

Coordinate Agents via Policy Optimization

Xihuai Wang (王锡淮)

上海交通大学

https://xihuai18.github.io

Aug. 8 2023 at RLChina

Content

- Brief Introduction about Cooperative MARL and Trust-region Methods Recap
- 2. Extensions of Trust-region Methods in Cooperative MARL
 - MAPPO Reconstructing State Representation
 - CoPPO Coordinating the Joint Policy
- 3. Sequential Policy Optimization From Nonstationarity to Monotonic Improvement
- 4. Agent-by-agent Policy Optimization

Cooperative Multi-agent Scenarios

• SMAC (StarCraft Multi-Agent Challenge)

(b) 3s_vs_5z

(c) corridor

MAMuJoCo (Multi-agent MuJoCo)

(a) 2c_vs_64zg

Goal: Learn a policy for each agent that all agents together achieve the goal of the system.

Decentralized Execution

Shared Reward Function

Modelled by a Dec-MDP $(S, \{A^i\}_{i \in \mathcal{N}}, r, \mathcal{T}, \gamma)$

- $\mathcal{N} = \{1, \dots, n\}$ is the set of agents;
- S is the state space;
- $\mathcal{A} = \mathcal{A}^1 \times \cdots \times \mathcal{A}^n$ is the joint action space, where \mathcal{A}^i is the action space of agent i;
- $r: \mathcal{S} \times \mathcal{A} \mapsto \mathbb{R}$ is the reward function;
- $\mathcal{T}: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \mapsto [0,1]$ is the dynamics function;
- $\gamma \in [0,1)$ is the reward discount factor.

Goal:
$$\max_{\boldsymbol{\pi}} \mathbb{E}_{\tau \sim (\mathcal{T}, \boldsymbol{\pi})} [\sum_{t=0}^{\infty} \gamma^t r(s_t, \boldsymbol{a_t})]$$

$$\pi(\cdot|s_t) = \pi^1(\cdot|s_t) \times \ldots \times \pi^n(\cdot|s_t), \ \tau = \{(s_0, \mathbf{a}_0), (s_1, \mathbf{a}_1), \ldots\}$$

Trust-region Methods Recap

(Performance Difference Lemma) For any two policies $\pi, \bar{\pi}$, we have

$$\mathcal{J}(\bar{\pi}) - \mathcal{J}(\pi) = \mathcal{J}(\bar{\pi}) - \mathbb{E}_{s_0 \sim \mu} \left[V^{\pi}(s_0) \right]$$

$$= \mathcal{J}(\bar{\pi}) - \mathbb{E}_{\tau \sim (\mu, \bar{\pi})} \left[V^{\pi}(s_0) \right]$$

$$= \mathcal{J}(\bar{\pi}) - \mathbb{E}_{\tau \sim (\mu, \bar{\pi})} \left[\sum_{t=0}^{\infty} \gamma^t V^{\pi}(s_t) - \sum_{t=1}^{\infty} \gamma^t V^{\pi}(s_t) \right]$$

$$= \mathcal{J}(\bar{\pi}) - \mathbb{E}_{\tau \sim (\mu, \bar{\pi})} \left[\sum_{t=0}^{\infty} \gamma^t V^{\pi}(s_t) - \sum_{t=0}^{\infty} \gamma^{t+1} V^{\pi}(s_{t+1}) \right]$$

$$= \mathbb{E}_{\tau \sim (\mu, \bar{\pi})} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right] - \mathbb{E}_{\tau \sim (\mu, \bar{\pi})} \left[\sum_{t=0}^{\infty} \gamma^t V^{\pi}(s_t) - \sum_{t=0}^{\infty} \gamma^{t+1} V^{\pi}(s_{t+1}) \right]$$

$$= \mathbb{E}_{\tau \sim (\mu, \bar{\pi})} \left[\gamma^t \left(r(s_t, a_t) + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t) \right) \right]$$

$$= \mathbb{E}_{\tau \sim (\mu, \bar{\pi})} \left[\gamma^t A^{\pi}(s_t, a_t) \right]$$

$$= \mathbb{E}_{(s, a) \sim (d^{\bar{\pi}}, \bar{\pi})} \left[A^{\pi}(s_t, a_t) \right]$$

The normalized state distribution $d^{\pi_{\theta}}(s) = \frac{1}{1-\gamma} \sum_{t=0}^{\infty} \gamma^t P^{\pi_{\theta}}(s_t = s)$

 Performance Difference Lemma indicates that the return of a new policy (target policy) can be represented by the old policy, with the access to the new policy's occupancy measure (impractical) and the new policy itself (practical).

 $\pi: \mathrm{Old}\ \mathrm{Policy}\quad \bar{\pi}: \mathrm{New}\ \mathrm{Policy}$

• To approximate the new policy's occupancy measure, we need π and $\bar{\pi}$ to be similar, e.g., small $D_{TV}^{max}(\pi \| \bar{\pi}) = \max_s D_{TV}(\pi(\cdot | s) \| \bar{\pi}(\cdot | s))$

$$\mathbb{E}_{(s,a)\sim(\mathbf{d}^{\bar{\pi}},\bar{\pi})}\left[A^{\pi}(s_t,a_t)\right]$$

$$\mathbb{E}_{(s,a)\sim(\mathbf{d}^{\bar{\pi}},\bar{\pi})}\left[A^{\pi}(s_t,a_t)\right] = \mathbb{E}_{(s,a)\sim(\mathbf{d}^{\bar{\pi}},\pi)}\left[\frac{\bar{\pi}(a_t|s_t)}{\pi(a_t|s_t)}A^{\pi}(s_t,a_t)\right]$$

• Surrogate Objective $\mathcal{L}_{\pi}(\bar{\pi}) = \mathcal{J}(\pi) + \mathbb{E}_{(s,a)\sim(d^{\pi},\bar{\pi})}\left[A^{\pi}(s_t,a_t)\right]$

Why is PPO/TRPO effective?

