Определения по матану, семестр 4

3 июня 2018 г.

Содержание

1	Свойство, выполняющееся почти везде	
2	Сходимость почти везде	
3	Сходимость по мере	
4	Теорема Егорова о сходимости почти везде и почти равномерной сходимости	
5	Интеграл ступенчатой функции	5
6	Интеграл неотрицательной измеримой функции	6
7	Суммируемая функция	6
8	Интеграл суммируемой функции	7
9	Произведение мер	7
10	Теорема Фубини	7
11	Образ меры при отображении	8
12	Взвешенный образ меры	E

13	Плотность одной меры по отношению к другой	9
14	Заряд, множество положительности 14.1 Заряд	9 9
15	Сферические координаты в \mathbb{R}^3 и в \mathbb{R}^m , их Якобианы	10
16	Интегральные неравества Гельдера и Минковского 16.1 Нераветсво Гельдера	10 10 11
17	Интеграл комплекснозначных функции	11
18	Пространство $L_p(E,\mu), \ 1 \le p < +\infty$	11
19	Пространство $L_{\infty}(E,\mu)$	12
20	Существенный супремум	12
21	Фундаментальная последовательность, полное пространство	12
22	Плотное множество	12
23	Финитная функция	13
24	Мера Лебега-Стилтьеса	13
25	Функция распределения	13
26	Измеримое множество на простой двумерной поверхности в \mathbb{R}^3	14
27	Мера Лебега на простой двумерной поверхности в \mathbb{R}^3	14
28	Поверхностный интеграл первого рода	14

29	Кусочно-гладкая поверхность в R^3	14
30	Гильбертово пространство	14
31	Ортогональный ряд	14
32	Сходящийся ряд в Гильбертовом пространстве	14
33	Ортогональное семейство векторов	15
34	Ортонормированное семейство векторов	15
35	Коффициенты Фурье	15
36	Ряд Фурье в Гильбертовом пространстве	15
37	Базис, полная, замкнутая ОС	15
38	Сторона поверхности	16
39	Задание стороны поверхности с помощью касательных реперов	16
40	Интеграл II рода	16
41	Ориентация контура, согласованная со стороной поверхности	17
42	Тригонометрический ряд	17
43	Коэффициенты Фурье функции	18
44	Ядро Дирихле	18
45	Ядро Фейера	18
46	Ротор, дивергенция векторного поля	18

47 Соленоидальное векторное поле	19
48 Бескоординатное определение ротора и дивергенции	19
49 Свертка	19

1 Свойство, выполняющееся почти везде

 (X, \mathbb{A}, μ) - пространство с мерой, и $\omega(x)$ – утверждение, зависящее от точки x.

 $E:=\{x:\omega(x)$ — ложно $\}$ и $\mu E=0$. Тогда говорят, что $\omega(x)$ верно при почти всех (п.в.) x.

2 Сходимость почти везде

 (X, \mathbb{A}, μ) - пространство с мерой, и $f_n, f: X \to \overline{\mathbb{R}}$. Говорим, что $f_n \to f(x)$ почти везде, если $\{x: f_n(x) \not\to f(x)\}$ измеримо и имеет меру 0.

3 Сходимость по мере

 (X,a,μ) - пространство с мерой $f_n,f:X o \overline{R}$ - п.в. конечны, измеримы Говорят, что f_n сходится к f по мере μ (при $n\to +\infty$) (обозначается $f_n\stackrel{\mu}{\Rightarrow} f$) если $\forall \epsilon>0$ $\mu(X(|f_n-f|>\epsilon))\stackrel{n\to +\infty}{\to} 0$

4 Теорема Егорова о сходимости почти везде и почти равномерной сходимости

 (X,a,μ) - пространство с мерой, $\mu(X)<+\infty$ $f_n,f:X\to R$ - п.в. конечны, измеримы $f_n\to f$ почти всюду Тогда $\forall \epsilon>0.\exists X_\epsilon\subset X, \mu(X\setminus X_\epsilon)<\epsilon,\ f_n$ равномерно сходится к f на X_ϵ

