

Stock Market Analysis

Internship Project Report

Submitted by: Tanisha Mangliya

EMAIL: tanishamangliya@gmail.com

Institute: Indian Institute of Technology Jodhpur (b22ee067@iitj.ac.in)

For: Data Science Internship at Unified Mentor Pvt. Ltd.

Role: **Data Science Intern Date of Submission:** September 5, 2025

Contents

1	Introduction	1
2	Project Folder Structure	2
3	Project Objectives	3
4	Dataset Overview	3
5	Methodology and Workflow	5
	5.1 Step 1: Data Loading and Cleaning	5
	5.2 Step 2: Exploratory Data Analysis (EDA)	5
	5.3 Step 3: Feature Engineering	5
	5.4 Step 4: Model Training and Evaluation	7
	5.5 Step 5: Deployment	7
6	Key Insights and Findings	7
7	Technologies Used	10
8	Conclusion	14
9	References (This is link to the github) https://github.com/tanisha-m26/stock-app	14

1. Introduction

The stock market plays a vital role in shaping the economy and investment strategies. This project focuses on analyzing stock trends using data analytics and machine learning models. The objective is to uncover trading patterns, evaluate company performance, and predict future stock behavior using time-series analysis and regression models.

This internship under **Unified Mentor Pvt. Ltd.** allowed practical exposure to financial data preprocessing, visualization, and modeling using Python-based tools.

2. Project Folder Structure

Figure 1: Project Folder Structure for Stock Market Analysis Dashboard

Table 1: Explanation of Folder and File Roles

Folder/File	Purpose / Description
.devcontainer/	Contains configuration for VS Code Remote Containers to
	ensure a consistent development environment.
.streamlit/	Holds Streamlit app configuration files such as themes, cre-
	dentials, and authentication settings.
results_archive/	Stores archived reports, visual outputs, metrics summaries,
	and generated plots.
app.py	The main Streamlit application script responsible for running
	the interactive dashboard.
stock_market_analysi	sJupythr Notebook used for data exploration, model training,
	and backtesting analysis.
requirements.txt	Lists all required Python dependencies for replicating the en-
	vironment.
setup.sh	Shell script for automating environment setup and depen-
	dency installation.
LICENSE	Legal license file defining permissions and distribution rights.
.gitattributes	Configuration file controlling Git attributes such as text en-
	coding and diff settings.
.gitignore	Specifies files and folders to be excluded from version control.
README.md	Provides an overview, usage instructions, and deployment link
	to the Streamlit dashboard.

3. Project Objectives

- Analyze stock market datasets to identify trends and volatility.
- Build predictive models for stock price forecasting.
- Perform feature engineering for financial indicators.
- Visualize patterns through interactive dashboards.
- Deploy results for real-time insights.

4. Dataset Overview

The dataset consists of historical stock data containing fields such as Date, Open, High, Low, Close, Volume, and Adjusted Close.

```
MultiIndex([('GOOGL', ('GOOGL',
                                'Open'),
'High'),
'Low'),
                ('GOOGL',
                               'Close'),
                ('GOOGL',
                              'Volume'),
'Open'),
'High'),
'Low'),
                  'GOOGL',
                   'AAPL',
                   'AAPL',
                   'AAPL',
                   'AAPL',
                               'Close'),
                              'Volume'),
                   'AAPL',
                                'Open'),
'High'),
'Low'),
                   'NFLX',
                   'NFLX',
                   'NFLX',
                               'Close'),
                   'NFLX',
                              'Volume'),
                   'NFLX',
                                'Open'),
'High'),
'Low'),
                   'MSFT',
                   'MSFT',
                   'MSFT',
                   'MSFT',
                               'Close'),
                   'MSFT', 'Volume')],
              names=['Ticker', 'Price'])
```

Figure 2: DATASET-multihead

Ticker	GOOGL					\
Price	0pen	High	Low	Close	Volume	
Date						
2025-05-23	168.855579	169.754500	167.686996	168.266296	35211400	
2025-05-27	169.954256	172.960611	169.794446	172.690933	37995700	
2025-05-28	172.950632	175.058081	171.702143	172.151596	34784000	
2025-05-29	173.789603	174.209093	170.423683	171.652191	29317300	
2025-05-30	171.142821	172.001782	167.237545	171.532349	52639900	
Ticker	AAPL					\
Price	0pen	High	Low	Close	Volume	
Date						
2025-05-23	193.450453	197.475883	193.240699	195.048645	78432900	
2025-05-27	198.075209	200.512445	197.206185	199.983047	56288500	
2025-05-28	200.362600	202.500174	199.673380	200.192795	45339700	
2025-05-29	203.349217	203.578952	198.284958	199.723328	51396800	
2025-05-30	199.143981	201.731057	196.556921	200.622314	70819900	

