

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 0 855 389 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
05.06.2002 Bulletin 2002/23

(51) Int Cl.7: C07C 405/00, A61K 31/557

(21) Application number: 98300513.3

(22) Date of filing: 26.01.1998

(54) A 3,7-dithiaprostanic acid derivative

3,7-Dithiaprostansäure Derivate

Dérivés de l'acide 3,7-dithiaprostanique

(84) Designated Contracting States:

**AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL
PT SE**

- Ohuchida, Shuichi,
Ono Pharmaceutical Co., Ltd.
Shimamoto-cho, Mishima-gun, Osaka 618 (JP)

(30) Priority: 27.01.1997 JP 2719897

(74) Representative: Bentham, Stephen

LA KEMB & CO

J.A. REMF & CO.
14 South Square

14 South Square
Gray's Inn

Gray's Inn
London WC1R 5 LL (GB)

(73) Proprietor: ONO PHARMACEUTICAL CO., LTD.
Chuo-ku Osaka 541 (JP)

(56) References cited:

JP-A- 58 110 562

(72) Inventors:

- Maruyama, Toru,
c/o Ono Pharmaceutical Co., Ltd.
Shimamoto-cho, Mishima-gun, Osaka, 618 (JP)

EP 0 855 389 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

[0001] The present invention provides 3,7-dithiaprostanic acid derivatives, processes for the preparation of them and pharmaceutical compositions containing them.

5

Background

[0002] Prostaglandin E₂ (abbreviated as PGE₂ hereafter) has been known as a metabolite in the arachidonate cascade. Its known activities include cyto-protective activity, uterine contractile activity, a pain-inducing effect, a promoting effect on digestive peristalsis, an awakening effect, a suppressive effect on gastric acid secretion, hypotensive activity and diuretic activity etc. In recent study, it was found that PGE₂ receptor was divided into some subtypes which possess different physiological role from each other. At present, four receptor subtypes are known and they are called EP1, EP2, EP3 and EP4 (Negishi M. et al, J. Lipid Mediators Cell Signalling 12, 379-391 (1995)).

10

[0003] The present inventors investigated to find compounds which bind to each receptor specifically; we found that the compounds of the present invention could bind strongly to EP4 subtype receptor and then achieved the present invention.

15

[0004] The compound of formula (I) possess a binding activity for EP4 subtype receptor strongly. Therefore they are useful for the treatment and/or prevention of immunologic diseases (autoimmune diseases, immunological deficiency diseases, organ transplantation etc.), asthma, abnormal bone formation, neuronal cell death, liver damage, nephritis, hypertension, myocardial ischemia etc.

20

[0005] Among the compounds of the present invention of the formula (I), compounds which bind weakly to receptor subtypes except for EP4 receptors do not express other effects and therefore it is thought that such compounds will be a medical agent which have less side-effects.

25

[0006] On the other hand, many modified PGs wherein 7th position carbon atom is replaced by sulfur atom are known. The following application is mentioned for an example.

[0007] In the specification of Japanese Kokai No. 57-108065 (i.e. EP 51284), the following compounds are disclosed as an agent for anti-platelets aggregation.

[0008] I.e. 7-thiaprostaglandin derivatives of the formula (A):

30

35

(wherein R^{1A} is hydrogen atom, lower alkyl or pharmaceutically acceptable cation,

40

R^{2A} is hydrogen atom or methyl,

R^{3A} is C5-7 alkyl or cycloalkyl,

R^{4A} and R^{5A} is hydrogen atom or a protective group for hydroxy.

Symbol * means the existence of an asymmetric carbon, its stereo configuration is α, β or a mixture thereof in voluntary ratio.).

45

[0009] In the specification of Japanese Kokai No. 58-148857, the following compounds are disclosed as an agent for anti-platelet aggregation.

[0010] I.e. 7-thiaprostaglandin derivatives of the formula (B):

50

55

(wherein R^{1B} is hydrogen atom or C1-10 alkyl, 5-6 membered alicyclic ring or phenyl, R^{2B} and R^{3B} are, same or different, hydrogen atom, tri(C1-C8)hydrocarbon-silyl or a group capable to form acetal together with oxygen atom of hydroxy, R^{4B} is C3-C8 alkyl or 5-6 membered alicyclic ring.).

5

[0011] In the specification of Japanese Kokai No. 58-110562, it is disclosed that the following compounds are useful for controlling vascular action.

[0012] I.e. 7-thiaprostaglandin derivatives of the formula (C):

10

15

20

(wherein G is -COOR^{8C}, -CONR^{9C}R^{10C} or -CH₂OR^{11C}, wherein R^{8C} is hydrogen atom, C1-C10 alkyl, substituted or unsubstituted phenyl, substituted or unsubstituted alicyclic ring, substituted or unsubstituted phenyl(C1-C3)alkyl or one equivalent weight cation, R^{9C} and R^{10C}, same or different, are hydrogen atom, C1-C10 alkyl, substituted or unsubstituted C5-C8 alicyclic ring, substituted or unsubstituted phenyl, substituted or unsubstituted alicyclic ring or substituted or unsubstituted phenyl(C1-C3)alkyl.

25

R^{9C} and R^{10C} may be form a substituted or unsubstituted 5-6 membered ring which may contain further hetero atom together with nitrogen atom bonded themselves.

30

R^{11C} is hydrogen atom, C1-C6 alkyl, substituted or unsubstituted C2-C7 acyl, or tri(C1-C6)hydrocarbon-silyl or a group capable to form acetal with oxygen atom of hydroxy;

R^{1C} and R^{2C}, same or different, are hydrogen atom, halogen atom, methyl or ethyl,

R^{3C} is hydrogen atom or a bond together with R^{1C};

R^{4C} and R^{5C}, same or different, are hydrogen atom, tri(C1-C6)hydrocarbon-silyl or a group capable to form acetal with oxygen atom of hydroxy.

35

R^{6C} is hydrogen atom, methyl or ethynyl optionally protected;

R^{7C} is C3-C8 alkyl or substituted or unsubstituted 5-6 membered alicyclic ring. nc is 0 or 1.).

40

[0013] In the prior arts described compounds of the formula (A) and (B), these compounds wherein the 7th carbon atom are replaced by a sulfur atom are hard to be metabolized and are useful for anti-aggregation. In the prior art concerning compounds of the formula (C), these compounds are useful for controlling vascular action.

Disclosure of the Invention

45

[0014] The present invention provides

46

(1) a 3,7-dithiaprostanic acid derivative of the formula (I):

50

55

(wherein R¹ is hydroxy, C1-4 alkoxy or a group of the formula:

$\text{-NR}^6 \text{R}^7$

5 wherein R⁶ and R⁷, independently, are hydrogen atom or C1-4 alkyl,
 R² is hydrogen atom or hydroxy,
 R³ is

- 10 (i) C1-8 alkyl, C2-8 alkenyl or C2-8 alkynyl,
 (ii) phenyl or C3-7 cycloalkyl,
 (iii) C1-8 alkyl, C2-8 alkenyl or C2-8 alkynyl substituted by phenyl or C3-7 cycloalkyl,

with the proviso that, alkyl, alkenyl, alkynyl in (i) or (iii) may be substituted by one hydroxy group, when R² is hydrogen atom;

15 the symbol — is a double or single bond;

the formula including the 8-epi equilibrium compound thereof);

a non-toxic salt thereof or a cyclodextrin clathrate thereof.

[0015] In the formula (i), C1-4 alkoxy represented by R¹ means methoxy, ethoxy, propoxy, butoxy groups and isomeric groups thereof.

[0016] In the formula (i), C1-4 alkyl represented by R⁶ and R⁷ means methyl, ethyl, propyl, butyl groups and isomeric groups thereof.

[0017] In the formula (i), C1-8 alkyl represented by R³ and in R³ means methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl groups and isomeric groups thereof.

[0018] In the formula (i), C2-8 alkenyl represented by R³ and in R³ means vinyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl groups and isomeric groups thereof.

[0019] In the formula (i), C2-8 alkynyl represented by R³ and in R³ means ethynyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl groups and isomeric groups thereof.

[0020] In the formula (i), C3-7 cycloalkyl represented by R³ and in R³ means cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl.

