Álgebra Linear I – Prof. José Luiz Neto – Resumo_A13

Livro de preparação do resumo: Álgebra Linear → Boldrine/Costa e Figueiredo/Wetzler (BOLDRINI, J. L. et al. Álgebra Linear. 3 ed. São Paulo: Harbra, 1986) e https://www.ufjf.br/andre_hallack/files/2018/04/linear17.pdf, acessado no dia 17/08/2020.

Base e Dimensão de um Espaço Vetorial. Extraindo ou completando uma base. Base e dimensão de um subespaço vetorial

Definição de base de um Espaço Vetorial

Um conjunto $\{v_1, ..., v_n\}$ de vetores de V será uma ba-

se de V se:

i)
$$\{\mathbf{v}_1, ..., \mathbf{v}_n\}$$
 é LI

$$(v_1, ..., v_n] = V$$

Exemplos

1)

$$V={\bf R}^2,\,{\bf e}_1=(1,\,0)\,\,{\bf e}\,\,{\bf e}_2=(0,\,1)$$
 $\{{\bf e}_1,\,{\bf e}_2\}\,\,\acute{e}\,\,base\,\,{\bf de}\,\,V,\,\,conhecida\,\,como\,\,base\,\,canônica\,\,{\bf de}\,\,{\bf R}^2.$

2)

$$\{(0, 1), (0, 2)\}$$
 não é base de \mathbb{R}^2 , pois é um conjunto LD.
Se $(0, 0) = a(0, 1) + b(0, 2)$, temos $a = -2b$ e a e b não são necessariamente zero.

Importante! $V = R^2$, qualquer conjunto com exatamente 2 vetores L.I. é uma base.

3)

$$V = \mathbb{R}^3$$
 {(1, 0, 0), (0, 1, 0), (0, 0, 1)} é uma base de \mathbb{R}^3 . Esta é a base canônica de \mathbb{R}^3 . Podemos mostrar que

i)
$$\{e_1, e_2, e_3\}$$
 é Ll e

$$ii$$
) $(x, y, z) = xe_1 + ye_2 + ze_3$

4)

$$\{(1, 0, 0), (0, 1, 0)\}$$
 não é base de \mathbb{R}^3 . É LI, mas não gera todo \mathbb{R}^3 , isto é, $\{(1, 0, 0), (0, 1, 0)\} \neq \mathbb{R}^3$.

Importante! $V = R^3$, qualquer conjunto com exatamente 3 vetores L.I. é uma base.

$$V = M(2, 2)$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{\'e uma base de } V.$$

Importante! V = M(2,2), qualquer conjunto com exatamente 4 vetores (matrizes 2x2) L.I. é uma base.

6)

$$\text{Mostre que } \beta = \left\{ \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 1 \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right) \right\}$$

é uma base de $V=M\left(2,2\right)$.

7)

Atenção! $P(\mathbb{R}) = P_n(\mathbb{R}) = \text{conjunto dos}$ polinômios de grau menor ou igual a n.

 P_n (\mathbb{R}) munido das operações usuais de soma de polinômios e multiplicação por escalar é um espaço vetorial.

Sejam
$$V = P(\mathbb{R})$$
 e $\beta = \{1, x, x^2, ..., x^n, ...\}$.

É imediato que β gera $P(\mathbb{R})$ (todo polinômio em $P(\mathbb{R})$ é combinação de polinômios de β) e não é difícil ver que β é L.I., sendo portanto uma base de $P(\mathbb{R})$.

Cuidado! Base é conjunto ordenado, sempre!

Definição de Dimensão de um Espaço Vetorial

Qualquer base de um espaço vetorial tem sempre o mesmo número de elementos. Este número é chamado dimensão de V, e denotado dim V.

Assim,

$$\dim (\mathbb{R}^2) = 2$$

$$\dim (\mathbb{R}^3) = 3$$

$$\dim (\mathbb{R}^4) = 4$$

$$\dots$$

$$\dim (\mathbb{R}^n) = n$$

$$\dim (P_n (\mathbb{R})) = n + 1$$

$$\dim (M_{n \times m} (\mathbb{R})) = n.m$$

Nota:

É imediato que $\{1, x, x^2, x^3\}$ é uma base de $P_3(\mathbb{R})$. Portanto $P_3(\mathbb{R})$ tem dimensão finita, todas as bases de $P_3(\mathbb{R})$ têm 4 vetores e dim $P_3(\mathbb{R}) = 4$.

Extraindo uma base

Resultado importante!

Sejam $v_1, v_2, ..., v_n$ vetores não nulos que geram um espaço vetorial V. Então, dentre estes vetores podemos extrair uma base de V.

Completando uma base

Resultado importante!

Qualquer conjunto de vetores LI de um espaço vetorial V de dimensão finita pode ser completado de modo a formar uma base de V.

Resultado importante!

Seja um espaço vetorial V gerado por um conjunto finito de vetores \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_n . Então, qualquer conjunto com mais de n vetores é necessariamente LD (e, portanto, qualquer conjunto LI tem no máximo n vetores)

Resultado importante!

Se dim V = n, qualquer conjunto de n vetores LI formará uma base de V.

Base e dimensão de um subespaço vetorial - Exemplos

1)

Sejam
$$V = \mathbb{R}^2 \ \text{e} \ W = \left[(1,2), (-1,-2), \left(\frac{1}{2}, 1 \right) \right].$$

Enconte uma base de W.

Solução:
$$\begin{pmatrix} 1 & 2 \\ -1 & -2 \\ \frac{1}{2} & 1 \end{pmatrix} \iff \begin{pmatrix} 1 & 2 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Assim uma base de W é $\beta_W = \{(1,2)\}$ e $\dim W = 1$.

2)

Seja
$$W = [(1,0,0,0),(1,1,0,0),(2,3,0,0),(1,0,0,1)] \subset \mathbb{R}^4$$
.

Vamos obter uma base para W:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 3 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Portanto $\{(1,0,0,0),(0,1,0,0),(0,0,0,1)\}$ é uma base de W, W tem dimensão finita, todas as bases de W têm 3 vetores e dim W = 3.

Verifique se
$$\mathbb{R}^4 = [(1,-1,3,-1),(2,1,3,0),(0,1,-1,1),(1,3,-1,2)]$$
 .

Seja $W \subset \mathbb{R}^4$ o subespaço gerado pelos quatro vetores acima. Teremos $W = \mathbb{R}^4$ se, e somente se, dim $W = \dim \mathbb{R}^4 = 4$. Vamos então descobrir qual a dimensão de W obtendo uma base para W:

$$\begin{bmatrix} 1 & -1 & 3 & -1 \\ 2 & 1 & 3 & 0 \\ 0 & 1 & -1 & 1 \\ 1 & 3 & -1 & 2 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & -1 & 3 & -1 \\ 0 & 3 & -3 & 2 \\ 0 & 1 & -1 & 1 \\ 0 & 4 & -4 & 3 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Assim $\dim W = 3 \neq 4 = \dim \mathbb{R}^4$ e portanto $W \subset \mathbb{R}^4$ não é todo o \mathbb{R}^4 .