Intuitionistic BV (& Friends)

Matteo Acclavio & Lutz Straßburger

TABLEAUX 2025 Reykjavik 28/09/2025

- Motivations
- 2 IMLL and BV
- IBV
- 4 INML
- 6 Conclusion

Motivations

Proof theory is born to study **causality** (in a functional sense)

 $A \Rightarrow B$

Proof theory is born to study causality (in a functional sense)

$$A \Rightarrow B$$

Theorem (Deduction Theorem [in any 'reasonable' logic])

If I can prove B from A, then I can prove $A \Rightarrow B$.

Proof theory is born to study causality (in a functional sense)

$$A \Rightarrow B$$

Theorem (Deduction Theorem [in any 'reasonable' logic])

If I can prove B from A, then I can prove $A \Rightarrow B$.

... but what if we want to consider **sequentiality**?

$$a \mid \bar{a}.b \mid \bar{b} \mid c \mid \bar{c}$$

Imperative programming

$$x = 5$$

$$y = x + 2$$

$$x = 2$$

- Sequential algorithms

$$a \mid \bar{a}.b \mid \bar{b} \mid c \mid \bar{c}$$

Imperative programming

- Sequential algorithms
- . . .

How to model these things logically?

$$a \mid \bar{a}.b \mid \bar{b} \mid c \mid \bar{c}$$

Imperative programming

$$x = 5$$

$$y = x + 2$$

$$x = 2$$

- Sequential algorithms
-

How to model these things logically?

WHY?

$$a \mid \bar{a}.b \mid \bar{b} \mid c \mid \bar{c}$$

Imperative programming

$$x = 5$$

$$y = x + 2$$

$$x = 2$$

- Sequential algorithms
- . . .

How to model these things logically?

WHY?

Type systems for imperative programming, (better) type systems for process calculi, logical models of sequential algorithms, ...

IMLL and BV

IMLL

IMLL

Trivia about IMLL:

- LJ = IMLL + structural rules
- IMLL type system for linear λ-calculus
- categorical model: symmetric monoidal closed category
- Cut-elimination (β-reduction)

$$A, B := a \mid \bar{a} \mid \mathbb{I} \mid A \otimes B \mid A \otimes B$$

Rules

$$\equiv \frac{A}{B} \ \dagger \qquad \mathrm{s} \frac{A \otimes (B \otimes C)}{(A \otimes B) \otimes C} \qquad \qquad \mathrm{ai} \downarrow \frac{\mathbb{I}}{a \otimes \bar{a}}$$

$$A, B := a \mid \bar{a} \mid \mathbb{I} \mid A \otimes B \mid A \otimes B$$

Rules

$$\equiv \frac{A}{B} \dagger \qquad s \frac{A \otimes (B \otimes C)}{(A \otimes B) \otimes C}$$

$$ai\downarrow \frac{1}{a \otimes \bar{a}}$$

$$\dot{}$$
 = $$\otimes$ is associative and commutative} I is a unit for \otimes , and $\otimes$$

⊗ is associative and commutative

$$ai\uparrow \frac{a\otimes \bar{a}}{\mathbb{I}}$$

$$A, B := a \mid \bar{a} \mid \mathbb{I} \mid A \otimes B \mid A \otimes B$$

Rules

$$\equiv \frac{A}{B} \dagger \qquad s \frac{A \otimes (B \otimes C)}{(A \otimes B) \otimes C} \qquad \qquad ai \downarrow \frac{\mathbb{I}}{a \otimes \overline{a}}$$

$$ai\downarrow \frac{1}{a\otimes \bar{a}}$$

$$\begin{tabular}{ll} $ \otimes$ is associative and commutative \\ $ \otimes$ is associative and commutative \\ $ \mathbb{I}$ is a unit for \otimes, and \otimes \\ \end{tabular}$$

$$a \otimes \bar{a}$$
 $a \otimes \bar{a}$

Derivations (Deep Inference)

$$\mathcal{D}, \mathcal{D}' \coloneqq A \mid \mathcal{D} \otimes \mathcal{D}' \mid \mathcal{D} \triangleleft \mathcal{D}' \mid \mathcal{D} \otimes \mathcal{D}' \mid r \frac{\mathcal{D}}{\mathcal{D}'} \mid r \frac{\mathcal{D}}{\mathcal{D}'} \mid r \frac{\mathcal{D}}{\mathcal{D}'}$$

$$A, B := a \mid \bar{a} \mid \mathbb{I} \mid A \otimes B \mid A \otimes B \mid A \triangleleft B$$

