SEQUENCE LISTING

<110>	Mitsukan Group Corporation										
<120>	Gene involved in growth-promoting function of acetic acid bacteria and uses thereof										
<130>	PH-2195PCT										
<150>	JP 2003-183047										
<151>	2003-06-26										
<160>	7										
<210>	1										
<211>	2352										
<212>	DNA										
<213>	Gluconacetobacter entanii (Acetobacter altoacetigenes MH-24)										
<400>	1										
gatccagcca	tggacaggtg cgggcaggtt tcccggcatt cccgtttcag ctccttcccg 60										
ctggcattgc	gataatggcc tcaggccaac tgtatcaaca tgcatcaggc cagtgtggaa 120										
catgccccca	tctccacaaa caagaaggcg tctgatcaag tatctttaag gacgggaata 180										
tgcgtcttcg	catggtatta ctggcgactg cacttggcgc agcgccattc gccaccgcaa 240										
tggccacgac	gattacaggg ccatatgtcg atatcggtgg cgggtatgac ctgacccaga 300										
cccagcatgc	ccatggcttt gacaagaacc agtacgaaaa caacgcaaat acggccgggt 360										
atcttgatgc	aacggacaac gcccgcctgc tgaaggaagc ccattcacgc gaacgcatgg 420										
aacatggcga	tggctggacc ggcttcgcca cgttcggctg ggggttcggc aacggcctgc 480										
gcgcggaaat	cgagggggat tacaactggt ccgccctgac cggctacaac tcggtttccg 540										
gttccgccta	tggcaacaat catcagagcg gcaagtccag cggcagcgac cggtcctatg 600										
gcggattcgt	caacgtcctg tatgacatcg acctcaagcg cctgtttaac attgacgtgc 660										
ccgtgacacc	attcgtcggc gttggcgccg gttacctgtg gcagaacgtg gatgccagca 720										
catccgtgac	ccgctacctg aacgtgcgcc agaacggcac gaatggcagc ttcgcctatc 780										
agggcatggt	cggcgcggcc tatgacatcc ccggtgtgcc cggcctgcag atgaccaccg 840										

```
900
aataccgcat gatcggacag gtggaatcct tcgccatggg caatatcagc cagactggcg
                                                                     960
gcggtgaccg cacgctgagc tacgaccatc gcttcaacca tcagttcatc gtcggcgtcc
                                                                   1020
gctacgcctt caaccacgcg ccaccgccgc cgccgcccgc gcccgccgtg gcgccccctg
                                                                    1080
ccccagcgc ggcccgtacc tatctcgtat tctttgactg ggatggcgcg gtcctgaccg
atcgcgcgcg cgggatcgtg gcggaagcgg cgcaggcttc cacgcatgtc cagacgaccc
                                                                   1140
                                                                    1200
gtatcgaagt caacggctat accgacaaca cctcggccca ccccggacca cgtggggaga
agtataacct tggcctgtcc atgcggcgcg cagacagcgt gaaggctgaa ctgatccgtg
                                                                   1260
                                                                    1320
acggcgtacc cgctggcggc atcgacatcc actggtatgg cgaagcccat ccgctggtgg
tcacccagcc cgatacgcgt gagccgcaga accgtcgcgt cgaaatcatc ctgcactgac
                                                                   1380
gacacatact gcaataaatt gataaatagg cttttttaca aaggggcgca caggatgcgc
                                                                   1440
                                                                   1500
ccctttccat atcgaatcgt tccgatgcat cacaggccat gaatcagccc ttccgtttcc
                                                                   1560
ggcactgtcc tatgcaaaat aaaggggtct attatcggac ttcaaaaaaa accttataaa
                                                                   1620
atcgggactt tttacggaat acctccaaat gccctgaaag atatgtgtgt ttttcgccac
                                                                   1680
acctegttgg catgeggeat tttgcccatt ctcaagtegg tccagacagg ctaatccege
                                                                   1740
atcatagett gegggtaate teaggetgee etgtateggg geaaateeat tgeeegaeea
                                                                   1800
caagataggg ctctgccctg caacaacaga gttaaggact gaaacatgcg tcttcgcgca
                                                                   1860
gcgttactgg ctaccagcct gctggcagcg gcaccgttcg ccgccaaagc cacgaccatc
accggcccgt atgtcgatat cggcggcggc tacaacctga cccagaccca gcacgggcac
                                                                   1920
                                                                   1980
tttgccgaca cggaagacgg cccgggccgc gaaaagctgg gccaccgtca tggctggacc
                                                                   2040
ggcttcggcg cattcggctg gggcttcggc aacggtctgc gtgctgaaat cgagggcgac
                                                                   2100
tacaactggt ccgaaatcta cagcaagtcc cgtaatgaca agggcagcga ccgctcctat
                                                                   2160
ggcggtttcg tcaacgtgct gtatgacatc gacctgaagc gtctgttcaa catcgacgtg
                                                                   2220
cccgtcaccc cgttcgtcgg tgtcggcgcc ggctacctgt ggcagaacgc acatgacgtg
                                                                   2280
agcgtgggca acagccccgg tcgcagcctg agcggcacca agggcggctt cgcctaccag
ggcatcgtcg gtgcggccta cgacatcccc ggtgtccctg gcctgcagat gaccaccgaa
                                                                   2340
                                                                2352
taccgcatga tc
```

```
<210> 2
```

