Tel +39 0534 60460

Fax +39 0534 60463 E-MAIL ufftec@rmitaly.com http://www.rmitaly.com

Costruzioni Elettroniche di Marchioni Davide & Daniele s.n.c.

Mod. BLA 300 linear amplifier

Schematic diagram

Version 1.00

List of components

======================================				
$C_1 = 3.3 \text{ pF} 50 \text{ V}$	NP0	$C_{73} = 120 \text{ pF}$	500 V	NP0
$C_2 = 8.2 \text{ pF} - 50 \text{ V}$	NP0	$C_{74} = 390 \text{ pF}$	500 V	Silveredmica
$C_2 = 0.2 \text{ pr} = 50 \text{ V}$				
$C_3 = 1.5 \text{ pF} = 50 \text{ V}$	NP0	$C_{75} = 560 \text{ pF}$	500 V	Silveredmica
$C_4 = 100 \text{nF} 50 \text{V}$		$C_{76} = 270 \text{ pF}$	500 V	N750
C = 8.2 pF 500 V	NP0	$C_{77} = 560 \text{ pF}$	500 V	Silveredmica
$C_6 = HCU06C100 3-10 p$		$C_{78} = 220 \text{ pF}$	500 V	N750
C = -470 mF = 50 M		C = -1600		
1	N750	$C_{79} = 1600 \text{ pF}$		Silveredmica
$C_8 = \text{not present}$		$C_{80} = 390 pF$	500 V	Silveredmica
$C_9 = \text{not present}$		$C_{81} = 100 \text{nF}$	50 V	
$C_{10} - C_{11} = 100 \text{ nF}$ 50 V		$C_{82} = 27 pF$	50 V	NP0
		$C \approx 27 \text{ pr}$	50 V	NP0
$C_{12} = HCU06C100 \text{ 1-5 pF}$	(DIU)	$C_{83} = 27 pF$		
$C_{13} = 10 \text{ nF} \qquad 50 \text{ V}$		$C_{84} = 100 \text{ nF}$	63 V	Polyester
$C_{14} = 22 \mu\text{F}$ 25 V		$C_{85} = 560 pF$	500 V	Silveredmica
$C_{15} = 100 \text{ nF} 50 \text{ V}$		$C_{87} = 560 pF$	500 V	Silveredmica
$C_{16} = 3 \times 470 \text{ pF } 50\text{V}$	N750	$C_{88} = 2.2 \text{ pF}$	50 V	NDO
$C_{17} - C_{18} = 10 \text{ nF}$ 50 V		$C_{89} = 33 \text{ pF}$	50 V	NP0
C 19 to C 21 = 100 nF 50 V		$C_{90 \text{ to } C_{92}} = 100$) nF 50 V	
$C_{22} = 100 \text{ nF} 63 \text{ V}$	Polvester	$C_{93} = 10 \text{ nF}$	50 V	
$C_{23} = 82 \text{ pF} \qquad 500 \text{ V}$	NP0	$C_{94 \text{ to } C_{98}} = 100$		
$C \simeq C \simeq A7 \text{ pc}$	1110			
$C_{24} - C_{25} = 47 \text{ nF}$ 50 V		$C_{99} = 1.0 \text{ nF}$	05 V	Polyester
C $_{26 \text{ to}}$ C $_{28} = 100 \text{ nF}$ 50 V		$C_{100} = 22 \mu\text{F}$	25 V	
$C_{29} = 33 \mu\text{F} 25 \text{V}$		$C_{101} = 220 \text{ nF}$	63 V	Polyester
$C_{30} = 33 \mu\text{F}$ 25 V		$C_{102 \text{ to } C_{108} = 10}$		
$C_{31} = 100 \text{ nF} 50 \text{ V}$		$C_{109} = 10 \text{ nF}$	50 V	
	1 1750	C 109 - 10 III		MDO
$C_{32} - C_{33} = 220 \text{ pF}$ 500 Y	V N750	$C_{110} = 10 \text{ pF}$	50 V	NP0
$C_{34} = 10 \text{ nF} 50 \text{ V}$			50 V	
$C_{35} - C_{36} = 100 \text{ nF}$ 50 V		$C_{112} = 10 \text{ pF}$	50 V	NP0
$C_{37} = 220 \text{ pF} 500 \text{ V}$	Silveredmica	$C_{113} = 10 \text{ nF}$	50 V	1110
