Bayes Test of Precision, Recall, and \mathbf{F}_1 Measure for Comparison of Two Natural Language Processing Models

Source code: https://github.com/RamboWANG/ac12019

Ruibo Wang & Jihong Li

Shanxi University, Taiyuan, China

Abstract

Direct comparison on point estimation of the precision (P), recall (R), and F_1 measure of two natural language processing (NLP) models on a common test corpus is unreasonable and results in less replicable conclusions due to a lack of a statistical test. However, the existing t-tests in cross-validation (CV) for model comparison are inappropriate because the distributions of P, R, F_1 are skewed and an interval estimation of P, R, and F_1 based on a t-test may exceed [0,1]. In this study, we propose to use a **block-regularized** 3×2 **CV** (3×2 **BCV**) in model comparison because it could regularize the difference in certain frequency distributions over linguistic units between training and validation sets and yield stable estimators of P, R, and F_1 . On the basis of the 3×2 BCV, we calibrate the **posterior distributions of P, R, and F**₁ and derive an **accurate interval estimation of P, R, and F**₁. Furthermore, we formulate the comparison into a hypothesis testing problem and propose a novel Bayes test. The test could directly compute the probabilities of the hypotheses on the basis of the posterior distributions and provide more informative decisions than the existing significance t-tests. Three experiments with regard to NLP chunking tasks are conducted, and the results illustrate the validity of the Bayes test.

Comparing two NLP models with P, R and F_1 on a Given Corpus

Given a corpus D_n and two NLP models \mathcal{A} and \mathcal{B} , which model produces a higher performance system with a relatively high probability in terms of P, R and F₁?

It corresponds to a hypothesis testing problem:

$$H_0: \nu_{\scriptscriptstyle B} - \nu_{\scriptscriptstyle A} \le 0 \ v.s. \ H_1: \nu_{\scriptscriptstyle B} - \nu_{\scriptscriptstyle A} > 0,$$
 (1)

where ν_A and ν_B are the evaluation metrics of \mathcal{A} and \mathcal{B} . In this study, P, R and F₁ are considered.

Disadvantages of Previous Model Comparison methods

- 1. Direct comparison on a test set with the models built based on a hold-out validation.
 - From statistical perspective, it is unscientific due to a lack of the probability $P\{\nu_{\mathcal{B}}>\nu_{\mathcal{A}}\}$ and a lack of interval estimation of performance measures of the models.
- Many published results are less replicable.
- 2. A *t*-test based on *K*-fold cross-validation.
 - A sample-variance estimator in the *t*-test based on K-fold cross-validation is an under-estimation of true variance. Thus, the *t*-test often results in a false positive conclusion.
 - The distributions of P, R and F₁ are skewed. P, R and F₁ follow Beta distributions rather than Normal distributions.

Our Proposed Bayes Test Based on 3×2 BCV

1. A proposed block-regularized 3×2 cross-validation (3×2 BCV):

- 3 repetitions of two-fold CVs with certain regularized conditions on data partitioning.
- During data partitioning, the distribution of a training set should be consistent with that of a validation set as much as possible. Thus, 3×2 BCV regularizes empirical distributions of training and validation sets from multiple perspectives, and yields stable estimators of P, R and F₁.
- 2. Posterior distributions of P, R and F_1 .
 - ullet Exact Beta distributions of P, R and F_1 based on 3×2 BCV are obtained.
 - Accurate credible intervals of P, R and F₁ are proposed.
- 3. A Bayes test of P, R and F_1 .
- It provide how to calculate the probability of $P\{\nu_{\mathcal{B}} > \nu_{\mathcal{A}}\}$ based on 3×2 BCV.
- The method is more reasonable then conventional null hypothesis significance testing.

Construction of 3×2 BCV

Step (a) Dividing a corpus D_n into four equal-sized blocks B_1 , B_2 , B_3 , B_4 , then taking either two blocks as a training set and the other two as a validation set to form a partition set (Table 1).

Step (b) Verifying certain frequency distributions over linguistic units, e.g. entity types in an NER task, between the training and validation sets in each two-fold CV be approximately identical.

