## Congratulations! You passed!

 $\textbf{Grade received} \ 90\% \quad \textbf{Latest Submission Grade} \ 90\% \quad \textbf{To pass} \ 80\% \ \text{or higher}$ 

Go to next item

| 1. | What is the "cache" used for in our implementation of forward propagation and backward propagation?                                                                                          | 1 / 1 point |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|    |                                                                                                                                                                                              | -/ - point  |
|    | We use it to pass Z computed during forward propagation to the corresponding backward propagation step. It contains useful values for backward propagation to compute derivatives.           |             |
|    | It is used to cache the intermediate values of the cost function during training.                                                                                                            |             |
|    | It is used to keep track of the hyperparameters that we are searching over, to speed up computation.                                                                                         |             |
|    | We use it to pass variables computed during backward propagation to the corresponding forward propagation step. It contains<br>useful values for forward propagation to compute activations. |             |
|    |                                                                                                                                                                                              |             |
|    |                                                                                                                                                                                              |             |
|    | ∠ <sup>¬</sup> Expand                                                                                                                                                                        |             |
|    | Correct Correct, the "cache" records values from the forward propagation units and are used in backward propagation units because it is needed to compute the chain rule derivatives.        |             |
|    |                                                                                                                                                                                              |             |
| 2. | During the backpropagation process, we use gradient descent to change the hyperparameters. True/False?                                                                                       | 1/1 point   |
|    | False                                                                                                                                                                                        |             |
|    | ○ True                                                                                                                                                                                       |             |
|    |                                                                                                                                                                                              |             |
|    | ∠ <sup>7</sup> Expand                                                                                                                                                                        |             |
|    |                                                                                                                                                                                              |             |
|    | $igotimes$ Correct Correct. During backpropagation, we use gradient descent to compute new values of $W^{[l]}$ and $b^{[l]}$ . These are the parameters of the network.                      |             |
|    |                                                                                                                                                                                              |             |
| 3. | Considering the intermediate results below, which layers of a deep neural network are they likely to belong to?                                                                              | 1 / 1 poin  |



|    | Input layer of the deep neural network.                                                                                                                                                                                                                                                                                                                       |             |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|    | Later layers of the deep neural network.                                                                                                                                                                                                                                                                                                                      |             |
|    | Middle layers of the deep neural network.                                                                                                                                                                                                                                                                                                                     |             |
|    | Early layers of the deep neural network.                                                                                                                                                                                                                                                                                                                      |             |
|    |                                                                                                                                                                                                                                                                                                                                                               |             |
|    | ∠ <sup>¬</sup> Expand                                                                                                                                                                                                                                                                                                                                         |             |
|    | <ul> <li>Correct</li> <li>Correct. The deep layers of a neural network are typically computing more complex features such as the ones shown in the figure.</li> </ul>                                                                                                                                                                                         |             |
|    | lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:                                                                                                                                                                                                                                                                                                                      | 0 / 1 point |
|    | ○ False                                                                                                                                                                                                                                                                                                                                                       |             |
|    | True                                                                                                                                                                                                                                                                                                                                                          |             |
|    |                                                                                                                                                                                                                                                                                                                                                               |             |
|    | ∠ <sup>n</sup> Expand                                                                                                                                                                                                                                                                                                                                         |             |
|    | $igotimes$ Incorrect Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines $(a^{[2]}=g^{[2]}(z^{[2]})$ , $z^{[2]}=W^{[2]}a^{[1]}+b^{[2]}$ ,) in a deeper network, we cannot avoid a for loop iterating over the layers: $(a^{[l]}=g^{[l]}(z^{[l]}),z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]}$ ,). |             |
|    |                                                                                                                                                                                                                                                                                                                                                               |             |
| 5. | Suppose W[i] is the array with the weights of the i-th layer, b[i] is the vector of biases of the i-th layer, and g is the activation function used in all layers. Which of the following calculates the forward propagation for the neural network with L layers.                                                                                            | 1 / 1 point |
|    | for i in range(1, L+1): Z[i] = W[i]*A[i-1] + b[i] A[i] = g(Z[i])                                                                                                                                                                                                                                                                                              |             |
|    | for i in range(L):  Z[i] = W[i]*X + b[i]  A[i] = g(Z[i])                                                                                                                                                                                                                                                                                                      |             |
|    | for i in range(1, L):  Z[i] = W[i]*A[i-1] + b[i]  A[i] = g(Z[i])                                                                                                                                                                                                                                                                                              |             |
|    | for i in range(L):<br>$Z[i+1] = W[i+1]^*A[i+1] + b[i+1]$<br>A[i+1] = g(Z[i+1])                                                                                                                                                                                                                                                                                |             |
|    | ∠ <sup>¬</sup> Expand                                                                                                                                                                                                                                                                                                                                         |             |
|    | <ul> <li>Correct</li> <li>Yes. Remember that the range omits the last number thus the range from 1 to L+1 gives the L necessary values.</li> </ul>                                                                                                                                                                                                            |             |



How many layers does this network have?

| The number of layers L is 4. The number of hid |
|------------------------------------------------|
|------------------------------------------------|

- $\bigcirc$  The number of layers  $\underline{L}$  is 5. The number of hidden layers is 4.
- $\bigcirc$  The number of layers L is 4. The number of hidden layers is 4.
- $\bigcirc$  The number of layers L is 3. The number of hidden layers is 3.



## ✓ Correct

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

7. If L is the number of layers of a neural network then  $dZ^{[L]}=A^{[L]}-Y$  . True/False?

1/1 point

- False
- True

## 

**⊘** Correct

Correct. The gradient of the output layer depends on the difference between the value computed during the forward propagation process and the target values.

8. A shallow neural network with a single hidden layer and 6 hidden units can compute any function that a neural network with 2 hidden layers and 6 hidden units can compute. True/False?

1/1 point

- False
- True

## ∠ Expand

✓ Correct

Correct. As seen during the lectures there are functions you can compute with a "small" L-layer deep neural network that shallower networks require exponentially more hidden units to compute.



Which of the following statements are True? (Check all that apply).

\$\$W^{[2]}\$\$ will have shape (3, 1)\$\$b^{[3]}\$\$ will have shape (3, 1)\$\$W^{[3]}\$\$ will have shape (1, 3)



| ~ | Correct                                                                    |
|---|----------------------------------------------------------------------------|
|   | Yes. More generally, the shape of $\$ is $\$ is $\$ in $\{[1], n^{[1]})$ . |
|   |                                                                            |

| 7 | Expand |
|---|--------|
|   | LAPana |

**⊘** Correct

Great, you got all the right answers.

 $\textbf{10.} \ \ \textbf{Whereas the previous question used a specific network, in the general case what is the dimension of W^{[[l]]}, the weight matrix associated with layer $l$?}$ 

1/1 point

- $igcup W^{[l]}$  has shape  $(n^{[l+1]},n^{[l]})$
- $igcup W^{[l]}$  has shape  $(n^{[l-1]},n^{[l]})$
- $igcup W^{[l]}$  has shape  $(n^{[l]},n^{[l+1]})$
- $igotimes W^{[l]}$  has shape  $(n^{[l]}, n^{[l-1]})$



 $\bigcirc$  Correct

True