TRAVAUX DIRIGÉS: Équations différentielles

1 Équations différentielles linéaire scalaire d'ordre 1

Exercice 1: (Solution)

Résoudre les équations différentielles suivantes :

- 1. $y' + y = \sin(t)$.
- $2. \cos(t)y' + \sin(t)y = t.$
- 3. $y' \cos(t)y = \sin(2t)$.
- 4. 2ty' + y = 1 + t.
- 5. $y' 2y = \sin(2t)e^t$.
- 6. $t(1-t)y' + y = t \text{ (sur } I =]1; +\infty[$).

Exercice 2: (Solution)

Résoudre le problème de Cauchy :

$$\begin{cases} (1+t)^3 y' + 2(1+t)^2 y &= 1\\ y(0) &= 0 \end{cases}$$

Construire la courbe intégrale correspondante.

Exercice 3: (Solution)

Déterminer un développement limité à l'ordre 4 au voisinage de 0 de la fonction f vérifiant f(0)=0 et solution de l'équation différentielle :

$$2(t-1)y' + y = \sin(2t) + t^2.$$

Exercice 4: (Solution)

On considère l'équation différentielle :

$$(\mathscr{E}): |t|y' - y = t^2.$$

- 1. Résoudre l'équation (\mathscr{E}) sur \mathbb{R}_+^* et \mathbb{R}_-^* .
- 2. Résoudre l'équation (\mathscr{E}) sur \mathbb{R} .

Exercice 5: (Solution)

Déterminer l'ensemble des fonctions $f \in \mathscr{C}^0(\mathbb{R})$ telles que

$$\forall x \in \mathbb{R}, f(x) - \int_0^x t f(t) dt = 1.$$

Exercice 6: (Solution)

Résoudre sur $]-\frac{\pi}{2};\frac{\pi}{2}[$ le problème différentiel :

$$\begin{cases} \cos(t)y' + \sin(t)y &= 1\\ y(0) &= 2 \end{cases}$$

2 Équations différentielles linéaires scalaires d'ordre 2

Exercice 7: (Solution)

Résoudre les équations différentielles :

- 1. $y'' + y' + y = t^2 e^t + t$.
- 2. $y'' + 4y' + 4y = \sin(t)$.
- 3. $y'' 3y' + 2y = \operatorname{sh}(2t)$.
- 4. $y'' + 4y' + 4y = \frac{e^{-2t}}{1 + t^2}$.
- 5. $y'' + 2my' + y = e^{-t} : m \in \mathbb{R}$.
- 6. $y'' 2y' + y = e^{mt} : m \in \mathbb{R}$.
- 7. $y'' 2my' + (m^2 + 1)y = e^t \sin(t) : m \in \mathbb{R}$.

Exercice 8: (Solution)

On considère l'équation

$$(1+t^2)y'' + ty' - y = 0 \quad (\mathscr{E}).$$

- 1. Déterminer une solution polynomiale.
- 2. Déterminer la solution générale de (\mathcal{E}) .
- 3. Construire la courbe intégrale passant par le point A(0,1) et présentant une tangente parallèle à la première bissectrice en ce point.

Exercice 9: (Solution)

Résoudre le problème de Cauchy suivant en utilisant un développement en séries entières :

$$\begin{cases} y'' - 2xy' - 2y &= 0\\ y(0) = 1; y'(0) &= 0 \end{cases}$$

Exercice 10: (Solution)

Résoudre l'équation différentielle $(1+t^2)y'' + ty' - y = 0$ en posant $t = \operatorname{sh}(x)$.

Exercice 11: (Solution)

Déterminer les fonctions développables en série entière solutions de l'équation différentielle : 4ty'' + 2y' - y = 0.

Exercice 12: (Solution)

On considère l'équation différentielle :

$$(2x+1)y'' + (4x-2)y' - 8y = 0 : (\mathscr{E}).$$

- 1. Déterminer les solutions polynomiales de (\mathcal{E}) sur \mathbb{R} .
- 2. Déterminer les solutions du type $t \mapsto e^{\alpha t}$ sur \mathbb{R} .
- 3. Résoudre (\mathscr{E}) sur un intervalle ne contenant par $-\frac{1}{2}$.

Exercice 13: (Solution)

Soit $\alpha \in \mathbb{R}$. On considère sur] – 1; 1[l'équation différentielle :

$$(1-t^2)y'' - \alpha ty' + \alpha y = 0 : (\mathcal{E}_{\alpha}).$$

1. On suppose que $\alpha = 2$.

Déterminer les solutions de (\mathcal{E}_2) développables en série entière.

En déterminer une expression explicite.

A-t-on toutes les solutions de (\mathscr{E}_2) ?

2. On suppose que $\alpha = 3$.

Soit $n \in \mathbb{N}$ tel que $n \geqslant 3$.

Pour tout $P \in \mathbb{R}_n[X]$ on définit

$$\varphi(P) = (1 - X^2)P'' - 3XP'.$$

(a) Montrer que φ est un endomorphisme de $\mathbb{R}_n[X]$.

- (b) Déterminer la matrice de φ dans la base canonique de $\mathbb{R}_n[X]$.
- (c) L'endomorphisme φ est-il diagonalisable? En déduire toutes les solutions polynomiales de (\mathscr{E}_3) .
- 3. On suppose que $\alpha=1$. Résoudre l'équation différentielle (\mathcal{E}_1) en utilisant le changement de variable $t=\sin(x)$.

Exercice 14: (Solution)

Résoudre l'équation différentielle $(\mathscr{E}): t^2y''+4yy'+(2-t^2)y=1$ sur \mathbb{R}_+^* et \mathbb{R}_-^* en posant $z(t)=t^2y(t)$.

Étudier le recollement en 0.

SOLUTIONS TRAVAUX DIRIGÉS: Équations différentielles

Solution Exercice 1.

1. $(\mathscr{E}): y' + y = \sin(t); (\mathscr{H}): y' + y = 0$. On résout sur \mathbb{R} .

L'équation $(\mathcal{H}): y'+y=0$ a pour solution générale $y(t)=Ke^{-t}: K\in\mathbb{R}$.

On cherche une solution particulière de l'équation $(\mathscr{E}_{\mathbb{C}}): y'+y=e^{it}$.

On prendra la partie imaginaire de celle-ci pour obtenir une solution particulière de (\mathscr{E}) .

On cherche une solution de $(\mathcal{E}_{\mathbb{C}})$ sous la forme $y(t) = \lambda e^{it} : y'(t) = \lambda i e^{it}$.

On injecte dans $(\mathcal{E}_{\mathbb{C}})$ et on trouve :

$$\lambda i e^{it} + \lambda e^{it} = e^{it} \Longleftrightarrow \lambda (1+i) = 1$$
$$\Longleftrightarrow \lambda = \frac{1}{1+i} = \frac{1-i}{2}.$$

La fonction $t \mapsto y(t) = \frac{1-i}{2}e^{it}$ est solution de $(\mathscr{E}_{\mathbb{C}})$.

La fonction $t \mapsto y_p(t) = \frac{1}{2}(-\cos(t) + \sin(t))$ est solution particulière de (\mathscr{E}) . La solution générale de (\mathscr{E}) sur \mathbb{R} est donc

$$y: t \mapsto \frac{1}{2}(-\cos(t) + \sin(t)) + Ke^{-t}: K \in \mathbb{R}.$$

2. (\mathscr{E}) : $\cos(t)y' + \sin(t)y = t$; (\mathscr{H}) : $\cos(t)y' + \sin(t)y = 0$.

On résout sur chaque intervalle $I_k =]-\frac{\pi}{2}+k\pi; \frac{\pi}{2}+k\pi[, k\in\mathbb{Z} \text{ sur lequel la fonction cos ne s'annule pas.}$

Sur
$$I_k$$
, (\mathscr{E}) équivaut à $y' + \tan(t)y = \frac{t}{\cos(t)}$ et $(\mathscr{H}): y' + \tan(t)y = 0$.

La solution générale de (\mathscr{H}) sur $I_k: y(t) = Ke^{\ln|\cos(t)|} = K|\cos(t)|: K \in \mathbb{R}$. On cherche une solution particulière de (\mathscr{E}) en appliquant la méthode de la variation de la constante.

On écrit $y_p(t) = K(t) |\cos(t)|$.

Si k est pair, la fonction cos est positive sur I_k . Si k est impair, la fonction cos est négative sur I_k .

On traite le cas pair

Alors $y_p(t) = K(t)\cos(t)$ et $y_p(t) = K'(t)\cos(t) - K(t)\sin(t)$.

En injectant dans (\mathcal{E}) , il vient

$$K'(t)\cos(t) - K(t)\sin(t) + \tan(t)K(t)\cos(t) = \frac{t}{\cos(t)} \iff K'(t) = \frac{t}{\cos^2(t)}$$

Pour déterminer une primitive de K' on intègre par parties $(a, t \in I_k)$:

$$\begin{cases} f(u) &= u \\ g'(u) &= 1 + \tan^2 u \end{cases} \Longrightarrow \begin{cases} f'(u) &= 1 \\ g(u) &= \tan(u) \end{cases}$$

$$\int_{a}^{t} \frac{u}{\cos^{2}(u)} du = \int_{a}^{t} u(1 + \tan^{2}(u)) du$$
$$= \left[u \tan(u)\right]_{a}^{t} - \int_{a}^{t} \tan(u) du$$
$$= \left[u \tan(u)\right]_{a}^{t} + \left[\ln|\cos(u)|\right]_{a}^{t}.$$

Sur I_k , une primitive de K' est donnée par $K(t) = t \tan(t) + \ln|\cos(t)|$. Sur I_k une solution particulière de (\mathscr{E}) est donc $y_p(t) = K(t)|\cos(t)| = K(t)\cos(t) = t\cos(t)\tan(t) + \cos(t)\ln|\cos(t)|$. (dans le cas impair, on obtient :

$$K'(t) = -\frac{t}{\cos^2(t)}$$
, $K(t) = -t\tan(t) - \ln|\cos(t)|$ et finalement, $y_p(t) = K(t)|\cos(t)| = -K(t)\cos(t) = t\cos(t)\tan(t) + \cos(t)\ln|\cos(t)|$ une solution particulière a donc la même expression dans ce cas également). La solution générale de (\mathscr{E}) sur I_k est donc

$$y:t\mapsto y(t)=K|\cos(t)|+t\cos(t)\tan(t)+\cos(t)\ln|\cos(t)|:K\in\mathbb{R}.$$

3. $(\mathscr{E}): y' - \cos(t)y = \sin(2t); (\mathscr{H}): y' - \cos(t)y = 0$. On résout sur \mathbb{R} La solution générale de $(\mathscr{H}): y' = \cos(t)y$ est $y(t) = Ke^{\sin(t)}: K \in \mathbb{R}$. Pour déterminer une solution particulière on fait varier la constante. On note $y_p(t) = K(t)e^{\sin(t)}$. On injecte dans (\mathscr{E}) et on trouve

$$K'(t)e^{\sin(t)} + \cos(t)K(t)e^{\sin(t)} - \cos(t)K(t)e^{\sin(t)} = \sin(2t)$$

$$\iff K'(t) = e^{-\sin(t)}\sin(2t) = 2\sin(t)\cos(t)e^{-\sin(t)}.$$

On intègre par parties pour déterminer une primitive : $% \left(1,...,1\right) =\left(1,...,1\right)$

$$\begin{cases} f(u) &= 2\sin(u) \\ g'(u) &= \cos(u)e^{-\sin(u)} \end{cases} \Longrightarrow \begin{cases} f'(u) &= 2\cos(u) \\ g(u) &= -e^{-\sin(u)} \end{cases}$$

On obtient:

$$\int_{a}^{t} K'(u)du = \left[-2\sin(u)e^{-\sin(u)}\right]_{a}^{t} + \int_{a}^{t} 2\cos(u)e^{-\sin(u)}du$$
$$= \left[-2\sin(u)e^{-\sin(u)}\right]_{a}^{t} + 2\left[-e^{-\sin(u)}\right]_{a}^{t}.$$

Une primitive de K' est donc donnée par $K(t) = -2\sin(t)e^{-\sin(t)} - 2e^{-\sin(t)}$. Une solution particulière est donc $y_p(t) = K(t)e^{\sin(t)} = -2\sin(t) - 2$. La solution générale de (\mathscr{E}) est donc :

$$y: t \mapsto -2\sin(t) - 2 + Ke^{\sin(t)}: K \in \mathbb{R}.$$

4. $(\mathscr{E}): 2ty' + y = 1 + t; (\mathscr{H}): 2ty' + y = 0.$

On résout sur $I =]0; +\infty[$ ou $I =]-\infty; 0[$.

