# K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS Single Stage BJT Amplifier

11<sup>th</sup> July, 2020 Numericals

Numerical 1: For the circuit shown below in figure 1. Determine:

- a)  $r_{\pi}$
- b)  $Z_i$  and  $Z_o$
- c)  $A_v$  (voltage gain)



Figure 1: Circuit 1

Solution: DC ANALYSIS:



Figure 2: DC Equivalent Circuit

By applying KVL to base - emitter loop,

$$V_{CC} - I_B R_B - V_{BE} - I_E R_E = 0$$

$$I_E = (\beta + 1)I_B$$

$$\therefore V_{CC} - I_B R_B - V_{BE} - (\beta + 1) I_B R_E = 0$$

$$\therefore I_B = \frac{V_{CC} - V_{BE}}{[R_B + (\beta + 1)R_E]} = \frac{16 - 0.7}{[270k + (11)(2.7k)]} = \frac{15.3}{5697 \times 10^3} = \mathbf{26.8}\mu\mathbf{A}$$

$$I_C = \beta I_B = 110 \times 26.8 \times 10^{-6} = \mathbf{2.95mA}$$

Applying KVL to the collector emitter loop:

$$V_{CC} - V_{CE} - I_E R_E = 0$$

$$V_{CE} = V_{CC} - (1+\beta)I_B R_E = 16 - (111)(26.8 \times 10^{-6})(2.7 \times 10^3) = 8V$$

(As 
$$I_E = (1 + \beta)I_B$$
)

#### **AC ANALYSIS:**

a) Small Signal Parameter:

$$g_m = \frac{I_{CQ}}{V_T}$$

Here,  $V_T = 26mV$ 

$$g_m = \frac{2.95 \times 10^{-3}}{26 \times 10^{-3}} = 0.11346 = 113.46 \text{mA/V}$$

$$r_o = 50k\Omega$$
 (given)

$$r_{\pi} = rac{V_T}{I_{BQ}} = rac{26 imes 10^{-3}}{26.8 imes 10^{-6}} = \mathbf{970.14}\Omega$$

b) Small-Signal Equivalent Circuit shown in figure 3.



Figure 3: Small Signal Equivalent Circuit

c)  $Z_i$  (Input Impedence)

$$Z_i = R_B \mid\mid (r_{\pi} + (1+\beta)R_E) = 270 \times 10^3 \mid\mid (970.14 + (111)(2.7 \times 10^3))$$
  
 $Z_i = 270 \times 10^3 \mid\mid 300.67 \times 10^3 = 142.25 \text{k}\Omega$ 

d)  $Z_o$  (Output Impedence)

$$Z_o = R_E \parallel \frac{1}{g_m} \parallel r_o = (R_E \parallel r_o) \parallel \frac{1}{g_m} = 270 \times 10^3 \parallel 50 \times 10^3 \parallel \frac{1}{113.46 \times 10^{-3}} = \mathbf{0.113}\Omega$$

e)  $A_V$  (Voltage Gain)

$$\frac{V_{out}}{V_{in}} = A_V = \frac{g_m R_E}{1 + g_m R_E} = \frac{113.46 \times 10^{-3} \times 2.7 \times 10^3}{1 + (113.46 \times 10^{-3})(2.7 \times 10^3)} = 1$$

## SIMULATED RESULTS:

Above circuit is simulated in LTspice and the result is as follows:



model in it inpin(bi 110 tui 11710)

Figure 4: Circuit Schematic

The input and output waveforms are shown in figure 5.



Figure 5: Input and output waveform

# Comparison between Theoretical and Simulated values:-

| Parameter | Simulated         | Theoretical |
|-----------|-------------------|-------------|
| $I_C$     | $2.9 \mathrm{mA}$ | 2.95mA      |
| $I_B$     | $26\mu A$         | $26.8\mu A$ |
| $V_{CE}$  | 7.9V              | 8V          |
| $A_V$     | 1                 | 1           |

Table 1: Numerical 1

Numerical 2: For the circuit shown below in figure 6. Determine:

- a)  $r_{\pi}$
- b)  $Z_i$  and  $Z_o$
- c)  $A_v$  (voltage gain)



Figure 6: Circuit 2

**Solution:** The above circuit consists of a common base configuration employing pnp configuration

# DC ANALYSIS:

For DC equivalent circuit, f = 0,  $X_C = \frac{1}{2\pi fc} = \infty$ 

So capacitors are replaced by an open circuit



Figure 7: DC Equivalent Circuit

By applying KVL to base - emitter loop,

$$V_{EE} - I_E R_E - V_{BE} = 0$$

$$I_E = \frac{V_{EE} - V_{BE}}{R_E} = \frac{2 - 0.7}{1 \times 10^3} =$$
**1.3mA**

$$I_C = \alpha I_E = 0.98 \times 1.3 \times 10^{-3} = 1.27 \text{mA}$$

## **AC ANALYSIS:**

All the DC souces are open circuited and the capacitors are replaced by short circuit.

a) Small Signal Parameter:

$$g_m = \frac{I_{CQ}}{V_T}$$

Here,  $V_T = 26mV$ 

$$g_m = \frac{1.27 \times 10^{-3}}{26 \times 10^{-3}} = 0.049 = 49 \text{mA/V}$$

$$r_o = 1M\Omega$$

$$r_{\pi} = \frac{\beta V_T}{I_{BQ}}$$

$$\alpha = 0.98$$

$$\beta = \frac{\alpha}{1 - \alpha} = \frac{0.98}{1 - 0.98} = \mathbf{49}$$

$$r_{\pi} = \frac{49V_T}{I_{BQ}} = \frac{49 \times 26 \times 10^{-3}}{1.27 \times 10^{-3}} = 1003.14\Omega$$

b) Small-Signal Equivalent Circuit shown in figure 8.



