MATH-235 HOMEWORK 1 SOLUTION

• 1.1.20.

Proof. Suppose that $\{x_n\}_{n\in\mathbb{N}}$ is a Cauchy sequence and there exists a subsequence $\{x_{n_k}\}_{k\in\mathbb{N}}$ converges to some x. Then we have $\forall \epsilon>0$, $\exists N\in\mathbb{N}$ such that $\forall k\geq N$, $d(x,x_{n_k})<\epsilon/2$. By definition of Cauchy sequence, $\forall \epsilon>0$, $\exists M\in\mathbb{N}$ such that $\forall n,m\geq M$, $d(x_n,x_m)<\epsilon/2$. Pick the greater one between N and M, say K, we have $\forall \epsilon>0$, such that $\forall k\geq K$, $d(x,x_q)< d(x,x_{n_k})+(x_k,x_{n_k})<\epsilon$. Therefore the Cauchy sequence $\{x_n\}_{n\in\mathbb{N}}$ converges to x.

• 1.4.4

Proof. (a). Consider any $\epsilon > 0$ and $\delta = (\epsilon/k)^{1/\alpha}$. Then for all $x, y \in I$ such that $|x-y| < \delta$, we have $|f(x)-f(y)| \le k|x-y|^{\alpha}$ by Holder continuity. By our assumption, $k|x-y|^{\alpha} < \epsilon$. Hence f is uniformly continuous.

(b). Consider $\alpha = 1 + \epsilon$ and then by Holder continuity we have

$$|f(x) - f(y)| \le K|x - y||x - y|^{\epsilon}$$

divide both sides by |x-y| and take the limit as $x \to y$, we have

$$|f'(y)| \le \lim_{x \to y} K|x - y|^{\epsilon} \to 0$$

Therefore f is a constant on I.

- (c). Straight computation.
- (d). First, we show g is continuous at 0. Consider the limit $\lim_{x\to 0^+} |-1/\ln(x)-0| = 0$. Then we show g is continuous on (0,1/2). Consider

$$\lim_{x \to y} |-1/\ln(x) - (-1/\ln(y))| = \lim_{x \to y} |\frac{-\ln y + \ln x}{\ln y \ln x}| = \lim_{x \to y} |\frac{\ln(x/y)}{\ln y \ln x}| = 0$$

Therefore g(x) is continuous on a compact set [0,1/2], hence it's also uniformly continuous. To show Holder continuity doesn't hold, it suffices to show $|g(x)-g(0)|>K|x|^{\alpha}$ where $x\to 0^+$. We prove this by contradiction, which is $|-1/\ln x|\le K|x|^{\alpha}$. Divide both sides by $K|x|^{\alpha}$ and apply L'Hopital's rule as $x\to 0^+$, we have

$$\lim_{x\to 0^+} K|\alpha x^{-\alpha}| \le 1$$

which is not possible for any $\alpha > 0$.

• 2.1.29

Proof. By countable subadditivity of countable sets in \mathbb{R}^d , we have

$$|\cup Z_k|_e \le \sum |Z_k|_e = 0.$$

By non-negativity of exterior measure, we have $|\cup Z_k|_e = 0$.

• 2.1.32. Show that if $f : \mathbb{R} \to \mathbb{R}$ is continuous, then its graph $\Gamma_f = \{(x, f(x)) : x \in \mathbb{R}\} \subseteq \mathbb{R}^2$

has measure zero.

Proof. Notice that $\Gamma_f = \bigcup_{n=1}^{\infty} \Gamma_f^n$, where $\Gamma_f^n = \{(x, f(x)) : x \in [-n, n]\}$. Then $\forall \epsilon > 0, \exists \delta > 0$ such that $\forall x, y \in [-n, n]$ and $|x - y| < \delta$ implies $|f(x) - f(y)| < \epsilon$. Divide [-n, n] into $K_{n,\delta}$ with equal length δ intervals $[a_l, b_l]$ and consider

$$\bigcup_{l=1}[a_l,b_l]\times[M_n-\frac{\epsilon}{2^n},M_n+\frac{\epsilon}{2^n}]$$

where $M_n = \sup_{x \in [-n,n]} |f(x)|$. We have $\Gamma_f^n \subseteq \bigcup_{l=1} [a_l,b_l] \times [M_n - \frac{\epsilon}{2^n},M_n + \frac{\epsilon}{2^n}]$ and by monotonicity,

$$|\Gamma_f^n|_e \le \sum_l (b_l - a_l) \frac{\epsilon}{4} < \epsilon$$

Hence we have $|\Gamma_f^n|_e = 0$ which implies $|\Gamma_f|_e = 0$.

• 2.1.39. Given a set $E \subseteq \mathbb{R}^d$, show that $|E|_e = 0$ if and only if there exists countably many boxes Q_k such that $\sum |Q_k| < \infty$ and each point $x \in E$ belongs to infinitely many Q_k .

