Teoría de Matemáticas de Bachillerato

Pedro Ángel Fraile Manzano

 $11\ \mathrm{de}$ noviembre de 2022

Contenidos Generales

A _I	Apartados del libro								
Ι	Prefacios, Repaso y otras consideraciones		5						
1.	Operaciones sobre los números reales		7						
	Introducción		8						
	1.1. Estructura de los números reales		8						
	1.2. Potencias y Logaritmos		9						
	1.3. Resolución de ecuaciones exponenciales		11						
	1.4. Resolución de ecuaciones logarítmicas		13						
2.	Polinomios sobre el cuerpo de los reales y ecuaciones		15						
	2.1. Conceptos básicos		15						
	2.2. Operaciones con polinomios		15						
	2.3. Divisibilidad de polinomios		15						
3.	Ecuaciones polinómicas		17						
	3.1. Ecuaciones lineales		17						
	3.2. Ecuaciones parabólicas		17						
	3.3. Ecuaciones de grado mayor que $2 \ldots \ldots \ldots$		17						
4.	Inecuaciones		19						
	4.1. Inecuaciones lineales		19						
	4.2. Inecuaciones no lineales		19						
II	Análisis Matemático		21						
5.	Las sucesiones sobre R		23						
6.	Las funciones sobre R		25						

					C	Ю	N	T	E_{I}	N.	ID	0	S	G	ξE	N	E	R	A_{\cdot}	LES
																				27
																				29
																				31
																				33
Ι	M	ā	t	eı	n	á	ti	C	О											35
																				37
																				37
																				37
																				37
																				37
																				37
																				37
				٠	•	•	٠	•	٠	•		•	•		•		•	•	•	37
																				39
																				41

57

11.3. Funciones irracionales 11.4. Funciones exponenciales 11.5. Funciones logarítmicas 11.6. Funciones trigonométricas	37 37
IV Álgebra lineal	39
12. Espacios Vectoriales	41
13. Aplicaciones lineales	43
14.Matrices	45
15.Determinantes	47
16.Discusión de sistemas	49
V Cálculo de probabilidades	5 1
17.Probabilidades básicas	53
18. Variables aleatorias discretas	55

4

III

7. Derivabilidad sobre R

10.Integración sobre R

8. Aplicaciones de la derivada

9. Representación de funciones

19. Variables aleatorias continuas

Ejercicios de Análisis

Parte I

Prefacios, Repaso y otras consideraciones

Operaciones sobre los números reales

Índice del capítulo								
2.1.	Conceptos básicos	15						
2.2.	Operaciones con polinomios	15						
2.3.	Divisibilidad de polinomios	15						

Introducción

Los distintos conjuntos de números surgen de la necesidad de resolver distintas ecuaciones, es decir, a medida que necesitamos resolver ecuaciones más complejas, más se amplían el campo de números con los que podemos actuar:

1.1. Estructura de los números reales

Los números reales tiene estructura de cuerpo y te preguntarás ¿ Qué es un cuerpo?

Definición 1.1.1. Un cuerpo es una terna $(\mathbb{K}, +, \cdot)$ donde:

- 1. K es un conjunto de elementos
- 2. + es una operación sobre los elementos de \mathbb{K} que cumple:
 - Es una operación **conmutativa**, es decir, sean $a, b \in \mathbb{K}$ entonces tendremos que a + b = b + a
 - Es una operación **asociativa**, es decir dados $a, b, c \in \mathbb{K}$ tenemos que a + (b + c) = (a + b) + c
 - Existe un elemento neutro, es decir $\exists e/e+a=a+e=a \ \forall a \in \mathbb{K}$.
 - Cada elemento $a \in \mathbb{K}$ existe un elemento **inverso** que se denota por a^{-1} de tal manera que $a + a^{-1} = a^{-1} + a = e$ (Esto también se da cuando no se cumple la conmutativa)
- 3. · es una operación que cumple lo siguiente
 - Es una operación **asociativa**, es decir dados $a, b, c \in \mathbb{K}$ tenemos que $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
 - Existe un **elemento neutro** para esta operación $\exists e/e \cdot a = a \cdot e = a$ $\forall a \in \mathbb{K}$.
 - Para todo elemento $a \in \mathbb{K}$ entonces $\exists a^{-1}/a \cdot a^{-1} = a^{-1} \cdot a = e$ (Esto es lo que distingue un cuerpo a un anillo)
 - · es distributivo respecto de + es decir, $a \cdot (b+c) = a \cdot b + a \cdot b$

9

Aclaración 1: Aunque se denoten como $+, \cdot$ no tenemos por qué usar las definiciones habituales de la suma y la multiplicación. Por ejemplo, la suma y producto de números reales no son iguales que las mismas operaciones para las matrices (quedaros con ese nombre.)

