(Embedded) Domain-Specific Languages The Practice of Haskell Programming

Andres Löh

(F) Well-Typed

May 18, 2012

What is an (E)DSL?

- DSL = domain-specific language (fuzzy concept)
- ► EDSL = embedded DSL

What is an (E)DSL?

- ▶ DSL = domain-specific language (fuzzy concept)
- ► EDSL = embedded DSL

In essence, EDSLs are just Haskell libraries:

- a limited set of types and functions;
- certain rules for composing sensible expressions out of these building blocks;
- often a certain unique look and feel;
- often understandable without having to know (all about) the host language.

DSLs vs. EDSLs

DSLs

- complete design freedom,
- limited syntax, thus easy to understand, usable by non-programmers,
- requires dedicated compiler, development tools,
- hard to extend with general-purpose features.

DSLs vs. EDSLs

DSLs

- complete design freedom,
- limited syntax, thus easy to understand, usable by non-programmers,
- requires dedicated compiler, development tools,
- hard to extend with general-purpose features.

EDSLs

- design tied to capabilities of host language,
- compiler and general-purpose features for free,
- complexity of host language available but exposed,
- several EDSLs can be combined and used together.

Haskell (or rather: Hackage) is full of EDSLs!

database queries pretty-printing workflows parallelism testing web applications (de)serialization parsing **JavaScript** animations hardware descriptions data accessors / lenses (attribute) grammars music HTML concurrency array computations **GUIs** images

Why?

Several reasons:

- syntactic freedom (user-defined operators and priorities, overloading, overloaded literals, do -notation, ...),
- higher-order functions,
- lazy evaluation,
- strong type system, type inference,
- algebraic datatypes,
- explicit effects,
- good partial evaluator,
- user-defined optimizations (rewrite rules).

EDSLs already encountered

QuickCheck:

- the language to construct properties,
- the language to construct generators.

In Ralf's lecture:

an EDSL for describing music.

In Simon's lecture: EDSLs for

- computations with software transactional memory;
- describing parallel computations.

EDSL Example: Parser combinators

Parsing

Let us look at a classic EDSL example: parsing.

Goal:

- a library for describing parsers,
- no generation approach,
- high degree of abstraction,
- easy to use.

Parser interface

Type of parsers producing a result of type a:

data Parser a -- abstract

Succeed always, consume nothing:

pure :: $a \rightarrow Parser a$

Consume a single matching character:

satisfy :: (Char \rightarrow Bool) \rightarrow Parser Char

Parser interface - contd.

Change the type of the result:

$$(<\$>) :: (a \rightarrow b) \rightarrow Parser a \rightarrow Parser b$$

Parse one thing followed by another:

$$(<*>)$$
 :: Parser $(a \rightarrow b) \rightarrow$ Parser $a \rightarrow$ Parser b

Parse one thing or another:

$$(<|>)$$
 :: Parser a \rightarrow Parser a \rightarrow Parser a

Why not:

 $(<\!\!\times\!\!>):: Parser~a \rightarrow Parser~b \rightarrow Parser~(a,b)$

Why not:

```
(<\times>) :: Parser a \to Parser b \to Parser (a,b)
```

Consider:

data X = X A B C

pA:: Parser A

pB :: Parser B

pC :: Parser C

Why not:

 $(<\times>)$:: Parser a \rightarrow Parser b \rightarrow Parser (a,b)

Consider:

data X = X A B C

pA :: Parser A

pB :: Parser B

pC:: Parser C

$$(\lambda((a,b),c) \to X \ a \ b \ c) < \$> (pA < \times > pB < \times > pC) :: Parser \ X$$

Why not:

$$(<\times>)$$
 :: Parser $a \rightarrow$ Parser $b \rightarrow$ Parser (a,b)

