US Patent & Trademark Office Patent Public Search | Text View

United States Patent

Kind Code

Date of Patent

Inventor(s)

12383020

B2

August 12, 2025

Dodd; Mark D.

Protective articles having a plurality of core members

Abstract

An outsole with a conformable substrate with a depression and a core inset in the depression. The core includes a plurality of plates, a first one of the plates is hingedly attached, at one or more edges of the first plate, to one or more substantially adjacent other plates in the plurality of plates, where each hinge hingedly attaching an edge of the first plate to another plate joins less than the entire respective hingedly attached edge to a corresponding one of the one or more substantially adjacent other plates and is integrally connected to the first plate and the other plate. The hinges attaching edges of the first plate to other plates disperse impact forces from the first plate to a corresponding one of the other plates, and a subset of the plurality of plates in the core form a row of three or more interconnected plates.

Inventors: Dodd; Mark D. (Allen, TX)

Applicant: Pinwrest Development Group, LLC (New York, NY)

Family ID: 1000008749217

Assignee: Pinwrest Development Group, LLC (New York, NY)

Appl. No.: 18/299576

Filed: April 12, 2023

Prior Publication Data

Document IdentifierUS 20240108097 A1

Publication Date
Apr. 04, 2024

Related U.S. Application Data

continuation parent-doc US 17193873 20210305 ABANDONED child-doc US 18299576 continuation parent-doc US 15477267 20170403 US 10939724 20210309 child-doc US 17193873 continuation parent-doc US 14180228 20140213 US 9609910 20170404 child-doc US 15477267 continuation parent-doc US 12471252 20090522 US 8661564 20140304 child-doc US 14180228

continuation-in-part parent-doc US 11057954 20050215 US 8220072 20120717 child-doc US 12471252

us-provisional-application US 61055295 20080522

Publication Classification

Int. Cl.: A43B7/32 (20060101); A41D13/015 (20060101); A41D13/05 (20060101); A41D13/08 (20060101); A41D19/015 (20060101); A43B3/00 (20220101); A43B13/14 (20060101); A43B13/38 (20060101); A43B17/00 (20060101)

U.S. Cl.:

CPC **A43B7/32** (20130101); **A41D13/0153** (20130101); **A41D13/0506** (20130101);

A41D13/0543 (20130101); **A41D13/081** (20130101); **A41D19/01523** (20130101);

A43B3/0036 (20130101); **A43B13/141** (20130101); **A43B13/38** (20130101); **A43B17/00**

(20130101);

Field of Classification Search

CPC: A43B (7/32); A43B (13/141)

USPC: 36/75R; 36/25R; 36/102; 36/31; 36/103; 36/33

References Cited

U.S. PATENT DOCUMENTS

Patent No.	Issued Date	Patentee Name	U.S. Cl.	CPC
518923	12/1893	Kilgore	N/A	N/A
1030085	12/1911	Hale	N/A	N/A
1243230	12/1916	Smith	N/A	N/A
1562013	12/1924	Tselentis	N/A	N/A
1683226	12/1927	Zuck	N/A	N/A
1701611	12/1928	Glidden et al.	N/A	N/A
2121604	12/1937	Lynch et al.	N/A	N/A
2185995	12/1939	Haskell	N/A	N/A
2288199	12/1941	Minnie	N/A	N/A
2713214	12/1954	Gulaskie	N/A	N/A
3461575	12/1968	Tead et al.	N/A	N/A
3464127	12/1968	Muncie	N/A	N/A
3497892	12/1969	Parrelli	N/A	N/A
3514784	12/1969	Mcdavid	N/A	N/A
3528412	12/1969	Mcdavid	N/A	N/A
3557931	12/1970	Fernandez	N/A	N/A
3772704	12/1972	Carbonneau	N/A	N/A
3831467	12/1973	Moore	N/A	N/A
3867239	12/1974	Alesi et al.	N/A	N/A
4033567	12/1976	Lipfert	N/A	N/A
4115902	12/1977	Taylor	N/A	N/A
4191192	12/1979	McDavid	N/A	N/A

