Nombres p-Adiques

Cours de Laurent Berger Notes de Alexis Marchand

ENS de Lyon S2 2017-2018 Niveau L3

Table des matières

1	Valuation p -adique, écriture en base p , et congruences			2
	1.1 Définitions			2
	1.2 Valuations p -adiques des factorielles et des coefficients binomiaux			2
	1.3 Le corps \mathbb{F}_p et les anneaux $\mathbb{Z}/p^n\mathbb{Z}$	•	•	3
2	Complétion de \mathbb{Q} , construction de \mathbb{Q}_p et \mathbb{Z}_p			4
	2.1 Distance <i>p</i> -adique			4
	2.2 Complétion d'un espace métrique			4
	2.3 L'espace \mathbb{Q}_p			5
	2.4 L'espace \mathbb{Z}_p			6
	2.5 Propriétés algébriques de \mathbb{Z}_p			6
	2.6 Écriture en base p			7
	2.7 Une autre réalisation algébrique de \mathbb{Z}_p		•	7
3	Lemme de Hensel			8
	3.1 Une version du lemme de Hensel			8
	3.2 Première généralisation			Ö
	3.3 Seconde généralisation			Ĝ
4	Fonctions continues sur \mathbb{Z}_p			10
	4.1 Espace des fonctions continues sur \mathbb{Z}_p			10
	4.2 Coefficients binomiaux, fonctions puissances			10
	4.3 Théorème de Mahler			11
	4.4 Fonctions différentiables			13
5	Extensions finies de \mathbb{Q}_p			13
	5.1 Théorème d'Ostrowski			13
	5.2 \mathbb{Q}_p -espaces vectoriels normés			14
	5.3 Prolongement de la norme p -adique aux extensions de \mathbb{Q}_p			14
	5.4 Polygones de Newton			16
6	Analyse p -adique			17
	6.1 Le corps \mathbb{C}_p			17
	6.2 Séries formelles			
	6.3 Théorème de préparation de Weierstraß			19

1 Valuation p-adique, écriture en base p, et congruences

1.1 Définitions

Notation 1.1.1. Dans tout le cours, p est un nombre premier fixé.

Définition 1.1.2 (Valuation p-adique). Pour tout $a \in \mathbb{Z} \setminus \{0\}$, il existe un unique $n \in \mathbb{N}$ et un unique $a_0 \in \mathbb{Z}$ avec $p \nmid a_0$ t.q. $a = p^n a_0$. L'entier n est appelé valuation p-adique de a est noté $v_p(a)$. On adopte de plus la convention $v_p(0) = +\infty$.

Proposition 1.1.3. Soit $(a, b) \in \mathbb{Z}^2$.

- (i) $v_p(ab) = v_p(a) + v_p(b)$.
- (ii) $v_p(a+b) \geqslant \min(v_p(a), v_p(b)).$

Définition 1.1.4 (Écriture en base p). Soit $a \in \mathbb{N}$. Il existe $k \in \mathbb{N}$ et $(a_i)_{0 \le i \le k} \in \{0, \dots, p-1\}^{k+1}$ t.q. $a = \sum_{i=0}^k a_i p^i$. Les $(a_i)_{0 \le i \le k}$ sont uniquement déterminés pour un k donné; ils sont appelés les chiffres de a en base p. On note alors:

$$a = (a_k \cdots a_0)_p$$
.

1.2 Valuations p-adiques des factorielles et des coefficients binomiaux

Notation 1.2.1. Soit $a \in \mathbb{N}$, qu'on écrit en base $p : a = (a_k \cdots a_0)_p$. On pose :

$$s_p(a) = \sum_{i=0}^k a_i.$$

Proposition 1.2.2. Pour $n \in \mathbb{N}^*$, on a :

$$v_p(n!) = \frac{n - s_p(n)}{p - 1}.$$

Démonstration. Utiliser le fait que $v_p(n!) = \sum_{k=1}^{\infty} \left\lfloor \frac{n}{p^k} \right\rfloor$ puis écrire n en base p. Alternativement, on peut raisonner par récurrence sur n.

Proposition 1.2.3. Pour tout $k \in \{1, ..., p-1\}$, $\binom{p}{k}$ est divisible par p.

Proposition 1.2.4. Pour $(a,b) \in \mathbb{N}^2$, $v_p\left(\binom{a+b}{a}\right)$ est le nombre de retenues effectuées lors de l'addition de a et b.

Proposition 1.2.5. Soit $(m, n, k) \in \mathbb{N}^3$. Alors :

$$\binom{m+n}{k} = \sum_{i+j=k} \binom{m}{i} \binom{n}{j}.$$

Démonstration. Écrire $(1+X)^{m+n}=(1+X)^m\,(1+X)^n$, développer les deux membres de l'égalité et comparer les coefficients de X^k .

Proposition 1.2.6. Soit $(m, n) \in \mathbb{N}^2$, qu'on écrit en base $p : m = (m_k \cdots m_0)_p$ et $n = (n_k \cdots n_0)_p$. Alors :

$$\binom{m}{n} \equiv \prod_{i=0}^{k} \binom{m_i}{n_i} \mod p.$$

Démonstration. Noter d'abord que selon la proposition 1.2.3, on a $(1+X)^p \equiv 1+X^p \mod p$. On en déduit que $(1+X)^{p^2} = ((1+X)^p)^p \equiv 1+X^{p^2} \mod p$, puis par récurrence :

$$\forall i \in \mathbb{N}, (1+X)^{p^i} \equiv 1 + X^{p^i} \mod p.$$

On écrit alors $m = \sum_{i=0}^k m_i p^i$, d'où $(1+X)^m = \prod_{i=0}^k (1+X)^{m_i p^i} \equiv \prod_{i=0}^k \left(1+X^{p^i}\right)^{m_i} \mod p$. Or, dans ce produit, l'unique manière d'obtenir X^n est sous la forme $X^n = X^{n_0} \cdots X^{n_k}$. Le coefficient de X^n est donc $\binom{m_0}{n_0} \cdots \binom{m_k}{n_k}$. Le résultat suit.

1.3 Le corps \mathbb{F}_p et les anneaux $\mathbb{Z}/p^n\mathbb{Z}$

Proposition 1.3.1. Pour tout $n \ge 1$, $\mathbb{Z}/p^n\mathbb{Z}$ est un anneau. Pour n = 1, $\mathbb{Z}/p\mathbb{Z}$ est un corps que l'on note \mathbb{F}_p .

Proposition 1.3.2. Soit $n \ge 1$. Les inversibles de $\mathbb{Z}/p^n\mathbb{Z}$ sont les classes des entiers premiers avec p. Ainsi:

$$\left| (\mathbb{Z}/p^n \mathbb{Z})^{\times} \right| = p^{n-1}(p-1).$$

Proposition 1.3.3. Soit $(x,y) \in \mathbb{Z}^2$. Pour $n \geqslant 1$, on a :

$$x \equiv y \mod p^n \Longrightarrow x^p \equiv y^p \mod p^{n+1}$$
.

Démonstration. Écrire $x = y + p^n z$, avec $z \in \mathbb{Z}$, puis développer $x^p = (y + p^n z)^p$.

Proposition 1.3.4. Soit $y \in \mathbb{Z}$. On suppose que $p \neq 2$. Alors pour $n \geqslant 1$:

$$(1+p^n u)^p \equiv 1+p^{n+1} u \mod p^{n+2}$$
.

Lemme 1.3.5. Soit K un corps. Alors tout sous-groupe fini de (K^{\times}, \times) est cyclique.

Démonstration. Soit G un sous-groupe fini de K^{\times} de cardinal N. Pour $n \in \mathbb{N}^*$, on note $\varphi(n) = \left| (\mathbb{Z}/n\mathbb{Z})^{\times} \right|$ l'indicatrice d'Euler de n; c'est le nombre d'éléments d'ordre n de $(\mathbb{Z}/n\mathbb{Z}, +)$. On note de plus $\psi(n)$ le nombre d'éléments d'ordre n de (G, \times) . On veut prouver que $\psi(N) \neq 0$. Soit $n \in \mathbb{N}^*$ t.q. $\psi(n) \neq 0$ (cela implique $n \mid N$). Il existe donc $x \in G$ d'ordre n. Considérons :

$$\vartheta_x: \begin{vmatrix} \mathbb{Z}/n\mathbb{Z} \longrightarrow G \\ a \longmapsto x^a \end{vmatrix}.$$

Alors ϑ_x est un morphisme injectif de groupes. De plus, Im ϑ_x est inclus dans l'ensemble des racines de (X^n-1) dans K. Comme cet ensemble est de cardinal au plus n, Im ϑ_x est exactement l'ensemble des racines de (X^n-1) dans K. Ainsi, $\mathbb{Z}/n\mathbb{Z}$ est isomorphe au sous-groupe de G constitué des éléments d'ordre divisant n. Ceci prouve que, si $\psi(n) \neq 0$, alors $\psi(d) = \varphi(d)$ pour tout $d \mid n$. En particulier, pour tout $n \mid N$, $\psi(n) \in \{0, \varphi(n)\}$. Ainsi :

$$N = \sum_{n|N} \psi(n) \leqslant \sum_{n|N} \varphi(n) = N.$$

On a égalité, donc pour tout $n \mid N$, $\psi(n) = \varphi(n)$. En particulier, $\psi(N) = \varphi(N) \neq 0$.

Théorème 1.3.6.

- (i) Le groupe $(\mathbb{F}_p^{\times}, \times)$ est cyclique.
- (ii) On suppose que $p \neq 2$. Alors pour tout $n \geqslant 1$, le groupe $\left((\mathbb{Z}/p^n\mathbb{Z})^{\times}, \times \right)$ est cyclique.

