# SS7 Stack User Guide

# The guide to the Mobicents SS7 Stack

by Amit Bhayani, Bartosz Baranowski, and Oleg Kulikov



| Preface                                               | . ۷  |
|-------------------------------------------------------|------|
| 1. Document Conventions                               | . v  |
| 1.1. Typographic Conventions                          | . v  |
| 1.2. Pull-quote Conventions                           | vii  |
| 1.3. Notes and Warnings                               | vii  |
| 2. Provide feedback to the authors!                   | viii |
| 1. Introduction to Mobicents SS7 Stack                | . 1  |
| 1.1. Time Division Multiplexing                       | . 2  |
| 2. The Basics                                         | 3    |
| 2.1. Shell Management client                          | . 5  |
| 2.2. SS7 Service                                      | . 5  |
| 2.3. Mobicents SS7 Stack Usage                        | . 6  |
| 2.4. Mobicents Signaling Gateway                      | 7    |
| 2.4.1. Mobicents M3UA Stack                           | . 8  |
| 3. Installation and Running                           | 11   |
| 3.1. Installing                                       | 11   |
| 3.1.1. Binary                                         | 11   |
| 3.2. Installing Mobicents SS7 Service Binary          | 14   |
| 3.3. Running Mobicents SS7 Service                    | 14   |
| 3.3.1. Starting                                       | 15   |
| 3.3.2. Stopping                                       | 15   |
| 3.4. Configuring Mobicents SS7 Service                | 16   |
| 3.4.1. Configuring M3UA                               | 16   |
| 3.4.2. Configuring dahdi                              | 17   |
| 3.4.3. Configuring dialogic                           | 18   |
| 3.4.4. Configuring ShellExecutor                      | 19   |
| 3.4.5. Configuring SCCP                               | 20   |
| 3.4.6. Configuring SS7Service                         | 21   |
| 3.5. Installing Mobicents Signaling Gateway Binary    | 22   |
| 3.6. Running Mobicents Signaling Gateway              | 22   |
| 3.6.1. Starting Mobicents Signaling Gateway           | 22   |
| 3.6.2. Start the Gateway With Alternate Configuration | 23   |
| 3.6.3. Stopping                                       | 23   |
| 3.7. Configuring Mobicents Signaling Gateway          | 23   |
| 3.7.1. Configuring Signaling Gateway Process          | 23   |
| 3.7.2. Configuring LinksetFactory                     | 24   |
| 3.7.3. Configuring LinksetManager                     | 25   |
| 3.7.4. Configuring ShellExecutor                      | 25   |
| 3.7.5. Configuring SignalingGateway                   | 26   |
| 3.8. Setup from source                                | 27   |
| 3.8.1. Release Source Code Building                   | 27   |
| 3.8.2. Development Trunk Source Building              | 28   |
| 4. Hardware Setup                                     | 29   |
| 4.1. Sangoma                                          | 29   |

|       | 2. Diguim                                                  | . 29 |
|-------|------------------------------------------------------------|------|
|       | 3. Dialogic                                                | 29   |
| 5. 8  | I Command Line                                             | 31   |
|       | 1. Introduction                                            | . 31 |
|       | 2. Starting                                                | 31   |
|       | 3. Linkset Management                                      | . 32 |
|       | 5.3.1. Create Linkset                                      | . 33 |
|       | 5.3.2. Remove Linkset                                      | 34   |
|       | 5.3.3. Activate Linkset                                    | . 34 |
|       | 5.3.4. Deactivate Linkset                                  | . 35 |
|       | 5.3.5. Create Link                                         | . 35 |
|       | 5.3.6. Remove Link                                         | . 36 |
|       | 5.3.7. Activate Link                                       | 37   |
|       | 5.3.8. Deactivate Link                                     | 37   |
|       | 5.3.9. Show status                                         | . 38 |
|       | 4. SCCP Management                                         | 38   |
|       | 5.4.1. Rule Management                                     | . 39 |
|       | 5.4.2. Address Management                                  | . 43 |
|       | 5.4.3. Remote Signaling Point Management                   | . 47 |
|       | 5.4.4. Remote Sub-System Management                        | 48   |
|       | 5. M3UA Management                                         | 50   |
|       | 5.5.1. M3UA Management - SGW side                          | 50   |
|       | 5.5.2. M3UA Management - AS side                           | . 53 |
| 6. I  | )                                                          | . 59 |
|       | 1. ISUP Configuration                                      | 59   |
|       | 2. ISUP Usage                                              | 61   |
|       | 3. ISUP Example                                            | 61   |
| 7. \$ | P                                                          | 65   |
|       | 1. Routing Management                                      | 65   |
|       | 7.1.1. GTT Configuration                                   | . 65 |
|       | 2. SCCP Usage                                              | . 69 |
|       | 3. Access Point                                            | 70   |
|       | 4. SCCP User Part Example                                  | 70   |
| 8. 1  | P                                                          | . 73 |
|       | 1. Mobicents SS7 Stack TCAP Usage                          | 73   |
|       | 2. Mobicents SS7 Stack TCAP User Part Example              | 75   |
| 9. I  | ·                                                          | 79   |
|       | 1. SS7 Stack MAP Usage                                     | . 79 |
|       | 2. SS7 Stack MAP Usage                                     | . 82 |
| Α     | Development Kit (JDK): Installing, Configuring and Running | . 87 |
| В. \$ | ng the JBOSS_HOME Environment Variable                     | . 91 |
| C. I  | sion History                                               | . 95 |
| Inde  |                                                            | . 97 |

#### **Preface**

#### 1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention to specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the *Liberation Fonts* [https://fedorahosted.org/liberation-fonts/] set. The Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not, alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes the Liberation Fonts set by default.

## 1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight key caps and key-combinations. For example:

To see the contents of the file <code>my\_next\_bestselling\_novel</code> in your current working directory, enter the <code>cat my\_next\_bestselling\_novel</code> command at the shell prompt and press <code>Enter</code> to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced Bold and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a key-combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to return to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of three key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for directories. Each class has its own associated set of permissions.

#### **Proportional Bold**

This denotes words or phrases encountered on a system, including application names; dialogue box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose **System > Preferences > Mouse** from the main menu bar to launch **Mouse Preferences**. In the **Buttons** tab, click the **Left-handed mouse** check box and click **Close** to switch the primary mouse button from the left to the right (making the mouse suitable for use in the left hand).

To insert a special character into a **gedit** file, choose **Applications** > **Accessories** > **Character Map** from the main menu bar. Next, choose **Search** > **Find** from the **Character Map** menu bar, type the name of the character in the **Search** field and click **Next**. The character you sought will be highlighted in the **Character Table**. Double-click this highlighted character to place it in the **Text to copy** field and then click the **Copy** button. Now switch back to your document and choose **Edit** > **Paste** from the **gedit** menu bar.

The above text includes application names; system-wide menu names and items; application-specific menu names; and buttons and text found within a GUI interface, all presented in Proportional Bold and all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to avoid the difficult-to-follow 'Select **Mouse** from the **Preferences** sub-menu in the **System** menu of the main menu bar' approach.

```
Mono-spaced Bold Italic Of Proportional Bold Italic
```

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or variable text. Italics denotes text you do not input literally or displayed text that changes depending on circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at a shell prompt. If the remote machine is example.com and your username on that machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file system. For example, to remount the /home file system, the command is mount -o remount /home.

To see the version of a currently installed package, use the rpm -q package command. It will return a result as follows: package-version-release.

Note the words in bold italics above username, domain.name, file-system, package, version and release. Each word is a placeholder, either for text you enter when issuing a command or for text displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child processes or threads to handle them. This group of child processes or threads is known as

a *server-pool*. Under Apache HTTP Server 2.0, the responsibility for creating and maintaining these server-pools has been abstracted to a group of modules called *Multi-Processing Modules* (*MPMs*). Unlike other modules, only one module from the MPM group can be loaded by the Apache HTTP Server.

## 1.2. Pull-quote Conventions

Two, commonly multi-line, data types are set off visually from the surrounding text.

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

```
books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs
```

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as follows:

```
package org.jboss.book.jca.ex1;
import javax.naming.InitialContext;
public class ExClient
{
  public static void main(String args[])
    throws Exception
    InitialContext iniCtx = new InitialContext();
    Object
               ref = iniCtx.lookup("EchoBean");
    EchoHome
                   home = (EchoHome) ref;
    Echo
               echo = home.create();
    System.out.println("Created Echo");
    System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}
```

# 1.3. Notes and Warnings

Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.



#### **Note**

A note is a tip or shortcut or alternative approach to the task at hand. Ignoring a note should have no negative consequences, but you might miss out on a trick that makes your life easier.



#### **Important**

Important boxes detail things that are easily missed: configuration changes that only apply to the current session, or services that need restarting before an update will apply. Ignoring Important boxes won't cause data loss but may cause irritation and frustration.



### Warning

A Warning should not be ignored. Ignoring warnings will most likely cause data loss.

#### 2. Provide feedback to the authors!

If you find a typographical error in this manual, or if you have thought of a way to make this manual better, we would love to hear from you! Please submit a report in the the *Issue Tracker* [http://code.google.com/p/mobicents/issues/list], against the product **Mobicents SS7 Stack**, or contact the authors.

When submitting a bug report, be sure to mention the manual's identifier: SS7Stack\_User\_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when describing it. If you have found an error, please include the section number and some of the surrounding text so we can find it easily.

# Introduction to Mobicents SS7 Stack



#### **Important**

Spaces where introduced in in some tables and code listings to ensure proper page render.

Common Channel Signaling System No. 7 (i.e., SS7 or C7) is a global standard for telecommunications defined by the *International Telecommunication Union (ITU) Telecommunication Standardization Sector (ITU-T)* [http://www.voip-info.org/wiki/view/ITU] . The standard defines the procedures and protocol by which network elements in the public switched telephone network (PSTN) ) exchange information over a digital signaling network to effect wireless (cellular) and wireline call setup, routing and control. The ITU definition of SS7 allows for national variants such as the American National Standards Institute (ANSI) and Bell Communications Research (Telcordia Technologies) standards used in North America and the European Telecommunications Standards Institute (*ETSI* [http://www.voip-info.org/wiki/view/ETSI] ) standard used in Europe.

The hardware and software functions of the SS7 protocol are divided into functional abstractions called "levels". These levels map loosely to the Open Systems Interconnect (OSI) 7-layer model defined by the *International Standards Organization (ISO)* [http://www.iso.ch/] .



SS7 Stack overview

Mobicents SS7 Stack is software based SS7 protocol implementation providing Level 2 and above. The Mobicents SS7 Stack is a platform in the sense that it does not provide the application itself but rather allows users to build the application

# 1.1. Time Division Multiplexing

In circuit switched networks such as the Public Switched Telephone Network (PSTN) there exists the need to transmit multiple subscribers' calls along the same transmission medium. To accomplish this, network designers make use of TDM. TDM allows switches to create channels, also known as tributaries, within a transmission stream. A standard DS0 voice signal has a data bit rate of 64 kbit/s, determined using Nyquist's sampling criterion. TDM takes frames of the voice signals and multiplexes them into a TDM frame which runs at a higher bandwidth. So if the TDM frame consists of n voice frames, the bandwidth will be n\*64 kbit/s. Each voice sample timeslot in the TDM frame is called a channel . In European systems, TDM frames contain 30 digital voice channels, and in American systems, they contain 24 channels. Both standards also contain extra bits (or bit timeslots) for signalling (SS7) and synchronisation bits. Multiplexing more than 24 or 30 digital voice channels is called higher order multiplexing. Higher order multiplexing is accomplished by multiplexing the standard TDM frames.For example, a European 120 channel TDM frame is formed by multiplexing four standard 30 channel TDM frames.At each higher order multiplex, four TDM frames from the immediate lower order are combined, creating multiplexes with a bandwidth of n x 64 kbit/s, where n = 120, 480, 1920, etc.

# The Basics



#### **Important**

Be aware, Mobicents SS7 Stack is subject to changes as it is under active development!

The Mobicents SS7 Stack is logically divided into two sections. The lower section includes SS7 Level 3 and below. The lower section is influenced by type of SS7 hardware (Level 1) used.

The upper section includes SS7 Level 4 and above. This logical division is widely based on flexibility of Mobicents SS7 Stack to allow usage of any SS7 hardware available in the market and yet Mobicents SS7 Stack Level 4 and above remains the same.

Further Mobicents SS7 Stack provides flexibility to use the Level 2,3 and Level 4 in same JVM and in same machine where SS7 Hardware (Level 1) is installed. Or its also possible to have Level 1,2,3 to be installed on separate machine and Level 4 on separate machine. In latter case M3UA over SCTP is leveraged for communication between Level 4 and Level 3 and is called Mobicents Signaling Gateway.

Bellow diagram shows complete Mobicents SS7 Stack in same machine



#### Mobicents SS7 Stack

Bellow diagram shows Mobicents Signaling Gateway



# NIF - Nodal Interworking Function

Mobicents Signaling Gateway



#### **Important**

If you use Mobicents M3UA stack, you have to use JDK 7 to run the stack as well as to compile source code. M3UA leverages Java SCTP which is available only from JDK 7.

Apart from advantages mentioned in

Mobicents SS7 Stack consists of following functional blocks:

# 2.1. Shell Management client

Shell is Command Line Interface (CLI) tool which allows to manage different aspects of Mobicents SS7 Stack in interactive manner. It connects to different instances of Mobicents SS7 Stack which manage Linksets, SCCP resource, routing and M3UA. For detailed information please refer to: Chapter 5, Shell Command Line. Usually Shell will be invoked from remote machine (remote to Linksets and application protocols).

