Name: Joshua Dow

Student ID: 10150588

Problem 1 — Binary polynomial arithmetic, 20 marks

(a) i.
$$x^3 \cdot x^3 + 1 \cdot x^3 + x \cdot x^3 + x + 1 \cdot x^3 + x^2 \cdot x^3 + x^2 + 1 \cdot x^3 + x^2 + x \cdot x^3 + x^2 + x + 1$$

ii. A.
$$f(x) = x^3 = x * x * x, f(0) = 0$$

B.
$$f(x) = x^3 + 1$$
, $f(0) = 0 + 1 \neq 0$, but $f(1) = 1 + 1 = 0$ in GF(2)

C.
$$f(x) = x^3 + x = x(x^2 + 1), f(0) = 0, f(1) = 1(1 + 1) = 0$$

D.
$$f(x) = x^3 + x^2 = x^2(x+1), f(0) = 0, f(1) = 1(1+1) = 0$$

E.
$$f(x) = x^3 + x^2 + x = x(x^2 + x + 1), f(0) = 0$$

F.
$$f(x) = x^3 + x^2 + x + 1$$
, $f(0) = 0 + 0 + 0 + 1 \neq 0$, $f(1) = 1 + 1 + 1 + 1 = 0$

iii. A.
$$f(x) = x^3 + x + 1$$
, $f(0) = 0 + 0 + 1 \neq 0$, $f(1) = 1 + 1 + 1 = 1$ No roots exist in $GF(2)$

B.
$$f(x) = x^3 + x^2 + 1$$
, $f(0) = 0 + 0 + 1 \neq 0$, $f(1) = 1 + 1 + 1 \neq 0$ No roots exist in $GF(2)$

(b) i.
$$f(x)g(x) = (x^2 + 1)(x^3 + x^2 + 1) = x^5 + x^4 + x^2 + x^3 + x^2 + 1 = x^5 + x^4 + x^3 + 1$$

$$x^4 + x + 1)\overline{x^5 + x^4 + x^3 + 0x^2 + 0x + 1}$$

$$\underline{x^5 + 0 + 0 + x^2 + x + 0}$$

$$\underline{x^4 + x^3 + x^2 - x + 1}$$

$$\underline{x^4 + 0 + 0 + x + 1}$$

$$\underline{0x^4 + x^3 + x^2 - 2x + 0}$$

$$\underline{x^3 + x^2}$$

Since -2x in GF(2) is zero. So $f(x)g(x) \equiv x^3 + x^2 \pmod{x^4 + x + 1}$

ii. We want $xg(x) \equiv 1 \pmod{x^4 + x + 1}$, since $p(x) = x^4 + x + 1 = 0$ in $GF(2^4)$, then xg(x) + 1 * p(x) = 1 from an extended definition of remainder of greatest common denominator and division algorithm then:

$$xg(x) + (x^4 + x + 1) = 1$$

$$xg(x) + x^4 + x = 0$$

$$q(x) + x^3 + 1 = 0$$

 $g(x) = x^3 + 1$ We can ignore the negative here due to the cyclic nature of $GF(2^4)$ To verify:

$$xg(x) = x(x^3 + 1) = x^4 + x \equiv 1 \pmod{x^4 + x + 1}$$

(c) i. Proof that in this arithmetic, multiplication of any 4-byte vector by y is a circular left shift of the vector by one byte:

1

Suppose any 4-byte vector abcd which we represent by: $ay^3 + by^2 + cy + d$. Then multiplication by y yields: $ay^4 + by^3 + cy^2 + dy$ = $a + by^3 + cy^2 + dy = by^3 + cy^2 + dy + a$ since $y^4 = 1$ which is a circular shift left. We can continue this process as follows:

$$y(by^3 + cy^2 + dy + a) = cy^3 + dy^2 + ay + b$$

$$y(cy^{3} + dy^{2} + ay + b) = dy^{3} + ay^{2} + by + c$$

 $y(dy^3 + ay^2 + by + a) = ay^3 + by^2 + cy + d$ Which is where we started. \Box

- ii. We need not use induction since we have a small finite set of elements. We can prove this on a case by case basis.
 - A. Case 1: $i = 4k, k \in \mathbb{Z}$ then j = 0 so $y^0 \pmod{y^4 + 1} = 1 \pmod{y^4 + 1} \equiv 0$ and for any other multiple of 4 for i = 4k then $y^{4k} \pmod{y^4 + 1} \equiv 1^k \pmod{y^4 + 1} \equiv 1 \pmod{y^4 + 1} \equiv 0$
 - B. Case 1: $i = 4k + 1, k \in \mathbb{Z}$ then j = 1 so $y^1 \pmod{y^4 + 1} = y \pmod{y^4 + 1} \equiv y$ and for any other multiple of 4 for i = 4k + 1 then $y^{4k+1} \pmod{y^4 + 1} \equiv y * 1^k \pmod{y^4 + 1} \equiv y \pmod{y^4 + 1} \equiv y$
 - C. Case 1: $i = 4k + 2, k \in \mathbb{Z}$ then j = 2 so $y^2 \pmod{y^4 + 1} = y^2 \pmod{y^4 + 1} \equiv y^2$ and for any other multiple of 4 for i = 4k + 2 then $y^{4k + 2} \pmod{y^4 + 1} \equiv y^2 * 1^k \pmod{y^4 + 1} \equiv y^2 \pmod{y^4 + 1} \equiv y^2$
 - D. Case 1: $i = 4k + 3, k \in \mathbb{Z}$ then j = 3 so $y^3 \pmod{y^4 + 1} = y^3 \pmod{y^4 + 1} \equiv y^3$ and for any other multiple of 4 for i = 4k + 3 then $y^{4k + 3} \pmod{y^4 + 1} \equiv y^3 * 1^k \pmod{y^4 + 1} \equiv y^3 \pmod{y^4 + 1} \equiv y^3$
 - iii. Proof by induction on i:

Base Case: Let i=0, then $y^i=y^0=1$ so for any 4-byte vector ay^3+by^2+cy+d multiplication by 1 is itself.

Inductive Hypothesis: Suppose a 4-byte vector $qy^3 + ry^2 + sy + t$ and $i \ge 0$ we have a circular left shift such that $y^i(qy^3 + ry^2 + sy + t)$ is of the form: $qy^{3+i} + ry^{2+i} + sy^{1+i} + ty^i$. Inductive Step: Let $j = i + 1 \ge 0$, then $y^j(qy^3 + ry^2 + sy + t)$

 $= y^{i+1}(qy^3 + ry^2 + sy + t) = y^iy^1(qy^3 + ry^2 + sy + t) = y^i(qy^4 + ry^3 + sy^2 + ty)$ $= y^i(ry^3 + sy^2 + ty + r) = ry^{3+i} + sy^{2+i} + ry^{1+i} + ty^i \text{ By the inductive hypothesis we can}$

 $=y^i(ry^3+sy^2+ty+r)=ry^{3+i}+sy^{2+i}+ry^{1+i}+ty^i$ By the inductive hypothesis we can see a singular left shift here, and corresponding to the value of i will continue to shift left. This concludes out induction on i

Problem 2 — Arithmetic with the constant polynomial of MIXCOLUMNS in AES, 13 marks

(a) i.
$$c_1(x) = 0x01 \cdot x + 0x01 \cdot x^2$$

ii. $c_2(x) = 0x02$
iii. $c_3(x) = 0x03 \cdot x^3$

- (b) i. $d = (02)b = 0x02 \cdot b = (00000010)(b_7b_6b_5b_4b_3b_2b_1b_0)$ = $b_6b_5b_4b_3b_2b_1b_0b_7$, then for any d_i we have: $d_i = b_{i-1}$ This represents a bitwise left shift
 - ii. $e = (03)b = 0x03 \cdot x^3 \cdot b = (00000011)x^3(b_7b_6b_5b_4b_3b_2b_1b_0)$ = $(b_6b_5b_4b_3b_2b_1b_0b_7 + b_7b_6b_5b_4b_3b_2b_1b_0)x^3$ This is known as a shift + add, we shift left by 1 (3 = 2 + 1) and then add the original bits

(c) i.
$$s(y)c(y) = ((03)y^3 + (01)y^2 + (01)y + (02))(s_3y^3 + s_2y^2 + s_1y + s_0)$$

 $= (03)s_3y^6 + (03)s_2y^5 + (03)s_1y^4 + (03)s_0y^3$
 $+(01)s_3y^5 + (01)s_2y^4 + (01)s_1y^3 + (01)s_0y^2$
 $+(01)s_3y^4 + (02)s_2y^3 + (01)s_1y^2 + (01)s_0y$
 $+(02)s_3y^3 + (02)s_2y^2 + (02)s_1y + (02)s_0$

$$= (03)s_3y^2 + (03)s_2y + (03)s_1 + (03)s_0y^3 + (01)s_3y + (01)s_2 + (01)s_1y^3 + (01)s_0y^2 + (01)s_3 + (02)s_2y^3 + (01)s_1y^2 + (01)s_0y + (02)s_3y^3 + (02)s_2y^2 + (02)s_1y + (02)s_0$$

$$t_3 = (03)s_0 + (01)s_1 + (01)s_2 + (02)s_3$$

$$t_2 = (03)s_3 + (01)s_0 + (01)s_1 + (02)s_2$$

$$t_1 = (03)s_2 + (01)s_3 + (01)s_0 + (02)s_1$$

$$t_0 = (03)s_1 + (01)s_2 + (01)s_3 + (02)s_0$$

$$\begin{bmatrix} t_0 \\ t_1 \\ t_2 \\ t_3 \end{bmatrix} = \begin{bmatrix} (03) & (01) & (01) & (02) \\ (01) & (01) & (02) & (03) \\ (01) & (02) & (03) & (01) \\ (02) & (03) & (01) & (01) \end{bmatrix} \cdot \begin{bmatrix} s_0 \\ s_1 \\ s_2 \\ s_3 \end{bmatrix}$$

- ii. **Problem 3** Error propagation in block cipher modes, 12 marks
 - (a) i. In ECB, an error in C_i only affects M_i since each block is individually encrypted
 - ii. In CBC, an error in C_i affects every encryption after since each previous encryption is used as input to the next encryption. So on decryption each M after and including M_i is effected.
 - iii. In OFB, an error in C_i only affects M_i because C_i is not used in the calculations that follow
 - iv. In CFB with one register, an error in C_i affects every calculation afterwards. This is because with only one register the previous encryption is used in the calculation for the following calculations.
 - v. In CTR, an error in C_i affects only M_i on decryption because CTR is independent of previous calculations
 - (b) Only that one block will be affected, in regular CFB the error will not propagate due to how CFB synchronizes when a familiar state is reached. So once we leave the corrupted block, the remaining calculations will be fine.

Problem 4 — Flawed MAC designs, 24 marks

- (a) i. Supposing that M_1 consists of L blocks, then going through $ITHASH(K||M_1)$ gives us $PHMAC_K(M_1)$. But notice that the first L+1 round for both $ITHASH(K||M_1)$, ITHASH(K|| are the same regardless of the choice of K, so we can calculate $PHMAC_K(M_2)$ by applying the compression algorithm f to $PHMAC_K(M_1)$ and X.
 - ii. Since AHMAC is not weak collision resistant the there is a message $M_2 \neq M_1$ such that $AHMAC_K(M_1) = AHMAC_K(M_2) \iff ITHASH(M_1||K) = ITHASH(M_2||K)$. Only the last round of the computation depends on K. By the L^{th} round of computation the output is the same so on the $L+1^{st}$ round is $H \longleftarrow f(H,K)$ so we have now generated an additional message AHMAC pair.
- (b) i. $CBC MAC(M_3) = e_k(e_k(M_1) \oplus e_k(0^n)) = e_k(CBC MAC(M_1) \oplus e_k(0^n)$ $= e_k(M_2 \oplus 0^n) = e_k(M_2) = CBC - MAC(M_2)$ This violates computational resistance because we end up with a strong collision since $CBC - MAC(M_3) = CBC - MAC(M_2)$
 - ii. $CBC MAC(M_4) = e_k(e_k(M_2) \oplus CBC MAC(M_1) \oplus CBC MAC(M_2) \oplus X)$ = $e_k(CBC - MAC(M_2) \oplus CBC - MAC(M_1) \oplus CBC - MAC(M_2) \oplus X)$ = $e_k(CBC - MAC(M_1) \oplus X)$ = $CBC - MAC(M_3)$

This violates computational resistance by having two separate messages encrypted to the same MAC.