

# **Locality Based Analysis** of Network Flows

SEI/CERT 21 July 2004 John McHugh,

Carrie Gates, Damon Becknel

© 2004 by Carnegie Mellon University



## Why Locality

- Locality is an entropy based characterization that allows prediction of future behavior based on past observations.
  - It captures the degree to which the behavior of a system is regular in some sense
  - It appears to be scale free, appearing in internet, subnet, and node scale behaviors.
  - It promotes clustering allowing the use of sets and multisets to abstract group behaviors.



# Eye Candy vs. Insight

- Locality often manifests as patterns in some space.
  - If we select the appropriate dimensions, we may achieve either understanding or puzzlement.
  - The next three pictures show persistent structure where none might be expected.
  - This can be viewed as a summary of a time series of connection matrices.
  - Graphics by Carrie Gates

© 2004 by Carnegie Mellor











## Williamson's Locality

- Matt Williamson, late of HP Bristol, noted address locality in a 2002 ACSAC paper.
  - For browsing, last 10 IPs visited constitute an effective working set.
  - Working set violations relatively rare, bursts rarer yet.
    - Delay on violation is effective "soft" mitigator
- What is the locality of trans border data?







## Williamson Confirmed (mostly)

- With the caveat that we are not seeing internal connections, the vast majority of the flows arguably follow Williamson's working set model.
- As usual, there are outliers ...





#### Noise localities

- We have been characterizing modest subnets in support of the traffic generation that will be used in the DARPA DQ system evaluations.
  - Attempting to avoid mistakes of DARPA IDS evaluation.
  - Striving for a realistic noise environment, among other things.

© 2004 by Carnegie Mellor



#### Crud and Noise

- In January, we observed a /16 for a week, and the whole customer net for a minute
- •For the /16
- MMM.NNN.24.x 66 hosts MMM.NNN.25.x 60 hosts
- MMM.NNN.26.x 46 hosts MMM.NNN.27.x 49 hosts
- MMM.NNN.28.x 57 hosts MMM.NNN.29.x 7 hosts
- MMM.NNN.30.x 70 hosts MMM.NNN.31.x 67 hosts
- MMM.NNN.32.x 54 hosts MMM.NNN.33.x 62 hosts
- MMM.NNN.34.x 50 hosts MMM.NNN.35.x 4 hosts
- MMM.NNN.120.x 2 hosts MMM.NNN.127.x 1 host
- MMM.NNN.140.x 1 host MMM.NNN.251.x 4 hosts
- Total 600 hosts in 16 /24s









# top 5 in 1 min sample

- Created a "bag" for source and destination addresses in the 1 minute sample. The annotated top 5 are:
- (39) lip \$ readbag --count --print jcm-tcp-s-10+.bagl sort -r -n | head
  - 12994 AAA.BBB.068.218 scan 4899 (Radmin)
  - 6598 CCC.DDD.209.215 scan 7100 (X-Font)
  - 5944 EEE.FFF.125.117 scan 20168 (Lovegate)
  - 5465 GGG.HHH.114.052 ditto
  - 5303 III.JJJ.164.126 scan 3127 (My doom)



## Bottom of bag in 1 min sample

- 3335 external hosts sent exactly one TCP flow
  - SYN probes for port 8866 449 times
    - W32.Beagle.B@mm is a mass-mailing worm-back door on TCP port 8866.
  - SYN probes for port 25 are seen 271 times.
  - Most remainder are SYNs to a variety of ports, mostly with high port numbers.
  - There are a number of ACK/RST packets which are probably associated with responses to spoofed DDoS attacks.

© 2004 by Carnegie Mellor



## Individual host profiles

- These were done by Capt. Damon Becknel, USA.
  - He was looking for ways of characterizing the role of a node based on it's activity patterns
  - As usual, surprising results are sometimes observed.













## Summary

- We have provided some examples of locality on a variety of scales for a variety of representations.
- It is our hope that the general notions of locality, and clustering will provide a basis for reducing the complexity of analysis.