Figure 3: GOOGL and AAPL

Ticker	NFLX						\
Price	0pen	Hig	h L	.ow C	lose	Volume	
Date							
2025-05-23	1184.000000	1191.44995	1 1179.4399	41 1185.390	0015	2186500	
2025-05-27	1195.329956	1211.77002	0 1193.0899	66 1211.569	9946	2920500	
2025-05-28	1210.270020	1215.91003	4 1206.0200	20 1208.550	0049	1855900	
2025-05-29	1208.000000	1209.00000	0 1176.2800	29 1184.859	9985	3300700	
2025-05-30	1198.329956	1211.81005	9 1180.9300	1207.229	9980	4696800	
Ticker	MSFT						
Price	0pen	High	Low	Close	V	olume	
Date							
2025-05-23	449.241509	452.945411	448.173257	449.441162	168	83500	
2025-05-27	455.730817	460.193482	455.371392	459.933899	209	74300	
2025-05-28	460.463056	461.760910	456.180088	456.609375	170	86300	
2025-05-29	460.792501	460.962235	454.562751	457.927216	139	74800	
2025-05-30	458.965497	460.922272	454.792365	459.604431	347	70500	

Figure 4: NFLX and MSFT

Table 2: Dataset Columns and Descriptions

Column Name	Description
Date	Trading date
Open	Opening price of the stock
High	Highest price of the day
Low	Lowest price of the day
Close	Closing price of the stock
Adj Close	Adjusted closing price after splits/dividends
Volume	Number of shares traded

5. Methodology and Workflow

5.1 Step 1: Data Loading and Cleaning

- Loaded dataset using pandas.
- Handled missing values and formatted date columns.
- Standardized numerical scales and column names.

5.2 Step 2: Exploratory Data Analysis (EDA)

Analyzed key relationships between stock indicators using visual tools.

1	Date	AAPL	MSFT	NFLX	GOOGL
2	2025-05-23	195.04864501953125	449.441162109375	1185.3900146484375	168.26629638671875
3	2025-05-27	199.98304748535156	459.93389892578125	1211.5699462890625	172.69093322753906
4	2025-05-28	200.1927947998047	456.609375	1208.550048828125	172.15159606933594
5	2025-05-29	199.72332763671875	457.9272155761719	1184.8599853515625	171.65219116210938
6	2025-05-30	200.622314453125	459.60443115234375	1207.22998046875	171.5323486328125
7	2025-06-02	201.47134399414062	461.2118225097656	1218.97998046875	168.82562255859375
8	2025-06-03	203.03956604003906	462.2101745605469	1217.93994140625	165.97906494140625
9	2025-06-04	202.590087890625	463.1086730957031	1239.6600341796875	167.8468017578125
10	2025-06-05	200.40257263183594	466.91241455078125	1250.52001953125	168.00662231445312

Figure 5: Adjacency-Close

5.3 Step 3: Feature Engineering

- Computed moving averages, RSI, and volatility.
- Engineered lag features for temporal prediction.

Figure 6: Stock Price Trend over Time

Figure 7: Price Matrix

Figure 8: Shap-Values

5.4 Step 4: Model Training and Evaluation

Implemented regression and LSTM-based models for forecasting.

Figure 11: Model Performance Comparison (RMSE vs MAE)

Table 3: Performance Metrics

Metric	Value
Mean Absolute Error (MAE) Root Mean Square Error (RMSE)	2.31 3.45
R-Squared Score	0.94

5.5 Step 5: Deployment

- Model saved as best_stock_forecast_model.pkl.
- Deployed via Streamlit for interactive visualization.

6. Key Insights and Findings

- Certain stocks showed strong correlation with market indices.
- Moving average crossovers proved useful for short-term signals.

Figure 9: Feature Correlation Heatmap

Figure 10: Returns-Correlation

Figure 13: Stock-Prices

Figure 14: Ensemble-v/s-Actual prediction

• Feature scaling improved model accuracy substantially.

Figure 12: Strategy-Cumulative-Returns

Figure 15: APPL-predictions

Figure 16: GOOGL-predictions

7. Technologies Used

Category	Tools / Libraries
Programming	Python 3.9+
Data Analysis	pandas, numpy
Visualization	matplotlib, seaborn, plotly
Machine Learning	scikit-learn, TensorFlow
App Deployment	Streamlit
Version Control	Git & GitHub

10

Figure 17: MSFT-predictions

Figure 18: NFLX-predictions

Figure 19: Price-Charts(AAPL)

Figure 20: Technical-Indicators(TSLA)

Figure 21: TSLA-Daily.Returns.Distribution

Figure 22: Returns-Risks(TSLA)

Figure 23: Metrices-NFLX

8. Conclusion

This project successfully demonstrated the integration of machine learning and finance analytics to predict and interpret stock market behavior. Predictive modeling, supported by data visualization, provided actionable insights for investment strategies.

Future Enhancements:

- Incorporate news sentiment and macroeconomic indicators.
- Extend to real-time API-driven dashboards.
- Implement reinforcement learning for portfolio optimization.

9. References

- Yahoo Finance API Documentation
- Scikit-learn Documentation: https://scikit-learn.org
- Streamlit Deployment Guide: https://streamlit.io
- Unified Mentor Internship Resources
- Live App You can access the live app here: [Stock Prediction Dashboard] https://share.streamlit.io/tanisha-m26/stock-app/main/app.py