

Forecasting Risk Premia of European Equities: A Neural Networks Approach

Quantitative Analysis Report
Gulshinder Gaddu

CID: 01448310

MSc Investment and Wealth Management 2018-2019 Academic Year

Client Specification

Our client, the United Kingdom based asset management firm Euclidean Capital is seeking to implement AI funds in its equities division after several consecutive quarters of underperformance. Investors have indicated disappointment at both performance and a lack of innovation and are considering withdrawing from the firm's equity funds. However, management industry and believes that expanding into the realm of machine learning and AI will assuage investors on both fronts. Management also recognises that an AI fund may be able to generate higher alpha by sourcing more investment opportunities than a traditional research analyst and by reducing human interference (and potentially overhead).

Having recognised the potential of AI to revolutionise the investment management industry, our client now aspires to become a global leader in the field of machine learning and AI funds. To this end our client has studied the noted working paper "Empirical Asset Pricing via Machine Learning" by Shihao Gu, Bryan Kelly and Dacheng Xiu (2019) and was impressed by the predictive power of artificial neural networks in an academic setting. Our client wishes to gradually implement AI funds across several equity markets using the neural network architectures and a similar methodology to that described in the paper.

Our role as Euclidean Capital's consultant is to evaluate and determine the feasibility of this project by analysing the performance of artificial neural networks in forecasting risk premia in the European equities market. To achieve we will use the neural network architectures described in the paper to forecast the risk premia of the Euro Stoxx 50's constituents individually in Python. We will then benchmark our neural networks' performance against the Huber Regression used in the paper as well as the XGBoost algorithm and analyse and compare the standard performance metrics of each. Finally, we are to provide a recommendation based upon our findings as to how the firm's first European AI equity fund should be implemented.

Note: Our client wishes to be able to replicate our methods and currently lacks access to CRSP or Compustat. Our client also ascribes to the view of semi strong market efficiency. Therefore, they ask that that computational resources be deployed as efficiently as possible as competitors will likely be searching for the same opportunities.

Table of Contents

1	Client Specification	2
2	Data and Methodology	4
	2.1 Data	4
	2.2 Methodology	5
3	Huber Regression	6
4	Extreme Gradient Boosting	7
5	Artificial Neural Networks	9
	5.1 Theoretical Framework	9
	5.2 Architectures and Training	9
6	Performance Metrics	11
7	Results and Analysis	12
8	Conclusions	14
Bi	ibliography	15
\mathbf{A}	ppendix A: List of Stocks and Features used	18
\mathbf{A}	ppendix B: Hyperparameters and Settings	23
\mathbf{A}	ppendix C: Results	25
A	ppendix D: Code	51

Note: Please note that the main body of text is 3,108 words long. This is partly due to the need to explain XGBoost and partly to properly explain the data gathering process.

Data and Methodology

2.1 Data

Our client primarily trades in large cap, liquid securities and its AI funds will do so as well. For this reason we worked with the Euro Stoxx 50 index. As we could only use data sources that our client has access to all of our data was sourced from Bloomberg (with the exception of the size factors that were sourced from the Fama French website).

We constructed our set of regression targets by taking the index's current constituents' prices from 30/06/2000 to 28/06/2019 on a weekly basis. If any prices were omitted over this time period for a stock then the stock in question was removed from the project (for a full list of stocks used please see Appendix A). Our training data began on 29/06/2001 but we collected data from 1 calendar year earlier so as to include Jagdeesh and Titman's (1993) 1 year momentum as a feature. Whilst Gu, Kelly and Xiu (p.24, 2019) worked on a monthly basis we found this resulted in insufficient data to train our models. We were unable to obtain training data from before 29/06/2001 as there was insufficient data on the book to market ratio (a component of the linear benchmark and an important feature).

We were then able to calculate the weekly excess returns by solving:

$$ER_{i,t+1} = \frac{P_{i,t+1}}{P_{i,t}} - R_f$$
 (2.1)

Where $ER_{i,t+1}$ is the weekly excess return of stock i at time t+1, $P_{i,t}$ is the price of stock i at time t and R_f is the risk free rate (which we took to be the 1 week Euribor rate, a common proxy for the risk free rate in academia and business).

Having obtained our targets we then sought to obtain appropriate predictive features. We first looked at the comprehensive set of stock specific predictive characteristics composed by Green, Hand and Zhang (2016) and attempted to recreate as many of these as possible. In some situations we were able to treat missing data by applying the cross sectional median as per Gu, Kelly and Xiu's (p.24, 2019) methodology However, in other situations too much data was missing to do so and the feature was dropped from the project. The relative strength index (RSI) was also included as a stock specific feature as we felt that a short term metric would be beneficial given the shorter forecasting horizon.

We then attempted to augment our predictive features with a set of features pertaining to the overall index based on Welch and Goyal's (2008) macroeconomic features. However, due to insufficient coverage on the Euro Stoxx 50, we were unable to obtain the features as defined by Welch and Goyal and resorted to raw data from Bloomberg as a substitute (for a full list both stock specific and index features please see Appendix A).

2.2 Methodology

We sought two create two different sets of features from our predictive variables. The first set consisted of the raw predictive features listed in Appendix A. However, we also wished to determine whether out of sample performance could be improved by accounting for interactions between stock specific and index characteristics.

To achieve this we used the same model as Gu, Kelly and Xiu (p.24, 2019), to engineer the set of features:

$$z_{i,t} = x_t \otimes c_{i,t} \tag{2.2}$$

Where $c_{i,t}$ is a vector of stock specific characteristics for stock i at time t and x_t is a vector of index specific characteristics at time t. The interaction terms $z_{i,t}$ were then added to the raw predictive features to create a second set of covariates.

Our methods of fitting models and out of sample testing closely followed Gu, Kelly and Xiu's methodlogy (p.25, 2019) though we believed that our models would benefit from additional training. We chose to maintain the first 15 years for training and validation purposes and the last 4 years for out of sample testing. We fitted and evaluated our models in sample via walk forward validation using an expanding window to respect the temporal order of the data. Our training set was initially composed of the first year's data upon which a model was fitted onto with the validation set being the next year's data. The training dataset was then expanded to include the next year with the validation set being rolled 1 year forward and the process was repeated. Whilst we could have refitted models on a shorter time frame this was deemed too computationally expensive.

Furthermore, we applied Scikit-learn's StandardScalar to our Huber Regression and Neural Networks to prevent large feature values from dominating, (XGBoost was not scaled as decision trees are invariant to feature scaling (Ramadorai (2019)). We maintained a 4 week lookback period across models in the event there was a delay in the release of any of the predictive features, this also served to prevent look ahead bias.

Huber Regression

We elected for a simple linear regression to act as our first benchmark and followed Gu, Kelly and Xiu's (pp.4-5,10-11, 2019) reasoning. In keeping with sound econometric practice we desired a parsimonious system and so opted for a linear regression of lagged 1 month momentum, size and book to market ratio onto excess returns influenced by the model proposed by Lwellen (p.6, 2015). Whilst this model appears to be simple, raising concerns about underfitting, Lwellen (p.16, 2015) demonstrated that it exhibited respectable out of sample performance.

Gu, Kelly and Xiu (p.11, 2019) note that the use of the Ordinary Least Squares Regression (OLS) to estimate parameters is unsuitable for financial data that often has a heavy tails distribution. In an OLS regression the regressors $x_{i,t}$ are fitted onto the regressand y_t by selecting parameter values α and β that minimise the convex loss function:

$$\sum_{t} (y_{t} - \hat{y}_{t})^{2} = \sum_{t} (y_{t} - \alpha_{t} - \sum_{i} \beta_{i,t} x_{i,t})^{2} = u_{t}^{2}$$
 (3.1)

Where \hat{y}_t is the fitted value. They note that the convexity of the loss function combined with the presence of numerous outliers can result in said outliers having a disproportionate degree of influence on parameter estimates. Huber (p.75, 1964) showed that the most robust loss function can be represented by:

$$H(u_t,\xi) \tag{3.2}$$
 where $H(ut,\xi) = u_t^2$ when $|u_t| \leq \xi$ and $H(u,t,\xi) = 2|u_t|\xi - \xi^2$ otherwise

Where the parameter ξ determines at what threshold a linear loss function is used. We used this loss function in conjunction with our linear system.

The implementations of our 3 techniques are provided in Appendix D in Python (the class StocksXGB and class StocksNN functions specifically) whilst information on hyperparameters is provided in Appendix B.

Extreme Gradient Boosting

XGBoost (Extreme Gradient Boosting) is a supervised machine learning technique that has been shown to perform extremely well on tabular data in Kaggle competitions (Chen and Guestrin (p.785, 2016)). For this reason it was selected as our second benchmark even though Gu, Kelly and Xiu (2019) did not implement it in their study. We felt it best to provide a more comprehensive background on XGBoost for our client as unlike the other regression techniques used in this project, it was not covered in Gu, Kelly and Xiu's (2019) paper.

Chen and Guestrin (p.785, 2016) define XGBoost as "a scalable machine learning system for tree boosting" and note it applies gradient boosting. Cisty and Soldanova (p.387, 2018) describe gradient boosting as "a forward learning ensemble model" (a model with strong predictive power that is created when several weaker models are combined in a step wise manner). A model is initially fitted onto the data, its precision is determined and the successive model will assign more weight to instances where its predecessor was incorrect in training. This process is repeated until the final model is deemed sufficiently accurate.

The primary model that XGBoost uses is the decision tree ensemble, tree-based methods according to Hastie Tibrashirani and Friedman (p.305, 2016) "partition the feature space into a set of rectangles and then fit a simple model on each one". Mathematically, Chen and Guestrin (p.786, 2016) note that we can represent the prediction from the tree ensemble method by:

$$\hat{\mathbf{y}}_i = \sum_{k=1}^K f_k(\mathbf{x}_i), f_k \in \mathcal{F}$$
(4.1)

where
$$\hat{y}_{i,t} = \hat{y}_{i,t-1} + f_t(x_i)$$

Where the XGBoost documentation website ("Introduction to Boosted Trees-Decision Tree Ensembles", 2019) defines: "K as the number of trees, \mathcal{F} as the space of all possible trees and f as a function in functional space \mathcal{F} ". $\hat{y}_{i,t}$ can be considered as the model at training during round t. As with all supervised learning problems our model is optimised through the minimisation of an objective function which can be expressed as the sum of a loss function and a regularisation function:

$$\mathcal{L} = \sum_{i=1}^{n} l(y_i, \hat{y}_{i,t}) + \sum_{i=1}^{t} \Omega(f_i)$$
(4.2)

Using equation 4.1 we can express equation 4.2 as:

$$\mathcal{L} = \sum_{i=1}^{n} l(y_{i}, (\hat{y}_{i,t-1} + f_t(x_i)) + \sum_{i=1}^{t} \Omega(f_i)$$
(4.3)

However, XGBoost's regularisation function can be written as (Chen and Guestrin (p.786, 2016)):

$$\Omega(f) = \gamma T + \frac{1}{2} \lambda \sum_{i=1}^{T} ||w||_{i}^{2}$$
(4.4)

Where the XGBoost documentation website defines "T as the number of leaves" and "w as a vector of scores on leaves" (("Introduction to Boosted Trees-Model Complexity" (2019)). Therefore the first term in equation 4.4 penalises the number of leaves on a tree and the second l_2 term penalises leaf scores. The regularisation term for the XGBoost algorithm's l_2 penalty term makes it more regularised than a gradient boosted tree which reduces the likelihood of XGBoost overfitting (Chen and Guestrin (p.786, 2016)).

To determine the optimal leaf weight for a generalised loss function, Chen and Guestrin (p.786, 2016) take the second order Taylor Expansion of the objective function with respect to the loss function:

$$\mathcal{L} = \sum_{i} [l(y_i, \hat{y}_{i,(t-1)}) + g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i)] + \Omega(f_t)$$
(4.5)

Where g_i and h_i are the first and second derivatives of the loss function with respect to $\hat{y}_{i,(t-1)}$. By first redefining a tree f(x) as:

$$f_t(x) = w_{q(x)}, w \in \mathbb{R}^T$$
 (4.6)

We can then define q as "the structure of each tree that maps an example to the corresponding leaf index" (Chen and Guestrin (p.786, 2016)). By further defining I_j as "the set of indices of data points assigned to the j-th leaf" and letting $G_j = \sum_{i \in I_j} g_i$ and $H_j = \sum_{i \in I_j} h_i$, ("Introduction to Boosted Trees-Structure Score" (2019)). Chen and Guestrin (p.787, 2016) show that the optimal leaf weight can be expressed as:

$$W^*_j = -\frac{G_j}{(H_i + \lambda)} \tag{4.7}$$

This can then be substituted into the objective function to provide an optimal value which can be used to evaluate tree structures:

$$\mathcal{L}^* = -\frac{1}{2} \frac{\sum_{j=1}^{T} G_j^2}{(H_j + \lambda) + \gamma T}$$
 (4.8)

In practice it is not often feasible to evaluate all potential structures and a greedy algorithm is used instead. This greedy algorithm begins with a single leaf and continues to add branches to the tree until the loss reduction resulting from a split is zero (Chen and Guestrin (p.787, 2016)). The loss reduction can be expressed as:

$$\mathcal{L}_{\text{split}} = \frac{1}{2} \left[\frac{G_L^2}{(H_L + \lambda)} + \frac{G_R^2}{(H_R + \lambda)} - \frac{(G_L + G_R)^2}{(H_L + H_R + \lambda)} \right] - \gamma$$
 (4.9)

The right hand side of equation 4.9 can be seen as the sum of the scores of the new left and right leaves minus the sum of the scores of the original leaf plus the penalty term for an additional leaf.

Artificial Neural Networks

5.1 Theoretical Framework

Zhang and Gupta (p.1340, 2003) note that an artificial neural network is composed of "an input layer, an output layer and one or more hidden layers". Within each of these layers lie neurons that receive information from neurons in the previous layer and apply an activation function generating an output. The input layer is the layer that receives the raw predictor variables as an input, the output layer is the layer that yields the final, observed output and the layers between them are the hidden layers.

We can represent this mathematically by defining the set of raw features that are initially passed into the input layer as x_k where $k \in 1,...,n_1$ where n_1 is the number of neurons on the input layer. Each neuron on the first hidden layer will receive a signal that Zhang and Gupta (p.1341, 2003) represent by the general expression:

$$y_j^{(l)} = \sum_{i=1}^{n_{l-1}} x_i w_{ij}^{(l-1)} + b_j^{(l-1)}$$
(5.1)

Where $y_j^{(l)}$ is the signal received by the j^{th} neuron on the l^{th} layer (the input layer is represented by l=1), x_i is the signal generated by the i^{th} neuron on the $l-1^{th}$ layer and w and b are weighing and bias parameters that are to be optimised.

Walther (2019) notes that equation 5.1 is linear but we can induce non-linearity by applying an appropriate activation function f that can differ between layers. The process described above is then repeated every time a signal is passed from one layer to the next until the output layer generates the predicted value.

5.2 Architectures and Training

Our artificial neural networks were implemented using the Keras library. We used the same architectures that Gu, Kelly and Xiu (p.20,-2019) used in their study: "a single hidden layer containing 32 neurons (NN1), two hidden layers with 32 and 16 neurons respectively (NN2), three hidden layers with 32, 16 and 8 neurons respectively (NN3), 4 hidden layers containing 32, 16, 8 and 4 neurons respectively (NN4) and 5 hidden layers containing 32, 16, 8, 4 and 2 neurons respectively (NN5)". We also selected the same activation function (for its nonlinearity and simplicity), rectified linear unit (ReLU) defined as:

$$f(x) = \max\{0, x\} \tag{5.2}$$

The weighing and bias parameters were optimised through the Adaptive Moment Estimation (Adam) algorithm. Kingma and Ba (p.1, 2014) define Adam as "an algorithm for first-order

gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments". We deemed standard gradient descent (altering parameter values in the direction that reduces loss) computationally inefficient, as Walter (2019) notes. Whilst Goodfellow, Bengio and Courville (p.147, 2016) argue that using a minibatch can yield a sufficiently accurate parameter estimate at the cost of considerably fewer computational resources (stochastic gradient descent). Gu, Kelly and Xiu (p.21, 2019) argue that as the gradient converges to zero so must the learning rate due to the low signal to noise ratio. In stochastic gradient descent, the learning rate remains constant whilst in Adam the learning rate decays over time. Whilst there are other potential optimisers to choose from (AdaGrad, SGD Nesterov etc), we were encouraged to use Adam after Kingma and Ba (p.7, 2014) demonstrated that it outperformed them.

To reduce variance in our predictions, we adopted a similar approach to Gu, Kelly and Xiu (p.22, 2019) and used an ensemble method in which we used 2 different initial random seeds to generate forecasts for each neural network and took an average across seeds to provide a final forecast. Whilst variance could be further reduced by using more seeds this required too much computational power to be feasible.

To prevent overfitting we also adopted the same approach as Gu, Kelly and Xiu (pp.21-22, 2019), an l_1 penalty applied to the weight parameters combined with the early stopping algorithm (which we selected for its simplicity and efficiency). Goodfellow, Bengio and Courville (pp.239-240, 2016) note that training error will decrease over time but after a point this will result in overfitting, increasing validation error. Early stopping addresses this by updating the parameter estimates of a model whenever the validation loss decreases. If there is no improvement in performance on the validation set after a predefined number of epochs then the algorithm terminates and the parameters with the best performance on the validation set are returned to be used for out of sample testing.

Performance Metrics

To compare the out of sample performance of our models, we used 4 metrics that are commonly employed when dealing with forecasting excess returns in a regression context. They are the mean-squared error (MSE), the sum of squared errors (SSE) and the out of sample R squared (meaned \bar{R}^2_{OOS} and demeaned R_{OOS}^2). These performance metrics can be expressed mathematically on an individual stock basis as:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y})^2$$
 (6.1)

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y})^2$$
 (6.2)

$$\bar{R}_{OOS}^2 = 1 - \frac{\sum_{i=1}^n (y_i - \hat{y})^2}{\sum_{i=1}^n (y_i - \bar{y})^2}$$
 (6.3)

$$R_{OOS}^2 = 1 - \frac{\sum_{i=1}^n (y_i - \hat{y})^2}{\sum_{i=1}^n (y_i)^2}$$
 (6.4)

Where \bar{y} denotes the mean of y.

Results and Analysis

We report the overall performance metrics of each model for both the baseline set of covariates and the set of features that incorporates interactions between covariates. We also report the performance metrics on an individual basis for each stock in Appendix C as well as the optimal learning rates for XGBoost and neural networks determined in training.

