Northwestern University

Math 230-1 First Midterm Examination Fall Quarter 2019 Tuesday 22 October

Last name:	Email address:
First name:	NetID:

Instructions

- This examination consists of 6 questions for a total of 60 points.
- Read all problems carefully before answering.
- You have one hour to complete this examination.
- Do not use books, notes, calculators, computers, tablets, or phones.
- Write legibly and only inside of the boxed region on each page.
- Cross out any work that you do not wish to have scored.
- Show and justify all of your work. Unsupported answers may not earn credit.
- **Terminology**: by "familiar named surface" we will mean a member of one of the following types of surfaces:

plane cylinder ellipsoid elliptic paraboloid hyperbolic paraboloid cone hyperboloid of one sheet hyperboloid of two sheets 1. (5 points) Compute the angle θ (in radians) between $\mathbf{v} = \langle \sqrt{3}, 3, 2 \rangle$ and $\mathbf{w} = \langle -\sqrt{3}, -3, 2 \rangle$.

Your answer cannot be expressed in terms of inverse trigonometric functions; i.e., the answer is a familiar angle.

2. (5 points) Let \mathcal{C} be the the conic in \mathbb{R}^3 defined by the following system of equations:

$$\frac{(x-1)^2}{9} + \frac{(z-2)^2}{25} = 1$$
$$y = 3$$

- (a) Describe \mathcal{C} qualitatively: include what type of conic it is, what its center is, and how it is situated in \mathbb{R}^3 .
- (b) Give a vector parametrization $\mathbf{r}(t)$ for \mathcal{C} . Include explicit bounds $a \leq t \leq b$ ensuring that the entire curve is parametrized. No justification required.

- 3. (10 points) Let \mathbf{v} and \mathbf{w} be two nonzero vectors.
 - (a) Give the dot product formula for $\operatorname{proj}_{\mathbf{w}} \mathbf{v}$. No justification required.

(b) Now suppose \mathbf{v} is parallel to \mathbf{w} . Show, using only the formula in (a), that $\operatorname{proj}_{\mathbf{w}} \mathbf{v} = \mathbf{v}$. You should begin by expressing with a vector equation what it means for \mathbf{v} to be parallel to \mathbf{w} .

- 4. (15 points) Let \mathcal{C} be the curve with parametrization $\mathbf{r}(t) = \langle \cos t, \sin t, \sin(2t) \rangle$.
 - (a) Exactly one of the figures below is a graph of $\mathbf{r}(t)$ for $0 \le t \le 2\pi$. Identify which is correct via a process of elimination: that is, indicate each incorrect graph with an 'X' and briefly explain why it cannot be a graph of $\mathbf{r}(t)$; then indicate the correct graph with a checkmark.

Note: I've included a shaded portion of the xy-plane in each figure to help you visualize the curve.

- 4. contd. Let \mathcal{C} be the curve with parametrization $\mathbf{r}(t) = \langle \cos t, \sin t, \sin(2t) \rangle$.
 - (b) Give the parametric equations for the tangent line to \mathcal{C} at $P = (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 1)$.

(c) Show that the velocity vector of a particle moving along \mathcal{C} according to $\mathbf{r}(t)$ never points in the vertical direction: i.e., is never parallel to the z-axis.

- 5. (15 points) Let M be the plane through the points P=(0,0,0), Q=(1,-1,0), and R=(1,0,1).Let N be the plane containing the point S=(1,0,-2) with normal vector $\mathbf{n}=\langle 2,1,1\rangle.$
 - (a) Find an equation for M.
 - (b) Determine whether the planes M and N intersect. If they do intersect, find the parametric equations for their line of intersection.

- 6. (10 points) Let S be the surface with equation $x^2 + y^2 + 4z^2 2x + 4y + 1 = 0$.
 - (a) Identify S as one of our familiar named surfaces. You should first do some algebra to bring the equation into a more standard form.

Justify your answer. You may reference your work in (b) if you like.

(b) Find equations for the (x = 1)-, (y = -2)- and (z = 0)-cross sections, and sketch these in the coordinate system below. Each cross section sketch must include at least 4 plotted points.

YOU MUST SUBMIT THIS PAGE.

If you would	like work on	this page sc	ored, then o	clearly indicat	e to which	question the	work	belongs	and
indicate on the	he page conta	aining the or	iginal questi	ion that there	is work or	this page to	score.		

YOU MUST SUBMIT THIS PAGE.

If you	would	d like	work	on this	page	scored,	then	clearly	indicate	to	which	question	the	work	belongs	and
indica	te on	the pa	age co	ntaining	g the	original	ques	tion tha	at there i	is w	ork on	this pag	e to	score.		

Гuesday 22 October	Math 230-1 First Midterm Examination	Page 9 of
	DO NOT WRITE ON THIS PAGE.	