РАЗДЕЛ I. ТЕОРИЯ ВЕРОЯТНОСТЕЙ.

ГЛАВА 1. СЛУЧАЙНЫЕ СОБЫТИЯ И ИХ ВЕРОЯТНОСТИ.

§ 1. Введение в теорию вероятностей.

Закономерности детерминистические (определенные).

Закономерности статистические (вероятностные).

Статистические закономерности исследуются методами специальных математических дисциплин — теории вероятностей и математической статистики.

Цель теории вероятностей — осуществление прогноза в области случайных явлений, влияние на ход этих явлений, контроль их, ограничение сферы действия случайности.

Определение 1. Теория вероятностей — это математическая наука, изучающая математические модели случайных экспериментов.

Любой эксперимент S характеризуется двумя факторами:

- 1) комплекс условий U, при котором S происходит;
- 2) результаты эксперимента, то есть некоторые события $A_1, A_2, ...,$ наступление или ненаступление которых регистрируется в ходе эксперимента.

Типы экспериментов.

Определение 2. Эксперимент S называется детерминированным, если комплекс условий U однозначно определяет результат эксперимента.

Примеры экспериментов.

Определение 3. Событие A, которое при данном комплексе условий U неизбежно наступает, называется достоверным событием. Событие B, которое неизбежно не наступает, называется невозможным событием.

В детерминированных экспериментах мы имеем дело только с достоверными и невозможными событиями.

- S_2 . $U = \{30\$ экзаменационных билетов, студент наудачу вытягивает один билет $\}$, $A = \{$ номер извлеченного билета четный $\}$. $U \to A$ или \overline{A} .
- $\mathbf{S_{3}}.\ U=\{$ над плоской поверхностью наудачу бросают симметричную монету $\},$ $A=\{$ выпал гер $\delta\}.\ U\to A$ или \overline{A} .
- S_4 . $U = \{ paccматривается количество обращений к веб-серверу за сутки \},$ $A_k = \{ количество обращений = k \}$, где k некоторое неотрицательное целое число. $U \to A_k$ или \overline{A}_k .
- S_5 . $U = \{ay дитория 513 главного корпуса БГУ, 2015 год 1 марта 9.00 утра<math>\}$, $A = \{b \ ay дитории находится 14 студенток<math>\}$. $U \to A$ или \overline{A} .

Определение 4. Случайным экспериментом называется недетерминированный эксперимент *S*, для которого выполняются следующие два свойства:

- 1) эксперимент допускает массовое, п-кратное (п сколь угодно большое) повторение;
 - 2) выполняется свойство статистической устойчивости.

Свойство статистической устойчивости.

Пусть эксперимент S осуществлен n-кратно (серия из n независимых экспериментов). Обозначим:

 $m_n(A)$ — число наступлений события A в этой серии экспериментов;

 $v_n(A) = m_n(A) / n$ — относительная частота наступления события A.

Свойство статистической устойчивости состоит в том, что для любого события A при возрастании n последовательность относительных частот сходится к некоторому пределу:

$$\nu_n(A) \xrightarrow[n \to \infty]{} \mathbf{P} = \mathbf{P}(A),$$

где $P(A) \in [0, 1]$ – вероятность случайного события A.

Для экспериментов $S_2 - S_4$ свойство статистической устойчивости выполняется, а для S_5 – нет.

 S_2 : $v_n(A) \to \frac{1}{2}$ (то есть приблизительно в половине случаев выпадает четный номер билета).

$$S_3: v_n(A) \to \frac{1}{2}.$$

$$\mathbf{S_4}: v_n(A_k) \to \mathbf{\textit{P}}(A_k) = \frac{\lambda^k e^{-\lambda}}{k!}$$
, где $\lambda > 0$ – некоторый параметр, который характери-

зует среднее число обращений к серверу за сутки (закон Пуассона).

Таким образом, эксперименты $S_2 - S_4 -$ случайные, а $S_5 -$ прочий недетерминированный эксперимент.

В случайном эксперименте мы имеем дело не только с достоверными и невозможными событиями, но и со случайными событиями.

§ 2. Случайные события и соотношения между ними.

Рассмотрим случайный эксперимент S.

Определение 1. События, составляющие множество {ω} простейших исходов случайного эксперимента S, называются элементарными событиями (ЭС), если:

- 1) все элементарные события различны;
- 2) наступление одного из исходов исключает наступление всех остальных;
- 3) в ходе эксперимента одно из элементарных событий неизбежно наступает.

Множество $\Omega = \{\omega\}$, составленное из всех элементарных событий, называется пространством элементарных событий (ПЭС).

