customer_segments

February 27, 2016

1 Creating Customer Segments

In this project you, will analyze a dataset containing annual spending amounts for internal structure, to understand the variation in the different types of customers that a wholesale distributor interacts with.

Instructions:

- Run each code block below by pressing **Shift+Enter**, making sure to implement any steps marked with a TODO.
- Answer each question in the space provided by editing the blocks labeled "Answer:".
- When you are done, submit the completed notebook (.ipynb) with all code blocks executed, as well as a .pdf version (File > Download as).

```
In [2]: # Import libraries: NumPy, pandas, matplotlib
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        from sklearn import preprocessing
        # Tell iPython to include plots inline in the notebook
        %matplotlib inline
        # Read dataset
        data = pd.read_csv("wholesale-customers.csv")
        print "Dataset has {} rows, {} columns".format(*data.shape)
        print data.head() # print the first 5 rows
Dataset has 440 rows, 6 columns
   Fresh Milk Grocery
                        Frozen
                                 Detergents_Paper Delicatessen
  12669
         9656
                   7561
                            214
                                              2674
                                                            1338
1
   7057
         9810
                   9568
                           1762
                                              3293
                                                            1776
   6353 8808
2
                   7684
                           2405
                                              3516
                                                            7844
  13265
         1196
                           6404
                                               507
                                                            1788
3
                   4221
  22615 5410
                   7198
                           3915
                                              1777
                                                            5185
```

1.1 Feature Transformation

1) In this section you will be using PCA and ICA to start to understand the structure of the data. Before doing any computations, what do you think will show up in your computations? List one or two ideas for what might show up as the first PCA dimensions, or what type of vectors will show up as ICA dimensions.

Answer: The features that maximize variance might show up as the first PCA dimensions. Let's calculate the variance of each feature.

```
In [3]: normalized_data = (data - data.mean()) / (data.max() - data.min())
      var = normalized_data.var()
      print var
```

```
Fresh 0.012718
Milk 0.010098
Grocery 0.010492
Frozen 0.006366
Detergents_Paper 0.013640
Delicatessen 0.003460
dtype: float64
```

After normalizing we can see that Detergents_Paper has the highest variance. So Detergents_Paper will be the first principal component. Let's now compute the covariance of Detergents_Paper with the other features.

dtype: float64

0.007767

Milk

Here we can see that Grocery has the most covariance with Detergents_Paper. So Detergents_Paper and Grocery are probably the first two principal components. I found the article "Principal Component Analysis" helpful in answering this.

Linear combinations of the features will show up as ICA dimensions. These new features will maximize independence. Each feature in this new feature set will be some linear combination of Fresh, Milk, Grocery, Frozen, Detergents_Paper, and Delicatessen.

1.1.1 PCA

2) How quickly does the variance drop off by dimension? If you were to use PCA on this dataset, how many dimensions would you choose for your analysis? Why?

```
In [6]: import matplotlib.pyplot as plt
```

```
x = np.arange(1, 7)
plt.plot(x, np.cumsum(pca.explained_variance_ratio_), '-')
plt.xlabel('dimensions')
plt.ylabel('cumulative variance')
plt.ylim([0.0, 1.0])
plt.show()
```


Answer: We can see how the cumulative sum of the variance approaches 1.0 in the plot above. If i were to use PCA on this dataset, I would choose 3 dimensions for my dimensions. After 3 dimensions, the change in variance is less steep.

3) What do the dimensions seem to represent? How can you use this information?

```
In [7]: first_pc = pca.components_[0]
    second_pc = pca.components_[1]

    transformed_data = pca.transform(data)
    plt.close()
    for ii in transformed_data:
        plt.scatter(first_pc[0]*ii[0], first_pc[1]*ii[0], color="r")
        plt.scatter(second_pc[0]*ii[1], second_pc[1]*ii[1], color="c")
        plt.scatter(ii[0], ii[1], color="b")
```


Answer: The dimensions seem to represent the features. We can use this information to find out which features are most useful in classifying data points. Looking at the first two components (in red and cyan), we can see that they are orthogonal. Let's look at the actual value of the first component:

```
In [8]: print first_pc
[-0.97653685 -0.12118407 -0.06154039 -0.15236462  0.00705417 -0.06810471]
```

From these values, we can see that the first entry has the largest absolute value, and, thus, that Fresh dominates the first component. Let's look at the second component:

```
In [9]: print second_pc
[-0.11061386  0.51580216  0.76460638 -0.01872345  0.36535076  0.05707921]
```

Grocery and Milk (in that order) dominate the second component. Hence, the distributor knows that the amount of Fresh, Grocery, and Milk that a store orders is what differentiates that store from other stores. If two stores buy about the same amount of Fresh, then the distributor knows that the two stores will likely react the same to different changes in distribution policy.

