Algorithmes rapides de recherche exacte de mot

Thierry Lecroq Thierry.Lecroq@univ-rouen.fr

Laboratoire d'Informatique, du Traitement de l'Information et des Systèmes.

Une partie de ce travail a été effectuée en collaboration avec Maxime Crochemore (IGM, université de Marne-la-Vallée)

> Séminaire Combinatoire & Algorithmique Université de Rouen

> > 12 avril 2007

Plan

Introduction

- Introduction
- Meilleur décalage
- **3** Hachage de *q*-grams
- A Résultats expérimentaux

Hachage de q-grams

Plan

Introduction

- Introduction
- 2 Meilleur décalage
- **3** Hachage de q-grams
- 4 Résultats expérimentaux

Problème

Trouver une ou plus généralement toutes les occurrences d'un mot x de longueur m dans un texte y de longueur n.

Les deux mots x and y sont construits sur un alphabet A de cardinalité s.

Solutions

Beaucoup!!!

Voir http://monge.univ-mlv.fr/~lecroq/string

- Brute force algorithm
- Search with an automaton
- Karp-Rabin algorithm
- 4 Shift Or algorithm
- Morris-Pratt algorithm
- Mnuth-Morris-Pratt algorithm
- Simon algorithm
- Colussi algorithm
- Galil-Giancarlo algorithmApostolico-Crochemore algorithm
- Not So Naive algorithm
- Forward Dawg Matching algorithm
- Boyer-Moore algorithm
- Galil algorithm
- Smyth algorithm
- 10 Turbo-BM algorithm
- Apostolico-Giancarlo algorithm
- 18 Reverse Colussi algorithm
 - Horspool algorithm
- 20 Fast Search algorithm

- Quick Search algorithm
- Turbo Search algorithm
- Tuned Boyer-Moore algorithm
- Zhu-Takaoka algorithm
- 25 Berry-Ravindran algorithm
- 20 Smith algorithm
- 27 Raita algorithm
- 28 Reverse Factor algorithm
- 29 Turbo Reverse Factor algorithm
- Backward Oracle Matching algorithm
- Backward Nondeterministic Dawg Matching algorithm
- 62 Galil-Seiferas algorithm
- Two Way algorithm
- 34 String Matching on Ordered Alphabets
- 65 Optimal Mismatch algorithm
- 36 Maximal Shift algorithm
- Skip Search algorithm
 - KmpSkip Search algorithmAlpha Skip Search algorithm

Les plus connues

Knuth-Morris-Pratt et Boyer-Moore, 1977

Laboratoire

et des Systèmes

Recherche exacte de mot

Mécanisme de « fenêtre glissante »

KMP : de gauche à droite (\longrightarrow)

BM : de droite à gauche (\longleftarrow)

Boyer-Moore

y b u	

Un suffixe u du mot x est détecté et une inégalité intervient entre une lettre a de x et une lettre b du texte y.

Laboratoire

Le décalage de bon suffixe consiste à aligner le facteur u = x[i+1..m-1] = y[i+j+1..j+m-1] avec une des ses réoccurrences dans x.

Trois décalages de bon suffixe (I)

Decalage faible
y <u>b</u> u
≠ = shift
x u \prec $sint$
=
x c u
Aucune condition sur la lettre c précédant u : il est alors possible
que $c = a$.

Laboratoire et des Systèmes

Trois décalages de bon suffixe (II)

Laboratoire d'Informatique. de Traitement de l'Information et des Systèmes

Trois décalages de bon suffixe (III)

M	leilleur décalage				
у			b	и	
			≠	=	shift
	x		а	и	▼ Shirt
				=	
		х	С	и	
c	doit être égale à b .				

Trois décalages de bon suffixe

- Les décalages faible et fort ne dépendent que de x.
- Le meilleur décalage dépend de x et de l'alphabet.

Complexité

Theorem (Cole, 1994)

Lors de la recherche de la première occurrence d'un mot xnon-périodique dans un texte de longueur n, l'algorithme de Boyer-Moore effectue moins de 3n comparaisons entre des lettres de x et des lettres de y.

