# Building a Robot Judge: Data Science for Decision-Making

7. Deep Learning Essentials

## Q&A Page

 $\verb|https://padlet.com/eash44/ntc2sz5q1hvp8bh8|$ 

### Recap: Reading Response Essays

- Critical reading is an important skill:
  - useful for writing/reading reports
  - understanding the structure/code behind a paper why have papers and not textbooks?

### Recap: Reading Response Essays

- Critical reading is an important skill:
  - useful for writing/reading reports
  - understanding the structure/code behind a paper why have papers and not textbooks?
- Some common patterns in the responses:
  - great summaries
  - more mixed on the critique/evaluation

### Recap: Reading Response Essays

- Critical reading is an important skill:
  - useful for writing/reading reports
  - understanding the structure/code behind a paper why have papers and not textbooks?
- Some common patterns in the responses:
  - great summaries
  - more mixed on the critique/evaluation

Another nice guide (on HW Assignments page):

 $\verb|https://www.icpsr.umich.edu/files/instructors/How_to_Read_a_Journal_Article.pdf|$ 

could be useful for peer feedback on classmates' response essays.

### Group Discussion: Real-World Algorithmic Rating System

- Based on your breakout room number (to be assigned), discuss one of these articles:
  - ▶ Breakout rooms i ≤ N/2: bit.ly/UK-visas (Visa Algorithm)
  - ▶ Breakout rooms i > N/2: bit.ly/UK-exams (Grading Algorithm)
- Assignment (10 minutes):
  - 2 minutes: one student should summarize/describe the ML decision system described in the article.
  - ▶ 6 minutes: brainstorm at least 2 ways the system could be improved.
  - 2 minutes: write down outcomes in the padlet (see instructions in header): https://padlet.com/eash44/5pj5hh77o7278tt2

### Learning Objectives

- 1. Implement and evaluate machine learning pipelines.
  - Evaluate (find problems in) existing machine learning pipelines.
  - Design a pipeline to solve a given ML problem.
  - Implement some standard pipelines in Python.
- 2. Implement and evaluate causal inference designs.
- 3. Understand how (not) to use data science tools (ML and CI) to support expert decision-making.



## Objectives in an ML Project

1. What is the policy problem or research question?

### Objectives in an ML Project

- 1. What is the policy problem or research question?
- 2. Data:
  - obtain, clean, preprocess, and link.
  - Produce descriptive visuals and statistics on the text and metadata

### Objectives in an ML Project

- 1. What is the policy problem or research question?
- 2. Data:
  - obtain, clean, preprocess, and link.
  - Produce descriptive visuals and statistics on the text and metadata
- 3. Machine learning:
  - Select a model and train it.
  - Fine-tune hyperparameters for out-of-sample fit.
  - Interpret predictions using model explanation methods.



Models are built sequentially **Optimized Gradient Boosting** Bagging is a ensemble by minimizing the errors from algorithm through parallel meta-algorithm combining previous models while processing, tree-pruning, predictions from multipleincreasing (or boosting) handling missing values and decision trees through a influence of high-performing regularization to avoid majority voting mechanism overfitting/bias Bagging **Boosting XGBoost** Decision Random Gradient Boosting Trees **Forest** Bagging-based algorithm **Gradient Boosting** A graphical where only a subset of employs gradient representation of features are selected at descent algorithm to possible solutions to random to build a forest minimize errors in a decision based on or collection of decision sequential models certain conditions trees from xqboost import XGBClassifier model = XGBClassifier() model.fit(X train, y train, early stopping rounds=10, eval metric="logloss", eval set=[(X eval, y eval)]

y pred = model.predict(X test)

accuracy = accuracy score(y test, y pred)

Bootstrap aggregating or

Activity: Zoom Poll 7: True/False Quiz

# Nested Sample Splits

### Nested Sample Splits

To do evaluations in the full data, use nested cross-validation:

- ▶ split data into K folds, e.g. 5.
- ▶ for each fold  $k \in \{1, 2, ..., K\}$ :
  - ightharpoonup train and tune model in rest of data  $\neg k$
  - ightharpoonup evaluate metrics (e.g. MSE, balanced accuracy) in k.
- Report mean and s.d. of metrics across folds.

