Chapter 14 - Problem Set 2

Calculus 3

Section 5: The Chain Rule

3-7 (odd)

Use The Chain Rule to find $\frac{dz}{dt}$ or $\frac{dw}{dt}$.

3. $z = xy^3 - x^2y$, $x = t^2 + 1$, $y = t^2 - 1$

Solution

$$\frac{dz}{dt} = \frac{dz}{dx} \left(\frac{dx}{dt}\right) + \frac{dz}{dy} \left(\frac{dy}{dt}\right)$$
$$\frac{dz}{dt} = [y^3 - 2xy](2t) + [3xy^2 - x^2](2t)$$
$$\frac{dz}{dt} = 2t[y^3 - 2xy + 3xy^2 - x^2]$$

5. $z = \sin x \cos y$, $x = \sqrt{t}$, y = 1/t

Solution

$$\frac{dz}{dt} = \frac{dz}{dx} \left(\frac{dx}{dt}\right) + \frac{dz}{dy} \left(\frac{dy}{dt}\right)$$
$$\frac{dz}{dt} = \left[\cos x \cos y\right] \left(\frac{1}{2}t^{-\frac{1}{2}}\right) + \left[-\sin x \sin y\right] \left(-t^{-2}\right)$$
$$\frac{dz}{dt} = \frac{1}{2\sqrt{t}} \cos x \cos y + \frac{1}{t^2} \sin x \sin y$$

7. $w = xe^{y/z}$, $x = t^2$, y = 1 - t, z = 1 + 2t

$$\begin{split} \frac{dw}{dt} &= \frac{dw}{dx} \left(\frac{dx}{dt} \right) + \frac{dw}{dy} \left(\frac{dy}{dt} \right) + \frac{dw}{dz} \left(\frac{dz}{dt} \right) \\ \frac{dw}{dt} &= \left[e^{y/z} \right] (2t) + \left[\frac{x}{z} e^{y/z} \right] (-1) + \left[-\frac{xy}{z^2} e^{y/z} \right] (2) \\ \hline \frac{dw}{dt} &= e^{y/z} \left[2t - \frac{x}{z} - \frac{2xy}{z^2} \right] \end{split}$$

Use the Chain Rule to find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$

11.
$$z = (x - y)^5$$
, $x = s^2 t$, $y = st^2$

Solution

$$\begin{split} \frac{\partial z}{\partial s} &= \frac{\partial z}{\partial x} \left(\frac{\partial x}{\partial s} \right) + \frac{\partial z}{\partial y} \left(\frac{\partial y}{\partial s} \right) \\ \frac{\partial z}{\partial s} &= \left[5(x - y)^4 \right] (2st) + \left[-5(x - y)^4 \right] (t^2) \\ \boxed{\frac{\partial z}{\partial s}} &= 5(x - y)^4 \left[2st - t^2 \right] \end{split}$$

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \left(\frac{\partial x}{\partial t} \right) + \frac{\partial z}{\partial y} \left(\frac{\partial y}{\partial t} \right)$$
$$\frac{\partial z}{\partial t} = \left[5(x - y)^4 \right] (s^2) + \left[-5(x - y)^4 \right] (2st)$$
$$\frac{\partial z}{\partial t} = 5(x - y)^4 \left[s^2 - 2st \right]$$

13. $z = \ln(3x + 2y)$, $x = s\sin t$, $y = t\cos s$

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \left(\frac{\partial x}{\partial s} \right) + \frac{\partial z}{\partial y} \left(\frac{\partial y}{\partial s} \right)$$
$$\frac{\partial z}{\partial s} = \left[\frac{3}{3x + 2y} \right] (\sin t) + \left[\frac{2}{3x + 2y} \right] (-t \sin s)$$
$$\frac{\partial z}{\partial s} = \frac{3 \sin t - 2t \sin s}{3x + 2y}$$

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \left(\frac{\partial x}{\partial t} \right) + \frac{\partial z}{\partial y} \left(\frac{\partial y}{\partial t} \right)$$
$$\frac{\partial z}{\partial t} = \left[\frac{3}{3x + 2y} \right] (s \cos t) + \left[\frac{2}{3x + 2y} \right] (\cos s)$$
$$\frac{\partial z}{\partial t} = \frac{3s \cos t + 2 \cos s}{3x + 2y}$$

15.
$$z = (\sin \theta)/r$$
, $r = st$, $\theta = s^2 + t^2$

Solution
$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial r} \left(\frac{\partial r}{\partial s} \right) + \frac{\partial z}{\partial \theta} \left(\frac{\partial \theta}{\partial s} \right) \\
\frac{\partial z}{\partial s} = \left[-\frac{\sin \theta}{r^2} \right] (t) + \left[\frac{\cos \theta}{r} \right] (2s)$$

$$\frac{\partial z}{\partial s} = -\frac{t \sin \theta}{r^2} + \frac{2s \cos \theta}{r}$$

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial r} \left(\frac{\partial r}{\partial t} \right) + \frac{\partial z}{\partial \theta} \left(\frac{\partial \theta}{\partial t} \right)$$
$$\frac{\partial z}{\partial t} = \left[-\frac{\sin \theta}{r^2} \right] (s) + \left[\frac{\cos \theta}{r} \right] (2t)$$
$$\frac{\partial z}{\partial t} = -\frac{s \sin \theta}{r^2} + \frac{2t \cos \theta}{r}$$

25-29 (odd)

Use the Chain Rule to find the indicated partial derivatives.

