SEQUENCE LISTING

<110> Gilmore Jr., Robert D Johnson, Barbara JB	
<120> RECOMBINANT P37/Flaa AS A DIAGNOSTIC REAGENT	
<130> 97,429	
<140> 09/004,395 <141> 1998-01-08	
<150> <151>	
<160> 06	
<170> Microsoft Word 97	
<210> 1 <211> 1655 <212> DNA <213>	
<220> Unknown <221> CDS <222> 4731498	
<221> sig_peptide <222> 473538	
<221> mat_peptide <222> 5391498	
<223>	
<400> 1 utgataatot tiittidaaaa aaugitiitti attiirdatto tagdaadaga tiigilgota	ê.
itrijagatu titungadat qiadaaaatt tgiaaagataa titagatett tingtamaag	9 71 74 A 4- 51
atrinottin aggaagcaat gaggggttit ottitgggtt titattaagt gattoaagat	180
ttttatattc ttttttaaag aatggagttt attatgtaaa tctttcaaga gaattttatg	240
attottttaa taatggtgat tataatgaat ottttgatgt taaggtoaat otttttgota	300
rgrottrant anamacaatg cgotttaact atcotggtaa gataaaaaag attattatto	3 ē O

least the arest to assemble that the the traction that the art of the first least the last th

- 5					1				5					10		
				gtc Val												619
				gat Asp												667
gct Ala	tct Ser 45	ggt Gly	att Ile	gtt Val	aag Lys	ccg Pro 50	gaa Glu	gat Asp	atg Met	gtt Val	gta Val 55	gat Asp	ctt Leu	ggg Gly	ata Ile	715
aat Asn 60	aat Asn	tgg Trp	agc Ser	gtt Val	tta Leu 65	ctt Leu	act Thr	cct Pro	tct Ser	gca Ala 70	agg Arg	ttg Leu	cag Gln	gct Ala	tac Tyr 75	763
gtt Val	aaa Lys	aat Asn	tca Ser	gtt Val 80	gtt Val	gcg Ala	ccc Pro	gct Ala	gtt Val 85	gtt Val	aag Lys	agt Ser	gag Glu	tca Ser 90	aaa Lys	811
agg Arg	tac Tyr	gca Ala	ggt Gly 95	gat Asp	act Thr	att Ile	ttg Leu	999 Gly 100	gta Val	aga Arg	gtt Val	ttg Leu	ttt Phe 105	cca Pro	agc Ser	859
tat Tyr	tct Ser	caa Gln 110	tca Ser	tct Ser	gct Ala	atg Met	att Ile 115	atg Met	cca Pro	cca Pro	ttt Phe	aaa Lys 120	att Ile	cct Pro	ttt Phe	907
tat Tyr	tca Ser 125	999 Gly	gaa Glu	agt Ser	ggc Gly	aat Asn 130	caa Gln	ttt Phe	tta Leu	ggc Gly	aaa Lys 135	ggt Gly	ctt Leu	att Ile	gat Asp	955
aac Asn 140	att Ile	aaa Lys	acc Thr	atg Met	aaa Lys 145	gaa Glu	att Ile	aag Lys	gta Val	tct Ser 150	gtt Val	tat Tyr	agt Ser	tta Leu	999 Gly 155	1003
tat Tyr	gag Glu	ata Ile	gat Asp	ctt Leu 160	gag Glu	gtt Val	tta Leu	ttt Phe	gaa Glu 165	gat Asp	atg Met	aat Asn	ggc Gly	atg Met 170	gaa Glu	1051
				atg Met												1490
att Ile	tgg Trp	tca Ser 190	aat Asn	cct Pro	aac Asn	tat Tyr	att Ile 195	cct Pro	aat Asn	ata Ile	tca Ser	tcc Ser 200	aga Arg	att Ile	att Ile	1147
		Asp		cca Pro								Lys				1195

