Resumen Final Analisis III

Javier Vera

August 10, 2023

1 Cayley Hamilton Generalizado

Teorema 1.1 (Cayley Hamilton Generalizado)

Sea $\mathbb V$ un espacio vectorial de dimensión finita y $T:\mathbb V\to\mathbb V$

- 1. $m_T|p_T$ además tienen los mismos factores primos
- 2. Si $m_T = p_1^{v_1} \dots p_n^{v_n} \quad \wedge \quad p_T = p_1^{d_1} \dots p_n^{d_n}$ entonces:

$$d_i = \frac{dim(Nu(p_i)^{v_i})}{gr(p_i)}$$

Proof. 1. Primero usamos descomposición cíclica, obtenemos $p_1, \dots p_n$ anuladores de $v_1, \dots v_n$ con, $p_T = p_1 \dots p_n$ tales que $p_i | p_{i-1}$ y

$$\mathbb{V} = \bigoplus_{i=1}^n Z(v_i, T_i)$$

Además sabemos que $m_T = p_1$ entonces $m_T = p_1 | p_1 \dots p_n = p_T$ Ahora queremos ver que p primo divide a p_T si y solo si divide a m_T

Sea $p|m_T$ entonces obviamente divide a p_T

Sea $p|p_T = p_1 \dots p_n$ entonces existe i tal que $p|p_i$ entonces $p|p_i \wedge p_i|p_1 = m_T$

2. Calculemos r_i usando descomposición primaria tenemos

$$\mathbb{V} = \bigoplus_{i=1}^{n} V_i$$

con $V_i = Nu(p_i(T)^{v_i})$ T-invariantes y además $T_i := T|_{V_i}: V_i \to V_i$ con $m_{T_i} = p_i^{v_i}$ y por parte 1 tenemos $p_{T_i} = p_i^{r_i}$ con $r_i \ge v_i$ además también por T-invarianza de los $V_i, p_T = p_{T_1} \dots p_{T_n}$ entonces

$$p_1^{d_1} \dots p_n^{d_n} = p_T = p_{T_1} \dots p_{T_i} = p_1^{r_1} \dots p_n^{r_n}$$

Por lo tanto $d_i = r_i$. Pero entonces $dim(Nu(p_i(T)^{v_i}) = dim(V_i) = gr(p_{T_i}) = gr(p_i^{d_i}) = gr(p_i).d_i$

2 Diagonal + Nilpotente

Teorema 2.1 (Diagonal + Nilpotente)

Sea $T: \mathbb{V} \to V$ con $\dim \mathbb{V} \leq \infty$ tal que m_T es producto de factores lineales entonces

- 1. T = D + N
- 2. DN = ND

Proof. 1. Como $m_t = (x - c_1)^{d_1} \dots (x - c_n)^{d_n}$ es producto de factores lineales es producto de factores primos usamos teorema descomposición primaria y tenemos $V = \bigoplus V_i$ con $V_i = Nu((T - c_i)^{d_i})$. Además tenemos E_i que proyectan en cada V_i y por descomposición primaria estos son polinomios evaluados en T.

Sea

$$D = c_1 E_1 + \cdots + c_n E_n$$
 obviamente diagonal

$$T.I = T(E_1 + \cdots + E_n) = TE_1 + \dots TE_n$$

Luego llamamos $N = T - D = (T - c_1)E_1 + \dots + (T - c_n)E_n$ notar que N un pol evaluado en T (por que E_i lo son)

Entonces conmuta con D que también es un pol evaluado en T entonces tenemos la parte ii. Ya tenemos el operador diagonal D nos falta ver que N es nilpotente.

$$N^{2} = (T - D)^{2} = (\sum_{i=1}^{n} (T - c_{i})E_{i})^{2} = \sum_{i,j=1}^{n} (T - c_{i})E_{i}.(T - c_{j})E_{j} = \sum_{i,j=1}^{n} (T - c_{i})(T - c_{j})E_{j}E_{i} = \sum_{i=1}^{n} (T - c_{i})^{2}E_{i}$$

