MIT 3.071 Amorphous Materials

4: Phase Change Data Storage

Juejun (JJ) Hu

Phase change materials

time

Key performance metrics

- Data retention
 - Good glass stability
- Programming speed
 - Fast crystallization

- Recording density
 - Size dependence of material properties, driver size
- Endurance (cycle lifetime)
 - Phase and interface stability
- Power consumption
 - □ Enthalpy of melting, heat capacity $Q = \Delta H_m + \int_{RT}^{T_m} C_V dT$
 - Low thermal conductivity

Ge-Sb-Te (GST) phase change alloy

Pseudo-binary alloy: (GeTe)_x(Sb₂Te₃)_y
 Main commercial composition

□ Stressed rigid 3-D network

Fast switching compositions

 \square Ge₁₅Sb₈₅, Sb₂Te

High thermal stability alloys

- \square (Ge₂Sb₁Te₂)_x(Ge)_v
- Amorphous: covalent
- Crystal: resonant bonding

Phys. Rev. B 81, 174206 (2010); Solid-State Electron. 111, 27 (2015).

Ge-Sb-Te (GST) phase change alloy

Pseudo-binary alloy: (GeTe)_x(Sb₂Te₃)_y

Main commercial composition

Stressed rigid 3-D network

Fast switching compositions

 \square Ge₁₅Sb₈₅, Sb₂Te

High thermal stability alloys

- \square (Ge₂Sb₁Te₂)_x(Ge)_v
- Amorphous: covalent
- Crystal: resonant bonding

Phys. Rev. B **81**, 174206 (2010); *Solid-State Electron.* **111**, 27 (2015).

Re-writable CDs and DVDs

Modulation of optical reflectance via laser-induced phase change

Phase change memory (PCM)

Phase change memory (PCM)

Electrodes used for both programming and read-out

- Threshold switching: electric field driven bistability
 - □ Transient behavior: electronic in nature, no structural change
 - Contributes to reduced SET voltage

S. Hudgens and B. Johnson, MRS Bull. (2004); Phys. Rev. B 78, 035308 (2008).

Where does PCM stand against competitors?

	Memristor	PCM	STT- RAM	DRAM	Flash	HD
Chip area per bit (F²)	4	8–16	14-64	6–8	4-8	n/a
Energy per bit (pJ) ²	0.1-3	2-100	0.1-1	2-4	101-104	10 ⁶ -10 ⁷
Read time (ns)	<10	20-70	10-30	10-50	25,000	5-8x10 ⁶
Write time (ns)	20-30	50-500	13-95	10-50	200,000	5-8x10 ⁶
Retention	>10 years	<10 years	Weeks	<second< td=""><td>~10 years</td><td>~10 years</td></second<>	~10 years	~10 years
Endurance (cycles)	~1012	10 ⁷ -10 ⁸	10 ¹⁵	>1017	10 ³ -10 ⁶	1015 ?
3D capability	Yes	No	No	No	Yes	n/a

Large optical property contrast in GeTe due to change of bonding type from crystalline (resonance) to amorphous (covalent) phase

Applications beyond data storage: optics

Optical switch

? Applications involving bistable states

Electronic paper display

Courtesy of Macmillan Publishers Limited. Used with permission. Source: "An optoelectronic framework enabled by low-dimensional phase-change films." *Nature* 511 (2014): 206-211.

Nature **511**, 206 (2014); Adv. Mater. **25**, 3050 (2013).

Further readings

- Phase Change Materials: Science and Application,
 Springer (2009).
- Emerging Non-Volatile Memories, Springer (2014).
- "Chalcogenide Phase-Change Materials: Past and Future,"
 Int. J. Appl. Glass Sci. 1, 15 (2015).

MIT OpenCourseWare http://ocw.mit.edu

3.071 Amorphous Materials Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.