

Machine Intelligence 2 1.1 Principal Component Analysis

Prof. Dr. Klaus Obermayer

Fachgebiet Neuronale Informationsverarbeitung (NI)

SS 2017

Preliminaries

Projection methods & clustering

observations:
$$\{\underline{\mathbf{x}}^{(\alpha)}\}, \alpha=1,\ldots,p; \quad \underline{\mathbf{x}} \in \mathbb{R}^N$$

- ightarrow high-dimensional
- → groups, categories, hidden causes
- → interesting directions
- → "informative" manifolds

What is the relevant "structure"?

- \Rightarrow projection methods: search for "interesting" directions in feature space
- ⇒ clustering methods: grouping & categorization (and prototypes)

The iris data

Source: http://www.statlab.uni-heidelberg.de/data/iris/. Used with kind permission of Dennis Kramb and SIGNA.

The iris data: scatter plot

Source: Machine Learning: A Probabilistic Perspective, By Kevin P. Murphy

Leptograpsus variegatus

Source: http://www.seafriends.org.nz/enviro/habitat/rscrust.htm

"Complex" features

- \blacksquare elementary features: vectors $\underline{\mathbf{e}}_x^{(1)}, \underline{\mathbf{e}}_x^{(2)}, \underline{\mathbf{e}}_x^{(3)}, \dots \underline{\mathbf{e}}_x^{(N)}$ with $\|\underline{\mathbf{e}}_x^{(i)}\|_2 = 1$
- \blacksquare complex feature: $\underline{\mathbf{e}}_a$ (direction in feature space) with $\|\underline{\mathbf{e}}_a\|_2=1$
- \blacksquare feature value $u_a(\mathbf{x}) = \mathbf{e}_a^T \cdot \mathbf{x}$

The Leptograpsus data: scatter plot

Measurements of Leptograpsus variegatus

Dead crabs loose their color and their sexual features –

 \Rightarrow Can we infer species & sex from the shell size and shape?

crabs: L. variegatis
$$\left\{ \begin{array}{l} \text{orange} \\ \text{blue} \end{array} \right\}$$
 two (sub-)species \rightarrow male and female crabs

elementary features:

```
\left.\begin{array}{ll} \text{frontal lobe size:} & x_1\\ \text{rear width:} & x_2\\ \text{carapace length:} & x_3\\ \text{carapace width:} & x_4\\ \text{body depth:} & x_5 \end{array}\right\} \text{5-dim. feature vector}
```

■ complex features: linear combinations of elementary features
 ⇒ directions in feature space which could identify color and/or sex.

Moments of the data: information wrt. location & shape

first moment (sample mean/center of mass):

$$\underline{\mathbf{m}} = \frac{1}{p} \sum_{\alpha=1}^{p} \underline{\mathbf{x}}^{(\alpha)}$$

second moments (covariance matrix):

$$\underline{\mathbf{C}} = \{C_{ij}\}$$
 with $C_{ij} = \frac{1}{p} \sum_{\alpha=1}^{p} \left(\mathbf{x}_{i}^{(\alpha)} - m_{i}\right) \left(\mathbf{x}_{j}^{(\alpha)} - m_{j}\right)$

for "centered" data (m = 0) this reads:

$$C_{ij} = \frac{1}{p} \sum_{\alpha=1}^{p} \mathbf{x}_{i}^{(\alpha)} \mathbf{x}_{j}^{(\alpha)}$$

Properties of the covariance matrix

Covariance matrix
$$\underline{\mathbf{C}} = \left\{ C_{ij} \right\}$$
 with $C_{ij} = \frac{1}{p} \sum_{\alpha=1}^{p} \left(\mathbf{x}_i^{(\alpha)} - m_i \right) \left(\mathbf{x}_j^{(\alpha)} - m_j \right)$

$$C_{ij} = C_{ji}$$
 symmetry $i = j$ $C_{ii} = \frac{1}{p} \sum_{\alpha=1}^{p} \left(\mathbf{x}_i^{(\alpha)} - m_i \right)^2$ \sim variance of variable \mathbf{x}_i $i \neq j$ $C_{ij}: \sim$ covariances

 x_{2} x_{2} x_{1} x_{2} x_{2} x_{2} x_{3} x_{4} x_{5} x_{1} x_{2} x_{2} x_{2} x_{3} x_{4} x_{5} x_{1} x_{1} x_{2} x_{2} x_{3} x_{4} x_{5} x_{1} x_{2} x_{2} x_{3} x_{4} x_{5} x_{5} x_{7} x_{1} x_{1} x_{2} x_{2} x_{3} x_{4} x_{5} x_{5} x_{1} x_{2} x_{2} x_{3} x_{4} x_{5} x_{5} x_{5} x_{1} x_{2} x_{2} x_{3} x_{4} x_{5} x_{5

Note: $C_{ij} = 0 \Rightarrow \text{variables}$ are uncorrelated BUT might be dependent!!!

