(min by
$$\frac{1}{q(t)} = \begin{pmatrix} w_{x} + \cos(\theta(t)) \\ w_{y} + \sin(\theta(t)) \\ \mu(t) \end{pmatrix} \text{ in } q = (n, y, 0)$$

$$\frac{1}{q(t)} = \begin{cases} w_{y} + \sin(\theta(t)) \\ \mu(t) \end{cases} = q_{y}$$
(2) $H(p_{y}, u) = p_{x}(w_{x} + \cos(\theta))$

$$+ p_{y}(w_{y} + \sin(\theta))$$

$$+ p_{y}(w_{y} + \sin(\theta))$$

$$+ p_{y}(w_{y} + \sin(\theta))$$
(3) $p(t) = -\frac{2H}{2q}[t] = \begin{pmatrix} 0 \\ p_{x} \sin(\theta) \\ -p_{y} \cos(\theta) \end{pmatrix}$
(4) $H[t_{y}] = -p^{2} = 1$

(5)
$$\mu(p_0)$$
 (6) $\{-1\}$ & p_0 (7) $\{-1\}$ & p_0 (8) $\{-1\}$ & p_0 (9) (1) $\{-1\}$ & p_0 (1) &

det
$$(A) = cos(G(A))^2 + sin(G(A))^2$$

det $(A) = L$

donc $P_{A} = P_{Y} = 0$

donc $H[Y] = 0$ or

 $H(Y) = 0$ or

 $H(Y) = L$

donc $0 = 1 = 1$ Contradiction,

y a w