⟨400⟩ 2

Met Arg Leu Arg Met Val Leu Leu Ala Thr Ala Leu Gly Ala Ala Pro

^{〈211〉 399}

<212> PRT

<213> Gluconacetobacter entanii (Acetobacter altoacetigenes MH-24)

			Ę	5				1	0				15		
Phe	Ala	Thr	Ala	Met	Ala	Thr	Thr	Ile	Thr	Gly	Pro	Tyr	Val	Asp	116
			20				:	25				30			
Gly	Gly	G1 y	Tyr	Asp	Leu	Thr	Gln	Thr	Gln	His	Ala	His	Gly	Phe	Ası
		35				4	40				45				
Lys	Asn	Gln	Tyr	Glu	Asn	Asn	Ala	Asn	Thr	Ala	G1y	Tyr	Leu	Asp	A1a
	50				!	55				60					
Thr	Asp	Asn	Ala	Arg	Leu	Leu	Lys	Glu	Ala	His	Ser	Arg	Glu	Arg	Me
65				,	70				75					80	
Glu	His	Gly	Asp	Gly	Trp	Thr	Gly	Phe	Ala	Thr	Phe	Gly	Trp	Gly	Phe
			8	35				90	0				95		
G1y	Asn	Gly	Leu	Arg	Ala	Glu	Ile	Glu	Gly	Asp	Tyr	Asn	Trp	Ser	Ala
			100				10	05				110	0		
Leu	Thr	Gly	Tyr	Asn	Ser	Val	Ser	Gly	Ser	Ala	Tyr	Gly	Asn	Asn	His
		115				12	20				125	ō			
Gln	Ser	Gly	Lys	Ser	Ser	Gly	Ser	Asp	Arg	Ser	Tyr	Gly	Gly	Phe	Va]
	130					135				14	40				
Asn	Val	Leu	Tyr	Asp	Ile	Asp	Leu	Lys	Arg	Leu	Phe	Asn	Ile	Asp	Va]
145					150					55				160	
Pro	Val	Thr	Pro	Phe	Val	Gly	Val	Gly	Ala	Gly	Tyr	Leu	Trp	Gln	Asr
				165					70				175		
Val	Asp			Thr	Ser	Val			Tyr	Leu	Asn			Gln	Asr
			180					35				190			
Gly	Thr		G1 y	Ser	Phe	Ala	Tyr	Gln	Gly	Met	Val		Ala	Ala	Туі
		195									205				
Asp		Pro	Gly	Val			Leu	Gln	Met		Thr	Glu	Tyr	Arg	Met
	210					215					20				
Ile	Gly	Gln	Val	Glu	Ser	Phe	Ala	Met	Gly	Asn	Ile	Ser	Gln	Thr	Gly
225				2	230				23	35				240	
Gly	Gly	Asp	Arg	Thr	Leu	Ser	Tyr	Asp	His	Arg	Phe	Asn	His	Gln	Phe
			2	245				25	50				255	5	
Ile	Val	Gly	Val	Arg	Tyr	Ala	Phe	Asn	His	Ala	Pro	Pro	Pro	Pro	Pro
	260 265 270														

