

planetmath.org

Math for the people, by the people.

simple field extension

Canonical name SimpleFieldExtension
Date of creation 2013-03-22 14:23:06
Last modified on 2013-03-22 14:23:06

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 25

Author pahio (2872) Entry type Definition Classification msc 12F99

Related topic PrimitiveElementTheorem

Related topic CanonicalFormOfElementOfNumberField

Defines primitive element

Let $K(\alpha)$ be obtained from the field K via the of the element α , which is called the *primitive element* of the field extension $K(\alpha)/K$. We shall settle the of the field $K(\alpha)$.

We consider the substitution homomorphism $\varphi: K[X] \to K[\alpha]$, where

$$\sum a_{\nu} X^{\nu} \mapsto \sum a_{\nu} \alpha^{\nu}.$$

According to the ring homomorphism theorem, the image ring $K[\alpha]$ is isomorphic with the residue class ring $K[X]/\mathfrak{p}$, where \mathfrak{p} is the ideal of polynomials having α as their zero. Because $K[\alpha]$ is, as subring of the field $K(\alpha)$, an integral domain, then also $K[X]/\mathfrak{p}$ has no zero divisors, and hence \mathfrak{p} is a prime ideal. It must be principal, for K[X] is a principal ideal ring.

There are two possibilities:

- 1. $\mathfrak{p}=(p(X))$, where p(X) is an irreducible polynomial with $p(\alpha)=0$. Because every non-zero prime ideal of K[X] is maximal, the isomorphic image K[X]/(p(X)) of $K[\alpha]$ is a field, and it must give the of $K(\alpha)=K[\alpha]$. We say that α is algebraic with respect to K (or over K). In this case, we have a finite field extension $K(\alpha)/K$.
- 2. $\mathfrak{p} = (0)$. This means that the homomorphism φ is an isomorphism between K[X] and $K[\alpha]$, i.e. all expressions $\sum a_{\nu}\alpha^{\nu}$ behave as the polynomials $\sum a_{\nu}X^{\nu}$. Now, $K[\alpha]$ is no field because K[X] is not such, but the isomorphy of the rings implies the isomorphy of the corresponding fields of fractions. Thus the simple extension field $K(\alpha)$ is isomorphic with the field K(X) of rational functions in one indeterminate X. We say that α is http://planetmath.org/Algebraictranscendental with respect to <math>K (or over K). This time we have a simple infinite field extension $K(\alpha)/K$.