CS 5003: Parameterized Algorithms Lectures 41-44

Krithika Ramaswamy

IIT Palakkad

The Story So Far

- Parameterization by solution size
 - Vertex Cover
 - * Feedback Vertex Set in undirected graphs and tournaments
 - * Feedback Arc Set in tournaments
 - * Odd Cycle Transversal
 - * d-Hitting Set and d-Set Packing
 - Cluster Editing and d-Clustering
 - * Long Path
- * Parameterization by treewidth of input graph
 - * Independent Set, Dominating Set, Clique
- * Other parameterizations
 - Vertex Cover: k lp(G), k IMI

What Next?

- * FPT or Not?
 - * Is Independent Set parameterized by solution size FPT?
 - * Suppose not. Then, $P \neq NP$
 - * Is Clique parameterized by solution size FPT?
 - * No unless P = NP?
 - * Is Dominating Set parameterized by solution size FPT?
- * FPT running time lower bounds
 - * Can Vertex Cover be solved in 0*(20(k)) time?
- * Ingredients to build a complexity theory for parameterized problems
 - * An useful notion of reduction
 - * A reasonable hypothesis

Let Q and Q' be 2 parameterized problems. A parameterized reduction from Q to Q' is an algorithm that given instance (x,k) of Q, outputs instance (y,r) of Q' in f(k) $|x|^{O(1)}$ time for some computable function f s.t

- * (x, k) is a yes-instance of Q if and only if (y, r) is a yes-instance of Q'
- * $r \le g(k)$ for some computable function g

Facts

- * If Q' is FPT then Q is FPT
- * If Q is not FPT then Q' is not FPT

NP-hard reductions (polynomial-time reductions) are not necessarily helpful to make such conclusions

Parameterized reductions may not necessarily imply NP-hardness

Clique

Instance: An undirected graph 6 on n vertices and an integer k

Question: Does 6 have a clique of at least k vertices?

Parameter: k

Log-Clique

Instance: An undirected graph 6 on n vertices and an integer k

Question: Is it true that k<=log n and G has a clique of at least k vertices?

Parameter: k

Clique reduces to Log-Clique

- * Add 2^k isolated vertices to the instance (G,k) of Clique to get the instance (H,k) of Log-Clique. Here, k <= log IV(H)I
- * (G,k) is yes-instance iff (H,k) is yes-instance
- * Clique is NP-hard but Log-Clique has a quasi-polynomial time (IV(H)IO(log IV(H)II)) algorithm

Parameterized reductions and polynomial-time reductions are incomparable

- * Clique \leq_{FPT} Independent Set
 - * (G, k) is yes-instance of Clique iff (Gc, k) is yes-instance of Indep Set
- * Independent Set \leq_{FPT} Clique
 - * (G, k) is yes-instance of Indep Set iff (Gc, k) is yes-instance of Clique
- * Independent Set in regular graphs \leq_{FPT} Clique in regular graphs
- * Clique in regular graphs \leq_{FPT} Independent Set in regular graphs
- * Independent Set in regular graphs \leq_{FPT} Partial Vertex Cover
 - * (G, k) is yes-instance of Indep Set iff (G, k, dk) is yes-instance of PVC where G is a d-regular graph

- * Clique \leq_{FPT} Clique in regular graphs
- * Clique in regular graphs \leq_{FPT} Multicolored Clique in regular graphs
- * Multicolored Clique \leq_{FPT} Multicolored Independent Set
- * Multicolored Independent Set \leq_{FPT} Dominating Set

Multicolored Clique

Instance: A graph G with a partition of V(G) into k parts V_1, V_2, \ldots, V_k

Question: Poes G have a clique Q of size k s.t $|Q \cap V_i| = 1$ for each $i \in [k]$?

