BMSim

IoT Fundamentals Course

Amirreza Hosseini 9820363

First scenario: A network with only one destination node.

In this task, we aim to simulate a network consisting of 49 nodes that use Bluetooth mesh technology to exchange information between network nodes. In Bluetooth mesh networks, each node can have four features: producer, consumer, friend, and low energy. Three scenarios have been designed for this task. In the first scenario, all nodes have producer and consumer features, and the performance of nodes and the network is examined. In the second scenario, the number of packet destinations increases, and in the third scenario, two new features (friend and low energy) are added to the other node features, and the performance of these nodes is examined. We use this properties table for our simulation specifications as shown in figure 1. Also, the dimension of the area is a square of 40*40.

Parameter	Value
Scan Window	30 ms
Scan Interval	30 ms
Ntis	1
Rris	1
Relay Re-transmit Count	0
Network Transmit Count	0
Execution Time	30000 ms
Buffer size	6
Packet reception ratio	100
Heartbeat interval	4000
Communication Range	11.6
Relay nodes	All nodes
Generator (source) nodes	All nodes
Advertising Interval	20
Generation interval	1000
Number of nodes	49
topology	random

Figure 1: simulation setting

Default algorithm for a grid network:

a) Here is the topology for grid network in figure 2. And the nodes' locations are as follows:

Graph with 49 nodes and 84 edges

initial [[22, 6], [4, 6], [30, 6], [8, 6], [2, 6], [6, 6], [12, 6], [1, 6], [27, 6], [9, 6], [12, 6], [16, 6], [6, 6], [3, 6], [25, 6], [10, 6], [24, 6], [13, 6], [9, 6], [21, 6], [27, 6], [16, 1], [25, 6], [5, 6], [4, 6], [4, 6], [13, 6], [10, 6], [22, 6], [19, 6], [3, 6], [6, 1], [21, 6], [26, 6], [16, 6], [9, 6], [7, 6], [18, 6], [1, 6], [15, 6], [10, 6], [2, 6], [21, 6], [25, 6], [5, 6], [5, 6], [23, 6]]

Figure 2: Grid topology of first scenario

b) show the route of a single packet in the gird network like following:

as we could see, the centered node of topology is 24 and it is our only destination node too. We want to trace a packet generated in node 0 and rout the network till arrives at node 24. We must first check the 0.log file and calculate the route to 24.log file. Also, we need to assign 1 to TOTAL_LOG in the program.

In 0.log file we have:

(generate) 0 14365.7 [24] 14

In 1.log file we have:

(relay) 0 0 14365.77 14 14365.7 8 1 (advertise) 1 14372.17 0 14

In 2.log file we have:

(relay) 1 0 14372.31 14 14365.7 7 1

(advertise) 2 14372.51 0 14

In 3.log we have:

(relay) 2 0 14372.58 14 14365.7 6 1

(advertise) 3 14372.78 0 14

In 10.log we have:

(relay) 3 0 14372.93 14 14365.7 5 1

(advertise) 10 14373.13 0 14

In 11.log we have:

(relay) 10 0 14373.16 14 14365.7 4 1

(advertise) 11 14373.36 0 14

In 18.log we have:

(relay) 11 0 14373.55 14 14365.7 3 1

(advertise) 18 14373.75 0 14

In 25.log we have:

(relay) 18 0 14373.89 14 14365.7 2 1

(advertise) 25 14374.89 0 14

In 24.log we have:

(main) 0 14 14365.7 24 14375.04

And the path that the packet takes in the network is as follows:

c) In this section we have some of the most important parameters for network analysis.

nodes PDR [100.0, 100.0, 96.55172413793103, 93.10344827586206, 100.0, 100.0, 100.0, 100.0, 100.0, 96.55172413793103, 100.0, 100.

average PDR in the network [99.49952107279694]

average latency in each node [30.827241379310134, 64.00137931034502, 58.03857142857135, 29.40888888888846, 31.438620689655096, 72.64551724137948, 36.17827586206903, 18.554137931034834, 31.638965517240994, 30.06896551724148, 30.71655172413767, 18.618275862069126, 20.2799999999981, 0.9879310344827461, 1.8593103448278239, 21.033448275862092, 27.007241379310575,

78.66275862068997, 26.65928571428596, 63.00862068965526, 7.157931034482889, 49.97965517241363, 25.81999999999716, 28.39379310344831,

