```
Minclude <string.h>
Fdefine MAXPAROLA 30
#define MAXRIGA 80
   int treq[MAXPAROLA]; /* vettore di contatoni
delle frequenze delle lunghazza delle pitrole
   char riga[MAXRIGA] ;
lint i, inizio, lunghezza ;
```

Graph

Applications of Graph-Search Algorithms

Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

Reverse graph

- \Leftrightarrow Given a directed graph G = (V, E)
- * Its reverse (or transpose or converse) graph $G^T = (V, E^T)$
 - ➤ Is another directed graph on the same set of vertices with all the edges reversed compared to the original orientation
 - \triangleright If G contains an edge (u, v) then G^T contains (v, u)

$$\forall (u, v) \in E \quad \to \quad (v, u) \in E^T$$

Example

	A	В	C	D	Ε
A	0	1	0	0	0
В	0	0	1	1	0
C	0	0	1	0	0
D	0	0	0	0	1
Ε	1	1	0	0	0

	A	В	C	D	Ε
A	0	0	0	0	1
В	1	0	0	0	1
C	0	1	1	0	0
D	0	1	0	0	0
Ε	0	0	0	1	0

Implementation (with adjacency matrix)

```
Given g it
                                                        creates and
graph t *graph transpose (graph t *g) {
                                                         returns h
  graph t *h;
  int i, j;
  h = (graph t *) util calloc (1, sizeof (graph t));
  h->nv = g->nv;
  h->g = (vertex t *) util calloc (g->nv, sizeof(vertex t));
  for (i=0; i<h->nv; i++) {
    h\rightarrow q[i] = q\rightarrow q[i];
    h->g[i].rowAdj = (int *) util calloc (h->nv, sizeof(int));
    for (j=0; j<h->nv; j++) {
      h \rightarrow g[i].rowAdj[j] = g \rightarrow g[j].rowAdj[i];
                                                 Transpose
  return h;
                                                 the matrix
```

Implementation (with adjacency list)

```
Given q it
graph t *graph transpose (graph t *g) {
                                                   creates and
 graph t *h = NULL;
                                                    returns h
 vertex t *tmp;
 edge t *e;
  int i;
  h = (graph t *) util calloc (1, sizeof(graph t));
  h->nv = q->nv;
  for (i=h->nv-1; i>=0; i--)
   h->g = new node (h->g, i);
  tmp = q->q;
  while (tmp != NULL) {
    e = tmp->head;
    while (e != NULL) {
      new edge (h, e->dst->id, tmp->id, e->weight);
      e = e - next;
    tmp = tmp->next;
                                             Insert a new
                                               edge
  return h;
}
```

Loop detection

 \Leftrightarrow Given a graph G = (V, E), G is acyclic if and only if in a DFS there are no edges labelled backward (B)

igf there is no cycle there cannot be an infinite path

Example

Topological Sort

- Given a directed graph a topological sort (or topological ordering) is a linear ordering of its vertices such that
 - For every directed edge (v, u), node v comes before node u in the ordering
- Finding the topological order (reverse) means
 - Reordering the nodes according to a horizontal line, so that if the (v, u) edge exists, node v appears to the left (right) of node u and all edges go from left (right) to right (left)

Topological Sort

- A topological ordering is possible only if the graph has no directed cycles
 - > Each DAG has at least one topological ordering
- Algorithm
 - Perform a DFS computing end-processing times
 - Order vertices with descending end-processing times
- Alternative algorithm
 - Perform a DFS and when assigning end-processing times insert the vertex into a LIFO list

❖ Find the topological ordering and the reverse topological ordering for the following graph *G*

A graph may have many topological sortings

Implementation (with adjacency matrix)

```
void graph dag (graph t *g) {
  int i, *post, loop=0, timer=0;
 post = (int *)util malloc(g->nv*sizeof(int));
  for (i=0; i<q->nv; i++) {
    if (q->q[i].color == WHITE) {
      timer = graph dag r (g, i, post, timer, &loop);
  if (loop != 0) {
    fprintf (stdout, "Loop detected!\n");
  } else {
    fprintf (stdout, "Topological sort (direct):");
    for (i=g->nv-1; i>=0; i--) {
      fprintf(stdout, " %d", post[i]);
    fprintf (stdout, "\n");
  free (post);
```

Implementation (with adjacency matrix)

```
int graph dag r(graph t *g, int i, int *post, int t,
    int *loop) {
 int j;
 g->g[i].color = GREY;
 for (j=0; j<g->nv; j++) {
    if (g->g[i].rowAdj[j] != 0) {
      if (g->g[j].color == GREY) {
        *loop = 1;
      if (q->q[j].color == WHITE) {
        t = graph_dag_r(g, j, post, t, loop);
 g->g[i].color = BLACK;
 post[t++] = i;
 return t;
```

Connectivity

- In graph theory, connectivity is one of the basic concepts
 - The connectivity of a graph is an important measure of its resilience as a network
 - It is strictly related to the network flow
 - It asks for the minimum number of elements (nodes or edges) that need to be removed to separate the remaining nodes into two or more isolated graphs

Connectivity: Undirected graphs

An undirected graph is said to be connected iff

$$\forall v_i, v_j \in V$$
 there exists a path p such that $v_i \rightarrow_p v_j$

- In an undirected graph a connected component is the maximal connected subgraph
 - > There is no superset including it which is connected
- An undirected graph is said to be connected
 - > If it includes only one connected component

Connectivity: Undirected graphs

- In an undirected graph
 - Each tree of the DFS forest is a connected component
 - Connected component can be represented as an array that stores an integer identifying each connected component
 - Node identifiers serve as indexes of the array