4272850 12/1980	Rule	N/A	N/A	
4306315 12/1980	Castiglia	N/A	N/A	
4538301 12/1984	Sawatzki et al.	N/A	N/A	
4628936 12/1985	Langer et al.	N/A	N/A	
4709921 12/1986	Valuikas et al.	N/A	N/A	
4790496 12/1987	Marrujo	N/A	N/A	
4805606 12/1988	McDavid	N/A	N/A	
4831749 12/1988	Tsai	N/A	N/A	
4870956 12/1988	Fatool et al.	N/A	N/A	
4888888 12/1988	Ashton	N/A	N/A	
4923728 12/1989	Snedeker	N/A	N/A	
4944554 12/1989	Gross et al.	N/A	N/A	
5007111 12/1990	Adams	N/A	N/A	
5105473 12/1991	Valtakari	N/A	N/A	
5268213 12/1992	Murakami et al.	N/A	N/A	
5301370 12/1993	Henson	N/A	N/A	
5477558 12/1994	Volker et al.	N/A	N/A	
5493792 12/1995	Bates et al.	N/A	N/A	
5518802 12/1995	Colvin et al.	N/A	N/A	
5581805 12/1995	Rennick	N/A	N/A	
5625896 12/1996	LaBarbera et al.	N/A	N/A	
5680657 12/1996	Valtakari	N/A	N/A	
5689836 12/1996	Fee et al.	N/A	N/A	
5797865 12/1997	McDavid	N/A	N/A	
5890224 12/1998	Clark	N/A	N/A	
5915528 12/1998	Shmuelov	N/A	N/A	
5915819 12/1998	Gooding	N/A	N/A	
5926844 12/1998	Bear	N/A	N/A	
5956777 12/1998	Popovich	N/A	N/A	
5975641 12/1998	Delesie	N/A	N/A	
6058503 12/1999	Williams	N/A	N/A	
6093468 12/1999	Toms et al.	N/A	N/A	
6094743 12/1999	Delgado	N/A	N/A	
6151803 12/1999	Charles	N/A	N/A	
6178662 12/2000	Legatzke	N/A	N/A	
6247745 12/2000	Carroll et al.	N/A	N/A	
6266898 12/2000	Cheng	N/A	N/A	
6286150 12/2000	Miller et al.	N/A	N/A	
6295654 12/2000	Farrell	N/A	N/A	
6507955 12/2002	Fee et al.	N/A	N/A	
6519781 12/2002	Berns	N/A	N/A	
D472678 12/2002	Cho	N/A	N/A	
6589891 12/2002	Rast	N/A	N/A	
6654960 12/2002	Cho	N/A	N/A	
6726641 12/2003	Chiang et al.	N/A	N/A	
6807891 12/2003	Fisher	N/A	N/A	
6969548 12/2004	Goldfine	N/A	N/A	
7000334 12/2005	Gillespie	36/35R	A43B 13/186	
7093301 12/2005	Moore, Jr.	N/A	N/A	
7153560 12/2005	Hofmann	N/A	N/A	

7168190	12/2006	Gillespie	N/A	N/A
D582608	12/2007	Palmer	N/A	N/A
7464414	12/2007	McDuff	N/A	N/A
D610312	12/2009	Farrell	N/A	N/A
7669378	12/2009	Tsunoda et al.	N/A	N/A
D617503	12/2009	Szalkowski et al.	N/A	N/A
8151488	12/2011	Aveni	N/A	N/A
8220072	12/2011	Dodd	N/A	N/A
8601720	12/2012	Aveni	N/A	N/A
8627512	12/2013	Dodd	N/A	N/A
8661564	12/2013	Dodd	N/A	N/A
8707493	12/2013	Aveni	N/A	N/A
8961733	12/2014	Dodd	N/A	N/A
9254433	12/2015	Dodd	N/A	N/A
9609910	12/2016	Dodd	N/A	N/A
2002/0112374	12/2001	Gillespie	N/A	N/A
2004/0019950	12/2003	Rast	N/A	N/A
2004/0020075	12/2003	Garneau	N/A	N/A
2004/0230171	12/2003	Ando et al.	N/A	N/A
2005/0088022	12/2004	Kimura et al.	N/A	N/A
2006/0179538	12/2005	Dodd	N/A	N/A
2007/0107265	12/2006	Mueller et al.	N/A	N/A
2007/0113426	12/2006	Abadjian et al.	N/A	N/A
2009/0183393	12/2008	Lee	N/A	N/A
2009/0276933	12/2008	Dodd	N/A	N/A
2010/0107443	12/2009	Aveni	N/A	N/A
2011/0113559	12/2010	Dodd	N/A	N/A
2011/0209359	12/2010	Chen	N/A	N/A
2012/0227283	12/2011	Aveni	N/A	N/A
2012/0272426	12/2011	Dodd	N/A	N/A
2013/0192088	12/2012	Veldman	N/A	N/A
2014/0157631	12/2013	Dodd	N/A	N/A
2015/0040280	12/2014	Dodd	N/A	N/A
2015/0336494	12/2014	Dodd	N/A	N/A
2016/0037939	12/2015	Petrov	N/A	N/A

FOREIGN PATENT DOCUMENTS

Patent No.	Application Date	Country	CPC
3521141	12/1985	DE	N/A
2001015892	12/2000	WO	N/A

OTHER PUBLICATIONS

International Preliminary Report on Patentability for Application No. PCT/US2006/004757, mailed on Mar. 3, 2009, 4 Pages. cited by applicant

International Search Report and Written Opinion for Application No. PCT/US2006/004757, mailed on Jul. 3, 2008, 4 pages. cited by applicant

Teknor Apex., "Thermoplastic Elastomer Division; "Monprene TPE"," Jul. 2004, pp. 1-8, Retrieved from the Internet:[URL:www.teknorapex.com]. cited by applicant

Primary Examiner: Collier; Jameson D

Background/Summary

CROSS-REFERENCE TO RELATED APPLICATIONS (1) This application is a continuation of U.S. application Ser. No. 17/193,873, filed on Mar. 5, 2021, which is a continuation of U.S. application Ser. No. 15/477,267 filed on Apr. 3, 2017, now issued as U.S. Pat. No. 10,939,724 and entitled PROTECTIVE ARTICLES HAVING A PLURALITY OF CORE MEMBERS, which is a continuation of U.S. application Ser. No. 14/180,228 filed on Feb. 13, 2014, now issued as U.S. Pat. No. 9,609,910 and entitled FOOTWEAR IMPACT DISTRIBUTION, which is a continuation of U.S. patent application Ser. No. 12/471,252, filed May 22, 2009, now issued as U.S. Pat. No. 8,661,564, which is a continuation-in-part of U.S. patent application Ser. No. 11/057,954, filed Feb. 15, 2005, now issued as U.S. Pat. No. 8,220,072 U.S. patent application Ser. No. 12/471,252 also claims the benefit of U.S. Provisional Application No. 61/055,295, filed May 22, 2008. All of the above applications are hereby incorporated by reference in their entireties.

