Analyse Numerique

David Wiedemann

Table des matières

1	Rep	presentation de nombres en arithmetique finie	3
	1.1	Representation des nombres dans les ordinateurs	3
	1.2	Approximation de \mathbb{R} dans $\mathcal{F}(2,53,-1021,1024)$	3
	1.3	Operations dans \mathcal{F}	4
	1.4	Parenthese sur le concept de stabilite	4
2	Inte	egration Numerique	4
	2.1	Formules d'integration de Newton-Cotes	5
	2.2	Formules de quadrature d'ordre optimal	8
	2.3	Noeuds d'integration optimaux : Formule de Gauss	9
	2.4	Etude d'erreur des formules de quadrature	11
3	Inte	erpolation de fonctions	12
	3.1	Polynomes de Lagrange	12
L		of Theorems	0
	2	Proposition	3
	1	Definition	4
	2	Definition (Formule de Quadrature)	5
	3	Definition	6
	4	Theorème	6
	7	Theorème (Thm. fondamental de la theorie de l'integration)	8
	8	Lemme	9
	4	Definition (Polynomes de Legendre)	9
	9	Theorème (Forme des polynomes de Legendre)	9
	10	Theorème	10
	11	Lemme	10
	5	Definition	10
	12	Theorème (Erreurs dans les formules de quadrature)	11
	13	Theorème (Theoreme de Weierstrass)	12

6	Definition	12
14	Proposition	13
16	Theorème (Representation de l'erreur)	13

Lecture 1: Representation de nombres en arithmetique finie

Thu 03 Mar

1 Representation de nombres en arithmetique finie

Notons $\mathcal{F}(\beta, t, L, U)$ l'ensemble des nombres representables sous la forme $(-1)^s(0, \alpha_1 \dots \alpha_t)_{\beta}\beta^e$ ou e est l'exposant, $L \leq e \leq U, 0 \leq \alpha_i < \beta, \alpha_1, \dots, \alpha_t$ est la mantisse et s le signe.

Cette representation est la representation floating point.

1.1 Representation des nombres dans les ordinateurs

On appelle les nombres en double precision l'ensemble

$$\mathcal{F}(2,53,-1021,1024)$$

Bien que les valeurs maximales et minimales sont tres grandes ($2\cdot 10^{-308}$ et $2\cdot 10^{308}$), mais on en saute beaucoup.

Tous les nombres dans \mathcal{F} sont de la forme $\frac{p}{2^n}, p \in \mathbb{N}$.

On regarde la distance entre deux nombres consecutifs de \mathcal{F} .

Pour un exposant fixe, $[2^p, 2^{p+1}]$, le premier nombre apres 2^p est

$$(0.10...01)2^{p+1} = 2^p + 2^{p+1-t}$$

Donc dans ce cas, on a que le spacing est donne par 2^{p-52} .

Remarque

Si on a que des entiers dans un intervalle $[\beta^p, \beta^{p+1}]$, alors $\beta^{p+1-t} = 1$.

1.2 Approximation de \mathbb{R} dans $\mathcal{F}(2, 53, -1021, 1024)$

Soit $x \in \mathbb{R}$, on appelle $fl(x) \in \mathcal{F}(2, 53, -1021, 1024)$.

Notons $x = (-1)^s (0, \alpha_1 \dots \alpha_{t-1} \alpha_t \alpha_{t+1} \dots) \beta^e$, on definit alors

$$fl(x) = (-1)^s (0, \alpha_1 \dots \alpha_{t-1} \tilde{\alpha_t}) \beta^e$$

on fait l'hypothese ici que au moins un des α_i est non nul.

On veut borner $|x - fl(x)| \le \frac{1}{2} \operatorname{spacing} = \frac{1}{2} \beta^{e-t}$.

