Introduction to Sheaf Theory and Sheaf Cohomology 층 이론 및 층 코호몰로지 입문

Dyne Kim

November 13, 2023

준층(presheaf)

X가 위상공간이라 하자. X 상에서의 가환군의 **준층(presheaf)** \mathscr{F} 는 다음 데이터로 구성되며,

- (a) 모든 열린 부분집합 $U \subseteq X$ 에 대하여 가환군 $\mathscr{F}(U)$
- (b) X의 열린집합들의 모든 포함 관계 $V\subseteq U$ 에 대하여 가환군 사상 $\rho_{UV}: \mathscr{F}(U)\to \mathscr{F}(V)$

다음 조건에 종속된다.

- (0) $\mathscr{F}(\emptyset) = 0$ (\emptyset 는 공집합)
- (1) ρ_{UU} 는 항등사상 $\mathscr{F}(U) \to \mathscr{F}(U)$ 이다.
- (2) 만약 $W \subseteq V \subseteq U$ 가 세 열린 부분집합들이면 $\rho_{UW} = \rho_{VW} \circ \rho_{UV}$

 \mathscr{F} 가 X에서의 준층이면 $\mathscr{F}(U)$ 의 원소들을 열린집합 U에서 준층 \mathscr{F} 의 **단면(section)**이라 할 것이다. $\mathscr{F}(U) = \Gamma(U,\mathscr{F})$ 로도 표기한다. $\rho_{U,V}$ 를 **제한(restriction)**함수라 부르며, $s \in \mathscr{F}(U)$ 인 경우 $\rho_{UV}(s) = s|_V$ 로 표기할 것이다.

층(sheaf)

층은 대략적으로 말하면 '단면이 국소적 정보에 의해 결정되는 준층'이다: 위상공간 X 상에서의 준층 \mathscr{F} 가 $\overset{\bullet}{\bullet}$ (sheaf)이라는 것은 다음의 추가적인 조건들을 만족시키는 것이다.

- (3) 만약 U가 열린집합이며 $\{V_i\}$ 가 U의 열린 덮개이고 $s \in \mathcal{F}(U)$ 가 모든 i에 대하여 $s|_{V_i} = 0$ 을 만족시키는 원소이면 s = 0이다.
- (4) 만약 U가 열린집합이며 $\{V_i\}$ 가 U의 열린 덮개이고 각각의 i에 대하여 원소 $s_i \in \mathscr{F}(V_i)$ 가 존재하여 각각의 i,j에 대하여
- $s_i|_{V_i\cap V_j}=s_j|_{V_i\cap V_j}$ 를 만족시킨다면 원소 $s\in\mathscr{F}(U)$ 가 존재하여 각각의 i에 대하여 $s|_{V_i}=s_i$ 를 만족시킨다.
- $(조건 (3) \circ s)$ 유일성을 함의함을 기억해 두라.)

층의 예시

Example 1.0.1. X가 체 k 상에서의 대수다양체라 하자. 각각의 열린집합 $U \subseteq X$ 에 대하여 $\mathcal{O}(U)$ 가 U에서 k로의 정칙함수환이라 하고 각각의 $V \subseteq U$ 에 대하여 $\rho_{UV}: \mathcal{O}(U) \to \mathcal{O}(V)$ 가 통상적인 제한함수라 하자. 그 경우 $\mathcal{O} \vdash X$ 상에서의 환의 층이다. 이것이 환의 준층임은 명백하다. 조건 (3)과 (4)를 검증하기 위해 우리는 국소적으로 0인 함수는 0이며 정칙함수의 정의(I, $\S 3$)에 의해 국소적으로 정칙인 함수가 정칙임을 기억해두면 된다. 우리는 \mathcal{O} 를 X에서의 **정칙함수층(sheaf of regular functions)**이라 한다.

Example 1.0.3. X가 위상공간이며 A가 가환군인 경우 X에서의 A에 의한 **상수층(constant sheaf)** \mathscr{A} 는 다음과 같다: A에 이산위상을 부여하고 임의의 열린집합 $U\subseteq A$ 에 대하여 $\mathscr{A}(U)$ 가 U에서 A로의 모든 연속 함수들의 군이라 하자. 통상적인 제한함수를 부여하면 우리는 층 \mathscr{A} 를 얻는다. 특히 모든 연결 열린집합 U에 대하여 $\mathscr{A}(U)\cong A$ 이다. 만약 U가 연결성분들이 열린집합인 열린집합이면 $\mathscr{A}(U)$ 는 U의 연결성분마다 대응된 A의 사본들의 직접곱이다.

줄기(stalk)

만약 \mathscr{F} 가 X 상에서의 준층이며 P가 X의 점이면 \mathscr{F} 의 P에서의 **줄기** (stalk) \mathscr{F}_P 를 P를 포함하는 모든 열린집합 U에 대한 군 $\mathscr{F}(U)$ 들의 제한함수 ρ 를 통한 직접극한으로 정의한다.

그러므로 \mathscr{F}_{p} 의 원소는 P의 열린 근방 U와 $\mathscr{F}(U)$ 의 원소 s의 쌍 $\langle U,s\rangle$ 에 의해 표현된다. 이러한 두 쌍 $\langle U,s\rangle$ 와 $\langle V,t\rangle$ 가 \mathscr{F}_{p} 의 동일한 원소를 정의할 필요충분조건은 P의 열린 근방 W가 존재하여 $W\subseteq U\cap V$ 이며 $s|_{W}=t|_{W}$ 를 만족시키는 것이다. 그러므로 우리는 줄기 \mathscr{F}_{p} 의 원소들을 \mathscr{F} 의 단면들의 점 P에서의 **싹(germ)**이라 말한다. 대수다양체 X와 그 정칙 함수층 \mathcal{O} 의 경우 점 P에서의 줄기 \mathcal{O}_{p} 는 단지 (I, \S 3)에서 정의된 P의 X 상에서의 국소환이다.

층 사상(sheaf morphism)

만약 \mathscr{F}, \mathscr{G} 가 X 상에서의 준층이면 **사상(morphism)** $\mathscr{F} \to \mathscr{G}$ 는 각각의 열린집합 U에 대하여 $V \subset U$ 이면 다음 도표가 가환이도록 하는 가환군의 사상 $\varphi(U): \mathscr{F}(U) \to \mathscr{G}(U)$ 들로 구성된다.

여기에서 ρ 와 ρ' 은 \mathscr{F} 와 \mathscr{G} 에서의 제한함수이다. 만약 \mathscr{F} 와 \mathscr{G} 가 X 상에서의 층이면 준층 사상과 같은 정의를 사용한다. **동형사상** (isomorphism)은 양쪽 역사상을 가지는 사상이다. φ 의 준층핵(presheaf kernel), φ 의 준층여핵(presheaf cokernel), φ 의 준층상(presheaf image)을 각각 준층 $U\mapsto \ker(\varphi(U)), U\mapsto \operatorname{coker}(\varphi(U)), U\mapsto \operatorname{im}(\varphi(U))$ 로 정의한다. 만약 $\varphi:\mathscr{F}\to\mathscr{G}$ 가 층 사상이면 φ 의 준층핵은 층이지만 φ 의 준층여핵과 준층상은 일반적으로 층이 아님을 기억해 두라.

동형사상의 국소성

Proposition 1.1. $\varphi: \mathscr{F} \to \mathscr{G}$ 가 위상공간 X 상에서의 층 사상이라 하자. 그 경우 φ 가 동형사상일 필요충분조건은 모든 $P \in X$ 에 대하여 줄기 상에서의 유도된 함수 $\varphi_P: \mathscr{F}_P \to \mathscr{G}_P$ 가 동형사상인 것이다.

Proof. 만약 φ 가 동형사상이면 각각의 φ_P 가 동형사상임은 명백하다. 역으로 모든 $P \in X$ 에 대하여 φ_P 가 동형사상이라 하자. φ 가 동형사상임을 보이기 위해 모든 U에 대하여 $\varphi(U): \mathscr{F}(U) \to \mathscr{G}(U)$ 가 동형사상임을 보이면 충분하다. (그 경우 역사상 ψ 를 $\psi(U) = \varphi(U)^{-1}$ 로 정의할 수 있기 때문이다.) 먼저 $\varphi(U)$ 가 단사임을 보이자. $s \in \mathcal{F}(U)$ 라 하고 $\varphi(s) \in \mathcal{G}(U)$ 가 0이라 하자. 그 경우 모든 점 $P \in U$ 에 대하여 $\varphi(s)$ 의 줄기 \mathcal{G}_P 에서의 상 $\varphi(s)_P$ 가 0이 된다. 각각의 P에 대하여 φ_P 가 단사이므로 각각의 $P \in U$ 에 대하여 \mathscr{F}_P 에서 $s_P = 0$ 임을 연역할 수 있다. $s_P = 0$ 임은 s와 0이 \mathscr{F}_P 에서 동일한 상을 가짐을 의미하며 이는 P의 열린 근방 W_P 가 존재하며 $W_P \subseteq U$ 이고 $s|_{W_P} = 0$ 임을 의미한다. 이제 $U \subset P$ 의 근방 W_P 들에 의해 덮이며 따라서 층 성질 (3)에 의해 s는 U 상에서 0이다. 따라서 $\varphi(U)$ 는 단사이다.

동형사상의 국소성

다음으로 $\varphi(U)$ 가 전사임을 보이자. 단면 $t \in \mathcal{G}(U)$ 가 주어졌다 하자. 각각의 $P \in U$ 에 대하여 $t_P \in \mathcal{G}_P$ 가 그 P에서의 싹이라 하자. φ_P 가 전사이므로 우리는 $\varphi_P(s_P) = t_P$ 를 만족시키는 $s_P \in \mathscr{F}_P$ 를 찾을 수 있다. S_P 가 P의 근방 V_P 상에서의 단면 S(P)에 의해 표현된다 하자. 그 경우 $\varphi(s(P))$ 와 $t|_{V_P}$ 는 $\mathscr{G}(V_P)$ 의 두 원소이며 그 P에서의 싹이 일치한다. 따라서 필요하다면 V_P 를 더 작은 P의 근방으로 대체하는 것으로 $\mathscr{G}(V_P)$ 에서 $\varphi(s(P)) = t|_{V_P}$ 라 가정할 수 있다. 이제 U는 열린집합 V_P 들에 의해 덮이며 각각의 v_P 상에서 단면 $s(P) \in \mathcal{F}(V_P)$ 이다. 만약 P, Q가 두 점이면 $s(P)|_{V_P \cap V_Q}$ 와 $s(Q)|_{V_P \cap V_Q}$ 는 $\mathscr{F}(V_P \cap V_Q)$ 에 속한 두 단면이고 이들은 모두 φ 에 의해 $t|_{V_P\cap V_Q}$ 로 대응된다. 따라서 위에서 증명된 φ 의 단사성에 의해 이들은 같다. 그 경우 층 성질 (4)에 의해 단면 $s \in \mathcal{F}(U)$ 가 존재하여 각각의 P에 대하여 $s|_{V_o} = s(P)$ 를 만족시킨다. 마지막으로 우리는 $\varphi(s) = t$ 임을 확인해야 한다: $\varphi(s)$, $t \in \mathscr{G}(U)$ 에 속한 두 단면이고 각각의 P에 대하여 $\varphi(s)|_{V_p}=t|_{V_p}$ 이며 따라서 층 성질 (3)을 $\varphi(s)-t$ 에 적용하면 $\varphi(s) = t$ 라 결론지을 수 있다.

연관된 층(associated sheaf)

Proposition-Definition 1.2. 준층 \mathscr{F} 가 주어진 경우 층 \mathscr{F} 와 사상 $\theta:\mathscr{F}\to\mathscr{F}^+$ 가 존재하여 임의의 층 \mathscr{G} 와 임의의 사상 $\varphi:\mathscr{F}\to\mathscr{G}$ 에 대하여 유일한 사상 $\psi:\mathscr{F}^+\to\mathscr{G}$ 가 존재하여 $\varphi=\psi\circ\theta$ 를 만족시키는 성질을 가진다. 이에 더해 쌍 (\mathscr{F}^+,θ) 는 유일한 동형사상 하에서 유일하다. \mathscr{F}^+ 는 준층 \mathscr{F} 에 연관된 층(associated sheaf)이라 불린다.

Proof. 층 \mathscr{F}^+ 를 다음과 같이 구축할 것이다: 임의의 열린집합 U에 대하여 $\mathscr{F}^+(U)$ 가 다음을 만족시키는 U에서 $\bigcup_{P\in U} \mathscr{F}_P(U)$ 의 점 상에서의 \mathscr{F} 의 줄기들의 합집합)로의 함수 s들의 집합이라 하자.

- (1) 각각의 $P \in U$ 에 대하여 $s(P) \in \mathscr{F}_P$
- (2) 각각의 $P \in U$ 에 대하여 P의 근방 $V \subset U$ 와 원소 $t \in \mathscr{F}(V)$ 가 존재하여 모든 $Q \in V$ 에 대하여 t의 Q에서의 싹 t_Q 가 s(Q)와 일치한다.

이제 우리는 \mathscr{F}^+ 와 자연스러운 제한함수가 층을 형성하며 자연스러운 사상 $\theta:\mathscr{F}\to\mathscr{F}^+$ 가 존재하고 이것이 기술된 보편 성질을 가짐을 즉시 검증할 수 있다. \mathscr{F}^+ 의 유일성은 보편 성질의 형식적 결과이다. 임의의 점 P에 대하여 $\mathscr{F}_P=\mathscr{F}_P^+$ 임을 기억해 두라. 또한 만약 \mathscr{F} 자신이 층이면 θ 에 의해 \mathscr{F}^+ 와 \mathscr{F} 가 동형임을 기억해 두라.

부분층(subsheaf), 몫층(quotient sheaf)

층 \mathscr{F} 의 부분층(subsheaf)은 모든 열린집합 $U \subset X$ 에 대하여 $\mathscr{F}'(U)$ 가 $\mathscr{F}(U)$ 의 부분군이며 \mathscr{F}' 의 제한함수들이 \mathscr{F} 의 제한함수들에 의해 유도된 것들인 층 \mathscr{F}' 이다. (그 경우 $\forall P$ 에 대하여 \mathscr{F}_b 가 \mathscr{F}_P 의 부분군이다.) 또한 몫층(quotient sheaf) \mathscr{F}/\mathscr{F}' 를 준층 $U \mapsto \mathscr{F}(U)/\mathscr{F}'(U)$ 에 연관된 층으로 정의한다. (이 경우 $\forall P$ 에 대하여 $(\mathscr{F}/\mathscr{F}')_P = \mathscr{F}_P/\mathscr{F}'_P$ 이다.) 층 사상 $\varphi: \mathscr{F} \to \mathscr{G}$ 의 핵(kernel) ker $\varphi \vdash \varphi$ 의 준층핵(이는 \mathscr{F} 의 부분층이다)이고 이것이 **단사(injective)**임은 $\ker \varphi = 0$ 인 것이다. (이는 모든 열린집합 U에서 $\varphi(U): \mathscr{F}(U) \to \mathscr{G}(U)$ 가 단사인 것과 동치이다.) φ 의 **상(image)** im φ 은 φ 의 준층상에 연관된 층이며, 연관된 층의 보편 성질에 의해 자연스러운 함수 $\operatorname{im} \varphi \to \mathscr{G}$ 가 존재한다. (사실 이러한 함수는 단사이고, 따라서 $\operatorname{im} \varphi$ 는 \mathscr{G} 의 부분층과 동일시될 수 있다.) φ 가 **전사(surjective)**임을 im $\varphi = \mathscr{G}$ 인 것으로 정의한다. φ 의 여핵(cokernel) coker φ 를 φ 의 준층여핵에 연관된 층으로 정의한다.