Определение 2. Объединение A некоторых элементарных событий из Ω называется случайным событием. Иначе говоря, случайное событие — это подмножество пространства элементарных событий: $A \subseteq \Omega$. При этом $A = \Omega$ — достоверное событие, $A = \emptyset$ — невозможное событие.

Замечание 1. A наступает всякий раз, когда наступает некоторое элементарное событие из A.

Замечание 2. Пространство элементарных событий строится неоднозначно исходя из содержательного смысла задачи.

Примеры.

S₁. Бросание монеты. $\omega_1 = \{ \Gamma \}, \, \omega_2 = \{ P \}, \, \Omega = \{ \omega_1, \, \omega_2 \}, \, |\Omega| = 2.$

S₂. Бросание двух монет. $\omega_1 = \{(\Gamma, \Gamma)\}, \ \omega_2 = \{(\Gamma, P)\}, \ \omega_3 = \{(P, \Gamma)\}, \ \omega_4 = \{(P, P)\}, \ \Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}, \ |\Omega| = 4.$

 $\mathbf{S_3}$. Экзаменатор — студент. $\omega_i = \{\text{номер извлеченного билет} a = i\}, i = \overline{1,30},$ $\Omega = \{\omega_1, \omega_2, ..., \omega_{29}, \omega_{30}\}, A = \{\omega_2, \omega_4, ..., \omega_{28}, \omega_{30}\} \subset \Omega, |A| = 15.$

 S_4 . Веб-сервер. $\omega_i = \{ \text{число обращений} = i \}, i = 0, 1, 2, ..., <math>\Omega = \{ \omega_0, \omega_1, ... \}$ – счетное множество, $A = \{ \text{число обращений больше } k \} = \{ \omega_{k+1}, \omega_{k+2}, ... \}$ – счетное.

S₅. Имеется некоторый интернет-магазин. Нас интересует его ежедневный доход. $\omega_x = \{ \partial oxod \ 3a \ oduh \ dehb \ cocmaвил \ величину \ x \}$, где $x \in \mathbb{R}$, $\Omega = \{ \omega_x : x \in \mathbb{R} \}$, $A = \{ \partial oxod \ меньше \ чем \ z \} = \{ \omega_x : x < z \}$.

Соотношения между случайными событиями.

Пусть $A, B, C \subseteq \Omega$.

Обозначение	Название	Пояснение
$B \subset C$	Событие B влечет C	C наступает всякий раз, когда наступает B
B = C	События B и C эквивалентны	B наступает тогда и только тогда, когда наступает C
$A = \overline{B}$	A есть событие, противоположное B	A наступает тогда и только тогда, когда не наступает B
$A = B \cap C$	A есть произведение B и C	A наступает тогда и только тогда, когда B и C наступают вместе
$B \cap C = \emptyset$	В и С несовместны	Совместное наступление <i>В</i> и <i>С</i> невозможно
$A = B \cup C$	A есть сумма B и C	A наступает тогда и только тогда, когда наступает B или C , или оба вместе
$A = B \setminus C = $ $= B \cap \overline{C}$	A есть разность событий B минус C	A наступает тогда и только тогда, когда наступает B и не наступает C
$A = B \Delta C =$ $= (B \setminus C) \cup (C \setminus B)$	A есть симметричная разность B и C	A наступает тогда и только тогда, когда наступает либо B , либо C (не одновременно)

Правило де Моргана.

Пусть событие A есть результат применения к событиям B, C, D, ... действий \cap , \cup , \subset . Тогда, чтобы получить \overline{A} , достаточно все события поменять на противоположные, а действия поменять по схеме $\cap \to \cup$, $\cup \to \cap$, $\subset \to \supset$.

§ 3. Понятие вероятности. Простейшие вероятностные модели.

Рассмотрим три типа простейших вероятностных моделей: классическую, дискретную, геометрическую.

1. Классическая вероятностная модель — это математическая модель простейших случайных экспериментов.

Пример. Экзаменатор – студент. N билетов. $\omega_i = \{ \text{номер извлеченного билет} a = i \},$ $i = \overline{1, N}, \Omega = \{ \omega_1, \omega_2, ..., \omega_N \}.$

Определение 1. Классическая вероятностная модель — это математическая модель простейшего эксперимента, определяемая следующими четырьмя аксиомами:

А1. Пространство элементарных событий конечно: $\Omega = \{\omega_1, ..., \omega_N\}$, $N < \infty$;

А2. Каждому случайному событию $A \subseteq \Omega$ поставлено в соответствие такое число P = P(A), что $0 \le P(A) \le 1$, $P(\emptyset) = 0$, $P(\Omega) = 1$. При этом число P называется вероятностью события A, а функция $P(\bullet)$ называется вероятностной функцией;

АЗ (аксиома конечной аддитивности). Для любых несовместных случайных событий A, B из Ω ($A \cap B = \emptyset$) вероятность суммы событий равна сумме вероятностей этих событий: $P(A \cup B) = P(A) + P(B)$;

А4 (аксиома равновероятности). Все N элементарных событий равновероятны: $P(\omega_1) = P(\omega_2) = \dots = P(\omega_N) = const = p$, при этом число $p \in (0, 1)$ называется элементарной вероятностью.