Démonstration. (i) C'est un corollaire du lemme 1.3.5. (ii) Le résultat est déjà prouvé pour n=1. Étape 1: n=2. Notons que $(\mathbb{Z}/p^2\mathbb{Z})^{\times}$ est un groupe de cardinal p(p-1). Et on a un morphisme surjectif de groupes :

$$s: (\mathbb{Z}/p^2\mathbb{Z})^{\times} \to (\mathbb{Z}/p\mathbb{Z})^{\times}.$$

Comme $(\mathbb{Z}/p\mathbb{Z})^{\times}$ est cyclique, soit $x \in (\mathbb{Z}/p^2\mathbb{Z})^{\times}$ t.q. s(x) engendre $(\mathbb{Z}/p\mathbb{Z})^{\times}$. Alors le groupe $\langle x \rangle$ engendré par x a une image de cardinal (p-1), donc $|\langle x \rangle|$ est multiple de (p-1). De plus, $|\langle x \rangle|$ divise p(p-1), donc $|\langle x \rangle| \in \{(p-1), p(p-1)\}$. Si $|\langle x \rangle| = p(p-1)$, alors $\langle x \rangle = (\mathbb{Z}/p^2\mathbb{Z})^{\times}$ et on a terminé. Sinon, on a $x^{p-1} = 1$. On considère y = x(1+p). Alors s(y) engendre $(\mathbb{Z}/p\mathbb{Z})^{\times}$ et $y^{p-1} \not\equiv 1$ mod p^2 . Ainsi, $\langle y \rangle = (\mathbb{Z}/p^2\mathbb{Z})^{\times}$. Étape $2: n \geqslant 3$. On a un morphisme surjectif de groupes :

$$s: (\mathbb{Z}/p^n\mathbb{Z})^{\times} \to (\mathbb{Z}/p^2\mathbb{Z})^{\times}.$$

Comme $(\mathbb{Z}/p^2\mathbb{Z})^{\times}$ est cyclique, soit $x \in (\mathbb{Z}/p^n\mathbb{Z})^{\times}$ t.q. s(x) engendre $(\mathbb{Z}/p^2\mathbb{Z})^{\times}$. Ainsi, $|\langle x \rangle|$ divise $p^{n-1}(p-1)$ et est multiple de p(p-1). De plus, il existe $y \not\equiv 0 \mod p$ t.q.

$$x^{p-1} \equiv 1 + py \mod p^2.$$

On a donc, selon la proposition 1.3.3, $x^{p(p-1)} \equiv (1+py)^p \mod p^3$ puis, selon la proposition 1.3.4 (car $p \neq 2$), $x^{p(p-1)} \equiv 1+p^2y \mod p^3$. Par récurrence, il vient $x^{p^{n-2}(p-1)} \equiv 1+p^{n-1}y \not\equiv 1 \mod p^n$. Ainsi, $|\langle x \rangle| = p^{n-1}(p-1)$, d'où $\langle x \rangle = (\mathbb{Z}/p^n\mathbb{Z})^{\times}$.

Remarque 1.3.7. Le point (ii) du théorème 1.3.6 est faux si p=2. On peut en fait montrer que, pour $n\geqslant 2$:

$$(\mathbb{Z}/2^n\mathbb{Z})^{\times} \simeq (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2^{n-2}\mathbb{Z}).$$

2 Complétion de \mathbb{Q} , construction de \mathbb{Q}_p et \mathbb{Z}_p

2.1 Distance p-adique

Définition 2.1.1 (Valuation *p*-adique des rationnels). Pour tout $a \in \mathbb{Q} \setminus \{0\}$, il existe $n \in \mathbb{Z}$, $(c,d) \in \mathbb{Z} \times \mathbb{N}^*$ t.q. $p \nmid c$, $p \nmid d$ et $a = p^n \frac{c}{d}$. L'entier n est uniquement déterminé; il est appelé valuation p-adique de a est noté $v_p(a)$.

Proposition 2.1.2. Soit $(a, b) \in \mathbb{Q}^2$.

- (i) $v_p(ab) = v_p(a) + v_p(b)$.
- (ii) $v_p(a+b) \geqslant \min(v_p(a), v_p(b)).$

Définition 2.1.3 (Distance *p*-adique).

(i) On définit $|\cdot|_n : \mathbb{Q} \to \mathbb{R}_+$ en posant :

$$\forall a \in \mathbb{Q}, \ |a|_p = p^{-v_p(a)}.$$

(ii) On définit $d_p: \mathbb{Q}^2 \to \mathbb{R}_+$ en posant :

$$\forall (a,b) \in \mathbb{Q}^2, \ d_p(a,b) = |a-b|_p.$$

Définition 2.1.4 (Distance ultramétrique). Une distance d sur un ensemble X est dite ultramétrique lorsque :

$$\forall (a,b,c) \in X^3, \ d(a,b) \leqslant \max \left(d(a,c), d(c,b) \right).$$

Cette propriété est plus forte que l'inégalité triangulaire.

Proposition 2.1.5. Soit (X, d) un espace ultramétrique. Alors :

$$\forall (a, b, c) \in X^3, \ d(a, c) \neq d(c, b) \Longrightarrow d(a, b) = \max (d(a, c), d(c, b)).$$

Proposition 2.1.6. d_p est une distance ultramétrique sur \mathbb{Q} .

2.2 Complétion d'un espace métrique

Théorème 2.2.1. Si (X,d) est un espace métrique, alors il existe un espace métrique complet (\hat{X},\hat{d}) et une isométrie $i:X\to\hat{X}$ d'image dense. L'espace (\hat{X},\hat{d}) est unique à isométrie bijective près. De plus, il vérifie la propriété universelle suivante : si Y est un espace métrique complet et si $f:X\to Y$ est une application uniformément continue, alors il existe une application uniformément continue $\hat{f}:\hat{X}\to Y$ faisant commuter le diagramme suivant :

 $Comme\ (\hat{X},\hat{d})$ est unique à isométrie bijective près, on l'appelle le complété de (X,d).

2.3 L'espace \mathbb{Q}_p

Définition 2.3.1 (\mathbb{Q}_p) . On note (\mathbb{Q}_p, d_p) le complété de (\mathbb{Q}, d_p) . C'est un espace métrique complet et \mathbb{Q} est dense dans \mathbb{Q}_p . On définit + et \times comme suit :

- (i) $Si\ (a,b) \in \mathbb{Q}_p^2$, $il\ existe\ (a_n)_{n\in\mathbb{N}}\ et\ (b_n)_{n\in\mathbb{N}}\ t.q.\ a_n \xrightarrow[n\to+\infty]{} a\ et\ b_n \xrightarrow[n\to+\infty]{} b.$ Alors la suite $(a_n+b_n)_{n\in\mathbb{N}}\ est\ de\ Cauchy\ et\ sa\ limite\ (qui\ ne\ dépend\ pas\ du\ choix\ de\ (a_n)_{n\in\mathbb{N}}\ et\ (b_n)_{n\in\mathbb{N}})\ est\ notée\ a+b.$
- (ii) $Si\ (a,b) \in \mathbb{Q}_p^2$, il existe $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ t.q. $a_n \xrightarrow[n\to+\infty]{} a$ et $b_n \xrightarrow[n\to+\infty]{} b$. Alors la suite $(a_nb_n)_{n\in\mathbb{N}}$ est de Cauchy et sa limite (qui ne dépend pas du choix de $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$) est notée ab.

Ceci définit une structure de corps sur \mathbb{Q}_p qui étend celle de \mathbb{Q} . De plus, les opérations +, -, \times et \cdot^{-1} sont continues.

Proposition 2.3.2. $\forall (x,y) \in \mathbb{Q}_p^2, x \neq y \Longrightarrow d_p(x,y) \in p^{\mathbb{Z}} = \{p^n, n \in \mathbb{Z}\}.$

Proposition 2.3.3. La distance d_p est ultramétrique.

Notation 2.3.4. Soit (X, d) un espace métrique. Pour $a \in X$ et r > 0, on note :

- (i) $B(a,r) = \{x \in X, d(x,a) < r\},\$
- (ii) $BF(a,r) = \{x \in X, d(a,x) \le r\}.$

Corollaire 2.3.5.

- (i) Tout triangle dans \mathbb{Q}_p est isocèle.
- (ii) Soit $a \in \mathbb{Q}_p$ et r > 0. Alors:

$$\forall x \in B(a,r), B(a,r) = B(x,r).$$

(iii) Soit $a \in \mathbb{Q}_p$ et r > 0. Alors:

diam
$$B(a, r) \leq r$$
.

- (iv) Soit $(a,b) \in \mathbb{Q}_p^2$ et r,s > 0. Si $B(a,r) \cap B(b,s) \neq \emptyset$, alors $B(a,r) \subset B(b,s)$ ou $B(a,r) \supset B(b,s)$.
- (v) Soit $a \in \mathbb{Q}_p$ et r > 0. Alors B(a,r) est ouverte et fermée.
- (vi) Une suite $(a_n)_{n\in\mathbb{N}}\in\mathbb{Q}_p^{\mathbb{N}}$ est de Cauchy ssi $d_p(a_n,a_{n+1})\xrightarrow[n\to+\infty]{}0$.
- (vii) Une série $\sum a_n$ converge ssi $a_n \xrightarrow[n \to +\infty]{} 0$.

Proposition 2.3.6. La fonction $v_p : \mathbb{Q} \to \mathbb{Z}$ se prolonge en une fonction $v_p : \mathbb{Q}_p \to \mathbb{Z}$, par exemple en posant :

$$\forall x \in \mathbb{Q}_p^{\times}, \ v_p(x) = -\log_p |x|_p.$$

Ainsi, v_p a les propriétés suivantes :

- (i) v_p est continue sur \mathbb{Q}_p .
- (ii) v_p est localement constante sur \mathbb{Q}_p^{\times} .
- (iii) $\forall (x,y) \in \mathbb{Q}_p^2$, $v_p(xy) = v_p(x) + v_p(y)$.
- $\text{(iv) } \forall (x,y) \in \mathbb{Q}_p^2, \ v_p(x+y) \geqslant \min{(v_p(x),v_p(y))}.$
- (v) Si une suite $(a_n)_{n\in\mathbb{N}}\in\mathbb{Q}_p^{\mathbb{N}}$ converge vers $a\in\mathbb{Q}_p$, alors $(v_p(a_n))_{n\in\mathbb{N}}$ stationne en $v_p(a)$.

2.4 L'espace \mathbb{Z}_p

Définition 2.4.1 (\mathbb{Z}_p). On note \mathbb{Z}_p le complété de \mathbb{Z} pour d_p ; autrement dit, \mathbb{Z}_p est l'adhérence de \mathbb{Z} en tant que partie de \mathbb{Q}_p . Ainsi, \mathbb{Z}_p est un sous-anneau de \mathbb{Q}_p .

Proposition 2.4.2. $\mathbb{Z}_p = BF(0,1) = \{x \in \mathbb{Q}_p, \ v_p(x) \ge 0\}.$

Démonstration. (\subset) On a $\mathbb{Z} \subset BF(0,1)$, et BF(0,1) est un fermé de \mathbb{Q}_p , donc $\mathbb{Z}_p = \overline{\mathbb{Z}} \subset BF(0,1)$. (\supset) Soit $a \in BF(0,1)$. On peut supposer que $a \neq 0$. Soit $(a_n)_{n \in \mathbb{N}} \in \mathbb{Q}^{\mathbb{N}}$ t.q. $a_n \xrightarrow[n \to +\infty]{} a$. Quitte à extraire, on peut supposer que $\forall n \in \mathbb{N}, d_p(a, a_n) \leq p^{-n}$. Ainsi :

$$\forall n \in \mathbb{N}, \ v_p(a_n) \geqslant \min(v_p(a), v_p(a_n - a)) \geqslant 0.$$

Pour $n \in \mathbb{N}$, on peut donc écrire $a_n = \frac{c_n}{d_n}$, avec $(c_n, d_n) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ et $p \nmid d_n$. Comme $p \nmid d_n$, il existe $e_n \in \mathbb{Z}$ t.q. $e_n d_n \equiv 1 \mod p^n$. Ainsi:

$$\forall n \in \mathbb{N}, \ v_p(a_n - c_n e_n) = v_p(d_n) + v_p(a_n - c_n e_n) = v_p(c_n) + v_p(1 - e_n d_n)$$
$$= v_p(a_n) + v_p(1 - e_n d_n) \geqslant n.$$

Donc
$$a_n - c_n e_n \xrightarrow[n \to +\infty]{} 0$$
, d'où $a = \lim_{n \to +\infty} a_n = \lim_{n \to +\infty} c_n e_n \in \overline{\mathbb{Z}} = \mathbb{Z}_p$.

