ANALISIS MUTU LOSIO TABIR SURYA MERK "X"

Laporan Praktik Kimia Terpadu Tahun Ajaran 2018/2019

Oleh Kelompok PKT-79, XIII-10

Muhamad Ihsan Permana	15.61.08114
Rangga Jati Cavalera	15.61.08186
Tiara Pramesti Anandari Purnawan	15.61.08245

15.61.08267

KEMENTERIAN PERINDUSTRIAN REPUBLIK INDONESIA

Pusat Pendidikan dan Pelatihan Industri

Sekolah Menengah Kejuruan – SMAK

Bogor

2018

LEMBAR PERSETUJUAN DAN PENGESAHAN

Disetujui dan disahkan oleh:
Disetujui oleh,
Heksi Nur Yuniarsih, S.Si, MT
NIP 19820609 200911 2 001
Pembimbing
Disahkan oleh,
Ir.Tin Kartini, M.Si
NIP 19640416 199403 2 003

Kepala Laboratorium

KATA PENGANTAR

Penyusunan Laporan Praktik Kimia Terpadu yang berjudul *Analisis Mutu Kosmetika Losio Tabir Surya Merk "X"* merupakan program khusus kelas IV semester VII tahun ajaran 2018/2019. Laporan ini adalah pertanggung jawaban kegiatan PKT yang dilaksanakan sejak Oktober hingga November 2018 yang bertempat di SMK SMAK Bogor, dan merupakan salah satu persyaratan untuk melaksanakan PKL. Laporan ini berisi tentang pengetahuan mengenai kegiatan PKT yang telah dilakukan oleh PKT 79 berkenaan dengan analisis mutu kosmetika tabir surya.

Puji syukur penyusun panjatkan kehadirat Tuhan Yang Maha Esa atas Rahmat dan Karunia-Nya, penyusun dapat menyelesaikan kegiatan PKT dan laporan ini. Pada kesempatan ini, penyusun mengucapkan terima kasih kepada:

- Ibu Dwika Riandari, M.Si selaku Kepala Sekolah Menengah Kejuruan -SMAK Bogor
- 2. Ibu Heksi Nur Yuniarsih, S.Si, MT selaku pembimbing kelompok PKT 79 yang telah memberikan bimbingan dalam melaksanakan praktik
- 3. Orang tua kami yang telah memberikan doa, dukungan baik moril maupun materi dalam pelaksanaan dan penyusunan laporan PKT 79
- 4. Staf guru dan karyawan SMK SMAK Bogor yang telah membantu dan memberikan saran dalam menyelesaikan laporan ini
- Seluruh teman-teman angkatan 61 dan seluruh keluarga besar SMK -SMAK Bogor serta semua pihak yang telah turut membantu dan membimbing penyusun dalam pelaksanaan praktik maupun penyusunan laporan

Penyusun menyadari laporan masih jauh dari kesempurnaan, oleh karena itu penyusun menerima saran dan kritik yang membangun untuk perbaikan yang lebih baik di masa depan. Penyusun berharap laporan ini dapat berguna bagi pembaca khususnya kepada siswa/i SMK - SMAK Bogor yang telah melaksanakan Praktikum Kimia Terpadu (PKT).

Bogor, Desember 2018

Penyusun

DAFTAR ISI

LEMBAR PERSETUJUAN DAN PENGESAHAN	ii
KATA PENGANTAR	iii
DAFTAR ISI	iv
DAFTAR TABEL	vi
DAFTAR GAMBAR	vii
BAB I PENDAHULUAN	1
A. Latar Belakang	1
B. Pentingnya Produk	2
C. Tujuan Menganalisis Produk	3
BAB II TINJAUAN PUSTAKA	4
A. Analisis	4
B. Mutu	5
C. Sinar Matahari	6
D. Kulit	8
E. Tabir Surya	10
F. Losio/Krim	11
G. SPF	12
BAB III METODE ANALISIS DAN KEWIRAUSAHAAN	14
A. Analisis Produk	14
1. Analisis Fisika	14
a. Uji Penampakan	14
1) Homogenitas	14
2) Uji Hedonik Kesukaan	14
b. Pengukuran Deraat Keasaman (pH) Metode pH metri	15
c. Penetapan Bobot Jenis Metode Gravimetri	15
d. Penetapan Viskositas dengan Viskotester	16

2. Analisis Kimia16	3	
a. Penetapan Nilai Faktor Pelindung Surya (FPS) Metode In Vitro16	a. Penetapan Nilai Faktor Pelindung Surya (FPS) Metode In Vitro16	
b. Bahan Aktif17	7	
1) Penetapan Kadar <i>Octyl Methoxycinnamate</i> Metode		
Spektrofotometri UV – Vis17	7	
2) Uji Kualitatif <i>Titanium D</i> ioxide18	3	
3) Uji Kualitatif <i>Hydroquinone</i> 19	9	
c. Penetapan Kadar Pengawet <i>Methyl Paraben</i> metode		
Konduktometri20)	
d. Penetapan Kadar Logam Hg secara Atomic Absorption		
Spectrophotometry (AAS) Hidrida2	1	
e. Penetapan Kadar Logam As secara Atomic Absorption		
Spectrophotometry (AAS) Hidrida23	3	
f. Penetapan Kadar Logam Pb dan Cd secara Atomic Absorption		
Spectrophotometry (AAS) Nyala24	1	
3. Analisis Mikrobiologi27	7	
a. Penetapan Cemaran Mikroba Total Bakteri dengan Metode Angka		
Lempeng Total (ALT)27	7	
b. Penetapan Cemaran Mikroba Coliform dengan Metode Angka		
Paling Mungkin (APM)28	3	
c. Uji Kualitatif Jamur Kapang dan Khamir cara Tuang30)	
d. Uji Kualitatif Bakteri Patogen Staphylococcus aureus30)	
e. Uji Kaulitatif Bakteri Patogen Pseudomonas aeruginosa3	1	
B. Analisis Kewirausahaan32	2	
BAB IV HASIL DAN PEMBAHASAN35	5	
A	_	
A. Hasil Analisis		
B. Pembahasan36)	
BAB V SIMPULAN DAN SARAN	7	
A. Simpulan37	7	
B. Saran		
DAFTAR PUSTAKA38	3	
LAMPIRAN40)	

DAFTAR TABEL

Tabel 1. Pengelompokkan Keefektifan Sediaan Tabir Surya berdasarkan SPF1	2
Tabel 2. Hasil Analisis Kewirausahaan untuk Analisis Produk Losio Tabir Surya Merk "X"	
Tabel 3. Jasa Analisis dan Harga Analisis per Parameter Uji	34
Tabel 4. Perhitungan Keuntungan Kewirausahaan	34
Tabel 5. Hasil Analisis Dibandingkan dengan SNI No.16.4399-1996 Tentang Tabir Surya3	
Tabel 6. Hasil Analisis Dibandingkan dengan BPOM No.HK 03.1.23.08.11.07331	
Tahun 2011 Tentang Kosmetik3	35

DAFTAR GAMBAR

Gambar 1. Analisis	.4
Gambar 2. Sinar Matahari	•
Jambar 2. Sinar Matanari	٥.
Gambar 3. Pembagian Sinar UV	.7
Gambar 4. Kulit dan Lapisannya	.8
Gambar 5. Tabir Surya	10
Gambar 6. Losio	11
Sambar 7. Faktor Pelindung Surya	12

BABI

PENDAHULUAN

A. LATAR BELAKANG

Indonesia merupakan negara yang beriklim tropis. Mengingat Indonesia berada di garis khatulistiwa yang berarti Indonesia akan menerima sinar matahari sepanjang tahun. Berdasarkan letak astronomisnya, Indonesia terletak di 6° Lintang Utara sampai 11° Lintang Selatan dan 95° Bujur Timur sampai 141° Bujur Timur.

Sinar matahari dapat berdampak baik dan buruk terhadap manusia. Dampak baiknya adalah sinar matahari dapat mempercepat pembentukkan vitamin D dalam tubuh yang baik untuk pertumbuhan tulang. Dampak buruknya, terpapar sinar matahari akan menyebabkan beberapa penyakit kulit contohnya adalah kanker kulit. Karena sinar matahari mengandung sinar UV yang dapat menimbulkan kerusakan pada kulit.

Kulit merupakan bagian terluar tubuh manusia yang melindungi organ bagian dalam. Kulit manusia dapat rusak karena terpaan sinar matahari terutama pada siang hari. Hal yang perlu diperhatikan dalam merawat kulit adalah menjaganya dari terpaan sinar matahari langsung. Selain membuat kulit menjadi berwarna gelap, sinar matahari juga dapat menyebabkan kanker kulit. Oleh karenanya, hidup di daerah yang beriklim tropis mengharuskan untuk menjaga kulit lebih ekstra.

Untuk menangani masalah tersebut, industri kosmetik dalam dan luar negeri membuat suatu inovasi baru yaitu tabir surya. Teknologi tabir surya ini dipercaya dapat melindungi kulit dari sinar matahari. Cara penggunaan tabir surya ini hanya cukup dioleskan pada bagian yang terkena langsung sinar matahari dengan merata. Dengan demikian sinar matahari yang mengenai kulit akan terserap oleh tabir surya sehingga kulit akan tetap terlindungi.

Oleh karena adanya teknologi tabir surya, maka timbul pertanyaan tentang zat yang terkandung didalamnya. Hal apa saja yang wajib ada dalam tabir surya agar dapat melindungi kulit. Kandungan terpenting harus dimiliki oleh tabir surya adalah FPS. FPS adalah singkatan dari Faktor Pelindung Surya yang berfungsi sebagai zat pelindung kulit dari paparan sinar ultraviolet. Semakin tinggi kandungan FPS, maka semakin efektif dalam melindungi kulit.

Sebagaimana yang telah disampaikan diatas beserta pentingnya pemakaian tabir surya oleh masyarakat Indonesia. Oleh karena itu, Kelompok PKT 79 melakukan analisis kimia terpadu terhadap produk sediaan tabir surya. Hasil yang didapatkan oleh kelompok PKT 79 akan dibandingkan dengan SNI (Standar Nasional Indonesia) dan BPOM (Badan Pengawasan Obat dan Makanan).

B. PENTINGNYA PRODUK

Indonesia terletak di garis khatulistiwa sehingga Indonesia beriklim tropis yang berarti menerima sinar matahari sepanjang tahun. Tetapi sinar matahari memiliki dampak buruk yang berbahaya bagi kesehatan kulit manusia apabila terpapar secara terus menerus salah satunya adalah kanker kulit. Oleh karena itu diciptakanlah tabir surya yang dapat mengurangi dampak buruk dari sinar matahari yang mengandung sinar UV.

Tabir surya bermerek "X" dipercaya dapat melembabkan kulit, melindungi kulit dari paparan sinar matahari dan mencerahkan kulit karena mengandung vitamin E. Untuk mengetahui kandungan yang ada di dalam zat tersebut, maka dilakukan analisis yang kemudian akan dibandingkan dengan SNI 16-4399-1996 tentang Sediaan Tabir Surya dan BPOM No.HK 03.1.23.08.11.07331 Tahun 2011 tentang Kosmetik dengan beberapa parameter uji yang telah divalidasi.

C. TUJUAN MENGANALISIS PRODUK

Praktik Kimia Terpadu 2 berjudul *Analisis Mutu Kosmetik Losio Tabir* Surya Bermerk "X" bertujuan untuk:

- Memenuhi tugas sebagai siswa tingkat akhir di Sekolah Menengah Kejuruan SMAK Bogor
- 2. Mengetahui Kandungan yang terdapat di dalam produk baik secara kualitatif maupun kuantitatif
- Menentukan layak atau tidaknya produk berdasarkan SNI tentang Sediaan Tabir Surya dan BPOM tentang Kosmetik
- 4. Meningkatkan keterampilan, kemampuan dan pengetahuan siswa/i sebagai bekal untuk menjadi analis kimia yang handal dan kompeten
- 5. Menerapkan ilmu kimia analisis terpadu dan kewirausahaan

BABII

TINJAUAN PUSTAKA

A. ANALISIS

Gambar 1. Analisis

Analisa atau analisis atau Analysis adalah suatu usaha untuk mengamati secara detail sesuatu hal atau benda dengan cara menguraikan komponen-komponen pembentuknya atau penyusunnya untuk di kaji lebih lanjut. Analisa berasal dari kata Yunani kuno analusis yang artinya melepaskan. Analusis terbentuk dari dua suku kata, yaitu ana yang berarti kembali, dan luein yang berarti melepas sehingga jika digabungkan maka artinya adalah melepas kembali atau menguraikan. Kata anlusis ini di serap kedalam bahasa inggris menjadi analysis yang kemudian di serap juga ke dalam bahasa Indonesia menjadi analisis.

