Lección 3. Diferenciales exactas y factores integrantes

Ecuaciones Diferenciales I Apuntes de Rafael Ortega Ríos transcritos por Gian Nicola Rossodivita

En esta lección usaremos la notación x para la variable independiente, y = y(x) para la incógnita. Estudiaremos ecuaciones diferenciales del tipo

$$P(x,y) + Q(x,y)y' = 0$$

que intentaremos resolver expresándolas como diferenciales exactas,

$$\frac{d}{dx}[U(x,y)] = 0.$$

Entonces la ecuación U(x,y) =cte define las soluciones en forma implícita. Esta idea ya apareció en la primera lección, ahora la vamos a desarrollar de manera sistemática. Comenzamos con un **ejemplo**:

$$y' = \frac{y - x}{y + x}, \ \underbrace{x - y}_{P} + \underbrace{(x + y)}_{Q} y' = 0$$
$$x + yy' + xy' - y = 0, \ \frac{d}{dx} \left(\frac{x^{2} + y^{2}}{2}\right) + x^{2} \frac{d}{dx} \left(\frac{y}{x}\right) = 0.$$

Parece que casi hemos llegado a una diferencial exacta pero se sabe que por esta vía no la vamos a encontrar. Tendremos más éxito si dividimos la ecuación por x^2+y^2

$$\frac{x+yy'}{x^2+y^2} + \frac{xy'-y}{x^2+y^2} = 0,$$

$$\frac{1}{2}\frac{d}{dx}[\ln(x^2+y^2)] + \frac{d}{dx}\left[\arctan\left(\frac{y}{x}\right)\right] = 0$$
$$\ln\sqrt{x^2+y^2} + \arctan\left(\frac{y}{x}\right) = \text{cte.}$$

Ahora mismo estos cálculos son misteriosos pero al final de la lección resultarán muy claros.

1 Función potencial y condición de exactitud

Dado un dominio (abierto+conexo) $\Omega \subset \mathbb{R}^2$ y dos funciones $P, Q : \Omega \to \mathbb{R}$, ¿Es posible encontrar otra función $U : \Omega \to \mathbb{R}$ de manera que

$$\frac{\partial U}{\partial x} = P, \quad \frac{\partial U}{\partial y} = Q?$$

Cuando esto sea posible podemos completar el programa propuesto,

$$P(x,y) + Q(x,y) y' = 0 \Leftrightarrow \frac{\partial U}{\partial x}(x,y) + \frac{\partial U}{\partial y}(x,y) y' = 0$$

$$\updownarrow$$

$$\frac{d}{dx} [U(x,y)] = 0.$$

Para funciones arbitrarias la respuesta a la pregunta anterior es negativa. Por ejemplo, dadas

$$P(x,y) = x - y, \quad Q(x,y) = x + y$$

no es posible encontrar U. En otro caso U debería ser C^{∞} (pues sus derivadas parciales lo son) y cumpliría

$$\frac{\partial U}{\partial x} = x - y, \quad \frac{\partial U}{\partial y} = x + y.$$

Se sabe que las derivadas cruzadas coinciden pero

$$\frac{\partial^2 U}{\partial y \partial x} = -1, \quad \frac{\partial^2 U}{\partial x \partial y} = 1$$

y hemos llegado a una contradicción. Extendemos este razonamiento a un marco general

Proposición 1. Sean $P,Q \in C^1(\Omega)$ funciones tales que existe $U \in C^1(\Omega)$ con

$$\frac{\partial U}{\partial x} = P, \quad \frac{\partial U}{\partial y} = Q.$$

Entonces

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
, Condición de exactitud.

