

Universidad Nacional de Cuyo - Facultad de Ingeniería

Química General e Inorgánica

TRABAJO PRÁCTICO 9:

Cinética y equilibrio químico

Profesora Titular: Dra. Graciela Valente

Profesora Adjunta: Dra. Cecilia Medaura

Jefes de Trabajos Prácticos:

Lic. Sebastián Drajlin Gordon

Lic. Liliana Ferrer
Prof. Inés Grillo
Ing. Carina Maroto
Dra. Rebeca Purpora
Ing. Alejandra Somonte

Ing. Silvina Tonini

Contenido: Cinética química. Equilibrio químico. Factores que afectan el equilibrio.

ÍNDICE

I.	EJERCICIOS3
II.	AUTOEVALUACIÓN7
III.	RESPUESTAS9

I. EJERCICIOS

1. En el siguiente gráfico se puede observar la variación en la concentración de un cierto reactivo A en función del tiempo:

De acuerdo con él, Ud. debe expresar la velocidad media y la velocidad instantánea de variación de A.

2. En la figura siguiente la misma reacción transcurre con una diferencia: en una de ellas se ha aplicado un catalizador. ¿Cuál es y por qué elige esta respuesta?

De acuerdo a la reacción anterior:

- a. ¿∆H° será positivo o negativo?
- b. ¿El catalizador cambia el valor de ΔH° ?
- c. ¿El catalizador se consume en la reacción?
- 3. Indique el orden total de reacción de las siguientes reacciones, cuyas velocidades están expresadas por las siguientes ecuaciones:
 - a. $v = k.[A]^2.[B]$
 - b. $v = k.[A]^{2/3}.[B]^2$
 - c. $v = k.[A]^2$
 - d. $v = k.[A].[B]^2$

4. Se han realizado varias medidas referentes a una reacción del tipo:

aA + bB → Productos, obteniéndose los siguientes resultados:

Experiencia	Concentración inicial (mol.L ⁻¹)		Velocidad
			(mol.L ⁻¹ .s ⁻¹)
	[A]	[B]	
1	0,01	0,01	4,4.10-4
2	0,02	0,01	8,8.10-4
3	0,02	0,02	35,2.10-4

¿Cuál sería la expresión de la ecuación de velocidad para esa reacción? Utilice el método de las velocidades iniciales.

a.
$$v = k.[A]^2.[B]$$

b.
$$v = k.[A].[B]^2$$

c.
$$v = k.[A]^2.[B]^2$$

d.
$$v = k.[A].[B]$$

5. Los datos siguientes se obtuvieron para la descomposición del pentóxido de dinitrógeno en el disolvente tetracloruro de carbono (CCl₄) a 45°C:

$$2 N_2 O_{5(CCl4)} \rightarrow 4 NO_{2(g)} + O_{2(g)}$$

Tiempo (s)	[N ₂ O ₅] (M)
0	0,91
300	0,75
600	0,64
1200	0,44
3000	0,16

- a. Utilizando el método integrado (gráfico) indique el orden de reacción y exprese la ecuación de velocidad.
- b. En base a la ecuación de velocidad hallada, calcule la constante de velocidad con sus correspondientes unidades.
- Una reacción de primer orden tiene una constante de velocidad de 0,0064 min⁻¹. Encuentre el tiempo necesario para que la concentración disminuya a la mitad de su valor inicial.
- 7. Para la reacción hipotética A + B ⇌ C + D en condiciones también hipotéticas, la energía de activación es de 32 kJ/mol. Para la reacción inversa, esa energía es de 58 KJ/mol. Grafique y razone si la reacción es exotérmica o endotérmica.
- 8. En la reacción reversible:

$$NH_4CI_{(s)} \rightleftharpoons NH_{3(g)} + HCI_{(g)}$$

¿Puede alcanzarse el equilibrio calentando en un tubo abierto el NH4Cl_(s)? Fundamente.

