5.1 Entering Input

Watch a video of this section¹

At the R prompt we type expressions. The <- symbol is the assignment operator.

```
> x <- 1
> print(x)
[1] 1
> x
[1] 1
> msg <- "hello"</pre>
```

The grammar of the language determines whether an expression is complete or not.

```
x <- ## Incomplete expression
```

The # character indicates a comment. Anything to the right of the # (including the # itself) is ignored. This is the only comment character in R. Unlike some other languages, R does not support multi-line comments or comment blocks.

5.2 Evaluation

When a complete expression is entered at the prompt, it is evaluated and the result of the evaluated expression is returned. The result may be *auto-printed*.

```
> x <- 5 ## nothing printed
> x ## auto-printing occurs
[1] 5
> print(x) ## explicit printing
[1] 5
```

The [1] shown in the output indicates that x is a vector and 5 is its first element.

Typically with interactive work, we do not explicitly print objects with the print function; it is much easier to just auto-print them by typing the name of the object and hitting return/enter. However,

¹https://youtu.be/vGY5i_J2c-c?t=4m43s

when writing scripts, functions, or longer programs, there is sometimes a need to explicitly print objects because auto-printing does not work in those settings.

When an R vector is printed you will notice that an index for the vector is printed in square brackets [] on the side. For example, see this integer sequence of length 20.

```
> x <- 11:30
> x
[1] 11 12 13 14 15 16 17 18 19 20 21 22
[13] 23 24 25 26 27 28 29 30
```

The numbers in the square brackets are not part of the vector itself, they are merely part of the *printed output*.

With R, it's important that one understand that there is a difference between the actual R object and the manner in which that R object is printed to the console. Often, the printed output may have additional bells and whistles to make the output more friendly to the users. However, these bells and whistles are not inherently part of the object.

Note that the : operator is used to create integer sequences.

5.3 R Objects

Watch a video of this section²

R has five basic or "atomic" classes of objects:

- character
- numeric (real numbers)
- integer
- complex
- logical (True/False)

The most basic type of R object is a vector. Empty vectors can be created with the vector() function. There is really only one rule about vectors in R, which is that A vector can only contain objects of the same class.

But of course, like any good rule, there is an exception, which is a *list*, which we will get to a bit later. A list is represented as a vector but can contain objects of different classes. Indeed, that's usually why we use them.

There is also a class for "raw" objects, but they are not commonly used directly in data analysis and I won't cover them here.

²https://youtu.be/vGY5i_J2c-c

5.4 Numbers

Numbers in R are generally treated as numeric objects (i.e. double precision real numbers). This means that even if you see a number like "1" or "2" in R, which you might think of as integers, they are likely represented behind the scenes as numeric objects (so something like "1.00" or "2.00"). This isn't important most of the time...except when it is.

If you explicitly want an integer, you need to specify the L suffix. So entering 1 in R gives you a numeric object; entering 1L explicitly gives you an integer object.

There is also a special number Inf which represents infinity. This allows us to represent entities like 1 / 0. This way, Inf can be used in ordinary calculations; e.g. 1 / Inf is 0.

The value NaN represents an undefined value ("not a number"); e.g. 0 / 0; NaN can also be thought of as a missing value (more on that later)

5.5 Attributes

R objects can have attributes, which are like metadata for the object. These metadata can be very useful in that they help to describe the object. For example, column names on a data frame help to tell us what data are contained in each of the columns. Some examples of R object attributes are

- names, dimnames
- dimensions (e.g. matrices, arrays)
- class (e.g. integer, numeric)
- length
- other user-defined attributes/metadata

Attributes of an object (if any) can be accessed using the attributes() function. Not all R objects contain attributes, in which case the attributes() function returns NULL.

5.6 Creating Vectors

Watch a video of this section³

The c() function can be used to create vectors of objects by concatenating things together.

³https://youtu.be/w8_XdYI3reU

```
> x <- c(0.5, 0.6)  ## numeric
> x <- c(TRUE, FALSE)  ## logical
> x <- c(T, F)  ## logical
> x <- c("a", "b", "c")  ## character
> x <- 9:29  ## integer
> x <- c(1+0i, 2+4i)  ## complex</pre>
```

Note that in the above example, T and F are short-hand ways to specify TRUE and FALSE. However, in general one should try to use the explicit TRUE and FALSE values when indicating logical values. The T and F values are primarily there for when you're feeling lazy.