Demostración. Puesto que P y Q son funciones en $C^1(\Omega)$, la función U estará en $C^2(\Omega)$. Entonces las derivadas cruzadas coinciden

$$\frac{\partial P}{\partial y} = \frac{\partial^2 U}{\partial y \partial x} = \frac{\partial^2 U}{\partial x \partial y} = \frac{\partial Q}{\partial x}. \blacksquare$$

Llamaremos función **potencial** a U. (En Física se suele llamar potencial a la función con un cambio de signo V=-U). A la vista de la proposición anterior surge una pregunta:

¿Es suficiente la condición de exactitud para encontrar un potencial? Veremos que la respuesta es afirmativa en algunos dominios.

Definición 2. Diremos que Ω tiene **forma de estrella** (o es **estrellado**) si existe un punto $z_* \in \Omega$ de manera que los segmentos que unen z_* con los otros puntos de Ω quedan dentro de Ω ; es decir,

$$[z_*, z] \subset \Omega$$
 para cada $z \in \Omega$,

donde $[z_*, z] = \{(1 - \lambda) z_* + \lambda z : \lambda \in [0, 1]\}.$

Teorema 3. Se supone que Ω tiene forma de estrella y $P,Q \in C^1(\Omega)$ cumplen la condición de exactitud. Entonces existe $U \in C^2(\Omega)$ tal que

$$\frac{\partial U}{\partial x} = P, \quad \frac{\partial U}{\partial y} = Q \quad en \ \Omega.$$

Notas. 1. Hasta cierto punto se puede pensar en este resultado como en un análogo del Teorema fundamental del Cálculo para funciones de dos variables

$$\begin{array}{c|c} T^a \, \mathbf{C\'alculo} & \mathbf{Teorema \ anterior} \\ f \in C(I) \Rightarrow & P, \, Q \in C^1(\Omega) \\ \exists \, F \in C^1(I) : \frac{\partial F}{\partial x} = f & \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \end{array} \right] \Rightarrow \quad \begin{array}{c} \exists \, U \in C^2(\Omega) \\ \frac{\partial P}{\partial y} = P, \, \frac{\partial Q}{\partial y} = Q \end{array}$$

2. En la práctica, y si se saben hacer las integrales, es fácil calcular ${f el}$ potencial

Ejemplo. $\Omega = \mathbb{R}^2$,

$$P(x,y) = 3x^2 + y$$
, $Q(x,y) = 4y^3 + x$.

Observamos que se cumple la condición de exactitud $\frac{\partial P}{\partial y} = 1 = \frac{\partial Q}{\partial x}$. Integramos, respecto a x, en la identidad

$$\frac{\partial U}{\partial x} = 3x^2 + y \Rightarrow U(x, y) = \int (3x^2 + y) \, dx + \varphi(y),$$
$$U(x, y) = x^3 + y \, x + \varphi(y),$$

donde $\varphi(y)$ es una función a determinar (la "constante" de integración) Derivando la última expresión respecto a y, $\frac{\partial U}{\partial y} = x + \varphi'(y)$. Buscamos la identidad

$$\frac{\partial U}{\partial y} = 4y^3 + x,$$

lo que conduce a

$$\varphi'(y) = 4y^3 \Rightarrow \varphi(y) = y^4$$
$$U(x, y) = x^3 + yx + y^4.$$

[Podríamos añadir una constante y obtener otro potencial.]

Ejercicio. Demuestra que el potencial es único salvo una constante aditiva.

Ejercicio. ¿Qué ocurre si repetimos los cálculos anteriores partiendo de $P(x,y) = 3x^2 + y$, $Q(x,y) = 4y^3 + x$?

