CMSC 510 – L16 Regularization Methods for Machine Learning

Instructor:

Dr. Tom Arodz

Recap: Lovasz extension

Lovasz extension of
$$\Omega$$
: $\Omega^{\rm L}$ $\Omega^{\rm L}(w) = \sum_{i=0}^F \lambda_i \Omega(S_i)$

$$\emptyset = S_0 \subset S_1 \subset S_2 \subset ... \subset S_F = V$$
$$\sum_{i=0}^F \lambda_i 1_{S_i} = w, \sum_{i=0}^F \lambda_i = 1, \lambda_i \ge 0$$

- How to evaluate it for vector w in [0,1]^F?
 - Order elements in V in decreasing order of w's:
 - $V = \{v_1, v_2, ..., v_F\}$ such that $w_1 \ge w_2 \ge ... \ge w_F$

$$S_0 = \emptyset,$$
 $\lambda_0 = 1 - w_1$ $S_i = S_{i-1} + \{v_i\} = \{v_1, ..., v_i\},$ $\lambda_i = w_i - w_{i+1}$ $\lambda_F = w_F$

Two alternative formulas:

$$\Omega^{L}(w) = (1 - w_1)\Omega(S_0) + w_F\Omega(S_F) + \sum_{i=1}^{F-1} (w_i - w_{i+1})\Omega(S_i)$$

$$= \Omega(S_0) + \sum_{i=1}^{F} w_i [\Omega(S_i) - \Omega(S_{i-1})]$$

Recap: Graph cut capacity

- Undirected graph cut capacity is a submodular set function
 - We have a graph G over vertices in set V, with undirected, weighted edges with weight G_{jk} between element v_i and v_k
 - Set function $\Omega(S) = \sum_{j \in S} \sum_{k \notin S} G_{jk}$

$$= \frac{1}{2} \sum_{i=1}^{F} \sum_{k=1}^{F} G_{j,k} |(1_S)_j - (1_S)_k|$$
Notation:

is submodular.

Notation: $(1_s)_j=1$ if j is in S =0 if not

 1_S – vector of 0's/1's

representing S

G23 G32

- Interpretation of Ω in machine learning:
 - Ω([w]) = number of edges in graph of features
 that link features in the model represented by vector w
 to features not in the model

Recap: Graph cut capacity

- $[x]_+ = \max(x, 0)$
- Directed graph cut capacity is a submodular set function
 - $\Omega(S)$ = total weights of edges **from S to V-S**

$$\Omega(S) = \sum_{j \in S} \sum_{k \notin S} G_{jk}$$

- Start from: $\Omega^L(w) = \sum_{i=1}^F w_i \left[\Omega(S_i) \Omega(S_{i-1}) \right]$
- Final formula is:

$$\Omega^{L}(w) = \sum_{i=1}^{F} \sum_{k=1}^{F} G_{i,k}[w_i - w_k]_{+}$$

$$\Omega(S_i) - \Omega(S_{i-1}) = \sum_{k=i+1}^F G_{i,k} - \sum_{k=1}^{i-1} G_{k,i}$$
 red edges blue edges
$$S_{i-1} + \{v_i\}$$

$$= \{v_1, \dots, v_i\}$$
 Move from S_{i-1} to S_i Red edges start playing a role Blue edges stop playing a role Green edges: no change Black edges: play no role

Move from S_{i-1} to S_i Red edges start playing a role Blue edges stop playing a role Green edges: no change Black edges: play no role

1

Graph cut: Lovasz extension

Directed graph cut has Lovasz extension:

$$\Omega^{L}(w) = \sum_{i=1}^{F} \sum_{k=1}^{F} G_{i,k}[w_i - w_k]_{+}$$

- Undirected graph cut:
 - Replace each undirected edge by two edges, one in each direction
 - Apply the *directed cut* formula twice (for S=S, and S=V-S), divide by 2

$$\Omega^{L}(w) = \frac{1}{2} \sum_{i=1}^{F} \sum_{k=1}^{F} G_{i,k}([w_i - w_k]_+ + [w_k - w_i]_+)$$

- Use the formula: $|x|=[x]_++[-x]_+$
- Final formula for Lovasz extension of undirected graph cut:

$$\Omega^{L}(w) = \frac{1}{2} \sum_{i=1}^{F} \sum_{k=1}^{F} G_{i,k} |w_i - w_k|$$

