Contents

1	Exp	erimental	4
	1.1	Methyl 3-oxodecanoate 21	4
	1.2	$\label{lem:methyl} \mbox{Methyl (E)-3-((4-((\textit{tert}$-butoxycarbonyl)amino)phenyl)amino)dec-2-enoate $\bf 24$$	5
	1.3	6-Amino-2-heptylquinolin-4-ol ${\bf 25}$	5
	1.4	6-Azido-2-heptylquinolin-4-ol 26	6
	1.5	Heptyl magnesium bromide 28	7
	1.6	2-Chloro- N -methylacetamide ${\bf 30}$	7
	1.7	1-Chlorononan-2-one 31	8
	1.8	2-Oxononyl 2-amino-5-nitrobenzoate ${\bf 33}$	8
	1.9	6-Nitro-2-heptyl-3-hydroxyquinolin-4(1 H)-one ${\bf 34}$	9
	1.10	(S) -3-Aminodihydrofuran-2(3H)-one hydrobromide ${\bf 38}$	10
	1.11	(S)-2-Bromo-N-(2-oxotetra hydrofuran-3-yl)acetamide ${\bf 40}$	10
	1.12	(S)-2-Azido- N -(2-oxotetrahydrofuran-3-yl) acetamide ${\bf 41}$	11
	1.13	$(S)\text{-}4\text{-}Bromo-N-(2-oxotetrahydrofuran-3-yl) butanamide \ 44\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	12
	1.14	$(S)\mbox{-6-Bromo-}N\mbox{-}(2\mbox{-oxotetrahydrofuran-3-yl})\mbox{hexanamide } {\bf 45} \qquad . \qquad $	12
	1.15	(S)-6-Azido- N -(2-oxotetra hydrofuran-3-yl) hexanamide ${\bf 47}$	13
	1.16	Hex-5-ynal 49	14
	1.17	$\textit{tert}\text{-Butyl 4-(hex-5-yn-1-yl)piperazine-1-carboxylate } \textbf{51} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	14
	1.18	1-(Hex-5-yn-1-yl)piperazine 52	15
	1.19	1- Cyclopropyl-6-fluoro-7- (4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1, 4-dihydroquinoline-3-carboxylic	
		acid 54	16
	1.20	$4\hbox{-}((2,4\hbox{-Diaminopyrimidin-5-yl})\text{methyl})\hbox{-}2,6\hbox{-dimethoxyphenol}\ 124 \ \dots \ \dots \ \dots \ \dots \ \dots$	17
	1.21	$5-(4-(Hex-5-yn-1-yloxy)-3,5-dimethoxybenzyl) pyrimidine-2,4-diamine~ {\bf 125}~\dots \dots $	17
	1.22	$(S) - 1 - \mathrm{Cyclopropyl} - 6 - \mathrm{fluoro} - 4 - \mathrm{oxo} - 7 - (4 - (4 - (1 - (2 - \mathrm{oxo} - 2 - ((2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{ethyl}) - 1 H - (2 - \mathrm{oxo} - 2 - ((2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{ethyl}) - 1 H - (2 - \mathrm{oxo} - 2 - ((2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{ethyl}) - 1 H - (2 - \mathrm{oxo} - 2 - ((2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{ethyl}) - 1 H - (2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{ethyl}) - 1 H - (2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{ethyl}) - 1 H - (2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{ethyl}) - 1 H - (2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{ethyl}) - 1 H - (2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{ethyl}) - (2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{ethyl}) - (2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{ethyl}) - (2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{ethyl}) - (2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{ethyl}) - (2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{ethyl}) - (2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{ethyl}) - (2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{ethyl}) - (2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{ethyl}) - (2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{ethyl}) - (2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{ethyl}) - (2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{ethyl}) - (2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{ethyl}) - (2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{ethyl}) - (2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) - (2 - \mathrm{oxotetrahydrofuran} - $	
		1,2,3-triazol-4-yl) butyl) piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid ${\bf 126}$	18
	1.23	$(S) - 1 - \mathrm{Cyclopropyl} - 6 - \mathrm{fluoro} - 4 - \mathrm{oxo} - 7 - (4 - (4 - (4 - (4 - \mathrm{oxo} - 4 - ((2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{butyl}) - 1 H - (4 - \mathrm{oxo} - 4 - ((2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{butyl}) - 1 H - (4 - \mathrm{oxo} - 4 - ((2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{butyl}) - 1 H - (4 - \mathrm{oxo} - 4 - ((2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{butyl}) - 1 H - (4 - \mathrm{oxo} - 4 - ((2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{butyl}) - 1 H - (4 - \mathrm{oxo} - 4 - ((2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{butyl}) - 1 H - (4 - \mathrm{oxo} - 4 - ((2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{butyl}) - 1 H - (4 - \mathrm{oxo} - 4 - ((2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{butyl}) - 1 H - (4 - \mathrm{oxo} - 4 - ((2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{butyl}) - 1 H - (4 - \mathrm{oxo} - 4 - ((2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{butyl}) - 1 H - (4 - \mathrm{oxo} - 4 - ((2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{butyl}) - (4 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{butyl}) - (4 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{butyl}) - (4 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{butyl}) - (4 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{butyl}) - (4 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{butyl}) - (4 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{butyl}) - (4 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{butyl}) - (4 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) \mathrm{amino}) \mathrm{butyl}) - (4 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}) - (4 - oxotetrahyd$	
		1,2,3-triazol-4-yl) butyl) piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid ${\bf 127}$	19
	1.24	$(S) - 1 - \mathrm{Cyclopropyl} - 6 - \mathrm{fluoro} - 4 - \mathrm{oxo} - 7 - \left(4 - \left(4 - \left(1 - \left(6 - \mathrm{oxo} - 6 - \left(\left(2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}\right) \mathrm{amino}\right) \mathrm{hexyl}\right) - 1 H - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2$	
		1,2,3-triazol-4-yl) butyl) piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid ${\bf 128}$	21
	1.25	1- Cyclopropyl-6-fluoro-7- (4-(4-(1-(2-heptyl-4-oxo-1,4-dihydroquinolin-6-yl)-1H-1,2,3-triazol-4-yl) but the sum of the context of the cont	yl)piperazin-
		1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid ${\bf 129}$	22
	1.26	(S) - 4 - (4 - (4 - (4 - (4 - (4 - (4 - (4	
		1-yl)- N -(2-oxotetrahydrofuran-3-yl)butanamide ${\bf 130}$	23
	1.27	(S) - 6 - (4 - (4 - (4 - (4 - (4 - (4 - (4	
		1-yl)- N -(2-oxotetrahydrofuran-3-yl)hexanamide ${\bf 131}$	24
	1.28	6-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-	
		yl)-2-heptylquinolin-4(1 H)-one ${\bf 132}$	25
	1.29	2-(6-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-	
		1-yl)hexyl)-3-hydroxyquinolin-4(1 H)-one 133	26
	1.30	$\label{lem:methyl-1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylate~ {\bf 134}~.~.$	27
	1.31	4-Bromo- N -(2-oxotetrahydrothiophen-3-yl) butanamide ${\bf 135}$	27
	1.32	4-Azido-N-(2-oxotetrahydrothiophen-3-yl)butanamide 136	28

1.33	$Methyl\ 1-cyclopropyl-6-fluoro-4-oxo-7-(4-(4-oxo-4-((2-oxotetrahydrothiophen-3-yl)amino)butyl) piper the properties of the properties of$	razin-
	1-yl)-1,4-dihydroquinoline-3-carboxylate ${\bf 137}$	29
1.34	1- Cyclopropyl-6-fluoro-4-oxo-7- (4-(4-(1-(4-oxo-4-((2-oxotetrahydrothiophen-3-yl)amino)butyl)-1 H-(2-oxotetrahydrothiophen-3-yl)amino)butyl)-1 H-(2-oxotetrahydroth	
	1,2,3-triazol-4-yl) butyl) piperazin-1-yl)-1,4-dihydroquinol-ine-3-carboxylic acid ${\bf 138}$	30
1.35	1- Cyclopropyl-6-fluoro-4-oxo-7- (4-((((4-(1-(4-oxo-4-((2-oxotetrahydrothiophen-3-yl)amino)butyl)-1-(((2-oxotetrahydrothiophen-3-yl)amino)butyl)-1-((((3-(3-oxotetrahydrothiophen-3-yl)amino)butyl)-1-((((3-(3-oxotetrahydrothiophen-3-yl)amino)butyl)-1-((((3-(3-(3-oxotetrahydrothiophen-3-yl)amino)butyl)-1-((((3-(3-(3-(3-(3-(3-(3-(3-(3-(3-(3-(3-	
	1H-1,2,3-triazol-4-yl)butanoyl)oxy)methoxy)carbonyl)piper-azin-1-yl)-1,4-dihydroquinoline-3-car-	
		31
1.36	1- Cyclopropyl-6-fluoro-4-oxo-7- (4-((1-((4-(1-(4-oxo-4-((2-oxotetrahydrothioph-en-3-yl)amino)butyl)-1-((1-((4-(1-(4-0xo-4-((2-oxotetrahydrothioph-en-3-yl)amino)butyl)-1-((1-((4-(1-(4-0xo-4-((2-0xotetrahydrothioph-en-3-yl)amino)butyl)-1-((1-((4-(1-(4-0xo-4-((2-0xotetrahydrothioph-en-3-yl)amino)butyl)-1-((1-((4-(1-(4-0xo-4-((2-0xotetrahydrothioph-en-3-yl)amino)butyl)-1-((4-(1-(4-0xo-4-((2-0xotetrahydrothioph-en-3-yl)amino)butyl)-1-((4-(1-(4-0xo-4-((2-0xotetrahydrothioph-en-3-yl)amino)butyl)-1-((4-(1-(4-0xo-4-((2-0xotetrahydrothioph-en-3-yl)amino)butyl)-1-((4-(1-(4-0xo-4-((2-0xotetrahydrothioph-en-3-yl)amino)butyl)-1-((4-(1-(4-0xo-4-((2-0xotetrahydrothioph-en-3-yl)amino)butyl)-1-((4-(1-(4-0xo-4-((2-0xotetrahydrothioph-en-3-yl)amino)butyl)-1-((4-(4-0xo-4-((2-0xotetrahydrothioph-en-3-yl)amino)butyl)-1-((4-(4-(4-0xo-4-((2-0xotetrahydrothioph-en-3-yl)amino)butyl)-1-((4-(4-0xo-4-((2-0xo-4	
	1H-1,2,3-triazol-4-yl)butanoyl)oxy)ethoxy)carbonyl)pip-erazin-1-yl)-1,4-dihydroquinoline-3-carboxy	
		32
1.37	4-Bromo- N -(2-methoxyphenyl) butanamide ${\bf 141}$	33
	4-Bromo- N -(3-methoxyphenyl)butanamide 142	33
	4-Azido- N -(2-methoxyphenyl)butanamide 143	
	4-Azido- N -(3-methoxyphenyl)butanamide 144	
	Methyl 1-cyclopropyl-6-fluoro-7-(4-(4-((2-methoxyphenyl)amino)-4-oxobutyl)-piperazin-1-yl)-4-oxo-	
	1,4-dihydroquinoline-3-carboxylate 145	35
1.42	Methyl 1-cyclopropyl-6-fluoro-7-(4-(4-((3-methoxyphenyl)amino)-4-oxobutyl)-piperazin-1-yl)-4-oxo-	
	1,4-dihydroquinoline-3-carboxylate 146	36
1.43	1- Cyclopropyl-6-fluoro-7-(4-(4-(1-(4-((2-methoxyphenyl)amino)-4-oxobutyl)-1H-1,2,3-triazol-4-yl)buture (2-methoxyphenyl) amino) (3-4-oxobutyl) (3-4-0xobutyl) (3-4-0xobu	
	1-yl)-4-oxo-1,4-dihydroquinoline-3-carb-oxylic acid 147	
1.44	1-Cyclopropyl-6-fluoro-7-(4-(4-(1-(4-((3-methoxyphenyl)amino)-4-oxobutyl)-1H-1,2,3-triazol-4-yl)bu	
		39
1.45	Methyl 7-(4-(4-(tert-butoxy)-4-oxobutyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydro-	
		40
1.46	4-(4-(1-Cyclopropyl-6-fluoro-3-(methoxycarbonyl)-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-yl)but	
	acid, trifluoroacetic acid salt 150	
1.47	(1S,2S)-2- $(((S)$ -1-Phenylethyl)amino)cyclopentan-1-ol 151 and $(1R,2R)$ -2- $(((S)$ -1-phenylethyl)amin	
		42
1.48	(1S,2S)-2-Aminocyclopentan-1-ol 153	43
	(1R,2R)-2-Aminocyclopentan-1-ol 154	44
		44
	· · / · · /	45
	4-Chloro- N -((1 R ,2 R)-2-hydroxycyclopentyl)butanamide 157	46
	4-Azido- N -(($1R,2R$)-2-(($tert$ -butyldimethylsilyl)oxy)cyclopentyl)butanamide 158	46
	4-Azido- N -((1 S ,2 S)-2-hydroxycyclopentyl)butanamide 159	47
	4-Azido- N -((1 R ,2 R)-2-hydroxycyclopentyl)butanamide 160	
	lem:methyl-1-cyclopropyl-6-fluoro-7-(4-(4-(((1S,2S)-2-hydroxycyclopentyl)amino)-4-oxobutyl)piperazin-1-cyclopropyl-6-fluoro-7-(4-(4-(((1S,2S)-2-hydroxycyclopentyl)amino)-4-oxobutyl)piperazin-1-cyclopropyl-6-fluoro-7-(4-(4-(((1S,2S)-2-hydroxycyclopentyl)amino)-4-oxobutyl)piperazin-1-cyclopropyl-6-fluoro-7-(4-(4-(((1S,2S)-2-hydroxycyclopentyl)amino)-4-oxobutyl)piperazin-1-cyclopropyl-6-fluoro-7-(4-(4-(((1S,2S)-2-hydroxycyclopentyl)amino)-4-oxobutyl)piperazin-1-cyclopropyl-6-fluoro-7-(4-(4-(((1S,2S)-2-hydroxycyclopentyl)amino)-4-oxobutyl)piperazin-1-cyclopropyl-6-fluoro-7-(4-(4-(((1S,2S)-2-hydroxycyclopentyl)amino)-4-oxobutyl)piperazin-1-cyclopropyl-6-fluoro-7-(4-(4-(((1S,2S)-2-hydroxycyclopentyl)amino)-4-oxobutyl)piperazin-1-cyclopropyl-6-fluoro-7-(4-(4-(((1S,2S)-2-hydroxycyclopentyl)amino)-4-oxobutyl)piperazin-1-cyclopropyl-6-fluoro-7-(4-(4-(((1S,2S)-2-hydroxycyclopentyl)amino)-4-oxobutyl)piperazin-1-cyclopropyl-6-fluoro-7-(4-(4-(((1S,2S)-2-hydroxycyclopentyl)amino)-4-oxobutyl)piperazin-1-cyclopropyl-6-fluoro-7-(4-(4-(((1S,2S)-2-hydroxycyclopentyl)amino)-4-oxobutyl)piperazin-1-cyclopropyl-6-fluoro-7-(4-(4-((1S,2S)-2-hydroxycyclopentyl)amino)-4-oxobutyl)piperazin-1-cyclopropyl-6-fluoro-7-(4-(4-((1S,2S)-2-hydroxycyclopentyl)amino)-4-oxobutyl)piperazin-1-cyclopropyl-6-fluoro-7-(4-(4-((1S,2S)-2-hydroxycyclopentyl)amino)-4-oxobutyl)piperazin-1-cyclopropyl-6-fluoro-7-(4-(4-((1S,2S)-2-hydroxycyclopentyl)amino)-4-oxobutyl)piperazin-1-cyclopropyl-6-fluoro-7-(4-(4-((1S,2S)-2-hydroxycyclopentyl)amino)-4-oxobutyl-6-fluoro-7-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-	
	1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate 161	49
1.57	$\label{lem:methyl-1-cyclopropyl-6-fluoro-7-(4-(4-(((1R,2R)-2-hydroxycyclopentyl)amino)-4-oxobutyl)piperazin-2-hydroxycyclopentyl)} \\$	
		50
1.58	Methyl (R)-1-cyclopropyl-6-fluoro-4-oxo-7-(4-(4-oxo-4-((2-oxocyclopentyl)am-ino)butyl)piperazin-	
		51
1.59	7- $(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-($	
,,,	triazol-4-yl)butyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid	l
	164	52
1.60	1- Cyclopropyl-6-fluoro-7-(4-(4-(4-(((1S,2S)-2-hydroxycyclopentyl)amino)-4-oxobutyl)-1H-1,2,3-1)-1-(4-(4-(4-(4-(4-(1S,2S)-2-hydroxycyclopentyl)amino)-4-oxobutyl)-1H-1,2,3-1)-1-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-	
.55	triazol-4-vl)butvl)piperazin-1-vl)-4-oxo-1.4-dihvdroquinoline-3-carboxylic acid 165	53

2	Refe	erences	62
		4-yl)butyl)piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid 173	60
	1.68	1- Cyclopropyl-6-fluoro-4-oxo-7- (4-(4-(4-(4-oxo-4-((2-oxocyclohexyl)amino)butyl)-1H-1,2,3-triazol-1-(2-oxocyclohexyl)amino)butyl)-1H-1,2,3-triazol-1-(2-oxocyclohexyl)amino)butyl)-1H-1,2,3-triazol-1-(2-oxocyclohexyl)amino)butyl)-1H-1,2,3-triazol-1-(2-oxocyclohexyl)amino)butyl)-1H-1,2,3-triazol-1-(2-oxocyclohexyl)amino)butyl)-1H-1,2,3-triazol-1-(2-oxocyclohexyl)amino)butyl)-1H-1,2,3-triazol-1-(2-oxocyclohexyl)amino)butyl)-1H-1,2,3-triazol-1-(2-oxocyclohexyl)amino)butyl)-1H-1,2,3-triazol-1-(2-oxocyclohexyl)amino)butyl)-1-(2-oxocyclohexy	
		azol-4-yl) butyl) piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid ${\bf 172}$	59
	1.67	1- Cyclopropyl-6-fluoro-7- (4-(4-(4-(4-(((trans)-2-hydroxycyclohexyl)amino)-4-oxobutyl)-1 H-1,2,3-tri-1-(4-(4-(4-(4-(4-(((trans)-2-hydroxycyclohexyl)amino)-4-oxobutyl)-1 H-1,2,3-tri-1-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-	
		1,4-dihydroquinoline-3-carboxylate 171	58
	1.66	$Methyl\ 1-cyclopropyl-6-fluoro-4-oxo-7-(4-(4-oxo-4-((2-oxocyclohexyl)amino)-butyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-7-(4-(4-oxo-4-((2-oxocyclohexyl)amino)-butyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-7-(4-(4-oxo-4-((2-oxocyclohexyl)amino)-butyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-7-(4-(4-oxo-4-((2-oxocyclohexyl)amino)-butyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-7-(4-(4-oxo-4-((2-oxocyclohexyl)amino)-butyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-7-(4-(4-oxo-4-((2-oxocyclohexyl)amino)-butyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-7-(4-(4-oxo-4-((2-oxocyclohexyl)amino)-butyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-7-(4-(4-oxo-4-((2-oxocyclohexyl)amino)-butyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-7-(4-(4-oxo-4-((2-oxocyclohexyl)amino)-butyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-7-(4-(4-oxo-4-((2-((2-oxo-4-((2-((2-((2-((2-((2-((2-((2-((2-((2-($	
		1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate ${\bf 170}$	57
	1.65	lem:methyl-1-cyclopropyl-6-fluoro-7-(4-(4-(((trans)-2-hydroxycyclohexyl)amino)-4-oxobutyl) piperazin-property for the substitution of the	
	1.64	4-Azido- N -(($trans$)-2-hydroxycyclohexyl) butanamide ${\bf 169}$	56
	1.63	4-Chloro- N -(($trans$)-2-hydroxycyclohexyl)butanamide ${\bf 168}$	56
	1.62	(<i>trans</i>)-2-Aminocyclohexan-1-ol 167	55
		triazol-4-yl) butyl) piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid	54
	1.61	1- Cyclopropyl-6-fluoro-7- (4-(4-(1-(4-(((1R,2R)-2-hydroxycyclopentyl)amino)-4-oxobutyl)-1H-1,2,3-(4-(4-(4-(4-(4-(4-(4-(4-(((1R,2R)-2-hydroxycyclopentyl)amino)-4-oxobutyl)-1H-1,2,3-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-	

1 Experimental

1.1 Methyl 3-oxodecanoate 21

fix eps

Meldrum's acid (9.0 g, 63 mmol, 1 eq.) was dissolved in anhydrous CH_2Cl_2 (150 mL) and cooled to 0 °C. Pyridine (10.2 mL, 126 mmol, 2 eq.) was added dropwise over 20 min. Octanoyl chloride (11.7 mL, 69 mmol, 1.1 eq.) was then added and the mixture was stirred at 0 °C for a further 4 h. The mixture was allowed to warm to r.t., diluted with CH_2Cl_2 (20 mL) and poured into a mixture of ice (~ 30 g) and HCl (2 N, 90 mL). The solution was washed with NaCl (sat., aq., 150 mL) and dried over Mg_2SO_4 . The solvent was removed under vacuum to give an orange-brown oil. The oil was refluxed in anhydrous MeOH (150 mL) for 5 h and the solvent was removed under vacuum. The resulting residue was purified by column chromatography (SiO₂, 5 % $Et_2O/40$ -60 P.E.) to give a tautomeric mixture of **21** and **22** as a colourless oil (8.34 g, 41.6 mmol, 66 %, 92 % **21** as determined by NMR).

Keto form 21

TLC $R_f = 0.12 \ (5 \% \ \text{EtO}_2/\text{PE})$

IR (neat) ν_{max} / cm⁻¹ = 2927.84 (C-H), 2856.26 (C-H), 1746.86 (ester C=O), 1716.70 (ketone C=O)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 202.3 (CH₃OC(=O)CH₂C(=O)), 167.3 (CH₃OC(=O)CH₂C(=O)), 51.7 (OCH₃), 48.5 (CH₃OC(=O)CH₂C(=O)), 42.5 (CH₂), 31.3 (CH₂), 28.7 (CH₂), 28.6 (CH₂), 23.1 (CH₂), 22.2 (CH₂), 13.6 (CH₃)

Enol form 22

TLC $R_f = 0.12 \ (5 \% \ \text{EtO}_2/\text{PE})$

IR (neat) ν_{max} / cm⁻¹ = 2927.84 (C-H), 2856.26 (C-H), 1653.80 (C=C), 1629.21 (α, β unsaturated C=O)

 ${}^{1}\mathbf{H} \ \mathbf{NMR} \ (400 \ \mathrm{MHz}, \mathrm{CDCl_{3}}) \ \delta \ / \ \mathrm{ppm} = 12.02 \ (\mathrm{s}, \ 1 \ \mathrm{H}, \ \mathrm{CO}\underline{\mathrm{H}}), \ 4.99 \ (\mathrm{s}, \ 1 \ \mathrm{H}, \ \mathrm{C}(=\mathrm{O})\mathrm{C}\underline{\mathrm{H}}=\mathrm{COH}), \ 3.73 \ (\mathrm{s}, \ 3 \ \mathrm{H}, \ \mathrm{CC}\underline{\mathrm{H}_{3}}), \ 2.20 \ (\mathrm{t}, \ J = 7.4 \ \mathrm{Hz}, \ 2 \ \mathrm{H}, \ \mathrm{C}\underline{\mathrm{H}_{2}}\mathrm{CH_{2}}\mathrm{CH_{2}}\mathrm{CH_{2}}\mathrm{CH_{2}}\mathrm{CH_{2}}\mathrm{CH_{2}}\mathrm{CH_{3}}), \ 1.76 \ - 1.72 \ (\mathrm{m}, \ 2 \ \mathrm{H}, \ \mathrm{C}\mathrm{H_{2}}\mathrm{C}\mathrm{H_{2}}\mathrm{C}\mathrm{H_{2}}\mathrm{C}\mathrm{H_{2}}\mathrm{C}\mathrm{H_{2}}\mathrm{C}\mathrm{H_{3}}), \ 1.39 \ - 1.19 \ (\mathrm{m}, \ 8 \ \mathrm{H}, \ \mathrm{C}\mathrm{H_{2}}\mathrm{C}\mathrm{H_{2}}\mathrm{C}\mathrm{H_{2}}\mathrm{C}\mathrm{H_{2}}\mathrm{C}\mathrm{H_{2}}\mathrm{C}\mathrm{H_{2}}\mathrm{C}\mathrm{H_{3}}), \ 0.88 \ (\mathrm{t}, \ J = 6.8 \ \mathrm{Hz}, \ 3 \ \mathrm{H}, \ \mathrm{C}\mathrm{H_{2}}\mathrm{C}\mathrm{H_{2}}\mathrm{C}\mathrm{H_{2}}\mathrm{C}\mathrm{H_{2}}\mathrm{C}\mathrm{H_{2}}\mathrm{C}\mathrm{H_{3}})$

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 178.7 (CH₃OC(=O)CH= $\underline{\text{C}}$ OH), 172.7 (CH₃O<u>C</u>(=O)CH=COH), 88.2 (CH₃OC(=O) $\underline{\text{C}}$ H=COH), 50.5 (O<u>C</u>H₃), 37.9 (<u>C</u>H₂), 34.6 (<u>C</u>H₂), 31.2 (<u>C</u>H₂), 29.0 (<u>C</u>H₂), 25.9 (<u>C</u>H₂), 22.3 (<u>C</u>H₂), 13.6 (<u>C</u>H₃)

Spectroscopic data are consistent with the literature. 1,2

1.2 Methyl (E)-3-((4-((tert-butoxycarbonyl)amino)phenyl)amino)dec-2-enoate 24

Methyl 3-oxodecanoate **21** (500 mg, 2.50 mmol, 1.00 eq.) and tert-butyl (4-aminophenyl)carbamate **174** (520 mg, 2.50 mmol, 1.00 eq.) were dissolved in MeOH (10 mL) and refluxed for 18 h. The solvent was removed under vacuum and the resulting residue was purified by column chromatography (SiO₂, gradient of 0 to 20 % $\rm Et_2O/40$ -60 P.E.) to give a white powder (0.169 mg, 0.480 mmol, 19 %).

TLC $R_f = 0.30 (30 \% \text{ Et}_2\text{O}/40\text{-}60 \text{ P.E.})$

mp $T / {}^{\circ}\text{C} = 78.8 \text{ (Et}_{2}\text{O}/40\text{-}60 \text{ P.E.)}$

IR (neat) ν_{max} / cm⁻¹ = 3336.97 (N-H), 2927.71 (C-H), 2857.14 (C-H), 1723.71 (carbamate C=O), 1634.49 (α,β unsaturated C=O), 1610.73 (C=C), 1580.85 (N-H bend)

¹H NMR (400 MHz, CDCl₃) δ / ppm = 10.16 (s, 1 H, N<u>H</u>C(C₇H₁₅)=C), 7.35 (d, J = 8.6 Hz, 2 H, meta to NHBoc), 7.02 (d, J = 8.7 Hz, 2 H, meta to enamine), 6.60 (br s, 1 H, N<u>H</u>Boc), 4.71 (s, 1 H, C=C<u>H</u>), 3.70 (s, 3 H, OC<u>H</u>₃), 2.23 (t, J = 7.7 Hz, 2 H, C<u>H</u>₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 1.54 (s, 9 H, C(C<u>H</u>₃)₃), 1.40 (quin, J = 7.3 Hz, 2 H, CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 1.33 - 1.16 (m, 8 H, CH₂CH₂C<u>H</u>₂C<u>H</u>₂C<u>H</u>₂C<u>H</u>₂CH₃), 0.86 (t, J = 7.1 Hz, 3 H, CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 171.1 (\underline{C} (=O)CH=C), 164.3 (\underline{C} (=O)CH= \underline{C}), 152.7 ($\underline{O}\underline{C}$ (=O)NH), 136.0 (para to NHBoc), 134.1 (\underline{C} NHBoc), 126.3 (meta to NHBoc), 119.1 (ortho to NHBoc), 83.8 (\underline{C} (=O) \underline{C} H=C), 80.7 (\underline{C} (CH₃)₃), 50.2 ($\underline{O}\underline{C}$ H₃), 32.2 (\underline{C} H₂), 31.6 (\underline{C} H₂), 29.1 (\underline{C} H₂), 28.8 (\underline{C} H₂), 28.3 (\underline{C} (\underline{C} H₃), 28.0 (\underline{C} H₂), 22.6 (\underline{C} H₃), 14.0 (\underline{C} H₃)

HRMS (ESI⁺) m/z / Da = 391.2589, [M+H]⁺, [C₂₂H₃₅N₂O₄]⁺ requires 391.2591

1.3 6-Amino-2-heptylquinolin-4-ol 25

NMR wrong? not tau-tomer?

$$H_2N$$

Methyl (E)-3-((4-((tert-butoxycarbonyl)amino)phenyl)amino)dec-2-enoate **24** (168 mg, 0.649 mmol, 1 eq.) and polyphosphoric acid (5 g) were heated to 90 °C for 1 h. The reaction mixture was then poured into NaHCO₃ (sat., aq., 50 mL) cooled with ice. The precipitate was collected by vacuum filtration, washed with water (50 mL) and dried under high vacuum to give a pale yellow powder (121 mg, 0.468 mmol, 72 %).

 $mp T / {^{\circ}C} = 249 (H_2O)$

IR (neat) ν_{max} / cm⁻¹ = 3336.52 (N-H), 2926.47 (C-H), 2856.89 (C-H), 1723.88 (aromatic), 1634.48 (aromatic), 1610.84 (aromatic), 1583.26 (aromatic), 1519.06 (aromatic)

¹**H NMR** (400 MHz, DMSO-d₆) δ / ppm = 7.26 (d, J = 8.7 Hz, 1 H, meta to NH₂), 7.15 (d, J = 2.6 Hz, 1 H, para to COH), 6.95 (dd, J = 2.7, 8.8 Hz, 1 H, ortho to COH), 5.74 (s, 1 H, ortho to OH), 5.16 (s, 2 H, NH₂), 2.52 (t, J = 7.4 Hz, 2 H, CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 1.64 (quin, J = 7.6 Hz, 2 H, CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 1.36 - 1.19 (m, 8 H, CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 0.86 (t, J = 7.0 Hz, 3 H, CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃)

¹³C NMR (101 MHz, DMSO-d₆) δ / ppm = 176.7 ($\underline{\text{COH}}$), 151.7 ($\underline{\text{CCH}}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$), 145.1 ($\underline{\text{CNH}}_2$), 132.4 (para to NH₂), 126.6 (para to CH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 121.1 (ortho to NH₂ and para to COH), 119.0 (meta to NH₂ and meta to COH), 106.2 (ortho to NH₂ and ortho to COH), 105.9 (ortho to CH₂CH₂CH₂CH₂CH₂CH₂CH₃ and ortho to OH), 33.6 ($\underline{\text{CH}}_2$), 31.6 ($\underline{\text{CH}}_2$), 29.0 ($\underline{\text{CH}}_2$), 28.9 ($\underline{\text{CH}}_2$), 22.5 ($\underline{\text{CH}}_2$), 14.4 ($\underline{\text{CH}}_3$)

HRMS (ESI⁺) m/z / Da = 259.1810, [M+H]⁺, [C₁₆H₂₃N₂O]⁺ requires 259.1803

1.4 6-Azido-2-heptylquinolin-4-ol 26

$$N_3$$

6-Amino-2-heptylquinolin-4-ol **25** (50 mg, 0.194 mmol, 1 eq) was dissolved in HCl (conc., aq., 1.20 ml), water (1.80 ml) and MeOH (2.00 ml) and cooled to 0 °C. A solution of NaNO₂ (16.0 mg, 0.232 mmol, 1.2 eq.) in water (0.300 ml) was added dropwise over 10 min and the mixture was stirred for 1 h. A solution of NaN₃ (15.1 mg, 0.232 mmol, 1.2 eq.) in water (0.300 ml) was then added. The mixture was warmed to room temperature and stirred for a further 4 h. The resultant precipitate was filtered off and dried under reduced pressure. **26** was obtained as a pale cream amorphous solid (25.6 mg, 0.0900 mmol, 46.5 %).

TLC $R_f = 0.40 \ (5 \% \text{ MeoH/CH}_2\text{Cl}_2)$

check for consistent prod reporting $mp T / {}^{\circ}C = ?? (??)$

IR (neat) $\nu_{max} / \text{cm}^{-1} = ??$

¹**H NMR** (400 MHz, MeOD) δ / ppm = 7.73 (d, J = 8.6 Hz, 1 H, ortho to NH), 7.71 (d, J = 2.8 Hz, 1 H, ortho to N₃ and ortho to C(=O)), 7.47 (dd, J = 8.9, 2.7 Hz, 1 H, para to C(=O)), 6.24 (s, 1 H, C(=O)C<u>H</u>), 2.69 (t, J = 7.7 Hz, 2 H, NHCC<u>H</u>₂), 1.68 (quin, J = 7.6 Hz, 2 H, NHCCH₂C<u>H</u>₂), 1.28 - 1.39 (m, 4 H, NHCCH₂CH₂C<u>H</u>₂C<u>H</u>₂), 1.18 - 1.28 (m, 4 H, C<u>H</u>₂C<u>H</u>₂CH₃), 0.85 (t, J = 6.8 Hz, 3 H, C<u>H</u>₃)

¹³C NMR (101 MHz, MeOD) δ / ppm = 172.3 (\underline{C} (=O)), 155.5 (NH \underline{C} CH₂), 137.4 (\underline{C} N₃), 135.6 (para to N₃), 124.6 (para to C(=O)), 124.1 (ipso to C(=O)), 120.7 (meta to N₃ and meta to C(=O)), 112.8 (ortho to N₃ and ortho to C(=O)), 107.0 (C(=O) \underline{C} H), 33.3 (NHC \underline{C} H₂), 31.2 (\underline{C} H₂CH₂CH₃), 28.3 - 28.5 (\underline{C} H₂CH₂CH₂CH₂CH₂CH₃), 22.1 (\underline{C} H₂CH₃), 14.0 (\underline{C} H₃)

HRMS (ESI⁺) m/z / Da = ??, [M+H]⁺ found, [??]⁺ requires ??

1.5 Heptyl magnesium bromide 28

Magnesium turnings (352 mg, 14.5 mmol, 1 eq.) were added to a dry flask under argon. THF (15 mL) was added, followed by bromoheptane (2.40 mL, 14.5 mmol, 1 eq.) dropwise. The mixture was stirred at r.t. for 2 h followed by heating to reflux for 2 h to give the Grignard reagent as a pale grey suspension (15 mL, \sim 1 M) which was used without further purification.