완전열(exact sequence)

층과 사상의 열

$$\cdots \longrightarrow \mathscr{F}^{i-1} \overset{\varphi^{i-1}}{\longrightarrow} \mathscr{F}^{i} \overset{\varphi^{i}}{\longrightarrow} \mathscr{F}^{i+1} \longrightarrow \cdots$$

가 **완전열(exact sequence)**임은 각각의 단계에서 $\ker \varphi^i = \operatorname{im} \varphi^{i-1}$ 이 성립하는 것이다.

Exercise 1.8. 임의의 열린 부분집합 $U\subseteq X$ 에 대하여 X 상에서의 층의 범주에서 가환군의 범주로의 함자 $\Gamma(U,\cdot)$ 는 좌 완전 함자이다. i.e. 만약 $0\to \mathscr{F}'\to \mathscr{F}\to \mathscr{F}''$ 이 층의 완전열이면 $0\to \Gamma(U,\mathscr{F}')\to \Gamma(U,\mathscr{F})\to \Gamma(U,\mathscr{F}'')$ 이 군의 완전열이다.

Proof. 전제조건의 완전열에 등장하는 층 사상을 $\varphi_1, \varphi_2, \varphi_3$ 라 부르자. 전제조건은 $\operatorname{im}(\varphi_1) = 0 = \ker(\varphi_2), \operatorname{im}(\varphi_2) = \ker(\varphi_3)$ 이며, 따라서 $\operatorname{im}(\varphi_1)(U) = \operatorname{im}(\varphi_1(U)) = 0 = \ker(\varphi_2(U)), \operatorname{im}(\varphi_2)(U) = \ker(\varphi_3(U))$ 이다. $\ker(\varphi_2(U)) = 0$ 이므로 $\operatorname{im}(\varphi_2(U)) \cong \Gamma(U, \mathscr{F}')$ 이고 φ_2 의 준층상이 \mathscr{F}' 과 동형이며 따라서 층이다. 이는 모든 U에 대하여 $\operatorname{im}(\varphi_2(U)) = \operatorname{im}(\varphi_2)(U)$ 임을 함의한다. 따라서 $\operatorname{im}(\varphi_2(U)) = \ker(\varphi_3(U))$ 이다.

직접상과 역상(direct and inverse image)

 $f:X\to Y$ 가 위상공간 간의 연속 함수라 하자. X 상에서의 임의의 층 \mathscr{F} 에 대하여 Y 상에서의 **직접상(direct image)**층 $f_*\mathscr{F}$ 를 임의의 열린집합 $V\subseteq Y$ 에 대하여 $(f_*\mathscr{F})(V)=\mathscr{F}(f^{-1}(V))$ 로 정의한다. Y 상에서의 임의의 층 \mathscr{G} 에 대하여 X 상에서의 **역상(inverse image)**층 $f^{-1}\mathscr{G}$ 를 준층 $U\mapsto \lim_{V\supseteq f(U)}\mathscr{G}(V)$ (U는 X에서의 열린집합, 극한은 f(U)를 포함하는 Y의 모든 열린집합에 대하여 취함) 에 연관된 층으로 정의한다. $f^{-1}\mathscr{G}$ 를 나중에 환 달린 공간 사상에 대하여 정의될 층 $f^*\mathscr{G}$ 와 혼동하지 말라. (§5)

만약 Z가 X의 부분집합이며 유도 위상을 가지는 위상 부분공간으로 간주되고 $i:Z\to X$ 가 포함함수이며 \mathscr{F} 가 X 상에서의 층이면 $i^{-1}\mathscr{F}$ 를 \mathscr{F} 의 Z로의 **제한(restriction)**이라 하고 이를 종종 $\mathscr{F}|_Z$ 로 표기한다. $\mathscr{F}|_Z$ 의 임의의 점 $P\in Z$ 에서의 줄기가 \mathscr{F}_P 임을 기억해 두라.

스펙트럼(spectrum)

우리는 집합으로서 Spec A를 A의 모든 소 아이디얼들의 집합으로 정의할 것이다. 만약 α 가 A의 임의의 아이디얼이면 부분집합 $V(\alpha)\subseteq Spec$ A를 α 를 포함하는 모든 소 아이디얼들의 집합으로 정의할 것이다.

Lemma 2.1. (a) $\mathfrak{a},\mathfrak{b}$ 가 A의 아이디얼이면 $V(\mathfrak{a}\mathfrak{b})=V(\mathfrak{a})\cup V(\mathfrak{b})$ 이다. (b) $\{\mathfrak{a}_i\}$ 가 A의 아이디얼들의 임의의 집합이면 $V(\sum \mathfrak{a}_i)=\bigcap V(\mathfrak{a}_i)$ 이다. (c) $\mathfrak{a},\mathfrak{b}$ 가 아이디얼이면 $V(\mathfrak{a})\subseteq V(\mathfrak{b})$ iff $\sqrt{\mathfrak{a}}\supseteq\sqrt{\mathfrak{b}}$ 이다.

Proof. (a) 만약 $\mathfrak{p}\supseteq\mathfrak{a}$ 이며 $\mathfrak{p}\supseteq\mathfrak{b}$ 이면 자명하게 $\mathfrak{p}\supseteq\mathfrak{a}\mathfrak{b}$ 이다. 역으로 만약 $\mathfrak{p}\supseteq\mathfrak{a}\mathfrak{b}$ 이며 일반성을 잃지 않고 $\mathfrak{p}\not\supseteq\mathfrak{b}$ 라 하면 $b\in\mathfrak{b}$ 가 존재하여 $b\notin\mathfrak{p}$ 이다. 이제 임의의 $a\in\mathfrak{a}$ 에 대하여 $ab\in\mathfrak{p}$ 이며 따라서 \mathfrak{p} 가 소아이디얼이므로 $a\in\mathfrak{p}$ 가 성립해야 한다. 그러므로 $\mathfrak{p}\supseteq\mathfrak{a}$ 이다. (b) $\sum\mathfrak{a}_i$ 는 모든 \mathfrak{a}_i 들을 포함하는 최소 아이디얼이므로 \mathfrak{p} 가 $\sum\mathfrak{a}_i$ 를 포함할 필요충분조건은 \mathfrak{p} 가 각각의 \mathfrak{a}_i 를 포함하는 것이다. (c) \mathfrak{a} 의 근기는 \mathfrak{a} 를 포함하는 모든 소 아이디얼들의 집합의 교집합이다. 따라서 $\sqrt{\mathfrak{a}}\supseteq\sqrt{\mathfrak{b}}$ iff $V(\mathfrak{a})\subseteq V(\mathfrak{b})$ 이다.

◆□▶◆□▶◆□▶◆□▶ □ 900

스펙트럼(spectrum)

 $V(\mathfrak{a})$ 형태의 부분집합들을 닫힌 부분집합으로 취하는 것으로 Spec A에 위상을 부여할 수 있다. $f \in A$ 에 대하여 V((f))의 여집합을 D(f)라 한다. 이제 Spec A에서의 환의 층 \mathcal{O} 를 정의하자. 각각의 소 아이디얼 $\mathfrak{p} \subseteq A$ 에 대하여 $A_{\mathfrak{p}}$ 가 A의 \mathfrak{p} 에서의 국소화라 하자. 열린집합 $U \subseteq \mathrm{Spec}\,A$ 에 대하여 $\mathcal{O}(U)$ 를 국소적으로 A의 원소들의 몫이며 각각의 \mathfrak{p} 에 대하여 $s(\mathfrak{p}) \in A_{\mathfrak{p}}$ 를 만족시키는 함수 $s:U \to \coprod_{\mathfrak{p} \in U} A_{\mathfrak{p}}$ 들의 집합으로 정의하자: 엄밀성을 위해 우리는 각각의 $\mathfrak{p} \in U$ 에 대하여 \mathfrak{p} 의 근방 $V \subseteq U$ 와 원소 $a,f \in A$ 가 존재하여 각각의 $\mathfrak{q} \in V$ 에 대하여 $f \notin \mathfrak{q}$ 이며 $A_{\mathfrak{q}}$ 에서 $s(\mathfrak{q}) = a/f$ 를 만족시켜야 한다고 요구할 것이다.

