```
In [1]: import pandas as pd
                                      # importing modules
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        data2015 = pd.read_csv(r'F:\DataScience\Data\happiness\\2015.csv')
                                                                              # importing data
        data2016 = pd.read_csv(r'F:\DataScience\Data\happiness\\2016.csv')
        data2017 = pd.read_csv(r'F:\DataScience\Data\happiness\\2017.csv')
        data2018 = pd.read csv(r'F:\DataScience\Data\happiness\\2018.csv')
        data2019 = pd.read_csv(r'F:\DataScience\Data\happiness\\2019.csv')
        data2020 = pd.read_csv(r'F:\DataScience\Data\happiness\\2020.csv',sep = ';')
In [2]: # 2015 - unification of column names, deletion of unnecessary columns and setting the index
        dictionary = {'Happiness Rank':'Overall rank','Happiness Score':'Score','Economy (GDP per Capita)':'GDP per capita', 'Health (Life Expectancy)':'Healthy life expectancy','Freedom':'
        data2015.rename(dictionary, axis = 1, inplace = True)
        del data2015['Region']
        del data2015['Standard Error']
        del data2015['Dystopia Residual']
        data2015.set_index('Country', inplace = True)
        data2015.head()
```

Out[2]:

	Overall rank	Score	GDP per capita	Social support	Healthy life expectancy	Freedom to make life choices	Perceptions of corruption	Generosity
Country								
Switzerland	1	7.587	1.39651	1.34951	0.94143	0.66557	0.41978	0.29678
Iceland	2	7.561	1.30232	1.40223	0.94784	0.62877	0.14145	0.43630
Denmark	3	7.527	1.32548	1.36058	0.87464	0.64938	0.48357	0.34139
Norway	4	7.522	1.45900	1.33095	0.88521	0.66973	0.36503	0.34699
Canada	5	7.427	1.32629	1.32261	0.90563	0.63297	0.32957	0.45811

Finland

5 7.469

1.443572

1.540247

0.809158

```
In [3]: # 2016 - unification of column names, deletion of unnecessary columns and setting the index
         dictionary = { 'Happiness Rank': 'Overall rank', 'Happiness Score': 'Score', 'Economy (GDP per Capita)': 'GDP per capita', 'Health (Life Expectancy)': 'Healthy life expectancy', 'Freedom': '
         data2016.rename(dictionary, axis = 1, inplace = True)
         del data2016['Region']
         del data2016['Lower Confidence Interval']
         del data2016['Upper Confidence Interval']
         del data2016['Dystopia Residual']
         data2016.set_index('Country', inplace = True)
         data2016.head()
Out[3]:
                     Overall rank Score GDP per capita Social support Healthy life expectancy Freedom to make life choices Perceptions of corruption Generosity
             Country
                              1 7.526
                                             1.44178
                                                           1.16374
                                                                                0.79504
                                                                                                          0.57941
                                                                                                                                0.44453
                                                                                                                                           0.36171
            Denmark
          Switzerland
                              2 7.509
                                             1.52733
                                                           1.14524
                                                                                0.86303
                                                                                                          0.58557
                                                                                                                                0.41203
                                                                                                                                           0.28083
                                                           1.18326
                                                                                                          0.56624
                                                                                                                                           0.47678
              Iceland
                              3 7.501
                                             1.42666
                                                                                0.86733
                                                                                                                                0.14975
                                             1.57744
                                                           1.12690
                                                                                0.79579
                                                                                                          0.59609
                                                                                                                                0.35776
                                                                                                                                           0.37895
                              4 7.498
             Norway
                                                                                                          0.57104
             Finland
                              5 7.413
                                             1.40598
                                                           1.13464
                                                                                0.81091
                                                                                                                                0.41004
                                                                                                                                           0.25492
In [4]: # 2017 - unification of column names, deletion of unnecessary columns and setting the index
         dictionary = { 'Happiness.Rank': 'Overall rank', 'Happiness.Score': 'Score', 'Economy..GDP.per.Capita.': 'GDP per capita', 'Health..Life.Expectancy.': 'Healthy life expectancy', 'Freedom': '
         data2017.rename(dictionary, axis = 1, inplace = True)
         del data2017['Whisker.high']
         del data2017['Whisker.low']
         del data2017['Dystopia.Residual']
         data2017.set_index('Country', inplace = True)
         data2017.head()
        4
Out[4]:
                     Overall rank Score GDP per capita Social support Healthy life expectancy Freedom to make life choices Generosity Perceptions of corruption
             Country
                              1 7.537
                                            1.616463
                                                          1.533524
                                                                               0.796667
                                                                                                        0.635423
                                                                                                                   0.362012
                                                                                                                                          0.315964
             Norway
            Denmark
                              2 7.522
                                             1.482383
                                                          1.551122
                                                                               0.792566
                                                                                                         0.626007
                                                                                                                   0.355280
                                                                                                                                          0.400770
              Iceland
                              3 7.504
                                             1.480633
                                                          1.610574
                                                                               0.833552
                                                                                                         0.627163
                                                                                                                   0.475540
                                                                                                                                          0.153527
          Switzerland
                              4 7.494
                                             1.564980
                                                          1.516912
                                                                               0.858131
                                                                                                         0.620071
                                                                                                                   0.290549
                                                                                                                                          0.367007
```

