MATH 1530 Problem Set 2

Collaborated with Esmé and Kazuya

February 2023

Problem 1. Consider U(40). Find a subgroup which is cyclic of order 4. Find a subgroup which is noncyclic of order 4.

Proof.

Problem 2. If H and K are subgroups of a group G, prove that $H \cap K$ is a subgroup of G. If $H \not\subset K$ and $K \not\subset H$, prove that $H \cup K$ is never a subgroup of G.

Problem 3. Prove that a group G is Abelian if and only if $G = \mathsf{Z}(G)$.

Problem 4. Suppose G is a group with exactly 8 elements of order 3. how many subgroups of order 3 does G have?

Proof. Let $H \subset G$ be a subgroup of order 3:

$$H = \{e, a, b\}$$

Since e is unique, we have that $ab \neq a$ and $ab \neq b$. In order for H to be closed, the only remaining choice is ab = e. Thus, for any subgroup of order 3, the two elements besides the identity must be each other's inverse.

Now, we will show that |a|=|b|=3. Consider $a^2\in H$. Since the identity is unique, $a^2\neq a$, and since b is the unique inverse of a, the only remaining choice is $a^2=b$. Therefore,

$$a^3 = a \cdot a^2$$
 $b^3 = (a^2)^3$
 $= a \cdot b$ $= (a^3)^2$
 $= e$

We have that there are exactly 8 elements of G of order 3. Because a subgroup of order 3 requires two distinct elements of order 3, we can conclude that the number of distinct subgroups of order 3 in G is 8/2 = 4.

Problem 5. Let G be a finite group with more than one element. Show that G has an element of prime order.