Теорема 1. Для классической вероятностной модели, определяемой аксиомами A1-A4, вероятность p=1/N, а вероятность произвольного случайного события $A \in \Omega$ определяется соотношением

$$\mathbf{P} = \mathbf{P}(A) = \frac{|A|}{|\Omega|} = \frac{M}{N},\tag{1}$$

где $N = |\Omega|$ — число всех элементарных событий, M = |A| — число элементарных событий, входящих в A (благоприятствующих наступлению события A).

Пример 1 (гипергеометрическое распределение вероятностей). В непрозрачном сосуде тщательно перемешаны K однотипных шаров, среди которых k ($k \le K$) красных и (K-k) белых. Наудачу извлекается комплект из L шаров. Вычислить вероятность события $A_l = \{ cpedu\ L\ useneverhear uapoe\ l\ kpachex \}$ для $l=0,1,2,\ldots$

Шаг 1.

 $\omega_i = \{i$ -й вариант извлечения комплекта шаров из K имеющихся без учета порядка извлечения $\},\ i=\overline{1,N}\,,\ N=C_K^L<\infty.$

Шаг 2.

$$P_l = P(A_l) = |A_l| / N = M_l / N.$$

Если $l > \min\{k, L\}$, то $A_l = \emptyset$ и $M_l = 0$.

Если $0 \le l \le \min\{k, L\}$, то $M_l = C_k^l C_{K-k}^{L-l}$.

$$\mathbf{P}_{l} = \mathbf{P}(A_{l}) = \begin{cases} \frac{C_{k}^{l} C_{K-k}^{L-l}}{C_{K}^{L}}, \ l = 0, 1, ..., \min\{k, L\}; \\ 0, \qquad l > \min\{k, L\}. \end{cases}$$
 (2)

Определение 2. Набор вероятностей, определенный (2), называется гипергеометрическим распределением вероятностей.

2. Дискретная вероятностная модель.

Определение 3. Дискретная вероятностная модель определяется следующей системой трех аксиом (штрих обозначает обобщение аксиомы):

A1'. $\Omega = \{\omega_1, \omega_2, ..., \omega_N\} - \partial u c к р е m но е м но же с тво (конечное либо с четное).$ **A2**(без изменений).

АЗ' (аксиома счетной аддитивности). Для любой последовательности A_1 , A_2 , ... $\subseteq \Omega$ попарно несовместных случайных событий $(A_i \cap A_j = \emptyset, i \neq j)$ выполняется соотношение

$$\boldsymbol{P}\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}\boldsymbol{P}(A_{i}).$$

Вероятность i-го события — $P(\omega_i) = p_i$, $i = \overline{1, N}$, называется i-й элементарной вероятностью.

Теорема 2. В рамках дискретной вероятностной модели, определяемой аксиомами A1', A2, A3', вероятность случайного события A равна сумме ряда, составленного из тех элементарных вероятностей, которые соответствуют элементарным событиям, благоприятствующим наступлению события A:

$$\mathbf{P} = \mathbf{P}(A) = \sum_{k:w_k \in A} p_k, \ A \subseteq \Omega.$$
 (3)

Следствие. Элементарные вероятности удовлетворяют условию нормировки:

$$\sum_{k=1}^{N} p_k = 1.$$

Пример 2 (число обращений к веб-серверу).

$$p_k = P(\omega_k) = \frac{\lambda^k e^{-\lambda}}{k!}, \ k = 0, 1, 2, ...,$$

где $\lambda > 0$ — среднее число обращений к серверу за сутки.

3. Геометрическая вероятностная модель — это обобщение классической вероятностной модели на случай, когда пространство элементарных событий Ω более чем счетно (является ограниченным подмножеством m-мерного евклидова пространства \mathbb{R}^m , $m=1,2,\ldots$). Все элементарные события равновозможны.

Определение 4. Числовая функция $\mu = \mu(A)$ называется мерой, если она удовлетворяет следующим свойствам:

- 1. неотрицательность: $\mu(A) \ge 0$;
- 2. ограниченность: $\mu(\Omega) < \infty$;
- 3. монотонность: если $A \subset B$, то $\mu(A) \leq \mu(B)$;
- 4. счетная аддитивность: μ(•) удовлетворяет свойству, аналогичному А3'.