Menurut Kamus Besar Bahasa Indonesia (KBBI) analisis memiliki beberapa arti, diantaranya sebagai berikut

- Penyelidikan terhadap suatu peristiwa (karangan, perbuatan dan sebagainya) untuk mengetahui keadaan yang sebenarnya (sebab – musabab, duduk perakaranya dan sebagainya)
- 2. Penguraian suatu pokok atas berbagai bagiannya dan penelaahan bagian itu sendiri serta hubungan antar bagian untuk memperoleh pengertian yang tepat dan pemahaman arti keseluruhan. (Sri, 2017:38)

B. MUTU/KUALITAS

Kata mutu mempunyai definisi yang berbeda - beda mulai dari yang konvensional sampai dengan yang strategis. Definisi yang konvensional biasanya menjelaskan salah satu pengertian mulai seperti memakai suatu komoditas yang enak, konstruksi bangunan bagus dan tahan lama. Selain itu, ada definisi yang lain yang menggambarkan kesan prima, nomor satu, dan paling baik. (Ketut, 2018:5)

Pengertian kualitas menurut para ahli :

- Philip B.Crosby (1979), the quality is conformance with the requirements (kualitas adalah kesesuaian persyaratan)
- Josep M. Juran (1993), is the quality of the suitability of the use of products to meet customer needs and satisfaction (kesesuaian penggunaan produk untuk memenuhi kebutuhan dan kepuasan pelanggan). (Ketut, 2018:6)

Definisi kualitas berdasarkan atas pengertian dalam standar internasional yaitu:

 Berdasarkan ISO 9000:2015 (klausul 3.6.2): Quality is degree to which a set of inherent characteristic of an object fulfils requirements (kualitas adalah tingkat dimana serangkaian karakteristik yang melekat/inheren pada objek memenuhi syarat)

Catatan:

- ✓ Istilah "mutu" dapat dipakai dengan kata sifat seperti buruk, baik atau baik sekali
- ✓ "inheren",lawan dari "yang ditambahkan", berarti ada pada sesuatu terutama sebagai karakteristik yang tepat. (Ketut, 2018:6)

Jika dijabarkan lagi pengertian kualitas adalah tingkat dimana serangkaiian karakteristik yang melekat/inheren memenuhi persyaratan ,maka harus dipahami pengertian 2 kata kunci yaitu:

- 1. Karakteristik, yaitu ciri yang membedakan
- 2. Persyaratan yaitu kebutuhan atau harapan yang dinyatakan, biasanya tersirat atau wajib

Pada klausul 3.10.1 (ISO 9000:2015) dijelaskan bahwa terdapat berbagai kelas karakteristik yang harus dipenuhi sesuai dengan jenis produk, misalnya:

- a) Fisik (misalnya karakteristik mekanik, listrik, kimia, atau biologi);
- b) Keindraan (misalnya berkaitan dengan bau, sentuhan rasa, penglihatan, pendengaran);
- c) Temporal (misalnya ketepatan; keandalan; ketersediaan)
- d) Ergonomik (misalnya karakteristik, fisiologis, atau berkaitan dengan keselamatan manusia);
- e) Fungsional (misalnya kecepatan maksimum pesawat terbang)

Karakteristik tidak sesuai dengan persyaratan berarti produk tidak bermutu/tidak berkualitas. Begitu pula sebaliknya. (Ketut, 2018:7)

C. SINAR MATAHARI

Gambar 2. Sinar Matahari

Sinar matahari disatu sisi sebenarnya sangat dibutuhkan oleh manusia misalnya dalam proses pembentukan vitamin D dari pro-vitamin D yang membutuhkan bantuan sinar matahari pagi. Namun, di lain pihak sinar matahari juga mengandung sinar ultraviolet yang berbahaya bagi kulit. Paparan sinar ultraviolet secara langsung pada kulit dapat menimbulkan berbagai kelainan pada kulit, antara lain kemerahan, noda hitam, jerawat, penuaan dini, keriput, kekeringan, hingga kanker kulit.

Gambar 3. Pembagian Sinar UV

Sinar ultraviolet dihasilkan dari radiasi sinar matahari. Selain itu, dapat juga dihasilkan dari transisi elektron dalam orbit atom. Jangkauan frekuensi sinar ultraviolet, yaitu berkisar diantara 10⁵ Hz – 10¹⁶ Hz. Sinar ultraviolet dapat berguna dan dapat juga berbahaya bagi kehidupan manusia. Sinar ultraviolet dapat dimanfaatkan untuk mencegah agar bayi yang baru lahir tidak kuning warna kulitnya.

Berdasarkan ketentuan, sinar ultraviolet terbagi menjadi UVA, UVB dan UVC. UVA memiliki range dari 320 nm-400 nm, UVB berkisar dari 290 nm - 320 nm, dan UVC termasuk pengukuran panjang gelombang dari 200 nm - 290 nm. Radiasi UVC yang dipancarkan oleh matahari diserap oleh atmosfir. Oleh karena itu, tidak mencapai permukaan bumi dan tidak memiliki relevansi medis. Enam puluh lima persen dari radiasi sinar UV mencapai permukan bumi antara pukul 10.00 - 14.00 wib, ketika matahari paling dekat diatas kepala. Radiasi sinar matahari pada tengah hari dapat mencapai 95% UVA dan 5% UVB. (Brian dan John, 2010:454).

Ini adalah alasan untuk fotoproteksi yang optimal, direkomendasikan tabir surya berspektrum luas yang akan menyerap kedua range UVA dan UVB. Tipe sinar UV dan chromophores didalam kulit, seperti asam nukleat, melanin, dan asam amino aromatik, yang menentukan kedalaman penetrasi radiasi UV. UVA, menjadi panjang gelombang yang lebih panjang, penetrasi lebih dalam dari UVB. 20-30% radiasi UVA mencapai bagian kulit yang dalam, sedangkan hanya 10% UVB mencapai permukaan kulit. UVA, tetapi tidak radiasi UVB dapat menembus kaca jendela. (Brian dan John, 2010:454).

D. KULIT

Gambar 4. Kulit dan Lapisannya

Struktur kulit terbagi atas beberapa lapisan,dimulai dari lapisan teratas kulit yang mengalami kontak langsung dengan lingkungan luar tubuh.

a. Lapisan Epidermis

Lapisan epidermis adalah lapisan terluar kulit. Dibagian dasar lapisan ini terdapat sel sel yang terus membelah dan membentuk sel sel baru. Dalam pembentukannya, sel-sel baru ini menekan sel-sel diatasnya ke arah permukaan epidermis yang kemudian akan mencapai lapisan keratin. Sel-sel kulit dibagian teratas epidermis umumnya lebih gepeng dan kandungan airnya semakin atas semakin kecil yang pada akhirnya menyebabkan vitalitas sel kulit tersebut menjadi sangat rendah kemudian mati. Inilah yang sering kita lihat sebagai pengelupasan kulit. Lapisan kulit mati dikenal dengan lapisan keratin karena mengandung protein keratin. (Juni, 2014:25)

Selain sel-sel keratinosit, kita temui pula sel langerhans yang berfungsi dalam pembentukan sistem imunitas tubuh dan sel melanosit yang berperan dalam memproduksi pigmen yang memberi warna dari kulit pada lapisan epidermis ini. Keaktifan dari sel melanosit inilah yang menentukan perbedaan warna kulit dari individu-individu yang berbeda ras dan didapatkan secara bawaan dari riwayat genetik keluarga. Salah satu faktor yang dapat mempengaruhi keaktifan dari sel melanosit ini adalah paparan sinar matahari. (Juni, 2014:25)

b. Lapisan Dermis

Lapisan dermis adalah lapisan dibawah epidermis dan lebih tebal dari pada epidermis. Komponen utama lapisan ini adalah kolagen dan serat elastin, yang mengandung pembuluh darah, saraf, sensor organ, kelenjar keringat, kelenjar minyak, dan folikel rambut. Selain itu, dermis kulit juga mengandung pembuluh darah kecil yang berfungsi untuk transformasi oksiqen dan karbondioksida dari dalam tubuh. Daerah kulit yang berambut seperti kulit kepala banyak mengandung minyak yang kita kenal sebagai kelenjar sebum. Karena itulah kulit didaerah kepala mengandung minyak lebih banyak daripada didaerah yang tak berambut. Daerah dermis ini pulalah tempat dimulainya akar rambut - dasar dari rambut. Sama seperti kulit, rambut bagian bawah akar rambut akan mendesak rambut keluar melalui folikel rambut. Semakin keujung, kondisi rambut akan semakin tua. Pada rambut oun ada lapisan keratin pada rambut lebih keras dan komposisi dasarnya sedikit berbeda daripada yang ada dikulit. Pada bagian dermis ini pula terdapat otot rambut yang berfungsi menggerakkan rambut terhadap rangsang cuaca atau psikis. (Juni, 2014:25)

c. Lapisan Sub-Kutis

Lapisan sub-kutis terletak dibawah dermis dan mengandung sel – sel lemak. Lapisan lemak ini melindungi bagian dalam organ dari trauma mekanik dan juga sebagai pelindung tubuh terhadap udara dingin. Besarnya bagian lemak sangat tergantung kepada faktor keturunan, gaya hidup, diet, dan aktivitas sehari-hari. (Juni, 2014:27).

E. TABIR SURYA

Gambar 5. Tabir Surya

Sediaan tabir surya adalah sediaan kosmetika yang digunakan untuk maksud membaurkan atau menyerap secara efektif cahaya matahari, terutama daerah emisi gelombang ultraviolet dan inframerah, sehingga dapat mencegah terjadinya gangguan kulit karena cahaya matahari. (Depkes RI, 1985:404)

Syarat yang diperlukan dalam tabir surya menurut Wilkinson dan Moore (1982) adalah:

- Efektif dalam menyerap sinar eritmogenik pada rentang panjang gelombang 290-320 nm tanpa menimbulkan gangguan yang akan mengurangi efisiensinya atau yang akan menimbulkan toksik atau iritasi
- Memberikan transmisi penuh pada rentang panjang gelombang 300-400 nm untuk memberikan efek terhadap tanning maksimum
- 3. Tidak mudah menguap dan resisten terhadap air dan keringat
- 4. Memiliki sifat sifat mudah larut yang sesuai untuk memberikan formulasi kosmetik yang sesuai
- Tidak berbau dan memiliki sifat sifat fisik yang memuaskan, misalnya daya lengket nya, dan lain-lain
- 6. Tidak menyebabkan toksik, tidak iritan, dan tidak menmbulkan sensitivas
- 7. Dapat mempertahankan daya proteksinya selama beberapa jam
- 8. Stabil dalam penggunaan
- 9. Tidak memberikan noda pada pakaian

Tidak toksik dapat diterima secara dermatologis merupakan hal yang penting. Sebagai kosmetik, tabir surya sering digunakan dalam penggunaan harian pada daerah permukaan tubuh yang luas. Selain itu, tabir surya juga dapat digunakan pada bagian kulit yang telah rusak karena matahari. Tabir surya mungkin juga digunakan pada semua kelompok umur dan kondisi kesehatan yang bervariasi.

