

Bài 12 HỌC CỘNG ĐỒNG (ENSEMBLE LEARNING)

Al Academy Vietnam

Nguyễn Quang Uy

Nội dung buổi học

- ❖ Giới thiệu về ensemble learning
- Lý do xây dựng ensemble learning
- Phương pháp xây dựng ensemble learning
 - □ Bagging
 - Boosting
 - ☐ Random subspace ensemble
 - ☐ Random Forest
- Phương pháp kết hợp các bộ phân lớp

Giới thiệu về ensemble learning

Ensemble learning là gì?

- Set of Classifiers
- Decisions combined in "some" way

Source: Ray Mooney

Lợi ích của ensemble learning

- "No Free Lunch" Theorem
 - No single algorithm wins all the time!
- When combining multiple independent and diverse decisions each of which is at least more accurate than random guessing, random errors cancel each other out, correct decisions are reinforced.
- Examples: Human ensembles are demonstrably better
 - How many jelly beans in the jar?: Individual estimates vs. group average.
 - Who Wants to be a Millionaire: Audience vote.

Lợi ích của ensemble learning

Reality			•••			•••	··
1		X		X		••	X
2	X		••	X		•••	X
3			X		X	X	
4		•••	X		X		
5		X				X	•••
Combine							

Lý do xây dựng ensemble learning

Lý do về tính toán

Computational

Lý do về biểu diễn

Phương pháp xây dựng

Phương pháp xây dựng ensemble

- Manipulating the Training Examples
 - Bagging
 - ✓ Boosting
- Manipulating the Input Features
 - Random subspace ensemble
 - ✓ Random forest
- Stacking

Phương pháp Bagging VINBIGDATA VINGROUP V

- Create bootstrap replicates of training set
- Train a classifier (e.g., a decision tree) for each replicate
- Estimate classifier performance using out--of--bootstrap data
- Average output of all classifiers

Phương pháp Bagging

Bootstrap estimators

The final estimate: $\underline{\theta} = (\underline{\theta}^1 + \underline{\theta}^2 + ... + \underline{\theta}^B)/B$

Uu và nhược điểm của Bagging

- The estimator can be significantly improved if the learning algorithm is unstable
- Degrade the performance of stable procedures

- Turns a base learner (i.e., a "weak hypothesis") into a high performance classifier
- Creates an ensemble of weak hypotheses by repeatedly emphasizing misspredicted instances
- Popular Boosting methods: Adaboost, Gradient boost,...

- 1. Initially, all observations in the dataset are given equal weights.
- 2. A model is built on a subset of data.
- 3. Using this model, predictions are made on the whole dataset.
- 4. Errors are calculated by comparing the predictions and actual values.

- 5. In the next model, higher weights are given to the data points which were predicted incorrectly.
- 6. Weights can be determined using the error value.
- 7. This process is repeated until the error function does not change, or the maximum limit of the number of estimators is reached.

Thuật toán AdaBoost

- 1: Initialize a vector of n uniform weights \mathbf{w}_1
- 2: **for** t = 1, ..., T
- 3: Train model h_t on X, y with weights \mathbf{w}_t
- 4: Compute the weighted training error of h_t
- 5: Choose $\beta_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- 6: Update all instance weights:

$$w_{t+1,i} = w_{t,i} \exp\left(-\beta_t y_i h_t(\mathbf{x}_i)\right)$$

- 7: Normalize \mathbf{w}_{t+1} to be a distribution
- 8: end for
- 9: **Return** the hypothesis

$$H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \beta_t h_t(\mathbf{x})\right)$$

Gradient Boosting (GBM)

- Fit a model to the data, F 1(x) = y
- Fit a model to the residuals, h 1(x) = y F 1(x)
- Create a new model, F(2(x)) = F(1(x)) + h(1(x))

Gradient Boosting (GBM)

- We can generalize this idea by inserting more models.
 Specifically:
- F(x) = F_1(x) -> F_2(x) = F_1(x) + h_1(x) -> F_M(x) =
 F_{M-1}(x) + h_{M-1}(x)
- where F_1(x) is an initial model fit to y
- Since we initialize the procedure by fitting F_1(x), our task at each step is to find h_m(x) = y - F_m(x).

