

Prova 3 - Estatística Matemática - 2025/1

Dados de Identificação		
Professor:	Roberto Vila	
Aluno(a):		
Matrícula:		

Escolha somente 4 das 5 questões e resolva.

- 1. **(2,5) Questão.** Sejam X_1, X_2, \ldots variáveis aleatórias independentes, tais que $\mathbb{P}(X_n = 1) = 1/n$ and $\mathbb{P}(X_n = 0) = 1 1/n$. Verifique que $X_n \stackrel{\text{P}}{\longrightarrow} 0$ mas $X_n \stackrel{\text{q.c.}}{\longrightarrow} 0$.
- 2. **(2,5) Questão.** Verifique que, se X_1, X_2, \ldots são variáveis aleatórias independentes e identicamente distribuídas, com $\mathbb{E}(X_1) = 1 = \mathrm{Var}(X_1)$, então

$$\frac{\sum_{i=1}^{n} X_i}{\sqrt{n \sum_{i=1}^{n} X_i^2}} \xrightarrow{\text{q.c.}} \frac{1}{\sqrt{2}}.$$

3. **(2,5) Questão.** Sejam X_1, X_2, \ldots variáveis aleatórias independentes, definidas como segue:

$$X_n = \begin{cases} -1/\sqrt{n}, & \text{com probabilidade } 1/2; \\ 1/\sqrt{n}, & \text{com probabilidade } 1/2. \end{cases}$$

Verifique que sequencia $(X_n)_{n\geqslant 1}$ satisfaz o Teorema do Limite Central (de Lyapunov).

4. **(2,5) Questão.** Sejam X_1, X_2, \ldots variáveis aleatórias independentes e identicamente distribuídas, com $X_1 \sim U[0, \theta]$, onde $\theta > 0$. Verifique que

$$Y_n = \sqrt{n}[\log(2\overline{X}) - \log(\theta)]$$

converge em distribuição para N(0, 1/3).

5. **(2,5) Questão.** Sejam X_1, X_2, \ldots variáveis aleatórias independentes e identicamente distribuídas, com $\mathbb{E}(X_1) = 0$. Encontre o limite, quando $n \to \infty$, da função característica de $Y_n = \cos(\overline{X})$.