Fundamental I hysical Constants — Extensive Listing				
Quantity	Symbol	Value	Unit	Relative std. uncert. $u_{\rm r}$
	LIMIN	VERSAL		
speed of light in vacuum	c, c_0	299 792 458	${ m m~s^{-1}}$	exact
magnetic constant	μ_0	$4\pi \times 10^{-7}$	${ m N~A^{-2}}$	CAUCE
magnetic constant	μ_0	$= 12.566370614 \times 10^{-7}$	NA^{-2}	exact
electric constant $1/\mu_0 c^2$	ϵ_0	$8.854187817\times10^{-12}$	$\mathrm{F}\mathrm{m}^{-1}$	exact
characteristic impedance of vacuum $\mu_0 c$	Z_0	376.730 313 461	Ω	exact
Newtonian constant of gravitation	$\overset{\circ}{G}$	$6.67384(80)\times10^{-11}$	${ m m}^3~{ m kg}^{-1}~{ m s}^{-2}$	1.2×10^{-4}
C	$G/\hbar c$	$6.70837(80) \times 10^{-39}$	$(\mathrm{GeV}/c^2)^{-2}$	1.2×10^{-4}
Planck constant	$h^{'}$	$6.62606957(29) \times 10^{-34}$	J s	4.4×10^{-8}
		$4.135667516(91)\times10^{-15}$	eV s	2.2×10^{-8}
$h/2\pi$	\hbar	$1.054571726(47)\times10^{-34}$	J s	4.4×10^{-8}
,		$6.58211928(15)\times10^{-16}$	eV s	2.2×10^{-8}
	$\hbar c$	197.326 9718(44)	MeV fm	2.2×10^{-8}
Planck mass $(\hbar c/G)^{1/2}$	$m_{ m P}$	$2.17651(13)\times10^{-8}$	kg	6.0×10^{-5}
energy equivalent	$m_{\mathrm{P}}c^2$	$1.220932(73)\times 10^{19}$	GeV	6.0×10^{-5}
Planck temperature $(\hbar c^5/G)^{1/2}/k$	$T_{ m P}$	$1.416833(85) \times 10^{32}$	K	6.0×10^{-5}
Planck length $\hbar/m_{\rm P}c=(\hbar G/c^3)^{1/2}$	$l_{ m P}$	$1.616199(97) \times 10^{-35}$	m	6.0×10^{-5}
Planck time $l_{\rm P}/c = (\hbar G/c^5)^{1/2}$	$t_{ m P}$	$5.39106(32) \times 10^{-44}$	S	6.0×10^{-5}
	ELECTRO	OMAGNETIC		
elementary charge	e	$1.602176565(35)\times10^{-19}$	С	2.2×10^{-8}
	e/h	$2.417989348(53) \times 10^{14}$	$\mathrm{A}\mathrm{J}^{-1}$	2.2×10^{-8}
magnetic flux quantum $h/2e$	Φ_0	$2.067833758(46)\times10^{-15}$	Wb	2.2×10^{-8}
conductance quantum $2e^2/h$	G_0	$7.7480917346(25) \times 10^{-5}$	S	3.2×10^{-10}
inverse of conductance quantum	G_0^{-1}	12906.4037217(42)	Ω	3.2×10^{-10}
Josephson constant 1 $2e/h$	$K_{ m J}$	$483597.870(11) \times 10^9$	$ m Hz~V^{-1}$	2.2×10^{-8}
von Klitzing constant ² $h/e^2 = \mu_0 c/2\alpha$	$R_{ m K}$	25812.8074434(84)	Ω	3.2×10^{-10}
Bohr magneton $e\hbar/2m_{\rm e}$	$\mu_{ m B}$	$927.400968(20) \times 10^{-26}$	$ m J~T^{-1}$	2.2×10^{-8}
		$5.7883818066(38) \times 10^{-5}$	${ m eV}~{ m T}^{-1}$	6.5×10^{-10}
	$\mu_{ m B}/h$	$13.99624555(31) \times 10^9$	$Hz T^{-1}$	2.2×10^{-8}
	$\mu_{ m B}/hc$	46.6864498(10)	$m^{-1} T^{-1}$	2.2×10^{-8}
	$\mu_{ m B}/k$	0.67171388(61)	$K T^{-1}$	9.1×10^{-7}
nuclear magneton $e\hbar/2m_{ m p}$	$\mu_{ m N}$	$5.05078353(11) \times 10^{-27}$	$J T^{-1}$	2.2×10^{-8}
	/-	$3.1524512605(22) \times 10^{-8}$	eV T ⁻¹	7.1×10^{-10}
	$\mu_{ m N}/h$	7.622 593 57(17)	MHz T^{-1}	2.2×10^{-8}
	$\mu_{\rm N}/hc$	$2.542623527(56) \times 10^{-2}$	$m^{-1} T^{-1}$	2.2×10^{-8}
	$\mu_{ m N}/k$	$3.6582682(33) \times 10^{-4}$	$ m K~T^{-1}$	9.1×10^{-7}
A		ND NUCLEAR		
fine-structure constant $e^2/4\pi\epsilon_0\hbar c$		eneral $7.2973525698(24) \times 10^{-3}$		3.2×10^{-10}
inverse fine-structure constant	$\frac{\alpha}{\alpha^{-1}}$	$1.2973525098(24) \times 10^{-3}$ 137.035999074(44)		3.2×10^{-10} 3.2×10^{-10}
Rydberg constant $\alpha^2 m_e c/2h$	R_{∞}	10 973 731.568 539(55)	m^{-1}	5.2×10^{-12} 5.0×10^{-12}
Rydoolg constant \(\alpha \) HeC/2h	$R_{\infty}c$	$3.289841960364(17)\times10^{15}$	Hz	5.0×10^{-12} 5.0×10^{-12}
	$R_{\infty}hc$	$2.179872171(96) \times 10^{-18}$	J	4.4×10^{-8}
	$1\iota_{\infty}$ 1 ι C	13.60569253(30)	eV	2.2×10^{-8}
Bohr radius $\alpha/4\pi R_{\infty}=4\pi\epsilon_0\hbar^2/m_{\rm e}e^2$	a _o	$0.52917721092(17)\times10^{-10}$	m	3.2×10^{-10}
Hartree energy $e^2/4\pi\epsilon_0 a_0 = 2R_{\infty}hc = \alpha^2 m_e c^2$	$rac{a_0}{E_{ m h}}$	$4.35974434(19) \times 10^{-18}$	J	4.4×10^{-8}
The contract of $T_{\rm e}$	$\boldsymbol{L}_{\mathrm{n}}$	27.21138505(60)	eV	2.2×10^{-8}
quantum of circulation	$h/2m_{ m e}$	$3.6369475520(24) \times 10^{-4}$	$m^2 s^{-1}$	6.5×10^{-10}
quantum or encountries	10/ 2116e	5.550 0 11 5020(24) X 10	111 0	3.5 A 10

