1	2	3	4	5	6	7	8	9	10	11	12	13	14
С	В	С	С	D	A	D	AC	В	D	С	В	С	В
15. (1):	3d ¹⁰ 4s	1											
(2) sp ² $\frac{7}{2}$	杂化	三角	锥形	3	16N _A	N	· F · H	三种方	素的电	负性为	: F>N	>H, 在	NF3
中,共	用电子	对偏向	JF,偏	高N原	子, 使	得氮原	子上的	孤电子	对难与	Cu ²⁺ 形	成配位	键	
(3)金属	键	8	2.57: N _A	$\frac{\times 10^{23}}{a^3}$									
16. 【答	零】	ne. e). P. I	C1									
(2)根据	VSEP	R 模型	2,氧原	子的价	层电子	对数为	4, 其中	孤电子	-对数为	12. 成	腱电子:	对之间:	呈角形
(3)N													
(4)配合:	物Ⅱ												
(5)	6	5s ² 5	p³	a									
17. (1)	分子晶	44,4	$\sqrt[3]{\frac{4\times}{N}}$	145 _Α ρ	$\frac{\sqrt{2}}{2}$ •								
(2) 电负	teo	大于N	1, 0对	电子的	吸引能	力更强	, Zn 和	o更易	易形成落	子键。			
(3) CH ₃	Mn(C	O)5+I2-	≻CH₃I+	MnI(C	O)5 o								
(4) C +													

8. 己知 X、Y 元素同周期,且电负性 X>Y,下列说法错误的是 A. 第一电离能: Y一定小于 X B. 气态氢化物的稳定性: H_mY 小于 H_nX C. 最高价含氧酸的酸性: X 对应的酸性强于 Y 对应的 D. X和Y形成化合物时, X显负价, Y显正价 **A**

10. 配合物 $^{\prime}$ 是一种具有较好疗效的抗癌药物,其中心离子为 Pt^{2+} 。已知X、Y、Z 是分处于 不同短周期的元素,原子半径依次增大,X、Z的原子核外都有一个未成对电子,Y的第一电离 能比同周期相邻元素的大, A 分子是由 X、Y 元素组成的四原子分子。下列有关叙述正确的是

- A. 配合物中 Pt^{2+} 的配位数为 2 B. Y 和 Z 的氧化物对应的水化物都是强酸
- C. A 分子的 VSEPR 模型是四面体形, A 分子中的键角为 109°28′
- D. 由 X、Y、Z 三种元素组成的化合物可以是离子化合物,也可以是共价化合物 $\mathrm{NH_2Cl}$

12. 冠醚是一种超分子,它能否适配碱金属离子与其空腔直径和离子直径有关。 二苯并-18-冠-6 与 K+形成的螯合离子的结构如图所示。下列说法错误的是

冠醚	冠醚空腔直径/pm	适合的粒子(直径/pm)
15-冠-5	170-220	Na ⁺ (204)
18-冠-6	260-320	K ⁺ (276), Rb ⁺ (304)
21-冠-7	340-430	Cs+(334)

- A. 6个O原子与K+可能在同一平面上
- B. 二苯并-18-冠-6 也能适配 Li+
- C. 该冠醚分子中碳原子杂化方式有 2 种 D. 一个螯合离子中配位键的数目为 6

[Cu(NH ₃) ₄] ²⁺ 中提供孤对电子的基态原子有	个未成对电子;	lmol 该阳离子含有的σ键的
<mark>【目为</mark> 。		
NH3能与 Cu²+形成[Cu(NH3)4]²+,而 NF3不能,	其原因是	

16.. 我国科学家发现一种钒配合物I可以 充当固氮反应的催化剂, 反应过程中经 历的中间体包括II和III。 (~~~ 代表单键、双键或叁键) 回答问题: (1)配合物I中钒的配位原子有 4 种,它们是_ (2)配合物I中,R'代表芳基,V-O-R'空间结构呈角形,原因是___ (3)配合物Ⅲ中,第一电离能最大的配位原子是____。 (4)配合物 Π 和 Π 中,钒的化合价分别为+4和+3,配合物 Π 、 Π 和 N_2 三者中,两个氮原子间键长 最长的是____。

