Observed snow depth trends in the European Alps 1971 to 2019

Michael Matiu¹, Alice Crespi¹, Giacomo Bertoldi², Carlo Maria Carmagnola³, Christoph Marty⁴, Samuel Morin³, Wolfgang Schöner⁵, Daniele Cat Berro⁶, Gabriele Chiogna^{7,8}, Ludovica De Gregorio¹, Sven Kotlarski⁹, Bruno Majone¹⁰, Gernot Resch⁵, Silvia Terzago¹¹, Mauro Valt¹², Walter Beozzo¹³, Paola Cianfarra¹⁴, Isabelle Gouttevin³, Giorgia Marcolini⁸, Claudia Notarnicola¹, Marcello Petitta^{1,15}, Simon C. Scherrer⁹, Ulrich Strasser⁸, Michael Winkler¹⁶, Marc Zebisch¹, Andrea Cicogna¹⁷, Roberto Cremonini¹⁸, Andrea Debernardi¹⁹, Mattia Faletto¹⁸, Mauro Gaddo¹³, Lorenzo Giovannini¹⁰, Luca Mercalli⁶, Jean-Michel Soubeyroux²⁰, Andrea Sušnik²¹, Alberto Trenti¹³, Stefano Urbani²², Viktor Weilguni²³

Affiliations

- ¹Institute for Earth Observation, Eurac Research, Bolzano, 39100, Italy
- ²Institute for Alpine Environment, Eurac Research, Bolzano, 39100, Italy
- ³Univ. Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d'Etudes de la Neige, Grenoble, 38000, France
- ⁴WSL Institute for Snow and Avalanche Research SLF, Davos, 7260, Switzerland
- ⁵Department of Geography and Regional Sciences, University of Graz, Graz, 8010, Austria
- ⁶Società Meteorologica Italiana, Moncalieri, 10024, Italy
- ⁷Chair of Hydrology and River Basin Management, Technical University Munich, Munich, 80333, Germany
- ⁸Department of Geography, University of Innsbruck, Innsbruck, 6020, Austria
- ⁹Federal Office of Meteorology and Climatology MeteoSwiss, Zurich-Airport, 8058, Switzerland
- ¹⁰Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, 38123, Italy
- ¹¹Institute of Atmospheric Sciences and Climate, National Research Council, (CNR-ISAC), Turin, 10133, Italy
- ¹²Centro Valanghe di Arabba, Arabba, 32020, Italy
- ¹³Meteotrentino, Provincia Autonoma di Trento, Trento, 38122, Italy
- ¹⁴Dipartimento di Scienze della Terra, dell'Ambiente e della Vita DISTAV, Università degli Studi di Genova, Genova, 16132, Italy
- ¹⁵SSPT-MET-CLIM, ENEA, Rome, 00123, Italy
- ¹⁶ZAMG, Innsbruck, 6020, Austria
- ¹⁷ARPA Friuli Venezia Giulia, Palmanova, 33057, Italy
- ¹⁸ARPA Piemonte, Torino, 10135, Italy
- ¹⁹Assetto idrogeologico dei bacini montani, Region Valle d'Aosta, Aosta, 11100 Italy / Fondazione Montagna sicura, Courmayeur, 11013, Italy
- ²⁰Météo-France, Direction de la Climatologie et des Services Climatiques, Toulouse, 31057, France
- ²¹Meteorology Office, Slovenian Environment Agency, Ljubljana, 1000, Slovenia
- ²²Centro Nivometeorologico, ARPA Lombardia, Bormio, 23032, Italy
- ²³Abteilung I/3 Wasserhaushalt (HZB), BMLRT, Vienna, 1010, Austria

Motivation

- Fragmentation of ground snow observations from meteorological, hydrographic, and avalanche offices, as well as research facilities
- National and regional boundaries often define study extent
- But, Alpine climate does not adhere to man-made artificial boundaries

