Programación Lineal

Tomás de la Rosa

- Introducción
- El Método Simplex
- Aplicaciones
 - Plan de Rebalanceo de Carteras
 - Coincidencia de Flujos de Caja
 - Arbitraje de Opciones

- Introducción
- El Método Simplex
- Aplicaciones
 - Plan de Rebalanceo de Carteras
 - Coincidencia de Flujos de Caja
 - Arbitraje de Opciones

- Queremos construir una cartera de fondos con el Amundi MSCI World (World) y
 el Amundi MSCI Emerging Markets (EM) para maximizar el retorno esperado
 para el año que viene. Sin embargo, nos interesa limitar la exposición a Asia al
 40 % de la cartera, y en cualquier caso no invertiremos más del 60 % en EM.
- Los datos son los siguientes:

Fondo	Exp. Asia	Retorno Esperado
Emerging Markets	0.60	0.25
World	0.20	0.08

• ¿Qué proporción de la cartera debemos invertir en cada fondo?

Modelado en Programación Lineal

- Variables de Decisión
 - ▶ x₁: porcentaje inversión en MSCI Emerging Markets
 - ► x₂: porcentaje inversión en MSCI World
- Función Objetivo: Maximizar retorno esperado

$$Max Z = 0.25x_1 + 0.08x_2$$

Restricciones

porcentaje de la cartera: $x_1 + x_2 \le 1$

exposición a Asia: $0.60x_1 + 0.2x_2 \le 0.4$

limite de EM: $x_1 \le 0.6$ posiciones largas: $x_1, x_2 \ge 0$

- $0.60x_1 + 0.2x_2 \le 0.4$
- $x_1, x_2 \ge 0$

Solución Gráfica

- $0.60x_1 + 0.2x_2 \le 0.4$
- $x_1 + x_2 \le 1$
- $x_1, x_2 \ge 0$

- $0.60x_1 + 0.2x_2 \le 0.4$
- $x_1 + x_2 \le 1$
- $x_1 \le 0.6$
- $x_1, x_2 \ge 0$

$$Z = 0.25x_1 + 0.08x_2$$

Evaluamos en los vértices

$$Z(A) = Z(0,0) = 0$$

$$Z(B) = Z(0.6,0) = 0.15$$

$$Z(C) = Z(0.6, 0.2) = 0.166$$

$$Z(D) = Z(0.5, 0.5) = 0.165$$

$$Z(E) = Z(0,1) = 0.08$$

$$Z^* : x_1 = 0.6, x_2 = 0.2$$

- Podemos representar la exploración de la función Z
- Siempre se respeta la pendiente -(0.25/0.08)
- Incrementando Z el óptimo ocurre en el último vértice de la región factible

- Podemos representar la exploración de la función Z
- Siempre se respeta la pendiente -(0.25/0.08)
- Incrementando Z el óptimo ocurre en el último vértice de la región factible

- Podemos representar la exploración de la función Z
- Siempre se respeta la pendiente -(0.25/0.08)
- Incrementando Z el óptimo ocurre en el último vértice de la región factible

- Podemos representar la exploración de la función Z
- Siempre se respeta la pendiente -(0.25/0.08)
- Incrementando Z el óptimo ocurre en el último vértice de la región factible

- Podemos representar la exploración de la función Z
- Siempre se respeta la pendiente -(0.25/0.08)
- Incrementando Z el óptimo ocurre en el último vértice de la región factible

Solución Gráfica

- Si ahora suponemos que el retorno esperado es:
 - Amundi Emerging Markets: 0.15
 - Amundi MSCI World: 0.20
- Cambia la pendiente de Z
- Pero el óptimo ocurre también en un vértice

Solución Gráfica

- Si ahora suponemos que el retorno esperado es:
 - Amundi Emerging Markets: 0.15
 - Amundi MSCI World: 0.20
- Cambia la pendiente de Z
- Pero el óptimo ocurre también en un vértice

- Introducción
- El Método Simplex
- Aplicaciones
 - Plan de Rebalanceo de Carteras
 - Coincidencia de Flujos de Caja
 - Arbitraje de Opciones

- Hemos visto en la técnica de resolución gráfica que el óptimo ocurre en algún vértice
- Necesitamos un procedimiento que:
 - Valga para n dimensiones
 - Calcule los vértices de forma algebraica, de modo que se pueda implementar en un algoritmo
 - Explore los vértices de forma eficiente, sobre todo para los casos de problemas grandes

- Para determinar los vértices de la región factible necesitamos ecuaciones en lugar de inecuaciones
- Las restricciones de ≤ limita normalmente el uso de recursos.
 - ▶ lo que no se usa del recurso representa una holgura del recurso

$$x_1 + 2x_2 \le 4$$

$$x_1 + 2x_2 + s_1 = 4$$

- s₁ es una variable de holgura y formará parte de las variables de decisión
- ▶ $s_1 \ge 0$