L'équation homogène est équivalente sur I à $y'=-\frac{1}{2t}y$ dont la solution générale s'écrit $y(t)=Ke^{-\frac{1}{2}\ln|t|}=\frac{K}{\sqrt{|t|}}.$

On cherche une solution particulière sous forme polynomiale $y_p(t) = q(t)$. On injecte dans (\mathscr{E}) , on obtient

$$2tq'(t) + q(t) = 1 + t \quad \text{ainsi } \deg(q) = 1 \quad q(t) = at + b.$$

On obtient 2t(a) + (at + b) = 1 + t donc $a = \frac{1}{3}, b = 1$.

Une solution particulière de (\mathscr{E}) est donc $y_p(t) = \frac{t}{3} + 1$ et la solution générale :

$$y: t \longmapsto \frac{t}{3} + 1 + \frac{K}{\sqrt{|t|}}.$$

5. $(\mathscr{E}): y' - 2y = \sin(2t)e^t; (\mathscr{H}): y' - 2y = 0.$

On résout sur \mathbb{R} . L'équation homogène a pour solution générale $y(t)=Ke^{2t}$: $K\in\mathbb{R}$.

On cherche une solution particulière de $(\mathscr{E}_{\mathbb{C}})$: $y'-2y=e^{(2i+1)t}$ et on prendra la partie imaginaire.

On cherche une solution de $(\mathscr{E}_{\mathbb{C}})$ sous la forme $y(t) = \lambda e^{(2i+1)t}$.

Alors $y'(t)=(2i+1)\lambda e^{(2i+1)t}$. On injecte dans ($\mathscr E$) est on obtient (on simplifie par $e^{(2i+1)t}\neq 0$) :

$$(2i+1)\lambda - 2\lambda = 1 \Longleftrightarrow \lambda = \frac{1}{-1+2i} = \frac{-1-2i}{5}$$

Ainsi, $y(t) = \frac{-1-2i}{5}e^{(2i+1)t}$ est solution de $(\mathscr{E}_{\mathbb{C}})$.

Par conséquent $y_p(t) = -\frac{1}{5}e^t \sin(2t) - \frac{2}{5}e^t \cos(2t)$.

La solution générale de (\mathscr{E}) est donc

$$y:t\mapsto -\frac{1}{5}e^t\sin(2t)-\frac{2}{5}e^t\cos(2t)+Ke^{2t}:K\in\mathbb{R}.$$

6. $(\mathscr{E}): t(1-t)y' + y = t; (\mathscr{H}): t(1-t)y' + y = 0.$

On résout sur $I =]-\infty; 0[, I =]0; 1[, I =]1; +\infty[.$

Sur chacun des ces intervalles, $(\mathcal{H}) \Leftrightarrow y' = \frac{1}{t(t-1)}y = \left(\frac{1}{t-1} - \frac{1}{t}\right)y$.

La solution générale de (\mathcal{H}) est $y(t) = Ke^{\ln|t-1|-\ln|t|} = K\frac{|t-1|}{|t|} : K \in \mathbb{R}$.

On cherche une solution y_p particulière sur $I =]1; +\infty[$.

On fait varier la constante, on écrit $y_p(t) = K(t) \frac{t-1}{t}$.

On a $y_p'(t) = K'(t) \frac{t-1}{t} + \frac{K(t)}{t^2}$ et en injectant dans (&), il vient

$$t(1-t)K'(t)\frac{t-1}{t} + \underbrace{t(1-t)\frac{K(t)}{t^2} + K(t)\frac{t-1}{t}}_{=0} = t$$

$$\iff K'(t) = -\frac{t}{(1-t)^2} \iff K'(t) = \frac{1-t-1}{(1-t)^2}$$

$$\iff K'(t) = \frac{1}{1-t} - \frac{1}{(1-t)^2}$$

$$\iff K(t) = -\ln(|1-t|) - \frac{1}{1-t} + C$$

On en déduit qu'une solution particulière de ($\mathscr E$) est donnée sur $I=]1;+\infty[$ par

$$y_p(t) = \frac{t-1}{t} \left(-\ln(t-1) - \frac{1}{1-t} \right) = \frac{1-t}{t} \ln(t-1) + \frac{1}{t}$$

La solution générale sur $I =]1; +\infty[$ est donc

$$y(t) = \frac{1-t}{t}\ln(t-1) + \frac{1}{t} + K\frac{t-1}{t} : K \in \mathbb{R}.$$

Les techniques sont similaires sur I =]0; 1[et $I =]-\infty; 0[$.

Solution Exercice 2.

On considère le problème de Cauchy :

$$\begin{cases} (1+t)^3y' + 2(1+t)^2y = 1\\ y(0) = 0 \end{cases}$$

On résout sur $I =]-1; +\infty[$.

Sur cet intervalle la fonction $t \mapsto (1+t)^3$ ne s'annule pas, ce problème possède donc une unique solution s'annulant en 0. On la notera f.

L'équation homogène $(1+t)^3y' + 2(1+t)^2y = 0$ est équivalente sur I à

$$y' = -\frac{2}{1+t}y \iff y(t) = Ke^{-2\ln(1+t)} = \frac{K}{(1+t)^2} : K \in \mathbb{R}.$$

Pour déterminer la solution du problème de Cauchy, on fait varier la constante.

On note
$$y_p(t) = \frac{K(t)}{(1+t)^2}$$
. Pour tout $t > -1$, on a $y'_p(t) = \frac{K'(t)}{(1+t)^2} - \frac{2K(t)}{(1+t)^3}$.

On injecte dans l'équation différentielle, on obtient :

$$(1+t)K'(t) - 2K(t) + 2K(t) = 1 \Longleftrightarrow K'(t) = \frac{1}{1+t} \Longleftrightarrow K(t) = \ln(1+t) + C$$

On obtient donc les solutions particulières : $y_p(t) = \frac{\ln(1+t)}{(1+t)^2} + \frac{C}{(1+t)^2}, C \in \mathbb{R}.$

La fonction $f: t \mapsto \frac{\ln(1+t)}{(1+t)^2}$ (avec C=0) s'annule en 0.

C'est la solution du problème de Cauchy.

La fonction f est dérivable sur $]-1;+\infty[$ (car solution de l'équa. diff.).

On obtient aisément la dérivée de f en utilisant l'équation différentielle.

Pour tout t > -1:

$$f'(t) = \frac{1}{(1+t)^3} - \frac{2}{(1+t)}f(t) = \frac{1}{(1+t)^3} - \frac{2}{(1+t)}\frac{\ln(1+t)}{(1+t)^2} = \frac{1-2\ln(1+t)}{(1+t)^3}$$
$$f'(t) \geqslant 0 \iff t \leqslant \sqrt{e} - 1.$$

La fonction f est strictement croissante sur $]-\infty; \sqrt{e}-1]$. La fonction f est strictement décroissante sur $[\sqrt{e}-1;+\infty[$.

On a $\lim_{t \to -1^+} f(t) = -\infty$ et $\lim_{t \to +\infty} f(t) = 0$.

La courbe intégrale du problème de Cauchy est celle passant par 0. On a dessiné d'autres courbes pour certaines valeurs de C.

Solution Exercice 3. La fonction f est l'unique solution sur $]-\infty;1[$ du problème de Cauchy :

$$\begin{cases} 2(t-1)y' + y = \sin(2t) + t^2 \\ y(0) = 0 \end{cases}$$

On montre par récurrence que f est de classe \mathscr{C}^{∞} sur $]-\infty;1[$. La formule de Taylor-Young en 0 à l'ordre 5 donne (f(0)=0):

$$\begin{cases} f(t) &= at + bt^2 + ct^3 + dt^4 + et^5 + o(t^5) \\ f'(t) &= a + 2bt + 3ct^2 + 4dt^3 + 5et^4 + o(t^4). \end{cases}$$

On obtient donc le $DL_4(0)$:

$$2(t-1)f'(t)+f(t) = -2a + (3a-4b)t + (5b-6c)t^2 + (7c-8d)t^3 + (9d-10e)t^4 + o(t^4).$$

On identifie avec le $DL_4(0)$:

$$\sin(2t) + t^2 \underset{t \to 0}{=} (2t) - \frac{(2t)^3}{3!} + o(t^4) + t^2$$
$$\underset{t \to 0}{=} 2t + t^2 - \frac{4t^3}{3} + o(t^4).$$

On obtient alors successivement

$$a = 0, b = -\frac{1}{2}, c = -\frac{7}{12}, d = -\frac{11}{32}, e = -\frac{99}{320}.$$

Solution Exercice 4. On considère l'équation différentielle :

$$(\mathscr{E}): |t|y' - y = t^2.$$

1. — On résout sur $I =]0; +\infty[$.

Sur cet intervalle, l'équation (\mathscr{E}) est équivalente à $y' - \frac{1}{t}y = t$.

L'équation homogène associée $y' - \frac{1}{t}y = 0$ a pour solution générale

$$y(t) = Kt : K \in \mathbb{R}.$$

La fonction $t \mapsto y_p(t) = t^2$ est solution particulière évidente sur \mathbb{R}_+^* . La solution générale sur \mathbb{R}_+^* est donc $y(t) = t^2 + Kt : K \in \mathbb{R}$.

— On résout sur $I =]-\infty; 0[.$

Sur cet intervalle, l'équation (\mathscr{E}) est équivalente à $y' + \frac{1}{t}y = -t$.

L'équation homogène associée a pour solution générale $y(t) = \frac{K}{t} : K \in \mathbb{R}$.

On fait varier la constante pour déterminer une solution particulière : $y_p(t) = \frac{K(t)}{t} : y_p'(t) = \frac{K'(t)}{t} - \frac{K(t)}{t^2}$ On injecte dans ($\mathscr E$) et on obtient :

$$K'(t) = -t^2 \Longleftrightarrow K(t) = -\frac{t^3}{2} + C.$$

Une solution particulière est donc $y_p(t) = -\frac{t^2}{3}$ et la solution générale de (\mathscr{E}) sur $I =]-\infty; 0[$ est :

$$y: t \mapsto -\frac{t^2}{3} + \frac{K}{t}$$
.

2. On suppose qu'une fonction y est solution de (\mathscr{E}) sur \mathbb{R} .

Il existe alors des constantes K_+ et K_- telles que

$$-- \forall t > 0, y(t) = t^2 + K_+ t.$$

$$- \forall t < 0, y(t) = -\frac{t^2}{3} + \frac{K_-}{t}.$$

La continuité de la fonction y en 0 donne $\lim_{t\to 0^-}=\lim_{t\to 0^+}y(t)$.

Mais $\lim_{t\to 0^+}y(t)=0$ donc nécessairement $K_-=0.$ On obtient au passage que $y(0)=\lim_0 y=0.$

Mais la fonction y doit être dérivable en 0 dont

$$\lim_{t\to 0^+}\frac{y(t)-y(0)}{t-0}=\lim_{t\to 0^+}\frac{y(t)}{t}=\lim_{t\to 0^+}(t+K_+)=K_+=\lim_{t\to 0^-}\frac{y(t)-y(0)}{t-0}$$

avec

$$\lim_{t \to 0^{-}} \frac{y(t) - y(0)}{t - 0} = \lim_{t \to 0^{-}} -\frac{t}{3} = 0$$

On obtient donc $K_{+} = 0$.

Finalement, si y est solution de (\mathcal{E}) sur \mathbb{R} alors

$$y(t) = \begin{cases} t^2 & \text{si } t > 0, \\ 0 & \text{si } t = 0, \\ -\frac{t^2}{3} & \text{si } t < 0. \end{cases}$$

On vérifie enfin que y est solution bien solution sur \mathbb{R} . (car solution sur \mathbb{R}_+^* , \mathbb{R}_-^* et l'équation est vérifiée en t=0 car y(0)=0).

Solution Exercice 5. Si $f \in \mathscr{C}^0(\mathbb{R})$ vérifie :

$$\forall x \in \mathbb{R}, f(x) - \int_0^x t f(t) dt = 1.$$

alors pour tout $x \in \mathbb{R}$, $f(x) = 1 + \int_0^x t f(t) dt$.

La fonction $t \mapsto tf(t)$ étant continue sur \mathbb{R} , on en déduit que $t \mapsto 1 + \int_0^x tf(t)dt$ est de classe \mathscr{C}^1 sur \mathbb{R} .

On obtient
$$\forall x \in \mathbb{R}, f'(x) = xf(x)$$
. De plus $f(0) = 1 + \int_0^0 tf(t)dt = 1$.