F. LOSIO/KRIM

Gambar 6. Losio

Losio merupakan sediaan cair berupa suspensi atau dispersi yang digunakan sebagai obat luar. Losio dapat berbentuk suspensi zat padat dalam bentuk serbuk halus dengan menggunakan bahan pensuspensi yang cocok atau emulsi tipe minyak dalam air dengan surfaktan yang cocok. Pada penyimpanan losio mungkin dapat terjadi pemisahan sehingga dapat ditambahkan dengan zat warna, pengawet, dan pewangi yang cocok. (Depkes RI, 1979)

Losio adalah berupa larutan, suspensi atau emulsi dimaksudkan untuk penggunaan pada kulit. Penambahan etanol 90% dalam losio akan mempercepat efek pendinginan, sedangkan penambahan gliserol akan menyebabkan kulit tetap lembab dalam waktu tertentu. Digunakan dengan cara mengoleskan pada kulit tanpa pijitan. Pembuatan losio harus dilakukan dengan tehnik aseptik, yaitu sedapat mungkin harus dihindarkan terjadinya cemaran jasad renik ke dalam losio, terutama jika losio tidak mengandung pengawet. (Depkes RI, 1978:325)

Losio dimaksudkan digunakan sebagai pelindung kulit atau untuk obat dikarenakan sifat dari bahan bahannya. Pada umumnya pembawa dari lotion adalah air. Sehingga setelah pemakaian lotion dapat segera kering dan tersebar merata pada permukaan kulit karena sifat kecairannya dan hanya meninggalkan lapisan tipis dari komponen obat pada permukaan kulit. (Ansel, 1989)

G. SPF

Gambar 7. Faktor Pelindung Surya

Efikasi tabir surya biasanya dinyatakan oleh nilai sun protecting factor (SPF). Definisi resmi nilai SPF adalah:

$$Nilai\ SPF = \frac{MED(PS)}{MED\ (US)}$$

Dimana MED(PS) adalah dosis eritema minimum untuk kulit yang terlindungi setelah penggunaan 2 mg cm⁻² atau 2 µl cm⁻² dari produk tabir surya, dan MED (US) adalah dosis eritema minimum untuk kulit yang terlindungi oleh penggunaan produk tebir surya. Semakin besar nilai SPF, maka semakin besar perlindungan yang diberikan oleh produk tabir surya tersebut. (Wilkinson & Moore,1982)

Penilaian SPF mengacu pada ketentuan FDA yang mengelompokkan keefektifan sediaan tabir surya berdasarkan SPF (Wilkinson & Moore, 1982):

Tabel 1. Pengelompokkan Keefektifan Sediaan Tabir Surya berdasarkan SPF

SPF	Kategori Proteksi Tabir Surya
2-4	Proteksi minimal
4-6	Proteksi sedang
6-8	Proteksi ekstra
8-15	Proteksi minimal
≥15	Proteksi ultra

[Sumber : Wilkinson & Moore, 1982]

The British Association of Dermatologists memaparkan empat jenis SPF yang biasa terdapat dalam produk tabir surya. Jenis pertama merupakan SPF 6 hingga 14 yang memberi perlindungan rendah. Jenis kedua merupakan SPF 15 hingga 29, yang memberi perlindungan sedang. Jenis ketiga adalah SPF 30 hingga 50, yang memberi perlindungan tinggi. Jenis terakhir adalah SPF 50+ yang memberi perlindungan sangat tinggi. Organisasi tersebut merekomendasikan agar memilih krim pelindung matahari dengan SPF 30 atau lebih tinggi. Hal tersebut juga disarankan oleh American Academy of Dermatology.

BAB III

METODE ANALISIS DAN KEWIRAUSAHAAN

A. ANALISIS PRODUK

- 1. Analisis Fisika
 - a. Uji Penampakan
 - 1) Homogenitas

Dasar

Sampel dioleskan pada dua buah cermin datar, kemudian diamati di bawah sumber cahaya.

Cara Kerja

- 1. Disiapkan dua plat cermin datar
- 2. Sampel dioleskan ke cermin
- 3. Diamati di bawah sumber cahaya

2) Uji Hedonik Kesukaan

Dasar

Uji organoleptik berdasarkan pada tingkat kesukaan atau penerimaan terhadap warna, aroma/bau, tekstur, kelengketan, dan penyerapan ke kulit pada losio yang berdasarkan pada pengamatan dengan menggunakan panca indra, kemudian dinilai oleh panelis.

- 1. Contoh disiapkan di dalam wadah kecil
- Diambil contoh sedikit dengan ujung jari, kemudian dioleskan ke tangan
- 3. Dilakukan penilaian oleh panelis

b. Pengukuran Derajat Keasaman (pH) Metode pH-metri

Dasar

Adanya ion H+ dan OH- dalam larutan contoh dapat diukur dengan menggunakan pH meter yang telah dikalibrasi dengan larutan buffer pH 7 dan pH 10, sehingga dapat diketahui pH-nya.

Cara Kerja

- 1. Disiapkan 50 mL sampel dalam piala gelas 10 mL
- 2. Diukur pH-nya dengan pH meter

c. Penetapan Bobot Jenis Metode Gravimetri

Dasar

Densitas sampel dapat diukur dengan membandingkan bobot sampel dengan bobot air.

- 1. Disiapkan alat dan bahan yang dibutuhkan
- 2. Piknometer dibilas dengan menggunakan alkohol pembilas dan dikeringkan dengan menggunakan pengering
- Piknometer ditimbang dan dicatat penimbangannya sebagai bobot piknometer kosong
- Piknometer diisi dengan air hingga penuh kemudian ditutup, jika terdapat air yang meluap dari piknometer dapat diseka dengan menggunakan tisu
- 5. Piknometer berisi air ditimbang dan dicatat penimbangan sebagai bobot piknometer + air
- 6. Piknometer dibilas dengan menggunakan sampel

- Piknometer diisi dengan sampel hingga penuh kemudian ditutup, jika terdapat sampel yang meluap dari piknometer dapat diseka dengan menggunakan tisu
- 8. Piknometer berisi sampel ditimbang dan dicatat penimbangan sebagai bobot piknometer + sampel
- 9. Suhu air dan sampel dalam suhu ruang diukur dan dicatat
- Dibandingkan antara bobot air dengan bobot sampel untuk mendapatkan berat jenis dari sampel

Perhitungan

$$d sampel = \frac{bobot sampel}{bobot air} \times d_{aq}^{t}$$

d. Penetapan Viskositas dengan Viskotester

Dasar

Sampel dapat diukur viskositasnya dengan menggunakan alat viskotester dengan menggunakan prinsip rotor dalam sampel. Semakin lambat kecepatan perputaran rotor maka viskositasnya makin besar

Cara Kerja

- 1. Contoh ditempatkan ke dalam piala gelas
- 2. Diukur kekentalannya dengan viskotester

2. Analisis Kimia

a. Penetapan Nilai Faktor Pelindung Surya (FPS) Metode In Vitro

Dasar

Penentuan nilai FPS dilakukan dengan *in vitro* menggunakan Spektrofotometri UV-Vis dengan mengukur larutannya dalam ethanol. Diukur serapannya pada panjang gelombang 290-320 nm setiap

kelipatan 5 nm untuk mengukur nilai faktor pelindung surya. Dilakukan 3 kali pembacaan.

Cara Kerja

- 1. Sampel ditimbang \pm 0,5 gram kemudian dimasukkan ke dalam labu ukur 50 mL
- 2. Dilarutkan dengan ethanol 96%
- 3. Kemudian disaring
- 4. Filtrat diukur serapannya dengan spektrofotometer UV
- 5. Sebagai blanko digunakan larutan ethanol 96% tanpa sediaan
- 6. Pengukuran absorbansi dengan spektrofotometri UV-Vis pada panjang gelombang 290-320 nm setiap kelipatan 5 nm

Perhitungan

Nilai FPS =
$$\sum_{290}^{320}$$
 Abs× EE × I

b. Bahan Aktif

1) Penetapan Kadar *Octyl Methoxycinnamate* Metode Spektrofotometri UV – Vis

Dasar

Penentuan kadar OMC (*Octyl Methoxycinnamate*) dapat dilakukan dengan metode spektrofotometri UV. Sampel dilarutkan dengan methanol dan diukur absorbansinya pada panjang gelombang 310 nm.

- 1. Dibuat deret standar OMC 4 s/d 12 ppm dalam labu ukur 50 mL
- 2. Sampel ditimbang ± 8 gram
- 3. Dimasukkan ke dalam labu ukur 100 mL
- 4. Disaring dengan kertas saring Whatman No.42
- 5. Filtrat dipipet 5 mL, dimasukkan ke dalam labu ukur 10 mL

- Diukur absorbansinya dengan spektrofotometer UV pada panjang gelombang 310 nm
- 7. Dilakukan minimal duplo, sebagai blanko digunakan methanol murni

Perhitungan

$$\% OMC = \frac{Abs - intesep}{Slope} \times \frac{100}{1000} \times fp \times \frac{100\%}{mg \ sampel}$$

2) Uji Kualitatif Titanium Dioxide

Dasar

Suatu zat tersusun atas senyawa atau unsur yang mempunyai sifat tertentu. Dengan melakukan analisis kualitatif senyawa anorganik melalui teknik penilikan rupa dapat dilakukan pengamatan sifat tersebut. Penilikan rupa adalah analisis pendahuluan yang berdasarkan sifat fisik bahan sampel, meliputi warna, bau, bentuk, dan kelarutan sampel didalam air dan asam encer.

Reaksi

$$Ti^{4+} + 4NaOH \rightarrow \underline{Ti(OH)}_{4 \text{ gelatin putih}} + 4Na^{+}$$

$$Ti^{4+} + H_{2}O_{2} + 2H_{2}O \rightarrow H_{2}TiO_{4 \text{ larutan kuning jingga}} + 4H^{+}$$

- 1. Ditimbang sampel ± 10 gram
- 2. Dikeringkan dipenangas atau dioven ± 15 menit
- 3. Diabukan hingga tak ada lagi asap
- 4. Dimasukkan ke dalam tanur hingga menjadi abu dan tidak ada lagi jelaga

- 5. Dilarutkan dengan asam encer, dimasukkan ke dalam tabung
- 6. Disiapkan dua tabung
 - a. Tabung I ditambahkan air, H₂O₂ dan H₂SO₄. Jika positif Ti⁴⁺, larutan akan berwarna kuning jingga
 - b. Tabung II ditambahkan NaOH. Jika positif TI⁴⁺, akan terbentuk gelatin putih
- 7. Dilakukan pengerjaan blanko terhadap dua tabung tersebut dengan air suling.

3) Uji Kualitatif Hydroquinone

Dasar

Sampel diekstrak dengan menggunakan etanol. Kemudian direaksikan dengan larutan Besi (III) Klorida 50%. Hasil positif *hydroquinone* menunjukkan kristal tajam berwarna hijau. Dilakukan pengerjaan blanko koreksi *hydroquinone*.

Reaksi

- 1. Sampel ditimbang 0,1 gram
- 2. Dilarutkan dengan 5 mL etanol
- 3. Diteteskan larutan sampel pada plat tetes
- 4. Dibubuhi beberapa tetes Besi (III) Klorida 50%
- 5. Diamati perubahan warna yang terjadi

c. Penentuan Kadar Pengawet secara Konduktometri

Dasar

Sampel direaksikan dengan 40,0 mL NaOH 1 N. Direfluks, dan dititrasi dengan asam sulfat menggunakan konduktometri, lakukan penetapan blanko. Setiap mL NaOH 1N setara dengan 152,2 mg $C_8H_8O_3$.

Reaksi

$$2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$$

sisa

- 1. Disiapkan alat dan bahan yang dibutuhkan
- 2. Ditimbang ± 2 gram contoh
- 3. Ditambahkan 25 mL NaOH 1N dengan pipet volum
- 4. Direfluks ± 1 jam, didinginkan
- 5. Dititar dengan H_2SO_4 1 N, setiap penambahan mL diukur DHL dengan konduktometer
- 6. Untuk blanko dipipet 25 mL NaOH 1 N
- 7. Dititar dengan H_2SO_4 1 N, setiap penambahan mL diukur DHL dengan konduktometer

Standarisasi NaOH

- 1. Ditimbang ± 0,63 gram asam oksalat
- Dilarutkan dengan H₂O dan ditambahkan 2-3 tetes indikator PP ke dalam erlenmeyer
- Dititar dengan NaOH 1 N dengan titik akhir berwarna merah muda seulas

Perhitungan

N NaOH
$$= \frac{mg \ asam \ oksalat}{Vp \times fp \times Bst \ asam \ oksalat}$$

Kadar Pengawet =
$$\frac{(Vb-Vp) \times N \ NaOH \times Bst \ Methyl \ Paraben}{mg \ sampel}$$

d. Penetapan Kadar Logam Hg secara Atomic Absorption Spectrophotometry (AAS) Hidrida

Dasar

Logam Hg pada suhu biasa mudah menguap,oleh karena itu bila kedalam reaktor kita tiupkan gas Ar maka uap Hg akan terbawa. Bila kita lewatkan ke tabung kuarsa absorpsi maka langsung dapat terjadi tanpa ada pemanasan. Pada penetapan Hg, gas pembuang harus dimasukkan kedalam air karena uap Hg sangat beracun. Reaksi pembentukn hidrida yang mudah menguap dapat menghilangkan gangguan yang berasal dari sampel.

