Reinforcement learning Episode 1

Monte-carlo methods

Recap: reinforcement learning

Recap: MDP

Classic MDP(Markov Decision Process) Agent interacts with environment

- Environment states: *s*∈*S*
- Agent actions: $a \in A$
- State transition: $P(s_{t+1}|s_t, a_t)$

Feedback (Monte-Carlo)

• Naive objective: R(z)

$$z = [s_0, a_0, s_1, a_1, s_2, a_2, ..., s_n, a_n]$$

Deterministic policy:

Find policy with highest expected reward

$$\pi(s) \rightarrow a : E[R] \rightarrow max$$

Feedback (Monte-Carlo)

Whole session

• Naive objective: R(z)

$$z = [s_0, a_0, s_1, a_1, s_2, a_2, ..., s_n, a_n]$$

Deterministic policy:

Find policy with highest expected reward

$$\pi(s) \rightarrow a : E[R] \rightarrow max$$

Combinatorial optimization

- Maximize score over policy
- No gradient
- Naive solution: iterate over all policies
- Heuristics:
 - Genetic Algorithm, differential evolution, etc.
 - Ant Colony Algorithms

Today's menu

Crossentropy method

- Stochastic optimization (not specific to RL)
- Works remarkably well in practice

Monte-carlo policy gradient

RL-specific (almost)

Hopefully...

Estimation problem

You want to estimate

$$E_{x \sim p(x)} H(x) = \int_{x} p(x) \cdot H(x) dx$$

Estimation is not a problem

You want to estimate

$$\underset{x \sim p(x)}{E} H(x) = \int_{X} p(x) \cdot H(x) dx$$

So what? You just compute it!

Estimation problem

You want to estimate

$$\underset{x \sim p(x)}{E} H(x) = \int_{X} p(x) \cdot H(x) dx$$

- So what? You just compute it!
 - x may be 100-dimensional
 - **H(x)** may be costly to compute

You want to estimate

$$E_{x \sim p(x)} H(x) = \int_{x} p(x) \cdot H(x) dx$$

- So what? You just compute it!
 - x may be 100-dimensional
 - **H(x)** may be costly to compute

$$\int_{X} p(x) \cdot H(x) dx \approx \frac{1}{N} \sum_{x_{k} \sim p(x)} H(x_{k})$$

You want to estimate profits!

$$\underset{x \sim p(x)}{E} H(x) = \int_{x} p(x) \cdot H(x) dx$$

- x user of your online game (age, gender, ...)
- p(x) probability of such user
- **H(x)** try to guess :)

You want to estimate profits!

$$\underset{x \sim p(x)}{E} H(x) = \int_{x} p(x) \cdot H(x) dx$$

- x user of your online game (age, gender, ...)
- p(x) probability of such user
- H(x) money donated by such user

- Sampling = asking users to pass survey
- Usually costs money!
- Guess H(median russian gamer)?

- Sampling = asking users to pass survey
- Usually costs money!
- H(median russian gamer) ~ 0
- It's H(hard-core donators) that matters!

- Sampling = asking users to pass survey
- Usually costs money!
- Most H(x) are small, few are very large

- Sampling = asking users to pass survey
- Usually costs money!
- 99% of H(x)=0, 1% H(x)=\$1000 (whale)
- You make a survey of N=50 people

How accurate are we?

- Sampling = asking users to pass survey
- Usually costs money!
- 99% of H(x)=0, 1% H(x)=\$1000 (whale)
- You make a survey of N=50 people

$$\int_{x} p(x) \cdot H(x) dx \approx \frac{1}{N} \sum_{x_{k} \sim p(x)} H(x_{k})$$

0 whales: H=0, 1 whale: H=5x true

- Idea: we know that most whales are
 - 30-40 year old
 - single
 - wage >100k
- Sample 50% in that group, 50% rest
- Adjust for difference in distributions

Math:

$$E_{x \sim p(x)} H(x) = \int_{x} p(x) \cdot H(x) dx = \int_{x} p(x) \cdot \frac{q(x)}{q(x)} \cdot H(x) dx$$

