Using partially synthetic microdata to protect sensitive cells in business statistics

Javier Miranda² Lars Vilhuber¹

¹Labor Dynamics Institute, ILR, Cornell University, United States

²Center for Economic Studies, U.S. Census Bureau, United States

January 2016 NCRN Virtual Seminar

Funding

- Vilhuber's work is partially funded by NSF Grant #1042181 and #0941226.
- This work is part of the Census Bureau's LBD Initiative.

Disclaimer

"

This paper reports the results of research and analysis undertaken by Census Bureau staff. It has undergone a more limited review by the Census Bureau than its official publications. This report is released to inform interested parties and to encourage discussion. Any findings, conclusions or opinions are those of the authors. They do not necessarily reflect those of the Center for Economic Studies, the U.S. Census Bureau, or the National Science Foundation.

Business Dynamics

"The U.S. economy is comprised of over 6 million establishments with paid employees. The population of these businesses is constantly churning – some businesses grow, others decline and yet others close. New businesses are constantly replenishing this pool."[*]

Statistics at great detail on

- job creation and destruction
- establishment births and deaths.
- firm startups and shutdowns

by establishment and firm characteristics (age, size, location)

Business Dynamic Statistics (BDS)

www.census.gov/ces/dataproducts/bds/

Firm and Establishment Characteristics

- Sector
- Firm Size
- Firm Age
- Initial Firm Size
- Geography (State, Metro/Non-metro, MSA)
- Cross-tabulations by up to three of these characteristics

Lots of detail

Currently 62 very detailed tables, latest release September 2015

LBD-BDS complex

P-percent rule with secondary suppressions

Cells where the top 2 firms account for more than P percent of the total value of the cell are flagged for suppression

P-percent rule with secondary suppressions

- Cells where the top 2 firms account for more than P percent of the total value of the cell are flagged for suppression
- P value is not disclosed.

P-percent rule with secondary suppressions

- Cells where the top 2 firms account for more than P percent of the total value of the cell are flagged for suppression
- P value is not disclosed
- Trivially: cells with fewer than 3 firms represented are always suppressed

P-percent rule with secondary suppressions

- Cells where the top 2 firms account for more than P percent of the total value of the cell are flagged for suppression
- P value is not disclosed
- Trivially: cells with fewer than 3 firms represented are always suppressed
- Secondary suppressions: "minimize the amount of information loss in a given table row or column".

Extent of suppression

Table: Suppressions in establishment-level BDS

		Number	Suppressions (%)		
Туре	Level	of	Job creation		b creation
		cells	Any	by entrants	by continuers
Age	е	337	0.3	0.3	0.3
Age-Initial Size	е	3033	18.5	14.2	14.2
Age-SIC	е	3033	3	2.9	2.9
Age-State	е	19023	3.3	3.2	3.2
Age-Size	е	3033	26.9	16.1	16.1
All	е	36	0	0	0
Initial Size	е	324	0.3	0	0
Initial Size-SIC	е	2916	19.8	6.5	6.8
Initial Size-State	е	18357	26.8	11.2	11.6
SIC	е	324	0	0	0
State	е	1836	0	0	0
Size	е	324	0.3	0	0
Size-SIC	е	2915	28.1	11.6	12.3
Size-State	е	18358	31.7	14.5	15

Note: Cells are year x categories, where the number of categories varies by published table.

Extent of suppression

Miranda, Vilhuber

The SynLBD is

synthetic establishment (and soon firm) microdata

- synthetic establishment (and soon firm) microdata
- derived from confidential Longitudinal Business Database (LBD, [5])

- synthetic establishment (and soon firm) microdata
- derived from confidential Longitudinal Business Database (LBD, [5])
- designed to facilitate researcher access to establishment microdata (LBD) (see http://vrdc.cornell.edu/sds)

- synthetic establishment (and soon firm) microdata
- derived from confidential Longitudinal Business Database (LBD, [5])
- designed to facilitate researcher access to establishment microdata (LBD) (see http://vrdc.cornell.edu/sds)
- while preserving the confidentiality of establishment/business data