(4)<mark>将含有末成对电子的物质置于外磁</mark>场中,会使磁场强度增大,称其为顺磁性物质。下列物质中,属于顺磁性物质的是______(填标号)。

 $A. \ \ [Cu(NH_3)_2]Cl \qquad B. \ \ [Zn(NH_3)_4]SO_4 \qquad C. \ \ [Cu(NH_3)_4]SO_4 \qquad D. \ \ Na_2[Zn(OH)_4]$

根据内部<mark>微粒的种类</mark>和<mark>微粒间的相互作用</mark>不同,将典型的晶体分为离子晶体、金属晶体、 共价晶体和分子晶体。

	晶体	型	高子晶体	分子晶体	共价晶体	金属晶体	
结构	构成	晶体的粒子	阴、阳离子	分子	原子	金属离子、自由电子	
類例	徽常	如作用力	离子键	分子间作用力	共价键	金属键	
		熔沸点	高	低	很高	高或低	
	硬度 硬而脆		硬度小	质地硬	硬度大或小		
物理		溶解性	易溶于极性溶剂	水溶液能够导电	不溶于大多數溶剂	不溶或与水反应	
性质	鲁	晶体	不导电	不导电	不导电	导电	
	电	熔融态	导电	不导电	不导电	导电	
	性	溶液	导电	可能导电	不溶于水	不溶于水	
熔化	时克肌	的作用力	离子键	共价键	范德华力	金属键	
	物质	类别	高子化合物	多数的非金属单质和化 合物	少數的非金属单质和共价 化合物	金属单质和合金	
	实例 食盐晶体		氨、氟化氢	镁、钼			
	实例						

		分子密堆积	分子非密堆积	
	微粒间的 作用力	范德华力,无氢键	范德华力、氢键	
	空间特点	每个分子周围有 12个紧邻的分子	每个分子周围紧邻 的分子少于12个,	
	1 1	12个系列的万丁	水阳利田水 瓜	
	料卡片	12个系型的万丁	交流利用参紅	
			■ 公司和田本任 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	免冻伤!)
取	两块大小相同的干			
取一个小	两块大小相同的3	F冰,在一块干冰中央挖 P,用红热的铁棒把镁点	瞿眼的白光。(切勿用手接触干冰,以	「以跟二針

2. 共价晶体 (<mark>共价键三维骨架结构</mark>) (1) 某些单质: 硼(B) 硅(Si) 锗(Ge) 灰锡(Sn) (2) 某些非金属化合物: 金刚砂 (SiC) 立方氮化硼 (BN) SiO₂ Si₃N₄ (3) 极少数金属氧化物: α-Al₂O₃晶体(刚玉) 典型结构1——金刚石结构(晶体硅类似)

金刚石晶体的结构特点

- ①在金刚石晶体中以4 个共价单键与相邻的4
- 个碳原子相结合,成为正四面体
- ②每个碳原子都采取<u>sp³杂化</u>
- ③所有的C—C键长相等,键角相等,键角为<u>109°28'</u>
- ④晶体中最小的碳环由 6 个碳组成,且 不在 同一平面内;
- ⑤晶体中C原子与C—C键数之比为_1:2_
- ⑥每个碳原子可形成_12__个六元环, 每个C-C键可以形成 6 个六元环。

典型结构2— —二氧化硅

注意: SiO,没有分子式,只有化学式!

思考: 怎样从原子结构角度理解 金刚石、碳化硅、晶体硅的熔点 和硬度依次下降?

