Einleitung Aufbau Algorithmen Beispiele - Demo Schluss

cp-logic

Umsetzung der Konzepte aus der Vorlesung

Diskrete Mathematik und Logik
in eine Toolbox fur Studierende (Bachelorarbeit)

Adrianus Kleemans

22.05.2014

Inhaltsverzeichnis

- Einleitung
- 2 Aufbau
- 3 Algorithmen
- 4 Beispiele Demo
- Schluss

GUI der Toolbox

Motivation

Ausgangspunkt: Skript **Diskrete Mathematik und Logik** Im Skript werden viele Algorithmen beschrieben:

Definition 123 The \rightarrow -reduction $\rho(A)$ of a formula A is inductively defined as follows:

- 1. If A is atomic, then $\rho(A) := A$.
- 2. If A is a formula $\neg B$, then $\rho(A) := \neg \rho(B)$.
- 3. If A is a formula $B \vee C$, then $\rho(A) := \rho(B) \vee \rho(C)$.

Ideen:

- Lernprozess durch Ausprobieren
- Schnelles Feedback über Korrektheit

Anforderungen an das Endprodukt

- Nähe zum Skript (gleiche Namen und Funktionen)
- Abbildung aller in der Vorlesung gewichteten Teile des Skripts
- Detaillierte Fehlerbehandlung, "fail safe"
- Graphische Darstellung (z.B. der Deduktionsketten)
- Einfache Eingabemöglichkeit für Benutzer
- Nachvollziehbarkeit (History, gespeicherte Formeln)
- Laden von Formeln aus Dateien

Anforderungen an die Technologie

Diverse Anforderungen, welche die Möglichkeiten einschränkten:

- Unicode-Unterstützung (∨, ∧, ¬, ⊤, …)
- Geeignete Datenstrukturen (verschachtelte Listen, assoziative Arrays, binäre Bäume)
- Unabhängigkeit vom Betriebssystem
- Lesbarer Code, offen für Erweiterungen

Verwendete Technologien

Einige verwendete Technologien:

- Programmiersprache: Python
- GUI: QT4 (pyside), pygame
- Versionsverwaltung: git
- Unit tests: Modul unittest
- Unterstützende Technologien, z.B. pyinstaller zur Paketierung

Methoden

Entwicklung mit einigen recht intuitiven Methoden:

- TDD (Test Driven Development): Unit Tests
- Orientierung der Tests an Use cases (direkt aus Skript und Übungen)
- Grundklasse: Formula, andere Klassen bauen darauf auf
- Interaktive Erarbeitung, Feedback der Betreuer

Test Driven Development

Zuerst die Spezifikation des Testfalls:

Danach in der Formel-Klasse umsetzen, bis der Testfall erfolgreich durchläuft. ⇒ Auch später noch Nutzen der Tests als Regressionstests!

Ein paar Kennzahlen

Ein paar Kennzahlen:

- 35 Seiten Bericht + zusätzliche Dokumentation im Code für \sim 70 Funktionen
- ullet insgesamt ${\sim}120$ Tests, ein Grossteil für die Formel-Klasse
- allermeisten Anforderungen wurden umgesetzt

Klassen-Aufteilung

UNIVERSITÄT

Aufbau (UML) I

UML Normalformen Formel-Objekte Funktionsübersicht Fehlermeldungen

Aufbau (UML) II

Klassen

- Main Einstiegspunkt
- **GUI** Python/QT4-Benutzeroberfläche (Fenster mit Menü)
- Formula Formel (mit Normalformen, Sufos, etc.)
- Tools Weiterführende Funktionen (Erfüllbarkeit, Klauselmengen, lineare Suche, Tiefensuche etc.)
- TreeGUI Deduktionsketten-Baum (Darstellung)
- Node Deduktionsketten-Knoten (rekursiv berechnet)
- Exceptions eigene Fehlerbehandlung
- Tests Funktionale Tests, Regressionstests

Normalformen

Basisformel $A = p_1 \lor p_2 \to \top$.

• pedantic(): Hierarchische Struktur: \neg vor $\lor \land$ vor \rightarrow

$$pedantic(A) = (p_1 \lor p_2) \to \top$$

• nnf(): Implikationen, Negationen nur vor atomaren Prop.

$$nnf(A) = (\neg p_1 \wedge \neg p_2) \vee \top$$

• cnf(): Konstanten ersetzen, $p_1 \lor (p_2 \land p_3) \to (p_1 \lor p_2) \land (p_1 \lor p_3)$

$$cnf(A) = (\neg p_1 \lor (p_0 \lor \neg p_0)) \land (\neg p_2 \lor (p_0 \lor \neg p_0)) \boldsymbol{u}^b$$

Übersicht Abhängigkeiten Normalformen

Modellierung Formel-Klasse I

2 Ideen: Entweder die einzelnen Normalformen als einzelne Objekte abbilden...

Modellierung Formel-Klasse II

...oder Formel mit Normalformen als einzelnes Objekt abbilden.

⇒ Beide Ansätze Vor- und Nachteile.

In meinem Konzept zweiter Vorschlag sinnvoller (Metavar.)