В \mathbb{R}^m будем использовать меру Лебега: $\mu(A) = mes_m(A)$. При m=1 $\mu(A)$ — длина отрезка A, при m=2 $\mu(A)$ — площадь плоской фигуры A, при m=3 $\mu(A)$ — объем тела A и т.д.

Определение 5. В рамках геометрической вероятностной модели вероятность случайного события $A \subseteq \Omega$ определяется соотношением

$$\mathbf{P}(A) = \frac{\mu(A)}{\mu(\Omega)}.\tag{4}$$

Замечание. Не для всех подмножеств A существует понятие длины и др. Здесь требуется, чтобы $A \subseteq \Omega$ было измеримо по Лебегу.

Пример 3 (жребий в игре «Что? Где? Когда?»). Отсчитываем угловое положение остановившейся стрелки — ω . $\Omega = [0, 2\pi)$. Случайное событие $A = \{ cmpeлка \ ocmaновилась в секторе <math>[\phi_1, \phi_2) \} = [\phi_1, \phi_2)$. Тогда согласно (4)

$$P(A) = \frac{\varphi_2 - \varphi_1}{2\pi}.$$

§ 4. Алгебра, σ-алгебра и их свойства. Измеримое пространство.

Определение 1. Пусть Ω — произвольное пространство элементарных событий, тогда некоторая система F подмножеств из Ω называется алгеброй случайных событий, если:

- 1) $\Omega \in F$;
- 2) $ecnu A \in F$, $mo \overline{A} \in F$;
- 3) $ecnu A, B \in F, mo A \cup B \in F.$

Следствие 1. Справедливы еще два свойства:

- 4) $\emptyset \in F$;
- 5) $ecnu A, B \in F, mo A \cap B \in F.$

Следствие 2. Алгебра замкнута относительно конечного числа операций $\cap, \cup, -$.

Определение 2. Алгебра F подмножеств из Ω называется σ -алгеброй, если свойства 3 и 5 выполняются в обобщенном виде для счетного множества событий:

$$\forall A_1, A_2, ... \in F \Rightarrow \bigcup_{i=1}^{\infty} A_i \in F, \bigcap_{i=1}^{\infty} A_i \in F.$$

Следствие. σ -алгебра замкнута относительно счетного множества операций \cap , \cup ,-.

Определение 3. Измеримым пространством называется пара математических объектов (Ω, F) , где Ω – пространство элементарных событий, F – алгебра или σ -алгебра подмножеств из Ω .

Примеры измеримых пространств.

1. Измеримое пространство (\Omega, 2^{\Omega}), где Ω — дискретное множество (конечное либо счетное). Здесь $F = 2^{\Omega}$ — множество всех подмножеств из Ω . Если $|\Omega| = N < \infty$, то $|F| = 2^{N}$.

2. Измеримое пространство (\mathbb{R} , \mathcal{B}).

Здесь $\Omega = \mathbb{R} = (-\infty, +\infty)$ — числовая прямая. Построим σ -алгебру на числовой прямой. Для этого выберем $\forall x \in \mathbb{R}$ и рассмотрим числовой промежуток $A_x = (-\infty, x)$.

Определение 4. Назовем базовой системой подмножеств на числовой прямой следующую систему интервалов: $F_0 = \{\emptyset, A_x : x \in \mathbb{R}\}.$

Заметим, что F_0 алгеброй не является, так как $\overline{A}_x = [x, +\infty) \notin F_0$.

Построим систему подмножеств F_1 следующим образом: 1) включим туда F_0 ; 2) пополним F_0 всевозможными счетными пересечениями, объединениями и дополнениями подмножеств из F_0 . Тогда F_1 является σ -алгеброй.

Определение 5. Построенная указанным способом σ -алгебра F_1 называется борелевской (в честь французского математика Э. Бореля) σ -алгеброй на числовой прямой и обозначается $\mathcal{B} = \mathcal{B}(\mathbb{R}) = \mathcal{B}(\mathbb{R}^1) ::= F_1$. Элементы F_1 называются борелевскими множествами.

Свойства борелевской σ -алгебры \mathcal{B} .

C1. Для $\forall z \in \mathbb{R}$ одноточечное множество $\{z\}$ является борелевским множеством.

