STM32F407 GPIO

(General-Purpose IO)

한국산업기술대학교 메카트로닉스공학과 마이크로컴퓨터구조 담당교수: 남윤석

0. GPIO 란?

- μ-processor 나 MCU는 보통 데이터버스를 통해 메모리나 입출력 장치들과 정보를 주고 받음
- 입출력장치(회로)에 따라서는 단선을 통해 디지털정보(H or L)를 보내거나 받아야 하는 경우가 있음
- 이 경우를 대비해 µ-processor 나 MCU는 GPIO 기능을 내장
- GPIO는 µ-processor 나 MCU의 외부 핀을 통해 'High'나 'Low' 신호를 입출력회로에 보내거나 받는 역할 수행

0. GPIO 란?

●PLC와 임베디드 컴퓨터(컨트롤러)

<마이크로 컴퓨터>

<PLC>

●PLC의 I/O 접점 구조

<DC 입력모듈의 내부 회로>

*PLC제어(남대훈) 제공

●PLC의 I/O 접점 구조

<PLC의 출력 기기>

<트랜지스터 출력 모듈>

*PLC제어(남대훈) 제공

●PLC의 I/O 접점 구조

<PLC 제어배선도(예)>

●PLC의 I/O 접점 구조

<PLC 프로그래밍: 래더다이어그램>

*PLC제어(남대훈) 제공

1. STM32F407의 GPIO 응용

마이<u>크로컴퓨터 구조 STM32F407 GPI</u>O

2.1 STM32F407 GPIO: Block diagram

마이크로컴퓨터 구조

MS19920V3

2.2 STM32F407 Figure 5. STM32F40x block diagram External memory CLK, HE DIST, ADDISS. CCM data RAM64 KB controller (FSMC) 의 GPIO: 회로 NUMBER OF STREET ортој, син, мин, на рад на негота SRAM, PSRAM, NOR Flash, JT CHARGO. TRACROK GORD, LOWIS, INTERIOR BITH, HEXTERN P. ARM Contex-M4 168 MHz FPU up to 1 MB Mile PMI m/F Ethernet MAC HEYHC, VINNE MDIO m/F N FO Camera никок, ото ф SRAM 112 KB interface USB DP DM DAMU SRAM 16 KB OTGHS ULFRICK, DJ. 703, DIRL, 879, 1867 N FO USB EL VALUE, SIGN OTGF8 DMA2 D, VILIS, SOF PI PO B Sile are R RD DMA1 Wileys equator 2.3 to 12 V VDD = 18 63 6V MONPY, VICTOR GPIO PORT A PA[15:0] CPIO PORTA supervision RC LX POR/POR PB[15:0] GPIO PORT B VODA, VSSA **GPIO PORTB** de l PLL 182 PVD GPIO PORT C GPIO PORT C PC[15:0] **GPIO PORTO** XTAL OSC CALC_CALT First & **GPIO PORTE** MVDG oladi medal GPIO PORT D PD[15:0] GPIO PORT F GPIO PORT G PE[15:0] GPIO PORT E X1941.30 MHz ORDS: OUT GPIO PORTH GPIO PORTI RTC_PT PF[15:0] GPIO PORT F 4 KB BKPSRA PG[15:0] ger i GPIO PORT G EXT IT, WKUP TIM TIM5 PH[15:0] SDIO / MMC AHDAP02 AHD AP DI **₫** TIM12 GPIO PORT H TIM1/PWM TIM13 Ashamata (TMI_CHILDER) PI[11:0] County Character (TMT_CHT(1.0)). TIM14 GPIO PORT I dishare is [TMI_CHITIGHTR, USART2 BL Tine USARTS. *** Tables and a sufficient UART4 WWDG UARTS CA USART1 SP2/282 CR. STRANS HOLDEN, MICK - AP FIX TO DK USART6 MORRO, MINORO, MI, ROCCO COLUMN AND SP3/283 HOUSE, MICK - AP MEDIU, MIDICI, BOX, NO. on P. DC1/SMBUS TIM7 VDDR#F_ADC 2C2/SMBUS Temperature sensor Familiagin puls correspond forth #3 ADCs DC3/SMBUS A DC1 Familiagin puls common faithe ADC1 AZ ADC2 A DC3 bxCAN2 Exercise tracks for ACC DACLOUT DACIOUS

2.3 STM32F407 실습보드의 GPIO 회로

마이크로컴퓨터 구조

2.4 STM32F407 실습보드의 GPIO 사용 예: 커피자판기

B Buzzer

L LED

K Key

Digital OutputDigital Input

<마이컴제어 제어배선도(커피자판기)>

```
Main() {
```

????

}

<마이컴제어 C-based 프로그래밍>

3. STM32F407 GPIO 주요 특징

- 1. 9개의 Port (Port A/B/C/D/E/F/G/H/I), 총 140 pins
- 2. Port 당 16개의 I/O pin 할당(예외: Port I 12pins)
- 3. Output states : push-pull, open drain (with pull-up/down) 설정 가능
- 4. Input states: floating, pull-up, pull-down, analog 설정 가능
- 5. I/O Alternate function(open drain, push-pull) input/output 선택 레지스터 (*GPIO 기능 이외의 특수기능)
- **6.** Analog function
- 7. I/O pin마다 속도 설정 가능
- 8. Bit set/reset 레지스터
- 9. Locking 레지스터
- 10. Multiplexer에 의한 GPIO 또는 몇 가지 주변장치 중 하나를 선택 가능 (Multiplexed pin)
- 11. 모든 핀을 외부 인터럽트 핀으로 사용 가능(* 해당 핀은 입력모 드 설정되어야 함)

- 4. GPIO 기능 설명
- Mode Configuration 1
- > Input modes
- Input floating
- Input pull-up
- Input pull-down
- Analog (Input)
- > Output modes
- Output open-drain with pull-up or pull-down capability
- Output push-pull with pull-up or pull-down capability
- > Alternate function modes
- Alternate function push-pull with pull-up or pull-down capability
- Alternate function open-drain with pull-up or pull-down capability

Mode Configuration 1

Basic structure of a five-volt tolerant I/O port bit

마이크로컴퓨터 구조

STM32F407 GPIO

Mode Configuration 2

	Port bit config	guratio	n table				
MODER(i) [1:0]	OTYPER(i)		EEDR(i) B:A]		DR(i) :0]	I/O conf	iguration
	0			0	0	GP output	PP
	0			0	1	GP output	PP + PU
	0]		1	0	GP output	PP + PD
01	0	SPEE	D	1	1	Reserved	
01	1	[B:A]		0	0	GP output	OD
	1			0	1	GP output	OD + PU
	1			1	0	GP output	OD + PD
	1			1	1	Reserved (GP or	utput OD)
	0			0	0	AF	PP
	0			0	1	AF	PP + PU
	0			1	0	AF	PP + PD
10	0	SP	EED	1	1	Reserved	
10	1	[E	B:A]	0	0	AF	OD
	1			0	1	AF	OD + PU
	1			1	0	AF	OD + PD
	1			1	1	Reserved	
	X	X	X	0	0	Input	Floating
00	х	X	X	0	1	Input	PU
00	X	X	X	1	0	Input	PD
	х	X	X	1	1	Reserved (input	floating)
	х	X	X	0	0	Input/output	Analog
11	х	X	X	0	1		•
''	х	X	х	1	0	Reserved	
	х	X	X	1	1		

• GPIO Pin 설정 레지스터

MODER

00: Input Mode

01: Output Mode

10: Alternate function Mode

11 : Analog Mode

OTYPER

0: Output Push-Pull

1: Output Open-drain

OSPEEDR

00: 2MHz Low speed

01:25MHz Medium speed

10:50MHz Fast speed

11: 100MHz High speed

PUPDR

00: No pull-up/down

01: Pull-up

10: Pull-down

11: Reserved

• Push-Pull, Open-Drain, Pull up/down -1

• Push-Pull 출력의 구조 및 동작 원리

Push-Pull, Open-Drain, Pull up/down -2

•Open-Drain 출력의 구조 및 동작 원리

- •Open_Drain 출력회로를 사용하는 이유
 - Level-Shifter
 - 출력 전류를 회로에 맞게 설계가능
- •Level-Shifter: 전압기준 레벨을 VDD에서 V-EXT로 변환 (예: VDD=3.3V, V_EXT=5V, Box안 회로의 High는 3.3V, V_EXT에 묶여있는 회로의 High는 5V임)

