3 Integrals de superfície

Exercicis introductoris

- 1. Doneu una parametrització de les superfícies següents:
 - (a) Pla d'equació x = 0.
 - (b) Pla d'equació x y = 1.
 - (c) Rectangle de vèrtexs (1,1,3), (4,1,3), (1,3,3) i (4,3,3).
 - (d) Superfície d'equació z = f(x, y), on $(x, y) \in D \subseteq \mathbb{R}^2$.
- 2. Determineu les següents superfícies parametritzades i doneu-ne una equació cartesiana:
 - (a) $\sigma(u, v) = (u, v, au + bv + c), \quad u, v \in \mathbb{R}, \ a, b, c \text{ constants.}$
 - (b) $\sigma(u, v) = (u, v, u^2), \quad u \in \mathbb{R}, \ v \in [0, +\infty).$
 - (c) $\sigma(\theta, z) = (R\cos\theta, R\sin\theta, z), \quad z \in \mathbb{R}, \ \theta \in [0, 2\pi), \ R > 0 \text{ constant.}$
 - (d) $\sigma(r,\theta) = (r\cos\theta, r\sin\theta, r), \quad r \in \mathbb{R}, \ \theta \in [0, 2\pi).$
 - (e) $\sigma(\theta, \varphi) = (R\cos\theta\sin\varphi, R\sin\theta\sin\varphi, R\cos\varphi), \quad \theta \in [0, 2\pi), \ \varphi \in [0, \pi], \ R > 0 \text{ constant.}$
 - (f) $\sigma(u, v) = (u \cosh v, u \sinh v, u^2), \quad u \in \mathbb{R}, \ v \in [0, +\infty).$
- 3. En els enunciats següents, doneu els vectors tangents associats a la parametrització, estudieu per a quins $(u, v) \in \mathbb{R}^2$ és regular, i calculeu el pla tangent de la superfície que defineix, en el punt indicat.
 - (a) $\sigma(u, v) = (u^2 v, u + v, uv), \quad p = \sigma(1, 2).$
 - (b) $\sigma(u, v) = (v u, v + u, uv), \quad p = (0, 2, 1).$
 - (c) $\sigma(u, v) = (u \cosh v, u \sinh v, u^2), \quad p = \sigma(1, 0).$
- 4. Calculeu l'àrea de les superfícies següents:
 - (a) Helicoide parametritzada per $\sigma(r,\theta) = (r\cos\theta, r\sin\theta, \theta), \theta \in [0,2\pi), r \in [0,1].$
 - (b) Esfera de radi a.
 - (c) Con d'equació $\frac{x^2+y^2}{a^2} = \frac{z^2}{h^2}$, a > 0, 0 < z < h.
- 5. Calculeu la integral de superfície $\iint_S f \, dS$ en els casos següents:
 - (a) $f(x,y,z) = \sqrt{z}$, S disc de centre (3,1,4) i radi 2 en el pla z=4.
 - (b) f(x, y, z) = x 2z, S triangle sobre el pla 3x + 2y + z = 6, limitat pels plans coordenats.
- 6. Calculeu la integral de superfície $\iint_S \mathbf{F} \cdot d\mathbf{S}$ en els següents casos:
 - (a) $\mathbf{F}(x,y,z) = (y,-x,1)$, S helicoide $\sigma(t,\theta) = (t\cos\theta,t\sin\theta,\theta)$, amb $0 \le t \le 1$ i $0 \le \theta < 2\pi$.
 - (b) $\mathbf{F}(x, y, z) = (0, 0, x^7 \cos(z^2)), \quad S \text{ cilindre } x^2 + y^2 = R^2, z \in (0, 3).$
 - (c) $\mathbf{F}(x,y,z) = (y,-x,1)$, S triangle determinat pel pla x+y+z=1 i els plans coordenats.
 - (d) $\mathbf{F}(x,y,z) = (xz,0,1)$, S semiesfera superior de centre l'origen i radi 1.