[0021] In this specification the symbol:

30

indicates a double or single bond, unless otherwise specified, the tapered line:

35

40 indicates that the substituent attached thereto is in front of the sheet, the symbol:

45

indicates that the substituent attached thereto is behind the sheet, the symbol:

50

or

55

Indicates that the substituent attached thereto is a mixture of in front of and behind the sheet or may be in front of or behind the sheet.

[0022] Unless otherwise specified, all isomers are included in the invention. For example, alkyl, alkylene and alkenylene includes straight-chain and branched-chain. Double bond in alkenylene includes E, Z and EZ mixtures. Isomers generated by the existence of asymmetric carbon(s) e.g. in branched alkyl are included in the present invention.

5 [0023] Among the compounds of the present invention, preferred configuration of compounds wherein R² is hydroxy in α -configuration i.e. natural configuration.

[0024] The configuration of 8th position of the compounds of the present invention are shown as α , but as is known in the art, these 8 α -compounds are an equilibrium state with 8 β -compounds (8-epi compound). Therefore the compounds of the formula (I) mean mixture of 8 α -compound and isomeric 8 β -compound.

10 [0025] Among the compounds of the present invention of the formula (I), preferred compounds are compounds shown in examples, the following compounds and corresponding esters and amides.

15

20

25

30

35

40

45

50

55

Table 1

(1)

5

10

15

20

25

30

35

40

45

50

Table 2

(2)

5

10

15

20

25

30

35

40

45

50

55

Table 3

(3)

5

10

15

20

25

30

35

40

50

55

Table 4

5		(4)
10		
15		
20		
25		
30		
35		
40		
45		
50		
55		

Table 5

(5)

5

15

20

25

30

35

40

50

55

Table 6

5

(6)

10

15

20

25

30

35

40

45

50

55

Table 7

(7)

5

10

15

20

25

30

35

40

45

50

55

Table 8

(8)

5

10

15

20

25

30

35

40

45

50

55

Table 9

(9)

5

10

15

20

25

30

35

40

45

50

55

Table 10

(10)

5

10

15

20

25

30

35

40

45

50

55

Table 11

(11)

5

10

15

20

25

30

35

40

45

50

55

Table 12

(12)

20

25

30

35

40

45

50

55

Table 13

(13)

5

10

15

20

25

30

35

40

45

50

55

Table 14

(14)

5

10

15

20

25

30

35

40

45

50

55

Table 15

(15)

5

10

15

20

25

30

35

40

45

50

55

Table 16

(16)

5

10

15

20

25

30

35

40

45

50

55

Salts

[0026] The compounds of the formula (I) may be converted into the corresponding salts. Non-toxic and water-soluble salts are preferable. Suitable salts, for example, are as follows:

5

salts of alkali metal (sodium, potassium etc.), salts of alkaline earth metal (calcium, magnesium etc.), ammonium salts, salts of pharmaceutically acceptable organic amine (tetramethylammonium, triethylamine, methylamine, dimethylamine, cyclopentylamine, benzylamine, phenethylamine, piperidine, monoethanolamine, diethanolamine, tris(hydroxymethyl)aminomethane, lysine, arginine, N-methyl-D-glucamine etc.).

10

Cyclodextrin clathrates

15

[0027] Cyclodextrin clathrates of 3,7-dithiaprostanic acid derivatives of the formula (I) may be prepared by the method described in GB 1351238 using α -, β - or γ -cyclodextrin or a mixture thereof. Converting into their cyclodextrin clathrates serves to increase the stability and solubility in water of the compounds, and therefore it is useful in the use for pharmaceuticals.

20

Processes for the Preparation

25

[0028] (1) Among the compounds of the formula (I), compounds of formula (Ia):

30

35

(wherein all symbols are the same meaning as hereinbefore defined.)
may be prepared by hydrolyzing a compound of formula (Ib):

40

45

(wherein R10 is C1-4 alkyl and the other symbols are the same meaning as hereinbefore defined.)
with an enzyme.

50

Hydrolysis with an enzyme is known, for example, it may be carried out in a mixture of a water-miscible organic solvent (ethanol, dimethylsulfoxide etc.) and water, in the presence or absence of buffer, using an ester cleaving enzyme (esterase, lipase etc.), at 0-50 °C.

(2) Among the compounds of the formula (I), compounds of formula (Ic):

55

5

10

(wherein all symbols are the same meaning as hereinbefore defined.)
may be prepared by amidation of a compound of the formula (Ia):

15

20

(wherein all symbols are the same meaning as hereinbefore defined.)
with a compound of formula (III):

25

(wherein all symbols are the same meaning as hereinbefore defined.).

Amidation is known reaction, for example, in an inert organic solvent (tetrahydrofuran (THF), methylene chloride, benzene, acetone, acetonitrile or a mixture thereof etc.), in the presence or absence of tertiary amine (dimethylaminopyridine, pyridine, triethylamine etc.), using a condensing agent (1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC), 1,3-dicyclohexylcarbodiimide (DCC) etc.), at 0-50 °C.

(3) Among the compounds of the formula (I), compounds of the formula (Ib):

35

40

(wherein all symbols are the same meaning as hereinbefore defined.)
may be prepared by hydrolyzing a compound of formula (II):

50

55

(wherein R^{2a} is hydrogen atom or hydroxy protected by a protecting group which is eliminated under an acidic condition, R²⁰ is a protecting group which is eliminated under an acidic condition, R^{3a} is (I) C1-8 alkyl, C2-8 alkenyl

or C2-8 alkynyl, (ii) phenyl or C3-7 cycloalkyl, (iii) C1-8 alkyl, C2-8 alkenyl or C2-8 alkynyl which are substituted by phenyl or C3-7 cycloalkyl (with the proviso that when R^{2a} is hydrogen, alkyl, alkenyl and alkynyl groups in (i) or (iii) may be substituted by hydroxy protected by a protecting group which is eliminated under an acidic condition); the symbol:

5 is a double or single bond)
in an acidic condition.

[0029] A protecting group which is eliminated under an acidic condition means, for example, t-butyldimethylsilyl, triphenylsilyl, triphenylmethyl, tetrahydropyranyl, 1-ethoxyethyl, methoxymethyl, trimethylsilyl, etc.

10 [0030] Hydrolysis under an acidic condition is known; for example, in a water-miscible organic solvent (THF, methanol, ethanol, dimethoxyethane, acetonitrile or a mixture thereof etc.), using inorganic acid (hydrochloric acid, phosphoric acid, hydrofluoric acid, hydrogen fluoride-pyridine complex etc.) or organic acid (acetic acid, toluenesulphonic acid, trichloroacetic acid etc.), at 0-50 °C.

[0031] The compound of the formula (II) may be prepared by the following reaction scheme (A) in the next sheet.

15 [0032] Symbols in reaction scheme are the same meaning as hereinbefore defined.

Scheme (A)

20

25

30

35

40

45

50

55

[0033] In each reaction in this specification products may be purified by conventional manner. For example, it may be carried out by distillation under atmospheric or reduced pressure, high performance liquid chromatography, thin

layer chromatography or column chromatography using silica gel or magnesium silicate, washing or recrystallization. Purification may be carried out after each reaction, or after a series of reactions.

Starting Materials and Reagents

5

[0034] Starting materials and reagents are known per se or may be prepared by known methods.

Properties of the Compound of the Invention

10 [0035] The compounds of the present invention of the formula (I) bind and act on EP4 receptor which is a subtype of PGE₂ receptor.

[0036] In a standard laboratory test, the activities of the compounds of the present invention were confirmed by binding assay using expression cell of the prostanoid receptor subtype.

15

(I) Binding assay using expression cell of the prostanoid receptor subtype

[0037] The preparation of membrane fraction was carried out according to the method of Sugimoto et al (J. Biol. Chem. 267, 6463-6466 (1992)) using the prostanoid receptor subtypes (mouse EP3α, EP4) expressing CHO cells.

20

[0038] The standard assay mixture containing membrane fraction (0.5 mg/ml) and ³H-PGE₂ in a final volume of 200 μl was incubated for 1 hour at room temperature. The reaction was terminated by the addition of 3 ml of ice-cold buffer. The mixture was rapidly filtered through a GF/B glass filter. The radioactivity associated with the filter was measured by liquid scintillation counting.

[0039] Kd and Bmax value were determined from Scatchard plots (Ann. N. Y. Sci., 51, 660 (1949)). Non-specific binding was calculated as the bound in the presence of an excess (2.5 μM) of unlabeled PGE₂.