$C_{37} = 220 \text{ pr} - 300 \text{ V}$				
$C_{38} = 47 \text{ pF} \qquad 500 \text{ V}$	NP0	C 114 to C 115 = 10		
$C_{39} = 12 \text{ pF} \qquad 500 \text{ V}$	NP0	$C_{116} = 33 \mu F$		
$C_{40} = 39 \text{pF} \qquad 500 \text{V}$	NP0	$C_{117} = 100 \text{ nF}$	63 V	Polyester
$C_{41} = 150 \text{ pF} 500 \text{ V}$	NP0	$C_{118 \text{ to } C_{123} = 10}$		
$C_{42} = 39 \text{ pF} \qquad 500 \text{ V}$	NP0	$C_{124} = 10 \text{ µF}$	25 W	
$C_{42} = 39 \text{ pF} 500 \text{ V}$		$C_{124} = 10 \mu\text{F}$		D 1
C 43 - C $44 = 4700 \mu\text{F}$ 50 V	105°C	$C_{125} - C_{126} = 10$		
$C_{45} = 100 \text{nF} 50 \text{V}$		$C_{127} - C_{128} = 10$	0 nF 50 V	
$C_{46} = 18 \text{ pF} \qquad 500 \text{ V}$	NP0	$C_{129} = 330 \mu\text{F}$	35 V	
$C_{47} = 47 \text{ pF} \qquad 500 \text{ V}$	NP0	C 130 to C 132 = 10^{-10}		
$C_{48} = 220 \text{ pF} 500 \text{ V}$	N750	$C_{133} = 100 \text{ nF}$		estei
$C_{49} = 100 \text{ pF} 500 \text{ V}$	NP0	$C_{134} = 100 \text{ nF}$	50 V	
$C_{50} = 82 \text{ pF} 500 \text{ V}$	NP0	$C_{135} = 4.7 \mu\text{F}$	25 V	
$C_{51} = 100 \text{ pF} 500 \text{ V}$	NP0	$C_{136} = 100 \text{ nF}$	50 V	
$C_{52} = 56 \text{ pF} 500 \text{ V}$	NP0	$C_{137} = \text{not prese}$		
				NIDO
$C_{53} = 10 \text{ nF} \qquad 63 \text{ V}$	Polyester	$C_{138} = 2.2 \text{ pF}$	50 V	NP0
$C_{54} = 270 \text{ pF} 500 \text{ V}$	N750	$C_{140 \text{ to } C_{148}} = 10$	00 nF 50 V	
$C_{55} = 47 \text{ pF} 500 \text{ V}$	NP0	$C_{150} = 100 \text{ nF}$	50 V	
C 56 to C $58 = 100 \text{ nF}$ 50 V		$C_{151} = 470 \text{ nF}$		<i>j</i> ester
$C_{59} = 2.2 \mu\text{F}$ 25 V				
	MDO	C 152 to C 158 = 10		
$C_{60} = 180 \text{ pF} 500 \text{ V}$	NP0	$C_{159} = 100 \mu\text{F}$		
$C_{61} = 390 pF 500 V$	Silveredmica	$Cx = 10 \mu F$	16 V	
$C_{62} = not present$		$R_1 = 470 \Omega$	5W	
$C_{63} = 56 \text{ pF} 500 \text{ V}$	NP0	$R_2 = 470 \Omega$	5W	
1				
$C_{64} = 180 \text{ pF} 500 \text{ V}$	N750	$R_3 = 330 \Omega$	2W	
$C_{65} = 180 \text{pF} 500 \text{V}$	N750	$R_4 = 33 \Omega$	5W	
$C_{66} = 620 \text{ pF} 500 \text{ V}$	Silveredmica	$R_5 = 33 \Omega$	5W	
$C_{67} = 4700 \mu F_{50} V$	105°C	$R_9 = 12 K_{\Omega}$	$^{1}/_{4}W$	
$C_{68} - C_{69} = 100 \text{ nF}$ 50 V		$R_{10} = 47 \Omega$	1/4W	
$C_{70} = 4.7 \mu F 25 V$		$R_{11} = 1.0 \text{ K}\Omega$	1/4W	
$C_{71} = 33 \mu\text{F} 25 \text{V}$		$R_{14} = 68 \Omega$	5W	
$U_{72} = 200 \text{mE} 500 \text{M}$	Vilvoradmia			
$C_{72} = 390 pF 500 V$	Silveredmica			

