Национальный исследовательский университет Высшая школа экономики Московский институт электроники и математики

Департамент прикладной математики кафедра компьютерной безопасности

Домашнее задание №2 по математической статистике Основные понятия математической статистики

Дискретное распределение: $\partial u c \kappa p e m hoe \ p a в номерное \ I$ Неизвестный параметр: $\theta=121$ Непрерывное распределение: $pacnpedenenue\ \Pi apemo$ Неизвестный параметр: $\theta=12$

Выполнила Мазитова Е.А.

Проверил Богданов Д.С.

Содержание

1	Генерация выборок выбранных случайных величин	3
2	Построение эмпирической функции распределения	3
3	Построение гистограммы и полигона частот	13
4	Вычисление выборочных моментов	23
5	Приложения	27

1. Генерация выборок выбранных случайных величин

Для генерации выборок случайных величин обоих распределений воспользуемся алгоритмами моделирования, описанными в задании 3 домашнего задания №1 и модифицируем написанный на языке программирования Python код так, чтобы для каждой из выбранных случайных величин строились по 5 выборок следующих объемов $n = \{5, 10, 100, 200, 400, 600, 800, 1000\}$.

Заданные параметры: $\theta=121$ для дискретного распределения и $\theta=12$ для непрерывного.

Рис. 1: Пример работы программы и сгенерированные выборки для дискретного равномерного I распределения

Результаты генерации (5 выборок указанных объемов) хранятся в файлах 'discrete_uniform_series.json' и 'pareto_series.json' для дискретной и непрерывной случайных величин соответственно.

$$\mathcal{F}_n(t) = \frac{\sum_{i=1}^n I(x_i < t)}{n}.$$

Данные файлы и код можно посмотреть в Приложении 1.

2. Построение эмпирической функции распределения

▶ Дискретное равномерное I распределение

Эмпирическую функцию распределения можно посчитать по формуле:

$$\mathcal{F}_n(t) = \frac{\sum_{i=1}^n I(x_i < t)}{n}.$$

Для каждого объема выборки и каждого целого t от 1 до 121 мы вычислили значение эмпирической функции распределения, которое посчитали как среднее арифметическое по 5 сериям выборок с помощью кода на языке программирования Python.

На графиках ниже представлены сравнения эмпирической и теоретической функций распределения для случайной величины с дискретным равномерным I распределением.

⊳ Распределение Парето

Для распределения Парето с параметром $\theta = 12$ также было сгенерировано 5 серий выборок объемов: $n = \{5, 10, 100, 200, 400, 600, 800, 1000\}$

Для каждого объема выборки собирались все уникальные значения из всех 5 серий, а затем для каждой точки t из этих уникальных значений вычислялась эмпирическая функция распределения по формуле:

$$\mathcal{F}_n(t) = \frac{\sum_{i=1}^n I(x_i < t)}{n}$$

Получившиеся значения усреднялись по 5 сериям методом среднего арифметического. Все осуществлялось с помощью кода на языке программирования Python.

На графиках ниже представлены сравнения эмпирической и теоретической функций распределения для случайной величины с непрерывным распределением Парето.

⊳ Двухвыборочные статистики

Были вычислены двухвыборочные статистики для всех пар объемов выборок дискретного равномерного распределения по формуле:

Для каждой пары построенных эмпирических $\mathcal{F}_n(x)$, $\mathcal{F}_m(x)$, $n, m \in \{5, 10, 100, 200, 400, 600, 800, 1000\}$ необходимо вычислить двухвыборочную статистику. Это реализовано с помощью кода на языке программирования Python.

Вычислим двухвыборочную статистику по следующей формуле:

$$Dm, n = \sqrt{\frac{nm}{m+n}} \sup_{x \in \mathbb{R}} |\mathcal{F}_n(x) - \mathcal{F}_m(x)|$$

Написанный код можно посмотреть в Приложении 1.