1.6 2-Chloro-N-methoxy-N-methylacetamide 30

N,O-Dimethylhydroxyl amine hydrochloride (6.00 g, 61.5 mmol, 1 eq.) and toluene (75 mL) were added successively to a solution of potassium carbonate (22.4 g, 162 mmol, 2.63 eq.) in water (75 mL) at 0 °C under argon. The mixture was cooled to - 5 °C and chloroacetyl chloride (5.88 mL, 73.8 mmol, 1.20 eq.) was added dropwise over 5 min. The mixture was allowed to warm to r.t. over 30 min, then the organic layer was separated and the aqueous layer was extracted with toluene (3 \times 20 mL). The four combined organic extracts were dried with MgSO₄ and the solvent was removed by rotary evaporation followed by high vacuum to give white, prism-like crystals (7.24 g, 52.6 mmol, 71 %).

mp $T / {}^{\circ}C = 38.8$ (toluene)

IR (neat) ν_{max} / cm⁻¹ = 3016.69 (C-H), 2966.38 (C-H), 2946.75 (C-H), 2827.73 (C-H), 1666.20 (C=O)

¹**H NMR** (400 MHz, $CDCl_3$) δ / ppm = 4.20 (s, 2 H, $ClC\underline{H}_2C=O$), 3.71 (m, 3 H, $OC\underline{H}_3$), 3.18 (s, 3 H, $NC\underline{H}_3$)

 $^{13}\mathbf{C}\ \mathbf{NMR}\ (101\ \mathrm{MHz},\ \mathrm{CDCl_3})\ \delta\ /\ \mathrm{ppm} = 167.4\ (\mathrm{C=O}),\ 61.6\ (\mathrm{O\underline{C}H_3}),\ 40.9\ (\mathrm{Cl\underline{C}H_2C=O}),\ 32.6\ (\mathrm{N\underline{C}H_3})$

Spectroscopic data are consistent with the literature.³

1.7 1-Chlorononan-2-one 31

2-Chloro-N-methoxy-N-methylacetamide (1.00 g, 7.26 mmol, 1 eq.) was added to a dry flask under argon. THF (20 mL) was added and the flask cooled to 0 °C. Heptyl magnesium bromide (~ 1 M, 15.0 mL, 15.0 mmol, 2.07 eq.) was added dropwise over 5 min, then the mixture was allowed to warm to r.t. and stirred for 15 h. The reaction mixture was then poured into HCl (aq., 2 N, 60 mL) at 0 °C and stirred for 10 min. The mixture was extracted with toluene (30 mL) and the aqueous layer discarded. The organic layer was washed with brine and dried with MgSO₄. The solvent was removed by rotary evaporation to give a colourless oil (1.23 g, 6.96 mmol, 96 %).

IR (neat)
$$\nu_{max}$$
 / cm⁻¹ = 2951.65 (C-H), 2924.99 (C-H), 2855.46 (C-H), 1720.39 (C=O)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 202.6 (<u>C</u>=O, 48.1 (<u>C</u>H₂Cl), 39.6 (C(=O)<u>C</u>H₂), 31.5 (<u>C</u>H₂CH₂CH₃)), 28.9 (<u>C</u>H₂), 28.9 (<u>C</u>H₂), 23.5 (C(=O)CH₂<u>C</u>H₂), 22.5 (<u>C</u>H₂CH₃), 13.9 (<u>C</u>H₃)

Spectroscopic data are consistent with the literature.³

1.8 2-Oxononyl 2-amino-5-nitrobenzoate 33

5-Nitroanthranilic acid (500 mg, 2.75 mmol, 1.38 eq.) and potassium carbonate (270 mg, 2.00 mmol, 1 eq.) were dissolved in DMF (5 ml). The mixture was heated under argon to 90 °C and stirred for 1 h then cooled to r.t.. 1-chlorononan-2-one **31** (353 mg, 2.00 mmol, 1 eq.) was added and the mixture was stirred for 15 h. The solution was poured into Na_2HCO_3 (aq., 10 %, 50 ml) and ice (~ 20 g). The precipitate was collected by vacuum filtration, washed with water and dried under high vacuum to give a yellow powder (0.674 g, 2.00 mmol, 100 %).

$$mp T / {}^{\circ}C = 135 (H_2O)$$

IR (neat) ν_{max} / cm⁻¹ = 3453.32 (N-H), 3350.52 (N-H), 2924.93 (C-H), 2853.87 (C-H), 1720.10 (ester C=O)

1703.91 (ketone C=O) 1626.14 (N-H bend) 1602.74 (aromatic) 1572.48 (N-O) 1506.58 (N-O)

 ${}^{1}\mathbf{H} \ \mathbf{NMR} \ (400 \ \mathrm{MHz}, \mathrm{DMSO}\text{-}d_{6}) \ \delta \ / \ \mathrm{ppm} = 8.66 \ (\mathrm{d}, \ J = 2.8 \ \mathrm{Hz}, 1 \ \mathrm{H}, \ ortho \ \mathrm{to} \ \mathrm{C}(=\mathrm{O})), \ 8.12 \ (\mathrm{dd}, \ J = 2.8, 9.4 \ \mathrm{Hz}, 1 \ \mathrm{H}, \ para \ \mathrm{to} \ \mathrm{C}(=\mathrm{O})), \ 6.93 \ (\mathrm{d}, \ J = 9.4 \ \mathrm{Hz}, 1 \ \mathrm{H}, \ meta \ \mathrm{to} \ \mathrm{C}(=\mathrm{O})), \ 5.05 \ (\mathrm{s}, 2 \ \mathrm{H}, \ \mathrm{OC}\underline{\mathrm{H}}_{2}\mathrm{C}(=\mathrm{O})), \ 2.49 \ (\mathrm{t}, \ J = 7.4 \ \mathrm{Hz}, 2 \ \mathrm{Hz}, 2 \ \mathrm{Hz}, 2 \ \mathrm{C}(=\mathrm{O})\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{3}), \ 1.52 \ (\mathrm{quin}, \ J = 7.2 \ \mathrm{Hz}, 2 \ \mathrm{H}, \ \mathrm{C}(=\mathrm{O})\mathrm{CH}_{2}\mathrm{C}\underline{\mathrm{H}}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{3}), \ 1.32 \ - 1.20 \ (\mathrm{m}, 8 \ \mathrm{H}, \ \mathrm{C}(=\mathrm{O})\mathrm{CH}_{2}\mathrm{C}\mathrm{H}_{2}\mathrm{C}\underline{\mathrm{H}}_{2}\mathrm{C}\underline{\mathrm{H}}_{2}\mathrm{C}\underline{\mathrm{H}}_{2}\mathrm{C}\mathrm{H}_{3}), \ 0.86 \ (\mathrm{t}, \ J = 6.8 \ \mathrm{Hz}, 3 \ \mathrm{H}, \ \mathrm{C}(=\mathrm{O})\mathrm{CH}_{2}\mathrm{C}\mathrm{H}_$

¹³C NMR (101 MHz, DMSO-d₆) δ / ppm = 204.4 (OCH₂C(=O)), 165.6 (C(=O)O), 156.3 (CNH₂), 135.7 (CNO₂), 129.6 (para to C=O), 128.9 (ortho to C=O), 117.4 (meta to C=O), 107.5 (CC(=O)O), 68.8 (OCH₂C(=O)), 38.3 (CH₂), 31.6 (CH₂), 28.9 (CH₂), 28.9 (CH₂), 23.2 (CH₂), 22.5 (CH₂), 14.4 (CH₃)

HRMS (ESI⁺) m/z / Da = 323.1610, [M+H]⁺, [C₁₆H₂₃N₂O₅]⁺ requires 323.1607

1.9 6-Nitro-2-heptyl-3-hydroxyquinolin-4(1H)-one 34

2-Oxononyl 2-amino-5-nitrobenzoate (100 mg, 0.340 mmol, 1 eq.) and polyphosphoric acid (300 mg) were stirred for 5.5 h at 90 °C under argon. The mixture was then poured into NaHCO $_3$ (sat., aq., 50 mL) cooled on ice. The precipitate was collected by vacuum filtration, washed with water (50 mL) and dried under high vacuum to give a yellow-brown powder (44 mg, 0.145 mmol, 43 %) which could be recrystallised from EtOAc to give yellow-brown plate-like crystals.

 $mp T / {}^{\circ}C = 223 (H_2O)$

IR (neat) ν_{max} / cm⁻¹ = 3436.01 (N-H), 3000.00 (O-H, br), 2955.37 (C-H), 2925.76 (C-H), 2850.93 (C-H), 1648.18 (aromatic), 1606.05 (aromatic), 1570.67 (N-O), 1536.35 (N-O)

¹³C NMR (101 MHz, DMSO-d₆) δ / ppm = 169.7 (<u>C</u>=O), 141.9 (<u>C</u>OH), 140.7 (para to NO₂), 139.6 (<u>C</u>NO₂), 137.3 (CH<u>C</u>C=O), 124.3 (ortho to NO₂ and ortho to C=O), 122.3 (ortho to NO₂ and para to C=O), 121.5 (<u>C</u>CH₂CH₂CH₂CH₂CH₂CH₂CH₃), 120.0 (meta to NO₂ and meta to C=O), 31.6 (<u>C</u>H₂), 29.2 (<u>C</u>H₂), 28.9 (<u>C</u>H₂), 28.5 (<u>C</u>H₂), 28.1 (<u>C</u>H₂), 22.5 (<u>C</u>H₂), 14.4 (<u>C</u>H₃)

HRMS (ESI⁺) m/z / Da = 305.1501, [M+H]⁺, [C₁₆H₂₁N₂O₄]⁺ requires 305.1500

1.10 (S)-3-Aminodihydrofuran-2(3H)-one hydrobromide 38

$$O$$
 NH_3Br

L-Methionine (3.04 g, 20.4 mmol, 1 eq.) and bromoacetic acid (3.08 g, 22.2 mmol, 1.09 eq.) were dissolved in i-PrOH (12.5 mL), H₂O (12.5 mL) and AcOH (5 mL). The reaction was refluxed for 15 h then concentrated under vacuum. The resulting brown oil was added to a mixture of i-PrOH (16 mL) and HBr (33 % in AcOH, 4 mL), causing the precipitation of a pale pink powder. The precipitate was collected by filtration and washed with i-PrOH (20 mL). The filtrate was concentrated under vacuum and precipitated again using the same procedure. The two crops of precipitate were combined to give a pale pink powder (1.73 g, 9.50 mmol, 41 % yield).

mp $T / ^{\circ}C = 242$ (*i*-PrOH/AcOH, gas evolved)

IR (neat) ν_{max} / cm⁻¹ = 2972.09 (N-H), 2877.54 (N-H), 1771.77 (C=O), 1585.05 (N-H bend), 1572.24 (N-H bend)

¹**H NMR** (400 MHz, DMSO-d₆) δ / ppm = 8.59 (br s, 3 H, N $\underline{\text{H}}_{3}^{+}$), 4.46 (dt, J = 1.3, 8.9 Hz, 1 H, OC $\underline{\text{H}}_{2}$), 4.37 (dd, J = 8.8, 11.4 Hz, 1 H, C $\underline{\text{H}}$ NH $_{3}^{+}$), 4.29 (ddd, J = 6.1, 8.8, 10.9 Hz, 1 H, OC $\underline{\text{H}}_{2}$), 2.57 (dddd, J = 1.2, 6.1, 8.9, 12.3 Hz, 1 H, OCH₂C $\underline{\text{H}}_{2}$), 2.26 (dtd, J = 9.0, 11.2, 12.2 Hz, 1 H, OCH₂C $\underline{\text{H}}_{2}$)

¹³C NMR (101 MHz, DMSO-d₆) δ / ppm = 173.3 (<u>C</u>=O), 66.2 (O<u>C</u>H₂), 47.8 (<u>C</u>HNH₃⁺), 27.0 (OCH₂<u>C</u>H₂)

$$[\alpha]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = -30.0 \ (c / \text{g}(100 \text{ mL})^{-1} = 0.02 \text{ , DMSO})$$

The data are consistent with the literature.⁴

1.11 (S)-2-Bromo-N-(2-oxotetrahydrofuran-3-yl)acetamide 40

$$O$$
 H
 O
 Br

(S)-3-Aminodihydrofuran-2(3H)-one hydrobromide **38** (100 mg, 0.549 mmol, 1.08 eq.) and NaHCO₃ (84.9 mg, 1.01 mmol, 2.00 eq.) were dissolved in CH₂Cl₂ (2 mL) and H₂O (2 mL). Bromoacetyl bromide (44.0 μ L, 102 mg, 0.505 mmol, 1.00 eq.) was then added dropwise. The reaction mixture was stirred for 24 h, after which the CH₂Cl₂ was removed under vacuum. The aqueous phase was extracted with EtOAc (4 × 10 mL) and the combined organic layers were dried with MgSO₄. The solvent was removed under vacuum to give white, needle-like crystals (88.0 mg, 0.396 mmol, 74 %).

$$mp T / ^{\circ}C = 132 \text{ (EtOAc)}$$

IR (neat) ν_{max} / cm⁻¹ = 3255.69 (N-H), 3066.58 (C-H), 1763.02 (lactone C=O), 1657.99 (amide C=O), 1552.67

(N-H bend)

¹**H NMR** (400 MHz, CDCl₃) δ / ppm = 6.95 (br d, 1 H, N<u>H</u>), 4.58 (ddd, J = 5.9, 8.6, 11.7 Hz, 1 H, C<u>H</u>NHC=O), 4.53 (dt, J = 1.0, 9.2 Hz, 1 H, OC<u>H</u>₂), 4.33 (ddd, J = 5.9, 9.4, 11.3 Hz, 1 H, OC<u>H</u>₂), 3.95 (d, J = 1.3 Hz, 2 H, C(=O)C<u>H</u>₂Br), 2.88 (dddd, J = 1.3, 5.9, 8.6, 12.6 Hz, 1 H, OCH₂C<u>H</u>₂), 2.24 (dtd, J = 8.9, 11.5, 12.6 Hz, 1 H, OCH₂C<u>H</u>₂)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 174.6 (O<u>C</u>=O), 166.4 (<u>C</u>(=O)NH), 66.1 (O<u>C</u>H₂), 49.8 (<u>C</u>HNHC=O), 29.9 (OCH₂<u>C</u>H₂), 28.2 (O=C<u>C</u>H₂Br)

$$[\alpha]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = 27.0 \ (c / \text{g}(100 \text{ mL})^{-1} = 0.0074, \text{CHCl}_3)$$

The data are consistent with the literature.^{4,5}

1.12 (S)-2-Azido-N-(2-oxotetrahydrofuran-3-yl)acetamide 41

$$O \longrightarrow H \longrightarrow N_3$$

(3S)-2-Oxotetrahydrofuran-3-aminium bromide **38** (100 mg, 0.552 mmol, 1.08 eq.), NaN₃ (85.7 mg, 1.32 mmol, 2.61 eq.) and NaHCO₃ (84.9 mg, 1.01 mmol, 2.00 eq.) were dissolved in CH₂Cl₂ (2 mL) and H₂O (2 mL). Bromoacetyl bromide (44.0 μ L, 102 mg, 0.505 mmol, 1.00 eq.) was then added dropwise. The reaction mixture was stirred for 48 h, after which the CH₂Cl₂ was removed under vacuum. The aqueous phase was extracted with EtOAc (4 × 10 mL) and the combined organic layers were dried with MgSO₄. The solvent was removed under vacuum to give white, needle-like crystals (38.4 mg, 0.209 mmol, 41 %).

$$mp T / ^{\circ}C = 87 \text{ (EtOAc)}$$

IR (neat) ν_{max} / cm⁻¹ = 3283.47 (N-H), 2923.28 (C-H), 2852.99 (C-H), 2129.69 (N₃), 1782.86 (lactone C=O), 1661.40 (amide C=O), 1536.81 (N-H bend)

¹**H NMR** (400 MHz, CDCl₃) δ / ppm = 7.07 (br d, J = 5.1 Hz, 1 H, N $\underline{\text{H}}$), 4.65 (ddd, J = 6.8, 8.7, 11.6 Hz, 1 H, C $\underline{\text{H}}$ NHC=O), 4.49 (dt, J = 1.3, 9.1 Hz, 1 H, OC $\underline{\text{H}}$ ₂), 4.31 (ddd, J = 6.0, 9.2, 11.2 Hz, 1 H, OC $\underline{\text{H}}$ ₂), 4.05 (s, 2 H, C(=O)C $\underline{\text{H}}$ ₂N₃), 2.77 (dddd, J = 1.4, 6.0, 8.8, 12.5 Hz, 1 H, OCH₂C $\underline{\text{H}}$ ₂), 2.26 (dq, J = 8.9, 11.8 Hz, 1 H, OCH₂CH₂)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 174.9 (O<u>C</u>=O), 167.5 (<u>C</u>=ONH), 66.0 (O<u>C</u>H₂), 52.2 (O=C<u>C</u>H₂N₃), 48.9 (CHNHC=O), 29.7 (OCH₂CH₂)

$$[\alpha]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = -32.6 \ (c / \text{g}(100 \text{ mL})^{-1} = 0.043 \text{ , DMSO})$$

The data are consistent with the literature.⁴

1.13 (S)-4-Bromo-N-(2-oxotetrahydrofuran-3-yl)butanamide 44

$$O \longrightarrow H$$

$$O \longrightarrow Br$$

(S)-3-Aminodihydrofuran-2(3H)-one hydrobromide **38** (200 mg, 1.10 mmol, 1.00 eq.) and NaHCO₃ (170 mg, 2.02 mmol, 1.84 eq.) were dissolved in CH₂Cl₂ (2 mL) and H₂O (2 mL). Bromobutyryl chloride (140 μ L, 224 mg, 1.21 mmol, 1.10 eq.) was then added dropwise. The reaction mixture was stirred for 1 h, after which the CH₂Cl₂ was removed under vacuum. The aqueous phase was extracted with EtOAc (7 × 5 mL) and the combined organic layers were dried with MgSO₄. The solvent was removed under vacuum to give white crystals which were recrystallised from EtOAc to give white, needle-like crystals (219 mg, 0.878 mmol, 80 %).

 $mp T / ^{\circ}C = 105 \text{ (EtOAc)}$

IR (neat) ν_{max} / cm⁻¹ = 3307.92 (N-H), 3073.85 (C-H), 2948.93 (C-H), 1773.66 (lactone C=O), 1643.46 (amide C=O), 1541.39 (N-H bend)

¹**H NMR** (400 MHz, CDCl₃) δ / ppm = 6.31 (br d, J = 5.5 Hz, 1 H, N<u>H</u>), 4.59 (ddd, J = 6.2, 8.7, 11.5 Hz, 1 H, C<u>H</u>NHC=O), 4.48 (dt, J = 1.2, 8.9 Hz, 1 H, OC<u>H</u>₂), 4.30 (ddd, J = 5.8, 9.3, 11.3 Hz, 1 H, OC<u>H</u>₂), 3.49 (t, J = 6.3 Hz, 2 H, C<u>H</u>₂Br), 2.82 (dddd, J = 1.3, 5.9, 8.7, 12.5 Hz, 1 H, OCH₂C<u>H</u>₂), 2.47 (t, J = 7.3 Hz, 2 H, C(=O)CH₂), 2.26 - 2.15 (m, 3 H, OCH₂CH₂ and C(=O)CH₂CH₂CH₂Br)

 $^{13}\textbf{C NMR} \ (101 \ \text{MHz}, \text{CDCl}_3) \ \delta \ / \ \text{ppm} = 175.4 \ (\text{OC=O}), \ 172.3 \ (\text{C(=O)NH}), \ 66.1 \ (\text{OCH}_2), \ 49.3 \ (\text{CHNHC=O}), \ 33.9 \ (\text{C(=O)CH}_2), \ 33.1 \ (\text{CH}_2\text{Br}), \ 30.3 \ (\text{OCH}_2\text{CH}_2), \ 27.9 \ (\text{C(=O)CH}_2\text{CH}_2\text{CH}_2\text{Br})$

 $[\alpha]_D^{26.6} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = -78 \ (c / \text{g}(100 \text{ mL})^{-1} = 0.08333 \text{ , MeOH})$

1.14 (S)-6-Bromo-N-(2-oxotetrahydrofuran-3-yl)hexanamide 45

$$O \longrightarrow H$$

$$O \longrightarrow N$$

$$O \longrightarrow Br$$

(S)-3-Aminodihydrofuran-2(3H)-one hydrobromide **38** (100 mg, 0.549 mmol, 1.00 eq.) and NaHCO₃ (84.9 mg, 1.01 mmol, 1.84 eq.) were dissolved in CH₂Cl₂ (2 mL) and H₂O (2 mL). Bromohexanoyl chloride (93.0 μ L, 130 mg, 0.608 mmol, 1.11 eq.) was then added dropwise. The reaction mixture was stirred for 4 h, after which the CH₂Cl₂ was removed under vacuum. The mixture was then filtered, washed with H₂O (10 mL) and dried under high vacuum to give white, needle-like crystals (101 mg, 0.362 mmol, 66 %).

 $mp T / {^{\circ}C} = 106 (CH_2Cl_2/H_2O)$

 $\mathbf{IR} \; (\text{neat}) \; \nu_{max} \; / \; \text{cm}^{-1} = 3300.30 \; (\text{N-H}), \; 3067.62 \; (\text{C-H}), \; 2937.37 \; (\text{C-H}), \; 2856.67 \; (\text{C-H}), \; 1784.83 \; (\text{lactone C=O}), \; 2856.67 \; (\text{C-H}), \; 1784.83 \; (\text{lactone C=O}), \; 1784.83 \; (\text{lactone C=O}),$

1639.33 (amide C=O), 1539.87 (N-H bend)

HRMS (ESI⁺) m/z / Da = 278.0381, [M+H]⁺, [C₁₀H₁₇BrNO₃]⁺ requires 278.0386

$$[\alpha]_D^{26.6} / ^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = -16 (c / \text{g}(100 \text{ mL})^{-1} = 0.20833, \text{MeOH})$$

1.15 (S)-6-Azido-N-(2-oxotetrahydrofuran-3-yl)hexanamide 47

$$O \longrightarrow H$$

$$O \longrightarrow N_3$$

(S)-6-Bromo-N-(2-oxotetra hydrofuran-3-yl)hexanamide (80 mg, 0.320 mmol, 1.00 eq.) and NaN₃ (26.3 mg, 0.405 mmol, 1.27 eq.) were heated in DMF (0.5 mL) for 5 h at 100 °C. The reaction mixture was then partitioned between CH₂Cl₂ (5 mL) and H₂O (5 mL). The aqueous phase was extracted twice more with CH₂Cl₂ (2 × 5 mL) and the organic layers were combined and dried over MgSO₄. The solvent was removed by rotary evaporation followed by high vacuum to give white, needle-like crystals (42.7 mg, 0.178 mmol, 56 %).

$$mp T / {}^{\circ}C = 90.0 (CH_2Cl_2)$$

IR (neat) ν_{max} / cm⁻¹ = 3314.00 (N-H), 2931.56 (C-H), 2862.89 (C-H), 2095.06 (N₃), 1775.38 (lactone C=O), 1643.14 (amide C=O), 1547.90 (N-H bend)

¹H NMR (400 MHz, CDCl₃) δ / ppm = 5.97 (br d, J = 4.2 Hz, 1 H, N<u>H</u>), 4.56 (ddd, J = 5.7, 8.6, 11.7 Hz, 1 H, C<u>H</u>NHC=O), 4.50 (dt, J = 1.0, 9.1 Hz, 1 H, OC<u>H</u>₂), 4.31 (ddd, J = 5.8, 9.4, 11.3 Hz, 1 H, OC<u>H</u>₂), 3.31 (t, J = 6.9 Hz, 2 H, C<u>H</u>₂N₃), 2.90 (dddd, J = 1.1, 5.8, 8.6, 12.5 Hz, 1 H, OCH₂C<u>H</u>₂), 2.30 (dt, J = 1.8, 7.4 Hz, 2 H, O=CC<u>H</u>₂), 2.15 (dtd, J = 8.8, 11.5, 12.3 Hz, 1 H, OCH₂C<u>H</u>₂), 1.72 (quin, J = 7.6 Hz, 2 H, O=CCH₂CH₂CH₂CH₂CH₂CH₂N₃), 1.65 (quin, J = 7.2 Hz, 2 H, O=CCH₂CH₂CH₂CH₂CH₂CH₂N₃) 1.46 (m, 2 H, O=CCH₂CH₂CH₂CH₂CH₂CH₂N₃)

 $^{13}\textbf{C NMR} \ (101 \ \text{MHz}, \text{CDCl}_3) \ \delta \ / \ \text{ppm} = 175.4 \ (\text{OC}=\text{O}), 172.2 \ (\underline{\text{C}}(=\text{O})\text{NH}), 66.1 \ (\text{OCH}_2), 51.2 \ (\text{C}(=\text{O})\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{C}_2\text{$

HRMS (ESI⁺) m/z / Da = 241.1289, [M+H]⁺, [C₁₀H₁₇N₄O₃]⁺ requires 241.1295

 $[\alpha]_D^{26.6} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = -16 (c / \text{g}(100 \text{ mL})^{-1} = 0.20833, \text{MeOH})$

1.16 Hex-5-ynal 49

Pyridinium chlorochromate (14.6 g, 68.1 mmol, 1.50 eq) and DCM (500 mL) were stirred at r.t. under argon. 5-hexyn-1-ol (5.00 mL, 45.4 mmol, 1 eq.) was added and the reaction mixture was stirred for 5 h followed by addition of $\rm Et_2O$ (125 mL) and silica gel (62.5 g). The suspension was stirred for 1 h then filtered through a pad of silica (100 g) and washed with $\rm Et_2O$. The solvent was removed by rotary evaporation to give a pale yellow-green oil (4.72 g, 49.1 mmol, 72 %).

IR (neat) ν_{max} / cm⁻¹ = 3292.68 (alkyne C-H), 2943.26 (alkane C-H), 2830.88 (aldehyde C-H), 2728.56 (aldehyde C-H), 1720.29 (aldehyde C=O)

¹H NMR (400 MHz, CDCl₃) δ / ppm = 9.80 (s, 1 H, C(=O) $\underline{\text{H}}$), 2.60 (t, J = 7.1 Hz, 2 H, C $\underline{\text{H}}_2$ C(=O)H), 2.26 (dt, J = 2.6, 6.8 Hz, 2 H, HC \equiv CC $\underline{\text{H}}_2$), 1.98 (t, J = 2.7 Hz, 1 H, $\underline{\text{H}}$ C \equiv C), 1.85 (quin, J = 7.0 Hz, 2 H, HC \equiv CCH₂CH₂)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 201.6 (<u>C</u>=O), 83.1 (HC≡<u>C</u>), 69.3 (H<u>C</u>≡C), 42.4 (<u>C</u>H₂C=O), 20.7 (HC≡CCH₂CH₂CH₂C=O), 17.6 (HC≡C<u>C</u>H₂CH₂CH₂C=O)

Spectroscopic data are consistent with the literature.⁶

1.17 *tert*-Butyl 4-(hex-5-yn-1-yl)piperazine-1-carboxylate 51

Hex-5-ynal 49 (0.407 g, 4.24 mmol, 1.00 eq.) and tert-butyl piperazine-1-carboxylate (0.791 g, 4.24 mmol, 1.00 eq.) were stirred under a N_2 atmosphere in 1,2-dichloroethane (20 mL) for 2.5 h followed by addition of sodium triacetoxyborohydride (6.25 g, 29.5 mmol, 6.96 eq.) in four portions over 4 d. The mixture was stirred for a further day then NaHCO₃ (sat., aq., 120 mL) was added and the product extracted with EtOAc (2 × 100 mL). The solvent was dried over MgSO₄, and removed by rotary evaporation to give a colourless liquid (1.12 g, 4.21 mmol, 99 %).

TLC R_f (10 % MeOH/CH₂Cl₂) = 0.55

IR (neat) ν_{max} / cm⁻¹ = 3303.59 (alkyne C-H), 2939.96 (alkane C-H), 2865.23 (C-H), 2810.42 (C-H), 1691.29 (carbamate C=O)

¹H NMR (400 MHz, CDCl₃) δ / ppm = 3.44 (t, J = 5.2 Hz, 4 H, BocN(C $\underline{\text{H}}_2$)C $\underline{\text{H}}_2$), 2.39 (t, J = 5.1 Hz, 4 H, HC \equiv CCH₂CH₂CH₂CH₂CH₂CH₂C $\underline{\text{H}}_2$), 2.37 (t, J = 7.3 Hz, 2 H, HC \equiv CCH₂CH₂CH₂CH₂CH₂N), 2.23 (dt, J = 2.7, 6.8 Hz, 2 H, HC \equiv CCH₂CH₂CH₂CH₂CH₂CH₂CH₂N), 1.65 - 1.53 (m, 4 H, HC \equiv CCH₂CH₂CH₂CH₂N), 1.47 (s, 9 H, CH₃)

HRMS (ESI⁺) m/z / Da = 267.2073, [M+H]⁺, [C₁₅H₂₇N₂O₂]⁺ requires 267.2064

1.18 1-(Hex-5-yn-1-yl)piperazine 52

tert-Butyl 4-(hex-5-yn-1-yl)piperazine-1-carboxylate **51** (763 mg, 2.86 mmol) was stirred in TFA (10 mL) at r.t. for 2 h. The TFA was removed under vacuum followed by co-evaporation with $\mathrm{CH_2Cl_2}$ (2 × 20 mL). The oil was diluted with $\mathrm{H_2O}$ (10 mL) and the pH adjusted to 14 with NaOH (10 % aq.). This mixture was extracted with $\mathrm{CH_2Cl_2}$ (2 × 20 mL) and the combined organic layers were dried over MgSO₄. The solvent was removed under vacuum and purified by column chromatography (SiO₂ MeOH/CH₂Cl₂ 3:7) to give a colourless liquid (476 mg, 2.86 mmol, 100 %).

TLC R_f (30 % MeOH/CH₂Cl₂) = 0.20

IR (neat) ν_{max} / cm⁻¹ = 3295.87 (alkyne C-H), 2941.07 (alkane C-H), 2810.64 (alkane C-H), 1637.22 (N-H bend)

 $^{13}\mathbf{C} \ \mathbf{NMR} \ (101 \ \mathrm{MHz}, \mathrm{CDCl_3}) \ \delta \ / \ \mathrm{ppm} = 84.3 \ (\mathrm{HC} \underline{=} \underline{\mathrm{C}}), \ 68.4 \ (\mathrm{HC} \underline{=} \mathrm{C}), \ 58.6 \ (\mathrm{HC} \underline{=} \mathrm{CCH_2CH_2CH_2CH_2CH_2N}), \ 54.5 \ (\mathrm{HC} \underline{=} \mathrm{CCH_2CH_2CH_2CH_2N}), \ 46.0 \ (\mathrm{HN}(\underline{\mathrm{CH_2}})\underline{\mathrm{CH_2}}), \ 26.4 \ (\mathrm{HC} \underline{=} \mathrm{CCH_2CH_2CH_2CH_2N}), \ 25.7 \ (\mathrm{HC} \underline{=} \mathrm{CCH_2CH_2CH_2N}), \ 18.3 \ (\mathrm{HC} \underline{=} \underline{\mathrm{CCH_2CH_2CH_2CH_2N}})$

HRMS (ESI⁺) m/z / Da = 167.1548, [M+H]⁺, [C₁₀H₁₉N₂]⁺ requires 167.1548

1.19 1-Cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid 54

7-Chloro-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquino-line-3-carboxylic acid $\mathbf{53}$ (1.27 g, 4.51 mmol, 1 eq.), 1-(hex-5-yn-1-yl)piperazine $\mathbf{52}$ (1.5 g, 9.02 mmol, 2 eq.) and N-methyl-2-pyrrolidone (10 mL) were stirred in a microwave reactor at 115 °C for 24 h. The reaction mixture was cooled to r.t. and water (80 ml) was added. The mixture was stirred for 3 h and then filtered, and residue was washed with MeOH (50 ml). The resulting solid (0.571 g) was further purified by recrystalisation from EtOAc (50 ml). $\mathbf{54}$ was obtained as off-white crystals (0.219 g, 0.531 mmol, 11.8 %).

TLC $R_f = 0.02 (10 \% \text{ MeOH/CH}_2\text{Cl}_2)$

mp $T / {^{\circ}C} = 220$ (MeOH, decomposes)

IR (neat) ν_{max} / cm⁻¹ = 3211.99 (alkyne C-H), 2459.32 (O-H), 1722.63 (carboxylic acid C=O), 1626.76 (quinolone C=O)

¹H NMR (500 MHz, DMSO-d₆) δ / ppm = 15.12 (br. s., 1 H, C(=O)O<u>H</u>), 8.69 (s, 1 H, ortho to C(=O)OH), 7.96 (d, J=13.0 Hz, 1 H, ortho to F), 7.61 (d, J=7.6 Hz, 1 H, meta to F), 3.82 - 3.92 (m, 3 H, NC<u>H</u>(CH₂)₂ and CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 3.54 - 3.68 (br. m, 2 H, CH₂CH₂CH₂N(C<u>H</u>₂)CH₂), 3.45 (br. t, J=11.6 Hz, 2 H, CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 3.21 - 3.29 (br. m, 2 H, CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 3.11 - 3.20 (br. m, 2 H, CH₂CH₂CH₂N(CH₂)CH₂CH₂), 2.84 (t, J=2.7 Hz, 1 H, <u>H</u>C≡C), 2.24 (td, J=7.0, 2.7 Hz, 2 H, HC≡CC<u>H</u>₂), 1.83 (br. quin, J=7.5 Hz, 2 H, HC≡CCH₂CH₂CH₂), 1.52 (quin, J=7.4 Hz, 2 H, HC≡CCH₂CH₂), 1.29 - 1.36 (m, 2 H, NCH(C<u>H</u>H)₂), 1.16 - 1.23 (m, 2 H, NCH(CH<u>H</u>)₂)

¹³C NMR (126 MHz, DMSO-d₆) δ / ppm = 176.4 ($\underline{\mathbf{C}}$ (=O)CC(=O)OH), 165.8 ($\underline{\mathbf{C}}$ (=O)OH), 152.8 (d, J=248.5 Hz, *ipso* to F), 148.2 ($\underline{\mathbf{C}}$ HCC(=O)OH), 143.7 (d, J=11.1 Hz, *para* to C(=O)), 139.1 (*para* to F), 119.4 (d, J=6.9 Hz, *ipso* to C(=O)), 111.2 (d, J=22.5 Hz, *ortho* to F and *ortho* to C(=O)), 106.9 (*meta* to F and *meta* to C(=O)), 106.9 ($\underline{\mathbf{C}}$ (=O) $\underline{\mathbf{C}}$ (C(=O) $\underline{\mathbf{C}}$ (C(=O)OH), 83.9 ($\underline{\mathbf{H}}$ C= $\underline{\mathbf{C}}$), 71.8 ($\underline{\mathbf{H}}$ C= $\underline{\mathbf{C}}$), 55.0 ($\underline{\mathbf{C}}$ H₂CH₂CH₂N), 50.5 ($\underline{\mathbf{C}}$ H₂CH₂CH₂N($\underline{\mathbf{C}}$ H₂), 46.3 ($\underline{\mathbf{C}}$ H₂CH₂N($\underline{\mathbf{C}}$ H₂)CH₂CH₂), 36.0 ($\underline{\mathbf{N}}$ CH($\underline{\mathbf{C}}$ H₂)), 25.2 ($\underline{\mathbf{H}}$ C=CCH₂CH₂), 17.4 ($\underline{\mathbf{H}}$ C= $\underline{\mathbf{C}}$ CH₂), 7.6 ($\underline{\mathbf{N}}$ CH($\underline{\mathbf{C}}$ H₂))

 19 F NMR (376.45 MHz, MeOD) δ / ppm = -121.82 (s, ciprofloxacin F)

HRMS (ESI⁺) m/z / Da = 412.2036, [M+H]⁺, [C₂₃H₂₇N₃O₃F]⁺ requires 412.2030

through Cips and check pip C is two peaks not

doublet

1.20 4-((2,4-Diaminopyrimidin-5-yl)methyl)-2,6-dimethoxyphenol 124

Hydrobromic acid (48 % w/w, aq., 50 ml) was heated to 100 °C, then trimethoprim (5.00 g, 17.2 mmol) was added, and the suspension was stirred for 40 min under Ar. The mixture was removed from the heat, and NaOH (50 % w/w, aq., 15 ml) was added dropwise. The reaction mixture was then cooled slowly to 0 °C, and the resulting crystals were filtered out and washed with cold water. The crystals were then dissolved in hot water (80 ml), neutralized with NH₄OH (sat., aq.) and cooled slowly to 0 °C. The resulting crystals were filtered out, washed with cold water and dried under vacuum. **124** was obtained as pale pink prisms (2.06 g, 7.46 mmol, 43.4 %).