Principales améliorations

- \bullet Galil, 1980 : mémorisation de préfixe, 14n
- \bullet Smyth, 2003 : mémorisation de préfixe, 4n
- ullet Turbo BM, 1994 : mémorisation de suffixe, 2n
- \bullet Apostolico Giancarlo, 1986 : mémorisation de suffixes, $\frac{3}{2}n$

Amélioration récente

S. Lu. F. Cao et Y. Lu

Pama: a Fast String Matching Algorithm International Journal on Foundations of Computer Science **17**(2) (2006) 357–358

Meilleur décalage en espace quadratique et stratégie à la Turbo BM

Plan

Introduction

- Meilleur décalage
- Hachage de q-grams

Hachage de q-grams

Pour 0 < i < m - 1:

suff[i] =longueur du plus long suffixe de x se terminant à la position i sur x.

Calcul linéaire de suff

$$g = f - suff[f]$$
 est minimal

Calcul linéaire de suff

Hachage de q-grams

Examiner les valeurs de la table *suff* de gauche à droite.

Une autre preuve de linéarité.

Exemple

	a	С	g	t
0				
1				
2				
3				
4				
2 3 4 5 6				
7				
8				
9				
10				
11				

Exemple

	a	С	g	t
0				
1				
3				
3				
5				
5				
6				
7				
8				
9				
10				
11		11		

Exemple

	a	С	g	t
0				
1				
3				
3				
5				
5				
6				
7				
8				
9				
10		10		
11		11		

i 0 1 2 3 4 5 6 7 8 9 10 11 x[i] catacataaat a suff[i] 0 1 0 3 0 1 0 3 1 1 0 12

Thierry Lecroq

Exemple

	a	С	g	t
0				
1				
2 3				
4				
4 5 6				
7				
8				
9				
10		10		
11		11		9

Exemple

	a	С	g	t
0				
1				
3				
3				
4				
5 6				
7				
8		8		
9				
10		10		
11		11		9

Exemple

	a	С	g	t
0				
1				
3				
3				
4				
5 6				
7				
8		8		
9				
10		10		
11		7		9

Exemple

	a	ט	50	٥
0				
1				
2				
3				
2 3 4 5 6				
5				
6				
7				
8		8		
9				
10		6		
11		7		9

Calcul du meilleur décalage

Exemple

	a	С	g	τ
0				
1				
3				
3				
4				
4 5 6				
6				
7 8 9				
8		8		
10		6		
11		7		5

a c g t

Calcul du meilleur décalage

Exemple

0 1 2 3 4 5 6		a	C	g	L
2 3 4 5 6					
	1				
	2				
	3				
	4				
	5				
/	7				
8 4	8		4		
9					
10 6			6		
11 7 5	11		7		5

a c g t

Calcul du meilleur décalage

Exemple

0 1 2 3 4 5 6 7 8 4 9 10 3 11 7 5 5 6 7 8 4 9 10 3 6 11 7 5	ı		a	C	g	L
2 3 4 5 6 5 6 7 8 4 9 10 3 6						
7 8 4 9 10 3 6		1				
7 8 4 9 10 3 6		2				
7 8 4 9 10 3 6		3				
7 8 4 9 10 3 6		4				
7 8 4 9 10 3 6		5				
10 3 6						
10 3 6		7				
10 3 6		8		4		
11 7 5			3	6		
		11		7		5

i	0	1	2	3	4	5	6	7	8	9	10	11
x[i]	С	a	t	a	С	a	t	a	a	a	t	a
suff[i]	0	1	0	3	0	1	0	3	1	1	0	12

. +

Calcul du meilleur décalage

Exemple

ı		a	С	g	τ
	0				
	1				
	2				
	3				
	2 3 4 5 6				
	5				
	7				
	8		4		
	9				
Ī	10	2	6		
	11		7		5

Exemple

	a	С	g	t
0				
1				
2				
3				
4				
4 5 6				
6				
7				
8		4		
9				
10	2	6		
11		7		1

i	0	1	2	3	4	5	6	7	8	9	10	11
x[i]	С	a	t	a	С	a	t	a	a	a	t	a
suff[i]	0	1	0	3	0	1	0	3	1	1	0	12