Proof. Suppose $|E|_e=0$, then $\forall n\geq 1$, there exists $\{Q_k^n\}$ boxes such that $E\in \bigcup_{k=1}^\infty Q_k^n$ and $\sum_{k=1}^\infty |Q_k^n|<\frac{1}{2^n}$. Notice that $E\in \bigcup_{k=1}^\infty \bigcup_{n=1}^\infty Q_k^n$ and $\sum_{k=1}^\infty \sum_{n=1}^\infty |Q_k^n|\leq \sum_{n=1}^\infty \frac{1}{2^n}<\infty$. For all n, let $x\in E$, then there exists some k_n such that $x\in Q_{k_n}^n$, hence x is an element of infinitely many Q_k^n .

Suppose $\exists \{Q_n\}$ such that $\sum |Q_k| < \infty$ and each point $x \in E$ belongs to infinitely many Q_k , then we have $E \subseteq \limsup Q_k$ and since $\sum |Q_k| < \infty$ we have $|\limsup Q_n| = 0$, therefore $|E|_e = 0$.

• 2.2.34. Let $S_r = \{x \in \mathbb{R}^d : ||x|| = r\}$ be the sphere of radius r in \mathbb{R}^d centered at the origin. Prove that $|S_r| = 0$.

Proof. $\forall k \geq 1$, divide \mathbb{R}^d into sides of length $\frac{1}{k}$, then there exists finitely many such sides, say $\{Q_l^k\}_{l=1}^{N_k}$. Notice that $S_r \subseteq \bigcup_{l=1}^{N_k} Q_l^k$ and $N_k = Ck^{d-1}$ for some constant C. Then we have

$$|S_r| \le Ck^{d-1} \cdot \frac{1}{k^d} = \frac{C}{k}$$

which implies $|S_r| = 0$.

2.2.37

Proof. a implies b: Suppose E is Lebesgue measurable, then there exists an open set $U \supset E$ such that $|U \setminus E|_e \le \epsilon/2$ for any $\epsilon > 0$. Also, then there exists an closed set $F \supset E$ such that $|U \setminus E|_e \le \epsilon/2$. Therefore, $F \subset E \subset F$ and $|U \setminus F| = \epsilon$.

b implies c: By assumption, we can construct a sequence of closed sets $F_k \subset E$ and a sequence of open sets $U_k \supset E$ and $F_k \subset E \subset U_k$ for all k such that $|U_k \setminus F_k| < 1/k$. Now consider G_δ set $G = \cap U_k$ and F_σ set $H = \cup F_k$. We have $|G \setminus H| \leq |U_k \setminus F_k| < \frac{1}{k} \to 0$ as k grows.

c implies a: Notice that $H \subset E$, which implies $G \setminus E \subset G \setminus H$ and by monotonicity we have $|G \setminus E| = 0$. Therefore E differs from a G_{δ} set with a set of measure 0, hence *E* is measurable.

• 2.2.44

Proof. Assume A and B are measurable, then by assumption $A \cap B = \emptyset$ and $E = A \cup B \text{ implies } |E| = |A| + |B| = |A|_e + |B|_e.$

Assume $|E| = |A|_e + |B|_e$, then there exist G_δ sets G and H such that $A \subset G$, $B \subset H$ and $|A|_e = |G|, |B|_e = |H|$. Also, $\exists K \supset E$ such that K is a G_δ set and $|K \setminus E| = 0$. Consider $G_1 = G \cap K$ and $H_1 = H \cap K$, notice that they are both G_δ sets and

$$G_1 = G \cap K \supset A \cap E = A$$

Therefore,

$$G_1 \setminus A \subset (G_1 \setminus A) \cup (H_1 \setminus B) = (G_1 \cup H_1) \setminus E \subset K \setminus E$$

Hence we have

$$|G_1 \setminus A|_e \le |K \setminus E| = 0$$

We conclude that *A* is measurable. Following a similar argument we can conclude *B* is also measurable.

• 2.2.50

Proof.

- (1) Since \emptyset is countable trivially, we have $\emptyset \in \Sigma$ and $X \in \Sigma$.
- (2) Suppose $E \in \Sigma$, then either E or E^c is countable, therefore $E^c \in \Sigma$.
- (3) Suppose $\{E_k\}_{k\in}\in\Sigma$, if $\forall k\geq 1$, E_k is countable, then $\bigcup_{k=1}^{\infty}E_k$ is also countable, hence $\bigcup_{k=1}^{\infty} E_k \in \Sigma$. If $\exists k_0$ such that $E_{k_0}^c$ is countable, then $(\bigcup_{k=1}^{\infty} E_k)^c =$ $\cap_{k=1}^{\infty} E_k^c \subset E_{k_0}^c$ is countable.

Hence, Σ is a σ -algebra.