이제 이러한 함수들의 함과 곱이 다시 이러한 함수임은 명백하며 각각의 $A_{\mathfrak{p}}$ 에서 1을 주는 원소 1은 항등원이다. 따라서 $\mathcal{O}(U)$ 는 단위 가환환이다. 만약 $V\subseteq U$ 가 두 열린집합이면 자연스러운 제한함수 $\mathcal{O}(U)\to\mathcal{O}(V)$ 는 환 준동형사상이다. 그 경우 \mathcal{O} 가 준층임은 명백하다. 마지막으로 \mathcal{O} 의 정의의 국소적 본질에 의해 \mathcal{O} 는 층이다.

위상공간 Spec A와 층 ∅의 쌍을 A의 **스펙트럼(spectrum)**이라 한다.

스펙트럼(spectrum)

Proposition 2.2. A가 환이며 (Spec A, \mathcal{O})가 그 스펙트럼인 경우,

- (a) 임의의 $\mathfrak{p}\in\mathsf{Spec}\,A$ 에 대하여 층 \mathcal{O} 의 줄기 $\mathcal{O}_{\mathfrak{p}}$ 는 국소환 $A_{\mathfrak{p}}$ 와 동형이다.
- (b) 임의의 원소 $f \in A$ 에 대하여 환 $\mathcal{O}(D(f))$ 는 국소화 환 A_f 와 동형이다.
- (c) 특히 $\Gamma(\operatorname{Spec} A, \mathcal{O}) \cong A$ 이다.

환 달린 공간(ringed space)

환 달린 공간(ringed space)은 위상공간 X와 X 상에서의 환의 층 \mathcal{O}_X 로 구성된 쌍 (X, \mathcal{O}_X) 이다. (X, \mathcal{O}_X) 에서 (Y, \mathcal{O}_Y) 로의 환 달린 공간 **사상** (morphism)은 연속 함수 $f: X \to Y$ 와 Y 상에서의 환의 층 사상 $f^{\#}: \mathcal{O}_{Y} \to f_{*}\mathcal{O}_{X}$ 의 쌍 $(f, f^{\#})$ 이다. 환 달린 공간 (X, \mathcal{O}_{X}) 가 **국소환 달린 공간(locally ringed space)**이라는 것의 정의는 각각의 점 $P \in X$ 에 대하여 줄기 $\mathcal{O}_{X,P}$ 가 국소환인 것이다. 국소환 달린 공간 **사상** (morphism)은 각각의 점 $P \in X$ 에 대하여 국소환들의 유도된 함수 (아래를 참조하라) $f_P^\#: \mathcal{O}_{Y,f(P)} \to \mathcal{O}_{X,P}$ 가 국소환의 **국소준동형사상** (local homomorphism)이도록 하는 환 달린 공간 사상 $(f, f^{\#})$ 이다. 이러한 마지막 조건을 설명하겠다. 먼저 주어진 점 $P \in X$ 에 대하여 층 사상 $f^{\#}: \mathcal{O}_{Y} \to f_{*}\mathcal{O}_{X}$ 는 Y에서의 모든 열린집합 V에 대하여 환 준동형사상 $\mathcal{O}_Y(V) \to \mathcal{O}_X(f^{-1}V)$ 를 유도한다. V가 f(P)의 모든 열린 근방을 범위로 가지는 경우 $f^{-1}(V)$ 는 P의 모든 근방들의 집합의 부분집합에 속한다.

환 달린 공간(ringed space)

직접극한을 취하면 다음 함수를 얻는다.

$$\mathcal{O}_{Y,f(P)} = \lim_{\stackrel{\longrightarrow}{V}} \mathcal{O}_Y(V) \to \lim_{\stackrel{\longrightarrow}{V}} \mathcal{O}_X(f^{-1}V)$$

후자의 극한은 줄기 $\mathcal{O}_{X,P}$ 로 대응된다. 그러므로 우리는 준동형사상 $f_p^\#:\mathcal{O}_{Y,f(P)}\to\mathcal{O}_{X,P}$ 를 유도했다. 우리는 이것이 국소준동형사상이어야 한다고 요구한다: 만약 A와 B가 각각 극대 아이디얼 \mathfrak{m}_A 와 \mathfrak{m}_B 를 가지는 국소환이면 준동형사상 $\varphi:A\to B$ 가 국소준동형사상(local homomorphism)이라는 것의 정의는 $\varphi^{-1}(\mathfrak{m}_B)=\mathfrak{m}_A$ 가 성립하는 것이다. 국소환 달린 공간 **동형사상(isomorphism)**은 양쪽 역사상을 가지는 사상이다. 그러므로 사상 $(f,f^\#)$ 가 동형사상일 필요충분조건은 f가 기반 위상공간 간의 위상동형사상이며 $f^\#$ 가 층 동형사상인 것이다.

환 달린 공간(ringed space)

Proposition 2.3.

- (a) 만약 A가 환이면 (Spec A, O)는 국소환 달린 공간이다.
- (b) 만약 $\varphi:A\to B$ 가 환 준동형사상이면 φ 는 다음과 같은 자연스러운 국소환 달린 공간 사상을 유도한다.

$$(f, f^{\#}) : (\operatorname{\mathsf{Spec}} B, \mathcal{O}_{\operatorname{\mathsf{Spec}} B}) \to (\operatorname{\mathsf{Spec}} A, \mathcal{O}_{\operatorname{\mathsf{Spec}} A})$$

(c) 만약 A와 B가 환이면 Spec B에서 Spec A로의 임의의 국소환 달린 공간 사상은 (b)에서와 같이 환 준동형사상 $\varphi:A\to B$ 에 의해 유도된다.

스킴(scheme)

아핀 스킴(affine scheme)은 (국소환 달린 공간으로서) 어떠한 환의 스펙트럼과 동형인 국소환 달린 공간 (X,\mathcal{O}_X) 이다. 스킴(scheme)은 모든 점에 대하여 열린 근방 U가 존재하여 위상공간 U와 제한층 $\mathcal{O}_X|_U$ 의 쌍이 아핀 스킴이도록 하는 국소환 달린 공간 (X,\mathcal{O}_X) 이다. 우리는 X를 스킴 (X,\mathcal{O}_X) 의 기반위상공간(underlying topological space)이라 할 것이며 \mathcal{O}_X 를 그 구조층(structure sheaf)이라 할 것이다.

스킴 **사상(morphism)**은 국소환 달린 공간으로서의 사상이다. **동형사상** (isomorphism)은 양쪽 역사상을 가지는 사상이다.

X가 **Noether(Noetherian)** 스킴임은 유한 개 Noether 환 A_i 들에 대한 아핀 열린 부분집합 Spec A_i 들로 덮일 수 있는 것이다.

아핀 공간(affine space)

Example 2.3.3. 만약 k가 체이면 k 상에서의 **아핀 직선(affine line)** \mathbb{A}^1_k 을 Spec k[x]로 정의한다. 이는 0 아이디얼에 대응하는 점 ξ 를 가지며 그 폐포는 공간 전체이다. 이는 **일반점(generic point)**이라 불린다. k[x]의 극대 아이디얼에 대응하는 다른 점들은 모두 닫힌점이다. 이들은 x에 대한 상수가 아닌 모닉 기약다항식들과 일대일 대응한다. 특히 만약 k가 대수적으로 닫혀 있으면 \mathbb{A}^1_k 의 닫힌점들은 k의 원소들과 일대일 대응한다.

아핀 공간(affine space)

Example 2.3.4. 대수적으로 닫힌 체 k에 대하여 k 상에서의 **아핀 평면 (affine plane)** $\mathbb{A}_k^2 = \operatorname{Spec}[x,y]$ 를 고려하자. 닫힌점 (x-a,y-b)들은 I 장의 대수다양체 \mathbb{A}^2 의 점 (a,b)와 위상동형적으로 대응된다. $(0) \subseteq k[x,y]$ 에 대응하는 **일반점(generic point)** ξ 의 폐포는 공간 전체이다. 또한 각각의 기약다항식 f(x,y)에 대하여 곡선 f(x,y) = 0의 **일반점(generic point)** η 가 존재하여 그 폐포가 η 및 f(a,b) = 0인 모든 닫힌점 (a,b)들로 구성되도록 한다.