(Monotonic Improvement Bound) Given $\alpha = D_{TV}^{max}(\pi \| \bar{\pi})$, $\epsilon = \max_{s,a} |A^{\pi}(s,a)|$, and $\mathcal{L}_{\pi}(\bar{\pi}) = \mathcal{J}(\pi) + \mathbb{E}_{(s,a)\sim(d^{\pi},\bar{\pi})}\left[A^{\pi}(s_t,a_t)\right]$, we have:

$$\mathcal{J}(\bar{\pi}) \ge \mathcal{L}_{\pi}(\bar{\pi}) - \frac{4\epsilon}{1-\gamma}\alpha$$

- The performance of the target policy can be monotonic improved by maximizing the righthand side, which is feasible.
- Maximization Objective of PPO

$$\mathbb{E}_{(s,a)\sim(d^{\pi},\pi)}\left[\min(\frac{\bar{\pi}}{\pi}A^{\pi}(s,a),\operatorname{clip}(\frac{\bar{\pi}}{\pi},1\pm\epsilon)A^{\pi}(s,a))\right]$$

Trust-region Methods in Cooperative MARL

- Multi-agent PPO (MAPPO)
 - State Construction

- Implementation Tricks
- Surrogate Objective

$$\mathcal{J}(\pi) + \frac{1}{n} \frac{1}{1-\gamma} \sum_{i=1}^{n} \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\boldsymbol{\pi}},\boldsymbol{\pi})} \left[\frac{\bar{\pi}^{i}}{\pi^{i}} A^{\boldsymbol{\pi}}(s,\boldsymbol{a}) \right]$$

- Coordinated PPO (CoPPO)
 - Surrogate Objective of MAPPO

$$\mathcal{J}(\pi) + \frac{1}{n} \frac{1}{1-\gamma} \sum_{i=1}^{n} \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\boldsymbol{\pi}},\boldsymbol{\pi})} \left[\frac{\bar{\pi}^{i}}{\pi^{i}} A^{\boldsymbol{\pi}}(s,\boldsymbol{a}) \right]$$

 Local constraints on individual policies → A Controllable constraint on the joint action

Corollary 2 For all
$$s$$
, $D_{TV}(\pi(\cdot|s)||\bar{\pi}(\cdot|s)) \leq \sum_{i=1}^{n} D_{TV}(\pi^{i}(\cdot|s)||\bar{\pi}^{i}(\cdot|s))$.

Directly restrict the joint policy difference

(Multi-agent Performance Difference Lemma) Given any joint policies π and $\bar{\pi}$, the difference between the performance of the two joint policies can be expressed as :

$$\mathcal{J}(\bar{\boldsymbol{\pi}}) - \mathcal{J}(\boldsymbol{\pi}) = \frac{1}{1-\gamma} \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\bar{\boldsymbol{\pi}}},\bar{\boldsymbol{\pi}})} \left[A^{\boldsymbol{\pi}}(s,\boldsymbol{a}) \right]$$

• Approximating $d^{\bar{\pi}}$ by d^{π} , similarly as in PPO, the surrogate objective of CoPPO:

$$\mathcal{J}(\boldsymbol{\pi}) + \frac{1}{1-\gamma} \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\boldsymbol{\pi}},\boldsymbol{\pi})} \left[\frac{\bar{\boldsymbol{\pi}}}{\boldsymbol{\pi}} A^{\boldsymbol{\pi}}(s,\boldsymbol{a}) \right]$$

Monotonic improvement of the joint policy

$$\begin{vmatrix} \mathcal{J}(\bar{\boldsymbol{\pi}}) - \mathcal{J}(\boldsymbol{\pi}) - \frac{1}{1 - \gamma} \mathbb{E}_{(s, \boldsymbol{a}) \sim (d^{\boldsymbol{\pi}}, \bar{\boldsymbol{\pi}})}[A^{\boldsymbol{\pi}}] \end{vmatrix} \quad \text{Monotonic improvement bound of MAPPO}^1 \\ \leq 4\epsilon \sum_{i=1}^n \alpha^i \left(\frac{1}{1 - \gamma} - \frac{1}{1 - \gamma(1 - \sum_{j=1}^n \alpha^j)} \right) \quad < \quad 4\epsilon \sum_{i=1}^n \frac{\alpha^i}{1 - \gamma} \end{aligned}$$

 Clip the joint action, where the outer clip limits the influence of other agents and reduce the variance

$$\max_{\pi^i} \mathbb{E}_{(s,\boldsymbol{a})\sim(d^{\boldsymbol{\pi}},\boldsymbol{\pi})} \left[\min \left(l(s,\boldsymbol{a})A^{\boldsymbol{\pi}}, \operatorname{clip}\left(l(s,\boldsymbol{a}), 1 \pm \epsilon^{\operatorname{inner}} \right) A^{\boldsymbol{\pi}} \right) \right]$$
$$l(s,\boldsymbol{a}) = \frac{\bar{\pi}^i(a^i|s)}{\pi^i(a^i|s)} \operatorname{clip}\left(\prod_{j \in -i} \frac{\bar{\pi}^j(a^j|s)}{\pi^j(a^j|s)}, 1 \pm \epsilon^{\operatorname{outer}} \right)$$

Sequential Policy Optimization – From Nonstationarity

- MAPPO and CoPPO update the agents simultaneously, that is, all agents perform policy improvement at the same time and cannot observe the change of other agents.
- The simultaneous update scheme brings about the non-stationarity problem, i.e., the environment dynamic changes from one agent's perspective as other agents also change their policies.

