Interplanetary Rocket Design

David McPherson

Goal: to find the phase-angle if we know R.

 $t^2 \propto r^3$

Kerbin: $1 \text{ year}^2 = k(2 \text{ AU})^3$

 $8t^2 = (R + 1)^3$

Time =
$$\sqrt{\frac{(R+1)^3}{8}} \div 2 = \frac{\sqrt{2(R+1)^3}}{8}$$

 $t = \frac{\sqrt{2(R+1)^3}}{8} \times \frac{1}{\sqrt{R^3}}$

Phase angle =
$$45\sqrt{2(\frac{R+1}{R})^3} - 180$$

R = 0.723 AU, so the phase-angle is 54.1 degrees.

Rocket Construction

Asparagus Staging

Launch

