A Framework for Models and Modeling to Unify Mathematicians and Biologists and Improve Student Learning

Kam D. Dahlquist, Ph.D.
Department of Biology
Loyola Marymount University

Breaking the Boundaries in STEM Education Research April 7, 2017

Team-teaching a
Biological Databases
course

Team-teaching a Team-teaching a **Biological Databases Biomathematical** biology **Modeling course** course computer math science

Team-teaching a Team-teaching a **Biological Databases Biomathematical** biology **Modeling course** course computer math science

Bringing the three cultures together for systems biology research with undergraduates

Team-teaching a **Biological Databases** biology course: **Open Source Pedagogy** computer math science

Disconnect between Undergraduate Computer Science Training and Expectations/Skill Sets Required in Industry

Traditional computer science curriculum	"Real world" expectations (industry or research)	Best practices for software development
Students work alone	Members work together as teams	Project management
"Toy" programs and algorithms	Large modular projects	Up-front project design
Throwaway code after grading	Code maintained over an extended period of time	Program & process documentation; quality control; data standards

Dionisio & Dahlquist (2008) ACM SIGCSE Bulletin 40:115-119.

Official Open Source Definition (http://opensource.org)

Free redistribution

No discrimination against fields of endeavor

Source code

Distribution of license

Derived works

License must not be specific to a product

Integrity of the author's source code

License must not restrict other software

No discrimination against persons or groups

License must be technology-neutral

Open Source Values Mirror STEM Curricular Reform

Open Source Values	Active Learning/ Bioinformatics Pedagogy	Open Source Practices & Tools
Source code is available, modifiable, and long-lived	Authentic problem to solve with realistic complexity	Central code repository; version control; provenance of code
Accountability to a developer and user community	Participatory and collaborative work; peer review	Task and bug trackers; continuous integration; test- driven workflows
Responsibilities accompany rights	Responsibility and ownership of the learning process	Documentation: in- line, user manual, Wiki

Dionisio & Dahlquist (2008) ACM SIGCSE Bulletin 40:115-119.

BIOL/CMSI 367: Biological Databases

- Team-taught by a biologist and a computer scientist
- Enrollment capped at 16 aims for equal numbers of biology and computer science majors
- Three-part framework:
 - Building blocks: genetic code and manipulating text
 - Going deeper: gene expression data and relational databases)
 - Integrating for research (gene database project)
- All coursework managed on a wiki https://xmlpipedb.cs.lmu.edu/biodb/fall2015/index.php/Main_Page
- Research project to create a GenMAPP-compatible Gene Database for a new species with XMLPipeDB and use it to analyze a publicly available microarray dataset

Students on Each Project Team Were Assigned Defined Roles

- Project Manager: sets the due dates for each milestone, manages the team wiki pages, makes sure that individuals are fulfilling their roles and performing the tasks on time, final responsibility for submitting project deliverables
- Coder: set-up of the development and testing environment, checking out code, making modifications, and checking code back in
- Quality Control: checks exported Gene Database for data integrity, verifying that the correct number of IDs from the XML source data are carried through a complete import/export cycle using pattern matching script and SQL queries
- GenMAPP User: locates a publicly available DNA microarray dataset, processes data (normalization, statistics), and analyzes data using GenMAPP and MAPPFinder

XMLPipeDB: an Open Source Tool Chain for Building Relational Databases XSD-to-DB from XML Sources Convert XSD (dis File to Java <genes and SQL produces GenMAPP Builder UniProtDB, GODB **XMLPIPEDB** http://xmlpipedb.cs.lmu.edu Interact with UniProt or GO Software Data Developer XMLPipeDB Utilities GenMAPP Gene Database Configure Import XML produces Database Data into (URL, Driver, Use with Database User, etc.) GenMAPP Ad-hoc SQL or **HQL** Query on Database Export UniProt GenMAPP and GO Data into **Gene Database** GenMAPP Gene Database Producer GenMAPP User

Open Science Ecosystem

Open Science Ecosystem

Students Benefit from Open Source and Open Data

BioQUEST Curriculum Consortium 30+ years and going strong! http://www.bioquest.org

The Genome Consortium for Active Teaching NextGen Sequencing Group http://gcat-seek.weebly.com/

HHMI Science Education Alliance
Phage Hunters Advancing Genomics
and Evolutionary Science Program
http://seaphages.org/

Problem Spaces Are Flexible, Open-Ended, and Dynamic

- A brief introduction to a biological problem with references and links to background materials
- A collection of "open research questions" that might be addressed
- Examples of curricular materials used by other faculty
- Data, analysis tools, and other research resources
- Example of student work that explore the problem space

BIOL/MATH 388: Biomathematical Modeling

- Team-taught by a biologist and a mathematician
- Enrollment capped at 16 aims for equal numbers of biology and mathematics majors
- Three modeling projects in MATLAB:
 - Growth models (batch/logistic and chemostat)
 - Nitrogen metabolism in yeast
 - Systems Biology: cold shock gene regulatory network in yeast
- All coursework managed on a wiki http://www.openwetware.org/wiki/BIOL398-05/S17
- Final research project based on NSF-funded collaborative work that produced the GRNmap modeling software

GRNmap: Gene Regulatory Network Modeling and

Parameter Estimation

$$\frac{dx_i(t)}{dt} = \frac{P_i}{1 + \exp\left(-\left(\sum_j \left(w_{ij}x_j(t)\right) - b_i\right)\right)} - d_i x_i(t)$$

- The change in expression of one gene is production – degradation.
- Weight parameter, w, gives the direction (activation or repression) and magnitude of regulatory relationship.

