Linear Algebra — Homework 10

6 Dec, 2023 Due: 14 Dec, 2023

Textbook Problems. These problems will not be graded, but you must submit solutions to receive full credit for the homework.

Problem 4.3.1. With b = 0, 8, 8, 20 at t = 0, 1, 3, 4, set up and solve the normal equations $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$. For the best straight line, find the four heights p_i (the y-values for the line at t = 0, 1, 3, 4), and the errors e_i (the differences between the y-values of the line and the y-values of the data points). What is the minimum value $E = e_1^2 + e_2^2 + e_3^2 + e_4^2$?

Problem 4.3.10. For the closest cubic $b = C + Dt + Et^2 + Ft^3$ to the same four points in Problem 4.3.1, write down the four equations $A\mathbf{x} = \mathbf{b}$. Solve them by elimination. This cubic now goes exactly through the points. What are \mathbf{p} and \mathbf{e} ?

Problem 4.3.12. This problem projects $\mathbf{b} = (b_1, b_2, \dots, b_m)$ onto the line through $\mathbf{a} = (1, 1, \dots, 1)$. We solve m equations $\mathbf{a}x = \mathbf{b}$ in 1 unknown (by least squares).

- (a) Solve $\mathbf{a}^T \mathbf{a} \hat{x} = \mathbf{a}^T \mathbf{b}$ to show that \hat{x} is the mean (the average) of the b's.
- (b) Find $\mathbf{e} = \mathbf{b} \mathbf{a}\hat{x}$ and the variance $\|\mathbf{e}\|^2$ and the standard deviation $\|\mathbf{e}\|$.
- (c) The horizontal line $\hat{x} = 3$ is closest to $\mathbf{b} = (1, 2, 6)$, since 3 is the average of 1, 2, and 6. Check that $\mathbf{p} = (3, 3, 3)$ is perpendicular to \mathbf{e} and find the 3×3 projection matrix P.

Problem 4.3.17. Write down three equations for the line b = C + Dt to go through b = 7 at t = -1, b = 7 at t = 1, and b = 21 at t = 2. Find the least squares solution to $\hat{\mathbf{x}} = (C, D)$ and draw the closest line.

Problem 4.4.2. The vectors (2, 2, -1) and (-1, 2, 2) are orthogonal. Divide them by their lengths to find orthonormal vectors \mathbf{q}_1 and \mathbf{q}_2 . Put those into the columns of Q and multiply Q^TQ and QQ^T .

Problem 4.4.10. Orthonormal vectors are automatically linearly independent:

- (a) Vector proof: When $c_1\mathbf{q}_1 + c_2\mathbf{q}_2 + c_3\mathbf{q}_3 = \mathbf{0}$, what dot product leads to $c_1 = 0$? Similarly, $c_2 = 0$ and $c_3 = 0$. Thus the \mathbf{q} 's are independent.
- (b) Matrix proof: Show that $Q\mathbf{x} = \mathbf{0}$ leads to $\mathbf{x} = \mathbf{0}$. Since Q might not be square, you can use Q^T but not Q^{-1} .

Problem 4.4.18. Find orthogonal vectors A, B, C by Gram-Schmidt from a, b, c:

$$\mathbf{a} = (1, -1, 0, 0), \qquad \mathbf{b} = (0, 1, -1, 0), \qquad \mathbf{c} = (0, 0, 1, -1).$$

A, **B**, **C** and **a**, **b**, **c** are both bases for the vectors perpendicular to $\mathbf{d} = (1, 1, 1, 1)$.

Problem 4.4.22. Find orthogonal vectors **A**, **B**, **C** by Gram-Schmidt from

$$\mathbf{a} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix}.$$

Problem 4.4.31.

(a) Choose c so that Q is an orthogonal matrix:

(b) Project $\mathbf{b} = (1, 1, 1, 1)$ onto the first column. Then project \mathbf{b} onto the plane of the first two columns.

Problem 4.4.32. If **u** is a unit vector, then $Q = I - 2\mathbf{u}\mathbf{u}^T$ is a reflection matrix. Find Q_1 from $\mathbf{u} = (0, 1)$ and Q_2 from $\mathbf{u} = (0, \sqrt{2}/2, \sqrt{2}/2)$. Draw the reflections when Q_1 and Q_2 multiply the vectors (1, 2) and (1, 1, 1).

Graded Problems.

Problem 1. Physics tells us that near the Earth's surface, the height h(t) of an object dropped at time t = 0 from an initial height of h_0 obeys the equation $h(t) = h_0 - \frac{1}{2}gt^2$, where g is the acceleration due to gravity. In an experiment, a ball is dropped from an initial height $h_0 = 50$, and its distances above the ground are measured to be 50, 44, 32, 6 at times t = 0, 1, 2, 3. Use the least squares method to find the parabola $C + Dt + Et^2$ that best fits these data points, and use your value for E to estimate the acceleration g.

Note: You do not need to worry about units in this problem. Also, the numbers in this exercise will get a bit large. You will not have to deal with such large numbers on the final exam.

Problem 2. Use the Gram-Schmidt process as necessary to find orthonormal bases for both the row space and null space of

$$A = \left[\begin{array}{ccc} 2 & 1 & 2 \\ 1 & 1 & 1 \\ 2 & 1 & 2 \end{array} \right].$$

Combine these two orthonormal bases to get an orthonormal basis for \mathbb{R}^3 .