Análise de Regressão na Produtividade de Soja

Arthur Hintz 11 jul 2024

- Resumo
- Introdução
- Dados
- Análise Descritiva
- Ajustes dos Dados
- Modelo Ajustado
- Analise de diagnóstico
 - Alavancagem
 - DFFIT
 - Distância de Cook
 - Resíduo
 - Envelope Simulado
- Suposições do modelo
 - Teste RESET
 - Teste t para a média dos errros
 - Teste de Bressch-Pagan
 - Teste de Durbin-Watson
 - Fatores de Inflação de Variância
 - Teste Jarque-Bera
- Predição
- Conclusão
- Trabalhos futuros

/ Resumo

O trabalho tem como objetivo realizar uma análise de regressão linear múltipla para estimar a produtividade de soja em (Kg/ha) com base nos principais fatores que a influenciam. A análise será dividida em quatro etapas principais: análise descritiva, ajuste do modelo, diagnóstico de influência e teste das suposições do modelo.

/ Introdução

Segundo a Confederação da Agricultura e Pecuária do Brasil (CNA), o Produto Interno Bruto (PIB) do Agronegócio corresponde a 23,8% em 2023, sendo a soja a commodity de maior valor de produção no Brasil, de acordo com dados divulgados pelo IBGE, link de acesso. Na produção de soja, muitos fatores influenciam o resultado, sendo vários deles incontroláveis, como fatores climáticos. Este ano,

por exemplo, houve um aumento de 70,83% na produtividade em relação ao ano anterior, provavelmente relacionado ao volume de precipitação.

Dessa forma, torna-se necessário estimar a produtividade da soja e verificar quais são as principais variáveis que a influenciam, permitindo realizar predições da safra e estimar o potencial de produção a nível nacional.

Inicialmente, será realizada uma análise descritiva dos dados para compreender as variáveis envolvidas e suas inter-relações. Em seguida, o modelo de regressão linear múltipla será ajustado para identificar os fatores mais significativos que afetam a produtividade da soja. O diagnóstico de influência ajudará a identificar pontos de dados que têm um impacto desproporcional no ajuste do modelo, possibilitando a correção ou análise adicional desses pontos. Finalmente, as suposições do modelo de regressão linear serão testadas para garantir a validade das conclusões obtidas.

Os dados utilizados neste estudo foram disponibilizados pela empresa Crops Team e foram coletados a partir de experimentos com cultivares de soja realizados em diversos locais do estado do Rio Grande do Sul durante as safras de 2021/2022 e 2022/2023.

Este estudo é importante porque permite identificar os principais determinantes da produtividade da soja, fornecendo insights valiosos para a tomada de decisões agrícolas e a otimização dos rendimentos das cultivares. Ao compreender melhor os fatores que influenciam a produtividade, produtores e pesquisadores podem implementar práticas agrícolas mais eficazes.

/ Dados

O banco de dados, inicialmente, continha informações dos 4 blocos de ensaios para cada cultivar. Posteriormente, foi calculada a média dos blocos por cultivar, resultando em 1513 observações e 33 variáveis. Entretanto, após o precesso de filtragens e tratamento de valores faltantes, esses números foram reduzidos. As variáveis do banco de dados incluem informações sobre as cultivares, características do local, dados climáticos durante o período dos experimentos e componentes químicos do solo.

- Cultivares: Informações sobre as diferentes variedades de soja utilizadas nos experimentos.
- Localização: Características geográficas dos locais onde os experimentos foram conduzidos.
- **Dados Climáticos:** Informações sobre precipitação, temperatura e outras condições climáticas durante o período dos experimentos.
- Componentes Químicos do Solo: Dados sobre a composição química do solo, incluindo níveis de nutrientes e pH.

Dentre essas principais características, as variáveis mais significativas utilizadas no modelo foram:

- 1. Terras: divididas em (Altas ou Baixas)
- 2. Ambiente: dividido em (Sequeiro ou Irrigado)
- 3. Cultura_Ant: ("arroz e pousio", "aveia", "aveia branca", "aveia e centeio", "aveia e ervilhaca", "azevem", "cevada", nabo")
- 4. P_base: Quantidade de adubação de Fósforo
- 5. N_base : Quantidade de adubação de Nitrogênio
- 6. Produtividade: Produtividade de soja (Kg/ha)
- 7. GMR: Grupo de maturação relativo
- 8. Espacamento: Espaçamento entre linhas do plantio de soja
- 9. Temperatura_Max: média da temperatura máxima durante o périodo