BACKGROUND OF THE INVENTION

- 1. Field of the Invention
- (1) The present invention relates generally to protective articles and in particular to protective articles to protect persons, animals, and other non-living articles or items from impact or other forces.
- 2. Description of Related Art
- (2) Guards and other protective equipment is widely used in amateur and professional sports and other activities to protect participants' from injury. For example, in soccer, players often wear shin guards to protect their lower legs in the event that they are kicked by other players during a game. Football players wear protective shoulder and thigh pads to prevent injury due to impact with other players. Baseball players, such as catchers, use protective chest pads to prevent injury if the catcher is struck by the baseball. Without adequate protection in these sports and others, the risk of injury is high. Protective equipment is also used in non-sports settings. One example is the medical industry which uses casts and splints to immobilize and protect areas of a patient's body.
- (3) Existing guards and protective equipment provide some protection for the persons or equipment to which the guards are applied, but the guards are typically bulky and uncomfortable. Many times, the guards are a single piece of rigid plastic or other material that is affixed to the protected article. Other times, the guards may be a very thick padding or other material. Obtaining a customized fit between the guard and the protected article is often impossible. In the case of person's wearing the guard, this lack of customized fit makes the guards less comfortable to wear, and the guards could under some circumstances impede the movement of the person. Finally, a guard that does not fit properly also fails to provide maximum impact protection to a person.

SUMMARY

- (4) The problems presented by existing protective guards are solved by the systems and methods of the illustrative embodiments described herein. In one embodiment, a protective guard includes an elastomeric sheath having a pocket disposed therein. The protective guard further includes a central core having a plurality of rigid plates. The central core is disposed within the pocket of the elastomeric sheath. The plurality of rigid plates includes a first plate that is joined by at least one hinge to a second plate.
- (5) In another embodiment, a protective guard having a conformable substrate and a plurality of core members is provided. The plurality of core members are at least partially embedded within the conformable substrate. The core members are arranged such that a first of the core members is rotationally movable about at least one axis relative to a second of the core members.

- (6) In still another embodiment, a protective guard is provided that includes a conformable substrate and a plurality of core members disposed adjacent to a surface of the conformable substrate. The core members are arranged such that a first of the core members is rotationally movable about at least one axis relative to a second of the core members.
- (7) In yet another embodiment, a protective guard is provided that includes an elastomeric substrate and a plurality of non-elastomeric core members. The non-elastomeric core members are at least partially embedded within the elastomeric substrate.
- (8) Other objects, features, and advantages of the illustrative embodiments will become apparent with reference to the drawings, detailed description, and claims that follow.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

- (1) FIG. **1** illustrates a front view of a protective guard according to an illustrative embodiment, the protective guard having a conformable substrate and a central core disposed therein;
- (2) FIG. 2 depicts a perspective view of the protective guard of FIG. 1 secured to a leg of a person;
- (3) FIG. **3** illustrates a partial front view of the central core of FIG. **1**, the central core including a plurality of core members;
- (4) FIG. **4** depicts a partial front view of a plurality of round core members according to an illustrative embodiment;
- (5) FIG. **5** illustrates a partial front view of a plurality of oval core members according to an illustrative embodiment;
- (6) FIG. **5**A illustrates a partial front view of a plurality of hexagonal core members according to an illustrative embodiment;
- (7) FIG. **6** depicts a partial front view of a plurality of rectangular core members according to an illustrative embodiment;
- (8) FIG. 7 illustrates a cross-sectional bottom view of the core members of FIG. 3 taken at VII-VII;
- (9) FIG. **8** depicts a cross-sectional bottom view similar to FIG. **7** of a plurality of core members according to an illustrative embodiment;
- (10) FIG. **9** illustrates a cross-sectional bottom view of the core members of FIG. **6** taken at IX-IX;
- (11) FIG. **10** depicts a cross-sectional bottom view of the conformable substrate and central core of FIG. **1** taken at X-X;
- (12) FIG. **11** illustrates a cross-sectional bottom view similar to FIG. **10** of a conformable substrate and central core according to an illustrative embodiment;
- (13) FIG. **12** depicts a cross-sectional bottom view similar to FIG. **10** of a conformable substrate and central core according to an illustrative embodiment;
- (14) FIG. **13** illustrates a cross-sectional view of a conformable substrate, a central core, and a flexible membrane according to an illustrative embodiment, the cross-sectional view being similar to the cross-sectional view illustrated in FIG. **10**;
- (15) FIG. **14** depicts a cross-sectional view similar to FIG. **13** of a conformable substrate, a central core, and a flexible membrane according to an illustrative embodiment;
- (16) FIG. **15** illustrates a cross-sectional view similar to FIG. **13** of a conformable substrate, a central core, and a flexible membrane according to an illustrative embodiment;
- (17) FIG. **16** depicts a side view of a glove having a central core according to an illustrative embodiment;
- (18) FIG. **17** illustrates a rear view of the glove of FIG. **16**;
- (19) FIG. **18** depicts a perspective view of an article of footwear having a central core according to an illustrative embodiment; and
- (20) FIG. 19 illustrates a perspective view of an article of footwear having a central core according

to an illustrative embodiment.

