DISKRETNA MATEMATIKA

- PREDAVANJE -

Jovanka Pantović

- Definicija stabla
- Karakterizacija stabla
- Pokrivajuća stabla
- Algoritmi za konstrukciju pokrivajućeg stabla
- Priferov niz

Definicija stabla

Stablo

STABLO = POVEZAN + ACIKLIČAN GRAF

Karakterizacija stabla

Svaka dva čvora stabla su povezana jedinstenim putem.

Dokaz:

Ako je T stablo, onda su svaka dva čvora povezana. Neka su u,v proizvoljno izabrani čvorovi stabla T i $u \neq v$. Pretpostavimo da postoje dva različita puta od u do v:

$$P = uv_1 \dots u'v' \dots v_k v, k \ge 0$$

$$Q = uw_1 \dots w_l v, l > 0$$

pri čemu $u'v' \notin Q$.

Posmatrajmo podgraf $G' = P \cup Q - u'v'$ stabla T.

Postoji šetnja (a samim tim i put P'') od u' do v' u G' :

$$P' = P(u', u) + Q(u, v) + P(v, v').$$

Tada je P'' + u'v' kontura u T.

Svako stablo sa bar dva čvora ima bar dva lista.

Dokaz:

Neka je

$$P = v_0 v_1 \dots v_l$$

put najveće dužine u stablu T.

Pokazaćemo kontradikcijom da su v_0 i v_l listovi. Pretpostavimo da v_0 nije list. Tada postoji čvor w sa osobinom $v_1 \neq w$ i $v_0 w$ je grana u T. Imsmo dve mogućnosti:

- (i) Ako je $w=v_i$ za neko $i\in\{0,\ldots,l\}$ onda je $v_0\ldots,v_iv_0$ kontura u T, što je nemoguće zato što je T stablo.
- (ii) Ako je $w \neq v_i$ za svako $i \in \{0, ..., l\}$, onda je $\omega v_0 v_1 ... v_l$ put u stablu T veće dužine od P, što ponovo dovodi do kontradikcije.

Svako stablo sa $n \ge 2$ čvorova ima n-1 granu.

Proof.

(indukcijom po n)

n=2: stablo sa 2 čvora ima jednu granu

$$T_n \Rightarrow T_{n+1}$$
:

Pretpostavimo da stablo sa n čvorova ima n-1 granu.

Posmatrajmo stablo T sa n+1 čvorova i pokažimo da ima n grana.

Neka je u list u tom stablu i uv (jedina) grana incidentna sa u.

Tada T' = T - u ima n čvorova.

Prema induktivnoj pretpostavci T' ima n-1 grana, odakle

$$T = (V(T') \cup \{u\}, E(T') \cup \{uv\})$$
 ima n grana.

Lemma

Neka je $G=(V,E), |V|=n, |E|\geq n$, sa osobinom da su G_1,\ldots,G_l njegove komponente povezanosti sa k_1,\ldots,k_l čvorova, respektivno. Tada postoji $i\in\{1,\ldots,l\}$ sa osobinom $|E(G_i)|\geq k_i$.

Pp. suprotno,

$$n \le |E(G)| = |E(G_1)| + \dots + |E(G_l)|$$

 $< k_1 + \dots + k_l = n$

Neka je G graf sa $n \geq 3$ čvorova i bar n grana. Tada G sadrži konturu.

Dokaz:

- (i) G je povezan: ako G nema konturu, onda je stablo $\Rightarrow G$ ima n-1 grana.
- (ii) G nije povezan: neka su G_1,\ldots,G_l komponente povezanosti grafa G sa osobinom

$$|V(G_1)| = k_1, \dots, |V(G_l)| = k_l$$
 $k_1 + \dots + k_l = n$.

Prema prethodnoj lemi, postoji komponenta povezanosit G_i za koju je $|E(G_i)| \geq k_i$. Ako G_i nema konturu, onda je G_i stablo, a samim tim ima k_i-1 granu, što je kontradikcija. Znači, komponenta G_i ima konturu, a to je ujedno i kontura u grafuG.

Karakterizacija stabla

Neka je G = (V, E) graf i |V| = n. Sledeća tvrđenja su ekvivalentna:

- (i) G je stablo.
- (ii) Za svaka dva čvora $u, v \in V$ postoji jedinstven put od u do v.
- (iii) G je povezan i brisanjem proizvoljne grane dobija se nepovezan graf. (minimalan povezan)
- (iv) G je acikličan i dodavanjem grane se dobija graf koji sadrži konturu. (maksimalan acikličan)
- (v) G je povezan i |E| = n 1.
- (v) G je acikličan i |E| = n 1.

Pokrivajuća stabla

Pokrivajuća stabla

Definicija

 G_1 je pokrivajuće stablo grafa G ako je

- (i) G_1 je pokrivajući podgraf od G ($V(G_1) = V(G)$ i $E(G_1) \subseteq E(G)$)
- (ii) G_1 je stablo.

Zadatak

Koliko ima različitih pokrivajućih stabala (označenog) grafa K_4 ?

Pokrivajuća stabla

Teorema

Graf ima pokrivajuće stablo ako i samo ako je povezan.

Dokaz:

 (\Rightarrow)

 (\Leftarrow)

Neka je G povezan.

- |V(G)| = 2
- $|V(G)| = n \ge 3 \Rightarrow |E(G)| \ge n 1.$
 - |E(G)| = n 1
 - $|E(G)| = k \ge n$:

Lema

Ako je G povezan i |E(G)|=k, onda G ima pokrivajuće stablo, za svako $k\geq n.$

Dokaz: (indukcijom po k)

Algoritmi za konstrukciju pokrivajućeg stabla

Konstruisati jedno pokrivajuće stablo za graf sa slike.

Konstrukcija pokrivajućeg stabla

Zadatak

- Monstruisati pokrivajuće stablo pretraživanjem u dubinu.
- Konstruisati pokrivajuće stablo pretraživanjem u širinu.
- Krenuti od proizvoljnog čvora i u svakom koraku dodati granu za koju je jedan čvor već izabran, a drugi još uvek nije.
- Urediti grane, a zatim tim redom dodavati grane koje ne prave konturu (inače preći na sledeću granu).

Priferov niz

Priferov niz

Neka je G=(V,E) stablo u kojem su čvorovi označeni prirodnim brojevima $1,\ldots,n$. Za takvo stablo kažemo da je označeno. Priferov kod je niz $p(G)=(p_1,\ldots,p_{n-2})$ koji na jedinstven način karakteriše stablo G.

- $G_0 = G i i = 1.$
- 2 Izaberimo list u sa najmanjom oznakom i posmatrajmo dalje $G_i := G_{i-1} u$
- $oldsymbol{0}$ p_i je jednak oznaci čvora koji je susedan čvoru u
- Ako je i = n 2 onda je algoritam završen, inače i povećamo za 1 i vratimo se na korak 2.

Priferov niz

Zadatak

Odrediti Priferov niz za stablo na slici.

Priferov niz - rekonstrukcija označenog stabla

Neka je $p(G)=(p_1,\ldots,p_{n-2})$ Priferov niz dobijen od označenog stabla G.

- Za $l_1 = \min(\{1, \dots, n\} \setminus \{p_1, \dots, p_{n-2}\})$ kreiraj granu $l_1p_1 \in G$.
- Za i = 2..n 2i

kreiraj granu $l_i p_i \in T(G)$.

• Poslednja grana je uv, gde je $u, v \in \{1, \dots, n\} \setminus \{l_1, \dots, l_{n-2}\}.$

Zadatak

Konstruisati označeno stablo čiji je Priferov niz (1,2,1,2,1,2).

Zadatak

Konstruisati označeno stablo čiji je Priferov niz (5,1,1,4,5,1).

Priferov kod

Teorema

Kompletan graf K_n ima n^{n-2} različitih pokrivajućih stabala.

Dokaz sledi na osnovu principa bijekcije.

- Preslikavanje skupa svih stabala u skup Priferovih nizova je bijekcija.
- Broj nizov elemenata iz skupa $\{1, \ldots, n\}$ dužine n je n^{n-2} .

Priferov kod