Reaksi

$$BH_4^- + 3H_2O + H^+ \rightarrow H_3BO_3 + 8H$$

 $Hg^{2+} + 2H \rightarrow Hg + 2H^+$

Cara Kerja

- Blanko Koreksi
 - 1. Dimasukkan HNO₃ pekat kedalam erlenmeyer 100 mL
 - 2. Dipanaskan (digest) pada suu 350°C
 - 3. Dimasukkan ke dalam labu ukur 50mL, lalu tambahkan HCl 4N
 - 4. Diukur dengan menggunakan AAS
- Persiapan Sampel
 - 1. Ditimbang 0,5 gram sampel (duplo)
 - 2. Dimasukkan kedalam erlenmeyer 100mL, dan ditambahkan HNO₃ pekat sebanyak 25 mL
 - 3. Didigest pada suhu 350°C sampai jernih, volume berkurang ± 5 mL
 - 4. Dimasukkan ke dalam labu ukur 50 mL
 - 5. Diukur dengan AAS
- Persiapan Standar
 - 1. Dipipet Standar Induk Hg sebanyak 5 mL
 - 2. Dimasukkan ke dalam labu ukur 50 mL
 - 3. Dibuat deret standar antara 0 100 ppb
 - 4. Dimasukkan ke dalam labu ukur 100 mL dan tambahkan HCl 1,2 M dan tambahkan H_2O
 - 5. Diukur menggunakan AAS
- · Limit deteksi
 - 1. Dipipet deret standar terendah sebanyak 10 mL
 - Dimasukkan ke dalam labu ukur 100 mL dan tambahkan HCl 1,2M
 - 3. Diukur menggunakan AAS

Perhitungan

%Hg =
$$\frac{Abs - intesep}{Slope} \times \frac{50}{1000} \times fp \times \frac{100\%}{mg \ sampel}$$

e. Penentuan Kadar Logam As secara secara Atomic Absorption Spectrophotometry (AAS) Hidrida

Dasar

Sejumlah unsur seperti As, Sb, Bi, Ge, Se, Te, dan Sn dapat membentuk gas hidridanya dengan NaBH₄ dalam suasana asam. Hidrida dapat diuapkan dari larutannya dengan gas inert (biasanya Ar) dan membawa ke tabung kuarsa panas dan memecah membentuk atom bebasnya

Reaksi

$$BH_4^- + 3H_2O + H^+ \rightarrow H_3BO_3 + 2H^+$$
 $2As^{3+} + 12H \rightarrow 2AsH_3 + 6H^+$
 $2AsH_3 \rightarrow 2As + 3H_2$

- Persiapan Blanko Koreksi
 - 1. Dimasukkan 25 mL HCl 6 ke dalam labu ukur 50 mL
 - 2. Dihimpitkan dan dihomogenkan
 - 3. Diukur menggunakan AAS
- Persiapan Sampel
 - 1. Ditimbang 2,5 gram sampel dalam cawan porselen
 - 2. Dikeringkan dipenangas dan diabukan hingga tidak ada asap
 - 3. Dipanaskan di dalam tanur 500°C selama 3 jam
 - 4. Didinginkan dan ditambahkan 25 mL HCl 6 M, kemudian disaring
 - 5. Dimasukkan ke dalam labu ukur 50 mL, dihimpitkan dan dihomogenkan
 - 6. Diukur menggunakan AAS

• Persiapan Standar

- Dipipet larutan Standar Induk As 1000 ppm sebanyak 10 mL ke dalam labu ukur 100 mL (100 ppm), dihimpitkan dan dihomogenkan
- 2. Dipipet larutan standar 100 ppm sebanyak 1 mL ke dalam labu ukur 100 mL, dihimpitkan dan dihomogenkan
- 3. Dibuat deret standar 0-150 ppb ke dalam labu ukur 100 mL dan ditambahkan 20 mL HCl 4 N
- 4. Diukur menggunakan AAS
- · Limit Deteksi
 - Dipipet 10 mL larutan deret standar terendah ke dalam labu ukur 100 mL, dihimpitkan dan homogenkan
 - 2. Diukur menggunakan AAS

Perhitungan

%As
$$=\frac{Abs-intesep}{Slope} \times \frac{50}{1000} \times fp \times \frac{100\%}{mg \ sampel}$$

f. Penentuan Kadar Logam Pb dan Cd secara secara Atomic Absorption Spectrophotometry (AAS) Nyala

Dasar

Contoh didestruksi secara kering dengan tanur dan dijadikan larutan, lalu dengan bahan bakar dibuat aerosol kemudian diatomisasi membentuk atom bebas. Atom-atom bebas ini dapat menyerap energi cahaya sehingga membentuk atom yang tereksitasi dan absorbansi sinar dapat dibaca pada Spektrofotometri Serapan Atom.

Reaksi

Cara Kerja

- Persiapan Blanko Koreksi
 - 1. Dimasukkan 25 mL HCl 6 M ke dalam labu ukur 50 mL
 - 2. Dihimpitkan dan dihomogenkan
 - 3. Diukur menggunakan AAS

Persiapan Sampel

- 1. Ditimbang 2,5 gram sampel dalam cawan porselen
- 2. Dikeringkan dipenangas dan diabukan hingga tidak ada asap
- 3. Dipanaskan di dalam tanur 500°C selama 3 jam
- 4. Didinginkan dan ditambahkan 25 mL HCl 6 M, kemudian disaring
- 5. Dimasukkan ke dalam labu ukur 50 mL, dihimpitkan dan dihomogenkan
- 6. Diukur menggunakan AAS

Persiapan Standar

- 1. Pb
 - a. Dipipet larutan Standar Induk Pb 1000 ppm sebanyak 10 mL ke dalam labu ukur 100 mL
 - b. Ditambahkan 5 mL HNO₃ 4 N, Dihimpitkan dan dihomogenkan
 - c. Dibuat deret standar dengan range 0-12 ppm kedalam labu ukur 100 mL

- d. Ditambahkan HNO₃ 4 N sebanyak 5 mL, dihimpitkan dan dihomogenkan
- e. Ukur menggunakan AAS

2. Cd

- a. Dipipet larutan Standar Induk Cd 1000 ppm sebanyak 10 mL ke dalam labu ukur 50 mL (200 ppm), dihimpitkan dan dihomogenkan
- b. Dipipet larutan standar 200 ppm sebanyak 10 mL ke dalam labu ukur 100 mL
- c. Dibuat deret standar dengan range 0-1,8 ppm kedalam labu ukur 100 mL
- d. Ditambahkan HNO₃ 4 N sebanyak 5 mL, dihimpitkan dan dihomogenkan
- e. Ukur menggunakan AAS

· Limit Deteksi

- Dipipet larutan deret standar terendah sebanyak 10 mL ke dalam labu ukur 100 mL
- 2. Ditambahkan 5 mL HNO₃ 4N, dihimpitkan dan dihomogenkan
- 3. Ukur menggunakan AAS

Perhitungan

%Pb =
$$\frac{Abs-intercept}{Slope} \times \frac{50}{1000} \times fp \times \frac{100\%}{mg \ sampel}$$

%Cd =
$$\frac{Abs-intercep}{Slope} \times \frac{50}{1000} \times fp \times \frac{100\%}{mg \ sampel}$$

3. Analisis Mikrobiologi

a. Penetapan Cemaran Mikroba Total Bakteri dengan Metode Angka Lempeng Total (ALT)

Dasar

Angka lempeng total adalah teknik analisis mikrobiologi yang digunakan untuk menentukan jumlah bakteri pada suatu contoh. Perhitungan jumlah bakteri cara tuang menggunakan pengenceran 10⁻¹ sampai 10⁻³ dan blangko. Contoh tiap pengenceran dipipet ke cawan petri yang berisi media PCA (*Plate Count Agar*) steril yang suhunya 45°C, kemudian diinkubasikan pada suhu 37°C selama 24-48 jam.

- 1. APD lengkap (sarung tangan, masker, penutup kepala, jas lab, sepatu lab) digunakan
- 2. Disiapkan alat-alat untuk persiapan contoh yang sudah steril atau dapat disterikan di dalam oven dengan suhu 160 °C selama 2 jam
- 3. Dilakukan teknik aseptik untuk area kerja kemudian nyalakan pembakar
- 4. Dilakukan labelling pada setiap alat
- 5. Dipipet 9 mL BPW (*Buffered Pepton Water*) ke masing-masing tabung; blanko, 10⁻² dan 10⁻³
- 6. Disiapkan botol contoh yang sudah disanitasi dengan menggunakan alkohol 70%
- 7. Dipipet 1 mL BPW (*Buffered Pepton Water*) dari tabung blanko ke dalam petri blanko
- 8. Ditimbang 7,5 gram contoh ke dalam erlenmeyer pengenceran 10⁻¹ dilarutkan dengan BPW hingga 75 mL lalu dihomogenkan: 3x pembilasan pipet serologi kemudian dimasukkan ke dalam petri steril simplo (S) 10⁻¹ dan duplo (D) 10⁻¹
- 9. Dipipet 1 mL contoh dari tabung pengenceran 10⁻¹ ke dalam tabung pengeceran 10⁻², lalu dihomogenkan, kemudian dimasukkan ke dalam petri steril simplo (S) 10⁻² dan duplo (D) 10⁻²

- 10. Dipipet 1 mL contoh dari tabung pengenceran 10⁻² ke dalam tabung pegenceran 10⁻³, lalu dihomogenkan, kemudian dimasukkan ke dalam petri steril simplo (S) 10⁻³ dan duplo (D) 10⁻³
- 11. Dituangkan media PCA bersuhu 40-45°C sebanyak ± 15 ml atau sepertiga volume petri, dihomogenkan dan ditunggu sampai beku
- 12. Diinkubasi pada suhu 37°C selama 24 jam (posisi terbalik)
- Dihitung jumlah koloni bakteri dengan colony counter. Dihitung jumlah koloni bakteri pada tabel data pengamatan sesuai kaidah yang berlaku

Perhitungan

$$N = rac{Rata - rata\ jumlah\ bakteri\ pada\ pengenceran\ masuk\ range}{Pengenceran\ yang\ masuk\ range}$$

b. Penetapan Cemaran Mikroba Coliform dengan Metode Angka Paling Mungkin (APM)

Dasar

Perhitungan jumlah coliform cara APM dilakukan dengan pengenceran 10⁻¹ sampai 10⁻³ dan blangko kemudian dari masingmasing pengenceran dipipet sebanyak 1 mL ke dalam tabung ulir berdurham yang berisi media BGBB steril lalu diinkubasi pada uhu 37°C selama 24 jam. Adanya tabung durham terbalik bertujuan untuk memudahkan pengamatan gas yang terbentuk. Hitung jumlah tabung yang keruh dan bergas pada masing-masing pengenceran kemudian dihitung dengan menggunakan tabel indeks APM.

- APD lengkap (jas lab, sepatu lab, masker, sarung tangan, penutup kepala) digunakan
- 2. Dilakukan teknik aseptik untuk area kerja, kemudian nyalakan pembakar
- 3. Dilakukan labeling pada setiap alat
- 4. Dipipet 9 mL BPW (*Buffered Pepton Water*) ke masing-masing tabung; blanko, 10⁻² dan 10⁻³
- Disiapkan botol contoh yang sudah disanitasi dengan menggunakan alkohol 70%
- 6. Dipipet 1 mL BPW (*Buffered Pepton Water*) dari tabung blanko ke dalam petri blanko
- 7. Ditimbang 7,5 gram contoh ke dalam erlenmeyer pengenceran 10⁻¹ dilarutkan dengan BPW hingga 75 mL lalu dihomogenkan: 3x pembilasan pipet serologi kemudian dimasukkan ke dalam petri steril simplo (S) 10⁻¹ dan duplo (D) 10⁻¹
- 8. Dipipet 1 mL contoh ke dalam tabung pengenceran 10⁻¹, lalu dihomogenkan: 3x pembilasan pipet serologi kemudian dimasukkan kedalam 3 tabung ulir yang berisi BGBB steril yang berlabel 10⁻¹
- 9. Dipipet 1 mL contoh dari tabung 10⁻¹ ke dalam tabung pengeceran 10-2, lalu dihomogenkan, kemudian dimasukkan ke dalam 3 tabung ulir yang berisi BGBB steril yang berlabel 10⁻²
- 10. Dipipet 1 mL contoh dari tabung pengenceran 10⁻² ke dalam tabung pengenceran 10⁻³, lalu dihomogenkan, kemudian dimasukkan ke dalam 3 tabung ulir yang berisi BGBB steril yang berlabel 10⁻³
- 11. Diinkubasi pada suhu 37°C selama 24 jam. Dihitung jumlah tabung yang keruh atau bergas pada masing masing pengenceran kemudian dihitung dengan bantuan tabel indeks APM

c. Uji Kualitatif Jamur Kapang dan Kamir cara Tuang

Dasar

Uji kualitatif kapang dan Khamir cara tuang ini dilakukan dengan pengenceran contoh dari 10⁻¹. Kemudian dipipet sebanyak 1 mL ke dalam cawan petri dan dituang media PDA sebanyak 15 mL lalu diinkubasi pada suhu 28°C selama 3-5 hari.

Cara Kerja

- APD lengkap (jas lab, sepatu lab, masker, sarung tangan, penutup kepala) digunakan
- 2. Dilakukan teknik aseptik untuk area kerja, kemudian nyalakan pembakar
- 3. Dilakukan labeling pada setiap alat
- 4. Disiapkan botol contoh yang sudah disanitasi dengan menggunakan alkohol 70%
- 5. Ditimbang 7,5 gram contoh ke dalam erlenmeyer pengenceran 10⁻¹ dilarutkan dengan BPW hingga 75 mL lalu dihomogenkan
- 6. Kemudian dimasukkan ke dalam petri steril simplo (S) 10⁻¹ dan duplo (D) 10⁻¹
- 7. Dituangkan media PDA bersuhu 40-45°C sebanyak ± 15 mL atau sepertiga volume petri, dihomogenkan sampai beku
- 8. Diinkubasi pada suhu 28°C selama 3-5 hari (posisi terbalik)
- 9. Diamati kapang dan kamir yang tumbuh

d. Uji Kualitatif Bakteri Patogen Staphylococcus aureus

Dasar

Pemeriksaan bakteri patogen ini dilakukan setelah proses pengerjaan perhitungan jumlah bakteri cara APM. Hasil pengujian yang positif (keruh dan bergas) dari pengerjaan sebelumnya digoreskan di media selektif steril (*plate*) lalu diinkubasi pada suhu 30-38°C selama 24 jam.

Cara Kerja

- APD lengkap (jas lab, sepatu lab, masker, sarung tangan, penutup kepala) digunakan
- 2. Dilakukan teknik aseptik untuk area kerja, kemudian nyalakan pembakar
- 3. Dilakukan labeling pada setiap alat
- 4. Ditimbang 7,5 gram contoh ke dalam erlenmeyer pengenceran 10⁻¹ dilarutkan dengan BPW hingga 75 mL lalu dihomogekan
- 5. Kemudian dimasukkan ke dalam petri steril simplo (S) 10⁻¹ dan duplo (D) 10⁻¹
- Dituangkan media selektif steril yang akan diujikan ±40 oC (Manitol Salt Agar/MSA untuk Staphylococcus aureus) sebanyak ± 15 mL secara merata dan tunggu hingga beku
- 7. Diinkubasi ke dalam inkubator pada suhu 30-35 _oC selama 24 jam (posisi terbalik)
- 8. Diamati dan dicatat hasilnya dan dibandingkan dengan standar pada tabel bakteri patogen

e. Uji Kualitatif Bakteri Patogen Pseudomonas aeruginosa

Dasar

Pemeriksaan bakteri patogen ini dilakukan setelah proses pengerjaan perhitungan jumlah bakteri cara APM. Hasil pengujian yang positif (keruh dan bergas) dari pengerjaan sebelumnya digoreskan di media selektif steril (*plate*) lalu diinkubasi pada suhu 30-38 °C selama 24 jam.

Cara Kerja

- APD lengkap (jas lab, sepatu lab, masker, sarung tangan, penutup kepala) digunakan
- 2. Dilakukan teknik aseptik untuk area kerja, kemudian nyalakan pembakar
- 3. Dilakukan labeling pada setiap alat
- 4. Ditimbang 7,5 gram contoh ke dalam erlenmeyer pengenceran 10⁻¹ dilarutkan dengan BPW hingga 75 mL lalu dihomogenkan
- Kemudian dimasukkan ke dalam petri steril simplo (S) 10⁻¹ dan duplo
 (D) 10⁻¹
- Dituangkan media selektif steril yang akan diujikan ±40°C (Cetrimide Agar/CA untuk *Pseudomonas aeruginosa*) sebanyak ± 15 mL secara merata dan tunggu hingga beku
- 7. Diinkubasi ke dalam inkubator pada suhu 30-35°C selama 24 jam (posisi terbalik)
- 8. Diamati dan dicatat hasilnya dan dibandingkan dengan standar pada tabel bakteri patogen

B. ANALISIS KEWIRAUSAHAAN

Berikut adalah hasi prakiraan total biaya analisis yang diperlukan untuk menganalisis produk tabir surya bermerk "X".

Tabel 2. Hasil Analisis Kewirusahaan untuk Analisis Produk Tabir Surya Merk "X"

ANALISIS FISIKA

No	Nama Bahan	Satuan		Satu Botol		Realisasi		
			Jumlah Harga Jumlah		Jumlah		Harga	
1	Alkohol	mL	300	Rp	13.000,00	50	Rp	2.166,67
Jum	lah						Rp	2.166,67
Biay	a Tak Terduga 15%						Rp	325,00
Tota	l Biaya (Pembulatan)						Rp	2.500,00

ANALISIS KIMIA

No	Nama Bahan	Satuan		Satu B	otol		Realisa	asi
NO	INAIIIA DAIIAII	Saluari	Jumlah		Harga	Jumlah		Harga
1	Ethanol 96%	mL	1000	Rp	456.000,00	150	Rp	68.400,00
2	<i>Hydrochloric Acid</i> Pekat	mL	1000	Rp	350.000,00	35	Rp	12.250,00
3	Hydrogen Peroxide	mL	250	Rp	566.000,00	10	Rp	22.640,00
4	Hydroquinone	Gram	250	Rp	462.000,00	0,2	Rp	369,60
5	Iron (III) Chloride	Gram	500	Rp	687.000,00	2	Rp	2.748,00
6	Kertas Saring Whatman No 42 12 1/2 cm	Lembar	100	Rp	646.000,00	12	Rp	77.520,00
7	Methanol	mL	1000	Rp	314.000,00	330	Rp	103.620,00
8	Nitric Acid 65%	mL	1000	Rp	765.000,00	100	Rp	76.500,00
9	Oxalic Acid	Gram	500	Rp	938.000,00	0,8	Rp	1.500,80
12	Sodium Hydroxide	mL	1000	Rp	761.000,00	75	Rp	57.075,00
13	Standar Induk Arsen	mL	500	Rp	763.000,00	10	Rp	15.260,00
14	Standar Induk Kadmium	mL	500	Rp	928.000,00	10	Rp	18.560,00
15	Standar Induk Merkuri	mL	500	Rp	937.000,00	10	Rp	18.740,00
16	Standar Induk Timbal	mL	500	Rp	928.000,00	10	Rp	18.560,00
17	Sulfuric Acid	mL	1000	Rp	232.000,00	100	Rp	23.200,00
Jum	lah						Rp	516.943,40
Biay	a Tak Terduga 15%						Rp.	77.541,51
Tota	ıl Blaya (Pembualatan)						Rp.	595.000,00

ANALISIS MIKROBIOLOGI

No	Nama Bahan	Satuan		Satu E	Botol		Realis	asi	
INO	Nama Danan	Saluan	Jumlah		Harga	Jumlah		Harga	
1	Alkohol	mL	300	Rp	13.000,00	25	Rp	1.083,33	
2	Brilliant Green Bile Broth (BGBB)	gram	500	Rp	2.170.000,00	4	Rp	17.360,00	
3	Buffered Pepton Water (BPW)	gram	500	Rp	790.000,00	6,604	Rp	10.434,32	
4	Cetrimide Agar (CA)	gram	500	Rp	2.025.000,00	1,2	Rp	4.860,00	
5	Mannitol Salt Agar	gram	500	Rp	1.650.000,00	3,33	Rp	10.989,00	
6	Plate Count Agar (PCA)	gram	500	Rp	1.135.000,00	5,04	Rp	11.440,80	
7	Potato Dextrose Agar (PDA)	gram	500	Rp	1.495.000,00	1,17	Rp	3.498,30	
9	Spiritus	mL	1000	Rp	22.000,00	50	Rp	1.100,00	
Jum	lah						Rp	60.765,75	
Biay	a Tak Terduga 15%						Rp	9.114,86	
Tota	ıl Biaya (Pembulatar	1)					Rp	70.000,00	

Tabel 3. Jasa Analisis dan Harga Analisis per Parameter Uji

No	Parameter	Ja	sa Anaisis	Harga Analisis	
1	Homogenitas	Rp	5.000	Rp	10.000
2	рН	Rp	5.000	Rp	20.000
3	Bobot Jenis	Rp	10.000	Rp	15.000
4	Viskositas	Rp	5.000	Rp	40.000
5	SPF	Rp	50.000	Rp	100.000
6	OMC	Rp	50.000	Rp	150.000
7	TiO2	Rp	5.000	Rp	10.000
8	Hydroquinone	Rp	5.000	Rp	20.000
9	Methyl Paraben	Rp	25.000	Rp	100.000
10	Logam As	Rp	25.000	Rp	100.000
11	Logam Hg	Rp	25.000	Rp	150.000
12	Logam Cd	Rp	25.000	Rp	105.000
13	Logam Pb	Rp	25.000	Rp	105.000
14	ALT	Rp	25.000	Rp	175.000
15	Coliform	Rp	25.000	Rp	125.000
16	Jamur	Rp	10.000	Rp	25.000
17	Stapylococcus aureus	Rp	25.000	Rp	50.000
18	Pseudomonas aeruginosa	Rp	25.000	Rp	50.000
Total		Rp	370.000	Rp	1.350.000

Tabel 4. Perhitungan Keuntungan Kewirausahaan

Total Kebutuhan Analisis	Rp	667.500,00
Total Jasa Analisis	Rp	370.000,00
Total Harga Analisis	Rp	1.350.000,00
Keuntungan	Rp	312.500,00
Porsentase Keuntungan		30%

BAB IV HASIL DAN PEMBAHASAN

Hasil analisis lotion tabir surya merk "X" dibandingkan dengan standar SNI No. 16.4399-1996 **BPOM** tentang **Tabir** Surya dan No.HK 03.1.23.08.11.07331 Tahun 2011 tentang kosmetika.