25.
$$z = x^4 + x^2y$$
, $x = s + 2t - u$, $y = stu^2$;

$$\frac{\partial z}{\partial s}, \frac{\partial z}{\partial t}, \frac{\partial z}{\partial u}$$
 when $s = 4, t = 2, u = 1$

When
$$s = 4$$
, $t = 2$, and $u = 1 \implies x = 7$, $y = 8$

$$\frac{\partial z}{\partial s} = \left[4x^3 + 2xy\right](1) + \left[x^2\right](tu^2) = 4x^3 + 2xy + x^2tu^2$$

$$\frac{\partial z}{\partial s} = 4(7)^3 + 2(7)(8) + (7)^2(2)(1)^2$$

$$\boxed{\frac{\partial z}{\partial s} = 1582}$$

$$\frac{\partial z}{\partial t} = \left[4x^3 + 2xy\right](2) + \left[x^2\right](su^2) = 8x^3 + 4xy + x^2su^2$$

$$\frac{\partial z}{\partial t} = 8(7)^3 + 4(7)(8) + (7)^2(4)(1)^2$$

$$\boxed{\frac{\partial z}{\partial t} = 3164}$$

$$\frac{\partial z}{\partial u} = [4x^3 + 2xy] (-1) + [x^2] (2stu) = -4x^3 - 2xy + 2x^2 stu$$

$$\frac{\partial z}{\partial u} = -4(7)^3 - 2(7)(8) + 2(7)^2 (4)(2)(1)$$

$$\frac{\partial z}{\partial u} = -700$$

27.
$$w = xy + yz + zx$$
, $x = r\cos\theta$, $y = r\sin\theta$, $z = r\theta$;

$$\frac{\partial w}{\partial r}, \frac{\partial w}{\partial \theta} \quad \text{when } r=2, \theta=\pi/2$$

When
$$r=2$$
 and $\theta=\pi/2$ \Rightarrow $x=0,\,y=2,\,z=\pi$
$$\frac{\partial w}{\partial r}=[y+z](\cos\theta)+[x+z](\sin\theta)+[x+y](\theta)$$

$$\frac{\partial w}{\partial r}=[2+\pi](0)+[0+\pi](1)+[0+2](\pi/2)=0+\pi+\pi$$

$$\boxed{\frac{\partial w}{\partial r}=2\pi}$$

$$\frac{\partial w}{\partial \theta} = [y+z](-r\sin\theta) + [x+z](r\cos\theta) + [x+y](r)$$

$$\frac{\partial w}{\partial \theta} = [2+\pi](-2\cdot1) + [0+\pi](0) + [0+2](2) = -4 - 2\pi + 0 + 4$$

$$\frac{\partial w}{\partial \theta} = -2\pi$$

29.
$$N = \frac{p+q}{p+r}$$
, $p = u + vw$, $q = v + uw$, $r = w + uv$ $\frac{\partial N}{\partial u}$, $\frac{\partial N}{\partial v}$, $\frac{\partial N}{\partial w}$ when $u = 2$, $v = 3$, $w = 4$

When
$$u = 2$$
, $v = 3$, and $w = 4 \implies p = 14$, $q = 11$, $r = 10$

$$\frac{\partial N}{\partial u} = \left[\frac{(p+r) - (p+q)}{(p+r)^2} \right] (1) + \left[\frac{1}{p+r} \right] (w) + \left[-\frac{p+q}{(p+r)^2} \right] (v)$$

$$\frac{\partial N}{\partial u} = \frac{r-q}{(p+r)^2} + \frac{w}{p+r} - \frac{v(p+q)}{(p+r)^2}$$

$$\frac{\partial N}{\partial u} = \frac{10 - 11}{(14 + 10)^2} + \frac{4}{14 + 10} - \frac{3(14 + 11)}{(14 + 10)^2}$$

$$\frac{\partial N}{\partial u} = \frac{-1}{576} + \frac{4}{24} - \frac{75}{576} = \frac{-1 + 96 - 75}{576} = \frac{20}{576}$$

