Gates and Boolean Algebra

Read: Appendix C (4th edition) or Appendix B (5th edition), sections 1, 2, and 3 (partial) — pages 1 to 13.

- NOT unary operator, written as a bar over the variable.
 - Example: \overline{a} , true (1) if a is 0.
 - NOT gate $(c = \overline{a})$.
 - There are two different drawings used for NOT.

a	$c = \overline{a}$
0	1
1	0

- AND written as
 - Example: A B, true (1) only if both A and B are 1.
 - AND gate ($c = a \text{ AND } b, c = a \cdot b$).

a	b	c = a • b
0	0	0
0	1	0
1	0	0
1	1	1

- OR written as +
 - Example: A + B, true (1) if at least one of A or B is 1.
 - OR gate (c = a OR b, c = a + b)

a	b	c = a + b
0	0	0
0	1	1
1	0	1
1	1	1

• Some examples:

• NAND — not and:

a	b	c = a NAND b
0	0	1
0	1	1
1	0	1
1	1	0

• NOR — not or:

a	b	c = a NOR b
0	0	1
0	1	0
1	0	0
1	1	0

• XOR — exclusive or:

a	b	c = a XOR b
0	0	0
0	1	1
1	0	1
1	1	0

- It is possible to implement all the other types of gates from NAND gates, or from NOR gates.
 - Simplifies the underlying structure
 - For example, an AND gate can be constructed from two NAND gates:

Binary Addition

Read: Appendix C (4th edition) or Appendix B (5th edition), section 5 — pages 26 to 35.

Binary Addition, first attempt:

• Need to compute a + b to get the sum, and the carry:

A	В	Carry	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

• Here is one solution using one XOR and one AND gate:

6

• Here is a second solution. This one starts by computing the Sum bit. It uses two AND gates, one OR gate, and two NOT gates (do you see the NOT gates?):

• Then, to get the Carry bit:

A	В	Carry	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

• Put the two parts from the previous slide together:

- Either of these two solutions is a *Half Adder*.
 - It adds the two binary digits producing the correct sum and carry results.
 - To simplify drawing the picture, we use:

1101 +0011

Inputs			Out	puts
A	В	Carry In	Carry Out	Sum
0	0	0	0	0
0	1	0	0	1
1	0	0	0	1
1	1	0	1	0
0	0	1	0	1
0	1	1	1	0
1	0	1	1	0
1	1	1	1	1

• Again, we use a simplified drawing to represent the *full adder*:

• We can hook Full Adder's together to add more than one pair of bits:

- This is called a Ripple Adder.
 - Note how the Carry has to "ripple" through for each bit.
 - Implies that each bit cannot compute its sum until all the previous bits have finished.
 - This can be extended to any number of bits: 8, 16, 32, 64, ...
 - Ripple adders are vvveeerrryyy ssslllooowww.
 - We will see a much better solution later.

<u>Multiplexor (Selector)</u>.

• The output equals one of the inputs as determined by the *selector* or *control* input.

a	b	S	Output
0	0	0	0
1	0	0	1
0	1	0	0
1	1	0	1
0	0	1	0
0	1	1	1
1	0	1	0
1	1	1	1

• Construction of a two-input multiplexor:

12

Summary, thus far:

- There are three key types of logic gate: AND, OR, NOT.
- All three can be implemented in terms of NAND gates, or in terms of NOR gates.
- Logic gates can be assembled to form circuits.
 - We have already covered how to create *half-adders*, *full-adders*, and *multiplexors* using AND, OR, and NOT gates.
- Such circuits can be used to store and manipulate binary information.

Boolean Algebra:

Reading: Section C.2 (4th edition), Section B.2 (5th edition)

- Reminder:
 - OR written as +
 - Example: A + B, true (1) if at least one of A or B is 1.
 - AND written as
 - Example: A B, true (1) only if both A and B are 1.
 - NOT unary operator, written as a bar over the variable.
 - Example: \overline{A} , true (1) if A is 0.
- Useful laws of Boolean Algebra (see page C-6, 4th edition)
 - Identity law: A + 0 = A and $A \cdot 1 = A$.
 - Zero and One laws: A + 1 = 1 and $A \cdot 0 = 0$.
 - Inverse laws: $A + \overline{A} = 1$ and $A \cdot \overline{A} = 0$.
 - Commutative laws: A + B = B + A and $A \bullet B = B \bullet A$.
 - Associative laws: A + (B + C) = (A + B) + C and $A \cdot (B \cdot C) = (A \cdot B) \cdot C$.
 - Distributive laws: $A \cdot (B + C) = (A \cdot B) + (A \cdot C)$ and $A + (B \cdot C) = (A + B) \cdot (A + C)$

• Problem: Construct a logic circuit for a device with three inputs: A, B, and C. The circuit will have three outputs: D, E, and F.