TLC $R_f = 0.04 (5 \% \text{ MeOH/CHCl}_2)$

mp $T / {}^{\circ}C = 238 \text{ (H}_2O, \text{ decomposes)}$

IR (neat) ν_{max} / cm⁻¹ = 3314.0 (N-H), 3137.4 (N-H), 3045.3 (C-H), 3000.9 (C-H), 2938.1 (C-H), 2838.7 (C-H), 1662.9 (pyrimidine), 1645.2 (pyrimidine), 1626.6 (pyrimidine)

¹**H NMR** (400 MHz, MeOD) δ / ppm = 7.21 (s, 1 H, C<u>H</u>N), 6.54 (s, 2 H, meta to OCH₂), 4.87 (br. s., 5 H, OH, NH₂ × 2), 3.82 (s, 6 H, OC<u>H</u>₃), 3.63 (s, 2 H, CC<u>H</u>₂C)

 ${}^{13}\textbf{C NMR} \ (101 \ \text{MHz}, \ \text{MeOD}) \ \delta \ / \ \text{ppm} = 166.4 \ (\text{CH}_2 \text{C}\underline{\text{C}} \text{NH}_2), \ 162.0 \ (\text{CHN}\underline{\text{C}} \text{NH}_2), \ 156.2 \ (\underline{\text{C}} \text{HNCNH}_2), \ 149.8$ (ipso to OCH₃), 135.9 (ipso to OH), 128.2 (para to OH), 111.7 (CH₂CCNH₂), 107.5 (meta to OH), 57.0 (OCH₃), 33.9 (CCH₂C)

HRMS (ESI⁺) m/z / Da = 277.1295, [M+H]⁺ found, [C₁₃H₁₇N₄O₃]⁺ requires 277.1301

The data are consistent with the literature.⁷

1.21 5-(4-(Hex-5-yn-1-yloxy)-3,5-dimethoxybenzyl)pyrimidine-2,4-diamine 125

$$0 \longrightarrow 0 \longrightarrow N \longrightarrow NH_2$$

$$NH_2$$

4-((2,4-Diaminopyrimidin-5-yl)methyl)-2,6-dimethoxyphenol **124** (1.00 g, 3.62 mmol, 1 eq.), 6-chloro-1-hexyne **175** (0.524 ml, 0.420 g, 4.34 mmol, 1.2 eq.), Cs_2CO_3 (2.36 g, 7.24 mmol, 2 eq.) and anhydrous DMF (30 ml) were stirred at 70 °CC for 7 h. The solvent was removed under reduced pressure, then CH_2Cl_2 (30 ml) was added and the mixture filtured. The filtrate was concentrated under reduced pressure and purified by column chromatography using a Combiflash (SiO₂, 5 % MeOH/CH₂Cl₂). **125** was obtained as a pale cream amorphous solid (0.253 g, 0.709 mmol, 19.6 %).

TLC $R_f = 0.14 (5 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 3451.4 (alkyne C-H), 3313.4 (N-H), 3136.7 (N-H), 3113.9 (N-H), 2944.2 (C-H), 2839.0 (C-H), 1635.1 (pyrimidine)

¹**H NMR** (400 MHz, MeOD) δ / ppm = 7.77 (s, 1 H, C<u>H</u>N), 6.37 (s, 2 H, meta to OCH₂), 4.83 (br. s., 2 H, CHNCN<u>H</u>₂), 4.63 (br. s., 2 H, CH₂CCN<u>H</u>₂), 3.95 (t, J = 6.3 Hz, 2 H, C<u>H</u>₂O), 3.79 (s, 6 H, OC<u>H</u>₃), 3.65 (s, 2 H, CC<u>H</u>₂C), 2.28 (td, J = 7.1, 2.6 Hz, 2 H, HC \equiv CC<u>H</u>₂), 1.94 (t, J = 2.7 Hz, 1 H, <u>H</u>C \equiv C), 1.81 - 1.90 (m, 2 H, C<u>H</u>₂CH₂O), 1.71 - 1.80 (m, 2 H, C<u>H</u>₂CH₂CH₂O)

¹³C NMR (101 MHz, MeOD) δ / ppm = 162.7 (CH₂C<u>C</u>NH₂), 162.0 (CHN<u>C</u>NH₂), 156.4 (<u>C</u>HNCNH₂), 153.8 (*ipso* to OCH₃), 136.0 (*ipso* to OCH₂), 133.6 (*para* to OCH₂), 106.5 (CH₂<u>C</u>CNH₂), 105.0 (*meta* to OCH₂), 84.5 (HC=<u>C</u>), 72.6 (<u>C</u>H₂O), 68.3 (H<u>C</u>=C), 56.1 (O<u>C</u>H₃), 34.7 (C<u>C</u>H₂C), 29.1 (<u>C</u>H₂CH₂O), 24.9 (<u>C</u>H₂CH₂CH₂O), 18.0 (HC=<u>C</u><u>C</u>H₂)

HRMS (ESI⁺) m/z / Da = 357.1920, [M+H]⁺ found, $[C_{19}H_{25}N_4O_3]^+$ requires 357.1927

The compound has not been reported previously.

1.22 (S)-1-Cyclopropyl-6-fluoro-4-oxo-7-(4-(4-(1-(2-oxo-2-((2-oxotetrahydrofuran-3-yl)amino)ethyl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid 126

$$0 \\ 0 \\ 0 \\ N = N$$

50 % water/t-BuOH (2 ml) was degassed by bubbling N₂ through it. This was then added to a mixture of 1-cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid **176** (20.6 mg, 50.0 μ mol, 1 eq.) and (S)-2-azido-N-(2-oxotetrahydrofuran-3-yl)acetamide **41** (9.2 mg, 50.0 μ mol, 1 eq.). A similarly degassed solution of CuSO₄ · 5 H₂O (624 μ g, 2.5 μ mol, 0.05 eq. 50 mM), THPTA (1.09 mg, 2.5 μ mol, 0.05 eq. 50 mM) and sodium ascorbate (991 μ g, 5 μ mol, 0.1 eq., 100 mM) in 50 % water/t-BuOH (50 μ l) was then added. The mixture was stirred at r.t. under argon for 3h. On observation that the reaction had stalled, the reaction was degassed again, and a further portion of cataylst solution (50 μ l) was added. After a further 3h

the reaction mixture was evaporated under reduced pressure. The residue was purified by preparatory HPLC(?? % acetonitrile/water over 15 min). The combined pure fractions were evaporated under reduced pressure and then partitioned between NaHCO₃ (aq., sat., 10 ml) and 10 % i-PrOH/CHCl₃ (10 ml). The organic layer was dried with MgSO₄ and evaporated under reduced pressure. **126** was obtained as a white amorphous solid (8.8 mg, 14.8 μ mol, 29.6 %).

IR (neat) ν_{max} / cm⁻¹ = 3266.3 (N-H), 2949.0 (C-H), 2934.8 (C-H), 2827.2 (C-H), 1778.0 (lactone C=O), 1724.9 (carboxylic acid C=O), 1665.0 (amide C=O), 1625.5 (quinolone C=O)

¹H NMR (400 MHz, DMSO d₆) δ / ppm = 15.23 (s, 1 H, C(=O)O<u>H</u>), 8.84 (d, J = 7.9 Hz, 1 H, N<u>H</u>), 8.66 (s, 1 H, ortho to C(=O)OH), 7.90 (d, J = 13.3 Hz, 1 H, ortho to F), 7.82 (s, 1 H, C<u>H</u>=CCH₂), 7.57 (d, J = 7.6 Hz, 1 H, meta to F), 5.13 (s, 1 H, C(=O)C<u>H</u>HN), 5.12 (s, 1 H, C(=O)CH<u>H</u>N), 4.64 (ddd, J = 10.9, 9.0, 7.8 Hz, 1 H, C<u>H</u>NH), 4.36 (td, J = 8.9, 1.7 Hz, 1 H, OC<u>H</u>H), 4.23 (ddd, J = 10.6, 8.8, 6.4 Hz, 1 H, OCH<u>H</u>), 3.83 (tt, J = 7.0, 4.0 Hz, 1 H, NC<u>H</u>(CH₂)₂), 3.32 (br s, 4 H, CH₂CH₂CH₂N(CH₂C<u>H</u>₂)CH₂)CH₂C<u>H</u>₂), 2.67 (t, J = 7.4 Hz, 2 H, CH=CC<u>H</u>₂), 2.58 (br t, J = 5.0 Hz, 4 H, CH₂CH₂CH₂N(C<u>H</u>₂)C<u>H</u>₂), 2.42 - 2.49 (m, 1 H, OCH₂C<u>H</u>H), 2.40 (t, J = 7.1 Hz, 1 H, CH=CCH₂CH₂CH₂CH₂), 2.17 (dtd, J = 11.7, 10.8, 10.8, 9.0 Hz, 1 H, OCH₂CH<u>H</u>), 1.66 (quin, J = 7.2 Hz, 1 H, CH=CCH₂CH₂C<u>H</u>₂), 1.53 (quin, J = 7.2 Hz, 1 H, CH=CCH₂CH₂CH₂), 1.28 - 1.35 (m, 1 H, NCH(CHH)₂), 1.16 - 1.21 (m, 1 H, NCH(CHH)₂)

¹³C NMR (101 MHz, DMSO d₆) δ / ppm = 176.4 ($\underline{\mathbf{C}}$ (=O)CC(=O)OH), 174.9 ($\underline{\mathbf{O}}$ C(=O)), 166.0 ($\underline{\mathbf{C}}$ (=O)OH), 165.9 (NH $\underline{\mathbf{C}}$ (=O)), 153.1 (d, J = 250.8 Hz, ipso to F), 148.0 ($\underline{\mathbf{C}}$ H=CC(=O)OH), 146.6 (CH= $\underline{\mathbf{C}}$ CH₂), 145.3 (d, J = 9.6 Hz, ipso to piperazine), 139.2 (para to F), 123.4 ($\underline{\mathbf{C}}$ H=CCH₂), 118.5 (d, J = 7.5 Hz, para to piperazine), 110.9 (d, J = 23.5 Hz, ortho to C=O and ortho to F), 106.7 ($\underline{\mathbf{C}}$ C(=O)OH), 106.4 (d, J = 3.2 Hz, meta to C=O and meta to F), 65.4 (O $\underline{\mathbf{C}}$ H₂), 57.3 (CH=CCH₂CH₂CH₂CH₂N), 52.4 (CH₂CH₂CH₂N($\underline{\mathbf{C}}$ H₂)CH₂), 51.2 (C(=O) $\underline{\mathbf{C}}$ H₂N), 49.5 (d, J = 4.3 Hz, CH₂CH₂CH₂N(CH₂ $\underline{\mathbf{C}}$ H₂)CH₂CH₂D, 48.2 ($\underline{\mathbf{C}}$ HNH), 35.9 (N $\underline{\mathbf{C}}$ H(CH₂)₂), 28.2 ($\underline{\mathbf{C}}$ H₂CHNH), 26.8 (CH=CCH₂ $\underline{\mathbf{C}}$ H₂), 25.7 (CH=CCH₂CH₂CH₂CH₂), 24.9 (CH=C $\underline{\mathbf{C}}$ H₂), 7.6 (NCH($\underline{\mathbf{C}}$ H₂)₂)

¹⁹**F NMR** (376.45 MHz, DMSO d₆) δ / ppm = ??

 $\begin{aligned} &\mathbf{HRMS}\;(\mathrm{ESI^+})\;m/z\;/\;\mathrm{Da} = 596.2627,\;[\mathrm{M+H}]^+\;\mathrm{found},\;[\mathrm{C}_{29}\mathrm{H}_{35}\mathrm{FN}_7\mathrm{O}_6]^+\;\mathrm{requires}\;596.2633\;[\pmb{\alpha}]_D^{20}\;/\;^\circ10^{-1}\mathrm{cm}^2\mathrm{g}^{-1}\\ &= -3.5\;(c\;/\;\mathrm{g}(100\;\mathrm{mL})^{-1} = 0.0575\;,\;\mathrm{MeOH}) \end{aligned}$

1.23 (S)-1-Cyclopropyl-6-fluoro-4-oxo-7-(4-(4-(1-(4-oxo-4-((2-oxotetrahydrofuran-3-yl)amino)butyl)-1<math>H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid 127

IDK what happened after this, check, weigh etc.

column'
equipment?

50 % water/t-BuOH (2 ml) was degassed by bubbling N₂ through it. This was then added to a mixture of 1-cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid 176 (20.6 mg, 50.0 μ mol, 1 eq.) and (S)-4-azido-N-(2-oxotetrahydrofuran-3-yl)butanamide 46 (10.6 mg, 50.0 μ mol, 1 eq.). A similarly degassed solution of CuSO₄ · 5 H₂O (624 μ g, 2.5 μ mol, 0.05 eq. 50 mM), THPTA (1.09 mg, 2.5 μ mol, 0.05 eq. 50 mM) and sodium ascorbate (991 μ g, 5 μ mol, 0.1 eq., 100 mM) in 50 % water/t-BuOH (50 μ l) was then added. The mixture was stirred at r.t. under argon for 3h, then the reaction mixture was evaporated under reduced pressure. The residue was purified by preparatory HPLC(% acetonitrile/water over 15 min). The combined pure fractions were evaporated under reduced pressure and then partitioned between NaHCO₃ (aq., sat., 10 ml) and 10 % i-PrOH/CHCl₃ (10 ml). The organic layer was dried with MgSO₄ and evaporated under reduced pressure. 127 was obtained as a white amorphous solid (14.6 mg, 23.4 μ mol, 46.8 %).

IR (neat) ν_{max} / cm⁻¹ = 3286.7 (N-H), 2949.7 (C-H), 2820.6 (C-H), 2778.0 (C-H), 1778.1 (lactone C=O), 1725.6 (carboxylic acid C=O), 1663.7 (amide C=O), 1625.8 (quinolone C=O)

¹H NMR (500 MHz, DMSO d₆) δ / ppm = 15.22 (br s, 1 H, C(=O)O<u>H</u>), 8.65 (s, 1 H, ortho to C(=O)OH), 8.40 (d, J = 8.0 Hz, 1 H, N<u>H</u>), 7.88 (d, J = 13.4 Hz, 1 H, ortho to F), 7.85 (s, 1 H, C<u>H</u>=CCH₂), 7.55 (d, J = 7.5 Hz, 1 H, meta to F), 4.53 (ddd, J = 10.9, 9.0, 8.1 Hz, 1 H, C<u>H</u>NH), 4.33 (td, J = 8.9, 1.8 Hz, 1 H, OC<u>H</u>H), 4.31 (t, J = 7.0 Hz, 2 H, C<u>H</u>2NCH=C), 4.20 (ddd, J = 10.5, 8.8, 6.5 Hz, 1 H, OCH<u>H</u>), 3.82 (tt, J = 6.9, 4.0 Hz, 1 H, NC<u>H</u>(CH₂)₂), 3.32 (br. t, J = 4.2, 4.2 Hz, 4 H, CH₂CH₂CH₂N(CH₂C<u>H</u>₂)CH₂C<u>H</u>₂), 2.64 (t, J = 7.4 Hz, 2 H, CH=CC<u>H</u>₂), 2.57 (br. t, J = 5.0, 5.0 Hz, 2 H, CH₂CH₂CH₂N(C<u>H</u>2)C<u>H</u>2), 2.34 - 2.42 (m, 3 H, OCH₂C<u>H</u>H and CH=CCH₂CH₂CH₂CH₂), 2.09 - 2.19 (m, 3 H, OCH₂CH<u>H</u> and C(=O)C<u>H</u>2), 2.02 (quin, J = 7.2 Hz, 2 H, C(=O)CH₂CH₂), 1.64 (quin, J = 7.6 Hz, 2 H, CH=CCH₂CH₂C), 1.52 (quin, J = 7.2 Hz, 2 H, CH=CCH₂CH₂CH₂), 1.29 - 1.34 (m, 2 H, NCH(C<u>H</u>H)₂), 1.15 - 1.21 (m, 2 H, NCH(CH<u>H</u>)₂)

¹³C NMR (126 MHz, DMSO d₆) δ / ppm = 176.3 ($\underline{\mathbf{C}}$ (=O)CC(=O)OH), 175.4 (O $\underline{\mathbf{C}}$ (=O)), 171.2 (NH $\underline{\mathbf{C}}$ (=O)), 166.0 ($\underline{\mathbf{C}}$ (=O)OH), 153.0 (d, J = 248.6 Hz, ortho to F), 148.0 ($\underline{\mathbf{C}}$ H=CC(=O)OH), 146.8 (CH= $\underline{\mathbf{C}}$ CH₂), 145.2 (d, J = 9.6 Hz, ipso to piperazine), 139.2 (para to F), 121.7 ($\underline{\mathbf{C}}$ H=CCH₂), 118.5 (d, J = 7.5 Hz, para to piperazine), 110.9 (d, J = 22.4 Hz, ortho to C=O and ortho to F), 106.7 ($\underline{\mathbf{C}}$ CC(=O)OH), 106.3 (d, J = 3.2 Hz, meta to C=O and meta to F), 65.3 (O $\underline{\mathbf{C}}$ H₂), 57.3 (CH=CCH₂CH₂CH₂CH₂N), 52.4 (CH₂CH₂CH₂N($\underline{\mathbf{C}}$ H₂)CH₂), 49.5 (CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 49.4 (CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 48.6 ($\underline{\mathbf{C}}$ H₂NCH=C), 47.9 (OC(=O) $\underline{\mathbf{C}}$ HNH), 35.9 (N $\underline{\mathbf{C}}$ H(CH₂)), 31.7 (NHC(=O) $\underline{\mathbf{C}}$ H₂), 28.2 ($\underline{\mathbf{C}}$ H₂CHNH), 26.9 (CH=CCH₂CH₂), 25.8 (NHC(=O)CH₂CH₂ and CH=CCH₂CH₂CH₂), 24.9 (CH=C $\underline{\mathbf{C}}$ H₂), 7.6 (NCH($\underline{\mathbf{C}}$ H₂)₂)

¹⁹**F NMR** (376.45 MHz, MeOD) δ / ppm = ??

HRMS (ESI⁺) m/z / Da = 624.2928, [M+H]⁺ found, [C₃₁H₃₉FN₇O₆]⁺ requires 624.2946 [α]_D²⁰ / °10⁻¹cm²g⁻¹ = -10.6 (c / g(100 mL)⁻¹ = 0.094 , MeOH)

what
happened
after
this,
was it
prep or
combiflash?,
check,
weigh
etc.

IDK

column'
equipment?

1.24 (S)-1-Cyclopropyl-6-fluoro-4-oxo-7-(4-(4-(1-(6-oxo-6-((2-oxotetrahydrofuran-3-yl)amino)hexyl)-1<math>H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid 128

$$0 \longrightarrow 0 \longrightarrow 0$$

$$0 \longrightarrow 0$$

50 % water/t-BuOH (2 ml) was degassed by bubbling N₂ through it. This was then added to a mixture of 1-cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid **176** (20.6 mg, 50.0 μ mol, 1 eq.) and (S)-6-azido-N-(2-oxotetrahydrofuran-3-yl)hexanamide **47** (12.0 mg, 50.0 μ mol, 1 eq.). A similarly degassed solution of CuSO₄ · 5 H₂O (624 μ g, 2.5 μ mol, 0.05 eq. 50 mM), THPTA (1.09 mg, 2.5 μ mol, 0.05 eq. 50 mM) and sodium ascorbate (991 μ g, 5 μ mol, 0.1 eq., 100 mM) in 50 % water/t-BuOH (50 μ l) was then added. The mixture was stirred at r.t. under argon for 3h, then the reaction mixture was dry-loaded onto SiO₂ and purified by column chromatography using a Combiflash (SiO₂, 0-20 % MeOH/CH₂Cl₂). The combined pure fractions were dried with MgSO₄ and evaporated under reduced pressure. **126** was obtained as a white amorphous solid (12.4 mg, 19.0 μ mol, 38.0 %).

TLC $R_f = 0.30 (30 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 3301.8 (N-H), 2939.7 (C-H), 2857.5 (C-H), 1784.6 (lactone C=O), 1728.5 (carboxylic acid C=O), 1658.2 (amide C=O), 1625.5 (quinolone C=O)

¹H NMR (500 MHz, DMSO d₆) δ / ppm = 15.22 (br s, 1 H, C(=O)O<u>H</u>), 8.65 (s, 1 H, ortho to C(=O)OH), 8.32 (d, J = 8.0 Hz, 1 H, N<u>H</u>), 7.89 (d, J = 13.3 Hz, 1 H, ortho to F), 7.84 (s, 1 H, C<u>H</u>=CCH₂), 7.55 (d, J = 7.6 Hz, 1 H, meta to F), 4.51 (ddd, J = 10.9, 9.1, 7.9 Hz, 1 H, C<u>H</u>NH), 4.33 (td, J = 8.8, 1.8 Hz, 1 H, OC<u>H</u>H), 4.28 (t, J = 7.1 Hz, 2 H, C<u>H</u>₂NCH=C), 4.19 (ddd, J = 10.5, 8.7, 6.6 Hz, 1 H, OCH<u>H</u>), 3.82 (tt, J = 7.0, 4.0 Hz, 1 H, NC<u>H</u>(CH₂)₂), 3.32 (br t, J = 4.5, 4 H, CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 2.63 (t, J = 7.5 Hz, 2 H, CH=CC<u>H</u>₂), 2.57 (br t, J = 4.2, 4.2 Hz, 4 H, CH₂CH₂CH₂N(C<u>H</u>₂)C<u>H</u>₂), 2.33 - 2.41 (m, 3 H, OCH₂C<u>H</u>H and CH=CCH₂CH₂CH₂CH₂CH₂), 2.06 - 2.16 (m, 3 H, OCH₂CH<u>H</u> and C(=O)C<u>H</u>₂), 1.79 (quin, J = 7.4 Hz, 2 H, C(=O)CH₂CH₂CH₂CH₂CH₂), 1.63 (quin, J = 7.5 Hz, 2 H, CH=CCH₂CH₂D, 1.45 - 1.56 (m, 4 H, C(=O)CH₂C<u>H</u>₂ and CH=CCH₂CH₂CH₂C, 1.29 - 1.34 (m, 2 H, NCH(C<u>H</u>H)₂), 1.19 - 1.25 (m, 2 H, C(=O)CH₂CH₂C<u>H</u>₂), 1.15 - 1.19 (m, 2 H, NCH(CH<u>H</u>)₂)

¹³C NMR (126 MHz, DMSO d₆) δ / ppm = 176.4 ($\underline{\mathbf{C}}$ (=O)CC(=O)OH), 175.4 (O $\underline{\mathbf{C}}$ (=O)), 172.1 (NH $\underline{\mathbf{C}}$ (=O)), 166.0 ($\underline{\mathbf{C}}$ (=O)OH), 153.0 (d, J = 250.2 Hz, ipso to F), 148.0 ($\underline{\mathbf{C}}$ H=CC(=O)OH), 146.8 (CH= $\underline{\mathbf{C}}$ CH₂), 145.2 (d, J = 9.6 Hz, ipso to piperazine), 139.2 (para to F), 121.6 ($\underline{\mathbf{C}}$ H=CCH₂), 118.5 (d, J = 8.0 Hz, para to piperazine), 110.9 (d, J = 23.5 Hz, ortho to C=O and ortho to F), 106.7 ($\underline{\mathbf{C}}$ CC(=O)OH), 106.3 (d, J = 2.1 Hz, meta to C=O and meta to F), 65.3 (O $\underline{\mathbf{C}}$ H₂), 57.4 (CH=CCH₂CH₂CH₂CH₂N), 52.4 (CH₂CH₂CH₂N($\underline{\mathbf{C}}$ H₂)CH₂), 49.5 (d, J = 3.2 Hz, CH₂CH₂CH₂N(CH₂ $\underline{\mathbf{C}}$ H₂)CH₂CH₂), 49.0 ($\underline{\mathbf{C}}$ H₂NCH=C), 47.8 ($\underline{\mathbf{C}}$ HNH), 35.9 (N $\underline{\mathbf{C}}$ H(CH₂)CH₂D), 34.8 (NHC(=O) $\underline{\mathbf{C}}$ H₂), 29.5 ($\underline{\mathbf{C}}$ H₂CH₂NCH=C), 28.3 ($\underline{\mathbf{C}}$ H₂CHNH), 26.9 (CH=CCH₂ $\underline{\mathbf{C}}$ H₂), 25.7 (CH=CCH₂CH₂CH₂D),

how to report?

IDK what happened after this, check, weigh etc.

 $25.4 \text{ (NHC(=O)CH}_2\text{CH}_2\text{CH}_2), 24.9 \text{ (CH=CCH}_2), 24.5 \text{ (NHC(=O)CH}_2\text{CH}_2), 7.6 \text{ (NCH(CH}_2)_2)$

¹⁹**F NMR** (376.45 MHz, MeOD) δ / ppm = ??

HRMS (ESI⁺) m/z / Da = 652.3254, [M+H]⁺ found, [C₃₃H₄₃FN₇O₆]⁺ requires 652.3248 [α]_D²⁰ / °10⁻¹cm²g⁻¹ = -8.5 (c / g(100 mL)⁻¹ = 0.106, MeOH)

1.25 1-Cyclopropyl-6-fluoro-7-(4-(4-(1-(2-heptyl-4-oxo-1,4-dihydroquinolin-6-yl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid 129

50 % water/t-BuOH (1 ml) was degassed by bubbling N₂ through it. This was then added to a mixture of 1-cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid 176 (4.1 mg, 10.0 μ mol, 1 eq.) and 6-azido-2-heptylquinolin-4(1H)-one 26 (2.8 mg, 10.0 μ mol, 1 eq.). A similarly degassed solution of CuSO₄ · 5 H₂O (125 μ g, 0.5 μ mol, 0.05 eq. 50 mM), THPTA (218 μ g, 0.5 μ mol, 0.05 eq. 50 mM) and sodium ascorbate (198 μ g, 1 μ mol, 0.1 eq., 100 mM) in 50 % water/t-BuOH (10 μ l) was then added. The mixture was stirred at r.t. under argon for 1.5 h, then the reaction mixture was evaporated under reduced pressure. The residue was purified by preparatory HPLC (50-100 % acetonitrile/water over ??min). The combined pure fractions were evaporated under reduced pressure and then partitioned between NaHCO₃ (aq., sat., 10 ml) and 10 % i-PrOH/CHCl₃ (10 ml). The organic layer was dried with MgSO₄ and evaporated under reduced pressure. 129 was obtained as a white amorphous solid (8.6 mg, 2.7 μ mol, 27.0 %).

IR (neat) ν_{max} / cm⁻¹ = 2927.0 (C-H), 2865.5 (C-H), 1715.5 (carboxylic acid C=O), 1631.0 (ciprofloxacin quinolone C=O and HHQ C=O)

¹H NMR (500 MHz, DMSO d₆) 15.12 (br s, <u>C</u>(=O)OH), 11.79 (s, 1 H, N<u>H</u>), 8.75 (s, 1 H, NC<u>H</u>=CCH₂), 8.71 (s, 1 H, ortho to C(=O)OH), 8.40 (d, J=2.7 Hz, 1 H, ortho to C(=O) and ortho to N), 8.18 (dd, J=8.9, 2.6 Hz, 1 H, para to C(=O) and ortho to N), 7.99 (d, J=13.0 Hz, 1 H, ortho to F), 7.75 (d, J=9.0 Hz, 1 H, meta to C(=O) and meta to N), 7.62 (d, J=7.8 Hz, 1 H, meta to F), 6.02 (s, 1 H, NHC=C<u>H</u>C(=O)), 3.85 (tt, J=7.0, 4.0 Hz, 1 H, NC<u>H</u>(CH₂)₂), 3.23 - 3.30 (m, 6 H, C<u>H</u>₂N(C<u>H</u>₂C<u>H</u>₂)C<u>H</u>₂C<u>H</u>₂), 2.82 (t, J=5.9 Hz, 2 H, NCH=CC<u>H</u>₂), 2.63 (t, J=7.9 Hz, 2 H, C<u>H</u>₂C=CHC(=O)), 1.76 - 1.81 (m, 4 H, NCH=CCH₂C<u>H</u>₂C<u>H</u>₂C<u>H</u>₂), 1.70 (quin, J=7.2 Hz, 2 H, C<u>H</u>₂CH₂C=CHC(=O)), 1.15 - 1.38 (m, 12 H, CH₃C<u>H</u>₂C<u>H</u>₂C<u>H</u>₂C<u>H</u>₂C, NCH(C<u>H</u>H)₂ and NCH(CH<u>H</u>)₂), 0.87 (t, J=6.9 Hz, 3 H, C<u>H</u>₃)

¹³C NMR (126 MHz, DMSO d₆) δ / ppm = 176.4 (<u>C</u>(=O)CC(=O)OH), 176.3 (CH<u>C</u>(=O)), 165.8 (<u>C</u>(=O)OH), 154.3 (CCH<u>C</u>(=O)), 152.9 (d, J=240.1 Hz, *ipso* to F), 148.3 (<u>C</u>H=CC(=O)OH), 147.5 (NCH<u>C</u>CH₂), 143.3 (d, J=8.5 Hz, *ortho* to F and *ipso* to N), 139.6 (*ipso* to NH), 139.0 (*para* to F), 132.0 (*para* to NH), 124.9 (*ipso*

check

column? equipment?

needs
desalt-

to C(=O) and ortho to NH), 123.6 (para to C(=O) and meta to NH), 120.5 (NCH=CCH₂), 120.0 (meta to C(=O) and meta to N), 119.6 (d, J=9.6 Hz, ipso to C(=O) and para to N), 115.1 (ortho to C(=O) and ortho to N), 111.3 (d, J=28.8 Hz, ortho to F and ortho to C(=O)), 107.9 (meta to F and meta to C(=O)), 107.2 (CHC(=O)), 106.9 (CC(=O)OH), 55.4 (CH=CCH₂CH₂CH₂CH₂N), 50.6 (CH₂CH₂CH₂N(CH₂)CH₂), 46.5 (CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 36.0 (NCH(CH₂)₂), 33.2 (CH₂CNH), 31.2 (CH₃CH₂CH₂), 28.3 -28.5 (CH₃CH₂CH₂CH₂CH₂), 25.6 (CH=CCH₂CH₂CH₂), 24.4 (CH=CCH₂), 22.7 (CH=CCH₂CH₂CH₂), 22.0 (CH₃CH₂), 13.9 (CH₃), 7.6 (NCH(CH₂)₂)

¹⁹**F NMR** (376.45 MHz, MeOD) δ / ppm = ??

HRMS (ESI⁺) m/z / Da = 696.3667, [M+H]⁺ found, [C₃₉H₄₇FN₇O₄]⁺ requires 696.3668

1.26 (S)-4-(4-(4-(4-(4-(4-(4-(2,4-Diaminopyrimidin-5-yl)methyl)-2,6-dimethoxyphenoxy)butyl)-<math>1H-1,2,3-triazol-1-yl)-N-(2-oxotetrahydrofuran-3-yl)butanamide 130

Method?? pale brown gum 4.8 mg, 8.4 μ mol

TLC $R_f = 0.30 (30 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 3340.5 (N-H), 3303.3 (N-H), 3182.5 (N-H), 2933.8 (C-H), 1774.2 (lactone C=O), 1659.7 (amide C=O and pyrimidine)

¹H NMR (500 MHz, DMSO d₆) δ / ppm = 8.43 (d, J=8.0 Hz, 1 H, N<u>H</u>), 7.80 (s, 1 H, NC<u>H</u>=CCH₂), 7.46 (s, 1 H, C<u>H</u>N=CNH₂), 6.68 (br s, 2 H, CH₂CCN<u>H</u>₂), 6.53 (s, 2 H, meta to CH₂), 6.21 (br s, 2 H, CHN=CN<u>H</u>₂), 4.49 (dt, J=10.7, 8.6 Hz, 1 H, C<u>H</u>NH), 4.32 (td, J=8.7, 1.6 Hz, 1 H, C<u>H</u>HOC(=O)), 4.29 (t, J=6.8 Hz, 2 H, C<u>H</u>₂N), 4.19 (ddd, J=10.6, 8.7, 6.5 Hz, 1 H, C<u>H</u>HOC(=O)), 3.79 (t, J=6.2 Hz, 2 H, CH₂CH₂C<u>H</u>₂O), 3.68 (s, 6 H, C<u>H</u>₃), 3.53 (br s, 2 H, CC<u>H</u>₂C), 2.63 (t, J=7.5 Hz, 2 H, CH=CC<u>H</u>₂), 2.37 (dddd, J=12.2, 8.9, 6.7, 1.8 Hz, 1 H, C<u>H</u>HCHNH), 2.08 - 2.15 (m, 3 H, CH<u>H</u>CHNH and C(=O)C<u>H</u>₂), 2.00 (quin, J=7.2 Hz, 2 H, C<u>H</u>₂CH₂N), 1.72 (quin, J=7.3 Hz, 2 H, CH=CCH₂C<u>H</u>₂), 1.61 (quin, J=6.7 Hz, 2 H, C<u>H</u>₂CH₂O)

 $^{13}\mathbf{C} \ \mathbf{NMR} \ (126 \ \mathrm{MHz}, \ \mathrm{DMSO} \ d_6) \ \delta \ / \ \mathrm{ppm} = 175.8 \ (\mathrm{OC}=\mathrm{O}), \ 171.9 \ (\mathrm{NHC}=\mathrm{O}), \ 163.1 \ (\mathrm{CC}(\mathrm{NH}_2)\mathrm{N}), \ 159.7 \ (\mathrm{br} \ \mathrm{s}, \ \mathrm{NC}(\mathrm{NH}_2)\mathrm{N}), \ 153.2 \ (\mathit{ipso} \ \mathrm{to} \ \mathrm{OCH}_3), \ 150.5 \ (\mathrm{br} \ \mathrm{s}, \ \underline{\mathrm{CHNC}}(\mathrm{NH}_2)\mathrm{N}), \ 147.3 \ (\mathrm{NCH}=\underline{\mathrm{CCH}}_2\mathrm{CH}_2), \ 135.2 \ (\mathit{para} \ \mathrm{to} \ \mathrm{CH}_2\mathrm{O}), \ 135.0 \ (\mathit{ipso} \ \mathrm{to} \ \mathrm{CH}_2\mathrm{O}), \ 122.1 \ (\underline{\mathrm{CH}}=\mathrm{CCH}_2\mathrm{CH}_2), \ 107.3 \ (\mathrm{CH}_2\underline{\mathrm{CC}}(\mathrm{NH}_2)=\mathrm{N}), \ 106.2 \ (\mathit{meta} \ \mathrm{to} \ \mathrm{CH}_2\mathrm{O}), \ 72.3 \ (\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{O}), \ 65.7 \ (\mathrm{OC}\underline{\mathrm{H}}_2\mathrm{CH}_{\mathrm{N}}\mathrm{H}), \ 56.2 \ (\mathrm{OC}\underline{\mathrm{H}}_3), \ 48.9 \ (\underline{\mathrm{CH}}_2\mathrm{N}), \ 48.3 \ (\underline{\mathrm{CH}}\mathrm{NH}), \ 32.9 \ (\mathrm{CC}\underline{\mathrm{H}}_2\mathrm{C}), \ 32.0 \ (\mathrm{CC}=\mathrm{O})\underline{\mathrm{CH}}_2), \ 29.3 \ (\mathrm{CH}_2\underline{\mathrm{CH}}_2\mathrm{CH}_2\mathrm{O}), \ 28.4 \ (\mathrm{OCH}_2\underline{\mathrm{CH}}_2\mathrm{CH}\mathrm{NH}), \ 26.0 \ (\underline{\mathrm{CH}}_2\mathrm{CH}_2\mathrm{N}), \ 25.7 \ (\mathrm{CH}=\mathrm{CCH}_2\underline{\mathrm{CH}}_2), \ 24.9 \ (\mathrm{CH}=\mathrm{CC}\underline{\mathrm{H}}_2\mathrm{CH}_2)$

HRMS (ESI⁺) m/z / Da = 569.2834, [M+H]⁺ found, [C₂₇H₃₇N₈O₆]⁺ requires 569.2836 [α]²⁰ / °10⁻¹cm²g⁻¹ = -4.6 (c / g(100 mL)⁻¹ = 0.0433 , MeOH)

$1.27 \quad (S)\text{-}6\text{-}(4\text{-}(4\text{-}(4\text{-}((2,4\text{-Diaminopyrimidin-}5\text{-}yl)\text{methyl})\text{-}2,6\text{-}dimethoxyphenoxy}) \text{butyl}) - 1H\text{-}1,2,3\text{-triazol-}1\text{-}yl)\text{-}N\text{-}(2\text{-}oxotetrahydrofuran-}3\text{-}yl)\text{hexanamide }131$

$$0 \\ N \\ N = N$$

$$0 \\ N \\ NH_2$$

50 % water/t-BuOH (2 ml) was degassed by bubbling N₂ through it. This was then added to a mixture of 5-(4-(hex-5-yn-1-yloxy)-3,5-dimethoxybenzyl) pyrimidine-2,4-diamine **125** (20.6 mg, 50.0 μ mol, 1 eq.) and (S)-6-azido-N-(2-oxotetra hydrofuran-3-yl) hexanamide **47** (18.0 mg, 75.0 μ mol, 1.5 eq.). Similarly degassed solutions of CuSO₄ · 5 H₂O (624 μ g, 2.5 μ mol, 0.05 eq. 50 mM), THPTA (1.09 mg, 2.5 μ mol, 0.05 eq. 50 mM) and sodium ascorbate (991 μ g, 5 μ mol, 0.1 eq., 100 mM) in water (50 μ l) were then added. An extra portion of **47** (12.0 mg, 50.0 μ mol, 1 eq.) was added after 1 d. . **131** was obtained as a clear gum (8.0 mg, 13.4 μ mol, 26.8 %).

