

#### **Y=a+b\*X**; где:

- Y зависимая переменная,
- а константа
- b угловой коэффициент
- X независимая переменная

Для многомерной регрессии:

$$Y = a + b1*X1 + b2*X2 + ... + bp*Xp$$



Для аналитического описания связи между признаками могут быть использованы следующие виды уравнений:

– прямая, линейная функция;

$$\bar{y} = a_0 + a_1 x^2 + a_2 x$$
 — парабола;

$$\overline{y} = a_0 + a_1 \frac{1}{x}$$

– гипербола;

$$\overline{y} = a_0 x^{a_1}$$

– степенная функция;

$$\bar{y} = \exp(a_0 + a_1 x)$$
 — экспонента и др.



#### Смысл коэффициента регрессии

В общем случае коэффициент регрессии k показывает, как в среднем изменится результативный признак (Y), если факторный признак (X) увеличится на единицу.

#### Свойства коэффициента регрессии

- Коэффициент регрессии принимает любые значения.
- Коэффициент регрессии *не симметричен*, т.е. изменяется, если *X* и У поменять местами.
- Единицей измерения коэффициента регрессии является отношение единицы измерения Y к единице измерения X ([ Y] / [ X ]).
- Коэффициент регрессии изменяется при изменении единиц измерения X и Y.



Единица измерения коэффициента регрессии

В уравнении Y = 87610 + 2984 X коэффициент регрессии равен 2984.

В каких единицах он измеряется?

Если результативный признак Y измеряется в *гривнах*, а факторный признак X в количестве рабочих (чел), то коэффициент регрессии измеряется в *гривнах* на человека (грн/чел)



#### Сравнение коэффициентов корреляции и регрессии

#### Коэффициент корреляции

- Принимает значения в диапазоне от -1 до +1
- Безразмерная величина
- Показывает силу связи между признаками
- Знак коэффициента говорит о направлении связи

#### Коэффициент регрессии

- Может принимать любые значения
- Привязан к единицам измерения обоих признаков
- Показывает структуру связи между признаками
- Знак коэффициента говорит о направлении связи



|     |               |              | Стандартная |              |
|-----|---------------|--------------|-------------|--------------|
|     |               | Коэффициенты | ошибка      | t-cmamucmика |
|     | Ү-пересечение | 2,694545455  | 0,33176878  | 8,121757129  |
| .85 | х             | 2,305454545  | 0,04668634  | 49,38177965  |

| Наблюдение | Предсказанное у | Остатки 🖣                 |
|------------|-----------------|---------------------------|
| 1          | 9,610909091     | -0,610909                 |
| 2          | 7,305454545     | -0,305454 <sup>30</sup> j |
| 3          | 11,91636364     | 0,083636                  |
| 4          | 14,22181818     | 0,778181                  |
|            | 16,52727273     | 0,472727 10               |
| 8          | 18,83272727     | 0,167272 5                |
| 7          | 21,13818182     | -0,138181i o l            |
| 8          | 23,44363636     | -0,0436363b4              |
| _          |                 |                           |









# F - критерий

Адекватность построенного уравнения данным генеральной совокупности проверяется по статистической значимости коэффициента детерминации  $R^2$  на основе F-критерия Фишера:

 $F = \frac{R^2}{1 - R^2} \cdot \frac{n - m - 1}{m},$ 

где n – число наблюдений; 1—11 m – число факторов в уравнении регрессии.

Если в уравнении регрессии свободный член  $\mathcal{Q}_0$  = 0, то числитель n-m-1 следует увеличить на 1, т.е. он будет равен n-m.



#### F - критерий

В математической статистике доказывается, что если гипотеза  $H_0: R^2 = 0$ 

выполняется, то величина F имеет F-распределение с k=m и i=n-m-1 числом степеней свободы, т.е.

$$\frac{R^2}{1-R^2} \cdot \frac{n-m-1}{m} = F(k=m, l=n-m-1).$$

Гипотеза  $H_0$  о незначимости коэффициента детерминации отвергается, если

$$F_p > F_{i\eth,\alpha}^{\hat{e}\delta}.$$

При значениях  $R^2 > 0.7$  считается, что вариация результативного признака Y обусловлена в основном влиянием включенных в регрессионную модель факторов X.



#### Ошибка аппроксимации

Для оценки адекватности уравнения регрессии часто также используют показатель средней ошибки аппроксимации

$$\overline{\varepsilon} = \frac{1}{n} \sum_{i=1}^{n} \frac{|y_i - \hat{y}|}{y_i} \cdot 100\%.$$



Возможна ситуация, когда часть вычисленных коэффициентов регрессии не обладает необходимой степенью значимости, т.е. значения данных коэффициентов будут меньше их стандартной ошибки. В этом случае такие коэффициенты должны быть исключены из уравнения регрессии. Поэтому проверка адекватности построенного уравнения регрессии наряду с проверкой значимости коэффициента детерминации  $R^2$  включает также и проверку значимости каждого коэффициента регрессии.



# *t-критерий*

Для оценки адекватности уравнения регрессии часто также используют показатель средней ошибки аппроксимации

$$t = \frac{a_i}{\sigma_{a_i}},$$

где  $\sigma_{a_i}$  - стандартное значение ошибки для коэффициента регрессии  $\alpha_i$ 



#### t-критерий

#### Если гипотеза

 $H_0$  :  $a_i = 0$  выполняется, то величина t имеет распределение Стьюдента с k=n-m-1 числом степеней свободы, т.е.

$$\frac{a_i}{\sigma_{a_i}} = t(k = n - m - 1).$$

Гипотеза  $H_0$  :  $a_i=0$  о незначимости коэффициента регрессии отвергается, если  $|t_p|>|t_{\hat{e}p}|$ .



## Границы доверительных интервалов

Зная значение  $t_{\hat{e}p}$ , можно найти границы доверительных интервалов для коэффициентов регрессии

$$a_i^{\min} = a_i - t_{\hat{e}\delta} \sigma_{a_i};$$
 
$$a_i^{\max} = a_i + t_{\hat{e}\delta} \sigma_{a_i}.$$

$$a_i^{\max} = a_i + t_{\hat{e}\check{o}} \sigma_{a_i}.$$



|   |               | ORP    | ZPL  | OEX                   |          |               |                |              |           |          |
|---|---------------|--------|------|-----------------------|----------|---------------|----------------|--------------|-----------|----------|
|   | АРК           | 22596  | 2849 | 849275                |          |               |                |              |           |          |
|   | Вінницька     | 22732  | 2651 | 622175                |          |               |                |              |           |          |
|   | Волинська     | 10187  | 2580 | 585473                |          |               |                |              |           |          |
|   | Дніпропетров  |        |      |                       |          |               |                |              |           |          |
|   | ська          | 202318 | 3335 | 8967464               |          |               |                |              |           |          |
|   | Донецька      | 205594 | 3755 | 11335389              |          |               |                |              |           |          |
|   | Житомирська   | 15665  | 2561 | 550107                |          |               |                |              |           |          |
|   | Закарпатська  | 9224   | 2553 | 1205576               |          |               |                |              |           |          |
|   | Запорізька    | 75835  | 3142 | 3320827               |          |               |                |              |           |          |
|   | Івано-Франк.  | 20487  | 2679 | 435835                |          |               |                |              |           |          |
|   | Київська      | 40280  | 3351 | 1787605               |          |               |                |              |           |          |
|   | Кіровоградськ |        |      | The regres            | ssion e  | quation is    |                |              |           |          |
|   | a             | 14382  |      | ORP = 1527            | 170 - 5  | 34.3 ZPL + 0  | .0222 OEX      | ζ            |           |          |
|   | Луганська     | 67740  | 33:  | Dradiator             |          | Coof          | C+Do           | Т            | P         |          |
|   | Львівська     | 30845  | 211  | Predictor<br>Constant |          | Coef<br>2770  | StDev<br>37322 | 4.09         | 0.000     |          |
|   | Миколаївська  | 21645  | 30   | ZPL                   |          | 4.27          | 14.11          | -3.85        | 0.001     |          |
|   | Одеська       | 25016  | 29   | OEX                   |          |               | 02404          | 9.22         | 0.000     |          |
|   | Полтавська    | 63646  | 29   |                       |          |               |                |              |           |          |
|   | Рівненська    | 14474  |      | S = 20737             |          | R - Sq = 85.2 | ?% R−Ş         | Sg(adj) = 83 | 3.9%      |          |
|   | Сумська       | 22332  | 27   | Analysis of Variance  |          |               |                |              |           |          |
|   | Тернопільськ  |        |      | inidiyoto (           | ,, ,,,,, |               |                |              |           |          |
|   | а             | 7609   |      | Source                | DF       | SS            | ;              | MS           | F P       |          |
|   | Харківська    | 62815  |      | Regression            |          | 59214393186   |                |              | .85 0.000 |          |
|   | Херсонська    | 10828  |      | Error                 |          | 10320502145   |                | 0923         |           |          |
|   | Хмельницька   | 16524  | 20   | Total                 | 20       | 69534895331   |                |              |           |          |
|   | Черкаська     | 28249  | 26   | Source                | DF       | Seg SS        | ;              |              |           |          |
| Ī | Чернівецька   | 4011   |      | ZPL                   | 1        | 22657300530   |                |              |           |          |
|   | Чернігівська  | 14129  |      | OEX                   | 1        | 36557092656   | 5              |              |           |          |
|   | м. Ки         | 73284  | 50   | Unusual Ok            |          | iona          |                |              |           |          |
|   | м.Севастопол  | 20=2   |      | Onusual Or<br>Obs     | ZPL      | ORP           | Fit            | StDev Fit    | Residual  | St Resid |
|   | Ь             | 3652   | 31   |                       | 3335     | 202318        | 170527         | 12655        |           | 1.94 X   |
|   |               |        |      |                       | 3755     | 205594        | 200216         | 14391        |           | 0.36 X   |
|   |               |        |      | 26                    | 5007     | 73284         | 124629         | 16699        | -51346    | -4.18RX  |

R denotes an observation with a large standardized residual X denotes an observation whose X value gives it large influence.



#### 1. Методы первичной обработки данных





#### 1. Методы первичной обработки данных

The regression equation is v = -120802 + 55.3 x

Predictor Coef StDev T P
Constant -120802 47278 -2.56 0.017
x 55.29 15.91 3.48 0.002

S = 43302 R-Sq = 32.6% R-Sq(adj) = 29.9%

Analysis of Variance

Source DF SS MS F P Regression 1 22657300530 22657300530 12.08 0.002

Error 25 46877594802 1875103792

Total 26 69534895331

(Ctrl) ₹

 $\sum_{i} (y_i - \overline{y})^2 = \sum_{i} (\hat{y}_i - \overline{y})^2 + \sum_{i} (y_i - \hat{y}_i)^2$ 

Общая сумма квадратов Сумма квадратов Остаточная сумма отклонений = отклонений, объясненная + квадратов отклонений

=  $\text{FPAC}\Pi(F_p; df(\text{регрессия}); df(\text{остаток})).$ 



#### Нормальный закон распределения

- 1) Количество вариантов (значений СВ), превышающих среднее значение, равно количеству вариантов, которые меньше его (примерная симметричность диаграммы).
- 2) Частота вариантов тем больше, чем ближе к среднему значению они расположены (гистограмма имеет наибольшие ординаты в центре и наименьшие у краев).



- 1. Хорошо изучен, методика проста и отработана
- 2. При увеличении объёма выборки

Если результаты измерений вызывают сомнение в применимости Н3, необходимо увеличить объём выборки



# По своему виду кривые нормального распределения могут быть:

- **нормальновершинными**;
- > туповершинными;
- **островершинными**
- иметь положительную асимметрию;
- > иметь отрицательную асимметрию.



**Кривые нормального** распределения



Кривые нормального распределения с положительной и отрицательной асимметрией