Endomorphismes autoadjoints – Démonstrations

<u>Propriété</u>: Soient $u \in \mathcal{L}(E)$ et $B = (e_1, ..., e_n)$ une base <u>orthonormée</u> de E. Notons $A = \operatorname{Mat}_B(u)$ Alors $\operatorname{Mat}_B(u^*) = {}^t A$

Démonstration : **★**

Notons $B = (b_{ij})_{1 \le i, i \le n} = \operatorname{Mat}_B(u^*)$

Soit $j \in [\![1,n]\!]$, la colonne j de B, $\begin{pmatrix} b_{1j} \\ \vdots \\ b_{nj} \end{pmatrix}$, correspond aux vecteur colonne des coordonnées de $u^*(e_{ij})$

dans la base B.

Or puisque B est une base orthonormée de E, $\forall x \in E$, $x = \sum_{k=1}^{n} \langle e_k, x \rangle e_k$ Ainsi pour $i \in [1, n]$, b_{ij} correspond à la cordonnée du vecteur $u^*(e_i)$ selon le vecteur e_i , càd

$$b_{ij} = \langle e_i, u^*(e_i) \rangle = \langle u(e_i), e_j \rangle = \langle e_j, u(e_i) \rangle$$

Donc b_{ij} est la coordonnée du vecteur $u(e_{ij})$ selon le vecteur e_j

Donc $b_{ij} = a_{ji}$, où $A = \operatorname{Mat}_B(u) = (a_{ij})_{1 \le i,j \le n}$

Donc $B = {}^{t}A$.

Propriété : Soit $u \in \mathcal{L}(E)$,

$$\ker(u^*) = (Im(u))^{\perp} \operatorname{et} Im(u^*) = (\ker(u))^*$$

Démonstration : 🟵

Soit $x \in E$.

$$x \in Im(u)^{\perp} \iff \forall z \in Im(u), \langle x, z \rangle = 0$$

$$\iff \forall y \in E, \langle x, u(y) \rangle = 0$$

$$\iff \forall y \in E, \langle u^*(x), y \rangle = 0$$

$$\iff u^*(x) \in E^{\perp}$$

$$\iff u^*(x) = 0_E$$

$$\iff x \in \ker(u^*)$$

Donc $\ker(u^*) = (Im(u))^{\perp}$

En appliquant ceci à $v=u^*\in\mathcal{L}(E)$, on a $\ker(v^*)=\big(Im(u)\big)^\perp$

ie $\ker(u) = (Im(u^*))^{\perp}$

Donc $(\ker u)^{\perp} = \left(\left(Im(u^*) \right)^{\perp} \right)^{\perp} = Im(u^*) \operatorname{car} \dim E < +\infty$

<u>Propriété</u>: Soit $u \in \mathcal{L}(E)$, soit F un sev de E stable par u, alors F^{\perp} est stable par u.

<u>Démonstration</u>: ★

Soit $x \in F^{\perp}$, montrons que $u^*(x) \in F^{\perp}$

Soit
$$y \in F$$
, $\langle u^*(x), y \rangle = \left(\underbrace{x}_{\in F^{\perp}}, \underbrace{u(y)}_{\in F}\right) = 0$

Ainsi $u^*(x) \in F^{\perp}$, d'où $u^*(F^{\perp}) \subset F^{\perp}$

<u>Lemme</u>: Soit $u \in \mathcal{L}(E)$ autoadjoint, les sous-espaces propres de u sont 2 à 2 orthogonaux.

<u>Démonstration</u>: **★**

Soient $\lambda, \mu \in Sp(u)$ avec $\lambda \neq \mu$.

Montrons que $E_{\lambda}(u)$ et $E_{\mu}(u)$ sont orthogonaux.

Soient $x \in E_{\lambda}(u)$ et $y \in E_{\mu}(u)$

Alors
$$u(x) = \lambda x$$
 et $u(y) = \mu y$

Ainsi
$$\langle u(x), y \rangle = \langle \lambda x, y \rangle = \lambda \langle x, y \rangle$$

Mais comme $u = u^*$,

$$\langle u(x), y \rangle = \langle x, u(y) \rangle = \mu \langle x, y \rangle$$

D'où
$$(\lambda - \mu) \langle x, y \rangle = 0$$

Donc
$$\langle x, y \rangle = 0$$

Ainsi
$$E_{\lambda}(u) \perp E_{\mu}(u)$$