*출처:Daum

• Push-Pull, Open-Drain, Pull up/down -3

• Pull up 회로의 구조와 동작원리

스위치	ON	OFF
(a)그림	0V(Low)	Floating
b)그림	0V(Low)	+5V(High)

•Pull down: 생략(저항이 GND에 연결 되어 있음) • 정전기 보호 회로

-Diode의 역할: VDD보다 크 거나, Vss(GND) 보다 작은 (음전압) 크기의 정전기 발생 시 우회회로 제공하는 정전기 보호 회로

*출처:Daum

● 기타 GPIO 기능

- Reset 직후 모든 핀들의 디폴트 모드: 'floating input' 모드 *JTAG(다운로드 및 디버깅에 사용되는 기능) 핀 제외
- 입출력 상태에 따른 핀 동작
- -입력 설정 경우:Input data register는 매 APB2 클럭(72MHz)마다 I/O 핀에서 데이터를 입력 받음
- -출력 설정 경우:Output data register에 저장된 값이 I/O 핀에 출력
- 대체기능(Alternate function) 전환 방법
- -Port Bit Configuration Register(GPIOx_AFRL/AFRH/MODER/OTYPER/OSPEEDR/PUPDR) 설정 필요
- 대체기능 입력 전환 조건: 해당 포트를 입력 모드(floating, pull-up/down)로 설정
- 대체 기능 출력 전환 조건: 해당 포트의 비트를 대체기능 출력 모드 (push-pull 또는 open-drain)로 설정
- 양방향(입출력)의 대체 기능 전환 조건: 해당 포트의 비트를 대체기능 출력 모드(push-pull 또는 open-drain)로 설정(이 경우 입력 드라이버는 플로팅 입력 모드(input floating mode)로 설정됨)

마이크로컴퓨터 구조

STM32F407 GPIO

I/O pin multiplexer and mapping 1

Selecting an alternate function on STM32F405xx/07xx and STM32F4T5xx/1/xx

For pins 0 to 7, the GPIOx_AFRL[31:0] register selects the dedicated alternate function AF0 (system) -AF1 (TIM1/TIM2) -AF2 (TIM3..5) AF3 (TIM8..11) AF4 (I2C1..3) AF5 (SPI1/SPI2)-AF6 (SPI3) -Pin x (x = 0..7)AF7 (USART1..3) -AF8 (USART4..6) -AF9 (CAN1/CAN2, TIM12..14)-AF10 (OTG_FS, OTG_HS) AF11 (ETH) -AF12 (FSMC, SDIO, OTG_HS(1))-AF13 (DCMI) -AF14 -AF15 (EVENTOUT) -AFRL[31:0]

For pins 8 to 15, the GPIOx_AFRH[31:0] register selects the dedicated alternate function

AF0 (system) AF1 (TIM1/TIM2)-AF2 (TIM3..5) AF3 (TIM8..11) -AF4 (I2C1..3) AF5 (SPI1/SPI2)-AF6 (SPI3) -Pin x (x = 8..15)AF7 (USART1..3) -AF8 (USART4..6) -AF9 (CAN1/CAN2, TIM12..14)-AF10 (OTG FS, OTG HS) AF11 (ETH) -AF12 (FSMC, SDIO, OTG HS⁽¹⁾) AF13 (DCMI) -AF14 -AF15 (EVENTOUT) -AFRH[31:0]

STM32F40x pin and ball definitions (continued)

