Section 6: Asymptotic theory and identification

ARE 210

October 10, 2017

The section notes are available on the section Github at github.com/johnloeser/are210 in the "section6" folder.

Definitions 1

- Lindeberg-Levy CLT: $\{X_i\}_{i=1}^{\infty}$ iid random variables, X_i finite second moment, $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i, Y_n = \frac{\overline{X}_n - \mathbf{E}[\overline{X}_n]}{\sqrt{V[\overline{X}_n]}}, \text{ then } Y_n \stackrel{\mathrm{d}}{\to} N(0,1)$
 - $\{X_i\}_{i=1}^{\infty}$ iid random vectors, mean μ and covariance matrix Σ , then $\sqrt{n}(\overline{X}_n \mu$) $\stackrel{\mathrm{d}}{\to} N(0,\Sigma)$
- $X_n = O_p(1)$ if $\forall \epsilon, \exists B_{\epsilon}, N_{\epsilon}$ such that $P[|X_n| > B_{\epsilon}] < \epsilon$
 - $-\frac{X_n}{a_n} \xrightarrow{d} X \Rightarrow X_n = O_p(a_n)$ $-\frac{X_n}{a_n} \xrightarrow{p} 0 \Rightarrow X_n = o_p(a_n)$
- Continuous mapping theorem: g continuous $\Rightarrow (X_n \xrightarrow{p} X \Rightarrow g(X_n) \xrightarrow{p} g(X))$
 - $-g(F_n) \rightarrow g(F)$, where F_n is the empirical distribution
- Slutsky's lemma: $X_n \stackrel{d}{\to} X$, $Y_n \stackrel{d}{\to} c$ (where c is constant), then $X_n + Y_n \stackrel{d}{\to} X + c$ and $X_n Y_n \stackrel{\mathrm{d}}{\to} Xc$
 - $-\sqrt{n}\overline{X}_n/s_n^2 \to N(0,1)$
 - $-P\left[\mu \in \left(\overline{X}_n + \frac{s_n^2}{\sqrt{n}}\Phi^{-1}(\alpha/2), \overline{X}_n + \frac{s_n^2}{\sqrt{n}}\Phi^{-1}(1-\alpha/2)\right)\right] \to \alpha$
- Delta method: $\sqrt{n}(T_n-\theta) \stackrel{d}{\to} Y$, g differentiable at θ , then $\sqrt{n}(g(T_n)-g(\theta))) \stackrel{d}{\to}$ $q'(\theta)Y$
 - $-\sqrt{n}(\overline{X}_n-\mu) \stackrel{\mathrm{d}}{\to} N(0,\Sigma)$, then $\sqrt{n}(q(\overline{X}_n)-q(\mu)) \stackrel{\mathrm{d}}{\to} N(0,q'(\mu)\Sigma q'(\mu)^{\mathrm{T}})$
 - $-dx_n \xrightarrow{p} 0$, then $g(x+dx_n) = g(x) + g'(x)dx_n + \frac{1}{2}dx_ng''(\theta)dx_n^T + O_p(dx_n^3)$ if g is thrice differentiable at x

• Identification

- Data X, takes values in sample space \mathcal{X} , X has unknown distribution $P \in \mathbf{P}$ family of probability distributions on \mathcal{X} , typically assume
 - 1. $\mathbf{P} = \{P_{\theta} : \theta \in \Theta\}$
 - 2. $\mathbf{X} = \{X_i\}_{i=1}^n$ iid, so probability distribution of data $\times_{i=1}^n P$
- A parameter is a mapping $\nu: \mathbf{P} \to \mathcal{N}$ (i.e. function of distribution of \mathbf{X})

- * $\theta(P) = \arg \max_{b \in \Theta} Q_0(b, P)$ The identified set $\Theta(P) = \{\theta \in \Theta : \theta = \arg \max_{b \in \Theta} Q_0(b, P)\}$
 - * Point identification \Leftrightarrow the identified set is a singleton
- A typical problem:
 - 1. Show $\Theta(P)$ is a singleton $(P_{\theta_1} = P_{\theta_2} \Rightarrow \theta_1 = \theta_2)$ or characterize the set
 - 2. Construct an estimator, often $\Theta(P_n)$, where P_n is the empirical distribution
 - 3. Derive its asymptotic properties using implicit function theorem, delta method, ...

2 Practice questions

- 1) O_p and Taylor approximations: Let $\{X_i\}_{i=1}^{\infty}$ iid, and $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, and let $\mu = \mathbf{E}[X_i].$
 - a) Show that $(\overline{X}_n \mu)^k$ is $O(n^{-k/2})$.
 - b) Show that if $T_n = O(n^k)$, then $T_n = o(n^{k+\epsilon}) \ \forall \ \epsilon > 0$.
- 2) **OLS**: Consider the OLS model $Y_i = X_i'\beta + \epsilon_i$, with $(Y_i, X_i', \epsilon_i) \sim P$ iid, and assume $\mathbf{E}_P[X'\epsilon] = 0$ and $\mathbf{E}_P[XX']$.
 - a) Show P is point identified.
 - b) Suggest an estimator of β .
 - c) Additionally, assume $\epsilon_i \perp X_i$. Derive the asymptotic distribution of β .
- 3) Selection models and potential outcomes: Consider the potential outcomes model (Y_{i1}, Y_{i0}, D_i) , where Y_{i1} and Y_{i0} are binary, and let $Y_i = Y_{i1}D_i + Y_{i0}(1 - D_i)$. Additionally, consider the selection model $Y_i = \mathbf{1}\{(1, D_i)\beta - U_i \geq 0\}$, where $U_i \sim$ N(0,1), and assume $U_i \perp D_i$. Suppose (Y_i, D_i) are observed.
 - a) Show that β is identified, and that the two models are observationally equivalent.
- b) Show that $\mathbf{E}[Y_{i1}|D_i=0]$ is not identified. Calculate $\mathbf{E}[Y_{i1}|D_i=0]$ using the selection model.
- c) How can we make the selection model more flexible to accommodate $\mathbf{E}[Y_{i1}|D_i=$ $[0] \neq \mathbf{E}[Y_i|D_i = 1]$?