Week 6 Assignment | Casey Masamitsu

```
In [456...
             import seaborn as sns
             import matplotlib.pyplot as plt
             %matplotlib inline
             plt.rcParams['figure.figsize'] = (20, 6)
             plt.rcParams['font.size'] = 14
             import pandas as pd
In [457...
             df = pd.read_csv('../data/adult.data', index_col=False)
In [458...
             golden = pd.read csv('../data/adult.test', index col=False)
In [459...
             df.head()
Out[459]:
                                                    education-
                                                                marital-
               age workclass
                                fnlwgt education
                                                                          occupation relationship
                                                                                                    race
                                                                                                             sex
                                                         num
                                                                  status
                                                                               Adm-
                                                                  Never-
                                                                                           Not-in-
            0
                 39
                     State-gov
                                 77516
                                         Bachelors
                                                            13
                                                                                                   White
                                                                                                            Male
                                                                 married
                                                                              clerical
                                                                                            family
                                                                Married-
                     Self-emp-
                                                                               Exec-
            1
                 50
                                 83311
                                                            13
                                                                                                   White
                                         Bachelors
                                                                    civ-
                                                                                         Husband
                                                                                                            Male
                        not-inc
                                                                          managerial
                                                                 spouse
                                                                           Handlers-
                                                                                          Not-in-
            2
                 38
                                          HS-grad
                                                               Divorced
                                                                                                   White
                        Private 215646
                                                                                                            Male
                                                                                            family
                                                                             cleaners
                                                                Married-
                                                                           Handlers-
                                                            7
            3
                 53
                        Private 234721
                                              11th
                                                                    civ-
                                                                                         Husband
                                                                                                   Black
                                                                                                            Male
                                                                             cleaners
                                                                 spouse
                                                                Married-
                                                                               Prof-
                 28
                        Private 338409
                                         Bachelors
                                                           13
                                                                                             Wife
                                                                                                   Black Female
                                                                    civ-
                                                                            specialty
                                                                 spouse
In [460...
             golden.head()
```

```
Out[460]:
                                                  education-
                                                             marital-
               age workclass fnlwgt education
                                                                       occupation relationship
                                                                                                race
                                                                                                         sex
                                                       num
                                                               status
                                                                         Machine-
                                                               Never-
            0
                25
                       Private 226802
                                            11th
                                                          7
                                                                                     Own-child
                                                                                                Black
                                                                                                        Male
                                                              married
                                                                         op-inspct
                                                             Married-
                                                                         Farming-
            1
                38
                       Private
                                89814
                                         HS-grad
                                                          9
                                                                 civ-
                                                                                      Husband White
                                                                                                        Male
                                                                           fishing
                                                               spouse
                                                             Married-
                                                                       Protective-
                                          Assoc-
            2
                28
                    Local-gov 336951
                                                         12
                                                                 civ-
                                                                                      Husband White
                                                                                                        Male
                                           acdm
                                                                             serv
                                                               spouse
                                                             Married-
                                          Some-
                                                                         Machine-
            3
                44
                       Private 160323
                                                         10
                                                                 civ-
                                                                                      Husband
                                                                                                Black
                                                                                                        Male
                                          college
                                                                         op-inspct
                                                               spouse
                                          Some-
                                                               Never-
                18
                            ? 103497
                                                         10
                                                                                ?
                                                                                    Own-child White Female
                                          college
                                                              married
 In [461...
            df.columns
            Index(['age', 'workclass', 'fnlwgt', 'education', 'education-num',
Out[461]:
                    'marital-status', 'occupation', 'relationship', 'race', 'sex',
                    'capital-gain', 'capital-loss', 'hours-per-week', 'native-country',
                    'salary'],
                  dtype='object')
 In [462...
            from sklearn import preprocessing
 In [463...
            enc = preprocessing.OrdinalEncoder()
 In [464...
            transform_columns = ['sex']
            non_num_columns = ['workclass', 'education', 'marital-status',
                                     'occupation', 'relationship', 'race', 'sex',
                                     'native-country']
 In [465...
            pd.get dummies(df[transform columns]).head()
Out[465]:
               sex_ Female sex_ Male
            0
                        0
                                   1
            1
                        0
            2
                        0
            3
                        0
            4
                                   0
```

```
masamitsu_week6_asnmt
In [466... x = df.copy()
            x = pd.concat([x.drop(non_num_columns, axis=1),
                             pd.get_dummies(df[transform_columns])], axis=1,)
            x["salary"] = enc.fit transform(df[["salary"]])
In [467...
            x.head()
Out[467]:
                              education-
                                                       capital-
                                            capital-
                                                                   hours-per-
                                                                                           sex_
                                                                                                   sex_
                    fnlwgt
                                                                              salary
                                                          loss
                                                                       week
                                                                                                   Male
                                    num
                                               gain
                                                                                        Female
            0
                39
                     77516
                                      13
                                               2174
                                                             0
                                                                          40
                                                                                 0.0
                                                                                             0
                                                                                                      1
                                                  0
                                                                                 0.0
                                                                                             0
            1
                50
                    83311
                                      13
                                                             0
                                                                          13
                                                                                                      1
            2
                                       9
                                                  0
                                                             0
                                                                          40
                                                                                 0.0
                38 215646
                                                                                                      1
            3
                53 234721
                                       7
                                                  0
                                                             0
                                                                          40
                                                                                 0.0
                                                                                                      1
                28 338409
                                      13
                                                  0
                                                             0
                                                                          40
                                                                                 0.0
                                                                                                      0
In [468...
            xt = golden.copy()
            xt = pd.concat([xt.drop(non num columns, axis=1),
                             pd.get_dummies(golden[transform_columns])], axis=1,)
            xt["salary"] = enc.fit_transform(golden[["salary"]])
In [469...
            xt.head()
```

Out	[469]	

•		age	fnlwgt	education- num	capital- gain	capital- loss	hours-per- week	salary	sex_ Female	sex_ Male
	0	25	226802	7	0	0	40	0.0	0	1
	1	38	89814	9	0	0	50	0.0	0	1
	2	28	336951	12	0	0	40	1.0	0	1
	3	44	160323	10	7688	0	40	1.0	0	1
	4	18	103497	10	0	0	30	0.0	1	0

For the following use the above adult dataset. Start with only numerical features/columns.

```
In [470...
          from sklearn.tree import DecisionTreeClassifier
          from sklearn.ensemble import RandomForestClassifier
          from sklearn.ensemble import GradientBoostingClassifier
```

1. Show the RandomForest outperforms the DecisionTree for a fixed max_depth by training using the train set and precision, recall, f1 on golden-test set.

