Spatial Statistics: Areal Data

Samuel I. Berchuck STA 440L, Duke University

March 2, 2023

Goal of an Areal Data Spatial Analysis

 Account for noise due to spatial variability in order to provide smoothed estimates across space

• How to induce spatial correlation between areal units?

- How to induce spatial correlation between areal units?
 - Distances between centroids (possibly population weighted);
 may be inappropriate for oddly shaped regions of varying sizes (great for equal sized grid though)

- How to induce spatial correlation between areal units?
 - Distances between centroids (possibly population weighted); may be inappropriate for oddly shaped regions of varying sizes (great for equal sized grid though)
 - Neighborhood structure of your spatial region; are two regions neighbors?

- How to induce spatial correlation between areal units?
 - Distances between centroids (possibly population weighted); may be inappropriate for oddly shaped regions of varying sizes (great for equal sized grid though)
 - Neighborhood structure of your spatial region; are two regions neighbors?
- Correlation introduced through spatial random effects

 CAR models are preferred in the Bayesian setting due to the conditional definition of the model

- CAR models are preferred in the Bayesian setting due to the conditional definition of the model
- \bullet θ_i parameters are typically updated individually

- CAR models are preferred in the Bayesian setting due to the conditional definition of the model
- \bullet θ_i parameters are typically updated individually
- Depending on the likelihood, conjugacy may be available, useful for Gibbs sampling

- CAR models are preferred in the Bayesian setting due to the conditional definition of the model
- ullet θ_i parameters are typically updated individually
- Depending on the likelihood, conjugacy may be available, useful for Gibbs sampling
- Today, CAR models can be implemented using probabilistic programming languages (e.g., Stan)

Spatial Statistics

- The study of spatially referenced data observations
- Types of spatial data
 - Geostatistical (or point-referenced)
 - Areal (or lattice)
 - Open Point-process

 The foundational assumption in spatial statistics states that dependence between observations weakens as the distance between locations increases

Motivating an Areal Data Model

Time from first visit (days)

Regression Model at Each Location

- Observation: Y_{it} is an observation at time t (t = 1, ..., T) and location \mathbf{s}_i (i = 1, ..., n)
- $\mathbf{s}_i = (x_i, y_i)$ indicates the centroid of each location
- Time: x_{it} indicates the number of days from the baseline visit (i.e., $x_{i1} = 0$)
- Independent linear regression model for each location as follows,

$$Y_{it} = \tilde{\beta}_{0i} + \tilde{\beta}_{1i} x_{it} + \epsilon_{it}, \quad \epsilon_{it} \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma_i^2) \quad \text{for } t = 1, \dots, T$$

- Collection of Parameters: $\Omega_i = (\tilde{\beta}_{0i}, \tilde{\beta}_{1i}, \sigma_i^2)$
- Let's Assume a Bayesian Setup: $f(\Omega_i) = f(\tilde{\beta}_{0i})f(\tilde{\beta}_{1i})f(\sigma_i^2)$
- Prediction: $f(Y_{it'}|\mathbf{Y}_i) = \int f(Y_{it'}|\mathbf{\Omega}_i)f(\mathbf{\Omega}_i|\mathbf{Y}_i)d\mathbf{\Omega}_i$

What are some potential problems with this setup?

Residuals from PLR Setup

Joint Inference Across Locations

• Define a joint model for t = 1, ..., T and i = 1, ..., n:

$$Y_{it} = \tilde{\beta}_{0i} + \tilde{\beta}_{1i}x_{it} + \epsilon_{it}, \quad \epsilon_{it} \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma_i^2)$$

$$= (\beta_0 + \beta_{0i}) + (\beta_1 + \beta_{1i})x_{it} + \epsilon_{it}$$

$$= (\beta_0 + \beta_1x_{it}) + (\beta_{0i} + \beta_{1i}x_{it}) + \epsilon_{it}$$

$$= \mathbf{x}_{it}\boldsymbol{\beta} + \mathbf{x}_{it}\boldsymbol{\beta}_i + \epsilon_{it},$$

where
$$\mathbf{x}_{it} = (1, x_{it}), \ \boldsymbol{\beta} = (\beta_0, \beta_1)^{\top}, \ \text{and} \ \boldsymbol{\beta}_i = (\beta_{0i}, \beta_{1i})^{\top}.$$

- $oldsymbol{\circ}$ $oldsymbol{\beta}$: population regression parameter
- β_i : location-specific parameters
- σ_i^2 : location-specific variance

Let's treat the intercept and slopes independently:

•
$$\beta_0 = (\beta_{01}, \dots, \beta_{0n})^{\top}$$
, $\beta_1 = (\beta_{11}, \dots, \beta_{1n})^{\top}$

Our goal is to apply the fundamental assumption in spatial statistics to learning the location-specific parameters.