• Output D as true (1) if at least one input is true. D = A + B + C

• Output E as true (1) if exactly two inputs are true. $E = (\overline{A} \cdot B \cdot C) + (A \cdot \overline{B} \cdot C) + (A \cdot B \cdot \overline{C})$

• Output F as true (1) if all three inputs are true. $F = A \cdot B \cdot C$

• The truth table for D, E, and F:

A	В	С	D	Е	F
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	0
1	1	1	1	0	1

 $\bullet \quad D = A + B + C$

In the future, we will represent multi-input OR gates as:

 $\bullet \quad F = A \bullet B \bullet C$

In the future, we will represent multi-input AND gates as:

- Using the three-input OR and AND gates, we can construct the circuit for E:
 - $E = (\overline{A} \cdot B \cdot C) + (A \cdot \overline{B} \cdot C) + (A \cdot B \cdot \overline{C})$

- How to construct one circuit for computing all three outputs: D, E, F?
 - Combine the three circuits we have already built!
 - The only hard part is drawing the lines for A, B, and C to show where they cross over each other :-).
- Using multi-input AND and OR gates simplifies the drawing of circuits.
 - Importance of <u>abstraction</u>: Once we know how to construct the interior details, we no longer show those details!

V = Voltage = energy of one electron i = Current = # of electrons/sec amp = ampere **►**D Power = iV A-B Two wires that cross but do not touch. **→**F Two wires that

are connected.

Constructing an Arithmetic Logic Unit

ALU Overview:

Reading: Section C-5 (4th edition) or Section B-5 (5th edition) — pages 26 to 35.

- The ALU that we will construct will:
 - Take two 32-bit input values, A and B.
 - Output one 32-bit output value C, and a single additional bit Z.
 - Compute the following operations:
 - Bit-wise Logical OR: $C = A \mid B$
 - Bit-wise Logical AND: C = A & B
 - Addition: C = A + B
 - Subtraction: C = A B
 - Set Less Than: if (A < B) then C = 1 else C = 0
 - If Equal: if (A == B) then Z = 1 else Z = 0

ALU Overview (continued):

- Where the ALU fits into the CPU:
 - The ALU is one part of the CPU.
 - ALU handles arithmetic (add, subtract) and logical (and, or) operations.
 - Inputs to the ALU come from registers.
 - Result of the ALU (generally) goes to a register.
 - 15 bits of an instruction specify the registers:
 - 2 source registers (values to read).
 - 1 destination register (value to write).
 - ALU operation needs 3 bits to control the ALU.
 - Will be a total of 5 operations.

ALU Logical operations:

- Need the ability to do AND and OR operation on each pair of bits.
 - One bit from operand A; one bit from operand B.
- Need a multiplexor to choose the desired result.
 - Both operations computed each time.
 - Need to choose only one result.
- To compute a 32-bit result from two 32-bit operands:
 - Replicate the unit shown at right 32 times!

ALU Arithmetic operations:

- From Slide 9:
 - Combined two half-adders, plus one OR gate.
 - Six AND gates, three OR gates, four NOT gates.
 - 13 gates total. 6 gates on the longest path
- There are other ways to approach this problem.

Inputs			Out	puts
A	В	Carry In	Carry Out	Sum
0	0	0	0	0
0	1	0	0	1
1	0	0	0	1
1	1	0	1	0
0	0	1	0	1
0	1	1	1	0
1	0	1	1	0
1	1	1	1	1

ALU Arithmetic operations (continued):

- When is Carry Out true?
 - If two of the inputs are one, or if all three are 1.

