Objective

Implement Ridge regression on the California Housing dataset using closed-form and gradient descent methods. Evaluate and compare performance, experiment with hyperparameters, and demonstrate additional skills through additional subtasks that test UI integration, problemsolving, and creativity.

Dataset

The California Housing dataset contains 20,640 samples with 8 numerical features and a target variable (median house value). It's accessible via scikit-learn and suitable for local computation.

Tasks

Section 1: Data Preparation and Model Implementation (Mandatory)

- Data Preparation:
 - o Load the dataset using scikit-learn.
 - o Handle missing values (if any) and standardize features.
 - o Split into 80% training and 20% test sets.
- Closed-Form Solution:
 - o Implement Ridge regression using the normal equation with L2 regularization.
 - o Train on the training set with a regularization parameter (lambda) of 1.0.
- Gradient Descent:
 - Implement Ridge regression using gradient descent, including the L2 regularization term.
 - o Choose a learning rate and number of iterations (or use early stopping).
 - \circ Train on the training set with lambda = 1.0.

Section 2: Model Evaluation and Comparison (Mandatory)

- Evaluate both implementations on the test set using Mean Squared Error (MSE) and R-squared metrics.
- Compare results with scikit-learn's Ridge regression using lambda = 1.0.
- Present results in a clear table or plot.

Section 3: Hyperparameter Experimentation (Mandatory)

- Experiment with at least three lambda values (e.g., 0.1, 1.0, 10.0).
- Plot MSE and R-squared against lambda to show regularization effects.
- For gradient descent, test three learning rates (e.g., 0.001, 0.01, 0.1).
- Plot loss over iterations for each learning rate to demonstrate convergence.

Section 4: Advanced Tasks (Choose at Least One)

Complete as many as time allows to demonstrate additional skills:

• Interactive Visualization:

• Use Plotly to create interactive plots for hyperparameter experiments, allowing users to explore performance metrics dynamically.

• Feature Engineering:

- o Perform feature selection (e.g., based on correlation) or create new features (e.g., polynomial terms).
- o Train the model on the modified features and compare performance.

• Alternative Regularization:

- o Implement Lasso regression (L1 regularization) from scratch.
- o Compare its performance with Ridge regression.

• Cross-Validation:

- o Implement 5-fold cross-validation to select the optimal lambda.
- o Report the chosen lambda and test set performance.

• Model Interpretability:

- Use SHAP to analyze feature importance.
- o Discuss which features most influence predictions.

• Interactive Interface:

- o Use ipywidgets to create an interactive tool in the notebook.
- o Allow users to adjust lambda or input feature values to see predictions.

• Creative Extension:

- Propose and implement an innovative improvement (e.g., handling outliers, non-linear modeling).
- o Justify the approach and evaluate its impact.

Deliverables

- A well-documented Jupyter notebook containing:
 - Code for all mandatory tasks (Sections 1-3).
 - o Results, plots, and a brief discussion (3-5 sentences) on Sections 1-3 outcomes.
 - o Code and explanations for chosen advanced tasks (Section 4).
- Submit via a GitHub repository.

Allowed Libraries

- NumPy for math operations.
- Pandas for data handling.
- Matplotlib for static plots.
- scikit-learn for data loading, splitting, and comparison.
- For Section 4: Plotly, SHAP, ipywidgets, or others as needed.

Notes

- Prioritize Sections 1-3. Section 4 is for showcasing additional skills if time permits.
- Implementations must be from scratch for Ridge and Lasso (if chosen), using only NumPy for math.
- Do not use scikit-learn's Ridge or Lasso for your implementations, only for comparison.
- Ensure code is well-commented and the notebook is organized.