Przetwarzanie obrazu i dźwięku Prowadzący: dr inż. Arkadiusz Tomczyk

2011/2012 środa, 8:15

Data oddania:	Ocena:	
Data Oddama.	Occiia.	

Paweł Musiał 178726 Łukasz Michalski 178724

Zadanie 1:

Szkielet aplikacji do przetwarzania i analizy obrazów, operacje podstawowe, usuwanie szumu, modyfikacje histogramu, filtracja liniowa i nieliniowa, splot*

1. Cel

Celem zadania było stworzenie szkieletu aplikacji służącej do wczytywania, zapisywania i przede wszystkim przetwarzania obrazów, która zostanie wykorzysta zarówno w tym, jak i w następnym zadaniu. Na potrzeby pierwszego zadania w powstałym szkielecie należało:

- zaimplementować podstawowe operacje przetwarzania obrazów: zmianę jasności i kontrastu oraz wyznaczenie negatywu obrazu;
- zaimplementować filtr ze średnią arytmetyczną i filtr medianowy z możliwością wyboru rozmiaru maski oraz zaproponować metody obiektywnej oceny ich działania i skuteczności w usuwaniu różnego rodzaju szumu;
- wyznaczyć i wyświetlić histogram jasności pikseli obrazu, a w przypadku obrazów kolorowych także histogram wartości poszczególnych kanałów;
- w oparciu o wyznaczony histogram dokonać modyfikacji obrazu w taki sposób, aby osiągnąć zadaną charakterystykę histogramu obrazu wynikowego;
- zaimplementować możliwość filtracji liniowej opartej o spłot w dwóch wersjach: na podstawie jednego z wariantów gotowych masek oraz z możliwością wyboru własnego rozmiaru maski i wartości poszczególnych jej elementów;
- opracować i zaimplementować algorytm filtracji nieliniowej obrazu w dziedzinie czasu zgodnie z regułą zawartą w przydzielonym wariancie zadania, a także zapewnić możliwość wyboru parametrów filtru tam, gdzie jest to konieczne;
- przemyśleć i zaimplementować sposób normalizacji wyników dla dwóch poprzednich punktów tak, aby mogły być one wyświetlone w postaci obrazu wynikowego.

W sprawozdaniu zamieszczono wyniki działania poszczególnych algorytmów oraz porównanie ich w różnych wariantach ustawień i dla różnych problemów.

^{*} SVN: http://serce.ics.p.lodz.pl/svn/labs/poid/at_sr0800/lmpm

Badania przeprowadzono zarówno na obrazach kolorowych (24-bitowych), jak i w odcieniach szarości (8-bitowych), a także czarno-białych (1-bitowych).

2. Wprowadzenie

Aby przetworzyć obraz należy w programie przechowywać go w postaci wartości poszczególnych pikseli w obrazie. Wartości te przechowywane są na 8-bitach dla obrazu w odcieniach szarości oraz w 24-bitach (po 8 bitów na kanał) w obrazach kolorowych. Na tych wartościach wykonywane są poszczególne algorytmy (dla obrazu kolorowego na każdym kanale osobno).

2.1. Zmiana jasności

Zmiana jasności obrazu polega na zmniejszeniu bądź zwiększeniu składowych RGB o pewną wartość stałej b. Jeżeli jedna składowa uzyska wartość większą od dopuszczalnego zakresu to wynikiem jest wartość maksymalna z tego zakresu. Analogicznie, jeżeli składowa ma wartość mniejszą to wynikiem jest wartość minimalna. Powyższą operacją można zapisać za pomocą wzoru:

$$p(i) = \begin{cases} 0 & i + b < 0, \\ i + b & 0 \le i + b \le i_{max}, \\ i_{max} & i + b > i_{max}, \end{cases}$$
(1)

gdzie:

p(i) – nowa wartość składowej RGB,

i – wartość konkretnej składowej danego piksela,

b – stała, o którą zmieniamy daną składową RGB,

 i_{max} – maksymalna dopuszczalna wartość.

2.2. Zmiana kontrastu

Zmiana kontrastu polega na przekształceniu danego obrazu wykonując operację według wzoru:

$$p(i) = \begin{cases} 0 & a(i - \frac{i_{max}}{2}) + \frac{i_{max}}{2} < 0, \\ a(i - \frac{i_{max}}{2}) + \frac{i_{max}}{2} & 0 \le a(i - \frac{i_{max}}{2}) + \frac{i_{max}}{2} \le i_{max}, \\ i_{max} & a(i - \frac{i_{max}}{2}) + \frac{i_{max}}{2} > i_{max}, \end{cases}$$
(2)

gdzie:

p(i) – nowa wartość składowej RGB,

i – wartość konkretnej składowej danego piksela,

a – stała, której wartość określa czy zwiększa się kontrast obrazu

 i_{max} – maksymalna dopuszczalna wartość.

W przypadku jeżeli stała a przyjmuje wartości większe od 1, następuje zwiększenie kontrastu obrazu. Natomiast, jeżeli wartości są mniejsze od 1 to kontrast jest zmniejszany.

2.3. Negatyw

Wykonanie negatywu danego obrazu polega na przekształceniu wszystkich pixeli za pomocą wzoru:

$$p(i) = i_{max} - i \tag{3}$$

gdzie:

p(i) – nowa wartość składowej RGB,

 i_{max} – maksymalna dopuszczalna wartość,

i – wartość konkretnej składowej danego piksela.

