EXERCICES D'ANALYSE FONCTIONNELLE – SÉANCE 2 TOPOLOGIE ET CONVERGENCE

Exercice 1. Une suite réelle $(x_n)_n$ a la propriété que de toutes ces soussuites contiennent une sous-suite convergeant vers un même réel $x \in \mathbb{R}$. Expliquez pourquoi la suite x_n converge. Pourquoi ce résultat n'implique pas la convergence de la suite de terme $(-1)^n$.

Idée de solution de l'exercice 1. Ad absurdum. On observe que si la suite converge alors elle doit converger vers x; si y est une limite et $(x_{n_k})_k$ une sous-suite qui converge vers x, on aurait

$$|x - y| \le |x - x_{n_k}| + |x_{n_k} - y|$$

et les deux termes deviennent arbitrairement petit quand k tend vers l'infini. Supposons que la suite réelle $(x_n)_n$ ne converge pas vers x. Alors, il existe une sous-suite de $(x_n)_n$ que nous notons $(x_{n_k})_k$ et un $\epsilon_0 > 0$ tels que pour chaque $k |x_{n_k} - x| > \epsilon_0$. Or, $(x_{n_k})_k$ contient une sous-suite $(x_{n_{k_m}})_m$ qui converge vers x. Pour chaque m, on a que $|x_{n_{k_m}} - x| > \epsilon_0$. En passant à la limite dans cette dernière inéquation on obtient que $\epsilon_0 = 0$, une contradiction.

La suite $(-1)^n$ possède deux points d'accumulation 1 et -1. Si bien que toute sous-suite possède en effet une sous-suite convergente mais pas vers un même x.

Exercice 2. Fixons $\Omega \subset \mathbb{R}^d$ un ouvert de \mathbb{R}^d . Une fonction $u \in L^1(\Omega, \mathbb{R})$ est dite harmonique si pour presque tout $x \in \Omega$ et r > 0 tel que $\mathbb{B}(x,r) \subset \Omega$ on a

$$u(x) = \frac{1}{\mathscr{L}^d(B(x,r))} \int_{\mathbb{B}(x,r)} u$$

Considérons une suite de fonctions $u_n \in L^1(\Omega, \mathbb{R})$ de fonctions harmoniques qui convergent dans $L^1(\Omega)$ vers une fonction $u \in L^1(\Omega, \mathbb{R})$.

- (i) Expliquer pourquoi u est harmonique
- (ii) Expliquer pourquoi pour tout $\epsilon \in (0,1)$, u_n converge uniformément vers u sur $\mathbb{B}(0,\epsilon)$.

Exercice 3. Considérons une suite $f = (f_n)_n \in \ell^1(\mathbb{N})$. On définit

$$g_1 = (f_1, f_2, f_3, f_4, \dots)$$

$$g_2 = (0, f_2, f_3, f_4, \dots)$$

$$g_3 = (0, 0, f_3, f_4, \dots)$$

Date: Automne 2022.

et en continuant inductivement le processus on construit une suite $(g_n)_n$. Expliquez pourquoi la suite $(g_n)_n$ ainsi définie est une suite dans $\ell^1(\mathbb{N})$. Converge-t-elle dans $\ell^1(\mathbb{N})$ vers la suite nulle ?

Idée de solution de l'exercice 3. La suite $(g_n)_n$ est une suite dans $\ell^1(\mathbb{N})$ car pour chaque $n=1,2,3,\ldots$ et k>n

$$\sum_{i=n}^{k} |f_i| \le \sum_{i \le k} |f_i| = ||f||_{\ell^1(\mathbb{N})}$$

est fini. Si bien que pour chaque $n = 1, 2, 3, \dots$

$$||g_n||_{\ell^1(\mathbb{N})} \le ||f||_{\ell^1(\mathbb{N})}.$$

Elle converge vers la suite nulle puisque

$$||g_n - 0||_{\ell^1(\mathbb{N})} = ||g_n||_{\ell^1(\mathbb{N})} = \sum_{i=n}^{\infty} |f_i|$$

tend vers zéro.