Tabel 5. Hasil Analisis Dibandingkan Dengan SNI No.16.4399-1996 Tentang Tabir Surya

No	Kriteria Uji	Satuan	Persyaratan	Hasil Sampel	Keterangan
1	Penampakan				
	1.1 Homogenitas	-	Homogen	Homogen	Sesuai
	1.2 Bau/Aroma	-	-	Suka	*
	1.3 Warna	-	-	Suka	*
	1.4 Tekstur	-	-	Suka	*
	1.5 Kelengketan	-	-	Suka	*
	1.6 Penyerapan ke Kulit	-	-	Suka	*
2	рН	-	4,5 - 8,0	6,787	Sesuai
3	Bobot Jenis, 20°C	g/mL	0,95 - 1,05	0,98005	Sesuai
4	Viskositas, 25°C	Cps	2.000 - 50.000	2144,75	Sesuai
5	Faktor Pelindung Surya	-	Min. 4	2,68	Tidak Sesuai
6	Bahan Aktif				
	6.1 Octyl Methoxycinnamate	%	2 - 7,5	0,02	Tidak Sesuai
	6.2 Titanium Dioxide	%	Maks. 1	Positif	**
	6.3 Hydroquinone	-	Negatif	Negatif	Sesuai
7	Kadar Pengawet		· ·	· ·	
	7.1 Methyl Paraben	%	Maks. 0,8	1,45	Tidak Sesuai
8	Cemaran Mikroba		,	,	
	8.1 Angka Lempeng Total	koloni/g	Maks. 100	10	Sesuai
	8.2 Coliform	APM/g	< 3	< 3	Sesuai
	8.3 Jamur	koloni/g	Negatif	Negatif	Sesuai
	8.4 Staphylococcus aereus	koloni/g	Negatif	Negatif	Sesuai
	8.5 Pseudomonas aeruginosa	koloni/g	Negatif	Negatif	Sesuai

Tabel 6. Hasil Analisis Dibandingkan Dengan BPOM No.HK 03.1.23.08.11.07331 **Tahun 2011 Tentang Kosmetik**

No	Kriteria Uji	Satuan	Persyaratan	Hasil Sampel	Keterangan
1	Cemaran Logam				
	1.1 Pb	ppm	Maks. 10	<mdl 0,9734<="" td=""><td>Sesuai</td></mdl>	Sesuai
	1.2 Cd	ppm	Maks. 1	<mdl 0,2014<="" td=""><td>Sesuai</td></mdl>	Sesuai
	1.3 As	ppm	Maks. 0,5	<mdl 6,5885x10<sup="">-3</mdl>	Sesuai
	1.4 Hg	ppm	Maks. 2,5	<mdl 4,5245x10<sup="">-3</mdl>	Sesuai

^{*)} Uji hedonik kesukaan dengan jumlah panelis sebanyak 34 orang.
**) Uji *Titanium Dioxide* hanya dilakukan secara kualitatif saja, sehingga belum dapat ditentukan sesuai atau tidaknya dengan standar.

Berdasarkan hasil analisis losio tabir surya merk "X" terhadap SNI No. No. 16.4399-1996 tentang Tabir Surya semua parameter sesuai standar, kecuali kadar pengawet *methyl paraben*, SPF, dan zat aktif *octyl methoxycinnamate*. Setiap hasil akan sangat berpengaruh pada parameter uji yang lain dan akan menentukan kualitas dan efektifitas dari sampel.

Methyl paraben tidak sesuai (1,45%), karena melebihi standar (Maks. 0,8%). Kadar pengawet berhubungan dengan jumlah bakteri yang ada dalam sampel. Karena kadar pengawet besar, maka hasil analisis mikrobiologi menunjukkan hasil yang kecil yaitu 10 koloni/g, coliform <3 APM/g, dan hasil negatif terhadap jamur, *Staphylococcus aureus*, dan *Pseudomonas aerugenosa*. Mengingat bahwa produk ini digunakan secara terus-menerus setiap hari, jumlah *methyl paraben* yang melewati ambang batas tentu juga berbahaya bagi kesehatan manusia. Sebuah studi tahun 2004 yang diterbikan dalam *Journal of Applied Toxicology* melaporkan bahwa *methyl paraben* dapat menyebabkan kanker payudara, reaksi alergi pada kulit, mengacaukan hormon, dan bersifat racun apabila melewai ambang batas yang ditetapkan.

Nilai *Sun Protection Factor* (SPF) yang diperoleh sangat kecil (2,68) dibawah standar (Min. 4) hal ini disebabkan karena zat aktif yang terkandung yaitu *octyl methoxycinnamate* kecil pula (0,02%) dan hanya diperoleh hasil positif *titanium dioxide* saja. SPF sampel "X" yang kecil dinilai tidak efektif dalam menangkal sinar UV. Sehingga tidak menutup kemungkinan dengan menggunakan tabir surya merk "X" kulit akan terlindungi dan terhindar dari penyakit yang disebabkan oleh sinar matahari yang berbahaya, terutama sinar UV.

Sedangkan berdasarkan BPOM No.HK 03.1.23.08.11.07331 Tahun 2011 tentang kosmetika, untuk parameter logam seluruhnya sesuai dengan standar. Logam Pb, Cd, As, dan Hg yang terkandung dalam sampel berada dibawah masing-masing *Method Detection Limit* (MDL) sehingga tidak dapat terdeteksi karena jumlahnya terlalu kecil.

BAB V SIMPULAN DAN SARAN

1. Kesimpulan

Berdasarkan hasil praktikum *Analisis Mutu Kosmetika Tabir Surya Merk "X"* yang dibandingkan dengan SNI No.16-4399-1996 tentang tabir surya dan BPOM No.HK 03.1.23.08.11.07331 Tahun 2011, dapat disimpulkan bahwa tabir surya merk "X" memiliki kualitas yang sesuai dengan standar, namun pada parameter SPF, zat aktif *octyl methoxycinnamate*, dan pengawet *methyl paraben* tidak sesuai SNI sehingga dinilai kurang efektif sebagai produk tabir surya.

2. Saran

Karena keterbatasan alat dan bahan yang tersedia di sekolah, maka harapannya adalah pada pengerjaan *Analisis Mutu Kosmetika Losio Tabir Surya Merk "X"* dapat menggali informasi lebih banyak sehingga dapat digunakan metode alternatif lain yang terbaik. Dengan demikian hasil yang diperoleh pun akan baik dan akurat.

DAFTAR PUSTAKA

- Aipsaripudin, dkk. 2018. Praktis Belajar Fisika 2. Jakarta: Edusoftware
- Anggraini, Triani Dian; dkk. 2013. *Uji Stabilitas Fisik dan Penentuan Nilai SPF In Vitro dari Krim Tabir Surya yang Mengandung Butil Metoksidibenzoilmetan dan Oktil Metoksisinamat dengan Penambahan Titanium Dioksida*. Jakarta: Fakultas Farmasi Universitas Indonesia
- Anonim. "Analisa adalah Definisi dan Arti Kata". Bogor: https://www.kamusq.com/2013/04/analisa-adalah-definisi-dan-arti-kata.html Artikel April 2013, November 2018 pk 21.25.
- Anonim. 1987. SNI 16-0218-1987: Kodeks Kosmetika Indonesia. Jakarta: Badan Standarisasi Nasional
- Anonim. 1996. SNI 16-4399-1990: Sediaan Tabir Surya. Jakarta: Badan Standarisasi Nasional
- Anonim. 2011. Peraturan Kepala Badan Pengawas Obat dan Makanan Republik Indonesia Nomor HK.03.1.23.08.11.07517. Tahun 2011 Tentang Persyaratan Teknis Bahan Kosmetika. Jakarta: Badan Pengawas Obat dan Makanan Republik Indonesia
- Anonim. Tanpa tahun. "Ketahui Kadar SPF Minimal dalam Tabir Surya". Bogor: https://lifestyle.kompas.com/read/2018/05/17/062900920/ketahui-kadar-spf-minimal-dalam-tabir-surya. Artikel 17 Mei 2018, November 2018 pk 9.34.
- Ansel, H.C. 1989. *Pengantar Bentuk Sediaan Farmasi Edisi 4.* Jakarta: Universitas Indonesia Press
- B.Wilkinson, John. J.Moore, Raymond. 1982. *Harry's Cosmeticology.* Chemical Publication
- Cosmet, J. Sci. 2016. Analysis of Octyl Methoxycinnamate in Sunscreen Products by a Validated UV Spectrophotometric Method. Bogor: https://www.reasearchgate.net/publication/30815022 Artikel May/Juni 2016. Juli 2018 pukul 19.30
- Drs. H. E Ismail, Krisnandi, B. Sc, dan Zaenal Arifin, S. Si. 2017. *Spektrofotometri Serapan Atom.* Bogor: SMK-SMAK Bogor
- J.Hall, Brian dan John C.Hall. 2010. Sauer's Manual of Skin Disease. Jakarta: Lippincott Wiliams and Wilkins
- Marliana, Nina, S. Si, dan Rika Sri Agustina A. Md. 2016. *Modul Mikrobioogi*. Bogor: SMK SMAK Bogor

- Menteri Kesehatan Republik Indonesia. 1998. Peraturan Menteri Kesehatan Republik Indonesia Nomor 445/MENKES/PER/V/1998 Tentang Bahan, Zat, Warna, Substratum, Zat Pengawet, dan Tabir Surya pada Kosmetika. Jakarta: Departemen Kesehatan Republik Indonesia
- Mulyani Sri. 2017.Metode Analisis dan Perencanaan sistem. Penerbit: Abdi Sistematika
- Pelczar, Michael J., dan Chan E. C. S. 2013. *Dasar-dasar Mikrobiologi.* Jakarta: Universitas Indonesia
- Priantieni, Eunike Yanny, dan Dra. Hadiati Agustine. 2018. Panduan Keterampilan Berkomunikasi. Bogor: SMK SMAK Bogor
- Prianto, Dr. Juni. 2014. *Cantik: Panduan Lengkap Merawat Kulit Wajah*. Jakarta: Gramedia Pustaka Utama
- Sallika, NS. 2010. Serba-serbi Kesehatan Perempuan. Jakarta: PT. Bukune
- Shevla, G. 1985. *Analisis Kualitatif Anorganik Makro dan Semimikro*. Jakarta: PT. Kalman Pustaka
- Witara, Ketut. 2018. Cara Singkat Memahami Sistem Manajemen Mutu ISO 900:2015 dan Implementasi. Jakarta: CV Jejak (Jejak Publisher)

LAMPIRAN

Lampiran 1. Uji Homogenitas

PKT-79 1. Muhamad Ihsan P. 2. Rangga Jati Cavalera 3. Tura Pramesti A.P. 4. Was Martidevanti	UJI HOMOGENITAS	Tg1. Mulai , 25-10-18
Bagan Kerja	→ lalu amahi dibaunh canaya (teluru lan homegenitos lotio)	Data Pengamatan Simplo Homogen Duplo Homogen
Homogen, Hdak ada partikel terpisah	Hon	pupto nogen, frdak ača nkel terpisah
		Rosenshing Proubit,
		Rembind Practit,

Lampiran 2. Uji Hedonik Kesukaan

No.	Waktu Uji	Nama	Kelas	NIS	Bau/Aroma	Warna	Tekstur	Kelengketan	Penyerapan
1	10/16/2018 10:43:57	Silmi reke fauziyyah	12	16.62.08524	5	4	5	5	6
2	10/16/2018 10:44:39	TANIA	12	16.62.08538	6	5	6	6	4
3	10/16/2018 10:45:54	Catur	12	16.62.08327	7	7	6	7	7
4	10/16/2018 10:46:16	Adit	12	16.62.08416	6	6	7	6	7
5	10/16/2018 10:49:05	Aisyaharani	13	15.61.07972	4	3	5	4	5
6	10/16/2018 10:49:19	Aisyaharani	13	15.61.07972	4	3	5	4	5
7	10/16/2018 10:49:49	Dwi putri	13	15.61.08031	3	4	4	4	4
8	10/16/2018 10:52:06	Muhamad Yoga Setiawan	13	15.61.08118	3	6	6	6	5
9	10/16/2018 10:55:35	William Paulus	13	15.61.08258	6	6	5	6	6
10	10/16/2018 10:55:53	Febrianta	13	15.61.08056	6	6	6	7	5
11	10/16/2018 10:57:48	REZA	13	15.61.08140	3	4	4	5	3
12	10/16/2018 10:58:45	Indah zahra pratiwi	13	15.61.08074	2	7	4	5	4
13	10/16/2018 11:00:31	Risvita bia	13	15.61.08203	7	6	4	5	5
14	10/16/2018 11:00:33	Dinda nurfitra a	13	1561.08026	5	4	4	6	4
15	10/16/2018 11:02:36	Kemas M. Harun	13	15.61.08084	5	4	5	4	5
16	10/16/2018 11:07:48	Rachmat hidayat	13	15.61.08178	4	6	5	4	4
17	10/16/2018 11:10:26	Dea Aulia E	13	15.61.08013	4	6	6	3	3
18	10/16/2018 11:12:24	Eugenia Agatha Edith	13	15.61.08037	5	4	6	5	3
19	10/16/2018 11:13:53	Adhiyat	13	15.61.08119	5	6	6	4	2
20	10/16/2018 11:15:35	Nasyrah Qolby Azzahra	13	15.61.08159	5	5	4	5	4
21	10/16/2018 11:17:27	Galih Bhara	13	15.61.08061	6	7	5	6	6
22	10/16/2018 11:18:53	Chipta Dwi Ramadian	13	15.61.08006	6	6	7	7	6
23	10/16/2018 11:20:14	M. Faris Al-Ghifari	13	15.61.08127	4	6	5	6	7
24	10/16/2018 11:21:27	Syadam	13	15.61.08237	6	6	5	3	5
25	10/16/2018 11:22:35	Najwa azzahra siradj	12	16.62.08464	6	6	6	7	7
26	10/16/2018 11:24:39	Ahmad Nurhakim	12	16.62.08280	7	7	7	3	6
27	10/16/2018 11:25:05	Adam Zaidan	12	16.62.08276	6	6	6	6	6
28	10/16/2018 11:25:48	Rangga	12	16.62.08486	6	6	6	6	6
29	10/16/2018 11:38:16	Rayhan Akbar	12	16.62.08488	5	6	6	5	5
30	10/16/2018 11:38:51	Muhamad ibra	12	16 62 08422	7	5	5	7	5
31	10/16/2018 11:43:26	Muhammad Hamdan Al K.	13	15.61.08129	6	7	4	7	4
32	10/16/2018 11:43:33	Ishaq shandika	13	15.61.08077	5	6	6	7	7
33	10/16/2018 11:48:50	Regita Nurfadilah Pramesti	12	16.62.08490	2	4	5	6	7
34	10/16/2018 11:48:55	Putri Aura	12	16.62.08477	5	4	4	5	4
		Rata-rata			5	5	5	5	5

