Exercici 1 - Teoria dimarts 6 de març 2018

by M. Àngela Grau Gotés

Contents

- Gràfica
- Mètode de la bisecció
- Mètode de la regula falsi
- Mètode de Newton
- Mètode de la secant
- Mètodes de la iteració simple

```
clc, clear all, format long g
```

Gràfica

```
f=@(x)x.^3-x+1;
figure(1)
t=-2:0.1:1;
plot(t,f(t),t,zeros(size(t)),'LineWidth',2),grid,title('x^3-x+1')
```


Mètode de la bisecció

```
a=-2; b=-1; tol = 0.001;
QP1718_bisec
```


2	-1.5000	0	-1.25000	-1.000	00
3	-1.5000	0	-1.37500	-1.250	90
4	-1.3750	0	-1.31250	-1.250	90
5	-1.3750	0	-1.34375	-1.312	50
6	-1.3437	5	-1.32813	-1.312	50
7	-1.3281	3	-1.32031	-1.312	50
8	-1.3281	3	-1.32422	-1.320	31
9	-1.3281	3	-1.32617	-1.324	22
10	-1.3261	7	-1.32520	-1.324	22
11	-1.3252	0	-1.32471	-1.324	22

iteration	I	X		f(x)	1	longitud
1		-1.50000		-0.87500		0.50000000
2		-1.25000		0.29688		0.25000000
3		-1.37500		-0.22461		0.12500000
4		-1.31250		0.05151		0.06250000
5		-1.34375		-0.08261		0.03125000
6		-1.32813		-0.01458		0.01562500
7		-1.32031		0.01871		0.00781250
8		-1.32422	1	0.00213		0.00390625
9		-1.32617	1	-0.00621		0.00195313
10		-1.32520	1	-0.00204		0.00097656
11		-1.32471		0.00005		0.00048828

Mètode de la regula falsi

clear, f=@(x)x.^3-x+1; a=-2; b=-1; tol = 0.00005; QP1718_regula

ration	а	X	þ
1	-2.00000	-1.50000	-1.00006
2	-2.00000	-1.16667	-1.00000
3	-2.00000	-1.25311	-1.16667
4	-2.00000	-1.29344	-1.25311
5	-2.00000	-1.31128	-1.29344
6	-2.00000	-1.31899	-1.31128
7	-2.00000	-1.32228	-1.31899
8	-2.00000	-1.32368	-1.32228
9	-2.00000	-1.32428	-1.32368
10	-2.00000	-1.32453	-1.32428
11	-2.00000	-1.32464	-1.32453
12	-2.00000	-1.32468	-1.32464
13	-2.00000	-1.32470	-1.32468
14	-2.00000	-1.32471	-1.32476

iteration		X		f(x)	1	tolx
1		-1.50000		-0.87500		0.00000
2		-1.16667		0.57870		0.00000
3		-1.25311	İ	0.28536		0.33333
4	İ	-1.29344	j	0.12954		0.08645
5		-1.31128		0.05659		0.04033
6		-1.31899		0.02430		0.01784
7		-1.32228		0.01036		0.00771
8		-1.32368		0.00440		0.00329
9		-1.32428	1	0.00187		0.00140

10	-1.32453	0.00079	0.00060
11	-1.32464	0.00034	0.00025
12	-1.32468	0.00014	0.00011
13	-1.32470	0.00006	0.00005
14	-1.32471	0.00003	0.00002

Mètode de Newton

```
clear, f=@(x)x.^3-x+1;
df=@(x)3.*x.^2-1;
a=-2; tol = 0.00005;
QP1718_newton
```

iteration		Х		f(x)	I	f(x)/df(x)
1		-2.00000		-5.0000000		-0.45454545
2		-1.54545		-1.14575507		-0.18583963
3		-1.35961		-0.15370493		-0.03381357
4		-1.32580		-0.00462492		-0.00108230
5		-1.32472		-0.00000466		-0.00000109

Mètode de la secant

```
clear, f=@(x)x.^3-x+1;
a=-2; b=-1; tol = 0.00005;
QP1718_secant
```

iteration	x	f(x)		tolx
1	-2.00000	-5.0000000		1.00000000
2	-1.00000	1.0000000	ĺ	1.00000000
3	-1.16667	0.57870370		0.16666667
4	-1.39560	-0.32263052		0.22893773
5	-1.31366	0.04668748	1	0.08194773
6	-1.32402	0.00299114		0.01035945
7	-1.32473	-0.00003110		0.00070913
8	-1.32472	0.0000002		0.00000730

Mètodes de la iteració simple

mètode iteratiu 1

```
fprintf('\n\n\n');
end
```

iteration		xns	f(xns)	1	tolx
0		-2.00000000	-5.0000000		1.00000000
1		-1.44224957	-0.55775043		0.55775043
2		-1.34667670	-0.09557287		0.09557287
3		-1.32887589	-0.01780082		0.01780082
4		-1.32550727	-0.00336861		0.00336861
5		-1.32486787	-0.00063940		0.00063940
6		-1.32474643	-0.00012144		0.00012144
7		-1.32472337	-0.00002307	1	0.00002307

mètode iteratiu 2

```
clear
f=@(x)x.^3-x+1;
g=@(x)x.^3+1;
dg2=@(x)3.*x.^2+1;
a=-2; b=-1; tol = 0.00005;
if abs(dg2(a)) < 1
    for i=1:5
        QP1718_punt_fix
    end
else
    fprintf('\nMètode divergent\n')
    fprintf('\n\n\n');
end</pre>
```

Mètode divergent

Estudi convergència

```
t=-2:0.05:0.5;
g=@(x)nthroot((x-1),3);
dg1=@(x)1./(3*g(x).^2);
dg2=@(x)3.*x.^2+1;
figure(2)
subplot(2,1,1),plot(t,-ones(size(t)),'c',t,dg1(t),t,ones(size(t)),'c','LineWidth',2),grid,title('Mètode 1')
subplot(2,1,2),plot(t,-ones(size(t)),'c',t,dg2(t),t,ones(size(t)),'c','LineWidth',2),grid,title('Mètode 2')
```


Published with MATLAB® R2015b