

#### Critical Reviews in Food Science and Nutrition



ISSN: 1040-8398 (Print) 1549-7852 (Online) Journal homepage: http://www.tandfonline.com/loi/bfsn20

# Interactions between cell wall polysaccharides and polyphenols

Fan Zhu

**To cite this article:** Fan Zhu (2017): Interactions between cell wall polysaccharides and polyphenols, Critical Reviews in Food Science and Nutrition, DOI: 10.1080/10408398.2017.1287659

To link to this article: <a href="http://dx.doi.org/10.1080/10408398.2017.1287659">http://dx.doi.org/10.1080/10408398.2017.1287659</a>

|                | Accepted author version posted online: 31 Mar 2017.      |
|----------------|----------------------------------------------------------|
|                | Submit your article to this journal $oldsymbol{arGamma}$ |
| Q <sup>L</sup> | View related articles ☑                                  |
| CrossMark      | View Crossmark data ☑                                    |

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=bfsn20

cell wall polysaccharide-polyphenol interactions

Interactions between cell wall polysaccharides and polyphenols

Fan Zhu\*

School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New

Zealand

\*Correspondence, email: fzhu5@yahoo.com

Abstract

In plant-based food systems such as fruits, vegetables, and cereals, cell wall polysaccharides and

polyphenols co-exist and commonly interact during processing and digestion. The non-covalent

interactions between cell wall polysaccharides and polyphenols may greatly influence the

physicochemical and nutritional properties of foods. The affinity of cell wall polysaccharides

with polyphenols depends on both endogenous and exogenous factors. The endogenous factors

include the structures, compositions, and concentrations of both polysaccharides and

polyphenols, and the exogenous factors are the environmental conditions such as pH,

temperature, ionic strength, and the presence of other components (e.g., protein). Diverse

methods used to directly characterise the interactions include NMR spectroscopy, size-exclusion

chromatography, confocal microscopy, isothermal titration calorimetry, molecular dynamics

simulation, and so on. The un-bound polyphenols are quantified by liquid chromatography or

spectrophotometry after dialysis or centrifugation. The adsorption of polyphenols by

polysaccharides is mostly driven by hydrophobic interactions and hydrogen bonding, and can be

described by various isothermal models such as Langmuir and Freundlich equations. Quality attributes of various food and beverage products (e.g., wine) can be significantly affected by polysaccharide-polyphenol interactions. Nutritionally, the interactions play an important role in the digestive tract of humans for the metabolism of both polyphenols and polysaccharides.

#### Keywords

polysaccharide, cell wall, polyphenol, non-covalent interaction, physicochemical property, nutrition

#### 1. Introduction

The high intake of plant-based whole foods has been associated with a low occurrence of various degenerative and chronic diseases such as obesity, type 2 diabetes, coronary heart disease, breast cancer, and prostate cancer (Campbell & Campbell, 2005; Campbell & Jacobson, 2014; Wang & Zhu, 2016). Two major functional nutrients responsible for the disease prevention are polyphenols and cell wall non-starch polysaccharides as dietary fibres (Velderrain-Rodríguez et al., 2014; Anderson et al., 2009; Campbell & Campbell, 2005). Polyphenols as natural antioxidants have been proved to have diverse health benefits such as anti-inflammation, antioxidation, signal transduction modulation, anti-proliferation, and anti-microbial activity (Velderrain-Rodríguez et al., 2014; Selma et al., 2009). Polyphenols also play important roles in the sensory quality, such as the formation of astringency, bitter taste, colour, turbidity, of various food products (e.g., wine and cider) (Le Bourvellec & Renard, 2012). Polyphenols as secondary plant metabolites occur in a range of medicinal and dietary plants, and the major categories include phenolic acids, flavonoids, lignans, coumarins, stilbenes, and quinones (Cai, Sun, Xing, Luo, & Corke, 2006). Various types of polyphenols with different structures have different physicochemical properties and nutritional effects (Cai et al., 2006; Velderrain-Rodríguez et al., 2014). Chemical structures of some polyphenols discussed in this review are presented in Fig. 1. Cell wall polysaccharides are non-starch polysaccharides, making up most of the dietary fibres in vegetables, fruits, and whole grain cereals/pseudocereals (Harris & Smith, 2006). The major types of cell wall polysaccharides include cellulose (Fig. 1d), pectins,  $(1\rightarrow 3)$ ,  $(1\rightarrow 4)$ - $\beta$ -glucans, and arabinoxylans (Harris & Smith, 2006). These polysaccharides play major roles in food

texture (e.g., as gelling agents) as well as in human nutrition as dietary fibres (Harris & Smith, 2006; Anderson et al., 2009). Increasing intake of cell wall polysaccharides as dietary fiber has many health benefits. These include lowering serum cholesterol and blood pressure levels, improving glycemia and insulin sensitivity in both diabetic and normal individuals, enhancing immunological function, and improving gastrointestinal disorders of duodenal ulcer, constipation, diverticulitis, gastroesophageal reflux disease, and haemorrhoids (Anderson et al., 2009). Therefore, a high intake of both cell wall polysaccharides and polyphenols is expected to positively impact human health with possible synergistic effects.

During food and beverage processing, the plant cells de-compartmentalize and dis-integrate under mechanical shearing forces. Various nutrients are released from their respective cell compartments and come into contact with each other (Zhu, 2015). The interactions among food components may be key factors determining the physicochemical and nutritional properties of food products (Le Bourvellec & Renard, 2012; Bordenave et al., 2014; Zhu, 2015; Jakobek, 2015). For example, the influence of grape cell wall and condensed tannin interactions on tannin extractability into wine is significant (Hanlin et al., 2010). Diet rich in digestible carbohydrates reduced the absorption of procyanidin dimers and trimers *in vivo* (rat models) (Serra et al., 2010). In contrast, in a human study, meals rich in carbohydrates (bread and sugar) facilitated the adsorption of cocoa flavanols (catechin and epicatechin) (Schramm et al., 2003). In one case, cell wall polysaccharides and polyphenols of plant foods interact with each other during processing (Hanlin et al., 2010; Le Bourvellec et al., 2014; Troszyńska et al., 2010). An early study showed that polyphenols interacted with column supporting carbohydrates of gel-permeation chromatography (e.g., Sephadex G-25 and Sephadex LH-20) (McManus et al., 1985). The non-

# <sup>4</sup> ACCEPTED MANUSCRIPT

covalent interactions between cell wall polysaccharides and polyphenols may significantly impact the processing, storage, textural and eating quality of food and beverage (Le Bourvellec et al., 2014, 2007; Troszyńska et al., 2010). The association of cell wall polysaccharides and polyphenols in human digestive track may greatly impact the metabolism of both components (Saura-Calixto, 2011; Schramm et al., 2003; Serra et al., 2010). Polyphenols can be associated with dietary fiber in plant foods, which has a different bioavailability than the free ones (Mercado-Mercado et al., 2015). The body of knowledge on physicochemical and nutritional aspects of cell wall polysaccharides and polyphenols is individually tremendous. Understanding the nature and consequence of their noncovalent interactions should greatly contribute to the maintenance and improvement of the quality of various plant-based food systems. The cell wall polysaccharide-polyphenol interactions may also be utilised for functional food development (e.g., for controlled releasing applications).

This review summarises the quantification methods and various factors affecting the non-covalent interactions between cell wall polysaccharides and polyphenols from different plant food systems. The nature of the interactions is discussed. The impacts of the interactions on the physicochemical properties of food systems and the metabolism of nutrients in human digestive track are also reviewed. Potential research topics to better understand and utilise the interactions in food systems are suggested.

#### 2. Analytical methods

Various direct and indirect analytical methods have been used to quantitatively and qualitatively measure the cell wall polysaccharide-polyphenol non-covalent interactions (Table 1). Each method tends to reflect different physicochemical aspects of the interactions.

#### 2.1. Direct methods

#### 2.1.1. Confocal laser scanning microscopy

Confocal laser scanning microscopy has been used to visualise the binding of anthocyanins with cell walls (Fig. 2a) (Padayachee et al., 2013; 2012a). Anthocyanins of purple carrot juice concentrate appeared to stack on the surface of bacterial cellulose fibrils (Padayachee et al., 2012a). The binding appeared to be non-uniformly distributed and highly localised on the surface of cellulose and cell walls (Padayachee et al., 2012a; Padayachee et al., 2013). During *in vitro* gastric and small intestinal digestion, the integrity of the cell wall-anthocyanin/phenolic acid complexes was disrupted, due to the partial removal of the polyphenols (Padayachee et al., 2013). Therefore, these polyphenols, together with the cell walls, would come into the large intestine for further metabolism.

#### 2.1.2. Saturation transfer difference (STD) NMR spectroscopy

Saturation transfer difference (STD) NMR (nuclear magnetic resonance) spectroscopy has been used to probe the interactions between anthocyanins (cyanidin-3-*O*-glucoside and delphinidin-3-*O*-glucoside) and pectins (Fernandes et al., 2014). <sup>1</sup>H NMR spectrum of the anthocyanins at pH 4 was compared to those of the solutions with the pectin addition (Fig. 2b). When ligand becomes

in close contact with its receptor, signals of the ligand in the STD NMR spectrum receive magnetization transfer and stay in the difference spectrum. When the delphinidin-3-O-glucoside-to-pectin ratio was at 200:1, the saturation on pectin was transferred to the anthocyanin proton after irradiation (Fernandes et al., 2014). Only at a much higher ratio of cyanidin-3-O-glucoside-to-pectin (600:1), a small resonance peak was noted. This indicates weaker interactions between cyanidin-3-O-glucoside and pectin than delphinidin-3-O-glucoside and pectin (Fernandes et al., 2014). This may be due to that cyanidin-3-O-glucoside has 3 hydroxyl groups while delphinidin-3-O-glucoside has 2 hydroxyl groups. By quantifying the relationships between the increasing peak intensity of some anthocyanin proton signal in STD NMR spectrum and the increasing concentration of anthocyanins, the dissociation constants ( $K_d$ ) were calculated (Fernandes et al., 2014). This provides a quantitative basis for the anthocyanin-pectin interactions. Acidic pH (flavylium cation) gave a stronger affinity with a much smaller dissociation constant ( $K_d \approx 2$   $\mu$ M).

#### 2.1.3. Molecular dynamics simulation

Computer-based molecular dynamics simulation (MDS) was used to study the non-covalent interactions between anthocyanins and pectins (Fernandes et al., 2014). Three MDS of 45 ns were employed. MDS supports the experimental results of STD NMR studies as described above and provides additional information on the interactions. Solvent-accessible surface area of pectin was obtained and the results indicated the extension of anthocyanins during binding.

Representative geometries of the anthocyanin-pectin bindings are outlined (Fig. 2c).

#### 2.1.4. UV-vis spectrophotometry

UV—vis spectrophotometry can be used to monitor the aggregation formation due to the complexation between polyphenols and soluble cell wall polysaccharides (e.g., pectins) (Watrelot et al., 2013 and 2014). Increasing absorbance at 650 nm indicated the formation of aggregates in solution with varying concentrations of polyphenols and cell wall polysaccharides as well as experimental conditions. Results of UV—vis spectrophotometry-based methods in general agreed with the results of isothermal titration calorimetry in studying the interactions between pectins and procyanidins with exceptions (Watrelot et al., 2013 and 2014). The exceptions are either because the enthalpy change of interactions was beyond the detection limit of the calorimetry or there was a lack of aggregation formation.

#### 2.1.5. Dynamic light scattering (DLS) technique

DLS has been used to monitor the colloidal behaviours of wine tannins in the presence of wine polysaccharides (Riou et al., 2002). Wine tannins alone tend to aggregate in a model solution during storage, and the particle size evolved from a few hundred up to 1000 nm in 10 h. The presence of different pectins had no effect on the initial aggregate formation, but reduced the rate of aggregation to various extents, depending on the pectin type (Riou et al., 2002).

#### **2.1.6.** Isothermal titration calorimetry (ITC)

ITC has been used to probe the thermodynamics of the noncovalent interactions between polyphenols and macromolecules (e.g., proteins and polysaccharides) (Bourvellec & Renard, 2012; Whitesides & Krishnamurthy, 2005). Interactions between apple/citrus cell wall polysaccharides and apple procyanidins have been studied by ITC (Le Bourvellec et al., 2012; Watrelot et al., 2013 and 2014) (Fig. 2d). Positive and negative heat flows represent endothermic

and exothermic changes, respectively. Addition of procyanidins into pectin solution gave the exothermic peaks, and increasing procyanidin concentration decreased the peak height. This is due to the gradual saturation of the binding sites of the polysaccharides. Thermodynamic parameters, including stoichiometry (n), association constant ( $K_a$ ), and enthalpy change ( $\Delta H$ ) of binding, can be obtained from the titration curve (Le Bourvellec et al., 2012). For example, n of the interactions between procyanidins (DP 9) and apple pectin was 0.0236 and suggested that 1 mol equivalent of flavan-3-ol monomer can bind to 42 mol equivalents of galacturonic acid.  $K_a$  was  $1.4 \times 10^4$  M<sup>-1</sup> (>  $1 \times 10^4$  M<sup>-1</sup>), suggesting strong interactions (Le Bourvellec et al., 2012). The relationships between Gibbs free energy ( $\Delta G$ ), enthalpy change ( $\Delta H$ ), and entropy ( $\Delta S$ ) of binding can be defined by the Van't Hoff equation as:

 $\Delta G = -RT \ln K_a = \Delta H - T\Delta S$ , where R is the ideal gas constant and T is the absolute temperature.

By comparing the  $\Delta H$  (enthalpy contribution) and --T $\Delta S$  (entropy contribution), the nature of the interactions (entropy-driven or enthalpy-driven) may be derived. In a ligand-design approach, entropy-driven interactions are of hydrophobic interactions and enthalpy-driven ones are of hydrogen bonds (Whitesides & Krishnamurthy, 2005). Most of the interactions between pectins and procyanidins were mainly hydrophobic, while some of the interactions were moderated through hydrogen bonding (Hanlin et al., 2010; Le Bourvellec et al., 2012; Watrelot et al., 2013 and 2014). The presence of aromatic groups in grape procyanidins favours the hydrophobic interactions (Watrelot et al., 2013). During the pectin-procyanidin complex formation, water molecules got expelled from the interface due to hydrophobic contacts (Le Bourvellec et al., 2012).

#### 2.2. Indirect methods

The unbound polyphenols after their interactions with cell wall polysaccharides are usually recovered through dialysis assay or centrifugation before quantification by HPLC (high performance liquid chromatography) and/or spectrophotometry (Padayachee et al., 2012a, 2012b, and 2013; Phan et al., 2015 and 2016; Lin et al., 2016; Le Bourvellec et al., 2004, 2005a; 2005b; Renard et al., 2001; Le Bourvellec et al., 2007; Le Bourvellec et al., 2012; Bindon et al., 2010a and 2010b; Bautista-Ortín et al., 2014 and 2016;). Fig. 2e presents the molecular size distribution of polyphenols (tannins and anthocyanins) before and after the addition of cell wall (grape) polysaccharides in solution as analysed by HPLC. The changes in the molecular size reflect their binding behaviours with cell walls. The unbound polyphenols may also be quantitatively reflected by using *in vitro* antioxidant assays to measure the changes in the antioxidant activity (Sun-Waterhouse et al., 2008a and 2008b). The extractability of cell wall polysaccharides (e.g., pectins) also indirectly reflects their interactions with the polyphenols as the bound polysaccharides became less extractable (Le Bourvellec et al., 2009).

# 3. Factors affecting non-covalent interactions between polyphenols and cell wall polysaccharides

#### 3.1. Polyphenol structure

Various studies reported the impact of polyphenol structure and composition on the affinity between polyphenols and cell wall polysaccharides (Tang et al., 2003; Padayachee et al., 2012a; 2012b; 2013; Phan et al., 2015 and 2016; Fernandes et al., 2014; Renard et al., 2001; Le Bourvellec et al., 2004, 2005a, 2005b, 2007, 2009; Bindon & Kennedy, 2011; Gonçalves et al.,

2012; Bautista-Ortín et al., 2014; Bautista-Ortín et al., 2016; Simonsen et al., 2009; Gao et al., 2012a; Wang et al., 2013; Quirós-Sauceda et al., 2014). Structurally-diverse polyphenols (anthocyanins, tannins, flavonoids, and phenolic acids) from various sources (fruits, vegetables, and tea) have been employed in different systems (Table 2).

