MTM 5245 - Álgebra Linear - Lista de Exercícios 03 Combinação linear, subespaços vetoriais gerados, espaços vetoriais finitamente gerados, dependência e independência linear.

- 1. Considere o espaço vetorial $V=\mathbb{R}^3$ com as operações usuais e sejam u=(2,-3,2) e v=(-1,2,4) em V.
 - (a) Escreva o vetor w = (7, -11, 2) como combinação linear de u e v;
 - (b) Para que valor de k o vetor (-8, 14, k) é combinação linear de u e v?
 - (c) Determine uma condição entre a,b e c para que o vetor (a,b,c) seja uma combinação linear de u e v.
- 2. Considere o espaço vetorial $V = P_2(\mathbb{R}) = \{a_0 + a_1x + a_2x^2 \mid a_0, a_1, a_2 \in \mathbb{R}\}$ com as operações usuais e sejam $p_1(x) = x^2 2x + 1, p_2(x) = x + 2$ e $p_3(x) = 2x^2 x$ em V.
 - (a) Escreva, se possível, o vetor $p(x)=5x^2-5x+7$ como combinação linear de $p_1(x), p_2(x)$ e $p_3(x)$;
 - (b) Escreva, se possível, o vetor $p(x) = 5x^2 5x + 7$ como combinação linear de $p_1(x)$ e $p_2(x)$;
 - (c) Determine uma condição entre a, b e c para que o vetor $p(x) = ax^2 + bx + c$ seja combinação linear de $p_2(x)$ e $p_3(x)$;
 - (d) É possível escrever $p_1(x)$ como uma combinação linear de $p_2(x)$ e $p_3(x)$?
- 3. Considere o espaço vetorial $V=\mathbb{R}^3$ com as operações usuais. Dê um sistema de geradores para cada um dos seguintes subespaços vetoriais de V, e descreva cada um destes subespaços geometricamente:
 - (a) $W_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x 2y = 0\};$
 - (b) $W_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x + z = 0 \text{ e } x 2y = 0\};$
 - (c) $W_3 = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y 3z = 0\};$
 - (d) $W_1 \cap W_2$;
 - (e) $W_2 + W_3$.
- 4. Considere o espaço vetorial $V=\mathbb{R}^4$ com as operações usuais e

$$S = [(1,1,-2,4),(1,1,-1,2),(1,4,-4,8)].$$

- (a) O vetor $(\frac{2}{3}, 1, -1, 2)$ pertence a S?
- (b) O vetor (0,0,1,1) pertence a S?
- 5. Considere o espaço vetorial $V=M_{3\times 2}(\mathbb{R})$ com as operações usuais e o subespaço vetorial

$$W = \left[\begin{pmatrix} 0 & 0 \\ 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \right]$$

de V.

O vetor
$$\begin{pmatrix} 0 & 2 \\ 3 & 4 \\ 5 & 0 \end{pmatrix}$$
 pertence a W ?

- 6. Considere o espaço vetorial $V = \mathbb{R}^3$ com as operações usuais. Determine os subespaços vetoriais de V gerados pelos seguintes conjuntos:
 - (a) $A = \{(2, -1, 3)\};$
 - (b) $A = \{(-1,3,2), (2,-2,1)\};$
 - (c) $A = \{(1,0,1), (0,1,1), (-1,1,0)\}.$
- 7. Considere o espaço vetorial $V=M_2(\mathbb{R})$ com as operações usuais. Verifique se o conjunto

$$\left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 1 \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 2 \end{array}\right) \right\}$$

é um conjunto gerador de V.

- 8. Considere o espaço vetorial $V = P_3(\mathbb{R}) = \{a_0 + a_1x + a_2x^2 + a_3x^3 \mid a_0, a_1, a_2, a_3 \in \mathbb{R}\}$ com as operações usuais. Mostre que V é gerado por $\{1 x^3, (1 x)^2, 1 x, 1\}$.
- 9. Considere o espaço vetorial $V=\mathbb{R}^3$ com as operações usuais. Classifique os seguintes subconjuntos de V em LI ou LD:
 - (a) $\{(2,-1,3)\};$
 - (b) $\{(1,-1,1),(-1,1,1)\};$
 - (c) $\{(2,1,3),(0,0,0),(1,5,2)\};$
 - (d) $\{(1,2,-1),(1,0,0),(0,1,2),(3,1,-2)\}.$
- 10. Considere o espaço vetorial $V=P_2(\mathbb{R})=\{a_0+a_1x+a_2x^2\,|\,a_0,a_1,a_2\in\mathbb{R}\}$ com as operações usuais. Classifique os seguintes subconjuntos de V em LI ou LD:
 - (a) $\{2+x-x^2, -4-x+4x^2, x+2x^2\}$;
 - (b) $\{1-x+2x^2, x-x^2, x^2\};$
 - (c) $\{x^2 x + 1, x^2 + 2x\}.$
- 11. Considere o espaço vetorial $V = \mathbb{R}^3$ com as operações usuais. Determine o(s) valor(es) de k para que o conjunto $\{(-1,0,2),(1,1,1),(k,-2,0)\}$ seja LI.
- 12. Considere o espaço vetorial $V=M_2(\mathbb{R})$ com as operações usuais. Determine o(s) valor(es) de k para que o conjunto

$$\left\{ \left(\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array}\right), \left(\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 2 & -1 \\ k & 0 \end{array}\right) \right\}$$

seja LD.