

- Métodos computacionales 2: Alejandro Segura
- Fourier
 - a) Subir código y cálculos matemáticos a cada repositorio de grupo.

Contents

1	Fourier Series				
	1.1	Series de Fourier	4		
	1.2	Presentación de funciones	4		
	1.3	Función $\zeta(s)$ de Riemann	4		
	1.4	Derivada espectral	5		
	1.5	Manchas Solares	5		

List of Figure	List	ot	Fig	ures	3
----------------	------	----	-----	------	---

1 Fourier Series

1.1 Series de Fourier

Demostrar (con rigor matemático) los siguientes teoremas:

1. Si f(t) es continua cuando $-T/2 \le t \le T/2$ con f(-T/2) = f(T/2), y si la derivada f'(t) es continua por tramos y diferenciable; entonces la serie de Fourier:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n cos(n\omega_0 t) + b_n sin(n\omega_0 t))$$

$$\tag{1}$$

se puede diferenciar término por término para obtener:

$$f'(t) = \sum_{n=1}^{\infty} n\omega_0(-a_n sin(n\omega_0 t) + b_n cos(n\omega_0 t))$$
(2)

Sea f(t) continua por tramos en el intervalo $-T/2 \le t \le T/2$ y sea f(t+T) = f(t). Demostrar que la serie de Fourier se puede integrar término por término para obtener:

$$\int_{t_1}^{t_2} f(t)dt = \frac{1}{2}a_0(t_2 - t_1) + \sum_{n=1}^{\infty} \frac{1}{n\omega_0} \left[-b_n(\cos(n\omega_0 t_2) - \cos(n\omega_0 t_1)) + a_n(\sin(n\omega_0 t_2) - \sin(n\omega_0 t_1)) \right]$$
(3)

1.2 Presentación de funciones

1. Encontrar (analíticamente) la serie de Fourier de la función f(t)=t para el intervalo $(-\pi,\pi)$ y $f(t+2\pi)+f(t)$. Animar los primeros 50 armónicos usando el paquete Camera.

$$f(t) = 2\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} sin(nt)$$
(4)

1.3 Función $\zeta(s)$ de Riemann

- 1. Integrar (analít
camente) la serie de Fourier de $f(t)=t^2$ en el interval
o $-\pi \le t \le \pi$ y $f(t+2\pi)=f(t)$.
- 2. Usando dicha integral y la identidad de Parseval, pensar en un programa para estimar numéricamente la función $\zeta(6)$ de Riemman:

$$\zeta(6) = \sum_{n=1}^{\infty} \frac{1}{n^6} = \frac{\pi^6}{945}.\tag{5}$$

1.4 Derivada espectral

1. Estime la derivada espectral en 100 puntos equi-espaciados del intervalo $(-2\pi, 2\pi)$ de la función:

$$f(x) = e^{-0.1x} \sin(x) \tag{6}$$

donde el paso de derivación es $\Delta x = 100/(4\pi)$.

2. Haga la comparación grafica entre la derivada exacta, la derivada derecha y la derivada espectral.

1.5 Manchas Solares

- 1. Descargue los datos de las manchas solares desde 1600. https://github.com/asegura4488/DataBase/blob/main/MetodosComputacionales/ManchasSolares.dat. La columna 1 es el año, la segunda es el mes y la tercera es el número de manchas. Para encontrar el periodo de manchas solares desde 1900, sugiero el siguiente enfoque:
 - a) Filtrar los datos a partir del año 1900.
 - b) Quitar el valor medio de los datos para que la frecuencia este centrada en cero.
 - c) Calcular la transformada rápida de Fourier (np.fft.fft) y las frecuencias (np.fft.fftfreq).
 - d) Encontrar la frecuencia dominante por año, es decir, solo dejar la frecuencia fundamental en el espectro de frecuencias.
 - e) Usar este valor para encontrar el periodo por año.
 - f) Reproducir la Figura [1].

Figure 1: Frecuencia de manchas solares después de 1900.