Bien que l'erreur absolue est, en principe, grande, l'erreur relative sera bornee, on a en effet

$$\frac{|x - fl(x)|}{|x|} \le \frac{1}{2}\beta^{e-t} \frac{1}{|x|} \le \frac{1}{2}\beta^{1-t} (\simeq 10^{-16} \text{ dans notre systeme })$$

On appelle cette erreur la "machine precision" et on la note u

Proposition 2

On peut egalement ecrire que

$$x \in \mathbb{R}$$
 $fl(x) = x(1+\epsilon), |\epsilon| \le u$

1.3 Operations dans \mathcal{F}

Soit $x, y \in \mathbb{R}$, $x+y \mapsto fl[fl(x)+fl(y)]$, qu'elle est l'erreur relative commise?

$$\frac{|fl[fl(x) + fl(y) - (x+y)|}{|x+y|}$$

En utilisant la proposition ci-dessus, notons $fl(x) = x(1+\epsilon_1), fl(y) = y(1+\epsilon_2),$ on a alors

$$|(x(1+\epsilon_1)+y(1+\epsilon_2))(1+\epsilon_3)-(x+y)| \cdot \frac{1}{|x+y|} \le \frac{x\epsilon_1+y\epsilon_2+\epsilon_3(x+y)-(x+y)}{|x+y|} + petit$$

$$\leq \big(\frac{|x|}{|x+y|} + \frac{|y|}{|x+y|} + 1\big)u$$

On remarque que si x > 0, y < 0, il est possible de commettre une erreur tres grande.

On dit que la soustraction est une operation instable.

1.4 Parenthese sur le concept de stabilite

On veut resoudre y = G(x).

Definition 1

La resolution de y = G(x) est stable si une petite perturbation de x correspond a une petite perturbation de y, ie.

$$y + \delta y = G(x + \delta x)$$

On appelle alors le conditionnement absolu du probleme

$$\kappa_{abs} = \sup_{\delta x} \frac{\|\delta y\|}{\|\delta x\|}$$

Et on appelle perturbation relative du probleme

$$\kappa_{rel} = \sup_{\delta x} \frac{\|\delta y\| / \|y\|}{\|\delta x\| / \delta x}$$

Lecture 2: Integration Numerique

Thu 10 Mar

2 Integration Numerique

On veut construire des algorithme pour calculer de maniere approchee $\int_a^b f(x)dx$

2.1 Formules d'integration de Newton-Cotes

On ecrit

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{N-1} \int_{x_{i}}^{x_{i+1}} f(x)dx$$

Chacun des termes de la somme se reecrit comme

$$\int_{x_{i}}^{x_{i+1}} f(x)dx = \int_{0}^{1} f(x_{i} + th_{i})h_{i}dt$$

Et on trouve

$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{N-1} h_{i} \int_{0}^{1} f(x_{i} + th_{i})dt$$

Ainsi, il suffit de trouver un algorithme pour calculer des integrales de la forme $\int_0^1 g(t)dt$. La maniere la plus naive pour approximer cette integrale serait de prendre $\int_0^1 g(t)dt \approx g(\frac{1}{2})$, et on note $Q_1^{nc}(g) = g(\frac{1}{2})$.

Une maniere moins naive de faire est d'approcher g par une fonction lineaire et de prendre l'approximation

$$\int_0^1 g(t)dt \approx \frac{1}{2} \left(g(0) + g(1) \right) = Q_2^{nc}(g)$$
(formule de Newton-Cote a deux noeuds)

ou encore

$$\int_0^1 \approx \frac{1}{6}(g(0) + 4g(\frac{1}{2}) + g(1)) = Q_3^{nc}(g)$$
 (formule de cote a trois noeuds ou formule de Simpson)

De maniere generale, on appelle formule de Newton-Cotes a S noeuds

$$\int_0^1 g(t)dt \approx \int_0^1 p(t)dt$$

ou p(t) est le polynome de degre s-1 passant par les points $(c_i, g(c_i))$, ou $0 \le c_1 \le \ldots \le c_{s-1} < c_s \le 1$.

Ainsi, de maniere generale

$$Q_S^{nc}(g) = \sum_{i=1}^s b_i g(c_i)$$

ou b_i sont les poids des formules de N.C.

On veut donc essayer de trouver des formules qui donnennt les poids de l'integration de Newton-Cotes.

Definition 2 (Formule de Quadrature)

Une formule de quadrature $Q_s(f)$ est donnée par n'importe quelle en-

semble de couples $(\{b_i\}_{i=1}^s, \{c_i\}_{i=1}^s)$:

$$Q_s(f) = \sum_{i=1}^{N} b_i f(c_i)$$

Definition 3

 $Q_s(\cdot)$ est d'ordre s quand elle est exacte sur tout polynomme de degre $\leq s-1$

Remarque

Par definition les formules Q_s^{nc} sont d'ordre s.