TLC $R_f = 0.35 (30 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 3336.0 (N-H), 3208.7 (N-H), 2941.1 (C-H), 2869.2 (C-H), 1775.2 (lactone C=O), 1657.3 (amide C=O and pyrimidine)

¹H NMR (500 MHz, DMSO d₆) δ / ppm = 8.34 (d, J = 8.0 Hz, 1 H, NH), 7.83 (s, 1 H, NCH=CCH₂), 7.50 (s, 1 H, CHN=CNH₂), 6.54 (s, 2 H, meta to CH₂), 6.17 (br s, 2 H, CH₂CCNH₂), 5.77 (br s, 2 H, CHN=CNH₂), 4.51 (ddd, J = 11.0, 9.0, 8.1 Hz, 1 H, CHNH), 4.33 (td, J = 8.8, 1.9 Hz, 1 H, CHHOC(=O)), 4.27 (t, J = 7.1 Hz, 2 H, CH₂N), 4.19 (ddd, J = 10.5, 8.7, 6.5 Hz, 1 H, CHHOC(=O)), 3.80 (t, J = 6.3 Hz, 2 H, CH₂CH₂CH₂O), 3.70 (s, 6 H, CH₃), 3.52 (s, 2 H, CCH₂C), 2.64 (t, J = 7.5 Hz, 2 H, CH=CCH₂), 2.36 (dddd, J = 12.1, 8.9, 6.7, 1.8 Hz, 1 H, CHHCHNH), 2.06 - 2.16 (m, 3 H, CHHCHNH and C(=O)CH₂), 1.78 (quin, J = 7.4 Hz, 2 H, CH₂CH₂N), 1.73 (quin, J = 7.7 Hz, 2 H, CH=CCH₂CH₂), 1.63 (quin, J = 6.8 Hz, 2 H, CH₂CH₂O), 1.52 (quin, J = 7.5 Hz, 2 H, C(=O)CH₂CH₂), 1.17 - 1.27 (m, 2 H, C(=O)CH₂CH₂CH₂)

¹³C NMR (125 MHz, DMSO d₆) δ / ppm = 175.4 (OC=O), 172.0 (NHC=O), 162.2 (CC(NH₂)N), 161.8 (NC(NH₂)N), 154.8 (CHNC(NH₂)N), 152.8 (ipso to OCH₃), 146.7 (CH=CCH₂CH₂), 135.5 (para to CH₂O), 134.8 (ipso to CH₂O), 121.6 (CH=CCH₂CH₂), 105.9 (CH₂CC(NH₂)=N), 105.8 (meta to CH₂O), 71.9 (CH₂CH₂CH₂O), 65.2 (OCH₂CH₂CHNH), 55.8 (OCH₃), 49.0 (CH₂N), 47.8 (CHNH), 34.8 (C(=O)CH₂), 32.9 (CCH₂C), 29.4 (CH₂CH₂N), 29.1 (CH₂CH₂O), 28.2 (OCH₂CH₂CHNH), 25.5 (CH=CCH₂CH₂), 25.3 (C(=O)CH₂CH₂CH₂), 24.7 (CH=CCH₂CH₂), 24.4 (C(=O)CH₂CH₂)

HRMS (ESI⁺) m/z / Da = 597.3149, [M+H]⁺ found, [C₂₉H₄₁N₈O₆]⁺ requires 597.3144 [α]_D²⁰ / °10⁻¹cm²g⁻¹ = -3.6 (c / g(100 mL)⁻¹ = 0.11 , MeOH)

IDK what happened after this, check, weigh etc.

1.28 6-(4-(4-(4-(4-(4-(2,4-Diaminopyrimidin-5-yl)methyl)-2,6-dimethoxyphenoxy)butyl)-1H-1,2,3-triazol-1-yl)-2-heptylquinolin-4(1H)-one 132

50 % water/t-BuOH (1 ml) was degassed by bubbling N₂ through it. This was then added to a mixture of 5-(4-(hex-5-yn-1-yloxy)-3,5-dimethoxybenzyl) pyrimidine-2,4-diamine **125** (3.6 mg, 10.0 μ mol, 1 eq.) and 6-azido-2-heptyl quinolin-4(1H)-one **26** (2.8 mg, 10.0 μ mol, 1 eq.). A similarly degassed solution of CuSO₄ · 5 H₂O (125 μ g, 0.5 μ mol, 0.05 eq. 50 mM), THPTA (218 μ g, 0.5 μ mol, 0.05 eq. 50 mM) and sodium as corbate (198 μ g, 1 μ mol, 0.1 eq., 100 mM) in water (10 μ l) was then added. The mixture was stirred at r.t. under argon for 1.5 h, then the reaction mixture was evaporated under reduced pressure. The residue was purified by preparatory HPLC (5-100 % acetonitrile/water over 20 min). The combined pure fractions were evaporated under reduced pressure. **132** was obtained as a clear gum (2.6 mg, 4.1 μ mol, 41.0 %).

column? equipment?

check

all fre-

quen-

cies

TLC $R_f = 0.17 \ (20 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 2927.7 (C-H), 2855.5 (C-H), 1664.1 (pyrimidine), 1645.4 (pyrimidine and HHQ C=O),

¹H NMR (500 MHz, DMSO d₆) δ / ppm = 11.80 (s, 1 H, N<u>H</u>), 8.69 (s, 1 H, NC<u>H</u>=CCH₂), 8.41 (d, J = 2.7 Hz, 1 H, ortho to C=O), 8.17 (dd, J = 9.0, 2.6 Hz, 1 H, para to C=O), 7.73 (d, J = 9.0 Hz, 1 H, ortho to NH), 7.51 (br s, 4 H, NH₂), 7.41 (s, 1 H, C<u>H</u>N=CNH₂), 6.61 (s, 2 H, meta to CH₂), 6.02 (d, J = 1.8 Hz, 1 H, C(=O)C<u>H</u>), 3.86 (t, J = 6.3 Hz, 2 H, C<u>H</u>₂O), 3.73 (s, 6 H, OC<u>H</u>₃), 3.57 - 3.62 (m, 2 H, CC<u>H</u>₂C), 2.78 (t, J = 7.5 Hz, 2 H, CH=CC<u>H</u>₂), 2.63 (t, J = 7.3 Hz, 2 H, HNCC<u>H</u>₂), 1.85 (quin, J = 7.5 Hz, 2 H, CH=CCH₂CH₂C<u>H</u>₂), 1.61 - 1.78 (m, 4 H, HNCCH₂C<u>H</u>₂ and CH=CCH₂CH₂CH₂CH₂), 1.31 - 1.40 (m, 4 H, HNCCH₂CH₂C<u>H</u>₂C<u>H</u>₂CH₂), 1.25 - 1.31 (m, 4 H, CH₃C<u>H</u>₂C<u>H</u>₂), 0.86 (t, J = 7.2 Hz, 3 H, C<u>H</u>₃CH₂)

¹³C NMR (125 MHz, DMSO d₆) δ / ppm = 176.4 (\underline{C} =O), 164.1 (\underline{C} C(NH₂)N), 154.3 (HNC), 154.2 (NC(NH₂)N), 153.1 (*ipso* to OCH₃), 148.3 (CH= \underline{C} CH₂CH₂), 140.2 (\underline{C} HNC(NH₂)N), 139.6 (*ipso* to NH), 135.4 (*ipso* to CH₂O), 132.8 (*para* to CH₂O), 132.1 (*para* to NH), 124.9 (*ipso* to C=O), 123.7 (*para* to C=O), 120.3 (\underline{C} H=CCH₂CH₂), 120.0 (*meta* to C=O and *ortho* to NH), 115.1 (*ortho* to C=O and *meta* to NH), 109.0 (CH₂ \underline{C} C(NH₂)=N), 108.0 (C(=O) \underline{C} H), 106.3 (*meta* to CH₂O), 72.0 (CH₂CH₂ \underline{C} H₂O), 56.0 (O \underline{C} H₃), 33.3 (HNC \underline{C} H₂), 32.1 (C \underline{C} H₂C), 31.2 (CH₃CH₂CH₂), 29.1 (\underline{C} H₂CH₂O), 28.3 - 28.6 (CH₃CH₂CH₂CH₂ \underline{C} H₂CH₂O), 25.3 (\underline{C} H₂CH₂CH₂O), 24.7 (CH= \underline{C} CH₂), 22.1 (CH₃CH₂), 14.0 (\underline{C} H₃CH₂)

HRMS (ESI⁺) m/z / Da = 641.3557, [M+H]⁺ found, [C₃₅H₄₅N₈O₄]⁺ 641.3558

$$\begin{array}{c} O \\ \\ N \\ \\ N \end{array}$$

50 % water/t-BuOH (1 ml) was degassed by bubbling N₂ through it. This was then added to a mixture of 5-(4-(hex-5-yn-1-yloxy)-3,5-dimethoxybenzyl)pyrimidine-2,4-diamine **125** (14.2 mg, 39.8 μ mol, 1 eq.) and 2-(6-azidohexyl)-3-hydroxyquinolin-4(1H)-one **70** (11.4 mg, 39.8 μ mol, 1 eq.). A similarly degassed solution of CuSO₄ · 5 H₂O (1.25 mg, 5 μ mol, 0.125 eq. 50 mM), THPTA (2.18 mg, 5 μ mol, 0.125 eq. 50 mM) and sodium ascorbate (1.98 mg, 10 μ mol, 0.25 eq., 100 mM) in water (100 μ l) was then added. The mixture was stirred at r.t. under argon for 3 h, then MeOH (1 ml) was added and the reaction mixture was dry-loaded onto SiO₂ and purified by column chromatography (SiO₂, 0-20 % MeOH/CH₂Cl₂). The combined pure fractions were dried with MgSO₄ and evaporated under reduced pressure. **133** was obtained as a pale brown amorphous solid (4.7 mg, 7.3 μ mol, 18.3 %).

TLC $R_f = 0.21 \ (20 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 2924.8 (C-H), 2853.4 (C-H), 1660.0 (pyrimidine), 1638.8 (pyrimidine and PQS C=O),

¹H NMR (500 MHz, DMSO d₆) δ / ppm = 11.53 (br s, 1 H, N<u>H</u>), 8.09 (d, J = 8.0 Hz, 1 H, ortho to C=O), 7.83 (s, 1 H, NC<u>H</u>=CCH₂), 7.48 - 7.57 (m, 3 H, para to C=O, ortho to NH and C<u>H</u>N=CNH₂), 7.21 (ddd, J = 8.0, 6.3, 1.5 Hz, 1 H, para to NH), 6.55 (s, 2 H, meta to CH₂), 4.28 (t, J = 7.1 Hz, 2 H, C<u>H</u>₂N), 3.80 (t, J = 6.2 Hz, 2 H, C<u>H</u>₂O), 3.70 (s, 6 H, C<u>H</u>₃), 3.53 (d, J = 0.3 Hz, 2 H, CC<u>H</u>₂C), 2.73 (t, J = 7.5 Hz, 2 H, HNCC<u>H</u>₂), 2.64 (t, J = 7.4 Hz, 2 H, CH=CC<u>H</u>₂), 1.80 (quin, J = 7.4 Hz, 2 H, C<u>H</u>₂CH₂N), 1.73 (quin, J = 7.5 Hz, 2 H, CH=CCH₂C<u>H</u>₂), 1.66 (quin, J = 7.2 Hz, 2 H, HNCCH₂C<u>H</u>₂), 1.62 (quin, J = 6.8 Hz, 2 H, C<u>H</u>₂CH₂O), 1.33 - 1.40 (m, 2 H, HNCCH₂CH₂C), 1.27 - 1.32 (m, 2 H, HNCCH₂CH₂CH₂CH₂C)

¹³C NMR (125 MHz, DMSO d₆) δ / ppm = 168.9 (\underline{C} =O), 162.5 (\underline{C} C(NH₂)N), 162.5 (N \underline{C} (NH₂)N), 152.9 (\underline{C} HNC(NH₂)N), 152.8 (ipso to OCH₃), 146.8 (CH= \underline{C} CH₂CH₂CH₂), 137.7 (\underline{C} OH), 137.3 (para to OH), 135.4 (HN \underline{C}), 135.1 (para to CH₂O), 134.8 (ipso to CH₂O), 129.9 (para to C=O), 124.4 (ortho to C=O and meta to NH), 122.1 (ipso to C=O), 121.5 (para to NH), 121.4 (\underline{C} H=CCH₂CH₂), 117.7 (meta to C=O and ortho to NH), 106.2 (CH₂CC(NH₂)=N), 105.8 (meta to CH₂O), 71.9 (CH₂CH₂CH₂O), 55.8 (O \underline{C} H₃), 49.0 (\underline{C} H₂N), 32.8 (C \underline{C} H₂C), 29.5 (\underline{C} H₂CH₂N), 29.0 (\underline{C} H₂CH₂O), 28.1 (HNCCH₂CH₂CH₂), 27.9 (HNC \underline{C} H₂), 27.6 (HNCCH₂CH₂C), 25.6 (\underline{C} H₂CH₂CH₂N), 25.4 (\underline{C} H₂CH₂CH₂O), 24.6 (CH= \underline{C} CH₂CH₂CH₂)

HRMS (ESI⁺) m/z / Da = 643.3365, [M+H]⁺ found, [C₃₄H₄₃N₈O₅]⁺ requires 643.3351

1.30 Methyl 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylate 134

Ciprofloxacin 97 (10.0 g, 30 mmol, 1 eq.) and p-toluenesulfonic acid (8.60 mg, 44.5 mmol, 1.5 eq.) were refluxed in methanol (500 ml) for 72 h. The mixture was cooled to room temperature and NaHCO₃ (sat., aq., 100 ml) and water (300 ml) were added. The product was extracted with $\mathrm{CH_2Cl_2}$ (2 \times 400 ml), which was dried over MgSO₄ and evaporated under reduced pressure. **134** was obtained as a white amorphous solid (9.16 g, 26.5 mmol, 83.3 %).

TLC $R_f = 0.13 \ (5 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 2947.9 (C-H), 2834.9 (C-H), 1720.9 (ester C=O), 1616.8 (quinolone C=O)

¹**H NMR** (400 MHz, MeOD) δ / ppm = 8.55 (s, 1 H, ortho to C(=O)OCH₃), 7.71 (d, J = 13.5 Hz, 1 H, ortho to F), 7.41 (d, J = 7.2 Hz, 1 H, meta to F), 3.83 (s, 3 H, C $\underline{\text{H}}_3$), 3.62 (tt, J = 7.4, 3.5 Hz, 1 H, NC $\underline{\text{H}}_4$ (CH₂)₂), 3.24 - 3.29 (m, 4 H, HN(CH₂C $\underline{\text{H}}_2$)CH₂CH₂), 3.02 - 3.10 (m, 4 H, HN(C $\underline{\text{H}}_2$)C $\underline{\text{H}}_2$), 1.31 - 1.38 (m, 2 H, NCH(C $\underline{\text{H}}$ H)₂), 1.12 - 1.20 (m, 2 H, NCH(CH $\underline{\text{H}}$)₂)

¹³C NMR (101 MHz, MeOD) δ / ppm = 175.2 ($\underline{\mathbf{C}}$ (=O)CC(=O)OCH₃), 166.8 ($\underline{\mathbf{C}}$ (=O)OCH₃), 154.9 (d, J = 248.0 Hz, ipso to F), 150.1 ($\underline{\mathbf{C}}$ =CC(=O)OCH₃), 146.6 (d, J = 10.4 Hz, ipso to piperazine), 139.9 (para to F), 123.3 (d, J = 6.9 Hz, para to piperazine), 113.0 (d, J = 23.4 Hz, ortho to C=O and ortho to F), 110.1 ($\underline{\mathbf{C}}$ C(=O)OCH₃), 107.1 (d, J = 3.5 Hz, meta to C=O and meta to F), 52.3 ($\underline{\mathbf{C}}$ H₃), 51.7 (HN(CH₂ $\underline{\mathbf{C}}$ H₂)CH₂CH₂), 51.6 (HN(CH₂CH₂)CH₂), 46.5 (HN($\underline{\mathbf{C}}$ H₂) $\underline{\mathbf{C}}$ H₂), 36.4 (N $\underline{\mathbf{C}}$ H(CH₂)CH₂), 8.7 (NCH($\underline{\mathbf{C}}$ H₂)2)

¹⁹**F NMR** (376.45 MHz, MeOD) δ / ppm = -124.8 (s, ciprofloxacin <u>F</u>)

1dp

HRMS (ESI⁺) m/z / Da = 346.1569, [M+H]⁺ found, [C₁₈H₂₁FN₃O₃]⁺ requires 346.1567

The data are consistent with the literature.⁸

1.31 4-Bromo-N-(2-oxotetrahydrothiophen-3-yl)butanamide 135

3-Aminodihydrothiophen-2(3H)-one hydrochloride 177 (15.0 g, 97.6 mmol, 1 eq.) and NaHCO₃ (16.4 g, 195 mmol, 2 eq.) were added to $\mathrm{CH_2Cl_2}$ (150 ml) and water (150 ml). 4-Bromobutyryl chloride 42 (11.3 ml, 107 mmol, 1.1 eq.) was added dropwise over 45 min at 0 °C and the mixture was stirred for a further 1 h. The organic layer was separated and the aqueous layer was extracted with a second portion of $\mathrm{CH_2Cl_2}$ (150 ml). The combined organic layers were dried over MgSO₄ and evaporated under reduced pressure. 135 was obtained as a white, amorphous solid (22.7 g, 85.8 mmol, 87.9 %)

TLC $R_f = 0.19 (50 \% \text{ EtOAc/PE})$

IR (neat) ν_{max} / cm⁻¹ = 3265.9 (amide N-H), 3063.2 (amide N-H), 1694.3 (thiolactone C=O), 1650.5 (amide C=O)

¹H NMR (400 MHz, CDCl₃) δ / ppm = 6.08 (d, J = 6.1 Hz, 1 H, N<u>H</u>), 4.54 (dt, J = 12.9, 6.5 Hz, 1 H, C<u>H</u>NH), 3.49 (t, J = 6.4 Hz, 2 H, C<u>H</u>₂Br), 3.37 (ddd, J = 12.2, 11.5, 5.3 Hz, 1 H, SC<u>H</u>H), 3.26 (ddd, J = 11.5, 6.9, 1.3 Hz, 1 H, SCH<u>H</u>), 2.91 (dddd, J = 12.5, 6.7, 5.3, 1.3 Hz, 1 H, SCH₂C<u>H</u>H), 2.45 (t, J = 7.4 Hz, 1 H, C(=O)C<u>H</u>H), 2.45 (t, J = 6.8 Hz, 1 H, C(=O)CH<u>H</u>), 2.20 (quin, J = 6.7 Hz, 1 H, C(=O)CH₂C<u>H</u>₂), 1.96 (dddd, J = 12.7, 12.5, 12.2, 7.0 Hz, 1 H, SCH₂CH<u>H</u>)

Orientati
are not
unambiguous
without
noesy.

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 205.4 (SC(=O)), 172.1 (NHC(=O)), 59.4 (CHNH), 34.1 (C(=O)CH₂), 33.1 (CH₂Br), 31.8 (SCH₂CH₂), 28.0 (C(=O)CH₂CH₂), 27.5 (SCH₂)

HRMS (ESI⁺) m/z / Da = ??, [M+H]⁺ found, [??]⁺ requires ??

The compound has been synthesised previously^{9,10} but characterisation was not published.

1.32 4-Azido-N-(2-oxotetrahydrothiophen-3-yl)butanamide 136

$$S \xrightarrow{O} H N_3$$

4-Bromo-N-(2-oxotetrahydrothiophen-3-yl)butanamide **135** (6.00 g, 27.0 mmol, 1 eq.) and NaN₃ (3.51 g, 54.1 mmol, 2 eq.) were refluxed in acetonitrile (120 ml) for 1.5 h. The solvent was evaporated under reduced pressure and the residue was partitioned between water (150 ml) and CH_2Cl_2 (150 ml). The aqueous layer was extracted twice more with CH_2Cl_2 (2 × 150 ml) and the combined organic fractions were dried with MgSO₄ and evaporated under reduced pressure. **136** was obtained as a yellow, sticky solid (4.60 g, 20.1 mmol, 89.3 %).

TLC $R_f = 0.19 (50 \% \text{ EtOAc/PE})$

IR (neat) ν_{max} / cm⁻¹ = 3285.6 (N-H), 2963.9 (C-H), 2100.2 (azide), 1697.4 (thiolactone C=O), 1647.4 (amide C=O)

¹**H NMR** (400 MHz, CDCl₃) δ / ppm = 6.71 (d, J = 7.3 Hz, 1 H, N $\underline{\text{H}}$), 4.54 (dt, J = 13.0, 7.0 Hz, 1 H, C $\underline{\text{H}}$ NH), 3.30 (t, J = 6.7 Hz, 2 H, C $\underline{\text{H}}$ 2N₃), 3.31 (td, J = 11.7, 5.3 Hz, 1 H, 1 H, SC $\underline{\text{H}}$ H), 3.19 (ddd, J = 11.3, 7.0, 1.2 Hz, 1 H, SCH $\underline{\text{H}}$), 2.70 (dddd, J = 12.4, 6.8, 5.3, 1.2 Hz, 1 H, SCH $\underline{\text{C}}$ 2C $\underline{\text{H}}$ H), 2.29 (t, J = 7.5 Hz, 1 H,

 $C(=O)C\underline{H}H)$, 2.28 (t, J=7.1 Hz, 1 H, $C(=O)CH\underline{H}$), 1.97 (qd, J=12.4, 7.0 Hz, 1 H, $SCH_2CH\underline{H}$), 1.85 (quin, J=6.9 Hz, 2 H, $C(=O)CH_2C\underline{H}_2$)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 205.4 (SC(=O)), 172.3 (NHC(=O)), 59.4 (CHNH), 50.6 (CH₂N₃), 32.8 (C(=O)CH₂), 31.8 (SCH₂CH₂), 27.5 (SCH₂), 24.6 (C(=O)CH₂CH₂)

HRMS (ESI⁺) m/z / Da = 251.0565, [M+Na]⁺ found, [C₈H₁₂N₄NaO₂S]⁺ requires 251.0573

The compound has not been reported previously.

1.33 Methyl 1-cyclopropyl-6-fluoro-4-oxo-7-(4-(4-oxo-4-((2-oxotetrahydrothiophen-3-yl)amino)butyl)piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylate 137

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ S & & & \\ & & & \\ O & & & \\ \end{array}$$

Methyl 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylate **134** (50 mg, 0.145 mmol, 1 eq.), 4-bromo-N-(2-oxotetrahydrothiophen-3-yl)butanamide **135** (34.5 mg, 0.145 mmol, 1 eq.) and K_2CO_3 (20 mg, 0.145 mmol, 1 eq.) were stirred in acetonitrile (2 ml) at 50 °C under argon. After 24 h a further portion of **135** (34.5 mg, 0.145 mmol, 1 eq.) was added. After another 24 h a further portion was added (69.0 mg, 0.290 mmol, 2 eq.). After another 24 h the temperature was raised so the mixture was at reflux. After a final 24 h the precipitate was filtered off and the filtrate was purified by column chromatography (SiO₂, 5-10 % MeOH/CH₂Cl₂). **137** was obtained as a cream-coloured amorphous solid (9.4 mg, 0.018 mmol, 12.2 %).

TLC $R_f = 0.47 \ (10 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 2944.2 (C-H), 2832.4 (C-H), 1722.4 (ester C=O), 1700.4 (thiolactone C=O), 1669.6 (amide C=O), 1617.3 (quinolone C=O)

¹H NMR (500 MHz, MeOD) δ / ppm = 8.53 (s, 1 H, ortho to C(=O)OCH₃), 7.68 (d, J=13.4 Hz, 1 H, ortho to F), 7.41 (d, J=7.3 Hz, 1 H, meta to F), 4.67 (dd, J=12.9, 6.9 Hz, 1 H, C $\underline{\text{H}}$ NH), 3.83 (s, 3 H, OC $\underline{\text{H}}$ 3), 3.61 (tt, J=6.9, 4.1 Hz, 1 H, NC $\underline{\text{H}}$ (CH₂)₂), 3.39 - 3.49 (m, 5 H, SC $\underline{\text{H}}$ H), 3.26 - 3.33 (m, 1 H, SCH $\underline{\text{H}}$ and CH₂CH₂CH₂N(CH₂C $\underline{\text{H}}$ 2)CH₂CH₂), 2.93 - 3.03 (m, 4 H, CH₂CH₂CH₂N(C $\underline{\text{H}}$ 2)C $\underline{\text{H}}$ 2), 2.79 (br. t, J=7.2, 7.2 Hz, 2 H, C(=O)CH₂CH₂C $\underline{\text{H}}$ 2), 2.59 (dddd, J=12.4, 6.9, 5.4, 1.4 Hz, 1 H, SCH₂C $\underline{\text{H}}$ H), 2.39 (t, J=7.20 Hz, 1 H, C(=O)C $\underline{\text{H}}$ H), 2.38 (t, J=6.94 Hz, 1 H, C(=O)CH $\underline{\text{H}}$ 1), 2.18 (qd, J=12.4, 7.0 Hz, 1 H, SCH₂CH $\underline{\text{H}}$ 1), 1.97 (quin, J=7.2 Hz, 2 H, C(=O)CH₂C $\underline{\text{H}}$ 2), 1.32 - 1.37 (m, 2 H, NCH(C $\underline{\text{H}}$ H)₂), 1.13 - 1.19 (m, 2 H, NCH(CH $\underline{\text{H}}$ 1)₂)

¹³C NMR (126 MHz, MeOD) δ / ppm = 207.0 (S<u>C</u>(=O)), 175.7 (NH<u>C</u>(=O)), 175.1 (<u>C</u>(=O)CC(=O)OCH₃), 166.6 (<u>C</u>(=O)OCH₃), 154.7 (d, J=249.0 Hz, *ipso* to F), 150.2 (s, <u>C</u>H=CC(=O)OCH₃), 145.6 (d, J=10.6 Hz, *ipso* to piperazine), 139.8 (*para* to F), 123.5 (d, J=6.9 Hz, *para* to piperazine), 113.1 (d, J=23.6 Hz, *ortho*

to C=O and ortho to F), 110.0 ($\underline{C}C(=O)OCH_3$), 107.4 (meta to C=O and meta to F), 60.2 ($\underline{C}HNH$), 58.5 ($C(=O)CH_2CH_2\underline{C}H_2$), 53.8 ($C(=O)CH_2CH_2CH_2N(\underline{C}H_2)\underline{C}H_2$), 52.3 ($\underline{O}\underline{C}H_3$), 50.1 ($C(=O)CH_2CH_2CH_2N(CH_2\underline{C}H_2)CH_2CH_2$) 50.0 ($C(=O)CH_2CH_2CH_2N(CH_2\underline{C}H_2)$), 36.5 ($\underline{N}\underline{C}H(CH_2)$), 34.5 ($C(=O)\underline{C}H_2$), 31.7 ($\underline{S}\underline{C}H_2\underline{C}H_2$), 28.1 ($\underline{S}\underline{C}\underline{H}_2$), 22.9 ($C(=O)CH_2\underline{C}\underline{H}_2CH_2$), 8.7 ($\underline{N}\underline{C}H(\underline{C}\underline{H}_2)$)

¹⁹**F NMR** (376.45 MHz, MeOD) δ / ppm = -125.35 (s, ciprofloxacin F)

HRMS (ESI⁺) m/z / Da = 531.2083, [M+H]⁺ found, [C₂₆H₃₂FN₄O₅S]⁺ requires 531.2077

The compound has been synthesised previously. 9, 10 Only HRMS characterisation was published, and this agrees with the result above.

check??

1.34 1-Cyclopropyl-6-fluoro-4-oxo-7-(4-(4-(1-(4-oxo-4-((2-oxotetrahydrothiophen-3-yl)amino)butyl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-1,4-dihydroquinol-ine-3-carboxylic acid 138

1-Cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid **176** (12.9 mg, 31.4 μ mol, 1 eq.), 4-azido-N-(2-oxotetrahydrothiophen-3-yl)butanamide **136** (7.2 mg, 31.4 μ mol, 1 eq.), CuI (3.6 mg, 18.9 μ mol, 0.6 eq.) and DIPEA (8.00 μ l, 5.9 mg, 45.9 μ mol, 1.5 eq.) were stirred in CH₂Cl₂ (1.4 ml) at r.t. under Ar for 3 h. Water (10 ml) was added, and the organic layer was separated off. The aqueous layer was further extracted with 10 % i-PrOH/CHCl₃ (3 × 10 ml), and the combined organic layers were dried with MgSO₄ and concentrated under reduced pressure. **138** was obtained as a white amorphous solid (16.5 mg, 25.9 μ mol, 82.5 %).

IR (neat) ν_{max} / cm⁻¹ = 2918.8 (C-H), 1712.7 (carboxylic acid C=O and thiolactone C=O), 1657.6 (amide C=O), 1626.8 (quinolone C=O), 1616.2 (triazole)

¹H NMR (500 MHz, DMSO d₆) δ / ppm = 15.23 (br s, 1 H, C(=O)O<u>H</u>), 8.66 (s, 1 H, ortho to C(=O)OH), 8.23 (d, J=8.5 Hz, 1 H, N<u>H</u>), 7.90 (d, J=13.4 Hz, 1 H, ortho to F), 7.84 (s, 1 H, C<u>H</u>=CCH₂), 7.56 (d, J=7.5 Hz, 1 H, meta to F), 4.59 (ddd, J=12.7, 8.4, 6.8 Hz, 1 H, C<u>H</u>NH), 4.31 (t, J=7.0 Hz, 2 H, C<u>H</u>₂NCH=C), 3.80 - 3.86 (6.9, 4.0 Hz, 1 H, NC<u>H</u>(CH₂)₂), 3.34 - 3.37 (m, 1 H, SC<u>H</u>H), 3.32 (br t, J=4.1 Hz, 4 H, CH₂CH₂CH₂N(CH₂C<u>H</u>₂)CH₂C<u>H</u>₂), 3.27 (ddd, J=11.1, 6.9, 1.4 Hz, 1 H, SC<u>H</u><u>H</u>), 2.64 (t, J=7.6 Hz, 2 H, CH=CC<u>H</u>₂), 2.57 (br t, J=4.7 Hz, 4 H, CH₂CH₂CH₂N(C<u>H</u>₂)C<u>H</u>₂), 2.34 - 2.44 (m, 3 H, SCH₂C<u>H</u>H and CH=CCH₂CH₂CH₂CH₂C<u>H</u>₂), 2.12 (t, J=7.9 Hz, 1 H, C(=O)C<u>H</u>H), 2.12 (t, J=7.0 Hz, 1 H, C(=O)CH<u>H</u>), 2.04 (m, 3 H, SCH₂CH<u>H</u> and C(=O)CH₂C<u>H</u>₂), 1.64 (quin, J=7.5 Hz, 2 H, CH=CCH₂CH₂), 1.51 (quin, J=7.5 Hz, 2 H, CH=CCH₂CH₂C<u>H</u>₂), 1.28 - 1.34 (m, 2 H, NCH(C<u>H</u>H)₂), 1.15 - 1.20 (m, 2 H, NCH(CH<u>H</u>)₂)

 19 F NMR (376.45 MHz, MeOD) δ / ppm = -124.86 (s, ciprofloxacin F)

HRMS (ESI⁺) m/z / Da = 640.2739, [M+H]⁺ found, [C₃₁H₃₉FN₇O₅S]⁺ requires 640.2712

1.35 1-Cyclopropyl-6-fluoro-4-oxo-7-(4-((((4-(1-(4-oxo-4-((2-oxotetrahydrothiophen-3-yl)amino)butyl)-1H-1,2,3-triazol-4-yl)butanoyl)oxy)methoxy)carbonyl)piper-azin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid 139

1-Cyclopropyl-6-fluoro-7-(4-(((hex-5-ynoyloxy)methoxy)carbonyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid $\bf 178$ (203 mg, 0.407 mmol, 1 eq.), 4-azido-N-(2-oxotetrahydrothiophen-3-yl)butanamide $\bf 136$ (92.8 mg, 0.407 mmol, 1 eq.), CuI (40 mg, 0.190 mmol, 0.5 eq.) and DIPEA (0.356 ml, 0.264 mg, 2.04 mmol, 5 eq.) were stirred in $\rm CH_2Cl_2$ (18.6 ml) at r.t. under Ar for 3 h. The mixture was fitered and the filtrate was dry-loaded onto $\rm SiO_2$ and purified by column chromatography ($\rm SiO_2$, 5-10 % MeOH/CH₂Cl₂). $\bf 139$ was obtained as pale brown/yellow amorphous solid (14.7 mg, 20.2 μ mol, 5.0 %).