Decision Tree Model

```
In [471...
           dt model = DecisionTreeClassifier(criterion='entropy', max depth=5)
In [472...
           dt_model.fit(x.drop(['fnlwgt','salary'], axis=1), x.salary)
           DecisionTreeClassifier(criterion='entropy', max_depth=5)
Out[472]:
In [473...
           dt_model.tree_.node_count
Out[473]:
In [474...
           list(zip(x.drop(['fnlwgt','salary'], axis=1).columns, dt_model.feature_importances_))
           [('age', 0.2788779035969667),
Out[474]:
            ('education-num', 0.2132324180244595),
            ('capital-gain', 0.3528567441438103),
            ('capital-loss', 0.042359393435638944),
            ('hours-per-week', 0.00842595230012558),
            ('sex_ Female', 0.03943299760989627),
            ('sex Male', 0.06481459088910276)]
In [475...
           x.drop(['fnlwgt','salary'], axis=1).head()
Out[475]:
                  education-num capital-gain capital-loss hours-per-week sex_Female sex_Male
                                       2174
                                                                                0
           0
               39
                             13
                                                                    40
                                                                                          1
                             13
           1
               50
                                                                    13
           2
               38
                                                                    40
           3
               53
                              7
                                                                                0
                                                                    40
               28
                             13
                                                                    40
In [476...
           list(x.drop('salary', axis=1).columns)
```

Random Forest Model

```
In [478...
           rf model = RandomForestClassifier(criterion='entropy')
In [479...
            rf_model.fit(x.drop(['fnlwgt','salary'], axis=1), x.salary)
           RandomForestClassifier(criterion='entropy')
Out[479]:
In [480...
           list(zip(x.drop(['fnlwgt','salary'], axis=1).columns, model.feature_importances_))
           [('age', 0.22808023903209068),
Out[480]:
            ('education-num', 0.04896252232865023),
            ('capital-gain', 0.09124106151534751),
            ('capital-loss', 0.03000626273288268),
            ('hours-per-week', 0.11540599503100893),
            ('sex Female', 0.007386355203465439),
            ('sex_ Male', 0.006465248304175578)]
In [481...
           x.drop(['fnlwgt','salary'], axis=1).head()
Out[481]:
                  education-num capital-gain capital-loss hours-per-week sex_Female sex_Male
              age
               39
                             13
                                       2174
                                                                                0
                                                                    40
                                                                                          1
           1
               50
                              13
                                          0
                                                      0
                                                                    13
           2
               38
                                                                    40
           3
               53
                                                      0
                                                                    40
                                          0
               28
                             13
                                                      0
                                                                    40
In [482...
           rf_predictions = rf_model.predict(xt.drop(['fnlwgt','salary'], axis=1))
```

Decision Tree (dt_model) vs Random Forest (rf_model) Performance

```
In [483... from sklearn.metrics import (
accuracy_score,
```

```
classification_report,
  confusion_matrix, auc, roc_curve
)
```

Accuracy Scores

```
In [484... accuracy_score(xt.salary, dt_predictions)
Out[484]: 0.8201584669246361

In [485... accuracy_score(xt.salary, rf_predictions)
Out[485]: 0.8282046557336773
```

Confusion Matrices

Classifcation Reports

```
In [488...
           print(classification_report(xt.salary, dt_predictions))
                         precision
                                       recall f1-score
                                                           support
                              0.85
                                         0.92
                   0.0
                                                    0.89
                                                             12435
                   1.0
                              0.66
                                         0.49
                                                   0.56
                                                              3846
              accuracy
                                                   0.82
                                                             16281
             macro avg
                              0.76
                                         0.71
                                                   0.73
                                                             16281
          weighted avg
                              0.81
                                         0.82
                                                   0.81
                                                             16281
In [489...
```

```
print(classification_report(xt.salary, rf_predictions))
              precision
                            recall f1-score
                                                support
         0.0
                    0.86
                              0.92
                                        0.89
                                                  12435
         1.0
                    0.68
                              0.52
                                        0.59
                                                   3846
    accuracy
                                        0.83
                                                  16281
   macro avg
                    0.77
                              0.72
                                         0.74
                                                  16281
weighted avg
                    0.82
                              0.83
                                         0.82
                                                  16281
```

We can see that the random forest model has a slightly better accuracy score, precision, recall, and f1-score with max_depth set to "None." However, when playing around with max_depth, the decision tree model *sometimes* performs better in terms of precision, recall, and accuracy score (especially for predicting 0 values). I noticed this when setting the max_depth to 10 instead of "None."

2. For RandomForest or DecisionTree and using the adult dataset, systematically add new columns, one by one, that are non-numerical but converted using the feature-extraction techniques we learned. Show [precision, recall, f1] for each additional feature added.

Add Sex and Workclass

```
In [492...
          transform columns = ['sex', "workclass"]
          non_num_columns = ["workclass", 'education', 'marital-status',
                                'occupation', 'relationship', 'race', 'sex',
                                'native-country']
          # Training set
          x = df.copy()
          x = pd.concat([x.drop(non_num_columns, axis=1),
                          pd.get dummies(df[transform columns])], axis=1,)
          x["salary"] = enc.fit_transform(df[["salary"]])
          x["workclass"] = enc.fit transform(df[["workclass"]])
          #Test set
          xt = golden.copy()
          xt = pd.concat([xt.drop(non num columns, axis=1),
                         pd.get_dummies(golden[transform_columns])], axis=1,)
          xt["salary"] = enc.fit transform(golden[["salary"]])
          xt["workclass"] = enc.fit transform(golden[["workclass"]])
```

x.head()

01	ut	Γ	49	93	1	

•		age	fnlwgt	education- num	capital- gain	capital- loss	hours- per- week	salary	sex_ Female	_	workclass_	workclass_ Federal- gov
	0	39	77516	13	2174	0	40	0.0	0	1	0	0
	1	50	83311	13	0	0	13	0.0	0	1	0	0
	2	38	215646	9	0	0	40	0.0	0	1	0	0
	3	53	234721	7	0	0	40	0.0	0	1	0	0
	4	28	338409	13	0	0	40	0.0	1	0	0	0

Random Forest with Sex and Workclass

```
In [494...
           model = RandomForestClassifier(criterion='entropy')
           model.fit(x.drop(['fnlwgt','salary'], axis=1), x.salary)
           list(zip(x.drop(['fnlwgt','salary'], axis=1).columns, model.feature_importances_))
           [('age', 0.3578346198753116),
Out[494]:
           ('education-num', 0.16714863654436857),
           ('capital-gain', 0.15574397505123572),
            ('capital-loss', 0.058843102084920135),
            ('hours-per-week', 0.17207369484373486),
            ('sex_ Female', 0.025287910156278223),
            ('sex_ Male', 0.0223389874658935),
            ('workclass_ ?', 0.002784716669753499),
            ('workclass Federal-gov', 0.0033027821356796175),
            ('workclass_ Local-gov', 0.0035789583801502873),
            ('workclass_ Never-worked', 4.299550160921079e-06),
            ('workclass Private', 0.004957590185406713),
            ('workclass_ Self-emp-inc', 0.0064896020212075875),
            ('workclass_ Self-emp-not-inc', 0.004740190443136497),
            ('workclass_ State-gov', 0.0023502028678520186),
            ('workclass_ Without-pay', 5.5131885198411036e-05),
            ('workclass', 0.012465599839711813)]
In [495...
           predictions = model.predict(xt.drop(['fnlwgt','salary'], axis=1))
In [496...
           print("Accuracy Score")
           print(accuracy_score(xt.salary, predictions))
           print("")
           print("Confusion Matrix")
           print(confusion_matrix(xt.salary, predictions))
           print("")
           print("Classification Report")
           print(classification report(xt.salary, predictions))
```

```
Accuracy Score
0.8224924758921442
Confusion Matrix
[[11364 1071]
 [ 1819 2027]]
Classification Report
                           recall f1-score
              precision
                                               support
         0.0
                   0.86
                              0.91
                                        0.89
                                                 12435
         1.0
                   0.65
                              0.53
                                        0.58
                                                  3846
                                        0.82
                                                 16281
    accuracy
                   0.76
                              0.72
                                        0.74
                                                 16281
   macro avg
                              0.82
                                        0.82
weighted avg
                   0.81
                                                 16281
```

