Lecture 10 Convolutional and Deep Neural Networks

EE-UY 4563/EL-GY 9123: INTRODUCTION TO MACHINE LEARNING

PROF. SUNDEEP RANGAN

Outline

- Motivation: ImageNet Large-Scale Visual Recognition Challenge (ILSVR)
 - ☐ Deep Networks and Feature Hierarchies
 - ■2D convolutions
 - □ Convolutional neural networks
 - ☐ Creating and visualizing convolutional layers in Keras
 - Backpropagation training in CNNs
 - □ Exploring VGG16: A state-of-the-art deep network

Large-Scale Image Classification

- □ Pre-2009, many image recognition systems worked on relatively small datasets
 - MNIST: 10 digits
 - CIFAR 10 (right)
 - CIFAR 100
 - 0
- □Small number of classes (10-100)
- \square Low resolution (eg. 32 x 32 x 3)
- ☐ Performance saturated
 - Difficult to make significant advancements

https://www.cs.toronto.edu/~kriz/cifar.html

ImageNet (2009)

Geological formation, formation

(geology) the geological features of the earth

1808 pictures 86.24% Popularity

- ☐ Better algorithms need better data
- ☐ Build a large-scale image dataset
- □2009 CVPR paper:
 - 3.2 million images
 - Annotated by mechanical turk
 - Much larger scale than any previous
- ☐ Hierarchical categories

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009, June). Imagenet: A large-scale hierarchical image database. In *Computer Vision and Pattern Recognition*, 2009. CVPR 2009. IEEE Conference on (pp. 248-255). IEEE.

ILSVRC

- ☐ ImageNet Large-Scale Visual Recognition Challenge
- ☐ First year of competition in 2010
- ☐ Many developers tried their algorithms
- Many challenges:
 - Objects in variety of positions, lighting
 - Occlusions
 - Fine-grained categories
 (e.g. African elephants vs. Indian elephants)
 - 0

Deep Networks Enter 2012

- □2012: Stunning breakthrough by the first deep network
- "AlexNet" from U Toronto
- ☐ Easily won ILSVRC competition
 - ∘ Top-5 error rate: 15.3%, second place: 25.6%
- □Soon, all competitive methods are deep networks

Alex Net

- □ Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton University of Toronto, 2012
- ☐ Key idea: Build a very deep neural network
- □ 60 million parameters, 650000 neurons
- □ 5 conv layers + 3 FC layers
- ☐ Final is 1000-way softmax

Outline

- ☐ Motivation: ImageNet Large-Scale Visual Recognition Challenge (ILSVR)
- Deep Networks and Feature Hierarchies
 - ■2D convolutions
 - □ Convolutional neural networks
 - ☐ Backpropagation training in CNNs
 - Exploring VGG16: A state-of-the-art deep network

Neural Network Units

- □Why do deep networks work?
- □ Recap: Neural networks composed of basic units:
 - \circ z = one linear output (in a hidden or output layer)
 - $x = (x_1, ..., x_N)$ = input to the layer
 - w = weight vector
 - \circ *b* = bias

Linear Feature

■Suppose activation is a hard threshold:

$$g_{act}(z) = \begin{cases} 1 & z > 0 \\ 0 & z < 0 \end{cases}$$

- ☐ Then, hidden unit divides input space into two half spaces
- ☐ Linearly separated
- ☐ Each unit can learn a linear feature
 - Classifies its input by being in a half space
- ☐ Shape of the feature defined by weight *w*

Tuning to a Feature

- \square Each unit will output a large value when z is large.
- \square When is z is large?
- Recall: $z = \mathbf{w}^T \mathbf{x} + b = ||\mathbf{w}|| ||\mathbf{x}|| \cos \theta + b$
- □Conclusion: z is maximized when $\theta = 0 \Rightarrow x = \alpha w$
 - \circ x should be aligned with w
- \square Say that unit is tuned to feature w

Classifying a Nonlinear Region

- Nonlinear regions
- ☐ Build from linear regions
- ☐ Picture to left:
 - Output of Tensorboard
 - Tool in TensorFlow
 - Provided for visualizing neural nets

From Kaz Sato, "Google Cloud Platform Empowers TensorFlow and Machine Learning"

What about a More Complicated Region?

