통계 스터디 실습 _ 당뇨데이터

1. 목표

- 통계 데이터셋으로 데이터분석 진행 해보기
- 1. 통계기법 사용
- 2. 머신러닝 기법 사용

2. 데이터분석

- 1. 기초 통계량 확인
- 2. 결측치 확인
- 3. 정규화
- 4. 변수선택
- 5. 모델링
- 6. 검정

data												
	age	sex	bm i	bp	s1	s2	s3	s4	s5	s6	target	
0	0.038076	0.050680	0.061696	0.021872	-0.044223	-0.034821	-0.043401	-0.002592	0.019907	-0.017646	151.0	11.
1	-0.001882	-0.044642	-0.051474	-0.026328	-0.008449	-0.019163	0.074412	-0.039493	-0.068332	-0.092204	75.0	+0
2	0.085299	0.050680	0.044451	-0.005670	-0.045599	-0.034194	-0.032356	-0.002592	0.002861	-0.025930	141.0	
3	-0.089063	-0.044642	-0.011595	-0.036656	0.012191	0.024991	-0.036038	0.034309	0.022688	-0.009362	206.0	
4	0.005383	-0.044642	-0.036385	0.021872	0.003935	0.015596	0.008142	-0.002592	-0.031988	-0.046641	135.0	
437	0.041708	0.050680	0.019662	0.059744	-0.005697	-0.002566	-0.028674	-0.002592	0.031193	0.007207	178.0	
438	-0.005515	0.050680	-0.015906	-0.067642	0.049341	0.079165	-0.028674	0.034309	-0.018114	0.044485	104.0	
439	0.041708	0.050680	-0.015906	0.017293	-0.037344	-0.013840	-0.024993	-0.011080	-0.046883	0.015491	132.0	
440	-0.045472	-0.044642	0.039062	0.001215	0.016318	0.015283	-0.028674	0.026560	0.044529	-0.025930	220.0	
441	-0.045472	-0.044642	-0.073030	-0.081413	0.083740	0.027809	0.173816	-0.039493	-0.004222	0.003064	57.0	

442 rows × 11 columns

- 1. 데이터는 442 x 11 442개의 행과 11개의 열로 이루어져있음
- 2.10개의 특성 (feature)를 가지고 있고 1개의 target을 가지고 있음
- 3. 데이터의 type은 float로 수치형 데이터로 되어 있음 -> 회귀분석 진행가능
- 4. 다만 성별의 경우 애매할 수 있음

- 현재 데이터셋을 보면 age가 0.038, sex가 일정한 2값이 반복 되는것을 확인
 - 이 값은 정규화가 되어 있다는 것을 알 수 있음
 - 따라서 정규화는 빼고 진행

	age	sex	bm i	bp
0	0.038076	0.050680	0.061696	0.021872
1	-0.001882	-0.044642	-0.051474	-0.026328
2	0.085299	0.050680	0.044451	-0.005670
3	-0.089063	-0.044642	-0.011595	-0.036656
4	0.005383	-0.044642	-0.036385	0.021872
437	0.041708	0.050680	0.019662	0.059744
438	-0.005515	0.050680	-0.015906	-0.067642
439	0.041708	0.050680	-0.015906	0.017293
440	-0.045472	-0.044642	0.039062	0.001215
441	-0.045472	-0.044642	-0.073030	-0.081413

- 1. 결측치는 없다고 판단
- 2. 이상치 또한 없다고 판단

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 442 entries, 0 to 441
Data columns (total 11 columns):
     Column Non-Null Count Dtype
             442 non-null
                             float64
     age
            442 non-null
                             float64
     sex
     bmi
            442 non-null
                             float64
            442 non-null
                             float64
                             float64
     s1
            442 non-null
                             float64
            442 non-null
            442 non-null
                             float64
            442 non-null
                             float64
            442 non-null
                             float64
                             float64
             442 non-null
    target 442 non-null
                             float64
dtypes: float64(11)
memory usage: 38.1 KB
```

