Álgebra Linear

 $1^{\underline{0}}$ Teste - **A**

Esboço da justificação da opção V ou F para cada questão

Ι

Relativamente às questões deste grupo indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F), colocando uma circunferência no símbolo correspondente. As respostas incorrectamente assinaladas têm cotação negativa.

- 1. a) Se A é uma matriz que verifica $(2I_2 + A)^T = -2\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ então a $2^{\underline{a}}$ coluna da matriz A é igual a $\begin{pmatrix} 0 & 2 \end{pmatrix}^T$. $V \quad F$ Se $(2I_2 + A)^T = -2\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ então $A^T = \begin{pmatrix} -2 & -2 \\ -2 & 0 \end{pmatrix} 2I = \begin{pmatrix} -4 & -2 \\ -2 & -2 \end{pmatrix}$ e logo a $2^{\underline{a}}$ coluna da matriz A é $\begin{pmatrix} -2 & 2 \end{pmatrix}^T$.
 - b) Seja A uma matriz quadrada de ordem n, invertível. Existe uma matriz B, quadrada de ordem n, não nula, tal que AB é uma matriz nula. V \widehat{F} Sendo A uma matriz invertível e considerando AB = O, vem que $AB = O \Leftrightarrow A^{-1}AB = A^{-1}O \Leftrightarrow B = O$, o que contraria a hipótese.
 - c) Se A é uma matriz anti-simétrica $(A^T+A=O)$ então A^2 é simétrica. (V) F $A^2=A.A=(-A^T)(-A^T)=+(A.A)^T=(A^2)^T$
 - d) Se A é uma matriz de ordem 4 que verifica $(A+I_4)^2=0$ então A é invertível. V $|(A+I_4)^2|=|O| \Leftrightarrow |A+I_4||A+I_4|=0$ $\Leftrightarrow |A+I_4|=0$ $\Leftrightarrow (A+I_4)x=0 \text{ tem soluções alem da soluçao trivial}$ $\Leftrightarrow Ax+I_4x=0, \ x\neq 0$ $\Leftrightarrow Ax=-I_4x, \ x\neq 0$ $\Leftrightarrow A=-I$ $\Leftrightarrow |A|=-1\neq 0, \text{ e logo } A \text{ é invertível}$
- 2. **a**) Os vectores $v_1 = (1, 1, 2), v_2 = (2, 1, 3), v_3 = (1, 0, \alpha)$ são linearmente dependentes para $\alpha = -1$.

 V $\widehat{\mathbf{F}}$ $A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 0 \\ 2 & 3 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 \\ 0 & -1 & -1 \\ 0 & -1 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 \\ 0 & -1 & -1 \\ 0 & 0 & -2 \end{pmatrix}$

tendo-se c(A)=3e, assim os vectores dados, para $\alpha=-1$ são linearmente independentes.

- b) Sejam u,v e w vectores linearmente dependentes de um espaço vectorial real V. Então v é combinação linear de u e w. V F Consideremos em \mathbb{R}^3 o seguinte contra-exemplo. Sejam u=(1,0,0), v=(0,1,0) e w=(2,0,0). Tem-se que u,v e w são vectores linearmente dependentes uma vez que para $A=\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ se tem c(A)=2. Todavia, não existem escalares $\alpha,\beta\in\mathbb{R}$ tais que $v=\alpha u+\beta w$ já que $v=\alpha u+\beta w \Leftrightarrow (0,1,0)=\alpha(1,0,0)+\beta(2,0,0)\Leftrightarrow \begin{pmatrix} 0=\alpha+2\beta \\ 1=0 \\ 0=\alpha2\beta \end{pmatrix}$, tendo-se um sistema impossível.
- c) Se u,v e w são vectores linearmente dependentes de um espaço vectorial real V, então os vectores $u-v,\,v-w$ e w-u são vectores linearmente independentes.

Seja $\alpha, \beta, \gamma \in \mathbb{R}$ e considere-se $\alpha(u-v) + \beta(v-w) + \gamma(w-u) = 0 \Leftrightarrow (\alpha-\gamma)u + (-\alpha+\beta)v + (-\beta+\gamma)w = 0$ e, sendo por hipótese u, v, w vectores linearmente independentes, vem que $\alpha - \gamma = 0, -\alpha + \beta = 0$ e $-\beta + \gamma = 0$ e logo $\alpha = \beta = \gamma = 0$ e os vectores u - v, v - w e w - u são vectores linearmente independentes.

d) Em \mathbb{R}^2 não existe nenhum subespaço de dimensão 2 gerado pelos vectores $u=e_1-e_2$ e $v=-e_2$ (sendo $\{e_1,e_2\}$ a base canónica de \mathbb{R}^2).

Tem-se que $u = e_1 - e_2 = (1, -1, 0)$ e $v = -e_2 = (0, -1, 1)$.

Tendo-se $A=\begin{pmatrix}1&0\\-1&-1\\0&1\end{pmatrix}\to\begin{pmatrix}1&0\\0&-1\\0&0\end{pmatrix},$ então c(A)=2, e os dois vectores

geradores u e v, são linearmente independentes gerando um subespaço de \mathbb{R}^2 de dimensão 2.

3. a) Seja A uma matriz de ordem 9×10 tal que car(A) = 5, então o núcleo de A tem dimensão 4. V F

Uma vez que $dim\mathbb{R}^{10}=dimNuc_f+dimIm_f$ vem que $10=dimNuc_f+5\Leftrightarrow dimNuc_f=5.$

seja, desde que esta condição se verifique, é possível definir uma aplicação linear. Por exemplo uma aplicação linear não injectiva, ou seja, tal que $dimNuc_f=0$ e $dimIm_f=c(A)=2$.

c) A aplicação linear f, definida em \mathbb{R}^2 , para a qual se tem $Nuc_f = \{(x,y) : x = 0\}$ é um isomorfismo.

A aplicação linear f é um isomorfismo se for uma aplicação linear bijectiva (injectiva e sobrejectiva). Ora f não é injectiva uma vez que $Nuc_f \neq 0$.

d) Se $H = \langle 1, 2+x, 3+2x+x^3 \rangle$, é um subespaço de P_3 , sendo P_3 o subespaço dos polinómios de grau menor ou igual a 3, então $x \notin H$.

$$x \in H \text{ se } \exists \alpha, \beta, \gamma : x = \alpha 1 + \beta(2+x) + \gamma(3+2x+x^3) \Leftrightarrow \begin{cases} 0 = \alpha + 2\beta + 3\gamma \\ 1 = \beta + 2\gamma \\ 0 = \gamma \end{cases} \Rightarrow$$

 \mathbf{F}

$$\left\{ \begin{array}{ll} -2 = \alpha \\ 1 = \beta & \text{e logo } x \in H. \\ 0 = \gamma \end{array} \right.$$

4. a) A matriz dos coeficientes do sistema $\begin{cases} x_1 = 3 - x_4 \\ x_2 = -1 \\ x_3 = -2x_4 \end{cases}$ tem característica igual a 3.

Sendo a matriz dos coeficientes $A = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \end{pmatrix}$ temos c(A) = 3.

b) O espaço gerado pelos vectores $\begin{pmatrix} 1\\0\\-1\\0 \end{pmatrix}, \begin{pmatrix} 2\\0\\-1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}$ tem dimensão igual a 2.

$$\text{Considerando-se } A = \left(\begin{array}{cccc} 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & -1 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{array} \right) \rightarrow \left(\begin{array}{cccc} 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{array} \right) \text{ tem-se } c(A) = 2 \text{ e assim }$$

o espaço gerado pelos vectores iniciais tem dimensão igual a $2\,$

c) Se $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r - 2 & 2 \\ 0 & s - 1 & r + 2 \\ 0 & 0 & 3 \end{pmatrix}$ tem-se car(A) = 1 ou car(A) = 2, para quaisquer valores reais de r e s.

V F
Se
$$r = 2$$
 tem-se $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & s - 1 & 4 \\ 0 & 0 & 3 \end{pmatrix}$ tendo-se, se $s = 1$, $c(A) = 2$ e se $s \neq 1$,

c(A) = 3. Note-se ainda que se $r \neq 2$ e $s \neq 1$, c(A) = 3.

d) Se
$$A = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & -1 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$
 o espaço das colunas de A tem dimensão igual a 2.

Sendo
$$A = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & -1 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$
 tem-se $c(A) = 2$ e assim o espaço