Most probably transition pathway of biology-modelling SDEs

Stanley Nicholson

Illinois Institute of Technology

February 2021

► All physical systems are "noisy"

- ► All physical systems are "noisy"
- ► Noise: think of Brownian motion

- ► All physical systems are "noisy"
- ► Noise: think of Brownian motion
- Accounts for sudden changes in system

- ► All physical systems are "noisy"
- ► Noise: think of Brownian motion
- Accounts for sudden changes in system
- Many biological processes are stochastic: mutation, gene regulation, etc.

Brownian Motion

What's an SDE?

The definition of a stochastic differential equation given a stochastic process X_t , drift function $f(X_t, t)$, and diffusion function $\sigma(X_t, t)$:

$$dX_t = f(X_t, t)dt + \sigma(X_t, t)dB_t$$
 (1)

Think: f determines direction, σ denotes noise intensity

Our Model

Simulation

Given f and σ , we simulate the SDE with the Euler-Maruyama method.

Learn our Model

Given this simulated data, we wish to find learn the underlying drift and diffusion

Learn our Model

Given this simulated data, we wish to find learn the underlying drift and diffusion

$$f(x) = \lim_{\Delta t \to 0} \mathbb{E}\left(\frac{X_{\Delta t} - X_0}{\Delta t} \middle| X_0 = x\right)$$
 (2)

$$\sigma^{2}(x) = \lim_{\Delta t \to 0} \mathbb{E}\left(\frac{(X_{\Delta t} - X_{0})^{2}}{\Delta t} \middle| X_{0} = x\right)$$
(3)

Simulation Zoom-In

Learned f

Starting at the stable concentration x_- , can we jump to x_+ ?

Starting at the stable concentration x_- , can we jump to x_+ ? If so, what is the most probable path that will be taken?

Starting at the stable concentration x_- , can we jump to x_+ ? If so, what is the most probable path that will be taken?

$$\ddot{z} = \frac{\sigma(z)^2}{2} f''(z) + f'(z)f(z). \tag{4}$$

with the condition that $z(t_0) = x_-$ and $z(t_f) = x_+$.

Starting at the stable concentration x_- , can we jump to x_+ ? If so, what is the most probable path that will be taken?

$$\ddot{z} = \frac{\sigma(z)^2}{2} f''(z) + f'(z)f(z). \tag{4}$$

with the condition that $z(t_0) = x_-$ and $z(t_f) = x_+$.

- ► Solving analytically is very difficult
- ► The shooting method lets us find the "velocity" that minimizes the "loss"

Learned Probable Pathway

Future Work

- ► Fine tune/optimize specific data extraction
- ▶ Applying machine learning techniques to pathway distribution