```
# 소수섬 형식 설성 (지수 표기 대신 소수섬)
pd.options.display.float_format = '{:.2f}'.format
# describe 출력
print(data.describe())
                                                  s3
                                                                s5
                                                                       s6 #
                      bmi
                              dd
                                            s2
                                    s1
                                                         s4
        age
            442.00 442.00 442.00 442.00 442.00 442.00 442.00
                    -0.00
                           -0.00
                                 -0.00
                                         0.00
                                               -0.00
                                                                     0.00
mean
              0.05
                           0.05
                                         0.05
                                                       0.05
                                                              0.05
                                                                     0.05
                     0.05
                                  0.05
                                                0.05
std
                                 -0.13
                                        -0.12
                                                      -0.08
min
             -0.04
                    -0.09
                           -0.11
                                               -0.10
                                                             -0.13
                                                                    -0.14
                                                             -0.03
      -0.04
             -0.04
                    -0.03
                           -0.04
                                 -0.03
                                        -0.03
                                               -0.04
                                                      -0.04
                                                                    -0.03
50%
             -0.04
                    -0.01
                           -0.01
                                 -0.00
              0.05
                           0.04
                                  0.03
                                         0.03
                                                0.03
                                                       0.03
                                                                     0.03
                                                              0.03
              0.05
                     0.17
                           0.13
                                  0.15
                                         0.20
                                                0.18
                                                       0.19
                                                              0.13
                                                                    0.14
max
      target
      442.00
count
      152.13
mean
       77.09
std
min
       25.00
25%
       87.00
      140.50
      211.50
      346.00
max
```

■ Age의 경우 정규분포라고 판단 됌

```
import matplotlib.pyplot as plt
     column_name = 'age'
    plt.hist(data[column_name], bins=10, color='skyblue', edgecolor='black')
    plt.xlabel(column_name)
    plt.ylabel('count')
    plt.show()
80
        70
         60
         30
        20
        10
              -0.10
                             -0.05
                                           0.00
                                                         0.05
                                                                       0.10
                                            age
```

Histograms for numerical columns
data.hist(figsize=(15, 10), bins=30, edgecolor='black')
plt.tight_layout()
plt.show()

2. 통계 vs 머신러닝

■ 통계적 기법

- "무엇이 정확한가 " 를 넘어서 "왜 이런 결과가 나왔는 가 " 를 설명할 수 있는 도구
- 예측보다 해석이 중요한 경우가 있음(비즈니스, 정책, 의학)
- 의사 결정의 근거 제공 : 어떤 변수에 중점을 둬야 하는가
- 변수의 중요성 평가: "어떤 변수를 조정해야 종속변수에 큰 영향을 미치는가?"를 평가

■ 머신러닝

- 블랙박스 모델로 어떤 변수가 어떤 영향을 주었는지 판단 할 수 없음
- 모델에 대한 설명보다는 예측이 중요함
- 통계적 가설검정은 결론적으로 모델의 신뢰도를 점검한다.

3. 통계적 가설 검정

P_value

- 어떤 사건이 우연히 발생할 확률
- P_value 가 0.05보다 작다 = 어떤 사건이 우연히 일어날 확률이 5%보다 작다.
- -> 실제로 우리가 현재 검정을 하는 이 값이 우연히 일어 났을리가 없다.
- -> 따라서 기각한다.
- P_value가 0.05보다 크다 = 어떤 사건이 우연히 발생할 확률이 있다.
- -> 실제로 우리가 현재 검정을 하는 이값이 우연히 일어날 수 있다.
- -> 따라서 기각을 못한다.

3. 통계적 가설검정

- 모델에 대한 검정
- 1. 모형이 얼마나 설명력을 갖는가?
 - 결정계수 R^2으로 확인 (정답 맞춘 비율이 1에 가까울 수록 높음)
- 2. 모형이 통계적으로 유의한가?
 - F-검정과 p-value를 통해
 - F-검정을 통해 이 모델의 적어도 하나의 회귀계수가 0이 아님을 알 수 있음
- 3. 회귀계수가 유의한가?
 - P-value -> 기울기가 유의한지 (이때 가설은 회귀계수가 영향이 없다가 가설)
 - 따라서 p_value값이 0.05아래 즉 적은값을 선택해야 함

4. 모델 설정

- 통계 모델에서 제일 중요한 것은 독립변수를 선택하는것
- 1. 다때려박기
 - 다 때려 박아보고 문제되는거 하나씩 빼기
- 2. 상관관계 분석
 - 상관관계가 높은 것 위주로 분석
- 3. 다중 공선성 확인
 - 다 때려박았을때 다중공선성으로 문제되는거 제거 하기

5. 변수 선택

- Sex를 제외하고 상관관계가 있는 것으로 파악
- 하지만 성별의 경우 원래 categorical해서 # 상관관계 분석 # 현재 target과 상관관계를 보았을때 sex를 제외하고 상관관계가 다 있음 상관관계가 없는 걸로 판단

data.corr()

■ 추가적으로 상관관계가 있다고 모든 변수가 유의미하지는 않고 상관관계가 없다고 무의미하지 않음

	target
age	0.187889
sex	0.043062
bmi	0.586450
bp	0.441482
s1	0.212022
s2	0.174054
s3	-0.394789
s4	0.430453
s5	0.565883
s6	0.382483
target	1.000000

target

5. 변수 선택

- 다중공선성이 5는 위험 10은 있다고 파악
- 다중공선성이 높은 것은 독립변수들끼리 상관관계가 높아 회귀분석에서 회귀 계수를 설정하기 어려움을 말함

