# In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
from datetime import datetime
pd.options.display.float_format = '{:.2f}'.format

from itertools import combinations
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
from statsmodels.tsa.stattools import adfuller
from statsmodels.tsa.stattools import acf, pacf
from statsmodels.tsa.arima_model import ARIMA as ARIMA
import statsmodels.api as sm
import statsmodels.tsa.api as smt
```

#### In [2]:

```
data = pd.read_csv('AirPassengers.csv')
```

### In [3]:

```
data.head()
```

### Out[3]:

|   | Month   | #Passengers |
|---|---------|-------------|
| 0 | 1949-01 | 112         |
| 1 | 1949-02 | 118         |
| 2 | 1949-03 | 132         |
| 3 | 1949-04 | 129         |
| 4 | 1949-05 | 121         |

#### In [4]:

```
data.shape
```

# Out[4]:

(144, 2)

### In [5]:

```
data.columns
```

#### Out[5]:

```
Index(['Month', '#Passengers'], dtype='object')
```

```
In [6]:
```

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 144 entries, 0 to 143
Data columns (total 2 columns):
    Column
                 Non-Null Count Dtype
                 -----
0
    Month
                 144 non-null
                                 object
1
    #Passengers 144 non-null
                                 int64
dtypes: int64(1), object(1)
memory usage: 2.4+ KB
In [10]:
data.describe()
```

# Out[10]:

#### #Passengers 144.00 count 280.30 mean std 119.97 104.00 min 25% 180.00 50% 265.50 75% 360.50 max 622.00

#### In [11]:

```
data['Date'] = pd.to_datetime(data['Month'])
data = data.drop(columns = 'Month')
data = data.set_index('Date')
data = data.rename(columns = {'#Passengers':'Passengers'})
data.head()
```

### Out[11]:

### **Passengers**

| Date       |     |
|------------|-----|
| 1949-01-01 | 112 |
| 1949-02-01 | 118 |
| 1949-03-01 | 132 |
| 1949-04-01 | 129 |
| 1949-05-01 | 121 |

### In [12]:

```
data.info()
```

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 144 entries, 1949-01-01 to 1960-12-01

Data columns (total 1 columns):

# Column Non-Null Count Dtype
--- ---0 Passengers 144 non-null int64

dtypes: int64(1)
memory usage: 2.2 KB

### In [13]:

```
plt.figure(figsize = (15,5))
data['Passengers'].plot();
```



# In [14]:

```
dec = sm.tsa.seasonal_decompose(data['Passengers'],period = 12, model = 'multiplicative').p
plt.show()
```



#### In [16]:

```
data_diff = data.diff()
data_diff = data_diff.dropna()

dec = sm.tsa.seasonal_decompose(data_diff,period = 12).plot()
plt.show()
```



#### In [17]:

```
def test_stationarity(timeseries):
    #Determing rolling statistics
    MA = timeseries.rolling(window=12).mean()
    MSTD = timeseries.rolling(window=12).std()
    #Plot rolling statistics:
    plt.figure(figsize=(15,5))
    orig = plt.plot(timeseries, color='blue',label='Original')
    mean = plt.plot(MA, color='red', label='Rolling Mean')
    std = plt.plot(MSTD, color='black', label = 'Rolling Std')
    plt.legend(loc='best')
    plt.title('Rolling Mean & Standard Deviation')
    plt.show(block=False)
    #Perform Dickey-Fuller test:
    print('Results of Dickey-Fuller Test:')
    dftest = adfuller(timeseries, autolag='AIC')
    dfoutput = pd.Series(dftest[0:4], index=['Test Statistic','p-value','#Lags Used','Numbe
    for key,value in dftest[4].items():
        dfoutput['Critical Value (%s)'%key] = value
    print(dfoutput)
                                                                                            \blacktriangleright
```