① 在SiO₂晶体中,每个硅原子与_4__个氧原子 结合;每个氧原子与 $\frac{2}{}$ 个硅原子结合;在 $\frac{8}{}$ iO₂ 晶体中硅原子与氧原子个数之比是 1:2。 ②在SiO₂晶体中,每个硅原子形成_4_个共价键;

每个氧原子形成 2 个共价键;

③ 在SiO₂ 晶体中,最小环为 12 元环, <u>没有</u>单个的SiO₂分子存在。

④1mol SiO₂中含 4 mol Si—O键

<mark>典型结构3</mark>——SiC、BP、AIN等

SiO₂是另一种共价晶体。它是自然界含量最高的固 态二元氧化物,熔点1713℃,有多种结构,最常见的是 低温石英。遍布海滩河岸的黄沙、带状的石英矿脉、花 岗石里的白色晶体以及透明的水晶都是低温石英。在低温 石英的结构中, 顶角相连的硅氧四面体形成螺旋上升的长 链(如图3-22),这一结构决定了它具有手性(左、右型) (如图3-23)、被广泛用作压电材料,如制作石英手表。

SiO₂具有许多重要用途,是制造水泥、玻璃、单晶硅、 硅光电池、芯片和光导纤维的原料。

图 3-22 石英晶体中的硅氧四面体相

3. 金属晶体

3. 金属晶体

用电子气理论解释金属晶体的性质

金属脱落下来的价电子几乎均匀分布整个晶体中,像遍布整块金属 的"电子气",被所有原子所共有,把所有金属原子维系在一起。

金属键: 金属阳离子与自由电子间强烈的相互作用

电子气理论还可以用来解释金属材料良好的延展性。 当金属受到外力作用时, 晶体中的各原子层就会发生相对 滑动, 但不会改变原来的排列方式(如图 3-29), 而目弥 漫在金属原子间的电子气可以起到类似轴承中滚珠之间润 滑剂的作用, 所以金属有良好的延展性。当向金属晶体中

电子气理论还十分形象地用电子气在电场中定向移动 解释金属良好的导电性, 还可用电子气中的自由电子在热 的作用下与金属原子频繁碰撞解释金属的电导率随温度升 高而降低的现象。

电子气理论解释金属的延展性与导热性(选择性必修二P86-87)

4. 离子晶体

离子键 ↑作用力 高子晶体 高子晶体 高子晶体 高子半径 阴阳原子 - 构成粒子 通性

硬度较大,较高熔点,不导电(固态)

- ★离子晶体可能存在共价键、氢键(如NH₄F)
- ★离子晶体可能不含金属元素(如NH₄CI)
- ★金属元素和非金属元素组成的晶体不一定是离子晶体,如AICI。是分子晶体

4. 离子晶体

以上讨论了NaCl和CsCl两种离子晶体,实际上,大 量离子晶体的阴离子或阳离子不是单原子离子, 有的还存 在电中性分子(如H2O、NH3等)。例如, CaCO3、K2SO4、 (NH₄)₂SO₄、CuSO₄·5H₂O、Cu(NH₃)₄SO₄·H₂O等,在这些 离子晶体中还存在共价键、氢键等。(注:晶体中也存在范 德华力,只是当能量份额很低时不提及。)然而,贯穿整个 晶体的主要作用力仍是阴、阳离子之间的作用力。

离子液体

离子晶体的熔点,有的很高,如CaO 的熔点为2613 ℃,有的较低,如NH4NO3、 Ca(H₂PO₄), 的熔点分别为170℃、109℃。早 在1914年就有人发现,引入有机基团可降低 离子化合物的熔点,如 C,H,NH,NO,的熔点 只有12 ℃, 比NH4NO3低了158 ℃! 到20世 纪90年代,随着室温或稍高于室温时呈液态 的离子化合物的优异性质不断被开发利用, 人们才意识到它们的巨大价值, 并将它们定 义为离子液体。

大多数离子液体含有体积很大的阴、阳 离子(如图3-31)。常见的阴离子如四氯铝 酸根 $(AlCl_4^-)$ 、六氟磷酸根 (PF_6^-) 、四氟硼

酸根(BF4)等,常见的阳离子如季铵离子 $(R_4N^+$, 即 NH_4^+ 的H被烃基R取代)、带烃基 侧链的咪唑、嘧啶等有环状含氮结构的有机 胺正离子等。

图 3-31 1-丁基-3-甲基咪唑六氟磷酸盐 传统的有机溶剂大多易挥发, 它们的蒸 气大多有毒, 而离子液体却有难挥发的优 点,这是由于离子液体的粒子全都是带电荷

