- **9.26.** Consider the mice-weight data in Example 8.6. Start with the sample *covariance* matrix. (See Exercise 8.15 for $\sqrt{s_{ii}}$.)
 - (a) Obtain the principal component solution to the factor model with m = 1 and m = 2.
 - (b) Find the maximum likelihood estimates of the loadings and specific variances for m = 1 and m = 2.
 - (c) Perform a varimax rotation of the solutions in Parts a and b.
- **9.27.** Repeat Exercise 9.26 by factoring **R** instead of the sample covariance matrix **S**. Also, for the mouse with standardized weights [.8, -.2, -.6, 1.5], obtain the factor scores using the maximum likelihood estimates of the loadings and Equation (9-58).
- **9.28.** Perform a factor analysis of the national track records for women given in Table 1.9. Use the sample covariance matrix **S** and interpret the factors. Compute factor scores, and check for outliers in the data. Repeat the analysis with the sample correlation matrix **R**. Does it make a difference if **R**, rather than **S**, is factored? Explain.
- 9.29. Refer to Exercise 9.28. Convert the national track records for women to speeds measured in meters per second. (See Exercise 8.19.) Perform a factor analysis of the speed data. Use the sample covariance matrix S and interpret the factors. Compute factor scores, and check for outliers in the data. Repeat the analysis with the sample correlation matrix R. Does it make a difference if R, rather than S, is factored? Explain. Compare your results with the results in Exercise 9.28. Which analysis do you prefer? Why?
- **9.30.** Perform a factor analysis of the national track records for men given in Table 8.6. Repeat the steps given in Exercise 9.28. Is the appropriate factor model for the men's data different from the one for the women's data? If not, are the interpretations of the factors roughly the same? If the models are different, explain the differences.
- 9.31. Refer to Exercise 9.30. Convert the national track records for men to speeds measured in meters per second. (See Exercise 8.21.) Perform a factor analysis of the speed data. Use the sample covariance matrix S and interpret the factors. Compute factor scores, and check for outliers in the data. Repeat the analysis with the sample correlation matrix R. Does it make a difference if R, rather than S, is factored? Explain. Compare your results with the results in Exercise 9.30. Which analysis do you prefer? Why?
- 9.32. Perform a factor analysis of the data on bulls given in Table 1.10. Use the seven variables YrHgt, FtFrBody, PrctFFB, Frame, BkFat, SaleHt, and SaleWt. Factor the sample covariance matrix S and interpret the factors. Compute factor scores, and check for outliers. Repeat the analysis with the sample correlation matrix R. Compare the results obtained from S with the results from R. Does it make a difference if R, rather than S, is factored?
- **9.33.** Perform a factor analysis of the psychological profile data in Table 4.6. Use the sample correlation matrix \mathbf{R} constructed from measurements on the five variables, Indep, Supp, Benev, Conform and Leader. Obtain both the principal component and maximum likelihood solutions for m=2 and m=3 factors. Can you interpret the factors? Your analysis should include factor rotation and the computation of factor scores.

 Note: Be aware that a maximum likelihood solution may result in a Heywood case.
- 9.34. The pulp and paper properties data are given in Table 7.7. Perform a factor analysis using observations on the four paper property variables, BL, EM, SF, and BS and the sample correlation matrix R. Can the information in these data be summarized by a single factor? If so, can you interpret the factor? Try both the principal component and maximum likelihood solution methods. Repeat this analysis with the sample covariance matrix S. Does your interpretation of the factor(s) change if S rather than R is factored?