Київський національний університет імені Тараса Шевченка Фізичний факультет

Лабораторний практикум основи радіоелектроники

Напівпровідникові діоди

Мета

Навчитися одержувати зображення ВАХ діодів на екрані двоканального осцилографа діодів різних типів та визначити деякі параметри, які пов'язані з їх конкретним використанням.

Зміст

H	апівпровідникові діоди	2
	Мета	
	Теоретичні відомості	
	Основні терміни	
	Опис методу	
	Порядок виконання роботи	
	Звичайний діод	
	Стабілітрон	
	•	
	Світлодіод	
	Висновок	b

Теоретичні відомості

Основні терміни

Напівпровідниковий діод— це напівпровідниковий прилад з одним p-n—переходом і двома виводами.

p-n-nepexid – перехідний шар, що утворюється на межі двох областей напівпровідника, одна з яких має провідність n-типу, а інша – провідність p-типу.

Вольт-амперна характеристика (ВАХ) діода— це залежність сили струму через p-n-перехід діода від величини і полярності прикладеної до діода напруги.

Характериограф — електронно-променевий прилад, на екрані якого можна спостерігати графіки функцій будь-яких фізичних величин, що можуть бути перетворені у пропорційні їм напруги, наприклад, графіки залежності сили струму від напруги.

Опис методу

В середовищі Multisim 14.2 для одержання ВАХ використовуємо осцилограф. Встановлюємо режим цього осцилографа В/А, чутливість канала А вибираємо рівною 2В/поділ., чутливість канала В вибираємо рівною 50мВ/поділ. До входу каналу А потрібно підключити напругу, прикладену до діода, а на вхід каналу В — напругу, пропорційну силі струму, про проходить через діод. (Рис. 1). У вікні генератора встановлюємо частоту 1 Гц, амплітуду 10 В та пилкоподібну форму сигнала.

Рис. 1. Параметри осцилографа та генератора сигналів

Робоча схема представлена на Рис. 2. В роботі досліджується ВАХ представленого звичайного діода, світлодіода, та стабілітрона.

Рис. 2. Робоча схема

Напругу, пропорційну величині струму, що проходить через діод,знімають з невеликого опору R_1 , включеного послідовно з діодом. Цей опір відіграє роль датчика струму. Резистор R_2 потрібен для обмеження струму через діод. На екрані осцилографа маємо залежність U_B від U_A . Для одержання реальної ВАХ діода потрібно провести перетворення над U_B і U_A , а саме:

$$U = U_{B} - U_{A}$$

$$I = \frac{U_{B}}{R_{1}}$$

Порядок виконання роботи

Звичайний діод

Замикаємо ключ «діод» та фіксуємо показання осцилографа. На екрані осцилографа маємо залежність U_B від U_A .

Рис. 3. Показники осцилографа для звичайного діода

таблиця № 1. BAX звичайного				
(випрямляючого) діода				
Ua, B	Uв, B	1	І діода, А	No
-0,9	0	-0,900	0,00000	1
-0,88	0	-0,880	0,00000	2
-0,87	0,003	-0,873	0,00030	3
-0,82	0,001	-0,821	0,00010	4
-0,78	0,0016	-0,782	0,00016	5
-0,5	0,006	-0,506	0,00060	6
0	0,014	-0,014	0,00140	7
0,4	0,02	0,380	0,00200	8
0,6	0,0235	0,577	0,00235	9
0,66424	0,02456	0,640	0,00246	10
0,81	0,0919	0,718	0,00919	11

Графік № 1. ВАХ звичайного (випрямляючого) діода 0,01000 0,00900 0,00800 0,00700 0,00600 0.00500 0,00400 0,00300 0,00200 0,00100 -0,900 -0,880 -0,873 -0,821 -0,782 -0,506 -0,014 0,380 0,577 0,640 0,718 U діода, В

Стабілітрон

Замикаємо ключ «стабілітрон» та фіксуємо показання осцилографа. На екрані осцилографа маємо залежність U_B від U_A .

Рис. 4. Показники осцилографа для стабілітрона

таблиця № 2. BAX стабілітрона				
Ua, B	UB, B	U діода, В	І діода, А	№
-2,24	-0,0776	-2,162	-0,008	1
-2,235	-0,0761	-2,159	-0,008	2
-2,1	-0,041	-2,059	-0,004	3
-2,02	-0,0262	-1,994	-0,003	4
-2	-0,02316	-1,977	-0,002	5
-1	-0,01	-0,990	-0,001	6
-0,6	-0,004	-0,596	0,000	7
0	0,006	-0,006	0,001	8
0,5	0,016	0,484	0,002	9
0,7	0,0199	0,680	0,002	10
1	0,0258	0,974	0,003	11
1,03472	0,02645	1,008	0,003	12
1,15	0,08847	1,062	0,009	13

Світлодіод

Замикаємо ключ «світлодіод» та фіксуємо показання осцилографа. На екрані осцилографа маємо залежність U_B від U_A .

Рис. 5. Показники осцилографа для світлодіода

таблиця № 3. BAX світлодіода				
Ua, B	UB, B	U діода, В	І діода, А	№
-2	0	-2,000	0,000	1
-1,5	0	-1,500	0,000	2
-0,5	0,002	-0,502	0,000	3
0	0,004825	-0,005	0,000	4
0,2	0,006	0,194	0,001	5
0,4	0,007	0,393	0,001	6
0,8	0,009	0,791	0,001	7
1	0,01	0,990	0,001	8
1,3	0,012	1,288	0,001	9
1,5	0,01275	1,487	0,001	10
1,65	0,01354	1,636	0,001	11
1,7	0,01415	1,686	0,001	12
1,8	0,0495	1,751	0,005	13
1,86	0,08139	1,779	0,008	14

Висновок

В даній роботі було досліджено метод отримання зображення ВАХ напівпровідникових діодів на екрані двоканального осцилографа в середовищі моделювання електронних схем Multisim 14.2. Для цього необхідно подати до входу одного каналу напругу, прикладену до діода, а до входу іншого - напругу, пропорційну силі струму, про проходить через діод. Вхідний сигнал подається від генератора гармонічних сигналів, що видає пилкоподібну форму сигналу. На основі отриманої з осцилографа графічної залежності напруги на виході діода від напруги, що на нього подана побудовані реальні вольт-амперні характеристики випрямляючого діода, стабілітрону та світлодіоду. За отриманими ВАХ можна встановити наступні параметри досліджуваних діодів:

	масимальний прямий струм, мА	напруга порога провідності, В
випрямляючий діод	9,19	0,64
стабілітрон	9	1,008
світлодіод	8	1,686