

Matlab Workshop - IEEE

O que é o Matlab ?

- Aplicação informática vocacionada para o cálculo numérico
- Aplicações
 - Análise de dados
 - Visualização científica
 - Simulação de sistemas

Demonstração

- O Matlab tem um conjunto de demonstrações que ilustram as suas possíveis aplicações. Para aceder à demonstração basta entrar o comando: >> demo
 - Gráficos de funções
 - Visualização de volumes
 - Animações
 - Tutoriais sobre o Matlab

O Matlab como calculadora

O Matlab permite o cálculo numérico directo a partir da janela de

comando.

Operações matemáticas

- + soma
- subtracção
- * multiplicação
- / divisão
- ^ potenciação

```
Command Window
  >> 1+2
  ans =
        3
  >> 2+3*4
  ans =
       14
  >> 2^2
  ans =
```

Variáveis

Variáveis

• No Matlab é possível guardar em variáveis conjuntos de números, exemplo:

$$>> x = 2$$

- Os nomes das variáveis distinguem as letras maiúsculas das minúsculas.
 Exemplo: pi≠Pi
- As variáveis são guardadas no espaço de trabalho "workspace"

 As variáveis podem ser utilizadas nas operações da mesma forma que os números.

Variáveis

- Apagar variáveis
 - •clear v1 v2 apaga as variáveis v1 e v2
 - clear all apaga todas as variáveis
- Ver as variáveis no espaço de trabalho ("workspace")
 - whos mostra todas as variáveis do espaço de trabalho com informação adicional de dimensão e tipo
- Guardar variáveis
 - save Guarda em disco todas as variáveis do "workspace"
 - load Carrega do disco as variáveis guardadas
 - save ficheiro v1 v2 Guarda as variáveis v1 e v2 no ficheiro
 - load ficheiro Carrega as variáveis do ficheiro

Números complexos

 O Matlab permite a representação de números complexos. Para criar o número complexo

$$1+2i$$

basta introduzir na janela de comandos:

$$\gg 1 + 2i$$

ou

$$>1+2*i$$

```
Command Window

>> 1 + 2i

ans =

1.0000 + 2.0000i

fx >> |
```

Números complexos

 Algumas funções matemáticas podem devolver números complexos para determinados valores do argumento. Exemplos:

$$\sqrt{-1} = i \qquad \log(-1) = \pi i$$

```
Command Window
>> sqrt(-1)
ans =
          0.0000 + 1.0000i
>> log(-1)
ans =
          0.0000 + 3.1416i

fx >>
```

Funções matemáticas

O Matlab dispõe dum vasto conjunto de funções matemáticas.

cos	co-seno (radianos)	log	logaritmo neperiano (base e)	
sin	seno	log10	logaritmo base 10	
tan	tangente	rem	resto da divisão inteira	
acos	arco co-seno	abs	valor absoluto	
asin	arco seno	sign	sinal	
atan	arco tangente	round	arredondamento para o mais próximo	
sqrt	raiz quadrada	floor	arredondamento para baixo	
ехр	exponencial	ceil	arredondamento para cima	

Funções matemáticas

pi	$ \pi $
i	$\sqrt{-1}$
j	$\sqrt{-1}$
eps	Precisão relativa do formato "double" 2-52
realmin	Menor número real 2-1022
realmax	Maior número real (2-eps)2 ¹⁰²³
Inf	Infinito
NaN	"Not-a-Number"

"Scripts" no Matlab

Os "scripts" no Matlab são ficheiros de texto com instruções Matlab.
 Quando na janela de comandos do Matlab se escreve o nome do "script" as instruções nele contidas são executadas sequencialmente.
 Os "scripts" permitem assim automatizar um conjunto de procedimentos.

Código por secções

```
Relatorios no Matlab

% Parte 1 - Declaracao de variaveis

a= 1;
b= 2;

% Parte 2 - Processamento das variaveis

% $c= a+b$

c= a+b;
```


Vectores e Matrizes

Conceito geométrico de vetor (duas dimensões)

• Da figura anterior pode-se concluir que bastam duas grandezas numéricas para representar um vetor num espaço de duas dimensões.

(a,b)

Num espaço com três dimensões são necessárias três grandezas:

Generalizando, um vector com N elementos pertence a um espaço com N dimensões.

Elementos de um espaço com mais de 3 dimensões são difíceis de representar graficamente.

