高等数学 A2 综合练习卷(60 题)

第七章 向量代数与空间解析几何(14题)

一. 向量的数量积和向量积

- 1. 已知 $|\vec{a}| = \sqrt{2}, |\vec{b}| = 2$, 且 $\vec{a} \cdot \vec{b} = 2$, 则 $|\vec{a} \times \vec{b}| =$ ______.
- 2. 已知 $|\vec{a}| = \sqrt{2}$, $|\vec{b}| = 2$, 且 $\vec{a} = \vec{b}$ 的夹角是 $\frac{\pi}{4}$,则 $2\vec{a} \cdot \vec{b} = ______$.
- 3. 求与 $\vec{a} = 3i 2j + 4k$, $\vec{b} = i + j 2k$ 都垂直的单位向量.

二. 平面方程

- 1. 求过点(1,-3,2)且以 $\vec{n}=(2,-1,1)$ 为法向量的平面方程.
- 2. 一平面过点 M(1,0,-1) 且平行于向量 a = (2,1,1) 和 b = (1,-1,0) ,试求这平面方程.

三. 两平面的位置关系及点面距离

- 1. 求两平面 2x y + z = 0, x + y + 2z 5 = 0 的夹角.
- 2. 一平面过点 M(1,0,-1) 且平行于向量 a = (2,1,1), b = (1,-1,0),试求这平面的方程.
- 3. 已知原点到平面 2x y + kz = 6 的距离等于 2,则 k =
- 4. 点 (1,1,1) 到平面 x + y + z = 1 的距离.

四. 空间直线的一般方程

- 1. 求与两平面 2x + y z = 1 和 2x y = 3 的交线平行且过点 (3,-2,1) 的直线的方程.
- 2. 空间直线 x = y = z 与平面 x 2y + z = 0 的位置关系为______.
- 3. 求直线 $x-2=y-3=\frac{z-4}{2}$ 与平面 2x-y+z-6=0 的夹角.

五. 旋转曲面

- 1. 将 xoz 坐标面上的抛物线 $z=x^2$ 分别绕 z 轴旋转一周,求所生成的旋转曲面的方程.
- 2. 曲面 $x^2 + y^2 = 9z^2$ 是哪个坐标平面上哪个曲线绕哪个轴旋转而成的?

第八章 多元函数微分学及其应用(18 题)

一. 多元函数的定义域、极限、连续性

1. 求极限
$$\lim_{\substack{x\to 0\\y\to 0}} \frac{1-\cos(x^2+y^2)}{(x^2+y^2)e^{x^2y^2}} = \underline{\hspace{1cm}}.$$

2. 求极限
$$\lim_{(x,y)\to(0,0)} \sqrt{x^2+y^2} \cos\frac{1}{x^2+y^2}$$
.

3. 己知
$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2}, x^2 + y^2 \neq 0, & \text{证明 } \lim_{(x,y)\to(0,0)} f(x,y)$$
不存在. $0, x^2 + y^2 = 0,$

4. 求函数
$$f(x,y) = \ln(y-x^2) + \sqrt{1-x^2-y^2}$$
 的定义域.

二. 多元函数的导数与微分

1. 求函数 $z = x^2 + 3xy + y^2$ 在点 (1,2) 处的偏导数.

2. 求函数
$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2}, x^2 + y^2 \neq 0, \\ 0, x^2 + y^2 = 0, \end{cases}$$
 在点 $(0,0)$ 处的偏导数.

3. 计算函数 $u = x^{yz}$ 的全微分.

三. 复合函数和隐函数的求导

2.
$$\forall z = u \ln v, u = x + y, v = xy, \stackrel{\partial}{x} \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$$
.

3. 设
$$z = f(x, y)$$
 是由方程 $z^3 + 3xyz = a^3$ 确定,则 $\frac{\partial z}{\partial x} =$ _______.

4. 设函数
$$z = z(x, y)$$
 由方程 $\sin(z + x) = y - z + 1$ 所确定,求 $\frac{\partial z}{\partial x}$.

四. 多元函数微分学在几何上的应用

- 1. 求曲线 $\Gamma: x = e^{2t}, y = 2t, z = -e^{-3t}$ 在t = 0时对应点处的切线方程和法平面方程.
- 2. 求旋转抛物面 $z = x^2 + y^2 1$ 在点 (2,1,4) 处的切平面及法线方程.