Proposition 2.4.3. \mathbb{Z}_p *est compact.*

Démonstration. Comme \mathbb{Z}_p est complet, il suffit de montrer que \mathbb{Z}_p est précompact (i.e. pour tout $\varepsilon > 0$, \mathbb{Z}_p peut être recouvert par un nombre fini de boules de rayon ε). Soit donc $\varepsilon > 0$. Soit $n \in \mathbb{N}^*$ t.q. $p^{-n} < \varepsilon$. Pour $a \in \mathbb{Z}_p$, il existe $b \in \mathbb{Z}$ t.q. $d_p(a,b) \leq p^{-n}$. On se donne $b' \in \{0,1,\ldots,p^n-1\}$ t.q. $b \equiv b' \mod p^n$. Ainsi, $d(a,b') \leq p^{-n}$, donc $a \in BF(b',p^{-n})$. On a prouvé que :

$$\mathbb{Z}_{p} \subset \bigcup_{b' \in \{0,1,\dots,p^{n}-1\}} BF\left(b',p^{-n}\right) \subset \bigcup_{b' \in \{0,1,\dots,p^{n}-1\}} B\left(b',\varepsilon\right).$$

Donc \mathbb{Z}_p est précompact complet, donc compact.

Remarque 2.4.4. Pour $n \in \mathbb{N}^*$, on a prouvé que $\mathbb{Z}_p = \bigcup_{b \in \{0,1,\dots,p^n-1\}} BF(b,p^{-n})$. Comme les boules $(BF(b,p^{-n}))_{0 \leqslant b \leqslant p^n-1}$ sont à la fois ouvertes et fermées, on en déduit que \mathbb{Z}_p est homéomorphe à l'espace de Cantor $\{0,1\}^{\mathbb{N}}$.

Proposition 2.4.5. On a:

$$\mathbb{Q}_p = \bigcup_{n \in \mathbb{N}} p^{-n} \mathbb{Z}_p.$$

2.5 Propriétés algébriques de \mathbb{Z}_p

Proposition 2.5.1. \mathbb{Z}_p est un sous-anneau du corps \mathbb{Q}_p .

Proposition 2.5.2. $\mathbb{Z}_p^{\times} = \{a \in \mathbb{Z}_p, \ v_p(a) = 0\}.$

Proposition 2.5.3. Le groupe additif \mathbb{Z}_p est topologiquement cyclique : c'est l'adhérence du groupe cyclique \mathbb{Z} .

Proposition 2.5.4. Les sous-groupes fermés non triviaux du groupe additif \mathbb{Z}_p sont les $p^n\mathbb{Z}_p$ pour $n \in \mathbb{N}$.

Démonstration. Soit G un sous-groupe fermé non trivial de \mathbb{Z}_p . Soit $a \in G$ t.q. $v_p(a) = \min_{b \in G} v_p(b)$. On note $n = v_p(a)$. On a $G \subset p^n \mathbb{Z}_p$ (car $\forall b \in G$, $v_p(p^{-n}b) = v_p(b) - n \geqslant 0$ donc $p^{-n}b \in \mathbb{Z}_p$). Notons de plus que l'adhérence de $a\mathbb{Z}$ dans \mathbb{Z}_p est $a\mathbb{Z}_p$. Or G est fermé et $a\mathbb{Z} \subset G$ (car $a \in G$), donc $a\mathbb{Z}_p \subset G$. Mais si $a_0 = p^{-n}a$, alors $v_p(a_0) = 0$, donc $a_0 \in \mathbb{Z}_p^{\times}$. Donc $p^n \mathbb{Z}_p = aa_0^{-1}\mathbb{Z}_p = a\mathbb{Z}_p \subset G$, d'où $G = p^n \mathbb{Z}_p$.

Proposition 2.5.5. Les idéaux non triviaux de l'anneau \mathbb{Z}_p sont les $p^n\mathbb{Z}_p$ pour $n \in \mathbb{N}$.

2.6 Écriture en base p

Définition 2.6.1 (Réduction modulo p^n). Soit $n \in \mathbb{N}^*$. Alors pour tout $a \in \mathbb{Z}_p$, il existe $a_1 \in \mathbb{Z}$ t.q. $|a - a_1|_p \leq p^{-n}$, autrement dit il existe $b \in \mathbb{Z}_p$ t.q. $a = a_1 + p^n b$. Ainsi, la classe de a_1 dans $\mathbb{Z}/p^n\mathbb{Z}$ ne dépend que de a et on la note \overline{a} . On définit donc un morphisme d'anneaux :

$$\begin{vmatrix} \mathbb{Z}_p & \longrightarrow \mathbb{Z}/p^n \mathbb{Z} \\ a & \longmapsto \overline{a} \end{vmatrix}$$

On notera parfois a mod p^n plutôt que \overline{a} .

Proposition 2.6.2. Soit $n \in \mathbb{N}^*$. Alors $\overline{a} = 0$ dans $\mathbb{Z}/p^n\mathbb{Z}$ ssi $a \in p^n\mathbb{Z}_p$.

Corollaire 2.6.3. Pour $n \in \mathbb{N}^*$, on a :

$$\mathbb{Z}_p/p^n\mathbb{Z}_p \simeq \mathbb{Z}/p^n\mathbb{Z}.$$

Théorème 2.6.4. Pour tout $a \in \mathbb{Z}_p$, il existe une unique suite $(a_n)_{n \in \mathbb{N}} \in \{0, 1, \dots, p-1\}^{\mathbb{N}}$ t.q. $a = \sum_{n=0}^{\infty} a_n p^n$. Cette suite est appelée écriture en base p de a; on note:

$$a = (\cdots a_n \cdots a_2 a_1 a_0)_n$$
.

Démonstration. Unicité. Soit $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}} \in \{0,1,\ldots,p-1\}^{\mathbb{N}}$ t.q. $(a_n)_{n\in\mathbb{N}} \neq (b_n)_{n\in\mathbb{N}}$. Si $n_0 = \min\{n\in\mathbb{N}, a_n\neq b_n\}$, alors :

$$v_p\left(\sum_{n=0}^{\infty}a_np^n-\sum_{n\in\mathbb{N}}b_np^n\right)=n_0<+\infty,$$

d'où $\sum_{n=0}^{\infty} a_n p^n \neq \sum_{n=0}^{\infty} b_n p^n$. Existence. On définit $(s_n)_{n \in \mathbb{N}} \in \mathbb{Z}_p^{\mathbb{N}}$ et $(a_n)_{n \in \mathbb{N}} \in \{0, 1, \dots, p-1\}^{\mathbb{N}}$ par récurrence en posant $s_0 = a$, puis après avoir construit $s_0, a_0, \dots, s_{n-1}, a_{n-1}, s_n$, on pose a_n l'unique élément de $\{0, 1, \dots, p-1\}$ t.q. $\overline{s_n} = \overline{a_n}$ et $s_{n+1} = \frac{1}{p}(s_n - a_n)$. On a alors :

$$\forall n \in \mathbb{N}, \ a = a_0 + pa_1 + \dots + p^n a_n + p^{n+1} s_{n+1}.$$

Ainsi, $a = \sum_{n=0}^{\infty} a_n p^n$.

${f 2.7}$ Une autre réalisation algébrique de ${\Bbb Z}_p$

Proposition 2.7.1. On considère :

$$\mathfrak{B} = \left\{ (b_n)_{n \in \mathbb{N}^*} \in \prod_{n \in \mathbb{N}^*} \mathbb{Z}/p^n \mathbb{Z}, \ \forall n \in \mathbb{N}^*, \ b_{n+1} \equiv b_n \mod p^n \right\}.$$

On munit $\prod_{n\in\mathbb{N}^*}\mathbb{Z}/p^n\mathbb{Z}$ de la topologie produit, ce qui en fait un espace compact selon le théorème de Tykhonov, et on munit \mathfrak{B} de la topologie induite. On considère l'application :

$$\begin{vmatrix} \mathbb{Z}_p \longrightarrow \mathfrak{B} \\ b \longmapsto (b \mod p^n)_{n \in \mathbb{N}^*} \end{vmatrix}$$

Alors cette application est un homéomorphisme et un isomorphisme d'anneaux.

Démonstration. Surjectivité. Soit $(b_n)_{n\in\mathbb{N}^*} \in \mathfrak{B}$. Pour $n \in \mathbb{N}^*$, il existe $\hat{b}_n \in \mathbb{Z}_p$ qui relève b_n modulo p^n . La suite $(\hat{b}_n)_{n\in\mathbb{N}^*}$ est alors de Cauchy, donc converge vers $b \in \mathbb{Z}_p$. Et on vérifie que $\forall n \in \mathbb{N}^*$, $b_n \equiv b \mod p^n$.

Proposition 2.7.2. Soit $Q \in \mathbb{Z}[X_1, ..., X_d]$. S'équivalent :

- (i) Q a une racine dans \mathbb{Z}_n^d .
- (ii) $\forall n \in \mathbb{N}^*$, Q a une racine dans $(\mathbb{Z}/p^n\mathbb{Z})^d$.

Démonstration. (i) \Rightarrow (ii) Clair. (ii) \Rightarrow (i) Pour $n \in \mathbb{N}^*$, soit $\left(\widetilde{x}_1^{(n)}, \dots, \widetilde{x}_d^{(n)}\right) \in (\mathbb{Z}/p^n\mathbb{Z})^d$ t.q. $Q\left(\widetilde{x}_1^{(n)}, \dots, \widetilde{x}_d^{(n)}\right) = 0$. Soit $\left(x_1^{(n)}, \dots, x_d^{(n)}\right) \in \mathbb{Z}_p^d$ relevant $\left(\widetilde{x}_1^{(n)}, \dots, \widetilde{x}_d^{(n)}\right)$ modulo p^n . Alors la suite $\left(\left(x_1^{(n)}, \dots, x_d^{(n)}\right)\right)_{n \in \mathbb{N}^*}$ est à valeurs dans le compact \mathbb{Z}_p^d , donc admet une sous-suite convergeant vers un $(x_1, \dots, x_d) \in \mathbb{Z}_p^d$. Et on a $Q\left(x_1, \dots, x_d\right) = 0$.

3 Lemme de Hensel

3.1 Une version du lemme de Hensel

Remarque 3.1.1. Si $Q \in \mathbb{Z}_p[X]$ admet une racine dans \mathbb{Z}_p alors pour tout $n \in \mathbb{N}^*$, Q admet une racine dans $\mathbb{Z}/p^n\mathbb{Z}$.