DETAILED DESCRIPTION OF THE ILLUSTRATIVE EMBODIMENT

- (21) In the following detailed description of the illustrative embodiments, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific preferred embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the invention, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.
- (22) As used herein, the term "elastomer" refers to a polymeric, rubber (natural or synthetic), or other material that has elongation rates greater than 100%.
- (23) The term "conformable" refers to the ability of a material to be shaped to the contours of a surface without permanently deforming or setting the material. The conformable material could be placed adjacent to a first surface to provide a contour fit to the first surface, and then could subsequently be placed adjacent a second surface and similarly provide a contour fit to the second surface.
- (24) Referring to FIG. 1, a protective guard 11 according to the principles of the present invention includes a conformable substrate 13 and a central core 15. The central core 15 is connected to or embedded within the conformable substrate 13 to provide impact protection to a body part of a person. In one embodiment, the conformable substrate 13 may include a pocket 19 (see FIG. 10) within the conformable substrate that houses the central core 15. When the central core 15 is contained within pocket 19, the conformable substrate 13 functions as a sheath, and an entry slot 21 may be optionally provided to allow access to pocket 19, thereby allowing the central core 13 to be selectively removed or inserted into the conformable substrate 13. However, in one embodiment, the pocket 19 is not accessible by an entry slot, thereby creating a sealed space for the conformable substrate 13. The pocket 19 closely matches the shape of the central core 13 and may be formed by molding the conformable substrate 13 around the central core 13.
- (25) The conformable substrate 13 may be constructed from an elastomeric material such that the conformable substrate **13** can be easily wrapped around and shaped to the contours of a person's lower leg or shin **61** (see FIG. **2**). In one embodiment, the conformable substrate may be made from MONPRENE MP-1880 \mathbb{R} , a thermoplastic elastomer manufactured by TEKNOR APEXTM, Thermoplastic Elastomer Division of Pawtucket, Rhode Island. Other suitable materials may include without limitation other thermoplastic elastomers, ethylene vinyl acetate (EVA), natural rubber, polyisoprene, styrene butadiene rubber, chloroprene rubber, polybutadiene, nitrile rubber, butyl rubber, ethylene propylene rubber, ethylene propylene diene rubber, chlorosulfonated polyethylene, polysulfide rubber, silicone rubber, polyurethane, or open-cell neoprene, energyabsorbent or viscoelastic foam such as a memory foam, or any other conformable material. (26) Referring to FIG. **3**, the central core **15** includes a plurality of plate members, or core members **31**. In one embodiment, each core member is joined by at least one hinge **33** to another of the core members **31** such that the core members **31** are capable of rotational movement relative to one another. The rotational movement between two core members typically occurs along an axis that is positioned between the core members. When hinges **33** are used to connect the core members **31**, the axis of rotation corresponds to the rotational axis of the hinge. Representative axes of rotation for the central core **15** of FIG. **3** are illustrated as axis **35**a, axis **35**b, and axis **35**c. The ability of the core members **31** to rotationally move relative to one another allows the central core **15** to be conformable to a shin or other body part of a person even though the material that forms the core members **31** would not necessarily be conformable if used in a singe piece.

- (27) Referring more specifically to FIGS. **3-6**, the core members may be any shape or size. In one embodiment, the core members **31** may be triangular in shape such as is illustrated in FIG. **3**. In another embodiment, a central core **15***a* is partially shown in FIG. **4** having round core members **31***a* connected by hinges **33***a*. FIG. **5** partially illustrates a central core **15***b* having a plurality of oval core members **31***b* connected by hinges **33***b*. FIG. **5**A partially illustrates a central core **15***e* having hexagonal core member **31***e* connected to hinges **33***e*. FIG. **6** partially illustrates a central core **15***e* having rectangular core members **31***e* connected by hinges **33***e*. Other shapes may include without limitation octagonal, other polygonal, or free-form shapes.
- (28) Referring to FIG. 7, the core members **31** of protective guard **11** are preferably substantially flat, rigid or semi-rigid plates constructed from a non-elastomeric material. In one embodiment, the core members **31** are made from a hard plastic material such as acrylonitrile butadiene styrene (ABS), styrene, polyethylene, polypropylene, acrylic, polyvinyl chloride (PVC), fluoroplastics, nylon, acetal, polycarbonate, polyimide, polyamide-imide, polyphenylene sulfide, polyarylates, polyethylene terephthalate, polybutylene terephthalate, polyether ether ketone, polysulfone, polyether sulfone, polyetherimide, or polyphenylene oxide. However, it should be understood that any substantially rigid material may be used, including composites, metal, ceramics, synthetic fiber materials such as KEVLAR® (a type of para-aramid fiber), or wood. Although a non-elastomeric material is preferred, the core members **31** may even be formed from an elastomeric material if rotational movement between the core members **31** would allow the elastomeric material to better conform to the shin of a person. Preferably, the material used to form the core members **31**, and thus the central core **15**, is a material that is compatible with the material chosen for the conformable substrate 13. Since some embodiments involve molding the conformable substrate 13 over the central core 15, it is desirous to use a central core material to which the conformable substrate **13** will adhere. A coating or adhesive may be applied to the central core **15** prior to the molding process to achieve additional adhesion between the central core **15** and the conformable substrate 13.
- (29) Referring to FIG. **9**, the central core **15***c* of FIG. **6** is illustrated in cross section and includes core members **31***c* connected by hinges **33***c*. While the core members may be substantially flat so that an impact force directed to the protective guard does not damage the conformable substrate, the core members **31***c* illustrated in FIG. **9** include ridges **41**. The ridges **41** may be capable of absorbing additional energy by flattening in the presence of an impact force. Other alternatives to a substantially flat core member may be provided by a core member that is slightly concave or convex in cross section. The core members could alternatively be fluid-filled capsules such as those containing air or gel, or the core members may also be provided in a mesh configuration that is hinged together similar to chain mail armor.
- (30) Referring again to FIG. 7 and also to FIG. 8, the hinges that connect the core members may be provided in several different forms. In one embodiment illustrated in FIG. 7, the hinge 33 is a "living hinge." The living hinge is preferably integrally attached between the core members 31 and is made from the same material as each of the core members 31. The living hinge may be created by machining or etching the core members 31 from a single sheet of material having a relatively constant thickness. The sheet of material is thinned in any region that will become a hinge. This thinning process to create the hinges 33 also creates the general shape of the core members 31. Alternatively, the core members 31 and hinges 33 may be formed by molding or any other manufacturing process, including without limitation injection molding, compression molding, or transfer molding. Living hinges are a strong way of maintaining a rotational connection between core members 31. The living hinges 33 allow repeated rotations between core members 31 while maintaining the relative positions of the core members 31 during the process of assembling the central core 15 and the conformable substrate 13.
- (31) Referring to FIG. **8**, another option for providing hinges is illustrated in reference to a central core **15***d* having core members **31***d* and hinges **33***d*. Hinges **33***d* are formed by arranging precut

core members **31***d* onto a membrane or other material **51** that includes an adhesive or gel to secure the core members **31***d* to the membrane **51**. The membrane **51** could be an adhesive tape or other film, a mesh material or alternatively the membrane could be another piece of plastic or elastomer to which the core members **31***d* are bonded. In still another embodiment, the membrane could be a thin layer of the material comprising the conformable substrate. Membrane **51** could be applied to both sides of the core members **31***d* or only on one side as shown in FIG. **8**.

- (32) Although not illustrated, mechanical, multi-part hinges could also be used to connect adjacent core members.
- (33) Referring again to FIG. 3, certain of the core members are located in an outer perimeter region 37, while other of the core members are located in an inner region 39. The core members 31 located in the inner region 39 are preferably connected by hinges 33 along each edge of the core member 31 to each adjacent core member 31. For core members 31 located in the outer perimeter region 37, hinges 33 are only attached to one or two edges of each core member 31. However, regardless of whether a particular core member 31 is disposed within the outer perimeter region 37 or the inner region 39, it is not required that every edge of a core member 31 be connected by a hinge to another core member 31. In fact, hinges are not mandatory. Hinges simply provide a good way to maintain relative positioning of the core members 31 during assembly of the central core 15 and the conformable substrate 13. If the relative positioning of the core members 31 could be maintained without hinges, the fixation of the core members 31 within or to the conformable substrate 13 would allow the desired capability of rotational movement between adjacent core members 31. Alternatives for positioning the core members 31 are discussed below in reference to the assembly of the central core 15 and the conformable substrate 13.
- (34) Referring to FIG. 10, in one embodiment, the protective guard 11 includes core members 31 that are completely embedded within the conformable substrate 13. As mentioned previously, a pocket 19 could be provided with an entry slot that allows for insertion of the central core 15 after the conformable substrate 13 is formed. Alternatively, the central core 15 may be molded within the conformable substrate 13, which would automatically form a pocket 19 around the central core 15. It is preferred that hinges 33 are present between the core members 31 to maintain the relative position of the core members 31 during the molding process. It is possible, however, that the core members 31 be individually placed during the molding process to eliminate the need for the hinges 33. After the molding process, the relative positions (e.g. spacing) of the core members 31 would be fixed within the conformable substrate 13, yet the core members 31 would still be capable of rotational movement relative to one another.
- (35) Referring to FIG. 11, in another embodiment, a protective guard 111 having a conformable substrate 113 and a central core 115 is illustrated. The central core 115 includes a plurality of core members 131 connected by hinges 133. The central core 115 is partially embedded within a pocket 119 of the conformable substrate 113, thereby exposing the core members 131 near a surface of the conformable substrate 113. The central core 115 may be secured to the conformable substrate 113 by the embedding process, or a bonding agent or any other adhesive or gel may be used to further secure the central core 115. Alternatively, the central core 115 may be attached by sewing means, heat fastening means, ultrasonic fastening means, or any other fastening means. As discussed previously in reference to FIG. 10, the hinges 133 between core members 131 could be eliminated if the core members 131 were individually placed during the assembly process. Individual core members 131 could be placed during the molding of the conformable substrate 113, or the core members could be bonded within the pocket 119 of the conformable substrate 113 after the molding process is complete. After securing the core members 131 to the conformable substrate 113, the relative positions (e.g. spacing) of the core members 131 would be fixed, yet the core members 131 would still be capable of rotational movement relative to one another.
- (36) Referring to FIG. **12**, in another embodiment, a protective guard **211** having a conformable substrate **213** and a central core **215** is illustrated. The central core **215** includes a plurality of core

members **231** connected by hinges **233**. In one embodiment, the central core **215** is bonded to a surface of the conformable substrate **213** by a bonding agent, adhesive, or gel. Alternatively, the central core **215** may be attached to the conformable substrate **213** by sewing means, heat fastening means, ultrasonic fastening means, or any other fastening means. As discussed previously with reference to FIGS. **10** and **11**, the hinges **233** between core members **231** could be eliminated if the core members **231** were individually placed during the bonding process. After securing the core members **231** to the conformable substrate **213**, the relative positions (e.g. spacing) of the core members would be fixed, yet the core members would still be capable of rotational movement relative to one another.

- (37) Referring to FIG. **13**, a protective guard **311** according to another embodiment of the invention includes a conformable substrate **313**, a central core **315**, and a flexible membrane **317**. The central core **315** includes a plurality of core members **331** connected by hinges **333**. The central core **315** is at least partially embedded within a pocket 319 of the conformable substrate 313, and at least a portion of the central core **315** is covered by flexible membrane **317**. While each of the conformable substrate 313, central core 315 and flexible membrane 317 (the three layers) may be adhesively bonded or otherwise attached to the other layers, some of the layers may not be attached to one another. For example, central core **315** may be placed on the conformable substrate **313** without attachment. The flexible membrane **317** may include an adhesive on one side that permits adherence of the flexible membrane 317 to both the central core 315 and the conformable substrate **313**, thereby holding the central core **315** in place relative to the conformable substrate **313**. Alternatively, the flexible membrane **317** may not be attached to the central core **315** but rather only to the conformable substrate **313**. While the pocket **319** could be preformed in the conformable substrate **313** to receive the central core **315**, the pocket **319** could instead be formed by an elastic deformation of the conformable substrate **313** in the presence of a compressive force applied by the flexible membrane **317** to the central core **315**. If the layers of the protective guard **311** are attached, attachment may be accomplished by a bonding agent or any other adhesive or gel, sewing means, ultrasonic means, heat means, or any other fastening means. As discussed previously in reference to FIG. 10-12, the hinges 333 between core members 331 could be eliminated if the core members **331** were individually placed during the assembly process. Individual core members **331** could be placed during the molding of the conformable substrate **313**, or the core members could be bonded within the pocket **319** of the conformable substrate **313** after the molding process is complete. Alternatively, the core members **331** (hinged or unhinged) could be attached to the flexible membrane **317** prior to securing the flexible membrane **317** to the conformable substrate.
- (38) Referring to FIG. **14**, a protective guard **411** according to another embodiment of the invention includes a conformable substrate **413**, a central core **415**, and a flexible membrane **417**. The layers of protective guard **411** and the methods of attachment are substantially, the same as protective guard **311** described in FIG. **13**, with the exception that the central core **415** is not embedded within a pocket of the conformable substrate **413**. Instead, the central core **415** is attached to or positioned against an outer surface of the conformable substrate **413**. The central core **415** is also similar to those previously described in that the central core **415** includes a plurality of core members **431** connected by hinges **433**.
- (39) Referring to FIG. **15**, a protective guard **511** according to another embodiment of the invention includes a conformable substrate **513**, a plurality of core members **515**, and a flexible membrane **517**. In this embodiment, the core members **515** are not connected by hinges, but rather each core member is placed within a pocket **519** formed in the conformable substrate **513**. The flexible membrane **517** is positioned over the conformable substrate **513** and the core members **515** to create a substantially flat impact surface. While each of the conformable substrate **513**, the core members **515** and flexible membrane **517** (the three layers) may be adhesively bonded or otherwise attached to the other layers, some of the layers may not be attached to one another. For example,

the core members **515** may be placed within the pockets **519** without attachment. The flexible membrane **517** may include an adhesive or gel on one side that permits adherence of the flexible membrane **517** to both the core members **515** and the conformable substrate **513**, thereby holding the core members **515** in place relative to the conformable substrate **513**. Alternatively, the flexible membrane **517** may not be attached to the core members **515** but rather only to the conformable substrate **513**. While the pockets **519** could be preformed in the conformable substrate **513** to receive the core members **515**, the pockets **519** could instead be formed by an elastic deformation of the conformable substrate **513** in the presence of a compressive force applied by the flexible membrane **517** to the core members **515**. While the conformable substrate **513** is illustrated with multiple pockets **519** in FIG. **15**, a single pocket may instead be provided to receive multiple core members **515**. If the layers of the protective guard **511** are attached to one another, attachment may be accomplished by a bonding agent or any other adhesive or gel, sewing means, ultrasonic means, heat means, or any other fastening means.

- (40) Referring again to FIGS. **13-15**, the flexible membrane **317**, **417**, and **517** may be any flexible material that is capable of being attached to either the conformable substrate or the central core. In one embodiment, the flexible membrane may be a flexible fabric made from natural fabrics including, without limitation, wool, cotton, silk, leather, or linen; or synthetic fibers including, without limitation, acetate, acrylic, latex, spandex, nylon, polyester, rayon; or blends of the abovementioned fabrics; or any other material that includes natural and/or synthetic fibers that have been weaved, felted, knitted, crocheted, or otherwise arranged. The fabrics may be flame or fire retardant or resistant, such as for example, NOMEX® (a type of meta-aramid fiber). (41) It is important to note that the membranes, fabrics, conformable substrates, skeletal plates, core members, covers, and backings described herein may be bonded, layered, or connected in part or total to one another or may be layered but not bonded. While the illustrative embodiments described herein have been generally described as including single layers of each component (e.g., conformable substrate, core members, membranes) of the protective guard, any guard or other device incorporating these components may include multiple layers of one or more of the components. Furthermore, for a particular component that is provided in multiple layers, the multiple layers of the component may be arranged adjacent to one another, or may be arranged such that one or more layers of a different component is intermediately disposed between the multiple layers.
- (42) In use, the protective guard **11**, **111**, **211** of the present invention provides impact protection for an extremity or other body part of a person. As shown in FIG. 2, the protective guard 11 is conformable to the shin and lower leg **61** of a person. The conformable substrate **13** and the central core **15** combine to provide superior impact protection. While the conformable substrate **13** by itself is conformable to a leg or other body part, the more rigid characteristics of the material used in the central core **15** would normally not be easily conformable to the person's leg. However, by separating the central core 15 into a plurality of core members 31 and by allowing the core members **31** to be rotationally movable relative to one another, the central core **15** as a whole is also conformable to the leg of the person. The hinges **33** of the central core **15** provide additional impact resistance for point loads and impacts since the hinges are capable of transmitting impact forces to adjacent core members **31**. An attachment aperture **65** is provided on each side of the conformable substrate **13** to allow protective guard **11** to be attached to the person's leg with a strap **67** routed through the attachment aperture **65**. An ankle guard **71** may also be provided to wrap around the ankle of the person. The ankle guard **71** could include a central core, but preferably is formed solely from the conformable substrate used with protective guard 11, 111, 211. Similarly, the protective guard itself could be formed solely from the conformable substrate and used without the central core. If only the conformable substrate is used, the material may be thicker in areas of predicted impact or may be formed from two or more elastomers having different durometers (i.e. a multi-durometer conformable substrate).

- (43) Referring to FIGS. **16** and **17**, a glove **611** having a central portion **615**, a plurality of finger portions **619**; a thumb portion **623**, and a wrist portion **627** includes an opening **629** for insertion of a hand. In at least one of or all of the central portion **615**, the plurality of finger portions **619**, the thumb portion **623**, and the wrist portion **627**, a pocket **635** may be provided to receive a central core **639** having a plurality of core members connected by hinges as previously described herein. The core members and hinges allow multi-directional movement of the portions of the hand positioned adjacent the central core in each of the central portion **615**, the plurality of finger portions **619**, the thumb portion **623**, and the wrist portion **627**. The central core **639** may be a single article that is shaped to fit into multiple of the portions of the glove **611** containing a pocket. Alternatively, an individual central core **639** may be placed in each individual pocket **635** of the glove **611**. When pockets are provided, the central core may be positioned within, embedded, partially-embedded, free-floating, adhesively secured, bonded, sewn or otherwise attached as previously described herein. In another embodiment, the pockets **635** of the glove **611** may be eliminated, and the central core **639** or multiple central cores **639** may be secured to an exterior or interior surface of the glove in the region of the central portion **615**, the plurality of finger portions **619**, the thumb portion **623**, and/or the wrist portion **627**. As previously described with respect to the flexible membranes of FIGS. **13-15**, a flexible membrane may be positioned over the central core **639** to assist in joining the central core **639** to the glove material.
- (44) The glove **611** may be used for protection from impact and other potentially detrimental forces encountered in any sports or other activity. For example, inclusion of a central core **639** in the central portion **615** and finger portions **619** over the back of the hand may be desirable for baseball gloves to protect batters from impact by a baseball. A central core **639** may be positioned over the palm of the hand in the central portion **615** to protect motorcyclists, bicyclists, and skaters from impact and abrasive frictional forces that may be caused when the hands are used to cushion an impact with the ground.
- (45) Referring to FIGS. **17** and **18**, an article of footwear, such as for example a work boot **711** or a hockey skate **811**, includes a toe portion **715**, a heel portion **719**, a tongue portion **725**, an outsole **729**, and an insole (not shown). In at least one of or all of the toe portion **715**, the heel portion **719**, the tongue portion **725**, the outsole **729**, and the insole, a pocket **735** may be provided to receive a central core **739** having a plurality of core members connected by hinges as previously described herein. The core members and hinges allow multi-directional movement (i.e., rotational movement about more than one axis) of the portions of the foot positioned adjacent the central core in each of the toe portion **715**, the heel portion **719**, the tongue portion **725**, the outsole **729**, and the insole. The central core **739** may be a single article that is shaped to fit into multiple of the portions of the footwear **711**, **811** containing a pocket. Alternatively, an individual central core **739** may be placed in each individual pocket **735** of the footwear **711**, **811**. When pockets are provided, the central core may be positioned within, embedded, partially-embedded, free-floating, adhesively secured, bonded, sewn or otherwise attached as previously described herein. In another embodiment, the pockets **735** of the footwear **11** may be eliminated, and the central core **739** or multiple central cores **739** may be secured to an exterior or interior surface of the footwear in the region of the toe portion **715**, the heel portion **719**, the tongue portion **725**, the outsole **729**, and/or the insole. As previously described with respect to the flexible membranes of FIGS. **13-15**, a flexible membrane may be positioned over the central core **739** to assist in joining the central core **739** to the footwear material.
- (46) The footwear **711** may be used for protection from impact and other potentially detrimental forces encountered in any sports or other activity. For example, inclusion of a central core **739** in the tongue portion **725** of the hockey skate **811** provides significant protection to goalies from hockey-puck impacts. Similarly, a central core **639** may be positioned in the toe portion **715** or heel portion **719** of the work boot **711** to protect against impacts received in industrial or other work-related settings.

