Équations, fonctions polynômes du second degré.

I. Fonction polynôme du second degré.

Définition : Une fonction P polynome du second degré est une fonction définie sur \mathbb{R} dont une expression est de la forme $P(x)=ax^2+bx+c$, où a, b, et c sont des rées tels que $a \neq 0$. Les réels a, b et c sont appelés coefficients de la fonction polynôme.

Une fonction polynôme de degré 2 se nomme aussi trinôme.

L'expression $ax^2 + bx + c$ est dite forme développée de P(x).

Exemple : Soit la fonction f définie sur \mathbb{R} par $f(x)=3(x+1)^2-5(x+7)$. f est-elle une fonction polynôme du second degré. Si oui, identifiez ses coefficients.

Définition : On appelle racine d'un polynôme P tout nombre x_0 tel que $P(x_0)=0$.

Exemple : Soit P le polynome défini sur \mathbb{R} par $P(x) = 2x^2 + 4x - 6$. 1 est-il une racine de P ? Et 2 ?

II. Équation du second degré.

1. Définition.

Une équation du second degré, à une inconnue x, est une équation qui peut s'écrire sous la forme $ax^2 + bx + c = 0$, où a, b et c sont trois réels donnés, $a \ne 0$.

2. Forme canonique.

Pour tout réel
$$x$$
, $ax^2 + bx + c = a\left(x^2 + \frac{b}{a}x + \frac{c}{a}\right)$
Or, $\left(x + \frac{b}{2a}\right)^2 = x^2 + \frac{b}{a}x + \frac{b^2}{4a^2}$,
donc $x^2 + \frac{b}{a}x = \left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2}$.
Par suite $ax^2 + bx + c = a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a}\right)$
 $= a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2}\right)$
On pose $\Delta = b^2 - 4ac$.

Donc $ax^2 + bx + c = a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right)$.

Définition:

• Le réel $b^2 - 4ac$, noté Δ , est le discriminant du trinôme $ax^2 + bx + c$.

•
$$a\left(\left(x+\frac{b}{2a}\right)^2-\frac{\Delta}{4a^2}\right)$$
 est la forme canonique du trinôme ax^2+bx+c .

Exemple: voici les formes canoniques des trinômes suivants.

•
$$-x^2 + 6x + 1 = -(x^2 - 6x - 1) = -(x^2 - 6x + 9 - 9 - 1) = -((x - 3)^2 - 9 - 1) = -((x - 3)^2 - 10)$$

•
$$3x^2 - 2x + 1 = 3\left(x^2 - \frac{2x}{3} + 1\right) = 3\left(\left(x - \frac{1}{3}\right)^2 - \frac{1}{9} + 1\right) = 3\left(\left(x - \frac{1}{3}\right)^2 + \frac{8}{9}\right).$$

3. Résolution de l'équation (E) $ax^2 + bx + c = 0$, avec $a \neq 0$.

- 1er cas:
$$\Delta > 0$$
.

$$\frac{\Delta}{4a^2} = \left(\frac{\sqrt{\Delta}}{2a}\right)^2 \text{ donc } ax^2 + bx + c = a\left[\left(x + \frac{b}{2a}\right)^2 - \left(\frac{\sqrt{\Delta}}{2a}\right)^2\right]$$
$$= a\left(x + \frac{b}{2a} + \frac{\sqrt{\Delta}}{2a}\right)\left(x + \frac{b}{2a} - \frac{\sqrt{\Delta}}{2a}\right).$$

Donc,
$$ax^2 + bx + c = 0$$

 $\Leftrightarrow a\left(x + \frac{b}{2a} + \frac{\sqrt{\Delta}}{2a}\right)\left(x + \frac{b}{2a} - \frac{\sqrt{\Delta}}{2a}\right) = 0$

L'équation (E) admet alors deux solutions distinctes: $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

– 2éme cas:
$$\Delta = 0$$
.

On a alors
$$ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2$$

Donc
$$ax^2 + bx + c = 0$$

$$\Leftrightarrow a\left(x + \frac{b}{2a}\right)^2 = 0$$

L'équation (E) admet une unique solution: $x_0 = -\frac{b}{2a}$

- 3éme cas:
$$\Delta < 0$$
.

$$\frac{\Delta}{4a^2} < 0 \text{ donc } -\frac{\Delta}{4a^2} > 0.$$

Par suite,
$$\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2} \ge -\frac{\Delta}{4a^2} > 0$$

L'équation (E) n'a pas de solution réelle.

Bilan:

On considère l'équation $ax^2 + bx + c = 0$, $a \ne 0$ et $\Delta = b^2 - 4ac$.

- Si Δ < 0, l'équation n'a pas de solution réelle.
- Si $\Delta = 0$, l'équation a une unique solution: $x_0 = -\frac{b}{2a}$
- Si Δ >0, l'équation a deux solutions: $x_1 = \frac{-b \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

Exemples: Résoudre les équations suivantes:

a)
$$-x^2+2x-10 = 0$$

 $\Delta = 2^2-4 \times (-1) \times (-10) = -36.$

L'équation n'a pas de solution.

b)
$$2x^2-3x-5=0$$

 $\Delta = (-3)^2-4\times 2\times (-5)=49.$

D'où l'équation admet deux solutions:

$$x_1 = \frac{3 + \sqrt{49}}{2 \times 2} = \frac{3 + 7}{4} = \frac{10}{4} = 2,5$$
$$x_2 = \frac{3 - \sqrt{49}}{2 \times 2} = \frac{3 - 7}{4} = \frac{-4}{4} = -1$$

c)
$$9x^2 + 6x + 1 = 0$$

 $\Delta = 6^2 - 4 \times 9 \times 1 = 0$.