CarryOut =
$$(a \cdot b \cdot \overline{CarryIn}) + (\overline{a} \cdot b \cdot CarryIn) + (a \cdot \overline{b} \cdot CarryIn) + (a \cdot b \cdot CarryIn)$$

- Could use a 3-input AND gate for each of the four terms.
 - One input to each of the first three AND gates would be negated.
- Instead, we can optimize and use 2-input AND gates, leaving out the negated term each time.
- Why does this work?
 - Leaving out the negate in the 3 AND gates results in true at all 3 AND gates when all 3 inputs are true.

ALU Arithmetic operations (continued):

- When is Sum true (1)?
 - If <u>exactly one</u> of the three inputs (a, b, CarryIn) is true, or if <u>all three</u> are ture:

Sum =
$$(\overline{a} \cdot b \cdot \overline{CarryIn}) + (a \cdot \overline{b} \cdot \overline{CarryIn}) + (\overline{a} \cdot \overline{b} \cdot CarryIn) + (a \cdot b \cdot CarryIn)$$

- Four AND gates (3 inputs each), one OR gate (4 inputs), three NOT gates:
 - Total: 4 * 2 AND gates + 3 OR gates

$$+ 3 \text{ NOT gates} = \underline{14 \text{ gates}}$$

Inputs			Outputs	
A	В	Carry In	Carry Out	Sum
0	0	0	0	0
0	1	0	0	1
1	0	0	0	1
1	1	0	1	0
0	0	1	0	1
0	1	1	1	0
1	0	1	1	0
1	1	1	1	1

ALU Arithmetic operations (continued):

- Combined result of Sum and Carry bits.
 - Eleven AND gates.
 - Five OR gates.
 - Three NOT gates.
 - 19 gates total
- Earlier adder version used <u>13 gates</u>.
- Where is the advantage?
 - We can compute the Sum bit <u>and</u> the CarryOut bit <u>simultaneously</u>.
 - Was done one after the other in the earlier version.

One-bit ALU: supports AND, OR, ADD:

- Outputs:
 - 0: Result of AND.
 - 1: Result of OR.
 - 2: Result of ADD.
 - Includes CarryOut
- Note: All results are computed every time.
 - The Multiplexor allows the unit to send only one result to output.

Combine one-bit ALU's to create 32 bit ALU:

- Called a *Ripple Adder*.
- Figure B.5.7, page B-30.
- Drawback: Takes time to "ripple" the carry out bit through all 32 adders.

Subtraction:

- Two's complement approach: Find the two's complement of b, then add.
 - Two parts:
 - Invert step.
 - Add 1 step.
- Invert step is easy:

<u>Subtraction (continued)</u>:

- Add 1 step (to get two's complement of input b):
 - Put 1 as the CarryIn to ALU 0.
 - Do this by connecting the Binvert control line to CarryIn for ALU 0.
- Since Binvert is now really Bnegate, change its name.
- Thus, to do subtraction:
 - Set Bnegate to 1.
 - Set Operation to ADD.

$$a - b = a + (-b)$$

Set-less-than:

slt \$t3, \$s4, \$s7

- **slt** is an arithmetic instruction:
 - Produces 1 if a < b, 0 otherwise.
 - Uses subtraction: (a b) < 0 implies a < b.
 - slt is 1 when (a b) is negative.
 - Use the <u>sign bit</u> to determine if (a b) is negative!
 - Result: bits 1 to 31 are always 0.
 - Result: bit 0 is either 0 or 1.
 - But, bit 31 is the sign bit.
 - Need to connect bit 31 to bit 0.

<u>Set-less-than (continued)</u>:

31 instances of this 1-bit ALU. Bits 0 to 30.

1 instance of this 1-bit ALU. Bit 31 (most significant bit)

<u>Set-less-than (continued)</u>:

- ALU 0 thru ALU 30 are identical units.
- ALU 31 contains overflow detection.
- The Set result for ALU 31 tells us if (a b) < 0.
 - Remember: bit 31 is the sign bit.
 - Connect 0 to Less input for bits 1 to 31.
 - Connect bit 31's Set output to the Less input for bit 0.
 - Allows ALU to return:

0000 0000 0000 0000 0000 0000 0000 0001

Test for Equality:

- Use subtraction:
 - (a b) == 0 implies a == b.
- Why does Zero need the NOT gate?

