De-Identification of Medical Images in Dicom Format

Alberto Andreotti

Head of Visual NLP (Data Scientist)

Alexander Branov

Data Scientist

Aymane Chilah

Data Scientist

Nitin Kumar

Scala Developer (Data Science)

Agenda

Topic	Reference Notebook / Links
Introduction to Visual NLP	<u>Visual NLP</u>
What is Dicom?	Dicom Standard
Dicom Tags	Private Tags
Dicom Pixels	Dicom Standard - <u>Photometric</u> <u>Interpretation</u>
Transfer Syntaxes in Dicom	Dicom Standard - <u>Transfer Syntax</u>
Visual NLP Dicom Pipeline	Dicom Training NB's
Metrics	Evaluation Repo

Introduction to Visual NLP

- Visual NLP as a library helps in <u>unblocking</u> textual information from scanned/digital/medical documents.
- Provides high-level capabilities
 - Text Detection
 - o OCR
 - Table Detection/Recognition
 - Entity Extraction
 - VQA
- Entry points into Visual NLP
 - Images
 - PDFs (Digital & Scanned)
 - Document, PPT
 - Dicom
 - o SVS

What is Dicom?

- Dicom (<u>Digital Imaging And Communications in Medicine</u>)
 - International standard for medical information.
 - Allows healthcare professionals to easily view and understand medical information regardless of the <u>equipment/software</u> used to generate it.
- Dicom files have two fundamental parts
 - Pixels (Medical Images)
 - MRIs, CT Scans, X-Rays etc.
 - PHI burned into the pixels.
 - Overlay Pixels
 - Dicom Tags (Metadata)
 - Patient/Physician PHI
 - Equipment/Software-Related Information
 - Examination/Test-Related Information
 - Other Relevant Information (Pixels, Transfer Syntaxes, Compression level)

Dicom Tags

- Dicom Tags are essentially metadata elements associated with a dicom object.
- They carry information about the dicom object, pixels, patient demographics, equipment etc.
- Tag Structure
 - Each Dicom Tag is a unique <u>hexadecimal number</u> in format (XXXX, YYYY)
 - \circ The first four digits (XXXX) represent the group number.
 - The last four digits (YYYY) represent the <u>element number</u>.
- Each Tag also has <u>Value Representation</u> (VR), which denotes the data type and format of the tag's value (String, Integer, Date, etc)
- To accommodate <u>vendor-specific</u> needs beyond the standard tags, DICOM supports '<u>private tags</u>', which are always identified by <u>odd</u> group numbers.

Dicom Pixels

- Active <u>Photometric Interpretation</u> (0028,0004)
 - Monochrome 1 & Monochrome 2
 - Palette ColorRGB
 - YBR FULL, YBR FULL 422, YBR PARTIAL 420, YBR RCT, YBR ICT
- <u>Pixel Representation</u> (0028,0103) denotes whether the pixel values are signed/unsigned.
- <u>Bits Allocated</u> (0028,0100) is the number of bits allocated for each pixel.
- <u>Bits Stored</u> (0028,0101) is the actual number of bits used to represent pixel value.
- Image Pixel Data (7FE0,0010)
 Uncompressed Transfer Syntaxes
 - Oncompressed transfer Syntaxes
 Compressed Transfer Syntaxes (Lossy / Lossless)
- Visual NLP does not alter the Photometric Interpretation / Color Space of DICOM pixels in any way. The final DICOM file retains the same characteristics as the input.


```
Dataset.file_meta -
(0002,0000) File Meta Information Group Length UL: 186
(0002,0001) File Meta Information Version
                                                 OB: b'\x00\x01'
(0002,0002) Media Storage SOP Class UID
                                                 UI: Digital X-Ray Image Storage - For Presentation
(0002,0003) Media Storage SOP Instance UID
                                                 UI: 2.25.463628102274132074849128424375172598
(0002,0010) Transfer Syntax UID
                                                 UI: Explicit VR Little Endian
(0002,0012) Implementation Class UID
                                                 UI: 1.3.6.1.4.1.22213.1.143
(0002,0013) Implementation Version Name
                                                 SH: '0.5'
(0002,0016) Source Application Entity Title
                                                 AE: 'POSDA'
(0008,0005) Specific Character Set
                                                 CS: 'ISO IR 100'
(0008,0008) Image Type
                                                 CS: ['ORIGINAL', 'PRIMARY', '']
(0008,0016) SOP Class UID
                                                 UI: Digital X-Ray Image Storage - For Presentation
(0008.0018) SOP Instance UID
                                                 UI: 2.25.463628102274132074849128424375172598
(0008,0020) Study Date
                                                 DA: '20010705'
(0008.0021) Series Date
                                                 DA: '20010705'
(0008,0022) Acquisition Date
                                                 DA: '20010705'
(0008,0023) Content Date
                                                 DA: '20010705'
(0008,0024) Overlay Date
                                                 DA: '20010705'
(0008,0025) Curve Date
                                                 DA: '20010705'
                                                 DT: '20010705'
(0008,002A) Acquisition DateTime
(0008,0030) Study Time
                                                 TM: ''
(0008,0032) Acquisition Time
                                                 TM: ''
(0008,0033) Content Time
(0008,0050) Accession Number
                                                 SH: '20010706E403961'
(0008,0060) Modality
                                                 CS: 'DX'
(0008.0070) Manufacturer
                                                 LO: 'GE MEDICAL SYSTEMS'
(0008,0080) Institution Name
                                                 LO: 'Mccoy Medical Clinic'
(0008,0081) Institution Address
                                                 ST: '45166 Morgan Walks Suite 852 East Aaron, KS 93919'
(0008,0090) Referring Physician's Name
                                                 PN: 'EATON^WILLIAM'
(0008,0092) Referring Physician's Address
                                                 ST: '12148 Donna Overpass Apt. 115 North Sherry, TN 60972'
(0008,0094) Referring Physician's Telephone Num SH: '752.671.3789x973'
(0008,1050) Performing Physician's Name
                                                 PN: 'ELLIS^PAUL'
(0008,1090) Manufacturer's Model Name
                                                 LO: 'Revolution XQi ADS_28.4'
(0008,1155) Referenced SOP Instance UID
                                                 UI: 2.25.181816462680784373513761473735268351478
(0009,0010) Private Creator
                                                 LO: 'GEMS IDEN 01'
(0009,1027) [Image actual date]
                                                 SL: 20000101
(0010,0010) Patient's Name
                                                 PN: 'MARTIN^CHAD'
(0010.0020) Patient ID
                                                 LO: '339833062'
(0010,0030) Patient's Birth Date
                                                 DA: ''
(0010,0040) Patient's Sex
(0010,1010) Patient's Age
(0010,1040) Patient's Address
                                                 LO: '68265 Mark Bridge Suite 049 Robinsonville, OK 55335'
(0010,21D0) Last Menstrual Date
                                                 DA: '20010705'
(0013,0010) Private Creator
                                                 LO: 'CTP'
(0013,1010) Private tag data
                                                 LO: 'Pseudo-PHI-DICOM-Data'
(0013,1013) Private tag data
                                                 LO: '87009668'
(0018,0015) Body Part Examined
                                                 CS: 'CHEST'
(0018,0060) KVP
                                                 DS: '125'
(0018,1020) Software Versions
                                                 LO: 'Ads Application Package VERSION ADS 28.4'
(0018,1110) Distance Source to Detector
                                                 DS: '1800'
(0018.1111) Distance Source to Patient
                                                 DS: '1750'
(0018,1150) Exposure Time
                                                 IS: '43'
```


Transfer Syntaxes

- Transfer Syntaxes are the language translators of Dicom objects, ensuring different systems understand each other.
- They dictate how data is stored and transmitted within Dicom objects.
- Without correct transfer syntax, data, especially pixel data can be misinterpreted, leading to processing errors.
- Compression Options:
 - Lossless preserves all image details, with no reduction in dicom object size.
 - JPEG-LS, RLE, JPEG 2000 Lossless
 - Lossy reduces file size but with some quality loss.
 - JPEG, JPEG 2000
- There are limitations to using a specific transfer syntax.
 - Not all Transfer Syntaxes support variations in Photometric Interpretation, Bits Stored, Pixel Representation, or their combinations.

Transfer Syntax	Color Space	Visual NLP Support		
Transier Syntax	ansfer Syntax Color Space		Decoding	
RLE Lossless	Monochrome 1, Monochrome 2, PALETTE COLOR, RGB, YBR_FULL	Yes	Yes	
JPEG Baseline 8-Bit	Monochrome 1, Monochrome 2, RGB, YBR_FULL	Yes	Yes	
JPEG 2000	Monochrome 1, Monochrome 2, RGB, YBR_FULL, YBR_RCT, YBR_ICT	Yes	Yes	
JPEG 2000 Lossless	Monochrome 1, Monochrome 2, PALETTE COLOR, RGB, YBR_FULL, YBR_RCT	Yes	Yes	
JPEG LS Lossless	Monochrome 1, Monochrome 2, PALETTE COLOR, RGB, YBR_FULL	Yes	Yes	
JPEG LS Near Lossless	Monochrome 1, Monochrome 2, RGB, YBR_FULL	Yes	Yes	
НТЈ2К	Monochrome 1, Monochrome 2, YBR_ICT, YBR_RCT, RGB, YBR_FULL	No	Yes	
HTJ2K Lossless	Monochrome 1, Monochrome 2, PALETTE COLOR, YBR_ICT, YBR_RCT, RGB, YBR_FULL	No	Yes	
HTJ2K Lossless RPCL	Monochrome 1, Monochrome 2, PALETTE COLOR, YBR_ICT, YBR_RCT, RGB, YBR_FULL	No	Yes	

Visual NLP Dicom Pipeline

- Dicom Metadata Only De-Identification Pipeline
 - This pipeline demonstrates how to extract metadata from a DICOM file and apply de-identification techniques specifically on metadata tags.
 - <u>Notebook:</u> Dicom_Metadata_only.ipynb

• Dicom Pixel De-Identification Pipeline

- This pipeline focuses on de-identifying Protected Health Information (PHI) within the image pixels as well as metadata.
 - It involves extracting metadata, detecting text regions in pixel data, extracting text, performing NER (Named Entity Recognition), and finally redacting identified PHI regions and metadata tags.
 - Notebook: Dicom_Deidentification.ipynb

Visual NLP Dicom Pipeline (Metadata - Deidentification) John Snow LABS

• Dicom Pixel De-Identification With Metadata Pipeline

- This pipeline focuses on de-identifying Protected Health Information (PHI) within DICOM image pixels using metadata as a supporting source.
- Metadata extracted from the DICOM file is used to generate additional NER (Named Entity Recognition) entries, which can be combined with entities detected by Healthcare-NLP models.
- This hybrid approach improves PHI detection by capturing entities that may be missed by the models but are present in the metadata.
- The remaining steps follow the standard pixel de-identification process.
- <u>Notebook:</u> Dicom_Deidentification_Using_Metadata.ipynb

Visual NLP Dicom Pipeline (Obfuscation)

Dicom Pixel Obfuscation Pipeline

- This pipeline focuses on replacing original PHI text with newly rendered obfuscated text directly within the image.
- Instead of redacting PHI regions using black boxes, it extends the concept of de-identification by generating visually consistent patches that contain obfuscated text, seamlessly overlaid in place of the original content.

What is Obfuscation?

- {original Text : "John Snow", obfuscated Text : "Jane Knox" }
- {original Text: "02/02/1999", obfuscated Text: "20/12/2015" }
- {original Text: "22", "obfuscated Text: "33" }
- Notebook: Dicom_Obfuscation_Methods.ipynb

Visual NLP Dicom (Pipeline Flows)

Visual NLP Dicom Pipeline

Dicom Metrics

- Repo Link https://github.com/JohnSnowLabs/dicom-deid-dataset
- Google Collab
 - CPU HIGH RAM [8 Cores] 0.18 Credits/hr
 - GPU HIGH RAM [8 Cores] 1 X A100 GPU (40 GB) 7.62 Credits/hr

Databricks

- Cluster
 - CPU Driver 64 GB [16 Cores] m4.4xlarge, with minimum & maximum 8 Executors 32GB [8 Cores] m4.2xlarge <u>15 dbu/h</u>
 - GPU Driver 64 GB Single GPU g4dn.4xLarge[T4], with minimum & maximum 2 Executors 16GB Single GPU g4dn.xLarge[T4] 4.27 dbu/h

Standalone

- CPU Driver 64 GB [16 Cores] m4.4xlarge <u>3 dbu/h</u>
- GPU Driver 64 GB Single GPU g4dn.4xLarge[T4] 2.85 dbu/h

Model	Precisi on	Recall	F1-Score	Google Collab (s)	Databricks Cluster CPU (s)	Databricks Cluster GPU (s)
ImageTextDetector + ImageToTextV2 (Base)	0.871	0.800	0.834	3.63	2.94	2.76
ImageTextDetector + ImageToTextV2 (Large)	0.892	0.822	0.856	4.06	3.59	3.2
ImageTextDetector + ImageToTextV3	0.741	0.433	0.547	0.68	1.83	1.0
ImageToText	0.436	0.289	0.348	0.31	0.85	0.89
Presidio	0.07	0.128	0.091	0.54	N/A	N/A

Important Links

- Visual NLP:
 - https://www.johnsnowlabs.com/visual-nlp/
- Visual NLP Workshop:
 - https://github.com/JohnSnowLabs/visual-nlp-workshop/tree/master
- Healthcare NLP Workshop:
 - https://github.com/JohnSnowLabs/spark-nlp-workshop/tree/master/healthcare-nlp
- Spark NLP Workshop:
 - https://github.com/JohnSnowLabs/spark-nlp-workshop
- Visual NLP Pipeline Components:
 - https://nlp.johnsnowlabs.com/docs/en/ocr_pipeline_components
- Visual NLP Speed Benchmarks:
 - https://nlp.johnsnowlabs.com/docs/en/ocr_benchmark
- Visual NLP Helpers:
 - https://nlp.johnsnowlabs.com/docs/en/ocr_structures
- Dicom Deidentification Metrics:
 - https://github.com/JohnSnowLabs/dicom-deid-dataset