Stoffeigenschaften ermitteln

Gruppenaufgabe:

- Führt innerhalb der Gruppe alle Versuche nur **einmal** durch. Teilt euch dazu die verschiedenen Versuche auf und zeigt euch jeweils die Ergebnisse.
- ➤ **Protokolliert** die Beobachtungen und schreibt **Ergebnissätze**, die eure Beobachtungen zusammenfassen, gemeinsam unter der jeweiligen Versuchsüberschrift **in euer Heft**. Lest dazu auch im Buch S. 30/31 zu V3 und S. 32 zu V5 durch.

Wichtig:

Anleitungen lesen und Schutzmaßnahmen beachten! Nach den Versuchen sofort alles wieder säubern und in die Kiste räumen, damit auch andere alle Materialien dort wieder vorfinden.

V1: Untersuchung der elektrischen Leitfähigkeit

<u>Materialien</u>: Becherglas mit Kochsalz (fest), Leitfähigkeitsprüfer, demin. Wasser, Holzstab, Kupferblech, Bleistiftmine (besteht aus Graphit, selbst besorgen)

Durchführung:

Stoffe durch Berühren mit den kupfernen Kontakten des Leitfähigkeitsprüfers testen. Prüfe zunächst das reine Kochsalz. Löse es dann in etwas Wasser auf und prüfe die Leitfähigkeit der Lösung

Stoff	leitet (Leuchtdiode brennt)	leitet nicht
Kochsalz (fest)		
Kochsalzlösung		
Kupferblech		
Bleistiftmine		
Holzstab		

V2: Untersuchung auf magnetische Eigenschaften

Materialien: Magnet; Eisenblech (Fe), Graphitstab, Zinkblech (Zn), Kupferblech (Cu)

	· ·	Wird von Magnet nicht angezogen
Eisenblech (Fe)		
Graphitstab		
Zinkblech (Zn)		
Kupferblech (Cu)		

V3: Untersuchung der Löslichkeit

<u>Materialien</u>: Becherglas 100 ml, Spatel, Waage, Wägeschale zum Abwiegen, Salz

Durchführung:

In 10g Wasser werden zunächst 2g Kochsalz gelöst. Anschließend werden jeweils Stoffportionen zu 0,5 g zugesetzt und umgerührt, bis sich ein dauerhafter Bodensatz bildet.

Wie viel Gramm Kochsalz können sich in Wasser lösen, bis sich ein dauerhafter Bodensatz bildet?

Antwort: In 10 g Wasser können sich	g Wasser lösen
Rechne die so bestimmte Löslichkeit von Kochsalz ho	och auf 100g Wasser!
Antwort: In 100 g Wasser können sich	g Kochsalz lösen
<u>Überlege</u> : Was würde passieren, wenn du die erhalte erwärmst?	ene Lösung (mit Bodensatz

→ Buch S. 30/31

V4: Wärmeleitfähigkeit

Materialien:

heißes Wasser aus dem Wasserkocher, Becherglas, Thermometer, Glasstab, Kupferblech, Eisenblech, Holzstab

<u>Durchführung</u>: Materialien für 1 Minute in das Becherglas (100ml) mit heißem Wasser stellen. **Wichtig**: Becherglas nur zur Hälfte mit Wasser füllen; heißes Becherglas nur mit feuchtem Schwammtuch anfassen!

<u>Beobachtung</u>: Wie fühlen sich die Stoffe vor und nach dem Einstellen ins Wasser an? Prüfe die Seite, die nicht in das heiße Wasser taucht!

Stoff	Zimmertemperatur	Nach Erhitzen
Holz		
Glas		
Kupfer		
Eisen		

V5: Saure oder alkalische Lösungen

Materialien:

Reagenzglasständer mit 3 Reagenzgläsern, Universalindikator flüssig

<u>Durchführung</u>: **Schutzbrille aufsetzen!** Gib in jedes der Reagenzgläser etwa 2 cm hoch Leitungswasser (Glas Nr. 3: nur Leitungswasser!). Schüttle vorsichtig, bis sich der Feststoff fast aufgelöst hat. Gib nun in jedes Reagenzglas 2 Tropfen Universalindikator und schüttle erneut, bis eine gleichmäßige Farbe entsteht.

Beobachtung:

	1 Seifenlauge	2 Citronensäure-Lösung	3 Leitungswasser
Farbe der			
Lösung			