Disclaimer

The following slides reuse materials from SIGGRAPH 2001 Course Notes on Physically-based Modeling (copyright © 2001 by David Baraff at Pixar).

Determining Step Size

- Explicit Integration
 - Too big, unstable!
 - Too small, too slow
 - Adaptive, maybe
 - Ultimately the constants decide!
- Implicit Methods
 - Taking large steps when possible

An Example

A 1-D particle governed by $\dot{x} = -kx$ where k is a stiffness constant.

Speed Limitation of Euler's Method

h > 1/k: oscillate. h > 2/k: explode!

Stiff Equations

- In more complex systems, step size is limited by the largest k. One stiff spring can screw it up for everyone else.
- Systems that have some big *k*'s mixed in are called stiff systems.

A Stiff Energy Landscape

- A particle P in the plane.
- Interactive "dragging" force $[f_x, f_y]$.
- A penalty force [0,-ky] tries to keep P on the x-axis.

- A particle P in the plane.
- Interactive "dragging" force $[f_x, f_y]$.
- A penalty force [0,-ky] tries to keep P on the xaxis.

- Suppose you want P to stay within a miniscule ε of the x-axis when you try to pull it off with a huge force f_{max} .
- How big does k have to be? How small must h be?

Really big k. Really small h.

Answer: h has to be so small that P will

never move more than ε per step.

Result: Your simulation grinds to a halt.

Explicit Integration

Problems

Explicit vs. Implicit Euler Method

$$x(t_0 + h) = x(t_0) + h \dot{x}(t_0)$$

VS.

$$x(t_0 + h) = x(t_0) + hx(t_0 + \Delta t)$$

Implicit Euler for $\dot{x} = -kx$

$$x(t+h) = x(t) + h\dot{x}(t+h)$$

$$= x(t) - hkx(t+h)$$

$$= \frac{x(t)}{1+hk}$$

One Step: Implicit vs. Explicit

Large Systems

$$\frac{d}{dt}\mathbf{X}(t) = \mathbf{\dot{X}}(t) = f(\mathbf{X}(t))$$

$$\Delta \mathbf{X}(t_0) = h \mathbf{X}(t_0 + \Delta t) = h f(\mathbf{X}(t_0 + \Delta t))$$
$$= h f(\mathbf{X}(t_0) + \Delta \mathbf{X}(t_0))$$

Implicit Integration

Implicit Integration

Implicit Integration

Linearized Implicit Integration

$$\mathbf{X}(t) = f\left(\mathbf{X}(t)\right)$$

$$\Delta \mathbf{X} = h f \left(\mathbf{X}_0 + \Delta \mathbf{X} \right)$$

$$\Delta \mathbf{X} = h \left(f(\mathbf{X}_0) + \left(\frac{\partial f}{\partial \mathbf{X}} \right) \Delta \mathbf{X} \right)$$

Single-Step Implicit Euler Method

$$\Delta \mathbf{X} = h \left(f(\mathbf{X}_0) + \left(\frac{\partial f}{\partial \mathbf{X}} \right) \Delta \mathbf{X} \right)$$

$$\left(\mathbf{I} - h \frac{\partial}{\partial \mathbf{X}} \left(\mathbf{X}(t_0)\right)\right) \Delta \mathbf{X} = h \mathbf{X}(t_0)$$

 $n \times n$ sparse matrix

Solving Large Systems

- Matrix structure reflects force-coupling:
- (i,j)th entry exists iff f_i depends on X_j
- Conjugate gradient a good first choice