Use Multiple Layers

- ☐ More hidden layers
- ☐ Hierarchies of features
- ☐ Generate very complex shapes

Can you Classify This?

Build a Deep Neural Network

From: Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations, Honglak Lee et al.

Biological Inspiration

☐ Processing in the brain uses multi-layer processing

History and Why Now?

- ☐ Early works:
 - Using multiple layers dates to 1965 (Ivakhenko and Lapa)
 - Convolutional networks with pooling (Fukushima, 1979)
 - Back-propagation with a CNN on MNIST (LeCun, 1993)
- ☐ But, larger networks were a challenge:
 - Vanishing gradient
 - Lack of data, over-fitting
 - Computational power
- ■AlexNet:
 - ReLU and dropout

Outline

- ☐ Motivation: ImageNet Large-Scale Visual Recognition Challenge (ILSVR)
- ☐ Deep Networks and Feature Hierarchies
- 2D convolutions
 - □ Convolutional neural networks
 - ☐ Backpropagation training in CNNs
 - □ Exploring VGG16: A state-of-the-art deep network

Local Features

- ☐ Early layers in deep neural networks often find local features
- ☐ Small patterns in larger image
 - Examples: Small lines, curves, edges
- ☐ Build more complex classification from the local features

Local Features

- ☐ How do we find local features?
- ☐ A localization problem.
- □ Example: Find the digit "3" in the form

HANDWRITING SAMPLE FORM

Localization via a Sliding Window

- ☐ Simple idea: Find local feature by sliding window
- □ Large image: $X N_1 \times N_2$ (e.g. 512 x 512)
- \square Small filter: $W K_1 \times K_2$ (e.g. 8 x 8)
- \square At each offset (i, j) compute:

$$Z[i,j] = \sum_{k_1=0}^{K_1-1} \sum_{k_2=0}^{K_2-1} W[k_1, k_2] X[i+k_1, j+k_2]$$

- Correlation of W with image box starting at (i, j)
- \circ Z[i,j] is large if feature is present around (i,j)

Filter W	Image X	Z[i,j]
4	41312914 11904596 82716353	High
4	41312914 119045 6 827163 3	Low

Convolution in 1D

- □ Sliding window is similar to convolution (will make connection precise below)
- ☐ Given two signals:
 - ∘ *x*, length *N*
 - ∘ *w*, length *K*
- □Convolution is:

$$z[n] = \sum_{k=0}^{K-1} w[k]x[n-k] = \sum_{k=0}^{K-1} w[k]x[n-k]$$

- Typically zero pad for samples outside boundary
- Output length is M = N + K 1
- \square Write z = w * x

1D Convolution Example

- \square Example x = [1,2,3,4], w = [1,2]
- \square Number outputs = 4+2-1=5
- **□**Computations:

$$z[0] = w[0]x[0] = (1)(1) = 1$$

 $z[1] = w[0]x[1] + w[1]x[0] = 2 + 2 = 4$
 $z[2] = w[0]x[2] + w[1]x[1] = 3 + 4 = 7$
 $z[3] = w[0]x[3] + w[1]x[2] = 4 + 6 = 10$
 $z[4] = w[1]x[3] = 8$

☐ Can be computed via flip and shift method

Properties of Convolution

- **□**Linearity
- □ Delta function:

$$x_k * \delta_k = x_k, \qquad \delta_k = \begin{cases} 1 & k = 0 \\ 0 & k \neq 0 \end{cases}$$

- \square Shifting: Shift input by $L \Rightarrow$ Output shifted by L

$$z_k = x_k * y_k \Rightarrow z_{k-L} = x_{k-L} * y_k$$

☐ Many more: See a signals & systems class

Convolution in 2D

- ☐ Easily extends to higher dimensions
- ☐ Given two images:
 - \circ x, size $N_1 \times N_2$
 - \circ *w*, size $K_1 \times K_2$
- □Convolution in 2D is:

$$z[n_1, n_2] = \sum_{k_2=0}^{K_2-1} \sum_{k_1=0}^{K_2-1} w[k_1, k_2] x[n_1 - k_1, n_2 - k_2]$$

