

MATHEMATICS 3A/3B Calculator-assumed WACE Examination 2013 Marking Key

Marking keys are an explicit statement about what the examiner expects of candidates when they respond to a question. They are essential to fair assessment because their proper construction underpins reliability and validity.

Section Two: Calculator-assumed (100 Marks)

Question 10 (4 marks)

Prove algebraically that if you add the squares of three consecutive numbers and then subtract 2, you always get a multiple of three.

Solution

Let n, n+1, n+2 be the three consecutive numbers squaring each gives n^2, n^2+2n+1, n^2+4n+4 adding and then subtracting 2 gives $3n^2+6n+3$ factorising gives $3(n^2+2n+1)$ which is a multiple of three

Specific behaviours

- correctly defines variables
- √ correctly squares each term
- √ correctly adds terms and subtracts 2
- √ correctly factorises and gives correct conclusion

Question 11 (8 marks)

- (a) In triangle ABC, c = 7.2 cm, a = 8.4 cm and $\angle B = 61^{\circ}$.
 - (i) Calculate the length of the side AC. (1 mark)

Solution	
$AC = 8.0 \mathrm{cm}$ (to two significant figures)	
(Accept $AC = 7.98 \mathrm{cm}$ to two decimal places)	
Specific behaviours	
✓ correctly calculates the side length	

(ii) Calculate the size of the angle ACB. (1 mark)

Solution	
$\angle ACB = 52^{\circ}$ (to the nearest degree)	
Specific behaviours	
✓ correctly calculates the angle	

(iii) If Q is the midpoint of BC and $AR = \frac{1}{2}RB$, draw a diagram, indicating clearly the lengths of the sides AR, RB, BQ and QC. (2 marks)

- \checkmark correctly draws $\triangle ABC$ and identifies the position of the points R and Q correctly indicates lengths
- (iv) Calculate the area of the quadrilateral *ARQC*. (1 mark)

Solution

Area of $\triangle RBQ = \frac{1}{2} (4.8) (4.2) (\sin 61^{\circ}) = 8.82 \text{ cm}^2$

Area of $\triangle ABC = \frac{1}{2}(7.2)(8.4)(\sin 61^{\circ}) = 26.45 \text{ cm}^2$

 \therefore Area of quadrilateral $ARQC = 26.45 - 8.82 = 17.63 \text{ cm}^2$

Specific behaviours

correctly calculates area of quadrilateral ARQC

(b) Use the unit circle shown below to determine each of the following, giving your answers in terms of either a, b, c or d.

(i) $\sin 19^{\circ}$ (1 mark)

	Solution
$\sin 19^{\circ} = b$	
Specific behaviours	
✓	correctly identifies y-coordinate as the sine value

(ii) $\cos 43^{\circ}$ (1 mark)

Solution	
$\cos 43^{\circ} = c$	
Specific behaviours	
✓ correctly identifies x-coordinate as the cosine value	

(iii) $\sin 161^{\circ}$ (1 mark)

	Solution	
sin 16	$\sin 161^{\circ} = b$	
	Specific behaviours	
✓ correctly identifies y-coordinate as the sine value		

Question 12 (7 marks)

Robert buys a car for \$72 000. He pays a deposit of \$12 000 from his savings and borrows the remaining amount from his bank. The interest on the loan is 7.5% per annum and Robert can afford to make monthly repayments of \$1800.

The spreadsheet below shows the balance and interest of the loan for the first 6 months and the last 3 months.

Month	Opening balance at the start of each month	Interest
1	60 000.00	375.00
2	58 575.00	366.09
3	57 141.09	357.13
4	Α	В
5	54 246.34	339.04
6	52 758.38	330.89
		•
36	4 442.52	27.77
37	2 670.28	16.69
38	886.97	

(a) Calculate the values of A and B, correct to two decimal places. (2 marks)

Solution		
A = 57	$A = 57 \ 141.09 + 357.13 - 1800 = $55 \ 698.22$ (\$55 \ 698.23 \ from the spreadsheet)	
B=55	$B = 55\ 698.23 \times 0.075 \div 12 = \348.11	
	Specific Behaviours	
✓	correctly calculates the value of A	
✓	correctly calculates the value of B	

(b) One of the opening balances for the first 6 months is incorrect. Identify which entry is incorrect and state the correct value of the balance. (2 marks)

	Solution	
\$52	758.38 in the sixth month is incorrect. The correct value is \$52 785.38.	
Specific behaviours		
✓	identifies the incorrect entry	
✓	states the correct value	

(c) How long will it take for the amount owing to fall below \$10 000? (1 mark)

	Solution
Afte	the 32 nd payment or at the beginning of the 33 rd month
Specific behaviours	
✓	identifies the correct time

(d) Calculate the amount of Robert's final payment.

(1 mark)

Solution
886.9704 + 5.5436 = \$892.51
Specific behaviours
✓ correctly calculates the final payment

(e) What is the total amount of interest that Robert has paid?

(1 mark)

Solution	
$(37 \times 1800 + 892.514) - 60\ 000 = \$\ 7492.51$	
Specific behaviours	
✓ correctly calculates the interest	

Question 13 (6 marks)

The times for tasks A to G shown in the project network below are in days.

(a) Determine the critical path and the minimum completion time. (2 marks)

(b) What is the minimum amount of time two people would take to complete all of the tasks if only one person can be allocated to each task at any one time? (2 marks)

	Solution
5 + 4	4 + 4 = 13 days
Specific behaviours	
√ identifies areas where double-up can take place	
\checkmark	states correct answer

(c) Under what condition(s) would it be possible to complete all of the tasks in the minimum completion time found in part (a)? (2 marks)

	Solution			
The	e job can be completed in 12 days only if a third person is used so that tasks B and			
D a	D are completed at the same time.			
	Specific behaviours			
✓	identifies that a third person is required			
✓	identifies that jobs B and D are to be completed concurrently			

Question 14 (6 marks)

(a) Given that B is inversely proportional to c, i.e. $B = \frac{k}{c}$, where k is a constant, describe the effect on B if

(i) c is doubled. (1 mark)

Solution
$c \to 2c \Rightarrow B = \frac{k}{2c} = \frac{1}{2} \left(\frac{k}{c}\right) \Rightarrow$, therefore B is halved
Specific Behaviours
✓ correctly concludes that B is halved

(ii) c is halved. (1 mark)

Solution
$$c \to \frac{1}{2}c \Rightarrow B = \frac{k}{\frac{1}{2}c} = 2\left(\frac{k}{c}\right), \text{ therefore } B \text{ is doubled}$$
Specific Behaviours}
$$\checkmark \text{ correctly concludes that } B \text{ is doubled}$$

- (b) Boyle's Law states that the volume (V) of a given mass of gas at a fixed temperature varies inversely as the pressure (P), where V is in litres (L) and P is in Pascals (Pa).
 - (i) Write an equation using k as the constant of proportionality to represent the relationship between V and P. (1 mark)

Solution		
$V = \frac{k}{P}$		
Specific behaviours		
✓ correctly formulates the equation		

(ii) Given that V = 3.4 L when P = 9.6 Pa, calculate the pressure of the gas when the volume is 12.7 L. (3 marks)

	Solution
3.4	$=\frac{k}{9.6} \Longrightarrow k = 32.64$
	$7 = \frac{32.64}{P} \Longrightarrow P = 2.57 \text{ Pa}$
	Specific behaviours
√	correctly calculates k
✓	correctly substitutes into equation
✓	correctly evaluates P

Question 15 (6 marks)

9

(a) Sketch the inequality 5x - 3y > 15 on the axes below. (3 marks)

- √ correctly uses dotted line
- √ correctly identifies shading

(b) Determine the inequalities that define the shaded region shown on the axes below given that P, Q and R have coordinates (2,5), (6,0) and (0,7.5) respectively. (3 marks)

Solution

Vertical inequality: x > 2

Gradient of PQ is $\frac{0-5}{6-2} = -1.25$

Therefore equation of oblique line is y = -1.25x + 7.5 since y intercept is given (or by CAS).

The inequality is then $y \ge -1.25x + 7.5$

Specific behaviours

- √ correctly identifies vertical inequality
- √ correctly writes the equation of oblique line
- ✓ correctly identifies the oblique inequality

Question 16 (9 marks)

A survey of 50 bank accounts, all in credit, revealed the following distribution of the minimum monthly balances (rounded to the nearest dollar).