Partitions	First fold		Second fold		Confusion matrix		
T WITHOUS	Training	Validation	Training	Validation	First fold	Second fold	
1st two-fold CV	B_1, B_2	B_3, B_4	B_{3},B_{4}	B_1, B_2	$(TP_1^{(1)},FP_1^{(1)},FN_1^{(1)},TN_1^{(1)})$	$(TP_2^{(1)},FP_2^{(1)},FN_2^{(1)},TN_2^{(1)})$	
2nd two-fold CV	$B_1,\!B_3$	$B_{2},\!B_{4}$	$B_2,\!B_4$	$B_1,\!B_3$	$(TP_1^{(2)},FP_1^{(2)},FN_1^{(2)},TN_1^{(2)})$	$(TP_2^{(2)}, FP_2^{(2)}, FN_2^{(2)}, TN_2^{(2)})$	
3rd two-fold CV	B_2, B_3	$B_1,\!B_4$	B_1, B_4	B_2, B_3	$(TP_1^{(3)},FP_1^{(3)},FN_1^{(3)},TN_1^{(3)})$	$(TP_2^{(3)},FP_2^{(3)},FN_2^{(3)},TN_2^{(3)})$	

Table 1: Partition set and confusion matrices of 3×2 BCV.

Posterior Distributions of P, R and \mathbf{F}_1 based on 3×2 BCV

Effective confusion matrix $\mathcal{M} = (\mathbf{TP}_e, \mathbf{FP}_e, \mathbf{FN}_e, \mathbf{TN}_e)$

$$\mathbf{TP}_{e} = \frac{1}{1 + \rho_{1} + 4\rho_{2}} \sum_{j=1}^{3} \sum_{k=1}^{2} \mathbf{TP}_{k}^{(j)}, \ \mathbf{FP}_{e} = \frac{1}{1 + \rho_{1} + 4\rho_{2}} \sum_{j=1}^{3} \sum_{k=1}^{2} \mathbf{FP}_{k}^{(j)}, \ \mathbf{FN}_{e} = \frac{1}{1 + \rho_{1} + 4\rho_{2}} \sum_{j=1}^{3} \sum_{k=1}^{2} \mathbf{FN}_{k}^{(j)}$$

where ρ_1 , ρ_2 are intergroup, intragroup correlation coefficients in 3×2 BCV, and they satisfy that $0 < \rho_1 < 0.5$, $0.25 < \rho_2 < 0.5$ approximately.

Posterior distributions:

Precision:

$$P(p=t|\mathcal{M}) = \frac{t^{\text{TP}_e+1}(1-t)^{\text{FP}_e+1}}{Beta(\text{TP}_e+1,\text{FP}_e+1)},$$
(3)

Recall:

$$P(r=t|\mathcal{M}) = \frac{t^{\text{TP}_e+1}(1-t)^{\text{FN}_e+1}}{Beta(\text{TP}_e+1, \text{FN}_e+1)},$$
(4)

F₁ measure:

$$P(f_1 = t | \mathcal{M}) = \frac{2^{\text{FP}_e + \text{FN}_e + 2} (1 - t)^{\text{FP}_e + \text{FN}_e + 1} (2 - t)^{-\text{FP}_e - \text{FN}_e - \text{TP}_e - 3} t^{\text{TP}_e}}{Beta(\text{FP}_e + \text{FN}_e + 2, \text{TP}_e + 1)}.$$
 (5)

Credible Intervals of P, R and F_1 based on 3×2 BCV

E-mail: {wangruibo, lijh}@sxu.edu.cn

Precision:

$$CI_p = [Be_{\frac{\alpha}{2}}(TP_e + \lambda, FP_e + \lambda), Be_{1-\frac{\alpha}{2}}(TP_e + \lambda, FP_e + \lambda)].$$
 (6)

Recall:

$$CI_r = [Be_{\frac{\alpha}{2}}(TP_e + \lambda, FN_e + \lambda), Be_{1-\frac{\alpha}{2}}(TP_e + \lambda, FN_e + \lambda)]. \tag{7}$$

F₁ measure:

$$CI_{f_1} = \left[\frac{2}{2 + Be'_{1-\frac{\alpha}{2}}}, \frac{2}{2 + Be'_{\frac{\alpha}{2}}} \right], \tag{8}$$

Bayes Test based on 3×2 BCV for Hypothesis Testing (1)

Input: Text corpus, D_n ; NLP models, \mathcal{A} and \mathcal{B} ;