- Output length is M = N + K 1

Convolution and Matched Filter

☐ Recall, we want the sliding correlation:

$$Z[i,j] = \sum_{k_1=0}^{K_1-1} \sum_{k_2=0}^{K_2-1} W[k_1, k_2] X[i+k_1, j+k_2]$$

- \square Given kernel W, define the matched filter: $\widetilde{W}[k_1, k_2] = W[K_1 k_1 1, K_2 k_2 1]$
 - Flip horizontally and vertically
- ☐Then,

$$Z[i,j] = (\widetilde{W} * X)[i,j]$$

lacktriangle Conclusion: Sliding correlation with $W[k_1,k_2]$ = Convolution with $\widetilde{W}[k_1,k_2]$

Terminology

□ In signal processing and math, convolution includes flipping:

$$z[n_1, n_2] = \sum_{k_2=0}^{K_2-1} \sum_{k_1=0}^{K_2-1} w[k_1, k_2] x[n_1 - k_1, n_2 - k_2]$$

- For this class, we will call this convolution with reversal
- ☐ But, in many neural network packages (including Keras), convolution does not include flipping:

$$z[n_1, n_2] = \sum_{k_2=0}^{K_2-1} \sum_{k_1=0}^{K_2-1} w[k_1, k_2] x[n_1 + k_1, n_2 + k_2]$$

Will call this convolution without reversal

Boundary Conditions

- ☐ Suppose inputs are
 - $\circ x$, size $N_1 \times N_2$, w: size $K_1 \times K_2$, $K_1 \leq N_1$, $K_2 \leq N_2$
 - z = x * w (without reversal) $z[n_1, n_2] = \sum_{k_1 = 0}^{K_2 1} \sum_{k_2 = 0}^{K_2 1} w[k_1, k_2] x[n_1 + k_1, n_2 + k_2]$
- □ Different ways to define outputs
- □ Valid mode: $0 \le n_1 < N_1 K_1 + 1$, $0 \le n_2 < N_2 K_2 + 1$
 - Requires no zero padding
- □ Same mode: Output size $N_1 \times N_2$
 - Usually use zero padding for neural networks
- \square Full mode: Output size $N_1 + K_1 1 \times N_2 + K_2 1$
 - Not used often in neural networks

Convolution 2D Example

■ Kernel

$$W = \widetilde{W} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

□ Compute convolution in valid region

Image

Convolved Feature

https://stats.stackexchange.com/questions/199702/1d-convolution-in-neural-networks

Example Convolution in Python

- ☐ Load an image
- ☐ Use skimage package
 - Many routines for image processing

im = skimage.data.camera()
disp_image(im)

Example Kernel

□ Sobel filters:

$$G_{\chi} = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}, \qquad G_{\chi} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

- $\Box \text{Define } Z_{\chi} = G_{\chi} * X, \quad Z_{y} = G_{y} * X \text{ (without reversal)}$
- □ Called gradient filters since:
 - $Z_x[i,j] = Z_y[i,j] = 0$ in areas where image is constant
 - $Z_x[i,j] = \text{large positive on strong decrease in x-direction} = \text{vertical edge from white to black}$
 - $Z_x[i,j] = \text{large negative on strong increase in x-direction} = \text{vertical edge from black to white}$
 - $\circ Z_{\gamma}[i,j]$ is similarly sensitive to horizontal edges

Computing Gradients in Scipy

```
Gx = np.array([[1,0,-1],[2,0,-2],[1,0,-1]]) # Gradient operator in the x-direction Gy = np.array([[1,2,1],[0,0,0],[-1,-2,-1]]) # Gradient operator in the y-direction
```

To perform the convolution, we must first flip the filters in the x and y-directions.

```
Gxflip = np.fliplr(np.flipud(Gx))
Gyflip = np.fliplr(np.flipud(Gy))
```

```
# Perform the convolutions
imx = scipy.signal.convolve2d(im, Gxflip, mode='valid')
imy = scipy.signal.convolve2d(im, Gyflip, mode='valid')
```


- ☐ Remember to flip
 - Horizontally and vertically
- Note mode and shape

Input shape = (512, 512)
Output shape = (510, 510)

Using Convolutions for Averaging

- ☐ Kernels can also take weighted averages
 - Several kernels: Gaussian, uniform, ...