모듈의 층(sheaf of modules)

 (X, \mathcal{O}_X) 가 환 달린 공간이라 하자. (§2를 참조하라.) \mathcal{O}_X -모듈의 층(sheaf of \mathcal{O}_X -modules) (또는 간단히 \mathcal{O}_X -모듈(\mathcal{O}_X -module))은 X에서의 층 \mathscr{F} 중 각각의 열린집합 $U \subseteq X$ 에 대하여 군 $\mathscr{F}(U)$ 가 $\mathcal{O}_X(U)$ -모듈이고 열린집합들의 각각의 포함 관계 $V \subset U$ 에 대하여 제한 준동형사상 $\mathscr{F}(U) \to \mathscr{F}(V)$ 가 환 준동형사상 $\mathcal{O}_X(U) \to \mathcal{O}_X(V)$ 를 통해 모듈 구조와 호환되는 것이다. \mathcal{O}_X -모듈의 층의 **사상(morphism)** $\mathscr{F} \to \mathscr{G}$ 는 층의 사상 중 각각의 열린집합 $U \subseteq X$ 에 대하여 사상 $\mathscr{F}(U) \to \mathscr{G}(U)$ 가 $\mathcal{O}_X(U)$ -모듈 준동형사상이도록 하는 것들이다. \mathcal{O}_X -모듈 사상의 핵, 여핵, 상이 다시 \mathcal{O}_X -모듈임을 기억해 두라. 만약 \mathscr{F}' 이 \mathcal{O}_X -모듈 \mathscr{F} 의 \mathcal{O}_X -모듈의 부분층이면 몫층 \mathscr{F}/\mathscr{F}' 이 \mathcal{O}_X -모듈이다. \mathcal{O}_{X} -모듈들의 임의의 직접합, 직접곱, 직접극한, 역극한이 \mathcal{O}_{X} -모듈이다. 만약 \mathscr{F} 와 \mathscr{G} 가 두 \mathcal{O}_X -모듈이면 \mathscr{F} 에서 \mathscr{G} 로의 사상들의 군을 $\operatorname{Hom}_{\mathcal{O}_X}(\mathscr{F},\mathscr{G})$, 또는 혼동의 여지가 없다면 $\operatorname{Hom}_X(\mathscr{F},\mathscr{G})$ 또는 $\operatorname{Hom}(\mathscr{F},\mathscr{G})$ 로 표기한다. \mathcal{O}_X -모듈과 사상들의 열이 **완전(exact)**열임은 가화군의 층의 열로서 완전열인 것이다.

모듈의 층(sheaf of modules)

만약 U가 X의 열린 부분집합이며 \mathscr{F} 가 \mathcal{O}_X -모듈이면 $\mathscr{F}|_U$ 가 $\mathcal{O}_X|_U$ -모듈이다. 만약 \mathscr{F} 와 \mathscr{G} 가 두 \mathcal{O}_X -모듈이면 다음의 준층

 $U \mapsto \mathsf{Hom}_{\mathcal{O}_X|_U}(\mathscr{F}|_U,\mathscr{G}|_U)$

가 층이며 이를 **층** \mathscr{H} om(sheaf \mathscr{H} om)(Ex. 1.15)이라 하고 $\mathcal{H}om_{\mathcal{O}_{X}}(\mathcal{F},\mathcal{G})$ 로 표기한다. 이는 또한 \mathcal{O}_{X} -모듈이다. 두 \mathcal{O}_X -모듈의 **텐서곱(tensor product)** $\mathscr{F} \otimes_{\mathcal{O}_X} \mathscr{G}$ 를 준층 $U \mapsto \mathscr{F}(U) \otimes_{\mathcal{O}_X(U)} \mathscr{G}(U)$ 에 연관된 층으로 정의한다. 우리는 종종 \mathcal{O}_X 가 있는 것으로 간주하고 이를 간단히 $\mathscr{F} \otimes \mathscr{G}$ 로 표기할 것이다. \mathcal{O}_X -모듈 \mathscr{F} 가 **자유(free)**라는 것의 정의는 \mathcal{O}_X 의 사본들의 직접합과 동형인 것이다. \mathscr{F} 가 **국소자유(locally free)**라는 것의 정의는 $\mathscr{F}|_{\mathcal{U}}$ 가 자유 $\mathcal{O}_X|_{U}$ -모듈이도록 하는 열린집합 U들로 X를 덮을 수 있는 것이다. 이 경우 이러한 열린집합 상에서 \mathcal{F} 의 계수(rank)는 필요한 구조층의 사본의 (유한 또는 무한할 수 있는) 개수이다. 만약 X가 연결이면 국소자유층의 계수는 어디서나 동일하다. 계수 1의 국소자유층은 가역층 (invertible sheaf)이라고도 불린다.

모듈의 층(sheaf of modules)

아이디얼의 층(sheaf of ideals)은 \mathcal{O}_X 의 부분층인 모듈의 층이다. $f:(X,\mathcal{O}_X)\to (Y,\mathcal{O}_Y)$ 가 환 달린 공간 사상이라 하자. (\S 2를 참조하라.) 만약 \mathscr{F} 가 \mathcal{O}_X -모듈이면 $f_*\mathscr{F}$ 는 $f_*\mathcal{O}_X$ -모듈이다. Y에서의 환의 층 사상 $f^\#:\mathcal{O}_Y\to f_*\mathcal{O}_X$ 가 존재하므로 이는 $f_*\mathscr{F}$ 에 자연스러운 \mathcal{O}_Y -모듈 구조를 준다. 이를 \mathscr{F} 의 사상 f 하에서의 **직접상(direct image)**이라 부른다. 이제 \mathscr{G} 가 \mathcal{O}_Y -모듈의 층이라 하자. 그 경우 $f^{-1}\mathscr{G}$ 는 $f^{-1}\mathcal{O}_Y$ -모듈이다. f^{-1} 의 수반 성질에 의해 X에서의 환의 층 사상 $f^{-1}\mathcal{O}_Y\to \mathcal{O}_X$ 가 존재한다. 따라서 \mathscr{G} 의 f 하에서의 **역상(inverse image)**을 다음과 같이 \mathcal{O}_X -모듈 $f^*\mathscr{G}=f^{-1}\mathscr{G}\otimes_{f^{-1}\mathcal{O}_Y}\mathcal{O}_X$ 로 정의할 수 있다. 특히 임의의 \mathcal{O}_X -모듈 \mathscr{F} 와 임의의 \mathcal{O}_Y -모듈 \mathscr{G} 에 대하여 다음과 같은 자연스러운 군 동형사상이 존재한다.

 $\operatorname{Hom}_{\mathcal{O}_X}(f^*\mathscr{G},\mathscr{F})\cong \operatorname{Hom}_{\mathcal{O}_Y}(\mathscr{G},f_*\mathscr{F})$

모듈에 연관된 층(sheaf associated to a module)

A가 환이며 M이 A-모듈이라 하자. Spec A 상에서의 M에 연관된 층 (sheaf associated to M) \tilde{M} 을 다음과 같이 정의한다: 각각의 소 아이디얼 $\mathfrak{p}\subseteq A$ 에 대하여 $M_{\mathfrak{p}}$ 가 M의 \mathfrak{p} 에서의 국소화라 하자. 임의의 열린집합 $U\subseteq \operatorname{Spec} A$ 에 대하여 군 $\tilde{M}(U)$ 를 함수 $s:U\to\coprod_{\mathfrak{p}\in U}M_{\mathfrak{p}}$ 들 중 각각의 $\mathfrak{p}\in U$ 에 대하여 $s(\mathfrak{p})\in M_{\mathfrak{p}}$ 를 만족시키며 국소적으로 $m\in M$ 과 $f\in A$ 의 비 m/f로 표현 가능한 것들의 집합으로 정의하자. 엄밀하게 표현하면 각각의 $\mathfrak{p}\in U$ 에 대하여 \mathfrak{p} 의 U에서의 근방 V와 원소 $m\in M, f\in A$ 가 존재하여 각각의 $\mathfrak{q}\in V$ 에 대하여 $f\notin \mathfrak{q}$ 이며 $M_{\mathfrak{q}}$ 에서 $s(\mathfrak{q})=m/f$ 가 성립한다는 것이다. 자명한 제한함수들을 부여하면 \tilde{M} 이 층이 된다.