### In [18]:

```
def tsplot(y, lags=None, figsize=(12, 7), style='bmh'):
    if not isinstance(y, pd.Series):
        y = pd.Series(y)

with plt.style.context(style):
        fig = plt.figure(figsize=figsize)
        layout = (2, 2)
        ts_ax = plt.subplot2grid(layout, (0, 0), colspan=2)
        acf_ax = plt.subplot2grid(layout, (1, 0))
        pacf_ax = plt.subplot2grid(layout, (1, 1))

        y.plot(ax=ts_ax)
        p_value = sm.tsa.stattools.adfuller(y)[1]
        ts_ax.set_title('Time Series Analysis Plots\n Dickey-Fuller: p={0:.5f}'.format(p_vasmt.graphics.plot_acf(y, lags=lags, ax=acf_ax)
        smt.graphics.plot_pacf(y, lags=lags, ax=pacf_ax)
        plt.tight_layout()
```

### In [19]:

```
plt.figure(figsize = (15,5))
data['Passengers'].plot();
```



# In [20]:

```
dec = sm.tsa.seasonal_decompose(data['Passengers'],period = 12, model = 'multiplicative').p
plt.show()
```



# In [21]:

# test\_stationarity(data['Passengers'])



Results of Dickey-Fuller Test:

| Test Statistic              | 0.82   |
|-----------------------------|--------|
| p-value                     | 0.99   |
| #Lags Used                  | 13.00  |
| Number of Observations Used | 130.00 |
| Critical Value (1%)         | -3.48  |
| Critical Value (5%)         | -2.88  |
| Critical Value (10%)        | -2.58  |

dtype: float64

# In [22]:

```
data_diff = data.diff()
data_diff = data_diff.dropna()

dec = sm.tsa.seasonal_decompose(data_diff,period = 12).plot()
plt.show()
```



# In [23]:

# test\_stationarity(data\_diff)



Results of Dickey-Fuller Test:

| Test Statistic     | -2.83            |
|--------------------|------------------|
| p-value            | 0.05             |
| #Lags Used         | 12.00            |
| Number of Observat | ions Used 130.00 |
| Critical Value (1% | -3.48            |
| Critical Value (5% | ) -2.88          |
| Critical Value (10 | %) -2.58         |
|                    |                  |

dtype: float64

# In [24]:

tsplot(data['Passengers'])



# In [25]:

# tsplot(data\_diff['Passengers'])



#### In [26]:

```
model = ARIMA(data['Passengers'],order = (2,1,2))
model_fit = model.fit()
print(model_fit.summary())
```

C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tsa\arima\_model.py:47
2: FutureWarning:

statsmodels.tsa.arima\_model.ARMA and statsmodels.tsa.arima\_model.ARIMA have been deprecated in favor of statsmodels.tsa.arima.model.ARIMA (note the . between arima and model) and

statsmodels.tsa.SARIMAX. These will be removed after the 0.12 release.

statsmodels.tsa.arima.model.ARIMA makes use of the statespace framework and is both well tested and maintained.

To silence this warning and continue using ARMA and ARIMA until they are removed, use:

```
import warnings
```

warnings.warn(ARIMA\_DEPRECATION\_WARN, FutureWarning)

FutureWarning)

C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tsa\base\tsa\_model.p
y:524: ValueWarning: No frequency information was provided, so inferred freq
uency MS will be used.

warnings.warn('No frequency information was'

C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tsa\base\tsa\_model.p y:524: ValueWarning: No frequency information was provided, so inferred freq uency MS will be used.