9x9 Gaussian blur kernel

□ Convolution creates a blurred version of image

Original

Uniform kernel

Gaussian kernel

Outline

- ☐ Motivation: ImageNet Large-Scale Visual Recognition Challenge (ILSVR)
- ☐ Deep Networks and Feature Hierarchies
- ■2D convolutions
- Convolutional neural networks
 - ☐ Creating and visualizing convolutional layers in Keras
 - ☐ Backpropagation training in CNNs
 - □ Exploring VGG16: A state-of-the-art deep network

Classic CNN Structure

- ☐ Alex Net example
- ☐ Each convolutional layer has:
 - 2D convolution
 - Activation (eg. ReLU)
 - Pooling or sub-sampling

Convolutional layers

2D convolution with Activation and pooling / sub-sampling

Fully connected layers

Matrix multiplication & activation

Convolutional Inputs & Outputs

- □Inputs and outputs are images with multiple channels
 - Number of channels also called the depth
- ☐ Can be described as tensors
- □Input tensor, X shape (N_1, N_2, N_{in})
 - N_1 , N_2 = input image size
 - N_{in} = number of input channels
- \square Output tensor, Z shape (M_1, M_2, N_{out})
 - M_1 , M_2 = output image size
 - N_{out} = number of output channels

Convolutions with Multiple Channels

- ■Weight and bias:
 - W: Weight tensor, size $(K_1, K_2, N_{in}, N_{out})$
 - b: Bias vector, size N_{out}
- □ Convolutions performed over space and added over channels

$$Z[i_1, i_2, m] = \sum_{k_1=0}^{K_1-1} \sum_{k_2=0}^{K_2-1} \sum_{n=0}^{N_{in}-1} W[k_1, k_2, n, m] X[i_1 + k_1, i_2 + k_2, n] + b[m]$$

- \square For each output channel m, input channel n
 - Computes 2D convolution with W[:,:,n,m]
 - Sums results over *n*

Activation and Sub-Sampling

- □ Convolution typically followed by activation and pooling
- ☐ Activation, typically ReLU
 - Zeros out portions of image
- □Sub-sampling
 - Downsample output after activation
 - Different methods (striding, sub-sampling or max-pooling)
 - Output combines local features from adjacent regions
 - Creates more complex features over wider areas
- ☐ Details for sub-sampling not covered in this class
 - See web for more info

Convolution vs Fully Connected

- □ Convolution exploits translational invariance
 - Same features is scanned over whole image
- ☐ Greatly reduces number of parameters
- ☐ Example Consider first layer in LeNet
 - 32 x 32 image filtered by 6 channels 5 x 5 each
 - Creates 6 x 28 x 28 outputs (edges removed in convolution)
 - Fully connected would require 32 x 32 x 6 x 28 x 28 = 4.9 million parameters!
 - Convolutional layer requires only 6 x 5 x 5 = 125 parameters (plus bias terms)
- ☐ Reserve fully connected layers for last few layers.