Aclaración 2: De esta manera que tenemos que lo que llamamos en los números reales la resta es la suma por el inverso y la división es el producto por el inverso.

Ejercicio Propuesto. Demostrar que \mathbb{R} y \mathbb{C} son cuerpos

1.2. Potencias y Logaritmos

Definición 1.2.1. Podemos definir las potencias como $a^n = \overbrace{a \cdot \ldots \cdot a}^n$. Una vez entendido esto tenemos las siguientes propiedades

Propiedades

1.
$$a^1 = a y a^0 = 1$$
 para cualquier $a \in \mathbb{R}$

2.
$$a^{-1} = \frac{1}{a}$$

3.
$$a^n \cdot a^m = a^{n+m}$$

$$4. \ \frac{a^n}{a^m} = a^{n-m}$$

$$5. (a^n)^m = a^{n \cdot m}$$

6.
$$\sqrt[n]{a} = a^{\frac{1}{n}}$$

7.
$$(a \cdot b)^n = a^n \cdot b^n$$

8.
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

Demostración

- 1. Para la primera demostración no hace falta más que decir que estamos "poniendo" sólo una a y que $a^0=1$ es básicamente proveniente del álgebra $\mathbb Z$ modular.
- 2. En este caso, tenemos que al utilizar la propiedad 3 quedará más clara pero si nosotros tenemos $a^1 \cdot a^{-1} = a^0 = 1 \Rightarrow a^{-1} = \frac{1}{a}$

- 3. Ahora tenemos que $a^n \cdot a^m = \underbrace{a \cdot \dots \cdot a}_{n \text{ veces}} \cdot \underbrace{a \cdot \dots \cdot a}_{n \text{ veces}} = \underbrace{a \cdot \dots \cdot a}_{n \text{ veces}} = \underbrace{a^{n+m}}_{n \text{ veces}} = \underbrace{a^{m+n}}_{n \text{ veces}}$
- 4. Si combinamos la propiedad 2 y 3 queda probado $\frac{a^n}{a^m}=a^n\cdot\frac{1}{a^m}=a^n\cdot a^{-m}=a^{n-m}$
- 5. Este se debe a que estamos multiplicando paquetitos del producto de n a's, es decir, $(a^n)^m = \overbrace{a^n \cdot \ldots \cdot a^n}^{\text{m veces}} = \underbrace{a \cdot \ldots \cdot a}_{\text{n veces}} \cdot \underbrace{a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a^{mn}}_{\text{n veces}}$
- 6. Haciendo un razonamiento análogo pero con el producto lo tenemos
- 7. Tenemos lo siguiente $(a \cdot b)^n = \overbrace{a \cdot b \cdot \ldots \cdot a \cdot b}^{\text{n veces}} = \overbrace{a \cdot \ldots \cdot a}^{\text{n veces}} \cdot \overbrace{b \cdot \ldots \cdot b}^{\text{n veces}} = a^n \cdot b^n$
- 8. Utilizando un razonamiento similar al anterior lo tenemos cambiando únicamente b por b^{-1}

Definición 1.2.2. Definimos el logaritmo de $b \in \mathbb{R}^+$ en base a > 0 de la siguiente manera

$$loq_a b = x \Leftrightarrow a^x = b \tag{1.1}$$

Esta definición nos permite "traducir" de logaritmos a potencias y es lo que se utiliza para demostrar las siguientes propiedades

Propiedades: Sean $P, Q, a \in \mathbb{R}^+$

- 1. $log_a 1 = 0$
- $2. \log_a a = 1$
- 3. $log_a(P \cdot Q) = log_aP + log_aQ$
- $4. \log_a \left(\frac{P}{Q}\right) = \log_a P \log_a Q$
- $5. \log_a P^n = n \cdot \log_a P$

Ejercicio Propuesto. Se propone al lector la demostración de estas propiedades utilizando la definición de logaritmos y las propiedades de las potencias.