25

[0040] In the experiment for competition of specific ³H-PGE₂ binding by the compounds of the present invention, 2.5nM of ³H-PGE₂ and various concentration of the compounds of the present invention were added. The following buffer was used in all reactions. Buffer: 10 mM potassium phosphate (pH 6.0), 1 mM EDTA, 10 mM MgCl₂, 0.1 M NaCl. The dissociation constant (Ki) of each compound was calculated by the following equation.

30

$$Ki = IC_{50} / (1 + [C] / Kd)$$

[0041] Results are shown in Table 17 and 18.

35

Table 17

Example No.	Dissociation constant for EP4 Ki (μ M)
2	0.0007
2(a)	0.0008
2(b)	0.0006
2(c)	0.0056
2(d)	0.0016
2(e)	0.00091
2(f)	0.007
2(g)	0.006
2(h)	0.022
2(k)	0.0007
2(m)	0.0014
2(o)	0.0002
2(q)	0.0004
2(t)	0.0042

55

Table 18

Example No.	Dissociation constant for EP3α Ki(μ M)
2	1.5
2(a)	0.01
2(f)	0.13
2(h)	0.61
2(k)	0.034
2(m)	0.023
2(o)	0.025

Toxicity

[0042] On the other hand, toxicity of the compounds of the present invention of the formula (I) are very low, and are therefore, it may be estimated to be safe for pharmaceutical use.

Application for Pharmaceuticals

[0043] The compounds of the present invention of the formula (I) bind strongly and act on PGE₂ receptor, especially on EP4 subtype receptor and therefore are useful for prevention and/or treatment of immunologic diseases (autoimmune diseases, immunological deficiency diseases, organ transplantation etc.), asthma, abnormal bone formation, neuronal cell death, liver damage, nephritis, hypertension, myocardiac ischemia etc.

[0044] Among the compounds of the present invention of the formula (I), compounds which bind weakly to receptor subtypes except for EP4 receptors do not express other effects and therefore it is thought that such compounds will be a medical agent which have less side-effects.

[0045] For the purpose described above, the compounds of the present invention of the formula (I), non-toxic salts thereof or cyclodextrin clathrates thereof may be normally administered systemically or locally, usually by oral or parenteral administration.

[0046] The doses to be administered are determined depending upon age, body weight, symptom, the desired therapeutic effect, the route of administration, and the duration of the treatment etc. In the human adult, the doses per person per dose are generally between 1 μg and 100 mg, by oral administration, up to several times per day, and between 0.1 μg and 10 mg, by parenteral administration up to several times per day, or continuous administration between 1 and 24 hrs. per day from vein.

[0047] As mentioned above, the doses to be used depend upon various conditions. Therefore, there are cases in which doses lower than or greater than the ranges specified above may be used.

[0048] When administration of the compounds of the present invention, it is used as solid compositions, liquid compositions or other compositions for oral administration, as injections, liniments or suppositories etc. for parenteral administration.

[0049] Solid compositions for oral includes tablets, pills, capsules, dispersible powders, granules. Capsules include soft capsules and hard capsules.

[0050] In such compositions, one or more of the active compound(s) is or are, admixed with at least one inert diluent such as lactose, mannitol, glucose, hydroxypropylcellulose, microcrystalline cellulose, starch, polyvinylpyrrolidone or magnesium metasilicate aluminate.

[0051] The compositions may also comprise, as is normal practice, additional substances other than inert diluents e.g. lubricating agents such as magnesium stearate, disintegrating agents such as cellulose calcium glycolate, stabilizing agents e.g. lactose and agents to assist dissolution e.g. arginine, glutamic acid or aspartic acid. The tablets or pills may, if desired, be made into gastric film-coated tablets or pills, such as sugar-coated, gelatin-coated, hydroxypropyl cellulose-coated hydroxypropylmethyl cellulose phthalate-coated tablets or pills; two or more layers may be used. The compositions for oral administration also include capsules of absorbable material such as gelatin.

[0052] Liquid compositions for oral administration include pharmaceutically-acceptable emulsions, solutions, suspensions, syrups and elixirs containing inert diluents commonly used in the art such as distilled water or ethanol. Besides inert diluents such compositions may also comprise adjuvants such as wetting and suspending agents, and sweetening, flavoring, perfuming and preserving agents.

[0053] Other compositions for oral administration include spray compositions which may be prepared by known methods and which comprise one or more of the active compound(s). Spray compositions may comprise additional substances other than inert diluents: e.g. stabilizing agents (sodium sulfate etc.), isotonic buffer (sodium chloride, sodium citrate, citric acid etc.). For preparation of such spray compositions, for example, the method described in the

U. S. Patent No. 2,868,691 or U. S. Patent No. 3,095,355 may be used.

[0054] Injections for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions and emulsions. Aqueous solutions, suspensions include distilled water for injection and physiological salt solution. Non-aqueous solutions, suspensions include propylene glycol, polyethylene glycol, vegetable oil such as olive oil, alcohol such as ethanol, POLYSORBETE 80 (registered trade mark), etc.

[0055] Such compositions may comprise additives other than inert diluents: e.g. preserving agents, wetting agents, emulsifying agents, dispersing agents, stabilizing agents, assisting agents such as assisting agents for dissolving (glutamic acid, asparagine acid etc.). They may be sterilized, for example, by filtration through a bacteria-retaining filter, by incorporation of sterilizing agents in the compositions or by irradiation. They may also be manufactured in the form of sterile solid compositions and which may be dissolved in sterile water or some other sterile diluent(s) for injection immediately before used.

[0056] Other compositions for parenteral administration include liquids for external use, and endermic liniments, ointment, suppositories for rectal administration and pessaries for vaginal administration which comprise one or more of the active compound(s) and may be prepared by per se known methods.

Reference Examples and Examples

[0057] The following reference examples and examples illustrate the present invention.

[0058] The solvents in parentheses show the developing or eluting solvents and the ratios of the solvents used are by volume in chromatographic separations. Unless otherwise specified "NMR" were measured in a solution of CDCl_3 .

Reference Example 1

2,2-dibutyl-2-stanane-1,3-dithiane

[0059]

[0060] A solution of 1,3-propanedithiol (3.0 g) and dibutyl stanane oxide (6.9 g) in benzene was refluxed. The reaction mixture was evaporated to give the title compound having the following physical data.

TLC : Rf 0.68 (hexane:EtOAc=9:1).

Reference Example 2

6-Mercapto-3-thiahexanoic acid methyl ester

[0061]

[0062] Bromoacetic acid methyl ester (6.36 g) was added to a solution of 2,2-dibutyl-2-stanane-1,3-dithiane (9.38 g) in anhydrous dimethylformamide (DMF, 20 ml). The mixture was stirred for 3 hrs at 100 °C. After cooling, water was added to the reaction mixture. The mixture was stirred for 1 hr. The reaction mixture was extracted with ethyl acetate.

55 The organic layer was washed, dried and evaporated. The residue was purified by column chromatography on silica gel (hexane-ethyl acetate) to give the title compound (2.61 g) having the following physical data.

TLC : Rf 0.60 (hexane:EtOAc=4:1).

Reference Example 3

7-(4R-t-butyldimethylsilyloxy)cyclopentenone-2-yl)-3,7-dithiaheptanoic acid methyl ester

5 [0063]

10

15

[0064] 4R-t-butyldimethylsilyloxy-2-cyclopentenone (2.76 g) in methanol (40 ml) was cooled with ice. An aq. solution of hydroperoxide (31%, 5 ml) and a 1N aq. solution of sodium hydroxide (0.05 ml) were added to the solution. The mixture was stirred for 1.5 hrs at the same temperature. Saturated aq. solution of ammonium chloride was added to the reaction mixture and the mixture was extracted. The organic layer was washed, dried and evaporated. The residue was dissolved in chloroform (35 ml). A solution of 6-mercaptop-3-thiahexanoic acid methyl ester (2.34 g) in chloroform (10 ml) and active alumina (13 g) were added to the solution. The mixture was stirred overnight at room temperature. The reaction mixture was filtered. The filtrate was evaporated and purified by column chromatography on silica gel (hexane-ethyl acetate) to give the title compound (3.21 g) having the following physical data.

25

TLC : Rf 0.39 (hexane:EtOAc=4:1).