Theorème 4

Etant donne s noeuds distincts $\{c_i\}_{i=1}^N$, la formule donnee par $(\{b_i\}, \{c_i\})$ est d'ordre s si et seulement si les poids verifient

$$\sum_{i=1}^{s} c_i^{q-1} b_i = \frac{1}{q} \quad \forall q = 1, \dots, s$$

Preuve

 $Supposons \ que \ Q \ est \ d'ordre \ s, \ alors \ prenons$

$$p(t) = t^q \quad q = 1 \dots s$$

On ecrit

$$\int_0^1 p(t)dt = \int_0^1 t^{q-1}dt = \frac{1}{q}$$

d'autre part

$$\sum_{i=1}^{s} b_i p(c_i) = \sum_{i=1}^{s} b_i p(c_i) = \sum_{i=1}^{s} b_i c_i^{q-1}$$

Dans l'autre sens, si $\sum_{i=1}^{s} c_i^{q-1} b_i = \frac{1}{q}$, alors la formule est exacte sur tout monome (par le raisonnement ci-dessus), par linearite, elle sera donc exacte sur n'importe quel polynome.

On montre maintenant qu'enfait les poids b_i sont uniques etant donne les c_i , en effet, etant donne le theoreme ci-dessus, on a

$$\begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ c_1 & c_2 & c_3 & \dots & c_s \\ c_1^2 & c_2^2 & c_3^2 & \dots & c_s^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ c_1^{s-1} & c_2^{s-1} & c_3^{s-1} & \dots & c_s^{s-1} \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ \vdots \\ \vdots \\ \vdots \\ b_s \end{pmatrix} = \begin{pmatrix} 1 \\ \frac{1}{2} \\ \frac{1}{3} \\ \vdots \\ \frac{1}{s} \end{pmatrix}$$

Ainsi, soit la matrice A ci-dessus est inversible, alors il y a un seul choix de poids pour la formule de N.C.

Par un theoreme d'algebre lineaire, la matrice est inversible En appliquant donc ceci a une fonction f generale, on trouve

$$\int_{a}^{b} f(x)dx = \sum_{j=0}^{N-1} \int_{x_{j}}^{x_{j+1}} f(x)dx = \sum_{j=0}^{N-1} h_{j} \int_{0}^{1} f(x_{j} + th_{j})dt$$
$$= \sum_{j=0}^{N-1} h_{j} Q_{s}^{nc} (f(x_{j} + th_{j})) = \sum_{j=0}^{N-1} h_{j} \sum_{i=1}^{s} b_{i} f(x_{j} + c_{i}h_{j})$$

Remarque

Pour les noeuds c_i fixes, il existe un seul choix de poids qui garantit que Q_s est d'ordre s.

Quel est le choix optimal des noeuds?

- Choix 1 Choisir des noeuds equidistants.

 Ce choix rend le calcul instable en arithmetique finie.

 En effet, supposons qu'on veut integrer f(x) > 0, on aura $\sum_{i=1}^{s} f(ih)b_i$.

 Alors les poids oscillent fortement.
- Choix 2 On cherche a comprendre ou placer les noeuds pour maximiser l'ordre de la formule.

Exemple

On considere a nouveau la formule de Simpson

$$Q_3^{nc}(g) = \frac{1}{6} \left[g(0) + 4g(\frac{1}{2}) + g(1) \right]$$

Ainsi, pour $c_i = 0, \frac{1}{2}, 1$ on a les poids $b_i = \frac{1}{6}, \frac{2}{3}, \frac{1}{6}$ Est-ce que cette formule est d'ordre 4?

$$\int_0^1 t^3 dt = \frac{1}{4} = \sum_i b_i c_i^3 = \frac{1}{4} (en substituant les valeurs)$$

Est-elle aussi d'ordre 5?

$$\int_0^1 t^4 dt = \frac{1}{5} = \sum_i b_i c_i^4 = \frac{2}{3} \frac{1}{16} + \frac{1}{6} \neq \frac{1}{5}$$

2.2 Formules de quadrature d'ordre optimal

On veut donc choisir des noeuds c_1, \ldots, c_s pour maximiser l'ordre de la formule de quadrature

Theorème 7 (Thm. fondamental de la theorie de l'integration)

Soit $(\{b_i\}, \{c_i\})$ une formule de quadrature d'ordre $s, Q_s(\cdot)$.

