# Importing basic library

#### In [2]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
matplotlib inline
```

## importing data

```
In [3]:
```

```
1 df = pd.read_csv('/home/rajan/Desktop/EDA task/data0/aug_test.csv')
```

Data can be downloaded from the given link:

#### In [4]:

```
1 df.head()
```

#### Out[4]:

|   | enrollee_id | city     | city_development_index | gender | relevent_experience     | enrolled_universit |
|---|-------------|----------|------------------------|--------|-------------------------|--------------------|
| 0 | 32403       | city_41  | 0.827                  | Male   | Has relevent experience | Full time cours    |
| 1 | 9858        | city_103 | 0.920                  | Female | Has relevent experience | no_enrollmer       |
| 2 | 31806       | city_21  | 0.624                  | Male   | No relevent experience  | no_enrollmer       |
| 3 | 27385       | city_13  | 0.827                  | Male   | Has relevent experience | no_enrollmer       |
| 4 | 27724       | city_103 | 0.920                  | Male   | Has relevent experience | no_enrollmer       |
| 4 |             |          |                        |        |                         | <b>&gt;</b>        |

## **About data:**

```
dataset name: Predict who will move to a new job
enrollee_id : Unique ID for enrollee
city: City code
citydevelopmentindex: Developement index of the city (scaled)
gender: Gender of enrolee
relevent_experience: Relevent experience of enrolee
enrolled_university: Type of University course enrolled if any
education_level: Education level of enrolee
major_discipline :Education major discipline of enrolee
experience: Enrolee total experience in years
company_size: No of employees in current employer's company
```

company type : Type of current employer

```
EDA of Predict who will move to a new job - Jupyter Notebook
10/24/22, 8:43 AM
  13 lastnewjob: Difference in years between previous job and current job
  14 training hours: training hours completed
 In [5]:
  1 df.columns
 Out[5]:
 l',
        'major_discipline', 'experience', 'company_size', 'company_typ
 e',
        'last new job', 'training hours'],
       dtype='object')
 In [6]:
```

```
1 len(df.columns)
```

#### Out[6]:

13

#### In [7]:

```
1 df.shape
```

#### Out[7]:

(2129, 13)

#### In [ ]:

1

#### In [8]:

```
1 df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2129 entries, 0 to 2128
Data columns (total 13 columns):

| #  | Column                 | Non-Null Count | Dtype   |
|----|------------------------|----------------|---------|
|    |                        |                |         |
| 0  | enrollee_id            | 2129 non-null  | int64   |
| 1  | city                   | 2129 non-null  | object  |
| 2  | city_development_index | 2129 non-null  | float64 |
| 3  | gender                 | 1621 non-null  | object  |
| 4  | relevent_experience    | 2129 non-null  | object  |
| 5  | enrolled_university    | 2098 non-null  | object  |
| 6  | education_level        | 2077 non-null  | object  |
| 7  | major_discipline       | 1817 non-null  | object  |
| 8  | experience             | 2124 non-null  | object  |
| 9  | company_size           | 1507 non-null  | object  |
| 10 | company_type           | 1495 non-null  | object  |
| 11 | last_new_job           | 2089 non-null  | object  |
| 12 | training_hours         | 2129 non-null  | int64   |
|    |                        |                |         |

dtypes: float64(1), int64(2), object(10)

memory usage: 216.4+ KB

#### In [9]:

df.describe() #only categorical data are included on it

334.000000

#### Out[9]:

max 33353.000000

|       | enrollee_id  | city_development_index | training_hours |
|-------|--------------|------------------------|----------------|
| count | 2129.000000  | 2129.000000            | 2129.000000    |
| mean  | 16861.614843 | 0.824984               | 64.983091      |
| std   | 9576.846029  | 0.125074               | 60.238660      |
| min   | 3.000000     | 0.448000               | 1.000000       |
| 25%   | 8562.000000  | 0.698000               | 23.000000      |
| 50%   | 16816.000000 | 0.903000               | 47.000000      |
| 75%   | 25129.000000 | 0.920000               | 86.000000      |

