The Answer of Assignment 2

WEI SHUANG

31/8/2025

Problem 1 Solution

- (1) According to the theory of isomorphism of linear spaces, any two linear spaces of the same dimension are isomorphic. Therefore, $\sum_{i,j=0}^{1} c_{ij} |i,j\rangle$ is isomorphic to $\{(x_1, x_2, x_3, x_4)\}, x \in \mathbb{C}$. That is, $v_1 = (c_{00}, c_{01}, c_{10}, c_{11})^T$, $v_2 = (d_{00}, d_{01}, d_{10}, d_{11})^T$.
- (2) $\langle \psi_1 | \psi_2 \rangle = v_1^{\dagger} v_2$ 成立, 这是因为 $\langle \psi_1 | \psi_2 \rangle = (\sum_{i,j=0}^1 c_{i,j}^* \langle ij|) (\sum_i i, j = 0^1 c_{i,j} | ij \rangle) = v_1^{\dagger} v_2$
- (3) $O|pq\rangle = O_{ij,kl}|ij\rangle \langle kl||pq\rangle = O_{ij,kl}|ij\rangle \delta_{kp}\delta_{lq} = O_{ij,pq}|ij\rangle$ if we define $|00\rangle$ as e_1 , $|01\rangle$ as e_2 , $|10\rangle$ as e_3 , $|11\rangle$ as e_4 , then we can get the matrix representation of O: $Oe_i = \sum_{j=1}^4 O_{ji}e_j$ Therefore, the matrix representation of O is:

$$M = \begin{pmatrix} O_{11} & O_{12} & O_{13} & O_{14} \\ O_{21} & O_{22} & O_{23} & O_{24} \\ O_{31} & O_{32} & O_{33} & O_{34} \\ O_{41} & O_{42} & O_{43} & O_{44} \end{pmatrix}$$

(4) $O|\psi_1\rangle$ is the same as Mv_1 , because:

$$O\left|\psi_{1}\right\rangle = O_{ij,kl}\left|ij\right\rangle \left\langle kl\right| \cdot c_{mn}\left|mn\right\rangle = O_{ij,kl}\left|ij\right\rangle c_{mn}\delta_{km}\delta_{ln} = O_{ij,mn}c_{mn}\left|ij\right\rangle$$

this is equivalent to Mv_1 if we define $|00\rangle$ as e_1 , $|01\rangle$ as e_2 , $|10\rangle$ as e_3 , $|11\rangle$ as e_4 .

Problem 2 Solution

(1) Starting from $[b_i^{\dagger}, b_i^{\dagger}] = 0$, show that $[b_i, b_j] = 0$. According to the definition of commutation relation, we have:

$$[b_i^{\dagger}, b_j^{\dagger}] = b_i^{\dagger} b_j^{\dagger} - b_j^{\dagger} b_i^{\dagger} = 0$$

Taking the Hermitian conjugate of both sides, we get:

$$(b_i^\dagger b_j^\dagger - b_j^\dagger b_i^\dagger)^\dagger = 0^\dagger$$

$$b_i b_i - b_i b_i = 0$$

so we have: $[b_i, b_j] = 0$

(2)

$$\langle \overline{n_1' n_2' \cdots n_k'} | b_i^{\dagger} | \overline{n_1 n_2 \cdots n_k} \rangle = \langle \overline{n_1 n_2 \cdots n_k} | b_i | \overline{n_1' n_2' \cdots n_k'} \rangle^*$$

and

$$b_i^{\dagger} | \overline{n_1 n_2 \cdots n_k} \rangle = \sqrt{n_i + 1} | \overline{n_1 n_2 \cdots (n_i + 1) \cdots n_k} \rangle$$

we can get the relation between b_i and b_i^{\dagger} as follows: (3)

(4)

Problem 3 Solution

- (1)
- (2)
- (3)
- (4) how should the Pauli operators σ_i^+ and σ_i^z can be written in terms of the f operators? we have the definition that:

$$f_i^\dagger = \left(\prod_{j < i} \sigma_j^z\right) \sigma_i^+$$

so from $\langle \overline{n_{1'}n_{2'} \cdot n_{i'}} | f_i^{\dagger} | \overline{n_1n_2n_3 \cdot n_i} \rangle = \langle \overline{n_1n_2 \cdot n_i} | f_i | \overline{n_{1'}n_{2'} \cdot n_{i'}} \rangle^*$ we can get the relation between f_i and σ_i^+ , σ_i^z as follows:

$$f_i = \left(\prod_{j < i} \sigma_j^z\right) \sigma_i^-$$

then try to represent σ_i^z and σ_i^+ in terms of f_i : we use the matrix representation of the Pauli operators:

$$\sigma_i^z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \sigma_i^+ = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \sigma_i^- = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

 $\sigma_i^z {\rm can}$ be expressed as: 2 $\sigma_i^+ \sigma_i^- - I = 2 f_i^\dagger f_i - I$

like wise:

$$\sigma_i^+ = f_i^{\dagger} \left(\prod_{j < i} \sigma_j^z \right)^{-1}$$
$$= f_i^{\dagger} \left(\prod_{j < i} (2f_j^{\dagger} f_j - I) \right)$$