

ATK-MO1218 模块用户手册

高性能 GPS/北斗模块

用户手册

正点原子

广州市星翼电子科技有限公司

修订历史

版本	日期	原因
V1.0	2022/06/25	第一次发布
V1.1	2023/4/15	添加 GNSS_Viewer 软件配置输出 NMEA 信息时间间隔的介绍

目 录

1,	特性参数	1
2,	使用说明	2
•	2.1 模块引脚说明	
	2.2 SkyTraq binary 协议简介	3
	2.3 NMEA-0183 协议简介	
	2.4 GNSS Viewer 软件使用简介	8
		9
	2.4.2 设置测量频率	10
	2.4.3 设置 PPS 时钟脉冲宽度	11
	2.4.4 设置输出信息	11
3,	结构尺寸	13
	其他	

1,特性参数

ATK-MO1218 模块时正点原子推出的一款高性能 GPS/北斗双模定位模块。该模块采用 S1216F8-BD 模组,具有体积小巧、性能优异等特点;模块可用过串口进行各项参数的配置,并可将配置保存至内存的 Flash 中,方便使用;模块兼容 3.3V 和 5V 通讯电平,方便连接各种单片机控制系统;模块自带可充电后背电池,可以在模块掉电后约半小时内持续保存星历数据,配合模块的温启动或热启动,可实现快速定位。

ATK-MO1218 模块的各项基本参数,如下表所示:

项目	说明
通讯接口	UART
通讯波特率	4800bps、9600bps、19200bps、38400bps (默认)、7600bps、115200bps、230400bps
接收特性	167 通道,支持 QZSS、WAAS、MSAS、EGNOS、GAGAN
定位精度	2.5mCEP (SBAS: 2.0mCEP)
更新速率	1Hz、2Hz、4Hz、5Hz、8Hz、10Hz、20Hz
	冷启动: 298 (最快)
捕获时间	温启动: 27S
	热启动: 1S
冷启动灵敏度	-148dBm
捕获追踪灵敏度	-165dBm
通讯协议	NMEA-0183 V3.01
地爪が以	SkyTraq binary
工作温度	-40℃~85℃
模块尺寸	25mm*27mm

表 1.1 ATK-MO1218 模块基本参数

说明:冷启动是指模块所有获取到的 GPS 和北斗的星历数据都丢失了(相当于主电源和后备电源没电了),这种情况下重启,称之为冷启动;温启动是指模块保存了 GPS 和北斗的星历数据,但是和当前捕获到的可是卫星信息不一致,这样的情况下重启,称之为温启动;热启动是指模块保存的 GPS 和北斗的星历数据与当前捕获到的可是卫星信息一致,这样的情况下重启,称之为热启动。

ATK-MO1218 模块的各项电气参数,如下表所示:

项目	说明
电源电压	DC3.3V~5.0V
IO 口电平	3.3V、5V
功耗	45mA

表 1.2 ATK-MO1218 模块电气参数

ATK-MO1218 模块默认的 UART 通讯波特率为 38400bps(8 位数据位、1 位停止位、无 奇偶校验位)。

2, 使用说明

2.1 模块引脚说明

ATK-MO1218 模块非常小巧(25mm*27mm),模块通过 5 个 2.54mm 间距的排针与外部相连接,方便用户安装到自己的设备里,模块外观,如下图所示:

图 2.1.1 ATK-MO1218 模块实物图

ATK-MO1218 模块的各个引脚的详细描述,如下表所示:

序号	名称	说明
1	VCC	电源(3.3V~5V)
2	GND	电源地
3	TXD	模块串口发送引脚(TTL 电平,不能直接接 RS232 电平!),可接单片机的 RXD
4	RXD	模块串口接收引脚(TTL 电平,不能直接接 RS232 电平!),可接单片机的 TXD
5	PPS	时钟脉冲输出引脚

表 2.1.1 ATK-MO1218 模块引脚说明

其中,模块的 PPS 时钟脉冲输出引脚同时连接到了模块的板载 PPS 指示 LED 上,该引脚是模块板载模组 S1216F8-BD 端口 1PPS 的引脚引脚,该引脚的输出特性可通过程序进行设定。模块板载 PPS 指示 LED (即模块 PPS 时钟脉冲输出引脚) 在没有经过程序特殊设定的默认情况下,有两种状态:

- (1) 常亮,此时模块已经开始工作,但还未实现定位。
- (2) 闪烁(100毫秒灭,900毫秒亮),此时表示模块已成功定位。

通过模块板载的 PPS 指示 LED,就能够很方便地判断模块的状态,方便使用。

此外,ATK-MO1218 模块板载了 IPX 接口,用于外接有源天线,通过外接有源天线,就能够将模块放置至室内,而外接的有源天线放置至室外,从而实现在室内接收卫星信号,但此时的定位信息于天线的位置相关联。

一般有源天线都是采用 SMA 接口,因此需要一根 IPX 转 SMA 的连接线,从而连接 ATK-MO1218 模块与有源天线,如下图所示:

图 2.1.2 ATK-MO1218 模块外接有源天线

2.2 SkyTraq binary 协议简介

ATK-MO1218 模块的控制协议为 SkyTraq binary, SkyTraq binary 是用于控制 SkyTraq 设备的一种协议,该协议的详细介绍,请见《Binary Message of SkyTraq Venus 8 GNSS Receiver.pdf》,本节仅简单介绍该协议。

SkyTraq binary 协议以帧的方式传输控制命令和应答,其帧格式,如下图所示:

Start of	Payload Length	Payload		Checksum	End of
Sequence	(PL)	Message ID	Message Body	(CS)	Sequence
0xA0, 0xA1	Two bytes	Message ID: 1 b	ytes; Payload up to	One byte	0x0D, 0x0A
		65535 bytes			

图 2.2.1 SkyTraq binary 帧格式

从上图中可以看出, SkyTraq binary 帧包含了 5 个字段:

(1) Start of Sequence

该字段为一帧的帧首,帧首为固定的2字节,其内容为固定的0xA0、0xA1。

(2) Playload Length

该字段用与指示该字段后面的 Playload 字段的长度,长度为固定的 2 字节。

(3) Playload

该字段用于存放控制命令或应答等数据,该字段的最大长度为 65536 字节,其中第一个字节为消息 ID,后面的为消息的内容,有的消息 ID 有其对应的子 ID,其子 ID 存放在消息内容的第一个字节中。

(4) Checksum

该字段为该帧的校验字段,长度为固定的 1 字节,校验的范围为整个 Playload 字段,校验方式为将 Playload 字段中的各个字节进行异或运算。

(5) End of Sequence

该字段为一帧的帧尾, 帧尾为固定的 2 字节, 其内容为固定的 0x0D、0x0A。

ATK-MO1218 模块在 SkyTraq binary 协议通讯中处于从机的角色,从机不能主动发送帧数据给主机,只有主机能够主动发送帧数据给从机,并且从机在接收到主机发送的帧数据后,不论什么情况都必须先发送 ACK(成功)或 NACK(失败)帧给主机。

有关 SkyTraq binary 协议的详细内容,请见《Binary Message of SkyTraq Venus 8 GNSS Receiver.pdf》。

2.3 NMEA-0183 协议简介

NMEA-0183 协议是美国国家改样电子协会(National Marine Electronics Association)为海用电子设备指定以标准格式,已成了 GPS 导航设备统一的 RTCM(Radio Technical Commission for Maritime services)标准协议。

关于 ATK-MO1218 模块支持的 NMEA-0183 协议的详细信息,请见《S1216V8_v0 6.pdf》。 NMEA-0183 协议采用 ASCII 码来传递帧信息,其帧格式,如下图所示:

character	HEX	Description
"\$"	24	Start of sentence.
Aaccc		Address field. "aa" is the talker identifier. "ccc" identifies the sentence type.
<i>un</i>	2C	Field delimiter.
C-c		Data sentence block.
u*n	2A	Checksum delimiter.
Hh		Checksum field.
<cr><lf></lf></cr>	0D0A	Ending of sentence. (carriage return, line feed)

图 2.3.1 NMEA-0183 帧格式

从上图中可以看出,NMEA-0183 协议的帧分为了多个字段:

- (1) "\$": 帧首;
- (2) "Aaccc": 地址段, "Aa" 为标识符, "ccc" 为帧名;
- (3) ",": 各个字段之间的分隔符(除检验和字段);
- (4) "C-c": 帧数据,一帧中可能有多个帧数据段,各个帧数据段之间由分隔符分隔;
- (5) "*": 检验字段的分隔符;
- (6) "Hh": 检验和字段,校验和计算的范围为"\$"(不含)与"*"(不含)之间所有的 ASCII 码,计算方式为各个字节之间作异或运算;
- (7) "<CR><LF>": 帧尾,回车和换行。

ATK-MO1218 模块共支持 10 中地址段的 NMEA-0183 协议帧,如下图所示:

\$GNGGA	Time, position, and fix related data of the receiver.	
\$GNGLL	Position, time and fix status.	
\$GNGSA \$GPGSA \$BDGSA	Used to represent the ID's of satellites which are used for position fix. When both GPS and Beidou satellites are used in position solution, a \$GNGSA sentence is used for GPS satellites and another \$GNGSA sentence is used for Beidou satellites. When only GPS satellites are used for position fix, a single \$GPGSA sentence is output. When only Beidou satellites are used, a single \$BDGSA sentence is output.	
\$GPGSV \$BDGSV	Satellite information about elevation, azimuth and CNR, \$GPGSV is used for GPS satellites, while \$BDGSV is used for Beidou satellites	
\$GNRMC	Time, date, position, course and speed data.	
\$GNVTG	Course and speed relative to the ground.	
\$GNZDA	UTC, day, month and year and time zone.	

图 2.3.2 ATK-MO1218 支持的 NMEA-0183 协议帧

从上图列出的地址段中,可以看出一共有三种标识符,分别为: "GN"、"GP"、"BD", 其中 "GP"表示该帧传输的是与仅与 GPS 相关的数据,"BD"表示该帧传输的是仅与北斗

相关的数据,而"GN"则传输其他的一些数据。

从图 2.3.2 中可以看出 ATK-MO1218 模块支持 7 种 NMEA-0183 协议语句,分别为: "GGA"、"GLL"、"GSA"、"GSV"、"RMC"、"VTG"、"ZDA"。下面分别介绍这些语句。

(1) **GGA**

该语句主要包含时间、位置和定位的相关信息,其帧格式如下所示:

\$--GGA,hhmmss.ss,llll.lll,a,yyyyy,a,x,uu,v.v,w.w,M,x.x,M,,zzzz*hh<CR><LF>该语句中各个字段的描述,如下表所示:

字段	名称	描述
hhmmss.ss	UTC 时间	定位时的 UTC 时间,格式为 hhmmss.ss,范围为
111111111111111111111111111111111111111	ՄՐԸ ի՞յ [¤]	000000.000~235959.999
1111.111	纬度	维度,格式为ddmm.mmmm,高位用0填充
A	指示南、北纬	"N": 北纬
A	1日小門、北纬	"S": 南纬
ууууу.ууу	经度	经度,格式为dddmm.mmmm,高位用0填充
A	指示东、西经	"E": 东经
A		"W": 西经
		0: 未定位
X	指示 GPS 质量	1: 已定位, SPS 模式
		2: 已定位,差分模式
uu	卫星数量	用于定位的卫星数量,范围为00~24
v.v	HDOP	水平精度因子,范围为00.0~99.9
w.w	海拔高度	海拔高度,范围为-9999.99~17999.9,单位为米
X.X	大地水准面高度	单位为米
ZZZZ	DGPS 站 ID	差分站 ID, 范围为 0000~1023 (未使用 DGPS 时为 0000)
hh	校验和	

表 2.3.1 GGA 语句各字段描述

(2) GLL

该语句主要包含定位的位置、时间和状态信息,其帧格式如下所示:

\$--GLL,llll.lll,a,yyyyy,yy,b,hhmmss.sss,A,a*hh<CR><LF>

该语句中各个字段的描述,如下表所示:

字段	名称	描述
1111.111	纬度	维度,格式为 ddmm.mmmm, 高位用 0 填充
A	指示南、北纬	"N": 北纬 "S": 南纬
ууууу.ууу	经度	经度,格式为 dddmm.mmmm, 高位用 0 填充
В	指示东、西经	"E": 东经 "W": 西经
hhmmss.ss	UTC 时间	定位时的 UTC 时间,格式为 hhmmss.ss,范围为 000000.000~235959.999
A	状态	"A": 数据有效 "V": 数据不可用
hh	校验和	

表 2.3.2 GLL 语句各字段描述

(3) **GSA**

该语句主要包含了操作模式、定位方式、卫星编号、PDOP、HDOP、VDOP等信息, 其帧格式如下所示:

\$--GSA,a,x,xx,xx,xx,xx,xx,xx,xx,xx,xx,xx,xx,u.u,v.v,z.z*hh<CR><LF>

该语句中各个字段的描述,如下表所示:

字段	名称	描述
	44.7/44.44	"M": 手动,强制 2D 或 3D 方式操作
a	操作模式	"A": 自动,自动切换 2D、3D 方式操作
		1: 未定位
X	定位方式	2: 2D
		3: 3D
		GPS 卫星使用标识符为"GP"的 GSA 语句,北斗卫星使用标
XX	卫星编号	识符为"BD"的语句,一条 GSA 语句中最多输出 12 个卫星
		编号
u.u	PDOP	位置精度因子,范围为 00.0~99.9
v.v	HDOP	水平精度因子,范围为 00.0~99.9
Z.Z	VDOP	垂直精度因子,范围为 00.0~99.9
hh	校验和	

表 2.3.3 GSA 语句各字段描述

(4) **GSV**

该语句主要包含了可见卫星的数量、编号、仰角、方位角、信噪比等信息,其帧格式如下所示:

\$--GSV,x,u,xx,uu,vv,zzz,ss,uu,vv,zzz,ss,...,uu,vv,zzz,ss*hh<CR><LF>

该语句中各个字段的描述,如下表所示:

字段	名称	描述
X	语句数量	一次传输中 GSV 语句的数量,范围为 1~3
u	语句索引	当前 GSV 语句在一次传输中所有 GSV 语句的索引
XX	卫星数量	可见卫星的数量
uu	卫星编号	GPS 卫星使用标识符为 "GP"的 GSA 语句, 北斗卫星使用标识符为 "BD"的语句, 一条 GSV 语句中最多输出 4 个可见卫星的相关信息
Vv	仰角	卫星的仰角,单位为度,范围为00~90
ZZZ	方位角	卫星的方位角,单位为度,范围为000~359
SS	信噪比	信噪比,范围为 dB,范围为 00~99
hh	校验和	

表 2.3.4 GSV 语句各字段描述

(5) **RMC**

该语句主要包含了时间、日期、位置、航向、速度等信息,其帧格式如下所示:

$\$--RMC, hhmmss.sss, x, llll.lll, a, yyyyy.yyy, a, x. x, u. u, xxxxxxx, ,, v*hh <\!CR\!>\!<\!LF\!>$

该语句中各个字段的描述,如下表所示:

字段	名称	描述
hhmmss.ss	UTC 时间	定位时的 UTC 时间,格式为 hhmmss.ss,范围为
		000000.000~235959.999
x	导航状态	"V": 数据无效
		"A": 数据有效

1111.111	纬度	维度,格式为 ddmm.mmmm,高位用 0 填充
A	指示南、北纬	"N": 北纬 "S": 南纬
ууууу.ууу	经度	经度,格式为 dddmm.mmmm, 高位用 0 填充
A	指示东、西经	"E": 东经 "W": 西经
X.X	地面速度	地面速度,单位为节(knots),范围为 000.0~999.9
u.u	地面航向	地面航向,单位为度,范围为 000.0~359.9
xxxxxx	UTC 日期	定位是的 UTC 日期,格式为 ddmmyy
v	模式指示	"N":数据无效 "A":自主定位模式 "D":差分定位模式 "E":估算定位模式
hh	校验和	

表 2.3.5 RMC 语句各字段描述

(6) VTG

该语句主要包含了航向、速度等信息,其帧格式如下所示:

\$--VTG,x.x,T,y.y,M,u.u,N,v.v,K,m*hh<CR><LF>

该语句中各个字段的描述,如下表所示:

字段	名称	描述
X.X	航向	以真北为参考的地面航向,单位为度,范围为000.0~359.9
y.y	航向	以磁北为参考的地面航向,单位为度,范围为000.0~359.9
u.u	速度	地面速度,单位为节(knots),范围为000.0~999.9
v.v	速度	地面速度,单位为千米/时,范围为0000.0~1800.0
m	模式	"N":数据无效 "A":自主定位模式 "D":差分定位模式 "E":估算定位模式
hh	校验和	

表 2.3.6 VTG 语句各字段描述

(7) **ZDA**

该语句主要包含时间、日期、时区等信息,其帧格式如下所示:

\$--ZDA,hhmmss.sss,dd,mm,yyyy,xx,yy*hh<CR><LF>

该语句中各个字段的描述,如下表所示:

字段	名称	描述
hhmmss.ss	UTC 时间	定位时的 UTC 时间,格式为 hhmmss.ss,范围为
		000000.000~235959.999
dd	UTC 日期	范围为 01~31
mm	UTC 月份	范围为 01~12
уууу	UTC 年份	4位数字格式
XX	当地时	范围为 00~+-13
уу	当地分	范围为 00~+59
hh	校验和	

表 2.3.7 ZDA 语句各字段描述

2.4 GNSS_Viewer 软件使用简介

GNSS_Viewer 是由 SkyTraq 公司提供的 GPS、BeiDou、GLONASS 评估软件,功能十分强大,可以对 ATK-MO1218 模块进行全面的测试,下面将对 GNSS_Viewer 软件的使用进行简单的介绍,更详细的请见《GPS Viewer UserManual v1.pdf》。

在使用 GNSS_Viewer 软件测试 ATK-MO1218 模块前,需通过 USB 转 TTL 模块将 ATK-MO1218 模块与 PC 进行连接,连接成功后打开 GNSS Viewer 软件,界面如下图所示:

图 2.4.1 GNSS Viewer 软件主界面

如上图所示,根据 ATK-MO1218 模块连接 PC 后实际的端口在 "Com Port"中选择对应的端口号,接着在"Baudrate"中选择与 ATK-MO1218 模块通讯的波特率,ATK-MO1218 模块出厂默认的波特率为 38400bps,若修改过 ATK-MO1218 模块的通讯波特率,则根据实际情况进行修改,最后点击"Close"按钮,打开与 ATK-MO1218 模块的连接,此时 GNSS Viewer 软件便开始显示 ATK-MO1218 模块上报的各种信息,如下图所示:

图 2.4.2 GNSS Viewer 显示各种信息

如果 ATK-MO1218 模块无法进行定位(上电后,根据不同情况需等待 1~2 分钟才能定位成功),请将 ATK-MO1218 模块板载的 IPX 接口连接有源天线,并将天线放置在空旷的室外。在 ATK-MO1218 模块成功定位后,就能够在 GNSS_Viewer 软件上看到 GPS 和北斗的卫星编号、信号强度等信息,如上图中,可以得到定位结果的经纬度信息为 113 20'2.00"E, 23 18'2.75"N。

2.4.1 设置波特率

GNSS_Viewer 软件可以设置 ATK-MO1218 模块的串口通讯波特率,出厂默认情况下 ATK-MO1218 模块的串口通讯波特率为 34800bps,下面演示使用 GNSS_Viewer 软件设置 ATK-MO1218 模块的串口通讯波特率为 9600bps,并保存至 Flash 中。

点击 GNSS_Viewer 软件菜单栏中的 Binary→Configure Serial Port,便可看到弹出的串口配置窗口,根据需求配置好后,如下图所示:

图 2.4.1.1 串口配置窗口

配置好后,点击串口配置串口的"Set"按钮,随后GNSS_Viewer软件便会将ATK-MO1218模块的串口通讯波特率设置为 9600bps,同时 GNSS_Viewer 软件还会自动更改与ATK-MO1218模块的通讯波特率为 9600bps。

