Initiation à la Cryptographie Échange de clés Diffie-Hellman

February 24, 2025

Awaleh HOUSSEIN

Recap de deux posts précédents 1 2

¹Premier post: https://www.linkedin.com/feed/update/urn:li:activity:7284685244455157761/

Awaleh HOUSSEIN Echange de clés Diffie-Hellman 24/02/2025 2/13

²Deuxième post: https://www.linkedin.com/feed/update/urn:li:activity:7292307076343578624/< □ ▶ 4 👼 ▶ 4 👼 ▶ 4 👼 ▶ 2 👰

Limitations des chiffrements symétriques

Rappel du chiffrement symétrique

- Efficace, rapide, idéal pour chiffrer de grandes quantités de données.
- Les deux parties doivent au préalable partager un secret commun, appelé clé secrète, pour chiffrer et déchiffrer les messages.

Problème: Comment partager cette clé secrète en toute sécurité?

- Transmettre la clé physiquement (par courrier, en personne, etc.).
 - *Problème*: Si on peut transmettre la clé en sécurité, pourquoi ne pas transmettre directement le message?
- Sur un réseau non sécurisé ? Transmettre la clé par internet ou par téléphone.
 - Problème: Risque d'interception par un tiers malveillant.

L'échange de clés Diffie-Hellman (1976)

Face aux limitations du partage de clés dans le chiffrement symétrique, une solution révolutionnaire a vu le jour en 1976 :

La révolution Diffie-Hellman :

- Whitfield Diffie et Martin E. Hellman publient un article intitulé "New Directions in Cryptography"³.
- Ils proposent une méthode entièrement nouvelle pour résoudre un problème fondamental : **l'échange de clé sécrète**.
- Cette méthode, appelée **échange de clés Diffie-Hellman**, permet à deux parties de générer une clé secrète commune **sans jamais l'échanger directement**.

³Whitfield Diffie and Martin E Hellman (1976). "New directions in cryptography". In: Democratizing Cryptography: The Work of Whitfield Diffie and Martin Hellman, pp. 365–390.

Pourquoi est-ce révolutionnaire?

Une contribution majeure en cryptographie moderne

- Avant Diffie-Hellman (1976) :
 - Partage de clés nécessitant une transmission physique (risquée).
 - Confiance obligatoire dans un canal déjà sécurisé (rare sur internet).
- Après Diffie-Hellman :
 - Création d'un secret commun sans contact préalable.
 - Sécurité même sur des réseaux publics (ex : Wi-Fi, internet).
- Prix et reconnaissance:

Awaleh HOUSSEIN

- L'article⁴ est l'un des plus cités en informatique (24 000+ citations).
- Prix Turing 2015 (équivalent du "Prix Nobel" en informatique) pour Diffie et Hellman.

⁴Whitfield Diffie and Martin E Hellman (1976). "New directions in cryptography". In:
Democratizing Cryptography: The Work of Whitfield Diffie and Martin Hellman, pp. 365–390. ⟨□⟩⟨⟨∂⟩⟩⟨⟨₹⟩⟩⟩

Fonctionnement de l'échange de clés Diffie-Hellman (1/2)

Étapes:

- 1 Alice et Bob choisissent ensemble :
 - Un nombre premier p.
 - Un générateur g du groupe multiplicatif $\mathbb{Z}/p\mathbb{Z}$.
- 2 Alice:
 - Choisit un nombre secret a.
 - Calcule $A = g^a \mod p$ et envoie A à Bob.

- 3 Bob:
 - Choisit un nombre secret b.
 - Calcule $B = g^b \mod p$ et envoie B à Alice.
- 4 Alice calcule la clé secrète : $K = B^a \mod p = (g^b)^a \mod p = g^{ab} \mod p$.
- 5 Bob calcule la clé secrète : $K = A^b \mod p = (g^a)^b \mod p = g^{ab} \mod p$.

Résultat:

Alice et Bob obtiennent la même clé secrète $K=g^{ab} \mod p$, sans jamais l'avoir échangée directement.