Gradient Boosting (GBM) VINBIGDATA VINGROUP VOID

ID	Married	Gender	Current City	Monthly Income	Age (target)
1	Υ	М	Α	51,000	35
2	N	F	В	25,000	24
3	Υ	М	Α	74,000	38
4	N	F	Α	29,000	30
5	N	F	В	37,000	33

Gradient Boosting (GBM) VINBIGDATA VINGROUP VO

ID	Married	Gender	Current City	Monthly Income	Age (target)	Mean Age (prediction 1)	Residual 1
1	Υ	М	Α	51,000	35	32	3
2	N	F	В	25,000	24	32	-8
3	Υ	М	Α	74,000	38	32	6
4	N	F	Α	29,000	30	32	-2
5	N	F	В	37,000	33	32	1

Gradient Boosting (GBM) VINBIGDATA VINGROUP VO

ID	Age (target)	Mean Age (prediction 1)	Residual 1 (new target)	Prediction 2	Combine (mean+pred2)
1	35	32	3	3	35
2	24	32	-8	-5	27
3	38	32	6	3	35
4	30	32	-2	-5	27
5	33	32	1	3	35

Gradient Boosting (GBM) VINBIGDATA VINGROUP VOL

ID	Age (target)	Mean Age (prediction 1)	Residual 1 (new target)	Prediction 2	Combine (mean+pred2)	Residual 2 (latest target)
1	35	32	3	3	35	0
2	24	32	-8	-5	27	-3
3	38	32	6	3	35	-3
4	30	32	-2	-5	27	3
5	33	32	1	3	35	-2

Uu và nhược củaAdaBoost

- Theoretical guarantee (maximizes the likelihood)
- Often better than bagging
- Need large number of base classifier
- Sensitive to noise

Bagging vs Boosting VINBIGDATA VINGROUP VO

A sample of a single	classifier on an imaginary set of data.
	(Original) Training Set
Training-set-1:	1, 2, 3, 4, 5, 6, 7, 8

A sample of Bagging on the same data.				
	(Resampled) Training Set			
Training-set-1:	2, 7, 8, 3, 7, 6, 3, 1			
Training-set-2:	7, 8, 5, 6, 4, 2, 7, 1			
Training-set-3:	3, 6, 2, 7, 5, 6, 2, 2			
Training-set-4:	4, 5, 1, 4, 6, 4, 3, 8			

A sample of Boosting on the same data.				
	(Resampled) Training Set			
Training-set-1:	2, 7, 8, 3, 7, 6, 3, 1			
Training-set-2:	1, 4, 5, 4, 1, 5, 6, 4			
Training-set-3:	7, 1, 5, 8, 1, 8, 1, 4			
Training-set-4:	1, 1, 6, 1, 1, 3, 1, 5			

Phương pháp Random Subspace

- Randomly selecting subsets of components of the feature vector
- Each classifier constructed in the randomly chosen subspaces
- Often good for datasets having numerous features but less samples

Tin Kam Ho, 1998. The random subspace method for constructing decision forests. *IEEE Trans. Pattern Anal. Mach. Intell*, 20(8), pp.1-22.

Thuật toán Random Forest

- •Random forest (or random forests) is an ensemble classifier that consists of many decision trees and outputs the class that is the ensemble of the class's output by individual trees.
- The term came from **random decision forests** that was first proposed by Tin Kam Ho of Bell Labs in 1995.
- The method combines Breiman's "bagging" idea and the random selection of features.

Thuật toán Random Forest

Each tree is constructed using the following algorithm:

- 1. Let the number of training cases be *N*, and the number of variables in the classifier be *M*.
- 2. We are told the number *m* of input variables to be used to determine the decision at a node of the tree; *m* should be much less than *M*.
- 3. Choose a training set for this tree by choosing *n* times with replacement from all *N* available training cases (i.e. take a bootstrap sample). Use the rest of the cases to estimate the error of the tree, by predicting their classes.
- 4. For each node of the tree, randomly choose m variables on which to base the decision at that node. Calculate the best split based on these m variables in the training set.
- 5. Each tree is grown as be done in constructing a normal tree classifier.

Stacking

- •Stacking is an ensemble learning technique that combines multiple models via a meta-model.
- The base level models are trained on a complete training set.
- •The meta-model is trained on the outputs of the base level model as features.

Stacking

Concept Diagram of Stacking

Stacking

Algorithm Stacking

- 1: Input: training data $D = \{x_i, y_i\}_{i=1}^m$
- 2: Ouput: ensemble classifier H
- 3: Step 1: learn base-level classifiers
- 4: for t = 1 to T do
- 5: learn h_t based on D
- 6: end for
- 7: Step 2: construct new data set of predictions
- 8: for i = 1 to m do
- 9: $D_h = \{x_i', y_i\}, \text{ where } x_i' = \{h_1(x_i), ..., h_T(x_i)\}$
- 10: end for
- 11: Step 3: learn a meta-classifier
- 12: learn H based on D_h
- 13: return H

Kết hợp các bộ phân lớp

Phương pháp kết hợp

Final hypothesis is a simple vote of the members

Combining Classifiers:

Weighted Average

• Coefficients of individual members are trained using a validation set

Thank you!

Thank

HOU.