1.1.2 ICA

4) For each vector in the ICA decomposition, write a sentence or two explaining what sort of object or property it corresponds to. What could these components be used for?

Answer: Each vector corresponds to a linear combination of features. These components, or transformed features, identify fundamental features of your data that can be used for classification. The primary feature affected by each of the first four vectors, respectively, is:

- Delicatessen
- Fresh
- Detergents_Paper
- Grocery

1.2 Clustering

In this section you will choose either K Means clustering or Gaussian Mixed Models clustering, which implements expectation-maximization. Then you will sample elements from the clusters to understand their significance.

1.2.1 Choose a Cluster Type

5) What are the advantages of using K Means clustering or Gaussian Mixture Models?

Answer: k-means creates 'hard' boundaries between the clusters. That is, each data point belongs to exactly one cluster. On the other hand, Gaussian mixture models create 'soft' boundaries. That is, each data point belongs to a given cluster with a certain probability.

- k-means clustering advantages
 - Cheap relative to other unsupervised learning algorithms
 - Scales well
- Gaussian mixture models advantages
 - Fastest mixture model algorithm
 - No bias of the means towards zero

The distribution of each feature across stores is undoubtedly Gaussian. So let's use a Gaussian mixture model.

6) Below is some starter code to help you visualize some cluster data. The visualization is based on this demo from the sklearn documentation.

```
[[ -650.02212207 1585.51909007]
[ 4426.80497937 4042.45150884]
 [ 4841.9987068 2578.762176 ]
 [ -990.34643689 -6279.80599663]
 [-10657.99873116 -2159.72581518]
 [ 2765.96159271 -959.87072713]
 [ 715.55089221 -2013.00226567]
 [ 4474.58366697 1429.49697204]
 [ 6712.09539718 -2205.90915598]
 [ 4823.63435407 13480.55920489]]
In [13]: def create_clusters(reduced_data, n_clusters):
             # Implement your clustering algorithm here, and fit it to the reduced data for visualizati
            gmm = GMM(n_clusters)
            gmm.fit(reduced_data)
            bic = gmm.bic(reduced_data)
            print "BIC: {}\n".format(bic)
            return gmm
         # Plot the decision boundary by building a mesh grid to populate a graph.
         x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1
         y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1
        hx = (x_max-x_min)/1000.
        hy = (y_max-y_min)/1000.
         xx, yy = np.meshgrid(np.arange(x_min, x_max, hx), np.arange(y_min, y_max, hy))
         def obtain_labels(clusters, xx, yy):
             # Obtain labels for each point in mesh. Use last trained model.
            Z = clusters.predict(np.c_[xx.ravel(), yy.ravel()])
            return Z
         def find_means(clusters):
             # Find the centroids for KMeans or the cluster means for GMM
            means = clusters.means_
            return means
         def show_plot(reduced_data, means, xx, yy, Z):
            # Put the result into a color plot
            Z = Z.reshape(xx.shape)
            plt.figure(1)
            plt.clf()
            plt.imshow(Z, interpolation='nearest',
                        extent=(xx.min(), xx.max(), yy.min(), yy.max()),
                        cmap=plt.cm.Paired,
                        aspect='auto', origin='lower')
            plt.plot(reduced_data[:, 0], reduced_data[:, 1], 'k.', markersize=2)
            plt.scatter(means[:, 0], means[:, 1],
                        marker='x', s=169, linewidths=3,
                         color='w', zorder=10)
```

```
plt.title('Clustering on the wholesale grocery dataset (PCA-reduced data)\n'
                      'Centroids are marked with white cross')
            plt.xlim(x_min, x_max)
            plt.ylim(y_min, y_max)
            plt.xticks(())
            plt.yticks(())
            plt.show()
In [14]: def visualize_cluster_data(n_clusters):
            # The visualizer below assumes your clustering object is named 'clusters'
            clusters = create_clusters(reduced_data, n_clusters)
            print 'clusters:\n{}\n'.format(clusters)
            Z = obtain_labels(clusters, xx, yy)
            means = find_means(clusters)
            print 'means:\n{}\n'.format(means)
            show_plot(reduced_data, means, xx, yy, Z)
            return clusters
  Answer: First let's try 8 clusters.
In [15]: visualize_cluster_data(8)
BIC: 18333.8783064
clusters:
GMM(covariance_type='diag', init_params='wmc', min_covar=0.001,
 n_components=8, n_init=1, n_iter=100, params='wmc', random_state=None,
 thresh=None, tol=0.001, verbose=0)
means:
[[ -5476.32462616
                     -990.10553452]
Γ
     509.8119812
                    -7655.93555606]
    7549.90079159 -5249.1086203 ]
 [ -19710.9394465
                    45610.15223872]
 9409.05698006 5444.18729167]
    2776.94679273 15018.18800395]
 [-103863.42532004 9910.34962857]]
```