L'équation différentielle y=ty a pour solution générale $y(t)=Ke^{\frac{t^2}{2}}:K\in\mathbb{R}$. Avec la condition supplémentaire f(0)=1, il vient $K=1:f(t)=e^{\frac{t^2}{2}}$.

Réciproquement la fonction $f: x \mapsto e^{\frac{x^2}{2}} - 1$ vérifie :

$$\int_0^x tf(t)dt = \int_0^x te^{\frac{t^2}{2}}dt = \left[e^{\frac{t^2}{2}}\right]_0^x = e^{\frac{x^2}{2}} - 1 = f(x) - 1.$$

Solution Exercice 6. La problème de Cauchy suivant

$$\begin{cases} \cos(t)y' + \sin(t)y &= 1\\ y(0) &= 2 \end{cases}$$

possède sur $I =]-\frac{\pi}{2}; \frac{\pi}{2}[$ une unique solution car la fonction cos ne s'annule pas sur cet intervalle (cos > 0 sur I).

Sur I l'équation différentielle de ce problème est équivalente à

$$y' + \tan(t)y = \frac{1}{\cos(t)}.$$

L'équation homogène associée $y' + \tan(t)y = 0$ a pour solution générale $y(t) = Ke^{\ln|\cos(t)|} = K|\cos(t)| = K\cos(t) : K \in \mathbb{R}$.

On remarque (ou bien on fait varier la constante) que la fonction $t \mapsto y_p(t) = \sin(t)$ est solution particulière de (\mathscr{E}) .

On en déduit que la solution générale de (\mathscr{E}) : $\cos(t)y' + \sin(t)y = 1$ est

$$y: t \longmapsto \sin(t) + K\cos(t): K \in \mathbb{R}.$$

La condition supplémentaire y(0)=2 donne par le théorème de Cauchy-Lipschitz l'unicité de la solution du problème de Cauchy :

$$y: t \longmapsto \sin(t) + 2\cos(t)$$
.

Solution Exercice 7.

1. $(\mathscr{E}): y'' + y' + y = t^2 e^t + t; (\mathscr{H}): y'' + y' + y = 0.$

L'équation homogène a pour équation caractéristique $X^2+X+1=0$ dont les solutions sont les nombres complexes conjugués $j=e^{\frac{2i\pi}{3}}$ et \bar{j} .

Toute solution de (\mathcal{H}) s'écrit $y(t)=e^{-\frac{t}{2}}\left(A\cos(\frac{\sqrt{3}}{2}t)+B\sin(\frac{\sqrt{3}}{2}t)\right)$: $(A,B)\in\mathbb{R}^2.$

On détermine une solution particulière à l'aide du principe de superposition des solutions.

- La fonction $y_1(t) = t 1$ est une solution particulière de l'équation (\mathcal{E}_1) : y'' + y' + y = t.
- On cherche une solution particulière y_2 de l'équation

$$(\mathscr{E}_2): y'' + y' + y = t^2 e^t$$

sous la forme $y_2(t) = (at^2 + bt + c)e^t$ car m = 1 n'est pas racine de l'équation caractéristique.

On a
$$y_2'(t) = (at^2 + (2a+b)t + (b+c))e^t$$
 et

$$y_2''(t) = (at^2 + (4a+b)t + (2a+2b+c))e^t$$
.

On injecte dans (\mathscr{E}_2) : y_2 est solution si et seulement si (on simplifie par $e^t \neq 0$)

$$2at^{2} + t(2a + b) + (2a + b + c) = t^{2}$$

Il vient
$$a = \frac{1}{3}$$
, $b = -\frac{2}{3}$, $c = \frac{4}{9}$.

La fonction $y_2(t) = \frac{t^2}{3} - \frac{2t}{3} + \frac{4}{9}$ est solution particulière de (\mathcal{E}_2) . Finalement, $y_p(t) = y_1(t) + y_2(t)$ est solution particulière de (\mathcal{E}) .

On en déduit la solution générale de (\mathscr{E}) :

$$y: t \mapsto (t-1) + \left(\frac{t^2}{3} - \frac{2t}{3} + \frac{4}{9}\right) + e^{-\frac{t}{2}} \left(A\cos\frac{\sqrt{3}}{2}t + B\sin\frac{\sqrt{3}}{2}t\right): (A, B) \in \mathbb{R}^2.$$

2. $(\mathscr{E}): y'' + 4y' + 4y = \sin(t); (\mathscr{H}): y'' + 4y' + 4y = 0.$

L'équation caractéristique de l'équation homogène $X^2 + 4X + 4 = 0 \iff (X+2)^2 = 0$ possède une unique solution réelle double r = -2.

Ainsi, toute solution de (\mathcal{H}) s'écrit $y(t) = (A + Bt)e^{-2t} : (A, B) \in \mathbb{R}^2$.

On cherche une solution particulière de $(\mathscr{E}_{\mathbb{C}}): y'' + 4y' + 4y = e^{it}$.

On la cherche sous la forme $\lambda e^{it}, \lambda \in \mathbb{C}$ car m=i n'est pas racine de l'équation caractéristique.

On écrit
$$y_p(t) = \lambda e^{it}$$
, $y'_p(t) = \lambda i e^{it}$, $y''_p(t) = -\lambda e^{it}$.

On injecte dans $(\mathscr{E}_{\mathbb{C}})$ et on trouve

(en simplifiant par $e^{it} \neq 0$):

$$-\lambda + 4\lambda i + 4\lambda = 1 \Longleftrightarrow \lambda = \frac{3 - 4i}{25}.$$

Une solution particulière de $(\mathscr{E}_{\mathbb{C}})$ est donc

$$y: t \longmapsto y(t) = \frac{3-4i}{25}e^{it}.$$

Une solution particulière de (\mathcal{E}) est donc

$$y_p: t \longmapsto \frac{3}{25}\sin(t) - \frac{4}{25}\cos(t).$$

La solution générale de (&) est donc

$$y: t \longmapsto \frac{3}{25}\sin(t) - \frac{4}{25}\cos(t) + (A+Bt)e^{-2t}: (A,B) \in \mathbb{R}^2.$$

3. $(\mathscr{E}): y'' - 3y' + 2y = \operatorname{sh}(2t); (\mathscr{H}): y'' - 3y' + 2y = 0.$

L'équation caractéristique de l'équation homogène (\mathcal{H}) , $X^2 - 3X + 2 = 0 \iff (X-1)(X-2) = 0$ admet pour solutions 1, 2.

Toute solution de (\mathcal{H}) s'écrit donc $y(t) = Ae^t + Be^{2t} : (A, B) \in \mathbb{R}^2$.

On applique la principe de superposition pour trouver une solution particulière de l'équation $(\mathscr{E}): y''-3y'+2y=\operatorname{sh}(2t)=\frac{e^{2t}}{2}+\frac{e^{-2t}}{2}.$

 $--(\mathscr{E}_1): y'' - 3y' + 2y = \frac{e^{2t}}{2}.$

On cherche une solution y_1 sous la forme $y_1(t) = (at + b)e^{2t}$ car m = 2 est racine simple de (\mathcal{E}_1) .

 $y_1'(t) = ae^{2t} + (2at + 2b)e^{2t} = e^{2t}(2at + a + 2b).$

$$y_1''(t) = e^{2t}(4at + 2a + 4b + 2a) = e^{2t}(4at + 4a + 4b) = 4e^{2t}(at + a + b).$$

On injecte dans (\mathcal{E}_1) et on obtient

(en simplifiant par $e^{2t} \neq 0$):

$$(4at + 4a + 4b) - (6at + 3a + 6b) + (2at + 2b) = \frac{1}{2}$$

 $\iff a = \frac{1}{2}, b \in \mathbb{R}$

Ainsi, la fonction $t \mapsto y_1(t) = \frac{t}{2}e^{2t}$ est solution de (\mathscr{E}_1) .

— On cherche une solution de (\mathscr{E}_2) : $y'' - 3y' + 2y = \frac{e^{-2t}}{2}$ sous la forme $y_2(t) = \lambda e^{-2t}$ car m = -2 n'est pas solution de l'équation caractéristique. $y_2'(t) = -2\lambda e^{-2t}$ et $y''(t) = 4\lambda e^{-2t}$. On injecte dans (\mathscr{E}_2) : on obtient $\lambda = \frac{1}{24}$.

Ainsi, la fonction $t \mapsto y_2(t) = \frac{1}{24}e^{-2t}$ est solution de (\mathscr{E}_2) .

Au final la fonction $y_p: t \longmapsto y_1(t) + y_2(t)$ est solution particulière de (\mathscr{E}) . La solution générale de (\mathscr{E}) est :

$$y: t \longmapsto \frac{t}{2}e^{2t} + \frac{1}{24}e^{-2t} + Ae^t + Be^{2t}: (A, B) \in \mathbb{R}^2.$$

4.
$$(\mathscr{E}): y'' + 4y' + 4y = \frac{e^{-2t}}{1+t^2}; (\mathscr{H}): y'' + 4y' + 4y = 0.$$

On résout sur \mathbb{R} .

L'équation caractéristique de $(\mathscr{H}): X^2+4X+4=0$ possèdes une unique racine double r=-2.

Toute solution de (\mathcal{H}) s'écrit donc $y(t) = (A + Bt)e^{-2t} : (A, B) \in \mathbb{R}^2$.

Pour déterminer les solutions de (\mathscr{E}) un utilise la méthode de factorisation par une solution de l'équation homogène.

On cherche la solution de (\mathscr{E}) sous la forme $y(t) = \lambda(t)\varphi(t)$ où $\varphi(t) = e^{-2t}$ est solution de l'équation (\mathscr{H}) (A = 1, B = 0).

$$y'(t) = \lambda'(t)e^{-2t} - 2\lambda(t)e^{-2t} = (\lambda'(t) - 2\lambda(t))e^{-2t}.$$

$$y''(t) = (\lambda''(t) - 4\lambda'(t) + 4\lambda(t))e^{-2t}.$$

On injecte dans (\mathcal{E}) et on obtient

(on simplifie par $e^{-2t} \neq 0$):

$$\lambda''(t) = \frac{1}{1+t^2}.$$

On obtient

$$\lambda'(t) = \arctan(t) + C$$

puis via une intégration par parties :

$$\lambda(t) = t \arctan(t) - \frac{1}{2} \ln(1 + t^2) + Ct + D.$$

Au final la solution générale de (\mathscr{E}) est donnée par

$$y: t \longmapsto \underbrace{e^{-2t} t \arctan(t) - \frac{e^{-2t}}{2} \ln(1+t^2)}_{\text{solution part.}} + \underbrace{(Ct+D)e^{-2t}}_{\in S_{\mathscr{H}}}.$$

5. $(\mathscr{E}): y'' + 2my' + y = e^{-t}: m \in \mathbb{R}: (\mathscr{H}): y'' + 2my' + y = 0.$

L'équation caractéristique de (\mathcal{H}) : $X^2 + 2mX + 1 = 0$ a pour discriminant $\Delta = 4m^2 - 4 = 4(m-1)(m+1)$.

— Premier cas.

Si $m \in]-\infty;-1[\cup]1;+\infty[$ alors $\Delta>0$ et l'équation caractéristique possède deux solutions réelles distinctes notées

$$r_1 = -m - \sqrt{(m-1)(m+1)}, r_2 = -m + \sqrt{(m-1)(m+1)}.$$

Toute solution de (\mathcal{H}) est donc de la forme $y(t) = Ae^{r_1t} + Be^{r_2t}$ avec $(A, B) \in \mathbb{R}^2$.

— Si m > 1 alors clairement $r_1 < -1$ clairement et

$$r_2 > -1 \Longleftrightarrow -m + \sqrt{(m-1)(m+1)} > -1$$

$$\iff \sqrt{(m-1)(m+1)} > m - 1 (> 0)$$

$$\iff (m-1)(m+1) > (m-1)^2$$

$$\iff m^2 - 1 > m^2 - 2m + 1$$

$$\iff -1 > -2m + 1$$

$$\iff m > 1$$

— Si m < -1, on montre aisément que $r_1 \ge 0 > -1$ et $r_2 > 1$. Une solution particulière de (\mathscr{E}) est donc de la forme λe^{-t} avec $\lambda \in \mathbb{R}$ car -1 n'est pas racine de l'équation caractéristique.

On injecte $y'(t) = -\lambda e^{-t}$ et $y''(t) = \lambda e^{-t}$ dans (\mathscr{E}) : (on simplifie par $e^{-t} \neq 0$):

$$\lambda - 2m\lambda + \lambda = 1 \iff \lambda = \frac{1}{2(1-m)}$$

Ainsi, $y_p: t \longmapsto \frac{1}{2(1-m)}e^{-t}$ est solution particulière de (\mathscr{E}) . La solution générale dans le cas $m \in]-\infty; -1[\cup]1; +\infty[$ est donc

$$y: t \longmapsto \frac{1}{2(1-m)}e^{-t} + (Ae^{r_1t} + Be^{r_2t}): (A, B) \in \mathbb{R}^2.$$

— Deuxième cas.

On suppose que m=1. Dans ce cas l'équation caractéristique de (\mathcal{H}) possède une unique racine double r=-1.

Toute solution de (\mathcal{H}) s'écrit donc $y(t) = (A + Bt)e^{-t} : (A, B) \in \mathbb{R}^2$.

Puisque -1 est racine double de l'équation caractéristique, il existe une solution particulière de $y_p(t) = q(t)e^{-t}$ avec q fonction polynomiale de degré $\deg(q) = \deg(1) + 2 = 2$.

On écrit $q(t) = at^2 + bt + c$ et

 $y_p(t) = (at^2 + bt + c)e^{-t}$.

On a $y'_p(t) = (-at^2 + (2a - b)t + (b - c))e^{-t}$ et

$$y_p''(t) = (at^2 - (2a - b)t - (b - c) - 2at + (2a - b))e^{-t}$$
$$= (at^2 - (4a - b)t + (2a - 2b + c))e^{-t}$$

On injecte dans (\mathscr{E}) et on obtient : (on simplifie par $e^{-t} \neq 0$)

$$2a = 1 \iff a = \frac{1}{2}$$
. Ainsi : $y(t) = \frac{t^2}{2}e^{-t}$.

La solution générale $y:t\longmapsto \frac{t^2}{2}e^{-t}+(A+Bt)e^{-t}:(A,B)\in\mathbb{R}^2$

— Troisième cas.

On suppose que m=-1. Dans ce cas l'équation caractéristique de (\mathcal{H}) possède une unique racine double r=1.

Toute solution de (\mathcal{H}) est donc de la forme $(A+Bt)e^t$.

Puisque -1 n'est pas racine de l'équation caractéristique, il existe une solution de $(\mathscr{E}): y'' - 2y' + y = e^{-t}$ sous la forme $y_p^{(t)} \lambda e^{-t}$.

On trouve en injectant dans (\mathscr{E}), $\lambda = \frac{1}{4}$ et $y_p(t) = \frac{1}{4}e^{-t}$.

Au final la solution générale de (\mathscr{E}) dans le cas m = -1 est

$$y: t \longmapsto \frac{e^{-t}}{4} + (A+Bt)e^t: (A,B) \in \mathbb{R}^2.$$

— Quatrième cas.

On suppose que $m \in]-1;1[$.

Dans ce cas $\Delta < 0$ et l'équation caractéristique possède deux racines complexes conjuguées,

$$r_1 = -m - i\sqrt{(1-m)(m+1)}$$
 et $r_2 = -m + i\sqrt{(1-m)(m+1)}$

Toute solution de (\mathscr{H}) s'écrit donc

$$y(t) = e^{-mt} \left[A\cos\left(t\sqrt{(1-m)(m+1)}\right) + B\sin\left(t\sqrt{(1-m)(m+1)}\right) \right]$$

avec $(A, B) \in \mathbb{R}^2$.

Puisque -1 n'est pas solution de l'équation caractéristique (les solutions sont complexes, non réelles) on cherche une solution particulière de (\mathscr{E}) : $y'' + 2my' + y = e^{-t}$ sous la forme $y_p(t) = \lambda e^{-t}, \lambda \in \mathbb{R}$.

On trouve $y_p(t) = \frac{1}{2(1-m)}e^{-t}$.

La solution générale de (\mathscr{E}) dans le cas $m \in]-1;1[$ est donnée par :

$$\frac{e^{-t}}{2(1-m)} + e^{-mt} \left[A\cos\left(t\sqrt{(1-m)(m+1)}\right) + B\sin\left(t\sqrt{(1-m)(m+1)}\right) \right]$$

avec $(A, B) \in \mathbb{R}^2$.

6. $(\mathscr{E}): y'' - 2y' + y = e^{mt}: (\mathscr{H}): y'' - 2y' + y = 0.$

L'équation homogène (\mathcal{H}) admet pour équation caractéristique

 $X^2 - 2X + 1 = 0 \iff (X - 1)^2 = 0.$

L'équation caractéristique possède donc une racine double r=1.

Par conséquent, toute solution de (\mathcal{H}) s'écrit $y(t) = (A + Bt)e^t$.

— Premier cas.

Si $m \neq 1$, alors m n'est pas racine de l'équation caractéristique donc une solution particulière de (\mathscr{E}) est de la forme $y_p(t) = \lambda e^{mt}$.

On injecte dans (\mathscr{E}) et on trouve $\lambda = \frac{1}{(m-1)^2}$ puis $y_p(t) = \frac{1}{(\lambda-1)^2}$.

Au final dans le cas $m \neq 1$, la solution générale de (\mathscr{E}) est :

$$y: t \longmapsto \frac{e^{mt}}{(\lambda - 1)^2} + (A + Bt)e^t : (A, B) \in \mathbb{R}^2.$$

— Deuxième cas.

On suppose m=1.

Dans ce cas m=1 est racine double de l'équation caractéristique.

La solution générale de (\mathcal{H}) est $y(t) = (A + Bt)e^t$.

On cherche donc une solution particulière de l'équation $y'' - 2y' + y = e^t$ sous la forme $y_p(t) = q(t)e^t$ avec $\deg(q) = \deg(1) + 2 = 2$.

On écrit $q(t) = (at^2 + bt + c)$

et $y_p(t) = (at^2 + bt + c)e^t$.

En injectant y_p et ses dérivées dans (\mathscr{E}) on trouve $a = \frac{1}{2}$ et $y_p(t) = \frac{t^2}{2}$ est solution paticulière de (\mathscr{E}) ..

Au final, la solution générale de (\mathcal{E}) dans le cas m=1 est :

$$t \longmapsto y(t) = \frac{t^2 e^t}{2} + (A + Bt)e^t : (A, B) \in \mathbb{R}^2.$$

7. $(\mathscr{E}): y''-2my'+(m^2+1)y=e^t\sin(t): (\mathscr{H}): y''-2my'+(m^2+1)y=0.$ L'équation caractéristique de (\mathscr{H}) $X^2-2mX+(m^2+1)=0$ a pour discriminant $\Delta=-4=(2i)^2.$

Par conséquent l'équation caractéristique possède deux solutions complexes conjuguées : $r_1 = m + i$ et $r_2 = \overline{r_1} = m - i$.

Toute solution de (\mathcal{H}) est donc de la forme $y(t) = e^{mt}(A\cos(t) + B\sin(t))$ avec $(A, B) \in \mathbb{R}^2$.

On cherche une solution y de l'équation $(\mathscr{E}_{\mathbb{C}}): y''-2my'+(m^2+1)y=e^{(1+i)t}$ et on prendra la partie imaginaire pour obtenir une solution particulière de l'équation initiale (\mathscr{E}) .

On cherche y sous la forme $y(t)=q(t)e^{(1+i)t}$ avec q une fonction polynomiale à coefficients complexes.

— Premier cas.

Si (1+i) est solution (simple) de l'équation caractéristique, alors q est de degré 1.

Ce cas apparaît lorsque $m+i=1+i \iff m=1$ (l'autre cas $m+i=1-i \iff m=1+2i$ est impossible car $m \in \mathbb{R}$).

On a $y'(t) = (q' + (1+i)q)e^{(1+i)t}$ et $y''(t) = (2(1+i)q' + (1+i)^2q)e^{(1+i)t}$. Ainsi, y est solution de (\mathscr{E}_{Γ}) si et seulement si pour tout $t \in \mathbb{R}$,

(on simplifie par $e^{(1+i)t} \neq 0$):

$$(2(1+i)q'+2iq)-2m(q'+(1+i)q)+(m^2+1)q=1$$

$$\underset{(m=1)}{\Longleftrightarrow} (2(1+i)q'+2iq)-2(q'+(1+i)q)+2q=1$$

$$\Longleftrightarrow 2iq'=1 \Longleftrightarrow 2ia=1, b\in \mathbb{C} \Longleftrightarrow a=\frac{1}{2i}=-\frac{i}{2}, b\in \mathbb{C}.$$

Ainsi, $y(t) = -\frac{i}{2}te^{(1+i)t}$ est solution particulière de $(\mathscr{E}_{\mathbb{C}})$. Par suite, $y_p(t) = -\frac{te^t}{2}\cos(t)$ est solution particulière de (\mathscr{E}) . La solution générale de (\mathscr{E}) :

$$y: t \longmapsto -\frac{t}{2}e^t\cos(t) + e^t(A\cos(t) + B\sin(t)): (A, B) \in \mathbb{R}^2$$

— Second cas.

Si $m \neq 1$ alors 1+i n'est pas racine de l'équation caractéristique par ce qui précède.

On cherche une solution particulière de $(\mathscr{E}_{\mathbb{C}})$ sous la forme $y(t) = \lambda e^{(1+i)t}, \lambda \in \mathbb{C}$.

On injecte dans $(\mathscr{E}_{\mathbb{C}})$ et on obtient : (après simplification par $e^{(1+i)t} \neq 0$

$$2i\lambda - 2m\lambda(1+i) + (m^2+1)\lambda = 1 \iff \lambda(m-1)(m-(1+2i)) = 1$$
$$\iff \lambda = \frac{1}{(m-1)(m-1-2i)}.$$

Ainsi,
$$y(t) = \frac{m-1+2i}{(m^2-2m+5)(m-1)}e^{(1+i)t}$$
 est solution de $(\mathcal{E}_{\mathbb{C}})$.

Par conséquent,

$$y_p(t) = \frac{m-1}{(m^2 - 2m + 5)(m-1)}e^t \sin(t) + \frac{2}{(m^2 - 2m + 5)(m-1)}e^t \cos(t)$$
 est solution particulière de (\mathscr{E}) .

Au final la solution générale de (\mathscr{E}) est

$$y: t \longmapsto y_p(t) + e^{mt}(A\cos(t) + B\sin(t)): (A, B) \in \mathbb{R}^2.$$

Solution Exercice 8.

1. On cherche une solution polynomiale à l'équation $(1+t^2)y''+ty'-y=0$ $(\mathscr{E}).$

On note
$$P(X) = \sum_{k=0}^{n} a_k X^k$$
 avec $n = \deg(P) : a_n \neq 0$.

On injectant dans (\mathscr{E}) : le coefficient devant t^n est

$$n(n-1)a_n + na_n - a_n = 0 \iff_{(a_n \neq 0)} n(n-1) + n - 1 = 0 \iff n = 1.$$

On cherche P sous la forme : $P(t) = at + b : (a, b) \in \mathbb{C}^2$.

On injecte P dans l'équation (\mathscr{E}) . Alors P est solution de (\mathscr{E}) sur \mathbb{R} si et seulement si $ta - (at) + b = 0 \iff b = 0$.

Avec a = 1, on obtient alors que P(t) = t est solution.

2. • On factorise par une solution de l'équation (qui est déjà homogène).

On cherche la solution générale sous la forme : $y(t) = \lambda(t)p(t) = t\lambda(t)$ avec $t \longmapsto \lambda(t)$ deux fois dérivable sur \mathbb{R} .

On a:

$$y'(t) = t\lambda'(t) + \lambda(t)$$

$$y''(t) = t\lambda''(t) + 2\lambda'(t).$$

• On injecte dans (\mathscr{E}) et on obtient que y est solution de (\mathscr{E}) sur \mathbb{R} si et seulement si pour tout $t \in \mathbb{R}$.

$$(1+t^2)[t\lambda''(t) + 2\lambda'(t)] + t[t\lambda'(t) + \lambda(t)] - t\lambda(t) = 0$$

$$\iff (t^3 + t)\lambda''(t) + (3t^2 + 2)\lambda'(t) = 0 : (\mathscr{E}').$$

• On résout sur \mathbb{R}_+^* . On pose $z(t) = \lambda'(t)$.

Ainsi λ' est solution de (\mathcal{E}') sur \mathbb{R}_+^* si et seulement si pour tout t > 0:

$$z'(t) = -\frac{3t^2 + 2}{t(t^2 + 1)}z(t) = -\left(\frac{3(t^2 + 1)}{t(t^2 + 1)} - \frac{1}{t(t^2 + 1)}\right)z(t)$$

$$= \left(\frac{1}{t(t^2 + 1)} - \frac{3}{t}\right)z(t) = \left(\frac{1}{t} - \frac{t}{t^2 + 1} - \frac{3}{t}\right)z(t)$$

$$= \left(-\frac{2}{t} - \frac{t}{t^2 + 1}\right)z(t)$$

Ainsi, pour tout t > 0, $z(t) = Ke^{-2\ln(t) - \frac{1}{2}\ln(1+t^2)} = \frac{K}{t^2\sqrt{1+t^2}} : K \in \mathbb{R}$.

• On cherche maintenant les primitives de $z = \lambda'$ sur \mathbb{R}_+^* . On change la variable $t = \tan(u) > 0$ $(u \in]0; \frac{\pi}{2}[)$. $dt = (1 + \tan^2(u))du$. Alors (a > 0):

$$\int_{a}^{x} \frac{1}{t^{2}\sqrt{1+t^{2}}} dt = \int_{\arctan(a)}^{\arctan(x)} \frac{1+\tan^{2} u}{\tan^{2} u\sqrt{1+\tan^{2} u}} du = \int_{\arctan(a)}^{\arctan(x)} \frac{\sqrt{1+\tan^{2} u}}{\tan^{2} u} du$$

$$= \int_{\arctan(a)}^{\arctan(x)} \sqrt{\frac{1}{\cos^{2} u}} \frac{1}{\tan^{2} u} du = \int_{\arctan(a)}^{\arctan(a)} \frac{\cos u du}{\sin^{2} u} du$$

$$= \int_{\sin \arctan(a)}^{\sin \arctan(x)} \frac{dv}{v^{2}} = \left[-\frac{1}{v}\right]_{\sin \arctan(a)}^{\sin \arctan(a)}.$$

Les primitives de $z=\lambda'$ sur \mathbb{R}_+^* sont donc données par

$$-\frac{K}{\sin\arctan(x)} + K' = -\frac{1}{\tan\arctan(x)\cos\arctan(x)}$$
$$= -\frac{K}{x}\sqrt{1 + \tan^2\arctan x} + K'$$
$$= -K\frac{\sqrt{1 + x^2}}{x} + K' : (K, K') \in \mathbb{R}^2.$$

• Au final, toute solution de (\mathcal{E}') sur \mathbb{R}_+^* est donnée par

$$\lambda: t \longmapsto -K \frac{\sqrt{1+t^2}}{t} + K': (K, K') \in \mathbb{R}^2.$$

• On en déduit que toute solution de (\mathcal{E}) sur \mathbb{R}_{+}^{*} est donnée par :

$$y: t \longmapsto y(t) = t\lambda(t) = K_1\sqrt{1+t^2} + K_2t: (K_1, K_2) \in \mathbb{R}^2.$$

Les fonctions y ainsi définies le sont sur \mathbb{R} tout entier, dérivables et vérifient l'équation différentielle sur \mathbb{R} .

L'espace $S_{\mathscr{E}}$ des solutions sur \mathbb{R} de l'équation différentielle linéaire scalaire d'ordre 2 (\mathscr{E}) est de dimension 2.

On en déduit que $(t\mapsto \sqrt{1+t^2},t\mapsto t)$ est une base de $S_{\mathscr E}$ (car libre et de cardinal 2).

3. Construisons la courbe intégrale de la fonction y, passant par le point A(0,1) et présentant une tangente parallèle à la première bissectrice en ce point.

Ces conditions imposent y(0) = 1 et y'(0) = 1.

On obtient $K_1 = K_2 = 1$.

Ainsi,
$$\forall t \in \mathbb{R}, y(t) = \sqrt{1+t^2} + t : y'(t) = \frac{\sqrt{1+t^2}+t}{\sqrt{1+t^2}} > \frac{|t|+t}{\sqrt{1+t^2}} \ge 0.$$

La fonction y est croissante sur \mathbb{R} .

On connait la tangente en 0: T: T(t) = y'(0)t + y(0) = t + 1.

Branches infinies:

- En
$$-\infty$$
. Soit $t < 0$:
 $y(t) = \sqrt{t^2 \left(1 + \frac{1}{t^2}\right)} + t = t \left(-\sqrt{1 + \frac{1}{t^2}} + 1\right)$
 $y(t) = t \left(-1 - \frac{1}{2t^2} + o\left(\frac{1}{t^2}\right) + 1\right)$
Ainsi, $y(t) \sim \frac{1}{t \to -\infty} - \frac{1}{2t}$.

On en déduit que $\lim y = 0$.

La courbe intégrale présente une asymptote horizontale d'équation y=0.

— En $+\infty$. Soit t > 0:

$$* \lim_{+\infty} y = +\infty.$$

$$\begin{split} * & \lim_{t \to +\infty} \frac{y(t)}{t} = 2. \\ * & y(t) - 2t = \sqrt{1 + t^2} - t = t \left(\sqrt{1 + \frac{1}{t^2}} - 1 \right) = t \left(1 + \frac{1}{2t^2} + o \left(\frac{1}{t^2} \right) - 1 \right) \\ y(t) - 2t & \underset{t \to +\infty}{\sim} \frac{1}{2t} \\ \text{Ainsi } & \lim_{t \to +\infty} y(t) - 2t \underset{t \to +\infty}{\longrightarrow} 0. \end{split}$$

On en déduit que la droite d'équation y=2x est asymptote à la courbe intégrale lorsque $t\to +\infty$.

Solution Exercice 9. Le problème de Cauchy suivant possède une unique solution que l'on notera f.

$$\begin{cases} y'' - 2xy' - 2y &= 0\\ y(0) = 1; y'(0) &= 0 \end{cases}$$

— Analyse.

Supposons qu'il existe une fonction y solution du problème de Cauchy et développable en série entière.

On note R le rayon de convergence de cette série ; on suppose R>0.

Pour tout
$$x \in]-R; R[: y(x) = \sum_{n=0}^{+\infty} a_n x^n.$$

Par le théorème de dérivation terme à terme on a

$$y'(x) = \sum_{n=1}^{+\infty} n a_n x^{n-1}$$

$$y''(x) = \sum_{n=1}^{+\infty} n(n-1)a_n x^{n-2}.$$

En injectant dans l'équation du problème de Cauchy, on obtient que y est solution du problème de Cauchy si et seulement si pour tout $x \in]-R;R[$:

$$\sum_{n=2}^{+\infty} n(n-1)a_n x^{n-2} - 2x \sum_{n=1}^{+\infty} na_n x^{n-1} - 2\sum_{n=0}^{+\infty} a_n x^n = 0$$

$$\iff \sum_{n=0}^{+\infty} (n+1)(n+2)a_{n+2}x^n - 2\sum_{n=1}^{+\infty} na_nx^n - 2\sum_{n=0}^{+\infty} a_nx^n = 0$$

Par unicité du développement en série entière :

- * Si n = 0, $2a_2 2a_0 = 0 \iff a_2 = a_0$.
- * Pour tout $n \ge 1$:

$$(n+1)(n+2)a_{n+2}-2na_n-2a_n=0 \iff a_{n+2}=\frac{2(n+1)}{(n+1)(n+2)}a_n=\frac{2}{n+2}a_n.$$

- Puisque y'(0) = 0, on a $a_1 = 0$.
 - Par récurrence, $a_{2p+3} = a_{(2p+1)+2} = \frac{2}{2p+3}a_{2p+1} = 0.$
- On traite maintenant le cas des entiers pairs.
 - On a $y(0) = 1 = a_0$.

$$a_{2p} = \frac{2}{2p}a_{2p-2} = \frac{1}{p}a_{2p-2} = \frac{1}{p!}a_0 = \frac{1}{p!}.$$

On en déduit que $y(x) = \sum_{p=0}^{+\infty} \frac{1}{p!} x^{2p} = e^{x^2}$.

— Synthèse.

La série entière $y: x \longmapsto \sum_{n=0}^{+\infty} \frac{x^{2n}}{n!} = e^{x^2}$ a un rayon de convergence infini

et est solution de l'équation différentielle par les équivalences écrites dans la partie analyse.

— On en déduit que la fonction f, unique solution du problème de Cauchy, est développable en série entière et que

$$\forall x \in \mathbb{R}, f(x) = e^{x^2}.$$

Solution Exercice 10. On pose t = sh(x).

La fonction $\varphi: x \longmapsto \varphi(x) = \operatorname{sh}(x) = t$ réalise une bijection de \mathbb{R} sur \mathbb{R} .

L'expression de la bijection réciproque s'obtient en posant $X=e^x>0$ et en résolvant l'équation

$$\frac{e^x - e^{-x}}{2} = t \iff e^{2x} - 2te^x - 1 \iff X^2 - 2tX - 1 = 0.$$

On trouve $e^x = t + \sqrt{t^2 + 1} \iff x = \ln(t + \sqrt{t^2 + 1}) = \varphi^{-1}(t)$.

Cette expression définit une fonction de classe \mathscr{C}^2 sur \mathbb{R} .

On pose alors $z(x) = y(\operatorname{sh}(x)) = y(t)$.

On a $z'(x) = \text{ch}(x)y'(\text{sh}(x) \text{ et } z''(x) = \text{ch}^2(x)y''(\text{sh}(x)) + \text{sh}(x)y'(\text{sh}(x)).$

La fonction $t \longmapsto y(t)$ est solution de l'équation sur $\mathbb R$ si et seulement si pour tout $x \in \mathbb R$:

$$(1 + \operatorname{sh}^{2}(x))y''(\operatorname{sh}(x)) + \operatorname{sh}(x)y'(\operatorname{sh}(x)) - y(\operatorname{sh}(x)) = 0$$

$$\iff \operatorname{ch}^{2}(x)y''(\operatorname{sh}(x)) + \operatorname{sh}(x)y'(\operatorname{sh}(x)) - y(\operatorname{sh}(x)) = 0$$

$$\iff z''(x) - z(x) = 0.$$

L'équation z''-z=0 a pour solution générale $z:x\longmapsto Ae^x+Be^{-x}:(A,B)\in\mathbb{R}^2$.

On obtient via le changement de variable

$$t = \varphi(x) = \operatorname{sh}(x) \Longleftrightarrow x = \varphi^{-1}(t) = \ln(t + \sqrt{1 + t^2}),$$

que la fonction y est solution de l'équation initiale si et seulement si :

$$y: t \longmapsto Ae^{\ln(t+\sqrt{t^2+1})} + Be^{-\ln(t+\sqrt{1+t^2})} = A\left(t+\sqrt{1+t^2}\right) + \frac{B}{t+\sqrt{1+t^2}}.$$

avec $(A; B) \in \mathbb{R}^2$.

On a obtenu une famille libre de fonctions dans l'espace $S_{\mathscr E}$ des solutions de l'équation différentielle linéaire scalaire d'ordre 2 de cardinal $2=\dim S_{\mathscr E}$: il s'agit d'une base de $S_{\mathscr E}$.

On a donc décrit ci-dessus la solution générale de l'équation initiale.

Solution Exercice 11.

Analyse.

On suppose que y est développable en série entière sur]-R;R[et est solution de l'équation différentielle 4ty''+2y'-y=0.

On note
$$y(t) = \sum_{n=0}^{+\infty} a_n t^n$$
.

Par le théorème de dérivation terme à terme, on obtient

$$4t \sum_{n \geqslant 2} n(n-1)a_n t^{n-2} + 2 \sum_{n \ge 1} na_n t^{n-1} - \sum_{n \geqslant 0} a_n t^n = 0$$

$$\iff 4 \sum_{n \geqslant 2} n(n-1)a_n t^{n-1} + 2 \sum_{n \ge 1} na_n t^{n-1} - \sum_{n \geqslant 0} a_n t^n = 0$$

$$\iff 4 \sum_{n \geqslant 1} n(n+1)a_{n+1} t^n + 2 \sum_{n \ge 0} (n+1)a_{n+1} t^n - \sum_{n \geqslant 0} a_n t^n = 0$$

Par unicité du développement en série entière on obtient :

$$\begin{array}{l} --2a_1=a_0\\ --\forall n\geqslant 1,\ a_{n+1}=\frac{a_n}{(n+1)(4n+2)}=\frac{a_n}{(2n+1)(2n+2)}\\ \text{Ainsi } \forall n\geqslant 0,\ a_n=\frac{1}{2n(2n-1)}a_{n-1}=\cdots=\frac{a_0}{(2n)!}.\\ \text{On obtient } y(t)=\sum_{n=0}^{+\infty}\frac{a_0}{(2n)!}t^n\ (a_0\in\mathbb{R}). \end{array}$$

Synthèse.

La règle de d'Alembert montre que le rayon de convergence de la série entière

$$f(t) = \sum_{n=0}^{+\infty} \frac{a_0}{(2n)!} t^n \text{ est \'egal \`a } R = +\infty.$$

Les équivalences écrites dans la partie analyse montre que la fonction f est solution de l'équation différentielle 4ty'' + 2y' - y = 0.

Solution Exercice 12. On considère l'équation différentielle :

$$(2t+1)y'' + (4t-2)y' - 8y = 0 : (\mathscr{E}).$$

1. On suppose qu'une fonction polynomiale P est solution de (\mathcal{E}) .

On écrit
$$P(X) = \sum_{k=0}^{n} a_k X^k$$
 avec $a_n \neq 0 : n = \deg(P)$.

On injecte P dans (\mathscr{E}) .

Le coefficient de t^n du polynôme obtenu vérifie $4na_n - 8a_n = 0 \Longleftrightarrow n = 2$.

On cherche P sous la forme : $P(t) = at^2 + bt + c : (a, b, c) \in \mathbb{R}^3$.

Alors P est solution si et seulement si

$$(2t+1)(2a) + (4t-2)(2at+b) - 8(at^2 + bt + c) = 0$$

$$\iff t^2(8a - 8a) + t(4a + 4b - 4a - 8b) + (2a - 2b - 8c) = 0$$

$$\iff b = 0; a = 4c$$

Ainsi, $P(t) = c(4t^2 + 1) : c \in \mathbb{R}$ est solution de (\mathscr{E}) .

2. La fonction $t\longmapsto e^{\alpha t}$ est solution de (\mathscr{E}) sur $\mathbb R$ si et seulement si pour tout $t\in\mathbb R$:

$$(2t+1)\alpha^2 e^{\alpha t} + (4t-2)\alpha e^{\alpha t} - 8e^{\alpha t} = 0$$

$$\iff \alpha(\alpha+2) = 0 \text{ et } \alpha^2 - 2\alpha - 8 = 0$$

$$\iff \alpha(\alpha+2) = 0 \text{ et } (\alpha+2)(\alpha-4) = 0$$

$$\iff \alpha = -2.$$

3. Résoudre(\mathscr{E}) sur un intervalle ne contenant par $-\frac{1}{2}$

Ainsi, $t \longmapsto e^{-2t}$ est solution de (\mathscr{E}) sur \mathbb{R} .

4. Soit $I \subset \mathbb{R}$ un intervalle de \mathbb{R} ne contenant pas $-\frac{1}{2}$.

La famille $\mathscr{B}=(t\longmapsto e^{-2t},4t^2+1)$ est une famille libre (exercice) de l'espace $S_{\mathscr{E}}$ des solutions de l'équation différentielle \mathscr{E} .

On a dim $S_{\mathscr{E}}=2$ car $t\longmapsto a(t)=2t+1$ ne s'annule pas sur I.

Ainsi \mathscr{B} est une base de E.

Au final la solution générale de \mathscr{E} est :

$$y: t \longmapsto Ae^{-2t} + B(4t^2 + 1): (A, B) \in \mathbb{R}^2$$

Solution Exercice 13. On considère sur]-1;1[l'équation différentielle :

$$(1 - t2)y'' - \alpha ty' + \alpha y = 0 : (\mathcal{E}_{\alpha}).$$

1. On suppose que $\alpha = 2$.

Analyse.

On suppose qu'il existe une fonction y développable en série entière.

On note R sont rayon de convergence.

On note pour tout $t \in]-R; R[, y(t) = \sum_{n=0}^{+\infty} a_n t^n.$

Par le théorème de dérivation terme à terme, on a

$$y'(t) = \sum_{n=1}^{+\infty} n a_n t^{n-1} \text{ et } y''(t) = \sum_{n=2}^{+\infty} n(n-1) a_n t^{n-2}.$$

On injecte dans (\mathcal{E}_2) et on obtient que y est solution de (\mathcal{E}_2) si et seulement

si pour tout $t \in]-R;R[:$

$$(1-t^2)\sum_{n=2}^{+\infty}n(n-1)a_nt^{n-2} - 2t\sum_{n=1}^{+\infty}na_nt^{n-1} + 2\sum_{n=0}^{+\infty}a_nt^n = 0$$

$$\Leftrightarrow \sum_{n=0}^{+\infty}(n+1)(n+2)a_{n+2}t^n - \sum_{n=2}^{+\infty}n(n-1)a_nt^n - 2\sum_{n=1}^{+\infty}na_nt^n + 2\sum_{n=0}^{+\infty}a_nt^n = 0$$

$$\Leftrightarrow \sum_{n=0}^{+\infty}(n+1)(n+2)a_{n+2}t^n - \sum_{n=0}^{+\infty}n(n-1)a_nt^n - 2\sum_{n=0}^{+\infty}na_nt^n + 2\sum_{n=0}^{+\infty}a_nt^n = 0$$

L'unicité du développement en série entière de la fonction y donne pour tout $n\geqslant 0$:

$$(n+1)(n+2)a_{n+2} = (n+2)(n-1)a_n \iff a_{n+2} = \frac{n-1}{n+1}a_n \quad (*).$$

Cas n pair.

$$a_{2p} = \frac{2p-3}{2p-1}a_{2p-2} = \dots = \frac{(2p-3)(2p-5)\dots(1)}{(2p-1)(2p-3)\dots(3)}a_2$$
$$= \frac{1}{2p-1}a_2.$$

Avec n = 0 dans (*), on trouve :

$$a_2 = \frac{0-1}{0+1}a_0 = -a_0.$$

Ainsi, pour tout $p \in \mathbb{N}^*$, $a_{2p} = -\frac{1}{2p-1}a_0$ (formule également valable si p = 0). Cas n impair.

$$a_{2p+1} = \frac{2p-2}{2p}a_{2p-1} = \dots = \frac{(2p-2)(2p-4)\dots(0)}{2p(2p-2)\dots(2)}a_1$$

Ainsi pour tout $p \in \mathbb{N}^*$, $a_{2p+1} = 0 \times a_1 = 0$.

Conclusion.

Pour tout $t \in]-R; R[$,

$$y(t) = a_1 t + a_0 \left(1 - \sum_{p \geqslant 1} \frac{1}{2p - 1} t^{2p} \right)$$
$$y(t) = a_1 t - a_0 \sum_{p \geqslant 0} \frac{1}{2p - 1} t^{2p}.$$

Synthèse.

La série entière $\sum \frac{1}{2n-1}t^{2p}$ a pour rayon de convergence R=1.

En effet,

$$\left|\frac{t^{2p+2}}{2p+1}\frac{2p-1}{t^{2p}}\right|=|t|^2\frac{2p+1}{2p-1}\underset{p\to+\infty}{\longrightarrow}|t|^2.$$

- Si |t| < 1, la série entière converge : $R \ge 1$.
- Si |t| > 1, la série entière diverge : $R \leq 1$.
- Ainsi, R = 1 comme annoncé.

La fonction $y:t\longmapsto a_1t-a_0\sum_{p\geqslant 0}\frac{t^{2p}}{2p-1}:(a_0,a_1)\in\mathbb{R}^2$ est donc développable

en série entière sur] -1; 1[et la partie analyse montre qu'elle est solution de l'équation différentielle.

Déterminons une expression explicite des solutions ainsi obtenues.

Il s'agit de calculer pour tout $t \in]-1;1[$, la somme de la série entière : $\sum_{p\geqslant 0}\frac{t^{2p}}{2p-1}$ en utilisant le théorème d'intégration terme à terme on obtient pour tout $t\in]-1;1[$:

$$\begin{split} \sum_{p\geqslant 0} \frac{t^{2p}}{2p-1} &= -1 + t \sum_{p\geqslant 1} \frac{t^{2p-1}}{2p-1} = -1 + t \sum_{p\geqslant 1} \int_0^t u^{2p-2} du \\ &= -1 + t \int_0^t \sum_{p\geqslant 1} u^{2p-2} du = -1 + t \int_0^t \sum_{p\geqslant 0} u^{2p} du \\ &= -1 + t \int_0^t \frac{du}{1-u^2} = -1 + \int_0^t \left(\frac{1}{2} \frac{1}{1-u} + \frac{1}{2} \frac{1}{1+u}\right) du \\ &= -1 + t \left[\ln \sqrt{\frac{1+u}{1-u}}\right]_0^t \\ &= -1 + t \ln \sqrt{\frac{1+t}{1-t}}. \end{split}$$

Au final, on a montré que toute solution de l'équation différentielle (\mathcal{E}_2) : $(1-t^2)y'' - \alpha ty' + \alpha y = 0$: (\mathcal{E}_{α}) développable en série entière s'écrit

$$y: t \longmapsto C_1 t + C_2 \left(-1 + t \ln \sqrt{\frac{1+t}{1-t}}\right).$$

La famille $(y_1, y_2) = (t \mapsto t, t \mapsto \left(-1 + t \ln \sqrt{\frac{1+t}{1-t}}\right)$ est une famille de fonctions deux fois dérivable sur]-1;1[(car (par exemple) développable en série entière pour la seconde) solution de (\mathscr{E}_2) .

Cette famille est libre car si $C_1,C_2\in\mathbb{R}$ sont tels que $C_1y_1+C_2y_2=0$ alors :

- Avec t = 0, $-C_2 = 0 \iff C_2 = 0$
- Il vient alors directement que $C_1 = 0$.

La famille (y_1, y_2) est donc une base de l'espace des solutions $S_{\mathscr{E}_2}$ (car il et de dimension 2) : on a donc trouvé toutes les solutions de (\mathscr{E}_2) .

2. On suppose que $\alpha = 3$.

Soit $n \in \mathbb{N}$ tel que $n \geqslant 3$.

Pour tout $P \in \mathbb{R}_n[X]$ on définie

$$\varphi(P) = (1 - X^2)P'' - 3XP'.$$

(a) — φ est une application linéaire sur $\mathbb{R}_n[X]$ car pour tout $P,Q\in\mathbb{R}_n[X]$ et $\lambda\in\mathbb{R}$, alors

$$\varphi(\lambda P + Q) = (1 - X^2)(\lambda P + Q)'' - 3X(\lambda P + Q)'$$

$$= (1 - X)^2(\lambda P'' + Q'') - 3X(\lambda P' + Q')$$

$$= \lambda((1 - X)^2 P'' - 3XP') + (1 - X^2)Q'' - 3XQ'$$

$$= \lambda \varphi(P) + \varphi(Q).$$

- φ est à valeurs dans $\mathbb{R}_n[X]$ en effet si $\deg(P) = d \leqslant n$ alors le degré de $\varphi(P)$ est au plus $\max(d-2+2;d-1+1) = d \leqslant n$ par somme de polynômes de degré au plus d.
- (b) On calcule:
 - $--\varphi(1)=0$
 - $--\varphi(X)=-3.$
 - Pour tout $k \ge 2$, $\varphi(X^k) = k(k-1)X^{k-2} k(k+2)X^k$. On en déduit alors que la matrice de φ dans la base canonique est triangulaire supérieur.
- (c) La matrice de φ dans la base canonique étant triangulaire supérieure, on trouve facilement $\chi_{\varphi}(X) = X(X+3)(X+8)\dots(X+n(n+2))$.

Ainsi, $Sp(\varphi)=\{0,-3,-8,\dots,-n(n+2)\}$ ce qui montre que φ est diagonalisable.

Dans un base de vecteurs propres, la matrice de φ est

$$D = \begin{pmatrix} 0 & & & & & & & & \\ & -3 & & & & & & \\ & & -8 & & & & \\ & & & \ddots & & \\ & & & & -n(n+2) \end{pmatrix}$$

Toute fonction polynomiale solution de (\mathcal{E}_3) vérifie $\varphi(P) = -3P$.

Autrement dit, toute solution polynomiale de (\mathcal{E}_3) est un vecteur propre de φ associé à la valeur propre -3.

La matrice D montre que $E_{-3}(\varphi)$ est un espace de dimension 1.

La matrice de φ dans la base canonique montre que $X \in \ker(\varphi + 3 \operatorname{id}) = E_{-3}(\varphi)$.

Au final les seules solutions polynomiales (de degré au plus $n \in \mathbb{N}, n \geqslant 3$ quelconque) sont les fonctions $P: t \longmapsto Kt : K \in \mathbb{R}$.

3. On suppose que $\alpha = 1$.

On résout l'équation différentielle $(\mathscr{E}_1):(1-t^2)y''-ty'+y=0$.

en utilisant le changement de variable $t = \sin(x)$.

La fonction $\varphi: x \longmapsto \sin(x) = t$ réalise une bijection de classe \mathscr{C}^2 de $]-\frac{\pi}{2}; \frac{\pi}{2}[$ sur]-1;1[.