	Baseline Covariates								
	<u>Huber</u> Regression <u>XGBoost</u> <u>NN1</u> <u>NN2</u> <u>NN3</u> <u>NN4</u> <u>NN5</u>								
MSE 10.67 10.98 18.96 12.90 11.71 11.20							11.22		
SSE 80257.7 82552.2		82552.2	142552.8	97005.9	88064.8	84264.9	84352.1		
$\bar{\mathbf{R}}_{008}^2$ 0.002 -0.027 -0.786 -0.215 -0.103 -0.056 -0.0							-0.057		
R_{OOS}^2	0.003	-0.026	-0.786	-0.215	-0.103	-0.056	-0.057		

	Interaction between Covariates Incorporated								
	<u>Huber</u> Regression XGBoost NN1 NN2 NN3 NN4 NN5								
MSE 10.67 11.68 14.34 12.72 10.81							10.88		
SSE	80257.7	87820.5	107873.3	95639.2	81312.0	82093.5	81826.9		
$\bar{\mathbf{R}}_{008}^2$ 0.002 -0.092 -0.352 -0.198 -0.019 -0.029 -0.0029							-0.025		
R_{OOS}^2	0.003	-0.091	-0.351	-0.198	-0.019	-0.028	-0.025		

Figure 1: Summary of findings

From Figure 1, it is apparent that the Huber Regression outperformed both the XGBoost and all neural network architectures regardless of the set of covariates employed across all performance measures. We also note that when only the baseline set of covariates was used, XGBoost outperformed all of the neural network structures across all performance metrics. However, when interactions between stock and index specific terms were incorporated then neural networks outperformed XGBoost across all all metrics from architectures of 3 hidden layers and deeper. The inclusion of interaction terms caused the out of sample forecasting power of XGBoost to drop suggesting overfitting.

Furthermore we note that out of sample improves as our neural networks become deeper up to a point after which performance deteriorates for both the baseline set of covariates (performance peaks at NN4) and when interactions are included (performance peaks at NN3).

Despite this, only the Huber Regression demonstrates a positive out of sample R squared (meaned or demeaned) overall $(\bar{R}_{OOS}^2 = 0.002 \text{ and } R_{OOS}^2 = 0.003)$. Whilst our client may not find this impressive, Campbell and Thompson (p.12, 2007) have demonstrated that an out of

sample R squared as small as that given by the Huber Regression can still yield significant returns for an investor. In addition, whilst the overall out of sample R squared values for our neural networks were negative, Appendix C shows that a minority of stocks did indeed demonstrate small, positive out of sample R squared values for some of the neural network structures (NN3-NN5) when interactions between covariates were included.

Whilst we were unable to replicate the out of sample performance that Gu, Kelly and Xiu (2019) reported, we attribute this to a lack of data and coverage on the European equities market relative to the American market. Further features could therefore improve out of sample performance. We also note that better results could be obtained through the application of a Principal Components Analysis (PCA). However, this would cause some challenges in interpreting which features are important in forecasting returns which our client might find relevant.

Conclusion

Based our findings, we recommend that our client implement the Huber Regression to forecast excess returns in the European equities market. This simple model has been shown to outperform XGBoost and the neural network structures implemented by Gu, Kelly and Xiu (2019) regardless of the set of covariates used. Furthermore, despite it's simplicity, Gu, Kelly and Xiu (p.5 2019) note that it contains 3 of the most important predictive characteristics in financial literature.

However, if our client still wishes to implement neural networks to obtain alpha then we strongly recommend that they obtain as many features as possible pertaining not only to the specific stock but to the overall index and even the global macroeconomy as we attempted and consider interactions between these features as well. We further recommend that only the NN3 architecture should be employed and only on the minority of stocks that we found to generate a posivite out of sample R squared. However, we provide the caveat that this performance may not be repeated in the future.

Bibliography

Academic Papers

Campbell J., Thompson S., (2007), *Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?*, The Review of Financial Studies, Volume 21, Issue 4, July 2008, Pages 1509–1531, [Available from: https://dash.harvard.edu/handle/1/2622619. Accessed on 12th September 2019.

Chen, T., Guestrin, C., (2016) *XGBoost: a scalable tree boosting system*. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. [Available from: https://dl.acm.org/citation.cfm?doid=2939672.2939785.]

Accessed on 6th August 2019.

Green, J., Hand, J. and Zhang, F. (2016), *The Characteristics that Provide Independent Information about Average U.S. Monthly Stock Returns*. The Review of Financial Studies Volume 30, pp. 4389–4436. [Available from http://dx.doi.org/10.2139/ssrn.2262374.] Accessed on 7th July 2019.

Gu, S., Kelly, B. and Xiu, D., *Empirical Asset Pricing via Machine Learning* (2019). Chicago Booth Research Paper No. 18-04; 31st Australasian Finance and Banking Conference 2018; Yale ICF. Working Paper No. 2018-09. [Available from: http://dx.doi.org/10.2139/ssrn.3159577.] Accessed on 5th July 2019.

Huber, P. J., (1964), *Robust estimation of a location parameter*, Annals of Mathematical Statistics Volume 35 Number 1, pp. 73–101. [Available from: doi:10.1214/aoms/1177703732.] Accessed on 21st July 2019.

Jegadeesh N., Titman S., (1993), *Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency*. The Journal of Finance (Volume 48, Issue 1), pp. 65-91. [Available from https://doi.org/10.1111/j.1540-6261.1993.tb04702.x.] Accessed on 11th July 2019.

Kingma D., Ba J., (2014), *Adam: A method for stochastic optimization*, The International Conference on Learning Representations (ICLR), San Diego. [Available from: https://arxiv.org/abs/1412.6980v9.] Accessed on 22nd July 2019.

Lewellen, Jonathan, (2015), *The cross-section of expected stock returns*, Critical Finance Review: Vol. 4: No. 1, pp. 1-44. [Available from http://dx.doi.org/10.1561/104.00000024.] Accessed on 21st July 2019.

Narasimhan Jegadeesh, Sheridan Titman, (1993), *Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency*, The Journal of Finance Vol. 48, No. 1, pp. 65-91.

Welch I., Goyal A., (2008), *A Comprehensive Look at The Empirical Performance of Equity Premium Prediction*, The Review of Financial Studies, Volume 21, Issue 4, pp. 1455–1508. [Available from https://doi.org/10.1093/rfs/hhm014.] Accessed on 10th July 2019.

Zhang, Q. J. & Gupta, K. C. (20003), *Artificial Neural Networks for RF and Microwave Design—From Theory to Practice*, IEEE Transactions on microwave theory and techniques, Volume 51 No, 4, pp. (1339-1350). [Available from: https://ieeexplore.ieee.org/document/1193152.] Accessed on 21st July 2019.

Books

Cisty and Soldanova, (2018), Flow Prediction Versus Flow Simulation Using Machine Learning Algorithms, In: Perner P., (ed), *Machine Learning and Data Mining in Pattern Recognition*, 14th International Conference, MLDM 2018 New York, NY, USA, July 15–19, 2018 Proceedings, Part II, Leipzig, Germany, Springer, p. 387.

De Prado M. L., (2018), *Advances in Financial Machine Learning*, United Kingdom, Wiley Publications, United Kingdom, pp. 162,163-166.

Goodfellow I., Bengio Y. and Courville A., (2017), *Deep Learning*, Adaptive Computation and Machine Learning Series, Cambridge, Massachusetts, MIT Press pp. 147 & 239-240.

Hastie T., Tibshirani R., and Friedman J., (2016), *The Elements of Statistical Learning: Data Mining, Inference and Prediction*, Springer Series in Statistics, 2nd Edition, New York, United States of America, Springer, p. 305.

Lectures

Ramadorai T. (2019), *Lecture 1 – Introduction to Machine Learning*, [Lecture], Big Data in Finance 1, Imperial College Business School, 17th January 2019.

Ramachandram G. (2019), *Lecture 5 – Machine Learning in Finance*, [Lecture], Applied Trading Strategies, Imperial College Business School, 16th May 2019.

Walther A. (2019), *Lecture 4 – Deep Learning*, [Lecture], Big Data in Finance 2, Imperial College Business School, 17th May 2019.

Websites

Brownlee J., (2018), *How to Use the TimeseriesGenerator for Time Series Forecasting in Keras*, Available from: https://machinelearningmastery.com/how-to-use-the-timeseriesgenerator-for-time-series-forecasting-in-keras/. [Accessed on 18th July 2019].

Kenneth R. French (n.d.), *Current Research Returns*. Available from: https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. [Accessed on 15th July 2019].

Kolanovic and Krishnamacha (2017), *Big Data and AI Strategies Machine Learning and Alternative Data Approach to Investing*, Available from: https://faculty.sites.uci.edu/pjorion/files/2018/05/JPM-2017MachineLearningInvestments.pdf. [Accessed on 20th July 2019]. p.83. (Corporate research undertaken for JP Morgan).

https://machinelearningmastery.com/how-to-use-the-timeseriesgenerator-for-time-seriesforecasting-in-keras/

Scikit-learn (2019), Huber Regression, In: Generalized Linear Models. Available from: https://scikit-learn.org/stable/modules/linear_model.html#huber-regression. [Accessed on 5th August 2019].

https://scikit-learn.org/stable/modules/linear_model.html#huber-regression

XGBoost documentation website (2019), Decision Tree Ensembles, In: *Introduction to Boosted Trees*. Available from: https://xgboost.readthedocs.io/en/latest/tutorials/model.html. [Accessed on 17th August 2019].

XGBoost documentation website (2019), Model Complexity, In: *Introduction to Boosted Trees*. Available from: https://xgboost.readthedocs.io/en/latest/tutorials/model.html. [Accessed on 17th August 2019].

XGBoost documentation website (2019), Structure Scores, In: *Introduction to Boosted Trees*. Available from: https://xgboost.readthedocs.io/en/latest/tutorials/model.html. [Accessed on 17th August 2019].

Appendix A: List of Stocks and Features used

We provide a complete list of stocks and features used in our study. We first provide the list of stocks, the relevant Bloomberg Tickers and the industries to which they belong:

Name	Bloomberg Ticker	Industry
Ahold Delhaize N.V.	AD NA Equity	Retail
Adidas A.G.	ADS GY Equity	Sportswear
Air Liquide S.A.	AI FP Equity	Chemical, Healthcare and Engineering
Allianz S.E.	ALV GY Equity	Financial
ASML Holding N.V.	ASML NA Equity	Technology
BASF S.E.	BAS GY Equity	Chemical
Bayer A.G.	BAYN GY Equity	Healthcare and Pharmaceuticals
Banco Bilbao S.A.	BBVA SQ Equity	Financial
BMW A.G.	BMW GY Equity	Automotive
Groupe Danone S.A.	BN FP Equity	Food and Beverages
BNP Paribas S.A.	BNP FP Equity	Financial
CRH Plc	CRH ID Equity	Construction
AXA	CS FP Equity	Financial
Daimler A.G.	DAI GY Equity	Automotive
Vinci S.A.	DG FP Equity	Construction
Deutsche Telekom A.G.	DTE GY Equity	Telecommunications
EssilorLuxottica S.A.	EL FP Equity	Pharmaceuticals
Enel S.p.A.	ENEL IM Equity	Utilities
Eni S.p.A.	ENI IM Equity	Oil and Gas
Total S.A.	FP FP Equity	Oil and Gas
Fresenius S.E.	FRE GY Equity	Healthcare
Société Générale S.A.	GLE FP Equity	Financial
Iberdrola S.A.	IBE SQ Equity	Utilities
ING Group N.V.	INGA NA Equity	Financial
Intesa Sanpaolo S.p.A.	ISP IM Equity	Financial
Kering S.A.	KER FP Equity	Luxury Goods
Louis Vuitton S.E.	MC FP Equity	Luxury Goods
Munich Re Group	MUV2 GY Equity	Financial
Nokia Corporation	NOKIA FH Equity	Telecommunications
L'Oreal S.A.	OR FP Equity	Cosmetics
Orange S.A.	ORA FP Equity	Telecommunications
Philips N.V.	PHIA NA Equity	Conglomorate
Safran S.A.	SAF FP Equity	Aerospace

Sanofi S.A.	SAN FP Equity	Pharmaceuticals
Banco Santander S.A.	SAN SQ Equity	Financial
SAP S.E.	SAP GY Equity	Technology
Siemens A.G.	SIE GY Equity	Conglomorate
Schneider Electric S.E.	SU FP Equity	Electronics
Telefónica S.A.	TEF SQ Equity	Telecommunications
Unilever	UNA NA Equity	Consumer Goods
Vivendi S.A.	VIV FP Equity	Media
Volkswagen A.G.	VOW3 GY Equity	Automotive

Figure A.1: List of stocks used in our study.

We then provide a list of stock specific features used in our project. 21 features were updated on a weekly basis with the remaining features being updated on a yearly basis. To account for nontrading days, we resampled our data on a weekly/yearly basis when appropriate. We took the view that as many features as possible should be employed even if there is a high degree of correlation between some of them. Due to the number of stocks and features, it was not feasible to construct a correlation matrix and remove highly correlated features for every stock, instead we depended on regularisation techniques to eliminate redundant features.

Whilst we looked at Green, Hand and Zhang's (2016) paper we also looked at the original author's work to understand how each feature was calculated and attempted to replicate it as closely as possible. We sought to provide as many features that acted to proxies for momentum, liquidity and volatility a possible as as Gu, Kelly and Xiu (p.30, 2019) found these to be the most salient in their study. We note the weekly features in figure A.2 below, how they were obtained, the relevant Bloomberg keys and the original influence.

Feature Name Obtained		Bloomberg Keys	Influenced by	
3 Day RSI	Directly from Bloomberg	RSI_3D	Author's addition	
9 Day RSI	Directly from Bloomberg	RSI_9D	Author's addition	
14 Day RSI	Directly from Bloomberg	RSI_14D	Author's addition	
30 Day RSI	Directly from Bloomberg	RSI_30D	Author's addition	
10 Day Volatility	Directly from Bloomberg	VOLATILITY_10D	Return Volatility (Ang et al. 2010)	
20 Day Volatility	Directly from Bloomberg	VOLATILITY_20D	Return Volatility (Ang et al. 2010)	
30 Day Volatility	V() A		Return Volatility (Ang et al. 2010)	
60 Day Directly from Volatility Bloomberg		VOLATILITY_60D	Return Volatility (Ang et al. 2010)	
90 Day Volatility	Directly from Bloomberg	VOLATILITY_90D	Return Volatility (Ang et al. 2010)	

1 Month Momentum	Price at t divided by Price at t-1	PX_LAST	1 Month Momentum (Jagdeesh and Titman 1993)	
6 Month Momentum	Price at t divided by Price at t-1	PX_LAST	6 Month Momentum (Jagdeesh and Titman 1993)	
12 Month Momentum	Price at t divided by Price at t-1	PX_LAST	12 Month Momentum (Jagdeesh 1990)	
Ask Price	Directly from Bloomberg	PX_ASK	Bid-Ask Spread (Amihud & Mendelson 1989)	
Bid Ask Spread	PX RID PX ASI		Bid-Ask Spread (Amihud & Mendelson 1989)	
Bid Price	Directly from Bloomberg	PX_BID	Bid-Ask Spread (Amihud & Mendelson 1989)	
Book to Market Ratio	Market Inverse Market to MARKE Book Ratio		Book to Market (Rosenberg et al. 1985)	
Raw Beta	Directly from Bloomberg	BETA_RAW_OVERRID ABLE	Beta (Fama and Macbeth 1973)	
Raw Beta squared	Squaring Raw Beta	BETA_RAW_OVERRID ABLE	Beta Squared (Fama and Macbeth 1973)	
Trading Volume	Directly from Bloomberg	PX_VOLUME	Share Turnover (Datar et al. 1998)	
Turnover	Directly from Bloomberg	TURNOVER	Share Turnover (Datar et al. 1998)	

Figure A.2: List of features updated on a weekly basis used in our study.

Our 25 yearly features were updated at the end of each calender year and forward filled for the next year. Figure A.3 provides a comprehensive list of all yearly features used.

Feature Name	Obtained	Bloomberg Keys	Influenced by
% Change Sales to Inventories	% Change Sales to Inventories over 1 year	SALES_TO_INV ENT	% Change in Sales to Inventory (Ou and Penman 1989)
Annual Equity Growth	Diference between total common equity over 1 year	TOT_COMMON_ EQY	Growth in common shareholder equity (Richarson et al 2005)
Capital Expenditures and Inventories	Sum of Capital Expenditures and Inventories	CAPITAL_EXPE ND, BS_INVENTORI ES	Capital expenditures and inventories (Chen and Zhang 2010)
Cash Flow to Price	Inverse of Price to Cash Flow	PX_TO_CASH_F LOW	Cash Flow to Price (Desai et al 2004)
Cash Productivity (FCF)	Free Cash Flow/Cash and cash holdings	CF_FREE_CASH _FLOW, BS_CASH_NEAR _CASH_ITEM	Cash Productivity (Chandrashekar and Roa 2009)
Change in Shares Outstanding	Difference between shares outstanding over 1 year period	BS_SH_OUT	Chante in shares outstanding (Pontiff and Woodgate 2008)
Current Ratio	Directly from	CUR_RATIO	Current Ratio (Ou and Penman

	Bloomberg		1989)
Dividend Yield	Directly from	DIVIDEND_INDI	Dividend to price (Litzenberger
	Bloomberg	CATED_YIELD	and Ramaswamy 1982)
Employee	Directly from	EMPL_GROWTH	Employee Growth Rate
Growth	Bloomberg		(Bazdresch and Lin 2014)
Financial	Directly from	FNCL_LVRG	Leverage (Bhandari 1988)
Leverage	Bloomberg		
Free Cash Flow	Directly from	FCF_TO_TOTAL	Cash Flow to Debt (Ou and
to Debt	Bloomberg	_DEBT	Penman 1989)
Gross	Gross Profit/Total	GROSS_PROFIT,	Gross Profitability (Novy-Marx
Profitability	Assets	BS_TOT_ASSET	2013)
Growth in	Directly from	TOT_CAP_EXPE	Growth in capital expenditures
Capex	Bloomberg	ND_GROWTH	(Anderson and Garcia-Feijoo 2006)
Price to	Directly from	PE_RATIO	Earnings to Price (Basu 1977)
Earnings Ratio	Bloomberg		
Quick Ratio	Directly from	QUICK_RATIO	Quick Ratio (Ou and Penman
Quick Ratio	Bloomberg	QUICK_RATIO	1989)
Return on	Directly from	RETURN_ON_A	Balakrishnan et al. 2010)
Assets	Bloomberg	SSET	2010)
Return on	Directly from	RETURN_COM_	Return on Equity (Hou et
Equity	Bloomberg	EQY	al.2006)
Return on	Directly from	RETURN_ON_IN	Return on Invested Capital
Invested Capital	Bloomberg	V_CAPITAL	(Brown and Rowe 2007)
Sales Growth	Directly from	SALES_GROWT	Sales Growth (Lakonishok et al.
	Bloomberg	Н	1994)
Sales to	Directly from	SALES_TO_ACC	Sales to Receivables (Ou and
Accounts	Bloomberg	T_RCV	Penman 1989)
Receivables			
Sales to Cash	Directly from	SALES_TO_CAS	Sales to Cash (Ou and Penman
	Bloomberg	Н	1989)
Sales to	Directly from	SALES_TO_INV	Sales to Inventory (Ou and
Inventory	Bloomberg	ENT	Penman 1989)
Sales to Price	Inverse of Price to Sales	PX_TO_SALES_ RATIO	Sales to Price (Barbee et al 1996)
Total Capital	Directly from	BS_TOT_CAP	Organisational Capital (Eisfeldt
	Bloomberg		and Papanikolaou 2013)
Total debt 1	Directly from	TOTAL_DEBT_5	Growth in long term debt
year and 5 year	Bloomberg	_YEAR_GROWT	(Richardson et al. 2005)
growth		Н,	
		TOTAL_DEBT_1	
		_YEAR_GROWT	
		Н	

Figure A.3: List of features updated on a yearly basis used in our study.