Outline

- ☐ Motivation: ImageNet Large-Scale Visual Recognition Challenge (ILSVR)
- □ Deep Networks and Feature Hierarchies
- ■2D convolutions
- □ Convolutional neural networks
- Creating and visualizing convolutional layers in Keras
 - ☐ Backpropagation training in CNNs
 - Exploring VGG16: A state-of-the-art deep network

Creating Convolutional Layers in Keras

- ☐ Done easily with Conv2d
 - Specify input_shape (if first layer), kernel size and number of output channels
- ☐ To illustrate:
 - We create a network with a single convolutional layer
 - Set the weights and biases (normally these would be learned)
 - Run input through the layer (using the predict command)
 - Look at the output

Example 1: Gradients of a BW image

- ☐ Create simple convolutional layer
- □Input: BW image, $N_{in} = 1$ input channel
- ☐ Two output channels: x- and y-gradient, $N_{out} = 2$

Input.
One channel
Shape = (512,512,1)

Filters

Two gradient

Create a Layer in Keras

```
model.summary()

Layer (type) Output Shape Param #

conv2d (Conv2D) (None, 510, 510, 2) 20

Total params: 20
Trainable params: 20
Non-trainable params: 0
```

- ☐ Create a single layer model
- ☐ Use the Conv2D layer
- **□**Specify
 - Kernel size
 - Number of output channels
 - Input shape

Set the Weights

```
layer = model.get_layer('conv2d')
W, b = layer.get_weights()
print("W shape = " + str(W.shape))
print("b shape = " + str(b.shape))
W shape = (3, 3, 1, 2)
b shape = (2,)
```

```
Read the weights and the shapes
```

```
W[:,:,0,0] = Gx
W[:,:,0,1] = Gy
b = np.zeros(nchan_out)
layer.set_weights((W,b))
```

```
☐ Set the weights to the two filters
```

■Normally, these would be trained

```
x = im.reshape(batch_shape)
y = model.predict(x)
```

☐Run the input through the network

Perform Convolution in Keras

- ☐ Create input x
 - Need to reshape
- ☐ Use predict command to compute output
- ☐Generates two output channels y

x = im.reshape(batch_shape) y = model.predict(x)

Input x

Input

*

Filters

Two gradients

y[:,:,0] y[:,:,1]

chan 0 out

Example 2: Color Input

- □Input: Single color input
 - $N_{in} = 3$ input channels
 - Input size per sample = 368 x 487 x 3
- □Output: Filter with four different color filters
 - Each kernel is 9 x 9
 - $N_{out} = 4$ output channels

Image shape is (368, 487, 3)

Create the Layer in Keras

```
☐ Model with single layer
```

 \square Input shape = (368, 488,3)

```
model.summary()
```

□Output shape = (360,479,4)

```
Layer (type) Output Shape Param #

conv2d (Conv2D) (None, 360, 479, 4) 976
```

Total params: 976
Trainable params: 976
Non-trainable params: 0

Set the Weights

```
# Color weights
color_wt = np.array([
      [1,      -0.5, -0.5],  # Sensitive to red
      [-0.5,      1, -0.5],  # Sensitive to green
      [-0.5, -0.5,      1],  # Sensitive to blue
      [ 0.5,      -1,      0.5],  # Sensitive to red-blue mix
])

# Gaussian kernel over space
krow, kcol = kernel_size
G = gauss_kernel(krow,kcol,sig=2)

# Multiply by weigthing color
W = G[:,:,None,None]*color_wt.T[None,None,:,:]
b = np.zeros(b.shape)
layer.set_weights((W,b))
```

☐ Consider weight of the form:

$$W[i,j,k,\ell] = G[i,j]C[\ell,k]$$

- $\square G[i,j]$ = filter over space
 - Use Gaussian blur
- $\square C[\ell, k]$ = filter over channel
 - \circ Weighting of color k in output channel ℓ
- ☐ Each filter:
 - Average over space and selects color
- ☐ Again, normally we would train the weights

Perform Convolution

Input, x (3 channels)

*

Filters, W (9,9,3,4)

y[:,:,0]

y[:,:,1]

y[:,:,2]

y[:,:,3]

Output y 4 channels

First layer filter in AlexNet

- □ AlexNet first layer
 - 96 filters
 - Size 11 x 11 x 3
 - Applied to image of 224 x 224 x 3
- ☐ What do these learned features look like?
- Selective to basic low-level features
 - Curves, edges, color transitions, ...