Fonctionnement de l'échange de clés Diffie-Hellman (2/2)

Fondements mathématiques et sécurité de Diffie-Hellman

Base mathématique

- Nombre premier p
- Opérations (x, puissances) effectuées modulo p.
- Commutativité : $(g^b)^a = g^{ab} = (g^a)^b$.

Sécurité Problème du logarithme discret^a :

- Calculer a depuis $g^a \mod p$
- Impossible en temps raisonnable.

Exigences pratiques:

- p doit être grand (ex : 2048 bits, 600 chiffres).
- Renouvellement régulier p.
- Garantir que le logarithme discret reste insoluble en pratique. .

^aVulnérable aux attaques quantiques (à détailler ultérieurement)

Vulnerable face à l'attaque de l'homme du milieu

Figure: Ève intercepte/modifie les échanges entre Alice et Bob.

Déroulé de l'attaque

- 1 Ève intercepte g^a et g^b , les remplace par $g^{a'}$ et $g^{b'}$.
- 2 Alice calcule $K_1 = g^{ab'}$, Bob calcule $K_2 = g^{a'b}$.
- 3 Ève connaît K_1 et $K_2 \rightarrow$ Elle déchiffre/modifie tous les messages

Comment se protéger à l'attaque de l'homme du milieu ? (1/2)

1. Vérifier les identités

- Utiliser des **certificats numérique** (comme une carte d'identité numérique).
- Une organisation de confiance (ex : banque, état) garantit qu'Alice et Bob sont bien ceux qu'ils prétendent être.
- ightarrow L'attaquant ne peut plus se faire passer pour eux.

2. Signature numérique des échanges

- Alice et Bob ajoutent une signature unique à leurs messages.
- Analogie: Comme un tampon officiel sur un document important.
- ightarrow L'attaquant ne peut pas falsifier les messages.

Comment se protéger à l'attaque de l'homme du milieu ? (2/2)

3. Vérification finale de la clé

- Après l'échange, Alice et Bob comparent un code secret (ex : via un canal sécurisé).
- Si les codes ne correspondent pas : alerte d'une attaque!
- → Une dernière vérification pour confirmer la sécurité.

Résultat:

- Alice et Bob savent qu'ils communiquent entre eux.
 - \rightarrow L'attaquant ne peut plus intercepter ou modifier les messages.

Applications concrètes de Diffie-Hellman

Où utilise-t-on Diffie-Hellman?

- Échange de clés sécurisé : Protocole TLS/SSL (cadenas HTTPS)⁵.
- Réseaux Privés : VPNs (IPsec, OpenVPN)
- **Messagerie** : WhatsApp, Signal (établissement de clé E2EE) ⁶.
- Wi-Fi Sécurisé : Protocoles WPA2/WPA3 7.
- Accès distant : Connexions SSH.

Pourquoi Diffie-Hellman?

- Permet un échange de clé sans contact préalable
- Résistant à l'écoute passive (logarithme discret).

keys-to-understanding-wpa3-sae-diffie-hellman-key-exchange-elliptic-curve-cryptography-and-dragonfly≣key⊣exchange/ かへで

⁵RFC standard https://www.rfc-editor.org/rfc/rfc5246#section-7.4.3

 $^{^{6} \}texttt{https://dev.to/prismlabsdev/the-core-of-whatapp-and-signal-diffie-hellman-key-exchange-50fd}$

⁷Pour plus de détails https://wirelessgnan.wordpress.com/2020/08/31/

À retenir

Chiffrement symétrique : Avantages & Limites

- Forces: Rapide Idéal pour chiffrer gros volumes de données.
- **Faiblesse** : Probléme de partage de la clé secrète

Solution: Diffie-Hellman (1976):

- 1 Alice et Bob choisissent un nombre **premier** *p* et un **générateur** *g*, qui sont publics.
- 2 Alice \rightarrow Bob : $A = g^a \mod p$ (a secret).
- 3 Bob \rightarrow Alice : $B = g^b \mod p$ (b secret).
- $oldsymbol{4}$ Clé commune : $K=B^a=A^b=g^{ab} \mod p$

Résumé

- Échange de clés de Diffie-Hellman résout le problème du partage de clés.
- Sécurité basée sur le problème du logarithme discret.
- Nécessite **authentification** pour contourner *l'attaque du l'homme du milieu*.