2.3. Дискретное программирование

В общем случае задача дискретного программирования имеет следующую постановку [3, 4, 9, 24, 34, 52].

Найти максимум (минимум) целевой функции $f(x_1,x_2,...,x_n)$ при заданных условиях

$$g_{1}(x_{1}, x_{2}, ..., x_{n}) \leq b_{1},$$

$$g_{2}(x_{1}, x_{2}, ..., x_{n}) \leq b_{2},$$
...
$$g_{m}(x_{1}, x_{2}, ..., x_{n}) \leq b_{m},$$

$$X = \{x_{1}, x_{2}, ..., x_{n}\} \subseteq D,$$

$$(2.22)$$

где D – конечное или счётное множество.

В этом случае говорят о *дискретном программировании*. Если X ограничено множеством целых чисел, то задачу назначают задачей *линейного целочисленного программирования (ЛЦП)*.

Известны следующие классы задач дискретного программирования.

- Задачи с неделимостями (задачи о рюкзаке), обусловлены физическими свойствами объектов. Это задача размещение массивов информации на внешних устройствах ЭВМ при ограничениях на объём, скорость вращения, стоимостные рамки и др.
- Экстремальные комбинаторные задачи (выбора, о назначениях, коммивояжёра, о покрытиях).
- Задачи на несвязных и невыпуклых областях.
- Задачи с разрывной целевой функцией.
- Транспортная задача. Когда задано ограничение целочисленности, то есть при целых значениях массивов поставок, потребления и стоимостей или ограничениях на пропускные способности коммуникаций, является задачей линейного целочисленного программирования.

Для решения задач дискретного программирования применяются как строго обоснованные, так и неформальные метода поиска решений.

- 1. Метод отсечений, отсекающих плоскостей, он же метод ГОмори (или ГомОри).
 - 2. Метод ветвей и границ.
 - 3. Методы, учитывающие особенности задачи.
 - 4. Методы случайного поиска (эвристические).

2.3.1. Решение задачи ЛЦП методом Гомори

Данный метод носит название метода *отсекающих плоскостей* или метода *целочисленных форм*, но чаще именуется по имени Автора. В основании метода положены следующие теоретические положения [8].

Любое уравнение или неравенство линейной системы ограничений представимо линейной комбинацией базисных векторов и в канонической форме записывается так:

$$\sum_{j=1}^{n} d_{ij} \cdot x_{j} = p_{i}, \ i = \overline{1, m}.$$
 (2.23)

Обозначим заключением в квадратные скобки [d] целую часть d:

$$[2,5] = 2$$
; $[10/3] = 3$; $[4] = 4$; $[-2,5] = -3$; $[-10/3] = -4$; $[-4] = -4$.

По сути дела, операция [...] представляет собой округление по недостатку (в меньшую сторону).

Если считать переменные $X = (x_1, x_2, ..., x_n)$ целыми числами, то можно перейти к более слабому, по сравнению с (2.23), выражению

$$\sum_{j=1}^{n} \left[d_{ij} \right] \cdot x_{j} \le p_{i}, \ i = \overline{1, m},$$

$$(2.24)$$

а учитывая, что сумма в (2.20) целочисленна, то справедливо и

$$\sum_{j=1}^{n} \left[d_{i,j} \right] \cdot x_{j} \le \left[p_{i} \right], \ i = \overline{1, m}.$$

$$(2.25)$$

Введя свободную целочисленную переменную x_{n+t} , канонизируем (2.25):

$$\sum_{i=1}^{n} [d_{ij}] \cdot x_j + x_{n+t} = [p], \ i = \overline{1, m}.$$
 (2.26)

Очевидно, что добавление последнего равенства к исходной канонизированной системе *не противоречит* исходной системе ограничений.