5 Интеграл ступенчатой функции

 $< X, A, \mu >$ - пространство с мерой

 $f=\sum_{k=1}^n (\lambda_k\cdot\chi_{E_k})$ - ступенчатая функция, E_k - измеримые дизъюнктные множества, $f\geqslant 0$

Интегралом ступенчатой функции f на множестве ${\mathbb X}$ назовём

$$\int\limits_{\mathbb{X}} f d\mu := \sum_{k=0}^{n} \lambda_k \cdot \mu E_k$$

Будем считать, что $[0 \cdot \infty = 0]$

6 Интеграл неотрицательной измеримой функции

 $<{
m X},{
m A},\mu>$ - пространство с мерой f - измеримо, $f\geqslant 0$, её интегралом на множестве ${
m X}$ назовём

$$\int\limits_{\mathbb{X}}fd\mu:=\sup(\int\limits_{\mathbb{X}}g)$$

, где $0 \leqslant g \leqslant f, g$ —ступенчатая

7 Суммируемая функция

< $X, A, \mu >$ - пространство с мерой f—измерима, $\int\limits_{\mathbb{X}} f^+$ или $\int\limits_{\mathbb{X}} f^-$ конечен (хотя бы один из них). Тогда интегралом f на X назовём

$$\int\limits_{\mathbb{X}} f d\mu := \int\limits_{\mathbb{X}} f^+ - \int\limits_{\mathbb{X}} f^+$$

Тогда если конечен $\int\limits_{\mathbb{X}} f$, (то есть конечны интегралы по обеим срезкам), то f называют суммируемой

8 Интеграл суммируемой функции

< ${\bf X},$ ${\bf A},$ $\mu>$ - пространство с мерой f- измерима, $E\in {\bf A}$ Тогда интегралом f на множестве E назовём

$$\int\limits_{\mathbb{E}} f d\mu := \int\limits_{\mathbb{X}} f \cdot \chi(E) d\mu$$

f суммируемая на E, если $\int\limits_{\mathbb{X}} f^+\chi(E)$ и $\int\limits_{\mathbb{X}} f^-\chi(E)$ конечны

9 Произведение мер

 $< X, \alpha, \mu >, < Y, \beta, \nu >$ - пространства с мерой μ, ν - σ -конечные меры $\alpha \times \beta = \{A \times B \subset X \times Y : A \in \alpha, B \in \beta\}$ $m_0 : \alpha \times \beta \to \overline{R}$ $m_0(A \times B) = \mu A \cdot \nu B$

m - называется произведением мер μ и ν , если m - мера, которая ялвяется Лебеговским продолжением m_0 с полукольца $\alpha \times \beta$ на некоторую σ -алгебру $\alpha \otimes \beta$.

 $m=\mu imes
u$ - обозначение

< X \times Y , $\alpha\otimes\beta,\mu\times\nu>$ - произведение пространств с мерой

10 Теорема Фубини

< X, A, $\mu>$, < Y, B, $\nu>$ - пространство с мерой, μ , $\nu-\sigma$ -конечные и полные, $m=\mu\times\nu$, f — суммируемая на $X\times Y$ по m. Тогда:

ullet при «почти всех» x функция $f_x \in \mathbb{L}(\mathbb{Y},
u)$, то есть суммируема на \mathbb{Y} по u

при «почти всех» y функция $f^y \in \mathbb{L}(\mathbb{X}, \mu)$

 $x \mapsto \phi(x) \mid \phi(x) = \int_{\mathbb{Y}} f_x d\nu \in \mathbb{L}(\mathbb{X}, \mu)$

$$y\mapsto \psi(y)\mid \psi(y)=\int\limits_{\mathbb{X}}f^yd\mu\in\mathbb{L}(\mathbb{Y},\nu)$$

