Homework-Numerical integration

PB18010496 杨乐园

2021年4月22日

1 Introduction

分别编写用复化Simpson积分公式与复化梯形积分公式计算积分的通用程序,并用如上程序计 算积分值

$$I(f) = \int_0^4 \sin x dx$$

取节点

$$x_i = a + ih$$
, $h = \frac{b-a}{N}$, $i = 0, 1, ..., N$, $N = 2^k$, $k = 1, ..., 12$

并计算相应的误差收敛阶。

2 Method

通过Mathematica编程,首先构造相应结点列 x_i ,之后直接利用相应的数值积分公式直接计算即可,其中为了输出与运行方便,将程序写成对任意函数与任意k通用的程序,实现Module块化。

复化Simpson积分公式为:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} \sum_{i=1}^{n/2} [f(x_{2i-2}) + 4f(x_{2i-1}) + f(x_{2i})]$$

复化梯形积分公式为:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{2} [f(a) + 2 \sum_{i=1}^{n-1} f(x_i) + f(b)]$$

收敛阶计算公式为:

$$Ord = \frac{ln(Error_{old}/Error_{new})}{ln(N_{new}/N_{old})}$$

3 Results

输出结果如下:

4 DISCUSSION 2

n	复化Simpson积分误差	Order	复化梯形积分误差	Order
2	0.2666145204662538	-	0.591851262520177	-
4	0.01040848907455144	4.678922791905827	0.140156448824131	2.07819653270263
8	0.0005917308979445696	4.136675618833693	0.0345953140325742	2.01838958479755
16	0.00003615513846098127	4.032668622742237	0.00862171215429782	2.00453033429949
32	2.247076618724306 × 10 ⁻⁶	4.008079479126425	0.00215374273111041	2.00112846994221
64	1.402463217753406 × 10 ⁻⁷	4.002014477986683	0.000538330498036271	2.00028186157382
128	8.762337838031818×10 ⁻⁹	4.000503283858551	0.000134576052755689	2.00007044941748
256	5.475983633562620×10 ⁻¹⁰	4.000125800008236	0.0000336436024901498	2.00001761135616
512	3.422415166397977×10 ⁻¹¹	4.000031448692611	8.41087495442371×10 ⁻⁶	2.00000440277666
1024	2.138997822313468×10 ⁻¹²	4.000007862091317	2.10271713435756 × 10 ⁻⁶	2.00000110069027
2048	1.336871817599787 × 10 ⁻¹³	4.000001965517715	5.25679183324004 × 10 ⁻⁷	2.00000027517232
4096	8.355446014149615 × 10 ⁻¹⁵	4.000000491379109	$\textbf{1.31419789564416} \times \textbf{10}^{-7}$	2.00000006879307

4 Discussion

通过对数据的观察我们发现:

两种数值积分计算公式都较好的给出了积分的数值积分值,随着N的增大,两种积分计算公式的误差均显著下降,其中复化Simpson公式计算的积分值误差均小于复化梯形积分误差,且收敛速度更快,其中复化Simpson积分误差成4阶收敛,而复化梯形积分误差成2阶收敛,较好的印证了理论结果。

5 Computer Code

代码部分请参见附件!(Homework7_0422.nb)。