3. Para la demostración del teorema necesitaremos un resultado previo sobre la derivación de **integrales dependientes de parámetros**: Se supone que G es un abierto de \mathbb{R}^d y $F: G \times [a,b] \to \mathbb{R}$ una función de clase C^1 , $F = F(\xi_1, \ldots, \xi_d, t)$. Se define

$$\Phi: G \to \mathbb{R}, \ \Phi(\xi_1, \dots, \xi_d) = \int_a^b F(\xi_1, \dots, \xi_d, t) \, dt.$$

Entonces $\Phi \in C^1(G)$ y

$$\frac{\partial \Phi}{\partial \xi_i}(\xi_1, \dots, \xi_d) = \int_a^b \frac{\partial F}{\partial \xi_i}(\xi_1, \dots, \xi_d, t) dt, \quad i = 1, \dots, d.$$

Ejemplo. $\Phi(\xi_1, \xi_2) = \int_0^1 \sin[(2\xi_1 - 3\xi_2) t] dt$

$$\frac{\partial \Phi}{\partial \xi_1}(\xi_1, \xi_2) = 2 \int_0^1 t \cos[(2\xi_1 - 3\xi_2) t] dt$$

$$\frac{\partial \Phi}{\partial \xi_2}(\xi_1, \xi_2) = -3 \int_0^1 t \, \cos[(2\xi_1 - 3\xi_2) \, t] \, dt.$$

Ejercicio. Calcula las integrales anteriores.

Demostración del teorema anterior. Supondremos que $z_* = 0$. El caso general queda como ejercicio. Dado $(x,y) \in \Omega$, observamos que $\lambda(x,y) \in \Omega$, $\forall \lambda \in [0,1]$.

Esta propiedad geométrica de Ω nos permite definir la función $U:\Omega\to\mathbb{R}$ por la fórmula

$$U(x,y) = x \int_0^1 P(\lambda x, \lambda y) \, d\lambda + y \int_0^1 Q(\lambda x, \lambda y) \, d\lambda.$$

Aplicamos la fórmula de derivación anterior: $(G = \mathbb{R}^2, (\xi_1, \xi_2) = (x, y), \lambda = t, [a, b] = [0, 1])$ y deducimos que $U \in C^1(\Omega)$ y

$$\begin{array}{lll} \frac{\partial U}{\partial x}(x,y) & = & \int_0^1 P(\lambda\,x,\lambda\,y)\,d\lambda + x\,\int_0^1 \lambda\,\frac{\partial P}{\partial x}(\lambda\,x,\lambda\,y)\,d\lambda + y\,\int_0^1 \lambda\,\frac{\partial Q}{\partial x}\left(\lambda\,x,\lambda\,y\right)d\lambda \\ & \text{condición de} \\ & = & \int_0^1 P(\lambda\,x,\lambda\,y)\,d\lambda + x\,\int_0^1 \lambda\,\frac{\partial P}{\partial x}(\lambda\,x,\lambda\,y)\,d\lambda + y\,\int_0^1 \lambda\,\frac{\partial P}{\partial y}\left(\lambda\,x,\lambda\,y\right)d\lambda \\ & = & \int_0^1 P(\lambda\,x,\lambda\,y)\,d\lambda + \int_0^1 \lambda\,\frac{d}{d\lambda}\left[P(\lambda\,x,\lambda\,y)\right]\,d\lambda \\ & = & \int_0^1 \frac{d}{d\lambda}\left[\lambda\,P(\lambda\,x,\lambda\,y)\right]\,d\lambda \\ & = & \int_0^1 \frac{d}{d\lambda}\left[\lambda\,P(\lambda\,x,\lambda\,y)\right]\,d\lambda \\ & \text{Regla de} \\ & \text{Barrow} \\ & = & \left[\lambda\,P(\lambda\,x,\lambda\,y)\right]_{\lambda=0}^{\lambda=1} = P(x,y). \end{array}$$

Por tanto $\frac{\partial U}{\partial x}(x,y) = P(x,y)$ y de modo análogo se prueba que $\frac{\partial Q}{\partial y}(x,y) = Q(x,y)$. Todavía no hemos completado la demostración, pues falta por probar que U es de clase C^2 . Esto es claro al ser U y sus parciales $\frac{\partial U}{\partial x} = P$ y $\frac{\partial U}{\partial y} = Q$ de clase C^1 .

Nota. Esta demostración es correcta, pero no explica cómo se ha ideado la fórmula para U en términos de integrales.

