Mechatronische Systeme WS21/22 Bildschirmtest (90 min) am 03. Feb. 202

Name:____ Matrikel-Nr:____

Ein Viertelfahrzeug mit Pendelachse ist in Bild dargestellt. Die Aufbau- und Radmasse beträgt m_A und m_R . Greifen Feder und Dämpfer nicht über dem Radmittelpunkt an, muss das Hebelverhältnis zum Quadrat berücksichtigt werden. Die Seitenkraft am Rad ist F_y . Eine Fahrt über eine unebene Fahrbahn bewirke eine Wegerregung $z_h(t)$.

Die Differentialgleichungen lauten für Aufbau, Reifen:

$$m_A \ddot{z}_A + d_E \cdot \left(\frac{l_E}{l_R}\right)^2 \cdot (\dot{z}_A - \dot{z}_R) + c_E \cdot \left(\frac{l_E \cos(\alpha)}{l_R}\right)^2 \cdot (z_A - z_R) - \frac{r}{l_R} \cdot F_y = 0 \tag{1}$$

$$m_R \ddot{z}_R - d_E \cdot \left(\frac{l_E}{l_R}\right)^2 \cdot (\dot{z}_A - \dot{z}_R) - c_E \cdot \left(\frac{l_E \cos(\alpha)}{l_R}\right)^2 \cdot (z_A - z_R) + c_R \cdot z_R + \frac{r}{l_R} \cdot F_y = c_R \cdot z_h \tag{2}$$

$$\dot{F}_y + \frac{c_y}{c_\alpha} \cdot v \cdot F_y - c_y \cdot \frac{r}{l_R} \cdot (\dot{z}_A - \dot{z}_R) = 0 \tag{3}$$

 Eingabedaten in m-file mit Ihrem Nachname. Erstellen Sie nach den Systemgleichungen ein Modell mit Simulink im Zeitbereich, (beginnend vom unten angegebenen Bild):

Die gegebene Bremsschwelle $z_h(t)$:

Die Anfangsbedingungen der Zustandsgrößen sollen gleich Null angenommen werden.

Die Fahrbahnanregung $z_h(t)$ ist eine Bremsschwelle angenommen.

Ausgänge in Scope: Die Dämpfungskraft $d_E \cdot \left(\frac{l_E}{l_R}\right)^2 \cdot (\dot{z}_A - \dot{z}_R)$ und Seitenkraft F_y . Simulation time 3 sec mit 0.01 Fixed-step.

2. Berechnen Sie die Eigenwerte des Systems. Ist das System stabil? Begründung!

-16.9660	±	62.3939 <i>j</i>
-40.5754	±	0.00000 j
-1.3092	±	8.2706 <i>j</i>

Das System ist stabil, weil sich alle Eigenwerte in der linken Ebene befinden.

Mechatronische Systeme WS21/22 Bildschirmtest (90 min) am 03. Feb. 202

Name:	
Matrikel-Nr:	

Berechnen Sie die ungedämpfte, gedämpfte Eigenfrequenzen f_0 , $f_{\rm d}$ (Hz) und Dämpfungsgrad ξ .

Ungedämpfte f ₀ (Hz)	gedämpfte $f_{\rm d}$ (Hz)	Dämpfungsgrad ξ
10.2909	9.9303	0.2624
6.4578	0	1
1.3327	1.31630	0.1564

[Es gibt keine Punkte für den Trivialfall des Nulleigenwertes]

- 3. Polten Sie die Übertragungsfunktion $\left|\frac{F_y}{Z_h}\right|$ und Phasenwinkel bis $\omega = 2\pi \times 20 \text{ rad/s}$ in einer Figure (Bodediagramm) mit dem Titel "Übertragungsfunktion $|F_y/Z_h|$ ".
- 4. Leiten Sie anhand der Systemgleichungen einen formelmäßigen Ausdruck in *A, B, C, D* Matrizen her.

Systemeingange: Z_h ;

Ausgänge: Die Dämpfungskraft $d_E \cdot \left(\frac{l_E}{l_R}\right)^2 \cdot (\dot{z}_A - \dot{z}_R)$ und Seitenkraft F_y

Zustandsgrößen: $[z_A \quad z_R \quad \dot{z}_A \quad \dot{z}_R \quad F_y]^T = [x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5]^T$

$$B = \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \end{bmatrix}$$

$$C = \begin{bmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{bmatrix}$$

 $D{=}\ {\bf Null matrix?}$

5. Senden Sie m-File und mdl-File mit Ihrem Nachnamen zu eine ZIP Datei an!

Senden Sie die Dateien per Email an: xiaofeng.wang@hs-rm.de

Viel Erfolg!

Mechatronische Systeme WS21/22 Bildschirmtest (90 min) am 03. Feb. 202

Name:_____ Matrikel-Nr:_____

Musterlösungen:

1. Simulinkmoell: MS BT mdl WS21.mdl

m-file:

```
clear all; clc;
mA=229;
              %kg
                     Einbaumasse
mR = 31;
              %kg
                     Radmasse
cE=56115:
              %N/m Einbaufederrate
cR=128000; %N/m Reifenfederrate
              %Ns/m Einbaudämpfung
cy=70000;
             %M/m Seitensteifigkeit
ca=20000; %N/radm Schräglaufsteifigkeit alp=15*pi/180;%15° Einbauwinkel
             %m Reifenradius
r=0.3;
LR=0.7;
              %m
                     Hebellänge
LE=0.42;
                     Einbauhebellänge
              %m
Zh=0.15;
             %m
                     Wegamplitude
             %m/s Fahrgeschwindigkeit
v=10;
% zwischen Lösung
cA=cE*(LE*cos(alp)/LR)^2; % Ersatzfederrat
dA=dE*(LE/LR)^2; % Ersatzdämpfungskonstant
cya=cy/ca;
%A1 simulinkmodell und A2 Eigenwerte: [Am,Bm,Cm,Dm]=linmod('MS_BT_mdl_WS21'); plot(eigs(Am),'*'); grid;
Eigenwerte=eigs(Am);
Eigenfrqcplx=eigs(Am)/(2*pi);
ungedampfq=abs(Eigenfrqcplx);
gedampfq=imag(Eigenfrqcplx);
gedampq=lmag(HlgeHlqp|x),
dampgrad=abs(real(Eigenfrqcplx)./ungedampfq);
% A3:Plot der Übertragungsfunktion
[Zaehler, Nenner] = ss2tf (Am, Bm, Cm, Dm, 1);
fhz=0:0.1:20*2*pi; % input frequenz
figure (2)
\label{eq:bode_Zaehler(2,:),Nenner,fhz);grid; % Bode Diagramm title('Übertragungsfunktion |MA/Uq|')
```

```
% A4: Herleiten Sie anhand der Systemgleichungen
% einen formelmäßigen Ausdruck in A, B, C, D Matri-
zen:
                             0,
1,
A = [0,
   0,
                      Ο,
         0.
                                     0;
  -cA/mA,cA/mA,
                     -dA/mA, dA/mA, ir/mA;
   cA/mR,-(cA+cR)/mR, dA/mR,-dA/mR,-ir/mR;
   Ο,
         0,
                       cy*ir,-cy*ir,-cya*v];
plot(eig(A),'*'); grid;
eigs(A);
B=[0; 0; 0; cR/mR; 0];
C=[0, 0, dA, -dA
   0, 0, 0,
              Ο,
D=[0;0];
```