#### 2.2. SS7 Service

SS7 service creates instance of Mobicents SCCP Stack and bind's it to JNDI name java:/ mobicents/ss7/sccp

SS7 Service is JMX based service deployed in JBoss Application Server

SS7 Service hides the details like whether Level 4 and above connects to Mobicents Signaling Gateway via M3UA or SS7 Hardware installed in same machine as Level 4

Diagram below depicts elements which are deployed as part of SS7 Service:



Mobicents SS7 Stack SS7Service elements.

Service serves following purposes:

#### Expose protocol access points

Access points allows user to access lower layer protocols, like SCCP and interact through such protocols with SS7 network.

#### Expose management interface

Shell Executor allows Shell client to connect and issue commands.

Configuration of SS7 Service is explained in section Section 3.4, "Configuring Mobicents SS7 Service"

# 2.3. Mobicents SS7 Stack Usage

Diagram below depicts how Mobicents SS7 Stack is used:



Mobicents SS7 Stack general design

# 2.4. Mobicents Signaling Gateway

Mobicents Signaling Gateway (SG) is a signaling agent that receives/sends Switched Circuit Network (SCN) native signaling at the edge of the IP network. Mobicents Signaling Gateway leverages Mobicents M3UA Stack explained in Section 2.4.1, "Mobicents M3UA Stack" and MTP

Diagram below shows the components which are included in Mobicents SG. Configuration of SG is explained in *Section 3.7, "Configuring Mobicents Signaling Gateway"* 



Mobicents Signaling Gateway components

#### 2.4.1. Mobicents M3UA Stack

M3UA is client-server protocol supporting the transport of any SS7 MTP3-User signalling (e.g., ISUP and SCCP messages) over IP. M3UA is defined by the IETF SIGTRAN working group in RFC 4666. Mobicents M3UA Stack can be used on Application Server side or can be used on Signaling Gateway side.



#### **Note**

Mobicents M3UA Stack uses Java SCTP layer which is available from JDK 7 onwards

#### 2.4.1.1. Mobicents M3UA Stack on AS side

Diagram below demonstrates the Mobicents M3UA Stack used on Application Server (AS) side. The information below explains the basic functionality of the Mobicents M3UA Stack when used as an Application Server which will communicate with an External Signaling Gateway



Mobicents M3UA Stack configured on AS side

To use M3UA Stack as AS, the Routing Context (RC) must be known. See Section Section 3.4.1, "Configuring M3UA" for configuring M3UA Stack as AS.

#### 2.4.1.2. Mobicents M3UA Stack on SG side

Diagram below demonstrates the Mobicents M3UA Stack used on Signaling Gateway (SG) side. The Mobicents Signaling Gateway provides the Nodal Interworking Function (NIF) that allows SS7 Signaling (SCCP/ISUP) to be inter-worked into the M3UA/IP Network as shown in Section 2.4, "Mobicents Signaling Gateway"



Mobicents M3UA Stack configured on SG side

Mobicents M3UA Stack used on SG side will share common point code with a set of M3UA Application Server. M3UA stack on SG side can be configured as Loadbalance or Override traffic

mode. It doesn't support Broadcast traffic mode. See Section Section 3.7, "Configuring Mobicents Signaling Gateway" for configuring M3UA Stack as SG. Mobicents M3UA Stack used on SG side doesn't support routing key management messages. The Routing Key should be provisioned statically using the management console.

# **Installation and Running**

# 3.1. Installing

Mobicents SS7 stack at its core requires only Java if you are using only M3UA. However if you plan to use dahdi or dialogic SS7 hardware, respective SS7 cards needs to be installed on the server along with native libraries.

A simple way to get started is to download and install binary. This will provide you with all the dependencies you need to get going. You can obtain binary release from http://sourceforge.net/projects/mobicents/files

## 3.1.1. Binary

The Mobicents SS7 Stack binary is broken down into a few modules.

The following is a description of the important services and libraries that make up Mobicents SS7 Stack

- asn: Abstract Syntax Notation One (ASN.1) library is used by various Mobicents SS7 Stack
  protocols to encode/decode the structured data exchanged between Signaling Point over
  networks. To know more about asn library refer to document included with asn. Applications
  using any of the Mobicents SS7 Stack User Protocols may never need to call asn API directly,
  however it must be in classpath as Mobicents SS7 Stack User Protocols refers this library.
- ss7 : ss7 contains the service that is deployed in JBoss AS and libraries that end applications refers to. It also includes Mobicents Signaling Gateway. The sub-modules included in ss7 are
  - docs: User guide for Mobicents SS7 Stack
  - mobicents-sgw: Standalone Signaling Gateway as explained in section Section 2.4, "Mobicents Signaling Gateway"

mobicents-sgw binary has following layout:



• mobicents-ss7-service: SS7 service is the core engine as explained in section Section 2.2, "SS7 Service"

mobicents-ss7-service binary has following layout:



- native: native libraries component to interact with SS7 Card installed on server, runtime component. As of now native libraries are compiled only for linux OS. However if you plan to use M3UA there is no dependency on OS as everything is 100% java.
- protocols: The Mobicents SS7 Stack User Protocols libraries. Your application would directly call the API's exposed by these libraries. Depending on application you may be either interested in TCAP, MAP or both or ISUP libraries
- shell: the Command Line Interface (CLI) module to manage the Mobicents SS7 Stack. Refer *Chapter 5, Shell Command Line* to understand how to use shell

Binary release has following layout:



Mobicents SS7 Stack binary layout.

# 3.2. Installing Mobicents SS7 Service Binary

The upper layers of Mobicents SS7 viz., TCAP, MAP depends on Mobicents SS7 Service and Mobicents SS7 Service must be installed before upper layers can be used. The Mobicents SS7 Service binary requires that you have JBoss Application Server installed and JBOSS\_HOME system property set. To know further details on setting JBOSS\_HOME look Appendix B, Setting the JBOSS\_HOME Environment Variable

Once JBOSS\_HOME is properly set, use ant to deploy the mobicents-ss7-service, shell scripts and shell library.



#### **Important**

Ant 1.6 (or higher) is used to install the binary. Instructions for using Ant, including install, can be found at <a href="http://ant.apache.org/">http://ant.apache.org/</a>

[usr]\$ cd ss7-1.0.0.BETA9/ss7 [usr]\$ ant deploy

To undeploy these services

[usr]\$ cd ss7-1.0.0.BETA9/ss7 [usr]\$ ant undeploy

While above steps will deploy the necessary ss7 service and shell components, the <code>java.library.path</code> should be set to point the directory containing native component or should be copied to JBoss native library path manually. This step is only required if you are using the SS7 board on server.

# 3.3. Running Mobicents SS7 Service

Starting or stopping Mobicents SS7 Service is no different than starting or stopping JBoss Application Server

## **3.3.1. Starting**

Once installed, you can run server by executing the run.sh (Unix) or run.bat (Microsoft Windows) startup scripts in the <install\_directory>/bin directory (on Unix or Windows). If the service started properly you should see following lines in the Unix terminal or Command Prompt depending on your environment:

If you have started ss7-1.0.0.BETA9 for the first time, ss7 is not configured. You need to use Shell Client to connect to ss7-1.0.0.BETA9 as defined in *Chapter 5, Shell Command Line*. With CLI you can configure how service interacts with SS7 network, that is you configure either installed SS7 card and its native library\, or M3UA layer.

Once the configured, the state and configuration of SS7 is persisted which stands server re-start.

# 3.3.2. Stopping

You can shut down the server(s) by executing the <code>shutdown.sh -s</code> (Unix) or <code>shutdown.bat -s</code> (Microsoft Windows) scripts in the <code><install\_directory>/bin</code> directory (on Unix or Windows). Note that if you properly stop the server, you will see the following three lines as the last output in the Unix terminal or Command Prompt:

```
[Server] Shutdown complete
Halting VM
```

# 3.4. Configuring Mobicents SS7 Service

Configuration is done through an XML descriptor named <code>jboss-beans.xml</code> and is located at <code>\$JBOSS\_HOME/server/profile\_name/deploy/mobicents-ss7-service/META-INF, where profile\_name</code> is the server profile name.

The Mobicents SS7 Layer 4 (SCCP, ISUP) leverages either of following MTP layers to exchange signalling messages with remote signalling points

- M3IIA
- dahdi
- dialogic

The ss7 service will be configured with either of these services.

## 3.4.1. Configuring M3UA

ClientM3UAProcess is only needed if the underlying SS7 service will leverage M3UA. ClientM3UAProcess acts as remote Signaling Gateway Process. M3UAShellExecutor accepts the M3UA commands and executes necessary operations. ClientM3UAManagement contains the list of Application Server (AS) (and list of Application Server Process (ASP) within each AS) connecting to external Signaling Gateway (SG) and also manages them.

```
<!--
<!-- M3UA
<!-- ClientM3UAManagement is managing the ASP side commands
                                                                                  --1>
<bean name="ClientM3UAManagement"</pre>
  class="org.mobicents.protocols.ss7.m3ua.impl.as.ClientM3UAManagement">
  cproperty name="persistDir">${jboss.server.data.dir}/property>
</bean>
<bean name="M3UAShellExecutor"</pre>
  class="org.mobicents.protocols.ss7.m3ua.impl.oam.M3UAShellExecutor">
  property name="m3uaManagement">
    <inject bean="ClientM3UAManagement" />
  </bean>
<bean name="Mtp3UserPart"</pre>
  class="org.mobicents.protocols.ss7.m3ua.impl.as.ClientM3UAProcess">
```

```
< inject bean="ClientM3UAManagement" />

<
```

ClientM3UAManagement when started looks for file's m3ua-client.xml and m3ua-clientroute.xml. The m3ua-client.xml contains serialized information about AS and ASP configured for this ClientM3UAProcess. The m3ua-clientroute.xml contains serialized information about defined routes.

Route maintains the availability status of a remote Point Code in the SS7 network via one or more Signaling Gateways. Application Hosts connecting to Signaling Gateways will require the configuration of Routes for each Remote Signaling Point Code they wish to communicate with.

## 3.4.2. Configuring dahdi

Dahdi based MTP layer will only be used when you have installed dahdi based SS7 hardware (Sangoma or Diguim cards). DahdiLinksetFactory is responsible to create new instances of corresponding DahdiLinkset when instructed by LinksetManager.

• DahdiLinksetFactory

```
<br/>
<br/>
<br/>
class="org.mobicents.ss7.hardware.dahdi.oam.DahdiLinksetFactory"></br/>
</bean>
```

LinksetFactoryFactory is just a call-back class listening for new factories deployed and maintains Map of available factory name vs factory. You should never touch this bean.

## 3.4.2.1. Configuring LinksetManager

LinksetManager is responsible for managing Linkset and Link.

```
<inject bean="LinksetFactoryFactory" />
</property>
<property name="persistDir">${jboss.server.data.dir}</property>
</bean>

<br/>
<br/>
<br/>
class="org.mobicents.ss7.linkset.oam.LinksetExecutor">
<property name="linksetManager">
<property name="linksetManager" />
<inject bean="LinksetManager" />
</property>
</bean>
```

LinksetManager when started looks for file linksetmanager.xml containing serialized information about underlying linksets and links. The directory path is configurable by changing value of persistDir property.



#### Warning

linksetmanager.xml should never be edited by hand. Always use Shell Client to connect to Mobicents SS7 Stack and execute commands.

LinksetExecutor accepts the linkset commands and executes necessary operations.

# 3.4.3. Configuring dialogic

Dialogic based MTP layer will only be used when you have installed Dialogic cards. DialogicMtp3UserPart communicates with Dialogic hardware. Its asumed here that MTP3 and MTP2 is leveraged from Dialogic stack either on-board or on-host.

sourceModuleId is source module id and should match with configured in system.txt used by dialogic drivers. Here 61 is assigned for Mobicents process. destinationModuleId is destination module id. 34 is Dialogic MTP3 module id.

## 3.4.4. Configuring ShellExecutor

ShellExecutor is responsible for listening to incoming command. Received commands are executed on local resources to perform actions like creation and management of SCCP routing rule, creation and management of Linkset, management of M3UA stack.

```
<!-- Shell Service
<!-- Define Shell Executor -->
<bean name="ShellExecutor"</pre>
  class="org.mobicents.ss7.ShellExecutor">
  property name="address">${jboss.bind.address}/property>
  cproperty name="port">3435/property>
  <!-- LinksetExecutor required only if dahdi based hardware is installed. -->
  property name="linksetExecutor">
    <inject bean="LinksetExecutor" />
  </property>
  <!-- M3UAShellExecutor required only if M3UA will be leveraged. -->
  property name="m3UAShellExecutor">
    <inject bean="M3UAShellExecutor" />
  </property>
  <!-- To manage SCCP resource and rules -->
  property name="sccpExecutor">
    <inject bean="SccpExecutor" />
  </bean>
```

By default ShellExecutor listens at jboss.bind.address and port 3435. You may set the address property to any valid IP address that your host is assigned. The shell commands are exchanged over TCP/IP.