Auer et al. 2007, HISTALP, http://www.zamg.ac.at/histalp/index.php

Data sources

Data source	HN	HS	HS used (regionalization)	HS used (trend analysis)
AT_HZB	653	652	588	335
CH_METEOSWISS	505	501	142	79
CH_SLF	96	96	94	84
DE_DWD	956	964	830	104
FR_METEOFRANCE	239	286	145	45
IT_BZ	60	64	48	0
IT_FVG	30	30	18	8
IT_LOMBARDIA	11	11	11	0
IT_PIEMONTE	34	34	24	15
IT_SMI	6	8	8	7
IT_TN	52	52	29	8
IT_TN_TUM	0	5	1	0
IT_VDA_AIBM	57	57	17	5
IT_VDA_CF	0	17	11	3
IT_VENETO	10	11	11	9
SI_ARSO	130	172	172	152
Total sum	2839	2960	2149	854

Table 1. Overview of the number of stations with daily data provided by the different data sources. The data source consists of a country abbreviation, followed by the data source. Country abbreviations are AT for Austria, CH for Switzerland, DE for Germany, FR for France, IT for Italy, and SI for Slovenia. For source abbreviations, please see Sect. 2.2. Station numbers are shown for depth of snowfall (HN) and snow depth (HS) time series. See Appendix A and Sects. 2.4 and 2.5 for more details on station selection procedures associated with the different types of analyses. HN was not analysed but was used for checking HS.

Data coverage

Methods – preprocessing

- Merging
- QC
 - Fixed thresholds
 - Temporal consistency
 - 0cm == NA
 - Combination of automatic pre-screening and manual checks
- Gap filling
 - Spatial interpolation using up to 5 highly correlated neighbour series
- Spatial consistency
 - (reverse gap filling) Reconstruction of series based on up to 5 neighbours
- Aggregation
 - To monthly or seasonal values if >90% of data available

Methods – statistical analysis

- Regionalization
 - PCA (principal components analysis)
 - K-means
- Trend analysis
 - GLS (generalized least squares)

Results - PCA

First 5 PCs explain 84% of variability in daily snow depth

Results - Regionalization

Leading horizontal climatological subregions of the Greater Alpine Region (GAR). Thin lines: Results of PCA (based on single element monthly anomalies) for AP air pressure, T air temperature, PR precipitation, S sunshine, CL cloudiness. Bold lines: The CRS (coarse resolution) compromise allowing for intraelemental comparisons based on equal subregions for each climate element, from Auer et al. 2007.

Results – Interannual variability

Results - Trend summary snow depth

Change 1971-2019 (from linear trend)

Results – Trend summary snow cover duration

Conclusions

- > Snow variability matches temperature and precipitation patterns
- > Snow climatology in the Alps depends largely on large-scale forcing
- ➤ Decreasing snow depth 1971-2019, with stronger trends at lower elevations and in spring
- ➤ Trends differed by region: Generalizing from one Alpine region to another should be done cautiously

References

<u>Paper</u>

Matiu, M., Crespi, A., Bertoldi, G., Carmagnola, C. M., Marty, C., Morin, S., Schöner, W., Cat Berro, D., Chiogna, G., De Gregorio, L., Kotlarski, S., Majone, B., Resch, G., Terzago, S., Valt, M., Beozzo, W., Cianfarra, P., Gouttevin, I., Marcolini, G., Notarnicola, C., Petitta, M., Scherrer, S. C., Strasser, U., Winkler, M., Zebisch, M., Cicogna, A., Cremonini, R., Debernardi, A., Faletto, M., Gaddo, M., Giovannini, L., Mercalli, L., Soubeyroux, J.-M., Sušnik, A., Trenti, A., Urbani, S., and Weilguni, V.: Observed snow depth trends in the European Alps: 1971 to 2019, *The Cryosphere*, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, 2021.

Data set

Matiu, M., Crespi, A., ... (2021). Snow cover in the European Alps: Station observations of snow depth and depth of snowfall (Version v1.2) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.4572636

Contact

Michael Matiu
Eurac Research
Institute for Earth Observation
michael.matiu@eurac.edu
Drususallee/Viale Druso 1
I-39100 Bozen/Bolzano
www.eurac.edu

Alice Crespi
Eurac Research
Institute for Earth Observation
alice.crespi@eurac.edu
Drususallee/Viale Druso 1
I-39100 Bozen/Bolzano
www.eurac.edu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 795310.