Lin paper

April 8, 2019 EE290

Outline

- Inverter Model
 - LCL Filter
 - Initial Conditions
- Machine Model
 - Changing from laplace to time domain
- Combining the Model
 - Time domain

Fig. 1: Model of a single-machine single-inverter system,

Inverter Model

Progress

- Implemented code in paper
- Model is running!
- Connected to an infinite bus
- Ignored series resistance of inductors
- No scaling factors yet

Challenges

- LCL filter: think we've solved it
- PLL: parameters not defined, assumptions made
- Initial conditions?

Inverter Model: states and parameters

where the dynamical states and inputs are given by

$$x_{i} = [i_{l}^{dq}, i_{o}^{dq}, v_{o}^{dq}, \gamma^{dq}, p_{avg}, q_{avg}, \phi_{pq}, v_{PLL}, \phi_{PLL}, \delta_{i}]^{\top},$$
 (5)

$$u_i = [p^*, q^*, v_g^{\mathrm{dq}}]^\top. \tag{6}$$

Above, $i_1^{\rm dq} = [i_1^{\rm d}, i_1^{\rm q}]^{\rm T}$ is the filter current, $i_{\rm o}^{\rm dq} = [i_{\rm o}^{\rm d}, i_{\rm o}^{\rm q}]^{\rm T}$ is the terminal current, $v_{\rm o}^{\rm dq} = [v_{\rm o}^{\rm d}, v_{\rm o}^{\rm q}]^{\rm T}$ is the filter voltage, $\gamma^{\rm dq} = [\gamma^{\rm d}, \gamma^{\rm q}]^{\rm T}$ captures the states for the current PI controller, $p_{\rm avg}$ and $q_{\rm avg}$ are the low-pass-filtered measurements of the inverter real and reactive power, $\phi_{\rm pq} = [\phi_{\rm p}, \phi_{\rm q}]^{\rm T}$ captures the states for the real and reactive power PI controllers, $v_{\rm PLL}$ and $\phi_{\rm PLL}$ are the filtered d-axis voltage measurement and the PI compensator state for the PLL, respectively, and $\delta_{\rm i}$ is the angle for the dq transformation. The input signals p^* and q^* are the unscaled real and reactive power set points, and $v_{\rm g}^{\rm dq} = [v_{\rm g}^{\rm d}, v_{\rm g}^{\rm q}]^{\rm T}$ is the unscaled grid voltage at the point of interconnection.

TABLE II: Parameters of the inverter model utilized in the case-study.

$L_{\rm f}=1{ m mH}$	$R_{\mathrm{f}} = 0.7\Omega$	$L_{\rm o} = 0.2{\rm mH}$	Lq?
$R_{\rm o} = 0.12\Omega$	$C=24\mu\mathrm{F}$	$R_{\mathrm{c}} = 0.02\Omega$	
$k_{\rm PQ}^p = 0.01 (\rm V)^{-1}$	$k_{\rm PQ}^i = 0.1 ({\rm V \cdot s})^{-1}$	$k_{\rm i}^p = 16.4{ m V/A}$	
$k_{\rm i}^i = 30.4 {\rm V/(A \cdot s)}$	$k_{\mathrm{PLL}}^p = 0.25\mathrm{rad/V}$	$k_{\mathrm{PLL}}^{i} = 2\mathrm{rad}/(\mathrm{V}\cdot\mathrm{s})$	

Inverter model: PLL

Defines angle δ_i for inverter reference frame dq coordinates

PLL dynamics:

$$\dot{v}_{\rm PLL} = \omega_{\rm c,PLL}(v_{\rm o}^{\rm d} - v_{\rm PLL}),$$
$$\dot{\phi}_{\rm PLL} = -v_{\rm PLL},$$
$$\dot{\delta}_{\rm i} = \omega_{\rm nom} - k_{\rm PLL}^p v_{\rm PLL} + c_{\rm PLL}^p v_{\rm PLL} + c_{\rm PLL}^p v_{\rm PLL} + c_{\rm PLL}^p v_{\rm PLL}^p v_{\rm PLL}^p + c_{\rm$$

 $\dot{\delta}_{i} = \omega_{\text{nom}} - k_{\text{PLL}}^{p} v_{\text{PLL}} + k_{\text{PLL}}^{i} \phi_{\text{PLL}} := \omega_{\text{PLL}},$

used in current controller

What are all the omegas?

$$ω = 2*pi*60 (Hz)$$
 $ωnom = ω$
 $ωc,PLL = 2*pi*250$
 $ωc = 2*pi*250$
 $ωPLL = above$

"nominal AC system frequency"

"cutoff frequency of filter for v_od measurement"

?? used in power controller

Inverter model: power & current controllers

Power Controller

$$\dot{s}_{\text{avg}} = \omega_{\text{c}} ([p, q]^{\top} - s_{\text{avg}}), \ \dot{\phi}_{\text{pq}} = [p^*, q^*]^{\top} - s_{\text{avg}},$$
 (10)

$$i_{\mathrm{l}}^{\mathrm{dq}*} = k_{\mathrm{PQ}}^{p} \dot{\phi}_{\mathrm{pq}} + k_{\mathrm{PQ}}^{i} \phi_{\mathrm{pq}}, \tag{11}$$

