Population genetics 1: exploratory analyses

Fernando Racimo Copenhagen, August 2018

Today

Exploratory vs. hypothesis-driven analyses

• PCA

Latent mixed-membership models ("Structure")

Today

Exploratory vs. hypothesis-driven analyses

• PCA

Latent mixed-membership models ("Structure")

Exploratory analyses

- When we've just gotten some population genomic data (ancient or modern) and don't know where to start with it.
- What are the general patterns of variation? How much structure is there in my data?
- Which groups can be clustered together? Which groups are best modeled as a mixture of other groups?
- Are certain samples particularly interesting?

Exploratory analyses

PCA

Latent mixed-membership models ("Structure")

Hypothesis-driven analyses & parameter estimation

- When we want to start building models of population history and testing particular hypotheses about the past.
- Is a particular population the result of an admixture event? What are the admixture proportions? When did the event happen?
- When did two populations diverge? When did a population contract or expand?
- What is the best history (or set of histories) that can best describe my data?

Hypothesis-driven analyses & parameter estimation

Today

Exploratory vs. hypothesis-driven analyses

PCA

Latent mixed-membership models ("Structure")

PCA

- Useful for exploratory data analysis
- Widely used in many fields, including population genetics, community ecology, macroevolutionary analyses, etc.
- Useful when we have a set of "objects" (individuals, species, etc), and a (large) set of variables associated with each object
- The variables are numerous and may be correlated in unknown ways

Multivariate data

Genotype data

M diploid genomes

Motivation

- Order objects in a way that similar objects are near each other and dissimilar objects are farther from each other
- Reduce data to a few axes of variation (dimensionalityreduction) to facilitate recognition of patterns
- Gradients reflect underlying factors or processes

PCA

- Principal Component Analysis: an orthogonal transformation of a set of observations of correlated variables into a set of values of linearly uncorrelated variables
- A technique for dimensionality reduction
- A technique for extracting the principal axes of variation in a dataset
- These axes are orthogonal to each other (and are therefore uncorrelated)

Finding the best orthogonal axes of variation

Finding the best orthogonal axes of variation

Finding the best orthogonal axes of variation

PCA as a centered rotation in N-dimensional space

Step 1: Mean-center data matrix

Step 2: Compute covariance matrix (example with N=2)

Step 2: Compute covariance matrix (example with N=2)

Step 3: Find eigenvectors and eigenvalues of Cov. Mat.

To find eigenvalues, solve this equation:

$$\left|\mathbf{S} - \lambda_k \mathbf{I}\right| = \left|\begin{bmatrix} 8.2 & 1.6 \\ 1.6 & 5.8 \end{bmatrix} - \begin{bmatrix} \lambda_k & 0 \\ 0 & \lambda_k \end{bmatrix}\right| = 0$$

To find eigenvectors, solve this equation:

$$(\mathbf{S} - \lambda_k \mathbf{I})(\mathbf{u}_k) = \mathbf{0}$$

Remember: eigenvectors are a new perpendicular (orthogonal) set of coordinate axes

$$\mathbf{U} = \begin{bmatrix} 0.8944 & -0.4472 \\ 0.4472 & 0.8944 \end{bmatrix}$$

$$\mathbf{u'}_1\mathbf{u}_2 = (0.8944 \times (-0.4472)) + (0.4472 \times 0.8944) = 0$$

Step 4: Project data points into new axes

- It is easy to see which axes are the ones that explain the most variation in 2-dimensional space
- It is much harder to do this (visually) when N is large (multidimensional data)

2 1 1 1 0 0 variables 0 1 2 1 2

- In a PCA, each eigenvector has a corresponding eigenvalue
- The largest eigenvalues correspond to the eigenvectors that explain the most variation
- Percent of variance explained by eigenvector k = eigenvalue k / (sum of all eigenvalues)
- Largest eigenvalue -> largest axis of variation

PCA of worldwide human genomes

Dealing with missing data: Procrustes transformation

- SNPs in which at least 1 sample has missing data are unusable in a PCA
- Problem: low coverage genomes -> many sites with missing data
- Even bigger problem: combination of many low-coverage genomes -> very few sites with overlap in coverage across all of them
- Solution (Skoglund et al. 2012):
 - For each low-coverage genome, run 1 PCA (with many high-coverage genomes included)
 - Combine loadings from each individual PCA into an overall-PCA, using Procrustes transformation

Shape-preserving Procrustes transformation

Shape-preserving Procrustes transformation

Use a Procrustes transformation using a high-coverage reference PCA

Sampling scheme can be misleading

PCA recovers signals of "isolation-by-distance"

SpaceMix: long-range admixture + isolation-by-distance

(a) simulated lattice with admixture

(b) geogenetic map without admixture inference

(c) geogenetic map with admixture inference

Today

Exploratory vs. hypothesis-driven analyses

• PCA

Latent mixed-membership models ("Structure")

Latent mixed-membership models ("Structure")

Fernando Racimo

Copenhagen, August 2018

Questions

- Is there population structure in a population?
- Can we identify subpopulation clusters of shared ancestry?
- Are individuals best modeled as mixtures of ancestral populations?
- How much admixture was passed on from each population?

Objectives

- Learn something about the past genetic history of a population under study
- Learn something about ourselves

The "Structure" model

- The original model was first proposed by Pritchard et al. (2000)
- Assumption 1: each individual can be modeled as a mixture of one or more ancestral "source populations"
- Assumption 2: each locus is independent
- The proportion of genetic matrerial from each source in each individual is called the "admixture proportion"
- Problem 1: we don't know the identity and number of these source populations
- Problem 2: we don't know the admixture proportions
- Objective: find best-fitting sources and their proportions

The "Structure" model

⁰Darvasi and Shifman 2005

The "Structure" model

- Known: genotypes (G)
- Unknown:
 - admixture proportions (Q)
 - allele frequencies in source populations (F)
- Need to estimate Q and F, given that we know G.
- Objective: Maximize likelihood function: P[G|Q,F]

⁰Ida Moltke pers. comm.

Structure model applied to human populations

Choosing K

- We can use cross-validation to find a value of K that does not over-fit
- We leave some genotypes out and predict them based on their estimated ancestries
- $\bullet \ \textbf{Important} \colon \text{well-fitting parameter} \neq \text{biologically meaningful parameter}$

Final Accuracy = Average(Round 1, Round 2, ...)

Choosing K

- We can use cross-validation to find a value of K that does not over-fit
- We leave some genotypes out and predict them based on their estimated ancestries
- $\bullet \ \textbf{Important} \colon \text{well-fitting parameter} \neq \text{biologically meaningful parameter}$

⁰Alexander et al. 2011

Over-interpreting Structure results

- Structure does not necessarily pick up admixture events!¹
- "Source populations" need not be real populations that ever existed!
- A population that is highly drifted will be assigned its own cluster at high enough K

¹Falush et al. 2016

Variations on a theme...

- Structure (Pritchard et al. 2000): original model; uses Bayesian priors to obtain posterior estimates of Q and F
- Admixture (Alexander et al. 2011): faster than Structure; uses a maximum likelihood model rather than a Bayesian model; uses cross-validation to choose K
- fastStructure (Raj et al. 2014): faster than Structure; uses variational inference to choose K; can detect weak structure
- ngsAdmix (Skotte et al. 2013): can work with genotype likelihoods; better for low coverage data
- Ohana (Cheng et al. 2016): uses Gaussian approximation to model drift in each ancestry component; can detect selection by testing for local deviations from genome-wide model