

Addition and Division method

เสนอ

ผศ.ดร.สุรินทร์ กิตติธรกุล

จัดทำโดย

61010914 นายลัทธพล แพ่งสภา

61011405 นายพรรษา บุญทวีกุลสวัสดิ์

61011433 นายเสฎฐวุฒิ ทิพย์กรรภิรมย์

เอกสารการประกอบการนำเสนอนี้ เป็นส่วนหนึ่งของ

วิชา 01076009 ชื่อวิชา Computer Organization and Assembly Language

ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์

สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

E ADDITION AND DIVISION METHOD

Content

- ADDER
 - Ripple Carry Adder (RCA)
 - Carry Lookahead Adder(CLA)
- DIVISION
 - Slow Division Method
 - Restoring Division
 - Non-Restoring Division
 - Fast Division Method
 - SRT
 - Newton-Raphson Division
 - Variant Newton-Raphson Division
 - Goldschmidt division
 - Binomial theorem

= ADDER

Ripple Carry Adder (RCA)

การทดแบบริปเปิล (ระลอก)

Ripple Carry Adder (RCA)

Ripple carry adder หรืออีกชื่อหนึ่งคือ วงจรบวกแบบขนาน (Parallel Adder) เป็นวิธีบวกเลขที่คล้ายกับวิธีที่คนใช้ในการบวกเลข โดยวงจร Ripple carry adder เป็นการนำวงจรบวกแบบคิดค่าตัวทด (Full Adder) มาต่อขนาน กันเพื่อทำให้บวกได้จำนวนบิตมากขึ้น

รูปที่ 1. ตัวอย่างวงจร Ripple Carry Adder 4 บิต

Ripple Carry Adder (RCA)

รูปที่ 2. ตัวอย่าง Animation Ripple Carry Adder 4 บิต (ตัวอย่างเป็นการบวกในรูปเลขฐานสิบ)

การทดแบบดูตัวทดล่วงหน้า

เนื่องจากการใช้เวลาที่น้อยแต่ได้ผลลัพธ์ที่ถูกต้องเป็นสิ่งสำคัญในการเพิ่ม ประสิทธิภาพในการทำงานของคอมพิวเตอร์ ดังนั้นเราจึงทำวงจร Carry Lookahead Adder เพื่อลดเวลาในขณะที่กำลังคำนวณการบวก ซึ่งวิธีนี้เป็นการ ลดเวลาที่ใช้ในการทดเลข โดยใช้การคำนวณล่วงหน้าว่าตัวทดควรจะเป็นอะไร

การบวกแบบ CLA นั้นจะเร็วกว่าแบบ RCA อย่างเห็นได้ชัดก็ต่อเมื่อมีการ บวกจำนวนเป็นจำนวนบิตมากๆ โดยในการใช้จริง จะมีการใช้ CLA 4 bit เป็นชุดๆ เพื่อหา C4, C8, C12 และ C16 และนำวงจร CLA 16 bit นี้มาต่อเป็นชุด ๆ อีกเช่นกัน เพื่อหา C16, C32, C48 และ C64 (ดังรูปที่ 4.)

รูปที่ 3. ตัวอย่าง Carry Lookahead Adder 4 บิต

รูปที่ 4. ตัวอย่าง Carry Lookahead Adder 64 บิต

А	В	Carry In	Carry Out
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

EDIVISION OVERNORM OVERN

Division

 $\begin{array}{c|c} & 1001_{\text{ten}} & \text{Quotient} \\ \hline \text{Divisor } 1000_{\text{ten}} & 1001010_{\text{ten}} & \text{Dividend} \\ \hline & -1000 \\ \hline & 10 \\ & 101 \\ \hline & 1010 \\ \hline & -1000 \\ \hline & 10_{\text{ten}} & \text{Remainder} \end{array}$