Various phenolic acids interacted with cell wall polysaccharides to different extents (Padayachee et al., 2012b; Wang et al., 2013). Among the phenolic acids of purple carrot juice concentrate (ferulic acid, chlorogenic acid, and caffeic acid), caffeic acid had the maximum adsorption by pectin-cellulose composite and ferulic acid had the minimum adsorption (Padayachee et al., 2012b). Among 13 phenolic acids (including both hydroxybenzoic and hydroxycinnamic acids), methylation and methoxylation were negatively correlated with their binding to soluble oat βglucans (Wang et al., 2013). Among the 3 different types of coumaric acids (o-, m-, p-coumaric acids), o-coumaric acid was more bound to soluble oat  $\beta$ -glucans than the m- and p-coumaric acids which had similar binding (Wang et al., 2013). Various types of flavonoids (flavones, flavonols, flavanones, and isoflavones) interacted with soluble oat  $\beta$ -glucans to different degrees (Wang et al., 2013). The binding capacities for the flavonoid isomers increased by the order of flavonol > flavone > flavanone > isoflavone. Three or less number of OH groups on flavonoids facilitated the affinity while four and more OH groups decreased it (Wang et al., 2013). Glycosylation increased or decreased the binding of flavonoids onto the oat  $\beta$ -glucans, depending on the type of flavonoids (Wang et al., 2013). Both the non-acylated and acylated anthocyanins of purple carrot juice concentrate showed a similar binding pattern to cellulose and cellulose--pectin composite (Padayachee et al., 2012a). Anthocyanins of grape wine bound to the wine polymeric material (Gonçalves et al., 2012). Anthocyanins with coumaroyl and acetyl

moieties showed a stronger binding with wine polymeric material as compared with the nonacylated anthocyanins (Gonçalves et al., 2012). This suggested that the interactions between wine anthocyanins and polymeric material were most hydrophobic (Gonçalves et al., 2012). The difference in the results of the two anthocyanin studies (Padayachee et al., 2012a; Gonçalves et al., 2012) suggested the important role of the cell wall polysaccharides in the interactions. Two anthocyanins (cyanidin-3-O-glucoside and delphinidin-3-O-glucoside) interacted with citrus pectins (Fernandes et al., 2014). Delphinidin-3-O-glucoside (with 3 OH groups) had a much higher affinity with pectin than cyanidin-3-O-glucoside (with 2 OH groups) (Fernandes et al., 2014), suggesting the role of hydroxyl groups involving in the interactions (possibly through hydrogen bonds). Procyanidins from various sources (grape, apple, and pear) showed affinity with cell wall polysaccharides to various degrees (Table 2). The binding capacity of apple cell walls with procyanidins greatly depended on the structure and composition of this polyphenol (Le Bourvellec et al., 2005a; 2005b). The molecular size, degree of galloylation, and portion of (+)-catechin of procyanidins were positively correlated with the binding capacity of cell walls (Renard et al., 2001; Le Bourvellec et al., 2005a; Bindon & Kennedy, 2011; Bautista-Ortín et al., 2014; Watrelot et al., 2013). Compared with the degree of galloylation, the molecular size appeared to be more important in determining the interactions (Bautista-Ortín et al., 2014). Procyanidins have multiple sites with simultaneous binding to various regions of the pectins (Baxter et al. 1997). Therefore, larger procyanidins have more binding sites for the interactions. Oxidation of procyanidins increased their binding to the cell walls (Bautista-Ortín et al., 2014; Le Bourvellec et al, 2009). Tea polyphenols, including (-)-epicatechin, (-)-epigallocatechin, (-)epicatechin gallate, (-)-epigallocatechin gallate, (-)-gallocatechin gallate, and (-)-catechin,

interacted with the soluble oat β-glucans (Gao et al., 2012a; Wang et al., 2013). (–)-Epigallocatechin gallate (EGCG) had the highest binding capacity with the β-glucans (Gao et al., 2012a). The binding with oat  $\beta$ -glucans was negatively correlated with the degree of gallic acid esterification and positively correlated with that of catechin galloylation (Wang et al., 2013). Another study on the interactions between cellulose and 24 polyphenols (gallotannins and ellagitannins) showed that the molecular weight, hydrophobicity, and number of galloyl groups were positively correlated with the strength of binding (Tang et al., 2003). This suggests that hydrophobic interaction plays a role in the association. Gallotannins had a much lower affinity with cellulose than ellagitannins (Tang et al., 2003). Through monitoring the interactions between β-glucans and 21 vanillin-inspired phenolic derivatives, Simonsen et al. (2009) found that the glucosides of phenolics had little binding (Fig. 1a). Phenolics with an OH group in paraposition to a CHO group had the strongest binding, and additional functional groups reduced the binding. The binding capacity among different types of polyphenols was explored in comparative studies under the same experimental conditions (Phan et al., 2015; Wang et al., 2013) (Supplementary Fig. 1). Ferulic acid, gallic acid, chlorogenic acid, (+/-)-catechin, and cyanidin-3-glucoside had similar binding patterns with cellulose, and the native charges had little impact on the interactions (Phan et al., 2015). Compared with hydroxycinnamic acids and epicatechin, procyanidins had strong binding with the apple cell walls (Renard et al., 2001). Addition of anthocyanins into the tannin-cell wall system facilitated the extraction of tannins from the grape seeds and skins, indicating their competitive binding with the cell walls (Bautista-Ortín et al., 2016). A systematic study on 36 polyphenols from different categories with varying

structures showed that there is no clear cut on their binding with cell wall polysaccharides (Wang et al., 2013).

It should be noted that different results from different studies may not be compared, and that the impact of polyphenol structure and composition on the polyphenol-cell wall polysaccharide interactions also depends on the type of cell wall polysaccharides as well as the experimental conditions as described below.

#### 3.2. Cell wall polysaccharide structure

Various studies reported the impact of structure and composition of cell wall polysaccharides on the interactions with polyphenols (Padayachee et al., 2012a and 2012b; Lin et al., 2016; Le Bourvellec et al., 2005a, 2005b, 2012; Sun-Waterhouse et al., 2008a and 2008b; Simonsen et al., 2009; Ruiz-Garcia et al., 2014; Quirós-Sauceda et al., 2014; Le Bourvellec et al., 2004 and 2007; Wu et al., 2011; Simonsen et al., 2009). Increasing the proportion of pectin in cellulose-pectin composite increased the adsorption of anthocyanins of purple carrot juice concentrate (Padayachee et al., 2012a). This suggests that the pectin has a higher binding capacity with the anthocyanins than the cellulose. Grape skin cell walls were fractionated by sequential washing with CDTA solution and NaOH solutions (0.05 M, 1 M, and 4 M), and these fractions showed different affinity with grape skin procyanidins (Ruiz-Garcia et al., 2014). The amount of proanthocyanidins bound to cell walls was 54%. Removal of galacturonan-rich fractions by CDTA solution greatly reduced the binding capacity of cell walls, while the hemicellulose fractions retained a good affinity with the procyanidins. The remaining lignocellulosic residues (mostly cellulose and lignin) after the removal of hemicellulose had a greatly reduced

polyphenol affinity (Ruiz-Garcia et al., 2014). Due to the complex nature of the fractions, single type cell wall polysaccharide should be employed as model systems. In a comparative study on the interactions of pectin, xyloglucan, starch, and cellulose with apple procyanidins, the apparent affinity constants for the individual polysaccharides followed the order of pectin, xyloglucan, starch, and cellulose (Le Bourvellec et al., 2005b). Conformation of cellulose and xyloglucans favours the stacking and cooperativity with higher apparent saturation levels. Pectin had a lower level of apparent saturation due to the steric hindrance (Le Bourvellec et al., 2005b). It was suggested that pectin has the ability to form hydrophobic pockets through gelling to capture the procyanidins (Le Bourvellec et al., 2005b). In contrast, compared with cellulose-pectin composite, cellulose had a higher initial adsorption (within 1h) of various phenolic acids (ferulic acid, chlorogenic acid, and caffeic acid). Cellulose and cellulose-pectin composite had a similar degree of affinity with these phenolic acids after a few days (Padayachee et al., 2012b). The discrepancy between these two studies may be attributed to the types of polyphenol, composition and structure of the cell wall polysaccharides, as well as the experimental conditions. Two βglucans from oat and barley, with rather different composition, structure, and rheology, showed rather similar binding behaviours with 21 vanillin-derived phenolic compounds (Fig. 1a) (Simonsen et al., 2009). The analytical method was by dialysis assay and may not be able to reflect any possible impact of polysaccharide type on their binding properties under the experimental conditions (Simonsen et al., 2009).

The influence of pectin structure and composition on the binding capacity of polyphenols has been studied (Table 2) (Fig. 3a). Highly methylated pectins had strong interactions with procyanidins, indicating that the hydrophobic interaction plays an important role (Watrelot et al.,

2013). Esterification of pectin may also increase the chain flexibility, making their association with procyanidins easier. Citrus pectin and apple pectin had different binding patterns with procyanidins (Watrelot et al., 2013). The higher portion of rhamnose in the citrus pectin than apple pectin may give the former a higher flexibility of conformation to bind the procyanidins. The neutral sugar side chains limited the interactions between pectin and procyanidins, possibly due to the steric hindrance (Watrelot et al., 2013 and 2014). Monitoring the interactions of hairy regions of pectins and rhamnogalacturonans II with procyanidins showed that the binding capacity of pectins followed the sequence of rhamnogalacturonan, arabinans + galactan I + xylogalacturonans, galactan I, arabinans + galactans II, and arabinans (Watrelot et al., 2014). The linear part of the pectin (e.g., backbone) may feasibly allow the stacking/association of procyanidins. The arabinan side chains tend to be more mobile than the galactan chains, therefore, conformationally limiting their associations with procyanidins (Watrelot et al., 2014). Type II galactans have highly branched structure, thus, having limited interactions with procyanidins. Rhamnogalacturonan II bound procyanidins inefficiently, which disagreed with the results of Riou et al. (2002). This discrepancy may be due to the differences in the experimental conditions of different studies (Riou et al., 2002; Watrelot et al., 2014) as described in the next section. Two types of β-glucans from oat and barley, with rather different composition, structure, and rheology, showed rather similar binding behaviours with 21 vanillin-derived phenolic compounds (Simonsen et al., 2009). The analytical method was by dialysis assay and may not be able to reflect any possible impact of polysaccharide type on their binding properties under the experimental conditions (Simonsen et al., 2009).

Modifications of cell wall polysaccharides by chemical (cross-linking and oxidation) and physical (drying) means greatly impacted their interactions with polyphenols (Le Bourvellec et al., 2005a and 2005b; Simonsen et al., 2009). Harsh drying of apple cell walls (100 °C, 72 h) decreased the porosity (from 2.15 to  $0.52 \text{ m}^2/\text{g}$ ) and greatly increased both apparent saturation level and apparent affinity per surface unit (Le Bourvellec et al., 2005a). This may be due to the disrupted physical structure of cellulose matrix, making the polyphenols easier to attach to the cellulose molecules. Cross-linking increased the apparent affinity constant of pectins and xyloglucans with procyanidins (Le Bourvellec et al., 2005a). This may be due to the increased hydrophobicity at the surface of these polysaccharides as a result of cross-linking. Enzymatic degradation of barley β-glucans greatly decreased the binding capacity with vanillin-derived phenolic compounds (Simonsen et al., 2009). This could be readily attributed to the partially disrupted tertiary and secondary structures of β-glucans.

#### 3.3. Environmental factors

Environmental factors, including the ratios of polyphenol to polysaccharide, pH, ionic strength, temperature, and reaction time, may greatly impact the interactions between polyphenols and cell wall polysaccharides (Le Bourvellec et al., 2004; Simonsen et al., 2009; Wu et al., 2011; Phan et al., 2016; Lin et al., 2016; Padayachee et al., 2013). These factors are related to the common food processing and digestive tract conditions.

Phan et al. (2016) found that the pH (3–7) was the most dominant factor affecting the binding between cellulose and some polyphenols (cyanidin-3-glucoside, ferulic acid, (+/-)-catechin). The extents of influence depended on the type of polyphenol. Cyanidin-3-glucoside binding increased

with increasing pH from 3 to 5 before decreasing with pH up to 7. This is possibly due to the structural changes of the anthocyanins at various pH (Fig.1b). The pH (2.0-4.5) greatly influenced the binding of anthocyanins with pectins (Lin et al., 2016). The pH 3.6 favoured the binding while other pH values gave less affinity. The forms (quinoidal base) of anthocyanins at this pH may favour their stacking (Goto & Kondo, 1991) (Fig. 1b and Fig. 3b). At pH 7, the anthocyanins may also be degraded. Increasing pH increased the adsorption of ferulic acid (pK<sub>a</sub> value 4.6), and had little effect on that of (+/-)-catechin (pK<sub>a</sub> value 8.6). This suggests that the ionic interactions may not play an important role in the binding. Wu et al. (2011) showed that tea polyphenols had the maximum adsorption with oat β-glucans at pH 6 when varying the pH from 3 to 7. Altering pH (2-7) had no effect on the associations between procyanidins and apple cell walls, suggesting that the ionic or electrostatic interactions contributed little to this type of interactions (Le Bourvellec et al., 2004; Renard et al., 2001). Therefore, the pH effect appeared to be greatly dependent on the type of polyphenols. Compared with pH, the temperature (4–37°C) was the second dominant factor affecting the interactions (Phan et al., 2016). Increasing temperature slightly decreased the adsorption of cyanidin-3-glucoside and ferulic acid except for catechin. This may suggest that hydrogen bonding was involved in the interactions (Phan et al., 2016). Increasing temperature (20–60 °C) decreased the adsorption of tea polyphenols onto β-glucans, again suggesting the involvement of hydrogen bonds in the interactions (Wu et al., 2011). Increasing buffer concentration (up to 0.5 M) decreased the binding of tea polyphenols with  $\beta$ -glucans, suggesting that the hydrophobic interaction is small (Wu et al., 2011). NaCl (0--100 mM) (related to ionic strength) had little influence on the polyphenol binding (Phan et al., 2016). This may be due to the rather low concentrations used in

this study. Le Bourvellec et al. (2007) found that the binding of procyanidins with apple cell walls increased slightly with the increasing ionic strength (up to 1 M). Le Bourvellec et al. (2004) studied the effects of adding solvents on the interactions between procyanidins and apple cell walls. Addition of urea which disrupts the hydrogen bonds decreased the association, suggesting the involvement of hydrogen bonding. The involvement of hydrogen bonds in the polyphenol-polysaccharide interactions is schematically illustrated in Fig. 3c. Addition of ethanol or dioxane which decreases the solvent polarity disrupted the association, suggesting the importance of hydrophobic interactions. Gao et al. (2012a) also found that increasing concentration of NaCl and ethanol up to 0.5 M decreased the binding of (-)-epigallocatechin gallate with oat  $\beta$ -glucan in a linear manner, suggesting the hydrogen bonding is a major player in this type of interactions. Procyanidins bound to apple cell walls to saturation within a few mins (Le Bourvellec et al., 2004). Little change in the affinity between procyanidins and apple cell walls in the course of 60 min was noted (Renard et al., 2001).

Once the polyphenols are bound with the cell walls, altering the environmental conditions may release them from the complexes (Padayachee et al., 2013). The anthocyanins and phenolic acids bound to carrot cell walls were subjected to various conditions for re-releasing (Padayachee et al., 2013). Acidified methanol released 30% of phenolic acids and 20% of total anthocyanins, while only 2% of the polyphenols were unbound after *in vitro* simulated gastric and small intestinal digestions (Padayachee et al., 2013). The bound polyphenols with cell walls would pass into the colon. Overall, the effects of environmental factors and experimental conditions depend on their interactions of these factors, the types of both polyphenols and polysaccharides.

#### 4. Isothermal adsorption models

The isothermal adsorption behaviours of cell wall polysaccharides with polyphenols in different food models have been well described by various mathematical models including Langmuir, Freundlich, Redlich-Peterson, and Toth equations (Freundlich, 1906; Langmuir, 1918; Redlich & Peterson, 1959; Toth, 1971) (Supplementary Table 1). The mathematical and theoretical descriptions of these isothermal adsorption models have been detailed previously, and are, therefore, not introduced here.

