

Square and Square Root

Sauare

A square of a number is that number raised to the power of 2.

When we multiply a number itself, the result we get is the square of the number multiplied.

e.g.
$$2 \times 2 = 2^2 = 4$$
; 4 is the square of 2.
 $3 \times 3 = 3^2 = 9$; 9 is the square of 3.

Perfect Square

A number is said to be perfect square, if it is a square of any natural number.

e.g.
$$4 \times 4 = 16, 5 \times 5 = 25$$

Here, 16 and 25 are perfect squares of 4 and 5, respectively.

Square Root

The square root of a number is that factor of the number which, when multiplied by itself will give that number.

e.g.
$$5 \times 5 = 25$$
, $8 \times 8 = 64$

The numbers 25 and 64 are the squares of 5 and 8, respectively. We can also say that the numbers 5 and 8 are the square roots of 25 and 64, respectively.

If $4^2 = 16$, we say that square root of 16 is 4 and we write $\sqrt{16} = 4$

Methods for Finding Square Root

1. Prime Factorisation method 2. Division method

Prime Factorisation Method

This method is suitable for finding square root of small numbers.

e.g.
$$\sqrt{144}$$

2	144
2	72
2	36
2	18
3	9
3	3
	1

$$\sqrt{144} = \sqrt{2 \times 2 \times 2 \times 2 \times 3 \times 3}$$
$$= \sqrt{2^2 \times 2^2 \times 3^2} = 2 \times 2 \times 3 = 12$$

Example 1 Find the square root of 1089.

(a) 33 (b) 23 (c) 43 (d) 53 **Sol.** (a) Prime factor of
$$1089 = 11 \times 11 \times 3 \times 3$$

 $\Rightarrow \sqrt{1089} = \sqrt{11 \times 11 \times 3 \times 3}$

Now, taking one number from each pair and multiplying them, we get
$$\sqrt{1089} = 11 \times 3 = 33$$

Division Method

This method is suitable for finding square root of large numbers.

e.g.
$$\sqrt{151321}$$

Steps of Division Method

- Make the pair of digits, starting from unit digit.
- Think of a number whose square is just equal to or less than first pair.
- Make this number as the divisor and the part of quotient and subtract its square from first pair.
- Now bring the second pair down, adjacent to the remainder as new dividend.
- For new trial divisor, double the quotient and enter a digit to be put at the unit place in the new divisor, such that the product of entire divisor with that digit is less than equal to the dividend.
- Repeat these steps till the last pair is taken up.

	389
3	15 13 21
	9
68	613
	544
769	6921
	6921
	×

$$1.51321 = 389$$

Example 2 Find the square root of 18769.

- (a) 117
- (b) 137
- (c) 147
- (d) 133

$$1.0 \sqrt{18769} = 137$$

Example 3
$$\sqrt{?} + 136 = \frac{5}{8} \text{ of } 320$$

- (a) 1936
- (b) 4624

(d) 4096

Sol.
$$(d)$$
 $\sqrt{?}$ +136 = $\frac{5}{8}$ of 320

$$\Rightarrow \qquad \sqrt{?} + 136 = \frac{5}{8} \times 320$$

$$\Rightarrow \qquad \sqrt{?} = 5 \times 40 - 136$$

$$\Rightarrow \qquad \sqrt{?} = 200 - 136 \Rightarrow ? = (64)^2$$

Example 4 A gardener plants 4225 trees in such a way that there are as many rows as there are trees in a row. Find the number of trees in a row.

- (a) 65
- (b) 68
- (c) 78
- (d) 75

Sol. (a) Number of rows =
$$\sqrt{4225}$$

	65
6	42 25
	36
125	625
	625
	×

So, number of rows = 65.

Helping Tips /

- If number is given in form of fraction, then find the square root of numerator and denominator individually. e.g. $\sqrt{\frac{9}{16}} = \frac{\sqrt{9}}{\sqrt{16}} = \frac{3}{4}$
- If number is given in decimal form, then convert it in fraction form and then find the square root.

e.g.
$$\sqrt{0.09} = \sqrt{\frac{9}{100}} = \frac{\sqrt{9}}{\sqrt{100}} = \frac{3}{10} = 0.3$$

Practice Exercise

- 1. If $\sqrt{529} = x$, then find the value of x.
 - (a) 23
- (b) 25
- (c) 27
- (d) 13
- **2.** Square root of $11\frac{9}{81}$ is
 - (a) $3\frac{2}{3}$ (c) $\frac{8}{3}$

- **3.** If $\sqrt{81} + \sqrt{64} = x$, then find the value of x.
- (b) 18

(c) 9

- (d) 8
- **4.** If $\sqrt{900} + \sqrt{0.09} \sqrt{0.000009} = x$, then find the value of x.
 - (a) 30.297
- (b) 3.03
- (c) 30.003
- (d) 30.300
- **5.** If $48\sqrt{x} + 32\sqrt{x} = 320$, then find the value
 - (a) 9
- (b) 16
- (c) 25
- (d) 36

- **6.** Simplify the expression $\sqrt{16\frac{97}{144}} \times \sqrt{36}$.
 - (a) 16

