XVII. Nemzetközi Magyar Matematika Verseny

Kassa, 2008. március 6-9.

11. osztály

1. feladat: Fejeződhet-e a 3^n valamely természetes n számra 0001-re?

Zolnai Irén (Újvidék)

2. feladat: A K, L, M, N az ABCDE ötszög BC, CD, DE, EA oldalainak felezőpontjai, a Q és P pontok pedig az LN, KM szakaszok felezőpontjai. Bizonyítsátok be, hogy PQ||AB-vel és határozzátok meg a szakaszok hosszának arányát.

Mészáros József (Galánta)

3. feladat: A természetes számok halmazán értelmezett f függvényre teljesül a következő egyenlőség: $f(1) + 2^2 f(2) + \ldots + n^2 f(n) = n^3 f(n)$ tetszőleges $n \ge 1$ esetén. Ha f(1) = 2008, határozzátok meg f(2008) értéket.

Kovács Béla (Szatmárnémeti)

- 4. feladat: Oldjátok meg a $60p^2 + 57q = 2007$ egyenletet, ha p és q pozitív prímszámok. Egyed László (Baja)
- 5. feladat: Oldjátok meg a $\log_2(x^2+4) \log_2 x = 7x^2 + 4x x^4 18$ egyenletet. Olosz Ferenc (Szatmárnémeti)
- **6. feladat:** Az ABC szabályos háromszög oldalai \sqrt{p} hosszúságúak. A háromszög egy belső pontja az A,B,C pontoktól rendre 1, \sqrt{r} , $\sqrt{r+1}$ egység távolságra van, ahol p és r prímszámok. Mekkora az ABC háromszög kerülete?

Bíró Bálint (Eger)