Control Functions for the ALU:

- Bnegate line:
 - Turned on (1) for sub, slt.
 - Turned off (0) for add, and, or.
- Operation:
 - Four functions: and, or, add, slt.
 - Add with Bnegate turned on gives subtraction.
- Five operations: add, sub, and, or, slt.
 - Three control lines:
 - Bnegate (1 line).
 - Operation (2 lines).
- Three wires can support up to 8 operations.
 - We only have 5.
 - Leaves 3 for future expansion.

ALU con	Function		
Bnegate	Operation	runcuon	
0	0 0	and	
0	0 1	or	
0	1 0	add	
1	1 0	subtract	
1	1 1	set on less than	

The 3 "missing" operations: 1 00, 1 01, 0 1

ALU Summary:

- Can build an ALU to support the MIPS instruction set.
 - Key idea: Use multiplexor to select the output we want.
 - We can efficiently perform subtraction using two's complement.
 - We can replicate a 1-bit ALU to produce a 32-bit ALU.
- Important points about hardware:
 - All of the gates are always working!
 - The speed of a gate is affected by the number of inputs to the gate (fewer is faster).
 - The speed of a circuit is affected by the number of gates in series.
 - On the "critical path", or
 - "deepest level of logic"
 - Our primary focus: Comprehension
 - However, we will take note of
 - Clever changes to organization can improve performance
 - This is similar to finding better algorithms in software.

35

Faster Addition: Carry Lookahead

Reading: Section C.6 (4th edition), Section B.6 (5th edition).

- Is a 32-bit ALU as fast as a 1-bit ALU?
- Is there more than one way to do addition (or to skin a cat)?
 - Two extremes: ripple carry and sum-of-products.
- What is known at the beginning of the problem?
 - a0, a1, a2, ..., a31
 - b0, b1, b2, ..., b31
 - c0
 - We do <u>not</u> know c1, c2, c3, ..., c31. Need to compute these.
- Basic idea: What is known, and not known, in each equation?

$$c_1 = b_0 \cdot c_0 + a_0 \cdot c_0 + a_0 \cdot b_0$$

 $c_2 = b_1 \cdot c_1 + a_1 \cdot c_1 + a_1 \cdot b_1$
 $c_3 = b_2 \cdot c_2 + a_2 \cdot c_2 + a_2 \cdot b_2$
 $c_4 = b_3 \cdot c_3 + a_3 \cdot c_3 + a_3 \cdot b_3$
 $c_7 = b_6 \cdot c_6 + a_6 \cdot c_6 + a_6 \cdot b_6$

• Sum-of-products: Can you see the ripple?

```
c_1 = b_0 \cdot c_0 + a_0 \cdot c_0 + a_0 \cdot b_0 Needs 3 AND gates of 2 inputs each and a 3-input OR gate. (Total = 5 gates)
c_2 = b_1 \cdot c_1 + a_1 \cdot c_1 + a_1 \cdot b_1
      = b_1 \cdot (b_0 \cdot c_0 + a_0 \cdot c_0 + a_0 \cdot b_0) + a_1 \cdot (b_0 \cdot c_0 + a_0 \cdot c_0 + a_0 \cdot b_0) + a_1 \cdot b_1
      = b_1 \cdot b_0 \cdot c_0 + b_1 \cdot a_0 \cdot c_0 + b_1 \cdot a_0 \cdot b_0 + a_1 \cdot b_0 \cdot c_0 + a_1 \cdot a_0 \cdot c_0 + a_1 \cdot a_0 \cdot b_0 + a_1 \cdot b_1
           Needs 7 AND gates of up to 3 inputs each, plus a 7-input OR gate. (Total = 19 gates)
\mathbf{c}_3 = \mathbf{b}_2 \bullet \mathbf{c}_2 + \mathbf{a}_2 \bullet \mathbf{c}_2 + \mathbf{a}_2 \bullet \mathbf{b}_2
      = b_2 \cdot (b_1 \cdot b_0 \cdot c_0 + b_1 \cdot a_0 \cdot c_0 + b_1 \cdot a_0 \cdot b_0 + a_1 \cdot b_0 \cdot c_0 + a_1 \cdot a_0 \cdot c_0 + a_1 \cdot a_0 \cdot b_0 + a_1 \cdot b_1)
          + a_2 \cdot (b_1 \cdot b_0 \cdot c_0 + b_1 \cdot a_0 \cdot c_0 + b_1 \cdot a_0 \cdot b_0 + a_1 \cdot b_0 \cdot c_0 + a_1 \cdot a_0 \cdot c_0 + a_1 \cdot a_0 \cdot b_0 + a_1 \cdot b_1) + a_2 \cdot b_2
      = b_2 \cdot b_1 \cdot b_0 \cdot c_0 + b_2 \cdot b_1 \cdot a_0 \cdot c_0 + b_2 \cdot b_1 \cdot a_0 \cdot b_0 + b_2 \cdot a_1 \cdot b_0 \cdot c_0 + b_2 \cdot a_1 \cdot a_0 \cdot c_0 + b_2 \cdot a_1 \cdot a_0 \cdot b_0 + b_2 \cdot a_1 \cdot b_1
           + a_2 \cdot b_1 \cdot b_0 \cdot c_0 + a_2 \cdot b_1 \cdot a_0 \cdot c_0 + a_2 \cdot b_1 \cdot a_0 \cdot b_0 + a_2 \cdot a_1 \cdot b_0 \cdot c_0 + a_2 \cdot a_1 \cdot a_0 \cdot c_0 + a_2 \cdot a_1 \cdot a_0 \cdot b_0
           + a_2 \cdot a_1 \cdot b_1 + a_2 \cdot b_2
            Needs 15 AND gates of up to 4 inputs each, plus a 15-input OR gate. (Total = 41 + 14 = 55 gates)
c_4 = b_3 \cdot c_3 + a_3 \cdot c_3 + a_3 \cdot b_3
      etc.
```