Reference Example 4

30 11 α ,15 α -bis(t-butyldimethylsilyloxy)-9-oxo-3,7-dithiaprost-13-enoic acid methyl ester

[0065]

35

40

[0066] Under an atmosphere of argon, 1.57M solution of t-butyl lithium in pentane (1.01 ml) was dropped to a solution of (3S)-1-iodo-3-t-butyldimethylsilyloxy-1-octene (290 mg) in anhydrous ether (4 ml). The mixture was stirred for 1 hr at the same temperature. A 0.25 M solution of lithium copper 2-thienylcyanide in THF (3.38 ml) was dropped to the solution at -78 °C. The reaction mixture was stirred for 30 mins at the same temperature. A solution of 7-(4R-t-butyldimethylsilyloxy)cyclopentenone-2-yl)-3,7-dithiaheptanoic acid methyl ester (220 mg; prepared in Reference Example 3) in anhydrous THF (4 ml) was dropped to the solution at -78 °C. The reaction mixture was stirred for 1 hr. An aq. saturated solution of ammonium chloride was added to the mixture. The mixture was warmed to room temperature. The reaction mixture was extracted by hexane. The organic layer was washed, dried, evaporated and purified by column chromatography on silica gel (hexane-ethyl acetate) to give the title compound (258 mg) having the following physical data.

55

TLC : Rf 0.55 (hexane:EtOAc=4:1).

Example 1

11 α ,15 α -dihydroxy-9-oxo-3,7-dithiaprost-13E-enoic acid methyl ester

5 [0067]

[0068] Pyridine (1.2 ml) and hydrogen fluoride-pyridine (2 ml) were added to a solution of 11 α ,15 α -bis(t-butylidemethylsilyloxy)-9-oxo-3,7-dithiaprost-13E-enoic acid methyl ester (220 mg; prepared in Reference Example 4) in acetonitrile (8 ml) cooled with ice. The reaction mixture was stirred for 1 hr at room temperature. The reaction mixture was poured into a mixture of ethyl acetate and an aq. saturated sodium bicarbonate cooled at 0 °C. The mixture was extracted with ethyl acetate. The organic layer was washed, dried and evaporated. The residue was purified by column chromatography on silica gel (chloroform-methanol) to give the title compound (123 mg; equilibrium mixture with 8-epi compound) having the following physical data.

20

TLC: Rf 0.55 (CHCl₃:CH₃OH = 19:1);
 NMR: δ 5.73 (1H, dd), 5.63 (1H, dd), 4.44 and 4.13 (2H, each m), 3.74 (3H, s), 3.23 (2H, s), 3.40-2.18 (8H, m),
 1.98-1.20 (10H, m), 0.90 (3H, t).

Example 2

30 11 α ,15 α -dihydroxy-9-oxo-3,7-dithiaprost-13E-enoic acid

[0069]

35

[0070] Phosphate buffer (10 ml; pH 7.4) was added to a solution of 11 α ,15 α -dihydroxy-9-oxo-3,7-dithiaprost-13E-enoic acid methyl ester (48 mg; prepared in Example 1) in ethanol (1 ml). Pig liver esterase was added to the reaction mixture. The mixture was stirred for 2 hrs at room temperature. A saturated aq. solution of ammonium sulfate was added to the mixture. The mixture was extracted by ethyl acetate. The organic layer was dried, evaporated. The residue was purified by column chromatography on silica gel (ethyl acetate) to give the title compound (39 mg; an equilibrium mixture with 8-epi isomer) having the following physical data.

45

TLC: Rf 0.10 (EtOAc);
 NMR: δ 5.79 (1H, dd), 5.64 (1H, dd), 4.3-4.1 (2H, m), 3.7 (1H, bs), 3.23 (2H, s), 3.0-2.4 (8H, m), 2.0-1.8 (2H, m),
 1.7-1.5 (2H, m), 1.4-1.2 (6H, m), 1.0-0.8 (3H, m).

50 55 Example 2(a)-2(u)

[0071] Compounds having the following physical data were given by the same manner in Reference Example 4, Example 1 and 2. These compounds are equilibrium mixtures with 8-epi isomers.

Example 2(a)

11 α ,15 α -dihydroxy-9-oxo-17 β ,20-dimethyl-3,7-dithiaprost-13E-enoic acid

5 [0072]

10

15

TLC : Rf 0.50, 0.44 (CHCl₃:CH₃OH=9:1, 1% acetic acid);
 NMR : δ 5.75(2H, m), 5.06(3H, br), 4.53-4.05(2H, m), 3.42-2.18(8H, m), 3.23(2H, s), 1.88(2H, m), 1.58(2H, m), 1.42-1.03(7H, m), 0.91(6H, m).

20

Example 2(b)

11 α ,15 α -dihydroxy-9-oxo-17 α ,20-dimethyl-3,7-dithiaprost-13E-enoic acid

25 [0073]

30

35

TLC : Rf 0.38, 0.22 (EtOAc:AcOH=100:1);
 NMR : δ 5.74 (1H, dd), 5.67 (1H, dd), 4.77 (3H, br), 4.45 and 4.20(2H, each m), 3.23 (2H, s), 3.42-2.18 (8H, m), 1.88 (2H, m), 1.62-1.04 (9H, m), 0.89 (6H, m).

40

Example 2(c)

11 α ,16 β -dihydroxy-9-oxo-16 α -methyl-3,7-dithiaprost-13E-enoic acid

45 [0074]

50

55

TLC : Rf 0.30, 0.23.(EtOAc:hexane:AcOH=6:2:1);
 NMR : δ 5.9-5.7 (1H, m), 5.7-5.5 (1H, m), 4.5 and 4.1(1H, each m), 4.1-3.7 (3H, br), 3.55-3.45 and 3.2-2.2 (10H, each m), 3.24 (2H, s), 2.0-1.8 (2H, m), 1.6-1.1 (6H, m), 1.23 (3H, s), 0.93 (3H, t).

Example 2(d)

11 α ,15 α -dihydroxy-9-oxo-3,7-dithiaprostanic acid

5 [0075]

10

15

TLC : Rf 0.30 (EtOAc:AcOH=100:1);

NMR : δ 5.25 (3H, br), 4.32 and 4.15 (1H, each m), 3.72 (1H, m), 3.23 (2H, s), 3.38-2.38 (7H, m), 2.24 (1H, m), 2.08-1.12 (14H, m), 0.90 (3H, t).

20

Example 2(e)

11 α ,15 α -dihydroxy-9-oxo-3,7-dithiaprost-13E,17Z-dienoic acid

25 [0076]

30

35

TLC : Rf 0.52, 0.41 (EtOAc:AcOH=20:1);

NMR : δ 5.9-5.5 (3H, m), 5.5-5.2 (1H, m), 4.6-4.2 (5H, br), 3.24 (2H, s), 3.45-3.40 and 3.1-2.2 (8H, each m), 2.2-2.0 (2H, m), 2.0-1.8 (2H, m), 0.97 (3H, t).

40

Example 2(f)

11 α ,15 α -dihydroxy-9-oxo-16-phenyl-17,18,19,20-tetranor-3,7-dithiaprost-13E-enoic acid

45 [0077]

50

55

TLC : Rf 0.24 (EtOAc:CH3OH=2:1);

NMR : δ 7.38-7.16 (5H, m), 5.90-5.50 (2H, m), 4.56-3.70 (7H, m), 3.21 (2H, s), 3.10-2.26 (10H, m), 1.87 (2H, quin.).

Example 2(g)

11 α ,15 α -dihydroxy-9-oxo-17-phenyl-18,19,20-trinor-3,7-dithiaprost-13E-enoic acid

5 [0078]

10

15

TLC : Rf 0.52, 0.43 (EtOAc:AcOH=20:1);
 NMR: δ 7.35-7.15 (5H, m), 5.9-5.6 (2H, m), 4.5-4.4 and 4.3-4.0 (2H, each m), 4.3-3.6 (3H, br), 3.03 (2H, s), 3.45-3.40 and 3.05-2.20 (10H, each m), 2.0-1.8 (4H, m).

20

Example 2(h)

11 α ,15 α -dihydroxy-9-oxo-15-cyclohexyl-3,7-dithia-16,17,18,19,20-pentanorprost-13E-enoic acid

25 [0079]

30

35

TLC : Rf 0.46, 0.40 (CHCl₃:CH₃OH=9:1, 1% AcOH);
 NMR : δ 5.77 (1H, m), 5.61 (1H, dd), 4.76 (3H, br), 4.45 and 4.14 (1H, each m), 3.92 (1H, m), 3.42-2.30 (8H, m), 3.23 (2H, s), 1.98-1.56 (7H, m), 1.54-0.85 (6H, m).