Usando propiedades de proyector. Ahora inductivamente es directo ver que

$$N^r = \sum_{i=1}^n (T - c_i)^r E_i$$

Ahora si tomamos $r = \max\{d_i : i = 1...n\}$ tenemos que

$$N^{r}(v) = \sum_{i=1}^{n} (T - c_{i})^{r} E_{i}(v)$$

Pero $E_i(v) \in V_i = Nu((T - c_i)^{d_i})$ entonces $N^r(v) = 0 \quad \forall v \in \mathbb{V}$ mostrando que N es nilpotente Ahora resta ver unicidad. Sean N', D' que cumplen las hipótesis entonces

$$D'T = D'(D' + N') = D'D' + D'N' = D'D' + N'D' = (D' + N')D' = TD'$$

por lo tanto D' conmuta con T, análogamente N' conmuta con T tambien entonces obviamente conmutan con D, N que son polinomios evaluados en T Sabemos que N' + D' = T = N + D entonces N' - N = D' - D. Por un lado D, D' son ambas diagonalizables y como conmutan son simultaneamente diagonalizables entonces D' - D es diagonalizable Sean r, s tales que $N'^s = N^r = 0$

$$(N'-N)^{r+s} = \sum_{i=0}^{r+s} \binom{r+s}{i} (-1)^i N^{r+s-i} N'^i = \sum_{i=0}^{s} \binom{r+s}{i} (-1)^i N^{r+s-i} N'^i + \sum_{i=s+1}^{r} +s \binom{r+s}{i} (-1)^i N^{r+s-i} N'^i$$

El primer sumando es 0 por que $r+s-i \ge r \quad \forall i \le s \text{ y } N^r = 0 \text{ y el segundo es cero por que } i > s \text{ y } N'^s = 0$ Entonces N'-N es nilpotente entonces su único autovalor es 0, pero también es diagonal por que N'-N = D'-D entonces tiene que ser el operador 0

Entonces $N = N' \wedge D = D'$

3 Caracterización de operadores Diagonalizables

Teorema 3.1 (Caracterización Diagonalizable)

 $T:V\to V$ con $dim(V)\leq\infty$ tal que $m_T=(x-c_1)\dots(x-c_n)$ es producto de factores lineales si y solo si T es diagonalizable.

Proof. (Ida) Sea $p = (x - c_1) \dots (x - c_n)$, con c_1, \dots, c_n los autovalores de T Sabemos que $(x - c_i)$ es raiz del carácteristico por lo tanto es raíz del minimal, por que tienen las mismas raices entonces $(x - c_i)|m_T$ $\forall i = 1 \dots n$ entonces $p|m_T$

Además sabemos que existe base de autovectores $\{v_1, \ldots, v_j\}$ para cada auto vector existe un aval c_i tal que $Tv_i = c_{j(i)}v_i$ equivalentemente $Tv_i - c_{j(i)}v_i = 0$ equivalentemente $p_i(T)(v_i) = 0$ con $p_i = (x - c_{j(i)})$

Ahora tomemos cualquier v_i en la base de autovectores $p_i(T)(v_i) = 0$ y es claro que existe $h \in K[x]$ tal que $p = p_i.h$

Por lo tanto $p(T)(v_i) = 0$ entonces $m_{T,v_i}|p$ y esto vale para todo i = 1, ..., j entonces

$$m_T = mcm\{m_{T,v_1},\ldots,m_{T,v_i}\}|p$$

Mostrando finalmente

$$p = m_T$$

(Vuelta) Tomemos $W = W_1 \oplus \cdots \oplus W_n$ con W_i auto espacio asociado a c_i . Supongamos $W \neq V$ entonces tomo $v \in V - W$. Por lema anteriór sabemos que $\exists c_i$ autovalor tal que $w = (T - c_i)v \in W$. Entonces podemos escribir $(T - c_i)v = w = w_1 + \cdots + w_n$ con $w_i \in W_i$ respectivamente.