Freeman (2003)

A *Model* is a Caricature: a Simplified Representation of Relationships or Processes in the Real World

Models can serve several purposes:

- Models are used to communicate ideas between scientists.
- Simple, unrealistic models help scientists explore complex systems.
- Models can lead to the development of conceptual frameworks and causal explanations (i.e., understanding)
- Models can make accurate predictions.

The Process of Modeling Mirrors the Process of Science

M. Drew Lamar and the NIMBioS Working Group: Unpacking the Black Box

But Really, the *Process of Modeling* (and Science!) is Messier than That

Eaton, Callendar, Dahlquist, et al. (2016)

We redefine *modeling* as individual activities such as:

- 1. Moving from observations of reality to a model representation, either as an initial step in developing a model or as part of a model revision;
- 2. Moving from one model representation to another representation of the same model;
- 3. Comparing models to each other (model selection) or to reality (model validation).

We aim to be both more expansive and more inclusive of what counts as modeling.

Model Documentation Reminds Researchers to Make Our Process Explicit

Ecological Modelling 280 (2014) 129-139

Contents lists available at ScienceDirect

Ecological Modelling

Towards better modelling and decision support: Documenting model development, testing, and analysis using TRACE

Volker Grimm^{a,b,c,*}, Jacqueline Augusiak^d, Andreas Focks^d, Béatrice M. Frank^e, Faten Gabsi^f, Alice S.A. Johnston^g, Chun Liu^{g,h}, Benjamin T. Martin^{a,i}, Mattia Meli^j, Viktoriia Radchuk^{c,e}, Pernille Thorbek^h, Steven F. Railsback^k

And this is exactly what is needed when teaching modeling to students:

- Make the process explicit
- Help them reflect and connect
- Give it context again and again

Team-teaching a Team-teaching a **Biological Databases Biomathematical** biology **Modeling course** course computer math science

Bringing the three cultures together for systems biology research with undergraduates

Cold shock microarray data from wt and TF deletion strains

Cold shock microarray data from wt and TF deletion strains

Normalization, statistical analysis, clustering

Cold shock microarray data from wt and TF deletion strains

Cold shock microarray data from wt and TF deletion strains

Dynamical systems modeling using GRNmap

Normalization, statistical analysis, clustering

Cold shock microarray data from wt and TF deletion strains

Normalization, statistical analysis, clustering

Visualization of modeling results using GRNsight

Dynamical systems modeling using GRNmap

This Gene Regulatory Network (GRN) Diagram Took Several Hours to Create by Hand in Adobe Illustrator

GRNsight Rapidly Generates GRN Graphs Using Our Customizations to the Open Source D3 Library

GRNsight Rapidly Generates GRN Graphs Using Our Customizations to the Open Source D3 Library

More Importantly, Weighted Graphs Reveal Patterns in the Data

- There are two subgraphs in the network.
- Target genes are regulated by a balance of activation and repression.
- The same transcription factors both activate and repress expression.
- Regulatory chains weaken after two levels.
- The most complex motifs are actually simpler than they appear.

Interpretation, new questions, new experiments

Visualization of modeling results using GRNsight

Cold shock microarray data from wt and TF deletion strains

Dynamical systems modeling using GRNmap

Normalization, statistical analysis, clustering

A Biologist Bridging the Cultures of Computer Science and Mathematics

Open Source Pedagogy

- Pairing bioinformatics tool users with tool developers works well for interdisciplinary work
- Emphasis on roles, process, and best practices
- Products of student research returned to the scientific community
- Instructors were already experienced with the bioinformatics domain

Framework for Modeling

- Bringing open source practices to a mathematics course was more challenging
- Needed to make the activities in the modeling process more explicit to students (and the biologist!)
- Instructors made substantial investment to learn each other's domains

How to Start Interdisciplinary Conversations

- Have a shared goal
- Start small
- Be willing to be a student as well as a teacher
- Pay attention to language
 - Disciplinary jargon disconnects
 - The same word means different things to different disciplines
 - Different words mean the same thing to different disciplines
 - Bring students into the conversation
- Be in it for the long term

They Are Not Really "Digital Natives"

- We have observed again and again that otherwise bright students are stymied by basic computer functions.
 - Understanding where their files are (directories and paths)
 - Understanding what their files are (filetypes and extensions)
 - In general, what to do when you can't just "drag and drop"
- I'm interested in the intersection of computer literacy, data literacy, and information literacy skills.
- These also need to be taught in the context of authentic problem solving.

GRNsight: http://dondi.github.io/GRNsight/GRNmap: http://kdahlquist.github.io/GRNmap/

kdahlquist@lmu.edu

https://qubeshub.org/groups/nimbios_wg_teachingquantbio Melissa Aikens, Hanna Callendar, Joe Dauer, Sam Donovan, Carrie Diaz Eaton, Greg Goins, Kristen Jenkins, John Jungck, Drew Lamar, Glenn Ledder,

Bob Mayes, Richard Schugart

Pictured

Eileen Choe Anindita Varshneya Trixie Ann Roque Monica Hong Natalie Williams Justin Kyle Torres Jen Shin

Ben Fitzpatrick Dondi Dionisio Kam Dahlquist

Eddie Azinge Maggie O'Neil Kristen Horstmann Brandon Klein Mihir Samdarshi Eddie Bachoura

Not pictured

Nicole Anguiano Katherine Scheker Nika Vafadari