Hierarchical Bayesian Modeling of Antibody Kinetics: Extensions and Refinements

Kwan Ho Lee

2025-09-03

1 Overview

- Incorporates feedback from Dr. Morrison, Dr. Aiemjoy, and lab discussion
- Focus exclusively on (Teunis and Eijkeren 2016) two-phase within-host model
- Clarifies full hierarchical Bayesian modeling structure
- Explicitly distinguishes between priors, hyperpriors, transformations
- Reorders: Start from observation model \rightarrow build upward

2 Big Picture: What Are We Modeling?

We are modeling **how antibody levels change over time** in response to infection, using multiple individuals and multiple biomarkers (antigen-isotype combinations, (j = 1, 2, ..., 10)).

Goals:

- Understand the average pattern for each biomarker
- Allow for individual-level variation
- Share information across individuals to improve inference

This motivates using a hierarchical Bayesian model.

3 Step 1: Observation Model (Data Level)

Observed (log-transformed) antibody levels:

$$\log(y_{\text{obs},ij}) \sim \mathcal{N}(\mu_{\log y,ij},\tau_j^{-1}) \tag{1}$$

Where:

- $y_{\text{obs},ij}$: Observed antibody level for subject i and biomarker j
- $\mu_{\log y,ij}$ is the **expected log antibody level**, computed from the two-phase model using subject-level parameters θ_{ij} .
- θ_{ij} : Subject-level latent parameters (e.g., y_0, α, ρ) used to define the predicted antibody curve
- τ_i : Measurement precision (inverse of variance) specific to biomarker j

The expression above corresponds to line 54 of model.jags:

Measurement precision prior:

$$\tau_i \sim \text{Gamma}(a_i, b_i) \tag{2}$$

Where:

- τ_j : Precision (inverse of variance) of the measurement noise for biomarker j
- (a_j,b_j) : Shape and rate hyperparameters of the Gamma prior for precision, which control its expected value and variability

The expression above corresponds to line 75 of model.jags:

```
prec.logy[cur_antigen_iso] ~ dgamma(prec.logy.hyp[cur_antigen_iso,1], prec.logy.hyp[cur_antigen_iso]
```

4 Parameter Summary

Table 1: Parameter summary for antibody kinetics model.

Symbol	Description
$\overline{\mu_y}$	Antibody production rate (growth phase)
μ_b°	Pathogen replication rate
γ	Clearance rate (by antibodies)
α	Antibody decay rate
ρ	Shape of antibody decay (power-law)
t_1	Time of peak response
y_1	Peak antibody concentration

Note: Only the first 6 are typically estimated. y_1 is derived from the ODE solution at t_1 .

5 Step 2: Within-Host ODE System (Teunis and Eijkeren 2016)

$$\frac{dy}{dt} = \begin{cases} \mu_y y(t), & t \le t_1 \\ -\alpha y(t)^{\rho}, & t > t_1 \end{cases} \quad \text{and} \quad \frac{db}{dt} = \mu_b b(t) - \gamma y(t)$$
 (3)

- Initial conditions: $y(0) = y_0, b(0) = b_0$
- Transition at t_1 : when $b(t_1) = 0$

6 Step 3: Closed-Form Solutions

Antibody concentration:

• For $t \le t_1$: $y(t) = y_0 e^{\mu_y t} \tag{4}$

• For $t t_1$:

$$y(t) = y_1 \left(1 + (\rho - 1)\alpha y_1^{\rho - 1} (t - t_1) \right)^{-\frac{1}{\rho - 1}}$$
 (5)

