PATENT ABSTRACTS OF JAPAN

(11)Publication number:

60-035150

(43) Date of publication of application: 22.02.1985

(51)Int.CI.

F02D 41/16

F02D 41/06

(21)Application number : **58-143954**

(71)Applicant: AISAN IND CO LTD

(22)Date of filing:

05.08.1983

(72)Inventor: KOBAYASHI KOICHI

(54) CONTROL METHOD OF IDLE SPEED IN ENGINE

(57) Abstract:

PURPOSE: To prevent inferior fuel consumption of an engine and its driving feeling from worsening when a temperature sensor is placed in an abnormal condition, by operating the engine to be warmed in a fixed pattern and then completing its warming operation when abnormality is detected in the temperature sensor which outputs a parameter signal setting a target speed. CONSTITUTION: When an engine 1 is operated in idling condition, the opening of a throttle valve 4 is controlled through a control level 6 by reading a target idle speed stored in the memory of an ECU15 corresponding to the cooling water temperature detected by a water temperature sensor 11 and controlling an actuator 7 on the basis of a difference between this target idle speed and the actual idle speed detected by a speed sensor 12. In this case, when the water temperature sensor 11 causes an abnormal

condition of short-circuiting and/or opening, the target idle speed is set corresponding to an optional temperature in the low range before warming operation of the engine is started. Then the target idle speed is decreased after a predetermined time, thereafter the warming operation is finished.

⑲ 日本国特許庁(JP)

⑩特許出願公開

⑫ 公 開 特 許 公 報 (A)

昭60-35150

@Int.Cl.1

識別記号

庁内整理番号

匈公開 昭和60年(1985)2月22日

F 02 D 41/16 41/06

7604-3G 7813-3G

審査請求 未請求 発明の数 1 (全5頁)

69発明の名称

エンジンのアイドル回転数制御方法

②特 願 昭58-143954

望出 願 昭58(1983)8月5日

砂発 明 者 小 林

弘一

大府市共和町1丁目1番地の1 愛三工業株式会社内

⑪出 願 人 爱三工業株式会社

大阪市共和町1丁目1番地の1

砂代 理 人 弁理士 岡田 英彦

明 細 書

1. 発明の名称

エンジンのアイドル回転数制御方法

2. 特許請求の範囲

3. 発明の詳細な説明

(技術分野)

本発明はエンジンの冷却水温度検出用温度センサが短絡、開放などの異常状態になった際に、エンジンを円滑に制御するエンジンのアイドル回転数制御方法に関する。

(従来技術)

—507—

(1)

るため、曖機完了後もエンジンは高速回転のままで で燃費不良、ドライブフィーリングの低下、エンジンとがり等の問題を発生させるか、は、殴 破験でするがありませるが、ないのででは、では、回転ではないでは、では、では、では、では、では、では、では、では、では、できないでは、できない。 が増大する他、排気があった。

(発明の目的)

本発明は温度センサが短絡、開放の異常状態になったときには予め設定した一定のパターンでないがあるとともに、その後は暖機完了としてエンジンを制御するエンジンのアイドル回転数制御方法を提供することによって、温度センサ異常時におけるエンジン特性の低下、ドライブフィーリングの悪化等を容易に防止することにある。

(発明の構成)

本発明は第1図に示すよりに、エンジン冷却水(3)

ブ閉方向に付勢された状態で取付けられ、スロッ トルパルプ4のパルプ閉位置はスロットルパルプ 4の軸5に固着された操作レバー6がアクチュエ - タ7先端のタッチセンサ8に当接することによ って定まるとともに、アクチュエータフを駆動す ることによる操作ロッド9の前進・後退によって タッチセンサ8の位置とともにスロットルパルプ 4 のパルプ閉位置も変化してパルプ閉状態におけ るスロットルパルプ4のパルプ開度が変化し、又、 アクチュエータ7、タッチセンサ8、エンジン1 のウオータージャケット10に取付けられた水温 センサ11及びイグニッションコイル等のエンジ ン回転数センサ12とのそれぞれは、パッテリ13 からの電源供給がイグニッションスイッチ14亿 よってオン・オフ制御される通称ECUのエンジ ン制御用電気側御回路15に接続されている。

次に、第3図は電気制御回路15の具体例であって、配値回路ROMのプログラムに従って制御されるマイクロコンピュータCPUには、波形整形器16を介してエンジン回転数センサ12から

特開昭60-35150(2)

の温度できないとないできないとないできます。 では、 このののでは、 このののでは、 このののでは、 このののでは、 このののでは、 このののでは、 このののでは、 このののでは、 こののののでは、 こののののでは、 こののののでは、 こののののでは、 こののののでは、 こののののでは、 こののののでは、 こののののでは、 こののののでは、 このののでは、 このののでは、 このののでは、 こののののでは、 このののでは、 このののでは、 このののでは、 このののでは、 こののでは、 このでは、 こののでは、 こののでは、 このでは、 こののでは、 このでは、 こので

