

HY-LW18-02B 轻小型网络云台 使用说明书

感谢您使用本公司的 HY-LW18-02B 型网络云台产品,请您在使用本产品前仔细阅读用户手册,本手 册将为您提供正确的产品参数、使用说明及注意事项。

修订记录

版本	修订记录内容	日期
V1.0	正式发布	2020年1月

目 录

_	注意	事项	3
二	配置	云台参数	4
	2.1	云台出厂默认参数	4
	2.2	云台拨码开关简介	4
	2.3	配置云台地址	5
	2.4	配置云台串口波特率	5
三	技术	指标	7
	3.1	产品基本参数	7
	3.2	接线说明	8
		3.2.1 底部出线	
		3.2.2 顶部出线	8
四	云台	安装与使用	9
		云台整体尺寸	
		云台项板安装及尺寸	
五.	云台	通信协议	11
	5.1	标准 Pelco-D 协议	11
		5.1.1 云台方向控制	12
		5.1.2 角度定位	13
		5.1.3 云台角度查询	13
		5.1.4 云台角度回传	13
		5.1.5 预置位操作	14
		5.1.6 电源开关控制	14
		5.1.7 停止云台转动	15

5.2	自定义协议	15
	5.2.1 自动区域扫描控制	15
	5.2.2 自动预置位扫描控制	19
	5.2.3 开启和关闭指令回复	21
	5.2.4 指令回复具体内容	21
	5.2.5 设置和删除云台基准 0 位	22
	5.2.6 查询云台工作模式	23
	5.2.7 云台复位重启	24
	5.2.8 查询云台工作状态是否正常	25
	5.2.9 温度查询和温度实时回传	26
	5.2.10 工作电压查询和电压实时回传	
	5.2.11 工作电流查询和电流实时回传	29
	5.2.12 角度实时回传	30
	5.2.13 转速查询和转速实时回传	30
	5.2.14 云台全范围自检	32
	5.2.15 云台故障主动回传	32
	5.2.16 区域扫描结束提示回复	33
	5.2.17 云台角度定位回传	33
	5.2.18 查询云台软件版本号	34
	5.2.19 查询云台类型	34
	5.2.20 查询云台区域扫描配置信息	35
	5.2.21 查询倾角传感器角度	38

一 注意事项

- 1、使用云台前,请先认真阅读本说明书。
- 2、请按照说明书规定的线序与接线方式进行接线。
- 3、严禁云台在使用与运输过程中遭受剧烈的震动、重击和挤压。
- 4、严禁云台在规定的温湿度范围外以及存在易燃易爆气体、腐蚀性气体的场所内使用。
- 5、严禁云台工作范围内存在与云台发生机械干涉的障碍物。
- 6、严禁擅自拆解云台,如遇故障请联系本公司售后: 电话 028-64965612
- 7、室外使用,需安装符合要求的防雷设备。
- 8、对云台断电重启时,重新开电至少需要等待10秒。
- 9、如无特殊需要,请不要修改云台配置文件。

二 配置云台参数

2.1 云台出厂默认参数

默认参数类型	默认参数名称	默认值		
网络通信 UDP	IP 地址	192.168.8.200		
网络通信 UDP	端口号	6666		
Pelco-D 协议	地址	1		
串口	RS422 串口波特率	9600		
甲口	RS485 串口波特率	9600		
转速范围	水平转速范围	0.12°/s ~ 36°/s		
投 燃地国	垂直转速范围	0.12°/s ~ 18°/s		
转动范围	水平转动范围	0° ~ 360°		
投纵范围	垂直转动范围	+60° ~ -60°		

表 2.1 云台默认参数

2.2 云台拨码开关简介

图 2.1 拨码开关示意图

云台的拨码开关位于云台后部的调节窗口盖板内,要调节拨码开关请先将云台后面的小盖板取下。 拨码开关 SW1 用于配置云台地址,拨码开关 SW2 用于配置 RS485 串口、RS422 串口的波特率。

2.3 配置云台地址

拨码开关 SW1 主要用于配置云台地址,云台地址由一个 8 字节的数 add 表示。拨码开关 SW1 的状态与云台地址 add 的关系如下表所示:

编号	拨码开关 SW1 状态							
地址	SW1-1	SW1-2	SW1-3	SW1-4	SW1-5	SW1-6	SW1-7	SW1-8
1	ON	OFF						
2	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF
3	ON	ON	OFF	OFF	OFF	OFF	OFF	OFF
4	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF
5	ON	OFF	ON	OFF	OFF	OFF	OFF	OFF
6	OFF	ON	ON	OFF	OFF	OFF	OFF	OFF
	•••••		•••••					
254	OFF	ON						
255	ON	ON	ON	ON	ON	ON	ON	ON

表 2.2 云台地址配置

拨码开关 SW1 中的 SW1-1 开关(即 1 号开关)对应 add 的最低位,拨码开关 SW1 中的 SW1-8 开关对应 add 的最高位,开关处于 ON 表示二进制数 1,开关处于 OFF 表示二进制数 0,云台地址 add 是根据拨码开关 SW1 的状态,按照二进制编码的方式确定的,地址 add 的范围为 1~255。

2.4 配置云台串口波特率

云台默认同时支持以太网 UDP 与串口 485 通信,串口 422 需要选配。拨码开关 SW2 主要用于串口波特率调节。拨码开关 SW2 中的 SW2-1 开关与 SW2-2 开关用于配置串口 422 的波特率,拨码开关 SW2中的 SW2-3 开关与 SW2-4 开关用于配置串口 485 的波特率。

串口 422 只支持 4 种波特率, 分别为 2400、4800、9600、19200。串口 422 波特率配置如下表所示:

编号	拨码开关 SW2 状态		
波特率	SW2-1	SW2-2	
2400	OFF	OFF	

4800	OFF	ON
9600	ON	OFF
19200	ON	ON

表 2.3 串口 422 波特率配置

串口 485 只支持 4 种波特率,分别为 2400、4800、9600、19200。串口 485 波特率配置如下表所示:

编号	拨码开关 SW2 状态		
波特率	SW2-3	SW2-4	
2400	OFF	OFF	
4800	OFF	ON-	
9600	ON	OFF	
19200	ON	ON	