31.00034482758637, 54.3531034482762, 51.14103448275863, 15.540689655172345, 17.741034482758433, 63.541785714285695, 8.307931034482706, 12.58500000000008, 19.142068965517048, 54.302413793103575, 41.60310344827572, 40.44655172413801] 27.65137931034505, 51.50103448275897, 38.126206896551324, 43.44758620689634, 37.210000000000015, 25.256206896551877, 31.67172413793144, 14.923448275862397, 49.09678571428584, 65.7417241379309, 64.4175862068964, 26.718620689655225,

scanning energy in each node [1223.5780800029893, 1214.0454600029545, 1219.2579600029737, 1215.4966200029598, 1220.96766000298, 1213.8536400029539, 1223.6948400029896, 1213.9870800029544, 1215.8635800029613, 1204.7463600029207, 1217.2396800029662, 1202.2527000029118, 1215.9469800029615, 1213.5700800029529, 1220.1003000029766, 1205.3885400029233, 1208.0490000029326, 1193.3372400028793, 1206.1057800029257, 1201.8857400029103, 1220.5840200029784, 1214.8377600029573, 1216.2388800029626, 1194.4881600028834, 1249.9825200030855, 1193.3122200028793, 1217.0311800029656, 1212.9529200029506, 1220.750820002979, 1206.9564600029287, 1203.1617600029151, 1193.795940002881, 1206.3142800029266, 1203.937380002918, 1218.4906800029707, 1214.2956600029554, 1215.3048000029594, 1203.7705800029173, 1218.4156200029706, 1204.2126000029189, 1217.172960002966, 1214.937840002958, 1223.9450400029907, 1213.8870000029542, 1220.1086400029767, 1214.8210800029574, 1219.9001400029758, 1213.2865200029519, 1223.2361400029881]

switching energy in ea	ach node [1.758996000000	035, 2.3552100000000578,	1.9994580000000444,				
2.3123880000000563,	1.9072260000000407,	2.3947380000000593,	1.7458200000000348,				
2.391444000000059,	2.223450000000053,	3.004128000000046,	2.1905100000000517,				
3.10953600000003,	2.2366260000000535,	2.391444000000059,	1.996164000000044,				
2.9678940000000518,	2.724138000000072,	3.741983999999934,	2.872368000000066,				
3.1391820000000252,	1.9566360000000427,	2.338740000000057,	2.223450000000053,				
3.6398699999999495,	0.023057999999999995,	3.7024559999999402,	2.206980000000052,				
2.4457950000000617,	1.9566360000000427,	3.0963600000000318,	2.8493100000000697,				
3.6793979999999435,	2.839428000000071,	3.056832000000038,	2.068632000000047,				
2.3716800000000586,	2.289330000000556,	3.0733020000000355,	2.1114540000000486,				
3.0469500000000393,	2.1839220000000514,	2.2860360000000552,	1.699704000000033,				
2.41450200000006,	1.9467540000000425,	2.2827420000000553,	1.9467540000000425,				
2.4046200000006, 1.80840600000037]							

transmitting energy in each node [12.345652799999527, 16.530227999999163, 14.03335439999938,

0 0,	-
16.22967839999919,	13.386016799999437,
16.78453919999914,	15.605459999999244,
21.824524799998706,	15.697936799999235,
20.83039919999879,	19.11957839999894,
22.032597599998688,	13.732804799999407,
25.54671599999838,	0.16183440000000002,
17.16215279999911,	13.732804799999407,
25.82414639999836,	19.92875039999887,
16.645823999999152,	16.067843999999205,
21.385259999998745,	15.328029599999269,
16.94637359999913,	13.663447199999412,
16.877015999999134, 12	.692440799999497]

16.807658399999138, 21.084710399998766, 16.78453919999914, 26.263411199998433, 16.414631999999177, 25.98598079999835, 21.73204799999871, 21.454617599998727, 16.04472479999921, 16.02160559999921, 12.253175999999536, 15.374267999999265, 14.010235199999382, 20.15994239999885, 15.605459999999244, 15.489863999999255, 19.99810799999886, 14.5188575999934, 14.819407199999311, 11.929507199999563, 13.663447199999412,