No Matlab para criar um vetor " \mathbf{v} " basta fazer por exemplo:

$$v = [4, 5, 4, 2, 1, 7]$$

 $v = [4, 5, 4, 2, 1, 7]$

Os elementos são separados por espaços ou vírgulas

Vector linha

$$A = \begin{bmatrix} 16 & 2 & 3 & 13 \\ 5 & 11 & 10 & 8 \\ 9 & 7 & 6 & 12 \\ 4 & 14 & 15 & 1 \end{bmatrix}$$

$$v = \begin{bmatrix} 1 \\ 3 \\ 1 \\ 7 \end{bmatrix}$$

$$v = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$$

$$n = \begin{bmatrix} 7 \end{bmatrix}$$

Vector coluna

No Matlab, para criar uma matriz "A" basta fazer por exemplo:

Os elementos são separados por espaços ou vírgulas. Para mudar de linha, coloca-se um ponto e vírgula.

Matrizes - Índices

Transposta de uma matriz

- A operação de transposição troca as linhas pelas colunas de uma matriz. Em notação matemática a transposta de uma matriz A representa-se por A^T . Em notação Matlab a transposta de uma matriz representa-se por \mathbf{A}'
- Exemplo:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix} \qquad A^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$$

Definição funcional de matrizes

Quando se pretende criar uma matriz cujos elementos se podem relacionar facilmente, o Matlab possui as seguintes funções:

- zeros(N,M) gera uma matriz de zeros com N linha e M colunas
- ones(N,M) gera uma matriz de uns com N linha e M colunas (bom para alocar matrizes)
- rand(N,M) gera uma matriz de elementos pseudo aleatórios com N linha e M colunas
- magic(N) gera um quadrado mágico de dimensão N
- eye(N) gera uma matriz identidade de dimensão N
- randi(n_max, N, M) gera uma matriz com números inteiros pseudo aleatórios de 1 a n_max com dimensão N linhas e M colunas

Exemplos

Concatenação

x = [1 2; 3 4];

Com o Matlab é possível construir matrizes a partir de outras de menor dimensão. Eis alguns exemplos:

```
» A = [x x; x x]
A =

1          2     1     2
3          4     3     4
1          2     1     2
3          4     3     4

1          2     1     2
3          4     3     4

» % Problema de consistência
» x = [1 2 3 4; 4 5 6]
```

 $??? = [1 \ 2 \ 3 \ 4; \ 4 \ 5 \ 6]$

Todas as linhas na matriz têm de ter os mesmos elementos.

Representação de polinómios

Um polinómio pode ser representado no Matlab por um vector com os seus coeficientes. Vejamos um exemplo:

Este polinômio representa-se no Matlab como:
$$p=[2,0,-3,9] \qquad p(x)=2x^3-3x+9$$

O termo nulo tem de ser representado de forma explícita

Operações com polinómios

Operação	Matlab
p(x)+q(x)	p+q
$p(x) \times q(x)$	conv(p,q)
raízes de $p(x)$	roots(p)
polinómio com as raízes r_1, r_2, \dots	poly(r)
Valor do polinómio $p(x)$ para vários valores de x .	polyval(p,x)

Divisão e Sistemas de Equações

Considere-se agora o sistema de equações

$$\begin{cases} 2u+v+w &= 5\\ 4u-6v &= -2\\ -2u+7v+2w &= 9 \end{cases}$$

que se pode escrever na forma algébrica e resolver da mesma forma

$$\begin{bmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \\ A & x \end{bmatrix} \begin{bmatrix} u \\ v \\ x \end{bmatrix} = \begin{bmatrix} 5 \\ -2 \\ b \end{bmatrix} = \mathbf{A}x = b : x = \mathbf{A}^{-1}b$$

Divisão e Sistemas de Equações

- Considere a seguinte equação com uma incógnita
- Resolve-se fazendo

$$ax = b$$

$$a^{-1}ax = a^{-1}b$$

$$x = a^{-1}b$$

Exemplos

 Resolução de um sistema de equações pelo método da eliminação Gaussiana utilizando divisão de matrizes

```
>> A = [2 1 1;4 -6 0;-2 7 2];
>> b = [5 -2 9]';
>> x = A\b %Left Division
```

•Resolução de um sistema de equações pelo cálculo directo da inversa de uma matriz

```
>> X = inv(A)*b %Inverse of A
>> X = linsolve(A,b)
```

O operador ":"

- O operador mais versátil do MATLAB
- Permite definir de forma compacta um conjunto de valores (vector) em progressão aritmética.

```
>> x = início: passo : fim
```

```
exemplo
```