- synthetic establishment (and soon firm) microdata
- derived from confidential Longitudinal Business Database (LBD, [5])
- designed to facilitate researcher access to establishment microdata (LBD) (see http://vrdc.cornell.edu/sds)
- while preserving the confidentiality of establishment/business data.
- part of a larger strategy by the Census Bureau to provide better statistics on business dynamics CNSTAT [9]

Contents of (Syn)LBD

Data elements

- longitudinal establishment identifiers (created using probabilistic matching [5])
- ▶ information on birth, death
- employment and payroll over time
- location
- industry
- firm affiliation of employer establishments

Contents of (Syn)LBD

Data elements

- longitudinal establishment identifiers (created using probabilistic matching [5]) Masked
- ▶ information on birth, death Synthesized
- employment and payroll over time Synthesized
- ► location Suppressed
- ▶ industry Released
- ▶ firm affiliation of employer establishments → next version

Contents of (Syn)LBD

Data elements

- longitudinal establishment identifiers (created using probabilistic matching [5]) Masked
- ▶ information on birth, death Synthesized
- employment and payroll over time Synthesized
- ► location Suppressed
- ▶ industry Released
- ▶ firm affiliation of employer establishments → next version

Complete description

Kinney et al [7]

[more]

Putting two and two together...

V2.0 of SynLBD released by Census Bureau's Disclosure Review Board in 2011

Putting two and two together...

V2.0 of SynLBD released by Census Bureau's Disclosure Review Board in 2011

Let's combine public-use data to fill in suppressions

Goal is two-fold

Retro-active utility

A mechanism that can fill in existing suppressions.

Improving disclosure avoidance going forward

Evaluate future disclosure avoidance mechanisms:

- Suppression
- This proposition
- Noise infusion (not here)

Analytic validity

Figures

Figure 1: Gross Employment Level by Year,

Figure 2: Share of Establishments by Industry Sector and Year, 1976-2000.

Figure 3: Share of Employment by Industry Sector and Year, 1976-2000

Figure 4: Share of Payroll by Industry Sector and Year, 1976-2000

-

Analytic validity

Figure 1: Gross Employment Level by Year, LBD vs Synthetic

Figure 3: Share of Employment by Industry Sector and Year, 1976-2000

Analytic validity

Figure 8: Job Creation Rate by Year, LBD vs Synthetic

Figure 9: Distribution of Job Creation Rates, LBD vs Synthetic

Notation

Base variable

Establishment employment eit.

Example

$$birth_{jt} = \begin{cases} 1 & \text{if } e_{jt} > 0 \text{ and } e_{jt-s} = 0 \ \forall s \ge 1 \\ 0 & \text{otherwise} \end{cases}$$
 (1)

$$jcbirth_{jt} = \begin{cases} e_{jt} - e_{jt-1} & \text{if } e_{jt} > 0 \text{ and } e_{jt-s} = 0 \ \forall s \ge 1 \\ 0 & \text{otherwise} \end{cases}$$
 (2)

Miranda, Vilhuber

SynBDS

Notation

Synthetic values

Synthesized version of variable x_{it} is denoted $\tilde{x}_i t$.

Cells

Collections of characteristics $k_t(j)$ (industry, geography, establishment or firm age and size)

 $j \in K'_t$ describes the set of firms at time t such that $k_t(j) = k'$.

Notation

Aggregations

Generically in capital letters:

$$E_{\cdot t} = \sum_{j=1}^{J} e_{jt}, \tag{3}$$

Aggregations across establishments having characteristics k' at time t

$$X_{k't} = \sum_{j \in K'_t} x_{jt} \tag{4}$$

Suppression rules

Suppression rules

for (aggregate) variable X are captured by I_t^X , such that the releasable variable $X^{(0)}$ under the current regime can be described by

$$X_{k't}^{(0)} = \begin{cases} X_{k't} & \text{if } I_{kt}^X = 1\\ \text{missing otherwise} \end{cases}$$
 (5)

Miranda, Vilhuber

SynBDS

Algorithm 1

We can now express the simple "drop-in" algorithm, leading to the released variable $X^{(i)}$, as:

BDS(in)

if
$$I_t^X = 0$$
 then $X_{k't}^{(i)} = \tilde{X}_{k't}$ else $X_{k't}^{(i)} = X_{k't}$ end if

Weighted Algorithm 1

Time-consistency

Because no time-consistency is imposed, this method can lead to seam biases or higher intertemporal variance

Weighted Algorithm 1

Time-consistency

Because no time-consistency is imposed, this method can lead to seam biases or higher intertemporal variance

Smoothing the time series

In periods that follow a period with suppressions ($I_t^X = 1$), we average synthetic tabulations with non-suppressed tabulations, for up to n periods.