การหารแบบปกติที่มนุษย์ใช้ ประกอบด้วย

□Divisor : ตัวหาร □Dividend : ตัวตั้ง

_Quotient : ผลการหาร

□Remainder : เศษการหาร

สรุปเป็นสมการได้ว่า

Dividend = Divisor x Quotient + Remainder

รูปที่ 6. ตัวอย่างการหารแบบทั่วไป

Slow Division Method

วิธีหารแบบช้า

Start 1. Subtract the Divisor register from the Remainder register and place the result in the Remainder register Remainder ≥ 0 Remainder < 0 Test Remainde 2a. Shift the Quotient register to the left, 2b. Restore the original value by adding setting the new rightmost bit to 1 the Divisor register to the Remainder register and placing the sum in the Remainder register. Also shift the Quotient register to the left, setting the new least significant bit to 0 3. Shift the Divisor register right 1 bit No: < 33 repetitions 33rd repetition? Yes: 33 repetitions Done

Restoring Division Algorithm

รูปที่ 7. Flowchart ของ Restoring Division Method

รูปที่ 8. ตัวอย่างวงจรการหารเวอร์ชันแรก

เป็นวงจรหารเวอร์ชั่นที่พัฒนาขึ้นมาถัดจากเวอร์ชันแรก เรียกว่า MIPS

ส่วนที่เป็นสีฟ้าคือที่ส่วนที่ถูกพัฒนาขึ้นมาจากเวอร์ชั่นแรก

การพัฒนาที่สำคัญคือ การทำวงจรโดยไม่สนใจ Overflow แต่ให้ Software เซ็คการ Overflow แทนที่จะใช้ Hardware

รูปที่ 9. ตัวอย่างวงจรการหาร MIPS

712 → 3 W/b 1

eration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
	1: Rem = Rem - Div	9999 Sel	0010 0000	=0110 0111 to
1	2b: Rem $< 0 \implies +Div$, sll Q, Q0 = 0	0000	0010 0000	0000 0111_
	3: Shift Div right	0000	0001 0000	0000 0111
	1: Rem = Rem - Div	0000	0001 0000	①111 0111
2	2b: Rem $< 0 \Rightarrow +Div$, sll Q, Q0 = 0	0000	0001 0000	0000 0111
22140	3: Shift Div right	0000	0000 1000	0000 0111
3	1: Rem = Rem - Div	0000	0000 1000	@111 1111
	2b: Rem $< 0 \implies +Div$, sll Q, Q0 = 0	οργο	0000 1000	0000 0111
	3: Shift Div right	0000	0010 0000 0010 0000 0010 0000 0001 0000 0001 0000 0001 0000 0000 1000	0000 0111
	1: Rem = Rem - Div	90/90 set 1	0000 0100	= 0000 0011
4	2a: Rem $\geq 0 \implies$ sII Q, Q0 = 1	0001	0000 0100	0000 0011
	3: Shift Div right	0001	0000 0010	0000 0011
	1: Rem = Rem - Div	0001	0000 0010	@000 0001
5	2a: Rem $\geq 0 \Rightarrow$ sII Q, Q0 = 1	0011	0000 0010	0000 0001
	3: Shift Div right	0011	0000 0001	0000 0001

6 5 5 Supries 5

Signed Number:

จากสมการ Quotient = (Dividend - Remainder)/Divisor จะเห็นว่าเครื่องหมายของ Quotient จะขึ้นอยู่กับ Dividend และ Divisor (ไม่ ขึ้นอยู่กับ Remainder เพราะ Remainder มีค่าน้อยกว่าหรือเท่ากับ Dividend จึงไม่ทำให้เครื่องหมายของส่วนด้านบนเปลี่ยน)

- เครื่องหมายของ Dividend กับ Divisor เหมือนกัน Quotient จะเป็น+
- เครื่องหมายของ Dividend กับ Divisor ต่างกัน Quotient จะเป็น -

Signed Number (Example):

เมื่อคิดออกมาแล้วจะได้ Quotient = +3, Remainder = +1

ตรวจคำตอบ:

$$+7 = (+3 \times 2) + (+1)$$

เมื่อคิดออกมาแล้วจะได้ Quotient = -3) Remainder = -1

$$-7 = (-3 \times 2) + (-1)$$

$$(-4\times9)+7$$

-8+1

** แล้วถ้า Quotient = -4, Remainder = +1 ล่ะ?

รูปที่ 10. Flowchart ของ Non-Restoring Division Method

Non - Restoring Division

Non - Restoring Division เป็นวิธีหารที่มีความเร็วมากกว่าแบบ Restoring เล็กน้อย เพราะ ไม่มีการเก็บค่าของ Remainder กลับมาใหม่ แต่ เปลี่ยนเป็นการเพิ่มค่า Dividend เข้าไปยัง Remainder แทน