9. Si la constante para el proceso:

$$Fe^{3+} + SCN^{-} \rightleftharpoons FeSCN^{2+}$$
 vale 3,3.10² a 25 °C

¿cuánto vale la constante para:

FeSCN²⁺
$$\rightleftharpoons$$
 Fe³⁺ + SCN⁻

10. Para las siguientes reacciones escriba las expresiones de la constante de equilibrio:

$$I_{2(s)} + H_{2(g)} \rightleftharpoons 2 HI_{(g)}$$

$$CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(q)}$$

$$N_{2(g)} + 3 H_{2(g)} \rightleftharpoons 2 NH_{3(g)}$$

$$2 H_2O_{2(ac)} \rightleftharpoons 2 H_2O_{(I)} + O_{2(g)}$$

11. A continuación se dan las constantes de equilibrio para las reacciones que se indican. ¿En qué caso tiene lugar más extensamente la reacción directa:

a.
$$HCN_{(ac)} \rightleftharpoons H^+_{(ac)} + CN^-_{(ac)}$$

$$Kc = 1.10^{-9}$$

b.
$$Ag(NH_3)_{2(ac)} \rightleftharpoons Ag^+_{(ac)} + 2 NH_{3(ac)}$$

$$Kc = 6,8.10^{-8}$$

c.
$$HgS_{(s)} \rightleftharpoons Hg^{2+}_{(ac)} + S^{2-}_{(ac)}$$

$$Kc = 3,0.10^{-53}$$

- 12. Justifique si las siguientes afirmaciones son verdaderas o falsas:
 - a. Un valor negativo de una constante de equilibrio significa que la reacción inversa es espontánea.
 - b. Para una reacción exotérmica, se produce un desplazamiento hacia la formación de productos al aumentar la temperatura.
 - c. Para una reacción a temperatura constante con igual número de moles gaseosos de reactivo y productos no se produce desplazamiento del equilibrio si se modifica la presión.
 - d. Para una reacción a temperatura constante donde únicamente son gases los productos, el valor de la constante de equilibrio disminuye cuando disminuimos el volumen del recipiente.
- 13. En un recipiente de 5 L se introduce 1 mol de SO₂ y 1 mol de O₂ y se calienta a 727 °C, con lo que se alcanza el equilibrio en la reacción:

$$2 SO_{2(g)} + O_{2(g)} \rightleftharpoons 2 SO_{3(g)}$$

Se analiza la muestra después de llegar al equilibrio y se encuentran 0,150 moles de SO₂. Calcule:

- a. La cantidad de SO₃ que se forma en gramos.
- b. Kc
- c. Kp
- 14. Se ha estudiado la reacción del equilibrio siguiente:

 $2 \text{ NOCl}_{(g)} \rightleftharpoons 2 \text{ NO}_{(g)} + \text{Cl}_{2(g)}$ a 735 K y en un volumen de 1 litro. Inicialmente en el recipiente se introdujeron 2 moles de NOCl. Una vez establecido el equilibrio se comprobó que se había disociado un 33,3 % del compuesto.

- a. Calcule Kc.
- b. ¿Hacia dónde se desplazará la reacción para restablecer el equilibrio si se aumenta la presión? Razone la respuesta.

15. Para la reacción:

 $CO_{(g)} + H_2O_{(g)} \rightleftharpoons CO_{2(g)} + H_{2(g)}$, se tiene una constante de 8,25 a 900 °C.

En un recipiente de 25 litros se mezclan 10 moles de CO y 5 moles de H₂O a 900 °C. Calcule en el equilibrio:

- a. Las concentraciones de todos los compuestos.
- b. La presión total de la mezcla.
- 16. La constante de equilibrio para la reacción

$$NO_{(g)} + CO_{2(g)} \rightleftharpoons NO_{2(g)} + CO_{(g)}$$

Un recipiente de un litro contiene inicialmente una mezcla de 0,2 moles de NO; 0,3 moles de CO₂; 0,4 moles de NO₂ y 0,4 moles de CO a 986 °C.