Output: Probabilities $P(H_0)$ and $P(H_1)$, and a decision between "Accept H_0 " and "Accept H_1 ";

Step(1): Construct a partition set \mathbb{P} on D_n according to Table 1;

Step(2): Train and validate models A and B on P, and summarize the results as a set of confusion matrices for A and B, respectively;

Step (3): Apply Eq. (2) on the set of confusion matrices in Step (2) to get effective matrices $(TP_{e,A}, FN_{e,A}, FP_{e,A})$ and $(TP_{e,B}, FN_{e,B}, FP_{e,B})$;

Step (4): Compute $P(\nu_{\mathcal{A}}|\mathcal{M}_{\mathcal{A}})$ and $P(\nu_{\mathcal{B}}|\mathcal{M}_{\mathcal{B}})$ by employing Eqs. (3), (4) and (5) on $(TP_{e,\mathcal{A}}, FP_{e,\mathcal{A}}, FN_{e,\mathcal{A}})$ and $(TP_{e,\mathcal{B}}, FP_{e,\mathcal{B}}, FN_{e,\mathcal{B}})$ for P, R and F₁, respectively;

Step (5): Approximate $P(\nu_{\mathcal{A}} - \nu_{\mathcal{B}} \leq 0 | \mathcal{M}_{\mathcal{A}}, \mathcal{M}_{\mathcal{B}})$ with 10^7 Monte-Carlo simulations.

Step (6): Compute $P(H_0) \leftarrow P(\nu_A - \nu_B \leq 0 | \mathcal{M}_A, \mathcal{M}_B)$ and $P(H_1) \leftarrow 1 - P(\nu_A - \nu_B \leq 0 | \mathcal{M}_A, \mathcal{M}_B)$;

Step (7): If $P(H_0) \ge P(H_1)$ return $(P(H_0), P(H_1), \text{ "Accept } H_0 \text{"})$; else return $(P(H_0), P(H_1), \text{ "Accept } H_1 \text{"})$;

An Illustrative Experiment

Task: Organization entity recognition task.

Data set: CoNLL 2003 English NER training set.

Model A: CRF+IOB2 versus Model B: CRF+IOBES.

Research question: Between IOB2 and IOBES, which tagging set could yield a better organization entity recognition model?

Interpretations of TP, FP and FN:

- TP indicates the count of the correctly predicted organization entities;
- FN is the count of the golden organization entities that are incorrectly predicted;
- FP is the count of the predicted organization entities that are not correct.

	ν	Credible	Outputs of the Bayes test			
		IOB2(A)	IOBES (\mathcal{B})	$P(H_0)$	$P(H_1)$	Decision
	Precision	[91.37,92.86]	[91.85,93.31]	0.191	0.809	Accept H_1
	Recall	[64.89,67.11]	[64.45,66.68]	0.706	0.294	Accept H_0
	F ₁ measure	[76.06,77.74]	[75.93,77.61]	0.587	0.413	Accept H_0

Table 2: Credible intervals and decisions of the Bayes test for the organization entity recognition task.

Figure 1: Posterior density curves of Precision, Recall and F₁ measure on the organization entity recognition task.

Analysis

- 1. Tagging set "IOBES" improves precision but deteriorates recall and F_1 measure in the organization entity recognition task.
- 2. Our proposed posterior distributions, which yield more accurate CIs, are taller and thinner than those in a single hold-out.
- 3. The results provided by the Bayes test are with more informative interpretability and help to make a reliable decision

Guidlines for NLP Practitioners

- ► A *t*-test should be avoided in a comparison of two NLP models on the basis of the precision, recall and F₁ measure.
- ▶ The 3×2 BCV could be preferred to evaluate the performance of an NLP model in the task of model comparison.
- ▶ The Bayes test on the basis of the 3×2 BCV could provide informative and fine-grained measures of the differences of precisions, recalls and F_1 measures of two NLP models, and the measures could help practitioners to make a reasonable decision.

Forthcoming Research

- ▶ Refine the Bayes test of P, R, and F_1 in an $m \times 2$ BCV with $m \ge 3$.
- ► Provide sequential Bayes test for model comparison.
- ► Verify our proposed method in several NLP tasks, such as chunking and semantic role labeling.