Datapath Components-Part I (Adder; Subtractor)

Jia Chen jiac@ucr.edu

Datapath

- A datapath is a collection of functional units such as arithmetic logic units (ALU) or multipliers that perform data processing operations, registers, and buses.
- Along with the control unit it composes the central processing unit (CPU).
- A larger datapath can be made by joining more than one datapaths using multiplexers.
- A datapath is the ALU, the set of registers, and the CPU's internal bus(es) that allow data to flow between them.

Datapath components

Multiplexer

Decoder

Adder

Subtractor

Register

Encoder

Shifter

Counter

Multiplier

Divider

Comparator

• • •

Carry-Ripple Adder (CRA)

Revisit 4-bit adder

Recap: Full Adder

Cin'

Cin

Cin'

Cin

	npu	t	Output		
A	В	Cin	Out	Cout	
0	0	0	0	0	
0	1	0	1	0	
1	0	0	1	0	
1	1	0	0	1	
0	0	1	1	0	
0	1	1	0	1	
1	0	1	0	1	
1	1	1	1	1	

	A'B'	A'B	AB	AB'	
Cout	0,0	0,1	1,1	1,0	
0	0	0	1	0	
1	0	1	1	1	ACin

BCin AB

Cout = AB + ACin + BCin

	A'B'	A'B	AB	AB'
Out	0,0	0,1	1,1	1,0
0	0	1	0	1
1	1	0	1	0

Out = A'BCin' + AB'Cin' + A'B'Cin + ABCin

Recap: Full Adder

Input			Output		
A	В	Cin	Out	Cout	
0	0	0	0	0	
0	1	0	1	0	
1	0	0	1	0	
1	1	0	0	1	
0	0	1	1	0	
0	1	1	0	1	
1	0	1	0	1	
1	1	1	1	1	

Cout = AB + ACin + BCin

Out = A'BCin' + AB'Cin' + A'B'Cin + ABCin

One approach estimates transistors, assuming every gate input requires 2 transistors, and ignoring inverters for simplicity. A 2-input gate requires 2 inputs · 2 trans/input = 4 transistors. A 3-input gate requires 3 · 2 = 6 transistors. A 4-input gate: 8 transistors. Wires also contribute to size, but ignoring wires as above is a common approximation.

Considering the shown 1-bit full adder and use it to build a 32-bit adder, how

many transistor do we need?

A. 1152

B. 1600

C. 1664

D. 1792

E. 1984

- One approach estimates transistors, assuming every gate input requires 2 transistors, and ignoring inverters for simplicity. A 2-input gate requires 2 inputs 2 trans/input = 4 transistors. A 3-input gate requires 3 · 2 = 6 transistors. A 4-input gate: 8 transistors. Wires also contribute to size, but ignoring wires as above is a common approximation.
- Considering the shown 1-bit full adder and use it to build a 32-bit adder, how many transistor do we need?

```
A. 1152
B. 1600
C. 1664
D. 1792
E. 1984 # of 2-input gates: 3 # of 3-input gates: 5 # of 4-input gates: 1 # of transistors for 1-bit adder = 3*4 + 5*6 + 1*8 = 50 # of transistors for a 32-bit adder = 50*32 = 1600
```


 Considering the shown 1-bit full adder and use it to build a 32-bit adder, how many gate-delays are we suffering to getting the final output?

A. 2

B. 32

C. 64

D. 128

E. 288

The delay is determined by the "critical path"

Carry-Ripple Adder (CRA)

 Considering the shown 1-bit full adder and use it to build a 32-bit adder, how many gate-delays are we suffering to getting the final output?