- Sequential Update scheme:
 Agents sequentially perform
 policy update in a given order,
 the incoming agents are
 allowed to perceive changes
 made by preceding agents.
- Alleviate the problems brought by simultaneous update scheme.

 We formulate the update process in sequential policy update scheme as (assume agents are updated in the order $1, 2, \ldots, n$):

$$\boldsymbol{\pi} = \hat{\boldsymbol{\pi}}^0 \xrightarrow[\text{Update } \pi^1]{\text{Max}_{\pi^1} \mathcal{L}_{\boldsymbol{\pi}}(\hat{\boldsymbol{\pi}}^1)} \hat{\boldsymbol{\pi}}^1 \to \cdots \to \hat{\boldsymbol{\pi}}^{n-1} \xrightarrow[\text{Update } \pi^n]{\text{Max}_{\pi^n} \mathcal{L}_{\hat{\boldsymbol{\pi}}^{n-1}}(\hat{\boldsymbol{\pi}}^n)} \hat{\boldsymbol{\pi}}^n = \bar{\boldsymbol{\pi}}$$

where $\hat{\pi}^i = \bar{\pi}^1 \times \ldots \times \bar{\pi}^i \times \pi^{i+1} \times \ldots \times \pi^n$ is the joint policy while updating agent i , $\mathcal{L}_{\hat{\pi}^{i-1}}(\hat{\pi}^i)$ is the surrogate objective of agent i , and we denote the preceding agents of agent i as a set e^{i} .

More on non-stationarity: an analysis on the state transition shift

(Non-stationarity Decomposition) Given the state transition shift $\Delta_{\pi^1,...,\pi^n}^{\bar{\pi}^1,...,\bar{\pi}^{i-1},\pi^i,...,\pi^n}(s'|s) = \sum_{\boldsymbol{a}} [\mathcal{T}(s'|s,\boldsymbol{a})(\hat{\pi}^{i-1}(\boldsymbol{a}|s) - \pi(\boldsymbol{a}|s))]$, the following decomposition holds:

$$\Delta_{\pi^{1},...,\pi^{n}}^{\bar{\pi}^{1},...,\bar{\pi}^{i-1},\pi^{i},...,\pi^{n}} = \Delta_{\pi^{1},...,\pi^{n}}^{\bar{\pi}^{1},\pi^{2},...,\pi^{n}} + \Delta_{\bar{\pi}^{1},\pi^{2},...,\pi^{n}}^{\bar{\pi}^{1},\bar{\pi}^{2},\pi^{3},...,\pi^{n}} + \cdots + \Delta_{\bar{\pi}^{1},...,\bar{\pi}^{i-1},\pi^{i},...,\pi^{n}}^{\bar{\pi}^{1},...,\bar{\pi}^{i-1},\pi^{i},...,\pi^{n}}$$

- The total state transition shift encountered by agent i can be decomposed into the sum of state transition shift caused by each agent whose policy has been updated.
- Sequential update scheme presents a new perspective of tackling the nonstationarity problem.

Sequential Policy Optimization – to Monotonic **Improvement**

 Recap the multi-agent performance difference lemma, we derive a variant for sequential update:

$$\mathcal{J}(\hat{\boldsymbol{\pi}}^i) - \mathcal{J}(\hat{\boldsymbol{\pi}}^{i-1}) = \frac{1}{1-\gamma} \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\hat{\boldsymbol{\pi}}^i},\hat{\boldsymbol{\pi}}^i)} \left[A^{\hat{\boldsymbol{\pi}}^{i-1}}(s,\boldsymbol{a}) \right]$$

• Directly, an intuitive surrogate objective is obtained by approximating $d^{\hat{\pi}^i}$ using d^{π^i} and constraining the change between the joint policies:

$$\mathcal{L}_{\hat{\boldsymbol{\pi}}^{i-1}}^{I}\left(\hat{\boldsymbol{\pi}}^{i}\right) = \mathcal{J}(\boldsymbol{\pi}) + \mathbb{E}_{(s,\boldsymbol{a})\sim(d^{\boldsymbol{\pi}},\boldsymbol{\pi})}\left[\frac{\hat{\boldsymbol{\pi}}^{i}}{\boldsymbol{\pi}}A^{\boldsymbol{\pi}}(s,\boldsymbol{a})\right]$$

Uncontrllable by agent i

Can agent i achieve monotonic improvement? No!

$$\left| \mathcal{J} \left(\hat{\boldsymbol{\pi}}^{i} \right) - \mathcal{L}_{\hat{\boldsymbol{\pi}}^{i-1}}^{I} \left(\hat{\boldsymbol{\pi}}^{i} \right) \right| \leq 2\epsilon \alpha^{i} \left(\frac{3}{1-\gamma} - \frac{2}{1-\gamma \left(1 - \sum_{j \in (e^{i} \cup \{i\})} \alpha^{j} \right)} \right) + \frac{2\epsilon \sum_{j \in e^{i}} \alpha^{j}}{1-\gamma}$$