#### **Note**

To understand JBoss bind options look at *Installation\_And\_Getting\_Started\_Guide* [http://docs.jboss.org/jbossas/docs/Installation\_And\_Getting\_Started\_Guide/5/html\_single/index.html]

## 3.4.5. Configuring SCCP

As name suggests scopStack initiates the SCCP stack routines. Stack has following properties:

#### localSpc

property specifies the local signaling point code.

ni

specifies the network indicator that forms the part of service information octet (SIO)

#### Router

manages the route for SCCP. When Router is started it looks for file sccprouter.xml containing the serialized information about routes configured. The directory path is configurable by changing value of persistDir property

#### **SccpResource**

manages the remote resource for SCCP, for example Remote Subsystem Number and Remote Signalling Pointcode. When SccpResource is started it looks for file sccpresource.xml containing the serialized information about resources configured. The directory path is configurable by changing value of persistDir property

#### mtp3UserPart

specifies SS7 Level 3 to be used as transport medium( be it SS7 card or M3UA)

SccpExecutor accepts sccp commands and executes necessary operations

SccpProvider is bound to JNDI by SS7 Service and is used by upper layers

```
<!--
<!-- SCCP Router Service -->
                                                         <!--
<!--Define Router for SCCP -->
 <bean name="Router" class="org.mobicents.protocols.ss7.sccp.impl.router.Router">
  cproperty name="persistDir">${jboss.server.data.dir}/property>
 </bean>
<bean name="SccpResource" class="org.mobicents.protocols.ss7.sccp.impl.SccpResource">
  </bean>
 <bean name="SccpExecutor"</pre>
  class="org.mobicents.protocols.ss7.sccp.impl.oam.SccpExecutor">
  property name="router">
    <inject bean="Router"/>
```

```
property name="sccpResource">
    <inject bean="SccpResource"/>
  </property>
</bean>
<bean name="SccpStack" class="org.mobicents.protocols.ss7.sccp.impl.SccpStackImpl">
  property name="localSpc">2
  property name="ni">2
  cproperty name="router">
    <inject bean="Router"/>
  </property>
  property name="sccpResource">
    <inject bean="SccpResource"/>
  property name="mtp3UserPart">
    <inject bean="Mtp3UserPart" />
  </bean>
<bean name="SccpProvider"</pre>
  class="org.mobicents.protocols.ss7.sccp.impl.SccpProviderImpl">
  <constructor factoryMethod="getSccpProvider">
    <factory bean="SccpStack" />
  </constructor>
</bean>
```

# 3.4.6. Configuring SS7Service

SS7Service acts as core engine binding all the components together. To get holistic view of SS7 Service look at Section 2.2, "SS7 Service"

SS7 service binds SccpProvider to JNDI java:/mobicents/ss7/sccp. The JNDI name can be configured to any valid JNDI name specific to your application.

# 3.5. Installing Mobicents Signaling Gateway Binary

Mobicents Signaling Gateway Binary doesn't require any additional steps. You may copy mobicents-sgw to any folder of your choice.

# 3.6. Running Mobicents Signaling Gateway

In the Linux terminal or Windows command prompt, the Mobicents Signaling Gateway has started successfully if the last line of output is similar to the following

```
15:51:18,247 INFO [MainDeployer] [[[[[[[[ Mobicents Signaling Gateway: release.version=1.0.0.BETA9 Started ]]]]]]]]]
```

## 3.6.1. Starting Mobicents Signaling Gateway

#### **Procedure 3.1. Running the Mobicents Signaling Gateway on Linux**

1. Change the working directory to installation directory (the one in which the zip file's contents was extracted to)

```
downloads]$ cd "mobicents-ss7-<version>/ss7/mobicents-sgw"
```

2. (Optional) Ensure that the bin/run.sh start script is executable.

```
mobicents-sgw$ chmod +x bin/run.sh
```

3. Execute the run.sh Bourne shell script.

```
mobicents-sgw$ ./bin/run.sh
```

#### **Procedure 3.2. Running the Mobicents Signaling Gateway on Windows**

1. Using Windows Explorer, navigate to the bin subfolder in the installation directory.

The preferred way to start the Mobicents Signaling Gateway is from the Command Prompt.
 The command line interface displays details of the startup process, including any problems encountered during the startup process.

Open the Command Prompt via the Start menu and navigate to the correct folder:

```
C:\Users\<user>\My Downloads>cd "mobicents-ss7-<version>\ss7\mobicents-
sgw"
```

- 3. Start the Gateway by executing one of the following files:
  - run.bat batch file:

C:\Users\<user>\My Downloads\mms-standalone<version>>bin\run.bat

## 3.6.2. Start the Gateway With Alternate Configuration

Using run.sh without any arguments binds the gateway to 127.0.0.1. To bind gateway to different ip, pass the ip address as value to -b command line option. For example to bind the server to 115.252.103.220

```
mobicents-sgw$ ./bin/run.sh -b 115.252.103.220
```

## 3.6.3. Stopping

The only option to stop the gateway is by pressing Ctrl c and bringing down the JVM or kill the process.

# 3.7. Configuring Mobicents Signaling Gateway

Configuration is done through an XML descriptor named sgw-beans.xml and is located at mobicents-sgw/deploy,

# 3.7.1. Configuring Signaling Gateway Process

Signaling Gateway Process that contains the list of Remote Application Server (Rem AS) (and list of Remote Application Server Process (Rem ASP) within each rem AS) connecting to external Application Server (AS). M3UAShellExecutor accepts the M3UA commands and executes necessary operations.

SgpImpl listens at ip \${sgw.bind.address} and port 3434 for incoming request from ASP.

## 3.7.2. Configuring LinksetFactory

Concrete implementation of LinksetFactory is responsible to create new instances of corresponding Linkset when instructed by LinksetManager. Mobicents Signaling Gateway defines two linkset factories:

• DahdiLinksetFactory

```
<bean name="DahdiLinksetFactory"
    class="org.mobicents.ss7.hardware.dahdi.oam.DahdiLinksetFactory">
    </bean>
```

• DialogicLinksetFactory

```
<bean name="DialogicLinksetFactory"
    class="org.mobicents.ss7.hardware.dialogic.oam.DialogicLinksetFactory">
    </bean>
```

Its highly unlikely that you would require both the factories on same gateway. If you have dahdi based SS7 card installed, keep DahdiLinksetFactory and remove other. If you have dialogic based SS7 card installed, keep DialogicLinksetFactory and remove other.

LinksetFactoryFactory is just a call-back class listening for new factories deployed and maintains Map of available factory name vs factory. You should never touch this bean.

## 3.7.3. Configuring LinksetManager

LinksetManager is responsible for managing Linkset and Link.

LinksetManager when started looks for file linksetmanager.xml containing serialized information about underlying linksets and links. The directory path is configurable by changing value of persistDir property.



#### Warning

linksetmanager.xml should never be edited by hand. Always use Shell Client to connect to Mobicents Signaling Gateway and execute commands.

LinksetExecutor accepts the linkset commands and executes necessary operations.

# 3.7.4. Configuring ShellExecutor

ShellExecutor is responsible for listening to incoming command. Received commands are executed on local resources to perform actions like creation and management of Linkset, management of M3UA stack.

By default ShellExecutor listens at sgw.bind.address and port 3436. You may set the address property to any valid IP address that your host is assigned. The shell commands are exchanged over TCP/IP.

## 3.7.5. Configuring SignalingGateway

SignalingGateway acts as core engine binding all the components together.

The <code>NodalInterworkingFunction</code> sits between the SS7 network and IP network and routes messages to/from both the MTP3 and the M3UA layer, based on the SS7 DPC or DPC/SI address information

# 3.8. Setup from source

Mobicents SS7 Stack is an open source project, instructions for building from source are part of the manual! Building from source means you can stay on top with the latest features. Whilst aspects of Mobicents SS7 Stack are quite complicated, you may find ways to become contributors.

Mobicents SS7 Stack works with JDK1.5 and above (If using M3UA, JDK1.7 and above). you will also need to have the following tools installed. Minimum requirement version numbers provided.

- Subversion Client 1.4: Instructions for using SVN, including install, can be found at http://subversion.tigris.org
- Maven 2.0.9: Instructions for using Maven, including install, can be found at <a href="http://maven.apache.org/">http://maven.apache.org/</a>
- Ant 1.7.0: Instructions for using Ant, including install, can be found at http://ant.apache.org

## 3.8.1. Release Source Code Building

#### 1. Downloading the source code

Use SVN to checkout a specific release source, the base URL is http://mobicents.googlecode.com/svn/tags/protocols/ss7, then add the specific release version, lets consider 1.0.0.BETA9.

[usr]\$ svn co http://mobicents.googlecode.com/svn/tags/protocols/ss7/ss7-1.0.0.BETA9

#### 2. Building the source code

Now that we have the source the next step is to build and install the source. Mobicents SS7 Stack uses Maven 2 to build the system. There are three profiles. Default one builds only java source. The other two profiles available "dahdilinux" and "dialogiclinux" additionaly compile native modules.



#### **Note**

Native modules are supported only for linux OS for now.

Use "dahdilinux" profile if linux server on which this code is built already has dahdi module installed. Make sure you pass "include.zap" system property pointing to correct directory where dahdi is installed

[usr]\$ cd ss7-1.0.0.BETA9
[usr]\$ mvn install -Pdahdilinux -Dinclude.zap=/usr/include/dahdi

Use "dialogiclinux" profile if linux server on which this code is built already has dialogic module installed. Make sure you pass "include.dialogic" and "include.dialogic.gctlib" system property pointing to correct directory where dialogic libraries are installed. include.dialogic.gctlib points to directory where gctload is present (generally /opt/dpklnx for linux OS)

[usr]\$ cd ss7-1.0.0.BETA9
[usr]\$ mvn install -Pdialogclinux -Dinclude.dialogic=/opt/dpklnx/INC -Dinclude.dialogic.gctlib=/opt/dpklnx

To build Mobicents SS7 Stack without building any native libraries use

[usr]\$ cd ss7-1.0.0.BETA9 [usr]\$ mvn install



#### **Note**

If you are using Mobicents SS7 Stack without any native dependencies, Mobicents SS7 Stack can run on any OS.

Use Ant to build the binary .

[usr]\$ cd ss7-1.0.0.BETA9/release [usr]\$ ant

# 3.8.2. Development Trunk Source Building

Similar process as for Section 3.8.1, "Release Source Code Building", the only change is the SVN source code URL, which is http://mobicents.googlecode.com/svn/trunk/protocols/ss7.

# **Hardware Setup**

This chapter contains reference to configure hardware drivers for different types of ss7 cards.

Mobicents SS7 Stack supports dahdi based SS7 cards like diguim and sangoma. Generally dahdi based SS7 crads doesn't have MTP2/MTP3 support on board and relies on external software to provide these services.

Mobicents SS7 Stack also supports dialogic based SS7 cards which has on board support for MTP2/MTP3

## 4.1. Sangoma

To install Sangoma cards visit the Sangoma wiki at <a href="http://wiki.sangoma.com/">http://wiki.sangoma.com/</a>

## 4.2. Diguim

To install Diguim cards visit the Diguim site at http://www.digium.com/en/products/digital/

## 4.3. Dialogic

To install Dialogic cards visit the Dialogic site at <a href="http://www.dialogic.com/">http://www.dialogic.com/</a>

# **Shell Command Line**

## 5.1. Introduction

Mobicents SS7 Stack provides Shell client to manage configuration of SS7 Stack Services. This chapter describes how to install and start client. Also it describes available commands and provides examples. To see examples of specific flow, to perform certain tasks, please refer to sections in chapter devoted to Linksets, SCCP or M3UA.

## 5.2. Starting

Shell client can be started with following command from \$JBOSS\_HOME/bin:

[\$] ./ss7-run.sh

Once console starts, it will print following information:

```
Mobicents SS7: release.version=1.0.0-SNAPSHOT

This is free software, with components licensed under the GNU General Public License

version 2 and other licenses. For further details visit http://mobicents.org
```

The ss7-run script supports following options

```
Usage: SS7 [OPTIONS]
Valid Options
-v Display version number and exit
-h This help screen
```

Shell needs to connect to managed instance. Command to connect has following structure:

```
ss7 connect <IP> <PORT>
```

### **Example 5.1. Connec to remote machine**

mobicents>ss7 connect 10.65.208.215 3435
mobicents(10.65.208.215:3435)>



### **Note**

Host IP and port are optional, if not specified, shell will try to connect to 127.0.0.1:3435

Command to disconnect has following structure:

ss7 discconnect

### **Example 5.2. Disconnect**

mobicents(10.65.208.215:3435)>ss7 disconnect

Bye
mobicents>

## 5.3. Linkset Management

Linksets are managed by linkset command. It allows to perform following:

- · create linkset
- delete linkset
- · activate linkset
- deactivate linkset
- create link
- delete link
- activate link

- · deactivate link
- · list state of linksets and present links

#### 5.3.1. Create Linkset

Linkset can be create by issuing command with following structure:

linkset create <linkset-type> opc <point-code> apc <point-code> ni <network-id> <linkset-name>

or in case of dialogic:

linkset create dialogic opc <point-code> apc <point-code> ni <network-id> srcmod <src-mode> destmod <dest-mode> <linkset-name>

or in case of M3UA:

linkset create m3ua opc <point-code> apc <point-code> ni <network-id> as <as-name> <linkset-name>

#### Where:

#### linkset-type

refers to type of linkset to be created, ie. dahdi, dialogic or m3ua. Correct values depend on which linkset factories have been deployed.