			S1M32F40x	pin	and b	oall (lefinitions (continued)	
	er							
	UFBGA176	LQFP176	Pin name (function after reset) ⁽¹⁾	Pintype	I/O structure	Notes	Alternate functions	Additional functions
	Н3	17	PF1	I/O	FT		FSMC_A1 / I2C2_SCL / EVENTOUT	
	H2	18	PF2	I/O	FT		FSMC_A2 / I2C2_SMBA / EVENTOUT	
	J2	19	PF3	I/O	FT	(4)	FSMC_A3/EVENTOUT	ADC3_IN9
	J3	20	PF4	I/O	FT	(4)	FSMC_A4/EVENTOUT	ADC3_IN14
	КЗ	21	PF5	I/O	FT	(4)	FSMC_A5/EVENTOUT	ADC3_IN15
	G2	22	V _{SS}	s				
	G3	23	V _{DD}	s				
	K2	24	PF6	I/O	FT	(4)	TIM10_CH1 / FSMC_NIORD/ EVENTOUT	ADC3_IN4
	K1	25	PF7	1/0	FT	(4)	TIM11_CH1/FSMC_NREG / EVENTOUT	ADC3_IN5
	L3	26	PF8	I/O	FT	(4)	TIM13_CH1 / FSMC_NIOWR/ EVENTOUT	ADC3_IN6
	L2	27	PF9	I/O	FT	(4)	TIM14_CH1 / FSMC_CD/ EVENTOUT	ADC3_IN7
	L1	28	PF10	I/O	FT	(4)	FSMC_INTR/ EVENTOUT	ADC3_IN8
	G1	29	PH0/OSC_IN (PH0)	I/O	FT		EVENTOUT	OSC_IN ⁽⁴⁾
	H1	30	PH1/OSC_OUT (PH1)	1/0	FT		EVENTOUT	OSC_OUT ⁽⁴⁾
	J1	31	NRST	I/O	RS T			
	M2	32			FT	(4)	OTG_HS_ULPI_STP/ EVENTOUT	ADC123_IN10
	МЗ	33	PC1	I/O	FT	(4)	ETH_MDC/ EVENTOUT	ADC123_IN11
0	M4	34	PC2	I/O	FT	(4)	SPI2_MISO / OTG_HS_ULPI_DIR / ETH_MII_TXD2 /I2S2ext_SD/ EVENTOUT	ADC123_IN12
	•							

* ADC / DAC 는 Alternate function에 해당 되지 않음

Input Configuration

- •입력 으로 설정될 때 H/W 상태
- -출력 버퍼 비활성화 및 슈미트 트리거 입력 활성화
- -GPIOx_PUPDR 레지스터에 의해 풀업 풀다운의 상태 결정
- -AHB1의 클럭에 동기되어 I/O 핀의 입력 값이 갱신
- -Input data register를 read하면 I/O state를 획득 가능

Output Configuration -1

Output Configuration -2

- 출력으로 설정될 때 H/W 상태
- -출력 버퍼 활성화
 - ➤ Open-Drain mode : Output register에 '0'을 기록하면 N-MOS 가 활성화 되고, '1'을 기록하면 Hi-Z 상태가 됨
 - ➤ Push-pull mode: Output register에 '0'을 기록하면 N-MOS가 활성화 되고, '1'을 기록하면 P-MOS가 활성화 됨
- -슈미트 트리거 입력 활성화
- -내부 Pull-up / Pull-down 저항 활성화(GPIOx_PUPDR 설정과 무관)
- -AHB1의 클럭에 동기되어 I/O 핀의 입력 값이 갱신됨
- -Input data register를 read하면 I/O state를 획득 가능
- -Output data register를 read하면 최근의 written value 획득 가능

• Alternate function Configuration

- 대체(부속) 기능으로 설정 될 때 H/W 상태
- -출력 버퍼는 Open-drain 혹은 Push-pull로 설정 가능
- -출력 버퍼는 주변장치에 의해 구동
- -슈미트 트리거 입력 활성화
- -내부 Pull-up / Pull-down 저항 활성화(GPIOx_PUPDR 설정과 무관)
- -AHB1의 클럭에 동기되어 I/O 핀의 입력 값이 갱신됨

Analog Configuration

- •아날로그로 설정 될 때 H/W 상태
- -출력 버퍼 비활성화
- -슈미트 트리거 입력 비 활성화 (슈미트 트리거 의 출력은 '0' 설정)
- -풀업 풀다운 설정 금지
- -Input data register를 읽을 경우 무조건 '0'을 얻음

5. GPIO 주요 레지스터

• GPIOx_MODER

: GPIO port mode register (GPIOx_MODER) (x = A..I)

Reset values:

- 0xA800 0000 for port A
- 0x0000 0280 for port B
- 0x0000 0000 for other ports

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
MODER	R15[1:0]	MODER	R14[1:0]	MODER	R13[1:0]	MODEF	R12[1:0]	MODEF	R11[1:0]	MODE	R10[1:0]	MODE	R9[1:0]	MODE	R8[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MODE	R7[1:0]	MODE	R6[1:0]	MODER5[1:0]		MODE	R4[1:0]	MODE	R3[1:0]	MODE	R2[1:0]	MODE	R1[1:0]	MODE	R0[1:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

•Bits 2y:2y+1 MODERy[1:0]: Port x configuration bits (y = 0..15)

I/O의 Input 이나 Output 방향을 설정하는 레지스터

00: Input (reset state)

01: General purpose output mode

10: Alternate function mode

11: Analog mode

GPIOx_OTYPER

: GPIO port output type register (GPIOx_OTYPER) (x = A..I)

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OT15	OT14	OT13	OT12	OT11	OT10	OT9	OT8	OT7	OT6	OT5	OT4	OT3	OT2	OT1	OT0
rw	rw	rw	rw	rw	m	w	rw								

- •Bits 31:16 Reserved, must be kept at reset value.
- •Bits 15:0 OTy[1:0]: Port x configuration bits (y = 0..15)

I/O port의 output type을 설정해주는 비트들임

0: Output push-pull (reset state)

1: Output open-drain

: GPIO port output speed register (GPIO $x_OSPEEDR$)(x = A..I)

Reset values:

- 0x0000 00C0 for port B
- 0x0000 0000 for other ports

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
OSPEED)R15[1:0]	OSPEED	R14[1:0]	OSPEED)R13[1:0]	OSPEED	R12[1:0]	OSPEED)R11[1:0]	OSPEED)R10[1:0]	OSPEE	DR9[1:0]	OSPEE	DR8[1:0]
rw	rw	w	m	rw	rw	rw	rw	w	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OSPEE	SPEEDR7[1:0] OSPEEDR6[1:0] OSPEEDR5[1:0]		DR5[1:0]	OSPEE	DR4[1:0]	OSPEE	DR3[1:0]	OSPEE	DR2[1:0]	OSPEE	DR1[1:0]	OSPEE	DR0[1:0]		
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

•Bits 2y:2y+1 OSPEEDRy[1:0]: Port x configuration bits (y = 0..15)

I/O output speed를 설정하는 비트들임

00: 2 MHz Low speed

01: 25 MHz Medium speed

10: 50 MHz Fast speed

11: 100 MHz High speed on 30 pF (80 MHz Output max speed on 15 pF)

GPIOx_PUPDR

: GPIO port pull-up/pull-down register (GPIOx_PUPDR)(x = A..I)

Reset values:

- 0x6400 0000 for port A
- 0x0000 0100 for port B
- 0x0000 0000 for other ports

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
PUPDF	R15[1:0]	PUPDF	R14[1:0]	4[1:0] PUPDR13[1:0]		PUPDF	R12[1:0]	PUPDF	R11[1:0]	PUPDF	R10[1:0]	PUPDI	R9[1:0]	PUPDI	R8[1:0]
rw	rw	rw	rw	rw	rw	m	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PUPDI	R7[1:0]	PUPDI	R6[1:0]	PUPDR5[1:0]		PUPDI	R4[1:0]	PUPD	R3[1:0]	PUPDI	R2[1:0]	PUPDI	R1[1:0]	PUPDI	R0[1:0]
rw	rw	rw	rw	rw	rw	w	rw	rw	rw	rw	rw	m	rw	m	rw

•Bits 2y:2y+1 PUPDRy[1:0]: Port x configuration bits (y = 0..15) I/O Port Pin에 pull-up 이나 pull-down으로 설정하는 비트들임

00: No pull-up, pull-down

01: Pull-up

10: Pull-down

11: Reserved

마이크로컴퓨터 구조

STM32F407 GPIO

GPIOx_IDR

: GPIO port input data register $(GPIOx_IDR)(x = A..I)$

Reset value: 0x0000 XXXX (where X means undefined)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IDR15	IDR14	IDR13	IDR12	IDR11	IDR10	IDR9	IDR8	IDR7	IDR6	IDR5	IDR4	IDR3	IDR2	IDR1	IDR0
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

- •Bits 31:16 Reserved, must be kept at reset value.
- •Bits 15:0 IDRy[15:0]: Port input data (y = 0..15)
- 이 비트들은 읽기모드만 가능하고 word단위의 접근만 허용되며 I/O port에 대응하는 입력 값을 가지고 있음

