

Do not enter
3/24/04
PA
canceled in
1/1/G

IN THE CLAIMS:

Claim 6, lines 4-5, delete the phrase that starts with ", provided that" and ends with "different from $(C_5H_{4-x}R_x)$ ".

Claim 25, fourth (4th) paragraph, line 30, after "chelating ligand" add --, provided that any Q is different from $(C_5H_{5-y-x}R_x)$ --.

Please change "B" to -- T -- in claim 25 at the following locations: both formulas, and in the sixth (6th) paragraph, line 33.

OK to
enter
3/24/04
PA

Please add claims 27-29:

-- 27. A compound having the general formula:

or

wherein "M" is Zr, Hf or Ti;

$(C_5H_{5-x}R_x)$ is a cyclopentadienyl ring which is substituted with from zero to five substituent groups "R", "x" is 0, 1, 2, 3, 4 or 5 denoting the degree of substitution, and each substituent group "R" is, independently, a radical selected from a group consisting of C_1-C_{20} hydrocarbyl radicals, substituted C_1-C_{20} hydrocarbyl radicals wherein one or more hydrogen atoms is replaced by a halogen atom, C_1-C_{20} hydrocarbyl-substituted metalloid radicals wherein the metalloid is selected from the Group IV-A of the Periodic Table of Elements, and halogen radicals or $(C_5H_{5-x}R_x)$ is a cyclopentadienyl ring in which two adjacent "R" groups are joined forming a C_4-C_{20} ring to give a saturated or unsaturated polycyclic cyclopentadienyl ligand;

(JR'_{z-1}) is a heteroatom ligand in which "J" is an element with a coordination number of three from Group V-A or an element with a coordination number of two from Group VI-A of the Periodic Table of Elements, each "R'" is, independently, a radical selected from a group consisting of C_1-C_{20} hydrocarbyl radicals, substituted C_1-C_{20} hydrocarbyl radicals wherein one or more hydrogen atoms is replaced by a halogen atom, and "z" is the coordination number of the element "J";

each "Q" is, independently any univalent anionic ligand or two "Q"'s are a divalent anionic chelating ligand, provided that "Q" is different from $(C_5H_{5-x}R_x)$;

"L" is a neutral Lewis base where "w" is a number greater than 0 and up to 3;

"M'" has the same meaning as "M"; and

"Q'" has the same meaning as "Q". --

-- 28. A compound having the general formula:

or

wherein "M" is Zr, Hf or Ti;

$(C_5H_{4-x}R_x)$ is a cyclopentadienyl ring which is substituted with from zero to four substituent groups "R", "x" is 0, 1, 2, 3 or 4 denoting the degree of substitution, and each substituent group "R" is, independently, a radical selected from a group consisting of C_1-C_{20} hydrocarbyl radicals, substituted C_1-C_{20} hydrocarbyl radicals wherein one or more hydrogen atoms is replaced by a halogen atom, C_1-C_{20} hydrocarbyl-substituted metalloid radicals wherein the metalloid is selected from the Group IV-A of the Periodic Table of Elements, and halogen radicals or $(C_5H_{4-x}R_x)$ is a cyclopentadienyl ring in which two adjacent "R" groups are joined forming a C_4-C_{20} ring to give a saturated or unsaturated polycyclic cyclopentadienyl ligand;

$(JR'z-2)$ is a heteroatom ligand in which "J" is an element with a coordination number of three from Group V-A or an element with a coordination number of two from Group VI-A of the

Periodic Table of Elements, "R'" is a radical selected from a group consisting of C_1 - C_{20} hydrocarbyl radicals, substituted C_1 - C_{20} hydrocarbyl radicals wherein one or more hydrogen atoms is replaced by a halogen atom, and "z" is the coordination number of the element "J";

each "Q" is, independently any univalent anionic ligand or two "Q"'s are a divalent anionic chelating ligand, provided that "Q" is different from $(C_5H_{4-x}R_x)$;

"T" is a covalent bridging group containing a Group IV-A or V-A element;

"L" is a neutral Lewis base where "w" is a number from 0 to 3;

"M'" has the same meaning as "M"; and

"Q'" has the same meaning as "Q". --

-- 29. A process producing a compound having the general formulae:

or

wherein "M" is Zr, Hf or Ti;

$(C_5H_{4-x}R_x)$ is a cyclopentadienyl ring which is substituted with from zero to four substituent groups "R", "x" is 0, 1, 2, 3 or 4 denoting the degree of substitution, and each substituent group "R" is, independently, a radical selected from a group consisting of C_1-C_{20} hydrocarbyl radicals, substituted C_1-C_{20} hydrocarbyl radicals wherein one or more hydrogen atoms is replaced by a halogen atom, C_1-C_{20} hydrocarbyl-substituted metalloid radicals wherein the metalloid is selected from the Group IV-A of the Periodic Table of Elements, and halogen radicals or $(C_5H_{4-x}R_x)$ is a cyclopentadienyl ring in which two adjacent "R" groups are joined forming a C_4-C_{20} ring to give a saturated or unsaturated polycyclic cyclopentadienyl ligand;

(JR'_{z-2}) is a heteroatom ligand in which "J" is an element with a coordination number of three from Group V-A or an element with a coordination number of two from Group VI-A of the Periodic Table of Elements, "R'" is a radical selected from a group consisting of C_1-C_{20} hydrocarbyl radicals, substituted C_1-C_{20} hydrocarbyl radicals wherein one or more hydrogen atoms is replaced by a halogen atom, and "z" is the coordination number of the element "J";

each "Q" is, independently any univalent anionic ligand or two "Q"'s are a divalent anionic chelating ligand, provided that "Q" is different from $(C_5H_{4-x}R_x)$;

"T" is a covalent bridging group containing a Group IV-A or V-A element;

"L" is a neutral Lewis base where "w" is a number from 0 to 3;

"M'" has the same meaning as "M";

"Q'" has the same meaning as "Q";