ENME 585 – Quiz 2

Closed book and closed notes. Schulich calculators allowed. Please show your work.

- 1. In the above feedback loop, proportional control C(D)=k is applied to the plant $P(D)=\frac{D}{D^2-2D+1}$.
 - a) Sketch the loci of the closed-loop poles as k > 0 varies.
 - b) Find the values of any imaginary axis crossings in the root locus and the range of k for closed-loop stability.
 - c) What value of k gives repeated real stable poles, and what is the value of the poles?
- 2. Suppose instead that the simple lag control $C(D) = \frac{k}{D+4}$ is applied to the plant of Question 1.
 - a) Sketch the loci of the closed-loop poles as k > 0 varies.
 - b) Find the values of any imaginary axis crossings in the root locus and the range of k for closed-loop stability.
- 3. In the above feedback loop, integral control $C(D) = \frac{k}{D}$ is applied to the plant $P(D) = \frac{1}{D+2}$.
 - a) Find $T_{re}(D)$.
 - b) Find (in terms of k) the steady-state error e_{ss} if r=[1] and w=0.
 - c) Find e_{ss} if r = [t] and w = 0.
 - d) Find $T_{rv}(D)$.
 - e) Find y_{ss} if r = [1] and w = 0.
 - f) Find y_{ss} if r = 0 and w = [1].
 - g) What value of k makes the closed-loop system critically damped?
 - h) If k = 2, r = [1], and w = 0, find the peak value of y(t) and the time at which it occurs.