ALGEBRA LINEAL - Práctica $N^{\circ}9$ - Segundo cuatrimestre de 2020

Variedades Lineales

Ejercicio 1. Probar que los siguientes conjuntos son variedades lineales y calcular sus dimensiones:

- i) $M_1 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / 2.x_1 x_3 = 1 \text{ y } x_2 + x_3 = -2\}$
- ii) $M_2 = \{ P \in \mathbb{Q}_3[X] / P'(2) = 1 \}$
- iii) $M_3 = \{ A \in \mathbb{C}^{2 \times 2} / tr(A) = 5 \}$

Ejercicio 2. Sean $\Pi = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / 2.x_1 - x_2 + x_3 = 1\}$ y L = <(0, 1, 1) > +(1, 1, 0). Hallar una variedad lineal $M \subseteq \mathbb{R}^3$ de dimensión 2 tal que $M \cap \Pi = L$.

Ejercicio 3. Hallar ecuaciones implícitas para la mínima variedad lineal $M \subseteq \mathbb{R}^4$ que contiene a (1,1,2,0), (2,1,1,0) y (-1,0,4,1).

Ejercicio 4. Sean $L = \langle (2,1,1) \rangle + (0,-1,1) \subseteq \mathbb{R}^3$ y P = (0,0,1).

- i) Hallar un plano Π tal que $L \subseteq \Pi$ y $P \in \Pi$.
- ii) ¿Existirá un plano Π' tal que $L \subseteq \Pi'$, $P \in \Pi'$ y $(1,0,0) \in \Pi'$ simultáneamente?

Ejercicio 5.

- i) Sea $L_1 = \langle (2,1,0) \rangle + (0,0,1)$. Hallar una recta $L_2 \parallel L_1$ que pase por el punto (-1,3,0).
- ii) Si L_1 y L_2 son las rectas de i), hallar un plano $\Pi\subseteq\mathbb{R}^3$ tal que $L_1\subseteq\Pi$ y $L_2\subseteq\Pi$ simultáneamente. ¿Es Π único?

Ejercicio 6.

- i) Encontrar en \mathbb{R}^3 dos rectas alabeadas que pasen por (1,2,1) y (2,1,1) respectivamente.
- ii) Encontrar en \mathbb{R}^4 dos planos alabeados que pasen por (1,1,1,0) y (0,1,1,1) respectivamente.
- iii) ¿Hay planos alabeados en \mathbb{R}^3 ? Más generalmente, si V es un K-espacio vectorial de dimensión n y M_1 y M_2 son variedades lineales alabeadas en V, ¿qué se puede decir de sus dimensiones?

Ejercicio 7. En cada uno de los siguientes casos, decidir si las variedades lineales M_1 y M_2 se cortan, son paralelas o son alabeadas. En cada caso, hallar $M_1 \cap M_2$, $M_1 \vee M_2$ y calcular todas las dimensiones:

- i) $M_1 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / x_1 + x_2 x_3 = 1\}, M_2 = \langle (1, 0, 1) \rangle + (0, 0, -3)$
- ii) $M_1 = \langle (1, 2, 1, 0), (1, 0, 0, 1) \rangle + \langle (1, 2, 2, -1), M_2 \rangle = \langle (1, 0, 1, 1), (2, 2, 1, 0) \rangle + \langle (-1, 4, 2, -3), (-1, 0, 1, 1), (-1, 0, 1, 1) \rangle$
- iii) $M_1 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 / x_1 x_2 1 = x_3 + x_4 = 0\}$ $M_2 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 / x_1 - x_2 = x_2 + x_3 + x_4 - 1 = 0\}$

Ejercicio 8. Sean en \mathbb{R}^3

$$M_1 = \langle (1,1,1) \rangle + \langle (0,2,0) \rangle \quad M_2 = \{(x_1,x_2,x_3) \in \mathbb{R}^3 / x_1 + x_2 - x_3 = x_1 - x_2 + x_3 = 1\}.$$

- i) Hallar planos Π_1 y Π_2 de \mathbb{R}^3 tales que $M_1 \subseteq \Pi_1$, $M_2 \subseteq \Pi_2$ y $\Pi_1 \parallel \Pi_2$ simultáneamente.
- ii) Hallar $M_1 \cap M_2$ y $M_1 \vee M_2$ y calcular sus dimensiones.