Recap: "ID Card" for Set cardinality

- Set cardinality is a modular (and thus submodular) set function
 - $\Omega(S)=|S|$
- Interpretation of Ω in machine learning:
 - $\Omega([w])$ = number of features in the model represented by vector w
 - Model preferred by $\Omega^{L}(w)$: lost of feature weights w_f are 0
- Lovasz extension on [0,1]^F:
 - $\Omega^{L}(w) = \Sigma_{f} w_{f}$ (we derived it previously)
 - We have derived it from definition of Ω^{L}
- Extension to R^F:

 - L₁ penalty
- Minimum of $prox_{\Omega^L}(v)$:
 - soft thresholding of v

Graph cut capacity

- Undirected graph cut capacity is a submodular set function
 - For undirected graph with weights G_{jk}

$$\Omega(S) = \frac{1}{2} \sum_{j,k=1}^{F} G_{j,k} | (1_S)_j - (1_S)_k |$$

- Interpretation of Ω in machine learning:
 - $\Omega([w])$ = number of edges that link features in the model w to features not in the model
 - Model preferred by $\Omega^L(w)$: weights of features w_f connected in graph are similar or identical
- Lovasz extension on $[0,1]^F$ = extension to R^F :

$$\Omega^{L}(w) = \frac{1}{2} \sum_{j,k=1}^{F} G_{j,k} |w_{j} - w_{k}|$$
 and

- Minimum of $prox_{\Omega^L}(v)$:
 - Can be solved by QP, max tricke.g. |x-y|=max(x-y, -(x-y))

Applications: graph cut penalty

- Images (and lattice signals in general, e.g. MRI (3D) or gene copy number alterations (1D))
- We can build a graph where each pixel is linked to its neighbors with a certain weight
 - And second-degree neighbors with lower weight, etc.
- Neighboring pixels often describe the same "feature"
 - E.g. corner of the mouth, we're classifying smiling vs sad
- If a "feature" is important it shows up in a group of connected (i.e. neighboring) pixels
- Graph cut: minimize the border of the neighborhood

Applications: graph cut penalty

- Biology: Molecular entities (proteins, genes) are linked by a network of molecular reactions
 - E.g. protein A modifies (phosphorylates) protein B
 - Gene A turns on/off gene B
- When we have e.g.

 a mutation in gene A,
 it's consequences show
 up downstream
 (in genes C, where A->->C)
- Inter-class change will show in whole connected subgraphs

Graph cut: minimize the border of the connected subgraph

Submodular set functions

- $[x]_+ = \max(x, 0)$ Directed graph cut capacity is a submodular set function
- $\Omega(S)$ = total weights of edges **from S to V-S** j->k $\Omega(S)=\sum_{j\in S}\sum_{k\notin S}G_{jk}=\sum_{j=1}^F\sum_{k=1}^FG_{j,k}\left[(1_S)_j-(1_S)_k\right]_+$
- Interpretation of Ω in machine learning:
 Ω([w]) = number of edges
 - Model preferred by $\Omega^{L}(w) = \text{for every } \mathbf{j->k} \text{ edge in } G$,

from features in the model to features not in the model

- weight of feature j doesn't exceed weight of feature k
- e.g. in chain graph of features a → b → c → d → ...
 we prefer: w_a ≤ w_b ≤ w_c ≤ w_d ≤
- Lovasz extension on $[0,1]^{\text{F}}=$ extension to RF: $\Omega^L(w)=\sum_{j=1}^F\sum_{k=1}^FG_{j,k}\left[w_j-w_k\right]_+ \text{ Minimum of prox}_{\Omega^L}(\text{v})\text{:} \text{ Null if } \text{w}_{\text{i}} <= \text{w}_{\text{k}}$
 - Can be solved by QP, max trick
 e.g. |x|₊=max(x,0)

Conical combination

- We have seen some submodular set functions
- Can we get other submodular function from them?
 - Conical (i.e. nonnegative-weight linear) combination
 - If functions $g_i: 2^V \to \mathbb{R}$ are submodular, and $\alpha_i \geq 0$ Then: $f(S) = \sum_{i=1}^n \alpha_i g_i(S)$ is submodular
 - Their Lovasz extensions add up
 - Example:
 - Undirected graph cut capacity+ set cardinality
 - Preferred model: connected features should have similar weights, small boundary to features that are not selected (w_i=0), many weights should be zero

$$\Omega^{L}(w) = \lambda_1 \sum_{j,k=1}^{F} G_{j,k} |w_j - w_k| + \lambda_2 \sum_{j=1}^{F} |w_j|$$

Composition with concave

- We have seen some submodular set functions
- Can we get other submodular function from them?

