## Analysis III (Marciniak-Czochra)

## Robin Heinemann

19. Oktober 2017

## Inhaltsverzeichnis

1 Grundlagen der Maß- und Integrationstheorie

1

## 1 Grundlagen der Maß- und Integrationstheorie

Motivation: Erweiterung des Riemannintegrals auf einen größeren Bereich von Funktionen

Satz 1.1 (1.1 Kriterium für Riemann Integrierbarkeit) Sei  $f:[a,b]\to\mathbb{R}$  beschränkt. Dann ist f genau dann Riemann integrierbar, falls die Menge S der Unstetigkeiten von f eine Nullmenge ist, im Sinne, dass es für jedes für jedes  $\varepsilon>0$  eine abzählbare Familie von Intervallen  $I_i$  gibt, mit

$$S \subset \bigcup_{i=1}^{\infty} I_i$$

$$\sum_{i=1}^{\infty} |I_i| < \varepsilon$$

Bemerkung Insbesondere ist die Funktion

$$f: [0,1] \to \mathbb{R}, f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

nicht Riemann integrierbar.

Das Riemann-Integral der Funktion ist definiert über eine Zerlegnug des Definitionsbereiches in kleine Intervalle. Beim Lebesgue Integral wird stattdessen der Bildbereich zerlegt! Für eine nichtnegative  $f:\Omega\to[0,\infty],\Omega\subset\mathbb{R}^n$  betrachten wir die Mengen

$$E_k := f^{-1}((t_k, t_{k+1}]) \subset \mathbb{R}^n$$

wobe<br/>i $t_k=hk$  für ein vorgegebenens h>0, und approximieren dann das Integral vo<br/>nfdurch

$$\sum_{i=1}^{\infty} t_k^{(h)} \mu(E_k) \le \int f(x) dx \le \sum_{i=1}^{\infty} t_{k+1}^{(h)} \mu(E_k)$$
 (\*)

wobei das Maß  $\mu: \mathcal{P}(\mathbb{R}^n) \to [0,\infty]$  eine Abbildung ist, welche das Maß der Menge  $E=\mathcal{P}(\mathbb{R}^n)$  misst. Das Integral ergibt sich aus (\*) im Limes  $h\to 0$ . Für das Lebesgue-Integral müssen wir ein geeignetes Maß definieren  $\to$  Lebesguemaß  $\mathcal{L}^n$ 

$$\int_0^1 f(x) d\mathcal{L}^1(x) = \underbrace{\mathcal{L}^1(\mathbb{Q})}_0 \cdot 1 + \underbrace{\mathcal{L}^2(\mathbb{R} \setminus \mathbb{Q})}_1 \cdot 0 = 0$$

**Definition 1.2 (Maßproblem)** Wir suchen eine Abbildung  $\mu: \mathcal{P}(\mathbb{R}^n) \to [0,\infty]$  mit den folgenden Eigenschaft

1. 
$$\mu(A) \subseteq \mu(B) \forall A \subset B$$
 (Monotonie)

2. 
$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i) \text{ falls } A_i \cap A_j = \emptyset \forall i \neq j$$
 ( $\sigma$ -Additivität)

3. 
$$\mu([0,1]^n) = 1$$
 (Normierung)

4. 
$$\mu(QA + y) = \mu(A)$$
 falls  $Q \in O(n), y \in \mathbb{R}^n$  (Euklidische Invarianz)

Dieses Problem heißt Maßproblem. In einer etwas schwächeren Version kann man auch fordern

2. 
$$\mu\left(\bigcup_{i=1}^{k} A_i\right) = \sum_{i=1}^{k} \mu(A_i)$$

4. 
$$\mu(A+y) = \mu(A)$$
 für  $y \in \mathbb{R}^n$ 

**Satz 1.3 (Vitali: 1908)** Es gibt keine Abbildung  $\mu: \mathcal{P}(\mathbb{R}^n) \to [0, \infty]$  welche die Forderungen des Maßproblems erfüllt.

**Beweis** Sei  $\mu:\mathcal{P}(\mathbb{R}^n)\to [0,\infty]$  eine Abbildung die die Forderungen des Maßproblems erfüllt. Sei  $q_i,i\in\mathbb{N}$  eine Abzählung von  $[0,1]^n\cap\mathbb{Q}^n$ . Wir definieren die Äquivalenzrelation  $x\sim y$  auf  $E:=[0,1]^n$  durch  $x\sim y\iff x-y\in\mathbb{Q}$ . Nach dem Auswahlaxiom gibt es eine Menge  $M_0\subset[0,1]^n$ , welche aus jeder Äquivalenzklasse genau ein Element enthält, das heißt es gilt:

- 1.  $\forall y \in [0,1]^n \exists x \in M_0 : x \sim y \in \mathbb{O}$
- 2. Aus  $x, y \in M_0, x y \in \mathbb{Q} \implies x = y$

Wir definieren  $M_i=M_0+q_i$ . Aus der Definition von  $M_i$  folgt  $M_i\cap M_j=\emptyset \forall i\neq j$ . In der Tat falls  $x\in M_i\cap M_j$ , dann  $x-q_i\in M_0$  und  $x-q_j\in M_0\stackrel{1}{\Rightarrow}q_i=q_j$ . Außerdem gilt  $[0,1]^n\subset\bigcup_{i=1}^\infty M_i\subset [0,2]^n$ . Die erste Einbettung folgt aus 1., die zweite Einbettung gilt, da  $y+q_j\in [0,2]^n \forall y\in M_0$  und  $y\in [0,1]^n$  schließlich gilt  $\mu(M_j)=\mu(M_0)\forall j\in \mathbb{N}$ . Dies folgt aus den Forderungen 1., 3., 4. (abgeschwächte Version reicht).

$$\implies 1 = \mu([0,1]^n) \le \mu\left(\bigcup_{j=0}^{\infty} M_j\right) = \sum_{i=0}^{\infty} \mu(M_i) = \sum_{i=0}^{\infty} \mu(M_0) \implies \mu(M_i) = \mu(M_0) > 0$$

und

$$\mu\bigg(\bigcup_{i=0}^{\infty} M_i\bigg) = \infty$$

Aus 3. und 4. folgt andererseits

$$\mu([0,2]^n) = 2^n \mu([0,1]^n) = 2^n$$

$$\stackrel{(*)}{\Longrightarrow} \mu\left(\bigcup_{i=0}^{\infty} M_i\right) \le \mu([0,2]^n) = 2^n < \infty$$

**Bemerkung** Jedes Maß, welche die Eigenschaften des Maßproblems erfüllt, kann also nicht auf der ganzen  $\mathcal{P}(\mathbb{R}^n)$  definiert sein, sondern auf einer Untermenge der  $\mathcal{P}(\mathbb{R}^n)$ .

Frage: Welche ist die "größte" (eine "gute") Untermenge  $\mathcal{A}\subset\mathcal{P}(\mathbb{R}^n)$ , sodass es eine Lösung des Maßproblems gibt?

**Definition 1.4 (Algebra und \sigma-Algebra)** Eine Algebra  $\mathcal A$  ist die Familie von Teilmengen einer gegebenen Menge X mit

- $x \in \mathcal{A}$
- $A \in \mathcal{A} \implies A^C := X \setminus A \in \mathcal{A}$
- $A, B \in \mathcal{A} \implies A \cup B \in \mathcal{A}$

Falls

$$(A_k)_{k\in\mathbb{N}}\subset\mathcal{A}\implies\bigcup_{k\in\mathbb{N}}A\in\mathcal{A}$$

so spricht man von einer  $\sigma$ -Algebra.