Pro Ala Pro Ala Val Ala Pro Pro Ala Pro Ser Ala Ala Arg Thr Tyr

280 285 275 Leu Val Phe Phe Asp Trp Asp Gly Ala Val Leu Thr Asp Arg Ala Arg 295 300 Gly Ile Val Ala Glu Ala Ala Gln Ala Ser Thr His Val Gln Thr Thr 320 315 305 310 Arg Ile Glu Val Asn Gly Tyr Thr Asp Asn Thr Ser Ala His Pro Gly 330 335 325 Pro Arg Gly Glu Lys Tyr Asn Leu Gly Leu Ser Met Arg Arg Ala Asp 350 340 345 Ser Val Lys Ala Glu Leu Ile Arg Asp Gly Val Pro Ala Gly Gly Ile 360 365 Asp Ile His Trp Tyr Gly Glu Ala His Pro Leu Val Val Thr Gln Pro 370 375 380 Asp Thr Arg Glu Pro Gln Asn Arg Arg Val Glu Ile Ile Leu His 385 390 395 <210> 3 <211> 30 <212> DNA <213> Artificial sequence <220> <223> Description of Artificial sequence: synthetic oligonucleotide <400> 3 30 gtttcccgga attcccgttt cagctccttc <210> 4

<220>

<211>

<212>

<213>

30

DNA

Artificial sequence

<400>	4					
atatctttca	gggcatttgg	aggtattccg			30	
<210>	5					
<211>	5734					
<212>	DNA					
<213>	Gluconace	tobacter en	tanii (Acet	obacter alt	oacetigenes	MH-24)
<400>	5					
catggggcgt	caccccagc	ggccagcttg	gctacctgat	ggacagggcg	ggccttctgc	60
aagccctcgg	ccactgccat	ctgccgggat	atgaggccaa	atacgaaccg	aaggaaaagc	120
gcaccttctg	ctaccccacc	cagaacgcca	gcggctgggc	tgtgcagcca	tgatcgccaa	180
ccctccctc	ttcctgagca	attcggaaga	gcgatttccg	ccgactgaac	acgtcgaaaa	240
tggcagtttt	ccaccgaaaa	aaggaaagga	ccataggaaa	ggattaatat	cttattttta	300
tctaggggtt	tgccgatccg	cgattttcgc	tgggaaaccg	ccaaaaatgg	cttgccatta	360
ggtcgcacca	catgcgacca	taaagtcgca	cagtgtgcga	cctattcggc	ccatatacag	420
aggttcccca	catgcggaat	gtcacccgtc	tcaagacccg	caaagaccgg	ctccgcgagg	480
accaagccga	cctgttgaag	caagcccttc	tgcccttcgc	agaggacgat	ggaccgatgc	540
gggatgcggt	cggacggctc	tacgtccaga	tcaagaacct	caccacccca	gaccccggaa	600
ccacggagcc	gttcgtcatg	atccgtcccg	cccagaatcg	cgccgtcacc	ctctggctgc	660
tgaagaacag	taagcggccc	atgaaggccg	tggacgtatg	gacgctgctg	ttcgaccacc	720
tgtttcccca	taccggccag	atcatgctga	cccgtgagga	aatcgcggaa	aaagtcggta	780
tccgggtcaa	cgaagttaca	gccgtcatga	acgagctggt	gagcttcggc	gcgattttct	840
ccgagcgcga	gaaggtggcc	ggaatgcgcg	ggccgggcct	cgcccgctac	tacatgaacc	900
ggcatgtggc	cgaggtcggc	agccgcgcca	cgcaggaaga	acttgcccta	atcccacgcc	960
ccggcgccaa	gctggcagtc	gtgcagggtg	gcaaggctta	acccatgaag	gtttcggaac	1020
tggacgtgtt	cgacagcgcc	aaggcggcac	aagacccgtt	ggtgcgggaa	gaactgctgc	1080
aagcagcgca	ggcggacggc	cacggccccg	ccctcgctca	tgcccgttcc	gtcatagcca	1140
aggcgcgggc	cgggcaggac	gccaaggctt	aacggccccg	ccctctcccg	cctcgatccc	1200
ggcgggcctg	tagcatctcc	tgatgctcct	tggcgttttt	ggcccgctgc	tcggcccgct	1260
ctttctcggc	cgctgcggct	cttaggcgct	cttcggccag	ccgcatccgc	tcgtccatct	1320

```
1380
gacgtttccg atctgcctcg gcatccttgg cggctcctgc cttcagccct ttgctgaaag
                                                                     1440
ccatccactt attggcggtt ttctcggctt tctgctgtat cggcggggtc agccggtcaa
                                                                     1500
atgcctgggc caccctctcg aagccctcac gcatggcgtt gacggcctgc gccagtttag
                                                                     1560
ccagggcgaa atctatcacc tcggcccgct gggcgttctc ggcccggata cgccggttgt
                                                                     1620
ggttgccggt cggggtctgg tggcccttcc gttccagagc caccacattc ggccccatgt
                                                                     1680
gccgctctgg aacgcggtct agcccctgct ccgcattgct ccggtgatct atccgggcct
                                                                     1740
cttgcccagc ccgctctagc gcggcattgg caaggcccgc ccatagctgc cggatttcct
                                                                     1800
teacctegte ggeggeette eccagteeca tgeeetgeeg ettettgteg gaeagttega