- Composition with concave non-decreasing funct.:
 - If $\Omega(S)$ is a **non-decreasing** submodular function, i.e., $A,B\subseteq V,A\subseteq B \implies \Omega(A)\leq \Omega(B)$
 - and $\phi: \mathbb{R} \to \mathbb{R}$ is (at least on region $[\Omega(\emptyset), \Omega(V)]$) concave and non-decreasing (we assume also $\phi(0)=0$)
 - Then: $f(S) = \phi(\Omega(S))$ is submodular

Composition with concave

- Composition with concave non-decreasing funct.:
 - If $\Omega(S)$ is a **non-decreasing** submodular function, i.e., $A,B\subseteq V,A\subseteq B \Longrightarrow \Omega(A)\leq \Omega(B)$ and $\phi:\mathbb{R}\to\mathbb{R}$ is (at least on region $[\Omega(\emptyset),\Omega(V)])$ concave and non-decreasing, with $\phi(0)=0$
 - Then: $f(S) = \phi(\Omega(S))$ is submodular
- Why?

$$\Omega(S \cup \{c\}) - \Omega(S) \ge \Omega(T \cup \{c\}) - \Omega(T)$$

From Ω submodular and non-decreasing we get:

 \longrightarrow longer than: \longleftrightarrow , both are >0

From φ concave and non-decreasing we get that vertical difference is also smaller for blue than for green

Concave f. of set cardinality

- Composition of a concave function and set cardinality
 is a submodular set function: |S| is nondecreasing submodular
 - $\Omega(S)=g(|S|)$ where g:R->R is a concave, non-decreasing, with g(0)=0
- Lovasz extension on $[0,1]^F$: $\Omega^L(w) = \sum_{i=1}^F w_i \left[\Omega(S_i) \Omega(S_{i-1})\right]$
 - Define a sequence of variable indices: $\left\{f_k:w_{f_k}\geq w_{f_{k+1}}\quad \forall k=1,...,F-1\right\}$ That is, $\{\mathbf{f_k}\}$ impose a decreasing order on the coordinates of w:

$$w_{f_1} \geq w_{f_2} \geq ... \geq w_{f_F}$$
 set S_k has k elements!

Then:

$$\Omega^{L}(w) = \sum_{k=1}^{F} w_{f_k} (g(k) - g(k-1))$$

Extension to R^F:

$$\Omega^{L}(w) = \sum_{k=1}^{F} |w_{f_k}| (g(k) - g(k-1))$$

Non-emptiness

- Composition of a concave function and set cardinality is a submodular set function
 - $\Omega(S)=g(|S|)$ where g:R->R is a concave function, g(0)=0
 - $g(s)=min(s,1) => \Omega(S)=min(|S|,1)$ g(0)=0, g(1)=1, g(2)=1,...
- Interpretation of Ω in machine learning:
 - $\Omega([w])$ = does the model represented by **w** contain any feature?
 - Model preferred by $\Omega^{L}(w)$: maximum weight w_f of any feature is 0
- Lovasz extension on $[0,1]^F$: $\Omega^L(w) = \sum_{k=1}^F |w_{f_k}| \left(g(k) g(k-1)\right)$

$$\Omega^L(w) = ||w||_{\infty} = \max_{f=1}^F w_f$$

Extension to R^F:

$$\Omega^{L}(w) = ||w||_{\infty} = \max_{f=1}^{F} |w_f|$$

- Minimum of prox $_{\Omega^{\perp}}(v)$:
 - Can be solved by QP, max trick (twice):e.g. max(|x|,|y|)=max(x,-x,y,-y)

Non-emptiness

- $\Omega(S)=\min(|S|,1)$
- Interpretation of Ω in machine learning:
 - $\Omega([w])$ = does the model represented by **w** contain any feature?
 - Model preferred by $\Omega^{L}(w)$: maximum weight w_f of any feature is 0
- That doesn't seem to make much sense: we want some features to have non-zero weights
- But it will be useful building block in defining a more useful submodular set function

Extension of submodular f.

