INTRODUZIONE AL DATA MINING

Analisi approfondita sui processi biologici di alcuni pazienti affetti da diverse tipologie di tumori

SOMMARIO

1.	Presentazione del progetto	3
	1.1. Cenni biologici	3
	1.2. Obiettivo.	3
2.	Modalità d'operazione	3
3.	Risultati	10

1. Presentazione del progetto

1.1. Cenni biologici

Il progetto ha inizio con un grafo chiamato "meta-pathway", che fornisce una rappresentazione di tutti i processi biologici che avvengono nella cellula, attraverso le interazioni tra le molecole (geni).

I nodi di questa rete sono i geni e gli archi direzionati rappresentano le interazioni tra i geni.

Esistono due tipi di interazioni: repressione e stimolazione.

Dunque, per ogni arco vi è una etichetta che ci informa sul tipo di interazione che vi è tra i geni, ovvero "repressione" o "stimolazione".

1.2. Obiettivo

L'obiettivo del progetto, discusso in questa relazione, riguarda l'analisi e l'individuazione di pazienti con tumori simili che hanno gli stessi motivi, ovvero gli stessi processi biologici o parti di processi biologici alterati allo stesso modo tra pazienti con le stesse patologie.

2. Modalità d'operazione

Partendo dai dati di espressione dei geni in cui viene misurata la quantità di gene presente nelle cellule di un paziente, è stato eseguito un algoritmo chiamato

"Mithrill" che è servito a mappare i valori di espressione nei corrispondenti geni della rete ed ha assegnato per ogni gene di ogni paziente un valore di perturbazione, che può essere 0, positivo o negativo. Si annotano, quindi, in "signature_Main_Classification.txt":

Tramite l'algoritmo "./Solution.cpp" è stato effettuato un controllo partendo dal file "./MetaPathway/meta_nodes.txt" che contiene tutti i geni d'interesse per l'analisi i quali sono stati ricercati successivamente nel file "signature_Main_Classification.txt", generando un file per ogni paziente (in ./reti-pazienti/risultati-map.txt). In ognuno di essi è stato, quindi, annotato ogni valore di perturbazione corrispondente ad ogni gene interessato preso in esame. Il risultato è la "meta-pathway" di ogni paziente. In seguito, si è proceduto con

la sostituzione dei valori di perturbazione dei meta-pathway di ogni paziente con le relative sigle:

PP: se il valore di perturbazione è positivo;

- UP: se il valore di perturbazione è 0;

NP: se il valore di perturbazione è negativo;

Si ottengono, quindi, i seguenti risultati in "./reti-pazienti/risultatisolution.txt":

La terza fase del progetto ha previsto l'uso di due algoritmi "Namecopy.cpp" e "MultiMotif.cpp". Il primo è servito ad estrapolare tutti i nomi dei pazienti presi in osservazione annotandoli in "nametocolumn.txt"; il secondo, invece, per ogni paziente annotato in "nametocolumn.txt", ha fatto partire da riga di comando il software *Multimotif*,

un software in grado di calcolare i motivi per i meta-pathway di ogni paziente, trovando i sottografi etichettati più ricorrenti nella rete. I risultati si trovano in "./MultiMotif/motif".

La quarta fase prevede la generazione di una matrice finale che conterrà per colonna tutti i motivi che verranno estrapolati tramite l'algoritmo "Create-Map-Motif Nodes Motif edges.cpp" e per righe tutti i pazienti con i rispettivi valori per quei motivi, 0 se non presenti. Il primo step che viene eseguito è l'estrapolazione di tutti i tipi di motivi presenti tra tutti i risultati di Multimotif che vengono annotati in "./MultiMotif/map-all-Motif Nodes-Motif edges.txt". Poi si procede generazione della matrice finale con la ("./Matrix/Analysis Matrix.txt"), illustrata sopra, tramite l'algoritmo "Final matrix.cpp" che fa uso di tutti i motivi estrapolati in precedenza e annotati in "./MultiMotif/map-all-Motif_Nodes-Motif_edges.txt".

