UNIVERSIDAD NACIONAL DE INGENIERÍA Unidad de Posgrado

Programa de Nivelación en Software Skills: R y Python

MSc Jose Araujo* MSc Rafael Caparó† MSc Gonzalo Lezma‡ MSc Jesus Ramirez§ Unidad de Posgrado - FIEECS

May 28, 2018

Abstract

Python y R son sin duda dos de los software con mayor potencial en el mercado. Por tanto, este curso le otorga al participante la posibilidad de nivelarse y ubicarse por encima del promedio del mercado laboral, incrementando sus habilidades en finanzas cuantitativas para que pueda destacar en un sector altamente competitivo como lo es el sector financiero.

Contents

1	Ana	ilisis de series de tiempo univariadas con R, Sesión 1: Sábado 2 de junio	2
	1.1	Análisis de series de tiempo univariadas con R	2
	1.2	Hechos estilizados de las series de tiempo financieras	2
	1.3	Propiedades de la serie de tiempo financieras	2
	1.4	Tópicos de series de tiempo financieras	2
		1.4.1 Definición de estacionariedad en sentido débil	3
		1.4.2 Definición y análisis de la raíz unitaria en serie de tiempo financieras	:
	1.5	Modelos ARMA, ARIMA, ARIMAX	:
	1.6	Business Case: Estimación del mejor modelo arma para el retorno de un portafolio	
		de inversiones	3
2	Análisis de series de tiempo financieras multivariadas con R, Sesión 2: Sábado		
	9 de junio		
	2.1	Análisis de series de tiempo financieras multivariadas con R	4
	2.2	Vectores Autorregresivos aplicados finanzas	4
	2.3	Cointegración y modelo de corrección de errores para activos financieros y aplica-	
		ciones en finanzas	6
	2.4	Tópicos de series de tiempo financieras multivariadas aplicadas a la gestión del riesgo	6
		2.4.1 Introducción a la medida del riesgo financiero: desviación estándar y matriz	
		de varianzas y covarianzas de un portafolio	6
		2.4.2 Introducción al modelamiento de la matriz de covarianzas con modelos M-	
		GARCH	(
	2.5	Business Case: Estimación de los efectos en las pérdidas de un portafolio debido	
		movimiento de las variables macroeconómicas: Medidas macroprudenciales en riesgos.	6
	2.6	Anexos	6
		2.6.1 Importación de datos	6

 $^{\ \ ^{*}}jaraujo@uni.edu.pe$

[†]rcaparoc@uni.edu.pe

[‡]glezma@uni.edu.pe

 $[\]S{jramirez@uni.edu.pe}$

1 Análisis de series de tiempo univariadas con R, Sesión 1: Sábado 2 de junio

1.1 Análisis de series de tiempo univariadas con R

Instalamos los paquetes necesarios:

```
install.packages("tseries")
kibrary("tseries")
```

Para FACEBOOK

```
precio_fb=get.hist.quote(instrument = "fb", quote="Close")
x11()
```

Este comando sirve para separar ventanas gráficas

```
plot(precio_fb)
```

Creamos la primera diferencia:

```
pri_dif=diff(precio_fb) # este comando crea la primera diferencia
x11()
plot(pri_dif)
```

Para IBM

```
precio_ibm=get.hist.quote(instrument = "ibm", quote="Close")
x11()
```

Este comando sirve para separar ventanas gráficas

```
plot(precio_imb)
```

1.2 Hechos estilizados de las series de tiempo financieras

Con ayuda del histograma analizamos, kurtosis, asimetría y diferentes concentraciones. También usamos la gráfica de los retornos para ver formación de cluster de volatilidad en diferentes activos financieros (SP500, Facebook, Google, NASDAQ, etc).

1.3 Propiedades de la serie de tiempo financieras

Con los hechos estilizados podemos confirmar las propiedades de las series de tiempo financieras, esta parte es un complemento de la sección anterior y sirve para que el participante pueda realizar ejercicios con sus propias series, de tal manera que debe desarrollar los siguientes ejercicios:

- Descargar una serie financiera y transformar los precios de cierre en retornos.
- Estudiar y presentar un resumen (un scrip comentado) de las principales características de la serie financiera elegida.

1.4 Tópicos de series de tiempo financieras

Se realiza un resumen de algunos tópicos de series de tiempo aplicado a las finanzas de mercado:

Primera diferencia

Creamos la primera diferencia:

```
pri_dif=diff(precio_imb)
```

este comando crea la primera diferencia

```
1
x11()
plot(pri_dif)
x11()
hist(pri_dif)
```

1.4.1 Definición de estacionariedad en sentido débil

Definimos la estacionariedad de una manera mas intuitiva y aplicamos algunos test con ayuda del R

1.4.2 Definición y análisis de la raíz unitaria en serie de tiempo financieras

TESTS DE RAIZ UNITARIA:

Test de Raiz Unitaria para el precio:

```
adf.test(precio_imb)
adf.test(pri_dif)
```

Notamos que la serie PRECIO es NO ESTACIONARIA, mientras que la serie PRI-DIF es ESTACIONARIA. El test ADF sirve para ver si una serie tiene RAIZ UNITARIA: Cuando se acepta la Ho (NO ESTACIONARIA) del test la serie es NO ESTACIONARIA idem para el caso contrario

Ejercicio para el participante a desarrollar en clase: Descargar tres activos financieros (diversificados) de su interes y ver si sus primeras diferencias y su serie en niveles(precios) son estacionarios o no