Laboratoire

Meilleur décalage

Exemple

	a	С	g	t
0	12	12	12	12
1	12	12	12	12
2	12	12	12	12
3	12	12	12	12
4	12	12	12	12
5	12	12	12	12
6	12	12	12	12
7	12	12	12	12
8	12	12	12	12
9	12	12	12	12
10	12	12	12	12
11	12	12	12	12

Calcul du meilleur décalage

Exemple

	a	С	g	t
0	12	12	12	12
1	12	12	12	12
2	12	12	12	12
3	12	12	12	12
4	12	12	12	12
5	12	12	12	12
6	12	12	12	12
7	12	12	12	12
8	4	12	12	12
9	12	12	12	12
10	2	6	12	12
11	12	7	12	1

i 0 1 2 3 4 5 6 7 8 9 10 11 x[i] catacataaa ta suff[i] 0 1 0 3 0 1 0 3 1 1 0 12

Plan

Introduction

- Meilleur décalage
- **3** Hachage de *q*-grams
- Résultats expérimentaux

Hachage de q-grams

Meilleur décalage Hachage de q-grams

Definition

q-gram : facteur de longueur q

- Calcul d'une valeur de hachage dans [0, 255] pour chaque q-grams du mot x
- Calcul d'une longueur de décalage pour chaque valeur de hachage
- Déboucler tant que possible

$$\textit{shift}[i] \leftarrow 10$$

$$\forall i \in [0; 255]$$

$$i$$
 0 1 2 3 4 5 6 7 8 9 10 11 $x[i]$ **c a t a c a t a a a a t a**

$$h(\texttt{cat}) = ((rank(\texttt{c}) \times 2 + rank(\texttt{a})) \times 2 + rank(\texttt{t}) = 194$$

$$shift[194] = 10$$

$$shift[194] \leftarrow 9$$

$$i$$
 0 1 2 3 4 5 6 7 8 9 10 11 $x[i]$ c a t a c a t a a a t a

$$h(\mathtt{ata}) = ((\mathit{rank}(\mathtt{a}) \times 2 + \mathit{rank}(\mathtt{a})) \times 2 + \mathit{rank}(\mathtt{a}) = 205$$

$$\mathit{shift}[205] = 10$$

$$\textit{shift}[205] \leftarrow 8$$

$$h(\texttt{tac}) = ((\mathit{rank}(\texttt{t}) \times 2 + \mathit{rank}(\texttt{a})) \times 2 + \mathit{rank}(\texttt{c}) = 245$$

$$shift[245] = 10$$

$$shift[245] \leftarrow 7$$

$$h(\mathbf{aca}) = ((\mathit{rank}(\mathbf{a}) \times 2 + \mathit{rank}(\mathbf{c})) \times 2 + \mathit{rank}(\mathbf{a}) = 171$$

$$\mathit{shift}[171] = 10$$

$$shift[171] \leftarrow 6$$

$$h(\texttt{cat}) = ((\mathit{rank}(\texttt{c}) \times 2 + \mathit{rank}(\texttt{a})) \times 2 + \mathit{rank}(\texttt{t}) = 194$$

$$\mathit{shift}[194] = 9$$

$$\textit{shift}[194] \leftarrow 5$$

$$h(\mathtt{ata}) = ((\mathit{rank}(\mathtt{a}) \times 2 + \mathit{rank}(\mathtt{t})) \times 2 + \mathit{rank}(\mathtt{a}) = 205$$

$$\mathit{shift}[205] = 8$$

$$\textit{shift}[205] \leftarrow 4$$

$$h(\texttt{taa}) = ((\mathit{rank}(\texttt{t}) \times 2 + \mathit{rank}(\texttt{a})) \times 2 + \mathit{rank}(\texttt{a}) = 243$$

$$shift[243] = 10$$

$$\textit{shift}[243] \leftarrow 3$$

$$h(\mathtt{aaa}) = ((\mathit{rank}(\mathtt{a}) \times 2 + \mathit{rank}(\mathtt{a})) \times 2 + \mathit{rank}(\mathtt{a}) = 167$$

$$shift[167] = 10$$

$$\textit{shift}[167] \leftarrow 2$$

$$h(\texttt{aat}) = ((\mathit{rank}(\texttt{a}) \times 2 + \mathit{rank}(\texttt{a})) \times 2 + \mathit{rank}(\texttt{t}) = 186$$

