Московский Физико-Технический Институт

Кафедра общей физики Лабораторная работа №3.1.1

Магнитометр

Автор: Алексей ДОМРАЧЕВ 615 группа Преподаватель: Николай Владимирович Дьячков

Цель работы: определить горизонтальную составляющую магнитного поля Земли и установить количественное соотношение между единицами электрического тока в системе СИ и абсолютной гауссовой системе.

В работе используются: магнитометр, осветитель со шкалой, источник питания, вольтметр, электромагнитный переключатель, конденсатор, намагниченный стержень, прибор для определения периода крутильных колебаний, секундомер, рулетка, штангенциркуль

Задание 1.

Экспериментальная установка

а) Схема магнитометра

б) Схема измерения угла отклонения магнитной стрелки

Рис. 1: Устройство магнитометра

Магнитометр — прибор для магнитных измерений — это компас, теодолит, веберметр и пр. С помощью магнитометров измеряют намагниченность ферромагнетиков, напряжённость магнитных полей, исследуют магнитные аномалии.

Постановка задачи. Измерим угол отклонения магнитной стрелки в поле намагниченного стержня и период колебаний этого стержня в поле Земли. По результатам измерений рассчитываем горизонтальную составляющую магнитного поля Земли.

Выполнение измерений. В нашей установке магнитную стрелку заменяют сменяют смещения двух световых зайчиков относительно друг друга. Вставляя намагниченный стержень в отверстие Р (Рис. 1а) измерим смещение подвижного зайчика $x_1 = 4.7 \pm 0.1$ см (Рис. 1б). Поменяв ориентацию стержня измерим $x_2 = 4.8 \pm 0.1$ см. Измерим расстояние от шкалы до зеркала $L = 99.0 \pm 1$ см.

Опустим стержень на длинной нити в стеклянный сосуд, и измерим период его колебаний.

Таблица 1: Зависимость времени от колебаний

t, с N , колебаний				54.20 4
T, c	15.96	14.07	14.23	13.55

Получаем средний период колебаний $T_{\rm cp.}=14.45~{
m c.}$

Измерим линейные размеры стержня m=4.35 г, d=4 мм, l=45 мм. Также нам был дан

радиус кольца K (Рис. 1a) R = 38 см.

Произведем рассчет момента инерции ферромагнитного стержня:

$$J = \frac{ml^2}{12} \left[1 + 3 \left(\frac{r}{l} \right)^2 \right] = 7.4 \cdot 10^{-7} \ \text{kg/m}^2, \quad \Delta J = J \cdot \sqrt{4 \cdot \varepsilon_l^2 + 4 \cdot \varepsilon_r^2} = 0.7 \cdot 10^{-7} \ \text{kg/m}^2$$

Теперь рассчитаем магнитное поле:

$$B_0 = \frac{2\pi}{TR} \sqrt{\frac{\mu_0 J L}{2\pi R x_1}} = 8.9 \cdot 10^{-6} \text{ Tm},$$

$$\Delta B_0 = B_0 \cdot \sqrt{\varepsilon_T^2 + \varepsilon_R^2 + 0.25 \cdot (\varepsilon_J^2 + \varepsilon_L^2 + \varepsilon_R^2 + \varepsilon_{x_1}^2)} = 0.5 \cdot 10^{-6} \text{ Tm}$$

Задание 2.

чую установку напряжение $U = 97 \, \mathrm{B.}$ Замкнем ключ K и включим электровибратор. Напряжение не изменилось, а отклонение зайчика $x_1' = 18.2 \pm 0.1 \; \mathrm{cm}$. Поменяем полярность ключа и проведем аналогичные измерения: $x_2' =$ 17.5 ± 0.1 см, среднее значение $x = 17.9 \pm 0.1$ см Теперь рассчитаем силу тока в разных система СИ – $I_{\rm CH}$ и

Вынув намагниченный стержень из гнезда Р, мы собрали электрическую схема (Рис. 2). Подадим на рабо-

в абсолютной гауссовой – $I_{\rm a6c}$.

Нам известно, что N=44, рассчитаем $\operatorname{tg}\varphi_2=\frac{x}{2L}=0.09$. Получим:

$$I_{\text{CM}} = \frac{2B_0 R}{\mu_0 N} \operatorname{tg} \varphi_2 = 0.011 \text{ A}$$

$$\Delta I_{\text{CM}} = I_{\text{CM}} \cdot \sqrt{\varepsilon_{B_0}^2 + \varepsilon_R^2 + \varepsilon_{\operatorname{tg}\varphi_2}^2} = 0,001 \text{ A}$$

Для расчёта $I_{\rm acc}$ переведем U в абс. гауссову систему $U_{\rm a6c} = \frac{97}{300} = 0.32$, тогда:

$$c = 10 \frac{I_{\rm a6c}}{I_{\rm CM}} = 2.8 \cdot 10^8 \; {\rm m/c}, \quad \Delta c = c \cdot \sqrt{\varepsilon_{I_{\rm CM}}^2 + \varepsilon_{\rm a6c}^2} = 0.3 \cdot 10^8 \; {\rm m/c}$$
 В итоге $c = (2.8 \pm 0.3) \cdot 10^8 \; {\rm m/c}$

 $I_{\text{a6c}} = CU = 9 \cdot 10^5 \cdot 0.32 = 2.8 \cdot 10^5 \text{ }\Phi \text{p} \cdot \text{c}^{-1} \quad \Delta I_{\text{a6c}} = I_{\text{a6c}} \cdot \sqrt{\varepsilon_U^2 + \varepsilon_C^2} = 0.2 \cdot 10^5$

Вывод

Мы определили горизонтальную составляющую магнитного поля Земли и установили количественное соотношение между единицами электрического тока в системе СИ и абсолютной гауссовой системе.