1.5 Modelos ARMA, ARIMA, ARIMAX.

1.6 Business Case: Estimación del mejor modelo arma para el retorno de un portafolio de inversiones

BUSINESS CASE: MEJOR ARMA DE UN PORTAFOLIO

Paso 1: Crear el portafolio En este caso usamos las primeras diferencias, porque nos dan una idea de las perdidas y ganancias (Reto: Hacer lo mismo con la series de Retornos, Hint: Transformar los precios en retornos)

Descargo los componentes del portafolio

```
precio_aapl=get.hist.quote(instrument = "aapl", quote="Close")
pri_dif_aapl=diff(precio_aapl)
precio_ge=get.hist.quote(instrument = "ge", quote="Close")
pri_dif_ge=diff(precio_ge)
precio_dis=get.hist.quote(instrument = "dis", quote="Close")
pri_dif_dis=diff(precio_dis)
```

construyo el portafolio

```
portafolio1=(1/3)*pri_dif_aapl+(1/3)*pri_dif_ge+(1/3)*pri_dif_dis
x11()
plot(portafolio1)
```

Estimando el mejor modelo ARMA:

```
portafolio1=diffinv(portafolio1) # Contrario a diff
portafolio1=diff(portafolio1) # lo vuelvo diff
```

Este artificio sirve para completar lo NAs

```
arma11=arma(portafolio1,order=c(1,1))
arma11
summary((arma11))
```

Creamos un ARMA(2,1) y ARMA(3,2) y un ARMA(1,0) y elegimos el mejor modelo ARMA segun AIC

```
arma21=arma(portafolio1, order=c(2,1))
summary((arma21))
arma32=arma(portafolio1, order=c(3,2))
summary((arma32))
arma10=arma(portafolio1, order=c(1,0))
summary((arma10))
```

Conclusión: El mejor modelo segun AIC es el $\operatorname{ARMA}(3,2)$ con un AIC de 0.9084 que es menor a los otros

Fin de la sesión

2 Análisis de series de tiempo financieras multivariadas con R, Sesión 2: Sábado 9 de junio

2.1 Análisis de series de tiempo financieras multivariadas con R.

Vectores Autoregresivos aplicados a finanzas

```
install.packages("vars")
hibrary("vars")
```

Descargamos nuestros datos

```
data("Canada")
Canada
```

Para estimar un VAR se usa el comando VAR

Estimamos diferentes rezagos para el VAR

```
WAR (Canada, p=2, type="none")
WAR (Canada, p=1, type="none")
```

Este comando nos sirve para estimar los parámetros de la forma reducida

2.2 Vectores Autorregresivos aplicados finanzas

Ahora analizamos la forma ESTRUCTURAL (SVAR) . Primero debemos guardar nuestro VAR en forma reducida

```
red_var_2=VAR(Canada,p=2,type="none")
amat=diag(4) # Creamos una matriz diagonal 4x4 (una identidad)
```

```
amat
diag(amat) = NA
amat
amat[2,1] = NA # Llenamos el elemento 2,1 con NA
amat
amat[4,1]=NA # Llenamos el elemento 2,1 con NA
amat
```

Para estimar un SVAR se requieren muchos métodos, el método que vamos a usar es un método conocido como SCORING

```
svar2=SVAR(x=red_var_2, estmethod = "scoring", Amat=amat, Bmat=NULL,max.
  iter =100,maxls=1000,conv.crit = 1.0e-8 )
summary(svar2)
```

Ejercicio:

Considerar NA para los valores de las posiciones 3,1 y 3,2 de la matriz A y mostrar los valores estimados con el SVAR

Solución:

```
amat[3,1] = NA # Llenamos el elemento 2,1 con NA
amat[3,2] = NA # Llenamos el elemento 2,1 con NA
amat
svar2=SVAR(x=red_var_2, estmethod = "scoring", Amat=amat, Bmat=NULL,max.
   iter =100,maxls=1000,conv.crit = 1.0e-8 )
summary(svar2)
```

Interpretación gráfica de las series:

1. Graficando nuestro VAR en forma reducida:

```
red_var_2=VAR(Canada,p=2,type="none")
x11()
plot(red_var_2)
```

Funciones Impulso Respuesta:

Fanchart asociado a los errores de predicción:

```
prediccion_var2=predict(red_var_2,n.ahead = 10,ci=0.95)
prediccion_var2
x11()
fanchart(prediccion_var2)
```

- 2.3 Cointegración y modelo de corrección de errores para activos financieros y aplicaciones en finanzas
- 2.4 Tópicos de series de tiempo financieras multivariadas aplicadas a la gestión del riesgo
- 2.4.1 Introducción a la medida del riesgo financiero: desviación estándar y matriz de varianzas y covarianzas de un portafolio.
- 2.4.2 Introducción al modelamiento de la matriz de covarianzas con modelos M-GARCH
- 2.5 Business Case: Estimación de los efectos en las pérdidas de un portafolio debido movimiento de las variables macroeconómicas: Medidas macroprudenciales en riesgos.
- 2.6 Anexos
- 2.6.1 Importación de datos

```
tusDatos <- read.table(file.choose(), skip = 0, header = FALSE, sep =',')
tusDatos <- read.table(file.choose(), skip = 0, header = TRUE, sep =',')
tusDatos <- read.table(file.choose(), skip = 8, header = TRUE, sep =',')
mead.table(file = "clipboard", sep = "\t", header=TRUE)
install.packages("readr")
kibrary("readxl")
misDatos <- read_excel(file.choose(), sheet = "el nombre de la Hoja que
    quieres leer")
misDatos <- read_excel(file.choose(), sheet = 1)</pre>
```