Седмица на олимпийската математика 2015

Контролно по Геометрия 04.01.2015

Този материал е изготвен със съдействието на школа Sicademy

Задача G1. Даден е остроъгълният $\triangle ABC$ с център на описаната окръжност точка O. Нека H_A , H_B и H_C са ортоцентровете съответно на $\triangle BOC$, $\triangle AOC$ и $\triangle AOB$. Да се докаже, че ако точката O е ортоцентърът на $\triangle H_AH_BH_C$, то $\triangle ABC$ е равностранен.

Задача G2. Даден е остроъгълният $\triangle ABC$ с ортоцентър H. Ъглополовящите на $\angle ABH$ и $\angle ACH$ се пресичат в точката E. Нека $CE \cap AB = F$. Нека AE пресича описаната окръжност около $\triangle BEF$ за втори път в точката G. Да се докаже, че $AG \cdot BC \geq CG \cdot AB$.

Задача G3. Даден е изпъкналият четириъгълник ABCD, описан около окръжност с център I. Точката P е такава, че $\angle APC$ и $\angle BPD$ имат обща вътрешна ъглополовяща l. Да се докаже, че I лежи върху l.