Доказательство.

$$\{z\} = \bigcap_{n=1}^{\infty} \left[z, z + \frac{1}{n} \right] = \bigcap_{n=1}^{\infty} (A_{z+1/n} \setminus A_z) = \bigcap_{n=1}^{\infty} (A_{z+1/n} \cap \overline{A}_z). \tag{1}$$

- **C2.** Борелевскими множествами являются произвольные числовые промежутки вида (a, b), [a, b), (a, b], [a, b], где $a, b \in \mathbb{R}$, a < b.
 - **C3.** Множество рациональных чисел является борелевским: $\mathbb{Q} \in \mathcal{B}$.

Доказательство.
$$\mathbb{Q} = \bigcup_{i=1}^{\infty} \{q_i\}$$
 — счетная сумма одноточечных множеств.

С4. Множество иррациональных чисел является борелевским.

3. Измеримое пространство (\mathbb{R}^m , \mathcal{B}^m).

 $\Omega = \mathbb{R}^m$. $\mathcal{B}^m = \mathcal{B}(\mathbb{R}^m)$ строится по аналогичной схеме, но в качестве базовой системы F_0 берется система параллелепипедов в \mathbb{R}^m :

$$F_0 = \{ \emptyset, \ A_x = A_{x_1} \times A_{x_2} \times \dots \times A_{x_n} : x = (x_i) \in \mathbb{R}^m \}.$$
 (2)

§ 5. Аксиомы теории вероятностей. Вероятностное пространство.

Определение 1 (определение А.Н. Колмогорова). Пусть Ω – произвольное пространство элементарных событий, $F - \forall$ система подмножеств из Ω . Числовая функция $\mathbf{P} = \mathbf{P}(A) : F \to \mathbb{R}$ называется вероятностной мерой, \forall подмножество $A \in F$ называется случайным событием, а число $\mathbf{P} = \mathbf{P}(A)$ – вероятностью случайного события A, если выполняются следующие аксиомы:

A1. F есть алгебра подмножеств из Ω ;

A2.
$$0 \le P(A) \le 1 \ \forall A \in F$$
;

A3 (аксиома нормировки). $P(\Omega) = 1$;

А4 (аксиома конечной аддитивности). Для любых несовместных случайных событий $A, B \in F (A \cap B = \emptyset)$ выполняется $P(A \cup B) = P(A) + P(B)$.

При этом если Ω – бесконечное множество, то аксиомы A1, A4 обобщаются следующим образом:

А1'. F – σ -алгебра подмножеств из Ω ;

А4' (аксиома счетной аддитивности). Для любой последовательности попарно несовместных случайных событий $A_1, A_2, ... \in F(A_i \cap A_j = \emptyset, i \neq j)$ выполняется соотношение

$$\boldsymbol{P}\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}\boldsymbol{P}(A_{i}).$$

Определение 2. Вероятностным пространством называется тройка математических объектов (Ω, F, P) , где

 Ω – пространство элементарных событий,

F – алгебра или σ -алгебра подмножеств из Ω ,

P – вероятностная мера, определенная на F.

Определение 3. Последовательность случайных событий $(A_n) \in F$ называется монотонно убывающей и обозначается $A_n \downarrow$, если $A_1 \supset A_2 \supset \dots$ Последовательность случайных событий $(A_n) \in F$ называется монотонно возрастающей и обозначается $A_n \uparrow$, если $A_1 \subset A_2 \subset \dots$

Теорема. Для всякой монотонной последовательности случайных событий $(A_n) \in F$ существует

$$A = \lim_{n \to \infty} A_n = \begin{cases} \bigcap_{n=1}^{\infty} A_n, ecnu \ A_n \ \downarrow; \\ \bigcup_{n=1}^{\infty} A_n, ecnu \ A_n \ \uparrow. \end{cases}$$
 (1)

Определение 4. Существуют два эквивалентных варианта расширения аксиом Колмогорова:

- 1) {A1', A2, A3, A4'};
- 2) {A1', A2, A3, A4, A5}, где A5 это дополнительная аксиома.

А5 (аксиома непрерывности вероятностной меры). Для любой монотонно убывающей последовательности случайных событий $A_n \downarrow$ допускается предельный переход под знаком вероятностной меры:

$$\lim_{n\to\infty} \mathbf{P}(A_n) = \mathbf{P}(\lim_{n\to\infty} A_n) = \mathbf{P}\left(\bigcap_{n=1}^{\infty} A_n\right).$$

§ 6. Свойства вероятности (вероятностной меры).

Пусть (Ω, F, P) – вероятностное пространство.

Свойства вероятности.