warnings.warn('No frequency information was'

|                                         | ARIMA Model Results                     |               |          |         |  |  |  |  |
|-----------------------------------------|-----------------------------------------|---------------|----------|---------|--|--|--|--|
|                                         |                                         |               |          |         |  |  |  |  |
| ====                                    |                                         |               |          |         |  |  |  |  |
| Dep. Variable:<br>143                   | D.Passengers                            | No. Observati | ons:     |         |  |  |  |  |
| Model:                                  | ARIMA(2, 1, 2)                          | Log Likelihoo | d        | -66     |  |  |  |  |
| 6.022                                   | , , ,                                   | •             |          |         |  |  |  |  |
| Method:                                 | css-mle                                 | S.D. of innov | ations   | 2       |  |  |  |  |
| 4.714<br>Date:                          | Wed, 14 Sep 2022                        | AIC           |          | 134     |  |  |  |  |
| 4.043                                   | ned, 1. 5cp 2022                        | 7.120         |          | 13.     |  |  |  |  |
| Time:                                   | 10:06:41                                | BIC           |          | 136     |  |  |  |  |
| 1.820<br>Sample:                        | 02-01-1949                              | HQIC          |          | 135     |  |  |  |  |
| 1.267                                   | 02-01-1949                              | потс          |          | 133     |  |  |  |  |
|                                         | - 12-01-1960                            |               |          |         |  |  |  |  |
| ======================================= | ======================================= | =========     | ======== | ======= |  |  |  |  |
| ========                                |                                         |               |          |         |  |  |  |  |
|                                         | coef std e                              | err z         | P> z     | [0.025  |  |  |  |  |
| 0.975]                                  |                                         |               |          |         |  |  |  |  |
|                                         |                                         |               |          |         |  |  |  |  |
| const<br>3.919                          | 2.5311 0.7                              | 708 3.574     | 0.000    | 1.143   |  |  |  |  |
| ar.L1.D.Passengers 1.712                | 1.6477 0.6                              | 49.933        | 0.000    | 1.583   |  |  |  |  |

| )/14/22, 10:20 AM    |          |          |           | arima model - Ju | oyter Notebook |         |   |
|----------------------|----------|----------|-----------|------------------|----------------|---------|---|
| ar.L2.D.Pa<br>-0.845 | ssengers | -0.9094  | 0.033     | -27.880          | 0.000          | -0.973  |   |
| ma.L1.D.Pa<br>-1.783 | ssengers | -1.9098  | 0.065     | -29.515          | 0.000          | -2.037  |   |
| ma.L2.D.Pa<br>1.132  | ssengers | 0.9997   | 0.068     | 14.809           | 0.000          | 0.867   |   |
|                      |          |          | Roots     |                  |                |         |   |
| =======              | =======  | ======== |           |                  | =======        | ======= |   |
| ===                  | Re       | eal      | Imaginary | Мо               | dulus          | Freque  |   |
| ncy                  |          |          |           |                  |                |         |   |
|                      |          |          |           |                  |                |         |   |
| AR.1                 | 0.90     | 159      | -0.5281j  | 1                | .0486          | -0.0    |   |
| 840                  |          |          |           |                  |                |         |   |
| AR.2                 | 0.90     | 159      | +0.5281j  | 1                | .0486          | 0.0     |   |
| 840                  |          |          |           |                  |                |         |   |
| MA.1                 | 0.95     | 552      | -0.2965j  | 1                | .0002          | -0.0    |   |
| 479                  |          |          |           |                  |                |         |   |
| MA.2                 | 0.95     | 552      | +0.2965j  | 1                | .0002          | 0.0     |   |
| 479                  |          |          |           |                  |                |         |   |
|                      |          |          |           |                  |                |         |   |
| 4                    |          |          |           |                  |                |         |   |
|                      |          |          |           |                  |                |         | • |

```
In [27]:
size = int(len(data) - 30)
train, test = data['Passengers'][0:size], data['Passengers'][size:len(data)]
print('\t ARIMA MODEL : In- Sample Forecasting \n')
history = [x for x in train]
predictions = []
for t in range(len(test)):
   model = ARIMA(history, order=(2,1,2))
   model fit = model.fit(disp = 0)
   output = model_fit.forecast()
   yhat = output[0]
   predictions.append(float(yhat))
   obs = test[t]
   history.append(obs)
   print('predicted = %f, expected = %f' % (yhat, obs))
         ARIMA MODEL : In- Sample Forecasting
C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tsa\arima_model.py:47
2: FutureWarning:
statsmodels.tsa.arima_model.ARMA and statsmodels.tsa.arima_model.ARIMA have
been deprecated in favor of statsmodels.tsa.arima.model.ARIMA (note the .
between arima and model) and
statsmodels.tsa.SARIMAX. These will be removed after the 0.12 release.
statsmodels.tsa.arima.model.ARIMA makes use of the statespace framework and
is both well tested and maintained.
```