- Las restricciones de ≥ establecen un límite a las actividades del modelo.
 - lo que se hace de más representa un excedente de la actividad

$$3x_1 + x_2 \ge 2$$

$$3x_1 + x_2 - S_1 = 2$$

- S₁ es una variable de excedente y formará parte de las variables de decisión
- ▶ $S_1 \ge 0$

Representación en Forma Estándar

- Un problema de programación lineal está representado en forma estándar cuando
 - ▶ su objetivo es maximización o minimización
 - todas las restricciones son de igualdad
 - todas las variables de decisión son no negativas
 - el vector de constantes o recursos no contiene valores negativos

$$min \mid maxZ = c_1x_1 + c_2x_2 + \dots + c_nx_n$$

 $s.a \ a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$
 \dots
 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$

con
$$x_j \geq 0$$
, $b_i \geq 0$

 Un problema de minimización equivale a uno de maximización con el opuesto de su función objetivo

$$min Z = \sum_{j=1}^{n} c_j x_j \quad \rightarrow \quad max Z = -\sum_{j=1}^{n} c_j x_j$$

 Se puede cambiar el sentido (mayor que o menor que) de restricción multiplicando la desigualdad por -1

$$\sum_{i=1}^m a_{ij}x_j \geq b_i \quad \to \quad -\sum_{i=1}^m a_{ij}x_j \leq -b_i$$

Espacio de soluciones

- El espacio de soluciones queda representado con m ecuaciones lineales simultáneas y n variables no negativas, siendo n > m
- Si igualamos a 0 m n variables y luego resolvemos el sistema de ecuaciones:
 - ▶ se pueden despejar las *m* variables restantes
 - si la solución es única corresponde a un vértice del espacio
- Combinando las variables m que se despejan podemos obtener todos los vértices
- Las m variables escogidas en cada momento se denominan variables básicas
- Si el sistema con m variables tiene solución única se denomina solución básica

Método Simplex

- Parte de una solución básica factible
- De forma iterativa se intercambia una variable básica (salida) por una no básica (entrada) de modo que se mejore la función objetivo
- Se detiene cuando ningún nuevo intercambio mejora la función objetivo

Fuente: Wikipedia

Contexto para Programación Lineal

- La utilidad de la programación lineal está ligada a cómo de cerca está el modelado de la realidad bajo sus supuestos de:
 - Proporcionalidad: Lo que una variable de decisión aporta a la función objetivo es proporcional al valor de la variable. El efecto se cumple también en las restricciones
 - Aditividad: Lo que una variable contribuye a la función objetivo es independiente del valor de otras variables, todo se agrega
 - Divisibilidad: Las variables pueden tomar cualquier valor que represente una fracción del elemento que se representa

Esquema

- Introducción
- El Método Simplex
- Aplicaciones
 - Plan de Rebalanceo de Carteras
 - Coincidencia de Flujos de Caja
 - Arbitraje de Opciones

- Introducción
- El Método Simplex
- Aplicaciones
 - Plan de Rebalanceo de Carteras
 - Coincidencia de Flujos de Caja
 - Arbitraje de Opciones

- Una vez se decide que una cartera de fondos se quiere rebalancear, hay que determinar las operaciones de traspaso para conseguir la cartera deseada
- El objetivo consiste en minimizar algún coste asociado a los traspasos
 - ponderación de días fuera del mercado
 - comisiones, tratamiento fiscal, etc

• Primero se determina los flujos necesarios de entrada y salida

Fondos salientes	Cantidad
Corporate Bonds	18009
Emerging Markets	8179
Commodities	14454

Fondos entrantes	Cantidad
Money Market	18987
Europe Equities	14182
Real Estate	7474

• Primero se determina los flujos necesarios de entrada y salida

Fondos salientes	Cantidad
Corporate Bonds	18009
Emerging Markets	8179
Commodities	14454

Fondos entrantes	Cantidad
Money Market	18987
Europe Equities	14182
Real Estate	7474

 Definimos los costes asociados a los traspasos. Ejemplo: días fuera del mercado en la ejecución del traspaso

	Money Market	Europe Equities	Real Estate
Corporate Bonds	1	2	2
Emerging Markets	3	1	2
Commodities	1	1	3

