P1 de Álgebra Linear I – 2003.2

Data: 15 de setembro de 2003.

Gabarito Prova Tipo D

1)

Itens	V	\mathbf{F}	N
1.a		X	
1.b	X		
1.c	X		
1.d	X		
1.e		X	
1.f		X	
1.g	X		
1.h		X	
1.i		X	
1.j	X		

2) Considere o plano de equação cartesiana

$$\pi \colon x - y + 2z = 3$$

e os pontos A=(1,0,1) e B=(0,1,2) do plano $\pi.$

- a) Determine o vetor \overline{AB} .
- **b)** Determine um vetor w paralelo ao plano π e ortogonal ao vetor \overline{AB} .
- c) Determine um vetor u paralelo a w e de mesmo módulo que o vetor \overline{AB} .

d) Determine as coordenadas de pontos C e D tais que A, B, C, e D são os vértices de um quadrado contido no plano π .

Respostas:

a)
$$\overline{AB} = (-1, 1, 1)$$
.

b)
$$w = (1, 1, 0)$$

c)
$$u = (\sqrt{6}/2, \sqrt{6}/2, 0)$$
.

d)
$$C = (1 + \sqrt{6}/2, \sqrt{6}/2, 1), \qquad D = (\sqrt{6}/2, 1 + \sqrt{6}/2, 2)$$

3) Considere a reta r_1 de equações paramétricas

$$r_1: (t+1, 3t, t-2) \quad t \in \mathbb{R}$$

e a reta r_2 de equações cartesianas

$$x - z = 1$$
, $x + 2y - 3z = 3$.

- a) Escreva a reta r_1 como interseção de dois planos π e ρ (escritos em equações cartesianas) tais que π seja paralelo ao eixo \mathbb{X} e ρ seja paralelo ao eixo \mathbb{Z} .
- b) Determine uma equação paramétrica da reta r_2 .
- c) Determine a posição relativa das retas r_1 e r_2 (reversas, paralelas ou se interceptam).
- d) Calcule a distância d entre as retas r_1 e r_2 .

Respostas:

a)
$$\pi$$
: $-y + 3z = -6$, ρ : $3x - y = 3$.

b)
$$r_2$$
: $(1+t, 1+t, t), t \in \mathbb{R}$.

c) reversas

d) $\sqrt{2}$.

- 4) Considere os pontos A = (1,0,1) e B = (1,2,2).
- a) Determine uma equação paramétrica da reta r determinada pelos pontos $A \in B$.
- b) Determine o ponto médio M do segmento AB.
- c) Determine a equação cartesiana do plano π cujos pontos são todos equidistantes de A e B.
- d) Considere o ponto C=(33,21,17). Determine explicitamente um ponto D a distância 13 de C.
- e) Considere o plano ρ : x+y-z=0. Determine a equação cartesiana de um plano τ a distância 3 de ρ .

Respostas:

- a) $r: (1, 2t, 1+t), t \in \mathbb{R}$.
- **b)** M = (1, 1, 3/2).
- **c)** π : 2y + z = 7/2
- d) os seis pontos mais simples são D = (46, 21, 17), D = (20, 21, 17), D = (33, 8, 17), D = (33, 34, 17), D = (33, 21, 4) e D = (33, 12, 30).
- e) τ : $x + y z = \pm 3\sqrt{3}$.