TLC $R_f = 0.40 \ (5 \% \ \text{CH}_2\text{Cl}_2/\text{MeOH})$

IR (neat) ν_{max} / cm⁻¹ = 3054.9 (C-H), 1715.8 (carboxylic acid C=O and ester C=O), 1696.2 (carbamate C=O and thiolactone C=O), 1651.2 (amide C=O), 1629.2 (quinolone C=O)

¹H NMR (400 MHz, DMSO d₆) δ / ppm = 15.16 (br s, 1 H, C(=O)O<u>H</u>), 8.65 (s, 1 H, ortho to C(=O)OH), 8.21 (d, J = 8.5 Hz, 1 H, N<u>H</u>), 7.89 (d, J = 13.1 Hz, 1 H, ortho to F), 7.85 (s, 1 H, C<u>H</u>=CCH₂), 7.57 (d, J = 7.4 Hz, 1 H, meta to F), 5.74 (s, 1 H, OC<u>H</u>₂O), 4.58 (ddd, J = 12.6, 8.1, 7.2 Hz, 1 H, C<u>H</u>NH), 4.30 (t, J = 6.9 Hz, 2 H, C(=O)CH₂CH₂CH₂N), 3.80 (tt, J = 6.9, 3.6 Hz, 1 H, NC<u>H</u>(CH₂)₂), 3.62 (br t, J = 5.2, 5.2 Hz, 4 H, C(=O)N(C<u>H</u>₂)C<u>H</u>₂), 3.38 (td, J = 11.4, 5.5 Hz, 1 H, SC<u>H</u>H), 3.34 (br. s, 4 H, C(=O)N(CH₂C<u>H</u>₂)CH₂C<u>H</u>₂), 3.27 (ddd, J = 11.0, 6.9, 1.6 Hz, 1 H, SCH<u>H</u>), 2.64 (t, J = 7.6 Hz, 2 H, CH=CC<u>H</u>₂), 2.44 (t, J = 7.5 Hz, 2 H, C<u>H</u>₂C(=O)O), 2.40 (dddd, J = 12.3, 6.8, 5.4, 1.4 Hz, 1 H, SCH₂C<u>H</u>H), 2.12 (t, J = 7.8 Hz, 1 H, NHC(=O)C<u>H</u>H), 2.12 (t, J = 6.8 Hz, 1 H, NHC(=O)CH<u>H</u>), 1.98 - 2.07 (m, 3 H, SCH₂C<u>H</u>H and NHC(=O)CH₂C<u>H</u>₂), 1.86 (quin,

 $J = 7.5 \text{ Hz}, 2 \text{ H}, \text{CH} = \text{CCH}_2\text{CH}_2, 1.29 - 1.36 (m, 2 \text{ H}, \text{NCH}(\text{CHH})_2), 1.14 - 1.21 (m, 2 \text{ H}, \text{NCH}(\text{CHH})_2)$

¹³C NMR (101 MHz, DMSO d₆) δ / ppm = 205.5 (SC(=O)), 176.4 (C(=O)CC(=O)OH), 171.8 (C(=O)OCH₂O), 171.3 (NHC(=O)), 165.9 (C(=O)OH), 152.8 (d, J = 249.7 Hz, ipso to F), 152.9 (OC(=O)N), 148.1 (CH=CC(=O)OH), 146.0 (CH=CCH₂), 144.9 (d, J = 9.6 Hz, ipso to piperazine), 139.1 (para to F), 122.0 (CH=CCH₂), 118.9 (d, J = 7.5 Hz, para to piperazine), 111.0 (d, J = 23.5 Hz, ortho to C=O and ortho to F), 106.8 (CC(=O)OH, and meta to C=O and meta to F), 80.3 (OCH₂O), 58.2 (CHNH), 49.1 (C(=O)N(CH₂CH₂)CH₂CH₂), 49.1 (C(=O)N(CH₂CH₂)CH₂CH₂), 48.6 (C(=O)CH₂CH₂CH₂N), 43.4 (N(CH₂)CH₂), 43.0 (N(CH₂)CH₂), 35.9 (NCH (CH₂)₂), 32.7 (CH=CCH₂CH₂CH₂C(=O)), 31.8 (NHC(=O)CH₂), 30.1 (SCH₂CH₂), 26.8 (SCH₂), 25.8 (C(=O)CH₂CH₂CH₂CH₂N), 24.2 (CH=CCH₂CH₂CH₂C(=O)), 24.0 (CH=CCH₂CH₂CH₂C(=O)), 7.6 (NCH(CH₂)₂)

¹⁹**F NMR** (376.45 MHz, DMSO d_6) δ / ppm = ??

no F

HRMS (ESI⁺) m/z / Da = 728.2502, [M+H]⁺ found, [C₃₃H₃₉FN₇O₉S]⁺ requires 728.2503

The compound has not been reported previously.

1.36 1-Cyclopropyl-6-fluoro-4-oxo-7-(4-((1-((4-(1-(4-oxo-4-((2-oxotetrahydrothiophen-3-yl)amino)butyl)-1H-1,2,3-triazol-4-yl)butanoyl)oxy)ethoxy)carbonyl)piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid 140

Method?? white amorphous solid 1.2 mg, 1.6 μ mol

TLC $R_f = 0.33 \ (10 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) $\nu_{max} / \text{cm}^{-1} = ??$

¹**H NMR** (400 MHz, MeOD) δ / ppm = ??

¹³C NMR (101 MHz, MeOD) δ / ppm = ??

¹⁹**F NMR** (376.45 MHz, MeOD) δ / ppm = ??

HRMS (ESI⁺) m/z / Da = 742.2670, [M+H]⁺ found, [C₃₄H₄₁FN₇O₉S]⁺ requires 742.2671

1.37 4-Bromo-N-(2-methoxyphenyl)butanamide 141

2-Methoxyaniline 179 (9.12 ml, 10.0 g, 81.2 mmol, 1 eq.) and NaHCO₃ (8.19 g, 97.4 mmol, 1.2 eq.) were dissolved in water (100 ml) and $\rm CH_2Cl_2$ (100 ml). The mixture was cooled to 0 °C and 4-bromobutyryl chloride 42 (9.40 ml, 15.1 g, 81.2 mmol, 1 eq.) was added dropwise over 15 min. The mixture was stirred at 0 °C for 1.5 h, then the aqueous layer was removed. The organic layer was dried with MgSO₄ and evaporated under reduced pressure. 141 was obtained as an initially colourless liquid which slowly turned blue then black if left out on the bench (11.0 g, 40.6 mmol, 50.0 %).

TLC $R_f = 0.16 \ (10 \% \ EtOAc/P.E.)$

IR (neat) ν_{max} / cm⁻¹ = 3410.2 (N-H), 3313.4 (N-H), 2961.6 (C-H), 2939.5 (C-H), 2902.5 (C-H), 1676.4 (amide C=O)

¹**H NMR** (400 MHz, CDCl₃ d₁) δ / ppm = 8.32 (dd, J = 8.0, 1.7 Hz, 1 H, ortho to NH), 7.85 (br s, 1 H, N<u>H</u>), 7.02 (td, J = 7.9, 1.7 Hz, 1 H, para to NH), 6.93 (td, J = 7.7, 1.4 Hz, 1 H, para to OCH₃), 6.85 (dd, J = 8.1, 1.5 Hz, 1 H, ortho to OCH₃), 3.85 (s, 3 H, C<u>H</u>₃), 3.50 (t, J = 6.4 Hz, 2 H, C<u>H</u>₂Br), 2.56 (t, J = 7.1 Hz, 2 H, C(=O)C<u>H</u>₂), 2.25 (quin, J = 6.7 Hz, 2 H, C(=O)CH₂C<u>H</u>₂)

¹³C NMR (101 MHz, CDCl₃ d₁) δ / ppm = 169.4 (\underline{C} (=O)), 147.6 (*ipso* to OCH₃), 127.2 (*ipso* to NH), 123.5 (*para* to NH), 120.7 (*para* to OCH₃), 119.6 (*ortho* to NH and *meta* to OCH₃), 109.8 (*ortho* to OCH₃ and *meta* to NH), 55.5 (\underline{C} H₃), 35.4 (\underline{C} (=O) \underline{C} H₂), 33.1 (\underline{C} H₂Br), 27.9 (\underline{C} (=O) \underline{C} H₂)

HRMS (ESI⁺) m/z / Da = 272.0287, [M+H]⁺ found, [C₁₁H₁₅BrNO₂]⁺ requires 272.0286

The compound has not been reported previously.

1.38 4-Bromo-N-(3-methoxyphenyl)butanamide 142

3-Methoxyaniline **180** (3.04 ml, 3.33 g, 27.1 mmol, 1 eq.) and NaHCO₃ (2.73 g, 32.5 mmol, 1.2 eq.) were dissolved in water (30 ml) and $\mathrm{CH_2Cl_2}$ (30 ml). The mixture was cooled to 0 °C and 4-bromobutyryl chloride **42** (3.13 ml, 5.03 g, 27.1 mmol, 1 eq.) was added dropwise over 5 min. The mixture was stirred at 0 °C for 1 h, then the aqueous layer was removed. The organic layer was dry-loaded onto $\mathrm{SiO_2}$ and purified by column chromatography using a Combiflash ($\mathrm{SiO_2}$, 0-100 % $\mathrm{EtOAc/P.E.}$). **142** was obtained as a pale pink amorphous solid (3.66 g, 13.5 mmol, 49.6 %).

how to report?

TLC $R_f = 0.18 \ (25 \% \ \text{EtOAc/P.E.})$

IR (neat) ν_{max} / cm⁻¹ = 1670.9 (amide C=O)

¹**H NMR** (400 MHz, CDCl₃ d₁) δ / ppm = 8.45 (s, 1 H, N<u>H</u>), 7.27 (t, J = 2.2 Hz, 1 H, ortho to OCH₃ and ortho to NH), 7.14 (t, J = 8.1 Hz, 1 H, meta to OCH₃ and meta to NH), 7.02 (d, J = 8.3 Hz, 1 H, para to OCH₃), 6.62 (dd, J = 8.2, 2.1 Hz, 1 H, para to NH), 3.71 (s, 3 H, C<u>H</u>₃), 3.42 (t, J = 6.5 Hz, 2 H, C<u>H</u>₂Br), 2.51 (t, J = 6.9 Hz, 2 H, C(=O)C<u>H</u>₂), 2.19 (quin, J = 6.8 Hz, 2 H, C(=O)CH₂C<u>H</u>₂)

¹³C NMR (101 MHz, CDCl₃ d₁) δ / ppm = 170.3 (<u>C</u>(=O)), 159.9 (*ipso* to OCH₃), 139.0 (*ipso* to NH), 129.5 (*meta* to OCH₃ and *meta* to NH), 112.1 (*para* to OCH₃), 109.9 (*para* to NH), 105.7 (*ortho* to OCH₃ and *ortho* to NH), 55.2 (<u>C</u>H₃), 35.3 (C(=O)<u>C</u>H₂), 33.2 (<u>C</u>H₂Br), 28.0 (C(=O)CH₂<u>C</u>H₂)

HRMS (ESI⁺) m/z / Da = ??, [M+H]⁺ found, [??]⁺ requires ??

The compound has not been reported previously.

1.39 4-Azido-N-(2-methoxyphenyl)butanamide 143

4-Bromo-N-(2-methoxyphenyl) butanamide **141** (2.05 g, 7.51 mmol, 1 eq.) and NaN₃ (1.17 g, 18.0 mmol, 2.4 eq.) were refluxed in acetonitrile (100 ml) for 2 h. The mixture was cooled and filtered, and the fit rate was dry-loaded onto SiO₂ and purified by column chromatography using a Combiflash (SiO₂, 8-14 % then hold at 14 % EtOAc/P.E.). **143** was obtained as an initially colour less liquid which slowly turned blue then black if left out on the bench (0.469 g, 2.00 mmol, 26.7 %).

how to report?

TLC $R_f = 0.20 \ (25 \% \ \text{EtOAc/P.E.})$

IR (neat) ν_{max} / cm⁻¹ = 3419.7 (N-H), 3329.6 (N-H), 2094.8 (azide), 1672.3 (amide C=O)

¹**H NMR** (400 MHz, CDCl₃ d₁) δ / ppm = 8.32 (dd, J = 7.9, 1.0 Hz, 1 H, ortho to NH), 7.86 (br s, 1 H, N<u>H</u>), 7.00 (td, J = 7.5, 1.5 Hz, 1 H, para to NH), 6.90 (td, J = 7.7, 1.1 Hz, 1 H, para to OCH₃), 6.83 (dd, J = 8.1, 1.4 Hz, 1 H, ortho to OCH₃), 3.81 (s, 3 H, C<u>H</u>₃), 3.33 (t, J = 6.7 Hz, 2 H, C<u>H</u>₂Br), 2.42 (t, J = 7.2 Hz, 2 H, C(=O)C<u>H</u>₂), 1.94 (quin, J = 6.9 Hz, 2 H, C(=O)CH₂C<u>H</u>₂)

¹³C NMR (101 MHz, CDCl₃ d₁) δ / ppm = 169.5 (<u>C</u>(=O)), 147.6 (*ipso* to OCH₃), 127.1 (*ipso* to NH), 123.4 (*para* to NH), 120.5 (*para* to OCH₃), 119.5 (*ortho* to NH and *meta* to OCH₃), 109.6 (*ortho* to OCH₃ and *meta* to NH), 55.2 (<u>C</u>H₃), 50.3 (<u>C</u>H₂N₃), 33.9 (C(=O)<u>C</u>H₂), 24.3 (C(=O)CH₂<u>C</u>H₂)

HRMS (ESI⁺) m/z / Da = 257.1010, [M+H]⁺ found, [C₁₁H₁₄N₄NaO₂]⁺ requires 257.1014

The data are consistent with the literature. 11

1.40 4-Azido-N-(3-methoxyphenyl)butanamide 144

$$O$$
 N
 O
 N_3

4-Bromo-N-(3-methoxyphenyl) butanamide **142** (2.05 g, 7.51 mmol, 1 eq.) and NaN₃ (1.17 g, 18.0 mmol, 2.4 eq.) were refluxed in acetonitrile (100 ml) for 7 h. The mixture was cooled and filtered, and the fit rate was dry-loaded onto SiO₂ and purified by column chromatography using a Combiflash (SiO₂, 0-100 % EtOAc/P.E.). **144** was obtained as an straw-coloured liquid (0.294 g, 1.25 mmol, 16.7 %).

how to report?

TLC $R_f = 0.37 (50 \% \text{ EtOAc/P.E.})$

IR (neat) ν_{max} / cm⁻¹ = 3298.3 (N-H), 2094.7 (azide), 1661.7 (amide C=O)

¹**H NMR** (400 MHz, MeOD) δ / ppm = 8.63 (br s, 1 H, N<u>H</u>), 7.26 (t, J = 2.3 Hz, 1 H, ortho to OCH₃ and ortho to NH), 7.15 (t, J = 8.1 Hz, 1 H, meta to OCH₃ and meta to NH), 7.01 (dd, J = 7.8, 1.6 Hz, 1 H, para to OCH₃), 6.63 (dd, J = 8.2, 1.9 Hz, 1 H, para to NH), 3.69 (s, 3 H, C<u>H</u>₃), 3.28 (t, J = 6.7 Hz, 2 H, C<u>H</u>₂N₃), 2.39 (t, J = 7.4 Hz, 2 H, C(=O)C<u>H</u>₂), 1.91 (quin, J = 7.0 Hz, 2 H, C(=O)CH₂C<u>H</u>₂)

¹³C NMR (101 MHz, MeOD) δ / ppm = 170.8 ($\underline{C}(=O)$), 159.6 (*ipso* to OCH₃), 138.9 (*ipso* to NH), 129.2 (*meta* to OCH₃ and *meta* to NH), 112.3 (*para* to OCH₃), 109.5 (*para* to NH), 106.0 (*ortho* to OCH₃ and *ortho* to NH), 54.8 (\underline{CH}_3), 50.4 (\underline{CH}_2 N₃), 33.6 ($\underline{C}(=O)\underline{CH}_2$), 24.4 ($\underline{C}(=O)\underline{CH}_2\underline{CH}_2$)

HRMS (ESI⁺) m/z / Da = ??, [M+H]⁺ found, [??]⁺ requires ??

The compound has not been reported previously.

1.41 Methyl 1-cyclopropyl-6-fluoro-7-(4-(4-((2-methoxyphenyl)amino)-4-oxobutyl)-piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate 145

Methyl 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylate ${\bf 134}$ (500 mg, 1.45 mmol, 1 eq.), 4-bromo-N-(2-methoxyphenyl)butanamide ${\bf 141}$ (788 mg, 2.90 mmol, 2 eq.), DIPEA (1.28 ml, 950 mg, 7.35 mmol, 5 eq.), NaI (275 mg, 1.83 mmol, 1.3 eq.) and acetonitrile (10 ml) were stirred in a microwave reactor at 100 °C for 4 h. The mixture was dry-loaded onto SiO₂ and purified by column chromatography (SiO₂,

how to report?

4 % MeOH/CH₂Cl₂). **145** was obtained as a bright pink glass (79.7 mg, 0.149 mmol, 10.2 %).

TLC $R_f = 0.40 \ (10 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 2947.1 (C-H), 2833.7 (C-H), 1718.9 (ester C=O), 1685.3 (amide C=O), 1617.3 (quinolone C=O)

¹H NMR (400 MHz, CDCl₃ d₁) δ / ppm = 8.48 (s, 1 H, ortho to C(=O)OCH₃), 8.36 (d, J = 7.9 Hz, 1 H, ortho to NH), 7.87 - 7.99 (m, 2 H, ortho to F and NH), 7.19 (d, J = 6.5 Hz, 1 H, meta to F), 7.01 (t, J = 7.5 Hz, 1 H, para to NH), 6.93 (t, J = 7.7 Hz, 1 H, para to OCH₃), 6.85 (d, J = 7.9 Hz, 1 H, ortho to OCH₃), 3.88 (s, 3 H, C(=O)OCH₃), 3.85 (s, 3 H, aromatic OCH₃), 3.41 (tt, J = 6.9, 4.0 Hz, 1 H, NCH(CH₂)₂), 3.25 (br t, J = 5.0, 5.0 Hz, 4 H, C(=O)CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 2.67 (br t, J = 5.0, 5.0 Hz, 4 H, C(=O)CH₂CH₂CH₂N(CH₂CH₂N), 2.47 (t, J = 7.1 Hz, 2 H, C(=O)CH₂CH₂CH₂N), 1.97 (quin, J = 6.8 Hz, 2 H, C(=O)CH₂CH₂CH₂N), 1.25 - 1.33 (m, 2 H, NCH(CHH)₂), 1.07 - 1.14 (m, 2 H, NCH(CHH)₂)

¹³C NMR (101 MHz, CDCl₃ d₁) δ / ppm = 172.9 ($\underline{\mathbf{C}}$ (=O)CC(=O)CCH₃), 170.8 (NH $\underline{\mathbf{C}}$ (=O)), 166.2 ($\underline{\mathbf{C}}$ (=O)OCH₃), 153.3 (d, J=248.0 Hz, ipso to F), 148.2 ($\underline{\mathbf{C}}$ =CC(=O)OCH₃), 147.6 (ipso to OCH₃), 144.4 (d, J=10.4 Hz, ipso to piperazine), 137.9 (para to F), 127.6 (ipso to NH), 123.4 (para to NH), 122.7 (d, J=7.8 Hz, para to piperazine), 121.0 (para to OCH₃), 119.7 (ortho to NH and meta to OCH₃), 113.0 (d, J=22.5 Hz, ortho to C=O and ortho to F), 109.8 (ortho to OCH₃ and meta to NH, and $\underline{\mathbf{CC}}$ (=O)OCH₃), 104.7 (meta to C=O and meta to F), 57.2 (CH₂CH₂CH₂N), 55.6 (aromatic OCH₃), 52.7 (CH₂CH₂CH₂N($\underline{\mathbf{CH}}$ 2)CH₂), 51.9 (C(=O)OCH₃), 49.8 (CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 49.8 (CH₂CH₂CH₂N(CH₂CH₂), 35.5 ($\underline{\mathbf{CH}}$ 2 CH₂CH₂N), 34.5 ($\underline{\mathbf{NC}}$ H(CH₂)₂), 22.3 (CH₂CH₂CH₂N), 8.0 (NCH($\underline{\mathbf{CH}}$ 2)₂)

¹⁹**F NMR** (376.45 MHz, CDCl₃ d₁) δ / ppm = ??_

Check for F

HRMS (ESI⁺) m/z / Da = 537.2523, [M+H]⁺ found, [C₂₉H₃₄FN₄O₅]⁺ requires 537.2513

The compound has not been reported previously.

1.42 Methyl 1-cyclopropyl-6-fluoro-7-(4-(4-((3-methoxyphenyl)amino)-4-oxobutyl)-piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate 146

Methyl 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylate 134 (500 mg, 1.45 mmol, 1 eq.), 4-bromo-N-(3-methoxyphenyl)butanamide 142 (788 mg, 2.90 mmol, 2 eq.), DIPEA (1.28 ml, 950 mg, 7.35 mmol, 5 eq.), NaI (275 mg, 1.83 mmol, 1.3 eq.) and acetonitrile (10 ml) were stirred in a microwave reactor at 100 °C for 4 h. The mixture was evaporated under reduced pressure and partitioned between

how to report?

 $\mathrm{CH_2Cl_2}$ (50 ml) and water (50 ml). The organic layer was separated off and the aqueous layer was extracted again with $\mathrm{CH_2Cl_2}$ (50 ml). The combined organic layers were dried with $\mathrm{MgSO_4}$ and purified by column chromatography ($\mathrm{SiO_2}$, 0-4 % $\mathrm{MeOH/CH_2Cl_2}$). **146** was obtained as an off-white amorphous solid (81.7 mg, 0.152 mmol, 10.5 %).

TLC $R_f = 0.38 \ (10 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 3270.8 (amide N-H) 2943.8 (C-H), 2817.0 (C-H), 1729.5 (ester C=O), 1682.0 (amide C=O), 1613.5 (quinolone C=O)

¹H NMR (400 MHz, CDCl₃) δ / ppm = 8.56 (s, 1 H, ortho to C(=O)OCH₃), 8.06 (d, J = 13.3 Hz, 1 H, ortho to F), 8.02 (br s, 1 H, N<u>H</u>), 7.34 (t, J = 1.7 Hz, 1 H, ortho to OCH₃ and ortho to NH), 7.25 (d, J = 7.0 Hz, 1 H, meta to F), 7.20 (t, J = 8.2 Hz, 1 H, meta to OCH₃ and meta to NH), 6.98 (dd, J = 7.8, 1.7 Hz, 1 H, para to OCH₃), 6.65 (dd, J = 8.2, 2.1 Hz, 1 H, para to NH), 3.93 (s, 3 H, C(=O)OC<u>H₃</u>), 3.80 (s, 3 H, aromatic OC<u>H₃</u>), 3.42 (tt, J = 6.8, 3.7 Hz, 1 H, NC<u>H</u>(CH₂)₂), 3.31 (br t, J = 4.3, 4.3 Hz, 4 H, C(=O)CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 2.73 (br t, J = 4.5, 4.5 Hz, 4 H, C(=O)CH₂CH₂CH₂N(C<u>H₂</u>)CH₂), 2.58 (t, J = 6.5 Hz, 2 H, C(=O)CH₂CH₂CH₂N), 2.48 (t, J = 6.8 Hz, 2 H, C(=O)C<u>H₂CH₂CH₂N</u>), 2.00 (quin, J = 6.8 Hz, 2 H, C(=O)CH₂CH₂CH₂N), 1.29 - 1.36 (m, 2 H, NCH(C<u>H</u>H)₂), 1.11 - 1.17 (m, 2 H, NCH(CH<u>H</u>)₂)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 173.1 (\underline{C} (=O)CC(=O)OCH₃), 170.9 (NH \underline{C} (=O)), 166.3 (\underline{C} (=O)O CH₃), 160.1 (*ipso* to OCH₃), 153.3 (d, J=250.1 Hz, *ipso* to F), 148.4 (\underline{C} =CC(=O)OCH₃), 144.1 (d, J=10.1 Hz, *ipso* to piperazine), 139.4 (*ipso* to NH), 138.0 (*para* to F), 129.6 (*meta* to NH and *meta* to OCH₃), 123.3 (d, J=6.4 Hz, *para* to piperazine), 113.4 (d, J=23.3 Hz, *ortho* to C=O and *ortho* to F), 111.8 (*para* to OCH₃), 110.0 (\underline{C} C(=O)OCH₃), 109.8 (*para* to NH), 105.5 (*ortho* to OCH₃ and *ortho* to NH), 105.0 (*meta* to C=O and *meta* to F), 57.0 (CH₂CH₂CH₂N), 55.3 (aromatic OCH₃), 52.6 (CH₂CH₂CH₂N(\underline{C} H₂)CH₂), 52.1 (C(=O)OCH₃), 49.2 (CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 35.2 (\underline{C} H₂CH₂CH₂N), 34.6 (NCH(CH₂)₂), 21.7 (CH₂CH₂CH₂N), 8.2 (NCH(\underline{C} H₂)₂)

¹⁹**F NMR** (376.45 MHz, MeOD) δ / ppm = -123.5 (s, ciprofloxacin F)

HRMS (ESI⁺) m/z / Da = 537.2500, [M+H]⁺ found, [C₂₉H₃₄FN₄O₅]⁺ requires 537.2513

The compound has not been reported previously.

1.43 1-Cyclopropyl-6-fluoro-7-(4-(4-(1-(4-((2-methoxyphenyl)amino)-4-oxobutyl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid 147

$$\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

1-Cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid **176** (24.1 mg, 58.6 μ mol, 1 eq.) and 4-azido-N-(2-methoxyphenyl)butanamide **143** (13.7 mg, 58.5 μ mol, 1 eq.) were dissolved in water (3 ml), t-BuOH (9 ml) and CH₂Cl₂ (9 ml), and the mixture was degassed by bubbling through N₂. A solution of CuSO₄ and THPTA (117 μ l, 5.85 μ mol, 0.1 eq., 50 mM, aq.) was added, followed by a solution of sodium ascorbate (234 μ l, 11.7 μ mol, 0.2 eq., 50 mM, aq.). The mixture was stirred at room temperature under argon for 16 h. Water (25 ml), CH₂Cl₂ (25 ml) and MeOH (5 ml) were added and the organic layer was separated off, dry-loaded onto SiO₂ and purified by column chromatography using a Combiflash (SiO₂, 3-23 % MeOH/CH₂Cl₂). **147** was obtained as a clear glass (14.7 mg, 22.8 μ mol, 39.0 %).

how to phrase this?

how to report??

TLC $R_f = 0.28 \ (10 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 2926.5 (C-H), 2846.6 (C-H), 1723.4 (carboxylic acid C=O), 1682.0 (amide C=O), 1625.8 (quinolone C=O), 1612.8 (triazole)

¹H NMR (400 MHz, CDCl₃) δ / ppm = 15.05 (br s, 1 H, C(=O)O<u>H</u>), 8.76 (s, 1 H, ortho to C(=O)OH), 8.31 (dd, J = 8.0, 1.7 Hz, 1 H, ortho to NH), 8.00 (d, J = 13.0 Hz, 1 H, ortho to F), 7.83 (br s, 1 H, N<u>H</u>), 7.37 (s, 1 H, C<u>H</u>=CCH₂), 7.35 (d, J = 7.2 Hz, 1 H, meta to F), 7.04 (td, J = 7.7, 1.7 Hz, 1 H, para to NH), 6.95 (td, J = 7.8, 1.5 Hz, 1 H, para to OCH₃), 6.88 (dd, J = 8.1, 1.4 Hz, 1 H, ortho to OCH₃), 4.47 (t, J = 6.7 Hz, 2 H, C(=O)CH₂CH₂CH₂N), 3.88 (s, 3 H, C<u>H</u>₃), 3.54 (tt, J = 6.9, 4.0 Hz, 1 H, NC<u>H</u>(CH₂)₂), 3.35 (br t, J = 4.7 Hz, 4 H, CH=CCH₂CH₂CH₂CH₂N(CH₂C<u>H</u>₂)CH₂CH₂), 2.76 (t, J = 7.5 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂N), 2.46 (t, J = 6.8 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂N), 2.32 (quin, J = 6.7 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂N), 1.75 (quin, J = 7.6 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂N), 1.61 (quin, J = 7.5 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂N), 1.35 - 1.42 (m, 2 H, NCH(C<u>H</u>H)₂), 1.17 - 1.22 (m, 2 H, NCH(CH<u>H</u>)₂)

¹⁹**F NMR** (376.45 MHz, CDCl₃) δ / ppm = -120.7 (s, ciprofloxacin F)

HRMS (ESI⁺) m/z / Da = 646.3132, [M+H]⁺ found, [C₃₄H₄₁FN₇O₅]⁺ requires 646.3153

The compound has not been reported previously.

1.44 1-Cyclopropyl-6-fluoro-7-(4-(4-(1-(4-((3-methoxyphenyl)amino)-4-oxobutyl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid 148

1-Cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid **176** (24.1 mg, 58.6 μ mol, 1 eq.) and 4-azido-N-(3-methoxyphenyl)butanamide **144** (13.7 mg, 58.5 μ mol, 1 eq.) were dissolved in water (1 ml), t-BuOH (9 ml) and CH₂Cl₂ (10 ml), and the mixture was degassed by bubbling through N₂. A solution of CuSO₄ and THPTA (58.5 μ l, 5.85 μ mol, 0.1 eq. 100 mM, aq.) was added, followed by a solution of sodium ascorbate (117 μ l, 11.7 μ mol, 0.2 eq., 100 mM, aq.). The mixture was stirred at room temperature under argon for 2 h, then the solvent was removed under reduced pressure. The resudue was partitioned between water (15 ml) and CH₂Cl₂ (15 ml), and the aqueous layer was extracted a further four times with CH₂Cl₂ (4 × 15 ml). The combined organic layers were dried with MgSO₄, dry-loaded onto SiO₂ and purified by column chromatography (SiO₂, 0-10 % MeOH/CH₂Cl₂). **148** was obtained as a clear glass (1.9 mg, 2.9 μ mol, 5.0 %).

TLC $R_f = 0.22 \ (10 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 2922.8 (C-H), 2849.5 (C-H), 1725.8 (carboxylic acid C=O), 1684.7 (amide C=O), 1624.5 (quinolone C=O), 1612.2 (triazole)

¹H NMR (400 MHz, DMSO d₆) δ / ppm = 15.23 (br s, 1 H, C(=O)O<u>H</u>), 9.89 (s, 1 H, N<u>H</u>), 8.66 (s, 1 H, ortho to C(=O)OH), 7.90 (d, J = 13.4 Hz, 1 H, ortho to F), 7.88 (s, 1 H, C<u>H</u>=CCH₂), 7.55 (d, J = 7.6 Hz, 1 H, meta to F), 7.27 (t, J = 2.1 Hz, 1 H, ortho to C=O and ortho to F), 7.16 (t, J = 8.1 Hz, 1 H, meta to OCH₃ and meta to NH), 7.08 (d, J = 7.8 Hz, 1 H, para to OCH₃), 6.59 (ddd, J = 8.1, 2.4, 0.7 Hz, 1 H, para to NH), 4.36 (t, J = 6.9 Hz, 2 H, C(=O)CH₂CH₂CH₂N), 3.81 (tt, J = 6.7, 4.0 Hz, 1 H, NC<u>H</u>(CH₂)₂), 3.70 (s, 3 H, C<u>H</u>₃), 3.28 - 3.32 (m, 4 H, CH=CCH₂CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 2.64 (t, J = 7.5 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂CH₂CH₂CH₂N), 2.38 (t, J = 7.3 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂CH₂CH₂N), 2.30 (t, J = 7.4 Hz, 2 H, C(=O)CH₂CH₂CH₂CH₂N), 2.10 (quin, J = 7.1 Hz, 2 H, C(=O)CH₂CH₂CH₂CH₂N), 1.64 (quin, J = 7.5 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂N), 1.51 (quin, J = 7.2 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂N), 1.52 - 1.33 (m, 2 H, NCH(C<u>H</u>H)₂), 1.15 - 1.20 (m, 2 H, NCH(C<u>H</u>H)₂)

¹³C NMR (101 MHz, DMSO d₆) δ / ppm = 176.3 (\underline{C} (=O)CC(=O)OH), 170.1 (NH \underline{C} (=O)), 165.9 (\underline{C} (=O)OH), 159.4 (ipso to OCH₃), 153.0 (d, J = 248.6 Hz, ipso to F), 148.0 (CH= \underline{C} CH₂), 146.9 (\underline{C} =CC(=O)OH), 145.2 (d, J = 10.7 Hz, ipso to piperazine), 140.3 (para to F), 139.2 (ipso to NH), 129.4 (meta to OCH₃ and meta to NH), 121.7 (\underline{C} H=CCH₂), 118.5 (d, J = 7.5 Hz, para to piperazine), 111.3 (para to OCH₃), 110.9 (d, J = 22.4 Hz, ortho to C=O and ortho to F), 108.4 (para to NH), 106.7 (\underline{C} C(=O)OH), 106.3 (meta to C=O and meta to F), 104.8 (ortho to OCH₃ and ortho to NH), 57.3 (CH=CCH₂CH₂CH₂CH₂N), 54.9 (\underline{C} H₃), 52.4 (CH=CCH₂CH₂CH₂CH₂N(\underline{C} H₂OH₂N(\underline{C} H₂OH₂), 49.5 (CH=CCH₂CH₂CH₂CH₂N(CH₂CH₂), 49.4

 $\begin{array}{l} (CH=CCH_2CH_2CH_2CH_2N(CH_2CH_2)CH_2\underline{C}H_2), \ 48.7 \ (C(=O)CH_2CH_2\underline{C}H_2N), \ 35.8 \ (N\underline{C}H(CH_2)_2), \ 32.9 \ (C(=O)\underline{C}H_2CH_2CH_2N), \ 26.8 \ (CH=CCH_2\underline{C}H_2CH_2CH_2N), \ 25.7 \ (CH=CCH_2\underline{C}H_2\underline{C}H_2CH_2N), \ 25.5 \ (C(=O)CH_2\underline{C}H_2CH_2N), \ 26.8 \ (CH=C\underline{C}H_2CH_2CH_2N), \ 26.8 \ (CH=C\underline{C}H_2CH_2N), \ 26.8 \ (CH=C\underline{C}H_2N), \ 26.8 \ (CH=C\underline{C}H_2N)$

¹⁹**F NMR** (376.45 MHz, DMSO d₆) δ / ppm = -121.5 (s, ciprofloxacin F)

HRMS (ESI⁺) m/z / Da = 646.3159, [M+H]⁺ found, [C₃₄H₄₁FN₇O₅]⁺ requires 646.3153

The compound has not been reported previously.

