CS221: Digital Design

RTL Design: Serial Multiplier

A. Sahu

Dept of Comp. Sc. & Engg.

Indian Institute of Technology Guwahati

Outline

- RTL Design
- Modulo 14 Counter Example
- Serial Multiplier Example
- Can we automate this RTL design process?
 - Given C code/Parallel Code

Reference Material for Lec 33, 34, 35

- Chapter 8 of Mano Book
 - Design at Register Transfer Level
 - Classic Example: Serial Binary Multiplication
- Chapter 15 of Kumar Book
 - Section 15.5.1: Data path Subsystem for Binary Multiplier

ASM Charts: An Complete Example Ref: Mano Book

ASM Charts: An Example

Mod 14 counter:

- There is a 4 bit counter (A)
- E specify: less than 12 or less than 4
- EF=11 specify : value =12,
 - It time to reset after next counting
- E depends of A₂, F depends on A₂, A₃

If
$$A_2=1 \rightarrow E=1$$
, else E=0
 $A_3A_2=1$, $\rightarrow F=1$, counter reset

AMS DP+CP: to be High Level

ASM Charts: An Example

- A is a register;
- A_i stands for ith bit of the A register.

$$A = A_3 A_2 A_1 A_0$$

 E and F are single-bit flipflops.

- Operations of ASM can be illustrated through a timing diagram.
- Two factors which must be considered are
 - Operations in an ASM block occur at the same time in one clock cycle
 - Decision boxes are dependent on the status of the *previous clock cycle* (that is, they do not depend on operations of current block)

- Operations of ASM can be illustrated through a timing diagram.
- Two factors which must be considered are
 - Operations in an ASM block occur at the same time in one clock cycle
 - Decision boxes are dependent on the status of the previous clock cycle (that is, they do not depend on operations of current block)

CTR	E, F	Conditions	State
0000	1,0	A ₂ =0,A ₃ =0	T1
0001	0,0		
0010	0,0		
0011	0,0		
0100	0,0	A ₂ =1,A ₃ =0	
0101	1,0		
0110	1,0		
0111	1,0		
1000	1,0	A ₂ =0,A ₃ =1	
1001	0,0		
1010	0,0		
1011	0,0		
1100	0,0	A ₂ =1,A ₃ =1	
1101	1,0		T2
1101	1,1		то

ASM Chart => Digital System

- ASM chart describes a digital system. From ASM chart, we may obtain:
 - Controller logic (via State Table/Diagram)
 - Architecture/Data Processor
- Design of controller is determined from the decision boxes and the required state transitions.
- Design requirements of data processor can be obtained from the operations specified with the state and conditional boxes.

ASM Chart => Controller

Procedure:

- Step 1: Identify all states and assign suitable codes.
- Step 2: Formulate state table using

State from state boxes

Inputs from decision boxes

Outputs from operations of state/conditional boxes.

Step 3: Obtain state/output equations and draw circuit.

ASM Chart => Controller

Present state		inputs			Next state		outputs		
G ₁	G_0	S	A ₂	A ₃	G ₁ ⁺	G_0^+	T ₀	T ₁	T ₂
0	0	0	X	X	0	0	1	0	0
0	0	1	X	X	0	1	1	0	0
0	1	X	0	X	0	1	0	1	0
0	1	X	1	0	0	1	0	1	0
0	1	X	1	1	1	1	0	1	0
1	1	X	X	X	0	0	0	0	1

Inputs from conditions in decision boxes.

Outputs = present state of controller.

ASM Chart => Architecture/Data Processor

- Architecture is more difficult to design than controller.
- Nevertheless, it can be deduced from the ASM chart. In particular, the operations from the ASM chart determine:
 - What registers to use
 - How they can be connected
 - What operations to support
 - How these operations are activated.
- Guidelines:
 - always use high-level units
 - simplest architecture possible.

ASM Chart => Architecture/Data Processor

Various operations are:

- Counter incremented (A \leftarrow A + 1) when state = T_1 .
- Counter cleared (A \leftarrow 0) when state = T₀ and S = 1.
- E is set (E ← 1) when state = T_1 and A_2 = 1.
- E is cleared (E ← 0) when state = T_1 and A_2 = 0.
- F is set (F ← 0) when state = T_2 .
- F is cleared (F \leftarrow 0) when state = T₀ and S = 1.

• Deduce:

- One 4-bit register A (e.g.: 4-bit synchronous counter with clear/increment).
- Two flip-flops needed for E and F (e.g.: JK/D flip-flops).

