CS420

Introduction to the Theory of Computation

Lecture 16: Push-down automata

Tiago Cogumbreiro

Today we will learn...

- Pushdown automata (PDA)
- Formalizing PDAs
- Union of PDAs
- Examples

Section 2.2

Intuition

Define an automata family \iff CFG

NFA recap

Each transition performs one input operations: read/skip an input

Examples

- Read one input: $q_1 \stackrel{\mathtt{a}}{\longrightarrow} q_2$
- Skip one input: $q_1 \stackrel{\epsilon}{\longrightarrow} q_2$

Nondeterministic Push Down Automata (PDA)

UMASS BOSTON

- Extend NFAs with an unbounded stack
- Recognizes the same language as CFGs

PDA Execution

Each transition:

- input op, pre-stack op, post-stack op
- ullet Format: $q \xrightarrow{\$\mathtt{INPUT},\$\mathtt{PRE} \to \$\mathtt{POST}} q'$

Possible operations

\$INPUT	\$PRE	\$POST
$READ\: n$	POP n	$\operatorname{PUSH} n$
SKIP (ϵ)	SKIP	SKIP

Example

$$q_\mathtt{a} \xrightarrow{\mathtt{READ} \ \mathtt{a},\mathtt{SKIP} o \mathtt{PUSH} \ \mathtt{a}} q_\mathtt{a}$$

Nondeterministic Push Down Automata (PDA)

- Recognizes the same language as CFGs

Extend NFAs with an unbounded stack

PDA Execution

Each transition:

input op, pre-stack op, post-stack op

$$ullet$$
 Format: $q \xrightarrow{\$\mathtt{INPUT},\$\mathtt{PRE} o \$\mathtt{POST}} q'$

Example

$$q_\mathtt{a} \xrightarrow{\mathtt{READ} \ \mathtt{a},\mathtt{SKIP} o \mathtt{PUSH} \ \mathtt{a}} q_\mathtt{a}$$

Possible operations

\$INPUT	\$PRE	\$POST
$READ\: n$	POP n	$\operatorname{PUSH} n$
SKIP (ϵ)	SKIP	SKIP

Attention!

The comma does not denote parallel edges. Instead, we stack multiple transitions vertically.

PDA example (intuition)

Give a PDA that recognizes $\{\mathbf{a}^n\mathbf{b}^n\mid n\geq 0\}$

$$\begin{array}{l} \text{1.}\ q_{\texttt{init}} \xrightarrow{\texttt{SKIP}, \texttt{SKIP} \rightarrow \texttt{PUSH EMPTY?}} q_{\texttt{a}} \\ \text{2.}\ q_{\texttt{a}} \xrightarrow{\texttt{READ a}, \texttt{SKIP} \rightarrow \texttt{PUSH a}} q_{\texttt{a}} \\ \text{3.}\ q_{\texttt{a}} \xrightarrow{\texttt{SKIP}, \texttt{SKIP} \rightarrow \texttt{SKIP}} q_{\texttt{b}} \\ \text{4.}\ q_{\texttt{b}} \xrightarrow{\texttt{READ b}, \texttt{POP a} \rightarrow \texttt{SKIP}} q_{\texttt{b}} \\ \text{5.}\ q_{\texttt{b}} \xrightarrow{\texttt{SKIP}, \texttt{EMPTY?} \rightarrow \texttt{SKIP}} q_{\texttt{F}} \end{array}$$

Exercising transitions

Possible operations

\$INPUT	\$PRE	\$POST
$READ\: n$	POP n	PUSH n
SKIP (ϵ)	SKIP	SKIP

Exercises

1. Test if read 0 and stack is empty (assuming we initialize the stack with a sentinel EMPTY?):

Possible operations

\$INPUT	\$PRE	\$POST
READn	POP n	$\operatorname{PUSH} n$
SKIP (ϵ)	SKIP	SKIP

Exercises

1. Test if read 0 and stack is empty (assuming we initialize the stack with a sentinel EMPTY?): READ 0, EMPTY? \rightarrow SKIP