40

Example 2(i)

11 α ,15 α -dihydroxy-9-oxo-15-cyclopentyl-3,7-dithia-16,17,18,19,20-pentanorprost-13E-enoic acid

45 [0080]

50

55

TLC : Rf 0.27 (CHCl₃/MeOH, 4/1);
 NMR : δ 5.86-5.48 (2H, m), 4.70-3.20 (6H, m), 3.15 (2H, s), 3.08-1.00 (18H, m).

Example 2(j)

11 α ,15 α -dihydroxy-9-oxo-16-cyclohexyl-3,7-dithia-17,18,19,20-tetranorprost-13E-enoic acid

5 [0081]

10

15

TLC R_f : 0.22 (AcOEt/AcOH, 50/1);
 NMR : δ 5.90-5.52 (2H, m), 5.04-4.40 (3H, br), 4.40-3.92 (3H, m), 3.22 (2H, s), 3.12-2.24 (7H, m), 2.24-0.70 (15H, m).

20

Example 2(k)

11 α ,15 α -dihydroxy-9-oxo-15 β -methyl-3,7-dithiaprost-13E-enoic acid

25 [0082]

30

35

TLC : R_f 0.27 (AcOEt/AcOH, 50/1);
 NMR : δ 5.84-5.46 (2H, m), 5.36-4.70 (3H, br), 4.47-3.98 (2H, m), 3.15 (2H, s), 3.06-2.20 (7H, m), 2.04-1.72 (2H, m), 1.60-1.40 (2H, m), 1.32-1.10 (9H, m), 0.81 (3H, t, J=6.4Hz).

40

Example 2(l)

11 α ,15 α -dihydroxy-9-oxo-17-ethyl-3,7-dithia-20-norprost-13E-enoic acid

45 [0083]

50

55

TLC : R_f 0.49, 0.38 (EtOAc/AcOH, 20:1);
 NMR : δ 5.9-5.6 (2H, m), 5.6-5.0 (3H, br), 4.6-4.0 (2H, m), 3.23 (2H, s), 3.45-3.40 and 3.1-2.2 (8H, m), 2.0-1.8 (2H,

m), 1.6-1.2 (7H, m), 0.83 (6H, t, J=7 Hz).

Example 2(m)

- 5 11 α ,15 α -dihydroxy-9-oxo-3,7-dithia-20-norprost-13E-enoic acid

[0084]

10

15

TLC : Rf 0.47, 0.37 (EtOAc/AcOH, 20:1);

20 NMR : δ 5.85-5.60 (2H, m), 5.6-5.2 (3H, br), 4.5-4.4 and 4.25-4.05 (2H, m), 3.23 (2H, s), 3.45-3.40 and 3.1-2.2 (8H, m), 2.0-1.8 (2H, m), 1.7-1.2 (6H, m), 0.92 (3H, t, J=7Hz).

Example 2(n)

- 25 11 α ,15 α -dihydroxy-9-oxo-3,7-dithia-20-homoprost-13E-enoic acid

[0085]

30

35

TLC : Rf 0.58, 0.46 (EtOAc/AcOH, 10:1);

40 NMR : δ 5.71 (2H, m), 5.38 (3H, br), 4.45 and 4.17 (2H, each m), 3.42 and 3.03 (1H, each d, J=6.6 and 11Hz), 3.23 (2H, s), 2.98-2.20 (7H, m), 1.88 (2H, m), 1.54 (2H, m), 1.48-1.15 (8H, m), 0.89 (3H, t, J=6.4Hz).

Example 2(o)

- 45 11 α ,15 α -dihydroxy-9-oxo-16 β -methyl-3,7-dithiaprost-13E-enoic acid

[0086]

50

55

TLC : R_f 0.53, 0.42 (EtOAc/AcOH, 20:1);
 NMR : δ 5.85-5.60 (2H, m), 4.5-4.4 and 4.2-4.0 (2H, m), 4.6-3.8 (3H, br), 3.22 (2H, s), 3.45-3.40 and 3.1-2.2 (8H, m), 2.0-1.8 (2H, m), 1.7-1.1 (7H, m), 1.0-0.8 (6H, m).

5 Example 2(p)

11α,15α-dihydroxy-9-oxo-3,7-dithiaprost-13E,19-dienoic acid

[0087]

10

15

20

TLC : R_f 0.62, 0.56 (EtOAc/AcOH, 20:1);
 NMR : δ 5.88-5.48 (6H, m), 5.00 (2H, m), 4.42 and 4.15 (2H, each m), 3.40 and 3.02 (1H, each d, J=6.6 and J=11Hz), 3.22 (2H, s), 3.06-2.28 (7H, m), 2.08 (2H, m), 1.86 (2H, m), 1.52 (4H, m).

25

Example 2(q)

11α,15α-dihydroxy-9-oxo-19,20-methano-3,7-dithiaprost-13E-enoic acid

[0088]

30

35

40

TLC : R_f 0.37, 0.19 (EtOAc/AcOH, 20:1);
 NMR: δ 5.74(5H,m),4.44and4.15(2H,eachm),3.41 and 3.02 (1H, each d, J=6.8Hz and J= 11Hz), 3.23 (2H, s), 2.98-2.19 (7H, m), 1.86 (2H, m), 1.73-1.10 (6H, m), 0.63 (1H, m), 0.40 (2H, m), 0.00 (2H, m).

45

Example 2(r)

11α,15α-dihydroxy-9-oxo-18-methyl-3,7-dithia-20-norprost-13E-enoic acid

50

[0089]

55

TLC : Rf 0.50, 0.27 (EtOAc/AcOH, 20/1);
 NMR : δ 5.68 (5H, m), 4.44 and 4.15 (2H, each m), 3.42 and 3.03 (1H, each d, J=6.6Hz and J= 11Hz), 3.23 (2H, s), 2.98-2.20 (7H, m), 1.88 (2H, m), 1.57 (3H, m), 1.23 (2H, m), 0.90 (6H, d, J=6.6Hz).

5 Example 2(s)

11α,15α-dihydroxy-9-oxo-16α-methyl-3,7-dithiaprost-13E-enoic acid

[0090]

10

15

20

TLC : Rf 0.49, 0.39 (EtOAc/AcOH, 20:1);
 NMR : δ 5.9-5.6 (2H, m), 4.5-4.4 and 4.3-4.0 (2H, m), 4.7-3.9 (3H, br), 3.23 (2H, s), 3.45-3.40 and 2.9-2.2 (8H, m), 2.0-1.8 (2H, m), 1.7-1.0 (7H, m), 1.0-0.8 (6H, m).

Example 2(t)

25

11α,15α-dihydroxy-9-oxo-16-cyclopentyl-3,7-dithia-17,18,19,20-tetranorprost-13E-enoic acid

[0091]

30

35

40

TLC : Rf 0.53, 0.37 (EtOAc/AcOH, 20/1);
 NMR : δ 5.76 (5H, m), 4.44 and 4.18 (2H, each m), 3.42 and 3.03 (1H, each d, J=6.8Hz and J=11Hz), 3.23 (2H, s), 2.96-2.20 (7H, m), 2.01-1.38 (11H, m), 1.13 (2H, m).

45

50

55

Example 2(u)

11 α , 15 α -dihydroxy-9-oxo-16 α -methyl-16-phenyl-3,7-dithia-20-norprost-13E-enoic acid

5 [0092]

10

15

TLC : Rf 0.42, 0.32 (EtOAc/Hex/AcOH, 15:5:1);

20 NMR : δ 7.4-7.2 (m, 5H), 5.71 (dd, J=15, 6Hz, 1H), 5.64 (dd, J=15, 8Hz, 1H), 4.35 (t, J=6Hz, 1H), 4.35 (t, J=6Hz, 1H), 3.95 (q, J=8Hz, 1H), 3.22 (s, 2H), 3.35-3.3 and 3.0-2.3 (m, 9H), 3.2-2.5 (br), 2.0-1.8 (m, 2H), 1.38 (d, J=6Hz, 3H).