$$\frac{\partial N}{\partial u} = \frac{5}{144}$$

$$\begin{split} \frac{\partial N}{\partial v} &= \left[\frac{r-q}{(p+r)^2}\right](w) + \left[\frac{1}{p+r}\right](1) + \left[-\frac{p+q}{(p+r)^2}\right](u) \\ \frac{\partial N}{\partial v} &= \frac{w(r-q)}{(p+r)^2} + \frac{1}{p+r} - \frac{u(p+q)}{(p+r)^2} \\ \frac{\partial N}{\partial v} &= \frac{4(10-11)}{(14+10)^2} + \frac{1}{14+10} - \frac{2(14+11)}{(14+10)^2} \\ \frac{\partial N}{\partial v} &= \frac{-4}{576} + \frac{1}{24} - \frac{50}{576} = \frac{-4+24-50}{576} = \frac{-30}{576} \\ \frac{\partial N}{\partial v} &= -\frac{5}{96} \end{split}$$

$$\frac{\partial N}{\partial w} = \left[\frac{r-q}{(p+r)^2}\right](v) + \left[\frac{1}{p+r}\right](u) + \left[-\frac{p+q}{(p+r)^2}\right](1)$$

$$\frac{\partial N}{\partial w} = \frac{v(r-q)}{(p+r)^2} + \frac{u}{p+r} - \frac{p+q}{(p+r)^2}$$

$$\frac{\partial N}{\partial w} = \frac{3(10-11)}{(14+10)^2} + \frac{2}{(14+10)} - \frac{14+11}{(14+10)^2}$$

$$\frac{\partial N}{\partial w} = \frac{-3}{576} + \frac{2}{24} - \frac{25}{576} = \frac{-3+48-25}{576} = \frac{20}{576}$$

$$\frac{\partial N}{\partial w} = \frac{5}{144}$$

Use Equation 5 to find $\frac{dy}{dx}$

31. $y \cos x = x^2 + y^2$

Solution

$$\frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} = -\frac{F_x}{F_y}$$

Let $F = y \cos x - x^2 - y^2$

$$F_x = -y\sin x - 2x$$
$$F_y = \cos x - 2y$$

$$F_y = \cos x - 2y$$

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{(-y\sin x - 2x)}{\cos x - 2y} = \frac{2x + y\sin x}{\cos x - 2y}$$

Use Equations 6 to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$

35. $x^2 + 2y^2 + 3z^2 = 1$

Solution

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$$
 $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$

Let $F = x^2 + 2y^2 + 3z^2 - 1$

$$F_x = 2x \qquad F_y = 4y \qquad F_z = 6z$$

$$F_x = 2x F_y = 4y F_z = 6z$$

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{2x}{6z} = -\frac{x}{3z}$$

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{4y}{6z} = -\frac{2y}{3z}$$

Section 6: Directional Derivatives and the Gradient Vector

5, 7

Find the directional derivative of f at the given point in the direction indicated by the angle θ .

5.
$$f(x,y) = y\cos(xy)$$
, $(0,1)$, $\theta = \pi/4$

Solution

$$D_u f(x,y) = f_x(x,y) \cos \theta + f_y(x,y) \sin \theta$$

$$D_u f(x,y) = \left[-y^2 \sin(xy) \right] \cos \frac{\pi}{4} + \left[\cos(xy) - xy \sin(xy) \right] \sin \frac{\pi}{4}$$

$$D_u f(x,y) = \frac{\sqrt{2}}{2} \left[-y^2 \sin(xy) + \cos(xy) - xy \sin(xy) \right]$$

$$D_u f(0,1) = \frac{\sqrt{2}}{2} \left[0 + 1 - 0 \right]$$

$$D_u f(0,1) = \frac{\sqrt{2}}{2}$$

7.
$$f(x,y) = \arctan(xy), \quad (2,-3), \quad \theta = 3\pi/4$$

$$D_u f(x,y) = f_x(x,y) \cos \theta + f_y(x,y) \sin \theta$$

$$D_u f(x,y) = \left[\frac{y}{1 + (xy)^2} \right] \cos \frac{3\pi}{4} + \left[\frac{x}{1 + (xy)^2} \right] \sin \frac{3\pi}{4}$$

$$D_u f(x,y) = \frac{\sqrt{2}}{2} \left[\frac{x}{1 + (xy)^2} - \frac{y}{1 + (xy)^2} \right]$$

$$D_u f(2,-3) = \frac{\sqrt{2}}{2} \left[\frac{2}{1 + (2(-3))^2} - \frac{-3}{1 + (2(-3))^2} \right]$$

$$D_u f(2,-3) = \frac{\sqrt{2}}{2} \left[\frac{5}{37} \right]$$

$$D_u f(2,-3) = \frac{5\sqrt{2}}{74}$$

9

$$f(x,y) = x/y, \quad P(2,1), \quad \vec{u} = \frac{3}{5} \hat{\mathbf{i}} + \frac{4}{5} \hat{\mathbf{j}}$$