		
Tg . Mulai : 2 - 10 - 18	PENENTUAH VISKOSITAS UKAT GOWL MASUKAN AGN JENIS NIKOMBER SIMPLO SPINGEL: LY S	C. 1 Judy: 7.
FISIKA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 T
1. Muhamad Ihran P. 2. Ranga Jati Cavalera TABIR SURYA 3. Tiara Pramestr A. P. 4. Yuny Mauitdawati	PENENTUARY BOBOT JENICE British dan bobber phino phino phino bersih keriba kojong kojong keriba kojong phino bersih keriba kojong kojong bersih mejer 4 dir phino	1.000.7.
KELAS PKT - 79 2 TIGITA XIII-10 4 YUN	PENENTUAN PH dg. pH. METER BAGAN: Lacomic Kailbranphmeter Ukur pH Sampe pada ph 4 dan 7. sampel Simple 6.787 Duplo 6.787 Stope Calibration 99.74%	

Lampiran 4. Faktor Pelindung Surya

		. 49	2. Ranggo 3. Tiara	d Ihsan Per x Jati Cav Pramest Maulidau	alera t	elindu	ian Hilai ng Surya	secan		11 .mulai:26/10/18
Kel	las.	XIII - 10	4. Tuny	Mauliaai	NUCT	Spektro	fotometri	UV-Vi	s lig	1. Selesai: 20/10/12
+0,) somL tanol 962)	→ \$6	uring Y	Speket	nat diukur nofetometer UV 290 - 320 nm	2	,	7
Date	a Pen	imbangan	Ci	mplo	Duplo	7				
-	****	adah + sau		3789 9	20,376	60				
		adah kosor	10.00	87879	19,87					
-	not sa			50029	0,50					
		ngamatan EE×1	Abs simplo	Abs duplo		Abs x CF	EEXIXAbs duplo	xCF		
29	30	0,015	0,222	0,346	0,03		0,0519			
29		0.0817	0,151	0,169	0,12	34	0,1381			
-	_	0,2874	0,138	0,136	0,39	66	0.3909			
-	_	0,3278	0,179	0,175	0,58		0,5737			
-		0.1864	0,165	0,161	0,30		0,3001			
-	315	0,839	0.145	0,143	1,21	-	1,1998			
 -	320	Jumah	8bt 0'150	0,119	2,68		2,6759			
4		J				- 1	K, 0 19-1			
7	CF × LPPD	2.6800					X,0195	الم ا		
2	ž IPPO	2.6800	78				x,0195		Pem)	oimfing Pralutil

Lampiran 5. Zat Aktif OMC

PKT 7a	amad Thean P. gga Jah Cavalera	Analisis	Zat a	aktip	T	gl-Mulai. U	8 - W - 18
Kelas XIII-10 3. Tian	A Preument A.P. Maulidawah	dengan Spe	ktrafot	ometri UI	-VIS To	yl.Selegai: 18	3 - 10 -18
Penentuan Konsent		10.00	e Pene	ntuan Ni	lai Fak	tor Helina	lung Gurya
Secara Spektrofo	stometri UV.	· VIS		Secara S	pelchof	otometri U	V-Vis
Dagan Kerja STANDAR			Bugan	Kerja			
0.059 - W50ML			0,59	- WAN	L -	Saring	
omc (methand) tomL → W	sampe	sampel (Etanol 962) IML -> LV 10 ML (@ duph) (Etanol 962)					
PPm 4 6 8 10 ML 2 3 4 5	12 - W FOML 6 cmethanoi)					' u	t kur di UV 290-320 nm
SAMPEL		2 310 nm	Data P	Penimbangan		T	
arum - wooml -	saring dengan kertas saring		1 -0.00	vadah tsampel	_		
sampel (methanol)	Whatman No.		1 1 10 10	wadah keron		609 g	
slope 10.086	5ml filtrat → L	methanol absorbans		sampel Pengamatan	10.5		
FP 2		dengan s pektropotom pada 2310nm	th 24nm	EE×1 Abs	Abx duplo	Ex[xAbxxCI simplo	BEXLXABOX CA
Data Penimbanyan	STAPLO DUE	ا مام	290	0,015 0,0		0,0086	1800.0
Bobot wadah + sampe			300	0.0817 0.0			0,0360
Bobot wadah kosong	66,1673 9 63.		305	0,3278 0,0			0,1180
Bobot reumpel	8.06074 B.O		315	0,1864 0,0	1	2 0,0634	0.0596
STANDAR	1 19 0.0	, ,	320	0,839 0,0	28 0,02		0,2433
ent Pm ABS			Jumi	ah (SPF)		0,6171	0.5818
2 4 0.3434 du 3 6 0.9191 X 4 8 0.6762 2.1	plo 0.639 plo 0.639 0.671		RPD	5,892			7 072010
20MC = ABS - INT V L	aby × fp× 100%	el					
LOME = 0,703-(-0,004) x 100 simple = 0,086	2×2 × 100% 2000 auplo	0,639-(-0.009),100, 11					
= 0,0189%	10. mart 48.	o, 0204 %					
= 0,027,		0,02 %					
Gung Praktik	2/ - =:0				Pem	bimbing F	taktik,
CXIV-	9/.2018 10					Puls.	18/0-11.
(Pupung P)				(٥)

Lampiran 6. Uji Kualitatif TiO₂ dan *Hydroquinone*

PKT-79 1. Muhamad Ihean P. 2. Rangga Jati Cavaleta Uj	Kualitatij Tgl. Mulai: 19/10/18
93. 34.1	dan Hidrokumon Tgl. selesai : 1/11/18
Penentuan senyawa TiO2 secara Kualitatif dengan uji nyala dan penilikan rupa	Penentuan senyawa Hidrokuinon secara - kualitatif
UJI NYALA + 1 g → □ → diahukan → □ • sampel dimasukan ke dalam oven + 15 menit ke dalam tanur hingga menjadi obu → lanutkan dengan	Bagan Kerja to.19 tetanol sampel tom, aduk hingga lanut tecl > 102 (+) Hidrokuinon (a) Hidrokuinon kan mengha kan warna hiji hingga teteskan di plat tetes + FeCl > 102
ttcl pekat dalam (pijarkan dan ose) warna	Data Penimbangan Boto 7 sampel Hidriquinon
Data Penimbangan Bobot J	bobot wadah + sampel 74, 2159 g 81,53749, Bobot wadah kesong 74, 1079 g 81,33279
Bobot wadah + sampel 27, 1807 g (+) warns	bood sampel 0,1080 3 0,14467
Bobot wadah kesong 26, 1325 g hegyerne	FeC13
Bobot sampel 1.04829 Hasil: berwarns tidak beridentifi-	Bobot wadahtsampel 64,51379
Kas.	Bobot wadah leasong 62, 50323
PENILIKAN RUPA	Botot sampel 2,01057
sompet kimanikan kimanikan ke dalam tahur oven f 15 menit ke dalam tahur hingga menjadi ahu -> dalam tahung realin tantahkan yang terjadi [: kuning] jingga 1: air, H.20. dan H.20.4 1: + Haolt	Data Pengametan - Tidak menghanikan warna hijau
#: gelahi puhi	
Bookst wadah kersong 24,5388 g 76,5590 g	
Botot sampel 10,28169 10,09009	
Pengamatin: 1:(+) Ti 4+, terbentuk warna kuning 1:(+) Ti 4+, terbentuk gelatin pulih	,
	Rembinding Prairie,
	541.
	(

Lampiran 7. Foto Hasil Pengamatan TiO2 dan *Hydroquinone*

No	Keterangan	Pengamatan
1.	Ti ⁴⁺ + Air + H ₂ O ₂ + H ₂ SO ₄	BLAMKO Hacou + Hu
2.	Ti ⁴⁺ + NaOH	Impel + Nai + Maon
3.	Hidroquinon (FeCl ₃ + Etanol)	PKT 79 NII+10 PKT 79 Standar Standar britoquinere

Lampiran 8. Kadar Pengawet

PKT-79	1. Muhamad 2. Rangga Ja	ti Cavalera			Pengawet uben Qcara	Tgl Mulai. 11-10-1
Kelas XIII-10	3. Tuara Aran 4. Yuny Ma		1 100	onduktome		Tgl. Selegai, 12:10:10
8	Bagan Ke	rja, Pen	ımbangı	an, & Si	tandarisas.	
Bagun Kerja						
Dinapkan alat d bahan yung dibutuhkan	→ eitin	ram + 1] → 825ml OH IN	direflulus → 1 †1jam	di	= H2SO4 1N Liap penambahan mL lukur DHL dengan konduktorneter.
₩ Blanko						
B \$25ml Nac IN	₩ → ≡	= H2SOy IN Sehap penar dîukur DHL		luktometer		
t 0.63 g as oksalat	A + HaD + ind. PP			muda seulas		
Data Penimbangar	The second secon			5,54599		
Bobot wadah to		9		4,86729		-
bobot sampel				0,6787 9		
00001 miles						
Data Pengomata Pengulangan Bi	doot up	NP #		òahan warna Ta		
Data Pengomata Pengulangan Bi	doot			bahan warna TA ah Muda seulas]	
Data Pengomata Pengulangan Bi	doot up			TA]	
Pata Pengamatan tengulangan Bi standansasi O Perhitungan NNaott • mg 4	obot ampei VP ,6787 g 9,90m	nL 0,1N -		an muda seulas]	
Pata Pengamatan tengulangan Bi standansasi O Perhitungan NNaott • mg 4	oloot ampei VP ,6737 g 9,90n ar.oksalat tp. Bstar.oks	nL 0,1N -	= 678.7 g,go. 6	nh much seulas	. bst pengawet. [1 MaOH x 100%
Data Pengamatai tengulangan Si standansasi O Perhitungan NNaoH • mg 4	obot ampel vp ,6737 g 9,90 n es. oksalat tp. Bst as. olus AN: o ml o ml o ml o ml o ml	NNaOH % Rengau (Simple)	pp men = 678.7 - 3,90.6 = 1,0882 0/6 Pengal oet = (26,2 wet = (26,2	2003.1		= 1,44852%