2. Test if stack is empty:

Possible operations

\$INPUT	\$PRE	\$POST
READ n	POP n	PUSH n
SKIP (ϵ)	SKIP	SKIP

Exercises

1. Test if read 0 and stack is empty (assuming we initialize the stack with a sentinel EMPTY?): READ 0, EMPTY? \rightarrow SKIP

2. Test if stack is empty: $SKIP, EMPTY? \rightarrow SKIP$

3. Test if a is on top and leave stack untouched:

Possible operations

\$INPUT	\$PRE	\$POST
READn	POP n	PUSH n
SKIP (ϵ)	SKIP	SKIP

- Test if read 0 and stack is empty (assuming we initialize the stack with a sentinel EMPTY?):
 READ 0, EMPTY? → SKIP
- 2. Test if stack is empty: $SKIP, EMPTY? \rightarrow SKIP$
- 3. Test if a is on top and leave stack untouched: $SKIP, POP a \rightarrow PUSH a$
- 4. Read b and leave stack untouched:

Possible operations

\$INPUT	\$PRE	\$POST
READn	POP n	PUSH n
SKIP (ϵ)	SKIP	SKIP

- 1. Test if read 0 and stack is empty (assuming we initialize the stack with a sentinel EMPTY?): READ 0, EMPTY? \rightarrow SKIP
- 2. Test if stack is empty: $SKIP, EMPTY? \rightarrow SKIP$
- 3. Test if a is on top and leave stack untouched: $SKIP, POP a \rightarrow PUSH a$
- 4. Read b and leave stack untouched: READ b, SKIP \rightarrow SKIP

We can replace SKIP by ϵ

We can replace SKIP by ϵ

We can replace SKIP by ϵ

We can omit READ

We can replace SKIP by ϵ

We can omit READ

Since read always appears in the same position, we can omit it, as we do in regular DFAs/NFAs.

We can omit PUSH/POP

We can omit PUSH/POP

Since push/pop always appear in the same position, we can omit them.

We can replace sentinel EMPTY? by \$

We can omit PUSH/POP

Since push/pop always appear in the same position, we can omit them.

We can replace sentinel EMPTY? by \$

Since empty? always appear in the same position.

Exercising transitions

(abbreviated notation)

Possible operations

\$INPUT	\$PRE	\$POST
$READ\left(n\right)$	POP (n)	$PUSH\left(n\right)$
SKIP (ϵ)	SKIP (ϵ)	SKIP (ϵ)

Exercises

1. Test if read 0 and stack is empty, leaving stack unchanged (assume a sentinel \$)

Possible operations

\$INPUT	\$PRE	\$POST
$READ\left(n\right)$	POP (n)	$PUSH\left(n\right)$
SKIP (ϵ)	SKIP (ϵ)	SKIP (ϵ)

- 1. Test if read 0 and stack is empty, leaving stack unchanged (assume a sentinel \$)
 - $0,\$ \rightarrow \$$
- 2. Test if stack is empty while leaving the stack unchanged (assume sentinel \$)

Possible operations

\$INPUT	\$PRE	\$POST
$READ\left(n\right)$	POP (n)	$PUSH\left(n\right)$
SKIP (ϵ)	SKIP (ϵ)	SKIP (ϵ)

- 1. Test if read 0 and stack is empty, leaving stack unchanged (assume a sentinel \$)
 - 0,\$ o\$
- 2. Test if stack is empty while leaving the stack unchanged (assume sentinel \$) $\epsilon,\$ \to \$$
- 3. Test if 0 is on top of the stack and replace it by 1:

Possible operations

\$INPUT	\$PRE	\$POST
$READ\left(n\right)$	POP (n)	PUSH (n)
SKIP (ϵ)	SKIP (ϵ)	SKIP (ϵ)

- 1. Test if read 0 and stack is empty, leaving stack unchanged (assume a sentinel \$)
 - 0,\$ o\$
- 2. Test if stack is empty while leaving the stack unchanged (assume sentinel \$) $\epsilon,\$ \to \$$
- 3. Test if 0 is on top of the stack and replace it by 1: $\epsilon, 0 \to 1$
- 4. Read 2, leave stack untouched