- (a) Find the gradient of f
- (b) Evaluate the gradient at the point P
- (c) Find the rate of change of f at P in the direction of the vector \vec{u}

Solution

(a)

$$\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle$$
 or $\frac{\partial f}{\partial x} \hat{\mathbf{i}} + \frac{\partial f}{\partial y} \hat{\mathbf{j}}$

$$\nabla f(x,y) = \langle \frac{1}{y}, -\frac{x}{y^2} \rangle$$

(b)

$$\boxed{ \nabla f(2,1) = \langle \frac{1}{1}, -\frac{2}{1^2} \rangle = \langle 1, -2 \rangle \, }$$

(c)

$$D_u f(x, y) = \nabla f(x, y) \cdot \vec{u}$$

$$D_u f(2,1) = \nabla f(2,1) \cdot \vec{u}$$

$$D_u f(2,1) = \langle 1, -2 \rangle \cdot \langle \frac{3}{5}, \frac{4}{5} \rangle$$

$$D_u f(2,1) = \frac{3}{5} - \frac{8}{5}$$

$$D_u f(2,1) = -1$$

Find the directional derivative of the function at the given point in the direction of the vector \vec{v} .

13.
$$f(x,y) = e^x \sin y$$
, $(0,\pi/3)$, $\vec{v} = \langle -6, 8 \rangle$

$$\vec{u} = \frac{\vec{v}}{\|\vec{v}\|} = \frac{-6\,\hat{\mathbf{i}} + 8\,\hat{\mathbf{j}}}{\sqrt{(6)^2 + (8)^2}}$$

$$\vec{u} = -\frac{3}{5}\,\hat{\mathbf{i}} + \frac{4}{5}\,\hat{\mathbf{j}}$$

$$D_u f(x,y) = \nabla f(x,y) \cdot \vec{u}$$

$$D_u f(x,y) = (e^x \sin y \,\hat{\mathbf{i}} + e^x \cos y \,\hat{\mathbf{j}}) \cdot \left(-\frac{3}{5}\,\hat{\mathbf{i}} + \frac{4}{5}\,\hat{\mathbf{j}}\right)$$

$$D_u f(x,y) = -\frac{3e^x \sin y}{5} + \frac{4e^x \cos y}{5}$$

$$D_u f(0, \frac{\pi}{3}) = -\frac{3(\frac{\sqrt{3}}{2})}{5} + \frac{4(\frac{1}{2})}{5}$$

$$D_u f(0, \frac{\pi}{3}) = \frac{4 - 3\sqrt{3}}{10}$$

15.
$$g(s,t) = s\sqrt{t}$$
, $(2,4)$, $\vec{v} = 2\hat{i} - \hat{j}$

$$\vec{u} = \frac{\vec{v}}{\|\vec{v}\|} = \frac{2 \hat{\mathbf{i}} - \hat{\mathbf{j}}}{\sqrt{(2)^2 + (-1)^2}}$$

$$\vec{u} = \frac{2}{\sqrt{5}} \hat{\mathbf{i}} - \frac{1}{\sqrt{5}} \hat{\mathbf{j}}$$

$$D_u g(s,t) = \nabla g(s,t) \cdot \vec{u}$$

$$D_u g(s,t) = \left(\sqrt{t} \hat{\mathbf{i}} + \frac{s}{2\sqrt{t}}\right) \cdot \left(\frac{2}{\sqrt{5}} \hat{\mathbf{i}} - \frac{1}{\sqrt{5}} \hat{\mathbf{j}}\right)$$

$$D_u g(s,t) = \frac{2\sqrt{t}}{\sqrt{5}} - \frac{s}{2\sqrt{t}\sqrt{5}}$$

$$D_u g(s,t) = \frac{1}{\sqrt{5}} \left(2\sqrt{t} - \frac{s}{2\sqrt{t}}\right)$$

$$D_u g(2,4) = \frac{1}{\sqrt{5}} \left(2\sqrt{4} - \frac{2}{2\sqrt{4}}\right) = \frac{1}{\sqrt{5}} \left(4 - \frac{1}{2}\right)$$

$$D_u g(2,4) = \frac{1}{\sqrt{5}} \left(\frac{8-1}{2}\right) = \frac{7}{2\sqrt{5}}$$

Find the directional derivative of the function at the point P in the direction of the point Q.