R ₁₅ = not present	$R_{82} = 4.7 \text{ K}_{\Omega} {}^{1}/_{4}\text{W}$	$Tr_{19} = BC 547 B$
$R_{16} = 330^{\circ} \Omega$ 2W	$R_{83} = 56 K_{\Omega} \frac{1}{4}W$	Tr 20 = BC 557 B
$R_{17} = 47 K_{\Omega} \frac{1}{4}W$	$R_{84} = 22 K_{\Omega} \frac{1}{4}W$	$Tr_{21} = BD 179$
$R_{18} = 4.7 \text{ K}\Omega {}^{1}/_{4}\text{W}$	$R_{85} = 10 \text{ K}_{\Omega} {}^{1}_{4}\text{W}$	$Tr_{22} = BC 557 B$
$R_{19} = 120 \text{ K}\Omega ^{-1}/4\text{W}$	$R_{86} = 10 \text{ K}_{\Omega} \frac{1}{4} \text{W}$	$Tr_{23} = BC 547 B$
$R_{20} = 33 \text{ K}\Omega {}^{1}/_{4}\text{W}$	$R_{87} = 1.0 \text{ K}\Omega {}^{1}/_{4}\text{W}$	$Tr_{24} = BC 557 B$
$R_{21} = 4.7 \text{ K}\Omega ^{1}/_{4}\text{W}$	$R_{88} = 10 \text{ K}_{\Omega} \qquad {}^{1}/_{4}\text{W}$	$Tr_{26} = BC_{337-25}$
$R_{22} = 15 K_{\Omega} \frac{1}{4}W$	$R_{89} = 180 \Omega \qquad 2W$	$MSFT_1 = IRF_4905$
$R_{23} = 2.2 \text{ K}\Omega \frac{1}{2}\text{W}$	$R_{90} = 180 \Omega \qquad 2W$	$Xt_1 = Xtal 4.0 MHz$
$R_{24} = 22 K_{\Omega} \qquad {}^{1}/_{4}W$	$R_{91} = 120 \Omega \qquad 2W$	$R1_1 = 3022.7.024$
$R_{25} = 180 \Omega$ $^{1}/_{4}W$	$R_{92} = 22 K_{\Omega} \qquad {}^{1}/_{4}W$	$R1_2 = 4152.9.024$
$R_{26} = 8.2 \text{ K}\Omega {}^{1}\!\!/_{4}\text{W}$	$R_{93} = 47 K_{\Omega} {}^{1}/_{4}W$	$R1_3 = 3022.7.024$
$R_{27} = 68 \Omega \qquad 5W$	$R_{94} = 10 \text{ K}_{\Omega} \qquad {}^{1}/4\text{W}$	$R1_4$ to $R1_9 = 4152.9.024$
$R_{28} = 68 \Omega \qquad 5W$	$R_{95} = 1.0 \text{ K}_{\Omega} \frac{1}{4} \text{W}$	$T_1 = ANRA 700/12$
$R_{29} = 10 \Omega \frac{1}{2}W$	$R_{96} = 4.7 \text{ K}_{\Omega} {}^{1}/_{4}\text{W}$	T ₂ = Input Transformers
$R_{30} = 10 \Omega \frac{1}{2}W$	$R_{97} = 10 \text{ K}_{\Omega} {}^{1}_{4}\text{W}$	T ₃ = Output Transformers
$R_{31} = 10 \text{ K}_{\Omega} \frac{1}{4}\text{W}$	$R_{99} = 18 \text{ K}_{\Omega} \frac{1}{4}\text{W}$ $R_{100} = 6.8 \text{ K}_{\Omega} \frac{1}{4}\text{W}$	$T_4 - T_5 = KI/KH 4364$ $L_1 = FH002100$
$R_{32} = 47 \text{ K}_{\Omega} {}^{1}\!\!/_{4}\text{W}$ $R_{33} = 10 \text{ K}_{\Omega} {}^{1}\!\!/_{4}\text{W}$	$R_{100} = 6.8 \text{ K}\Omega {}^{1}\!\!/_{4}W$ $R_{101} = 4.7 \text{ K}\Omega {}^{1}\!\!/_{4}W$	L ₁ = FH002100 L ₃ = ANRA KL40
$R_{33} = 10 \text{ K}\Omega / 4\text{W}$ $R_{34} = 1.0 \text{ K}\Omega / 4\text{W}$	$R_{101} = 4.7 \text{ K}_{\Omega} {}^{1}\!\!/_{4}\text{W}$ $R_{102} = 470 \text{ K}_{\Omega} {}^{1}\!\!/_{4}\text{W}$	$L_3 = ANRA RL40$ $L_4 = ANRA 856/1$
$R_{35} = 68 \Omega \qquad 5W$	$R_{102} = 470 \text{ K}\Omega = 74 \text{ W}$ $R_{103} = 22 \text{ K}\Omega = \frac{1}{4} \text{W}$	$L_5 = ANRA 856$
$R_{36} = 68 \Omega \qquad 5W$	$R_{104} = 4.7 \text{ K}\Omega$ $^{1/4}W$	$L_6 = ANRA 856/2$
$R_{37} = 3.3 \text{ K}_{\Omega}$ $\frac{1}{2}\text{W}$	Trim $_{1}$ = Trimmer PT10LV 10 K $_{\Omega}$	$L_7 = FH002110$
$R_{38} = 4.7 \text{ K}_{\Omega}$ $^{1}/_{4}\text{W}$	Trim $2 = \text{Trimmer PT10LH } 22 \text{ K}\Omega$	$L_8 = ANRA 856/3$