As mentioned we were unable to obtain or construct Goyal and Welch's (2008) macroeconomic features pertaining to the overall index due to insufficient coverage and data. However, we did take some of the index's overall features and added them to our stock

specific data set as well as taking the tensor product of the these features with our stock specific features. In total we used 13 index specific features, therefore our basic set of features contained 49 terms (13+25+21) and the set of features that accounted for interactions contained 517 terms ($(13 \times 36) + 49$). Our index specific features (that were updated on a weekly basis) are noted in the figure below:

Feature Name	Bloomberg Code
Last Price	PX_LAST
Overridable Raw Beta	BETA_RAW_OVERRIDABLE
Price Earnings Ratio	PE_RATIO
(P/E)	
Price to Book Ratio	PX_TO_BOOK_RATIO
RSI 14 Day	RSI_14D
RSI 3 Day	RSI_3D
RSI 30 Day	RSI_30D
RSI 9 Day	RSI_9D
Volatility 10 Day	VOLATILITY_10D
Volatility 20 Day	VOLATILITY_20D
Volatility 30 Day	VOLATILITY_30D
Volatility 60 Day	VOLATILITY_60D
Volatility 90 Day	VOLATILITY_90D

Figure A.4: List of macroeconomic features used in our study.

We would also like to note that we considered using the global macroeconomic features used by Kolanovic and Krishnamacha (p. 83, 2017) in their 2017 research into Big Data and AI Strategies that they undertook for JP Morgan Securities Plc. However, we found that too much data was missing to be used over our time period. We have included the code used to create these features from Bloomberg data in Appendix D though we did not use it to generate any predictions. The function that did this (get_daily_additional_macro_predictors) is based off code created by Ramachandran (2019) and was included with his permission.

Appendix B: Hyperparameters and Settings

Huber Regression

Our Huber Regression was sourced from Scikit-learn and added an l_2 penalty term to the loss function to provide an objective function that penalised large numbers of β coefficients of great magnitude. When we ran our regressions we kept the parameters at their default settings of $\xi = 1.35$ (which is recommended by the Scikit-learn website for 95% statistical efficiency) and a tuning parameter (that controls the degree of regularisation) of 0.0001. Though Gu, Kelly and Xiu set a 99% statistical efficiency we did not observe any change on altering either of these hyperparameters.

XGBoost

When we ran the XGBoost algorithm from the XGBoost library, the maximum depth of a tree was set to 2 (the maximum value that Gu, Kelly and Xiu (2019) used for Gradient Boosted Trees), we did not use larger values as we did not wish for our trees to grow too deep and overfit. We set the number of estimators to 1000 to obtain a high degree of accuracy (this was also the maximum value set by Gu, Kelly and Xiu (2019) for Gradient Boosted Trees). The objective function was set to the squared error as we wished to disproportionately large errors. We primarily tuned the learning rate α using values of $\{0.001, 0.005, 0.01\}$. All other settings remained at default.

Feedforward Neural Networks

As mentioned in section 5, we applied an l_1 regularisation term to our weight parameters, with a tuning parameter of 0.001. We also used TimeseriesGenerators (recommended by Brownlee (2018)) from Keras to prepare the data and set a batch size of 32. The number of epochs was set to 100 and the loss function was set to the MSE. The range of values for the learning rate was the same as that of XGBoost. This was considered the most important hyperparameter. As Walter notes (2019), too high an α and the gradients may explode and too low an α would slow down training considerably (when we tried to run with lower α values the virtual machines crashed). Our early stopping algorithm was set to a patience threshold of 10 epochs.

Miscellaneous

As an aside we note that whilst walk forward validation is accepted industry practice for tuning hyperparameters when dealing with time series data, Marcos Lopez de Prado (p. 162, 2018) notes that it can lead to overfitting on the training data. De Prado has proposed alternatives (pp163-166, 2018) but at the time of writing these have yet to be adopted as standard practice. We also acknowledge that whilst tuning more hyperparameters could have yielded better results we were unable to do so due to computational constraints. Furthermore for the XGBoost and Feedforward Neural Networks, historical excess returns were fed as a feature. We note that at all points the temporal order of the data was respected (for more details please look at the class StocksXGB and class StocksNN functions in Appendix D).

Appendix C: Results

We provide the performance metrics for each stock for the Huber Regression and the XGBoost and neural networks for both sets of predictive features. For the XGBoost and Neural Networks, we also provide the learning rate that was found to be optimal in training and therefore used in testing.

Huber Regression							
<u>Ticker</u>	MSE	SSE	$\underline{\bar{R}_{OOS}}^2$	$\underline{\mathbf{R}_{\mathbf{OOS}}^2}$			
AD NA Equity	0.34	60.33	0.0038	0.0048			
ADS GY Equity	28.21	5050.23	-0.0152	0.0050			
AI FP Equity	7.03	1258.04	-0.0008	-0.0007			
ALV GY Equity	20.74	3711.91	0.0033	0.0070			
ASML NA	22.35	4000.40	0.0037	0.0078			
BAS GY Equity	6.03	1078.78	-0.0153	-0.0144			
BAYN GY	14.00	2505.30	-0.0212	-0.0148			
BBVA SQ Equity	0.06	11.25	0.0058	0.0117			
BMW GY Equity	9.39	1681.13	0.0025	0.0047			
BN FP Equity	2.44	436.10	0.0027	0.0030			
BNP FP Equity	4.16	744.52	0.0085	0.0090			
CRH ID Equity	0.83	148.00	0.0198	0.0199			
CS FP Equity	0.61	108.93	0.0120	0.0120			
DAI GY Equity	5.65	1011.84	0.0030	0.0080			
DG FP Equity	3.29	588.23	0.0029	0.0093			
DTE GY Equity	0.20	36.50	-0.0184	-0.0183			
EL FP Equity	9.35	1673.87	0.0057	0.0062			
ENEL IM Equity	0.02	2.82	-0.0130	-0.0114			
ENI IM Equity	0.20	35.09	0.0120	0.0121			
FP FP Equity	1.67	299.40	-0.0010	-0.0004			
FRE GY Equity	4.70	840.60	0.0012	0.0012			
GLE FP Equity	2.87	513.80	-0.0003	0.0004			
IBE SQ Equity	0.03	5.06	-0.0023	-0.0011			
INGA NA Equity	0.18	32.77	-0.0005	0.0008			
ISP IM Equity	0.01	2.08	-0.0167	-0.0157			
KER FP Equity	127.16	22760.83	-0.0100	0.0051			
MC FP Equity	47.23	8453.45	-0.0076	0.0000			
MUV2 GY	20.36	3644.69	-0.0066	-0.0053			
NOKIA FH	0.05	8.54	-0.0229	-0.0226			
OR FP Equity	19.63	3514.00	0.0017	0.0042			
ORA FP Equity	0.19	34.68	-0.0184	-0.0183			
PHIA NA Equity	0.80	144.02	0.0069	0.0107			
SAF FP Equity	5.42	970.49	-0.0009	0.0141			
SAN FP Equity	5.65	1010.48	0.0120	0.0124			
SAN SQ Equity	0.04	6.92	-0.0131	-0.0110			

SAP GY Equity	4.91	878.82	-0.0111	-0.0054
SIE GY Equity	9.54	1706.91	0.0288	0.0290
SU FP Equity	4.32	773.78	0.0084	0.0085
TEF SQ Equity	0.11	19.18	-0.0202	-0.0138
UNA NA Equity	1.56	278.78	-0.0017	0.0012
VIV FP Equity	0.41	73.74	0.0115	0.0117
VOW3 GY	56.66	10141.48	-0.0091	-0.0065

Figure C.1: Performance metrics of Huber Regression when applied to individual stocks

	XGBoost (No Interaction Terms)								
<u>Ticker</u>	Learning Rate	MSE	SSE	$\underline{\bar{\mathbf{R}}_{\mathrm{OOS}}^2}$	$\underline{\mathbf{R}_{\mathbf{OOS}}^2}$				
AD NA Equity	0.001	0.47	83.32	-0.376	-0.374				
ADS GY Equity	0.005	28.36	5076.62	-0.021	0.000				
AI FP Equity	0.005	6.94	1241.76	0.012	0.012				
ALV GY Equity	0.001	26.46	4736.82	-0.272	-0.267				
ASML NA Equity	0.001	22.51	4028.85	-0.003	0.001				
BAS GY Equity	0.001	5.97	1068.86	-0.006	-0.005				
BAYN GY Equity	0.001	13.87	2482.79	-0.012	-0.006				
BBVA SQ Equity	0.001	0.10	17.48	-0.544	-0.535				
BMW GY Equity	0.001	10.01	1791.84	-0.063	-0.061				
BN FP Equity	0.001	2.41	431.56	0.013	0.013				
BNP FP Equity	0.001	3.95	707.76	0.057	0.058				
CRH ID Equity	0.005	0.97	174.18	-0.154	-0.154				
CS FP Equity	0.001	0.68	121.45	-0.102	-0.102				
DAI GY Equity	0.001	5.70	1019.50	-0.005	0.001				
DG FP Equity	0.001	3.28	587.20	0.005	0.011				
DTE GY Equity	0.001	0.32	57.73	-0.611	-0.611				
EL FP Equity	0.001	9.35	1674.25	0.005	0.006				

ENEL IM Equity	0.005	0.03	4.67	-0.673	-0.671
ENI IM Equity	0.01	0.27	48.82	-0.375	-0.375
FP FP Equity	0.01	2.54	454.62	-0.520	-0.519
FRE GY Equity	0.001	4.75	850.01	-0.010	-0.010
GLE FP Equity	0.001	4.17	746.29	-0.453	-0.452
IBE SQ Equity	0.01	0.03	5.14	-0.017	-0.016
INGA NA Equity	0.001	0.29	52.62	-0.606	-0.604
ISP IM Equity	0.01	0.02	3.10	-0.520	-0.519
KER FP Equity	0.001	125.43	22451.76	0.004	0.019
MC FP Equity	0.001	45.86	8209.59	0.022	0.029
MUV2 GY Equity	0.001	23.96	4288.67	-0.184	-0.183
NOKIA FH Equity	0.001	0.09	16.04	-0.921	-0.921
OR FP Equity	0.001	20.25	3624.96	-0.030	-0.027
ORA FP Equity	0.001	1.65	295.26	-7.672	-7.670
PHIA NA Equity	0.001	0.91	162.69	-0.122	-0.118
SAF FP Equity	0.001	5.46	977.37	-0.008	0.007
SAN FP Equity	0.001	5.70	1020.47	0.002	0.003
SAN SQ Equity	0.005	0.07	13.39	-0.960	-0.956
SAP GY Equity	0.001	5.78	1033.79	-0.189	-0.183
SIE GY Equity	0.001	9.63	1723.03	0.020	0.020
SU FP Equity	0.001	4.46	799.12	-0.024	-0.024
TEF SQ Equity	0.005	0.30	52.91	-1.814	-1.796
UNA NA Equity	0.001	1.56	278.92	-0.002	0.001
VIV FP Equity	0.001	0.60	107.00	-0.434	-0.434

VOW3 GY	0.001	56.03	10020.00	0.002	0.005
Equity	0.001	30.03	10030.00	0.002	0.005

Figure C.2: Performance metrics of XGBoost when applied to individual stocks with no interaction terms.

XGBoost (Interaction Terms)								
<u>Ticker</u>	Learning Rate	<u>MSE</u>	SSE	$\underline{\bar{R}_{OOS}}^2$	$\underline{\mathbf{R}_{\mathrm{OOS}}}^{2}$			
AD NA Equity	0.001	0.33	58.63	0.032	0.033			
ADS GY Equity	0.001	28.04	5019.80	-0.009	0.011			
AI FP Equity	0.001	7.05	1261.71	-0.004	-0.004			
ALV GY Equity	0.001	31.24	5592.61	-0.502	-0.496			
ASML NA Equity	0.001	22.68	4059.64	-0.011	-0.007			
BAS GY Equity	0.001	6.03	1080.17	-0.017	-0.016			
BAYN GY Equity	0.001	13.24	2369.49	0.034	0.040			
BBVA SQ Equity	0.001	0.11	18.87	-0.667	-0.657			
BMW GY Equity	0.001	9.32	1667.68	0.010	0.013			
BN FP Equity	0.01	2.38	426.62	0.024	0.025			
BNP FP Equity	0.001	4.38	784.74	-0.045	-0.045			
CRH ID Equity	0.005	0.80	143.21	0.051	0.052			
CS FP Equity	0.005	1.11	198.51	-0.800	-0.800			
DAI GY Equity	0.001	6.00	1073.82	-0.058	-0.053			
DG FP Equity	0.001	3.25	581.58	0.014	0.021			
DTE GY Equity	0.001	0.30	53.90	-0.504	-0.504			
EL FP Equity	0.005	9.39	1680.39	0.002	0.002			
ENEL IM Equity	0.005	0.06	11.53	-3.136	-3.130			

ENI IM Equity	0.005	0.21	38.02	-0.071	-0.071
FP FP Equity	0.001	1.62	290.82	0.028	0.028
FRE GY	0.001	4.78	855.45	-0.016	-0.016
Equity GLE FP	0.005	3.92	702.31	-0.367	-0.366
Equity IBE SQ	0.01	0.04	6.90		
Equity INGA NA				-0.366	-0.364
Equity ISP IM	0.001	0.22	39.95	-0.220	-0.218
Equity	0.005	0.02	2.69	-0.315	-0.314
KER FP Equity	0.001	149.01	26672.91	-0.184	-0.166
MC FP Equity	0.005	46.53	8329.71	0.007	0.015
MUV2 GY Equity	0.001	28.18	5043.64	-0.393	-0.391
NOKIA FH Equity	0.001	0.22	40.24	-3.821	-3.819
OR FP Equity	0.001	19.84	3550.60	-0.009	-0.006
ORA FP Equity	0.001	0.98	174.99	-4.139	-4.139
PHIA NA Equity	0.001	0.87	155.27	-0.071	-0.067
SAF FP Equity	0.005	5.64	1010.04	-0.042	-0.026
SAN FP Equity	0.001	5.70	1020.97	0.002	0.002
SAN SQ Equity	0.005	0.05	8.11	-0.186	-0.184
SAP GY Equity	0.001	4.81	861.42	0.009	0.014
SIE GY Equity	0.001	9.71	1737.82	0.011	0.011
SU FP Equity	0.001	4.39	786.37	-0.008	-0.008
TEF SQ Equity	0.005	0.14	24.85	-0.322	-0.313
UNA NA Equity	0.001	1.61	288.18	-0.036	-0.032
VIV FP Equity	0.001	0.55	98.42	-0.319	-0.319
VOW3 GY Equity	0.001	55.85	9997.95	0.005	0.008
Equity					

Figure C.3: Performance metrics of XGBoost when applied to individual stocks with interaction terms.

NN1 (No Interaction Terms)								
<u>Ticker</u>	Learning Rate	MSE	SSE	$\underline{\bar{R}_{OOS}}^2$	$\underline{\mathbf{R}_{\mathrm{OOS}}^2}$			
AD NA Equity	0.001	0.52	92.68	-0.585	-0.583			
ADS GY Equity	0.001	43.45	7778.06	-0.484	-0.462			
AI FP Equity	0.001	15.39	2755.48	-1.313	-1.313			
ALV GY Equity	0.005	33.36	5972.21	-0.600	-0.598			
ASML NA Equity	0.005	25.66	4592.98	-0.084	-0.081			
BAS GY Equity	0.001	8.57	1533.60	-0.473	-0.472			
BAYN GY Equity	0.001	15.94	2852.39	-0.210	-0.197			
BBVA SQ Equity	0.001	0.20	35.96	-2.301	-2.278			
BMW GY Equity	0.001	9.13	1634.83	-0.012	-0.011			
BN FP Equity	0.001	3.58	640.48	-0.476	-0.476			
BNP FP Equity	0.001	7.38	1321.43	-0.828	-0.824			
CRH ID Equity	0.005	1.50	268.13	-0.733	-0.733			
CS FP Equity	0.005	0.96	172.10	-0.579	-0.577			
DAI GY Equity	0.001	7.37	1318.75	-0.366	-0.357			
DG FP Equity	0.001	4.30	770.59	-0.292	-0.290			
DTE GY Equity	0.001	0.68	121.49	-2.665	-2.664			
EL FP Equity	0.001	13.61	2436.94	-0.517	-0.517			
ENEL IM Equity	0.001	0.02	3.81	-0.327	-0.321			
ENI IM Equity	0.001	0.88	157.12	-3.474	-3.473			
FP FP Equity	0.001	3.12	558.53	-0.845	-0.845			

FRE GY Equity	0.001	5.62	1005.65	-0.041	-0.039
GLE FP Equity	0.005	6.53	1168.85	-1.320	-1.313
IBE SQ Equity	0.001	0.03	6.11	-0.225	-0.223
INGA NA	0.005	0.44	79.65	-1.475	-1.464
Equity ISP IM	0.001	0.03	4.79	-1.525	-1.519
Equity KER FP	0.001	332.25	59472.69	-1.616	-1.581
Equity MC FP	0.001	59.17	10591.27	-0.308	-0.302
Equity MUV2 GY	0.001	40.86	7314.45	-1.055	-1.053
Equity NOKIA	0.001	0.48	85.10	-9.309	-9.306
FH Equity OR FP	0.001	42.11	7537.99	-1.272	-1.268
Equity ORA FP	0.001	0.36	64.10	-1.023	-1.023
Equity PHIA NA	0.001	1.38	246.40	-0.683	-0.681
Equity SAF FP					
Equity SAN FP	0.001	7.42	1328.23	-0.349	-0.339
Equity SAN SQ	0.001	5.68	1016.52	-0.122	-0.119
Equity SAP GY	0.001	0.34	60.09	-8.315	-8.299
Equity	0.001	13.88	2485.14	-1.852	-1.843
SIE GY Equity	0.005	11.69	2092.69	-0.205	-0.205
SU FP Equity	0.001	5.68	1016.21	-0.318	-0.318
TEF SQ Equity	0.001	0.80	143.55	-7.146	-7.063
UNA NA Equity	0.001	1.76	315.12	-0.171	-0.170
VIV FP Equity	0.001	5.41	967.58	-12.154	-12.151
VOW3 GY Equity	0.001	58.84	10533.13	-0.072	-0.071
1 0					

Figure C.4: Performance metrics of NN1 when applied to individual stocks with no interaction terms.

