Bändermodell

$$F = \frac{As}{V} = \frac{s}{\Omega}$$
, $H = \frac{Vs}{A} = \Omega s$, $k_B = 1.38044 \cdot 10^{-23} \frac{J}{K}$, $U_T = \frac{k_B \cdot T}{q} = 26 \text{ mV}$

Leitungsband: Energieband, das über dem höchsten voll mit Elektronen besetzten Energieband (Valenzband) liegt. Wenn Elektronen im Leitungsband, Energieaufn. aus E-Feld möglich, dann leitfähig ("Band" kein Ort, sondern Energie!)

→ bei Halbleitern **Bandlücke** zwischen Valenzband und Leitungsband. Überwindung nur durch äußere Energiezufuhr (thermisch, kinetisch, photonisch)

Bandabstände: $(1 \, eV \sim 1,602 \cdot 10^{-19} I)$

Halbleiter: Germanium (Ge) 0.67 eV < Silizium (Si) 1.12 eV < Galliumarsenid (GaAs) 1.43 eV

Isolator: Siliziumnitrid (Si₃N₄) 5,1 eV < Siliziumdioxid (SiO₂) < 8,0 eV

alpha-Teilchen: zweifach positiv geladene Heliumkerne; äußerste vier Elektronen von Si: auf 3s- und 3p-Orbital

Silizium = Element-Halbleiter; kristallisiert in 2 um - Raumdiag. verschob., kubisch-flächenzentrierte Gitter (Diamantstr.)

monokristallin: perfekter Kristall, perfekter Kristall, alle Atome auf regulären Gitterplätzen, keine Störungen

HL im thermodynamischen Gleichgewicht (TDG) (T überall gleich, Gesamtstrom überall = 0, keine Beleuchtung)

thermische Ladungsträgergeneration:

thermische Gitterschwindungen \rightarrow Aufbrechen von Bindungen \rightarrow Wechsel Elektronen von Valenzband in Leitungsband (notwendige Mindestenergie: Bandabstand des HL)

Ladungsträger-Rekombination:

thermisch generierte Ladungsträger vorhanden → Energieabgabe der Elektronen → Wechsel zurück ins Valenzband \rightarrow Gleichgewicht zwischen beidem: Eigenleitungskonzentration n_i [cm⁻³] ("Mindestwert der elektr. Leitfähigkeit")

Wenn HL undotiert: $n = p = n_i$ (i = intrinsisch, keine Fremdatome, n/p = Dichte der Elektronen/Löcher im TDG)

 \rightarrow im thermodyn. Gleichg. gilt: $n \cdot p = n_i^2$ ("Massewirkungsgesetz des HL")

 n_i bei RT: Germanium: $2.5 \cdot 10^{13}$ cm⁻³ Silizium: $1.5 \cdot 10^{10}$ cm⁻³ Galliumarsenid: $1.8 \cdot 10^6$ cm⁻³

 \rightarrow je höher T, desto höher n_i

Fermi-Verteilung: Wahrscheinlichkeit für die Besetzung von Energiezuständen durch Elektronen: $f(W) = \frac{1}{W - W_F}$

Fermi-Niveau (W_F): Besetzungswahrscheinlichkeit ist 0,5; Füllstandslinie für Elektronen und Löcher; W_F ist Materialeigenschaft; liegt bei HL in Bandlücke

Konzentration Elektronen: $n=N_L\cdot e^{-\frac{W_L-W_F}{k\cdot T}}$ Konzentration Löcher: $p=N_V\cdot e^{-\frac{W_F-W_V}{k\cdot T}}$ ($N_{L/V}$ = Äquivalente Zustandsdichte der Elektronen/Löcher im Leitungs-/Valenzband; für Silizium: $N_L\sim N_V\sim 10^{19}~cm^{-3}$)

 $\rightarrow n_i = \sqrt{N_i \cdot N_v} \cdot e^{-\frac{W_L - W_V}{2 \cdot k \cdot T}} \rightarrow n_i$ exponentiell abhängig v. Bandabstand und T, NICHT abhängig von Fermi-Niveau

Donator $(N_D = Donator - Konzentration, N_D^+ = Donator - Konzentration + elektrisch aktiv)$

Dotierung mit 5-wertigem Element: Phosphor, Arsen, Antimon → Elektron löst sich und steht im Leitungsband zum Stromtransport zur Verfügung → n-leitend (Majoritätsträger: Elektronen) (Energetische Lage Fremdatom (+ Fermi-Niveau): knapp unter Leitungsband)

Akzeptor

Dotierung mit 3-wertigem Element: Bor, Gallium, Indium → Loch steht zum Stromtransport zur Verfügung → p-leitend (Majoritätsträger: Löcher) (Energetische Lage Fremdatom (+ Fermi-Niveau); knapp über Valenzband)

(Leitfähigkeit des HL durch Anzahl Dotierungsatome "einstellbar")

Undotierter HL: Eigenleitung

Dotierter HL: Störstellenleitung \rightarrow fast ausschließlich, da $n,p \sim 10^{13} \gg n_i \sim 10^{10}~cm^{-3}$

Störstellenerschöpfung (bei RT alle Fremdatome ionisiert)

 $N_D^+ \sim N_D \rightarrow n \sim N_D \text{ (da } n = N_D^+)$ und $N_A^- \sim N_A \rightarrow p \sim N_A \text{ (da } p = N_A^+)$ \Rightarrow Berechnung zB: $p = \frac{n_i^2}{n} = \frac{n_i^2}{N_D^2}$

 \rightarrow n-Dot. führt auch zu <u>Verringerung der Löcher</u> $N_A = \frac{n_i^2}{n}$ und $N_D = \frac{n_i^2}{n}$

$$N_A = \frac{n_i^2}{n_{n0}}$$
 und $N_D = \frac{n_i^2}{n_{n0}}$

m²	dm ²	cm²	mm²
1	10²	10⁴	10 ⁸
10 ⁻²	1	10²	10 ⁴
10-4	10 ⁻²	1	10²
10 ⁻⁶	10-4	10 ⁻²	1
$1m^2 = 100 dm^2$	$1 dm^2 = 100 cm^2$	1cm ² = 100 mm ²	

m³	dm³	cm³	mm ³
1	10³	10 ⁸	10°
10 ⁻³	1	10³	10 ⁸
10 ⁻⁶	10 ⁻³	1	10 ³
10 ^{-e}	10 ⁻⁶	10 ⁻³	1
$1m^3 = 1000 dm^3$	$1 \text{dm}^3 = 1000 \text{ cm}^2$ $1 \text{cm}^3 = 1000 \text{ mm}^2$		mm²

HL im Nicht-Gleichgewicht

$$q = 1.6 \cdot 10^{-19} As$$

mittlere **Driftgeschwindigkeit** Elektron: $v_n = \frac{q \cdot E \cdot t}{...*}$

 $(m_n^* = \text{effektive Masse (Berücksichtigung unterschied)}.$ Beschleunigung von LT als in Vakuum, da elektr. Felder in HL))

Beweglichkeit Elektron: $\mu_n = \frac{-v_{nD}}{E} = \frac{q \cdot \tau}{m_n^*}$ Beweglichkeit Löcher: $\mu_p = \frac{-v_{pD}}{E}$

 \rightarrow Beweglichkeit abhängig v. Zeit zw. zwei Stößen (τ) und effektiver Masse ($m_{n/n}^*$)

→ Elektronenbeweglichkeit höher als Löcherbeweglichkeit $(\mu_n \approx 2 \cdot \mu_n)$, Beispiel Sitzreihe)

Streumechanismen: → je höher Dotierungskonzentration und/oder T, desto geringer Beweglichkeit

→ Achtung bei hoher Dotierung: Störstellenstreuung bei niedriger T, Beweglichkeit steigt mit steigender T erstmal an (wegen Coulomb-Wechselwirkung, Kräfte zwischen zwei Ladungen)

Gesamtlöcherladung in einem Volumen: $Q_n = q \cdot p \cdot V$

Löcherstrom: $I_p = q \cdot p \cdot A \cdot v_p$ Löcherstromdichte: $j_p = q \cdot p \cdot v_p$

E-Feld von Plus nach Minus → Löcher bewegen sich in Richtung E-Feld, Elektronen entgegen

→ technische Stromrichtung entspricht Richtung des Löcherstroms

 \rightarrow Gesamtfeldstrom: $j_F = j_{nF} + j_{nF}$ (Summe aus Elektronen- und Löcherfeldstrom)

Feldströme

$$j_{n/pF} = \sigma_{n/p} \cdot E = -q \cdot n/p \cdot v_{\frac{n}{pD}} = q \cdot \mu_{\frac{n}{p}} \cdot n/p \cdot E \qquad \qquad (\sigma = \text{spez. Leitfähigkeit; } \sigma = \sigma_n + \sigma_p)$$

 \rightarrow Achtung: Strom ab gewisser Feldstärke nicht mehr proportional, da $v_{n/nD}$ gesättigt

Spezifische Leitfähigkeit und spezifischer Widerstand (Zusammenhang mit Beweglichkeit)

$$\sigma_{n/p} = -q \cdot n/p \cdot \frac{v_n}{\frac{pD}{pD}} = q \cdot n/p \cdot \mu_{n/p} \qquad \Rightarrow \rho_{n/p} = \frac{1}{q \cdot n/p \cdot \mu_{n/p}} \qquad \Rightarrow \text{je h\"oher Dotierung, desto geringer Wid.}$$

$$\sigma = q \cdot n \cdot \mu_n + q \cdot p \cdot \mu_p$$

Diffusionsstrom (Nettoteilchenstrom in Richtung abnehmender Konzentration)

Elektronendiffusionsstrom: $j_{nD} = q \cdot g' = q \cdot D_n \cdot \frac{dn}{dx}$ ($D_{n/p}$ = Diffusionskonstanten, g' = Injektionsrate) Löcherdiffusionsstrom: $j_{nD} = -q \cdot g' = -q \cdot D_n \cdot \frac{dp}{dp}$

 \rightarrow proportional zu Ladungsträgergefällen \rightarrow D \sim zu T u. Beweglichkeit: $D_{n/p} = \frac{k \cdot T}{a} \cdot \mu_{n/p} = U_T \cdot \mu_{n/p}$

Gesamtstrom (im thermodyn, GI = 0)

im HL Summe aus Feldstrom u. Diffusionsstrom: $j_{n/p} = q \cdot \mu_{n/p} \cdot n/p \cdot E \pm q \cdot D_{n/p} \cdot \frac{dn/p}{dn}$

Poissongleichung: Verknüpfung elektr. Potential φ + Raumladungsdichte ρ : $\frac{dE}{dx} = \frac{d^2\varphi}{dx^2} = \frac{1}{s \cdot s} \cdot \rho$ $(\rho = \pm N_{D/A} \cdot q - \left[\frac{As}{cm^3}\right])$

Extraktion und Injektion (Ladungsträgerkonz. sind unter/über ihren Gleichgewichtswerten)

Bsp Ex: RLZ eines in Sperrrichtung vorgespannten pn-Übergangs

Bsp Inj: RLZ eines in Durchlassrichtung vorgespannten pn-Übergangs, Beleuchtung (Elektronen-Loch-Paare entstehen) schwache Injektion:

Minor.-Konzentration nur so stark erhöht, dass noch deutlich unterhalb Major.-Konzentration im Gleichgewichtsfall → mathematische Behandlung nur der Minor. erforderlich, da dominant für Gesamtverhalten

$$Bsp \ (bei \ RT): n_0 = 1 \cdot 10^{18} \frac{1}{cm^3} \ \Rightarrow p_0 = \frac{n_l^2}{n_0} = 225 \frac{1}{cm^3}$$
 Injektion: $n = (10^{18} + 10^{14}) \frac{1}{cm^3} \ \Rightarrow$ kaum gestiegen $p = (225 + 10^{14}) \frac{1}{cm^3} \ \Rightarrow$ stark gestiegen

Injektion:
$$n = (10^{18} + 10^{14}) \frac{1}{cm^3} \rightarrow \text{kaum gestiege}$$

$$p = (225 + 10^{14}) \frac{1}{cm^3} \Rightarrow \text{stark gestiege}$$

Kontinuitätsgleichungen

$$\frac{n}{dt} = \frac{1}{q} \cdot \frac{dj_n}{dx} + G - R$$
 und $\frac{dp}{dt} = -\frac{1}{q} \cdot \frac{dj_p}{dx} + G - R$

 $\frac{dn}{dt} = \frac{1}{q} \cdot \frac{dj_n}{dx} + G - R$ und $\frac{dp}{dt} = -\frac{1}{q} \cdot \frac{dj_p}{dx} + G - R$ \rightarrow Anzahl LT in einem Volumenelement durch zu-/abfließende Ströme, Generation od. Rekombination ändernd (im TGL: Generationsrate = Rekombinationsrate $\rightarrow G_{th} = R_{th}$)

Im Nichtgleichgew.: $G = G_{th} + g$ (g = Generationsüberschussrate > 0 durch: Beleuchtung, Kernstrahlung, Extraktion) Im Nichtgleichgew.: $R = R_{th} + r$ (r = Rekombinationsüberschussrate)

$$\Rightarrow \frac{dn}{dt} = \frac{1}{q} \cdot \frac{dj_n}{dx} + g - r$$
 und $\frac{dp}{dt} = -\frac{1}{q} \cdot \frac{dj_p}{dx} + g - r$

<u>Minoritätsträgerlebensdauer</u> (mittlere Lebensdauer bis zu Rekombination) n-HL: $r = \frac{p'}{T_0}$, p-HL: $r = \frac{n'}{T_0}$

(p', n'): Zusätzlich injizierte Elektr./Löcher, $\tau_{p/n}$ = Löcher-/Elektr.-Lebensdauer) \Rightarrow Kontinuitätsgl.: $\frac{dn'}{dt} = \frac{1}{a} \cdot \frac{dj_n}{dt} + g - \frac{n'}{\tau_n}$

 $\text{und} \ \frac{dp'}{dt} = -\frac{1}{q} \cdot \frac{dj_p}{dx} + g - \frac{p'}{\tau_p} \qquad \underline{\text{Diffusionslänge:}} \ \underline{L_p = \sqrt{D_p \cdot \tau_p}} = \sqrt{U_T \cdot \mu_p \cdot \tau_p} \ / \ \underline{L_n = \sqrt{D_n \cdot \tau_n}} = \sqrt{U_T \cdot \mu_n \cdot \tau_n}$

Kontinuitätsgl. über Zeit: $p'(t) = p'_0 \cdot e^{-\frac{t}{\tau p}}$, über Ort: $n'(x) = n'_0 \cdot e^{-\frac{x}{Ln}}$ (Minor. überschuss exp. abklingend über t / L) Minoritätsträgerüberschussdichte an Oberfläche: $n_0' = \frac{j \cdot L_n}{r_0}$

pn-Übergang

Elektronen aus n-Schicht diffundieren in p-Schicht und rekombinieren mit Löchern und umgekehrt

- → in n-Schicht verbleiben positiv gelad. Donator-Ionen, in p-Schicht negativ gelad. Akzeptor-Ionen → E-Feld
- \rightarrow wirkt Diffusion entgegen \rightarrow Sperrschicht bildet sich, mit Diffusionssp. U_D

äußeres $U(>U_D)$ in Durchlassrichtung (Plus an p, Minus an n): Sperrschicht von LT überschwemmt, Stromfluss äußeres U in Sperrrichtung (Minus an p, Plus an n): E-Feld wird vergrößert, pn-Übergang sperrt

Berechnung E-Feld in RLZ (außerhalb RLZ kein E-Feld, ladungsfrei)

(Dreieck-Verlauf, da Feldlinien unterschiedlich häufig; bei Vergrößerung RLZ vergrößert sich E-Feld-Dreieck nach links und rechts sowie nach unten)

p-Seite:
$$E_1(x) = \frac{-q \cdot N_A}{\epsilon_{o} \cdot \epsilon_n} \cdot (x + w_p)$$

n-Seite:
$$\frac{E_2(x)}{e_n} = \frac{-q \cdot N_D}{e_n \cdot e_n} \cdot (w_n - x)$$

(mit
$$w_{n/n} = ...$$
Weite in n/p-Schicht")

p-Seite:
$$\frac{E_1(x) = \frac{-q \cdot N_A}{\varepsilon_0 \cdot \varepsilon_r} \cdot \left(x + w_p\right)}{\varepsilon_0 \cdot \varepsilon_r} \quad \text{n-Seite:} \quad \frac{E_2(x) = \frac{-q \cdot N_D}{\varepsilon_0 \cdot \varepsilon_r} \cdot \left(w_n - x\right)}{\varepsilon_0 \cdot \varepsilon_r} \quad \text{(mit } w_{n/p} = \text{,weite in n/p-Schicht")}$$
bei $x = 0$: $E_{1,2}(x = 0) = \frac{-q \cdot N_A}{\varepsilon_0 \cdot \varepsilon_r} \cdot \left(w_p\right) = \frac{-q \cdot N_D}{\varepsilon_0 \cdot \varepsilon_r} \cdot \left(w_n\right) \quad \text{(da } E_1(0) = E_2(0)) \quad \text{(Ldng außerhalb RLZ = 0: } N_D \cdot w_n = N_A \cdot w_p)$

Berechnung Potential φ

(bei U in Durchlassricht. Verschiebung auf p-Seite nach oben (-U), bei Sperrricht. Verschieb. auf p-Seite nach unten (+U))

$$da E(x) = -\frac{d\varphi}{dx}: \text{p-Seite: } \frac{\varphi_1(x) = \frac{q \cdot N_A}{2 \cdot \varepsilon_0 \cdot \varepsilon_r} \cdot \left(x + w_p\right)^2 + \varphi_1\left(-w_p\right) \text{ n-Seite: } \frac{\varphi_2(x) = \varphi_2(w_n) - \frac{q \cdot N_D}{2 \cdot \varepsilon_0 \cdot \varepsilon_r} \cdot (w_n - x)^2}{2 \cdot \varepsilon_0 \cdot \varepsilon_r}$$

$$\rightarrow$$
 bei $x=0$: $\varphi_1=\varphi_2$

Kennzeichnung Dotierung: >10¹⁹: p⁺⁺, n⁺⁺; >10¹⁷: p⁺, n⁺; ~10¹⁵: p, n; <10¹³: p⁻, n⁻; <10¹¹: p⁻, n

 \rightarrow falls p-Seite höher dotiert $(N_A > N_D)$ gilt wegen $N_D \cdot w_n = N_A \cdot w_n$: $w_n > w_n$ \rightarrow asymmetrischer pn-Übergang

Energiebetrachtung

Fermi-Niveau als Bezug, da auf n-Seite oberhalb und auf p-Seite unterhalb Bandmitte

- \rightarrow Verbiegung der Energiebänder bei pn-Betrachtung \rightarrow Energie: $W = -q \cdot \varphi$
- Elektronen (oberhalb W_I): Diffusionsstrom zu höherem W (da dort geringeres n (LT-Dichte)), Feldstrom zu niedrigerem W (da dort höheres φ)
- <u>Löcher (unterhalb W_v):</u> Diffusionsstrom zu niedrigerem W (da dort geringeres p (LT-Dichte)), Feldstrom zu höherem W(da dort geringeres φ)
- (n_{n0}) : Elektronenkonz. in n-Schicht auf stabilem Anfangsniveau, n_{n0} : Elektronenkonz. in p-Schicht auf stabil. Endniveau)

Berechnung Diffusionsspannung U_D : $\frac{U_D}{U_D} = U_T \cdot \ln \frac{N_A \cdot N_D}{n^2}$ (\rightarrow abhängig von Dotierungskonzentration)

 $U_D \triangleq \text{Bandverbiegung u. Maximum } \varphi$ im Potentialverlauf; $U_D = \text{Potentialbarriere}$, die überwunden werden muss, um Strom fließen zu lassen

eite:
$$w = \sqrt{\frac{2 \cdot \varepsilon_0 \cdot \varepsilon_r}{q} \cdot U_D \cdot \left(\frac{1}{N_D} + \frac{1}{N_A}\right)}$$
 (Gesamt

n-Seite:
$$w_n = \sqrt{\frac{2 \cdot \varepsilon_0 \cdot \varepsilon_r}{q} \cdot U_D \cdot \frac{N_A}{N_D \cdot (N_A + N_D)}}$$

Berechnung RLZ-Weite:
$$w = \sqrt{\frac{2 \cdot \varepsilon_0 \cdot \varepsilon_r}{q}} \cdot U_D \cdot \left(\frac{1}{N_D} + \frac{1}{N_A}\right)$$
 (Gesamt)

n-Seite: $w_n = \sqrt{\frac{2 \cdot \varepsilon_0 \cdot \varepsilon_r}{q}} \cdot U_D \cdot \frac{N_A}{N_D \cdot (N_A + N_D)}$ p-Seite: $w_p = \sqrt{\frac{2 \cdot \varepsilon_0 \cdot \varepsilon_r}{q}} \cdot U_D \cdot \frac{N_D}{N_A \cdot (N_A + N_D)}$

→ begrenzt Integrationsdichte (Anzahl Transistoren pro Flächeneinheit) in ICs; beeinflusst kapazitives Verhalten im pn-Übergang und damit zeitlichen Verlauf; je höhere Dotierung einer Seite, desto kleiner RLZ-Weite dieser Seite

Shocklev'sche Vereinfachung

da Anzahl LT in RLZ deutlich geringer als in n- od. p-Schicht fällt äußere U hauptsächlich dort ab

Vereinfachungen: Spannung in Bahngebieten (n-/p-Schicht) komplett vernachlässigbar, stets schwache Injektion; keine Rekombination in RLZ da geringe Weite

Anlegen einer äußeren Spannung U (in Durchlassrichtung)

- \rightarrow Potential verringert sich zu $U_D U$
- \rightarrow Minor.-Konz. am Rand v. RLZ größer (Reservoir nach u.a. $n_{p0} \cdot e^{\left(\frac{U}{U_T}\right)}$) \rightarrow Minoritäten bestimmen Höhe des Stroms
- (wg. Rekombination) \Rightarrow RLZ-Weite reduziert: $w = \sqrt{\frac{2 \cdot \varepsilon_0 \cdot \varepsilon_T}{q} \cdot (U_D U) \cdot \left(\frac{1}{N_D} + \frac{1}{N_A}\right)}$ (Achtung! Gilt nur für $U < U_D$) Anlegen einer äußeren Spannung U (in Sperrichtung)

\rightarrow Potential erhöht sich zu $U_D + U$

- ightharpoonup Min.konz. an Rand v. RLZ geringer als in übrigem Bereich $(n_{p0} \cdot e^{\left(rac{U}{U_T}
 ight)})$ ightharpoonup RLZ vergrößert sich
- Sperrsättigungsstrom j_s temp.abhängig: Verdopplung alle 6-7K (Si); Durchlassspannung U_F temp.abhängig: $\frac{-2mV}{\nu}$

Stromkommutierung

 t_s : Speicherzeit, in der Strom kurz nach Umpolen konstant ist; t_{rr} : reverse recovery time: Strom von Umpolzeitpunkt bis 10% des Maximalwerts (Strom bleibt leicht unter 0); beides stark an τ_n gekoppelt

Berechnung Diodenkennlinie: Verlauf Minoritätsträgerkonzentration			
	p-Seite	n-Seite	
an Rändern von RLZ	$n_p(-w_p) = n_{p0} \cdot e^{\frac{U}{U_T}}$	$p_n(w_n) = p_{n0} \cdot e^{\frac{U}{U_T}}$	
_	$ ightarrow$ Min.konz. an Rändern um Boltzmannfaktor ($e^{\overline{U_T}}$) angehoben		
in Bahngebieten	$n(x) = n_{p0} + \left(n_{p0} \cdot e^{\frac{U}{U_T}} - n_{p0}\right) \cdot e^{-\frac{w_p - x}{L_n}}$	$p(x) = p_{n0} + \left(p_{n0} \cdot e^{\frac{U}{U_T}} - p_{n0}\right) \cdot e^{-\frac{x - w_n}{L_p}}$	
\Rightarrow Einsetzen in Diffusionsstrom-Gleichung $\left(j_p = -q \cdot D_p \cdot \frac{dp}{dx}\right)$:			
neuer Diffusionsstrom	$j_n = \frac{q \cdot D_n}{L_n} \cdot n_{p0} \cdot \left(e^{\frac{U}{U_T}} - 1 \right)$	$j_p = \frac{q \cdot D_p}{L_p} \cdot p_{n0} \cdot \left(e^{\frac{U}{U_T}} - 1 \right)$	
Gesamtstrom:	$j = j_p + j_n = \left(\frac{q \cdot D_p \cdot p_{n0}}{L_n} + \frac{q \cdot D_n}{L_n}\right)$	$\frac{n_{p0}}{1 - n_{p0}} \cdot \left(e^{\frac{U}{U_T}} - 1\right) = j_s \cdot \left(e^{\frac{U}{U_T}} - 1\right)$	

L (Induktivität

g_d, C_D und C_S

Zuleitung) und R_s in

Reihe, dazu in Reihe

Parallelschaltung aus

(mit j_s = theoretischer Sperrsättigungsstrom; fließt bei $U=4U_T) \rightarrow$ i.d.R. $p_{n0} \gg n_{n0} \rightarrow j_s \approx$ (T steigt \rightarrow Kennlinie wandert nach links, da U_S sinkt(-2mV/K)) I-U-Kennlinie ideal/real ESB pn-Diode:

kleines U: I höher, da Überangebot von Mino. in RLZ → Rekombinationen hohes I: Steigung von U sinkt, da U über RLZ sich asymptotisch U_D nähert \rightarrow Weite RLZ gegen 0 sehr hohes I: spürbarer Spannungsabfall über Bahngebieten → Scherung der Kennlinie

Durchbruch

$$\underline{\text{thermisch:}} \ j_s = \frac{q \cdot D_p \cdot p_{n0}}{L_p} + \frac{q \cdot D_n \cdot n_{p0}}{L_n} = n_i^2 \cdot \left(\frac{q \cdot D_p}{L_p \cdot N_D} + \frac{q \cdot D_n}{L_n \cdot N_A}\right) \\ \Rightarrow n_i^2 \sim T^3 \cdot e^{-\frac{W_L - W_V}{k \cdot T}}$$

- → Sperrsättigungsstrom temperaturabhängig → hohe Temp. und hohe Sperrspannung → hoher Sperrstrom
- → steigende Verlustleistung → steigende Temp. → etc.

Sperrkennlinie real höher, da in RLZ hin u. wieder Rekombination mgl

Zener-Effekt: führt nicht zu Zerstörung! bei Zener-Diode: Höhere Dotierungskonzentration und RLZ nur μm oder nmab gewisser (negativer) Sperrspannung: Valenzelektr. p-Seite haben Energieniveau oberhalb Leitungsbandunterkante auf n-Seite → Valenzelektr. werden aus Bindungen gerissen → durch Bandlücke auf n-Seite → "Tunnelstrom"

- → steigt mit abnehmender Weite RLZ (steigende Temp., sinkender Bandabstand, sinkende Durchbruchspannung)
- \rightarrow da $E_{max} \sim \sqrt{U \cdot N_D}$: hohe Dot.konz. erhöht E und senkt | Durchbruch-U| \rightarrow Zener-Effekt einstellbar zw. -2V und -5V Lawinen-Effekt: Durchbruch erst bei < -5V → Beschleunigung von LT in RLZ → Stöße → weitere Elektronen-Loch-Paare → lawinenartiges Anwachsen der LT-Zahl → starker Stromanstieg

Abhängigkeiten:

- 1. hohes N bei schwächer dotierter Seite: → hohes E → | Durchbruch-U| sinkt → sinkende "mittlere freie Weglänge" → IDurchbruch-UI steigt
- 2. Temperatur steigt: stärkere Gitterschwingungen → sinkende "mittlere freie Weglänge" → | Durchbruch-U| steigt

Temp. steigt: thermisch: nein, Zener: |Durchbruch-U| sinkt, Lawine: |Durchbruch-U| steigt höhere Dotierung: thermisch: nein, Zener: |Durchbruch-U| sinkt, Lawine: |Durchbruch-U| sinkt selbst-zerstörend: thermisch: ja, Zener: nein, Lawine: nein

Temp.koeffizient: $\alpha = \frac{1}{U_{Z0}} \cdot \frac{\Delta U_{Z0}}{\Delta T}$ (mit U_{Z0} = Durchbruchspannung) α negativ bei Zener-Effekt, positiv bei Lawineneffekt

→ Kombination Zener- u. Lawinen-Effekt bei -5V: kaum temperaturabhängig!

Kleinsignalgrößen: Wahl eines Arbeitspunktes (AP) durch Anlegen DC-Spannung/einprägen DC-Strom und <u>Überlagerung</u> mit AC-Spannung (kleine Amplitude!) → Linearisierung Diodenkennlinie mit minimalem Fehler mgl

Kleinsignalleitwert: $g_d = \frac{\Delta I}{\Delta IJ}$ (im AP) \rightarrow differentieller Leitwert; Exakt: $g_d = \frac{dI}{dU} = \frac{I_S}{U_T} \cdot e^{\frac{U}{UT}} = \frac{I}{U_T}$

→ steigt für hohe Frequ., da nur noch LT an RLZ-Rand der Spannung folgen können (Trägheit) Kapazitäten im pn-Übergang

<u>Diffusionskapazität C_D </u> $C_D = \frac{I}{I_D} \cdot \tau_p = g_d \cdot \tau_p$ (nur in vorwärts gepoltem pn-Übergang)

"Speicherladung" der Mino.träger in Bahngebieten (Reservoir, Konz. am Rand von RLZ) $\Rightarrow C_D$ steigt exponentiell mit U Frequenzabhängigkeit: C_D sinkt mit zunehmender Frequ., da LT in Banhgebieten nicht so schnell wandern

Sperrschichtkapazität C_S : $\frac{\mathcal{C}_S}{\mathcal{C}_S} = \frac{\varepsilon_0 \cdot \varepsilon_F \cdot A}{v_S}$ (bei beiden Polungen wirksam)

 \rightarrow RLZ als Kapazität; abh. von Weite der RLZ \rightarrow je kleiner U (negativer, da Sperrrichtung), desto kleiner C_S , da w steigt

$$\text{für U < 0: } \mathcal{C}_S = \frac{c_{S0}}{\sqrt{1 - \frac{U}{U_{ID}}}} \text{ mit } \mathcal{C}_{S0}(U = 0V) = A \cdot \sqrt{\frac{q \cdot \varepsilon_0 \cdot \varepsilon_r}{2} \cdot \frac{N_D \cdot N_A}{(N_D + N_A)} \cdot \frac{1}{U_D}} \text{ Vereinfachung, da } N_A \gg N_D : \mathcal{C}_{S0} = A \cdot \sqrt{\frac{q \cdot \varepsilon_0 \cdot \varepsilon_r}{2} \cdot \frac{N_D}{U_D}}$$

npn: Emitter n⁺, Basis p, Kollektor n Strom-Zählpfeile: B und C hin, E weg Strom-Zählpfeile: B und C weg, E hin pnp: Emitter p^+ , Basis n, Kollektor p npn: B niedriger dotiert als E, um Rekombinationen gering zu halten, C niedriger dotiert als E, um hohes u_{CE} und damit hohen i_C zu gewähren $\left(\frac{dn}{dt}\right)$

npn im thermodynamischen Gleichgewicht

Bänderverlauf: E-Seite niedrig flach, Anstieg über erste RLZBE, erhöht über B, abfallend über zweite RLZ_{BC}, C-Seite niedrig flach aber etwas höher als E-Seite

<u>LT-Konzentration</u>: Elektronen: n_{n0}^E sehr hoch, stark fallend zu n_{n0}^B , Anstieg zu n_{n0}^C ($n_{n0}^E > n_{n0}^C$) Löcher: $p_{n_0}^E$ sehr niedrig, stark steigend zu $p_{n_0}^B$, fallend zu $p_{n_0}^C$ ($p_{n_0}^E < p_{n_0}^C$)

Aufteilung Stromanteile

- (1): von E zu B diffundierende Elektronen, erreichen basisseitiges Ende des BC-Übergangs
- (2): von B zu E diffundierende Löcher (Rekombin. mit Elektronen in E) $(I_{BE} = \frac{q \cdot D_p \cdot p_{EO} \cdot A}{I_{Lp}} \cdot e^{\frac{U_{BE}}{U_T}})$
- (3): Elektronen aus E, die auf Weg durch B mit Löcher aus B rekombin. $I_{BB} = \frac{q \cdot w_B \cdot n_{po} \cdot A}{2 \cdot r} \cdot e^{\frac{GBE}{UT}}$
- (4): Sperrstrom BC-Übergang (Generationsstrom); Löcher fließen aus B heraus

Emitterstrom:
$$I_E = I_C + I_B$$

Summe (1) und (2):
$$j_E = j_{BE0} \cdot \left(e^{\frac{U_{BE}}{U_T}} - 1\right) \text{ (mit } j_{BE0} \approx \frac{q \cdot D_n \cdot n_{p0}}{w_B}, \text{ da } p_{n0} \ll n_{p0}, w_B \text{ statt } L_n \text{ !)}$$

Emitterwirkungsgrad: $\gamma_n = \frac{j_{nD}}{j_E}$ (Verhältnis Elektronendiffusionsstrom (1) zu Emitterstrom)

Transportfaktor $\alpha_T = \frac{j_{nD}(x=w_{BC}^B)}{j_{nD}(x=w_{BE}^B)}$ (Anteil (1) am E-Rand von B, der C-Rand von B erreicht)

Stromanteil, der von E zu C gelangt: $A_v = \gamma_n \cdot \alpha_T$ $\rightarrow B = \frac{A_v}{(1-A_v)}$

Weite neutrale Basis: $w_B = \frac{l_{BB}}{A} \cdot \frac{2 \cdot \tau_{nB}}{q \cdot n_{no}} \cdot e^{-\frac{\vec{U}_{BE}}{U_T}}$

Kollektorstrom:
$$I_C = I_{C0} \cdot \left(e^{\frac{U_{BE}}{U_T}} - 1\right)$$
 (mit $I_{C0} = \frac{q \cdot D_{nB} \cdot n_{B0} \cdot A}{w_B}$)

Summe (1) und (4): $j_C = j_{BC}^r + A_v \cdot j_E \approx A_v \cdot j_{BE0}^n \cdot \left(e^{\frac{U_{BE}}{U_T}} - 1\right) \quad (j_{BC}^r \text{ (4) vernachlässigbar)}$

- \rightarrow steigt exponentiell mit $U_{BE} \rightarrow I_C = f(U_{BE})$: Übertragungskennlinie (exp. Anstieg)
- \rightarrow keine Abhängigkeit von U_{CE} (und U_{CB}) $\rightarrow I_C = f(U_{CE})$: Ausgangskennlinie(nfeld), Verhalten wie ideale Stromquelle, da I_C sobald $U_{CE} > U_{BE}$ nahezu konstant

Basisstrom: $I_B = I_{BE} + I_{BB} = I_{B0} \cdot e^{\frac{U_{BE}}{U_T}}$ Summe (2), (3) [und (4)]: $j_B = j_E - j_C = j_E - j_{BC}^r - A_v \cdot j_E = j_E \cdot (1 - A_v) - j_{BC}^r$ oder: $j_B = (j_{BE0}^p + j_{BB0}) \cdot e^{\frac{U_{BE}}{U_T}} (((2) + (3)) \cdot e^{\frac{U_{BE}}{U_T}})$

Early-Effekt (Basisweitenmodulation) \rightarrow nur vorhanden, wenn r_{CE} da!

führt zu linear leicht ansteigender Ausgangskennlinie im Aktiv-Normal-Bereich

→ Ausgangswiderstand sinkt, keine ideale Stromguelle mehr

Kleinsignal-Ausgangswiderstand: $r_{CE} = \frac{\Delta U_{CE}}{\Delta I_C}|_{AP} \approx \frac{U_{ea}}{I_C}|_{AP} \sim \frac{1}{I_C}|_{AP} (U_{ea} = \text{Early-Spannung})$

je flacher Ausgangskennlinie im Aktiv-Normal-Bereich, desto höher r_{CE} (da $r_{CE} = \frac{1}{g_{cE}}$)

Vorgänge im npn-Transistor bei Erhöhung u_{CF} :

 u_{CE} steigt \rightarrow RLZ_{BC} vergrößert \rightarrow neutrale Basis w_B verkleinert sich; RLZ_{EB} const (da u_{RE} const)

- 1. steigende $RLZ_{BC} \rightarrow w_B$ verkleinert sich $\rightarrow I_{BB}$ (3) sinkt $\rightarrow I_B$ sinkt (minimal)
- 2. w_B kleiner \rightarrow Minor.-Gefälle (Elektronen-Konz.) $\left|\frac{dn}{dx}\right|$ wird größer $(n_p^B) \rightarrow j_D$ steigt $\rightarrow I_C$ steigt
- 3. da I_B sinkt und I_C steigt → Verstärkung B bzw. ß steigt

Eingangskennlinie: $I_B = f(U_{BE}) = I_{B0} \cdot e^{\frac{U_{BE}}{U_T}}$ (Diodenkennlinie) \rightarrow mit steigendem U_{CE} flacher, da I_{B0} sinkt \rightarrow dyn. r_{in} : $r_{BE} = \frac{dU_{BE}}{dI_B} = \frac{U_T}{I_B}$

(Diodenkennlinie) \rightarrow Steigung: Steilheit $g_m = \frac{dI_C}{dU_{DC}}|_{AP} \approx \frac{I_C}{U_{DC}}$ (direkt prop. zu I_C im AP) Übertragungskennlinie: $I_C = f(U_{BE})$

Ausgangskennlinie(nfeld): $I_C = f(U_{CE})$ (F, für verschiedene U_{BE} oder I_B)