Consider:

data X = X A B C

pA :: Parser A

pB :: Parser B

pC :: Parser C

$$(\lambda((a,b),c) \to X \ a \ b \ c) < \$ > (pA < \times > pB < \times > pC) :: Parser \ X$$

pure X <*> pA <*> pB <*> pC :: Parser X

The (<\$>) operator has the same type as fmap:

$$(<\$>) :: (a \rightarrow b) \rightarrow Parser a \rightarrow Parser b$$

The (<\$>) operator has the same type as fmap:

$$(<\$>)$$
 :: Functor $f\Rightarrow (a\rightarrow b)\rightarrow f$ $a\rightarrow f$ b $(<\$>)=$ fmap

The (<\$>) operator has the same type as fmap:

(<\$>) :: Functor f
$$\Rightarrow$$
 (a \rightarrow b) \rightarrow f a \rightarrow f b (<\$>) = fmap

instance Functor Parser where
fmap f p = pure f <*> p

The (<\$>) operator has the same type as fmap :

(<\$>) :: Functor
$$f \Rightarrow (a \rightarrow b) \rightarrow f \ a \rightarrow f \ b$$
 (<\$>) = fmap

instance Functor Parser where
fmap f p = pure f <*> p

pure X <*> pA <*> pB <*> pC :: Parser X

The (<\$>) operator has the same type as fmap :

(<\$>) :: Functor
$$f \Rightarrow (a \rightarrow b) \rightarrow f \ a \rightarrow f \ b$$
 (<\$>) = fmap

instance Functor Parser where fmap f p = pure f <*> p

Derived parser combinators

Parsing many occurrences.

BNF:

$$\langle \mathsf{ps} \rangle ::= \langle \mathsf{p} \rangle \langle \mathsf{ps} \rangle \ | \ \varepsilon$$

Derived parser combinators

Parsing many occurrences.

BNF:

```
\langle \mathsf{ps} \rangle ::= \langle \mathsf{p} \rangle \ \langle \mathsf{ps} \rangle
\mid \ \varepsilon
```

```
many :: Parser a \rightarrow Parser [a]
many p = (:)  p > p > many p > c|> pure []
```

Derived parser combinators

Parsing many occurrences.

BNF:

```
\langle \mathsf{ps} \rangle ::= \langle \mathsf{p} \rangle \langle \mathsf{ps} \rangle
\mid \varepsilon
```

Haskell:

```
many :: Parser a \rightarrow Parser [a]
many p = (:) 
<math>< p pure []
```

ident :: Parser String
ident = satisfy isAlpha <*> many (satisfy isAlphaNum)

BNF:

```
\langle \mathsf{bal} \rangle ::= (\langle \mathsf{bal} \rangle) \langle \mathsf{bal} \rangle
\mid \varepsilon
```

BNF:

```
\langle \mathsf{bal} \rangle ::= (\langle \mathsf{bal} \rangle) \langle \mathsf{bal} \rangle \ | \ \varepsilon
```

```
sym :: Char \rightarrow Parser Char
sym x = satisfy (== x)
bal :: Parser...
bal = ...
< \$ > sym ' (' <*> bal <*> sym ')' <*> bal
< |> pure...
```

BNF:

```
\langle \mathrm{bal} 
angle ::= (\ \langle \mathrm{bal} 
angle \ ) \ \langle \mathrm{bal} 
angle \ | \ \varepsilon
```

```
type Total = Int

sym :: Char \rightarrow Parser Char

sym x = satisfy (== x)

bal :: Parser Total

bal = (\lambda_- m_- n \rightarrow (1 + m) + n)

<$> sym '(' <*> bal <*> sym ')' <*> bal

<|> pure 0
```


BNF:

```
\langle \mathrm{bal} 
angle ::= (\ \langle \mathrm{bal} 
angle \ ) \ \langle \mathrm{bal} 
angle \ | \ \varepsilon
```

```
data Bal = Nest [Bal]

sym :: Char \rightarrow Parser Char

sym x = satisfy (== x)

bal :: Parser [Bal]

bal = (\lambda_x = xs \rightarrow Nest \times xs)

<$> sym '(' <*> bal <*> sym ')' <*> bal

<|> pure []
```