Parameter: k

Fixed-Parameter Intractability

- * Independent Set, Independent Set in regular graphs
- * Clique in regular graphs, Partial Vertex Cover
- * Multicolored Clique in regular graphs
- * Multicolored Clique in regular graphs
- Pominating Set

are all at least as hard as Clique. I.e., if any of these problems is FPT, then Clique is FPT

- * Poes Pominating Set \leq_{FPT} Independent Set?
- * Or is there a hierarchy among the set of fixed-parameter intractable problems?
 - * Do Independent Set and Dominating Set occupy different levels of this hierarchy?
- * W-hierarchy: $FPT \subseteq W[1] \subseteq W[2] \subseteq ... \subseteq XP \cap paraNP$
 - * Pefined based on boolean circuits
 - * Independent Set is in W[1] and Dominating Set is in W[2]

The W-hierarchy

 $\mathsf{FPT} \subseteq \mathsf{WL11} \subseteq \mathsf{WL21} \subseteq \ldots \subseteq \mathsf{XP} \cap \mathsf{paraNP}$

- * $XP = set of parameterized problems solvable in <math>n^{f(k)}$ time
- * paraNP = set of parameterized problems whose unparameterized variant is in NP and is NP-complete for a finite values of the parameter
- * FPT < XP and it is believed that XP and paraNP are incomparable

Fixed-Parameter Intractability

Ingredients to build a complexity theory for parameterized problems

- * Parameterized reductions
- * Hypotheses: $FPT \subset W[1] \subset W[2] \subset \ldots \subset XP$
- * Partial Vertex Cover, Independent Set, Multicolored Clique, Multicolored Independent Set parameterized by solution size are not FPT unless FPT=W[1]
- * Pominating Set, Set Cover, Hitting Set, Pominating Set on Tournaments,

 Connected Pominating Set parameterized by solution size are not FPT unless

 FPT=WC21

Circuits

Pefinition: A Boolean circuit C is a PAG where the nodes have labels

- * Every node with indegree 0 is an input node (input gate)
- * Every node with indegree 1 is a negation node (negation gate)
- * Every node with indegree >= 2 is either an and-node or an or-node (AND gate or OR gate)
- * Exactly one of the nodes with outdegree 0 is labeled as the output node (output gate)

- * Pepth(C) is the max no. of edges on a path from an input to the output
- * Weft(C) is the max no. of gates with >2 inputs on a path from an input to the output

Circuit Satisfiability: Given a boolean circuit C, is there an assignment to the inputs of C that makes the output 1?

Circuits

Circuit Satisfiability: Given a boolean circuit C, is there an assignment to the inputs of C that makes the output 1?

Vefn: The weight of an assignment is the number of inputs that are assigned 1

Weighted Circuit Satisfiability: Given a boolean circuit C and an integer k, is there an assignment to the inputs of C of weight k that makes the output 1?

The levels of the W-hierarchy are defined by restricting Weighted Circuit Satisfiability to various classes of circuits.

Circuits

Fig. 13.3: (a) A graph G with five vertices and seven edges. (b) A depth-3, weft-1 circuit satisfied by the independent sets of G. Each or-node corresponds to an edge of G and has indegree 2. (c) A depth-2, weft-2 circuit satisfied by the dominating sets of G. Each or-node corresponds to a vertex of G and its inneighbors correspond to the closed neighborhood to the vertex

The W-hierarchy

- * Independent Set and Dominating Set reduce to Weighted Circuit Satisfiability
 - * Circuit for Dom Set is more complicated than the one for Indep Set
- * Let C(t,d) denote the class of circuits with weft <=t and depth <=d
- * Pefn: (W-hierarchy) For t>=1, a parameterized problem Q belongs to the class W[t] if there is a parameterized reduction from Q to Weighted Circuit Satisfiability on C(t,d) for some d>=1.
- Independent Set is in W[1] and Dominating Set is in W[2]
- * To show that a problem is in W[t], reduce it to a problem in W[t] in $f(k)n^{0(1)}$ time
 - * FPT \subseteq W[1] as any problem in FPT reduces to CLIQUE in $f(k)n^{0(1)}$ time

The W-hierarchy

Pefn: (W[t]-hardness) A parameterized problem Q is W[t]-hard if for every problem Q' in W[t], there is a parameterized reduction from Q' to Q