Non - Restoring Division

```
Example : Dividend = 101110, \frac{46}{23} Divisor = 010111
```

Set A = Dividend = 000000

Set Q = Dividend = 101110

จะได้ว่า AQ = 000000 101110

Action	Α	Q	Count		
Initial	000 000	101 110	6		
_	sign=0				
$A > 0 \Rightarrow SHL (AQ)$	000 001	011 10			
A = A-M sign =1	101 010	011 10	seto		
A < 0 => Q0 = 0	101 010	011 100	5		
	Sign=0				
$A < 0 \Rightarrow SHL(AQ)$	0 10 100 _{Ve}	111 00□			
A = A+M sign	(1 001 011)	111 00□			
$A < 0 \Rightarrow Q0 = 0$	101 011	111 000	4		
$A < 0 \Rightarrow SHL(AQ)$	010 111	110 00□			
A = A+M	101 110	110 00□			
A < 0 => Q0 = 0	101 110	110 000	3		
A < 0 => SHL (AQ)	011 101	100 00□			
A = A+M	110 100	100 00□			
A < 0 => Q0 = 0	110 100	100 000	2		
	Sign=1				
A < 0 => SHL (AQ)	001 001	000 00	dt-1		
A = A+M signo	000 000	000 00□	e=1		
A < 0 => Q0 = 1	000 000	000 001	1		
A > 0 => SHL (AQ)	000 000	000 01□			
A = A+M	101 001	000 01□			
A < 0 => Q0 = 1 (001 001	000 010	0		
1000 mad 100 10 10 10 10 10 10 10 10 10 10 10 10	sign=1 4=1	ù+m			
Count has reached Zero, So final steps					
		2			
A < 0 => A = A + M	000 000	000 010			
	Reminder				

SRT Division

Non - Restoring Division เป็นวิธีหารที่มีความเร็วมากกว่าแบบ Restoring เล็กน้อย เพราะ ไม่มีการเก็บค่าของ Remainder กลับมาใหม่ แต่ เปลี่ยนเป็นการเพิ่มค่า Dividend เข้าไปยัง Remainder แทน C

Non - Restoring Division เป็นวิธีหารที่มีความเร็วมากกว่าแบบ Restoring เล็กน้อย เพราะ ไม่มีการเก็บค่าของ Remainder กลับมาใหม่ แต่ เปลี่ยนเป็นการเพิ่มค่า Dividend เข้าไปยัง Remainder แทน

Fast Division Method

What is Fast Division Method?

Moore's Law ได้ถูกนำมาใช้กับการหาร เช่นเดียวกันกับการคูณ แต่ทว่า การหารนั้นต่างจากการคูณ เราไม่สามารถที่จะเพิ่มฮาร์ดแวร์เพื่อช่วยให้ การหารนั้นไวขึ้นได้ นั่นเป็นเหตุผลที่เราต้องใช้อัลกอริทึมบางอย่างเพื่อช่วยให้ การหารเลขจำนวนมาก ๆนั้นมีความเร็วเพิ่มขึ้น

SRT Division Algorithm

SRT Division

โดยปกติ การหารแบบ Slow Division นั้นจะทำให้ได้ Quotient 1 บิต ต่อขั้น ตอน จึงได้มีการคิดคันวิธี SRT Division ขึ้นเพื่อให้ได้จำนวน Quotient มากขึ้นใน 1 ขั้นตอน

ซึ่งวิธีนี้ใช้การทำนาย Quotient หลายๆบิตใน 1 ขั้นตอนโดยดูจาก Lookup Table และในขั้นตอนถัดไปจะมีการแก้ Quotient ที่ทำนายผิดพลาด

