Question 30 (8 marks)

Carbonyl chloride, $COCl_2$, is a colourless, poisonous gas that is used in the production of insecticides and a variety of plastics. It is produced through the exothermic reaction between carbon monoxide and chlorine gases. Carbonyl chloride is a liquid below 8 °C at 100.0 kPa.

The following equation is used to represent the reaction.

CO(g)	+	$Cl_2(g)$	$\stackrel{\leftarrow}{\Rightarrow}$	$COCl_2(g)$	$\Delta H < 0$

(a)	For this industrial process state the conditions that would optimise the:	(2 marks)
	rate of reaction	
	yield	

State one compromise in conditions that might be required to produce carbonyl chloride $COC\ell_2$, in an industrial process. Explain the effect of this condition on the rate and yield and justify why this compromise is required. (6 mark
and justify why this compromise is required. (6 mark