

PROTOCOLLO BLUETOOTH BMS SILIDEA PER PROGETTO LIFE2M

01-10-2024

REV 00 ing. Stefano Franco

REVISIONI

REV 00

• Prima emissione

SCOPO

Questo documento ha lo scopo di spiegare come interagire con il bluetooth dei BMS Silidea, come leggere i dati e rappresentare le variabili.

NOTE

- Quando si parla di posizione n si intende l'indice a partire da 0. Per esempio il byte in posizione 3 è il quarto byte ricevuto;
- Quando si rappresentano le stringhe di dati trasmessi e ricevuti si considera il formato esadecimale.

CONNESSIONE VIA BLUETOOTH DA SMARTPHONE

Per stabilire la connessione bluetooth occorre usare alcuni servizi particolari.

- Fare lo scan dei dispositivi bluetooth e connettersi.
- Una volta fatto lo scan e connessi alla scheda occorre entrare nel seguente servizio: 1d5688de-866d-3aa4-ec46-a1bddb37ecf6
- A questo punto si sceglie la seguente caratteristica: af20fbac-2518-4998-9af7-af42540731b3
- Occorre attivare la modalità "indicate"

A questo punto si è stabilita la connessione bluetooth ed è come se si lavorasse con una seriale.

Se si scrive una stringa di richiesta dati nella caratteristica (sono descritte nei prossimi paragrafi) (in formato hex) si ottiene la risposta da parte del BMS (sempre in formato hex).

A. RICHIESTA DATI MISURE

La procedura da fare per la lettura del vettore delle misure è di richiedere l'intero vettore e poi ricostruire i dati in base ai loro indici nell'array.

STRINGA DI RICHIESTA (in esadecimale).

TX: 0C 3F 00 3C 00 01 00 77 01 69 40 F4

Il BMS risponde fornendo un vettore di 64 word (128 byte). Risposta scheda BMS

RX:

8E 21 00 3C 00 01 00 77 01 69 41

00 00 28

28 = CRC8 Maxim sugli ultimi n-1 byte.

La parte evidenziata in azzurro corrisponde ai dati variabili. Se variano i dati variabili varia di conseguenza anche il CRC.

La parte iniziale fa parte del protocollo di trasmissione.

L'operazione da fare è quella di considerare i dati variabili (in azzurro) che contengono le grandezze di interesse.

Si parte quindi a considerare i byte dalla posizione 11.

I byte ricevuti si devono ricomporre in word (16 bit) secondo il formato big endian.

Si ottiene quindi un vettore di word.

Il vettore delle misure, diviso in word, comprende le seguenti variabili:

TABELLA DELLE MISURE

Il vettore delle misure, diviso in word (16 bit), comprende le seguenti variabili.