Math:

$$E_{x \sim p(x)} H(x) = \int_{x} p(x) \cdot H(x) dx = \int_{x} p(x) \cdot \frac{q(x)}{q(x)} \cdot H(x) dx = \int_{x} p(x) \cdot \frac{q(x)}{q(x)} dx$$

$$= \int_{x} q(x) \cdot \frac{p(x)}{q(x)} \cdot H(x) dx = E_{x \sim q(x)}???$$

Math:

$$E_{x \sim p(x)} H(x) = \int_{x} p(x) \cdot H(x) dx = \int_{x} p(x) \cdot \frac{q(x)}{q(x)} \cdot H(x) dx = \int_{x} p(x) \cdot \frac{q(x)}{q(x)} dx$$

$$= \int_{x} q(x) \cdot \frac{p(x)}{q(x)} \cdot H(x) dx = E \int_{x \sim q(x)} \frac{p(x)}{q(x)} \cdot H(x)$$

• TL;DR:

$$E_{x \sim p(x)} H(x) = E_{x \sim q(x)} \frac{p(x)}{q(x)} \cdot H(x)$$

• TL;DR:

$$E_{x \sim p(x)} H(x) = E_{x \sim q(x)} \frac{p(x)}{q(x)} \cdot H(x)$$

$$\frac{1}{N} \sum_{x_k \sim p(x)} H(x_k) \approx \frac{1}{N} \sum_{x_k \sim q(x)} \frac{p(x)}{q(x)} \cdot H(x)$$

TL;DR:

$$\underset{x \sim p(x)}{E} H(x) = \underset{x \sim q(x)}{E} \frac{p(x)}{q(x)} \cdot H(x)$$

If p(x)>0, then q(x)>0

$$E_{x \sim p(x)} H(x) \approx \frac{1}{N} \sum_{x_k \sim p(x)} H(x_k) \approx \frac{1}{N} \sum_{x_k \sim q(x)} \frac{p(x)}{q(x)} \cdot H(x)$$
original distribution other distribution

- Idea: we may know that all whales are
 - 30-40 year old
 - single
 - wage >100k
- Sample q(x): 50% that group, 50% rest
- Adjust for difference in distributions

$$\frac{1}{N} \sum_{x_k \sim p(x)} H(x_k) \approx \frac{1}{N} \sum_{x_k \sim q(x)} \frac{p(x)}{q(x)} \cdot H(x)$$

- Idea: we may know that all whales are
 - 30-40 year old
 - single
 - wage >100k
- Sample from different q(x)
- Adjust for difference in distributions

Which **q(x)** is best?

• Pick $q(x) \sim p(x) \cdot H(x)$

• Pick $q(x) \sim p(x) \cdot H(x)$

• Minimize difference between q(x) and p(x)H(x)

How to measure that difference? Ideas?

• Minimize difference between q(x) and p(x)H(x)

Kullback-Leibler divergence

$$KL(p_1(x)||p_2(x)) = E_{x \sim p_1(x)} \log \frac{p_1(x)}{p_2(x)}$$

• Minimize difference between q(x) and p(x)H(x)

Kullback-Leibler divergence

$$KL(p_1(x)||p_2(x)) = E_{x \sim p_1(x)} \log \frac{p_1(x)}{p_2(x)} =$$

$$= \underbrace{E}_{x \sim p_1(x)} \log p_1(x) - \underbrace{E}_{x \sim p_1(x)} \log p_2(x)$$

$$\uparrow \qquad \qquad \uparrow$$
what? what?

• Minimize difference between q(x) and p(x)H(x)

Kullback-Leibler divergence

$$KL(p_1(x)||p_2(x)) = E_{x \sim p_1(x)} \log \frac{p_1(x)}{p_2(x)} = \frac{\text{const(p2(x))}}{\text{const(p2(x))}}$$

$$= E_{x \sim p_1(x)} \log p_1(x) - E_{x \sim p_1(x)} \log p_2(x)$$

$$\uparrow \qquad \uparrow$$
entropy crossentropy

• Minimize difference between q(x) and p(x)H(x)

Minimize Kullback-Leibler divergence

Pick q(x) to minimize crossentropy

$$q(x) = \underset{q(x)}{\operatorname{argmin}} \left[-\sum_{x \sim p(x)} H(x) \log q(x) \right]$$

- Exact solution in many cases (e.g. gaussian)
- Otherwise use numeric optimization
 - e.g. when q(x) is a neural network

Iterative approach

Pick q(x) to minimize crossentropy

$$q(x) = \underset{q(x)}{\operatorname{argmin}} \left[- \underset{x \sim p(x)}{E} H(x) \log q(x) \right]$$

- Start with $q_0(x) = p(x)$
- Iteration

$$q_{i+1}(x) = \underset{q_{i+1}(x)}{argmin} - \underset{x \sim q_{i}(x)}{E} \frac{p(x)}{q_{i}(x)} H(x) \log q_{i+1}(x)$$

Finally, reinforcement learning

- Objective: H(x) = [R > threshold]
- p(x) = uniform
- Threshold = M'th (e.g. 50th) percentile of R

$$\pi_{i+1}(a|s) = \underset{\pi_{i+1}}{argmin} - \underset{z \sim \pi_{i}(a|s)}{E}[R(z) \ge \psi_{i}] \log \pi_{i+1}(a|s)$$

$$\psi_i = M'$$
 th percentile of $R(z \sim \pi_i)$

Finally, reinforcement learning

- Objective: H(x) = [R > threshold]
- p(x) = uniform
- Threshold = M'th (e.g. 50th) percentile of R

$$\pi_{i+1}(a|s) = \underset{\pi_{i+1}}{argmin} - \underset{z \sim \pi_{i}(a|s)}{E}[R(z) \ge \psi_{i}] \log \pi_{i+1}(a|s)$$

$$\psi_i = M'$$
 th percentile of $R(z \sim \pi_i)$

Something wrong with the formula!

Finally, reinforcement learning

- Objective: H(x) = [R > threshold]
- p(x) = uniform
- Threshold = M'th (e.g. 50th) percentile of R

$$\pi_{i+1}(a|s) = \underset{\pi_{i+1}}{\operatorname{argmin}} - \underset{z \sim \pi_i(a|s)}{E} [R(z) \geq \psi_i] \log \pi_{i+1}(a|s)$$

No p(x)/q(x) term as it's okay to expect over pi(a|s)

$$\psi_i = M'$$
 th percentile of $R(z \sim \pi_i)$

TL;DR, simplified

- Sample N=100 sessions
- Take M=25 best
- Fit policy to behave as in M best sessions
- Repeat until satisfied

Policy will gradually get better.

Tabular crossentropy method

Policy is a matrix

$$\pi(a|s) = A_{s,a}$$

- Sample N games with that policy
- Get M best games (highest reward)
- Contatenate, K state-action pairs total

Elite =
$$[(s_0, a_0), (s_1, a_1), (s_2, a_2), ..., (s_k, a_k)]$$

Tabular crossentropy method

Policy is a matrix

$$\pi(a|s) = A_{s,a}$$

- Sample N games with that policy
- Take M best (highest reward)
- Aggregate by states

$$\sum_{s_t, a_t \in Elite} [s_t = s][a_t = a]$$

$$\pi(a|s) = \frac{\sum_{s_t, a_t \in Elite} [s_t = s]}{\sum_{s_t, a_t \in Elite} [s_t = s]}$$

Tabular crossentropy method

Policy is a matrix

$$\pi(a|s) = A_{s,a}$$

- Sample N games with that policy
- Take M best (highest reward)
- Aggregate by states

$$\pi(a|s) = \frac{took \, a \, at \, s}{was \, at \, s} - In \, M \, best \, games$$

Smoothing

- If you were in some state only once, you only take this action now.
- Apply smoothing

$$\pi(a|s) = \frac{[took\ a\ at\ s] + \lambda}{[was\ at\ s] + \lambda \cdot N_{actions}}$$
In M best games

Alternative idea: smooth updates

$$\pi_{i+1}(a|s) = \alpha \cdot \pi_{opt} + (1-\alpha)\pi_i(a|s)$$

Stochastic MDPs

- If there's randomness in environment, algorithm will prefer "lucky" sessions.
- Training on lucky sessions is no good

 Solution: sample action for each state and run several simulations with these state-action pairs. Average the results.

- Policy is approximated
 - Neural network predicts $\pi_W(a|s)$ given s
 - Linear model / Random Forest / ...

Can't set $\pi(a|s)$ explicitly

All state-action pairs from M best sessions

Elite =
$$[(s_0, a_0), (s_1, a_1), (s_2, a_2), ..., (s_k, a_k)]$$

Neural network predicts $\pi_w(a|s)$ given s

All state-action pairs from M best sessions

Elite =
$$[(s_0, a_0), (s_1, a_1), (s_2, a_2), ..., (s_k, a_k)]$$

Maximize likelihood of actions in "best" games

$$\pi = \underset{\pi}{argmax} \sum_{s_i, a_i \in Elite} \log \pi(a_i|s_i)$$

Neural network predicts $\pi_w(a|s)$ given s

All state-action pairs from M best sessions

$$best = [(s_0, a_0), (s_1, a_1), (s_2, a_2), ..., (s_K, a_K)]$$

Maximize likelihood of actions in "best" games conveniently,

nn.fit(elite_states,elite_actions)

• Initialize NN weights $W_0 \leftarrow random$

- Loop:
 - Sample N sessions
 - elite = take M best sessions and concatenate

$$- W_{i+1} = W_i + \alpha \nabla \left[\sum_{s_i, a_i \in Elite} \log \pi_{W_i}(a_i | s_i) \right]$$

• Initialize NN weights $W_0 \leftarrow random$

model = MLPClassifier()

- Loop:
 - Sample N sessions
 - elite = take M best sessions and concatenate

$$- W_{i+1} = W_i + \alpha \nabla \left[\sum_{s_i, a_i \in Elite} \log \pi_{W_i} (a_i | s_i) \right]$$

model.fit(elite_states,elite_actions)

Continuous action spaces

- Continuous state space
- Model $\pi_W(a|s) = N(\mu(s), \sigma^2)$
 - Mu(s) is neural network output
 - Sigma is a parameter or yet another network output
- Loop:
 - Sample N sessions
 - elite = take M best sessions and concatenate

$$- W_{i+1} = W_i + \alpha \nabla \left[\sum_{s_i, a_i \in Elite} \log \pi_{W_i}(a_i | s_i) \right]$$

Continuous action spaces

- Continuous state space model = MLPRegressor()
- Model $\pi_W(a|s) = N(\mu(s), \sigma^2)$
 - Mu(s) is neural network output
 - Sigma is a parameter or yet another network output
- Loop:
 - Sample N sessions
 - elite = take M best sessions and concatenate

Tricks

- Remember sessions from 3-5 past iterations
 - Threshold and use all of them when training
 - May converge slower if env is easy to solve.

- Regularize with entropy
 - to prevent premature convergence.

- Parallelize sampling
- Use RNNs if partially-observable

Seminar

CHAME ACCEPTED

Bonus round!

Crossentropy method

- Stochastic optimization
- Not specific to RL
- Has theoretical issues (stochastic MDP)

Policy gradient (monte-carlo)

- Log-derivative trick
- Almost specific to RL
- Has practical issues

We want to optimize expected reward

$$arg_{\pi}^{max} \underset{z \sim \pi}{E} R(z)$$

$$z = [s_0, a_0, s_1, a_1, s_2, a_2, ..., s_n, a_n]$$

We want to optimize expected reward

$$arg_{\pi}^{max} E_{z \sim \pi}^{R(z)}$$

$$z=[s_0,a_0,s_1,a_1,s_2,a_2,...,s_n,a_n]$$

Straightforward way

$$J = \mathop{E}_{z \sim \pi} R(z) = \int_{z} \pi(z) R(z) dz$$

We want to optimize expected reward

$$argmax_{z \sim \pi} ER(z)$$

$$z = [s_0, a_0, s_1, a_1, s_2, a_2, ..., s_n, a_n]$$

Straightforward way

$$J = E R(z) = \int_{z \to \pi} \pi(z) R(z) dz$$
 over all possible sessions... Probability of such session under current policy (math slang)

59

We want to optimize expected reward

$$argmax_{z \sim \pi} E_{x} R(z)$$

$$z = [s_0, a_0, s_1, a_1, s_2, a_2, ..., s_n, a_n]$$

Approximate way

$$J = \mathop{E}_{z \sim \pi} R(z) \approx \frac{1}{N} \sum_{z_{i} \sim \pi}^{N} R(z)$$

We want to optimize expected reward

$$arg_{\pi}^{max} E_{z \sim \pi}^{R(z)}$$

$$z = [s_0, a_0, s_1, a_1, s_2, a_2, ..., s_n, a_n]$$

Approximate way

$$J = \mathop{E}_{z \sim \pi} R(z) \approx \frac{1}{N} \sum_{z_i \sim \pi}^{N} R(z)$$

$$\nabla J = \frac{\partial J}{\partial \pi} = ???$$

We want to optimize expected reward

$$argmax_{z \sim \pi} E_{z} R(z)$$

$$z = [s_0, a_0, s_1, a_1, s_2, a_2, ..., s_n, a_n]$$

Approximate way

$$J = E_{z \sim \pi} R(z) \approx \frac{1}{N} \sum_{z_i \sim \pi}^{N} R(z)$$

$$\nabla J = \frac{\partial J}{\partial \pi} = ???$$
Can't compute gradient over sampling

