

Language: Korean (North Korea)

Day: 1

2010 년 7월 7일,수요일

문제 1. 다음 조건을 만족하는 함수 $f: \mathbb{R} \to \mathbb{R}$ 를 모두 구하시오.

조건: 모든 $x, y \in \mathbb{R}$ 에 대하여 등식 f([x]y) = f(x)[f(y)]가 성립한다.

여기서 \mathbb{R} 는 모든 실수들의 모임이며 [x]는 x를 넘지않는 최대의 옹근수를 표시한다.

문제 2. $\triangle ABC$ 의 내심을 I, 외접원을 Γ 라고 하고 직선 AI가 Γ 와 점 $D(\neq A)$ 에서 사귄다고 하자.

점 F 와 E는 각각 변 BC와 활등 \widehat{BDC} 우의 점들로서 $\angle BAF = \angle CAE < \frac{1}{2} \angle BAC$ 를 만족한다. 점 G를 선분 IF의 가운데점이라고 하자. 이때 직선 DG 와 EI 는 원 Γ 우에서 사귄다는것을 증명하시오.

문제 3. №로서 모든 정의 옹근수들의 모임을 표시하자.

임의의 $m,n\in\mathbb{N}$ 에 대하여 수 (g(m)+n)(m+g(n))가 완전두제곱수로 되는 함수 $g:\mathbb{N}\to\mathbb{N}$ 을 모두 구하시오.

Language: Korean

제한시간:4 시간 30 분 문제당 7 점

2 Day:

2010년 7월 8일,목요일

문제 4. $P \leftarrow \Delta ABC$ 의 아낙의 점이고 직선 AP,BP,CP가 ΔABC 의 외접원 Γ 와 각각 점 $K(\neq A), L(\neq B), M(\neq C)$ 에서 사귄다고 하자.

점 C에서 Γ 에 그은 접선은 직선 AB와 점 S에서 사귀고 SC = SP라고 하자. 이때 MK = ML이라는것을 증명하시오.

문제 5. 6 개의 통 $B_1, B_2, B_3, B_4, B_5, B_6$ 의 매개에 동전이 하나씩 있다. 이로부터 시작하여 조작들을 진행해나가는데 다음의 두가지 조작이 허용된다.

조작 1: 비지않은 통 B_{k} $(1 \le k \le 5)$ 를 선택하여 B_{k} 에서 동전을 하나 꺼내고 통 B_{k+1} 에 두개의 동전을 넣는다.

조작 2: 비지않은 통 B_k $(1 \le k \le 4)$ 를 선택하여 B_k 에서 동전을 하나 꺼내고 통 B_{k+1} 와 B_{k+2} 의(통이 빈 경우에도 물론) 동전들을 모두 서로 바꾸어 넣는다.

이때 그 결과에 통 B_1, B_2, B_3, B_4, B_5 에 동전이 하나도 없고 통 B_6 에는 정확히 2010^{2010²⁰¹⁰} 개의 동전이 있도록 하는 그러한 조작렬이 존재하겠는가? (여기서 $a^{b^c} = a^{(b^c)}$ 이다)

문제 6. $a_1,a_2,a_3,...$ 은 정수들로 이루어진 무한수렬이다. 어떤 정의 옹근수 s가 존재하여 모든 n > s 에 대하여 $a_n = \max\{a_k + a_{n-k}; 1 \le k \le n-1\}$ 을 만족한다고 하자. 이때 정의 옹근수 $\ell \leq s$ 와 N 이 있어서 모든 $n \geq N$ 에 대하여 $a_n = a_\ell + a_{n-\ell}$ 이라는것을 증명하시오.

Language: Korean

제한시간: 4시간 30분 문제당 7점