NN1 (Interaction Terms)								
<u>Ticker</u>	Learning Rate	<u>MSE</u>	<u>SSE</u>	$\underline{\bar{R}_{OOS}}^2$	$\underline{\mathbf{R}_{\mathbf{OOS}}^2}$			
AD NA Equity	0.001	0.66	118.05	-1.019	-1.016			
ADS GY Equity	0.001	35.11	6285.43	-0.199	-0.182			
AI FP Equity	0.001	7.38	1320.36	-0.109	-0.109			
ALV GY Equity	0.001	44.84	8025.49	-1.150	-1.147			
ASML NA Equity	0.001	24.84	4446.25	-0.049	-0.047			
BAS GY Equity	0.001	7.21	1290.18	-0.240	-0.238			
BAYN GY Equity	0.001	14.46	2588.32	-0.098	-0.086			
BBVA SQ Equity	0.001	0.10	17.22	-0.581	-0.569			
BMW GY Equity	0.001	9.97	1784.59	-0.105	-0.104			
BN FP Equity	0.001	3.13	560.96	-0.292	-0.292			
BNP FP Equity	0.001	5.92	1059.18	-0.465	-0.462			
CRH ID Equity	0.001	1.16	208.15	-0.345	-0.345			
CS FP Equity	0.001	0.92	164.49	-0.509	-0.508			
DAI GY Equity	0.001	6.04	1081.44	-0.120	-0.113			
DG FP Equity	0.001	3.94	705.55	-0.183	-0.181			
DTE GY Equity	0.001	0.63	112.71	-2.400	-2.400			
EL FP Equity	0.001	13.86	2480.79	-0.544	-0.544			
ENEL IM Equity	0.001	0.03	4.63	-0.613	-0.606			
ENI IM Equity	0.001	0.37	65.74	-0.872	-0.872			
FP FP Equity	0.001	2.14	382.28	-0.263	-0.263			

EDE OV					
FRE GY Equity	0.001	5.50	984.95	-0.019	-0.017
GLE FP Equity	0.001	5.16	923.66	-0.833	-0.828
IBE SQ	0.001	0.03	6.14	-0.230	-0.228
Equity INGA NA	0.001	0.49	86.96	-1.702	-1.691
Equity ISP IM	0.001	0.02	3.15	-0.658	-0.655
Equity KER FP					
Equity MC FP	0.001	191.55	34286.98	-0.508	-0.488
Equity	0.001	53.18	9519.01	-0.176	-0.170
MUV2 GY Equity	0.001	34.66	6203.60	-0.743	-0.741
NOKIA FH Equity	0.001	0.19	33.98	-3.117	-3.115
OR FP Equity	0.001	24.87	4451.44	-0.341	-0.339
ORA FP Equity	0.001	0.30	53.48	-0.688	-0.688
PHIA NA Equity	0.001	1.87	334.28	-1.283	-1.280
SAF FP	0.001	7.30	1306.54	-0.327	-0.317
Equity SAN FP	0.001	5.61	1004.68	-0.109	-0.106
Equity SAN SQ	0.001	0.10	18.15	-1.813	-1.808
Equity SAP GY	0.001	7.94	1422.09	-0.632	-0.627
Equity SIE GY	0.001	14.04	2512.50	-0.447	-0.447
Equity SU FP					
Equity TEF SQ	0.001	4.37	782.40	-0.015	-0.015
Equity	0.001	0.17	30.95	-0.756	-0.739
UNA NA Equity	0.001	1.73	310.15	-0.153	-0.151
VIV FP Equity	0.001	3.16	566.14	-6.697	-6.695
VOW3 GY Equity	0.001	57.71	10330.33	-0.051	-0.050
<u> </u>					

Figure C.5: Performance metrics of NN1 when applied to individual stocks with interaction terms.

NN2 (No Interaction Terms)								
<u>Ticker</u>	Learning Rate	<u>MSE</u>	<u>SSE</u>	$\underline{\bar{R}}_{OOS}^2$	$\underline{\mathbf{R}_{\mathbf{OOS}}^2}$			
AD NA Equity	0.01	0.33	59.95	-0.025	-0.024			
ADS GY Equity	0.01	31.33	5608.43	-0.070	-0.054			
AI FP Equity	0.01	7.64	1367.14	-0.148	-0.148			
ALV GY Equity	0.001	61.46	11001.02	-1.947	-1.943			
ASML NA Equity	0.01	24.52	4388.33	-0.036	-0.033			
BAS GY Equity	0.005	6.77	1211.90	-0.164	-0.163			
BAYN GY Equity	0.01	15.40	2756.18	-0.169	-0.157			
BBVA SQ Equity	0.01	0.06	11.12	-0.021	-0.014			
BMW GY Equity	0.01	9.27	1659.04	-0.027	-0.026			
BN FP Equity	0.01	2.85	510.41	-0.176	-0.176			
BNP FP Equity	0.01	4.57	818.33	-0.132	-0.129			
CRH ID Equity	0.01	1.02	182.70	-0.181	-0.181			
CS FP Equity	0.01	0.71	127.80	-0.172	-0.171			
DAI GY Equity	0.01	5.80	1037.54	-0.075	-0.068			
DG FP Equity	0.01	3.50	626.10	-0.050	-0.048			
DTE GY Equity	0.001	0.33	59.72	-0.802	-0.801			
EL FP Equity	0.005	13.58	2429.93	-0.513	-0.513			
ENEL IM Equity	0.01	0.02	3.64	-0.268	-0.263			
ENI IM Equity	0.01	0.19	34.82	0.008	0.009			
FP FP Equity	0.01	1.75	313.20	-0.035	-0.035			

FRE GY Equity	0.01	5.33	954.96	0.012	0.014
GLE FP Equity	0.01	3.64	652.10	-0.294	-0.291
IBE SQ Equity	0.01	0.03	5.08	-0.020	-0.018
INGA NA Equity	0.01	0.22	40.10	-0.246	-0.241
ISP IM Equity	0.01	0.01	2.48	-0.305	-0.302
KER FP Equity	0.01	143.47	25680.96	-0.130	-0.115
MC FP Equity	0.01	47.77	8551.68	-0.056	-0.051
MUV2 GY Equity	0.001	29.87	5347.07	-0.502	-0.501
NOKIA FH Equity	0.01	0.09	16.41	-0.988	-0.988
OR FP Equity	0.01	19.64	3515.19	-0.059	-0.058
ORA FP Equity	0.01	0.20	35.44	-0.119	-0.119
PHIA NA Equity	0.01	0.95	169.92	-0.160	-0.159
SAF FP Equity	0.01	5.84	1044.68	-0.061	-0.053
SAN FP Equity	0.001	5.53	990.56	-0.094	-0.090
SAN SQ Equity	0.01	0.04	6.75	-0.047	-0.045
SAP GY Equity	0.01	5.85	1047.29	-0.202	-0.198
SIE GY Equity	0.001	13.77	2465.25	-0.419	-0.419
SU FP Equity	0.01	4.36	780.50	-0.012	-0.012
TEF SQ Equity	0.01	0.11	20.48	-0.162	-0.150
UNA NA Equity	0.005	1.79	321.06	-0.193	-0.192
VIV FP Equity	0.001	1.13	201.88	-1.745	-1.744
VOW3 GY Equity	0.005	61.17	10948.78	-0.114	-0.113
Equity					

Figure C.6: Performance metrics of NN2 when applied to individual stocks with no interaction terms.

	NN2 (Interaction Terms)								
<u>Ticker</u>	Learning Rate	MSE	SSE	$\underline{\bar{R}_{OOS}}^2$	$\underline{\mathbf{R}_{\mathrm{OOS}}}^{2}$				
AD NA Equity	0.001	0.570	101.948	-0.744	-0.741				
ADS GY Equity	0.005	30.113	5390.211	-0.028	-0.013				
AI FP Equity	0.005	7.465	1336.159	-0.122	-0.122				
ALV GY Equity	0.001	47.819	8559.562	-1.293	-1.290				
ASML NA Equity	0.005	24.258	4342.200	-0.025	-0.022				
BAS GY Equity	0.005	6.101	1092.013	-0.049	-0.048				
BAYN GY Equity	0.001	13.892	2486.655	-0.055	-0.044				
BBVA SQ Equity	0.001	0.087	15.519	-0.425	-0.415				
BMW GY Equity	0.001	9.899	1771.915	-0.097	-0.096				
BN FP Equity	0.001	3.053	546.400	-0.259	-0.259				
BNP FP Equity	0.001	5.452	975.930	-0.350	-0.347				
CRH ID Equity	0.001	1.168	209.003	-0.351	-0.351				
CS FP Equity	0.001	0.702	125.670	-0.153	-0.152				
DAI GY Equity	0.001	6.335	1133.942	-0.174	-0.167				
DG FP Equity	0.001	3.702	662.580	-0.111	-0.109				
DTE GY Equity	0.001	0.438	78.421	-1.366	-1.365				
EL FP Equity	0.001	12.325	2206.127	-0.373	-0.373				
ENEL IM Equity	0.005	0.020	3.541	-0.235	-0.229				
ENI IM Equity	0.005	0.222	39.765	-0.132	-0.132				
FP FP Equity	0.001	2.592	464.024	-0.533	-0.533				

FRE GY Equity	0.001	5.848	1046.833	-0.083	-0.081
GLE FP Equity	0.001	5.063	906.360	-0.799	-0.794
IBE SQ Equity	0.001	0.031	5.542	-0.111	-0.109
INGA NA Equity	0.01	0.259	46.389	-0.442	-0.435
ISP IM Equity	0.001	0.017	3.124	-0.646	-0.643
KER FP Equity	0.001	137.035	24529.314	-0.079	-0.065
MC FP Equity	0.001	52.387	9377.256	-0.158	-0.153
MUV2 GY Equity	0.001	42.639	7632.299	-1.144	-1.142
NOKIA FH Equity	0.005	0.202	36.185	-3.384	-3.382
OR FP Equity	0.005	18.192	3256.333	0.019	0.020
ORA FP Equity	0.005	0.191	34.154	-0.078	-0.078
PHIA NA Equity	0.001	1.180	211.179	-0.442	-0.441
SAF FP Equity	0.005	5.634	1008.470	-0.025	-0.017
SAN FP Equity	0.005	5.172	925.720	-0.022	-0.019
SAN SQ Equity	0.005	0.040	7.154	-0.109	-0.107
SAP GY Equity	0.001	6.857	1227.338	-0.408	-0.404
SIE GY Equity	0.001	11.087	1984.643	-0.143	-0.143
SU FP Equity	0.001	4.453	797.172	-0.034	-0.034
TEF SQ Equity	0.005	0.104	18.540	-0.052	-0.041
UNA NA Equity	0.001	1.625	290.788	-0.081	-0.079
VIV FP Equity	0.001	0.812	145.366	-0.976	-0.976
VOW3 GY Equity	0.001	59.260	10607.533	-0.079	-0.078
=40.07					

Figure C.7: Performance metrics of NN2 when applied to individual stocks with interaction terms.

	NN3 (No Interaction Terms)								
<u>Ticker</u>	Learning Rate	MSE	<u>SSE</u>	$\underline{\bar{R}_{OOS}}^2$	$\underline{\mathbf{R}_{\mathrm{OOS}}}^{2}$				
AD NA Equity	0.001	0.57	101.75	-0.740	-0.738				
ADS GY Equity	0.005	35.69	6389.08	-0.219	-0.201				
AI FP Equity	0.005	8.21	1469.85	-0.234	-0.234				
ALV GY Equity	0.001	31.00	5549.86	-0.486	-0.485				
ASML NA Equity	0.005	24.30	4349.38	-0.026	-0.024				
BAS GY Equity	0.01	6.01	1075.86	-0.034	-0.032				
BAYN GY Equity	0.01	14.11	2525.01	-0.071	-0.060				
BBVA SQ Equity	0.01	0.08	14.47	-0.329	-0.319				
BMW GY Equity	0.01	9.05	1620.72	-0.004	-0.002				
BN FP Equity	0.01	2.59	464.25	-0.070	-0.070				
BNP FP Equity	0.01	4.40	787.37	-0.089	-0.087				
CRH ID Equity	0.01	0.91	163.29	-0.055	-0.055				
CS FP Equity	0.01	0.70	125.07	-0.147	-0.146				
DAI GY Equity	0.01	6.13	1097.57	-0.137	-0.129				
DG FP Equity	0.01	3.57	639.67	-0.073	-0.071				
DTE GY Equity	0.01	0.29	52.13	-0.573	-0.572				
EL FP Equity	0.01	9.22	1649.68	-0.027	-0.027				
ENEL IM Equity	0.01	0.02	3.31	-0.153	-0.148				
ENI IM Equity	0.01	0.21	38.37	-0.093	-0.092				
FP FP Equity	0.005	2.01	359.67	-0.188	-0.188				

FRE GY Equity	0.01	5.47	979.47	-0.013	-0.012
GLE FP Equity	0.01	3.94	705.14	-0.400	-0.396
IBE SQ	0.01	0.03	5.10	-0.022	-0.020
Equity INGA NA	0.005	0.43	77.68	-1.414	-1.404
Equity ISP IM	0.01	0.02	2.82	-0.487	-0.484
Equity KER FP					
Equity MC FP	0.01	134.34	24046.51	-0.058	-0.044
Equity	0.01	48.63	8704.58	-0.075	-0.070
MUV2 GY Equity	0.001	29.08	5205.98	-0.462	-0.461
NOKIA FH Equity	0.01	0.88	158.01	-18.142	-18.136
OR FP Equity	0.01	19.01	3402.22	-0.025	-0.024
ORA FP Equity	0.01	0.19	34.35	-0.084	-0.084
PHIA NA Equity	0.01	1.30	233.41	-0.594	-0.592
SAF FP Equity	0.005	6.04	1081.38	-0.099	-0.090
SAN FP Equity	0.01	5.36	959.91	-0.060	-0.057
SAN SQ Equity	0.01	0.04	7.54	-0.169	-0.167
SAP GY Equity	0.01	5.00	895.09	-0.027	-0.024
SIE GY Equity	0.01	9.58	1715.25	0.012	0.012
SU FP Equity	0.01	4.59	822.41	-0.067	-0.067
TEF SQ Equity	0.01	0.12	20.84	-0.183	-0.171
UNA NA Equity	0.01	1.66	296.55	-0.102	-0.101
VIV FP Equity	0.001	0.67	120.78	-0.642	-0.642
VOW3 GY Equity	0.01	56.50	10113.46	-0.029	-0.028
qy					

Figure C.8: Performance metrics of NN3 when applied to individual stocks with no interaction terms.

	NN3	(Interact	ion Terms)		
<u>Ticker</u>	Learning Rate	MSE	SSE	$\underline{\bar{R}_{OOS}}^2$	$\underline{\mathbf{R}_{\mathrm{OOS}}^2}$
AD NA Equity	0.005	0.33	59.63	-0.020	-0.018
ADS GY Equity	0.005	30.39	5440.40	-0.038	-0.023
AI FP Equity	0.005	6.65	1191.19	0.000	0.000
ALV GY Equity	0.01	21.09	3774.70	-0.011	-0.010
ASML NA Equity	0.01	23.71	4244.38	-0.002	0.001
BAS GY Equity	0.01	5.78	1034.23	0.006	0.008
BAYN GY Equity	0.01	13.26	2373.83	-0.007	0.004
BBVA SQ Equity	0.005	0.06	10.67	0.021	0.028
BMW GY Equity	0.005	9.20	1646.11	-0.019	-0.018
BN FP Equity	0.001	2.56	458.10	-0.055	-0.055
BNP FP Equity	0.005	4.05	724.21	-0.002	0.000
CRH ID Equity	0.01	0.86	154.75	0.000	0.000
CS FP Equity	0.005	0.62	111.39	-0.022	-0.021
DAI GY Equity	0.01	5.44	973.33	-0.008	-0.002
DG FP Equity	0.005	3.31	593.31	0.005	0.007
DTE GY Equity	0.01	0.19	33.65	-0.015	-0.015
EL FP Equity	0.005	9.28	1660.57	-0.034	-0.034
ENEL IM Equity	0.005	0.02	3.03	-0.056	-0.051
ENI IM Equity	0.01	0.20	35.15	-0.001	-0.001
FP FP Equity	0.005	1.74	310.98	-0.027	-0.027

EDE GV					
FRE GY Equity	0.01	5.40	966.04	0.000	0.002
GLE FP Equity	0.005	2.90	518.54	-0.029	-0.026
IBE SQ	0.001	0.03	6.23	-0.250	-0.248
Equity	0.001	0.05	0.25	0.250	0.210
INGA NA Equity	0.01	0.19	33.60	-0.044	-0.040
ISP IM Equity	0.01	0.01	2.09	-0.103	-0.100
KER FP Equity	0.01	130.78	23409.87	-0.030	-0.016
MC FP	0.01	45.40	8126.91	-0.004	0.001
Equity					
MUV2 GY Equity	0.005	23.45	4198.08	-0.179	-0.178
NOKIA FH Equity	0.001	0.08	13.44	-0.628	-0.628
OR FP Equity	0.01	18.65	3339.18	-0.006	-0.005
ORA FP	0.005	0.18	31.99	-0.010	-0.010
PHIA NA	0.01	0.85	151.86	-0.037	-0.036
Equity SAF FP	0.005	5.78	1033.78	-0.050	-0.042
Equity	0.003	3.76	1033.70	-0.030	-0.042
SAN FP Equity	0.005	5.14	920.12	-0.016	-0.013
SAN SQ Equity	0.005	0.04	6.59	-0.021	-0.019
SAP GY Equity	0.005	5.08	909.32	-0.044	-0.040
SIE GY Equity	0.01	9.70	1736.86	0.000	0.000
SU FP	0.01	4.23	757.89	0.017	0.017
Equity TEF SQ	0.005	0.11	19.22	-0.091	-0.080
Equity UNA NA	0.005	1.50	269.17	-0.001	0.001
Equity VIV FP					
Equity VOW3 GY	0.01	0.42	74.29	-0.010	-0.010
Equity Equity	0.001	55.61	9953.32	-0.013	-0.012

Figure C.9: Performance metrics of NN3 when applied to individual stocks with interaction terms.