0.949000

```
In [10]:
```

```
1 df.isnull().sum() #we are checking about missing values
Out[10]:
                             0
enrollee id
                             0
city
                             0
city development index
gender
                           508
relevent_experience
                             0
enrolled university
                            31
education level
                            52
major discipline
                           312
experience
                             5
                           622
company size
company_type
                           634
last_new_job
                            40
                             0
training_hours
dtype: int64
 1
    0R
```

#### In [11]:

```
[i for i in df.columns if df[i].isnull().sum()>0]
```

#### Out[11]:

```
['gender',
 'enrolled university',
 'education level',
 'major_discipline',
 'experience',
 'company_size',
 'company_type',
 'last new job']
```

```
In [12]:
```

```
sns.heatmap(df.isnull(), yticklabels=False,cbar = False, cmap='viridis')
```

#### Out[12]:

#### <AxesSubplot:>



From this observation, we can see so many null values at gender,major-discipline,company size,company-type,and few in enrolled-university and last\_new\_job

# to check data types

```
In [13]:
 1 df.dtypes
Out[13]:
enrollee id
                             int64
city
                            object
city development index
                           float64
gender
                            object
relevent_experience
                            object
enrolled university
                            object
education_level
                            object
major discipline
                            object
experience
                            object
                            object
company size
company_type
                            object
last_new_job
                            object
training_hours
                             int64
dtype: object
In [14]:
 1 df.gender.value counts()
Out[14]:
Male
          1460
           137
Female
0ther
            24
Name: gender, dtype: int64
In [15]:
    gender_count = df.gender.value counts()
In [16]:
    gender_count
Out[16]:
Male
          1460
Female
           137
0ther
            24
Name: gender, dtype: int64
In [ ]:
 1
In [17]:
    education_qualification = df.education_level.value_counts()
 2
```

```
In [18]:
     df.education_level.value_counts()
Out[18]:
Graduate
                  1269
Masters
                   496
High School
                   222
Phd
                    54
Primary School
                    36
Name: education_level, dtype: int64
In [19]:
   education_level_count = df.education_level.value_counts().index
In [20]:
   gender_wise = df.gender.value_counts().index
In [21]:
   gender wise= df.groupby('gender').describe()
In [ ]:
 1
```

## Pie chart

#### In [22]:

```
plt.pie(gender_count, labels = gender_wise)
```

#### Out[22]:



#### In [23]:

#### Out[23]:

```
([<matplotlib.patches.Wedge at 0x7faf5a8ab760>,
 <matplotlib.patches.Wedge at 0x7faf5a8abeb0>,
 <matplotlib.patches.Wedge at 0x7faf5a8b9610>,
 <matplotlib.patches.Wedge at 0x7faf5a8b9d30>,
 <matplotlib.patches.Wedge at 0x7faf5a8c6490>],
                                                 'Graduate'),
 [Text(-0.37578776144341286, 1.0338198868029909,
 Text(-0.13525821404468816, -1.0916525159286912, 'Masters'),
 Text(0.9028396790461523, -0.6283951893035473, 'High School'),
 Text(1.0800833442792397, -0.20837458916713844, 'Phd'),
 Text(1.098369615839224, -0.05986807998587772, 'Primary School')],
 [Text(-0.2049751426054979, 0.5639017564379949, '61.10%'),
 Text(-0.07377720766073899, -0.5954468268701951, '23.88%'),
 Text(0.4924580067524466, -0.34276101234738937, '10.69%'),
 Text(0.5891363696068579, -0.11365886681843913, '2.60%'),
 Text(0.5991106995486676, -0.03265531635593329, '1.73%')])
```



Observation: Most of the enrollee are Graduated. In second, most of them are with master degree and then high school.

