Отчет по первому практическому заданию

Царькова Анастасия

Формулы для градиента и гессиана функции логистической регрессии:

$$f(x) = \frac{1}{m} \sum_{i=1}^{m} \ln(1 + \exp(-b_i a_i^T x)) + \frac{\lambda}{2} ||x||_2^2 = \frac{1}{m} \ln(1 + \exp(-b * Ax)) + \frac{\lambda}{2} x^T x$$

$$\nabla f(x) = \frac{1}{m} A^T \left(b * \left(\frac{1}{1 - \exp(b * Ax)} \right) \right) + \lambda x$$

$$\nabla^2 f(x) = \frac{1}{m} A^T Diag\left(\left(1 - \left(\frac{1}{1 - \exp(b * Ax)} \right) \right) * \left(\frac{1}{1 - \exp(b * Ax)} \right) \right) A + \lambda I$$

Первый эксперимент.

Зависимость поведения метода от обусловденности функции.

Зависимость поведения метода от начальной точки

0

0.0

-0.5

0.25

0.00

Зависимость поведения метода от стратегии выбора шага.

Зависимость числа итераций градиентного спуска от числа обусловленности и размерности пространства.

Сравнение методов градиентного спуска и Ньютона на реальной задаче логистической регрессии.

w8a

Оптимизация вычислений в градиентном спуске.

