MSBA SUMMER 2023

PREDICTING MOST LUCRATIVE DATA SCIENCE JOBS

Data Science Programming – Group Project Group 19

The University of Texas at Austin

TEAMMATES

- Background and Objectives
- Understanding the dataset and cleaning
- Exploratory data analysis
- Predictive Modeling
- Recommendations and conclusion

Background [1]

- Data science is one of the hottest job profiles in the market right now and it is experiencing remarkable growth over the years
- In 2022, the data and analytics industry is worth USD ~250 billion and it is expected to grow to USD ~330 billion (\$\dagger\$ 35% increase)
- The U.S. Bureau of Labor Statistics predicts there will be ~11.6 million data science-related jobs in 2026
- Irrespective of their educational backgrounds, people are shifting towards data science due to its relevance and attractive salary
- Understanding the variation in this market due to multiple factors like *job profile*, *size of the company*, *location of company*, *experience*, *mode of work* etc., will be key to understanding the earning potential

Objectives 🔀

- Understanding the lay of the land in terms of how different metrics influence each other in the field of data science jobs
- · Figuring out the metrics that have an impact on the salary
- Predicting the most lucrative jobs within the data science domain Who are the data scientists that earn more the 75% of people in this domain?

- Background and Objectives
- Understanding the dataset and cleaning
- Exploratory data analysis
- Predictive Modeling
- Recommendations and conclusion

We have followed a three-step process to arrive at the solution

Understanding and Cleaning

Data Exploration

Modelling and Results

- Checked for missing values
- Checked for unexpected values
- Normalized the salary across years based on inflation and the Power parity index

- Identified trends between various metrics and found insights
- Identified specifically how the predictors are related to salary

- Prepared the data for modelling by checking for skew, removing outliers and encoding categorical variables
- Identified variables that are important based on lasso regression
- Handled class imbalance
- Ran prediction models logistic regression, KNN, Random forest,
 Boosting and Neural network (SGD)

Data Snapshot

Work Year	Job Category	Experience Level	Employment Type	Employee Location	Mode of Work	Company Location	Company Size	Salary	Salary Currency	Salary in USD
2023	Other	Senior	Full-time	Spain	Full-Remote	Spain	LARGE	80000	EUR	85847
2023	Machine Learning	Mid/Intermediate level	Contractor	India	Full-Remote	United States	SMALL	1000000	USD	13000
2023	Machine Learning	Mid/Intermediate level	Contractor	United States	Full-Remote	United States	SMALL	25500	USD	25500
2023	Data Science	Senior	Full-time	Canada	Hybrid	Canada	MEDIUM	175000	USD	175000
2022	Data Science	Senior	Full-time	Canada	Full-Remote	Canada	MEDIUM	120000	USD	120000
2021	Data Science	Senior	Full-time	United States	On-Site	United States	LARGE	222200	USD	222200
2020	Data Science	Senior	Full-time	United States	On-Site	United States	LARGE	136000	USD	136000
2023	Data Engineering	Senior	Full-time	United States	Full-Remote	United States	MEDIUM	130000	USD	130000
2023	Data Science	Senior	Full-time	Canada	On-Site	Canada	MEDIUM	141000	USD	141000
2023	Data Science	Senior	Full-time	United States	On-Site	United States	MEDIUM	147100	USD	147100
2023	Data Science	Senior	Full-time	United States	On-Site	United States	MEDIUM	90700	USD	90700
2023	Data Engineering	Senior	Full-time	United States	Full-Remote	United States	MEDIUM	130000	USD	130000
2023	Data Engineering	Senior	Full-time	United States	Full-Remote	United States	MEDIUM	100000	USD	100000

Data Dictionary

Variable	Description	Variable	Description
Work Year	The year the salary was paid (2020 - 2023)	Employee Location	Employee's country of residence during the work year
Job Category	Data Science ML Engineer Data Architect Data Engineer Others	Company Location	The country of the employer's office
Experience Level	Senior Mid Entry	Mode of work	On-Site Hybrid Remote
Employment Type	Full time Contractor Part time Freelance	Company Size	The median number of people that worked for the company during the year (Large Medium Small)
Salary Salary Currency	The total gross salary amount paid and local currency	Salary in US	The salary in USD

Normalized salaries based on inflation rates and purchasing power parity to ensure fair comparisons

- As we have salaries across 2020-2023, it is important to bring them to one scale to make fair comparison
- We have scaled up the salary data from 2020 2022 to 2023 based on the *inflation rates of each country*

Normalized salary

Country	Avg. DS Salary	Absolute Salary (USD)	PPP Adjusted Salary
India	₹ 1,300,000	\$15.6K	\$56K
China	¥293,000	\$41.1K	\$70K

- Background and Objectives
- Understanding the dataset and cleaning
- Exploratory data analysis
- Predictive Modeling
- Recommendations and conclusion

EDA – Opportunity Growth

Over the years, data science opportunities have seen a remarkable surge across the globe.

Full-remote jobs decline from 2020 to 2023, shifting towards on-site opportunities indicating the **COVID impact**

EDA – Geographical Distribution

Key Takeaways

Maximum data science roles lie around north American region.

EDA – Pay scale

Full-time employees enjoy a higher pay scale in comparison to other employee types.

EDA – Pay scale

- Job roles do not significantly impact the Pay scale
- Among the most prevalent roles, data engineering positions exhibit comparatively lower salaries

EDA – Geographical Distribution

Key Takeaways

- Technologically developed countries such as the United States, Singapore, and Canada has the highest average salary.
- Less developed areas such as the majority of South America earned less.

By analyzing these patterns, it is clear that the normalized salary metric has some relationship with the predictors (experience level, employment type, remote ratio, company size, company location and employee location)

- Background and Objectives
- Understanding the dataset and cleaning
- Exploratory data analysis
- Predictive Modeling
- Recommendations and conclusion

Data Preparation for Modelling

It is clear that there are a **few outliers** in the target variable. We will **remove records that fall outside of mean +/- 2 SD confidence interval** for the purpose of modelling (~170 records)

Salary is *normally distributed*

Converting salary into category

- As our objective is to predict if the salary is going to fall above 75% of the people in this domain, we will be converting salary into a binary categorical variable
 - > 1 --> Above 75th percentile
 - > 0 --> Below 75th percentile

One Hot Encoding of Categorical Variables

In one hot encoding, we convert each categorical value of a variable into a **new categorical column and assign a binary value of 1 or 0** to those columns. See example to the right:

Mode of work		On-Site	Hybrid	Full-Reote
On-Site	One Hot Encoding	1	0	0
Hybrid	,	0	1	0
Full-Remote		0	0	1

job in predicting both categories -

Class imbalance treated

Variable selection and handling class imbalance

for training - High Class Imbalance

	St	tep 1		Step 2				Step 3				Step 4				
Model →	Base	e Model		Lasso Regression				М	Model - After variable selection				Model - Class imbalance fixed			
Description		A logistic regression model run with all the response variables			A Lasso regression model to identify the variable importance			Logistic regression model to see if there is improvement in prediction after variable selection				Updated the sampling technique based on <i>RandomUnderSampler</i> to fix the class imbalance			•	
Results	Accuracy: 76%Precision: 73%Recall: 76%			> Precision	on: 70%			➤ Pr	Precision: 73% ➤ Precision: 73%				cision: 73%			
		Below 75th	Training Data Split Below 75 th \rightarrow 1,891 Above 75 th \rightarrow 618			Training Data Split Below 75 th → 1,891 Above 75 th → 618			Below	75 th → 618						
	Predicted			Predicted				Predicted					Pred	licted		
Confusion Matrix		Below 75th	Above 75th			Below 75th	Above 75th			Below 75th	Above 75th			Below 75th	Above 75th	
	Below 75th	99%	1%	_e Be	elow 75th	99%	1%	ler	Below 75th	99%	1%	le l	Below 75th	60%	40%	
Results ➤ Precision: 73% ➤ Precision: 70% ➤ Precision: 73% ➤ Recall: 62% Training Data Split Below 75th → 1,891 Above 75th → 618 Predicted Predicted Below 75th → 618 Predicted Predicted Below 75th → 618 Predicted Predicted Below 75th → 618 Predicted Below 75th → 618 <td colspa<="" th=""><th>30%</th><th>70%</th></td>	<th>30%</th> <th>70%</th>	30%	70%													
Takeaway	Very poor Repercentile due			_	oved all ti penalized			> 1	No significant and after va			dro	Though overa	del does	a decent	

penalty

> Still High Class imbalance

Trying out different models to further improve prediction

		KNN Clas	ssification			Rando	m Forest			Roosti	na (GRM)			rodel Accuracy: 70% Precision: 73%			
Model →	KNN Classification				Nandom Forest					Boosting (GBM)				Neurai Network (SOD)			
Description	cross	s-validation a		•	Using 5 fold cross validation and Grid search, identified the best hyperparameters for RF				sea	Using 5 fold cross validation and Grid search, identified the best hyperparameters for boosting				ch, identified the best model onumber of the best model			
Results	 Best K: 27 Accuracy: 76% Precision: 74% Recall: 76% 				> Ac	ccuracy: 62% recision: 74%	·	rees: 1000	 λ=0.01 Depth: 3 Trees: 500 Accuracy: 62% Precision: 73% Recall: 62% 			Accuracy: 70%Precision: 73%Recall: 70%					
			Prec Below	licted Above			Pred Below	licted Above			Pred Below	icted Above			Pred Below	icted Above	
Confusion Matrix	_	Below 75th	75th 98%	75th 2%	_	Below 75th	75th 60%	75th 40%	=	Below 75th	75th 60%	75th		Below 75th	75th 75%	75th 25%	
Description Identified the best K value using cross-validation and built a KNN classifier Using 5 fold cross validation and Grid search, identified the best hyperparameters for RF hyperparameters for boosting Depth: 5 Feature: 3 Trees: 1000 Accuracy: 62% Accuracy: 62% Accuracy: 62% Accuracy: 62% Accuracy: 62% Accuracy: 62% Above 75th Abo	45%	55%															
Takeaway	Worse than Logistic Regression				Same as Logistic Regression			➤ Same as Logistic Regression				Slightly better than logistic regression / RF/ Boosting due to better accuracy and similar recall%					

- Background and Objectives
- Understanding the dataset and cleaning
- Exploratory data analysis
- Predictive Modeling
- Recommendations and conclusion

Recommendations and conclusion

Logistic Regression / RF / Boosting					Neural Network (SGD)					
> Pr	ecision: 73%			> P	Accuracy: 70%Precision: 73%Recall: 70%					
		Pred	icted			Pred	icted			
		Below 75th	Above 75th			Below 75th	Above 75th			
na l	Below 75th	482 (60%)	322 (40%)	<u>a</u>	Below 75th	603 (75%)	201 (25%)			
Act	Above 75th	83 (30%)	189 (70%)	Actu	Above 75th	122 (45%)	150 (55%)			
	> Ac	➤ Accuracy: 62% ➤ Precision: 73% ➤ Recall: 62% Below 75th	➤ Accuracy: 62% ➤ Precision: 73% ➤ Recall: 62% Pred Below 75th Below 75th 482 (60%) Above 75th 83	Precision: 73% ➤ Recall: 62% Predicted Below 75th Above 75th Below 75th 482 322 (60%) (40%) Above 75th 83 189	P Accuracy: 62% ▶ A ▶ Precision: 73% ▶ P ▶ Recall: 62% ▶ R Predicted Below Above 75th Above 482 322 (60%) (40%) Above 75th	▶ Accuracy: 62% ▶ Accuracy: 70% ▶ Precision: 73% ▶ Precision: 73% ▶ Recall: 62% ▶ Recall: 70% Predicted Below 75th Below 75th 482 322 (60%) (40%) Above 75th 83 189	P Accuracy: 62% → Accuracy: 70% → Precision: 73% → Precision: 73% → Recall: 62% → Recall: 70% Predicted Below 75th Above 75th 482 (60%) 322 (60%) (60%) (40%) Above 75th 83 (75%) Above 75th Above 75th			

Recommendations and conclusions

- While the neural network model performed better than other models, the prediction accuracy, precision and recall are not so high
- Maybe advanced feature engineering techniques and a bigger sample size can help predict the salary better