localhost:8888/notebooks/Happiness_complete.ipynb#

0.617951

0.245483

0.382612

```
In [5]: # 2018 - unification of column names and setting the index

dictionary = {'Country or region':'Country'}
data2018.rename(dictionary, axis = 1, inplace = True)
data2018.set_index('Country', inplace = True)
data2018.head()
```

Out[5]:

	Overall rank	Score	GDP per capita	Social support	Healthy life expectancy	Freedom to make life choices	Generosity	Perceptions of corruption
Country								
Finland	1	7.632	1.305	1.592	0.874	0.681	0.202	0.393
Norway	2	7.594	1.456	1.582	0.861	0.686	0.286	0.340
Denmark	3	7.555	1.351	1.590	0.868	0.683	0.284	0.408
Iceland	4	7.495	1.343	1.644	0.914	0.677	0.353	0.138
Switzerland	5	7.487	1.420	1.549	0.927	0.660	0.256	0.357

```
In [6]: # 2019 - unification of column names and setting the index

dictionary = {'Country or region':'Country'}
data2019.rename(dictionary, axis = 1, inplace = True)
data2019.set_index('Country', inplace = True)
data2019.head()
```

Out[6]:

	Overall rank	Score	GDP per capita	Social support	Healthy life expectancy	Freedom to make life choices	Generosity	Perceptions of corruption
Country								,
Finland	1	7.769	1.340	1.587	0.986	0.596	0.153	0.393
Denmark	2	7.600	1.383	1.573	0.996	0.592	0.252	0.410
Norway	3	7.554	1.488	1.582	1.028	0.603	0.271	0.341
Iceland	4	7.494	1.380	1.624	1.026	0.591	0.354	0.118
Netherlands	5	7.488	1.396	1.522	0.999	0.557	0.322	0.298

```
In [7]: # 2020 - unification of column names and setting the index

dictionary = {'Country or region':'Country'}
data2020.rename(dictionary, axis = 1, inplace = True)
data2020.set_index('Country', inplace = True)
data2020.head()
```

Out[7]:

Overall rank	Score	GDP per capita	Social support	Healthy life expectancy	Freedom to make life choices	Generosity	Perceptions of corruption
1	7.809	1.285	1.500	0.961	0.662	0.160	0.478
2	7.646	1.327	1.503	0.979	0.665	0.243	0.495
3	7.560	1.391	1.472	1.041	0.629	0.269	0.408
4	7.504	1.327	1.548	1.001	0.662	0.362	0.145
5	7.488	1.424	1.495	1.008	0.670	0.288	0.434
	1 2 3 4	1 7.809 2 7.646 3 7.560	1 7.809 1.285 2 7.646 1.327 3 7.560 1.391 4 7.504 1.327	1 7.809 1.285 1.500 2 7.646 1.327 1.503 3 7.560 1.391 1.472 4 7.504 1.327 1.548	1 7.809 1.285 1.500 0.961 2 7.646 1.327 1.503 0.979 3 7.560 1.391 1.472 1.041 4 7.504 1.327 1.548 1.001	1 7.809 1.285 1.500 0.961 0.662 2 7.646 1.327 1.503 0.979 0.665 3 7.560 1.391 1.472 1.041 0.629 4 7.504 1.327 1.548 1.001 0.662	1 7.809 1.285 1.500 0.961 0.662 0.160 2 7.646 1.327 1.503 0.979 0.665 0.243 3 7.560 1.391 1.472 1.041 0.629 0.269 4 7.504 1.327 1.548 1.001 0.662 0.362

```
In [8]: # adding column with info about year
         data2015.insert(loc = 8, column = 'Year', value = '2015')
         data2016.insert(loc = 8, column = 'Year', value = '2016')
         data2017.insert(loc = 8, column = 'Year', value = '2017')
         data2018.insert(loc = 8, column = 'Year', value = '2018')
         data2019.insert(loc = 8, column = 'Year', value = '2019')
         data2020.insert(loc = 8, column = 'Year', value = '2020')
In [9]: # connecting DataFrames from all years to one Frame
         data = data2015.append(data2016).append(data2017).append(data2018).append(data2019).append(data2020)
         len(data)
Out[9]: 935
In [10]: | # setting multiindex as "Year" and "Country", sorting both indexes ascending, replacing 'NaN' ---> 0
         data.reset_index(inplace = True)
         data.set_index(['Country','Year'], inplace = True)
         data.sort index(inplace = True)
         data.fillna(value = 0, inplace = True)
In [11]: # rounding numbers to 3 decimal places and checking a data
         col_names = ['Overall rank', 'Score', 'GDP per capita', 'Social support', 'Healthy life expectancy',
                      'Freedom to make life choices', 'Perceptions of corruption', 'Generosity']
         data[col_names] = round(data[col_names],3)
         data.head(12)
```

Out[11]:

		Overall rank	Score	GDP per capita	Social support	Healthy life expectancy	Freedom to make life choices	Perceptions of corruption	Generosity
Country	Year								
Afghanistan	2015	153	3.575	0.320	0.303	0.303	0.234	0.097	0.365
	2016	154	3.360	0.382	0.110	0.173	0.164	0.071	0.313
	2017	141	3.794	0.401	0.582	0.181	0.106	0.061	0.312
	2018	145	3.632	0.332	0.537	0.255	0.085	0.036	0.191
	2019	154	3.203	0.350	0.517	0.361	0.000	0.025	0.158
	2020	153	2.567	0.301	0.356	0.266	0.000	0.001	0.135
Albania	2015	95	4.959	0.879	0.804	0.813	0.357	0.064	0.143
	2016	109	4.655	0.955	0.502	0.730	0.319	0.053	0.168
	2017	109	4.644	0.996	0.804	0.731	0.381	0.040	0.201
	2018	112	4.586	0.916	0.817	0.790	0.419	0.032	0.149
	2019	107	4.719	0.947	0.848	0.874	0.383	0.027	0.178
	2020	105	4.883	0.907	0.830	0.846	0.462	0.025	0.171

Out[12]: <AxesSubplot:xlabel='Happiness', ylabel='GDP per capita'>

Out[13]: <AxesSubplot:xlabel='Healthy life expectancy', ylabel='GDP per capita'>

In [14]: # OK, so lets find a place on Earth, where we can be happy without big money (GDP) influence:)

data['Happy/GDP Ratio'] = round(data['Score'] / data['GDP per capita'], 3) # calculating "Happiness to GDP ratio"

hasGDP = data['GDP per capita'] > 0.2 # can be low GDP, but lets say must be at least 0.2

ScoreOver7 = data['Score'] > 7.0 # we are looking for really happy countries - level at least 7/10

data[hasGDP & ScoreOver7].sort_values(by = 'Happy/GDP Ratio', ascending = False).head() # Finding of results

All top5 countries from Latin America!