Neighborhood Adjacency Matrix

- Spatial dependency is encoded through an $n \times n$ adjacency matrix, \mathbf{W} .
- Each entry is given by:

$$w_{ij} = 1(i \sim j) = \left\{ egin{array}{ll} 1 & ext{if } i ext{ and } j ext{ share a border;} \\ 0 & ext{otherwise.} \end{array}
ight.$$

 Border definition: queen (edges and corners) or rook (edges only) specification

```
library(womblR)
```

```
W1 <- womblR::HFAII_Queen # HFA-II visual field adjacency matrix queen
```

W3 <- womblR::HFAII_QueenHF # HFA-II visual field adjacency matrix queen with hemisphere

W2 <- womblR::HFAII_Rook # HFA-II visual field adjacency matrix rook

Queen Specification

Rook Specification

Queen Specification with Hemisphere Separation

Inducing Spatial Dependency

The most common approach for inducing spatial dependency in an areal data setting using the intrinsic conditional autoregressive (ICAR) process,

$$oldsymbol{ heta}ert au^2\sim \mathsf{ICAR}\left(au^2
ight)$$

$$\theta_i | \theta_{-i}, \tau^2 \sim \mathcal{N}\left(\frac{\sum_{j=1}^n w_{ij}\theta_j}{\sum_{j=1}^n w_{ij}}, \frac{\tau^2}{\sum_{j=1}^n w_{ij}}\right)$$

- θ_{-j} : Vector of θ_i parameters with θ_j removed
- $\bullet \ \beta_0 | \tau_0^2 \sim \mathsf{ICAR}\left(\tau_0^2\right), \quad \beta_1 | \tau_1^2 \sim \mathsf{ICAR}\left(\tau_1^2\right)$
- Not a proper prior distribution (implications for MCMC algorithms!)

A Proper CAR Process

$$\pmb{\theta} = \{\theta_1, \dots, \theta_n\}^\mathsf{T}$$
; $\pmb{\theta} | \rho, \tau^2 \sim \mathsf{Leroux} \; \mathsf{CAR} \left(\rho, \tau^2 \right)$

$$\theta_i | \boldsymbol{\theta}_{-i}, \rho, \tau^2 \sim \mathcal{N} \left(\frac{\rho \sum_{j=1}^n w_{ij} \theta_j}{\rho \sum_{j=1}^n w_{ij} + 1 - \rho}, \frac{\tau^2}{\rho \sum_{j=1}^n w_{ij} + 1 - \rho} \right)$$

- Proper for $\rho \in [0,1)$
- ullet ho=1 gives us the ICAR model
- ullet ρ is given a prior distribution and estimated by the data

$$\bullet \ \mathsf{COR}(\theta_k, \theta_j | \boldsymbol{\theta}_{-kj}) = \frac{\rho w_{kj}}{\sqrt{(\rho \sum_{i=1}^n w_{ki} + 1 - \rho)(\rho \sum_{i=1}^n w_{ji} + 1 - \rho)}}$$

Equivalency of Joint and Conditional Specifications

$$\theta_i | \boldsymbol{\theta}_{-i}, \rho, \tau^2 \sim \mathcal{N} \left(\frac{\rho \sum_{j=1}^n w_{ij} \theta_j}{\rho \sum_{j=1}^n w_{ij} + 1 - \rho}, \frac{\tau^2}{\rho \sum_{j=1}^n w_{ij} + 1 - \rho} \right)$$

$$\boldsymbol{\theta}|\rho, \tau^2 \sim \mathcal{N}(\mathbf{0}, \tau^2 \mathbf{Q}(\rho)^{-1}), \quad \mathbf{Q}(\rho) = \rho \left(\mathbf{D}_w - \mathbf{W}\right) + (1 - \rho)\mathbf{I}_n,$$

where \mathbf{D}_w is a diagonal matrix with the rowsum of \mathbf{W} on the diagonal.

Let's fit this model using stan!

First let's simulate some data:

```
###Simulation settings
set.seed(2)
T <- 15 # number of time points
n <- 54 # number of spatial locations
N <- n * T # total number of observations
W <- HFAII_QueenHF # visual field adjacency matrix
###Generating model
D <- diag(apply(W, 1, sum))
Q \leftarrow 0.99 * (D - W) + 0.01 * diag(n)
precision0 <- 1.4 * 0
sigma0 <- solve(precision0)
beta0 <- 26 + chol(sigma0) %*% matrix(rnorm(n), ncol = 1)
precision1 <- 0.5 * Q
sigma1 <- solve(precision1)
beta1 <- -6 + chol(sigma1) %*% matrix(rnorm(n), ncol = 1)
sigma <- rhalft(n, scale = 1.5, nu = 3) # requires the LaplacesDemon package
###Simulate data
y <- matrix(nrow = n, ncol = T)
time <- seq(0, 1, length.out = T)
for (i in 1:n) {
 for (t in 1:T) {
   mu <- beta0[i] + beta1[i] * time[t]</pre>
    y[i, t] <- rnorm(1, mu, sigma[i])
 }
```

Visual field sensitivity time series at each location

Time from first visit (days)