- We have seen some submodular set functions
- Can we get other submodular function from them?

Extension:

 if we have a fixed set Q ⊂ V, and we have a submodular set function Γ:2^Q->R defined on subsets of Q

Then we can define a function $\Omega:2^V->R$ as $\Omega(S)=\Gamma(Q\cap S)$ and Ω is submodular

- Basically, to get $\Omega(S)$, we restrict S to Q, and use $\Gamma(Q \cap S)$
- E.g. $\Omega_0(S) = \min(|Q \cap S|, 1)$ is submodular

Proof (omit)

Extension:

- if we have a fixed set $Q \subset V$, and we have a submodular set function $\Gamma:2^Q->R$ defined on subsets of QThen we can define a function $\Omega:2^V->R$ as $\Omega(S)=\Gamma(Q\cap S)$ and Ω is submodular
- Why? Definition of submodularity:

$$\forall S, T, \{c\} \subseteq V, \ S \subseteq T, \ \Omega(S \cup \{c\}) - \Omega(S) \ge \Omega(T \cup \{c\}) - \Omega(T)$$

- If c not in Q, both sides equal to 0. We consider cases "c in Q"
- If c in Q:
 - If T in Q, then S in Q, and we have c in Q, so submodularity of Ω follows directly from submodularity of Γ

Proof (omit)

Extension:

- if we have a fixed set $Q \subset V$, and we have a submodular set function $\Gamma:2^Q->R$ defined on subsets of QThen we can define a function $\Omega:2^V->R$ as $\Omega(S)=\Gamma(Q\cap S)$ and Ω is submodular
- Why? Definition of submodularity:

$$\forall S, T, \{c\} \subseteq V, \ S \subseteq T, \ \Omega(S \cup \{c\}) - \Omega(S) \ge \Omega(T \cup \{c\}) - \Omega(T)$$

- If "c in Q", but not "T in Q"
- we construct $T'=Q\cap T$, $S'=Q\cap S$, we have: T' contains S'
- since c is in Q we have $T' \cup \{c\} = Q \cap (T \cup \{c\})$ $S' \cup \{c\} = Q \cap (S \cup \{c\})$
- We have $\Omega(S \cup \{c\}) \Omega(S) = \Gamma(S' \cup \{c\}) \Gamma(S')$ $\geq \Gamma(T' \cup \{c\}) - \Gamma(T') = \Omega(T \cup \{c\}) - \Omega(T)$ where the inequality comes from submodularity of Γ. So Ω is submodular

Group absence

- For a group of features Q, $\Omega_Q(S) = min(|Q \cap S|, 1)$ is a submodular set function
- Interpretation of Ω in machine learning:
 - $\Omega([w])$ = does the model represented by **w** contain any feature from Q?
 - Model preferred by $\Omega^{L}(w)$: max. weight w_f of any feature from Q is 0
- Lovasz extension on [0,1]^F:

$$\Omega^L(w) = \max_{f \in Q} w_f = ||w_Q||_{\infty}$$

Extension to R^F:

$$\Omega^L(w) = \max_{f \in Q} |w_f| = ||w_Q||_{\infty}$$

- Minimum of $prox_{\Omega^L}(v)$:
 - Can be solved by QP, max trick:e.g. max(|x|,|y|)=max(max(x,-x),max(y,-y))

Group absence $(L_1/L_\infty norm)$

- For a collection of groups of features $\{Q_i\}$, $\Omega(S)=\Sigma_i\min(|Q_i\cap S|,1)$ is a submodular set function
 - Because sum of submodular is submodular
- Interpretation of Ω in machine learning:
 - $\Omega([w])$ = does the model represented by **w** contain any feature from any Q_i ?
 - Model preferred by $\Omega^L(w)$: max. weight w_f of features from any Q_i is 0 (or: make as many groups Q_i as possible absent from the model)
- Lovasz extension on [0,1]^F:

$$\Omega^L(w) = \sum_i \max_{f \in Q_i} w_f = \sum_i ||w_{Q_i}||_{\infty}$$

Extension to R^F:

$$\Omega^{L}(w) = \sum_{i} \max_{f \in Q_i} |w_f| = \sum_{i} ||w_{Q_i}||_{\infty}$$

- Minimum of $prox_{\Omega^{L}}(v)$:
 - Can be solved by QP, max trick (twice):e.g. max(|x|,|y|)=max(max(x,-x),max(y,-y))

L_1/L_{∞} norm

- A potential use case:
 - Features form a tree

How to design a submodular set function promoting this?