>> x = 2:2:10

```
>> 2, 4, 6, 8, 10
```

$$>> x = linspace(2, 10, 5)$$

Tipos de dados elementares

Vetores numéricos

Vetores de caracteres

```
» x = ['c','h','a','r']
x = char
» x = ['char']
x = char
```

Indexação

• Referência ao elemento *i,j* duma matriz

```
A(3,2) ans = 0.7621
```

• O operador ":" revela-se um poderoso meio de indexação.

```
x = 1:2:50;

x(10:15)

ans =

19 21 23 25 27 29
```

Vectores de índices

```
» v1 = 10:15;
» x(v1)
ans =
    19    21    23    25    27    29
```

Índices lógicos

Em muitas situações, pretende-se referenciar os elementos de uma matriz que satisfazem uma dada condição. Por exemplo, dado o vector

$$x = [1 \ 2 \ -1 \ 3 \ -3]$$

como se pode gerar um outro que apenas contenha os elementos menores que zero?

Se fizer x<0 obtêm-se o seguinte vector lógico

Este vector pode ser utilizado para indexar os elementos de x

$$\mathbf{x}(\mathbf{x}<0)$$

Dimensões

Número de elementos dum vector ou matriz

```
 > x = 1:10; 
y = 3 + j*linspace(1,10,20);
\Rightarrow dim x = size(x), dim y = size(y)
dim x =
        10
dim y =
        20
 > A = rand(3,2); 
» n elementos = prod(size(A));
» maior dim = length(A); % maior dimensão matriz
» first = A(1,1); %Primeira linha, primeira coluna
» last = A(end, end); %Última linha, última coluna
```

Aritmética

• Soma algébrica com entidades escalares é extensível a vectores e matrizes desde que as dimensões sejam idênticas.

```
» A = rand(3);

» B = magic(3);

» C = A + B;

» C = A - B;
```

Soma e multiplicação com valor escalar

```
D = 5 + B; E = 5*B;
F = 7 + 3*B - 12*A;
F = (2 + 2j)*ones(3);
```

Multiplicação Aritmética

 Multiplicação aritmética ".*" ("elemento a elemento)

```
>> x = [1 2 3 4]; y = [2 2 10 10];

>> p = x .* y % Pointwise multiplication

p =

2 4 30 40
```


Gráficos com o Matlab

Gráficos de uma Variável

Sintaxe do comando plot

Nesta versão mais simples é desenhado um gráfico de linha contínua com a amplitude dos elementos do vector **v**. Nas abcissas aparecem os índices dos elementos de **v**.

Sintaxe do comando **plot**

```
plot(x1,y1,x2,y2,...)
```

Os vectores das ordenadas **x1**, **x2**, ... podem ter um número diferente de elementos.

O número de elementos dos pares (x1,y1) e (x2,y2) deve ser o mesmo.

Exemplo:

```
x1= -5:5; x2= -10:10
y1= 2*x1; y2=3*x2;
plot(x1,y1,x2,y2)
```


Sintaxe do comando **plot**

Alternativamente, podemos usar a *keyword* **hold on**, para obter o mesmo resultado. Assim, o código ficaria,

```
x1= -5:5; x2= -10:10
y1= 2*x1; y2=3*x2;
plot(x1,y1)
hold on
plot(x2, y2)
```

Alteração do aspecto gráfico

Para além dos argumentos vetoriais a função plot permite ainda alterar o modo como as linhas são desenhadas. Essas indicações são codificadas na forma de uma "string" de texto colocada a seguir aos vetores dos pontos.

A "string" pode definir os seguintes atributos das linhas desenhadas

- -Marcadores dos pontos do gráfico
- -Cor das linhas e marcadores
- -Tipo de linha a desenhar

Caracteres definidores de atributos

Cor		Marcado	res Lin	has	
У	amarelo	•	ponto	_	linha a cheio
m	rosa	0	círculo	:	ponteada
С	ciano	X	marca x		traço ponto
r	encarnado	+	marca mais		tracejada
g	verde	*	estrela		
b	azul	S	quadrado		
W	branco	d	diamante		
k	preto	V	triângulo (c	ima)	
		^	triângulo (ba	aixo)	
		<	triângulo (e:	squerda)	
		>	triângulo (d	ireita)	
		р	pentagrama		
		h	"hexagram"		

Alteração do aspecto gráfico

Subplots

```
subplot(2,1,1);
x = linspace(0,10);
y1 = sin(x);
plot(x,y1)

subplot(2,1,2);
y2 = sin(5*x);
plot(x,y2)
```