La bijection réciproque $\varphi^{-1}: t \longrightarrow \arcsin(t) = x$ est également de classe \mathscr{C}^2 sur]-1;1[à valeurs dans $]-\frac{\pi}{2};\frac{\pi}{2}[$.

On pose $z(x) = y(\sin(x)) = y(t)$.

On a $z'(x) = \cos(x)y'(\sin(x))$ et $z''(x) = \cos^2(x)y''(\sin(x)) - \sin(x)y'(\sin(x))$ pour tout $x \in]-\frac{\pi}{2}; \frac{\pi}{2}[.$

Ainsi, y est solution de (\mathcal{E}_1) sur] -1;1[si et seulement si pour tout $x \in$] $-\frac{\pi}{2}$; $\frac{\pi}{2}$ [:

$$(1 - \sin^2(x))y''(\sin(x)) - \sin(x)y'(\sin(x)) + y(\sin(x)) = 0$$

$$\iff [\cos^2(x)y''(\sin(x) - \sin(x)y'(\sin(x))] + y(\sin(x)) = 0$$

$$z''(x) + z(x) = 0.$$

L'équation différentielle z''+z=0 a pour équation caractéristique $X^2+1=0$ dont les racines sont $0\pm i$.

Ainsi, toute solution de z'' + z = 0 s'écrit

$$z: x \longmapsto A\cos(x) + B\sin(x): (A, B) \in \mathbb{R}^2.$$

On en déduit alors toutes les solutions de (\mathscr{E}) via le changement de variable $y(t)=z(x)=z(\varphi^{-1}(t))=z(\arcsin(t)).$

On trouve:

$$y: t \longmapsto A \cos(\arcsin(t)) + B \sin(\arcsin(t))$$

 $y: t \longmapsto A\sqrt{1-t^2} + Bt: (A, B) \in \mathbb{R}^2$

 $\operatorname{car} \cos(\arcsin(t)) > 0$ puisque $t \in]-1;1[\Longleftrightarrow \arcsin(t) \in]-\frac{\pi}{2};\frac{\pi}{2}[.$

Solution Exercice 14. On considère (\mathscr{E}) : $t^2y'' + 4yy' + (2-t^2)y = 1$.

On résout (\mathscr{E}) sur $I = \mathbb{R}_+^*$ ou $I = \mathbb{R}_-^*$.

On pose pour tout $t \in I$, $z(t) = t^2y(t)$.

On a $z'(t) = 2ty(t) + t^2y'(t)$ et $z''(t) = 2y(t) + 4ty'(t) + t^2y''(t)$.

Ainsi, y est solution de (\mathscr{E}) sur I si et seulement si pour tout $t \in I$,

$$t^{2}y''(t) + 4ty'(t) + (2 - t^{2})y(t) = 1$$

 $\iff z''(t) - z(t) = 1.$

L'équation homogène z'' - z = 0 a pour solution générale

$$z: t \longmapsto Ae^t + Be^{-t}: (A, B) \in \mathbb{R}^2.$$

La fonction $t \longmapsto z_p(t)=-1$ est solution particulière sur $I:z_p''-z_p=1$. Ainsi toute solution de z''-z=1 s'écrit

$$z: t \in I \longrightarrow -1 + Ae^t + Be^{-t}: (A, B) \in \mathbb{R}^2.$$

Par conséquent, toute solution sur I de (\mathscr{E}) s'écrit :

$$y = \frac{z}{t^2} : t \in I \longrightarrow -\frac{1}{t^2} + \frac{Ae^t}{t^2} + \frac{Be^{-t}}{t^2}.$$

Recollement en 0.

Supposons qu'une fonction y soit solution de (\mathcal{E}) sur \mathbb{R} .

Il existe alors (A_+, B_+) et (A_-, B_-) des couples de réels tels que :

$$- \forall t > 0, \ y(t) = -\frac{1}{t^2} + \frac{A_+ e^t}{t^2} + \frac{B_+ e^{-t}}{t^2}$$

$$1 \quad A_- e^t \quad B_- e^{-t}$$

$$- \forall t < 0, \ y(t) = -\frac{1}{t^2} + \frac{A_-e^t}{t^2} + \frac{B_-e^{-t}}{t^2}$$

En utilisant la continuité de y en 0, les limites en 0 existent, sont finies, égales (à gauche et à droite).

On écrit :

— Pour t > 0:

$$y(t) \underset{t \to 0^{+}}{=} -\frac{1}{t^{2}} + \frac{A_{+}}{t^{2}} \left(1 + t + \frac{t^{2}}{2} + o(t^{2}) \right) + \frac{B_{+}}{t^{2}} \left(1 - t + \frac{t^{2}}{2} + o(t^{2}) \right)$$

$$y(t) \underset{t \to 0^{+}}{=} \frac{(A_{+} + B_{+}) - 1}{t^{2}} + \frac{A_{+} - B_{+}}{t} + \frac{A_{+} + B_{+}}{2} + o(1)$$

L'existence de la limite en 0 impose $A_+ + B_+ = 1$ et $A_+ - B_+ = 0$.

On obtient donc $A_+ = B_+ = \frac{1}{2}$.

- La limite en 0^- donne de manière analogue : $A_- = B_- = \frac{1}{2}$.
- On a obtenu en particulier $y(0) = \frac{1}{2}$.

On a montré que si y est solution sur \mathbb{R} alors :

$$y: t \longmapsto \begin{cases} -\frac{1}{t^2} + \frac{\operatorname{ch}(t)}{t^2} & \text{si} \quad t > 0\\ \frac{1}{2} & \text{si} \quad t = 0\\ -\frac{1}{t^2} + \frac{\operatorname{ch}(t)}{t^2} & \text{si} \quad t < 0 \end{cases}$$

On vérifie ainsi définie que y est deux fois dérivable sur $\mathbb R$ et qu'elle est solution de $(\mathscr E)$ sur $\mathbb R$.

Solution Exercice 15.

1.
$$S_1: \begin{cases} x' = 3x - y + 2 \\ y' = x + y + 2 \end{cases}$$

- On constate que la fonction constante $X_p: t \longmapsto \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ est solution particulière de S_1 .
- Résolvons le système homogène associé S_h :

$$X'(t) = AX(t) \text{ où } A = \left(\begin{array}{cc} 3 & -1 \\ 1 & 1 \end{array} \right) \text{ et } X(t) = \left(\begin{array}{c} x(t) \\ y(t) \end{array} \right).$$

 \bullet On détermine les éléments propres de A.

$$\chi_A(X) = \begin{vmatrix} X-3 & 1 \\ -1 & X-1 \end{vmatrix} = (X-3)(X-1)-1 = X^2-4X+2 = (X-2)^2.$$

Ainsi, $Sp(A) = \{2\}.$

$$X \in E_2(A) \iff AX = 2X \iff (A - 2I_2)X = 0.$$

On a
$$A - 2I_2 = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$$
.

Ainsi,
$$E_2(A) = Vect \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
.

- La matrice A n'est donc pas diagonalisable car dim $E_2(A) = 1 < 2 = m(2)$.
- On complète $X_1=\left(\begin{array}{c}1\\1\end{array}\right)$ en une base de $\mathscr{M}_{2,1}(\mathbb{R})$ avec $X_2=\left(\begin{array}{c}1\\0\end{array}\right)$.

On calcule
$$AX_2 = \begin{pmatrix} 3 \\ 1 \end{pmatrix} = X_1 + 2X_2$$
.

La matrice A est donc semblable à $T=\left(\begin{array}{cc} 2 & 1 \\ 0 & 2 \end{array}\right)$: $A=PTP^{-1}$ avec

$$P = \left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right).$$

• On change de variable : $Y = P^{-1}X$.

L'équation $X' = AX \Longleftrightarrow X' = PTP^{-1}X \Longleftrightarrow Y' = TY$.

On obtient le système différentiel triangulaire suivant :

• Résolvons enfin l'équation $(\mathscr{E}_1): x_1' = 2x_1 + K_1 e^{2t}$.

L'équation homogène $x_1' = 2x_1$ a pour solution générale $x_1(t) = K_2 e^{2t}$.

L'équation $x_1' = 2x_1 + K_1e^{2t}$ est de la forme $x_1' + \alpha x_1 = p(t)e^{mt}$ avec $m = 2 = -\alpha$ et $p(t) = K_1$.

On cherche donc une solution particulière sous la forme $q(t)e^{2t}$ avec q une fonction polynomiale de degré $1 = \deg(p) + 1$.

On trouve $q(t) = K_1 t$ c'est-à-dire $x_p(t) = K_1 t e^{2t}$ est solution particulière.

Finalement, la solution générale de (\mathcal{E}_1) : $x_1(t) = K_1 t e^{2t} + K_2 e^{2t}$.

Le système triangulaire obtenu ci-dessus a donc pour solution générale

$$Y(t) = \begin{pmatrix} K_1 t e^{2t} + K_2 e^{2t} \\ K_1 e^{2t} \end{pmatrix} = e^{2t} \begin{pmatrix} K_1 t + K_2 \\ K_1 \end{pmatrix} : (K_1, K_2) \in \mathbb{R}^2.$$

On obtient alors la solution générale du système homogène $S_h: X' = AX:$

$$X(t) = PY(t) = e^{2t} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} K_1t + K_2 \\ K_1 \end{pmatrix} = e^{2t} \begin{pmatrix} K_1(t+1) + K_2 \\ K_1t + K_2 \end{pmatrix}$$

avec $(K_1, K_2) \in \mathbb{R}^2$.

En conclusion les solutions su système initial \mathcal{S}_1 sont

$$X: t \longmapsto \begin{pmatrix} -1 \\ -1 \end{pmatrix} + e^{2t} \begin{pmatrix} K_1(t+1) + K_2 \\ K_1t + K_2 \end{pmatrix} : (K_1, K_2) \in \mathbb{R}^2.$$

2.
$$S_2: \begin{cases} x' = 5x - 2y + e^t \\ y' = -x + 6y + t \end{cases}$$

Le système différentiel S_2 s'écrit X'(t) = AX(t) + B(t)

avec
$$A = \begin{pmatrix} 5 & -2 \\ -1 & 6 \end{pmatrix}$$
; $X(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$; $B(t) = \begin{pmatrix} e^t \\ t \end{pmatrix}$

 \bullet On détermine les éléments propres de A:

$$\chi_A(X) = (X-4)(X-7).$$

$$(A-4I_2) = \begin{pmatrix} 1 & -2 \\ -1 & 2 \end{pmatrix}$$
 donc $E_4(A) = Vect \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

$$(A-7I_2) = \begin{pmatrix} -2 & -2 \\ -1 & -1 \end{pmatrix}$$
 donc $E_7(A) = Vect \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

La matrice A est diagonalisable et $A = PDP^{-1}$ où

$$D = \begin{pmatrix} 4 & 0 \\ 0 & 7 \end{pmatrix}; P = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}; P^{-1} = \frac{1}{3} \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix}.$$

• On change de variable : $Y = P^{-1}X$.

Le système devient :

$$Y' = DY + P^{-1}B \Longleftrightarrow \left(\begin{array}{c} x_1'(t) \\ y_1'(t) \end{array} \right) = \left(\begin{array}{c} 4x_1(t) \\ 7y_1(t) \end{array} \right) + \frac{1}{3} \left(\begin{array}{c} e^t + t \\ -e^t + 2t \end{array} \right).$$

— La solution de l'équation homogène $x_1' = 4x_1$ associée à l'équation $x_1' = 4x_1 + \frac{1}{3}(e^t + t)$ a pour solution $x_1(t) = K_1e^{4t} : K_1 \in \mathbb{R}$.

On cherche une solution particulière via le principe de superposition.

• On cherche une solution particulière de l'équation $x_1' = 4x_1 + \frac{e^t}{3}$: (\mathcal{E}_1) sous la forme λe^t .

On injecte dans (\mathcal{E}_1) et on trouve $\lambda = -\frac{1}{9}$.

Une solution particulière de (\mathcal{E}_1) est donc donnée par $t \longmapsto -\frac{1}{9}e^t$.

• On cherche une solution particulière de l'équation $x_1' = 4x_1 + \frac{t}{3} : (\mathcal{E}_2)$ sous la forme $at + b : (a, b) \in \mathbb{R}^2$.

On injecte dans (\mathcal{E}_2) et on trouve $a = -\frac{1}{12}$; $b = -\frac{1}{48}$.