(発明の実施例)

第2図~第6図は本発明の一実施例であって、 エンジン1に気化器2からの燃料を供給する吸気 路3にはアクセルペダルの路込量に対応して開く スロットルパルブ4が図示省略スプリングでパル (4)

のエンジン回転数に対応した周波数のパルス信号が入力される他、水温センサ11からのエンジで温度に対応したアナログ信号とパッテリ13の間にとがA-D変換器17を介してデジタル信号に変換された状態で「I/Oパート18を介して入力され、又にはこれ、かつ、タッチセンサ8からのオン・オフ信号のパート19を介して入力され、又には駆動回路21を介してDCモータのスロットルバルフ4制御用アクチュエータ7が接続されている。

次に、第5回は本実施例のアイドル回転数割御のフローチャートであって、エンジン1のアイドリング運転を制御するシステム、即ち、エンジン2 理転状態に対応した各種センサからの信号に基づいて算出されたエンジン1の関係アイドル回転数とエンジン2 回転数となりに表がした目標アイドル回転数とエンジン2 の実アイドル回転数との差に基づいてアクチュエータ7を駆動

特開昭60-35150(3)

即ち、ステップ 2 0 2 において水温センサ 1 1 異常フラグ「1」かが判定され、異常フラグが無い状態において、ステップ 2 0 3 で水温センサ11 からの出力が水温センサ 1 1 短絡の極高温かが判定され、極高温でない状態において、ステップ204 で水温センサ 1 1 からの出力が水温センサ 1 1 開
放の極低温かが判定され、極低温でない状態にお

(7)

が吸機完了の高温時温度に対応した第4図の2℃ に達していないかが判定され、20に達していな い状態においてステップ207で再ぴカウンタに T1時間がセットされるとともに、ステップ 205 で水温+X℃に対応した目標アイドル回転数が第 4 図により算出され、エンジン回転数はこの新し い目標アイドル回転数に従って制御されるととも に、前記プログラムが繰返されることによってア イドル回転数は第6図のようにほぼ第4図の特性 に沿った状態で減少し、水温が暖機完了の第4図 のZCに達したか成は越えた状態において、制御 はステップ211からステップ212に移行して 暖根運転が完了するとともに、水温の値はマイク ロコンピュータ C P U がりセットされるまで Z で に達したときの最終温度で固定され、目標アイド ル回転数も暖機完了時の目標アイドル回転数にマ イクロコンピュータCPUがリセットされるまで 固定される。

その結果、水温センサ11が短絡、開放の異常 状態になっても、エンジン1はほぼ正常に近い状 いて、ステップ 2 0 5 で水温センサ 1 1 からの出力に対応した目標アイドル回転数が第 4 図により算出されるとともにエンジン回転数はこの目標アイドル回転数に従って制御される。

との正常なアイドル制御状態において水温センサ11が短絡又は開放状態になると、ステップ203、204で水温センサ11からの入力信号が極高温か極低温の短絡又は開放の異常状態であることが判定され、ステップ206で異常フラグ「1」がセットされ、かつ水温が暖機開始の低温時温度に対応した第4図のYでにセットされるとともに、ステップ207で水温要修正に対応して規定された第6図に示すT1時間がカウンタにセットされる。

この異常フラグ「1」の状態において、制御はステップ202からステップ208に移行し、曖機完了前の状態においてステップ209でT1時間経過したかが判定され、T1時間経過状態においてステップ210で水温が第6図に示けXC加算されるとともに、ステップ211で水温+XC

想でアイドル制御されるとともに、暖機完了後も 実際の水温に近い第4図に示すほぼ2℃でECU は正常に作動し、エンジン1は水温センサ11正 常の場合と変らない特性で選転される。

(8)

なお、本実施例ではECUからの出力信号によりアイドル回転数を制御する場合について述えが、温度センサをECUの入力信号としてECUからの出力信号により空燃比を制御する場合、及び、チョーク等を制御する場合においても本実施例と同等の温度センサ異常プログラムを使用することができる。

(発明の効果)

本発明は温度センサが短絡、開放の異常状態になったときに予め設定した一定のパターンを優機運転するとともに、その後は暖光によってを関してエンジンを制御することによっても、は登不良、ドライ問題とインサス常時にシンクの歌化、エンジンの吹上がり等の場合と変の発生させることなる。温度センサ正常の場合と変

果がある。

4. 図面の簡単な説明

第1図は本発明の方法を明示するフローチャート図、第2図は本発明の一実施例のエンジン制御システムの説明図、第3図はその電気回路図、第4図と第6図はその動作特性図、第5図はそのフローチャート図である。

101~106……ステップ

出題人 愛三工業株式会社代理人 弁理士 岡田英彦

01)