Outline

- ☐ Motivation: ImageNet Large-Scale Visual Recognition Challenge (ILSVR)
- ☐ Deep Networks and Feature Hierarchies
- ■2D convolutions
- □ Convolutional neural networks
- ☐ Creating and visualizing convolutional layers in Keras
- Backpropagation training in CNNs
 - □ Exploring VGG16: A state-of-the-art deep network

Indexing Multi-Layer Networks

- ☐ Similar to single layer NNs
 - But must keep track of layers
- □ Consider batch of image inputs:
 - $\circ X[i,j,k,n]$, (sample,row,col,channel)
- \square Input tensor at layer ℓ :
 - $\circ U^{\ell}[i,j,k,n]$ for convolutional layer
 - $\circ U^{\ell}[i,n]$ for fully connected layer
- □Output tensor from linear transform:
 - $\circ Z^{\ell}[i,j,k,n] \text{ or } Z^{\ell}[i,n]$
- □Output tensor after activation / pooling:
 - $U^{\ell+1}[i,j,k,n]$ or $U^{\ell+1}[i,n]$

Back-Propagation in Convolutional Layers

Loss function

 $J(\theta)$

□Convolutional layer in forward path

$$Z^{\ell} = W^{\ell} * U^{\ell} + b^{\ell}$$

- □ During back-propagation:
 - Obtain gradient tensor from upstream layers $\frac{\partial J}{\partial Z^{\ell}}$
 - Need to compute downstream gradients:

$$\frac{\partial J}{\partial W^{\ell}}$$
, $\frac{\partial J}{\partial b^{\ell}}$, $\frac{\partial J}{\partial U^{\ell}}$

 $Z^{\ell} = W^{\ell} * U^{\ell} + b^{\ell}$

Convolution

$$W^\ell$$
, b^ℓ

Gradient Details

■Write convolution as:

$$Z[i_1, i_2, m] = \sum_{k_1=0}^{K_1-1} \sum_{k_2=0}^{K_2-1} \sum_{n=0}^{N_{in}-1} W[k_1, k_2, n, m] U[i_1 + k_1, i_2 + k_2, n] + b[m]$$

- \circ Drop layer index ℓ
- \square In backpropagation, we receive gradient tensor: $\frac{\partial J}{\partial Z[i_1,i_2,m]}$
- First compute gradient wrt weights: $\frac{\partial J}{\partial W[k_1,k_2,n,m]}$

Gradient With Respect to Weights

☐ Gradient wrt weights:

$$\frac{\partial Z[i_1, i_2, m]}{\partial W[k_1, k_2, n, m]} = U[i_1 + k_1, i_2 + k_2, n]$$

■By chain rule:

$$\frac{\partial J}{\partial W[k_1, k_2, n, m]} = \sum_{\substack{i_1 = 1 \ N_1}}^{N_1} \sum_{\substack{i_2 = 1}}^{N_2} \frac{\partial Z[i_1, i_2, m]}{\partial W[k_1, k_2, n, m]} \frac{\partial J}{\partial Z[i_1, i_2, m]}$$

$$= \sum_{\substack{i_1 = 1 \ i_2 = 1}}^{N_1} \sum_{\substack{i_2 = 1}}^{N_2} U[i_1 + k_1, i_2 + k_2, n] \frac{\partial J}{\partial Z[i_1, i_2, m]}$$

- ☐ Gradient wrt weights can be computed via convolution

 Convolve input U with gradient tensor $\frac{\partial J}{\partial Z[i_1,i_2,m]}$
- \square Similar computations for gradients with respect to $\frac{\partial J}{\partial h}$, $\frac{\partial J}{\partial u}$
 - See homework

GPUs

- ■State-of-the-art networks involve millions of parameters
- ☐ Require enormous datasets
- ☐ Conventional processors cannot train in reasonable time

- Originally for graphics acceleration
- Now essential for deep learning
- ☐ Cannot use the GPU on your laptop
- ☐But, can:
 - Rent GPU instances in cloud (~\$0.80 / hour)
 - Purchase GPU workstation (~\$2000)