表 2.4 串口 485 波特率配置

三 技术指标

3.1 产品基本参数

基本 参数			
型号	HY-LW18-02B		
旋转速度	水平 0.12-36;俯仰 0.12-18;单位:°/s		
旋转角度	水平 0~360°连续旋转;俯仰-60°~+60°(可定制±90)		
定位精度	±0.1°		
角度回传	串口查询回传/网口实时回传		
通信协议	Pelco D协议、自定义协议		
通信接口	网络接口、RS485 串口(RS422 串口选配)		
通信数据类型	UDP 通信、串口通信		
底部输入电压	DC12V±10%		
底部输入电流	最大 5A		
顶部输出电压	双路输出电压 DC12V		
顶部输出电流	双路输出,单路最大 1.5A		
安全等级	1类		
接线端子	威浦 WY20J12TE 防水航空接头		
工作整机功耗	≤50W (双轴自检)		
工作温度	-10°C ~+65°C		
负载	≤10Kg		
设备质量	6.2Kg		
承载方式	顶载		
传动方式	蜗轮蜗杆传动		
最大扭矩	11N.m		
电机	步进电机 (同步带传输)		
防护等级	IP66		
重心	距离安装面约 50mm		
预置位	支持预置位功能,可设置80个预置位		
镜头预置位	不支持		
OSD 菜单	不支持		
辅助开关	2组,电源开关1,电源开关2		
区域扫描总数	可设置 15 个扫描区域		
区域扫描速度	可配		
区域扫描模式	单步扫描/连续扫描		
区域扫描单步停止时	可配,0~65536ms		
预置位扫描总数	80 个		
预置位扫描速度	可配		
预置位扫描停止时间	可配,0~65536ms		
设备尺寸	210mm*135mm*272mm (长*宽*高)		

表 3.1 基本参数

3.2 接线说明

3.3.1 底部出线

WY20J9Z	功能	说明
1	电源输入负	GND
2	电源输入正	DC12V
3	大地线	GND EARTH
4	网线	RXN(绿)
5	网线	RXP(绿白)
6	网线	TXN(橙)
7	网线	TXP(橙白)
8 485 串口		RS485B
9	485 串口	RS485A

表 3.2 云台底部出线

3.3.2 顶部出线

WY20J12TE	功能	颜色	说明
1	电源输出 2	黑	GND
2	电燃制田 2	红	DC12V
3	4 T -	蓝白	RXP
4	顶端网线 2	蓝	RXN
5	5次对明7975发 2	橙白	TXP
6		橙	TXN
7	电源输出 1	自	GND
8	电冰制山 1	棕	DC12V
9		棕白	RXP
10	顶端网线 2	棕	RXN
11	7火利用 4州 4人 2	绿白	TXP
12		绿	TXN

表 3.3 云台顶部出线

底部水晶头接线参考图

四 云台安装与使用

4.1 云台整体尺寸

云台整体尺寸如下图所示(图中未注单位均为 mm 毫米):

图 4.1 云台整体尺寸

4.2 云台顶板安装及尺寸

1、卸下云台顶板螺钉,取下云台顶板,将负载安装在云台顶板上,然后将其与云台安装好,云台顶板安装尺寸如图所示(图中未注单位均为 mm 毫米):

图 4.2 云台顶板尺寸图

2、安装时请使用 4 颗 M8×35 外六角螺钉将云台固定在基座上。

注意:为安全起见,基座应结实可靠,同时保证云台转动时不会发生碰撞。支撑云台和负载的基座至少应承受 2 倍云台和负载的总重量,建议承受重量 35kg 以上。

五 云台通信协议

云台通信协议分为两部分,一部分为标准的 Pelco-D 协议,另一部分为仿照 Pelco-D 协议的形式自定义协议。协议总长度都是 7 个字节,其格式如下:

字节 0	字节 1	字节 2	字节 3	字节 4	字节 5	字节 6
起始位	地址 add	Data1	Data2	Data3	Data4	校验码
0xff	add	XX	XX	XX	XX	crc

表 5.1 云台协议格式

- 1、字节 0 为协议起始位, 所有协议起始位都为 0xff。
- 2、字节1为云台的实际地址,范围为0~255,具体值以拨码开关状态为准。
- 3、字节 6 为协议的校验码,用于判断指令是否正确。计算方式为字节 1 到字节 5 相加和的低八位, 公式如下:

校验码 = (地址 add + Data 1 + Data 2 + Data 3 + Data 4) & 0x00ff。

4、其他字节 Data1~Data4 表示传输具体数据,根据具体情况会有所不同,具体使用见说明书后的协议详解。

5.1 标准 Pelco-D 协议

这部分主要是详细解析云台使用的标准 Pelco-D 协议,协议中所有的数据都是按照 16 进制表示的。标准 Pelco-D 协议中,字节 2 必须为 0,字节 3 表示指令的类型,字节 4 和字节 5 表示指令的具体操作内容。

字节 0	字节1	字节 2	字节3	字节 4	字节 5	字节 6
起始位	地址 add	Data1	Data2	Data3	Data4	校验码
0xff	0~255	必须为0	类型	内容	内容	crc

表 5.2 标准 Pelco-D 协议

5.1.1 云台方向控制

控制云台按照指定的转速向按照指定的方向转动。

协议	字节 0	字节 1	字节 2	字节 3	字节 4	字节 5	字节 6
指令	起始位	地址 add	Data1	Data2	Data3	Data4	校验码
向上	0xff	add	0x00	0x08	0x00	V_Speed	crc
向下	0xff	add	0x00	0x10	0x00	V_Speed	crc
向左	0xff	add	0x00	0x04	H_Speed	0x00	crc
向右	0xff	add	0x00	0x02	H_Speed	0x00	crc
左上	0xff	add	0x00	0x0c	H_Speed	V_Speed	crc
右上	0xff	add	0x00	0x0a	H_Speed	V_Speed	erc
左下	0xff	add	0x00	0x14	H_Speed	V_Speed	crc
右下	0xff	add	0x00	0x12	H_Speed	V_Speed	crc

表 5.3 云台方向控制

表格中 H_Speed 表示云台水平轴实际转动的速度放大 10 倍取整后的值, V_Speed 表示云台垂直轴的实际转速放大 10 倍取整后的值。云台的转动速度的精度最高可以控制到 0.6 %, 云台具体转速范围根据云台类型会有所不同,如下表所示:

转速云台型号	水平转速范围 单位: %	垂直转速范围 单位: °/s	云台传动方式 简单描述
HY-MZ17-01A	9-45	2.6-13	中型直齿无刷直流电机
HY-MW17-01A	1.5-7.7	0.9-3.5	中型蜗轮蜗杆无刷直流电机
HY-HW17-01A	2.4~13.8	0.5~2.4	重型蜗轮蜗杆无刷直流电机
HY-LW18-01A	1.8~8.9	1.8~8.9	轻型蜗轮蜗杆无刷直流电机
HY-LW18-01B	1.8~8.9	1.8~8.9	轻型蜗轮蜗杆无刷直流电机
HY-LW18-02A	0.12-36	0.12-18	轻型蜗轮蜗杆步进电机
HY-LW18-02B	0.12-36	0.12-18	轻型蜗轮蜗杆步进电机
HY-LW18-02C	0.12-60	0.12-60	轻型蜗轮蜗杆步进电机

表 5.4 云台转速

5.1.2 角度定位

控制云台转动到指定的水平角度和指定的垂直角度。

协议	字节 0	字节1	字节 2	字节3	字节 4	字节 5	字节 6
指令	起始位	地址 add	Data1	Data2	Data3	Data4	校验码
水平	0xff	add	0x00	0x4b	H_HAngle	H_LAngle	crc
垂直	0xff	add	0x00	0x4d	V_HAngle	V_LAngle	crc

