

Márcio C. F. Macedo (UFBA – Brazil) Antônio L. Apolinário Jr. (UFBA – Brazil)

PGCOMP (UFBA - Brazil)

AGENDA

- Introduction;
- Euclidean Distance Transform Soft Shadow Mapping;
- Results and Discussion;
- Conclusion and Future Work;

CONTEXT

No Shadow

Accurate Shadow

Low Computational Cost

High Computational Cost

SHADOW MAPPING

Shadow Map Texture

SHADOW MAPPING

Accurate Shadow

Hard Shadow

CURRENT SCENARIO

PCSS [Fernando2005] **EDTSSM** MSSM [Peters2016]

[Fernando2005] – R. Fernando. "Percentage-Closer Soft Shadows". Proceedings of the ACM SIGGRAPH Sketches, 2005. [Peters2016] – C. Peters et al. "Beyond Hard Shadows: Moment Shadow Maps for Single Scattering, Soft Shadows and Translucent Occluders". Proceedings of the ACM I3D, 2016.

EUCLIDEAN DISTANCE TRANSFORM SOFT SHADOW MAPPING

• Step 1 - Shadow Map Rendering:

• Step 2 - Shadow Mapping [Williams1978]:

10

• Step 3 - Shadow Revectorization [Macedo2016]:

[Macedo2016] – M. Macedo, A. Apolinário. "Revectorization-Based Shadow Mapping". Proceedings of Graphics Interface, 20<mark>16.</mark>

o Step 4 − EDT Soft Shadowing:

o Step 4 − EDT Soft Shadowing:

○ Step 4 – EDT Soft Shadowing:

○ Step 4 – EDT Soft Shadowing:

o Step 4 − EDT Soft Shadowing:

○ Step 4 – EDT Soft Shadowing:

○ Step 4 – EDT Soft Shadowing:

◦ Step 5 − EDT Filtering:

◦ Step 5 − EDT Filtering:

RESULTS AND DISCUSSION

EXPERIMENTAL SETUP

- o For all tests, we used an Intel® Core™ i7-3770K CPU @3.50Ghz, 8GB RAM, NVIDIA GeForce GTX Titan X;
- EDTSSM (our approach) was implemented using OpenGL and GLSL languages;
- To compute the EDT, we have used the PBA algorithm [Cao2010] implemented in CUDA;
- A kernel size of 15 x 15 was used to suppress skeleton artifacts for our technique and banding artifacts for related work;

VISUAL QUALITY

• Temporal Coherence:

VISUAL QUALITY

• Comparison with related work:

PCSS – "Percentage-Closer Soft Shadows", ACM SIGGRAPH Sketches, 2005;

VSSM – B. Yang et al. "Variance Soft Shadow Mapping". Computer Graphics Forum, 2010.

MSSM – C. Peters et al. "Beyond Hard Shadows: Moment Shadow Maps for Single Scattering, Soft Shadows and Translucent Occluders". Proceedings of the ACM I3D, 2016.

VISUAL QUALITY

• Comparison with related work:

PCSS – "Percentage-Closer Soft Shadows", ACM SIGGRAPH Sketches, 2005;

VSSM – B. Yang et al. "Variance Soft Shadow Mapping". Computer Graphics Forum, 2010.

MSSM – C. Peters et al. "Beyond Hard Shadows: Moment Shadow Maps for Single Scattering, Soft Shadows and Translucent Occluders". Proceedings of the ACM I3D, 2016.

RENDERING TIME

• Shadow Map Resolution:

		Shadow Map Resolution			
Scene	Method	512^{2}	1024^{2}	2048^{2}	4096^{2}
1	PCSS	2.8 ms	2.9 ms	3.0 ms	3.1 ms
	VSSM	2.0 ms	$4.0 \mathrm{\ ms}$	6.5 ms	8.2 ms
	MSSM	1.8 ms	3.6 ms	5.1 ms	6.5 ms
	EDTSSM	4.3 ms	4.5 ms	4.6 ms	$5.0 \mathrm{ms}$
2	PCSS	3.4 ms	3.5 ms	3.8 ms	4.0 ms
	VSSM	2.7 ms	4.6 ms	6.4 ms	8.2 ms
	MSSM	2.4 ms	4.1 ms	5.5 ms	$7.0 \mathrm{ms}$
	EDTSSM	5.5 ms	5.6 ms	5.7 ms	6.1 ms
	PCSS	4.8 ms	4.9 ms	5.0 ms	5.6 ms
3	VSSM	4.7 ms	6.2 ms	7.0 ms	9.1 ms
	MSSM	4.2 ms	5.7 ms	6.5 ms	8.2 ms
	EDTSSM	6.7 ms	6.8 ms	7.0 ms	$7.2 \mathrm{ms}$

RENDERING TIME

• Viewport/Output Resolution:

		Viewport Resolution			
Scene	Method	480p	720p 1080p		
	PCSS	1.4 ms	2.9 ms 3.1 ms		
1	VSSM	3.8 ms	4.0 ms 4.3 ms		
1	MSSM	3.2 ms	3.6 ms 4.0 ms		
	EDTSSM	2.3 ms	4.5 ms 5.9 ms		
	PCSS	2.1 ms	3.5 ms 4.2 ms		
2	VSSM	4.3 ms	4.6 ms 5.0 ms		
	MSSM	3.7 ms	4.1 ms 4.4 ms		
	EDTSSM	3.0 ms	5.6 ms 6.5 ms		
	PCSS	3.8 ms	4.9 ms 5.3 ms		
3	VSSM	5.8 ms	6.2 ms 6.6 ms		
3	MSSM	5.3 ms	5.7 ms 6.0 ms		
	EDTSSM	4.5 ms	6.8 ms 8.4 ms		

CONCLUSION AND FUTURE WORK

FINAL CONSIDERATIONS

• Conclusion:

- Our technique suffers from less aliasing and light leaking artifacts than related work;
- Our technique provides performance comparable with related work for the same scene configuration;

• Future Work:

- Minimize shadow overestimation;
- Speed up the EDT computation;

ACKNOWLEDGMENTS

- We are grateful to:
 - The authors of [Cao2010] for sharing the source code for GPU-Based Euclidean Distance Transform computation;
 - NVIDIA Corporation for providing the NVIDIA GeForce GTX Titan X through the GPU Education Center program;
 - CAPES for financial support;

Thank You!

Márcio C. F. Macedo (<u>marciocfmacedo@gmail.com</u>)

Antônio L. Apolinário Jr. (apolinario@dcc.ufba.br)