- Implies that the target policy may not get improved even if α^i is well constrained, since the uncontrollable term could be too large.
- Why?
 - Review the policy iteration in sequential update scheme and performance difference lemma:

$$\hat{\boldsymbol{\pi}}^{i-1} \xrightarrow{\underset{\text{Update } \boldsymbol{\pi}^{i}}{\text{Max}_{\boldsymbol{\pi}^{i}} \mathcal{L}_{\hat{\boldsymbol{\pi}}^{i-1}}(\hat{\boldsymbol{\pi}}^{i})}} \hat{\boldsymbol{\pi}}^{i} \quad \mathcal{J}(\hat{\boldsymbol{\pi}}^{i}) - \mathcal{J}(\hat{\boldsymbol{\pi}}^{i-1}) = \frac{1}{1-\gamma} \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\hat{\boldsymbol{\pi}}^{i}},\boldsymbol{\pi})} \left[\frac{\hat{\boldsymbol{\pi}}^{i}}{\boldsymbol{\pi}} A^{\hat{\boldsymbol{\pi}}^{i-1}}(s,\boldsymbol{a}) \right]$$

$$\mathcal{L}_{\hat{\boldsymbol{\pi}}^{i-1}}^{I} \left(\hat{\boldsymbol{\pi}}^{i} \right) = \mathcal{J}(\boldsymbol{\pi}) + \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\boldsymbol{\pi}},\boldsymbol{\pi})} \left[\frac{\hat{\boldsymbol{\pi}}^{i}}{\boldsymbol{\pi}} A^{\boldsymbol{\pi}}(s,\boldsymbol{a}) \right]$$

 $\hat{\pi}^i$ should be evaluated by $A^{\hat{\pi}^{i-1}}$ instead of A^{π}

- How about Heterogeneous-agent PPO (HAPPO) ?
 - $\mathcal{L}_{\hat{\pi}^{i-1}}^{I}(\hat{\pi}^{i})$ is equivalent to the surrogate objective of HAPPO.

Multi-agent state-action value function:

$$Q_{\boldsymbol{\pi}}^{i_{1:m}}(s, \boldsymbol{a}^{i_{1:m}}) \triangleq \mathbb{E}_{\mathbf{a}^{-i_{1:m}} \sim \boldsymbol{\pi}^{-i_{1:m}}} \left[Q_{\boldsymbol{\pi}}(s, \boldsymbol{a}^{i_{1:m}}, \mathbf{a}^{-i_{1:m}}) \right]$$

- \bullet $i_{1:m}$ denotes an ordered subset $\{i_1,\ldots,i_m\}$ of $\mathcal N$, and $-i_{1:m}$ refers to its complement.
- i_k refers to the k^{th} agent in the ordered subset.

Multi-agent advantage function:

$$A_{\boldsymbol{\pi}}^{i_{1:m}}(s, \boldsymbol{a}^{j_{1:k}}, \boldsymbol{a}^{i_{1:m}}) \triangleq Q_{\boldsymbol{\pi}}^{j_{1:k}, i_{1:m}}(s, \boldsymbol{a}^{j_{1:k}}, \boldsymbol{a}^{i_{1:m}}) - Q_{\boldsymbol{\pi}}^{j_{1:k}}(s, \boldsymbol{a}^{j_{1:k}})$$

• $j_{1:k}$ and $i_{1:m}$ are disjoint sets.

^{1.} Kuba, Jakub Grudzien, et al. "Trust region policy optimisation in multi-agent reinforcement learning." ICLR. 2022.

Yaodong Yang's talk. https://www.techbeat.net/talk-info?id=715.

Lemma 1 (Multi-Agent Advantage Decomposition). In any cooperative Markov games, given a joint policy π , for any state s, and any agent subset $i_{1:m}$, the below equations holds.

$$A_{\boldsymbol{\pi}}^{i_{1:m}}\left(s, \boldsymbol{a}^{i_{1:m}}\right) = \sum_{j=1}^{m} A_{\boldsymbol{\pi}}^{i_{j}}\left(s, \boldsymbol{a}^{i_{1:j-1}}, a^{i_{j}}\right).$$

• We can re-derive the HAPPO surrogate objectives:

$$\frac{1}{1-\gamma} \mathbb{E}_{(s,\boldsymbol{a})\sim(d^{\pi},\boldsymbol{\pi})} \left[\frac{\hat{\pi}^{\mathcal{N}}}{\boldsymbol{\pi}^{\mathcal{N}}} A^{\boldsymbol{\pi}^{\mathcal{N}}}(s,\boldsymbol{a}) \right] \\
= \frac{1}{1-\gamma} \mathbb{E}_{(s,\boldsymbol{a})\sim(d^{\pi},\boldsymbol{\pi})} \left[\frac{\bar{\pi}}{\boldsymbol{\pi}} A^{i_{1}:n}(s,\boldsymbol{a}) \right] \\
= \frac{1}{1-\gamma} \mathbb{E}_{(s,\boldsymbol{a})\sim(d^{\pi},\boldsymbol{\pi})} \left[\frac{\bar{\pi}}{\boldsymbol{\pi}} A^{\pi^{i_{1}:n}}(s,\boldsymbol{a}) \right] \\
= \frac{1}{1-\gamma} \mathbb{E}_{(s,\boldsymbol{a})\sim(d^{\pi},\boldsymbol{\pi})} \left[\frac{\bar{\pi}}{\boldsymbol{\pi}} \sum_{j=1}^{n} A^{i_{j}}(s,\boldsymbol{a}^{i_{1}:j-1},\boldsymbol{a}^{i_{j}}) \right] \\
= \frac{1}{1-\gamma} \mathbb{E}_{(s,\boldsymbol{a})\sim(d^{\pi},\boldsymbol{\pi})} \left[\frac{\bar{\pi}}{\boldsymbol{\pi}} \sum_{j=1}^{n} A^{i_{j}}(s,\boldsymbol{a}^{i_{1}:j-1},\boldsymbol{a}^{i_{j}}) \right] \\
= \frac{1}{1-\gamma} \mathbb{E}_{(s,\boldsymbol{a})\sim(d^{\pi},\boldsymbol{\pi})} \left[\frac{\bar{\pi}}{\boldsymbol{\pi}} \sum_{j=1}^{n} A^{i_{j}}(s,\boldsymbol{a}^{i_{1}:j-1},\boldsymbol{a}^{i_{j}}) \right] \\
= \frac{1}{1-\gamma} \mathbb{E}_{(s,\boldsymbol{a})\sim(d^{\pi},\boldsymbol{\pi})} \left[\frac{\bar{\pi}}{\boldsymbol{\pi}} \sum_{j=1}^{n} A^{i_{j}}(s,\boldsymbol{a}^{i_{1}:j-1},\boldsymbol{a}^{i_{j}}) \right] \\
= \frac{1}{1-\gamma} \mathbb{E}_{(s,\boldsymbol{a})\sim(d^{\pi},\boldsymbol{\pi})} \left[\frac{\bar{\pi}}{\boldsymbol{\pi}} A^{i_{j}}(s,\boldsymbol{a}^{i_{j}:j-1},\boldsymbol{a}^{i_{j}}) \right] \\
= \frac{1}{1-\gamma} \mathbb{E}_{(s,\boldsymbol{a})\sim(d^{\pi},\boldsymbol{\pi})} \left[\frac{\bar{\pi}}{\boldsymbol{\pi}} A^{i_{j}}(s,\boldsymbol{a}^{i_{j}:j-1},\boldsymbol{a}^{i_{j}}) \right] \\
= \frac{1}{1-\gamma} \mathbb{E}_{(s,\boldsymbol{a})\sim(d^{\pi},\boldsymbol{\pi})} \left[\frac{\bar{\pi}}{\boldsymbol{\pi}} A^{i_{j}}(s,\boldsymbol{a}^{i_{j}:j-1},$$

$$= \frac{1}{1-\gamma} \sum_{j=1}^{n} \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\boldsymbol{\pi}},\boldsymbol{\pi})} \left[\frac{\bar{\boldsymbol{\pi}}}{\boldsymbol{\pi}} A^{i_{j}}(s, a^{i_{1:j-1}}, a^{i_{j}}) \right]$$

$$\stackrel{(a)}{=} \frac{1}{1-\gamma} \sum_{j=1}^{n} \mathbb{E}_{(s,\boldsymbol{a}^{i_{1:j}}) \sim (d^{\boldsymbol{\pi}},\boldsymbol{\pi}^{i_{1:j}})} \left[\frac{\bar{\boldsymbol{\pi}}^{i_{1:j}}}{\boldsymbol{\pi}^{i_{1:j}}} A^{i_{j}}(s,a^{i_{1:j-1}},a^{i_{j}}) \right]$$

$$\stackrel{(b)}{=} \frac{1}{1-\gamma} \sum_{j=1}^{n} \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\boldsymbol{\pi}},\boldsymbol{\pi})} \left[\frac{\hat{\boldsymbol{\pi}}^{i_{j}} - \hat{\boldsymbol{\pi}}^{i_{j-1}}}{\boldsymbol{\pi}} A^{\boldsymbol{\pi}}(s,\boldsymbol{a}) \right]$$

- $\hat{\pi}^{i_{j-1}}$ is a constant while updating agent i_i
- The surrogate objective of agent i_j becomes $\frac{1}{1-\gamma}\mathbb{E}_{(s,\boldsymbol{a})\sim(d^{\boldsymbol{\pi}},\boldsymbol{\pi})}\left|\frac{\hat{\boldsymbol{\pi}}^{i_j}}{\boldsymbol{\pi}}A^{\boldsymbol{\pi}}(s,\boldsymbol{a})\right|$
- Given the order $1,\ldots,n$, we recover $\frac{1}{1-\gamma}\mathbb{E}_{(s,\boldsymbol{a})\sim(d^{\boldsymbol{\pi}},\boldsymbol{\pi})}\left|\frac{\hat{\boldsymbol{\pi}}^{j}}{\boldsymbol{\pi}}A^{\boldsymbol{\pi}}(s,\boldsymbol{a})\right|=\mathcal{L}_{\hat{\boldsymbol{\pi}}^{j-1}}^{I}\left(\hat{\boldsymbol{\pi}}^{j}\right)$
- HAPPO also fails in guarantee the monotonic improvement of a single agent.

