Indian Institute of Technology, Guwahati Department of Mechanical Engineering Engineering Computing Lab ME 502 (September-Dec, 2020)

Assignment 4: Ordinary Differential Equation (Initial value problems)
FullMarks: 90

A. Solving Initial value problem (Ordinary differential equation with initial condition):

We want to solve following ODE (Ordinary differential equation)

$$y' = f(x, y)$$
 where $y(x_0) = y_0$;

i.e. we want to get values of y(x) at different x points (0 < x < L) such that it satisfy the above ODE.

Different Numerical Methods:

1. Euler Method:

$$y_{n+1} = y(x_{n+1}) = y_n + hf(x_n, y_n),$$

where $h = x_{n+1} - x_n$.

2. Mid Point Method:

$$y_{n+1} = y(x_{n+1}) = y_{n-1} + 2hf(x_n, y_n),$$

where $h = x_{n+1} - x_n$.

Detailed Algorithm for Mid Point Method:

Input:

- (a) Initial value (x_0, y_0) ,
- (b) End point L,
- (c) No. of steps N,
- (d) Function f(x,y): Should be provided as different function,
- (e) Analytical Solution (if available), y = g(x): Should be provided as another function for error calculation

Algorithm:

- (i) $h = \frac{L x_0}{N}$;
- (ii) Initialize a one dimensional array $y_{\text{val}}[N]$ with $y_{\text{val}}[0] = y_0$;
- (iii) esum = 0, (To calculate L_2 norm of error);
- (iv) $y_1 = y_0 + hf(x_0, y_0)$; (First step by Euler method)
- (v) esum = esum + $(y_1 g(x_0 + h))^2$;
- (vi) $y_{n-1} = y_0; x_{n-1} = x_0;$
- (vii) $y_n = y_1; x_n = x_0 + h;$

(viii) For
$$i = 2: N$$

$$y_{n+1} = y_{n-1} + hf(x_n, y_n);$$

$$y_{\text{val}}[i] = y_{n+1};$$

$$esum = esum + (y_{n+1} - g(x_n + h))^2;$$

$$x_n = x_n + h;$$

$$y_{n-1} = y_n, y_n = y_{n+1};$$
 End For(i)
$$(ix) eL_2 = \frac{1}{N} \sqrt{esum};$$

3. Runge-Kutta method of second order (RK2):

$$y_{n+1} = y_n + \frac{1}{2} (k_1 + k_2),$$

$$k_1 = h f(x_n, y_n),$$

$$k_2 = h f(x_{n+1}, y_n + k_1),$$

where $h = x_{n+1} - x_n$.

4. Runge-Kutta method of fourth order (RK4):

$$y_{n+1} = y_n + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4),$$

$$k_1 = hf(x_n, y_n),$$

$$k_2 = hf(x_n + \frac{h}{2}, y_n + \frac{k_1}{2}),$$

$$k_3 = hf(x_n + \frac{h}{2}, y_n + \frac{k_2}{2}),$$

$$k_4 = hf(x_{n+1}, y_n + k_3),$$

where $h = x_{n+1} - x_n$.

Detailed Algorithm for RK4 Method:

Input:

- (a) Initial value (x_0, y_0) ,
- (b) End point L,
- (c) No. of steps N,
- (d) Function f(x, y): Should be provided as different function,
- (e) Analytical Solution (if available), y = g(x): Should be provided as another function for error calculation

Algorithm:

- (i) $h = \frac{L x_0}{N}$;
- (ii) Initialize a one dimensional array $y_{\text{val}}[N]$ with $y_{\text{val}}[0] = y_0$;
- (iii) esum = 0, (To calculate L_2 norm of error);
- (iv) $y_n = y_0; x_n = x_0;$

(v) For
$$i = 1: N$$

$$k_1 = hf(x_n, y_n);$$

$$k_2 = hf(x_n + \frac{h}{2}, y_n + \frac{k_1}{2});$$

$$k_3 = hf(x_n + \frac{h}{2}, y_n + \frac{k_2}{2});$$

$$k_4 = hf(x_{n+1}, y_n + k_3);$$

$$y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4);$$

$$y_{\text{val}}[i] = y_{n+1};$$

$$esum = esum + (y_{n+1} - g(x_n + h))^2;$$

$$x_n = x_n + h;$$

$$y_n = y_{n+1};$$
End For(i)
$$(vi) eL_2 = \frac{1}{N} \sqrt{esum};$$

Problem 1: Let us consider following initial value problem

$$y' = y + 2x - x^2$$
, where $y(0) = 1$.