Рис. 2: График для выборки дискретного распределения объёма 5

Рис. 3: График для выборки дискретного распределения объёма 10

Рис. 4: График для выборки дискретного распределения объёма 100

Рис. 5: График для выборки дискретного распределения объёма 200

Рис. 6: График для выборки дискретного распределения объёма 400

Рис. 7: График для выборки дискретного распределения объёма 600

Рис. 8: График для выборки дискретного распределения объёма 800

Рис. 9: График для выборки дискретного распределения объёма 1000

Рис. 10: График для выборки непрерывного распределения объёма 5

Рис. 11: График для выборки непрерывного распределения объёма 10

Рис. 12: График для выборки непрерывного распределения объёма 100

Рис. 13: График для выборки непрерывного распределения объёма 200

Рис. 14: График для выборки непрерывного распределения объёма 400

Рис. 15: График для выборки непрерывного распределения объёма 600

Рис. 16: График для выборки непрерывного распределения объёма 800

Рис. 17: График для выборки непрерывного распределения объёма 1000

Таблица 1: Значения двухвыборочных статистик $D_{m,n}$ для дискретного распределения (дискретное равномерное I)

n/m	5	10	100	200	400	600	800	1000
5	-	0.2921	0.3317	0.3644	0.3511	0.3615	0.3600	0.3604
10	_	-	0.2352	0.2191	0.2155	0.2279	0.2357	0.2228
100	_	-	-	0.1878	0.2147	0.2191	0.2522	0.2498
200	_	-	-	-	0.1328	0.1225	0.1550	0.1627
400	_	-	-	-	-	0.0852	0.1347	0.1572
600	_	-	-	-	-	-	0.1034	0.1510
800	_	-	-	-	-	-	-	0.1117
1000	-	-	-	-	-	-	-	-

Таблица 2: Значения двухвыборочных статистик $D_{m,n}$ для непрерывного распределения (распределение Парето)

5	10	100	200	400	600	800	1000
-	0.1826	0.4670	0.4506	0.4144	0.4031	0.4118	0.4158
-	-	0.3859	0.3611	0.3123	0.2885	0.3009	0.3115
-	-	-	0.2776	0.3309	0.4290	0.4196	0.4195
-	-	-	-	0.2656	0.3552	0.3384	0.3382
-	-	-	-	-	0.1988	0.1837	0.1809
-	-	-	-	-	-	0.1435	0.1962
-	-	-	-	-	-	-	0.0727
-	-	-	-	-	-	-	-
	5		- 0.1826 0.4670	- 0.1826 0.4670 0.4506 0.3859 0.3611	- 0.1826 0.4670 0.4506 0.4144 - - 0.3859 0.3611 0.3123 - - 0.2776 0.3309	- 0.1826 0.4670 0.4506 0.4144 0.4031 - - 0.3859 0.3611 0.3123 0.2885 - - 0.2776 0.3309 0.4290 - - - 0.2656 0.3552	- 0.1826 0.4670 0.4506 0.4144 0.4031 0.4118 - - 0.3859 0.3611 0.3123 0.2885 0.3009 - - 0.2776 0.3309 0.4290 0.4196

3. Построение гистограммы и полигона частот

На графиках ниже представлено сравнение усреднённых полигонов частот с теоретической плотностью распределения для дискретного равномерного I распределения и распределения Парето. Для каждой из 5 серий выборок и каждого объёма выборки $n=\{5,10,100,200,400,600,800,1000\}$ вычислялись относительные частоты появления каждого значения t, и полученные частоты усреднялись по 5 сериям выборок методом среднего арифметического. Расчёт осуществлялся с помощью написания кода на языке программирования Python.

Для каждого объема выборки n и каждого значения t усредненная частота для дискретного распределения вычислялась по формуле:

$$p_n(t) = \frac{1}{5 \cdot n} \sum_{k=1}^{5} \sum_{i=1}^{n} \mathbb{I}\{x_i^{(k)} = t\}$$

Для каждого объема выборки n и каждого значения t усредненная частота

для непрерывного распределения вычислялась по формуле:

$$p_n(w) = \frac{1}{5 \cdot n} \sum_{k=1}^{5} \sum_{i=1}^{n} \mathbb{I}\{x_i^{(k)} \in w\},\,$$

где w - интервал. На графиках непрерывного распределения ось абсцисс разбита на 15 равных интервалов.