#### point-code

is simply MTP point - either local( opc ) or remote( dpc )

ni

is simply network identifier. It can have following values:

0 International network

1 Spare (for international use only)

2

National network

3

Reserved for national use

#### linkset-name

simple string name, which identifies linkset

#### as-name

Name of AS that M3UALinkset wrapps. Make sure that AS is already created as explained in Section 5.5.2.1, "Create AS"

### **Example 5.3. Linkset creation**

```
mobicents(10.65.208.215:3435)>linkset create dahdi opc 1 apc 2 ni 0 linkset1
LinkSet successfully added
mobicents(10.65.208.215:3435)>linkset create dialogic opc 3 apc 4 ni 3
    srcmod 1 destmod 2 linkset2
LinkSet successfully added
```

### 5.3.2. Remove Linkset

Linkset can be deleted by issuing command with following structure:

linkset delete <linkset-name>

Where:

linkset-name

is name set during link creation

### **Example 5.4. Linkset Removal**

```
mobicents(10.65.208.215:3435)>linkset delete linkset1
LinkSet successfully deleted
```

### 5.3.3. Activate Linkset

Linkset can be activated by issuing command with following structure:

linkset activate <linkset-name>

Where:

linkset-name

is name set during link creation

### **Example 5.5. Linkset Activation**

mobicents(10.65.208.215)>linkset activate linkset1
LinkSet activated successfully

### 5.3.4. Deactivate Linkset

Linkset can be deactivated by issuing command with following structure:

linkset deactivate <linkset-name>

Where:

linkset-name

is name set during link creation

### **Example 5.6. Linkset Deactivateion**

mobicents(10.65.208.215)>linkset deactivate linkset1
LinkSet deactivated successfully

### 5.3.5. Create Link

 ${\tt Link}$  can be created in  ${\tt Linkset}$  by issuing command with following structure:

linkset link create span <span-num> code <code-num> channel <channel-num> <linkset-name> <link-name>

#### Where:

#### span-num

integer number. It represents port number in card(indexed from 0).

#### code-num

link code(sls assigned to this link).

#### channel-num

integer number indicating time slot number(TDM time slot).

#### linkset-name

is name set during link creation.

#### link-name

name which identifies link in linkset.

### Example 5.7.

```
mobicents(10.65.208.215:3435)>linkset link create span 1 code 1 channel 1
linkset1 link1
Link successfully added
```

### 5.3.6. Remove Link

Link can be removed from in Linkset by issuing command with following structure:

linkset link delete <linkset-name> <link-name>

#### Where:

#### linkset-name

is name set during link creation

#### link-name

name which identifies link in linkset

### **Example 5.8. Link Removal**

```
mobicents(10.65.208.215:3435)>linkset link delete linkset1 link1
Link successfully deleted
```

### 5.3.7. Activate Link

Link can be activated by issuing command with following structure:

linkset link activate <linkset-name> <link-name>

Where:

linkset-name

is name set during link creation

link-name

name which identifies link in linkset

### **Example 5.9. Link Activation**

mobicents(10.65.208.215:3435)>linkset link activate linkset1 link1
Link activated successfully

### 5.3.8. Deactivate Link

Link can be deactivated by issuing command with following structure:

linkset link deactivate <linkset-name> <link-name>

Where:

linkset-name

is name set during link creation

link-name

name which identifies link in linkset

### **Example 5.10. Link Deactivateion**

mobicents(10.65.208.215:3435)>linkset link deactivate linkset1 link1
Link deactivated successfully

#### 5.3.9. Show status

Linkset and Link's status can be viewed by issuing command with following structure:

linkset show

### **Example 5.11. Linkset Status**

```
mobicents(10.65.208.215:3435)>linkset show
linkset1 dahdi opc=1 apc=2 ni=0
state=UNAVAILABLE
link1 span=1 channelId=1 code=1 state=UNAVAILABLE
```

The possible state of Linkset are

- UNAVAILABLE: Indicates the linkset does not have any "available" links and cannot transport traffic
- SHUTDOWN: Indicates the linkset has been shutdown in the configuration
- · AVAILABLE: Indicates the linkset has at least one available link and can carry traffic

The possible state of Link are

- UNAVAILABLE: Indicates the link is not available to carry traffic. This can occur if the link is remotely or locally inhibited by a user. It can also be unavailable if MTP2 has not been able to successfully activate the link connection.
- SHUTDOWN: Indicates the link has been shutdown in the configuration.
- AVAILABLE : Indicates the link is active and able to transport traffic
- FAILED: A link is FAILED when the link is not shutdown but is unavailable at layer2 for some reason. For example Initial Alignment failed or the link test messages sent by MTP3 are not being acknowledged.

## 5.4. SCCP Management

SCCP provides connectionless and connection-oriented network services. This includes address(GTT) translation and routing, flow control segmentation and reassembly.

A global title is an address (e.g., a dialed 800 number, calling card number, or mobile subscriber identification number) which is translated by SCCP into a destination point code and subsystem number. A subsystem number uniquely identifies an application at the destination signaling point. SCCP is used as the transport layer for TCAP -based services

As SCCP acts as message router, it requires means to configure routing information. CLI provides way to easily manage routing rules information in Mobicents SCCP implementation.

User should also configure the remote subsystem number and remote signaling pointcode. In some cases where global title is used, SCCP will only require configuring of remote signaling pointcode and configuring of remote subsystem is not required.

### 5.4.1. Rule Management

SCCP routing rules are managed by sccp rule command. It allows to perform following:

- sccp rule create
- sccp rule modify
- sccp rule delete
- sccp rule show

#### 5.4.1.1. Create Rule

Rule can be create by issuing command with following structure:

sccp rule create <id> <mask> <address-indicator> <point-code> <subsystem-number> <translation-type> <numbering-plan> <nature-of-address-indicator> <digits> <primary-address-id> <backup-address-id>

This command should be specified after primary\_add and backup\_add are configured. Please refer Section 5.4.2, "Address Management" on how to configure primary\_add and backup\_add

#### <id>

A unique number to identify this rule

#### <mask>

mask defines which part of the originally dialed digits remains in the translated digits and which part is replaced by the digits from primary or backup address. mask is divided into sections by separator /. The number of sections in mask should be equal to sections in digits passed in this command and sections in primary or backup address

Table 5.1. mask definitions

| Mnemonic | Function                                                                                                                   |
|----------|----------------------------------------------------------------------------------------------------------------------------|
| -        | Ignore                                                                                                                     |
|          | Separator used to split the mask into sections.                                                                            |
| K        | Keep the original dialed digits of this section into translated digits                                                     |
| R        | Replace the original dialed digits of this section with same section from primary or backup address into translated digits |

#### <address-indicator>

The address indicator is the first field in SCCP Party Address(called/calling) and is one octet in length. Its function is to indicate which information elements are present so that the address can be interpreted, in other words, it indicates the type of addressing information that is to be found in the address field. The addressing information from original global title is then compared with passed address information to match the rule.

- '1' Bit: PC Indicator (1=included)
  '2' Bit: SSN Indicator (1=included)
  3 6 Bit: GT Indicator
  0000 = GT Not Included
  0001 = GT Includes Nature of Address,
  0010 = GT Includes Translation Type
  0011 = GT Includes Translation Type,
  Numbering Plan and Encoding Scheme
  0100 = GT Includes Translation Type,
  Numbering Plan, Encoding Scheme, and
  Nature of Address Indicator
  '7' Bit: Routing Indicator
- '8' Bit: Reserved for National Use

0 = Route on GT

1 = Route on PC + SSN



SCCP Address Indicator

#### <point-code>

Point code. This is ignored if bit 0 of address-indicator is not set.

#### <subsystem-number>

Subsystem Number. This is ignored if bit 1 of address-indicator is not set.

#### <translation-type>

Translation type. This is ignored if GT Indicator is 0000 or 0001

**Table 5.2. Translation Type Values** 

| Value      | Description                  |
|------------|------------------------------|
| 0          | Unknown                      |
| 1 to 63    | International Service        |
| 64 to 127  | Spare                        |
| 128 to 254 | National Network<br>Specific |
| 255        | Reserved for Expansion       |

#### <numbering-plan>

The Number Plan (NP) field specifies the numbering plan that the address information follows. This is ignored if GT Indicator is 0000, 0001 or 0010

#### <nature-of-address-indicator>

The Nature of Address Indicator (NAI) field defines the address range for a specific numbering plan. This is only used if GT Indicator is 0100

#### <digits>

Specifies the string of digits divided into subsections using separator '/' depending on if mask contains separator. The dialed digits should match with theses digits as per rule specified bellow

Table 5.3. digit pattern

| Value | Description                                                                                    |
|-------|------------------------------------------------------------------------------------------------|
| -     | padding - ignored                                                                              |
| *     | wildcard - matches any number of digits                                                        |
| ?     | wildcard - matches exactly one digit                                                           |
|       | sparator used to split<br>the digit pattern into<br>sections. Each section<br>can be processed |

| Value | Description              |
|-------|--------------------------|
|       | differently as specified |
|       | by mask parameter.       |

#### primary-address-id>

Identifies the SCCP Address used as the primary translation

#### <backup-address-id>

Identifies the SCCP Address used as the backup translation incase if pointcode specified by primary address is not available

### **Example 5.12. SCCP Rule creation**

```
mobicents(10.65.208.215:3435)>sccp rule create 1 R 71 2 8 0 0 3 123456789 1 mobicents(10.65.208.215:3435)>sccp rule create 2 R 71 2 8 0 0 3 123456789 1 1
```

### 5.4.1.2. Delete SCCP Rule

SCCP Rule can be deleted by issuing command with following structure:

sccp rule delete <id>

Where:

<id>

is id set during rule creation

### **Example 5.13. SCCP Rule Removal**

```
mobicents(10.65.208.215:3435)>sccp rule delete 1
Rule successfully removed
```

### **5.4.1.3. Show SCCP Rule**

Rule's can be viewed by issuing command with following structure:

sccp rule show <id>

Where:

<id>

id is optional. If passed only rule matching the id will be shown, else all the rules will be shown

### 5.4.2. Address Management

The command is used to define primary or backup address of translation. The global title address information of this command is combined with the global title being translated by examining the mask provided in the sccp rule create command. The syntanx remains same except for primary address sccp primary\_add is used and for backup address sccp backup\_add is used

```
    sccp primary_add create
    sccp backup_add create
```

```
    sccp primary_add modify
    sccp backup_add modify
```

```
    sccp primary_add delete
    sccp backup_add delete
```

```
    sccp primary_add show
    sccp backup_add show
```

#### 5.4.2.1. Create Address

Address can be create by issuing command with following structure:

· For primary address

```
sccp primary_add create <id> <address-indicator> <point-code> <subsystem-number> <translation-type> <numbering-plan> <nature-of-address-indicator> <digits>
```

· For backup address

sccp backup\_add create <id> <address-indicator> <point-code> <subsystem-number>
<translation-type> <numbering-plan>

<nature-of-address-indicator> <digits>

#### < id >

A unique number to identify this address

#### <address-indicator>

The address indicator is the first field in SCCP Party Address(called/calling) and is one octet in length. Its function is to indicate which information elements are present so that the address can be interpreted, in other words, it indicates the type of addressing information that is to be found in the address field. The addressing information from original global title is then compared with passed address information to match the rule.

- '1' Bit: PC Indicator (1=included)
- '2' Bit: SSN Indicator (1=included)
- 3 6 Bit: GT Indicator

0000 = GT Not Included

0001 = GT Includes Nature of Address,

0010 = GT Includes Translation Type

0011 = GT Includes Translation Type,

Numbering Plan and Encoding Scheme

0100 = GT Includes Translation Type,

Numbering Plan, Encoding Scheme, and

Nature of Address Indicator

'7' Bit: Routing Indicator

0 = Route on GT

1 = Route on PC + SSN

'8' Bit: Reserved for National Use



SCCP Address Indicator

<point-code>

Point code. This is ignored if bit 0 of address-indicator is not set.

<subsystem-number>

Subsystem Number. This is ignored if bit 1 of address-indicator is not set.

<translation-type>

Translation type. This is ignored if GT Indicator is 0000 or 0001

Table 5.4. Translation Type Values

| Value | Description |
|-------|-------------|
| 0     | Unknown     |

| Value      | Description                  |
|------------|------------------------------|
| 1 to 63    | International Service        |
| 64 to 127  | Spare                        |
| 128 to 254 | National Network<br>Specific |
| 255        | Reserved for Expansion       |

#### <numbering-plan>

The Number Plan (NP) field specifies the numbering plan that the address information follows. This is ignored if GT Indicator is 0000, 0001 or 0010

#### <nature-of-address-indicator>

The Nature of Address Indicator (NAI) field defines the address range for a specific numbering plan. This is only used if GT Indicator is 0100

#### <digits>

The global title address information to translate to, specified as string of digits divided into subsections using separator '/' depending on if mask contains separator.