Ejercicio 9. Sean $L_1, L_2 \subseteq \mathbb{R}^3$ las rectas definidas por

$$L_1 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / x_1 - 3.x_3 = 0, x_2 - x_3 = -2\}$$
 y
 $L_2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / x_1 - 6.x_3 = 1, x_2 + 2.x_3 = 0\}.$

Hallar una recta $L \subseteq \mathbb{R}^3$ que pase por el punto (1,0,2) y corte a L_1 y a L_2 .

Ejercicio 10. Sean A = (1, 1, 2) y B = (2, 0, 2). Sea $\Pi = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / x_1 + x_2 = 2\}$. Hallar $C \in \Pi$ tal que A, B y C formen un triángulo equilátero. ¿La solución es única?

Ejercicio 11. Se consideran en \mathbb{R}^2 las rectas $L_1: x_2 = 0$, $L_2: x_2 = \alpha$ y $L_3: x_2 = \beta$, con α y β en \mathbb{R} no nulos y distintos entre sí. Sean L y L' dos rectas transversales a L_1 , L_2 y L_3 . Probar que

$$\frac{d(L_1 \cap L, L_2 \cap L)}{d(L_2 \cap L, L_3 \cap L)} = \frac{d(L_1 \cap L', L_2 \cap L')}{d(L_2 \cap L', L_3 \cap L')}.$$

Este enunciado se conoce con el nombre de Teorema de Thales.

Ejercicio 12. Sean A_1 , A_2 y A_3 en \mathbb{R}^3 tres puntos no alineados. Probar que el conjunto

$$S = \{x \in \mathbb{R}^3 / d(x, A_1) = d(x, A_2) = d(x, A_3)\}\$$

es una recta ortogonal al plano que contiene a A_1 , A_2 y A_3 . Calcular S en el caso $A_1 = (1, -1, 0)$, $A_2 = (0, 1, 1)$ y $A_3 = (1, 1, 2)$.

Ejercicio 13. Sea $P: \mathbb{R}^3 \to \mathbb{R}^3$ la proyección ortogonal, para el producto interno canónico, sobre el subespacio $S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / 2.x_1 - x_2 = 0\}.$

- i) Hallar una recta $L \subset \mathbb{R}^3$ tal que P(L) = (1, 2, 1). ¿Es única?
- ii) Hallar una recta $L' \subset \mathbb{R}^3$ tal que $P(L') = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / 2.x_1 x_2 = 0, x_1 x_3 = 0\}$. ¿Es única?

Ejercicio 14. Hallar en \mathbb{R}^n el complemento ortogonal a M que pasa por A, la proyección ortogonal de A sobre M y d(A, M) en los siguientes casos:

i)
$$n = 3$$
, $M: \begin{cases} 3.x_1 + x_3 = 1 \\ x_1 - x_2 = -1 \end{cases}$, $A = (1, 0, 0)$

ii)
$$n = 4$$
, $M: \begin{cases} x_1 - x_2 + x_3 = 1 \\ 2.x_1 - 3.x_4 = 2 \end{cases}$, $A = (0, 2, 0, -1)$

Ejercicio 15. Dado en \mathbb{R}^2 el triángulo de vértices A = (2, -3), B = (8, 5) y C = (14, 11), hallar la longitud de la altura que pasa por el vértice A.

Ejercicio 16. Sean en \mathbb{R}^3 los puntos $P_1=(1,-1,0)$ y $P_2=(1,1,1)$. Encontrar tres planos Π distintos tales que $d(P_1,\Pi)=d(P_2,\Pi)$.