Exercice 4. Considérons une suite $f = (f_n)_n \in \ell^1(\mathbb{N})$. On définit

$$g_1 = (f_1, f_2, f_3, f_4, \dots)$$

$$g_2 = (0, f_1 + f_2, f_3, f_4, \dots)$$

$$g_3 = (0, 0, f_1 + f_2 + f_3, f_4, \dots)$$

et en continuant inductivement le processus on construit une suite $(g_n)_n$. Expliquez pourquoi la suite $(g_n)_n$ ainsi définie est une suite dans $\ell^1(\mathbb{N})$. Converge-t-elle dans $\ell^1(\mathbb{N})$ vers la suite nulle ?

Idée de solution de l'exercice 4. La suite $(g_n)_n$ est une suite dans $\ell^1(\mathbb{N})$ car pour chaque $n = 1, 2, 3, \ldots$ et k > n

$$\left| \sum_{i=1}^{n} f_i \right| + \sum_{i=n+1}^{k} |f_i| \le \sum_{i \le k} |f_i| = ||f||_{\ell^1(\mathbb{N})}$$

est fini. Si bien que pour chaque $n = 1, 2, 3, \dots$

$$||g_n||_{\ell^1(\mathbb{N})} \le ||f||_{\ell^1(\mathbb{N})}.$$

Etudions la convergence vers la suite nulle

$$||g_n - 0||_{\ell^1(\mathbb{N})} = ||g_n||_{\ell^1(\mathbb{N})} = \left|\sum_{i=1}^n f_i\right| + \sum_{i=n+1}^k |f_i|.$$

On observe que la limite des deux termes du membre de droite existe. La limite du second vaut zéro.

$$\lim_{n \to \infty} \|g_n - 0\|_{\ell^1(\mathbb{N})} = \Big| \sum_{i=1}^{\infty} f_i \Big|.$$

On déduit que la suite $(g_n)_n$ converge vers zéro si et seulement si

$$\sum_{i=1}^{\infty} f_i = 0.$$

Exercice 5. Fixons $u \in L^p(\mathbb{R}^d)$. Considérons une suite de nombres réels strictement positifs $(t_n)_n$. Donnez une conditions nécessaire et suffisante pour que $u_n = t_n u(\cdot/t_n)$ converge vers 0 dans $L^p(\mathbb{R}^d)$ en fonction de $p \in [1, \infty]$ et $d = 1, 2, \ldots$

Exercice 6. Une suite de fonctions $(f_n)_n$ converge vers F dans $L^2(\mathbb{R}^d)$ et vers G dans $L^3(\mathbb{R}^d)$. Sont F et G des fonctions égales ? Et si F est continue?

Exercice 7. Montrez que les fonctions d'intégrale nulle forment un sousespace vectoriel fermé de $L^1(X,\mu)$.

Idée de solution de l'exercice 7. Montrons que le complémentaire est ouvert (si on veut invoquer de la fermeture séquentielle, il faut rappeler que $L^1(\mathbb{R}^d)$ est métrique). On veut montrer que pour tout $f \in L^1(\mathbb{R}^d)$ tel que

$$\int_{\mathbb{R}^d} f \neq 0$$

on peut trouver $\epsilon_0 > 0$ tel que si $g \in L^1(\mathbb{R}^d)$ vérifie $||g - f||_{L^1(\mathbb{R}^d)} < \epsilon_0$ alors

$$\int_{\mathbb{R}^d} g \neq 0,$$

on aura alors montré qu'en tout point de l'ensemble on peut y placer une boule ouverte. On voit que

$$\left| \left| \int_{\mathbb{R}^d} f \right| - \left| \int_{\mathbb{R}^d} g \right| \right| \le \|g - f\|_{L^1(\mathbb{R}^d)} < \epsilon_0$$

qui est à déterminer. On a donc

$$-\epsilon_0 + \left| \int_{\mathbb{R}^d} f \right| < \left| \int_{\mathbb{R}^d} g \right| < \epsilon_0 + \left| \int_{\mathbb{R}^d} f \right|$$

