预测宣传册需求

第1步:理解业务和数据

解释下需要作出的关键决策。(限 500 字以内)

关键决策:

请回答以下问题

1. 需要作出什么样的决策?

需要做出的决策: 是否向新增的 250 名客户寄送产品目录册。

2. 作出这些决策需要获取哪些数据?

以上决策取决于向新增的 **250** 名客户寄送产品目录册后,是否能产生超过 **1** 万美元的利润。已知:

利润=
$$\sum_{i=1}^{250}$$
 (预测收入_i * 毛利率 - \$6.5)

预期收入=预测收入*客户购买宣传册中产品的概率(已知)

来自新增的 250 名客户每名客户的预测收入=某线性回归方程(见第 2 步)

因此,需要的数据及其来源如下:

目标	利润	
所需数据	数据名	值
	毛利率	50%
	寄送成本	\$6.5/人
	客户购买宣传册中产品的概率	Store_yes!p1-mailinglist
	预测收入 Avg_Sale_Amount	由线性回归方程推算出
线性回归方程所需数据		
	预测变量	参数
		Intercept
	if_Store_Mailing_List	Variable_1
	if_Loyalty_Club_Only	Variable_2
	if_Loyalty_Club_and_Credit_Card	Variable_3
	Avg Num Products Purchased	Variable_4
	Years as Customer	Variable_5
来源	表格 p1-mailinglist:新客户数据	表格 p1-customers:基于老
		客户数据验证计算得出

第2步:分析、建模和验证

描述下你是如何设置线性回归模型的,使用了哪些变量,原因是什么,以及模型的结果。建议提供可视化图表(限 500 字以内)。

在 p1-customers 的老客户数据中,一共包含 12 个变量,筛选如下表:

变量	变量类型	筛选原因	是否作为预测变量进行验证
Name	分类变量	因客户而异,分类过多,不宜作为预测变量	否
		共4个分类,可以Credit_Card_Only作为基	
Customer Segment	分类变量	础条件产生3个分类预测变量	是
Customer ID	分类变量	分类过多,不宜作为预测变量	否
Address	分类变量	分类过多,不宜作为预测变量	否
City	分类变量	分类过多,不宜作为预测变量	否
State	分类变量	只有一个分类,无法作为预测变量	否
ZIP	分类变量	分类过多,不宜作为预测变量	否
Avg Sale Amount	数值变量	数值变量,可进行验证	是
Store Number	分类变量	分类过多,不宜作为预测变量	否
		只有一个分类,且在新客户中无相关数据,	
Responded to Last Catalog	分类变量	无法作为预测变量	否
Avg Num Products Purchased	数值变量	数值变量,可进行验证	是
# Years as Customer	数值变量	数值变量,可进行验证	是

待验证的预测变量包括:

- 1. Avg_Num_Products_Purchased
- 2. Years_as_Customer
- 3. 分类变量 if_Store_Mailing_List、if_Loyalty_Club_Only、if_Loyalty_Club_and_Credit_Card (基本条件设为 Only_Credit_Card)

分别验证其与目标变量 Avg_Sale_Amount 之间的线性相关关系:

1. Avg_Num_Products_Purchased:

计算

SUMMARY OUTPUT								
回归统	भे							
Multiple R	0.86							
R Square	0.73							
Adjusted R Square	0.73							
标准误差	176. 01							
观测值	2375. 00							
方差分析								
	df	SS	MS	F	Significance F			
回归分析	1.00	201109435.07	201109435.07	6491.91	0.00			
残差	2373.00	73511948.03	30978.49					
总计	2374.00	274621383.09						
	Coefficients	标准误差	t Stat	P-value	Lower 95%	Upper 95%	下限 95.0%	上限 95.0%
Intercept	44. 02	5. 70	7. 72	0.00	32.83	55. 20	32. 83	55. 20
X Variable 1	106. 28	1. 32	80. 57	0.00	103. 69	108. 87	103. 69	108. 87

得 R²=0.73>0.7,p 值为 0<0.05。

因此: 二者显著线性相关,二者的线性相关等式为:

Avg_Sale_Amount=44.02+106.28*Avg_Num_Products_Purchased

2. Years_as_Customer:

计算

SUMMARY OUTPUT								
回归统i	计							
Multiple R	0.03							
R Square	0.00							
Adjusted R Square	0.00							
标准误差	340.04							
观测值	2375.00							
方差分析								
	df	SS	MS	F	Significance F			
回归分析	1.00	243578.02	243578.02	2. 11	0.15			
残差	2373.00	274377805.08	115624.87					
总计	2374.00	274621383.09						
	Coefficients	标准误差	t Stat	P-value	Lower 95%	Upper 95%	下限 95.0%	上限 95.0%
Intercept	380.04	15. 28	24. 87	0.00	350.07	410.01	350. 07	410.01
X Variable 1	4. 38	3.02	1. 45	0. 15	(1.54)	10.31	(1.54)	10. 31

得二者的线性相关 R²=0<0.7, p=0.15>0.05。

可以看出,Years_as_Customer 与目标变量 Avg_Sale_Amount 之间线性相关性不显著,不应 选择为预测变量。

3. 分类变量 if_Store_Mailing_List、if_Loyalty_Club_Only、if_Loyalty_Club_and_Credit_Card (基本条件设为 Only_Credit_Card):