21.
$$f(x,y) = x^2y^2 - y^3$$
, $P(1,2)$, $Q(-3,5)$

Solution

$$\vec{v} = P\vec{Q} = \langle -3 - 1, 5 - 2 \rangle = \langle -4, 3 \rangle$$

$$\vec{u} = \frac{\vec{v}}{\|v\|} = \frac{\langle -4, 3 \rangle}{\sqrt{16 + 9}}$$

$$\vec{u} = \langle -\frac{4}{5}, \frac{3}{5} \rangle$$

$$D_u f(x, y) = \nabla f(x, y) \cdot \vec{u}$$

$$D_u f(x, y) = \langle 2xy^2, 2x^2y - 3y^2 \rangle \cdot \langle -\frac{4}{5}, \frac{3}{5} \rangle$$

$$D_u f(x, y) = -\frac{8xy^2}{5} + \frac{3(2x^2y - 3y^2)}{5} = \frac{1}{5}(-8xy^2 + 6x^2y - 9y^2)$$

$$D_u f(1, 2) = \frac{1}{5}[-8(1)(4) + 6(1)(2) - 9(4)] = \frac{1}{5}[-32 + 12 - 36]$$

$$D_u f(1, 2) = -\frac{56}{5}$$

23.
$$f(x,y) = \sqrt{xy}$$
, $P(2,8)$, $Q(5,4)$

$$\vec{v} = P\vec{Q} = (5-2)\,\hat{\mathbf{i}} + (4-8)\,\hat{\mathbf{j}} = 3\,\hat{\mathbf{i}} - 4\,\hat{\mathbf{j}}$$

$$\vec{u} = \frac{\vec{v}}{\|v\|} = \frac{3\,\hat{\mathbf{i}} - 4\,\hat{\mathbf{j}}}{\sqrt{9+16}}$$

$$\vec{u} = \frac{3}{5}\,\hat{\mathbf{i}} - \frac{4}{5}\,\hat{\mathbf{j}}$$

$$D_u f(x,y) = \nabla f(x,y) \cdot \vec{u}$$

$$D_u f(x,y) = \left(\frac{y}{2\sqrt{xy}}\,\hat{\mathbf{i}} + \frac{x}{2\sqrt{xy}}\,\hat{\mathbf{j}}\right) \cdot \left(\frac{3}{5}\,\hat{\mathbf{i}} - \frac{4}{5}\,\hat{\mathbf{j}}\right)$$

$$D_u f(x,y) = \frac{3y}{10\sqrt{xy}} - \frac{4x}{10\sqrt{xy}} = \frac{3y - 4x}{10\sqrt{xy}}$$

$$D_u f(2,8) = \frac{3(8) - 4(2)}{10\sqrt{2(8)}} = \frac{24 - 8}{10\sqrt{16}} = \frac{16}{40}$$

$$D_u f(x,y) = \frac{2}{5}$$

Find the maximum rate of change of f at the given point and the direction in which it occurs.

27.
$$f(x,y) = 5xy^2$$
, $(3,-2)$

Solution

The maximum rate of change of f and its direction is given by the gradient vector

$$\nabla f(x,y) = \langle f_x, f_y \rangle = \langle 5y^2, 10xy \rangle$$
$$\nabla f(3,-2) = \langle 5(-2)^2, 10(3)(-2) \rangle$$

Direction of the maximum rate of change,

$$\nabla f(3, -2) = \langle 20, -60 \rangle = 20\langle 1, -3 \rangle$$

Maximum rate of change,

$$\|\nabla f(3,-2)\| = 20\sqrt{1+9} = 20\sqrt{10}$$

29.
$$f(x,y) = \sin(xy)$$
, $(1,0)$

Solution

The maximum rate of change of f and its direction is given by the gradient vector

$$\nabla f(x,y) = \frac{\partial f}{\partial x} \,\hat{\mathbf{i}} + \frac{\partial f}{\partial y} \,\hat{\mathbf{j}} = y \cos(xy) \,\hat{\mathbf{i}} + x \cos(xy) \,\hat{\mathbf{j}}$$
$$\nabla f(1,0) = 0 + \,\hat{\mathbf{j}}$$

Direction of the maximum rate of change,

$$\nabla f(1,0) = \hat{\mathbf{j}}$$

Maximum rate of change,

$$\|\nabla f(1,0)\| = \sqrt{1} = 1$$

37

The temperature T in a metal ball is inversely proportional to the distance from the center of the ball, which we take to be the origin. The temperature at the point (1, 2, 2) is 120°

- (a) Find the rate of change of T at (1,2,2) in the direction toward the point (2,1,3).
- (b) Show that at any point in the ball the direction of greatest increase in temperature is given by a vector that points toward the origin

Solution

Since $T \propto \frac{1}{d}$, $T(x,y,z) = \frac{c}{\sqrt{x^2 + y^2 + z^2}}$, for some constant c, and Euclidean distance to describe the distance from the origin.