We want to find distribution of y in 0 < x < 5 by above four numerical methods. Analytical solution of above ODE is given as

$$y(x) = x^2 + e^x.$$

- Write a function which calculate f(x,y) in y'=f(x,y).
- Write another function which calculate analytical solution $g(x) = x^2 + e^x$.
- Write four different functions *Euler*, *Midpt*, *RK2*, *RK4* where for each function INPUTS: x_0, y_0, L, N and OUTPUTS: $y_{\text{val}}[N], eL_2$. In each of these functions, functions f(x, y) and g(x) will be called for required calculation.
- (1) Find $y_{\text{val}}[N]$ for N = 5, 10, 20 for all four methods. You should represent your output in tabular form. Table 1 represent one such table for N = 5. There will be similar

X	Analytical, $y(x)$	y_n (Euler)	y_n (MidPoint)	$y_n \text{ (RK2)}$	$y_n \text{ (RK4)}$
0.0					
1.0					
2.0					
3.0					
4.0					
5.0					

Table 1: Values of y_n for different methods for N=5.

tables for N = 10 and N = 20. [10+4+4=18]

(2) Find eL_2 for N = 2, 5, 10, 15, 20, 25 for all four methods. Represent your results in tabular form as shown in Table 2 [12]

N	Euler	MidPoint	RK2	RK4
2				
5				
10				
15				
20				
25				

Table 2: L_2 error norms for different methods.

B. Solving system of initial value problems:

Consider following system of initial value problems

$$u'(x) = f(x, u, v),$$
 $u(a) = u_0,$
 $v'(x) = g(x, u, v),$ $v(a) = v_0,$

where we want to find u(x) and v(x) in a < x < b such that both u and v satisfy above coupled ODEs.

Runge-Kutta of Fourth order (RK4) for system of ODEs:

$$u_{n+1} = u_n + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4), \qquad v_{n+1} = v_n + \frac{1}{6} (l_1 + 2l_2 + 2l_3 + l_4),$$

$$k_1 = hf(x_n, u_n, v_n), \qquad l_1 = hg(x_n, u_n, v_n),$$

$$k_2 = hf(x_n + \frac{h}{2}, u_n + \frac{k_1}{2}, v_n + \frac{l_1}{2}),$$

$$k_3 = hf(x_n + \frac{h}{2}, u_n + \frac{k_2}{2}, v_n + \frac{l_2}{2}),$$

$$k_4 = hf(x_{n+1}, u_n + k_3, v_n + l_3),$$

$$v_{n+1} = v_n + \frac{1}{6} (l_1 + 2l_2 + 2l_3 + l_4),$$

$$l_1 = hg(x_n, u_n, v_n),$$

$$l_2 = hg(x_n + \frac{h}{2}, u_n + \frac{k_1}{2}, v_n + \frac{l_1}{2}),$$

$$l_3 = hg(x_n + \frac{h}{2}, u_n + \frac{k_2}{2}, v_n + \frac{l_2}{2}),$$

$$l_4 = hg(x_{n+1}, u_n + k_3, v_n + l_3),$$

Detailed Algorithm for RK4 Method for system of ODEs: Input:

- 1. Initial value (x_0, u_0, v_0) ,
- 2. End point L,
- 3. No. of steps N,
- 4. Function f(x, u, v) and g(x, u, v): Should be provided as different function,
- 5. Analytical Solution (if available), u = l(x), v = m(x): Provided for error calculation.

Algorithm:

- (i) $h = \frac{L-x_0}{N}$;
- (ii) Initialize two one dimensional arrays $u_{\text{val}}[N]$ with $u_{\text{val}}[0] = u_0$ and $v_{\text{val}}[N]$ with $v_{\text{val}}[0] = v_0$;