Add Education

```
In [497...
          transform_columns = ['sex', "workclass", "education"]
          non_num_columns = ["workclass", "education", 'marital-status',
                                'occupation', 'relationship', 'race', 'sex',
                                'native-country']
          # Training set
          x = df.copy()
          x = pd.concat([x.drop(non_num_columns, axis=1),
                         pd.get dummies(df[transform columns])], axis=1,)
          x["salary"] = enc.fit_transform(df[["salary"]])
          x["workclass"] = enc.fit_transform(df[["workclass"]])
          x["education"] = enc.fit transform(df[["education"]])
          #Test set
          xt = golden.copy()
          xt = pd.concat([xt.drop(non_num_columns, axis=1),
                         pd.get_dummies(golden[transform_columns])], axis=1,)
          xt["salary"] = enc.fit_transform(golden[["salary"]])
          xt["workclass"] = enc.fit_transform(golden[["workclass"]])
          xt["education"] = enc.fit_transform(golden[["education"]])
```

In [498... x.head()

Out[498]:

•		age	fnlwgt	education- num	capital- gain	capital- loss	hours- per- week	salary	sex_ Female	_	workclass_ ?	workclass_ Federal- gov
	0	39	77516	13	2174	0	40	0.0	0	1	0	0
	1	50	83311	13	0	0	13	0.0	0	1	0	0
	2	38	215646	9	0	0	40	0.0	0	1	0	0
	3	53	234721	7	0	0	40	0.0	0	1	0	0
	4	28	338409	13	0	0	40	0.0	1	0	0	0

Random Forest with Sex, Workclass, and Education

```
In [499...
           model = RandomForestClassifier(criterion='entropy')
           model.fit(x.drop(['fnlwgt','salary'], axis=1), x.salary)
           list(zip(x.drop(['fnlwgt','salary'], axis=1).columns, model.feature importances ))
          [('age', 0.37712541088492213),
Out[499]:
           ('education-num', 0.06630092188110635),
           ('capital-gain', 0.14947892381769964),
           ('capital-loss', 0.05573334364930979),
           ('hours-per-week', 0.18267996962308128),
           ('sex_ Female', 0.023681445196505838),
           ('sex Male', 0.02856132010540958),
           ('workclass_ ?', 0.003192012316178854),
           ('workclass Federal-gov', 0.003338537458316541),
           ('workclass_ Local-gov', 0.0035884468034333003),
           ('workclass_ Never-worked', 7.105008911736126e-06),
           ('workclass Private', 0.005396680457001168),
           ('workclass_ Self-emp-inc', 0.005489726817667985),
           ('workclass_ Self-emp-not-inc', 0.004988682473539063),
           ('workclass_ State-gov', 0.002676866535827987),
           ('workclass Without-pay', 6.27750237232366e-05),
           ('education_ 10th', 0.001213693277528152),
           ('education_ 11th', 0.0015217969175150723),
           ('education_ 12th', 0.0004850903845914436),
           ('education 1st-4th', 0.0002788814099195791),
           ('education_ 5th-6th', 0.000731738069644515),
           ('education 7th-8th', 0.0010949447473323941),
           ('education_ 9th', 0.0006881606102838893),
           ('education_ Assoc-acdm', 0.0012338070243023277),
           ('education_ Assoc-voc', 0.0017183649001333936),
           ('education_ Bachelors', 0.00914140890641336),
           ('education_ Doctorate', 0.004583055821881394),
           ('education_ HS-grad', 0.007660404665140993),
           ('education_ Masters', 0.006775555122948694),
           ('education_ Preschool', 0.000274640063418163),
           ('education_ Prof-school', 0.004621242951519769),
           ('education Some-college', 0.003645727620273618),
           ('workclass', 0.014150043028618475),
           ('education', 0.027879276425900223)]
In [500...
           predictions = model.predict(xt.drop(['fnlwgt','salary'], axis=1))
In [501...
           print("Accuracy Score")
           print(accuracy score(xt.salary, predictions))
           print("")
           print("Confusion Matrix")
           print(confusion_matrix(xt.salary, predictions))
           print("")
           print("Classification Report")
           print(classification report(xt.salary, predictions))
```

```
Accuracy Score
0.8193599901725939
Confusion Matrix
[[11336 1099]
 [ 1842 2004]]
Classification Report
                           recall f1-score
              precision
                                               support
         0.0
                   0.86
                             0.91
                                        0.89
                                                 12435
         1.0
                   0.65
                             0.52
                                        0.58
                                                  3846
                                        0.82
                                                 16281
    accuracy
   macro avg
                   0.75
                             0.72
                                        0.73
                                                 16281
weighted avg
                             0.82
                                        0.81
                                                 16281
                   0.81
```

Add marital-status

```
In [502...
          transform_columns = ['sex', "workclass", "education", "marital-status"]
          non_num_columns = ["workclass", "education", "marital-status",
                              'occupation', 'relationship', 'race', 'sex', 'native-country']
          # Training set
          x = df.copy()
          x = pd.concat([x.drop(non_num_columns, axis=1),
                         pd.get dummies(df[transform columns])], axis=1,)
          x["salary"] = enc.fit transform(df[["salary"]])
          x["workclass"] = enc.fit transform(df[["workclass"]])
          x["education"] = enc.fit_transform(df[["education"]])
          x["marital-status"] = enc.fit_transform(df[["marital-status"]])
          #Test set
          xt = golden.copy()
          xt = pd.concat([xt.drop(non_num_columns, axis=1),
                         pd.get dummies(golden[transform columns])], axis=1,)
          xt["salary"] = enc.fit transform(golden[["salary"]])
          xt["workclass"] = enc.fit transform(golden[["workclass"]])
          xt["education"] = enc.fit_transform(golden[["education"]])
          xt["marital-status"] = enc.fit_transform(golden[["marital-status"]])
In [503...
          x.head()
```

Out[503]:

		age	fnlwgt	education- num	capital- gain	capital- loss	hours- per- week	salary	sex_ Female		workclass_ ?	workclass_ Federal- gov
_	0	39	77516	13	2174	0	40	0.0	0	1	0	0
	1	50	83311	13	0	0	13	0.0	0	1	0	0
	2	38	215646	9	0	0	40	0.0	0	1	0	0
	3	53	234721	7	0	0	40	0.0	0	1	0	0
	4	28	338409	13	0	0	40	0.0	1	0	0	0
												•