配置好 ATK-MO1218 模块的串口通讯波特率后,GNSS_Viewer 模块便可与ATK-MO1218 模块继续通讯,并且该配置因为保存到了 ATK-MO1218 模块的 Flash 中,因此该配置断电不丢失。

2.4.2 设置测量频率

ATK-MO1218 模块支持最快 20Hz 的测量频率,出厂默认情况下,ATK-MO1218 模块的测量频率为 1Hz,下面演示使用 GNSS_Viewer 软件设置 ATK-MO1218 模块的测量频率为 20Hz,并保存到 Flash 中。

点击 GNSS_Viewer 软件菜单栏中的 Binary→Configure Position Update Rate,便可看到 弹出的测量频率配置窗口,根据需求配置好后,如下图所示:

图 2.4.2.1 测量频率配置窗口

配置好后,点击测量频率配置窗口的"Accept"按钮,随后 GNSS_Viewer 软件便会自 动将 ATK-MO1218 模块的测量频率设置为 20Hz,此时便可看到 GNSS_Viewer 软件主界面中各信息的更新频率明显变快了。

说明:

根据 SkyTraq binary 协议手册《Binary Messages of SkyTraq Venus 8 GNSS Receiver.pdf》,当测量频率配置为 4Hz~10Hz 时,要求串口的通讯波特率不低于 38400bps; 当测量频率配置为 20Hz 时,要求串口的通讯波特率不低于 115200bps。因此,当使用 GNSS_Viewer 软件配置 ATK-MO1218 模块的测量频率为 20Hz 时,GNSS_Viewer 软件会自动将 ATK-MO1218 模块的串口通讯波特率配置为 115200bps,以适应 20Hz 的测量频率。

2.4.3 设置 PPS 时钟脉冲宽度

ATK-MO1218 模块的 PPS 引脚能够在定位成功后输出时钟脉冲,脉冲频率是固定的 1Hz,但脉冲的高电平宽度是可以设置的,可设置的范围为 1 微秒~100 毫秒,出厂默认情况下是 100 毫秒,下面演示使用 GNSS_Viewer 软件设置 ATK-MO1218 模块的 PPS 时钟脉冲宽度为 50 毫秒,并保存到 Flash 中。

点击 GNSS_Viewer 软件菜单栏中的 1PPS Timing→Configure 1PPS Pulse Width,便可看到弹出的 PPS 时钟脉冲宽度配置窗口,根据需求配置好后,如下图所示:

图 2.4.3.1 PPS 时钟脉冲宽度配置窗口

配置好后,点击 PPS 时钟脉冲宽度配置窗口的"确定"按钮,便可在 ATK-MO1218 模块在定位成功成,板载的 LED 变成 50 毫秒灭,950 毫秒亮,说明 PPS 时钟脉冲宽度配置成功。

2.4.4 设置输出信息

ATK-MO1218 模块默认输出 GNRMC、 GNVTG、 GNGGA、 GNGSA、 GPGSV、BDGSV、GNZDA 和 GNGGL的8种NMEA信息。GNSS_Viewer软件可以配置ATK-MO1218输出的各个 NMEA 信息的时间间隔。

点击 GNSS_Viewer 软件菜单栏中的 Binary→Configure NMEA Message Interval,便可看到弹出的 NMEA 信息输出时间间隔配置窗口,如下图所示:

图 2.4.4.1 NMEA 信息输出时间间隔配置窗口

如上图所示, GNSS_Viewer 软件可以配置 ATK-MO1218 模块输出的各个 NMEA 信息时间间隔, 若将时间间隔配置为 0,则表示配置不输出指定的 NMEA 信息。

3,结构尺寸

ATK-MO1218 模块的尺寸结构,如下图所示:

图 3.1 ATK-MO1218 模块尺寸图

4, 其他

1、购买地址:

天猫: https://zhengdianyuanzi.tmall.com

淘宝: https://openedv.taobao.com

2、资料下载

模块资料下载地址: http://www.openedv.com/docs/modules/other/ATK-1218-BD.html

3、技术支持

公司网址: www.alientek.com

技术论坛: http://www.openedv.com/forum.php

在线教学: www.yuanzige.com

B 站视频: https://space.bilibili.com/394620890

传真: 020-36773971 电话: 020-38271790

