ALUNO	RA	Turma

	Q1	
	Q2	
_	Q3	
	Q4	
	Q5	

 \sum

2a. Prova - MA-211 - Quinta-feira (TARDE), 06/11/2014

INSTRUÇÕES

NÃO É PERMITIDO DESTACAR AS FOLHAS DA PROVA É PROIBIDO O USO DE CALCULADORAS SERÃO CONSIDERADAS SOMENTE AS QUESTÕES ESCRITAS DE FORMA CLARA E DEVIDAMENTE JUSTIFICADAS

EQUAÇÕES ÚTEIS

Se $\rho(x,y,z)$ é a função densidade de um objeto sólido que ocupa a região E, então:

• Massa:
$$m = \iiint_E \rho(x, y, z) dV$$
.

• Momentos:
$$M_{yz} = \iiint_E x \rho(x,y,z) dV, M_{xz} = \iiint_E y \rho(x,y,z) dV, M_{xy} = \iiint_E z \rho(x,y,z) dV.$$

$$\bullet \ \ {\rm Centro} \ \ {\rm de \ massa:} \ \ (\bar x,\bar y,\bar z) = \left(\frac{M_{yz}}{m},\frac{M_{xz}}{m},\frac{M_{xy}}{m}\right).$$

$$\hbox{-} \mbox{ Momentos de Inércia: } I_x = \iiint_E (y^2+z^2) \rho(x,y,z) dV, \\ I_y = \iiint_E (x^2+z^2) \rho(x,y,z) dV \qquad \mbox{e} \qquad I_z = \iiint_E (x^2+y^2) \rho(x,y,z) dV.$$

Questão 1. Calcule
$$\int_0^1 \int_x^1 3y^4 \cos(xy^2) dy dx$$
. Esboce a região de integração. $(\checkmark 2,0)$

Questão 2. Calcule $\iint_R \operatorname{sen}(x^2 + y^2) dA$, em que R é a região acima do eixo x e dentro da circunferência $x^2 + y^2 = 9$. Esboce a região de integração. $(\checkmark 2,0)$

Questão 3. Determine a massa do sólido limitado por $x+y+z \le 1, \ x \ge 0, \ y \ge 0, \ z \ge 0$, cuja densidade no ponto (x,y,z) é o produto das coordenadas. $(\checkmark 2,0)$

Questão 4. Calcule a integral tripla $\iiint_H (9-x^2-y^2)dV$, em que H é o hemisfério sólido $x^2+y^2+z^2 \le 9$ acima do plano xy.

Questão 5. Calcule o volume do sólido limitado pelos parabolóides $z = x^2 + y^2$ e $z = 36 - 3x^2 - 3y^2$. $(\checkmark 2,0)$