The mostly used model has been the Langmuir equation with high coefficients of determination  $(R^2 > 0.9)$  (Phan et al., 2015; Wu et al., 2011; Gao et al., 2012a; Le Bourvellec et al., 2005a; 2005b; Shi et al., 2015). Le Bourvellec et al. (2005a, 2005b) employed Langmuir equation to study the interactions between apple cell walls and procyanidins. The adsorption data well fitted with the Langmuir equation with  $R^2 > 0.96$ . Phan et al. (2015) used Langmuir equation to well describe the isothermal adsorption of ferulic acid, gallic acid, chlorogenic acid, catechin, and cyanidin-3-glucoside by cellulose. The apparent adsorption capacity and apparent binding affinity constant were calculated. Catechin (1488 µg/mg cellulose) and ferulic acid (1409 µg/mg cellulose) had the highest apparent adsorption capacity, followed by chlorogenic acid (1060 μg/mg cellulose) and cyanidin-3-glucoside (1109 μg/mg cellulose). Gallic acid had the lowest apparent adsorption capacity (388 µg/mg cellulose) (Phan et al., 2015). This further supports that the molecular structure of polyphenols may greatly impact their interactions with cell wall polysaccharides as discussed in the section 3.2. Cyanidin-3-glucoside had the highest apparent binding affinity constant among all the polyphenols. This may be due to the charge attraction effect between this anthocyanin (positive change) and cellulose (negative charge) at pH 3.4

(Phan et al., 2015). Shi et al. (2015) successfully used both Langmuir and Freundlich equations to model the isothermal adsorption behaviours of rice brans with tea polyphenols. Apart from the adsorption capacity, Freundlich constant (n) related to the adsorption heterogeneity can be obtained. The adsorption is homogeneous when 1/n is 1, and is heterogeneous when 0 < 1/n < 1. This approach may be extended to study the impact of polysaccharides and polyphenols on the interactions as they can be very structurally heterogeneous (Table 2). Wu et al. (2011) employed Langmuir, Freundlich, and Redlich-Peterson equations to model the adsorption of tea polyphenols by oat β-glucans. Freundlich equation best described the adsorption process with the highest  $R^2$  (0.979), followed by Redlich-Peterson equation ( $R^2 = 0.917$ ). Langmuir equation gave the lowest  $R^2$  (0.7734) (Wu et al., 2011). This suggests that multilayer coverage was involved in this adsorption process (Wu et al., 2011). Gao et al. (2012a) used Langmuir, Freundlich, Redlich-Peterson, and Toth equations to describe the adsorption of (–)-epigallocatechin-3-gallate (EGCG) (a tea polyphenol component) by oat  $\beta$ -glucans. Toth equation best described the adsorption process with  $R^2$  of 0.99, which was followed by Redlich-Peterson ( $R^2 = 0.978$ ), Langmuir ( $R^2 = 0.941$ ), and Freundlich ( $R^2 = 0.887$ ) equations. Fitting of the adsorption data by Toth isothermal model suggested a heterogeneous surface of the oat  $\beta$ -glucans during the process (Gao et al., 2012a). Therefore, the suitability of specific equations appeared to be dependent on the specific interactions and experimental conditions. Various mathematical models with different parameters reflect different aspects of the interactions, and they may be employed together to reflect the adsorption process. The meaning of the parameters of the mathematical isothermal models remains to be better linked to the chemical, physical, and structural aspects of the interactions.

#### 5. Polysaccharide-polyphenol-protein interactions

It is common that polysaccharides, polyphenols, and proteins co-exist in food systems. There is a good body of knowledge of the protein-polyphenol interactions (Le Bourvellec & Renard, 2012; Jakobek, 2015). The presence of cell wall polysaccharides greatly influences the association and precipitate formation between proteins and polyphenols (Gazzola et al., 2012; Mateus et al., 2004; Gonçalves et al., 2011; Oliveira & Pintado, 2015; Soares et al., 2009; Soares et al., 2012) (Table 3). Various analytical methods have been employed to probe the three-component interactions, including scanning ion occlusion sensing (SIOS) (Gazzola et al., 2012), saturation transfer difference-NMR spectroscopy, nephelometry, fluorescence quenching (Gonçalves et al., 2011), HPSEC (high-performance size exclusion chromatography) (Soares et al., 2012) and so on. For example, molecular size distributions of protein before and after the interactions were monitored by HPSEC. The altering molecular size indicated the affinity of polyphenols with polysaccharides (Fig. 2f) (Soares et al., 2012). SIOS was used to study the size and concentration of protein aggregates as affected by polyphenols and polysaccharides (Gazzola et al., 2012).

The presence of polysaccharides tends to reduce the association between protein and polyphenols, depending on the type and composition of each component as well as the experimental conditions (Table 3). Two molecular mechanisms have been proposed to explain the interactions (Fig. 3d and 3e). The disrupted associations between proteins and polyphenols could be due to either the formation of ternary protein-polyphenol-polysaccharide complexes, or the association between polyphenols and polysaccharides in solution which competes for protein interactions (Fig. 3d and 3e).

Polysaccharide type and composition can affect the three-component interactions (Soares et al., 2009 and 2012; Gonçalves et al., 2011; Mateus et al., 2004). The ability of various polysaccharides to inhibit the procyanidin B3-trypsin interactions followed the order of xanthan, polygalacturonic acid, gum arabic, and pectin (Gonçalves et al., 2011). Similarly, xanthan disrupted the association between grape seed procyanidin fractions and bovine serum albumin (BSA) to a greater extent than gum arabic (Mateus et al., 2004). Xanthan and polygalacturonic acid may be able to encapsulate the procyanidins through the formation of a gel-like network (Norton et al., 1984) (Fig. 3e). Different polysaccharides adapt different conformation in solution under different experimental conditions. Gum arabic and pectin may have the conformation that are not able to trap/interact with the procyanidins efficiently (Gonçalves et al., 2011). Soares et al. (2012 and 2009) showed that pectin and polygalacturonic acid formed ternary complexes with salivary proteins/porcine pancreatic α-amylase and condensed tannins, preventing the proteinpolyphenol interactions, while arabic gum competed with the protein to bind tannins. Polyphenol structure and composition play important roles in the three-component interactions (Mateus et al., 2004; Oliveira & Pintado, 2015). The inhibitory effect of polysaccharides on protein (BSA)polyphenol (procyanidins) association decreased with the increasing size of procyanidin fractions (Mateus et al., 2004). Increasing size of procyanidins facilitated their interactions with BSA due to increased number of interaction sites. Protein type and structure play important roles in the three-component interactions (Gazzola et al., 2012). For example, chitinase and thaumatin-like proteins (TLP) interacted with polysaccharides and polyphenols differently in wine systems (Gazzola et al., 2012). Wine polyphenols and polysaccharides little influenced the chitinase aggregation in model wine system, while different TLP isomers had different and decreased

susceptibility to aggregation in the presence of wine polysaccharides and polyphenols (Gazzola et al., 2012).

The presence of protein and polysaccharide may impact the polyphenol bioavailability in human digestive tract (Oliveira & Pintado, 2015). Pectin and  $\beta$ -lactoglobulin ( $\beta$ -LG) formed complexes with cyanidin-3-glucoside and (+)-catechin, increasing their bioavailability in gastrointestinal tract model systems with varying pH and digestive enzymes (Oliveira & Pintado, 2015). It may be expected that the environmental conditions such as pH, temperature, and ionic strength play important roles in the three-component interactions and complexation. How these factors impact the polysaccharide-polyphenol-protein interactions remains to be studied.

#### 6. Food applications

The interactions between cell wall polysaccharides and polyphenols can play important roles in the processing and quality of food and beverage products (Table 4). The food products included strawberry yoghurt, jam, canned pears wine and apple juice (Bindon et al., 2010a and 2010b; Le Bourvellec et al., 2007; Buchweitz et al., 2013; Le Bourvellec et al., 2014; Oliveira et al., 2015).

In wine and fruit juice production, the release of polyphenols from fruits and vegetables into beverages greatly depends on the extents of polyphenol-cell wall interactions. There tends to be a significant loss of polyphenols from the fruits/vegetables during juice production, which remain in the pomace (Le Bourvellec et al., 2007; Bindon et al., 2010a and 2010b). The relevance of grape cell wall polysaccharide-polyphenol interactions to the wine making has been reviewed (Hanlin et al., 2010). For example, 25% and 27% of grape proanthocyanidins were found in wine and marc after fermentation, while 48% of proanthocyanidins remained in the seeds or lees

# <sup>24</sup> ACCEPTED MANUSCRIPT

(Bindon et al., 2010a and 2010b). This could be readily attributed to the retention of proanthocyanidins by the cell walls during vinification (Bindon et al., 2010b) (Fig. 4a). The impact of polyphenol structure on the polyphenol-cell wall polysaccharide interactions has been discussed in a previous section in detail (Table 2). It has been established that larger proanthocyanidins have stronger binding with cell wall polysaccharides (Le Bourvellec et al., 2005b). This preferential selectivity of cell walls for binding polyphenols with specific structure and composition may explain the absence of high molecular weight proanthocyanidins in the wine (Bindon et al., 2010a and 2010b).

Polyphenols in food systems may be degraded due to oxidation and other environmental factors. Association of these susceptible polyphenols with cell wall polysaccharides may reduce their degradation in food systems. Indeed, addition of apple and sugar beet pectins in strawberry jam increased the overall storage stability of the anthocyanins (Buchweitz et al., 2013). The anthocyanin stability of the food systems depended on the type and structure of both the polysaccharides and the anthocyanins. Apple and sugar beet pectins, but no the citrus pectin, enhanced the anthocyanin stability, while the stability of pelargonidin-3-malonylglucoside was not affected by pectin addition (Buchweitz et al., 2013). Indeed, the outcomes of polyphenol-polysaccharide interactions depend on various factors including the types of both polyphenols and polysaccharides as discussed above (Table 2). The pink discoloration of canned pear slices could also be explained by the polyphenol-polysaccharide interactions (Fig. 4b) (Le Bourvellec et al., 2014). The pear procyanidins degraded into the colorant anthocyanidins which bound to the cell walls (Le Bourvellec et al., 2014). The interactions were so strong that successive solvent extractions and enzymatic degradation of cell walls hardly removed the colorant. This led to the

suggestion that co-valent bonding may be involved in this type of associations due to the highly reactive carbocations (Le Bourvellec et al., 2014). Mixing strawberry and yoghurt led to the decreased contents of both protein and polyphenols due to polyphenol-protein interactions (Oliveira et al., 2015). Addition of carrageenans decreased the protein content more, and may be attributed to the protein-polyphenol-polysaccharide interactions as discussed above (Table 2). The interactions have also been used to mask the astringency of polyphenols (Troszyńska et al., 2010), to produce bioadsorbent for carrying tea polyphenols (Shi et al., 2015), and to create selfassembled micelle system for curcumin delivery (Liu et al., 2013 and 2014). Masking astringency could be due to the increased viscosity as well as the interactions between polysaccharides and polyphenols (Troszyńska et al., 2010). Different polysaccharides had different capacity of masking the astringency of polyphenols. The sequence of the tested polysaccharides followed the order of carboxymethylcellulose > guar gum > xanthan gum > arabic gum. Indeed, the extents of polyphenol-polysaccharide interactions depend greatly on various factors including polysaccharide structure as discussed above (Table 2). The bioavailability of polyphenols tends to be low in humans. Special delivery systems are needed for controlled and targeted releasing (McClements & Li, 2010). Polyphenol-polysaccharide interactions have been employed for targeted delivery of bioactive components (Liu et al., 2013 and 2014; Shi et al., 2015). Octenylsuccinate oat β-glucans was employed to form micelles for the encapsulation of curcumin (a bioactive polyphenol) (Liu et al., 2013 and 2014). This encapsulation greatly increased the stability and water solubility of curcumin in model systems (Fig. 4c), which could be attributed to the curcumin-octenylsuccinate  $\beta$ -glucan interactions (Liu

et al., 2013 and 2014). Rice brans were used to load tea polyphenols due to the high adsorption

capacity (Shi et al., 2015). Langmuir and Freundlich models well described the isothermal adsorption of tea polyphenols (Shi et al., 2015). Rice bran is rich in cell wall polysaccharides such as β-glucans as well as lipids and proteins. The binding of tea polyphenols with rice bran could be attributed not only to polysaccharide-polyphenol, but also to protein-polyphenol and lipid-polyphenol interactions (Jakobek et al., 2015). Indeed, cellulase and proteinase as well as defatting treatments significantly reduced the adsorption capacity of rice bran (Shi et al., 2015). Due to the important function of targeted delivery of bioactive molecules, it would be interesting to probe if there is any synergism/antagonism among lipid, protein, and polysaccharide for polyphenol interactions.

#### 7. Nutritional aspects

Cell wall polysaccharides and polyphenols commonly co-exist in food systems and enter into human digestive track. The polysaccharide-polyphenol interactions during digestion may greatly contribute to their health effects (Table 5). Apple pectins and freeze-dried apples rich in polyphenols were fed to rats to study their effects on the plasma lipids and cecal fermentations (Aprikian et al., 2003). Compared with feeding either apple pectins or freeze-dried apple rich in polyphenols, a combination of both was more effective in reducing the concentrations of plasma cholesterol and triglycerides and in increasing the concentrations of short-chain fatty acids from cecal fermentation (Aprikian et al., 2003). This may be due to the interactions between the polyphenols and pectins of apples. Gao et al. (2012b) studied the impact of interaction of barley  $\beta$ -glucan-tea polyphenol on the antioxidant status and glucose metabolism of diabetic rats induced by streptozotocin. Barley  $\beta$ -glucans and tea polyphenols significantly improved various

physiological parameters of blood glucose, serum lipids, and serum antioxidant status of the diabetic rats. The effect of barley  $\beta$ -glucan and tea polyphenol combination was better than that of the individuals (Gao et al., 2012b). It is, therefore, clear that synergistic interactions in improving the diabetic conditions occurred between these two components (Aprikian et al., 2003; Gao et al., 2012b; Wang & Zhu, 2015 and 2016). However, it is not clear if the health benefits were due to the physical associations between polyphenols and polysaccharides. The molecular mechanisms and pathways responsible for these health effects remain to be explored.

The bound polyphenols with cell walls mostly cannot be adsorbed in small intestine and enter into the large intestine for fermentation and metabolism (Saura-Calixto et al., 2010; Snelders et al., 2014; Padayachee et al., 2013). Saura-Calixto et al. (2010) examined the colonic fermentation of non-extractable proanthocyanidins bound with dietary fiber (e.g., cell walls) of carob pod and red grapes in vitro (small intestine digestion and colon fermentation model) and in vivo (human). The major metabolites of colon fermentation were hydroxyphenylacetic acid, hydroxyphenylvaleric acid and two hydroxyphenylpropionic acid isomers in vitro and 3,4dihydroxyphenyl acetic acid in vivo as measured by HPLC-ESI-MS<sup>2</sup> (high performance liquid chromatography-electrospray ionisation-tandem mass spectroscopy) (Saura-Calixto et al., 2010). Difference in the metabolites of the two products (carob pod and red grapes) suggests the role of cell wall polysaccharides in the fermentation process. Indeed, it was shown that the type of cell walls may be a critical factor affecting the associations with polyphenols (Table 2). Snelders et al. (2014) studied the *in vitro* antioxidant activity and fermentability of arabinoxylanoligosaccharides (AXOS) which were feruloylated or mixed with ferulic acids (FA). Both bound and free FA reduced the AXOS fermentation. The bound FA reduced the enzyme

hydrolysis by steric hindrance, while the free FA and metabolites may be antibacterial (Snelders et al., 2014). The structure of AXOS had little impact on the fermentation. 4-vinylguaiacol was the major metabolite of FA and the antioxidant activity decreased during fermentation (Snelders et al., 2014). For the part of the carbohydrates, prebiotic effects due to the production of short chain fatty acids were observed, which was not affected by the presence of FA (Snelders et al., 2014). Nordlund et al. (2012) studied the fermentation of brans and aleurones of rye, wheat, and oat using in vitro small intestinal and colon fermentation models. The fermentation depended on the type of the bran/aleurone. Wheat bran had the slowest fermentation, while rye bran and aleurone had the fastest one (Nordlund et al., 2012). The differences in fermentation pattern could be attributed to particle size, solubility, and composition of cell walls. Different types of dietary fiber in cereal brans greatly impacted the fermentation of polyphenols to various extents (Nordlund et al., 2012). Metabolites of ferulic acid and benzoic acid were dominant of the in vitro fermentation products of polyphenols in cereal brans. Phenylpropionic acids converted from ferulic acids were the major metabolites of all the brans (Nordlund et al., 2012). Wheat aleurone was possessed by dry-grounding or enzymatic hydrolysis (xylanase/feruloyl esterase) before feeding to diet-induced obese mice, and the urinary metabolites were profiled by nontargeted LC-qTOF-MS (liquid chromatography-quadrupole time-of-flight-mass spectrometry) (Pekkinen et al., 2014). Enzymatic hydrolysis increased the urinary secretion of glycine conjugates and ferulic acid sulfate due to the releasing of bound polyphenols. In contrast, native and ground wheat aleurone gave higher concentrations of microbial metabolites (hydroxyl- and dihydroxyphenylpropionic acids, hippuric acid) as most of the bound polyphenols entered into the colon for fermentation (Pekkinen et al., 2014) (Fig. 5). Rosa et al. (2013) studied the effects

of dry-grinding and enzymatic hydrolysis of wheat aleurone on the formation of metabolites, using an *in vitro* fermentation model of human faecal microbiota. Dry-grinding increased the rate of short-chain fatty acid formation due to the increased surface areas of the aleurone particles, while enzymatic hydrolysis gave a higher concentration of phenylpropionic acids which are the metabolites of free ferulic acids (Rosa et al., 2013). Overall, there is a lack of reports on the relationships between *in vitro*/animal studies and human clinical trials.