Stan Model Specification

```
data {
  int<lower = 1> n: // number of spatial locations
  int<lower = 1> T; // number of longitudinal observations
  int<lower = 1> N; // total number of observations
 vector[N] v: // outcome observations
 vector[N] x: // time measurements
  int<lower = 1> s[N]; // location indeces
 matrix<lower = 0, upper = 1>[n, n] W; // adjacency matrix
transformed data {
  vector[n] zeros:
 matrix[n, n] identity;
 matrix<lower = 0>[n, n] D;
 vector[n] W rowsums:
 for (i in 1:n) {
    W_rowsums[i] = sum(W[i, ]);
 D = diag matrix(W rowsums):
 zeros = rep_vector(0, n);
  identity = diag_matrix(rep_vector(1.0, n));
parameters {
 real beta0:
 real beta1:
 vector[n] beta0_vec;
 vector[n] beta1 vec:
  vector<lower = 0>[n] sigma;
 real<lower = 0> tau0;
 real<lower = 0, upper = 1> rho0;
 real<lower = 0> tau1:
 real<lower = 0, upper = 1> rho1;
```

Stan Model Specification (Cont.)

```
transformed parameters {
  cov_matrix[n] precision0 = (1 / (tau0 * tau0)) * (rho0 * (D - W) + (1 - rho0) * identity);
 cov_matrix[n] precision1 = (1 / (tau1 * tau1)) * (rho1 * (D - W) + (1 - rho1) * identity);
model {
 vector[N] mu:
 for (i in 1:N) {
    mu[i] = (beta0 + beta0_vec[s[i]]) + (beta1 + beta1_vec[s[i]]) * x[i];
  beta0_vec ~ multi_normal_prec(zeros, precision0);
  beta1_vec ~ multi_normal_prec(zeros, precision1);
 for (i in 1:n) {
    sigma[i] ~ student_t(3, 0, 1);
 tau0 ~ student_t(3, 0, 1);
 tau1 ~ student t(3, 0, 1):
 for (i in 1:N) {
    v[i] ~ normal(mu[i], sigma[s[i]]);
generated quantities {
  vector[N] log lik:
 vector[N] mu:
 for (i in 1:N) {
    mu[i] = (beta0 + beta0 vec[s[i]]) + (beta1 + beta1 vec[s[i]]) * x[i]:
 for (i in 1:N) log_lik[i] = normal_lpdf(y[i] | mu[i], sigma[s[i]]);
```

Prepare Date for stan

```
###Create training data
T_train <- 9
dat <- data.frame(y = as.numeric(y[, 1:T_train]),</pre>
   location = rep(1:n, T train),
   time = rep(time[1:T_train], each = n))
###Define stan data list
blind_spot <- c(26, 35) # define blind spot
dat <- dat[!dat$location %in% blind_spot, ]
W <- W[-blind spot, -blind spot]
n train <- 52
dat$location <- as.numeric(as.factor(dat$location)) # reorder the locations (1-52)
stan_data <- list(
 y = dat y,
 x = dat$time,
 s = dat$location,
 N = T train * n train.
 n = n train.
 T = T_{train}
  W = W
```

We will only fit the model with the first nine observations. We will use the remaining six to look at prediction performance.

0.00

3000 3500 4000 4500 5000

Compile model and perform sampling

```
###Compile spatial model
model_compiled <- stan_model("spatial.stan")</pre>
fit <- sampling(model_compiled, data = stan_data, chains = 5, iter = 5000, cores = 5)
saveRDS(fit, file = "fit.rds")
###Check the traceplots
rstan::traceplot(fit, pars = c("beta0", "beta1", "tau0", "rho0", "tau1", "rho1"))
                      heta0
                                                    heta1
                                                                                   tau0
       30
       28
       26
                                                                                                     chain
          2500
              3000
                   3500
                        4000
                             4500
                                        2500
                                            3000
                                                 3500
                                                      4000
                                                           4500
                                                                5000
                                                                       2500
                                                                            3000
                                                                                 3500
                                                                                   rho1
                                                                                                      - 5
      0.75
                                                                    0.75
      0.50
                                                                    0.50
      0.25
                                                                    0.25
```

3000

Check model fit

We can check model fit using the WAIC (also known as the Wattanabe-Akaike information criterion, or the widely applicable information criterion).

```
###First let's fit a non-spatial version of our model (the file "plr.stan" is available on Sakai)
model_compiled_plr <- stan_model("plr.stan")
fit_plr <- sampling(model_compiled_plr, data = stan_data, chains = 5, iter = 5000, cores = 5)
saveRDS(fit_plr, file = "fit_plr.rds")

###Compute waic for spatial model
library(loo)
log_lik <- loo::extract_log_lik(fit)
waic <- loo::waic(log_lik)
waic$estimates[3, 1]
[1] 1300.374

###Compute waic for plr model
log_lik_plr <- loo::extract_log_lik(fit_plr)
waic_plr*sestimates[3, 1]
[1] 13124.804</pre>
```

The WAIC for the spatial model is lower, indicating a better fit

Posterior Intercepts and Slopes at Each Location

Prediction performance: average MSE across locations

We use the posterior predictive distribution:

$$f(Y_{it}|\mathbf{Y}) = \int f(Y_{it}, \mathbf{\Omega}|\mathbf{Y}) d\mathbf{\Omega} = \int f(Y_{it}|\mathbf{\Omega}) f(\mathbf{\Omega}|\mathbf{Y}) d\mathbf{\Omega}$$

