Total No. of Questions: 6

Total No. of Printed Pages:3

P.T.O

Enrollment No.....

Faculty of Engineering

End Sem (Odd) Examination Dec-2022 EE-EX3CO15 Linear Control System

Branch/Specialisation: EE/EX Programme: B.Tech.

Duration: 3 Hrs.		Maximum Marks: 60	Maximum Marks: 60		
Note: All qu	uestions are compulsory. Interr	nal choices, if any, are indicated. Answers o	f		
Q.1 (MCQs)	should be written in full instea	ad of only a, b, c or d.			
Q.1 i.	The resolution of a potentiometer depends on-				
	(a) Type of contact	(b) Size and width of the wire			
	(c) Wire material	(d) None of these			
ii. The starting point of the description of a linear system may		iption of a linear system may be system's-	1		
	(a) Dynamic equations	(b) Differential equations			
	(c) Transfer function	(d) None of these			
iii. The ratio of settling time to time constant for a tolerance of 29		time constant for a tolerance of 2% of a	l		
	under damped system is appro	oximately-			
	(a) 6 (b) 1	(c) 12 (d) 8			
iv.	The characteristics equation of	of a unity feedback system is described by	Ĺ		
	$0.1s^2 + s + 10 = 0$. The steady state error of the system to unit ramp input				
	will be-				
	(a) 1 (b) 0.1	(c) 10 (d) 0.2			
v.	The characteristics equation of a feedback control system is				
$s^3 + Ks^2 + 5s + 10 = 0$. For the system to be critically stable, the					
	of <i>K</i> should be-				
	(a) 1 (b) 2	(c) 3 (d) 4			
vi.		ranches with the imaginary axis may be	Ĺ		
	determined using the-				
	(a) Nyquist criterion	(b) Polar plot			
	(c) Bode plot (d) Routh criterion				
vii.			1		
	(a) Proportional controller	(b) Lead network			
	(c) Lag network	(d) Lag-lead controller	1		
Viii.	To increase the bandwidth of a control system, we may use-				
	(a) Phase lead compensator	(b) Phase lag-lead compensator			
	(c) Phase lag compensator	(d) None of these			

- ix. State space analysis is applicable even if the initial conditions are-
 - (a) Zero

(b) Nonzero

(c) Equal

- (d) All of these
- The smallest set of variables that determine the state of the system are 1 known as-
 - (a) State

(b) State vector

(c) State space

- (d) State variables
- Q.2 i. Compare open loop and close loop control system based on their block diagram.
 - Explain the role of techo generators in control system.

3

1

iii. Represent the following set of equations by a signal flow graph and 5 determine the overall gain relating x_5 and x_1 .

$$x_2 = ax_1 + fx_2; \quad x_3 = bx_2 + ex_4;$$

- $x_4 = cx_3 + hx_5$; $x_5 = dx_4 + gx_2$.
- Determine the ratio C(s)/R(s) of the block diagram shown in figure 5 below -

Also define summing point, take off point, and forward path.

- Define the term delay time, rise time, settling time and steady-state 2 O.3 i. error.
 - A system has $G(s) = 20/(s^2 + 5x + 5)$ and unity feedback. 8 Find (i) ω_n , (ii) ξ , (iii) ω_d , (iv) T_d , (v) T_r , (vi) T_p , (vii) M_p (viii) T_s .
- For a unity feedback system $G(s) = \frac{20(s+2)}{[s^2(s+1)(s+5)]}$. Determine (i) the OR iii. type of system, (ii) error coefficients, and (iii) steady-state error for input $1 + 3t + \frac{t^2}{2}$.
- Determine whether the following systems are stable, marginally stable, 3 Q.4 i. and unstable.
 - (a) 2, -5 (b) 3, 2
- (c) 2, 0.

- ii. For G(s)H(s) = K/[s(s+1)(s+3)], determine the coordinates of valid 7 break-away/break-in point(s).
- OR iii. A unity feedback control system has G(s) = 20/[s(s+2)]. Draw the 7 Bode plot.
- O.5 i. Explain series and parallel compensation using proper diagram.
 - Explain design steps of a lead compensator.
- OR iii. Explain design steps of a lag compensator.
- Q.6 Attempt any two:
 - Find the transfer function when

$$A = \begin{bmatrix} -2 & 1 \\ 0 & -3 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, and $C = \begin{bmatrix} 1 & 1 \end{bmatrix}$

Check for controllability of a system having following coefficient 5 matrices -

5

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \text{ and } C^{T} = \begin{bmatrix} 10 \\ 5 \\ 1 \end{bmatrix}$$

Check for observability of a system having following coefficient 5 matrices -

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \text{ and } C^{T} = \begin{bmatrix} 10 \\ 5 \\ 1 \end{bmatrix}$$

Marking Scheme

EE-EX3CO15 Linear Control System

		•		
Q.1	i.	(b) Size and width of the wire	1 Mark	1
	ii.	(d) None of these	1 Mark	1
	iii.	(a) 6	1 Mark	1
	iv.	(b) 0.1	1 Mark	1
	v.	(b) 2	1 Mark	1
	vi.	(d) Routh criterion	1 Mark	1
	vii.	(c) Lag network	1 Mark	1
	viii.	(a) Phase lead compensator	1 Mark	1
	ix.	(b) Nonzero	1 Mark	1
	х.	(d) State variables	1 Mark	1
Q.2	i.	Compare open loop and close loop control system	1 Mark each	2
			(1 Mark*2)	
	ii.	Diagram	1 Mark	3
		Explanation	2 Marks	
	iii.	Signal Flow Graph	2 Marks	5
		Overall gain calculation	3 Marks	
OR	iv.	Ratio of $C(s)/R(s)$	2 Marks	5
		Definition	1 Mark each	
			(1 Mark*3)	
Q.3	i.	Definition	0.5 Mark each	2
			(0.5 Mark*4)	
	ii.	For each parameter	1 Mark each	8
			(1 Mark*8)	
OR	iii.	(i) The type of system	2 Marks	8
		(ii) Error coefficients	3 Marks	
		(iii) Steady-state error	3 Marks	
Q.4	i.	For each	1 Mark	3
			(1 Mark*3)	
	ii.	Diagram of root locus	2 Marks	7
		Solution	5 Marks	
OR	iii.	Bode plot	3 Marks	7
		Solution	4 Marks	
Q.5	i.	Parallel compensation using proper diagram	2 Marks	4

		Parallel compensation using proper diagram	2 Marks	
	ii.	As per the steps		6
OR	iii.	As per the steps		6
Q.6		Attempt any two:		
	i.	As per the solution $(1+2+2)$	5 Marks	5
	ii.	As per the solution $(1+1+3)$	5 Marks	5
	iii.	As per the solution $(1+1+3)$	5 Marks	5