Apart from the non-covalent interactions between polyphenols and cell walls, covalently bonded polyphenols with cell wall polysaccharides (e.g., ferulic acid bound to cereal brans) also play important roles during fermentation in human digestive track (Snelders et al., 2014; Nordlund et al., 2012). Dietary fiber has a major impact on the adsorption and bioavailability of natural plant antioxidants in humans (Palafox-Carlos et al., 2011). Even though it is well established that polyphenol-polysaccharide/oligosaccharide complexes may define the metabolism pattern in the colon of humans, the specific health effects of these metabolites from colon fermentation remain to be established. Epidemiological studies showed that a high intake of whole plant foods rich in cell wall polysaccharides and polyphenols is linked with a low occurrence of various chronic diseases (Campbell & Campbell, 2005; Campbell & Jacobson, 2014). Therefore, understanding the interactions between polysaccharides and polyphenols are fundamentally important for human health.

#### 8. Conclusions and future outlook

A range of analytical methods, including microscopy, spectroscopy, calorimetry, and chromatography, have been used to directly and indirectly probe the noncovalent interactions

between cell wall polysaccharides and polyphenols. The outcomes of the interactions between cell wall polysaccharides and polyphenols depend on various factors. These include the composition and structures of both polysaccharides and polyphenols, experimental and environmental conditions, as well as the analytical methods. The noncovalent interactions are mostly driven by hydrophobic contacts and also by hydrogen bonding, though other types of associations such as ionic interactions may also involve in the interactions under certain experimental conditions. Various mathematical models including Langmuir and Freundlich equations well described the isothermal adsorption behaviours of cell wall polysaccharides with polyphenols. The presence of polysaccharides greatly decreased the interactions between polyphenol and protein through competitive reactions or formation of ternary complexes. Cell wall polysaccharide-polyphenol interactions may greatly impact the quality attributes of some food and beverages such as wine and cider. Nutritionally, cell wall bound polyphenols have little adsorption in stomach and small intestine and enter into large intestine for fermentation and metabolism. The importance of the polyphenol-cell wall polysaccharide interactions in human health supports the view that reductionism approach to the study of nutrition should be critically viewed (Campbell & Jacobson, 2014).

In order to better understand the cell wall polysaccharide-polyphenol interactions, the following topics can be explored:

(1) There is extensive knowledge of the interactions between polyphenol and protein (Le Bourvellec & Renard, 2012; Jakobek, 2015). The analytical methods used for polyphenol-protein interactions may be extended to include polyphenol-polysaccharide interactive systems. (2)

Interactions among cell wall polysaccharides, polyphenols, and environmental conditions affecting the binding should be explored. (3) The parameters derived from the isothermal adsorption equations remain to be linked to the physicochemical and structural aspects of the interactions. (4) As the cell walls contain a range of different types of polysaccharides, synergistic/antagonistic interactions between various types of cell wall polysaccharides in binding the polyphenols should be studied. There may be polysaccharide-polysaccharide interactions, affecting the binding. (5) The impact of different types of processing techniques on the cell wall structures and the interactions should be better explored for either maximising or minimising the affinity for different application purposes. (6) The presence of other components such as starch, protein, and lipid on the polyphenol-polysaccharide interactions should be studied as they mostly co-exist in various food systems and different types of food products has different composition. (7) The bound polyphenols with cell walls in the colon in relation to chronic diseases such as cancer, obesity, and diabetes should be studied to biochemically improve our knowledge. Nutritional benefits of the metabolites of polyphenol-cell wall polysaccharide complexes from the large intestine fermentation remain largely unknown.

#### References

Anderson, J. W., Baird, P., Davis, R. H., Ferreri, S., Knudtson, M., Koraym, A., Waters, V., and Williams, C. L. (2009). Health benefits of dietary fiber. Nutr Rev. 67:188–205.

Aprikian, O., Duclos, V., Guyot, S., Besson, C., Manach, C., Bernalier, A., Morand, C., Rémésy, C., and Demigne, C. (2003). Apple pectin and a polyphenol-rich apple concentrate are more effective together than separately on cecal fermentations and plasma lipids in rats. J. Nutr. 133: 1860–1865.

Bautista-Ortín, A. B., Cano-Lechuga, M., Ruiz-García, Y., and Gómez-Plaza, E. (2014). Interactions between grape skin cell wall material and commercial enological tannins. Practical implications. Food Chem. 152:558–565.

Bautista-Ortín, A. B., Martínez-Hernández, A., Ruiz-García, Y., Gil-Muñoz, R., and Gómez-Plaza, E. (2016). Anthocyanins influence tannin–cell wall interactions. Food Chem. 206:239–248.

Baxter, N. J., Lilley, T. H., Haslam, E., Williamson, M. P. (1997). Multiple interactions between polyphenols and a salivary proline-rich protein repeat result in complexation and precipitation. Biochemistry 36:5566–5577.

Bindon, K. A., and Kennedy, J. A. Ripening-induced changes in grape skin proanthocyanidins modify their interaction with cell walls. J. Agric. Food Chem. 2011, 59, 2696–2707.

Bindon, K. A., Smith, P. A., and Kennedy, J. A. (2010a). Interaction between grape-derived proanthocyanidins and cell wall material. 1. Effect on proanthocyanidin composition and molecular mass. J. Agric. Food Chem. 58:2520–2528.

Bindon, K. A., Smith, P. A., Holt, H., and Kennedy, J. A. (2010b). Interaction between grape-derived proanthocyanidins and cell wall material. 2. Implications for vinification. J. Agric. Food Chem. 58:10736–10746.

Bordenave, N., Hamaker, B. R., and Ferruzzi, M. G. (2014). Nature and consequences of non-covalent interactions between flavonoids and macronutrients in foods. Food & Func. 5:18–34.

Buchweitz, M., Speth, M., Kammerer, D. R., and Carle, R. (2013). Stabilisation of strawberry (*Fragaria x ananassa* Duch.) anthocyanins by different pectins. Food Chem. 141:2998–3006.

Cai, Y. Z., Sun, M., Xing, J., Luo, Q., and Corke, H. (2006). Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 78:2872–2888.

Campbell, C. T., and Campbell, T. M. The China Study, Ben Bella, Dallas, TX, USA (2005).

Campbell, C. T., Jacobson, H. Whole: Rethinking the Science of Nutrition. BenBella Books, 2014. Dallas, TX, USA.

Fernandes, A., Brás, N. F., Mateus, N., and de Freitas, V. (2014). Understanding the molecular mechanism of anthocyanin binding to pectin. Langmuir 30:8516–8527.

Freundlich, H. (1906). Adsorption in solutions. Phys Chemie 57:385–470.

Gao, R., Liu, H., Peng, Z., Wu, Z., Wang, Y., and Zhao, G. (2012a). Adsorption of (–)-epigallocatechin-3-gallate (EGCG) onto oat β-glucan. Food Chem. 132:1936–1943.

Gao, R., Wang, Y., Wu, Z., Ming, J., and Zhao, G. (2012b). Interaction of barley β-glucan and tea polyphenols on glucose metabolism in streptozotocin-induced diabetic rats. J. Food Sci. 77:H128–H134.

Gazzola, D., Van Sluyter, S. C., Curioni, A., Waters, E. J., and Marangon, M. (2012). Roles of proteins, polysaccharides, and phenolics in haze formation in white wine via reconstitution experiments. J. Agric. Food Chem. 60:10666–10673.

Gonçalves, F. J., Rocha, S. M., and Coimbra, M. A. (2012). Study of the retention capacity of anthocyanins by wine polymeric material. Food Chem. 134:957–963.

Gonçalves, R., Mateus, N., and De Freitas, V. (2011). Influence of carbohydrates on the interaction of procyanidin B3 with trypsin. J. Agric. Food Chem. 59:11794–11802.

Hanlin, R. L., Hrmova, M., Harbertson, J. F., and Downey, M. O. (2010). Review: Condensed tannin and grape cell wall interactions and their impact on tannin extractability into wine. Aust. J. Grape Wine Res. 16:173–188.

Harris, P. J., and Smith, B. G. (2006). Plant cell walls and cell-wall polysaccharides: structures, properties and uses in food products. Int. J. Food Sci. Technol. 41:129–143.

Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40:1361–1403.

Le Bourvellec, C., and Renard, C. M. G. C. (2005a). Non-covalent interaction between procyanidins and apple cell wall material. Part II: Quantification and impact of cell wall drying. Biochim. Biophys. Acta 1725:1–9.

Le Bourvellec, C., and Renard, C. M. G. C. (2012). Interactions between polyphenols and macromolecules: quantification methods and mechanisms. Crit. Rev. Food Sci. Nutr. 52:213–248.

Le Bourvellec, C., Bouchet, B., and Renard, C. M. G. C. (2005b). Non-covalent interaction between procyanidins and apple cell wall material. Part III: Study on model polysaccharides. Biochim. Biophys. Acta 1725:10–18.

Le Bourvellec, C., Gouble, B., Bureau, S., Loonis, M., Plé, Y., and Renard, C. M. G. C. (2013). Pink discoloration of canned pears: role of procyanidin chemical depolymerization and procyanidin/cell wall interactions. J. Agric. Food Chem. 61:6679–6692.

Le Bourvellec, C., Guyot, S., and Renard, C. M. G. C. (2004). Non-covalent interaction between procyanidins and apple cell wall material Part I. Effect of some environmental parameters.

Biochim. Biophys. Acta 1672:192–202.

Le Bourvellec, C., Le Quere, J. M., and Renard, C. M. G. C. (2007). Impact of noncovalent interactions between apple condensed tannins and cell walls on their transfer from fruit to juice: studies in model suspensions and application. J. Agric. Food Chem. 55:7896–7904.

Le Bourvellec, C., Guyot, S., and Renard, C. M. G. C. (2009). Interactions between apple (*Malus a domestica* Borkh.) polyphenols and cell walls modulate the extractability of polysaccharides. Carbohydr. Polym. 75:251–261.

Le Bourvellec, C., Watrelot, A. A., Ginies, C., Imberty, A., and Renard, C. M. G. C. (2012). Impact of processing on the noncovalent interactions between procyanidin and apple cell wall. J. Agric. Food Chem. 60:9484–9494.

Lin, Z., Fischer, J., and Wicker, L. (2016). Intermolecular binding of blueberry pectin-rich fractions and anthocyanin. Food Chem. 194:986–993.

Liu, J., Chen, F., Tian, W., Ma, Y., Li, J., and Zhao, G. (2014). Optimization and characterization of curcumin loaded in octenylsuccinate oat β-glucan micelles with an emphasis on degree of substitution and molecular weight. J. Agric. Food Chem., 62:7532–7540.

Liu, J., Li, J., Ma, Y., Chen, F., and Zhao, G. H. (2013). Synthesis, characterization and aqueous self-assembly of octenylsuccinate oat β-glucan. J. Agric. Food Chem. 61:12683–12691.

Mateus, N., Carvalho, E., Luís, C., and de Freitas, V. (2004). Influence of the tannin structure on the disruption effect of carbohydrates on protein–tannin aggregates. Anal. Chim. Acta 513:135–140.

McClements, D. J., Li, Y. (2010). Structured emulsion-based delivery systems: Controlling the digestion and release of lipophilic food components. Adv. Colloid Interface Sci. 159:213–228.

McManus, J. P., Davis, K.G., Beart, J. E., Gaffney, S. H., Lilley, T. H., and Haslam, E. (1985). Polyphenol interactions. Part 1. Introduction; Some Observations on the Reversible Complexation of Polyphenols with Proteins and Polysaccharides. J. Chem. Soc., Perkin Trans. 2:1429–1438.

Mercado-Mercado, G., Blancas-Benitez, F. J., Velderrain-Rodríguez, G. R., Montalvo-González, E., González-Aguilar, G. A., Alvarez-Parrilla, E., and Sáyago-Ayerdi, S. G. (2015).

Bioaccessibility of polyphenols released and associated to dietary fibre in calyces and decoction

residues of roselle (*Hibiscus sabdariffa* L.). J. Funct. Foods 18:171–181.

Nordlund, E., Aura, A. M., Mattila, I., Kössö, T., Rouau, X., and Poutanen, K. (2012). Formation of phenolic microbial metabolites and short-chain fatty acids from rye, wheat, and oat bran and their fractions in the metabolical *in vitro* colon model. J. Agric. Food Chem. 60:8134–8145.

Norton, I. T., Goodall, D. M., Frangou, S. A., Morris, E. R., and Rees, D. A. (1984). Mechanism and dynamics of conformational ordering in xanthan polysaccharide. J. Mol. Biol. 175:371–394.

Oliveira, A., Alexandre, E. M. C., Coelho, M., Lopes, C., Almeida, D. P. F., and Pintado, M. (2015). Incorporation of strawberries preparation in yoghurt: Impact on phytochemicals and milk proteins. Food Chem. 171:370–378.

Oliveira, A., and Pintado, M. (2015). In vitro evaluation of the effects of protein–polyphenol–polysaccharide interactions on (+)-catechin and cyanidin-3-glucoside bioaccessibility. Food Funct. 6:3444–3453.

Padayachee, A., Netzel, G., Netzel, M., Day, L., Zabaras, D., Mikkelsen, D., and Gidley, M. J. (2012a). Binding of polyphenols to plant cell wall analogues – Part 1: Anthocyanins. Food Chem. 134:155–161.

Padayachee, A., Netzel, G., Netzel, M., Day, L., Zabaras, D., Mikkelsen, D., and Gidley, M. J. (2012b). Binding of polyphenols to plant cell wall analogues – Part 2: Phenolic acids. Food Chem. 135:2287–2292.

Padayachee, A., Netzel, G., Netzel, M., Day, L., Mikkelsen, D., and Gidley, M. J. (2013). Lack of release of bound anthocyanins and phenolic acids from carrot plant cell walls and model composites during simulated gastric and small intestinal digestion. Food Funct. 4:906–916. Palafox-Carlos, H., Ayala-Zavala, J. F., and Gustavo A. González-Aguilar. (2011). The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. J. Food Sci. 76:R6–R15.

Pekkinen, J., Rosa, N. N., Savolainen, O. I., Keski-Rahkonen, P., Mykkänen, H., Poutanen, K., Micard, V., and Hanhineva, K. (2014). Disintegration of wheat aleurone structure has an impact on the bioavailability of phenolic compounds and other phytochemicals as evidenced by altered urinary metabolite profile of diet-induced obese mice. Nutrition & Metabolism 11:1.

Phan, A. D. T., D'Arcy, B. R., and Gidley, M. J. (2016). Polyphenol–cellulose interactions: effects of pH, temperature and salt. Int. J. Food Sci. Technol. 51:203–211.

Phan, A. D. T., Netzel, G., Wang, D., Flanagan, B. M., D'Arcy, B. R., and Gidley, M. J. (2015). Binding of dietary polyphenols to cellulose: Structural and nutritional aspects. Food Chem. 171:388–396.

Quirós-Sauceda, A. E., Ayala-Zavala, J. F., Sáyago-Ayerdi, S. G., Vélez-de la Rocha, R., Sañudo-Barajas, J. A., and González-Aguilar, G. A. (2014). Added dietary fiber affects

antioxidant capacity and phenolic compounds content extracted from tropical fruit. J. Appl. Bot. Food Qual. 87:227–233.

