Computational Physics Übungsblatt 0

Ausgabe: 15.04.2016 Besprechung: 19./20.04.2016

Aufgabe 1. Hello World

Richten Sie sich einen Compiler (z.B. GCC) auf Ihrem System ein. Testen Sie diesen, indem Sie ein Programm schreiben, dass Hello World ausgibt.

Freiwilliger Zusatz: Wenn Sie GCC verwenden, informieren Sie sich über die -0x Optionen (mit $x \in \{1, 2, 3\}$), die beim Kompilieren den Code optimieren und die Ausführzeit von Programmen deutlich senken können.

Aufgabe 2. Rundungsfehler

Schreiben Sie ein Programm, mit dem die folgenden Ausdrücke zunächst direkt nach Formel berechnet werden:

a) für große x:

$$\frac{1}{\sqrt{x}} - \frac{1}{\sqrt{x+1}},\tag{1}$$

b) für kleine $x \ll 1$:

$$\frac{1 - \cos x}{\sin x},\tag{2}$$

c) für kleine $\delta \ll 1$:

$$\sin(x+\delta) - \sin x. \tag{3}$$

Suchen Sie dann nach einem numerischen Rechenweg, der Auslöschung vermeidet. Vergleichen Sie die relativen Fehler zwischen dem Rechenweg mit Auslösung und ohne Auslösung.

Aufgabe 3. Stabilität

Die Differentialgleichung

$$y'(x) = -y(x), \quad y(0) = 1$$
 (4)

mit der analytischen Lösung

$$y(x) = \exp(-x) \tag{5}$$

soll mit Hilfe eines einfachen sogenannten symmetrischen Euler-Verfahrens numerisch gelöst werden. Hierzu wird der Definitionsbereich diskretisiert:

$$y_n \equiv y(x = nh) \tag{6}$$

und die erste Ableitung wie folgt approximiert:

$$y'_n = y'(nh) \approx \frac{y_{n+1} - y_{n-1}}{2h}.$$
 (7)

Dies führt auf die Rekursion:

$$y_{n+1} - y_{n-1} = 2hy_n' = -2hy_n. (8)$$

- a) Implementieren Sie diese Rekursion und starten Sie mit Anfangswerten $y_0=1$ und $y_1=1-h$. Vergleichen Sie Ihre Ergebnisse mit der analytischen Lösung, indem Sie den relativen Fehler berechnen. Zeigen Sie, dass der relative Fehler der numerischen Lösung für große x irgendwann anwächst. Warum zeigt die numerische Lösung dann ein um 0 oszillierendes Verhalten?
- b) Stellen Sie eine analoge Rekursion für

$$y'(x) = y(x), \quad y(0) = 1$$
 (9)

auf und zeigen Sie, dass der relative Fehler hier endlich bleibt. Warum ist das der Fall?