

Universidad Tecnológica de la Mixte e a 0041.

Clave DGP: 200089

Ingeniería en Física Aplicada

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA	
	Electromagnetismo

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Tercero	172034	101

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Aplicar los conceptos y definiciones básicas que gobiernan los fenómenos electromagnéticos a la resolución de problemas generales y de aplicación;

comprender las leyes fundamentales del electromagnetismo

TEMAS Y SUBTEMAS

1. Fuerza, campo y potencial eléctrico.

- 1.1. Ley de Coulomb.
- 1.2. Campo eléctrico (E).
- 1.3. El flujo eléctrico y ley de Gauss.
- 1.4. Potencial eléctrico y diferencia de potencial.
- 1.5. Cálculo del campo a partir del potencial.
- 1.6. Aplicaciones: Movimiento de una partícula cargada en un E.

2. Capacitores, dieléctricos y corriente eléctrica.

- 2.1. Capacitancia (vacío y con dieléctrico).
- 2.2. Densidad de energía.
- 2.3. Almacenamiento de energía en un campo eléctrico.
- 2.4. Polarización de la materia.
- 2.5. Corriente y densidad de corriente.
- 2.6. Resistividad, conductividad y la ley de Ohm.

3. Campo magnético.

- 3.1. Fuerza magnética sobre una carga en movimiento.
- 3.2. Fuerza de Lorentz.
- 3.3. Fuerza magnética sobre un conductor sobre el cual circula una corriente.
- 3.4. Efecto Hall.
- 3.5. Dipolo magnético.
- 3.6. Aplicaciones: Cargas circulantes.

4. Ley de Ampere.

- 4.1. Ley de Biot-Savart.
- 4.2. Fuerza magnética entre conductores paralelos.
- 4.3. Ley de Ampere.
- 4.4. Calculo de B en solenoides y toroides.

PROGRAMA DE ESTUDIOS

5. Ley de Faraday.

- 5.1. Ley de Faraday.
- 5.2. Ley de Lenz.
- 5.3. Auto-inductancia.
- 5.4. FEM de movimiento.
- 5.5. Campos eléctricos inducidos.
- 5.6. Inductancia mutua.

6. Ecuaciones de Maxwell.

- 6.1. Ecuaciones básicas del electromagnetismo.
- 6.2. Campos magnéticos inducidos y corriente de desplazamiento.
- 6.3. Ecuaciones de Maxwell en sus formas integral y diferencial.
- 6.4. Desplazamiento eléctrico.
- 6.5. Intensidad de campo magnético

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor tanto en el aula como en el laboratorio, con un constante uso de aparatos y equipo de cómputo en los aspectos teórico y práctico. Fuerte trabajo extraclase de los alumnos con los aparatos y el equipo de cómputo, otorgando solución a problemas sobre los temas del curso. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como cañón, los programas de cómputo educativo, etc.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales que tendrán una equivalencia del 50% y un examen final que tendrá 50%. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso; la suma de estos dos porcentajes dará la calificación

Además, se considerará el trabajo extraclase, la participación durante las sesiones del curso y la asistencia a las

Para aprobar el curso, el alumno deberá haber acreditado todas las prácticas de laboratorio y los trabajos experimentales.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- Física, vol. 2., Resnik R. y Halliday D., CECSA, Cuarta edición, 1999.
- Física, vol 2., Serway R., Faughn J. S., Pearson Educación, Quinta edición, 2001. 2.
- Física, vol. 2: Campos y Ondas. Alonso M. y Finn E., Fondo educativo Interamericana. 1990.
- 3. Física, vol. 2., Tipler P. A., Edit. Reverté, Tercera edición, 1994.

Consulta:

- Fundamentos de Física II, Bueche F., McGraw-Hill, Tercera edición, 1991. 1.
- University Physics, Young H. D., Addison Wesley, 8ª Edición, 1992. 2.
- Física Universitaria, vol 2, Sears F. W., Zemansky M. W., Young H. D. y Freedman R. A., Pearson Addison 3. Wesley. 11ª edición, 2004.
- Electricidad y Magnetismo, Purcell E., Editorial Reverte, Segunda edición, 2005.

PERFIL PROFESIONAL DEL DOCENTE

Maestría o doctorado en Física, o áreas afines, crao Logica

SALOMÓN GONZÁLEZ MARTÍNEZ JEFE DE CARRERA

OAXACA

JEFATURA DE CARRERA INGENIERIA EN FÍSICA APLICADA

UTORIZÓ

DR. AGUSTIN SANTIAGO ALVARADO CTORIA VICE-RECTOR ACADÉMICO ACADÉMICA