To silence this warning and continue using ARMA and ARIMA until they are removed, use:

warnings.warn(ARIMA\_DEPRECATION\_WARN, FutureWarning)

```
predicted = 433.256972, expected = 491.000000 predicted = 478.355854, expected = 505.000000 predicted = 474.552701, expected = 404.000000 predicted = 367.687051, expected = 359.000000 predicted = 386.046122, expected = 310.000000 predicted = 300.551728, expected = 337.000000 predicted = 342.709246, expected = 360.000000 predicted = 374.434495, expected = 342.000000 predicted = 427.293772, expected = 406.000000 predicted = 416.580357, expected = 420.000000 predicted = 431.952427, expected = 472.0000000 predicted = 465.574801, expected = 548.0000000
```

```
predicted = 516.133868, expected = 559.000000
predicted = 522.642349, expected = 463.000000
predicted = 407.122831, expected = 407.000000
predicted = 367.581910, expected = 362.000000
predicted = 349.941636, expected = 405.000000
predicted = 415.817585, expected = 417.000000
predicted = 443.407937, expected = 391.000000
predicted = 432.877393, expected = 419.000000
predicted = 467.788485, expected = 461.000000
predicted = 505.289402, expected = 472.000000
predicted = 505.208366, expected = 535.000000
predicted = 548.678029, expected = 622.000000
predicted = 603.217422, expected = 606.000000
predicted = 560.803257, expected = 508.000000
predicted = 458.420863, expected = 461.000000
predicted = 419.481597, expected = 390.000000
predicted = 373.834768, expected = 432.000000
```

### In [28]:

```
predictions_series = pd.Series(predictions, index = test.index)
fig,ax = plt.subplots(nrows = 1,ncols = 1,figsize = (15,5))

plt.subplot(1,1,1)
plt.plot(data['Passengers'],label = 'Expected Values')
plt.plot(predictions_series,label = 'Predicted Values');
plt.legend(loc="upper left")
plt.show()
```



### In [29]:

```
error = np.sqrt(mean_squared_error(test,predictions))
print('Test RMSE: %.4f' % error)
```

Test RMSE: 42.5173

#### In [31]:

```
#our program ends here
#another method
#out of sampling forecasting
```

# In [32]:

```
from pandas.tseries.offsets import DateOffset
future_dates = [data.index[-1] + DateOffset(weeks = x) for x in range(0,49)]

# New dataframe for storing the future values
df1 = pd.DataFrame(index = future_dates[1:],columns = data.columns)

forecast = pd.concat([data,df1])
forecast['ARIMA_Forecast_Function'] = np.NaN
forecast['ARIMA_Predict_Function'] = np.NaN
forecast.head()
```

### Out[32]:

|            | Passengers | ARIMA_Forecast_Function | ARIMA_Predict_Function |
|------------|------------|-------------------------|------------------------|
| 1949-01-01 | 112        | NaN                     | NaN                    |
| 1949-02-01 | 118        | NaN                     | NaN                    |
| 1949-03-01 | 132        | NaN                     | NaN                    |
| 1949-04-01 | 129        | NaN                     | NaN                    |
| 1949-05-01 | 121        | NaN                     | NaN                    |