Ahora definimos $g = \frac{m_T}{x - c_i}$ y definimos $g - g(c_i) \in K[x]$ que claramente tiene como raíz a c_i entonces lo podemos escribir como $h(x - c_i)$. Luego

$$g(T)v - g(c_i)v = h(T)(T - c_i)v = h(T)(w)$$

Sabemos que W es T-invariante entonces $h(T)(w) \in W$ por que un polinomio en T no es mas que una combinación de T

Y

$$0 = m_T(T)(v) = (T - c_i)(g(T)(v))$$

pero entonces g(T)(v) es autovector de autovalor c_i por lo tanto $g(T)(v) \in W$

Mostrando asi que $g(c_i)v \in W$ pero $v \notin W$ entonces $g(c_i) = 0$. Que es absurdo por como definimos a g claramente c_i no puede ser raíz. El absurdo provino de suponer que existia un $v \in V - W$ entonces no existe dicho v por lo tanto V = W mostrando que la suma de los autoespacios asociados son todo el espacio, por lo tanto tenemos una base de autovectores v v es diagonalizable

4 Adjuntas

Teorema 4.1 (Proposición adjuntas)

Dado $f \in \mathbb{V}^*$ tenemos que $\exists ! w \in \mathbb{V}$ tal que

$$f(z) = (z|v) \quad \forall z \in \mathbb{V}$$

Proof. Sea $B = \{v_1, \dots v_n\}$ base de \mathbb{V} , proponemos $v = \sum_{i=1}^n \overline{f(v_i)}v_i$. Probemos que funciona

$$(z|v) = (z|\sum \overline{f(v_i)}v_i) = f(v_i)(z|\sum v_i) = f(\sum (z|v_i)v_i) = f(z) \quad \forall z \in \mathbb{V}$$

Obs aca usamos que $\sum (z|v_i)v_i$ son coordenadas de z en base B.

Veamos que es único supongamos tenemos $v, v' \in \mathbb{V}$ tal que

$$(z|v) = f(z) = (z|v')$$

Entonces

$$(z|v-v')=0 \quad \forall z \in \mathbb{V}$$

en particular

$$(v - v'|v - v') = 0$$

Mostrando que

$$||v-v'||=0 \iff v-v'=0 \iff v=v'$$

Teorema 4.2 (Transformaciones Adjuntas)

Dada $T:V\to V$ existe una única transformacion lineal T^* que cumple

$$(Tv|w) = (v|T^*w)$$

La llamamos adjunta

Proof. Dada T definimos $f_w(v) = (Tv|w)$ luego $f_w \in \mathbb{V}^*$ (Es facil de ver f_w es lineal por que T es lineal). Por proposición sabemos que

$$\exists! w^* \text{ tal que } f_w(z) = (z|w^*) \quad \forall z \in \mathbb{V}$$

Entonces $(Tv|w) = f_w(v) = (v|w^*)$. por lo tanto para cada $w \in \mathbb{V}$ tenemos un único $w^* \in \mathbb{V}$. Luego, naturalmente podemos definir

$$T^*: \mathbb{V} \to \mathbb{V} \quad T^*(w) = w^*$$

Mostrando finalmente que

$$(Tv|w) = (v|T^*w) \quad \forall v, w \in \mathbb{V}$$

5 Descomposición Primaria

Teorema 5.1 (Descomposición Primaria)

Sea $T: \mathbb{V} \to \mathbb{V}$ y $m_T = p_1^{r_1} \dots p_n^{r_n}$ producto de factores primos, entonces

1.
$$\mathbb{V} = V_1 \oplus \cdots \oplus V_n \text{ con } V_i = Nu(p_i(T)^{r_i})$$

2. Además si $T_i = T|_{V_i} : \mathbb{V}_i \to \mathbb{V}_i$ sucede que $m_{T_i} = p_i^{r_i}$. Con V_i T-invariante

Proof. Sea

$$f_i = \frac{m_T}{p_i^{r_i}} = \prod_{i \neq j} p_j^{r_j}$$

Claramente f_i son coprimos entonces $\exists g_i \in \mathbb{K}[x] / 1 = f_1g_1 + \cdots + f_ng_n$ (Por que como son coprimos el generador de su ideal es el 1). Entonces definimos $E_i = f_i g_i(T)$.

