Amendments to the Claims

- 1. (Currently Amended) A microelectromechanical system (MEMS)
 strain gauge providing measurement of strain of an object, the strain gauge comprising:
 - a substrate having a surface attachable to the object;
 - a longitudinally extending beam;
 - at least one flexible arm having first and second ends attached to the substrate and having a middle portion supporting the beam above the substrate; [[and]]
 - a first actuator connected to the beam to apply a force to the beam;
 - a detector connected to communicating with the beam for detecting a frequency of vibration of the beam to provide a measure of strain of the object; and
 - an insulating bridge defined in the beam between the first actuator and the detector.
 - 2. (Original) The MEMS strain gauge as recited in claim 1, wherein the detected frequency is a resonant frequency of vibration of the beam.
 - 3. (Cancelled)

60

65

- 4. (Currently Amended) The MEMS strain gauge as recited in claim 1 [[3]], further comprising a second actuator connected to the beam for providing a force to the beam in a direction opposite the force provided by the first actuator.
- 5. (Currently Amended) The MEMS strain gauge as recited in claim 1 [[3]], wherein the detector comprises a set of movable capacitor plates connected to the beam and a set of stationary capacitor plates in opposition to the movable capacitor plates and a capacitance sensing circuit.
 - 6. (Currently Amended) The MEMS strain gauge as recited in

claim 1 [[3]], wherein the applied force induces vibration in the beam.

- 7. (Original) The MEMS strain gauge as recited in claim 6, wherein the applied force is an impulse that induces vibration in the beam at a resonant frequency of the beam.
- 8. (Original) The MEMS strain gauge as recited in claim 6, wherein the first actuator comprises a set of movable capacitor plates connected to the beam and a set of stationary capacitor plates in opposition to the movable capacitor plates.
 - 9. (Currently Amended) The MEMS strain gauge as recited in claim 8 [[6]], wherein the movable and stationary capacitor plates have interdigitating fingers.
 - 10. (Currently Amended) The MEMS strain gauge as recited in claim 8 [[6]], wherein the first actuator further comprises a pulse generator connected across the movable and stationary capacitor plates and operable to momentarily charge the capacitor plates to produce the force.
 - 11. (Currently Amended) The MEMS strain gauge as recited in claim 8 [[6]], wherein the first actuator further comprises a variable ac oscillator connected across the movable and stationary capacitor plates and operable to maintain oscillation at a resonant frequency of the transverse arm.
 - 12. (Currently Amended) The MEMS strain gauge as recited in claim 8 [[6]], wherein the first actuator further comprises an ac oscillator connected across the movable and stationary capacitor plates and operable to maintain oscillation at a predetermined frequency of the transverse arm.
 - 13. (Currently Amended) The MEMS strain gauge as recited in claim 12, further comprising A microelectromechanical system (MEMS) strain gauge providing measurement of strain of an object, the strain gauge comprising:

5	a substrate having a surface attachable to the object;
	a longitudinally extending beam;
	at least one flexible arm having first and segond ends attached to the
	substrate and having a middle portion supporting the beam
	above the substrate;
10	a first actuator communicating with the beam to apply a force to the
	beam, the applied force inducing vibration in the beam, the first
	actuator comprising:
	a set of movable capacitor plates connected to the
	beam and a set of stationary capacitor plates in
15	opposition to the movable capacitor plates; and
	an ac oscillator connected across the movable and
	stationary capacitor plates and operable to
	maintain oscillation at a predetermined frequency
	of the transverse arm;
20	a detector communicating with the beam for detecting a frequency of
	vibration of the beam to provide a measure of strain of the
	object; and
	a microprocessor coupled to the detector to calculate the strain at the
	arm as a function of the amplitude of motion of the beam as it
25	vibrates at the predetermined frequency.
	14. (Currently Amended) The MEMS strain gauge as recited in
	claim 2, further comprising A microelectromechanical system (MEMS) strain
	gauge providing measurement of strain of an object, the strain gauge
	comprising:

- a substrate having a surface attachable to the object; a longitudinally extending beam;

5

- at least one flexible arm having first and second ends attached to the substrate and having a middle portion supporting the beam above the substrate;
- a detector communicating with the beam for detecting a resonant frequency of vibration of the beam to provide a measure of strain of the object; and
 - a microprocessor coupled to the detector to calculate the strain at the arm as a function of the resonant frequency of the arm.

15. (Currently Amended) The MEMS strain gauge as recited in claim 14, wherein the microprocessor further measures frequency comprises a frequency measurement counter counting cycles of capacitance variation for a predetermined time period.

5

- 16. (Original) The MEMS strain gauge as recited in claim 15, wherein the microprocessor calculates an amplitude of motion and maintains the frequency at a specific frequency.
- 17. (Original) The MEMS strain gauge as recited in claim 16, wherein the specific frequency is a resonant frequency.
- 18. (Original) The MEMS strain gauge as recited in claim 1, wherein the beam is centered on the arm between the first and second ends of the flexible arm.
- 19. (Original) The MEMS strain gauge as recited in claim 1, wherein the flexible arm supports the beam at a first end of the beam, and wherein the strain gauge further includes a second flexible arm having first and second ends attached to the substrate and having a middle supporting the beam above the substrate at a second end of the beam.
- 20. (Original) The MEMS strain gauge as recited in claim 1, wherein the arm is electrically isolated from the object.
- 21-23. (Canceled)—The MEMS strain gauge as recited in claim 1, wherein the arm is electrically isolated from the detector.
- 22. (Original) The MEMS strain gauge as recited in claim 2, wherein the arm is electrically isolated from the first actuator.
 - 23. (Original) The MEMS strain gauge as recited in claim 1, wherein

at least a portion of the beam is insulating.