2.4. Filtr ze średnią arytmetyczną

Filtracja za pomocą tego algorytmu polega na wybraniu wielkości okna maski (w środku okna znajduje się piksel aktualnie przetwarzany). Kolejnym krokiem jest uśrednienie wartości poszczególnych pikseli w danym oknie. Dla obrazu kolorowego algorytm wykonujemy dla każdego kanału osobna. Np. dla maski rozmiaru 3x3 uśredniane są wartości 9 pikseli.

2.5. Filtr medianowy

Algorytm podobny do filtracji ze średnią arytmetyczną jednak zamiast uśredniana wartości poszczególnych pikseli w masce wybierana jest ich mediana czyli wartość środkowa z uszeregowanego rosnąco ciągu wszystkich wartości. Dla obrazu kolorowego algorytm również wykonywany jest dla każdego kanału osobno.

2.6. Generowanie i modyfikacja histogramu

Aby wygenerować histogram należy zebrać informacje o tym ile pikseli w danym kolorze znajduje się na obrazie (dla obrazu kolorowego każdy kanał badamy osobno). Po zsumowaniu wszystkich pikseli generowany jest wykres słupkowy gdzie na osi X znajdują się kolejne wartości jakie może przyjąć kolor (zwykle jest to 0-255) a na osi Y ilość pikseli w danym kolorze na obrazie.

Dla obrazu w odcieniach szarości generowany jest jeden histogram natomiast dla kolorowego cztery. Trzy z nich to kolejne kanały obrazu (red, green, blue) a jeden dodatkowy to histogram wartości luminacji dla danego obrazu liczona ze wzoru:

$$y = 0,299r + 0,587g + 0,114b, (4)$$

gdzie:

y – wartość luminacji dla danego piksela,

r – wartość kanału red dla danego piksela,

g – wartość kanału green dla danego piksela,

b – wartość kanału blue dla danego piksela.

2.7. Filtracja liniowa - identyfikowanie linii

2.8. Filtracja nieliniowa - operator Rosenfelda

2.9. Miary podobieństwa

Bład średniokwadratowy (MSE) określony jest wzorem:

$$MSE = \frac{1}{NM} \sum_{i=1}^{N} \sum_{j=1}^{M} ([f(i,j) - f'(i,j)]^{2})$$
 (5)

gdzie:

N, M – wymiary obrazka

f(x,y) – wartość piksela obrazu wzorcowego

 $f^{\prime}(x,y)$ – wartość piksela obrazu badanego

Szczytowy stosunek sygnału do szumu (PSNR) wyrażony w dB:

$$PSNR = 10\log_{10}\frac{k^2}{MSE} \tag{6}$$

gdzie:

k – liczba kolorów obrazu minus 1(w naszym przypadku 255)

3. Opis implementacji

4. Materialy i metody

W tym miejscu należy opisać, jak przeprowadzone zostały wszystkie badania, których wyniki i dyskusja zamieszczane są w dalszych sekcjach. Opis ten powinien być na tyle dokładny, aby osoba czytająca go potrafiła wszystkie przeprowadzone badania samodzielnie powtórzyć w celu zweryfikowania ich poprawności (a zatem m.in. należy zamieścić tu opis architektury sieci, wartości współczynników użytych w kolejnych eksperymentach, sposób inicjalizacji wag, metodę uczenia itp. oraz informacje o danych, na których prowadzone były badania). Przy opisie należy odwoływać się i stosować do opisanych w sekcji drugiej wzorów i oznaczeń, a także w jasny sposób opisać cel konkretnego testu. Najlepiej byłoby wyraźnie wyszczególnić (ponumerować) poszczególne eksperymenty tak, aby łatwo było się do nich odwoływać dalej.

5. Wyniki

W tej sekcji należy zaprezentować, dla każdego przeprowadzonego eksperymentu, kompletny zestaw wyników w postaci tabel, wykresów itp. Powinny być one tak ponazywane, aby było wiadomo, do czego się odnoszą. Wszystkie tabele i wykresy należy oczywiście opisać (opisać co jest na osiach, w kolumnach itd.) stosując się do przyjętych wcześniej oznaczeń. Nie należy tu komentować i interpretować wyników, gdyż miejsce na to jest w kolejnej sekcji. Tu również dobrze jest wprowadzić oznaczenia (tabel, wykresów) aby móc się do nich odwoływać poniżej.

6. Dyskusja

Sekcja ta powinna zawierać dokładną interpretację uzyskanych wyników eksperymentów wraz ze szczegółowymi wnioskami z nich płynącymi. Najcenniejsze są, rzecz jasna, wnioski o charakterze uniwersalnym, które mogą być istotne przy innych, podobnych zadaniach. Należy również omówić i wyjaśnić wszystkie napotakane problemy (jeśli takie były). Każdy wniosek powinien mieć poparcie we wcześniej przeprowadzonych eksperymentach (odwołania do konkretnych wyników). Jest to jedna z najważniejszych sekcji tego sprawozdania, gdyż prezentuje poziom zrozumienia badanego problemu.

7. Wnioski

W tej, przedostatniej, sekcji należy zamieścić podsumowanie najważniejszych wniosków z sekcji poprzedniej. Najlepiej jest je po prostu wypunktować. Znów, tak jak poprzednio, najistotniejsze są wnioski o charakterze uniwersalnym.

Literatura