Quantum Error Correction

Hung-Wei Tseng

Classical repetition codes

- If the error rate is 1% with one qubit, the error rate is 1%
- What if we use 3 repetitive qubits to encode a 0 as 000 and 1 as 111
 - 0 If 2 and more qubits are 0s
 - 1 Otherwise

$$\cdot 3p^2(1-p) + p^3 = 3p^2 - 2p^3 = 0.000298 = 0.0298 \%$$

The encoding circuit

$$\begin{array}{c} \alpha|0\rangle+\beta|1\rangle \\ |0\rangle \\ |0\rangle \end{array} \qquad \begin{array}{c} \alpha|000\rangle+\beta|111\rangle \\ \\ \end{array}$$

Error detection circuit

How to correct errors

State	Syndrome	Correction
αι000>+βι111>	00	l⊗l⊗l
α 100>+β 011>	10	X⊗I⊗I
α 010>+β 101>	11	l⊗X⊗l
α 001>+β 110>	01	l⊗l⊗X

If there is no error

If q2 gets wrong

$$\begin{array}{c|c} \alpha|0\rangle+\beta|1\rangle \\ \hline |0\rangle \\ \hline \\ |0\rangle \\ \hline \\ bit-flip \\ error \\ |0\rangle \\ \hline \end{array}$$

 $\alpha |100\rangle + \beta |011\rangle$

10

 $X \otimes | \otimes |$

Or if q₁ gets wrong

 $\alpha |010\rangle + \beta |101\rangle$

11

If qo gets wrong

 $\alpha |001\rangle + \beta |110\rangle$

01

 $|\otimes|\otimes X$

But, what if?

But, what if?

How can we express the "phase"?

Use superpositions!

$$\begin{array}{c|c} \alpha|0\rangle+\beta|1\rangle & & & & \\ & |0\rangle & & & & \\ & |0\rangle & & & & \\ & & & & \\ \end{array}$$

Error detection

Error detection

If q2 gets wrong

If q₁ gets wrong

If qo gets wrong

How to correct errors

State	Syndrome	Correction
α +++>+β >	00	l⊗l⊗l
α -++>+β +>	10	Z⊗I⊗I
α +-+>+β -+->	11	I⊗Z⊗I
α ++->+β +>	01	I⊗I⊗Z

Does this work for bit-flips?

How can we detect/correct both?

- Concatenating both codes!
- First apply one coding, and then encode each encoded qubit using the other coding
- 3 × 3 qubits for each raw qubit

9-qubit Shor code

Shor coding with error corrections

Simultaneous bit- and phase-flip errors

Limitations of Shor code

- Corrects any Pauli error on a single qubit, including a Y, but doesn't properly correct two or more Y errors.
- The probably of at most one qubit error is

$$(1-p)^9 + 9p(1-p)^8$$

• So it still fails for $1 - [(1 - p)^9 + 9p(1 - p)^8]$ of the time

Only works if the p is small