```
vif = pd.DataFrame()
vif["Variable"] = data.columns
vif["VIF"] = [variance_inflation_factor(data.values, i) for i in range(data.shape[1])]
print(vif)
  Variable
                  VIE
             1.217315
             1.283075
            1.532949
            1.468583
           59.257108
        s2 39,213144
        s3 15.403044
            8.893714
        s5 10.125073
            1.485021
            1.118065
     target
```

6. 실험 1

모든 변수로 진행

train-set

r-squre: 0.518

age, s1, s2, s3, s4, s6 유의하지 않음

test-set

r-squre: 0.45

rmse: 53.0

			OLS R	egressi	ion R	esults		
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:			ta Least Squa n, 13 Jan ; 12:3 nonrol	2025 8: 06 442 431 10	Adj. F-st Prob	uared: R-squared: atistic: (F-statistic Likelihood:	c):	0.518 0.507 46.27 3.83e-62 -2386.0 4794. 4839.
	C	oef	std err		t	P> t	[0.025	0.975]
const age sex bmi bp s1 s2 s3 s4 s5	152.1 -10.0 -239.8 519.8 324.3 -792.1 476.7 101.0 751.2 67.6	1099 1156 1459 1846 1756 1390 1433 1632 1737	2.576 59.749 61.222 66.533 65.422 416.680 339.030 212.531 161.476 171.900 65.984	-0. -3. 7. 4. -1. 1. 0.	. 061 . 168 . 917 . 813 . 958 . 901 . 406 . 475 . 097 . 370 . 025	0.000 0.867 0.000 0.000 0.058 0.160 0.635 0.273 0.000	147.071 -127.446 -360.147 389.076 195.799 -1611.153 -189.620 -316.684 -140.315 413.407 -62.064	157.196 107.426 -119.484 650.616 452.970 26.802 1143.098 518.770 494.441 1089.140 197.318
Omnibus: Prob(Omnibu Skew: Kurtosis:	us):		0	. 506 . 471 . 017 . 726	Jarq	in-Watson: ue-Bera (JB): (JB): . No.		2.029 1.404 0.496 227.

7. 시각화 – 실험 1

6. 실험 2

age, s1, s2, s3, s4, s6 제외

train-set

r-squre: 0.487

모든 변수 유의함

test-set

r-squre: 0.467

rmse: 53.0

```
● # 앞선 p-value에서 유의하지않은 변수를 차단

import statsmodels.api as sm
X = data[['sex', 'bmi', 'bp', 's5']]
y = data['target']