Notation 3.1.2 (Dérivée de Hasse). Soit A un anneau commutatif. Pour $Q = \sum_{k=0}^{d} q_k X^k \in A[X]$ et $i \in \mathbb{N}$, on pose :

$$Q^{[i]} = \sum_{k=0}^{d-i} {i+k \choose i} q_{i+k} X^k \in A[X].$$

On dit que $Q^{[i]}$ est la i-ième dérivée de Hasse de Q. Dans le cas où i! est inversible dans A, on a :

$$Q^{[i]} = \frac{Q^{(i)}}{i!}.$$

Proposition 3.1.3. Soit A un anneau commutatif. Pour $Q = \sum_{k=0}^{d} q_k X^k \in A[X]$, on a :

$$Q(X+Y) = \sum_{k=0}^{d} Y^{k} Q^{[k]}(X).$$

Théorème 3.1.4 (Lemme de Hensel). Soit $Q \in \mathbb{Z}_p[X]$. On suppose qu'il existe $a_0 \in \mathbb{Z}_p$ t.q.

$$Q(a_0) \in p\mathbb{Z}_p$$
 et $Q'(a_0) \in \mathbb{Z}_p^{\times}$.

Autrement dit, Q admet une racine simple dans $\mathbb{Z}/p\mathbb{Z}$. Alors il existe un unique $a \in \mathbb{Z}_p$ t.q. Q(a) = 0 et $(a - a_0) \in p\mathbb{Z}_p$.

Démonstration. Existence : méthode de Newton. On pose $\mathfrak{C} = a_0 + p\mathbb{Z}_p = BF(a_0, p^{-1})$. Si $x \in \mathfrak{C}$, il existe un $h \in \mathbb{Z}_p$ t.q. $x = a_0 + ph$. Donc :

$$Q'(x) = Q'(a_0 + ph) = Q'(a_0) + ph \sum_{k=1}^{d} (ph)^{k-1} (Q')^{[k]}(a_0) \in \mathbb{Z}_p^{\times},$$

où $d = \deg Q$. Par le même argument, on a $\forall x \in \mathfrak{C}, \ Q(x) \in p\mathbb{Z}_p$. On définit donc à bon droit :

$$\varphi: \begin{vmatrix} \mathfrak{C} \longrightarrow \mathfrak{C} \\ x \longmapsto x - \frac{Q(x)}{Q'(x)} \end{vmatrix}.$$

À partir de a_0 , on définit par récurrence une suite $(a_n)_{n\in\mathbb{N}}\in\mathfrak{C}^{\mathbb{N}}$ en posant :

$$\forall n \in \mathbb{N}, \ a_{n+1} = \varphi(a_n).$$

On montre par récurrence sur n que $\forall n \in \mathbb{N}$, $Q(a_n) \in p^{2^n}\mathbb{Z}_p$. Ceci prouve d'une part que $(a_n)_{n \in \mathbb{N}}$ est de Cauchy (donc converge vers $a \in \mathfrak{C}$, car \mathfrak{C} est un fermé de l'espace complet \mathbb{Z}_p), d'autre part que $Q(a_n) \xrightarrow[n \to +\infty]{} 0$. Ainsi, Q(a) = 0. Unicité. Si a et a' sont deux racines distinctes de Q dans $a_0 + p\mathbb{Z}_p$, alors (X - a)(X - a') divise Q. En réduisant modulo p, $(X - \overline{a_0})^2$ divise Q dans $\mathbb{Z}/p\mathbb{Z}[X]$, ce qui contredit l'hypothèse $Q'(a_0) \in \mathbb{Z}_p^{\times}$.

Exemple 3.1.5. Le polynôme $X^{p-1}-1$ a (p-1) racines simples dans $\mathbb{Z}/p\mathbb{Z}$. Le lemme de Hensel assure que chacune de ces racines se relève dans \mathbb{Z}_p en une unique racine de $X^{p-1}-1$. Pour tout $a \in \mathbb{Z}_p^{\times}$, il y a donc dans \mathbb{Z}_p^{\times} une unique racine (p-1)-ième de l'unité qui est congrue à a modulo p; on la note $\omega(a)$ et on pose $\langle a \rangle = a\omega(a)^{-1} \in 1 + p\mathbb{Z}_p$. Ainsi:

- (i) $\omega: \mathbb{Z}_p^{\times} \to \mathbb{Z}_p^{\times}$ est un morphisme de groupes.
- (ii) $\forall a \in \mathbb{Z}_p^{\times}, \ a = \omega(a) \langle a \rangle \ avec \ \omega(a)^{p-1} = 1 \ et \ \langle a \rangle \in 1 + p\mathbb{Z}_p.$
- (iii) $\mathbb{Z}_p^{\times} = \mu_{p-1} \times (1 + p\mathbb{Z}_p)$, où μ_{p-1} est l'ensemble des racines (p-1)-ièmes de l'unité.

Exemple 3.1.6. Supposons $p \neq 2$. Si $c \in \mathbb{Z}$ est un carré non nul modulo p, alors $\sqrt{c} \in \mathbb{Z}_p$.

3.2 Première généralisation

Lemme 3.2.1. Soit K un corps, $(P,Q) \in K[X]^2$. On suppose que P et Q sont premiers entre eux. Alors pour tout $R \in K[X]$, il existe $(A,B) \in K[X]^2$ t.q.

$$R = AP + BQ$$
 et $\deg A < \deg Q$.

Démonstration. L'égalité de Bézout fournit l'existence de $(\tilde{A}, \tilde{B}) \in K[X]^2$ t.q. $R = \tilde{A}P + \tilde{B}Q$. On a alors $\forall C \in K[X]$, $R = (\tilde{A} - CQ)P + (\tilde{B} + CP)Q$. En prenant C le quotient de la division euclidienne de \tilde{A} par Q, le couple $(A, B) = (\tilde{A} - CQ, \tilde{B} + CP)$ convient.

Proposition 3.2.2. Soit $F \in \mathbb{Z}_p[X]$. Soit $(G_1, H_1) \in \mathbb{Z}_p[X]^2$ vérifiant :

- (i) $F \equiv G_1 H_1 \mod p$.
- (ii) Les réduits modulo p $\overline{G_1}$ et $\overline{H_1}$ sont premiers entre eux dans $\mathbb{Z}/p\mathbb{Z}[X]$.
- (iii) G_1 est unitaire.

Alors il existe $(G, H) \in \mathbb{Z}_p[X]^2$ t.q. F = GH, G est unitaire, $G \equiv G_1 \mod p$ et $H \equiv H_1 \mod p$.

Démonstration. On note $d = \deg F$ et $m = \deg G_1$. On a $\deg \overline{F} \leqslant d$ et $\deg \overline{G_1} = m$ (car G_1 est unitaire). On peut de plus supposer que $\deg \overline{H_1} = d - m$ quitte à enlever les termes divisibles par p. On va construire deux suites $(Y_n)_{n \in \mathbb{N}^*} \in \mathbb{Z}_p[X]^{\mathbb{N}^*}$ et $(Z_n)_{n \in \mathbb{N}^*} \in \mathbb{Z}_p[X]^{\mathbb{N}^*}$ avec $\forall n \in \mathbb{N}^*$, $\deg Y_n < m$ et $\deg Z_n \leqslant d - m$ t.q. si $G = G_1 + \sum_{n=1}^{\infty} p^n Y_n$ et $H = H_1 + \sum_{n=1}^{\infty} p^n Z_n$, alors F = GH. Soit $n \in \mathbb{N}^*$ tel qu'on ait construit (Y_1, \ldots, Y_{n-1}) et (Z_1, \ldots, Z_{n-1}) . On pose :

$$G_n = G_1 + \sum_{k=1}^{n-1} p^k Y_k$$
 et $H_n = H_1 + \sum_{k=1}^{n-1} p^k Z_k$.

On suppose que $F \equiv G_n H_n \mod p^n$ (c'est vrai pour n=1, et on s'assurera que la propriété est vérifiée au rang (n+1) pour que la récurrence se propage). Il existe alors $F_n \in \mathbb{Z}_p[X]$ t.q. $F = G_n H_n + p^n F_n$. Et on cherche $(Y_n, Z_n) \in \mathbb{Z}_p[X]^2$ t.q.

$$F \equiv (G_n + p^n Y_n) (H_n + p^n Z_n) \equiv F + p^n (Y_n H_n + Z_n G_n - F_n) \mod p^{n+1},$$

i.e. $Y_nH_n+Z_nG_n\equiv F_n\mod p$. On remarque que $G_n\equiv G_1\mod p$ et $H_n\equiv H_1\mod p$ donc $\overline{G_n}\wedge\overline{H_n}=1$ dans $\mathbb{Z}/p\mathbb{Z}[X]$. On applique donc le lemme 3.2.1 dans $\mathbb{Z}/p\mathbb{Z}[X]$ pour obtenir $(Y_n,Z_n)\in \mathbb{Z}_p[X]^2$ t.q. $Y_nH_n+Z_nG_n\equiv F_n\mod p$, avec $\deg Y_n< m$ (et $\deg Z_n\leqslant d-m$). La récurrence se propage et les polynômes $G=G_1+\sum_{n=1}^\infty p^nY_n$ et $H=H_1+\sum_{n=1}^\infty p^nZ_n$ conviennent.

3.3 Seconde généralisation

Proposition 3.3.1. Soit $Q \in \mathbb{Z}_p[X]$. On suppose qu'il existe $a_0 \in \mathbb{Z}_p$ et $k \in \mathbb{N}^*$ t.q.

$$Q(a_0) \in p^k Q'(a_0)^2 \mathbb{Z}_p$$
.

Alors il existe un unique $a \in \mathbb{Z}_p$ t.q. Q(a) = 0 et $(a - a_0) \in p^k Q'(a_0) \mathbb{Z}_p$.

Démonstration. Même démonstration que le théorème 3.1.4 (méthode de Newton).

4 Fonctions continues sur \mathbb{Z}_p

4.1 Espace des fonctions continues sur \mathbb{Z}_p

Définition 4.1.1 (Norme de \mathbb{Q}_p -espace vectoriel). Soit V un \mathbb{Q}_p -espace vectoriel. On appelle norme sur V toute norme ultramétrique $\|\cdot\|$ vérifiant :

$$\forall \lambda \in \mathbb{Q}_p, \ \forall v \in V, \ \|\lambda v\| = |\lambda|_p \|v\|.$$

Notation 4.1.2. On munit $C^0(\mathbb{Z}_p, \mathbb{Q}_p)$ de la norme $\|\cdot\|_{\infty}$.

Proposition 4.1.3. $(\mathcal{C}^0(\mathbb{Z}_p,\mathbb{Q}_p),\|\cdot\|_{\infty})$ est un \mathbb{Q}_p -espace vectoriel normé complet.

Proposition 4.1.4. Les fonctions localement constantes sont denses dans $C^0(\mathbb{Z}_p,\mathbb{Q}_p)$.

Démonstration. Remarquer que :

$$\forall n \in \mathbb{N}, \ \mathbb{Z}_p = \bigsqcup_{a \in \{0, \dots, p^n - 1\}} BF\left(a, p^{-n}\right).$$

Utiliser cette égalité pour approcher une fonction $f \in \mathcal{C}^0(\mathbb{Z}_p, \mathbb{Q}_p)$ par des fonctions localement constantes, en utilisant l'uniforme continuité de f (car \mathbb{Z}_p est compact).