Primero notemos que

$$E_1 + \cdots + E_n = f_1 g_1(T) + \cdots + f_n g_n(T) = (f_1 g_1 + \cdots + f_n g_n)(T) = I(T) = I$$

Ahora $E_iE_j=f_ig_if_jg_j(T)=g_ig_jf_if_k(T)=0$ por que f_if_j es obviamente un múltiplo del minimal de T si $j\neq i$ (por como definimos f_i). Entonces $E_i E_j = 0$

Por lo tanto sabemos que es directo concluir de aca obviamente sale $E_i^2 = E_i$

Luego como cumple estas propiedades $\mathbb{V} = V_1' \oplus \cdots \oplus V_n'$ con $V_i' = Im(E_i)$ Y por otro lado E_i son pols evaluados en T por lo tanto conmutan con T luego

$$E_iT = TE_i \quad \forall i = 1, \ldots, n$$

Mostrando que los V_i son T-invariante

Ahora queremos ver que $Im(E_i) = V_i' = Nu(p_i^{r_i}(T)) = V_i$. Tomemos $v \in V_i'$ luego $E_i(v) = v$ por lo tanto

$$p_i^{r_i}(T)(v) = p_i^{r_i}(T)E_i(v) = p_i^{r_i}(T)f_ig_i(T)(v) = g_im_T(T)(v) = g_im_T(T)(v) = 0.v = 0$$

Mostrando que $v \in V_i$. Ahora tomemos $v \in V_i$. Sabemos que $p_i^{r_i}|f_ig_i \quad \forall j \neq i$ entonces $f_ig_i = p_i^{r_i}.h$ por lo tanto

$$E_i(v) = p_i^{r_i} h(T)(v) = 0$$

por que $v \in Nu(p_i^{r_i}(T))$ y esto vale $\forall j \neq i$ entonces

$$v = v.I = v(E_1 + \cdots + E_n) = E_1(v) + \cdots + E_n(v) = E_i(v)$$

Mostrando que $v \in Im(E_i) = V'_i$ Completando asi la parte i

Ahora notemos que $p_i^{r_i}(T)(v) = 0$ $\forall v \in V_i$ por lo tanto $m_{T_i}|p_i^{r_i}$ y $f_i(T)v = 0$ $\forall v \in V_j$ $j \neq i$. Ahora sea g tal que $g(T_i)(v) = 0$ entonces $g(T)f_i(T)(v) = 0$ $\forall v \in \mathbb{V}$

Mostrando que $p_i^{r_i} f_i = m_T | g f_i$ entonces como estamos hablando de factores primos $p_i^{r_i} | g$ como vale para cualquie polinomio anulador vale para m_{T_i} , entonces $m_{T_i}|p_i^{r_i}$, finalemente $m_{T_i}=p_i^{r_i}$

Teorema 5.2 (Caracterización de Triangulables)

Sea $T: \mathbb{V} \to \mathbb{V}$ entonces su minimal se escribe en factores primos si y solo si es triangularizable.

Proof. Ida. Como es triangularizable sabemos que en alguna base es una matriz triangular por lo tanto su característico se factoriza en factores primos, por Cayley-Hamilton, el minimal se factoriza en factores primos

Vuelta. Sea $m_T = p_1^{r_1} \dots p_i^{r_i}$ para empezar seguro tenemos por lo menos un autovalor c_1 , entonces definimos $V_1 = \langle v_1 \rangle$ con v_1 auto vector de autovalor c_1 . Por lo tanto V_1 es T-invariante. Ahora como el minimal se factoriza en factores primos y V_1 T-invariante, entonces podemos aplicar lema.

$$\exists v_2 \notin V_1 \text{ tal que } (T - c_2 I)v_2 = v \in V_1$$

. Llamamos $V_2 = \langle v_1, v_2 \rangle$. Obviamente v_1 y v_2 son lineamente independiente por que $v_2 \notin V_1$.

Además $T(v_2)-cv_2=v$ con $v\in V_1$ entonces $T(v_2)=cv_2+v$ por lo tanto $T(v_2)\in V_2$

Finalmente V_2 es T-invariante. Ahora hacemos esto recursivamente y llegamos a

$$\exists v_k \notin V_{k-1} \text{ tal que } (T - c_k)v_k \in V_{k-1}$$

Entonces tenemos $V_k = \{v_1, \dots, v_k\}$ que es T-invariante y de $dim(V_k) = k$

Si tomamos k=n tenemos una base que claramente triangulariza por que $T(v_i) \in V_i$