Rules

$$\equiv \frac{A}{B} \ \dagger \qquad \mathsf{s} \frac{A \otimes (B \otimes C)}{(A \otimes B) \otimes C} \qquad \qquad \mathsf{ai} \downarrow \frac{\mathbb{I}}{a \otimes \bar{a}} \qquad \mathsf{q} \downarrow \frac{(A \otimes B) \triangleleft (C \otimes D)}{(A \triangleleft C) \otimes (B \triangleleft D)}$$

$$ai\downarrow \frac{1}{a\otimes \bar{a}}$$

$$\operatorname{ql} \frac{(A \otimes B) \triangleleft (C \otimes D)}{(A \triangleleft C) \otimes (B \triangleleft D)}$$

$$\label{eq:definition} \dot{\uparrow} = \begin{bmatrix} \otimes \text{ is associative and commutative} \\ & \text{ is associative} \\ & \otimes \text{ is associative and commutative} \\ & \mathbb{I} \text{ is a unit for } \otimes, \ & \text{ } \text{ } \text{, } \text{ and } \otimes \\ \end{bmatrix}$$

$$\boxed{ \text{ai} \uparrow \frac{a \otimes \bar{a}}{\mathbb{I}} \qquad \text{q} \uparrow \frac{(A \triangleleft C) \otimes (B \triangleleft D)}{(A \otimes B) \triangleleft (C \otimes D)} }$$

Derivations (Deep Inference)

$$\mathcal{D}, \mathcal{D}' \coloneqq A \mid \mathcal{D} \otimes \mathcal{D}' \mid \mathcal{D} \triangleleft \mathcal{D}' \mid \mathcal{D} \otimes \mathcal{D}' \mid r \frac{\mathcal{D}}{\mathcal{D}'} \mid r \frac{\mathcal$$

Trivia about BV:

• it extends $MLL \cup \{mix\}$ with a non-commutative connective \triangleleft ;

- it extends MLL ∪ {mix} with a non-commutative connective <;
- executions of processes can be interpreted as proof search in BV;

- it extends MLL ∪ {mix} with a non-commutative connective <;
- executions of processes can be interpreted as proof search in BV;
- categorical model: isomix category with a degenerate linear functor;

- it extends MLL ∪ {mix} with a non-commutative connective <;
- executions of processes can be interpreted as proof search in BV;
- categorical model: isomix category with a degenerate linear functor;
- BV ⊊ Pomset Logic (coherent spaces);

- it extends MLL ∪ {mix} with a non-commutative connective <;
- executions of processes can be interpreted as proof search in BV;
- categorical model: isomix category with a degenerate linear functor;
- BV ⊊ Pomset Logic (coherent spaces);
- "Cut-elimination" (which implies transitivity of ¬○);

- it extends MLL ∪ {mix} with a non-commutative connective ¬;
- executions of processes can be interpreted as proof search in BV;
- categorical model: isomix category with a degenerate linear functor;
- BV ⊊ Pomset Logic (coherent spaces);
- "Cut-elimination" (which implies transitivity of ¬○);
- since few years trending in the quantum community;

- it extends MLL ∪ {mix} with a non-commutative connective ¬;
- executions of processes can be interpreted as proof search in BV;
- categorical model: isomix category with a degenerate linear functor;
- BV ⊊ Pomset Logic (coherent spaces);
- "Cut-elimination" (which implies transitivity of →);
- since few years trending in the quantum community;
- recent new applications to concurrent PLs;

- it extends MLL ∪ {mix} with a non-commutative connective ¬;
- executions of processes can be interpreted as proof search in BV;
- categorical model: isomix category with a degenerate linear functor;
- BV ⊊ Pomset Logic (coherent spaces);
- "Cut-elimination" (which implies transitivity of →);
- since few years trending in the quantum community;
- recent new applications to concurrent PLs;
- . . .

