Redes e Internet

Redes e Internet

Professor: Rogério Leão Santos de Oliveira.

Carga horária: 80 h/a.

EMENTA

Introdução às redes de computadores lan's e wan's, camada de aplicação e seus protocolos; camada de transporte e seus protocolos; camada de rede e roteamentos; camada de enlace e redes locais.

OBJETIVOS

Identificar e entender a funcionalidade dos elementos componentes de uma rede de computadores bem como compreender os protocolos e serviços utilizados com a Internet.

1-2

Introdução

<u>Visão geral da disciplina.</u>

- □ O que é a internet?
- □ O que é um protocolo?
- □ Borda de rede.
- □ Núcleo da rede.
- Acesso a rede, meios físicos.
- □ Estrutura de Internet/ISP.
- □ Camadas de protocolos, modelos de serviços.
- Modelo de rede.

Roteiro

- 1.1 O que é a internet ?
- 1.2 Borda de rede
- 1.3 Núcleo da rede
- 1.4 Acesso a rede e os meios físicos
- 1.5 Estrutura da internet e os ISPs
- 1.6 Camadas de protocolo, modelos de serviço
- 1.7 História

O que é a internet: visão geral.

- Milhões de dispositivos conectados: hosts = sistemas finais
- executando aplicativos de rede
- □ Links de comunicação
 - Fibra, cobre, rádiofrequencia, satelite
 - Taxa de transmissão =
 largura de banda
- roteadores: repasse de pacotes (envio de dados)

O que é a internet: visão geral.

- protocolo controla o envio e o recebimento de msg's
 - o e.x., TCP, IP, HTTP, FTP, PPP
- □ Internet: "rede das redes"
 - Hierarquia fraca
 - Internet pública x internet privada
- Padrões da Internet
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

O que é a internet: Visão do serviço.

- ☐ Infraestrutura de comunicação possibilita o uso de aplicações distribuidas:
 - Web, email, games, ecommerce, compartilhamento de arquivos e impressoras.
- Os serviços de comunicação provêem aos aplicativos:
 - Conexões confiáveis.
 - Conexões não-confiáveis.

O que é um protocolo?

Protocolos humanos:

- □ "que horas são ?"
- "faça algo"
- organização das mensagens
- Boas maneiras na comunicação
- ... como enviar msgs
- ... o que fazer ao receber uma msg

Protocolos de rede:

- Máquinas ao invés de humanos
- □ Toda atividade de comunicação na rede é governada por protocolos

...protocolos definem formatos, ordem das msgs, o envio e recebimento entre entidades de rede, e ações durante a transmissão.

O que é um protocolo?

Comparação entre os protocolos humanos e de redes:

Roteiro

- 1.1 O que é a internet ?
- 1.2 Borda de rede
- 1.3 Núcleo da rede
- 1.4 Acesso a rede e os meios físicos
- 1.5 Estrutura da internet e os ISPs
- 1.6 Camadas de protocolo, modelos de serviço
- 1.7 História

Um olhar mais atento na estrutua da rede:

- Borda da rede: aplicações e hosts
- □ Núcleo da rede:
 - o roteadores
 - O Rede das redes
- □ Redes de acesso, meios físicos: links de comunicação

A borda da rede:

□ Sistemas finais (hosts):

- Rodam aplicações (prog.)
- o e.x. Web, email

□ Modelo cliente/servidor

- host cliente requisita serviços de algum servidor disponivel;
- e.x. Web browser/server; email client/server.

■ Modelo peer-to-peer:

- uso mínimo (ou não) de servidores dedicados;
- o e.x. Gnutella, KaZaA, e-mule

Borda de rede: Conexões orientadas a serviço

- objetivo: transferência de dados entre sistemas finais.
- handshaking: configuração inicial para transferência dos dados.
 - Dois lados prontos para transferir;
 - o transmissão controlada.
- TCP TransmissionControl Protocol

TCP [RFC 793]

- confiável, garantia de entrega dos dados;
 - perda: reconhecer os erros e retransmitir.
- ☐ Controle de fluxo:
 - Transmissor não inundar o receptor.
- Controle de congestionamento:
 - Remetente reduz taxa de transmissão quando a rede está congestionada.

Borda de rede: Conexões não orientadas a serviço.

