

B.Tech Capstone Project Synopsis 2021-22

1. **Project Title:** Identification of human sentiments using AI with help of personalized human handwriting

Mention Any One Of The Following Domains

Group 1. AI, ML, Data Science, Cognitive Computing & NLP

Mention Any One Of The Application Domains

The Application domains to be focused are: 1. Healthcare

Mention Any One Of The Following Research Themes

The research Themes are: 4. Sustainability

- 2. Industry Supported / In-house: In-house
- 3. Team Members names:

Snehalraj Chugh - 1032181182 Ahbaz Memon - 1032180046 Prajakta Chaudhari - 1032180317 Abhishek Chebolu - 1032180316

4. Project Description:

We want to develop a personal module to assist and better analyse an individual through their handwriting using artificial intelligence, than what has been done so far which is quite generic and limiting. We are combining four domains, .i.e, Deep Learning, Computer Vision, NLP and Psychology for our research

- 1. Our focus is to invent new methods for letter segmentations in a sentence
- 2. Creation of customized personal database for every different handwriting (classified entity)
- 3. Psychological Analysis of an individual upon the style of writing (stores, size, angle of letters)
- 4. A module will be integrated to help deaf and blind people understand emotions and the feeling behind the hand-written message at the time it was written.
- 5. The machine can understand the cancelled-out/scribbled words by itself as to analyse the page more human-like.
- 6. We will be particularly analysing the finding for every sentence which are:
 - a. Analysing the person's nature/personality
 - b. Understanding emotions at the time of writing
 - c. Sentiment analysis of sentence

5. Literature survey in tabular format [year of publication, author names, journal/conference, gaps, etc]:-

Sr	Paper Name	Consort	Author	Highlights of the paper	Uses	Research
no.		ium				Gaps
1	Comparative Analysis of Text Extraction from Color Images using Tesseract and OpenCV	<u>IEEE</u>	AS Revathi; Nishi A Modi	Analyses the effect of unprocessed images and preprocessed images on the performance of tesseract	Text Extraction Image Preprocessing	Complicated or cursive handwriting
2	Image to Multilingual Text Conversion for	<u>IEEE</u>	Muhammad Ajmal; Farooq Ahmad; Martinez- Enriquez A.M.;	It translates text just by capturing an image with the user's smartphone camera and translation instantly appears on the	Multilingual Text Conversion Character Recognition	Generalized approach

	Literacy		Mudasser	user's mobile screen in		
	Education		Naseer; Aslam	the language selected by		
	Ladeation		Muhammad;	the user.		
			Mohsin Ashraf	the doct.		
3	Real time	IEEE	Rahul R.	The CV2 OpenCV library	License Plate	Generalized
	license plate		Palekar;	using Python language is	detection	approach
	detection using		Sushant U.	used for image processing		
	OpenCV and		Parab; Dhrumil	and Tessaract is used for		
	tesseract		P. Parikh; Vijaya	text extraction from the		
			N. Kamble	processed image.		
4	Text-Based	Springer	D. Kalyani, P.	The main objective of this	Word	Character
	Handwritten		Vijay Kumar	paper is to propose the	segmentation	level
	Recognition			design of an expert		segmentation
	Through an			knowledge-based neural		
	Image Using			network system for		
	Recurrent			handwritten recognition		
	Neural			that can effectively		
	Network			recognize the text from		
				the given input image		
				using a recurrent neural		
				network approach.		
5	Image	<u>IEEE</u>	Adith Narayan,	This paper studies the use	Character	Cursive
	Character		Raja Muthalagu	of CNN in detecting and	Recognition	handwriting
	Recognition			recognizing handwritten		
	using			text images with higher		
	Convolutional			accuracy. The CNN model		
	Neural			is tested on English		
	Networks			handwritten characters		
				and validated on its		
				performance. The model		
				performs feature		
				extraction from images		
				through multiple layers.		
				These are later used for		
				training the model and		
				thereby recognizing		
	_			characters.	_	
6	Optical	<u>IEEE</u>	Saurabh Dome,	the paper presents the	Character	Generalized
	Character		Asha P Sathe	design and procedure of	Recognition	approach
	Recognition			the OCR WebApp, which		
	using Tesseract			consists of three sections		
	and			that are: Image-to-Text,		
	Classification			Real-time OCR (using		
				webcam), and Handwritten Text		
				Recognition. In this		
				project, OCR uses		
				Tesseract as an engine to		
				display the text to the		
				user and HTR uses a Deep		
				learning model to classify		
				the letters and display		
				them to the user.		
<u> </u>				them to the user.		

