Modéliser le comportement des systèmes mécaniques dans le but d'établir une loi de comportement ou de déterminer des actions mécaniques en utilisant le PFD

Chapitre 4 - Méthodologie: détermination des équations de mouvement

Industrielles de

l'Ingénieur

Sciences

Application 02

Chaîne fermée – Micromoteur de modélisme

Équipe PT La Martinière Monplaisir

Savoirs et compétences :

Mise en situation

Les figures et le schéma ci-dessous représentent un micromoteur à combustion interne de modèle réduit. Du point de vue cinématique, il est basé sur un système bielle manivelle (2,1), associé à un piston (3), animé d'un mouvement de translation rectiligne alternatif.

On note:

•
$$\overrightarrow{AB} = e \overrightarrow{x_1}, \overrightarrow{BC} = L_2 \overrightarrow{y_2}, \overrightarrow{AC} = \lambda_3 \overrightarrow{y_0};$$

• $\overrightarrow{HG_1} = a_1 \overrightarrow{x_1}, \overrightarrow{BG_2} = a_2 \overrightarrow{y_2}, \overrightarrow{CG_3} = a_3 \overrightarrow{y_0};$

•
$$\overrightarrow{HG_1} = a_1 \overrightarrow{x_1}, \overrightarrow{BG_2} = a_2 \overrightarrow{y_2}, \overrightarrow{CG_3} = a_3 \overrightarrow{y_0};$$

•
$$(\overrightarrow{x_0}, \overrightarrow{x_1}) = (\overrightarrow{y_0}, \overrightarrow{y_1}) = \theta_1, (\overrightarrow{x_0}, \overrightarrow{x_2}) = (\overrightarrow{y_0}, \overrightarrow{y_1}) = \theta_2;$$

 $\omega_{10} = \dot{\theta}_1 \text{ et } \omega_{20} = \dot{\theta}_2;$

• m_1 , m_2 et m_3 les masses des trois pièces mobiles (1), (2) et (3).

On note $C_m \overrightarrow{z_0}$ le couple délivré par le moteur et $F_e \overrightarrow{y_0}$ la force exercée sur le piston suite à l'explosion du mélange air - carburant. On néglige les effets de la pesanteur.

Question 1 Exprimer la relation liant la vitesse de rotation ω_{10} du vilebrequin (1) et la vitesse du piston (3), notée $\dot{\lambda} = V_{3/0}$.

Dans la perspective d'une étude dynamique, on se propose d'évaluer les caractéristiques de masse et inertie des trois pièces mobiles, ainsi que leurs propriétés cinétiques.

On note
$$I_H(1) = \begin{pmatrix} A_1 & -F_1 & -E_1 \\ -F_1 & B_1 & -D_1 \\ -E_1 & -D_1 & C_1 \end{pmatrix}_{(H;\overrightarrow{x_1},\overrightarrow{y_1},\overrightarrow{z_1})} \text{la ma-}$$

trice d'inertie en H de l'ensemble {vilebrequin, hélice} repéré (1).

Question 2 En considérant que seul le plan $(H, \overrightarrow{x_1}, \overrightarrow{z_1})$ est le plan de symétrie, indiquer quelle(s) simplification(s) cela apporte à cette matrice d'inertie.

Question 3 Définir la forme de la matrice d'inertie de la bielle (2) et du piston (3) en précisant en quel point et dans quelle base elle est définie.

Par la suite on fait l'hypothèse que les matrices d'inertie sont diagonales.

Question 4 Déterminer l'équation de mouvement par les théorèmes généraux.

1