Redlich, O., and Peterson, D. L. (1959). A useful adsorption isotherm. J. Phys. Chem. 57:1024. Renard, C. M. G. C., Baron, A., Guyot, S., and Drilleau, J. F. (2001). Interactions between apple cell walls and native apple polyphenols: quantification and some consequences. Int. J. Biol. Macromolec. 29:115–125.

Riou, V., Vernhet, A., Doco, T., and Moutounet, M. (2002). Aggregation of grape seed tannins in model wine-effect of wine polysaccharides. Food Hydrocolloids 16:17–23.

Rosa, N. N., Aura, A. M., Saulnier, L., Holopainen-Mantila, U., Poutanen, K., and Micard, V. (2013). Effects of disintegration on in vitro fermentation and conversion patterns of wheat aleurone in a metabolical colon model. J. Agric. Food Chem. 61:5805–5816.

Ruiz-Garcia, Y., Smith, P. A., and Bindon, K A. (2014). Selective extraction of polysaccharide affects the adsorption of proanthocyanidin by grape cell walls. Carbohydr. Polym. 114:102–114. Saura-Calixto, F. (2011). Dietary fiber as a carrier of dietary antioxidants: An essential physiological function. J. Agric. Food Chem. 59:43–49.

Saura-Calixto, F., Pérez-Jiménez, J., Touriño, S., Serrano, J., Fuguet, E., Torres, J. L., and Goñi, I. (2010). Proanthocyanidin metabolites associated with dietary fibre from *in vitro* colonic fermentation and proanthocyanidin metabolites in human plasma. Mol. Nutr. Food Res. 54:939–946.

Schramm, D. D., Karim, M., Schrader, H. R., Holt, R. R., Kirkpatrick, N. J., Polagruto, J. A., Ensunsa, J. L., Schmitz, H. H., and Keen, C. L. (2003). Food effects on the absorption and pharmacokinetics of cocoa flavanols. Life Sci. 73:857–869.

Selma, M. V., Espin, J. C., and Tomás-Barberán, F. A. (2009). Interaction between phenolics and gut microbiota: Role in human health. J. Agric. Food Chem. 57:6485–6501.

Serra, A., Macià, A., Romero, M. P., Valls, J., Bladé, C., Arola, L., and Motilva, M. J. (2010). Bioavailability of procyanidin dimers and trimers and matrix food effects in *in vitro* and *in vivo* models. Br. J. Nutr. 103:944–952.

Shi, M., Yang, Y. P., Jin, J., Huang, L. Y., Ye, J. H., and Liang, Y. R. (2015). Using defatted rice bran as a bioadsorbent for carrying tea catechins. J. Food Sci. 80:C2134–C2139.

Simonsen, H. T., Nielsen, M. S., Christensen, N. J., Christensen, U., La Cour, T. V., Motawia, M. S., Jespersen, B. P. M., Engelsen, S. B., and Møller, B. L. (2009). Molecular interactions between barley and oat β-glucans and phenolic derivatives. J. Agric. Food Chem. 57:2056–2064. Snelders, J., Olaerts, H., Dornez, E., Van de Wiele, T., Aura, A. M., Vanhaecke, L., Delcour, J. A., and Courtin, C. M. (2014). Structural features and feruloylation modulate the fermentability and evolution of antioxidant properties of arabinoxylanoligosaccharides during in vitro fermentation by human gut derived microbiota. J. Funct. Foods 10:1–12.

Soares, S. I., Gonçalves, R. M., Fernandes, I., Mateus, N., and De Freitas, V. (2009). Mechanistic approach by which polysaccharides inhibit α-amylase/procyanidin aggregation. J. Agric. Food Chem. 57:4352–4358.

Soares, S., Mateus, N., and de Freitas, V. (2012). Carbohydrates inhibit salivary proteins precipitation by condensed tannins. J. Agric. Food Chem., 60:3966–3972.

Sun-Waterhouse, D., Melton, L. D., O'Connor, C. J., Kilmartin, P. A., and Smith, B. G. (2008a). Effect of apple cell walls and their extracts on the activity of dietary antioxidants. J. Agric. Food Chem. 56:289–295.

Sun-Waterhouse, D., Smith, B. G., O'Connor, C. J., and Melton, L. D. (2008b). Effect of raw and cooked onion dietary fibre on the antioxidant activity of ascorbic acid and quercetin. Food Chem. 111:580–585.

Tang, H. R., Covington, A. D., and Hancock, R. A. (2003). Structure–activity relationships in the hydrophobic interactions of polyphenols with cellulose and collagen. Biopolymers 70:403–413. Toth, J. (1971). State equations of the solid-gas interface layers. Acta Chimica Academiae Scientiarum Hungaricae 69:311.

Troszyńska, A., Narolewska, O., Robredo, S., Estrella, I., Hernández, T., Lamparski, G., and Amarowicz, R. (2010). The effect of polysaccharides on the astringency induced by phenolic compounds. Food Qual. Pref. 21:463–469.

Velderrain-Rodríguez, G. R., Palafox-Carlos, H., Wall-Medrano, A., Ayala- Zavala, J. F., Chen, C. Y. O., Robles-Sánchez, M., Astiazaran-Garcia, H., Alvarez-Parrilla, E. and González-Aguilar, G. A. (2014). Phenolic compounds: their journey after intake. Food & Func. 5:189–197. Wang, S., and Zhu, F. (2015). Dietary antioxidant synergy in chemical and biological systems. Crit. Rev. Food Sci. Nutr. http://dx.doi.org/10.1080/10408398.2015.1046546.

Wang, S., and Zhu, F. (2016). Antidiabetic dietary materials and animal models. Food Res. Int. 85:315–331.

Wang, Y., Liu, J., Chen, F., and Zhao, G. (2013). Effects of molecular structure of polyphenols on their noncovalent interactions with oat β-glucan. J. Agric. Food Chem. 61:4533–4538.

Watrelot, A. A., Le Bourvellec, C., Imberty, A., and Renard, C. M. G. C. (2013). Interactions between pectic compounds and procyanidins are influenced by methylation degree and chain length. Biomacromolecules 14:709–718.

Watrelot, A. A., Le Bourvellec, C., Imberty, A., and Renard, C. M. G. C. (2014). Neutral sugar side chains of pectins limit interactions with procyanidins. Carbohydr. Polym. 99:527–536. Whitesides, G. M., and Krishnamurthy, V. M. (2005). Designing ligands to bind proteins. Q. Rev. Biophys. 38:385–395.

Wu, Z., Li, H., Ming, J., and Zhao, G. (2011). Optimization of adsorption of tea polyphenols into oat β-glucan using response surface methodology. J. Agric. Food Chem. 59:378–385.

Zhu, F. (2015). Interactions between starch and phenolic compound. Trends Food Sci. Technol. 43, 129–143.

Table 1 Methods for characterisation of non-covalent interactions between cell wall polysaccharides and polyphenols

| Technique            | Cell wall       | Polyphenols  | Uses                                             | References       |
|----------------------|-----------------|--------------|--------------------------------------------------|------------------|
|                      | polysaccharides |              |                                                  |                  |
|                      |                 |              |                                                  |                  |
| Confocal laser       | Cellulose, cell | Anthocyanins | Confocal laser scanning microscopy with          | Padayachee       |
| scanning microscopy  | walls of carrot | of purple    | fluorescent dye (Congo red) revealed that the    | et al., 2013;    |
|                      |                 | carrots      | localised anthocyanins stacked to the cell wall  | 2012a            |
|                      |                 |              | polysaccharides (Fig. 2a)                        |                  |
|                      |                 |              |                                                  |                  |
| Isothermal titration | Apple/citrus    | Apple        | Thermodynamic properties (association            | Le Bourvellec    |
| calorimetry (ITC)    | pectins         | procyanidins | constant, stoichiometry, enthalpy change of      | et al., 2012;    |
|                      |                 |              | binding) of cell wall-procyanidin interactions   | Watrelot et al., |
|                      |                 |              | were studied by ITC (Fig. 2d)                    | 2013 and 2014    |
| Saturation transfer  | Pectins         | Anthocyanins | STD-NMR technique has been used to reveal        | Fernandes        |
| difference (STD)     |                 |              | the dissociation constant $(K_d)$ of the pectin- | et al., 2014     |
| NMR spectroscopy     |                 |              | anthocyanin interactions                         |                  |

|                    |                  |              | (Fig. 2b). Protons involved in the pectin-       |              |
|--------------------|------------------|--------------|--------------------------------------------------|--------------|
|                    |                  |              | anthocyanin interactions showed STD-NMR          |              |
|                    |                  |              | signals, while those that were not involved had  |              |
|                    |                  |              | no signals in the NMR spectrum                   |              |
| Molecular dynamics | Pectins          | Anthocyanins | Computer-based molecular dynamics                | Fernandes    |
| simulation         |                  |              | simulation was employed to study the             | et al., 2014 |
|                    |                  |              | conformational characteristics of anthocyanins   | ct al., 2014 |
|                    |                  |              | and pectins in solution (Fig. 2c). The solvent-  |              |
|                    |                  |              | accessible surface area of pectin was obtained   |              |
| Dynamic light      | Grape cell walls | Grape seed   | DLS was used to monitor the aggregation of       | Riou         |
| scattering (DLS)   |                  | tannins      | tannins with wine polysaccharides. Aggregates    | et al., 2002 |
|                    |                  |              | with increasing size were formed upon storage.   | ot al., 2002 |
|                    |                  |              | Polysaccharides had little effect on the initial |              |
|                    |                  |              | aggregation of tannins, while affecting the      |              |
|                    |                  |              | development of particle size. The                |              |
|                    |                  |              | rhamnogalacturonan II dimer facilitated the      |              |

|                   |                  |              | formation of aggregates with increasing particle size |                  |
|-------------------|------------------|--------------|-------------------------------------------------------|------------------|
| UV-vis            | Apple and citrus | Procyanidins | Spectrophotometry                                     | Watrelot         |
| spectrophotometry | pectins          |              | (absorbance at 650 nm) was used to monitor            | et al., 2013 and |
|                   |                  |              | the aggregation of pectins and procyanidins           | 2014             |
|                   |                  |              | due to the interactions                               |                  |
|                   |                  |              |                                                       |                  |

Table 2 Noncovalent interactions between cell wall polysaccharides and polyphenols in various food systems

| Polysaccharide type | Polyphenol type          | Reaction       | Targeted parameter       | Major findings                   | References   |
|---------------------|--------------------------|----------------|--------------------------|----------------------------------|--------------|
|                     |                          | conditions     |                          |                                  |              |
| Cellulose           | 24 polyphenols including | Solid state    | Amount of bound          | The affinity of cellulose with   | Tang et al., |
|                     | gallotannins and         |                | polyphenols on cellulose | polyphenols is in positive       | 2003         |
|                     | ellagitannins            |                | thin layer               | relationship with the molecular  |              |
|                     |                          |                | chromatography           | weight, their hydrophobicity,    |              |
|                     |                          |                |                          | and number of galloyl groups.    |              |
|                     |                          |                |                          | Ellagitannins had much lower     |              |
|                     |                          |                |                          | affinity with cellulose than     |              |
|                     |                          |                |                          | gallotannins. Hydrophobic        |              |
|                     |                          |                |                          | interactions predominated        |              |
| Bacterial           | Purple carrot juice      | 4 °C, up to 14 | Concentrations of        | Anthocyanins bound to both       | Padayachee   |
| cellulosepectin     | concentrate containing   | days, pH 4.0   | anthocyanins by HPLC     | pectin and cellulose, and higher |              |

| composite and   | non-acylated and acylated |             |                        | amount of pectins in the         | et al., 2012a |
|-----------------|---------------------------|-------------|------------------------|----------------------------------|---------------|
| cellulose       | anthocyanins              |             |                        | composite facilitated the        |               |
|                 |                           |             |                        | adsorption. Non-acylated and     |               |
|                 |                           |             |                        | acylated anthocyanins had        |               |
|                 |                           |             |                        | similar adsorption patterns. A   |               |
|                 |                           |             |                        | two-stage adsorption pattern was |               |
|                 |                           |             |                        | observed. The initial stage was  |               |
|                 |                           |             |                        | fast with 1318% of               |               |
|                 |                           |             |                        | anthocyanins absorbed. The       |               |
|                 |                           |             |                        | second stage was slow and        |               |
|                 |                           |             |                        | gradual                          |               |
|                 |                           |             |                        |                                  |               |
| Bacterial       | Ferulic acid, chlorogenic | 4 °C, up to | Concentrations of      | Phenolic acids bound to both     | Padayachee    |
| cellulosepectin | acid, and caffeic acid of | 14 days     | phenolic acids by HPLC | pectin and cellulose composites  | et al., 2012b |
| centrosepeetin  | purple carrot juice       | 14 days     |                        | to various extents with caffeic  | ct al., 20120 |
| composite and   | Parking antion large      |             |                        |                                  |               |
| cellulose       | concentrate               |             |                        | acid having the maximum          |               |
|                 |                           |             |                        | adsorption and ferulic acid the  |               |

|                         |                        |                 |                         | minimum. Cellulose had a higher initial adsorption within 1 h, and all the polysaccharide composites showed similar extents of adsorption after a few days |              |
|-------------------------|------------------------|-----------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Carrot plant cell walls | Anthocyanins, phenolic | In vitro        | Released polyphenols    | The majority of polyphenols                                                                                                                                | Padayachee   |
| and a bacterial         | acids                  | gastric (pH     | from the digestion were | were bound to cell wall                                                                                                                                    | et al., 2013 |
| cellulosepectin model   |                        | 2.0, 1 h,       | quantified by HPLC      | materials. Simulated gastric and                                                                                                                           |              |
|                         |                        | 37 °C) and      |                         | small intestinal digestion hardly                                                                                                                          |              |
|                         |                        | small           |                         | released the bound polyphenols                                                                                                                             |              |
|                         |                        | intestinal (pH  |                         | from the cell wall materials                                                                                                                               |              |
|                         |                        | 5.7 for 30 min  |                         | (< 2% of polyphenols released).                                                                                                                            |              |
|                         |                        | before pH 7.0   |                         | These bound but not released                                                                                                                               |              |
|                         |                        | for 2 h, 37 °C) |                         | polyphenols would reach the                                                                                                                                |              |
|                         |                        | digestion       |                         |                                                                                                                                                            |              |

|                     |                                                    | models                           |                                                                  | colon for fermentation                                                                                                           |                   |
|---------------------|----------------------------------------------------|----------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Bacterial cellulose | Ferulic acid, gallic acid,                         | 4 °C, up to                      | Concentrations of                                                | All the polyphenols bound to                                                                                                     | Phan              |
|                     | chlorogenic acid, (+/-)-catechin,                  | 24 h                             | polyphenols in supernatant by  UV-spectrophotometry              | cellulose up to 60% (w/w) of the cellulose weight. Langmuir binding isotherms fit the                                            | et al., 2015      |
|                     | cyanidin-3-glucoside                               |                                  |                                                                  | adsorption data well with $R^2 > 0.92$ . The native charges of the polyphenols had little effect on the binding to the cellulose |                   |
| Bacterial cellulose | Cyanidin-3-glucoside, ferulic acid, (+/-)-catechin | Temperature (437°C), pH 37, NaCl | The amounts of bound polyphenols quantified by spectrophotometry | pH was the most influential on the binding between cellulose and polyphenols, followed by the temperature. NaCl                  | Phan et al., 2016 |

|               |                                   | (0100 mM),  |                      | concentration had little          |              |
|---------------|-----------------------------------|-------------|----------------------|-----------------------------------|--------------|
|               |                                   | 2 h         |                      | influence. Cyanidin-3-glucoside   |              |
|               |                                   |             |                      | is the most sensitive to the      |              |
|               |                                   |             |                      | experimental conditions and       |              |
|               |                                   |             |                      | catechin is the least. A          |              |
|               |                                   |             |                      | second-order polynomial           |              |
|               |                                   |             |                      | equation was employed to          |              |
|               |                                   |             |                      | describe the interactions between |              |
|               |                                   |             |                      | cellulose and polyphenols as      |              |
|               |                                   |             |                      | affected by the reaction          |              |
|               |                                   |             |                      | conditions                        |              |
| Citrus pectin | Anthocyanins                      | pH 1.5, 4.0 | Saturation transfer  | A weak interaction between        | Fernandes    |
|               | (cyanidin-3- <i>O</i> -glucoside, |             | difference (STD)-NMR | anthocyanins (hemiketal form)     | et al., 2014 |
|               | (cyanidin-5-0-glucoside,          |             | spectroscopy and     | and pectins was noted.            | et al., 2014 |
|               | delphinidin-3-O-glucoside)        |             | computer molecular   | Delphinidin-3-O-glucoside with    |              |
|               |                                   |             | dynamics simulation  | three OH groups had stronger      |              |