4.2 Coefficients binomiaux, fonctions puissances

Notation 4.2.1. Pour $k \in \mathbb{N}$, on pose :

$$\binom{X}{k} = \frac{X(X-1)\cdots(X-k+1)}{k!} \in \mathbb{Q}_p[X].$$

Proposition 4.2.2. $\forall x \in \mathbb{Z}_p, \ \forall k \in \mathbb{N}, \ \binom{x}{k} \in \mathbb{Z}_p.$

Démonstration. On fixe $k \in \mathbb{N}$ et on considère $f: x \in \mathbb{Z}_p \longmapsto \binom{x}{k}$. On a $f(\mathbb{Z}_{\geqslant k}) \subset \mathbb{Z} \subset \mathbb{Z}_p$ et $\mathbb{Z}_{\geqslant k}$ est dense dans \mathbb{Z}_p , donc $f(\mathbb{Z}_p) = f(\overline{\mathbb{Z}_{\geqslant k}}) \subset \overline{f(\mathbb{Z}_{\geqslant k})} \subset \mathbb{Z}_p$.

Notation 4.2.3. Pour $a \in \mathbb{Z}_p$ et $z \in p\mathbb{Z}_p$, on note :

$$(1+z)^a = \sum_{k=0}^{\infty} \binom{a}{k} z^k \in \mathbb{Z}_p.$$

Remarque 4.2.4. Soit $z \in p\mathbb{Z}_p$. Avec la notation 4.2.3, on $a \ \forall a \in \mathbb{N}, \ (1+z)^a = \underbrace{(1+z)\cdots(1+z)}_{a \ fois}$.

Lemme 4.2.5. $\forall (x,y) \in \mathbb{Z}_p^2, \ \forall k \in \mathbb{N}, \ \binom{x+y}{k} = \sum_{i=0}^k \binom{x}{i} \binom{y}{k-i}.$

Proposition 4.2.6. Soit $z \in p\mathbb{Z}_p$.

- (i) La fonction $a \in \mathbb{Z}_p \longmapsto (1+z)^a \in \mathbb{Z}_p$ est continue.
- (ii) $\forall (a,b) \in \mathbb{Z}_n^2$, $(1+z)^a (1+z)^b = (1+z)^{a+b}$.

Exemple 4.2.7. Supposons $p \neq 2$. Alors $\frac{1}{2} \in \mathbb{Z}_p$. Ainsi, pour $z \in p\mathbb{Z}_p$, $(1+z)^{\frac{1}{2}}$ est une racine carrée de (1+z) dans \mathbb{Z}_p . D'après le lemme de Hensel (théorème 3.1.4), c'est en fait la seule racine carrée de (1+z) qui est congrue à 1 modulo p. Par exemple, dans $\mathbb{Z}_5 : 16^{\frac{1}{2}} = -4$.

Proposition 4.2.8. On suppose que $p \neq 2$. On considère :

$$\varphi: \begin{vmatrix} \mathbb{Z}_p & \longrightarrow 1 + p\mathbb{Z}_p \\ a & \longmapsto (1+p)^a \end{vmatrix}.$$

Alors φ est un isomorphisme de groupes entre $(\mathbb{Z}_p, +)$ et $(1 + p\mathbb{Z}_p, \times)$ et c'est aussi un homéomorphisme.

Démonstration. Morphisme de groupes. Voir proposition 4.2.6. Injectivité. Soit $a \in \mathbb{Z}_p \setminus \{0\}$. Écrivons $a = a_0 p^n$, avec $a_0 \in \mathbb{Z}_p^{\times}$ et $n = v_p(a)$. Alors :

$$\varphi(a) = (1+p)^a = 1 + a_0 p^{n+1} + \sum_{k=2}^{\infty} \frac{a_0 p^n}{k} {a_0 p^n - 1 \choose k - 1} p^k.$$

Or, comme $p \neq 2$, on a $v_p\left(\frac{p^k}{k}\right) \geqslant 2$ pour tout $k \geqslant 2$. Donc $v_p\left(\sum_{k=2}^{\infty} \frac{a_0p^n}{k}\binom{a_0p^{n-1}}{k-1}p^k\right) \geqslant n+2 > n+1 = v_p\left(a_0p^{n+1}\right)$. Ainsi, $v_p\left(\varphi(a)-1\right)=n+1<+\infty$ donc $a \notin \operatorname{Ker} \varphi$. Surjectivité. On se donne $x \in \mathbb{Z}_p$ et on cherche $a \in \mathbb{Z}_p$ t.q. $(1+p)^a=1+px$. Construisons par récurrence deux suites $(a_n)_{n\in\mathbb{N}^*} \in \mathbb{Z}_p^{\mathbb{N}^*}$ et $(y_n)_{n\in\mathbb{N}^*} \in \mathbb{Z}_p^{\mathbb{N}^*}$ t.q.

$$\forall n \in \mathbb{N}^*, \ (1+p)^{a_n} = 1 + px + p^n y_n.$$

On prend $(a_1, y_1) = (0, -x)$. Supposons avoir construit (a_1, \ldots, a_n) et (y_1, \ldots, y_n) . On vérifie que si $a_{n+1} = a_n - p^{n-1}y_n$, alors $(1+p)^{a_{n+1}} \equiv 1+px \mod p^{n+1}$. La récurrence se propage. La suite $(a_n)_{n \in \mathbb{N}^*}$ ainsi construite et alors de Cauchy car $|a_{n+1} - a_n|_p \leqslant p^{-(n-1)} \xrightarrow[n \to +\infty]{} 0$. Et si $a = \lim_{n \to +\infty} a_n$, alors $(1+p)^a = 1+px$.

Corollaire 4.2.9. On suppose que $p \neq 2$. Alors le groupe $1 + p\mathbb{Z}_p$ est topologiquement cyclique (c'est l'adhérence d'un groupe cyclique) et ses sous-groupes fermés non triviaux sont les $1 + p^n\mathbb{Z}_p$ pour $n \geqslant 1$.

Corollaire 4.2.10. Si $p \neq 2$, alors :

$$\mathbb{Z}_p^{\times} \simeq \mu_{p-1} \times \mathbb{Z}_p,$$

où μ_{p-1} est l'ensemble des racines (p-1)-ièmes de l'unité dans \mathbb{Z}_p .

Démonstration. Voir exemple 3.1.5.

Exemple 4.2.11. $1 + 4\mathbb{Z}_2 \simeq \mathbb{Z}_2$.

4.3 Théorème de Mahler

Remarque 4.3.1. Soit $(a_n)_{n\in\mathbb{N}}\in\mathbb{Z}_p^{\mathbb{N}}$ t.q. $a_n\xrightarrow[n\to+\infty]{}0$. Alors $x\longmapsto\sum_{n=0}^{\infty}\binom{x}{n}a_n$ définit une fonction continue $\mathbb{Z}_p\to\mathbb{Z}_p$.

Proposition 4.3.2. Soit $(a_n)_{n\in\mathbb{N}}\in\mathbb{Z}_p^{\mathbb{N}}$ t.q. $a_n\xrightarrow[n\to+\infty]{}0$. On pose :

$$f: x \in \mathbb{Z}_p \longmapsto \sum_{n=0}^{\infty} {x \choose n} a_n \in \mathbb{Z}_p.$$

Alors:

- (i) $\forall n \in \mathbb{N}, \ a_n = \sum_{i=0}^n f(i)(-1)^{n-i} \binom{n}{i}.$
- (ii) $||f||_{\infty} = \max_{n \in \mathbb{N}} |a_n|_p$.

Démonstration. (i) Montrer d'abord que, pour tout $n \in \mathbb{N}$:

$$\begin{pmatrix} f(0) \\ \vdots \\ f(n) \end{pmatrix} = M \begin{pmatrix} a_0 \\ \vdots \\ a_n \end{pmatrix}, \quad \text{avec } M = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ 1 & 1 & \ddots & \ddots & \vdots \\ 1 & 2 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 1 & n & \binom{n}{2} & \cdots & 1 \end{pmatrix} = \begin{pmatrix} \binom{i}{j} \end{pmatrix}_{0 \leqslant i, j \leqslant n}.$$

Prouver que $M^{-1} = \left((-1)^{i-j} \binom{i}{j}\right)_{0 \le i,j \le n}$ et en déduire le résultat. (ii) On a :

$$\forall x \in \mathbb{Z}_p, \ |f(x)|_p = \left| \sum_{n=0}^{\infty} {x \choose n} a_n \right|_p \leqslant \max_{n \in \mathbb{N}} \left(\left| {x \choose n} \right|_p |a_n|_p \right) \leqslant \max_{n \in \mathbb{N}} |a_n|_p.$$

Donc $||f||_{\infty} \leq \max_{n \in \mathbb{N}} |a_n|_p$. Réciproquement, à partir du résultat du (i), on a $\forall n \in \mathbb{N}$, $|a_n|_p \leq ||f||_{\infty}$, donc $\max_{n \in \mathbb{N}} |a_n|_p \leq ||f||_{\infty}$.

Lemme 4.3.3. Soit $f \in C^0(\mathbb{Z}_p, \mathbb{Z}_p)$. Pour $n \in \mathbb{N}$, soit $a_n = \sum_{i=0}^n f(i)(-1)^{n-i} \binom{n}{i}$. Alors:

$$\forall (m,n) \in \mathbb{N}^2, \ \sum_{j=0}^m \binom{m}{j} a_{n+j} = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} f(k+m).$$

Théorème 4.3.4 (Théorème de Mahler). Soit $f \in \mathcal{C}^0(\mathbb{Z}_p, \mathbb{Z}_p)$. Alors il existe une unique suite $(a_n)_{n\in\mathbb{N}} \in \mathbb{Z}_p^{\mathbb{N}}$ de limite nulle t,q.

$$\forall x \in \mathbb{Z}_p, \ f(x) = \sum_{n=0}^{\infty} {x \choose n} a_n.$$

Démonstration. Unicité. C'est une conséquence de la proposition 4.3.2. Existence. Pour $n \in \mathbb{N}$, on pose :

$$a_n = \sum_{i=0}^n f(i)(-1)^{n-i} \binom{n}{i}.$$

Il suffit de montrer que $a_n \xrightarrow[n \to +\infty]{} 0$. En effet, on pourra alors considérer $\hat{f}: x \in \mathbb{Z}_p \longmapsto \sum_{n=0}^{\infty} \binom{x}{n} a_n \in \mathbb{Z}_p$, et on aura $f_{|\mathbb{N}} = \hat{f}_{|\mathbb{N}}$, ce qui permettra de conclure par densité de \mathbb{N} dans \mathbb{Z}_p . Montrons donc que $a_n \xrightarrow[n \to +\infty]{} 0$. Soit $\varepsilon > 0$. Soit $s \in \mathbb{N}$ t.q. $p^{-s} \leq \varepsilon$. Comme f est continue sur le compact \mathbb{Z}_p , f est uniformément continue : il existe $t \in \mathbb{N}$ t.q.

$$\forall (x,y) \in \mathbb{Z}_p^2, \ (x-y) \in p^t \mathbb{Z}_p \Longrightarrow (f(x) - f(y)) \in p^s \mathbb{Z}_p.$$

En appliquant le lemme 4.3.3 avec $m = p^t$, on a :

$$\forall n \in \mathbb{N}, \ a_{n+p^t} + \sum_{j=1}^{p^t-1} \binom{p^t}{j} a_{n+j} + a_n = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} f\left(k+p^t\right).$$

En soustrayant à cette égalité la définition de a_n , on a :

$$\forall n \in \mathbb{N}, \ a_{n+p^t} = -\sum_{j=1}^{p^t-1} \underbrace{\binom{p^t}{j}}_{\in p\mathbb{Z}_p} a_{n+j} + \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} \underbrace{\left(f\left(k+p^t\right) - f\left(k\right)\right)}_{\in p^s\mathbb{Z}_p}. \tag{*}$$

Ainsi, $\forall n \in \mathbb{N}$, $a_{n+p^t} \in p\mathbb{Z}_p$. En réinjectant ceci dans (*), on obtient $\forall n \in \mathbb{N}$, $a_{n+2p^t} \in p^2\mathbb{Z}_p$, puis en itérant :

$$\forall n \in \mathbb{N}, \ a_{n+sp^t} \in p^s \mathbb{Z}_p.$$

Autrement dit : $\forall n \geqslant sp^t$, $|a_n|_p \leqslant p^{-s} \leqslant \varepsilon$. Donc $a_n \xrightarrow[n \to +\infty]{} 0$.