마이크로컴퓨터 구조

STM32F407 GPIO

GPIOx_ODR

: GPIO port output data register $(GPIOx_ODR)(x = A..I)$

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ODR15	ODR14	ODR13	ODR12	ODR11	ODR10	ODR9	ODR8	ODR7	ODR6	ODR5	ODR4	ODR3	ODR2	ODR1	ODR0
rw	rw	m	rw	rw	rw	rw	rw	rw	rw	rw	rw	m	rw	rw	rw

- •Bits 31:16 Reserved, must be kept at reset value
- •Bits 15:0 ODRy[15:0]: Port output data (y = 0..15)
- 이 비트들은 읽기 쓰기가 가능, 또한 GPIOx_BSRR(x = A..I) 레지스터를 통해 ODRy 비트들을 개별적으로 set 또는 reset 가능

30

BR14

W

31

BR15

18

BR2

W

17

BR1

W

16

BR0

W

GPIOx_BSRR

29

BR13

: GPIO port bit set/reset register (GPIO x_BSRR)(x = A..I)

24

BR8

W

23

BR7

W

22

BR6

W

21

BR5

W

20

BR4

W

19

BR3

W

25

BR9

W

Reset value: 0x0000 0000

28

BR12

W

•Bits 15:0 BSy: Port x set bit y (y=0..15)

이 비트들을 읽을 경우 0x0000이 리턴됨

1: ODRx 비트에 대응하는 값이 Set 됨

0: ODRx 비트에 대응하는 값이 아무런 변화가 없음

27

BR11

W

26

BR10

W

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BS15	BS14	BS13	BS12	BS11	BS10	BS9	BS8	BS7	BS6	BS5	BS4	BS3	BS2	BS1	BS0
W	W	W	W	W	W	w	w	w	W	W	w	w	w	W	W
o] o] 0: 1:	31:10 비트 비트 ODF ODF ote: 円	들은 들을 R x 비,	오직 (읽을 ⁾ 트에 I 트에 I	쓰기 5 경우 (대응하 대응하	안 가능 0x000 나는 집 나는 집	5, wo 0이 근 (이 이 (이 R	rd, ha 기턴됨 무런 eset 목	alf-wo 변화 팀	가 없	음	단위	로의	접근여	기가	

이 비트들은 오직 쓰기만 가능, word, half-word or byte 단위로의 접근이 가능

GPIOx_AFRL(AFR[0])

: GPIO alternate function low register (x = A..I)

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	AFRL7[3:0]				AFRL	6[3:0]			AFRL	5[3:0]			AFRL	.4[3:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AFRL3[3:0] AFRL2[3:0]								AFRL	1[3:0]			AFRL	.0[3:0]		
rw	rw	rw	rw	ΓW	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

0000: AF0 1000: AF8

0001: AF1 1001: AF9

0010: AF2 1010: AF10

0011: AF3 1011: AF11

0100: AF4 1100: AF12

0101: AF5 1101: AF13

0110: AF6 1110: AF14

0111: AF7 1111: AF15

마이크로컴퓨터 구조 <u>STM32F407 GPIO</u>

• GPIOx_AFRH(AFR[1])

: GPIO alternate function high register (x = A..I)

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	AFRH15[3:0]			AFRH14[3:0]			AFRH13[3:0]			AFRH12[3:0]					
rw	rw	ſW	ſW	rw	rw	ľW	rw	rw	rw	rw	ſW	rw	ſW	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	AFRH11[3:0]			AFRH10[3:0]				AFRH9[3:0]			AFRH8[3:0]				
rw	ſW	ſW	rw	ſW	rw	ľW	rw	rw	rw	rw	rw	rw	ſW	rw	rw

0000: AF0 1000: AF8

0001; AF1 1001; AF9

0010: AF2 1010: AF10

0011: AF3 1011: AF11

0100: AF4 1100: AF12

0101: AF5 1101: AF13

0110: AF6 1110: AF14

0111: AF7 1111: AF15

6. STM32F407의 GPIO 프로그래밍 실습

마이크로컴퓨터 구조

6.0 프로그램에서의 GPIOx set-up 과정 및 레지스터 설정

RCC 설정 • RCC→CR,CFGR,PLLCFGR (Clock소스/주파수 설정)