Weighted Algorithm 1

$\mathsf{BDS}^{(i)}$

Algorithm 1: Weighted Drop-in

$$s^* = \min_{s \in [0,n]} \text{ s.t. } I_{t-s}^X = 0$$
 if $n > 0$ and $\exists s^*$ then $X_{k't}^{(i)} = \frac{s^*}{n} X_{k't} + \left(1 - \frac{s^*}{n}\right) \tilde{X}_{k't}$ else if $n = 0$ and $I_t^X = 0$ then $X_{k't}^{(i)} = \tilde{X}_{k't}$ else $X_{k't}^{(i)} = X_{k't}$ end if

Similar idea, at microdata level

Replace sensitive establishments with synthetic establishments.

Smooth the replacement

- ▶ per-establishment weight $w_{js} \in [0, 1]$, applied to the observed data, that increases from 0 in t to 1 in t + n,
- ▶ a per-establishment weight \tilde{w}_{js} , applied to the synthetic data, that decreases from 1 in t to 0 in t + n,
- thus "blending in" the real establishments, and "blending out" the synthetic establishments.

Algorithm 2: notation

$J_{k't}^-$ establishments excluded from tabulations at time t

- ▶ We construct $J_{k't}^-$ by first adding establishment identifiers that meet the suppression conditions I_{kt}^X at time t.
- ► Then add those same establishments to "future" l_{ks}^X , for $s \in [t+1, t+n]$ if n > 0.
- At any point in time t, the set $J_{k't}^-$ contains establishments that met suppression conditions now and in the *past*, i.e., in [t-n, t].

Miranda, Vilhuber

SynBDS

Algorithm 2: notation

$J_{k't}^-$ establishments excluded from tabulations at time t

- ▶ We construct $J_{k't}^-$ by first adding establishment identifiers that meet the suppression conditions I_{kt}^X at time t.
- ► Then add those same establishments to "future" l_{ks}^X , for $s \in [t+1, t+n]$ if n > 0.
- At any point in time t, the set $J_{k't}^-$ contains establishments that met suppression conditions now and in the *past*, i.e., in [t n, t].

$J_{k't}^+$ synthetic establishments

added to tabulations as replacements

Miranda, Vilhuber

BDS(ii)

```
Compute: X_{k't} = \sum_{j \in \mathcal{K}_t'} x_{jt}

Compute: I_t^X

if I_t^X = 0 then

// Suppression condition met for cell k'

Assign all j \in \mathcal{K}_t' to J_{k's}^- for t \le s \le t+n

Assign all j \in \tilde{\mathcal{K}}_t' to J_{k't}^+ for t \le s \le t+n

end if

Compute:
```

$$X_{k't}^{(jiw)} = \sum_{j \in \{K_t' \cap J_{k't}^+\}} \tilde{w}_{jt} \tilde{x}_{jt} + \sum_{j \in K_t' \wedge j \in J_{k't}^-} w_{jt} x_{jt} + \sum_{j \in K_t' \wedge j \notin J_{k't}^-} x_{jt}$$

BDS(ii)

```
Compute: X_{k't} = \sum_{j \in \mathcal{K}_t'} x_{jt}

Compute: I_t^X

if I_t^X = 0 then

// Suppression condition met for cell k'

Assign all j \in \mathcal{K}_t' to J_{k's}^- for t \le s \le t+n

Assign all j \in \tilde{\mathcal{K}}_t' to J_{k't}^+ for t \le s \le t+n

end if

Compute:
```

$$X_{k't}^{(iiw)} = \sum_{j \in \{K_t' \cap J_{k't}^+\}} \tilde{w}_{jt} \tilde{x}_{jt} + \sum_{j \in K_t' \wedge j \in J_{k't}^-} w_{jt} x_{jt} + \sum_{j \in K_t' \wedge j \notin J_{k't}^-} x_{jt}$$