Possible operations

\$INPUT	\$PRE	\$POST
$READ\left(n\right)$	POP (n)	PUSH (n)
SKIP (ϵ)	SKIP (ϵ)	SKIP (ϵ)

- 1. Test if read 0 and stack is empty, leaving stack unchanged (assume a sentinel \$)
 - 0,\$ o\$
- 2. Test if stack is empty while leaving the stack unchanged (assume sentinel \$) $\epsilon,\$\to\$$
- 3. Test if 0 is on top of the stack and replace it by 1: $\epsilon, 0 \to 1$
- 4. Read 2, leave stack untouched $2, \epsilon
 ightarrow \epsilon$

Accepting [€aabb]

Accepting [aabb]

Accepting [a€abb]

Accepting [aabb]

Accepting [aa€bb]

Accepting [aabb]

Accepting [aab€b]

Accepting [aabb]

Accepting [aabb€]

Accepting: bb

Accepting: bb

Accepting: ϵ

Accepting: ϵ

Formalizing a PDA

Formalizing a PDA

Definition 2.13

A pushdown automaton is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

- 1. Q is a finite set called states
- 2. Σ is a finite set called input alphabet
- 3. Γ is a finite set called stack alphabet

- 4. $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \to \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the transition function
- 5. $q_0 \in Q$ is the start state
- 6. $F \subseteq Q$ is the set of accepted states

Example

Let $(Q, \Sigma, \Gamma, \delta, q_1, \{q_F\})$ be defined as:

1.
$$Q=\{q_{init},q_a,q_b,q_F\}$$

$$2.\Sigma = \{a,b\}$$

3.
$$\Gamma = \{a, \$\}$$

where δ is defined by branches

$$egin{aligned} \delta(q_{init},\epsilon,\epsilon) &= \{(q_a,\$)\} \ \delta(q_a,a,\epsilon) &= \{(q_a,a)\} \ \delta(q_a,\epsilon,\epsilon) &= \{(q_b,\epsilon)\} \ \delta(q_b,b,a) &= \{(q_b,\epsilon)\} \ \delta(q_b,\epsilon,\$) &= \{(q_F,\$)\} \ \delta(q,c,s) &= \{\} \end{aligned}$$
 otherwise

Exercise

Give a PDA for the following grammar

Ballanced parenthesis

$$C
ightarrow \underline{\mathsf{o}} \ C \ \underline{\mathsf{c}} \ | \ CC \ | \ \epsilon$$

Give a PDA for the following grammar

Ballanced parenthesis

$$C
ightarrow \underline{\mathsf{o}} \; C \; \underline{\mathsf{c}} \; | \; CC \; | \; \epsilon$$

Acceptance: 00

Acceptance: 00

Acceptance: ϵ

Acceptance: ϵ

Acceptance: 00C0CC

Acceptance: 00C0CC

Formalization

Formalizing stack operation

Let $S(o_1, o_2, s)$ be defined as follows, where $S : \Gamma_{\epsilon} \times \Gamma_{\epsilon} \times \operatorname{Stack}(\Gamma) \to \operatorname{Stack}(\Gamma)$ and $\operatorname{Stack}(\Gamma) = \operatorname{List}(\Gamma)$:

Pop operation

$$s \triangleright \epsilon = s$$
 $n :: s \triangleright n = s$

Examples

$$[0,1] \triangleright \epsilon = [0,1]$$
 $[0,1] \triangleright \$$ is undefined! $[0,1] \triangleright 0 = [1]$ $[0,1] \triangleright 1$ is undefined!