Random Forest with Sex, Workclass, Education, and Marital Status

```
In [504...
    model = RandomForestClassifier(criterion='entropy')
    model.fit(x.drop(['fnlwgt','salary'], axis=1), x.salary)
    list(zip(x.drop(['fnlwgt','salary'], axis=1).columns, model.feature_importances_))
```

```
[('age', 0.27924922758616),
Out[504]:
            ('education-num', 0.05741613645658248),
            ('capital-gain', 0.12914417233831263),
            ('capital-loss', 0.042709957615495925),
            ('hours-per-week', 0.148060356238091),
            ('sex_ Female', 0.012844970064049112),
            ('sex Male', 0.014534792341857861),
            ('workclass_ ?', 0.0031031906493387508),
            ('workclass_ Federal-gov', 0.0038994949119447865),
            ('workclass Local-gov', 0.004181961379927724),
            ('workclass Never-worked', 1.4044450513947528e-05),
            ('workclass_ Private', 0.00632521036226319),
            ('workclass_ Self-emp-inc', 0.0049387727199957585),
            ('workclass_ Self-emp-not-inc', 0.005682527520231948),
            ('workclass_ State-gov', 0.002855112257002532),
            ('workclass_ Without-pay', 8.989910650709871e-05),
            ('education 10th', 0.001021018264602996),
            ('education_ 11th', 0.0017064001052467766),
            ('education 12th', 0.0005410007743481649),
            ('education 1st-4th', 0.0001965057741442842),
            ('education_ 5th-6th', 0.0007143963814514527),
            ('education_ 7th-8th', 0.0014690082239064211),
            ('education 9th', 0.00080028031381266),
            ('education Assoc-acdm', 0.0013045422842861234),
            ('education_ Assoc-voc', 0.0016371142658600803),
            ('education_ Bachelors', 0.00985213948065431),
            ('education_ Doctorate', 0.0032575575959601696),
            ('education_ HS-grad', 0.008994864015247312),
            ('education_ Masters', 0.007306466713602739),
            ('education Preschool', 0.00029559877963348673),
            ('education_ Prof-school', 0.0043381287590954646),
            ('education_ Some-college', 0.00305763359771387),
            ('marital-status Divorced', 0.01147681670447878),
            ('marital-status_ Married-AF-spouse', 0.0007003121117404787),
            ('marital-status_ Married-civ-spouse', 0.09629944371451454),
            ('marital-status Married-spouse-absent', 0.001137994544843239),
            ('marital-status_ Never-married', 0.03384942392988421),
            ('marital-status_ Separated', 0.002283022426190928),
            ('marital-status Widowed', 0.0017357131321021626),
            ('workclass', 0.01408524912313963),
            ('education', 0.026650902770422914),
            ('marital-status', 0.05023864021484212)]
 In [505...
           predictions = model.predict(xt.drop(['fnlwgt','salary'], axis=1))
 In [506...
           print("Accuracy Score")
           print(accuracy_score(xt.salary, predictions))
           print("")
           print("Confusion Matrix")
           print(confusion matrix(xt.salary, predictions))
           print("")
           print("Classification Report")
           print(classification report(xt.salary, predictions))
```

```
Accuracy Score
0.8364351084085744
Confusion Matrix
[[11306 1129]
 [ 1534 2312]]
Classification Report
                           recall f1-score
              precision
                                               support
         0.0
                   0.88
                             0.91
                                        0.89
                                                 12435
         1.0
                   0.67
                             0.60
                                        0.63
                                                  3846
                                        0.84
                                                 16281
    accuracy
                   0.78
                             0.76
                                        0.76
                                                 16281
   macro avg
weighted avg
                             0.84
                                        0.83
                   0.83
                                                 16281
```

Add Occupation

```
In [507...
          transform_columns = ['sex', "workclass", "education", "marital-status", "occupation"]
          non_num_columns = ["workclass", "education", "marital-status", "occupation",
                              'relationship', 'race', 'sex', 'native-country']
          # Training set
          x = df.copy()
          x = pd.concat([x.drop(non_num_columns, axis=1),
                         pd.get dummies(df[transform columns])], axis=1,)
          x["salary"] = enc.fit transform(df[["salary"]])
          x["workclass"] = enc.fit transform(df[["workclass"]])
          x["education"] = enc.fit_transform(df[["education"]])
          x["marital-status"] = enc.fit_transform(df[["marital-status"]])
          x["occupation"] = enc.fit transform(df[["occupation"]])
          #Test set
          xt = golden.copy()
          xt = pd.concat([xt.drop(non num columns, axis=1),
                         pd.get dummies(golden[transform columns])], axis=1,)
          xt["salary"] = enc.fit transform(golden[["salary"]])
          xt["workclass"] = enc.fit_transform(golden[["workclass"]])
          xt["education"] = enc.fit_transform(golden[["education"]])
          xt["marital-status"] = enc.fit_transform(golden[["marital-status"]])
          xt["occupation"] = enc.fit transform(golden[["occupation"]])
```

```
In [508... x.head()
```

Out[508]:

	age	fnlwgt	education- num	capital- gain	capital- loss	hours- per- week	salary	sex_ Female		workclass_ ?	workclass_ Federal- gov
0	39	77516	13	2174	0	40	0.0	0	1	0	0
1	50	83311	13	0	0	13	0.0	0	1	0	0
2	38	215646	9	0	0	40	0.0	0	1	0	0
3	53	234721	7	0	0	40	0.0	0	1	0	0
4	28	338409	13	0	0	40	0.0	1	0	0	0
											>

Random Forest with Sex, Workclass, Education, Marital Status, and Occupation

```
model = RandomForestClassifier(criterion='entropy')
model.fit(x.drop(['fnlwgt','salary'], axis=1), x.salary)
list(zip(x.drop(['fnlwgt','salary'], axis=1).columns, model.feature_importances_))
```

```
[('age', 0.26539328763899445),
Out[509]:
            ('education-num', 0.055135645244753506),
           ('capital-gain', 0.1032851330769881),
            ('capital-loss', 0.03364621651518385),
            ('hours-per-week', 0.12975051263987394),
            ('sex_ Female', 0.012432896409999637),
            ('sex Male', 0.012688641829711059),
            ('workclass_ ?', 0.0011294555218839023),
            ('workclass_ Federal-gov', 0.0037177939833240377),
            ('workclass Local-gov', 0.00459133211207361),
            ('workclass Never-worked', 4.494753914542715e-06),
            ('workclass_ Private', 0.008013625667549876),
            ('workclass_ Self-emp-inc', 0.00501163100692006),
            ('workclass_ Self-emp-not-inc', 0.006034389173282301),
            ('workclass_ State-gov', 0.0032661710879253116),
            ('workclass_ Without-pay', 5.6375138065704846e-05),
            ('education 10th', 0.0009043450431522939),
            ('education_ 11th', 0.001445841316864122),
            ('education 12th', 0.0006459760554029936),
            ('education 1st-4th', 0.0002157175493187645),
            ('education 5th-6th', 0.0006310143099825745),
            ('education_ 7th-8th', 0.0013746623976809936),
            ('education 9th', 0.0007979427908440442),
            ('education Assoc-acdm', 0.001813213117192165),
            ('education_ Assoc-voc', 0.002177551414983966),
            ('education_ Bachelors', 0.008491461066341134),
            ('education_ Doctorate', 0.002830697316224548),
            ('education_ HS-grad', 0.006964111243485923),
            ('education_ Masters', 0.0061332589772861166),
            ('education Preschool', 0.00017270538078374294),
            ('education_ Prof-school', 0.0027944958573726344),
            ('education_ Some-college', 0.003958180716492268),
            ('marital-status Divorced', 0.010931148104519181),
            ('marital-status_ Married-AF-spouse', 0.0005580770950326694),
            ('marital-status_ Married-civ-spouse', 0.08209958391556431),
            ('marital-status Married-spouse-absent', 0.0010167904002539824),
            ('marital-status Never-married', 0.03426244828176309),
            ('marital-status_ Separated', 0.0020355038059009594),
            ('marital-status Widowed', 0.0017123914243675905),
            ('occupation_ ?', 0.0011454714285188752),
            ('occupation_ Adm-clerical', 0.0038425153920386033),
            ('occupation_ Armed-Forces', 2.435647824347152e-05),
            ('occupation Craft-repair', 0.004138335327320618),
            ('occupation_ Exec-managerial', 0.014679244847574097),
            ('occupation_ Farming-fishing', 0.0030704844933197354),
            ('occupation_ Handlers-cleaners', 0.0025893666800995666),
            ('occupation_ Machine-op-inspct', 0.003056370026968405),
            ('occupation_ Other-service', 0.007140512826099813),
            ('occupation Priv-house-serv', 0.00018831902815490088),
            ('occupation_ Prof-specialty', 0.010808715750820859),
            ('occupation Protective-serv', 0.0023972092844161564),
            ('occupation Sales', 0.004421453447779318),
            ('occupation_ Tech-support', 0.00315711973279361),
            ('occupation_ Transport-moving', 0.0029911612489300346),
            ('workclass', 0.01619216171676331),
            ('education', 0.02165958605785938),
            ('marital-status', 0.054379727522097146),
            ('occupation', 0.025993169328948126)]
```

```
predictions = model.predict(xt.drop(['fnlwgt','salary'], axis=1))
In [511...
          print("Accuracy Score")
          print(accuracy_score(xt.salary, predictions))
          print("")
          print("Confusion Matrix")
          print(confusion matrix(xt.salary, predictions))
          print("")
          print("Classification Report")
          print(classification report(xt.salary, predictions))
         Accuracy Score
         0.839690436705362
         Confusion Matrix
         [[11318 1117]
          [ 1493 2353]]
         Classification Report
                        precision
                                     recall f1-score
                                                         support
                                       0.91
                   0.0
                             0.88
                                                 0.90
                                                           12435
                   1.0
                             0.68
                                       0.61
                                                 0.64
                                                            3846
                                                           16281
                                                 0.84
             accuracy
                                       0.76
                             0.78
                                                 0.77
                                                           16281
            macro avg
```

