Digital Logic Design :

Lecture 5

The Standard POS form:

A Standard POS expression is one in which all the variables in the domain appear in each sum term in the expression.

example:
$$(A+B+c+\overline{D})(\overline{A}+B+c+\overline{D})(\overline{A}+B+\overline{c}+\overline{D})$$

Convert the following Boolean expression into standard Pos form.

now, $A+\overline{B} = A+\overline{B}+c.\overline{c}$ $= (A+\overline{B}+c)(A+B+\overline{c}) \left[\text{Rule } 12 \right]$ $= (A+\overline{B}+c+D.\overline{D})(A+\overline{B}+\overline{c}+D.\overline{D})$ $= (A+\overline{B}+c+D)(A+\overline{B}+c+\overline{D})(A+\overline{B}+\overline{c}+D)(A+\overline{B}+\overline{c}+D)$

$$B+\overline{c}+D=B+\overline{c}+D+A.\overline{A}$$

$$=(A+B+\overline{c}+D)(\overline{A}+B+\overline{c}+D)$$

$$(A+\overline{B})(B+\overline{Z}+D) = (A+\overline{B}+C+D)(A+\overline{B}+C+\overline{D})(A+\overline{B}+\overline{Z}+D)$$

$$(A+\overline{B}+\overline{Z}+\overline{D})(A+B+\overline{Z}+D)(\overline{A}+B+\overline{Z}+D)$$

Developing touth table for standard sop expression: let
$$X = \overline{A}\overline{B}\overline{c} + A\overline{B}\overline{c} + ABC$$

In	puts		Output	Output	Output
A	В	c	X	Y	Z
0	0	0	6	0	1
0	0	- 1	_1	1	0
0	I	0	0	0	L
0	1	ı	0	0	- 1
1	0	0	1	1	0
1	0	1	0	0	0
1	1	0	0	0	1.
1	1	1	. 1	1	1

Converting pos Expression to Truth Table Format: let $Y = (A+B+C)(A+\overline{B}+C)(A+\overline{B}+\overline{C})(\overline{A}+B+\overline{C})(\overline{A}+\overline{B}+C)$

Determining Standard Expression from a Truth Table standard sop expression:

Z = ABE + ABE + ABE + ABE

Standard POS expression:

 $Z = (A+B+\overline{z})(\overline{A}+B+\overline{c})(\overline{A}+B+\overline{c})$

karnaugh map:

Map the following sop expression in the karnaugh map.

ABC + ABE + ABC

following sop expression on AB ABC + A13 + 0 11

K map simplification of SOP expression:

Use a K map to minimize the following expression: $ABC + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$ 101 011 001 000 100

Simplified SOP expression B+AC

由 1's in adjacent cells can be grouped. Each group can have 2,4,8,16.... ones.

Use K map to minimize the following expression: $\vec{A}\vec{B}\vec{C}\vec{D}$ + $\vec{A}\vec{B}\vec{C}\vec{D}$

Simplified sop expression: $\overline{AE} + \overline{AB} + \overline{ABD}$

Simplified expression:

B+DE+EA+DCA

Simplify the function expressed in sum of minterms form $F(\omega, x, y, z) = 2(0, 1, 2, 3, 4, 5, 6, 8, 9, 12, 13, 14)$ no. of minterms = 11 (minterms means standard product, ref.: morris mano pg 48)

+1	00	01	11	10
00		1	3	2
01	10	5	7	6
11	12	13	15	
10	3	9	11	10

: F = Y + WZ + XZ

Use a K map to minimize the following:

POS expression:

$$(A+B+c)(A+B+\overline{c})(A+\overline{B}+\overline{c})(A+\overline{B}+\overline{c})(\overline{A}+\overline{B}+\overline{c})$$

Simplified POS expression:

$$F = \overline{A} + B\overline{C}$$

$$F = \overline{A} + B\overline{C}$$

$$= \overline{A} (\overline{B}\overline{C})$$

$$= A(\overline{C} + C)$$

$$F = A\overline{B} + AC$$

= $A(\overline{B} + C)$

simplify the function expressed in product of maxterm form. F(x,y,z) = T(0,2,5,7)

no. of maxterm or sum = 4

AV 2	0	1
00	6	1
01	20	3
11	6	7 (0)
16	4	50

$$F = \overline{\chi}\overline{z} + \chi \overline{z}$$

$$F = \overline{\chi}\overline{z} + \chi \overline{z}$$

$$= \overline{\chi}\overline{z} + \overline{\chi}\overline{z}$$

$$= (\overline{\chi} + \overline{z})(\overline{\chi} + \overline{z})$$

$$= (\chi + \overline{z})(\overline{\chi} + \overline{z})$$

The '1' functions represents the minterms and The '0' functions represents the maxterms.