Formulation Example

25 [0093] The following components were admixed in conventional method and dried. Microcrystalline cellulose was added to the mixture to obtain the total weight 10 g. The resulting mixture was mixed sufficiently to make it homogeneous and then tabletted in conventional manner to give 100 tablets each containing 30 μ g of the active ingredient.

- 30 · a solution of 11 α ,15 α -dihydroxy-9-oxo-3,7-dithiaprostan-13E-enoic acid (3 mg) in ethanol 10 ml
 · magnesium stearate 100 mg
 · silicon dioxide 20 mg
 · talc 10 mg
 · carboxymethylcellulose calcium 200 mg
 · microcrystalline cellulose 5.0 g

35

Claims

40 1. A 3,7-dithiaprostanic acid derivative of the formula (I):

45

50

(wherein R^1 is hydroxy, C1-4 alkoxy or a group of the formula:

 $\text{-NR}^6\text{R}^7$

55

wherein R^6 and R^7, independently, are hydrogen atom or C1-4 alkyl,
 R^2 is hydrogen atom or hydroxy,
 R^3 is

- (i) C1-8 alkyl, C2-8 alkenyl or C2-8 alkynyl,
- (ii) phenyl or C3-7 cycloalkyl,
- (iii) C1-8 alkyl, C2-8 alkenyl or C2-8 alkynyl substituted by phenyl or C3-7 cycloalkyl,

5 with the proviso that, alkyl, alkenyl, alkynyl in (i) or (iii) may be substituted by one hydroxy group, when R² is hydrogen atom;

the symbol — is a double or single bond;

the formula including the 8-epi equilibrium compound thereof);

a non-toxic salt thereof or a cyclodextrin clathrate thereof.

10

2. A compound according to claim 1, wherein R³ is C1-8 alkyl, C2-8 alkenyl or C2-8 alkynyl.
3. A compound according to claim 1, wherein R³ is phenyl or C3-7 cycloalkyl.
- 15 4. A compound according to claim 1, wherein R³ is C1-8 alkyl, C2-8 alkenyl or C2-8 alkynyl substituted by phenyl.
5. A compound according to claim 1, wherein R³ is C1-8 alkyl, C2-8 alkenyl or C2-8 alkynyl substituted by C3-7 cycloalkyl.
- 20 6. A compound according to claim 2, which is
 - 11 α ,15 α -dihydroxy-9-oxo-3,7-dithiaprost-13E-enoic acid,
 - 11 α ,15 α -dihydroxy-9-oxo-17 β ,20-dimethyl-3,7-dithiaprost-13E-enoic acid,
 - 11 α ,15 α -dihydroxy-9-oxo-17 α ,20-dimethyl-3,7-dithiaprost-13E-enoic acid,
 - 11 α ,16 β -dihydroxy-9-oxo-16 α -methyl-3,7-dithiaprost-13E-enoic acid,
 - 25 11 α ,15 α -dihydroxy-9-oxo-3,7-dithiaprostanic acid,
 - 11 α ,15 α -dihydroxy-9-oxo-3,7-dithiaprost-13E,17Z-dienoic acid
 - 11 α ,15 α -dihydroxy-9-oxo-15 β -methyl-3,7-dithiaprost-13E-enoic acid,
 - 11 α ,15 α -dihydroxy-9-oxo-17-ethyl-3,7-dithia-20-norprost-13E-enoic acid,
 - 11 α ,15 α -dihydroxy-9-oxo-3,7-dithia-20-norprost-13E-enoic acid,
 - 30 11 α ,15 α -dihydroxy-9-oxo-3,7-dithia-20-homoprost-13E-enoic acid,
 - 11 α ,15 α -dihydroxy-9-oxo-16 β -methyl-3,7-dithiaprost-13E-enoic acid,
 - 11 α ,15 α -dihydroxy-9-oxo-3,7-dithiaprost-13E,19-dienoic acid,
 - 11 α ,15 α -dihydroxy-9-oxo-18-methyl-3,7-dithia-20-norprost-13E-enoic acid or
 - 35 11 α ,15 α -dihydroxy-9-oxo-16 α -methyl-3,7-dithiaprost-13E-enoic acid or methyl ester thereof.
7. A compound according to claim 3, which is
 - 11 α ,15 α -dihydroxy-9-oxo-15-cyclohexyl-3,7-dithia-16,17,18,19,20-pentanorprost-13E-enoic acid or
 - 11 α ,15 α -dihydroxy-9-oxo-15-cyclopentyl-3,7-dithia-16,17,18,19,20-pentanorprost-13E-enoic acid or
 - 40 methyl ester thereof.
8. A compound according to claim 4, which is
 - 11 α ,15 α -dihydroxy-9-oxo-16-phenyl-17,18,19,20-tetranor-3,7-dithiaprost-13E-enoic acid,
 - 11 α ,15 α -dihydroxy-9-oxo-17-phenyl-18,19,20-trinor-3,7-dithiaprost-13E-enoic acid or 11 α ,15 α -dihydroxy-9-oxo-
 - 45 16 α -methyl-16-phenyl-3,7-dithia-20-norprost-13E-enoic acid or methyl ester thereof.
9. A compound according to claim 5, which is
 - 11 α ,15 α -dihydroxy-9-oxo-16-cyclohexyl-3,7-dithia-17,18,19,20-tetranorprost-13E-enoic acid,
 - 11 α ,15 α -dihydroxy-9-oxo-19,20-methano-3,7-dithiaprost-13E-enoic acid or
 - 50 11 α ,15 α -dihydroxy-9-oxo-16-cyclopentyl-3,7-dithia-17,18,19,20-tetranorprost-13E-enoic acid or methyl ester thereof.
10. A process for the preparation of a compound of the formula (Ia):

55

5

10

(wherein all symbols are the same meaning as defined in claim 1)
which comprises hydrolysis of a compound of the formula (Ib):

15

20

25

(wherein R¹⁰ is C1-4 alkyl and the other symbols are the same meaning as defined hereinbefore)
with an enzyme.

11. A process for the preparation of a compound of the formula (Ic):

30

35

40

(wherein all symbols are the same meaning as defined in claim 1)
which comprises amidation of a compound of the formula (Ia):

45

50

55

wherein all symbols are the same meaning as defined in claim 1).

12. A process for the preparation of a compound of the formula (Ib):

5

10

(Ib)

15

(wherein R¹⁰ is C1-C4 alkyl and the other symbols are the same meaning as defined in claim 1)
which comprises hydrolysis of a compound of formula (II):

20

25

30

(wherein R^{2a} is hydrogen atom or hydroxy protected by a protecting group which is eliminated under an acidic condition, R²⁰ is a protecting group which is eliminated under an acidic condition, R^{3a} is (I) C1-8 alkyl, C2-8 alkenyl or C2-8 alkynyl, (ii) phenyl or C3-7 cycloalkyl, (iii) C1-8 alkyl, C2-8 alkenyl or C2-8 alkynyl which are substituted by phenyl or C3-7 cycloalkyl (with the proviso that when R^{2a} is hydrogen, alkyl, alkenyl and alkynyl groups in (I) or (iii) may be substituted by one hydroxy protected by a protecting group which is eliminated under an acidic condition);
the symbol:

35

is a double or single bond);
in an acidic condition.

40

13. A pharmaceutical composition which comprises, as active ingredient, a compound of the formula (I) depicted in claim 1 or cyclodextrin clathrate thereof or non-toxic salt thereof, with a pharmaceutical carrier or coating.

45

14. A compound of the formula (I) depicted in claim 1 or cyclodextrin clathrate thereof or non-toxic salt thereof, with a pharmaceutical carrier or coating for use in a method for the prevention and/or treatment of immunologic diseases (autoimmune diseases, immunological deficiency disease, organ transplantation), asthma, abnormal bone formation, neuronal cell death, liver damage, nephritis, hypertension or myocardial ischemia.

