

Useful Methods

g.remove(())

Used to remove triples from the graph. Same syntax as g.add

Collection()

Used to add more members to your triple (often objects)

BNode()

An anonymous node, different use cases (see lecture notes)

g.parse()

Used to retrieve graphs from external sources (e.g. file)

RDF.type

Predicate used to specify what a subject is (e.g. a Person)

g.bind()

Used to add your prefix to the graph. Otherwise it's ns1, ns2 etc.

LET'S TAKE A LOOK AT BLANK NODES. WE WANT USE BLANK NODES WHENEVER:

- WE ARE NOT YET SURE WHAT THE URI (UNIFORM RESOURCE IDENTIFIER) WILL BE
- WE DO NOT WANT TO IDENTIFY THE URI
- WE WANT TO GROUP PROPERTIES THAT ARE RELATED

THE LATTER IS WHAT WE ARE GOING TO BE WORKING WITH TODAY. HERE IS A QUICK EXAMPLE OF HOW YOU COULD HAVE EXPRESSED SOMEONE'S ADDRESS WITH WHAT YOU LEARNED LAST LAB

 ш	

NOW USING BLANK NODES, WE CAN GROUP THE RELATED PROPERTIES FROM THE PREVIOUS EXAMPLE. WE CAN THEN CHANGE THE GRAPH TO THE FOLLOWING:

ESSENTIALLY WHAT IS SAID HERE IS THE FOLLOWING:

ex:Emma ex:address _:b0 (blank node)
_:b0 ex:streetName ex:SomeStreetName (and then the rest of the triples)

	X
_	•

IF WE WANT TO ADD THE PREVIOUS EXAMPLE TO OUR GRAPH WITH RDFLIB, WE CAN DO THE FOLLOWING:

```
from rdflib import Graph, Namespace, BNode, Literal, XSD
g = Graph()
ex = Namespace('http://example.org/')
EmmaAddress = BNode()
g.add((EmmaAddress, ex.streetName, ex.SomeStreetName))
g.add((EmmaAddress, ex.streetNumber, Literal(104, datatype=XSD.integer)))
g.add((EmmaAddress, ex.postalCode, Literal(5555, datatype=XSD.integer)))
g.add((EmmaAddress, ex.areaName, ex.SomeAreaName))
g.add((EmmaAddress, ex.city, ex.Bergen))
g.add((EmmaAddress, ex.county, ex.Vestland))
g.add((EmmaAddress, ex.country, ex.Norway))
g.add((ex.Emma, ex.address, EmmaAddress))
print(g.serialize(format='ttl'))
```

TO SOLVE LAST WEEK'S LAB YOU HAD TO WRITE SEVERAL TRIPLES TO SOLVE "IT INVOLVED PAUL MANAFORT, RICK GATES, GEORGE PAPADOPOULOS, MICHAEL FLYNN, MICHAEL COHEN, AND ROGER STONE." E.G. LIKE THIS:

@prefix ex: <http://example.org/>.

ex:MuellerInvestigation ex:involved ex:RogerStone; ex:involved ex:PaulManafort; (and so on)

THERE ARE MORE EFFECTIVE WAYS OF WRITING IT, USING COLLECTION. WE CAN USE THIS TO GROUP RESOURCES. SAY WE WANT TO SOLVE LAST WEEK'S LAB TASK:

@prefix ex: <http://example.org/>.

ex:MuellerInvestigation ex:involved (ex:RogerStone ex:PaulManafort ex:RickGates ex:GeorgePapaDopoulos ex:MichaelFlynn ex:MichaelCohen).

IF WE WANT TO ADD THE PREVIOUS EXAMPLE TO OUR GRAPH WITH RDFLIB, WE CAN DO THE FOLLOWING:

```
from rdflib import Graph, Namespace, BNode
from rdflib.collection import Collection #Note you need rdflib.collection!
g = Graph()
ex = Namespace('http://example.org/')
MuellerInvestigationConviction = BNode()
Collection(g, MuellerInvestigationConviction, [ex.RickGates, ex.RogerStone,
                                              ex.PaulManafort, ex.GeorgePapaDopoulos,
                                              ex.MichaelFlynn, ex.MichaelCohen])
g.add((ex.MuellerInvestigation, ex.involved, MuellerInvestigationConviction))
print(g.serialize(format='ttl'))
```