X = sm.add_constant(X) # 회귀모델의 절편(intercept) 포함
model = sm.OLS(y, X).fit()

# 결과 출력
print(model.summary())
```

OLS Regression Results								
Dep. Varial Model: Method: Date: Time: No. Observ: Df Residua Df Model: Covariance	Mo ations: Is:	Least Squal n, 13 Jan 20 12:38	target R-squared: OLS Adj. R-squared: Squares F-statistic: Jan 2025 Prob (F-statistic): 12:38:06 Log-Likelihood: 442 AIC: 437 BIC: 4			0.487 0.482 103.6 5.42e-62 -2399.8 4810. 4830.		
	coef	std err	 t	: P> t	[0.025	0.975]		
const sex bmi bp s5	-136,7580 598,2839 292,9722	64.365 63.935	-2,387 9,295 4,582	3 0.000 7 0.017 5 0.000 2 0.000 6 0.000	-249.383 471.781	-24,132 724,786		
Omnibus: Prob(Omnibus) Skew: Kurtosis:	======= us):	0.0 0.1	072 Jan 145 Pro	 bin-Watson: que-Bera (JB) bb(JB):	:	1.982 4.282 0.118		

. . .

7. 시각화 - 실험 2

6. 실험 3

```
# 높은 VIF를 가진 변수 제거
X_reduced = data.drop(['s1', 's2'], axis=1)

# VIF 재계산
from statsmodels.stats.outliers_influence import variance_inflation_factor
vif = pd.DataFrame()
vif["Variable"] = X_reduced.columns
vif["VIF"] = [variance_inflation_factor(X_reduced.values, i) for i in range(X_reduced.shape[1])]
print(vif)
```

```
Variable VIF
0 age 1.207569
1 sex 1.279405
2 bmi 1.510066
3 bp 1.463022
4 s3 2.440660
5 s4 3.155841
6 s5 1.997245
7 s6 1.484402
8 target 1.116354
```

다중 공선성이 높은 S1,S2를 제거하니 다중 공선성이 해결 됨

6. 실험 3

s1,s2제외

train-set

r-squre: 0.511

age, s4, s6 회귀계수 유의하지 않음

t값이 크면 현재 가설인 회귀계수가 0이다가 기각되서 대립가설인 회귀계수가 유의

test-set

r-squre: 0.46

rmse: 53.0

				OLS F	legress	ion R	esults		
Dep. Variab Model: Method: Date: Time: No. Observa Df Residual Df Model: Covariance	tions: s:		Mon, 13	t Squ Jan	2025 8: 06 442 433 8	Adj. F-sta Prob	uared: R-squared: atistic: (F-statistic Likelihood:):	0.511 0.502 56.57 1.26e-62 -2389.1 4796. 4833.
		coef	std	err		t	P> t	[0.025	0.975]
const age sex bmi bp s3 s4 s5	-16. -232. 518. 315. -346. -110. 499.	6033 0802 1609 3372	59 61 66 65 84 96 76	.588 .784 .424 .336 .611 .812 .631 .469	-0 -3 7 4 -4 -1 6	. 790 . 268 . 787 . 810 . 804 . 084 . 143 . 526	0.000 0.789 0.000 0.000 0.000 0.000 0.254 0.000 0.309	147.047 -133.515 -353.329 387.699 186.206 -513.031 -300.354 348.742 -62.816	157.220 101.491 -111.877 648.461 444.116 -179.643 79.495 649.334 197.705
Omnibus: Prob(Omnibu Skew: Kurtosis:	s):				2.301 1.317 1.032 2.681				2.000 1.954 0.376 46.7

7. 시각화 - 실험 3

6. 실험 4

s1,s2, age, s4, s6 제외

train-set

r-squre: 0.509

모든 변수 유의 함

test-set

r-squre: 0.46

rmse: 53.0

Dep. Varial Model: Method: Date: Time: No. Observ: Df Residua	ations:		target OLS Squares Jan 2025 12:38:06 442 436	F-stat Prob (R-squared:):	0.509 0.503 90.26 4.75e-65 -2390.1 4792. 4817.
Covariance	Type: 		nonrobust	 t	 P> t		 0.975]
const sex bmi bp s3	152.133 -235.772 523.563 326.231 -289.114 474.290	35 2. 24 60. 78 65. 11 63.	585 ! 469 · 293	58.849 -3.899 8.019 5.171 -4.404 7.221	0.000 0.000 0.000	147.053 -354.620 395.239 202.245	157.214 -116.925 651.897 450.217 -160.094 603.386
======= Omnibus: Prob(Omnib Skew: Kurtosis:	us):		2,465 0,291 0,051 2,678	Jarque	•		1.990 2.099 0.350 32.7

7. 시각화 - 실험 4

6. 실험 5

■ 주성분 분석을 이용한 다중공선성 제거