1.45 Methyl 7-(4-(4-(tert-butoxy)-4-oxobutyl)piperazin-1-yl)-1-cyclopropyl-6-flu-oro-4-oxo-1,4-dihydroquinoline-3-carboxylate 149

Methyl 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylate **134** (200 mg, 0.579 mmol, 1 eq.), tert-butyl 4-bromobutanoate **181** (103 μ l, 130 mg, 0.581 mmol, 1 eq.), NaI (86.9 mg, 0.580 mmol, 1 eq.), TEA (316 μ l, 229 mg, 2.27 mmol, 4 eq.) and acetonitrile (10 ml) were stirred in a microwave reactor at 100 °C for 8 h. A second portion of tert-butyl 4-bromobutanoate **181** (103 μ l, 130 mg, 0.581 mmol, 1 eq.) was added, and the mixture was stirred in a microwave reactor at 100 °C for a further 8 h. The mixture was then dry-loaded onto SiO₂ and purified by column chromatography (SiO₂, 0-4 % MeOH/CH₂Cl₂). **149** was obtained as a white amorphous solid (141 mg, 0.289 mmol, 49.9 %).

how to report?

how to report?

TLC $R_f = 0.12 \ (4 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 2961.6 (C-H), 2830.5 (C-H), 1732.2 (*t*-Bu ester C=O) 1717.2 (ciprofloxacin ester C=O), 1620.6 (quinolone C=O)

¹**H NMR** (400 MHz, CDCl₃) δ / ppm = 8.39 (s, 1 H, ortho to C(=O)OCH₃), 7.82 (d, J = 13.3 Hz, 1 H, ortho to F), 7.17 (d, J = 7.2 Hz, 1 H, meta to F), 3.83 (s, 3 H, C<u>H</u>₃), 3.40 (tt, J = 7.2, 3.6 Hz, 1 H, NC<u>H</u>(CH₂)₂), 3.22 (t, J = 4.3 Hz, 4 H, CH₂N(CH₂C<u>H</u>₂)CH₂C<u>H</u>₂), 2.63 (t, J = 4.4 Hz, 4 H, CH₂N(C<u>H</u>₂)C<u>H</u>₂), 2.41 (t, J = 7.3 Hz, 2 H, C<u>H</u>₂N(CH₂)CH₂), 2.25 (t, J = 7.4 Hz, 2 H, C<u>H</u>₂CH₂CH₂N(CH₂)CH₂), 1.78 (quin, J = 7.3 Hz, 2 H, C<u>H</u>₂CH₂CH₂N(CH₂)CH₂), 1.41 (s, 9 H, C((C<u>H</u>)₃)₃), 1.24 (m, 2 H, NCH(C<u>H</u>H)₂), 1.09 (m, 2 H, NCH(CH<u>H</u>)₂)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 172.7 (\underline{C} (=O)CC(=O)OCH₃), 172.6 (\underline{C} (=O)OC(CH₃)₃), 165.9 (\underline{C} (=O)OCH₃), 153.1 (d, J = 249.7 Hz, ipso to F), 148.1 (\underline{C} =CC(=O)OCH₃), 144.3 (d, J = 10.4 Hz, ipso to piperazine), 137.7 (para to F), 122.5 (d, J = 6.9 Hz, para to piperazine) 112.6 (d, J = 22.5 Hz, ortho to C=O and ortho to F), 109.5 (\underline{C} C(=O)OCH₃) 104.7 (meta to C=O and meta to F), 80.0 (\underline{C} (CH₃)₃), 57.4 (C(=O)CH₂CH₂CH₂N), 52.7 (C(=O)CH₂CH₂CH₂N(\underline{C} H₂) \underline{C} H₂), 51.7 (\underline{C} H₃), 49.7 (C(=O)CH₂CH₂CH₂N(CH₂CH₂CH₂N(\underline{C} H₂CH₂N(\underline{C} H₂), 34.4 (\underline{N} CH(CH₂)₂), 33.2 (C(=O)CH₂), 28.0

should be ranges ideally, go back if time $(C(\underline{C}H_3)_3)$, 22.0 $(C(=O)CH_2\underline{C}H_2)$, 7.9 $(NCH(\underline{C}H_2)_2)$

¹⁹**F NMR** (376.45 MHz, CDCl₃) δ / ppm = -123.50 (s, ciprofloxacin F)

HRMS (ESI⁺) m/z / Da = 488.2562, [M+H]⁺ found, [C₂₆H₃₅FN₃O₅]⁺ requires 488.2561

The compound has not been reported previously.

1.46 4-(4-(1-Cyclopropyl-6-fluoro-3-(methoxycarbonyl)-4-oxo-1,4-dihydroquinolin-7-yl)piperazin-1-yl)butanoic acid, trifluoroacetic acid salt 150

$$\begin{array}{c|c} & & & & & & \\ & & & & & \\ \hline \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$$

Methyl 7-(4-(4-(tert-butoxy)-4-oxobutyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-car-boxylate **149** (20 mg, 41.0 μ mol) and TFA (0.2 ml) were stirred in CH₂Cl₂ (1.8 ml) at r.t. for 16 h then evaporated under reduced pressure. **150** was obtained as a white solid (21.4 mg, 39.2 μ mol, 95.6 %).

not
sure
how to
draw/nar
this?

mp $T / ^{\circ}C = 225-231 \text{ (CH}_{2}Cl_{2}, \text{ decomposes)}$

IR (neat) ν_{max} / cm⁻¹ = 1722.7 (ciprofloxacin ester C=O), 1699.0 (alkyl carboxylic acid C=O), 1673.3 (TFA C=O), 1614.6 (quinolone C=O)

¹**H NMR** (400 MHz, DMSO d₆) δ / ppm = 8.47 (s, 1 H, ortho to C(=O)OH), 7.80 (d, J = 13.2 Hz, 1 H, ortho to F), 7.47 (d, J = 7.4 Hz, 1 H, meta to F), 3.73 (s, 3 H, C $\underline{\text{H}}_3$), 3.66 (tt, J = 7.2, 3.7 Hz, 1 H, NC $\underline{\text{H}}$ (CH₂)₂), 3.30 - 3.54 (br s, 8 H, CH₂N(C $\underline{\text{H}}_2$)C $\underline{\text{H}}_2$ and CH₂N(CH₂C $\underline{\text{H}}_2$)CH₂CH₂) 3.13 - 3.22 (m, 2 H, C $\underline{\text{H}}_2$ N(CH₂)CH₂), 2.36 (t, J = 7.1 Hz, 2 H, C $\underline{\text{H}}_2$ CH₂CH₂N(CH₂)CH₂), 1.87 - 1.98 (m, 2 H, C $\underline{\text{H}}_2$ CH₂N(CH₂)CH₂), 1.22 - 1.30 (m, 2 H, NCH(CHH)₂), 1.06 - 1.15 (m, 2 H, NCH(CHH)₂)

¹³C NMR (101 MHz, DMSO d₆) δ / ppm = 173.5 (CH₂C(=O)OH), 171.6 (C(=O)CC(=O)OCH₃), 164.9 (C(=O)OCH₃), 158.2 (q, J = 31.5 Hz, CF₃C(=O)OH), 152.5 (d, J = 247.6 Hz, ipso to F), 148.5 (C=CC(=O)OH), 142.3 (d, J = 10.7 Hz, ipso to piperazine), 138.0 (para to F), 122.6 (d, J = 6.4 Hz, para to piperazine), 117.2 (q, J = 299.8 Hz, CF₃), 111.9 (d, J = 22.4 Hz, ortho to C=O and ortho to F), 109.1 (CC(=O)OCH₃), 106.9 (meta to C=O and meta to F), 55.1 (C(=O)CH₂CH₂CH₂N), 51.4 (CH₃), 50.8 (C(=O)CH₂CH₂CH₂N(CH₂)CH₂), 46.7 (C(=O)CH₂CH₂CH₂N(CH₂CH₂), 46.7 (C(=O)CH₂CH₂CH₂N(CH₂CH₂)), 7.6 (NCH(CH₂)₂)

¹⁹**F NMR** (376.45 MHz, DMSO d₆) δ / ppm = -73.62 (s, C<u>F</u>₃), -124.61 (s, ciprofloxacin <u>F</u>)

HRMS (ESI⁺) m/z / Da = 432.1921, [M+H]⁺ found, [C₂₂H₂₇FN₃O₅]⁺ requires 432.1935

The compound has not been reported previously.

1.47 (1S,2S)-2-(((S)-1-Phenylethyl)amino)cyclopentan-1-ol 151 and (1R,2R)-2-(((S)-1-phenylethyl)amino)cyclopentan-1-ol 152

(S)-1-phenylethan-1-amine 182 (7.85 ml, 7.38 g, 60.9 mmol, 1 eq.) was dissolved in CH_2Cl_2 (50 ml) and stirred rapidly at 0 °C. A solution of AlMe₃ (31 ml, 2.0 M in heptane, 60.9 mmol) was added dropwise and the solution was stirred at 0 °C for 1 h. A solution of cyclohexene oxide 183 (5.71 ml, 5.50 g, 65.4 mmol, 1.1 eq.) in CH_2Cl_2 (50 ml) was then added dropwise, and the mixture was stirred at 0 °C for a further 3 h, followed by 48 h at r.t.. The mixture was cooled to 0 °C and NaF (11 g, 262 mmol, 4.3 eq.) was added portionwise, followed by water (7.00 ml, 7.00 g, 389 mmol, 6.4 eq.) and CH_2Cl_2 (50 ml). The suspension was allowed to warm to r.t. and stirred for 1 h, then filtered through Celite and washed with CH_2Cl_2 (500 ml). The filtrate was dried with K_2CO_3 , concentrated under reduced pressure and purified by column chromatography (SiO₂, 20:5:1 hexane:EtOAc:TEA). 151 was obtained as a pale yellow oil (4.08 g, 19.9 mmol, 32.6 %). 152 was obtained as pale yellow crystals (4.48 g, 21.8 mmol, 35.8 %).

(1S,2S)-2-(((S)-1-Phenylethyl)amino)cyclopentan-1-ol 151

TLC $R_f = 0.25$ (15:5:1 hexane:EtOAc:TEA)

IR (neat) ν_{max} / cm⁻¹ = 3300.0 (br, O-H), 2959.7 (C-H), 2870.1 (C-H)

¹**H NMR** (400 MHz, CDCl₃) δ / ppm = 7.28 - 7.38 (m, 4 H, ortho and meta to CHCH₃), 7.21 - 7.28 (m, 1 H, para to CHCH₃), 3.83 (q, J = 6.6 Hz, 1 H, CHCH₃), 3.78 (q, J = 7.0 Hz, 1 H, CHOH), 2.62 (dt, J = 8.2, 7.2 Hz, 1 H, CHNH), 1.97 (quin, J = 6.7 Hz, 1 H, CH₂CHNH), 1.90 (quin, J = 6.9 Hz, 1 H, CH₂CHOH), 1.56 - 1.68 (m, CH₂CH₂CHOH), 1.43 (dq, J = 12.5, 8.0 Hz, 1 H, CH₂CHOH), 1.37 (d, J = 6.6 Hz, 3 H, CH₃), 1.25 - 1.36 (m, 1 H, CH₂CHNH)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 144.75 (*ipso* to CHCH₃), 128.26 (*meta* to CHCH₃), 126.72 (*para* to CHCH₃), 126.30 (*ortho* to CHCH₃), 77.65 (<u>C</u>HOH), 63.38 (<u>C</u>HNH), 56.20 (<u>C</u>HCH₃), 31.74 (<u>C</u>H₂CHOH), 29.22 (<u>C</u>H₂CHNH), 24.58 (<u>C</u>H₃), 19.57 (<u>C</u>H₂CH₂CHOH)

HRMS (ESI⁺) m/z / Da = 206.1554, [M+H]⁺ found, [C₁₃H₂₀NO]⁺ requires 206.1545 [α]_D²⁰ / °10⁻¹cm²g⁻¹ = -92.8 (c / g(100 mL)⁻¹ = 1.19, MeOH)

(1R,2R)-2-(((S)-1-Phenylethyl)amino)cyclopentan-1-ol 152

TLC $R_f = 0.36$ (15:5:1 hexane:EtOAc:TEA)

mp $T / {}^{\circ}C = 66-71.5$ (hexane, EtOAc, TEA)

IR (neat) ν_{max} / cm⁻¹ = 3150.0 (br, O-H), 2950.9 (C-H), 2868.2 (C-H)

fix image sizes

ings for subti-

tles

¹H NMR (400 MHz, CDCl₃) δ / ppm = 7.28 - 7.34 (m, 4 H, ortho and meta to CHCH₃), 7.20 - 7.26 (m, 1 H, para to CHCH₃), 3.86 (q, J = 6.6 Hz, 1 H, CHCH₃), 3.85 (q, J = 6.6 Hz, 1 H, CHOH), 2.83 (td, J = 7.6, 5.7 Hz, 1 H, CHNH), 1.85 - 1.97 (m, 1 H, CHHCHOH), 1.77 (dtd, J = 12.9, 7.9, 7.9, 4.9 Hz, 1 H, CHHCHNH), 1.55 - 1.68 (m, 2 H, CH₂CH₂CHOH), 1.47 - 1.55 (m, 1 H, CHHCHOH), 1.36 (d, J = 6.6 Hz, 3 H, CH₃), 1.12 (dq, J = 12.7, 8.1 Hz, 1 H, CHHCHNH)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 145.61 (*ipso* to CHCH₃), 128.08 (*meta* to CHCH₃), 126.61 (*para* to CHCH₃), 126.33 (*ortho* to CHCH₃), 77.43 (<u>C</u>HOH), 64.45 (<u>C</u>HNH), 56.62 (<u>C</u>HCH₃), 32.01 (<u>C</u>H₂CHOH), 30.56 (<u>C</u>H₂CHNH), 23.30 (<u>C</u>H₃), 20.06 (<u>C</u>H₂CH₂CHOH)

HRMS (ESI⁺) m/z / Da = 206.1553, [M+H]⁺ found, [C₁₃H₂₀NO]⁺ requires 206.1545

$$[\alpha]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = -23.9 \ (c / \text{g}(100 \text{ mL})^{-1} = 0.96 \text{ , MeOH})$$

The compounds have been synthesised previously, 12-14 but NMR data were not published.

with other data?

$1.48 \quad (1S,2S)$ -2-Aminocyclopentan-1-ol 153

(1S,2S)-2-(((S)-1-Phenylethyl)amino)cyclopentan-1-ol **151** (3.90 g, 19.0 mmol, 1 eq.), $Pd(OH)_2$ (20 wt. % on C, moistened with 50 wt. % water, 1 g, 0.712 mmol, 0.04 eq.) and MeOH (50 ml) were stirred in a Paar hydrogenator at r.t. and 3 atm for 2 days. The mixture was then filtered through Celite and evaporated under reduced pressure. **153** was obtained as a yellow oil (1.92 g, 19.0 mmol, 100 %).

TLC $R_f = 0.10 \ (10 \% \ \text{MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 3300.0 (br, O-H), 2958.3 (C-H), 2871.5 (C-H)

¹**H NMR** (400 MHz, MeOD) δ / ppm = 3.77 (ddd, J=6.6, 6.2, 5.6, 1 H, C<u>H</u>OH), 3.00 (td, J=7.3, 5.6 Hz, 1 H, C<u>H</u>NH₂), 2.00 (dtd, J=13.0, 7.7, 7.7, 5.6 Hz, 1 H, C<u>H</u>HCHNH₂), 1.97 (ddt, J=13.0, 8.7, 6.6, 6.6 Hz, 1 H, C<u>H</u>HCHOH), 1.63 - 1.77 (m, 2 H, C<u>H</u>₂CH₂CHOH), 1.53 (ddt, J=13.0, 9.5, 6.2, 6.2 Hz, 1 H, CH<u>H</u>CHOH), 1.37 (ddt, J=13.0, 8.3, 7.8, 7.8 Hz, 1 H, CH<u>H</u>CHNH₂)

¹³C NMR (101 MHz, MeOD) δ / ppm = 80.7 (<u>C</u>HOH), 60.8 (<u>C</u>HNH₂), 33.2 (<u>C</u>H₂CHOH), 32.1 (<u>C</u>H₂CHNH₂), 21.2 (<u>C</u>H₂CH₂CHOH)

HRMS (ESI⁺) m/z / Da = 102.0917, [M+H]⁺ found, [C₅H₁₂NO]⁺ requires 102.0913

$$[\pmb{\alpha}]_D^{20} \ / \ ^{\circ}10^{-1} {\rm cm}^2 {\rm g}^{-1} = \text{-}30.9 \ (c \ / \ {\rm g}(100 \ {\rm mL})^{-1} = 1.5 \ , \ {\rm EtOH})$$

The data are consistent with the literature. 13,15

check

$1.49 \quad (1R,2R)$ -2-Aminocyclopentan-1-ol 154

(1R,2R)-2-(((S)-1-Phenylethyl)amino)cyclopentan-1-ol **152** (3.00 g, 14.6 mmol, 1 eq.), $Pd(OH)_2$ (20 wt. % on C, moistened with 50 wt. % water, 0.5 g, 0.356 mmol, 0.025 eq.) and MeOH (50 ml) were stirred in a Paar hydrogenator at r.t. and 2.5 atm for 2 days. The mixture was then filtered through Celite and evaporated under reduced pressure. **154** was obtained as a yellow oil (1.48 g, 14.6 mmol, 100 %).

TLC $R_f = 0.10 (10 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 3300.0 (O-H), 2969.2 (C-H), 2872.7 (C-H)

¹**H NMR** (400 MHz, MeOD) δ / ppm = 3.77 (ddd, J=6.6, 6.2, 5.6, 1 H, C<u>H</u>OH), 3.00 (td, J = 7.4, 5.6 Hz, 1 H, C<u>H</u>NH₂), 2.00 (dtd, J = 13.0, 7.7, 7.7, 5.6 Hz, 1 H, C<u>H</u>HCHNH₂), 1.97 (ddt, J = 13.0, 8.7, 6.4, 6.4 Hz, 1 H, C<u>H</u>HCHOH), 1.64 - 1.77 (m, 2 H, C<u>H</u>₂CH₂CHOH), 1.53 (ddt, J = 13.0, 9.5, 6.2, 6.2 Hz, 1 H, CH<u>H</u>CHOH), 1.37 (ddt, J = 12.8, 8.5, 7.7, 7.7 Hz, 1 H, CH<u>H</u>CHNH₂)

 $^{13}\mathbf{C}$ NMR (101 MHz, MeOD) δ / ppm = 80.6 (<u>C</u>HOH), 60.7 (<u>C</u>HNH₂), 33.2 (<u>C</u>H₂CHOH), 32.2 (<u>C</u>H₂CHNH₂), 21.2 (<u>C</u>H₂CH₂CHOH)

HRMS (ESI⁺) m/z / Da = 102.0915, [M+H]⁺ found, [C₅H₁₂NO]⁺ requires 102.0913

$$[\pmb{\alpha}]_D^{20} \ / \ ^{\circ}10^{-1} \rm cm^2 g^{-1} = 33.4 \ (\it c \ / \ g(100 \ \rm mL)^{-1} = 0.5, \ EtOH)$$

The data are consistent with the literature. 13,15

$1.50 \quad (1R,2R)$ -2-((tert-butyldimethylsilyl)oxy)cyclopentan-1-amine 155

(1R,2R)-2-aminocyclopentan-1-ol **154** (0.480 g, 4.75 mmol) was stirred in dry CH_2Cl_2 (20 ml) under N_2 at 0 °C. TEA (3.14 ml, 2.28 g, 22.5 mmol, 5 eq.) was added dropwise, followed by TBSOTf (3 ml, 3.45 g, 13.1 mmol, 3 eq.) dropwise. The reaction was allowed to reach r.t. and stirred for 1 h. The reaction was quenched with NH_4Cl , diluted with CH_2Cl_2 (20 ml) and washed with water (20 ml). The organic phase was dried with Na_2SO_4 , concentrated under reduced pressure and purified by column chromatography (SiO₂, 4 % MeOH/CH₂Cl₂). **184**(RR) was obtained as a yellow oil (1.00 g, 4.64 mmol, 97.7 %).

TLC $R_f = 0.23$ (10 % MeOH/CH₂Cl₂, ninhydrin stain)

stains for others

check

 $^{1}\mathbf{H}\ \mathbf{NMR}\ (400\ \mathrm{MHz},\ \mathrm{CDCl_{3}})\ \delta\ /\ \mathrm{ppm} = 4.13\ (\mathrm{q},\ J=5.8\ \mathrm{Hz},\ 1\ \mathrm{H},\ \mathrm{C}\underline{\mathrm{H}}\mathrm{OSi}),\ 3.31\ (\mathrm{td},\ J=7.1,\ 5.2\ \mathrm{Hz},\ 1\ \mathrm{H},\ \mathrm{C}\underline{\mathrm{H}}\mathrm{NH}_{2}),\ 2.09\ -\ 2.19\ (\mathrm{m},\ 1\ \mathrm{H},\ \mathrm{C}\underline{\mathrm{H}}\mathrm{H}\mathrm{CHNH}_{2}),\ 1.97\ (\mathrm{ddq},\ J=8.8,\ 7.0,\ 6.0,\ 6.0,\ 6.0\ \mathrm{Hz},\ 1\ \mathrm{H},\ \mathrm{C}\underline{\mathrm{H}}\mathrm{H}\mathrm{CHOSi}),\ 1.74\ -\ 1.86\ (\mathrm{m},\ 2\ \mathrm{H},\ \mathrm{C}\underline{\mathrm{H}}_{2}\mathrm{CH}_{2}\mathrm{CHOSi}),\ 1.64\ -\ 1.74\ (\mathrm{m},\ 1\ \mathrm{H},\ \mathrm{C}\underline{\mathrm{H}}\underline{\mathrm{H}}\mathrm{CHOSi}),\ 1.58\ (\mathrm{ddt},\ J=13.2,\ 9.1,\ 6.0,\ 6.0\ \mathrm{Hz},\ 1\ \mathrm{H},\ \mathrm{C}\underline{\mathrm{H}}\underline{\mathrm{H}}\mathrm{CHNH}_{2}),\ 0.88\ (\mathrm{s},\ 9\ \mathrm{H},\ \mathrm{C}(\mathrm{C}\underline{\mathrm{H}}_{3})_{3}),\ 0.09\ (\mathrm{s},\ 3\ \mathrm{H},\ \mathrm{SiC}\underline{\mathrm{H}}_{3}),\ 0.07\ (\mathrm{s},\ 3\ \mathrm{H},\ \mathrm{SiC}\underline{\mathrm{H}}_{3})$

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 76.29 (<u>C</u>HOSi), 59.69 (<u>C</u>HNH), 32.18 (<u>C</u>H₂CHOSi), 26.78 (<u>C</u>H₂CHNH₂), 25.62 (C(<u>C</u>H₃)₃), 19.73 (<u>C</u>H₂CH₂CHOSi), 17.74 (<u>C</u>(CH₃)₃), -4.82 (Si<u>C</u>H₃), -5.23 (Si<u>C</u>H₃)

HRMS (ESI⁺) m/z / Da = ??, [M+H]⁺ found, [??]⁺ requires ??

 $[\pmb{\alpha}]_D^{20} \ / \ ^{\circ}10^{-1} \mathrm{cm}^2 \mathrm{g}^{-1} = ?? \ (c \ / \ \mathrm{g}(100 \ \mathrm{mL})^{-1} = ?? \ , \ \mathrm{MeOH})$

1.51 4-Chloro-N-((1S,2S)-2-hydroxycyclopentyl)butanamide 156

(1S,2S)-2-aminocyclopentan-1-ol **153** (500 mg, 4.94 mmol, 1 eq.), TEA (827 μ l, 600 mg, 5.93 mmol, 1.2 eq.) and CH₂Cl₂ (20 ml) were stirred at 0°C. 4-Chlorobutyryl chloride **185**(608 μ l, 766 mg, 5.43 mmol, 1.1 eq.) was added dropwise over 5 min. The mixture was stirred at 0°C for 30 min, then water (50 ml) was added. The organic layer was separated off, and the aqueous layer was extracted with CH₂Cl₂ (7×50 ml). The combined organic layers were dried with MgSO₄, concentrated under reduced pressure and purified by column chromatography (SiO₂, Et₂O). **186**(SS) was obtained as a white amorphous solid (651 mg, 3.16 mmol, 64.1 %).

TLC $R_f = 0.35$ (EtOAc, ninhydrin stain)

check stains for oth-

 $mp T / {}^{\circ}C = ?? (??)$

IR (neat) ν_{max} / cm⁻¹ = 3277.6 (N-H and O-H), 2962.2 (C-H), 2876.0 (C-H), 1636.3 (amide C=O)

 $^{1}\mathbf{H}$ NMR (400 MHz, CDCl₃) δ / ppm = 6.12 (br s, 1 H, N<u>H</u>), 4.42 (br s, 1 H, O<u>H</u>), 3.94 (q, J=6.6 Hz, 1 H, C<u>H</u>OH), 3.82 (tt, J=8.4, 5.3 Hz, 1 H, C<u>H</u>NH), 3.60 (t, J=6.2 Hz, 2 H, C<u>H</u>2Cl), 2.38 (t, J=7.2 Hz, 2 H, C<u>H</u>2C=O), 2.05 - 2.16 (m, 3 H, C<u>H</u>HCHNH and C<u>H</u>2CH₂Cl), 1.96 - 2.04 (m, 1 H, C<u>H</u>HCHOH), 1.74 - 1.85 (m, 1 H, C<u>H</u>HCH₂CHOH), 1.58 - 1.73 (m, 2 H, CH<u>H</u>CH₂CHOH and CH<u>H</u>CHOH), 1.43 (dq, J=12.7, 8.3 Hz, 1 H, CHHCHNH)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 173.8 (<u>C</u>=O), 79.4 (<u>C</u>HOH), 60.6 (<u>C</u>HNH), 44.4 (<u>C</u>H₂Cl), 32.8 (<u>C</u>H₂C=O), 32.4 (<u>C</u>H₂CHOH), 30.1 (<u>C</u>H₂CHNH), 28.0 (<u>C</u>H₂CH₂Cl), 21.1 (<u>C</u>H₂CH₂CHOH)

HRMS (ESI⁺) m/z / Da = 228.0787, [M+Na]⁺ found, [C₉H₁₆ClNNaO₂]⁺ requires 228.0762

$$[\boldsymbol{\alpha}]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = -13.0 \ (c / \text{g}(100 \text{ mL})^{-1} = 0.5, \text{MeOH})$$

1.52 4-Chloro-N-((1R,2R)-2-hydroxycyclopentyl)butanamide 157

(1R,2R)-2-aminocyclopentan-1-ol **154** (72.3 mg, 716 μ mol, 1 eq.), TEA (500 μ l, 363 mg, 3.58 mmol, 5 eq.) and CH_2Cl_2 (5 ml) were stirred at 0°C. 4-Chlorobutyryl chloride **185**(179 μ l, 226 mg, 1.60 mmol, 1.1 eq.) was added dropwise over 5 min. The mixture was stirred at 0°C for 30 min, then water (10 ml) was added. The organic layer was separated off, and the aqueous layer was extracted with 10 % *i*-PrOH/CHCl₃ (2 × 10 ml). The combined organic layers were dried with MgSO₄, concentrated under reduced pressure and purified by column chromatography (SiO₂, Et₂O). **157** was obtained as a white amorphous solid (35.6 mg, 173 μ mol, 24.2 %).

times
with
spaces?

TLC $R_f = 0.35$ (EtOAc)

$$mp T / {}^{\circ}C = ?? (??)$$

¹H NMR (400 MHz, CDCl₃) δ / ppm = 6.05 (br s, 1 H, N<u>H</u>), 4.55 (br s, 1 H, O<u>H</u>), 3.95 (q, J=6.6 Hz, 1 H, C<u>H</u>OH), 3.82 (tt, J=8.4, 5.3 Hz, 1 H, C<u>H</u>NH), 3.60 (t, J=6.2 Hz, 2 H, C<u>H</u>₂Cl), 2.38 (t, J=7.0 Hz, 2 H, C<u>H</u>₂C=O), 2.05 - 2.17 (m, 3 H, C<u>H</u>HCHNH and C<u>H</u>₂CH₂Cl), 1.94 - 2.05 (m, 1 H, C<u>H</u>HCHOH), 1.74 - 1.86 (m, 1 H, C<u>H</u>HCH₂CHOH), 1.58 - 1.74 (m, 2 H, CH<u>H</u>CH₂CHOH and CH<u>H</u>CHOH), 1.42 (dq, J=12.5, 8.4 Hz, 1 H, CH<u>H</u>CHNH)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 173.8 (<u>C</u>=O), 79.4 (<u>C</u>HOH), 60.6 (<u>C</u>HNH), 44.4 (<u>C</u>H₂Cl), 32.8 (CH₂C=O), 32.4 (CH₂CHOH), 30.2 (CH₂CHNH), 28.0 (CH₂CH₂Cl), 21.2 (CH₂CH₂CHOH)

HRMS (ESI⁺) m/z / Da = 206.0939, [M+H]⁺ found, [C₉H₁₇ClNO₂]⁺ requires 206.0948

$$[\pmb{\alpha}]_D^{20} \ / \ ^{\circ}10^{-1} \mathrm{cm}^2 \mathrm{g}^{-1} = 10.0 \ (c \ / \ \mathrm{g}(100 \ \mathrm{mL})^{-1} = 0.05, \, \mathrm{MeOH})$$

1.53 4-Azido-N-((1R,2R)-2-((tert-butyldimethylsilyl)oxy)cyclopentyl)butanamide 158

(1R,2R)-2-((tert-butyldimethylsilyl)oxy)cyclopentan-1-amine 155 (50 mg, 0.232 mmol, 1 eq.) and NaHCO₃ (22.0 mg, 0.262 mmol, 1.1 eq.) were added to $\rm CH_2Cl_2$ (3 ml) and water (3 ml). 4-Bromobutyryl chloride (25.3 ml, 40.5 mg, 0.219 mmol, 0.95 eq.) was added dropwise at 0 °C and the mixture was stirred for 3 h. The aqueous layer was removed and NaN₃ (100 mg, 1.54 mmol, 6.6 eq.) and DMF (3 ml) were added. The mixture was stirred at 40 °C for 6 h. The solvents were then evaporated using a N₂ stream and the residue was purified by column chromatography (SiO₂, 0.5 % MeOH/CH₂Cl₂). 187(RR) was obtained as a clear liquid (71 mg, 0.217 mmol, 99.2 %).

check
brackets inside for
all

TLC $R_f = 0.84 \ (1 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 3287.9 (N-H), 2953.4 (C-H), 2933.2 (C-H), 2882.7 (C-H), 2857.1 (C-H), 2094.9 (azide), 1639.4 (amide C=O)

¹H NMR (400 MHz, CDCl₃) δ / ppm = 5.35 (d, J = 5.1 Hz, 1 H, N<u>H</u>), 3.97 - 4.01 (m, 1 H, C<u>H</u>OSi), 3.93 - 3.98 (m, 1 H, C<u>H</u>NH), 3.35 (t, J = 6.6 Hz, 2 H, C<u>H</u>₂N₃), 2.24 (t, J = 7.0 Hz, 2 H, C<u>H</u>₂C=O), 2.09 - 2.19 (m, 1 H, C<u>H</u>HCHNH), 1.89 - 1.97 (quin, J = 6.8 Hz, 2 H, C<u>H</u>₂CH₂N₃), 1.74 - 1.84 (m, 2 H, C<u>H</u>HCHOSi and C<u>H</u>HCH₂CHOSi), 1.60 - 1.70 (m, 1 H, CH<u>H</u>CH₂CHOSi), 1.51 - 1.61 (m, 1 H, CH<u>H</u>CHOSi), 1.31 - 1.39 (m, 1 H, CH<u>H</u>CHNH), 0.87 (s, 9 H, C(C<u>H</u>₃)₃), 0.08 (s, 3 H, SiC<u>H</u>₃), 0.06 (s, 3 H, SiC<u>H</u>₃)

 ${}^{13}\textbf{C NMR} \text{ (101 MHz, CDCl}_3) \ \delta \ / \text{ ppm} = 171.17 \ (\underline{\textbf{C}} = \textbf{O}), 77.80 \ (\underline{\textbf{C}} \textbf{HOSi}), 58.36 \ (\underline{\textbf{C}} \textbf{HNH}), 50.77 \ (\underline{\textbf{C}} \textbf{H}_2 \textbf{N}_3), 33.29 \\ (\underline{\textbf{C}} \textbf{H}_2 \textbf{C} = \textbf{O}), 32.57 \ (\underline{\textbf{C}} \textbf{H}_2 \textbf{C} \textbf{HOSi}), 29.36 \ (\underline{\textbf{C}} \textbf{H}_2 \textbf{C} \textbf{HNH}), 25.72 \ (\underline{\textbf{C}} (\underline{\textbf{C}} \textbf{H}_3)_3), 24.77 \ (\underline{\textbf{C}} \textbf{H}_2 \textbf{C} \textbf{H}_2 \textbf{N}_3), 20.40 \ (\underline{\textbf{C}} \textbf{H}_2 \textbf{C} \textbf{HOSi}), \\ 17.95 \ (\underline{\textbf{C}} (\textbf{CH}_3)_3), -4.75 \ (\textbf{Si} \underline{\textbf{C}} \textbf{H}_3)$

HRMS (ESI⁺) m/z / Da = 327.2221, [M+H]⁺ found, [C₁₅H₃₁N₄O₂Si]⁺ requires 327.2216

 $[\boldsymbol{\alpha}]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = 12.4 \ (c / \text{g}(100 \text{ mL})^{-1} = 0.5, \text{MeOH})$

1.54 4-Azido-N-((1S,2S)-2-hydroxycyclopentyl)butanamide 159

4-Chloro-N-((1S,2S)-2-hydroxycyclopentyl) butanamide **156** (200 mg, 0.972 mmol, 1 eq.) and NaN₃ (126 mg, 1.94 mmol, 2 eq.) were stirred in acetonitrile (4 ml) at 50 °C for 16 h. The solvent was then evaporated under reduced pressure and the residue was partitioned between water (20 ml) and 10 % i-PrOH/CHCl₃ (20 ml). The aqueous layer was extracted again with 10 % i-PrOH/CHCl₃ (3 × 20 ml) and the combined organic fractions were dried with MgSO₄ and evaporated under reduced pressure. **159** was obtained as white needles (181 mg, 0.852 mmol, 87.6 %).