W[t]-completeness

- * Independent Set, Clique and Partial Vertex Cover are W[11-complete
- * Pominating Set, Hitting Set and Set Cover are W[21-complete
- * To show that Q is W[t]-hard, reduce a problem already known to be W[t]-hard to Q in $f(k)n^{O(1)}$ time
- * If any W[1]-complete problem is in FPT then FPT=W[1]
- * If any W[2]-complete problem is in W[1] then W[1]=W[2]
 - A parameterized reduction from Dominating Set to Independent Set is unlikely

In classical complexity theory, NP-complete problems are equivalent, but in parameterized complexity theory, there is a hierarchy of hard problems

Lower Bounds

Can we show that Vertex Cover cannot be solved in $O^*(2^{o(k)})$ time?

Yes, under an assumption stronger than FPT + W[1]

3-CNF-SAT: Given a boolean formula in conjunctive normal form with <= 3 literals in each clause, is there an assignment to the variables such that the formula evaluates to 1?

- * (consequence of) Exponential Time Hypothesis (ETH): 3-CNF-SAT cannot be solved in time subexponential in the number of variables
- * (consequence of) Strong Exponential Time Hypothesis (SETH): CNF-SAT cannot be solved in o(2ⁿ) time where n is the number of variables
- * (consequence of Sparcification Lemma [Impagliazzo, Paturi, Zane 0 1]): 3-CNF-SAT cannot be solved in $2^{o(m+n)}$ -time where n is the no. of vars and m is no. of clauses
- * SETH \Rightarrow ETH \Rightarrow FPT \neq W[1] \Rightarrow P \neq NP
 - * FPT \neq W[1] is used to show that no $0^*(f(k))$ algorithm exists
 - * ETH is used to show that no $O^*(2^{o(f(k))})$ algorithm exists
 - * SETH is used to show that no $O^*(2^{(1-c)f(k)})$ algorithm exists

Kernelization Lower Bounds

- * A parameterized problem L is a subset of $\Sigma^* \times \mathbb{N}$ where Σ is a finite alphabet
- * A kernelization algorithm for L is a polynomial time algorithm that given instance (x, k) of L outputs instance (x', k') of L s.t
 - * $(x, k) \in L \text{ iff } (x', k') \in L$
 - * $|x'| + k' \le g(k)$ for some computable function g
- * Lis FPT iff L has a kernelization algorithm

Question 1: Poes L admit a polynomial kernel?

Question 2: What is the smallest kernel does L admit?

Kernelization Lower Bounds

Long Path: given a graph G and integer k, does G have a k-path?

- * Suppose Long Path has a kernel with no. of vertices <= k⁵
- * Take $t = k^{11}$ instances $(G_1, k), (G_2, k), \ldots, (G_t, k)$ of Long Path
- * Let H be the disjoint union of G_1, G_2, \ldots, G_t
- * (H, k) is yes-instance iff there exists i s.t (Gi, k) is yes-instance
- * Let (H', k') be the kernel of (H, k)
- * H' has $<= k^5$ vertices encodable in k^{10} (< t) bits
- * Most of the input instances have been discarded!
 - Unlikely as Longest Path is NP-hard

Theorem: Long Path parameterized by k does not admit a polynomial kernel unless coNP⊆NP/poly.

Polynomial Parameter Transformations

Let Q and Q' be 2 parameterized problems. A polynomial parameter transformation from Q to Q' is a polynomial-time algorithm that given instance (x,k) of Q, outputs instance (y,r) of Q' s.t

- (x, k) is a yes-instance of Q if and only if (y, r) is a yes-instance of Q'
- * $r \le g(k)$ for some polynomial function g

Facts

- If Q' has poly kernel then Q has poly kernel why?
- * If Q does not have poly kernel then Q' does not have poly kernel

PPT: An Example

- * Long Path \leq_{PPT} Path Packing
 - * Given instance (G,k) of Long Path
 - * Add k-1 vertex disjoint paths of length k to G to get G'
 - * (G,k) is yes-instance of Long Path iff (G,k) is yes-instance of Path Packing

Path Packing

Instance: A graph G and an integer k

Question: Does G have a set of k vertex disjoint k-paths?

Parameter: k