Чтобы получить (2.26) из (2.23), необходимо «отсечь» от (2.26) дробную часть. С этой целью формируется *отсечение* для приведения произвольного уравнения в целочисленную форму. Указанное отсечение представляет собою уравнение, которое, будучи прибавленным к исходному уравнению, делает его целочисленным:

$$\sum_{j=1}^{n} \left\{ -d_{ij} \right\} \cdot x_j + x_{n+t} = \left\{ -p \right\}, \ i = \overline{1, m}.$$
 (2.27)

В (2.27) обозначена символами {...} операция нахождения дробной части. Отсюда просматривается простой вычислительный алгоритм.

Алгоритм формирования отсечения Гомори

- 1. Для выбранного канонизированного уравнения (2.23) сформировать желаемую целочисленную форму вида (2.26).
- 2. Из целочисленной формы (2.26) вычесть исходное уравнение (2.23), получится уравнение отсекающей плоскости (2.27).

Дадим и нотацию этого алгоритма в виде формулы:

Алгоритм решения задачи ЛЦП методом Гомори

Процедура получения решения структурно состоит из

- предварительного этапа,
- проверки условия окончания и
- так называемой "большой итерации", которая включает операцию формирования отсечения и несколько шагов итеративной части двойственного симплекс-метода.
- 1. *Предварительный этап*. В ходе его получают оптимальное решение ЗЛП без учёта целочисленности. Решение выполняется любым удобным методом, кроме, разумеется, графического метода.
- 2. Условие окончания расчётов. Если в текущем решении все компоненты базисного столбца A_0 , соответствующие основным переменным, являются целыми числами, то найдено оптимальное решение задачи ЛЦП. В противном случае, выполняется большая итерация.
 - 3. Большая итерация.
 - 3.1. Отсечение Гомори формируется
 - **для тех строк** симплекс-таблицы, **в которых** компоненты $a_{i,0}$, соответствующие основным переменным задачи, **дробные числа**;
 - *на* каждом *шаге* алгоритма отсечение Гомори формируется только *по одной* из строк;
 - очерёдность формирования отсечений не регламентируется.

- $3.2.~{
 m B}$ базисное решение вводится дополнительная переменная x_{r+t} , соответствующая канонизированному уравнению отсекающей плоскости, одновременно симплекс-таблица пополняется строкой и столбцом-ортом A_{n+t} .
- 3.3. Выполняется итерационная часть двойственного симплексметода. Направляющая строка соответствует вектору A_{n+t} , а направляющий столбец определяется по обычному условию этого метода:

$$\underset{j}{\operatorname{arg\,min}}\left\{\frac{-\delta_{j}\geq 0}{a_{i,j}^{*}<0}\right\} \Rightarrow j^{*}.$$

3.4. Если вектор A_{n+t} , ранее выведенный из базиса, в ходе расчётом снова в него вводится в процессе итераций, то строку и столбец симплекс-таблицы, соответствующие переменной x_{n+t} после пересчёта по методу Жордана-Гаусса вычёркивают (удаляют) из неё.

На этом циклическая часть алгоритма завершена, а цикл возобновляется с п. 2.

Замечания к методу Гомори [9].

- 1. Сходимость вычислений обеспечивается за конечное число итераций, что и обусловливает применение данного метода на практике
- 2. Метод особенно эффективен, когда *большинство* переменных в оптимальном нецелочисленном решении имеют целочисленные значения.
- 4. После выполнения нескольких больших итераций на шаге отсечения Гомори появляются многочисленные альтернативы. Это ведёт к зацикливанию, именуемому Γ . Вагнером [9] "сплошной вырожденностью", когда решение возвращается к ранее бытовавшей позиции, вследствие неверного выбора строки для формирования отсечения. Вагнеру известны многочисленные примеры, когда при значениях n и m, не превышающих десяти, потребовались тысячи итераций, прежде чем оптимум был достигнут.
- 5. Затруднена сходимость при решении задач, в которых значения элементов $a_{i,i}$ и b_i велики.
- 6. Иногда, для достижения успеха, требуется видоизменить постановку задачи в сторону усиления, например, введя ограничения $x_1 \le 6$ и $x_2 \le 6$ в дополнение к уже существующему ограничению $x_1 + x_2 \le 6$.

