

Cloud-basierte Fernerkundung

Matthias Schubert Andreas Braun

Inhalte und Ziele

- -Grundprinzipien der cloud-basierten Fernerkundung
- -Kennenlernen des *EO Browsers*

- -Kennenlernen der *Google Earth Engine*
- -Kennenlernen der Skriptsprache JavaScript
- Arbeit mit Zeitreihen aus Bild-Archiven
- -Auswertung von optischen Bildern und Radarbildern
- -Vorbereitung für eigenständige Arbeit

Atlantische Hurricanes (September 2017)

Quelle: https://developers.google.com/earth-engine/ic_visualization

Aufbau

Freitag, 14.02.2020	Samstag, 15.02.2020
9:00 – 12:15	9:00 – 12:15
 Theoretische Grundlagen Arbeiten mit dem EO Browser Kennenlernen der Google Earth Engine Anzeige, Grafiken, Metadaten 	 Überwachte Klassifikationen Sammeln / Importieren von Trainingsgebieten Parametrisierung der Klassifikatoren Vergleich unterschiedlicher Ansätze
13:15 – 17:00	13:15 – 17:00
 Spezifische Auswahl von Bildern Arbeit mit Collections Indizes, spektrale Signaturen Unüberwachte Klassifikation 	 Arbeit mit Radardaten Accuracy Assessment Verwendung anderer Datensätze (SRTM) Export von Ergebnissen

Voraussetzung für diesen Kurs (1/2)

Account für den **EO Browser**

- "Free account" ist kostenfrei
- Kann hier beantragt werden:
 https://services.sentinel hub.com/oauth/subscription?origin=EOBrowser¶
 m client id=1febe974-ca4f-44c1-9fc8-bafbd3bb4abd
- Abwählen der Option: "Include additional free triAl…."

Dauer: Wenige Minuten bis mehrere
 Stunden.

Voraussetzung für diesen Kurs (2/2)

Account für die Google Earth Engine

- Private / nicht-kommerzielle Nutzung ist kostenfrei
- Kann hier beantragt werden:https://earthengine.google.com/new_signup/
- Benötigt wird ein existierendes Google-Nutzerkonto

– Dauer: Mehrere Tage

Materialien

https://github.com/Geo-Uni-Tuebingen/GEE

- -Struktur der Kursinhalte
- Dokumentation aller Übungen durch kommentierten Code
- -Zusätzliche Materialien und Links

Der Kurs in 5 Sekunden

Fragen?

Räumliche und zeitliche Auflösung

Quelle: https://directory.eoportal.org/web/eoportal/satellite-missions/p/proba-v

Dateigröße eines Satellitenbilds

Warum Fernerkundung in der Cloud?

Sensor	Launch	Räuml. Auflösung	Kanäle	Abdeckung	Dateigröße pro Aufnahme / Intervall
Landsat MSS	1972	80 m	4	185x180 km	20 MB / 16 Tage
Landsat TM	1982	30 m	6	185x180 km	135 MB / 16 Tage
Landsat ETM	1999	30 m	9	185x180 km	200 MB / 16 Tage
Landsat OLI	2013	30 m	11	185x180 km	900 MB / 16 Tage
Sentinel-2	2014	10 m	13	290 x 300 km	5 GB / 10 Tage

Sensor	Launch	Räuml. Auflösung	Kanäle	Abdeckung	Dateigröße pro Aufnahme / Intervall
MODIS	1999	500 m	36	2330 x 10 km	20 MB / täglich
Sentinel-3 OLCI	2016	300 m	21	1270 x 1270 km	200 MB / täglich

Hierarchie von Informationen

Das digitale Zeitalter

Enterprise Data

2015

Big Data

Quellen

- Soille et al (2017): A versatile data-intensive computing platform for information retrieval from big geospatial data
- DLR (2018): 60 Petabytes for the German Satellite Data Archive D-SDA

Zugriffe auf freie Satellitendaten

Quelle: Morrison (2019): An Introduction to Satellite Imagery and Machine Learning

Grundidee

Datenarchive

Verarbeitung der Daten

Was ist eine Cloud?

- Daten-Zentrum mit vielfach vorhandener identischer Hardware
- Entwicklung, Aktualisierung erfolgt automatisiert

- -Cloud = Software-gesteuerte/s
 - Netzwerk
 - Speicherung
 - Prozessierung

Google Data Center Quelle: Sverdlik 2019

Wo befindet sich die Cloud?

- https://kinsta.com/de/wissensdatenbank/google-cloud-data-center-standorte/
- https://aws.amazon.com/de/blogs/networking-and-content-delivery/amazon-s3-amazon-cloudfront-a-match-made-in-the-cloud/

Vorteile von cloud-basierter Fernerkundung

Download der Daten entfällt

- -Speicherung der Daten, Zwischen- und Endprodukte entfällt
- -Zugriff auf höhere Prozessorleistung
- Keine Systemvoraussetzungen (außer Internetzugang)
- -Keine Kosten für lokale Software

Nachteile von cloud-basierter Fernerkundung

- Kein Internet keine Fernerkundung
- –Account von Google / Amazon / ... benötigt

- Abhängigkeit von Server-Seite
- Abhängigkeit vom Anbieter
- Andere Lizenzierungs- / Nutzungsbedingungen

EO Browser

-Sentinel Hub

- Seit 2016 entwickelt (gefördert durch ESA)
- Prozessierungscluster für archivierte Satellitendaten
- Erlaubt Zugriff auf Bilder mithilfe der Skriptsprache Python
- Kostenpflichtig für kommerzielle Nutzung, Entwicklung von Algorithmen und professionellen Support

European Space Agency

–EO Browser

- Frei nutzbares "Front-End" des Sentinel Hubs
- Anmeldung erforderlich, aber keine Kosten für Basis-Nutzung
- Ermöglicht Suche, Darstellung, einfache Analysen
- Keine Multi-temporale Auwertung oder Skripting

EO Browser – Freie Funktionen

- Bildarchive durchsuchen
 - Ort/Datum/Produkt
 - Wolkenbedeckung (optisch)
 - Flugrichtung (SAR)
- Bilder darstellen (RGB und Indizes, eigene Kombinationen
- Bilder vergleichen
- Werteverlauf einzelner Punkte und Flächen plotten
- Bilder und Videos exportieren

Weitere Portale

remap

Online-Klassifikationssystem für Landoberflächen

Google Earth Engine

- Basiert auf Goolge Earth Engine
- Basiert auf Landsat-Bildarchiv
- -Arbeitet mit wolkenfreien Bild-Mosaiks für die Jahre 2016 und 2000
- Nutzt neben der spektralen Information Indizes, SRTM-Höhenmodelle und Klimadaten (Quellen)
- Upload eigener Traininingsgebiete
- Download der fertigen Klassifikationsergebnisse
- Anleitung und Beispielanwendungen (<u>URL</u>)
- -Wissenschaftlicher Hintergrund (URL)

Sentinel Playground

Jupyteo (ehemals JupyTEP)

Amazon Web Service

Earth Blox

