第三章 离散系统的时域分析

§ 3.1 LTI离散系统的响应

注意离散系统与连续系统分析方法上的联系、 区别、对比,与连续系统有并行的相似性。

- 差分与差分方程
- 差分方程的经典解
- 零输入响应和零状态响应

一、差分与差分方程

设有序列f(k),则

..., f(k+2), f(k+1), ..., f(k-1), f(k-2)...等 称为f(k)的移位序列。

仿照微分运算,定义离散信号的<mark>差分</mark>运算。

1. 差分运算

$$\frac{\mathrm{d} f(t)}{\mathrm{d} t} = \lim_{\Delta t \to 0} \frac{\Delta f(k)}{\Delta t} = \lim_{\Delta t \to 0} \frac{f(t + \Delta t) - f(t)}{\Delta t} = \lim_{\Delta t \to 0} \frac{f(t) - f(t - \Delta t)}{\Delta t}$$

离散信号的变化率有两种表示形式:

$$\frac{\Delta f(k)}{\Delta k} = \frac{f(k+1) - f(k)}{(k+1) - k} \qquad \frac{\nabla f(k)}{\nabla k} = \frac{f(k) - f(k-1)}{k - (k-1)}$$

定义差分

- (1) 一阶前向差分定义: $\Delta f(\mathbf{k}) = f(\mathbf{k}+1) f(\mathbf{k})$
- (2) 一阶后向差分定义: $\nabla f(\mathbf{k}) = f(\mathbf{k}) f(\mathbf{k} 1)$ 式中, Δ 和 ∇ 称为差分算子,无原则区别。本书主要用后向差分,简称为**差分**。
 - (3) 差分的线性性质:

$$\nabla[\mathbf{a}f_1(\mathbf{k}) + \mathbf{b}f_2(\mathbf{k})] = \mathbf{a} \nabla f_1(\mathbf{k}) + \mathbf{b} \nabla f_2(\mathbf{k})$$

(4) 二阶差分定义:

$$\nabla^2 f(\mathbf{k}) = \nabla[\nabla f(\mathbf{k})] = \nabla[f(\mathbf{k}) - f(\mathbf{k}-1)] = \nabla f(\mathbf{k}) - \nabla f(\mathbf{k}-1)$$

= $f(\mathbf{k}) - f(\mathbf{k}-1) - [f(\mathbf{k}-1) - f(\mathbf{k}-2)] = f(\mathbf{k}) - 2f(\mathbf{k}-1) + f(\mathbf{k}-2)$

(5) m阶差分:

$$\nabla^{\mathbf{m}} f(\mathbf{k}) = f(\mathbf{k}) + \mathbf{b}_{1} f(\mathbf{k-1}) + \dots + \mathbf{b}_{m} f(\mathbf{k-m})$$

2. 差分方程

包含未知序列y(k)及其各阶差分的方程式称为差分方程。

将差分展开为移位序列,得一般形式 $y(k) + a_{n-1}y(k-1) + ... + a_0y(k-n) = b_m f(k) + ... + b_0 f(k-m)$

差分方程本质上是递推的代数方程,若已知初始 条件和激励,利用迭代法可求得其数值解。

例 差分方程的迭代解法

一般不易得到解析形式的(闭合)解。

二、差分方程的经典解

$$y(k) + a_{n-1}y(k-1) + ... + a_0y(k-n) = b_mf(k) + ... + b_0f(k-m)$$

与微分方程经典解类似, $y(k) = y_h(k) + y_p(k)$

1. 齐次解:

齐次方程

$$y(k) + a_{n-1}y(k-1) + ... + a_0y(k-n) = 0$$

特征方程

$$1 + a_{n-1} \lambda^{-1} + ... + a_0 \lambda^{-n} = 0$$
,

即

$$\lambda^{n} + a_{n-1} \lambda^{n-1} + ... + a_0 = 0$$

其根 λ_i (i=1, 2, ..., n)称为差分方程的特征根。

根据特征根,齐次解的两种情况

1. 无重根
$$\lambda_1 \neq \lambda_2 \neq \cdots \neq \lambda_n$$
 n阶方程

$$y_h(k) = C_1(\lambda_1)^k + C_2(\lambda_2)^k + \dots + C_n(\lambda_n)^k$$

2. 有重根 特征根 λ 为r重根时

$$y_h(k) = (C_{r-1}k^{r-1} + C_{r-2}k^{r-2} + \dots + C_1k + C_0)\lambda^k$$

2. 特解y_p(k):