(47) It should be noted that the protective guards described herein may be used to protect body parts other than the lower legs, hands, or feet of a person including without limitation the torso, back, forearms, wrists, elbows, thighs, knees, shoulders, chest, face, head, and other extremities. In one example, the central core or protective guard may be combined with helmets or other headwear to protect the head from impact. Body parts may also be protected by combining a central core such as that described herein with clothing, either by sewing the central core to the clothing, within a pocket of the clothing, or by otherwise attaching the central core to the clothing. For example, the central core or protective guard may be combined with shirts, jackets, shorts, pants, hats or other articles of clothing.

- (48) The protective guards described herein may also be used to protect body parts of non-human animals as well, or alternatively, non-living articles or equipment. For example, the central cores may be attached or incorporated as described herein to luggage, briefcases, computer travel bags, gun cases, or other bags and storage containers to protect the contents therein. In another example, the central core or protective guard may be attached to or incorporated within athletic flooring, subflooring, or ground covering to provide support and impact resistance. The central cores may be attached to or incorporated into the fabric of clothing to protect various areas of human or other animal bodies. While the protective guards and central cores described herein are often presented as being incorporated into sports and work-related equipment, it should be recognized that the use of these elements may be expanded beyond these particular uses. For example, one or more central cores may be attached to or incorporated into various medical devices such as splints and casts. The inclusion of the central core in these devices would provide additional protection against impact and other forces for the body parts to which the splints and casts are applied. One non-medical example may include attachment or incorporation of one or more central cores to an airplane seat, a car seat, or other seat to create a support frame that prevents impression in the foam or other substrate underlying or overlying the core member. The central core may also protect a user of the seat against impact and other forces. Similarly, the central core could be combined with bed mattresses or other bedding materials to provide support and to prevent impressions in the bedding. As can be seen from the preceding examples, the application of the protective guards and central cores described herein are not limited and may include any application where it is desired to protect humans, animals, or non-living articles or equipment from impact and other forces. (49) In one additional example, the protective guards described herein may be used to protect hips
- and other body parts from impact during falls. Hip fractures and other broken bones due to falls result in serious injuries and medical complications for many elderly people. Attachment of the protective guard over a person's hip may help prevent some of these injuries. In one example, a flexible material, such as a surgical tape with an adhesive backing, may be applied to the skin of a patient adjacent the hip. On an outward facing side of the flexible material, one component of a hook-and-loop material may be positioned. A protective guard having a central core such as those described herein may be removably attached to the flexible material using another component of the hook-and-look material that is positioned on the protective guard. The protective guard may be easily replaced, repositioned, or removed for the comfort and safety of the patient. While the protective guard may include both a conformable substrate and a central core, in one embodiment, the central core may be attached to the flexible material or directly to the patient without the use of a conformable substrate. While attachment has been described as using complementary hook-and-loop type material, any fastening means may be used including, without limitation, adhesives, sewing, or other suitable attachment means.
- (50) It should be apparent from the foregoing that an invention having significant advantages has been provided. While the invention is shown in only a few of its forms, it is not just limited but is susceptible to various changes and modifications without departing from the spirit thereof.

Claims

1. A shoe comprising: an outsole comprising: a conformable substrate comprising a pocket, wherein the pocket comprises a depression formed in the conformable substrate; and a core inset within at least a portion of the pocket, wherein the core comprises a plurality of plates, a first one of the plurality of plates is hingedly attached, at one or more edges of the first plate, to one or more substantially adjacent other plates in the plurality of plates by one or more respective hinges, wherein each respective hinge hingedly attaching an edge of the first plate to another plate joins less than the entire respective hingedly attached edge to a corresponding one of the one or more substantially adjacent other plates and is integrally connected to the first plate and the other plate. wherein each respective hinge attaching an edge of the first plate to another plate is configured to transmit impact forces from the first plate to a corresponding one of the other plates in the plurality of plates, wherein a subset of the plurality of plates in the core form a row of three or more interconnected plates and a particular plate in the subset of the plurality of plates is directly interconnected with at least three other plates in the plurality of plates through three or more corresponding hinges directly integrally connected to the particular plate, wherein material of the core is more rigid than material of the conformable substrate, and wherein the depression has a geometry corresponding to at least a portion of the plurality of plates.