tggttgattt gtctccaaag gacagcttgc catcggcccc ccgctccacc gtgcgggtgg
                                                                     1860
                                                                     1920
tggtcatgat gtgcgcgtga tgattccggt cgtcgccctc gtcacccgga agatgcacgg
                                                                     1980
ccacgtccac ggccaccccg taccgctgga ccaactcacg cgcgaaactg tccgccagtt
eggeeegetg etegetggtg agtteatgag ggagggeeae aacceattee eteceggtge
                                                                     2040
                                                                     2100
gggcgtcctt gcgtttctct gatcgctccg cgtcattcca caattccgaa cggtcagcgg
                                                                     2160
tgccaccccc cggaatgaaa attgccttat gggcaacgct attctgcctg gggctgtatt
                                                                     2220
tgtgttcgtg cccgtcaacc tcgttggtca aatcctcgcc agcacgatac gcagccgcag
                                                                     2280
ccacaacgga acgccctgcg ctccggctga tcggtttcgt ttctgcgcga tagattgcca
                                                                     2340
cggatcgagc gcctaccttt tggagttaaa cggggggttc aggggggcga agccaccatg
                                                                     2400
acgcaggact tgcacttgtg caagtcgtaa ctgcgccctt aatacctgac ggcatcaagg
                                                                     2460
gatatgtggt attcgtttga aacggaacgg ctccacggtg aggatgatat gagcgatatt
                                                                     2520
gcgaaagaga ttgagaacgc caaaaggatc atagctgaac agaaaaagcg catcaaagat
                                                                     2580
gcccagaagg aagcagctaa agcggaatca aagttgaggg accgtcagaa ctacatcttg
                                                                     2640
ggcggcgcac tggtaaaact tgccgaaaca gatgaacggg ccgtccgcac tattgaaaca
                                                                     2700
cttttgaagc tggtggatcg tccatcagac cggaaggcgt ttgaggtgtt ttcccgtctc
                                                                     2760
ccatccctct ccctgcccac gcagccagca ccggacaccg gccatgagtg aggcactgga
agaagatccg tttgaactgt tcaaaagggt cgaaaaaagc ctgtccacgg ccaccgccag
                                                                     2820
                                                                     2880
catggagcgg ctggccgccg aacaagatgc caggtgcaag accatttcag acgccgccgg
                                                                     2940
aaaagcctct aaattggccg aggaagccgg tgacaccttc acagcatcca agaggcgtct
                                                                     3000
gatgatctgg acggccctct gcgcggctct gctggtctgt ggcgggtggt tggcgggtta
                                                                     3060
ttggctggga caccgtgacg gttgggcctc tggcacggcc cacgacgtct aagaaaccat
tattatcatg acattaacct ataaaaatag gcgtatcacg aggccctttc gtctcgcgcg
                                                                     3120
tttcggtgat gacggtgaaa acctctgaca catgcagctc ccggagacgg tcacagcttg
                                                                     3180
                                                                     3240
tctgtaagcg gatgccggga gcagacaagc ccgtcagggc gcgtcagcgg gtgttggcgg
                                                                     3300
gtgtcggggc tggcttaact atgcggcatc agagcagatt gtactgagag tgcaccatat
gcggtgtgaa ataccgcaca gatgcgtaag gagaaaatac cgcatcaggc gccattcgcc
                                                                    3360
```