#### In [24]:

```
new_data=df.groupby(['experience','training_hours']).size().reset_index().renam
```

## In [25]:

1 new\_data.head(20)

## Out[25]:

|    | experience | training_hours | Repeat Count |
|----|------------|----------------|--------------|
| 0  | 1          | 3              | 1            |
| 1  | 1          | 8              | 1            |
| 2  | 1          | 9              | 2            |
| 3  | 1          | 10             | 2            |
| 4  | 1          | 11             | 1            |
| 5  | 1          | 12             | 1            |
| 6  | 1          | 13             | 1            |
| 7  | 1          | 14             | 2            |
| 8  | 1          | 15             | 3            |
| 9  | 1          | 17             | 1            |
| 10 | 1          | 18             | 2            |
| 11 | 1          | 20             | 1            |
| 12 | 1          | 22             | 2            |
| 13 | 1          | 23             | 1            |
| 14 | 1          | 28             | 1            |
| 15 | 1          | 29             | 1            |
| 16 | 1          | 34             | 1            |
| 17 | 1          | 44             | 1            |
| 18 | 1          | 48             | 4            |
| 19 | 1          | 53             | 2            |

## In [26]:

1 new\_data.tail(20)

#### Out[26]:

|      | experience | training_hours | Repeat Count |
|------|------------|----------------|--------------|
| 1349 | >20        | 176            | 1            |
| 1350 | >20        | 178            | 1            |
| 1351 | >20        | 182            | 1            |
| 1352 | >20        | 192            | 1            |
| 1353 | >20        | 196            | 1            |
| 1354 | >20        | 200            | 2            |
| 1355 | >20        | 212            | 2            |
| 1356 | >20        | 220            | 1            |
| 1357 | >20        | 248            | 2            |
| 1358 | >20        | 256            | 1            |
| 1359 | >20        | 266            | 1            |
| 1360 | >20        | 270            | 1            |
| 1361 | >20        | 280            | 1            |
| 1362 | >20        | 282            | 1            |
| 1363 | >20        | 290            | 1            |
| 1364 | >20        | 292            | 1            |
| 1365 | >20        | 298            | 1            |
| 1366 | >20        | 304            | 1            |
| 1367 | >20        | 322            | 1            |
| 1368 | >20        | 328            | 1            |

Observation: With increase in experience, the training hour completed alos increased.

#### In [27]:

```
sns.barplot(y ='Repeat Count',x ='experience', data = new_data)
```

#### Out[27]:

<AxesSubplot:xlabel='experience', ylabel='Repeat Count'>



# **Observation: Most of Enrolle are with experience greater than 20 are there**

#### In [ ]:

1

#### In [28]:

1 df.major\_discipline.value\_counts()

#### Out[28]:

| STEM            | 1621 |
|-----------------|------|
| Humanities      | 80   |
| 0ther           | 40   |
| Business Degree | 37   |
| No Major        | 22   |
| Arts            | 17   |

Name: major\_discipline, dtype: int64

Observation: Most of the enrollee are having major in Science Technology Engineering and Mathematics.

#### In [29]:

```
1 df2 = df.groupby(['city','city_development_index']).size().reset_index().rename
```

#### In [ ]:

1

#### In [30]:

#### Out[30]:

<AxesSubplot:xlabel='city', ylabel='city\_development\_index'>



Observation: There are very few city with low city development indexes between 0.4-0.6

#### In [31]:

```
1 sns.countplot(x = 'gender',data = df)
```

#### Out[31]:

<AxesSubplot:xlabel='gender', ylabel='count'>



Observation: Most of them are male

#### In [32]:

```
1 df.duplicated().sum()
```

#### Out[32]:

0

Observation: No duplicate value

# **Statistical Analysis**

#### In [33]:

```
1 df.describe()
```

#### Out[33]:

|       | enrollee_id  | city_development_index | training_hours |
|-------|--------------|------------------------|----------------|
| count | 2129.000000  | 2129.000000            | 2129.000000    |
| mean  | 16861.614843 | 0.824984               | 64.983091      |
| std   | 9576.846029  | 0.125074               | 60.238660      |
| min   | 3.000000     | 0.448000               | 1.000000       |
| 25%   | 8562.000000  | 0.698000               | 23.000000      |
| 50%   | 16816.000000 | 0.903000               | 47.000000      |
| 75%   | 25129.000000 | 0.920000               | 86.000000      |
| max   | 33353.000000 | 0.949000               | 334.000000     |