Une solution particulière de (\mathscr{E}_2) est donc donnée par $t \mapsto -\frac{t}{12} - \frac{1}{48}$. L'équation $x'_1 = 4x_1 + \frac{1}{3}(e^t + t)$ a donc pour solution générale

$$x_1: t \longmapsto -\frac{t}{12} - \frac{1}{48} - \frac{e^t}{9} + K_1 e^{4t}: K_1 \in \mathbb{R}.$$

— On raisonne de même pour déterminer la solution générale de l'équation $y_1' = 7y_1 + \frac{1}{3}(-e^t + 2t)$.

On trouve :

$$y_1: t \longmapsto -\frac{2t}{21} - \frac{2}{147} + \frac{e^t}{18} + K_2 e^{7t}: K_2 \in \mathbb{R}.$$

Au final la solution générale du système initiale S_2 est donnée par

$$X = PY : t \longmapsto \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -\frac{t}{12} - \frac{1}{48} - \frac{e^t}{9} + K_1 e^{4t} \\ -\frac{2t}{21} - \frac{2}{147} + \frac{e^t}{18} + K_2 e^{7t} \end{pmatrix}$$

On trouve après calcul(s):

$$X(t) = \begin{pmatrix} 2K_1e^{4t} - K_2e^{7t} - \frac{5}{18}e^t - \frac{t}{14} - \frac{11}{392} \\ K_1e^{4t} + K_2e^{7t} - \frac{e^t}{18} - \frac{5t}{28} - \frac{27}{784} \end{pmatrix} : (K_1, K_2) \in \mathbb{R}^2.$$

3.
$$S_3: \begin{cases} x' = 2x - \frac{1}{2}y - \frac{1}{2}z + 1 \\ y' = x + \frac{1}{2}y - \frac{1}{2}z + 1 \\ z' = -x + \frac{1}{2}y + \frac{3}{2}z + 1 \end{cases}$$

• On constate que la fonction $X_p: t \longmapsto \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$ est une solution particu-

lière de S_3 .

 \bullet On résout le sytème homogène associé X'=AX où

$$A = \begin{pmatrix} 2 & -\frac{1}{2} & -\frac{1}{2} \\ 1 & \frac{1}{2} & -\frac{1}{2} \\ -1 & \frac{1}{2} & \frac{3}{2} \end{pmatrix} \text{ et } X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

- On a $\chi_A(X) = (X-2)(X-1)^2 : Sp(A) = \{2, 1\}.$
- On résout les équations AX = X et AX = 2X et on trouve :

$$E_1(A) = Vect\left(\begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}\right) \text{ et } E_2(A) = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}.$$

On pose
$$P = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & 0 & 1 \end{pmatrix}$$
.

On a
$$A = PDP^{-1}$$
 avec $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

• On change de variable $Y(t) = P^{-1}X(t)$ et on obtient le système Y'(t) = DY(t).

Le système diagonal obtenu se résout aisément :

$$Y(t) = \begin{pmatrix} K_1 e^t \\ K_2 e^t \\ K_3 e^{2t} \end{pmatrix} : (K_1, K_2, K_3) \in \mathbb{R}^3.$$

• On obtient la solution de l'équation homogène X' = AX:

$$X: t \longmapsto X(t) = PY(t) = K_1 e^t X_1 + K_2 e^t X_2 + K_3 e^{2t} X_3$$

où X_1, X_2, X_3 désignent les vecteurs colonnes de P.

4.
$$S_4: \begin{cases} x' = x + z \\ y' = -y - z \\ z' = 2y + z. \end{cases}$$

On pose $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & -1 \\ 0 & 2 & 1 \end{pmatrix}$.

Le système S_4 s'écrit alors X' = AX avec $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.

Par le cours l'espace des solutions de \mathcal{S}_4 est de dimension 3.

 \bullet Éléments propres de A:

$$\chi_A(X) = \begin{vmatrix}
X - 1 & 0 & -1 \\
0 & X + 1 & 1 \\
0 & -2 & X - 1
\end{vmatrix}
= (X - 1)[(X + 1)(X - 1) + 2] = (X - 1)(X^2 + 1)$$

Ainsi, $Sp(A) = \{1, i, -i\}.$

• La matrice A est diagonalisable dans $\mathcal{M}_3(\mathbb{C})$ car elle possède trois valeurs propres distinctes (dont deux sont complexes conjuguées).

•
$$A - I_3 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -2 & -1 \\ 0 & 2 & 0 \end{pmatrix}$$
donc $E_1(A) = Vect \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

$$\bullet \ A - iI_3 = \left(\begin{array}{ccc} 1 - i & 0 & 1 \\ 0 & -1 - i & -1 \\ 0 & 2 & 1 - i \end{array} \right).$$

On trouve $E_i(A) = Vect \begin{pmatrix} 1 \\ -i \\ -1+i \end{pmatrix}$.

- On conjugue et on trouve : $E_{-i}(A) = Vect \begin{pmatrix} 1 \\ i \\ -1-i \end{pmatrix}$.
- La famille (Φ_1, Φ_2, Φ_3) avec

$$-\Phi_{1}(t) = e^{t} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$-\Phi_{2}(t) = e^{it} \begin{pmatrix} 1 \\ -i \\ -1+i \end{pmatrix}$$

$$-\Phi_{3}(t) = e^{-it} \begin{pmatrix} 1 \\ i \\ -i \end{pmatrix} = \overline{\Phi_{3}(t)}.$$

est une base de fonctions complexes $X: t \to \mathbb{K}$ solutions du système (S_4) .

• Toute combinaison linéaire des fonctions solutions est encore une solution du système.

On considère les combinaisons linéaires suivantes :

$$\varphi(t) = \frac{1}{2}(\Phi_2(t) + \Phi_3(t)) = \operatorname{Re}(\Phi_2(t)) = \begin{pmatrix} \cos(t) \\ \sin(t) \\ -\cos(t) - \sin(t) \end{pmatrix}$$

$$\psi(t) = \frac{1}{2i} (\Phi_2(t) - \Phi_3(t)) = \operatorname{Im}(\Phi_2(t)) = \begin{pmatrix} \sin(t) \\ -\cos(t) \\ -\sin(t) + \cos(t) \end{pmatrix}.$$

La famille (Φ_1, φ, ψ) est libre car

$$\det_{(\Phi_1,\Phi_2,\Phi_3)}(\Phi_1,\varphi,\psi) = \begin{vmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2i} \\ 0 & \frac{1}{2} & -\frac{1}{2i} \end{vmatrix} = -\frac{1}{2i} \neq 0.$$

C'est donc une base de l'espace (de dimension 3) des solutions du système $X^\prime = AX$.

Toute solution du système X' = AX s'écrit donc

$$X: t \longmapsto C_1 \Phi_1(t) + C_2 \varphi(t) + C_3 \psi(t) : (C_1, C_2, C_3) \in \mathbb{R}^3.$$

Solution Exercice 16.

On considère le problème différentiel :

$$\begin{cases} x' = 5x + y - z \\ y' = 2x + 4y - 2z \\ z' = x - y + 3z \end{cases} \begin{pmatrix} x(0) \\ y(0) \\ z(0) \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}.$$

On pose
$$A = \begin{pmatrix} 5 & 1 & -1 \\ 2 & 4 & -2 \\ 1 & -1 & 3 \end{pmatrix}$$
.

On calcule $\chi_A(X) = (X-2)(X-4)(X-6)$.

La matrice A est diagonalisable, car elle possède trois valeurs propres distinctes

A est semblable à la matrices diagonalises
$$D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$
.

On détermine les espaces propres :

$$E_2(A) = Vect \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

$$E_4(A) = Vect \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

$$E_6(A) = Vect \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
On pose $P = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ et on obtient $A = PDP^{-1}$.

On obtient par le cours (ou l'on suit la méthode classique décrite dans l'exercice précédent) que toute solution du système différentiel : X' = AX s'écrit

$$X: t \longmapsto C_1 e^{2t} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + C_2 e^{4t} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + C_3 e^{6t} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} : (C_1, C_2, C_3) \in \mathbb{R}^3.$$

Il existe une unique solution au problème de Cauchy déterminée par la condition initiale $X(0)=\begin{pmatrix} -1\\2\\0 \end{pmatrix}$ qui conduit au système

$$C_1 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + C_3 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \iff (C_1, C_2, C_3) = (3/2, -3/2, 1/2).$$

Solution Exercice 17. On considère le système différentiel :

$$S: \left\{ \begin{array}{rclcr} x' & = & 4x & - & 3y & + & 2z \\ y' & = & 6x & - & 5y & + & 4z \\ z' & = & 4x & - & 4y & + & 4z \end{array} \right.$$

L'ensemble des solutions est un \mathbb{R} -espace vectoriel de dimension 3.

On pose
$$A = \begin{pmatrix} 4 & -3 & 2 \\ 6 & -5 & 4 \\ 4 & -4 & 4 \end{pmatrix}$$
. Le système \mathcal{S} se récrit $X' = AX$.

On a det(A) = 0 donc la matrice est non inversible.

Il existe donc une combinaison linéaire nulle, non triviale, de ses lignes :

$$\exists (a,b,c) \in \mathbb{R}^3 \setminus \{0,0,0\} : aL_1 + bL_2 + cL_3 = 0.$$

La relation X' = AX donne

$$x' = L_1 X; y' = L_2 X; z' = L_3 X.$$

Par conséquent $ax' + by' + cz' = (aL_1 + bL_2 + cL_3)X = 0$.

On en déduit que (ax + by + cz)' = 0.

La fonction $t \mapsto ax(t) + by(t) + cz(t)$ est donc constante sur \mathbb{R} :

 $\exists K \in \mathbb{R}, \forall t \in \mathbb{R}, ax(t) + by(t) + cz(t) = K.$

La courbe $t \mapsto (x(t), y(t), z(t))$ est donc contenue dans l'ensemble

$$P: ax + by + cz = K.$$

P un plan car $(a, b, c) \neq (0, 0, 0)$.

Solution Exercice 18.

1.
$$S \begin{cases} x'' = x + 8y - 2 \\ y'' = 2x + y + 1 \end{cases}$$

On note
$$A = \begin{pmatrix} 1 & 8 \\ 2 & 1 \end{pmatrix}$$
; $X = \begin{pmatrix} x \\ y \end{pmatrix}$; $B = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$.

On déterminer les éléments propres de A.

$$\chi_A(X) = (X-1)^2 - 16 = (X-1-4)(X-1+4) = (X-5)(X+3).$$

On détermine alors les espaces propres :

$$E_5(A) = Vect \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 et $E_{-3}(A) = Vect \begin{pmatrix} -2 \\ 1 \end{pmatrix}$.

On en déduit que A est diagonalisable.

On pose
$$P = \begin{pmatrix} 2 & -2 \\ 1 & 1 \end{pmatrix}$$
.

Alors
$$A = PDP^{-1}$$
 avec $D = \begin{pmatrix} 5 & 0 \\ 0 & -3 \end{pmatrix}$.

Le système S est équivalent à X'' = AX + B.

On obtient $X''(t) = PDP^{-1}X(t) + B \iff P^{-1}X''(t) = DP^{-1}X(t) + P^{-1}B$.

On change de variable $Y = P^{-1}X = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$.

On obtient
$$Y'' = DY + P^{-1}B = \begin{pmatrix} 5x_1 \\ -3y_1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
.

On obtient un système diagonal:

$$-x_1'' = 5x_1 \iff x_1(t) = Ae^{\sqrt{5}t} + Be^{-\sqrt{5}t} : (A, B) \in \mathbb{R}^2$$

Finalement, la solution générale du système S est

$$X(t) = PY(t) : t \longmapsto \begin{pmatrix} 2x_1(t) - 2y_1(t) \\ x_1(t) + y_1(t) \end{pmatrix}.$$

2.
$$S: \begin{cases} x' = x - y - z + t \\ y' = -x + y - z + t \\ z' = -x - y + z + t \end{cases}$$

On note
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
.

Ainsi,
$$S \iff X' = AX$$
 avec $A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}$

On montre, classiquement, que A est diagonalisable et que A est semblable

à la matrice
$$D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
.

On a
$$A = PDP^{-1}$$
 avec $P = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

Toute solution du système homogène X'(t) = AX(t) s'écrit :

$$X: t \longmapsto C_1 e^{-t} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + C_2 e^{2t} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} + C_3 e^{2t} \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} : (C_1, C_2, C_3) \in \mathbb{R}^3.$$

La fonction
$$X_p:t\longmapsto\left(egin{array}{c} t-1\\ t-1\\ t-1\end{array}\right)$$
 est une solution particulière.

Toute solution de \mathscr{S} s'écrit $X + X_p$ avec X écrit ci-dessus.