Это есть эти функции суммируемы в некотором контексте (\mathbb{X}, μ и \mathbb{Y}, ν соответсвено)

$$\int\limits_{\mathbb{X}\times\mathbb{Y}} fdm = \int\limits_{\mathbb{X}} \phi(x)d\mu = \int\limits_{\mathbb{X}} (\int\limits_{\mathbb{Y}} fd\nu(y))d\mu(x)$$

$$\int\limits_{\mathbb{X}\times\mathbb{Y}} fdm = \int\limits_{\mathbb{Y}} \psi(x)d\nu = \int\limits_{\mathbb{Y}} (\int\limits_{\mathbb{X}} fd\mu(x))d\nu(y)$$

11 Образ меры при отображении

 (X, \mathbb{A}, μ) — пространство с мерой, $(Y, \mathbb{B}, \underline{\ })$ — пространство с σ -алгеброй. $\Phi: X \to Y, \ \Phi^{-1}(\mathbb{B}) \subset \mathbb{A}$ (прообраз любого множества из \mathbb{B} лежит в \mathbb{A}).

Пусть для $\forall E \in \mathbb{B} \ \nu(E) = \mu(\Phi^{-1}(E)).$

u является мерой на Y и называется образом меры μ при отображении Φ .

12 Взвешенный образ меры

 (X, \mathbb{A}, μ) — пространство с мерой, $(Y, \mathbb{B}, \underline{\ })$ — пространство с σ -алгеброй. $\Phi: X \to Y, \ \Phi^{-1}(\mathbb{B}) \subset \mathbb{A}$ (прообраз любого множества из \mathbb{B} лежит в \mathbb{A}).

 $\omega:X o\overline{\mathbb{R}},\,\omega\geq0$ — измеримая.

Пусть для $E \in \mathbb{B} \ \nu(E) = \int_{\Phi^{-1}(E)} \omega \ d\mu$.

u является мерой на Y и называется взвешенным образом меры μ . При $\omega \equiv 1$ взвешенный образ меры является обычным образом меры.

13 Плотность одной меры по отношению к другой

 (X, \mathbb{A}, μ) — пространство с мерой. $\omega: X \to \overline{\mathbb{R}}, \ \omega \geq 0$ — измеримая. $\nu(E) = \int_E \omega(x) \ d\mu. \ \nu$ — мера на X. ω называется плотностью ν относительно μ .

14 Заряд, множество положительности

14.1 Заряд

 $(X, \mathbb{A}, \underline{\hspace{0.1cm}})$ — пространство с σ -алгеброй.

 $\phi: \mathbb{A} \to \mathbb{R}$ (конечная, не обязательно неотрицательная).

 ϕ счётно аддитивна.

Тогда ϕ — заряд.

14.2 Множество положительности

 $A\subset X$ — множество положительности, если $\forall B\subset A,\ B$ измеримо: $\phi(B)\geq 0.\mathrm{e}$

15 Сферические координаты в R^3 и в R^m , их Якобианы

$$x_{1} = r \cdot \cos \phi_{1}$$

$$x_{2} = r \cdot \sin \phi_{1} \cdot \cos \phi_{2}$$

$$x_{3} = r \cdot \sin \phi_{1} \cdot \sin \phi_{2} \cdot \cos \phi_{3}$$

$$\vdots$$

$$x_{m-2} = r \cdot \sin \phi_{1} \cdot \sin \phi_{2} \cdot \cdots \sin \phi_{n-3} \cdot \cos \phi_{n-2}$$

$$x_{m-1} = r \cdot \sin \phi_{1} \cdot \sin \phi_{2} \cdot \cdots \sin \phi_{n-2} \cdot \cos \phi_{n-1}$$

$$x_{m} = r \cdot \sin \phi_{1} \cdot \sin \phi_{2} \cdot \cdots \sin \phi_{n-2} \cdot \sin \phi_{n-1}$$

$$\mathcal{J} = r^{n-1} \cdot (\sin \phi_1)^{n-2} \cdot (\sin \phi_2)^{n-3} \cdot \dots \cdot (\sin \phi_{n-2})^1 \cdot (\sin \phi_{n-1})^0$$

Что тут происходит идейно. Сначала мы проецируем наш m-мерный вектор на нормаль к (m-1)-мерной гиперплоскости. Потом рассматриваем проекцию на эту гиперплоскость и в ней рекурсивно повторяем процедуру пока не дойдём до нашего любимого \mathbb{R}^2 . Уже в нём рассматривем обычные полярные координаты (отсюда и другие ограничения на размер угла).