POS	VAR	TIPO	NOTE
0	tempcell_PC	SIGNED	Temperatura celle (sonda 1), espressa in °C
1	tempshunt_PC	SIGNED	Temperatura scheda, espressa in °C
2	-		Corrente, espressa in centesimi di A.
2	current1 MSB	SIGNED	Parte più significativa
2	41 I CD	CICNED	Corrente, espressa in centesimi di A.
3	current1 LSB	SIGNED	Parte meno significativa
4	1 10.1 3.7	LINGICNED	Corrisponde alla tensione cella 1, espressa in mV.
4	vbat01_mV	UNSIGNED	Ad esempio il valore "3000" corrisponde a 3,000V.
5	vbat02_mV	UNSIGNED	Valgono le stesse considerazioni fatte per la cella 1
6	vbat03_mV	UNSIGNED	Valgono le stesse considerazioni fatte per la cella 1
7	vbat04_mV	UNSIGNED	Valgono le stesse considerazioni fatte per la cella 1
8	vbat05_mV	UNSIGNED	Valgono le stesse considerazioni fatte per la cella 1
9	vbat06_mV	UNSIGNED	Valgono le stesse considerazioni fatte per la cella 1
10	vbat07_mV	UNSIGNED	Valgono le stesse considerazioni fatte per la cella 1
11	vbat08_mV	UNSIGNED	Valgono le stesse considerazioni fatte per la cella 1
12	vbat09_mV	UNSIGNED	Valgono le stesse considerazioni fatte per la cella 1
13	vbat10_mV	UNSIGNED	Valgono le stesse considerazioni fatte per la cella 1
14	vbat11_mV	UNSIGNED	Valgono le stesse considerazioni fatte per la cella 1
15	vbat12_mV	UNSIGNED	Valgono le stesse considerazioni fatte per la cella 1
16	vbat13_mV	UNSIGNED	Valgono le stesse considerazioni fatte per la cella 1
17	vbat14_mV	UNSIGNED	Valgono le stesse considerazioni fatte per la cella 1
18	vbat15_mV	UNSIGNED	Valgono le stesse considerazioni fatte per la cella 1
19	vbat16_mV	UNSIGNED	Valgono le stesse considerazioni fatte per la cella 1
20	vbat17_mV	UNSIGNED	Valgono le stesse considerazioni fatte per la cella 1
21	vbat18_mV	UNSIGNED	Valgono le stesse considerazioni fatte per la cella 1
22	vbat19_mV	UNSIGNED	Valgono le stesse considerazioni fatte per la cella 1
23	vbat20_mV	UNSIGNED	Valgono le stesse considerazioni fatte per la cella 1
			Tensione media celle, espressa in mV.
24	vbatt_mean	UNSIGNED	Ad esempio il valore "3000" corrisponde a 3,000V.
			Usare rappresentazione in Volt con 3 cifre dopo la virgola
25	alarm_bms	16 BIT FLAG	Ogni bit rappresenta un diverso allarme-attenzione. Si rimanda alla
23	aiaiii_biiis	10 DIT I LAG	trattazione degli allarmi
26	soc_msb	UNSIGNED	Rappresenta i decimi di amper secondo (MSB) della carica.
27	soc_lsb	UNSIGNED	Rappresenta i decimi di amper secondo (LSB) della carica.
28	soc_per	UNSIGNED	Percentuale di carica (State Of Charge) compresa tra 0 e 100.
	soc_pci		Ad esempio il valore 56 corrisponde al 56% di SOC
29	cnt_mxcurr	UNSIGNED	Contatore allarmi corrente massima
30	cyc_charge	UNSIGNED	Numero cicli di carica effettuati
31	ah_nom	UNSIGNED	Capacità del pacco batterie, espressa in decimi di Ah.
31	<u> </u>	CHOIGHED	Ad esempio il valore "40" corrisponde a 4,0Ah.
			Ogni bit rappresenta il comando di equilibratura di una singola cella.
32	com_cell_msb	FLAG	Word più significativa.
			Ad esempio se il lsb vale 1 significa che la cella 17 è in equilibratura.
		FT + C	Ogni bit rappresenta il comando di equilibratura di una singola cella.
33	com_cell_lsb	FLAG	Word meno significativa.
			Ad esempio se il lsb vale 1 significa che la cella 1 è in equilibratura.
34	date_rtc	UNSIGNED	Valore della data fornita dalla scheda. Si rimanda alla trattazione di
			data e ora

