Did MicroBooNE kill MiniBooNE?

Ohana Benevides Rodrigues(IIT, Chicago), Matheus Hostert(Harvard U.), Kevin J. Kelly(Texas A&M), Bryce Littlejohn(IIT, Chicago), Pedro A.N. Machado(Fermilab), Tao Zhou*(Texas A&M)

— Based on arXiv: 2503.13594

eV-Scale Sterile Neutrinos

*: presenter (taozhou@tamu.edu)

- MiniBooNE observed a significant excess (4.8 σ) of electron-neutrino-like events.
- Not explained by conventional SM interactions or known backgrounds.
- Simplest interpretation: eV-scale sterile neutrinos driving short-baseline oscillations ($\nu_u \to \nu_e$).
- Connected to earlier LSND anomaly.
- Global fits show tension, but direct tests (like MicroBooNE) are crucial

Short-Baseline Oscillations

Appearance probability:

$$P(\nu_{\mu} \to \nu_{e}) = \sin^{2}(2\theta_{\mu e})\sin^{2}\left(\frac{\Delta m_{41}^{2}L}{4E}\right)$$
, where $\sin^{2}(2\theta_{\mu e}) \equiv 4 |U_{e4}|^{2} |U_{\mu 4}|^{2}$.

• Disappearance probability:

$$P(\nu_e \to \nu_e) = 1 - 4 |U_{e4}|^2 (1 - |U_{e4}|^2) \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

$$P(\nu_\mu \to \nu_\mu) = 1 - 4 |U_{\mu 4}|^2 (1 - |U_{\mu 4}|^2) \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

Degeneracies

- Experiments are not sensitive to just one mixing parameter, but nontrivial combinations of them.
- BNB has intrinsic ν_{ρ} component (~ 0.5%), which is affected by $\nu_e \to \nu_e$ disappearance, controlled by $|U_{e4}|^2$.
- $\cdot \nu_{\mu}$ control samples and induced backgrounds are affected by $\nu_{\mu} \rightarrow \nu_{\mu}$ disappearance, controlled by $|U_{\mu 4}|^2$.
- · Nontrivial impact of oscillation on signal, control samples and background translate into different degeneracies in experiments.

Pitfall of Profiling

Standard 3+1 search

A Slice of fixed Δm_{A1}^2 (Strong exclusion **(V)**) (Weak constraint X)

Actual 3D parameter space

- of $|U_{e4}|^2$ and $|U_{\mu 4}|^2$ MiniBooNE FHC 2020 | ν_e CC ν_e app & dis (A) \square ν_e app & dis (B) \square unosc ν_e bkg \square ν_e app only (A) \square ν_e app only (B) \square
 - MicroBooNE FC 2021 | ν_e CC ν_e app & dis (A) \square ν_e app & dis (B) \square unosc ν_e bkg \square ν_e app only (A) \square ν_{ϵ} app only (B) \square Point A) $\Delta \chi_{\mu B}^2 = 21$ 0.25Point B) $\Delta \chi_{\mu B}^2 = 5.7$

Reconstructed E_{ν}^{QE} (GeV)

- In a traditional 2-parameter search, MicroBooNE is still compatible with MiniBooNE in some space.
- We perform a full oscillation fit, recover significantly stronger constraints in the full parameter space.
- Profiling is misleading and inaccurate. It obscures important physical effects in experiments with significant neutrino-related background.

Slices of Parameter Space

Conclusions

- Answer to the title question: Not yet! But we are close to the truth!
- MicroBooNE already excludes MiniBooNE's 2σ region at $> 2\sigma$ CL.
- Future SBN program will provide a robust test and significantly improve sensitivity, which is capable of excluding the 3σ region at more than 3σ level.

Event Rates

Identical $\sin^2(2\theta_{\mu e})$ could

produce distinct event rates

given different combinations

Point A $(p_{\text{val}}^A = 13.3\%)$

Point B $(p_{\text{val}}^{B} = 0.1\%)$

 $|U_{\mu 4}|^2 = 0.2$