5

5

10

- 24. (Original) The MEMS strain gauge as recited in claim 1, further including:
 - a second flexible arm having first and second ends attached to the substrate and having a middle supporting the beam above the substrate; and
 - a detector communicating with the arm for detecting a frequency of vibration of the second arm to provide a measure of strain of the object.
- 25. (Currently Amended) A method for sensing the strain of an object using a MEMS strain gauge including a longitudinally extending beam suspended over a substrate by an arm connected at two separated ends to the substrate along a transverse axis, the method comprising the steps of:
 - A) attaching the substrate to the object with the transverse axis aligned with a direction of strain measurement in the object so that strain of the object causes strain in the substrate;
 - B) providing a momentary force to the [[arm]] beam with an actuator connected at a first point along the beam, thereby causing the [[arm]] beam to vibrate at a frequency, wherein the frequency of vibration is dependent upon the strain of the substrate and object;
 - C) measuring the frequency of vibration with a detector connected at a second point along the beam, the second point being electrically isolated from the first point; and
 - D) based on the measured frequency of vibration, determining the strain of the object.
 - 26. (Currently Amended) The method as recited in claim 25 [[26]],

wherein step (B) further comprises causing the arm to vibrate at a resonant frequency.

- 27. (Currently Amended) The method as recited in claim <u>26</u> [[27]], wherein step (C) further comprises measuring the resonant frequency of vibration.
- 28. (Currently Amended) The method as recited in claim <u>27</u> [[28]], wherein step (D) further comprises determining the strain of the object based on the measured resonant frequency of vibration.
- 29 [[30]]. (Currently Amended) A method for sensing the strain of an object using a MEMS strain gauge including a longitudinally extending beam suspended over a substrate by an arm connected at two separated ends to the substrate along a transverse axis, the method comprising the steps of:
- A) attaching the substrate to the object with the transverse axis aligned with a direction of strain measurement in the object so that strain of the object causes strain in the substrate;
- B) providing a momentary force to the arm, thereby causing the arm to vibrate at a frequency, wherein the frequency of vibration is dependent upon the strain of the substrate and object;
 - measuring the frequency of vibration; and

5

10

- D) based on the measured frequency of vibration, determining the strain of the object by he method as recited in claim 25, wherein step (D) further comprises adjusting a displacement of the arm to maintain the vibration at a predetermined frequency, and determining the strain based on the amount of displacement.
 - 30 [[31]]. (Currently Amended) A microelectromechanical system

(MEMS) strain gauge providing measurement of strain of an object, the strain gauge comprising:

a substrate having a surface attachable to the object;

5

10

5

- at least one flexible arm having first and second ends attached to the substrate, wherein the arm oscillates in response to a stimulus; [[and]]
- a detector communicating with the arm for detecting a <u>resonant</u> frequency of oscillation of the arm; and
- a microprocessor coupled to the detector to [[provide]] determine a measure of strain of the object as a function of the resonant frequency of the arm.

31 [[32]]. (Currently Amended) The MEMS strain gauge as recited in claim 30 [[31]], wherein the detector comprises a capacitor plate interfacing with the arm.

32 [[33]]. (Currently Amended) The MEMS strain gauge as recited in claim 31 [[32]], wherein the detector measures capacitance across the capacitor plate and the arm.

33 [[34]]. (Currently Amended) The MEMS strain gauge as recited in claim 32 [[33]], further comprising a microprocessor coupled to the detector and calculating an oscillation frequency of the flexible arm.

34 [[35]]. (Currently Amended) The MEMS strain gauge as recited in claim 30 [[31]], wherein the flexible arm carries a plurality of capacitor fingers, and wherein the detector comprises a capacitor plate carrying a plurality of capacitor fingers interdigitating with the capacitor fingers of the flexible arm.

35 [[36]]. (Currently Amended) The MEMS strain gauge as recited in claim 30 [[31]], further comprising an actuator capable of applying a force

causing the flexible arm to oscillate.

36 [[37]]. (Currently Amended) The MEMS strain gauge as recited in claim 30 [[31]], wherein the arm carries a plurality of capacitor fingers, and wherein the actuator comprises a capacitor plate carrying a plurality of capacitor fingers that are interdigitated with the capacitor fingers of the arm.

37 [[38]]. (Currently Amended) The MEMS strain gauge as recited in claim 36 [[37]], wherein a momentary voltage is applied across the capacitor plate.

38 [[39]]. (Currently Amended) The MEMS strain gauge as recited in claim 37 [[38]], wherein the capacitance across the interdigitated fingers is sensed after the voltage is applied.

39 [[40]]. (Currently Amended) The MEMS strain gauge as recited in claim 38 [[39]], wherein an oscillation frequency is determined based on the sensed capacitance.

40 [[41]]. (Currently Amended) The MEMS strain gauge as recited in claim 39 [[40]], wherein the strain is determined based on the oscillation frequency.

41. (New) The MEMS strain gauge as recited in claim 2, further comprising a microprocessor coupled to the detector to calculate the strain at the arm as a function of the resonant frequency of the arm.