The U-net Model

A Fully Convolutional Neural Network Model

Roberto Souza Assistant Professor Electrical and Computer Engineering Schulich School of Engineering

W2024

Outline

Learning Goals

The U-net Model

Summary

Learning Goals

Understand the U-net architecture and its building blocks

Discuss potential applications of the U-net model

The U-net Model

 The U-net is a fully convolutional neural network (i.e., no fully connected layers)

Initially proposed for biomedical image segmentation problems

• It maps an input of size N into an output also of size N (if the convolutions are padded)

The U-net Model

 $(256,256,2) \rightarrow (256,256,32) \rightarrow (256,256,32) \rightarrow (128,128,32) \rightarrow (128,128,64)$

Up Sampling

- Opposite effect of max-pooling
- Many ways to do it
- Simplest way is nearest neighbor interpolation
- UpSampling2D -> <u>Keras layer</u>

1x1 Convolution

U-net - Segmentation

Segmentation = pixel-wise or voxel-wise segmentation

U-net –Regression

Metrics

- For regression:
 - Mean squared error
 - Mean absolute error
 - •
- For segmentation:
 - Dice coefficient
 - Jaccard coefficient
 - •

Summary

 The U-net is a very powerful deep learning model that maps inputs to outputs of the same size

The model works across different scales of the input signal/image

It is a fully convolutional model that is independent of the input size

Thank you!