### L2-regularized Logistic Regression in Keras

### L2-regularized Logistic Regression in Keras

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
model = Sequential()
model.add(Dense(input dim=num features,
                activation='sigmoid',
                kernel regularizer='l2',
 model.compile(optimizer='sqd', # stochastic gradient descent
               loss='binary crossentropy',
               metrics=['accuracy'])
 model.fit(x train, y train,
           epochs=100,
           validation data=(x val, y val))
```



### Outline

Feed-Forward Neural Networks
Basics
Regularizing neural nets

**Application** 

### Outline

Feed-Forward Neural Networks
Basics

Regularizing neural nets

Applications

- ► Neural networks ↔ deep learning models
  - solve machine learning problems, just like logistic regression or gradient boosted machines
  - ▶ use tensorflow/keras or torch, rather than sklearn or xgboost.

- Neural networks ↔ deep learning models
  - solve machine learning problems, just like logistic regression or gradient boosted machines
  - ▶ use tensorflow/keras or torch, rather than sklearn or xgboost.

#### why use neural nets?

- sometimes outperform standard ML techniques on standard problems
- greatly outperform standard ML techniques on some problems, for example image recognition / text generation

- Neural networks ↔ deep learning models
  - solve machine learning problems, just like logistic regression or gradient boosted machines
  - ▶ use tensorflow/keras or torch, rather than sklearn or xgboost.

#### why use neural nets?

- sometimes outperform standard ML techniques on standard problems
- greatly outperform standard ML techniques on some problems, for example image recognition / text generation

### why not use neural nets?

- usually worse than standard ML on standard problems, and harder to implement.
- Computational constraints: Recent models like OpenAl's GPT-3 would take ETH Deep Learning Cluster 18 months to train.

## "Neural Networks", "Deep Learning"

- ► "Neural":
  - ▶ NN's do not work like the brain such metaphors are misleading.

### "Neural Networks", "Deep Learning"

- "Neural":
  - ▶ NN's do not work like the brain such metaphors are misleading.
- "Networks":
  - NNs are not "networks" as that is understood in mathematical network theory or social science.

### "Neural Networks", "Deep Learning"

- "Neural":
  - ▶ NN's do not work like the brain such metaphors are misleading.
- "Networks":
  - NNs are not "networks" as that is understood in mathematical network theory or social science.
- "Deep" Learning:
  - does not speak to profundity or effectiveness.
  - a banal origin, and a source of hype.

#### A "Neuron"



- applies dot product to vector of numerical inputs:
  - multiplies each input by a learned weight (parameter or coefficient)
  - sums these products
- applies a non-linear "activation function" to the sum
  - (e.g., the  $\int$  shape indicates a sigmoid transformation)
- passes the output.

### "Neuron" = Logistic Regression

$$\hat{y} = \operatorname{sigmoid}(\mathbf{x} \cdot \theta) = \frac{1}{1 + \exp(-\mathbf{x} \cdot \theta)}$$



- applies dot product to vector of numerical inputs:
  - multiplies each input by a learned weight (parameter or coefficient)
  - sums these products
- ▶ applies a non-linear "activation function" (sigmoid) to the sum
- passes the output.

## Feed-Forward Neural Network (FFN)



- A feed-forward network (also called a multi-layer perceptron or sequential model) stacks neurons horizontally and vertically.
- alternatively, think of it as a stacked ensemble of logistic regression models.
- this vertical stacking is the "deep" in "deep learning"!

- ► FFN's are composed of "Dense" layers means that all neurons are connected.
- FFN with a single hidden layer, with sigmoid activation, can approximate any continuous function on a closed and bounded subset of  $\mathbb{R}^n$ , and any mapping from one finite discrete space to another finite discrete space (Hornik et al 1989, Cybenko 1989).
  - ▶ But NN would have to be exponentially large in some cases (Telgarsky 2016) .

# Activation functions $g(x \cdot \theta)$



## Activation functions $g(x \cdot \theta)$



Previously we had

$$g(\mathbf{x} \cdot \theta) = \operatorname{sigmoid}(\mathbf{x} \cdot \theta) = \frac{1}{1 + \exp(-\mathbf{x} \cdot \theta)}$$

It turns out that sigmoid does not work well in hidden layers, mainly because gradient is flat except around zero.

## Activation functions $g(x \cdot \theta)$



Previously we had

$$g(\mathbf{x} \cdot \theta) = sigmoid(\mathbf{x} \cdot \theta) = \frac{1}{1 + exp(-\mathbf{x} \cdot \theta)}$$

It turns out that sigmoid does not work well in hidden layers, mainly because gradient is flat except around zero.

### **ReLU** (rectified linear unit) function:

$$g(\boldsymbol{x} \cdot \boldsymbol{\theta}) = \text{ReLU}(\boldsymbol{x} \cdot \boldsymbol{\theta}) = \max\{0, \boldsymbol{x} \cdot \boldsymbol{\theta}\}$$



### L2-regularized Logistic Regression in Keras



In this example, keras learns 10 parameters:

- coefficients on four predictors, plus a constant
- ▶ for each of two outcome classes

### FFN in Keras



Activity: Short Essay on Mullainathan Article

### Activity: Short Essay on Mullainathan Article

- ► Review "Biased algorithms are easier to fix than biased people" by Sendhil Mullainathan in *New York Times* (bit.ly/nyt-bias).