- (b) $\frac{47}{2}$ (c) 24.5 (d) 25.5
- 7. What is the greatest number of 4 digits, which is perfect square?
 - (a) 9018
- (b) 9999
- (c) 9801
- (d) 9899
- **8.** $\sqrt{176} + \sqrt{2401} = x$. Find the value of x.
- (b) 18
- (c) 16
- (d) 14
- **9.** Find the value of expression

$$\sqrt{15612 + \sqrt{154 + \sqrt{225}}}.$$

- (a) 625
- (b) 125 (c) 25
- (d) 225
- 10. Find the least number from which, multiplication of 2352 gives a perfect square number.
 - (a) 2
- (b) 3
- (c) 6
- (d) 8

Answers

	1	(a)	2	(b)	3	(a)	4	(a)	5	(b)	6	(c)	7	(c)	8	(a)	9	(b)	10	(b)
--	---	-----	---	-----	---	-----	---	-----	---	-----	---	-----	---	-----	---	-----	---	-----	----	-----

Hints & Solutions

2.
$$\sqrt{11\frac{9}{81}} = \sqrt{\frac{11 \times 81 + 9}{81}}$$

= $\sqrt{\frac{900}{81}} = \frac{30}{9} = \frac{10}{3}$

3.
$$x = \sqrt{81} + \sqrt{64}$$

= $\sqrt{3 \times 3 \times 3 \times 3} + \sqrt{2 \times 2 \times 2 \times 2 \times 2 \times 2}$
= $3^2 + 2^3 = 9 + 8 = 17$

4.
$$x = \sqrt{900} + \sqrt{0.09} - \sqrt{0.000009}$$
$$= \sqrt{900} + \sqrt{\frac{9}{100}} + \sqrt{\frac{9}{1000000}}$$
$$= 30 + \frac{3}{10} - \frac{3}{1000}$$
$$= 30 + 0.3 - 0.003 = 30.297$$

5.
$$48\sqrt{x} + 32\sqrt{x} = 320$$

$$\Rightarrow \qquad \sqrt{x}(48+32) = 320$$

$$\Rightarrow 80\sqrt{x} = 320$$

$$\Rightarrow$$
 $\sqrt{x} = 4$, square of both sides

$$\Rightarrow$$
 $x = 4^2 = 16$

6.
$$\sqrt{16\frac{97}{144}} \times \sqrt{36} = \sqrt{\frac{16 \times 144 + 97}{144}} \times \sqrt{36}$$

$$= \sqrt{\frac{2401}{144}} \times \sqrt{36}$$

$$= \frac{49}{12} \times 6 = \frac{49}{2} = 24.5$$

7. Greatest number of 4 digits = 9999We find that, $9999 = (99)^2 + 198$

So,
$$(99)^2 = 9999 - 198 = 9801$$

8.
$$\sqrt{2401} = \sqrt{7 \times 7 \times 7 \times 7} = 7 \times 7 = 49$$

 $\therefore \quad x = \sqrt{176 + 49} = \sqrt{225} = 15$

9.
$$\sqrt{15612 + \sqrt{154 + \sqrt{225}}}$$

= $\sqrt{15612 + \sqrt{154 + 15}}$

$$= \sqrt{15612 + \sqrt{169}}$$
$$= \sqrt{15612 + 13} = \sqrt{15625}$$
$$= 125$$

$$2352 = \overline{2 \times 2} \times \overline{2 \times 2} \times 3 \times \overline{7 \times 7}$$

(c) 3

(d) 9

(d) 12

∴ Required number = 3

Try Yourself

- 1) If $\frac{x}{\sqrt{4}} = \sqrt{16}$, then find the value of x.
 - (a) 4 (b) 16
- (c) 8
- (d) 12
- 2) Find the square root of 7921.
 - (b) 69
- (d) 98
- 3) Simplify the expression $\sqrt{\frac{324}{81}}$.
 - (b) 9
- (d) 2
- 4) If $\sqrt{x} + \sqrt{484} = 40$, then find the value of x is (b) 415 (c) 324
- **5)** If $\sqrt{\frac{196}{7}} \times \sqrt{\frac{900}{x}} = 4$, then find the value of x.
- (c) 1296
- 6) What is the least number of 4 digits, which is perfect square?
 - (a) 1089
- (b) 1024
- (c) 1000
- (d) 9999

- 7) Simplify $\sqrt{\frac{625}{144}} + \frac{11}{12}$.
 - (a) 2
- **8)** Simplify $\frac{\sqrt{225}}{16} \times \frac{\sqrt{256}}{15} \times \frac{324}{18}$.
 - (a) 15
- 9) Find the value of $\frac{12^2 + 14^2}{\sqrt{10000}}$. (a) $\frac{17}{5}$ (b) $\frac{5}{17}$ (c) $\frac{5}{3}$
- **10)** What is the value of $\sqrt{\frac{0.289}{0.00121}}$? (a) $\frac{160}{11}$ (b) $\frac{150}{11}$ (c) $\frac{175}{11}$

Answers

1 (c) **2** (c) **3** (d) **4** (c) **10** (d)