$R_{39} = 10 \text{ K}\Omega \qquad {}^{1}/4\text{W}$	Trim 3 = Trimmer PT10LV 220 K Ω	$L_9 = ANRA 856/4$
$R_{40} = 4.7 \text{ K}\Omega ^{1}/_{4}\text{W}$	Trim ₄ =Trimmer 10 K _Ω multigiri	$L_{10} = ANRA 856/3$
$R_{41} = 10 \text{ K}\Omega ^{1/4}\text{W}$	$D_{1 \text{ to }} D_{3} = 1N4148$	$L_{11} = ANRA 725/5$
$R_{42} = 4.7 \text{ K}\Omega ^{1}\text{AW}$	$D_4 = 1N5711$	$L_{12} = ANRA 725/4$
$R_{43} = 10 \text{ K}\Omega ^{1}/_{4}\text{W}$	$D_5 = 1N5400$	$L_{13} = ANRA 725/7$
$R_{44} = 100 \Omega$ $^{1}/_{4}W$	$D_{6 \text{ to }} D_{7} = 1N4007$	$L_{14} = ANRA 725/6$
$R_{45} = 1.0 M_{\Omega} ^{1/4}W$	$D_8 = 1N5711$	$L_{15} = ANRA 725/9$
$R_{46} = 56 K_{\Omega} \frac{1}{4}W$	$D_{9 \text{ to}} D_{18} = 1N4148$	$L_{16} = ANRA 725/8$
$R_{47} = 10 \text{ K}_{\Omega} \frac{1}{4} \text{W}$	$D_{19 \text{ to }} D_{20} = 1N4007$	$S_1 = Term. 80^{\circ}C MB12A12$
$R_{48} = 100 \text{ K}_{\Omega} \frac{1}{4} \text{W}$	$D_{21} = 1N4148$	
$R_{49} = 27 \Omega$ $\frac{1}{2}W$	$D_{22 \text{ to }} D_{23} = 1N4007$	
$R_{50} = 2.2 \text{ K}\Omega \frac{1}{4}\text{W}$	$D_{24} \text{ to } D_{25} = 1N4148$	
$R_{51} = 47 K_{\Omega} \qquad {}^{1}/_{4}W$	$D_{26 \text{ to } D_{29}} = 1N4007$	
$R_{52} = 1.0 \Omega$ $\frac{1}{2}W$	$D_{30 \text{ to }} D_{31} = 1N4148$	
$R_{53} = 10 \Omega \qquad 2W$	D 32 to D 33 = $KV1235$	
$R_{54} = 1.0 \text{ K}_{\Omega} \frac{1}{2} \text{W}$	$D_{34} = 1N4007$	
R 55 to R 63 = 47 K Ω $^{1}/_{4}$ W	D 35 to D 37 = $1N4148$	
$R_{64} = 4.7 \text{ K}_{\Omega} \frac{1}{4}\text{W}$	$D_{38} = 1N4007$	
$R_{65} = 2.2 \text{ K}\Omega \frac{1}{2}W$ $R_{66} = 47 \text{ K}\Omega \frac{1}{4}W$	D 39 to D 46 = 1N4148 Dz 1 = Zener 27 V 1W	
$R_{66} = 47 \text{ K}\Omega \qquad 74 \text{ W}$ $R_{67} = 47 \text{ K}\Omega \qquad 1/4 \text{ W}$	$Dz_1 = Zener 27 V TW$ $Dz_3 = Zener 7.5 V \frac{1}{2}W$	
$R_{68} = 1.0 \text{ K}\Omega$ $^{1}/_{4}\text{W}$	$Dz_3 = Zener 7,3 \text{ V} /2\text{W}$ $Dz_4 = Zener 20 \text{ V} 1\text{W}$	
$R_{69} = 1.0 \text{ K}\Omega$ /4W $R_{69} = 1.0 \text{ K}\Omega$ /4W	$Ic_1 = TL 084$	
$R_{70} = 10 \text{ K}\Omega$ $^{1/4}\text{W}$	$\begin{array}{ccc} \text{IC 2} & = \text{Micro RM1} \end{array}$	
$R_{71} = 10 \text{ K}\Omega \qquad {}^{1}/4\text{W}$	Ic 3 = LM 7805	
$R_{72} = 10 \text{ K}\Omega ^{1/4}\text{W}$	$Ic_4 = LM 555$	
$R_{73} = 2.2 \text{ K}\Omega {}^{1}/_{4}\text{W}$	Ic 5 = LM 7815	
$R_{74} = 10 \text{ K}\Omega \qquad {}^{1}/_{4}\text{W}$	$Tr_1 = BD 241 BFP$	
$R_{75} = Not present$	$Tr_2 = BC 547 B$	
$R_{76} = 10 \text{ K}_{\Omega} \qquad {}^{1}/_{4}\text{W}$	$Tr_3 - Tr_4 = SD 1407$	
$R_{77} = 10 \text{ K}\Omega \qquad {}^{1}/_{4}\text{W}$	$Tr_5 - Tr_6 = BC 337-25$	
$R_{78} = 1.0 \text{ K}\Omega {}^{1}/_{4}\text{W}$	Tr 7 - Tr 10 = BC 547 B	
$R_{79} = 2.2 \text{ K}\Omega ^{1}/_{4}\text{W}$	$Tr_{11} - Tr_{12} = BF_{245} C$	
$R_{80} = 10 \text{ K}_{\Omega} {}^{1}\!\!/_{4}\text{W}$	Tr 13 to Tr 17 = BC 547 B	
$R_{81} = 10 \text{ K}\Omega ^{1}/_{4}\text{W}$	$Tr_{18} = BC 327-25$	