BDS(ii)

```
Compute: X_{k't} = \sum_{j \in \mathcal{K}_t'} x_{jt}

Compute: I_t^X

if I_t^X = 0 then

// Suppression condition met for cell k'

Assign all j \in \mathcal{K}_t' to J_{k's}^- for t \le s \le t+n

Assign all j \in \tilde{\mathcal{K}}_t' to J_{k't}^+ for t \le s \le t+n

end if

Compute:
```

$$X_{k't}^{(iiw)} = \sum_{j \in \{K_t' \cap J_{k't}^+\}} \tilde{w}_{jt} \tilde{x}_{jt} + \sum_{j \in K_t' \wedge j \in J_{k't}^-} w_{jt} x_{jt} + \sum_{j \in K_t' \wedge j \notin J_{k't}^-} x_{jt}$$

BDS(ii)

```
Compute: X_{k't} = \sum_{j \in \mathcal{K}_t'} x_{jt}

Compute: I_t^X

if I_t^X = 0 then

// Suppression condition met for cell k'

Assign all j \in \mathcal{K}_t' to J_{k's}^- for t \le s \le t+n

Assign all j \in \tilde{\mathcal{K}}_t' to J_{k't}^+ for t \le s \le t+n

end if

Compute:
```

$$X_{k't}^{(iiw)} = \sum_{j \in \{K_t' \cap J_{k't}^+\}} \tilde{w}_{jt} \tilde{x}_{jt} + \sum_{j \in K_t' \wedge j \in J_{k't}^-} w_{jt} x_{jt} + \sum_{j \in K_t' \wedge j \notin J_{k't}^-} x_{jt}$$

Subtleties

Careful treatment of border cases

- ▶ Setting n = 0 is similar to the "Drop-in" case, but margins add up
- ▶ Setting $w_{js} = 0$ for $s \in (t, t + n]$ simply replaces real establishments with synthetic establishments, no phase-in
- Synthetic establishments that are in cell k' in t but are in cell k'' in t + 1: should they receive $\tilde{w}_{it+1} > 0$?

Analysis

We implemented Algorithm 1 and 2 for Business Dynamics Statistics (BDS) tabulations by establishment age and size (bds_e_agesz).

- We implemented Algorithm 1 and 2 for BDS tabulations by establishment age and size (bds_e_agesz).
- Variations of w and n

- We implemented Algorithm 1 and 2 for BDS tabulations by establishment age and size (bds_e_agesz).
- Variations of w and n
- ► For good measure, also added a simple multiplicative noise-infused BDS⁽ⁿ⁾ tabulation (no suppressions)

- We implemented Algorithm 1 and 2 for BDS tabulations by establishment age and size (bds_e_agesz).
- Variations of w and n
- ► For good measure, also added a simple multiplicative noise-infused BDS⁽ⁿ⁾ tabulation (no suppressions)
- ▶ About 26% of all cells have some suppression

- We implemented Algorithm 1 and 2 for BDS tabulations by establishment age and size (bds_e_agesz).
- Variations of w and n
- ► For good measure, also added a simple multiplicative noise-infused BDS⁽ⁿ⁾ tabulation (no suppressions)
- About 26% of all cells have some suppression
- ► Here: variable, "Job Creation by establishment births" (job_creation_births) and "Job Creation by establishment continuers" (job_creation_continuers)

Protection: From Kinney et al

Figure 13: Histogram: Percent Distance Between Actual and Synthetic Employment

The comparison is for individual establishments, not within cells

Criteria for cell-wise comparison

- Differences in count of establishment in a cell
- Differences in values of cells

Miranda, Vilhuber

SynBDS

Miranda, Vilhuber

SynBDS

Analytic validity: time-series

Setup

Estimate an AR(2) process for each of (confidential) $X_{k't}$, (synthetic) $X_{k't}^{(s)}$, $X_{k't}^{(i)}$, and $X_{k't}^{(ii)}$ (and their variants)

