Unit 13

——Programmable Logic Devices

张彦航

School of Computer Science Zhangyanhang@hit.edu.cn

组合型FPLA

例4:利用PLA设计2位二进制同步可逆计数器,假设PLA中是JK触发器.

X=0:加法; X=1:减法;

Y: 进位(借位)

2 transition table

① state graph

\boldsymbol{X}	Q_2^n	Q_1^n	Q_2^{n+1}	Q_1^{n+1}	Y
0	0	0	0	1	0
0	0	1	1	0	0
0	1	0	1	1	0
0	1	1	0	0	1
1	0	0	1	1	1
1	0	1	0	0	0
1	1	0	0	1	0
1	1	1	1	0	0

$$\begin{cases} J_{1} = K_{1} = 1 \\ J_{2} = K_{2} = X \overline{Q}_{1}^{n} + \overline{X} Q_{1}^{n} \end{cases}$$

3 Realize

Example

PLA及其应用

例5:利用PLA设计模12计数器,并在七段数码管上显示计数值,假设PLA中是JK触发器。

① 设计模12计数器

y ₄	y ₃	$\mathbf{y_2}$	y ₁	y ₄ ⁿ⁺	¹ y ₃ ⁿ⁺	$^{1}y_{2}^{n+1}$	¹ y ₁ ⁿ⁺¹	$J_4 K_4$	$J_3 K_3$	$J_2 K_2 J_1 K$	1
0	0	0	0	0	0	0	1	0 ×	0 ×	0 × 1 ×	:
0	0	0	1	0	0	1	0	0 ×	0 ×	1 × × 1	L
0	0	1	0	0	0	1	1	0 ×	0 ×	× 0 1 ×	<
0	0	1	1	0	1	0	0	0 ×	1 X	× 1 × 1	l
0	1	0	0	0	1	0	1	0 ×	\times 0	0 × 1 ×	<
0	1	0	1	0	1	1	0	0 ×	\times 0	1 × ×	1
0	1	1	0	0	1	1	1	0 ×	\times 0	× 0 1 ×	<
0	1	1	1	1	0	0	0	1 ×	X 1	× 1 × 1	
1	0	0	0	1	0	0	1	$\times 0$	0 ×	0 × 1 ×	<
1	0	0	1	1	0	1	0	$\times 0$	0 ×	1 × × 1	l
1	0	1	0	1	0	1	1	$\times 0$	0 ×	× 0 1 ×	<
1	0	1	1	0	0	0	0	0 ×	1 ×	× 1 × 1	L

② 设计显示译码器

译码器输入: 4位, 来自模12计数器

译码器输出: 14位, 驱动两个7段数码管

	十位			个位	
$y_4y_3 y_2y_1$	abcde fg		$y_4y_3 y_2y_1$	abcde fg	
0 0 0 0	1111110	0	0 0 0 0	1111110	0
0 0 0 1	1111110	0	0 0 0 1	0110000	1
0 0 1 0	1111110	0	0 01 0	1101101	2
0 0 1 1	1111110	0	0 01 1	1111001	3
0100	1111110	0	0100	0110011	4
0 1 0 1	1111110	0	0101	1011011	5
0 1 1 0	1111110	0	0110	0011111	6
0 1 1 1	1111110	0	0 1 1 1	1110000	7
1000	1111110	0	1000	1111111	8
1001	1111110	0	1001	1110011	9
1010	0110000	1	1 01 0	1111110	0
1011	0110000	1	1 01 1	0110000	1

例6: 利用PLA设计时序锁(假设PLA中是 JK触发器)

- □ 输入: X₁X₂, 输出: Z
- □ 该锁内部有四个状态R、B、C、E
- □ 依次输入00、01、11, 时序锁从状态 $\mathbb{R} \to \mathbb{B} \to \mathbb{C}$, 并开锁 ($\mathbb{Z}=1$)
- □ 不是上述序列,进入状态 E (error)
- □任何时候只要输入00、都将返回状态 R

① 状态设定

R—初始状态,输入00

B—输入00后, 再输入01

C-输入00、01后, 再输入11

E—错误状态

现态	次态S _{n+1}						
$S_{\rm n}$	$X_1X_2 = 00$ $X_1X_2 = 01$ $X_1X_2 = 11$ $X_1X_2 = 10$						
R	R	В	$oldsymbol{E}$	E	0		
В	R	E	С	E	0		
С	R	E	E	E	1		
E	R	E	E	E	0		