Полученные графики для рассматриваемых распределений демонстрируют следующие теоремы из курса теории вероятностей и математической статистики:

1. Усиленный закон больших чисел

Среднее арифметическое последовательности независимых случайных величин сходится почти наверное к их теоретическим значениям по мере увеличения количества испытаний. Это иллюстрируют приведенные ниже графики в задании 3.

2. Теорема Гливенко-Кантелли

Теорема утверждает, что выборочная функция распределения (наблюдаемая на основе выборки) равномерно сходится к истинной (теоретической) функции распределения при увеличении размера выборки. Это иллюстрируют графики сравнения эмпирической и теоретической функций распределений, сделанные в задании 2.

Написанный код можно посмотреть в Приложении 1.

Рис. 18: График для выборки дискретного распределения объёма 5

Рис. 19: График для выборки дискретного распределения объёма 10

Рис. 20: График для выборки дискретного распределения объёма 100

Рис. 21: График для выборки дискретного распределения объёма 200

Рис. 22: График для выборки дискретного распределения объёма 400

Рис. 23: График для выборки дискретного распределения объёма 600

Рис. 24: График для выборки дискретного распределения объёма 800

Рис. 25: График для выборки дискретного распределения объёма 1000

Рис. 26: График для выборки непрерывного распределения объёма 5

Рис. 27: График для выборки непрерывного распределения объёма 10

Рис. 28: График для выборки непрерывного распределения объёма 100

Рис. 29: График для выборки непрерывного распределения объёма 200

Рис. 30: График для выборки непрерывного распределения объёма 400

Рис. 31: График для выборки непрерывного распределения объёма 600

Рис. 32: График для выборки непрерывного распределения объёма 800

Рис. 33: График для выборки непрерывного распределения объёма 1000

4. Вычисление выборочных моментов

Вычислим значения выборочного среднего \overline{X} и выборочной дисперсии \overline{S} для каждой серии выборок, а также покажем среднее арифметическое по следующим формулам:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$\overline{S}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

1. Дискретное распределение (дискретное равномерное I)

- (a) Объем выборки n = 5:
 - \triangleright Серия 1: $\overline{X} = 65.600000$, $\overline{S}^2 = 958.240000$
 - \triangleright Серия 2: $\overline{X} = 57.400000$, $\overline{S}^2 = 1297.840000$
 - \triangleright Серия 3: $\overline{X} = 50.000000$, $\overline{S}^2 = 653.200000$
 - \triangleright Серия 4: $\overline{X} = 50.400000$, $\overline{S}^2 = 723.040000$
 - \triangleright Серия 5: $\overline{X} = 49.800000$, $\overline{S}^2 = 1778.160000$
 - \triangleright Среднее арифметическое: $\overline{X} = 54.640000, \overline{S}^2 = 1082.096000$
- (b) Объем выборки n = 10:
 - \triangleright Серия 1: $\overline{X} = 67.000000, \overline{S}^2 = 924.800000$
 - \triangleright Серия 2: $\overline{X} = 63.100000$, $\overline{S}^2 = 1310.090000$
 - \triangleright Серия 3: $\overline{X} = 53.500000$, $\overline{S}^2 = 905.450000$
 - \triangleright Серия 4: $\overline{X} = 69.500000$, $\overline{S}^2 = 1027.650000$
 - \triangleright Серия 5: $\overline{X} = 63.700000$, $\overline{S}^2 = 1870.410000$
 - \triangleright Среднее арифметическое: $\overline{X} = 63.360000, \overline{S}^2 = 1207.680000$
- (c) Объем выборки n = 100:
 - ightharpoonup Серия 1: $\overline{X}=62.940000, \ \overline{S}^2=1267.576400$
 - \triangleright Серия 2: $\overline{X} = 66.390000$, $\overline{S}^2 = 1142.657900$
 - \triangleright Серия 3: $\overline{X} = 56.330000$, $\overline{S}^2 = 986.661100$
 - ightharpoonup Серия 4: $\overline{X} = 55.920000, \, \overline{S}^2 = 1102.873600$
 - \triangleright Серия 5: $\overline{X} = 60.100000$, $\overline{S}^2 = 1150.630000$
 - \triangleright Среднее арифметическое: $\overline{X} = 60.336000, \ \overline{S}^2 = 1130.079800$
- (d) Объем выборки n = 200:

- \triangleright Серия 1: $\overline{X} = 63.095000$, $\overline{S}^2 = 1296.085975$
- \triangleright Серия 2: $\overline{X} = 65.730000$, $\overline{S}^2 = 1137.147100$
- \triangleright Серия 3: $\overline{X} = 59.915000$, $\overline{S}^2 = 1063.717775$
- \triangleright Серия 4: $\overline{X} = 58.850000$, $\overline{S}^2 = 1158.137500$
- \triangleright Серия 5: $\overline{X} = 58.430000$, $\overline{S}^2 = 1122.555100$
- \triangleright Среднее арифметическое: $\overline{X} = 61.204000, \ \overline{S}^2 = 1155.528690$

(e) Объем выборки n = 400:

- \triangleright Серия 1: $\overline{X} = 62.352500$, $\overline{S}^2 = 1228.473244$
- \triangleright Серия 2: $\overline{X} = 62.042500$, $\overline{S}^2 = 1176.055694$
- \triangleright Серия 3: $\overline{X} = 59.455000$, $\overline{S}^2 = 1133.167975$
- \triangleright Серия 4: $\overline{X} = 60.177500$, $\overline{S}^2 = 1229.290994$
- \triangleright Серия 5: $\overline{X} = 60.700000$, $\overline{S}^2 = 1135.255000$
- \triangleright Среднее арифметическое: $\overline{X} = 60.945500, \ \overline{S}^2 = 1180.448581$

(f) Объем выборки n = 600:

- \triangleright Серия 1: $\overline{X} = 62.131667$, $\overline{S}^2 = 1211.747664$
- \triangleright Серия 2: $\overline{X} = 62.261667$, $\overline{S}^2 = 1168.146531$
- \triangleright Серия 3: $\overline{X} = 60.068333$, $\overline{S}^2 = 1161.666997$
- \triangleright Серия 4: $\overline{X} = 61.201667$, $\overline{S}^2 = 1193.494331$
- \triangleright Серия 5: $\overline{X} = 59.938333$, $\overline{S}^2 = 1150.767864$
- \triangleright Среднее арифметическое: $\overline{X} = 61.120333$, $\overline{S}^2 = 1177.164677$

(g) Объем выборки n = 800:

- \triangleright Серия 1: $\overline{X} = 60.845000$, $\overline{S}^2 = 1209.655975$
- \triangleright Серия 2: $\overline{X} = 62.912500$, $\overline{S}^2 = 1128.404844$
- \triangleright Серия 3: $\overline{X} = 59.812500$, $\overline{S}^2 = 1167.297344$
- \triangleright Серия 4: $\overline{X} = 61.686250$, $\overline{S}^2 = 1233.515311$
- \triangleright Серия 5: $\overline{X} = 60.062500$, $\overline{S}^2 = 1186.521094$
- \triangleright Среднее арифметическое: $\overline{X} = 61.063750, \overline{S}^2 = 1185.078913$

(h) Объем выборки n = 1000:

- \triangleright Серия 1: $\overline{X} = 60.820000$, $\overline{S}^2 = 1194.321600$
- \triangleright Серия 2: $\overline{X} = 63.521000$, $\overline{S}^2 = 1135.825559$
- \triangleright Серия 3: $\overline{X} = 60.201000, \overline{S}^2 = 1173.532599$
- ightharpoonup Серия 4: $\overline{X} = 61.075000$, $\overline{S}^2 = 1237.039375$
- \triangleright Серия 5: $\overline{X} = 60.370000$, $\overline{S}^2 = 1206.991100$