```
from sklearn.decomposition import PCA
# PCA 적용
pca = PCA(n_components=2) # 주성분 수 선택
X_pca = pca.fit_transform(data[['s1','s2','s3','s4','s5','s6']])

    주성분 기여율: [0.54594331 0.21808828]
    누적 기여율: [0.54594331 0.76403159]

PCA

import statsmodels.api as sm
X = new_data[['sex','bmi','bp','s1','s2']]
y = data['target']
```

다중공선성이 높은 feature들의 차원을 6개에서 2개로 줄임 2개가 약 76%를 설명함

Dep. Vari Model: Method: Date: Time: No. Obser Df Residu Df Model: Covariano	vations: als:		Least Squai n, 13 Jan 20 13:25	DLS res 025 : 39 442 436 5	F-stat Prob (-squared:	c):	0.489 0.483 83.41 2.40e-61 -2398.8 4810. 4834.
======	=======	coef	std err		 t	 P> t	[0.025	 0.975)
const sex bmi bp s1 s2	152.1 -291.8 539.8 378.3 253.4 -333.9	3792 3853 3984 4718	2.637 61.126 67.378 62.915 37.036 51.674	-4 8 6	. 702 . 775 . 013 . 014 . 844 . 463	0.000 0.000 0.000 0.000 0.000 0.000	146.952 -412.017 407.460 254.743 180.680 -435.536	157.318 -171.741 672.311 502.053 326.264 -232.413
====== Omnibus: Prob(Omni Skew: Kurtosis:	======= bus):		0.2 0.0	===== 160 206 031 639			:	1.941 2.473 0.290

7. 시각화 - 실험 5

8. 결론

	변수	변수 개수	Train	Test	Test	모든 회귀 계수
	27	전기 기기기	R-squre	R-squre	Rmse	유의하지 않음
실험1	'age','sex', 'bmi', 'bp', 'sl', 's2', ' <u>s3', 's4', 's5',</u> 's6'	10	0.518	0.452	53.85	0
실험2	'sex', ' <u>bmi</u> ', ' <u>bp</u> ', 's5'	4	0.487	0.467	<u>53.10</u>	X
실험3	'age', 'sex', ' <u>bmi</u> ', ' <u>bp</u> ', ' <u>s3</u> ', ' <u>s4</u> ', ' <u>s5</u> ', 's6'	8	0.511	0.468	53.04	0
실험4	'sex', 'bmi', 'bp', 's3', 's5'	5	0.509	0.469	53.02	X
실험5	'sex','bmi','bp','s7','s8'	5	0.489	0.412	55.79	X

실험 1, 2 다 때려보고 p_value 높은값 빼기

실험 3, 4, 5 다중 공선성 확인하고 해결해보기

6. 결론

9. 머신러닝 실험 1

