Review: Text Analytics

- Followed the data-insight pipeline
- Broadly,
 - 1. Define the corpus (i.e., the dataset)
 - 2. Transform documents into structured data
 - 3. Rely on visual and quantitative summaries to form insights from data

Don't Forget: Critical Thinking

Image Analytics

- Similar process as Text Analytics
- Rather than corpus, now have collection of images
- Images, including videos, are unstructured observations
- Rely on critical thinking to transform and summarize

Examples of Image Analytics

• Topics in Health: E.g., in functional MRIs, brain areas "light-up" when performing certain tasks.

 Use image analytics to detect/compare yellow regions quantitatively across images

Health: More brain images

- Consider multiple colors
- Consider methods to define regions

Astronomy; e.g., galaxies

Simulation images of stars exploding to predict galaxy

formation

Use image analytics to explain/compare formations quantitatively

Astronomy; e.g., colliding stars

- https://youtu.be/8vikrAy9Dnc
- Use image analytics to explain/compare formations quantitatively from videos too!

Artificial Intelligence: E.g., visual perception

- Robots: Detect people, lights, signs, roads, etc.
- Homeland Security: Facial recognition

Purposes of Image Analytics

- Similar purposes as any data analytics
- E.g, Contrast images
 - Responses to change in treatments
 - Compare before and after events
- E.g., Identify features in images
 - Faces: noses, eyes, face vs background, specific people
 - Street Signs: E.g., to program self driving cars
 - Colors: E.g., heat maps, medical images
- E.g., Group like images
 - Cluster: E.g., cluster faces, signs, subjects
 - Classify: E.g., Diagnose disease, objects for robots,

Video: What CAN be done

 Deep Learning, which we won't do... but you could with more advanced class...

Transforming Images to Structured Data

- Leanna defines two approaches as
 - o "feature": high level, big picture, dimension-reduction
 - o "pixel": low level, detailed
- Feature approach:
 - Consider a list of all features that could be in images
 - E.g., Tree, Beach, Animal, Human, House, Flower, etc...
 - E.g., faces turned up, down, left, right.
 - Humans go through images, 1 by 1, to tag images by features
 - Thus, image analyses are based on feature lists
 - O Analogy:
 - Subjective lexicon is to Text Analytics as Feature list is to Image Analytics

Transforming Images (cont.)

- Two approaches: "feature" vs "pixel" approaches
- Pixel approach:
 - Def: A pixel is a ``minute area of illumination on a display screen''
 - Computers encode images pixel by pixel.
 - E.g., numeric representations of color for each pixel in an image
 - Automate image processing to structure data via pixel data
- Combine the two (beyond scope of this class):
 - Automate feature identification using pixel data
 - Analyze images based on automatically-discovered features.

Transform via feature approach (lab on Wed)

Image	Scenic	Clouds	Ocean	Sun	Tree
1	1	0	0	0	1
2	0	0	0	0	0
3	1	1	1	1	0
4					

Transform via pixel approach

- 1 image is n x m pixels
- Define the amount of color in each pixel:
 E.g., amount of red
- Pixel Matrix:

$$p_{11} p_{12} ... p_{1m}$$
 $p_{21} p_{22} ... p_{2m}$
...
 $p_{n1} p_{n2} ... p_{nm}$

Vectorize: [p₁₁, p₁₂, ... p_{1m}, p₂₁, p₂₂, ..., p_{2m}...,p_{n1}, p_{n2},p_{nm}]

Lab: High-level image analytics

Transform via pixel approach (cont)

- Structured data using pixel approach for collection
- This matrix would include amount of one color seen in each pixel of N images

Image	P ₁₁	P ₁₂	•••	P _{1m}	P ₂₁	P ₂₂	•••	P _{2m}	•••	•••	P _{n1}	P _{n2}	•••	P _{nm}
1														
2														
3														
N														

Anatomy of Images (pixel approach)

- Pixels: x-axis and y-axis
- Size
 - File size
 - Number of pixels
- Color Spectrum:
 - RGB: Red, Blue, Green (primary colors for light)
 - o CMYK: Cyan, Magenta, Yellow, Black
 - Gray Scale
 - "Amount of each color"
- Depth
 - Static images = 1
 - Movie > 1

Example Color: RGB

- Observed colors are mixtures of primary colors
 Here, consider RGB as 3 primary colors
- A primary color is coded with 8 bits each,
 - So, there are 28=256 amounts of red
 - o E.g., we code the amount of Red by [0,255]
- An observed, RGB color is defined by the amounts of red, green, and blue in it.
 - R=225, G=137, B=37
 - R=255, G=126, B=121
 - R=0, G=145, B=147

RGB in R

R scale primary color amounts from

```
[0,255] to [0,1]
```

- o[0/255, 1/255,, 255/255] -> [0, 0.00392, ... 1]
- One image, has three color-matrices:
 - Red-matrix, Green-matrix, Blue-matrix
- Three matrices = An array

Arrays

- So, EACH pixel is described by R,G, AND B.
- Thus, arrays are used to store image data
- Vector:
- Matrix:
- Array:

Two lectures from now