A. 2

B. 32

C. 64

D. 128

E. 288

2-gate delay per bit adder -> 2x32=64

Uses logic to quickly pre-compute the carry for each digit

Input			Output	
A	В	Cin	Out	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Needs to wait for Cin to decide Cout (Propagate)

Generate for CLA

Uses logic to quickly pre-compute the carry for each digit

Input			Output	
A	В	Cin	Out	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$G = AB$$

This means when A=B=1, we "Generate" the carryout bit

Propagate for CLA

Uses logic to quickly pre-compute the carry for each digit

Input			Ou	tput
A	В	Cin	Out	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Needs to wait for Cin to decide Cout (Propagate)

$$P = A XOR B$$

This means when A and B are different, we "Propagate"

Generate and Propagate for CLA

 All "G" and "P" are immediately available (only need to look over A_i and B_i)

 $G_i = A_iB_i$ (Generate)

Pi = Ai XOR Bi (Propagate)

 \cdot C_0 is immediately available but the other carries " C_i "s are not

 $G_i = A_i B_i$ (Generate)

Pi = Ai XOR Bi (Propagate)

C₀ is immediately available but the other carries "C_i"s are not

$$G_i = A_i B_i$$
 $P_i = A_i XOR B_i$ $C_1 = G_0 + P_0 C_0$ (Generate) (Propagate)

C₀ is immediately available but the other carries "C_i"s are not

$$C_1 = G_0 + P_0 C_0$$

In general,

$$C_i = G_{i-1} + P_{i-1} C_{i-1}$$

$$G_i = A_i B_i$$
 $P_i = A_i XOR B_i$ (Generate) (Propagate)

C₀ is immediately available but the other carries "C_i"s are not

$$G_i = A_i B_i$$
 $P_i = A_i XOR B_i$ (Generate) (Propagate)

$$C_{i} = G_{i-1} + P_{i-1} C_{i-1}$$
Specifically,
$$C_{1} = G_{0} + P_{0} C_{0}$$

$$C_{2} = G_{1} + P_{1} C_{1} = G_{1} + P_{1} (G_{0} + P_{0} C_{0})$$

$$= G_{1} + P_{1}G_{0} + P_{1}P_{0}C_{0}$$

$$C_{3} = G_{2} + P_{2} C_{2}$$

$$= G_{2} + P_{2} G_{1} + P_{2} P_{1}G_{0} + P_{2} P_{1}P_{0}C_{0}$$

$$C_{4} = G_{3} + P_{3} C_{3}$$

$$= G_{3} + P_{3} G_{2} + P_{3} P_{2} G_{1}$$

$$+ P_{3} P_{2} P_{1}G_{0} + P_{3} P_{2} P_{1}P_{0}C_{0}$$

- All "G" and "P" are immediately available (only need to look over A_i and B_i)
- \cdot C_0 is immediately available but the other carries " C_i "s are not

$$G_i = A_i B_i$$
 $P_i = A_i XOR B_i$ (Generate) (Propagate)

In summary,

$$C_{1} = G_{0} + P_{0} C_{0}$$

$$C_{2} = G_{1} + P_{1}G_{0} + P_{1}P_{0}C_{0}$$

$$C_{3} = G_{2} + P_{2} G_{1} + P_{2} P_{1}G_{0} + P_{2} P_{1}P_{0}C_{0}$$

$$C_{4} = G_{3} + P_{3} G_{2} + P_{3} P_{2} G_{1} + P_{3} P_{2} P_{1}G_{0} + P_{3} P_{2} P_{1}P_{0}C_{0}$$

Only have "Gi", "Pi", and Co

All "G" and "P" are immediately available (only need to look over A_i and B_i)

 \cdot C_0 is immediately available but the other carries " C_i "s are not

In summary,

$$C_1 = G_0 + P_0 C_0$$
 $C_2 = G_1 + P_1G_0 + P_1P_0C_0$
 $C_3 = G_2 + P_2 G_1 + P_2 P_1G_0 + P_2 P_1P_0C_0$

 $C_4 = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 C_0$

Uses logic to quickly pre-compute the carry for each digit

Uses logic to quickly pre-compute the carry for each digit

Uses logic to quickly pre-compute the carry for each digit

What's the gate-delay of a 4-bit CLA?

