

ATOMIC STRUCTURES

MULTIPLE CHOICE QUESTIONS

1. The wave function ψ of 2s – orbital is given by

$$\psi_{2s} = \frac{1}{2\sqrt{2}\pi} \left(\frac{1}{a_0}\right)^{1/2} \left(2 - \frac{r}{a_0}\right) e^{-r/2a_0}$$

At $r = r_0$, radial node is formed. Which of the following is correct?

(a)
$$r_0 = 2a_0$$

(b)
$$2r_0 = a_0$$

(c)
$$r_0 = 3a_0$$

(d) None of these is correct

Explanation: (a)

At
$$r = r_0 \psi_{2s}^2 = 0$$

It is possible only when $2 - \frac{r}{a_0} = 0$

$$\therefore$$
 $\mathbf{r}_0 = \mathbf{2a_0}$

2. Which of the following set of quantum numbers belong to highest energy?

(a)
$$n = 2$$
, $l = 1$, $m = 0$, $s = +\frac{1}{2}$

(b)
$$n = 3$$
, $l = 0$, $m = 0$, $s = +\frac{1}{2}$

(c)
$$n = 4$$
, $l = 0$, $m = 1$, $s = +\frac{1}{2}$

(d)
$$n = 4$$
, $l = 1$, $m = 1$, $s = +\frac{1}{2}$

For (d), the value of n + l = 3 + 2 = 5. In other cases the value of (n + l) is less than 5.

The orbital having higher (n + l) value has higher energy.

3. An electron is accelerated through V voltage. Its de Broglie wavelength is

(a)
$$\frac{h}{\sqrt{2m.eV}}$$

(b)
$$\frac{12.27}{\sqrt{V}}$$
Å

$$(c) \left[\frac{150}{V}\right]^{\frac{1}{2}} \mathring{A}$$

(d) all of these

Explanation: (d)

$$\lambda = \frac{h}{\sqrt{2 \text{ m KE}}}; (K.E. = e \cdot V); \ \lambda = \left[\frac{h}{\sqrt{2 \text{ m e} \cdot V}}\right] = \left[\frac{h^2}{2 \text{m} \cdot e V} \times 10^{20}\right]^{\frac{1}{2}} \text{A}^{\circ}$$
$$= \left[\frac{150}{V}\right]^{\frac{1}{2}} \text{A}^{\circ} = \frac{12.27}{\sqrt{V}} \text{A}^{\circ}$$

- 4. Which one among the following statements is correct?
 - (a) An orbital containing an electron having quantum numbers n = 2; l = 0; m = 0 and s = +1/2 is spherical.
 - (b) The frequency of X-rays is less than that of radiowaves.
 - (c) All photons have same energy.
 - (d) As intensity of light increases, its frequency also increases.

Any orbital with l = 0 has spherical symmetry irrespective of the value of its principal quantum number.

5. The ratio of radii of first orbits of H, He^+ and Li^{2+} is

(a) 1: 2: 3

(b) 6: 3: 2

(c) 1: 4: 9

(d) 9: 4: 1

Explanation: (b)

$$r = \frac{n^2}{Z} \times 0.529 \text{ Å}$$

$$r_{H}: r_{He^{+}}: r_{Li^{2+}} = 1: \frac{1}{2}: \frac{1}{3} = 6:3:2$$

6. How many electrons will have m (magnetic quantum number) = 0 in Fe³⁺ ion?

(a) 12

(b) 13

(c) 11

(d) 14

Explanation: (c)

Fe: $1s^22s^22p^63s^23p^64s^23d^6$

Fe³⁺: $1s^22s^22p^63s^23p^63d^5$

Electron with m = 0 are 11.

7. The radius of second stationary orbit in Bohr's atom is R. The radius of the third orbit will be

(a) 3 R

(b) 9 R

(c) $\frac{9}{4}$ R

(d) 4 R

$$\begin{split} r_n &= 0.529 \; \frac{n^2}{Z} \mathring{A} \\ r_2 &= 0.529 \times \frac{4}{Z} = R \\ r_3 &= 0.529 \times \frac{9}{Z} = 9 \times \frac{R}{4} \quad \text{(for } n = 3) \end{split}$$

- 8. The work function for a metal is 4 eV. To emit a photoelectron of zero velocity from the surface of the metal, the wavelength of incident light should be
 - (a) 2700 Å

(b) 1700 Å

(c) 5900 Å

(d) 3100 Å

Explanation: (d)

$$\frac{hc}{\lambda} = w_0 + KE(but KE = 0) ; \lambda = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{4 \times 1.6 \times 10^{-19}} = 3.1 \times 10^{-7}$$

$$m = 3100 \text{ Å}.$$

- 9. The maximum amount of BaSO₄ that can be obtained on mixing 0.5 mol BaCl₂ with 1 mol H₂SO₄ is
 - (a) 0.5 mol

(b) 0.1 mol

(c) 0.15 mol

(d) 0.2 mol

Explanation: (a)

$$BaCl_2 + H_2SO_4 \longrightarrow BaSO_4 + 2HCl$$

Moles taken initially 0.5 mol 1 mol

 $0 \ 0$

0

 $0.5 \, \text{mol}$

0.5 mol1 mol

The limiting reagent is BaCl₂. Hence, a maximum of 0.5 mole of BaSO₄ will be obtained.

10. The wave number of the first emission line in the H-atom spectrum in the Balmer series in terms of Rydberg's constant (R_H) is given by

(a)
$$\frac{5R_H}{36}$$
 cm⁻¹

(b)
$$\frac{3R_{H}}{4}$$
 cm⁻¹

(c)
$$\frac{7R_H}{144}$$
 cm⁻¹

(d)
$$\frac{9R_H}{400}$$
 m⁻¹

Explanation: (a)

$$\begin{split} &\frac{1}{\lambda} = RZ^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] \quad n_1 = 2, \; n_2 = 3, \; Z = 1 \\ &\frac{1}{\lambda} = R \left[\frac{1}{4} - \frac{1}{9} \right] \qquad \quad \frac{1}{\lambda} = \frac{5R}{36} \, cm^{-1} \end{split}$$

11. It ' λ_0 ' is the threshold wavelength for photoelectric emission, ' λ ' the wavelength of light falling on the surface of a metal and 'm' is the mass of the electron, then the velocity of ejected electron is given by

$$\left(a\right)\left[\frac{2h}{m}(\lambda_{_{0}}-\lambda)\right]^{\!1/2}$$

(b)
$$\left[\frac{2hc}{m}(\lambda_0 - \lambda)\right]^{1/2}$$

(c)
$$\left[\frac{2hc}{m}\left(\frac{\lambda_0 - \lambda}{\lambda_0 \lambda}\right)\right]^{1/2}$$

(d)
$$\left[\frac{2h}{m}\left(\frac{1}{\lambda_0} - \frac{1}{\lambda}\right)\right]^{1/2}$$

$$hv = hv_0 + KE i.e.$$
 $\frac{hc}{\lambda} = \frac{hc}{\lambda_0} + \frac{1}{2}mv^2$

$$v = \left(\frac{2hc}{m} \left(\frac{1}{\lambda} - \frac{1}{\lambda_0}\right)\right)^{1/2}$$

- **12.** Energy of the third orbit of Bohr's atom is
 - (a) -13.6 eV

(b) -34 eV

(c) -1.5 eV

(d) none of the three

Explanation: (c)

$$E_n = \frac{-13.6 \times Z^2 \text{ eV}}{n^2}$$
 [Z = 1, n = 3]
= $\frac{-13.6}{9} = -1.5 \text{ eV}$.

- 13. The electronic velocity in the fourth Bohr's orbit of hydrogen is V. The velocity of the electron in the first orbit would be:
 - (a) 4 V

(b) 16 V

(c) V/4

(d) V/16

Explanation: (a)

- 14. The ratio of the difference between 1st and 2nd Bohr's orbits energy to that between 2nd and 3rd orbits energy is
 - (a) 1/2

(b) 1/3

(c) 27/5

(d) 5/27

$$E = -13.6 \times \frac{Z}{n^2} eV ;$$

$$E_1 = -13.6 \text{ eV}$$
;

$$E_2 = -13.6 \times \frac{1}{4} = -3.4 \text{ eV}.$$

$$\therefore$$
 E₂- E₁ = -3.4 - (-13.6)eV = 10.2 eV.

$$E_3 = -13.6 \times \frac{1}{9} = -1.51 \text{ eV}$$
; $E_4 = -13.6 \times \frac{1}{16} = -0.85 \text{ eV}$

$$E_4 - E_3 = -0.85 + 1.51 = 0.66 \text{ eV}.$$

$$\therefore \frac{E_2 - E_1}{E_4 - E_3} = \frac{10.2}{0.66} = \frac{27}{5}.$$

- 15. If the radius of first Bohr orbit is x, then de Broglie wavelength of electron in 4^{th} orbit is nearly
 - (a) $8\pi x$

(b) $6\pi x$

(c) $4\pi x$

(d) $2\pi x$

Explanation: (a)

$$\mathbf{r}_1 = x$$

$$r_4 = 16x$$
 (: $r \propto n^2$)

Also,
$$\lambda = \frac{h}{mv}$$
(i) (from de Broglie equation)

And
$$mvr = \frac{nh}{2\pi}$$
(ii)

From (i) and (ii)

$$2\pi r = n\lambda$$

$$\lambda = \frac{2\pi r}{n}$$

:. Wavelength of electron in 3rd orbit.

$$\lambda_3 = \frac{2\pi r_3}{n_3} = \frac{2\pi 16x}{4} = 8\pi x.$$

- 16. According to Bohr's Model of hydrogen atom
 - (a) total energy of the electron is quantized
 - (b) angular momentum of the electron is quantized and given as $\sqrt{l(l+1)} \cdot \frac{h}{2\pi}$
 - (c) both (a) and (b)
 - (d) none of these

Explanation: (c)

According to Bohr's model of H-atom, both

- (i) total energy of the electron is quantized and
- (ii) Angular momentum of the electron is quantized and is given as $\sqrt{l(l+1)} \cdot \frac{h}{2\pi}$ and true.

(iii)

17. Photoelectric emission is observed from a surface for frequencies v_1 and v_2 of incident radiations ($v_1>v_2$). If the maximum kinetic energy of photoelectrons in the two cases are in the ratio of 2: 1, then threshold frequency v_0 is given by

(a)
$$\frac{v_2 - v_1}{2 - 1}$$

(b)
$$\frac{2v_1-v_2}{2-1}$$

(c)
$$\frac{2v_2-v_1}{2-1}$$

$$(d) \frac{v_2 - v_1}{2}$$

$$KE_1 = h\nu_1 - h\nu_0$$

$$KE_2 = h\nu_2 - h\nu_0$$

$$\frac{KE_1}{KE_2} = \frac{h(v_1 - v_0)}{h(v_2 - v_0)}; \frac{2}{1} = \frac{v_1 - v_0}{v_2 - v_0}; \quad v_0 = \frac{2v_2 - v_1}{2 - 1}.$$

18. Correct order of radius of the 1st orbit of H, He⁺, Li²⁺, Be³⁺ is

(a)
$$H > He^+ > Li^{2+} > Be^{3+}$$

(b)
$$Be^{3+} > Li^{2+} > He^+ > H$$

(c)
$$He^+> Be^{3+}> Li^{2+}> H$$

(d)
$$He^+> H > Li^{2+}> Be^{3+}$$

Explanation: (a)

For the same orbit radius $\propto \frac{1}{\text{atomic number}}$

19. The calculated value of magnetic moment of $_{26}\text{Fe}^{3+}$ is

(a) 3.89 B.M

(b) 1.73 B.M

(c) 4.90 B.M

(d) 5.92 B.M

Explanation: (d)

Magnetic moment = $\sqrt{n(n+2)}$ B.M where n is the number of unpaired electrons.

For Fe³⁺ ion
$$n = 5$$
 so, $\mu = \sqrt{5(5+2)} = \sqrt{35}$ B.M

20. If the K.E. of a particle is doubled, its de Broglie wavelength becomes

(a) 2 times

(b) 4 times

(c) $\sqrt{2}$ times

(d) $\frac{1}{\sqrt{2}}$ times

$$\frac{\lambda_1}{\lambda_2} = \sqrt{\frac{E_2}{E_1}}$$
 where 'E' is the K.E. of a particle.

As per the above relation, when K.E. is doubled, its wavelength becomes $\frac{1}{\sqrt{2}}$ times.

- **21.** Which of the following statement is correct in relation to the hydrogen atom?
 - (a) 3s-orbital is lower in energy than 3p-orbital.
 - (b) 3p-orbital is lower in energy than 3d-orbital.
 - (c) 3s and 3p-orbitals are of lower energy than 3d-orbitals.
 - (d) 3s, 3p and 3d-orbitals all have same energy.

Explanation: (d)

Energy of single electron system is only depend on the principle quantum number, so that energy of different orbitals of same principle quantum number is same.

- 22. The outermost electronic configuration of the most electronegative element is
 - (a) ns^2np^3

(b) ns^2np^4

(c) ns^2np^5

(d) ns^2np^6

Explanation: (c) ns²np⁵

INTEGER TYPE QUESTIONS

23. According to Bohr's theory, the electronic energy of H– atom in n^{th} Bohr orbit is given by $E_n = -\frac{21.76 \times 10^{-19}}{n^2}$ joule. Calculate the longest λ of light that will be needed to remove an electron from III Bohr's orbit of He⁺ ion. Express your answer in Å units.

Explanation: (2053 Å)

$$\begin{split} E_{3H} &= \frac{-21.76 \times 10^{-19}}{3^2} = -2.42 \times 10^{-19} \ \text{joule} \\ E_{_{3He^+}} &= Z^2 \times \ E_{_{3H}} = -2.42 \times 10^{-19} \times 4 = -9.68 \times 10^{-19} \ \text{joule}. \end{split}$$

Now if electron is to be removed from III orbit energy equivalent to 9.64×10^{-19} must be provided. Therefore,

$$\begin{split} E_3 &= \frac{hc}{\lambda} \\ \text{or } \lambda = \frac{hc}{E_3} = \frac{6.625 \times 10^{-34} \times 3.0 \times 10^8}{9.68 \times 10^{-19}} = 2.053 \times 10^{-7} \text{ m} \\ &= 2053 \times 10^{-10} \text{ m} = \textbf{2053 Å}. \end{split}$$

24. An element with atomic number 20 will be placed in the period of the periodic table

Explanation: (4)

Atomic number $20 \longrightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$

25. The radius of the first Bohr orbit of hydrogen atom (n = 1) is approximately 0.530 Å. The radius of the first excited state (n = 2) of hydrogen atom is

Explanation: (2.12 Å)

 $r_n = r_1 \times n^2$ [for hydrogen atom]

$$r_n = 0.53 \times n^2 \text{ Å } [n = 2]$$

$$=0.53\times4$$

$$r_n = 2.12 \text{ Å}.$$

- 26. In Mn²⁺ ion, the number of unpaired electrons is **Explanation:** (5)
- 27. If electrons are excited to 4th shell in He⁺ ion, the number of wavelengths emitted by electrons during de–excitation are

Explanation: (6)

By n_{c_2} formula ie. Total number of transitions = $\frac{n(n-1)}{2}$.

28. The first excitation energy for hydrogen atom would be Explanation: (10.2 eV)

$$E_2 - E_1 = \frac{-13.6}{4} + 13.6 = 10.2 \text{ eV}.$$

29. Assuming Rydberg's constant (R_H) to be 109670 cm⁻¹, the longest wavelength line in the Lyman series of the hydrogen spectrum is

Explanation: (1215.8 Å)

$$\frac{1}{\lambda} = R_H Z^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) = 109670 \left(\frac{1}{1} - \frac{1}{4} \right) = \frac{3}{4} (109670) \text{ cm}^{-1}$$

$$\lambda = 1215.8 \times 10^{-8}$$
 cm i.e.,

$$\lambda = 1215.8 \text{ Å}$$

30. The ratio of $(E_2 - E_1)$ to $(E_4 - E_3)$ for the hydrogen atom is approximately equal to

$$E_2 - E_1 = \left[\frac{-E_1}{4} + E_1\right] = \frac{+3E_1}{4}, \ E_4 - E_3 = \frac{-E_1}{16} + \frac{E_1}{9} = \frac{7E_1}{16 \times 9}$$

$$\frac{E_2 - E_1}{E_4 - E_3} = \frac{3}{4} \times \frac{144}{7} = \frac{108}{7} = \frac{108}{7} \approx 15.$$