16 Интегральные неравества Гельдера и Минковского

16.1 Нераветсво Гельдера

$$(X,\mathbb{A},\mu)\ f,g:E\subset X o C\ (E$$
 - изм.) — заданы п.в, измеримы $p,q>1:rac{1}{p}+rac{1}{q}=1.$ Тогда: $\int\limits_E|fg|d\mu\leq\left(\int\limits_E|f|^pd\mu
ight)^{rac{1}{p}}\cdot\left(\int\limits_E|g|^qd\mu
ight)^{rac{1}{q}}$

16.2 Нераверство Минковского

 (X, \mathbb{A}, μ) f, g — заданы п.в, измеримы

$$1 \le p < +\infty$$
. Тогда: $\left(\int\limits_E |f+g|^p d\mu\right)^{\frac{1}{p}} \le \left(\int\limits_E |f|^p d\mu\right)^{\frac{1}{p}} + \left(\int\limits_E |g|^p d\mu\right)^{\frac{1}{p}}$

17 Интеграл комплекснозначных функции

ТООО: Лев и Вадим

18 Пространство $L_p(E,\mu), 1 \le p < +\infty$

$$(X,\mathbb{A},\mu)\,E\in\mathbb{A}$$
 $L_p'(E,\mu)=\{\ \mathrm{f}: \mathrm{п.в.}\ E o\mathbb{C},\ \mathrm{изм.},\ \int\limits_E|f|^pd\mu<+\infty\}$

Это линейное пространство (по нер-ву Минковского и линейности пространства измеримых функций).

У этого пространства есть дефект - если определить норму как $||f|| = \left(\int\limits_E |f|^p\right)^{\frac{1}{p}}$, то будет сразу много нулей пространства (ненулевые функ-

ции, которые п.в. равны 0 будут давать норму 0). Поэтому перейдем к фактор-множеству функций по отношению эквивалентности:

$$f \sim g$$
, если $f = g$ п.в.

$$L_p(E,\mu) := L_p'(E,\mu)/_{\sim}$$
 - лин. норм. пр-во с нормой $||f|| = \left(\int\limits_E |f|^p\right)^{\frac{1}{p}}$.

<u>NB1</u>: Его элементы — классы эквивалентности обычных функций. Будем называть их тоже функциями. Они не умеют вычислять значение в точке (т.к. можно всегда подменить значение на любое другое и получить представителя все того же класса эквивалентности), но зато их можно интегрировать!

 $\frac{\mathrm{NB2}}{L_p}$: также иногда будем обозначать $||f||_p$ за норму f в пространстве

19 Пространство $L_{\infty}(E,\mu)$

$$L_{\infty}(E,\mu) = \{ f : \text{ n.B. } E \to \mathbb{C}, \text{ ess sup } |f| < +\infty \}$$

$$\underline{\text{NB1}}: ||f||_{\infty} = \underset{E}{\text{ess sup } |f|}.$$

<u>NB2</u>: Новый вид нер-ва Гельдера : $||f \cdot g||_1 \le ||f||_p \cdot ||g||_q$ (причем можно брать $p = +\infty, q = 1$ или наоборот).

20 Существенный супремум

$$(X, \mathbb{A}, \mu), E \subset X$$
— изм., $f : \pi$.в. $E \to \overline{\mathbb{R}}$.

 $\underline{\text{Тогда}}$: $\underset{x \in E}{\operatorname{ess\,sup}} f(x) = \inf\{A \in R : f(x) \le A \text{ п.в. } x\}.$

В этом определении A - существенная верхняя граница.

Свойства:

- $1. \operatorname{ess\,sup}_E f \leq \sup_E f$
- 2. $f(x) \leq \operatorname{ess\,sup} f$ при п.в. $x \in E$.
- 3. $\int_{E} |fg| d\mu \le \operatorname{ess\,sup}_{E} |g| \cdot \int_{E} |f| d\mu$.