Moments for complex features $\underline{\mathbf{e}}_a$

Mean

$$m_a = \frac{1}{p} \sum_{\alpha=1}^p u_a^{(\alpha)} = \frac{1}{p} \sum_{\alpha=1}^p \underline{\mathbf{e}}_a^T \cdot \underline{\mathbf{x}}^{(\alpha)} = \underline{\mathbf{e}}_a^T \cdot \underline{\mathbf{m}}$$

Variance

$$\sigma_a^2 = \frac{1}{p} \sum_{\alpha=1}^p \left(u_a^{(\alpha)} - m_a \right)^2 = \underline{\mathbf{e}}_a^T \underline{\mathbf{C}} \underline{\mathbf{e}}_a^T$$

See blackboard

 \Rightarrow C determines the variance of the data along every possible direction.

Principal Component Analysis (PCA)

Karhunen-Loève transform

Principal Components (PCs)

"informative" directions

$$\underline{\mathbf{e}}_a^* = \operatorname*{argmax} \left(\sigma_a^2 \right) \qquad \text{with} \qquad \|\underline{\mathbf{e}}_a\|_2 = 1$$

constraints

$$\|\underline{\mathbf{e}}_a\|_2 = 1$$

See blackboard

Eigenvalue problem

$$\underline{\mathbf{Ce}}_a = \lambda \underline{\mathbf{e}}_a$$

- \Rightarrow Principal Components: normalized eigenvectors \mathbf{e}_a of C
- ⇒ The variance along a PC is given by the corresponding eigenvalue

$$\sigma_a^2 = \underline{\mathbf{e}}_a^T \underline{\mathbf{C}} \underline{\mathbf{e}}_a = \lambda \underline{\mathbf{e}}_a^2 = \lambda_a$$

Lagrange multipliers

at the optimal x^* , gradients are (anti)-parellel

$$L_{(\underline{\mathbf{x}},\{\lambda_i\})} \stackrel{!}{=} f(\underline{\mathbf{x}}) + \sum^{k} \lambda_i g_i(\underline{\mathbf{x}}), \qquad \forall i \in \{1,\ldots,k\}$$

Properties of the Principal Components

Covariance matrix
$$\underline{\mathbf{C}} = \left\{ C_{ij} \right\}$$
 with $C_{ij} = \frac{1}{p} \sum_{\alpha=1}^{p} \left(\mathbf{x}_i^{(\alpha)} - m_i \right) \left(\mathbf{x}_j^{(\alpha)} - m_j \right)$

Eigenvalue problem $\underline{\mathbf{C}}\underline{\mathbf{e}}_a = \lambda \underline{\mathbf{e}}_a$

- ② $\underline{\mathbf{C}}$ is diagonal w.r.t. its eigenbasis, let $\underline{\mathbf{M}} = (\underline{\mathbf{e}}_1, \underline{\mathbf{e}}_2, \dots, \underline{\mathbf{e}}_N)$

$$\underline{\mathbf{M}}^T \underline{\mathbf{C}} \underline{\mathbf{M}} = \underline{\widehat{\mathbf{C}}} = \mathsf{diag}(\underline{\lambda}) = \underline{\boldsymbol{\Lambda}}$$

- \Rightarrow transformation into the eigenbasis yields uncorrelated features
- \Rightarrow useful as a preprocessing step (\rightsquigarrow regression, classification)

Properties of the Principal Components

Ordering of principal components w.r.t. variance

 $\underline{\mathbf{e}}_i$: direction of largest variance in the subspace spanned by $\underline{\mathbf{e}}_i$, $i \geq j$