50

Patentansprüche

1. 3,7-Dithiaprostanäurederivat der Formel (I):

55

(I)

(worin R¹ Hydroxy, C₁₋₄-Alkoxy oder eine Gruppe der Formel -NR⁶R⁷ mit R⁶ und R⁷ unabhängig voneinander gleich einem Wasserstoffatom oder C₁₋₄-Alkyl ist,
 R² ein Wasserstoffatom oder Hydroxy ist,
 R³

5

- (i) C₁₋₈-Alkyl, C₂₋₈-Alkenyl oder C₂₋₈-Alkinyl,
- (ii) Phenyl oder C₃₋₇-Cycloalkyl,
- (iii) C₁₋₈-Alkyl, C₂₋₈-Alkenyl oder C₂₋₈-Alkinyl, die mit Phenyl oder C₃₋₇-Cycloalkyl substituiert sind, ist,

10

wobei Alkyl, Alkenyl, Alkinyl in (i) oder (iii) mit einer Hydroxygruppe substituiert sein können, wenn R² ein Wasserstoffatom ist;
 das Symbol — eine Doppel- oder Einfachbindung ist;
 wobei die Formel die 8-epi-Gleichgewichtsverbindung derselben umfasst);
 ein nicht-toxisches Salz desselben oder ein Cyclodextrinclathrat desselben.

15

2. Verbindung gemäß Anspruch 1, worin R³ C₁₋₈-Alkyl, C₂₋₈-Alkenyl oder C₂₋₈-Alkinyl ist.

3. Verbindung gemäß Anspruch 1, worin R³ Phenyl oder C₃₋₇-Cycloalkyl ist.

20 4. Verbindung gemäß Anspruch 1, worin R³ C₁₋₈-Alkyl, C₂₋₈-Alkenyl oder C₂₋₈-Alkinyl, die mit Phenyl substituiert sind, ist.

5. Verbindung gemäß Anspruch 1, worin R³ C₁₋₈-Alkyl, C₂₋₈-Alkenyl oder C₂₋₈-Alkinyl, die mit C₃₋₇-Cycloalkyl substituiert sind, ist.

25

6. Verbindung gemäß Anspruch 2, nämlich

11 α ,15 α -Dihydroxy-9-oxo-3,7-dithiaprost-13E-ensäure, 11 α ,15 α -Dihydroxy-9-oxo-17 β ,20-dimethyl-3,7-dithiaprost-13E-ensäure,

11 α ,15 α -Dihydroxy-9-oxo-17 α ,20-dimethyl-3,7-dithiaprost-13E-ensäure,

30 11 α ,16 β -Dihydroxy-9-oxo-16 α -methyl-3,7-dithiaprost-13E-ensäure,

11 α ,15 α -Dihydroxy-9-oxo-3,7-dithiaprostansäure,

11 α ,15 α -Dihydroxy-9-oxo-3,7-dithiaprost-13E,17Zdiensäure,

11 α ,15 α -Dihydroxy-9-oxo-15 β -methyl-3,7-dithiaprost-13E-ensäure,

11 α ,15 α -Dihydroxy-9-oxo-17-ethyl-3,7-dithia-20-norprost-13E-ensäure,

35 11 α ,15 α -Dihydroxy-9-oxo-3,7-dithia-20-norprost-13Eensäure,

11 α ,15 α -Dihydroxy-9-oxo-3,7-dithia-20-homoprost-13Eensäure,

11 α ,15 α -Dihydroxy-9-oxo-16 β -methyl-3,7-dithiaprost-13E-ensäure,

11 α ,15 α -Dihydroxy-9-oxo-3,7-dithiaprost-13E,19-diensäure,

11 α ,15 α -Dihydroxy-9-oxo-18-methyl-3,7-dithia-20-norprost-13E-ensäure oder

40 11 α ,15 α -Dihydroxy-9-oxo-16 α -methyl-3,7-dithiaprost-13E-ensäure oder ein Methylester derselben.

7. Verbindung gemäß Anspruch 3, nämlich

11 α ,15 α -Dihydroxy-9-oxo-15-cyclohexyl-3,7-dithia-16,17,18,19,20-pantanorprost-13E-ensäure oder

45 11 α ,15 α -Dihydroxy-9-oxo-15-cyclopentyl-3,7-dithia-16,17,18,19,20-pantanorprost-13E-ensäure oder ein Methylester derselben.

8. Verbindung gemäß Anspruch 4, nämlich

11 α ,15 α -Dihydroxy-9-oxo-16-phenyl-17,18,19,20-tetranor-3,7-dithiaprost-13E-ensäure,

11 α ,15 α -Dihydroxy-9-oxo-17-phenyl-18,19,20-trinor-3,7-dithiaprost-13E-ensäure oder

50 11 α ,15 α -Dihydroxy-9-oxo-16 α -methyl-16-phenyl-3,7-dithia-20-norprost-13E-ensäure oder ein Methylester derselben.

9. Verbindung gemäß Anspruch 5, nämlich

11 α ,15 α -Dihydroxy-9-oxo-16-cyclohexyl-3,7-dithia-17,18,19,20-tetranorprost-13E-ensäure,

11 α ,15 α -Dihydroxy-9-oxo-19,20-methano-3,7-dithiaprost-13E-ensäure oder

55 11 α ,15 α -Dihydroxy-9-oxo-16-cyclopentyl-3,7-dithia-17,18,19,20-tetranorprost-13E-ensäure oder ein Methylester derselben.

10. Verfahren zur Herstellung einer Verbindung der Formel (Ia):

5

10

(Ia)

(worin alle Symbole die Bedeutung gemäß der Definition in Anspruch 1 besitzen), das die Hydrolyse einer Verbindung der Formel (Ib):

15

20

25

(worin R¹⁰ C₁₋₄-Alkyl ist und die anderen Symbole die Bedeutung gemäß der vorhergehenden Definition besitzen). mit einem Enzym umfasst.

30

11. Verfahren zur Herstellung einer Verbindung der Formel (Ic):

35

(Ic)

40

(worin alle Symbole die Bedeutung gemäß der Definition in Anspruch 1 besitzen), das die Amidierung einer Verbindung der Formel (Ia):

50

55

(worin alle Symbole die Bedeutung gemäß der Definition in Anspruch 1 besitzen) mit einer Verbindung der Formel (III):

(III)

(worin alle Symbole die Bedeutung gemäß der Definition in Anspruch 1 besitzen) umfasst.

12. Verfahren zur Herstellung einer Verbindung der Formel (Ib):

5

10

(Ib)

15

(worin R¹⁰ C₁₋₄-Alkyl ist und alle Symbole die Bedeutung gemäß der Definition in Anspruch 1 besitzen), das die Hydrolyse einer Verbindung der Formel (II):

20

25

(II)

30

(worin R^{2a} ein Wasserstoffatom oder Hydroxy, das durch eine unter sauren Bedingungen entfernbare Schutzgruppe geschützt ist, bedeutet, R²⁰ eine unter sauren Bedingungen entfernbarer Schutzgruppe ist, R^{3a} (i) C₁₋₈-Alkyl, C₂₋₈-Alkenyl oder C₂₋₈-Alkinyl, (ii) Phenyl oder C₃₋₇-Cycloalkyl, (iii) C₁₋₈-Alkyl, C₂₋₈-Alkenyl oder C₂₋₈-Alkinyl, die mit Phenyl oder C₃₋₇-Cycloalkyl substituiert sind, bedeutet (wobei, wenn R^{2a} Wasserstoff bedeutet, Alkyl-, Alkenyl- und Alkinylgruppen in (i) oder (iii) mit einem Hydroxy, das durch eine unter sauren Bedingungen entfernbarer Schutzgruppe geschützt ist, substituiert sein können); wobei das Symbol:

35

eine Doppel- oder Einfachbindung ist;
unter sauren Bedingungen umfasst.

13. Pharmazeutische Zusammensetzung, die als Wirkstoff eine Verbindung der in Anspruch 1 angegebenen Formel (I) oder ein Cyclodextrinclathrat derselben oder ein nicht-toxisches Salz derselben mit einem pharmazeutischen Träger oder Überzug umfasst.

40

14. Verbindung der in Anspruch 1 angegebenen Formel (I) oder ein Cyclodextrinclathrat derselben oder ein nicht-toxisches Salz derselben mit einem pharmazeutischen Träger oder Überzug zur Verwendung bei einem Verfahren zur Prävention und/oder Behandlung von Immunenerkrankungen (Autoimmunerkrankungen, Immunschwächekrankheit, Organtransplantation), Asthma, anomaler Knochenbildung, Absterben von neuronalen Zellen, Leberschädigung, Nephritis, Hypertonie oder Myocardischämie.