Soit $M(t)=(t-c_1)(t-c_2)\dots(t-c_s)$, alors la formule $Q_s(\cdot)$ est d'ordre $p\geq s+m$ si et seulement si

$$\int_0^1 M(t)g(t) = 0$$

Preuve

Soit f(t) un polynome de degre s+m-1, prenons r(t) un polynome de degre s-1 passant par les points $(c_i, f(c_i))$.

Alors f(t) - r(t) est un polynome de degre s + m - 1 est un polynome s'annullant sur tous les noeuds.

Ainsi

$$f(t) - r(t) = M(t)g_f(t)$$
 avec $\deg g_f \le m - 1$

 \Leftarrow

Supposons que $\int_0^1 M(t)g(t)dt = 0 \ \forall \ polynome \ g(t) : \deg g \le m-1$.

On demontre que la formule est d'ordre s + m - 1.

Soit f un polynome $\deg f \leq s+m-1$, on peut donc ecrire

$$f(t) = r(t) + \underbrace{\int_0^1 M(t)g_f(t)dt}_{=0}$$

De meme, on a que

$$Q_s(f) = \sum_{i=1}^{s} b_i f(c_i) = \sum_{i=1}^{s} b_i \left[r(c_i) + \underbrace{M(c_i)g_f(c_i)}_{=0} \right] = \int_0^1 r(t)dt$$

Et donc la formule est exacte

 \Rightarrow

Supposons que la formule est d'ordre s+m, demontrons que $\int_0^1 M(t)g(t)dt = 0 \forall g, \deg g \leq m-1$, ainsi

$$\int_{0}^{1} M(t)g(t)dt = \sum_{i=1}^{s} b_{i}M(c_{i})g(c_{i}) = 0$$

Lecture 3: Integration Numerique

Thu 17 Mar

Lemme 8

Si une formule a s noeuds est d'ordre p, alors $p \leq 2s$

Preuve

Supposons que p = 2s + 1, si Q_s est d'ordre 2s + 1, par le theoreme fondamental, ceci implique que

$$\int_0^1 M(t)g(t) = 0 \forall g(t) : \deg g \le s$$

Ainsi, en particulier pour g(t) = M(t) on a

$$\int_0^1 M(t)^2 dt = 0$$

 $et\ donc\ M(t) = 0$

On se demande maintenant si on peut trouver la valeur des noeuds de maniere facile?

2.3 Noeuds d'integration optimaux : Formule de Gauss

Definition 4 (Polynomes de Legendre)

On considere la suite de polynomes $\{p_k\}_{k=0,\dots,n}$, avec $\deg p_k=k$ et $\int_{-1}^1 p_k(x) \cdot g(x) = 0 \forall g(x) \deg g \leq k-1$

Theorème 9 (Forme des polynomes de Legendre)

Les polynomes de Legendre ont la forme

$$p_k(x) = \frac{1}{2^k k!} \frac{d^k}{dx^k} \left[(x^2 - 1)^k \right]$$

Preuve

On veut montrer que

$$\int_{-1}^{1} p_k(x)g(x)dx = 0 \forall g \quad \deg g \le k - 1$$

$$\int_{-1}^{1} \frac{d^{k}}{dx^{k}} [(x^{2} - 1)^{k}] g(x) dx = - \int_{-1}^{1} \frac{d^{k}}{dx^{k-1}} \left[(x^{2} - 1)^{k} \right] \frac{d}{dx} g(x) dx \left[\frac{d^{k-1}}{dx^{k-1}} [(x^{2} - 1)^{k}] \cdot g \right]_{-1}^{1} dx$$

$$= (-1)^k \int_{-1}^{1} (x^2 \boxminus 1)^k \underbrace{\frac{d^k}{dx^k} g(x)}_{=0}$$

Theorème 10

Toutes les racines de P_k sont reelles, distinctes et dans l'intervalle (-1,1).

Preuve

Par l'absurde supposons qu'il y a τ_1, \ldots, τ_r racines distinctes de $p_k(x)$ dans l'intervalle (-1,1), r < k. Ainsi $g(x) = (x - \tau_1) \ldots (x - \tau_r)$ deg $g \le k - 1$ Par hypothese, on a donc

$$\int_{-1}^{1} p_k(x)g(x) = \int_{-1}^{1} qg^2$$

Or q ne change pas de signe, donc l'integrale ne peut pas etre nulle.