表 5.5 角度定位

表格中 H_HAngle 表示水平角度放大 100 倍取整后的高八位,H_LAngle 表示水平角度放大 100 倍取整后的低八位。V_HAngle 表示垂直角度放大 100 倍取整后的高八位,V_LAngle 表示垂直角度放大 100 倍取整后的低八位。

5.1.3 云台角度查询

协议	字节 0	字节 1	字节 2	字节3	字节 4	字节 5	字节 6
指令	起始位	地址 add	Data1	Data2	Data3	Data4	校验码
水平	0xff	add	0x00	0x51	0	0	crc
垂直	0xff	add	0x00	0x53	0	0	crc

表 5.6 角度查询

水平: 查询云台当前的水平角度。云台收到该指令后会回复当前水平角度。

垂直: 查询云台当前的垂直角度。云台收到该指令后会回复当前垂直角度。

5.1.4 云台角度回传

该指令是云台回传给控制端的指令,回传内容为云台的垂直角度和水平角度。当云台接收到控制端的查询角度请求或者是打开角度实时回传时,云台就会将当前的角度按照下面的协议回传给控制端。

协议	字节 0	字节 1	字节 2	字节3	字节 4	字节 5	字节 6
指令	起始位	地址 add	Data1	Data2	Data3	Data4	校验码
水平	0xff	add	0x00	0x59	H_HAngle	H_LAngle	crc
垂直	0xff	add	0x00	0x5b	V_HAngle	V_LAngle	crc

表 5.7 角度回传

表格中 H_HAngle 表示水平角度放大 100 倍取整后的高八位,H_LAngle 表示水平角度放大 100 倍取整后的低八位。V_HAngle 表示垂直角度放大 100 倍取整后的高八位,V_LAngle 表示垂直角度放大 100 倍取整后的低八位。

5.1.5 预置位操作

预置位操作包括设置预置位、调用预置位和删除预置位。

协议	字节 0	字节 1	字节 2	字节3	字节 4	字节 5	字节 6
指令	起始位	地址 add	Data1	Data2	Data3	Data4	校验码
设置	0xff	add	0x00	0x03	0	num	crc
调用	0xff	add	0x00	0x07	0	num	crc
删除	0xff	add	0x00	0x05	0	num	crc

表 5.8 预置位操作

协议中的 num 是指需操作的预置位的编号,编号范围为 0 到 79。

5.1.6 电源开关控制

电源控制指控制云台顶端 DC12V 电源 1、电源 2 的开关。

协议	字节 0	字节 1	字节 2	字节 3	字节 4	字节 5	字节 6
指令	起始位	地址 add	Data1	Data2	Data3	Data4	校验码
电源1开	0xff	add	0x00	0x09	0	0x03	crc
电源2开	0xff	add	0x00	0x09	0	0x04	crc
电源1关	0xff	add	0x00	0x0b	0	0x03	crc
电源2关	0xff	add	0x00	0x0b	0	0x04	crc

表 5.9 电源开关控制

5.1.7 停止云台转动

控制云台停止水平转动和垂直转动,但是不适用于自动区域扫描模式、预置位扫描模式和云台自检过程,其他模式都能够响应该停止指令。

字节 0	字节1	字节 2	字节3	字节 4	字节 5	字节 6
起始位	地址 add	Data1	Data2	Data3	Data4	校验码
0xff	add	0x00	0x00	0x00	0	crc

表 5.10 停止云台转动

5.2 自定义协议

这部分主要是详细解析云台使用的自定义协议,协议的格式是仿照标准 Pelco-D 协议的格式制定的。 协议中数据前有"0x"表示 16 进制数据,否则表示十进制数据。自定义协议中,字节 2 表示类型,字节 3、字节 4 和字节 5 表示指令的具体操作内容。

字节 0	字节 1	字节 2	字节 3	字节4	字节 5	字节 6
起始位	地址 add	Data1	Data2	Data3	Data4	校验码
0xff	0~255	类型	内容	内容	内容	crc

表 5.11 自定义协议

5.2.1 自动区域扫描控制

1、配置区域扫描的参数

(1) 通过角度配置区域扫描的边界

协议	字节 0	字节 1	字节 2	字节3	字节 4	字节 5	字节 6
指令	起始位	地址 add	Data1	Data2	Data3	Data4	校验码
НА	0xff	add	0xf7	AreaNum	H_HAngle	H_LAngle	crc
НВ	0xff	add	0xf8	AreaNum	H_HAngle	H_LAngle	crc
VA	0xff	add	0xf9	AreaNum	V_HAngle	V_LAngle	crc
VB	0xff	add	0xfa	AreaNum	V_HAngle	V_LAngle	crc

表 5.12 角度配置区域扫描的边界

上述指令表示直接通过给云台发送角度的方式设置云台的扫描范围。HA表示设置扫描区域的水平起始边界,HB表示设置扫描区域的水平结束边界。VA表示设置扫描区域的垂直起始边界,VB表示设置扫描区域的垂直结束边界。AreaNum表示需要配置的区域编号,范围为0~20。H_HAngle表示水平角度放大100倍取整后的高八位,H_LAngle表示水平角度放大100倍取整后的低八位。V_HAngle表示垂直角度放大100倍取整后的高八位,VLAngle表示垂直角度放大100倍取整后的低八位。

(2) 通过视频配置区域扫描的边界

协议	字节 0	字节1	字节 2	字节3	字节 4	字节 5	字节 6
指令	起始位	地址 add	Data1	Data2	Data3	Data4	校验码
НА	0xff	add	0xe6	AreaNum	0	0	crc
НВ	0xff	add	0xe7	AreaNum	0	0	crc
VA	0xff	add	0xe8	AreaNum	0	0	crc
VB	0xff	add	0xe9	AreaNum	0	0	crc

表 5.13 视频配置区域扫描的边界

上述指令表示通过视频查看的方式配置云台的扫描范围,即云台直接将当前的水平位置配置为水平扫描的边界,或者直接将当前垂直位置配置为垂直的扫描边界。AreaNum表示需要配置的区域编号,范围为 0~14。

2、配置区域扫描的间隔角度

协议	字节 0	字节1	字节 2	字节 3	字节 4	字节 5	字节 6
指令	起始位	地址 add	Data1	Data2	Data3	Data4	校验码
INT_H	0xff	add	0xfb	AreaNum	H_HAngle	H_LAngle	crc
INT_V	0xff	add	0xfc	AreaNum	V_HAngle	V_LAngle	crc

表 5.14 配置区域扫描的间隔角度

上述指令表示通过发送角度的方式配置区域扫描的间隔角度。INT_H表示配置水平扫描间隔角度,即水平转动每步转动的角度,水平间隔角度只是在云台区域扫描中的单步扫描模式中有用,在连续扫描

模式中没有作用。INT_V表示配置垂直扫描间隔角度,即垂直转动每步转动的角度,垂直间隔角度在区域扫描单步扫描模式和连续扫描模式中都有作用。AreaNum表示需要配置的区域编号,范围为0~14。H_HAngle表示水平角度放大100倍取整后的高八位,H_LAngle表示水平角度放大100倍取整后的低八位。V_HAngle表示垂直角度放大100倍取整后的高八位,V_LAngle表示垂直角度放大100倍取整后的低八位。水平间隔角度和垂直间隔角度都必须为大于0的数。