TLC $R_f = 0.35$ (EtOAc, ninhydrin stain)

check stains for oth-

mp $T / {}^{\circ}\text{C} = 56\text{-}59.5 \ (i\text{-PrOH}, \text{CHCl}_3)$

IR (neat) ν_{max} / cm⁻¹ = 3279.9 (N-H and O-H), 2965.6 (C-H), 2875.4 (C-H), 2094.6 (azide), 1636.8 (amide C=O)

¹**H NMR** (400 MHz, CDCl₃) δ / ppm = 6.72 (d, J = 4.4 Hz, 1 H, N<u>H</u>), 4.82 (br. s., 1 H, O<u>H</u>), 3.88 (q, J = 6.6 Hz, 1 H, C<u>H</u>OH), 3.75 (tdd, J = 8.4, 8.4, 6.6, 4.4 Hz, 1 H, C<u>H</u>NH), 3.28 (t, J = 6.6 Hz, 2 H, C<u>H</u>₂N₃), 2.23 (t, J = 7.3 Hz, 2 H, C<u>H</u>₂C=O), 2.04 (dtd, J = 13.0, 8.0, 8.0, 4.9 Hz, 1 H, C<u>H</u>HCHNH), 1.92 (dtd, J = 13.0, 7.6, 7.6, 5.8 Hz, 1 H, C<u>H</u>HCHOH), 1.84 (quin, J = 7.0 Hz, 2 H, C<u>H</u>₂CH₂N₃), 1.59 - 1.77 (m, 2 H, C<u>H</u>₂CH₂CHOH), 1.54 (ddt, J = 12.7, 9.0, 6.7, 6.7 Hz, 1 H, CH<u>H</u>CHOH), 1.39 (dq, J = 12.9, 8.4 Hz, 1 H, CH<u>H</u>CHNH)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 173.8 (<u>C</u>=O), 78.8 (<u>C</u>HOH), 59.9 (<u>C</u>HNH), 50.5 (<u>C</u>H₂N₃), 32.5 (<u>C</u>H₂C=O), 32.0 (<u>C</u>H₂CHOH), 29.5 (<u>C</u>H₂CHNH), 24.6 (<u>C</u>H₂CH₂N₃), 20.7 (<u>C</u>H₂CH₂CHOH)

HRMS (ESI⁺) m/z / Da = 235.1174, [M+Na]⁺ found, [C₉H₁₆N₄NaO₂]⁺ requires 235.1171

 $[\pmb{\alpha}]_D^{20} \ / \ ^{\circ}10^{-1} \rm cm^2 g^{-1} = \text{-}10.2 \ (\it c \ / \ g(100 \ \rm mL)^{-1} = 0.5, \ MeOH)$

1.55 4-Azido-N-((1R,2R)-2-hydroxycyclopentyl)butanamide 160

4-Chloro-N-((1S,2S)-2-hydroxycyclopentyl)butanamide **156** (35.0 mg, 0.170 mmol, 1 eq.) and NaN₃ (22.1 mg, 0.340 mmol, 2 eq.) were stirred in acetonitrile (2 ml) at 50 °C for 24 h. The reaction mixtures was then partitioned between water (20 ml) and 10 % i-PrOH/CHCl₃ (5 ml). The aqueous layer was extracted again with 10 % i-PrOH/CHCl₃ (2 × 5 ml) and the combined organic fractions were dried with MgSO₄ and evaporated under reduced pressure. **159** was obtained as a white solid (16.2 mg, 0.0764 mmol, 45.0 %).

TLC $R_f = 0.35$ (EtOAc)

IR (neat) ν_{max} / cm⁻¹ = 3286.7 (N-H and O-H), 2957.6 (C-H), 2930.6 (C-H), 2860.7 (C-H), 2094.7 (azide), 1642.2 (amide C=O)

 $^{1}\mathbf{H} \ \mathbf{NMR} \ (400 \ \mathrm{MHz}, \ \mathrm{CDCl_{3}}) \ \delta \ / \ \mathrm{ppm} = 5.82 \ (\mathrm{br} \ \mathrm{s}, 1 \ \mathrm{H}, \ \mathrm{N}\underline{\mathrm{H}}), \ 4.45 \ (\mathrm{br. s.}, 1 \ \mathrm{H}, \ \mathrm{O}\underline{\mathrm{H}}), \ 3.96 \ (\mathrm{q}, \ \mathrm{J} = 6.6 \ \mathrm{Hz}, 1 \ \mathrm{H}, \ \mathrm{C}\underline{\mathrm{H}}\mathrm{OH}), \ 3.83 \ (\mathrm{tdd}, \ \mathrm{J} = 8.5, \ 8.5, \ 6.0, \ 4.6 \ \mathrm{Hz}, 1 \ \mathrm{H}, \ \mathrm{C}\underline{\mathrm{H}}\mathrm{NH}), \ 3.37 \ (\mathrm{t}, \ \mathrm{J} = 6.4 \ \mathrm{Hz}, 2 \ \mathrm{H}, \ \mathrm{C}\underline{\mathrm{H}}_{2}\mathrm{N}_{3}), \ 2.31 \ (\mathrm{t}, \ \mathrm{J} = 7.2 \ \mathrm{Hz}, 2 \ \mathrm{H}, \ \mathrm{C}\underline{\mathrm{H}}_{2}\mathrm{C} = \mathrm{O}), \ 2.09 \ - \ 2.19 \ (\mathrm{m}, 1 \ \mathrm{H}, \ \mathrm{C}\underline{\mathrm{H}}\mathrm{H}\mathrm{C}\mathrm{H}\mathrm{NH}), \ 1.99 \ - \ 2.06 \ (\mathrm{m}, 1 \ \mathrm{H}, \ \mathrm{C}\underline{\mathrm{H}}\mathrm{H}\mathrm{C}\mathrm{H}\mathrm{O}\mathrm{H}), \ 1.90 \ - \ 1.97 \ (\mathrm{m}, 2 \ \mathrm{H}, \ \mathrm{C}\underline{\mathrm{H}}_{2}\mathrm{C}\mathrm{H}_{2}\mathrm{N}_{3}), \ 1.60 \ - \ 1.85 \ (\mathrm{m}, 3 \ \mathrm{H}, \ \mathrm{C}\underline{\mathrm{H}}_{2}\mathrm{C}\mathrm{H}\underline{\mathrm{H}}\mathrm{C}\mathrm{H}\mathrm{O}\mathrm{H}), \ 1.42 \ (\mathrm{dq}, \ \mathrm{J} = 12.8, \ 8.3 \ \mathrm{Hz}, 1 \ \mathrm{H}, \ \mathrm{C}\mathrm{H}\underline{\mathrm{H}}\mathrm{C}\mathrm{H}\mathrm{N}\mathrm{H})$

 $^{13}\textbf{C NMR} \ (101 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ / \ \text{ppm} = 173.8 \ (\underline{\text{C}} = \text{O}), \ 79.7 \ (\underline{\text{C}} \text{HOH}), \ 61.0 \ (\underline{\text{C}} \text{HNH}), \ 50.7 \ (\underline{\text{C}} \text{H}_2 \text{N}_3), \ 32.8 \ (\underline{\text{C}} \text{H}_2 \text{C} = \text{O}), \ 32.6 \ (\underline{\text{C}} \text{H}_2 \text{CHOH}), \ 30.5 \ (\underline{\text{C}} \text{H}_2 \text{CHNH}), \ 24.7 \ (\underline{\text{C}} \text{H}_2 \text{CH}_2 \text{N}_3), \ 21.3 \ (\underline{\text{C}} \text{H}_2 \text{C} \text{HOH})$

HRMS (ESI⁺) m/z / Da = 235.1178, [M+Na]⁺ found, [C₉H₁₆N₄NaO₂]⁺ requires 235.1171

1.56 Methyl 1-cyclopropyl-6-fluoro-7-(4-(4-(((1S,2S)-2-hydroxycyclopentyl)amino)-4-oxobutyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate 161

150 (200 mg, 0.367 mmol, 1 eq.), 153 (80 mg, 0.791 mmol, 2.1 eq.), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (112 mg, 0.584 mmol, 1.6 eq.), 1-hydroxybenzotriazole (96 mg, 0.710 mmol, 1.9 eq.) and DIPEA (192 μ l, 142 mg, 1.10 mmol, 3 eq.) were dissolved in DMF (5 ml) and stirred at r.t. for 16 h. The solvent was removed using a stream of N₂ and the residue was purified by preparatory HPLC (5-60 % acetonitrile/water over 12 min). The combined pure fractions were evaporated under reduced pressure and then partitioned between NaHCO₃ (aq., sat., 10 ml) and CH₂Cl₂ (10 ml). The organic layer was removed and the aqueous layer was extracted twice more with CH₂Cl₂ (2 × 10 ml). The combined organic fractions were dried with MgSO₄ and evaporated under reduced pressure. 161 was obtained as a white amorphous solid (73.0 mg, 0.142 mmol, 38.7 %).

TLC $R_f = 0.43 \ (30 \% \ \text{MeOH/EtOAc})$

IR (neat) ν_{max} / cm⁻¹ = 2972.9 (C-H), 2901.5 (C-H), 1728.4 (ester C=O), 1656.3 (amide C=O), 1612.9 (quinolone C=O)

¹H NMR (400 MHz, DMSO d₆) δ / ppm = 8.44 (s, 1 H, ortho to C(=O)OC<u>H</u>₃), 7.75 (d, J = 13.5 Hz, 1 H, ortho to F), 7.70 (d, J = 7.2 Hz, 1 H, CHN<u>H</u>), 7.43 (d, J = 7.5 Hz, 1 H, meta to F), 4.74 (d, J = 4.0 Hz, 1 H, CHO<u>H</u>), 3.78 - 3.82 (m, 1 H, C<u>H</u>OH), 3.74 - 3.78 (m, 1 H, C<u>H</u>NH), 3.74 (s, 3 H, C<u>H</u>₃), 3.65 (tt, J = 7.2, 3.9 Hz, 1 H, NC<u>H</u>(CH₂)₂), 3.25 (t, J = 4.8 Hz, 4 H, CH₂N(CH₂C<u>H</u>₂)CH₂CH₂), 2.57 (br s, 4 H, CH₂N(C<u>H</u>₂)C<u>H</u>₂), 2.34 (t, J = 7.4 Hz, 2 H, C<u>H</u>₂N(CH₂)CH₂), 2.11 (t, J = 7.4 Hz, 2 H, C<u>H</u>₂CH₂CH₂N(CH₂)CH₂), 1.92 (dddd, J = 13.0, 8.7, 7.3, 6.0 Hz, 1 H, C<u>H</u>HCHNH), 1.78 (dddd, J = 12.6, 8.9, 6.3, 6.3 Hz, 1 H, C<u>H</u>HCHOH), 1.69 (quin, J = 7.3 Hz, 2 H, C<u>H</u>₂CH₂N(CH₂)CH₂), 1.54 - 1.65 (m, 2 H, C<u>H</u>₂CH₂CHOH), 1.42 (ddt, J = 13.1, 8.2, 5.3, 5.3 Hz, 1 H, CH<u>H</u>CHOH), 1.32 (dddd, J = 13.4, 8.5, 6.8, 5.8 Hz, 1 H, CH<u>H</u>CHNH), 1.21 - 1.29 (m, 2 H, NCH(C<u>H</u>H)₂), 1.07 - 1.13 (m, 2 H, NCH(CH<u>H</u>)₂)

 $34.8 \ (N\underline{C}H(CH_2)_2), \ 33.3 \ (C(=O)\underline{C}H_2), \ 32.2 \ (\underline{C}H_2CHOH), \ 29.5 \ (\underline{C}H_2CHNH), \ 22.5 \ (C(=O)CH_2\underline{C}H_2), \ 20.6 \ (\underline{C}H_2CH_2CHOH), \ 7.6 \ (NCH(\underline{C}H_2)_2)$

¹⁹**F NMR** (376.45 MHz, DMSO d₆) δ / ppm = -124.3 (ciprofloxacin F)

HRMS (ESI⁺) m/z / Da = 515.2661, [M+H]⁺ found, [C₂₇H₃₆FN₄O₅]⁺ requires 515.2670

$$[\alpha]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = -6.0 \ (c / \text{g}(100 \text{ mL})^{-1} = 0.05, \text{MeOH})$$

1.57 Methyl 1-cyclopropyl-6-fluoro-7-(4-(4-(((1R,2R)-2-hydroxycyclopentyl)amino)-4-oxobutyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate 162

150 (52.1 mg, 95.5 μ mol, 1 eq.), 154 (19.5 mg, 193 μ mol, 2 eq.), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (29.7 mg, 155 μ mol, 1.6 eq.), 1-hydroxybenzotriazole (25.8 mg, 191 μ mol, 2 eq.) and DIPEA (33.3 μ l, 24.7 mg, 191 μ mol, 2 eq.) were dissolved in DMF (2 ml) and stirred at r.t. for 16 h. The solvent was removed using a stream of N₂ and the residue was purified by preparatory HPLC (5-50 % acetonitrile/water over 15 min). The combined pure fractions were evaporated under reduced pressure and then partitioned between NaHCO₃ (aq., sat., 5 ml) and CH₂Cl₂ (5 ml). The organic layer was removed and the aqueous layer was extracted twice more with CH₂Cl₂ (2 × 5 ml). The combined organic fractions were dried with MgSO₄ and evaporated under reduced pressure. 161 was obtained as a white amorphous solid (4.9 mg, 9.5 μ mol, 9.9 %).

done vet?

TLC $R_f = 0.38 \ (30 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 2937.7 (C-H), 1721.4 (ester C=O), 1620.5 (amide C=O and quinolone C=O)

¹H NMR (500 MHz, DMSO d₆) δ / ppm = 8.44 (s, 1 H, ortho to C(=O)OC<u>H</u>₃), 7.75 (d, J=13.5 Hz, 1 H, ortho to F), 7.69 (d, J=6.9 Hz, 1 H, CHN<u>H</u>), 7.43 (d, J=7.6 Hz, 1 H, meta to F), 4.73 (br s, 1 H, CHO<u>H</u>), 3.77 - 3.81 (m, 1 H, C<u>H</u>OH), 3.74 - 3.77 (m, 1 H, C<u>H</u>NH), 3.73 (s, 3 H, C<u>H</u>₃), 3.65 (tt, J=6.9, 4.0 Hz, 1 H, NC<u>H</u>(CH₂)₂), 3.24 (br. t, J=4.2, 4.2 Hz, 4 H, CH₂N(CH₂C<u>H</u>₂)CH₂C<u>H</u>₂), 2.55 (br t, J=5.0, 5.0 Hz, 4 H, CH₂N(C<u>H</u>₂)C<u>H</u>₂), 2.32 (t, J=7.2 Hz, 2 H, C<u>H</u>₂N(CH₂)CH₂), 2.10 (t, J=7.4 Hz, 2 H, C<u>H</u>₂CH₂CH₂N(CH₂)CH₂), 1.92 (dddd, J=13.0, 8.7, 7.3, 6.0 Hz, 1 H, C<u>H</u>HCHNH), 1.77 (ddt, J=12.6, 8.9, 6.3, 6.3 Hz, 1 H, C<u>H</u>HCHOH), 1.68 (quin, J=7.4 Hz, 2 H, C<u>H</u>₂CH₂CH₂N(CH₂)CH₂), 1.53 - 1.64 (m, 2 H, C<u>H</u>₂CH₂CHOH), 1.42 (ddt, J=12.9, 8.4, 5.2, 5.2 Hz, 1 H, C<u>H</u><u>H</u>CHOH), 1.31 (ddt, J=13.0, 8.6, 6.4, 6.4 Hz, 1 H, CH<u>H</u>CHNH), 1.22 - 1.28 (m, 2 H, NCH(C<u>H</u>H)₂), 1.06 - 1.12 (m, 2 H, NCH(CH<u>H</u>)₂)

¹³C NMR (126 MHz, DMSO d₆) δ / ppm = 171.9 (CH₂C(=O)NH), 171.5 (<u>C</u>(=O)CC(=O)OCH₃), 165.0 (<u>C</u>(=O)OCH₃), 152.6 (d, J=247.4 Hz, *ipso* to F), 148.2 (<u>C</u>=CC(=O)OCH₃), 143.9 (d, J=10.3 Hz, *ipso* to piperazine), 138.1 (*para* to F), 121.7 (d, J=6.4 Hz, *para* to piperazine), 111.5 (d, J=23.0 Hz, *ortho* to C=O and *ortho* to F), 109.0 (<u>C</u>C(=O)OCH₃), 106.2 (*meta* to C=O and *meta* to F), 76.2 (<u>C</u>HOH), 57.6 (<u>C</u>HNH), 57.2 (<u>C</u>(=O)CH₂CH₂CH₂N), 52.4 (C(=O)CH₂CH₂CH₂N(<u>C</u>H₂)<u>C</u>H₂), 51.3 (<u>C</u>H₃), 49.6 (C(=O)CH₂CH₂CH₂N(CH₂<u>C</u>H₂)CH₂CH₂ 49.6 (C(=O)CH₂CH₂CH₂N(CH₂CH₂), 34.7 (N<u>C</u>H(CH₂)₂), 33.2 (C(=O)<u>C</u>H₂), 32.2 (<u>C</u>H₂CHOH), 29.5 (<u>C</u>H₂CHNH), 22.5 (C(=O)CH₂CH₂CH₂), 20.6 (<u>C</u>H₂CH₂CHOH), 7.5 (NCH(<u>C</u>H₂)₂)

¹⁹**F NMR** (376.45 MHz, MeOD) δ / ppm = -125.47

HRMS (ESI⁺) m/z / Da = 515.2667, [M+H]⁺ found, $[C_{27}H_{36}FN_4O_5]^+$ requires 515.2670

$$[\alpha]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = 8.0 \ (c / \text{g}(100 \text{ mL})^{-1} = 0.05, \text{MeOH})$$

still
TFA
present
after
desalt attempt

1.58 Methyl (R)-1-cyclopropyl-6-fluoro-4-oxo-7-(4-(4-oxo-4-((2-oxocyclopentyl)amino)butyl)piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylate 163

Methyl 1-cyclopropyl-6-fluoro-7-(4-(4-(((1R,2R)-2-hydroxycyclopentyl)amino)-4-oxobutyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate **162** (20.0 mg, 38.9 μ mol, 1 eq.) and Dess-Martin Periodane (32.8 mg, 77.4 μ mol, 2 eq.) were stirred in CH₂Cl₂ (3 ml) for 6 h. The solvent was removed under reduced pressure and the residue was purified by preparatory HPLC (5-50 % acetonitrile/water over 10 min). The combined pure fractions were evaporated under reduced pressure, then NaHCO₃ (aq., sat., 30 ml) and 10 % i-PrOH/CHCl₃ (30 ml) were added. The organic layer was removed and dried with MgSO₄, then evaporated under reduced pressure. **163** was obtained as a white amorphous solid (11.3 mg, 22.0 μ mol, 56.7 %).

¹**H NMR** (400 MHz, MeOD) δ / ppm = ??

¹³**C NMR** (101 MHz, MeOD) δ / ppm = ??

¹⁹**F NMR** (376.45 MHz, MeOD) δ / ppm = ??

HRMS (ESI⁺) m/z / Da = 513.2495, [M+H]⁺ found, [C₂₇H₃₄FN₄O₅]⁺ requires 513.2513

 $[\alpha]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = 6.7 (c / \text{g}(100 \text{ mL})^{-1} = 0.075, \text{MeOH})$

1.59 7-(4-(4-(4-(((1R,2R)-2-((tert-butyldimethylsilyl)oxy)cyclopentyl)amino)-4-oxobutyl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid 164

1-Cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid **176** (42.9 mg, 104 μ mol, 1 eq.) and 4-azido-N-((1R,2R)-2-((tert-butyldimethylsilyl)oxy)cyclopentyl)butanamide **187**(RR) (33.9 mg, 104 μ mol, 1 eq.) were dissolved in 10 % water/t-BuOH (3 ml), and the mixture was degassed by bubbling N₂ through it. A solution of CuSO₄ and THPTA (104 μ l, 10.4 μ mol, 0.1 eq. 100 mM, aq.) was added, followed by a solution of sodium ascorbate (208 μ l, 20.8 μ mol, 0.2 eq., 100 mM, aq.). The mixture was stirred at room temperature under argon for 16 h, then solvent was removed under reduced pressure. The resudue was partitioned between water (10 ml) and CH₂Cl₂ (10 ml), the organic layer was separated and the aqeous layer was extracted again with CH₂Cl₂ (10 ml). The combined organic layers were dried with MgSO₄ and evaporated under reduced pressure. **164** was obtained as a clear glass (67.1 mg, 90.9 μ mol, 87.4 %).

IR (neat) ν_{max} / cm⁻¹ = 2951.3 (C-H), 2929.2 (C-H), 2855.5 (C-H), 1741.0 (carboxylic acid C=O), 1640.3 (amide C=O), 1626.6 (quinolone C=O), 1612.3 (triazole)

¹H NMR (400 MHz, CDCl₃) δ / ppm = 8.67 (s, 1 H, ortho to C(=O)OH), 7.87 (d, J = 13.1 Hz, 1 H, ortho to F), 7.34 (s, 1 H, CH=CCH₂), 7.33 (d, J = 8.2 Hz, 1 H, meta to F), 5.92 (t, J = 6.6 Hz, 1 H, CHNH), 4.35 (t, J = 6.7 Hz, 2 H, CH₂NCH=C), 3.96 - 4.02 (m, 1 H, CHOSi), 3.90 - 3.96 (m, 1 H, CHNH), 3.55 (tt, J = 6.7, 4.0 Hz, 1 H, NCH(CH₂)₂), 3.34 (br t, J = 5.0 Hz, 4 H, CH₂N(CH₂CH₂)CH₂CH₂), 2.71 (t, J = 7.5 Hz, 2 H, CH=CCH₂), 2.66 (br s, 4 H, CH₂N(CH₂)CH₂), 2.46 (t, J = 7.3 Hz, 2 H, CH₂N(CH₂)CH₂), 2.03 - 2.22 (m, 5 H, CHHCHNH, C(=O)CH₂ and C(=O)CH₂CH₂), 1.65 - 1.83 (m, 4 H, CHHCHOSi, CHHCH₂CHOSi and NCH=CCH₂CH₂), 1.47 - 1.65 (m, 4 H, CHHCHOSi, CHHCH₂CHOSi and NCH=CCH₂CH₂CH₂), 1.33 - 1.41 (m, 3 H, CHHCHNH and NCH(CHH)₂), 1.14 - 1.20 (m, 2 H, NCH(CHH)₂), 0.82 (s, 9 H, C(CH₃)₃), 0.03 (s, 3 H, SiCH₃), 0.01 (s, 3 H, SiCH₃)

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 176.9 (\underline{C} (=O)CC(=O)OH), 170.9 (CH₂ \underline{C} (=O)NH), 166.9 (\underline{C} (=O)OH), 153.5 (d, J = 251.4 Hz, ipso to F), 147.9 (CH= \underline{C} CH₂), 147.2 (\underline{C} =CC(=O)OH), 145.8 (d, J = 10.4 Hz, ipso to piperazine), 139.0 (para to F), 120.9 (N \underline{C} H=CCH₂), 119.4 (d, J = 7.8 Hz, para to piperazine), 112.0 (d, J = 23.4 Hz, ortho to C=O and ortho to F), 107.7 (\underline{C} C(=O)OH), 104.7 (d, J = 3.5 Hz, meta to C=O and meta to F), 77.7 (\underline{C} HOSi), 58.2 (\underline{C} HNH), 57.9 (CH=CCH₂CH₂CH₂CH₂N), 52.6 (CH=CCH₂CH₂CH₂CH₂CH₂N(\underline{C} H₂), 49.5 (d, J = 6.1 Hz, CH=CCH₂CH₂CH₂CH₂N(CH₂CH₂), 48.9 (d, J = 3.5 Hz, \underline{C} H₂NCH=CCH₂), 35.3 (N \underline{C} H(CH₂)₂), 32.6 (C(=O) \underline{C} H₂), 32.6 (\underline{C} H₂CHOSi), 29.3 (\underline{C} H₂CHNH), 27.2 (CH=CCH₂ \underline{C} H₂), 26.0 - 26.3 (C(=O)CH₂ \underline{C} H₂ and CH=CCH₂CH₂CH₂), 25.6 (C(\underline{C} H₃)₃), 25.4 (CH=C \underline{C} H₂), 20.4 (\underline{C} H₂CH₂CHOSi),

F??

¹⁹**F NMR** (376.45 MHz, CDCl₃) δ / ppm = ??

 ${\bf HRMS}~({\rm ESI^+})~m/z~/~{\rm Da} = 738.4164,~[{\rm M+H}]^+~{\rm found},~[{\rm C}_{38}{\rm H}_{57}{\rm FN}_7{\rm O}_5{\rm Si}]^+~{\rm requires}~738.4169$

$$[\alpha]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = 4.5 \ (c / \text{g}(100 \text{ mL})^{-1} = 0.2, \text{MeOH})$$

1.60 1-Cyclopropyl-6-fluoro-7-(4-(4-(1-(4-(((1S,2S)-2-hydroxycyclopentyl)amino)-4-oxobutyl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-4-oxo-1,4-dihydroquino-line-3-carboxylic acid 165

$$\begin{array}{c} O \\ O \\ \vdots \\ O \\ N \end{array}$$

1-Cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid 176 (42.9 mg, 104 μ mol, 1 eq.) and 4-azido-N-((1S,2S)-2-hydroxycyclopentyl)butanamide 159 (22.0 mg, 104 μ mol, 1 eq.) were dissolved in 10 % water/t-BuOH (3 ml), and the mixture was degassed by bubbling N_2 through it. A solution of CuSO₄ and THPTA (104 μ l, 10.4 μ mol, 0.1 eq. 100 mM, aq.) was added, followed by a solution of sodium ascorbate (208 μ l, 20.8 μ mol, 0.2 eq., 100 mM, aq.). The mixture was stirred at room temperature under argon for 16 h. Water (30 ml) and CH₂Cl₂ (30 ml) were added, the organic layer was separated and the aqueous layer was extracted again with CH₂Cl₂ (4 × 30 ml). The combined organic layers were dried with MgSO₄ and evaporated under reduced pressure. The residue was purified by preparatory HPLC (5-95 % acetonitrile/water over 20 min). The combined pure fractions were evaporated under reduced pressure and then partitioned between NaHCO₃ (aq., sat., 10 ml) and 10 % i-PrOH/CHCl₃ (10 ml). The organic layer was dried with MgSO₄ and evaporated under reduced pressure. **164** was obtained as a white amorphous solid (17.6 mg, 28.2 μ mol, 27.1 %).

IR (neat) ν_{max} / cm⁻¹ = 2967.0 (C-H), 2902.2 (C-H), 1721.4 (carboxylic acid C=O), 1646.7 (amide C=O), 1627.0 (quinolone C=O), 1613.0 (triazole)

¹H NMR (700 MHz, DMSO d₆) δ / ppm = 8.64 (s, 1 H, ortho to C(=O)OH), 7.87 (d, J = 13.3 Hz, 1 H, ortho to F), 7.84 (s, 1 H, CH=CCH₂), 7.75 (d, J = 7.1 Hz, 1 H, CHNH), 7.54 (d, J = 7.5 Hz, 1 H, meta to F), 4.73 (d, J = 3.8 Hz, 1 H, CHOH), 4.29 (t, J = 6.9 Hz, 2 H, CH₂NCH=C), 3.78 - 3.83 (m, 1 H, NCH(CH₂)₂), 3.75 - 3.78 (m, 1 H, CHOH), 3.71 - 3.75 (m, 1 H, CHNH), 3.31 (br t, J = 4.3 Hz, 4 H, CH₂N(CH₂CH₂)CH₂CH₂CH₂), 2.63 (t, J = 7.5 Hz, 2 H, CH=CCH₂), 2.56 (br t, J = 4.2 Hz, 4 H, CH₂N(CH₂)CH₂), 2.37 (t, J = 7.3 Hz, 2 H, CH₂N(CH₂)CH₂), 2.03 - 2.06 (m, 2 H, C(=O)CH₂), 1.97 - 2.02 (m, 2 H, C(=O)CH₂CH₂), 1.89 (dddd, J = 13.1, 8.9, 7.4, 5.7 Hz, 1 H, CHHCHNH), 1.75 (ddt, J = 13.0, 8.9, 6.4, 6.4 Hz, 1 H, CHHCHOH), 1.61 - 1.66

(m, 2 H, CH=CCH₂C $\underline{\text{H}}_2$), 1.57 - 1.61 (m, 1 H, C $\underline{\text{H}}$ HCH₂CHOH), 1.54 - 1.57 (m, 1 H, CH $\underline{\text{H}}$ CH₂CHOH), 1.49 - 1.53 (m, 2 H, CH=CCH₂CH₂C $\underline{\text{H}}_2$), 1.40 (ddt, J=13.0, 8.4, 5.3, 5.3 Hz, 1 H, CH $\underline{\text{H}}$ CHOH), 1.29 - 1.32 (m, 2 H, NCH(C $\underline{\text{H}}$ H)₂), 1.25 - 1.29 (m, 1 H, CH $\underline{\text{H}}$ CHNH), 1.13 - 1.20 (m, 2 H, NCH(CH $\underline{\text{H}}$)₂)

¹³C NMR (175 MHz, DMSO d₆) δ / ppm = 176.3 ($\underline{\mathbf{C}}(=\mathrm{O})\mathrm{CC}(=\mathrm{O})\mathrm{OH}$), 170.9 (NH $\underline{\mathbf{C}}(=\mathrm{O})\mathrm{CH}_2$), 166.1 ($\underline{\mathbf{C}}(=\mathrm{O})\mathrm{OH}$), 153.0 (d, J=251.4 Hz, ipso to F), 147.9 ($\underline{\mathbf{C}}=\mathrm{CC}(=\mathrm{O})\mathrm{OH}$), 146.9 (CH= $\underline{\mathbf{C}}\mathrm{CH}_2$), 145.2 (d, J=8.7 Hz, ipso to piperazine), 139.2 (para to F), 121.7 (N $\underline{\mathbf{C}}\mathrm{H}=\mathrm{CCH}_2$), 118.7 (d, J=5.8 Hz, para to piperazine), 111.0 (d, J=23.3 Hz, ortho to C=O and ortho to F), 106.3 (meta to C=O and meta to F and $\underline{\mathbf{C}}\mathrm{C}(=\mathrm{O})\mathrm{OH}$), 76.2 ($\underline{\mathbf{C}}\mathrm{HOH}$), 57.4 (CH= $\mathrm{CCH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{N}$), 52.5 (CH= $\mathrm{CCH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{N}(\underline{\mathbf{C}}\mathrm{H}_2)$), 49.5 (d, J=4.4 Hz, CH= $\mathrm{CCH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{N}(\mathrm{CH}_2\underline{\mathrm{C}}\mathrm{H}_2)\mathrm{CH}_2\mathrm{CH}_2\mathrm{N}$), 48.8 ($\underline{\mathbf{C}}\mathrm{H}_2\mathrm{N}\mathrm{CH}=\mathrm{CCH}_2$), 35.8 (N $\underline{\mathbf{C}}\mathrm{H}(\mathrm{CH}_2)_2$), 32.2 ($\underline{\mathbf{C}}\mathrm{H}_2\mathrm{CHOH}$), 32.0 (C(=O) $\underline{\mathbf{C}}\mathrm{H}_2$), 29.5 ($\underline{\mathbf{C}}\mathrm{H}_2\mathrm{CH}\mathrm{NH}$), 26.9 (CH= $\mathrm{CCH}_2\underline{\mathbf{C}}\mathrm{H}_2$), 26.0 (C(=O)CH₂ $\underline{\mathbf{C}}\mathrm{H}_2$), 25.8 (CH= $\mathrm{CCH}_2\mathrm{CH}_2\underline{\mathbf{C}}\mathrm{H}_2$), 25.0 (CH= $\mathrm{CC}\underline{\mathbf{C}}\mathrm{H}_2$), 20.5 ($\underline{\mathbf{C}}\mathrm{H}_2\mathrm{C}\mathrm{H}_2\mathrm{C}\mathrm{H}_3\mathrm{C}\mathrm{H}_3$), 7.6 (NCH($\underline{\mathbf{C}}\mathrm{H}_2$)₂)

 19 F NMR (376.45 MHz, MeOD) δ / ppm = -122.12 (s, ciprofloxacin F)

HRMS (ESI⁺) m/z / Da = 624.3314, [M+H]⁺ found, [C₃₂H₄₃FN₇O₅]⁺ requires 624.3310

 $[\boldsymbol{\alpha}]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = -3.6 \ (c / \text{g}(100 \text{ mL})^{-1} = 0.0833, \text{MeOH})$

1.61 1-Cyclopropyl-6-fluoro-7-(4-(4-(1-(4-(((1R,2R)-2-hydroxycyclopentyl)amino)-4-oxobutyl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-4-oxo-1,4-dihydroquino-line-3-carboxylic acid 166

Method?? white amorphous solid 7.2 mg, 11.5 μ mol

IR (neat) ν_{max} / cm⁻¹ = 2954.9 (C-H), 2917.9 (C-H), 2850.2 (C-H), 1722.1 (carboxylic acid C=O), 1647.3 (amide C=O), 1626.7 (quinolone C=O) 1611.9 (triazole)

¹H NMR (400 MHz, DMSO d₆) δ / ppm = 15.22 (br s, 1 H, C(=O)O<u>H</u>), 8.67 (s, 1 H, ortho to C(=O)OH), 7.91 (d, J=13.3 Hz, 1 H, ortho to F), 7.84 (s, 1 H, C<u>H</u>=CCH₂), 7.74 (d, J=6.7 Hz, 1 H, CHN<u>H</u>), 7.56 (d, J=7.4 Hz, 1 H, meta to F), 4.71 (d, J=3.7 Hz, 1 H, CHO<u>H</u>), 4.29 (t, J=6.6 Hz, 2 H, C<u>H</u>₂NCH=C), 3.82 (tt, J=6.5, 4.3 Hz, 1 H, NC<u>H</u>(CH₂)₂), 3.69 - 3.79 (m, 2 H, C<u>H</u>OH and C<u>H</u>NH), 3.30 - 3.34 (m, 6 H, CH=CCH₂CH₂CH₂CH₂N(C<u>H</u>₂C<u>H</u>₂)C<u>H</u>₂C<u>H</u>₂), 2.64 (t, J=7.4 Hz, 2 H, CH=CC<u>H</u>₂), 1.95 - 2.08 (m, 4 H, C(=O)C<u>H</u>₂C<u>H</u>₂), 1.89 (dddd, J=12.8, 8.9, 7.4, 5.8 Hz, 1 H, C<u>H</u>HCHNH), 1.75 (ddt, J=12.7, 9.0, 6.2, 6.2 Hz, 1 H, C<u>H</u>HCHOH), 1.48 - 1.68 (m, 6 H, CH=CCH₂CH₂CH₂ and C<u>H</u>₂CH₂CHOH), 1.40 (ddt, J=13.0, 8.3, 5.3, 5.3

Hz, 1 H, CH $\underline{\text{H}}$ CHOH), 1.28 - 1.35 (m, 2 H, NCH(C $\underline{\text{H}}$ H)₂), 1.24 - 1.31 (m, 1 H, CH $\underline{\text{H}}$ CHNH), 1.15 - 1.21 (m, 2 H, NCH(CH $\underline{\text{H}}$)₂)

¹³C NMR (101 MHz, DMSO d₆) δ / ppm = 176.4 (\underline{C} (=O)CC(=O)OH), 170.9 (NH \underline{C} (=O)CH₂), 166.0 (\underline{C} (=O)OH), 153.0 (d, J=249.6 Hz, *ipso* to F), 148.1 (\underline{C} =CC(=O)OH), 146.7 (CH= \underline{C} CH₂), 145.2 (d, J=8.3 Hz, *ipso* to piperazine), 139.2 (*para* to F), 121.8 (N \underline{C} H=CCH₂), 118.7 (*para* to piperazine), 111.0 (d, J=23.2 Hz, *ortho* to C=O and *ortho* to F), 106.7 (\underline{C} C(=O)OH), 106.5 (*meta* to C=O and *meta* to F), 76.2 (\underline{C} HOH), 57.5 (\underline{C} HNH), 57.4 (br s, CH=CCH₂CH₂CH₂CH₂N), 52.3 (br s, CH=CCH₂CH₂CH₂CH₂N(\underline{C} H₂), 49.3 (br s, CH=CCH₂CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 48.8 (\underline{C} H₂NCH=CCH₂), 35.9 (N \underline{C} H(CH₂)₂), 32.2 (\underline{C} H₂CHOH), 32.0 (C(=O) \underline{C} H₂), 29.4 (\underline{C} H₂CHNH), 26.7 (CH=CCH₂ \underline{C} H₂), 26.0 (C(=O)CH₂ \underline{C} H₂), 25.5 (CH=CCH₂CH₂CH₂), 24.9 (CH=C \underline{C} H₂), 20.5 (CH₂CH₂CHOH), 7.6 (NCH(\underline{C} H₂)₂)