Figure 8: Small Signal Equivalent Circuit

c)  $A_V$  (Small Signal Voltage Gain)

$$\frac{V_{out}}{V_{in}} = A_V = g_m(R_C \mid\mid r_o) = 49 \times 10^{-3} \times (5 \times 10^3 \mid\mid 1 \times 10^6) = 245$$

d)  $Z_i$  (Input Impedance)

$$Z_i = \frac{1}{g_m} \mid\mid R_E = \frac{1}{49 \times 10^{-3}} \mid\mid 1 \times 10^3 = 20.408 \mid\mid 1000 = 20\Omega$$

e)  $Z_o$  (Output Impedance)

$$Z_o = R_C \mid\mid r_o = 1M \mid\mid 5k = 4975.12\Omega$$

## SIMULATED RESULTS:

Above circuit is simulated in LTspice and the result is as follows:



Figure 9: Circuit Schematic



Figure 10: Input and Output Waveforms

# Comparison between Theoretical and Simulated values:-

| Parameter | Simulated         | Theoretical        |
|-----------|-------------------|--------------------|
| $I_{CQ}$  | $1.2 \mathrm{mA}$ | $1.27 \mathrm{mA}$ |
| $A_V$     | 240               | 245                |

Table 2: Numerical 2

**Numerical 3:** The transistor in the circuit shown in figure 11 has  $\beta = 100$  and  $V_A = \infty$  Determine: a)  $I_{CQ}$  and  $V_{ECQ}$  b) Small - Signal voltage gain  $A_V = V_{out}/V_{in}$ 



Figure 11: Circuit 1

**Solution:** The above circuit consists of a common base configuration employing pnp configuration

## DC ANALYSIS:

By applying KVL to base - emitter loop,

$$V_{EE} - I_E R_E - V_{BE} = 0$$

$$I_E = \frac{V_{EE} - V_{BE}}{R_E} = \frac{10 - 0.7}{10 \times 10^3} = \mathbf{0.93mA}$$

$$I_C = \frac{\beta}{\beta + 1} I_E = \frac{100}{101} \times 0.93 \times 10^{-3} = \mathbf{0.92mA} \quad \text{(As } I_C = \beta I_B \text{ and } I_E = (\beta + 1))$$



Figure 12: DC Equivalent Circuit

Applying KVL to the emitter - collector loop,

$$V_{EE} - I_E R_E - V_{EC} - I_C R_C + V_{CC} = 0$$

As 
$$V_{EC} = -V_{CE}$$

$$V_{CE} = I_E R_E + I_C R_C - V_{EE} - V_{CC}$$
$$= (0.93 \times 10^{-3})(10 \times 10^3) + (0.92 \times 10^{-3})(5 \times 10^3) - 10 - 10 = -6.1V$$

$$V_{ECQ} = \mathbf{6.1V}$$

## **AC ANALYSIS:**

All the DC sources are open circuited and the capacitors are replaced by short circuit.

a) Small Signal Parameter:

$$g_m = \frac{I_{CQ}}{V_T}$$

Here, 
$$V_T = 26mV$$

$$g_m = \frac{0.92 \times 10^{-3}}{26 \times 10^{-3}} = 35.38 \text{mA/V}$$

$$r_{\pi} = \frac{\beta V_T}{I_{CQ}}$$

$$r_{\pi} = \frac{100 \times 26 \times 10^{-3}}{0.92 \times 10^{-3}} = 2826\Omega$$

# b) Small-Signal Equivalent Circuit shown in figure 13.



Figure 13: Small Signal Equivalent Circuit

# c) $A_V$ (Small Signal Voltage Gain)

$$\frac{V_{out}}{V_{in}} = A_V = g_m(R_C \mid\mid R_L) = 35.38 \times 10^{-3} \times (5 \times 10^3 \mid\mid 50 \times 10^3) = \mathbf{160}$$

## SIMULATED RESULTS:

Above circuit is simulated in LTspice and the result is as follows:



.tran 5m .model PNP1 pnp(bf=100)

Figure 14: Circuit Schematic

The input and output waveforms are shown in figure 15.



Figure 15: Input and Output Waveforms

# Comparison between Theoretical and Simulated values:-

| Parameter | Simulated          | Theoretical         |
|-----------|--------------------|---------------------|
| $I_{CQ}$  | $0.92 \mathrm{mA}$ | $0.914 \mathrm{mA}$ |
| $V_{ECQ}$ | 6.1V               | 6.2V                |
| $A_V$     | 160                | 159                 |

Table 3: Numerical 3

\*\*\*\*\*\*\*\*\*\*\*