



## Recall: Directed Graphical Models (aka Bayesian Nets)

$$p(x_1, \dots, x_7) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3)$$
$$p(x_5|x_1, x_3)p(x_6|x_4)p(x_7|x_4, x_5)$$

The joint distribution of a graph with K nodes is given by:

$$p(\mathbf{x}) = \prod_{k=1}^{K} p(x_k | \mathbf{pa}_k)$$

where  $pa_k$  denotes the set of parents of  $x_k$ 

This is the **factorization** of a directed graphical model



# DGMs - example (1)

#### When I turn on the car:

- p(B): battery is charged (B={0,1})
- p(F): there is fuel in the tank (F={0,1})
- p(G): fuel gauge moves (G={0,1})



$$p(G=1|B=1, F=0) = 0.2$$

$$p(G=1|B=0, F=1) = 0.2$$

$$p(G-1|B-0,F-1) = 0.2$$

$$p(G=1|B=0, F=0) = 0.1$$

$$p(B=1) = 0.9$$
  
 $p(F=1) = 0.9$ 

and hence

p(F=0) = 0.1



If the gauge does not move, what is the probability that the fuel tank is empty?

# DGMs - example (2)

#### Car out of fuel?

Recall that p(G=0|B=0,F=0) = 0.9

$$p(F = 0|G = 0) = p(G = 0|F = 0)p(F = 0)$$

$$\approx 0.257 p(G = 0)$$

$$0.81 0.1$$

$$p(G = 0)$$

$$0.315$$

Probability of an empty tank is increased by observing G = 0.

$$p(F = 0|G = 0, B = 0) = \frac{p(G = 0|B = 0, F = 0)p(F = 0)}{\sum_{F \in \{0,1\}} p(G = 0|B = 0, F)p(F)}$$

By observing also B = 0, now the probability of empty tank gets reduced. This is known as explaining away: battery explains away fuel as a cause!

5

## DGMs - the naïve case

#### Naive Bayes Classifier (as a DGM)



$$p(y, \mathbf{x}) = p(y) \prod_{j=1}^{D} p(x_j | y)$$

# DGMs – complex nets

**Alarm network** for intensive care unit (measures features such as the breathing rate and blood pressure of a patient): 37 variables and 504 parameters



### Latent Variable Models

Probabilistic models with hidden (i.e. non-observed) variables are also known as **latent variable models (LVMs)**.

These latent variables can also serve as a **bottleneck**, computing a compressed representation of the data.



### Mixture Models

Simplest form of LVM has discrete latent states  $z_i$ 

Define 
$$p(\mathbf{x}_i|z_i=k)=p_k(\mathbf{x}_i)$$

Mixture model: 
$$p(\mathbf{x}_i|\boldsymbol{\theta}) = \sum_{k=1}^K \pi_k p_k(\mathbf{x}_i|\boldsymbol{\theta})$$

where  $\theta$  are model parameters and  $\pi_k$  stands for p(z=k)

 $\pi_k$  are also called **mixing weights** 

Such models are widely used in pattern recognition

.

# K-means clustering (1)

We begin the discussion on mixtures by considering the problem of finding clusters in a set of data points

Approach: K-means algorithm (non-probabilistic technique)



# K-means clustering (2)

Suppose we have a data set  $\{x_1, x_2, ..., x_N\}$  consisting of N observations of a random D-dimensional variable

**Goal**: partition the data into *K* clusters (*K* is given)

Define  $\mu_k$  as a prototype associated with the k-th cluster

Define  $r_{nk}=\{0,1\}$  a binary indicator variable (describes which of the clusters the data point  $x_n$  is assigned to)

Objective function:  $J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$  (to be minimised)

1

# K-means clustering (3)

Iterative algorithm:

- 1. Choose initial values for  $\mu_k$
- 2. Minimise J wrt  $r_{nk}$
- 3. Minimise J wrt  $\mu_k$
- 4. Repeat 2-3 until convergence



Algorithm details:

• Updating  $r_{nk}$ :

$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_j \|\mathbf{x}_n - \boldsymbol{\mu}_j\|^2 \\ 0 & \text{otherwise.} \end{cases}$$

• Updating  $\mu_k$ :

$$oldsymbol{\mu}_k = rac{\sum_n r_{nk} \mathbf{x}_n}{\sum_n r_{nk}}$$

So  $\mu_k$  is the mean of the k-th cluster, thus the name k-means



# Example

You have the following set of 2-dimensional data points: {1.9, 1.9}, {0.9, 1.1}, {1.8, 2.0}, {0.8, 1.0}, {1.1, 0.9}, {2.0, 1.9}, {1.0, 0.9}, {1.9, 1.8}.

Apply K-means with K=2 clusters using the following initial values for cluster prototypes:  $\mu_1 = \{1.0, 1.0\}$  and  $\mu_2 = \{2.0, 2.0\}$ .

Which are the values of the final prototypes for each cluster?

To which cluster does each data point belong to?

## **Model Answer**

- Step 1: Initial values for cluster prototypes (given)
- Step 2: Estimating binary indicator variable

$$r1 = \{0,1,0,1,1,0,1,0\}, r2 = \{1,0,1,0,0,1,0,1\}$$

Step 3: Updating mu

$$mu1 = (x2+x4+x5+x7)/4 = \{0.95, 0.975\},$$

$$mu2 = (x1+x3+x6+x8)/4 = \{1.9,1.9\}$$

Step 2 again: Estimating binary indicator variable

$$r1 = \{0,1,0,1,1,0,1,0\}, r2 = \{1,0,1,0,0,1,0,1\}$$

Step 3 again: Updating mu

$$mu1 = (x2+x4+x5+x7)/4 = \{0.95, 0.975\},$$

$$mu2 = (x1+x3+x6+x8)/4 = \{1.9,1.9\}$$

- The output of Step 3 is the same as in the previous iteration: convergence achieved
- Solution:

$$mu1 = \{0.95, 0.975\}, mu2 = \{1.9, 1.9\},$$
  
 $r1 = \{0.1, 0, 1, 1, 0, 1, 0\}, r2 = \{1, 0, 1, 0, 0, 1, 0, 1\}$ 

# Mixtures of Gaussians (1) The Gaussian Distribution: $\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\}$ $x_2$ $\mathcal{N}(\mathbf{x}|\mu,\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$



 $p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x}|\mathbf{z}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$ 

# Mixtures of Gaussians (3)

It might seem that we have not gained much by expressing a Gaussian mixture using a latent variable...

But: now we are able to work with  $p(\mathbf{x},\mathbf{z})$  instead of  $p(\mathbf{x})$ , which will lead to significant simplifications

Another important quantity: the conditional probability of z given x

$$\gamma(z_k) \equiv p(z_k=1|\mathbf{x}) = \frac{p(z_k=1)p(\mathbf{x}|z_k=1)}{\displaystyle\sum_{j=1}^K p(z_j=1)p(\mathbf{x}|z_j=1)}$$
 Also called: 
$$= \frac{\pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\displaystyle\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}.$$



# Mixtures of Gaussians (5)

#### Maximum likelihood for GMMs

Suppose we have data  $\{x_1, x_2, ..., x_N\}$ , represented as matrix **X** Expressing the log-likelihood of the data using a GMM:

$$\ln p(\mathbf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

Maximising the above function is problematic:

- Singularities, i.e. discontinuous function
- Given a MLE, a K-component mixture will have K! solutions (identifiability problem)

21

# EM for Gaussian Mixtures (1)

A powerful method for finding a maximum likelihood estimation MLE solution for latent variable models is the **Expectation-Maximisation algorithm (EM)** 

Setting the derivatives of the log-likelihood to 0 wrt  $\mu_k$ :

$$0 = -\sum_{n=1}^{N} \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j} \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)} \boldsymbol{\Sigma}_k(\mathbf{x}_n - \boldsymbol{\mu}_k)$$
$$\gamma(z_{nk})$$

After rearranging:

$$\boldsymbol{\mu}_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n \qquad N_k = \sum_{n=1}^N \gamma(z_{nk})$$

 $(N_k$ : number of points assigned to cluster k)

# EM for Gaussian Mixtures (2)

Setting the derivative of the log-likelihood to 0 wrt  $\Sigma_k$ :

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma(z_{nk}) (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^{\mathrm{T}}$$

Setting the derivative of the log-likelihood to 0 wrt  $\pi_k$ :

$$\pi_k = \frac{N_k}{N}$$

These results do not constitute a closed-form solution, since the responsibilities depend on these parameters – but they suggest a simple **iterative scheme** for finding a solution...

23

# EM for Gaussian Mixtures (3)

**Goal:** given a GMM, maximize the likelihood function wrt the means, covariances, and mixing coefficients.

- 1. Initialize  $\mu_k, \Sigma_k, \pi_k$
- 2. Expectation step (E-step):  $\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{i=1}^K \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$
- 3. Maximization step (M-step):  $\mu_k^{\text{new}} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n$

$$\Sigma_k^{\text{new}} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \left( \mathbf{x}_n - \boldsymbol{\mu}_k^{\text{new}} \right) \left( \mathbf{x}_n - \boldsymbol{\mu}_k^{\text{new}} \right)^{\text{T}}$$

$$\pi_k^{\text{new}} = \frac{N_k}{N}$$

4. Evaluate the log-likelihood and check for convergence. If criterion is not satisfied, go to step 2.





# **GMM Classifier**

**GMM classifier**: simple but useful supervised learning classification algorithm; good for the classification of faces and non-temporal pattern recognition

- 1. Train a GMM for each class (using EM)
- Testing: compute the likelihood of the test sample for each GMM. Select as class the one that produces the largest likelihood

27

# **Applications of GMMs**

- Speaker identification
- Image retrieval
- Biometric verification
- Speech/sound recognition
- Traffic flow control
- Emotion recognition
- Weather prediction





The EM algorithm involves computing alternately a lower bound on the log likelihood for the current parameter values and then maximizing this bound to obtain the new parameter values.

EM converges to local maximum of likelihood.

29

# The General EM Algorithm (2)

Given a joint distribution  $p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})$  over observed variables  $\mathbf{X}$  and latent variables  $\mathbf{Z}$ , governed by parameters  $\boldsymbol{\theta}$ , the goal is to maximize  $p(\mathbf{X}|\boldsymbol{\theta})$  wrt  $\boldsymbol{\theta}$ .

- 1. Initialize  $\theta$ <sup>old</sup>
- 2. E-step: evaluate  $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}})$
- 3. M-step: evaluate θ<sup>new</sup>:

$$oldsymbol{ heta}^{ ext{new}} = rg\max_{oldsymbol{ heta}} \mathcal{Q}(oldsymbol{ heta}, oldsymbol{ heta}^{ ext{old}})$$

$$\mathcal{Q}(oldsymbol{ heta}, oldsymbol{ heta}^{ ext{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, oldsymbol{ heta}^{ ext{old}}) \ln p(\mathbf{X}, \mathbf{Z}|oldsymbol{ heta})$$

4. Check for convergence. If the convergence criterion is not satisfied:  $\theta^{\text{old}} \leftarrow \theta^{\text{new}}$  and go to Step 2.

# Comparing EM with k-means

Whereas the k-means algorithm performs a **hard assignment** from data points to clusters, EM makes a **soft assignment**.

We can derive k-means as a particular case of GMM without the need to estimate a covariance matrix

Original paper:

Maximum Likelihood from Incomplete Data via the EM Algorithm A. P. Dempster; N. M. Laird; D. B. Rubin Journal of the Royal Statistical Society B 39(1):1-38, 1977 http://web.mit.edu/6.435/www/Dempster77.pdf