# Práctica 2: Algoritmos Divide y Vencerás

Daniel Bolaños Martínez, José María Borrás Serrano, Santiago De Diego De Diego, Fernando De la Hoz Moreno

**ETSIIT** 

### Introducción

Nos ha tocado resolver el ejercicio serie unimodal de números.

Para ello, hemos diseñado un algoritmo basado en "divide y vencerás" el cual tiene como objetivo encontrar el valor máximo de una serie unimodal. El orden de eficiencia de este algoritmo es O(log(n)) y lo hemos comparado con el algoritmo trivial para este problema que es de orden O(n).

### Desarrollo de la Práctica

Para la comparación hemos obtenido unas tablas en las que se muestran el tiempo de ejecución según distintos número de elementos en los vectores, hemos representado los datos en una gráfica y hemos ajustado estos datos a la función obtenida por la eficiencia teórica por el ajuste de mínimos cuadrados.

# Código Divide y Vencerás

#### Listing 1: Función unimodal DyV

```
unimodal(vector<int> v)
bool fin=false:
int maximo=v.size()-1;
int indice=maximo/2;
int minimo:
while (! fin )
if (v.at(indice -1) < v.at(indice))
   if (v.at(indice+1)<v.at(indice))
                      fin=true:
            else
                          minimo=indice:
                          indice=indice + ((maximo-indice)/2);
         else
                 maximo=indice:
                  indice=minimo+((indice-minimo)/2);
return indice;
```

#### Listing 2: Función main DyV

```
int main(int argc, char* argv[])
    vector<int> array;
    int valor = -1:
    double suma=0:
    int v_size = atoi(argv[1]);
    array.resize(v_size);
    for (int i=0; i<100; ++i)
            int p = 1 + rand() \% (v_size -2);
            array.at(p) = v_size -1;
            for (int i=0; i < p; i++)
                     arrav.at(i)=i:
            for (int i=p+1; i < v_size; i++)
                     arrav.at(i)=v_size-1-i+p:
            clock_t tantes;
            clock_t tdespues:
            tantes=clock();
            valor = unimodal(array);
            tdespues=clock();
            suma += (double)(tdespues - tantes) / CLOCKS_PER_SEC;
    cout << v_size <<"_"<< suma/100 << endl;
```

# Código secuencial

Listing 3: Función unimodal Secuencial

```
unimodal_secuencial(vector<int> v)
bool fin=false:
int indice = 1;
while (! fin )
if (v.at(indice+1)<v.at(indice))</pre>
          fin=true;
else
         indice++:
return indice;
```

#### Listing 4: Función main Secuencial

```
int main(int argc, char* argv[])
    vector<int> array;
    int valor = -1:
    double suma=0:
    int v_size = atoi(argv[1]);
    array.resize(v_size);
    for (int i=0; i<100; ++i)
            int p = 1 + rand() \% (v_size -2);
            array.at(p) = v_size -1;
            for (int i=0; i < p; i++)
                     arrav.at(i)=i:
            for (int i=p+1; i < v_size; i++)
                     arrav.at(i)=v_size-1-i+p:
            clock_t tantes;
            clock_t tdespues:
            tantes=clock();
            valor = unimodal_secuencial(array);
            tdespues=clock();
            suma += (double)(tdespues - tantes) / CLOCKS_PER_SEC;
    cout \ll v_size \ll " " \ll suma/100 \ll endl;
```

# Tabla Datos DyV

| Tamaño Vectores | Tiempo Divide y Vencerás |
|-----------------|--------------------------|
| 1048576         | 7.796e-05                |
| 2097152         | 0.00016308               |
| 4194304         | 0.00038871               |
| 8388608         | 0.00117717               |
| 16777216        | 0.00227126               |
| 33554432        | 0.00456919               |
| 67108864        | 0.00894183               |
| 134217728       | 0.0170173                |
| 268435456       | 0.0335588                |
| 536870912       | 0.0668834                |

## Tabla Datos Secuencial

| Tamaño Vectores | Tiempo Secuencial |
|-----------------|-------------------|
| 1000000         | 0.00169148        |
| 2000000         | 0.00341387        |
| 3000000         | 0.00515229        |
| 4000000         | 0.00688878        |
| 5000000         | 0.00583811        |
| 6000000         | 0.0102687         |
| 7000000         | 0.0119547         |
| 8000000         | 0.013579          |
| 9000000         | 0.0157071         |
| 10000000        | 0.017487          |
| 11000000        | 0.0192033         |
| 12000000        | 0.0209426         |

| Tamaño Vectores | Tiempo Secuencial |
|-----------------|-------------------|
| 13000000        | 0.022794          |
| 14000000        | 0.0245116         |
| 15000000        | 0.0260875         |
| 16000000        | 0.0278383         |
| 17000000        | 0.0296462         |
| 18000000        | 0.0314487         |
| 19000000        | 0.033057          |
| 20000000        | 0.0348266         |
| 21000000        | 0.0367226         |
| 22000000        | 0.0383142         |
| 23000000        | 0.0401301         |
| 24000000        | 0.0418608         |
| 25000000        | 0.0434716         |
| 26000000        | 0.0455227         |

## Eficiencia en el caso secuencial



## Eficiencia en el caso Divide y Vencerás



## Ajuste híbrido en el caso secuencial



Figura: Ajustada a la función  $f(x) = a_0 * x + a_1$ 

$$f(x) = a_0 * x + a_1$$
$$a_0 = 1,75072e - 09$$
$$a_1 = -0,000131396$$

## Ajuste híbrido en el caso Divide y Vencerás



Figura: Ajustada a la función  $f(x) = a_0 * log(x) + a_1 * x + a_2$ 

$$f(x) = a_0 * log(x) + a_1 * x + a_2$$
$$a_0 = 1,75072e - 09$$
$$a_1 = 1,24488e - 10$$
$$a_2 = 0,000151147$$



### Conclusión

Como podemos observar, el mismo problema se puede resolver de forma más rápida y eficiente si empleamos un algoritmo de tipo Divide y Vencerás que uno secuencial. En este caso con

Divide y Vencerás podemos conseguir que la eficiencia del algoritmo pase de ser O(n) a  $O(\log n)$ , por lo que somos capaces de procesar muchos más datos en un tiempo menor. De esta forma se puede concluir que siempre que vayamos a

usar datos lo bastante grandes es mejor realizar el algoritmo mediante Divide y Vencerás que mediante uno secuencial.