國立台灣大學電機資訊學院電子工程學研究所

系統晶片設計實驗 Soc Design Laboratory

Final Project Report

Final Project

學生: <u>M11202109 蘇柏丞</u> <u>M11202103 陳泓宇</u>

M11202207 呂彥霖

老師: 賴瑾

- · Function:

- 1. An accelerator for matrix multiplication (4 x 4) and quicksort (11) has been designed and integrated into the SoC.
- 2. The baud rate for the UART has been changed from 9600 to 115200.
- 3. The type of memory is BRAM with prefetch controller.
- 4. The designs have be implemented on SoC.
- 5. The SoC have be programed into FPGA and verified on jupyter notebook

二、 Block Diagram:

三、 Synthesis report:

1. Timing Report

Synthesis

etup		Hold		Pulse Width	
Worst Negative Slack (WNS):	8.245 ns	Worst Hold Slack (WHS):	-0.762 ns	Worst Pulse Width Slack (WPWS):	11.250 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	-1.523 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	2	Number of Failing Endpoints:	0
Total Number of Endpoints:	17323	Total Number of Endpoints:	17323	Total Number of Endpoints:	6938

• Implementation

etup		Hold		Pulse Width	
Worst Negative Slack (WNS):	5.175 ns	Worst Hold Slack (WHS):	0.020 ns	Worst Pulse Width Slack (WPWS):	11.250 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	16207	Total Number of Endpoints:	16207	Total Number of Endpoints:	6508

2. Resource Report

• Synthesis

Resource	Utilization	Available	Utilization %
LUT	7988	53200	15.02
LUTRAM	373	17400	2.14
FF	7799	106400	7.33
BRAM	18	140	12.86
DSP	15	220	6.82

Implementation

Resource	Utilization	Available	Utilization %
LUT	7988	53200	15.02
LUTRAM	373	17400	2.14
FF	7799	106400	7.33
BRAM	18	140	12.86
DSP	15	220	6.82

四、 Register specification:

1. Base Address Map

User Project	Base Address Map	
Memory Starting	3800_0000	
FIR Base Address	3600_0000	
Matrix Multiplication Base Address	3400_0000	
Quick Sort Base Address	3200_0000	
UART Base Address	3000_0000	

2. Register Address Map – FIR

FIR		
	[0]	ap_start (r/w)
	[1]	ap_done (ro)
0x00	[2]	ap_idle (ro)
	[3]	X[n]_ready to accept input (<u>ro</u>)
	[4]	Y[n] is ready to read
0x10-13	data-length	
0x40-7F	Tap parameters	
0x80-83	X[n] input (r/w)	
0x84-87	Y[n] output (ro)	

3. Register Address Map – Matrix Multiplication

Matrix Multiplication			
	[0]	ap_start (r/w)	
	[1]	ap_done (ro)	
0x00	[2]	ap_idle (ro)	
	[3]	X[n]_ready to accept input (ro)	
	[4]	Y[n] is ready to read	
0x80-83	X[n] input (r/w)		
0x84-87	Y[n] output (ro)		

4. Register Address Map – Quick Sort

Quick Sort			
	[0]	ap_start (r/w)	
	[1]	ap_done (ro)	
0x00	[2]	ap_idle (ro)	
	[3]	X[n]_ready to accept input (ro)	
	[4]	Y[n] is ready to read	
0x80-83	X[n] input (r/w)		
0x84-87	Y[n] output (ro)		

五、 Waveform & latency

1. FIR

fir_latency-timer : 7377 (cycles)

2.

3. MM

4. UART

六、 How to verify answer from notebook:

```
ipOUTPIN.write(0x18, 0)
print("Start Caravel Soc")
ipOUTPIN.write(0x18, 1)
print ("Oxic = ", hex(ipPs.read(0xic)))

Start Caravel Soc

Oxic = 0x40

import time

# Reset FIFOs, enable interrupts
ipOutert.write(CTRL REG, 1<RST TX | 1<<RST_RX | 1<<INTR_EN)
print("Natiting for interrupt")

tx_str = ""
for in range(S12):
tx_str + "h'

uart_c_start_time = time.time_ns()
ipOutr.write(TX_FIFO, ord(tx_str[0]))
i = 1

temp = ""
    #Read FIFO until valid bit is clear
    #while(silen(tx_str)):
    # oward intlant.walt()
buf = ""

# Read FIFO until valid bit is clear
while (silen(tx_str)):
    if islen(tx_str):
    injuart.write(TX_FIFO, ord(tx_str[1]))
    if islen(tx_str):
    injuart.write(TX_FIFO, ord(tx_str[1]))
    if islen(tx_str):
    injuart.write(TX_FIFO, ord(tx_str[1]))
    injuart.write(TX_FIFO, ord(tx_str[1]))
    injuart.ord(time = time.time_ns())

print("uart loop back latnecy for ",temp," = ",uart_c_end_time - uart_c_start_time ,"ns")

Naitting for interrupt
uart_c_end_time = time.time_ns()

print("uart loop back latnecy for ",temp," = ",uart_c_end_time - uart_c_start_time ,"ns")

Naitting for interrupt
uart_loop back latnecy for ",temp," = ",uart_c_end_time - uart_c_start_time ,"ns")

Naitting for interrupt

uart_o_end_time = time.time_ns()

print("uart loop back latnecy for ",temp," = ",uart_c_end_time - uart_c_start_time ,"ns")

Naitting for interrupt

uart_o_end_time = time.time_ns()

print("uart loop back latnecy for ",temp," = ",uart_c_end_time - uart_c_start_time ,"ns")

Naitting for interrupt

uart_o_end_time = time.time_ns()

print("uart loop back latnecy for ",temp," = ",uart_c_end_time - uart_c_start_time ,"ns")

Naitting for interrupt

uart_o_end_time = time.time_ns()

print("uart loop back latnecy for ",temp," = ",uart_o_end_time - uart_c_start_time ,"ns")

print("uart loop back latnecy for ",temp," = ",uart_o_end_time - uart_o_start_time ,"ns")

Naitting for inte
```

七、 QoR

 QoR Metric for Computation (matmul, qsort fir) – Based on Simulation

MM: 679 (cycles) QS: 683 (cycles) FIR: 7377 (cycles)

Total cycles: 8739 (cycles)

 QoR Metric for Communication (UART) – Based on FPGA, PS Latency: 1163962099 ns
 QoR Metrics = 1.163962099 – 500 * (1/115200) = 1.1545383

八、 Work Partition:

	Quick Sort
蘇柏丞	PPT
	Implementation
	Matrix Multiplication
呂彥霖	Report
	PS side verification
	UART
陳泓宇	Prefetch controller
	Integration