#### In [33]:

```
ARIMA history f = [x \text{ for } x \text{ in train}]
f1 = []
for t in range(len(df1)):
    model = ARIMA(ARIMA_history_f, order = (2,1,2))
    model_fit = model.fit(disp=0)
    output = model_fit.forecast()[0][0]
    ARIMA_history_f.append(output)
    f1.append(output)
for i in range(len(f1)):
    forecast.iloc[144 + i,1] = f1[i]
forecast.tail()
```

C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tsa\arima\_model.py:47

2: FutureWarning:

statsmodels.tsa.arima\_model.ARMA and statsmodels.tsa.arima\_model.ARIMA have been deprecated in favor of statsmodels.tsa.arima.model.ARIMA (note the . between arima and model) and statsmodels.tsa.SARIMAX. These will be removed after the 0.12 release.

statsmodels.tsa.arima.model.ARIMA makes use of the statespace framework and is both well tested and maintained.

To silence this warning and continue using ARMA and ARIMA until they are removed, use:

```
import warnings
```

```
warnings.filterwarnings('ignore', 'statsmodels.tsa.arima_model.ARMA',
                        FutureWarning)
warnings.filterwarnings('ignore', 'statsmodels.tsa.arima_model.ARIMA',
                        FutureWarning)
```

warnings.warn(ARIMA DEPRECATION WARN, FutureWarning)

#### Out[33]:

|            | Passengers | ARIMA_Forecast_Function | ARIMA_Predict_Function |
|------------|------------|-------------------------|------------------------|
| 1961-10-05 | NaN        | 490.80                  | NaN                    |
| 1961-10-12 | NaN        | 493.31                  | NaN                    |
| 1961-10-19 | NaN        | 495.81                  | NaN                    |
| 1961-10-26 | NaN        | 498.32                  | NaN                    |
| 1961-11-02 | NaN        | 500.83                  | NaN                    |

# In [34]:

forecast[['Passengers','ARIMA\_Forecast\_Function']].plot(figsize = (12,8));



#### In [35]:

```
ARIMA_history_p = [x for x in train]
f2 = []

for t in range(len(df1)):
    model = ARIMA(ARIMA_history_p, order = (2,1,2))
    model_fit = model.fit(disp=0)
    output = model_fit.predict(start = len(ARIMA_history_p),end = len(ARIMA_history_p),typ
    ARIMA_history_p.append(output)
    f2.append(output)

for i in range(len(f2)):
    forecast.iloc[144 + i,2] = f2[i]
forecast.tail()
```

C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tsa\arima\_model.py:47

2: FutureWarning:

statsmodels.tsa.arima\_model.ARMA and statsmodels.tsa.arima\_model.ARIMA have been deprecated in favor of statsmodels.tsa.arima.model.ARIMA (note the . between arima and model) and statsmodels.tsa.SARIMAX. These will be removed after the 0.12 release.

statsmodels.tsa.arima.model.ARIMA makes use of the statespace framework and is both well tested and maintained.

To silence this warning and continue using ARMA and ARIMA until they are removed, use:

```
import warnings
```

warnings.warn(ARIMA\_DEPRECATION\_WARN, FutureWarning)

#### Out[35]:

|            | Passengers | ARIMA_Forecast_Function | ARIMA_Predict_Function |
|------------|------------|-------------------------|------------------------|
| 1961-10-05 | NaN        | 490.80                  | 490.80                 |
| 1961-10-12 | NaN        | 493.31                  | 493.31                 |
| 1961-10-19 | NaN        | 495.81                  | 495.81                 |
| 1961-10-26 | NaN        | 498.32                  | 498.32                 |
| 1961-11-02 | NaN        | 500.83                  | 500.83                 |

# In [36]:

```
forecast[['Passengers','ARIMA_Predict_Function']].plot(figsize = (12,8));
```



# In [37]:

sum(f1) == sum(f2)