Exercicis bàsics

- 7. Doneu una parametrització i una equació cartesiana de les superfícies següents:
 - (a) Cilindre de radi R amb eix de simetria la recta $\{x = a, z = b\}$.
 - (b) Con invertit amb vèrtex a l'origen, radi de la base R i alçada H.
 - (c) Hiperboloide d'equació $x^2 + y^2 z^2 = R^2$.
- 8. Doneu una equació cartesiana de les següents superfícies parametritzades:
 - (a) $\sigma(u, v) = (v u, v + u, uv), u, v \in \mathbb{R}.$
 - (b) $\sigma(u, v) = (u \cos \varphi, u \sin \varphi, 1/u), u \in [1, 2], \varphi \in [0, 2\pi).$
- 9. En els enunciats següents, doneu els vectors tangents de la parametrització, estudieu si la parametrització és regular, i calculeu el pla tangent de la superfície que defineix en el punt indicat.
 - (a) $\sigma(\theta, \varphi) = (R\cos\theta\sin\varphi, R\sin\theta\sin\varphi, R\cos\varphi), \quad \theta \in [0, 2\pi), \ \varphi \in [0, \pi], \quad p = \sigma\left(\theta_0, \frac{\pi}{2}\right).$
 - (b) $\sigma(r,\theta) = (r\cos\theta, r\sin\theta, r), \quad r \in \mathbb{R}, \ \theta \in [0,2\pi), \quad p = \sigma\left(r_0, \frac{\pi}{4}\right).$
- 10. Donada $h \in \mathcal{C}^1(\mathbb{R}^2)$, considerem la superfície S d'equació x = h(y, z). Doneu-ne una parametrització regular i obteniu una fórmula del pla tangent a S en un punt genèric.
- 11. (a) Doneu una parametrització d'una tanca circular, centrada a l'origen, de radi 1 i alçada donada per h(x,y) = |x| + |y|, en cada punt (x,y) de la base.
 - (b) Més en general, doneu una parametrització d'una paret amb base la corba parametritzada $(x(t), y(t)), t \in I$ i alçada donada per f(x, y), en cada punt (x, y) de la base.
- 12. Determineu f(u) per tal que la superfície parametritzada r(u,v) = (f(u), v, a u v) tingui com a producte vectorial fonamental el vector (1,1,1), per a tot $a \in \mathbb{R}$. De quina superfície es tracta?
- 13. Calculeu l'àrea de les superfícies següents:
 - (a) Casquet esfèric d'alçada h en l'esfera de radi a.
 - (b) La porció de l'esfera $x^2 + y^2 + z^2 = a^2$ interior al cilindre $x^2 + y^2 = ay$, essent a > 0.
 - (c) El tros de l'esfera $x^2 + y^2 + z^2 2az = 0$ (on $a \ge 0$) contingut dins el paraboloide $2z = x^2 + y^2$.
 - (d) El fragment del con d'equació $x^2+y^2=z^2$ limitat pels plans z=0 i y+2z=1. Indicació: feu servir x i y com a paràmetres.
- 14. Calculeu la integral de superfície $\iint_S f \, dS$ en els següents casos:
 - (a) $f(x,y,z) = (x^2 + y^2)z$, S hemisferi superior de l'esfera de radi a centrada a l'origen.
 - (b) f(x, y, z) = z, $S = \{(x, y, z) \in \mathbb{R}^3 \mid z = 1 x^2 y^2, z > 0\}.$
 - (c) f(x,y,z) = x, S cilindre definit per $x^2 + y^2 = a^2$, amb 0 < z < 1.
 - (d) f(x, y, z) = 1, S quàdrica parametritzada per $\sigma(u, v) = (u v, u + v, uv), u^2 + v^2 < 1$.
 - (e) f(x, y, z) = x(y + z 2), S triangle de vèrtexs (1, 0, 0), (0, 2, 0) i (0, 1, 1).
 - (f) f(x, y, z) = xy, S frontera del tetraedre limitat pels plans z = 0, y = 0, x + z = 1, x = y.
- 15. Sigui C la corba d'equació $y = f(x), x \in [a, b], \text{ on } f \in \mathcal{C}^1([a, b]).$
 - (a) Considerem la superfície S_{OX} obtinguda fent girar la corba C entorn de l'eix OX. Doneu una parametrització de S_{OX} i demostreu que la seva àrea és $2\pi \int_a^b |f(x)| \sqrt{1+[f'(x)]^2} \, dx$.

