```
with(plottools)
[annulus, arc, arrow, circle, cone, cuboid, curve, cutin, cutout, cylinder, disk, dodecahedron,
                                                                                                    (1)
    ellipse, ellipticArc, exportplot, extrude, getdata, hemisphere, hexahedron, homothety,
   hyperbola, icosahedron, importplot, line, octahedron, parallelepiped, pieslice, point, polygon,
   polygonbyname, prism, project, rectangle, reflect, rotate, scale, sector, semitorus, sphere,
   stellate, tetrahedron, torus, transform, translate, triangulate]
with(plots)
                                                                                                    (2)
[animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d,
    conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, densityplot,
   display, dualaxisplot, fieldplot, fieldplot3d, gradplot, gradplot3d, implicitplot, implicitplot3d,
   inequal, interactive, interactiveparams, intersectplot, listcontplot, listcontplot3d,
   listdensityplot, listplot, listplot3d, loglogplot, logplot, matrixplot, multiple, odeplot, pareto,
   plotcompare, pointplot, pointplot3d, polarplot, polygonplot, polygonplot3d,
   polyhedra supported, polyhedraplot, rootlocus, semilogplot, setcolors, setoptions,
   setoptions3d, shadebetween, spacecurve, sparsematrixplot, surfdata, textplot, textplot3d,
   tubeplot]
with(DifferentialGeometry)
[&algmult, &minus, &mult, &plus, &tensor, &wedge, Annihilator, ApplyTransformation,
                                                                                                    (3)
    ChangeFrame, ComplementaryBasis, ComposeTransformations, DGIm, DGImageSpace,
   DGNullSpace, DGRe, DGbasis, DGconjugate, DGsetup, DGsolve, DGzip,
   DeRhamHomotopy, DualBasis, ExteriorDerivative, ExteriorDifferentialSystems, Flow,
   FrameData, GetComponents, GroupActions, Hook, InfinitesimalTransformation,
   IntegrateForm, IntersectSubspaces, InverseTransformation, JetCalculus, Library,
   LieAlgebras, LieBracket, LieDerivative, Preferences, Pullback, PullbackVector,
   Pushforward, RemoveFrame, Tensor, Tools, Transformation, evalDG]
with(VectorCalculus)
[\&x, `*`, `+`, `-`, `.`, <, >, <|>, About, AddCoordinates, ArcLength, BasisFormat, Binormal,
                                                                                                    (4)
    ConvertVector, CrossProduct, Curl, Curvature, D, Del, DirectionalDiff, Divergence,
   DotProduct, Flux, GetCoordinateParameters, GetCoordinates, GetNames,
   GetPVDescription, GetRootPoint, GetSpace, Gradient, Hessian, IsPositionVector,
   Is Rooted Vector, Is Vector Field, Jacobian, Laplacian, Line Int, Map To Basis, \nabla, Norm,
   Normalize, PathInt, PlotPositionVector, PlotVector, PositionVector, PrincipalNormal,
   RadiusOfCurvature, RootedVector, ScalarPotential, SetCoordinateParameters,
   SetCoordinates, SpaceCurve, SurfaceInt, TNBFrame, TangentLine, TangentPlane,
    TangentVector, Torsion, Vector, VectorField, VectorPotential, VectorSpace, Wronskian, diff,
    eval, evalVF, int, limit, series]
ext43\_dual := proc(ext43)
    local S1, comps;
   S1 := DifferentialGeometry:-evalDG([DifferentialGeometry:-&wedge(DifferentialGeometry:-
    &wedge(dx, dy), dz), DifferentialGeometry:-&wedge(DifferentialGeometry:-&wedge(dx, dy), dw),
   Differential Geometry:-&wedge(Differential Geometry:-&wedge(dx, dz), dw),
   DifferentialGeometry:-&wedge(DifferentialGeometry:-&wedge(dy, dz), dw)]);
```

```
comps := DifferentialGeometry:-GetComponents(ext43, S1);
          return DG([["form", M, 1], [[[1], comps[4]], [[2], -comps[3]], [[3], comps[2]], [[4],
            -comps[1]]])
end proc
ext43 \ dual := proc(ext43)
                                                                                                                                                                                                                                                                         (5)
          local S1, comps;
          S1 := DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDG([DifferentialGeometry:-evalDf([DifferentialGeometry:-evalDf([DifferentialGeometry:-evalDf([DifferentialGeometry:-evalDf([DifferentialGeometry:-evalDf([DifferentialGeometry:-evalDf([DifferentialGeometry:-evalDf([DifferentialGeometry:-evalDf([DifferentialGeometry:-evalDf([DifferentialGeometry:-evalDf([DifferentialGeometry:-evalDf([DifferentialGeometry:-evalDf([DifferentialGeometry:-evalDf([DifferentialGeometry:-evalDf([DifferentialGeometry:-evalDf([DifferentialGeometry:-evalDf([DifferentialGeometry:-evalDf([DifferentialGeometry:-evalDf([DifferentialGeometry:-evalDf([DifferentialGeometry:-evalDf([DifferentialGeometry:-evalDf([DifferentialGeometry:-evalDf([DifferentialGeometry:-evalDf
            `&wedge`(DifferentialGeometry:-`&wedge`(dx, dy), dz), DifferentialGeometry:-
            `&wedge`(DifferentialGeometry:-`&wedge`(dx, dy), dw), DifferentialGeometry:-
            `&wedge`(DifferentialGeometry:-`&wedge`(dx, dz), dw), DifferentialGeometry:-
            `&wedge`(DifferentialGeometry:-`&wedge`(dy, dz), dw)]);
           comps := DifferentialGeometry:-GetComponents(ext43, S1);
          return _DG([["form", M, 1], [[[1], comps[4]], [[2], VectorCalculus:-`-`(comps[3])],
           [[3], comps[2]], [[4], VectorCalculus:-`-`(comps[1])]]])
end proc
ext43 reverse dual := proc(ext43)
          local S1, comps;
          S1 := DifferentialGeometry:-evalDG([DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(DifferentialGeometry:-\&wedge(Differe
          &wedge(dx, dy), dz), DifferentialGeometry:-&wedge(DifferentialGeometry:-&wedge(dx, dy), dw),
          DifferentialGeometry:-&wedge(DifferentialGeometry:-&wedge(dx, dz), dw),
          DifferentialGeometry:-&wedge(DifferentialGeometry:-&wedge(dy, dz), dw)];
          comps := DifferentialGeometry:-GetComponents(ext43, S1);
          return DG([["form", M, 1], [[[1], -comps[4]], [[2], comps[3]], [[3], -comps[2]], [[4],
          comps[1]]])
end proc
ext43 \ reverse \ dual := proc(ext43)
                                                                                                                                                                                                                                                                         (6)
          local S1, comps;
          S1 := DifferentialGeometry:-evalDG([DifferentialGeometry:-
            '&wedge' (Differential Geometry: -' & wedge' (dx, dy), dz), Differential Geometry: -
            `&wedge`(DifferentialGeometry:-`&wedge`(dx, dy), dw), DifferentialGeometry:-
            `&wedge`(DifferentialGeometry:-`&wedge`(dx, dz), dw), DifferentialGeometry:-
            `&wedge`(DifferentialGeometry:-`&wedge`(dy, dz), dw)]);
           comps := DifferentialGeometry:-GetComponents(ext43, S1);
          return DG([["form", M, 1], [[[1], VectorCalculus:-`-`(comps[4])], [[2], comps[3]],
           [[3], VectorCalculus:-`-`(comps[2])], [[4], comps[1]]]])
end proc
ext42 \ dual := \mathbf{proc}(ext42)
 local S1, comps;
S1 := evalDG([dx \&wedge dy, dx \&wedge dz, dx \&wedge dw, dy \&wedge dz, dy \&wedge dw, dz]
           & wedge dw ]);
comps := GetComponents(ext42, S1);
 return DG([["form", M, 2], [[[1, 2], comps[6]], [[1, 3], -comps[5]], [[1, 4], comps[4]], [[2, 3],
          comps[3], [[2, 4], -comps[2]], [[3, 4], comps[1]]]);
 end proc;
```

```
ext42 \ dual := \mathbf{proc}(ext42)
                                                                                                (7)
   local S1, comps;
   S1 := DifferentialGeometry:-valDG([DifferentialGeometry:-`&wedge`(dx, dy),
   DifferentialGeometry:-`&wedge`(dx, dz), DifferentialGeometry:-`&wedge`(dx, dw),
   DifferentialGeometry:-`&wedge`(dy, dz), DifferentialGeometry:-`&wedge`(dv, dw),
   DifferentialGeometry:-`&wedge`(dz, dw)]);
   comps := DifferentialGeometry:-GetComponents(ext42, S1);
   return DG([["form", M, 2], [[[1, 2], comps[6]], [[1, 3], VectorCalculus:-`-`(comps[5])
    ]) ], [[1, 4], comps[4]], [[2, 3], comps[3]], [[2, 4], VectorCalculus:-`-`(comps[2])], [[3,
   4], comps[1]]])
end proc
ext41 to point := proc(ext41)
   local S1, comps;
   S1 := DifferentialGeometry:-evalDG([dx, dy, dz, dw]);
   comps := DifferentialGeometry:-GetComponents(ext41, S1);
   return [VectorCalculus:-`*`(comps[1], comps[4]^VectorCalculus:-`-`(1)), VectorCalculus:-
    `*`(comps[2], comps[4]^VectorCalculus:-`-`(1)), VectorCalculus:-`*`(comps[3], comps[4]
    ^VectorCalculus:-`-`(1))]
end proc
ext41 to point := proc(ext41)
                                                                                                (8)
   local S1, comps;
   S1 := DifferentialGeometry:-evalDG([dx, dy, dz, dw]);
   comps := DifferentialGeometry:-GetComponents(ext41, S1);
   return [VectorCalculus:-`*`(comps[1], comps[4]^VectorCalculus:-`-`(1)),
    VectorCalculus:-`*`(comps[2], comps[4]^VectorCalculus:-`-`(1)), VectorCalculus:-
    `*`(comps[3], comps[4]^VectorCalculus:-`-`(1))]
end proc
```

Use Differential Geometry to compute triangle-edge instersections. Below is a plot of the triangle and edge for the example.

```
display( {polygonplot3d( [ [2, 2, 1], [7, 4, 2], [4, 9, 3] ], color = blue), line([2, 2, 3], [6, 7, 0], color = red) })
```


DGsetup([x, y, z, w], M, verbose)

The following coordinates have been protected:

The following vector fields have been defined and protected:

$$[D_x, D_y, D_z, D_w]$$

The following differential 1-forms have been defined and protected:

$$[dx, dy, dz, dw]$$
frame name: M
(9)

Define functions for the three points. We will use all 3 for the triangle and two for the edge.

$$a := e1_{0} \cdot dx + e1_{1} \cdot dy + e1_{2} \cdot dz + e1_{3} \cdot dw$$

$$a := e1_{0} dx + e1_{1} dy + e1_{2} dz + e1_{3} dw$$
(10)

$$b := e2_0 \cdot dx + e2_1 \cdot dy + e2_2 \cdot dz + e2_3 \cdot dw$$

$$b := e2_0 \, dx + e2_1 \, dy + e2_2 \, dz + e2_3 \, dw$$
(11)

$$c := e3_0 \cdot dx + e3_1 \cdot dy + e3_2 \cdot dz + e3_3 \cdot dw$$

$$c := e3_0 dx + e3_1 dy + e3_2 dz + e3_3 dw$$
(12)

Use the wedge product to join the three points to yield an ext4 3 for a triangle.

$$t_ext3 := (a \& wedge b) \& wedge c$$

$$t_ext3 := (e1_0 e2_1 e3_2 - e1_0 e2_2 e3_1 - e1_1 e2_0 e3_2 + e1_1 e2_2 e3_0$$

$$+ e1_2 e2_0 e3_1 - e1_2 e2_1 e3_0) dx \land dy \land dz + (e1_0 e2_1 e3_3 - e1_0 e2_3 e3_1$$

$$- e1_1 e2_0 e3_3 + e1_1 e2_3 e3_0 + e1_3 e2_0 e3_1 - e1_3 e2_1 e3_0) dx \land dy \land dw$$

$$+ (e1_0 e2_2 e3_3 - e1_0 e2_3 e3_2 - e1_2 e2_0 e3_3 + e1_2 e2_3 e3_0$$

$$+ e1_3 e2_0 e3_2 - e1_3 e2_2 e3_0) dx \land dz \land dw + (e1_1 e2_2 e3_3 - e1_1 e2_3 e3_2$$

$$- e1 2 e2 1 e3 3 + e1 2 e2 3 e3 1 + e1 3 e2 1 e3 2 - e1 3 e2 2 e3 1) dy \land dz \land dw$$

Use the wedge product to join two points to yield an ext4 2 for the edge.

Get instances for the triangle and edge

$$t1_ext3 := subs(\{e1_0 = 2, e1_1 = 2, e1_2 = 1, e1_3 = 1, e2_0 = 7, e2_1 = 4, e2_2 = 2, e2_3 = 1, e3_0 = 4, e3_1 = 9, e3_2 = 3, e3_3 = 1\}, t_ext3)$$

$$t1_ext3 := 9 dx \land dy \land dz + 31 dx \land dy \land dw + 8 dx \land dz \land dw - 3 dy \land dz \land dw$$

$$(15)$$

$$e1_ext2 := subs(\{e1_0 = 2, e1_1 = 2, e1_2 = 3, e1_3 = 1, e2_0 = 6, e2_1 = 7, e2_2 = 0, e2_3 = 1\}, e_ext2)$$

 $e1_ext2 := 2 dx \land dy - 18 dx \land dz - 4 dx \land dw - 21 dy \land dz - 5 dy \land dw + 3 dz \land dw$ (16)

Compute the intersection of the edge and triangle. This is a combination of duals and wedges with a reverse dual and coversion to a point.

$$intersection := ext41_to_point(ext43_reverse_dual(ext42_dual(e1_ext2) \\ ∧ ext43_dual(t1_ext3)))$$

$$intersection := \left[\frac{538}{145}, \frac{120}{29}, \frac{249}{145} \right]$$

$$(17)$$

The Plot below has a sphere (squished due to the axis scaling) at the point of intersection.

```
display( {polygonplot3d( [ [2, 2, 1], [7, 4, 2], [4, 9, 3] ], color = blue), line([2, 2, 3], [6, 7, 0], color = red), sphere(intersection, 0.1, color = white, style = patchnogrid) })
```