Lemme 11

Les polynomes de Legendre se calculent par

$$(k+1)P_{k+1} = (2k+1)xP_k - kP_{k-1}$$

On cherchait c_1, \ldots, c_s tel que $\deg M = s$ et tel que

$$\int_0^1 M(t)g(t) = 0 \forall g : \deg g \le s - 1$$

Choisissons donc

$$M(t) = P_s(2t - 1)$$

En effet

$$\int_0^1 M(t)g(t)dt = \int_{-1}^1 P_s(x)g(\frac{x}{2}+1)\frac{1}{2}dx$$

On a que $P_s(2t-1)$ a aussi s racines distinctes dans l'intervalle (0,1). Ces racines sont les deux d'integration optimaux.

Definition 5

La formule de quadrature $(\{b_i\}, \{c_i\})$ avec c_i choisis comme racines de $P_s(2t-1)$ et b_i les poids correspondants s'appelle formule de quadrature de Gauss.

2.4 Etude d'erreur des formules de quadrature

Theorème 12 (Erreurs dans les formules de quadrature)

Soit $f \in C^r([a,b]), r \ge p$.

Soit $Q_s(\cdot)$ une formule de quadrature d'ordre p.

$$I_n(f) = \sum_{i=0}^{n-1} h_j \sum_{i=1}^{s} b_i f(x_j + c_i h_j)$$

On a alors que

$$\left| \int_{a}^{b} f(x)dx - I_{n}(f) \right| \le C \frac{h^{p}}{p!} \max_{x \in [a,b]} \left| f^{(p)}(x) \right|$$

ou $h = \max_j h_j$ et C ne depend ni de f, ni de p ni de h, mais depend de

$$\frac{\max h_i}{\min h_i}$$

Preuve

Dans cette demonstration, C indiquera une constante generique qui ne depend pas de h, f, p.

On definit

$$E_n(f) = \left| \sum_{j=0}^{h-1} \int_0^1 f(x_j + h_j t) dt - \sum_{i=1}^s b_i f(x_j + h_j C_i) \right|$$

Posons $g(t) = f(x_j + h_j t)$ et

$$E_h^j(f) = |\int_0^1 g(t)dt - \sum_{i=1}^s b_i g(c_i)| (= E(g))$$

Supposons d'abord que g(x) est une fonction entiere, alors

$$\sum_{r\geq 0} \frac{g^{(r)}(0)}{r!} t^r$$

$$g(t) = \sum_{r=0}^{p-1} \frac{g^{(r)}(0)}{r!} t^r + \sum_{r \ge p} \frac{g^{(r)}(0)}{r!} t^r$$

La formule de quadrature est exacte sur la premiere partie, ainsi

$$E(g) = \left| \int_{0}^{1} \sum_{r \ge p} \frac{g^{(r)}(0)}{r!} t^{r} - \sum_{r \ge p} \sum_{i=1}^{s} b_{i} \frac{g^{(r)}(0)}{r!} c_{i}^{r} \right|$$
$$= \left| \sum_{r \ge p} \frac{g^{(r)}(0)}{r!} \left[\underbrace{\frac{1}{r+1} - \sum_{i=1}^{s} b_{i} c_{i}^{r}}_{-C} \right] \right|$$

$$= c_p \frac{g^{(p)}(0)}{p!} + "reste"$$

On a

$$a$$

$$g^{p}(0) = (f(x_{j} + th_{j})^{(p)})|_{t=0} = h_{j}^{p} \cdot f^{(p)}(x_{j})$$

On peut aussi montrer que

$$c_p = \left| \frac{1}{p+1} - \sum b_i c_i^p \right| \le 2$$

Ainsi $E_n^j(f) \le 2\frac{1}{p!}h_j^p|f^{(p)}(x_j)|$

Lecture 4: Interpolation de fonctions

Thu 24 Mar

3 Interpolation de fonctions

3.1 Polynomes de Lagrange

On considere le probleme d'interpolation a l'aide de polynomes.

Theorème 13 (Theoreme de Weierstrass)

Soit $f \in C^0([a,b])$ alors il existe un polynome p_n de degre n yrl wur

$$\lim_{n \to +\infty} \|f - p_n\| = 0$$

Pour la norme L^{∞} .

Etant donne $f(x_0), \ldots, f(x_n)$, on cherche un polynome de degre n qui approche f(x).

Definition 6

Etant donne une partition de [a, b] x_0, \ldots, x_n .

On appelle $\{l_i(x)\}$ les polynomes de lagrange, les polynomes $l_i(x)$ tels que

$$l_i(x_i) = \delta_{ij}, l_i \in \mathbb{P}_n$$

En general, on a

$$l_i(x) = \frac{\prod_{j=0, j \neq 1}^{n} (x - x_j)}{\prod_{j=0, j \neq i} (x_i - x_j)}$$

Ainsi, on peut considerer

$$p_n(x) = \sum_{i=0}^n f(x_i)l_i(x)$$

comme polynome interpolant et on remarque que $p_n(x_j) = f(x_j)$.

On se demande donc maintenant pour $f \in C^k([a,b]), k > 0$ si on peut borner $||f - p_n||$ par une quantite dependant de n.

Proposition 14

Etant donne une partition x_i .

Soit $d_n(x)$ une fonction de classe $C^n([a,b])$ tel que $d_n(x_i) = 0 \forall x_i$ de la partition. Alors $\exists \xi \in (x_0, x_n)$ tel que $d_n^{(n)}(\xi) = 0$

Remarque

Si f est reguliere, alors $f(x) - p_n(x)$ est reguliere et $f(x_i) - p_n(x_i) = 0$

Preuve

On doit appliquer le theoreme de rolle n fois.

En effet, on a $d_n(x_0) = d_n(x_1) = 0$ et donc $\exists y_0$ tel que $d'(y_0) = 0$ et de maniere generale, on a

$$d_n(x_i) = d_n(x_{i+1}) = 0 \implies \exists y_i \text{ tel que } d'(y_i) = 0$$

On reapplique le theoreme de rolle a y_1, \ldots, y_n

Theorème 16 (Representation de l'erreur)

Soit $f \in C^{n+1}([a,b])$ et soit p_n le polynome d'interpolation de f sur la partition (x_0,\ldots,x_n) alors $\forall x \in [a,b] \exists \xi \in (a,b)$:

$$f(x) - p_n(x) = f^{(n+1)}(\xi) \cdot \pi_n(x)$$

ou
$$\pi_n(x) = \frac{1}{(n+1)!}(x-x_0)\dots(x-x_n)$$

Preuve

On va demontrer le resultat pour tut point $x \in [a, b]$.

Si $x = x_i$, alors $f(x_i) - p_n(x_i) = f^{(n+1)}(\xi) \cdot 0$ ce qui est toujours vrai.

Donc, si $x \neq x_i$, alors $\pi_n(\overline{x}) \neq 0$.

Donc $\exists \eta \in \mathbb{R} : f(x) - p_n(\overline{x}) = \eta \pi_n(\overline{x}).$

On peut donc prendre $d_{n+1}(x) = f(x) - p_n(x) - \eta \pi_n(x)$, alors d_{n+1} s'annule sur les x_i et sur \overline{x} .

On peut donc appliquer la proposition d'avant a d_{n+1} ,

$$\exists \xi : d_{n+1}^{(n+1)}(\xi) = 0$$

Ainsi

$$d_{n+1}^{(n+1)} = f^{(n+1)}(x) - 0 - \eta \underbrace{\frac{d^{(n+1)}}{dx^{n+1}} \pi_n}_{=1}$$

Et donc il existe ξ tel que $f^{(n+1)}(\xi) - \eta = 0$

On va essayer d'utiliser la representation de l'erreur pour trouver une estimation de l'erreur

En effet

$$||f(x) - p_n(x)|| = \max_{x \in [a,b]} ||f^{(n+1)}(\xi)\pi_n(x)|| \le ||f^{(n+1)}(x)|| ||\pi_n||$$

On a

$$\|\pi_n\| = \left\| \frac{1}{(n+1)!} (x - x_0) \dots (x - x_{n-1}) \right\| \le \frac{1}{(n+1)!} (b - a)^{n-1}$$

Ainsi

$$||f - p_n|| \le \frac{1}{4} \frac{1}{(n+1)!} (b-a)^{n+1} ||f^{(n+1)}||$$

Pour quelle classe de fonctions puis-je donc deduire que $\lim_{n\to+\infty} \|f-p_n\| = 0$? Clairement $f(x) = \frac{1}{1+x^2}$ n'appartient pas a cette classe.