				Relative std.
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$
	$h/m_{ m e}$	$7.2738951040(47)\times 10^{-4}$	$\mathrm{m}^2~\mathrm{s}^{-1}$	6.5×10^{-10}
	•	troweak		
Fermi coupling constant ³	$G_{\rm F}/(\hbar c)^3$	$1.166364(5)\times10^{-5}$	${ m GeV^{-2}}$	4.3×10^{-6}
weak mixing angle ⁴ $\theta_{\rm W}$ (on-shell scheme)	$G_{\mathrm{F}}/(nc)$	$1.100304(3) \times 10$	Gev	4.3 × 10
$\sin^2 \theta_{\rm W} = s_{\rm W}^2 \equiv 1 - (m_{\rm W}/m_{\rm Z})^2$	$\sin^2 \theta_{ m W}$	0.2223(21)		9.5×10^{-3}
$sin \ \theta_{\rm W} - s_{\rm W} \equiv 1 - (m_{\rm W}/m_{\rm Z})$		· /		9.9 × 10
1		tron, e ⁻	1 .	4.410-8
electron mass	$m_{ m e}$	$9.10938291(40) \times 10^{-31}$	kg	4.4×10^{-8}
	2	$5.4857990946(22) \times 10^{-4}$	u	4.0×10^{-10}
energy equivalent	$m_{ m e}c^2$	$8.18710506(36) \times 10^{-14}$	J	4.4×10^{-8}
-1	/	0.510998928(11)	MeV	2.2×10^{-8}
electron-muon mass ratio	$m_{ m e}/m_{ m \mu}$	$4.83633166(12) \times 10^{-3}$		2.5×10^{-8}
electron-tau mass ratio	$m_{ m e}/m_{ m au}$	$2.87592(26) \times 10^{-4}$		9.0×10^{-5}
electron-proton mass ratio	$m_{\rm e}/m_{\rm p}$	$5.4461702178(22) \times 10^{-4}$		4.1×10^{-10}
electron-neutron mass ratio electron-deuteron mass ratio	$m_{\rm e}/m_{\rm n}$	$5.4386734461(32) \times 10^{-4}$		$5.8 \times 10^{-10} $ 4.0×10^{-10}
electron-deuteron mass ratio	$m_{\rm e}/m_{\rm d}$	$2.7244371095(11) \times 10^{-4}$ $1.8192000653(17) \times 10^{-4}$		4.0×10^{-10} 9.1×10^{-10}
electron-trition mass ratio	$m_{ m e}/m_{ m t}$	$1.819\ 200\ 00033(17) \times 10^{-4}$ $1.819\ 543\ 0761(17) \times 10^{-4}$		9.1 × 10 10
	$m_{\rm e}/m_{\rm h}$	$1.37993355578(55) \times 10^{-4}$		4.0×10^{-10}
electron to alpha particle mass ratio	$m_{ m e}/m_{ m \alpha}$		${ m Ckg^{-1}}$	4.0×10^{-8} 2.2×10^{-8}
electron charge to mass quotient	$-e/m_{\rm e}$	$-1.758820088(39) \times 10^{11}$ $5.4857990946(22) \times 10^{-7}$	kg mol ⁻¹	2.2×10^{-10} 4.0×10^{-10}
electron molar mass $N_{\rm A}m_{\rm e}$	$M(e), M_e$	$2.4263102389(16) \times 10^{-12}$		6.5×10^{-10}
Compton wavelength $h/m_e c$	$\lambda_{ m C}$	$386.15926800(25) \times 10^{-15}$	m	6.5×10^{-10}
$\lambda_{\rm C}/2\pi = \alpha a_0 = \alpha^2/4\pi R_{\infty}$ classical electron radius $\alpha^2 a_0$	$\lambda_{ m C}$	$2.8179403267(27) \times 10^{-15}$	m m	9.7×10^{-10}
Thomson cross section $(8\pi/3)r_{\rm e}^2$	$r_{ m e}$	$0.6652458734(13) \times 10^{-28}$	m^2	1.9×10^{-9}
electron magnetic moment	$\sigma_{ m e}$	$-928.476430(21) \times 10^{-26}$	$ m JT^{-1}$	1.9×10 2.2×10^{-8}
to Bohr magneton ratio	$\mu_{ m e}$	$-928.476450(21) \times 10$ -1.00115965218076(27)	JI	2.2×10 2.6×10^{-13}
to nuclear magneton ratio	$\mu_{\rm e}/\mu_{\rm B}$	-1.00113903218070(27) $-1838.28197090(75)$		4.1×10^{-10}
electron magnetic moment	$\mu_{ m e}/\mu_{ m N}$	-1030.201 910 90(19)		4.1 \(10
anomaly $ \mu_{\rm e} /\mu_{\rm B}-1$	a	$1.15965218076(27) \times 10^{-3}$		2.3×10^{-10}
electron g-factor $-2(1+a_e)$	$a_{ m e}$	-2.00231930436153(53)		2.6×10^{-13}
electron-muon magnetic moment ratio	$g_{ m e} \ \mu_{ m e}/\mu_{ m \mu}$	206.766 9896(52)		2.5×10^{-8}
electron-proton magnetic moment ratio	$\mu_{ m e}/\mu_{ m p}$	-658.2106848(54)		8.1×10^{-9}
electron to shielded proton magnetic	$\mu_{ m e}/\mu_{ m p}$	000.210 0040(04)		0.1 × 10
moment ratio (H ₂ O, sphere, 25 °C)	$\mu_{ m e}/\mu_{ m p}'$	-658.2275971(72)		1.1×10^{-8}
electron-neutron magnetic moment ratio	$\mu_{ m e}/\mu_{ m p} \ \mu_{ m e}/\mu_{ m n}$	960.920 50(23)		2.4×10^{-7}
electron-deuteron magnetic moment ratio	$\mu_{ m e}/\mu_{ m h}$	-2143.923498(18)		8.4×10^{-9}
electron to shielded helion magnetic	$\mu_{\mathrm{e}}/\mu_{\mathrm{d}}$	2110.020 100(10)		0.1 / 10
moment ratio (gas, sphere, 25 °C)	$\mu_{ m e}/\mu_{ m h}'$	864.058 257(10)		1.2×10^{-8}
electron gyromagnetic ratio $2 \mu_{\rm e} /\hbar$	$\gamma_{ m e}$	$1.760859708(39) \times 10^{11}$	$s^{-1} T^{-1}$	2.2×10^{-8}
======================================	$\gamma_{ m e}/2\pi$	28 024.952 66(62)	$ m MHz~T^{-1}$	2.2×10^{-8}
		on, µ ⁻		
muon mass	m_{μ}	$1.883531475(96)\times10^{-28}$	kg	5.1×10^{-8}
moon muoo	· · · · μ	0.1134289267(29)	u	2.5×10^{-8}
energy equivalent	$m_{\mu}c^2$	$1.692833667(86) \times 10^{-11}$	J	5.1×10^{-8}
sucres equivalent	μΟ	105.6583715(35)	MeV	3.4×10^{-8}
muon-electron mass ratio	$m_{ m \mu}/m_{ m e}$	206.768 2843(52)		2.5×10^{-8}
muon-tau mass ratio	$m_{ m \mu}/m_{ m au}$	$5.94649(54) \times 10^{-2}$		9.0×10^{-5}
muon-proton mass ratio	$m_{ m \mu}/m_{ m p}$	0.1126095272(28)		2.5×10^{-8}
r	μ/p			

				Relative std.
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$
-	-			
muon-neutron mass ratio	$m_{ m \mu}/m_{ m n}$	0.1124545177(28)		2.5×10^{-8}
muon molar mass $N_{ m A} m_{ m \mu}$	$M(\mu), M_{\mu}$	$0.1134289267(29) \times 10^{-3}$	${\rm kg\ mol^{-1}}$	2.5×10^{-8}
muon Compton wavelength $h/m_{\mu}c$	$\lambda_{\mathrm{C},\mu}$	$11.73444103(30) \times 10^{-15}$	m	2.5×10^{-8}
$\lambda_{\mathrm{C},\mu}/2\pi$	$\lambda_{\mathrm{C},\mu}$	$1.867594294(47) \times 10^{-15}$	m	2.5×10^{-8}
muon magnetic moment		$-4.49044807(15) \times 10^{-26}$	$ m JT^{-1}$	3.4×10^{-8}
to Bohr magneton ratio	μ_{μ}	$-4.84197044(12) \times 10^{-3}$	JI	2.5×10^{-8}
	$\mu_{\mu}/\mu_{\mathrm{B}}$	$-4.84197044(12) \times 10$ -8.89059697(22)		2.5×10^{-8} 2.5×10^{-8}
to nuclear magneton ratio	$\mu_{ m \mu}/\mu_{ m N}$	-8.890 590 97 (22)		2.3×10^{-3}
muon magnetic moment anomaly		1 167 000 01 (69) 10=3		r 4 10=7
$ \mu_{\mu} /(e\hbar/2m_{\mu})-1$	a_{μ}	$1.16592091(63) \times 10^{-3}$		5.4×10^{-7}
muon g -factor $-2(1+a_{\mu})$	g_{μ}	-2.0023318418(13)		6.3×10^{-10}
muon-proton magnetic moment ratio	$\mu_{ m \mu}/\mu_{ m p}$	-3.183345107(84)		2.6×10^{-8}
		Tau, τ ⁻		į.
tau mass ⁵	$m_{ au}$	$3.16747(29) \times 10^{-27}$	kg	9.0×10^{-5}
		1.90749(17)	u	9.0×10^{-5}
energy equivalent	$m_{ au}c^2$	$2.84678(26) \times 10^{-10}$	J	9.0×10^{-5}
		1776.82(16)	MeV	9.0×10^{-5}
tau-electron mass ratio	$m_{ au}/m_{ m e}$	3477.15(31)		9.0×10^{-5}
tau-muon mass ratio	$m_{ au}/m_{ extsf{u}}$	16.8167(15)		9.0×10^{-5}
tau-proton mass ratio	$m_{ au}/m_{ m p}$	1.89372(17)		9.0×10^{-5}
tau-neutron mass ratio	$m_{ m au}/m_{ m n}$	1.89111(17)		9.0×10^{-5}
tau molar mass $N_{ m A} m_{ au}$	$M(au), M_{ au}$	$1.90749(17) \times 10^{-3}$	$kg mol^{-1}$	9.0×10^{-5}
tau Compton wavelength $h/m_{\tau}c$	$\lambda_{\mathrm{C}, au}$	$0.697787(63) \times 10^{-15}$	m	9.0×10^{-5}
$\lambda_{ ext{C}, au}/2\pi$	$\lambda_{\mathrm{C}, au}$	$0.111056(10) \times 10^{-15}$	m	9.0×10^{-5}
C, v/		Proton, p		
proton mass	$m_{ m p}$	$1.672621777(74) \times 10^{-27}$	kg	4.4×10^{-8}
r	р	1.007 276 466 812(90)	u	8.9×10^{-11}
energy equivalent	$m_{ m p}c^2$	$1.503277484(66)\times 10^{-10}$	J	4.4×10^{-8}
energy equivalent	<i>m</i> pe	938.272 046(21)	MeV	2.2×10^{-8}
proton-electron mass ratio	$m_{ m p}/m_{ m e}$	1836.15267245(75)	IVIC V	4.1×10^{-10}
proton electron mass ratio	$m_{ m p}/m_{ m e}$	8.880 243 31(22)		2.5×10^{-8}
proton-tau mass ratio	$m_{ m p}/m_{ m \mu} \ m_{ m p}/m_{ m au}$	0.528 063(48)		9.0×10^{-5}
•		0.998 623 478 26(45)		4.5×10^{-10}
proton-neutron mass ratio	$m_{\rm p}/m_{\rm n}$		${ m C~kg^{-1}}$	2.2×10^{-8}
proton charge to mass quotient	$e/m_{\rm p}$	$9.57883358(21)\times10^7$		8.9×10^{-11}
proton molar mass $N_{\rm A} m_{ m p}$	$M(p), M_p$	$1.007276466812(90) \times 10^{-3}$	kg mol ^{−1}	
proton Compton wavelength $h/m_{\rm p}c$	$\lambda_{ m C,p}$	$1.32140985623(94) \times 10^{-15}$	m	7.1×10^{-10}
$\lambda_{ m C,p}/2\pi$	$\lambda_{ m C,p}$	$0.21030891047(15) \times 10^{-15}$	m	7.1×10^{-10}
proton rms charge radius	$r_{ m p}$	$0.8775(51) \times 10^{-15}$	m x m-1	5.9×10^{-3}
proton magnetic moment	$\mu_{ m p}$	$1.410606743(33) \times 10^{-26}$	$ m J T^{-1}$	2.4×10^{-8}
to Bohr magneton ratio	$\mu_{ m p}/\mu_{ m B}$	$1.521032210(12)\times10^{-3}$		8.1×10^{-9}
to nuclear magneton ratio	$\mu_{ m p}/\mu_{ m N}$	2.792847356(23)		8.2×10^{-9}
proton g -factor $2\mu_{\rm p}/\mu_{\rm N}$	$g_{ m p}$	5.585 694 713(46)		8.2×10^{-9}
proton-neutron magnetic moment ratio	$\mu_{ m p}/\mu_{ m n}$	-1.45989806(34)	1	2.4×10^{-7}
shielded proton magnetic moment	$\mu_{ m p}'$	$1.410570499(35) \times 10^{-26}$	$ m J~T^{-1}$	2.5×10^{-8}
$(H_2O, sphere, 25 ^{\circ}C)$				6
to Bohr magneton ratio	$\mu_{ m p}'/\mu_{ m B}$	$1.520993128(17) \times 10^{-3}$		1.1×10^{-8}
to nuclear magneton ratio	$\mu_{ m p}^{\prime}/\mu_{ m N}$	2.792775598(30)		1.1×10^{-8}
proton magnetic shielding correction				
$1 - \mu_{\rm p}'/\mu_{\rm p}~({\rm H_2O,sphere,25~^\circ C})$	$\sigma_{ m p}'$	$25.694(14) \times 10^{-6}$		5.3×10^{-4}

	•		0	Relative std.	
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$	
proton gyromagnetic ratio $2\mu_{\rm p}/\hbar$	~	$2.675222005(63)\times10^{8}$	$s^{-1} T^{-1}$	2.4×10^{-8}	
proton gyromagnetic ratio $2\mu_{ m p}/n$	$rac{\gamma_{ m p}}{\gamma_{ m p}/2\pi}$	42.5774806(10)	$ m MHz~T^{-1}$	2.4×10^{-8}	
shielded proton gyromagnetic ratio	/p/ ===	12.011 1000(10)	1,1112 1	2. 17.10	
$2\mu'_{\rm p}/\hbar$ (H ₂ O, sphere, 25 °C)	$\gamma_{\rm p}'$	$2.675153268(66) \times 10^{8}$	${ m s}^{-1}~{ m T}^{-1}$	2.5×10^{-8}	
, р,	$rac{\gamma_{ m p}'}{\gamma_{ m p}'/2\pi}$	42.5763866(10)	$ m MHz~T^{-1}$	2.5×10^{-8}	
		tron, n			
neutron mass	$m_{ m n}$	$1.674927351(74) \times 10^{-27}$	kg	4.4×10^{-8}	
		1.00866491600(43)	u	4.2×10^{-10}	
energy equivalent	$m_{\rm n}c^2$	$1.505349631(66) \times 10^{-10}$	J	4.4×10^{-8}	
		939.565379(21)	MeV	2.2×10^{-8}	
neutron-electron mass ratio	$m_{ m n}/m_{ m e}$	1838.6836605(11)		5.8×10^{-10}	
neutron-muon mass ratio	$m_{ m n}/m_{ m \mu}$	8.89248400(22)		2.5×10^{-8}	
neutron-tau mass ratio	$m_{ m n}/m_{ m au}$	0.528790(48)		9.0×10^{-5}	
neutron-proton mass ratio	$m_{ m n}/m_{ m p}$	1.00137841917(45)		4.5×10^{-10}	
neutron-proton mass difference	$m_{\rm n}-m_{\rm p}$	$2.30557392(76)\times10^{-30}$	kg	3.3×10^{-7}	
		0.00138844919(45)	u	3.3×10^{-7}	
energy equivalent	$(m_{\rm n}-m_{\rm p})c^2$	$2.07214650(68)\times10^{-13}$	J	3.3×10^{-7}	
		1.29333217(42)	MeV	3.3×10^{-7}	
neutron molar mass $N_{ m A} m_{ m n}$	$M(n), M_n$	$1.00866491600(43) \times 10^{-3}$	$kg mol^{-1}$	4.2×10^{-10}	
neutron Compton wavelength $h/m_{ m n}c$	$\lambda_{ m C,n}$	$1.3195909068(11) \times 10^{-15}$	m	8.2×10^{-10}	
$\lambda_{ m C,n}/2\pi$	$\lambda_{\mathrm{C,n}}$	$0.21001941568(17)\times10^{-15}$	m	8.2×10^{-10}	
neutron magnetic moment	$\mu_{ m n}$	$-0.96623647(23)\times10^{-26}$	$ m J~T^{-1}$	2.4×10^{-7}	
to Bohr magneton ratio	$\mu_{ m n}/\mu_{ m B}$	$-1.04187563(25)\times10^{-3}$		2.4×10^{-7}	
to nuclear magneton ratio	$\mu_{ m n}/\mu_{ m N}$	-1.91304272(45)		2.4×10^{-7}	
neutron g -factor $2\mu_{\rm n}/\mu_{\rm N}$	$g_{ m n}$	-3.82608545(90)		2.4×10^{-7}	
neutron-electron magnetic moment ratio	$\mu_{ m n}/\mu_{ m e}$	$1.04066882(25)\times10^{-3}$		2.4×10^{-7}	
neutron-proton magnetic moment ratio	$\mu_{ m n}/\mu_{ m p}$	-0.68497934(16)		2.4×10^{-7}	
neutron to shielded proton magnetic					
moment ratio (H_2O , sphere, 25 °C)	$\mu_{ m n}/\mu_{ m p}'$	-0.68499694(16)		2.4×10^{-7}	
neutron gyromagnetic ratio $2 \mu_{\rm n} /\hbar$	$\gamma_{ m n}$	$1.83247179(43) \times 10^8$	$s^{-1} T^{-1}$	2.4×10^{-7}	
	$\gamma_{ m n}/2\pi$	29.1646943(69)	$ m MHz~T^{-1}$	2.4×10^{-7}	
		eron, d			
deuteron mass	$m_{ m d}$	$3.34358348(15) \times 10^{-27}$	kg	4.4×10^{-8}	
	9	2.013553212712(77)	u	3.8×10^{-11}	
energy equivalent	$m_{ m d}c^2$	$3.00506297(13) \times 10^{-10}$	J	4.4×10^{-8}	
	,	1875.612859(41)	MeV	2.2×10^{-8}	
deuteron-electron mass ratio	$m_{ m d}/m_{ m e}$	3670.482 9652(15)		4.0×10^{-10}	
deuteron-proton mass ratio	$m_{ m d}/m_{ m p}$	1.99900750097(18)	1	9.2×10^{-11}	
deuteron molar mass $N_{\rm A} m_{ m d}$	$M(\mathrm{d}), M_{\mathrm{d}}$	$2.013553212712(77) \times 10^{-3}$	$kg mol^{-1}$	3.8×10^{-11}	
deuteron rms charge radius	$r_{ m d}$	$2.1424(21) \times 10^{-15}$	m	9.8×10^{-4}	
deuteron magnetic moment	$\mu_{ m d}$	$0.433073489(10) \times 10^{-26}$	$ m J~T^{-1}$	2.4×10^{-8}	
to Bohr magneton ratio	$\mu_{ m d}/\mu_{ m B}$	$0.4669754556(39) \times 10^{-3}$		8.4×10^{-9}	
to nuclear magneton ratio	$\mu_{ m d}/\mu_{ m N}$	0.857 438 2308(72)		8.4×10^{-9}	
deuteron g -factor $\mu_{ m d}/\mu_{ m N}$	$g_{ m d}$	0.8574382308(72)		8.4×10^{-9}	
deuteron-electron magnetic moment ratio	$\mu_{ m d}/\mu_{ m e}$	$-4.664345537(39) \times 10^{-4}$		8.4×10^{-9}	
deuteron-proton magnetic moment ratio	$\mu_{ m d}/\mu_{ m p}$	0.3070122070(24)		7.7×10^{-9}	
deuteron-neutron magnetic moment ratio	$\mu_{ m d}/\mu_{ m n}$	-0.44820652(11)		2.4×10^{-7}	
Triton, t					

			C	Relative std.
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$
triton mass	$m_{ m t}$	$5.00735630(22) \times 10^{-27}$	kg	4.4×10^{-8}
		3.015 500 7134(25)	u	8.2×10^{-10}
energy equivalent	$m_{ m t}c^2$	$4.50038741(20) \times 10^{-10}$	J	4.4×10^{-8}
		2808.921 005(62)	MeV	2.2×10^{-8}
triton-electron mass ratio	$m_{ m t}/m_{ m e}$	5496.921 5267(50)		9.1×10^{-10}
triton-proton mass ratio	$m_{ m t}/m_{ m p}$	2.9937170308(25)		8.2×10^{-10}
triton molar mass $N_{\rm A} m_{ m t}$	$M(\mathrm{t}), M_{\mathrm{t}}$	$3.0155007134(25)\times10^{-3}$	$kg mol^{-1}$	8.2×10^{-10}
triton magnetic moment	$\mu_{ m t}$	$1.504609447(38)\times10^{-26}$	$ m JT^{-1}$	2.6×10^{-8}
to Bohr magneton ratio	$\mu_{ m t}/\mu_{ m B}$	$1.622393657(21)\times10^{-3}$		1.3×10^{-8}
to nuclear magneton ratio	$\mu_{ m t}/\mu_{ m N}$	2.978962448(38)		1.3×10^{-8}
triton g-factor $2\mu_{\rm t}/\mu_{\rm N}$	$g_{ m t}$	5.957924896(76)		1.3×10^{-8}
		lion, h		
helion mass	$m_{ m h}$	$5.00641234(22) \times 10^{-27}$	kg	4.4×10^{-8}
nenon mass	$m_{ m h}$	3.0149322468(25)	u	8.3×10^{-10}
energy equivalent	$m_{ m h}c^2$	$4.49953902(20) \times 10^{-10}$	J	4.4×10^{-8}
energy equivalent	none.	2808.391 482(62)	MeV	2.2×10^{-8}
helion-electron mass ratio	$m_{ m h}/m_{ m e}$	5495.885 2754(50)	IVIC V	9.2×10^{-10}
helion-proton mass ratio	$m_{ m h}/m_{ m p}$	2.993 152 6707(25)		8.2×10^{-10}
helion molar mass $N_{ m A} m_{ m h}$	$M(\mathrm{h}), M_{\mathrm{h}}$	$3.0149322468(25)\times 10^{-3}$	$kg \text{ mol}^{-1}$	8.3×10^{-10}
helion magnetic moment	$\mu_{\rm h}$	$-1.074617486(27) \times 10^{-26}$	$J T^{-1}$	2.5×10^{-8}
to Bohr magneton ratio	$\mu_{ m h}/\mu_{ m B}$	$-1.158740958(14) \times 10^{-3}$	<i>3</i> 1	1.2×10^{-8}
to nuclear magneton ratio	$\mu_{ m h}/\mu_{ m N}$	-2.127625306(25)		1.2×10^{-8} 1.2×10^{-8}
helion g -factor $2\mu_{\rm h}/\mu_{\rm N}$	$g_{ m h}$	-4.255250613(50)		1.2×10^{-8} 1.2×10^{-8}
shielded helion magnetic moment	$\mu_{ m h}^{\prime}$	$-1.074553044(27) \times 10^{-26}$	$ m J~T^{-1}$	2.5×10^{-8}
(gas, sphere, 25 °C)	$\mu_{ m h}$	1.071000011(27) × 10	<i>3</i> 1	2.0 / 10
to Bohr magneton ratio	$\mu_{ m h}'/\mu_{ m B}$	$-1.158671471(14) \times 10^{-3}$		1.2×10^{-8}
to nuclear magneton ratio	$\mu_{ m h}^{\prime}/\mu_{ m N}$	-2.127497718(25)		1.2×10^{-8}
shielded helion to proton magnetic	Ph/PN	2012(10) (10(20)		1.2 // 10
moment ratio (gas, sphere, 25 °C)	$\mu_{ m h}'/\mu_{ m p}$	-0.761766558(11)		1.4×10^{-8}
shielded helion to shielded proton magnetic	~h/ ~p	01.01.00.000(11)		1.17.10
moment ratio (gas/H ₂ O, spheres, 25 °C)	$\mu_{ m h}'/\mu_{ m p}'$	-0.7617861313(33)		4.3×10^{-9}
shielded helion gyromagnetic ratio	~h/ ~p	001.001010(00)		1.0 // 10
$2 \mu'_{\rm h} /\hbar$ (gas, sphere, 25 °C)	$\gamma_{ m h}'$	$2.037894659(51) \times 10^8$	$s^{-1} T^{-1}$	2.5×10^{-8}
- r-h / · · · (8, · r-····)	$\gamma_{ m h}^{ m n}/2\pi$	32.434 100 84(81)	$ m MHz~T^{-1}$	2.5×10^{-8}
		particle, α		
alpha particle mass		$6.64465675(29) \times 10^{-27}$	kg	4.4×10^{-8}
aipiia particie mass	$m_{oldsymbol{lpha}}$	4.001506179125(62)	u u	1.5×10^{-11}
energy equivalent	$m_{m{lpha}}c^2$	$5.97191967(26) \times 10^{-10}$	J	4.4×10^{-8}
chergy equivalent	$m_{\alpha}c$	$3.97191907(20) \times 10$ 3727.379240(82)	MeV	2.2×10^{-8}
alpha particle to electron mass ratio	$m_{f lpha}/m_{ m e}$	7294.299 5361(29)	IVIC V	4.0×10^{-10}
alpha particle to proton mass ratio	$m_{lpha}/m_{ m p}$	3.97259968933(36)		9.0×10^{-11}
alpha particle molar mass $N_{\rm A} m_{\alpha}$	$M(\alpha), M_{\alpha}$	$4.001506179125(62)\times 10^{-3}$	$kg mol^{-1}$	1.5×10^{-11}
aipha particle motal mass 1 V _A m _Q		. ,	kg mor	1.0 × 10
Avogadro constant		CHEMICAL $6.02214129(27) \times 10^{23}$	mol^{-1}	4.4×10^{-8}
Avogadro constant atomic mass constant	$N_{ m A}, L$	$0.02214129(21) \times 10^{-3}$	11101	4.4 ∧ 10
	m	$1.660538921(73)\times10^{-27}$	ka	4.4×10^{-8}
$m_{\rm u} = \frac{1}{12} m(^{12}{\rm C}) = 1 \text{ u}$ energy equivalent	$m_{ m u} \ m_{ m u} c^2$	$1.492417954(66) \times 10^{-10}$	kg J	4.4×10^{-8} 4.4×10^{-8}
chergy equivalent	$m_{ m u}c$	931.494061(21)	J MeV	4.4×10^{-8} 2.2×10^{-8}
		331.434 UU1(21)	INIC A	2.2 ∧ 10