Uncontrillable by agent i

$$\left| \mathcal{J} \left(\hat{\boldsymbol{\pi}}^{i} \right) - \mathcal{L}_{\hat{\boldsymbol{\pi}}^{i-1}}^{I} \left(\hat{\boldsymbol{\pi}}^{i} \right) \right| \leq 2\epsilon \alpha^{i} \left(\frac{3}{1-\gamma} - \frac{2}{1-\gamma \left(1 - \sum_{j \in \left(e^{i} \cup \left\{ i \right\} \right)} \alpha^{j} \right)} \right) + \frac{2\epsilon \sum_{j \in e^{i}} \alpha^{j}}{1-\gamma}$$

- The uncontrollable term is caused by one ignoring how the updating of its preceding agents' policies influences its advantage function. We investigate reducing the uncontrollable term in policy evaluation.
- Preceding-agent Off-policy Correction (PreOPC):

$$A^{\boldsymbol{\pi}, \hat{\boldsymbol{\pi}}^{i-1}}(s_t, \boldsymbol{a}_t) = \delta_t + \sum_{k \ge 1} \gamma^k \left(\prod_{j=1}^k \lambda \min\left(1.0, \frac{\hat{\boldsymbol{\pi}}^{i-1}(\boldsymbol{a}_{t+j}|s_{t+j})}{\boldsymbol{\pi}(\boldsymbol{a}_{t+j}|s_{t+j})} \right) \right) \delta_{t+k}$$
$$\delta_t = r(s_t, \boldsymbol{a}_t) + \gamma V(s_{t+1}) - V(s_t)$$

• We also prove that $A^{{m \pi},\hat{m \pi}^{i-1}}$ converges to $A^{\hat{m \pi}^{i-1}}$ with probability 1 as the agent i update its value function.

- Retain Monotonic Improvement Bound
 - With PreOPC, the surrogate objective of agent *i* becomes:

$$\mathcal{L}_{\hat{\boldsymbol{\pi}}^{i-1}}(\hat{\boldsymbol{\pi}}^i) = \mathcal{J}(\hat{\boldsymbol{\pi}}^{i-1}) + \frac{1}{1-\gamma} \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\boldsymbol{\pi}},\hat{\boldsymbol{\pi}}^i)}[A^{\boldsymbol{\pi},\hat{\boldsymbol{\pi}}^{i-1}}(s,\boldsymbol{a})]$$

(Single Agent Monotonic Bound) For agent i, we have:

$$\left| \mathcal{J}(\hat{\boldsymbol{\pi}}^i) - \mathcal{L}_{\hat{\boldsymbol{\pi}}^{i-1}}(\hat{\boldsymbol{\pi}}^i) \right| \leq 4\epsilon^i \alpha^i \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\sum_{j\in(e^i\cup\{i\})}\alpha^j)} \right) + \frac{\xi^i}{1-\gamma} ,$$

where $\xi^i = \max_{s,\boldsymbol{a}} |A^{\boldsymbol{\pi},\hat{\boldsymbol{\pi}}^{i-1}}(s,\boldsymbol{a}) - A^{\hat{\boldsymbol{\pi}}^{i-1}}(s,\boldsymbol{a})|$ converges to 0 with probability 1 as the agent i updates its value function.

We retain the monotonic improvement guarantee of a single agent!

(Multi Agent Monotonic Bound) For agent $i \in \mathcal{N}$, we have:

$$|\mathcal{J}(\bar{\pi}) - \mathcal{G}_{\pi}(\bar{\pi})| \le 4\epsilon \sum_{i=1}^{n} \alpha^{i} \left(\frac{1}{1 - \gamma} - \frac{1}{1 - \gamma(1 - \sum_{j \in (e^{i} \cup \{i\})} \alpha^{j})} \right) + \frac{\sum_{i=1}^{n} \xi^{i}}{1 - \gamma}$$

Algorithm	Update	Monotonic Bound
MAPPO	Simultaneous	$4\epsilon \sum_{i=1}^{n} \frac{\alpha^{i}}{1-\gamma}$
CoPPO	Simultaneous	$4\epsilon \sum_{i=1}^{n} \alpha^{i} \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\sum_{j=1}^{n} \alpha^{j})} \right)$
НАРРО	Sequential	$4\epsilon \sum_{i=1}^{n} \alpha^{i} \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\sum_{j=1}^{n} \alpha^{j})} \right)$
	1	Single Agent: No Guarantee
A2PO (ours)	Sequential	$4\epsilon \sum_{i=1}^{n} \alpha^{i} \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\sum_{j \in (e^{i} \cup \{i\})} \alpha^{j})} \right) + \frac{\sum_{i=1}^{n} \xi^{i}}{1-\gamma}$
	1	Single Agent: $4\epsilon^i \alpha^i \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\sum_{j\in(e^i\cup\{i\})}\alpha^j)} \right) + \frac{\xi^i}{1-\gamma}$