- (b) Sigui $a \ge 0$. Considerem la superfície S_{OY} obtinguda fent girar la corba C entorn de l'eix OY. Doneu una parametrització de S_{OY} i demostreu que la seva àrea és $2\pi \int_a^b |x| \sqrt{1 + [f'(x)]^2} dx$.
- (c) Calculeu de dues maneres diferents l'àrea del paraboloide obtingut fent girar entorn de l'eix OY la paràbola d'equació $y=x^2, x \in [0,2]$, parametritzant la superfície o bé utilitzant els apartats anteriors.
- 16. Considerem la superfície obtinguda fent girar la circumferència de centre (a,0) i radi R, on a > R > 0, al voltant de l'eix OY. Aquesta superfície s'anomena Tor. Dibuixeu-la i calculeu-ne l'àrea. Indicació: Useu l'exercici 15.
- 17. Donats $D \subseteq \mathbb{R}^2$ i $f \in \mathcal{C}^1(D)$, sigui S la gràfica de f.
 - (a) Doneu una parametrització de S i una expressió del vector normal de la parametrització, en cada punt $(x_0, y_0, z_0) \in S$.
 - (b) Demostreu que l'àrea de S és igual a $\iint_D \sqrt{1+f_x^2+f_y^2} \, dx \, dy$.
 - (c) Calculeu l'àrea de la gràfica de $f(x,y) = x^{3/2} + y^{3/2}, (x,y) \in [0,1] \times [0,1].$
- 18. En cadascun dels apartats següents, feu un esbós de la superfície S i calculeu el flux $\iint_S \mathbf{F} \cdot d\mathbf{S}$
 - (a) $\mathbf{F}(x,y,z) = (x+y+z,y+z,z)$, a través de la frontera del cub $0 \le x,y,z \le 2$, orientada vers l'exterior.
 - (b) $\mathbf{F}(x,y,z) = (x+y,y-x,z)$, a través de la superfície $S = \{(x,y,z) \mid z=4-x^2-y^2, z \geq 0\}$, orientada amb la normal cap amunt.
 - (c) $\mathbf{F}(x,y,z)=(x^3,x^2y,x^2z)$, a través de la frontera del conjunt definit per $x^2+y^2\leq a^2, 0\leq z\leq b$, orientada cap a l'exterior.
 - (d) $\mathbf{F}(x,y,z)=(0,0,z^2)$, a través de la superfície cònica $(z-1)^2=x^2+y^2,\,0\leq z\leq 1$, tancada amb el pla z=0, orientada cap a l'exterior
 - (e) $\mathbf{F}(x,y,z)=(x,y,1/3)$, a través de la superfície $S=\{(x,y,z)\mid x^2+y^2+z^2=1,\ z>0\}$, orientada amb la normal cap amunt.
 - (f) $\mathbf{F}(x,y,z) = (x,y,z)$, a través de la superfície $\frac{x^2}{4} + \frac{y^2}{9} + z^2 = 1$, z > 0, orientada amb la normal en sentit radial positiu.
 - (g) $\mathbf{F}(x,y,z) = (x,0,0)$, sobre la part de l'esfera unitat continguda dins el con $x^2 + y^2 = z^2$, $z \ge 0$, orientada amb la normal cap amunt.
 - (h) $\mathbf{F}(x,y,z) = (x,y^2,z)$, sobre la frontera de la regió tancada pel pla x+y+z=1 i els plans coordenats, orientada vers l'exterior.
 - (i) $\mathbf{F}(x,y,z) = x\mathbf{i} + z\mathbf{j} + y\mathbf{k}$, a través de la frontera de $V = \{(x,y,z) \mid x^2 + y^2 \le R^2, \ z \ge 0, \ x \ge z\}$, orientada cap a l'exterior.
 - (j) $\mathbf{F}(x,y,z) = (-2y,z,x)$, a través de $S = \{(x,y,z) \in \mathbb{R}^3 \mid 2z = x+1, 4x^2 + y^2 \le 12z^2\}$, orientada amb la normal apuntant cap avall.
- 19. Siguin $\mathbf{F} = (2, -3, 1)$ i S un cercle de radi a situat en un pla Π . Doneu l'equació dels plans Π per als quals el flux de \mathbf{F} a través de S és màxim.
- 20. Sigui **F** un camp vectorial i $F_r = \mathbf{F} \cdot \mathbf{r}$ la seva component radial, on $\mathbf{r}(x, y, z) = (x, y, z)$. Demostreu que el flux de **F** a través de l'esfera unitat és igual a $\pm \int_0^{2\pi} d\theta \int_0^{\pi} F_r \sin \varphi \, d\varphi$.