3、配置区域扫描的扫描转速

字节 0	字节 1	字节 2	字节 3	字节 4	字节5	字节 6
起始位	地址 add	Data1	Data2	Data3	Data4	校验码
0xff	add	0xfd	AreaNum	H_Speed	V_Speed	crc

表 5.15 配置区域扫描的扫描转速

H_Speed 表示云台水平扫描转速放大 10 倍取整后的值, V_Speed 表示云台垂直扫描转速放大 10 倍取整后的值。云台的转动速度的精度最高可以控制到 0.6 %,H_Speed、V_Speed 的范围为以云台实际参数为准。AreaNum 表示需要配置的区域编号,范围为 $0\sim14$ 。

4、配置区域扫描停止时间

字节 0	字节1	字节 2	字节3	字节 4	字节 5	字节 6
起始位	地址 add	Data1	Data2	Data3	Data4	校验码
0xff	add	0xf6	AreaNum	H_Time	L_Time	crc

表 5.16 配置区域扫描停止时间

上述指令用于配置区域扫描的单步扫描模式中的停止时间,即云台每转动一步停止多少时间。AreaNum 表示需要配置的区域编号,范围为 0~14。H_Time 配置时间的高八位,L_Time 配置时间的低八位,时间 的单位是毫秒 ms,最大时间不能超过 65000 毫秒即 65 秒。扫描停止时间仅在单步扫描模式中有用。

5、使能和不使能某个扫描区域

协议	字节 0	字节1	字节 2	字节3	字节4	字节 5	字节 6
指令	起始位	地址 add	Data1	Data2	Data3	Data4	校验码

使能	0xff	add	0xf4	AreaNum	0x01	0	crc
不使能	0xff	add	0xf4	AreaNum	0	0	crc

表 5.17 使能和不使能某个扫描区域

使能某个区域表示该区域表示云台能够对该区域进行扫描,不使能某个区域表示云台不会对该区域进行扫描。AreaNum表示需要配置的区域编号,范围为 0~14。

6、区域扫描操作

协议	字节 0	字节 1	字节 2	字节 3	字节 4	字节 5	字节 6
指令	起始位	地址 add	Data1	Data2	Data3	Data4	校验码
Start_S	0xff	add	0xf5	0x01	AreaNum	0	crc
Start_M	0xff	add	0xf5	0x02	AreaNum1	AreaNum2	crc
Pause	0xff	add	0xf5	0x03	0	0	crc
Continue	0xff	add	0xf5	0x04	0	0	crc
Close	0xff	add	0xf5	0x05	0	0	crc
Set_S	0xff	add	0xf5	0x06	AreaNum	0x02	crc
Set_C	0xff	add	0xf5	0x06	AreaNum	0x01	crc

表 5.18 区域扫描操作

Start_S: 打开单区域扫描,即只扫描一个指定的区域。

AreaNum: 为指定区域的编号,范围为 0~14。

Start_M: 打开多区域扫描,即循环扫描多个区域。扫描的区域为 AreaNum1 到 AreaNum2 之间所有的有效区域。

Pause: 暂停扫描。

Continue:恢复扫描,云台从暂停的位置继续完成后续的扫描。

Close: 彻底关闭扫描。

Set_S: 设置某个区域的扫描模式为单步扫描模式。AreaNum 为指定区域的编号。

Set C: 设置某个区域的扫描模式为连续扫描模式。AreaNum 为指定区域的编号。

7、保存区域扫描数据

字节 0	字节 1	字节 2	字节3	字节 4	字节 5	字节 6
起始位	地址 add	Data1	Data2	Data3	Data4	校验码
0xff	add	0xf3	0	0	0	crc

表 5.19 保存区域扫描数据

保存区域扫描数据是指将所有区域的数据保存到 Flash 中,防止云台断电数据丢失,云台重启后也能够利用之前配置好的数据进行区域扫描。

5.2.2 自动预置位扫描控制

1、通过角度设置预置位

设置预置位的方式有2种,一种是上面5.1.4 预置位操作中的直接设置,另一种是通过角度设置。角度设置预置位的指令如下表:

协议	字节 0	字节1	字节 2	字节 3	字节 4	字节 5	字节 6
指令	起始位	地址 add	Data1	Data2	Data3	Data4	校验码
Set_H	0xff	add	0xe4	PP_Num	H_HAngle	H_LAngle	crc
Set_V	0xff	add	0xe5	PP_Num	V_HAngle	V_LAngle	crc

表 5.20 通过角度设置预置位

Set_H 表示设置预置位的水平角度,Set_V 表示设置预置位的垂直角度。PP_Num 表示被设置的预置位的编号,范围为 0~79。H_HAngle 表示水平角度放大 100 倍取整后的高八位,H_LAngle 表示水平角度放大 100 倍取整后的低八位。V_HAngle 表示垂直角度放大 100 倍取整后的高八位,V_LAngle 表示垂直角度放大 100 倍取整后的低八位。

2、设置预置位的停止时间

字节 0	字节 1	字节 2	字节 3	字节 4	字节 5	字节 6
------	------	------	------	------	------	------

起始位	地址 add	Data1	Data2	Data3	Data4	校验码
0xff	add	0xf1	PP_Num	H_Time	L_Time	crc

表 5.21 设置预置位的停止时间

设置预置位扫描时,在每个预置位停止的时间。PP_Num 表示被设置的预置位的编号,范围为 0~79。 H_Time 配置时间的高八位,L_Time 配置时间的低八位,时间的单位是毫秒 ms,最大停止时间不能超过 65000 毫秒即 65 秒。

3、设置预置位扫描速度

字节 0	字节 1	字节 2	字节3	字节 4	字节 5	字节 6
起始位	地址 add	Data1	Data2	Data3	Data4	校验码
0xff	add	0xf2	PP_Num	H_Speed	V_Speed	crc

表 5.22 设置预置位扫描速度

设置预置位扫描速度是指设置转动到指定预置位的转速。PP_Num 表示被设置的预置位的编号,范围为 0~79。H_Speed 表示云台水平扫描转速放大 10 倍取整后的值, V_Speed 表示云台垂直扫描转速放大 10 倍取整后的值。云台的转动速度的精度最高可以控制到 0.6%s,H_Speed、V_Speed 的范围以云台实际参数为准。

4、预置位扫描操作

协议	字节 0	字节1	字节 2	字节3	字节 4	字节 5	字节 6
指令	起始位	地址 add	Data1	Data2	Data3	Data4	校验码
Start	0xff	add	0xf0	0x01	PP_Num1	PP_Num2	crc
Pause	0xff	add	0xf0	0x02	0	0	crc
Continue	0xff	add	0xf0	0x03	0	0	crc
Close	0xff	add	0xf0	0x04	0	0	crc

