Vizsga 2023.06.19. 9:00-9:45

Határidő jún 19, 09:45 Pont 15 Kérdések 15

Elérhető jún 19, 09:00 - jún 19, 09:50 körülbelül 1 óra Időkorlát 45 perc

Instrukciók

A kvíz kitöltése után azonnal megkapjuk az eredményt, és a megszerzett pontszámok alapján a megajánlott jegyek a következőképpen alakulnak:

- o 0-7 elégtelen (1)
- ∘ 8-11 elégséges (2)
- ∘ 12-15 közepes (3)

Ha az írásbeli rész legalább elégséges volt, akkor a hallgató jelentkezhet a vizsga szóbeli részére. Ezt szintén az előadás Canvas oldalán teheti meg, egy második kvíz kitöltésével, ami 9:45 és 9:50 között nyílik meg. Aki nem akar szóbelizni, annak nem kötelező kitöltenie az erre vonatkozó kvízt.

Ezt a kvízt ekkor zárolták: jún 19, 09:50 .

Próbálkozások naplója

	Próbálkozás	ldő	Eredmény	
LEGUTOLSÓ	1. próbálkozás	33 perc	13 az összesen elérhető 15 pontból	

Ezen kvíz eredménye: 13 az összesen elérhető 15 pontból

Beadva ekkor: jún 19, 09:32

Ez a próbálkozás ennyi időt vett igénybe: 33 perc

1. kérdés	1 / 1 pont

ıp.

1 / 15

$$A = \left[\begin{array}{ccc} a & -b & -c \\ b & d & -e \\ c & e & f \end{array} \right]$$

Az alábbiak közül melyik formula alkalmazható az A mátrix 2-es kondíciószámának kiszámításához, ha $b \neq 0$?

- (A) $\operatorname{cond}_2(A) = \|A\|_2 \cdot \|A^{-1}\|_2$
- (B) $\operatorname{cond}_2(A) = \frac{\max|\lambda_i(A)|}{\min|\lambda_i(A)|}$
- (C) Mindkettő.
- (D) Egyik sem.

Helyes!

- A
- ОВ
- _ C
- D

Alap

2 / 15

Hány olyan legfeljebb elsőfokú polinom létezik, ami átmegy a (-1,-1),(0,0),(1,2) pontokon?

- (A) Egy sem.
- (B) Pontosan egy.
- (C) Pontosan kettő.
- (D) Végtelen sok.

□ ト (回) (三) (回) (\square)

Helyes!

A

ОВ

_ C

D

Alap

3 / 15

A fenti ábrán az f függvény (kék görbe) alatti területet a piros töröttvonal alatti narancssárgára satírozott területtel közelítjük. Milyen kvadratúra formulának felel meg a fenti eljárás?

- (A) Trapéz formulának.
- (B) Összetett trapéz formulának.
- (C) Newton-Cotes formulának.
- (D) Összetett érintő formulának.

Helyes!

B

A

O C

D

4. kérdés

1 / 1 pont

2023. 06. 20. 10:35

Alap

4 / 15

Legyen $n \in \mathbb{N}^+$ és $x \in \mathbb{R}^n$ vektor. Az alábbi összefüggések közül melyik helyes?

(A)
$$||x||_1 = \sum_{i=1}^n |x_i|$$

(B)
$$||x||_2 = \sum_{i=1}^n x_i^2$$

(C)
$$||x||_{\infty} = \sqrt{\sum_{i=1}^{n} |x_i|}$$

(D)
$$||x||_{\infty} = \max_{i=1}^n x_i$$

|ロト 4回 ト 4 至 ト 4 至 ト | 至 | 约 Q ()

Helyes!

- A
- ОВ
- _ C
- D

Alap

5 / 15

Az alábbi számok közül melyiket tartalmazza az M(6, -3, 3) gépi számhalmaz?

- **(A)** 0
- (B) [101011| 4]
- (C) [1101101|-2]
- (D) [011110| 3]

Helyes!

- A
- ОВ
- O C
- O D

Közép

6 / 15

Tegyük fel, hogy a φ függvényre teljesünek a Brouwer-féle fixponttétel feltételei. Melyik állítás hamis az alábbiak közül?

- (A) $\exists x^* \in [a, b] : \varphi(x^*) = x^*$.
- **(B)** $\varphi:[a,b]\rightarrow [a,b].$
- (C) φ kontrakció.
- (D) $\varphi \in C[a, b]$

	<□ > <∄ > < ≧ > < ≧ > □ ;	₹ ୬ ९0
○ A		
ОВ		
○ D		

Közép 7 / 15

$$A^{(1)} = \begin{bmatrix} a_{11}^{(0)} & a_{12}^{(0)} & a_{13}^{(0)} & \cdots & a_{1n}^{(0)} \\ 0 & a_{22}^{(1)} & a_{23}^{(1)} & \cdots & a_{2n}^{(1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & a_{n2}^{(1)} & a_{n3}^{(1)} & \cdots & a_{nn}^{(1)} \end{bmatrix} = \mathbf{B}$$

Legyen $A \in \mathbb{R}^{n \times n}$ egy szimmetrikus pozitív definit mátrix, $A^{(1)}$ pedig a Gauss elimináció első lépésében kapott felső háromszög mátrix. Milyen állítások igazak $A^{(1)}$ jobb alsó (bekeretezett) $B \in \mathbb{R}^{n-1 \times n-1}$ sarok mátrixára?

