RICOH

RP119N SERIES

LOW NOISE 150mA LDO REGULATOR

NO.EA-257-100311

OUTLINE

The RP119N Series are CMOS-based Low Noise 150mA LDO regulator ICs with the features of low supply current, low On resistance transistor, and high ripple rejection. Each of the ICs consists of the following components: a voltage reference unit, an error amplifier, a resistor-net for voltage setting, a current limit circuit and a chip enable circuit.

The RP119N Series minimize the dropout voltage, and also prolong the battery life of each IC. Each of the ICs provides the excellent input transient response and load transient response. Therefore, the ICs are ideal for being used for power supply IC in handheld communication equipment. The package for the RP119N Series is the small-sized SOT-23-5, which enables the high-density mounting board.

FEATURES

· Supply Current	Typ. 50μA
· Supply Current (Standby Mode)	Typ. 0.1μA
· Dropout Voltage	Typ. 0.25V (I _{OUT} =150mA, V _{OUT} =2.5V)
· Ripple Rejection	Typ. 75dB (f=1kHz, V _{OUT} =2.5V)
· Output Voltage Temperature Coefficient	Typ. ±30ppm/°C
· Line Regulation	Typ. 0.02%/V
· Output Voltage Accuracy	±2.0%
· Packages	SOT-23-5
· Input Voltage Range	1.9V to 5.25V
· Output Voltage Range	1.8V to 3.6V
· Built-in Short Current Limit Circuit	Typ. 40mA
· Ceramic Capacitor (recommended to use)	0.1µF or more

APPLICATIONS

- \cdot Power source for handheld communication equipments.
- · Power source for battery-powered equipments.
- · Power source for electrical appliances such as cameras, VCRs and camcorders.

BLOCK DIAGRAMS

RP119Nxx1B

RP119Nxx1D

SELECTION GUIDE

In the RP119x Series, the following features are selectable at the request of users: Output Voltages, Auto-discharge function, Taping Types, and etc.

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
RP119Nxx1B-TR-FE	007.00.5	0.000	Yes	Yes
RP119Nxx1D-TR-FE	SOT-23-5	3,000	Yes	Yes

xx: Output voltage (V_{OUT}) for each IC can be selected from 1.8V to 3.6V in the increment of 0.1V.

The second decimal point of voltage is described as below.

1.85V: RP119N181x5 2.85V: RP119N281x5

- *: CE pin polarity and Auto-discharge function are selectable from below.
 - (B) "H" Active without Auto-discharge function at off state
 - (D) "H" Active with Auto-discharge function at off state

PIN CONFIGURATION

PIN DESCRIPTIONS

SOT-23-5

Pin No	Symbol	Description
1	V_{DD}	Input Pin
2	GND	Ground Pin
3	CE	Chip Enable Pin ("H" Active)
4	NC	No Connection
5	V _{OUT}	Output Pin

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Ratings		Unit
V_{IN}	Input Voltage	6.0		V
V_{CE}	Input Voltage (CE Pin)	6	.0	V
V _{OUT}	Output Voltage	-0.3 ~ V _{IN} + 0.3		V
I _{OUT}	Output Current	180		mA
P_D	Power Dissipation *	SOT-23-5	420	mW
Та	Ambient Temperature Range	e -40 ~ 85		°C
Tstg	Storage Temperature Range	-55 ~ 125		°C

^{*} For Power Dissipation, please refer to the "Package Information".

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the lifetime and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

ELECTRICAL CHARACTERISTICS

ı	Inl	ess	oth.	arwi	مء	no	hat
ι	וווע	ess	OHI	erw	ise.	HΟ	ιeu

 $\label{eq:vin} V_{\text{IN}}\text{=Set }V_{\text{OUT}}\text{+}1.0V(V_{\text{OUT}}\text{>}1.5)\text{, }I_{\text{OUT}}\text{=}1\text{mA, }C_{\text{IN}}\text{=}C_{\text{OUT}}\text{=}0.1\mu\text{F.}$

The values in _____ are applicable under the condition of $-40^{\circ}C \le Ta \le 85^{\circ}C$.