21 Фундаментальная последовательность, полное пространство

22 Плотное множество

Множество A плотно во множестве B, если $\forall b \in B \ \forall \epsilon > 0$ верно, что $U_{\epsilon}(b) \cap A \neq \emptyset$

23 Финитная функция

 $\varphi: \mathbb{R}^m \to \mathbb{R}$. \exists шар $B: \varphi \equiv 0$ вне B. Множество непрерывных финитных функций обозначаем как $C_0(\mathbb{R}^m)$.

24 Мера Лебега-Стилтьеса

 \mathbb{P}^1 — полукольцо ячеек $g:\mathbb{R} o \mathbb{R}$ непр., монотонно возрастает $\mu[a,b):=g(b)-g(a)$ — σ -конечная мера на \mathbb{P}^1

NB1: g не обязательно непр., но должна возрастать.

Tогда $g(c \pm 0) = \lim_{x \to c \pm 0} g(x)$

 $\mu[a,b):=g(b-0)-g(a-0)$ – тоже σ -конечная мера (если g не непр. слева, то $\mu[a,b):=g(b)-g(a)$ – не мера (нет непр. слева))

 $\underline{\text{Тогда}}$ мерой Лебега-Стилтьеса будем называть меру μ_g , полученную из μ по теореме о лебеговском продолжении меры.

25 Функция распределения

 $(X,\mathbb{A},\mu),\ \mathrm{h}:X o\overline{\mathbb{R}}$ – изм, п.в. кон.

Пусть $\forall t \in \mathbb{R} \quad \mu X(h < t) < +\infty$.

Тогда $H(t) := \mu X(h < t)$ – это функция распределения функции h по мере μ .

- 26 Измеримое множество на простой двумерной поверхности в \mathbb{R}^3
- 27 Мера Лебега на простой двумерной поверхности в \mathbb{R}^3
- 28 Поверхностный интеграл первого рода
- 29 Кусочно-гладкая поверхность в R^3
- 30 Гильбертово пространство

 $\mathbb H$ - линейное пространство над $\mathbb R$ или $\mathbb C$, в котором задано скалярное произведение, и полное относительно соответствуйющей нормы, называется Гильбертовым.

31 Ортогональный ряд

 $x_k \in \mathbb{H}, \sum x_k$ называется ортогональным рядом, если $\forall k, l: k \neq l: x_k \bot x_l$

32 Сходящийся ряд в Гильбертовом пространстве

$$x_n\in\mathbb{H}$$
 $\sum x_n$ сходится к x , если $S_n:=\sum_{k=1}^n x_k, S_n\to x$ (то есть $|S_n-x|\to 0$ - сходимость по мере)

33 Ортогональное семейство векторов

 $\{e_k\} \in \mathbb{H}$ - ортогональное семейство векторов, если $\forall k \neq l : e_k \bot e_l, e_k \neq 0, e_l \neq 0.$

34 Ортонормированное семейство векторов

 $\{e_k\}\in\mathbb{H}$ - ортонормированное семейство векторов, если e_k - ортогональное семейство векторов, и $\forall k: |e_k|=1$

35 Коффициенты Фурье

 $\{e_k\}$ - ортонормированная система в $\mathbb{H}, x \in \mathbb{H}$. $c_k(x) = \frac{< x, e_k>}{|e_k|^2}$ называются коэффициентами Фурье вектора x по ортогональной системе $\{e_k\}$

36 Ряд Фурье в Гильбертовом пространстве

 $\sum c_k(x) \cdot e_k$ называется рядом Фурье вектора x по ортогональной системе $\{e_k\}$

37 Базис, полная, замкнутая ОС

 $\{e_k\}$ — ортогональная система в $\mathbb H$

1.
$$\{e_k\}$$
 — базис, если $\forall x \in \mathbb{H}: \exists c_k$, что $x = \sum_{k=1}^{+\infty} c_k \cdot e_k$

2.
$$\{e_k\}$$
 — полная О.С., если $\forall k: z \perp e_k \Rightarrow z = 0$

3.
$$\{e_k\}$$
 — замкнутая О.С., если $\forall x \in \mathbb{H} : \sum_{k=1}^{+\infty} |c_k(x)|^2 \cdot ||e_k||^2 = ||x||^2$

38 Сторона поверхности

Сторона (простой) гладкой двумерной поверхности — непрерывное поле единичных нормалей. Поверхность, для которой существует сторона, называется двусторонней. Если же стороны не существует, она называется односторонней.

