7/3/2019 Discussion | 6.86x | edX

> EdX and its Members use cookies and other tracking technologies for performance, analytics, and marketing purposes. By using this website, you accept this use. Learn more about these technologies in the Privacy Policy.

MITx: 6.86x

Machine Learning with Python-From Linear Models to Deep Learning

Help

sandipan_dey 🔻

■ All Topics	Add a Post Search all posts	Search
Filter Topics	Derivation of loglikelihood inside, spoiler alert	+
filter topics $ extstyle $	discussion posted 3 days ago by Cool7 (Community TA)	*
All Discussions	As title. This is easier than last one. Just put it here in case somebody interested. I'm practicing my latex writing, lol.	•••
★ Posts I'm Following	$\log \left(\prod_{t=1}^{n} \mathcal{N}\left(y_{t} heta x_{t}, \sigma^{2} ight) \mathcal{N}\left(heta 0, \lambda^{-1} ight) ight)$	
Introductions	$= \sum_{t=1}^{n} \left(\log \left(\mathcal{N} \left(y_t heta x_t, \sigma^2 ight) ight) + \log \left(\mathcal{N} \left(heta 0, \lambda^{-1} ight) ight) ight)$	
Micromasters	$= n\log{(rac{1}{\sigma\sqrt{2\pi}})} + \sum_{t=1}^n log{(e^{-rac{(y_t - heta x_t)^2}{2\sigma^2}})} + n\log{(\sqrt{rac{\lambda}{2\pi}})} + \sum_{t=1}^n log{(e^{-rac{\lambda heta ^2}{2}})}$	
Course Feedback	t-1 $t-1$	
Technical Problems	$= \sum_{t=1}^n {(- \frac{1}{2\sigma^2}(y_t - \theta x_t)^2 - \frac{\lambda}{2}\ \theta\ ^2)} + n\log{(\frac{1}{\sigma\sqrt{2\pi}})} + n\log{(\sqrt{\frac{\lambda}{2\pi}})}$	
General	$=\sum_{t=1}^{n}-rac{1}{2\sigma^{2}}(y_{t}- heta x_{t})^{2}-rac{1}{2}\lambda \ heta\ ^{2} + ext{constant}$	
Entrance Survey:Entrance survey	My understanding is	
1. Entrance Survey	 First term is related to posterior distribution, it represents the accuracy of the estimation/training loss/bias. Second term is related to prior distribution, it represents the regularization(recall we imposed it on) / variance. 	
Introductions	Thus λ as hyper parameter is to adjust the weights between bias and variance, inline with the error decomposition discussed a few pages before.	
Please introduce yourself		
Micromasters	Related to: Unit 2 Nonlinear Classification, Linear regression, Collaborative Filtering (2 weeks):Lecture 5. Linear Regression / 9. Closing Comment This post is visible to everyone.	
Micromasters connection	Add a Response	1 response

a day ago

Alexander_Konstantinidis

7/3/2019 Discussion | 6.86x | edX

Another way to view this, is to consider λ as expressing the degree of our certainty (prior belief) that there is no real explanatory value in the model or stated differently very few if any of the predictors truly matter. (This is because λ is the inverse of the variance of probabilistic theta). The higher the λ the more evidence will be required to arrive to a complex model and vice versa. Indeed, this is a very interesting interpretation. In the extreme case, where lambda is infinity, it means your prior belief is so strong that no matter what data is presented, the hard coded parameters do not change. On the other extreme, when lambda is 0, variance is infinity and thus you don't have a prior belief. Data takes control of everything, even if there're a lot of noise. So a moderate lambda lets the model to learn from data, but regularizes the parameters so that do not deviate too much from the prior belief. posted a day ago by FutureStar Add a comment Showing all responses Add a response: Preview Submit

edX

About edX for Business

Legal

Terms of Service & Honor Code Privacy Policy Accessibility Policy **Connect**

Blog
Contact Us
Help Center

© 2012–2019 edX Inc. edX, Open edX, and MicroMasters are registered

7/3/2019

trademarks of edX Inc. | 深圳市恒宇博科技有限公司 粤ICP备17044299号-2