2. 状态化简

3. 状态分配

需要2个JK触发器

R: 00, B: 01 E: 10, C: 11 0 1 0 R B 1 E C

输	输入		态	次			次态 输入		次态		输入			输出
X_1	X_2	$\mathbf{Y_2}^{\mathbf{n}}$	Y_1^n	\mathbf{Y}_{2}^{n+1}	\mathbf{Y}_{1}^{n+1}	J_2	K ₂	\mathbf{J}_1	\mathbf{K}_{1}	Z				
0	0	0	0	0	0	0	X	0	X	0				
0	0	0	1	0	0	0	X	X	1	0				
0	0	1	0	0	0	X	1	0	X	0				
0	0	1	1	0	0	X	1	X	1	1				
0	1	0	0	0	1	0	X	1	X	0				
0	1	0	1	1	0	1	X	X	1	0				
0	1	1	0	1	0	X	0	0	X	0				
0	1	1	1	1	0	X	0	X	1	1				
1	0	0	0	1	0	1	X	0	X	0				
1	0	0	1	1	0	1	X	X	1	0				
1	0	1	0	1	0	X	0	0	X	0				
1	0	1	1	1	0	X	0	X	1	1				
1	1	0	0	1	0	1	X	0	X	0				
1	1	0	1	1	1	1	X	X	0	0				
1	1	1	0	1	0	X	0	0	X	0				
1	1	1	1	1	0	X	0	X	1	1				

$$Y_{2}^{n+1} = X_{2}Y_{1}^{n} + X_{1} + X_{2}Y_{2}^{n}$$

$$= (Y_{1}^{n} + \overline{Y}_{1}^{n}) (X_{2}Y_{1}^{n} + X_{1}) + X_{2}Y_{1}^{n}$$

$$= (X_{2}Y_{1}^{n} + X_{1}) \overline{Y}_{1}^{n} + (X_{1} + X_{2})Y_{1}^{n}$$

 $\begin{cases} \mathbf{J}_2 = \mathbf{X}_2 \mathbf{Y}_1^{n} + \mathbf{X}_1 \\ \mathbf{K}_2 = \overline{\mathbf{X}}_1 + \overline{\mathbf{X}}_2 = \overline{\mathbf{X}}_1 \overline{\mathbf{X}}_2 \end{cases}$

$$Y_{1}^{n+1} = \overline{X}_{1}X_{2}\overline{Y}_{2}^{n}\overline{Y}_{1}^{n} + X_{1}X_{2}\overline{Y}_{2}^{n}Y_{1}^{n} \implies \begin{cases} J_{1} = \overline{X}_{1}X_{2}\overline{Y}_{2}^{n} \\ K_{1} = \overline{X}_{1}X_{2}\overline{Y}_{2}^{n} \end{cases}$$
$$= \overline{X}_{2} + \overline{X}_{1} + Y_{2}^{n}$$

或者:

$\mathbf{Y}_{2}^{\mathbf{n}}\mathbf{Y}_{3}$	7 n · 1	\mathbf{J}_2		
X_1X_2	00	01	11	10
00	0	0	X	X
01	0	1	X	X
11	1	1	X	X
10	1	1	X	X

$\mathbf{Y}_{2}^{\mathbf{n}}\mathbf{Y}_{3}$	7 ₁ n	\mathbf{K}_2		
X_1X_2	00	01	11	10
00	X	X	1	1
01	X	X	0	0
11	X	X	0	0
10	X	X	0	0

$$\begin{cases} \mathbf{J}_2 = \mathbf{X}_2 \mathbf{Y}_1^{\mathbf{n}} + \mathbf{X}_1 \\ \mathbf{K}_2 = \overline{\mathbf{X}}_1 + \overline{\mathbf{X}}_2 = \overline{\mathbf{X}}_1 \overline{\mathbf{X}}_2 \end{cases}$$

$\mathbf{Y}_{2}^{\mathbf{n}}\mathbf{Y}_{3}$	7 n · 1	\mathbf{J}_1		
X_1X_2	00	01	11	10
00	0	X	X	0
01	1	X	X	0
11	0	X	X	0
10	0	X	X	0

$$\begin{cases} \mathbf{J_1} = \overline{\mathbf{X}_1} \mathbf{X_2} \overline{\mathbf{Y}_2}^{\mathsf{n}} \\ \mathbf{K_1} = \overline{\mathbf{X}_2} + \overline{\mathbf{X}_1} + \mathbf{Y_2}^{\mathsf{n}} \end{cases}$$

$$\begin{cases} \mathbf{Z} = \mathbf{Y}_{2}\mathbf{Y}_{1} \\ \mathbf{J}_{2} = \mathbf{X}_{2}\mathbf{Y}_{1}^{n} + \mathbf{X}_{1} \\ \mathbf{K}_{2} = \overline{\mathbf{X}}_{1} + \overline{\mathbf{X}}_{2} = \overline{\mathbf{X}}_{1}\overline{\mathbf{X}}_{2} \\ \mathbf{J}_{1} = \overline{\mathbf{X}}_{1}\mathbf{X}_{2}\overline{\mathbf{Y}}_{2}^{n} \\ \mathbf{K}_{1} = \overline{\mathbf{X}}_{2} + \overline{\mathbf{X}}_{1} + \mathbf{Y}_{2}^{n} \end{cases}$$