表 5.23 预置位扫描操作

Start: 启动预置位扫描, PP_Num1 是起始预置位编号, PP_Num2 是结束预置位编号, 预置位扫描的

范围是 PP Num1 与 PP Num2 之间的设置的有效预置位。

Pause: 暂停预置位扫描。

Continue:恢复预置位扫描。从暂停的位置开始,继续进行后续的预置位扫描。

Close: 彻底关闭预置位扫描。

预置位其他功能请查看 5.1.5 预置位操作。

5.2.3 开启和关闭指令回复

云台指令回复默认是打开的。当指令回复处于开启状态时,只要收到的指令正确且符合要求,除了 查询指令外,云台会向指令发送方回复与接收到的指令相同的指令。如果接受到的指令异常或者云台无 法执行该指令时,回复的具体内容请看文档 1.2.4 指令回复具体内容的部分。

协议	字节 0	字节 1	字节 2	字节3	字节4	字节 5	字节 6
指令	起始位	地址 add	Data1	Data2	Data3	Data4	校验码
开启	0xff	add	0xdf	0	0x01	0	crc
关闭	0xff	add	0xdf	0	0	0	crc

表 5.24 开启和关闭指令回复

5.2.4 指令回复具体内容

协议	字节 0	字节 1	字节 2	字节3	字节 4	字节 5	字节 6
回复	起始位	地址 add	Data1	Data2	Data3	Data4	校验码
Right	0xff	add	Source1	Source2	Source3	Source4	crc
Wrong	0xff	add	0xff	0xff	0xff	0xff	crc
Fail	0xff	add	0xee	0xee	0xee	0xee	crc
Query	0xff	add	Data1	Data2	Data3	Data4	crc

表 5.25 指令回复具体内容

回复类型	具体含义			
Right	指令正确,且执行成功			

Wrong	指令错误,CRC 校验码错误
fail	指令正确,但执行失败
Query	查询数据,回复被查询的内容

表 5.26 指令回复类型说明

Right:表示回复收到的指令正确,且云台成功执行该指令。回复的内容与收到的指令内容完全相同。
Source1、Source2、Source3、Source4与收到的指令内容完全相同。

Wrong: 表示回复收到的指令完全是错误的,即指令校验码是错误的。

fail: 表示回复收到的指令校验码是正确的,但是指令由于当前云台故障或者是云台状态不满足指令执行要求,云台拒绝执行该指令。

Query: 表示云台收到查询数据的指令时,直接回复被查询数据的具体内容,例如查询云台角度、温度、转速等,Data1、Data2、Data3、Data4 为数据内容,具体内容以被查询的数据类型为准。

5.2.5 设置和删除云台基准 0 位

协议	字节 0	字节1	字节 2	字节 3	字节 4	字节 5	字节 6
指令	起始位	地址 add	Data1	Data2	Data3	Data4	校验码
Set_H1	0xff	add	0xe3	0x01	0	0	crc
Set_V1	0xff	add	0xe3	0x02	0	0	crc
Set_HV	0xff	add	0xe3	0x03	0	0	crc
Set_H2	0xff	add	0xe3	0x04	H_HAngle	H_LAngle	crc
Set_V2	0xff	add	0xe3	0x05	V_HAngle	V_LAngle	crc
Del_HV	0xff	add	0xe3	0x06	0	0	crc

表 5.27 更改云台水平基准 0 位

Set H1: 通过视频设置云台水平基准 0 位,将当前云台的水平位置设置为水平基准 0 位。

Set V1: 通过视频设置云台垂直基准 0 位,将当前云台的垂直位置设置为垂直基准 0 位。

Set HV: 通过视频同时设置云台水平、垂直基准 0 位,将当前云台的水平位置、垂直位置分别设置

为水平基准0位和垂直基准0位。

Set_H2:通过发送具体的水平角度,并将发送的水平角度设置水平基准 0 位。H_HAngle 表示水平角度放大 100 倍取整后的高八位, H LAngle 表示水平角度放大 100 倍取整后的低八位。

Set_V2:通过发送具体的垂直角度,并将发送的垂直角度设置垂直基准 0 位。V_HAngle 表示垂直角度放大 100 倍取整后的高八位, V LAngle 表示垂直角度放大 100 倍取整后的低八位。

Del HV: 同时删除被设置的水平、垂直基准 0 位,恢复水平、垂直初始基准 0 位。

5.2.6 查询云台工作模式

1.查询云台工作模式

字节 0	字节1	字节 2	字节 3	字节 4	字节 5	字节 6
起始位	地址 add	Data1	Data2	Data3	Data4	校验码
0xff	add	0xe0	0	0	0	crc

表 5.28 查询云台工作模式

上述指令的作用是用于判断和查询云台当前是处于哪个工作模式,所有的工作模式都已经在表 5.26 中做了详细的说明。

2.云台回复当前工作模式

字节 0	字节1	字节 2	字节3	字节 4	字节 5	字节 6
起始位	地址 add	Data1	Data2	Data3	Data4	校验码
0xff	add	0xe0	WorkMode	Num1	Num2	crc

表 5.29 云台回复当前工作模式

字节3表示当前的工作模式, WorkMode 的值对应的具体工作模式如下表所示:

WorkMode 的值	工作模式说明	WorkMode 的值	工作模式说明
0x01	云台自检中	0x12	水平、垂直电压采集中
0x02	区域扫描进行中	0x13	水平位置更新出错

0x03	0x03 区域扫描暂停中		垂直位置更新出错	
0x04	区域扫描恢复中	0x15	水平、垂直位置更新出错	
0x05	区域扫描关闭中	0x16	电机低温无法转动	
0x06	预置位扫描中	0xfa	水平电机低温故障	
0x07	预置位扫描暂停中	0xfb	垂直电机低温故障	
0x08	预置位扫描恢复中	0xfc	水平电机故障无法转动	
0x09	预置位扫描关闭中	0xfd	垂直电机故障无法转动	
0x10	水平电压采集中	0xfe	所有电机故障无法转动	
0x11	垂直电压采集中	0x00	常规正常模式	

表 5.30 WorkMode 说明

- ①WorkMode = 1 云台正在自检, Num1 表示云台水平自检进度, Num2 表示垂直自检进度。Num1 和Num2 的值不定,主要是用于云台测试。可以通过这种方式查询云台是否自检完成。
- ②WorkMode = 2、3、4、5 云台处于区域扫描模式, Num1 表示区域扫描进度, Num2 表示正在扫描的区域编号。Num1 的值不定, 主要用于云台测试。
- ③WorkMode = 6、7、8、9 云台处于预置位扫描模式, Num1 表示预置位扫描进度, Num2 表示正在扫描的预置位编号。Num1 的值不定, 主要用于云台测试
- ④WorkMode 的值为表 5.26 中除了上述①②③中列出的值之外的其他值时,Num1 表示水平电机转动状态,Num1=0 表示水平电机处于刹车状态,Num1=1 表示水平电机处于转动状态。Num2 表示垂直电机转动状态,Num2=0 表示垂直电机处于刹车状态,Num2=1 表示垂直电机处于转动状态。其中WorkMode=0 时表示云台处于常规正常模式。