1.3. Resolución de ecuaciones exponenciales

Definición 1.3.1. Podemos definir una ecuación exponencial como aquella que tiene la incógnita en el exponente

$$a^x = b$$

Podemos distinguir los siguientes casos:

■ Ecuaciones donde la incógnita aparece en un solo exponente

El procedimiento es intentar poner todos los elementos como potencias de la base que tiene la incógnita

$$2^{x+1} = 8$$
$$2^{x+1} = 2^3$$

Tras esto, podemos hacer el logaritmo de cada uno de los lados ya que $log_a P = log_a Q \Leftrightarrow P = Q$ en este caso a = 2 de tal forma que lo anterior nos queda:

$$2^{x+1} = 2^3$$
$$log_2(2^{x+1}) = log_2(2^3)$$
$$x + 1 = 3$$
$$x = 2$$

También puede que no podamos descomponer en potencias de una sola base entonces tenemos el siguiente caso.

$$2^x = 127$$

Entonces tomamos logaritmos para poder resolverlo

$$2^{x} = 127$$

$$log_{2}(2^{x}) = log_{2}(127)$$

$$x \cdot log_{2}(2) = log_{2}(127)$$

$$x = log_{2}(127)$$

A partir de aquí podemos utilizar un cambio de base de los logaritmos para poder usar el logaritmo en base 10 o e.

Ejercicio 1.3.1. Resuelve las siguientes ecuaciones.

a)
$$4^{x+1} - 8 = 0$$
 b) $3^{x+2} = 81$

12 CAPÍTULO 1. OPERACIONES SOBRE LOS NÚMEROS REALES

■ Ecuaciones donde la incógnita está en más de una potencia El procedimiento es conseguir una expresión donde las potencias que tengan las incógnitas se reduzcan a las misma base y podamos hacer un cambio de variable $a^x = t$ que después desharemos como si fuera un caso como el anterior.

1.4. Resolución de ecuaciones logarítmicas

Definición 1.4.1. Podemos definir una ecuación exponencial como aquella que tiene la incógnita dentro de un logaritmo.

Polinomios sobre el cuerpo de los reales y ecuaciones

Índice del capítulo								
3.1.	Ecuaciones lineales	17						
3.2.	Ecuaciones parabólicas	17						
3.3.	Ecuaciones de grado mayor que 2	17						

- 2.1. Conceptos básicos
- 2.2. Operaciones con polinomios
- 2.3. Divisibilidad de polinomios

16CAPÍTULO 2. POLINOMIOS SOBRE EL CUERPO DE LOS REALES Y ECUACIONES

Ecuaciones polinómicas

Indice del capitulo							
	4.1.	Inecuaciones lineales	19				
	4.2.	Inecuaciones no lineales	19				
3.1.	E	cuaciones lineales					
3.2.	E	cuaciones parabólicas					
3.3.	$\mathbf{E}_{\mathbf{c}}$	cuaciones de grado mayor que 2					

Inecuaciones

- 4.1. Inecuaciones lineales
- 4.2. Inecuaciones no lineales

Parte II Análisis Matemático

Las sucesiones sobre R

Capítulo 6 Las funciones sobre R

Capítulo 7 Derivabilidad sobre R

Capítulo 8 Aplicaciones de la derivada

Representación de funciones

Capítulo 10Integración sobre R

Parte III Ejercicios de Análisis Matemático

Representación de funciones

Introducción

En esta capítulo vamos a recopilar todo los conocimiento de análisis que hemos recopilado durante todos los temas anteriores

11.1. Funciones polinómicas

Ejercicio 11.1.1.

$$f(x) = \frac{2x}{1+x^2}$$

Demostración. Hola

- 11.2. Funciones racionales
- 11.3. Funciones irracionales
- 11.4. Funciones exponenciales
- 11.5. Funciones logarítmicas
- 11.6. Funciones trigonométricas

Parte IV Álgebra lineal

Capítulo 12 Espacios Vectoriales

Capítulo 13 Aplicaciones lineales

Capítulo 14 Matrices

Determinantes

Capítulo 16 Discusión de sistemas

Parte V Cálculo de probabilidades

Capítulo 17 Probabilidades básicas

Variables aleatorias discretas

Variables aleatorias continuas