	NN4 (No Interaction Terms)								
<u>Ticker</u>	Learning Rate	<u>MSE</u>	<u>SSE</u>	$\underline{\bar{R}_{OOS}}^2$	$\underline{\mathbf{R}_{\mathrm{OOS}}}^{2}$				
AD NA Equity	0.01	0.55	99.03	-0.694	-0.691				
ADS GY Equity	0.005	32.16	5756.09	-0.098	-0.082				
AI FP Equity	0.001	8.01	1434.63	-0.204	-0.204				
ALV GY Equity	0.005	25.71	4602.28	-0.233	-0.231				
ASML NA Equity	0.001	24.31	4351.53	-0.027	-0.024				
BAS GY Equity	0.01	6.09	1090.83	-0.048	-0.047				
BAYN GY Equity	0.001	13.79	2468.91	-0.047	-0.036				
BBVA SQ Equity	0.01	0.07	13.33	-0.224	-0.215				
BMW GY Equity	0.01	9.04	1618.76	-0.002	-0.001				
BN FP Equity	0.01	2.61	466.72	-0.075	-0.075				
BNP FP Equity	0.005	4.61	825.38	-0.142	-0.139				
CRH ID Equity	0.005	0.97	173.28	-0.120	-0.120				
CS FP Equity	0.005	0.74	131.60	-0.207	-0.206				
DAI GY Equity	0.005	6.01	1075.93	-0.114	-0.107				
DG FP Equity	0.01	3.63	649.58	-0.089	-0.087				
DTE GY Equity	0.01	0.24	42.64	-0.286	-0.286				
EL FP Equity	0.01	9.85	1762.47	-0.097	-0.097				
ENEL IM Equity	0.005	0.02	3.48	-0.215	-0.209				
ENI IM Equity	0.01	0.19	34.46	0.019	0.019				
FP FP Equity	0.01	1.73	310.12	-0.025	-0.024				

FRE GY					
Equity	0.01	5.45	975.57	-0.009	-0.008
GLE FP Equity	0.005	3.58	641.36	-0.273	-0.269
IBE SQ Equity	0.001	0.03	5.09	-0.021	-0.019
INGA NA Equity	0.01	0.20	35.99	-0.119	-0.114
ISP IM	0.001	0.02	2.82	-0.485	-0.482
Equity KER FP	0.01	128.88	23070.26	-0.015	-0.001
Equity MC FP	0.01	48.55	8690.49	-0.073	-0.068
Equity MUV2 GY	0.01	22.01	3940.30	-0.107	-0.106
Equity NOKIA	0.001	0.16	29.40	-2.562	-2.560
FH Equity OR FP	0.001	20.28	3629.55	-0.094	-0.092
Equity ORA FP					
Equity PHIA NA	0.01	0.17	30.46	0.038	0.038
Equity	0.01	0.82	147.21	-0.005	-0.004
SAF FP Equity	0.01	5.47	978.79	0.006	0.013
SAN FP Equity	0.01	5.33	953.57	-0.053	-0.050
SAN SQ Equity	0.01	0.04	7.41	-0.149	-0.147
SAP GY Equity	0.01	5.16	924.34	-0.061	-0.058
SIE GY Equity	0.01	9.70	1736.86	0.000	0.000
SU FP Equity	0.005	4.64	830.60	-0.077	-0.077
TEF SQ Equity	0.005	0.11	19.35	-0.098	-0.087
UNA NA Equity	0.01	1.56	279.61	-0.039	-0.038
VIV FP Equity	0.01	0.43	76.52	-0.040	-0.040
VOW3 GY	0.005	57.81	10348.35	-0.053	-0.052
Equity					

Figure C.10: Performance metrics of NN4 when applied to individual stocks with no interaction terms.

NN4 (Interaction Terms)								
<u>Ticker</u>	Learning Rate	<u>MSE</u>	<u>SSE</u>	$\underline{\bar{R}_{OOS}}^2$	$\underline{\mathbf{R}_{\mathbf{OOS}}^2}$			
AD NA Equity	0.01	0.35	62.13	-0.063	-0.061			
ADS GY Equity	0.005	29.72	5319.91	-0.015	0.000			
AI FP Equity	0.005	6.71	1201.46	-0.009	-0.009			
ALV GY Equity	0.001	23.54	4213.42	-0.129	-0.127			
ASML NA Equity	0.005	23.90	4278.29	-0.010	-0.007			
BAS GY Equity	0.005	5.86	1049.24	-0.008	-0.007			
BAYN GY Equity	0.01	13.84	2477.87	-0.051	-0.040			
BBVA SQ Equity	0.001	0.10	17.84	-0.638	-0.626			
BMW GY Equity	0.001	9.01	1613.64	0.001	0.002			
BN FP Equity	0.01	2.55	456.74	-0.052	-0.052			
BNP FP Equity	0.001	4.41	788.77	-0.091	-0.089			
CRH ID Equity	0.001	0.87	155.78	-0.007	-0.007			
CS FP Equity	0.005	0.67	120.60	-0.106	-0.105			
DAI GY Equity	0.005	5.43	972.52	-0.007	-0.001			
DG FP Equity	0.005	3.42	612.21	-0.027	-0.025			
DTE GY Equity	0.01	0.19	34.06	-0.028	-0.028			
EL FP Equity	0.01	9.07	1623.78	-0.011	-0.011			
ENEL IM Equity	0.005	0.02	3.77	-0.316	-0.310			
ENI IM Equity	0.005	0.20	35.29	-0.005	-0.005			
FP FP Equity	0.005	1.72	308.10	-0.018	-0.018			

FRE GY Equity	0.005	5.37	961.06	0.006	0.007
GLE FP Equity	0.001	3.45	617.39	-0.225	-0.222
IBE SQ Equity	0.005	0.03	5.17	-0.038	-0.036
INGA NA Equity	0.001	0.22	39.60	-0.231	-0.225
ISP IM Equity	0.01	0.01	1.95	-0.025	-0.023
KER FP Equity	0.005	129.25	23135.36	-0.018	-0.004
MC FP Equity	0.005	47.58	8515.95	-0.052	-0.047
MUV2 GY Equity	0.01	20.69	3704.13	-0.040	-0.040
NOKIA FH Equity	0.001	0.15	27.45	-2.325	-2.324
OR FP Equity	0.005	19.06	3411.63	-0.028	-0.027
ORA FP Equity	0.01	0.18	32.48	-0.025	-0.025
PHIA NA Equity	0.005	0.85	151.65	-0.036	-0.035
SAF FP Equity	0.001	5.47	979.08	0.005	0.013
SAN FP Equity	0.01	5.16	924.49	-0.021	-0.018
SAN SQ Equity	0.005	0.04	6.67	-0.034	-0.033
SAP GY Equity	0.001	5.32	953.07	-0.094	-0.090
SIE GY Equity	0.005	9.71	1737.66	0.000	0.000
SU FP Equity	0.005	4.31	772.00	-0.001	-0.001
TEF SQ Equity	0.01	0.10	17.19	0.025	0.035
UNA NA Equity	0.01	1.51	269.47	-0.002	0.000
VIV FP Equity	0.005	0.46	82.36	-0.120	-0.119
VOW3 GY Equity	0.005	58.11	10402.32	-0.058	-0.057
Equity					

Figure C.11: Performance metrics of NN4 when applied to individual stocks with interaction terms.

	NN5 (No Interaction Terms)								
<u>Ticker</u>	Learning Rate	MSE	<u>SSE</u>	$\underline{\bar{R}_{OOS}}^2$	$\underline{\mathbf{R}_{\mathrm{OOS}}^2}$				
AD NA Equity	0.005	0.44	79.60	-0.361	-0.360				
ADS GY Equity	0.01	30.66	5489.00	-0.047	-0.032				
AI FP Equity	0.01	7.08	1267.71	-0.064	-0.064				
ALV GY Equity	0.01	29.87	5346.90	-0.432	-0.430				
ASML NA Equity	0.01	23.74	4250.17	-0.003	-0.001				
BAS GY Equity	0.01	5.83	1042.87	-0.002	-0.001				
BAYN GY Equity	0.01	13.56	2426.58	-0.029	-0.018				
BBVA SQ Equity	0.01	0.08	13.65	-0.253	-0.244				
BMW GY Equity	0.01	9.19	1645.89	-0.019	-0.018				
BN FP Equity	0.01	2.62	469.13	-0.081	-0.081				
BNP FP Equity	0.005	4.83	864.18	-0.196	-0.193				
CRH ID Equity	0.005	0.93	165.64	-0.071	-0.070				
CS FP Equity	0.005	0.65	115.68	-0.061	-0.060				
DAI GY Equity	0.001	6.93	1239.64	-0.284	-0.276				
DG FP Equity	0.01	3.35	599.13	-0.005	-0.003				
DTE GY Equity	0.001	0.28	50.32	-0.518	-0.518				
EL FP Equity	0.001	11.44	2047.07	-0.274	-0.274				
ENEL IM Equity	0.005	0.02	3.02	-0.054	-0.049				
ENI IM Equity	0.01	0.20	35.21	-0.003	-0.002				
FP FP Equity	0.001	2.37	424.14	-0.401	-0.401				

FRE GY Equity	0.005	5.40	965.82	0.001	0.003
GLE FP Equity	0.005	3.38	604.38	-0.200	-0.196
IBE SQ	0.01	0.03	5.15	-0.032	-0.030
Equity INGA NA	0.01	0.21	37.95	-0.179	-0.174
Equity ISP IM	0.005	0.01	1.95	-0.029	-0.027
Equity KER FP					
Equity MC FP	0.005	128.82	23058.61	-0.014	-0.001
Equity	0.005	49.71	8897.94	-0.099	-0.094
MUV2 GY Equity	0.01	20.05	3589.26	-0.008	-0.007
NOKIA FH Equity	0.01	0.12	21.23	-1.572	-1.571
OR FP Equity	0.01	19.87	3557.17	-0.072	-0.070
ORA FP Equity	0.01	0.21	37.40	-0.181	-0.181
PHIA NA Equity	0.01	0.95	170.93	-0.167	-0.166
SAF FP Equity	0.01	5.64	1010.33	-0.026	-0.019
SAN FP Equity	0.005	4.98	892.24	0.015	0.018
SAN SQ Equity	0.01	0.04	6.58	-0.020	-0.019
SAP GY Equity	0.01	4.89	875.03	-0.004	-0.001
SIE GY Equity	0.01	9.70	1737.11	0.000	0.000
SU FP Equity	0.01	4.31	771.42	-0.001	-0.001
TEF SQ Equity	0.005	0.11	19.41	-0.101	-0.090
UNA NA Equity	0.01	1.53	273.79	-0.018	-0.016
VIV FP Equity	0.001	1.06	189.44	-1.576	-1.575
VOW3 GY	0.01	56.16	10053.40	-0.023	-0.022
Equity					

Figure C.12: Performance metrics of NN5 when applied to individual stocks with no interaction terms.

NN5 (Interaction Terms)							
<u>Ticker</u>	Learning Rate	MSE	<u>SSE</u>	$\underline{\bar{R}_{OOS}}^2$	$\underline{\mathbf{R}_{\mathrm{OOS}}^2}$		
AD NA Equity	0.005	0.35	62.77	-0.074	-0.072		
ADS GY Equity	0.005	31.91	5712.21	-0.090	-0.074		
AI FP Equity	0.005	6.66	1191.29	0.000	0.000		
ALV GY Equity	0.005	20.90	3741.43	-0.002	-0.001		
ASML NA Equity	0.005	23.97	4289.93	-0.012	-0.010		
BAS GY Equity	0.005	5.83	1043.39	-0.002	-0.001		
BAYN GY Equity	0.01	13.34	2388.14	-0.013	-0.002		
BBVA SQ Equity	0.01	0.06	10.93	-0.003	0.004		
BMW GY Equity	0.005	8.95	1602.63	0.008	0.009		
BN FP Equity	0.005	2.67	478.27	-0.102	-0.102		
BNP FP Equity	0.01	4.04	723.62	-0.001	0.001		
CRH ID Equity	0.005	0.90	161.26	-0.042	-0.042		
CS FP Equity	0.005	0.62	110.40	-0.013	-0.012		
DAI GY Equity	0.01	5.54	992.25	-0.028	-0.021		
DG FP Equity	0.005	3.31	592.69	0.006	0.008		
DTE GY Equity	0.01	0.19	33.42	-0.008	-0.008		
EL FP Equity	0.01	8.98	1607.56	-0.001	-0.001		
ENEL IM Equity	0.01	0.02	3.06	-0.068	-0.063		
ENI IM Equity	0.005	0.20	35.08	0.001	0.001		
FP FP Equity	0.005	1.78	317.87	-0.050	-0.050		

FRE GY Equity	0.005	5.42	969.36	-0.003	-0.001
GLE FP	0.01	2.82	504.49	-0.001	0.001
Equity IBE SQ	0.005	0.03	5.08	-0.019	-0.018
Equity	0.003	0.03	3.08	-0.019	-0.018
INGA NA Equity	0.005	0.19	33.32	-0.035	-0.031
ISP IM Equity	0.01	0.01	1.92	-0.012	-0.010
KER FP	0.005	132.48	23713.58	-0.043	-0.029
Equity MC FP	0.001	47.95	8583.82	-0.060	-0.055
Equity	0.001	17.55	0303.02	0.000	0.055
MUV2 GY Equity	0.01	20.07	3591.85	-0.009	-0.008
NOKIA FH Equity	0.001	0.34	60.44	-6.323	-6.320
OR FP Equity	0.01	18.81	3366.89	-0.015	-0.013
ORA FP	0.01	0.18	32.30	-0.020	-0.020
Equity PHIA NA	0.005	0.84	151.17	-0.032	-0.031
Equity SAF FP	0.005	5.50	984.37	0.000	0.008
Equity SAN FP	0.005	5.14	920.93	-0.017	-0.014
Equity	0.003	3.14	920.93	-0.017	-0.014
SAN SQ Equity	0.005	0.04	6.53	-0.013	-0.011
SAP GY Equity	0.01	4.91	878.15	-0.008	-0.005
SIE GY Equity	0.005	9.81	1756.70	-0.011	-0.011
SU FP Equity	0.005	4.32	772.76	-0.002	-0.002
TEF SQ	0.005	0.11	19.47	-0.105	-0.094
Equity UNA NA	0.005	1.50	268.86	0.001	0.002
Equity VIV FP	0.005	0.42	74.63	-0.015	-0.014
VOW3 GY	0.001	56.05	10032.14	-0.021	-0.020
Equity					-

Figure C.13: Performance metrics of NN5 when applied to individual stocks with interaction terms.

Appendix D

We present the Python code used in our project. Our code is modular and ran on Jupyter notebooks. We executed it on 2 Microsoft Azure Linux Virtual Machines on a pay as you go subscription (2 NC12 Promo machines each containing 2 × K80 GPUs). It took approximately 3 hours to run for each neural network when using the raw set of features and 7 hours with the feature set containing interactions between stock specific and index specific terms. As previously noted in Appendix A the get_daily_additional_macro_predictors is virtually identical to the code written by Ramachandran (2019) however, the author gave his permission and it was not used to generate results. It was merely included in case our client wishes to use it in the future. We provide the functions below and a summary of what each one does. We first present the code used to prepare features and targets from the raw data and then present the code used to create, fit and test the models and obtain the performance metrics.

Data Preparation

```
import pandas as pd
import numpy as np
import os
```

Weekly features

Define a function that takes an Excel file and extract weekly features. The function returns a dictionary of 17 DataFrames. Each DataFrame includes the values of one feature for every single Stock.

```
axis=1)
    df book to market = df market to book.rdiv(1)
    # Then the volume
    df volume = pd.read excel(excel file path, "Volume hard weekly",
index col=0,
parse dates=True).resample('W').last().apply(lambda x:
x.fillna(x.median()), axis=1)
    # Then the turnover
    df turn over = pd.read excel(excel file path, "Turnover hard weekly",
index col=0,
parse dates=True).resample('W').last().apply(lambda x:
x.fillna(x.median()), axis=1)
    # Then the individual volatilities
    df volatility = pd.read excel(excel file path, "10,20,30,60,90 day vol
hard", index col=0,
                                  header=[0, 1], parse dates=True)
    df vol 10 day = df volatility.loc[:, (slice(None), 'Volatility 10
Day')].resample('W').last().apply(
        lambda x: x.fillna(x.median()), axis=1)
    df vol 10 day.columns = df vol 10 day.columns.droplevel(1)
    df vol 20 day = df volatility.loc[:, (slice(None), 'Volatility 20
Day')].resample('W').last().apply(
        lambda x: x.fillna(x.median()), axis=1)
    df vol 20 day.columns = df vol 20 day.columns.droplevel(1)
    df vol 30 day = df volatility.loc[:, (slice(None), 'Volatility 30
Day')].resample('W').last().apply(
        lambda x: x.fillna(x.median()), axis=1)
    df vol 30 day.columns = df vol 30 day.columns.droplevel(1)
    df vol 60 day = df volatility.loc[:, (slice(None), 'Volatility 60
Day')].resample('W').last().apply(
        lambda x: x.fillna(x.median()), axis=1)
    df vol 60 day.columns = df vol 60 day.columns.droplevel(1)
    df vol 90 day = df volatility.loc[:, (slice(None), 'Volatility 90
Day')].resample('W').last().apply(
        lambda x: x.fillna(x.median()), axis=1)
    df vol 90 day.columns = df vol 90 day.columns.droplevel(1)
    # Then get monthly bid and ask prices as well as the spread
    df bid ask = pd.read excel(excel file path, "Bid ask hard weekly",
index col=0, header=[0, 1], parse dates=True)
    df bid = df bid ask.loc[:, (slice(None), 'Bid
Price')].resample('W').last().apply(
        lambda x: x.fillna(x.median()), axis=1)
    df bid.columns = df bid.columns.droplevel(1)
    df ask = df bid ask.loc[:, (slice(None), 'Ask
Price')].resample('W').last().apply(
        lambda x: x.fillna(x.median()), axis=1)
    df ask.columns = df ask.columns.droplevel(1)
```

```
df bid ask spread = df bid.sub(df ask)
    # Then the RSI
    rsi = pd.read excel(excel file path, "RSI 3,9,14,30 week hard",
index col=0, header=[0, 1], parse dates=True)
    df rsi 3 days = rsi.loc[:, (slice(None), 'RSI 3
Day')].resample('W').last().apply(
        lambda x: x.fillna(x.median()), axis=1)
    df_rsi_3_days.columns = df_rsi_3_days.columns.droplevel(1)
    df rsi 9 days = rsi.loc[:, (slice(None), 'RSI 9
Day')].resample('W').last().apply(
        lambda x: x.fillna(x.median()), axis=1)
    df rsi 9 days.columns = df rsi 9 days.columns.droplevel(1)
    df rsi 14 days = rsi.loc[:, (slice(None), 'RSI 14
Day')].resample('W').last().apply(
        lambda x: x.fillna(x.median()), axis=1)
    df rsi 14 days.columns = df rsi 14 days.columns.droplevel(1)
    df rsi 30 days = rsi.loc[:, (slice(None), 'RSI 30
Day')].resample('W').last().apply(
        lambda x: x.fillna(x.median()), axis=1)
    df rsi 30 days.columns = df rsi 30 days.columns.droplevel(1)
    return {'df beta': df beta,
            'df beta sq': df beta sq,
            'df book to market': df book to market,
            'df volume': df volume,
            'df turn over': df turn over,
            'df vol 10 day': df vol 10 day,
            'df vol 20 day': df vol 20 day,
            'df vol 30 day': df vol 30 day,
            'df vol 60 day': df vol 60 day,
            'df vol 90 day': df vol 90 day,
            'df bid': df bid,
            'df ask': df ask,
            'df bid ask spread': df bid ask spread,
            'df rsi 3 days': df rsi 3 days,
            'df rsi 9 days': df rsi 9 days,
            'df rsi 14 days': df rsi 14 days,
            'df rsi 30 days': df rsi 30 days}
```