2 Campos de fuerzas. Trabajo.

Consideramos una función $F: \Omega \subset \mathbb{R}^2 \to \mathbb{R}^2$, $F = (F_1, F_2)$ y la pensamos como un campo de fuerzas

Se dice que F admite un potencial si existe una función $U:\Omega\subset\mathbb{R}^2\to\mathbb{R}$ tal que $\nabla U=F$; es decir

$$\frac{\partial U}{\partial x} = F_1 \ \frac{\partial U}{\partial y} = F_2.$$

Por ejemplo, el campo F(x,y)=(x,y) admite el potencial $U(x,y)=\frac{x^2+y^2}{2}$

Por el contrario F(x,y)=(y,-x) no admite potencial $\frac{\partial F_1}{\partial y}=1\neq \frac{\partial F_2}{\partial x}=-1.$

Imaginemos ahora que nos dan un campo de fuerzas $F:\Omega\to\mathbb{R}^2$ y un camino en Ω ; es decir, una función de clase $C^1,\gamma:[a,b]\to\Omega,\,\gamma=\gamma(s)$

Se define el **trabajo** del campo de fuerzas F a lo largo del camino γ por la fórmula

$$T = \int_{a}^{b} \langle F(\gamma(s)), \gamma'(s) \rangle ds$$

(una forma sofisticada de la vieja fórmula Trabajo= Fuerza×espacio)

En general T dependerá del campo F y del camino γ . En el caso especial de los campos que admiten potencial $F=\nabla U$ el trabajo no depende del camino

$$T = \int_{a}^{b} \langle F(\gamma(s)), \gamma'(s) \rangle ds =$$

$$= \int_{a}^{b} \langle \nabla U(\gamma(s)), \gamma'(s) \rangle ds$$

$$= \int_{a}^{b} \frac{d}{ds} [U(\gamma(s))] ds \underset{\text{Regla de Barrow}}{=} U(\gamma(b)) - U(\gamma(a))$$

Si $F = \nabla U$ el trabajo a lo largo de γ_1 y γ_2 coincide

Ahora podemos extender las definición de U en la prueba del teorema. Se considera el campo F=(P,Q) y el camino rectilíneo $\gamma(s)=(s\,x,s\,y)$. Entonces $\gamma'(s)=(x,y)$,

$$U(x,y) = \int_0^1 \langle (P \circ \gamma(s), Q \circ \gamma(s)), \gamma'(s) \rangle ds = \int_0^1 (x P \circ \gamma(s) + y Q \circ \gamma(s)) ds.$$

La función U se definió como el trabajo realizado a lo largo de los segmentos que emanan del origen

Un ejemplo importante

Consideremos el anillo

y las funciones

$$P(x,y) = -\frac{y}{x^2 + y^2}, \ Q(x,y) = \frac{x}{x^2 + y^2}.$$

Estas funciones están en $C^{\infty}(\Omega)$ y cumplen la condición de exactitud

$$\frac{\partial P}{\partial y} = \frac{y^2 - x^2}{(x^2 + y^2)^2} = \frac{\partial Q}{\partial x}$$

Comenzamos calculando el trabajo a lo largo del camino cerrado

$$\gamma(\theta) = (\cos \theta, \sin \theta), \ \theta \in [0, 2\pi].$$

Observamos que

$$P(\gamma(\theta)) = -\operatorname{sen} \theta, \ Q(\gamma(\theta)) = \cos \theta$$

$$T = \int_0^{2\pi} \langle (P(\gamma(\theta)), Q(\gamma(\theta))), \gamma'(\theta) \rangle d\theta$$
$$= \int_0^{2\pi} (\sin^2 \theta + \cos^2 \theta) d\theta = 2\pi.$$

A partir de aquí es fácil deducir que no existe $U \in C^1(\Omega)$ de manera que $\frac{\partial U}{\partial x} = P$, $\frac{\partial U}{\partial y} = Q$ pues, en otro caso, el trabajo a lo largo de γ sería

$$T = U(\gamma(2\pi)) - U(\gamma(0)) = 0.$$

Observamos que en este ejemplo es compatible con el teorema porque Ω no tiene forma de estrella.

Se puede hacer una mejora del teorema sustituyendo la condición geométrica Ω es estrellado por la condición topológica Ω es simplemente conexo

(= no tiene agujeros). Esta última condición es óptima. El anillo no es simplemente conexo.

Ejercicio. Se define $\Omega = \{(x,y) \in \mathbb{R}^2 : x > 0, \frac{1}{4} < x^2 + y^4 < 4\}$. Encuentra un potencial para las funciones P y Q del ejemplo.

3 Ecuación diferencial exacta

Suponemos un dominio de Ω de \mathbb{R}^2 y una ecuación diferencial

$$P(x,y) + Q(x,y)y' = 0$$

con $P,Q \in C^1(\Omega)$. Diremos que la ecuación es **exacta** si se cumple $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$.

En ese caso podemos encontrar una solución y = y(x) que cumpla la condición inicial $y(x_0) = y_0$ si $(x_0, y_0) \in \Omega$ cumple $Q(x_0, y_0) \neq 0$.

Para ello comenzamos dibujando un disco abierto B centrado en (x_0, y_0) y que quede dentro de Ω .

Como B tiene forma de estrella podemos encontrar $U \in C^2(B)$ de manera que $\frac{\partial U}{\partial x} = P$, $\frac{\partial U}{\partial y} = Q$ en B. En el disco B la ecuación se escribe como una diferencial exacta

$$\frac{d}{dx}[U(x,y)] = 0 \Rightarrow U(x,y) = \text{cte.}$$

Determinamos la constante por la condición inicial

$$U(x,y) = c \quad \text{con } c = U(x_0, y_0)$$

y llegamos a un problema de funciones implícitas.

Como $\frac{\partial U}{\partial y}(x_0,y_0)=Q(x_0,y_0)\neq 0$, podemos encontrar y=y(x) definida en un entorno de x_0

Nota. Si escribimos la ecuación de partida en forma normal

$$y' = -\frac{P(x,y)}{Q(x,y)}$$

la condición $Q(x_0, y_0) \neq 0$ es muy natural.

Ejemplo: $y^2 + 2x + (5y^4 + 2xy)y' = 0$, y(0) = 3En este caso $\Omega = \mathbb{R}^2$, $P(x,y) = y^2 + 2x$, $Q(x,y) = 5y^4 + 2xy$, son funciones en $C^{\infty}(\mathbb{R}^2)$ y se cumple

$$\frac{\partial P}{\partial y} = 2y = \frac{\partial Q}{\partial x}.$$

El punto $(x_0, y_0) = (0, 3)$ está en el dominio y $Q(0, 3) = 5 \cdot 3^4 \neq 0$. Buscamos un potencial, que en este caso existirá en todo \mathbb{R}^2 ,

$$\begin{split} \frac{\partial U}{\partial x} &= P, \quad \frac{\partial U}{\partial y} = Q \\ \frac{\partial U}{\partial x} &= y^2 + 2x \Rightarrow U(x,y) = y^2 x + x^2 + \varphi(y) \\ \frac{\partial U}{\partial y} &= 5y^4 + 2xy \Rightarrow \varphi'(y) = 5y^4, \ \varphi(y) = y^5 \\ U(x,y) &= y^5 + y^2 x + x^2. \end{split}$$

La ecuación $y^5 + y^2 x + x^2 = 243$ define de manera implícita una función y = y(x) que cumple y(0) = 3.

4 El factor integrante

La condición de exactitud es muy exigente y la mayoría de las ecuaciones no la cumplen. Sin embargo puede ocurrir que una ecuación no exacta se transforme en exacta despues de multiplicarla por una función (factor integrante). Por ejemplo,

$$y + y' = 0$$

no es exacta, P(x,y) = y, Q(x,y) = 1, $\frac{\partial P}{\partial y} = 1 \neq 0 = \frac{\partial Q}{\partial x}$. Pero si multiplicamos por e^x ,

$$e^x y + e^x y' = 0 \Leftrightarrow \frac{d}{dx} [e^x y] = 0$$

o si dividimos por y (\equiv multiplicar por $\frac{1}{y}$)

$$1 + \frac{y'}{y} = 0 \Leftrightarrow \frac{d}{dx} [x + \ln y] = 0.$$

Tanto e^x como $\frac{1}{y}$ son factores integrantes de y + y' = 0. Dada una ecuación

$$P(x,y) + Q(x,y)y' = 0$$

con $P,Q\in C^1(\Omega)$ diremos que $\mu\in C^1(\Omega)$ es un factor integrante si cumple

- i) $\mu(x,y) \neq 0$ para todo $(x,y) \in \Omega$
- ii) $\frac{\partial(\mu P)}{\partial y} = \frac{\partial(\mu Q)}{\partial x}$.

Si conocemos un factor integrante podemos resolver la ecuación

$$P(x,y) + Q(x,y) y' = 0 \underset{\text{por i})}{\Leftrightarrow} \underbrace{\mu(x,y) P(x,y) + \mu(x,y) Q(x,y) y' = 0}_{\text{Exacta por ii}}$$

Ejemplo. y + y' = 0

 $\mu_1(x,y) = e^x$ factor integrante en $\Omega_1 = \mathbb{R}^2$; $\mu_2(x,y) = \frac{1}{y}$ factor integrante en $\Omega_2 = \mathbb{R} \times]0, \infty[$

A la hora de buscar un factor integrante conoceremos P y Q en tanto que μ será la incógnita. Entonces podemos pensar en la condición ii) como una ecuación con incógnita μ . Se trata de una ecuación en derivadas parciales ya que μ es una función de dos variables

$$\frac{\partial(\mu P)}{\partial y} = \frac{\partial(\mu Q)}{\partial x} \Leftrightarrow \mu_y P + \mu P_y = \mu_x Q + \mu Q_x$$
$$\mu_y P - \mu_x Q = \mu (Q_x - P_y)$$

Puede resultar un poco extraño utilizar una ecuación en derivadas parciales para resolver una ecuación ordinaria, pero hay un punto importante: no necesitamos conocer todas las soluciones de la ecuación recuadrada, nos basta con encontrar una solución no trivial.

Desarrollaremos estrategias para encontrar algunos tipos de soluciones.

4.1 Métodos de busqueda del factor integrante

Partimos de la ecuación en derivadas parciales

$$\mu_y P - \mu_x Q = \mu \left(Q_x - P_y \right)$$

y buscamos soluciones que sean función de una forma prefijada. Así, podemos buscar un factor integrante que

solo depende de
$$x$$
, $\mu(x,y)=m(x)$ solo depende de y , $\mu(x,y)=m(y)$ depende de la suma $x+y$ $\mu(x,y)=m(x+y)$ depende del cuadrado de la norma, $\mu(x,y)=m(x^2+y^2)$,

etcétera.

En cada caso $m = m(\xi)$ será una función de una variable a determinar.

Ejemplo 1. 1.
$$\mu(x,y) = e^x$$
, $\Omega = \mathbb{R}^2$, $m(\xi) = e^{\xi}$
2. $\mu(x,y) = \frac{1}{n}$, $\Omega = \mathbb{R} \times]0, \infty[$, $m(\xi) = \frac{1}{\xi}$

3.
$$\mu(x,y) = 1 + (x+y)^2$$
, $m(\xi) = 1 + \xi^2$, $\Omega = \mathbb{R}^2$

4.
$$\mu(x,y) = \frac{1}{x^2 + y^2}, \ \Omega = \mathbb{R} \setminus \{0\}, \ m(\xi) = \frac{1}{\xi}.$$

Vamos a analizar un par de casos en detalle.

1 Factor integrante $\mu(x,y) = m(x)$

$$\mu_x = m', \; \mu_y = 0$$

$$-m'(x) Q(x,y) = m(x) (Q_x(x,y) - P_y(x,y)) \underset{m \neq 0}{\iff} \frac{m'(x)}{m(x)} = \frac{P_y(x,y) - Q_x(x,y)}{Q(x,y)}.$$

El término de la izquierda sólo depende de x mientras que el de la derecha depende de las dos variables; por eso en general no es posible encontrar m. Si suponemos

$$\frac{P_y(x,y) - Q_x(x,y)}{Q(x,y)} = f(x)$$

Para alguna función f(x), entonces

$$\frac{m'(x)}{m(x)} = f(x) \Rightarrow \underbrace{m'(x) = f(x) \, m(x)}_{\text{Ecuación lineal homogénea, incógnita } m}$$

y podemos escoger $m(x) = e^{F(x)}$, donde F(x) es una primitiva de f(x).

Resumimos la discusión anterior en un enunciado más preciso: se supone que $Q(x,y) \neq 0$ para cada $(x,y) \in \Omega$. Entonces P(x,y) + Q(x,y)y' = 0 admite un factor integrante del tipo $\mu(x,y) = m(x)$ si y solo si la función

$$\frac{P_y - Q_x}{Q}$$
 solo depende de x .

En ese caso $\mu(x,y)=e^{F(x)}$ es un factor integrante con F(x) primitiva de $f(x)=\frac{P_y-Q_x}{Q}$.

Ejemplo. La ecuación lineal

$$a(t) x + b(t) - x' = 0$$

admite un factor integrante que sólo depende de t.

Importante !! Ahora t es la variable independiente. En este caso P(t,x) = a(t) x + b(t), Q(t,x) = -1. Como

$$\frac{P_x - Q_t}{Q} = -a(t) \text{ solo depende de } t,$$

 $\mu(t,x) = e^{-A(t)}$ es un factor integrante con A(t) primitiva de a(t)

Ejercicio. Recupera la fórmula de variación de constantes buscando el potencial asociado.

2 Factor integrante $\mu(x, y) = m(x^2 + y^2)$ $\mu_x = 2x \, m'(x^2 + y^2), \ \mu_y = 2y \, m'(x^2 + y^2)$

$$m'(2yP - 2xQ) = m(Q_x - P_y) \Leftrightarrow \frac{m'(x^2 + y^2)}{m(x^2 + y^2)} = \frac{Q_x - P_y}{2yP - 2xQ}$$

El término de la izquierda depende de $x^2 + y^2$, así que imponemos la condición

$$\frac{Q_x - P_y}{2y \, P - 2x \, Q} = f(x^2 + y^2)$$

Para alguna función $f(\xi)$.

Haciendo $\xi = x^2 + y^2$, $\frac{m'(\xi)}{m(\xi)} = f(\xi)$ y encontramos el factor integrante $m(x,y) = e^{F(x^2+y^2)}$, donde $F(\xi)$ es una primitiva de $f(\xi)$.

Ejemplo: $\underbrace{x+y}_{P} + \underbrace{(y-x)}_{Q} y' = 0$

$$\frac{Q_x - P_y}{2y P - 2x Q} = f(x^2 + y^2) = \frac{-1 - 1}{2y (x + y) - 2x (y - x)} = \frac{-1}{x^2 + y^2}.$$

Observamos que este cociente es función de x^2+y^2 con $f(\xi)=-\frac{1}{\xi}$. Entonces $F(\xi)=-\ln\xi$ y

$$\mu(x,y) = e^{F(x^2+y^2)} = \frac{1}{x^2+y^2}.$$