Homework 3

Question 1. Please read chapters 3 and 4 of Chartrand et al. and write a couple sentences about a topic/example/concept that you found difficult or interesting and why?

Question 2. Consider the following quantified statement: For every real number x, there exists a positive real number y such that $y < x^2$.

- (a) Express this quantified statement in symbols.
- (b) Express the negation of this quantified statement in symbols.
- (c) Express the negation of this quantified statement in words.

Question 3. Prove that if r and s are rational numbers, then r-s is a rational number.

Question 4. Let x and y be integers. Prove that if $x + y \ge 9$, then either $x \ge 5$ or $y \ge 5$.

Question 5. Let m and n be two integers. Prove that mn and m+n are both even if and only if m and n are both even.

Question 6. Disprove: Let A, B and C be sets. If $A \cup B = A \cup C$, then B = C.

Question 7. Prove that if a and b are positive real numbers, then $\sqrt{a} + \sqrt{b} \neq \sqrt{a+b}$.

Question 8. Let $r \ge 2$ be an integer. Prove that $1 + r + r^2 + \dots + r^n = \frac{r^{n+1}-1}{r-1}$ for every positive integer n

Question 9. Prove that $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}} > \sqrt{n+1}$ for every integer $n \ge 3$.

Question 10. A sequence a_1, a_2, a_3, \cdots is defined recursively by $a_1 = 3$ and $a_n = 2a_{n-1} + 1$ for $n \ge 2$.

- (a) Determine $a_2, a_3, a_4, \text{ and } a_5.$
- (b) Based on the values obtained in (a), make a guess for a formula for a_n for every positive integer n and use induction to verify that your guess is correct.

Question 11. In Example 4.36, we saw that n^{th} Fibonacci number $F_n \leq 2^n$. Prove that $F_n \leq (\frac{5}{3})^n$ for every positive integer n.

Question 12. A sequence $\{a_n\}$ is defined recursively by $a_1 = 5$, $a_2 = 7$ and $a_n = 3a_{n-1} - 2a_{n-2} - 2$ for $n \ge 3$. Prove that $a_n = 2n + 3$ for every positive integer n.

COMPUTER SCIENCE, PETREE COLLEGE OF ARTS & SCIENCES, OKLAHOMA CITY UNIVERSITY