BNF:

```
\langle \mathrm{bal} 
angle ::= (\ \langle \mathrm{bal} 
angle \ ) \ \langle \mathrm{bal} 
angle \ | \ \varepsilon
```

```
data Bal = Nest Bal Bal | Nil sym :: Char \rightarrow Parser Char sym x = satisfy (== x) bal :: Parser Bal bal = (\lambda_x = x = \lambda_x = \lambda_
```


A simple semantics of parsers:

A simple semantics of parsers:

- parsers transform an input string,
- they consume some (but not necessarily all) input,

 $\mathsf{String} \to \mathsf{String}$

A simple semantics of parsers:

- parsers transform an input string,
- they consume some (but not necessarily all) input,
- they also produce a result –

String
$$\rightarrow$$
 (a, String)

A simple semantics of parsers:

- parsers transform an input string,
- they consume some (but not necessarily all) input,
- they also produce a result –
- well, actually they can fail (no result) or be ambiguous (several results), too.

String
$$\rightarrow$$
 [(a, String)]

A simple semantics of parsers:

- parsers transform an input string,
- they consume some (but not necessarily all) input,
- they also produce a result –
- well, actually they can fail (no result) or be ambiguous (several results), too.

Let us try to just use this as an implementation:

```
type Parser a = String \rightarrow [(a, String)]
```


A simple semantics of parsers:

- parsers transform an input string,
- they consume some (but not necessarily all) input,
- they also produce a result –
- well, actually they can fail (no result) or be ambiguous (several results), too.

Let us try to just use this as an implementation:

```
type Parser a = String \rightarrow [(a, String)]
```

Using functions as semantics is quite common.

pure :: $a \rightarrow Parser a$

pure :: $a \rightarrow String \rightarrow [(a, String)]$

```
pure :: a \rightarrow String \rightarrow [(a, String)]
pure x ys = [(x, ys)]
```

```
pure :: a \rightarrow String \rightarrow [(a, String)]

pure x ys = [(x, ys)]

satisfy :: (Char \rightarrow Bool) \rightarrow Parser Char

satisfy x (y : ys) \mid x = y = [(y, ys)]

\mid otherwise = []
```

```
pure :: a \rightarrow String \rightarrow [(a, String)]

pure x ys = [(x, ys)]

satisfy :: (Char \rightarrow Bool) \rightarrow Parser Char

satisfy x (y : ys) \mid x = y = [(y, ys)]

\mid otherwise = []
```

```
 (<\!\!\!>) :: (a \rightarrow b) \rightarrow \mathsf{Parser} \ a \rightarrow \mathsf{Parser} \ b \\ (\mathsf{f} <\!\!\!\!> \mathsf{p}) \ \mathsf{xs} = [(\mathsf{f} \ \mathsf{r}, \mathsf{ys}) \mid (\mathsf{r}, \mathsf{ys}) \leftarrow \mathsf{p} \ \mathsf{xs}]
```

```
pure :: a \rightarrow String \rightarrow [(a, String)]
pure x vs = [(x, vs)]
satisfy :: (Char \rightarrow Bool) \rightarrow Parser Char
satisfy x (y : ys) | x = y = [(y, ys)]
                        otherwise = []
(<\$>) :: (a \rightarrow b) \rightarrow Parser a \rightarrow Parser b
(f < p) xs = [(f r, ys) | (r, ys) \leftarrow p xs]
(<*>) :: Parser (a \rightarrow b) \rightarrow Parser a \rightarrow Parser b
(p < *> q) xs = [(f r, zs) | (f, vs) \leftarrow p xs,
                                    (r, zs) \leftarrow q vsl
```

```
pure :: a \rightarrow String \rightarrow [(a, String)]
pure x vs = [(x, vs)]
satisfy :: (Char \rightarrow Bool) \rightarrow Parser Char
satisfy x (y : ys) | x = y = [(y, ys)]
                        otherwise = []
(<\$>) :: (a \rightarrow b) \rightarrow Parser a \rightarrow Parser b
(f < p) xs = [(f r, ys) | (r, ys) \leftarrow p xs]
(<*>) :: Parser (a \rightarrow b) \rightarrow Parser a \rightarrow Parser b
(p < *> q) xs = [(f r, zs) | (f, ys) \leftarrow p xs,
                                    (r, zs) \leftarrow q vsl
```

