МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Информационные технологии»

Тема: Введение в анализ данных

Студент гр. 3344		Мурдасов М.К.
Преподаватель		Иванов Д.В.
	Санкт-Петербург	

2024

Цель работы

Введение в анализ данных. Изучение основных инструментов анализа данных на Python.

Задание.

Вы работаете в магазине элитных вин и собираетесь провести анализ существующего ассортимента, проверив возможности инструмента классификации данных для выделения различных классов вин.

Для этого необходимо использовать библиотеку sklearn и встроенный в него набор данных о вине.

1) Загрузка данных:

Реализуйте функцию load_data(), принимающей вход на аргумент train size (размер обучающей выборки, по умолчанию равен 0.8), которая загружает набор данных о вине из библиотеки sklearn в переменную wine. Разбейте данные для обучения и тестирования в соответствии со значением train_size, следующим образом: набора ИЗ данного запишите train size данных из data, взяв при этом только 2 столбца в переменную X_train и train_size данных поля target в у_train. В переменную X_test положите оставшуюся часть данных из data, взяв при этом только 2 столбца, а в y_test — оставшиеся данные поля target, в этом вам поможет функция train_test_split модуля sklearn.model_selection (в качестве состояния рандомизатора функции train test split необходимо указать 42.).

B качестве результата верните X_{train} , y_{train} , X_{test} , y_{test} .

Пояснение: X_train, X_test - двумерный массив, y_train, y_test. — одномерный массив.

2) Обучение модели. Классификация методом k-ближайших соседей:

Реализуйте функцию train_model(), принимающую обучающую выборку (два аргумента - X_train и y_train) и аргументы n_neighbors и weights (значения по умолчанию 15 и 'uniform' соответственно), которая создает экземпляр классификатора KNeighborsClassifier и загружает в него данные X_train, y_train с параметрами n_neighbors и weights.

В качестве результата верните экземпляр классификатора.

3) Применение модели. Классификация данных

Реализуйте функцию predict(), принимающую обученную модель классификатора и тренировочный набор данных (X_test), которая выполняет классификацию данных из X_test.

В качестве результата верните предсказанные данные.

4) Оценка качества полученных результатов классификации.

Реализуйте функцию estimate(), принимающую результаты классификации и истинные метки тестовых данных (y_test), которая считает отношение предсказанных результатов, совпавших с «правильными» в y_test к общему количеству результатов. (или другими словами, ответить на вопрос «На сколько качественно отработала модель в процентах»).

В качестве результата верните полученное отношение, округленное до 0,001. В отчёте приведите объяснение полученных результатов.

Пояснение: так как это вероятность, то ответ должен находиться в диапазоне [0, 1].

5) Забытая предобработка:

После окончания рабочего дня перед сном вы вспоминаете лекции по предобработке данных и понимаете, что вы её не сделали...

Реализуйте функцию scale(), принимающую аргумент, содержащий данные, и аргумент mode - тип скейлера (допустимые значения: 'standard', 'minmax', 'maxabs', для других значений необходимо вернуть None в качестве результата выполнения функции, значение по умолчанию - 'standard'), которая обрабатывает данные соответствующим скейлером.

В качестве результата верните полученные после обработки данные.

Выполнение работы

1) load_data():

Загружает данные о вине из библиотеки sklearn и с помощью *train_test_split()* разделяет данные на тренировочные и тестируемые массивы. Аргумент *train_size* задает размер обучающей выборки и по умолчанию равен 0.8.

2) train_model():

Обучает и возвращает модель классификатора k-ближайштх соседей (KNeighborsClassifier) на выборке X_train с метками y_train. Аргументы n_neighbors задает кол-во соседей, а weight - весовую функцию для классификатора. По умолчанию n_neighbors равен 15 и weights равен 'uniform'.

3) *predict()*:

Предсказывает значения меток, основываясь на тестовой выборке X test.

4) estimate():

Вычисляет точность классификации с помощью *accuracy_score*() из sklearn.*metrics* и возвращает ее значение, округленное до 0.001.

