9.	x	10	8	13	9	11	14	6	4	12	7	5
	у	9.14	8.14	8.74	8.77	9.26	8.10	6.13	3.10	9.13	7.26	4.74

10.	x	10	8	13	9	11	14	6	4	12	7	5
	У	7.46	6.77	12.74	7.11	7.81	8.84	6.08	5.39	8.15	6.42	5.73

- 11. Effects of an Outlier Refer to the accompanying Minitab-generated scatterplot.
- **a.** Examine the pattern of all 10 points and subjectively determine whether there appears to be a correlation between *x* and *y*.
- **b.** After identifying the 10 pairs of coordinates corresponding to the 10 points, find the value of the correlation coefficient *r* and determine whether there is a linear correlation.
- c. Now remove the point with coordinates (10, 10) and repeat parts (a) and (b).
- d. What do you conclude about the possible effect from a single pair of values?

MINITAB

12. Effects of Clusters Refer to the following Minitab-generated scatterplot. The four points in the lower left corner are measurements from women, and the four points in the upper right corner are from men.

MINITAB

- **a.** Examine the pattern of the four points in the lower left corner (from women) only, and subjectively determine whether there appears to be a correlation between *x* and *y* for women.
- **b.** Examine the pattern of the four points in the upper right corner (from men) only, and subjectively determine whether there appears to be a correlation between *x* and *y* for men.