39 Задание стороны поверхности с помощью касательных реперов

 F_1, F_2 — два касательных векторных поля к M $\forall p \in M$ — $F_1(p), F_2(p)$ — Л.Н.З. касательные векторы Тогда поле нормалей стороны определяется, как $n:=F_1\times F_2$

Репе́р - пара векторов из $F_1 \times F_2$.

40 Интеграл II рода

M — простая гладкая двусторонняя двумерная поверхность в \mathbb{R}^3 n_0 — фиксированная сторона (одна из двух) $F: M \to \mathbb{R}^3$ — векторное поле

 $\underline{\text{Тогда}}$ интегралом II рода назовем $\int\limits_{M}\langle F,n_0 \rangle ds$

Замечания

- 1. Смена стороны эквивалентна смене знака
- 2. Не зависит от параметризации

41 Ориентация контура, согласованная со стороной поверхности

Ориентация контура согласована со стороной поверхности, если она задает эту сторону.

<u>Пояснение</u>: Рассмотрим некоторый контур (замкнутую петлю) и точку на нем. Построим два касательных вектора к контуру в этой точке: первый - снаружи от контура (задает направление "движения" по петле), второй - внутри контура. Тогда будем называть такую ориентацию согласованной со стороной, если направление векторного произведения первого и второго векторов в точке совпадает с направлением нормали поверхности.

42 Тригонометрический ряд

 $\frac{a_0}{2} + \sum_{k=1}^{\infty} a_k coskx + b_k sinkx$

(где a_i, b_i – коэффициенты ряда)

• Другая форма:

$$\sum_{k=\mathbb{Z}} c_k e^{ikx}$$

Тогда
$$S_n := \sum_{k=-N}^N c_k e^{ikx}$$

43 Коэффициенты Фурье функции

•

$$a_k(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) coskx \ dx$$

•

$$b_k(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx \ dx$$

•

$$_{k}(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-ikx} dx$$

44 Ядро Дирихле

$$D_n(t) = \frac{1}{\pi} (\frac{1}{2} + \sum_{k=1}^{n} coskt)$$

45 Ядро Фейера

$$\Phi_n(t) = \frac{1}{n+1} \sum_{k=0}^{n} D_k(t)$$

46 Ротор, дивергенция векторного поля

 $F=(P,Q,R) \to (R'_y-Q'_z,P'_z-R'_x,Q'_x-P'_y)$. Такое преобразование называется ротором или вихрем. Обозначается как rot F.

 $divF = F'_x + F'_y + F'_z$, где F- векторное поле с декартовыми компонентами F_x, F_y, F_z . Многомерный случай определяется аналогично.

47 Соленоидальное векторное поле

Векторное поле A- соленоидальное, если \exists векторное поле B: rot B=A. Тогда B называется векторным потенциалом поля A.

48 Бескоординатное определение ротора и дивергенции

rot F— это такое векторное поле, что $\forall a \ \forall n_0 (rot F(a))_{n_0} = \lim_{r \to 0} \frac{1}{\pi r^2} \int_{\partial B_r} F_l dl$ $div F(a) = \lim_{r \to 0} \frac{1}{\lambda_3(B(a,r))} \iiint_{B(a,r)} div F_l \, dx \, dy \, dz = \lim_{r \to 0} \frac{1}{\lambda_3(B(a,r))} \iint_{\partial B(a,r)} \langle F, n_0 \rangle \, dS$

49 Свертка

TODO! (мб это не моё вообще, я не нашёл)