

Blood & Immunology Module

- Duration
- Lectures
- Tutorials
- Practicals
- Seminars
- Assessments –CA 7
- Unit 3C
- Feedback

Time Table

- 5 1/2 weeks
- A SDL each day!
- Packed schedule

- Seminar on 6 topics voluntary participation
- Lectures NOT COMPULSORY!

Reference – Essential
Haematology
A.V. Hoffbrand
ABC of Haematology

Апаеппа

Intermediate Objectives General Aspects of Anaemia

Broad Content Areas

- Define anaemia & describe the following general aspects of anaemia
- classification
- clinical features with their pathological basis
- use of laboratory investigations

Morphological & aetiological classification

To confirm – in institutions & in the community

Haemopoiesis

• Site

Embryo - Yolk sac as blood islands

Upto 3 weeks

yolk sac

6 wks to 6 months - fetal liver & spleen

Haemopoiesis

From 6 months

of fetal life

Onwards

Extra medullary haemopoiesis if a need arises

The most important cell in haemopoiesis

The pluripotent stem cell

- Ability for self renewal
- Undifferentiated
- Resembles small lymphocytes
- Large fraction is quiescent in G₀ phase
- Maintained by transforming growth factor β
- TGF β activity mediated by p53 tumour suppressor

What is Blood?

Plasma

- proteins
- electrolytes
- water
- macro molecules

Haematology

Coagulation factor deficiency / thrombosis

Thrombocytopenia / thrombocytosis

Leucopenia / Leukaemia

Anaemia / Polycythaemia

Blood Transfusion

Erythropoiesis

Production of red cells

Stimuli

 pO_2

Erythropoietin

RBC production

Factors Necessary for Haemopoiesis

Fe²⁺, B₁₂

Folate, Vit. C

Pyridoxime, T₄

Zn, Androgens

Erythropoietin

Protein

Erythropoietin

- Glycoprotein synthesized by peritubular cells of kidney and liver
- Production is regulated by tissue oxygen tension - regulated by the hypoxic sensor pathway - a hypoxic response element.

Hypoxia-inducible factor 1 (HIF-1)

Red Cells

8 µm

- * 300 miles in 120 days
- * 64 million molecules of haemoglobin
- * No nucleus more pliable

The Red Cell

Maintains

- biconcave shape
- osmotic equilibrium despite high [Hb]
- Fe²⁺ state by generating NADH
- adequate ATP by E M pathway

The Red Cell Maintain

 energy against oxidants NADPH from HMP shunt

- O₂ & CO₂ carrying capacity

O₂ releasing ability - 2, 3 DPG
 L - R shunt

Haemoglobin Fe β Haem-Fe α Fe α 4 Globin Fe chains T form 21

Haemoglobin

Types of Haemoglobin

Foetal - HbF

$$\alpha_2 \gamma_2$$
 97%

Adult - HbAHbA₂

$$\alpha_{\text{2}}\,\beta_{\text{2}}$$

$$\alpha_2 \delta_2$$

Anaemia

- What is anaemia?
- A reduced Hb value for that age and sex
- < 13.5 g/dl adult male</p>
- < 11.5 g/dl adult female</p>
- < 11.0 g/dl 3 /12 to puberty</p>
- < 15.0 g/dl in a new born

Anaemia

- Usually accompanied with
 - reduced RBC count &
 - PCV

- Alteration in plasma volume
 - Hemo dilution anaemia
 - Hemo concentration polycythaemia / mask the anaemia

Anaemia

Graded according to severity (WHO)

Mild

9 - 11 g/dl

Moderate

 $7.1 - 8.9 \, \text{g/dl}$

Severe

< 7 g/dl

Causes of Anaemia

Blood loss

Impaired production
 Malnutrition - Fe, B₁₂, Folate deficiency

 Suppressed Erythropoietic activity - CRF, infection, Connective tissue disease, malignancy,

BM aplasia

Causes of Anaemia

 Replacement of BM - Leukaemia, Lymphoma, Myeloma

Inherited - Thalassaemia

Destruction - haemolytic anaemia

Clinical Features of Anaemia

Speed of onset

Severity

Age of patient

Hb - Oxygen dissociation curve

Classification of Anaemia Morphological

Normocyte 75 - 95 fl

Microcyte <75 fl

Macrocyte > 95 fl

Anisochromasia

Changes in Red cell colour

Eg. - Hb 6 g/dl

Microcytes

Macrocytes

Hypochromic anaemia

- Fe deficiency
- Thalassaemia
- Anaemia of chronic disease
- Pb poisoning
- Sideroblastic anaemia

Normochromic anaemia

- Mixed deficiency
- Bone marrow failure
- Acute haemorrhage

Macrocytic anaemia

- B ₁₂ deficiency
- Folate deficiency
- Alcohol abuse
- Liver disease
- Hypothyroidism

Home work
Symptoms & signs of anaemia