File: 00 PROTOCOLLO BLUETOOTH BMS LIFE2M 01-10-24.doc Pagina 4 di 16

		1	X7.1 1.111 C '- 1.11 1.1 C' ' 1.11 ' 1.11
35	hour_rtc	UNSIGNED	Valore dell'ora fornita dalla scheda. Si rimanda alla trattazione di data
36	flg_adj	16 DIT EL AC	e ora Flag per la taratura
37		16 BIT FLAG	
3/	flg1_adj	16 BIT FLAG	Flag per la taratura
38	hour_soc	UNSIGNED	Tempo di scarica (ore, minuti, secondi). Si rimanda alla trattazione di data e ora
39	hour_charg	UNSIGNED	Tempo di carica (ore, minuti, secondi). Si rimanda alla trattazione di data e ora
40	flg_bms	16 BIT FLAG	Ogni bit rappresenta un flag di stato del sistema. Si rimanda alla trattazione dei flag
41	alarm1_bms	16 BIT FLAG	Ogni bit rappresenta un diverso allarme-attenzione. Si rimanda alla trattazione degli allarmi
12		Thigigner	Versione software BMS, espressa in centesimi.
42	vers_sw	UNSIGNED	Ad esempio il valore "102" corrisponde a REV 1,02
43	cell_blk	UNSIGNED	Numero di blocchi celle. Si rimanda alla trattazione delle celle attive.
44	DecAmpH_msb	UNSIGNED	Decimi di Ah caricati (MSB) [Ah/10]
45	DecAmpH_lsb	UNSIGNED	Decimi di Ah caricati (LSB) [Ah/10]
46	alarm_sk	16 BIT FLAG	NON USATA
47	cell_act	UNSIGNED	NON USATA
48	tempcell2_PC	SIGNED	Temperatura celle (2° sonda, se presente), espressa in °C
49	vbatt_tot_msb	UNSIGNED	Tensione totale pacco, word più significativa
50	vbatt_tot_lsb	UNSIGNED	Tensione totale pacco, word meno significativa
51	cmd_eqmin_msb	FLAG	NON USATA
52	cmd_eqmin_lsb	FLAG	NON USATA
53	batt_act	UNSIGNED	È il numero di celle del pacco. Si rimanda alla trattazione delle celle attive.
54	cellmx_blk	UNSIGNED	Numero di celle massime per blocco. Si rimanda alla trattazione delle celle attive.
55	flg1_bms	16 BIT FLAG	Ogni bit rappresenta un flag di stato del sistema. Si rimanda alla trattazione dei flag
56	type_sk	UNSIGNED	Ogni indice di questa variabile corrisponde ad un nome di scheda Silidea
57	flg2_adj	16 BIT FLAG	Flag per la taratura
58	flg3_adj	16 BIT FLAG	Flag per la taratura
59	vload_dV	UNSIGNED	NON USATA
60	alarm_mas	16 BIT FLAG	NON USATA
61	flg_mas	16 BIT FLAG	NON USATA
62	tempmas_PC	SIGNED	NON USATA
63	vcharge_dV	UNSIGNED	NON USATA

ALLARMI

Ogni bit della word corrisponde ad un allarme - attenzione (o warning).

Solitamente ogni segnalazione presenta un warning e un relativo allarme. Esistono tuttavia segnalazioni rappresentate solo dall'allarme, senza il warning.

La descrizione corrisponde al messaggio da visualizzare.

Vicino al messaggio di segnalazione si può mettere un indicatore a led (spia).

Questo indicatore presenta 3 stati:

- 1. Rimane spento se non sono attivi i bit di allarme e warning;
- 2. Si accende con colore giallo se attivo il bit di warning (ma non è attivo quello di allarme);
- 3. Si accende di rosso se è attivo un bit di allarme (indipendentemente dalla presenza o meno del bit di warning);

La quarta colonna indica, per ogni tipo di segnalazione, la posizione del relativo allarme - warning. Ad esempio "Corrente massima" ha il bit di allarme in posizione 0 e il relativo warning in posizione 8. Nella quarta colonna della posizione 0 si scrive quindi il valore "8".

Un esempio di allarme senza relativo warning è quello dell'allarme timer, in posizione 11 di alarm1_bms. In questo caso il warning non esiste, per cui sulla quarta colonna si scrive 11, che è lo stesso indice dell'allarme citato.

alarm bms

POS	TIPO	DESCRIZIONE	POS. RELATIVO WARN-ALLARME
0	ALLARME	Corrente max	8
1	ALLARME	Alta temperatura batt.	9
2	ALLARME	Alta temp scheda	10
3	ALLARME	Tensione max carica	11
4	ALLARME	Tensione minima scarica	12
5	ALLARME	Livello energia minimo	13
6	ALLARME	Bassa temperatura batt. carica	14
7	ALLARME	Tensione minima carica	15
8	WARNING	Corrente max	0
9	WARNING	Alta temperatura batt.	1
10	WARNING	Alta temp scheda	2
11	WARNING	Tensione max carica	3
12	WARNING	Tensione minima scarica	4
13	WARNING	Livello energia minimo	5
14	WARNING	Bassa temperatura batt. carica	6
15	WARNING	Tensione minima carica	7