- Objetivo: transferir dados entre sistemas finais
 - O mesmo que o anterior.
- □ UDP User Datagram Protocol [RFC 768]:
 - Não orientado a conexão;
 - Transferência de dados incerta;
 - Sem controle de fluxo;
 - Sem controle de congestionamento;

App's que usam TCP:

□ HTTP (Web), FTP (file transfer), Telnet (remote login), SMTP (email)

App's que usam UDP:

□ Transmissão de mídia(audio e/ou vídeo), teleconferência, DNS, Telefonia pela internet.

Roteiro

- 1.1 O que é a internet ?
- 1.2 Borda de rede
- 1.3 Núcleo da rede
- 1.4 Acesso a rede e os meios físicos
- 1.5 Estrutura da internet e os ISPs
- 1.6 Camadas de protocolo, modelos de serviço
- 1.7 História

O núcleo da rede

- Malha de roteadores interconectados
- A questão fundamental: como os dados são transferidos pela rede?
 - Comutação por circuitos: canal dedicado para cada chamada: e.x. telefone
 - Comutação por pacotes: dados enviados na rede em pedaços discretos.

Núcleo da rede: Comutação por circuito

- Ambos sistemas finais reservam recursos para transferência.
- Largura de banda, capacidade de comutação;
- Recursos dedicados: sem compartilhamento;
- □ Garantia de performance
- Config. Inicial para transferir (handshaking).

Comutação por circuito: FDM e TDM

Exemplo numérico.

- Quanto tempo é gasto para a entrega de 500 bits do host A para o host B utilizando comutação por circuito ?
 - Velocidade do link 10 bps
 - Cada link usa TDM com 5 slots
 - 500 milésimos de segundos são gastos para o estabelecimento do circuito fim-a-fim.

E agora ?????

Núcleo da rede: comutação por pacotes

Cada transferência fim-afim é feita em pacotes.

- Os pacotes compartilham recursos da rede;
 - Cada pacote usa toda largura de banda disponível;
- Os recursos são usados conforme necessário.

Divisão de largura de banda em pedaços;

Alocação dedicada;

Reserva de recursos.

Contenção de recursos:

- Demanda por recursos pode exceder capacidade disponivel;
- Congestionamento: pacotes esperam para o uso do link (fila);
- Cada nó da rede somente repassa o pacote após recebe-lo completamente.

Comutação por pacotes: visão.

Comutação por pacotes x circuitos

Comutação por pacotes permite que mais usuários utilizem a rede.

- □ link de 1 Mb/s
- cada usuário:
 - → 100 kb/s quando ativo.
 - Está ativo 10% do tempo.
- □ Por circuito:
 - o 10 usuários.
- □ Por pacote:
 - Probabilidade de utilização de 100 usuários.

Comutação por pacotes x circuitos

Então comutação por pacotes é melhor?

- □ Ideal para dados em rajadas.
 - Compartilhar recursos
 - Simplicidade, sem chamada para config. inicial.
- Congestionamento excessivo: atraso e perda de pacotes.
 - Necessidade de uso de protocolos controlar o congestionamento e o fluxo.
- □ Q: Mas no que a comutação por circuitos é melhor?
 - Quando existe a necessidade de se garantir largura de banda (aplicativos de audio e video).

Classificação da rede (internet)

Roteiro

- 1.1 O que é a internet ?
- 1.2 Borda de rede
- 1.3 Núcleo da rede
- 1.4 Acesso a rede e os meios físicos
- 1.5 Estrutura da internet e os ISPs
- 1.6 Camadas de protocolo, modelos de serviço
- 1.7 História

Acesso a rede e meios físicos

Como conectar sistemas finais aos roteadores de acesso?

- Redes de acesso residenciais
- Redes de acesso institucionais (escolas, empresas)
- □ Redes de acesso móveis

Tenha em mente:

- Largura de banda(bits por segundo)
- Compartilhada ou dedicada?

Acesso residencial: acesso ponto a ponto.

□ Dial-up via modem

- Até 56Kbps com acesso direto ao roteador (geralmente menos)
- Não pode navegar na rede e telefonar ao mesmo tempo.

□ ADSL: linha de assinante digital assimétrica

- o até 1 Mbps de upstream (tipicamente < 256 kbps)
- Até 8 Mbps de downstream (tipicamente < 1 Mbps)
- FDM: 50 kHz 1 MHz para downstream
 - 4 kHz 50 kHz para upstream
 - 0 kHz 4 kHz para telefone

Acesso Residencial: modens a cabo.