모듈에 연관된 층(sheaf associated to a module)

Proposition 5.1. A가 환이고 M이 A-모듈이며 \tilde{M} 이 M에 연관된 $X = \operatorname{Spec} A$ 상에서의 층이라 하자. 그 경우 다음이 성립한다:

- (a) \tilde{M} 은 \mathcal{O}_X -모듈이다.
- (b) $\forall \mathfrak{p} \in X$ 에 대하여 층 \tilde{M} 의 줄기 $(\tilde{M})_{\mathfrak{p}}$ 는 국소화 $M_{\mathfrak{p}}$ 와 동형이다.
- (c) $\forall f \in A$ 에 대하여 A_f -모듈 $\tilde{M}(D(f))$ 는 국소화 M_f 와 동형이다.
- (d) 특히 $\Gamma(X, \tilde{M}) = M$ 이다.

Proposition 5.2. A가 환이며 $X = \operatorname{Spec} A$ 라 하자. 또한 $A \to B$ 가 환 준동형사상이며 $f : \operatorname{Spec} B \to \operatorname{Spec} A$ 가 스펙트럼 간의 대응하는 사상이라 하자. 그 경우 다음이 성립한다:

- (a) 함수 $M\mapsto \tilde{M}$ 은 A-모듈의 범주에서 \mathcal{O}_X -모듈의 범주로의 완전 충실충만한 함자를 제공한다.
- (b) 만약 M과 N이 두 A-모듈이면 $(M \otimes_A N) \cong \tilde{M} \otimes_{\mathcal{O}_X} \tilde{N}$ 이다.
- (c) 만약 $\{M_i\}$ 가 A-모듈들의 임의의 족이면 $(\bigoplus^{\sim} M_i)\cong \bigoplus \tilde{M_i}$ 이다.
- (d) 임의의 B-모듈 N에 대하여 $f_*(\tilde{N}) \cong ({}_A\tilde{N})$ 이다. (여기에서 ${}_AN$ 은 N이 A-모듈로 간주됨을 의미한다.)
- (e) 임의의 A-모듈 M에 대하여 $f^*(\tilde{M}) \cong (M \otimes_A B)$ 이다.

연접층(coherent sheaf)

 (X,\mathcal{O}_X) 가 스킴이라 하자. \mathcal{O}_X -모듈의 층 \mathscr{T} 가 **준연접층(quasi-coherent sheaf)**이라는 것의 정의는 X가 다음을 만족시키는 아핀 열린집합 $U_i = \operatorname{Spec} A_i$ 들로 덮일 수 있는 것이다: 각각의 i에 대하여 A_i -모듈 M_i 가 존재하여 $\mathscr{F}|_{U_i}\cong M_i$ 를 만족시킨다. \mathscr{F} 가 **연접(coherent)**층이라는 것을 추가적으로 각각의 M_i 가 유한생성 A_i -모듈이도록 선택될 수 있는 것으로 정의한다.

Proposition 5.4. X가 스킴이라 하자. 그 경우 \mathcal{O}_X -모듈 \mathscr{F} 가 준연접일 필요충분조건은 X의 모든 아핀 열린 부분집합 $U=\operatorname{Spec} A$ 에 대하여 A-모듈 M이 존재하여 $\mathscr{F}|_U=\tilde{M}$ 을 만족시키는 것이다. 만약 X가 Noether이면 \mathscr{F} 가 연접층일 필요충분조건은 유한생성 A-모듈 M에 대한 동일한 것이 성립하는 것이다.

Corollary 5.5. A가 환이며 X= Spec A라 하자. 함자 $M\mapsto \tilde{M}$ 은 A-모듈의 범주와 준연접 \mathcal{O}_X -모듈의 범주 간의 동치를 제공한다. 그 역은 함자 $\mathscr{F}\mapsto \Gamma(X,\mathscr{F})$ 이다. 만약 A가 Noether이면 동일한 함자가 유한생성 A-모듈의 범주와 연접 \mathcal{O}_X -모듈의 범주 간의 동치를 제공한다.

복합체(complex)

Abel 범주 $\mathfrak A$ 에서의 **복합체(complex)** A^{\bullet} 은 $i \in \mathbb Z$ 에 대한 대상 A^i 들과 $\forall i \ d^{i+1} \circ d^i = 0$ 을 만족시키는 사상 $d^i : A^i \to A^{i+1}$ 들의 족이다. **복합체 사상(complex morphism)** $f: A^{\bullet} \to B^{\bullet}$ 은 쌍대경계사상 d^i 들과 교환 가능한 각각의 i에 대한 사상 $f^i: A^i \to B^i$ 들로 구성된다. 복합체 A^{\bullet} 의 i번째 **코호몰로지 대상(cohomology object)** $h^i(A^{\bullet})$ 은 $\ker d^i/\inf d^{i-1}$ 로 정의된다. 만약 $f: A^{\bullet} \to B^{\bullet}$ 가 복합체 사상이면 f는 자연스러운 사상 $h^i(f): h^i(A^{\bullet}) \to h^i(B^{\bullet})$ 를 유도한다. 만약 $0 \to A^{\bullet} \to B^{\bullet} \to C^{\bullet} \to 0$ 이 복합체의 짧은 완전열이면 자연스러운 사상 $\delta^i: h^i(C^{\bullet}) \to h^{i+1}(A^{\bullet})$ 이 존재하여 다음의 긴 완전열을 제공한다.

$$\cdots \to h^i(A^{\bullet}) \to h^i(B^{\bullet}) \to h^i(C^{\bullet}) \stackrel{\delta^i}{\to} h^{i+1}(A^{\bullet}) \to \cdots$$

사상 $f,g:A^{\bullet}\to B^{\bullet}$ 가 **호모토픽(homotopic)**함은 $f\sim g$ 로 표기하며 $\forall i$ 에 대하여 $k^i:A^i\to B^{i-1}$ 들의 족이 존재하여 f-g=dk+kd를 만족시키는 것이다. 이 경우 f,g는 $\forall i$ 에 대하여 코호몰로지 대상에서 동일한 사상 $h^i(A^{\bullet})\to h^i(B^{\bullet})$ 을 유도한다.

좌/우 완전 함자(left/right exact functor)

Abel 범주 간의 공변 함자 $F: \mathfrak{A} \to \mathfrak{B}$ 가 **덧셈적(additive)**이라는 것의 정의는 \mathfrak{A} 에서의 임의의 두 대상 A,A'에 대하여 유도된 함수 $Hom(A,A') \to Hom(FA,FA')$ 이 가환군의 준동형사상인 것이다. F가 **좌 완전(left exact)**임은 덧셈적이며 \mathfrak{A} 에서의 모든 짧은 완전열

$$0 \rightarrow A' \rightarrow A \rightarrow A'' \rightarrow 0$$

에 대하여 다음 열이 筇에서의 완전열인 것이다.

$$0 \rightarrow FA' \rightarrow FA \rightarrow FA''$$

좌측 대신 우측에 0을 쓸 수 있다면 F가 **우 완전(right exact)**이라 한다. 만약 좌우 양쪽에서 완전하면 **완전(exact)**이라 한다. 반변 함자에 대해서도 마찬가지로 정의할 수 있다.

