Assignment 2: Weather Problems

Storms and other severe weather events can cause both public health and economic problems for communities and municipalities. Many severe events can result in fatalities, injuries, and property damage, and preventing such outcomes to the extent possible is a key concern. This project involves exploring the U.S. National Oceanic and Atmospheric Administration's (NOAA) storm database. This database tracks characteristics of major storms and weather events in the United States, including when and where they occur, as well as estimates of any fatalities, injuries, and property damage.

Installing and loading the required packages:

```
## Installing package into 'C:/Users/Elmer/Documents/R/win-library/3.3'
## (as 'lib' is unspecified)
## warning: package 'plyr' is in use and will not be installed
## Installing package into 'C:/Users/Elmer/Documents/R/win-library/3.3'
## (as 'lib' is unspecified)
## warning: package 'dplyr' is in use and will not be installed
## Installing package into 'C:/Users/Elmer/Documents/R/win-library/3.3'
## (as 'lib' is unspecified)
## warning: package 'ggplot2' is in use and will not be installed
## Installing package into 'C:/Users/Elmer/Documents/R/win-library/3.3'
## (as 'lib' is unspecified)
## warning: package 'knitr' is in use and will not be installed
## warning: package 'knitr' is in use and will not be installed
```

Getting the data:

```
#download.file("https://d396qusza40orc.cloudfront.net/repdata/data/StormData.csv.bz2",
"StormData.csv.bz2")
```

stormData <- read.csv("StormData.csv.bz2")</pre>

head	storm	Data)
HEau	. 3	vatai

4 TORNADO

			2						
##		STATE		BGN_DATE	BGN_TIME	TIME_ZONE	COUNTY	COUNTYNAME	STATE
##	1	1	4/18/1950	0:00:00	0130	CST	97	MOBILE	AL
##	2	1	4/18/1950	0:00:00	0145	CST	3	BALDWIN	AL
##	3	1	2/20/1951	0:00:00	1600	CST	57	FAYETTE	AL
##	4	1	6/8/1951	0:00:00	0900	CST	89	MADISON	AL
##	5	1	11/15/1951	0:00:00	1500	CST	43	CULLMAN	AL
##	6	1	11/15/1951	0:00:00	2000	CST	77	LAUDERDALE	AL
##		EVTYPE	BGN_RANGE	BGN_AZI I	BGN_LOCATI	END_DATE	END_TI	ME COUNTY_EN	1D
##	1	TORNADO	0						0
##	2	TORNADO	0						0
##	3	TORNADO	0						0

##	5	TORNADO	0									0
##	6	TORNADO	0									0
##		COUNTYEND	N END_RANG	SE END_	AZI	END_	LOCATI	LENGTH	WIDTH	F	MAG	FATALITIES
##	1	N	IA	0				14.0	100	3	0	0
##	2	N	IA	0				2.0	150	2	0	0
##	3	N	IA	0				0.1	123	2	0	0
##	4	N	IA	0				0.0	100	2	0	0
##	5	N	IA	0				0.0	150	2	0	0
##	6	N	IA	0				1.5	177	2	0	0
##		INJURIES	PROPDMG PF	ROPDMGE	XP C	ROPD	MG CROI	PDMGEXP	WFO S	ГАΤ	EOFF	IC ZONENAMES
##	1	15	25.0		K		0					
##	2	0	2.5		K		0					
##	3	2	25.0		K		0					
##	4	2	2.5		K		0					
##	5	2	2.5		K		0					
##	6	6	2.5		K		0					
##		LATITUDE	LONGITUDE	LATITU	DE_E	LON	GITUDE_	_ REMARK	S REF	NUN	1	
##	1	3040	8812		3051		880	5		1	L	
##	2	3042	8755		0		()		2	2	
##	3	3340	8742		0		()		3	3	
##	4	3458	8626		0		()		4	Į.	
##	5	3412	8642		0)		5	5	
##	6	3450	8748		0		()		6	5	

Data Processing

Across the United States, which types of events (as indicated in the EVTYPE variable) are most harmful with respect to population health?

First, in order to calculate the most harmful events, the raw data from the stormData dataset is summarized by its two main observations: fatalities and injuries.

```
casualties <- ddply(stormData, .(EVTYPE), summarize, fatalities = sum(FATALITIES),
injuries = sum(INJURIES))
```

Then, both observations were added and the subset was ordered desdending.

```
casualties$totalCasualties <- casualties$fatalities + casualties$injuries
casualties <- casualties[with(casualties, order( - totalCasualties)),][1:5,]</pre>
```

ggplot(casualties, aes(x = EVTYPE, y = totalCasualties)) + geom_bar(stat = "identity",
fill = "light blue") + xlab("Event type") + ylab("Total casualties")

##Across the United States, which types of events have the greatest economic consequences? First, in order to calculate the events with greatest economic consequences, the raw data from the stormData dataset is summarized by its two main observations: property and crop damages.

```
damages <- ddply(stormData, .(EVTYPE), summarize, property = sum(PROPDMG), crop =
sum(CROPDMG))
```

Then, both observations were added and the subset was ordered desdending.

```
damages$totalDamages <- damages$property + damages$crop
damages <- damages[with(damages, order( - totalDamages)),][1:5,]
ggplot(damages, aes(x = EVTYPE, y = totalDamages)) + geom_bar(stat = "identity", fill
= "light blue") + xlab("Event type") + ylab("Total damages ($)")</pre>
```


Results

- Across the United States, TORNADOES are the most harmful events.
- Across the United States, FLOODS are the events with the greatest economic consequences.