- □ HFC: coaxial de fibra hibrida.
 - assimétrica: até 30Mbps de downstream, 2
 Mbps de upstream
- rede a cabo e fibra anexa as residencias aos Roteadore ISP.
 - Residencias compartilham acesso com Roteador ISP
- implantação: disponível através de empresas de TV a cabo.

Acesso Residencial: modens a cabo.

Tipicamente 500 até 5,000 casas

Rede Empresariais: redes de área local

 empresa/univ rede de área local (LAN) conecta sistemas finais ao roteador de acesso

□ Ethernet:

- compartilhado ou dedicado conecta sistemas finais eo roteador
- 10 Mbs, 100Mbps, Gigabit Ethernet

Redes de acesso wireless (sem fio)

- □ Redes de acesso sem fio compartilhadas conectam sistemas finais aos roteadores
 - Via "access point" (ponto de acesso)
- wireless LANs:
 - 802.11x (WiFi): xx Mbps
- Ampla área de acesso sem fio
 - Fornecido por uma operadora.
 - 3G está começando no brasil.
 - WAP/GPRS velocidade baixa.

Redes residenciais

Componentes tipicos de uma rede residencial.

- □ ADSL ou modem a cabo.
- router/firewall/NAT
- Ethernet

Mídias físicas

- □ Bit: propaga-se entre transmissores e receptores.
- Link físico: o que está entre o transm. e o recep.
- Midias guiadas:
 - Sinal propaga em midias sólidas: cobre, fibra óptica, cabo coaxial.
- Midias não guiadas:
 - Sinal propaga livremente,
 e.x., radio-frequencia

Par-trançado (TP)

- dois fios de cobre.
 - Categoria 3: cabos de telefones tradicionais, 10 Mbps Ethernet
 - Categoria 5:100Mbps Ethernet

Mídias físicas: cabo coaxial e fibra.

Cabo coaxial:

- dois condutores de cobre concêntrico
- bidirecionais
- baseband:
 - Canal único no cabo
 - legado Ethernet
- broadband:
 - o múltiplos canais no cabo
 - HFC (fibra-coaxial hibrida)

Cabo de fibra ótica:

- fibra de vidro transportando pulsos de luz, cada pulso é um bit.
- Operação de alta velocidade:
 - Transmissão Ponto a ponto(e.x., 5 Gps)
- Baixa taxa de erros: repetidores bastante espaçados; imune a ruidos eletromagnéticos.

Mídias físicas: radio-frequencia

- Sinal transportado no espectro eletromagnético.
- Sem cabo "wire"
- bidirecional
- Efeitos no ambiente de propagação:
 - o reflexão
 - Obstrução por objetos
 - o Interferencia.

Tipos de link de radio:

- Microondas terrestres
 - o e.x. canais de até 45 Mbps
- □ LAN (e.x., Wifi)
 - 2Mbps, 11Mbps, 54Mbps...
- Ampla-área (e.x., celular)
 - E.x. 3G: centenas de kbps
- satélite
 - Canais de até 50Mbps (ou multiplos pequenos canais)
 - 270 msec de atraso fim -afim

Roteiro

- 1.1 O que é a internet ?
- 1.2 Borda de rede
- 1.3 Núcleo da rede
- 1.4 Acesso a rede e os meios físicos
- 1.5 Estrutura da internet e os ISPs
- 1.6 Camadas de protocolo, modelos de serviço
- 1.7 História

- hierárquica
- □ No centro: ISPs Nível 1 (e.x., UUNet, BBN/Genuity, Sprint, AT&T), cobertura nacional/internacional
 - Todos tratados igualmente.

ISP Nível 1: e.x., Sprint

Sprint US backbone network

- □ ISPs "Nível-2": menores (geralmente regionais)
 - Conectam-se a um ou mais ISPs de nível 2 (geralmente mais de um)

□ "Nível-3" ISPs e ISPs locais

Acesso a rede (mais perto do sistemas finais)

□ Um pacote passa por muitas redes.

Roteiro

- 1.1 O que é a internet ?
- 1.2 Borda de rede
- 1.3 Núcleo da rede
- 1.4 Acesso a rede e os meios físicos
- 1.5 Estrutura da internet e os ISPs
- 1.6 Camadas de protocolo, modelos de serviço
- 1.7 História

Protocolos "Camadas"

A complexidade da rede!