alarm1_bms

POS	TIPO	DESCRIZIONE	POS. RELATIVO WARN-ALLARME
0	ALLARME	Tensione massima scarica	8
1	ALLARME	Bassa temperatura batt. scarica	9
2	ALLARME	Allarme contattore di scarica positivo	2
3	ALLARME	Flag tensione minima memorizzato	3
4	NON USATO		
5	ALLARME	Corrente max carica	13
6	ALLARME	Corrente max scarica continuativa	14
7	ALLARME	Allarme seriale 485 (versione master-slave)	7
8	WARNING	Tensione massima scarica	0
9	WARNING	Bassa temperatura batt. scarica	1
10	ALLARME	Allarme contattore di carica positivo	10
11	ALLARME	Allarme timer off	11
12	ALLARME	Allarme caricamento e2prom	12
13	WARNING	Corrente max carica	5
14	WARNING	Corrente max scarica continuativa	6
15	WARNING	Tensione minima scarica warning 2	15

FLAG BMS

flg_bms

POS	DESCRIZIONE	VALORE
0	COMANDO CHARGER	0 = OFF
U	COMANDO CHARGER	1 = ON
1	COMANDO ATTREZZO	0 = OFF
1	COMANDO ATTREZZO	1 = ON
2	E2PROM IN PROGRAMMAZIONE	
3	ALLARME E2PROM	
4	STATO DI CARICA	0 = SCARICA
-	STATO DI CARGOT	1 = CARICA
5	TIPO EQUILIBRATURA	0 = TIPO A O C
	TH & EQUIEDRATIONAL	1 = TIPO B
6	STATO DI SCARICA	0 = CARICA
		1 = SCARICA
7	ALLARME GENERALE	0 = NESSUN ALLARME
		1 = E' PRESENTE ALMENO UN ALLARME
8	COMANDO BUZZER	
9	USCITA DISPONIBILE	
10	CARICA TERMINATA	0 = NON TERMINATA
		1 = TERMINATA
11	COMANDO DI PRECARICA CANALE DI	
	CARICA	
12	COMANDO DI PRECARICA CANALE DI	
1.2	SCARICA SOME PER EL PLICA PLICA	
13	COMANDO RELE' DI CARICA	
14	USCITA DISPONIBILE	
15	NON USATO	

flg1 bms

POS	DESCRIZIONE	VALORE
0	IN_CLI1	Flag personalizzato cliente
1	IN_CLI2	Flag personalizzato cliente
2	IN_CLI3	Flag personalizzato cliente
3	OUT_TRASP	0 = Modalita' trasporto non attiva 1 = Modalita' trasporto attivata
4	EQP_LOADERR	Allarme caricamento da e2prom
5	CURRMXREP	Corrente massima scarica ripetuta (uscita spenta)
6	CURRMXCONTREP	Corrente massima scarica continuativa (uscita spenta)
7	CURRMXCHREP	Corrente massima carica ripetuta (uscita spenta)
8	CURR32	0 = Corrente espressa in int16 1 = Corrente espressa in int32
9	IS_MASTER	0 = Versione standalone1 = Versione master-slave
10	OUT_NEG_ATTR	Uscita negativo canale di scarica
11	OUT_NEG_CH	Uscita negativo canale di carica
12	NON USATO	
13	NON USATO	
14	NON USATO	
15	NON USATO	

COMANDI CELLE

A partire dalle word com_cell_msb e com_cell_lsb si ricostruisce la long "com_cell" (32 bit). Ogni bit rappresenta il comando di equilibratura di una singola cella. Se com_cell è diverso da 0 significa che almeno una cella è in equilibratura

TENSIONE BATTERIA

A partire dalle word vbatt_tot_msb e vbatt_tot_lsb si ricostruisce la long "vbatt_tot" (32 bit). Tensione totale pacco, espressa in mV (vbatt_tot). Ad esempio il valore "70536" corrisponde a 70,536V. Usare rappresentazione in Volt con 3 cifre dopo la virgola

CORRENTE

Il valore di corrente è espresso a 32 bit. Ricomporre le 2 word current1 MSB e current1 LSB in un int32.

La rappresentazione è in [A/100]. Ad esempio -123 corrisponde a -1,23A.