Stromverstärkungskennlinie: $I_{\mathcal{C}} = f(I_B)$ (Ursprungsgerade)			
	Emitterschaltung	Kollektorschaltung	Basisschaltung
Aufbau	E auf GND, $u_A = u_{CE}$; R oberhalb C zu $+u_b$	E mit R auf GND, $u_A = u_R$,	B auf GND, $u_E = u_{EB}$,
		C auf $+u_b$	$u_{A}=u_{\mathit{CB}}$, R oberhalb C
			$zu - u_b$
I-Verstärkung	$B = \frac{A_v}{(1 - A_v)} = \frac{I_C}{I_R} $ groß, > 100	groß, > 100	$B = A_v = \gamma_n \cdot \alpha_T$
	I_{B} g. 5.5) 1 255		keine, < 1
U-Verstärkung	groß, > 100; durch R_L einstellbar	keine, < 1	groß, > 100
P-Verstärkung	sehr groß $pprox 10^4$	groß, > 100	groß, > 100
dyn. Eingangswid. r _e	mittel (1 – 10) $k\Omega$	sehr groß bis 1 $M\Omega$	klein (10 – 500) Ω
dyn. Ausgangswid. ra	mittel (1 – 30) $k\Omega$	klein (0,1 – 1) $k\Omega$ groß (10 – 1000) $k\Omega$	
Phasendrehung a/e	gegenphasig 180°	gleichphasig 0°	gleichphasig 0°
obere Grenzfrequenz	mittel	hoch	sehr hoch
Anwendung	NF-Verstärker, HF-Verstärker	Impedanzwandler	Oszillatoren
		NF- u. HF-Verstärker	HF-Verstärker
Eigenschaften	Ausgang hochohmig, gute Stromquelle; Eingang eher	Emitterfolger	
	hochohmig, r_e ist diff. Wid. von $I_B = f(U_{BE})$	Spannungsfolger	
	(Diodenkennlinie)	Impedanzwandler	
Kleinsignal-ESB (AC!)	$\beta = \frac{i_C}{i_R} = \frac{dI_C}{dI_R} _{AP} \approx B = \frac{I_C}{I_R}$	Kollektorschaltung:	
	$a_v = \frac{u_{out}}{v_{tot}} \approx -g_m \cdot R_L$		
$(u_{BE} \text{ ist nur})$	"in	$a_v = \frac{u_{out}}{u_{in}} = \frac{R_L}{R_L + r_{BE}}$	
differenzielle Größe,	inkl. r_{CE} (hoch!): $\frac{a_v = -g_m \cdot \left(\frac{R_L \cdot r_{CE}}{R_L + r_{CE}}\right)}{r_{CE}}$	$r_{in} = \frac{u_{in}}{l_{in}} = r_{BE} + (\beta + 1) \cdot \left(\frac{R_L \cdot r_{CE}}{R_L + r_{CE}}\right) \text{(groß!)}$ mit vorgeschaltetem Spannungsteiler: $r_{in} = \frac{u_{in}}{l_{in}} = R_1 R_2 \left(r_{BE} + (\beta + 1) \cdot \left(\frac{R_L \cdot r_{CE}}{R_L + r_{CE}}\right)\right)$ $u_{in} = l_{in} \cdot r_{BE} + l_{in} \cdot (\beta + 1) \cdot \left(\frac{R_L \cdot r_{CE}}{R_L + r_{CE}}\right)$	
nicht 0,7 V!!)	mit Stromgegenkoppl. R_E (für Temp.stabilität!) ohne Early-		
	Eff.: $a_v = \frac{u_{out}}{u_{in}} = \frac{-i_{C} \cdot R_L}{i_{B} \cdot r_{BE} + i_{C} \cdot R_E} = \frac{-\beta \cdot i_{B} \cdot R_L}{i_{B} \cdot r_{BE} + \beta \cdot i_{B} \cdot R_E} = -\frac{R_L}{\frac{1}{\sigma_w} + R_E}$		
	\rightarrow da $\frac{1}{a_m} \ll R_E$ folgt: $\frac{a_v}{a_v} \approx -\frac{R_L}{R_E}$		
	$r_{in} = r_{BE}$ (klein!) $r_{a} = r_{CE}$ (wenn vorhanden)		
	$u_{out} = -i_C \cdot R_L = -g_m \cdot u_{in} \cdot R_L = -\beta \cdot i_B \cdot R_L$	(Knotenregel, da $i_C = i_B \cdot \beta = g_m \cdot u_{BE}$)	
	(mit $u_{in}=u_{BE}$, $g_m=\frac{\beta}{r_{BE}}$)	$u_{out} = u_{in} - u_{BE} \rightarrow \frac{u_{in}}{u_{in}} = u_{BE} + u_{out}$	
	$\frac{r_{BE}}{r_{BE}} \rightarrow \text{gilt nur wenn } R, \text{ so}$	(Maschenregel) $\rightarrow u_{out} < u_{in} \rightarrow a_v < 1$	

Dimensionierung Emitterschaltung

Spannungseinstellung: 1. Vcc bestimmen od. gegeb.; 2. gewünschten I_C bestimm.; 3. $I_B = \frac{I_C}{B}$; 4. $r_{BE} = \frac{U_T}{I_B} \rightarrow r_{BE} = \frac{B}{g_m}$; 5. $g_m = \frac{I_C}{U_T} \rightarrow g_m = \frac{B}{r_{BE}}$; $\frac{6}{6}$. $R_2 = \frac{U_{RE} + U_{BE}}{10 \cdot I_B}$ (Widerstand Spannungsteiler unten; üblich: $U_{RE} = 1$ V, $U_{BE} = 0.7$ V); $\frac{7}{10 \cdot I_B}$ (Widerstand Spannungsteiler oben);

8. $R_E = \frac{U_{RE}}{I_C + I_B} = \frac{1V}{(B+1) \cdot I_B}$; 9. $r_{CE} = \frac{U_{ea}}{I_C}$ (nur wenn Early-Effekt); 10. $R_C = \frac{1}{2} \cdot \frac{V_{CC} - U_{RE}}{I_C}$ (Spannung an R_C muss gleich Spannung von Out zu E sein!); 11. $r_{in} = R_1 ||R_2||r_{BE}$ (wenn $C_E ||R_E$, darf R_E nicht berücks. werden); 12. $r_L^* = r_{CE} ||R_C$ (effektive Last; ohne Early-Effekt: $r_L^* = R_C$); 13. $C_1 = 10 \cdot \frac{1}{2\pi f \cdot r_{in}}$ (sorgt dafür, dass R_2 hinsichtlich Vcc nicht kurzgeschlossen wird); 14. $C_2 = 10 \cdot \frac{1}{2\pi f \cdot r_L^*}$ (sorgt dafür, dass U_{out} keinen DC-

Anteil von Vcc enthält); 15. $C_E = 10 \cdot \frac{g_m}{2\pi f}$ (sorgt für Temperaturstabilität)

 $i_C = (g_m \cdot u_{BE}) = \beta \cdot i_B$ \rightarrow gilt nur wenn R_L so

festgelegt, dass $U_{RL} = \frac{1}{2} \cdot U_V = U_{out}$

Stromeinstellung: R_2 (Spannungsteiler unten) entfällt \rightarrow durch R_1 fließt 1-facher $I_B \rightarrow R_1 = \frac{Vcc - U_{BE} - U_{RE}}{I_R}$; Nachteil: nicht für Massenproduktion geeignet, da Bauteiltoleranz von R_1 zu starken Schwankungen des I_B führt und damit Verstärkung B nicht konsistent ist

Temperatur-Abhängigkeit: $\Delta u_{BE} = \Delta u_{in} = -2mV/K \rightarrow \Delta u_{out} = g_m \cdot \Delta u_{BE} \cdot R_L$ $\rightarrow R_E$ zur Stabilisierung: $R_E \approx R_L \cdot \frac{\Delta u_{in}}{2}$