С1. Вероятность противоположного события вычисляется по следующей формуле:

$$P(\overline{A}) = 1 - P(A), A \in F.$$

Доказательство.

$$\Omega = A \cup \overline{A}, \ A \cap \overline{A} = \emptyset.$$

$$P(\Omega) = P(A \cup \overline{A}) = P(A) + P(\overline{A}).$$

$$P(\Omega) = 1.$$

$$P(\overline{A}) = 1 - P(A).$$

C2. $P(\emptyset) = 0$ (вероятность невозможного события равна нулю).

С3 (монотонность вероятностной меры). Для любых вложенных случайных событий $(A \subset B)$ выполняется неравенство $P(A) \leq P(B)$.

Доказательство.

$$B = A \cup (B \setminus A).$$

$$P(B) = P(A) + P(B \setminus A) \ge P(A).$$

Следствие. $Ecnu\ A \subset B$, $mo\ P(B \setminus A) = P(B) - P(A)$.

С4 (формула сложения вероятностей). Для любых случайных событий $A, B \in F$ справедлива формула сложения вероятностей

$$P(A \cup B) = P(A) + P(B) - P(A \cap B). \tag{1}$$

Доказательство.

$$A \cup B = A \cup (B \setminus (A \cap B)), \tag{2}$$

$$B = (B \setminus (A \cap B)) \cup (A \cap B). \tag{3}$$

$$P(A \cup B) = P(A) + P(B \setminus (A \cap B)), \tag{4}$$

$$P(B) = P(A \cap B) + P(B \setminus (A \cap B)). \tag{5}$$

Следствие 1. Если в (1) A и B несовместные, то формула сложения вероятностей превращается в A4.

Следствие 2. Для любых случайных событий А и В

$$P(A \cup B) \leq P(A) + P(B)$$
.

С4' (обобщенная формула сложения вероятностей). Пусть $N \ge 2$, тогда для любых случайных событий $A_1, A_2, ..., A_N \in F$ справедливо следующее обобщение формулы (1):

$$P\left(\bigcup_{i=1}^{N} A_{i}\right) = \sum_{i=1}^{N} P(A_{i}) - \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} P(A_{i} \cap A_{j}) + \sum_{i=1}^{N-2} \sum_{j=i+1}^{N-1} \sum_{k=j+1}^{N} P(A_{i} \cap A_{j} \cap A_{k}) - \dots + (-1)^{N-1} P\left(\bigcap_{i=1}^{N} A_{i}\right).$$

$$(6)$$

C5. Для любой последовательности, конечной или бесконечной, случайных событий $A_1, A_2, ..., A_N \in F$ справедливо неравенство

$$P\left(\bigcup_{i=1}^{N}A_{i}\right)\leq\sum_{i=1}^{N}P(A_{i}).$$

С6 (эквивалент А5). Для любой монотонно возрастающей последовательности случайных событий, имеющей предел

$$A = \lim_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} A_n,$$

допустим предельный переход под знаком вероятностной меры:

$$\lim_{n\to\infty} \mathbf{P}(A_n) = \mathbf{P}(\lim_{n\to\infty} A_n) = \mathbf{P}(A).$$

Доказательство.

$$B_n = \overline{A}_n$$
. $\lim_{n \to \infty} B_n = \bigcap_{n=1}^{\infty} B_n = \bigcap_{n=1}^{\infty} \overline{A}_n$.

$$\lim_{n\to\infty} \mathbf{P}(A_n) = \lim_{n\to\infty} (1 - \mathbf{P}(B_n)) = 1 - \mathbf{P}(\lim_{n\to\infty} B_n) = 1 - \mathbf{P}\left(\bigcap_{n=1}^{\infty} \overline{A}_n\right) = \mathbf{P}\left(\bigcap_{n=1}^{\infty} \overline{A}_n\right) = \mathbf{P}\left(\bigcup_{n=1}^{\infty} A_n\right) = \mathbf{P}(A).$$

Замечание. Аксиома А5 и свойство С6 взаимозаменяемы.

§ 7. Условная вероятность и ее свойства. Формула полной вероятности. Формула Байеса.

Определение 1. Пусть (Ω, F, P) – произвольное вероятностное пространство, $a \ A, \ B \in F$ – произвольные случайные события, причем P(B) > 0. Тогда условной вероятностью случайного события A при условии события B называется величина

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}.$$
 (1)

При этом P(A) – безусловная вероятность случайного события A.

Свойства условной вероятности.

С1. Пусть (Ω, F, P) — произвольное вероятностное пространство, тогда при фиксированном случайном событии $B \in F(P(B) > 0)$ числовая функция $P_B(A) ::= P(A \mid B)$, где $A \in F$, удовлетворяет всем аксиомам теории вероятностей A1 - A5.

