Stochastic Optimization for Energy Management Systems

Methods, results and perspectives

Adrien Le Franc, Michel De Lara

CERMICS ENPC x Efficacity

Schneider provides a set of realistic microgrid configurations

11 sites to manage separately

2 settings of battery per site ~ 10 periods of 10 days per site

Our end goal

We will write stochastic optimization problems for managing microgrids at least expected cost and test our solutions on Schneider's data

Outline of the presentation

- 1. A stochastic optimization problem for microgrid management
- 2. Resolution with Stochastic Dynamic Programming (SDP)
- 3. Modeling stagewise dependency of the noise process
- 4. Numerical results
- 5. Conclusion and perspectives

Outline of the presentation

1. A stochastic optimization problem for microgrid management

- 2. Resolution with Stochastic Dynamic Programming (SDP)
- 3. Modeling stagewise dependency of the noise process
- 4. Numerical results
- 5. Conclusion and perspectives

What we will cover in this section

- 1. A stochastic optimization problem for microgrid management
- 1.1 Physical modeling
- 1.2 Information structure
- 1.3 Multistage stochastic optimization problem

- 1. A stochastic optimization problem for microgrid management
- 1.1 Physical modeling
- 1.2 Information structure
- 1.3 Multistage stochastic optimization problem

Energy flows in the microgrid

Decision chronology

- SoC_t is the battery state at time t
- ullet decisions B_t are taken at the beginning of $[t,t+\Delta_t]$
- ullet PV_{t+1}, D_{t+1} are observed at the end of $[t, t+\Delta_t]$
- ullet eventually energy E_{t+1} is imported from the grid

EMS deterministic (anticipative) optimization problem

$$\begin{aligned} \min_{B_0...B_{T-1}} & & \sum_{t=0}^{T-1} p_{buy,t} E_{t+1}^+ - p_{sell,t} E_{t+1}^- \\ & & E_{t+1} = D_{t+1} - PV_{t+1} + B_t \\ & & SoC_0 = soc_0 \\ & & SoC_{t+1} = SoC_t + \frac{\rho_c}{c} B_t^+ - \frac{1}{c\rho_d} B_t^- \\ & & 0 \le SoC_t \le 1 \\ & & - p\Delta_t \le B_t \le p\Delta_t \end{aligned}$$

In practice the outcome of (D_t, PV_t) is uncertain

- 1. A stochastic optimization problem for microgrid management
- 1.1 Physical modeling
- 1.2 Information structure
- 1.3 Multistage stochastic optimization problem

We model uncertainties as random processes

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space

Uncertainties are modeled as random processes

$$\mathbf{D}: \omega \mapsto (\mathbf{D}_1(\omega), ..., \mathbf{D}_T(\omega))$$

$$\mathbf{PV}: \omega \mapsto (\mathbf{PV}_1(\omega), ..., \mathbf{PV}_T(\omega))$$

At intermediate stages $1 \leq t < \mathcal{T}$ the decision maker observes the **history process**

$$\boldsymbol{\mathsf{H}}_t = (\boldsymbol{\mathsf{D}}_1, \boldsymbol{\mathsf{P}}\boldsymbol{\mathsf{V}}_1, ..., \boldsymbol{\mathsf{D}}_t, \boldsymbol{\mathsf{P}}\boldsymbol{\mathsf{V}}_t)$$

Non-anticipativity constraint

Decisions must be non-anticipative

i.e. for identical history observations h_t we must take the same decision

$$\mathbf{B}_t$$
 is measurable w.r.t. $\sigma(\mathbf{H}_t)$

This can be formulated in functional form with **policies**

$$\mathbf{B}_t = \gamma_t(\mathbf{H}_t)$$

We can restrict policies γ_t to special cases e.g. state feedbacks

$$\mathbf{B}_t = \pi_t(\mathbf{SoC}_t)$$

- 1. A stochastic optimization problem for microgrid management
- 1.1 Physical modeling
- 1.2 Information structure
- 1.3 Multistage stochastic optimization problem

EMS stochastic optimization problem

$$\begin{aligned} \min_{\pi_0...\pi_{T-1}} \quad & \mathbb{E}\left[\sum_{t=0}^{T-1} p_{buy,t} \mathbf{E}_{t+1}^+ - p_{sell,t} \mathbf{E}_{t+1}^-\right] \\ & \mathbf{E}_{t+1} = \mathbf{D}_{t+1} - \mathbf{PV}_{t+1} + \mathbf{B}_t \\ & \mathbf{SoC}_0 = soc_0 \\ & \mathbf{SoC}_{t+1} = \mathbf{SoC}_t + \frac{\rho_c}{c} \mathbf{B}_t^+ - \frac{1}{\rho_d c} \mathbf{B}_t^- \\ & 0 \leq \mathbf{SoC}_t \leq 1 \\ & - p\Delta_t \leq \mathbf{B}_t \leq p\Delta_t \\ & \mathbf{B}_t = \pi_t(\mathbf{SoC}_t) \end{aligned}$$