# Out[37]:

True

# In [38]:

#sarimax model
#arima model ends here

# In [39]:

```
data_diff_seas = data_diff.diff(12)
data_diff_seas = data_diff_seas.dropna()
dec = sm.tsa.seasonal_decompose(data_diff_seas,period = 12)
dec.plot()
plt.show()
```



### In [40]:

# test\_stationarity(data\_diff\_seas['Passengers'])



Results of Dickey-Fuller Test:

| Test Statistic              | -15.60 |
|-----------------------------|--------|
| p-value                     | 0.00   |
| #Lags Used                  | 0.00   |
| Number of Observations Used | 130.00 |
| Critical Value (1%)         | -3.48  |
| Critical Value (5%)         | -2.88  |
| Critical Value (10%)        | -2.58  |

dtype: float64

# In [41]:

# tsplot(data\_diff\_seas['Passengers'])



### In [42]:

```
model = sm.tsa.statespace.SARIMAX(data['Passengers'],order = (2,1,2),seasonal_order = (0,1,
model_fit = model.fit()
print(model_fit.summary())
```

C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tsa\base\tsa\_model.p y:524: ValueWarning: No frequency information was provided, so inferred freq uency MS will be used.

warnings.warn('No frequency information was'

C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\tsa\base\tsa\_model.p y:524: ValueWarning: No frequency information was provided, so inferred freq uency MS will be used.

warnings.warn('No frequency information was'

|                             |                                         |             |             | X Results   |              |       |
|-----------------------------|-----------------------------------------|-------------|-------------|-------------|--------------|-------|
| ========                    | ======================================= | =======     | =======     | ========    | :=======     | :==== |
| Dep. Varial                 |                                         |             | Pas         | sengers No. | Observation  | ns:   |
| 144                         |                                         |             |             | _           |              |       |
| Model:                      | SARI                                    | MAX(2, 1, 2 | 2)x(0, 1, [ | 1], 12) Log | g Likelihood |       |
| -503.968                    |                                         |             |             |             |              |       |
| Date:                       |                                         |             | Wed, 14 S   | ep 2022 AIC | •            |       |
| 1019.935                    |                                         |             | 1           | 0.44.46 DTC |              |       |
| Time:<br>1037.186           |                                         |             | 1           | 0:14:46 BIC | -            |       |
| Sample:                     |                                         |             | Q1          | 01-1949 HQI |              |       |
| 1026.945                    |                                         |             | 61-         | 01-1949 HQ1 |              |       |
| 1020.545                    |                                         |             | - 12-       | 01-1960     |              |       |
| Covariance                  |                                         |             |             | opg         |              |       |
| ====                        | ========                                | =======     | =======     | ========    | :=======     |       |
|                             | coef                                    | std err     | z           | P> z        | [0.025       | 0.    |
| 975]                        |                                         |             |             |             | _            |       |
|                             |                                         |             |             |             |              |       |
| ar.L1                       | 0.3966                                  | 0.422       | 0.940       | 0.347       | -0.430       |       |
| 1.223                       |                                         |             |             |             |              |       |
| ar.L2                       | 0.3538                                  | 0.317       | 1.115       | 0.265       | -0.268       |       |
| 0.976                       | 0.7640                                  | 0 422       | 1 760       | 0.077       | 1 (1)        |       |
| ma.L1<br>0.083              | -0.7648                                 | 0.432       | -1.769      | 0.077       | -1.612       |       |
| ma.L2                       | -0.2060                                 | 0.414       | -0.497      | 0.619       | -1.018       |       |
| 0.606                       | -0.2000                                 | 0.414       | -0.437      | 0.019       | -1.018       |       |
| ma.S.L12                    | -0.1033                                 | 0.112       | -0.921      | 0.357       | -0.323       |       |
| 0.117                       | 0.1033                                  | 0,111       | 0.522       | 0.337       | 0.323        |       |
| sigma2<br>5.187             | 127.2934                                | 14.232      | 8.944       | 0.000       | 99.400       | 15    |
| ========                    | ========                                | =======     | =======     | ========    |              |       |
| Ljung-Box                   | (L1) (Q):                               |             | 0.02        | Jarque-Bera | (JB):        |       |
| <pre>Prob(Q):</pre>         |                                         |             | 0.88        | Prob(JB):   |              |       |
|                             | asticity (H):                           |             | 2.57        | Skew:       |              |       |
| 0.05<br>Prob(H) (tv<br>4.42 | wo-sided):                              |             | 0.00        | Kurtosis:   |              |       |
|                             |                                         |             |             |             |              |       |