С2. Условная вероятность удовлетворяет всем шести свойствам безусловной вероятности, в частности:

$$P(\overline{A} \mid B) = 1 - P(A \mid B), \qquad P(A \cup B \mid C) = P(A \mid C) + P(B \mid C) - P(A \cap B \mid C).$$

C3 (формула умножения вероятностей). Если P(B) > 0, то

$$P(A \cap B) = P(A \mid B) P(B). \tag{2}$$

Следствие (симметричная формула умножения вероятностей). Eсли P(A) > 0 u P(B) > 0, справедлива симметричная формула умножения вероятностей:

$$P(A \cap B) = P(A \mid B) P(B) = P(B \mid A) P(A).$$
 (3)

С4 (обобщенная формула умножения вероятностей). Для любого конечного числа N и любых N случайных событий $A_1, A_2, ..., A_N \in F$ таких, что $P\left(\bigcap_{i=1}^{N-1} A_i\right) > 0$, справедлива формула

$$P\left(\bigcap_{i=1}^{N} A_{i}\right) = \prod_{i=1}^{N-1} P\left(A_{i+1} \mid \bigcap_{j=1}^{i} A_{j}\right) P(A_{1}). \tag{4}$$

Определение 2. Пусть (Ω, F, P) – произвольное вероятностное пространство, тогда система из N $(2 \le N < \infty)$ случайных событий $H_1, H_2, ..., H_N \in F$ называется полной системой случайных событий (полной группой случайных событий, полной группой гипотез), если выполнены следующие три свойства:

$$1)\bigcup_{i=1}^{N}H_{i}=\Omega;$$

- 2) $H_i \cap H_j = \emptyset$, $i \neq j$;
- 3) $P(H_i) > 0$, $i = \overline{1, N}$.

Теорема 1 (формула полной вероятности). Пусть на произвольном вероятностном пространстве (Ω, F, P) определена полная система случайных событий $\{H_i\}$. Тогда для любого случайного события $A \in F$ его безусловная вероятность допускает разложение

$$P(A) = \sum_{i=1}^{N} P(A \mid H_i) P(H_i).$$
 (5)

Доказательство.

$$A = A \cap \Omega = A \cap \left(\bigcup_{i=1}^{N} H_i\right) = \bigcup_{i=1}^{N} (A \cap H_i).$$
 (6)

$$P(A) = \sum_{i=1}^{N} P(A \cap H_i) = \sum_{i=1}^{N} P(A \mid H_i) P(H_i).$$

Замечание 1. *N* может быть бесконечным.

Теорема 2 (формула Байеса). Пусть на произвольном вероятностном пространстве (Ω, F, P) определена полная система случайных событий $\{H_i\}$. Тогда для любого случайного события $A \in F$ такого, что P(A) > 0, справедлива формула

$$P(H_i \mid A) = \frac{P(A \mid H_i)P(H_i)}{\sum_{i=1}^{N} P(A \mid H_j)P(H_j)}, \quad i = \overline{1, N}.$$
 (7)

Доказательство.

$$P(A \cap H_i) = P(A \mid H_i)P(H_i) = P(H_i \mid A)P(A).$$

$$P(H_i \mid A) = \frac{P(A \mid H_i)P(H_i)}{P(A)}.$$

Замечание 2. $P(H_i)$ называется априорной вероятностью (от латинского «а priori», что означает «до опыта»), так как она известна до проведения эксперимента.

Замечание 3. $P(H_i \mid A)$ называется апостериорной вероятностью (от латинского «а posteriori», что означает «после опыта»).

Замечание 4. Формула Байеса позволяет по априорным вероятностям вычислить апостериорные.

§ 8. Независимые случайные события и их свойства.

Определение 1. Пусть (Ω, F, P) – произвольное вероятностное пространство, тогда случайные события $A, B \in F$ называются независимыми случайными событиями на (Ω, F, P) , если вероятность их совместного наступления равна произведению вероятностей A и B:

$$P(A \cap B) = P(A)P(B). \tag{1}$$

В противном случае А и В зависимы.

Свойства независимых случайных событий.

C1. Если P(B) > 0, то A и B независимы тогда и только тогда, когда условная вероятность $P(A \mid B)$ совпадает с безусловной вероятностью события A:

$$P(A \mid B) = P(A). \tag{2}$$

Доказательство.

$$P(A \cap B) = P(A \mid B)P(B).$$

Следствие. Соотношение (2) может рассматриваться как критерий независимости случайных событий A и B.

Замечание. Из (2) виден содержательный смысл определения независимости. События *А* и *В* независимы, если наступление одного из этих событий не влияет на вероятность наступления другого.

С2. Свойство независимости переносится на противоположные события, в частности, если A, B — независимые случайные события, то \overline{A} , B — независимые случайные события.