Compact formulation

State

$$X_t = SoC_t$$

Noise

$$\mathbf{W}_t = \mathbf{D}_t - \mathbf{PV}_t$$

Control

$$\boldsymbol{\mathsf{U}}_t = \boldsymbol{\mathsf{B}}_t$$

Stochastic optimization problem in generic form

$$egin{aligned} \min_{\pi_0 \dots \pi_{T-1}} & \mathbb{E} ig[\sum_{t=0}^{T-1} L_t(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1}) ig] \ & \mathbf{X}_0 = x_0 \ & \mathbf{X}_{t+1} = f_t(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1}) \ & \mathbf{U}_t \in \mathcal{U}_t^{\mathrm{ad}}(\mathbf{X}_t) \ & \mathbf{U}_t = \pi_t(\mathbf{X}_t) \end{aligned}$$

 $\mathsf{dim}\; \mathbb{X}=1 \quad \mathsf{dim}\; \mathbb{U}=1 \quad \mathsf{dim}\; \mathbb{W}=1$

Outline of the presentation

- 1. A stochastic optimization problem for microgrid management
- 2. Resolution with Stochastic Dynamic Programming (SDP)
- 3. Modeling stagewise dependency of the noise process
- 4. Numerical results
- 5. Conclusion and perspectives

What we will cover in this section

- 2. Resolution with Stochastic Dynamic Programming (SDP)
- 2.1 Method
- 2.2 Numerical implementation for the EMS problem

- 2. Resolution with Stochastic Dynamic Programming (SDP)
- 2.1 Method
- 2.2 Numerical implementation for the EMS problem

Value functions

Value functions are defined as the cost-to-go at time step $t \in \{1,...,T\}$ and state $x \in \mathbb{X}_t$

$$\begin{split} V_t(x) = & \min_{\pi_t \dots \pi_{T-1}} \quad \mathbb{E} \Big[\sum_{s=t}^{T-1} L_s(\mathbf{X}_s, \mathbf{U}_s, \mathbf{W}_{s+1}) \Big] \\ & \mathbf{X}_t = x \\ & \mathbf{X}_{s+1} = f_s(\mathbf{X}_s, \mathbf{U}_s, \mathbf{W}_{s+1}) \\ & \mathbf{U}_s \in \mathcal{U}_s^{\mathrm{ad}}(\mathbf{X}_s) \\ & \mathbf{U}_s = \pi_s(\mathbf{X}_s) \end{split}$$

Bellman equations

Assuming uncertainties $(W_1, ..., W_T)$ are stagewise independent V_t and V_{t+1} are connected by the Bellman equations

$$V_t(x) = \min_{u} \mathbb{E}_{\mathbf{W}_{t+1}} \Big[L_t(x, u, \mathbf{W}_{t+1}) + V_{t+1} (f_t(x, u, \mathbf{W}_{t+1})) \Big]$$

We set $V_T(x) = K(x_T)$ and compute backward $(V_t)_{0 \le t \le T-1}$

- 2. Resolution with Stochastic Dynamic Programming (SDP)
- 2.1 Method
- 2.2 Numerical implementation for the EMS problem

Discrete spaces for computing numerical solutions

We consider discrete stationary spaces \mathbb{X} , \mathbb{U} and discrete fixed cardinal noise spaces $\mathbb{W}_1,...,\mathbb{W}_T$

ullet complexity to compute value functions $(V_t(x))_{\substack{0 \leq t \leq T-1 \\ x \in \mathbb{X}}}$

$$\mathcal{O}(T \times |\mathbb{X}| \times |\mathbb{W}| \times |\mathbb{U}|)$$

• complexity to compute the online decision $\pi_t(x_t)$

$$\mathcal{O}\big(|\mathbb{W}|\times|\mathbb{U}|\big)$$

Computing value functions offline

$$V_t(x) = \min_{u} \int_{\mathbb{W}_{t+1}} \left[L_t(x, u, w_{t+1}) + V_{t+1} \Big(f_t(x, u, w_{t+1}) \Big) \right] \mu_{\mathbf{W}_{t+1}}^{off}(dw_{t+1})$$

- We have a collection of observations $(w_{t+1}^1, ..., w_{t+1}^{N_{t+1}})$ from calibration data
- We use Kmeans for optimal quantization of the noise in 10 values

$$\hat{\mu}_{\mathsf{W}^{off}_{t+1}} = \sum_{k=1}^{10} P^k_t \delta_{c^k_t}$$

Partitioning the calibration data for computing $\hat{\mu}_{W_t}^{off}$

Computing policies online

$$\pi_t(x_t) \in \arg\min_{u} \int_{\mathbb{W}_{t+1}} \left[L_t(x_t, u, w_{t+1}) + V_{t+1} \Big(f_t(x_t, u, w_{t+1}) \Big) \right] \mu_{\mathbf{W}_{t+1}}^{on}(dw_{t+1})$$

ullet We have forecasts \widetilde{w}_t about \mathbf{W}_{t+1} available online

$$\hat{\mu}_{\mathbf{W}^{\mathit{on}}_{\mathit{t}+1}} = \delta_{\widetilde{\mathit{W}}_{\mathit{t}}}$$

• We use B-spline interpolation for computing $V_{t+1}\Big(f_t(x_t,u,w_{t+1})\Big)$ from $\big(V_{t+1}(x)\big)_{x\in\mathbb{X}}$

Outline of the presentation

- 1. A stochastic optimization problem for microgrid management
- 2. Resolution with Stochastic Dynamic Programming (SDP)
- 3. Modeling stagewise dependency of the noise process
- 4. Numerical results
- Conclusion and perspectives

What we will cover in this section

- 3. Modeling stagewise dependency of the noise process
- 3.1 Modeling noise with an AR-1 process
- 3.2 Numerical implementation for the EMS problem

- 3. Modeling stagewise dependency of the noise process
- 3.1 Modeling noise with an AR-1 process
- 3.2 Numerical implementation for the EMS problem

We introduce stagewise dependency with an AR-1 process

We model the noise as an AR-1 process $\mathbf{W}_{t+1} = \alpha_t \mathbf{W}_t + \beta_t + \varepsilon_{t+1}$ We assume **stagewise independence** of the error $(\varepsilon_1, ..., \varepsilon_T)$

$$\begin{aligned} \min_{\hat{\pi}_{0}...\hat{\pi}_{T-1}} \quad & \mathbb{E}_{\boldsymbol{\varepsilon}} \Big[\sum_{t=0}^{T-1} \; p_{buy,t} \big[\mathbf{U}_{t} + \mathbf{W}_{t+1} \big]^{+} - p_{sell,t} \big[\mathbf{U}_{t} + \mathbf{W}_{t+1} \big]^{-} \Big] \\ & \mathbf{X}_{0} = x_{0} \\ & \mathbf{X}_{t+1} = \mathbf{X}_{t} + \frac{\rho_{c}}{c} \mathbf{U}_{t}^{+} - \frac{1}{c\rho_{d}} \mathbf{U}_{t}^{-} \\ & \mathbf{W}_{0} = w_{0} \\ & \mathbf{W}_{t+1} = \alpha_{t} \mathbf{W}_{t} + \beta_{t} + \boldsymbol{\varepsilon}_{t+1} \\ & \mathbf{U}_{t} \in \mathcal{U}_{t}^{\mathrm{ad}}(\mathbf{X}_{t}) \\ & \mathbf{U}_{t} = \hat{\pi}_{t}(\mathbf{X}_{t}, \mathbf{W}_{t}) \end{aligned}$$

Compact formulation

State

$$\mathbf{\hat{X}}_t = (\mathbf{SoC}_t, \mathbf{D}_t - \mathbf{PV}_t)$$

Noise

$$\mathbf{\hat{W}}_t = \boldsymbol{\varepsilon}_t$$

Control

$$\hat{\mathbf{U}}_t = \mathbf{B}_t$$

We augmented the state dimension

$$\begin{aligned} \min_{\hat{\pi}_0...\hat{\pi}_{T-1}} \quad \mathbb{E}\big[\sum_{t=0}^{T-1} \hat{L}_t(\hat{\mathbf{X}}_t, \hat{\mathbf{U}}_t, \hat{\mathbf{W}}_{t+1})\big] \\ \hat{\mathbf{X}}_0 &= \hat{x}_0 \\ \hat{\mathbf{X}}_{t+1} &= \hat{f}_t(\hat{\mathbf{X}}_t, \hat{\mathbf{U}}_t, \hat{\mathbf{W}}_{t+1}) \\ \hat{\mathbf{U}}_t &\in \mathcal{U}_t^{\mathrm{ad}}(\hat{\mathbf{X}}_t) \\ \hat{\mathbf{U}}_t &= \hat{\pi}_t(\hat{\mathbf{X}}_t) \end{aligned}$$

$$\dim \, \hat{\mathbb{X}} = \mathbf{2} \quad \dim \, \hat{\mathbb{U}} = 1 \quad \dim \, \hat{\mathbb{W}} = 1$$

- 3. Modeling stagewise dependency of the noise process
- 3.1 Modeling noise with an AR-1 process
- 3.2 Numerical implementation for the EMS problem

Linear regression for AR-1 calibration

$$\mathbf{W}_{t+1} = \frac{\alpha_t}{\alpha_t} \mathbf{W}_t + \frac{\beta_t}{\beta_t} + \varepsilon_{t+1}$$