Out[14]:

		Overall rank	Score	GDP per capita	Social support	Healthy life expectancy	Freedom to make life choices	Perceptions of corruption	Generosity	Happy/GDP Ratio
Country	Year									
Costa Rica	2015	12	7.226	0.956	1.238	0.860	0.634	0.106	0.255	7.559
	2020	15	7.121	0.981	1.375	0.940	0.645	0.096	0.131	7.259
Mexico	2015	14	7.187	1.021	0.915	0.814	0.482	0.213	0.141	7.039
Costa Rica	2018	13	7.072	1.010	1.459	0.817	0.632	0.101	0.143	7.002
	2019	12	7.167	1.034	1.441	0.963	0.558	0.093	0.144	6.931

```
In [15]: # Now, on the contrary, let's find some countries, where happinness is mainly based on money.

hasBigGDP = data['GDP per capita'] > data['GDP per capita'].mean() # GDP above average

ScoreOver4 = data['Score'] > 4 # Happiness can be Low, but Lets say must be at Least 4/10

data[hasBigGDP & ScoreOver4].sort_values(by = 'Happy/GDP Ratio', ascending = True).head()

# Top3 results comes from Arabian countries, 4/5 from Asia.
```

Out[15]:

		Overall rank	Score	GDP per capita	Social support	Healthy life expectancy	Freedom to make life choices	Perceptions of corruption	Generosity	Happy/GDP Ratio
Country	Year									
United Arab Emirates	2018	20	6.774	2.096	0.776	0.670	0.284	0.000	0.186	3.232
Qatar	2017	35	6.375	1.871	1.274	0.710	0.604	0.439	0.330	3.407
	2016	36	6.375	1.824	0.880	0.717	0.567	0.480	0.324	3.495
Hong Kong S.A.R., China	2017	71	5.472	1.552	1.263	0.943	0.491	0.294	0.374	3.526
Gabon	2016	134	4.121	1.159	0.724	0.349	0.281	0.093	0.062	3.556

```
In [16]: # removing column 'Happy/GDP Ratio' and reindex

del data['Happy/GDP Ratio']
   data.reset_index(inplace = True)
   data.set_index('Country', inplace = True)
   data.head()
```

Out[16]:

	Year	Overall rank	Score	GDP per capita	Social support	Healthy life expectancy	Freedom to make life choices	Perceptions of corruption	Generosity
Country									
Afghanistan	2015	153	3.575	0.320	0.303	0.303	0.234	0.097	0.365
Afghanistan	2016	154	3.360	0.382	0.110	0.173	0.164	0.071	0.313
Afghanistan	2017	141	3.794	0.401	0.582	0.181	0.106	0.061	0.312
Afghanistan	2018	145	3.632	0.332	0.537	0.255	0.085	0.036	0.191
Afghanistan	2019	154	3.203	0.350	0.517	0.361	0.000	0.025	0.158

```
In [17]: # defining a function to represent the selected column for Poland its neighbours
         def showCol(colname):
             plt.figure( figsize = (15,7))
             plt.plot(data.loc['Poland', 'Year'], data.loc['Poland',colname], color = 'red', label = 'Poland', marker = 'o', linestyle = 'dashed')
             plt.plot(data.loc['Germany', 'Year'],data.loc['Germany',colname], color = 'blue', label = 'Germany', marker = 'o', linestyle = 'dashed')
             plt.plot(data.loc['Czech Republic', 'Year'],data.loc['Czech Republic',colname], color = 'cyan', label = 'Czech Republic', marker = 'o', linestyle = 'dashed')
             plt.plot(data.loc['Slovakia', 'Year'], data.loc['Slovakia', colname], color = 'green', label = 'Slovakia', marker = 'o', linestyle = 'dashed')
             plt.plot(data.loc['Ukraine','Year'],data.loc['Ukraine',colname], color = 'orange', label = 'Ukraine', marker = 'o', linestyle = 'dashed')
             plt.plot(data.loc['Belarus', 'Year'], data.loc['Belarus', colname], color = 'yellow', label = 'Belarus', marker = 'o', linestyle = 'dashed')
             plt.plot(data.loc['Lithuania', 'Year'], data.loc['Lithuania', colname], color = 'black', label = 'Lithuania', marker = 'o', linestyle = 'dashed')
             plt.plot(data.loc['Russia','Year'],data.loc['Russia',colname], color = 'silver', label = 'Russia', marker = 'o', linestyle = 'dashed')
             font1 = {'family':'serif','color':'blue','size':12}
             font2 = {'family':'serif','color':'darkred','size':15}
             plt.xlabel('Year', fontdict = font1 )
             plt.ylabel(colname, fontdict = font1)
             plt.title(colname + ' in Poland and its neighbourhood', fontdict = font2)
             plt.legend(loc = 'lower right', fontsize = 12)
             plt.grid(linestyle = '--')
             plt.xticks(rotation = 45)
             plt.show()
         # calling the function for "Score"
         showCol('Score')
```


