Page

Listing of Claims:

The listing of the claims which follows replaces any and all prior versions and/or listings of the claims in the application,

> 1. (Currently Amended) A compound represented by Formula Ia

or a pharmaceutically acceptable salt or hydrate-thereof, wherein:

n and m are each independently 0, 1 or 2;

J is selected from NR¹ or C(R¹)(R²):

K is selected from NR3 or C(R3)(R4):

L is selected from NR5-or-C(R5)(R6):

X is a bond, -C(O), $-N(R^{14})$ -, $-N(R^{14})$ -C(O)-, -C(O)- $N(R^{14})$ -, $-N(R^{14})-S(O)_{k-}$, or $-N(R^{14})-C(O)-NH-or-S(O)_{k-}N(R^{14})$;

k is 0.1 or 2:

R1 and R10 are each independently is selected from the group consisting of:

- (1) C₁₋₆alkyl,
- (2) C2-6alkenyl,
- C2-6akynyl, (3)
- (4) C3-6cycloalkyl,
- (5) C1-6alkoxy,

(6) C₁₋₆alkyl-S(O)_k-, wherein k is 0, 1 or 2,

- (7) aryl,
- (8) aryl C₁₋₆alkyl,
- (9) HET,
- (10) -C1-6alkyl-HET,
- (11) arvloxy,
- (12) aroyloxy,
- (13) aryl C2-6alkenyl,
- (14) aryl C2-6alkynyl,
- (15) hydrogen,
- (16) hydroxyl, and
- (17) cyano,

wherein items (1) to (6) above and the alkyl portions of items (8) and (10) above and the alkenyl portion of item (14) above are optionally substituted from one up to the maximum number of substitutable positions with a substitutent independently selected from the group consisting of: halo, oxo, OR^{13} , $N(R^{14})_2$, C_{3-6} cycloalkyl and C_{1-6} alkyl- $S(O)_{k^-}$, wherein k is 0, 1 or 2, and

wherein items (7), (9), (11) and (12) above and aryl portion of items (8), (13) and (14) above and the HET portion of item (10) above are optionally substituted from one up to the maximum number of substitutable positions with a substituent independently selected from the group consisting of:

- (a) halo,
- (b) OR 13.
- (c) N(R¹⁴)2,
- (d) C₁₋₆alkyl,
- (e) C2-6alkenyl,
- (f) C2-6akynyl,
- (g) C₁₋₆alkyl-S(O)_k-, wherein k is 0, 1 or 2,
- (h) aryl,
- (i) aryl-S(O)k-, wherein k is 0, 1 or 2,
- (i) HET,
- (k) aryl C1-6alkyl,
- (l) aroyl,

- (m) aryloxy,
- (n) aryl C₁₋₆alkoxy,
- (o) CN and
- (p) C3-6cycloalkyl,

wherein items (d) to (g) and (p) above and the alkyl portions of item (k) above are optionally substituted from one up to the maximum number of substitutable positions with a substituent independently selected from the group consisting of: halo, OR¹³ and N(R¹⁴)₂, and

wherein items (h), (i), (j), (l) and (m) above and the aryl portions of items (k) and (n) above are optionally substituted from one up to the maximum number of substitutable positions with a substituent independently selected from the group consisting of: halo, OR¹³ and C₁-4alkyl,

- R10 is selected from the group consisting of:
- (1) phenyl,
- (2) benzyl, and
- (3) HET, wherein HET is a 5-membered aromatic or non-aromatic monocyclic ring containing 1-3 heteroatoms selected from O, S and N,

wherein groups (1) to (3) above are optionally substituted with 1 to 3 substituents independently selected from the group consisting of:

- (a) halo,
 - b) C₁₋₄alkyl, optionally substituted with hydroxy or 1 to 3 halo

groups,

- (c) C₁-4alkoxy, optionally substituted with 1 to 3 halo groups,
- (d) NH2,
- (e) hydroxy, and
- (e) phenyl or benzyl;

 $R^2, R^3, R^4, R^5 \text{-and } R^6 \text{ \underline{is} are each independently selected from the group consisting of:} \\$