#### In [34]:

```
1 df.skew()
```

/tmp/ipykernel\_19825/1665899112.py:1: FutureWarning: Dropping of nuisa nce columns in DataFrame reductions (with 'numeric\_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

df.skew()

#### Out[34]:

enrollee\_id -0.015213 city\_development\_index -0.923030 training\_hours 1.876451

dtype: float64

Observation: city development index is left skwed

#### In [35]:

```
1 sns.distplot(df['city_development_index'])
2
```

/home/rajan/anaconda3/lib/python3.9/site-packages/seaborn/distribution s.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

#### Out[35]:

<AxesSubplot:xlabel='city\_development\_index', ylabel='Density'>



#### In [36]:

```
1 sns.distplot(df['training_hours'])
```

/home/rajan/anaconda3/lib/python3.9/site-packages/seaborn/distribution s.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

#### Out[36]:

<AxesSubplot:xlabel='training\_hours', ylabel='Density'>



Observation: Training hours data is left skewed. Outlier lies at the right side.

# **Checking Outliers**

#### In [37]:

```
1 sns.boxplot(x = 'training_hours', data = df)
```

#### Out[37]:

<AxesSubplot:xlabel='training\_hours'>



Observation: As previously mentioned outliers lies on the left side of the graph.

## Lets count:

#### In [38]:

```
def lowerfence_higherfence(variable):
    q1= df[variable].quantile(0.25)
    q3 = df[variable].quantile(0.75)
    IQR = q3-q1
    lowerfence = q1- 1.5*IQR
    higherfence = q3 + 1.5*IQR
    return lowerfence,higherfence
```

```
In [39]:
```

```
1 lowerfence_higherfence('training_hours')
```

#### Out[39]:

```
(-71.5, 180.5)
```

Observation: Training hours more than 180.5 is outliers.

## graph analysis

#### In [40]:

```
1 sns.pairplot(y_vars = 'city_development_index', x_vars = 'enrollee_id', data =
```

#### Out[40]:

<seaborn.axisgrid.PairGrid at 0x7faf59c24ee0>



#### In [41]:

```
1 df.groupby('education_level').size()
```

#### Out[41]:

| education_level |      |
|-----------------|------|
| Graduate        | 1269 |
| High School     | 222  |
| Masters         | 496  |
| Phd             | 54   |
| Primary School  | 36   |
| dtvpe: int64    |      |

Observation: Very few people from low city development index city

# Q. City with high number of Phd

```
In [42]:
```

```
1 df[df['education_level']=='Phd'].groupby('city').size()
```

#### Out[42]:

```
city
city_100
              1
             17
city_103
city_104
              2
city_114
              6
city_123
              1
city_134
              1
city_136
              2
city_16
              9
city 160
              1
              3
city_165
city_28
              2
city_45
              1
              1
city_61
city 65
              1
city_67
              1
city_71
              1
              3
city_75
city_77
              1
dtype: int64
```

Observation: City 103 has a most number of phd

#### In [43]:

sns.pairplot(df)

#### Out[43]:

<seaborn.axisgrid.PairGrid at 0x7faf5a9c2280>



| In [44]:                                                           |
|--------------------------------------------------------------------|
| 1 #now let us save the file for the further feature enginering     |
| <pre>In [46]:  1  df.to_csv('final_data.csv', index=False) 2</pre> |
| In [ ]:                                                            |
|                                                                    |
| In [ ]:                                                            |
| 1                                                                  |
| In [ ]:                                                            |
|                                                                    |
| In [ ]:                                                            |
| 1                                                                  |
| In [ ]:                                                            |
|                                                                    |