The expression above corresponds to lines 18-50 of model.jags:

```
mu.logy[subj, obs, cur_antigen_iso] <- ifelse(</pre>
18
19
            \# \text{`step(x)` returns 1 if x >= 0;}
            # here we are determining which phase of infection we are in;
21
            # active or recovery;
            # `smpl.t` is the time when the blood sample was collected,
23
            # relative to estimated start of infection;
24
            # so we are determining whether the current observation is after `t1`
25
            # the time when the active infection ended.
26
            step(t1[subj,cur_antigen_iso] - smpl.t[subj,obs]),
27
            ## active infection period:
            # this is equation 15, case t <= t_1, but on a logarithmic scale</pre>
30
            log(y0[subj,cur_antigen_iso]) + (beta[subj,cur_antigen_iso] * smpl.t[subj,obs]),
32
            ## recovery period:
            # this is equation 15, case t > t_1
34
            1 / (1 - shape[subj,cur_antigen_iso]) *
35
               log(
                  # this is \log\{y_1^{(1-r)}\};
                  # the exponent cancels out with the factor outside the log
38
                  y1[subj, cur_antigen_iso]^(1 - shape[subj, cur_antigen_iso]) -
39
40
                   # this is (1-r); not sure why switched from paper
41
```

Pathogen load:

• For $t \le t_1$: $b(t) = b_0 e^{\mu_b t} - \frac{\gamma y_0}{\mu_y - \mu_b} \left(e^{\mu_y t} - e^{\mu_b t} \right) \tag{6}$

• For $t t_1$:

$$b(t) = 0$$

7 Step 4: Derived Quantities

• Clearance Time t_1 :

$$t_1 = \frac{1}{\mu_y - \mu_b} \log \left(1 + \frac{(\mu_y - \mu_b)b_0}{\gamma y_0} \right) \tag{7}$$

The expression above is indirectly represented by lines 8-12 of model.jags:

• Peak Antibody Level y_1 :

$$y_1 = y_0 e^{\mu_y t_1} (8)$$

The expression above corresponds to line 59 of model.jags:

```
y1[subj,cur_antigen_iso] <- y0[subj,cur_antigen_iso] + exp(par[subj,cur_antigen_iso,2]
```

Important: t_1 and y_1 are **derived**, not fit parameters.

8 Full Parameter Model (7 Parameters)

Subject-level parameters for each subject i and biomarker j:

$$\theta_{ij} \sim \mathcal{N}(\mu_j, \Sigma_j), \quad \theta_{ij} = \begin{bmatrix} y_{0,ij} \\ b_{0,ij} \\ \mu_{b,ij} \\ \mu_{y,ij} \\ \gamma_{ij} \\ \alpha_{ij} \\ \rho_{ii} \end{bmatrix}$$
(9)

• These 7 parameters represent the **full biological model** (antibody + pathogen dynamics)

9 From Full 7 Parameters to 5 Latent Parameters

• Although the model estimates 7 parameters, for modeling antibody kinetics y(t), we focus on **5-parameter subset**:

$$y_0$$
, t_1 (derived), y_1 (derived), α , ρ

• These 5 parameters are log-transformed into the latent parameters θ_ij used for modeling.

10 Core Parameters Used for Curve Drawing

Although the full model estimates **7 parameters**, only **5 key parameters** required to draw antibody curves:

- y_0 : initial antibody level
- t_1 : time of peak antibody response (derived)
- y_1 : peak antibody level (derived)
- α : decay rate
- ρ : shape of decay

Note: t_1 and y_1 are **derived from the full model** - These 5 are sufficient for prediction and plotting

11 Step 5: Subject-Level Parameters (Latent Version)

Each subject i and biomarker j has latent parameters:

$$\theta_{ij} = \begin{bmatrix} \log(y_{0,ij}) \\ \log(y_{1,ij} - y_{0,ij}) \\ \log(t_{1,ij}) \\ \log(\alpha_{ij}) \\ \log(\rho_{ij} - 1) \end{bmatrix}$$
(10)

Distribution:

$$\theta_{ij} \sim \mathcal{N}(\mu_i, \Sigma_i)$$

The expression above reflects the prior distribution specified on line 66 of model.jags:

par[subj, cur_antigen_iso, 1:n_params] ~ dmnorm(mu.par[cur_antigen_iso,], prec.par[cur_antigen_iso,])

12 Step 6: Parameter Transformations (log scale priors)

JAGS implements latent parameters (par) as:

Table 2: Log-Scale Transformations of Antibody Model Parameters in JAGS.

