Pmod CLP Reference Manual

Note

The Pmod CLP is retired and no longer for sale in our store.

The Digilent Pmod CLP (Revision B) is a 16×2 character <u>LCD ()</u> module that uses a 8-bit parallel data interface to let system boards display up to 32 different characters out of over 200 possible options.

digilent.com/reference/_media/reference/pmod/pmodclp/pmodclp-0.png)

Download This Reference Manual

• PDF (https://digilent.com/reference/_media/reference/pmod/pmodclp/pmodclp_rm.pdf)

Features

- 16×2 character LCD () with parallel interface
- 192 predefined characters including 93 ASCII () characters
- Up to 8 user-definable characters
- Read and write capability to and from the display

Functional Description

The Pmod CLP utilizes a Samsung KS0066 (http://pdf.datasheetcatalog.com/datasheets2/55/553815_1.pdf) LCD () controller to display information to a Sunlike LCD panel (http://www.lcd-modules.com.tw/). The module can execute a variety of instructions, such as erasing specific characters, setting different display modes, scrolling, and displaying user-defined characters.

Interfacing with the Pmod

The Pmod CLP communicates with the host board via the GPIO protocol (https://digilent.com/reference/pmod/communication_protocols/gpio). This particular module requires specific timings in order to program the KS0066 correctly, as per the KS0066 datasheet. These timings are described after the pinout description table shown below:

Pinout Description Table

			P	mod CLI	Connector Sign	als			
I	Header J1	- Top Half	Не	ader J1 -	Bottom Half	Header J2			
Pin	n Signal Description		Pin	Signal	Description	Pin	Signal	Description	
1	DB0	Data Bit 0	7	DB4	Data Bit 4	1	RS	Register Select: High for Data Transfer, Low for Instruction Transfer	
2	DB1	Data Bit 1	8	DB5	Data Bit 5	2	R/W	Read/Write signal: High for Read mode Low for Write mode	
3	DB2	Data Bit 2	9	DB6	Data Bit 6	3	Е	Read/Write Enable: High for Read, fallin edge writes data	
4	DB3	Data Bit 3	10	DB7	Data Bit 7	4	<u>NC ()</u>	Optional back-light enable (not connecte on the Pmod CLP	
5	<u>GND</u>	Power Supply Ground	11	GND ()	Power Supply Ground	5	GND ()	Power Supply Groun	

6	VCC	Positive	2	VCC	Positive	6	VCC	Positive Power
	0	Power		O	Power		O	Supply ¹
		Supply ¹			Supply ¹			

¹For Revision A of the Pmod CLP this must be at 5V. For Revision B, this must be at 3.3V

(https://digilent.com/reference/_detail/pmod/pmod/clp/temp4.png?id=pmod%3Apmodclp%3Areference-manual)

Timing Requirements

After power-on, at least 20ms must elapse before the "Function Set" instruction code can be written to set the bus width, number of lines, and character patterns (8-bit interface, 2 lines, and 5×8 dots are appropriate). After the Function Set instruction, at least 37us must elapse before the "Display On/Off Control" instruction can be written (to turn the display on, turn the cursor on or off, and set the cursor to blink or no blink). After another 37us, the "Clear Display" instruction can be issued.

After another 1.52ms, the "Entry Mode Set" instruction can set address increment (or address decrement) mode, and display shift mode (on or off). After this sequence, data can be written into the DDRAM via the "Write data into RAM" to cause information to appear on the display. Note that other compatible <u>LCD ()</u> controllers use similar start-up sequences which may not use the same timings as the Samsung controller.

The table below lists the required bit order needed in order to send a variety of instructions to the <u>LCD ()</u> controller on the Pmod CLP. Before the 8 bits of parallel data (DB7 through DB0) are sent, the output enable pin, E, must be brought to a high '1' state and then brought to a low '0' state at end of the sequence in order to transfer the data bits to the <u>LCD ()</u> controller.

Pmod CLP Instruction Codes

<u>LCD ()</u> Instructions and Codes														
Instruction			Description											
	RS	R/ W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0				

Clear Display	0	0	0	0	0	0	0	0	0	1	Clear display by writing a 20H to all DDRAM locations; set DDRAM address register to 00H; and return cursor to home.
Return Home	0	0	0	0	0	0	0	0	1	X	Return cursor to home (upper left corner), and set DDRAM address to 0H. DDRAM contents not changed.
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	SH	I/D = '1' for right- moving cursor and address increment; SH = '1' for display shift (direction set by I/D bit).
Display On/ Off Control	0	0	0	0	0	0	1	D	С	В	Set display (D), cursor (C), and blinking cursor (B) on or off.
Cursor or Display shift	0	0	0	0	0	1	S/C	R/L	X	X	S/C = '0' to shift cursor right or left, '1' to shift entire display right or left (R/L = '1' for right).
Function Set	0	0	0	0	1	DL	N	F	X	X	Set interface data length DL ('1' for 8 bit), number of display lines N ('1' for 2 lines), font F ('0' for 5×8 dots)
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address counter AC5 - AC0
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address counter AC5 - AC0
Read busy flag/address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Read busy flag (BF) and address counter AC6-AC0