- (iii) esumu = 0, esumv = 0 (To calculate L_2 norm of errors for both u and v);
- (iv) $u_n = u_0; v_n = v_0; x_n = x_0;$

$$\begin{aligned} &k_1 = hf(x_n, u_n, v_n); \\ &l_1 = hg(x_n, u_n, v_n); \\ &k_2 = hf(x_n + \frac{h}{2}, u_n + \frac{k_1}{2}, v_n + \frac{l_1}{2}); \\ &l_2 = hg(x_n + \frac{h}{2}, u_n + \frac{k_1}{2}, v_n + \frac{l_1}{2}); \\ &k_3 = hf(x_n + \frac{h}{2}, u_n + \frac{k_2}{2}, v_n + \frac{l_2}{2}); \\ &l_3 = hg(x_n + \frac{h}{2}, u_n + \frac{k_2}{2}, v_n + \frac{l_2}{2}); \\ &k_4 = hf(x_{n+1}, u_n + k_3, v_n + l_3); \\ &l_4 = hg(x_{n+1}, u_$$

(vi) $e_u L_2 = \frac{1}{N} \sqrt{\text{esumu}};$

(vii)
$$e_v L_2 = \frac{1}{N} \sqrt{\text{esumv}};$$

Problem 2: Let us consider following system of initial value problem

$$y' = 2xz^2/y$$
, where $y(1) = 1$,
 $z' = y/z^2$, where $z(1) = 1$.

We want to find distribution of y and z in 1 < x < 5 by RK4 method. Analytical solution of above set of ODEs is given as

$$y(x) = x^2, \qquad z(x) = x.$$

- Write two functions which calculate f(x,y,z) in y'=f(x,y,z) and g(x,y,z) in z'=g(x,y,z).
- Write two functions l(x) and m(x) which calculate two analytical solutions.
- Write the function RK4system where INPUTS: x_0, y_0, z_0, L, N and OUTPUTS: $y_{\text{val}}[N], z_{\text{val}}[N], e_y L_2, e_z L_2$. In RK4system, functions f(x, y, z), g(x, y, z), l(x), m(x) will be called for required calculation.
- (1) Find $y_{\text{val}}[N]$ and $z_{\text{val}}[N]$ for N=5,10,20 with RK4 method. You should represent your output in tabular form. Table 3 represent one such table for N=5. There will be similar tables for N=10 and N=20. [10+4+4=18]

X	Analytical, $y(x)$	$y_n \text{ (RK4)}$	Analytical, $z(x)$	$z_n \text{ (RK4)}$
1.0				
1.8				
2.6				
3.4				
4.2				
5.0				

Table 3: Values of y_n and z_n for RK4 method for N=5.

(2) Find $e_y L_2$ and $e_z L_2$ for N = 2, 5, 10, 15, 20, 25. Represent your results in tabular form as shown in Table 4 [12]

N	$e_y L_2$	$e_z L_2$
2		
5		
10		
15		
20		
25		

Table 4: Error norms $(e_y L_2 \text{ and } e_z L_2)$.

C. Expressing higher order ODE as system of first order ODEs:

Let us consider following higher order ODE

$$y''' - xy'' + y' - 8y^4 = y \tan x$$
, where $y(1) = 5, y'(1) = 0, y''(1) = 10$

We can express above equation as system of 3 first order ODEs as below

$$y' = u,$$
 $y(1) = 5$
 $u' = v,$ $u(1) = 0$
 $v' = y \tan x + 8y^4 - u + xv$ $v(1) = 10$

Problem 3: Let us consider following higher order ODE

$$y'' + y = 6\cos x + 2$$
 subjected to $y(0) = 4, y'(0) = -\pi$.

We want to find distribution of y and y' in $0 < x < \pi$ by RK4 method. Analytical solution of above ODE is given as

$$y = 2\cos x - \pi\sin x + 3x\sin x + 2$$

- (1) Find $y_{\text{val}}[N]$ and $y'_{\text{val}}[N]$ for N=5,10,20 with RK4 method. You should represent your output in tabular form. Table 5 represent one such table for N=5. There will be similar tables for N=10 and N=20. [10+4+4=18]
- (2) Find $e_y L_2$ and $e_{y'} L_2$ for N = 2, 5, 10, 15, 20, 25. Represent your results in tabular form as shown in Table 6 [12]

X	Analytical, $y(x)$	y_n (RK4)	Analytical, $y'(x)$	y'_n (RK4)
0.0				
0.6283				
1.2566				
1.8850				
2.5133				
3.1416				

Table 5: Values of y_n and y'_n for RK4 method for N=5.

N	$e_y L_2$	$e_{y'}L_2$
2		
5		
10		
15		
20		
25		

Table 6: Error norms $(e_y L_2 \text{ and } e_{y'} L_2)$.