Рассмотрим пример применения метода Гомори.

Поскольку операции с симплекс-таблицами нами ранее вельми подробно рассматривались, ограничим содержание нашего примера процессом формирования отсечений Гомори по результатам решения демонстрационной задачи о производстве изделий из картошки.

Оптимальное решение этой задачи без учёта ограничения целочисленности имеет вид.

		c_i	5	6	0	0	0
Базис	$C_{\mathcal{B}}$	A_0	A_1	A_2	A_3	A_4	A_5
A_2	6	3	0	1	5	-5	0
\mathbf{A}_1	5	4,5	1	0	-2,5	7,5	0
A_5	0	0,15	0	0	-0,75	-0,75	1
	δ_i	40,5	0	0	17,5	7,5	0

Видно, что основная переменная x_1 не целая, поэтому необходимы отсечения.

Сформируем отсечение Гомори по второй строке, которая соответсвует основной переменной x_1 . Исходной строке соответствует уравнение

$$4,5 = 1x_1 + 0x_2 - 2,5x_3 + 7,5x_4 + 0x_5$$
.

Целочисленная форма для этой строки есть

$$4 = 1x_1 + 0x_2 - 3x_3 + 7x_4 + 0x_5.$$

Поэтому отсечение будет

$$4 = 1x_1 + 0x_2 - 3x_3 + 7x_4 + 0x_5$$

$$-$$

$$\frac{4,5 = 1x_1 + 0x_2 - 2,5x_3 + 7,5x_4 + 0x_5}{-0,5 = 0x_1 + 0x_2 - 0,5x_3 - 0,5x_4 + 0x_5}.$$

Результат вычислений занесём в симплекс-таблицу в отдельную строку. Одновременно таблица пополнится дополнительным столбцом для вектора A_6 соответствующим переменной x_6 .

			c_{i}	5	6	0	0	0	0
	Базис	$C_{\mathcal{B}}$	A_0	\mathbf{A}_1	A_2	A_3	A_4	A_5	A_6
	A_2	6	3	0	1	5	-5	0	0
	A_1	5	4,5	1	0	-2,5	7,5	0	0
	A_5	0	0,15	0	0	-0,75	-0,75	1	0
\leftarrow	A_6	0	-0,5	0	0	-0,5	-0,5	0	1
		δ_{i}	40,5	0	0	17,5	7,5	0	0
							<u> </u>		

Далее выполняются несколько итерационных шагов двойственного симплекс-метола:

- выводимая строка определяется отрицательной компонентой столбца A_0 ;
- вектор, вводимый в базис определяет условие $\min \left\{ \frac{-17.5}{-0.5}; \frac{-7.5}{-0.5} \right\}$, это
- осуществляется пересчёт симплек-таблицы по методу Жордана-Гаусса до получения условия окончания итераций положительности компонентов A_0 .

2.3.2. Решение задачи ЛЦП методом ветвей и границ [4, 34, 40, 52]

Этот метод применяется для решения как полностью целочисленных, так и частично целочисленных задач дискретного программирования.

Пусть математическая модель имеет вид

$$C^{T}X \to \max,$$

$$AX \le B.$$
(2.29)

Компоненты вектора X положительны и целочисленны. Допустим, что исходная задача линейного программирования имеет решение. В этом случае область ограничений замкнута.

Тогда каждая переменная x_j и в допустимом решении, и оптимуме ограничена диапазоном

$$L_i \le x_i \le U_i, \tag{2.30}$$

где L_j — нижний предел, а U_j — верхний предел (граница), которые определяются границами области допустимых решений задачи. Это следует из самого факта наличия непротиворечивых ограничений, образующих замкнутую область

Пусть I есть целое число, такое, что $L_j \le I \le U_j - 1$. Тогда оптимальное *целочисленное* значение x_j , удовлетворяющее решению (2.29) и лежащее в пределах (2.30), будет находиться либо между L_j и I, либо между I+1 и U_j . Это приводит к тому, что возникают дополнительные условия, по отношению к исходным условиям (2.29), не противоречащие им:

$$\begin{array}{c} X_j \le I, \\ X_j \ge I + 1 \end{array}$$
 (2.31)

На базе ограничений (2.31) основана систематическая схема применения метода.