In addition the digits string can contain

Table 5.5. Address digit

| Value | Description                                                                                                                             |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------|
| -     | padding - ignore                                                                                                                        |
|       | Separtor to split the digits into sections. Each section is processed differently as specified by the mask in sccp rule create command. |

## **Example 5.14. SCCP Primary Address creation**

mobicents(10.65.208.215:3435)>sccp primary\_add create 1 71 2 8 0 0 3 123456789

## **Example 5.15. SCCP Backup Address creation**

mobicents(10.65.208.215:3435)>sccp backup\_add create 1 71 3 8 0 0 3 123456789

### 5.4.2.2. Delete Address

· For primary address

sccp primary\_add delete <id>

For backup address

sccp backup\_add delete <id>

Where:

<id>

is id set during address creation

### **Example 5.16. Primary Address Removal**

mobicents(10.65.208.215:3435)>sccp primary\_add delete 1
Rule successfully removed

## **Example 5.17. Backup Address Removal**

mobicents(10.65.208.215:3435)>sccp backup\_add delete 1
Rule successfully removed

### 5.4.2.3. Show Address

Address's can be viewed by issuing command with following structure:

• For primary address

sccp primary\_add show <id>

· For backup address

sccp backup\_add show <id>

Where:

<id>

id is optional. If passed only address matching the id will be shown, else all the addresses will be shown

## 5.4.3. Remote Signaling Point Management

SCCP resources includes remote signaling point and remote subsytem. Each remote signaling point that SCCP can communicate with must be configured using <code>sccp rsp</code> command

- sccp rsp create
- sccp rsp modify
- sccp rsp delete
- sccp rsp show

### 5.4.3.1. Create Remote Signaling Point

Remote signaling point can be create by issuing command with following structure:

sccp rsp create <id> <remote-spc> <rspc-flag> <mask>

< id >

A unique number to identify this remote signaling point

<remote-spc>

The remote signaling point

<rspc-flag>

32 bit value. Not used for now. Reserved for future

<mask>

32 bit value. Not used for now. Reserved for future

### **Example 5.18. Remote Signalin Point creation**

mobicents(10.65.208.215:3435)>sccp rsp create 1 6477 0 0

## 5.4.3.2. Delete Remote Signaling Point

sccp rsp delete <id>

Where:

<id>

is id set during remote signaling point creation

### **Example 5.19. Remote Signaling Point removal**

mobicents(10.65.208.215:3435)>sccp rsp delete 1

## 5.4.3.3. Show Remote Signaling Point/s

Remote signaling point can be viewed by issuing command with following structure:

sccp rsp show <id>

Where:

<id>

id is optional. If passed only remote signaling point matching the id will be shown, else all the addresses will be shown

## 5.4.4. Remote Sub-System Management

SCCP resources includes remote signaling point and remote subsystem. Each remote subsystem that SCCP can communicate with must be configured using <code>sccp rss</code> command

- sccp rss create
- sccp rss modify

- sccp rss delete
- sccp rss show

This command should be specified after remote signaling point is configured. Please refer Section 5.4.3, "Remote Signaling Point Management" on how to configure remote signaling point

### 5.4.4.1. Create Remote Sub-System

Remote subsystem can be created by issuing command with following structure:

sccp rss create <id> <remote-spc> <remote-ssn> <rss-flag>

<id>

A unique number to identify this remote subsystem

<remote-spc>

The remote signaling point where this remote susbsytem is deployed

<remote-ssn>

The remote subsystem number

<rss-flag>

32 bit value. Not used for now. Reserved for future

#### Example 5.20. Remote Sub-System creation

mobicents(10.65.208.215:3435)>sccp rss create 1 6477 8 0

### 5.4.4.2. Delete Remote Sub-System

sccp rss delete <id>

Where:

<id>

is id set during remote subsystem creation

### **Example 5.21. Remote Sub-System removal**

mobicents(10.65.208.215:3435)>sccp rss delete 1

### 5.4.4.3. Show Remote Sub-System/s

Remote subsystem can be viewed by issuing command with following structure:

sccp rss show <id>

Where:

<id>

id is optional. If passed only remote subsystem matching the id will be shown, else all will be shown

## 5.5. M3UA Management

Commands to manage Mobicents M3UA Stack used on Application Server (AS) side differs from commands to manage Mobicents M3UA Stack used on Signaling Gateway side (SGW).

### 5.5.1. M3UA Management - SGW side

M3UA - SGW side is managed by m3ua command. It allows to perform following:

- m3ua ras create
- m3ua rasp create
- m3ua ras add

#### 5.5.1.1. Create Remote AS

Remote Application Server (AS) can be created by issuing command with following structure:

m3ua ras create rc <routing-context> rk dpc <destination point code> opc <originating point code> si <service indicator> traffic-mode <traffic mode> <ras-name>

Where:

#### routing-context

refers to Routing Context. Make sure its unique for each Remote AS created. The same Routing Context should be used while creating AS on M3UA Stack used on AS side.

#### routing key

Routing Key describes a set of SS7 parameters and parameter values that uniquely define the range of signaling traffic to be handled by a particular Application Server. Routing Key includes

#### destination point code

The Destination Point Code parameter is mandatory, and it identifies the Destination Point Code of incoming SS7 traffic. dpc is integer number

#### originating point code

The Originating Point Code parameter contains one or more (comma separated) SS7 OPC entries, and its format is the same as for the Destination Point Code parameter. OPC is optional and absence of the OPC parameter in the Routing Key indicates the use of any OPC value.

#### service indicator

The optional service indicator field contains one or more (comma separated) Service Indicators from the values described bellow. The absence of the SI parameter in the Routing Key indicates the use of any SI value, excluding of course MTP management.

```
SCCP

TUP

ISUP

Broadband ISUP

Satellite ISUP

AAL type 2 Signalling

Bearer Independent Call Control (BICC)
```

Gateway Control Protocol

#### traffic-mode

The optional Traffic Mode Type parameter identifies the traffic mode. If not specified Override is used as default. It can take either of loadshare or override.

#### ras-name

Rem AS name

### Example 5.22. Rem AS creation

```
mobicents(127.0.0.1:3436)>m3ua ras create rc 100 rk dpc 123 RAS1
Successfully created AS name=RAS1
mobicents(127.0.0.1:3436)>m3ua ras create rc 101 rk dpc 456 opc 987 si 3
traffic-mode loadshare RAS2
Successfully created AS name=RAS2
```

### 5.5.1.2. Create Remote ASP

Remote Application Server Process (ASP) can be create by issuing command with following structure:

```
m3ua rasp create ip <ip> port <port> <rasp-name>
```

#### Where:

ip ip address of Application Server Process from AS side trying to connect to this Rem ASPport port of Application Server Process from AS side trying to connect to this Rem ASP

#### Example 5.23. Rem ASP creation

```
mobicents(127.0.0.1:3436)>m3ua rasp create ip 127.0.0.1 port 2345 RASP1
Successfully created ASP name=RASP1
```

### 5.5.1.3. Assign Remote ASP to Remote AS

Remote Application Server Process (ASP) can be assigned to Remote Application Server (AS) with following structure

```
m3ua ras add <ras-name> <rasp-name>
```

#### Where:

#### ras name

name of Remote AS created earlier

rasp name

name of Remote ASP created earlier

### Example 5.24. Add Rem ASP to Rem AS

mobicents(127.0.0.1:3436)>m3ua ras add RAS1 RASP1
Successfully added ASP name=RASP1 to AS name=RAS1

## 5.5.2. M3UA Management - AS side

M3UA - AS side is managed by m3ua command. It allows to perform following:

- m3ua as create
- m3ua asp create
- m3ua as add
- m3ua route add
- m3ua route remove
- m3ua route show
- m3ua asp start
- m3ua asp stop

#### 5.5.2.1. Create AS

Application Server (AS) can be created by issuing command with following structure:

m3ua as create rc <routing-context> <as-name>

#### Where:

routing-context

refers to Routing Context already configured on M3UA stack on SGW side.

name

simple string name, which identifies AS. Make sure this is unique

### Example 5.25. AS creation

mobicents(127.0.0.1:3435)>m3ua as create rc 100 AS1
Successfully created AS name=AS1

### 5.5.2.2. Create ASP

Application Server Process (ASP) can be created by issuing command with following structure:

m3ua asp create ip <ip> port <port> remip <rem-ip> remport <rem-port> <asp-name>

#### Where:

ip

local ip address of Application Server Process. This ip address should match with ip address configured when Remote ASP was created.

port

local port of Application Server Process. This port should match with port configured when Remote ASP was created.

remip

The ip address of Mobicents Signaling Gateway listening for incoming connection requests

remport

The port of Mobicents Signaling Gateway listening for incoming connection requests

asp-name

Name of this ASP. It should be unique

### **Example 5.26. ASP creation**

```
mobicents(127.0.0.1:3435)>m3ua asp create ip 127.0.0.1 port 2345 remip
  127.0.0.1 remport 3434 ASP1
Successfully created AS name=ASP1
```

## 5.5.2.3. Assign ASP to AS

Application Server Process (ASP) can be assigned to Application Server (AS) with following structure

m3ua as add <as-name> <asp-name>

Where:

as name

name of AS created earlier

asp name

name of ASP created earlier

### **Example 5.27. Add ASP to AS**

mobicents(127.0.0.1:3435)>m3ua as add AS1 ASP1 Successfully added ASP name=ASP1 to AS name=AS1

### 5.5.2.4. Add Route

Configure the destination point code that message will be routed to

m3ua route add <dpc> <as-name>

Where:

dpc

Destination point code

as name

name of AS created earlier

### **Example 5.28. Add Route**

mobicents(127.0.0.1:3435)>m3ua route add 6447 AS1

### 5.5.2.5. Remove Route

Remove the As configured for the destination point code

m3ua route remove <dpc> <as-name>

Where:

#### **Chapter 5. Shell Command Line**

dpc

Destination point code

as name

name of AS assigned to route message for this dpc

### Example 5.29. Remove Route

mobicents(127.0.0.1:3435)>m3ua route remove 6447 AS1

### 5.5.2.6. Show Route

Show all the routes configured

m3ua route show

### **Example 5.30. Show Route**

mobicents(127.0.0.1:3435)>m3ua route show

### 5.5.2.7. Start ASP

Application Server Process (ASP) can be started with following structure

m3ua asp start <asp-name>

Where:

asp name

name of ASP created earlier. Make sure ASP you are trying to start is assigned to at least one AS

### **Example 5.31. Start ASP**

mobicents(127.0.0.1:3435)>m3ua asp start ASP:
Successfully started ASP name=ASP1

## 5.5.2.8. Stop ASP

Application Server Process (ASP) can be stopped with following structure

m3ua asp stop <asp-name>

Where:

asp name

name of ASP started earlier.

## **Example 5.32. Stop ASP**

mobicents(127.0.0.1:3435)>m3ua asp stop ASP1
Successfully stopped ASP name=ASP1

# **ISUP**

ISUP( ISDN User Part or ISUP) is part of SS7 which is used to establish telephone calls and manage call switches( exchanges). Exchanges are connected via E1 or T1 trunks. Each trunk is divided by means of TDM into time slots. Each time slot is distinguished as circuit. Circuits (identified by code) are used as medium to transmit voice data between user equipment (or exchanges if more than one is involved).

ISUP allows not only to setup a call, but to exchange information about exchange state and its resources(circuits).



#### **Note**

Mobicents ISUP is based on ITU-T Q. 76x series of documents.

## 6.1. ISUP Configuration

Mobicents ISUP stack is configured with simple properties. Currently following properties are supported:

**Table 6.1. ISUP Configuration options** 

| Name     | Default value          | Value range   | Description                                                                           |
|----------|------------------------|---------------|---------------------------------------------------------------------------------------|
| ni       | None, must be provided | 0-3           | Sets value of network indicator that should be used by stack.                         |
| localspc | None, must be provided | 0 - (2^14)-1  | Sets local signaling point code. It will be used as OPC for outgoing signaling units. |
| t1       | 4s                     | 4s - 15s      | Sets T1 value. Started<br>when REL is sent. See<br>A.1/Q.764                          |
| t5       | 5 min.                 | 5min - 15 min | Sets T5 value. Started when initial REL is sent. See A.1/Q.764                        |
| t7       | 20s                    | 20s -30s      | Sets T7 value.<br>(Re)Started when<br>Address Message is<br>sent. See A.1/Q.764       |

| Name | Default value | Value range  | Description                                                               |
|------|---------------|--------------|---------------------------------------------------------------------------|
| t12  | 15s           | 15s - 60s    | Sets T12 value.<br>Started when BLO is<br>sent. See A.1/Q.764             |
| t13  | 5min          | 5min - 15min | Sets T13 value.<br>Started when initial<br>BLO is sent. See A.1/<br>Q.764 |
| t14  | 5s            | 15s - 60s    | Sets T14 value.<br>Started when UBL is<br>sent. See A.1/Q.764             |
| t15  | 5min          | 5min - 15min | Sets T15 value.<br>Started when initial<br>UBL is sent. See A.1/<br>Q.764 |
| t16  | 5s            | 15s - 60s    | Sets T16 value.<br>Started when RSC is<br>sent. See A.1/Q.764             |
| t17  | 5min          | 5min - 15min | Sets T17 value.<br>Started when initial<br>RSC is sent. See A.1/<br>Q.764 |
| t18  | 5s            | 15s - 60s    | Sets T18 value.<br>Started when CGB is<br>sent. See A.1/Q.764             |
| t19  | 5min          | 5min - 15min | Sets T19 value.<br>Started when initial<br>CGB is sent. See A.1/<br>Q.764 |
| t20  | 5s            | 15s - 60s    | Sets T20 value.<br>Started when CGU is<br>sent. See A.1/Q.764             |
| t21  | 5min          | 5min - 15min | Sets T21 value.<br>Started when initial<br>CGU is sent. See A.1/<br>Q.764 |
| t22  | 5s            | 15s - 60s    | Sets T22 value.<br>Started when GRS is<br>sent. See A.1/Q.764             |
| t23  | 5min          | 5min - 15min | Sets T23 value.<br>Started when initial                                   |

| Name | Default value | Value range | Description                                                   |
|------|---------------|-------------|---------------------------------------------------------------|
|      |               |             | GRS is sent. See A.1/<br>Q.764                                |
| t28  | 10s           | 10s         | Sets T28 value.<br>Started when CQM is<br>sent. See A.1/Q.764 |
| t33  | 12s           | 12s - 15s   | Sets T33 value.<br>Started when INR is<br>sent. See A.1/Q.764 |

Note that before start user must provide two interfaces to stack:

#### Mtp3UserPart

implementation of transport layer which should be used by stack

#### CircuitManager

circuit manager implementation. This interface stores information on mapping between CIC(Circuit Identification Code) and DPC(Destination Point Code) used as destination for outgoing messages.