In [19]: # calling the function for "Healthy life expectancy"
showCol('Healthy life expectancy')

In [20]: # calling the function for "Freedom to make life choices"
showCol('Freedom to make life choices')

In [22]: data

Out[22]:

	Year	Overall rank	Score	GDP per capita	Social support	Healthy life expectancy	Freedom to make life choices	Perceptions of corruption	Generosity
Country									
Afghanistan	2015	153	3.575	0.320	0.303	0.303	0.234	0.097	0.365
Afghanistan	2016	154	3.360	0.382	0.110	0.173	0.164	0.071	0.313
Afghanistan	2017	141	3.794	0.401	0.582	0.181	0.106	0.061	0.312
Afghanistan	2018	145	3.632	0.332	0.537	0.255	0.085	0.036	0.191
Afghanistan	2019	154	3.203	0.350	0.517	0.361	0.000	0.025	0.158
Zimbabwe	2016	131	4.193	0.350	0.715	0.160	0.254	0.086	0.185
Zimbabwe	2017	138	3.875	0.376	1.083	0.197	0.336	0.095	0.189
Zimbabwe	2018	144	3.692	0.357	1.094	0.248	0.406	0.099	0.132
Zimbabwe	2019	146	3.663	0.366	1.114	0.433	0.361	0.089	0.151
Zimbabwe	2020	151	3.299	0.426	1.048	0.375	0.377	0.081	0.151

935 rows × 9 columns

```
In [23]: # preparing data for Machine Learning - removing unnecessary columns

data_ML = data.copy()

data_ML.reset_index(inplace = True)

del data_ML['Country']
    del data_ML['Overall rank']
    del data_ML['Year']
    data_ML.head(10)
```

Out[23]:

	Score	GDP per capita	Social support	Healthy life expectancy	Freedom to make life choices	Perceptions of corruption	Generosity
0	3.575	0.320	0.303	0.303	0.234	0.097	0.365
1	3.360	0.382	0.110	0.173	0.164	0.071	0.313
2	3.794	0.401	0.582	0.181	0.106	0.061	0.312
3	3.632	0.332	0.537	0.255	0.085	0.036	0.191
4	3.203	0.350	0.517	0.361	0.000	0.025	0.158
5	2.567	0.301	0.356	0.266	0.000	0.001	0.135
6	4.959	0.879	0.804	0.813	0.357	0.064	0.143
7	4.655	0.955	0.502	0.730	0.319	0.053	0.168
8	4.644	0.996	0.804	0.731	0.381	0.040	0.201
9	4.586	0.916	0.817	0.790	0.419	0.032	0.149

Out[24]: <AxesSubplot:>

SOME MACHINE LEARNING ...:)

```
In [25]: # importing modules for Machine Learning
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
```

```
In [26]: # Preparing data and creating model based on most corelated columns, where abs(corelation) > 0.5
         mostCorelatedCols = ['GDP per capita', 'Social support', 'Healthy life expectancy', 'Freedom to make life choices', 'Score']
         data_ML = data_ML[mostCorelatedCols]
         # Eliminating outliers by IQR method
         Q1 = data_ML.quantile(0.25)
         Q3 = data_ML.quantile(0.75)
         IQR = Q3 - Q1
         outlier_condition = (data_ML < Q1 - 1.5 * IQR) | (data_ML > Q3 + 1.5 * IQR)
         data_ML_iqr = data_ML[~outlier_condition].dropna()
         # spliting data into X - features and y - target
         X = data_ML_iqr.drop('Score', axis = 1)
         y = data_ML_iqr['Score'].values
         # split the data into learning 80% and testing 20%
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2)
         linear = LinearRegression()
         linear.fit(X_train, y_train)
         # R2 score for training and testing
         r2_train = r2_score(y_train, linear.predict(X_train))
         r2_test = r2_score(y_test, linear.predict(X_test))
         #printing results
         print('R2 TRAIN ', round(r2_train,3), '\tR2 TEST:', round(r2_test,3))
         R2 TRAIN 0.733
```