Add Relationship

0.83

0.84

0.84

16281

weighted avg

```
In [512...
          transform_columns = ['sex', "workclass", "education", "marital-status", "occupation",
          non_num_columns = ["workclass", "education", "marital-status",
                             "occupation", "relationship",
                             'race', 'sex', 'native-country']
          # Training set
          x = df.copy()
          x = pd.concat([x.drop(non_num_columns, axis=1),
                         pd.get dummies(df[transform columns])], axis=1,)
          x["salary"] = enc.fit_transform(df[["salary"]])
          x["workclass"] = enc.fit_transform(df[["workclass"]])
          x["education"] = enc.fit_transform(df[["education"]])
          x["marital-status"] = enc.fit_transform(df[["marital-status"]])
          x["occupation"] = enc.fit transform(df[["occupation"]])
          x["relationship"] = enc.fit_transform(df[["relationship"]])
          #Test set
          xt = golden.copy()
          xt = pd.concat([xt.drop(non num columns, axis=1),
                         pd.get_dummies(golden[transform_columns])], axis=1,)
          xt["salary"] = enc.fit_transform(golden[["salary"]])
          xt["workclass"] = enc.fit_transform(golden[["workclass"]])
          xt["education"] = enc.fit_transform(golden[["education"]])
          xt["marital-status"] = enc.fit_transform(golden[["marital-status"]])
          xt["occupation"] = enc.fit_transform(golden[["occupation"]])
          xt["relationship"] = enc.fit_transform(golden[["relationship"]])
```

```
In [513... x.head()
```

Out[513]:

	age	fnlwgt	education- num	capital- gain	capital- loss	hours- per- week	salary	sex_ Female		workclass_ ?	workclass_ Federal- gov
0	39	77516	13	2174	0	40	0.0	0	1	0	0
1	50	83311	13	0	0	13	0.0	0	1	0	0
2	38	215646	9	0	0	40	0.0	0	1	0	0
3	53	234721	7	0	0	40	0.0	0	1	0	0
4	28	338409	13	0	0	40	0.0	1	0	0	0
	_										

Random Forest with Sex, Workclass, Education, Marital Status, Occupation, and Relationship

```
model = RandomForestClassifier(criterion='entropy')
model.fit(x.drop(['fnlwgt','salary'], axis=1), x.salary)
list(zip(x.drop(['fnlwgt','salary'], axis=1).columns, model.feature_importances_))
```

```
[('age', 0.25065656555560434),
Out[514]:
            ('education-num', 0.05217618842932025),
           ('capital-gain', 0.10470321815249999),
            ('capital-loss', 0.0334246360356077),
            ('hours-per-week', 0.12620296257073002),
            ('sex_ Female', 0.006584927350715258),
            ('sex Male', 0.008810103683552957),
            ('workclass_ ?', 0.001108212081583219),
            ('workclass_ Federal-gov', 0.0038729023419535936),
            ('workclass Local-gov', 0.004789117873909931),
            ('workclass Never-worked', 8.80718055373483e-06),
            ('workclass_ Private', 0.007931896327330436),
            ('workclass_ Self-emp-inc', 0.004889482910535244),
            ('workclass Self-emp-not-inc', 0.006089722247538232),
            ('workclass_ State-gov', 0.0033705429385505097),
            ('workclass_ Without-pay', 7.50956355664963e-05),
            ('education 10th', 0.0010218917827485993),
            ('education_ 11th', 0.001253959189808681),
            ('education 12th', 0.000568985493818007),
            ('education 1st-4th', 0.00019608532606966273),
            ('education 5th-6th', 0.0005763866099762815),
            ('education_ 7th-8th', 0.0014682556057896597),
            ('education 9th', 0.00085341571476573),
            ('education Assoc-acdm', 0.001860993186311075),
            ('education_ Assoc-voc', 0.002403171059093996),
            ('education_ Bachelors', 0.0079870452143942),
            ('education_ Doctorate', 0.002318116056649682),
            ('education_ HS-grad', 0.0072298524431998),
            ('education_ Masters', 0.005081089977736375),
            ('education Preschool', 0.0001593931466641087),
            ('education_ Prof-school', 0.003101527460932004),
            ('education_ Some-college', 0.003812209481317725),
            ('marital-status Divorced', 0.004349324162476512),
            ('marital-status Married-AF-spouse', 0.0002799012370117445),
            ('marital-status_ Married-civ-spouse', 0.06494950763193764),
            ('marital-status Married-spouse-absent', 0.000820869876596392),
            ('marital-status_ Never-married', 0.016367429616420726),
            ('marital-status_ Separated', 0.0016085371828317094),
            ('marital-status Widowed', 0.0014275427518427402),
            ('occupation_ ?', 0.0009964461329601795),
            ('occupation_ Adm-clerical', 0.0034841136136246585),
            ('occupation_ Armed-Forces', 1.9853706947836274e-05),
            ('occupation Craft-repair', 0.0041559611026163274),
            ('occupation_ Exec-managerial', 0.015390684587209281),
            ('occupation_ Farming-fishing', 0.0029859933944949993),
            ('occupation Handlers-cleaners', 0.0023428188742755838),
            ('occupation Machine-op-inspct', 0.002874866211642823),
            ('occupation_ Other-service', 0.005840063018267305),
            ('occupation Priv-house-serv', 0.00012831310530169658),
            ('occupation_ Prof-specialty', 0.011879441113288055),
            ('occupation Protective-serv', 0.002143708655816767),
            ('occupation Sales', 0.00435663230221897),
            ('occupation_ Tech-support', 0.0032314047891470175),
            ('occupation_ Transport-moving', 0.0029349674920431616),
            ('relationship_ Husband', 0.029702694786659593),
            ('relationship_ Not-in-family', 0.008040038003911005),
            ('relationship Other-relative', 0.0013533316408985896),
            ('relationship_ Own-child', 0.008359704352697731),
            ('relationship Unmarried', 0.0038191096328510465),
            ('relationship_ Wife', 0.00866272102457711),
```

```
('workclass', 0.01620502778356909),
           ('education', 0.022089779352607964),
           ('marital-status', 0.021689685440717966),
           ('occupation', 0.025355186891860292),
           ('relationship', 0.04756758146585019)]
In [515...
          predictions = model.predict(xt.drop(['fnlwgt','salary'], axis=1))
In [516...
          print("Accuracy Score")
          print(accuracy_score(xt.salary, predictions))
          print("")
          print("Confusion Matrix")
          print(confusion_matrix(xt.salary, predictions))
          print("")
          print("Classification Report")
          print(classification_report(xt.salary, predictions))
         Accuracy Score
         0.8406731773232602
         Confusion Matrix
         [[11341 1094]
          [ 1500 2346]]
         Classification Report
                                    recall f1-score
                        precision
                                                         support
                   0.0
                             0.88
                                       0.91
                                                 0.90
                                                           12435
                   1.0
                             0.68
                                       0.61
                                                 0.64
                                                            3846
                                                 0.84
                                                           16281
             accuracy
                             0.78
                                       0.76
                                                 0.77
                                                           16281
            macro avg
         weighted avg
                             0.84
                                       0.84
                                                 0.84
                                                           16281
```