Kleinsignal-ESB für höhere Frequenzen (Emitterschaltung): $\frac{C_D}{C_{SBC}}$: Diffusionskapazität B-E-Übergang (nur in Vorwärtsrichtung wirksam) \rightarrow parallel zu r_{BE} ; $\frac{C_{SBC}}{C_{SBC}}$: Sperrschichtkapazität B-E-Übergang \rightarrow parallel zu r_{BE} ; $\frac{C_{SBC}}{C_{SBC}}$: Sperrschichtkapazität B-C-Übergang \rightarrow verbindet oberes Ende r_{BE} und i_C -Quelle \rightarrow i.d.R. gilt: $C_D \gg C_{SBE}$, C_{SBC} ; Kapazitäten von AP abhängig <u>zunehmende Frequenz</u>: Kurzschluss von r_{BE} durch C_D und $C_{SBE} \rightarrow u_{BE}$ sinkt $\rightarrow i_C$ sinkt frequenzabh. Stromverstärkung: $\underline{\beta} = \frac{\beta_0}{1+j\frac{f}{f_B}}$ (mit $f_{\beta} = \frac{1}{2\pi \cdot r_{BE} \cdot C}$ = 3dB-Grenzfrequenz); \rightarrow Transitfrequenz f_T : Verstärkung $\underline{\beta}$ auf 1 abgefallen (= 0 dB); es gilt: $f_T \approx \beta_0 \cdot f_{\beta} \rightarrow$ Transitzeit $t_T = \frac{1}{f_T}$: Zeit der LT zum Durchqueren von w_B

Arbeitsbereiche	Aktiv-Normal	Sättigung	Gesperrt	Aktiv-Invers
B-E-Übergang	Vorwärtsrichtung	Vorwärtsrichtung	gesperrt	gesperrt
B-C-Übergang	gesperrt	Vorwärtsrichtung	gesperrt	Vorwärtsrichtung
u_{BE}	~ 0,7 V	~ 0,7 V	= 0 V	< -0 V
u_{CB}	> 0 V	< 0 V	= 0 V	~ - 0,7 V
u_{CE}	> 0,7 V	0 - 0.7 V	= 0 V	< -0.7 V
MinorKonz. an	um Boltzmann-	um Boltzmann-	um BF	
basisseitig. Rand	Faktor angehoben	Faktor angehoben	<u>abgesenkt</u>	
RLZ _{BE}				
MinorKonz. an	um Boltzmann-	um Boltzmann-	um BF	
basisseitig. Rand	Faktor <u>abgesenkt</u>	Faktor angehoben	<u>abgesenkt</u>	
RLZ _{BC}				
Anwendung	lineare Schaltungen	Schalter	Schalter	
	hohe I-Verstärkung	("geschlossen")	("offen")	
Sonstiges	Early-Effekt	$i_{\it C}$ stark von $u_{\it CE}$	nur	Rollen von E und C
	vorhanden	abhängig	Sperrströme	getauscht; schlechter
	$(\rightarrow i_C$ leicht von	("niederohmig")	fließen	"Kollektorwirkungs-grad"
	u_{CE} abhängig)			$\rightarrow a_v \approx 1 - 10$

zu Aktiv-Normal:

Minor.-Konz. an Rändern RLZ_{BE}: $n_n(w_{BE}^B) = n_{n0} \cdot e^{\frac{U_{BE}}{U_T}}$ und $p_n(w_{BE}^E) = p_{n0} \cdot e^{\frac{U_{BE}}{U_T}} \rightarrow Anhebung$ um Boltzmann-Faktor Minor.-Konz. an Rändern RLZ_{BC}: $n_p(w_{BC}^B) = n_{p0} \cdot e^{\frac{\overline{OBC}}{U_T}}$ und $p_n(w_{BC}^C) = p_{n0} \cdot e^{\frac{\overline{OBC}}{U_T}} \rightarrow Absenkung$ um Boltzmann-Faktor \rightarrow in neutraler Basis (w_B) linearer Verlauf (Absenkung) der Elektronen-Konzentration \rightarrow führt zu Stromfluss!

MOSFET (Vorteil: stromlose Steuerung)

Übertragungskennlinie: $I_D=f(U_{GS})$ (wandert nach links für steigendes U_{DS} (wg. Kanallängenm.), nach links für $T\uparrow$ Ausgangskennlinie: $I_D = f(U_{DS})$ (F, für verschiedene U_{GS})

	n-FET (Pfeil hin)	p-FET (Pfeil weg)
Anreicherungstyp	U_{th} positiv; U_{GS} , U_{DS} und I_D positiv	U_{th} <u>negativ</u> ; U_{GS} , U_{DS} und I_D <u>negativ</u>
(normally <u>off</u> , enhancement)	je <u>positiver</u> U_{GS} , desto <u>positiver</u> I_D	je <u>negativer</u> U_{GS} , desto <u>negativer</u> I_D
selbstsperrend b. $U_{GS} = 0 V$		
gestrichelte Linie;	Übertragungskennlinie wie bei BPT	Übertragungskennlinie wie bei n-FET,
geringer Energieverbrauch	Ausgangskennlinie wie bei BPT	nur beide Achsen ins Negative
langsame Schaltzeit		Ausgangskennlinie wie bei n-FET, nur
für Speicher geeignet		beide Achsen ins Negative
Verarmungstyp	U_{th} negativ; U_{DS} und I_D positiv	U_{th} positiv; U_{DS} und I_D negativ
(normally <u>on</u> , depletion)	U_{GS} wird von negativem U_{th} an immer	U_{GS} wird von positivem U_{th} an immer
selbstleitend bei $U_{GS} = 0 V$	<u>positiver</u> (bei $U_{GS} = 0 V$ leitend)	<u>negativer</u> (bei $U_{GS} = 0 V$ negativ
durchgezogene Linie		leitend)
	Übertragungskennlinie wie bei n-	Übertragungskennlinie wie bei p-
hoher Energieverbrauch	Anreicherungstyp, aber nach links	Anreicherungstyp, aber nach rechts
schnelle Schaltzeit	verschoben, sodass U_{th} <u>negativ</u>	verschoben, sodass U_{th} <u>positiv</u>
für Prozessoren geeignet	Ausgangskennlinie wie bei n-	Ausgangskennlinie wie bei p-
	Anreicherungstyp	Anreicherungstyp

Aufbau

n-FET: n⁺-Gebiete bei S und D, darunter p⁻Bereich (S auf GND), G ist Metall- auf Oxid-Schicht neben S ist p⁺-Gebiet auf GND (ggf. innerhalb p-Wanne); wenn p-Wanne: n⁺-Gebiet in n-Substrat auf VDD bei normally on: n-Kanal unterhalb Oxid, für Selbstleitung

p-FET: p*-Gebiete bei S und D, darunter n Bereich (S auf VDD), G ist Metall- auf Oxid-Schicht neben S ist n*-Gebiet auf VDD (ggf. innerhalb n-Wanne); wenn n-Wanne: p*-Gebiet in p-Substrat auf GND bei normally on: p-Kanal unterhalb Oxid, für Selbstleitung

CMOS

Inverter: oben p-fet, unten n-fet (p-fet doppelte W, da $\mu_n \approx 2 \cdot \mu_n$ und $I_D = const$)

NAND: oben 2 p-fet parallel, unten 2 n-fet in Reihe; 4 Flächeneinheiten;

NOR: oben 2 p-fet in Reihe, unten 2 n-fet parallel: 10 Flächeneinheiten

Betriebszustände. Kennlinien (n-FET. normally off)

Sperrbetrieb: $U_{CS} < U_{th} \rightarrow I_D \approx 0 A$

<u>Trioden-/Widerstandsbereich</u>: $U_{GS} > U_{th}$ und $U_{DS} < U_{GS} - U_{th}$ $\rightarrow I_D$ nahezu linear von U_{DS} abhängig

n-leitender Kanal unter G; MOSFET fungiert als Schalter

<u>Pinch-off-Punkt</u> (\triangleq "Abschnüren"): $U_{GS} > U_{th}$ und $U_{DS} = U_{DS,Sat} = U_{GS} - U_{th}$

n-leitender Kanal beginnt an D-Seite abgeschnürt zu werden, nur noch wenige Elektronen fließen

Sättigungsbereich: $U_{GS} > U_{th}$ und $U_{DS} > U_{GS} - U_{th}$

 $\rightarrow I_D$ konstant, nicht mehr von U_{DS} abhängig (außer Kanallängenmodulation, wenn r_{DS} endlich) n-leitender Kanal wird weiter an D-Seite abgeschnürt; MOSFET fungiert nicht mehr als Schalter

Temperaturabhängigkeit: T steigt \rightarrow Streuung \rightarrow Beweglichkeit LT sinkt $\rightarrow I_D$ sinkt;

T steigt $\rightarrow U_{th}$ sinkt $\rightarrow I_D$ steigt (Effekt Streuung überwiegt!)