DATA E ORA

DATA

date_rtc

ANNO	7 bit
MESE	4 bit
GIORNO	5 bit

BIT	B15	B14	B13	B12	B11	B10	В9	В8	В7	B6	B5	B4	В3	B2	B1	В0				
	ANNO						MESE				GIORNO									
	7 bit						7 bit						41	bit				5 bit		
	Da 0 a 119								Da 1	a 12			Γ	Da 1 a 3	1					

NB: per quanto riguarda l'anno, nella visualizzazione bisogna sommare il valore "1980" a quello letto nel campo "ANNO".

Ad esempio se "ANNO" vale 35, sullo schermo si visualizza 1980 + 35 = 2015.

ORA

hour_rtc, hour_soc, hour_charg

ORE 5 bit; **MINUTI** 6 bit; SECONDI 5 bit;

	BIT	B15	B14	B13	B12	B11	B10	B9	B8	В7	B6	B5	B4	В3	B2	B1	В0
		ORE					MINUTI						SECONDI				
		5 bit					6 bit								5 bit		
Ī	Da 0 a 23							Da 0	a 59			Da 0 a 29					

NB: Per quanto riguarda la visualizzazione dei secondi, il valore reale da visualizzare corrisponde al campo "SECONDI" moltiplicato per 2.

Ad esempio se "SECONDI" vale "15", allora il valore da visualizzare è: 15 * 2 = 30.

CELLE ATTIVE

In totale le celle visualizzate sono 20.

Il numero totale di celle è espresso dalla variabile "batt_act".

Il pacco può essere diviso in blocchi. Il numero di blocchi è espresso dalla variabile "cell blk".

Il numero di celle massime per blocco è espresso dalla variabile "cellmx_blk".

Il numero di celle effettive per blocco si ottiene dividendo batt_act per cell_blk. Questo numero è <= cellmx blk.

Quando si leggono le tensioni delle celle, i valori da considerare sono quelli delle celle effettive. Le altre celle hanno tensione pari a 0.

Quando si considera la cella con tensione minima è utile fare il controllo solo sulle celle effettive, altrimenti se si fa su tutte le celle, si possono leggere valori pari a 0, che indicherebbero in maniera erronea tali celle come celle a tensione più bassa.

La tensione più bassa va quindi calcolata sulle celle effettive.

1 Si supponga che il pacco sia suddiviso in un blocco e che il blocco contenga 10 celle. batt_act (letto dal BMS) vale 10*1=10 ed è il numero totale di celle presenti. cell_blk (letto dal BMS) corrisponde a 1 (1 blocco). cellmx_blk (letto dal BMS) vale 20.

Celle effettive per blocco = batt_act / cell_blk = 10 < 20.

In questo caso le celle attive sono: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20

File: 00 PROTOCOLLO BLUETOOTH BMS LIFE2M 01-10-24.doc Pagina 11 di 16

B. RICHIESTA DATI SINTESI UTILIZZO

La procedura da fare per la lettura del vettore della sintesi utilizzo è di richiedere l'intero vettore e poi ricostruire i dati in base ai loro indici nell'array.

STRINGA DI RICHIESTA (in esadecimale).

TX: 0C 3F 00 3C 00 01 00 77 00 5D 13 70

Il BMS risponde fornendo un vettore di 19 word (38 byte). Risposta scheda BMS

RX:

34 21 00 3C 00 01 00 77 00 5D 14

00 00 <mark>6B</mark>

6B = CRC8 Maxim sugli ultimi n-1 byte.

La parte evidenziata in azzurro corrisponde ai dati variabili. Se variano i dati variabili varia di conseguenza anche il CRC.

La parte iniziale fa parte del protocollo di trasmissione.

L'operazione da fare è quella di considerare i dati variabili (in azzurro) che contengono le grandezze di interesse.

Si parte quindi a considerare i byte dalla posizione 11.

I byte ricevuti si devono ricomporre in word (16 bit) secondo il formato big endian.

Si ottiene quindi un vettore di word.

Il BMS risponde fornendo un vettore di 19 word (38 byte).

File: 00 PROTOCOLLO BLUETOOTH BMS LIFE2M 01-10-24.doc Pagina 12 di 16

TABELLA DELLA SINTESI UTILIZZO

Il vettore della sintesi utilizzo, diviso in word (16 bit), comprende le seguenti variabili.