Add Race

```
In [517...
          transform_columns = ['sex', "workclass", "education", "marital-status", "occupation",
          non_num_columns = ["workclass", "education", "marital-status",
                              "occupation", "relationship", "race", 'sex', 'native-country']
          # Training set
          x = df.copy()
          x = pd.concat([x.drop(non_num_columns, axis=1),
                          pd.get dummies(df[transform columns])], axis=1,)
          x["salary"] = enc.fit_transform(df[["salary"]])
          x["workclass"] = enc.fit_transform(df[["workclass"]])
          x["education"] = enc.fit_transform(df[["education"]])
          x["marital-status"] = enc.fit_transform(df[["marital-status"]])
          x["occupation"] = enc.fit transform(df[["occupation"]])
          x["relationship"] = enc.fit_transform(df[["relationship"]])
          x["race"] = enc.fit_transform(df[["race"]])
          #Test set
          xt = golden.copy()
          xt = pd.concat([xt.drop(non_num_columns, axis=1),
                         pd.get_dummies(golden[transform_columns])], axis=1,)
```

```
xt["salary"] = enc.fit_transform(golden[["salary"]])
xt["workclass"] = enc.fit_transform(golden[["workclass"]])
xt["education"] = enc.fit_transform(golden[["education"]])
xt["marital-status"] = enc.fit_transform(golden[["marital-status"]])
xt["occupation"] = enc.fit_transform(golden[["occupation"]])
xt["relationship"] = enc.fit_transform(golden[["relationship"]])
xt["race"] = enc.fit_transform(golden[["race"]])
```

```
In [518... x.head()
```

Out[518]:

	age	fnlwgt	education- num	capital- gain	capital- loss	hours- per- week	salary	sex_ Female		workclass_ ?	workclass_ Federal- gov
0	39	77516	13	2174	0	40	0.0	0	1	0	0
1	50	83311	13	0	0	13	0.0	0	1	0	0
2	38	215646	9	0	0	40	0.0	0	1	0	0
3	53	234721	7	0	0	40	0.0	0	1	0	0
4	28	338409	13	0	0	40	0.0	1	0	0	0

Random Forest with Sex, Workclass, Education, Marital Status, Occupation, Relationship, and Race

```
In [519...
    model = RandomForestClassifier(criterion='entropy')
    model.fit(x.drop(['fnlwgt','salary'], axis=1), x.salary)
    list(zip(x.drop(['fnlwgt','salary'], axis=1).columns, model.feature_importances_))
```

```
[('age', 0.2425227572890333),
Out[519]:
            ('education-num', 0.05422198136232316),
           ('capital-gain', 0.09603615853587484),
            ('capital-loss', 0.03158983186737807),
            ('hours-per-week', 0.11924642848028093),
            ('sex_ Female', 0.0060053116254639135),
            ('sex Male', 0.008446231748442447),
            ('workclass_ ?', 0.001184336763724142),
            ('workclass_ Federal-gov', 0.003888642001739736),
            ('workclass Local-gov', 0.004765615553060558),
            ('workclass Never-worked', 4.15366711949797e-06),
            ('workclass_ Private', 0.00849556410703703),
            ('workclass_ Self-emp-inc', 0.004743294951642238),
            ('workclass_ Self-emp-not-inc', 0.006340330942789592),
            ('workclass_ State-gov', 0.003430275909092427),
            ('workclass_ Without-pay', 4.8698028505016205e-05),
            ('education 10th', 0.001140469244414851),
            ('education_ 11th', 0.0013571229735972136),
            ('education 12th', 0.0006050923510190408),
            ('education 1st-4th', 0.0002221145892936912),
            ('education 5th-6th', 0.0006415288671685205),
            ('education_ 7th-8th', 0.0011898283454329342),
            ('education 9th', 0.0009638614507189542),
            ('education Assoc-acdm', 0.0018589972746047637),
            ('education_ Assoc-voc', 0.002414258629354344),
            ('education_ Bachelors', 0.008236710210799816),
            ('education_ Doctorate', 0.0021656712918622814),
            ('education HS-grad', 0.007992707122968417),
            ('education_ Masters', 0.004694659822049571),
            ('education Preschool', 0.00012762412175423116),
            ('education Prof-school', 0.0032128139609139588),
            ('education_ Some-college', 0.004379847963789885),
            ('marital-status Divorced', 0.004754789637714388),
            ('marital-status Married-AF-spouse', 0.000373900681519155),
            ('marital-status_ Married-civ-spouse', 0.060631718851543975),
            ('marital-status Married-spouse-absent', 0.0007391760694854),
            ('marital-status_ Never-married', 0.020709535573736535),
            ('marital-status_ Separated', 0.0012254878400222778),
            ('marital-status Widowed', 0.0012620339137062052),
            ('occupation_ ?', 0.0011806270266988223),
            ('occupation_ Adm-clerical', 0.003928652136977034),
            ('occupation_ Armed-Forces', 1.2534315092337232e-05),
            ('occupation Craft-repair', 0.0044756556039441155),
            ('occupation_ Exec-managerial', 0.014565718023891476),
            ('occupation_ Farming-fishing', 0.003292306087345848),
            ('occupation Handlers-cleaners', 0.002514657162978674),
            ('occupation Machine-op-inspct', 0.003076821154941127),
            ('occupation_ Other-service', 0.006005135784531002),
            ('occupation Priv-house-serv', 0.00014936666320687265),
            ('occupation_ Prof-specialty', 0.01118471552834892),
            ('occupation Protective-serv', 0.0024219583858306323),
            ('occupation Sales', 0.004835861368174915),
            ('occupation_ Tech-support', 0.003354215514242232),
            ('occupation_ Transport-moving', 0.00318101978619682),
            ('relationship_ Husband', 0.029877135727288437),
            ('relationship_ Not-in-family', 0.005925163156571129),
            ('relationship Other-relative', 0.0011121409851091199),
            ('relationship_ Own-child', 0.008157665463140448),
            ('relationship Unmarried', 0.0034386477422398806),
            ('relationship_ Wife', 0.008755960885404066),
```

```
('race_ Amer-Indian-Eskimo', 0.0011081777670886718),
           ('race_ Asian-Pac-Islander', 0.0031816579885002114),
           ('race_ Black', 0.004616336439692352),
           ('race_ Other', 0.0010317635118937511),
           ('race_ White', 0.0055731188774784226),
           ('workclass', 0.01643762923275296),
           ('education', 0.022801467477436808),
           ('marital-status', 0.02868445270446598),
           ('occupation', 0.025665734096368905),
           ('relationship', 0.03959365304173292),
           ('race', 0.007990486739458003)]
In [520...
          predictions = model.predict(xt.drop(['fnlwgt','salary'], axis=1))
In [521...
          print("Accuracy Score")
          print(accuracy_score(xt.salary, predictions))
          print("")
          print("Confusion Matrix")
          print(confusion matrix(xt.salary, predictions))
          print("")
          print("Classification Report")
          print(classification_report(xt.salary, predictions))
         Accuracy Score
         0.8417173392297771
         Confusion Matrix
         [[11355 1080]
          [ 1497 2349]]
         Classification Report
                        precision
                                    recall f1-score
                                                         support
                                       0.91
                   0.0
                             0.88
                                                 0.90
                                                           12435
                                                            3846
                   1.0
                             0.69
                                       0.61
                                                 0.65
                                                 0.84
              accuracy
                                                           16281
                             0.78
                                       0.76
                                                 0.77
                                                           16281
            macro avg
         weighted avg
                             0.84
                                       0.84
                                                 0.84
                                                           16281
```