Metrics

- number of missing time-series estimates/feasible regressions
- ▶ the number of significant coefficients for the first lag ρ_1 of the AR(2)
- coverage, the percentage of regressions where the true ρ_1 lies within the confidence band around the coefficient estimated from the comparison ρ_1^s and $\rho_1^{(i)}$,
- interval overlap measure J_k [6]

Miranda, Vilhuber S

Consider the overlap of confidence intervals (L, U) for ρ_1 (estimated from the confidential data) and (L^*, U^*) for ρ_1^* . Let $L^{over} = \max(L, L^*)$ and $U^{over} = \min(U, U^*)$. Then the average overlap in confidence intervals is

$$J_k^* = \frac{1}{2} \left[\frac{U^{over} - L^{over}}{U - L} + \frac{U^{over} - L^{over}}{U^* - L^*} \right]$$

We then average J_k^* over all estimated AR(2) regressions.

Analytic validity: Percent missing

Table: Analytic validity: Feasibility of AR(2) regressions

Variable	Number feasible	Percent Infeasible							
	$X_{k't}$	$X_{k't}^{(s)}$	$X_{k't}^{(0)}$	$X_{k't}^{(i)}$	$X_{k't}^{(in)}$	$X_{k't}^{(ii)}$	$X_{k't}^{(iiw)}$	$X_{k't}^{(iin)}$	$X_{k't}^{(n)}$
emp	90	0	0	0	0	0	0	0	0
estabs	90	0	0	0	0	0	0	0	0
estabsentry	64	59.4	0	0	0	0	0	0	0
jobcreation	90	0	0	0	0	0	0	0	0
jobcreationbirths	90	25.6	18.9	13.3	13.3	1.1	2.2	1.1	0
jobcreationcontinuers	81	0	6.2	0	0	0	0	0	0

Analytic validity: Percent missing

Improvement in feasible regressions

- ... but not completely.
- Algorithm 2 performs better (noise-infused performs best)
- Possibly due to poor analytic validity of the underlying synthetic data for these variables (Column 2)

Analytic validity: Coverage

Table: Analytic validity: AR(2) regressions: Coverage

Variable	Coverage							
	$\rho_1^{(s)}$	$\rho_1^{(0)}$	$\rho_1^{(i)}$	$\rho_1^{(in)}$	$\rho_1^{(ii)}$	$\rho_1^{(iiw)}$	$\rho_1^{(iin)}$	$\rho_1^{(n)}$
emp	88.9	100	100	100	100	100	100	100
estabs	88.9	100	100	100	100	100	100	100
estabsentry	92.3	90.6	90.6	90.6	100	100	100	100
jobcreation	82.2	100	100	100	100	100	100	100
jobcreationbirths	89.6	91.8	91	89.7	97.8	97.7	98.9	100
jobcreationcontinuers	76.5	100	81.5	87.7	87.7	88.9	86.4	100

Analytic validity: Coverage

Improvement in coverage under Algorithm 2

- no improvement when using Algorithm 1 (but coverage of underlying synthetic data is poor)
- Only small difference between Algorithm 2 and noise-infused tabulations

Analytic validity: Overlap

Table: Analytic validity: AR(2) regressions: Interval overlap

Variable	Interval overlap							
	$J_k^{(s)}$	$J_k^{(0)}$	$J_k^{(i)}$	$J_k^{(in)}$	$J_k^{(ii)}$	$J_k^{(iiw)}$	$J_k^{(iin)}$	$J_k^{(n)}$
emp	83.4	99.4	100	100	100	100	100	97.7
estabs	80.4	97.6	100	100	100	100	100	97.8
estabsentry	78.7	82.6	82.6	82.6	100	100	100	95.8
jobcreation	73.3	94.4	100	100	100	100	100	96
jobcreationbirths jobcreationcontinuers	72.9 70.7	80.9 92.6	81.5 77.5	79.9 81.6	91.9 85.1	91.9 85.3	91.8 85	94.5 95.9

