#### **▼ Import The Necessary Libraries**

| 1 | PURPOSE*        | MILES* | STOP*           | START*      | CATEGORY* | END_DATE*      | START_DATE*    |   |
|---|-----------------|--------|-----------------|-------------|-----------|----------------|----------------|---|
|   | Meal/Entertain  | 5.1    | Fort Pierce     | Fort Pierce | Business  | 1/1/2016 21:17 | 1/1/2016 21:11 | 0 |
|   | NaN             | 5.0    | Fort Pierce     | Fort Pierce | Business  | 1/2/2016 1:37  | 1/2/2016 1:25  | 1 |
|   | Errand/Supplies | 4.8    | Fort Pierce     | Fort Pierce | Business  | 1/2/2016 20:38 | 1/2/2016 20:25 | 2 |
|   | Meeting         | 4.7    | Fort Pierce     | Fort Pierce | Business  | 1/5/2016 17:45 | 1/5/2016 17:31 | 3 |
|   | Customer Visit  | 63.7   | West Palm Reach | Fort Pierce | Rusiness  | 1/6/2016 15:49 | 1/6/2016 14:42 | 4 |

```
data.isnull().any()
    START_DATE*
    END DATE*
                    True
    CATEGORY*
                    True
    START*
                    True
    STOP*
                    True
    MILES*
                   False
    PURPOSE*
                    True
    dtype: bool
data.isnull().sum()
    START_DATE*
                     0
    END_DATE*
                     1
    CATEGORY*
    START*
                     1
    STOP*
                     1
    MILES*
                     0
    PURPOSE*
                   503
    dtype: int64
data=data.dropna()
data.isnull().sum()
    START_DATE*
    END_DATE*
    CATEGORY*
                   0
    START*
                   0
    STOP*
                   0
    MILES*
                   0
    PURPOSE*
    dtype: int64
data['START_DATE*'] = pd.to_datetime(data['START_DATE*'], format="%m/%d/%Y %H:%M")
```

```
hour=[]
day=[]
dayofweek=[]
month=[]
weekday=[]
for x in data['START_DATE*']:
    hour.append(x.hour)
    day.append(x.day)
    {\tt dayofweek.append(x.dayofweek)}
    month.append(x.month)
    weekday.append(calendar.day_name[dayofweek[-1]])
data['HOUR']=hour
data['DAY']=day
data['DAY_OF_WEEK']=dayofweek
data['MONTH']=month
data['WEEKDAY']=weekday
```

data.head()

|   | START_DATE*            | END_DATE*              | CATEGORY* | START*         | STOP*                 | MILES* | PURPOSE*        | HOUR | DAY | DAY_OF_WEEK | MONTH | WEEKDAY   |
|---|------------------------|------------------------|-----------|----------------|-----------------------|--------|-----------------|------|-----|-------------|-------|-----------|
| 0 | 2016-01-01<br>21:11:00 | 2016-01-01<br>21:17:00 | Business  | Fort<br>Pierce | Fort<br>Pierce        | 5.1    | Meal/Entertain  | 21   | 1   | 4           | 1     | Friday    |
| 2 | 2016-01-02<br>20:25:00 | 2016-01-02<br>20:38:00 | Business  | Fort<br>Pierce | Fort<br>Pierce        | 4.8    | Errand/Supplies | 20   | 2   | 5           | 1     | Saturday  |
| 3 | 2016-01-05<br>17:31:00 | 2016-01-05<br>17:45:00 | Business  | Fort<br>Pierce | Fort<br>Pierce        | 4.7    | Meeting         | 17   | 5   | 1           | 1     | Tuesday   |
| 4 | 2016-01-06<br>14:42:00 | 2016-01-06<br>15:49:00 | Business  | Fort<br>Pierce | West<br>Palm<br>Beach | 63.7   | Customer Visit  | 14   | 6   | 2           | 1     | Wednesday |

### **→ Categories We Have**

```
data['CATEGORY*'].value_counts()

Business 647
Personal 6
Name: CATEGORY*, dtype: int64

sns.countplot(x='CATEGORY*',data=data)
```





We have large number of business rides caegory as against very few personal rides.

## → How long do people travel with Uber?

data['MILES\*'].plot.hist()



mostly people travel in a short mile with Uber.

#### What Hour Do Most People Take Uber To Their Destination?

```
hours = data['START_DATE*'].dt.hour.value_counts()
hours.plot(kind='bar',color='red',figsize=(10,5))
plt.xlabel('Hours')
plt.ylabel('Frequency')
plt.title('Number of trips Vs hours')
```

Text(0.5, 1.0, 'Number of trips Vs hours')



As we can see most people take Uber to their destination around the 13th hour(1pm) and the least hour is 2 am.

# - Check The Purpose Of Trips

```
data['PURPOSE*'].value_counts().plot(kind='bar',figsize=(10,5),color='brown')
```



We can notice that mostly the purpose of the trip is meeting and meal/entertain.

# ▼ Which Day Has The Highest Number Of Trips





So Friday has the highest number of Trips.

## **▼** What Are The Number Of Trips Per Each Day?

data['DAY'].value\_counts().plot(kind='bar',figsize=(10,5),color='green')



## What Are The Trips In The Month

data['MONTH'].value\_counts().plot(kind='bar',figsize=(10,5),color='black')



We can see that December(12) has the most trips.

### **▼** The starting points of trips. Where Do People Start Boarding Their Trip From Most?

data['START\*'].value\_counts().plot(kind='bar',figsize=(25,10),color='blue')



Colab paid products - Cancel contracts here

✓ 3s completed at 17:46