10. PH: PH do solo

11. M.O.(%): Matéria orgânica (%)

12. Epoca_de_semeadura: Data de plantio

Sendo as primeiras colunas e observações dadas por:

х	Safra	COD_PROD	Local	Cod_Estacao_Met	Altitude	Terras	Ambiente	Cultivar	Cultura_Ant	Epoca_de_semeadura	N_base
390	2021/2022	AG117	ALEGRETE	A826	117	BAIXAS	SEQUEIRO	AS 3595 I2X	azevem	2021-11-23	13.5
391	2021/2022	AG117	ALEGRETE	A826	117	BAIXAS	SEQUEIRO	AS 3615 I2X	azevem	2021-11-23	13.5
392	2021/2022	AG117	ALEGRETE	A826	117	BAIXAS	SEQUEIRO	BMX COMPACTA IPRO	azevem	2021-11-23	13.5
393	2021/2022	AG117	ALEGRETE	A826	117	BAIXAS	SEQUEIRO	BMX CROMO TF IPRO	azevem	2021-11-23	13.5
394	2021/2022	AG117	ALEGRETE	A826	117	BAIXAS	SEQUEIRO	BMX LOTUS IPRO	azevem	2021-11-23	13.5

/ Análise Descritiva

As análises dos dados referem-se a um processo crítico em relação produtividade de soja no RS. Dessa forma, foi verificado medidas de tendência central, medidas de disperção, as relações entre as variáveis e suas distribuições.

Data summary

Name	dados
Number of rows	1513
Number of columns	33
Column type frequency:	
character	10
numeric	22
POSIXct	1
Group variables	None

Variable type: character

skim_variable	n_missing	min	max	empty	n_unique	whitespace
Χ	0	3	4	0	1513	0
Safra	0	9	9	0	2	0
COD_PROD	0	5	5	0	34	0
Local	0	5	23	0	27	0
Cod_Estacao_Met	0	4	4	0	18	0
Terras	0	5	6	0	2	0
Ambiente	0	8	8	0	3	0
Cultivar	0	5	25	0	184	0
Cultura_Ant	0	2	17	0	13	0
PRODUTOR/PARCEIRO	0	3	26	0	32	0

Variable type: numeric

skim_variable	n_missing	mean	sd	p0	p25	p50	p75	p100
Altitude	0	304.69	217.97	3.00	105.00	288.00	489.00	688.0
N_base	191	12.46	8.56	0.00	6.00	9.20	17.20	40.00
P_base	191	74.45	28.20	40.00	56.00	64.40	92.00	135.0
K_base	191	41.47	32.79	0.00	0.00	45.50	60.00	112.5
Produtividade	0	2630.00	1417.06	185.00	1512.70	2416.70	3622.57	6898
GMR	32	5.83	0.43	4.90	5.50	5.80	6.10	8.10
N_Plantas	474	77.28	25.36	12.00	59.75	74.50	92.25	172.0
Espacamento	53	0.47	0.04	0.40	0.45	0.45	0.45	0.58
Area_colhida	247	3.37	0.96	0.90	2.70	3.60	4.05	5.40
Populacao	247	18.12	9.21	0.00	15.25	20.30	24.07	43.98
Temperatura_Max	0	24.42	1.23	22.08	23.59	24.48	25.08	28.10
Precipitacao_Total	0	389.34	88.58	158.70	315.90	372.80	451.20	735.2

skim_variable	n_missing	mean	sd	p0	p25	p50	p75	p100
Umidade_Med	0	68.61	6.20	52.93	64.45	68.68	72.00	80.19
Radiacao_Med	0	24285.63	2940.83	20411.79	22770.84	23768.85	24520.27	3859
PH	0	5.18	0.35	4.50	5.00	5.10	5.30	6.30
ARGILA	18	43.19	20.31	4.00	27.00	44.00	59.00	85.00
P(mg/L)	0	26.14	41.91	2.50	9.00	19.00	27.00	359.2
K(mg/L)	0	130.42	109.59	28.00	72.00	88.00	180.00	636.0
M.O.(%)	0	2.51	0.83	1.00	1.90	2.50	2.90	5.90
CTC PH7	0	14.09	4.21	6.90	11.40	14.00	15.40	35.5(
SATURAÇÃO DE BASE(%)	0	62.70	14.10	27.00	54.00	65.00	76.00	86.00
SATURACAO Al(%)	0	3.38	5.74	0.00	0.00	2.10	4.00	34.00