特解的形式与激励的形式类似

例

激励 $f(k)$	响应 $y(k)$ 的特解 $y_p(k)$
F(常数)	P(常数)
k^{m}	$P_m k^m + P_{m-1} k^{m-1} + \dots + P_1 k + P_0$ (特征根均不为0) $k^r (P_m k^m + P_{m-1} k^{m-1} + \dots + P_1 k + P_0)$ (有 r 重为0的特征根)
a^k	$Pa^{k}(a$ 不等于特征根) $ (P_{1}k + P_{0})a^{k}(a$ 等于特征单根) $ (P_{r}k^{r} + P_{r-1}k^{r-1} + \dots + P_{0})a^{k}(a$ 等于 r 重特征根)
$\cos(\beta k) \sin(\beta k)$	$P_1 \cos(\beta k) + P_2 \sin(\beta k)$ (特征根不等于 $e^{\pm j\beta}$)

三、零输入响应和零状态响应

$$y(\mathbf{k}) = y_{zi}(\mathbf{k}) + y_{zs}(\mathbf{k})$$

1. 零输入响应:输入为零,差分方程为齐次解

齐次解形式: $C(\lambda)^k$ C由初始状态定(相当于0的条件)

2. 零状态响应:初始状态为0,即

$$y_{zs}(-1) = y_{zs}(-2) = \dots = 0$$

经典法: 齐次解+特解

例1

例2

求解方法

卷积法

差分方程迭代解举例

例: 若描述某系统的差分方程为

$$y(k) + 3y(k-1) + 2y(k-2) = f(k)$$

已知初始条件y(0)=0,y(1)=2,激励 $f(k)=2^k \varepsilon(k), 求 y(k)$ 。

解:
$$y(k) = -3y(k-1) - 2y(k-2) + f(k)$$

$$k=2$$
 $y(2)=-3y(1)-2y(0)+f(2)=-2$

$$k=3$$
 $y(3)=-3y(2)-2y(1)+f(3)=10$

$$k=4$$
 $y(4)=-3y(3)-2y(2)+f(4)=-10$

• • • • •

差分方程齐次解单根例

求解二阶差分方程
$$y(k) - 5y(k-1) + 6y(k-2) = 0$$
已知 $y(0) = 2$, $y(1) = 1$, 求 $y(k)$ 。

解: 特征方程
$$\lambda^2 - 5\lambda + 6 = 0$$
 $(\lambda - 2)(\lambda - 3) = 0$

特征根
$$\lambda_1 = 2$$
, $\lambda_2 = 3$

$$y(k) = C_1(2)^k + C_2(3)^k$$

定
$$C_1$$
, C_2

$$k = 0$$
 $y(0) = C_1 + C_2 = 2$

$$k = 1$$
 $y(1) = 2C_1 + 3C_2 = 1$

解出

$$C_1 = 5, C_2 = -3$$

$$C_1 = 5$$
, $C_2 = -3$ $y(k) = 5(2)^k - 3(3)^k$

差分方程齐次解重根例

求差分方程y(k) + 6y(k-1) + 12y(k-2) + 8y(k-3) = 0的解。

解: 特征方程
$$\lambda^3 + 6\lambda^2 + 12\lambda + 8 = 0$$
 $(\lambda + 2)^3 = 0$

三重特征根 $\lambda_{1,2,3} = -2$

齐次解
$$y(k) = (C_2k^2 + C_1k + C_0)(-2)^k$$

由初始条件定 C_1 , C_2 , C_3

差分方程全解举例

例: 系统方程 y(k)+4y(k-1)+4y(k-2)=f(k)已知初始条件y(0)=0, y(1)=-1; 激励 $f(k)=2^k$, $k \ge 0$ 。 求方程的全解。 解: 特征方程为 $\lambda^2 + 4\lambda + 4 = 0$ 可解得特征根 $\lambda_1 = \lambda_2 = 2$,其齐次解 $y_h(k) = (C_1k + C_2) (-2)^k$ 特解为 $y_n(k)=P(2)^k$, $k \ge 0$ 代入差分方程得 $P(2)^{k}+4P(2)^{k-1}+4P(2)^{k-2}=f(k)=2^{k}$, 解得 P=1/4所以得特解: $y_p(k)=2^{k-2}$, $k \ge 0$ 故全解为 $y(k) = y_h + y_p = (C_1 k + C_2) (-2)^k + 2^{k-2}$, $k \ge 0$ 代入初始条件解得 $C_1=1$, $C_2=-1/4$

