1. Let V be the subspace of \mathbb{R}^4 spanned by the vectors $\mathbf{v} = (1, 0, 2, 3)$ and $\mathbf{w} = (0, 1, -3, 4)$. Find a basis for V^{\perp} . (*Hint:* Find a matrix A with row space V.)

Let
$$A = \begin{bmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & -3 & 4 \end{bmatrix}$$
. Then $V = C(A^T)$,

So $V^{\perp} = C(A^T)^{\perp} = N(A)$.

Basis for $V^{\perp} = \text{Special solutions to } A \overrightarrow{x} = \overrightarrow{0}$
 $A\overrightarrow{x} = 0$
 $\chi_1 + 2\chi_3 + 3\chi_4 = 0$
 $\chi_2 - 3\chi_3 + 4\chi_4 = 0$

If $\chi_3 = 1$, $\chi_4 = 0$, $\chi_1 = -2$, $\chi_2 = 3$, so $\overrightarrow{s}_1 = (-2,3,1,0)$

If $\chi_3 = 0$, $\chi_4 = 1$, $\chi_1 = -3$, $\chi_2 = -4$, so $\overrightarrow{s}_2 = (-3,-4,0,1)$
 V^{\perp} basis = $\{(-2,3,1,0), (-3,-4,0,1)\}$

2. Find the projection matrix P onto the line through $\mathbf{a} = (2, -1, 1)$ (that is, the subspace spanned by \mathbf{a}). Use P to find the projection \mathbf{p} of the vector $\mathbf{b} = (1, 2, 3)$ onto this subspace.

$$P = \frac{1}{||\vec{a}||^2} = 2^2 + (-1)^2 + 1^2 = 6$$

$$P = \frac{1}{||\vec{a}||^2} ||\vec{a}||^2 = \frac{1}{6} \left[\frac{2}{-1} \right] [2 - 1 \]$$

$$= \frac{1}{6} \left[\frac{4 - 2}{2 - 1} - \frac{2}{1} \right]$$

$$= \frac{1}{6} \left[\frac{4 - 2}{2 - 1} - \frac{2}{1} \right]$$

$$= \frac{1}{2} \left[\frac{2}{-1} \right]$$