total energy in each	n node [1236.6694860029	831, 1233.028268402952,	1235.2240332029733,				
1233.5077320029566,	1236.2498724029763,	1232.605753202949,	1237.142079602985,				
1232.9323872029508,	1232.7626856029538,	1227.8122608029128,	1234.0664160029612,				
1227.1812456029088,	1233.6147588029569,	1233.306236402954,	1234.5416616029672,				
1227.195177602908,	1228.543221602921,	1222.212670802871,	1228.75872600292,				
1226.807358002907,	1235.6661108029732,	1231.1935836029418,	1232.5278684029502,				
1222.3349076028735,	1250.626112403087,	1224.298833602885,	1233.2645364029538,				
1232.5028676029494,	1235.1435348029693,	1226.8365384029075,	1228.7517216029216,				
1223.181427202876,	1229.7746976029275,	1227.6273492029131,	1234.2789804029655,				
1232.5987488029507,	1233.7106400029581,	1227.4384116029096,	1233.0434784029546,				
1227.8067456029112,	1232.6877024029513,	1232.4862068029488,	1237.5034860029862,				
1232.7419220029512,	1235.3394384029727,	1232.4916836029513,	1235.596642802972,				
1232.1346104029453, 1236.099656402979]							

network energy consumption (mJ) 60363.85047374429

Default algorithm for a random network:

After multiple runs of simulation eventually we can find a connected-component graph as our network.

a)

Here is the topology for random network in figure 3. And the node's locations are as follows:

Graph with 49 nodes and 209 edges

initial [[6, 6], [17, 6], [1, 6], [20, 6], [0, 6], [16, 6], [22, 6], [10, 6], [4, 6], [6, 6], [19, 6], [24, 6], [22, 6], [4, 6], [29, 6], [13, 6], [27, 6], [11, 6], [16, 6], [8, 6], [28, 6], [12, 6], [0, 6], [12, 6], [16, 6], [10, 6], [22, 6], [30, 6], [17, 6], [4, 6], [15, 6], [11, 6], [15, 6], [21, 6], [3, 6], [4, 6], [23, 6], [7, 6], [18, 6], [19, 6], [10, 6], [24, 6], [30, 6], [20, 6], [28, 6], [8, 6], [18, 6], [23, 6], [12, 6]]

Figure 3: network topology for random network

b) show the route of a single packet in the gird network like following we do the same for this randomly connected network to find the route of a packet. Here the center node is 2.

c)

nodes PDR [100.0, 100.0, 96.55172413793103, 93.10344827586206, 100.0, 100.0, 100.0, 100.0, 100.0, 96.55172413793103, 100.0, 100.

average PDR in the network [99.49952107279694]

average latency in each node [30.827241379310134, 64.00137931034502, 58.03857142857135, 29.40888888888846, 31.438620689655096, 78.66275862068997, 31.00034482758637, 72.64551724137948, 36.17827586206903, 26.65928571428596, 54.3531034482762, 18.554137931034834, 31.638965517240994, 63.00862068965526, 51.14103448275863, 30.06896551724148, 30.71655172413767, 7.157931034482889, 15.540689655172345, 18.618275862069126, 20.2799999999981, 49.97965517241363, 17.741034482758433, 0.9879310344827461, 1.8593103448278239, 25.81999999999716, 63.541785714285695, 21.033448275862092, 12.585000000000008, 19.142068965517048, 54.302413793103575, 41.60310344827572, 40.44655172413801]

27.007241379310575, 27.65137931034505, 51.50103448275897, 38.126206896551324, 43.44758620689634, 28.39379310344831, 37.210000000000015, 25.256206896551877, 31.67172413793144, 14.923448275862397, 8.307931034482706, 49.09678571428584, 65.7417241379309, 64.4175862068964, 26.718620689655225,

scanning energy in each node [1205.6887800029242, 1217.0145000029654, 1209.6586200029387, 1193.7459000028807, 1205.9723400029254, 1202.7864600029136, 1218.5240400029709, 1200.4846200029053, 1199.4254400029015, 1197.7824600028955, 1213.895340002954, 1216.7059200029644, 1227.5395800030037, 1210.4259000029415, 1190.7268200028698, 1198.0910400028968, 1207.29840000293, 1213.2531600029517, 1209.1081800029367, 1216.2555600029625, 1216.2722400029627, 1205.2634400029226, 1210.2591000029408, 1201.3269600029082, 1206.6478800029276, 1196.6315400028914]