- 21. Sigui S el disc de centre (0,0,3) i radi 2 en el pla z=y+3 i D la seva projecció en el pla XY.
 - (a) Determineu i dibuixeu D.
 - (b) Donat el camp escalar f(x, y, z) = z y, expresseu $\iint_S f \, dS$ com una integral doble sobre D i calculeu-la.
- 22. Calculeu el centre de gravetat de l'octant determinat pels plans coordenats de l'esfera centrada a l'origen i de radi R amb densitat constant.
- 23. Calculeu la massa d'una superfície esfèrica S, de radi R, tal que en cada punt $P \in S$ la densitat de massa és igual a:
 - (a) La distància de P al centre de S.
 - (b) La distància de P al pol nord de S.
- 24. Calculeu el flux de calor a través de l'esfera unitat S, quan la temperatura en un punt $(x, y, z) \in S$ ve donada per T(x, y, z) = z. Doneu una interpretació física del resultat.

Solucions

1.

(a)
$$\sigma(u,v) = (0,u,v), \quad u,v \in \mathbb{R}$$

$$\begin{array}{lll} \text{(a)} & \sigma(u,v) = (0,u,v), & u,v \in \mathbb{R} \\ \text{(b)} & \sigma(x,z) = (x,x-1,z), & x,z \in \mathbb{R} \end{array} \\ \end{array} \qquad \begin{array}{lll} \text{(c)} & \sigma(x,y) = (x,y,3), & x \in [1,4], y \in [1,3] \\ \text{(d)} & \sigma(x,y) = (x,y,f(x,y)), & (x,y) \in D \end{array}$$

(b)
$$\sigma(x,z) = (x, x - 1, z), x, z \in \mathbb{R}$$

(d)
$$\sigma(x, y) = (x, y, f(x, y)), (x, y) \in D$$

(a) Pla
$$z = ax + by + c$$

(d) Con
$$x^2 + y^2 = z^2$$

(b) Cilindre parabòlic
$$z = x^2$$

(e) Esfera
$$x^2 + y^2 + z^2 = R^2$$

(c) Cilindre circular
$$x^2 + y^2 = R^2$$

(f) Paraboloide hiperbòlic
$$z = x^2 - y^2$$

3. (a)
$$T_u = (2u, 1, v), T_v = (-1, 1, u).$$

Parametrització regular excepte en (-1/2, -1/2). Pla tangent x + 4y - 3z = 5.

- (b) $T_u = (-1, 1, v), T_v = (1, 1, u)$. Parametrització regular. Pla tangent z = y 1.
- (c) $T_u = (\cosh v, \sinh v, 2u), T_v = (u \sinh v, u \cosh v, 0).$ Parametrització regular excepte on u = 0. Pla tangent 2x - z - 1 = 0.
- (a) $\pi(\sqrt{2} + \arcsin 1)$ (b) $4\pi a^2$ (c) $\pi a \sqrt{a^2 + h^2}$

(a)
$$\pi a \cdot \sqrt{a^2 + b^2}$$

- 5. (a) 8π (b) $-10\sqrt{14}$

- 6. (a) 2π (b) 0 (c) $\pm \frac{1}{2}$ (d) $\pm \frac{5\pi}{4}$

7. (a)
$$\sigma(\theta, y) = (a + R\cos\theta, y, b + R\sin\theta), \ \theta \in [0, 2\pi), \ y \in \mathbb{R}.$$
 $(x - a)^2 + (z - b)^2 = R^2.$

$$(x-a)^2 + (z-b)^2 = R^2$$

(b)
$$\sigma(r,\theta) = (r\cos\theta, r\sin\theta, rH/R), \ \theta \in [0,2\pi), \ r \in [0,R].$$
 $R^2z^2 = (x^2 + y^2)H^2.$

$$R^2z^2 = (x^2 + y^2)H^2$$
.