Theorem

The rule $\operatorname{cut} \frac{A \otimes \bar{A}}{\mathbb{T}}$ is admissible in BV.

Proof.

• Splitting lemma $(\odot \in \{\triangleleft, \otimes\})$:

$$\vdash_{\mathsf{BV}} (A \odot B) \otimes K \quad \Rightarrow \quad \begin{matrix} K_A \bar{\odot} K_B \\ \parallel \\ K \end{matrix} \quad \text{and} \quad \begin{matrix} \parallel \\ K_A \otimes A \end{matrix} \quad \text{and} \quad \begin{matrix} \parallel \\ K_B \otimes B \end{matrix} \; .$$

Context reduction:

$$\vdash_{\mathsf{BV}} C[A] \quad \Rightarrow \quad \begin{array}{c} K \otimes X \\ \mathcal{P}_X \parallel \\ P[X] \end{array} \quad \text{and} \quad \begin{array}{c} \mathcal{P}_A \parallel \\ K \otimes A \end{array} \quad \text{for any formula } X.$$

up-rules elimination:

$$\vdash_{\mathsf{BV}} C \left[r_{\uparrow} \frac{A}{B} \right] \Rightarrow \left[\begin{matrix} \mathsf{BV} \\ C[B] \end{matrix} \right]$$

П

Where to start?

Take MLL

$$\mathsf{ax} \frac{}{\vdash \mathsf{a}, \bar{\mathsf{a}}} \quad \otimes \frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \otimes B} \quad \otimes \frac{\vdash \Gamma, A \quad \vdash \Delta, B}{\vdash \Gamma, \Delta, A \otimes B}$$

Where to start?

Take MLL

$$\mathsf{ax} \frac{}{\vdash \mathsf{a}, \bar{\mathsf{a}}} \quad \otimes \frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \otimes B} \quad \otimes \frac{\vdash \Gamma, A \; \vdash \Delta, B}{\vdash \Gamma, \Delta, A \otimes B}$$

Polarize formulas

positive:
$$A^{\circ}, B^{\circ} := a \mid A^{\bullet} \otimes B^{\circ} \mid A^{\circ} \otimes B^{\circ}$$

negative: $A^{\bullet}, B^{\bullet} := \bar{a} \mid A^{\circ} \otimes B^{\bullet} \mid A^{\bullet} \otimes B^{\bullet}$

Where to start?

Take MLL

$$\mathsf{ax} \frac{}{\vdash \mathsf{a}, \bar{\mathsf{a}}} \quad \otimes \frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \otimes B} \quad \otimes \frac{\vdash \Gamma, A \; \vdash \Delta, B}{\vdash \Gamma, \Delta, A \otimes B}$$

Polarize formulas

positive:
$$A^{\circ}, B^{\circ} := a \mid A^{\bullet} \otimes B^{\circ} \mid A^{\circ} \otimes B^{\circ}$$

negative:
$$A^{\bullet}, B^{\bullet} := \bar{a} \mid A^{\circ} \otimes B^{\bullet} \mid A^{\bullet} \otimes B^{\bullet}$$

IMLL = positive MLL

Where to start?

Take MLL

$$\mathsf{ax}\frac{}{\vdash a,\bar{a}} \quad \otimes \frac{\vdash \Gamma,A,B}{\vdash \Gamma,A\otimes B} \quad \otimes \frac{\vdash \Gamma,A \quad \vdash \Delta,B}{\vdash \Gamma,\Delta,A\otimes B} \quad \min \frac{\vdash \Gamma \quad \vdash \Delta}{\vdash \Gamma,\Delta}$$

Polarize formulas

positive:
$$A^{\circ}, B^{\circ} := a \mid A^{\bullet} \otimes B^{\circ} \mid A^{\circ} \otimes B^{\circ}$$

negative:
$$A^{\bullet}, B^{\bullet} := \bar{a} \mid A^{\circ} \otimes B^{\bullet} \mid A^{\bullet} \otimes B^{\bullet}$$

