UNIDAD Nº 5

RECTA EN EL PLANO

DEFINICION

Ejemplo 1

Pendiente de la recta que pasa por los puntos:

$$P = (-2; 2) \land Q = (4; 3)$$
.

Pendiente de la recta
$$PQ$$
: $a = \frac{3-2}{4-(-2)} = \frac{1}{6}$

Dados dos puntos de una recta, que no sea paralela al eje $y : P = (x_1; y_2) \land Q = (x_2; y_2)$

Se denomina pendiente de la recta PQ al cociente entre la diferencia de las ordenadas y la diferencia de las abscisas de los respectivos puntos P y Q.

Pendiente de la recta PQ:

$$\mathbf{a} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{\Delta \mathbf{y}}{\Delta \mathbf{x}}$$

Donde:

Δy: incremento de y

 Δx : incremento de x

Observación

El valor de la pendiente de una recta se mantiene constante independientemente del par de puntos de la recta que se consideren para calcularla.

ECUACIÓN EXPLICITA

• LA ECUACION DE UNA RECTA NO PARALELA AL EJE Y, TIENE COMO ECUACION y=m. x+b se denomina ecuacio explicita de la recta en el plano, donde m es la pendiente y b es la ordenada al origen

EJEMPLO: SI r: y = 2x - 1 ES LA ECUACIÓN EXPLICITA DE LA RECTA r, Donde m = 2 Es la pendiente, y b = -1 Es la ordenada al origen.

SJ b=0 la recta pasa por el origen de coordenadas y su ecuación explicita es y=m. x

GRAFICA DE UNA ECUACIÓN

$$r: y = 2x - 1$$

La ordenada al origen: b = -1

La pendiente:
$$a = \frac{\Delta y}{\Delta x} = \frac{2}{1} = 2$$

ECUACIÓN IMPLÍCITA Y SEGMENT

Toda ecuación de la forma: Ax + By + C = 0 donde A y B son números reales no son simultáneamente nulos; es la ecuación implícita de una recta en el plano.

•
$$y = mx + b \Rightarrow y - mx - b = 0 \Rightarrow Ax + By + C = 0$$

•
$$Ax + By + C = 0 \Rightarrow Ax + By = -C \Rightarrow \frac{Ax + By}{-C} = \frac{-C}{-C} \Rightarrow \frac{A}{-C}x + \frac{B}{-C}y = 1 \Rightarrow \frac{x}{\frac{-C}{A}} + \frac{y}{\frac{-C}{B}} = 1 \Rightarrow$$

si llamamos $p = \frac{-C}{A}$ y $q = \frac{-C}{B}$, nos queda, $\frac{x}{p} + \frac{y}{q} = 1$

ECUACIÓN SEGMENTARIA

$$r: \frac{x}{p} + \frac{y}{q} = 1$$

Esta expresión se denomina ecuación segmentaria de la recta, siendo p y q la abscisa y la ordenada al origen, respectivamente.

RECTAS ESPECIALES

RECTAS VERTICALES:

Las rectas verticales son paralelas al eje de ordenadas (eje y). Las rectas verticales no tienen pendiente y se representan por la ecuación: x = a \wedge $a \in \mathbb{R}$

RECTAS HORIZONTALES:

Las rectas horizontales son paralelas al eje de abscisas x. Las rectas horizontales tienen pendiente nula y se representan por la ecuación: $y = p \land p \in R$

• ANÁLISIS DE LA ECUACIÓN IMPLÍCITA SEGÚN LOS VALORES DE A, B Y C a y b no pueden ser los dos 0, pues desaparecerían ambas va-

• si
$$a = 0$$
: $by + c = 0 \rightarrow y = -\frac{c}{b}$ recta paralela al eje x .

• si
$$a \neq 0$$
 y $b \neq 0$: $y = -\frac{a}{b}x - \frac{c}{b}$, recta con pendiente $-\frac{a}{b}y$

• si
$$b = 0$$
: $ax + c = 0 \rightarrow x = -\frac{c}{a}$ recta paralela al eje Y.

ordenada en el origen
$$-\frac{c}{b}$$
.

RECTAS PARALELAS

<u>Definición</u>

Sean las rectas del plano:

$$r: y = a_1.x + b_1$$

 $\ell: y = a_2.x + b_2$
 $r // \ell \Leftrightarrow a_1 = a_2$ o bien, son dos rectas verticales

Nota: // significa: rectas paralelas

Eiemplos

• Sean las rectas: $t: y = \frac{2}{3}x + \sqrt{3}$; m: $y = \frac{2}{3}x - 2$

Como las pendientes son iguales, entonces: t || m

RECTAS PERPENDICULARES

Definición

Sean las rectas del plano

$$r: y = a_1.x + b_1$$

$$\ell: y = a_2.x + b_2$$

 $r \perp \ell \Leftrightarrow a_1.a_2 = -1$ o bien una de ellas es vertical y la otra es una recta horizontal.

Nota: \perp significa: rectas perpendiculares

Observación

Si r y ℓ son rectas de pendientes no nulas y perpendiculares se cumple que el producto entre sus pendientes es -1, esto es: $a_r.a_\ell = -1$ expresión de la que se deduce que la relación entre las pendientes es: $a_r = -\frac{1}{a_\ell}$

Ejemplos

• Sean las rectas: $t: y = \frac{2}{3}x + \sqrt{3}$; $m: y = -\frac{3}{2}x - 1$

Como las pendientes cumplen que $\frac{2}{3} \cdot \left(-\frac{3}{2}\right) = -1$, entonces: t \perp m

ANGULO ENTRE RECTAS

• PARA CALCULAR EL MENOR ANGULO ENTRE DOS RECTAS, SE TOMA UNA DE LAS SIGUIENTES FORMULAS:

• TAN
$$\alpha = \frac{m_1 - m_2}{1 + m_1 \cdot m_2}$$

• TAN $\alpha = \frac{m_2 - m_1}{1 + m_2 \cdot m_1}$

SIENDO: $r_1: y = m_1 x + b_1 \wedge r_2: y = m_2 x + b_2$