Funktionsübersicht

Die wichtigsten Funktionen:

- nnf(), cnf(), pedantic() Normalformen
- length() Länge
- sufo() Subformulas
- sat() Test auf Erfüllbarkeit
- clause_set() Klauselmengen
- evaluate() Evaluiert Formeln auf Wahrheitswert
- resolution() Resolution
- dchains() Deduktionsketten

Fehlermeldungen

Katalog von Fehlermeldungen zur Hilfe des Benutzers:

- Ungültige Zeichen: p_0a
- Proposition ohne Index: p
- Nicht verknüpfte Propositionen: p₀p₁
- Alleinstehende Indizes oder Negation: $p_0 \lor 2$ oder $p_0 \lor \neg$
- Ungültige Konjunktion: $p_0 \wedge \vee p_1$
- Gemischte \land und \lor auf selber Ebene: $p_0 \land p_1 \lor p_2$
- Ungültige Implikation: $\rightarrow p_0$ oder $p_0 \rightarrow p_1 \rightarrow p_2$
- Ungültige Klammernsetzung: $((p_0 \land p_1) \lor p_2)$
- ..

Benutzereingabe

Verarbeitung der Eingabe durch Benutzer:

Suche in Formeln

Als Beispiel für die Auflösung von Negationen (NNF) müssen zusammengehörige Klammernpaare identifiziert werden.

$$p_0 \land (p_1 \lor (\top \lor \neg p_1)) \rightarrow p_2$$

⇒ Einfachste Möglichkeit, die zugehörige Klammer zu finden?

Konzept Formeltiefe

Einführung des Konzepts der Tiefe. Zerlegung einer Formel

$$p_0 \wedge (\neg p_1 \vee (p_2 \wedge \neg p_3) \vee (p_1 \wedge (\top \vee p_3)))$$

in verschiedene Ebenen:

Satisfiability

Pseudocode:

- Wandle Formel in NNF um
- 2 Sammle Anzahl *n* atomare Propositionen
- **3** Für alle 2^n Valuationen, tue folgendes:
 - Setze Valuation an Stelle der Propositionen ein
 - Evaluiere den Wahrheitswert und reduziere diesen auf true oder false
 - Falls true, beende und gib diese Valuation aus.

Auflösung durch evaluate(), z.B.:

$$\begin{matrix} \top \land (\top \lor \bot) \\ \\ \end{matrix}$$

Klammern setzen

Formeln für Meta-Veriablen können nicht 1:1 eingesetzt werden:

$$>> A = p_0 \land \neg p_1$$
$$>> \neg A$$
$$[0] \neg p_0 \land \neg p_1$$

Zusätzliches Einfügen von Klammern entschärft dies:

$$>> \neg A$$

$$[0]\neg(p_0 \land \neg p_1)$$

Problem: Aufruf interner Funktionen verändert Formel!

 $u^{\scriptscriptstyle \mathsf{D}}$

$$(p_0 \wedge \neg p_1), ((p_0 \wedge \neg p_1)), (((p_0 \wedge \neg p_1))), ...$$

Klammern reduzieren

Es wird ein Verfahren benötigt, um Klammern zu reduzieren.

⇒ Festhalten der Ebenenübergänge. Wird eine Ebene auf beiden Seiten "übersprungen", ist der Übergang unnötig.

$$p_0 \vee \underbrace{\left(\underbrace{p_1 \wedge \neg p_2}_{0-1}\underbrace{1-2}\right)}_{1-2}$$

Findet dazwischen ein Ubergang statt, werden Klammern benötigt:

$$p_0 \lor \underbrace{\left(\underbrace{}_{0-1}\underbrace{}_{1-2}p_1 \land \neg p_2\underbrace{}_{2-1}\lor\underbrace{}_{1-2}p_0 \lor p_1\underbrace{}_{2-1}\underbrace{}_{1-0}\underbrace{}_{1-0}\underbrace{}_{1-0}\right)}_{2 I I}^b$$

Demo

Einige Beispiele:

- Eingabe von Hand und per Datei sample_file.formula
 - Formeln
 - Metavariablen
 - Verschachtelungen
 - Normalformen
- Satisfiability
- Deduktionsketten dchains.formula

Herausforderungen I

Vorsicht vor "lazy evaluation" (rekursive Knotenberechnung):

```
def traverse():
    ...
    return ( child1.traverse() and child2.traverse() )
```

\Rightarrow Baum wird nicht immer vollständig gezeichnet!

```
def traverse():
    ...
    a = child1.traverse()
    b = child2.traverse()
    return ( a and b )
```


Mit Zwischenspeichern werden Zwischenschritte ausgeführt.

Herausforderungen II

Komplexe Ausdrücke sollten evaluiert werden können:

$$>>$$
 length(cnf(A AND p0 $\land \neg p_3$ AND NOT B))

- Auflösung von Metavariablen
- Verknüpfung von Metavariablen, in Kombination mit Formeln
- gemischter ASCII- und Unicode-Input
- Pipeline von Funktionsaufrufen
- \Rightarrow Plausibilisierungen auf jeder Stufe

Herausforderungen III

Weitere Herausforderungen:

- "Saubere" und stabile Formel-Klasse als Basis
- Eigene Entscheidungen ergänzend zum Skript (z.B. pedantic-Form)
- Unicode-Unterstützung Linux/Windows
- Skalierbares & scrollbares Fenster für dchains

Fazit

Fazit:

- Getestete, stabile Applikation mit graphischer Oberfläche
- Sehr viel gelernt (Logik, Zusammenspiel Technologie, GUI)
- Aufwand schwer abzuschätzen (z.B. Formel-Klasse)
- Umgehen mit Anforderungen, Änderungen, Prioritäten

Fragen?

Fragen?