Ejercicio 17. Sean en \mathbb{R}^3 la recta $L = \langle (1,1,2) \rangle$ y el punto P = (1,0,-2). Encontrar un plano Π ortogonal a L tal que $d(P,\Pi) = \sqrt{6}$.

Ejercicio 18. Calcular la distancia entre M_1 y M_2 en los siguientes casos:

i)
$$M_1 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / x_1 - 2.x_2 + x_3 = 1\}$$

 $M_2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / x_1 - 2.x_2 + x_3 = 3\}$

ii)
$$M_1 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / x_1 + x_2 = 1, x_1 - x_3 = 0\}$$

 $M_2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / x_1 + x_2 + x_3 = 0, x_3 = 1\}$

iii)
$$M_1 = \langle (1, -1, 0), (2, 1, 1) \rangle + (1, 0, 0)$$

 $M_2 = \{(3, 0, 1)\}$

iv)
$$M_1 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 / x_1 - x_2 + x_3 = -2, x_2 - 2.x_4 = 2\}$$

 $M_2 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 / x_1 + x_2 + x_3 = 0, x_2 - 2.x_4 = -8, x_1 - x_2 + x_4 = 5\}$

Ejercicio 19. Probar que si M_1 y M_2 son variedades lineales de \mathbb{R}^n con dim $(M_1) \leq \dim(M_2)$ y $M_1 \parallel M_2$, entonces $d(M_1, M_2) = d(P, M_2)$ para todo $P \in M_1$.

Ejercicio 20. Sean en \mathbb{R}^3

$$M_1 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / 2 \cdot x_1 - x_2 + x_3 = 1\}$$
 y $M_2 = (1, 1, 1) + < (0, 1, 1), (1, 0, -2) > .$

Hallar un plano Π tal que $M_1 \parallel \Pi$, $M_2 \parallel \Pi$ y $d(M_1, \Pi) = d(M_2, \Pi)$.

Ejercicio 21. Sea $L = \langle (3,0,-4) \rangle + (1,-1,0)$. Encontrar una recta L' alabeada con L, tal que d(L,L') = 2.

Ejercicio 22.

- i) Construir una rotación $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $f(M_1) = M_2$ en cada uno de los siguientes casos:
 - a) $M_1 = \{(1, 2, -1)\}, M_2 = \{(-1, 2, 1)\}$

b)
$$M_1 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / x_1 - x_2 = 2, x_3 = 1\}$$

 $M_2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / x_1 - 2 \cdot x_2 = 1, 3 \cdot x_2 - x_3 = -4\}$

c)
$$M_1 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / x_1 - x_2 + x_3 = 3\}$$

 $M_2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / x_1 - x_2 + x_3 = -3\}$

ii) Encontrar M_1 y M_2 variedades lineales de \mathbb{R}^3 de igual dimensión tales que no haya ninguna rotación $f: \mathbb{R}^3 \to \mathbb{R}^3$ que cumpla $f(M_1) = M_2$.

Ejercicio 23. Sean en \mathbb{R}^3 los planos $\Pi_1: x_2-x_3=1$ y $\Pi_2: x_2+x_3=-1$. Definir una transformación ortogonal $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $f(\Pi_1)=\Pi_2$ y $f(\Pi_2)=\Pi_1$.

Ejercicio 24. Sea $k \in \mathbb{R}$ y sean Π_1 y Π_2 los planos en \mathbb{R}^3 definidos por

$$\Pi_1 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / x_1 - x_2 + 2x_3 = k\}$$
 y $\Pi_2 = \langle (1, 0, 1), (0, 1, 2) \rangle + (1, -1, 1).$

Determinar k para que exista una simetría $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $f(\Pi_1) = \Pi_2$. Para ese valor de k hallar dicha simetría y calcular $f(\Pi_2)$.