5) *scale()*:

данных Х, режим масштабирования mode и Принимает массив возвращает масштабированный массив данных. Допустимые значения для mode: 'standard', 'minmax', 'maxabs'. Если значение *mode* не является допустимым, функция возвращает *None*. Если mode 'standard', функция использует стандартное масштабирование (StandardScaler), если mode 'minmax' мини-максимальное масштабирование (MinMaxScaler), 'maxabs' если mode масштабирование ПО максимальному абсолютному значению (MaxAbsScaler). Масштабирование выполняется C помощью соответствующих классов из модуля sklearn.preprocessing.

Исследование работы классификатора, обученного на данных разного размера:

load_data с размерами данных	Точность работы классификатора
load_data(0.1)	0.379
load_data(0.3)	0.8
load_data(0.5)	0.843
load_data(0.7)	0.815
load_data(0.9)	0.722

Можно заметить, что точность классификации зависит от размера выборки. Слишком маленькая и слишком большая выборки снижают точность, тк имеют маленький объем данных или, напротив, слишком большой разброс этих данных.

Исследование работы классификатора, обученного с различными значениями $n_neighbors$:

значения n_neighbors	Точность работы классификатора	
3	0.861	
5	0.833	
9	0.861	
15	0.861	
25	0.833	

Можно заметить, что количество соседей незначительно влияет на точность работы классификатора.

Исследование работы классификатора с предобработанными данными:

Метод предобработки	Точность работы классификатора
---------------------	--------------------------------

StandardScaler	0.417
MinMaxScaler	0.417
MaxAbsScaler	0.278

Из полученных результатов можно заметить, что точность классификации зависит от способа масштабирования данных. При использовании стандартного масштабирования (StandardScaler) и минимакс-масштабирования (MinMaxScaler) точность классификации составляет 0.417, а при использовании максимального абсолютного масштабирования (MaxAbsScaler) точность классификации ниже и составляет 0.278. Таким образом, выбор способа масштабирования данных имеет влияние на точность классификации. В данном случае, стандартное масштабирование и минимакс-масштабирование показали лучшие результаты.

Тестирование.

Результаты тестирования представлены в табл. 1.

Таблица 1 – Результаты тестирования

№ п/п	Входные данные	Выходные данные	Комментарии
	X_train, X_test, y_train, y_test = load_data(0.3) scaled_x = scale(X_train) scaled_x_mm = scale(X_train, mode='minmax') scaled_x_abs = scale(X_train, mode='maxabs') c1 = train_model(scaled_x, y_train, 9) c3 = train_model(scaled_x_mm, y_train, 9) c5 = train_model(scaled_x_abs, y_train, 9) r1 = predict(c1, X_test) r3 = predict(c3, X_test) r5 = predict(c5, X_test) e1 = estimate(r1, y_test) e3 = estimate(r3, y_test) e5 = estimate(r5, y_test) print(e1, e3, e5)	0.368 0.392 0.384	Корректно

Выводы

Были изучены основные инструменты анализа данных в языке Python. Получены навыки работы с библиотекой sklearn.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

```
Название файла: Murdasov_Mikhail_lb3.py
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
from
       sklearn.preprocessing
                                import
                                          StandardScaler,
                                                            MinMaxScaler,
MaxAbsScaler
def load_data(train_size = 0.8):
   wine = load_wine()
    x = wine.data
    y = wine.target
    X_train, X_test, y_train, y_test = train_test_split(x[:, [0,1]], y,
train_size = train_size, random_state = 42)
    return X_train, X_test, y_train, y_test
def train_model(X_train, y_train, n_neighbors = 15, weights = "uniform"):
    classifier = KNeighborsClassifier(n_neighbors = n_neighbors, weights
= weights)
    classifier.fit(X_train, y_train)
    return classifier
def predict(classifier, X_test):
    pred = classifier.predict(X_test)
    return pred
def estimate(res, y_test):
    return round(accuracy_score(y_true = y_test, y_pred = res), 3)
def scale(data , mode = "standard"):
    if mode == 'standard':
        scaler = StandardScaler()
```

```
elif mode == 'minmax':
    scaler = MinMaxScaler()
elif mode == 'maxabs':
    scaler = MaxAbsScaler()
else:
    return None

return scaler.fit_transform(data)
```