Analytic validity: Overlap

Similar picture to the Coverage statistics

- no improvement when using Algorithm 1 (but coverage of underlying synthetic data is poor)
- bigger difference between Algorithm 2 and noise-infused tabulations (but notice deterioration in non-sensitive cells)

Unexplored issues

SynLBD is synthesized independently within industry

- SynLBD is synthesized independently within industry
- Geography is not synthesized, not considered within synthesis process (and not released) - unclear how geography subtabulations will fare, what the disclosure avoidance implications are

- SynLBD is synthesized independently within industry
- Geography is not synthesized, not considered within synthesis process (and not released) - unclear how geography subtabulations will fare, what the disclosure avoidance implications are
- ► Firm-level characteristics go into a bit more detail, and require availability of SynLBD v3

- SynLBD is synthesized independently within industry
- Geography is not synthesized, not considered within synthesis process (and not released) - unclear how geography subtabulations will fare, what the disclosure avoidance implications are
- ► Firm-level characteristics go into a bit more detail, and require availability of SynLBD v3
- ► Time consistency of the series

- SynLBD is synthesized independently within industry
- Geography is not synthesized, not considered within synthesis process (and not released) - unclear how geography subtabulations will fare, what the disclosure avoidance implications are
- Firm-level characteristics go into a bit more detail, and require availability of SynLBD v3
- ► Time consistency of the series
- Comparison to alternative "outside-the-firewall" imputation mechanisms ([4, 2])

Conclusion

Early in the process

- Desirable a-priori properties (use of public-use data to fill in blanks)
- May not work for other variables
- Assumes suppression as primary disclosure avoidance mechanism...

Context Solution Results Conclusion

Thank you

More info:

- For information on the SynLBD, see goo.gl/eyrv7w
- Access through the Synthetic Data Server, www.vrdc.cornell.edu/sds/

Extra slides

Extra slides

Bibliography

J. M. Abowd, K. Gittings, K. L. McKinney, B. E. Stephens, L. Vilhuber, and S. Woodcock, "Dynamically consistent noise infusion and partially synthetic data as confidentiality protection measures for related time-series," Federal Committee on Statistical Methodology, Tech. Rep., January 2012. [Online]. Available: http://www.fcsm.gov/events/oapers2012.html

J. R. Bradley, S. H. Holan, and C. K. Wikle, "Mixed Effects Modeling for Areal Data that Exhibit Multivariate-Spatio-Temporal Dependencies," *ArXiv e-prints*, Jul. 2014.

R. K. Gittings, "Essays in labor economics and synthetic data methods," Ph.D., Cornell University, 2009.

S. H. Holan, D. Toth, M. A. R. Ferreira, and A. F. Karr, "Bayesian multiscale multiple imputation with implications for data confidentiality," *Journal of the American Statistical Association*, vol. 105, no. 490, pp. 564–577, 2010. [Online]. Available: http://dx.doi.org/10.1198/jasa.2009.ap08629

R. Jarmin and J. Miranda, "The Longitudinal Business Database," U.S. Census Bureau, Center for Economic Studies. Discussion Paper CES-WP-02-17, 2002.

A. F. KARR, C. N. KOHNEN, A. OGANIAN, J. P. REITER, and A. P. SANIL, "A framework for evaluating the utility of data altered to protect confidentiality." *The American Statistician*, vol. 60, no. 3, pp. 1–9, 2006.

S. K. Kinney, J. P. Reiter, A. P. Reznek, J. Miranda, R. S. Jarmin, and J. M. Abowd, "Towards unrestricted public use business microdata: The Synthetic Longitudinal Business Database," *International Statistical Review*, vol. 79, no. 3, pp. 362–384, December 2011. [Online]. Available: http://ideas.repec.org/a/bla/istatr/v79y2011i3o362-384.html

J. Miranda and L. Vilhuber, "Using partially synthetic data to replace suppression in the business dynamics statistics: Early results," in *Privacy in Statistical Databases*, ser. Lecture Notes in Computer Science, J. Domingo-Ferrer, Ed. Springer International Publishing, 2014, vol. 8744, pp. 232–242. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-11257-2.18

Acronyms

BDS Business Dynamics Statistics