Objective

$$J = \mathop{E}_{z \sim \pi} R(z) \approx \frac{1}{N} \sum_{z_{i} \sim \pi}^{N} R(z)$$

$$\nabla J = \int_{z} \nabla \pi(z) R(z) dz$$

Logderivative trick

Simple math

$$\nabla \log \pi(z) = ???$$

(try chain rule)

Logderivative trick

Simple math

$$\nabla \log \pi(z) = \frac{1}{\pi(z)} \cdot \nabla \pi(z)$$

$$\pi \cdot \nabla \log \pi(z) = \nabla \pi(z)$$

Objective

$$J = \mathop{E}_{z \sim \pi} R(z) \approx \frac{1}{N} \sum_{z_i \sim \pi}^{N} R(z)$$

$$\nabla J = \int_{z} \nabla \pi(z) R(z) dz$$

$$\pi \cdot \nabla \log \pi(z) = \nabla \pi(z)$$

Objective

$$J = \mathop{E}_{z \sim \pi} R(z) \approx \frac{1}{N} \sum_{z_i \sim \pi}^{N} R(z)$$

$$\nabla J = \int_{z} \pi \cdot \nabla \log \pi(z) R(z) dz$$

Objective

$$J = \mathop{E}_{z \sim \pi} R(z) \approx \frac{1}{N} \sum_{z_i \sim \pi}^{N} R(z)$$

$$\nabla J = \int_{z} \pi \cdot \nabla \log \pi(z) R(z) dz$$

Objective

$$J = \mathop{E}_{z \sim \pi} R(z) \approx \frac{1}{N} \sum_{z_i \sim \pi}^{N} R(z)$$

$$\nabla J \approx \frac{1}{N} \sum_{z_i \sim \pi}^{N} \nabla \log \pi(z) R(z)$$

• Initialize NN weights $W_0 \leftarrow random$

- Loop:
 - Sample N sessions (states, actions, final reward)
 - Update weights

$$W_{i+1} = W_i + \alpha \nabla \left[\sum_{i=0}^{N} R_k \cdot \log \pi_{W_i}(z_k) \right]$$

• Initialize NN weights $W_0 \leftarrow random$

- Loop:
 - Sample N sessions (states, actions, final reward)
 - Update weights

$$W_{i+1} = W_i + \alpha \nabla \sum_{i=0}^{N} R_k \cdot \log \pi_{W_i}(z_k)$$
That's slang.

Let's be more explicit!

• Initialize NN weights $W_0 \leftarrow random$

- Loop:
 - Sample N sessions (states, actions, final reward)
 - Update weights

$$W_{i+1} = W_i + \alpha \nabla \left[\sum_{i=0}^{N} R_k \cdot \sum_{s_i, a_i \in Z_k} \log \pi_{W_i}(a_i | s_i) \right]$$

• Initialize NN weights $W_0 \leftarrow random$

model = MLPClassifier()/MLPRegressor() or whatever

- Loop:
 - Sample N sessions (states, actions, final reward)
 - Update weights

$$W_{i+1} = W_i + \alpha \nabla \left[\sum_{i=0}^{N} R_k \cdot \sum_{s_j, a_j \in z_k} \log \pi_{W_i}(a_i | s_i) \right]$$

model.fit(states,actions,sample_weight=total_rewards)

Comparison

Crossentropy method

Minimize crossentropy (with threshold)

$$\nabla L \approx -\frac{1}{N} \sum_{z_i \sim \pi}^{N} \nabla \log \pi(z) [R(z) \ge \psi]$$

Policy gradient

Maximize expected reward

$$\nabla J \approx \frac{1}{N} \sum_{z_i \sim \pi}^{N} \nabla \log \pi(z) R(z)$$

Tricks (policy gradient edition)

- Regularize with entropy
 - to prevent premature convergence.

- Parallelize sampling
- Use RNNs if partially-observable
- Reduce variance
 Design R(z) so that it's less noisy

More on that later!

Monte-carlo: upsides

- Great for short episodic problems
- Very modest assumptions
 - Easy to extend to continuous actions, partial observations and more

Monte-carlo: downsides

- Need full session to start learning
- Require a lot of interaction
 - A lot of crashed robots / simulations

Gonna fix that next lecture!

- Need full some start learning
- Require a eraction
 - A lot of crasneu robots / simulations

After 70+ slides...

CHAMENCE ACCEPTED