You can also use the vector() function to initialize vectors.

```
> x <- vector("numeric", length = 10)
> x
[1] 0 0 0 0 0 0 0 0 0 0
```

5.7 Mixing Objects

There are occasions when different classes of R objects get mixed together. Sometimes this happens by accident but it can also happen on purpose. So what happens with the following code?

```
> y <- c(1.7, "a") ## character
> y <- c(TRUE, 2) ## numeric
> y <- c("a", TRUE) ## character</pre>
```

In each case above, we are mixing objects of two different classes in a vector. But remember that the only rule about vectors says this is not allowed. When different objects are mixed in a vector, *coercion* occurs so that every element in the vector is of the same class.

In the example above, we see the effect of *implicit coercion*. What R tries to do is find a way to represent all of the objects in the vector in a reasonable fashion. Sometimes this does exactly what you want and...sometimes not. For example, combining a numeric object with a character object will create a character vector, because numbers can usually be easily represented as strings.

5.8 Explicit Coercion

Objects can be explicitly coerced from one class to another using the as .* functions, if available.

```
> x <- 0:6
> class(x)
[1] "integer"
> as.numeric(x)
[1] 0 1 2 3 4 5 6
> as.logical(x)
[1] FALSE TRUE TRUE TRUE TRUE TRUE
> as.character(x)
[1] "0" "1" "2" "3" "4" "5" "6"
```

Sometimes, R can't figure out how to coerce an object and this can result in NAs being produced.

```
> x <- c("a", "b", "c")
> as.numeric(x)
Warning: NAs introduced by coercion
[1] NA NA NA
> as.logical(x)
[1] NA NA NA
> as.complex(x)
Warning: NAs introduced by coercion
[1] NA NA NA
```

When nonsensical coercion takes place, you will usually get a warning from R.

5.9 Matrices

Matrices are vectors with a *dimension* attribute. The dimension attribute is itself an integer vector of length 2 (number of rows, number of columns)

Matrices are constructed *column-wise*, so entries can be thought of starting in the "upper left" corner and running down the columns.

Matrices can also be created directly from vectors by adding a dimension attribute.

```
> m <- 1:10
> m
[1] 1 2 3 4 5 6 7 8 9 10
> dim(m) <- c(2, 5)
> m
     [,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
```

Matrices can be created by *column-binding* or *row-binding* with the cbind() and rbind() functions.

5.10 Lists

Lists are a special type of vector that can contain elements of different classes. Lists are a very important data type in R and you should get to know them well. Lists, in combination with the various "apply" functions discussed later, make for a powerful combination.

Lists can be explicitly created using the list() function, which takes an arbitrary number of arguments.

```
> x <- list(1, "a", TRUE, 1 + 4i)
> x
[[1]]
[1] 1

[[2]]
[1] "a"

[[3]]
[1] TRUE

[[4]]
[1] 1+4i
```

We can also create an empty list of a prespecified length with the vector() function

```
> x <- vector("list", length = 5)
> x
[[1]]
NULL

[[2]]
NULL

[[3]]
NULL

[[4]]
NULL

[[5]]
```

5.11 Factors

Watch a video of this section4

Factors are used to represent categorical data and can be unordered or ordered. One can think of a factor as an integer vector where each integer has a *label*. Factors are important in statistical modeling and are treated specially by modelling functions like lm() and glm().

Using factors with labels is *better* than using integers because factors are self-describing. Having a variable that has values "Male" and "Female" is better than a variable that has values 1 and 2.

Factor objects can be created with the factor() function.

⁴https://youtu.be/NuY6jY4qE7I

```
> x <- factor(c("yes", "yes", "no", "yes", "no"))
> x
[1] yes yes no yes no
Levels: no yes
> table(x)
x
    no yes
    2     3
> ## See the underlying representation of factor
> unclass(x)
[1] 2 2 1 2 1
attr(,"levels")
[1] "no" "yes"
```

Often factors will be automatically created for you when you read a dataset in using a function like read.table(). Those functions often default to creating factors when they encounter data that look like characters or strings.

The order of the levels of a factor can be set using the levels argument to factor(). This can be important in linear modelling because the first level is used as the baseline level.

```
> x <- factor(c("yes", "yes", "no", "yes", "no"))
> x ## Levels are put in alphabetical order
[1] yes yes no yes no
Levels: no yes
> x <- factor(c("yes", "yes", "no", "yes", "no"),
+ levels = c("yes", "no"))
> x
[1] yes yes no yes no
Levels: yes no
```

5.12 Missing Values

Missing values are denoted by NA or NaN for q undefined mathematical operations.