Write data to RAM ()	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into DDRAM or CGRAM, depending on which address was last set
Read data to RAM ()	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data into DDRAM or CGRAM, depending on which address was last set

^{*}Note "X" represents a "don't care" bit

CGRAM and DDRAM

The LCD () controller contains a character-generator ROM () (CGROM) with 192 preset 5×8 character patterns (see table 4 below), a character-generator RAM () (CGRAM) that can hold 8 user-defined 5×8 characters, and a display data RAM () (DDRAM) that can hold 80 character codes. Character codes written into the DDRAM serve as indexes into the CGROM (or CGRAM). Writing a character code into a particular DDRAM location will cause the associated character to appear at the corresponding display location. Display positions can be shifted left or right by setting a bit in the Instruction Register (IR). The write-only IR directs display operations (such as clear display, shift left or right, set DDRAM address, etc). A busy flag shows whether the display has competed the last requested operation; prior to initiating a new operation, the flag can be checked to see if the previous operation has been completed.

The display has more DDRAM locations than can be displayed at any given time. DDRAM locations 00H to 27H map to the first display row, and locations 40H to 67H map to the second row. Normally, DDRAM location 00H maps to the upper left display corner (the "home" location, and 40H to the lower left. Shifting the display left or right can change this mapping. The display uses a temporary data register (DR) to hold data during DDRAM / CGRAM reads or writes, and an internal address register to select the RAM () location. Address register contents, set via the Instruction Register, are automatically incremented after each read or write operation. The LCD () display uses ASCII () character codes. Codes up through 7F are standard ASCII () (which includes all "normal" alphanumeric characters). Codes above 7F produce various international characters.

The predefined characters available to display (from the KS0066 datasheet) are shown in the table below:

Predefined Character Table

b7-b4 b3-b0	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	CG RAM (1)				8								3	*		ø
0001	(2)			1								×	*	ě.		
0010	(3)					R	B							×		Ö
0011	(4)												*			00
0100	(5)		*	4			d	ł.					ŀ			92
0101	(6)											H			Œ	ü
0110	(7)		8	6		W						I				Σ
	70220			110												

(https://digilent.com/reference/_detail/pmod/pmod/clp/pmodclp_predefinedcharacters.jpg?id=pmod%3Apmodclp%3Areference-manual)

Any external power applied to the Pmod CLP must be at 5V for Revision A of the Pmod CLP and at 3.3V for Revision B of the Pmod CLP.

Physical Dimensions

The pins on the pin header are spaced 100 mil apart. The PCB is 2.3 inches long on the sides parallel to the pins on the pin header and 3.3 inches long on the sides perpendicular to the pin header.

Additional Information

The schematics of the Pmod CLP are available here (here (https://pdf.datasheetcatalog.com/datasheets2/55/553815_1.pdf). Similarly, the datasheet on the display itself can be found here (here (here<

Example code demonstrating how to get information from the Pmod CLP can be found here (https://digilent.com/reference/pmod/pmodclp/start#example_projects).

If you have any questions or comments about the Pmod CLP, feel free to post them under the appropriate section ("Add-on Boards") of the ② Digilent Forum (https://forum.digilent.com/).

Company (https://digilent.com/company/)

- About Us (https://digilent.com/company/#about-digilent)
- FAQs (https://digilent.com/company/#faqs)
- Distributors (https://digilent.com/shop/distributors/)
- Shipping & Returns (https://digilent.com/shipping-returns/)
- Jobs (https://digilent.com/company/#jobs)
- Legal & Privacy (https://digilent.com/legal-privacy/)

News (https://digilent.com/news/)

- Blog (https://digilent.com/blog/)
- Newsletter (https://digilent.com/news/#newsletter)
- Events (https://digilent.com/news/#events)

Subscribe to our newsletter

Get the latest updates on new products and upcoming sales

Your email address

Submit

Contact Us

- Technical Support Forum (https://forum.digilent.com)
- Support Channels (https://digilent.com/support/#channels)

Digilent

1300 NE Henley Ct. Suite 3

Pullman, WA 99163

United States of America

© 2023 Digilent

(http://twitter.com/DigilentInc)

- (http://facebook.com/Digilent)
- (https://www.youtube.com/user/DigilentInc)
- (https://github.com/digilent)
- (https://instagram.com/digilentinc)
- (https://www.linkedin.com/company/1454013)
- (https://www.flickr.com/photos/127815101@N07)

•