零输入响应举例

系统的方程
$$y(k)+3y(k-1)+2y(k-2)=f(k)+f(k-1)$$

 $f(k)=(-2)^k \varepsilon(k)$ $y(0)=y(1)=0$

求系统的零输入响应。

解: 零输入响应 $y_{zi}(k)$, 即当f(k)=0时的解。

$$y(k)+3y(k-1)+2y(k-2)=0$$

$$\lambda^2 + 3\lambda + 2 = 0 \qquad \lambda_1 = -2, \qquad \lambda_2 = -1$$

$$y_{zi}(k) = C_1(-2)^k + C_2(-1)^k$$

求初始状态

题中y(0)=y(1)=0 ,是激励加上以后的,不能说明状态为

0, 需迭代求出 y(-1), y(-2)。

$$n = 1 y(1) + 3y(0) + 2y(-1) = (-2)\varepsilon(1) + (-2)^{0}\varepsilon(0)$$
$$0 + 0 + 2y(-1) = (-2) + 1 = -1$$

所以
$$y(-1) = -\frac{1}{2}$$

 $n = 0$ $y(0) + 3y(-1) + 2y(-2) = (-2)^0 \varepsilon(0) + (-2)^{-1} \varepsilon(-1)$
 $0 + 3y(-1) + 2y(-2) = 1$

所以
$$y(-2)=\frac{5}{4}$$

由初始状态确定 C_{1, C_2}

以y(-1), y(-2)代入方程

$$\begin{cases} y_{zi}(-1) = C_1(-2)^{-1} + C_2(-1)^{-1} = -\frac{1}{2} \\ y_{zi}(-2) = C_1(-2)^{-2} + C_2(-1)^{-2} = \frac{5}{4} \end{cases}$$

解得

$$\begin{cases} C_1 = -3 \\ C_2 = 2 \end{cases}$$

$$y_{zi}(k) = -3(-2)^k + 2(-1)^k$$

零输入零状态举例

例:系统方程为 y(k) + 3y(k-1) + 2y(k-2) = f(k)已知激励 $f(k)=2^k$, $k \ge 0$,初始状态y(-1)=0,y(-2)=1/2,求系统的零输入响应、零状态响应和全响应。

解: (1) y_i(k)满足方程

$$y_{zi}(k) + 3y_{zi}(k-1) + 2y_{zi}(k-2) = 0$$

 $y_{zi}(-1) = y(-1) = 0, y_{zi}(-2) = y(-2) = 1/2$

首先递推求出初始值yzi(0), yzi(1),

$$y_{zi}(k) = -3y_{zi}(k-1) - 2y_{zi}(k-2)$$

$$y_{zi}(0) = -3y_{zi}(-1) - 2y_{zi}(-2) = -1$$

$$y_{zi}(1) = -3y_{zi}(0) -2y_{zi}(-1) = 3$$

特征根为 $\lambda_1 = -1$, $\lambda_2 = -2$

解为
$$y_{zi}(k)=C_{zi1}(-1)^k+C_{zi2}(-2)^k$$
 将初始值代入 并解得 $C_{zi1}=1$, $C_{zi2}=-2$ $y_{zi}(k)=(-1)^k-2(-2)^k$, $k \ge 0$

(2) 零状态响应yzs(k) 满足

$$y_{zs}(k) + 3y_{zs}(k-1) + 2y_{zs}(k-2) = f(k)$$

 $y_{zs}(-1) = y_{zs}(-2) = 0$

递推求初始值 $y_{zs}(0), y_{zs}(1)$,

$$\begin{aligned} y_{zs}(k) &= -3y_{zs}(k-1) - 2y_{zs}(k-2) + 2^k, \, k \geqslant 0 \\ y_{zs}(0) &= -3y_{zs}(-1) - 2y_{zs}(-2) + 1 = 1 \\ y_{zs}(1) &= -3y_{zs}(0) - 2y_{zs}(-1) + 2 = -1 \end{aligned}$$

分别求出齐次解和特解,得

$$\begin{aligned} y_{zs}(k) &= C_{zs1}(-1)^k + C_{zs2}(-2)^k + y_p(k) \\ &= C_{zs1}(-1)^k + C_{zs2}(-2)^k + (1/3)2^k \end{aligned}$$

代入初始值求得

$$C_{zs1} = -1/3$$
, $C_{zs2} = 1$
 $y_{zs}(k) = -(-1)^k/3 + (-2)^k + (1/3)2^k$, $k \ge 0$