$$shift[186] = 10$$

$$shift[186] \leftarrow 1$$

$$h(\mathtt{ata}) = ((\mathit{rank}(\mathtt{a}) \times 2 + \mathit{rank}(\mathtt{t})) \times 2 + \mathit{rank}(\mathtt{a}) = 205$$

$$shift[205] = 4 \Longrightarrow sh1 \leftarrow 4$$

$$\textit{shift}[205] \leftarrow 0$$

Hashing *q***-grams**

Algorithme Newq(x, m, y, n) pour q = 3

```
 \begin{array}{l} \rhd \text{ Pr\'etraitement} \\ \textbf{pour } i \leftarrow 0 \text{ \grave{a} 255 faire } \textit{shift}[i] \leftarrow m-2 \\ \textbf{pour } i \leftarrow 2 \text{ \grave{a} } m-2 \text{ faire} \\ h \leftarrow ((x[i-2]\times 2+x[i-1])\times 2)+x[i] \\ \textit{shift}[h \mod 256] \leftarrow m-1-i \\ h \leftarrow ((x[m-3]\times 2+x[m-2])\times 2)+x[m-1] \\ \textit{sh1} \leftarrow \textit{shift}[h \mod 256] \\ \textit{shift}[h \mod 256] \leftarrow 0 \\ \end{array}
```


$y[n..n+m-1] \leftarrow x \qquad \triangleright \text{ Sentinelle}$ $i \leftarrow m-1$ tantque VRAI faire $sh \leftarrow 1$ tantque $sh \neq 0$ faire $h \leftarrow ((y[j-2] \times 2 + y[j-1]) \times 2) + y[j]$ $sh \leftarrow shift[h \mod 256]$ $j \leftarrow j + sh$ si j < n alors si x = y[j - m + 1..j] alors Reporter(j - m + 1) $j \leftarrow j + sh1$ sinon RETOURNER

Plan

Introduction

- Meilleur décalage
- 4 Résultats expérimentaux

Résultats expérimentaux

Meilleur décalage

Conditions

- Processeur Intel Pentium à 1300MHz
- Linux Red Hat version 2.4.20-8
- gcc avec l'option d'optimisation -03
- fonction clock
- 100 mots choisis pseudo-aléatoirement dans les textes

Texte

- Alphabet binaire, pseudo-aléatoire (distribution uniforme), 4 Mo
- E.coli du Large Canterbury Corpus, 4,6 Mo
- Alphabet de cardinalité 8, pseudo-aléatoire (distribution uniforme), 4 Mo
- world192.txt du Large Canterbury Corpus, 4,3 Mo

Résultats expérimentaux

Meilleur décalage

Algorithmes

- BM2fast Boyer-Moore meilleur décalage et boucle rapide
- NEWq pour $q \in [3, 8]$
- TBM Tuned Boyer-Moore (Hume & Sunday, 1991)
- SSABS (Sheik, Aggarwal, Poddar, Balakrishnan & Sekar, 2004)
- SBNDM2 (Holub & Durian, 2005)

Laboratoire d'Informatique

de l'Information et des Systèmes

Résultats expérimentaux

Résultats expérimentaux

Laboratoire d'Informatique.

et des Systèmes

Laboratoire d'Informatique

de l'Information et des Systèmes

Résultats expérimentaux

Conclusions

- ullet Alphabet bianire : NEW5-8 for $m \in [9;256]$
- \bullet Alphabet de cardinalité 4 : NEW3-5 for $m \in [7;128]$
- Alphabet de cardinalité 8 : NEW3-5 for $m \in [13;64]$
- ullet Langage naturel : BM2fast for $m \in [7;15]$

Résultats expérimentaux

Perspectives

Utiliser une meilleure fonction de hachage

Laboratoire d'Informatique.

et des Systèmes

Références

À paraître bientôt... Meilleur décalage et bien d'autres choses encore plus intéressantes

Références

M. Crochemore et T. Lecroq

A fast implementation of the Boyer–Moore string matching algorithm

Soumis

T. Lecroq

Fast string matching algorithms

Information Processing Letters

À paraître