 $(A \leftarrow A + 1)$ when state = T_1 . $(A \leftarrow 0)$ when state = T_0 and S = 1. $(E \leftarrow 1)$ when state = T_1 and $A_2 = 1$.

RTL/ASM example for 8 bit Sequential Multiplier

Ref: Mano Book

RTL: Multiplier Example

- Example: (101 x 011) Base 2
- Note that the partial product summation for n digits, base
 2 numbers requires adding up to n digits (with carries) in a column.
- Note also n x m digit multiply generates up to an m + n digit result (same as decimal).

Partial products are: 101 x 0, 101 x 1, and 101 x 1

			1	0	1
		X	0	1	1
			1	0	1
		1	0	1	
	0	0	0		
0	0	1	1	1	1

Example (1 0 1) x (0 1 1) Again

Reorganizing example to follow hardware algorithm:

Binary Multiplication

- Polynomial Multiplication
 - You can think Binary number A, B as polynomials
 - $-A(X)=A_{n-1}.2^{n-1}+....+A_2.2^2+A_1.2^1+A_0.2^0$
 - Multiply polynomial to get another one
 - Time complexity: O(n²) Basic serial Algorithm,
 O(n¹.5) for divide conquer approach, O(n lgn) using
 FFT
- Booth Algorithm reduce number Partial addition
 - 99 Represent using 100-1, 95 is 100-5
 - 111 represent as 1000-1 in binary: possibly reduce

Sequential Multiplier

Control Algorithm:

- P ← 0, A ← multiplicand, B ← multiplier //Initialization
- 2. If LSB of B==1 then add A to P else add 0
- 3. Shift [P][B] right 1
- 4. Repeat steps 2 and 3 n-1 times.
- 5. [P][B] has product.

Multiplier Example: Block Diagram

Multiplier Example: Operation

- Step1: The multiplicand (top operand) is loaded into register B.
- Step2: The multiplier (bottom operand) is loaded into register Q.
- Step3: Register C||A is initialized to 0 when G becomes 1.
- Step4: The partial products are summed iteratively in register C||A||Q.

Multiplier Example: Operation

- Step5: Each multiplier bit, beginning with the LSB, is processed (if bit is 1, use adder to add B to partial product; if bit is 0, do nothing)
- Step6: C||A||Q is shifted right using the shift register
 - Partial product bits fill vacant locations in Q as multiplier is shifted out
 - If overflow during addition, the outgoing carry is recovered from C during the right shift
- Step 7: Steps 5 and 6 are repeated until Counter P = 0 as detected by Zero detect.
 - Counter P is initialized in step 4 to n 1, n = number of bits in multiplier

Multiplier Example: ASM Chart

Multiplier Example: ASM Chart (continued)

Combined Mealy - Moore output model

IDLE - state

- Input G is used as the condition for starting the multiplication, and
- C, A, and P are initialized and Load B, Load Q

MULO - state

– Conditional addition is performed based on the value of Q_0 .

MUL1 - state

- Right shift is performed to capture the partial product and position the next bit of the multiplier in Q_0
- the terminal count of 0 for down counter P is used to sense completion or continuation of the multiply.

Multiplier Example: Control Signal Table

Module	Micro Operations	Control Signal Name	Control Expression
Reg A	A <- 0 A <- A +B C A Q <- sr (C A Q)	Load_regs Add_regs Shift CAQ	IDLE.G MULO.Q ₀ MUL1
Reg B	B <- IN	Load_regs	LOAD_B
FF C	C <- 0 C <- Cout	Clear C Load	IDLE.G+MUL1
Reg Q	Q <- IN C A Q <- sr (C A Q)	Load_regs ShiftCAQ	LOAD_Q
Ctr P	P <- N-1 P <- P-1	Load_regs Decr_P	MUL1

Multiplier Example: Control Circuit

PS	PS	Inputs			NS	Ready		Decr_ P	Add_r egs	Shift_ CAQ
		G	Q0	Z						
Idle	00	0	x	X	00	1				
Idle	00	1	X	x	01	1	1			
Mul0	01	x	0	X	10			1		
Mul0	01	x	1	X	10				1	
Mul1	10	x	x	0	01			1		1
Mul1	10	X	x	1	00			1		1

Ready=Idle Load_Regs=Idle.G Add_regs=Mul0.Q₀

Decr_P=Mul0
ShiftCAQ=Mul1

Multiplier Example: Control Circuit

$$N1=D_1'D_0$$

 $N0=D_1'D_0'G+D_1D_0'Z'$

Ready=Idle Load_Regs=Idle.G Decr_P=Mul1
Add_regs=Mul0.Q₀ ShiftCAQ=Mul1