On prend

$$\epsilon_0 \doteq \frac{1}{2} \left| \int_{\mathbb{R}^d} f \right| > 0.$$

Exercice 8. Si une suite converge dans $L^3(\mathbb{R}^d)$ et $L^6(\mathbb{R}^d)$, converge-t-elle aussi dans $L^4(\mathbb{R}^d)$? Et dans $L^1(\mathbb{R}^d)$?

Idée de solution de l'exercice 8. Par l'inégalité de Hölder, elle converge dans $L^4(\mathbb{R}^d)$. En général elle ne converge pas dans $L^1(\mathbb{R}^d)$. Fixons un élément $u \in L^4(\mathbb{R}^d) \setminus L^1(\mathbb{R}^d)$. Par domination, la suite $u_n \doteq u\chi_{[-n,n]}$ converge dans $L^4(\mathbb{R}^d)$ mais pas dans $L^1(\mathbb{R}^d)$ (car si c'était le cas, $u \in L^1(\mathbb{R}^d)$).

Exercice 9. Fixons une suite de fonctions $(f_n)_n$ de $L^1(\mathbb{R}^d, \mu)$ qui converge dans $L^1(\mathbb{R}^d, \mu)$ vers u. Nous désignons par μ la mesure de Lebesgue sur \mathbb{R}^d . Fixons aussi r > 0. Pour tout $x \in \mathbb{R}^d$ on définit

$$v_n(x) = \frac{1}{\mu(\mathbb{B}(x,r))} \int_{\mathbb{B}(x,r)} u_n \,\mathrm{d}\mu$$

Expliquer pourquoi $(v_n)_n$ définit une suite dans $C_b(\mathbb{R}^d)$. Cette suite converget-elle dans $C_b(\mathbb{R}^d)$?

Exercice 10. Expliquez pourquoi $\ell^1(\mathbb{N}) \subset \ell^{\infty}(\mathbb{N})$ et pourquoi l'adhérence dans $\ell^{\infty}(\mathbb{N})$ de $\ell^1(\mathbb{N})$ est formé par les suites $(x_n)_{n\in\mathbb{N}}$ qui tendent vers zéro.

Idée de solution de l'exercice 10. Une suite de $\ell^1(\mathbb{N})$ est par définition absolument sommable elle tend donc vers zéro. Les suites convergentes étant bornées, nous concluons que tout élément de $\ell^1(\mathbb{N})$ est un élément de $\ell^\infty(\mathbb{N})$ montrant ainsi que $\ell^1(\mathbb{N}) \subset \ell^\infty(\mathbb{N})$.

Afin de montrer que l'adhérence dans $\ell^{\infty}(\mathbb{N})$ de $\ell^{1}(\mathbb{N})$ est formé des suites qui tendent vers zéro, nous devons montrer que toute suite $(x_n)_{n\in\mathbb{N}}$ qui tend vers zéro peut être approchée en norme $\ell^{\infty}(\mathbb{N})$ par une suite de $\ell^{1}(\mathbb{N})$ c'est-à-dire une suite absolument sommable. Toute suite absolument sommable tendant vers zéro, nous aurons la double inclusion et donc montré la thèse.