5.2.7 云台复位重启

字节 0	字节 1	字节 2	字节 3	字节 4	字节 5	字节6
起始位	地址 add	Data1	Data2	Data3	Data4	校验码
0xff	add	0xde	0	0	0	crc

表 5.31 云台复位重启

上述指令表示在不断电的情况下重启云台。

5.2.8 查询云台工作状态是否正常

1、状态查询

字节 0	字节1	字节 2	字节3	字节4	字节 5	字节 6
起始位	地址 add	Data1	Data2	Data3	Data4	校验码
0xff	add	0xdd	0	0	0	crc

表 5.32 状态查询

上述指令用于查询云台的工作状态,云台收到该指令后,会连续回复多条指令,将云台各个模块工作状态上报。

2、云台状态回复

协议	字节 0	字节1	字节 2	字节3	字节4	字节 5	字节 6
回复	起始位	地址 add	Data1	Data2	Data3	Data4	校验码
HoriMotor	0xff	add	0x01	HMState	HoriDir	HoriRot	crc
HoriHall	0xff	add	0x02	HHall	0	0	crc
HoriPDE	0xff	add	0x03	SW3	0	0	crc
VertMotor	0xff	add	0x04	VMState	VertDir	VertRot	crc
VertHall	0xff	add	0x05	VHall	VB	VC	crc
VertPDE	0xff	add	0x06	SW1	SW2	0	crc
Temp	0xff	add	0x07	TState	H_Temp	L_Temp	crc
Volt	0xff	add	0x08	VState	H_Volt	L_Volt	crc
Power	0xff	add	0x09	VIS	INF	0	crc
Current	0xff	add	0x0A	IState	H_I	L_I	crc

表 5.33 云台状态回复

HoriMotor:表示云台水平轴的转动状态。HMState 云台水平电机工作状态,HMState=1 水平电机故障无法转动,HMState=0 水平电机工作正常。HoriDir 云台水平转动方向,HoriDir=4 云台向右转动,HoriDir=3 云台向左转动。HoriRot 水平电机转动状态,HoriRot=0表示水平电机处于刹车状态,HoriRot=1表示水平电机处于转动状态。

HoriHall:表示云台水平电机霍尔反馈状态。HHall=1水平电机霍尔传感器故障,HHall=0水平电机

霍尔传感器工作正常。

HoriPDE:表示云台水平光电开关位置更新状态。SW3=1 水平光电开关位置更新出错,SW3=0 水平光电开关位置更新正常。

VertMotor:表示云台垂直轴的转动状态。VMState 云台垂直电机工作状态,VMState=1垂直电机故障无法转动,VMState=0垂直电机工作正常。VertDir 云台垂直转动方向,VertDir=1云台向上转动,VertDir=2云台向下转动。VertRot垂直电机转动状态,VertRot=0表示垂直电机处于刹车状态,VertRot=1表示垂直电机处于转动状态。

VertVall:表示云台垂直电机霍尔反馈状态。VHall=1垂直电机霍尔传感器故障,VHall=0垂直电机霍尔传感器工作正常。

VertPDE:表示云台垂直光电开关位置更新状态。SW3=1垂直光电开关位置更新出错,SW3=0垂直光电开关位置更新正常。

Temp: 表示云台当前采集的内部工作温度。Temp 表示云台温度状况,Temp=1 云台高温故障,Temp=0 云台温度正常。H Temp 是温度值放大 100 倍后的高八位,L Temp 是温度值放大 100 倍后的低八位。

Volt: 表示云台工作电压。VState 表示云台电压状况,VState =1 云台工作电压异常,VState =0 云台工作电压正常。H_Volt 是电压值放大 100 倍后的高八位,L_Volt 是电压值放大 100 倍后的低八位。

Power: 云台顶部电源开关状态。VIS=1 电源 1 打开, VIS=0 电源 1 关闭。INF=1 电源 2 打开, INF=0 电源 2 关闭。

Current:云台工作电流。IState 表示云台电流状况,IState =1 云台电流异常,IState =0 云台电流正常。HI是电流值放大 100 倍后的高八位,LI是电流值放大 100 倍后的低八位。

5.2.9 温度查询和温度实时回传

1.温度查询

(1) 温度查询指令

字节 0	字节 1	字节 2	字节3	字节 4	字节 5	字节 6
起始位	地址 add	Data1	Data2	Data3	Data4	校验码
0xff	add	0xd6	0	0	0	crc

表 5.34 温度查询指令

上述指令用于查询云台的工作温度,云台接收温度查询指令后,会将云台当前的工作温度回传。

(2) 温度回复

字节	0	字节 1	字节 2	字节 3	字节 4	字节 5	字节 6
起始	位	地址 add	Data1	Data2	Data3	Data4	校验码
0xf	f	add	0xd6	H_Temp	L_Temp	0	crc

表 5.35 温度查询回复

H Temp 是温度值放大 100 倍后的高八位, L Temp 是温度值放大 100 倍后的低八位

2.温度实时回传

(1) 温度实时回传打开与关闭

协议	字节 0	字节1	字节2	字节3	字节 4	字节 5	字节 6
指令	起始位	地址 add	Data1	Data2	Data3	Data4	校验码
TempON	0xff	add	0xd4	0x01	H_Time	L_Time	crc
TempOFF	0xff	add	0xd4	0x02	0	0	crc

表 5.36 温度实时回传打开与关闭

TempON: 打开温度实时回传。H_Time 回传间隔时间的高八位,L_Time 回传间隔时间的低八位。

TempOFF: 关闭温度实时回传。

(2) 温度实时回传的内容

温度回传的具体协议格式与表 5.35 温度查询回复完全相同。

5.2.10 工作电压查询和电压实时回传

1、电压查询

(1) 电压查询指令

字节 0	字节1	字节 2	字节 3	字节 4	字节 5	字节 6
起始位	地址 add	Data1	Data2	Data3	Data4	校验码
0xff	add	0xcd	0	0	0	crc

表 5.37 电压查询指令

上述指令用于查询云台的工作电压,云台接收电压查询指令后,会将云台当前的工作电压回传。

(2) 电压回复

字节 0	字节 1	字节 2	字节3	字节 4	字节 5	字节 6
起始位	地址 add	Data1	Data2	Data3	Data4	校验码
0xff	add	0xcd	H_Volt	L_Volt	0	crc

表 5.38 电压回复

H_Volt 是电压值放大 100 倍后的高八位, L_Volt 是电压值放大 100 倍后的低八位。

2、电压实时回传

(1) 电压实时回传打开与关闭

协议	字节 0	字节1	字节 2	字节3	字节4	字节 5	字节 6
指令	起始位	地址 add	Data1	Data2	Data3	Data4	校验码
VoltON	0xff	add	0xcc	0x01	H_Time	L_Time	crc
VoltOFF	0xff	add	0xcc	0x02	0	0	crc