STM32F407 GPIO

• RCC→AHB1ENR(GPIO Clock Enable)

GPIO Mode 설정

- GPIOx→MODER (GPIO output/input 설정)
- GPIOx→OSPEEDR (Output speed 설정)
- GPIOx→OTYPER (Output type(P-P/O-D) 설정)
- GPIOx → PUPDR (Pull-up/Pull-down 설정)

GPIO 실행

- 출력: GPIOx→ODR, BSRR
- 입력: GPIOx→IDR

6.0 Reset 직후 레지스터 초기(디폴트) 상태

- GPIO $x\rightarrow MODER$:
- -0xA800 0000 for port A(PA.15~13: Alternate function, others:Input)
- -0x0000 0280 for port B(PB.4/3: Alternate function, others: Input)
 -0x0000 0000 for other ports (All Input)
- GPIOx→OSPEEDR:
- -0x0000 00C0 for port B(PB.3:100MHz high speed, others:2MHz

low speed)

- -0x0000 0000 for other ports (All 2MHz low speed)
- GPIOx → OTYPER: 0x0000 0000 (All Push-Pull)
- GPIOx→PUPDR:
- -0x6400 0000 for port A(PA.15:Pull-up, PA.14:Pull-down,
- PA.13:Pull-up, others: no)
- -0x0000 0100 for port B(PA.4:Pull-up, others: no)
- -0x0000 0000 for other ports (All no Pull-up, Pull-down)
- GPIOx > ODR, BSRR: 0x0000 0000

마이크로컴퓨터 구조

6.1 STM32F407의 GPIO port의 Address(Memory map)

Bus	Boundary address	Peripheral			
	0x4004 0000 - 0x4007 FFFF	USB OTG HS			
	0x4002 9400 - 0x4003 FFFF	Reserved			
	0x4002 9000 - 0x4002 93FF				
	0x4002 8C00 - 0x4002 8FFF				
	0x4002 8800 - 0x4002 8BFF	ETHERNET MAC			
	0x4002 8400 - 0x4002 87FF				
	0x4002 8000 - 0x4002 83FF				
	0x4002 6800 - 0x4002 7FFF	Reserved			
	0x4002 6400 - 0x4002 67FF	DMA2			
	0x4002 6000 - 0x4002 63FF	DMA1			
	0x4002 5000 - 0x4002 5FFF	Reserved			
	0x4002 4000 - 0x4002 4FFF	BKPSRAM			
AHB1	0x4002 3C00 - 0x4002 3FFF	Flash interface register			
ALIDI	0x4002 3800 - 0x4002 3BFF	RCC			
	0x4002 3400 - 0x4002 37FF	Reserved			
	0x4002 3000 - 0x4002 33FF	CRC			
	0x4002 2400 - 0x4002 2FFF	Reserved			
	0x4002 2000 - 0x4002 23FF	GPIOI			
	0x4002 1C00 - 0x4002 1FFF	GPIOH			
	0x4002 1800 - 0x4002 1BFF	GPIOG			
	0x4002 1400 - 0x4002 17FF	GPIOF			
	0x4002 1000 - 0x4002 13FF	GPIOE			
	0x4002 0C00 - 0x4002 0FFF	GPIOD			
	0x4002 0800 - 0x4002 0BFF	GPIOC			
	0x4002 0400 - 0x4002 07FF	GPIOB			
	0x4002 0000 - 0x4002 03FF	GPIOA			
	0x4001 5800- 0x4001 FFFF	Reserved			

6.2 STM32F407의 GPIO관련 header file(stm32f4xx.h) 주요 부분

```
((uint32_t)0x40000000) /* Peripheral base
```

#define PERIPH BASE address in the alias region */

/* Peripheral memory map */

#define APB1PERIPH BASE

#define APB2PERIPH BASE

#define AHB1PERIPH BASE #define AHB2PERIPH_BASE

/* AHB1 peripherals */

#define GPIOA BASE

#define GPIOB BASE

#define GPIOC BASE

#define GPIOD BASE

#define GPIOE BASE

#define GPIOF BASE

#define GPIOG BASE

#define GPIOH BASE

#define GPIOI BASE

#define GPIOJ_BASE

#define GPIOK BASE

#define RCC BASE

 $(PERIPH_BASE + 0x00010000)$ (PERIPH BASE + 0x00020000)