Plan de Rebalanceo de Carteras - Modelo

- Parámetros de entrada:
 - ▶ ai: cantidad de dinero en los fondos actuales
 - b_i: cantidad de dinero en los fondos de destino
 - $ightharpoonup c_{ii}$: coste de traspasar del fondo i al fondo j
- Variables: x_{ii} cantidad de dinero traspasada del fondo i al fondo j
- Modelo:

$$Min Z = \sum_{i=0}^{m} \sum_{j=0}^{n} x_{ij} c_{ij}$$

$$s.a. \sum_{j=1}^{n} x_{ij} \le a_{i}$$

$$\sum_{i=1}^{m} x_{ij} \ge b_{i}$$

$$x_{ij} \ge 0 \quad \forall ij$$

Solución: traspasos a realizar

	Money Market	Europe Equities	Real Estate
Corporate Bonds	12629	0	5381
Emerging Markets	0	6086	2094
Commodities	6358	8096	0

- Introducción
- El Método Simplex
- Aplicaciones
 - Plan de Rebalanceo de Carteras
 - Coincidencia de Flujos de Caja
 - Arbitraje de Opciones

Coincidencia de Flujos de Caja

- La financiación a corto plazo en las empresas suele tener varias alternativas: líneas de crédito, préstamos bancarios, deuda comercial con proveedores.
- La programación lineal se puede utilizar para determinar la combinación de estas alternativas que permitan cubrir las necesidades de efectivo

Coincidencia de Flujos de Caja (Ejemplo)

Mes	Sept	Oct	Nov	Dic
Flujo de Caja	-500	-150	200	600

- Variables de Decisión
 - Cantidad de cada alternativa que se pide prestada en cada período
 - Cantidad de efectivo que no se usa en cada periodo
- Objetivo: Maximizar el efectivo después de haber liquidado toda las deudas
- Restricciones:
 - Las entradas de efectivo en cada periodo deben ser iguales a las salidas más lo que no se usa
 - Los instrumentos de financiación tienen límites
 - no negatividad de las variables

- Introducción
- El Método Simplex
- Aplicaciones
 - Plan de Rebalanceo de Carteras
 - Coincidencia de Flujos de Caja
 - Arbitraje de Opciones

Escenario:

- ▶ Una acción en t_0 tiene un precio S_0 y un precio futuro desconocido S_1 al llegar al tiempo t_1
- ▶ Una cadena de n opciones call que vencen en t_1 , tienen precios de ejercicio K_i, \ldots, K_n .
- ► El resultado a vencimiento es una función por partes:

$$\Psi_i(S_1) = egin{cases} S_1 - \mathcal{K}_i & S > \mathcal{K}_i \ 0 & S \leq \mathcal{K}_i \end{cases}$$

▶ El precio de las opciones call es $C_1, ..., C_n$

• Si construimos una cartera $X = x_1, \dots, x_n$ con las opciones call, el resultado a vencimiento será:

$$\Psi^X(S_1) = \sum_{i=1}^n \Psi_i(S_1) x_i$$

• El coste de construir la cartera:

$$Z(X) = \sum_{i=1}^{n} C_i x_i$$

- Problema: Encontrar la cartera de opciones más barata cuyo resultado a vencimiento $\Psi^X(S_1)$ sea no negativo para todos los $S_1 \in [0,\infty)$]
- Si este coste en t₀ es negativo y por definición del problema no tenemos compromisos futuros, tenemos una oportunidad de arbitraje

- Combinación de resultados a vencimiento
- Ejemplo: Precios ejercicio [80, 90]

$$\Psi_i(S_1) = egin{cases} S_1 - 90 & S > 90 \ S_1 - 80 & 90 \ge S_i > 80 \ 0 & S_i \le 80 \end{cases}$$

 El resultado a vencimiento de la cartera es una función por partes con n puntos de corte

Modelo Arbitraje de Opciones

- Las claves de nuestro modelo
 - 1 El resultado a vencimiento es no negativo en 0
 - 2 El resultado es no negativo en todos los precios de ejercicio
 - La pendiente del resultado a partir del último precio es positiva
- Modelo programación lineal

$$min Z = \sum_{i=1}^{n} C_i x_i$$

$$\sum_{i=1}^n \Psi_i(0) x_i \geq 0 \tag{1}$$

$$\sum_{i=1}^{n} \Psi_i(K_j) x_i \ge 0 \quad para j = 1, \dots, n$$
 (2)

$$\sum_{i=1}^{n} (\Psi_i(K_n+1) - \Psi_i(K_n)) x_i \ge 0$$
 (3)

Otras consideraciones

- Si existe arbitraje, el modelo anterior sería no acotado porque podemos beneficiarnos construyendo una cartera con posiciones largas y cortas, todo lo grande que queramos
- ► En la práctica cuando el arbitraje se explota desaparece
- Estamos restringidos por el margen y el nivel de riesgo que tengamos permitido en la cartera
- Para adaptar el modelo podemos limitar por ejemplo las posiciones cortas que podemos asumir en total o en cada precio de ejercicio