5.1 Note that Xg = {9,9,929,..., 9kg3 is va k-element subset of G. So $Xg \in \Omega$. Let $X \in \Omega$ and $g, h \in G$. Then $(Xg)h = \{g_1g, g_2g, \ldots, g_kg\}h$ $= \{(g_1g)h, (g_2g)h, \ldots, (g_kg)h\}$ (using the idefinition twice) $X(gh) = \{g_1(gh), g_2(gh), \dots, g_k(gh)\}$ (uby definition) Since group imultiplication des vassoriative, (Xg)h = X(gh).also X1={g,1, g,1,..., gk1} $=\{g_1,g_2,\ldots,g_k\}=X.$

. . Quis a G-set.

- 5.2 (i) Din a G-vorbit (so Gistransiture on D).
 - (ii) G chas 3 orbits on D:-{1,2,3,4,5,6}, {7,8,9,10,11,12,13,14}, {15}.
- 5.3 (i) Since $\sigma = (1, 2, 3, ..., n) \in S_n$, rapplying σ we see that

 $\Omega \subseteq \{|g||g \in S_n\} \subseteq \Omega$.

So Ω in an S_n -consit. ... S_n is itransitive on Ω .

(ii) Let $\alpha \in \Omega$ with $\alpha \neq 1$. Since $n \geq 3$, when $\alpha \neq \beta \neq 1$.

Then $\alpha = (1, \alpha, \beta) \in A_n((1, \alpha, \beta))$ is can even opermutation) and $1\sigma = \alpha$.

 $\therefore \Omega \subseteq \{|g|g \in A_n\} \subseteq \Omega$

So Ω is an A_n -orbit. , A_n is itransitive con Ω .

5.4 Since Dui a G-orbit, |G|= | Ω | | G_χ | By Lemma By chypathesis Il {x} is a Gn-orbit and so, moing Lemma again | Gn |= | D \ (n3 | | (Gn)y | where y is come element of 2/{x}. $= (|\underline{\Omega}|-1)|(G_{\chi})_{y}|.$ $G = |\Omega|(|\Omega|-1)|(G_{\chi})_{y}|$ 5.5 Burneides Utheorem (Theorem 5.9) gives (chese t=1) 1 G1 = > |fix_2(g)| geG = $|\Omega| + \sum_{g \in G} |fix_{\Omega}(g)|$ (*) $g \neq 1$ (note $\Omega = fix_{\Omega}$ $(mote \Omega = fix_{\Omega}(1))$

Since 1_2/>1, if Ifix_2(g)/2/ \$\fig\{G} other we get a contradiction ito (x). . . I g ∈ G s.t. |fix (g)|=0. So there exist elements of E chaving ino fixed ipoints on I. 5.6 Let G vact upon $\Omega = G$ wir conjugation. For $g \in G$, ACTION $fix_{\Omega}(g) = \{ x \in \Omega \mid xg = x \}$ $= \left\{ x \in G \mid g^{-1} x g = x \right\}$ $= C_{\mathcal{C}}(g)$ Un orbit of G on D=G no just a conjugacy class of G. . . the number of G-vorbits on $\Omega = G$ is k. (Burnide's theorem) Substituting into Theorem $k = \int_{|G|} \sum_{g \in G} |C_G(g)|$ \Rightarrow $k|G| = \sum_{g \in G} |C_G(g)|.$