离子液体可用作溶剂。例如, 有一种叫

天丝的织物纤维, 是将树木的纤维素分子溶 于一种离子液体,滤去不溶的木质素后,加 水析出纤维素分子组装成的再生植物纤维。 离子液体有良好的导电性,用作电化学研究 的电解质,并被开发为原电池的电解质。许 多离子液体被用作有机合成的溶剂和催化剂, 如合成药物。离子液体在生物化学等科研领 域也有广泛应用。

2014年,曾报道了两种蚂蚁打架,一种 喷射碱性有机胺毒液, 另一种喷射甲酸, 两 种物质相遇反应,得到含有机胺正离子和甲 酸根负离子的黏稠液体,是首例发现于自然 界的离子液体。

过渡晶体

我们已经讨论了分子晶体、共价晶体、金属晶体和离 子晶体等四类典型晶体。事实上,纯粹的典型晶体是不多 的,大多数晶体是它们之间的过渡晶体。

下面仅以密子品体和共价品体之间的过渡为例来说明。 例如,第三周期前几种元素的氧化物中,化学键中离子键

表 3-4 几种氧化物的化学健中离子键成分的百分数

氧化物	Na ₂ O	MgO	Al ₂ O ₃	SiO
高子健的 百分數/%	62	50	41	33

从表3-4可知,表中的4种氧化物晶体中的化学键既不 是纯粹的离子键, 也不是纯粹的共价键, 这些晶体既不是 纯粹的离子晶体也不是纯粹的共价晶体, 只是离子晶体与 共价晶体之间的过渡晶体。

深切而呼之响如这级而呼。 偏向离子晶体的过渡晶体在许多性质上与纯粹的离子 晶体接近,因而通常当作离子晶体来处理,如Na₂O等。同 样,偏向共价晶体的过渡晶体则当作共价晶体来处理,如 Al₂O₃、SiO₂等。

第三周期后几种元素的氧化物的晶体类型又会怎样变 中ニ回助品几年70条67年代2回回加州学並文表2点年至 免完。P.O.。SO, C.I.O. 器是分子晶体,表明离子健成分 的百分数更小了,面且共倫理/不再穿整个晶体,而是局 限于晶体微观空间的一个个分子中了。 四类晶体都有过渡型。

5. 混合晶体—石墨

思考:已知石墨的熔点 高于金刚石,原因是?

结构特点——层状结构

①层内: C原子sp²杂化,与其他C原子构成 sp²—sp²σ键,每个C还有未参与杂化的p轨道,

形成π,"大π键

②配位数: 3,

C原子数: 六元环数: 碳碳键数 =2: 1: 3

③作用力

层内: 共价键 (类似原子晶体)。 大π键的电子 可以在整个碳原子平面中运动,因此有金属键 (类似金属晶体)

层间: 范德华力 (类似分子晶体)

纳米晶体

纳米晶体是晶体颗粒尺寸在纳米 (10°m) 量级的晶体。纳米晶体相对于通常的晶体, 在声、光、电、磁、热等性能上常会呈现新 的特性,有广阔的应用前景。仅以熔点为例, 当晶体颗粒小至纳米量级,熔点会下降。 例如,金属铅的晶粒大小与熔点的关系如表3-5和图3-34。

表 3-5 金属铅的晶粒大小与熔点

r/nm	5	10	20	40	60	80	100	120	140	160	180	200
T/K	34.7	144	294	420	473	502	520	533	542	549	554	559

图 3-34 金属铅的晶粒大小与熔点的关系

由此可见, 晶体颗粒小于200 nm 时, 晶粒越小, 金属铅的熔点越低。因此, 我们通常说统物质有固定的熔点, 但当纯物质晶体的颗粒小于200 nm(或者250 nm)时, 其熔点会发

生变化。 纳米晶体为什么会有不同于大块晶体的 特性呢? 主要原因是晶体的表面积增大。

晶体熔、沸点的比较

1. 不同晶体类型的熔、沸点高低规律

一般地:共价晶体>离子晶体>分子晶体。金属晶体的熔、沸点差别较大(如钨、汞) 答题模板: 先判断晶体类型,指出该晶体的熔、沸点取决于......(作用力)影响,再比较不同作用力的强弱,得出熔沸点高低结论。