If
$$120 = T(1,2,2) = \frac{c}{\sqrt{1^2 + 2^2 + 2^2}} = \frac{c}{3}$$
, then $c = 360$

... Our function for temperature is,

$$T(x, y, z) = \frac{360}{\sqrt{x^2 + y^2 + z^2}}$$

(a)

$$\begin{split} \vec{v} &= \langle 2-1, 1-2, 3-2 \rangle = \langle 1, -1, 1 \rangle \\ \vec{u} &= \frac{\vec{v}}{\|\vec{v}\|} = \frac{\langle 1, -1, 1 \rangle}{\sqrt{1+1+1}} \\ \vec{u} &= \langle \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \rangle \end{split}$$

Getting our gradient vector,

$$\nabla T(x,y,z) = \langle T_x, T_y, T_z \rangle$$

$$\nabla T(x,y,z) = \langle -180 \cdot 2x(x^2 + y^2 + z^2)^{-3/2}, -180 \cdot 2y(x^2 + y^2 + z^2)^{-3/2}, -180 \cdot 2z(x^2 + y^2 + z^2)^{-3/2} \rangle$$

$$\nabla T(x,y,z) = \frac{360}{(x^2 + y^2 + z^2)^{3/2}} \langle -x, -y, -z \rangle$$

so, our rate of change is

$$D_u T(1,2,2) = \nabla T(1,2,2) \cdot \vec{u}$$

$$D_u T(1,2,2) = \frac{360}{(1+4+4)^{3/2}} \langle -1, -2, -2 \rangle \cdot \langle \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \rangle$$

$$D_u T(1,2,2) = \frac{360}{27} \left(-\frac{1}{\sqrt{3}} + \frac{2}{\sqrt{3}} - \frac{2}{\sqrt{3}} \right) = \frac{360}{27} \left(-\frac{1}{\sqrt{3}} \right)$$

$$D_u T(1,2,2) = \frac{40}{3} \left(-\frac{1}{\sqrt{3}} \right) = -\frac{40}{3\sqrt{3}}$$

(b) The direction of greatest increase at any point is the direction of ∇T at that point. In part (a) we saw that $\nabla T(x,y,z)$ and $\langle -x,-y,-z\rangle$ have the same direction and the vector $\langle -x,-y,-z\rangle$ points towards the origin.

Find equations of (a) the tangent plane and (b) the normal line to the given surface at the specified point.

47.
$$2(x-2)^2 + (y-1)^2 + (z-3)^2 = 10$$
, $(3,3,5)$

Solution

(a)

$$F(x, y, z) = 2(x - 2)^{2} + (y - 1)^{2} + (z - 3)^{2} - 10$$

$$F_{x}(3, 3, 5) = 4(x - 2) = 4(1) = 4$$

$$F_{y}(3, 3, 5) = 2(y - 1) = 2(2) = 4$$

$$F_{z}(3, 3, 5) = 2(z - 3) = 2(2) = 4$$

The equation of the tangent plane is given by,

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0)$$

$$4(x-3) + 4(y-3) + 4(z-5) = 0$$
$$x-3+y-3+z-5 = 0$$
$$x+y+z = 11$$

(b) The equation of the normal line is given by,

$$\frac{x - x_0}{F_x(x_0, y_0, z_0)} = \frac{y - y_0}{F_y(x_0, y_0, z_0)} = \frac{z - z_0}{F_z(x_0, y_0, z_0)}$$
$$\frac{x - 3}{4} = \frac{y - 3}{4} = \frac{z - 5}{4}$$
$$x - 3 = y - 3 = z - 5$$

49.
$$xy^2z^3=8$$
, $(2,2,1)$

Solution

$$F(x, y, z) = xy^{2}z^{3} - 8$$

$$F_{x}(2, 2, 1) = y^{2}z^{3} = (4)(1) = 4$$

$$F_{y}(2, 2, 1) = 2xyz^{3} = 2(2)(2)(1) = 8$$

$$F_{z}(2, 2, 1) = 3xy^{2}z^{2} = 3(2)(4)(1) = 24$$

The equation of the tangent plane is given by,

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0)$$

$$4(x - 2) + 8(y - 2) + 24(z - 1) = 0$$

$$x - 2 + 2(y - 2) + 6(z - 1) = 0$$

$$x - 2 + 2y - 4 + 6z - 6 = 0$$

$$\boxed{x + 2y + 6z = 12}$$

(b) The equation of the normal line is given by,

$$\frac{x - x_0}{F_x(x_0, y_0, z_0)} = \frac{y - y_0}{F_y(x_0, y_0, z_0)} = \frac{z - z_0}{F_z(x_0, y_0, z_0)}$$
$$\frac{x - 2}{4} = \frac{y - 2}{8} = \frac{z - 1}{24}$$
$$x - 2 = \frac{y - 2}{2} = \frac{z - 1}{6}$$

