Lecture 4

Multivariable linear regression

Sung Kim <hunkim+ml@gmail.com> http://hunkim.github.io/ml/

Video (Korean): https://youtu.be/kPxpJY6fRkY

Recap

Hypothesis

$$H(x) = Wx + b$$

• Cost function $cost(W,b) = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^2$

Gradient descent algorithm

$$\omega := \omega - \alpha \frac{\partial (ost)}{\partial \omega}$$

$$= \omega - \frac{\alpha}{m} \sum_{i=1}^{m} (w_i x^{(i)} - y^{(i)}) x^{(i)}$$

Predicting exam score: regression using one input (x)

one-variable one-feature

x (hours)	y (score)	
10	90	
9	80	
3	50	
2	60	
11	40	

Predicting exam score: regression using three inputs (x1, x2, x3)

multi-variable/feature

x ₁ (quiz 1)	x ₂ (quiz 2)	x ₃ (midterm 1)	Y (final)
73	80	75	152
93	88	93	185
89	91	90	180
96	98	100	196
73	66	70	142

Test Scores for General Psychology

Hypothesis

$$H(x) = Wx + b$$

Hypothesis

Cost function

$$H(x_1, x_2, x_3) = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

$$cost(W, b) = \frac{1}{m} \sum_{i=1}^{m} (H(x_1^{(i)}, x_2^{(i)}, x_3^{(i)}) - y^{(i)})^2$$

Multi-variable

$$H(x_1,x_2,x_3)=w_1x_1+w_2x_2+w_3x_3+b$$

$$\sqrt{\text{generalize}} \ H(x_1,x_2,x_3,...,x_n)=w_1x_1+w_2x_2+w_3x_3+...+w_nx_n+b$$
 +or long.

X ₁	X ₂	x ₃	Υ
73	80	75	152
93	88	93	185
89	91	90	180
96	98	100	196
73	66	70	142

Hypothesis using matrix

$$w_1x_1 + w_2x_2 + w_3x_3 + \dots + w_nx_n$$

$$\begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \\ x_{41} & x_{42} & x_{43} \\ x_{51} & x_{52} & x_{53} \end{pmatrix} \cdot \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = \begin{pmatrix} x_{11}w_1 + x_{12}w_2 + x_{13}w_3 \\ x_{21}w_1 + x_{22}w_2 + x_{23}w_3 \\ x_{31}w_1 + x_{32}w_2 + x_{33}w_3 \\ x_{41}w_1 + x_{42}w_2 + x_{43}w_3 \\ x_{51}w_1 + x_{52}w_2 + x_{53}w_3 \end{pmatrix}$$

$$H(X) = XW$$

Hypothesis using matrix

$$\begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \\ x_{41} & x_{42} & x_{43} \\ x_{51} & x_{52} & x_{53} \end{pmatrix} \cdot \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = \begin{pmatrix} x_{11}w_1 + x_{12}w_2 + x_{13}w_3 \\ x_{21}w_1 + x_{22}w_2 + x_{23}w_3 \\ x_{31}w_1 + x_{32}w_2 + x_{33}w_3 \\ x_{41}w_1 + x_{42}w_2 + x_{43}w_3 \\ x_{51}w_1 + x_{52}w_2 + x_{53}w_3 \end{pmatrix}$$

[5, 3] [3, 1] [5, 1]
$$H(X) = XW$$

WX vs XW

• Lecture (theory):

$$H(x) = Wx + b$$

Implementation (TensorFlow)

$$H(X) = XW$$

Next
Logistic Regression
(Classification)