Batch Size	Training Time CPU	Training Time GPU	GPU Speed Up
64 images	64 s	7.5 s	8.5X
128 images	124 s	14.5 s	8.5X
256 images	257 s	28.5 s	9.0X

Speed up on 2012 ImageNet winner using Nvidia Tesla K40 From http://www.nvidia.com/content/events/geoInt2015/LBrown_DL.pdf

Much faster results available today

Outline

- ☐ Motivation: ImageNet Large-Scale Visual Recognition Challenge (ILSVR)
- ☐ Deep Networks and Feature Hierarchies
- ■2D convolutions
- □ Convolutional neural networks
- ☐ Creating and visualizing convolutional layers in Keras
- Backpropagation training in CNNs
- Exploring VGG16: A state-of-the-art deep network

Pre-Trained Networks

- ■State-of-the-art networks take enormous resources to train
 - Millions of parameters
 - Often days of training, clusters of GPUs
 - Extremely expensive
- ☐ Pre-trained networks in Keras
 - Load network architecture and weights
 - Models available for many state-of-the-art networks
- □Can be used for:
 - Making predictions
 - Building new, powerful networks (see lab)

Model	Size	Top-1 Accuracy	Top-5 Accuracy	Parameters	Depth
Xception	88 MB	0.790	0.945	22,910,480	126
VGG16	528 MB	0.715	0.901	138,357,544	23
VGG19	549 MB	0.727	0.910	143,667,240	26
ResNet50	99 MB	0.759	0.929	25,636,712	168
InceptionV3	92 MB	0.788	0.944	23,851,784	159
InceptionResNetV2	215 MB	0.804	0.953	55,873,736	572
MobileNet	17 MB	0.665	0.871	4,253,864	88

https://keras.io/applications/

VGG16

- □ From the Visual Geometry GroupOxford, UK
- ☐Won ImageNet ILSVRC-2014
- ☐ Remains a very good network
- ☐Will load this network today

Model	top-5 classification error on ILSVRC-2012 (%)			
Model	validation set	test set		
16-layer	7.5%	7.4%		
19-layer	7.5%	7.3%		
model fusion	7.1%	7.0%		

http://www.robots.ox.ac.uk/~vgg/research/very_deep/

K. Simonyan, A. Zisserman

<u>Very Deep Convolutional Networks for Large-Scale Image Recognition</u> arXiv technical report, 2014

Loading the Pre-Trained Network

```
from keras.applications.vgg16 import VGG16
from keras.preprocessing import image
from keras.applications.vgg16 import preprocess_input, decode_predictions
```

model = VGG16(weights='imagenet')

- ☐ Load the packages
- ☐ Create the model
 - Downloads the h5 file
 - First time, may be a while
 - 500 MB file

Display the Network

model.summary()		
Layer (type)	Output Shape	Param #
input_5 (InputLayer)	(None, 224, 224, 3)	0
block1_conv1 (Conv2D)	(None, 224, 224, 64)	1792
block1_conv2 (Conv2D)	(None, 224, 224, 64)	36928
block1_pool (MaxPooling2D)	(None, 112, 112, 64)	0
block2_conv1 (Conv2D)	(None, 112, 112, 128)	73856
block2_conv2 (Conv2D)	(None, 112, 112, 128)	147584
block2_pool (MaxPooling2D)	(None, 56, 56, 128)	0
block3_conv1 (Conv2D)	(None, 56, 56, 256)	295168
block3_conv2 (Conv2D)	(None, 56, 56, 256)	590080
block3_conv3 (Conv2D)	(None, 56, 56, 256)	590080
block3_pool (MaxPooling2D)	(None, 28, 28, 256)	0
block4_conv1 (Conv2D)	(None, 28, 28, 512)	1180160
block4_conv2 (Conv2D)	(None, 28, 28, 512)	2359808
block4_conv3 (Conv2D)	(None, 28, 28, 512)	2359808
block4_pool (MaxPooling2D)	(None, 14, 14, 512)	0

block5_conv1 (Conv2D)	(None,	14, 14, 512)	2359808
block5_conv2 (Conv2D)	(None,	14, 14, 512)	2359808
block5_conv3 (Conv2D)	(None,	14, 14, 512)	2359808
block5_pool (MaxPooling2D)	(None,	7, 7, 512)	0
flatten (Flatten)	(None,	25088)	0
fc1 (Dense)	(None,	4096)	102764544
fc2 (Dense)	(None,	4096)	16781312
predictions (Dense)	(None,	1000)	4097000