- (A) B szimmetrikus
- (B) $det(B) \neq 0$
- (C) B szimmetrikus és pozitív definit
- (D) Mindegyik

8. kérdés

Helyes!

1 / 1 pont

Közép

8 / 15

Az alábbiak közül melyik algoritmus segítségével lehet a leggyorsabban megoldani az Ax=b lineáris egyenletrendszert, ha A tridiagonális mátrix?

- (A) A progonka módszerrel.
- (B) Részleges Gauss eliminációval.
- (C) LU felbontással.
- (D) Mindhárom módszer ugyanolyan gyors.

Közép

9 / 15

Ha P tetszőleges polinom és valamely ξ helyen $P(x)=P(\xi)+(x-\xi)Q(x)$, akkor az alábbiak közül mi teljesül a Q polinomra?

- (A) $\exists x \in \mathbb{R} : P'(x) = Q(x)$
- (B) $\forall x \in \mathbb{R} : P'(x) \neq Q(x)$
- (C) $\forall x \in \mathbb{R} : P'(x) = Q(x)$
- (D) $\forall x \in \mathbb{R} : P(x) = Q'(x)$

Helyes!

- A
- ОВ
- O C
- O D

Közép

10 / 15

Tegyük fel, hogy az M(6,k,k) gépi számhalmazban $M_{\infty}=63$. Mi következik ebből?

- (A) k = 2
- (B) k = 4
- (C) k = 6
- (D) k = 8

	<□ > < 含 > < 분 > < 분 > 분 ·
○ A	
ОВ	
C	
O D	

Emelt

11 / 15

Az $\|.\|_2$ vektornorma és az $\|.\|_F$ mátrixnorma kapcsolatáról szóló alábbi állítások közül melyik hamis?

- (A) Tetszőleges A mátrix és x vektor esetén $||Ax||_2 \le ||A||_F ||x||_2$.
- (B) Az $\|.\|_2$ vektornorma indukálja az $\|.\|_F$ mátrixnormát.
- (C) Az $\|.\|_2$ vektornorma és az $\|.\|_F$ mátrixnorma illeszkednek.
- (D) Egyik sem.

Emelt

12 / 15

Mit mondhatunk a $P(x) = 2x \cdot T_n(x) - T_{n+1}(x)$ polinomról, ahol T_n az n-ed fokú Csebisev-polinomot jelöli?

- (A) P pontosan (n-1)-edfokú.
- (B) P pontosan n-edfokú.
- (C) P legalább n-edfokú.
- (D) P az (n+2)-ik Csebisev polinom, azaz $P = T_{n+2}$.

lelyes válasz

A

B

legadott válasz

C

D

Emelt

13 / 15

Legyen $x, y \in \mathbb{R}^n$ vektor, továbbá $\sum_{i=1}^n x_i = 0$. Tegyük fel, hogy az x és y vektorok komponenseiből alkotott (x_i, y_i) pontokra egyenest szeretnénk illeszteni a tanult legkisebb négyzetek módszere segítségével. Mikor lesz a feladat megoldása konstans függvény?

- (A) Akkor, ha $\sum_{i=1}^{n} y_i = 0$.
- (B) Akkor, ha az x és y vektorok párhuzamosak egymással.
- (C) Akkor, ha az x és y vektorok merőlegesek egymásra.
- (D) Soha, a megoldás mindig pontosan elsőfokú polinom.

	(마) (라) (분) (분) (분) (이)
○ A	
ОВ	
O D	

Emelt

14 / 15

Az alábbiak közül melyik tanult tétel garantálja a legalacsonyabb rendű konvergenciát?

- (A) Húrmódszer konvergenciatétele.
- (B) Szelőmódszer konvergenciatétele.
- (C) Newton-módszer lokális konvergenciatétele.
- (D) Mindegyik csak 1-rendű konvergenciát garantál

Emelt

15 / 15

Legyen $n \in \mathbb{N}$, $n \geq 3$. A polinomok gyökeinek becslésére tanult tétel alapján mennyi a (R-1)/r mennyiség értéke a

$$\frac{x^n}{n} + \frac{x^{n-1}}{n-1} + \dots + \frac{x^2}{2} + x + 2$$

polinom esetén?

- (A) 1
- (B) n/3
- (C) 3/n
- (D) 3n

	⟨□⟩⟨⟨⟨⟨⟨⟩⟩⟨⟨⟨⟨⟩⟩⟩⟨⟨⟨⟩⟩⟨⟨⟨⟩⟩
○ A	
ОВ	
○ C	
D	

Kvízeredmény: 13 az összesen elérhető 15 pontból