Model Parameter	Transformation in JAGS
$\overline{y_0}$	$\exp(\operatorname{par}_1)$
y_1	$y_0 + \exp(\operatorname{par}_2)$
t_1	$\exp(\operatorname{par}_3)$
α	$\exp(\operatorname{par}_4)$
ho	$\exp(\operatorname{par}_5) + 1$

The table above corresponds to lines 58-62 of model.jags:

```
y0[subj,cur_antigen_iso] <- exp(par[subj,cur_antigen_iso,1])
y1[subj,cur_antigen_iso] <- y0[subj,cur_antigen_iso] + exp(par[subj,cur_antigen_iso,2])
t1[subj,cur_antigen_iso] <- exp(par[subj,cur_antigen_iso,3])
alpha[subj,cur_antigen_iso] <- exp(par[subj,cur_antigen_iso,4]) # `nu` in the paper
shape[subj,cur_antigen_iso] <- exp(par[subj,cur_antigen_iso,5]) + 1 # `r` in the paper
```

All priors are thus applied on \log scale (or log-minus-one for ρ).

13 Step 7: Population-Level Parameters (Priors)

The biomarker-specific mean vector μ_i has a **hyperprior**:

$$\mu_i \sim \mathcal{N}(\mu_{\text{hyp},i}, \Omega_{\text{hyp},i})$$
 (11)

Where:

- $\mu_{\text{hyp},j}$: **prior mean** for the population-level parameters
- $\Omega_{{
 m hyp},j}$: **prior covariance** encoding uncertainty about μ_j (e.g., $100 \cdot I_7$ for weakly informative prior)

The expression above corresponds to line 73 of model.jags:

mu.par[cur_antigen_iso, 1:n_params] ~ dmnorm(mu.hyp[cur_antigen_iso,], prec.hyp[cur_antigen_iso]

Clarification:

- $\mu_{\text{hyp},j}$ defines the **center of a distribution**, **not** a single point guess.
- In Bayesian modeling, priors and hyperpriors are distributions over unknown quantities, capturing full uncertainty.

14 Step 8: Prior on Covariance Matrices

We also don't know how much individual parameters vary. So we assign a **Wishart prior** to the **inverse** covariance matrix:

$$\Sigma_j^{-1} \sim \mathcal{W}(\Omega_j, \nu_j) \tag{12}$$

- Ω_j : prior scale matrix (small variance across parameters, often $0.1 \cdot I_7)$
- ν_i : degrees of freedom

The expression above corresponds to line 74 of model.jags:

prec.par[cur_antigen_iso, 1:n_params, 1:n_params] ~ dwish(omega[cur_antigen_iso,,], wishd:

Higher $\nu_i \to \text{more informative prior (stronger prior)}$.

Lower $\nu_i \to \text{more weakly informative (broader prior or weaker prior)}$.

This tells the model how much we expect individuals to vary from the average for biomarker j.

15 Putting It All Together

The model is built hierarchically across five conceptual levels:

- 1. Observed data: noisy log antibody concentrations from serum samples
- 2. Latent individual parameters: hidden antibody dynamics θ_{ij} for each subject-biomarker pair
- 3. **Population-level means:** average antibody parameters for each biomarker
- 4. **Hyperpriors on means:** our belief about the likely range of biomarker-specific population means
- 5. **Priors on variability:** our belief about how much individual parameters vary around the population mean

This structure allows us to account for uncertainty at every level, while borrowing strength across subjects and biomarkers.

16 Summary of the Hierarchy

- 1. Top Level:
 - For each biomarker j, the true mean antibody trajectory parameters μ_j come from a prior:

$$- \ \mu_j \sim \mathcal{N}(\mu_{\mathrm{hyp},j},\Omega_{\mathrm{hyp},j})$$

- 2. Middle Level:
 - For each person i, their parameters: $-\ \theta_{ij} \sim \mathcal{N}(\mu_i, \Sigma_j)$
- 3. Bottom Level:
 - Their actual observed antibody levels are noisy measurements of predictions from θ_{ij} :

$$-\log(y_{\text{obs},ij}) \sim \mathcal{N}(\mu_{\log y,ij}, \tau_i^{-1})$$

Where:

- $\mu_{\log y,ij}$ is the **expected log antibody level**, computed from the two-phase model using subject-level parameters θ_{ij} .
- Predictions use θ_{ij} to compute $\mu_{\log y,ij}$, which is then compared to the observed log antibody data.