Push operation

$$s riangleleft \epsilon = s \ s riangleleft n = n :: s$$

Examples

$$egin{aligned} [0,1] riangleleft \epsilon &= [0,1] \ [0,1] riangleleft \$ &= [0,1,\$] \ [0,1] riangleleft 0 &= [0,0,1] \ [0,1] riangleleft 1 &= [1,0,1] \end{aligned}$$

Stack operation exercises

Examples

Expression	Result
$ab \triangleright c =$	
$ab \triangleleft c =$	
$ab \triangleright a =$	
$ab \triangleleft a =$	
$ab { riangle} \$ =$	
$ab \triangleleft \$ =$	
$\epsilon riangles \$ =$	
$\epsilon \triangleleft \$ =$	
$\epsilon \triangleright a =$	
$\epsilon \triangleleft a =$	

Stack operation exercises

Examples

Expression	Result
$ab \triangleright c =$	undef
$ab \triangleleft c =$	cab
$ab \triangleright a =$	b
$ab \triangleleft a =$	aab
$ab \triangleright \$ =$	undef
$ab \triangleleft \$ =$	ab\$
$\epsilon riangles \$ =$	undef
$\epsilon \triangleleft \$ =$	\$
$\epsilon \triangleright a =$	undef
$\epsilon \triangleleft a =$	a

Formalizing acceptance

Rule 0. We can go from state q and stack s into state q' and stack s' with input $y \in \Sigma_{\epsilon}$ if we can construct s' from a push o and a pop o' on stack s.

Let $M=(Q,\Sigma,\Gamma,\delta,q_0,F)$, let the **steps through** relation, notation $q \curvearrowright_M w$, be defined as:

$$rac{q \in F}{(q,s) \curvearrowright_M []}$$

$$\dfrac{(q,s) \overset{y,o}{\longrightarrow} (q',s') \qquad (q',s') \curvearrowright_M w}{(q,s) \curvearrowright_M y \cdot w}$$

Rule 1. State q steps through [] if q is a final state.

Rule 2. If we can go from q to q' with y and q' steps through w, then q steps through $y \cdot w$.

Acceptance. We say that M accepts w if, and only if, $q_0, [] \curvearrowright_M w$.

Example of acceptance

We can build a chain of states as follows

$$(q_{init},[]) \xrightarrow{\epsilon,\epsilon} (q_a,[\$]) \xrightarrow{a,\epsilon} (q_a,[a,\$]) \xrightarrow{a,\epsilon} (q_b,[a,a,\$]) \xrightarrow{\epsilon,\epsilon} (q_b,[a,a,\$]) \xrightarrow{b,a} (q_b,[a,\$]) \xrightarrow{b,a} (q_b,[\$]) \xrightarrow{\epsilon,\$} (q_F,[])$$

Since q_F is a final state, we have that

$$(q_{init},[]) \curvearrowright [a,a,b,b]$$

Recall

A sequence of a-s then b-s and finally c-s with as many a-s as there are b-s or as there are c-s.

$$\{a^ib^jc^k\mid i=jee i=k\}$$

A sequence of a-s then b-s and finally c-s with as many a-s as there are b-s or as there are c-s.

$$\{a^ib^jc^k\mid i=j\lor i=k\}$$

A solution

Step 1. read and push a total of N a's.

Step 2. Either:

- ullet (i=j) read N b's and pop a's; followed by reading an arbitrary number of c's
- ullet (i=k) read an arbitrary number of b's followed by read N c's and pop a's

State diagram of Example 2.16

Example 2.16 accept [a,a,b,b,c,c]?

Example 2.16 accept [a,a,b,b,c,c]?

Example 2.16 accept [a,a,b,c,c]?

Example 2.16 accept [a,a,b,c,c]?

Example 2.16 accept [a,a,b,b,c]?

Example 2.16 accept [a,a,b,b,c]?

Example 2.16 rejects [a,a,b,b,b,c]?

Example 2.16 rejects [a,a,b,b,b,c]?

Union for PDAs?

$$\{a^ib^jc^k \mid i=j \lor i=k\} = \{a^ib^jc^k \mid i=j\} \cup \{a^ib^jc^k \mid i=k\}$$

$$\{a^i b^j c^k \mid i = j \lor i = k\} = \{a^i b^j c^k \mid i = j\} \cup \{a^i b^j c^k \mid i = k\}$$

