$\mathbf{QNC}_1 \subset \mathbf{noisy}\mathbf{-BQP}$

Michael Benor David Ponarovsky September 18, 2024

1 Notations.

 C_g - good qLDPC, C_{ft} - concatenation code (ft stands for fault tolerance). For a code C_y we use Φ_y, E_y, D_y to denote the channel maps circuits into the circuits compute in the code space, the encoder, and the decoder. We use Φ_U to denote the 'Bell'-state storing the gate U.

2 The Noise Model

3 Fault Tolerance (With Resets gates) at Linear Depth.

Claim 3.1. There is $p_{th} \in (0,1)$ such that if $p < p_{th}$ then any quantum circuit C with depth D and width W can be computed by p-noisy, resets allowed, circuit C', with a depth at most $\max\{D, \log(WD)\}$.

3.1 Initializing Magic for Teleportation gates and encodes ancillaries.

The Protocol:

- 1. Initializing zeros. Divide the qubits into |B|-size blocks. Encodes each block in C_g via $D_{ft}\Phi_{ft}[E_g]|0^{|B|}\rangle$.
- 2. Initializing Magic for Teleportation gates encoded in C_g via $D_{ft}\Phi_{ft}[E_g]|\Phi_U\rangle$ for each gate U in the original circit .
- 3. Each gate is replaced by gate teleportation.
- 4. At any time tick, any block runs a single round of error reduction.

Claim 3.2. Assume that an error $|e| = \gamma n$, i.e e is supported on less than γn bits, then a single correction round reduce e into an error e' such $|e'| < \nu |e|$.

Claim 3.3. The gate $D_{ft}\Phi_{ft}[E_q]$ initializes states encoded in C_q subject to 3p-noise channel.

Proof. Clearly $\Phi_{ft}[E_g]$ success, with high probability, let's say $1-\frac{1}{poly(n)}$, to encode in to $C_{ft}\circ C_g$. Denote by E_i,D_i the encoder and the decoder at the ith level of the concatination construction. Recall that by definition $D_iE_i=I$, or in other words $D_i=E_i^{\dagger}$. Consider the decoder under $\mathcal N$ action. $P_2D_1P_2D_2,...,P_{i-1}D_iP_i$, by the fault-tolerance construction a logical error happens at the ith stage occurs with probability p^{2^i} , therefore by the union bound the probability that in one of the steps the circuit absorbs an error that is not corrected is less than $p+p^2+p^4+...<2p$. Hence any decoded qubit absorbs a noise with probability less than 2p.

Thus in overall we can bound the porobability a single qubit to be faulty by:

$$\begin{split} \mathbf{Pr}\left[\text{fault}\right] &= \mathbf{Pr}\left[\text{fault}|\Phi_{ft}[E_g]\right] \cdot \mathbf{Pr}\left[\Phi_{ft}[E_g]\right] + \mathbf{Pr}\left[\text{fault}|\overline{\Phi_{ft}[E_g]}\right] \cdot \mathbf{Pr}\left[\overline{\Phi_{ft}[E_g]}\right] \\ &\leq \mathbf{Pr}\left[\text{fault}|\Phi_{ft}[E_g]\right] + \mathbf{Pr}\left[\overline{\Phi_{ft}[E_g]}\right] \leq 2p + \frac{1}{poly(n)} \leq 3p \end{split}$$

Remark 3.1. In our construction we use the concatinate-code to encode $\log(n)$ -length block, Thus any poly(n) in the above should be replaced by $\log(n)$. Yet it doesn't effect anything since the inequality dosn't depend on n.

Claim 3.4. With probability $1 - \frac{WD}{|B|} \cdot D2e^{-2|B|(\beta-p)}$, the total amount of noise been absorb in a block, in any time t, is less than γn .

Proof. Consider the ith block, denoted by B_i . Using the Hoeffding's inequality we have that the probability that more than $\beta|B|$ bits are flipped at time t is less than $\leq 2e^{-2|B|(\beta-p)}$. Using the union bounds over all the blocks at all the different time location we get that with probability $1 - \frac{WD}{|B|} \cdot D2e^{-2|B|(\beta-p)}$. Denote by X_t the support's size of the error over B_i at time t. Now using Claim 3.2, given that $X_{t-1} \leq \gamma n$ it follows that total amount of error absorbed by a block until time t can be bounded by:

$$X_t \le \nu \cdot (X_{t-1} + \beta |B|) \le \nu(\gamma + \beta)|B| \le \gamma |B|$$

Claim 3.5. The total depth of the circuit is $O(\log n)$.

Proof. The gate for encoding |B|-length blocks in C_g , is a Clifford and therefore can be computed in $O(\log |B|)$ depth. The encoding of the magic/bell states, done by first compute them in the logical space (un-encoded qubits) and then by using the encoder. Hence it's foult-tolerence version of both initializing ancillaries and magic states /bell states. Can be done in $O((\log |B|) \cdot \log^c(|B| \log |B|))^{-1}$. Backing into C_g from C_{ft} by decoding the concatenation code takes exactly as the encoding namely.

Then using the bell measurements any of the logical gates takes O(1) depth and since we use perform only a single round of error correction we get that the reaming computation till the last decoding stage is a at most constant time of the original depth. Finally we pay $O(\log |B|)$ for complete decoding. Summing all, we get:

$$\begin{aligned} &O(\log|B| \cdot \log^c(|B|\log|B|)) + O(\text{original depth}) + O(\log|B|) \\ = &O(\text{original depth}) + O(\log^c|B|) \end{aligned}$$

Taking the block length to be $|B| = \log((W \cdot D)^c)$ gives a linear² fault tolerance construction that success with probability $1 - \frac{1}{\log^{c_2}(W \cdot D)}$. Particularly, the fault tolerance version of circuits in \mathbf{QNC}_1 has logarithmic depth.

¹The width of the original circuit is $|B|^2$ so the number of locations is $|B|^2 \cdot \log |B|$

 $^{^2}$ Assuming W is polynomial in D