Balance	\$400-\$499	\$500-\$599	\$600-\$699	\$700-\$799	\$800-\$899	\$900-\$999
Frequency	5	15	10	9	6	5

(a) Draw a frequency histogram on the grid below to represent the bank balance data.(4 marks)

(b) Determine the median class and the modal class for the data. (2 marks)

	Solution				
Med	Median class is \$600-\$699				
Mod	Modal class is \$500-\$599				
	Specific behaviours				
\checkmark	correctly identifies median class				
✓	correctly identifies modal class				

(c) Complete the table below and use it to estimate the mean and standard deviation for the minimum monthly balance. (3 marks)

Balance	\$400-\$499	\$500-\$599	\$600-\$699	\$700–\$799	\$800-\$899	\$900-\$999
Midpoint	\$449.50	\$549.50	\$649.50	\$749.50	\$849.50	\$949.50
Frequency	5	15	10	9	6	5

	Solution	
Estimate for the mean is \$671.50		
Estimate for the standard deviation is \$148.72		
Specific behaviours		
✓	correctly determines midpoints in the table	
✓	correctly determines the mean	
✓	correctly determines the standard deviation	

Question 17 (14 marks)

The rate of sunburn casualties per 1000 people was collected over a period of three years by the Sandy Beach Surf Club. The data are presented in the table below.

Year	Quarter	Time (t)	Number of burns per 1000 people	Four-point centred moving averages (y)	Residuals
2010	Mar	1	10		
	Jun	2	7		
	Sep	3	12	11.25	0.75
	Dec	4	15	\boldsymbol{A}	\boldsymbol{C}
2011	Mar	5	12	12.375	-0.375
	Jun	6	9	13.375	-4.375
	Sep	7	15	14.375	0.625
	Dec	8	20	15.125	4.875
2012	Mar	9	15	15.625	-0.625
	Jun	10	12	15.625	-3.625
	Sep	11	16		·
	Dec	12	В		

(a) Calculate the value of the missing entries marked by A, B and C. (4 marks)

	Solution			
3.5 + 12	$\frac{+15+12+4.5}{1} = 11.75 = A$			
	$\frac{1}{4}$			
C = 15 -	A = 3.25			
10 + 15 +	$\frac{10+15+12+16+0.5B}{4} = 15.625 \Rightarrow B = 19$			
-	$\frac{-13.023 \Rightarrow B - 19}{4}$			
	Specific behaviours			
✓ C:	alculates A correctly			
✓ C	alculates C correctly			
✓ C	orrectly formulates an equation involving B			
√ s	olves for B correctly			

The graph below shows the number of burns per 1000 people plotted against time.

(b) How does the graph support the choice of a four-point centred moving average? (1 mark)

The	aph has a cycle of four.
	Specific behaviours
✓	states correct reason

(c) Using time, t and the four-point centred moving averages, y, determine the equation of the regression line y = at + b, stating a and b correct to two decimal places.

(2 marks)

Solution		
y = 0.71t + 9.10		
Specific behaviours		
✓	determines correct equation	
✓	states a and b correct to two decimal places	

(ii) State the correlation coefficient r_{ty} . (1 mark)

	Solution	
r = 0	r = 0.98	
Specific behaviours		
√	√ states correct correlation coefficient	

(d) Using the regression equation together with the seasonal component for March, predict the number of burn cases per 1000 people for March 2014 to the nearest whole number.

(3 marks)

Solution

$$\frac{-0.375 + (-0.625)}{2} = -0.5$$
 is the seasonal component for March

$$t = 17 \Rightarrow y = 21.17$$

prediction = $21.17 - 0.5 = 20.67 \approx 20$ burn cases

(Accept 20 or 21)

Specific behaviours

- √ correctly calculates the seasonal component for March
- √ calculates y correctly
- ✓ correctly adds the seasonal component and rounds to the nearest whole number
- (e) Comment on the reliability of your prediction from part (d).

(2 marks)

Solution

Unreliable since it is extrapolation

Specific behaviours

- √ correctly states it is unreliable
- √ states correct reason
- (f) Suggest **one** factor that could have affected the reliability of your prediction.

(1 mark)

Solution

March was particularly cold, or March was particularly hot

Specific behaviours

√ correctly gives any reasonable answer

Question 18 (6 marks)

For the given diagram AB is parallel to DE.

(a) At each step of the proof below, the statement and reason are provided. Complete the table below. (Note: At each step of the proof, either the statement or the reason may be false, but not both.)