其散点图如下,

计算其回归模型:

	·							
SUMMARY OUTPUT								
回归统ì	计							
Multiple R	0.84							
R Square	0. 70							
Adjusted R Square	0.70							
标准误差	185. 67							
观测值	2375.00							
方差分析								
	df	SS	MS	F	Significance F			
回归分析	3.00	192884931.52	64294977.17	1865.06	0.00			
残差	2371.00	81736451.57	34473.41					
总计	2374.00	274621383.09						
	Coefficients	标准误差	t Stat	P-value	Lower 95%	Upper 95%	下限 95.0%	上限 95.0%
Intercept	682.68	8.35	81. 72	0.00	666. 30	699.06	666. 30	699.06
X Variable 1	(525, 32)	10.04	(52. 30)	0.00	(545. 01)	(505. 62)	(545.01)	(505. 62)
X Variable 2	(286. 35)	11. 37	(25. 18)	0.00	(308.65)	(264.05)	(308.65)	(264.05)
X Variable 3	391. 48	15. 73	24. 89	0.00	360.63	422. 33	360.63	422. 33

调整的 R²=0.70,p 值均<0.05 其线性相关性显著。

综上,最终决定选择的预测变量为:

- 1. Avg_Num_Products_Purchased
- 2. 分类变量 if_Store_Mailing_List、if_Loyalty_Club_Only、if_Loyalty_Club_and_Credit_Card (基本条件设为 Only_Credit_Card)

回归方程式为:

Avg_Sale_Amount=Intercept+Variable_1(if_Store_Mailing_List*)+Variable_2(if_Loyalty_Club_Only)+Variable_3(if_Loyalty_Club_and_Credit_Card)+0(if_Credit_Card_Only)+Avg_Num_Product s_Purchased*Variable_4

代入线性回归模型, 计算得:

SUMMARY OUTPUT								
	it .							
Multiple R	0.91							
R Square	0.84							
Adjusted R Square	0.84							
标准误差	137. 48							
观测值	2375. 00							
方差分析								
	df	SS	MS	F	Significance F			
回归分析	4.00	229824514.02	57456128.51	3039.74	0.00			
残差	2370.00	44796869.07	18901.63					
总计	2374. 00	274621383.09						
	Coefficients	标准误差	t Stat	P-value	Lower 95%	Upper 95%	下限 95.0%	上限 95.0%
Intercept	303.46	10. 58	28. 69	0.00	282. 72	324. 20	282. 72	324. 20
X Variable 1	(245. 42)	9. 77	(25. 13)	0.00	(264. 57)	(226, 26)	(264. 57)	(226. 26)
X Variable 2	(149. 36)	8. 97	(16.65)	0.00	(166. 95)	(131. 76)	(166. 95)	(131. 76)
X Variable 3	281. 84	11. 91	23.66	0.00	258. 48	305. 19	258. 48	305. 19
X Variable 4	66. 98	1. 52	44. 21	0.00	64. 01	69. 95	64. 01	69. 95

因此, 最终的回归方程式为:

Avg_Sale_Amount=303.46+ (-245.42) (if_Store_Mailing_List)+ (-149.36)

(if_Loyalty_Club_Only)+281.84(if_Loyalty_Club_and_Credit_Card)+0(if_Credit_Card_Only)+Avg_Num_Products_Purchased*66.98

同时,整个回归模型的调整的 R²=0.84,各个变量的 p 均小于 0.05。

因此选择的预测变量与目标变量是显著线性相关的。

第3步: 演示/可视化:

根据你的模型结果给出建议。(限 500 字以内)

至少回答以下问题:

- 1. 你的建议是什么?公司应该向这 250 个客户发送宣传册吗?
- 2. 你是如何得出你的建议的? (请解释你的推理流程,以便审核人员能够根据你的流程向你 提供反馈)
- 3. 新的宣传册带来的利润预计是多少? (假设向这 250 个客户发送了宣传册)

我的建议是公司应该向这 250 个客户发送宣传册。

根据老客户的数据验证得知,每位客户的平均销售可由下述线性回归方程表示,且各预测变量与目标变量线性相关性显著:

Avg_Sale_Amount=303.46+if_Store_Mailing_List* (-245.42) +if_Loyalty_Club_Only* (-149.36)

+if_Loyalty_Club_and_Credit_Card*281.84+Avg_Num_Products_Purchased*66.98

代入已知新客户的类型以及平均产品购买数量($Avg_Num_Products_Purchased$),可计算得每位新客户的预测销售额(总额为 138292. 1 美元)。

再由每位客户的预测销售额乘以客户购买宣传册中产品的概率,得到每位客户的期望销售额(总额为47224.87137)。

那么:

期望利润=
$$\sum_{i=1}^{250}$$
 (期望收入 $_{i}$ * 50% - \$6. 5)=21987.44 美元>10000 美元

因此,应当向这 250 个客户发送宣传册,新的宣传册带来的利润预计是 21987.44 美元。