Current Controller

$$v_{i}^{\mathrm{dq}*} = k_{i}^{p} \dot{\gamma}^{\mathrm{dq}} + k_{i}^{i} \gamma^{\mathrm{dq}} + \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \omega_{\mathrm{PLL}} L_{\mathrm{f}} i_{\mathrm{l}}^{\mathrm{dq}}, \tag{13}$$

Inverter Model: LCL Filter

- Used [1] as reference for creating DQ transformed LCL filter.
- Currently neglecting series resistance for inductors.

[1] Huang, Meng and Sun, Jianjun and Peng, Yu and Zha, Xiaoming,"Optimized damping for LCL filters in three-phase voltage source inverters coupled by power grid", Journal of Modern Power Systems and Clean Energy, 2017.

Inverter Model: LCL Filter

```
\begin{aligned} &\text{di\_od} = 1/\text{L\_g} * (\text{L\_g*omega*i\_oq} + \text{v\_od} - (\text{i\_1d} - \text{i\_od}) * \text{R\_c} - \text{v\_gd} - \text{R\_c*i\_od} + \text{R\_c*i\_1d}); \\ &\text{di\_oq} = 1/\text{L\_g} * (-\text{L\_g*omega*i\_od} + \text{v\_oq} - (\text{i\_1q} - \text{i\_oq}) * \text{R\_c} - \text{v\_gq} - \text{R\_c*i\_oq} + \text{R\_c*i\_1q}); \\ &\text{di\_odq} = [\text{di\_od}, \text{di\_oq}]; \end{aligned}
```

 $R_{f} \frac{\kappa_{v}^{2}}{\kappa_{p}} L_{f} \frac{\kappa_{v}^{2}}{\kappa_{p}} R_{g} \frac{\kappa_{v}^{2}}{\kappa_{p}} L_{g} \frac{\kappa_{v}^{2}}{\kappa_{p}}$ $\downarrow i_{1} \frac{\kappa_{p}}{\kappa_{v}} + C_{f} \frac{\kappa_{p}^{2}}{\kappa_{v}^{2}} v_{g} \kappa_{v}$ $- \underbrace{\underbrace{R_{c} \frac{\kappa_{v}^{2}}{\kappa_{p}}}_{K_{v}} - \underbrace{\underbrace{Q_{c} \kappa_{v}^{2}}_{K_{p}}}_{K_{v}} C_{f} \frac{\kappa_{v}^{2}}{\kappa_{p}}$

[1] Huang, Meng and Sun, Jianjun and Peng, Yu and Zha, Xiaoming,"Optimized damping for LCL filters in three-phase voltage source inverters coupled by power grid", Journal of Modern Power Systems and Clean Energy, 2017.

Inverter Model: Results?

Initial Conditions

- How do we determine realistic initial conditions?
 - Currently we are connecting the inverter model to an infinite bus.
- Per unitize parameters?
 - Model is "scaled" (not implemented) but not per unitized.

Initial Conditions

Initial Condition	Unit
[0,217]	A
[0,0]	A
[24E3,0]	V
[0,0]	-
0	W
5.2E6	VAR
[0,0]	W, VAR
24E3	V
0	Radians
	[0,217] [0,0] [24E3,0] [0,0] 0 5.2E6 [0,0] 24E3

Machine Model

- We attempted to implement in Laplace domain. (Not possible with solver)
- Either use new model or go one by one and convert to time by hand.

States, inputs, and parameters:

$$x_{\rm m} = [\delta_{\rm g}, \omega, P_{\rm g}, P_{\rm gt}, P_{\rm m}, v_{\rm c}, v_{\rm fd}, \lambda_{\rm fd}]^{\top},$$

 $u_{\rm m} = [P_{\rm agc}, v^*, i_{\rm m}^{\rm dq}]^{\top}.$

$H = 2.9 \mathrm{s}$	D=1	$\hat{r} = 0.05$
$\tau_{\rm g} = 0.2{\rm s}$	$F_{\rm hp} = 0.3$	$T_{\rm rh} = 7{\rm s}$
$T_{\rm ch} = 0.3\mathrm{s}$	$k_{\rm a} = 0.0745$	$T_{\rm a} = 0.04 {\rm s}$
$T_{\rm b} = 12\mathrm{s}$	$T_{\rm c} = 1\mathrm{s}$	$R_{\rm fd} = 0.0006$
$R_{\rm a} = 0.003$	$L_{\rm a,fd} = 1.66$	$L_{\rm fd,fd} = 1.825$
$L_{\rm d} = 1.81$	$L_{\rm q} = 1.76$	$P_{ m agc}=0.9{ m pu}$

Combining the models

- Then the combined model needs to be linearized.
- Add series impedance?

Fig. 1: Model of a single-machine single-inverter system,