- hydrogen,
- (2) halo,
- (3) C_{1-6alkyl},
- (4) C2-6alkenyl,
- (5) C2_6akynyl,

(6) C3_6eyeloalkyl,
(7) C1_6alkexy;
(8) C1_6alkyl-S(O)k-, wherein k is 0, 1 or 2,
(9) aryl,
(10) aryl-C1_6alkyl,
(11) HET and
(12) C1_6alkyl-HET,

wherein items (3) to (8) above and the alkyl portions of items (10) and (12) above are optionally substituted from one up to the maximum number of substitutable positions with a substituent independently selected from the group consisting of: halo, OR¹³, N(R¹⁴)2-and C₁ -6alkyl-S(O)_{k-7} wherein k is 0, 1 or 2; and

wherein items (9) and (11) and the aryl portion of items (10) and the HET portion of item (12) are optionally substituted from one up to the maximum number of substituable positions with a substituent independently selected from the group consisting of:

(a) halo; (b) OR¹³; (c) N(R¹⁴)2; (d) C₁ 6alkyl; (e) C₂ 6alkenyl; (f) C₂ 6alkynyl and (g) C₁ 6alkyl S(O)₆, wherein k is 0, 1 or 2;

wherein items (d) to (g) above are optionally substituted with from one up to the maximum number of substitutable positions with a substituent independently selected from the group consisting of: halo, OR¹³ and N(R¹⁴)2;

or R1 and R3 or R3 and R5 may be are joined together to form a double bond;

R7 is selected from the group consisting of:

- (1) hydrogen,
- (2) OR13,
- (3) C1-4alkyl,
- (4) arvl and
- (5) aryl C1-4alkyl,

wherein item (3) above and the alkyl portion of item (5) above are optionally substituted with from one up to the maximum number of substitutable positions with a substituent independently selected from the group consisting of: halo, OR 13 and N(R14)2, and

wherein item (4) above and the aryl portion of item (5) above are optionally substituted with from one up to the maximum number of substitutable positions with a substituent independently selected from the group consisting of:

- (a) halo,
- (b) OR13.
- (c) $N(R^{14})_2$,
- (d) C₁₋₆alkyl,
- (e) C2-6alkenyl and
- (f) C2-6akynyl,

wherein items (d) to (f) above are optionally substituted with from one up to the maximum number of substitutable positions with a substituent independently selected from the group consisting of: halo, OR¹³ and N(R¹⁴)2;

each Y_1 , Y_2 and Y_3 are independently selected from the group consisting of: \underline{is}

- (1) hydrogen,
- (2) -O-R⁹;
 - (3) -S(O)_k-R⁹, wherein k is 0, 1 or 2,
- (4) -C-W-R9, wherein W is O or S(O)k,
 - (5) N(R-15)2.
 - (6) S(O)_k-N(R¹⁵)₂,
- (7) N(R¹⁵) S(O)k-N(R¹⁵)2;
 - (8) NO₂,
 - (9) -C(O)-R¹⁵;
- (10) —-C(O)O-R¹⁵,
- (11) -CN,
- (12) halo,
 - (13) O S(O)_k-R¹⁵ and (14) C₁_4alkyl, optionally substituted with from 1 to 6 halo groups,

with the proviso that when Y2 is hydrogen, Y3 is -C(O) R¹⁵, R¹⁵ is C_{1-6} alky1 and X is -C(O) then R¹⁰ is not C_{1-6} alky1, and

Serial No.: 10/527.615 21149YP Case No.:

Page

with the proviso that when Y2 is C(O) R¹⁵, Y2 is hydrogen, R¹⁵ is C₁ calkyl and X is C(O) then R¹⁰ is not C1_6alkyl, and

with the provise that when Y2 and Y3 are both hydrogen, X is a bond and R¹⁰ is HET, then said HET is defined as a 5-membered aromatic or non-aromatic monocyclic ring containing 1-3 heteroatoms selected from O, S and N,

Y2 is CF3;

R8-is-selected from the group consisting of: hydrogen, C1-6alkyl, C1-6alkoxy, C1_6alkyl-C(O)OH and -C1_6alkyl-C(O)O-C1_6alkyl, wherein the C1_6alkyl portion is optionally mono, di or tri substituted with halo; or where R8 and XR-10 together with the carbon atom to which they are attached form the spiro group:

R9 is selected from the group consisting of: hydrogen, C1_12alkyl and aryl, wherein C1_12alkyl and arvl are optionally substituted from one up to the maximum number of substituents with halo:

each R¹¹, R¹² and R¹⁶ is independently selected from the group consisting of:

- (1) hydrogen,
- (2) halo
- (3) C1-6alkyl,
- (4) C2-6alkenyl,
- (5) C1-6alkoxy and
- hvdroxy, (6)

wherein items (3) to (5) above are optionally substituted from one up to the maximum number of substitutable positions with a substituent independently selected from the group consisting of: halo, OR12, N(R13)2 and C1-6alkyl-S(O)k-, wherein k is 0, 1 or 2, and

or R16 may additionally be hydrogen;

each R13 and R14 is independently selected from the group consisting of hydrogen and C1-4alkyl, optionally substituted from one up to the maximum number of substitutable positions with halo; and

each R¹⁵ is independently selected from the group consisting of: hydrogen, C₁. 6alkyl, aryl and C₁. 12alkoxycarbonyl, wherein said C₁. 6alkyl and C₁. 12alkoxycarbonyl are optionally substituted from one up to the maximum number of substitutable positions with halo and said aryl is optionally substituted from one up to the maximum number of substitutable positions with halo and C₁. 4alkyl, optionally substituted with 1-3 halo groups.

2-3. (Canceled)

- 4. (Original) A compound according to Claim 1 wherein R¹ is phenyl or pyridyl said phenyl or pyridyl or optionally mono or di-substituted with a substituent independently selected from the group consisting of:
 - (a) halo,
 - (b) OCH₃,
 - (d) CH3,
 - (e) CN.

5-10. (Previously Canceled)

 $\label{eq:continuous} 11. \qquad \text{(Currently Amended) A compound according to Claim 1 wherein X is a bond, $-C(O), -N(R^{14})-, -N(R^{14})-C(O)-, -C(O)-N(R^{14})-, -N(R^{14})-C(O)-NH-;$}$

Y₁ is hydrogen;

R1 is phenyl, optionally mono or di-substituted with halo;

R7 is methyl[[.]],

R¹¹ is hydrogen;

R12 is hydrogen;

R14 is hydrogen or methyl; and

R¹⁶ is hydrogen;. and

R¹⁰ are each independently selected from the group consisting of:

(1) C₁₋₄alkyl,

 (2)	-C ₂₋₄ alkenyl,
 (3)	-C2_4akynyl,
 (4)	-C3_6eyeloalkyl,
 (5)	-C ₁₋₄ alkoxy,
 (6)	aryl,
 (7)	– aryl C₁₋₄alkyl,
 (8)	HET,
 (9)	—C ₁₋₄ alkyl-HET,
 (10)	aryloxy,
 (11) -	-aroyloxy,
 (12)	-aryl C2_4alkenyl,
 (13)	aryl C2_6alkynyl,

wherein items (1) to (5) above and the alkyl portions of items (7) and (9) above and the alkenyl portion of item (12) above are optionally substituted with from one to three substituents independently selected from the group consisting of: halo, OR^{13} , $N(R^{14})_2$, C_3 , 6cycloalkyl and C_1 , 6alkyl- $S(O)_k$, wherein k is 0, 1 or 2, and

wherein items (6), (8), (10) and (11) above and aryl portion of items (7), (12) and (13) above and the HET portion of item (9) above are optionally substituted with from one to three substituents independently selected from the group consisting of:

	(a)	-halo,
	(b)	—OR13,
	—(e)—	$-N(R^{14})_{27}$
	(d)	—C1_4alkyl,
	(e)	-C2_4alkenyl,
	(f)	—C2_4akynyl,
	(g)	aryl,
	(h)	HET,
-	(i)	– aryl C_{1–6}alkyl,
	(j)	aroyl,
	(k)	aryloxy,
	(l)	aryl C ₁₋₆ alkoxy and
	(m)	CN,

wherein items (d) to (f) above and the alkyl-portions of item (i) above are optionally substituted

from with one to three substituents independently selected from the group consisting of: halo,

OR13 and N(R14)2, and

wherein items (g), (h), (j) and (k) above and the aryl-portions of items (i) and (l) above are optionally substituted with from one to three substituents independently selected from the group consisting of: halo, OR^{13} and C_{1-4} alkyl,

12. (Currently Amended) A compound according to Claim 1 of Formula Ib

$$\begin{array}{c} R^{16} \\ Y_1 \\ X_1 \\ Y_2 \\ X_1 \\ R^1 \\ (R^{11})_{0.2} \\ \end{array}$$

wherein:

m is 0 or 1,

n is 0 or 1,

R¹ is phenyl, optionally mono or di-substituted with halo; and R¹⁰ are each independently selected from the group consisting of:

(1) C1 called

(12) aroyloxy,

 (1)	C1-0aikyi,
 (2)	C2_6alkenyl,
 (3)—	C2_6akynyl,
 (4)	C3_6cycloalkyl,
 (5) —	C ₁₋₆ alkoxy,
 (6)	C1-6alkyl-S(O)k-, wherein k is 0, 1 or 2,
 (7)	aryl,
 (8)	aryl C ₁₋₆ alkyl,
 9)	HET,
 (10)	-C ₁₋₆ alkyl-HET,
 (11)	aryloxy,

 (13)	aryl C ₂₋₆ alkenyl,
 (14)	aryl C2_6alkynyl,
 (15)	hydrogen, and
(16)	hydroxy

wherein items (1) to (6) above and the alkyl-portions of items (8) and (10) above and the alkenyl-portion of item (13) above and the alkynyl-portion of item (14) above are optionally substituted with from one to three substituents independently selected from the group consisting of: halo, OR¹³, N(R¹⁴)₂, C3. 6cycloalkyl and C1. 6alkyl-S(O)_k-, wherein k is 0, 1 or 2, and

wherein items (7), (9), (11) and (12) above and aryl portion of items (8), (13) and (14) above and the HET portion of item (10) above are optionally substituted with from one to three substituents independently selected from the group consisting of:

(a)	halo,
(b)	-OR¹³,
——————————————————————————————————————	$-N(R^{14})_{27}$
——————————————————————————————————————	-C ₁₋₆ alkyl,
(e)	-C ₂₋₆ alkenyl,
(f)	-C2_6akynyl,
(g)	-C1-6alkyl-S(O)k-, wherein k is 0, 1 or 2,
(h)	aryl,
(i)	aryl-S(O)k-, wherein k is 0, 1 or 2,
	HET,
——————————————————————————————————————	-aryl C₁₋₆alkyl,
(1)	-aroyl,
(m)	aryloxy,
(n)	-aryl C₁₋₆alkoxy and
(0)	-CN,

wherein items (d) to (g) above and the alkyl portions of item (k) above are optionally substituted from one to three substituents independently selected from the group consisting of: halo, OR13 and N(R14)2, and

wherein items (h), (i), (j), (l) and (m) above and the aryl portions of items (k) and (n) above are optionally substituted from one to three substituents independently selected from the group consisting of: halo, OR¹³ and C1_4alkyl,

each R¹³ and R¹⁴ is independently selected from the group consisting of hydrogen and C₁.

4alkyl, optionally substituted from one to three halo groups;

R16 and each R11 are independently selected from the group consisting of:

- (1) hydrogen,
- (2) halo,
- (3) methyl,
- (4) methoxy, and
- (5) hvdroxv÷.

Y1-and Y2-are each selected from the group consisting of:

- (1) hydrogen,
- (2) hydroxy,
- (3) halo.
- (4) methyl.
- (5) NO2-
- (6) -CN.
 - (6) mono, di or tri halo substituted methyl,

 $\frac{\text{X is a bond, } C(O), \ N(R^{14}), \ N(R^{14}) C(O), \ C(O) \ N(R^{14}),}{N(R^{14}) S(O)_k, \ N(R^{14}) C(O) \ NH \ or \ S(O)_k, \ N(R^{14});}$

- $13. \qquad \hbox{(Original) A compound according to Claim 12 wherein Y_1, R^{11} and R^{16} are each hydrogen.}$
 - 14. (Currently Amended) A compound according to Claim 12 of Formula Ic:

wherein

n is 0 or 1, and

R1 is phenyl, optionally mono or di-substituted with halo;

R¹⁰ is selected from the group consisting of:

- (1) C₁₋₆alkyl,
 - (2) C2-6alkenyl,

(3) C ₂₋₆ akyn	yl,	
(4	C3_6eyele	alkyl,	
(5	C ₁₋₆ alkox	ty,	
) — C ₁₋₆ alkyl	-S(O)k-, wherein k	is 0, 1 or 2,
) aryl,		
) — aryl C ₁₋₆ 6	ılkyl,	
) HET,		
(1	0)—-C ₁₋₆ alky	I-HET,	
(1	1) aryloxy,		
(1	2) aroyloxy,		
(1	3) aryl C ₂₋₆ 6	ılkenyl,	
(1	4) aryl C ₂₋₆ 6	ılkynyl,	
(1	5) hydrogen,	-and	
(1	6) hydroxy		

wherein items (1) to (6) above and the alkyl-portions of items (8) and (10) above and the alkenyl-portion of item (13) above and the alkynyl-portion of item (14) above are optionally substituted with from one to three substituents independently selected from the group consisting of: halo, OR¹³, N(R¹⁴)2, C3. Geveloalkyl and C1. Galkyl-S(O)_k, wherein k is 0.1 or 2, and

wherein items (7), (9), (11) and (12) above and aryl portion of items (8), (13) and (14) above and the HET portion of item (10) above are optionally substituted with from one to three substituents independently selected from the group consisting of:

(a)	halo,
(b)	−OR ¹³ ,
——————————————————————————————————————	$-N(R^{14})_{2}$
(d)	-C ₁₋₆ alkyl,
(e)	-C2_6alkenyl,
	-C2_6akynyl,
(g)	-C ₁₋₆ alkyl-S(O) _k -, wherein k is 0, 1 or 2,
——————————————————————————————————————	aryl,
(i)	aryl-S(O)k-, wherein k is 0, 1 or 2,
	HET,
——————————————————————————————————————	-aryl C₁₋₆alkyl,
(l)	aroyl,

(m) aryloxy-

(n) aryl C₁₋₆alkoxy and (o) CN,

(0) CN,

wherein items (d) to (g) above and the alkyl-portions of item (k) above are optionally substituted with from one to three substituents independently selected from the group consisting of: halo, OR_1^{13} and $N(R_1^{14})_{23}$ and

wherein items (h), (i), (j), (l) and (m) above and the aryl portions of items (k) and (n) above are optionally substituted with from one to three substituents independently selected from the group consisting of: halo, OR¹³ and C₁ 4alkyl,

each R¹³ and R¹⁴ is independently selected from the group consisting of hydrogen and C₁.

4alkyl, optionally substituted with from one to three halos; and

R16 and each R11 are independently selected from the group consisting of:

- (1) hydrogen,
- (2) halo,
- (3) methyl,
 - (4) methoxy, and (5) hydroxy;

Y1-and Y2-are each selected from the group consisting of:

- (1) hydrogen,
 - (2) hydroxy, (3) halo:
- (4) methyl-
- (5) -NO₂,
 - -(6) --- CN,

(6) mono, di or tri halo substituted methyl,

 $\begin{array}{l} X. is a \ bond, \quad C(O), \quad N(R^{14}), \quad N(R^{14}) \cdot C(O), \quad C(O) \cdot N(R^{14}), \\ -N(R^{14}) \cdot S(O)_k \cdot , \quad N(R^{14}) \cdot C(O) \cdot NH \cdot or \quad S(O)_k \cdot N(R^{14}); \end{array}$

15-19. (Canceled).

20. (Currently Amended) The compound according to Claim 3 ½ wherein ¥₂ is-hydrogen, X is a bond and R¹0 is HET, wherein HET is a 5-membered aromatic or non-aromatic monocyclic ring containing 1-3 heteroatoms selected from O, S and N.

 $21. \qquad \hbox{(Original) The compound according to Claim 20 wherein HET is selected from oxazolyl and imidazolyl.}$

22. (Currently Amended) A compound selected from the group consisting of:

1	
2	THE CF3
3	CF3 NN HN O HN
4	CF3 NN HN F
5	CF ₃

6	CF3 HN F
7	CF3 NN HN O HN
8	CF ₃
9	ZN HN O HN O
10	CF ₃

11	CF ₃
12	CF ₃ HN Br
13	CF3 HN
14	HN FF
15	CF ₃ HN CF _F

16	N HN CF3
17	CF ₃ HN CI
18	NN HN FF
19	CF3 HN HN
20	NN HIN N

21	NN HIN ONH2
22	N HIN CF3
23	CF3 NN HIN F
24	CF3 HN FF FF
25	HE CF3

26	HN CF3
27	CF ₃ N HN C1
28	CF3 NN HN O
29	CFs NN HN HN
30	CF ₃ N HN OH

31	NN HIN OH
32	CF ₃
33	H H H C C C C C C C C C C C C C C C C C
34	CF ₃ N HN F
35	NN HIN OH

36	CF ₃
37	P CF3
38	HT CF3 NN HN OFF
39	CF ₃
40	CF ₃

41	CF3
	F
42	CF3
	F
43	CF ₃
	F
44	CF ₃
45	CF3
	F

46	CF ₃
47	F CF ₃
	N H
	\$
48	F CF ₃
	F
49	CF ₃ H
	F
50	CF ₃ H N N N N N N N N N N N N N N N N N N
	F

51	CF3 H N N N N N N N N N N N N N N N N N N
52	CF ₃
53	NN NH2
54	E CF3 L N
55	CF ₃

56	Ę.
	F O
	CF ₃ ↓
	N
57	F CF ₃
3/	H N
	N N
	/ F
58	CF ₃
	H H H F
	N, I
59	CF₃
	H H
	0 F
	

60	NN H OH
	F
61	CF ₃ NH ₂
	F
62	NNH2
	F
63	NN O NH F
64	NNH NNH

65	CF3
66	CF ₃
67	N N O N N P P
68	CF ₃
69	LH WhH

	05
70	NNH NH
71	CF ₃
72	P CF3
73	CF3
74	NN CF3

75	NN OF STORY
76	NNH Oz S = O
77	LH CF3
78	NN NH NH NH NH
79	CF ₃ NH NH H F

80	CF ₃
81	CF ₃
82	CO ₂ Me N CO ₂ Me
83	N N N N N N N N N N N N N N N N N N N
84	N CO ₂ Me

	00.14
85	CO ₂ Me
	N H CO ₂ Me
	F
86	CO ₂ Me
	N H CO ₂ Me
	/ F
87	, NCF₃
	N CO ₂ Me
	F
88	CF₃
	NN H'CO ₂ Me
	F
89	,CF ₃
	H CO ₂ Me
	N H -

90	CF ₃
	H CO ₂ Me
	N H = 22m
	F
91	
	NN CO₂Me
92	F ^
72	
	N H CO₂Me
	F
93	CO ₂ Me
	,,,CF ₃
	N HCO₂Me
	F CO M
94	∴,CO₂Me CF₃
	N H CO ₂ Me
	<u> </u>
	r

95	, Ol
	N H H
	N O O O
96	ř O
	N H
	F
97	
	N CO ₂ Me
	/ F
98	
	NN CO ₂ Me
99	É
	N Ph
	N Ph
	F

100	N N N N N N N N N N N N N N N N N N N
101	H N N N N N N N N N N N N N N N N N N N
102	
103	CO ₂ Me NCF ₃ NHCO ₂ Me
104	F CC ₂ Me CO ₂ Me

105	CF ₃ N H CO ₂ Me
	F CF ₃
106	HN HN
107	CF ₃ N N HN O CF ₃
108	CF ₃ N N H H CF ₃ CF ₃
109	CF ₃

110	CF3 N HHN F
111	CF ₃
112	CF3 NHHN
113	CF ₃
114	NN N N N N N N N N N N N N N N N N N N

115	N
116	N CFS
	F
117	NN TOPS
	F
118	CF ₃
119	N NH NH

120	CF3 NH OH
121	NH NH
122	CF ₃
123	OF3
124	NH NH S

125	NN NH NH
126	CF ₃
	F
127	N NH NH
128	CF3
129	NH CF3

120	CF₃
130	H NH
	N, I III
	E E
131	CF ₃
	NH NH
	·
132	F CF ₃
	NH NH
133	F CF3
	N NH NH
	<u> </u>
134	F CF ₃
	NH NH
	F
135	CF ₃
	NN NH NH

136	NN NH NH
137	CF ₃
138	NH NH
139	CF3
140	CF3

23. (Original) A pharmaceutical composition comprising a compound according to Claim 1 in combination with a pharmaceutically acceptable carrier.

24. (Withdrawn) A method for treating a glucocorticoid receptor mediated disease or condition in a mammalian patient in need of such treatment comprising administering the patient a compound according to Claim 1 in an amount that is effective for treating the glucocorticoid receptor mediated disease or condition.

25-28. (Canceled)

29. (Original) A compound according to Claim 1 of Formula Id

or a pharmaceutically acceptable salt thereof, wherein

 R^{10} is a 5-membered aromatic or non-aromatic mono-cyclic ring containing 1-3 heteroatoms selected from O, S, and N, and

R¹⁰ is mono-substituted with phenyl, wherein phenyl is optionally substituted with 1-3 substituents independently selected from halo, C₁-4alkyl and C₁-4alkoxy.

 $\,$ 30. (Original) The compound according to Claim 29 wherein R^{10} is oxazolyl, oxadiazolyl or thiazolyl.

31. (Previously Canceled)