7	Optical Character Recognition for English Handwritten Text Using Recurrent Neural Network	<u>IEEE</u>	R. Parthiban; R. Ezhilarasi; D. Saravanan	The framework introduces a Recurrent neural network for recognizing English handwritten text.	Letter classification	Cursive handwriting
8	Multilingual Text & Handwritten Digit Recognition and Conversion of Regional languages into Universal Language Using Neural Networks	IEEE	B. Vidhale, G. Khekare, C. Dhule, P. Chandankhede, A. Titarmare and M. Tayade	In this research work, a purely handwritten digit recognition using machine learning model as well as character recognition matlab model is used. A translator using MATLAB to beat the barrier of various languages is designed. The projected style is also used for English, Marathi and Guajarati text to speech conversion into English language.	Text recognition and translator	Generalized approach
9	Analysis on	Springer	Krupashankari	The paper emphasizes on	Image	Character
	Preprocessing Techniques		S. Sandyal and Y. C. Kiran	various techniques for pre-processing an image	preprocessing	level
	for Offline		r. c. Kiran	that aids in the		segmentation
	Handwritten			further process of Image		
	Recognition			recognition.		
10	An Efficient	Springer	P. S. Latha	In this paper the	Image	Implements
	Digit		Kalyampudi,P.	experimentation is done	preprocessing	word-level
	Recognition		Srinivasa Rao,D.	on the classification of		segmentation
	System with an		Swapna	different hand written		instead of
	Improved			english numbers with		character
	Preprocessing			preprocessing of the		segmentation
	Technique			image obtained from which digits are to		
				be extracted.		
11	Path Detection	<u>IEEE</u>	Sumir	In this research paper, an	Line detection	Character
	for Self-Driving		Srivastava,	improved and optimized		level
	Carts by using		Sumita Gupta	lane detection method is		segmentation
	Canny Edge			proposed by using the		
	Detection			OpenCV's canny edge		
	Algorithm			detection algorithm. A		
				quick and robust method that can easily detect		
				lanes in a live video feed		
				or a pre-recorded video		
				stream.		
12	Deep Hough	IEEE	Kai Zhao, Qi	They focus on a		Without
	Transform for	_	Han, Chang-Bin	fundamental task of		Image
	Semantic Line		Zhang, Jun Xu,	detecting meaningful line		preprocessing

	1	1	T		1	T
	Detection		Ming-Ming	structures, a.k.a.,		tesseract
			Cheng	semantic line, in natural		performed
				scenes.		only with 51%
						асс
13	Improved Lane	<u>Springer</u>	Fang Zheng,	They propose an	Line detection	Character
	Line Detection		Sheng Luo, Kang	algorithm directly		recognition of
	Algorithm		Song, Chang-	identifying lane line in		natural scene
	Based on		Wei Yan, and	Hough space. The image is		had limited
	Hough		Mu-Chou Wang	conducted with Hough		success
	Transform			transform, and the points		
				conforming to the parallel		
				characteristics, length and		
				angle characteristics, and		
				intercept characteristics		
				of lane line are selected in		
				Hough space.		
14	A Method of	ACM	Ziyao Wang,	This paper discusses an	Line detection	Cursive
	Workpiece		Dali Yang,	Improved PPHT method		handwriting
	Coherent Line		Qiang Tong	which		
	Detection			performs edge detection		
	Based on			combine with original		
	Progressive			PPHT algorithm to		
	Probabilistic			find lines of workpiece		
	Hough			object. After discarding		
	Transform			noise lines, this		
	,			method divide the		
				detected lines into several		
				groups by finding		
				collinear candidates.		
15	Natural scene	IOP	Dong Haifeng,	The main works in the	Object	Character
-5	text detection	<u></u>	Han Siqi1	paper include the	detection	level
	based on YOLO		,	following: prepare the	detection	segmentation
	V2 network			datasets; we train the		Jeg. Heritation
	model			YOLO v2 with the		
				optimum parameters,		
				carry out the regression		
				analysis of the coordinate		
				parameters and		
				categories of bounding		
				boxes, obtain the		
				detection result;		
				according to different		
				detection models.		
				detection models.		