R2 TEST: 0.762

In [27]: # Quick Look to data

data[mostCorelatedCols].sample(5)

Out[27]:

GDP per capita Social support Healthy life expectancy Freedom to make life choices Score

Country				
Bosnia and Herzegovina	0.982	1.069	0.705	0.204 5.182
Brazil	1.088	1.039	0.614	0.404 6.952
India	0.792	0.754	0.455	0.470 4.315
Cameroon	0.525	0.625	0.127	0.427 4.513
Dominican Republic	0.983	1.329	0.742	0.563 5.689

```
In [28]: # checking coefficients for trained model:
         # "GDP per capita", "Social support", "Healthy life expectancy", "Freedom to make life choices"
         linear.coef_
```

Out[28]: array([1.19625716, 0.60010289, 0.92306292, 1.88038698])

Conclusion: The correlation coefficients between data features (heat map) are moderately related to the resulting model coefficients (model.coef_)

```
In [30]: # Making a prediction for sample countries (from 2020, becouse data was sorted ascending, and we use tail method)
       sampleCountries = ['Poland', 'Germany', 'Russia', 'Mexico', 'Australia', 'Lesotho', 'Brazil', 'Norway', 'Ukraine']
       predictedValues = []
       for country in sampleCountries:
         value_1 = float(data[mostCorelatedCols].loc[country,'GDP per capita'].tail(1))
         value 2 = float(data[mostCorelatedCols].loc[country,'Social support'].tail(1))
         value_3 = float(data[mostCorelatedCols].loc[country, 'Healthy life expectancy'].tail(1))
         value 4 = float(data[mostCorelatedCols].loc[country,'Freedom to make life choices'].tail(1))
         prediction = linear.predict([[value_1, value_2, value_3, value_4]])
         prediction = round(prediction[0], 3)
         predictedValues.append(prediction)
       predictedValues
Out[30]: [6.306, 6.622, 5.824, 6.041, 6.838, 4.331, 5.844, 7.061, 5.241]
In [31]: # Checking real "Score" values for sample countries
       realValues = []
       for country in sampleCountries:
         real value = float(data[mostCorelatedCols].loc[country, 'Score'].tail(1))
         realValues.append(real_value)
       realValues
Out[31]: [6.186, 7.076, 5.546, 6.465, 7.223, 3.653, 6.376, 7.488, 4.561]
In [32]: # comparing predictions with real "Score" Values
       for predict, real, country in zip(predictedValues, realValues, sampleCountries):
         print('For {0:^12s} real "Score" value was: {1:^8.2f} | model predicts: {2:^8.2f} | absolute error is {3:^8.2f}'.format(country, real, predict, real - predict))
         print('-' * 100)
            Poland
                   real "Score" value was: 6.19 | model predicts: 6.31 | absolute error is -0.12
       ______
           Germany real "Score" value was: 7.08 | model predicts: 6.62 | absolute error is 0.45
       ______
            Russia real "Score" value was: 5.55 | model predicts: 5.82 | absolute error is -0.28
      For
       ______
            Mexico real "Score" value was: 6.46 | model predicts: 6.04 | absolute error is 0.42
      For
       ______
      For Australia real "Score" value was: 7.22 | model predicts: 6.84 | absolute error is 0.38
      For Lesotho real "Score" value was: 3.65 | model predicts: 4.33 | absolute error is -0.68
       ______
            Brazil real "Score" value was: 6.38 | model predicts: 5.84 | absolute error is 0.53
       ______
            Norway real "Score" value was: 7.49 | model predicts: 7.06 | absolute error is 0.43
       ______
       For Ukraine real "Score" value was: 4.56 | model predicts: 5.24 | absolute error is -0.68
```

Happyness factor for "Wonderland" is equal to 9.921

```
In [33]: # Making a prediction for Luxury "WonderLand" with very high factors

GBP = 2.0
socialSupport = 1.6
lifeExpectancy = 1.6
freedom = 1.5

prediction = linear.predict([[GBP, socialSupport, lifeExpectancy, freedom]])
prediction = round(prediction[0], 3)

print('Happyness factor for "Wonderland" is equal to', prediction)
```