POS	VAR	TIPO	NOTE
0	cycl_scar	UNSIGNED	Numero di accensioni del sistema in scarica
1	cycl_car	UNSIGNED	Numero di accensioni del sistema in carica
2	cnt_mxcurr	UNSIGNED	Contatore allarmi corrente massima. Variabile già presente nel vettore delle misure
3	all_ch90d	UNSIGNED	Flag per gestione scheda
4	fall_ch90d	FLAG	Flag per gestione scheda
5	date_charge	UNSIGNED	Data ultima carica. Ha lo stesso formato di "date_rtc". Si rimanda alla trattazione di data e ora
6	cyc_charge	UNSIGNED	Numero cicli di carica effettuati. Variabile già presente nel vettore delle misure
7	flag_r2	FLAG	Flag per gestione scheda
8	all_90dcli	UNSIGNED	Contatore allarme giorni da ultima carica cliente. Incrementa di 1 ogni volta che passa un certo numero di giorni dall'ultima carica.
9	storic_info	UNSIGNED	Flag per gestione scheda
10	flg_conc	FLAG	Flag per gestione scheda
11	free	UNSIGNED	
12	free	UNSIGNED	
13	free	UNSIGNED	
14	free	UNSIGNED	
15	free	UNSIGNED	
16	free	UNSIGNED	
17	free	UNSIGNED	
18	free	UNSIGNED	

File: 00 PROTOCOLLO BLUETOOTH BMS LIFE2M 01-10-24.doc Pagina 13 di 16

C. RICHIESTA DATI DI PRODUZIONE

Mediante la seguente stringa di richiesta si possono leggere dalla scheda i dati di produzione. Si tratta dei dati che vengono visualizzati nella schermata Dati di Produzione del SW PC Datalogger BMS.

La procedura da fare per la lettura del vettore dei dati produzione è di richiedere l'intero vettore e poi ricostruire i dati in base ai loro indici nell'array.

STRINGA DI RICHIESTA (in esadecimale).

TX: 0C 3F 00 3C FF DC 00 77 00 48 12 B5

Il BMS risponde fornendo un vettore di 18 word (36 byte).

Risposta scheda BMS

RX:

32 21 00 3C FF DC 00 77 00 48 13

55 52 00 01 00 00 8D

8D = CRC8 Maxim sugli ultimi n-1 byte.

La parte evidenziata in azzurro corrisponde ai dati variabili. Se variano i dati variabili varia di conseguenza anche il CRC.

La parte iniziale fa parte del protocollo di trasmissione.

L'operazione da fare è quella di considerare i dati variabili (in azzurro) che contengono le grandezze di interesse.

Si parte quindi a considerare i byte dalla posizione 11.

I byte ricevuti si devono ricomporre in word (16 bit) secondo il formato big endian.

Si ottiene quindi un vettore di word.

Il BMS risponde fornendo un vettore di 18 word (36 byte).

Il vettore, diviso in word, comprende le seguenti variabili.

File: 00 PROTOCOLLO BLUETOOTH BMS LIFE2M 01-10-24.doc Pagina 14 di 16

TABELLA DEI DATI DI PRODUZIONE

Il vettore dei dati di produzione, diviso in word (16 bit), comprende le seguenti variabili.

POS	VAR	TIPO	NOTE
0	data_inst	UNSIGNED	Data installazione. Si rimanda alla trattazione di data e ora.
1	numero_serie00_01	UNSIGNED	Numero di serie (2 caratteri ASCII)
2	numero_serie02_03	UNSIGNED	Numero di serie (2 caratteri ASCII)
3	numero_serie04_05	UNSIGNED	Numero di serie (2 caratteri ASCII)
4	numero_serie06_07	UNSIGNED	Numero di serie (2 caratteri ASCII)
5	numero_serie08_09	UNSIGNED	Numero di serie (2 caratteri ASCII)
6	dati_targa00_01	UNSIGNED	Dati di targa (2 caratteri ASCII)
7	dati_targa02_03	UNSIGNED	Dati di targa (2 caratteri ASCII)
8	dati_targa04_05	UNSIGNED	Dati di targa (2 caratteri ASCII)
9	dati_targa06_07	UNSIGNED	Dati di targa (2 caratteri ASCII)
10	dati_targa08_09	UNSIGNED	Dati di targa (2 caratteri ASCII)
11	dati_targa10_11	UNSIGNED	Dati di targa (2 caratteri ASCII)
12	dati_targa12_13	UNSIGNED	Dati di targa (2 caratteri ASCII)
13	dati_targa14_15	UNSIGNED	Dati di targa (2 caratteri ASCII)
14	dati_targa16_17	UNSIGNED	Dati di targa (2 caratteri ASCII)
15	dati_targa18_19	UNSIGNED	Dati di targa (2 caratteri ASCII)
16		UNSIGNED	RISERVATO
17		UNSIGNED	RISERVATO

Data Installazione:

Nell'esempio di risposta master è 0x5628.

Convertendolo secondo il formato di data e ora si ottiene: 08/01/2023.

0x5628 0101 0110 0010 1000

0101011 0001 01000 1980+43=2023 1 8

Numero di Serie:

Sono 10 caratteri in formato ASCII da visualizzare partendo dal 00 fino al 09. Nell'esempio di risposta master la scritta è: 1234567891

Dati di Targa:

Sono 20 caratteri in formato ASCII da visualizzare partendo dal 00 fino al 19. Nell'esempio di risposta master la scritta è: ABCDEF più 14 campi vuoti (spazi).

D. CHECHSUM CRC 8 MAXIM

};

Alla fine di ogni stringa di dati viene messo un byte che corrisponde al CRC sui precedenti byte. Si riporta la funzione per il calcolo del CRC e la tabella di calcolo.

```
unsigned char cal_crc(unsigned char n, unsigned char *v)
calcolo DOW CRC
      Riassunto:
      v è il buffer di dati della seriale.
      n è il numero di byte del buffer su cui si vuole fare il calcolo del CRC.
********************************
{
      unsigned char cks=0, i;
      for(i=0; i<n; i++)
             cks=crc_tab[cks^v[i]];
      return(cks);
}
const unsigned char crc tab[256]=
      // tabella per calcolo DOW CRC
      0, 94, 188, 226, 97, 63, 221, 131, 194, 156, 126, 32, 163, 253, 31, 65, 157, 195, 33, 127,
      252, 162, 64, 30, 95, 1, 227, 189, 62, 96, 130, 220, 35, 125, 159, 193, 66, 28, 254, 160,
      225, 191, 93, 3, 128, 222, 60, 98, 190, 224, 2, 92, 223, 129, 99, 61, 124, 34, 192, 158,
      29, 67, 161, 255, 70, 24, 250, 164, 39, 121, 155, 197, 132, 218, 56, 102, 229, 187, 89, 7,
      219, 133, 103, 57, 186, 228, 6, 88, 25, 71, 165, 251, 120, 38, 196, 154, 101, 59, 217,
      135, 4, 90, 184, 230, 167, 249, 27, 69, 198, 152, 122, 36, 248, 166, 68, 26, 153, 199, 37,
      123, 58, 100, 134, 216, 91, 5, 231, 185, 140, 210, 48, 110, 237, 179, 81, 15, 78, 16, 242,
      172, 47, 113, 147, 205, 17, 79, 173, 243, 112, 46, 204, 146, 211, 141, 111, 49, 178, 236,
      14, 80, 175, 241, 19, 77, 206, 144, 114, 44, 109, 51, 209, 143, 12, 82, 176, 238, 50, 108,
      142, 208, 83, 13, 239, 177, 240, 174, 76, 18, 145, 207, 45, 115, 202, 148, 118, 40, 171, 245,
      23, 73, 8, 86, 180, 234, 105, 55, 213, 139, 87, 9, 235, 181, 54, 104, 138, 212, 149, 203,
      41, 119, 244, 170, 72, 22, 233, 183, 85, 11, 136, 214, 52, 106, 43, 117, 151, 201, 74, 20,
      246, 168, 116, 42, 200, 150, 21, 75, 169, 247, 182, 232, 10, 84, 215, 137, 107, 53
```