¹⁹**F NMR** (376.45 MHz, MeOD) δ / ppm = -121.45

HRMS (ESI⁺) m/z / Da = 624.3298, [M+H]⁺ found, [C₃₂H₄₃FN₇O₅]⁺ requires 624.3310

 $[\boldsymbol{\alpha}]_D^{20} / {}^{\circ}10^{-1} \text{cm}^2 \text{g}^{-1} = -25.0 \ (c / \text{g}(100 \text{ mL})^{-1} = 0.08, \text{MeOH})$

explain discrepancy

1.62 (trans)-2-Aminocyclohexan-1-ol 167

Cyclohexene oxide 188 (10 ml, 9.70 g, 98.8 mmol, 1 eq.), NH $_3$ (90 ml, 35 % w/w aq., 27.7 g, 791 mmol, 8 eq.) and MeOH (100 ml) were stirred at r.t. for 72 h. The solvent was removed by blowing a stream of N $_2$ over it, followed by evaporation under high vacuum

TLC $R_f = 0.04 (30 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 3350.4 (N-H), 3306.2 (br, O-H), 2926.9 (C-H), 2852.6 (C-H)

 $^{1}\mathbf{H} \ \mathbf{NMR} \ (400 \ \mathrm{MHz}, \ \mathrm{CDCl_{3}}) \ \delta \ / \ \mathrm{ppm} = 3.01 \ (\mathrm{td}, \ J = 9.4, \ 4.8 \ \mathrm{Hz}, \ 1 \ \mathrm{H}, \ \mathrm{C}\underline{\mathrm{H}}\mathrm{OH}), \ 2.80 \ - 2.92 \ (\mathrm{m}, \ 2 \ \mathrm{H}, \ \mathrm{O}\underline{\mathrm{H}} \ \mathrm{and} \ \mathrm{N}\underline{\mathrm{H}_{2}}), \ 2.35 \ (\mathrm{ddd}, \ J = 11.1, \ 9.1, \ 4.1 \ \mathrm{Hz}, \ 1 \ \mathrm{H}, \ \mathrm{C}\underline{\mathrm{H}}\mathrm{NH_{2}}), \ 1.77 \ - 1.84 \ (\mathrm{m}, \ 1 \ \mathrm{H}, \ \mathrm{C}\underline{\mathrm{H}}\mathrm{H}\mathrm{C}\mathrm{H}\mathrm{OH}), \ 1.69 \ - 1.76 \ (\mathrm{m}, \ 1 \ \mathrm{H}, \ \mathrm{C}\underline{\mathrm{H}}\mathrm{H}\mathrm{C}\mathrm{H}\mathrm{OH}), \ 1.65 \ - 1.66 \ (\mathrm{m}, \ 1 \ \mathrm{H}, \ \mathrm{C}\underline{\mathrm{H}}\mathrm{H}\mathrm{C}\mathrm{H}_{2}\mathrm{C}\mathrm{H}\mathrm{OH}), \ 1.45 \ - 1.56 \ (\mathrm{m}, \ 1 \ \mathrm{H}, \ \mathrm{C}\underline{\mathrm{H}}\mathrm{H}\mathrm{C}\mathrm{H}_{2}\mathrm{C}\mathrm{H}\mathrm{N}\mathrm{H}_{2}), \ 1.07 \ - 1.19 \ (\mathrm{m}, \ 3 \ \mathrm{H}, \ \mathrm{C}\mathrm{H}\underline{\mathrm{H}}\mathrm{C}\mathrm{H}_{2}\mathrm{C}\mathrm{H}\mathrm{OH}, \ \mathrm{C}\mathrm{H}\underline{\mathrm{H}}\mathrm{C}\mathrm{H}\mathrm{OH}), \ 0.94 \ - 1.05 \ (\mathrm{m}, \ 1 \ \mathrm{H}, \ \mathrm{C}\mathrm{H}\underline{\mathrm{H}}\mathrm{C}\mathrm{H}\mathrm{N}\mathrm{H}_{2})$

¹³C NMR (101 MHz, CDCl₃) δ / ppm = 75.4 (<u>C</u>HOH), 56.6 (<u>C</u>HN₂), 33.8 (<u>C</u>H₂CHOH and <u>C</u>H₂CHN₂), 24.7 (<u>C</u>H₂CH₂CH₂CHN₂), 24.6 (<u>C</u>H₂CH₂CHOH)

HRMS (ESI⁺) m/z / Da = 116.1070, [M+H]⁺ found, [C₆H₁₄NO]⁺ requires 116.1070

1.63 4-Chloro-N-((trans)-2-hydroxycyclohexyl)butanamide 168

(Trans)-2-aminocyclohexan-1-ol **167** (1.04 g, 9.03 mmol, 1 eq.), TEA (1.65 ml, 1.20 g, 11.8 mmol, 1.3 eq.) and $\mathrm{CH_2Cl_2}$ (50 ml) were stirred at 0°C. 4-Chlorobutyryl chloride **185** (1.22 ml, 1.54 g, 10.9 mmol, 1.2 eq.) was added dropwise over 5 min. The mixture was stirred at 0°C for 30 min, then water (50 ml) was added. The organic layer was separated off, and the aqueous layer was extracted with 10 % *i*-PrOH/CHCl₃ (2 × 50 ml). The combined organic layers were dried with MgSO₄, concentrated under reduced pressure and purified by column chromatography (SiO₂, 0-100 % EtOAc/Et₂O). **168** was obtained as white needles (1.51 g, 6.87 mmol, 76.1 %).

TLC $R_f = 0.19 \; (\text{Et}_2\text{O})$

mp $T / {}^{\circ}\text{C} = 72.5 - 75.7 \ (i\text{-PrOH, CHCl}_3)$

 $\mathbf{IR} \text{ (neat) } \nu_{max} \text{ / cm}^{-1} = 3289.9 \text{ (N-H), } 3250.0 \text{ (O-H), } 2927.6 \text{ (C-H), } 2857.1 \text{ (C-H), } 1629.2 \text{ (amide C=O)}$

¹**H NMR** (400 MHz, MeOD) δ / ppm = 3.60 (t, J = 6.6 Hz, 2 H, C $\underline{\text{H}}_2$ Cl), 3.51 - 3.60 (m, 1 H, C $\underline{\text{H}}$ NH), 3.28 - 3.39 (m, 1 H, C $\underline{\text{H}}$ OH), 2.37 (td, J = 7.4, 2.3 Hz, 2 H, C(=O)C $\underline{\text{H}}_2$), 2.06 (quin, J = 7.0 Hz, 2 H, C(=O)CH₂C $\underline{\text{H}}_2$), 1.97 - 2.01 (m, 1 H, C $\underline{\text{H}}$ HCHOH), 1.85 - 1.93 (m, 1 H, C $\underline{\text{H}}$ HCHNH), 1.70 - 1.77 (m, 1 H, C $\underline{\text{H}}$ HCH₂CHOH), 1.64 - 1.70 (m, 1 H, C $\underline{\text{H}}$ HCH₂CHNH), 1.24 - 1.35 (m, 3 H, CH $\underline{\text{H}}$ CH₂CHOH, CH $\underline{\text{H}}$ CH₂CHNH and CH $\underline{\text{H}}$ CHOH), 1.13 - 1.25 (m, 1 H, CH $\underline{\text{H}}$ CHNH₂)

¹³C NMR (101 MHz, MeOD) δ / ppm = 175.0 (<u>C</u>(=O)), 74.1 (<u>C</u>HOH), 56.3 (<u>C</u>HNH), 45.3 (<u>C</u>H₂Cl), 35.6 (<u>C</u>H₂CHOH), 34.5 (C(=O)<u>C</u>H₂), 32.7 (<u>C</u>H₂CHNH), 30.1 (C(=O)CH₂<u>C</u>H₂), 25.8 (<u>C</u>H₂CH₂CHNH), 25.5 (<u>C</u>H₂CH₂CHOH)

HRMS (ESI⁺) m/z / Da = 242.0925, [M+Na]⁺ found, [C₁₀H₁₈ClNNaO₂]⁺ requires 242.0924

1.64 4-Azido-N-((trans)-2-hydroxycyclohexyl)butanamide 169

4-Chloro-N-((trans)-2-hydroxycyclohexyl)butanamide **168** (345 mg, 1.57 mmol, 1 eq.) and NaN₃ (180 mg, 2.77 mmol, 1.75 eq.) were stirred in DMF (12 ml) at 50 °C for 16 h. Water (50 ml) and 10 % i-PrOH/CHCl₃ (50 ml) were added, and the organic layer was removed. The aqueous layer was extracted again with 10 % i-PrOH/CHCl₃ (50 ml) and the combined organic fractions were dried with MgSO₄. The solvent was evaporated under reduced pressure, and then by using a N₂ stream. **189** was obtained as large white prisms (347 mg, 1.53 mmol, 97.5 %).

TLC $R_f = 0.23$ (EtOAc)

mp $T / {}^{\circ}C = 74.5 - 75.7 (i-PrOH, CHCl_3)$

IR (neat) ν_{max} / cm⁻¹ = 3299.0 (N-H), 3207.8 (O-H), 2944.3 (C-H), 2927.9 (C-H), 2859.2 (C-H), 2089.2 (azide), 1624.0 (amide C=O)

¹H NMR (400 MHz, MeOD) δ / ppm = 7.87 (d, J = 7.9 Hz, 1 H, N<u>H</u>), 5.27 (d, J = 4.3 Hz, 1 H, O<u>H</u>), 3.56 (td, J = 10.5, 4.4 Hz, 1 H, C<u>H</u>NH), 3.28 - 3.41 (m, 3 H, C<u>H</u>OH and C<u>H</u>₂N₃), 2.30 (td, J = 7.4, 2.7 Hz, 2 H, C(=O)C<u>H</u>₂), 1.95 - 2.03 (m, 1 H, C<u>H</u>HCHOH), 1.87 (m, 3 H, C(=O)CH₂C<u>H</u>₂ and C<u>H</u>HCHNH), 1.70 - 1.76 (m, 1 H, C<u>H</u>HCH₂CHOH), 1.63 - 1.70 (m, 1 H, C<u>H</u>HCH₂CHNH), 1.25 - 1.38 (m, 3 H, CH<u>H</u>CH₂CHOH, CH<u>H</u>CH₂CHNH and CH<u>H</u>CHOH), 1.14 - 1.24 (m, 1 H, CH<u>H</u>CHNH₂)

¹³C NMR (101 MHz, MeOD) δ / ppm = 175.1 (\underline{C} (=O)), 74.0 (\underline{C} HOH), 56.3 (\underline{C} HNH), 52.0 (\underline{C} H₂N₃), 35.5 (\underline{C} H₂CHOH), 34.3 (\underline{C} (=O) \underline{C} H₂), 32.7 (\underline{C} H₂CHNH), 26.3 (\underline{C} (=O)CH₂ \underline{C} H₂), 25.8 (\underline{C} H₂CH₂CHNH), 25.5 (\underline{C} H₂CH₂CHOH)

HRMS (ESI⁺) m/z / Da = 249.1331, [M+Na]⁺ found, [C₁₀H₁₈N₄NaO₂]⁺ requires 249.1327

1.65 Methyl 1-cyclopropyl-6-fluoro-7-(4-(4-(((trans)-2-hydroxycyclohexyl)amino)-4-oxobutyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate 170

150 (200 mg, 0.367 mmol, 1 eq.), 167 (91.1 mg, 0.791 mmol, 2.1 eq.), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (112 mg, 0.584 mmol, 1.6 eq.), 1-hydroxybenzotriazole (96 mg, 0.710 mmol, 1.9 eq.) and DIPEA (192 μ l, 142 mg, 1.10 mmol, 3 eq.) were dissolved in DMF (5 ml) and stirred at r.t. for 16 h. The solvent was removed using a stream of N₂ and the residue was purified by preparatory HPLC (5-50 % acetonitrile/water over 10 min). The combined pure fractions were evaporated under reduced pressure and then partitioned between NaHCO₃ (aq., sat., 10 ml) and CH₂Cl₂ (10 ml). The organic layer was dried with MgSO₄ and evaporated under reduced pressure. 161 was obtained as a white amorphous solid (73.0 mg, 0.142 mmol, 38.7 %).

IR (neat) ν_{max} / cm⁻¹ = 3302.5 (N-H), 2929.8 (C-H), 2850.6 (C-H), 2832.9 (C-H), 1698.1 (ester C=O), 1646.4 (amide C=O), 1613.8 (quinolone C=O)

¹H NMR (400 MHz, MeOD) δ / ppm = 8.60 (s, 1 H, ortho to C(=O)OC \underline{H}_3), 7.79 (d, J = 13.5 Hz, 1 H, ortho to F), 7.46 (d, J = 7.2 Hz, 1 H, meta to F), 3.84 (s, 3 H, C \underline{H}_3), 3.62 - 3.68 (m, 1 H, NC \underline{H} (CH₂)₂), 3.58 (td, J = 10.3, 4.2 Hz, 1 H, C \underline{H} NH), 3.38 (br s, 4 H, CH₂N(CH₂C \underline{H}_2)CH₂C \underline{H}_2), 3.32 - 3.36 (m, 1 H, C \underline{H} OH), 2.83 (br s, 4 H, CH₂N(C \underline{H}_2)C \underline{H}_2), 2.60 (t, J = 7.3 Hz, 2 H, C(=O)CH₂CH₂C \underline{H}_2 N), 2.32 (td, J = 7.1, 3.1 Hz, 2 H, C(=O)C \underline{H}_2), 1.96 - 2.04 (m, 1 H, C \underline{H} HCHOH), 1.87 - 1.96 (m, 3 H, C \underline{H} HCHNH and C(=O)CH₂C \underline{H}_2),

1.72 - 1.77 (m, 1 H, CHHCH2CHOH), 1.66 - 1.72 (m, 1 H, CHHCH2CHNH), 1.25 - 1.39 (m, 5 H, CHHCHOH, CHHCH2CHOH, CHHCH2CHNH and NCH(CHH)2), 1.15 - 1.25 (m, 3 H, CHHCHOH and NCH(CHH)2)

¹³C NMR (101 MHz, MeOD) δ / ppm = 175.8 (CH₂C(=O)NH), 175.3 (C(=O)CC(=O)OCH₃), 166.8 (C(=O)OCH₃), 154.9 (d, J = 248.8 Hz, ipso to F), 150.2 (C=CC(=O)OCH₃), 146.1 (d, J = 10.8 Hz, ipso to piperazine), 139.9 (para to F), 123.5 (d, J = 7.5 Hz, para to piperazine), 113.2 (d, J = 23.2 Hz, ortho to C=O and ortho to F), 110.2 (CC(=O)OCH₃), 107.2 (meta to C=O and meta to F), 74.1 (CHOH), 58.9 (C(=O)CH₂CH₂CH₂N), 56.4 (CHNH), 54.0 (C(=O)CH₂CH₂CH₂N(CH₂CH₂), 52.3 (CH₃), 50.5 (d, J = 5.0 Hz, C(=O)CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂D, 36.4 (NCH(CH₂)₂), 35.7 (CH₂CHOH), 35.1 (C(=O)CH₂), 32.8 (CH₂CHNH), 25.9 (CH₂CH₂CHNH), 25.5 (CH₂CH₂CHOH), 23.5 (C(=O)CH₂CH₂), 8.7 (NCH(CH₂)₂)

¹⁹**F NMR** (376.45 MHz, MeOD) δ / ppm = -124.7 (ciprofloxacin <u>F</u>)

HRMS (ESI⁺) m/z / Da = 529.2827, [M+H]⁺ found, [C28H38FN4O5]⁺ requires 529.2826

1.66 Methyl 1-cyclopropyl-6-fluoro-4-oxo-7-(4-(4-oxo-4-((2-oxocyclohexyl)amino)-butyl)piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylate 171

Methyl 1-cyclopropyl-6-fluoro-7-(4-(4-(((trans)-2-hydroxycyclohexyl)amino)-4-oxobutyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylate **170** (5.2 mg, 9.84 μ mol, 1 eq.) and Dess-Martin Periodane (16.4 mg, 38.7 μ mol, 4 eq.) were stirred in CH₂Cl₂ (3 ml) for 6 h. The solvent was removed under reduced pressure and the residue was purified by preparatory HPLC (5-95 % acetonitrile/water over ??)

TLC $R_f = 0.74 (30 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 2921.2 (C-H), 2851.6 (C-H), 1721.4 (ketone C=O), 1698.0 (ester C=O), 1639.3 (amide C=O), 1620.0 (quinolone C=O)

¹H NMR (400 MHz, DMSO d₆) δ / ppm = 8.45 (s, 1 H, ortho to C(=O)OC \underline{H}_3), 7.87 (d, J = 6.2 Hz, 1 H, N \underline{H}), 7.76 (d, J = 13.4 Hz, 1 H, ortho to F), 7.44 (d, J = 7.5 Hz, 1 H, meta to F), 4.42 (dddd, J = 13.0, 7.6, 6.0, 1.0 Hz, 1 H, C \underline{H} NH), 3.73 (s, 3 H, C \underline{H}_3), 3.65 (tt, J = 7.1, 3.9 Hz, 1 H, NC \underline{H} (CH₂)₂), 3.25 (br s, 4 H, CH₂N(CH₂C \underline{H}_2)CH₂CH₂), 2.58 (br s, 4 H, CH₂N(C \underline{H}_2)C \underline{H}_2), 2.45 - 2.53 (m, 1 H, C \underline{H} HC(=O)CHNH), 2.36 (br s, 2 H, C(=O)CH₂CH₂C \underline{H}_2 N), 2.26 (dtt, J = 13.4, 2.6, 2.6, 1.6, 1.6 Hz, 1 H, CH \underline{H} C(=O)CHNH), 2.16 - 2.22 (m, 2 H, C(=O)C \underline{H}_2 CH₂CH₂N), 2.12 (ddq, J = 12.7, 6.0, 2.8, 2.8, 2.8 Hz, 1 H, C \underline{H} HCHNH), 2.00 (ddquin, J = 13.2, 6.0, 2.9, 2.9, 2.9, 2.9 Hz, 1 H, C \underline{H} HCH₂C(=O)), 1.65 - 1.83 (m, 4 H, C \underline{H}_2 CH₂CHNH), 1.41 - 1.56 (m, 2 H, CH \underline{H} CHNH and CH \underline{H} CH₂C(=O)), 1.20 - 1.30 (m, 2 H, NCH(C \underline{H} H)₂), 1.05 - 1.13 (m, 2 H, NCH(CH \underline{H})₂)

¹³C NMR (101 MHz, DMSO d_6) δ / ppm = 207.5 ($\underline{C}(=O)CHNH$), 171.7 ($\underline{C}(=O)CC(=O)OCH_3$), 171.6

(CH₂C(=O)NH), 165.0 (\underline{C} (=O)OCH₃), 152.6 (d, J=247.6 Hz, ipso to F), 148.3 (\underline{C} =CC(=O)OCH₃), 143.9 (br s, ipso to piperazine), 138.1 (para to F), 121.8 (d, J=6.4 Hz, para to piperazine), 111.5 (d, J=22.4 Hz, ortho to C=O and ortho to F), 109.0 (\underline{C} C(=O)OCH₃), 106.3 (meta to C=O and meta to F), 57.0 (\underline{C} HNH and C(=O)CH₂CH₂CH₂N), 52.3 (br s, C(=O)CH₂CH₂CH₂N(\underline{C} H₂), 51.3 (\underline{C} H₃), 49.5 (br s, C(=O)CH₂CH₂CH₂N(\underline{C} H₂CH₂N(\underline{C} H₂CH₂N), 33.9 (\underline{C} H₂CHNH), 32.9 (C(=O) \underline{C} H₂CH₂CH₂CH₂N), 27.2 (\underline{C} H₂CH₂C(=O)CHNH), 23.8 (\underline{C} H₂CH₂CHNH), 22.4 (br s, C(=O)CH₂CH₂CH₂N), 7.6 (NCH(\underline{C} H₂)₂)

 19 F NMR (376.45 MHz, DMSO d₆) δ / ppm = -124.3 (ciprofloxacin \underline{F})

HRMS (ESI⁺) m/z / Da = 527.2654, [M+H]⁺ found, [C₂₈H₃₆FN₄O₅]⁺ requires 527.2670

1.67 1-Cyclopropyl-6-fluoro-7-(4-(4-(1-(4-(((trans)-2-hydroxycyclohexyl)amino)-4-oxobutyl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-4-oxo-1,4-dihydroquino-line-3-carboxylic acid 172

$$\begin{array}{c} O \\ O \\ O \\ O \\ N \end{array}$$

1-Cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid **176** (40 mg, 97.2 μ mol, 1 eq.) and 4-azido-N-((trans)-2-hydroxycyclohexyl)butanamide **169** (22.0 mg, 97.2 μ mol, 1 eq.) were dissolved in 10 % water/t-BuOH (3 ml), and the mixture was degassed by bubbling N₂ through it. A solution of CuSO₄ and THPTA (97.2 μ l, 9.72 μ mol, 0.1 eq. 100 mM, aq.) was added, followed by a solution of sodium ascorbate (194 μ l, 19.4 μ mol, 0.2 eq., 100 mM, aq.). The mixture was stirred at r.t. under argon for 16 h. Water (50 ml) and 10 % i-PrOH/CHCl₃ (50 ml) were added, then the organic layer was separated and dried with MgSO₄ and evaporated under reduced pressure. The residue was purified by preparatory HPLC (5-70 % acetonitrile/water over 15 min). The combined pure fractions were evaporated under reduced pressure and then partitioned between NaHCO₃ (aq., sat., 50 ml) and 10 % i-PrOH/CHCl₃ (50 ml). The organic layer was dried with MgSO₄ and evaporated under reduced pressure. **172** was obtained as a white amorphous solid (30.3 mg, 47.5 μ mol, 48.9 %).

IR (neat) ν_{max} / cm⁻¹ = 3345.4 (N-H), 2927.6 (C-H), 2859.6 (C-H), 2814.7 (C-H), 1727.0 (carboxylic acid C=O), 1641.7 (amide C=O), 1625.8 (quinolone C=O), 1619.0 (triazole)

¹H NMR (400 MHz, DMSO d₆) δ / ppm = 8.64 (s, 1 H, ortho to C(=O)OH), 7.86 (d, J = 13.9 Hz, 1 H, ortho to F), 7.84 (s, 1 H, CH=CCH₂), 7.64 (d, J = 8.1 Hz, 1 H, NH), 7.54 (d, J = 7.5 Hz, 1 H, meta to F), 4.54 (d, J = 4.7 Hz, 1 H, OH), 4.30 (t, J = 6.8 Hz, 2 H, C(=O)CH₂CH₂CH₂N), 3.77 - 3.86 (m, 1 H, NCH(CH₂)₂), 3.33 - 3.40 (m, 1 H, CHNH), 3.31 (br t, J = 4.8, 4.8 Hz, 4 H, CH=CCH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 3.14 - 3.24 (m, 1 H, CHOH), 2.63 (t, J = 7.4 Hz, 2 H, CH=CCH₂), 2.56 (br t, J = 4.6, 4.6 Hz, 4 H, CH=CCH₂CH₂CH₂CH₂N(CH₂)CH₂), 2.38 (t, J = 6.9 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂N), 2.04 - 2.08 (m, 2 H, C(=O)CH₂CH₂CH₂N), 1.96 - 2.04 (m,

2 H, C(=O)CH₂CH₂CH₂N), 1.78 - 1.87 (m, 1 H, C<u>H</u>HCHOH), 1.69 - 1.78 (m, 1 H, C<u>H</u>HCHNH), 1.63 (quin, J = 7.5 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂CH₂N), 1.54 - 1.60 (m, 1 H, C<u>H</u>HCH₂OH), 1.51 (quin, J = 7.4 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂N), 1.28 - 1.35 (m, 1 H, NCH(C<u>H</u>H)₂), 1.11 - 1.22 (m, 5 H, NCH(CH<u>H</u>)₂, CH<u>H</u>CHOH, CH<u>H</u>CH₂CHOH and C<u>H</u>₂CH₂CHNH), 1.04 - 1.13 (m, 1 H, CH<u>H</u>CHNH)

¹³C NMR (101 MHz, DMSO d₆) δ / ppm = 176.4 ($\underline{\mathbf{C}}$ (=O)CC(=O)OH), 170.9 (CH₂ $\underline{\mathbf{C}}$ (=O)NH), 166.0 ($\underline{\mathbf{C}}$ (=O)OH), 153.1 (d, J = 252.1 Hz, ipso to F), 148.0 ($\underline{\mathbf{C}}$ =CC(=O)OH), 146.9 (CH= $\underline{\mathbf{C}}$ CH₂), 145.3 (d, J = 10.0 Hz, ipso to piperazine), 139.2 (para to F), 121.8 (NCH=CCH₂), 118.5 (d, J = 8.3 Hz, para to piperazine), 110.9 (d, J = 23.2 Hz, ortho to C=O and ortho to F), 106.7 ($\underline{\mathbf{C}}$ C(=O)OH), 106.3 (d, J = 3.3 Hz, meta to C=O and meta to F), 71.4 ($\underline{\mathbf{C}}$ HOH), 57.4 (CH=CCH₂CH₂CH₂CH₂N), 54.2 ($\underline{\mathbf{C}}$ HNH), 52.4 (CH=CCH₂CH₂CH₂CH₂N($\underline{\mathbf{C}}$ H₂)CH₂), 49.5 (CH=CCH₂CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 48.8 (C(=O)CH₂CH₂CH₂NCH=C), 35.9 (NCH(CH₂)₂), 34.1 (CH₂CHOH), 32.3 (C(=O)CH₂CH₂CH₂CH₂NCH=C), 31.1 (CH₂CHNH), 26.9 (CH=CCH₂CH₂CH₂CH₂N), 26.1 (C(=O)CH₂CH₂CH₂NCH=C), 25.8 (CH=CCH₂CH₂CH₂CH₂N), 25.0 (CH=CCH₂CH₂CH₂CH₂N), 24.2 (CH₂CH₂CHNH), 23.8 (CH₂CH₂CHOH), 7.6 (NCH($\underline{\mathbf{C}}$ H₂)₂)

¹⁹**F NMR** (376.45 MHz, DMSO d₆) δ / ppm = -121.4 (ciprofloxacin <u>F</u>)

HRMS (ESI⁺) m/z / Da = 638.3480, [M+H]⁺ found, [C₃₃H₄₅FN₇O₅]⁺ requires 638.3466

1.68 1-Cyclopropyl-6-fluoro-4-oxo-7-(4-(4-(1-(4-oxo-4-((2-oxocyclohexyl)amino)butyl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid 173

1-Cyclopropyl-6-fluoro-7-(4-(4-(1-(4-(((trans)-2-hydroxycyclohexyl)amino)-4-oxobutyl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid 172 (15.0 mg, 23.6 mmol, 1 eq.) and Dess-Martin Periodane (35.0 mg, 82.5 mmol, 3.5 eq.) were stirred in $\mathrm{CH_2Cl_2}$ (3 ml) for 4 h. The solvent was removed under reduced pressure and the residue was purified by preparatory HPLC (5-70 % acetonitrile/water over 15 min). The combined pure fractions were evaporated under reduced pressure clear gum (11.7 mg, 18.4 μ mol, 78.0 %).

IR (neat) ν_{max} / cm⁻¹ = 2941.2 (C-H), 2859.8 (C-H), 1719.8 (carboxylic acid C=O and ketone C=O), 1656.8 (amide C=O), 1625.6 (quinolone C=O), 1613.5 (triazole)

¹H NMR (500 MHz, DMSO d₆) δ / ppm = 8.65 (s, 1 H, ortho to C(=O)OH), 7.94 (d, J=7.7 Hz, 1 H, N<u>H</u>), 7.88 (d, J=13.4 Hz, 1 H, ortho to F), 7.85 (s, 1 H, C<u>H</u>=CCH₂), 7.55 (d, J=7.3 Hz, 1 H, meta to F), 4.40 (dddd, J=12.8, 7.6, 6.1, 1.1 Hz, 1 H), 4.31 (t, J=7.0 Hz, 1 H, C(=O)CH₂CH₂C<u>H</u>HN), 4.31 (t, J=6.9 Hz, 1 H, C(=O)CH₂CH₂CH₂CH₂CH₂CH₂N), 3.74 - 3.84 (m, 1 H, NC<u>H</u>(CH₂)₂), 3.31 (br. s, 4 H, CH=CCH₂CH₂CH₂CH₂N(CH₂C<u>H</u>₂)CH₂CH₂), 2.64 (t, J=7.5 Hz, 2 H, CH=CC<u>H</u>₂), 2.56 (br t, J=5.0, 5.0 Hz, 4 H, CH=CCH₂CH₂CH₂CH₂N(C<u>H</u>₂)C<u>H</u>₂), 2.45 -

2.52 (m, 1 H, C $\underline{\text{H}}$ HC(=O)), 2.38 (t, J=7.1 Hz, 2 H, CH=CCH₂CH₂CH₂CH₂CH₂N), 2.25 (dtt, J=13.4, 2.6, 2.6, 1.6, 1.6 Hz, 1 H, CH $\underline{\text{H}}$ C(=O)), 2.07 - 2.17 (m, 3 H, C(=O)C $\underline{\text{H}}$ 2CH₂CH₂CH₂N and C $\underline{\text{H}}$ HCHNH), 1.96 - 2.05 (m, 3 H, C(=O)CH₂C $\underline{\text{H}}$ 2CH₂CH₂N and C $\underline{\text{H}}$ HCH₂C(=O)), 1.68 - 1.81 (m, 2 H, C $\underline{\text{H}}$ HCH₂CHNH), 1.64 (quin, J=7.5 Hz, 2 H, CH=CCH₂C $\underline{\text{H}}$ 2CH₂CH₂N), 1.40 - 1.56 (m, 5 H, CH $\underline{\text{H}}$ CH₂C(=O), CH $\underline{\text{H}}$ CHNH and CH=CCH₂CH₂CH₂N), 1.27 - 1.34 (m, 2 H, NCH(C $\underline{\text{H}}$ H)₂), 1.13 - 1.20 (m, 2 H, NCH(CH $\underline{\text{H}}$)₂)

¹⁹**F NMR** (376 MHz, DMSO d_6) δ / ppm = -121.67 (s, ciprofloxacin F) ______ some TFA

HRMS (ESI⁺) m/z / Da = 636.3303, [M+H]⁺ found, [C₃₃H₄₃FN₇O₅]⁺ requires 636.3310

2 References

- [1] Y. Baker. Novel Affinity Based Probes for Use in Chemical Proteomic Studies. 2012.
- [2] J. D. Scribner, D. L. Smith and J. A. McCloskey. Meldrum's Acid in Organic Synthesis. 2. A General and Versatile Synthesis of β -Keto Esters. The Journal of Organic Chemistry, 43(10):2087–2088. 1978.
- [3] J. T. Hodgkinson. The synthesis of Pseudomonas Quinolone Signal analogues and their effects on quinolone signalling in *Pseudomonas aeruginosa*. PhD thesis, University of Cambridge. 2011.
- [4] D. M. Stacy, S. T. Le Quement, C. L. Hansen, J. W. Clausen, T. Tolker-Nielsen, J. W. Brummond, M. Givskov, T. E. Nielsen and H. E. Blackwell. Synthesis and biological evaluation of triazole-containing N-acyl homoserine lactones as quorum sensing modulators. *Organic & Biomolecular Chemistry*, 11(6):938–954. 2013.
- [5] T. Persson, T. H. Hansen, T. B. Rasmussen, M. E. Skindersø, M. Givskov and J. Nielsen. Rational design and synthesis of new quorum-sensing inhibitors derived from acylated homoserine lactones and natural products from garlic. 38:253–262. 2005.
- [6] L. S. Kocsis, E. Benedetti and K. M. Brummond. LETTERS A Thermal Dehydrogenative Diels À Alder Reaction of Styrenes for the Concise Synthesis of Functionalized Naphthalenes. *Organic Letters*, 14(17):4430– 4433. 2012.
- [7] S. Information, F. Tmp, H. Signal, B. Intracellular, L. Cell, I. Chaoran, V. W. Cornish, N. W. C. Building, N. York, C. Molecular, S. Chemistry, D. Mutagenesis, C. B. Methods, F. Characterization and C. Jing. A fluorogenic TMP-tag for high signal-to-background intracellular live cell imaging. ACS chemical biology, 8(8):1704–12. 2013.
- [8] K. Sachin, E.-M. Kim, S.-J. Cheong, H.-J. Jeong, S. T. Lim, M.-H. Sohn and D. W. Kim. Synthesis of N₄'-[¹⁸F]fluoroalkylated ciprofloxacin as a potential bacterial infection imaging agent for PET study. *Bioconjugate chemistry*, 21(12):2282–2288, 2010.
- [9] K. Ganguly, R. Wu, M. Ollivault-Shiflett, P. M. Goodwin, L. A. Silks and R. Iyer. Design, synthesis, and a novel application of quorum-sensing agonists as potential drug-delivery vehicles. *Journal of drug targeting*, 19(7):528–539. 2011.
- [10] R. Iyer, K. Ganguly and L. A. Silks. Synthetic analogs of bacterial quorum sensors. 2012.
- [11] R. Srinivasan, L. P. Tan, H. Wu, P.-Y. Yang, K. A. Kalesh and S. Q. Yao. High-throughput synthesis of azide libraries suitable for direct "click" chemistry and in situ screening. *Organic & Biomolecular Chemistry*, 7(9):1821. 2009.
- [12] J. Aubé, Michael S. Wolfe, R. K. Yantiss, S. M. Cook, F. Takusagawa, M. S. Wolfe, R. K. Yantiss, S. M. Cook and F. Takusagawa. Synthesis of Enantiopure N-tert-Butoxycarbonyl-2- aminocycloalkanones. *Synthetic Communications*, 22(20):3003–3012. 1992.
- [13] L. E. Overman, S. Sugai, L. E. Overman and S. Sugai. A Convenient Method for Obtaining trans -2-Aminocyclohexanol and trans -2-Aminocyclopentanol in Enantiomerically Pure Form. The Journal of Organic Chemistry, 50:4154-4155. 1985.
- [14] L. E. Overman and S. Sugai. Total Synthesis of (-)-Crinine. Use of Tandem Cationic Aza-Cope Rearrangement/Mannich Cyclizations for the Synthesis of Enantiomerically Pure Amaryllidaceae Alkaloids. *Helvetica Chimica Acta*, 68(3):745–749. 1985.

[15] I. Schiffers, T. Rantanen, F. Schmidt, W. Bergmans, L. Zani and C. Bolm. Resolution of racemic 2-aminocyclohexanol derivatives and their application as ligands in asymmetric catalysis. *The Journal of organic chemistry*, 71(1):2320–2331. 2006.