

Operações aritméticas com diversas bases

Professora Dra. Luana Batista da Cruz luana.batista@ufca.edu.br

Roteiro

- 01 Introdução
- 02 Operação de soma (binária, hexadecimal e octal)
- 03 Operação de subtração (binária, hexadecimal e octal)

Objetivo

• Capacitar a realizar cálculos aritméticos com números não decimais

Motivação

Motivação

- Dados dois números em base não decimal, poderíamos simplesmente convertê-los para a base 10 para realizar alguma aritmética
 - Realizamos a operação em base 10
 - Convertemos o resultado de novo para a base original
- Por que, então, estudar aritmética em outras bases?
- Dois motivos básicos
 - Converter os números apenas para realizar uma operação é geralmente ineficiente
 - Gestão de memória, instruções de microprocessadores/controladores

Binário, hexadecimal e octal

- o Das 4 operações aritméticas básicas, a soma é a mais simples
- Basicamente, alinhamos as parcelas a serem somas e executamos a adição algarismo a algarismo
 - Da direita para a esquerda
- O detalhe está no "vai-um"
 - Se a soma de dois algarismos alinhados dá um valor igual ou maior que 10₁₀, pegamos apenas o algarismo menos significativo
 - O mais significativo é "carregado" para a esquerda e somado com os próximos algarismos

- Soma na base 10
 - Exemplo

```
1 1 1
1 2 3 4 5
+ 5 6 7 8 9
6 9 1 3 4
```


- Soma em outras bases (2, 8 e 16)
 - Este algoritmo de soma pode ser generalizado para outras bases
 - Para uma base k qualquer
 - Alinham-se as parcelas
 - Somam-se os algarismos, um a um, da direita para a esquerda
 - Se a soma de dois algarismos alinhados resulta em valor com um único algarismo (na base k), este é colocado no resultado
 - Alinhado aos algarismos somados
 - Caso contrário, coloca-se o algarismo menos significativo no resultado e vai
 um
 - Caso a soma de dois algarismos resulte em vai um, este deverá ser somado aos próximos algarismos

- o Para a soma de números binários, devemos obedecer à regra a seguir
 - 0 + 0 = 0
 - 0+1=1
 - 1+0=1
 - 1 + 1 = 0 e "vai 1"

Soma na base 2 (exemplo)

• Soma na base 2

- 101100101₂ (357) + 100111011₂ (315)
- 1100011₂ (99) + 1011011₂ (91)

Vamos praticar!


```
101100101<sub>2</sub> (357) + 100111011<sub>2</sub> (315)
```


- Para a soma na base hexadecimal, devemos respeitar, da mesma maneira que na base decimal, o limite do algarismo, o qual não poderá ultrapassar o valor máximo que é F (ou seja, 15 na base decimal), aumentando em uma unidade o algarismo antecessor
 - Realize a soma por colunas, e pense nos valores decimais dos dígitos
 - Se a soma dos dígitos for menor que 16 (em decimal), registre o valor (em hexadecimal)
 - Se a soma dos dígitos for maior que 15, subtraia 16 do resultado, registre o número hexadecimal e um vai um na próxima coluna

- Soma na base 16 (exemplo)
 - \circ 3A943B₁₆ (3839035) + 23B7D5₁₆ (2340821)

Α	10
D	11
В	11
С	12
D	13
E	14
F	15

- Soma na base 16
 - 4C7BE8₁₆ (5012456) + 1E927A₁₆ (2003578)
 EEA1₁₆ (61089) + 12C₁₆ (300)

Vamos praticar!

Soma na base 16

4C7BE8₁₆ (5012456) + 1E927A₁₆ (2003578)

A	10
В	11
С	12
D	13
E	14
F	15

$$\circ$$
 EEA1₁₆ (61089) + 12C₁₆ (300)

А	10
В	11
С	12
D	13
E	14
F	15

- Para a soma na base octal devemos respeitar, da mesma maneira que na base decimal, o limite do algarismo, o qual não poderá ultrapassar o valor máximo que é 7, aumentando em uma unidade o algarismo antecessor
 - Realize a soma por colunas, e pense nos valores decimais dos dígitos
 - Se a soma dos dígitos for menor que 8 (em decimal), registre o valor (em octal)
 - Se a soma dos dígitos for maior que 7, subtraia 8 do resultado, registre o número octal e um vai um na próxima coluna

• Soma na base 8 (exemplo)

• Soma na base 8

- 1127₈ (599) + 357₈ (239)
 443₈ (291) + 652₈ (426)

Vamos praticar!

Binário, hexadecimal e octal

Subtração na base 10

- A ideia básica é análoga à da soma
 - Alinhar minuendo e subtraendo
 - Percorrer algarismos da direita para a esquerda
 - Para cada casa, efetuamos a subtração dos algarismos
- Quando todos os algarismos do minuendo são maiores ou iguais aos respectivos algarismos do subtraendo, a operação é simples

Subtração na base 10

- Mas quando, para alguma casa, o subtraendo é maior que o minuendo, o algoritmo se complica
 - É preciso fazer um "empréstimo" do primeiro algarismo não nulo à esquerda
 - O algarismo que empresta é decrementado de uma unidade
 - Demais algarismos nulos "no caminho" viram 9

- Subtração em outras bases (2, 8 e 16)
 - Assim como no caso da soma, o algoritmo de subtração se aplica a qualquer base
 - Novamente, a diferença está nos detalhes
 - O valor da subtração dos pares de algarismos

• Subtração na base 2

- o Para a subtração de números binários, devemos prosseguir da seguinte maneira
 - 0 0 = 0
 - -1 1 = 0
 - **■** 1 0 = 1
 - 0 1 = 1, empresta 1, ou seja, fica 10₂ igual a 2₁₀

• Subtração na base 2 (exemplo)

```
2
0 0 2
1 0 1 1 1
0 0 1 1 0
```


Subtração na base 2

- o 100110001₂ 10101101₂
- o 100101₂ 11010₂

Vamos praticar!

Subtração na base 2

o 100110001₂ - 10101101₂

```
1
0 2 0 2 2
1 0 0 0 1
- 0 1 0 0 0 1 1 0 0
```


• Subtração na base 2

o 100101₂ - 11010₂

```
1
0 2 2 0 2
1 0 0 1 0 1 1
```


Subtração na base 16

 Para a subtração de hexadecimais, devemos observar a regra de emprestar "1" do próximo algarismo, o que na realidade significa o empréstimo de 16, ou seja, o máximo do algarismo na base 16

• Subtração na base 16 (exemplo)

А	10
В	11
С	12
D	13
E	14
F	15

- Subtração na base 16
 - 4C7BE8₁₆ 1E927A₁₆
 - o 64B2E₁₆ 24EBA₁₆

Vamos praticar!

- Subtração na base 16
 - 4C7BE8₁₆ 1E927A₁₆

	2	D	E	9	6	E
-	1	Ε	9	2	7	Α
	Á	C	7	В	E	8
	3	В	23		D	24
		27				

А	10	
В	11	
С	12	
D	13	
E	14	
F	15	

Subtração na base 16

o 64B2E₁₆ - 24EBA₁₆

·	3	F	С	7	4
-	2	4	Ε	В	Α
	Æ	Á	B	2	Ε
	5	3	Α	18	
		19	26		

А	10	
В	11	
С	12	
D	13	
Е	14	
F	15	

Subtração na base 8

 Para a subtração de octais, devemos observar a regra de emprestar "1" do próximo algarismo, o que na realidade significa o empréstimo de 8, ou seja, o máximo do algarismo na base 8

• Subtração na base 8 (exemplo)

```
10 8
6 2 0 10
7 3 1 2
- 3 4 6 5
3 6 2 5
```


• Subtração na base 8 (exemplo)

- o 2351₈ 1763₈
- o 7006₈ 247₈

Vamos praticar!

• Subtração na base 8 (exemplo)

• Subtração na base 8 (exemplo)

Operação de multiplicação e divisão

Binário

Operação de multiplicação e divisão

- Analogamente à adição e a subtração, os mesmos algoritmos utilizados na base
 10 para multiplicação e divisão podem ser usados em qualquer outra base
- No entanto, como estas duas operações são mais trabalhosas, iremos nos focar na base 2
 - Na base 2, estas operações ficam até mais simples que na base 10

Multiplicação na base 10

- o O algoritmo tradicional de multiplicação na base 10 é a multiplicação longa
 - Começa-se como na soma, posicionando os operandos um sobre o outro com seus algarismos alinhados
 - Em seguida, percorrem-se os algarismos do segundo operando, da direita para a esquerda
 - Para cada algarismo, multiplica-se este pelo primeiro operando
 - O resultado é anotado alinhando-se o algarismo menos significativo com o algarismo atual do segundo operando
 - Ao final, as multiplicações de algarismos individuais são somadas

• Multiplicação na base 10 (exemplo)

• Multiplicação na base 2

- Na base 2, também podemos usar o algoritmo de multiplicação longa
- Os passos são idênticos, mas o processo é simplificado
 - Como só há dois algarismos, 0 e 1, multiplicar um algarismo por um número resulta ou em 0 ou no próprio número

Multiplicação na base 2 (exemplo)

- Multiplicação na base 2
 - \circ 10010₂ x 101₂
 - \circ 110₂ x 101₂

Vamos praticar!

Multiplicação na base 2

Multiplicação na base 2

Divisão na base 10

- Inicia-se o processo trabalhando sobre os n algarismos mais significativos do dividendo
- Calcula-se, então, a divisão inteira do número formado por estes n algarismos pelo divisor
- O resultado é o algarismo mais significativo do quociente
- o O resto é escrito abaixo do dividendo, alinhado com este
- o Pega-se o n +1-ésimo algarismo do dividendo, e concatena-se à direita do resto
- o Realiza-se uma nova divisão inteira pelo divisor e repete-se o processo
 - Até que todos os algarismos do dividendo tenham sido usados

• Divisão na base 10 (exemplo)

Divisão na base 2

- O mesmo algoritmo de divisão pode ser usado na base 2
- Assim como na multiplicação, o fato da base 2 só possuir dois algarismos simplifica alguns passos
 - A cada tentativa de divisão, basta verificarmos se o valor a ser dividido é maior que o divisor
 - Se for, adiciona-se um '1' ao quociente e subtrai-se o divisor do valor para obter o resto
 - Caso contrário, adiciona-se '0' ao quociente e concatena-se o próximo algarismo do dividendo ao valor

• Divisão na base 2 (exemplo)

- Divisão na base 2
 - o 101010₂ / 110₂
 - 1000101₂ / 100₂

Vamos praticar!

Divisão na base 2

$$\circ$$
 101010₂ / 110₂

- Divisão na base 2
 - 1000101₂ / 100₂

Referências

FEDELI, R. D; POLLONI, E. G. F; PERES, F. E. **Introdução à ciência da computação**. Cengage Learning Editores, 2° Edição, 2010.

FERNANDEZ, Marcial P.; CORTÉS, Mariela I. I**ntrodução à Computação**. Editora da Universidade Estadual do Ceará –

EdUECE. 3° Edição, 2015