TCGA-OR-A5J1-01A" 132 11 705 1328 'TCGA-0R-A5J2-01A" 129 65 7 162 55 7 41 47 "TCGA-0R-A5J3-01A" 36109 TCGA-0R-A5J5-01A 33 41 35705 237 3 'TCGA-0R-A5J7-01A" TCGA-0R-A5J8-01A" 208 6 1965 106 128 20 6 0 34 280 3 191 0 188 0 TCGA-OR-A5JA-01A" 705 1328 220 7 214 6 2430 196 0 2466 TCGA-OR-A5JE-01A" 190 70 308 4 TCGA-OR-A5JG-01A" TCGA-0R-A5JJ-01A" 252 3 TCGA-OR-A5JM-01A" 107 128 20 6 104 128 20 6 TCGA-OR-A5JP-01A' 'TCGA-OR-A5JW-01A" 1070 705 1328 701 1328 220 7 220 7 3883 4224 704 1328 107 128 20 7 153 Ø 48 43 TCGA-OR-A5K0-01A" 4085 TCGA-OR-A5K5-01A" TCGA-OR-A5K6-01A 50 40236 1827 39 TCGA-OR-A5K0-01A" 1408 4034 247 3 4035 TCGA-OR-A5KV-01A" 705 1328 TCGA-0R-A5L3-01A" 45 8 170 1 43 46 248 4 TCGA-OR-A5LB-01A" 1070

Prima di arrivare alla quinta fase, ovvero la clusterizzazione dei risultati, la matrice finale ("./Matrix/Analysis_Matrix.txt") viene divisa, tramite l'algoritmo "Matrix_division.cpp", per tipologia di tumore, cioè tutti i pazienti affetti dalla stessa tipologia di tumore verranno inseriti in un unico file e ,di conseguenza, si avranno tanti file quanti sono i tumori presi in osservazione. Il risultato di tale divisione è contenuto in './Matrix/type division/':

	type_division			
Nome		Data di modifica	Dimensioni	Tipo
Matrix-ACC.txt		13 maggio 2019 15:03	460 KB	Solo testo
Matrix-BLCA.txt		13 maggio 2019 15:03	2 MB	Solo testo
Matrix-BRCA.txt		13 maggio 2019 15:03	5,1 MB	Solo testo
Matrix-CESC.txt		13 maggio 2019 15:03	582 KB	Solo testo
Matrix-CHOL.txt		13 maggio 2019 15:03	262 KB	Solo testo
Matrix-COAD.txt		13 maggio 2019 15:03	579 KB	Solo testo
Matrix-DLBC.txt		13 maggio 2019 15:03	111 KB	Solo testo
Matrix-ESCA.txt		13 maggio 2019 15:03	894 KB	Solo testo
Matrix-GBM.txt		13 maggio 2019 15:03	860 KB	Solo testo
Matrix-HNSC.txt		13 maggio 2019 15:03	1,4 MB	Solo testo
Matrix-KICH.txt		13 maggio 2019 15:03	111 KB	Solo testo
Matrix-KIRC.txt		13 maggio 2019 15:03	111 KB	Solo testo
Matrix-KIRP.txt		13 maggio 2019 15:03	848 KB	Solo testo
Matrix-LAML.txt		13 maggio 2019 15:03	910 KB	Solo testo
Matrix-LGG.txt		13 maggio 2019 15:03	2,5 MB	Solo testo
Matrix-LIHC.txt		13 maggio 2019 15:03	129 KB	Solo testo
Matrix-LUAD.txt		13 maggio 2019 15:03	1,2 MB	Solo testo
Matrix-LUSC.txt		13 maggio 2019 15:03	111 KB	Solo testo
Matrix-MESO.txt		13 maggio 2019 15:03	111 KB	Solo testo
Matrix-OV.txt		13 maggio 2019 15:03	1,5 MB	Solo testo
Matrix-PAAD.txt		13 maggio 2019 15:03	111 KB	Solo testo
Matrix-PCPG.txt		13 maggio 2019 15:03	921 KB	Solo testo
Matrix-PRAD.txt		13 maggio 2019 15:03	1,5 MB	Solo testo
Matrix-READ.txt		13 maggio 2019 15:03	421 KB	Solo testo
Matrix-SARC.txt		13 maggio 2019 15:03	1,1 MB	Solo testo
Matrix-SKCM.txt		13 maggio 2019 15:03	1,5 MB	Solo testo
Matrix-STAD.txt		13 maggio 2019 15:03	1,9 MB	Solo testo

