Graf neorientat = o pereche ordonată G=(V,E), unde V este o mulțime finită și nevidă de elemente numite vârfuri (noduri), iar E este o multime de perechi de elemente distincte (neordonate), numite muchii. O muchie având nodurile i şi j, numite extremități, este notată (i,j)

Grafuri orientate

Graf orientat (digraf) = o pereche ordonată G=(V,E), unde V este o mulțime finită și nevidă de elemente numite vârfuri (noduri), iar E este o multime de perechi ordonate de elemente distincte, numite arce. Pentru un arc (i,j), spunem că i este extremitate inițială și j, extremitate finală

Grafuri orientate

Vârfuri adiacente = noduri legate printr-o muchie

Muchii incidente = muchii cu o extremitate comună

Vârf izolat = vârf cu gradul 0

Vârf terminal (frunză) = vârf care este extremitatea unei singure muchii

Grafuri neorientate	Grafuri orientate
Gradul unui vârf i = d(i) = numărul muchiilor cu o extremitate în i	Gradul interior al vârfului i d⁻(i) = numărul muchiilor incidente cu i, pentru care i este extremitate finală Gradul exterior al vârfului i d⁺(i) = numărul muchiilor incidente cu i, pentru care i este extremitate iniţială

Grafuri neorientate	Grafuri orientate
Lanţ = o succesiune de vârfuri de forma $(i_1, i_2,, i_n)$, cu proprietatea că $(i_k, i_{k+1}) \in E$, $\forall k \in \{1, 2,, n-1\}$ i_1 şi i_n se numesc	Drum = o succesiune de vârfuri de forma $(i_1, i_2,, i_n)$, cu proprietatea că $(i_k, i_{k+1}) \in E$, $\forall k \in \{1, 2,, n-1\}$ i_1 şi i_n se numesc
extremitățile lanțului	extremitățile drumului
Lungimea lanţului = numărul muchiilor conţinute în el	Lungimea drumului = numărul arcelor conţinute în el
Lanţ elementar = lanţ în care vârfurile sunt distincte	Drum elementar = drum în care vârfurile sunt distincte

Grafuri neorientate	Grafuri orientate
Ciclu = lanţ de forma (i ₁ ,i ₂ ,,i _n), pentru care	Circuit = drum de forma (i ₁ ,i ₂ ,,i _n), pentru care
$i_1 = i_n$	$ i_1, i_2,, i_n $, peritid care $ i_1 = i_n $
Ciclu elementar = ciclu	Circuit elementar =
în care vârfurile sunt	circuit în care vârfurile
distincte, mai puţin	sunt distincte, mai puţin
primul și ultimul vârf	primul și ultimul vârf

Grafuri orientate

Graf regulat = un graf în care toate vârfurile au acelaşi grad

Graf k-regulat = un graf în care toate vârfurile au gradul egal cu k

Graf parţial al unui graf G=(V,E) este un graf G'=(V,E') cu $E'\subseteq E$

Subgraf al unui graf G=(V,E) este un graf G'=(V',E') cu $E'\subseteq E$ şi $V'\subseteq V$, unde E' conţine toate muchiile din E care au extremităţile în V' (se mai numeşte subgraf indus de V' în G)

Grafuri neorientate	Grafuri orientate
Graf complet = dacă oricare 2 vârfuri ale sale sunt adiacente (există o muchie între i şi j, ∀i,j∈V)	Graf complet = dacă oricare 2 vârfuri ale sale sunt adiacente (∀i,j∈V, există (i,j) sau (j,i) sau amândouă)
Graf conex = un graf G=(V,E) cu proprietatea că ∀i,j∈V, există un lanţ cu extremităţile i şi j	Graf tare conex = un graf orientat G=(V,E) cu proprietatea că ∀i,j∈V, există un drum de la i la j şi un drum de la j la i

Grafuri orientate

Componentă conexă a unui graf G=(V,E) este un subgraf conex al său, maximal în raport cu această proprietate (dacă la acest subgraf adăugăm un vârf oarecare al grafului, atunci subgraful nu mai este conex)

Componentă tare conexă a unui graf orientat G=(V,E) este un subgraf conex al său, maximal în raport cu această proprietate

Graf aciclic = graf care nu conţine cicluri

Ciclu hamiltonian = un ciclu elementar, care conţine toate vârfurile grafului

Graf hamiltonian = graf care conţine un ciclu hamiltonian

Ciclu eulerian = un ciclu care conţine toate muchiile grafului

Graf eulerian = graf care conţine un ciclu eulerian

Parcurgerea în lăţime = se vizitează vârful iniţial i, apoi vecinii acestuia, apoi vecinii nevizitaţi ai acestora şi procesul continuă până când sunt vizitate toate nodurile

Parcurgerea în adâncime = se vizitează vârful iniţial i şi se continuă cu primul dintre vecinii săi nevizitaţi încă, fie acesta i₁. Se procedează la fel cu i₁, trecându-se la primul dintre vecinii săi, nevizitat încă, şi algoritmul continuă cât este posibil. Când nu mai sunt vecini nevizitaţi ai nodului la care am ajuns, ne întoarcem în vârful din care am plecat ultima dată şi continuăm procedeul

Teoreme şi propoziţii

Dacă G=(V,E) are n vârfuri şi m muchii, atunci ∑d(i)=2*m

Un graf neorientat complet cu n vârfuri are n*(n-1)/2 muchii

Dacă G=(V,E) este un graf neorientat cu n vârfuri, astfel încât fiecare vârf $i \in V$ are gradul $\geq n/2$, atunci graful este hamiltonian

(Teorema ne dă o condiţie suficientă, nu şi necesară, pentru ca un graf să fie hamiltonian, adică există grafuri hamiltoniene care au vârfuri cu gradul < n/2)

Teoreme şi propoziţii

Un graf neorientat G=(V,E) fără vârfuri izolate este eulerian dacă şi numai dacă este conex şi gradele tuturor vârfurilor sunt numere pare