• Expensive! Why?

•
$$\mathbf{c}_1 = \mathbf{g}_0 + \mathbf{p}_0 \cdot \mathbf{c}_0 = a0 \cdot b0 + (a0 + b0) \cdot c0$$

= $\mathbf{a}_0 \cdot \mathbf{b}_0 + \mathbf{a}_0 \cdot \mathbf{c}_0 + \mathbf{b}_0 \cdot \mathbf{c}_0$

Note: **all** of these are known at the start of the problem.

$$c_{2} = g_{1} + p_{1} \cdot c_{1} = g_{1} + p_{1} \cdot (g_{0} + p_{0} \cdot c_{0})$$

$$= g_{1} + p_{1} \cdot g_{0} + p_{1} \cdot p_{0} \cdot c_{0} \qquad Equation A$$

$$= a_{1} \cdot b_{1} + (a_{1} + b_{1}) \cdot a_{0} \cdot b_{0} + (a_{1} + b_{1}) \cdot (a_{0} + b_{0}) \cdot c_{0}$$

$$= a_{1} \cdot b_{1} + a_{1} \cdot a_{0} \cdot b_{0} + b_{1} \cdot a_{0} \cdot b_{0} +$$

$$= a_{1} \cdot (a_{0} + b_{0}) \cdot c_{0} + b_{1} \cdot (a_{0} + b_{0}) \cdot c_{0}$$

$$= a_{1} \cdot b_{1} + a_{1} \cdot a_{0} \cdot b_{0} + b_{1} \cdot a_{0} \cdot b_{0} + a_{1} \cdot a_{0} \cdot c_{0} +$$

$$= a_{1} \cdot b_{0} \cdot c_{0} + b_{1} \cdot a_{0} \cdot c_{0} + b_{1} \cdot b_{0} \cdot c_{0}$$

7 AND gates of up to 3 inputs each.

Total number of 2-input gates:

AND gates: 13

OR gates: 6

Total: 19

Carry Lookahead (continued):

- It is possible to continue the sum-of-products technique.
 - But, it gets expensive -- exponential growth in the number of gates needed at each stage.
- Here is an "in-between" approach:
- Motivation:
 - If we did not know the value of carry-in, what could we do?
 - When would we always generate a carry out? $g_i = a_i \cdot b_i$
 - When would we propagate the carry out? $p_i = a_i + b_i$
 - Example:

• $c_1 = g_0 + p_0 \cdot c_0 = g_0 + (a_0 + b_0) c_0$

= $\mathbf{a_0 \cdot b_0} + \mathbf{a_0 \cdot c_0} + \mathbf{b_0 \cdot c_0}$ Note: <u>all</u> of these items are known at the start of the problem.

• But, can optimize by treating **g0**, **p0**, **g1**, **p1** as logical units.

$$\mathbf{c}_2 = \mathbf{g}_1 + \mathbf{p}_1 \cdot \mathbf{c}_1 = \mathbf{g}_1 + \mathbf{p}_1 \cdot (\mathbf{g}_0 + \mathbf{p}_0 \cdot \mathbf{c}_0)$$
$$= \mathbf{g}_1 + \mathbf{p}_1 \cdot \mathbf{g}_0 + \mathbf{p}_1 \cdot \mathbf{p}_0 \cdot \mathbf{c}_0 \qquad Equation A$$

- Equation A becomes:
 - 4 AND gates:
 - two input gates: g_0 , g_1 , $p_1 \cdot g_0$
 - three input gate: $p_1 \cdot p_0 \cdot c_0$
 - 3 OR gates:
 - two input gates: p0, p1
 - three input gate: c2
- By comparison, the figure on the previous slide, in effect, had g_0 twice.
 - Appears only once here.

Total number of 2-input gates:

AND gates: 5

OR gates: 4

Total: 9

• The gate count is not as many as stated by the previous slide:

Total number of 2-input gates:

AND gates: 5

OR gates: 4

Total: 9

• To implement Carry Lookahead, we only need to <u>add</u>:

Total number of 2-input gates:

AND gates: 3

OR gates: 2

Total: 5

• Why?

Carry Lookahead (continued):

• Continuing, we can compute c3:

$$c_3 = g_2 + p_2 \cdot c_2 = g_2 + p_2 \cdot (g_1 + p_1 \cdot g_0 + p_1 \cdot p_0 \cdot c_0)$$
$$= g_2 + p_2 \cdot g_1 + p_2 \cdot p_1 \cdot g_0 + p_2 \cdot p_1 \cdot p_0 \cdot c_0$$

• 4 AND gates of (up to) 4 inputs each, plus 3 AND (g₀, g₁, g₂), plus 3 OR (p₀, p₁, p₂) gates of 2 inputs each.

42

- ditto for c4.
- Better!
 - More complicated than the ripple adder.
 - But, the growth in complexity is not as great as the sum-of-products approach.
 - <u>Compromise</u> between performance and complexity.
- Called a *Carry Lookahead Adder*, or CLA.
- There is a practical limit to the number of inputs to a CLA.
 - We will assume 4-bits.

"Super" Carry Lookahead:

- Another level of abstraction is needed:
- Consider a 16-bit adder, constructed using 4-bit CLA's.
 - Use 4 CLA's to handle adding the 16-bit values 4 bits at a time.
 - Need to compute the carry from one 4-bit CLA to the next.
 - Could do this using a ripple add.
 - An improvement over the original ripple adder (why?).
 - We can do better.

- "Super" bits to the rescue!
- Compute "super" propagate bits:

$$p_0 = p_3 \cdot p_2 \cdot p_1 \cdot p_0$$
 $p_1 = p_7 \cdot p_6 \cdot p_5 \cdot p_4$
 $p_2 = p_{11} \cdot p_{10} \cdot p_9 \cdot p_8$

 $p_3 = p_{15} \cdot p_{14} \cdot p_{13} \cdot p_{12}$

• Compute "super" generate bits:

G0 =
$$g_3$$
 + p_3 • g_2 + p_3 • p_2 • g_1 + p_3 • p_2 • p_1 • g_0

G1 = g_7 + p_7 • g_6 + p_7 • p_6 • g_5 + p_7 • p_6 • p_5 • g_4

G2 = g_{11} + p_{11} • g_{10} + p_{11} • p_{10} • g_9 + p_{11} • p_{10} • p_9 • g_8

G3 = g_{15} + p_{15} • g_{14} + p_{15} • p_{14} • g_{13} + p_{15} • p_{14} • p_{13} • g_{12}

- Example from pages C-44 to C-46 (4th edition):
- Determine the gi, pi, Pi, and Gi values of these two 16-bit numbers:

```
a: 0001 1010 0011 0011_{two}
b: 1110 0101 1110 1011_{two}
```

Also, what is CarryOut15 (C4)?

