Universidad Nacional Autónoma de Honduras Topología Ejercicios de Repaso para el Parcial III

Profesor: Dr. Fredy Vides

- 1. Probar en detalle que la propiedad de ser conexo es una propiedad topológica.
- 2. Probar que cada subconjunto conexo de \mathbb{R} es un intervalo.
- 3. Un punto p de un ET X es un punto de corte si $X \setminus \{p\}$ es desconexo. Probar que la propiedad de tener un punto de corte es una propiedad topológica.
- 4. Sea $f \in C([0,1],\mathbb{R}^n)$, $n \geq 2$, una función uno-uno. Probar que f([0,1]) no tiene interior.
- 5. Un ET es totalmente desconexo si sus componentes conexas son todas singuletes. Probar que cualquier espacio métrico contable es totalmente desconexo.
- 6. Probar que cada componente conexa de un ET es cerrada.
- 7. Mostrar por contraejemplo que una componente conexa de un ET no es necesariamente abierta.
- 8. Un ET es localmente conexo (LC) si, para cada punto $p \in X$ y cada conjunto abierto U que contiene a p, existe un conjunto abierto conexo V con $p \in V$ y $V \subset U$. Probar que cada componente conexa de un ET LC es abierta.
- 9. Probar que cualquier subintervalo de \mathbb{R} (cerrado, abierto, o semiabierto) es CPT.
- 10. Probar que la propiedad de ser CPT es una propiedad topológica.
- 11. Probar que si X es CPT y $f: X \to Y$ es un mapa, entonces f(X) es CPT.
- 12. Un espacio X es localmente conexo por trayectorias (LCPT) si, para cada subconjunto abierto V de X y cada $x \in V$, existe un vecindario U de x tal que x puede conectarse a cada punto de U por una trayectoria en V. Probar que las componentes de trayectorias de un ET LCPT coinciden con las componentes conexas.
- 13. Probar que si E_j es un subconjunto cerrado de X_j , $1 \le j \le n$, entonces $E_1 \times \cdots \times E_n$ es un subconjunto cerrado de $X_1 \times \cdots \times X_n$.
- 14. Probar que las componentes conexas de $X_1 \times \cdots \times X_n$ son los conjuntos de la forma $E_1 \times \times \cdots \times E_n$, donde E_j es una componente conexa de X_j , $1 \le j \le n$. Probar que un resultado similar es válido para componentes de trayectorias.
- 15. Probar que cada proyección π_{β} de ΠX_{α} sobre un espacio coordenado X_{β} es un mapa abierto.
- 16. Probar que el producto de espacios de Hausdorff es de Hausdorff.
- 17. Sea X/\sim el espacio cociente determinado por una relación de equivalencia \sim en un ET X. Probar las siguientes afirmaciones:

- (a) Si X es compacto, entonces X/\sim es compacto.
- (b) Si X es conexo, entonces X/\sim es conexo.
- (c) Si X es CPT, entonces X/\sim es CPT.
- 18. Sea f un mapa abierto contínuo de un ET X sobre un ET Y. Probar que Y es homeomorfo al espacio cociente de X obtenido al identificar cada conjunto de nivel de f con un punto.
- 19. Sea $X = X_1 \times \cdots \times X_n$ un producto de espacios topológicos. Definir una relación de equivalencia \sim en X declarando que $(x_1, \ldots, x_n) \sim (y_1, \ldots, y_n)$ ssi $x_1 = y_1$. Probar que X/\sim es homeomorfo a X_1 . Probar un resultado análogo para un espacio producto infinito $X = \prod_{\alpha \in A} X_{\alpha}$.