Next: Convolutional Neural Networks

32x32x3 image -> preserve spatial structure

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

activation map

30	3	22	1	0				
02	0_2	1_{0}	3	1		12.0	12.0	17.0
30	$1_{_1}$	22	2	3		10.0	17.0	19.0
2	0	0	2	2		9.0	6.0	14.0
0			0	э				

U

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

	F		
â			
F			

Output size: (N - F) / stride + 1

e.g. N = 7, F = 3: stride 1 => (7 - 3)/1 + 1 = 5stride 2 => (7 - 3)/2 + 1 = 3stride 3 => (7 - 3)/3 + 1 = 2.33 :\

In practice: Common to zero pad the border

0	0	0	0	0	0		
0							
0							
0							
0							
					357		
	6						

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 \times H_1 \times D_1$
- · Requires four hyperparameters:
 - Number of filters K,
 - their spatial extent F,
 - · the stride S.
 - the amount of zero padding P.
- Produces a volume of size $W_2 \times H_2 \times D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - $\circ D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 \times H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

MAX POOLING

Single depth slice

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

6	8
3	4

У

