

CPE 352 Data Science

1 – Data Science Concepts

Asst. Prof. Dr. Santitham Prom-on

Department of Computer Engineering, Faculty of Engineering King Mongkut's University of Technology Thonburi

Learning Outcome

- เข้าใจกระบวนการด้านวิทยาศาสตร์ข้อมูลและบทบาทของนักวิทยาศาสตร์ข้อมูล (PLO 1F, 1E)
- ใช้ Python ในการจัดการข้อมูลเพื่อเตรียมสำหรับการวิเคราะห์ (PLO 1C)
- สร้างการแสดงผลข้อมูลที่มีความหมายและตีความเพื่อใช้ในการตอบคำถาม (PLO 2B, 2C)
- ใช้วิธีการทางคณิตศาสตร์ สถิติ และการเรียนรู้ของเครื่องเพื่อแก้ปัญหาด้านข้อมูล (PLO 1A, 1B)

Grading

การสอบครั้งที่ 1 (Examination 1)	20%
การสอบครั้งที่ 2 (Examination 2)	20%
การสอบปลายภาค (Final Examination)	20%
โครงงาน (Project)	20%
การปฏิบัติการ (Lab)	20%

Week	Date	Topics	Activities
1	8 Aug	Data science concepts	Lecture
2	15 Aug	No class (Python programming self review)	
3	22 Aug	Tabular data and EDA	Lecture, lab
4	29 Aug	Data preparation	Lecture, lab
5	5 Sep	Network data	Lecture, lab
6	9-13 Sep	Examination 1	
7	19 Sep	Textual data	Lecture, lab
8	26 Sep	Signal and image data	Lecture, lab
9	3 Oct	Linear regression	Lecture, lab
10	10 Oct	Classification with decision tree	Lecture, lab
11	17 Oct	Ensemble learning	Lecture, lab
12	21-29 Oct	Examination 2	
13	31 Oct	Clustering	Lecture, lab
14	7 Nov	No class	
15	14 Nov	Association rule mining	Lecture, lab
16	21 Nov	Data analytic thinking	Lecture
17	28 Nov	Project presentation	Project presentation
18	2-13 Dec	Final examination	

Introduction to Data Science

Section 1

Customer journey

Customer journey data

From the beginning of recorded time until 2003, we created

5 exabytes (5 billion of data.

In 2011 the same amount was created every two days.

By 2013, it's expected that the time will shrink to 10 minutes.

Every hour, we create enough Internet traffic to fill

7 billion DVDs.

Side by side, that's that's seven times the height of Everest.

DATA J DECISION

DIKW (D) Pyramid

From descriptive ... to prescriptive

Analytics Capabilities Framework

Descriptive (Reactive)

Diagnostic (Reactive)

Predictive (Proactive)

Prescriptive (Proactive)

What happen? What is happening?

Why did it happen?

What will happen?

What should I do? Why should I do it?

- Business reporting
- Dashboards
- Scorecards
- Data warehousing

- Behavior analysis
- Cause and effect analysis
- Statistics

- Data mining
- Machine learning
- Forecasting
- Data reduction

- Recommender
- Optimization
- Simulation
- Expert systems

Well-defined business problems and opportunities

Cause and effect of changes in business activities

Accurate projections of the future states and conditions

Best possible business decision and transaction

Data-driven decision making

DDD = practice of basing decision on the analysis of data, rather than intuition

Principles and techniques for understanding phenomena via the analysis of data.

Accessing and processing of massive-scale data flexibly and efficiently with Big Data technologies

Data analytics: definition

The science

Extracting useful knowledge from data to solve business problems can be treated systematically by following a process with reasonably well-defined stages.

The technology

From a large mass of data, IT can be used to find informative descriptive attributes of entities of interest

Steps in data science Cross-Industry Standard Process for Data Mining

Churn prediction Problem

Churn

Drop in Revenue

Churn prediction Timeline

PROBLEM: we know very little about customers

Churn prediction Data collection

Churn prediction Model

Churn prediction results

Customer Value

→ I

Prevention

Churn

Risk Segment, High Churn Probability

Model

Moderate Segment, Medium Churn Probability

Normal Segment, Low Churn Probability

Churn prediction Outcome and usage

Outcome

Able to identify potential churners

Usage

• Offer potential churners with retention campaigns

Data upsell Problem

Data upsell Analytic objective

What product to offer? And to whom?