Annual features

Define a function that takes an Excel file and extract annual features. The function returns a dictionary of 24 DataFrames. Each DataFrame includes the values of one feature for every single Stock.

```
def get_annual_predictors(excel_file_path):
    # First get the cash to debt figures for each company for every year.
First load the tab
    # Then fill in NA values with the cross sectional median as per Gu
Kelly and Xiu
```

```
df cash to debt = pd.read excel(excel file path, "Cash flow to debt
hard", index col=0,
parse dates=True).resample('Y').last().apply(lambda x:
x.fillna(x.median()),
axis=1).fillna(method='ffill')
    # The load the cash productivity tab and treat the free cash flow and
cash and cash holdings figures.
    df_cash_prod = pd.read_excel(excel_file_path, "Cash Productivity Hard",
index col=0,
                                 header=[0, 1], parse dates=True)
    df fcf = df cash prod.loc[:, (slice(None), 'Free Cash
Flow')].resample('Y').last().apply(
        lambda x: x.fillna(x.median()), axis=1).fillna(method='ffill')
    df fcf.columns = df fcf.columns.droplevel(1)
    df cash = df cash prod.loc[:, (slice(None), 'Cash and Cash
Equivalents')].resample('Y').last().apply(
        lambda x: x.fillna(x.median()), axis=1).fillna(method='ffill')
    df cash.columns = df cash.columns.droplevel(1)
    df cash prod = df fcf.div(df cash)
    # Then load the cash flow to price tab
    df price to cash flow = pd.read excel(excel file path, "Price to Cash
Flow Hard", index col=0,
parse dates=True).resample('Y').last().apply(lambda x:
x.fillna(x.median()),
axis=1).fillna(method='ffill')
    df cash flow to price = df price to cash flow.rdiv(1)
    # Then the change in outstanding shares
    df no shares = pd.read excel(excel file path, "Change in shares
outstanding ha", index col=0,
parse dates=True).resample('Y').last().apply(lambda x:
x.fillna(x.median()),
axis=1).fillna(method='ffill')
    df change in shares = df no shares - df no shares.shift(1)
    df change in shares =
df change in shares.drop(df change in shares.index[0])
    # Then the current ratio
    df current ratio = pd.read excel(excel file path, "Current Ratio Hard",
index col=0,
parse dates=True).resample('Y').last().apply(lambda x:
x.fillna(x.median()),
axis=1).fillna(method='ffill')
    # Then the dividend yield
    df div yield = pd.read excel(excel file path, "Dividend Yield Hard",
index col=0,
```

```
parse dates=True).resample('Y').last().apply(
        lambda x: x.fillna(x.median()), axis=1).fillna(method='ffill')
    # Then the annual common equity growth
    df tot eq = pd.read excel(excel file path, "Annual common equity growth
ha", index col=0,
parse_dates=True).resample('Y').last().apply(lambda x:
x.fillna(x.median()),
axis=1).fillna(method='ffill')
    df_an_eq_growth = df_tot_eq - df_tot_eq.shift(1)
    df an eq growth = df an eq growth.drop(df an eq growth.index[0])
    # Then the price to earnings ratio
    df price ear = pd.read excel(excel file path, "Price to Earnings Ratio
Hard", index col=0,
parse dates=True).resample('Y').last().apply(lambda x:
x.fillna(x.median()),
axis=1).fillna(method='ffill')
    # Then the gross profitability
    df gross pro = pd.read excel(excel file path, "Gross Profitability
Hard", index col=0,
                                 header=[0, 1], parse dates=True)
    df gross profit = df gross pro.loc[:, (slice(None), 'Gross
Profit')].resample('Y').last().apply(
        lambda x: x.fillna(x.median()), axis=1).fillna(method='ffill')
    df gross profit.columns = df gross profit.columns.droplevel(1)
    df total assets = df gross pro.loc[:, (slice(None), 'Total
Assets')].resample('Y').last().apply(
        lambda x: x.fillna(x.median()), axis=1).fillna(method='ffill')
    df total assets.columns = df total assets.columns.droplevel(1)
    df_gros_pro_rat = df_gross_profit.div(df_total_assets)
    # Then the 1 year growth in capex
    df cap ex growth = pd.read excel(excel file path, "Growth in capital
exp hard", index col=0,
parse dates=True).resample('Y').last().apply(lambda x:
x.fillna(x.median()),
axis=1).fillna(method='ffill')
    # Then the 1 year employee growth
    df employee growth = pd.read excel(excel file path, "Employee Growth
hard", index col=0,
parse dates=True).resample('Y').last().apply(lambda x:
x.fillna(x.median()),
axis=1).fillna(method='ffill')
    # Then for capital expenditures and inventories
```

```
df cap ex inve = pd.read excel(excel file path, "Capital Expenditures
and inv ha", index col=0,
                                   header=[0, 1], parse_dates=True)
    df cap ex = df cap ex inve.loc[:, (slice(None), 'Capital
Expenditures')].resample(
       'Y').last().apply(lambda x: x.fillna(x.median()),
axis=1).fillna(method='ffill')
   df cap ex.columns = df cap ex.columns.droplevel(1)
    df inventories = df cap ex inve.loc[:, (slice(None),
'Inventories')].resample(
       'Y').last().apply(lambda x: x.fillna(x.median()),
axis=1).fillna(method='ffill')
    df inventories.columns = df inventories.columns.droplevel(1)
    df cap inv = df cap ex.add(df inventories)
    # Then financial leverage
    df leverage = pd.read excel(excel file path, "Leverage Hard",
index col=0, parse dates=True).resample(
        'Y').last().apply(lambda x: x.fillna(x.median()),
axis=1).fillna(method='ffill')
    # Then quick ratio
    df quick ratio = pd.read excel(excel file path, "Quick Ratio hard",
index col=0, parse dates=True).resample(
        'Y').last().apply(lambda x: x.fillna(x.median()),
axis=1).fillna(method='ffill')
    # Then total capital
    df total capital = pd.read excel(excel file path, "Total Capital hard",
index col=0, parse dates=True).resample(
        'Y').last().apply(lambda x: x.fillna(x.median()),
axis=1).fillna(method='ffill')
    # Then the return on assets
    df roa = pd.read excel(excel file path, "Return on Assets hard",
index col=0, parse dates=True).resample(
        'Y').last().apply(lambda x: x.fillna(x.median()),
axis=1).fillna(method='ffill')
    # Then the return on equity
    df roe = pd.read excel(excel file path, "Return on Equity hard",
index col=0, parse dates=True).resample(
        'Y').last().apply(lambda x: x.fillna(x.median()),
axis=1).fillna(method='ffill')
    # Then the return on invested capital
    df roi = pd.read excel(excel file path, "Return on invested capital
hard", index col=0, parse dates=True).resample(
        'Y').last().apply(lambda x: x.fillna(x.median()),
axis=1).fillna(method='ffill')
    # Then the sales to inventory ratio
    df sales to inv = pd.read excel(excel file path, "Sales to inventories
hard", index col=0,
parse dates=True).resample('Y').last().apply(lambda x:
x.fillna(x.median()),
```

```
axis=1).fillna(method='ffill')
    # Then the sales to accounts receivables
    df sales to acc = pd.read excel(excel file path, "Sales to accounts
receivables h", index_col=0,
parse dates=True).resample('Y').last().apply(lambda x:
x.fillna(x.median()),
axis=1).fillna(method='ffill')
    # Then the sales to price
    df price to sales = pd.read excel(excel file path, "Price to sales
hard", index col=0,
parse dates=True).resample('Y').last().apply(lambda x:
x.fillna(x.median()),
axis=1).fillna(method='ffill')
    df sales to price = df price to sales.rdiv(1)
    # Then the sales growth
    df sales grow = pd.read excel(excel file path, "Sales Growth Hard",
index_col=0, parse_dates=True).resample(
        'Y').last().apply(lambda x: x.fillna(x.median()),
axis=1).fillna(method='ffill')
    # Then sales to cash
    df sales cash = pd.read excel(excel file path, "Sales to Cash hard",
index col=0, parse dates=True).resample(
        'Y').last().apply(lambda x: x.fillna(x.median()),
axis=1).fillna(method='ffill')
    # Then the sales to inventory % change
    df sales inv per = pd.read excel(excel file path, "Sales to inventories
hard %", index col=0,
parse dates=True).resample('Y').last().apply(lambda x:
x.fillna(x.median()),
axis=1).fillna(method='ffill')
    df sales inv perc = ((df sales inv per.div(df sales inv per.shift(1)))
-1) * 100
    df sales inv perc = df sales inv perc.drop(df sales inv perc.index[0])
    return {'df cash to debt': df cash to debt,
             'df cash prod': df cash prod,
             'df cash flow to price': df cash flow to price,
             'df change in shares': df change in shares,
             'df current ratio': df current ratio,
             'df div yield': df div yield,
             'df an eq growth': df an eq growth,
             'df_price_ear': df_price_ear,
'df_gros_pro_rat': df_gros_pro_rat,
'df_employee_growth': df_employee_growth,
             'df cap ex growth': df cap ex growth,
             'df_cap_inv': df_cap_inv,
'df_leverage': df_leverage,
             'df quick ratio': df quick ratio,
```

```
'df_total_capital': df_total_capital,
'df_roa': df_roa,
'df_roe': df_roe,
'df_roi': df_roi,
'df_sales_to_inv': df_sales_to_inv,
'df_sales_to_acc': df_sales_to_acc,
'df_sales_to_price': df_sales_to_price,
'df_sales_grow': df_sales_grow,
'df_sales_cash': df_sales_cash,
'df_sales_inv_perc': df_sales_inv_perc}
```

Macro features

Define a function that takes an Excel file and extract Macro features. The function returns one DataFrame, which will be used for all stocks. (This function was applied to the Eurostoxx data)

```
def get macro predictors (excel file path, period):
    sheet = None
    resample by = None
    if period == 'daily':
        sheet = 'Eurostoxx data daily hard'
        resample by = 'D'
    elif period == 'weekly':
        sheet = 'Eurostoxx data weekly hard'
        resample by = 'W'
    elif period == 'monthly':
        sheet = 'Eurostoxx data monthly hard'
        resample by = 'M'
    df macro = pd.read excel(excel file path, sheet, index col=0,
parse dates=True).resample(
        resample by).last().drop(columns=['BEst Div Yld']).apply(lambda x:
x.fillna(x.interpolate()),
                                                                  axis=1)
    # Read in the price to book ratio and then invert it
    df macro['Price to Book Ratio'] = df macro['Price to Book
Ratio'].rdiv(1)
    # Then the price to earnings ratio
    df_macro['Price Earnings Ratio (P/E)'] = df_macro['Price Earnings Ratio
(P/E) '].rdiv(1)
    return df macro
```

Euribor features

Define a function that takes an Excel file and extract Euribor features. The function returns one DataFrame, which will be used for all stocks:

```
def get_euribor_rates(excel_file_path, period):
    sheet = None
```

```
resample by = None
    drop col = None
    if period == 'weekly':
        sheet = '1 week Euribor Hard'
        resample by = 'W'
        drop col = ['EUR001W Index']
    elif period == 'monthly':
        sheet = '1 month Euribor Hard'
        resample_by = 'M'
        drop_col = ['EUR001M Index']
    df euribo = pd.read excel(excel file path, sheet, index col=0,
parse dates=True).resample(
        resample by).last().drop(columns=drop col).apply(lambda x:
x.fillna(x.interpolate()),
                                                                   axis=1)
    return df euribo
```

Additional Macro features

Define a function that takes an Excel file and extract Additional Macro features. The function returns one DataFrame, which will be used for all stocks. This code was taken from Ramachanrdan (2019) with his permission but not used due to lack of data.

```
def get daily additional macro predictors (excel file path):
    # Dataframe of Spot prices. Remove all zero values
    df spot = pd.read excel(excel file path, "FX SPOT HARD",
parse dates=True, index col=0)
    \overline{df} spot = \overline{df} spot[(\overline{df} spot != 0).all(axis=1)]
    # Calculating spot returns to be further used in calculating 2M
realized volatilities
    # TODO: by default the result is written back to the edge of the window
but we can make it at the center
    # TODO: why shifting by 1?
    df_returns = df_spot.pct_change().dropna()
    df_realized_vol_2m = (df_returns.rolling(window=22 * 2).std() *
np.sqrt(252)).shift(1).dropna()
    df_{realized\_vol\_2m.columns} = [col + ' Vol2M' for col in
df_realized_vol_2m.columns]
    # Calculating 1W change in realized Volatilities
    # TODO: the shift changed from 3 to 5
    df_1w_vol_per_change = (df_realized_vol_2m /
df realized vol 2m.shift(5) - 1).dropna()
    df_1w_vol_per_change.columns = [col + ' 1W' for col in
df 1w vol per change.columns]
    # Calculating 1month change in realized Volatilities
    df 1m vol per change = (df realized vol 2m /
df realized vol 2m.shift(22) - 1).dropna()
    df 1m vol per change.columns = [col + ' 1M' for col in
df 1m vol per change.columns]
    # join Volatilite, 1W change in vols and 1M change in realized vols
```

```
df main =
df realized vol 2m.join(df 1w vol per change).join(df 1m vol per change).dr
    for sheet in ["ATM VOLS HARD", "3M 25D RR HARD"]:
        df = pd.read excel(excel file path, sheet, parse dates=True,
index col=0).dropna(axis=1)
        df = df[(df != 0).all(axis=1)]
        df main = df main.join(df.shift(1)).dropna()
    # looping through sheets to calculate 1week and 1month change
    # and joining them with df main
    for sheet in ["FX SPOT HARD", "ATM VOLS HARD", "3M 25D RR HARD", "3M
DEPOSIT RATES HARD", "10Y YIELD HARD",
                  "EQUITY INDICES HARD", "COMDTY HARD", "CREDIT SPREADS
HARD", "IMM POSITIONING HARD"]:
        df = pd.read excel(excel file path, sheet, parse dates=True,
index_col=0).dropna(axis=1)
        df = df[(df != 0).all(axis=1)]
        df 1w per change = (df / df.shift(5) - 1).dropna()
        df 1w per change.columns = [col + ' 1W' for col in
df 1w per change.columns]
        df main = df main.join(df 1w per change.shift(1)).dropna()
        df 1m per change = (df / df.shift(22) - 1).dropna()
        df 1m per change.columns = [col + ' 1M' for col in
df 1m per change.columns]
        df main = df main.join(df 1m per change.shift(1)).dropna()
    # Remove all zero values
    df easi = pd.read excel(excel file path, "JPM EASI HARD",
parse dates=True, index col=0).dropna(axis=1)
    df easi = df easi[(df easi != 0).all(axis=1)]
    # JPM EASI is an index value between -100 to +100, so we have divided
    # range (200) to find out change in 1W and 1M
    df easi 1w = ((df easi - df easi.shift(5)) / 200).dropna()
    df easi 1w.columns = [col + ' 1W' for col in df easi 1w.columns]
    df main = df main.join(df easi 1w.shift(1)).dropna()
    df easi 1m = ((df easi - df easi.shift(22)) / 200).dropna()
    df easi 1m.columns = [col + ' 1M' for col in df easi 1m.columns]
    df main = df main.join(df easi 1m.shift(1)).dropna()
    df main.to csv(os.path.join(os.getcwd(), 'data',
'Daily Additional Macro Processed.csv'))
    return df main
```