51.
$$x + y + z = e^{xyz}$$
, $(0,0,1)$

Solution

(a)

$$F(x, y, z) = x + y + z - e^{xyz}$$

$$F_x(0, 0, 1) = 1 - yze^{xyz} = 1 - 0 = 1$$

$$F_y(0, 0, 1) = 1 - xze^{xyz} = 1 - 0 = 1$$

$$F_z(0, 0, 1) = 1 - xye^{xyz} = 1 - 0 = 1$$

The equation of the tangent plane is given by,

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0)$$
$$1(x - 0) + 1(y - 0) + 1(z - 1) = 0$$
$$\boxed{x + y + z = 1}$$

(b) The equation of the normal line is given by,

$$\frac{x - x_0}{F_x(x_0, y_0, z_0)} = \frac{y - y_0}{F_y(x_0, y_0, z_0)} = \frac{z - z_0}{F_z(x_0, y_0, z_0)}$$
$$\frac{x - 0}{1} = \frac{y - 0}{1} = \frac{z - 1}{1}$$
$$x = y = z - 1$$

Section 7: Maximum and Minimum Values

Find the local maximum and minimum values and saddle point(s) of the function. You are encouraged to use a calculator or computer to graph the function with a domain and viewpoint that reveals all the important aspects of the function.

5.
$$f(x,y) = x^2 + xy + y^2 + y$$

Solution

$$\nabla f(x,y) = \langle 2x + y, \ x + 2y + 1 \rangle$$

Finding critical values, (system of two equations)

$$2x + y = 0$$
$$x + 2y = -1$$

$$2x + y = 0$$

$$-2x - 4y = 2$$

$$-3y = 2$$

$$y = -\frac{2}{3} \quad \Rightarrow \quad x = \frac{1}{3}$$

Critical point at $(\frac{1}{3}, -\frac{2}{3})$

Hessian matrix to determine maxima and minima,

$$f_{xx} = 2, \quad f_{yy} = 2, \quad f_{xy} = 1$$

$$H_f(x,y) = \det \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix}$$

$$H_f\left(\frac{1}{3}, \frac{-2}{3}\right) = \det \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = 4 - 1 = 3$$

$$H_f\left(\frac{1}{3}, -\frac{2}{3}\right) > 0 \text{ and } f_{xx} = 2 > 0$$

$$\therefore f\left(\frac{1}{3}, -\frac{2}{3}\right)$$
 is a local minimum

7.
$$f(x,y) = 2x^2 - 8xy + y^4 - 4y^3$$

$$\nabla f(x,y) = \langle 4x - 8y, -8x + 4y^3 - 12y^2 \rangle$$

Finding critical values,

$$0 = 4x - 8y$$

$$2x = 8y$$

$$x = 2y$$

$$0 = -8x + 4x^{3} - 12y^{2}$$

$$0 = -8(2y) + 4y^{3} - 12y^{2}$$

$$0 = 4y^{3} - 12y^{2} - 16y$$

$$0 = 4y(y^{2} - 3y - 4)$$

$$0 = 4y(y - 4)(y + 1)$$

$$y = -1, 0, 4 \implies x = -2, 0, 8$$

Critical points at (-2, -1), (0, 0), (8, 4)

$$f_{xx} = 4, \quad f_{yy} = 12y^2 - 24y, \quad f_{xy} = -8$$

$$H_f(8,4) = det \begin{vmatrix} 4 & -8 \\ -8 & 96 \end{vmatrix} = 384 - 64 = 320$$

$$H_f(-2,-1) = det \begin{vmatrix} 4 & -8 \\ -8 & 36 \end{vmatrix} = 144 - 64 = 80$$

$$H_f(0,0) = det \begin{vmatrix} 4 & -8 \\ -8 & 0 \end{vmatrix} = 0 - 64 = -64$$

 $H_f(8,4) > 0$ and $f_{xx} = 4 > 0$ so f(8,4) is a local minima $H_f(-2,-1) > 0$ and $f_{xx} = 4 > 0$ so f(8,4) is a local minima $H_f(0,0)$ so f(8,4) is a saddle point

Minima:
$$f(8, 4 = -128), f(-2, -1) = 3$$

Saddle Point: f(0,0)

9.
$$f(x,y) = (x-y)(1-xy)$$

Solution
$$\nabla f(x,y) = \langle 1 - 2xy + y^2, -x^2 - 1 + 2xy \rangle$$

Finding critical values,

$$0 = 1 - 2xy + y^{2}$$

$$0 = 1 - y(2x + y)$$

$$1 = y(2x + y)$$

$$y = 1, \quad 2x + y = 1 \quad \Rightarrow \quad y = 1 - 2x$$

$$0 = -x^{2} - 1 + 2xy$$

$$0 = -x^{2} - 1 + 2x(1 - 2x)$$

$$0 = -x^{2} - 1 + 2x - 4x$$

$$0 = -x^{2} - 2x - 1$$

$$0 = x^{2} + 2x + 1$$

$$0 = (x + 1)(x + 1)$$

$$x = -1 \quad \Rightarrow \quad y = 1 - 2(-1) = -1 \quad \Rightarrow \quad (-1, -1)$$