6. Literature Gap in detail

- Cursive Writing- With the different types of handwriting & ways to write in English, one of the most difficult arena is cursive writing.
- Forgery- Issues with different people writing in the same way giving out false predictions.
- Generalised Approach- Approaches available have made generic perspective towards the population regarding handwriting analysis
- Homogenous Database- Different datasets have stored the entities used in the same set together, which creates difficulty in analysis.
- Pseudo Sentiment- Predictions over incorrect emotions.
- Accuracy- Neural Networks have alot of possibility for new things to come up in algorithms and achieve 100% accuracy with less dataset given to train.
- *Cross-Relationship-* The behaviour of one entity in relation to other entity is not stored with analysis.
- Loss/Excluded features Other features used in bridging the gap between blind, deaf and disabled people are left out.

7. Feasibility study (comparisons of existing systems)

The feasibility of predicting the performance through the stability is observing similar tendencies when the users are sorted by the stability measures. To avoid noisy behaviour in the stability curves, they were smoothed with a moving average. The feasibility to predict the performance is assessed by comparison between the performance and the stability of the users.

8. Project Scope(functionalities to be implemented):

The main aim of this research was to develop a system that will help in the classification and recognition of Handwriting characters and digits and then used in various applications. Recognition of characters and digits is vital in today's digitized world, especially in organizations that deal with Handwriting documents that they need to analyze using computer systems.

Systems that are used for classification and recognition of handwriting help organizations and individuals to solve complex tasks by understanding the writers perspective as well as their emotion while writing down the text. The current system used neural networks to process and read handwriting characters and digits. The system benefited from Convolution Neural Networks (CNN) with the help of training data that allowed easy recognition of characters and digits. Like the human visual system, CNN allowed the system to be more sensitive to different features of objects.

That way, it was easy to classify and recognize different Handwriting characters, text and digits based on the training data stored in the system's database. The phases of handwriting recognition included image acquisition, digitization, preprocessing, segmentation, feature extraction, and recognition. The final system satisfied the specified requirements of accuracy as well as recognition. The work of the current research can be extended for character recognition in other languages. It can be used to convert books, newspapers, handwritten notes, and newspapers into digital text format using machine learning models used by the current research.

9. Navigation through the Designs (High Level Design: i/p, process block, o/p)

Figure 1: Main database looping and preprocessing of the pages

10. Low Level Design: (individual modules of the process block, and their i/p, o/p)

Figure 2: Preprocessed Pages for edge detection and character extraction using YOLO v5x FLOPS

Figure 3: Preprocessing of bounding box images extracted in last stage and classification of the characters

11. Hardware Requirements:

- Windows/MAC laptop
- NVIDIA GPU

12. Software Requirements:

- Python 3
- Tensorflow

13. Technologies used:

- NLP
- Neural Network
- OpenCV

14. Future Enhancements:

The main objective of this research is to design an expert system for Handwriting character recognition using neural network approach. Other objectives include:

- To address the issue of accuracy in Handwriting character recognition systems by developing a system that will use efficient and novel technology for recognizing Handwriting characters and words from image media.
- To investigate and demonstrate the usefulness of neural network technology in development of efficient Handwriting character recognition systems.

SIGN /NAME OF INTERNAL GUIDE