Save Engineered Features Per Stock

Define a function that creates one CSV file per stock. The CSV file includes all engineered features (and the target), for a certain period of time (daily, monthly, annually)

```
df 12 months momentum,
                       features df dict,
                       df_macro_features,
                       df additional macro features,
                       annual features df dict,
                       tensor product,
                       period):
    Join all given features for a given period for all stocks
    Save each stock results in a csv file
    # loop over stocks
    for stock in df returns.columns:
        print(f'Processing stock {stock}...')
        df = pd.DataFrame(columns=pd.MultiIndex(levels=[[], []]),
                                                 codes=[[], []],
                                                 names=['data',
'features']))
        save in sub dir = f'{period} features'
        # loop over dict items {'predictor name': predictor DataFrame}
        for k, v in features df dict.items():
            df['stock features', k] = v[stock]
        # inner join with macro
        if df macro features is not None:
            # make a copy and add a column level so we can join
            df macro features temp = df macro features.copy()
            df macro features temp.columns =
pd.MultiIndex.from product([['macro features'],
df macro features temp.columns])
            df = df.join(df macro features temp).apply(lambda x:
x.fillna(x.median()), axis=0)
        if df monthly momentum is not None:
            # make a copy and add a column level so we can join
            df monthly momentum temp = df monthly momentum.copy()
            df monthly momentum temp[stock].name = ('momentum features',
'momentum 1M')
            df = df.join(df monthly momentum temp[stock], how='inner')
        if df 6 months momentum is not None:
            # make a copy and add a column level so we can join
            df 6 months momentum temp = df 6 months momentum.copy()
            df 6 months momentum temp[stock].name = ('momentum features',
'momentum 6M')
            df = df.join(df 6 months_momentum_temp[stock], how='inner')
        if df 12 months momentum is not None:
            # make a copy and add a column level so we can join
            df 12 months_momentum_temp = df_12_months_momentum.copy()
               12 months momentum temp[stock].name = ('momentum features',
'momentum 12M')
            df = df.join(df 12 months momentum temp[stock], how='inner')
        # inner join with additional macro
        if df additional macro features is not None:
            # make a copy and add a column level so we can join
```

```
df additional macro features temp =
df additional macro features.copy()
            df additional macro features temp.columns =
pd.MultiIndex.from product([['additional macro features'],
df additional macro features temp.columns])
            df = df.join(df additional macro features temp).apply(lambda x:
x.fillna(x.median()), axis=0)
        # augment with annual features if given
        # loop over dict items {'predictor name': predictor_DataFrame}
        if annual_features_df_dict is not None:
            df annual = pd.DataFrame()
            for k, v in annual_features_df_dict.items():
                df annual[k] = v[stock]
            # add a column level so we can join
            df annual.columns =
pd.MultiIndex.from product([['annual features'], df annual.columns])
            # re-sampling annual to daily/weekly results in NAs for all
days/weeks but the last
            # inner join
            if period == 'daily':
                df =
df.join(df annual.resample('D').last().fillna(method='ffill')).dropna()
            elif period == 'weekly':
                df =
df.join(df annual.resample('W').last().fillna(method='ffill')).dropna()
            elif period == 'monthly':
                df =
df.join(df annual.resample('M').last().fillna(method='ffill')).dropna()
        if tensor product:
            # returns a series of lists
            s tensor product = df.apply(lambda s:
np.kron(s[['stock_features', 'momentum_features', 'annual_features']],
s[['macro features']]), axis=1)
            # convert series of lists to df
            df tensor product =
pd.DataFrame.from dict(dict(zip(s_tensor_product.index,
s tensor product.values))).T
            # add a column level so we can join
            df tensor product.columns =
pd.MultiIndex.from product([['tensor product'], df tensor product.columns])
            df = df.join(df tensor product).apply(lambda x:
x.fillna(x.median()), axis=0
        # make a copy and add a column level so we can join
        df returns temp = df_returns.copy()
           returns temp[stock].name = ('returns', 'return')
        df = df.join(df returns temp[stock]).apply(lambda x:
x.fillna(x.median()), axis=0)
        if df excess return is not None:
            # make a copy and add a column level so we can join
            df excess return temp = df excess return.copy()
```

Data Wrangling

All Excel files paths

```
macro features file path = os.path.join(os.getcwd(), 'data',
r'Macro Features.xlsx')
daily features file path = os.path.join(os.getcwd(), 'data',
'Daily Features.xlsx')
daily additional macro features file path = os.path.join(os.getcwd(),
'data', r'Daily Additional Macro.xlsx')
daily prices file path = os.path.join(os.getcwd(), 'data',
'Daily Prices.csv')
weekly_prices_file_path = os.path.join(os.getcwd(), 'data',
'Weekly Prices.csv')
weekly euribor file path = os.path.join(os.getcwd(), 'data',
'Euribor Rates.xlsx')
weekly features file path = os.path.join(os.getcwd(), 'data',
'Weekly Features.xlsx')
monthly prices file path = os.path.join(os.getcwd(), 'data',
'Monthly Prices.csv')
monthly_euribor_file_path = os.path.join(os.getcwd(), 'data',
'Euribor Rates.xlsx')
monthly features file path = os.path.join(os.getcwd(), 'data',
'Monthly Features.xlsx')
annual features file path = os.path.join(os.getcwd(), 'data',
'Annual Features.xlsx')
```

Weekly returns and features for each Stock as CSV

```
df weekly excess return =
df weekly returns.subtract(df weekly euribor.iloc[:, 0] / 100, axis=0)
df dict weekly features = get weekly predictors (weekly features file path)
df_weekly_macro_features = get_macro_predictors(macro_features file path,
'weekly')
df weekly additional macro features =
df daily additional macro features.resample('W').last().dropna()
save_csv_per_stock(df weekly returns,
                   df weekly excess return,
                   df weekly momentum 1m,
                   df weekly momentum 6m,
                   df weekly momentum 12m,
                   df dict weekly features,
                   df weekly macro features,
                   df weekly additional macro features,
                   df_dict_annual_features,
                   tensor product=True,
                   period='weekly')
```

Modelling

```
import os
import random
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.lines import Line2D
from sklearn.preprocessing import StandardScaler
from sklearn.model selection import train test split, TimeSeriesSplit
from sklearn.linear model import LinearRegression, HuberRegressor
from sklearn.metrics import mean squared error, r2 score
import xgboost as xgb
from glob import glob
from tqdm import tqdm
import tensorflow as tf
tf.logging.set verbosity(tf.logging.ERROR)
os.environ['TF CPP MIN LOG LEVEL'] = '3'
from keras.layers import Input, Dense, LSTM, BatchNormalization, Flatten
from keras.models import Model
from keras.initializers import glorot uniform
from keras.preprocessing.sequence import TimeseriesGenerator
from keras import optimizers, regularizers, activations
from keras.callbacks import ModelCheckpoint, EarlyStopping,
ReduceLROnPlateau, TensorBoard
import keras.backend as k
```

NN model with 1 Dense layer

```
dense 1 = Dense(units=32,
                    activation=activation,
                    kernel_regularizer=kernel_regularizer,
                    kernel initializer=glorot uniform(random.seed(seed)),
                    name='dense 1') (input tensor)
    dense 1 flatten = Flatten(name='dense 1 flattened')(dense 1)
    # add a regression layer
    output tensor = Dense(units=1,
                          activation=None,
                          name='output tensor') (dense 1 flatten)
    # specify input and output
    return Model(input tensor, output tensor)
NN model with 2 Dense layers
def nn2(input shape 0, input shape 1, activation, seed,
kernel regularizer):
    input tensor = Input(shape=(input shape 0, input shape 1),
                         dtype='float32',
                         name='input tensor')
    dense 1 = Dense(units=32,
                    activation=activation,
                    kernel regularizer=kernel regularizer,
                    kernel initializer=glorot_uniform(random.seed(seed)),
                    name='dense 1') (input tensor)
    dense 2 = Dense(units=16,
                    activation=activation,
                    kernel regularizer=kernel regularizer,
                    kernel initializer=glorot_uniform(random.seed(seed)),
                    name='dense 2') (dense 1)
    dense 2 flatten = Flatten(name='dense 2 flatten') (dense 2)
    # add a regression layer
    output tensor = Dense(units=1,
                          activation=None,
                          name='output tensor') (dense 2 flatten)
    # specify input and output
    return Model(input tensor, output tensor)
NN model with 3 Dense layers
def nn3(input_shape_0, input_shape_1, activation, seed,
kernel regularizer):
    input tensor = Input(shape=(input shape 0, input shape 1),
                         dtype='float32',
                         name='input tensor')
    dense 1 = Dense(units=32,
                    activation=activation,
                    kernel regularizer=kernel regularizer,
                    kernel initializer=glorot uniform(random.seed(seed)),
                    name='dense 1') (input tensor)
```

```
activation=activation,
                    kernel_regularizer=kernel_regularizer,
                    kernel initializer=glorot uniform(random.seed(seed)),
                    name='dense 2') (dense 1)
    dense 3 = Dense(units=8,
                    activation=activation,
                    kernel_regularizer=kernel_regularizer,
                    kernel_initializer=glorot_uniform(random.seed(seed)),
                    name='dense_3') (dense_2)
    dense 3 flatten = Flatten(name='dense 2 flatten')(dense 3)
    # add a regression layer
    output tensor = Dense(units=1,
                          activation=None,
                          name='output tensor') (dense 3 flatten)
    # specify input and output
    return Model(input tensor, output tensor)
NN model with 4 Dense layers
def nn4(input shape 0, input shape 1, activation, seed,
kernel regularizer):
    input_tensor = Input(shape=(input_shape 0, input shape 1),
                         dtype='float32',
                         name='input tensor')
    dense 1 = Dense(units=32,
                    activation=activation,
                    kernel_regularizer=kernel_regularizer,
                    kernel initializer=glorot uniform(random.seed(seed)),
                    name='dense 1') (input tensor)
    dense 2 = Dense(units=16,
                    activation=activation,
                    kernel regularizer=kernel regularizer,
                    kernel_initializer=glorot_uniform(random.seed(seed)),
                    name='dense_2') (dense_1)
    dense 3 = Dense(units=8,
                    activation=activation,
                    kernel_regularizer=kernel_regularizer,
                    kernel_initializer=glorot_uniform(random.seed(seed)),
                    name='dense 3') (dense 2)
    dense_4 = Dense(units=4,
                    activation=activation,
                    kernel_regularizer=kernel_regularizer,
                    kernel initializer=glorot uniform(random.seed(seed)),
                    name='dense 4') (dense 3)
    dense 4 flatten = Flatten(name='dense 4 flatten')(dense 4)
    # add a regression layer
    output tensor = Dense(units=1,
                          activation=None,
```

dense 2 = Dense(units=16,

```
name='output_tensor') (dense_4_flatten)
# specify input and output
return Model(input tensor, output tensor)
```

NN model with 5 Dense layers

```
def nn5(input shape 0, input shape 1, activation, seed,
kernel regularizer):
    input tensor = Input(shape=(input shape 0, input shape 1),
                         dtype='float32',
                         name='input tensor')
    dense 1 = Dense(units=32,
                    activation=activation,
                    kernel regularizer=kernel regularizer,
                    kernel initializer=glorot uniform(random.seed(seed)),
                    name='dense 1') (input tensor)
    dense 2 = Dense(units=16,
                    activation=activation,
                    kernel regularizer=kernel regularizer,
                    kernel initializer=glorot uniform(random.seed(seed)),
                    name='dense 2') (dense 1)
    dense 3 = Dense(units=8,
                    activation=activation,
                    kernel regularizer=kernel regularizer,
                    kernel initializer=glorot uniform(random.seed(seed)),
                    name='dense 3') (dense 2)
    dense 4 = Dense(units=4,
                    activation=activation,
                    kernel regularizer=kernel regularizer,
                    kernel initializer=glorot_uniform(random.seed(seed)),
                    name='dense 4') (dense 3)
    dense 5 = Dense(units=4,
                    activation=activation,
                    kernel regularizer=kernel regularizer,
                    kernel_initializer=glorot_uniform(random.seed(seed)),
                    name='dense_5') (dense_4)
    dense_5_flatten = Flatten(name='dense_5_flatten')(dense_5)
    # add a regression layer
    output tensor = Dense(units=1,
                          activation=None,
                          name='output tensor') (dense 5 flatten)
    # specify input and output
    return Model(input tensor, output tensor)
```

Define a class for Neural Network

```
class StocksNN:
    def __init__(self, features_file_path, period, lookback, step,
features, target):
    """
```

```
:param features file path: path to the csv file that includes the
features
       :param period: daily or weekly
       :param lookback: number of time-steps in the past to use for
predicting the next time-step
       :param step: number of steps for sampling
       :param features: a list of the features to use in the model
       :param target: return or excess return
       self.period = period
       self.lookback = lookback
       self.step = step
       self.target = target
       # make sure there's a sub directory to save results to
       self.save in = os.path.join(os.getcwd(), 'results',
f'{self.period} features')
       if not os.path.exists(self.save in):
           os.makedirs(self.save in)
       # concatenate a unique string for this model
       file name = os.path.basename(features file path)
       file root, file ext = os.path.splitext(file name)
       self.unique string = '_'.join(file_root.lower().split())
       # ----- READ DATA
       # read data and choose only features wanted for this model from the
multi-indexed header
       self.df = pd.read csv(features file path, index col=[0], header=[0,
1], parse dates=True)
       self.df = self.df[features].droplevel(level=0, axis=1)
       # drop either return or excess return
       if self.target == 'return':
           self.df = self.df.drop('excess return', axis=1)
       elif self.target == 'excess return':
           self.df = self.df.drop('return', axis=1)
       # ----- SELECT DATA
INDICES FOR SPLITTING
       # split data 80/20 for training/testing without shuffling to keep
time order
       # keep target as a feature in data
       # the initial training data will be split later into n splits
       self.X train init, self.X test init = train test split(self.df,
test size=0.20, shuffle=False)
       # select a number of splits equals to the number of years in
training data
       self.n split = len(set(self.X train init.index.year))
       # ----- DATA SCALING
       # fit scaler to training data only (including target as it will be
a feature as well)
       # select target
       self.scaler = StandardScaler()
       self.X train init = self.scaler.fit transform(self.X train init)
       self.y train init = self.X train init[:, -1]
```

```
# transform test data (including target as it will be a feature as
well)
       # select target
       self.X test = self.scaler.transform(self.X test init)
       self.y test = self.X test[:, -1]
   # ----- BUILD & COMPILE
MODEL
   def build_and_compile_model(self, model_function, model_name,
activation, optimizer, seed, kernel_regularizer):
       self.input_shape_0 = self.lookback // self.step
       self.input_shape_1 = self.X_train_init.shape[1]
       self.model = model function(self.input shape 0, self.input shape 1,
activation, seed, kernel regularizer)
       self.model.compile(optimizer=optimizer,
                         loss='mse')
       # append unique string
       self.unique string =
f'{self.unique string} {model name} {round(k.eval(self.model.optimizer.lr),
3) } '
    # ----- WALK FORWARD
VALIDATION
   def walk forward validation(self, batch size, epochs, n splits=None):
       self.batch size = batch size
       # if n splits is not provided, use number of years in training data
as above
       if n splits is None:
           n splits = self.n split
       # split initial training data for training/validation
       # forward walking validation
       tscv = TimeSeriesSplit(n splits=n splits)
       eval scores = list()
       for train index, val index in tscv.split(self.X train init):
           X train, X val = self.X train init[train index],
self.X train init[val index]
           y train, y val = self.y train init[train index],
self.y train init[val index]
           # ----- CREATE GENERATORS
           # generator output is a list of batches
           # each batch is a tuple of (samples, targets)
           train gen = TimeseriesGenerator(X train,
                                         y train,
                                         length=self.lookback,
                                         sampling rate=self.step,
                                         stride=1,
                                         batch size=self.batch size)
           val gen = TimeseriesGenerator(X val,
                                        length=self.lookback,
                                        sampling rate=self.step,
                                        stride=1,
                                        batch size=self.batch size)
```

```
# ----- FIT & EVALUATE
            # interrupt training when improvement stops
            # continually save the model during training (only current
best)
            # reduce learning rate when the validation loss has stopped
improving
            callbacks list = [EarlyStopping(monitor='val loss',
                                            patience=5),
ModelCheckpoint(filepath=os.path.join(self.save in,
f'{self.unique string}.h5'),
                                              monitor='val loss',
                                              save best only=True),
                              ReduceLROnPlateau (monitor='val loss',
                                                factor=0.1,
                                                patience=10)
            self.model.fit generator(train gen,
                                     steps per epoch=len(train gen),
                                     epochs=epochs,
                                     validation data=val gen,
                                     validation_steps=len(val gen),
                                     callbacks=callbacks list,
                                     verbose=False)
            # get eval metric and append to list
            eval score = self.model.evaluate generator(val gen,
steps=len(val gen))
            eval scores.append(eval score)
        # average evaluation scores
        return pd.Series(np.mean(eval scores), index=['mse'])
    def predict on test data nn(self):
        self.test gen = TimeseriesGenerator(self.X test,
                                            self.y test,
                                            length=self.lookback,
                                            sampling rate=self.step,
                                            stride=1,
                                            batch size=self.batch size)
        self.predictions = self.model.predict generator(self.test gen,
steps=len(self.test gen))
        # inverse transform predictions to un-normalize
        # first, repeat as many times as the transformer expects
        self.predictions = np.repeat(self.predictions, self.df.shape[1],
axis=1)
        self.predictions =
self.scaler.inverse transform(self.predictions)[:, -1]
        # get test data using the generator to get corresponding targets
        # each batch is a tuple of numpy arrays (samples, targets), get the
targets as a list comprehension
        # convert list of numpy arrays into a numpy vector, reshape into 1D
        self.true = np.concatenate([batch[1] for batch in self.test gen],
axis=0).reshape(-1, 1)
```

```
# inverse transform targets to un-normalize
        # first, repeat as many times as the transformer expects
        self.true = np.repeat(self.true, self.df.shape[1], axis=1)
        self.true = self.scaler.inverse transform(self.true)[:, -1]
        # index was lost when scaling. Get the index from self.X test init
        # however, we will loose few of the last samples in self.test gen.
        # use the length of self.true to get the exact number of test
samples used
        return pd.DataFrame({'true': self.true, 'predictions':
self.predictions},
index=self.X test init.index[:self.true.shape[0]])
    def predict on test data lewellen(self, n splits=None):
        df size factors = None
        # if n splits is not provided, use number of years in training data
as above
        if n splits is None:
            n splits = self.n split
        if self.period == 'daily':
            df size factors = pd.read csv(os.path.join(os.getcwd(), 'data',
'Daily F F Research Data Factors.csv'),
                                          index col=0,
                                          parse dates=True)
        elif self.period == 'weekly':
            df size factors = pd.read csv(os.path.join(os.getcwd(), 'data',
'Weekly F F Research Data Factors.csv'),
                                          index col=0,
parse dates=True).resample('W').last()
        # select only indexes in stocks
        df size factors =
df size factors[df size factors.index.isin(self.df.index)]
        # select target and shift by 1 time-step and drop first row
        # concatenate features and remove first row
        y = self.df[self.target].shift(self.lookback).dropna()
        X = pd.concat([df size factors['SMB'],
self.df['df book to market'], self.df['momentum 1M']],
                      axis=1, join='inner').iloc[self.lookback:]
        # rows should have the same order as the first train test split
        X_train, X_test, y_train, true_lewellen = train test split(X, y,
test size=0.20, shuffle=False)
        # fit scaler to training data only
        # transform test data
        scaler = StandardScaler()
        X train = scaler.fit transform(X train)
        X test = scaler.transform(X test)
        # create a Huber regressor
        model = HuberRegressor(alpha=0.0001)
        # split initial training data for training/validation
```

```
# forward walking validation
        tscv = TimeSeriesSplit(n splits=n splits)
        eval scores = list()
        for train index, val index in tscv.split(self.X train init):
            X train, X val = self.X train init[train index],
self.X train \overline{i}nit[val \overline{i}ndex]
            y_train, y_val = self.y_train_init[train_index],
self.y train init[val index]
            # fit Huber regressor
            model = HuberRegressor(alpha=0.0001)
            model.fit(X_train, y_train)
        # predict on test data
        predictions lewellen = model.predict(X test)
        # create df with all time-steps. Select only indexes that are in
the self.X test init
        df = pd.DataFrame({'true': true lewellen, 'predictions':
predictions lewellen})
        return
df[df.index.isin(self.X test init.index[:self.true.shape[0]])]
Define a class for XGBoost
class StocksXGB:
```

```
def __init__(self, features_file_path, period, lookback, step,
features, target):
       :param features file path: path to the csv file that includes the
features
        :param period: daily or weekly
        :param lookback: number of time-steps in the past to use for
predicting the next time-step
        :param step: number of steps for sampling
        :param features: a list of the features to use in the model
        :param target: return or excess_return
       self.period = period
        self.lookback = lookback
        self.step = step
        self.target = target
        # make sure there's a sub directory to save results to
        self.save in = os.path.join(os.getcwd(), 'results',
f'{self.period} features')
        if not os.path.exists(self.save in):
           os.makedirs(self.save in)
        # concatenate a unique string for this model
        file name = os.path.basename(features file path)
        file root, file ext = os.path.splitext(file name)
        self.unique string = ' '.join(file root.lower().split())
        # ----- READ DATA
        # read data and choose only features wanted for this model from the
multi-indexed header
```

```
self.df = pd.read csv(features file path, index col=[0], header=[0,
1], parse dates=True)
       self.df = self.df[features].droplevel(level=0, axis=1)
       # drop either return or excess return
       if self.target == 'return':
           self.df = self.df.drop('excess return', axis=1)
       elif self.target == 'excess return':
           self.df = self.df.drop('return', axis=1)
       # ----- FEATURES
EXTRACTIONS
       # extract features to infer time
       # this's important in xgb as it selects samples randomly so time-
order is lost
       self.df['month'] = self.df.index.month
       self.df['quarter'] = self.df.index.quarter
       self.df['year'] = self.df.index.year
       if self.period == 'daily':
           self.df['dayofyear'] = self.df.index.dayofyear
           self.df['dayofmonth'] = self.df.index.day
       elif self.period == 'weekly':
           self.df['weekofyear'] = self.df.index.weekofyear
       # shift return by lookback so the target is not the current return
but in the future
       # this is similar to what the keras generator does for the NN model
       # the old return will be used as a normal feature now (similar to
the NN model as well)
       self.df['return future'] =
self.df[self.target].shift(self.lookback)
       # split data 80/20 for training/testing without shuffling to keep
time order
       # keep target as a feature in data
       # the initial training data will be split later into n splits
       self.X train init, self.X test init =
train_test_split(self.df.dropna(), test_size=0.20, shuffle=False)
       # select a number of splits equals to the number of years in
training data
       self.n split = len(set(self.X train init.index.year))
       # trees don't require scaling or centering of data
       self.y train init = self.X train init['return future'].values
       self.X train init = self.X train init.drop(['return future'],
axis=1).values
       self.y test = self.X test init['return future'].values
       self.X test = self.X test init.drop(['return future'],
axis=1).values
   # ----- BUILD & COMPILE
MODEL
   def build model (self, objective, max depth, learning rate,
n estimators, seed):
       self.max depth = max depth
       self.learning rate = learning rate
       self.n estimators = n estimators
```

```
self.xgb model = xgb.XGBRegressor(objective=objective,
                                         max depth=self.max depth,
                                         learning rate=self.learning rate,
                                         n estimators=self.n estimators,
                                         random state=seed)
        # append unique string
       self.unique string =
f"{self.unique_string}_xgb_{self.max_depth}_{round(self.learning_rate,
3)} {self.n estimators}"
VALIDATION
   def walk forward validation(self, n splits=None):
        # if n splits is not provided, use number of years in training data
as above
       if n splits is None:
           n splits = self.n split
        # split initial training data for training/validation
        # forward walking validation
       tscv = TimeSeriesSplit(n splits=n splits)
       eval scores = list()
       for train index, val index in tscv.split(self.X train init):
           X train, X val = self.X train init[train index],
self.X train init[val index]
           y train, y val = self.y train init[train index],
self.y train init[val index]
           # print(f'X train: {len(X train)}', f'X val: {len(X val)}')
            # ------ FIT & EVALUATE
           self.xgb model.fit(X train,
                              y train.ravel(),
                              eval set=[(X val, y val)],
                              eval metric=['rmse'],
                              verbose=False)
            # get the last tree eval metrics and append to list
            # square rmse to get mse
           eval score =
self.xgb model.evals result ['validation 0']['rmse'][-1] ** 2
           eval scores.append(eval score)
            # average evaluation scores
           return pd.Series(np.mean(eval scores), index=['mse'])
   def predict on test data(self):
       predictions = self.xgb model.predict(self.X test)
        # index was lost when scaling. Get the index from self.X test init
       return pd.DataFrame({'true': self.y_test, 'predictions':
predictions}, index=self.X test init.index)
```