 $(PERIPH_BASE + 0x10000000)$

PERIPH BASE

 $(AHB1PERIPH_BASE + 0x0000)$

(AHB1PERIPH BASE + 0x0400)

(AHB1PERIPH BASE + 0x0800)

 $(AHB1PERIPH_BASE + 0x2400)$

(AHB1PERIPH BASE + 0x2800)

 $(AHB1PERIPH_BASE + 0x3800)$

 $(AHB1PERIPH_BASE + 0x0C00)$ (AHB1PERIPH BASE + 0x1000)

(AHB1PERIPH BASE + 0x1400) $(AHB1PERIPH_BASE + 0x1800)$ (AHB1PERIPH BASE + 0x1C00)(AHB1PERIPH BASE + 0x2000)

6.2 STM32F407의 GPIO관련 header file 주요 부분

#define GPIOA
#define GPIOB
#define GPIOC
#define GPIOD
#define GPIOE
#define GPIOF
#define GPIOH
#define GPIOH
#define GPIOI
#define GPIOI
#define GPIOI
#define GPIOI
#define GPIOX
#define GPIOX

((GPIO TypeDef *) GPIOA BASE) ((GPIO_TypeDef *) GPIOB_BASE) ((GPIO_TypeDef *) GPIOC_BASE) ((GPIO_TypeDef *) GPIOD_BASE) ((GPIO_TypeDef *) GPIOE_BASE) ((GPIO_TypeDef *) GPIOF_BASE) ((GPIO_TypeDef *) GPIOG_BASE) ((GPIO_TypeDef *) GPIOH_BASE) ((GPIO_TypeDef *) GPIOI_BASE) ((GPIO TypeDef *) GPIOJ BASE) ((GPIO_TypeDef *) GPIOK_BASE) ((RCC_TypeDef *) RCC_BASE)

6.2 STM32F407의 GPIO관련 header file 주요 부분

```
typedef struct {
   _IO uint32_t MODER; //GPIO port mode register, offset: 0x00
   _IO uint32_t OTYPER; //GPIO port output type register, offset: 0x04
   _IO uint32_t OSPEEDR; //GPIO port output speed register, offset: 0x08
   _IO uint32_t PUPDR; //GPIO port pull-up/pull-down register, 0x0C
   _IO uint32_t IDR; //GPIO port input data register, offset: 0x10
  IO uint32_t ODR; //GPIO port output data register, offset: 0x14
   _IO uint16_t BSRRL; //GPIO port bit set/reset low register, 0x18
   IO uint16_t BSRRH; //GPIO port bit set/reset high register, 0x1A
   IO uint32 t LCKR; //GPIO port configuration lock register, 0x1C
   _IO uint32_t AFR[2]; //GPIO alternate function registers, 0x20-0x24
} GPIO_TypeDef;
typedef __IO uint32_t vu32;
typedef __IO uint16_t vu16;
typedef __IO uint8_t vu8;
```

6.3 STM32F407의 GPIO port 내부 구조 (예: GPIOG)

마이크로컴퓨터 구조 <u>STM32F407 GPIO</u>

6.4 GPIO 구동실습을 위한 실습보드의 출력인터페이스 회로

• Output: LED*8 (LED7 ~ LED0), 관련 GPIO port : PG7~PG0

STM32F407 GPIO

* 레지스터 정의(예)

GPIOG→ODR

- = (*(volatile unsigned *) GPIOG_BASE+0x14)
- = (*(volatile unsigned *) AHB1PERIPH_BASE + 0x1800 +0x14)
- = (*(volatile unsigned *) PERIPH_BASE + 0x00020000+ 0x1800
- +0x14)
- = (*(volatile unsigned *) (uint32_t)0x40000000 + 0x00020000 + 0x1800 + 0x14)
- = (*(volatile unsigned *) (uint32_t)0x40021814)

마이크로컴퓨터 구조 <u>STM32F407 GPIO</u>

6.5 GPIO 구동실습을 위한 실습보드의 입력인터페이스 회로

• Input: SW*8 (SW7 ~ SW0), 관련 GPIO port: PH15~PH8

STM32F407 GPIO