## 6.2. ISUP Usage

The org.mobicents.protocols.ss7.isup.ISUPStack interface defines the methods required to represent ISUP Protocol Stack. ISUPStack exposes org.mobicents.protocols.ss7.isup.ISUPProvider. This interface defines the methods that will be used by any registered ISUP User application implementing the org.mobicents.protocols.ss7.isup.ISUPListener to listen ISUP events(messages and timeouts).

## 6.3. ISUP Example

Below is simple example of stack usage:

import java.io.ByteArrayOutputStream;

import java.io.IOException;

import java.util.ArrayList;

import java.util.List;

import java.util.Properties;

**import** org.mobicents.protocols.ss7.isup.ISUPEvent;

import org.mobicents.protocols.ss7.isup.ISUPListener;

import org.mobicents.protocols.ss7.isup.ISUPProvider;

import org.mobicents.protocols.ss7.isup.ISUPStack;

```
import org.mobicents.protocols.ss7.isup.ISUPTimeoutEvent;
import org.mobicents.protocols.ss7.isup.ParameterException;
import org.mobicents.protocols.ss7.isup.impl.ISUPStackImpl;
import org.mobicents.protocols.ss7.isup.message.ISUPMessage;
import org.mobicents.ss7.linkset.oam.Layer4;
import org.mobicents.ss7.linkset.oam.Linkset;
public class ISUPTest implements ISUPListener
{
  protected ISUPStack stack;
  protected ISUPProvider provider;
  protected Linkset isupLinkSet;
  public void setUp() throws Exception {
     this.isupLinkSet = ....; //same linksets as in SS7Service
     this.stack = new ISUPStackImpl();
     this.stack.configure(getSpecificConfig());
    this.provider = this.stack.getIsupProvider();
     this.provider.addListener(this);
     Mtp3UserPart userPart = // create with proper factory, dahdii, dialogi, m3ua
     this.stack.setMtp3UserPart(userPart);
     CircuitManagerImpl circuitManager = new CircuitManagerImpl();
     circuitManager.addCircuit(1, 431613); // CIC - 1, DPC for it - 431613
    this.stack.setCircuitManager(circuitManager);
    this.stack.start();
  }
  public void onEvent(ISUPEvent event) {
     ISUPMessage msg = event.getMessage();
     switch(msg.getCircuitIdentificationCode().getCIC())
       case AddressCompleteMessage._COMMAND_CODE:
       //only complete
       break
       case ConnectedMessage._COMMAND_CODE:
```

```
case AnswerMessage._COMMAND_CODE:
       //we are good to go
       ConnectedNumber cn = (ConnectedNumber)msg.getParameter(ConnectedNumber._PARAMETER_CODE)
       //do something
       break;
       case ReleaseMessage._COMMAND_CODE:
       //remote end does not want to talk
       RealeaseCompleteMessage rlc = provider.getMessageFactory().createRLC();
       rlc.setCircuitIdentificationCode(msg.getCircuitIdentificationCode());
       rlc.setCauseIndicators( ((ReleaseComplete)msg).getCauseIndicators());
       provider.sendMessage(rlc);
    }
  }
  public void onTimeout(ISUPTimeoutEvent event) {
    switch(event.getTimerId())
       case ISUPTimeoutEvent.T1:
         //do something
         break;
       case ISUPTimeoutEvent.T7:
         //do even more
         break;
    }
  }
}
```

# SCCP

The Signaling Connection Control Part (SCCP) is defined in ITU-T Recommendations Q.711-Q.716. SCCP sits on top of Message Transfer Part 3 (MTP3) in the SS7 protocol stack. The SCCP provides additional network layer functions to provide transfer of noncircuit-related (NCR) signaling information, application management procedures and alternative, more flexible methods of routing.

## 7.1. Routing Management

SCCP provides a routing function that allows signaling messages to be routed to a signaling point based on dialed digits, for example. This capability is known as Global Title Translation (GTT), which translates what is known as a global title (for example, dialed digits for a toll free number) into a signaling point code and a subsystem number so that it can be processed at the correct application.

Routing rules are configured using the Command Line Interface as explained Section 5.4, "SCCP Management"

#### 7.1.1. GTT Configuration

GTT is performed in two stages. First is matching the rule and second is actual translation.

For matching the rule, the called party address global title digits are matched with <digits> configured in sccp rule create Section 5.4.1.1, "Create Rule" command above. Once the digits match actual translation is done

#### Matching rule

As explained in sccp rule create Section 5.4.1.1, "Create Rule" command the <digits> can be divided into sections using the "/" separate character. Each section defines set of digits to be matched. Wild card \* can be used to match any digits and ? can be used to match exatcly one digit

For example Rule is to match starting 4 digits (should be 1234) and doesn't care for rest; the <digits> in the command will be 1234/\*. If the Rule is such that starting 3 digits should be 123, doesn't care for other three digits but last two digits should be 78; the <digits> in the command will be 123/???/78. If digit to digit matching is needed the the <digits> in the command will be exact digits to be matched without sections.

#### Translation

For translation each section in <mask> defined in sccp rule create command defines how replacement operation is performed. If <mask> defines K, the originally dialed digits are kept and if <mask> defines R the digits from primary address or back address are used. The primary/backup address should always define the point code and the translated address will always have this point code. If the primary/backup address defines the subsystem number the

translated address will also have this subsystem number. The address-indicator of translated address is always from primary/backup address. See bellow examples

Example 1: Remove the Global Title and add PC and SSN

| Element               | Add | ress In | dicato | r   | PC  | SSN | TT | NP | NAI | Digits    |
|-----------------------|-----|---------|--------|-----|-----|-----|----|----|-----|-----------|
|                       |     |         |        |     |     |     |    |    |     |           |
| Dialed<br>Address     | 0 0 | 0 1     | 0 0    | 0 0 |     |     | 1  |    |     | 123456789 |
|                       |     |         |        |     |     |     |    |    |     |           |
| Rule<br>Address       | 0 0 | 0 1     | 0 0    | 0 0 |     |     | 1  |    |     | 123456789 |
|                       |     |         |        |     |     |     |    |    |     |           |
| Rule<br>mask          |     |         |        |     |     |     |    |    |     | R         |
|                       |     |         |        |     |     |     |    |    |     |           |
| Primary<br>Address    | 0 1 | 0 0     | 0 0    | 1 1 | 123 | 8   |    |    |     | -         |
|                       |     |         |        |     |     |     |    |    |     |           |
| Translated<br>Address | 0 1 | 0 0     | 0 0    | 1 1 | 123 | 8   |    |    |     |           |

GTT - Example 1

#### Example 2 : Partial match

Match a eight digit number starting "800", followed by any four digits, then "9". If the translated digits is not null and if the primary/backup address has no Global Title, the Global Title from dialed address is kept with new translated digits.

| Element Address Indicator PC SSN TT NP NAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Digits     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| Dialed Address         0         0         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 | 80012349   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| Rule Address 0 0 0 1 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 800/????/9 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| Rule<br>mask                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R/K/R      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| Primary Address 0 0 0 0 0 0 1 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 123//4     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| Translated Address         0         0         1         0         0         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12312344   |

GTT - Example 2

Example 3 : Partial match

Match "800800", followed by any digits Remove the first six digits. Keep any following digits in the Input. Add a PC(123) and SSN(8).

|                       | _   |         |        |     |     |     |    |    |     |             |
|-----------------------|-----|---------|--------|-----|-----|-----|----|----|-----|-------------|
| Element               | Add | ress Ir | ndicat | or  | PC  | SSN | TT | NP | NAI | Digits      |
|                       |     |         |        |     |     |     |    |    |     |             |
| Dialed<br>Address     | 0 0 | 0 1     | 0 0    | 0 0 |     |     | 1  |    |     | 80080012345 |
|                       |     |         |        |     |     |     |    |    |     |             |
| Rule<br>Address       | 0 0 | 0 1     | 0 0    | 0 0 |     |     | 1  |    |     | 800800/*    |
|                       |     |         |        |     |     |     |    |    |     |             |
| Rule<br>mask          |     |         |        |     |     |     |    |    |     | R/K         |
|                       | •   |         |        |     |     |     |    |    |     |             |
| Primary<br>Address    | 0 0 | 0 0     | 0 0    | 1 1 | 123 | 8   |    |    |     | -/-         |
|                       |     |         |        |     |     |     |    |    |     |             |
| Translated<br>Address | 0 0 | 0 1     | 0 0    | 1 1 | 123 | 8   | 1  |    |     | 12345       |

GTT - Example 3

#### Example 4 : Partial match

Match any digits keep the digits in the and add a PC(123) and SSN (8). If the translated digits is not null and if the primary/backup address has no Global Title, the Global Title from dialed address is kept with new translated digits.



GTT - Example 4

# 7.2. SCCP Usage

The instance of org.mobicents.protocols.ss7.sccp.SccpStack acts as starting point. All the sccp messages sent by SCCP User Part are routed as per the rule configured in Router



The term SCCP User Part refers to the applications that use SCCP's services.

The SCCP User Part gets handle to SccpStack by doing JNDI look-up as explained in Section 7.3, "Access Point"

SccpStack exposes org.mobicents.protocols.ss7.sccp.SccpProvider that interacts directly with SccpStack. This interface defines the methods that will be used by SCCP User Part to send org.mobicents.protocols.ss7.sccp.message.SccpMessage and register org.mobicents.protocols.ss7.sccp.SccpListener's to listen for incoming SCCP messages.

SCCP User Part registers SccpListener for specific local subsystem number. For every incoming SccpMessage, if the called subsystem matches with this local subsystem, the corresponding SccpListner is called.

SccpProvider also exposes org.mobicents.protocols.ss7.sccp.message.MessageFactory and org.mobicents.protocols.ss7.sccp.parameter.ParameterFactory to create new concrete SccpMessage Viz., org.mobicents.protocols.ss7.sccp.message.UnitData or org.mobicents.protocols.ss7.sccp.message.XUnitData passing the corresponding parameters created by leveraging ParameterFactory.

#### 7.3. Access Point

SS7 Service provides user with access point to SCCP protocol/stack.

To get handle to SccpStack do the JNDI look-up passing the JNDI name configured in SS7 service as explained in Section 3.4.6, "Configuring SS7Service"

```
private static SccpProvider getSccpProvider() throws NamingException {
    // no arg is ok, if we run in JBoss
    InitialContext ctx = new InitialContext();
    try {
        String providerJndiName = "/mobicents/ss7/sccp";
        return ((SccpStack) ctx.lookup(providerJndiName)).getSccpProvider();
    }
    finally {
        ctx.close();
    }
}
```

## 7.4. SCCP User Part Example

Below is SCCP User Part example listening for incoming SCCP message and sending back new message

```
public class Test implements SccpListener {
    private SccpProvider sccpProvider;
    private SccpAddress localAddress;
```

```
private static SccpProvider getSccpProvider() throws NamingException {
  // no arg is ok, if we run in JBoss
  InitialContext ctx = new InitialContext();
  try {
     String providerJndiName = "/mobicents/ss7/sccp";
     return ((SccpStack) ctx.lookup(providerJndiName)).getSccpProvider();
  } finally {
    ctx.close();
  }
}
public void start() throws Excetpion {
  this.sccpProvider = getSccpProvider();
  int translationType = 0;
  int subSystemNumber = 0;
  GlobalTitle gt = GlobalTitle.getInstance(translationType,
       NumberingPlan.ISDN_MOBILE, NatureOfAddress.NATIONAL, "1234");
  localAddress = new SccpAddress(gt, 0);
  this.sccpProvider.registerSccpListener(localAddress, this);
}
public void stop() {
  this.sccpProvider.deregisterSccpListener(localAddress);
}
public void onMessage(SccpMessage message) {
  if (message.getType() == MessageType.UDT) {
     throw new IlleagalArgumentException("Dont like UDT");
  } else if (message.getType() == MessageType.XUDT) {
    XUnitData xudt = (XUnitData) message;
     localAddress = ((XUnitData) message).getCalledPartyAddress();
     SccpAddress remoteAddress = ((XUnitData) message)
          .getCallingPartyAddress();
    // now decode content
```

```
byte[] data = xudt.getData();
       // some data encoded in
       CallRequest cr = new CallRequest(data);
       byte[] answerData;
       if (cr.getCallee().equals(this.localAddress)) {
          EstablihsCallAnswer eca = new EstablihsCallAnswer(cr);
         answerData = eca.encode();
       } else {
         TearDownCallAnswer tdca = new TearDownCallAnswer(cr);
         answerData = tdca.encode();
       }
       HopCounter hc = this.sccpProvider.getParameterFactory()
            .createHopCounter(5);
       XUnitData sccpAnswer = this.sccpProvider
            .getMessageFactory()
            .createXUnitData(hc, xudt.getProtocolClass(),
                 message.getCallingPartyAddress(), this.localAddress);
       this.sccpProvider.send(sccpAnswer);
    }
  }
}
```

# **TCAP**

The Transaction Capabilities Application Part (TCAP) is defined in ITU-T Recommendations Q.771-Q.775. TCAP allows services at network nodes to communicate with each other using an agreed-upon set of data elements. Its primary purpose is to facilitate multiple concurrent dialogs between the same sub-systems on the same machines, using Transaction IDs to differentiate these, similar to the way TCP ports facilitate multiplexing connections between the same IP addresses on the Internet.