Test Results: scores and plots

Calculate predicted vs true scores for test data

```
def calc_predictions_avg_test_scores(true, predictions):
```

Plot predicted vs true returns for test data

```
def plot predictions avg stock(df models avg true best,
df models avg pre best, df benchmarks, save in, unique string):
    Plot the averaged predicted returns vs true for model, and lewellen per
stock
    :param df predictions avg: Pandas DataFrame
    :param save in: directory to save figure
    :param unique string: to add to the figure name
    :return:
    start time = df models avg true best.index[0]
    end time = df models avg true best.index[-1]
    stocks = set(df_models_avg_true_best.columns.get_level_values(1))
    custom lines = [Line2D([0], [0], color='b', lw=2),
                    Line2D([0], [0], color='r', lw=2)]
    # loop over unique stocks found in the second level
    for stock in stocks:
        fig, ax = plt.subplots(2, 2, figsize=(12, 6))
        fig.suptitle(f'{stock} avg. Predictions', fontsize=12)
        ax[0, 0].plot(df models avg true best['NN', stock], 'b',
label='Actual')
       ax[0, 0].plot(df models avg pre best['NN', stock], 'r',
label='Predicted')
        ax[0, 0].set_xticks([ax[0, 0].get xticks()[0], ax[0,
0].get_xticks()[-1]], minor=False)
       ax[0, 0].set_xticklabels([start_time.strftime("%b %Y"),
end time.strftime("%b %Y")])
        ax[0, 0].set_title(f"NN, lr={df_models avg true best['NN',
stock].columns.values}", fontsize=10)
        ax[0, 1].plot(df models avg true best['XGB', stock], 'b',
label='Actual')
        ax[0, 1].plot(df models avg pre best['XGB', stock], 'r',
label='Predicted')
        ax[0, 1].set xticks([ax[0, 1].get xticks()[0], ax[0, 1].get xticks()[0]])
1].get xticks()[-1]], minor=False)
        ax[0, 1].set xticklabels([start time.strftime("%b %Y"),
end time.strftime("%b %Y")])
        ax[0, 1].set title(f"XGBoost, lr={df models avg true best['XGB',
stock].columns.values}", fontsize=10)
```

```
ax[1, 0].plot(df benchmarks['lewellen', stock, 'true'], 'b',
label='Actual')
       ax[1, 0].plot(df benchmarks['lewellen', stock, 'predictions'], 'r',
label='Predicted')
       ax[1, 0].set xticks([ax[1, 0].get xticks()[0], ax[1,
0].get xticks()[-1]], minor=False)
       ax[1, 0].set xticklabels([start time.strftime("%b %Y"),
end time.strftime("%b %Y")])
       ax[1, 0].set title('Lewellen', fontsize=10)
        ax[1, 1].legend(custom lines, ['Actual', 'Predicted'],
loc='center')
        ax[1, 1].axis('off')
        plt.savefig(os.path.join(save in,
f'{unique string} predictions avg {stock}.png'),
                    orientation='portrait',
                    format='png')
       plt.close()
def plot predictions avg all stocks (df models avg true best,
df models avg pre best, df benchmarks, save in, unique string):
    Plot the averaged predicted returns vs true for model, and lewellen for
all stocks
    :param df predictions avg: Pandas DataFrame
    :param save in: directory to save figure
    :param unique string: to add to the figure name
    :return:
    start time = df models avg true best.index[0]
    end time = df models avg true best.index[-1]
    stocks = set(df models avg true best.columns.get level values(1))
   fig, ax = plt.subplots(2, 2, figsize=(12, 6))
   fig.suptitle('Avg. Predictions all Stocks', fontsize=12)
    ax[0, 0].set title('NN', fontsize=10)
    ax[0, 1].set title('XGBoost', fontsize=10)
    ax[1, 0].set title('Lewellen', fontsize=10)
    # loop over unique stocks found in the second level
    for stock in stocks:
        ax[0, 0].plot(df models avg true best['NN', stock], 'b',
label='Actual')
        ax[0, 0].plot(df models avg pre best['NN', stock], 'r',
label='Predicted')
        ax[0, 1].plot(df models avg true best['XGB', stock], 'b',
label='Actual')
        ax[0, 1].plot(df models_avg_pre_best['XGB', stock], 'r',
label='Predicted')
        ax[1, 0].plot(df benchmarks['lewellen', stock, 'true'], 'b',
label='Actual')
        ax[1, 0].plot(df benchmarks['lewellen', stock, 'predictions'], 'r',
label='Predicted')
    ax[0, 0].set xticks([ax[0, 0].get xticks()[0], ax[0, 0].get xticks()[-
1]], minor=False)
```

```
ax[0, 0].set xticklabels([start time.strftime("%b %Y"),
end time.strftime("%b %Y")])
    ax[1, 0].set xticks([ax[1, 0].get xticks()[0], ax[1, 0].get xticks()[-
1]], minor=False)
    ax[1, 0].set xticklabels([start time.strftime("%b %Y"),
end time.strftime("%b %Y")])
   ax[0, 1].set_xticks([ax[0, 1].get_xticks()[0], ax[0, 1].get_xticks()[-
1]], minor=False)
    ax[0, 1].set xticklabels([start time.strftime("%b %Y"),
end time.strftime("%b %Y")])
    # add fake line to add one legend only
    custom lines = [Line2D([0], [0], color='b', lw=2),
                    Line2D([0], [0], color='r', lw=2)]
    ax[1, 1].legend(custom lines, ['Actual', 'Predicted'], loc='center')
    ax[1, 1].axis('off')
   plt.savefig(os.path.join(save in,
f'{unique string} predictions avg all stocks.png'),
                orientation='portrait',
                format='png')
    plt.close()
```

Main script

- Try 2 seeds and 3 learning rates (i.e. 6 combinations)
- For each combination:
 - o Fit nn model (lstm1, nn1, nn2, nn3, nn4, nn5)
 - o Get walk forward validation evaluation metrics
 - Make predictions on test data
 - o Fit XGBoost model
 - o Get walk forward validation evaluation metrics
 - Make predictions on test data
 - Make predictions on test data using Lewellen benchmark

```
model name = 'nn5'
activation = activations.relu
kernel regularizer = regularizers.11(0.001)
batch size = 32
epochs = 100
unique string = f'{model name} relu adam {epochs}'
# ----- XGB ARGS
objective = 'reg:squarederror'
max depth = 2
n = 1000
unique string = f"{unique string} xgb {max depth} {n estimators}"
# -----
  -----
# create empty MultiIndexed DataFrames to save all results for all stocks
df models = pd.DataFrame(columns=pd.MultiIndex(levels=[[], [], [], []],
                                         codes=[[], [], [], [], []],
                                         names=['model', 'stock',
'lr', 'seed', 'true pre']))
df benchmarks = pd.DataFrame(columns=pd.MultiIndex(levels=[[], []],
                                             codes=[[], [], []],
                                             names=['benchmark',
'stock', 'true pre']))
df models eval metrics = pd.DataFrame(columns=pd.MultiIndex(levels=[[], [],
[]],
                                                     codes=[[], [],
[]],
                                                     names=['data',
'stock', 'lr']))
df models avg best all stocks = pd.DataFrame()
# loop over each stock
# for NN and XGB, loop over each learning rate and seed
# for lewellen, no need to loop over learning rates and seeds
# train a new model, get predictions, then save results in the master
DataFrame
for stocks csv file full path in tqdm(stocks csv files full path list):
       file name = os.path.basename(stocks csv file full path)
       file root, = os.path.splitext(file name)
       print(f'\nProcessing {file name}...')
       # loop over learning rates
       for learning rate in tqdm(learning rates):
          print(f'\nlearning rate {learning_rate}...')
          optimizer = optimizers.adam(lr=learning rate)
          # loop over seeds
          for seed in tqdm(seeds):
              print(f'\nseed {seed}...')
              # ----- NN MODEL ---
_____
              print('\nFitting NN model...')
              # create NN object
              stock nn = StocksNN(stocks csv file full path,
                                period,
                                lookback,
```

```
step,
                                  features,
                                  'excess return')
               stock_nn.build_and_compile_model(model function,
                                              model name,
                                              activation,
                                              optimizer,
                                              seed,
                                              kernel regularizer)
               df models eval metrics['NN', f'{file root}', learning rate]
= stock_nn.walk_forward_validation(
                  batch size, epochs)
               df nn predictions = stock nn.predict on test data nn()
               df models['NN', f'{file root}', learning rate, seed,
'true'] = df_nn_predictions['true']
              df models['NN', f'{file root}', learning rate, seed,
'predictions'] = df nn predictions['predictions']
               # ------ XGB MODEL --
_____
              print('\nFitting XGB model...')
               # create XGB object
               stock xgb = StocksXGB(stocks csv file full path,
                                   period,
                                   lookback,
                                   step,
                                   features,
                                   'excess return')
               stock xgb.build model (objective,
                                   max depth,
                                   learning rate,
                                   n estimators,
                                   seed)
               df models eval metrics['XGB', f'{file root}',
learning_rate] = stock_xgb.walk_forward_validation()
               df xgb predictions = stock xgb.predict on test data()
               df models['XGB', f'{file root}', learning rate, seed,
'true'] = df xgb predictions['true']
               df models['XGB', f'{file root}', learning rate, seed,
'predictions'] = df xgb predictions[
                  'predictions']
       # ----- LEWELLEN
       print('Predicting lewellen...')
       df lewellen pre = stock_nn.predict_on_test_data_lewellen()
       df benchmarks['lewellen', f'{file root}', 'true'] =
df lewellen pre['true']
       df benchmarks['lewellen', f'{file root}', 'predictions'] =
df lewellen pre['predictions']
```

- Average predictions across seeds
- Choose learning rate with the best evaluation scores on the validation set
- Calculate evaluation scores on the test set (using chosen learning rate)
- Save as csv files
- Plot results

```
# ------ BENCHMARK ------
_____
# save predictions
df benchmarks.to csv(os.path.join(save in,
f'{unique string} benchmarks.csv'))
# calculate and save test scores
df benchmarks scores = df benchmarks.dropna().groupby(level=[0, 1],
axis=1).apply(
   lambda s: calc_predictions_avg_test_scores(s.iloc[:, 0], s.iloc[:, 1]))
df_benchmarks_scores.to csv(os.path.join(save in,
f'{unique_string}_benchmarks_scores.csv'))
# ----- MODELS ------
# save each stock predictions
df models = df models.dropna(axis=0)
df models.to csv(os.path.join(save in, f'{unique string} models.csv'))
# average per stock predictions across all seeds
df models avg = df models.groupby(level=[0, 1, 2, 4], axis=1).mean()
df models avg.to csv(os.path.join(save in,
f'{unique string} models avg.csv'))
# calculate test scores per stock averaged predictions
df models avg scores = df_models_avg.groupby(level=[0, 1, 2],
axis=1).apply(
   lambda s: calc predictions avg test scores(s.iloc[:, 0], s.iloc[:, 1]))
df models avg scores.to csv(os.path.join(save in,
f'{unique string} models avg scores.csv'))
# select best learning rate per stock (minimum averaged 'mse' on validation
df models eval metrics best = df models eval metrics[
   df models eval metrics.groupby(level=[0, 1],
axis=1).idxmin().loc['mse']]
df models eval metrics best.to csv(os.path.join(save in,
f'{unique string} models eval metrics best.csv'))
# select metrics for best learning rate per stock (using previous best
learning rates on validation)
df models avg scores best =
df models avg scores[df models eval metrics best.columns]
df models avg scores best.to csv(os.path.join(save in,
f'{unique string} models avg scores best.csv'))
# select true/pre values for best learning rate per stock (using previous
best learning rates on validation)
# separate true from predictions to get rid of the forth level
df models avg true = df models avg.loc[:, (slice(None), slice(None),
slice(None), 'true')]
df models avg true.columns = df models avg true.columns.droplevel(3)
df models avg true best =
df models avg true[df models eval metrics best.columns]
df models avg true best.to csv(os.path.join(save in,
f'{unique string} models avg true best.csv'))
df models avg pre = df models avg.loc[:, (slice(None), slice(None),
slice(None), 'predictions')]
df models avg pre.columns = df models avg pre.columns.droplevel(3)
```

```
df models avg pre best =
df models avg pre[df models eval metrics best.columns]
df models avg pre best.to csv(os.path.join(save in,
f'{unique string} models avg pre best.csv'))
# plot per stock
plot predictions avg stock(df models avg true best,
                           df models avg pre best,
                           df benchmarks,
                           save in,
                           unique string)
# plot all stocks
plot predictions avg all stocks(df models avg true best,
                           df models avg pre best,
                           df benchmarks,
                           save in,
                           unique string)
# concatenate averaged predictions for all stocks vertically
# get rid of the third level
df_models_avg_true_best.columns =
df models avg true best.columns.droplevel(2)
df models avg true best all stocks =
df_models_avg_true_best.groupby(level=[0], axis=1).apply(
    lambda df: df.values.flatten())
df models avg pre best.columns =
df models avg pre best.columns.droplevel(2)
df models avg pre best all stocks =
df models avg pre best.groupby(level=[0], axis=1).apply(
    lambda df: df.values.flatten())
df models avg best all stocks['NN'] = calc predictions avg test scores(
    df models avg true best all stocks.loc['NN'],
    df models avg pre best all stocks.loc['NN'])
df models avg best all stocks['XGB'] = calc predictions avg test scores(
    df models avg true best all stocks.loc['XGB'],
    df models avg pre best all stocks.loc['XGB'])
df benchmarks all stocks = df benchmarks.groupby(level=[0, 2],
axis=1).apply(
    lambda df: df.values.flatten())
df models avg best all stocks['lewellen'] =
calc predictions avg test scores(
    df benchmarks all stocks.loc['lewellen', 'true'],
    df benchmarks all stocks.loc['lewellen', 'predictions'])
df models avg best all stocks.to csv(os.path.join(save in,
f'{unique string} models avg best all stocks.csv'))
```