

#### Identifikasi Lahan Kritis Sebagai Alternatif Sentra Produksi Tanaman Hortikultura di Jawa Tengah dengan Pendekatan Clustering Partitioning Around Medoid

Presented by Pawang Python Liar Team Institut Pertanian Bogor

#### Pendahuluan

Latar Belakang Tujuan Penelitian Manfaat Penelitian Batasan

#### Peta Negara Kesatuan Republik Indonesia



(BIG 2015)

# 1.913.578,68 km<sup>2</sup>

Luas daratan Indonesia (BPS 2017)

# 17.504 pulau

Banyak pulau di Indonesia (BPS 2017)

56,81%

Total penduduk Indonesia ada di Pulau Jawa (BPS 2015)

# Dampak perkembangan penduduk (Fandeli et al. 2008)



Kebutuhan lahan meningkat

Pembukaan lahan

Peralihan fungsi lahan

Lahan kritis



## Lahan kritis?

Kondisi lahan **tidak berfungsi baik** sesuai dengan peruntukannya

(KLHK 2001)

### Hortikultura?

budidaya, pengolahan, penjualan, dan layanan lainnya

(Shry dan Reily 2017)













#### Produk Hortikultura

- Konsumen semakin menghindari bahan pangan berkolesterol tinggi
- Dampak dari General Agreement on Tariff and Trade

(Irawan 2012)



"Semakin tidak kritis lahan (semakin meningkat kualitas lahan) cenderung diikuti dengan meningkatnya produktivitas lahan"

(Sitorus et al. 2010)

#### Kami akan ...

#### mengidentifikasi

lahan-lahan kritis di Jawa Tengah untuk sentra alternatif pembudidayaan tanaman hortikultura

#### menggunakan

metode
partitional
clustering
berbasis medoid
(partitioning
around medoids)

menghasilkan
peta tingkat
kekritisan lahan
dari daerah-daerah
dengan
produktivitas
lahan tinggi



Bermanfaat
sebagai
acuan untuk
memanfaatkan
lahan kritis di
Jawa Tengah

#### Batasan

#### Data batas kota dan kabupaten

Pulau Jawa, oleh Bakosurtanal dan BIG

#### Data spasial lahan kritis

Pulau Jawa tahun 2015, oleh Satu Data Indonesia -KLHK

#### Data produktivitas

hortikultura sayuran dan buah-buahan semusim tahun 2015, oleh BPS Jateng

#### Metode dan Tahapan Penelitian

Lingkungan Pengembangan
Dataset
Desain Implementasi
Eksplorasi Data
Standardisasi Fitur
PAM
Uji Hopkins
Metode Elbow
Clustering
Penggabungan Data

#### Lingkungan Pengembangan

- Perangkat Keras:
  - Prosesor: Intel Core I7-7700HQ 2.80 GHz
  - Memori: 8 GB
  - VGA: NVIDIA GeForce GTX 1050 Ti
- Perangkat Lunak
  - Sistem operasi Microsoft Windows 10 (64-Bit)
  - Bahasa Pemrograman R versi 3.5.1
  - RStudio 1.1.456 untuk mengolah data tabular
  - Quantum GIS 3.2.0 untuk mengolah data spasial
  - Microsoft Excel 2013 sebagai media tambahan untuk memperbaiki format dataset

#### **Dataset**

- Data Spasial
  - Situs Satu Data Indonesia dari KLHK → data spasial lahan kritis, tahun 2015.
  - Bakosurtanal dari BIG → data spasial batas kabupaten dan kota Pulau Jawa.
  - Format .kml dan .shp
- Data Produktivitas Lahan
  - Buku Statistik Pertanian Hortikultura Provinsi Jawa Tengah 2014-2016 → produktivitas hortikultura sayuran dan buah-buahan semusim, tahun 2015
  - 910 data

# Desain Implementasi



# Eksplorasi Data

#### Boxplot variabel dataset sebelum scaling



26 fitur, 35 objek

#### Boxplot variabel labu siam



Kab. Wonosobo sebagai pencilan di fitur labu siam dengan nilai sebesar 281.87 Ton/Ha

#### Boxplot variabel dataset sesudah scaling



#### Standardisasi Fitur

#### Partitioning Around Medoids



#### **Dissimilarity Matrix**

#### Nilai Uji Hopkins



# Penentuan jumlah cluster dengan algoritme Elbow

#### Jumlah *cluster* optimum



#### Cluster plot

Hasil proses clustering



Kab. Jepara

Kota Semarang

Kab. Wonosobo

Kab. Pekalongan

Kab. Klaten Kab. Semarang Kab. Banjarnegara Kab. Boyolali Kab. Rembang Kab. Kudus Kab. Tegal

Kab. Grobogan

Kota Pekalongan Kab. Demak Kab. Sragen Kab. Banyumas

#### Visualisasi cluster

Kab. Brebes Kab. Blora Kab. Batang Kab. Karanganyar Kab. Kebumen Kab. Pati

Kab. Temanggung

Kab. Sukoharjo Kab. Magelang Kab. Pemalang Kab. Tegal Kab. Wonogiri Kab. Kendal Kab. Cilacap Kota Magelang Kota Salatiga

**Kota Magelang** 

Kota Surakarta Kab. Purworejo

#### Visualisasi perbandingan antar cluster



Produktivitas rata-rata pada medoid cluster

#### **Data Spasial**

#### Peta tingkat kekritisan lahan Jawa Tengah



# Data Spasial + Hasil Clustering

# QGIS kicks in!

# 6 Kabupaten

Prospek baik tentunya! Yuk kita lihat apa saja

#### Peta tingkat kekritisan lahan Kabupaten Karanganyar



#### Peta tingkat kekritisan lahan Kabupaten Kendal



#### Peta tingkat kekritisan lahan Kabupaten Pati



#### Peta tingkat kekritisan lahan Kabupaten Tegal



#### Peta tingkat kekritisan lahan Kabupaten Temanggung



#### Peta tingkat kekritisan lahan Kabupaten Wonogiri



#### Penutup

Simpulan Saran

#### Simpulan

#### **Uji Hopkins**

- Optimal dengan 3 fitur
- H > 0.5

#### Hasil clustering

- 4 cluster dengan Elbow
- Penentuan label dengan perbandingan

# Alternatif sentra tanaman produksi hortikultura

- 6 Kabupaten
- cluster produktivitas tertinggi

#### Saran

- PemerintahJawa Tengah
  - Validasi data lapangan
- Metode dalam reduksi fitur

# Terima kasih!

Pawang Python Liar Team Institut Pertanian Bogor