

GRADO EN INGENIERÍA INFORMÁTICA

Computabilidad y Algoritmia

PRÁCTICA 3. Expresiones regulares

Presentado por:

Aarón Ramírez Valencia alu0101438238@ull.edu.es 27 / 09 / 2024

2.1. Ejercicios prácticos

 \triangle Para todos los ejercicios, sea r una expresión regular, el lenguaje regular representado por r se denota L(r). \triangle

1. Cadenas sobre el alfabeto {a, b} con longitud impar.

r: ((a|b)(a|b))* (a|b)

$$L_1(r) = a$$
, $L_2(r) = b$, $L_3(r) = aaa$, $L_4(r) = abb$, $L_5(r) = babaa$. $L_1(r) != \epsilon$, $L_2(r) != ab$, $L_3(r) != abba$, $L_4(r) != abbb$, $L_5(r) != bbbbaa$.

2. Cadenas sobre el alfabeto {a, b} con longitud igual a 5.

r: (a|b)(a|b)(a|b)(a|b)(a|b)

$$L_1(r)$$
 = aaaaa, $L_2(r)$ = bbbbb, $L_3(r)$ = aabba, $L_4(r)$ = abbbb, $L_5(r)$ = babaa. $L_1(r)$!= ϵ , $L_2(r)$!= ab, $L_3(r)$!!= abab, $L_4(r)$!= b, $L_5(r)$!= abbbabaaab.

3. Cadenas sobre el alfabeto {a, b, c} con una "a" en la antepenúltima posición.

$$r$$
: $(a|b|c)* a (a|b|c) (a|b|c)$

$$L_1(r) = aaa$$
, $L_2(r) = abb$, $L_3(r) = aba$, $L_4(r) = aaabbabb$, $L_5(r) = bbbaba$. $L_1(r) != \varepsilon$, $L_2(r) != ab$, $L_3(r) != baa$, $L_4(r) != bbbbaa$, $L_5(r) != ababab$.

4. Cadenas sobre el alfabeto {a, b} con número de "a's" par o número de "b's" impar.

r: b*(ab*a)*b* | a*b(ba*b)* a*

 $L_1(r) = aa$, $L_2(r)$? ab, $L_3(r) = baba$, $L_4(r) = bbb$, $L_5(r) = abbaab$. $L_1(r) != \varepsilon$, $L_2(r) != bb$, $L_3(r) != abb$, $L_4(r) != abab$, $L_5(r) != bbbba$.

5. Cadenas w sobre el alfabeto $\{0, 1\}$ tales que $2 \le |w| \le 5$

r: (0|1)(0|1) | (0|1)(0|1)(0|1) | (0|1)(0|1)(0|1)(0|1) | (0|1)(0|1)(0|1)(0|1)

$$L_1(r) = 00$$
, $L_2(r) = 010$, $L_3(r) = 111$, $L_4(r) = 0110$, $L_5(r) = 00000$.
 $L_1(r) != \varepsilon$, $L_2(r) != 1$, $L_3(r) != 111111$, $L_4(r) != 000000$, $L_5(r) != 011100000$.

6. Cadenas sobre el alfabeto {0, 1} con longitud múltiplo de 3.

 $r: ((0|1)(0|1)(0|1))^*$

$$L_1(r) = \varepsilon$$
, $L_2(r) = 011$, $L_3(r) = 011010$, $L_4(r) = 000111$, $L_5(r) = 001110101$. $L_1(r) != 0$, $L_2(r) != 1$, $L_3(r) != 1010$, $L_4(r) != 00011$, $L_5(r) != 0110101$.

7. Cadenas sobre el alfabeto {0, 1} con una longitud que no sea múltiplo de 3.

r: (0|1) ((0|1)(0|1)(0|1)) * | (0|1) (0|1) ((0|1)(0|1)(0|1)) *

$$L_1(r) = 0$$
, $L_2(r) = 10$, $L_3(r) = 11$, $L_4(r) = 0101$, $L_5(r) = 00110$.
 $L_1(r) != \varepsilon$, $L_2(r) != 100$, $L_3(r) != 010101$, $L_4(r) != 000000$, $L_5(r) != 1111111111$.