## 8.1. Mobicents SS7 Stack TCAP Usage

The org.mobicents.protocols.ss7.tcap.api.TCAPStack interface defines the TCAP methods required to represent Protocol Stack. **TCAPStack** exposes org.mobicents.protocols.ss7.tcap.api.TCAPProvider that interacts TCAPStack. TCAPProvider defines methods that will be used by TCAP User Part to create  $\textbf{new} \ \texttt{org.mobicents.protocols.ss7.tcap.api.tc.dialog.Dialog} \ \textbf{to} \ \textbf{be} \ \textbf{sent} \ \textbf{across} \ \textbf{network}.$ TCAP User Part also allows to registerorg.mobicents.protocols.ss7.tcap.api.TCListener to listen TCAP messages.

TCAPProvider also exposes org.mobicents.protocols.ss7.tcap.api.DialogPrimitiveFactory to create dialog primitives and org.mobicents.protocols.ss7.tcap.api.ComponentPrimitiveFactory to create components. Components are a means of invoking an operation at a remote node

The UML Class Diagram looks like



Mobicents SS7 Stack TCAP Class Diagram

The org.mobicents.protocols.ss7.tcap.TCAPStackImpl is concrete implementation of TCAPStack. The TCAP User Part creates instance of TCAPStackImpl passing the reference of SccpProvider and new instance of SccpAddress representing address to which bind listener. The TCAP stack creates internally Mobicents MAP Stack implementation. Passed SccpAddress is used to match against incoming messages destination address.

```
SccpProvider sccpProvider = getSccpProvider(); //JNDI lookup of SCCP Stack and get
Provider
      SccpAddress localAddress createLocalAddress();
      TCAPStack tcapStack = new TCAPStackImpl(sccpPprovider, localAddress);
      private SccpAddress createLocalAddress()
        int translationType = 0;
        int subSystemNumber = 0;
        GlobalTitle gt = GlobalTitle.getInstance(translationType,
        NumberingPlan.ISDN_MOBILE, NatureOfAddress.NATIONAL, "1234");
        SccpAddress localAddress = new SccpAddress(gt, 0);
        return localAddress;
      }
```

The reference to <code>SccpProvider</code> is received from <code>SccpStack</code>. To get handle to <code>SccpStack</code> do the JNDI look-up passing the JNDI name configured in SS7 service as explained in <code>Section 7.3</code>, "Access Point"

The TCAP User Part should register the concrete implementation of TCListener with TCAPProvider to listen for incoming TCAP messages.

```
public class Client implements TCListener{
```

```
tcapProvider = tcapStack.getProvider();
tcapProvider.addTCListener(this);
....
}
```

The TCAP User Part leverages TCAPProvider to create new Dialog. The component's between the nodes are exchanged within this Dialog

```
clientDialog = this.tcapProvider.getNewDialog(thisAddress, remoteAddress);
```

The TCAP User Part leverages ComponentPrimitiveFactory to create new components. These components are sent usig the dialog

```
//create some INVOKE
Invoke invoke = cpFactory.createTCInvokeRequest();
invoke.setInvokeId(this.clientDialog.getNewInvokeId());
invoke.setOperationCode(cpFactory.createOperationCode(true,new Long(12)));
//no parameter
this.clientDialog.sendComponent(invoke);
```

# 8.2. Mobicents SS7 Stack TCAP User Part Example

Below is TCAP User Part example. This example creates dialog and exchanges messages withing structured dialog. Refer to source for function calls:

```
public class Client implements TCListener{
  //encoded Application Context Name
  public static final long[] _ACN_ = new long[] { 0, 4, 0, 0, 1, 0, 19, 2 };
```

```
private TCAPStack stack;
 private SccpAddress thisAddress;
 private SccpAddress remoteAddress;
 private TCAPProvider tcapProvider;
 private Dialog clientDialog;
 Client(SccpProvider sccpPprovider, SccpAddress thisAddress,SccpAddress remoteAddress) {
    super();
    this.stack = new TCAPStackImpl(sccpPprovider,thisAddress); //pass address, so stack can
register in SCCP
    this.runningTestCase = runningTestCase;
    this.thisAddress = thisAddress;
    this.remoteAddress = remoteAddress;
    this.tcapProvider = this.stack.getProvider();
    this.tcapProvider.addTCListener(this);
 }
 private static SccpProvider getSccpProvider() throws NamingException {
    // no arg is ok, if we run in JBoss
    InitialContext ctx = new InitialContext();
    try {
      String providerJndiName = "/mobicents/ss7/sccp";
      return ((SccpStack) ctx.lookup(providerJndiName)).getSccpProvider();
    } finally {
      ctx.close();
    }
 }
 public void start() throws TCAPException, TCAPSendException {
    clientDialog = this.tcapProvider.getNewDialog(thisAddress, remoteAddress);
   ComponentPrimitiveFactory cpFactory = this.tcapProvider.getComponentPrimitiveFactory();
    //create some INVOKE
    Invoke invoke = cpFactory.createTCInvokeRequest();
    invoke.setInvokeId(this.clientDialog.getNewInvokeId());
    invoke.setOperationCode(cpFactory.createOperationCode(true,new Long(12)));
    //no parameter
    this.clientDialog.sendComponent(invoke);
    ApplicationContextName acn = this.tcapProvider.getDialogPrimitiveFactory()
       .createApplicationContextName(_ACN_);
```

```
//UI is optional!
  TCBeginRequest tcbr = this.tcapProvider.getDialogPrimitiveFactory().createBegin(this.clientDialog);
  tcbr.setApplicationContextName(acn);
  this.clientDialog.send(tcbr);
}
public void dialogReleased(Dialog d) {
}
public void onInvokeTimeout(Invoke tcInvokeRequest) {
}
public void onTCBegin(TCBeginIndication ind) {
}
public void onTCContinue(TCContinueIndication ind) {
  //send end
  TCEndRequest end = this.tcapProvider.getDialogPrimitiveFactory().createEnd(ind.getDialog());
  end.setTermination(TerminationType.Basic);
  try {
    ind.getDialog().send(end);
  } catch (TCAPSendException e) {
     throw new RuntimeException(e);
  }
}
public void onTCEnd(TCEndIndication ind) {
  //should not happen, in this scenario, we send data.
}
public void onTCUni(TCUniIndication ind) {
  //not going to happen
}
public void onTCPAbort(TCPAbortIndication ind) {
```

```
// TODO Auto-generated method stub
  }
  public void onTCUserAbort(TCUserAbortIndication ind) {
    // TODO Auto-generated method stub
  }
  public static void main(String[] args)
     int translationType = 0;
     int subSystemNumber = 0;
     GlobalTitle gt = GlobalTitle.getInstance(translationType,
       NumberingPlan.ISDN_MOBILE,NatureOfAddress.NATIONAL, "1234");
     SccpAddress localAddress = new SccpAddress(gt,0);
     gt = GlobalTitle.getInstance(translationType,
       NumberingPlan.ISDN_MOBILE,NatureOfAddress.NATIONAL, "1572582");
     SccpAddress remoteAddress = new SccpAddress(gt,0);
     Client c = new Client(getSccpProvider(),localAddress,remoteAddress);
  }
}
```

# **MAP**

Mobile application part ( MAP ) is the protocol that is used to allow the GSM network nodes within the Network Switching Subsystem ( NSS ) to communicate with each other to provide services, such as roaming capability, text messaging ( SMS ), Unstructured Supplementary Service Data ( USSD ) and subscriber authentication. MAP provides an application layer on which to build the services that support a GSM network. This application layer provides a standardized set of services. MAP uses the services of the SS7 network, specifically the Signaling Connection Control Part ( SCCP ) and the Transaction Capabilities Application Part ( TCAP )



#### **Important**

For better understanding of this chapter please read GSM 09.02.

## 9.1. SS7 Stack MAP Usage

The defines the org.mobicents.protocols.ss7.map.api.MAPStack interface methods MAP Stack. MAPStack required to Protocol represent exposes org.mobicents.protocols.ss7.map.api.MAPProvider that interacts directly with MAPStack. This interface defines the methods that will be used by any registered MAP User application implementing the org.mobicents.protocols.ss7.map.api.MAPDialogListener and org.mobicents.protocols.ss7.map.api.MAPServiceListener interface to listen MAP messages and dialogue handling primitives. The class diagram looks like



Mobicents SS7 Stack MAP Class Diagram



#### Note

Mobicents SS7 Stack MAP has implementation for USSD Message only. Any contribution to implement message specific to SMS or other are welcome. We will provide you all the help that you may need initially.

The org.mobicents.protocols.ss7.map.MAPStackImpl is concrete implementation of MAPStack. The MAP User application creates instance of MAPStackImpl passing the reference of SccpProvider and new instance of SccpAddress representing address to which bind listener. This address will be used to match against destination address in SCCP messages.

```
SccpProvider sccpProvider = getSccpProvider(); //JNDI lookup of SCCP Stack and get
Provider
    SccpAddress localAddress createLocalAddress();
    MAPStackImpl mapStack = new MAPStackImpl(sccpPprovider, localAddress);
    private SccpAddress createLocalAddress()
      int translationType = 0;
      int subSystemNumber = 0;
      GlobalTitle gt = GlobalTitle.getInstance(translationType,
      NumberingPlan.ISDN_MOBILE, NatureOfAddress.NATIONAL, "1234");
      SccpAddress localAddress = new SccpAddress(gt, 0);
      return localAddress;
    }
```

The reference to <code>SccpProvider</code> is received from <code>SccpStack</code> . To get handle to <code>SccpStack</code> do the JNDI look-up passing the JNDI name configured in SS7 service as explained in <code>Section 7.3</code>, "Access <code>Point</code>"

The MAP User application should register the concrete implementation of MAPDialogListener and MAPServiceListener with MAPProvider to listen for incoming MAP Dialog and MAP Primitive messages.

```
public class MAPExample implements MAPDialogListener, MAPServiceListener {
     .....
     mapProvider = mapStack.getMAPProvider();
     mapProvider.addMAPDialogListener(this);
     mapProvider.addMAPServiceListener(this);
     ....
}
```

The MAP User Application leverages MapServiceFactory to create instance of USSDString and AddressString

The MAP User Application leverages MAPProvider to create new MAPDialog and send USSD message

### 9.2. SS7 Stack MAP Usage

The complete example looks like

```
MAPExample(SccpProvider sccpPprovider, SccpAddress address,
    SccpAddress remoteAddress) {
  origAddress = address;
  destAddress = remoteAddress:
  mapStack = new MAPStackImpI(sccpPprovider, origAddress);
  mapProvider = mapStack.getMAPProvider();
  servFact = mapProvider.getMapServiceFactory();
  mapProvider.addMAPDialogListener(this);
  mapProvider.addMAPServiceListener(this);
}
private static SccpProvider getSccpProvider() throws NamingException {
  // no arg is ok, if we run in JBoss
  InitialContext ctx = new InitialContext();
  try {
    String providerJndiName = "/mobicents/ss7/sccp";
    return ((SccpStack) ctx.lookup(providerJndiName)).getSccpProvider();
  } finally {
    ctx.close();
  }
}
private static SccpAddress createLocalAddress() {
  GlobalTitle gt = GlobalTitle
       .getInstance(
            NatureOfAddress.NATIONAL.getValue(),
            org.mobicents.protocols.ss7.indicator.NumberingPlan.ISDN_MOBILE,
            NatureOfAddress.NATIONAL, "1234");
  return new SccpAddress(gt, 0); // 0 is Sub-System number
}
private static SccpAddress createRemoteAddress() {
  GlobalTitle gt = GlobalTitle
       .getInstance(
            NatureOfAddress.NATIONAL.getValue(),
            org.mobicents.protocols.ss7.indicator.NumberingPlan.ISDN MOBILE,
            NatureOfAddress.NATIONAL, "1572582");
```

```
return new SccpAddress(gt, 0); // 0 is Sub-System number
}
public void run() throws Exception {
  // First create Dialog
  MAPDialog mapDialog = mapProvider.createNewDialog(
       MAPApplicationContext.networkUnstructuredSsContextV2,
       destAddress, destReference, origAddress, origReference);
  // The dataCodingScheme is still byte, as I am not exactly getting how
  // to encode/decode this.
  byte ussdDataCodingScheme = 0x0f;
  // USSD String: *125*+31628839999#
  // The Charset is null, here we let system use default Charset (UTF-7 as
  // explained in GSM 03.38. However if MAP User wants, it can set its own
  // impl of Charset
  USSDString ussdString = servFact.createUSSDString("*125*+31628839999#",
       null);
  AddressString msisdn = this.servFact.createAddressString(
       AddressNature.international_number, NumberingPlan.ISDN,
       "31628838002");
  mapDialog.addProcessUnstructuredSSRequest(ussdDataCodingScheme,
       ussdString, msisdn);
  // This will initiate the TC-BEGIN with INVOKE component
  mapDialog.send();
}
public void onMAPAcceptInfo(MAPAcceptInfo mapAccptInfo) {
  // TODO Auto-generated method stub
}
public void onMAPCloseInfo(MAPCloseInfo mapCloseInfo) {
  // TODO Auto-generated method stub
}
public void onMAPOpenInfo(MAPOpenInfo mapOpenInfo) {
  // TODO Auto-generated method stub
```

```
}
  public void onMAPProviderAbortInfo(MAPProviderAbortInfo mapProviderAbortInfo) {
    // TODO Auto-generated method stub
  }
  public void onMAPRefuseInfo(MAPRefuseInfo mapRefuseInfo) {
    // TODO Auto-generated method stub
  }
  public void onMAPUserAbortInfo(MAPUserAbortInfo mapUserAbortInfo) {
    // TODO Auto-generated method stub
  }
  public void onProcessUnstructuredSSIndication(
       ProcessUnstructuredSSIndication procUnstrInd) {
    // TODO Auto-generated method stub
  }
  public void onUnstructuredSSIndication(UnstructuredSSIndication unstrInd) {
    // TODO Auto-generated method stub
  }
  public static void main(String[] args) throws Exception {
     SccpProvider sccpProvider = getSccpProvider(); // JNDI lookup of SCCP
     SccpAddress localAddress = createLocalAddress();
     SccpAddress remoteAddress = createRemoteAddress();
     MAPExample example = new MAPExample(sccpProvider, localAddress,
         remoteAddress);
    example.run();
  }
}
```

# Appendix A. Java Development Kit (JDK): Installing, Configuring and Running

The **Mobicents Platform** is written in Java; therefore, before running any **Mobicents** server, you must have a working Java Runtime Environment (JRE) or Java Development Kit (JDK) installed on your system. In addition, the JRE or JDK you are using to run **Mobicents** must be version 5 or higher<sup>1</sup>.

**Should I Install the JRE or JDK?** Although you can run **Mobicents** servers using the Java Runtime Environment, we assume that most users are developers interested in developing Javabased, **Mobicents**-driven solutions. Therefore, in this guide we take the tact of showing how to install the full Java Development Kit.

**Should I Install the 32-Bit or the 64-Bit JDK, and Does It Matter?** Briefly stated: if you are running on a 64-Bit Linux or Windows platform, you should consider installing and running the 64-bit JDK over the 32-bit one. Here are some heuristics for determining whether you would rather run the 64-bit Java Virtual Machine (JVM) over its 32-bit cousin for your application:

- Wider datapath: the pipe between RAM and CPU is doubled, which improves the performance of memory-bound applications when using a 64-bit JVM.
- 64-bit memory addressing gives virtually unlimited (1 exabyte) heap allocation. However large heaps affect garbage collection.
- Applications that run with more than 1.5 GB of RAM (including free space for garbage collection optimization) should utilize the 64-bit JVM.
- Applications that run on a 32-bit JVM and do not require more than minimal heap sizes will gain nothing from a 64-bit JVM. Barring memory issues, 64-bit hardware with the same relative clock speed and architecture is not likely to run Java applications faster than their 32-bit cousin.

Note that the following instructions detail how to download and install the 32-bit JDK, although the steps are nearly identical for installing the 64-bit version.

**Downloading.** You can download the Sun JDK 5.0 (Java 2 Development Kit) from Sun's website: <a href="http://java.sun.com/javase/downloads/index\_jdk5.jsp">http://java.sun.com/javase/downloads/index\_jdk5.jsp</a>. Click on the **Download** link next to "JDK 5.0 Update <x>" (where <x> is the latest minor version release number). On the next page, select your language and platform (both architecture—whether 32- or 64-bit—and operating

<sup>&</sup>lt;sup>1</sup> At this point in time, it is possible to run most **Mobicents** servers, such as the JAIN SLEE, using a Java 6 JRE or JDK. Be aware, however, that presently the XML Document Management Server does not run on Java 6. We suggest checking the Mobicents web site, forums or discussion pages if you need to inquire about the status of running the XML Document Management Server with Java 6.

system), read and agree to the Java Development Kit 5.0 License Agreement, and proceed to the download page.

The Sun website will present two download alternatives to you: one is an RPM inside a self-extracting file (for example, <code>jdk-1\_5\_0\_16-linux-i586-rpm.bin</code>), and the other is merely a self-extracting file (e.g. <code>jdk-1\_5\_0\_16-linux-i586.bin</code>). If you are installing the JDK on Red Hat Enterprise Linux, Fedora, or another RPM-based Linux system, we suggest that you download the self-extracting file containing the RPM package, which will set up and use the SysV service scripts in addition to installing the JDK. We also suggest installing the self-extracting RPM file if you will be running **Mobicents** in a production environment.

**Installing.** The following procedures detail how to install the Java Development Kit on both Linux and Windows.

#### Procedure A.1. Installing the JDK on Linux

Regardless of which file you downloaded, you can install it on Linux by simply making sure
the file is executable and then running it:



# You Installed Using the Non-RPM Installer, but Want the SysV Service Scripts

If you download the non-RPM self-extracting file (and installed it), and you are running on an RPM-based system, you can still set up the SysV service scripts by downloading and installing one of the <code>-compat</code> packages from the JPackage project. Remember to download the <code>-compat</code> package which corresponds correctly to the minor release number of the JDK you installed. The compat packages are available from <code>ftp://jpackage.hmdc.harvard.edu/JPackage/1.7/generic/RPMS.non-free/.</code>



#### **Important**

You do not need to install a <code>-compat</code> package in addition to the JDK if you installed the self-extracting RPM file! The <code>-compat</code> package merely performs the same SysV service script set up that the RPM version of the JDK installer does.

#### Procedure A.2. Installing the JDK on Windows

 Using Explorer, simply double-click the downloaded self-extracting installer and follow the instructions to install the JDK. **Configuring.** Configuring your system for the JDK consists in two tasks: setting the JAVA\_HOME environment variable, and ensuring that the system is using the proper JDK (or JRE) using the alternatives command. Setting JAVA\_HOME usually overrides the values for java, javac and java\_sdk\_1.5.0 in alternatives, but we will set them all just to be safe and consistent.

Setting the JAVA\_HOME Environment Variable on Generic Linux

After installing the JDK, you must ensure that the JAVA\_HOME environment variable exists and points to the location of your JDK installation.

Setting the JAVA\_HOME Environment Variable on Linux. You can determine whether JAVA\_HOME is set on your system by echoing it on the command line:

#### ~]\$ echo \$JAVA\_HOME

If JAVA\_HOME is not set already, then you must set its value to the location of the JDK installation on your system. You can do this by adding two lines to your personal  $\sim$ /.bashrc configuration file. Open  $\sim$ /.bashrc (or create it if it doesn't exist) and add a line similar to the following one anywhere inside the file:

```
export JAVA_HOME="/usr/lib/jvm/jdk1.5.0_<version>"
```

You should also set this environment variable for any other users who will be running **Mobicents** (any environment variables exported from ~/.bashrc files are local to that user).

Setting java, javac and java\_sdk\_1.5.0 Using the alternatives command

Selecting the Correct System JVM on Linux using alternatives. On systems with the alternatives command, including Red Hat Enterprise Linux and Fedora, you can easily choose which JDK (or JRE) installation you wish to use, as well as which java and javac executables should be run when called.

As the root user, call /usr/sbin/alternatives with the --config java option to select between JDKs and JREs installed on your system:

root@localhost ~]\$ /usr/sbin/alternatives --config java

There are 3 programs which provide 'java'.

#### Selection Command

- 1 /usr/lib/jvm/jre-1.5.0-gcj/bin/java
- 2 /usr/lib/jvm/jre-1.6.0-sun/bin/java
- \*+ 3 /usr/lib/jvm/jre-1.5.0-sun/bin/java

89

Enter to keep the current selection[+], or type selection number:

In our case, we want to use the Sun JDK, version 5, that we downloaded and installed, to run the <code>java</code> executable. In the <code>alternatives</code> information printout above, a plus (+) next to a number indicates the one currently being used. As per <code>alternatives'</code> instructions, pressing <code>Enter</code> will simply keep the current JVM, or you can enter the number corresponding to the JVM you would prefer to use.

Repeat the procedure above for the <code>javac</code> command and the <code>java\_sdk\_1.5.0</code> environment variable, as the root user.

```
~]$ /usr/sbin/alternatives --config javac

~]$ /usr/sbin/alternatives --config java_sdk_1.5.0
```

Setting the JAVA\_HOME Environment Variable on Windows

For information on how to set environment variables in Windows, refer to <a href="http://support.microsoft.com/kb/931715">http://support.microsoft.com/kb/931715</a>.

**Testing.** Finally, to make sure that you are using the correct JDK or Java version (5 or higher), and that the java executable is in your PATH, run the java -version command in the terminal from your home directory:

```
~]$ java -version
java version "1.5.0_16"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_16-b03)
Java HotSpot(TM) Client VM (build 1.5.0_16-b03, mixed mode, sharing)
```

**Uninstalling.** There is usually no reason (other than space concerns) to remove a particular JDK from your system, given that you can switch between JDKs and JREs easily using alternatives, and/or by setting JAVA\_HOME.

**Uninstalling the JDK on Linux.** On RPM-based systems, you can uninstall the JDK using the yum remove <jdk\_rpm\_name> command.

**Uninstalling the JDK on Windows.** On Windows systems, check the JDK entry in the Start menu for an uninstall command, or use Add/Remove Programs.

# Appendix B. Setting the JBOSS\_HOME Environment Variable

The Mobicents Platform (Mobicents) is built on top of the JBoss Application Server. You do not need to set the JBOSS\_HOME environment variable to run any of the Mobicents Platform servers *unless* JBOSS\_HOME is *already* set.

The best way to know for sure whether <code>JBOSS\_HOME</code> was set previously or not is to perform a simple check which may save you time and frustration.

Checking to See If JBOSS\_HOME is Set on Unix. At the command line, echo \$JBOSS\_HOME to see if it is currently defined in your environment:

#### ~]\$ echo \$JBOSS HOME

The Mobicents Platform and most Mobicents servers are built on top of the JBoss Application Server (JBoss Application Server). When the Mobicents Platform or Mobicents servers are built from source, then JBOSS\_HOME must be set, because the Mobicents files are installed into (or "over top of" if you prefer) a clean JBoss Application Server installation, and the build process assumes that the location pointed to by the JBOSS\_HOME environment variable at the time of building is the JBoss Application Server installation into which you want it to install the Mobicents files.

This guide does not detail building the **Mobicents Platform** or any Mobicents servers from source. It is nevertheless useful to understand the role played by **JBoss AS** and <code>JBOSS\_HOME</code> in the Mobicents ecosystem.

The immediately-following section considers whether you need to set <code>JBOSS\_HOME</code> at all and, if so, when. The subsequent sections detail how to set <code>JBOSS\_HOME</code> on Unix and Windows



#### **Important**

Even if you fall into the category below of *not needing* to set <code>JBOSS\_HOME</code>, you may want to for various reasons anyway. Also, even if you are instructed that you do *not need* to set <code>JBOSS\_HOME</code>, it is good practice nonetheless to check and make sure that <code>JBOSS\_HOME</code> actually <code>isn't</code> set or defined on your system for some reason. This can save you both time and frustration.

#### You DO NOT NEED to set JBOSS HOME if...

• ...you have installed the **Mobicents Platform** binary distribution.

...you have installed a Mobicents server binary distribution which bundles JBoss Application
 Server.

#### You MUST set JBOSS\_HOME if...

- ...you are installing the **Mobicents Platform** or any of the Mobicents servers from source.
- ...you are installing the **Mobicents Platform** binary distribution, or one of the Mobicents server binary distributions, which *do not* bundle **JBoss Application Server**.

Naturally, if you installed the **Mobicents Platform** or one of the Mobicents server binary releases which *do not* bundle **JBoss Application Server**, yet requires it to run, then you should install before setting <code>JBOSS\_HOME</code> or proceeding with anything else.

Setting the JBOSS\_HOME Environment Variable on Unix. The JBOSS\_HOME environment variable must point to the directory which contains all of the files for the Mobicents Platform or individual Mobicents server that you installed. As another hint, this topmost directory contains a bin subdirectory.

Setting JBOSS\_HOME in your personal ~/.bashrc startup script carries the advantage of retaining effect over reboots. Each time you log in, the environment variable is sure to be set for you, as a user. On Unix, it is possible to set JBOSS\_HOME as a system-wide environment variable, by defining it in /etc/bashrc, but this method is neither recommended nor detailed in these instructions.

#### Procedure B.1. To Set JBOSS\_HOME on Unix...

 Open the ~/.bashrc startup script, which is a hidden file in your home directory, in a text editor, and insert the following line on its own line while substituting for the actual install location on your system:

```
export JBOSS_HOME="/home/<username>/<path>/<to>/<install_directory>"
```

- 2. Save and close the .bashrc startup script.
- 3. You should source the .bashrc script to force your change to take effect, so that JBOSS\_HOME becomes set for the current session<sup>1</sup>.

```
~]$ source ~/.bashro
```

4. Finally, ensure that JBOSS\_HOME is set in the current session, and actually points to the correct location:

<sup>&</sup>lt;sup>1</sup> Note that any other terminals which were opened prior to your having altered .bashrc will need to source ~/.bashrc as well should they require access to JBOSS\_HOME.



#### **Note**

The command line usage below is based upon a binary installation of the **Mobicents Platform**. In this sample output, <code>JBOSS\_HOME</code> has been set correctly to the <code>topmost\_directory</code> of the **Mobicents** installation. Note that if you are installing one of the standalone **Mobicents** servers (with **JBOSS\_HOME** would point to the <code>topmost\_directory</code> of your server installation.

~]\$ echo \$JBOSS\_HOME /home/silas/<path>/<to>/<install\_directory>

Setting the JBOSS\_HOME Environment Variable on Windows. The JBOSS\_HOME environment variable must point to the directory which contains all of the files for the Mobicents Platform or individual Mobicents server that you installed. As another hint, this topmost directory contains a bin subdirectory.

For information on how to set environment variables in recent versions of Windows, refer to <a href="http://support.microsoft.com/kb/931715">http://support.microsoft.com/kb/931715</a>.

# **Appendix C. Revision History**

**Revision History** 

Revision 1.0 Wed June 2 2010 BartoszBaranowski

Creation of the Mobicents SS7 Stack User Guide.

Revision 1.1 Tue Dec 21 2010 AmitBhayani

Creation of the Mobicents SS7 Stack User Guide.

# Index

# F

feedback, viii