

PATC course Introduction to HPC for Life Scientists

31 January - 02 February 2022

BioExcel and the PerMedCoE projects have received funding from the European Union's Horizon 2020 research and innovation programme under the grant agreements 823830 & 675728 and 951773, respectively.

HMMER Sequence Alignment Practical

PATC course: Introduction to HPC for Life Scientists, 31 January - 02 February 2022

Partners

Funding

Reusing this material

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en US

This means you are free to copy and redistribute the material and adapt and build on the material under the following terms: You must give appropriate credit, provide a link to the license and indicate if changes were made. If you adapt or build on the material you must distribute your work under the same license as the original.

Aims

- Gain experience using an HPC system
 - Running
 - Using a batch system
- Run a real bioinformatics software package in parallel
 - Run on different numbers of cores
 - Measure time taken (elapsed wall clock time, cpu time)
 - Observe how performance scales
 - Relate performance to how software solves problem in parallel

Sequence Alignment

 Use HMMER to search (query) a protein database for similarity-based matches with a given protein sequence:

```
Alignments for each domain:
== domain 1 score: 2966.8 bits: conditional E-value: 0
sp|P01024|C03 HUMAN
                  1 mgptsgpsllllllthlplalgspmysiitpnilrleseetmvleahdaggdvpvtvtvhdfpgkklvlssektvltpatnhmgnvtf 88
                    m ptsqpslllll lp+alq+pmys+itpnilrleseet+vleah qq + v+vtvhdfp+kk vls+e t l
        CO3 BOVIN
                  1 MKPTSGPSLLLLLLASLPMALGNPMYSMITPNILRLESEETVVLEAHGGQGTIQVSVTVHDFPAKKQVLSNENTQLNSNNGYLSTVTI 88
                    Alignments for each domain:
== domain 1 score: 2956.0 bits; conditional E-value: 0
sp|P01024|C03_HUMAN
                  1 mgptsgpsllllllthlplalgspmysiitpnilrleseetmvleahdaggdvpvtvtvhdfpgkklvlssektvltpatnhmgnvtf 88
                    mg tsqp llllllt lplalg p+y+iitpn+lrlesee +vleah+ ggd+ v+vtvhdfp+k+ vlsse t l a n+++ v +
          CO3 PIG
                  1 MGSTSGPRLLLLLLTSLPLALGDPIYTIITPNVLRLESEEMVVLEAHEGOGDIRVSVTVHDFPAKROVLSSETTTLNNANNYLSTVNI 88
                    Alignments for each domain:
== domain 1 score: 1343.7 bits; conditional E-value: 0
sp|P01024|C03_HUMAN 938 mnktvavrtldperlgregvqkedippadlsdqvpdtesetrillqgtpvaqmtedavdaerlkhlivtpsgcgeqnmigmtptviav 1025
                    mnktvavrtldpe+lg+ gvgke+ip ad+sdgvp teset+illggtpvagmteda+d erlkhlivt sgcgegnmi+mt tviav
        CO3_RABIT
                  1 MNKTVAVRTLDPENLGOGGVOKEEIPSADISDOVPGTESETKILLOGTPVAOMTEDAIDGERLKHLIVTGSGCGEONMIAMTHTVIAV 88
```


phmmer

- Alternative to BLAST-style sequence alignment
- Generates Hidden Markov Model profile for query sequence
- Three-stage filter for probabilistic alignment scoring against target database
- Returns top scoring matches, subject to chosen thresholds

phmmer - parallel execution

- Two parallel execution modes (mutually exclusive):
 - Threads ("pthreads") restricted to single node
 - Message passing (MPI) can span many nodes
- Both use task farm / work queue model

Practical

- Log on to MareNostrum4
- Run HMMER on one core on login node
- Run HMMER in parallel on compute node using batch system
 - Multithreaded execution
- Record runtimes for different numbers of cores
- Evaluate parallel performance
- See instruction sheet