List of components

Board Frontale

 $C_1 = 100 \text{ nF}$ 50 V $C_2 = 100 \, nF$ 50 V $_{3} = 10 \, \mu F$ 25 V $C_4 = 100 \text{ nF}$ 50 V $= 100 \, \mu F$ 35 V $C_6 = 100 \text{ nF}$ 50 V C 7 $= 100 \, nF$ 50 V $C_{8} = 100 \text{ nF}$ 50 V R_1 $= 150 \Omega$ 2W R 2 $= 2.7 \text{ K}\Omega$ $^{1}/_{4}W$ $= 2.2 \text{ K}_{\Omega}$ R_3 $\frac{1}{2}$ W R 4 $= 2.2 \text{ K}_{\Omega}$ $\frac{1}{2}$ W $= 2.2 \text{ K}_{\Omega}$ R 5 $\frac{1}{2}$ W $= 2.2 \text{ K}_{\Omega}$ $\frac{1}{2}$ W R 6 **R** 7 $= 150 \Omega$ 2W $^{1}/_{4}W$ $R_8 = 15 K_{\Omega}$ $R_9 = 1.0 K_{\Omega}$ $^{1}/_{4}W$ $R_{10} = 10 \text{ K}\Omega$ $^{1}/_{4}W$ $^{1}/_{4}W$ $R_{11} = 1.0 \text{ K}\Omega$

 $R_{12} = 330 \,\Omega$ 1W $R_{13} = 2.2 \text{ K}_{\Omega}$ $\frac{1}{2}$ W $^{1}/_{4}W$ $R_{14} = 10 \text{ K}_{\Omega}$ $R_{15} = 10 \text{ K}_{\Omega}$ $^{1}/_{4}W$ Pot $_{1} = 4.7 \text{ K}_{\Omega}$ Vert $D_1 = 1N4148$ $Dz_1 = Zener 12 V \frac{1}{2}W$ $Dz_2 = Zener 10 V 1W$ $Dz_3 = Zener 20 V 1W$ $Dz_4 = Zener 24 V 1W$ $Scr_1 = P0102$ $Tr_1 = BC 557 B$ $Tr_2 = BC 547 B$ $Ic_1 = LM 317T$ Led₁=High efficiency dual-colours LED Led₂=High efficiency Green LED Led3=High efficiency Red LED Led4=High efficiency Yellow LED = band selectror (1 Way 6 positions) S 2 = -3dB ON/OFF switch S_3 = Lin ON/OFF switch S 4 = SSB Delay ON/OFF switch = Pre ON/OFF switch

