Computer Science 112 Data Structures

Lecture 20:

Graphs:

Representations
Depth First Search

Announcements

- Midterm Exam 2
 - Sunday April 12
 - 3:00 4:20 pm
 - See sakai announcements for rooms

Announcements

- You should already have watched videos on hashing and on graphs
 - see sakai announcements
 - Graph.java and data files website.txt and friendship.txt are on Sakai in
 Resources > Steinberg > Java > graph

New: Graphs

Generalization of trees

- Digraph (Directed Graph)
 - Like a tree but any vertex can point to any other

- E.g., Twitter follows relationship

New: Graphs

Generalization of trees

- Graph
 - like digraph but arcs have no direction

- E.g., Facebook friends relationship

Graphs

- Weighted Graph
 - Positive integer weights on each edge

Applications

- Paths
 - On streets (eg Google Maps)
- Electrical networks
 - Power lines
- Constraints
 - Ordering constraints on building steps eg counters before sinks

Notation

• Arcs are named by the vertices they connect

- Neighbors of a vertex: vertices that it shares an arc with
 - Neighbors of A are B and C
- Degree of a vertex: number of neighbors
 - Degree of A is 2, degree of B is 3

p. 9

- In degree (in a digraph): number of vertices that have arcs to this vertex
 - In degree of B is 1
- Out degree (in a digraph): number of vertices that have arcs from this vertex
 - Out degree of B is 2

CS112: Slides for Prof. Steinberg's lecture

'120-graph-repr-dfs.odp

- (Simple) Path
 - Sequence of arcs(A,B),(B,C)
 - May not revisit a vertex(B,A),(A,C),(C,B),(B,D)
 - Except last vertex may =
 first
 (B,A),(A,C),(C,B)
- Vertex A is reachable from B if there is a path from B to A

Path

On digraph must follow arc directions

(A,B),(B,D)

(A,C),(C,B)

- A cycle is a path from a node back to itself
 (A, B)(B, D)(D, A)
- A graph with no cycles is called acyclic

Connected Graph
 For any two vertices X and Y
 there is a path from X to Y.

not connected

Strongly Connected Digraph

For any two vertices X and Y there is a path from X to Y. (Paths must follow arc directions)

Weakly Connected Digraph
 Corresponding graph is
 connected (i.e., ignoring arc
 direction)

• Weighted graph: each arc has a numerical weight

- Adjacency matrix
 - n x n boolean matrix: is there an arc?

p. 17

- Adjacency matrix
 - n x n boolean matrix: is there an arc?

p. 18

- Adjacency matrix
 - n x n boolean matrix: is there an arc?

Adjacency Matrix

- Space cost: v^2 booleans where v is number of vertices
- If v is large, v^2 is huge
 - Facebook: $v = 10^9$, $v^2 = 10^{18}$ 1,000,000,000,000,000,000
 - An average Facebook user has about 350 friends
 - if e is number of edges, $e = 10^9 * 175$
 - Fraction of Trues in matrix = 1.75 * 10⁻⁷ = 1 / 5,000,000

Sparse vs Dense Graphs

Sparse

Dense

- Adjacency list
 - -for each node, a linked list of edges that touch it

p. 22

- Adjacency list
 - -for each node, a linked list of edges that touch it
 - -Space cost: v + 2 * 2 * e
 - -For Facebook: 10⁹ + 4 * 175 * 10⁹

 $=700*10^9$

- Adjacency list
 - for each node, linked list of edges

Time costs, Worst case

	Is there and edge from i to j	List the neighbors of i
Adjacency matrix	O(1)	O(v)
Adjacency list	O(d)	O(d)

d is degree of i, d<v

Exercise

You write countEdges() in class Graph

- Need to mark vertices as we see them to prevent infinite loops
- Need driver in case not connected
- Otherwise like tree traversals

```
    Depth first
        dfsG(v)
        if (marked(v)) return;
        visit v;
        mark v;
        for each vn in neighbors(v)
            dfsG(vn)
```

Need driver in case not connected
 For v in vertices
 dfsG(v)

DFS Graph Traversal

- Enters a vertex v
- Visits all vertices reachable from v (that have not yet been visited
- Leaves v

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

Driver

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

dfsG

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

$$vn = \langle C \rangle$$

$$\mathbf{v} = \langle \mathbf{C} \rangle$$

Driver

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

dfsG

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

$$vn = \langle C \rangle$$

$$\mathbf{v} = \langle \mathbf{C} \rangle$$

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

$$vn =$$

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

dfsG

$$\mathbf{v} = \langle \mathbf{A} \rangle$$

$$vn =$$

$$\mathbf{v} = \langle \mathbf{D} \rangle$$

$$\mathbf{v} = \langle \mathbf{B} \rangle$$

$$\mathbf{v} = \langle \mathbf{B} \rangle$$

Driver

$$\mathbf{v} = \langle \mathbf{C} \rangle$$

$$\mathbf{v} = \langle \mathbf{C} \rangle$$

$$\mathbf{v} = \langle \mathbf{D} \rangle$$

$$\mathbf{v} = \langle \mathbf{D} \rangle$$

- Time:
 - Visit each vertex
 - inspect each arc
 - driver

O(n + e) n vertices, e edges