	Algorithm	Update	Monotonic Bound
	MAPPO	Simultaneous	$4\epsilon \sum_{i=1}^{n} \frac{\alpha^i}{1-\gamma}$
	CoPPO	Simultaneous	$4\epsilon \sum_{i=1}^{n} \alpha^{i} \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\sum_{j=1}^{n} \alpha^{j})} \right)$
HAPPO		Sequential	$4\epsilon \sum_{i=1}^{n} \alpha^{i} \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\sum_{j=1}^{n} \alpha^{j})} \right)$
11711 1 0	Single Agent: No Guarantee		
	A2PO (ours)	Sequential	$4\epsilon \sum_{i=1}^{n} \alpha^{i} \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\sum_{j \in (e^{i} \cup \{i\})} \alpha^{j})} \right) + \frac{\sum_{i=1}^{n} \xi^{i}}{1-\gamma}$
	1121 0 (00115)		Single Agent: $4\epsilon^i \alpha^i \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\sum_{j\in(e^i\cup\{i\})}\alpha^j)} \right) + \frac{\xi^i}{1-\gamma}$
• Giv	 en that		1 1
	on that	$-\frac{1}{1-\gamma(1-\sum_{i=1}^{N}a_{i})}$	$\frac{1}{\sum_{j\in(e^i\cup\{i\})}\alpha^j} < -\frac{1}{1-\gamma(1-\sum_{j=1}^n\alpha^j)}$

• Considering that $\forall i \in \mathcal{N}, \ \xi^i$ converges to 0, we get tighter monotonic improvement bound compared to previous trust region methods in multiagent scenarios. A tighter bound improves target expected performance by optimizing the surrogate objective more effectively.

Agent-by-agent Policy Optimization

• The practical objective of updating agent i becomes:

$$\mathcal{L}_{\hat{\boldsymbol{\pi}}^{\hat{\imath}-1}}(\hat{\boldsymbol{\pi}}^{i}) = \mathbb{E}_{(s,\boldsymbol{a})\sim(d^{\boldsymbol{\pi}},\boldsymbol{\pi})}\left[\min\left(l(s,\boldsymbol{a})A^{\boldsymbol{\pi},\hat{\boldsymbol{\pi}}^{i-1}},\operatorname{clip}\left(l(s,\boldsymbol{a}),1\pm\epsilon^{i}\right)A^{\boldsymbol{\pi},\hat{\boldsymbol{\pi}}^{i-1}}\right)\right]$$
where $l(s,\boldsymbol{a}) = \frac{\bar{\pi}^{i}(a^{i}|s)}{\pi^{i}(a^{i}|s)}g(s,\boldsymbol{a}), \text{ and } g(s,\boldsymbol{a}) = \operatorname{clip}\left(\prod_{i\in e^{i}}\frac{\bar{\pi}^{j}(a^{i}|s)}{\pi^{j}(a^{j}|s)},1\pm\frac{\epsilon^{i}}{2}\right)$

- We have obtained a surrogate objective with theoretical strengths.
- How to maximize such objective more effectively?
 - 1. Formulated as maximization with coordinate ascent \rightarrow the agents updating order matters.
 - 2. Further reduce the influence of the non-stationarity problem.

Semi-greedy Agent Selection Rule

• Select the agent to update in order *k* by:

$$\begin{cases} \mathcal{R}(k) = \arg\max_{i \in (\mathcal{N} - e)} \mathbb{E}_{s,a^i}[|A^{\boldsymbol{\pi},\hat{\boldsymbol{\pi}}^{\mathcal{R}(k-1)}}|], & k\%2 = 0\\ \mathcal{R}(k) \sim \mathcal{U}(\mathcal{N} - e), & k\%2 = 1 \end{cases}, \text{ where } e = \{\mathcal{R}(1), \dots, \mathcal{R}(k-1)\}$$

Adaptive Clipping Parameter

• From *Non-stationarity Decomposition*, agents with higher priorities contribute more to the non-stationarity problem.

$$\Delta_{\pi^{1},...,\pi^{n}}^{\bar{\pi}^{1},...,\bar{\pi}^{i-1},\pi^{i},...,\pi^{n}} = \Delta_{\pi^{1},...,\pi^{n}}^{\bar{\pi}^{1},\pi^{2},...,\pi^{n}} + \Delta_{\bar{\pi}^{1},\pi^{2},...,\pi^{n}}^{\bar{\pi}^{1},\bar{\pi}^{2},\pi^{3},...,\pi^{n}} + \cdots + \Delta_{\bar{\pi}^{1},...,\bar{\pi}^{i-1},\pi^{i},...,\pi^{n}}^{\bar{\pi}^{1},...,\bar{\pi}^{i-1},\pi^{i},...,\pi^{n}}$$

 Adjust the clipping parameters according to the agent order, leading to more balanced and sufficient clipping ranges.

$$C(\epsilon, k) = \epsilon \cdot c_{\epsilon} + \epsilon \cdot (1 - c_{\epsilon}) \cdot k/n$$

- StarCraftll Multi-agent Challenge (SMAC)
- Multi-agent MuJoCo (MA-MuJoCo)
- Google Research Football Full-game Scenarios
- Training Duration

StarCraftll Multi-agent Challenge (SMAC)

Table 5: Median win rates and standard deviations on SMAC tasks. 'w/ PS' means the algorithm is implemented as parameter sharing