- Muitas "peças":
 - hosts
 - o roteadores
 - Links de variados tipos
 - Aplicações
 - protocolos
 - o hardware, software

Cada camada desempenha uma função na estrutura de rede.

Organização de uma viagem aérea

Bilheteria (adquirir) Bilheteria (reclamar)

Bagagem (checar) bagagem (retirar)

portões (embarcar) portões (desembarcar)

decolagem pouso

Roteamento do avião Roteamento do avião

Roteamento do avião

□ Uma série de passos

Camadas de funcionalidades da linha aérea

Camadas: cada camada realiza um serviço.

- Através de suas próprias ações internas na camada.
- Confiança nos serviços executados pela camada inferior

Porque dividir em camadas?

Subdividir sistemas complexos:

- □ Permite melhor identificação e gerenciamento.
- modularização facilita a manutenção, atualização do sistema.
 - o mudança na aplicação de uma camada são transparentes para o resto do sistema.
 - e.x., alterações no embarque(portões), não afeta o restante do sistema. (decolagem, pouso, vôo)

Pilhas de protocolos de redes.

- aplicação: suporte para aplicações do usuário.
 - o FTP, SMTP, HTTP
- transporte: trasnferência de dados host-host
 - O TCP, UDP
- □ rede: roteamento dos datagramas da origem até o destino.
 - IP, protocolos de roteamento.
- enlace: transferencia de dados entre elementos vizinhos na rede.
 - o PPP, Ethernet
- física: carrega os bits pelo meio utilizado (cobre, luz)

aplicação
transporte
rede
enlace

física

Roteiro

- 1.1 O que é a internet ?
- 1.2 Borda de rede
- 1.3 Núcleo da rede
- 1.4 Acesso a rede e os meios físicos
- 1.5 Estrutura da internet e os ISPs
- 1.6 Camadas de protocolo, modelos de serviço
- 1.7 História

História da internet

1961-1972: Inicio precoce da comutação por pacotes.

- □ 1961: Kleinrock teoria das filas mostra a efetividade da comutação de pacotes
- □ 1964: Baran comutação de pacotes em redes militares.
- □ 1967: ARPAnet concebida pela Agência de Projetos e Pesquisas Avançadas.
- □ 1969: o primeiro nó ARPAnet se torna operacional.

1972:

- ARPAnet é demonstrada publicamente.
- NCP (Network Control Protocol) primeiro hosthost protocolo.
- primeiro programa de email.
- ARPAnet tinha 15 nós.

História da internet

1972-1980: Interconexão, redes proprietárias

- 1970: ALOHAnet rede via satelite no Hawai
- □ 1973: Metcalfe's tese de PhD propõe o padrão Ethernet
- □ 1974: Cerf and Kahn arquitetura para interconexão das redes.
- □ Final dos 70's: arquiteturas proprietárias: DECnet, SNA, XNA
- □ Final dos 70's: comutação de pacotes de comprimento fixo (precursor foi ATM)
- □ 1979: ARPAnet tinha 200 nós

Cerf and Kahn's principios de interconexão:

- Minimalismo, autonomiasem exigencia de alterações internas para interconectar redes.
- Modelo de serviço de melhor esforço.
- Roteadores sem estado definido
- Controle descentralizado

Define a arquitetura da internet de hoje

História da internet

1990, 2000's: comercialização, a Web, novos aplicativos

- □ começo 1990s: Web
 - hypertext [Bush 1945, Nelson 1960's]
 - O HTML, HTTP: Berners-Lee
 - 1994: Mosaic, depois Netscape (browsers)
 - final 1990's: comercialização na web

de 1990's - 2000's:

- Mais aplicativos: Msn, P2P compartilhamento de arqs.
- Segurança das redes em prova.
- est. 50 milhões de hosts,
 100 milhões de usuários.
- Enlace dos backbones rodando em Gbps

Sumário

Tópicos relevantes

- Visão geral sobre internet
- □ O que é um protocolo?
- Borda, núcleo e redes de acesso
 - Comutação de pacotes x comutação de circuitos.
- □ Estrutura dos ISPs
- Modelo de camadas e serviço.
- História

Maiores detalhes serão vistos ainda neste curso.