表 5.39 电压实时回传打开与关闭

TempON: 打开电压实时回传。 H_{-} Time 回传间隔时间的高八位, L_{-} Time 回传间隔时间的低八位。

TempOFF: 关闭电压实时回传。

(2) 电压实时回传的内容

电压实时回传的具体协议格式与表 5.38 电压回复完全相同。

5.2.11 工作电流查询和电流实时回传

1、电流查询

(1) 电流查询指令

字节 0	字节 1	字节 2	字节 3	字节 4	字节 5	字节 6
起始位	地址 add	Data1	Data2	Data3	Data4	校验码
0xff	add	0xc8	0	0	0	crc

表 5.40 电流查询指令

(2) 电流回复

1					1		
	字节 0	字节 1	字节 2	字节 3	字节 4	字节 5	字节 6
	起始位	地址 add	Data1	Data2	Data3	Data4	校验码
	ME XII IV.	FEFE add	Data1	Data2	Datas	Data	仅知时
	0xff	add	0xc8	H_I 4	_V_I	0	crc

表 5.41 电流回复

H_I 是电流值放大 100 倍后的高八位, L_I 是电流值放大 100 倍后的低八位。

2、电流实时回传

(1) 电流实时回传打开与关闭

协议	字节 0	字节1	字节 2	字节3	字节4	字节 5	字节 6
指令	起始位	地址 add	Data1	Data2	Data3	Data4	校验码
ION	0xff	add	0xc1	0x01	H_Time	L_Time	crc
IOFF	0xff	add	0xc1	0x02	0	0	crc

表 5.42 电流实时回传打开与关闭

ION: 打开电流实时回传。H_Time 回传间隔时间的高八位,L_Time 回传间隔时间的低八位。

IOFF: 关闭电流实时回传。

(2) 电流实时回传内容

电流实时回传的具体协议格式与表 5.41 电压回复完全相同。

5.2.12 角度实时回传

(1) 角度实时回传打开与关闭

协议	字节 0	字节 1	字节 2	字节 3	字节 4	字节 5	字节 6
指令	起始位	地址 add	Data1	Data2	Data3	Data4	校验码
AngleON	0xff	add	0xe1	0x01	H_Time	L_Time	crc
AngleOFF	0xff	add	0xe1	0x02	0	0	crc

表 5.43 角度实时回传打开与关闭

AngleON: 打开云台角度实时回传。H_Time 回传间隔时间的高八位,L_Time 回传间隔时间的低八位。

AngleOFF: 关闭云台角度实时回传。

(2) 角度实时回传的内容

云台角度实时回传内容包括同时回传水平角度和垂直角度,回传的具体协议与表 5.7 角度回传完全相同。

5.2.13 转速查询和转速实时回传

1、转速查询

(1) 转速查询指令

协议	字节 0	字节 1	字节 2	字节 3	字节 4	字节 5	字节 6
指令	起始位	地址 add	Data1	Data2	Data3	Data4	校验码
HoirSpeed	0xff	add	0xd0	0x01	0	0	crc
VertSpeed	0xff	add	0xd0	0x02	0	0	crc
AllSpeed	0xff	add	0xd0	0	0	0	crc

表 5.44 转速查询

上述指令用于查询云台的转速,云台接收转速查询指令后,会将相应的转速回传。

HoirSpeed: 只查询水平转速。

VertSpeed: 只查询垂直转速。

AllSpeed: 同时查询水平转速和垂直转速。

(2) 转速回复

协议	字节 0	字节 1	字节 2	字节3	字节4	字节 5	字节 6
指令	起始位	地址 add	Data1	Data2	Data3	Data4	校验码
HSpeed	0xff	add	0xd0	0x03	H_HSpeed	H_LSpeed	crc
VSpeed	0xff	add	0xd0	0x04	V_HSpeed	V_LSpeed	crc

表 5.45 转速回复

HSpeed: 回传水平转速。H_HSpeed 水平转速放大 100 倍后的高八位,H_LSpeed 水平转速放大 100 倍后的低八位。

VSpeed: 回传垂直转速。V_HSpeed 垂直转速放大 100 倍后的高八位, V_LSpeed 垂直转速放大 100 倍后的低八位。

2、转速实时回传

(1) 转速实时回传打开与关闭

协议	字节 0	字节 1	字节 2	字节 3	字节 4	字节 5	字节 6
指令	起始位	地址 add	Data1	Data2	Data3	Data4	校验码
SpeedON	0xff	add	0xdc	0x01	H_Time	L_Time	crc
SpeedOFF	0xff	add	0xdc	0x02	0	0	crc

表 5.46 转速实时回传打开与关闭

SpeedON: 打开云台转速实时回传。H_Time 回传间隔时间的高八位,L_Time 回传间隔时间的低八位。

SpeedOFF: 关闭云台转速实时回传。

(2) 转速实时回传具体内容

回传内容包括同时回传水平转速和垂直转速。回传的具体协议与表 5.45 转速回复完全相同。

5.2.14 云台全范围自检

字节 0	字节 1	字节 2	字节3	字节 4	字节 5	字节 6
起始位	地址 add	Data1	Data2	Data3	Data4	校验码
0xff	add	0xce	0	0	0	crc

表 5.47 云台全范围自检

云台接收到上述指令后,会清除 Flash 中保存的所有的与自检相关的参数,清除参数后云台将复位, 从新进行全范围自检,从新生成自检参数并保存。

5.2.15 云台故障主动回传

				—		1	
协议	字节 0	字节1	字节2	字节3	字节 4	字节 5	字节 6
回复	起始位	地址 add	Data1	Data2	Data3	Data4	校验码
HoriMotor	0xff	add	0x21	HMState	HoriDir	HoriRot	crc
HoriHall	0xff	add	0x22	HHall	0	0	crc
HoriPDE	0xff	add	0x23	SW3	0	0	crc
VertMotor	0xff	add	0x24	VMState	VertDir	VertRot	crc
VertHall	0xff	add	0x25	VHall	VB	VC	crc
VertPDE	0xff	add	0x26	SW1	SW2	0	crc
Temp	0xff	add	0x27	TState	H_Temp	L_Temp	crc
Volt	0xff	add	0x28	VState	H_Volt	L_Volt	crc
Current	0xff	add	0x2A	IState	H_I	L_I	crc

表 5.48 云台故障主动回传

HoriMotor、HoriHall、HoriPDE、VertMotor、VertHall、VertPDE、Temp、Volt、Current 的含义和表 5.33 的含义完全相同。

5.2.16 区域扫描结束提示回复

1、区域扫描结束提示回复打开和关闭

协议	字节 0	字节 1	字节 2	字节3	字节 4	字节 5	字节 6
指令	起始位	地址 add	Data1	Data2	Data3	Data4	校验码
AreaON	0xff	add	0xc4	0x01	0	0	crc
AreaOFF	0xff	add	0xc4	0x00	0	0	crc

表 5.49 区域扫描结束提示回复打开和关闭

AreaON: 打开区域扫描结束提示回复。

AreaOFF: 关闭区域扫描结束提示回复。

2、区域扫描结束提示回复

字节 0	字节 1	字节2	字节3	字节 4	字节 5	字节 6
起始位	地址 add	Data1	Data2	Data3	Data4	校验码
0xff	add	0xc4	0x02	ScanNum	0	crc

