

ترم پاییز ۱۳۹۹–۱۴۰۰

بسم الله الرحمن الرحيم جلسه چهاردهم درس تحقیق در عملیات

نظریه بازیها: بازیهای جمع_صفر

نگاهی از دور

آرش ۵گروهان

بابک ۵گروهان

= منفی ماتریس سود بابک

ود آرش	ماتریس س	(0, 0, 5)	(0, 1, 4)	(0, 2, 3)	(1, 1, 3)	(1, 2, 2)
	(0, 0, 5)	0	$-\frac{1}{3}$	$-\frac{1}{3}$	-1	-1
آرش	(0, 1, 4)	$\frac{1}{3}$	0	0	$-\frac{1}{3}$	$-\frac{2}{3}$
יונישט	(0,2,3)	$\frac{1}{3}$	0	0	0	$\frac{1}{3}$
	(1, 1, 3)	1	$\frac{1}{3}$	0	0	$-\frac{1}{3}$
	(1,2,2)	1	$\frac{2}{3}$	$-\frac{1}{3}$	$\frac{1}{3}$	0

بابک

		(0, 0, 5)	(0, 1, 4)	(0, 2, 3)	(1, 1, 3)	(1, 2, 2)
* \(\)	(0, 0, 5)	0	$-\frac{1}{3}$	$-\frac{1}{3}$	-1	-1
آرش	(0,1,4)	$\frac{1}{3}$	0	0	$-\frac{1}{3}$	$-\frac{2}{3}$
	(0,2,3)	$\frac{1}{3}$	0	0	0	$\frac{1}{3}$
	(1, 1, 3)	1	$\frac{1}{3}$	0	0	$-\frac{1}{3}$
	(1,2,2)	1	$\frac{2}{3}$	$-\frac{1}{3}$	$\frac{1}{3}$	0

بابک

		(0, 0, 5)	(0, 1, 4)	(0, 2, 3)	(1, 1, 3)	(1, 2, 2)
*	(0, 0, 5)	0	$-\frac{1}{3}$	$-\frac{1}{3}$	-1	-1
آرش	(0,1,4)	$\frac{1}{3}$	0	0	$-\frac{1}{3}$	$-\frac{2}{3}$
	(0,2,3)	$\frac{1}{3}$	0	0	0	$\frac{1}{3}$
	(1, 1, 3)	1	$\frac{1}{3}$	0	0	$-\frac{1}{3}$
	(1,2,2)	1	$\frac{2}{3}$	$-\frac{1}{3}$	$\frac{1}{3}$	0

محتاطانهترين

بابک

		(0, 0, 5)	(0, 1, 4)	(0, 2, 3)	(1, 1, 3)	(1, 2, 2)
آرش	(0, 0, 5)	0	$-\frac{1}{3}$	$-\frac{1}{3}$	-1	-1
ונשט	(0,1,4)	$\frac{1}{3}$	0	0	$-\frac{1}{3}$	$-\frac{2}{3}$
	(0,2,3)	$\frac{1}{3}$	0	0	0	$\frac{1}{3}$
	(1, 1, 3)	1	$\frac{1}{3}$	0	0	$-\frac{1}{3}$
	(1,2,2)	1	$\frac{2}{3}$	$-\frac{1}{3}$	$\frac{1}{3}$	0

بدترین 🕇 محتاطانهترین

هترین، بدترین

بابک

		(0, 0, 5)	(0, 1, 4)	(0, 2, 3)	(1, 1, 3)	(1, 2, 2)
* \(\)	(0, 0, 5)	0	$-\frac{1}{3}$	$-\frac{1}{3}$	-1	-1
آرش	(0, 1, 4)	$\frac{1}{3}$	0	0	$-\frac{1}{3}$	$-\frac{2}{3}$
	(0,2,3)	$\frac{1}{3}$	0	0	0	$\frac{1}{3}$
	(1, 1, 3)	1	$\frac{1}{3}$	0	0	$-\frac{1}{3}$
	(1,2,2)	1	$\frac{2}{3}$	$-\frac{1}{3}$	$\frac{1}{3}$	0

ترین، بدترین 🕇 محتاطانهترین

		(0, 0, 5)	(0, 1, 4)	(0, 2, 3)	(1, 1, 3)	(1, 2, 2)
* \(\)	(0, 0, 5)	0	$-\frac{1}{3}$	$-\frac{1}{3}$	-1	-1
ارش	(0,1,4)	$\frac{1}{3}$	0	0	$-\frac{1}{3}$	$-\frac{2}{3}$
	(0,2,3)	$\frac{1}{3}$	0	0	0	$\frac{1}{3}$
	(1, 1, 3)	1	$\frac{1}{3}$	0	0	$-\frac{1}{3}$
	(1,2,2)	1	$\frac{2}{3}$	$-\frac{1}{3}$	$\frac{1}{3}$	0

بترین، بدترین 🕇 محتاطانهترین

		(0, 0, 5)	(0, 1, 4)	(0, 2, 3)	(1, 1, 3)	(1, 2, 2)
* ~ ~	(0, 0, 5)	0	$-\frac{1}{3}$	$-\frac{1}{3}$	-1	-1
ارش	(0,1,4)	$\frac{1}{3}$	0	0	$-\frac{1}{3}$	$-\frac{2}{3}$
	(0, 2, 3)	$\frac{1}{3}$	0	0	0	$\frac{1}{3}$
	(1, 1, 3)	1	$\frac{1}{3}$	0	0	$-\frac{1}{3}$
	(1, 2, 2)	1	$\frac{2}{3}$	$-\frac{1}{3}$	$\frac{1}{3}$	0

محتاطانهترين

ہترین، بدترین 🖊 محتاطانهترین

بابک

		(0, 0, 5)	(0, 1, 4)	(0, 2, 3)	(1, 1, 3)	(1, 2, 2)	
* \(\)	(0, 0, 5)	0	$-\frac{1}{3}$	$-\frac{1}{3}$	-1	-1	
آرش <u>\</u>	(0, 1, 4)	$\frac{1}{3}$	0	0	$-\frac{1}{3}$	$-\frac{2}{3}$	
	(0,2,3)	$\frac{1}{3}$	0	0	0	$\frac{1}{3}$	
	(1, 1, 3)	1	$\frac{1}{3}$	0	0	$-\frac{1}{3}$	
	(1, 2, 2)	1	$\frac{2}{3}$	$-\frac{1}{3}$	$\frac{1}{3}$	0	

تعریف (تعادل نش):

به نفع هیچ کدام از طرفین نیست که بازی خود را تغییر دهد

تعادل نش

تعریف (تعادل نش):

به نفع هیچ کدام از طرفین نیست که بازی خود را تغییر دهد

بایک

	rock	paper	scissors
rock	0	-1	1
paper	1	0	-1
scissors	-1	1	0

آرش

سنگ_ کاغذ_قیچی

بایک

		rock	paper	scissors
	rock	0	-1	1
آرش	paper	1	0	-1
	scissors	-1	1	0

ىاىك

		rock	paper	scissors
	rock	0	-1	1
آرش	paper	1	0	-1
	scissors	-1	1	0

تعادل نش ندارد

بابک

	rock	paper	scissors
rock	0	-1	1
paper	1	0	-1
scissors	-1	1	0

آرش

تعادل نش مخلوط

بابک ۱/۳ ۱/۳ ۱/۳ ۱/۳ rock paper scissors

۱/۴ rock 0 -1 1

۱/۳ paper 1 0 -1

۱/۳ scissors -1 1 0

تعادل نش مخلوط

				بابک		
			١/٣	١/٣	1/4 <	استراتژی مخلوط
			rock	paper	scissors	
	1/4	rock	0	-1	1	
آرش	1/4	paper	1	0	-1	
	1/4	scissors	_1	1	0	

استراتژی مخلوط _ بازی جمع_صفر

 $\mathbf{x}^T M \mathbf{y}$

استراتژی مخلوط _ بازی جمع_صفر

سود آرش: x^TMy

 $=\sum_{i,j}m_{ij}x_iy_j$

تصمیم بر اساس تصمیم

اگر آرش تصمیم x را بگیرد

بدترین برای آرش
$$eta(\mathbf{x}) = \min_{\mathbf{y}} \mathbf{x}^T M \mathbf{y}$$

تصمیم بر اساس تصمیم

اگر آرش تصمیم x را بگیرد

بدترین برای آرش
$$eta(\mathbf{x}) = \min_{\mathbf{y}} \mathbf{x}^T M \mathbf{y}$$

اگر بابک تصمیم y را بگیرد

بدترین برای بابک
$$lpha(\mathbf{y}) = \max_{\mathbf{x}} \mathbf{x}^T M \mathbf{y}$$

8.1.1 Definition. A pair $(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})$ of mixed strategies is a **mixed Nash equilibrium** of the game if $\tilde{\mathbf{x}}$ is a best response against $\tilde{\mathbf{y}}$ and $\tilde{\mathbf{y}}$ is a best response against $\tilde{\mathbf{x}}$ (the adjective "mixed" is often omitted); in formulas, this can be expressed as

$$\beta(\tilde{\mathbf{x}}) = \tilde{\mathbf{x}}^T M \tilde{\mathbf{y}} = \alpha(\tilde{\mathbf{y}}).$$

تعریف تعادل نش مخلوط

8.1.1 Definition. A pair $(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})$ of mixed strategies is a **mixed Nash equilibrium** of the game if $\tilde{\mathbf{x}}$ is a best response against $\tilde{\mathbf{y}}$ and $\tilde{\mathbf{y}}$ is a best response against $\tilde{\mathbf{x}}$ (the adjective "mixed" is often omitted); in formulas, this can be expressed as

 $eta(ilde{\mathbf{x}}) = ilde{\mathbf{x}}^T M ilde{\mathbf{y}} = lpha(ilde{\mathbf{y}})$. برای هر دو تغییر فایده ندارد

تعریف تعادل نش مخلوط

8.1.1 Definition. A pair $(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})$ of mixed strategies is a **mixed Nash equilibrium** of the game if $\tilde{\mathbf{x}}$ is a best response against $\tilde{\mathbf{y}}$ and $\tilde{\mathbf{y}}$ is a best response against $\tilde{\mathbf{x}}$ (the adjective "mixed" is often omitted); in formulas, this can be expressed as

 $eta(ilde{\mathbf{x}}) = ilde{\mathbf{x}}^T M ilde{\mathbf{y}} = lpha(ilde{\mathbf{y}})$. برای هر دو تغییر فایده ندارد

	rock	paper	scissors
rock	0	-1	1
paper	1	0	-1
scissors	-1	1	0

مثال: سنگ_كاغذ_قيچى:

$$x = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) = y$$

 $\beta(x) = x^{T}My = \alpha(y)$

=> تعادل نش مخلوط است.

- (i) We have $\max_{\mathbf{x}} \beta(\mathbf{x}) \leq \min_{\mathbf{y}} \alpha(\mathbf{y})$. Actually, for every two mixed strategies \mathbf{x} and \mathbf{y} we have $\beta(\mathbf{x}) \leq \mathbf{x}^T M \mathbf{y} \leq \alpha(\mathbf{y})$.
- (ii) If the pair $(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})$ of mixed strategies forms a mixed Nash equilibrium, then both $\tilde{\mathbf{x}}$ and $\tilde{\mathbf{y}}$ are worst-case optimal.

را دارد
$$\beta$$
 را دارد بهترین بهترین حالت \widetilde{x}

- (i) We have $\max_{\mathbf{x}} \beta(\mathbf{x}) \leq \min_{\mathbf{y}} \alpha(\mathbf{y})$. Actually, for every two mixed strategies \mathbf{x} and \mathbf{y} we have $\beta(\mathbf{x}) \leq \mathbf{x}^T M \mathbf{y} \leq \alpha(\mathbf{y})$.
- (ii) If the pair $(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})$ of mixed strategies forms a mixed Nash equilibrium, then both $\tilde{\mathbf{x}}$ and $\tilde{\mathbf{y}}$ are worst-case optimal.

را دارد بهترین بدترین حالت
$$\widetilde{x}$$

$$\forall x : \beta(\mathbf{x}) \leq \alpha(\tilde{\mathbf{y}})$$
(i)

- (i) We have $\max_{\mathbf{x}} \beta(\mathbf{x}) \leq \min_{\mathbf{y}} \alpha(\mathbf{y})$. Actually, for every two mixed strategies \mathbf{x} and \mathbf{y} we have $\beta(\mathbf{x}) \leq \mathbf{x}^T M \mathbf{y} \leq \alpha(\mathbf{y})$.
- (ii) If the pair $(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})$ of mixed strategies forms a mixed Nash equilibrium, then both $\tilde{\mathbf{x}}$ and $\tilde{\mathbf{y}}$ are worst-case optimal.

$$eta$$
بیشترین eta را دارد بهترین بدترین حالت eta eta

- (i) We have $\max_{\mathbf{x}} \beta(\mathbf{x}) \leq \min_{\mathbf{y}} \alpha(\mathbf{y})$. Actually, for every two mixed strategies \mathbf{x} and \mathbf{y} we have $\beta(\mathbf{x}) \leq \mathbf{x}^T M \mathbf{y} \leq \alpha(\mathbf{y})$.
- (ii) If the pair $(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})$ of mixed strategies forms a mixed Nash equilibrium, then both $\tilde{\mathbf{x}}$ and $\tilde{\mathbf{y}}$ are worst-case optimal.

را دارد جهترین بدترین حالت
$$\widetilde{x}$$

$$\forall x: \beta(\mathbf{x}) \leq \alpha(\tilde{\mathbf{y}}) = \beta(\tilde{\mathbf{x}})$$
(i) سخلوط تعادل نش مخلوط

$$\beta(\tilde{\mathbf{x}}) = \tilde{\mathbf{x}}^T M \tilde{\mathbf{y}} = \alpha(\tilde{\mathbf{y}})$$

مشابه دوگانی قوی در دنیای بازیها!

8.1.3 Theorem (Minimax theorem for zero-sum games). For every zero-sum game, worst-case optimal mixed strategies for both players exist and can be efficiently computed by linear programming. If $\tilde{\mathbf{x}}$ is a worst-case optimal mixed strategy of Alice and $\tilde{\mathbf{y}}$ is a worst-case optimal mixed strategy of Bob, then $(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})$ is a mixed Nash equilibrium, and the number $\beta(\tilde{\mathbf{x}}) = \tilde{\mathbf{x}}^T M \tilde{\mathbf{y}} = \alpha(\tilde{\mathbf{y}})$ is the same for all possible worst-case optimal mixed strategies $\tilde{\mathbf{x}}$ and $\tilde{\mathbf{y}}$.

مشابه دوگانی قوی در دنیای بازیها!

8.1.3 Theorem (Minimax theorem for zero-sum games). For every zero-sum game, worst-case optimal mixed strategies for both players exist and can be efficiently computed by linear programming. If $\tilde{\mathbf{x}}$ is a worst-case optimal mixed strategy of Alice and $\tilde{\mathbf{y}}$ is a worst-case optimal mixed strategy of Bob, then $(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})$ is a mixed Nash equilibrium, and the number $\beta(\tilde{\mathbf{x}}) = \tilde{\mathbf{x}}^T M \tilde{\mathbf{y}} = \alpha(\tilde{\mathbf{y}})$ is the same for all possible worst-case optimal mixed strategies $\tilde{\mathbf{x}}$ and $\tilde{\mathbf{y}}$.

تعبير:

مشابه دوگانی قوی در دنیای بازیها!

8.1.3 Theorem (Minimax theorem for zero-sum games). For every zero-sum game, worst-case optimal mixed strategies for both players exist and can be efficiently computed by linear programming. If $\tilde{\mathbf{x}}$ is a worst-case optimal mixed strategy of Alice and $\tilde{\mathbf{y}}$ is a worst-case optimal mixed strategy of Bob, then $(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})$ is a mixed Nash equilibrium, and the number $\beta(\tilde{\mathbf{x}}) = \tilde{\mathbf{x}}^T M \tilde{\mathbf{y}} = \alpha(\tilde{\mathbf{y}})$ is the same for all possible worst-case optimal mixed strategies $\tilde{\mathbf{x}}$ and $\tilde{\mathbf{y}}$.

 $\max_{\mathbf{x}} eta(\mathbf{x}) \leq \min_{\mathbf{y}} lpha(\mathbf{y}) <$ مشابه دوگانی ضعیف

تعبير:

مشابه دوگانی قوی در دنیای بازیها!

8.1.3 Theorem (Minimax theorem for zero-sum games). For every zero-sum game, worst-case optimal mixed strategies for both players exist and can be efficiently computed by linear programming. If $\tilde{\mathbf{x}}$ is a worst-case optimal mixed strategy of Alice and $\tilde{\mathbf{y}}$ is a worst-case optimal mixed strategy of Bob, then $(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})$ is a mixed Nash equilibrium, and the number $\beta(\tilde{\mathbf{x}}) = \tilde{\mathbf{x}}^T M \tilde{\mathbf{y}} = \alpha(\tilde{\mathbf{y}})$ is the same for all possible worst-case optimal mixed strategies $\tilde{\mathbf{x}}$ and $\tilde{\mathbf{y}}$.

مشابه دوگانی قوی در دنیای بازیها!

8.1.3 Theorem (Minimax theorem for zero-sum games). For every zero-sum game, worst-case optimal mixed strategies for both players exist and can be efficiently computed by linear programming. If $\tilde{\mathbf{x}}$ is a worst-case optimal mixed strategy of Alice and $\tilde{\mathbf{y}}$ is a worst-case optimal mixed strategy of Bob, then $(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})$ is a mixed Nash equilibrium, and the number $\beta(\tilde{\mathbf{x}}) = \tilde{\mathbf{x}}^T M \tilde{\mathbf{y}} = \alpha(\tilde{\mathbf{y}})$ is the same for all possible worst-case optimal mixed strategies $\tilde{\mathbf{x}}$ and $\tilde{\mathbf{y}}$.

محاسبه (X)

Minimize
$$\mathbf{x}^T M \mathbf{y}$$

subject to $\sum_{j=1}^n y_j = 1$
 $\mathbf{y} \ge \mathbf{0}$.

Minimize
$$\mathbf{x}^T M \mathbf{y}$$

subject to $\sum_{j=1}^n y_j = 1$
 $\mathbf{y} \geq \mathbf{0}$.

Minimize
$$\mathbf{x}^T M \mathbf{y}$$

subject to $\sum_{j=1}^n y_j = 1$
 $\mathbf{y} \geq \mathbf{0}$.

Minimize $\mathbf{x}^T M \mathbf{y}$ subject to $\sum_{j=1}^n y_j = 1$ $\mathbf{y} \geq \mathbf{0}$.

 $\max \beta(x)$ محاسبه

 $\begin{array}{ll} \text{Maximize} & x_0 \\ \text{subject to} & M^T \mathbf{x} - \mathbf{1} x_0 \geq \mathbf{0} \end{array}$

$$\beta(x)$$
 محاسبه

Minimize
$$\mathbf{x}^T M \mathbf{y}$$

subject to $\sum_{j=1}^n y_j = 1$
 $\mathbf{y} \geq \mathbf{0}$.

Maximize x_0 subject to $M^T \mathbf{x} - \mathbf{1} x_0 \ge \mathbf{0}$

Maximize x_0 subject to $M^T \mathbf{x} - \mathbf{1} x_0 \ge \mathbf{0}$ $\sum_{i=1}^m x_i = 1$ $\mathbf{x} \ge \mathbf{0}$.

$$\beta(x)$$
 محاسبه

Minimize
$$\mathbf{x}^T M \mathbf{y}$$

subject to $\sum_{j=1}^n y_j = 1$
 $\mathbf{y} \geq \mathbf{0}$.

Maximize x_0 subject to $M^T \mathbf{x} - \mathbf{1} x_0 \ge \mathbf{0}$

Maximize x_0 subject to $M^T \mathbf{x} - \mathbf{1} x_0 \ge \mathbf{0}$ $\sum_{i=1}^m x_i = 1$ $\mathbf{x} \ge \mathbf{0}$.

$$\max \beta(x)$$
 محاسبه

Maximize
$$x_0$$

subject to $M^T \mathbf{x} - \mathbf{1} x_0 \ge \mathbf{0}$
 $\sum_{i=1}^m x_i = 1$
 $\mathbf{x} \ge \mathbf{0}$.

$$\max \beta(x)$$

Maximize
$$x_0$$

subject to $M^T \mathbf{x} - \mathbf{1} x_0 \ge \mathbf{0}$
 $\sum_{i=1}^m x_i = 1$
 $\mathbf{x} \ge \mathbf{0}$.

 $\min \alpha(y)$

 $\max \beta(x)$

 $\min \alpha(y)$

Maximize x_0 subject to $M^T \mathbf{x} - \mathbf{1} x_0 \ge \mathbf{0}$ $\sum_{i=1}^m x_i = 1$ $\mathbf{x} \ge \mathbf{0}$. minimize y_0 subject to $M\mathbf{y} - \mathbf{1}y_0 \leq \mathbf{0}$ $\sum_{j=1}^{n} y_j = 1$ $\mathbf{y} \geq \mathbf{0}$ $\max \beta(x)$

 $\min \alpha(y)$

Maximize x_0 subject to $M^T \mathbf{x} - \mathbf{1} x_0 \ge \mathbf{0}$ $\sum_{i=1}^m x_i = 1$ $\mathbf{x} \ge \mathbf{0}$.

minimize
$$y_0$$

subject to $M\mathbf{y} - \mathbf{1}y_0 \leq \mathbf{0}$
 $\sum_{j=1}^{n} y_j = 1$
 $\mathbf{y} \geq \mathbf{0}$

 $\min \alpha(y)$

Maximize x_0 subject to $M^T \mathbf{x} - \mathbf{1} x_0 \ge \mathbf{0}$ $\sum_{i=1}^m x_i = 1$ $\mathbf{x} \ge \mathbf{0}$.

minimize
$$y_0$$

subject to $M\mathbf{y} - \mathbf{1}y_0 \leq \mathbf{0}$
 $\sum_{j=1}^{n} y_j = 1$
 $\mathbf{y} \geq \mathbf{0}$

دوگان همدیگر

 $\min \alpha(y)$

Maximize x_0 subject to $M^T \mathbf{x} - \mathbf{1} x_0 \ge \mathbf{0}$ $\sum_{i=1}^m x_i = 1$ $\mathbf{x} \ge \mathbf{0}$. minimize y_0 subject to $M\mathbf{y} - \mathbf{1}y_0 \leq \mathbf{0}$ $\sum_{j=1}^{n} y_j = 1$ $\mathbf{y} \geq \mathbf{0}$

دوگان همدیگر

هر دو شدنی

 $\min \alpha(y)$ محاسبه

Maximize x_0 subject to $M^T \mathbf{x} - \mathbf{1} x_0 \ge \mathbf{0}$ $\sum_{i=1}^m x_i = 1$ $\mathbf{x} \ge \mathbf{0}$. minimize y_0 subject to $M\mathbf{y} - \mathbf{1}y_0 \leq \mathbf{0}$ $\sum_{j=1}^{n} y_j = 1$ $\mathbf{y} \geq \mathbf{0}$

دوگان همدیگر

هر دو شدنی

حکم:

 $\min \alpha(y)$

Maximize x_0 subject to $M^T \mathbf{x} - \mathbf{1} x_0 \ge \mathbf{0}$ $\sum_{i=1}^m x_i = 1$ $\mathbf{x} \ge \mathbf{0}$. minimize y_0 subject to $M\mathbf{y} - \mathbf{1}y_0 \leq \mathbf{0}$ $\sum_{j=1}^{n} y_j = 1$ $\mathbf{y} \geq \mathbf{0}$

دوگان همدیگر

هر دو شدنی

$$\beta(\tilde{\mathbf{x}}) = \alpha(\tilde{\mathbf{y}})$$

حکم:

جمعبندي

- استفاده از برنامهریزی خطی
- برای قضیه minimax
- بازیهای جمع _ صفر خوبند
- بدون نیاز به روانشناسی!