Coursera Beta

- Jayraj Desai
- Contact Us
- My Contributions
- Log Out

ML:Clustering

From Coursera

Contents

- 1 Unsupervised Learning: Introduction
- 2 K-Means Algorithm
- 3 Optimization Objective
- 4 Random Initialization
- 5 Choosing the Number of Clusters

Unsupervised Learning: Introduction

Unsupervised learning is contrasted from supervised learning because it uses an **unlabeled** training set rather than a labeled one.

In other words, we don't have the vector y of expected results, we only have a dataset of features where we can find structure.

Clustering is good for:

- Market segmentation
- Social network analysis
- Organizing computer clusters
- Astronomical data analysis

K-Means Algorithm

The K-Means Algorithm is the most popular and widely used algorithm for automatically grouping data into coherent subsets.

- 1. Randomly initialize two points in the dataset called the *cluster centroids*.
- 2. Cluster assignment: assign all examples into one of two groups based on which cluster centroid the example is closest to.
- 3. Move centroid: compute the averages for all the points inside each of the two cluster centroid Loading Web-Font TeX/Main/Regular | centroid points to those averages.
- 4. Re-run (2) and (3) until we have found our clusters.

Our main variables are:

K (number of clusters)

Training set

Where $x^{(i)} \in \mathbb{R}^n$

Note that we **will not use** the $x_0 = 1$ convention.

The algorithm:

```
Randomly initialize K cluster centroids mu(1), mu(2), ..., mu(K)
Repeat:
for i = 1 to m:
c(i) := index (from 1 to K) of cluster centroid closest to x(i)
for k = 1 to K:
mu(k) := average (mean) of points assigned to cluster k
```

The **first for-loop** is the 'Cluster Assignment' step. We make a vector c where c(i) represents the centroid assigned to example x(i).

We can write the operation of the Cluster Assignment step more mathematically as follows:

```
c^{(i)} = \operatorname{argmin}_{k} ||x^{(i)}| - \operatorname{mu}_{k}||^{2}
```

That is, each $c^{(i)}$ contains the index of the centroid that has minimal distance to $x^{(i)}$.

By convention, we square the right-hand-side, which makes the function we are trying to minimize more sharply increasing. It is mostly just a convention.

The **second for-loop** is the 'Move Centroid' step where we move each centroid to the average of its group.

More formally, the equation for this loop is as follows:

```
\label{eq:muk} \\ \mbox{mu_k} = \mbox{dfrac}\{1\}\{n\}[x^{(k_1)} + x^{(k_2)}\} + \mbox{dots} + x^{(k_n)}] \\ \mbox{in } \\ \mbox{mathbb}\{R\}^n \\ \mbox{mu_k} = \mbox{dfrac}\{1\}\{n\}[x^{(k_1)}\} + x^{(k_2)}\} + \mbox{dots} + x^{(k_n)}] \\ \mbox{in } \\ \mbox{mathbb}\{R\}^n \\ \mbox{def}\{n\}[x^{(k_n)}\} + x^{(k_n)}] \\ \mbox{def}\{n\}[x^{(k_n)}] + x
```

Where each of $x^{(k_1)}$, $x^{(k_2)}$, dots, $x^{(k_n)}$ are the training examples assigned to group mu_k .

If you have a cluster centroid with **0 points** assigned to it, you can randomly **re-initialize** that centroid to a new point. You can also simply **eliminate** that cluster group.

After a number of iterations the algorithm will **converge**, where new iterations do not affect the clusters.

Note on non-separated clusters: some datasets have no real inner separation or natural structure. K-means can still evenly segment your data into K subsets, so can still be useful in this case.

Optimization Objective

Recall some of the parameters we used in our algorithm:

```
c^{(i)} = index of cluster (1,2,...,K) to which example x^{(i)} is currently assigned
```

```
\mbox{\mbox{$\mbox{$mu$}_k$ = cluster centroid $\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}\mbox{$}
```

 $\mu_{c^{(i)}} = \text{cluster centroid of cluster to which example } x^{(i)} \text{ has been assigned}$

Using these variables we can define our **cost function**:

Our **optimization objective** is to minimize all our parameters using the above cost function:

```
\langle c, mu \rangle \ J(c, mu)
```

That is, we are finding all the values in sets c, representing all our clusters, and \mu, representing all our centroids, that will minimize **the average of the distances** of every training example to its corresponding cluster centroid.

The above cost function is often called the **distortion** of the training examples.

In the **cluster assignment step**, our goal is to:

```
Minimize J(\dots) with c^{(1)},\dots,c^{(m)} (holding \mu_1,\dots,\mu_K fixed)
```

In the **move centroid** step, our goal is to:

```
Minimize J(\dots) with \mu_1,\dots,\mu_K
```

With k-means, it is **not possible for the cost function to sometimes increase**. It should always descend.

Random Initialization

There's one particular recommended method for randomly initializing your cluster centroids.

- 1. Have K < m. That is, make sure the number of your clusters is less than the number of your training examples.
- 2. Randomly pick K training examples. (Not mentioned in the lecture, but also be sure the selected examples are unique).
- 3. Set \mu 1,\dots,\mu k equal to these K examples.

K-means **can get stuck in local optima**. To decrease the chance of this happening, you can run the algorithm on many different random initializations.

```
for i = 1 to 100:
    randomly initialize k-means
    run k-means to get 'c' and 'm'
    compute the cost function (distortion) J(c,m)
pick the clustering that gave us the lowest cost
```

Choosing the Number of Clusters

Choosing K can be quite arbitrary and ambiguous.

The elbow method: plot the cost J and the number of clusters K. The cost function should reduce as we increase the number of clusters, and then flatten out. Choose K at the point where the cost function starts to flatten out.

However, fairly often, the curve is **very gradual**, so there's no clear elbow.

Note: J will **always** decrease as K is increased. The one exception is if k-means gets stuck at a bad local optimum.

Another way to choose K is to observe how well k-means performs on a **downstream purpose**. In other words, you choose K that proves to be most useful for some goal you're trying to achieve from using these clusters.

Next: Dimensionality Reduction Back to Index: Main

Retrieved from "https://share.coursera.org/wiki/index.php?title=ML:Clustering&oldid=33140"

Category: ML:Lecture Notes

■ This page was last modified on 22 January 2016, at 17:27.

This page has been accessed 14,420 times.

Privacy policy

About Coursera

Disclaimers