If y = 1,

$$0 = -x^{2} + 2x - 1$$

$$0 = x - 2x + 1$$

$$0 = (x - 1)(x - 1)$$

$$x = 1 \implies (1, 1)$$

Critical points at (-1, -1), (1, 1)

$$f_{xx} = -2y$$
, $f_{yy} = 2x$, $f_{xy} = -2x + 2y$
 $H_f(-1, -1) = det \begin{vmatrix} 2 & 0 \\ 0 & -2 \end{vmatrix} = -4 - 0 = -4$
 $H_f(1, 1) = det \begin{vmatrix} -2 & 0 \\ 0 & 2 \end{vmatrix} = -4 - 0 = -4$

 $H_f(-1,-1)$ and $H_f(1,1)$ are both < 0, so they are saddle points.

Saddle Points: f(-1, -1), f(1, 1)

11.
$$f(x,y) = y\sqrt{x} - y^2 - 2x + 7y$$

13.
$$f(x,y) = x^3 - 3x + 3xy^2$$

15.
$$f(x,y) = x^4 - 2x^2 + y^3 - 3y$$

17.
$$f(x,y) = xy - x^2y - xy^2$$

19.
$$f(x,y) = e^x \cos y$$

21.
$$f(x,y) = y^2 - 2y \cos x$$
, $-1 \le x \le 7$

Find the absolute maximum and minimum values of f on the set D.

33.
$$f(x,y) = x^2 + y^2 - 2x$$
,

D is the closed triangular region with vertices (2,0), (0,2), and (0,-2)

35.
$$f(x,y) = x^2 + y^2 + x^2y + 4$$
,

$$D = \{(x, y) \mid |x| \le 1, \ |y| \le 1\}$$

37.
$$f(x,y) = x^2 + 2y^2 - 2x - 4y + 1$$
,

$$D = \{(x, y) \mid 0 \le x \le 2, \ 0 \le y \le 3\}$$

39.
$$f(x,y) = 2x^3 + y^4$$
,

$$D = \{(x, y) \mid x^2 + y^2 \le 1\}$$

43

Find the shortest distance from the point (2,0,-3) to the plane x+y+z=1.

45

Find the points on the cone $z^2 = x^2 + y^2$ that are closest to the point (4,2,0).

47

Find three positive numbers whose sum is 100 and whose product is a maximum.

55

A cardboard box without a lid is to have a volume of $32,000 \text{ } cm^3$. Find the dimensions that minimize the amount of cardboard used.

Section 8: Lagrange Multipliers

3-13 (odd)

Each of these extreme value problems has a solution with both a maximum value and minimum value. Use Lagrange multipliers to find the extreme values of the function subject to the given constraint.

- **3.** $f(x,y) = x^2 y^2$, $x^2 + y^2 = 1$
- **5.** f(x,y) = xy, $4x^2 + y^2 = 8$
- 7. $f(x,y) = 2x^2 + 6y^2$, $x^4 + 3y^4 = 1$
- **9.** f(x,y,z) = 2x + 2y + z, $x^2 + y^2 + z^2 = 9$
- **11.** $f(x, y, z) = xy^2z$, $x^2 + y^2 + z^2 = 4$
- **13.** $f(x, y, z) = x^2 + y^2 + z^2$, $x^4 + y^4 + z^4 = 1$

23

The method of Lagrange multipliers assumes that the extreme values exist, but that is not always the case. Show that the problem of finding the minimum value of f subject to the given constraint can be solved using Lagrange multipliers, but f does not have a maximum value with that constraint.

$$f(x,y) = x^2 + y^2, \quad xy = 1$$

25

Use Lagrange multipliers to find the maximum value of f subject to the given constraint. Then show that f has no minimum value with that constraint.

$$f(x,y) = e^{xy}, \quad x^3 + y^3 = 16$$

27, 29

Find the extreme values of f on the region described by the inequality.

- **27.** $f(x,y) = x^2 + y^2 + 4x 4y$, $x^2 + y^2 \le 9$
- **29.** $f(x,y) = e^{-xy}$, $x^2 + 4y^2 \le 1$

31, 33

Find the extreme values of f subject to both constraints

31.
$$f(x,y,z) = x + y + z;$$
 $x^2 + z^2 = 2,$ $x + y = 1$

33.
$$f(x, y, z) = yz + xy;$$
 $xy = 1,$ $y^2 + z^2 = 1$