SOLUÇÃO DE LISTA DE EXERCÍCIOS

LISTA 06 (CONJUNTOS)

Leitura necessária:

- Matemática Discreta e Suas Aplicações, 6ª Edição (Kenneth H. Rosen):
 - Capítulo 2.1: Conjuntos
 - Capítulo 2.2: Operações com Conjuntos

Exercícios.

1. (Rosen 2.1.3) Determine se cada um dos pares de conjuntos abaixo é igual ou não.

- (a) $\{1, 3, 3, 3, 5, 5, 5, 5, 5\}$ e $\{5, 3, 1\}$
- (b) {{1}} e {1,{1}}
- (c) ∅ e {∅}

2. (Rosen 2.1.7) Determine se cada uma das afirmações abaixo é verdadeira ou falsa.

(a) $0 \in \emptyset$

(d) $\emptyset \subset \{0\}$

(g) $\{0\} \subseteq \{0\}$

(b) $\emptyset \in \{0\}$

(e) $\{0\} \in \{0\}$

(c) $\{0\} \subset \emptyset$

(f) $\{0\} \subset \{0\}$

3. (Rosen 2.1.9) Determine se cada uma das afirmações abaixo é verdadeira ou falsa.

(a) $x \in \{x\}$

(c) $\{x\} \in \{x\}$

(e) $\emptyset \subseteq \{x\}$

(b) $\{x\} \subseteq \{x\}$

- (d) $\{x\} \subseteq \{\{x\}\}$
- (f) $\emptyset \in \{x\}$

4. (Rosen 2.1.19) Encontre o conjunto-potência dos conjuntos abaixo, onde a e b são elementos distintos.

(a) $\{a\}$

(b) $\{a, b\}$

(c) $\{\emptyset, \{\emptyset\}\}$

5. (Rosen 2.1.21) Quantos elementos cada um destes conjuntos contém, considerando que a e b são elementos distintos.

- (a) $\mathcal{P}(\{a, b, \{a, b\}\})$
- (b) $\mathcal{P}(\{\emptyset, a, \{a\}, \{\{a\}\}\})$
- (c) $\mathcal{P}(\mathcal{P}(\emptyset))$

6. (Rosen 2.1.23) Sejam $A=\{a,b,c,d,\}$ e
 $B=\{x,y\}.$ Encontre

(a) $A \times B$

(b) $B \times A$

7. (Rosen 2.1.26) Suponha que $A \times B = \emptyset$, e A e B sejam conjuntos. O que você pode concluir?

- 8. (Rosen 2.1.31) Explique porque $A \times B \times C$ e $(A \times B) \times C$ não são o mesmo conjunto.
- 9. (Rosen 2.2.15) Mostre que se A e B são conjuntos, então $\overline{A \cup B} = \overline{A} \cap \overline{B}$: (Esta é uma das leis de De Morgan.)
 - (a) mostrando que cada lado é um subconjunto do outro lado,
 - (b) usando uma tabela de pertinência.
- 10. (Rosen 2.2.18) Sejam $A, B \in C$ conjuntos. Usando manipulação de conectivos lógicos, mostre que:
 - a) $(A \cup B) \subseteq (A \cup B \cup C)$
 - c) $(A-B)-C \subseteq A-C$
 - e) $(B A) \cup (C A) = (B \cup C) A$
- 11. (Rosen 2.2.29) O que você pode dizer sobre os conjuntos A e B se você sabe que:
 - (a) $A \cup B = A$?

- (c) A B = A?
- (e) A B = B A?

(b) $A \cap B = A$?

- (d) $A \cap B = B \cap A$?
- 12. (Rosen 2.2.48) Determine $\bigcup_{i=1}^{\infty}A_i$ e
 $\bigcap_{i=1}^{\infty}A_i$ para cada A_i abaixo:
 - (a) $A_i = \{i, i+1, i+2, ...\}.$
 - (b) $A_i = \{0, i\}.$
 - (c) $A_i = (0, i)$, i.e., o intervalo real aberto $\{x \in \mathbb{R} \mid 0 < x < i\}$.
 - (d) $A_i = (i, \infty)$, i.e., o intervalo real aberto $\{x \in \mathbb{R} \mid x > i\}$.