Warnings:
[1] Covariance matrix calculated using the outer product of gradients (com plex-step).

```
In [43]:
```

```
size = int(len(data) - 30)
train, test = data['Passengers'][0:size], data['Passengers'][size:len(data)]
print('\t SARIMA MODEL : In - Sample Forecasting \n')
history = [x for x in train]
predictions = []
for t in range(len(test)):
   model = sm.tsa.statespace.SARIMAX(history,order = (2,1,2),seasonal_order = (0,1,1,12))
   model fit = model.fit()
   output = model_fit.forecast()
   yhat = output[0]
   predictions.append(float(yhat))
   obs = test[t]
   history.append(obs)
   print('predicted = %f, expected = %f' % (yhat, obs))
         SARIMA MODEL: In - Sample Forecasting
predicted = 479.084514, expected = 491.000000
predicted = 490.553512, expected = 505.000000
```

```
predicted = 479.084514, expected = 491.000000
predicted = 490.553512, expected = 505.000000
predicted = 441.276126, expected = 404.000000
predicted = 357.270516, expected = 359.000000
predicted = 315.251199, expected = 310.000000
predicted = 347.831240, expected = 337.000000
C:\ProgramData\Anaconda3\lib\site-packages\statsmodels\base\model.py:566: ConvergenceWarning: Maximum Likelihood optimization failed to converge. Check mle_retvals
```

warnings.warn("Maximum Likelihood optimization failed to "

```
predicted = 344.251813, expected = 360.000000
predicted = 336.835601, expected = 342.000000
predicted = 387.593322, expected = 406.000000
predicted = 387.333485, expected = 396.000000
predicted = 408.192790, expected = 420.000000
predicted = 485.988157, expected = 472.000000
predicted = 529.031342, expected = 548.000000
predicted = 551.914007, expected = 559.000000
predicted = 459.061267, expected = 463.000000
predicted = 411.970100, expected = 407.000000
predicted = 358.421156, expected = 362.000000
predicted = 384.945724, expected = 405.000000
predicted = 420.143813, expected = 417.000000
predicted = 397.755392, expected = 391.000000
predicted = 451.335510, expected = 419.000000
predicted = 415.675504, expected = 461.000000
predicted = 465.295980, expected = 472.000000
predicted = 529.835404, expected = 535.000000
predicted = 599.299659, expected = 622.000000
predicted = 626.292199, expected = 606.000000
predicted = 513.891979, expected = 508.000000
predicted = 450.136741, expected = 461.000000
```

```
predicted = 411.653929, expected = 390.000000
predicted = 438.411433, expected = 432.000000
```

### In [44]:

```
predictions_series = pd.Series(predictions, index = test.index)
fig,ax = plt.subplots(nrows = 1,ncols = 1,figsize = (15,5))

plt.subplot(1,1,1)
plt.plot(data['Passengers'],label = 'Expected Values')
plt.plot(predictions_series,label = 'Predicted Values');
plt.legend(loc="upper left")
plt.show()
```



# In [45]:

```
error = np.sqrt(mean_squared_error(test,predictions))
print('Test RMSE: %.4f' % error)
```

Test RMSE: 16.9251

#### In [46]:

#so as we can see , using arima the rmse was 42.5173 but using sarimax you can see the #the rmse is 16.9251 , just awesome

### In [ ]: