

CSCI-GA.3033-012 Multicore Processors: Architecture & Programming

Lecture 4: Know Your Hardware

Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com

The Purpose of This Lecture

- Get to know the design of some stateof-the art processors
- Think about ways to exploit this hardware in your programs
- Compare how your program will look like if you did not know about the hardware

Data movement costs more than computation.

Your Parallel Program

- Threads
 - Granularity
 - How many?
- Thread types
 - Processing bound
 - Memory bound
- What to run? When? Where?
- Communication
- Degree of interaction

Processor We Will Look at

SPARC T4

IBM Power 7

Sandy Bridge die photo (courtesy of ISSCC).

Intel Sandy Bridge

AMD 15h (Bulldozer)

SPARC T4

- The next generation of Oracle multicore
- 855M transistors
- Supports up to 64 threads
 - 8 cores
 - 8 threads per core
 - Cannot be deactivated by software
- Private L1 and L2 and shared L3
- Shared L3
 - Shared among 8 cores
 - Banked
 - 4MB
 - 16-way set associative
 - Line size of 64 bytes

PEU: PCI-Express unit; DMU: Data management unit; NIU: Network interface unit;

NCU: Non-cacheable unit; SIU: System interface unit

The Cores in SPARC T4: 53

The Cores in SPARC T4: 53

- Supports up to 8 threads
- DL1 and IL1:
 - 16KB
 - 4-way set associative
 - 32 bytes cache line
 - Shared by all 8 threads
- IL1 has 3 line prefetch on-miss
- DL1 has stride-based and next-line prefetchers

What to Do About Prefetching?

- Use arrays as much as possible. Lists, trees, and graphs have complex traversals which can confuse the prefetcher.
- Avoid long strides. Prefetchers detect strides only in a certain range because detecting longer strides requires a lot more hardware storage.
- If you must use a linked data structure, preallocate contiguous memory blocks for its elements and serve future insertions for this pool.
- Can you re-use nodes from your linked-list?

Questions

- Suppose that you have 8 threads that are computation intensive and another 8 memory bound... how will you assign them to cores on T4?
- What if all threads are computation bound?
- What if they are all memory bound?
- T4 gives the software the ability to pause a thread for few cycles. When will you use this feature?

^{*} Dates represent approximate processor power-on dates, not system availability.

3

IBM Power 7

- Supports global shared memory space for POWER7 clusters
 - So you can program a cluster as if it were a single system
- Design for power-efficiency, unlike Power 6
- ~1.2B Transistors
- Up to 8 cores and 4-way SMT
- TurboCore mode that can turn off half of the cores from an eight-core processor, but those 4 cores have access to all the memory controllers and L3 cache at increased clock speeds.
- 3.0 4.25 GHz clock speed

IBM Power 7: Cache Hierarchy

- 32KB DL1 and IL1 per core
- 256KB L2 per core
- eDRAM L3 4MB per core (total of 32MB)
 - Very flexible design for L3

Source: Slides from Joel M. Tendler from IBM

Questions

- If you are writing the same programs for T4 and Power 7, will you change anything?
- As a programmer, how can you make use of the cache hierarchy?

Intel Sandy Bridge

- New microarchitecture
- 22nm

Sandy Bridge, source: Intel

Intel Sandy Bridge

New microarchitecture

22nm

Processor
Graphics

Shared L3 Cache**

Memory Controller I/0

Sandy Bridge, source: Intel

Intel Sandy Bridge

- Improvement over its predecessor
 Nehalem
- Targeting multimedia applications
 - Introduced Advanced Vector Extensions (AVX)

- •The GPU can access the large L3 cache
- Intel's team totally re-designed the GPU

Features for You to Use

- Sandy bridge processors have 256bit wide vector units per core
- As a programmer you can:
 - Using AVX instructions
 - Use the compiler to vectorize your code
 - http://ispc.github.com/

Question: Can you design your program with different type of parallelism?

AMD 15h (Bulldozer)

- Designed from scratch
- 32nm technology
- combine the functions of what would normally be two discrete cores into a single package ("module" in AMD literature)
- The aim was to hit higher frequencies
- Performance worse than expected!

AMD 15h (Bulldozer)

- According to AMD, Windows 7 doesn't understand Bulldozer's resource allocation very well.
 - Windows 7 sees 8 discrete cores
- Question: What can you do about this?

More Questions: Not Related to a Specific Processor

- Your code does not execute alone. Can you do something about it to avoid interference?
- As a programmer, what can you do about power?

Conclusions

- You need to know the big picture at least
 - number of cores and SMT capability
 - Interconnection
 - Memory hierarchy
 - What is available to software and what is not
- The art of delegation
 - What to do at user level and what to leave for the compiler, OS, and runtime