(c)
$$\sigma(t,z) = (\sqrt{z^2 + R^2} \cos t, \sqrt{z^2 + R^2} \sin t, z), t \in [0, 2\pi), z \in \mathbb{R}.$$

També $\sigma(\theta, t) = (R \cos \theta \cosh t, R \sin \theta \cosh t, R \sinh t), t \in \mathbb{R}, \theta \in [0, 2\pi).$

8. (a) Paraboloide hiperbòlic
$$z = \frac{-x^2 + y^2}{4}$$

(b) Tros de la superfície de revolució
$$x^2 + y^2 = \frac{1}{z^2}$$
, $\frac{1}{2} \le z \le 1$

9. (a)
$$T_{\theta} = R(-\sin\theta\sin\varphi, \cos\theta\sin\varphi, 0), T_{\varphi} = R(\cos\theta\cos\varphi, \sin\theta\cos\varphi, -\sin\varphi).$$

Parametrització regular excepte en els punts $(0, 0, \pm R)$. Pla tangent $\cos\theta_0 x + \sin\theta_0 y = R$.

- (b) $T_r = R(\cos \theta, \sin \theta, 1), T_\theta = (-r \sin \theta, r \cos \theta, 0).$ Parametrització regular excepte a l'origen. Pla tangent $x + y - \sqrt{2}z = 0$.
- 10. $\sigma(y,z)=(h(y,z),y,z),\ y,z\in\mathbb{R}.$ Pla tangent en $P=\sigma(y_0,z_0)$: $x-h(y_0,z_0)=\frac{\partial h}{\partial y}(y_0,z_0)\cdot(y-y_0)+\frac{\partial h}{\partial z}(y_0,z_0)\cdot(z-z_0).$
- 11. (a) $\sigma(z,\theta) = (\cos\theta,\sin\theta,z\cdot(|\cos\theta|+|\sin\theta|)), \quad \theta\in[0,2\pi),\,z\in[0,1]$
- (b) $\sigma(z,t) = (x(t), y(t), z \cdot f(x(t), y(t))), \quad t \in I, z \in [0,1]$
- 13. (a) $2\pi ah$ (b) $(-4+2\pi)a^2$ (c) $4\pi a^2$, si $a \le 1$; $4\pi a$, si a > 1 (d) $2\pi \frac{\sqrt{6}}{9}$
- 14. (a) $\frac{\pi a^5}{2}$ (b) $\pi \left(\frac{5\sqrt{5}}{12} \frac{11}{60} \right)$ (c) 0 (d) $\frac{2\pi}{3} (3\sqrt{6} 4)$ (e) $-\frac{\sqrt{6}}{6}$ (f) $\frac{3 + 5\sqrt{2}}{24}$
- 15. (a) $\sigma(x,\theta) = (x, f(x)\sin\theta, f(x)\cos\theta), \ \theta \in [0,2\pi), \ x \in [a,b].$
 - (b) $\sigma(x,\theta) = (x\cos\theta, f(x), x\sin\theta), \ \theta \in [0,2\pi), \ x \in [a,b].$
 - (c) $\frac{(17)^{3/2} 1}{6} \pi$
- 16. $2\pi a \cdot 2\pi R$
- 17. (a) $\sigma(x,y) = (x,y,f(x,y)), (x,y) \in D, \quad \vec{n} = (-f_x(x_0,y_0), -f_y(x_0,y_0), 1)$
 - (c) $\frac{4}{1215}(242\sqrt{22} 169\sqrt{13} + 16)$
- 18. (a) 24 (b) 24π (c) $\frac{5\pi a^4 b}{4}$ (d) $\frac{\pi}{6}$ (e) $\frac{5\pi}{3}$ (f) 12π (g) $\frac{8-5\sqrt{2}}{12}\pi$ (h) $\frac{5}{12}$ (i) $\frac{2R^3}{3}$ (j) -36π
- 19. 2x 3y + z = C
- 21. (a) $D = \left\{ (x,y) \in \mathbb{R}^2 : \frac{x^2}{4} + \frac{y^2}{2} \le 1 \right\}$ (b) $\iint_D 3\sqrt{2} \, dx \, dy = 12\pi$
- $22. \quad \left(\frac{R}{2}, \frac{R}{2}, \frac{R}{2}\right)$
- 23. (a) $4\pi R^3$ (b) $\frac{16}{3}\pi R^3$
- 24. 0