

Segmentación semántica y de instancias de órganos del tracto gastrointestinal

Visión por Computadora II - CEIA

Diego Tomás Gomila Molina Trinidad Monreal

Descripción del problema <u>UW-Madison GI Tract Image Segmentation</u>

- 5 millones de personas diagnosticadas con cáncer del tracto gastrointestinal (2019).
 - 2.5 millones → elegibles para radioterapia.
- Radiación en altas dosis al tumor evitando el estómago y los intestinos.
 - Tecnología MR-Linacs → oncólogo debe delinear manualmente la posición de los órganos (15 - 60 min).
- Objetivo: segmentar intestino grueso, intestino delgado y estómago empleando técnicas de visión por computadora.

Dataset <u>UW-Madison GI Tract Image Segmentation</u>

- Dividido por casos y días de muestra.
 - En general \rightarrow 140 *slices* cada día.

Dataset <u>UW-Madison GI Tract Image Segmentation</u>

- 38.496 imágenes PNG en escala de grises de 16 bits. Resolución promedio: 293 x 279 px.
 - o Imágenes con al menos una máscara: 16.590.
 - En total: 33.913 máscaras de 3 clases diferentes: "large_bowel", "small_bowel" y "stomach".

Cantidad de imágenes

Máscaras por clases

img con máscaras por área

Modelos a entrenar

Segmentación semántica: U-Net

- 1) Modelo clásico usando PyTorch.
- 2) Modelo con backbone pre-entrenado usando Segmentation Models.

Segmentación de instancias: MASK R-CNN

- 1) Modelo clásico.
- 2) Modelo con backbone actualizado y aumento de datos.

Aumento de datos

U-Net

- Horizontal flip
- Vertical flip
- Grid Distortion
- Elastic Transform
- Random Brightness

Original image

GridDistortion

ElasticTransform

MASK R-CNN

- Random flip: 50%
- Random zoom out: 30%
 - o Rango: 1 a 1.2
- Random Photometric Distort: 30%
 - Contrast: 0.875 a 1.125
 - Brightness: 0.875 a 1.125
- Random IoU Crop: 100%
 - o Escala: 0.9 a 1.1
 - Relación de aspecto: 0.9 a 1.1

Modelo clásico

Backbone: ResNet50

Parámetros: 43.933.159

• Ir_scheduler: 0.0005, disminuye cada 3 épocas

• Pesos pre entrenados:

o Database: COCO2017

o categorías 90

o box_map (on COCO-val2017) 37.9

mask_map (on COCO-val2017)
 34.6

Entrenamiento

Imágenes + máscaras

Resultados

Predicciones

Modelo modificado

- Backbone: ResNet50
- Parámetros: 46.359.409
- Pesos pre entrenados:
 - Database: COCO2017
 - o categorías 90
 - o box_map (on COCO-val2017) 47.4
 - o mask_map (on COCO-val2017) 41.8

Modelo modificado

Entrenamiento

Imágenes + máscaras

Resultados

Predicciones

Modelo 1

- Learning rate scheduler
- Parámetros: 30,101,475
- Dice Loss Function

Ronnemberg et al, U-Net: Convolutional Networks for Biomedical Image Segmentation

Entrenamiento

• Valid Dice: 0.7973

• Valid IoU: 0.7251

Resultados

Imágenes + máscaras

Predicciones

Modelo 2

- Backbone: EfficientNet-B1
 - Pre entrenamiento en ImageNet

EffUnet-SpaGen: An Efficient and Spatial Generative Approach to Glaucoma Detection

Entrenamiento

Valid Dice: 0.8087

• Valid IoU: 0.7352

Resultados

Imágenes + máscaras

Predicciones

Conclusiones

- Se logró realizar la tarea de segmentación con diferentes grados de éxito.
- MASK R-CNN
 - El transfer learning realizado ha logrado disminuir en gran medida el tiempo de entrenamiento necesario.
 - El aumento de datos permite extender el entrenamiento por más épocas antes de llegar a un sobre entrenamiento.
- U-Net
 - El transfer learning realizado no aportó mejoras significativas en el tiempo de entrenamiento ni las métricas obtenidas sin él.
- Ambos modelos pueden mejorar si se realizan entrenamientos durante un tiempo más prolongado.