Data upsell Data collection

X Days

Data upsell Modeling

Each model is a binary classification model to predict product propensity.

Data upsell Outcome and usage

Usage

- Connect with the right channel to make automatic offers
- Know which products that each customer are likely to purchase

Outcome

• Increase revenue through automatic upsell

Credit risk score

Application score (A-score) เพื่ออนุมัติสินเชื่อใหม่

หากคะแนนผ่านเกณฑ์ขั้นต่ำ (Cut-off score) และไม่ขัดกับ นโยบายสินเชื่อ (Product policy)

บันทึกข้อมูลในฐานข้อมูลภายใน

ฐานข้อมูลพฤติกรรมการชำระหนี้/ การใช้วงเงิน

NCB หมายถึง บริษัทข้อมูลเครคิตแห่งชาติ

Behaviour score (B-score) เพื่อติดตามสินเชื่อ

- ลูกหนี้รายย่อยไม่มีงบการเงินเหมือนลูกหนี้ นิติบุคคลจึงอาจไม่มีข้อมูลแหล่งที่มาของ รายได้ที่เป็นปัจจุบัน
- จึงใช้ข้อมูล "พฤติกรรม" เพื่อวัด ความสามารถในการชำระหนึ่

- ใช้คะแนนประกอบการต่ออายุ/ วงเงินสินเชื่อ กำหนดอัตรา ดอกเบี้ย หรืออนุมัติสินเชื่อใหม่ (Product cross-selling)
- คะแนนต่างกัน Action ต่างกัน

Credit risk score Data collection

1.2 การจัดเก็บข้อมูล: เตรียมฐานข้อมูลปัจจัยบ่งชี้ความน่าจะเป็นในการชำระหนี้คืน

ข้อมูลผู้ขอสินเชื่อ (Demography) มาจากใบคำขอสินเชื่อ

- เพศ อายุ การศึกษา
- อาชีพ / ประสบการณ์ทำงาน
- รายได้ปัจจุบัน

ข้อมูลประวัติการชำระหนี้ (Payment behavior)

- จำนวนครั้งที่ค้างชำระ 12 เดือนล่าสุด
- % การใช้วงเงินเฉลี่ยใน 3 เดือน
- ระยะเวลาไม่ชำระหนี้ใน 6 เดือน
- จำนวนบัตรเครดิตที่เปิดใหม่ใน 6 เดือน
- ยอดหนี้คงค้างทั้งหมด / รายได้
- จำนวนครั้งที่เช็คข้อมูล NCB ในอดีต 12 เดือน

เงื่อนไขการกู้ยืม

- สัดส่วน down payment
- ระยะเวลาการกู้ยืม

ดัวอย่า				
ID	Gender	Home		
RB07 000 001	F	ВКК		
DG0 66	М	Chiang Mai		

ข้อควรระวัง!

ข้อมูลที่นำมาใช้จัดทำ Credit scoring ต้องไม่สามารถระบุ ตัวตนของเจ้าของข้อมูลได้

Credit risk score Timeline

Application

Pre-Application Data

Bad with in 1 Year

Credit risk score Model development

Credit risk score Usage and outcome

ธนาคารพาณิชย์ และสถาบันการเงินต่าง ๆ จึงใช้ Credit Scoring เป็นเครื่องมือประกอบ การวิเคราะห์สินเชื่อ และอนุมัติสินเชื่อ โดยเฉพาะสินเชื่อรายย่อย เช่น สินเชื่อ บัตรเครดิต สินเชื่อบุคคล สินเชื่อบ้าน สินเชื่อเช่าซื้อรถยนต์ เป็นต้น

Use Case: Product Recommendation

Use Case: Customer Preference

- Zarola derives customer preference and styles based on their transactions
- It optimizes market strategies based on each user profile.

ZALORA

Thank you

Question?