 $IMLL = positive MLL_{mix}$

BV from IBV

$$\equiv \frac{A}{B} \qquad s \frac{A \otimes (B \otimes C)}{(A \otimes B) \otimes C} \qquad \text{ai} \downarrow \frac{\mathbb{I}}{a \otimes \bar{a}} \qquad \text{q} \downarrow \frac{(A \otimes B) \triangleleft (C \otimes D)}{(A \triangleleft C) \otimes (B \triangleleft D)}$$

BV from IBV

Take BV

$$\equiv \frac{A}{B} \qquad s \frac{A \otimes (B \otimes C)}{(A \otimes B) \otimes C} \qquad \text{ai} \downarrow \frac{\mathbb{I}}{a \otimes \bar{a}} \qquad \text{q} \downarrow \frac{(A \otimes B) \triangleleft (C \otimes D)}{(A \triangleleft C) \otimes (B \triangleleft D)}$$

Polarize formulas

positive:
$$A^{\circ}, B^{\circ} := \mathbb{I} | a | A^{\bullet} \otimes B^{\circ} | A^{\circ} \otimes B^{\circ} | A^{\circ} \triangleleft B^{\circ}$$

negative: $A^{\bullet}, B^{\bullet} := \mathbb{I} | \bar{a} | A^{\circ} \otimes B^{\bullet} | A^{\bullet} \otimes B^{\bullet} | A^{\bullet} \triangleleft B^{\bullet}$

IBV

... fine tune units (otherwise ⊗ and ⊲ collapse)

IBV

... fine tune units (otherwise ⊗ and ⊲ collapse)

IBV

... fine tune units (otherwise ⊗ and ⊲ collapse)

IBV (Categorically)

IMLL	BV
$\langle \otimes, \otimes, \mathbb{I} angle$ symmetric monoidal closed category	$ \langle \otimes, \otimes, \mathbb{I} \rangle $ isomix category $ + $ degenerate linear functor $ ((A \triangleleft C) \otimes (B \triangleleft D)) \Rightarrow ((A \otimes B) \triangleleft (C \otimes D)) $

IBV (Categorically)

IMLL	BV
$\langle \otimes, \otimes, \mathbb{I} angle$ symmetric monoidal closed category	$\langle \otimes, \otimes, \mathbb{I} \rangle$ isomix category $+$ degenerate linear functor \triangleleft $\left((A \triangleleft C) \otimes (B \triangleleft D) \right) \Rightarrow \left((A \otimes B) \triangleleft (C \otimes D) \right)$

$$\langle \otimes, \neg \circ, \mathbb{I} \rangle$$
 + degenerate linear functor-ish $\triangleleft + \begin{pmatrix} A \multimap (A \triangleleft \mathbb{I}) \\ A \multimap (\mathbb{I} \triangleleft A) \end{pmatrix}$

Theorem

The rule $\operatorname{cut} \frac{A \multimap \bar{A}}{\mathbb{T}}$ is admissible in IBV.

Theorem

The rule cut $\frac{A \multimap \bar{A}}{\mathbb{T}}$ is admissible in IBV.

Theorem

These rules are admissible in IBV:

$$ai_{\uparrow}^{\bullet} \xrightarrow{A \circ a} u_{\uparrow}^{\bullet} \xrightarrow{A \circ A} u_{\uparrow}^{\bullet} \xrightarrow{A \circ I} u_{\uparrow}^{\bullet} \xrightarrow{A \circ I} u_{\uparrow}^{\bullet} \xrightarrow{A \circ I} u_{\uparrow}^{\bullet} \xrightarrow{A \circ A} u_{\downarrow}^{\bullet} \xrightarrow{A \circ A} u_{\downarrow}^{\bullet}$$

Lemma (splitting)

• If $\vdash_{\mathsf{IBV}} K \multimap (A \otimes B)$, then there are formulas K_A and K_B such that

• If $\vdash_{\mathsf{IBV}} (A \multimap B) \multimap K$, then there are formulas K_A and K_B such that