Variable type: POSIXct

skim_variable	n_missing	min	max	median	n_unique
Epoca_de_semeadura	0	2021-09-16	2022-12-14	2022-11-06	40

Podemos verificar valores faltantes em algumas variáveis no banco de dados, dessa forma, foram retiradas essas observações devido a falta de informação para o preenchimento correto desses NA's. Além disso, podemos ter uma ideia da média e da distribuição dos dados

Com o gráfico a seguir, podemos verificar as principais correlações entre as variáveis numéricas e já procurar possiveis casos de multicolinearidade e variáveis que podem ser mais significativas para estimar a produtividade de soja

O gráfico de correlação entre as variáveis pode ser interpretado a partir do tamanho dos círculos e da cor. Quanto maior o círculo e mais escura é a cor mais forte é a correlação, também, se puxar mais para o azul é positiva, se for vermelha é negativa.

Principais medidas da variável de interesse e um gráfico para mostrar frequência de produtividade

Média da produtividade: 2458

Desvio padrão da produtividade: 1434

O gráfico de boxplot mostra a relação entre os anos das safras com a produtividade

Nota-se um diferença de produtividade entre as duas safras, de certa forma a variável **Safra** deveria ser significativa para a explicação da produtividade de soja, no entanto ja tem relação com outras variáveis do modelo. Além disso, deve explicar a alta variabilidade dos erros, conforme será apresentado nas suposições do modelo.

A partir do gráfico percebe-se a alta variabilidade de produtividade entre os locais de ensaio nas duas safras.

/ Ajustes dos Dados

- 1 Inicialmente foi removida uma cultivar experimental e cultivares com grupos de maturação relativos maiores que 7
- 2 Os locais Santa Rosa e Jacutinga apresentaram ser pontos influêntes para o modelo. Logo para o ajuste foi melhor remover essas observações
- 3 Locais os quais não tiveram uma cultura antes do plantio de soja ou tiveram mix também foram pontos de alavancagem para o modelo.
- 4 Criação da variável mês, relacionada a data de plantio, ou seja, invés de ter dia e mês, tem se apenas o mês
- 5 Foi alterado a variável **Terras**, em que Baixas recebe 0 e Altas recebe 1. A variável **Ambiente**, "irrigado" = 1 e "sequeiro" = 0

Os dados depois de filtrados e selecionados as variáveis importantes para o modelo, é dado por:

Terras	Ambiente	Cultura_Ant	P_base	N_base	Produtividade	GMR	Espacamento	Temperatura_Max	PH	M.O.(%)	mes
0	1	azevem	135.0	9.0	4330.1250	6.1	0.50	23.26305	4.9	2.0	nov

Terras	Ambiente	Cultura_Ant	P_base	N_base	Produtividade	GMR	Espacamento	Temperatura_Max	РН	M.O.(%)	mes
1	0	aveia	69.0	6.0	2585.2788	5.8	0.45	24.59763	5.0	2.6	nov
1	1	aveia	43.0	17.2	4275.1000	5.4	0.45	24.76108	4.9	3.0	out
0	0	azevem	69.0	13.5	405.2235	5.7	0.45	25.07801	4.8	1.2	nov
1	1	trigo	40.0	16.0	3592.3250	5.8	0.45	25.35516	5.1	2.9	nov
1	0	trigo	40.0	16.0	906.2000	5.4	0.45	25.35516	5.1	2.9	nov
1	1	aveia e ervilhaca	57.5	5.0	2897.3250	6.4	0.45	24.47887	6.3	2.8	out
1	1	aveia e ervilhaca	57.5	5.0	2735.3250	5.9	0.45	24.47887	6.3	2.8	out
1	1	aveia e ervilhaca	57.5	5.0	1058.9250	4.9	0.45	23.69126	4.8	2.7	nov
0	0	azevem	56.0	6.0	3135.2500	5.2	0.45	23.68543	5.3	2.0	dez

/ Modelo Ajustado

Inicialmente, foi selecionada as variáveis do modelo pelo algoritmo de Stepwise, determinando aquele com menor AIC

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	34062.508754	908.227227	37.5043907	0.0000000
Terras1	-1494.382152	81.064383	-18.4345098	0.0000000
Ambiente0	-2410.469323	60.900930	-39.5801725	0.0000000
Cultura_Antaveia	-222.616571	127.881313	-1.7408061	0.0821773
Cultura_Antaveia e centeio	-1633.721856	159.065955	-10.2707198	0.0000000
Cultura_Antaveia e ervilhaca	-3278.926009	145.752264	-22.4965700	0.0000000
Cultura_Antazevem	-1333.979455	99.802047	-13.3662534	0.0000000
Cultura_Antcevada	-314.252257	145.808254	-2.1552433	0.0314989
Cultura_Antnabo	-2098.207963	173.752054	-12.0758743	0.0000000
Cultura_Anttrigo	-74.332602	115.227491	-0.6450943	0.5190872
P_base	5.817805	1.336358	4.3534770	0.0000155
N_base	-36.833253	3.803653	-9.6836523	0.0000000
GMR	177.136001	43.457706	4.0760551	0.0000513
Espacamento	-13410.385353	969.980868	-13.8254122	0.0000000

	Estimate	Std. Error	t value	Pr(> t)
Temperatura_Max	-1080.879735	29.997418	-36.0324257	0.0000000
PH	589.197131	73.340645	8.0337053	0.0000000
M.O.(%)	477.670294	33.857294	14.1083424	0.0000000
mesnov	-646.319615	77.359217	-8.3547848	0.0000000
mesout	-486.693245	74.382306	-6.5431319	0.0000000

O Modelo de regresssão linear múltipla, é expressado pela equação:

$$Y = \beta_0 + \sum_{i=1}^{18} \beta_i X_i + \epsilon$$

Sendo:

$$Y = 34062.5 - 1494.4X_1 - 2410.5X_2 - 222.6X_3 - 1633.7X_4 - 3278.9X_5 - 1334X_6 - 314.3X_7 - 2098.2X_8 - 74.3X_9 + 5.8X_{10} - 36.8X_{11} + 177.1X_{12} - 13410.4X_{13} - 1080.9X_{14} + 589.2X_{15} + 477.7X_{16} - 646.3X_{17} - 486.7X_{18} + \epsilon$$

Em que:

 X_1 = Terras, $x \in \{0,1\}$ X_2 = Ambiente, $x \in \{0,1\}$ X_3 = Aveia, $x \in \{0,1\}$ X_4 = Aveia e centeio, $x \in \{0,1\}$ X_5 = Aveia e ervilhaca, $x \in \{0,1\}$ X_6 = Azevém, $x \in \{0,1\}$ X_7 = Cevada, $x \in \{0,1\}$ X_8 = Nabo, $x \in \{0,1\}$ X_9 = Trigo, $x \in \{0,1\}$ X_{10} = P_base, $x \in [40, 135]$ X_{11} = N_base, $x \in [5,40]$ X_{12} = GMR, $x \in [4.9, 6.7]$ X_{13} = Espacamento, $x \in [0.4, 0.575]$ X_{14} = Temperatura_Max, $x \in [22.32, 27.07]$ X_{15} = PH, $x \in [4.8, 6.3]$ X_{16} = M.O.(%), $x \in [1, 4.2]$ X_{17} = Novembro, $x \in \{0,1\}$ X_{18} = Dezembro, $x \in \{0,1\}$

Interpretação dos betas:

- eta_1 , significa que terras altas produzem -1494.4 kg/ha a menos que terras baixas.
- eta_2 , significa que ambientes sequeiros produzem -2410.5 kg/ha a menos que ambientes irrigados

- β_3, \dots, β_9 , quanto maior o beta maior é significante para o aumento de produtividade, ou seja, neste caso o plantio de trigo antes da soja melhora a protuvidade.
- eta_{10} , a cada um 1 kg/ha de fósforo, dentro do intervalo de X_{10} estabelecido, aumenta 5.8 kg/ha na produtividade de soja.
- eta_{11} a cada um 1 kg/ha de nitrogênio, dentro do intervalo de X_{11} estabelecido, diminui -36.8 kg/ha na produtividade de soja.
- β_{12} , quanto maior for o GMR, maior será a produtividade
- eta_{13} , espaçamentos menores tem mais incremento na produtividade
- β_{14} , temperaturas mais altas diminuem a produtividade.
- eta_{15} , o PH do solo tem um fator positivo na produtividade
- β_{16} , a cada um 1% de matéria orgânica, aumenta em 477.7 kg/ha de soja
- β_{17} e β_{18} , o plantio no mês de outubro em relação ao mês de novembro tem um acréscimo de aproximadamente 160 kg/ha.