(4 marks)

Solution			
Step	Statement	Reason	True/False
1	∠BCA = ∠DCE	Vertically opposite angles	True
2	∠BAC = ∠DEC	Alternate angles	True
3	∠ABD = ∠EDB	Corresponding angles	False
4	Δ ABC is congruent to Δ EDC	Angles in each triangle are equal	False
Specific behaviours			
✓	states the correct conclusion for st	tep 1	
\checkmark	states the correct conclusion for s	tep 2	
\checkmark	states the correct conclusion for s	tep 3	
✓	states the correct conclusion for st	ten 4	

(b) For each false step in the table above, rewrite the correct statement(s) or reason(s) in the table below. (2 marks)

	Solution	
Step	Statement	Reason
1		
2		
3		Alternate angles
4	Δ ABC is similar to Δ EDC	
	Specific behavi	ours
\checkmark	rewrites correct reason for step 3	
\checkmark	rewrites the correct statement for step 4	

Question 19 (6 marks)

Four relatives, Rosalind, Adam, Derek and Jennifer, have been left \$45 500 in the will of their great uncle. The condition of the will is that Adam receives $\frac{2}{3}$ as much as Rosalind, Derek

receives $\frac{1}{4}$ as much as Adam, and Jennifer receives $\frac{3}{8}$ as much as Derek.

Let x be the amount Rosalind receives.

(a) Write the amount that each person receives in terms of x. Leave your answers as fractions. (3 marks)

	Solution	
Adam	$\frac{2}{3}x$ Derek: $\frac{1}{4}(\frac{2}{3}x) = \frac{1}{6}x$ Jennifer: $\frac{3}{8}(\frac{1}{6}x) = \frac{1}{16}x$	
Specific behaviours		
✓	✓ correctly states an algebraic expression for Adam's share	
✓	correctly states an algebraic expression for Derek's share	
✓	correctly states an algebraic expression for Jennifer's share	

(b) Write an equation, solve it for *x* and hence state the amount, in dollars, each person receives. (3 marks)

	Solution		
$x+\frac{2}{3}$	$x + \frac{1}{6}x + \frac{1}{16}x = 45500 \implies x = 24000$		
Rosal	Rosalind: \$24 000 Adam: \$16 000 Derek: \$4000 Jennifer: \$1500		
	Specific Behaviours		
✓	correctly formulates an equation		
✓	correctly solves for x		
\checkmark	correctly states the amount each person receives		

Question 20 (10 marks)

(a) (i) Three sets of data were used to create the histograms frequency and boxplots shown below. Match each frequency histogram with its corresponding boxplot.(3 marks)

		Solution	
A ma	atches with III		
B ma	atches with I		
C ma	C matches with II		
		Specific behaviours	
✓	correctly identifies III		
✓	correctly identifies I		
✓	correctly identifies II		

(ii) Using the boxplot labelled A, calculate the smallest positive integer that would be considered an outlier. (3 marks)

	Solution		
IQR =	= 2		
Outlie	Outlier is more than UQ + 1.5 ×IQR		
i.e. 3	i.e. $3 + 1.5 \times 2 = 6$, therefore outlier is 7		
	Specific behaviours		
\checkmark	correctly states IQR		
✓	correctly calculates 6 as bound above which outliers occur		
\checkmark	correctly states outlier is 7		

(b) Below are the scatterplots for four different sets of bivariate data.

Six possible correlation coefficients for the scatterplots are: 0.2, -0.9, 0.6, 1.3, -0.6, and 0.9.

Match each scatterplot with one correlation coefficient.

(4 marks)

Solution		
A matches with 0.9		
B matches with –0.6		
C matches with 0.2		
D matches with 0.6		
Specific behaviours		
✓ correctly identifies 0.9 for A		
✓ correctly identifies –0.6 for B		
✓ correctly identifies 0.2 for C		
✓ correctly identifies 0.6 for D		

Question 21 (9 marks)

A square based pyramid is constructed such that the sum of the perimeter of the base and the perpendicular height is 48 cm.

(a) If the side length of the base of the pyramid is x cm and the perpendicular height of the pyramid is h cm, write an equation connecting the two variables. (1 mark)

Solution	
4x + h = 48	
Specific Behaviours	
✓	formulates correct equation

(b) Using the equation from part (a), show that the volume (V) of the pyramid is given by the equation $V = \frac{4}{3}x^2(12-x)$ cm³. (2 marks)

Solution		
00.00.00		
$V = \frac{1}{3}x^{2}h = \frac{1}{3}x^{2}(48 - 4x) = \frac{4}{3}x^{2}(12 - x)$		
Specific Behaviours		
\checkmark correctly substitutes for h		
√ correctly factorises equation		

(c) Show the use of the product rule to determine $\frac{dV}{dx}$. (Do not simplify your answer.) (2 marks

	Solution		
$\frac{dV}{dx}$	$\frac{8}{3}x(12-x)+\frac{4}{3}x^2(-1)$		
	Specific Behaviours		
✓	states correct first term		
\checkmark	states correct second term		