1 gate-delay (all the G_i and P_i are calculated in parallel)

$$C_1 = G_0 + P_0 C_0$$
 $C_2 = G_1 + P_1 G_0 + P_1 P_0 C_0$
 $C_3 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0$
 $C_4 = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 C_0$

2 gate-delay:

calculate all C_i given P_i, G_i, C₀ (SoP: AND gates + OR gate)

$$O_i = A_i'B_iC_i' + A_iB_i'C_i' + A_i'B_i'C_i + A_iB_iC_i$$

2 gate-delay: calculate O_i given A_i, B_i, C_i

However,

$$G_i = A_i B_i$$
 $P_i = A_i XOR B_i$

$$C_1 = G_0 + P_0 C_0$$
 $C_2 = G_1 + P_1 G_0 + P_1 P_0 C_0$
 $C_3 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0$
 $C_4 = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 C_0$

$$O_i = A_i'B_iC_i' + A_iB_i'C_i' + A_i'B_i'C_i + A_iB_iC_i$$

O_i can be written as a SoP or PoS form

2 gate-delays!!!!

How many transistors do we need to implement a 4-bit CLA logic?

Assumption: A 2-input gate requires 2 inputs \cdot 2 trans/input = 4 transistors. A 3-input gate requires $3 \cdot 2 = 6$ transistors. A 4-input gate: 8 transistors.

How many transistors do we need to implement a 4-bit CLA logic?

$$G_i = A_i B_i$$
 2-inputs for each G_i (4 transistors); 4*4=16

$$P_i = A_i XOR B_i$$
 2-inputs for each P_i (4 transistors); 4*4=16

$$C_1 = G_0 + P_0 C_0$$
 One 2-input AND and one 2-input OR; $4 + 4 = 8$

$$C_2 = G_1 + P_1G_0 + P_1P_0C_0$$

One 2-input AND, one 3-input AND, and one 3-input OR; 4+6+6=16

$$C_3 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0$$

One 2-input AND, one 3-input AND, one 4-input AND, and one 4-input OR; 4+6+8+8=26

$$C_4 = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 C_0$$

One 2-input AND, one 3-input AND, one 4-input AND, one 5-input AND, and one 5-input OR; 4+6+8+10+8=38

$$O_i = A_i'B_iC_i' + A_iB_i'C_i' + A_i'B_i'C_i + A_iB_iC_i$$

For each O_i , four 3-input AND and one 4-input OR (4*6+8=32 transistors); 32*4=128

Advantages and Disadvantages of CLA

(+)

- The propagation delay is reduced.
- It provides the fastest addition logic.
- It's gate delay is lower than RCA.

(-)

- The CLA circuit gets complicated as the number of variables increase.
- It need more transistors than RCA.

Area-Delay Trade-off!

Subtractor

2's Complement Addition

- ☐ If there is a carry-out from the sign-bit position, it is simply ignored.
- ☐ The 2's complement notation is highly suitable for addition.

2's Complement Subtraction

□Easy way: find the 2's complement of the subtrahend, and add

Adder and Subtractor Unit

- ☐ Control signal = 0: adder
- ☐ Control signal = 1: subtractor (carry-in c0=1 due to 2's complement of subtrahend; -y obtained by flipping each bit of of y and adding 1)

Evaluating 2's complement

 Do we need a separate procedure/hardware for adding positive and negative numbers?

- A. No. The same procedure applies
- B. No. The same "procedure" applies but it changes overflow detection
- C. Yes, and we need a new procedure
- D. Yes, and we need a new procedure and a new hardware
- E. None of the above

Evaluating 2's complement

 Do we need a separate procedure/hardware for adding positive and negative numbers?

$$^{\bullet}$$
 3 + 2 = 5

$$\begin{array}{r}
 1 \\
 0 0 1 1 \\
 + 0 0 1 0 \\
\hline
 0 1 0 1
\end{array}$$

$$^{\bullet}$$
 3 + (-2) = 1

- A. No. The same procedure applies
- B. No. The same "procedure" applies but it changes overflow detection
- C. Yes, and we need a new procedure
- D. Yes, and we need a new procedure and a new hardware
- E. None of the above