|                                             |                                  |                       | was used to study the interactions                                                           | binding to pectin than  cyanidin-3-O-glucoside. Acidic  forms of anthocyanins  (flavylium cation) had a stronger  affinity with pectin                                                                                                                                                                                                |                  |
|---------------------------------------------|----------------------------------|-----------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Blueberry pectins with different solubility | Anthocyanins and blueberry juice | pH 2.04.5, 4 °C, 18 h | Concentrations of anthocyanins bound to pectins measured by a spectrophotometry-based method | All the anthocyanins bound to blueberry pectins. The binding was dependent on the pH and pectin-type. The lowest binding was at pH 4.5. Water soluble pectin had the lowest binding of anthocyanins. Chelator (EDTA) soluble and sodium carbonate soluble pectins had higher bindings at pH 2.03.6 and pH 3.64.5, respectively. Ionic | Lin et al., 2016 |

|                  |                   |                |                      | interactions between pectins (carboxyl group) and anthocyanins (flavylium cations) and anthocyanin molecular stacking were suggested as two major mechanisms of binding |              |
|------------------|-------------------|----------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Apple cell walls | Apple polyphenols | 25°C, 5–120    | Concentrations of    | Hydroxycinnamic acids and                                                                                                                                               | Renard       |
|                  |                   | min, pH        | polyphenols bound to | epicatechin had no binding to                                                                                                                                           | et al., 2001 |
|                  |                   | 2.4–6,         | cell walls by HPLC   | cell walls, while procyanidins                                                                                                                                          |              |
|                  |                   | polyphenol     |                      | bound fast (up to 0.6 g per g cell                                                                                                                                      |              |
|                  |                   | concentrations |                      | walls). Increasing initial                                                                                                                                              |              |
|                  |                   | up to 10 g/L   |                      | concentrations and size of                                                                                                                                              |              |
|                  |                   |                |                      | procyanidins increased the                                                                                                                                              |              |
|                  |                   |                |                      | binding. The binding was                                                                                                                                                |              |
|                  |                   |                |                      | completely disrupted by urea (8                                                                                                                                         |              |
|                  |                   |                |                      | M) or acetone and water                                                                                                                                                 |              |

|                         |                            |                |                      | mixture. Binding of procyanidins inhibited the enzymatic |               |
|-------------------------|----------------------------|----------------|----------------------|----------------------------------------------------------|---------------|
|                         |                            |                |                      | hydrolysis of the cell walls                             |               |
| Apple cell wall (native | Procyanidins of grape seed | 2.590 min,     | Procyanidin          | Increasing size, galloylation, and                       | Le Bourvellec |
| and modified)           | and pear                   | рН 2.27,       | concentration was    | portion of (+)-catechin of                               | et al., 2004, |
|                         |                            | temperature    | quantified by HPLC   | procyanidins increased the                               | 2005a; 2005b  |
|                         |                            |                | after thioacidolysis | binding by cell walls. The pH                            |               |
|                         |                            | 535 °C,        |                      | (2.27) had little effect on the                          |               |
|                         |                            | ionic strength |                      | binding, while the presence of                           |               |
|                         |                            | (0.01 to 1 M), |                      | urea, dioxane, and ethanol                               |               |
|                         |                            | alcohol        |                      | decreased it. Increasing ionic                           |               |
|                         |                            | concentration  |                      | strength and decreasing                                  |               |
|                         |                            | (0–97%), urea  |                      | temperature increased the                                |               |
|                         |                            | (1–6 M)        |                      | binding, suggesting the                                  |               |
|                         |                            |                |                      | interactions were modified by                            |               |
|                         |                            |                |                      | hydrogen bonds and                                       |               |

|  |  | hydrophobic interactions.          |
|--|--|------------------------------------|
|  |  | Langmuir isotherm adsorption       |
|  |  | model well described the           |
|  |  | adsorption of procyanidins by      |
|  |  | cell walls. Increasing             |
|  |  | procyanidin concentration          |
|  |  | increased the amount of            |
|  |  | adsorbed procyanidins with         |
|  |  | decreased proportion of            |
|  |  | procyanidins bound. Decreasing     |
|  |  | the cell wall porosity (by drying) |
|  |  | increased the saturation level and |
|  |  | binding per unit surface.          |
|  |  | Different types of cell wall       |
|  |  | polysaccharides (pectin,           |
|  |  | xyloglucan, and cellulose)         |
|  |  |                                    |

|                  |                           |              |                  | showed different binding          |               |
|------------------|---------------------------|--------------|------------------|-----------------------------------|---------------|
|                  |                           |              |                  | capacity with procyanidins.       |               |
|                  |                           |              |                  | Pectin had the highest binding    |               |
|                  |                           |              |                  | capacity, while cellulose and     |               |
|                  |                           |              |                  | xyloglucan bound procyanidins     |               |
|                  |                           |              |                  | weakly. Apparent saturation       |               |
|                  |                           |              |                  | levels of cellulose and           |               |
|                  |                           |              |                  | xyloglucan were higher than that  |               |
|                  |                           |              |                  | of pectin                         |               |
|                  |                           |              |                  |                                   |               |
| Apple cell walls | Procyanidins of apple and | pH 3.8, 1 h, | Composition of   | The effect of ionic strength,     | Le Bourvellec |
|                  | pear                      | 535°C        | procyanidins was | temperature, concentrations of    | et al., 2007  |
|                  |                           |              | analysed by HPLC | polyphenols and cell walls, and   |               |
|                  |                           |              |                  | types of procyanidins on the      |               |
|                  |                           |              |                  | interactions were studied and     |               |
|                  |                           |              |                  | modelled. The model was related   |               |
|                  |                           |              |                  | to the separation of procyanidins |               |

|                         |                            |               |                           | from apple into juice as shown in   |               |
|-------------------------|----------------------------|---------------|---------------------------|-------------------------------------|---------------|
|                         |                            |               |                           | Table 3                             |               |
| Apple cell wall         | Apple proanthocyanidins in | 1 h, 25 °C,   | Polysaccharide            | Polyphenols decreased the yield     | Le Bourvellec |
|                         | native and oxidised forms  | pH 3.8        | extractability from apple | of pectin and the solubility of     | et al., 2009  |
|                         |                            |               | cell wall                 | highly methylated pectins, and      |               |
|                         |                            |               |                           | reduced the depolymerisation of     |               |
|                         |                            |               |                           | pectins by pectin lyase.            |               |
|                         |                            |               |                           | Oxidation of proanthocyanidins      |               |
|                         |                            |               |                           | increased the cell wall binding.    |               |
|                         |                            |               |                           | Binding of oxidised                 |               |
|                         |                            |               |                           | proanthocyanidins by pectins        |               |
|                         |                            |               |                           | increased the yield of              |               |
|                         |                            |               |                           | hemicellulose using 4 M NaOH        |               |
| Apple cell walls as     | Apple procyanidins         | pH 3.8, ionic | Unbound                   | The presence of protein in the      | Le Bourvellec |
| affected by boiling and |                            | strength 0.1  | proanthocyanidins         | cell walls had little effect on the | et al., 2012  |
|                         |                            |               | measured by HPLC,         | procyanidin-cell wall               |               |

| drying                  |           | M, 1 h        | isothermal titration             | interactions. Boiling and drying    |                |
|-------------------------|-----------|---------------|----------------------------------|-------------------------------------|----------------|
|                         |           |               | calorimetry                      | increased the apparent saturation   |                |
|                         |           |               |                                  | levels and had no effect on the     |                |
|                         |           |               |                                  | apparent affinity of cell walls per |                |
|                         |           |               |                                  | surface unit. Isothermal titration  |                |
|                         |           |               |                                  | calorimetry analysis of the         |                |
|                         |           |               |                                  | interactions between solubilized    |                |
|                         |           |               |                                  | pectins and procyanidins            |                |
|                         |           |               |                                  | indicated strong interactions       |                |
|                         |           |               |                                  | (Fig. 2d)                           |                |
|                         |           |               |                                  |                                     | g              |
| Apple cell walls and    | Quercetin | 37°C, pH 6.5, | Concentration of                 | The reduced antioxidant activity    | Sun-Waterhouse |
| pectins, raw and        |           | 2 h           | quercetin in supernatant         | of the supernatant containing       | et al., 2008a; |
| cooked onion cell walls |           |               | after centrifugation             | quercetin may reflect the binding   | 2008ь          |
|                         |           |               | (1, 000 g, 5 min) was            | of this polyphenol with             |                |
|                         |           |               | reflected by the <i>in vitro</i> | apple/onion cell walls and          |                |
|                         |           |               | ,                                | pectins as well as its oxidation    |                |
|                         |           |               |                                  |                                     |                |

|                           |                              |                 | antioxidant activity     |                                  |               |
|---------------------------|------------------------------|-----------------|--------------------------|----------------------------------|---------------|
|                           |                              |                 |                          |                                  |               |
|                           |                              |                 |                          |                                  |               |
| Apple and citrus cell     | Apple procyanidins differing | pH 3.8, ionic   | Thermodynamics of        | Procyanidins with larger size    | Watrelot et   |
| wall pectins differing in | molecular size (DP = 9 and   | strength at 0.1 | pectin-procyanidin       | (DP = 30) had stronger binding.  | al., 2013 and |
| molecular structure       | 30)                          | mol/L           | interactions were probed | Apple and citrus pectins         | 2014          |
|                           |                              |                 | by isothermal titration  | interacted differently with      |               |
|                           |                              |                 | calorimetry; aggregation | procyanidins as reflected by     |               |
|                           |                              |                 | and turbidity were       | different absorbance maxima      |               |
|                           |                              |                 | monitored by             | and stoichiometry. Large         |               |
|                           |                              |                 | UV-visible               | procyanidins interacted strongly |               |
|                           |                              |                 | spectroscopy             | with highly methylated pectins.  |               |
|                           |                              |                 |                          | Interactions between methylated  |               |
|                           |                              |                 |                          | homogalacturonans and            |               |
|                           |                              |                 |                          | procyanidins (DP = 30) were      |               |
|                           |                              |                 |                          | most hydrophobic. The presence   |               |
|                           |                              |                 |                          | of neutral sugar side chains in  |               |

|                          |                             |            |                                                        | pectins (e.g., rhamnogalacturonans) strongly limited their interactions with procyanidins                                                                                                                                   |                    |
|--------------------------|-----------------------------|------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Cell walls of grape skin | Proanthocyanidins (PA) of   | 1 h, 32 °C | Composition of                                         | Increasing molecular size of                                                                                                                                                                                                | Bindon et al.,     |
| and flesh                | grape skin, seed, and flesh |            | proanthocyanidins after centrifugation was analysed by | proanthocyanidins increased the binding between flesh cell walls and proanthocyanidins.                                                                                                                                     | 2010b and<br>2010a |
|                          |                             |            | gel-permeation chromatography and phloroglucinolysis   | Seed-derived proanthocyanidins was preferred in the interactions. Interactions between cell walls and proanthocyanidins of skin did not follow this pattern, suggesting the role of cell wall structure on the interactions |                    |

| Cabernet Sauvignon   | Cabernet Sauvignon grape | 1 h, 32 °C     | Unbound                | Degree of polymerization of       | Bindon &     |
|----------------------|--------------------------|----------------|------------------------|-----------------------------------|--------------|
| grape skin and flesh | skin proanthocyanidins   |                | proanthocyanidins      | proanthocyanidins increased up    | Kennedy,     |
| cell walls           |                          |                | quantified by          | to 33 after grape veraison.       | 2011         |
|                      |                          |                | phloroglucinolysis and | Binding of skin cell walls with   |              |
|                      |                          |                | gel permeation         | proanthocyanidins decreased       |              |
|                      |                          |                | chromatography         | after veraison. In colorless      |              |
|                      |                          |                |                        | Cabernet Sauvignon grape          |              |
|                      |                          |                |                        | mutants, proanthocyanidins of     |              |
|                      |                          |                |                        | high molar mass had a higher      |              |
|                      |                          |                |                        | binding capacity to the skin cell |              |
|                      |                          |                |                        | walls                             |              |
| Wine polymeric       | Wine anthocyanins        | 4 °C, up to    | Amount of unbound      | Anthocyanins with coumaroyl       | Gonçalves    |
| material             |                          |                | anthocyanins measured  | and acetyl moieties had higher    | . 1 2012     |
|                      |                          | 66 h, dialysis | by HPLC                | affinity with wine polymeric      | et al., 2012 |
|                      |                          | membrane       |                        | material than non-acylated        |              |
|                      |                          | was employed   |                        | anthocyanins. Hydrophobic         |              |

|                         |                         |            |                    | interactions predominated        |              |
|-------------------------|-------------------------|------------|--------------------|----------------------------------|--------------|
| Fractions of grape skin | Grape skin procyanidins | 1 h, 27 °C | Unbound            | Grape skin cell walls were       | Ruiz-Garcia  |
| cell walls              |                         |            | proanthocyanidins  | selectively fractionated by      | et al., 2014 |
|                         |                         |            | measured by        | different types of solvents. A   |              |
|                         |                         |            | phloroglucinolysis | large portion of cell wall-bound |              |
|                         |                         |            |                    | proanthocyanidins (54%) was      |              |
|                         |                         |            |                    | with the chelator-soluble        |              |
|                         |                         |            |                    | fractions (pectins).             |              |
|                         |                         |            |                    | Hemicellulosic fractions had a   |              |
|                         |                         |            |                    | high binding with the            |              |
|                         |                         |            |                    | proanthocyanidins. The           |              |
|                         |                         |            |                    | lignocellulosic residue had much |              |
|                         |                         |            |                    | reduced interactions with        |              |
|                         |                         |            |                    | proanthocyanidins. All the       |              |
|                         |                         |            |                    | fractions except for the         |              |
|                         |                         |            |                    | lignocellulosic residue better   |              |

|                       |                             |              |                       | bound the proanthocyanidins of     |                |
|-----------------------|-----------------------------|--------------|-----------------------|------------------------------------|----------------|
|                       |                             |              |                       | high molecular mass                |                |
| Insoluble grape skin  | Six different commercial    | Room         | Concentrations of     | The highest binding of one         | Bautista-Ortín |
| cell walls            | enological tannins          | temperature, | tannins bound to cell | tannin was 61%. The molecule       | et al., 2014   |
|                       |                             | 90 min, pH   | walls analysed by     | size of tannins than the degree of |                |
|                       |                             | 3.6          | HPSEC and             | galloylation was more related to   |                |
|                       |                             |              | phloroglucinolysis    | the binding. Oxidised tannins      |                |
|                       |                             |              |                       | had a strong binding to the cell   |                |
|                       |                             |              |                       | walls                              |                |
| Grape skin cell walls | Anthocyanins and tannins of | Model        | Concentrations of     | The presence of anthocyanins       | Bautista-Ortín |
|                       | grape                       | system: pH   | anthocyanins and      | facilitates the extraction of      | et al., 2016   |
|                       |                             | 3.6, 90 min, | tannins analysed by   | tannins from the grape skins and   |                |
|                       |                             | room         | RP-HPLC and HPSEC,    | seeds. The adsorptions of          |                |
|                       |                             | temperature; | respectively          | anthocyanins and tannins by cell   |                |
|                       |                             | grape        |                       | walls are competitive              |                |
|                       |                             |              |                       |                                    |                |

|                |                               | vinification            |                                  |                                                                      |              |
|----------------|-------------------------------|-------------------------|----------------------------------|----------------------------------------------------------------------|--------------|
| Barley and oat | 21 vanillin-inspired phenolic | Equilibrium             | The amounts of                   | Glucosides of phenolics had                                          | Simonsen     |
| β-glucans      | derivatives                   | dialysis                | phenolics bound to               | little binding with                                                  | et al., 2009 |
|                |                               | assays at pH            | β-glucans                        | β-glucans. Phenolics with a                                          |              |
|                |                               | 7, up to 36 h,          |                                  | hydroxyl group in para-position                                      |              |
|                |                               | 37 °C                   |                                  | to a CHO group had the                                               |              |
|                |                               |                         |                                  | strongest binding, while                                             |              |
|                |                               |                         |                                  | additional functional groups                                         |              |
|                |                               |                         |                                  | reduced the binding. Enzyme                                          |              |
|                |                               |                         |                                  | degradation of β-glucans                                             |              |
|                |                               |                         |                                  | reduced the binding capacity                                         |              |
| Oat β-Glucan   | Tea polyphenols               | Temperature             | Equilibrium dialysis             | The adsorption of tea                                                | Wu et al.,   |
|                |                               | (20–60 °C),             | assay was used and the           | polyphenols by oat                                                   | 2011         |
|                |                               | pH (3-7),<br>PBS buffer | tea polyphenol concentration was | $\beta$ -glucans was optimised through response surface methodology. |              |

|             |                                 | concentration | measured by            | The highest adsorption was       |             |
|-------------|---------------------------------|---------------|------------------------|----------------------------------|-------------|
|             |                                 | (0.05–0.5 M), | spectrophotometry      | 134.55 μg/mg at pH 5.6, PBS      |             |
|             |                                 |               |                        | (phosphate-buffered saline)      |             |
|             |                                 |               |                        | buffer concentration of 0.13 M,  |             |
|             |                                 |               |                        | and temperature of 40 °C.        |             |
|             |                                 |               |                        | Freundlich isotherm adsorption   |             |
|             |                                 |               |                        | model best described the         |             |
|             |                                 |               |                        | equilibrium data                 |             |
|             |                                 |               |                        |                                  |             |
| Soluble oat | Tea polyphenols,                | pH 5.56 PBS   | Content of polyphenols | (-)-Epigallocatechin gallate     | Gao et al., |
| β-glucans   | (-)-epicatechin,                | solution      | bound to β-glucans     | (EGCG) had the largest capacity  | 2012a       |
| F 6         | , , , ,                         | (0.12 M) 40   |                        | and efficiency of adsorption by  |             |
|             | (-)-epigallocatechin,           | (0.13 M), 40  |                        | β-glucans. Response surface      |             |
|             |                                 | °C, 16 h in   |                        |                                  |             |
|             | (-)-epicatechin gallate,        | dialysis bag  |                        | methodology analysis showed      |             |
|             | (-)- epigallocatechin gallate,  |               |                        | that the reaction conditions for |             |
|             | C , Sp. Sans cancernin gainate, |               |                        | the maximum adsorption were      |             |
|             | (-)-gallocatechin gallate,      |               |                        | concentration of EGCG (0.7       |             |
|             |                                 |               |                        |                                  |             |

|             | (-)-catechin                 |                 |                      | mg/mL), pH 5.8, concentration    |              |
|-------------|------------------------------|-----------------|----------------------|----------------------------------|--------------|
|             |                              |                 |                      | of PBS (0.10 M), and             |              |
|             |                              |                 |                      | temperature of 50 °C. The        |              |
|             |                              |                 |                      | isotherm adsorption of EGCG      |              |
|             |                              |                 |                      | can be best described by Toth    |              |
|             |                              |                 |                      | model as compared with           |              |
|             |                              |                 |                      | Langmuir, Redlich-Peterson, and  |              |
|             |                              |                 |                      | Freundlich Models. Individual    |              |
|             |                              |                 |                      | polyphenols with galloyl group   |              |
|             |                              |                 |                      | are better adsorbed by the       |              |
|             |                              |                 |                      | β-glucans                        |              |
| Soluble oat | Thirty-six polyphenols with  | pH 5.56, 40     | Concentrations of    | Impact of polyphenol structure   | Wang et al., |
| β-glucans   | diverse molecular structures | °C, 16 h.       | polyphenols bound to | on the binding properties of     | 2013         |
|             |                              | Ultrafiltration | β-glucans            | β-glucans was studied. Presence  |              |
|             |                              | was employed    |                      | of three or less hydroxyl groups |              |

|  |  | facilitated the binding while      |
|--|--|------------------------------------|
|  |  | more hydroxyl groups (> 3)         |
|  |  | decreased the binding              |
|  |  | interactions. Adsorption capacity  |
|  |  | of flavonoid isomers followed      |
|  |  | the order of flavonol (the highest |
|  |  | binding), flavone, flavanone, and  |
|  |  | isoflavone (the least binding).    |
|  |  | Methoxy and methyl groups on       |
|  |  | phenolic acids decreased their     |
|  |  | adsorption onto                    |
|  |  | β-glucans. Gallic acid             |
|  |  |                                    |
|  |  | esterification decreased the       |
|  |  | binding while catechin             |
|  |  | galloylation increased it.         |
|  |  |                                    |

|                          |                          |              |                          | o-Coumaric acid bound to             |                |
|--------------------------|--------------------------|--------------|--------------------------|--------------------------------------|----------------|
|                          |                          |              |                          | $\beta$ -glucans more than $m$ - and |                |
|                          |                          |              |                          | p-coumaric acids                     |                |
| Crude fiber of the flesh | Methanol extracts of the | pH 2.5, room | Total phenolic content   | Wheat dietary fiber reduced the      | Quirós-Sauceda |
| of mango, pineapple,     | plant foods              | temperature, | and in vitro antioxidant | total phenolic content up to 38%     | et al., 2014   |
| papaya, guava, and       |                          | up to 2 h    | activity in the          | and antioxidant activity up to       |                |
| wheat                    |                          |              | supernatant of the       | 48%, while the fiber of the fruits   |                |
|                          |                          |              | reaction system          | reduced the total phenolic           |                |
|                          |                          |              |                          | contents up to 25% and               |                |
|                          |                          |              |                          | antioxidant activity up to 22%.      |                |
|                          |                          |              |                          | Mango fiber gave the greatest        |                |
|                          |                          |              |                          | reduction among the fruit fibers     |                |
|                          |                          |              |                          |                                      |                |

Table 3 Interactions among cell wall polysaccharides, proteins, and polyphenols

| Polysaccharide | Polyphenol type  | Protein type  | Reaction      | Major findings                                         | References   |
|----------------|------------------|---------------|---------------|--------------------------------------------------------|--------------|
| type           |                  |               | conditions    |                                                        |              |
|                |                  |               |               |                                                        |              |
| Xanthan (XG),  | Procyanidin      | Bovine serum  | pH 5.0,       | All the polysaccharides disrupted the interactions and | Mateus       |
| gum arabic     | fractions from   | albumin (BSA) | procyanidin   | aggregation of BSA and various fractions of            | et al., 2004 |
| (GA), pectin   | grape seeds      |               | concentration | procyanidins. XG had the highest effect and GA had     |              |
|                |                  |               | of 0.1 g/L    | the least. The inhibitory effect of polysaccharides    |              |
|                |                  |               |               | decreased with the increasing size of procyanidin      |              |
|                |                  |               |               | fractions                                              |              |
| Cum anahia     | Condensed        | Porcine       | ~II 5 O       | Nambalamatury flyamasaanaa ayanahina and dymamia       | Soares       |
| Gum arabic,    | Condensed        | Porcine       | pH 5.0        | Nephelometry, fluorescence quenching, and dynamic      | Soares       |
| pectins,       | tannins of grape | pancreatic    |               | light scattering methods were used to study the        | et al., 2009 |
| β-cyclodextrin | seed             | α-amylase     |               | interactions. These carbohydrates reduced the          |              |
|                |                  |               |               | precipitation due to α-amylase-tannin complexation.    |              |
|                |                  |               |               | Different fractions of tannins with different          |              |
|                |                  |               |               | molecular sizes were used. It was suggested that       |              |
|                |                  |               |               |                                                        |              |

|                  |                |         |                | $\beta$ -cyclodextrin and gum arabic competed with $\alpha$ - amylase for tannin association, while pectins |              |
|------------------|----------------|---------|----------------|-------------------------------------------------------------------------------------------------------------|--------------|
|                  |                |         |                | interacted with both tannin and $\alpha$ -amylase to form                                                   |              |
|                  |                |         |                | three-component complexes (Fig. 3d)                                                                         |              |
| Pectin (PC),     | Procyanidin B3 | Trypsin | Molar ratio of | Various techniques including saturation transfer                                                            | Gonçalves    |
| polygalacturonic |                |         | trypsin to     | difference-NMR spectroscopy, nephelometry, and                                                              | et al., 2011 |
| acid (PA),       |                |         | procyanidin B3 | fluorescence quenching were used to study the                                                               |              |
| xanthan gum      |                |         | at 1:30, the   | interactions. All the carbohydrates disrupted the                                                           |              |
| (XG), gum        |                |         | concentration  | interactions between procyanidin B3 and trypsin                                                             |              |
| arabic (GA),     |                |         | ranges of PC,  | through competitive reactions (Fig. 3d). The ability                                                        |              |
|                  |                |         | PA, XG, and    | to inhibit the procyanidin B3-trypsin                                                                       |              |
|                  |                |         | GA were 2–10,  | interactions/aggregation followed the order of                                                              |              |
|                  |                |         | 0.2-1.0,       | XG > PA > GA > PC. The ionic feature of                                                                     |              |
|                  |                |         | 0.001-0.09,    | carbohydrates and the ability to encapsulate                                                                |              |
|                  |                |         | 0.2-1.6 g/L,   | procyanidins contributed to the inhibitory effects                                                          |              |
|                  |                |         | respectively   | F Juliana Commodate to the immediaty encous                                                                 |              |
|                  |                |         |                |                                                                                                             |              |

|                  |                  |                |                 | (Fig. 3e)                                            |              |
|------------------|------------------|----------------|-----------------|------------------------------------------------------|--------------|
| Arabic gum       | Condensed        | Salivary       | ~20°C,          | Polysaccharides effectively inhibited protein-tannin | Soares       |
| (AG),            | tannins of grape | proteins       | polysaccharides | precipitation. Pectin was the most efficient and PGA | et al., 2012 |
| polygalacturonic | seed             |                | and tannins     | was the least. Pectin and PGA formed complexes       |              |
| acid (PGA), and  |                  |                | were mixed for  | together with proteins and polyphenols (Fig. 3d),    |              |
| pectin           |                  |                | 30 min before   | while AG and protein competed to bind the tannins.   |              |
|                  |                  |                | salivary        | The hydrophobic and hydrophilic interactions were    |              |
|                  |                  |                | proteins was    | involved in interactions                             |              |
|                  |                  |                | added and       |                                                      |              |
|                  |                  |                | mixed for 50    |                                                      |              |
|                  |                  |                | min             |                                                      |              |
| Chardonnay       | Chardonnay       | Chitinase and  | 70°C for 1 h    | Scanning ion occlusion sensing (SIOS) was used to    | Gazzola      |
| wine             | wine             | thaumatin-like | followed by     | study the size and concentration of protein          |              |
| polysaccharides  | polyphenols      | proteins (TLP) | 25°C for 15 h   | aggregates as affected by the presence of            | et al., 2012 |
| 1 7              | 1 Jr             | of Chardonnay  |                 | polyphenols and polysaccharides. Chitinase had the   |              |
|                  |                  |                |                 | highest tendency to form aggregates with the largest |              |

|        |                      | wine            |                  | particles. Polyphenols and polysaccharides had little |               |
|--------|----------------------|-----------------|------------------|-------------------------------------------------------|---------------|
|        |                      |                 |                  | impact on the chitinase aggregation in the simulated  |               |
|        |                      |                 |                  | wine conditions. TLP isoforms had different           |               |
|        |                      |                 |                  | susceptibility to aggregation. The presence of        |               |
|        |                      |                 |                  | polyphenols and polysaccharides decreased the         |               |
|        |                      |                 |                  | aggregation of some TLP isoforms                      |               |
| Pectin | (+)-Catechin and     | β-Lactoglobulin | in vitro models  | In mouth model, the presence of pectin and β-LG       | Oliveira &    |
|        | cyanidin-3-glucoside | (β-LG)          | with             | decreased the free cyanidin-3-glucoside by 23%,       | Pintado, 2015 |
|        |                      |                 | gastrointestinal | while the presence of pectin decreased that by 73%,   |               |
|        |                      |                 | tract            | suggesting the formation of pectin-β-LG complexes.    |               |
|        |                      |                 | conditions: 1,   | In gastric model, the presence of pectin and β-LG     |               |
|        |                      |                 | mouth            | gave a higher cyanidin-3-glucoside content than the   |               |
|        |                      |                 | digestion        | pectin alone. In intestinal digestion model, the      |               |
|        |                      |                 | model:           | presence of pectin and $\beta$ -LG decreased          |               |
|        |                      |                 | α-amylase        | cyanidin-3-glucoside content much less than the       |               |
|        |                      |                 | solution at      | pectin alone. The presence of pectin had a similar    |               |

|  | 37°C, 1 min; 2, | effect on catechin than the presence of both pectin |  |
|--|-----------------|-----------------------------------------------------|--|
|  | gastric         | and β-LG                                            |  |
|  | digestion       |                                                     |  |
|  | model: pH 2,    |                                                     |  |
|  | 37°C, 1 h,      |                                                     |  |
|  | pepsin; 3,      |                                                     |  |
|  | intestinal      |                                                     |  |
|  | digestion       |                                                     |  |
|  | model: pH 6, 2  |                                                     |  |
|  | h, 37°C,        |                                                     |  |
|  | pancreatin      |                                                     |  |
|  |                 |                                                     |  |

Table 4 Applications of polyphenol-cell wall polysaccharide interactions in food systems

| Food          | Interactions                 | Implications for food products                                   | Reference    |
|---------------|------------------------------|------------------------------------------------------------------|--------------|
| systems       |                              |                                                                  |              |
|               |                              |                                                                  |              |
| Apple juice   | Apple cell wall-procyanidins | Pressing of apple for juice production was related to the cell   | Le           |
| production    |                              | wall-procyanidin interactions. The pressing conditions for the   | Bourvellec   |
|               |                              | yields of polyphenols in juice agreed with that from the models. | et al., 2007 |
|               |                              | The interactions between cell walls and polyphenols explained    |              |
|               |                              | the loss of the latter in the pomace during juice production     |              |
| Grape wine    | Grape cell walls—grape       | During vinification, 25% and 27% of grape PA were found in       | Bindon       |
|               | proanthocyanidins (PA)       | wine and marc after fermentation, while 48% of PA remained in    | et al.,      |
|               |                              | the seeds or lees. This may be explained by the binding          | 2010a and    |
|               |                              | interactions of cell walls and PA. PA with high molecular weight | 2010b        |
|               |                              | was not detected in the wine. It may be removed due to the       |              |
|               |                              | binding with cell walls                                          |              |
| Stabilisation | Strawberry                   | Strawberry extracts were mixed with citrus and apple (low        | Buchweitz    |
|               |                              |                                                                  |              |

| of            | anthocyanins-different         | esterified amidated, low and high methyl esterified) and sugar       | et al., 2013 |
|---------------|--------------------------------|----------------------------------------------------------------------|--------------|
| strawberry    | pectins                        | beet pectins at pH 3. Apple and sugar beet pectins enhanced the      |              |
| anthocyanins  |                                | anthocyanin stability, and citrus pectin had little effect.          |              |
|               |                                | Amidation and esterification of pectins had little effect. Stability |              |
|               |                                | of pelargonidin-3-malonylglucoside was not affected by pectin        |              |
|               |                                | addition. The stability of anthocyanins by pectins may be            |              |
|               |                                | partially attributed to their binding interactions                   |              |
| Diale         | Dreasyonidia/ontheesyonia cell | Due avoniding of sound manualized monticilly de anoded into          | T o          |
| Pink          | Procyanidin/anthocyanin-cell   | Procyanidins of canned pear slices partially degraded into           | Le           |
| discoloration | wall of pears                  | anthocyanidins, contributing to the pink color development. The      | Bourvellec   |
| of canned     |                                | colorant strongly bound to the cell walls as revealed by             | et al., 2014 |
| pears         |                                | successive solvent extractions and cell wall enzymatic               |              |
| (Fig. 4b)     |                                | degradation. Apart from the non-covalent bonding between             |              |
| (11g. 40)     |                                | polyphenols and cell walls, covalent bonding was suggested as        |              |
|               |                                | the pink colorant was very resistant to extraction                   |              |
| C. 1          |                                |                                                                      | OI: ·        |
| Strawberry    | Carrageenan-strawberry         | Mixing strawberry and yoghurt led to the decreasing in both          | Oliveira     |
|               |                                | protein and polyphenol contents. The presence of carrageenan         |              |

| polyphenol-β-lactoglobulin    | decreased the protein content more. This indicated the formation                                                                                                      | et al., 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               | of carrageenan-yoghurt protein complexes                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Guar, xanthan, arabic gums,   | All the polysaccharides above the critical concentrations reduced                                                                                                     | Troszyńska                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| carboxymethylcellulose        | the polyphenol astringency. CMC had the greatest reduction                                                                                                            | et al., 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (CMC); tannic acid,           | which was followed by guar gum, xanthan gum, and arabic gum                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| polyphenolic extracts of      |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| chokeberry, green tea, walnut |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Octenylsuccinate oat          | Octenylsuccinate oat β-glucan self-assembled into spherical                                                                                                           | Liu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| β-glucan-curcumin             | micelles. The presence of these micelles enhanced the water                                                                                                           | et al., 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                               | solubility of curcumin. Response surface methodology revealed                                                                                                         | and 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                               | that the maximum loading of curcumin in the micelles was 4.21                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                               | μg/mg. Solubilised curcumin interacted with the micelles most                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                               | through hydrophobic interactions to form an amorphous                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                               | complexes                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Rice bran                     | Langmuir and Freundlich models well described the isothermal                                                                                                          | Shi et al.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                               | Guar, xanthan, arabic gums, carboxymethylcellulose (CMC); tannic acid, polyphenolic extracts of chokeberry, green tea, walnut  Octenylsuccinate oat β-glucan—curcumin | Guar, xanthan, arabic gums,         carboxymethylcellulose       All the polysaccharides above the critical concentrations reduced the polyphenol astringency. CMC had the greatest reduction         (CMC); tannic acid,       which was followed by guar gum, xanthan gum, and arabic gum         polyphenolic extracts of chokeberry, green tea, walnut       Octenylsuccinate oat β-glucan self-assembled into spherical micelles. The presence of these micelles enhanced the water solubility of curcumin. Response surface methodology revealed that the maximum loading of curcumin in the micelles was 4.21 μg/mg. Solubilised curcumin interacted with the micelles most through hydrophobic interactions to form an amorphous complexes |

| for tea     | adsorption of tea polyphenols by defatted rice bran. Cellulase and | 2015 |
|-------------|--------------------------------------------------------------------|------|
| polyphenols | proteinase as well as defatting treatments greatly decreased the   |      |
|             | adsorption capacity of the rice bran                               |      |
|             |                                                                    |      |

Table 5 Nutritional aspects of polyphenol-cell wall polysaccharide interactions

| Property          | Polysaccharide | Polyphenol type     | Experiment          | Major findings                  | Reference        |
|-------------------|----------------|---------------------|---------------------|---------------------------------|------------------|
|                   | type           |                     |                     |                                 |                  |
| Cecal             | Apple pectin   | Apple concentrate   | Rats was fed with   | Combination diet had            | Aprikian et al., |
| fermentations and |                | rich in polyphenols | apple pectin, apple | positive effects on large       | 2003             |
| lipid metabolism  |                |                     | concentrate rich in | intestine fermentations and     |                  |
|                   |                |                     | polyphenols, or     | lipid metabolism of rats, and   |                  |
|                   |                |                     | their combinations  | the effects were higher than    |                  |
|                   |                |                     |                     | those of either apple pectin or |                  |
|                   |                |                     |                     | apple concentrate rich in       |                  |
|                   |                |                     |                     | polyphenols. This suggested     |                  |
|                   |                |                     |                     | the interactions between        |                  |
|                   |                |                     |                     | apple polyphenols and apple     |                  |
|                   |                |                     |                     | pectins                         |                  |
|                   |                |                     |                     |                                 |                  |

| Metabolism of     | Dietary fiber of   | Proanthocyanidins   | In vitro small      | The metabolites of             | Saura-Calixto    |
|-------------------|--------------------|---------------------|---------------------|--------------------------------|------------------|
| proanthocyanidins | carob pod and      | of carob pod and    | intestine digestion | proanthocyanidins in both in   | et al., 2010     |
| in colon model    | red grapes         | red grapes          | and colonic         | vitro model and humans were    |                  |
|                   |                    |                     | fermentation        | two isomers of                 |                  |
|                   |                    |                     | model was used.     | hydroxyphenylpropionic acid,   |                  |
|                   |                    |                     | Human studies       | hydroxyphenylacetic acid,      |                  |
|                   |                    |                     | were also           | and hydroxyphenylvaleric       |                  |
|                   |                    |                     | employed            | acid. Difference in the        |                  |
|                   |                    |                     |                     | metabolite profiles of the two |                  |
|                   |                    |                     |                     | types of materials was noted   |                  |
| Metabolism of     | Cell walls of rye, | Polyphenols of rye, | In vitro small      | Phenylpropionic acid from      | Nordlund et al., |
| cereal bran and   | wheat, and oat     | wheat, and oat      | intestinal and      | ferulic acid was the major     | 2012             |
| aleurone          | brans              | brans               | colon fermentation  | metabolites of all the brans.  |                  |
|                   |                    |                     | models              | Wheat aleurone fraction gave   |                  |
|                   |                    |                     |                     | the highest amount of          |                  |
|                   |                    |                     |                     | phenolic metabolites. The      |                  |

|              |                 |                 |                     | fermentation of wheat bran     |                   |
|--------------|-----------------|-----------------|---------------------|--------------------------------|-------------------|
|              |                 |                 |                     | was the slowest, while that of |                   |
|              |                 |                 |                     | rye bran and aleurone was the  |                   |
|              |                 |                 |                     | fastest with the greatest      |                   |
|              |                 |                 |                     | extent. Acetate was the most   |                   |
|              |                 |                 |                     | dominated among the short-     |                   |
|              |                 |                 |                     | chain fatty acids from the     |                   |
|              |                 |                 |                     | fermentation                   |                   |
| A            | D 1 0 1         | m D I I I       | D: 1 .:             |                                | G 1 20121         |
| Antidiabetic | Barley β-glucan | Tea Polyphenols | Diabetic rat        | Combination diet had a better  | Gao et al., 2012b |
|              |                 |                 | induced by          | antidiabetic effect than the   |                   |
|              |                 |                 | streptozotocin was  | individuals in improving the   |                   |
|              |                 |                 | orally fed with     | antioxidant status and glucose |                   |
|              |                 |                 | diets containing    | metabolism in diabetic rats.   |                   |
|              |                 |                 | barley β-glucan,    | This indicated the synergistic |                   |
|              |                 |                 | tea polyphenols, or | interactions between barley    |                   |
|              |                 |                 | their combinations  | β-glucans and tea              |                   |
|              |                 |                 |                     |                                |                   |

|                |                |                |                   | polyphenols                    |                   |
|----------------|----------------|----------------|-------------------|--------------------------------|-------------------|
|                |                |                |                   |                                |                   |
|                |                |                |                   |                                |                   |
| Metabolism of  | Wheat aleurone | Polyphenols of | In vitro          | Wheat aleurone was treated     | Rosa et al., 2013 |
| wheat aleurone |                | wheat aleurone | fermentation      | by dry grinding or enzymatic   |                   |
|                |                |                | model with human  | hydrolysis (xylanase/feruloyl  |                   |
|                |                |                | faecal microbiota | esterase). Enzymatic           |                   |
|                |                |                | was used.         | hydrolysis of wheat aleurone   |                   |
|                |                |                | Metabolites of    | gave a higher formation rate   |                   |
|                |                |                | both cell wall    | and concentration of the       |                   |
|                |                |                | polysaccharides   | metabolites of ferulic acid    |                   |
|                |                |                | and polyphenols   | (phenylpropionic acids), and   |                   |
|                |                |                | were monitored    | had little effects on the      |                   |
|                |                |                |                   | formation of short-chain fatty |                   |
|                |                |                |                   | acids. Dry grinding increased  |                   |
|                |                |                |                   | the formation rate of short-   |                   |

|                |                |                |                    | chain fatty acids by           |                  |
|----------------|----------------|----------------|--------------------|--------------------------------|------------------|
|                |                |                |                    | increasing the surface area of |                  |
|                |                |                |                    | the particles                  |                  |
| Metabolism of  | Wheat aleurone | Polyphenols of | Urinary            | Enzymatic hydrolysis of        | Pekkinen et al., |
| wheat aleurone |                | wheat aleurone | metabolites of     | wheat aleurone released the    | 2014             |
|                |                |                | diet-induced obese | bound polyphenols into free    |                  |
|                |                |                | mice fed with      | forms and increased the        |                  |
|                |                |                | wheat aleurone     | excretion of glycine           |                  |
|                |                |                | were profiled.     | conjugates and ferulic acid    |                  |
|                |                |                | Wheat aleurone     | sulfate. Native and ground     |                  |
|                |                |                | was processed by   | wheat aleurone gave higher     |                  |
|                |                |                | dry-grinding or    | amounts of metabolites from    |                  |
|                |                |                | enzymatic          | microbial fermentation in the  |                  |
|                |                |                | hydrolysis         | large intestine (hydroxyl- and |                  |
|                |                |                | (xylanase/feruloyl | dihydroxyphenylpropionic       |                  |
|                |                |                | esterase)          | acids, hippuric acid)          |                  |
|                |                |                |                    |                                |                  |

| Fermentation by | Arabinoxylan-    | Ferulic acid (FA)   | AXOS with FA      | FA in both bound and free      | Snelders et al., |
|-----------------|------------------|---------------------|-------------------|--------------------------------|------------------|
| human gut       | oligosaccharides | covalently and non- | was fermented in  | forms reduced the              | 2014             |
| microbiota      | (AXOS)           | covalently bound to | vitro by cultured | fermentation. In vitro         |                  |
|                 |                  | AXOS                | human colon       | antioxidant activity decreased |                  |
|                 |                  |                     | microbiota        | as the fermentation            |                  |
|                 |                  |                     |                   | metabolised both the bound     |                  |
|                 |                  |                     |                   | and free FA                    |                  |
|                 |                  |                     |                   |                                |                  |

Figure 1a Phenolic glucosides 22-27 from chemical synthesis: (i) NaOH, H<sub>2</sub>O, 15 min, <10 °C; (ii) acetone, 24 h, room temperature; (iii) MeOH, MeONa/MeOH, 1–2 h, room temperature (Simonsen et al., 2009) (Reprinted with permission from the publisher)

Figure 1b Equilibrium forms of anthocyanins in an acidic medium; the anthocyanin is cyanidin-3-O-glucoside when R1 = OH, R2 = H, and is delphinidin-3-O-glucoside when R1 = R2 = OH (Fernandes et al., 2014) (Reprinted with permission from the publisher)

Figure 1c Chemical structure of procyanidins ((–)-epicatechin-based) and the flavan-3-ols units (Le Bourvellec et al., 2009) (Reprinted with permission from the publisher)



Figure 1d SEM (scanning electron microscopy) photograph of purified bacterial cellulose by NaOH (0.5 M), resembling plant cell wall cellulose (Phan et al., 2015) (Reprinted with permission from the publisher)



Figure 2a Confocal laser scanning microscopy of plant cell wall material of a blanched purple carrot puree; A, plant cell materials stained by congo red (0.02%); B and C, auto-fluorescence (purple) of anthocyanins bound to cell walls before *in vitro* gastric and small intestine digestion; D, auto-fluorescence (purple) of anthocyanins bound to cell walls after *in vitro* gastric and small intestine digestion (Padayachee et al., 2013) (Reprinted with permission from the publisher)



Figure 2b <sup>1</sup>H NMR spectra obtained in D<sup>2</sup>O/DMSO (5%) at pH 4.0 and 313 K; A, pectin (4 μM); B, mixtures of pectin (4 μM) and delphinidin-3-*O*-glucoside (700 μM) or D (with cyanidin-3-*O*-glucoside); spectra C and E are the corresponding STD spectra of B and D, respectively; F is the STD spectrum of cyanidin-3-*O*-glucoside–pectin mixtures at a higher molar ratio of anthocyanin to pectin (Fernandes et al., 2014) (Reprinted with permission from the publisher)



Figure 2c Representative geometries of anthocyanin-pectin systems along the course of each Molecular Dynamics simulation; cy3glc, cyanidin-3-O-glucoside; dp3glc, delphinidin-3-O-glucoside; AH<sup>+</sup>, flavylium cation form of anthocyanin; B, hemiketal form of anthocyanin; the pectin and anthocyanin are described as sticks and with van der waals interactions; each panel represents an expansion of the total anthocyanin-pectin system (Fernandes et al., 2014) (Reprinted with permission from the publisher)



Figure 2d Isothermal titration calorimetry of procyanidin and apple cell wall interactions; A, blank injection of procyanidin fraction (DP 9) in buffer; B, raw plot of heat flow against time for the titration of procyanidin fraction (DP 9) into pectin solution; C, plot of enthalpy change against procyanidin/pectin ratio from integration of peak areas and normalization, the fitting curve is the thin curved line (Le Bourvellec et al., 2012) (Reprinted with permission from the publisher)



Figure 2e High-performance size-exclusion chromatography of anthocyanins (A) and tannins (T) of grape seeds/skins before and after interactions with cell walls (CW) in suspension (Bautista-Ortín et al., 2016) (Reprinted with permission from the publisher)



Figure 2f Parts of RP-HPLC (UV-vis detector) chromatograms of acidic saliva (AS) solution after the interactions with GSF in the absence and presence of some polysaccharides; AG, arabic gum; GSF, grape seed fraction (condensed tannins); PGA, polygalacturonic acid; gPRP, aPRP, and statherin represent different family regions of salivary proteins (Soares et al., 2012) (Reprinted with permission from the publisher)



Figure 3a Possible binding sites of procyanidins with cell wall pectins. Shaded solid bands represents cellulose microfibrils, jagged line, rhamnogalacturonan; thin solid line, neutral sugar side chain; dotted line, homogalacturonan; thick solid line, xyloglucan; grey shaded chain, procyanidin. (1) highly methylated pectins soluble in chelating agent; (2) smooth regions of pectins degraded by pectin lyase; (3) hairy regions of pectins loose in cell walls and released by pectin lyase; (4) Reinforced interactions between cellulose and pectin neutral side chains (Le Bourvellec et al., 2009) (Reprinted with permission from the publisher)



Figure 3b Proposed mechanism of "staining" cellulose microfibrils by anthocyanins and phenolic acids. (A) under-ordered adsorption of anthocyanins and phenolic acids onto the cellulose surface; (B) random agglomeration of anthocyanins and phenolic acids; (C) stacked and stabilised clusters of anthocyanins and phenolic acids, acylated anthocyanins have greater exposure to the solvent (Padayachee et al., 2013) (Reprinted with permission from the publisher)

Figure 3c Possible hydrogen bonding between tannins and homogalacturonans grape during vinification (Hanlin et al., 2010) (Reprinted with permission from the publisher)



Figure 3d Two proposed mechanisms (i and ii) for the inhibition of the tannin-protein aggregation by polysaccharides (Soares et al., 2009) (Reprinted with permission from the publisher)



Figure 3e Model on the disruptive effect of xanthan polysaccharide on the procyanidin B3-trypsin association through competition; gray square, blue ribbon, and spheres represent xanthan polysaccharide, trypsin, and procyanidin B3, respectively (Gonçalves et al., 2011) (Reprinted with permission from the publisher)



Figure 4a Model of proanthocyanidin extraction, adsorption, and desorption during grape vinification (Bindon et al., 2010b) (Reprinted with permission from the publisher)



Figure 4b Fresh (A) and pink canned (B) pear slice (Le Bourvellec et al., 2013) (Reprinted with permission from the publisher)



Figure 4c Curcumin in the solution in the absence (right bottle) and presence of octenyl succinate oat  $\beta$ -glucan (OSG) micelles (2.5 mg/mL) (left bottle) (Liu et al., 2013) (Reprinted with permission from the publisher)



Figure 5 Schematic illustration of the metabolism of ferulic acids (FA) in wheat aleurone as affected by the cell wall polysaccharide (AX: arabinoxylan)-ferulic acid association. Free FA (a) is easily absorbed to portal vein from stomach and upper regions intestine. In contrast, bound FA with AX enter the large intestine for microbial fermentation. Diet rich in free FA was treated by enzymatic hydrolysis (xylanase and feruloyl esterase), diet A3 was treated with xylanase and A4 was treated with xylanase and feruloyl esterase; A1 is of intact wheat aleurone and A2 diet was ground (Pekkinen et al., 2014) (Open access and copyright free)