Lampiran 9. Data Pengukuran DHL pada Kadar Pengawet

Ke	lar :	×111-10	0	2.	Muham Ranggo	Jak	C		Kada	Date	l Per Engai	79a1	mati	com Com		7ge M	lutai i ti	1-10+18
	PKT	-79			Trana Yunu r			1.						Tgl Seleroi: 12-10-18				
	S	MIS	PL	0				DU	UPLO				BLANKO					
No.	mL	OHL	No.	mL	DHL	No.	mL	DH	L No	mL	DHL	No.	mL	DHL	No.	mL	DHL]
12.3.456.78.9011 12.13.14.15 16.17 18.19. 20. 22.23.24.55 22.7.22.23.39.51.22.33.		45.1 44.2 44.2 35.3 40.4 357.6 35.7 27.2 29.4 28.3 27.1 25.9 24.8 23.8 23.6 24.8 25.6 26.6 26.6 26.6 27.4 26.6 26.6 27.4 26.6 27.4 26.6 27.4 27.4 28.6 29.1 20.6	34 35 36 37 58 59 40. 41	53,0 55,0 55,0 36,0 59,0 40,0 43,0 45,0 45,0 45,0 45,0 46,0 47,0 49,0	19.6 20.2 20.8 21.4 22.6 23.2 23.8 24.0 26.2 24.5 26.2 24.5 26.0 26.2 26.0 26.1	1.23年567年910日1213年5日1日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	0 5,0 10,0 20,0 20,0 20,0 20,0 20,0 20,0 20	41,436,330,1 24,8 19,57 18,44 17,57 16,5 15,94 15,84	35 40 41 42 37 7 1 1 8 4 2 3 7 7 1 1 2 1 1 6 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30,0 30,0 55,0 40,0 55,0 50,0	16,10 16,70 19,72 22,80 25,90	1・2、3、4567 3 9、10 11.12 13 14 15 16 17. 18 19 20 14 22 23 24 25 26 27 28 29 20 1. 23 23 25 25 25 28 29 20 1. 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25	0 5,0 10,0 0 0 120,0 0 120,0 0 120,0 0 120,0 0 120,0 0 120,0 0 120,0 0 120,0 0 120,0 0 120,0 0 120,0 1	37.8 32.6 27.7 23.0 18.39 16.55 16.69 14.27 13.86 13.7 13.68 13.65 13.65 13.60 13.69 13.69 13.59 13.59 13.59	41. 43. 44. 45. 46. 47. 48.	28.0 28.3 29.0 30.0 40.0 40.0 40.0	14, 14 14, 23 14, 176 15, 176 18,64 22,72 26,08 29,88	
P.	embir	nbing	a P	rakh	κ,								C V		G	in Pro	ו אלורי	
(_	5.)						1	C			Alem	<u>y</u>	

Lampiran 10. Grafik Simplo

Lampiran 11. Grafik Duplo

PKT 79	1. Muhamad Insan Permana 2. Rangga Jah Cavalera Penentuan Kadar Logam Hg Tgl Mulai:11-10-1
Kelar XIII-10	3. Tiara Pramesh A.P. Secara AAS. Tgl. Selesai 5-11-4 Yung Mawlidawah
	, , , , , , , , , , , , , , , , , , ,
	Bagan, Data Pengamatan & Perhitungan
SAMPEL 0,59 + HMD cedent	rever selarma < 3 jam + aquabrdest leman es whatman AAS.
HNO - hotek	Jiran di dinginkan - masukkan - dinginkan sanng - filtrat site 60°C - ke ill somi zujam di dg. kertar ukur dg. na 23 jam - himpitkan, homogenkan rio 40 Ass.
STAMPAR. Standar Induk Hg 1000 ppm 5 ml -> 10	u Dimi
\$	mi - toomi
0	1 2 3 4 6 ml + 20 ml HC1 1/2 m encertain dg. adjuabitest
Peret standar terendah 10 mL -	100 mL - + 20 mL Hel 112M himpittan dg. AAS homogenican mith - 7x.
DATA PF	
-	MIMPAHGAN SIMPLO PUPLO (S) HID3 (D) (S) COMP AIGM (D)
Bobot wadal Bobot wadal	71,2562 g 53,0292 g 61,0084 g 51,0094 71,5531 g 71,2562 g 50,5945 g 52,3856 g 60,4326 g 50,4172 g 71,0511 g 70,62284
Bobot wada	71,2562 g 53,0292 g 61,0064g 51,0094 71,5531g 71,2562 g 50,6945g 52,3856 g 60,4326g 50,41724 71,0511 g 70,6226
Bobot wadal Bobot sampi No stanti 1- 0 2. 1 3. 2	71, 2163 g 53,0292 g 61,0084g 51,0094 71,5531g 71,2562 g 50,5945g 52,3856 g 60,4326g 50,41728 71,0511 g 70,62269 0,6218 g 0,6436 g 0,57589 0,5837 g 0,5021g 0,6334 g 0,6334 g 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bobot wadal Bobot sample No STANI 1 O A 1 3 2 4 3 5 4 6 6 5 SIMPLE	71, 2163 g 53,0292 g 61,0084g 71,5531g 71,2562 g 60,9345g 52,3826 g 60,4326g 59,741728 71,0511 g 70,62264 0.50379 0.6218 g 0,6436 g 0,5758 g 0.58379 0.50214 0,6334 g 0,6334 g 0.50214 0,6334 g 0
Bobot wadal Bobot sampi No STANI II O 2. 1 3 2 4 3 5 4 6 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Bobot wadal Bobot sampi to stant 1. 0 2. 1 3 2 4 3 5 4 6 6 Output BLANKO	7); 2163 g 53,0292 g 61,0054g 51,0094 71,5531g 71,2562 g 60,9345g 52,3856 g 60,4326g 95,41728 71,0511 g 70,62264 0.6218 g 0,6436 g 0,7758 g 0.5837g 0.5021g 0,6334 g 0.6218 g 0,6436 g 0,7758 g 0.5837g 0.5021g 0,6334 g 0.6218 g 0,0209 10,0031 10,0030 10,00

PKT-79 Kelas XIII-10	1. Muhamad Ihsan P. a. Rangga Joh Caval 5. Ticura Pramesh A.P 4. Yuny Maulidaw	. As se	ian Kadar cara AAS	•	Tgl.Mulai. 31-20	
Bagan Kerja SAMPEL D ta:5 g kangel kangka dipenang	gas hinggatak dita	askun + unur sto ^e c, gam	dinginkan 25ml HCl 6M	· Y →	LN 20 MF	
STANDAR Standar induk	1000 ppm 1 10ml -> W 100 ml 1 ml -> 0 25 \$0 0 215 5	12 100 121 1	D → LU (COM) S + 20 ML HC	→ Uku 4N di A		
Data Penimbung Bobot wadah a Bobot sampel NO ML ppm O O 2:5 25 5 50 7:5 785 10 100 015 91MPLO DUPLO Blanko korelan	sampel 25,9672 g	26 2185 g 2, 5014 g 3 Abs. it 0,034692 r 0,0346 0,0325 0,0364		p pb 3 ppb	19 × 10-3 MDL (918)	PB)
Guni Prak	tik)	a		(Pembimbing Prak	*k (

	namad Ihsan P. gga Jati Cavalera	Perentu	ian Kadar f	6 & Cd	Tgl.Mulai: 31 - 1	0 -18
Kalan xun va 3. Tigi	n Pramesti A.P. ny Maulidavati	seco	ira AAS		Tg1. Setesai: 1 - 11	0 -18
sampel Discharge hin	→ [] ken panesko gan tak ditanue				U soml → Ukur AAS	pada
* blanko 25 ml HC1 6M → ! STANDAR © PD Standar induk 1000	ppm Leo mi + 5 mi + 11 $69 \cdot 12 \rightarrow 69 \cdot 12$	r dengan A	Baca	2 1 3 3 4 6 5 9 6 12 11 SIMPLE DUPLO TPHPLO	1 0.0094 2 0.00 3 0.0292 3 0.00 6 0.0544 4 0.00 6 0.0544 5 0.00 7 0.00 2 0.1068 7 0.00 2 0.0002 7 0.00 0.0003 0.0003 0.0003	000 000 000 000 000 000 000 000 000 00
ppm 00,1 ml 0 0,5	50ml (200pm) 10ml -> LU (100ml 0,2 0,4 0,8 1, 1 2 4	4 1.8 U 7 9 +51 HCI	6M	1. 0 2. 0,5 3. 1 4. 2 5. 7 6. 9	Ppm ADS No. 0,1 0,0328 2: 0 0,2 0,0630 3: 0 0,4 0,1264 4: 0 1,4 0,3131 5: 0 1,8 0,3556 6: 0	ABS 0,0270 0,0267 0,0258 0,0257 0,0254 0,0253
Data Penimbangan Bobot wadah + sampel Bobot wadah kosong Bobot sampel	28,8477 3 2	00910 6,6540 g 4,1036 g 2,5504 g	75,0980 g 22,52639 22,52179	SIMPLO DUPLO BLANKI TRIPLO	-0,0004	0,0253
PE Slope	IDL = 35D = 3	9,6996 ×10- 7 ppm , 6, 1,5736 ×10	4 ('0,0	968 3916 = 8834 MDL =		
Guru Praktik					Pembimaing Prak	utik

Lampiran 16. Bagan Analisis Mikrobiologi

Lampiran 17. Data Pengamatan dan Perhitungan Analisis Mikrobiologi

ALT PERLAKUAN SIMPLO	511	4. IUI	no Pra	than P. atí C. mestí A.f It dawatí	And	alisis M	ikto p	igoi		-		: 03-10-11
PERLAKUAN		MPL	.0				DI	JP	10)		
						ALT						
	Pt	HGENC	HAAS	T	BLANKO	PERLAKUAN		-	GENCI			BLANKO
SIMPLO	10.1	10	.1	10-4	BERTITO		10.	`-	10.7	-	0.7	
	1	0	,	0		SIMPLO	2	-+	0		<u>0</u>	0
DUPLO	Ø		0	0	0	DUPLO	0	+	0	_	0	
X	0.5		2	0		×	<u> </u>			-		
н	0.5	. 5	cf4/	gram 🟃		7	1. 10.	\	O CF	Pulgra	ım	<i>y</i>
COLIFORM	~			•		COLIFOR	M					
		PENGER	4CEPAT	4 ·	D. ANK	DEDLES		PENE	ENCE	RAM		BLANKO
PERLAKUAN	10-1	10		10.3	BLANKO	PERLAKUAM	10.		10.5	10	0.3	DUNINO
SIMPLO	-	-		-		SIMPIO	•		-	-		
DUPLO	-	-		-		DUPLO	-		-		0	
TRIPLO	-	-		-	0	TRIPLO	-	-	-	-		_
HAJMUE	0		>	0		JUMLAH Berdasarkan	0		0	1	<u> </u>	pergram
(**********	rkan ta	tabupa				Cruc Joddi ML			•			
(mangguna menunjuk	aran 3	(4) <3	3 MPN	/APM PE	or gram	tmenunjukka menunjukka	an hai	INKL		/-	1 10	ARNA
(menaguno	aran 3	INKUBA	MPN,	APM PE	на когом! С диат Л			INKI		HASIL	, Ko	ARHA OLOH)
(menggunk menunjuk	akan 3 kan ha	INKUBE	ASI HA	APM PE	e gram V	JEHIS 15HIS MRNUNUKK	an hai	INKI)BASI	/-	W KC	ARHA DUOH) terbentuk toloni
menunjuk menunjuk Jenis Jenis	akan 3 kan ha	INKUBE	ASI HA	APM Pe	e gram V	121 12417 WEUNDARK	media	ואגו	WAKTU 3 hon	HASIL	Tidak k Ditumbul tah ber tak ad	ARMA DLOM) terbentuk

Lampiran 18. Foto Pengamatan Analisis Mikrobiolgi

No	KETERANGAN	FOTO
1	Penimbangan 1 ALT Pengenceran 10 ⁻¹	Periodangan 1 , 10-1
2	Penimbangan 1 ALT Pengenceran 10 ⁻²	Peninkargan 1 , 10-2
3	Penimbangan 1 ALT Pengenceran 10 ⁻³	Peninkenjan 1 10-3
4	Penimbangan 2 ALT Pengenceran 10 ⁻¹	'-Ol = angradains

No	KETERANGAN	FOTO
5	Penimbangan 2 ALT Pengenceran 10 ⁻²	Pennkanyan-2 10-2
6	Penimbangan 2 ALT Pengenceran 10 ⁻³	Peninkaryan 2, 10-3
7	Penimbangan 1 Coliform Pengenceran 10 ⁻¹	an & Transition to the second
8	Penimbangan 1 Coliform Pengenceran 10 ⁻²	THE PARTY OF

No	KETERANGAN	FOTO
9	Penimbangan 1 Coliform Pengenceran 10 ⁻³	FORM (B) THE THE STATE OF THE S
10	Penimbangan 2 Coliform Pengenceran 10 ⁻¹	The state of the s
11	Penimbangan 2 Coliform Pengenceran 10 ⁻²	10-2 11 10 16 10-2 17 1 10
12	Penimbangan 2 Coliform Pengenceran 10 ⁻³	100 To The

No	KETERANGAN	FOTO
13	Patogen	P2
14	Jamur	P1 AME 1 P2