3. 求空间螺线 $x = a\cos\theta$, $y = a\sin\theta$, $z = k\theta(k > 0)$ 在 $\theta = \frac{\pi}{6}$ 处的切向量.

五. 多元函数的极值

- 1. 求函数 $f(x,y) = 2-4xy + x^4 + y^4$ 的极值.
- 2. f(x,y) 在原点处是驻点且二阶连续可导,设 $A = f_{xx}(0,0), B = f_{xy}(0,0), C = f_{yy}(0,0)$.则 f(x,y) 必定在原点取得极小值时 A,B,C 满足______.
- 3. 求三元函数 $f(x, y, z) = xy^2z^3$ 在条件 x, y, z > 0, x + y + z = 6 下的最大值.
- 4. 求二元函数 $z = f(x, y) = x^2 y (4 x y)$ 在直线 x + y = 6, x 轴和 y 轴所围成的闭区域 D上的极值和最值.

第九章 重积分(11题)

一. 二重积分

- 1. 利用二重积分的性质比较积分 $\iint_D (x+y) dx dy$ 和 $\iint_D (x+y)^3 dx dy$ 的大小,其中积分区域 $D = \{(x,y)|(x-2)^2 + (y-1)^2 \le 2\}$.
- 2. 计算 $\iint_D 2xydxdy$, 其中 D 是由 (0,0), (1,2) 和 (0,3) 为顶点的三角形的有界区域.
- 3. 计算 $\iint_D \frac{\sin x}{x} dx dy$, 其中 D 是直线 $y = x, y = 0, x = \pi$ 所围成的闭区域.
- 4. 改变二次积分的积分顺序:

(1)
$$I = \int_0^4 dy \int_{\sqrt{4-y}}^{\frac{y+4}{2}} f(x,y) dx$$
 (2)
$$\int_0^2 dy \int_{y^2}^{2y} f(x,y) dx$$
 (3)
$$\int_1^e dx \int_0^{\ln x} f(x,y) dy$$

- 5. 计算二重积分 $\iint_D \sqrt{x^2 + y^2} dxdy$, 其中 D 是由 x 轴及上半圆周 $y = \sqrt{1 x^2}$ 所围成的区域.
- 6 计管下列一重和分

(1)
$$\iint_{D} \sin \sqrt{x^2 + y^2} \, dx dy, \, \, \sharp \oplus D = \{(x, y) | \pi^2 \le x^2 + y^2 \le 4\pi^2 \}.$$

(2)
$$\iint_D e^{y^2} d\sigma$$
,其中 D= $\{(x,y) | 0 \le y \le 1, 0 \le x \le y\}$

(3)
$$\iint\limits_{D}(2x-y)d\sigma$$
, 其中 D 由以原点为中心 2 位半径的圆周所围成.

二. 三重积分

- 1. 求 $\iint_{\Omega} e^{x^2+y^2} dx dy dz$, 其中 Ω 是由抛物面 $x^2+y^2+z=1$ 及 xoy 平面所围成的有界闭区域.
- 2. 求 $\iint_{\Omega} z dx dy dz$,其中 Ω 是由曲面 $z = \sqrt{x^2 + y^2}$ 和上半球面 $x^2 + y^2 + z^2 = 2(z \ge 0)$ 平面 所围成的有界闭区域.
- 3. 求 $\iint_{\Omega} (x^2 + y^2) dx dy dz$,其中 Ω 是由椭圆抛物面 $z = 4(x^2 + y^2)$ 和平面 z = 4 所围成的有界闭区域.
- **4.** 求由抛物面 $x^2 + y^2 + z = 2$ 和 $x^2 + y^2 = z$ 所围成的有界闭区域的体积.
- 5. 求 $\iint_{\Omega} \frac{1}{(1+x+y+z)^3} dxdydz$,其中 Ω 是由 x+y+z=1 与三个坐标面所围成的区域.

第十章 曲线积分和曲面积分(9题)

一. 曲线积分

1.
$$\int_{L} (x+y)^2 ds = \underline{\qquad}$$
, $\sharp + L : x^2 + y^2 = 1$.

2.
$$\int_{L} (x+1)ds =$$
______, $\sharp + L : x^2 + y^2 = 1$.

- **3.** 求 $\int_{\Gamma} z ds$, 其中 Γ : $x = t \cos t$, $y = t \sin t$, z = t , $t \in [0,2\pi]$ 为圆锥螺线.
- **4.** 计算 $\int_L x dy y dx$, 其中 L 为:
 - (1) 沿y = x由点O(0,0)到点A(1,1)的一段弧;
 - (2) 沿 $y = x^2$ 由点 O(0,0) 到点 A(1,1) 的一段弧;
 - (3) 沿 $y = x^3$ 由点 O(0,0) 到点 A(1,1) 的一段弧.
- 5. 计算 $\int_{L} 2xydx x^2dy$, 其中 L 为:
 - (1) 沿 $x = y^2$ 由点O(0,0)到点A(1,1)的一段弧;
 - (2) 沿 $y = x^2$ 由点 O(0,0) 到点 A(1,1) 的一段弧;
 - (3) 有向折线 OAB, 其中 O(0,0), A(1,0), B(1,1)...

- **6.** 求曲线积分 $\int_{L} e^{x} \sin y dx + (e^{x} \cos y x) dy$ 的值,其中 L 是从 A(2,0) 到 O(0,0) 的上半圆周 $x^{2} + y^{2} = 2x(y \ge 0)$.
- 7. 验证曲线积分 $\int_{(0,0)}^{(1,1)} e^x \sin y dx + e^x \cos y dy$ 的值与积分路径无关并计算该积分值.
- 8. 求空间曲线 x = 3t, $y = 3t^2$, $z = 2t^3$ 从 O(0,0,0) 至 A(3,3,2) 的弧长.
- 9. 利用格林公式, 计算下列曲线积分:
- (1) $\int_L (2xy-x^2)dx + (x^2+y^2)dy$,其中 L 是由抛物线 $y=x^2$ 和 $y^2=x$ 所围成的区域的边界正向;
- (2) $\int_L (x^2 y) dx (x + \sin^2 y) dy$ 其中 L 是在圆周 $y = \sqrt{2x x^2}$ 上由点 (0,0) 到点 (1,1) 的一段弧.

第十一章 无穷级数(9题)

- 一. 级数的敛散性
- 1. 判断级数 $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}$, $\sum_{n=1}^{\infty} \frac{n}{n^3+1}$, $\sum_{n=1}^{\infty} \frac{3^n}{n2^n}$, $\sum_{n=1}^{\infty} \left(\frac{n}{2n+1}\right)^n$ 的敛散性.
- 2. 判断级数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n-1nn}$ 和 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n^2+1}$ 的敛散性.
- 3. 判断级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{2^n + 1}$ 和 $\sum_{n=1}^{\infty} \frac{n \sin n}{2^n}$ 是否收敛,如果是,判断是条件收敛还是绝对收敛。
- 4. 已知级数 $\sum_{n=1}^{\infty} a_n$ 条件收敛, $\sum_{n=1}^{\infty} b_n$ 绝对收敛,证明 $\sum_{n=1}^{\infty} (a_n + b_n)$ 条件收敛.
- 5. 证明若 $\sum_{n=1}^{\infty} a_n^2$ 收敛,则 $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} a_n$ 绝对收敛.
- 6. 证明定理: 若 $\sum_{n=1}^{\infty} |a_n|$ 收敛,则 $\sum_{n=1}^{\infty} a_n$ 收敛.

二. 幂级数

1. 求下列幂级数的收敛区间(要讨论端点处的收敛性):

$$(1) \sum_{n=1}^{\infty} \frac{x^n}{2^{n-1}(n+1)} \qquad (2) \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(x+1)^n}{n} \qquad (3) \sum_{n=1}^{\infty} (-1)^n \frac{x^{2n}}{n \cdot 2^n}$$

2. 分别求级数
$$\sum_{n=1}^{\infty} (-1)^n \frac{2^n}{\sqrt{n}} x^n$$
 和 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}} (x-4)^n$ 的收敛域.

3. 求幂级数
$$\sum_{n=0}^{\infty} x^n$$
 、 $\sum_{n=1}^{\infty} \frac{x^n}{n+1}$ 和 $\sum_{n=1}^{\infty} nx^{n-1}$ 的和函数.