				Relative std.
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$
Faraday constant $^6 N_{\rm A} e$	F	96 485.3365(21)	$C \text{ mol}^{-1}$	2.2×10^{-8}
molar Planck constant	$N_{ m A} h$	$3.9903127176(28)\times 10^{-10}$	$\rm J~s~mol^{-1}$	7.0×10^{-10}
	$N_{ m A}hc$	0.119626565779(84)	$\rm J~m~mol^{-1}$	7.0×10^{-10}
molar gas constant	R	8.3144621(75)	$\mathrm{J}\ \mathrm{mol^{-1}}\ \mathrm{K^{-1}}$	9.1×10^{-7}
Boltzmann constant $R/N_{\rm A}$	k	$1.3806488(13) \times 10^{-23}$	$ m J~K^{-1}$	9.1×10^{-7}
		$8.6173324(78) \times 10^{-5}$	${ m eV}~{ m K}^{-1}$	9.1×10^{-7}
	k/h	$2.0836618(19) \times 10^{10}$	$\mathrm{Hz}\ \mathrm{K}^{-1}$	9.1×10^{-7}
	k/hc	69.503476(63)	${\rm m}^{-1}~{\rm K}^{-1}$	9.1×10^{-7}
molar volume of ideal gas RT/p				
T = 273.15 K, p = 100 kPa	$V_{ m m}$	$22.710953(21) \times 10^{-3}$	$\mathrm{m}^3 \ \mathrm{mol}^{-1}$	9.1×10^{-7}
Loschmidt constant $N_{ m A}/V_{ m m}$	n_0	$2.6516462(24) \times 10^{25}$	m^{-3}	9.1×10^{-7}
molar volume of ideal gas RT/p				
T = 273.15 K, p = 101.325 kPa	$V_{ m m}$	$22.413968(20) \times 10^{-3}$	$\mathrm{m}^3~\mathrm{mol}^{-1}$	9.1×10^{-7}
Loschmidt constant $N_{\rm A}/V_{\rm m}$	n_0	$2.6867805(24) \times 10^{25}$	m^{-3}	9.1×10^{-7}
Sackur-Tetrode (absolute entropy) constant ⁷				
$\frac{5}{2} + \ln[(2\pi m_{\rm u}kT_1/h^2)^{3/2}kT_1/p_0]$				
$T_1 = 1 \text{ K}, p_0 = 100 \text{ kPa}$	S_0/R	-1.1517078(23)		2.0×10^{-6}
$T_1 = 1 \text{ K}, p_0 = 101.325 \text{ kPa}$		-1.1648708(23)		1.9×10^{-6}
Stefan-Boltzmann constant				
$(\pi^2/60)k^4/\hbar^3c^2$	σ	$5.670373(21) \times 10^{-8}$	$ m W~m^{-2}~K^{-4}$	3.6×10^{-6}
first radiation constant $2\pi hc^2$	c_1	$3.74177153(17) \times 10^{-16}$	$ m W~m^2$	4.4×10^{-8}
first radiation constant for spectral radiance $2hc^2$	$c_{1 m L}$	$1.191042869(53)\times 10^{-16}$	$\mathrm{W}~\mathrm{m}^2~\mathrm{sr}^{-1}$	4.4×10^{-8}
second radiation constant hc/k	c_2	$1.4387770(13) \times 10^{-2}$	m K	9.1×10^{-7}
Wien displacement law constants		` ,		
$b = \lambda_{\text{max}} T = c_2 / 4.965 114 231$	b	$2.8977721(26) \times 10^{-3}$	m K	9.1×10^{-7}
$b' = \nu_{\text{max}}/T = 2.821439372c/c_2$	b'	$5.8789254(53) \times 10^{10}$	$\mathrm{Hz}\ \mathrm{K}^{-1}$	9.1×10^{-7}