3420 attcaggctg cgcaactgtt gggaagggcg atcggtgcgg gcctcttcgc tattacgcca 3480 gctggcgaaa gggggatgtg ctgcaaggcg attaagttgg gtaacgccag ggttttccca 3540 gtcacgacgt tgtaaaacga cggccagtgc caagcttgca tgcctgcagg tcgactctag 3600 aggateceeg ggtacegage tegaattegt aateatggte atagetgttt eetgtgtgaa 3660 attgttatcc gctcacaatt ccacacaaca tacgagccgg aagcataaag tgtaaagcct 3720 ggggtgccta atgagtgagc taactcacat taattgcgtt gcgctcactg cccgctttcc 3780 agtcgggaaa cctgtcgtgc cagctgcatt aatgaatcgg ccaacgcgcg gggagaggcg 3840 gtttgcgtat tgggcgctct tccgcttcct cgctcactga ctcgctgcgc tcggtcgttc 3900 ggctgcggcg agcggtatca gctcactcaa aggcggtaat acggttatcc acagaatcag 3960 gggataacgc aggaaagaac atgtgagcaa aaggccagca aaaggccagg aaccgtaaaa 4020 aggccgcgtt gctggcgttt ttccataggc tccgccccc tgacgagcat cacaaaaatc 4080 gacgeteaag teagaggtgg egaaaceega eaggaetata aagataceag gegttteeee 4140 ctggaagete cetegtgege teteetgtte egaceetgee gettaeegga taeetgteeg 4200 cctttctccc ttcgggaagc gtggcgcttt ctcaatgctc acgctgtagg tatctcagtt 4260 cggtgtaggt cgttcgctcc aagctgggct gtgtgcacga accccccgtt cagcccgacc 4320 gctgcgcctt atccggtaac tatcgtcttg agtccaaccc ggtaagacac gacttatcgc 4380 cactggcagc agccactggt aacaggatta gcagagcgag gtatgtaggc ggtgctacag 4440 agttettgaa gtggtggeet aactacgget acactagaag gacagtattt ggtatetgeg 4500 ctctgctgaa gccagttacc ttcggaaaaa gagttggtag ctcttgatcc ggcaaacaaa 4560 ccaccgctgg tagcggtggt ttttttgttt gcaagcagca gattacgcgc agaaaaaaag 4620 gatctcaaga agatcctttg atcttttcta cggggtctga cgctcagtgg aacgaaaact 4680 cacgttaagg gattttggtc atgagattat caaaaaggat cttcacctag atccttttaa 4740 attaaaaatg aagttttaaa tcaatctaaa gtatatatga gtaaacttgg tctgacagtt 4800 accaatgett aatcagtgag geacetatet eagegatetg tetatttegt teatecatag 4860 ttgcctgact ccccgtcgtg tagataacta cgatacggga gggcttacca tctggcccca 4920 gtgctgcaat gataccgcga gacccacgct caccggctcc agatttatca gcaataaacc 4980 agccagccgg aagggccgag cgcagaagtg gtcctgcaac tttatccgcc tccatccagt 5040 ctattaattg ttgccgggaa gctagagtaa gtagttcgcc agttaatagt ttgcgcaacg 5100 ttgttgccat tgctacaggc atcgtggtgt cacgctcgtc gtttggtatg gcttcattca 5160 gctccggttc ccaacgatca aggcgagtta catgatcccc catgttgtgc aaaaaagcgg 5220 ttagctcctt cggtcctccg atcgttgtca gaagtaagtt ggccgcagtg ttatcactca 5280 tggttatggc agcactgcat aattctctta ctgtcatgcc atccgtaaga tgcttttctg 5340 tgactggtga gtactcaacc aagtcattct gagaatagtg tatgcggcga ccgagttgct 5400 cttgcccggc gtcaatacgg gataataccg cgccacatag cagaacttta aaagtgctca

tcattggaaa	acgttcttcg	gggcgaaaac	tctcaaggat	cttaccgctg	ttgagatcca	546
ttcgatgtaa	cccactcgtg	cacccaactg	atcttcagca	tcttttactt	tcaccagcgt	552
ttctgggtga	gcaaaaacag	gaaggcaaaa	tgccgcaaaa	aagggaataa	gggcgacacg	558
gaaatgttga	atactcatac	tcttcctttt	tcaatattat	tgaagcattt	atcagggtta	564
ttgtctcatg	agcggataca	tatttgaatg	tatttagaaa	aataaacaaa	taggggttcc	570
gcgcacattt	ccccgaaaag	tgccacctga	cgtc			5734
<210>	6					
<211>	30				*	
<212>	DNA					
<213>	Artificial	sequence				
	•				Cont.	
<220>				**************************************	<i>"</i>	
⟨223⟩ Descr	ription of A	rtificial S	Sequence: sy	nthetic		
oligo	nucleotide					
<400>	6			,		
cgctgacgtc	gtgggccgtg	ccagaggccc		3	80	
<210>	7					
<211>	30					
⟨212⟩	DNA					
⟨213⟩	Artificial	sequence				
<220>			•			
	iption of A	rtificial S	Sequence: sy	nthetic		
oligo	nucleotide					
(100)	_					
<400>	7					

ggccaagacg tctgcagcat ggggcgtcac