Successivamente viene applicato un secondo algoritmo, "Type_of_tumor.cpp", che genera due file contenenti uno il numero di sottotipi di tumore per ogni tipologia di tumore, e l'altro i nomi dei sotto-tipi ,ottenendo per entrambi uno schema chiave-valore. È possibile visionare i file in "./map_subtumor_tumor.txt", "./number-subtumor_for_tumor.txt".

Questi serviranno a stabilire l'efficienza del clustering così da capire se è stato di tipo ottimale o meno per ogni tumore. Vale a dire, se un determinato sottotipo di tumore è contenuto solamente in un cluster allora la clusterizzazione avrà avuto un buon riscontro, mentre, se un sotto-tipo ti tumore si presenta in più cluster dello stesso tumore, allora il cluster non sarà stato totalmente efficiente.

Dunque, l'ultima fase di clusterizzazione avviene tramite un algoritmo "./Cluster/nometumore/Cluster-nometumore.R" che effettua un clustering basato su densità, ovvero il DBSCAN, collocando i risultati in ogni cartella relativa ai tumori, ovvero in "./Cluster/nometumore/nometumore-cluster.txt".

	Cluster		
Nome	Data di modifica	Dimensioni	Tipo
▶ ■ ACC	17 maggio 2019 12:31		Cartella
▶ ■ BLCA	15 maggio 2019 18:23		Cartella
▶ ■ BRCA	17 maggio 2019 12:38		Cartella
▶ im CESC	15 maggio 2019 18:33		Cartella
► im CHOL	15 maggio 2019 18:44		Cartella
► COAD	15 maggio 2019 18:47		Cartella
▶ i ESCA	15 maggio 2019 20:16		Cartella
▶ im GBM	16 maggio 2019 02:48		Cartella
▶ im HNSC	16 maggio 2019 02:51		Cartella
▶ im KIRP	16 maggio 2019 02:55		Cartella
▶ im LAML	16 maggio 2019 02:59		Cartella
▶ im LGG	16 maggio 2019 03:02		Cartella
▶ im LihC	16 maggio 2019 11:08		Cartella
▶ i LUAD	16 maggio 2019 11:12		Cartella
▶ im ov	16 maggio 2019 11:15		Cartella
▶ PCPG	16 maggio 2019 11:18		Cartella
▶ ■ PRAD	16 maggio 2019 11:19		Cartella
▶ i READ	16 maggio 2019 11:21		Cartella
▶ SARC	16 maggio 2019 11:23		Cartella
► I SKCM	16 maggio 2019 11:42		Cartella
▶ i STAD	16 maggio 2019 11:33		Cartella
► I TGCT	16 maggio 2019 11:36		Cartella
► THCA	16 maggio 2019 11:41		Cartella
► THYM	16 maggio 2019 11:44		Cartella
▶ I UCEC	16 maggio 2019 11:45		Cartella
▶ UCS	16 maggio 2019 11:47		Cartella
▶ im UVM	16 maggio 2019 11:49		Cartella

Infine, tramite l'algoritmo "cluster_classification.cpp", sono stati suddivisi i pazienti di uno stesso tumore (già clusterizzati) per il numero di cluster calcolato, ovvero vi sarà un file per ogni cluster calcolato di ogni tumore e i pazienti verranno inseriti nel cluster che l'algoritmo "Cluster-nometumore.R" ha calcolato per ognuno di essi.

3. Risultati

I risultati ottenuti per cluster variano dai più ottimali a quelli meno ottimali. Tra tutti i tumori emergono il BLCA e il BRCA, in cui ogni sotto tipo di tumore è contenuto in un solo cluster e quindi, come definito sopra, questo indica che è stato effettuato un buon processo di clusterizzazione:

