http://www.math.uni.wroc.pl/~aracz

18 lutego 2018 r.

Zadanie 1. Sprawdź, czy podana funkcja jest rozwiązaniem podanego równania różniczkowego:

a)
$$x(t) = \operatorname{tg} t$$
, $x' = 1 + x^2$,

a)
$$x(t) = \lg t$$
, $x' = 1 + x^2$, b) $x(t) = \frac{\sin t}{t}$, $tx' + x = \cos t$.

Równania o zmiennych rozdzielonych

Zadanie 2. Znaleźć rozwiązania ogólne następujących równań różniczkowych o rozdzielonych zmiennych i naszkicować ich wykresy dla różnych stałych C:

a)
$$y' = e^{x+y}$$
,

b)
$$y' = \sqrt{x}/y$$
,

c)
$$y' = \sqrt{y/x}$$

a) $y'=e^{x+y}$, b) $y'=\sqrt{x}/y$, c) $y'=\sqrt{y/x}$. Zadanie 3. Znajdź rozwiązania następujących równań spełniających podany warunek początkowy:

a)
$$y' = 2$$
, $y(0) = 2$,

b)
$$y' = y/x$$
, $y(1) = 5$,

b)
$$y' = y/x$$
, $y(1) = 5$, c) $y' = -y^2 e^x$, $y(0) = 1/2$.

Zadanie 4. Rozwiąż równania nie rozdzielając różniczek dy i dt (czyli całkując metodą "klasyczną"):

a)
$$y' = (1+t)(1+y)$$
, b) $y' = e^{t+y+3}$.

b)
$$y' = e^{t+y+3}$$
.

Zadanie 5. Rozwiąż zagadnienia początkowe nie rozdzielając różniczek dy i dt:

a)
$$xyy' = \ln x$$
, $y(1) = 1$,

a)
$$xyy' = \ln x$$
, $y(1) = 1$, b) $y' = -y^2 e^x$; $y(0) = 1/2$.

Zadanie 6. Równania postaci dy/dt = f(y/t), gdzie f jest daną funkcją, nazywamy równaniem jednorodnym. Udowodnij, jeżeli y jest rozwiązaniem równania jednorodnego, to funkcja v(t) = y(t)/tspełnia równanie o zmiennych rozdzielonych t(dv/dt) + v = f(v).

Zadanie 7. Rozwiąż równania jednorodne:

$$2x + t - tx' = 0, \quad tx' = x - te^{x/t}, \quad tx' = x \cos\left(\log \frac{x}{t}\right).$$

Zadanie 8. Dla danej rodziny krzywych znajdź trajektorie ortogonalne:

$$y = Cx^2$$
, $y = C\sin x$, $y = Ce^x$, $x^2 + y^2 = Cx$.

Równania liniowe pierwszego rzędu

Zadanie 9. Znajdź całkę ogólną (tzn. rozwiązanie ogólne) równań liniowych mnożąc je przez odpowiedni czynnik całkujący:

$$x' + x \cos t = 0$$
, $x' + t^2 x = t^2$, $x' + \frac{2t}{1+t^2} x = \frac{1}{1+t^2}$, $x' + x = te^t$.

 $x' + x \cos t = 0$, $x' + t^2 x = t^2$, $x' + \frac{2t}{1+t^2} x = \frac{1}{1+t^2}$, $x' + x = te^t$. **Zadanie 10.** Rozwiąż następujące zagadnienia początkowe bez znajdowania rozwiązania ogólnego: y' + ty = 1 + t, y(3/2) = 0. $y' + \sqrt{1 + t^2}y = 0$, $y(0) = \sqrt{5}$;

Zadanie 11. Jaki warunek muszą spełniac funkcje p(t) i q(t) występujące w równaniu liniowym postaci x' + a(t)x = f(t), by było ono również równaniem o zmiennych rozdzielonych. Rozwiąż je w sposób właściwy dla tego typu równań.

Zadanie 12. Udowodnij, że dla równania x' + a(t)x = f(t), gdzie a i f są funkcjami ciągłymi, $a(t) \ge c > 0$, oraz $\lim_{t\to\infty} f(t) = 0$, zachodzi relacja $\lim_{t\to\infty} x(t) = 0$.

Zadanie 13. Udowodnij, że równanie Bernoulliego $x' + a(t)x = b(t)x^m$, $m \in \mathbb{R}$, sprowadza się przez zamianę zmiennych $z(t) = x(t)^{1-m}$ do równania liniowego. Rozwiąż równania: $tx' + x = x^2 \log t$, $x' = tx + t^3x^2.$

Zadanie 14. Równanie postaci $x' + a(t)x = b(t)x^2 + f(t)$, gdzie a, b, f są danymi funkcjami, nazywa się równaniem Riccatiego. Nie istnieje ogólny sposób całkowania tego równania. Udowodnij, że jeżeli znamy jedno rozwiązania $x_1(t)$, to funkcja $u(t) = x(t) - x_1(t)$ spełnia równanie Bernoulliego.

Zadanie 15. Znaleźć rozwiązania szczególne następujących równań Riccatiego, zredukować je do równań typu Bernoulliego i scałkować:

$$t^2x' + tx + t^2x^2 = 4$$
, $x' + 2xe^t - x^2 = e^{2t} + e^t$.

Równania zupełne

Zadanie 16. W podanych równaniach dobierz stałą a tak, aby było ono zupełne, a następnie rozwiąż je: $t + ye^{2ty} + ate^{2ty}y' = 0$, $\frac{1}{t^2} + \frac{1}{y^2} + \frac{(at+1)}{y^3}y' = 0$.

Zadanie 17. Znajdź wszystkie funkcje f(t), dla których równanie $y^2 \sin t + y f(t) (dy/dt) = 0$ jest zupełne. Rozwiąż równanie dla tych f.

Zadanie 18. Znaleźć współczynnik f = f(t) w równaniu $f(t)x' + t^2 + x = 0$, jeżeli wiadomo, że ma ono czynnik całkujący postaci u(t) = t.

Zadanie 19. Równanie liniowe niejednorodne (dy/dt)+a(t)y=b(t) nie jest zupełne. Znajdź czynnik całkujący.

Zadanie 20. Rozwiązać równania w postaci różniczek zupełnych:

$$2tx dt + (t^2 - x^2) dx = 0$$
, $e^{-x} dt - (2x + te^{-x}) dx = 0$.

Zadanie 21. Sprawdź, że podana funkcja $\mu(x,t)$ jest czynnikiem całkującym danego równania. Rozwiaż równanie.

- $6xy dx + (4y + 9x^2) dy = 0, \quad \mu(x,t) = y^2$
- $-y^2 dx + (x^2 + xy) dy = 0$, $\mu(x, y) = 1/(x^2y)$
- $y(x + y + 1) dx + (x + 2y) dy = 0, \quad \mu(x, y) = e^x$

Zadanie 22. Równanie różniczkowe może mieć więcej niż jeden czynnik całkujący. Udowodnij, że $\mu_1(x,y) = 1/(xy), \ \mu_2(x,y) = 1/y^2, \ \mu_3(x,y) = 1/(x^2+y^2)$ są czynnikami całkującymi równania y dx - x dy = 0. Uzasadnij, że otrzymane przy pomocy tych czynników całkujących rozwiązania są równoważne.

Zadanie 23. Scałkować równania metodą czynnika całkującego:

Zadanie 23. Scankować rownama nietodą czyninka cankającego.
$$\left(\frac{x}{y}+1\right)dx+\left(\frac{x}{y}-1\right)dy=0, \qquad (x^2+y)dx-xdy=0, \qquad (y+x^2)dy+(x-xy)dx=0.$$
 Zadanie 24. Uzasadnij, że równanie o zmiennych rozdzielonych $M(t)+N(y)(dy/dt)=0$ jest zu-

pełne.

Zadanie 25. Uzasadnij, że jeżeli $\partial M/\partial y = \partial N/\partial t$, to wyrażenie $M(t,y) - \int (\partial N(t,y)/\partial t)dy$ nie zależy od od y (tzn. zależy tylko od t).

Zastosowania równań I-go rzędu

Zadanie 26. Pewna osoba uczy się pisać na maszynie. Niech N oznacza maksymalną liczbę słów jakie potrafi napisać ona napisać w ciągu minuty. Załóżmy, że prędkość zmian N (tzn. N'(t)) jest proporcjonalna do różnicy pomiedzy N oraz górna granica 140. Rozsadnym jest założyć, że na początku osoba ta nie potrafiła napisać żadnego słowa (tzn. N(0) = 0). Okazało się, że osoba ta potrafi napisać 35 słów na minutę po 10 godzinach uczenia się.

- a) Ile słów na minutę będzie pisać ta osoba po 20 godzinach uczenia się?
- b) Jak długo musi ona ćwiczyć, aby napisać 105 słów na minutę?