단사 분해(injective resolution)

 \mathfrak{A} 의 대상 I가 **단사(injective)**임은 함자 $\mathsf{Hom}(\cdot,I)$ 가 완전 함자인 것이다. \mathfrak{A} 의 대상 A의 **단사 분해(injective resolution)**는 차수 $i \geq 0$ 에서 정의된 복합체 I^{\bullet} 와 사상 $A \rightarrow I^{0}$ 로 다음을 만족시키는 것이다: 각각의 i에 대하여 I^{i} 가 \mathfrak{A} 에서의 단사 대상이며 다음의 열이 완전열이다.

$$0 \to A \stackrel{\varepsilon}{\to} I^0 \to I^1 \to \cdots$$

만약 \mathfrak{A} 의 모든 대상이 \mathfrak{A} 의 단사 대상의 부분대상과 동형이면 \mathfrak{A} 가 충분한 단사 대상을 가졌다(has enough injectives)고 한다. (e.g. 환의 범주, \mathcal{O}_X -모듈의 범주 등) 이 경우 모든 대상이 단사 분해를 가진다. \mathfrak{A} 가 충분한 단사 대상을 가지는 Abel 범주이며 $F:\mathfrak{A}\to\mathfrak{B}$ 가 공변 좌완전 함자인 경우 F의 우 유도 함자(right derived functor) $R^iF,F\geq 0$ 을 다음과 같이 구축한다: \mathfrak{A} 의 각각의 대상 A에 대하여 A의 단사 분해 I^{\bullet} 를 하나씩 선택하자. 그 경우 $R^iF(A)=h^i(F(I^{\bullet}))$ 로 정의한다.

유도 함자(derived functor)

Theorem 1.1A.

- (a) $\forall i \geq 0$ 에 대하여 R^iF 는 덧셈적 함자 $\mathfrak{A} \to \mathfrak{B}$ 이며 단사 분해의 선택에 (자연동형 하에서) 독립적이다.
- (b) 자연동형사상 $F \cong R^0 F$ 가 존재한다.
- (c) \forall 완전열 $0 \to A' \to A \to A'' \to 0$ 과 $\forall i \geq 0$ 에 대하여 자연스러운 사상 $\delta^i: R^iF(A'') \to R^{i+1}F(A')$ 이 존재하여 다음이 완전열이다:

$$\cdots \to R^{i}F(A') \to R^{i}F(A) \to R^{i}F(A'') \xrightarrow{\delta^{i}} R^{i+1}F(A') \to R^{i+1}F(A) \to \cdots$$

(d) (c)의 완전열에서 다른 완전열 $0 \rightarrow B' \rightarrow B \rightarrow B''$ 로의 사상이 주어진 경우 δ 들은 다음의 가환 도표를 만족시킨다.

$$R^{i}F(A'') \xrightarrow{\delta^{i}} R^{i+1}F(A')$$

$$\downarrow \qquad \qquad \downarrow$$

$$R^{i}F(B'') \xrightarrow{\delta^{i}} R^{i+1}F(B')$$

(e) \mathfrak{A} 의 각각의 단사 대상 I와 각각의 i > 0에 대하여 $R^i F(I) = 0$ 이다.

위와 같은 $F: \mathfrak{A} \to \mathfrak{B}$ 에 대하여 \mathfrak{A} 의 대상 J가 F에 대하여 **비순환** (acyclic)이라는 것의 정의는 모든 i > 0에 대하여 $R^iF(J) = 0$ 인 것이다.

Proposition 1.2A. 다음과 같은 완전열이 존재한다 하자.

$$0 \to A \to J^0 \to J^1 \to \cdots$$

여기에서 각각의 J^i 가 F에 대하여 비순환이라 하자. (이 경우 J^{\bullet} 가 A의 F-비순환 분해(F-acyclic resolution)라 한다.) 그 경우 각각의 $i \geq 0$ 에 대하여 자연동형사상 $R^iF(A) \cong h^i(F(J^{\bullet}))$ 가 존재한다.

δ -함자(δ -functor)

 \mathfrak{A} 와 \mathfrak{B} 가 Abel 범주라 하자. \mathfrak{A} 에서 \mathfrak{B} 로의 (공변) δ -**함자((covariant)** δ -**functor)**는 함자들의 족 $T=(T^i)_{i\geq 0}$ 에 각각의 짧은 완전열 $0\to A'\to A\to A''\to 0$ 에 대한 사상 $\delta^i:T^i(A'')\to T^{i+1}(A')$ 들의 족을 부여한 것으로 다음을 만족시키는 것이다:

(1) 위와 같은 ∀ 짧은 완전열에 대하여 다음의 긴 완전열이 존재한다.

$$0 \to T^{0}(A') \to T^{0}(A) \to T^{0}(A'') \stackrel{\delta^{0}}{\to} T^{1}(A') \to \cdots$$
$$\cdots \to T^{i}(A) \to T^{i}(A'') \stackrel{\delta^{i}}{\to} T^{i+1}(A') \to T^{i+1}(A) \to \cdots$$

(2) 위와 같은 짧은 완전열에서 다른 $0 \to B' \to B \to B'' \to 0$ 으로의 임의의 사상에 대하여 δ 들은 다음의 가환 도표를 만족시킨다.

$$T^{i}(A'') \xrightarrow{\delta'} T^{i+1}(A')$$

$$\downarrow \qquad \qquad \downarrow$$

$$T^{i}(B'') \xrightarrow{\delta^{i}} T^{i+1}(B')$$

δ -함자(δ -functor)

 δ -함자 $T=(T^i): \mathfrak{A} \to \mathfrak{B}$ 가 **보편(universal)**이라는 것의 정의는 임의의 다른 δ -함자 $T'=(T'^i): \mathfrak{A} \to \mathfrak{B}$ 와 함자 간의 임의의 사상 $f^0: T^0 \to T'^0$ 가 주어진 경우 (주어진 f^0 로 시작하는) 각각의 $i \geq 0$ 에 대한 유일한 사상들의 열 $f^i: T^i \to T'^i$ 가 존재하여 각각의 짧은 완전열에 대하여 δ^i 와 교환 가능한 것이다. 덧셈적 함자 $F: \mathfrak{A} \to \mathfrak{B}$ 가 **삭제 가능(effaceable)**이라는 것의 정의는 \mathfrak{A} 의 각각의 대상 A에 대하여 단사 사상 $u: A \to M$ 이 존재하여 어떠한 M에 대하여 F(u)=0을 만족시키는 것이다. 이것이 **쌍대 삭제 가능(coeffaceable)**이라는 것의 정의는 각각의 A에 대하여 전사 사상 $u: P \to A$ 가 존재하여 F(u)=0을 만족시키는 것이다.

Theorem 1.3A. $T = (T^i)_{i \geq 0}$ 이 \mathfrak{A} 에서 \mathfrak{B} 로의 공변 δ -함자라 하자. 만약 각각의 i > 0에 대하여 T^i 가 삭제 가능하면 T는 보편이다.

유도 함자의 보편성

Corollary 1.4. \mathfrak{A} 가 충분한 단사 대상을 가진다 하자. 그 경우 임의의 좌 완전 함자 $F:\mathfrak{A}\to\mathfrak{B}$ 에 대하여 유도 함자 $(R^iF)_{i\geq 0}$ 은 $F\cong R^0F$ 인 보편 δ -함자를 형성한다. 역으로 만약 $T=(T^i)_{i\geq 0}$ 이 임의의 보편 δ -함자이면 T^0 가 좌 완전이며 각각의 $i\geq 0$ 에 대하여 T^i 가 R^iT^0 와 동형이다.

Proof. 만약 F가 좌 완전 함자이면 (1.1A)에 의해 $(R^iF)_{i\geq 0}$ 은 δ -함자를 형성한다. 이에 더해 임의의 대상 A에 대하여 $u:A\to I$ 가 A에서 단사 대상으로의 단사 사상이라 하자. 그 경우 (1.1A)에 의해 각각의 i>0에 대하여 $R^iF(I)=0$ 이며 따라서 $R^iF(u)=0$ 이다. 그러므로 각각의 i>0에 대하여 R^iF 가 삭제 가능하다. (R^iF) 가 보편임이 정리에서 따라온다. 반면에 보편 δ -함자 T가 주어진 경우 δ -함자의 정의에 의해 T^0 가 좌 완전 함자이다. \mathfrak{A} 가 충분한 단사 대상을 가지므로 유도 함자 R^iT^0 가 존재한다. 우리는 위에서 (R^iT^0) 가 다른 보편 δ -함자임을 보였다. $R^0T^0=T^0$ 가 성립하며, 정의에 의해 임의의 F에 대하여 $T^0=F$ 를 만족시키는 보편 δ -함자 T는 (동형 하에서) 많아야 하나 존재할 수 있으므로 $R^iT^0\cong T^i$ 이다.