Ermittlung AP aus Übertragungskennlinie (wenn R_S vorhanden): einmal 0~V an R_S , einmal U_E an R_S

→ Widerstandsgerade in Übertragungskennlinie einzeichnen (andersrum) → Schnittpunkt ist AF

Elektronenbeweglichkeit im Kanal: $\mu = \frac{v_D}{r}$ (mit $E = \frac{U_{DS}}{r}$)

Ladungssteuerungs-Theorie (
$$I_D$$
 in Ausgangskennlinie berechnen; n-FET, norm. off)
$$K = \frac{\varepsilon_0 \cdot \varepsilon_T}{d_{ox}} \cdot \mu_n \cdot \frac{W}{L} = \mu_n \cdot \frac{c_{ox}}{L^2} \qquad C_{ox} = \frac{\varepsilon_0 \cdot \varepsilon_{ox}}{d_{ox}} \cdot W \cdot L \qquad (ox = \text{"Oxid"})$$

Triodenbereich: $I_D = K \cdot \left[(U_{GS} - U_{th}) \cdot U_{DS} - \frac{1}{2} U_{DS}^2 \right]$

 \rightarrow für sehr kleine U_{DS} ist $\frac{1}{2}U_{DS}^2$ vernachlässigbar: $I_D = K \cdot (U_{GS} - U_{th}) \cdot U_{DS} \rightarrow R_{DS} = r_{DS} = \frac{\Delta U_{DS}}{\Delta L}$ (linear!)

Sättigungsbereich (ab Pinch-Off-Punkt): $I_D = \frac{\kappa}{2} \cdot (U_{GS} - U_{th})^2$

Steilheit:
$$g_m = \frac{\Delta I_D}{\Delta U_{CS}}$$
 $\Rightarrow |g_m| = K \cdot (U_{GS} - U_{th}) \approx \sqrt{I_D}$ \Rightarrow steigt wrzl

$$\Rightarrow \text{Steilheit: } g_m = \frac{\Delta I_D}{\Delta U_{GS}} \qquad \Rightarrow |g_m| = K \cdot (U_{GS} - U_{th}) \approx \sqrt{I_D} \qquad \Rightarrow \text{steigt wrzlfrm mit } I_D$$

$$\frac{\text{Sättigungsbereich (mit Kanallängenmod.):}}{I_D} = \frac{K}{2} \cdot (U_{GS} - U_{th})^2 \cdot (1 + \lambda \cdot U_{DS}) \qquad (\lambda = \frac{\Delta I_D}{\Delta U_{DS}} \cdot \frac{1}{I_D})$$

$$ightarrow r_{DS} = rac{\Delta U_{DS}}{\Delta I_D} pprox rac{I_A}{I_D}|_{AP}$$
 (mit $U_A = rac{1}{\lambda'}$ entspricht Early-Spannung bei BPT)

Source-Schaltung:
$$a_v = \frac{u_{out}}{u_{in}} \approx -g_m \cdot R_L$$
 inkl. r_{DS} (hoch!): $a_v = -g_m \cdot \left(\frac{R_L \cdot r_{DS}}{R_L + r_{DS}}\right)$

Drain-Schaltung: $r_{out} = R_s || \frac{1}{a_m} a_v = \frac{g_m \cdot R_s}{1 + a_m \cdot R_s}$

Kleinsignal-ESB: wie Emitterschaltung, allerdings ohne r_{BE} (bzw. hier r_{GS}), da spannungsgesteuert

$$i_D = u_{GS} \cdot g_m = u_{in} \cdot g_m$$
 Kanallängenmodulation durch r_{DS} gekennzeichnet (wie Early-Effekt) $r_{DS} = \frac{1}{g_D}$

Kapazitäten

 C_{GR} : zw. G und Substrat C_{SB}/C_{DB} : zw. S/D u. Substrat ($C_{SB}=0$ wenn S u. Bulk verbund.)

 $C_{GS\ddot{U}}/C_{GD\ddot{U}}$: Überlappkapaz. zw. G und S/D C_{GSK}/C_{GDK} : Kanalkapaz. zw. G und S-/D-Seite

Sperrbereich: $C_{GB} = C_{ox}$, $C_{GSÜ}/C_{GDÜ}$ durch Geometrie gegeben, C_{GSK}/C_{GDK} unwirksam, C_{SB}/C_{DB} wirksam

<u>Triodenb., kleine U_{DS} :</u> $C_{GB} = 0$, C_{GSU}/C_{GDU} durch Geometrie gegeben, $C_{GSK}/C_{GDK} = \frac{1}{2}C_{ox}$, C_{SB}/C_{DB} wirksam <u>Triodenb.</u>, allg.: siehe oben, aber: $C_{GSK} = \frac{2}{3}C_{ox} \cdot \left(1 - \left(\frac{U_{GS} - U_{th} - U_{DS}}{2 \cdot (U_{GS} - U_{th}) - U_{DS}}\right)^2\right)$, $C_{GDK} = \frac{1}{3}C_{ox} \cdot \left(1 - \left(\frac{U_{GS} - U_{th}}{2 \cdot (U_{GS} - U_{th}) - U_{DS}}\right)^2\right)$

<u>Sättigung:</u> $C_{GB} = 0$, C_{GSII}/C_{GDII} durch Geometrie gegeben, $C_{GSK} = \frac{2}{3}C_{QX}$, $C_{GDK} = 0$, C_{SB}/C_{DB} wirksam

in HL sehr viel kleinere Dichte von freien Ladungsträgern als in Metall

intrinsische LT-Dichte eines HL NICHT abhängig von Dotierung; Betrieb bei 200°C kein Problem für Silizium-Carbid nach Implantation von Bor ist Dichte Elektronen vermindert; Ionisierungsenergie von Bor ist deutlich geringer als Bandlückenenergie; Implantation mit Phosphor: Fermi-Energie verschiebt sich Richtung Leitungsbandunterkante thermische Bewegung der freien LT bei RT ist schneller als Driftgeschwindigkeit

Ursache Diffusionsstrom in Si ist der Konzentrationsgradient $\frac{dn}{dx}$ bzw. $\frac{dp}{dx}$

RLZ bildet sich aus Ladungen der Ionenrümpfe; RLZ am asymmetrischen pn-Übergang insgesamt elektrisch neutral Ausdehnung RLZ im höher dotierten Material kleiner; Inversionskanal MOSFET: "Invertieren" = Ladungsträgertyp, Elektronen fließen bei nFET durch p-Material; "depletion type"-Transistor: normally-on

komplementäre MOSFET-Logik (CMOS) besonders energiesparend; diskreter MOSFET: kein Vertausch D und S erlaubt Schottkydiode: Metall-HL-Übergang statt pn, nur Majoritätsträger tragen zu Stromfluss bei; bei Sperrrichtung bildet sich isolierende Sperrschicht: t_{rr} auf 100 – 10 ps verkürzt: U_D bei $\sim 0.25V$