¹ See the "Adopted values" table for the conventional value adopted internationally for realizing representations of the volt using the Josephson effect.

² See the "Adopted values" table for the conventional value adopted internationally for realizing representations of the ohm using the quantum Hall effect.

³ Value recommended by the Particle Data Group (Nakamura, et al., 2010).

⁴ Based on the ratio of the masses of the W and Z bosons $m_{\rm W}/m_{\rm Z}$ recommended by the Particle Data Group (Nakamura, *et al.*, 2010). The value for $\sin^2\theta_{\rm W}$ they recommend, which is based on a particular variant of the modified minimal subtraction ($\overline{\rm MS}$) scheme, is $\sin^2\hat{\theta}_{\rm W}(M_{\rm Z})=0.231\ 22(15)$.

⁵ This and all other values involving m_{τ} are based on the value of $m_{\tau}c^2$ in MeV recommended by the Particle Data Group (Nakamura, *et al.*, 2010), but with a standard uncertainty of 0.29 MeV rather than the quoted uncertainty of -0.26 MeV, +0.29 MeV.

⁶ The helion, symbol h, is the nucleus of the ³He atom.

⁷ The numerical value of F to be used in coulometric chemical measurements is 96485.3401(48) [5.0×10^{-8}] when the relevant current is measured in terms of representations of the volt and ohm based on the Josephson and quantum Hall effects and the internationally adopted conventional values of the Josephson and von Klitzing constants K_{J-90} and R_{K-90} given in the "Adopted values" table.

⁸ The entropy of an ideal monoatomic gas of relative atomic mass A_r is given by $S = S_0 + \frac{3}{2}R \ln A_r - R \ln(p/p_0) + \frac{5}{2}R \ln(T/K)$.