O coeficiente de determinação, \mathbb{R}^2 , é dado por 0.9106993, ou seja, significa que 91.1% da variabilidade na produtividade da soja pode ser explicada pelas variáveis incluídas no modelo de regressão.

/ Analise de diagnóstico

As principais observações influentes podem ser visualizadas na tabela a seguir

Terras	Ambiente	Cultura_Ant	P_base	N_base	Produtividade	GMR	Espacamento	Temperatura_Max	РН	M.O.(%)	mes
0	1	azevem	135.0	9.0	4330.125	6.1	0.50	23.26305	4.9	2.0	nov
1	1	aveia e ervilhaca	57.5	5.0	1058.925	4.9	0.45	23.69126	4.8	2.7	nov
1	0	aveia e centeio	90.0	6.0	868.800	5.8	0.45	23.95177	4.9	1.4	nov
1	0	azevem	54.6	7.8	1907.925	5.2	0.45	22.68672	5.4	2.5	nov
1	0	aveia e centeio	90.0	6.0	750.800	5.3	0.45	23.95177	4.9	1.4	nov
1	0	aveia e centeio	90.0	6.0	694.150	5.0	0.45	23.95177	4.9	1.4	nov
1	0	aveia e centeio	90.0	6.0	1058.175	6.4	0.45	23.95177	4.9	1.4	nov
1	0	aveia e centeio	90.0	6.0	957.900	6.0	0.45	23.95177	4.9	1.4	nov

Apesar de ainda possuir pontos de influência não afetam no ajuste do modelo

// Alavancagem

Como de esperado ficou alguns pontos de alavancagem, mas a retirada deles não afetaram o \mathbb{R}^2 do modelo

// DFFIT

É possível observar que alguns pontos têm valores dos DFFITS acima da linha de referência, mas após análises, eles não apresentaram influência na regressão

// Distância de Cook

Os mesmos pontos identificados anteriormente aparece no gráfico da distância de cook, mas a remoção dos mesmos não afeta significativamente nos coeficientes da regressão.

// Resíduo

Como esperado, a distribuição dos resíduos tende a se aproximar de uma distribuição normal com média 0. Esta suposição será verificada a seguir através de testes de normalidade.

// Envelope Simulado

Baseado nos resíduos studentizados para verificação de normalidade

A partir do gráfico podemos ver alguns pontos fora do intervalo, mas como n = 688, é esperado a 5% que até 34.4 pontos fiquem fora do intervale e após testes os resíduos seguem normalidade conforme é esperado.

/ Suposições do modelo

- [S0] O modelo esta corretamente específicado
- [S1] A média dos erros é zero
- [S2] Homoscedasticidade dos erros
- [S3] Não autocorrelação
- [S4] Ausência de Multicolinearidade
- [S5] Normalidade dos erros

// Teste RESET

 $\begin{cases} H_0: \text{O modelo esta corretamente especificado} \\ H_1: \text{O modelo não esta corretamente especificado.} \end{cases}$

```
##
## RESET test
##
## data: fit
## RESET = 3.8991, df1 = 2, df2 = 667, p-value = 0.02072
```

Conforme o tese RESET, utilizado para verificar se o modelo está corretamente específicado, não rejeita-se H_0 devido p-valor = 0.0207244 > α = 0.01, ou seja, O modelo esta corretamente especificado.

// Teste t para a média dos errros

 $\left\{ \begin{array}{l} H_0: \text{ A m\'edia dos erros \'e igual a zero} \\ H_1: \text{m\'edia dos erros \'e diferente de zero.} \end{array} \right.$

```
##
## One Sample t-test
##
## data: resid(fit)
## t = -1.9068e-15, df = 687, p-value = 1
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -31.82613 31.82613
## sample estimates:
## mean of x
## -3.090807e-14
```

Conforme o teste T de Student, não rejeita-se H_0 devido ao p-valor = 1 > α = 0.01. Dessa forma, a média dos erros é igual a zero.

// Teste de Bressch-Pagan

 $\left\{ \begin{array}{l} H_0: \mbox{ Os erros são homoscedasticos} \\ H_1: \mbox{ Os erros não são homoscedasticos}. \end{array} \right.$

```
##
## studentized Breusch-Pagan test
##
## data: fit
## BP = 100.22, df = 18, p-value = 2.016e-13
```

Conforme o teste de Breusch-Pagan, rejeita-se H_0 devido p-valor = 2.0160966^{-13} < α = 0.01. Dessa forma, os erros são heteroscedasticos, não seguindo a suposição [S2]. O ideal para seria modelar a variância junto, já que existe muita diferença de manejo dos produtores entre os locais dos experimentos.