SRT Division

โดยวิธีนี้จะใช้เลข 6 บิต จาก Reminder และ 4 บิต จาก Divisor เพื่อใช้ในการ ทำนายเทียบกับ Table ซึ่งความแม่นยำของวิธีนี้ก็จะขึ้นอยู่กับความเหมาะสมของตัว Table

Newton-Raphson Division Algorithm

Newton-Raphson เป็นการนำ Newton's method มาใช้ ซึ่ง Newton's method เป็นวิธีที่ใช้ในการหาราก โดย Newton-Raphson Division มีขั้นตอนดังนี้

- 1. ประมาณค่า X_ก เป็น 1/D (ส่วนกลับของ Divisor D)
- 2. คำนวณซ้ำ ๆ โดยประมาณค่า X_ı,X_₂,X_₃, ..., X_s เพื่อให้เกิดความแม่นยำมากขึ้น
- 3. คำนวณ Quotient จากการนำ Dividend N มาคูณกับ X_s : Q = NX_s

สมการที่ใช้ในการคำนวณหา $X_{0}, X_{1}, X_{2}, ..., X_{S}$ โดยที่ i เป็นจำนวนเต็ม

$$X_{i+1} = X_i - rac{f(X_i)}{f'(X_i)} = X_i - rac{1/X_i - D}{-1/X_i^2} = X_i + X_i(1 - DX_i) = X_i(2 - DX_i).$$

เนื่องจากวิธีนี้เป็นการลู่เข้า ทำให้สมการเป็นสมการกำลังสองแน่นอน จึงมีการ คำนวณค่า S ที่เหมาะสมได้เป็น $S = \left\lceil \log_2 \frac{P+1}{\log_2 17} \right\rceil$ และ P คือจำนวนบิตสูงสุดที่ คำนวณได้โดยที่ยังแม่นยำอยู่

สรุปสูตรของ Newton–Raphson iteration ได้ว่า $X_{n+1} = X_n - \frac{f(X_n)}{f'(X_n)}$

ตัวอย่างจงหา
$$f(x) = \frac{1}{x} - b$$
 ที่ X_3 และให้ b มีค่าเท่ากับ 7

หา f'(x) เพื่อใช้ในการแทนลงในสูตร

$$f'^{(x)} = -\frac{1}{x^2}$$

ดังนั้นเมื่อใช้สูตรจะแทนค่าได้ว่า
$$X_{n+1}=X_n-rac{rac{1}{X_n}-b}{rac{1}{X_n^2}}*rac{-X_n^2}{-X_n^2}$$

$$=X_n-(-X_n+bX_n^2)$$

$$=2X_n-bX_n^2$$

$$=X_n(2-bX_n)$$

หา
$$X_0=\frac{1}{10}$$
 หา $X_1=\frac{1}{10}*\left(2-7*\frac{1}{10}\right)=\frac{1}{10}\left(\frac{20}{10}-\frac{7}{10}\right)=\frac{1}{10}*\frac{13}{100}=\frac{13}{100}$ หา $X_2=\frac{13}{100}*\left(2-7*\frac{13}{100}\right)=\frac{13}{100}\left(\frac{200}{100}-\frac{91}{100}\right)=\frac{13}{100}*\frac{109}{100}=\frac{1417}{10000}$ หา $X_3=\frac{1417}{10000}*\left(2-7*\frac{1417}{10000}\right)=\frac{1417}{10000}\left(\frac{20000}{10000}-\frac{9919}{10000}\right)=\frac{1417}{10000}*\frac{10081}{10000}=\frac{14284777}{100000000}$ ซึ่งถ้าเราสังเกต $\frac{1}{b}=\frac{1}{7}=0.1428571428571429$ เมื่อเรานำมาเทียบกับ $X_3=0.14284777$ จะเห็นว่าหลังจุดทศนิยม 4 ตำแหน่งแรกมีค่าเท่ากัน สรุปได้ว่าถ้าหากจำนวณ X_n เมื่อ n มากขึ้น ค่าความแม่นยำจะเพิ่มขึ้นด้วย