分子晶体——分子间作用力(有氢键要答出氢键)

共价晶体——共价键

金属晶体——金属键

离子晶体——离子键

晶体熔、沸点的比较

2. 不同晶体类型的熔、沸点高低规律

答题模板: 先判断二者属于哪类晶体,指出其熔、沸点取决于......(作用力)影响,再比较不同物质该作用力的强弱,得出熔沸点高低的结论。

(1) 同属于分子晶体:分子间作用力越强,熔、沸点越高

①组成和结构相似的分子晶体,一般相对分子质量越大,分子间作用力越强,熔、沸点越高。 如熔点: $I_2 > Br_2 > CI_2 > F_2$ 。

②相对分子质量相同或相近的物质,分子的极性越大,熔、沸点越高。如沸点: CO>N₂。

③若分子间有氢键,则分子间作用力比结构相似的同类晶体大,故熔、沸点较高。如沸点:HF>HI>HBr>HCI。

④同分异构体之间:一般是支链越多,熔、沸点越低。如沸点:正戊烷>异戊烷>新戊烷。

⑤结构越对称,熔、沸点越低。如沸点:邻二甲苯>间二甲苯>对二甲苯。

(2) 同属于共价晶体: 原子半径越小,键长越短,键能越大,共价键越强,熔、沸点越高。如熔点: 金刚石(C-C)>二氧化硅(Si-O)>碳化硅 (Si-C)>晶体硅(Si-Si)。

(3) 同属于金属晶体:金属阳离子所带电荷越多,半径越小,金属键越强,晶格能越大,熔、沸点越高。如熔点:AI>Mg>Na。

(4) 同属于离子晶体:离子所带电荷越多,离子半径越小,离子键越强,熔、沸点越高。如熔点:MgO>NaCl>CsCl。

晶体熔、沸点高低的比较

 $1.[2017\cdot$ 全国卷III,35(3)]在 CO_2 低压合成甲醇反应 CO_2+3H_2 —— CH_3OH+H_2O)所 涉及的4种物质中,沸点从高到低的顺序为_H_2O> $CH_3OH>CO_2>H_2$ _____,原因是 均为分子晶体, H_2O 与 CH_3OH 含有分子间氢键, H_2O 中氢键数目比甲醇中多; CO_2 与 H_2 均为非极性分子, CO_2 相对分子质量较大,范德华力大

2.[2015·全国卷 II , 37(2)]单质氧有两种同素异形体,其中沸点高的是 O_3 (填分子式),原因是 O_3 相对分子质量较大且是极性分子,范德华力较大。

3. [2020·高考全国卷II节选]Ti的四卤化物熔点如下表所示,TiF₄熔点高于其他三种卤化物,自TiCl₄至TiI₄熔点依次升高,原因是<u>TiF₄为离子晶体,熔点取决于离子键。</u> <u>其他三种为分子晶体,熔点取决于离子键。</u>

 化合物
 TiF₄
 TiCl₄
 TiBr₄
 TiI₄
 III₄
 其他三种为分子晶体,熔点取决十分子间作用力,且随相对分子质量的增大分子间作用力,且随相对分子质量的增大分子间作用力增大,熔点逐渐升高

3.已知Ba、Mo的氯化物沸点信息如表所示。二者沸点差异的原因是BaCl₂属于离子晶体,MoCl₅属于分子晶体,离子晶体的沸点主要取决于离子键,分子晶体的沸点主要取决于分子间作用力,离子键通常强于分子间作用力。。

氯化物	沸点
$BaCl_2$	1 560 ℃
MoCl ₅	268 ℃

4.[Zn(IMI)₄](ClO₄)₂是Zn²⁺的一种配合物,IMI的结构为 N-CH₃,IMI 的某种衍生物与甘氨酸形成的离子化合物 H₃C C₂H₅,常温下为液态而非固态,原因是 阴、阳离子半径大,电荷数小,形成的离子键较弱,熔点低。