

CS 469 / CS 569: Special Topics in Computer Science: Human-Computer Interaction

Devices

Dr. Mohammed Ayoub Alaoui Mhamdi Bishop's University Sherbrooke, Qc, Canada malaoui@ubishops.ca

Devices

Topics

- 1. Introduction
- 2. Keyboards and Keypads
- 3. Pointing Devices
- 4. Displays

Introduction

- № Input and output devices represent the physical medium through which users operate computers
- ∞ Only two decades ago, the standard computer platform was the desktop or laptop personal computer equipped with a screen, a mouse, and a keyboard
- ™ Mobile devices have revolutionized the face of computing
 ™ Many people do not realize that their ever-present
 smartphones, tablets, or portable MP3 players are,
 indeed, powerful computers
- The explosion of new and exciting computing technology has increased the importance of interaction design so as to accommodate such a wide diversity of input and output modalities

Device example

Mapil Sibal
announcing the
Aakash, a \$35
tablet for the
Indian market

Another device example

- The Owlet wearable baby monitor that continuously tracks a baby's heart rate and oxygen saturation using a socalled "smart sock" (left) and wirelessly sends the information to a base station (center)
- The base station is in contact with the internet, and uploads data that parents can access using their smartphone (right)

Keyboards and keypads

- An Apple Macbook Air laptop with a QWERTY keyboard (left) showing the inverted T movement keys at the bottom right and function keys across the top
- A multi-touch trackpad supports pointing
- On the right, a detail photograph of a Lenovo laptop keyboard shows a pointing stick (also called a trackpoint) mounted between the G and H keys on the keyboard

www.shutterstock.com · 6898165

Accessible "keyboard"

- orbiTouch Keyless Keyboard with integrated mouse functionality
- The orbiTouch requires no finger or wrist motion to operate, yet supports high performance typing and pointing

Pointing tasks and control

- ≫ Select Choosing from a set of items.
- ≫ Position Choosing a point in a one-, two-, three-, or higher-dimensional space
- ≫ Orient Choose a direction in a two-, three-, or higher-dimensional space.
- № Path Define a series of positioning and orientation operations
- ≫ Quantify Specify a numeric value
- **∞** Gesture -
- ≈ Text Enf

kecuting a predefined motion

in two-dimensional space

Pointing devices

http://www.logitech.com/

Direct control devices (easy to learn and use, but hand may obscure display)

- Touchscreen (single- and multi-touch)
- · Stylus (passive and active)

Indirect control devices (take time to learn)

- Mouse
- Trackball
- Joystick
- · Pointing stick (trackpoint)
- Touchpad
- · Graphics tablet

Novel devices and strategies (for special purposes)

- · Bimanual input
- · Eye-trackers
- · Sensors (accelerometer, gyroscopes, depth cameras)
- · 3-D trackers
- Data gloves
- · Haptic feedback
- · Foot controls
- · Tangible user interfaces
- · Digital paper

Criteria for success

- Speed and accuracy
- · Efficacy for task
- · Learning time
- · Cost and reliability
- · Size and weight

http://www.apple.com/

http://www.leapmotion.com/

Characteristics of displays

- » Physical dimensions (usually the diagonal dimension and depth)
- ≈ Resolution (the number of pixels available)
- Number of available colors and color correctness
- ≥ Luminance, contrast, and glare
- № Power consumption
- Nefresh rates (sufficient to allow animation and
- **∞** Cost

Display example (1 of 5)

™The seventhgeneration Amazon Kindle Voyage book reader (http://www.amazon.co m/) is a six-inch grayscale display with a 330 pixels per inch resolution

Another Display example (2 of 5)

 Users discussing and pointing at details on the Stony Brook University Reality Deck (Papadopoulos et al., 2014), an immersive giga-pixel display consisting of 416 thin-bezel LCD displays and powered by 18 graphics workstations connected using a high-speed network (https://labs.cs. suny sb. edu/labs/vislab/re

Another Display example (3 of 5)

™Two users collaboratively control a lens on a gigapixel image of Paris, France using a tablet touchscreen as well as an interactive cursor (Chapuis et al., 2014)

Another Display example (4 of 5)

- Two people
 collaborating on a
 real estate task
 using a tabletop
 display and mobile
 table
- The tabletop serves as a shared and public display where changes affect all collaborators, whereas the tablet is perceived as a private display that

Another Display example (5 of 5)

- The Apple Watch on the left supports both fitness as well as personal information management applications, such as email, calendar, and electronic payment
- The Fitbit Surge smartwatch on the right is designed mainly for personal fitness

apriinationa and anntair ra PS

Responsive Design

The monitor layout on the left is automatically adapted to the smaller display space of a tablet (middle) and a

Deformable and shape-changing display examples

- The left image shows a physical bar chart visualization displaying complex data (Jansen et al., 2013)
- The middle shows the tilt display that consists of multiple small displays mounted on actuators (Alexander et al., 2012)
- On the right is the PaperPhone, a flexible