$$(<|>)$$
 :: Parser a \rightarrow Parser a \rightarrow Parser a $(p <|> q)$ xs $= p$ xs $+ q$ xs

Demo

(Demo.)

Disadvantages of our parsers

- We always compute all alternatives. Potentially lots of backtracking, inefficient.
- Absolutely no error messages.
- Tied to String as input type.

Disadvantages of our parsers

- We always compute all alternatives. Potentially lots of backtracking, inefficient.
- Absolutely no error messages.
- Tied to String as input type.

But these problems can be fixed. For example:

- parsec, limited lookahead, good error messages;
- Text.ParserCombinators.ReadP , trying several choices "in parallel",
- uu-parsinglib, more sophisticated variant of ReadP, error messages, incremental parsing.

Abstracting from interfaces

Many EDSLs are focused on one (or several) **parameterized** type(s):

Parser a

Gen a

STM a

Par a

Abstracting from interfaces

Many EDSLs are focused on one (or several) **parameterized** type(s):

Parser a Gen a STM a Par a

- All these types can be seen as enriched, effectful versions of the underlying type a.
- We always need a way to relate plain types and their effectful versions.
- We always need a way to combine effectful terms.

Monads

class Monad m where

```
 \begin{array}{l} \text{return} :: a \to m \ a \\ (\ggg) \ :: m \ a \to (a \to m \ b) \to m \ b \\ \text{fail} \quad :: String \to m \ a \quad \text{-- controversial} \\ \end{array}
```


Monads

class Monad m where

```
 \begin{array}{l} \text{return} :: a \to m \ a \\ (\gg) \ :: m \ a \to (a \to m \ b) \to m \ b \\ \text{fail} \quad :: String \to m \ a \quad \text{-- controversial} \\ \end{array}
```

Monads are common: they allow

- embedding via return ,
- ▶ sequencing via (≫),
- later parts of the computation can depend on earlier results.

Monads

class Monad m where

```
 \begin{array}{l} \text{return} :: a \to m \ a \\ (\gg) \ :: m \ a \to (a \to m \ b) \to m \ b \\ \text{fail} \quad :: String \to m \ a \quad \text{-- controversial} \\ \end{array}
```

Monads are common: they allow

- embedding via return ,
- ▶ sequencing via (≫),
- later parts of the computation can depend on earlier results.

All of Gen, STM and Par are monads.

Advantages of a common interface

Next to the familiarity, we can define various functions in terms of just the interface and then reuse them on all types that implement the interface:

```
sequence :: Monad m \Rightarrow [m a] \rightarrow m [a]

sequence [] = return []

sequence (m : ms) =

m \gg \lambda x \rightarrow sequence ms \gg \lambda xs \rightarrow return (x : xs)
```

Advantages of a common interface

Next to the familiarity, we can define various functions in terms of just the interface and then reuse them on all types that implement the interface:

```
sequence :: Monad m \Rightarrow [m \ a] \rightarrow m \ [a]

sequence [] = return []

sequence (m : ms) =

m \gg \lambda x \rightarrow \text{sequence } ms \gg \lambda xs \rightarrow \text{return } (x : xs)
```

```
\begin{array}{l} \text{foldM}:: \text{Monad m} \Rightarrow (a \rightarrow b \rightarrow \text{m a}) \rightarrow a \rightarrow [b] \rightarrow \text{m a} \\ \text{foldM op e} [] &= \text{return e} \\ \text{foldM op e } (x:xs) = \text{foldM op e } xs \ggg \lambda r \rightarrow \text{op r } x \end{array}
```


