Electromagnetismo 1 Tarea 5

Sergio Montoya Ramírez

Contents

Chapter 1	Punto 7.10	Page 2
Chapter 2	Punto 7.12	Page 3
Chapter 3	Punto 7.16	Page 4
3.1	Parte B	4

Chapter 1

Punto 7.10

Para comenzar debemos tomar en consideración que la FEM seria:

$$\mathcal{E}\left(t\right) = -\frac{d\Phi}{dt}.$$

Por lo tanto, debemos iniciar por encontrar el flujo magnético atreves de la FEM. Para esto entonces usemos

$$\Phi = BS\cos\theta.$$

Tenemos cuanto es el área (que corresponde con a^2 dado que es una espira cuadrada). Ademas, dado que esta rotando entonces θ varia con el tiempo respecto a ωt Ademas de tener un campo B lo que seria entonces.

$$\Phi = B \cdot S$$

$$= Ba^{2} \cos(\omega t)$$

$$\mathcal{E}(t) = -\frac{d\Phi}{dt}$$

$$= -\frac{d(Ba^{2} \cos(\omega t))}{dt}$$

$$= -Ba^{2}(-\sin(\omega t))\omega$$

$$= B\omega a^{2} \sin(\omega t) \square.$$

Chapter 2

Punto 7.12

Para este caso, volvemos a iniciar por calcular el flujo magnético. Para esto necesitamos saber cuanto es el área que dado que es una espira circular seria $\pi r^2 = \pi \left(\frac{a}{2}\right)^2 = \frac{\pi a^2}{4}$. Ademas de que ya tenemos el campo magnético entonces esto seria

$$\Phi = B(t) \cdot A = \frac{\pi a^2}{4} B_0 \cos{(\omega t)} \, .$$

Ahora con esto podemos de nuevo encontrar la FEM que seria

$$\mathcal{E} = -\frac{d\Phi}{dt}$$

$$= -\frac{\pi a^2}{4} B_0 \frac{d}{dt} \left[\cos(\omega t)\right]$$

$$= -\frac{\pi a^2}{4} B_0 \left[-\sin(\omega t)\right] \omega$$

$$= \frac{\pi a^2}{4} \omega B_0 \sin(\omega t).$$

Con todo esto entonces podemos terminar calculando la corriente inducida lo que quedaría como

$$I(t) = \frac{\mathcal{E}}{R}$$

$$= \frac{\frac{\pi a^2 \omega B_0}{4} \sin(\omega t)}{R}$$

$$= \frac{\pi a^2 \omega B_0}{4R} \sin(\omega t) \square.$$

Chapter 3

Punto 7.16

3.1 Parte B

Para esto vamos a usar un loop amperiano.

 $\mathbf{B}_{\phi}(s,t)$