1198.1327400028965, 1206.4477200029269, 1201.0851000029074, 1204.7213400029207, 1209.5835600029384, 1205.622060002924, 1193.2788600028791, 1210.551000002942, 1219.3497000029738, 1193.6958600028806, 1198.8082800028992,

1250.6080200030876, 1210.2257400029407, 1204.4377800029197, 1190.9686800028708, 1207.3401000029303, 1219.6916400029752, 1204.51284000292, 1220.3838600029778, 1195.5890400028877, 1205.2384200029226, 1212.0188400029472, 1218.9410400029724,

switching energy in each node [2.9349540000000567, 2.1674520000000506, 0.02305799999999999, 2.6384940000000685, 3.7288079999999364, 3.399407999999986, 2.595672000000067, 2.905308000000061, 3.129300000000027, 2.885544000000064, 2.981070000000049, 3.224826000000012. 2.0554560000000466, 3.23964900000001, 3.8309219999999202. 3.3236459999999974, 3.392819999999987, 2.984364000000049, 2.7999000000000747, 2.3947380000000593, 2.1575700000000504, 2.6648460000000695, 2.0389860000000457, 2.9678940000000518. 1.4954760000000251, 2.5989660000000674, 2.9283660000000573, 3.8440979999999185, 3.399407999999986, 3.748571999999933, 1.9533420000000425, 2.8163700000000746, 2.4177960000000605, 2.5775550000000664, 3.6003419999999555, 2.7175500000000716, 2.2003920000000523, 2.042280000000046, 2.9316600000000568, 2.210274000000052, 3.6662219999999457, 2.457324000000062, 2.951424000000054, 2.5989660000000674, 3.1589460000000225, 3.3763499999999893, 2.0389860000000457,

transmitting energy in each node [20.599207199998812, 15.212433599999278, 0.16183440000000002, 18.51847919999899, 26.17093439999841, 23.859014399998525, 18.217929599999017, 20.391134399998826, 21.96323999999869, 20.25241919999884, 20.92287599999878, 22.633696799998635, 14.426380799999347, 22.741586399998624, 26.887629599998615, 23.32727279999857, 23.812775999998532, 20.94599519999878, 19.651319999998893, 16.807658399999138, 15.143075999999285, 18.703432799998975, 14.310784799999357, 10.496116799999688, 18.241048799999014, 20.552968799998812, 20.83039919999879, 26.98010639999864, 23.859014399998525, 26.309649599998448, 13.709685599999409, 19.766915999998883, 16.969492799999127, 18.086920799999028, 25.269285599998405, 19.073339999998943, 15.443625599999258, 14.333903999999354, 20.576087999998812, 15.512983199999253, 25.739375999998362, 17.246923199999102, 20.7148031999988, 18.241048799999014, 22.171312799998674, 23.70488639999854, 14.310784799999357, 19.836273599998876, 24.62194799999846]

total	energy	in	each	node	[1229.222941202	2923,	1234.39438	356029648,	1250.7	7929124	1030877,
1230.	8155932	0293	379,	1223	3.645642402879,	12	25.3911624	028951,	1231.0	393416	5029399,
1229.	2687824	0292	244,	1227	.8790000029123,	1	229.5856832	029258,	1228.3	3417260	0029184,
1226.	3431428	0290	041,	1235	.0058768029703,	1	227.0663354	029061,	1221.6	5872316	6028694,
1226.	0763588	0290	001,	1224	.9880560028942,	1	228.651699	2029196,	1229	.791320	0002929,
1233.	0977364	0295	532,	1234	.0065660029638,	1	230.9518388	029376,	1236.0	0414108	3029745,
1239.	5311728	0300	035,	1231	.2659148029404,	1	229.1033948	029228,	1228.3	3111332	2029189,
1221.	5510244	0286	585,	1225	.3494624028954,	1	223.3370816	028776,	1236.0	0468876	5029772,
1229.	8816860	0292	29,	1232	.640448802951,	1	231.2154758	02941,	1224.4	1586676	5028862,
1230.	8990700	0293	358,	1233	.8995776029617,	1	235.7258840	029733,	1228.7	7461680	0029214,
1233.	9954972	0296	52,	1228.9	9296672029216,	12	223.1014580	028789,	1231.7	7230872	2029463,
1231.	0991148	0293	398,	1226	5.657218802907,	12	25.8895164	028977,	1235.2	2908108	3029717,
1229.3104056029265, 1224.7615980028897]											