- is.na() is used to test objects if they are NA
- is.nan() is used to test for NaN
- NA values have a class also, so there are integer NA, character NA, etc.
- A NaN value is also NA but the converse is not true

```
> ## Create a vector with NAs in it
> x <- c(1, 2, NA, 10, 3)
> ## Return a logical vector indicating which elements are NA
> is.na(x)
[1] FALSE FALSE TRUE FALSE FALSE
> ## Return a logical vector indicating which elements are NaN
> is.nan(x)
[1] FALSE FALSE FALSE FALSE FALSE
> ## Now create a vector with both NA and NaN values
> x <- c(1, 2, NaN, NA, 4)
> is.na(x)
[1] FALSE FALSE TRUE TRUE FALSE
> is.nan(x)
[1] FALSE FALSE TRUE TRUE FALSE
```

5.13 Data Frames

Data frames are used to store tabular data in R. They are an important type of object in R and are used in a variety of statistical modeling applications. Hadley Wickham's package dplyr⁵ has an optimized set of functions designed to work efficiently with data frames.

Data frames are represented as a special type of list where every element of the list has to have the same length. Each element of the list can be thought of as a column and the length of each element of the list is the number of rows.

Unlike matrices, data frames can store different classes of objects in each column. Matrices must have every element be the same class (e.g. all integers or all numeric).

In addition to column names, indicating the names of the variables or predictors, data frames have a special attribute called row.names which indicate information about each row of the data frame.

Data frames are usually created by reading in a dataset using the read.table() or read.csv(). However, data frames can also be created explicitly with the data.frame() function or they can be coerced from other types of objects like lists.

Data frames can be converted to a matrix by calling data.matrix(). While it might seem that the as.matrix() function should be used to coerce a data frame to a matrix, almost always, what you want is the result of data.matrix().

⁵https://github.com/hadley/dplyr

```
> x <- data.frame(foo = 1:4, bar = c(T, T, F, F))
> x
    foo bar
1    1    TRUE
2    2    TRUE
3    3   FALSE
4    4   FALSE
> nrow(x)
[1]    4
> ncol(x)
[1]    2
```

5.14 Names

R objects can have names, which is very useful for writing readable code and self-describing objects. Here is an example of assigning names to an integer vector.

Lists can also have names, which is often very useful.

```
> x <- list("Los Angeles" = 1, Boston = 2, London = 3)
> x

$`Los Angeles`
[1] 1

$Boston
[1] 2

$London
[1] 3
> names(x)
[1] "Los Angeles" "Boston" "London"
```

Matrices can have both column and row names.

```
> m <- matrix(1:4, nrow = 2, ncol = 2)
> dimnames(m) <- list(c("a", "b"), c("c", "d"))
> m
    c d
a 1 3
b 2 4
```

Column names and row names can be set separately using the colnames() and rownames() functions.

```
> colnames(m) <- c("h", "f")
> rownames(m) <- c("x", "z")
> m
    h f
x 1 3
z 2 4
```

Note that for data frames, there is a separate function for setting the row names, the row.names() function. Also, data frames do not have column names, they just have names (like lists). So to set the column names of a data frame just use the names() function. Yes, I know its confusing. Here's a quick summary:

Object	Set column names	Set row names	
data frame	names()	row.names()	
matrix	colnames()	rownames()	

5.15 Summary

There are a variety of different builtin-data types in R. In this chapter we have reviewed the following

- atomic classes: numeric, logical, character, integer, complex
- · vectors, lists
- factors
- missing values
- · data frames and matrices

All R objects can have attributes that help to describe what is in the object. Perhaps the most useful attribute is names, such as column and row names in a data frame, or simply names in a vector or list. Attributes like dimensions are also important as they can modify the behavior of objects, like turning a vector into a matrix.

6. Getting Data In and Out of R

6.1 Reading and Writing Data

Watch a video of this section¹

There are a few principal functions reading data into R.

- read.table, read.csv, for reading tabular data
- readLines, for reading lines of a text file
- source, for reading in R code files (inverse of dump)
- dget, for reading in R code files (inverse of dput)
- load, for reading in saved workspaces
- unserialize, for reading single R objects in binary form

There are of course, many R packages that have been developed to read in all kinds of other datasets, and you may need to resort to one of these packages if you are working in a specific area.

There are analogous functions for writing data to files

- write.table, for writing tabular data to text files (i.e. CSV) or connections
- writeLines, for writing character data line-by-line to a file or connection
- dump, for dumping a textual representation of multiple R objects
- dput, for outputting a textual representation of an R object
- save, for saving an arbitrary number of R objects in binary format (possibly compressed) to a file.
- serialize, for converting an R object into a binary format for outputting to a connection (or file).

6.2 Reading Data Files with read.table()

The read.table() function is one of the most commonly used functions for reading data. The help file for read.table() is worth reading in its entirety if only because the function gets used a lot (run ?read.table in R). I know, I know, everyone always says to read the help file, but this one is actually worth reading.

The read.table() function has a few important arguments:

- file, the name of a file, or a connection
- header, logical indicating if the file has a header line
- sep, a string indicating how the columns are separated
- colClasses, a character vector indicating the class of each column in the dataset
- nrows, the number of rows in the dataset. By default read.table() reads an entire file.
- comment.char, a character string indicating the comment character. This defalts to "#". If there are no commented lines in your file, it's worth setting this to be the empty string "".
- skip, the number of lines to skip from the beginning
- stringsAsFactors, should character variables be coded as factors? This defaults to TRUE because back in the old days, if you had data that were stored as strings, it was because those strings represented levels of a categorical variable. Now we have lots of data that is text data and they don't always represent categorical variables. So you may want to set this to be FALSE in those cases. If you *always* want this to be FALSE, you can set a global option via options(stringsAsFactors = FALSE). I've never seen so much heat generated on discussion forums about an R function argument than the stringsAsFactors argument. Seriously.

For small to moderately sized datasets, you can usually call read.table without specifying any other arguments

```
> data <- read.table("foo.txt")</pre>
```

In this case, R will automatically

- skip lines that begin with a #
- figure out how many rows there are (and how much memory needs to be allocated)
- figure what type of variable is in each column of the table.

Telling R all these things directly makes R run faster and more efficiently. The read.csv() function is identical to read.table except that some of the defaults are set differently (like the sep argument).

6.3 Reading in Larger Datasets with read.table

Watch a video of this section²

With much larger datasets, there are a few things that you can do that will make your life easier and will prevent R from choking.

- Read the help page for read.table, which contains many hints
- Make a rough calculation of the memory required to store your dataset (see the next section for an example of how to do this). If the dataset is larger than the amount of RAM on your computer, you can probably stop right here.

²https://youtu.be/BJYYIJO3UFI

- Set comment.char = "" if there are no commented lines in your file.
- Use the colClasses argument. Specifying this option instead of using the default can make 'read.table' run MUCH faster, often twice as fast. In order to use this option, you have to know the class of each column in your data frame. If all of the columns are "numeric", for example, then you can just set colClasses = "numeric". A quick an dirty way to figure out the classes of each column is the following:

```
> initial <- read.table("datatable.txt", nrows = 100)
> classes <- sapply(initial, class)
> tabAll <- read.table("datatable.txt", colClasses = classes)</pre>
```

• Set nrows. This doesn't make R run faster but it helps with memory usage. A mild overestimate is okay. You can use the Unix tool we to calculate the number of lines in a file.

In general, when using R with larger datasets, it's also useful to know a few things about your system.

- How much memory is available on your system?
- What other applications are in use? Can you close any of them?
- Are there other users logged into the same system?
- What operating system ar you using? Some operating systems can limit the amount of memory a single process can access

6.4 Calculating Memory Requirements for R Objects

Because R stores all of its objects physical memory, it is important to be cognizant of how much memory is being used up by all of the data objects residing in your workspace. One situation where it's particularly important to understand memory requirements is when you are reading in a new dataset into R. Fortunately, it's easy to make a back of the envelope calculation of how much memory will be required by a new dataset.

For example, suppose I have a data frame with 1,500,000 rows and 120 columns, all of which are numeric data. Roughly, how much memory is required to store this data frame? Well, on most modern computers double precision floating point numbers³ are stored using 64 bits of memory, or 8 bytes. Given that information, you can do the following calculation

 $^{{\}it 3} http://en.wikipedia.org/wiki/Double-precision_floating-point_format$

Getting Data In and Out of R 27

```
1,500,000 \times 120 \times 8 bytes/numeric = 1,440,000,000 bytes = 1,440,000,000 / 2^{20} bytes/MB = 1,373.29 MB = 1.34 GB
```

So the dataset would require about 1.34 GB of RAM. Most computers these days have at least that much RAM. However, you need to be aware of

- what other programs might be running on your computer, using up RAM
- what other R objects might already be taking up RAM in your workspace

Reading in a large dataset for which you do not have enough RAM is one easy way to freeze up your computer (or at least your R session). This is usually an unpleasant experience that usually requires you to kill the R process, in the best case scenario, or reboot your computer, in the worst case. So make sure to do a rough calculation of memeory requirements before reading in a large dataset. You'll thank me later.