Add Native Country

```
x["workclass"] = enc.fit transform(df[["workclass"]])
           x["education"] = enc.fit_transform(df[["education"]])
           x["marital-status"] = enc.fit_transform(df[["marital-status"]])
           x["occupation"] = enc.fit transform(df[["occupation"]])
           x["relationship"] = enc.fit transform(df[["relationship"]])
           x["race"] = enc.fit_transform(df[["race"]])
           x["native-country"] = enc.fit transform(df[["native-country"]])
           #Test set
           xt = golden.copy()
           xt = pd.concat([xt.drop(non num columns, axis=1),
                          pd.get_dummies(golden[transform_columns])], axis=1,)
           xt["salary"] = enc.fit_transform(golden[["salary"]])
           xt["workclass"] = enc.fit transform(golden[["workclass"]])
           xt["education"] = enc.fit transform(golden[["education"]])
           xt["marital-status"] = enc.fit_transform(golden[["marital-status"]])
           xt["occupation"] = enc.fit_transform(golden[["occupation"]])
           xt["relationship"] = enc.fit_transform(golden[["relationship"]])
           xt["race"] = enc.fit transform(golden[["race"]])
           xt["native-country"] = enc.fit transform(golden[["native-country"]])
In [524...
           x.shape
          (32561, 116)
Out[524]:
In [525...
           # Which column is all zeroes?
```

pd.set option("display.max rows", None, "display.max columns", None)

print((x == 0).sum(axis = 0))

	masamilisa_weeke_asi
age	0
fnlwgt	0
education-num	0
capital-gain	29849
capital-loss	31042
hours-per-week	0
salary	24720
sex_ Female	21790
sex_ Male	10771
workclass_ ?	30725
workclass_ Federal-gov	31601
workclass_ Local-gov workclass Never-worked	30468
workclass_ Never-worked workclass_ Private	32554 9865
workclass Frivate workclass Self-emp-inc	31445
workclass_ Self-emp-not-inc	30020
workclass_ Self-emp-not-inc workclass_ State-gov	31263
workclass_ State-gov workclass_ Without-pay	32547
education_ 10th	31628
education_ 11th	31386
education_ 12th	32128
education_ 1st-4th	32393
education_ 5th-6th	32228
education_ 7th-8th	31915
education_ 9th	32047
education_ Assoc-acdm	31494
education_ Assoc-voc	31179
education_ Bachelors	27206
education_ Doctorate	32148
education_ HS-grad	22060
education_ Masters	30838
education_ Preschool	32510
education_ Prof-school	31985
education_ Some-college	25270
marital-status_ Divorced	28118
marital-status_ Married-AF-spouse	32538
marital-status_ Married-civ-spouse	17585
marital-status_ Married-spouse-absen	t 32143
marital-status_ Never-married	21878
marital-status_ Separated	31536
marital-status_ Widowed	31568
occupation_ ?	30718
occupation_ Adm-clerical	28791
occupation_ Armed-Forces	32552
occupation_ Craft-repair	28462
occupation_ Exec-managerial	28495
occupation_ Farming-fishing	31567
occupation_ Handlers-cleaners	31191
occupation_ Machine-op-inspct	30559
occupation_ Other-service	29266
occupation_ Priv-house-serv	32412
occupation_ Prof-specialty	28421
occupation_ Protective-serv	31912
occupation_ Sales	28911
occupation_ Tech-support	31633
occupation_ Transport-moving	30964
relationship_ Husband	19368
relationship_ Not-in-family	24256
relationship_Other-relative	31580
relationship_ Own-child	27493

relationship_ Unmarried	29115
relationship_ Wife	30993
race_ Amer-Indian-Eskimo	32250
race_ Asian-Pac-Islander	31522
race_ Black	29437
race_ Other	32290
race_ White	4745
native-country_ ?	31978
native-country_ Cambodia	32542
native-country_ Canada	32440
native-country_ China	32486
native-country_ Columbia	32502
native-country_ Cuba	32466
native-country_ Dominican-Republic	32491
native-country_ Ecuador	32533
native-country_ El-Salvador	32455
native-country_ England	32471
native-country_ France	32532
native-country_ Germany	32424
native-country_ Greece	32532
native-country_ Guatemala	32497
native-country_ Haiti native-country_ Holand-Netherlands	32517
native-country_ Holand-Netherlands native-country_ Honduras	32560
native-country_ Hong	32548 32541
native-country_ Hungary	32541
native-country_ India	32348
native-country_ India native-country_ Iran	32518
native-country_ Iran native-country_ Ireland	32537
native-country_ Italy	32488
native-country_ Jamaica	32480
native-country_ Japan	32499
native-country_ Laos	32543
native-country_ Mexico	31918
native-country_ Nicaragua	32527
native-country_ Outlying-US(Guam-USVI-etc)	32547
native-country_ Peru	32530
native-country_ Philippines	32363
native-country_ Poland	32501
native-country_ Portugal	32524
native-country_ Puerto-Rico	32447
native-country_ Scotland	32549
native-country_ South	32481
native-country_ Taiwan	32510
native-country_ Thailand	32543
native-country_ Trinadad&Tobago	32542
native-country_ United-States	3391
native-country_ Vietnam	32494
native-country_ Yugoslavia	32545
workclass	1836
education	933
marital-status	4443
occupation	1843
relationship	13193
race	311
native-country	583
dtype: int64	

```
x.drop("native-country_ Holand-Netherlands", axis = 1, inplace = True)
In [527... x.head()
```

Out[527]:

	age	fnlwgt	education- num	capital- gain	capital- loss	hours- per- week	salary	sex_ Female		workclass_ ?	workclass_ Federal- gov
0	39	77516	13	2174	0	40	0.0	0	1	0	0
1	50	83311	13	0	0	13	0.0	0	1	0	0
2	38	215646	9	0	0	40	0.0	0	1	0	0
3	53	234721	7	0	0	40	0.0	0	1	0	0
4	28	338409	13	0	0	40	0.0	1	0	0	0