Advantages of a common interface

Next to the familiarity, we can define various functions in terms of just the interface and then reuse them on all types that implement the interface:

```
sequence :: Monad m \Rightarrow [m a] \rightarrow m [a]

sequence [] = return []

sequence (m : ms) =

m \gg \lambda x \rightarrow sequence ms \gg \lambda xs \rightarrow return (x : xs)
```

```
\begin{array}{ll} \text{foldM} :: \text{Monad m} \Rightarrow (a \rightarrow b \rightarrow \text{m a}) \rightarrow a \rightarrow [b] \rightarrow \text{m a} \\ \text{foldM op e } [] &= \text{return e} \\ \text{foldM op e } (x : xs) = \text{foldM op e xs} \ggg \lambda r \rightarrow \text{op r x} \end{array}
```

For the monad interface, we additionally get to use **do** notation.

Functors

Even more fundamental than the monad interface is the functor interface:

```
class Functor f where fmap :: (a \rightarrow b) \rightarrow f a \rightarrow f b (<\$>) = fmap
```


Functors

Even more fundamental than the monad interface is the functor interface:

```
class Functor f where fmap :: (a \rightarrow b) \rightarrow f a \rightarrow f b (<\$>) = fmap
```

Every monad is a functor:

```
liftM :: Monad m \Rightarrow (a \rightarrow b) \rightarrow m a \rightarrow m b liftM f m = m \ggg \lambda x \rightarrow return (f x)
```

However, this isn't automatically exploited in Haskell's class system.

Functors

Even more fundamental than the monad interface is the functor interface:

```
class Functor f where fmap :: (a \rightarrow b) \rightarrow f a \rightarrow f b (<\$>) = fmap
```

Every monad is a functor:

```
liftM :: Monad m \Rightarrow (a \rightarrow b) \rightarrow m a \rightarrow m b liftM f m = m \ggg \lambda x \rightarrow return (f x)
```

However, this isn't automatically exploited in Haskell's class system.

Types that are just functors are not very suitable for EDSLs, because there is no way to combine enriched terms . . .

Effectful application

But if we look at our parser interface, we find a different way of combining results:

 $(<\!\!*>):: Parser~(a\rightarrow b)\rightarrow Parser~a\rightarrow Parser~b$

Effectful application

But if we look at our parser interface, we find a different way of combining results:

```
(<*>) :: Parser (a \rightarrow b) \rightarrow Parser a \rightarrow Parser b
```

- Another form of sequencing.
- While the results are combined, the second computation cannot depend on the result of the first.
- So (<*>) is more restrictive than (≫).
- ► The interface with embedding (pure , like return) and (<*>) is called Applicative .

Applicative functors

```
class Functor f \Rightarrow Applicative f where pure :: a \rightarrow f a (<*>) :: f (a \rightarrow b) \rightarrow f a \rightarrow f b
```

Applicative functors

```
class Functor f \Rightarrow Applicative f where pure :: a \rightarrow f a (<*>) :: f (a \rightarrow b) \rightarrow f a \rightarrow f b
```

The (<|>) combinator is also more generally useful:

```
class Applicative f \Rightarrow Alternative f where empty :: f a (<|>) :: f a \rightarrow f a
```

Question: How do we define empty for our parsers?

Common applicative functions

Again, there are functions that require just the Applicative (and Alternative) interfaces.

Recall for example many:

```
many :: Parser a \rightarrow Parser [a]
many p = (:) 
<math> p
```


Common applicative functions

Again, there are functions that require just the Applicative (and Alternative) interfaces.