Revendications

50

1. Dérivé de l'acide 3,7-dithiaprostanique de formule (I):

55

5

10

(dans laquelle R¹ est un groupe hydroxy, alcoxy en C₁₋₄ ou un groupe de formule:-NR⁶R⁷

15

dans laquelle R⁶ et R⁷ sont indépendamment un atome d'hydrogène ou un groupe alkyle en C₁₋₄, R² est un atome d'hydrogène ou un groupe hydroxy, R³ est

20

- (i) un groupe alkyle en C₁₋₈, alcényle en C₂₋₈ ou alcynyle en C₂₋₈,
- (ii) un groupe phényle ou cycloalkyle en C₃₋₇,
- (iii) un groupe alkyle en C₁₋₈, alcényle en C₂₋₈ ou alcynyle en C₂₋₈ substitué par un groupe phényle ou cycloalkyle en C₃₋₇,

25

à condition que les groupes alkyle, alcényle et alcynyle dans (i) ou (iii) puissent être substitués par un groupe hydroxy, lorsque R² est un atome d'hydrogène;
 le symbole --- est une liaison simple ou double;
 la formule incluant son composé 8-épi en équilibre);
 un de ses sels non toxiques ou un de ses clathrates de cyclodextrine.

30

2. Composé selon la revendication 1, dans lequel R³ est un groupe alkyle en C₁₋₈, alcényle en C₂₋₈ ou alcynyle en C₂₋₈.3. Composé selon la revendication 1, dans lequel R³ est un groupe phényle ou cycloalkyle en C₃₋₇.

35

4. Composé selon la revendication 1, dans lequel R³ est un groupe alkyle en C₁₋₈, alcényle en C₂₋₈ ou alcynyle en C₂₋₈ substitué par un groupe phényle.5. Composé selon la revendication 1, dans lequel R³ est un groupe alkyle en C₁₋₈, alcényle en C₂₋₈ ou alcynyle en C₂₋₈ substitué par un groupe cycloalkyle en C₃₋₇.

40

6. Composé selon la revendication 2, qui est

l'acide 11 α ,15 α -dihydroxy-9-oxo-3,7-dithiaprost-13E-énoïque,
 l'acide 11 α ,15 α -dihydroxy-9-oxo-17 β ,20-diméthyl-3,7-dithiaprost-13E-énoïque,

l'acide 11 α ,15 α -dihydroxy-9-oxo-17 α ,20-diméthyl-3,7-dithiaprost-13E-énoïque,
 l'acide 11 α ,16 β -dihydroxy-9-oxo-16 α -méthyl-3,7-dithiaprost-13E-énoïque,

l'acide 11 α ,15 α -dihydroxy-9-oxo-3,7-dithiaprostanoïque,

l'acide 11 α ,15 α -dihydroxy-9-oxo-3,7-dithiaprost-13E,17Z-diénoïque,

l'acide 11 α ,15 α -dihydroxy-9-oxo-15 β -méthyl-3,7-dithiaprost-13E-énoïque,

l'acide 11 α ,15 α -dihydroxy-9-oxo-17-éthyl-3,7-dithia-20-norprost-13E-énoïque,

l'acide 11 α ,15 α -dihydroxy-9-oxo-3,7-dithia-20-norprost-13E-énoïque,

l'acide 11 α ,15 α -dihydroxy-9-oxo-3,7-dithia-20-homoprost-13E-énoïque,

l'acide 11 α ,15 α -dihydroxy-9-oxo-16 β -méthyl-3,7-dithiaprost-13E-énoïque,

l'acide 11 α ,15 α -dihydroxy-9-oxo-3,7-dithiaprost-13E,19-diénoïque,

l'acide 11 α ,15 α -dihydroxy-9-oxo-18-méthyl-3,7-dithia-20-norprost-13E-énoïque ou

l'acide 11 α ,15 α -dihydroxy-9-oxo-16 α -méthyl-3,7-dithiaprost-13E-énoïque ou leurs esters méthyliques.

55

7. Composé selon la revendication 3, qui est

l'acide 11 α ,15 α -dihydroxy-9-oxo-15-cyclohexyl-3,7-dithia-16,17,18,19,20-pentanorprost-13E-énoïque ou
 l'acide 11 α ,15 α -dihydroxy-9-oxo-15-cyclopentyl-3,7-dithia-16,17,18,19,20-pentanorprost-13E-énoïque ou

leurs esters méthyliques.

8. Composé selon la revendication 4, qui est

l'acide $11\alpha,15\alpha$ -dihydroxy-9-oxo-16-phényl-17,18,19,20-tétranor-3,7-dithiaprost-13E-énoïque,
l'acide $11\alpha,15\alpha$ -dihydroxy-9-oxo-17-phényl-18,19,20-trinor-3,7-dithiaprost-13E-énoïque ou
l'acide $11\alpha,15\alpha$ -dihydroxy-9-oxo-16 α -méthyl-16-phényl-3,7-dithia-20-norprost-13E-énoïque ou
leurs esters méthyliques.

9. Composé selon la revendication 5, qui est

l'acide $11\alpha,15\alpha$ -dihydroxy-9-oxo-16-cyclohexyl-3,7-dithia-17,18,19,20-tétranorprost-13E-énoïque,
l'acide $11\alpha,15\alpha$ -dihydroxy-9-oxo-19,20-méthano-3,7-dithiaprost-13E-énoïque ou
l'acide $11\alpha,15\alpha$ -dihydroxy-9-oxo-16-cyclopentyl-3,7-dithia-17,18,19,20-tétranorprost-13E-énoïque ou
leurs esters méthyliques.

15 10. Procédé pour la préparation d'un composé de formule (Ia):

(dans laquelle tous les symboles ont la même signification que celle définie dans la revendication 1)
qui comprend l'hydrolyse d'un composé de formule (Ib):

(dans laquelle R10 est un groupe alkyle en C1-4 et les autres symboles ont la même signification que celle définie précédemment)
avec une enzyme.

40 11. Procédé pour la préparation d'un composé de formule (Ic):

55 (dans laquelle tous les symboles ont la même signification que celle définie dans la revendication 1)
qui comprend l'amidation d'un composé de formule (Ia):

5

10

(Ia)

(dans laquelle tous les symboles ont la même signification que celle définie dans la revendication 1) avec un composé de formule (III):

15

5(III)

(dans laquelle tous les symboles ont la même signification que celle définie dans la revendication 1).

20

12. Procédé pour la préparation d'un composé de formule (Ib):

25

30

(Ib)

(dans laquelle R¹⁰ est un groupe alkyle en C₁₋₄ et les autres symboles ont la même signification que celle définie dans la revendication 1)

qui comprend l'hydrolyse d'un composé de formule (II):

35

40

(II)

(dans laquelle R^{2a} est un atome d'hydrogène ou un groupe hydroxy protégé par un groupe protecteur qui est éliminé dans des conditions acides, R²⁰ est un groupe protecteur qui est éliminé dans des conditions acides, R^{3a} est (i) un groupe alkyle en C₁₋₈, alcényle en C₂₋₈ ou alcyne en C₂₋₈, (ii) un groupe phényle ou cycloalkyle en C₃₋₇, (iii) un groupe alkyle en C₁₋₈, alcényle en C₂₋₈ ou alcyne en C₂₋₈ qui est substitué par un groupe phényle ou cycloalkyle en C₃₋₇ (à condition que lorsque R^{2a} est un atome d'hydrogène, les groupes alkyle, alcényle et alcyne dans (i) ou (iii) puissent être substitués par un groupe hydroxy protégé par un groupe protecteur qui est éliminé dans des conditions acides);

le symbole:

est une liaison simple ou double)

dans des conditions acides.

55

- 13. Composition pharmaceutique qui comprend, en tant qu'ingrédient actif, un composé de la formule (I) décrite dans la revendication 1 ou un de ses clathrates de cyclodextrine ou un de ses sels non toxiques avec un excipient ou enrobage pharmaceutique.**

14. Composé de la formule (I) décrite dans la revendication 1 ou un de ses clathrates de cyclodextrine ou un de ses sels non toxiques avec un excipient ou un enrobage pharmaceutique pour une utilisation dans une méthode pour la prévention et/ou le traitement des maladies immunologiques (maladies auto-immunes, maladies du déficit immunitaire, transplantations d'organes), de l'asthme, de l'ostéogenèse anormale, de la mort des cellules neuronales, des lésions du foie, de la néphrite, de l'hypertension ou de l'ischémie myocardique.

5

10

15

20

25

30

35

40

45

50

55

THIS PAGE BLANK (USPTO)