Map	Difficulty	MAPPO w/ PS	CoPPO w/ PS	HAPPO w/ PS	A2PO w/ PS	Qmix w/ PS
MMM	Easy	96.9(0.988)	96.9(1.25)	95.3(2.48)	100(1.07)	95.3(2.5)
$3s_vs_5z$	Hard	100(1.17)	100(2.08)	100(0.659)	100(0.534)	98.4(2.4)
$2c_{vs}_{64zg}$	Hard	98.4(1.74)	96.9(0.521)	96.9(0.521)	96.9(0.659)	92.2(4.0)
3s5z	Hard	84.4(4.39)	92.2(2.35)	92.2(1.74)	98.4(1.04)	88.3(2.9)
$5m_vs_6m$	Hard	84.4(2.77)	84.4(2.12)	87.5(2.51)	90.6(3.06)	75.8(3.7)
$8m_vs_9m$	Hard	84.4(2.39)	84.4(2.04)	96.9(3.78)	100(1.04)	92.2(2.0)
10m_vs_11m	Hard	93.8(18.7)	96.9(2.6)	98.4(2.99)	100(0.521)	95.3(1.0)
6h_vs_8z	Super Hard	87.5(1.53)	90.6(0.765)	87.5(1.49)	90.6(1.32)	9.4(2.0)
3s5z_vs_3s6z	Super Hard	82.8(19.2)	84.4(2.9)	37.5(13.2)	93.8(19.8)	82.8(5.3)
MMM2	Super Hard	90.6(8.89)	90.6(6.93)	51.6(9.01)	98.4(1.25)	87.5(2.6)
27m_vs_30m	Super Hard	93.8(3.75)	93.8(2.2)	90.6(4.77)	100(1.55)	39.1(9.8)
corridor	Super Hard	96.9(0)	100(0.659)	96.9(0.96)	100(0)	84.4(2.5)
overall	/	91.1(5.46)	92.6(2.2)	85.9(3.68)	97.4(2.65)	78.4(3.6)

Multi-agent MuJoCo (MA-MuJoCo)

Figure 3: Experiments in MA-MuJoCo. **Left**: Normalized scores on all the 14 tasks. **Right**: Comparisons of averaged return on selected tasks. The number of robot joints increases from left to right.

Google Research Football Full-game Scenarios

Figure 4: Averaged win rate on the Google Research Football full-game scenarios.

Table 3: Learned behaviors on the Google Research Football 5-vs-5 scenario. Bigger values are better except fot the 'Lost' metric.

Metric	MAPPO	CoPPO	HAPPO	A2PO
Assist	$0.04_{(0.02)}$	0.19(0.08)	$0.07_{(0.05)}$	0.56(0.20)
Goal	$1.95_{(1.17)}$	$4.42_{(2.08)}$	2.68(0.86)	$9.01_{(0.95)}$
Lost	$0.49_{(0.11)}$	$0.74_{(0.33)}$	$1.04_{(0.12)}$	0.78(0.15)
Pass	1.52(0.13)	$3.44_{(1.04)}$	$4.03_{(1.97)}$	$6.42_{(2.23)}$
Pass Rate	$19.3_{(10.0)}$	35.0(10.3)	$48.9_{(25.7)}$	67.1 (11.7)

Training Duration

(a) Comparison on Humanoid 9|8 over both environment steps and training time.

(b) Comparison on GRF 11-vs-11 scenario.

Table 6: The comparison of training duration. The format of the first line in a cell is: Training time(Sampling time+Updating Time). The second line of a cell represents the time normalized.

Task	MAPPO	CoPPO	HAPPO	A2PO
3s5z	3h29m(3h3m+0h26m)	3h33m(3h6m+0h27m)	3h49m(3h7m+0h42m)	4h32m(3h41m+0h51m)
	1.00(0.87 + 0.13)	1.02(0.89 + 0.13)	1.10(0.89 + 0.20)	1.30(1.06 + 0.25)
27m vs 30m	13h23m(8h31m + 4h52m)	13h19m(8h24m + 4h55m)	16h2m(8h20m + 7h42m)	15h53m(8h7m + 7h46m)
	1.00(0.64 + 0.36)	1.00(0.63 + 0.37)	1.20(0.62 + 0.58)	1.19(0.61 + 0.58)
Humanoid 9 8	2h0m(1h45m + 0h15m)	1h58m(1h43m + 0h15m)	2h15m(1h45m + 0h30m)	2h31m(2h0m + 0h31m)
	1.00(0.87 + 0.13)	0.99(0.86 + 0.13)	1.12(0.87 + 0.25)	1.26(1.00 + 0.26)
Ant 4x2	6h42m(6h16m + 0h26m)	6h45m(6h19m + 0h26m)	7h29m(6h5m + 1h24m)	7h2m(5h34m + 1h28m)
	1.00(0.93 + 0.07)	1.01(0.94 + 0.07)	1.12(0.91 + 0.21)	1.05(0.83 + 0.22)
Humanoid 17x1	12h9m(10h6m + 2h3m)	17h7m(15h5m + 2h2m)	16h55m(11h2m + 5h53m)	19h25m(11h59m + 7h26m)
	1.00(0.83 + 0.17)	1.41(1.24 + 0.17)	1.39(0.91 + 0.48)	1.60(0.99 + 0.61)
Football 5vs5	34h46m(32h47m + 1h59m)	32h46m(30h49m + 1h57m)	39h26m(31h54m + 7h32m)	37h26m(30h2m + 7h24m)
	1.00(0.94 + 0.06)	0.94(0.89 + 0.06)	1.13(0.92 + 0.22)	1.08(0.86 + 0.21)

Summary

- 1. Brief introduction of Cooperative MARL
- 2. Serial Progress:
 - MAPPO: PPO in CTDE scheme
 - CoPPO: Coordinate the agents via the joint policy
 - HAPPO: Advantage function decomposition
- How to Retain Monotonic Improvement Guarantee in Sequential Policy Optimization and Tighten the Monotonic Improvement Bound
- 4. A Practical Algorithm: Agent-by-agent Policy Optimization
- 5. More Efficient Surrogate Objective Maximization