RP119Nxx1B/D (Ta=25°C)

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
V _{OUT}	Output Voltage	Ta=25°C	x0.98		x1.02	V
I _{OUT}	Output Current		150			mA
ΔV_{OUT} / ΔI_{OUT}	Load Regulation	$1mA \le I_{OUT} \le 150mA$		5	30	mV
V_{DIF}	Dropout Voltage	Please refer to the tab	ole of "Dr	opout Vo	ltages".	
I _{SS}	Supply Current	I _{OUT} =0mA		50	70	μA
Istandby	Supply Current (Standby Mode)	V _{CE} =0V		0.1	1.0	μA
$\Delta V_{OUT} / \Delta V_{IN}$	Line Regulation	Set V_{OUT} +0.5V $\leq V_{IN} \leq 5.0V$		0.02	0.10	%/V
RR	Ripple Rejection	f=1kHz, Ripple 0.2Vp-p V _{IN} =Set V _{OUT} +1.0V, I _{OUT} =30mA		75		dB
V _{IN}	Input Voltage *		1.9		5.25	V
ΔV _{OUT} /ΔTa	Output Voltage Temperature Coefficient	-40°C ≦ Ta ≦ 85°C		±30		ppm /°C
I _{LIM}	Short Current Limit	V _{OUT} =0V		40		mA
I _{PD}	CE Pull-down Current			0.3		μA
V_{CEH}	CE Input Voltage "H"		1.0			V
V _{CEL}	CE Input Voltage "L"				0.4	V
en	Output Noise	BW=10Hz ~ 100kHz		20 x V _{OUT}		μVrms
R_{LOW}	Nch On Resistance for Auto-discharge (D version only)	V _{IN} =4.0V V _{CE} =0V		60		Ω

The values in have been tested and guaranteed by Design Engineering.

All products were tested under Pulse Load Condition (Tj ≈ Ta= 25°C). However, the following categories were not tested on the products: Output Noise, Ripple Rejection, and Output Voltage Temperature Coefficient.

Dropout Voltages (Ta=25°C)

Dropout Voltages V _{OUT} (V)		Dropout Voltage V _{DIF} (V)
Diopout voltages v _{00T} (v)	Condition	TYP.	MAX.
1.8 ≤ V _{OUT} <2.1		0.33	0.48
$2.1 \le V_{OUT} < 2.5$	Ι _{Ουτ} =150mA	0.28	0.40
$2.5 \le V_{OUT} < 3.0$	100T-13011IA	0.25	0.35
$3.0 \le V_{OUT} \le 3.6$		0.23	0.32

The values in have been tested and guaranteed by Design Engineering.

^{*} The maximum input voltage of the electrical characteristics is 5.25V. In case of exceeding this value, the maximum input voltage cannot be over 5.5V and the total operating time has to be within 500 hrs.

TEST CIRCUITS

Fig.1 Basic Test Circuit

Fig.2 Test Circuit for Supply Current

Fig.3 Test Circuit for Ripple Rejection

Fig.4 Test Circuit for Load Transient Response

TECHNICAL NOTES

When using the ICs, please note the following points.

Phase Compensation

The RP119N Series are using output capacitor as phase compensation in order to secure the stable operation even when the output load is varied. Therefore, the capacitor C2 has to be placed and it has to be 1.0µF or more.

In case of using a tantalum capacitor, the output may result in unstable if the Equivalent Series Resistance (ESR) value is high. Therefore, the careful evaluations on the PCB including frequency characteristics are required.

PCB Layout

The impedances of V_{DD} line and GND line has to be low as possible. The high impedances may result in the unstable operation or a noise pickup. The capacitor C1 between V_{DD} and GND should be 1.0 μ F or more. The line from V_{DD} to the capacitor C1, and the line from the capacitor C1 to GND must be wired as short as possible.

The capacitor C2 is placed between V_{OUT} and GND as phase compensation. The line from V_{OUT} to the capacitor C2, and the line from the capacitor C2 to GND must be wired as short as possible. Please refer to the "Basic Test Circuit" below.

Basic Test Circuit

External Components C1, C2: Ceramic Capacitor 0.1µF, muRata: GRM155B31C104KA87B

POWER DISSIPATION (SOT-23-5)

This specification is at mounted on board. Power Dissipation (P_D) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

(Power Dissipation (SOT-23-5) is substitution of SOT-23-6.)

Measurement Conditions:

modean emone		
	Standard Test Land Pattern	
Environment	Mounting on Board (Wind velocity=0m/s)	
Board Material	Glass cloth epoxy plastic (Double sided)	
Board Dimensions	$40\text{mm} \times 40\text{mm} \times 1.6\text{mm}$	
Copper Ratio	Top side: Approx. 50%, Back side: Approx. 50%	
Through-holes		

Measurement Results:

(Ta=25°C)

	Standard Land Pattern	Free Air
Power Dissipation	420mW (Tjmax=125°C) 525mW (Tjmax=150°C)	250mW
Thermal Resistance	θja = (125-25°C)/0.42W= 238°C/W	400°C/W

Measurement Board Pattern

Power Dissipation

IC Mount Area (Unit: mm)

The above graph shows the Power Dissipation of the package under the conditions of Tjmax=125°C and Tjmax=150°C.

The operation of the IC within the shaded range in the graph might have an affect on the IC's lifetime. The operation time of the IC must be remained within the time limit described in the table below.

Operating Time	Estimated Years
	(Operating four hours/day)
TBD hours	TBD years