Optimal dimensionality reduction

Representation of $\underline{\mathbf{x}}$ in the basis of Principal Components:

$$\underline{\mathbf{x}} = \underbrace{a_1}_{\underline{\mathbf{e}}_1^T \underline{\mathbf{x}}} \underline{\mathbf{e}}_1 + \underbrace{a_2}_{\underline{\mathbf{e}}_2^T \underline{\mathbf{x}}} \underline{\mathbf{e}}_2 + \dots + \underbrace{a_N}_{\underline{\mathbf{e}}_N^T \underline{\mathbf{x}}} \underline{\mathbf{e}}_N$$

Reconstruction via projection onto the first M Principal Components

$$\widetilde{\underline{\mathbf{x}}} = a_1 \underline{\mathbf{e}}_1 + a_2 \underline{\mathbf{e}}_2 + \ldots + a_M \underline{\mathbf{e}}_M$$

 \Rightarrow compared to other m-dimensional projections, this yields a minimal approximation error E:

$$E = \frac{1}{p} \sum_{\alpha=1}^{p} e^{(\alpha)} \qquad e^{(\alpha)} = (\underline{\mathbf{x}}^{(\alpha)} - \underline{\widetilde{\mathbf{x}}}^{(\alpha)})^2 = \sum_{j=M+1}^{N} (a_j^{(\alpha)})^2$$

- → variance is scale sensitive (scaling one dimension can change all PCs)
- → analysis of variances criterion only makes sense if scales are "comparable"
- ightharpoonup incomparable scales ightharpoonup: scale variance along all directions to 1 after decorrelation by PCA

$$\underline{\mathbf{v}}^{(\alpha)} = \underline{\mathbf{\Lambda}}^{-\frac{1}{2}}\underline{\mathbf{M}}^T\underline{\mathbf{x}}^{(\alpha)}$$

Novelty filter

Principal Components with smallest eingenvalues (e.g., $\underline{\mathbf{e}}_N$):

 $\,\,\leadsto\,$ outliers / data with novel features can be identified by projecting to last PCs

"Complex" features

- \blacksquare elementary features: vectors $\underline{\mathbf{e}}_x^{(1)}, \underline{\mathbf{e}}_x^{(2)}, \underline{\mathbf{e}}_x^{(3)}, \dots \underline{\mathbf{e}}_x^{(N)}$ with $\|\underline{\mathbf{e}}_x^{(i)}\|_2 = 1$
- \blacksquare complex feature: $\underline{\mathbf{e}}_a$ (direction in feature space) with $\|\underline{\mathbf{e}}_a\|_2=1$
- \blacksquare feature value $u_a(\mathbf{x}) = \mathbf{e}_a^T \cdot \mathbf{x}$

The Leptograpsus data: scatter plot

Application: Leptograpsus data

Latent factors

- dimensionality reduction: it projection the data to a low dimensional subspace which captures the "essence" of the data.
- latent factors: PCs with hight varince
- the data may appear high dimensional, but there may only be a small number of features underlying variability.

Application: eigenfaces

When modeling the appearance of face images, there may only be a few underlying latent factors which describe most of the variability, such as lighting, pose, identity, etc.

(a) 25 randomly chosen 64 \times 64 pixel images from the Olivetti face database. (b) The mean and the first three principal component basis vectors (eigenfaces).

Source: Machine Learning: A Probabilistic Perspective, By Kevin P. Murphy. Modified captions.

Protocol:

pre-trial \rightarrow achieve fixation \rightarrow stimulus \rightarrow post-trial $^{-150}$ ms $^{0-2000}$ ms

Taken from Kimura et al. 2007 and Smith & Kohn 2008

- stimulus driven component (onset & tuning)
- variability across trials
- strong diversity + rich spatiotemporal structure

- post stimulus time historgram
- each color represents one unit

- 3 neurons: 3d space in which each axis represents the firing rate of a unit $(r_1, r_2, and r_3)$.
- The rate vectors on a plane (shaded gray).

Taken from Cunningham & Yu. Nat. Neur.2014

Summary of PCA

- linear method for data preprocessing, dimensionality reduction, data compression
- uncorrelated features & whitening
- very large covariance matrices ⇒ numerical instabilities
- efficient algorithms for the extraction of PCs with the largest eigenvalues ⇒ EM, successive components via power method
- biologically inspired methods: Hebbian learning

extensions

- nonlinear features ⇒ kernel PCA
- no underlying *generative model* ⇒ probabilistic PCA, factor analysis