(d) Using calculus techniques, determine the dimensions of this pyramid for maximum volume and state this volume. (4 marks)

$4x(8-x) = 0 \text{ when } x = 0 \text{ or } 8$ $\text{using } x = 8, h = 16$ ∴ base length = 8 cm and perpendicular height = 16 cm} $V_{max} = \frac{1024}{3} \text{cm}^3$ $\text{Specific behaviours}$ ✓ correctly equates $\frac{dV}{dx} = 0$ ✓ correctly solves for x ✓ correctly calculates height ✓ correctly calculates volume		Solution		
∴ base length = 8 cm and perpendicular height = 16 cm $V_{max} = \frac{1024}{3} \text{cm}^3$ Specific behaviours $\checkmark \qquad \text{correctly equates } \frac{dV}{dx} = 0$ $\checkmark \qquad \text{correctly solves for } x$ $\checkmark \qquad \text{correctly calculates height}$	4x(8	-x) = 0 when $x = 0$ or 8		
$V_{max} = \frac{1024}{3} \text{cm}^3$	using	g x = 8, h = 16		
Specific behaviours $ \checkmark \text{correctly equates } \frac{dV}{dx} = 0 $ $ \checkmark \text{correctly solves for } x $ $ \checkmark \text{correctly calculates height} $	∴bas	se $length = 8 cm$ and perpendicular height $= 16 cm$		
	V _{max} :	$=\frac{1024}{3}$ cm ³		
✓ correctly solves for x✓ correctly calculates height		Specific behaviours		
√ correctly calculates height	✓	correctly equates $\frac{dV}{dx} = 0$		
√ correctly calculates volume	\checkmark	correctly solves for x		
	✓ ✓	·		

Question 22 (9 marks)

In England, motor vehicle licence plates consist of two letters followed by two digits followed by three letters (e.g. VW45PRT).

- (a) How many different licence plates are possible if
 - (i) there is no restriction on the number of times each letter and each digit is used? (2 marks)

Solution
$26^5 \times 10^2 = 11\ 88\ 137\ 600$
Specific behaviours
√ expresses the number of ways of arranging the letters
√ expresses the number of ways of arranging the digits and states correct
answer

(ii) the first two letters must be vowels and no letter and no digit may be repeated? (2 marks)

Solution		
$5 \times 4 \times 10 \times 9 \times 24 \times 23 \times 22 = 21859200$		
Specific behaviours		
√ correctly identifies restriction on first two letters		
√ correctly identifies restriction for no repeats		

- (b) In a batch of licence plates only the digits 1, 2, 3 and 4 and the letters A, B, C, D, E and F have been used. If one licence plate is chosen at random from the batch and no digit or letter may be repeated, determine the following probabilities. Leave your answers as fractions.
 - (i) The licence plate is DF21BAE. (1 mark)

		Solution
1	_ 1	
$6 \times 5 \times 4 \times 3 \times 4 \times 3 \times 2$	8640	
Specific behaviours		
√ states correct probal	oility	

(ii) The letters A and B are next to each other. (2 marks)

	Solution				
$(2\times1\times4\times3\times4\times3\times2)\times3$	3 _ 1728 _ 1				
8640	$=\frac{1}{8640}=\frac{1}{5}$				
Specific behaviours					
√ applies restriction to calculate correct numerator					
✓ states correct probabili	tv				

(iii) The last three letters are B, D and F, given that the two-digit number is 21. (2 marks)

			Solution
$3 \times 2 \times 1 \times 3 \times 2 \times 1$	_ 36	_ 1	
$6\times5\times1\times4\times3\times2$	$-\frac{1}{720}$	$-\frac{1}{20}$	
		9	Spacific hohavioure

- √ identifies restriction for numerator
- ✓ identifies restriction for denominator

© School Curriculum and Standards Authority, 2013 This document—apart from any third party copyright material contained in it—may be freely copied, or communicated on an intranet, for non-commercial purposes in educational institutions, provided that the School Curriculum and Standards Authority is acknowledged as the copyright owner, and that the Authority's moral rights are not infringed.
Copying or communication for any other purpose can be done only within the terms of the <i>Copyright Act 1968</i> or with prior written permission of the School Curriculum and Standards Authority. Copying or communication of any third party copyright material can be done only within the terms of the <i>Copyright Act 1968</i> or with permission of the copyright owners.
Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the <u>Creative Commons Attribution-NonCommercial 3.0 Australia licence</u> .

Published by the School Curriculum and Standards Authority of Western Australia 27 Walters Drive OSBORNE PARK WA 6017