Example

Connected Component Ids

Α	В	С	D	Е	F	G	Н	I	J	K	L	М

for undirected graphs, much easier than for directed

Α	В	С	D	Ε	F	G	Н	I	J	K	L	М
0	0	0	0	0	0	0	1	1	2	2	2	2

Connectivity: Bridges

- Given an undirected graph it is important to understand how difficult it is to make it
 - disconnected removing edges
- * A bridge (or isthmus or cut-edge) is an edge
 - whose removal increases the number of
 - connected components
 - ➤ In **connected** graphs removing a bridge disconnects the graph
 - A graph is said to be bridgeless if it contains no bridges

Example

Bridges

Connectivity: Bridges

- We can find bridges visiting G in DFS
- An undirected graph includes only Tree (T) and Backward (B) edges
- \Rightarrow An edge (v, u)
 - ▶ Labelled Back (B) cannot be a bridge
 - Nodes v and u are also connected by a path in the DFS tree
 - Labelled Tree (T) is a bridge if and only if there is
 no edge labelled Back (B) connecting a descendant of u to an ancestor of v in the DFS tree

 \diamond Given the following graph G, find all bridges

Connectivity: Articulation points

- Given an undirected graph it is important to understand how difficult it is to make it disconnected removing nodes
- An articulation point (or cut-vertex or separating-vertex) is a vertex whose removal increases the number of connected components
 - In connected graphs removing an articulation point disconnects the graph
 - Removing the vertex entails the removal of insisting (incoming and outgoing) edges as well

Example

Articulation points

Connectivity: Articulation points

- \diamond We can find articulation points visiting G in DFS
- \bullet Given the DFS tree G_P
 - The root of G_P is an articulation point if and only if it has at least two children
 - Leaves cannot be articulation points
 - Any internal node v is an articulation point of G if and only if v has at least one child u such that there is no edge labelled B from u or from one of its descendants to a proper ancestor of v

- \diamond Given the following graph G, find all articulation points
 - Has the way we perform the DFS some influence on the result?

Following the alphabetic order

Same example different ids and order in the DFS visit

Example

Following the alphabetic order with a different labeling

Connectivity: Directed graphs

A directed graph is said to be strongly connected iff

 $\forall v_i, v_j \in V$ there exists two paths p and p' such that $v_i \rightarrow_p v_j$ and $v_j \rightarrow_p, v_i$

- In a directed graph
 - Strongly connected component
 - Maximal strongly connected subgraph
 - Strongly connected directed graph
 - Only one strongly

connected

component

Connectivity: Directed graphs

- Strongly Connected Component (or SCC) can be found using the Kosaraju's algorithm (1978)
- It makes use of the fact that the transpose gaph has exactly the same strongly SCCs

Connectivity: Directed graphs

- The Kosaraju's algorithm is based on two DFSs done in sequence
 - ➤ Given the graph *G*
 - \triangleright Reverse the graph finding G^T
 - Execute a DFS on G^T and compute discovery and end-processing times for all nodes
 - Execute a DFS on G starting from nodes having a
 decreasing end-processing times
 - The trees of the latter DFS are the strongly connected components of G

Example

 \Leftrightarrow Given the following graph G, find its SCCs using the Kosaraju's algorithm

G

Reverse the graph and perform DFS on G^T

A B C D
E F G H

 G^{T}

Connectivity: Directed graphs

- SCCs are equivalence classes with respect to the property of mutual reachability
 - \triangleright Given G and its SCC, we can "extract" a reduced graph G' considering 1 node as representing each equivalence class
 - \triangleright The reduced graph G' is a DAG


```
Client (code extract)
```

```
g = graph_load (argv[1]);
sccs = graph scc (g);
fprintf (stdout, "Number of SCCs: %d\n", sccs);
for (j=0; j<sccs; j++) {
  fprintf (stdout, "SCC%d:", j);
  for (i=0; i<g->nv; i++) {
    if (g->g[i].scc == j) {
      fprintf (stdout, " %d", i);
  fprintf (stdout, "\n");
graph dispose (g);
```

```
int graph scc (graph t *g) {
 graph t *h;
 int i, id=0, timer=0;
 int *post, *tmp;
 h = graph transpose (g);
 post = (int *) util malloc (g->nv*sizeof(int));
 for (i=0; i<g->nv; i++) {
    if (h->g[i].color == WHITE) {
      timer = graph scc r (h, i, post, id, timer);
 graph dispose (h);
```

```
id = timer = 0;
tmp = (int *) util malloc (g->nv * sizeof(int));
for (i=g->nv-1; i>=0; i--) {
  if (g->g[post[i]].color == WHITE) {
    timer=graph_scc_r(g, post[i], tmp, id, timer);
    id++;
free (post);
free (tmp);
return id;
```

```
int graph scc r(
 graph t *g, int i, int *post, int id, int t
 int j;
 g->g[i].color = GREY;
 g->g[i].scc = id;
  for (j=0; j<g->nv; j++) {
    if (g->g[i].rowAdj[j]!=0 &&
        g->g[j].color==WHITE) {
      t = graph scc r (g, j, post, id, t);
 g->g[i].color = BLACK;
 post[t++] = i;
 return t;
```

Given the following DAG G, find a topological order of all vertices

Given the following DAG G, find a topological order of all vertices

 \diamond Given the following DAG G, find its SCCs

 $SCCs: \{I\}, \{H\}, \{G\}, \{A, B, C, D, E, F, J\}$

 \clubsuit Given the following graph G, find its bridges and articulation points

Bridges: $\{G,K\}$ and $\{K,L\}$

Articulation points: G and K

- \Leftrightarrow Given the following graph G, find articulation points, bridges, and connected components
 - Find the connected component once removing the articulation points

Bridges: {HI,FI}

Articulation points: $\{F, I\}$

CC: one with all vertices

CC (after removing F and I): $\{ABCDE, GJ, H\}$