- a. Indique si esta mezcla está o no en equilibrio.
- b. Si no estuviera en equilibrio, ¿para dónde debería desplazarse la reacción para alcanzarlo?
- c. ¿Cuál sería el valor de la constante en la reacción inversa?
- d. Si los gases reaccionan hasta alcanzar el estado de equilibrio a 986 °C, calcular las concentraciones finales.
- e. Calcule la presión inicial y la presión final de la mezcla gaseosa.
- 17. Discuta en forma cualitativa los cambios en el equilibrio y la posición del mismo para las siguientes reacciones, variando la temperatura:
 - a. $N_{2(q)} + 3 H_{2(q)} \rightleftharpoons 2 NH_{3(q)} + calor$ (a presión total constante)
 - b. $N_{2(g)} + O_{2(g)} + calor \rightleftharpoons 2 NO_{(g)}$
- 18. Para la siguiente reacción en equilibrio:
 - 4 $HCI_{(g)}$ + $O_{2(g)}$ \rightleftharpoons 2 $H_2O_{(g)}$ + 2 $CI_{2(g)}$; (ΔH° <0) Justifique cuál es el efecto sobre la concentración del HCl en el equilibrio en los siguientes casos:
 - a. aumentar [O₂]
 - b. disminuir [H₂O]
 - c. aumentar el volumen
 - d. reducir la temperatura
 - e. añadir un gas inerte como He
 - f. introducir un catalizador

II. AUTOEVALUACIÓN

- 1. Dada la reacción A + B → C se puede afirmar que:
 - a. Ocurre obligatoriamente en un solo paso.
 - b. El orden de reacción es dos.
 - c. Sólo elevando la temperatura se puede aumentar su velocidad.
 - d. Aumentará su velocidad, si conseguimos disminuir la energía de activación.
- 2. La energía de activación puede definirse como:
 - a. La diferencia entre el contenido energético del complejo activado y el de los productos de la reacción.
 - b. La diferencia entre el contenido energético del complejo activado y el de los reactivos.
 - c. La diferencia entre el contenido energético de los reactivos y el de los productos de la reacción.
- 3. Calcule la constante de velocidad para una reacción de primer orden en la que se observan las siguientes concentraciones:

tiempo 0	0,104 mol/L
tiempo 10 h	0,063 mol / L

- 4. Dado el proceso en fase gaseosa aA + bB ⇌ cC
 - a. Establece la relación entre las constantes de equilibrio Kc y Kp.
 - b. Si el proceso es endotérmico, ¿qué influencia ejerce sobre el mismo un aumento de temperatura?
 - c. Si el proceso es exotérmico, ¿qué influencia ejerce sobre el mismo un aumento de presión?
- 5. Ordene las siguientes reacciones según su tendencia creciente a proceder hacia la derecha:

- 6. A 817 °C el CO_{2(g)} reacciona con carbono_(s) en exceso, mediante un proceso exotérmico, formando monóxido de carbono en equilibrio. En estas condiciones, se observa que existe un 80% en volumen de CO en equilibrio y una presión total en el recipiente de 3,125 atm. Calcule:
 - a. Kp
 - b. 3 procedimientos para desplazar la reacción hacia la formación de CO.

7. Considera el siguiente equilibrio:

$$C_{(s)} + CO_{2(g)} \rightleftharpoons 2 CO_{(g)}$$

$$\Delta H^{\circ} = 119.9 \text{ kJ}$$

- a. ¿Cómo se desplaza la reacción para restablecer el equilibrio al aumentar la cantidad de carbono?
- b. ¿Y al retirar monóxido de carbono?
- c. ¿Y al disminuir la presión?
- d. ¿Podrá formarse monóxido de carbono espontáneamente a altas temperaturas?
- 8. Dada la siguiente ecuación:

$$N_{2(g)} + O_{2(g)} \rightleftharpoons 2 NO_{(g)}$$

$$\Delta H^{\circ}$$
 = - 180,2 kJ a 25 °C y 1 atm,

representativa de un equilibrio químico podemos decir de ella que:

- a. La constante de equilibrio se duplica si se duplica la presión.
- b. La reacción se desplaza hacia la izquierda si se aumenta la temperatura.
- c. Si se aumenta la presión, disminuye el valor de la constante de equilibrio.
- d. Si se aumenta la temperatura, la constante de equilibrio no varía.
- 9. La reacción entre A y B, que es de primer orden respecto a A y B, ha dado los resultados indicados en el cuadro faltando completar alguna información. A partir de la ley cinética complete el cuadro siguiente.

Experimento	velocidad en mol.s ⁻¹ .L ⁻¹	Α	В
1	0,1	0,20 mol/L	0,05 mol/L
2	0,4		0,05 mol/L
3	0,8	0,40 mol/L	

III. RESPUESTAS

2.

- a. Negativo
- b. No
- c. No

3.

- a. Orden 3
- b. Orden 8/3
- c. Orden 2
- d. Orden 3
- 4. b

5.

- a. Primer orden. $v = k.[N_2O_5]$
- b. $k = 5.7.10^{-4} s^{-1}$
- 6. 108,30 min
- 7. Exotérmica, porque a la reacción inversa hay que agregarle calor para que se produzca.
- 8. No, porque son gases y al escaparse no puede alcanzarse el equilibrio.
- 9. $3,03.10^{-3}$
- 11. b, porque es la de mayor valor.

12.

- a. F
- b. F
- c. V
- d. F

13.

- a. 68 g
- b. 279
- c. 3,4

14.

- a. 0,082
- Si se aumenta la presión la reacción se desplaza para restablecer el equilibrio hacia la izquierda, que es donde hay menor número de moles al estado gaseoso.

15.

- a. [CO] = 0.22 M; $[H_2O] = 0.02 \text{M}$; $[CO_2] = 0.18 \text{M}$; $[H_2] = 0.18 \text{M}$.
- b. 57,71 atm

16.

- a. No, porque Qc > Kc.
- b. El sistema evoluciona hacia la izquierda para alcanzar el equilibrio.
- c. 0,625
- d. [NO] = 0.239 M; $[CO_2] = 0.339 \text{ M}$; $[NO_2] = 0.361 \text{ M}$; [CO] = 0.361 M.
- e. $P_{inicial} = P_{final} = 134,21$ atm

17.

- a. Es una reacción exotérmica. Si se agrega calor, la reacción se va a desplazar hacia la izquierda para restablecer el equilibrio. Si se disminuye la temperatura, la reacción se va a desplazar hacia la derecha.
- b. Es una reacción endotérmica. Se favorece ante el agregado de calor, se inhibe ante la disminución de temperatura.

18.

- a. disminuye
- b. disminuye
- c. aumenta
- d. disminuye
- e. no afecta
- f. no afecta

Autoevaluación

1.

- a. No
- b. No
- c. No
- d. Si
- 2. b
- 3. 1,3.10⁻⁵ s⁻¹
- 4.
- a. $Kp = Kc.(R.T)^{[c-(a+b)]}$
- b. Favorece la reacción.
- c. Depende del número de moles gaseosos de cada lado.
- 5. b, c, a
- 6.
- a. 10
- b. 1) Enfriar el sistema. 2) Aumentar la concentración de CO₂. 3) Extraer CO de alguna manera del sistema a medida que se forma.

7.

- a. El agregado de sólidos no modifica el equilibrio.
- b. Hacia la derecha.
- c. Hacia la derecha.
- d. Si, porque es endotérmica.

8.

- a. No
- b. Si
- c. No
- d. Si, varía.

9.

Experimento	velocidad en mol.s ⁻¹ .L ⁻¹	A	В
1	0,1	0,20 mol/L	0,05 mol/L
2	0,4	0,80 mol/L	0,05 mol/L
3	0,8	0,40 mol/L	0,2 mol/L