D'où l'équation admet une unique solution:

$$x_0 = -\frac{6}{2 \times 9} = -\frac{1}{3}$$
.

III. Signe du trinôme.

1. Factorisation.

On a vu lors de la démonstration faite au I.3 que le trinome $ax^2 + bx + c$ pouvait se factoriser si Δ était supérieur ou égal à 0. Nous admettrons qu'il est impossible de trouver une factorisation si Δ est négatif.

Propriété: Soit $ax^2 + bx + c$ avec $a \ne 0$ et Δ son discriminant.

- Si $\Delta > 0$, $ax^2 + bx + c = a(x x_1)(x x_2)$ où x_1 et x_2 sont les racines du trinôme.
- Si $\Delta=0$, $ax^2+bx+c=a(x-x_0)^2$ où x_0 est l'unique racine du trinôme.
- Si Δ <0, il n'existe pas de factorisation de $ax^2 + bx + c$ par un polynôme de degré 1.

Exemples: Reprenons les trois trinômes étudiés au II. 3. et factorisons les.

- a) $-x^2+2$ x-10 ne peut pas être factorisé par un polynôme de degré 1 car son discriminant est négatif.
- b) $2x^2-3x-5=2(x-2.5)(x-(-1))=2(x-2.5)(x+1)$ car son discriminant est strictement positif et que les racines de l'équation $2x^2-3x-5=0$ sont $x_1=2.5$ et $x_2=-1$.
- c) $9x^2 + 6x + 1 = 9\left(x \frac{1}{3}\right)^2$ car son discriminant est nul et l'unique racine de l'équation $9x^2 + 6x + 1 = 0$ est $x_0 = \frac{1}{3}$.

2. Somme et produit de racines.

Propriété : Si l'équation $ax^2 + bx + c = 0$ admet deux solutions distinctes x_1 et x_2 , alors $x_1 + x_2 = \frac{-b}{a}$ et $x_1 \times x_2 = \frac{c}{a}$.

Application : Soit P un polynome du second degré définie sur \mathbb{R} par $P(x)=ax^2+bx+c$ Nous savons qu'il admet pour racines $x_1=3$ et $x_2=-4$.

Nous savons également que a = -1. Déterminer les valeurs de b et c.

3. Signe du trinôme.

Étudions le signe du trinôme $ax^2 + bx + c$, $a \ne 0$.

Pour cela, distinguons les trois cas vus précédemment.

• Si $\Delta > 0$, $ax^2 + bx + c$ peut se factoriser sous la forme suivante: $a(x - x_1)(x - x_2)$, où x_1 et x_2 sont les racines du trinôme.

Afin d'étudier le signe du trinôme, nous allons faire un tableau de signe.

Supposons que $x_1 < x_2$.

x	-∞	x_1	$x_2 + \infty$
а	Signe de a	Signe de a	Signe de a
$x-x_1$	- (+	+
$x-x_2$	-	- (+
ax^2+bx+c	Signe de a	Signe opposé à celui de <i>a</i> (Signe de <i>a</i>

• Si Δ =0, ax^2+bx+c peut se factoriser sous la forme suivante: $a(x-x_0)^2$ où x_0 est l'unique racine du trinôme.

On sait que pour toute valeur de x, $(x-x_0)^2$ est positif et s'annule en x_0 .

Donc ax^2+bx+c est du signe de a et s'annule en x_0 pour tout réel x.

• Si $\Delta < 0$, $ax^2 + bx + c$ ne peut pas se factoriser, on utilise donc la forme canonique:

$$a\left(\left(x+\frac{b}{2a}\right)^2-\frac{\Delta}{4a^2}\right).$$

Comme Δ est négatif, on en déduit que $-\frac{\Delta}{4a^2}$ est positif, d'où $\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}$ est la somme de deux nombres positifs donc est positif d'où $ax^2 + bx + c$ est du signe de a pour tout réel x.

Bilan: Soit le trinôme $ax^2 + bx + c$ avec $a \ne 0$.

• Si $\Delta > 0$, le trinôme s'annule en deux réels distincts x_1 et x_2 . Si $x_1 < x_2$, son tableau de signe est le suivant:

x	-∞	x_1	x_2	-8
ax^2+bx+c	Signe de <i>a</i>	Signe opposé à celui de <i>a</i>	Signe de	а

- Si $\Delta = 0$, le trinôme a le même signe que a pour tout x, mais s'annule en $-\frac{b}{2a}$.
- Si Δ <0, le trinôme a le même signe que *a* pour tout réel *x*.

On dit encore que: le trinôme $ax^2 + bx + c$ ($a \ne 0$) est du signe de a sauf entre ses racines s'il en a.

Exemples: Résoudre les inéquations suivantes:

a)
$$-x^2+6x-5 > 0$$

$$\Delta = 6^2 - 4 \times (-1) \times (-5) = 16$$

$$\Delta = 6^{2} - 4 \times (-1) \times (-5) = 16$$
d'où $x_{1} = \frac{-6 - 4}{-2} = 5$ et $x_{2} = \frac{-6 + 4}{-2} = 1$.

Nous obtenons donc le tableau de signe suivant:

x	$-\infty$	1	5	$+\infty$
$-x^2+6x-5$		- 0	+ 0	_

D'où les solutions de cette inéquation est l'intervalle]1; 5[. S=]1; 5[

b)
$$x^2 - 2x + 10 \le 0$$
.

$$\Delta = (-2)^2 - 4 \times 1 \times 10 = 4 - 40 = -36$$
.

D'où pour tout réel x, $x^2-2x+10$ est strictement positif d'où cette inéquation n'admet pas de solution. $S = \emptyset$.

IV. Bilan.

Fiche à coller.