Fairness Label for ML Pipeline

Team 4: Ke Yang, Tin Luu, and Hong Gong

12/05/19

Motivation

- No system-level support for end-to-end responsible data analysis for users' own dataset.
- No system-level support for evaluating the fitness of fairness measures and interventions for users' own dataset.
- No system-level support for evaluating intersectional effects caused by interaction among multiple sensitive attributes.

Problem Statement - Goals

- Build a system to support standard operations in a ML pipeline
 - earlier life stages of data → scikit-learn preprocessing
 - ML models → scikit-learn classification and model selection
 - fairness interventions → Al Fairness 360
- Design a component to track important fairness-related statistics → Fairness Labels
- Visualize high-dimensional fairness labels

Approach - Fairness Labels

Static label: the distributions of *target variable* (+ or -) of all the sub-populations defined by a pair of sensitive attributes, like gender and race.

Performance label: the distributions of *performance metric* (*TPR*, *FPR*, *TNR*, *FNR*, *ACC*, ..., etc) of all the sub-populations defined by a pair of sensitive attributes.

Adult Income: +: >50K, -: <=50K

race

```
\{(white): \{+: 0.95, -: 0.88\},\ (black): \{+: 0.05, -: 0.11\}\}
```

race, gender

```
\{(white, men) : \{+: 0.86, -: 0.63\},\

(white, women) : \{+: 0.14, -: 0.37\},\

(Black, men) : \{+: 0.77, -: 0.46\},\

(Black, women) : \{+: 0.23, -: 0.54\}\}
```

Implementation

- **Pipeline**
 - Integrated most of *scikit-learn* preprocessing functionality
 - Integrated fairness interventions in AI Fairness 360
 - Developed components: Filter, Balance Sampler, Balance **Splitter**
- Fairness labels
 - Extract static and performance label
 - Linear combination in the order of sensitive attributes
 - white, women, young, ...
- Visualization
 - Seaborn barplots
 - Tree-structure representation for high-dimensions *

Classification

Identifying to which category an object be-

Dimensionality reduction

negative matrix factorization.

Applications: Spam detection, Image recog-Algorithms: SVM, nearest neighbors, random forest, .. - Example

Model selection

Algorithms: SV

Regression

sociated with an object. Applications: Dru

Predicting a continuous-valued attribute as-

learn

tock prices.

on, Lasso,

Reducing the number of random variables to Comparing, validating and choosing parameters and models.

Applications: Visualization, Increased eff Goal: Improved accuracy via parameter tun-Algorithms: PCA, feature selection, non Modules: grid search, cross validation, met-

AI Fairness 360 Open Source Toolkit

Clustering

Automatic grouping of similar objects into

Applications: Customer segmentation, Grouping experiment outcomes Algorithms: k-Means, spectral clustering, mean-shift, ... - Examples

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms. Modules: preprocessing, feature extraction.

Experimental Setup

Robustness

- various input pipelines
- new dataset

Intersectional effects

- use 2 sensitive attributes
- evaluate existing fairness interventions
- on benchmark datasets and new dataset

Datasets

- Benchmark datasets:
 - Adult Income: the fitness of fairness preprocessing interventions
 - German Credit: intersectional effects
 COMPAS Score: intersectional effects
- Explore new dataset:
 - Law School Admissions: robustness

dataset	size	target	1st sensitive att	2nd sensitive att	used in other papers
Adult Income	32,561	income per year	race	gender	Yes
German Credit	1000	credit worthiness	binned age	gender	Yes
COMPAS Score	7,214	whether recidivated	race	gender	Yes
Law School Admissions	438,487	application status	race	gender	No

Adult Income - static label - positive outcome

Adult Income - performance label - selection rate

Change of performance apply fair intervention

Intersectional effects - selection rate

Discussion

- ★ Build a general system that supports responsibly ML pipeline
 - *Integrate more modules
 - *Support flexible pipelines
- ★ Track two types of fairness-related statistics through our system
 - *High-dimensional fairness label
- **★** Experiments on benchmark datasets and new dataset
 - *Explore the unknown intersectional effects

Thank you & QAs