HW5: Performance models

- 1. Go back to the MPI homework now and complete the LATENCY task
- In your Fortran MPI ping pong code, put a loop around your ping-pong message bouncing.

 Do this
- Put timers around your loop
- Iterate around this loop a large number of times to get accurate timings
- Run a bunch of cases with different data amounts.
- Plot your timing results per message against data size to confirm the linear model of data transfer and calculate t_s and t_w $T_{msg} = t_s + t_w L_{T = time}$
- 2. Redo the finite-difference performance model for a 2D data decomposition in the horizontal directions
- Derive an analytical model for the execution time, the efficiency and the isoefficiency.
- What do you learn by comparing the isoefficiency you derived with the one we derived for the 1D data decomposition in class?

exercise for

both Lux

and HB!

Submit to Canvas as a single PDF (your timing results, and your performance model and answers)