Variant Newton-Raphson Division

Variant Newton-Raphson เป็นการพัฒนาวิธี Newton-Raphson ให้เร็วขึ้น เล็กน้อยโดยการ shift N และ D เพื่อให้ D อยู่ในช่วง [0.5, 1.0] โดยจะเริ่มโดยให้

$$X := rac{140}{33} + D \cdot \left(rac{-64}{11} + D \cdot rac{256}{99}
ight)$$

นี่เป็นสมการกำลังสองที่เหมาะสมที่สุดกับ 1/D และมีค่า error น้อยกว่าหรือเท่ากับ 1/99 และการทำงานซ้ำในแต่ละรอบจะทำให้เกิด error (*Y⋅E* เป็น term ใหม่)

$$E := 1 - D \cdot X$$

$$Y := X \cdot E$$

$$X := X + Y + Y \cdot E$$
.

Variant Newton-Raphson Division

โดยจำนวนครั้งในการทำงานจะไม่เกิน

$$\left\lceil \log_3 \left(\frac{P+1}{\log_2 99} \right) \right\rceil$$

และ Quotient ของเลข P บิต จะมีค่าเป็น

$$Q := N \cdot X$$

Algorithm

Goldschmidt Division เป็นการหา Quotient ด้วยการคูณทั้ง Dividend(N) และ Divisor(D) ด้วย Factor F_i จนกว่า Divisor จะเข้าใกล้เลข 1 จึงจะหยุดคูณ โดยมีรูปสมการดังนี้

$$Q=rac{N}{D}rac{F_1}{F_1}rac{F_2}{F_2}rac{F_{\cdots}}{F_{\cdots}}.$$

ขั้นตอนในการหารด้วยวิธี Goldschmidt :

- 1. สร้างค่าประมาณของ Factor F_i
- 2. คูณทั้ง Dividend และ Divisor ด้วย F_,
- 3. ถ้า Divisor เข้าใกล้ 1 ให้หยุดทำและให้ Quotient มีค่าเท่ากับ Dividend แต่ถ้า Divisor ยังไม่เข้าใกล้ 1 ให้วนกลับไปทำข้อ 1 ใหม่

สมมติว่า N/D ถูกปรับอัตราส่วนเพื่อให้ O<D<1 โดย F_; จะอิงตาม D ดังสมการ

$$\mathsf{F}_{\mathsf{i}+\mathsf{1}} = \mathsf{2} - \mathsf{D}_{\mathsf{i}}$$

และเมื่อคูณ N/D ด้วย F จะได้เป็น

$$rac{N_{i+1}}{D_{i+1}} = rac{N_i}{D_i} rac{F_{i+1}}{F_{i+1}}.$$

Goldschmidt Division (Binomial Theorem)

เป็นการนำ Binomial theorem มาปรับใช้กับ Goldschmidt Division โดย สมมติว่า N/D ถูกปรับอัตราส่วนให้อยู่ในรูปของเลขยกกำลังของสอง (2ⁿ)

โดยที่
$$D\in (rac{1}{2},1]$$
.

กำหนดให้ D = 1 -
$$x$$
 และ $F_i = 1 + x^{2i}$

จะทำให้ได้สมการดังนี้

$$rac{N}{1-x} = rac{N \cdot (1+x)}{1-x^2} = rac{N \cdot (1+x) \cdot (1+x^2)}{1-x^4} = \dots = Q' = rac{N' = N \cdot (1+x) \cdot (1+x^2) \cdot \dots \cdot (1+x^{2^{(n-1)}})}{D' = 1-x^{2^n} pprox 1}.$$

Goldschmidt Division (Binomial Theorem)

จากสมการก่อนหน้าหลังจากทำเป็นจำนวน n ครั้ง $(x\in[0,\frac{1}{2}))$ จะเห็นว่า ตัวหารด้านล่าง 1 - \mathbf{x}^{2n} สามารถปัดเป็น 1 ได้ โดยจะมี Relative error เป็น

$$arepsilon_n = rac{Q'-N'}{Q'} = x^{2^n}$$

ซึ่งจะมีค่าสูงสุดเป็น 2⁻²ⁿ เมื่อ x = ½ ดังนั้นมันจึงมีความแม่นยำสำหรับตัวเลข อย่างน้อย 2ⁿ บิต