8. Cadenas w sobre el alfabeto $\{0, 1\}$ tal que $w = 0^n 1^m$ con n + m impar.

 $L_1(r) = 0$, $L_2(r) = 1$, $L_3(r) = 111$, $L_4(r) = 00111$, $L_5(r) = 0001111$. $L_1(r) != 10$, $L_2(r) != 101$, $L_3(r) != 0111$, $L_4(r) != 000000$, $L_5(r) != \varepsilon$.

9. Cadenas sobre el alfabeto {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} que tengan como máximo dos ceros.

r: (1|2|3|4|5|6|7|8|9)* | (1|2|3|4|5|6|7|8|9)* 0 (1|2|3|4|5|6|7|8|9)* | (1|2|3|4|5|6|7|8|9)* 0 (1|2|3|4|5|6|7|8|9)* 0 (1|2|3|4|5|6|7|8|9)*

 $\begin{array}{l} L_1(r)=\epsilon,\ L_2(r)=125670,\ L_3(r)=045423460,\ L_4(r)=320430,\ L_5(r)=03424.\\ L_1(r)\ !=\ 000,\ L_2(r)\ !=\ 12005670,\ L_3(r)\ !=\ 0454203460,\ L_4(r)\ !=\ 300020430,\ L_5(r)\ !=\ 03400024. \end{array}$

10. Cadenas sobre el alfabeto $\{x, y, z\}$ que no contengan dos símbolos x consecutivos.

 $r: (y|z)^* (x(y|z)^+)^* (x|\epsilon) (y|z)^*$

 $L_1(r) = \varepsilon$, $L_2(r) = xy$, $L_3(r) = zx$, $L_4(r) = yyz$, $L_5(r) = yzxyzxz$.

 $L_1(r) != xx, L_2(r) != xxy, L_3(r) != xzxx, L_4(r) != yxxxxyz, L_5(r) != yzxxyzxxz.$

3.1. Ejercicios prácticos

1. Direcciones de correos electrónicos de estudiantes de la Universidad de La Laguna.

r: alu0101[0-9]{6}@ull.edu.es

2. Palabras que terminen por una vocal.

r: \b[a-zA-Z]*[aeiouAEIOU]\b

3. Números enteros.

r: [-+]?[0-9]+

4. Texto que se encuentre entre paréntesis.

r: \([^)]+\)

5. Código postal en España.

r: [0-4][0-9]{4}

6. Palabras que contienen sólo letras mayúsculas.

 $r: \b[A-Z]+\b]$

7. Numeros de telefono en formato prefijo XXX-XXX, donde el prefijo del país puede indicarse empezando por 00 o bien con un símbolo +; por ejemplo, 0034 o +34 para España.

 $r: (+|00)[0-9]\{1,3\}-[0-9]\{3\}-[0-9]\{3\}$

```
REGULAR EXPRESSION

$ / (\+|00)[0-9]{1,3}-[0-9]{3}-[0-9]{3}-[0-9]{3}

TEST STRING

+34-928-898-030 |
0033-465-632-111 |
+329-922-098-412 |
002-310-301-333 |
+9-210-098-410
```

8. Fecha en formato DD/MM/AAAA

 $r: (0[1-9]|[12][0-9]|3[01]) \lor (0[1-9]|1[0-2]) \lor [0-9]{4}$

9. Palabras de al menos 10 letras de longitud.

 $r:[a-zA-Z]{10,}$

10. Palabras que terminen con "ing" o "ed".

 $r: \b\w+(ing|ed)\b$

LIM PA

```
REGULAR EXPRESSION

i / \b\w+(ing|ed)\b
/ gm

graph

TEST STRING

playing finished jumping started learning
```

Modificación

- 1. Etiquetas HTML en un documento <>
- *r*: <[^>]+>
- 2. Nº Decimal.

r: [-+]?^[0-9]+([,][0-9]+)?\$

3. Cadenas binarias con longitud impar que empiecen por 0 y terminen por 1.

r: 0 ((00|01|10|11)*(0|1))+1

