nearest \\ neighbours of \ x_i\}}} y_j$$

k is the number of neighbors of x_i taken into account in the estimation.

► The method follows a very general idea:

PARAMETRIC VS NONPARAMETRIC MODELS

- \blacktriangleright Linear and polynomial models are determined by parameters $(\beta_0, \beta_2, \cdots, \beta_n)$
- Other methods more flexible
- ► Nearest neighbors (or k-NN)

The goal is to estimate $f(\cdot)$ not β_s ! Similar in spirit to moving average

$$\widehat{f}(x_i) = \frac{1}{k} \sum_{\substack{j \in \{k-nearest \\ neighbours of \ x_i\}}} y_j$$

k is the number of neighbors of x_i taken into account in the estimation.

- ► The method follows a very general idea:
 - "Observations close in the x dimension should be close in the y dimension"

K-NN regression with k= 1

K-NN regression with k= 100

K-NN regression with k= 200

K-NN regression with k= 200

In pink the neighbors used for a specific x

K-NN regression with k= 200

K-NN regression with k= 200

K-NN regression with k= 200

K-NN regression with k= 5

K-NN regression with k= 400

K-NN regression with k= 249

K-NN regression with k= 5

K-NN regression with k= 5 For this point xi (i= 937) the distance (yi - f(xi)) is: 0.106

K-NN regression with k= 5 For this point xi (i= 937) the distance (yi - f(xi)) is: 0.106

Overfitting has many consequences

Overfitting has many consequences

► The estimated curve follows the data too closely

K-NN regression with k= 5 For this point xi (i= 937) the distance (yi - f(xi)) is: 0.106

Overfitting has many consequences

- ► The estimated curve follows the data too closely
- ► The estimated curve follows the **errors** too closely

Overfitting has many consequences

- ► The estimated curve follows the data too closely
- ► The estimated curve follows the **errors** too closely
- ► The estimated function will not provide good estimates on **new observations**

Machine Learning for Official Statistics and SDGs

Statistical learning: *vs* Machine Learning

The goal is to estimate $f(\cdot)$

 \blacktriangleright Many statistical learning methods are relevant and useful to estimate $f(\cdot)$

- \blacktriangleright Many statistical learning methods are relevant and useful to estimate $f(\cdot)$
- \blacktriangleright $f(\cdot)$ can take continuous (regression) or discrete values (classification)

- \blacktriangleright Many statistical learning methods are relevant and useful to estimate $f(\cdot)$
- \blacktriangleright $f(\cdot)$ can take continuous (regression) or discrete values (classification)
- ▶ If predicting is the goal, one may focus on prediction accuracy

- \blacktriangleright Many statistical learning methods are relevant and useful to estimate $f(\cdot)$
- \blacktriangleright $f(\cdot)$ can take continuous (regression) or discrete values (classification)
- ▶ If predicting is the goal, one may focus on prediction accuracy
 - \hookrightarrow this is the goal of **Machine Learning**

- \blacktriangleright Many statistical learning methods are relevant and useful to estimate $f(\cdot)$
- \blacktriangleright $f(\cdot)$ can take continuous (regression) or discrete values (classification)
- ► If predicting is the goal, one may focus on prediction accuracy → this is the goal of **Machine Learning**
- ► If the goal is to formalize a model, one may focus on testing statistical properties

- \blacktriangleright Many statistical learning methods are relevant and useful to estimate $f(\cdot)$
- \blacktriangleright $f(\cdot)$ can take continuous (regression) or discrete values (classification)
- ▶ If predicting is the goal, one may focus on prediction accuracy
 - \hookrightarrow this is the goal of **Machine Learning**
- ► If the goal is to formalize a model, one may focus on testing statistical properties
 - \hookrightarrow this is the goal of **Statistical Learning**

- \blacktriangleright Many statistical learning methods are relevant and useful to estimate $f(\cdot)$
- \blacktriangleright $f(\cdot)$ can take continuous (regression) or discrete values (classification)
- ▶ If predicting is the goal, one may focus on prediction accuracy
 - \hookrightarrow this is the goal of **Machine Learning**
- ► If the goal is to formalize a model, one may focus on testing statistical properties
 - \hookrightarrow this is the goal of **Statistical Learning**
- ► In practice we'll use both tools to "understand the data"

The classical approach

▶ So far, we have estimated $f(\cdot)$ on the whole data set

The classical approach

▶ So far, we have estimated $f(\cdot)$ on the whole data set

The classical approach

Introduction

▶ So far, we have estimated $f(\cdot)$ on the whole data set

▶ We have estimated $f(\cdot)$ by $\widehat{f}(\cdot)$ and minimized some cost function such as the $MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{f}(x_i))^2$

The classical approach

 \blacktriangleright So far, we have estimated $f(\cdot)$ on the whole data set

- ▶ We have estimated $f(\cdot)$ by $\widehat{f}(\cdot)$ and minimized some cost function such as the $MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i \widehat{f}(x_i))^2$
- ▶ The data serve both for estimating $\hat{f}(\cdot)$ and computing the prediction error

A different approach: resampling

▶ Our goal is evaluate the prediction accuracy of $\widehat{f}(\cdot)$ on a new, **unseen**, data set

A different approach: resampling

- ▶ Our goal is evaluate the prediction accuracy of $\hat{f}(\cdot)$ on a new, **unseen**, data set
- ► Since we may not have **unseen** data, we will construct one

A different approach: resampling

- ▶ Our goal is evaluate the prediction accuracy of $\widehat{f}(\cdot)$ on a new, **unseen**, data set
- ► Since we may not have **unseen** data, we will construct one

A different approach: resampling

- ▶ Our goal is evaluate the prediction accuracy of $\widehat{f}(\cdot)$ on a new, **unseen**, data set
- ► Since we may not have **unseen** data, we will construct one

 \blacktriangleright And the true value of y_i will be available to compute MSE of the prediction

WHY DIFFERENT SETS?

Predicting using predictions capability

 \blacktriangleright When estimating $f(\cdot)$ on the whole data set, over-fitting may occur

WHY DIFFERENT SETS?

Predicting using predictions capability

- ▶ When estimating $f(\cdot)$ on the whole data set, over-fitting may occur
- ► The validation set provides a good way to evaluate the prediction capabilities of a model and the prediction error on a new data set

WHY DIFFERENT SETS?

Introduction

Predicting using predictions capability

- lacktriangle When estimating $f(\cdot)$ on the whole data set, over-fitting may occur
- ► The validation set provides a good way to evaluate the prediction capabilities of a model and the prediction error on a new data set

Wrap-up

WHY DIFFERENT SETS?

Predicting using predictions capability

- lacktriangle When estimating $f(\cdot)$ on the whole data set, over-fitting may occur
- ► The validation set provides a good way to evaluate the prediction capabilities of a model and the prediction error on a new data set

▶ Prediction accuracy (using $\hat{f}(\cdot)$) is then evaluated on the validation set **only**

CONSTRUCTING TRAINING & VALIDATION SETS

In practice, the validation set is not a block

CONSTRUCTING TRAINING & VALIDATION SETS

In practice, the validation set is not a block

► The validation set is constructed from a randomly drawn observations.

CONSTRUCTING TRAINING & VALIDATION SETS

In practice, the validation set is not a block

► The validation set is constructed from a randomly drawn observations.

Using resampling methods to estimate the error on the prediction

► Cross validation is used to select *m*-(training-validation) sets from the original data set (here again randomly)

Using resampling methods to estimate the error on the prediction

► Cross validation is used to select *m*-(training-validation) sets from the original data set (here again randomly)

Using resampling methods to estimate the error on the prediction

► Cross validation is used to select *m*-(training-validation) sets from the original data set (here again randomly)

m-fold Cross-Validation estimates the average prediction error on *m* different(training-validation) sets

m-fold Cross-Validation estimates the average prediction error on *m* different(training-validation) sets

▶ For each training-validation) set i, one can compute the MSE_i since the true y_i is known on the validation set!

Introduction

m-fold Cross-Validation estimates the average prediction error on *m* different(training-validation) sets

- ▶ For each training-validation) set i, one can compute the MSE_i since the true y_i is known on the validation set!
- ► Cross Validation error is then:

$$CV_{(m)} = \frac{1}{m} \sum_{i=1}^{m} MSE_i$$

m-fold Cross-Validation estimates the average prediction error on *m* different(training-validation) sets

- ▶ For each training-validation) set i, one can compute the MSE_i since the true y_i is known on the validation set!
- ► Cross Validation error is then:

$$CV_{(m)} = \frac{1}{m} \sum_{i=1}^{m} MSE_i$$

 $ightharpoonup CV_{(m)}$ is a good estimate of the prediction error of the model

Machine Learning project

Many DIFFERENT SETS!

m-fold Cross-Validation estimates the average prediction error on *m* different(training-validation) sets

- \blacktriangleright For each training-validation) set i, one can compute the MSE_i since the true y_i is known on the validation set!
- ► Cross Validation error is then:

$$CV_{(m)} = \frac{1}{m} \sum_{i=1}^{m} MSE_i$$

- $ightharpoonup CV_{(m)}$ is a good estimate of the prediction error of the model
- $ightharpoonup CV_{(m)}$ can serve to select and compare models (example: select k in k-NN regression)

m-fold Cross-Validation estimates the average prediction error on *m* different(training-validation) sets

- \blacktriangleright For each training-validation) set i, one can compute the MSE_i since the true y_i is known on the validation set!
- ► Cross Validation error is then:

$$CV_{(m)} = \frac{1}{m} \sum_{i=1}^{m} MSE_i$$

- $ightharpoonup CV_{(m)}$ is a good estimate of the prediction error of the model
- $ightharpoonup CV_{(m)}$ can serve to select and compare models (example: select k in k-NN regression)
- ▶ In practice $m \in 5, \dots, 10$ shows good performances

Machine Learning involves several tasks, some are time consuming

► Data collection (not treated here)

- ► Data collection (not treated here)
- ► Data organization (not treated here)

- ► Data collection (not treated here)
- ► Data organization (not treated here)
- ► Data cleaning (not treated here)

- ► Data collection (not treated here)
- ► Data organization (not treated here)
- ► Data cleaning (not treated here)
- ► Data visualization

- ► Data collection (not treated here)
- ► Data organization (not treated here)
- ► Data cleaning (not treated here)
- ► Data visualization
- ▶ Data analysis ← this is the core of this course

► To understand the data, we can go beyond linearity using polynomial or nonparametric model (*k*-NN)

- ► To understand the data, we can go beyond linearity using polynomial or nonparametric model (*k*-NN)
- ► More complex models allow for more accuracy, but introduce variance in the estimation

- ► To understand the data, we can go beyond linearity using polynomial or nonparametric model (*k*-NN)
- ► More complex models allow for more accuracy, but introduce variance in the estimation
- ► There is a unavoidable **bias-variance** trade-off

- ► To understand the data, we can go beyond linearity using polynomial or nonparametric model (*k*-NN)
- ► More complex models allow for more accuracy, but introduce variance in the estimation
- ► There is a unavoidable **bias-variance** trade-off
- ► Theory helps understanding but not choosing the right model

- ► To understand the data, we can go beyond linearity using polynomial or nonparametric model (*k*-NN)
- ► More complex models allow for more accuracy, but introduce variance in the estimation
- ► There is a unavoidable **bias-variance** trade-off
- ► Theory helps understanding but not choosing the right model
- ► The train + validation sets approach is central in machine learning