Fundamental Physical Constants — Non-SI units

	•			Relative std.
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$
electron volt: (e/C) J	eV	$1.602176565(35) \times 10^{-19}$	J	2.2×10^{-8}
(unified) atomic mass unit: $\frac{1}{12}m(^{12}C)$	u	$1.660538921(73)\times10^{-27}$	kg	4.4×10^{-8}
12		` '		
	Natur	ral units (n.u.)		
n.u. of velocity	c, c_0	299 792 458	${ m m~s^{-1}}$	exact
n.u. of action: $h/2\pi$	\hbar	$1.054571726(47)\times10^{-34}$	J s	4.4×10^{-8}
		$6.58211928(15)\times10^{-16}$	eV s	2.2×10^{-8}
	$\hbar c$	197.3269718(44)	MeV fm	2.2×10^{-8}
n.u. of mass	$m_{ m e}$	$9.10938291(40) \times 10^{-31}$	kg	4.4×10^{-8}
n.u. of energy	$m_{ m e}c^2$	$8.18710506(36)\times10^{-14}$	J	4.4×10^{-8}
		0.510998928(11)	MeV	2.2×10^{-8}
n.u. of momentum	$m_{ m e}c$	$2.73092429(12)\times 10^{-22}$	${ m kg~m~s^{-1}}$	4.4×10^{-8}
		0.510998928(11)	MeV/c	2.2×10^{-8}
n.u. of length: $\hbar/m_{ m e}c$	$\lambda_{ m C}$	$386.15926800(25) \times 10^{-15}$	m	6.5×10^{-10}
n.u. of time	$\hbar/m_{ m e}c^2$	$1.28808866833(83) \times 10^{-21}$	S	6.5×10^{-10}
		nic units (a.u.)		2.2.1.2.8
a.u. of charge	e	$1.602176565(35) \times 10^{-19}$	C	2.2×10^{-8}
a.u. of mass	$m_{ m e}$	$9.10938291(40) \times 10^{-31}$	kg	4.4×10^{-8}
a.u. of action: $h/2\pi$	\hbar	$1.054571726(47) \times 10^{-34}$	J s	4.4×10^{-8}
a.u. of length: Bohr radius (bohr)				10
$lpha/4\pi R_{\infty}$	a_0	$0.52917721092(17)\times10^{-10}$	m	3.2×10^{-10}
a.u. of energy: Hartree energy (hartree)		10		0
$e^2/4\pi\epsilon_0 a_0 = 2R_{\infty}hc = \alpha^2 m_{\rm e}c^2$	$E_{ m h}$	$4.35974434(19) \times 10^{-18}$	J	4.4×10^{-8}
a.u. of time	$\hbar/E_{ m h}$	$2.418884326502(12) \times 10^{-17}$	S	5.0×10^{-12}
a.u. of force	$E_{\rm h}/a_0$	$8.23872278(36) \times 10^{-8}$	N	4.4×10^{-8}
a.u. of velocity: αc	$a_0 E_{ m h}/\hbar$	$2.18769126379(71) \times 10^{6}$	${ m m~s^{-1}}$	3.2×10^{-10}
a.u. of momentum	\hbar/a_0	$1.992851740(88) \times 10^{-24}$	${ m kg~m~s^{-1}}$	4.4×10^{-8}
a.u. of current	$eE_{ m h}/\hbar$	$6.62361795(15) \times 10^{-3}$	A	2.2×10^{-8}
a.u. of charge density	e/a_0^3	$1.081202338(24)\times 10^{12}$	${ m C}~{ m m}^{-3}$	2.2×10^{-8}
a.u. of electric potential	$E_{ m h}/e$	27.21138505(60)	V	2.2×10^{-8}
a.u. of electric field	$E_{\rm h}/ea_0$	$5.14220652(11)\times10^{11}$	$ m V~m^{-1}$	2.2×10^{-8}
a.u. of electric field gradient	$E_{ m h}/ea_0^2$	$9.71736200(21) \times 10^{21}$	$ m V~m^{-2}$	2.2×10^{-8}
a.u. of electric dipole moment	ea_0	$8.47835326(19) \times 10^{-30}$	C m	2.2×10^{-8}
a.u. of electric quadrupole moment	ea_{0}^{2}	$4.486551331(99) \times 10^{-40}$	$C m^2$	2.2×10^{-8}
a.u. of electric polarizability	$e^2 a_0^2 / E_{ m h}$	$1.6487772754(16) \times 10^{-41}$	$C^2 m^2 J^{-1}$	9.7×10^{-10}
a.u. of $1^{\rm st}$ hyperpolarizability	$e^3 a_0^3 / E_{\rm h}^2$	$3.206361449(71) \times 10^{-53}$	$C^3 m^3 J^{-2}$	2.2×10^{-8}
a.u. of 2 nd hyperpolarizability	$e^4 a_0^4 / E_{\rm h}^3$	$6.23538054(28)\times10^{-65}$	$\mathrm{C}^4~\mathrm{m}^4~\mathrm{J}^{-3}$	4.4×10^{-8}
a.u. of magnetic flux density	\hbar/ea_0^2	$2.350517464(52)\times 10^5$	T	2.2×10^{-8}
a.u. of magnetic dipole moment: $2\mu_{\mathrm{B}}$	$\hbar e/m_{ m e}$	$1.854801936(41)\times10^{-23}$	$ m J~T^{-1}$	2.2×10^{-8}
a.u. of magnetizability	$e^2 a_0^2 / m_{ m e}$	$7.891036607(13) \times 10^{-29}$	$ m J~T^{-2}$	1.6×10^{-9}
a.u. of permittivity: $10^7/c^2$	$e^2/a_0 E_{\rm h}$	$1.112650056\times10^{-10}$	$\mathrm{F}\mathrm{m}^{-1}$	exact

Fundamental Physical Constants — Adopted values

Quantity	Symbol	Value	Unit	Relative std. uncert. $u_{\rm r}$
relative atomic mass ¹ of ¹² C	$A_{ m r}(^{12}{ m C})$	12		exact
molar mass constant	$M_{ m u}$	1×10^{-3}	$kg mol^{-1}$	exact
molar mass of ¹² C	$M(^{12}{ m C})$	12×10^{-3}	$kg mol^{-1}$	exact
conventional value of Josephson constant ²	$K_{ m J-90}$	483 597.9	$ m GHz~V^{-1}$	exact
conventional value of von Klitzing constant ³	$R_{\mathrm{K-90}}$	25 812.807	Ω	exact
standard-state pressure		100	kPa	exact
standard atmosphere		101.325	kPa	exact

The relative atomic mass $A_{\rm r}(X)$ of particle X with mass m(X) is defined by $A_{\rm r}(X) = m(X)/m_{\rm u}$, where $m_{\rm u} = m(^{12}{\rm C})/12 = M_{\rm u}/N_{\rm A} = 1$ u is the atomic mass constant, $N_{\rm A}$ is the Avogadro constant, and u is the atomic mass unit. Thus the mass of particle X in u is $m(X) = A_{\rm r}(X)$ u and the molar mass of X is $M(X) = A_{\rm r}(X)M_{\rm u}$.

Fundamental Physical Constants — X-ray values

				Relative std.
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$
Cu x unit: $\lambda(\mathrm{CuK}\alpha_1)/1537.400$	$xu(CuK\alpha_1)$	$1.00207697(28)\times10^{-13}$	m	2.8×10^{-7}
Mo x unit: $\lambda(\text{MoK}\alpha_1)/707.831$	$xu(MoK\alpha_1)$	$1.00209952(53) \times 10^{-13}$	m	5.3×10^{-7}
ångstrom star: $\lambda(WK\alpha_1)/0.2090100$	$\mathring{\mathrm{A}}^*$	$1.00001495(90) \times 10^{-10}$	m	9.0×10^{-7}
lattice parameter ¹ of Si (in vacuum, 22.5 °C)	a	$543.1020504(89) \times 10^{-12}$	m	1.6×10^{-8}
$\{220\}$ lattice spacing of Si $a/\sqrt{8}$	d_{220}	$192.0155714(32)\times10^{-12}$	m	1.6×10^{-8}
(in vacuum, 22.5 °C)				
molar volume of Si $M(Si)/\rho(Si) = N_A a^3/8$	$V_{ m m}({ m Si})$	$12.05883301(80)\times10^{-6}$	$\mathrm{m}^3~\mathrm{mol}^{-1}$	6.6×10^{-8}
(in vacuum, 22.5 °C)				

This is the lattice parameter (unit cell edge length) of an ideal single crystal of naturally occurring Si free of impurities and imperfections, and is deduced from measurements on extremely pure and nearly perfect single crystals of Si by correcting for the effects of impurities.

² This is the value adopted internationally for realizing representations of the volt using the Josephson effect.

³ This is the value adopted internationally for realizing representations of the ohm using the quantum Hall effect.