Remarque 4.3.5. Si $\ell^0(\mathbb{N}) = \left\{ (a_n)_{n \in \mathbb{N}} \in \mathbb{Z}_p^{\mathbb{N}}, \ a_n \xrightarrow[n \to +\infty]{} 0 \right\}, \ qu'on \ munit \ de \ \|\cdot\|_{\infty}, \ alors \ on \ a \ une bijection isométrique linéaire :$

$$\begin{vmatrix} \ell^0(\mathbb{N}) \longrightarrow \mathcal{C}^0(\mathbb{Z}_p, \mathbb{Q}_p) \\ (a_n)_{n \in \mathbb{N}} \longmapsto \left(x \longmapsto \sum_{n=0}^{\infty} \binom{x}{n} a_n \right). \end{vmatrix}$$

On dit que $\binom{X}{n}_{n\in\mathbb{N}}$ est une base de Banach de l'espace de Banach $(\mathcal{C}^0(\mathbb{Z}_p,\mathbb{Q}_p),\|\cdot\|_{\infty})$.

4.4 Fonctions différentiables

Définition 4.4.1 (Fonction différentiable). Une fonction $f: \mathbb{Z}_p \to \mathbb{Q}_p$ est dite différentiable en un point $a \in \mathbb{Z}_p$ s'il existe un $f'(a) \in \mathbb{Q}_p$ t.q.

$$f(x) = f(a) + (x - a)f'(a) + o_a(x - a).$$

On dit de plus que f est \mathcal{C}^1 sur un ouvert \mathcal{U} de \mathbb{Z}_p lorsque f est différentiable en tout point de \mathcal{U} et l'application $f': \mathcal{U} \to \mathbb{Q}_p$ est continue. On définit de même la notion de fonction \mathcal{C}^k (pour $1 \leq k \leq +\infty$) sur un ouvert de \mathbb{Z}_p .

Exemple 4.4.2.

- (i) Les polynômes de $\mathbb{Q}_p[X]$ sont \mathcal{C}^{∞} sur \mathbb{Z}_p .
- (ii) Les fonctions localement constantes sont C^{∞} sur \mathbb{Z}_p , de dérivée nulle.

Exemple 4.4.3. On considère :

$$f: \begin{vmatrix} \mathbb{Z}_p & \longrightarrow \mathbb{Q}_p \\ x & \longmapsto \begin{cases} p^{2v_p(x)} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

Alors f est C^1 , de dérivée nulle sur \mathbb{Z}_p , mais f n'est pas localement constante (elle n'est pas constante au voisinage de 0).

Remarque 4.4.4. Soit $(a_n)_{n\in\mathbb{N}}\in\mathbb{Z}_p^{\mathbb{N}}$ t.q. $a_n\xrightarrow[n\to+\infty]{}0$ et $f:x\in\mathbb{Z}_p\longmapsto\sum_{n=0}^{\infty}\binom{x}{n}a_n\in\mathbb{Z}_p$. Alors on a les résultats (admis) suivants :

- (i) $f \in \mathcal{C}^1(\mathbb{Z}_p, \mathbb{Q}_p) \iff |a_n|_p = o\left(\frac{1}{p}\right)$.
- (ii) $f \in \mathcal{C}^r(\mathbb{Z}_p, \mathbb{Q}_p) \iff |a_n|_p = o\left(\frac{1}{n^r}\right)$.
- (iii) f est lipschitzienne $\iff |a_n|_p = \mathcal{O}\left(\frac{1}{n}\right)$.

5 Extensions finies de \mathbb{Q}_p

5.1 Théorème d'Ostrowski

Définition 5.1.1 (Norme de corps). Soit K un corps. On appelle norme de corps sur K toute application $|\cdot|: K \to \mathbb{R}_+$ vérifiant :

- (i) $\forall (x,y) \in K^2$, $|x+y| \le |x| + |y|$,
- (ii) $\forall (x,y) \in K^2$, $|xy| = |x| \cdot |y|$,
- (iii) $|1_K| = 1$.

Définition 5.1.2 (Norme ultramétrique, archimédienne). Soit $|\cdot|$ une norme de corps sur \mathbb{Q} .

(i) On dit que | est ultramétrique lorsque :

$$\forall (x,y) \in \mathbb{Q}^2, |x+y| \leq \max(|x|,|y|).$$

(ii) On dit que $|\cdot|$ est archimédienne lorsque :

$$\exists n \in \mathbb{Z}, |n| > 1.$$

Proposition 5.1.3. Une norme de corps $|\cdot|$ sur \mathbb{Q} est ultramétrique ssi elle est non archimédienne.

Démonstration. (\Rightarrow) Clair. (\Leftarrow) Supposons que $|\cdot|$ est non archimédienne. Soit $(x,y) \in \mathbb{Q}^2$, avec $|x| \ge |y|$. Alors :

$$\forall k \in \mathbb{N}^*, |x+y|^k = \left| (x+y)^k \right| = \left| \sum_{j=0}^k \binom{k}{j} x^{k-j} y^j \right| \leqslant (k+1)x^k.$$

Donc $\forall k \in \mathbb{N}^*$, $|x+y| \leq (k+1)^{\frac{1}{k}} |x|$. En faisant tendre $k \to +\infty$, on a $|x+y| \leq |x| = \max(|x|, |y|)$. Donc $|\cdot|$ est ultramétrique.

Définition 5.1.4 (Norme triviale). On appelle norme triviale $sur \mathbb{Q}$ la norme de $corps \mid \cdot \mid donnée$ par :

 $\forall x \in \mathbb{Q}, \ |x| = \begin{cases} 1 & si \ x \neq 0 \\ 0 & si \ x = 0 \end{cases}.$

Théorème 5.1.5 (Théorème d'Ostrowski). Soit $|\cdot|$ une norme de corps non triviale sur \mathbb{Q} .

- (i) Si $|\cdot|$ est non archimédienne, alors il existe un nombre premier p et un $c \in \mathbb{R}_+^*$ t.q. $|\cdot| = |\cdot|_n^c$
- (ii) Si $|\cdot|$ est archimédienne, alors il existe un $c \in \mathbb{R}_+^*$ t.q. $|\cdot| = |\cdot|_{\infty}^c$, où $|\cdot|_{\infty}$ est la norme de corps usuelle sur \mathbb{Q} .

5.2 \mathbb{Q}_p -espaces vectoriels normés

Définition 5.2.1 (Norme de \mathbb{Q}_p -espace vectoriel). Soit V un \mathbb{Q}_p -espace vectoriel. On appelle norme sur V toute norme ultramétrique $\|\cdot\|$ vérifiant :

$$\forall \lambda \in \mathbb{Q}_p, \ \forall v \in V, \ \|\lambda v\| = |\lambda|_p \|v\|.$$

Théorème 5.2.2. Soit V un \mathbb{Q}_p -espace vectoriel de dimension finie. Alors toutes les normes sur V sont équivalentes, et V est complet pour n'importe laquelle.

Démonstration. Même démonstration que sur \mathbb{R} (on utilise le fait que $\Sigma = \{x \in V, ||x||_{\infty} = 1\}$ est compacte pour $||\cdot||_{\infty}$, où $||\cdot||_{\infty}$ est la norme sup associée à une base quelconque de V).

5.3 Prolongement de la norme p-adique aux extensions de \mathbb{Q}_p

5.3.1 Existence

Lemme 5.3.1. Soit $Q \in \mathbb{Q}_p[X]$. Si $Q(0) \in \mathbb{Z}_p$ et Q est irréductible, alors $Q \in \mathbb{Z}_p[X]$.

Démonstration. Soit $m \in \mathbb{N}$ le plus petit entier t.q. $F = p^m Q \in \mathbb{Z}_p[X]$. On suppose par l'absurde $m \ge 1$. Alors l'image de F dans \mathbb{F}_p est divisible par X (car $v_p(F(0)) \ge m \ge 1$ comme $Q(0) \in \mathbb{Z}_p$). Soit donc $r \in \mathbb{N}^*$ la plus grande puissance de X divisant F dans \mathbb{F}_p , et soit $H_1 \in \mathbb{Z}_p[X]$ t.q.

$$F \equiv X^r H_1 \mod p.$$

Selon la proposition 3.2.2, il existe $(G, H) \in \mathbb{Z}_p[X]^2$ t.q. F = GH, $G \equiv X^r \mod p$ et $H \equiv H_1 \mod p$. En particulier, G et H sont non constants, ce qui contredit l'irréductibilité de F, donc de Q.

Lemme 5.3.2. Soit K une extension finie de \mathbb{Q}_p . Soit $N: K \to \mathbb{R}_+$ une application vérifiant N(0) = 0, N(1) = 1 et $\forall (x, y) \in K^2$, N(xy) = N(x)N(y). Sont équivalentes :

- (i) $\forall (x, y) \in K^2$, $N(x + y) \leq \max(N(x), N(y))$.
- (ii) $\forall z \in K, N(z) \leqslant 1 \Longrightarrow N(1+z) \leqslant 1.$

Proposition 5.3.3. Soit K une extension finie de \mathbb{Q}_p , dont on note d le degré. Pour $x \in K$, on pose $m_x : y \in K \longmapsto xy \in K$. On définit :

$$N: x \in K \longmapsto |\det m_x|_p^{1/d}$$
.

Alors N est une norme de corps ultramétrique sur K qui prolonge $|\cdot|_n$.