表 5.50 区域扫描结束提示回复

ScanNum 表示扫描结束的区域编号,上述指令用于区域扫描的过程中,编号为 ScanNum 的区域扫描结束时,通知云台控制端编号为 ScanNum 的区域扫描结束。

5.2.17 云台角度定位回传

云台接收角度控制指令并转动到指定角度时回复,表示云台已经转动到指定角度。

1、角度定位回传打开和关闭

协议	字节 0	字节 1	字节 2	字节 3	字节 4	字节 5	字节 6
指令	起始位	地址 add	Data1	Data2	Data3	Data4	校验码
LON	0xff	add	0xc5	0x01	0	0	crc
LOFF	0xff	add	0xc5	0x00	0	0	crc

表 5.51 角度定位回传打开和关闭

LON: 打开定位回传。

LOFF: 关闭定位回传。

2、角度定位回传具体内容

协议	字节 0	字节1	字节 2	字节3	字节 4	字节 5	字节6
指令	起始位	地址 add	Data1	Data2	Data3	Data4	校验码
LHori	0xff	add	0xc5	0x02	H_HAngle	H_LAngle	crc
LVert	0xff	add	0xc5	0x03	V_HAngle	V_LAngle	crc

表 5.52 角度定位回传具体内容

LHori: 到达指定目标水平角度。H_HAngle 表示指定目标水平角度放大 100 倍取整后的高八位,H LAngle 表示指定目标水平角度放大 100 倍取整后的低八位。

LVert: 到达指定目标垂直角度。V_HAngle 表示指定目标垂直角度放大 100 倍取整后的高八位, V_LAngle 表示指定目标垂直角度放大 100 倍取整后的低八位。

5.2.18 查询云台软件版本号

1、查询云台版本号

字节 0	字节 1	字节 2	字节 3	字节 4	字节 5	字节 6
起始位	地址 add	Data1	Data2	Data3	Data4	校验码
0xff	add	0xc3	0	0	0	crc

表 5.53 查询云台版本号

2、云台版本号回复

云台软件版本号回复内容是一个不定长的字符串,以具体云台为准。

5.2.19 查询云台类型

(1) 查询云台类型

字节 0	字节 1	字节 2	字节 3	字节 4	字节 5	字节 6
起始位	地址 add	Data1	Data2	Data3	Data4	校验码
0xff	add	0xc2	0	0	0	crc

表 5.54 查询云台类型

(2) 云台类型回复

云台类型回复内容是一个不定长的字符串,以具体云台为准。

5.2.20 查询云台区域扫描配置信息

(1) 查询云台区域扫描区域配置信息

字节 0	字节 1	字节 2	字节3	字节4	字节 5	字节 6
起始位	地址 add	Data1	Data2	Data3	Data4	校验码
0xff	add	0xca	num	0	0	crc

表 5.55 查询云台类型

num: 查询的指定区域编号。

(2) 区域配置情况回复

协议	字节 0	字节1	字节 2	字节3	字节4	字节 5	字节 6
指令	起始位	地址 add	Data1	Data2	Data3	Data4	校验码
НА	0xff	add	0xf7	AreaNum	H_HAngle	H_LAngle	crc
НВ	0xff	add	0xf8	AreaNum	H_HAngle	H_LAngle	crc
VA	0xff	add	0xf9	AreaNum	V_HAngle	V_LAngle	crc
VB	0xff	add	0xfa	AreaNum	V_HAngle	V_LAngle	crc
INT_H	0xff	add	0xfb	AreaNum	H_HAngle	H_LAngle	crc
INT_V	0xff	add	0xfc	AreaNum	V_HAngle	V_LAngle	crc
Speed	0xff	add	0xfd	AreaNum	H_Speed	V_Speed	crc
Time	0xff	add	0xfd	AreaNum	H_Time	L_Time	crc
Enable	0xff	add	0xf4	AreaNum	Able	0	crc

表 5.56 区域配置情况回复

(1) 水平起始边界 HA

HA: 扫描区域的水平起始边界。

H HAngle: 水平起始边界角度放大 100 倍取整后的高八位。

H LAngle: 水平起始边界角度放大 100 倍取整后的低八位。

AreaNum: 查询的区域编号。

(2) 水平结束边界 HB

HB: 扫描区域的水平结束边界。

H HAngle: 水平结束边界角度放大 100 倍取整后的高八位。

H_LAngle: 水平结束边界角度放大 100 倍取整后的低八位。

AreaNum: 查询的区域编号。

(3) 垂直起始边界 VA

VA:垂直起始边界。

V HAngle: 垂直起始边界角度放大 100 倍取整后的高八位。

V_LAngle: 垂直起始边界角度放大 100 倍取整后的低八位。

AreaNum: 查询的区域编号。

(3) 垂直结束边界 VB

VB:垂直结束边界。

V_HAngle: 垂直结束边界角度放大 100 倍取整后的高八位。

V LAngle: 垂直结束边界角度放大 100 倍取整后的低八位。

AreaNum: 查询的区域编号。

(4) 水平间隔角度 INT H

INT H: 水平间隔角度。

H_HAngle: 水平间隔角度放大 100 倍取整后的高八位。

H_LAngle: 水平间隔角度放大 100 倍取整后的低八位。

AreaNum: 查询的区域编号。

(5) 垂直间隔角度 INT V

INT V: 垂直间隔角度。

V_HAngle: 垂直间隔角度放大 100 倍取整后的高八位。

V LAngle: 垂直间隔角度放大 100 倍取整后的低八位。

AreaNum: 查询的区域编号。

(6) 扫描转速 Speed

Speed: 扫描转速

H_Speed: 云台水平扫描转速放大 10 倍取整后的值,

V_Speed: 云台垂直扫描转速放大 10 倍取整后的值。

AreaNum: 查询的区域编号。

(7) 每个单步位置停止时间 Time

Time:每个单步位置停止时间,单位是毫秒 ms。

H Time: 配置时间的高八位。

L_Time: 配置时间的低八位。

AreaNum: 查询的区域编号。

(8) 区域的使能情况 Enable

Enable: 区域的使能情况。

Able: Able=1 区域使能; Able=0 区域不使能。

AreaNum: 查询的区域编号。

5.2.21 查询倾角传感器角度

1、查询倾角传感器角度

字节 0	字节1	字节 2	字节 3	字节 4	字节 5	字节 6
起始位	地址 add	Data1	Data2	Data3	Data4	校验码
0xff	add	0xc7	num	0	0	crc

表 5.57 查询倾角传感器角度

2、倾角传感器角度回复

字节 0	字节1	字节 2	字节3	字节 4	字节 5	字节 6
起始位	地址 add	Data1	Data2	Data3	Data4	校验码
0xff	add	0xc9	0	H_HAngle	H_LAngle	crc

表 5.58 倾角传感器角度回复

H_HAngle 表示倾角传感器角度放大 100 倍取整后的高八位,H_LAngle 表示倾角传感器角度放大 100 倍取整后的低八位。