Ограничения, приписываемые к исходной задаче, есть **дополнительные границы**, благодаря чему мы имеем, на каждом шаге постановку **пары задач** на базе одной нецелочисленной.

Интерпретация хода решения в виде дерева определило второе название метола – *ветвей*.

Алгоритм метода ветвей и границ

Композиционно алгоритм состоит из предварительного этапа, проверки условия целочисленности текущего решения, построения задач G_{i1} и G_{i2} , большой итерации, которая представляет собой несколько итерационных шагов двойственного симплекс-метода, и заключительной части, на которой выбирается наилучшее из всех, ранее полученных, целочисленных решений. Цифровой код i в индексации задач соответствует положению текущей "родительской" задачи на дереве решений

- 1. Предварительный этап. Задача (2.29) решается любым удобным методом до отыскания нецелочисленного оптимального решения, соответствующего точке X_0 .
- 2. Этой точке X_0 ставится в соответствие решение G_0 и его оценка текущее значение целевой функции $\xi = C^T \times X_0$. Если X_0 целочисленное решение для основных переменных математической модели, то задача считается решённой.
- В противном случае, если X_0 нецелочисленное решение, то, используя систему неравенств (2.31), получаем множество из двух задач G_{01} и G_{02} (ветвей). Особо подчеркнём, что пара задач возникает для одной нецелочисленной переменной одновременно. Каждая задача решается в отдельности, при этом находят их оценки $\xi(G_{01})$ и $\xi(G_{02})$.
- 3. В ходе решения на k-й итерации, в зависимости от текущих оценок $\xi(G_{i1})$ и $\xi(G_{i2})$, может произойти дальнейшее ветвление задач.
- 4. Вычислительный процесс осуществляется до "перерешивания" всех возникающих задач или до получения признаков их неразрешимость. Из полученных решений выбирается то, которое является наилучшим (в смысле оптимума) решением исходной задачи (2.29).

- 5. Для решения возникающих задач (2.31) используют двойственный симплекс-метод, который, как нам известно, допускает ввод новых ограничений в псевдоплан по ходу решения.
- 6. Ограничения вводятся только для одной из основных базисных нецелочисленных переменых. Правила формирования ограничений по неравенствам (2.31) суть следующие. Пусть в базисе находится вектор A_j , соответствующая переменная которого x_i дробное число.
 - Задача G_{i1} формируется по ограничению $x_j \leq I$, где I целая часть $[x_j]$, округленная по недостатку. Первоначально формируется ограничение A_{n+t} , которое соответствует канонической форме неравенства и представляется в виде уравнения $I = x_j + x_{n+t}$. В симплекс-таблицу помещается строка, которая получается в результате операции вычитания A_{n+t} A_j .
 - Задача G_{i2} формируется по ограничению $-x_j \le -(I+1)$, которой соответствует каноническая форма $-(I+1) = -x_j + x_{n+t}$. В симплекс таблицу помещается строка, равная сумме $A_{n+t} + A_i$.

Каждая из исходных симплекс-таблиц задач G_{i1} и G_{i2} , дополняется строкой симплекс-разностей, взятой из таблицы, содержащей нецелочисленное решение G_i .

Продемонстрируем работу алгоритма на известном примере. Оптимальное решение без учёта целочисленности есть

		c_{i}	5	6	0	0	0
Базис	$C_{\mathcal{B}}$	A_0	A_1	A_2	A_3	A_4	A_5
A_2	6	3	0	1	5	-5	0
A_1	5	4,5	1	0	-2,5	7,5	0
A_5	0	0,15	0	0	-0,75	-0,75	1
	δ_{j}	40,5	0	0	17,5	7,5	0

а его оценка $G_0[40,5] = 40$. Обе задачи формируются для переменной x_I по 2-й строке таблицы A_2 .