Zadanie 27. Plotka rozprzestrzenia się w populacji liczącej 1000 osób z prędkością proporcjonalną do iloczynu liczby osób, które już słyszały tę plotkę oraz liczby osób, które jeszcze nie słyszały tej plotki. Załóżmy, że 5 osób rozprzestrzenia plotkę i po jednym dniu wie o niej już 10 osób. Ile czasu potrzeba, aby o plotce dowiedziało się 850 osób?

Zadanie 28. (Inny model rozprzestrzeniania się plotki). Załóżmy teraz, że plotka rozprzestrzenia się w populacji liczącej 1000 osób według prawa Gompertza:

$$\frac{dy}{dt} = kye^{-(73/520)t},$$

gdzie y(t) jest liczą osób, które słyszały plotkę po t dniach. Załóżmy, że 5 osób rozprzestrzenia plotkę i po jednym dniu wie o niej już 10 osób. Ile czasu potrzeba, aby o plotce dowiedziało się 850 osób? Zadanie 29. Epidemia grypy w populacji liczącej 50000 osób rozprzestrzenia się według prawa Gompertza:

$$\frac{dy}{dt} = kye^{-0.03t},$$

gdzie y(t) oznacza liczbę zarażonych grypą po t dniach. Załóżmy, że na początku było 100 chorych, a po 10 dniach – 500. Kiedy połowa populacji będzie zarażona?

Zadanie 30. Wiadomo, że szybkość zmian temperatury danego ciała jest proporcjonalna do różnicy między temperaturą tego ciała i temperaturą otoczenia (prawo Newtona). Zakładamy, że $S(0) = 100^{\circ}C$ w temperaturze otoczenia $20^{\circ}C$. Po dziesięciu minutach temperatura ciała wynosiła $60^{\circ}C$. Po ilu minutach ciało będzie miało temperaturę $25^{\circ}C$?

Zadanie 31. Ciało zamordowanego znaleziono o 19:30. Lekarz sądowy przybył o 20:20 i natychmiast zmierzył temperaturę ciała denata. wynosiła ona 32,6° C. Godzinę później, gdy usuwano ciało, temperatura wynosiła 31,4°C. W tym czasie temperatura w pomieszczeniu wynosiła 21°C. Najbardziej podejrzana osoba, która mogła popełnić to morderstwo – Jan G., twierdzi jednak, że jest nie winny. Ma alibi. Po południu był on w restauracji. O 17:00 miał rozmowę zamiejscową, po której natychmiast opuścił restaurację. Restauracja znajduje się 5 minut na piechotę od miejsca morderstwa. Czy alibi to jest niepodważalne?

Zadanie 32. (Ciąg dalszy zadania poprzedniego). Obrońca Jana G. zauważył, że zamordowany był u lekarza o 16:00 w dniu śmierci i wtedy jego temperatura wynosiła 38,3°C. Załóżmy, że taką temperaturę miał on w chwili śmierci. Czy można dalej podejrzewać, że Jan G. popełnił to morderstwo? Zadanie 33. Załóżmy, że nowa pojedyncza cząsteczka C tworzy się z pojedynczych cząsteczek składników A i B ($A + B \rightarrow C$). Prędkość tempa pojawiania sie cząsteczek produktu C jest wprost proporcjonalna do iloczynu składników A i B. Napisz funkcję C(t) jako funkcję t. Załóż, że początkowe stężenie skałdników A to a $\frac{mol}{dm^3}$, składnika B - b $\frac{mol}{dm^3}$ i na początku nie ma żadnych czasteczek produktu C. Rozwiąż tak otrzymane zagadnienie. Jeśli a = b, to jak wygląda rozwiązanie? Ile związku C powstało po 20 sekundach?

Zadanie 34. Nietypową reakcja jest reakcja: $H_2 + Br_2 \rightarrow 2HBr$. Równanie które opisuje prędkość pojawiania sie HBr dane jest wzorem

$$\frac{d[HBr]}{dt} = k[H]([Br])^{\frac{1}{2}}.$$

Napisz równanie dla x(t)=[HBr]. Załóż, że początkowe stężenie skałdników A to a $\frac{mol}{dm^3}$, składnika B - b $\frac{mol}{dm^3}$ i na początku nie ma żadnych czasteczek HBr.

- a) dla a = b znajdź rozwiązanie równania.
- b) znajdź rozwiązanie dla a > b (podpowiedź $u = \sqrt{b-x}$).

Andrzej Raczyński