April 9, 2020

Lecture 14: Johnson's Algorithm

Previously

Restrictions		SSSP Algorithm	
Graph	Weights	Name	Running Time $O(\cdot)$
General	Unweighted	BFS	V + E
DAG	Any	DAG Relaxation	V + E
General	Non-negative	Dijkstra	$ V \log V + E $
General	Any	Bellman-Ford	$ V \cdot E $

All-Pairs Shortest Paths (APSP)

- Input: directed graph G=(V,E) with weights $w:E\to\mathbb{Z}$
- Output: $\delta(u,v)$ for all $u,v \in V$, or abort if G contains negative-weight cycle
- Useful when understanding whole network, e.g., transportation, circuit layout, supply chains...
- $\bullet\,$ Just doing a SSSP algorithm |V| times is actually pretty good, since output has size $O(|V|^2)$
 - $|V| \cdot O(|V| + |E|)$ with BFS if weights positive and bounded by O(|V| + |E|)
 - $|V| \cdot O(|V| + |E|)$ with DAG Relaxation if acyclic
 - $|V| \cdot O(|V| \log |V| + |E|)$ with Dijkstra if weights non-negative or graph undirected
 - $|V| \cdot O(|V| \cdot |E|)$ with Bellman-Ford (general)
- Today: Solve APSP in any weighted graph in $|V| \cdot O(|V| \log |V| + |E|)$ time

Approach

- Idea: Make all edge weights non-negative while preserving shortest paths!
- i.e., reweight G to G' with no negative weights, where a shortest path in G is shortest in G'
- If non-negative, then just run Dijkstra |V| times to solve APSP
- Claim: Can compute distances in G from distances in G' in O(|V|(|V|+|E|)) time
 - Compute shortest-path tree from distances, for each $s \in V'$ in O(|V| + |E|) time (L11)
 - Also shortest-paths tree in G, so traverse tree with DFS while also computing distances
 - Takes $O(|V| \cdot (|V| + |E|))$ time (which is less time than |V| times Dijkstra)
- But how to make G' with non-negative edge weights? Is this even possible??
- Claim: Not possible if G contains a negative-weight cycle
- **Proof:** Shortest paths are simple if no negative weights, but not if negative-weight cycle \Box
- Given graph G with negative weights but no negative-weight cycles, can we make edge weights non-negative while preserving shortest paths?

Making Weights Non-negative

- **Idea!** Add negative of smallest weight in G to every edge! All weights non-negative! :)
- FAIL: Does not preserve shortest paths! Biases toward paths traversing fewer edges : (
- Idea! Given vertex v, add h to all outgoing edges and subtract h from all incoming edges
- Claim: Shortest paths are preserved under the above reweighting
- Proof:
 - Weight of every path starting at v changes by h
 - Weight of every path ending at v changes by -h
 - Weight of a path passing through v does not change (locally)
- This is a very general and useful trick to transform a graph while preserving shortest paths!

- Even works with multiple vertices!
- Define a **potential function** $h: V \to \mathbb{Z}$ mapping each vertex $v \in V$ to a potential h(v)
- Make graph G': same as G but edge $(u, v) \in E$ has weight w'(u, v) = w(u, v) + h(u) h(v)
- Claim: Shortest paths in G are also shortest paths in G'
- Proof:
 - Weight of path $\pi = (v_0, \dots, v_k)$ in G is $w(\pi) = \sum_{i=1}^k w(v_{i-1}, v_i)$
 - Weight of π in G' is: $\sum_{i=1}^k w(v_{i-1},v_i) + h(v_{i-1}) h(v_i) = w(\pi) + h(v_0) h(v_k)$
 - (Sum of h's telescope, since there is a positive and negative $h(v_i)$ for each interior i)
 - Every path from v_0 to v_k changes by the same amount
 - So any shortest path will still be shortest

Making Weights Non-negative

- Can we find a potential function such that G' has no negative edge weights?
- i.e., is there an h such that $w(u,v) + h(u) h(v) \ge 0$ for every $(u,v) \in E$?
- Re-arrange this condition to $h(v) \le h(u) + w(u, v)$, looks like **triangle inequality!**
- Idea! Condition would be satisfied if $h(v) = \delta(s, v)$ and $\delta(s, v)$ is finite for some s
- But graph may be disconnected, so may not exist any such vertex s...: (
- Idea! Add a new vertex s with a directed 0-weight edge to every $v \in V!$:)
- $\delta(s,v) \leq 0$ for all $v \in V$, since path exists a path of weight 0
- Claim: If $\delta(s,v)=-\infty$ for any $v\in V$, then the original graph has a negative-weight cycle
- Proof:
 - Adding s does not introduce new cycles (s has no incoming edges)
 - So if reweighted graph has a negative-weight cycle, so does the original graph
- Alternatively, if $\delta(s, v)$ is finite for all $v \in V$:
 - $w'(u,v) = w(u,v) + h(u) h(v) \ge 0$ for every $(u,v) \in E$ by triangle inequality!
 - New weights in G' are non-negative while preserving shortest paths!

Johnson's Algorithm

- Construct G_x from G by adding vertex x connected to each vertex $v \in V$ with 0-weight edge
- Compute $\delta_x(x, v)$ for every $v \in V$ (using Bellman-Ford)
- If $\delta_x(x,v) = -\infty$ for any $v \in V$:
 - Abort (since there is a negative-weight cycle in G)
- Else:
 - Reweight each edge $w'(u,v) = w(u,v) + \delta_x(x,u) \delta_x(x,v)$ to form graph G'
 - For each $u \in V$:
 - * Compute shortest-path distances $\delta'(u, v)$ to all v in G' (using Dijkstra)
 - * Compute $\delta(u,v) = \delta'(u,v) \delta_x(x,u) + \delta_x(x,v)$ for all $v \in V$

Correctness

- Already proved that transformation from G to G' preserves shortest paths
- Rest reduces to correctness of Bellman-Ford and Dijkstra
- Reducing from Signed APSP to Non-negative APSP
- Reductions save time! No induction today! :)

Running Time

- O(|V| + |E|) time to construct G_x
- O(|V||E|) time for Bellman-Ford
- O(|V| + |E|) time to construct G'
- $O(|V| \cdot (|V| \log |V| + |E|))$ time for |V| runs of Dijkstra
- ullet $O(|V|^2)$ time to compute distances in G from distances in G'
- $O(|V|^2 \log |V| + |V||E|)$ time in total