Vaccine Hesitancy Project: Code Evaluation Document

1. Use of Python and Analytical Libraries

Overview: The project effectively utilised Python and its analytical ecosystem to analyse vaccine hesitancy data.

Key Libraries Used:

- Pandas: Used for data manipulation, cleaning, and pre-processing.
- NumPy: Applied for numerical calculations and handling missing data.
- Matplotlib: Leveraged for bar charts, scatter plots, and heatmaps.
- **Seaborn**: Created visually appealing plots such as correlation heatmaps.
- **Plotly**: Produced advanced interactive visualizations like Sankey diagrams and circular barplots.

Code Evaluation:

- Functions and libraries were employed efficiently, demonstrating proficiency in data science workflows.
- Visualizations were created with clear labelling, legends, and colour schemes for interpretability.

2. Defined Stages

2.1. Data Sourcing:

- Data was sourced from a credible organization: the UK Office for National Statistics (ONS).
- Dataset: Coronavirus and Vaccine Hesitancy, January–July 2021.
- This dataset is reliable and representative of the UK population.

2.2. Pre-Processing:

- Cleaned and standardized the dataset to address:
 - Missing values.
 - o Inconsistent categorical labels.
 - o Formatting issues (e.g., column headers, data types).
- Calculated new metrics such as:
 - Hesitancy to Sentiment_Proportion.
 - Statistical significance using a chi-square test.

2.3. Evaluation:

- Performed robust analysis including:
 - o Identifying predictors of vaccine hesitancy and positive sentiment.
 - o Comparing categorical and numerical features.
 - Using statistical significance tests to evaluate relationships.

2.4. Visualization:

- Presented findings through a variety of visualizations:
 - o Bar charts to highlight top predictors.
 - o Heatmaps to display correlations.
 - o Circular barplots and dumbbell plots for intuitive comparison.
 - o Sankey diagrams for hierarchical data flow representation.

2.5. Data Transformation

Creating a New DataFrame:

 A new DataFrame was created to consolidate and analyse key metrics derived from the original dataset.

• Purpose:

- To focus on predictors with statistically significant relationships to vaccine hesitancy or positive sentiment.
- To create a simplified structure for specific visualizations like Sankey diagrams or dumbbell plots.

Steps Taken:

- 1. Filtered the original dataset for significant predictors (e.g., predictors with p-value < 0.05).
- 2. Added derived metrics:
 - Hesitancy to_Sentiment_Proportion: Ratio of vaccine hesitancy to positive sentiment.
 - o -log10(p-value): Log-transformed significance values for easier interpretation.
- 3. Organized predictors into hierarchical categories for visualization purposes (e.g., "Income" \rightarrow £20-39k, £40-59k).

Output:

- The new DataFrame allowed for:
 - o A focused analysis of significant predictors.
 - Streamlined input to visualizations like Sankey diagrams and bar plots.

3. Relevance of Analysis Topic

Core Objectives:

- Determine key predictors of vaccine hesitancy and positive sentiment.
- Explore the relationship between demographic factors and attitudes towards vaccination.

Research Questions:

- 1. What are the strongest predictors of vaccine hesitancy?
- 2. How do predictors of positive sentiment differ from hesitancy predictors?
- 3. How does the distribution of sentiment and hesitancy vary across demographic groups?

Achievement:

• Objectives were clearly defined, and analysis provided actionable insights, such as the significant roles of income, mental health, and homeownership.

4. Data Sources

Primary Source:

ONS: Coronavirus and Vaccine Hesitancy dataset.

Data Expansion:

• Explored augmentation opportunities such as incorporating additional survey data for mental health and regional information but kept focus on original dataset.

Documentation:

All data processing steps and transformations were documented.

5. Visualization

Evaluation:

- Produced meaningful visualizations with clear annotations, legends, and titles.
- Examples:
 - Heatmaps demonstrated correlations between sentiment, hesitancy, and proportions.
 - o Sankey diagrams illustrated the flow between predictors and outcomes.
 - o Dumbbell plots compared predictors across sentiment and hesitancy.

Strengths:

- Visualizations were tailored to highlight specific insights.
- Plots were adjusted for accessibility (e.g., colourblind-friendly palettes, clear fonts).

6. Handling Data Anomalies

Approach:

- Missing Values: Handled by imputing where reasonable or excluding rows for categorical inconsistencies.
- **Outliers**: Examined and validated their relevance. For example, extreme hesitancy in certain subgroups was not treated as an anomaly.
- **Formatting Errors**: Adjusted column headers and ensured all numeric columns were standardized for consistency.

7. Credibility of Analysis

Findings Linked to Evidence:

- Statistical analysis, such as chi-square tests, supported conclusions.
- Visualizations consistently reflected the numerical findings, such as the relationship between income and hesitancy.

Example:

 The heatmap showed a strong positive correlation between vaccine hesitancy and lower income groups, validated through statistical significance testing.

Transparency:

• Code and methodology were documented, ensuring reproducibility.

Next Steps / Future Directions

1. Refinements:

- Incorporate more detailed geographic or time-based breakdowns.
- Explore causal relationships through logistic regression or machine learning.

2. Communication:

• Present results in a public-facing dashboard or interactive notebook for stakeholders.

3. Ethical Considerations:

• Include analysis of bias in the dataset (e.g., over-representation of certain demographics).