Démonstration. Notons d'abord que $\forall x \in \mathbb{Q}_p$, $m_x = x \cdot id_K$, donc N prolonge bien $|\cdot|_p$. De plus, il est clair que N(0) = 0, N(1) = 1 et $\forall (x, y) \in K^2$, N(xy) = N(x)N(y). Selon le lemme 5.3.2, il suffit donc de montrer que $\forall z \in K$, $N(z) \leq 1 \Longrightarrow N(1+z) \leq 1$. Autrement dit, il suffit de montrer que :

$$\forall z \in K, \ \det m_z \in \mathbb{Z}_p \Longrightarrow \det m_{1+z} \in \mathbb{Z}_p.$$

Soit donc $z \in K$ t.q. det $m_z \in \mathbb{Z}_p$. On pose $F = \mathbb{Q}_p(z)$, et on note $f = [F : \mathbb{Q}_p]$. Si (k_1, \ldots, k_e) est une F-base de K, chaque $F \cdot k_i$ est stable par m_z et m_{1+z} , d'où on déduit :

$$\det m_z = (\det \hat{m}_z)^e \qquad \text{et} \qquad \det m_{1+z} = (\det \hat{m}_{1+z})^e,$$

où \hat{m}_z et \hat{m}_{1+z} sont les endomorphismes de F induits respectivement par m_z et m_{1+z} . On se ramène ainsi au cas où $K = F = \mathbb{Q}_p(z)$. On note maintenant $Q \in \mathbb{Q}_p[X]$ le polynôme minimal de z sur \mathbb{Q}_p ; il est irréductible et de degré f. De plus :

$$\forall P \in \mathbb{Q}_p[X], \ P(m_z) = m_{P(z)}.$$

Ceci implique que Q est le polynôme minimal de m_z . Or F est de dimension $f = \deg Q$ sur $\mathbb{Q}_p[X]$, donc Q est aussi le polynôme caractéristique de m_z sur F. Il vient :

$$Q(0) = (-1)^f \det m_z \in \mathbb{Z}_p.$$

Selon le lemme 5.3.1, il vient $Q \in \mathbb{Z}_p[X]$. Donc det $m_{1+z} = \det(id_K + m_z) = (-1)^f Q(-1) \in \mathbb{Z}_p$. \square

5.3.2 Unicité

Lemme 5.3.4. Soit F un corps; $|\cdot|_1$ et $|\cdot|_2$ deux normes de corps non triviales sur F induisant la même topologie. Alors il existe $\alpha > 0$ t.q. $|\cdot|_2 = |\cdot|_1^{\alpha}$.

Démonstration. Notons que :

$$\forall z \in F, \ |z|_1 < 1 \Longleftrightarrow z^n \xrightarrow[n \to +\infty]{|\cdot|_1} 0 \Longleftrightarrow z^n \xrightarrow[n \to +\infty]{|\cdot|_2} 0 \Longleftrightarrow |z|_2 < 1.$$

On fixe maintenant $y \in F$ avec $|y|_1 < 1$ (car $|\cdot|_1$ est non triviale). Pour $x \in F$, on a alors $\forall (m,n) \in \mathbb{Z} \times \mathbb{N}^*$, $|x|_1 < |y|_1^{m/n} \iff |x|_2 < |y|_2^{m/n}$. Par densité de \mathbb{Q} dans \mathbb{R} , il vient $\forall s \in \mathbb{R}$, $|x|_1 = |y|_1^s \iff |x|_2 = |y|_2^s$. Si on choisit maintenant $\alpha \in \mathbb{R}_+^*$ t.q. $|y|_2 = |y|_1^\alpha$, on a bien $|\cdot|_2 = |\cdot|_1^\alpha$.

Théorème 5.3.5. Soit K une extension finie de \mathbb{Q}_p . Alors il existe une unique norme de corps ultramétrique notée $|\cdot|_p$ sur K prolongeant la norme p-adique sur \mathbb{Q}_p .

Démonstration. Existence. Voir proposition 5.3.3. Unicité. Si N_1 et N_2 sont deux normes de corps ultramétriques prolongeant $|\cdot|_p$ sur K, alors ce sont en particulier des normes de \mathbb{Q}_p -espace vectoriel, donc elles sont équivalentes selon le théorème 5.2.2. Selon le lemme 5.3.4, il existe donc $\alpha > 0$ t.q. $N_2 = N_1^{\alpha}$. Or $N_{1|\mathbb{Q}_p} = N_{2|\mathbb{Q}_p}$ donc $\alpha = 1$ et $N_1 = N_2$.

Corollaire 5.3.6. Si K est une extension finie de \mathbb{Q}_p , alors $(K, |\cdot|_p)$ est un corps normé complet.

Remarque 5.3.7. Le théorème 5.3.5 reste vrai pour les extensions algébriques de \mathbb{Q}_p .

5.3.3 Quelques exemples

Notation 5.3.8. Si K est une extension algébrique de \mathbb{Q}_p , on prolonge la valuation p-adique à K en posant :

$$\forall x \in K, \ v_p(x) = -\log_p |x|_p$$
.

Proposition 5.3.9. Si K est une extension finie de \mathbb{Q}_p de degré d, alors :

$$\forall x \in K, \ v_p(x) \in \frac{1}{d} \mathbb{Z}.$$

Exemple 5.3.10. On considère $K = \mathbb{Q}_p\left(\sqrt[d]{p}\right)$, qui est une extension finie de \mathbb{Q}_p de degré d. Alors $\left(1,\sqrt[d]{p},\ldots,\left(\sqrt[d]{p}\right)^{d-1}\right)$ est une \mathbb{Q}_p -base de K, et on a:

$$\forall (a_0, \dots, a_{d-1}) \in \mathbb{Q}_p^d, \ v_p\left(\sum_{i=0}^d a_i \left(\sqrt[d]{p}\right)^i\right) = \min_{0 \leqslant i \leqslant d-1} \left(v_p\left(a_i\right) + \frac{i}{d}\right).$$

Proposition 5.3.11. Si K est une extension galoisienne (finie) de \mathbb{Q}_p , alors tout $g \in \operatorname{Gal}(K/\mathbb{Q}_p)$ est une isométrie de $(K, |\cdot|_p)$.

5.4 Polygones de Newton

Notation 5.4.1. On note $\overline{\mathbb{Q}}_p$ la clôture algébrique de \mathbb{Q}_p .

Définition 5.4.2 (Polygone de Newton). Soit $P = \sum_{k=0}^{d} a_k X^k \in \mathbb{Q}_p[X] \setminus \{0\}$, avec $a_d \neq 0$. Le polygone de Newton de P, noté NP(P), est l'enveloppe convexe inférieure des points $(k, v_p(a_k))_{0 \leq k \leq d}$ dans \mathbb{R}^2 . Dans le cas où les premiers termes sont nuls, par exemple $a_0 = \cdots = a_{i-1} = 0 \neq a_i$, le polygone de Newton est constitué d'une demi-droite verticale vers le haut de base $(a_i, v_p(a_i))$, suivie de l'enveloppe convexe des points suivants.

- Une pente de NP(P) est la pente d'un des segments ($-\infty$ dans le cas d'une demi-droite verticale).
- Une longueur de NP(P) est la longueur de la composante d'un segment le long de l'axe des abscisses (i dans le cas d'une demi-droite verticale basée en $(i, v_p(a_i))$).

Figure 1 – Exemples de polygones de Newton

Théorème 5.4.3. Soit $P \in \mathbb{Q}_p[X]$. Alors le nombre de racines de P dans $\overline{\mathbb{Q}}_p$ de valuation λ est égal à la longueur du segment de NP(P) de pente $-\lambda$.

Remarque 5.4.4. Multiplier un polynôme de $\mathbb{Q}_p[X]$ par une constante non nulle revient à translater son polygone de Newton verticalement, ce qui ne change pas les pentes.

Corollaire 5.4.5 (Critère d'Eisenstein). Soit $P = X^d + \sum_{k=0}^{d-1} a_k X^k \in \mathbb{Z}_p[X]$. On suppose que :

- (i) $\forall i \in \{0, \dots, d-1\}, a_i \in p\mathbb{Z}_p$.
- (ii) $a_0 \in p\mathbb{Z}_p^{\times}$.

Alors p est irréductible sur \mathbb{Q}_p .

Démonstration. Le polygone de Newton NP(P) a ici un seul segment, de longueur d et de pente $\left(-\frac{1}{d}\right)$. Selon le théorème 5.4.3, toutes les racines de P sont de valuation $\frac{1}{d}$. Soit maintenant $z \in \overline{\mathbb{Q}}_p$ une racine de P. Alors les éléments $1, z, \ldots, z^{d-1}$ sont de valuations respectives $0, \frac{1}{d}, \ldots, \frac{d-1}{d}$; ils sont donc linéairement indépendants. D'où :

$$d \leq [\mathbb{Q}_p(z) : \mathbb{Q}_p] \leq \deg P = d.$$

Donc P est le polynôme minimal de z sur \mathbb{Q}_p ; il est donc irréductible.

Proposition 5.4.6. Si $P \in \mathbb{Q}_p[X]$ est irréductible, alors toutes ses racines dans $\overline{\mathbb{Q}}_p$ sont de même valuation.

Démonstration. Soit K le corps de décomposition de P sur \mathbb{Q}_p . Comme P est irréductible, le groupe de Galois $\operatorname{Gal}(K/\mathbb{Q}_p)$ agit transitivement sur l'ensemble des racines de P. Si α et β sont deux racines de P, il existe donc $\sigma \in \operatorname{Gal}(K/\mathbb{Q}_p)$ t.q. $\sigma(\alpha) = \beta$. Or, d'après la proposition 5.3.11, σ est une isométrie, donc :

$$|\beta|_p = |\sigma(\alpha)|_p = |\alpha|_p$$

d'où $v_p(\beta) = v_p(\alpha)$.

Corollaire 5.4.7. Si $P \in \mathbb{Q}_p[X]$ est irréductible, alors son polygone de Newton NP(P) n'a qu'un seul segment.

Remarque 5.4.8. Le corollaire 5.4.7 donne une autre démonstration du fait que si $P \in \mathbb{Q}_p[X]$ est irréductible et vérifie $P(0) \in \mathbb{Z}_p$, alors $P \in \mathbb{Z}_p[X]$ (lemme 5.3.1).

Remarque 5.4.9. La théorie des polygones de Newton fonctionne sans modification pour des polynômes à coefficients dans une extension finie de \mathbb{Q}_p .

6 Analyse p-adique

6.1 Le corps \mathbb{C}_p

Proposition 6.1.1. Le corps normé $(\overline{\mathbb{Q}}_p, |\cdot|_p)$ n'est pas complet.