유도 함자 코호몰로지(derived functor cohomology)

X가 위상공간이라 하자. $\Gamma(X,\cdot)$ 가 $\mathfrak{Ab}(X)$ 에서 \mathfrak{Ab} 로의 대역적 단면 함자라 하자. **코호몰로지 함자(cohomology functor)** $H^i(X,\cdot)$ 들을 $\Gamma(X,\cdot)$ 의 우 유도 함자들로 정의한다. 임의의 층 \mathscr{F} 에 대하여 군 $H^i(X,\mathscr{F})$ 들은 \mathscr{F} 의 **코호몰로지 군(cohomology group)**들이다. X와 \mathscr{F} 가 추가적인 구조를 가지더라도 (e.g. X가 스킴이며 \mathscr{F} 가 준연접층) 항상 \mathscr{F} 를 단순히 기반 위상공간 X에서의 가환군의 층으로 간주하여 코호몰로지를 이러한 관점에서 취한다.

위상공간 X에서의 층 \mathscr{F} 가 \mathbf{Cd} (flasque)이라는 것의 정의는 열린집합의 임의의 포함 관계 $V\subseteq U$ 에 대하여 제한함수 $\mathscr{F}(U)\to\mathscr{F}(V)$ 가 전사인 것이다. 특히 모든 단사 \mathcal{O}_X -모듈이 연성층이며 (Lemma 2.4) 연성층의 모든 차수의 코호몰로지가 0이다. (Proposition 2.5) i.e. 연성층은 함자 Γ 에 대하여 비순환적이며, 우리는 연성 분해를 통해 코호몰로지를 계산할수 있다.

연성 분해(flasque resolution)

Proposition 2.6. (X, \mathcal{O}_X) 가 환 달린 공간이라 하자. 그 경우 함자 $\Gamma(X,\cdot):\mathfrak{Mod}(X)\to\mathfrak{Ab}(X)$ 의 유도 함자는 코호몰로지 함자 $H^i(X,\cdot)$ 와 일치한다.

Proof. $\Gamma(X,\cdot)$ 를 $\mathfrak{Mod}(X)$ 에서 \mathfrak{A} 6로의 함자로 간주하고 범주 $\mathfrak{Mod}(X)$ 에서의 단사 분해를 취하는 것으로 그 유도 함자를 계산한다. 그러나 (2.4)에 의해 임의의 단사층은 연성층이며 (2.4) 연성층이 비순환이므로 이러한 분해는 통상적인 코호몰로지 함자를 준다. (1.2A)

Remark 2.6.1. (X, \mathcal{O}_X) 가 한 달린 공간이고 $A = \Gamma(X, \mathcal{O}_X)$ 라 하자. 그경우 임의의 \mathcal{O}_X -모듈의 층 \mathscr{F} 에 대하여 $\Gamma(X, \mathscr{F})$ 는 자연스러운 A-모듈 구조를 가진다. 특히 범주 $\mathfrak{Mod}(X)$ 에서의 분해를 이용하여 코호몰로지를 계산할 수 있으므로 \mathscr{F} 의 모든 코호몰로지 군은 자연스러운 A-모듈 구조를 가진다; 연관된 완전열은 A-모듈의 열이다; 이와 유사한 다른 것들도 성립한다. 그러므로 예를 들어 만약 X가 어떠한 환 B에 대한 Spec B 상에서의 스킴이면 임의의 \mathcal{O}_X -모듈 \mathscr{F} 의 코호몰로지 군은 자연스러운 B-모듈 구조를 가진다.

Riemann-Roch

곡선의 종수 $g=\dim_k H^1(X,\mathcal{O}_X)$ 로 정의한다. 곡선 X에서의 **인자(divisor)**는 $D=\sum n_i P_i$ $(n_i\in\mathbb{Z})$ 이며, $\deg D=\sum n_i$ 이다. 두 인자가 **선형 동치(linearly equivalent)**임은 이들의 차가 유리함수의 인자인 것이다. 인자 D의 선형 동치류는 가역층 $\mathcal{L}(D)$ 와 1-1 대응한다.

X에서의 인자 $D = \sum n_i P_i$ 가 **유효(effective)**인자임은 모든 $n_i \geq 0$ 인 것이다. 주어진 인자 D와 선형 동치인 모든 유효인자들의 집합은 **완비선형계(complete linear system)**라 불리며 |D|로 표기된다. |D|의 원소들은 다음 공간과 일대일 대응한다.

$$(H^0(X, \mathcal{L}(D)) - \{0\})/k^*$$

그러므로 |D|는 사영공간의 닫힌점들의 집합의 구조를 가진다. (II, 7.7) $\dim_k H^0(X, \mathcal{L}(D))$ 를 I(D)로 표기한다. 이제 다음이 성립한다:

$$I(D) - I(K - D) = \deg D + 1 - g$$

Riemann-Roch

Proof. 인자 K-D는 가역층 $\omega_X\otimes \mathscr{L}(D)$ 에 대응한다. X가 사영적이므로 (II, 6.7) Serre 쌍대성(III, 7.12.1)을 적용하여 벡터 공간 $H^0(X,\omega_X\otimes \mathscr{L}(D))$ 가 $H^1(X,\mathscr{L}(D))$ 의 쌍대라 결론지을 수 있다. 그러므로 임의의 D에 대하여 다음이 성립함을 보여야 한다.

$$\chi(\mathscr{L}(D)) = \deg D + 1 - g$$

여기에서 연접층 \mathscr{F} 의 Euler 지표 $\chi(\mathscr{F})$ 는 다음과 같다.

$$\chi(\mathscr{F}) = \dim H^0(X, \mathscr{F}) - \dim H^1(X, \mathscr{F})$$

먼저 D = 0인 경우를 고려하자. 그 경우 위 공식은 다음과 같아진다.

$$\dim H^0(X,\mathcal{O}_X) - \dim H^1(X,\mathcal{O}_X) = 0 + 1 - g$$

임의의 사영 대수다양체에 대하여 $H^0(X, \mathcal{O}_X) = k(I, 3.4)$ 이며 (1.1)에 의해 $\dim H^1(X, \mathcal{O}_X) = g$ 이므로 이것이 실제로 참이다.

Riemann-Roch

D가 인자, P가 점이면. 공식이 D에 대하여 성립 iff D+P에 대하여 성립하는 것임을 보이자. 이는 귀납적으로 모든 D에 대하여 결과가 성립함을 보여줄 것이다. P를 X의 닫힌 부분스킴으로 간주하자. 그 구조층은 점 P에서의 마천루층 k이며 이를 k(P)로 표기하겠다. 그 아이디얼 층은 $\mathcal{L}(-P)$ 이다. 그러므로 다음의 완전열이 성립한다.

$$0 \to \mathscr{L}(-P) \to \mathcal{O}_X \to k(P) \to 0$$

 $\mathcal{L}(D+P)$ 와 텐서곱하면 다음을 얻는다.

$$0 \to \mathcal{L}(D) \to \mathcal{L}(D+P) \to k(P) \to 0$$

이제 χ 가 짧은 완전열에서 덧셈적이며 $\chi(k(P))=1$ 이므로,

$$\chi(\mathscr{L}(D+P)) = \chi(\mathscr{L}(D)) + 1$$

또한 deg(D + P) = deg D + 1이므로 요구된 것과 같이 위 공식이 D에 대하여 성립할 필요충분조건은 D + P에 대하여 성립하는 것이다.