L_1/L_∞ norm

- Ideally, a feature should be selected only if its parent features are selected
- Eliminating only 3 does not reduce penalty
- Eliminating only 5 does reduce penalty

L_1/L_{∞} norm

Eliminating border of a 1D signal

Example of selected features: 2,3

L_1/L_{∞} norm $\Omega^L(w) = \sum_i \max_{f \in Q_i} |w_f| = \sum_i ||w_{Q_i}||_{\infty}$

Eliminating borders of a 2D signal

- To achieve squares, we find out what is the pattern of zeros (features outside of rectangle) that we want, to get rectangles
 - That's how we come up with the definition of groups Q_i
 - We see that the zeros are always a union of rectangles that touch borders of the image
 - If any combination of these gets zero'ed out during training,

(and those are the only zero-weight features – but we can't guarantee that) we end up with the non-zero features forming a rectangle

L_∞ norm

For example, if during training these groups are pushed to zeros (through minimizing the penalty +

Then we get a classifier that uses these features (maybe only some of them, we're not penalizing for

that):

Big picture

- We can solve problems of the form:
 - Differentiable risk
 - + Lovasz extension of a submodular set function Ω
 - Solution: e.g. proximal gradient descent
- Examples: penalties to be minimized:
 - Set cardinality: L₁ norm $\Omega^L(w) = \sum_{f=1}^F |w_f| = ||w||_1$
 - Undirected graph cut: total variance/fused lasso

$$\Omega^{L}(w) = \frac{1}{2} \sum_{j,k=1}^{F} G_{j,k} |w_{j} - w_{k}|$$

Directed graph cut

$$\Omega^{L}(w) = \sum_{j=1}^{F} \sum_{k=1}^{F} G_{j,k} [w_j - w_k]_{+}$$

Group absence: L₁/L∞ mixed norm

$$\Omega^L(w) = \sum_i \max_{f \in Q_i} |w_f| = \sum_i ||w_{Q_i}||_{\infty}$$

Big picture

- Example: two features: x_a and x_b
- Any linear classifier is $y=sign(w_ax_a + w_bx_b)$
- What are the weights $w=(w_a, w_b)$?
 - To find out, we optimize Risk(w)+Penalty(w)

Risk(w)

We can't just add penalty on the set (of features) $\Omega(S)$ to risk over vectors (of feature weights).

What we want: Risk(w)+Penalty(w) Penalty(w)= $\Omega([w])$ tough to solve!

What we can: Risk(w)+Penalty(w) Penalty(w)= Ω^{-} (w)

both convex, so often easy to solve

Big picture

- We can solve problems of the form:
 - Differentiable risk
 - + Lovasz extension of a submodular set function Ω
 - Solution: e.g. proximal gradient descent
- Potential problem:
 - Not all classifiers have differentiable risk
 - Notable exception: Support Vector Machines

Alternatives

- In literature, we can also see convex differentiable penalties:
 - Risk + quadratic penalty
 - These typically don't lead to sparse solutions (e.g. L₂ vs L₁ norm)
- Examples: penalties to be minimized:
 - L₂ norm (an extension of set cardinality, but not pointwise highest)

$$\Omega_2(w) = \sum_{f=1}^F w_f^2 = ||w||_2^2$$

Graph Laplacian penalty

 (a convex extension of graph cut, but not pointwise highest)

$$\Omega_2(w) = \frac{1}{2} \sum_{j,k=1}^F G_{j,k}(w_j - w_k)^2 = w^T L_G w$$

• Group Lasso: L_1/L_2 mixed norm (not an extension of *group absence*)

$$\Omega_2(w) = \sum_i \sqrt{\sum_{f \in Q_i} w_f^2} = \sum_i ||w_{Q_i}||_2$$