 \triangleright Среднее арифметическое: $\overline{X} = 61.197400, \ \overline{S}^2 = 1189.542047$

Как мы видим, данные значения сходятся к значениям теоретических математического ожидания и дисперсии для равномерного распределения с заданным параметром $\theta=121$:

$$E[X] = \frac{\theta + 1}{2} = \frac{122}{2} = 61$$
$$D[X] = \frac{\theta^2 - 1}{12} = \frac{121^2 - 1}{12} = 1220$$

2. Непрерывное распределение (распределение Парето)

- (a) Объем выборки n = 5:
 - \triangleright Серия 1: $\overline{X} = 1.096638$, $\overline{S}^2 = 0.012632$
 - \triangleright Серия 2: $\overline{X} = 1.161239$, $\overline{S}^2 = 0.010834$
 - \triangleright Серия 3: $\overline{X} = 1.113574$, $\overline{S}^2 = 0.003615$
 - \triangleright Серия 4: $\overline{X} = 1.115615$, $\overline{S}^2 = 0.018546$
 - \triangleright Серия 5: $\overline{X} = 1.101622$, $\overline{S}^2 = 0.009451$
 - \triangleright Среднее арифметическое: $\overline{X} = 1.117738, \ \overline{S}^2 = 0.011016$
- (b) Объем выборки n = 10:
 - \triangleright Серия 1: $\overline{X} = 1.088552$, $\overline{S}^2 = 0.007757$
 - \triangleright Серия 2: $\overline{X} = 1.119158$, $\overline{S}^2 = 0.008009$
 - \triangleright Серия 3: $\overline{X} = 1.115099$, $\overline{S}^2 = 0.009792$
 - \triangleright Серия 4: $\overline{X} = 1.102710$, $\overline{S}^2 = 0.013635$
 - \triangleright Серия 5: $\overline{X} = 1.080461$, $\overline{S}^2 = 0.008443$
 - \triangleright Среднее арифметическое: $\overline{X} = 1.101196, \ \overline{S}^2 = 0.009527$
- (c) Объем выборки n=100:
 - \triangleright Серия 1: $\overline{X} = 1.089071$, $\overline{S}^2 = 0.010034$
 - \triangleright Серия 2: $\overline{X} = 1.079443$, $\overline{S}^2 = 0.007204$
 - \triangleright Серия 3: $\overline{X} = 1.086723$, $\overline{S}^2 = 0.009738$
 - ightharpoonup Серия 4: $\overline{X} = 1.097229$, $\overline{S}^2 = 0.012672$
 - \triangleright Серия 5: $\overline{X} = 1.084949$, $\overline{S}^2 = 0.006752$
 - \triangleright Среднее арифметическое: $\overline{X} = 1.087483, \ \overline{S}^2 = 0.009280$
- (d) Объем выборки n = 200:
 - \triangleright Серия 1: $\overline{X} = 1.093842$, $\overline{S}^2 = 0.009941$

- \triangleright Серия 2: $\overline{X} = 1.079821$, $\overline{S}^2 = 0.006580$
- \triangleright Серия 3: $\overline{X} = 1.093554$, $\overline{S}^2 = 0.008991$
- \triangleright Серия 4: $\overline{X} = 1.094386$, $\overline{S}^2 = 0.012409$
- \triangleright Серия 5: $\overline{X} = 1.079574$, $\overline{S}^2 = 0.006223$
- \triangleright Среднее арифметическое: $\overline{X} = 1.088236, \ \overline{S}^2 = 0.008829$

(e) Объем выборки n = 400:

- \triangleright Серия 1: $\overline{X} = 1.097680$, $\overline{S}^2 = 0.010980$
- \triangleright Серия 2: $\overline{X} = 1.087006$, $\overline{S}^2 = 0.008392$
- \triangleright Серия 3: $\overline{X} = 1.089870$, $\overline{S}^2 = 0.008313$
- \triangleright Серия 4: $\overline{X} = 1.095797$, $\overline{S}^2 = 0.011176$
- \triangleright Серия 5: $\overline{X} = 1.084453$, $\overline{S}^2 = 0.008297$
- ightharpoonup Среднее арифметическое: $\overline{X} = 1.090961, \ \overline{S}^2 = 0.009432$

(f) Объем выборки n = 600:

- \triangleright Серия 1: $\overline{X} = 1.095266$, $\overline{S}^2 = 0.010923$
- \triangleright Серия 2: $\overline{X} = 1.090619$, $\overline{S}^2 = 0.008996$
- \triangleright Серия 3: $\overline{X} = 1.090162$, $\overline{S}^2 = 0.008257$
- ightharpoonup Серия 4: $\overline{X} = 1.095703$, $\overline{S}^2 = 0.010475$
- \triangleright Серия 5: $\overline{X} = 1.085442$, $\overline{S}^2 = 0.007946$
- ightharpoonup Среднее арифметическое: $\overline{X}=1.091438,\,\overline{S}^2=0.009320$

(g) Объем выборки n = 800:

- \triangleright Серия 1: $\overline{X} = 1.094757$, $\overline{S}^2 = 0.011002$
- \triangleright Серия 2: $\overline{X} = 1.090426$, $\overline{S}^2 = 0.009490$
- \triangleright Серия 3: $\overline{X} = 1.089691$, $\overline{S}^2 = 0.008615$
- \triangleright Серия 4: $\overline{X} = 1.093521$, $\overline{S}^2 = 0.010102$
- \triangleright Серия 5: $\overline{X} = 1.086769$, $\overline{S}^2 = 0.008515$
- \triangleright Среднее арифметическое: $\overline{X} = 1.091033, \ \overline{S}^2 = 0.009545$

(h) Объем выборки n=1000:

- \triangleright Серия 1: $\overline{X} = 1.093026$, $\overline{S}^2 = 0.010568$
- \triangleright Серия 2: $\overline{X} = 1.089544$, $\overline{S}^2 = 0.009233$
- \triangleright Серия 3: $\overline{X} = 1.092028$, $\overline{S}^2 = 0.009322$
- ightharpoonup Серия 4: $\overline{X} = 1.092811$, $\overline{S}^2 = 0.009920$
- \triangleright Серия 5: $\overline{X} = 1.086495$, $\overline{S}^2 = 0.008089$
- \triangleright Среднее арифметическое: $\overline{X} = 1.090781, \, \overline{S}^2 = 0.009427$

Как мы видим, данные значения сходятся к значениям теоретических математического ожидания и дисперсии для распределения Парето с заданным параметром $\theta = 12$:

$$E[X] = \frac{\theta}{\theta - 1} = \frac{12}{12 - 1} \approx 1.09091$$

$$D[X] = \frac{\theta}{(\theta - 2)(\theta - 1)^2} = \frac{12}{(12 - 2)(12 - 1)^2} \approx 0.009917$$

Выборочные моменты обладают следующими свойствами:

- ightharpoonup Выборочное среднее \overline{X} :
 - Несмещённость выполняется: выборочное среднее является несмещённой оценкой теоретического математического ожидания случайной величины
 - Состоятельность выполняется: при $n \to \infty$ выборочное среднее сходится к теоретическому математическому ожиданию
 - Эффективность выполняется: выборочное среднее имеет наименьшую дисперсию среди всех несмещённых линейных оценок
- ightharpoonup Выборочная дисперсия \overline{S} :
 - Несмещённость не выполняется
 - Состоятельность выполняется: при $n \to \infty$ выборочная дисперсия сходится к теоретической дисперсии
 - Эффективность не выполняется: оценка смещённая, поэтому не может быть эффективной

5. Приложения

1. https://github.com/faisvire/mathstat-hw