Course No:	Course Name:	L-T-P-Credits	Year of Introduction
SB206	ANALYSIS OF STRUCTURES	2-1-0-3	2016

Prerequisites: -Nil

Course Objectives:

- 1. To familiarize and review the basic concepts of structural analysis with emphasis on analysis of elementary structures.
- 2. To equip the students with the force and displacement methods of structural analysis of beams and frames
- 3. To learn, understand and develop concepts regarding the comprehensive strain energy methods of structural analysis.
- 4. To impart a scientific approach and to familiarize the applications of plate structures in the field of ship technology.
- 5. To enable the students to have a comprehensive idea of matrix structural analysis with emphasis on the relative advantages of the flexibility method and the stiffness method.
- 6. To enable the students to visualize structural dynamics problems with a proper blend of structural analysis and vibration theory.

Syllabus:

Introduction to Structural Analysis -Determinate & Indeterminate Structures-Force Displacement Methods-Three Moment Equation-Moment Distribution Method- Strain Energy Method-Principle of Virtual Work- Castigliano's Theorem- Vibrations of Continuous Systems, Introduction to Plastic Theory, Matrix Methods of Analysis-Stiffness Method, Flexiblity Method, Transformation Matrices-Introduction to theory of plates- Pure Bending, Small Deflection.

Expected Outcome:

Upon successful completion of the course, the student will be able to:

- 1. Demonstrate understanding of the basic concepts in structural analysis.
- 2. Solve simple structural analysis problems using the force/displacement method, moment distribution method & strain energy method.
- 3. Demonstrate an understanding of the theory of plates and be able to solve simple problems pertaining to analysis of laterally loaded plates and stiffened plates.
- 4. Solve simple structural analysis problems using the matrix methods.
- 5. Demonstrate basic understanding of the theory or vibration.

Text Books:

- Alan Williams; Structural Analysis –in theory and practice; International Code Council Inc.
- C. S. Reddy; Basic Structural Analysis; Tata McGraw-Hill.

Reference Books:

- Timoshenko, Theory of plates and shells, Tata Mcgraw Hill.
- V. P. Singh, Theory of vibrations, Dhanpat Rai and Co (P) Ltd.

Course Plan					
Module	Content		Sem. Exam Marks		
I	Introduction to Structural Analysis: Concept of Determinate & Indeterminate Structures; Continuous Beams; Force/Displacement Method of Analysis; Clapeyron's Theorem of Three Moments; Support Settlement;	8	15%		
II	Moment Distribution Method: Beams and Rigid Jointed Plane Frames (with and without sway); Effect of Support Settlement;	7	15%		
FIRST INTERNAL EXAM					
III	Strain Energy Methods: Principle of Virtual Work; Strain Energy & Complementary Energy; Castigliano's Theorems.	6	15%		
IV	Vibrations of Continuous Systems: Vibration of Strings and Rods; Vibration of Beams; Vibration of Shafts. Introduction to Theory of Plasticity.	6	15%		
SECOND INTERNAL EXAM					
V	Matrix Methods: Stiffness Method (Continuous Beams; Rigid Jointed Frames); Flexibility Method (Continuous Beams; Rigid Jointed Frames); Transformation Matrices and its Applications.	9	20%		
VI	Introduction to Theory of Plates: Pure Bending of Plates; Small Deflection Analysis of Laterally Loaded Plates; Boundary Conditions; Navier's Solution; Levy's Solution; Introduction to Stiffened Plates and Orthotropic Plate Model	6	20%		
END SEMESTER EXAM					

QUESTION PAPER PATTERN:

Maximum marks: 100 Time: 3 hours

PART A

- Answer all 8 questions of 3 marks each.
- 1 question each from modules I to IV and 2 questions each from modules V & VI.

Estd.

PART B

- Answer any 2 full questions out of 3 for each module.
- Each question from module I to IV carries 6 marks.
- Each question from module V & VI carries 7 marks.
- Each full question can have maximum of 4 sub questions, if needed.