Fixons $(x_n)_{n\in\mathbb{N}}$ qui tend vers zéro et $\lambda\in(0,1)$. Observons que la suite $(\lambda x_n)_n$ est absolument sommable. En effet, en utilisant le caractère géométrique de la suite,

$$\sum_{n\in\mathbb{N}} |\lambda^n x_n| \le \|(x_n)_n\|_{\ell^{\infty}(\mathbb{N})} \sum_{n\in\mathbb{N}} \lambda^n = \frac{\|(x_n)_n\|_{\ell^{\infty}(\mathbb{N})}}{1-\lambda} < +\infty.$$

Fixons $\epsilon > 0$. Estimons maintenant pour un $k \in \mathbb{N}_*$ que nous choisirons plus tard

(1)
$$\|(x_n)_n - (\lambda^n x_n)_n\|_{\ell^{\infty}(\mathbb{N})} = \sup_{n} |x_n (1 - \lambda^n)|$$

 $\leq \|(x_n)_n\|_{\ell^{\infty}(\mathbb{N})} \sup_{n \leq k} |(1 - \lambda^n)| + \sup_{n \geq k} |1 - \lambda^n| \sup_{n \geq k} |x_n|$

Par convergence de la suite $(x_n)_n$ vers zéro, il existe un seuil $k \geq 1$ tel que $\sup_{n \geq k} |x_n| \leq \epsilon$. Donné k, choisissons λ suffisament proche de 1 de sorte que $\sup_{n \leq k} |(1 - \lambda^n)| \leq \epsilon$, ce qui est possible vu que le supremum porte sur un nombre fini de termes. Notre estiamtion 1 devient alors

$$\|(x_n)_n - (\lambda^n x_n)_n\|_{\ell^{\infty}(\mathbb{N})} \le (\|(x_n)_n\|_{\ell^{\infty}(\mathbb{N})} + 1)\epsilon$$

Cela montre que pour toute suite $(x_n)_{n\in\mathbb{N}}$ convergent vers zéro, nous pouvons l'approcher par une suite sommable $(\lambda^n x_n)_{n\in\mathbb{N}}$ quand $\lambda \uparrow 1$.

Exercice 11. Construire une suite de terme u_n dans $L^1 \cap L^2(\mathbb{R})$ telle que

$$\begin{cases} \|u_n\|_{L^1(\mathbb{R})} & \xrightarrow{n \to +\infty} +\infty \\ \|u_n\|_{L^2(\mathbb{R})} & \xrightarrow{n \to +\infty} 0. \end{cases}$$

Idée de solution de l'exercice 11. Posons $u_n(x) \doteq \chi_{[n,n^2]}(x)/x$. On observe que

$$||u_n||_{L^1(\mathbb{R})} = \int_n^{n^2} \frac{\mathrm{d}x}{x} = \log \frac{n^2}{n} = \log n$$

et

$$||u_n||_{L^2(\mathbb{R})}^2 = \int_n^{n^2} \frac{\mathrm{d}x}{x^2} = \frac{1}{n} - \frac{1}{n^2}.$$

Exercice 12. Étudions les fonctions continues sur \mathbb{R}^d .

(i) Montrez que

$$C_0(\mathbb{R}^d) = \{ u \in C_b(\mathbb{R}^d) : \lim_{|x| \to +\infty} u(x) = 0 \}.$$

est un sous-espace fermé de $C_b(\mathbb{R}^N)$.

- (ii) Montrez que les fonctions uniformément continues, Unif $\cap C_b(\mathbb{R}^d)$, forment un sous-espace vectoriel fermé de $C_b(\mathbb{R}^d)$.
- (iii) Montrez que Unif $\cap C_b(\mathbb{R}^d)$ est d'intérieur vide en montrant qu'il ne contient aucune boule ouverte.

Exercice 13. Donner un sous-espace vectoriel de $L^1(\mathbb{R})$ qui n'est pas fermé.

Exercice 14. On considère l'ensemble

$$V = \{u \in L^1(\mathbb{R}) : \forall \epsilon > 0, \int_{\mathbb{R}} |u| < \epsilon\}.$$

est-ce un sous-espace vectoriel de $L^1(\mathbb{R})$? De $L^6(\mathbb{R})$.