// Teste de Durbin-Watson

 $\left\{egin{array}{l} H_0: ext{N\~ao} ext{ h\'a autocorrelaç\~ao} \ H_1: ext{H\'a autocorrelaç\~ao}. \end{array}
ight.$


```
##
## Durbin-Watson test
##
## data: fit
## DW = 1.9708, p-value = 0.347
## alternative hypothesis: true autocorrelation is greater than 0
```

Conforme o teste de Durbin-Watson, não rejeita-se H_0 devido p-valor = 0.3469988 > α = 0.01. Ou seja, não existe multicolinealidade entre as variáveis explicativas

// Fatores de Inflação de Variância

 $\left\{ egin{aligned} H_0: ext{N\~ao} & ext{h\'a} & ext{multicolinearidade} \ H_1: ext{H\'a} & ext{multicolinearidade}. \end{aligned}
ight.$

	GVIF	Df	GVIF^(1/(2*Df))
Terras	5.036604	1	2.244238
Ambiente	3.174420	1	1.781690
Cultura_Ant	54.890862	7	1.331220
P_base	2.649398	1	1.627697
N_base	3.077642	1	1.754321
GMR	1.113293	1	1.055127
Espacamento	2.360238	1	1.536307

	GVIF	Df	GVIF^(1/(2*Df))
Temperatura_Max	3.029015	1	1.740407
PH	2.649733	1	1.627800
M.O.(%)	2.279752	1	1.509885
mes	6.295974	2	1.584038

Interpretação:

vif maior que 10 indica multicolinearidade, vif próximo de 1 seria o ideal.

Dessa forma, todos os valores estão próximos de 1 indicando o indício de não multicolinearidade

// Teste Jarque-Bera

 $\left\{ egin{aligned} H_0: & \text{Os erros possuem distribuição normal} \\ H_1: & \text{Os erros não possuem distribuição normal.} \end{aligned}
ight.$

```
##
## Jarque Bera Test
##
## data: resid(fit)
## X-squared = 7.3333, df = 2, p-value = 0.02556
```

Conforme o teste de Jarque-Bera, não rejeita-se H_0 devido ao p-valor = 0.0255623\$ > = 0.01\$. Ou seja, os erros possuem distribuição normal

/ Predição

Dado que as suposições do modelo foram satisfeitas, podemos realizar inferências e predições sobre a variável resposta. Abaixo, é apresentado uma tabela com valores aleatórios, dentro do espaço amostral, para as variáveis significativas do modelo e assim, realizar a predição da produtividade média.

Novos Dados e Predição

Terras	Ambiente	Cultura_Ant	P_base	N_base	GMR	Espacamento	Temperatura_Max	РН	M.O. (%)	mes	Predicao
1	0	aveia	70	10	5.0	0.50	25	5	2	nov	387.4551
1	1	cevada	80	6	6.0	0.45	26	7	3	out	4494.2662
0	0	aveia e ervilhaca	75	7	5.5	0.45	26	8	4	dez	2012.5757

O gráfivo a seguir mostra a relação entre os valores reais de produtividade, com os valores preditos a partir do modelo de regressão.

/ Conclusão

De acordo com a análise de regressão, as principais variáveis que influenciam na produtividade da soja neste banco de dados são o tipo de terras e ambiente, o espaçamento entre linhas, a temperatura máxima durante o período de crescimento, o pH do solo e o teor de matéria orgânica. Além disso, práticas agrícolas como a escolha da cultura anterior e a quantidade de adubação com fósforo e nitrogênio também mostraram impacto significativo.

A análise diagnóstica do modelo identificou alguns pontos influentes e de alavancagem, mas estes não comprometeram significativamente a qualidade do ajuste. A verificação das suposições do modelo mostrou que a maioria foi atendida, exceto pela homoscedasticidade dos erros, indicando a presença de heteroscedasticidade. Isso sugere que este não é o melhor modelo, mas ainda oferece insights valiosos sobre os fatores que afetam a produtividade da soja.

/ Trabalhos futuros

- Modelar a variância.
- Remover pelo menos uma safra, em locais que foi realizado os ensaios em mais de um ano, para assim, evitar possível dependência temporal.
- Usar todos os blocos invés da média deles
- Pensar em uma forma de definir todos os dias de plantio
- Usar as coordenadas geográficas dos local como variáveis