Recall for example many:

```
\begin{array}{ll} \text{many :: Alternative } f \Rightarrow f \ a \rightarrow f \ [a] \\ \text{many } p &= (:) < \$ > p < * > \text{many } p \\ &< | > \text{pure } [\ ] \end{array}
```


Monads are applicative

Many computations do not need the full power of (\gg) .

```
ap :: Monad m \Rightarrow m (a \rightarrow b) \rightarrow m a \rightarrow m b ap mf mx = mf \ggg \lambda f \rightarrow mx \ggg \lambda x \rightarrow return (f x)
```

Once again, an Applicative instance isn't automatically defined for every monad – but most common monads have Functor and Applicative instances.

Stylistic comparison

All three are equivalent:

```
 \begin{aligned} & \mathsf{comp} = \textbf{do} \\ & x \leftarrow \mathsf{f1} \\ & y \leftarrow \mathsf{f2} \\ & \mathsf{return} \; (\mathsf{something} \; x \; y) \end{aligned}
```

 $comp = liftM2 \ something \ f1 \ f2$

comp = something < \$ > f1 < * > f2

Degree of embedding

Shallow embedding

EDSL constructs are directly represented by their semantics.

Degree of embedding

Shallow embedding

EDSL constructs are directly represented by their semantics.

Deep embedding

EDSL constructs are represented by their abstract syntax, and interpreted in a separate stage.

Degree of embedding

Shallow embedding

EDSL constructs are directly represented by their semantics.

Deep embedding

EDSL constructs are represented by their abstract syntax, and interpreted in a separate stage.

Note:

- These are two extreme points in a spectrum.
- Most EDSLs use something in between (but close to one end).

Examples

Classic example of a shallow embedding:

 $\textbf{type} \; \mathsf{Parser} \; a = \mathsf{String} \to [(a, \mathsf{String})]$

Examples

Classic example of a shallow embedding:

```
type Parser a = String \rightarrow [(a, String)]
```

The Haskore music language is using a (relatively) deep embedding:

```
data Music = Note Pitch Dur [NoteAttribute]
| Rest Dur
| Music :+: Music
| Music :=: Music
| Tempo (Ratio Int) Music
| Trans Int Music
| Instr IName Music
| Player PName Music
| Phrase [PhraseAttribute] Music
```


Shallow vs. deep

Shallow

- Working directly with the (denotational) semantics is often very concise and elegant.
- Relatively easy to use all Haskell features (sharing, recursion).
- Difficult to debug and/or analyze, because we are limited to a single interpretation.

Deep

- Full control over the AST, many different interpretations possible.
- Allows on-the-fly runtime optimization and conversion.
- We can visualize and debug the AST.
- ► Hard(er) to use Haskell's sharing and recursion.

Let us embed an almost trivially simple language of arithmetic expressions:

```
data Expr -- abstract

(⊕) :: Expr \rightarrow Expr \rightarrow Expr

one :: Expr

eval :: Expr \rightarrow Int
```


Shallow implementation

```
type Expr = Int

(\oplus) = (+)

one = 1

eval = id
```

- We pick a semantics of expressions: an Int.
- We directly implement language constructs by their semantics.
- Very easy to do, but limited to a single interpretation.

Deep implementation

```
(⊕) :: Expr \rightarrow Expr \rightarrow Expr one :: Expr eval :: Expr \rightarrow Int
```


Deep implementation

```
(⊕) :: Expr \rightarrow Expr \rightarrow Expr one :: Expr eval :: Expr \rightarrow Int
```

```
data Expr = PI Expr Expr | One

(\oplus) = PI

one = One

eval (PI e_1 e_2) = eval e_1 + eval e_2

eval One = 1
```


Deep implementation

```
(⊕) :: Expr \rightarrow Expr \rightarrow Expr one :: Expr eval :: Expr \rightarrow Int
```

```
data Expr = PI Expr Expr | One

(\oplus) = PI

one = One

eval (PI e<sub>1</sub> e<sub>2</sub>) = eval e<sub>1</sub> + eval e<sub>2</sub>

eval One = 1
```

We are no longer tied to one interpretation . . .