Доказательство.

$$P(\overline{A} \mid B) = 1 - P(A \mid B) = 1 - P(A) = P(\overline{A}).$$

C3. Пусть $A, B, C \in F$ — любые случайные события на (Ω, F, P) такие, что A и C — независимые, B и C — независимые, а A и B — несовместные, тогда независимы $A \cup B$ и C.

Доказательство.

$$P(A \cup B \mid C) = P(A \mid C) + P(B \mid C) - P(A \cap B \mid C) = P(A) + P(B) - 0 = P(A \cup B).$$

Определение 2. Случайные события A_1 , A_2 , ..., $A_n \in F$ называются независимыми в совокупности на (Ω, F, P) , если для $\forall m \in \{2, 3, ..., n\}$ и любых упорядоченных значений m индексов $1 \le i_1 < i_2 < ... < i_m \le n$ выполняется обобщение (1):

$$P\left(\bigcap_{j=1}^{m} A_{i_j}\right) = \prod_{j=1}^{m} P(A_{i_j}). \tag{3}$$

Если же (3) выполняется лишь для m=2, то случайные события $A_1, A_2, ..., A_n$ называются попарно независимыми.

С4. Из независимости в совокупности следует попарная независимость случайных событий. Обратное, вообще говоря, неверно.

Доказательство.

Контрпример Бернштейна.

Над плоской поверхностью бросается правильный тетраэдр, грани которого раскрашены следующим образом: одна — в красный, вторая — в синий, третья — в зеленый, четвертая имеет полоски всех трех цветов.

 $A_1 = \{$ на выпавшей грани есть красный цвет $\},$ $A_2 = \{$ на выпавшей грани есть синий цвет $\},$ $A_3 = \{$ на выпавшей грани есть зеленый цвет $\}.$

$$P(A_i) = 2/4 = 1/2;$$
 $P(A_i \cap A_j) = 1/4;$ $P(A_i \cap A_j) = P(A_i)P(A_j);$ $P(A_1 \cap A_2 \cap A_3) = 1/4 \neq P(A_1)P(A_2)P(A_3) = 1/8.$

С5 (обобщенная формула сложения вероятностей для независимых в совокупности случайных событий). Если случайные события $A_1, A_2, ..., A_N$ независимы в совокупности, то вероятность наступления хотя бы одного из этих событий вычисляется по формуле

$$P\left(\bigcup_{i=1}^{N} A_{i}\right) = 1 - \prod_{i=1}^{N} (1 - P(A_{i})).$$
(4)

§ 9. Схема независимых испытаний Бернулли.

Биномиальное распределение вероятностей.

Последовательные испытания называются *независимыми относительно события* A, если вероятность наступления события A в любом испытании не зависит от числа испытаний N и результатов других испытаний.

Определение 1. Схемой независимых испытаний Бернулли называется последовательность независимых в совокупности испытаний, в каждом из которых возможны лишь два исхода — «успех» и «неудача», при этом успех в одном испытании происходит с вероятностью $p \in (0, 1)$, а неудача — с вероятностью q = 1 - p.

В испытаниях схемы Бернулли, когда с одним испытанием можно связать только два взаимоисключающих события, независимость в совокупности испытаний означает, что при любом N независимы в совокупности события $A_1 = \{ycnex\ e\ nepeom\ ucnыmahuu\}, ..., A_N = \{ycnex\ e\ N-m\ ucnыmahuu\}.$

 v_N — число успехов, случившихся в N испытаниях схемы Бернулли.

Теорема (формула Бернулли). При любом m = 0, 1, ..., N имеет место равенство

$$P\{v_N = m\} = P_N(m) = C_N^m p^m q^{N-m}.$$

Доказательство. Событие $B = \{v_N = m\}$ означает, что в N испытаниях схемы Бернулли произошло ровно m успехов.

$$(\underbrace{y, y, \ldots, y}_{m}, \underbrace{H, H, \ldots, H}_{N-m}).$$

Определение 2. Набор вероятностей

$$P_N(m) = C_N^m p^m (1-p)^{N-m}, \quad m = 0, 1, ..., N,$$
(1)

называется биномиальным распределением вероятностей и обозначается Bi(N, p).

Пример. Для получения приза нужно собрать 4 изделия с особым знаком на этикетке. Найти вероятность получения одного приза после покупки 9 изделий, если этикетки с этим знаком имеют 5% изделий.

Решение. N = 9, m = 4. По формуле (1):

$$P_9(4) = C_9^4(0.05)^4(0.95)^5 = 0.0006092.$$

Замечание. При больших значениях N для вычисления (1) используют приближенные формулы Муавра-Лапласа.