Theorem The exponential distribution is a special case of the logistic exponential distribution when $\beta = 1$.

Proof Let X be a logistic exponential random variable with parameters α and β . The probability density function of X is

$$f_X(x) = \frac{\alpha\beta(e^{\alpha x} - 1)^{\beta - 1}e^{\alpha x}}{(1 + (e^{\alpha x} - 1)^{\beta})^2}$$
 $x > 0.$

Setting $\beta = 1$ gives

$$f_X(x) = \frac{\alpha(e^{\alpha x} - 1)^0 e^{\alpha x}}{(1 + (e^{\alpha x} - 1))^2}$$
$$= \frac{\alpha e^{\alpha x}}{e^{2\alpha x}}$$
$$= \alpha e^{-\alpha x} \qquad x > 0,$$

which is the probability density function of an exponential random variable with population mean $1/\alpha$.

APPL verification: The APPL statements

verify the result.