Clarification: How Bottom Level Depends on 17 Middle Level

We know the following facts:

- $1. \ \theta_{ij} \ \text{are the subject-level latent parameters} \ (\text{like} \ y_0, b_0, \mu_b, \mu_y, \gamma, \alpha, \rho).$
- 2. From θ_{ij} , we calculate the expected \log antibody level $\mu_{\log y,ij}$ using the ODE-based two-phase model.
- 3. The observed log-antibody $\log(y_{\text{obs},ij})$ is modeled as a noisy version
- 4. τ_i is the precision (measurement noise precision for biomarker j).

Thus, at the **Bottom Level**, we model:

$$\log(y_{\text{obs},ij}) \sim \mathcal{N}(\mu_{\log y,ij},\tau_i^{-1})$$

Here:

- The **mean** is $\mu_{\log y,ij}$ derived from the **ODE solution** using θ_{ij} .
 The **variance** is τ_j^{-1} shared across individuals for a given biomarker.

Summary:

- Observations depend indirectly on latent parameters θ_{ij} via the predicted log antibody levels $\mu_{\log y, ij}$.

Summary Mapping of Notation 18

Symbol	Meaning	JAGS Variable
\overline{i}	Subject index	subj
j	Antigen-isotype (biomarker)	cur_antigen_iso
	index	
$y_{{ m obs},ij}$	Observed antibody	<pre>logy[subj, obs,</pre>
	concentration at a timepoint	cur_antigen_iso]
$\mu_{\log y, ij}$	Expected log antibody level	<pre>mu.logy[subj, obs,</pre>
00,0	based on ODE model using θ_{ij}	cur_antigen_iso]
θ_{ij}	Subject-level latent parameters	par[subj,
v	for modeling $y(t)$	cur_antigen_iso,
		1:n_params]

Symbol	Meaning	JAGS Variable
$\overline{\mu_j}$	Mean vector of latent parameters across subjects for	<pre>mu.par[cur_antigen_iso,]</pre>
Σ_j	biomarker j Covariance matrix of latent parameters for biomarker j	<pre>inverse of prec.par[cur_antigen_iso, ,]</pre>
$ au_j$	Precision (inverse variance) of measurement error for biomarker j	<pre>prec.logy[cur_antigen_iso]</pre>
(a_j,b_j)	Gamma prior hyperparameters for τ_i	<pre>prec.logy.hyp[cur_antigen_iso 1/2]</pre>
$\mu_{\mathrm{hyp},j}$	Prior mean for μ_j	<pre>mu.hyp[cur_antigen_iso,]</pre>
$\Omega_{\mathrm{hyp},j}$	Prior precision for μ_j	<pre>prec.hyp[cur_antigen_iso, ,]</pre>
(Ω_j,ν_j)	Wishart scale and degrees of freedom for Σ_j^{-1}	<pre>omega[cur_antigen_iso, ,], wishdf[]</pre>

19 Model Comparison (Teunis and Eijkeren 2016) vs. Our Presentation

Table 4: Comparison of Teunis (2016) model and this presentation's model assumptions.

Component	(Teunis and Eijkeren 2016)	This Presentation
Pathogen ODE Antibody growth ODE	$\mu_0 b(t) - cy(t) \\ \mu y(t)$	$\begin{array}{l} \mu_b b(t) - \gamma y(t) \\ \mu_y y(t) \end{array}$
Antibody decay ODE	$-\alpha y(t)^r$	$-lpha y(t)^ ho$
Growth mechanism	Pathogen-driven	Self-driven

Teunis, Peter F. M., and J. C. H. van Eijkeren. 2016. "Linking the Seroresponse to Infection to Within-Host Heterogeneity in Antibody Production." Epidemics 16: 33–39. https://doi.org/10.1016/j.epidem.2016.04.001.