Showing expressions

```
disp :: Expr \rightarrow String disp (PI e_1 e_2) = "(" ++ disp e_1 ++ " + disp e_2 ++ ")" disp One = "1"
```


Showing expressions

```
disp :: Expr \rightarrow String disp (PI e_1 e_2) = "(" ++ disp e_1 ++" + " + disp e_2 ++")" disp One = "1"
```

Similarly, we could:

- transform the expression,
- optimize the expression,
- generate some code for the expression in another language,
- **>** . . .

Turning a concept into data

Moving from shallow towards deep is an important functional design pattern:

- introducing data types is easy,
- former functions become constructors,
- as a result, the structure of terms becomes observable.

A user-defined abstraction

```
tree :: Int \rightarrow Expr
tree 0 = one
tree n = let shared = tree (n - 1) in shared \oplus shared
```

With the shallow embedding, this is fine:

- We reuse Haskell's sharing.
- What we share is just an integer.

But now in the deep setting ...

```
tree :: Int \rightarrow Expr
tree 0 = one
tree n = let shared = tree (n - 1) in shared \oplus shared
```


But now in the deep setting ...

```
tree :: Int \rightarrow Expr
tree 0 = one
tree n = let shared = tree (n - 1) in shared \oplus shared
```

The call disp (tree 3) results in

```
"(((1 + 1) + (1 + 1)) + ((1 + 1) + (1 + 1)))"
```

Sharing is destroyed! We don't want to wait for eval (tree 30)!

Parsing our expression language

Our parser combinators work, but they cannot handle left-recursive grammars:

```
TM expr ::= NTOne
| NTOne NTPlus (TM expr)ok
```

Parsing our expression language

Our parser combinators work, but they cannot handle left-recursive grammars:

```
TM expr ::= NTOne
| (TM expr) NTPlus NTOnenot ok
```


Parsing our expression language

Our parser combinators work, but they cannot handle left-recursive grammars:

```
TM expr ::= NTOne
| (TM expr) NTPlus NTOnenot ok
```

Resulting parser:

- ▶ This parser will loop.
- In the second alternative, expr is called again before any input has been consumed.

Left recursion and parser combinators

For parsers, not being able to handle left recursion is not actually that serious a problem:

- left recursion can relatively easily be removed,
- common cases of left recursion can be abstracted into specific parser combinators (chainl).

Left recursion and parser combinators

For parsers, not being able to handle left recursion is not actually that serious a problem:

- left recursion can relatively easily be removed,
- common cases of left recursion can be abstracted into specific parser combinators (chainl).

Nevertheless, for some EDSL applications we would like to **preserve** or **observe** recursion and sharing.

Making sharing (and recursion) explicit

In practice, many EDSLs require preserving and observing sharing and recursion.

We need:

- a way to explicitly represent sharing in our representation,
- a way to conveniently produce terms in that representation.

Making sharing (and recursion) explicit

In practice, many EDSLs require preserving and observing sharing and recursion.

We need:

- a way to explicitly represent sharing in our representation,
- a way to conveniently produce terms in that representation.

Unfortunately, we have time left for only a short look at the options.

Recall vacuum

The vacuum package:

- queried GHC's internal representation of data,
- in order to produce visualizations of terms that reveal the sharing.

Recall vacuum

The vacuum package:

- queried GHC's internal representation of data,
- in order to produce visualizations of terms that reveal the sharing.

Perhaps we can use a similar hack to recover implicit sharing in EDSL terms?

Introducing data-reify

The data-reify package offers such a function to recover implicit sharing:

 $\mathsf{reifyGraph} :: \mathsf{MuRef} \ s \Rightarrow \mathsf{s} \to \mathsf{IO} \ (\mathsf{Graph} \ (\mathsf{DeRef} \ \mathsf{s}))$

Introducing data-reify

The data-reify package offers such a function to recover implicit sharing:

 $\mathsf{reifyGraph} :: \mathsf{MuRef} \; s \Rightarrow s \to \mathsf{IO} \; (\mathsf{Graph} \; (\mathsf{DeRef} \; s))$

Unfortunately, that looks a bit for complicated than vacuum's:

 $view::a\to IO\ ()$

Question: Why?