Задача G_{01} .

$$x_1 \le 4 \Rightarrow A_6$$
: $4 = x_1 + x_6$, $\tilde{A}_6 : A_6 - A_1$.

$$A_{6} 4 = 1x_{1} + 0x_{2} - 0x_{3} + 0x_{4} + 0x_{5} + 1x_{6}$$

$$- A_{1} 4.5 = 1x_{1} + 0x_{2} - 2.5x_{3} + 7.5x_{4} + 0x_{5} 0x_{6}$$

$$- 0.5 = 0x_{1} + 0x_{2} + 2.5x_{3} - 7.5x_{4} + 0x_{5} + 1x_{6}$$

Задача G_{02} .

$$-x_{1} \leq -5 \Rightarrow A'_{6}: -5 = -x_{1} + x'_{6}, \ \widetilde{A}'_{6}: A'_{6} + A_{1}$$

$$A'_{6} \qquad -5 = -1x_{1} + 0x_{2} - 0x_{3} + 0x_{4} + 0x_{5} + 1x'_{6}$$

$$-$$

$$A_{1} \qquad 4,5 = 1x_{1} + 0x_{2} - 2,5x_{3} + 7,5x_{4} + 0x_{5} \qquad 0x_{6}$$

$$\widetilde{A}'_{6} \qquad -0,5 = 0x_{1} + 0x_{2} - 2,5x_{3} + 7,5x_{4} + 0x_{5} + 1x'_{6}$$

Сформируем симплекс-таблицы для обеих задач.

Задача G_{01} .

			c_{j}	5	6	0	0	0	0
	Базис	$C_{\mathcal{B}}$	A_0	A_1	A_2	A_3	A_4	A_5	A_6
	A_2	6	3	0	1	5	-5	0	0
	A_1	5	4,5	1	0	-2,5	7,5	0	0
	A_5	0	0,15	0	0	-0,75	-0,75	1	0
\leftarrow	\widetilde{A}_6	0	-0,5	0	0	2,5	-0,75	0	1
•		δ_{j}	40,5	0	0	17,5	7,5	0	0
							↑		

Задача G_{02} .

			c_{j}	5	6	0	0	0	0
	Базис	$C_{\mathcal{B}}$	A_0	\mathbf{A}_1	A_2	A_3	A_4	A_5	A_6'
	A_2	6	3	0	1	5	-5	0	0
	A_1	5	4,5	1	0	-2,5	7,5	0	0
	A_5	0	0,15	0	0	-0,75	-0,75	1	0
\leftarrow	\widetilde{A}_6'	0	-0,5	0	0	-2,5	-0,75	0	1
		δ_{j}	40,5	0	0	17,5	7,5	0	0
						1			

Вид дерева решений показан ниже, на рисунке 2.5.

Рисунок 2.6 – Первоначальное дерево решений

Решение опускаем как нами освоенное в предыдущих разделах.

Метод ещё называют *методом обрыва ветвей* или *методом возврата*: всё зависит от способа перемещения по дереву задач. Существует множество алгоритмов метода, адаптированных под разнообразные частные условия содержательной задачи.

2.3.3. Вопросы для самоконтроля

- 1. В чем сходства и различия терминов "дискретный" и "целочисленный"?
 - 2. Как построить отсекающую плоскость Гомори?
- 3. Почему алгоритм ветвей и границ получил такое название, что является ветвями, а что границами?
 - 4. В чём идея сущность и неравенств (2.31)?
- 5. Почему в ходе решения ЛЦП используется двойственный симплекс-метод?
 - 6. В каких случаях задача ЛЦП не будет иметь решения?
- 7. Как вы думаете, оптимальное решение ЛЦП будет единственным? Обоснуйте свои соображения по этому поводу.