• If $\vdash_{\mathsf{IBV}} K \multimap (A \triangleleft B)$, then there are formulas K_A and K_B such that

• If $\vdash_{\mathsf{IBV}} (A \triangleleft B) \multimap K$, then there are formulas K_A and K_B such that

Lemma (Atomic Splitting)

- $\textcircled{1} \ \textit{if} \vdash_{\mathsf{IBV}} \mathsf{K} \multimap \textit{a, then there is a negative derivation}$
- 2 if $\vdash_{\mathsf{IBV}} \mathsf{a} \multimap \mathsf{K}$, then there is a positive derivation

Lemma (Context Reduction)

1 If $\vdash_{\mathsf{IBV}} P[A]$ with $P[\cdot]$ a positive context

$$\begin{array}{c|c} K \multimap X \\ \mathcal{P}_X \parallel & \text{and} & \begin{array}{c} \mathcal{P}_A \parallel \\ K \multimap A \end{array} \text{ for any formula } X.$$

2 If $\vdash_{\mathsf{IBV}} N[A]$ with $N[\cdot]$ a negative context

$$X \multimap K$$
 $\mathcal{P}_X \parallel$ and $\mathcal{P}_A \parallel$ for any formula X .
 $N[X]$

$$\mathsf{INML} = \mathsf{IMLL} \cup \left\{ \neg \frac{\Gamma, A_1, \dots, A_n \vdash A \quad \Delta, B_1, \dots, B_n \vdash B}{\Gamma, \Delta, A_1 \triangleleft B_1, \dots, A_n \triangleleft B_n \vdash A \triangleleft B} \ n \ge 0 \right\}$$

$$\mathsf{INML} = \mathsf{IMLL} \cup \left\{ \sqrt[4]{\frac{\Gamma, A_1, \dots, A_n \vdash A \quad \Delta, B_1, \dots, B_n \vdash B}{\Gamma, \Delta, A_1 \triangleleft B_1, \dots, A_n \triangleleft B_n \vdash A \triangleleft B}} \ n \ge 0 \right\}$$

Theorem (Cut Elimination)

The cut-rule is admissible in INML.

$$\mathsf{INML} = \mathsf{IMLL} \cup \left\{ \neg \frac{\Gamma, A_1, \dots, A_n \vdash A \quad \Delta, B_1, \dots, B_n \vdash B}{\Gamma, \Delta, A_1 \triangleleft B_1, \dots, A_n \triangleleft B_n \vdash A \triangleleft B} \ n \ge 0 \right\}$$

Theorem (Cut Elimination)

The cut-rule is admissible in INML.

Theorem

INML is a conservative extension of IMLL.

$$\mathsf{INML} = \mathsf{IMLL} \cup \left\{ \neg \frac{\Gamma, A_1, \dots, A_n \vdash A \quad \Delta, B_1, \dots, B_n \vdash B}{\Gamma, \Delta, A_1 \triangleleft B_1, \dots, A_n \triangleleft B_n \vdash A \triangleleft B} \ n \ge 0 \right\}$$

Theorem (Cut Elimination)

The cut-rule is admissible in INML.

Theorem

INML is a conservative extension of IMLL.

Theorem

$$\mathsf{IBV} = \mathsf{INML} \cup \left\{ \begin{array}{l} \Gamma \vdash (A \triangleleft B) \triangleleft C \quad A \triangleleft (B \triangleleft C), \Delta \vdash D \\ \hline \Gamma, \Delta \vdash D \\ \mathsf{a-cut}_R \frac{\Gamma \vdash A \triangleleft (B \triangleleft C) \quad (A \triangleleft B) \triangleleft C, \Delta \vdash D}{\Gamma, \Delta \vdash D} \end{array} \right\}$$

Conclusion

Now

 $\begin{array}{c} \mathsf{MLL_{mix}} \longrightarrow \mathsf{NML} \longrightarrow \mathsf{B^{N}} \\ \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \\ \mathsf{IMLL} \longrightarrow \mathsf{INML} \longrightarrow \mathsf{IB} \end{array}$

Thanks

Thanks

Questions?