Computer Vision

Spring 2006 15-385,-685

Instructor: S. Narasimhan

Wean 5403 T-R 3:00pm – 4:20pm

Lecture #14

Announcements

Homework 4 went out Tuesday. Due April 4. Start early.

Course Schedule - Done!

1/17/2006: Introduction and Course Fundamentals

PART 1: Cameras and Imaging

1/19/2006: Image Formation and Projection

1/24/2006: Matlab Review

1/26/2006: Image Sensing [Homework 1 OUT]

PART 2: Signal and Image Processing

1/31/2006: Binary Image Processing

2/2/2006: 1D Signal Processing [Homework 1 DUE; Homework 2 OUT]

 2/7/2006:
 2D Image Processing

 2/9/2006:
 Edge Detection

 2/14/2006:
 Image Pyramids

 2/16/2006:
 Hough Transform

2/16/2006: Hough Transform [Homework 2 DUE; Homework 3 OUT]

PART 3: Physics of the World

2/21/2006: Basic Principles of Radiometry

2/23/2006: Retinex Theory

2/28/2006: Surface Reflectance and BRDF

3/2/2006: Photometric Stereo [Homework 3 DUE]

3/7/2006: Midterm Review 3/9/2006: Midterm Exam 3/13/2006: Midterm Grades Due

3/21/2006: Shape from Shading [Homework 4 OUT]

Course Schedule

PART 4: 3D Geometry

 3/23/2006:
 Binocular Stereo 1

 3/28/2006:
 Binocular Stereo 2

 3/30/2006:
 Motion and Optical Flow

4/4/2006: Line Drawing [Homework 4 DUE; Homework 5 OUT]

4/6/2006: Structured Light

PART 5 : Statistical Techniques 4/11/2006: Linear Least Squares

4/13/2006: Principle Components Analysis

4/18/2006: Applications of PCA [Homework 5 DUE; Homework 6 OUT]

PART 6: Current Trends and Challenges in Vision Research

4/27/2006: Novel Cameras and Displays 5/2/2006: Open challenges in vision research

5/4/2006: Review Class [Homework 6 DUE]

5/9/2006: Final Exam 5/18/2006: Final Grades Due

*** Use as a guide...changes possible

Binocular Stereo

Optical Flow

Range Scanning and Structured Light

Binocular Stereo

Lecture #14

Recovering 3D from Images

- How can we automatically compute 3D geometry from images?
 - What cues in the image provide 3D information?

Visual Cues for 3D

• Shading

Merle Norman Cosmetics, Los Angeles

Visual Cues for 3D

Shading

• Texture

The Visual Cliff, by William Vandivert, 1960

Visual Cues for 3D

Shading

• Texture

• Focus

From The Art of Photography, Canon

Visual Cues for 3D

Shading

• Focus

• Motion

Visual Cues for 3D

Others:

- Shading
- Texture

Focus

- Highlights - Shadows
 - Silhouettes
 - Inter-reflections
 - Symmetry
 - Light Polarization

Shape From X

- X = shading, texture, focus, motion, ...
- Motion We'll focus on the motion cue

Stereo Reconstruction

- The Stereo Problem
 - Shape from two (or more) images
 - Biological motivation

Human performance: up to 6-8 feet

3. Depth from binocular disparity

P: converging point

C: object nearer projects to the outside of the P, disparity = +

F: object farther projects to the inside of the P, disparity = -

Sign and magnitude of disparity

Disparity and Depth

Assume that we know $P_{\scriptscriptstyle L}$ corresponds to $P_{\scriptscriptstyle R}$

(X,Y,Z)

From perspective projection (define the coordinate system as shown above)

$$\frac{x_L}{f} = \frac{X + \frac{b}{2}}{Z} \qquad \frac{x_R}{f} = \frac{X - \frac{b}{2}}{Z} \qquad \frac{y_L}{f} = \frac{y_R}{f} = \frac{Y}{Z}$$

Disparity and Depth

 $d=x_{\scriptscriptstyle L}-x_{\scriptscriptstyle R}$ is the **disparity** between corresponding left and right image points

- · inverse proportional to depth
- · disparity increases with baseline b

Vergence

- Field of view decreases with increase in baseline and vergence
- Accuracy increases with baseline and vergence

Binocular Stereo

Binocular Stereo

- · Basic Principle: Triangulation
 - Gives reconstruction as intersection of two rays
 - Requires
 - · calibration
 - · point correspondence

Stereo Correspondence

- Determine Pixel Correspondence
 - Pairs of points that correspond to same scene point

- Epipolar Constraint
 - Reduces correspondence problem to 1D search along conjugate epipolar lines
 - Java demo: http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

Basic Stereo Algorithm

For each epipolar line

For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- · pick pixel with minimum match cost

Improvement: match windows

- · This should look familar...
- Correlation, Sum of Squared Difference (SSD), etc.

Size of Matching window

W = 3

W = 20

- · Effect of window size
 - Smaller window Good/bad?
 - Larger window Good/bad ?

Better results with adaptive window

- T. Kanade and M. Okutomi, A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment,, Proc. International Conference on Robotics and Automation, 1991.
- D. Scharstein and R. Szeliski. Stereo matching with nonlinear diffusion. International Journal of Computer Vision, 28(2):155-174, July 1998

Stereo Results

- Data from University of Tsukuba

Scene

Ground truth

Results with Window Search

Window-based matching (best window size)

Ground truth

Better methods exist...

State of the art method

Ground truth

Boykov et al., Fast Approximate Energy Minimization via Graph Cut International Conference on Computer Vision, September 1999.

Stereo Example

input image (1 of 2)

depth map [Szeliski & Kang '95]

3D rendering

Stereo Example

left image right image depth map

H. Tao et al. "Global matching criterion and color segmentation based stereo"

Stereo Example

H. Tao et al. "Global matching criterion and color segmentation based stereo"

Stereo Matching

- Features vs. Pixels?
 - Do we extract features prior to matching?

Julesz-style Random Dot Stereogram

Next Class

- Binocular Stereo (relative and absolute orientation)
- Reading: Horn, Chapter 13.