Random Forest with Sex, Workclass, Education, Marital Status, Occupation, Relationship, Race, and Native Country

```
model = RandomForestClassifier(criterion='entropy')
model.fit(x.drop(['fnlwgt','salary'], axis=1), x.salary)
list(zip(x.drop(['fnlwgt','salary'], axis=1).columns, model.feature_importances_))
```

```
[('age', 0.22911851944161704),
Out[528]:
            ('education-num', 0.046651299593324175),
           ('capital-gain', 0.09331447269435941),
            ('capital-loss', 0.030160874174879507),
            ('hours-per-week', 0.11447252520762642),
            ('sex_ Female', 0.007169381912918505),
            ('sex Male', 0.01011092944849207),
            ('workclass_ ?', 0.0011597640935645012),
            ('workclass_ Federal-gov', 0.0037692789501626084),
            ('workclass Local-gov', 0.004801953128434847),
            ('workclass Never-worked', 5.439673478955258e-06),
            ('workclass_ Private', 0.008167911265165823),
            ('workclass_ Self-emp-inc', 0.004517169196345229),
            ('workclass_ Self-emp-not-inc', 0.005938050240134955),
            ('workclass_ State-gov', 0.0034002613308722366),
            ('workclass_ Without-pay', 6.351162786161508e-05),
            ('education 10th', 0.0011808476995083562),
            ('education_ 11th', 0.0014195649553995916),
            ('education 12th', 0.000708225711277857),
            ('education 1st-4th', 0.0002516797077795117),
            ('education 5th-6th', 0.00046880122800401066),
            ('education_ 7th-8th', 0.0013780605197210392),
            ('education 9th', 0.0009102770290536573),
            ('education Assoc-acdm', 0.0020491095043190075),
            ('education_ Assoc-voc', 0.0024725813389284133),
            ('education_ Bachelors', 0.008274984240637646),
            ('education_ Doctorate', 0.002404264109301696),
            ('education_ HS-grad', 0.007741115599534689),
            ('education_ Masters', 0.006291502333164281),
            ('education Preschool', 9.073206540235364e-05),
            ('education_ Prof-school', 0.003238691098867652),
            ('education_ Some-college', 0.004520123396596785),
            ('marital-status Divorced', 0.004292590960627863),
            ('marital-status Married-AF-spouse', 0.0002654970641659582),
            ('marital-status_ Married-civ-spouse', 0.057130881323937205),
            ('marital-status Married-spouse-absent', 0.0007685251567880951),
            ('marital-status_ Never-married', 0.022132637767061057),
            ('marital-status_ Separated', 0.001443977997274856),
            ('marital-status Widowed', 0.0012920656150600617),
            ('occupation_ ?', 0.0012570658092493742),
            ('occupation_ Adm-clerical', 0.003888183402377345),
            ('occupation_ Armed-Forces', 7.849021305183289e-06),
            ('occupation Craft-repair', 0.0045943829451486114),
            ('occupation_ Exec-managerial', 0.014274208251001674),
            ('occupation_ Farming-fishing', 0.0031239816488923783),
            ('occupation Handlers-cleaners', 0.0026827428012387677),
            ('occupation Machine-op-inspct', 0.003395624395002198),
            ('occupation_ Other-service', 0.006374929995402671),
            ('occupation Priv-house-serv', 0.00013295517455328977),
            ('occupation_ Prof-specialty', 0.011420136490658232),
            ('occupation Protective-serv', 0.0021654014397871086),
            ('occupation Sales', 0.004646477038827562),
            ('occupation_ Tech-support', 0.003019921089678115),
            ('occupation_ Transport-moving', 0.0031902109787092844),
            ('relationship_ Husband', 0.03021692906439417),
            ('relationship_ Not-in-family', 0.008853978064457679),
            ('relationship Other-relative', 0.0012053646136405563),
            ('relationship_ Own-child', 0.006157719356010141),
            ('relationship Unmarried', 0.003877349467876043),
            ('relationship_ Wife', 0.007540987901406903),
```

```
('race_ Amer-Indian-Eskimo', 0.0010783387378159985),
           ('race_ Asian-Pac-Islander', 0.0024417344992135634),
           ('race_ Black', 0.004280975301823648),
           ('race_ Other', 0.0007538656099764076),
           ('race White', 0.005175528182843353),
           ('native-country_ ?', 0.0019910876186786685),
           ('native-country_ Cambodia', 0.00019533004154127169),
           ('native-country_ Canada', 0.0008951951867414616),
           ('native-country_ China', 0.0003895201639558183),
           ('native-country Columbia', 0.00018952273666699625),
           ('native-country_ Cuba', 0.0006145896047382923),
           ('native-country_ Dominican-Republic', 0.00013716177203916308),
           ('native-country_ Ecuador', 0.00012534720596171515),
           ('native-country_ El-Salvador', 0.00020961519482565817),
           ('native-country_ England', 0.0007941549505858154),
           ('native-country_ France', 0.0002532304006155029),
           ('native-country_ Germany', 0.0008619788400652217),
           ('native-country_ Greece', 0.00027927028479582167),
           ('native-country_ Guatemala', 0.00016610100065482167),
           ('native-country_ Haiti', 0.000154256795821712),
           ('native-country_ Honduras', 6.4998998750552595e-06),
           ('native-country_ Hong', 0.00010302522226291227),
           ('native-country Hungary', 0.00011605434120539044),
           ('native-country_ India', 0.0006563692149357495),
           ('native-country_ Iran', 0.0003724525770610461),
           ('native-country_ Ireland', 0.00018482670535046146),
           ('native-country_ Italy', 0.0006919008152669361),
           ('native-country_ Jamaica', 0.00031122003121692213),
           ('native-country_ Japan', 0.0004900649797857251),
           ('native-country_ Laos', 9.244800802157836e-05),
           ('native-country_ Mexico', 0.0017742723163423266),
           ('native-country_ Nicaragua', 0.0001341615459447685),
           ('native-country Outlying-US(Guam-USVI-etc)', 2.2204394964740045e-05),
           ('native-country_ Peru', 8.937308063042027e-05),
           ('native-country_ Philippines', 0.0008072272852147244),
           ('native-country_ Poland', 0.0004977404449894836),
           ('native-country_ Portugal', 0.00018845547488740118),
           ('native-country_ Puerto-Rico', 0.0005005853553712369),
           ('native-country Scotland', 8.193847573632375e-05),
           ('native-country_ South', 0.0005340837095054746),
           ('native-country_ Taiwan', 0.00023361339195195806),
           ('native-country_ Thailand', 6.53684492277114e-05),
           ('native-country_ Trinadad&Tobago', 8.913471061092276e-05),
           ('native-country_ United-States', 0.004847670971380884),
           ('native-country_ Vietnam', 0.00029283778516370906),
           ('native-country_ Yugoslavia', 0.000221205932593295),
           ('workclass', 0.015787300890446332),
           ('education', 0.02413550623131719),
           ('marital-status', 0.03839544240797084),
           ('occupation', 0.02585307578211641),
           ('relationship', 0.030100123212637043),
           ('race', 0.006960941765454761),
           ('native-country', 0.008801593109932561)]
In [529...
          predictions = model.predict(xt.drop(['fnlwgt','salary'], axis=1))
In [530...
          print("Accuracy Score")
          print(accuracy_score(xt.salary, predictions))
```

```
print("")
print("Confusion Matrix")
print(confusion_matrix(xt.salary, predictions))
print("")
print("Classification Report")
print(classification_report(xt.salary, predictions))

Accuracy Score
```

0.8413488114980652

Classification Report

	precision	recall	f1-score	support
0.0 1.0	0.88 0.69	0.92 0.60	0.90 0.64	12435 3846
1.0	0.09	0.00	0.04	3640
accuracy			0.84	16281
macro avg	0.78	0.76	0.77	16281
weighted avg	0.84	0.84	0.84	16281

In []: