Vishay Siliconix

New Product

Dual N-Channel 20-V (D-S) MOSFET

PRODUCT SUMMARY						
V _{DS} (V)	$r_{DS(on)}(\Omega)$	I _D (mA)				
	0.70 @ V _{GS} = 4.5 V	600				
20	0.85 @ V _{GS} = 2.5 V	500				
	1.25 @ V _{GS} = 1.8 V	350				

TrenchFET® **MOSFETs** 1.8-V Rated

FEATURES

- Very Small Footprint
- High-Side Switching
- Low On-Resistance: 0.7 Ω Low Threshold: 0.8 V (typ)
- Fast Swtiching Speed: 10 ns
- 1.8-V Operation
- Gate-Source ESD Protection

BENEFITS

- Ease in Driving Switches
- Low Offset (Error) Voltage
- Low-Voltage Operation
- High-Speed Circuits
- Low Battery Voltage Operation

APPLICATIONS

- Drivers: Relays, Solenoids, Lamps, Hammers, Displays, Memories
- Battery Operated Systems
- Power Supply Converter Circuits
- Load/Power Switching Cell Phones, Pagers

Marking Code: C

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C UNLESS OTHERWISE NOTED)									
Parameter		Symbol	5 secs Steady State		Unit				
Drain-Source Voltage		V _{DS}		V					
Gate-Source Voltage		V_{GS}							
Continuous Drain Courset (T. 45000)3	T _A = 25°C		515	485					
Continuous Drain Current (T _J = 150°C) ^a	T _A = 85°C	- I _D	370	350					
Pulsed Drain Current ^b		I _{DM}	650		mA				
Continuous Source Current (diode conduction)		IS	450	380					
Mayimum Dawar Dissipations	T _A = 25°C	В	280	250	mW				
Maximum Power Dissipation ^a	T _A = 85°C	P _D	145	130					
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150		°C				
Gate-Source ESD Rating (HBM, Method 3015)		ESD		V					

Notes

- Surface Mounted on FR4 Board.
- b. Pulse width limited by maximum junction temperature.

Vishay Siliconix

New Product

SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)									
Parameter	Symbol	Symbol Test Condition		Тур	Max	Unit			
Static			•	•	•				
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \mu\text{A}$	0.45			V			
Gate-Body Leakage	I _{GSS}	V_{DS} = 0 V, V_{GS} = ± 4.5 V		± 0.5	±1.0	μА			
	I _{DSS}	V _{DS} = 16 V, V _{GS} = 0 V		0.3	100	nA			
Zero Gate Voltage Drain Current		$V_{DS} = 16 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 85^{\circ}\text{C}$			5	μΑ			
On-State Drain Current ^a	I _{D(on)}	$V_{DS} = 5 \text{ V}, V_{GS} = 4.5 \text{ V}$	700			mA			
	^r DS(on)	$V_{GS} = 4.5 \text{ V}, \ I_D = 600 \text{ mA}$		0.41	0.70	Ω			
Drain-Source On-State Resistance ^a		$V_{GS} = 2.5 \text{ V}, I_D = 500 \text{ m A}$		0.53	0.85				
		$V_{GS} = 1.8 \text{ V}, I_D = 350 \text{ m A}$		0.70	1.25				
Forward Transconductance ^a	9fs	V _{DS} = 10 V, I _D = 400 mA		1.0		S			
Diode Forward Voltage ^a	V _{SD}	$I_S = 150 \text{ mA}, V_{GS} = 0 \text{ V}$		0.8	1.2	V			
Dynamic ^b									
Total Gate Charge	Qg			750		pC			
Gate-Source Charge	Q _{gs}	V_{DS} = 10 V, V_{GS} = 4.5 V, I_{D} = 250 mA		75					
Gate-Drain Charge	Q _{gd}			225					
Turn-On Time	t _{ON}	$V_{DD} = 10 \text{ V, R}_{I} = 47 \Omega$		10		ns			
Turn-Off Time	t _{OFF}	$I_D \cong 200 \text{ mA}, V_{GEN} = 4.5 \text{ V}, R_G = 10 \Omega$		36					

- Notes a. Pulse test; pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$. b. Guaranteed by design, not subject to production testing.

TYPICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ UNLESS NOTED)

New Product

TYPICAL CHARACTERISTICS (T_A = 25°C UNLESS NOTED)

I_D - Drain Current (mA)

V_{DS} - Drain-to-Source Voltage (V)

Source-Drain Diode Forward Voltage

On-Resistance vs. Junction Temperature 1.60 r_{DS(on)} - On-Resistance (Ω) 1.40 $V_{GS} = 4.5 \text{ V}$ $I_D = 600 \text{ mA}$ (Normalized) 1.20 $V_{GS} = 1.8 \text{ V}$ $I_D = 350 \text{ mA}$ 1.00 0.80 0.60 -50 -25 75 100 125

T_J – Junction Temperature (°C)

S - Source Current (mA)

Vishay Siliconix

New Product

TYPICAL CHARACTERISTICS (T_A = 25°C UNLESS NOTED)

Normalized Thermal Transient Impedance, Junction-to-Ambient