Introducing data-reify

The data-reify package offers such a function to recover implicit sharing:

reifyGraph :: MuRef $s \Rightarrow s \rightarrow IO$ (Graph (DeRef s))

Unfortunately, that looks a bit for complicated than vacuum's:

 $view::a\to IO\ ()$

Question: Why?

Because here, we need the results in a typed way.

Using data-reify

The MuRef class is about revealing the recursive structure of our type:

- we need the option to point at a marker rather than an actual value,
- so wherever we have a recursive subterm, we need flexibility.

Using data-reify

The MuRef class is about revealing the recursive structure of our type:

- we need the option to point at a marker rather than an actual value,
- so wherever we have a recursive subterm, we need flexibility.

Example:

```
data Expr = PI Expr Expr | One
data ExprF e = PlusF e e | OneF
```

Now:

- the type ExprF Int is an expression with integers instead of subexpressions,
- the type ExprF Expr is isomorphic to the original Expr type.

Instantiating MuRef

```
instance MuRef Expr where
type DeRef Expr = ExprF
mapDeRef f One = pure OneF
mapDeRef f (Pl e<sub>1</sub> e<sub>2</sub>) = PlusF <$> f e<sub>1</sub> <*> f e<sub>2</sub>
```

In mapDeRef, we have to explain how to turn an Expr into an ExprF u, for some applicative function f.

Instantiating MuRef

```
instance MuRef Expr where
type DeRef Expr = ExprF

mapDeRef f One = pure OneF

mapDeRef f (Pl e_1 e_2) = PlusF <$> f e_1 <*> f e_2
```

In mapDeRef, we have to explain how to turn an Expr into an ExprF u, for some applicative function f.

The type of mapDeRef is somewhat scary:

```
\begin{array}{l} \text{mapDeRef} :: (\text{Applicative f, MuRef a}) \Rightarrow \\ (\forall b. (\text{MuRef b, DeRef a} \sim \text{DeRef b}) \Rightarrow \text{b} \rightarrow \text{f u}) \rightarrow \\ \text{a} \rightarrow \text{f (DeRef a u)} \end{array}
```


Using reifyGraph

```
> reifyGraph (tree 3)
let [(1, PlusF 2 2), (2, PlusF 3 3), (3, PlusF 4 4), (4, OneF)] in 1
```

Note that this is a pretty-printed version of this type:

Working with explicitly shared structures

In practice, working with Graph ExprF rather than Expr can be awkward:

- looking up labels in a list,
- an extra indirection even for unshared subtrees,
- possibility to introduce duplicate or dangling labels.

Working with explicitly shared structures

In practice, working with Graph ExprF rather than Expr can be awkward:

- looking up labels in a list,
- an extra indirection even for unshared subtrees,
- possibility to introduce duplicate or dangling labels.

There are other options for handling names and binding, including:

- using string-based names,
- using De-Bruijn-indices,
- using (parametric) higher-order abstract syntax.

None of these options come entirely for free, but if you have to observe recursion and sharing, paying a certain price is unavoidable.

Summary

EDSLs:

- are ubiquitous in Haskell,
- often share monadic or applicative interfaces,
- can use shallow or deep embeddings.

It is not difficult to design your own EDSL.

Summary

EDSLs:

- are ubiquitous in Haskell,
- often share monadic or applicative interfaces,
- can use shallow or deep embeddings.

It is not difficult to design your own EDSL.

Features we have not covered in detail:

- adding new effect by changing the underlying monad or applicative functor,
- observing sharing and binding,
- expressing advanced invariants using the type system,
- optimizing by using GHC rewrite rules.