  - ► Think of another task where fixing biases in an algorithm is probably easier than fixing it in humans.
  - ► Can you think of the opposite case a task where fixing biases in humans is easier than fixing biases in algorithms?
  - ▶ Has your attitude to this article changed at all since the first week of class?
- put your answers in a shared doc and paste a link here: https://padlet.com/eash44/p6ypvf4uodlgu7jz

#### Outline

Feed-Forward Neural Networks

Basics

Regularizing neural nets

**Applications** 

### Early stopping

As done with xgboost, a standard regularization approach for NNs is early stopping:

- Split data into three sets: training, validation, and test.
- stop training when validation-set loss stops improving
- evaluate model in test set.

### Dropout



add after dense layers:

from tensorflow.keras.layers import Dropout
model.add(Dropout(.5))

Source: Srivastava et al, JMLR 2014

#### An elegant regularization technique:

- ▶ at every training step, every neuron has some probability (typically p = 0.5) of being temporarily dropped out, so that it will be ignored at this step.
- ▶ at test time, neurons dont get dropped anymore but coefficients are down-weighted by p.

### Why Dropout Works

ightharpoonup Approximates an ensemble of N models (where N is the number of neurons).

### Why Dropout Works

- $\triangleright$  Approximates an ensemble of N models (where N is the number of neurons).
- ▶ Neurons cannot co-adapt with neighboring neurons and must be independently useful.
- ► Layers cannot rely excessively on just a few input neurons; they have to pay attention to all input neurons.
  - Makes the model less sensitive to slight changes in the inputs.

### How to choose among so many options?

- ▶ the # of layers, # of neurons, regularization, dropout, etc are all tunable hyperparameters.
  - can pick these with cross-validation as we did previously.
- neural nets have many many dimensions for tuning.
  - this is a serious downside of neural nets, compared to the standard scikit-learn models.
- see the Geron book for advice on this point.
  - in general, make a big model (too many layers, too many neurons) and regularize with dropout/early stopping.

#### Outline

Feed-Forward Neural Networks
Basics
Regularizing neural nets

### **Applications**

### Predicting Mortgage Default with FFNs (Sirignano, Sadhwani, & Giesecke 2018)

- ► Analyze mortgage risk using data from over 120 million loans for U.S. borrowers, 1995-2014
- Estimate deep learning model to predict loan status changes:
  - current; late; foreclosure
- Predictors:
  - loan variables at origination
  - loan performance variables over time
  - local economic variables

# Monthly Transition Matrix (Outcome)

|             | Current | 30   | 60   | 90+  | Foreclosure |
|-------------|---------|------|------|------|-------------|
| Current     | 97      | 1.4  | 0    | 0    | .001        |
| 30 days     | 34.6    | 44.6 | 19   | 0    | .004        |
| 60 days     | 12      | 16.8 | 34.5 | 34   | 1.6         |
| 90+ days    | 4.1     | 1.4  | 2.6  | 80.2 | 10          |
| Foreclosure | 1.9     | .3   | .1   | 6.8  | 87          |

### Modeling

- Dataset is 350 billion loan-month transitions.
  - ▶ 294 predictors.
- Feed-forward network:
  - ► cross-validation picks 5 layers, ~200 neurons each, ReLU activation.
  - compare to logistic regression baseline

### In- and out-of-sample errors vs. network depth



### Global variable ranking by "leave-one-out"

| Variable                                        | Test Loss |
|-------------------------------------------------|-----------|
| State unemployment rate                         | 1.160     |
| Current outstanding balance                     | .303      |
| Original interest rate                          | .233      |
| FICO score                                      | .204      |
| Number of times 60dd in last 12 months          | .179      |
| Number of times current in last 12 months       | .175      |
| Original loan balance                           | .175      |
| Total days delinquent $\geq 160$                | .171      |
| Lien type = first lien                          | .171      |
| Original interest rate - national mortgage rate | .170      |
| LTV ratio                                       | .169      |
| Time since origination                          | .168      |
| Debt-to-income ratio                            | .168      |
| :                                               | :         |

## How to avoid machine learning pitfalls (rest of class)

- Summarize and discuss a section from "How to avoid machine learning pitfalls: a guide for academic researchers" (https://arxiv.org/abs/2108.02497)
- Breakout Groups:
  - ► Groups 1, 7, 13: Intro and Conclusion
  - Groups 2, 8, 14: Section 2
  - ► Groups 3, 9, 15: Section 3
  - ► Groups 4, 10, 16: Section 4
  - ► Groups 5, 11, 17: Section 5
  - ► Groups 6, 12, 18: Section 6
- Instructions:
  - create a google slides presentation, template:

https://docs.google.com/presentation/d/

1mU8TeuDiKblKt9VdjkyL132sgpxbQTGg3zsasfAID0s/edit?usp=sharing

- slide 1: summarize the section
- slide 2: what was new to you?
- ▶ slide 3: for the topic in this section, are there any special considerations for deep learning, relative to classical machine learning?
- ▶ slide 4: what are open questions / issues that could be addressed?
- Post link here: https://padlet.com/eash44/h7jcb6f7ydjm0r3g