Clustering on the wholesale grocery dataset (PCA-reduced data) Centroids are marked with white cross

Everything is pretty scrunched together in the lower right. Let's try 4 clusters.

```
In [16]: gmm = visualize_cluster_data(4)
BIC: 18430.4833513

clusters:
GMM(covariance_type='diag', init_params='wmc', min_covar=0.001,
    n_components=4, n_init=1, n_iter=100, params='wmc', random_state=None,
    thresh=None, tol=0.001, verbose=0)

means:
[[ 7174.84861641    5482.74654863]
    [-15388.23239969    -3333.55609608]
    [ 2341.455554     -6704.19840177]
    [ -9494.04377321    34658.05109683]]
```

Clustering on the wholesale grocery dataset (PCA-reduced data) Centroids are marked with white cross

That clustering looks better. However, notice that they have pretty close BIC scores. I especially like the way the tan cluster separates out the elongated set of customers. You wouldn't be able to capture that as tightly with k-means.

Let's sample 3 data points from each of the 4 clusters. We will try to find intra-cluster similarities and inter-cluster differences.

```
In [17]: Z = gmm.predict(reduced_data)
         def get_sample(Z, label):
             cluster_indices = np.where(Z == label)[0]
             cluster_indices = np.random.choice(cluster_indices, size=3, replace=False)
             indices = cluster_indices.tolist()
             indices.sort()
             return data.iloc[indices, :]
         for i in range(4):
             print "Cluster {}:\n{}\n".format(i, get_sample(Z, i))
Cluster 0:
                                     Detergents_Paper
     Fresh
             Milk
                   Grocery Frozen
                                                       Delicatessen
            25862
171
       200
                     19816
                                651
                                                  8773
                                                                6250
             7097
                     10391
                                                                1468
197
      2427
                               1127
                                                  4314
408
      8257
             3880
                       6407
                               1646
                                                  2730
                                                                 344
Cluster 1:
     Fresh
           Milk
                  Grocery
                                    Detergents_Paper
                                                      Delicatessen
                            Frozen
4
     22615
           5410
                     7198
                              3915
                                                 1777
                                                               5185
54
     27329
            1449
                     1947
                              2436
                                                  204
                                                               1333
                              4787
                                                  500
124 36050 1642
                     2961
                                                               1621
```

Cluster 2:						
	Fresh	Milk	Grocery	Frozen	Detergents_Paper	Delicatessen
40	24025	4332	4757	9510	1145	5864
90	11405	596	1638	3347	69	360
192	5509	1461	2251	547	187	409
Cluster 3:						
	Fresh	Milk	Grocery	Frozen	Detergents_Paper	Delicatessen
23	26373	36423	22019	5154	4337	16523
56	4098	29892	26866	2616	17740	1340
216	2532	16599	36486	179	13308	674

I find it a little hard to distinguish exactly what is going on from looking at these samples. Also, I tend to be skeptical whether a sample of 3 from each cluster is large enough to draw conclusions. (It might be more profitable to look at the mean and variance of all the data points in each cluster.)

7) What are the central objects in each cluster? Describe them as customers.

Answer: The central objects in each cluster are the centroids. You can think of them as an average customer within that cluster.

1.2.2 Conclusions

** 8)** Which of these techniques did you feel gave you the most insight into the data?

Answer: Plotting the output of the Gaussian mixture models algorithm gave me the most insight into the data. I think plots always give you more insight than raw numbers or tables. I think GMM worked best here because the all the features are continuous and the distributions of the features are probably Gaussian. You can see this in the plots (although there are long tails going to the left and up in the plots). GMM with four clusters nicely differentiated the data (especially in the elongated, tan cluster). I actually first tried k-means but the clusters seemed much more random.

9) How would you use that technique to help the company design new experiments?

Answer: When conducting a new experiment on a possible change, I would use four small samples of customers with one sample drawn from each cluster. With these four samples, I could see how each of the four clusters would react to the change. From those results, I could generalize to the clusters as a whole. If the sample from a cluster liked the change, I could implement the change for all members of the cluster.

For example, consider our original problem of changing from a regular morning delivery to a cheaper, bulk evening delivery. The highest volume customers had an easy time adapting to the change, whereas smaller, family-run shops had serious issues with it. It would have made sense to try the change in delivery time with a sample from each cluster. If the change went well for the sample from a particular cluster, it would make sense to consider implementing the change for all the members of that cluster. Similarly, If the change didn't go well for the sample from a particular cluster, it would make sense to not implement the change for the members of that cluster.

10) How would you use that data to help you predict future customer needs?

Answer: Every time we get a new customer, we could have the GMM model label the customer. We would then know that methods of working with the customers of that label that worked well would probably also work well with the new customer. Similarly, methods of working with the customers of that label that didn't work well would probably also not work well with the new customer.