Démonstration. On va montrer que $(\overline{\mathbb{Q}}_p, |\cdot|_p)$ n'est pas un espace de Baire, donc pas un espace métrique complet. Pour $d \in \mathbb{N}^*$, on note X_d l'ensemble des $x \in \overline{\mathbb{Q}}_p$ de degré d'algébricité sur \mathbb{Q}_p inférieur ou égal à d. Soit $d \in \mathbb{N}^*$. Étape $1: X_d$ est fermé. Soit en effet $(x_n)_{n \in \mathbb{N}} \in X_d^{\mathbb{N}}$ t.q. $x_n \xrightarrow[n \to +\infty]{} x \in \overline{\mathbb{Q}}_p$. Pour $n \in \mathbb{N}$, soit $P_n \in \mathbb{Q}_p[X] \setminus \{0\}$ t.q. $P_n(x_n) = 0$ et deg $P_n \leqslant d$. On peut supposer que chaque P_n appartient à l'ensemble K des polynômes de $\mathbb{Z}_p[X]$ de degré au plus d et dont au moins un des coefficients est dans \mathbb{Z}_p^{\times} . Or K est compact. Donc $(P_n)_{n \in \mathbb{N}}$ admet une valeur d'adhérence $P \in K \subset \mathbb{Z}_p[X] \setminus \{0\}$. On a donc deg $P \leqslant d$ et on montre que P(x) = 0. Étape $2: X_d$ est d'intérieur vide. En effet, si ce n'est pas le cas, il existe $a \in X_d$ et r > 0 t.q. $B(a,r) \subset X_d$. Soit alors $x \in \overline{\mathbb{Q}}_p$. Pour k suffisamment grand, $b = a + p^k x \in B(a,r)$, donc $a \in X_d$ et $b \in X_d$. Ainsi $x = p^{-k}(b-a)$ est de degré d'algébricité au plus d^2 . Ceci prouve que tout élément de $\overline{\mathbb{Q}}_p$ est de degré d'algébricité au plus d^2 , ce qui est absurde, car pour tout $s \in \mathbb{N}^*$, le polynôme $X^s - p$ est irréductible

sur \mathbb{Q}_p d'après le critère d'Eisenstein (corollaire 5.4.5) donc ses racines dans $\overline{\mathbb{Q}}_p$ sont de degré s. Conclusion. $(X_d)_{d\in\mathbb{N}^*}$ est une famille de fermés de $\overline{\mathbb{Q}}_p$ d'intérieur vide, et de réunion égale à $\overline{\mathbb{Q}}_p$. $\overline{\mathbb{Q}}_p$ n'est donc pas un espace de Baire (donc pas un espace métrique complet), car il n'est pas d'intérieur vide.

Définition 6.1.2 (\mathbb{C}_p) . On note \mathbb{C}_p , appelé ensemble des complexes p-adiques, le complété de $\overline{\mathbb{Q}}_p$ pour $|\cdot|_p$. Muni de $|\cdot|_p$, c'est un corps normé complet.

Proposition 6.1.3. $v_p(\mathbb{C}_p) = \mathbb{Q}$.

Théorème 6.1.4. \mathbb{C}_p est algébriquement clos.

Démonstration. On se donne $P \in \mathbb{C}_p[X]$ un polynôme unitaire de degré $d \geqslant 1$. Montrons que P a une racine dans \mathbb{C}_p . Quitte à remplacer P par $p^{kd}P\left(p^{-k}X\right)$ pour k suffisamment grand, on peut supposer que les coefficients de P sont de norme inférieure ou égale à 1. Pour $n \in \mathbb{N}$, on se donne alors $P_n \in \overline{\mathbb{Q}}_p[X]$ unitaire de degré d t.q. $\|P - P_n\| \leqslant p^{-n}$, où $\mathbb{C}_p[X]$ est muni de la norme $\|\cdot\|$ définie par $\left\|\sum_{k=0}^{\delta} a_k X^k\right\| = \max_{0 \leqslant k \leqslant \delta} |a_k|_p$. Ainsi, les coefficients de chaque P_n sont tous de norme inférieure ou égale à 1. La théorie des polygones de Newton permet alors de montrer que les racines de chaque P_n sont de valuation positive, donc de norme inférieure ou égale à 1. Définissons maintenant une suite $(a_n)_{n\in\mathbb{N}}$ par récurrence. On pose a_0 une racine de P_0 , puis après avoir construit a_0,\ldots,a_n avec a_i racine de P_i pour tout $i \in \{0,\ldots,n\}$, on remarque que $|P_{n+1}\left(a_n\right)|_p = |(P_{n+1} - P_n)\left(a_n\right)|_p \leqslant p^{-n}$. Or, si \mathcal{R} est l'ensemble des racines de P_{n+1} , on a $P_{n+1} = \prod_{z \in \mathcal{R}} (X-z)$; il existe donc $a_{n+1} \in \mathcal{R}$ t.q. $|a_{n+1} - a_n|_p \leqslant p^{-\frac{n}{d}}$. La suite $(a_n)_{n\in\mathbb{N}}$ ainsi construite est de Cauchy dans $\overline{\mathbb{Q}}_p$, donc converge vers un $a \in \mathbb{C}_p$. Et on vérifie que P(a) = 0.

6.2 Séries formelles

Définition 6.2.1 (Séries formelles). Si A est un anneau, on note A[[X]] l'anneau des séries formelles à coefficients dans A, c'est-à-dire des séries $\sum_{n=0}^{\infty} a_n X^n$, avec $(a_n)_{n\in\mathbb{N}} \in A^{\mathbb{N}}$. A[[X]] est un anneau, muni du produit \times défini par :

$$\left(\sum_{n=0}^{\infty} a_n X^n\right) \left(\sum_{n=0}^{\infty} b_n X^n\right) = \sum_{n=0}^{\infty} \left(\sum_{p+q=n} a_p b_q\right) X^n.$$

Proposition 6.2.2. Soit A un anneau. Soit $f = \sum_{n=0}^{\infty} a_n X^n \in A[[X]]$. Alors $S \in A[[X]]^{\times}$ ssi $a_0 \in A^{\times}$.

Définition 6.2.3 (Degré de Weierstraß). Soit A un anneau. Si $f = \sum_{n=0}^{\infty} a_n X^n \in A[[X]]$, on définit le degré de Weierstraß de S par :

wideg
$$f = \inf \{ n \in \mathbb{N}, \ a_n \in A^{\times} \} \in \mathbb{N} \cup \{ \infty \}.$$

Corollaire 6.2.4. Soit A un anneau. Pour $f \in A[[X]]$, on a :

$$f \in A[[X]]^{\times} \iff \text{wideg } f = 0.$$

Proposition 6.2.5. Soit A un anneau. On a :

$$\forall (f,g) \in A[[X]]^2$$
, wideg $(fg) = \text{wideg } f + \text{wideg } g$.

Proposition 6.2.6. Soit K un corps. Soit $(f,g) \in K[[X]]^2$, avec wideg $f = n \in \mathbb{N}$. Alors:

$$\exists q \in K[[X]], \exists r \in K[X], (g = qf + r \text{ et } \deg r < n).$$

6.3 Théorème de préparation de Weierstraß

Notation 6.3.1. On note $\mathcal{D} = \{z \in \mathbb{C}_p, |z|_p < 1\}$ le disque unité ouvert p-adique.

Définition 6.3.2. Soit $f = \sum_{n=0}^{\infty} a_n X^n \in \mathbb{Z}_p[[X]]$. Alors pour tout $z \in \mathcal{D}$, la série $\sum_{n=0}^{\infty} a_n z^n$ converge dans \mathbb{C}_p ; sa somme est notée f(z).

Proposition 6.3.3. Soit $(f,g) \in \mathbb{Z}_p[[X]]^2$, avec wideg $f = n \in \mathbb{N}$. Alors:

$$\exists q \in \mathbb{Z}_p[[X]], \ \exists r \in \mathbb{Z}_p[X], \ (g = qf + r \text{ et } \deg r < n).$$

Démonstration. On va utiliser la proposition 6.2.6 dans \mathbb{F}_p . Supposons avoir construit $q_k \in \mathbb{Z}_p[[X]]$ et $r_k \in \mathbb{Z}_p[X]$ t.q.

$$g \equiv q_k f + r_k \mod p^k$$
 et $\deg r_k < n$.

Il existe donc $h_k \in \mathbb{Z}_p[[X]]$ t.q. $g = q_k f + r_k - p^k h_k$. Selon la proposition 6.2.6 appliquée dans \mathbb{F}_p aux réductions respectives \overline{h}_k et \overline{f} de h_k et f modulo p, il existe $s_k \in \mathbb{Z}_p[[X]]$ et $t_k \in \mathbb{Z}_p[X]$ t.q.

$$h_k \equiv f s_k + t_k \mod p$$
 et $\deg t_k < n$.

Ainsi, $g \equiv (q_k - p^k s_k) f + (r_k - p^k t_k) \mod p^{k+1}$; on pose donc $q_{k+1} = q_k - p^k s_k$ et $r_{k+1} = r_k - p^k t_k$. La construction se propage par récurrence; on note finalement $q = \lim_{k \to +\infty} q_k$ et $r = \lim_{k \to +\infty} r_k$. \square

Théorème 6.3.4 (Théorème de préparation de Weierstraß). Soit $f \in \mathbb{Z}_p[[X]]$. On suppose que wideg $f = n < +\infty$. Alors il existe un polynôme unitaire $s = X^n + \sum_{k=0}^{n-1} a_k X^k \in \mathbb{Z}_p[X]$ avec $\forall k \in \{0, \ldots, n-1\}$, $a_k \in p\mathbb{Z}_p$, et une série formelle inversible $u \in \mathbb{Z}_p[[X]]^{\times}$ t.q.

$$f = su$$
.

Démonstration. D'après la proposition 6.3.3, il existe $q \in \mathbb{Z}_p[[X]]$ et $r \in \mathbb{Z}_p[X]$ t.q.

$$X^n = fq + r$$
 et $\deg r < n$.

Il vient $fq = X^n - r$, d'où :

$$n \leqslant n + \text{wideg } q = \text{wideg}(fq) = \text{wideg } (X^n - r) \leqslant n.$$

Donc wideg q=0. Ainsi $q\in\mathbb{Z}_p[[X]]^{\times}$. On pose donc $s=X^n-r$ et $u=q^{-1}$.

Corollaire 6.3.5. Soit $f \in \mathbb{Z}_p[[X]]$. Si wideg $f = n < +\infty$, alors f admet exactement n zéros (comptés avec leurs multiplicités) dans \mathcal{D} .

Démonstration. D'après le théorème 6.3.4, il existe $s = X^n + \sum_{k=0}^{n-1} a_k X^k \in \mathbb{Z}_p[X]$ avec $\forall k \in \{0, \dots, n-1\}$, $a_k \in p\mathbb{Z}_p$ et $u \in \mathbb{Z}_p[[X]]^\times$ t.q. f = su. Comme u est inversible, elle n'admet pas de zéro dans \mathcal{D} , donc les zéros de f sont exactement ceux de s. Or s est de degré n, donc admet exactement n zéros (comptés avec leurs multiplicités) dans $\overline{\mathbb{Q}}_p$. La théorie des polygones de Newton montre alors que ces zéros sont de valuation supérieure ou égale à $\frac{1}{n}$, donc sont dans \mathcal{D} .

Corollaire 6.3.6. Si $f \in \mathbb{Z}_p[[X]] \setminus \{0\}$, alors f n'a qu'un nombre fini de zéros dans \mathcal{D} .