```
# 데이터 준비
X = data[['age', 'sex', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6']].values
v = data['target'].values
# 데이터 나누기
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=5)
# 데이터를 Tensor로 변환
X_train_tensor = torch.tensor(X_train, dtype=torch.float32)
X test tensor = torch.tensor(X test, dtype=torch.float32)
y_train_tensor = torch.tensor(y_train, dtype=torch.float32).view(-1, 1) # 출력값 형태 (n, 1)
v test tensor = torch.tensor(v test, dtvpe=torch.float32).view(-1, 1)
# MLP 모델 정의
class MLPModel(nn Module)
   def __init__(self, input_size, hidden_size, output_size):
       super(MLPModel, self).__init__()
       self.fc1 = nn.Linear(input_size, hidden_size) # 첫 번째 레이어
       self.relu = nn.ReLU() # 활성화 함수
       self.fc2 = nn.Linear(hidden_size, hidden_size) #두 번째 레이어
       self.fc3 = nn.Linear(hidden_size, output_size) # 출력 레이어
   def forward(self, x):
       x = self.fcl(x)
       x = self.relu(x)
       x = self.fc2(x)
       x = self.relu(x)
       x = self.fc3(x)
       return x
```

Train Loss (MSE): 2717.8386

Train RMSE: 52.1329 Train R² : 0.5334

Test Loss (MSE): 2893.6426

Test RMSE: 53.7926 Test R² : 0.5411

9. 머신러닝 실험 2, 3, 4

```
# 데이터 준비
X = data[['sex', 'bmi', 'bp', 's5']].values
y = data['target'].values
# 데이터 나누기
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=5)
```

```
# 데이터 준비

X = data[['sex', 'bmi', 'bp', 's3','s5']].values

y = data['target'].values

# 데이터 나누기

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=5)
```

```
X = new_data[['sex','bmi','bp','s1','s2']].values
y = data['target'].values
# 데이터 나누기
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=5)
```

Train Loss (MSE): 2954.0618

Train RMSE: 54.3513 Train R² : 0.4928

Test Loss (MSE): 3054,3647

Test RMSE: 55.2663 Test R² : 0.5156

Train RMSE: 52.2310 Train R² : 0.5316

Test Loss (MSE): 2961.0903

Test RMSE: 54.4159 Test R² : 0.5304

Train Loss (MSE): 2821.5713

Train RMSE: 53.1185 Train R² : 0.5156

Test Loss (MSE): 3259.1372

Test RMSE: 57.0889 Test R²: 0.4831

9. 머신러닝 실험 결과

	변수	변수 개수	Train <u>R-squre</u>	Test R-squre	Test Rmse
실험1	'age','sex', ' <u>bmi</u> ', ' <u>bp</u> ', ' <u>s1</u> ', 's2', ' <u>s3</u> ', ' <u>s4</u> ', ' <u>s5</u> ', 's6'	10	0.533	0.541	53.79
실험2	'sex', 'bmi', 'bp', 's5'	4	0.492	0.515	55.26
실험4	'sex', 'bmi', 'bp', 's3', 's5'	5	0.531	0.530	55.41
실험5	'sex','bmi','bp','s7','s8'	5	0.515	0.483	<u>57.08</u>

10. 최종 결과

	변수	변수 개수	Train R-squre	Test R-squre	Test Rmse	Train <u>R-squre</u>	Test <u>R-s</u> qure	Test <u>Rmse</u>
실험1	'age','sex', 'bmi', 'bp', 's1', 's2', 's3', 's4', 's5', 's6'	10	0.518	0.452	53.85	0.533	0.541	53.79
실험2	'sex', ' <u>bmi</u> ', ' <u>bp</u> ', 's5'	4	0.487	0.467	53.10	0.492	0.515	55.26
실험3	'age', 'sex', ' <u>bmi</u> ', ' <u>bp', 's3', 's4',</u> ' <u>s5</u> ', 's6'	8	0.511	0.468	53.04			
실험4	'sex', 'bmi', 'bp', 's3', 's5'	5	0.509	0.469	53.02	0.531	0.530	55.41
실험5	'sex','bmi','bp','s7','s8'	5	0.489	0.412	55.79	0.515	0.483	57.08

머신러닝은 블랙박스이기 때문에 각 변수의 회귀계수를 알 수 없음

Test-성능에서 실험 1이 제일 성능이 좋음

통계검증에서는 실험 4가 제일 test 와 train의 모델을 제일 잘 설명 rmse또한 낮음