Transcriptomic Analysis of COG Pediatric AML Data

A Prequel

Jenea Adams Xing Lab Round Table September 17, 2021

Establishing a multiomic perspective of acute myeloid leukemia (AML) presentation by age group

AML treatments are harsh on young bodies

AML treatments are based on adult patient data

. ov podiatrio

New pediatric AML therapies are needed

Splicing + Molecular pathways =

Targetable avenues of disease progression

Aim 1: Improve analysis of splicing in large, heterogeneous RNA-seq datasets

Aim 2: Discover age-specific, pathway-dependent alternative splicing patters in pediatric AML RNA-seq data

Created with BioRender.com

CAVATICA: CHOP data-analysis platform of raw and harmonized multiomic data

Overview of data used for this analysis

- De-novo AML, DS-AML, APL-AML
- Data from Children's Oncology Group Clinical Trial (No. AAML1031)
- 1,113 RNA-seq files (aligned and quantified)
 - Both kallisto and RSEM were used
 - Gene fusions also quantified
- 408 whole-genome sequencing (WGS) files

CAVATICA allows easy metadata extraction

rMATS on the cloud

- Cost effective
- Shareable, reproducible
- Scalable (as more data are uploaded)

- Apps = collections of tools and workflows
- Housed within a "project"

rMATS-turbo analysis (so far) provides low-cost, fast output

Time

# BAMs	CAVATICA		HPC	
	prep	post	prep	post
1	30 min	5 min		
200	2 h, 12 min	24 min		
1,113	9 h, 49 min	TBD		

Cost

# BAMs	CAVATICA		
	prep	post	
1	\$0.14	\$0.02	
200	\$34.07	\$0.13	
1,113	\$199.35	TBD	

In Progress

- Documenting rMATS-turbo cloud use
- Documenting multi-use API functions for handling large amounts of output data
- Analysis: Sourcing metadata
 - Treatment history
 - Use of whole genome seq data for ancestry association with molecular subtypes and disease progression
 - RNA-seq data for gene expression analysis of molecular subtypes