Total params: 138,357,544 Trainable params: 138,357,544 Non-trainable params: 0

- ☐ Very deep: 16 layers
- □130 million parameters!

Get Some Test Images

- ☐Get images from the web of some category (e.g. elephants)
- ☐ Many possible sources.
 - Example: Flickr API (see Demo in github)
- □ Re-size / pad images so that they match expected input of VGG16
 - Input shape (224, 224, 3)

Make Predictions

```
x = preprocess_input(x)
```

```
preds = model.predict(x)
preds_decoded = decode_predictions(preds, top=3)
```

	class 0	class 1	class 2	prob 0	prob 1	prob 2
0	Indian_elephant	African_elephant	tusker	0.776757	0.196798	0.026314
1	African_elephant	tusker	Indian_elephant	0.514596	0.414825	0.057157
2	tusker	Indian_elephant	African_elephant	0.682218	0.217784	0.099942
3	African_elephant	tusker	Indian_elephant	0.736568	0.228160	0.035263
4	African_elephant	tusker	Indian_elephant	0.409717	0.301944	0.287880
5	water_buffalo	African_elephant	warthog	0.737919	0.129731	0.037343
6	African_elephant	tusker	Indian_elephant	0.745698	0.140428	0.103136
7	Indian_elephant	tusker	African_elephant	0.970890	0.026875	0.002234
8	African_elephant	tusker	Indian_elephant	0.819497	0.108567	0.067853
9	tusker	African_elephant	Indian_elephant	0.499149	0.338156	0.162537

- ☐ Pre-process
- ■Predict
 - Runs input through network
- ☐ Decode predictions
 - Creates data structure for outputs

ImageNet Classification can be Hard

■Some categories differences are subtle

	class 0	class 1	class 2	prob 0	prob 1	prob 2
0	Indian_elephant	African_elephant	tusker	0.776757	0.196798	0.026314
1	African_elephant	tusker	Indian_elephant	0.514596	0.414825	0.057157
2	tusker	Indian_elephant	African_elephant	0.682218	0.217784	0.099942
3	African_elephant	tusker	Indian_elephant	0.736568	0.228160	0.035263
4	African_elephant	tusker	Indian_elephant	0.409717	0.301944	0.287880
5	water_buffalo	African_elephant	warthog	0.737919	0.129731	0.037343
6	African_elephant	tusker	Indian_elephant	0.745698	0.140428	0.103136
7	Indian_elephant	tusker	African_elephant	0.970890	0.026875	0.002234
8	African_elephant	tusker	Indian_elephant	0.819497	0.108567	0.067853
9	tusker	African_elephant	Indian_elephant	0.499149	0.338156	0.162537

Intermediate Layers

```
from keras.models import Model

# Construct list of layers
layer_names = ['block4_conv2', 'fc1']
out_list = []
for name in layer_names:
    out_list.append(model.get_layer(name).output)

# Create the model with the intermediate layers
model_int = Model(inputs=model.input, outputs=out_list)
```

y = model_int.predict(x)

- □Often need outputs of hidden layers
- ☐ Provides "latent" representation of image
 - Can be useful for other tasks
 - See lab
- ☐ In Keras, create new model
 - Specify output layers
- ☐ Predict with new model to extract hidden outputs
- ☐ Hidden layers see high level of sparsity
 - Many coefficients are zero

W

Try It Yourself!

In-Class Excerise

Find any image of your choice and use the pre-trained network to make a prediction.

- · Download the image to your directory
- · Load it into an image batch
- · Predict the class label and decode the predictions