- We have collections of observations $(w_t^1, ..., w_t^N)_{1 \le t \le T}$ from calibration data
- We use linear regression to fit optimal weights

$$(\alpha_t, \beta_t) \in \operatorname*{arg\,min}_{(\alpha,\beta)} \sum_{i=1}^N ||w_{t+1}^i - \alpha w_t^i - \beta||^2$$

Computing offline and online laws

$$\mathbf{W}_{t+1} = \alpha_t \mathbf{W}_t + \beta_t + \boldsymbol{\varepsilon}_{t+1}$$

We compute offline laws using Kmeans from calibration data

$$\hat{\mu}_{\boldsymbol{\varepsilon}_{t+1}^{off}} = \sum_{k=1}^{10} P_t^k \delta_{c_t^k}$$

• We have forecasts \widetilde{w}_t about \mathbf{W}_{t+1} available online and deduce a forcast $\widetilde{\varepsilon}_t$ about ε_{t+1}

$$\widehat{\mu}_{\pmb{\varepsilon}_{t+1}^{\mathit{on}}} = \delta_{\widetilde{\varepsilon}_t}$$

Outline of the presentation

- 1. A stochastic optimization problem for microgrid management
- 2. Resolution with Stochastic Dynamic Programming (SDP)
- 3. Modeling stagewise dependency of the noise process
- 4. Numerical results
- 5. Conclusion and perspectives

What we will cover in this section

- 4. Numerical results
- 4.1 Schneider's score metric
- 4.2 Our results

Outline of the section

- 4. Numerical results
- 4.1 Schneider's score metric
- 4.2 Our results

Testing data is organized in periods of 10 consecutive days

11 sites to manage separately

2 settings of battery per site ~ 10 periods of 10 days per site

Schneider's score metric for evaluating a policy

Score computed over **one period** against the naive policy where energy must be consumed or sold (no storage)

$$\begin{aligned} &\textit{naive}_t = p_{\textit{buy},t} \big[d_{t+1} - \textit{pv}_{t+1} \big]^+ - p_{\textit{sell},t} \big[d_{t+1} - \textit{pv}_{t+1} \big]^- \\ &\textit{cost}_t^\pi = p_{\textit{buy},t} \big[d_{t+1} - \textit{pv}_{t+1} + \pi_t (\textit{soc}_t) \big]^+ - p_{\textit{sell},t} \big[d_{t+1} - \textit{pv}_{t+1} + \pi_t (\textit{soc}_t) \big]^- \end{aligned}$$

We compute the total cost over the period for both policies and deduce a score (the higher the better)

$$score^{\pi} = \frac{naive - cost^{\pi}}{naive} \times 100 \%$$

Outline of the section

- 4. Numerical results
- 4.1 Schneider's score metric
- 4.2 Our results

Our results

Our first SDP-based attempts score lower than MPC Modeling noise stagewise dependence helps bridging the gap

Method	SDP	SDP AR-1	MPC
Score (%)	11.4	17.1	18.2

Table 1: Average score on all testing periods. Higher is the better.

Load forecast quality for MPC

PV forecast quality for MPC

Outline of the presentation

- 1. A stochastic optimization problem for microgrid management
- 2. Resolution with Stochastic Dynamic Programming (SDP)
- 3. Modeling stagewise dependency of the noise process
- 4. Numerical results
- 5. Conclusion and perspectives

Conclusion - what we did

- We wrote a stochastic optimization problem to manage microgrids at least cost
- We introduced Stochastic Dynamic Programming to solve the EMS problem
- We modeled stagewise dependency of the noise with an AR-1
- Under modeling assumptions we computed numerical solutions of our problem
- We gain on average 17.1% of energy expenses vs a naive policy whereas MPC reaches 18.2%

Perspectives

- We will compare with MPC on sites where the forecasts are less accurate
- We could improve the lags in the AR process to strengthen stagewise dependency (improve dim X, will be using SDDP)
- We could introduce coherent risk measures instead of expectation
- Other constraints arise from grid operators (penalty on high energy importation, demand charge...)

References i

P. Carpentier, J.-P. Chancelier, G. Cohen, and M. De Lara. **Stochastic multi-stage optimization.**

In *Probability Theory and Stochastic Modelling*, volume 75. Springer, 2015.

N. Löhndorf and A. Shapiro.

Modeling time-dependent randomness in stochastic dual dynamic programming.

European Journal of Operational Research, 273(2):650–661, 2019.

T. Rigaut, P. Carpentier, J. P. Chancelier, M. De Lara, and J. Waeytens.

Stochastic optimization of braking energy storage and ventilation in a subway station.

IEEE Transactions on Power Systems, 34(2):1256–1263, 2019.