Homework 3

Convex Optimization

Due March 5

1. Given symmetric matrices $F_0, F_1, ..., F_n$, cast the following optimization problem as an SDP

min
$$(Ax + b)^T F(x)^{-1} (Ax + b)$$

s.t. $F(x) > 0$

where
$$F(x) = F_0 + x_1 F_1 + \dots + x_n F_n$$

2. Given symmetric matrices W0 and W1, find the dual of the optimization min

$$\min \quad x^T W_0 X$$
s.t.
$$x^T W_1 x \le 1.$$

3. Use the duality idea to prove that the set $\{x \mid x \in \mathbb{R}^n, Ax \leq b\}$ is empty if the set

$$\left\{\lambda \mid \lambda \in \mathbb{R}^m, \lambda \geq 0, A^T \lambda = 0, b^T \lambda < 0\right\}$$

is nonempty (where $A \in \mathbb{R}^{m \times n}$).

4. Separating hyperplane between two polyhedra: formulate the following problem as an LP (feasibility) problem. Find a separating hyperplane that strictly separates two polyhedra

$$P_1 = \{x \mid Ax \leq b\}, \quad P_2 = \{x \mid Cx \leq d\}$$

then find a vector $a \in \mathbb{R}^n$ and a scalar γ such that

$$a^T x > \gamma \quad \forall x \in P_1, \quad a^T x < \gamma \quad \forall x \in P_2$$

Hence $\inf_{x \in P_2} a^T x > \gamma > \sup_{x \in P_2} a^T x$ Use LP duality to simplify the infimum and supremum in these conditions.

1