[.] The figure Aug Det Arg TVL Lew Lyr Aug Lyr Lew Fig. . Lew Lyr Aug Lyr Lew Lyr $140\,$

geggeegeaa tgtgagtttt tgtagttgga tttgeteece egeegtegtt caatgagaat 60 ggataagagg etegtgggat tgaegtgagg gggeagggat ggetataatt etgggagega 120 acteegggeg aatatgaage geategatae aagtgagttg tagggaggga accatgg 177

<210> 2

<211> 342

<212> PRT

<213> Unknown

<220>

<221>

<222>

<223>

<400> 2

ttgacgtgag ggggcaggga tggctatatt tctgggagcg aactccgggc gaata

5 5

<110> 3

<211> 55

<212> DNA

<213> Mustard

< 400> 3

Met Lys Arg Lys Ala Lys Ser Ile Leu Phe Phe Leu Leu Ser Thr Val

Les. Phe Ala Sin Siu Thr Asp Gly Leu Ala Glu Sly Ser Lys Arg Ala

The Alle Ser Rly Ile Talliys Fro Tim Asp Met Tall Tall April 60 Min.

60 65 70

Tyr 75	Val	Lys	Asn	Ser	Val 80	Val	Ala	Pro	Ala	Val 85	Val	Lys	Ser	Glu	Ser 90
Lys	Arg	Tyr	Ala	Gly 95	Asp	Thr	Ile	Leu	Gly 100	Val	Arg	Val	Leu	Phe 105	Pro
Ser	Tyr	Ser	Gln 110	Ser	Ser	Ala	Met	Ile 115	Met	Pro	Pro	Phe	Lys 120	Ile	Pro
Phe	Tyr	Ser 125	Gly	Glu	Ser	Gly	Asn 130	Gln	Phe	Leu	Gly	Lys 135	Gly	Leu	Ile
Asp	Asn 140	Ile	Lys	Thr	Met	Lys 145	Glu	Ile	Lys	Val	Ser 150	Val	Tyr	Ser	Leu
Gly 155	Tyr	Glu	Ile	Asp	Leu 160	Glu	Val	Leu	Phe	Glu 165	Asp	Met	Asn	Gly	Met 170
Glu	Tyr	Ala	Tyr	Ser 175	Met	Gly	Thr	Leu	Lys 180	Phe	Lys	Gly	Trp	Ala 185	Asp
Leu	Ile	Trp	Ser 190	Asn	Pro	Asn	Tyr	Ile 195	Pro	Asn	Ile	Ser	Ser 200	Arg	Il€
Ile	Lys	Asp 205	Asp	Val	Pro	Asn	Tyr 210	Pro	Leu	Ala	Ser	Ser 215	Lys	Met	Arg
Phe	Lys 220	Ala	Phe	Arg	Val	Ser 225	Lys	Ser	His	Ser	Ser 230	Lys	Val	Lys	Asr
Phe 235	Ile	Phe	Tyr	Val	Lys 240	Asp	Leu	Arg	Val	Leu 245	Tyr	Asp	Lys	Leu	Ser 250
Val	Ser	Ile	Asp	Ser 255	Asp	Ile	Asp	Ser	Glu 260	Ser	Val	Phe	Lys	Val 265	Туг
Glu	Thr	Ser	Gly 270	Thr	Glu	Ser	Leu	Arg 275	Lys	Leu	Lys	Ala	His 280	Glu	Thr
The	Lj.s	Arg 285	Val	1,6911	Lys	Leu	Arg 290	Glu	Lys	Ile	Ser	Ile 295	Ala	Glu	31;
1	Elie Bon	ain	ASI.	The	Mal	31:: 305	Lyš	il.	77.3	rer	31:1 310	1.7°	Εľω	ulu	31
3er 315	Ser	Pro	Lys	Asn	* 320										

<210> 3 211> 21 <212> DNA

<400> 4	
gatggattag cagagggtt	1 9
<210> 5	
<211> 21	
<212> DNA	
<213> Unknown	
<400> 5	
teggataaat aattggageg t	21
<210> 6	
<211> 21	
<212> DNA	
<213> Unknown	
C213> OHVHOWH	
<400> 6	
ctaatttttc ggagatgatt c	21