• Solution:

```
a: 0001 1010 0011 0011
b: 1110 0101 1110 1011
gi: 0000 0000 0010 0011 determined from ai • bi
pi: 1111 1111 1111 1011 determined from ai + bi
```

• Compute the "super" propagates:

```
P0 = p3  • p2  • p1  • p0 = 1  • 0  • 1  • 1 = 0

P1 = p7  • p6  • p5  • p4 = 1  • 1  • 1  • 1 = 1

P2 = p11  • p10  • p9  • p8 = 1  • 1  • 1  • 1 = 1

P3 = p15  • p14  • p13  • p12 = 1  • 1  • 1  • 1 = 1
```

• Compute the "super" generates:

• From the previous slide:

```
P0 = 0 P1 = 1 P2 = 1 P3 = 1

G0 = 0 G1 = 1 G2 = 0 G3 = 0
```

• Which gives:

- Note: <u>All</u> of the C's can be calculated at the <u>same</u> time!
- The sequence then becomes:
 - Calculate all of the P's and G's at the same time.
 - Calculate all of the **c**'s at the same time. Now, the carry-in to each CLA is known.
 - Calculate all of the result bits at the same time.

```
0110 1001 1110 0010
+ 1001 1011 0100 0011

p 1111 1011 1110 0011
g 0000 1001 0100 0010
P 1 0 0 0
G 0 1 1 0
The carry-in to each 4-bit adder
0110 1001 1110 0010
+ 1001 1011 0100 0011
```

XXXX XXXX XXXX XXXX

• Suppose we don't know the bits of the two numbers, but we do know all the p and g bits:

Multiplication

Reading: Section 3.3: pages 230-236 (4th edition), pages 183-188 (5th edition).

- More complicated than addition.
 - Accomplished with shifting and addition.
- Takes more time and requires more area on the CPU (that is, more transistors).
- Will look at 3 versions, all based on the grade school multiplication algorithm:

<u>Multiplication</u> (continued):

• Version One:

- Multiplicand:
 - Stored in right half (right 32-bits) of register.
 - Shifted left one bit on each iteration.
- Multiplier:
 - Shifted right one bit.
 - Look at least-significant bit only on each iteration.
- Product:
 - Potentially a 64-bit answer.

<u>Multiplication</u> (continued):

• Version Two:

- Multiplicand register, ALU, and Multiplier register are now 32-bits each.
- Product is now shifted <u>right</u>.

<u>Multiplication</u> (continued):

- Separate Multiplier register is gone.
- Put Multiplier initially in the right-half of the product register.
 - As the product is computed and shifted right, the multiplier will shift right as well.
 - Right-most bit (LSB) of Product register is the bit tested in the first if.
 - Step 3 is gone.

Multiplication in MIPS:

Reading: Spim Appendix, page 53.

- Two versions:
 - Signed multiplication: mult

```
mult $$1, $$2  # multiply signed $$1 * $$2
```

• Unsigned multiplication: multu

```
multu $s3, $s4 # multiply unsigned $s3 * $s4
```

- Note: No destination register!!
 - The product goes into two special-purpose registers (not part of the 32 general-purpose registers).
 - 10 holds the lower 32-bits of the product.
 - hi holds the upper 32-bits of the product.
 - Use mflo (move from lo) and mfhi (move from hi)

```
mflo $s1  # move 32 bit value from lo to $s1 mfhi $s2  # move 32 bit value from hi to $s2
```

- Notes:
 - The programmer (that would be you!) must test for overflow not done by mult.
 - Pseudo-instructions are available in MIPS that specify a destination register: mul, mulo, mulou.

Division:

- Will skip Section 3.4 (4th and 5th editions), Division.
- But, take note of MIPS division instructions:
 - "Divide in MIPS"
 - Pages 241-242 (4th edition).
 - Page 52 in Spim Appendix: div, divu instructions.
- Analogous to multiply.
- Register **10** holds the quotient.
- Register **hi** holds the remainder.

Summary:

- Computer arithmetic is constrained by limited precision.
 - Limited range of values for integers and floating-point.
 - Floating-point further limited by fractional part.
- Bit patterns have no inherent meaning but standards do exist.
 - Two's complement.
 - IEEE 754 floating-point.
- Computer instructions determine "meaning" of the bit patterns.
- Performance and accuracy are important; thus, there are many complexities in real machines.
- Basics of Gates and Boolean Algebra.
- Basics of integer ALU.