

Relations and Functions

Michael Butler 4 March 2019

Sets, relations, functions

- Powerset is the type constructor for sets of elements
- Cartesian product is the type constructor for pairs of elements
- A relation is a set of pairs
 - Domain and range of a relation
 - Relational image
 - Restriction and subtraction
- A function is a special case of a relation
 - Many-to-one: each domain element mapped to a unique range element
 - Partial function, function application
 - Function override
 - Total functions

Telephone Directory Model

- Phone directory relates people to their phone numbers.
- Each person can have zero or more numbers.
- People can share numbers.

```
context PhoneContext
sets Person PhoneNum
end
```

```
machine PhoneBook
variables dir
invariants dir \in Person \leftrightarrow PhoneNum
```

initialisation
$$dir := \{\}$$

Extending the Directory

Add an entry to the directory:

```
 \begin{array}{ll} \textit{AddEntry} & \triangleq & \textbf{any} \ p, n \ \textbf{where} \\ & p \in \textit{Person} \\ & n \in \textit{PhoneNum} \\ & \textbf{then} \\ & \textit{dir} \ := \ \textit{dir} \cup \{p \mapsto n\} \\ & \textbf{end} \\ \end{array}
```

Relational Image

```
directory = \{ mary \mapsto 287573, \\ mary \mapsto 398620, \\ john \mapsto 829483, \\ jim \mapsto 398620 \}
```

Relational image examples:

```
directory[ \{ mary \} ] = \{ 287573, 398620 \}
directory[ \{ john, jim \} ] = \{ 829483, 398620 \}
```

Relational Image Definition

Assume $R \in S \leftrightarrow T$ and $A \subseteq S$

The relational image of set A under relation R is written

R[A]

Predicate	Definition		
$y \in R[A]$	$\exists x \cdot x \in A \land x \mapsto y \in R$		

Modelling Queries using Relational Image

Determine all the numbers associated with a person in the directory:

```
GetNumbers \triangleq \mathbf{any}\ p, result\ \mathbf{where}
p \in Person
result = dir[\{p\}]
\mathbf{end}
```

Determine all the numbers associated with a set of people:

```
GetMultiNumbers \hat{=} any ps, result where ps \subseteq Person result = dir[ps] end
```

Location

Many-to-one relation

Partial Functions

Special kind of relation: each domain element has at most one range element associated with it.

To declare f as a partial function:

$$f \in X \rightarrow Y$$

This says that f is a many-to-one relation

Each domain element is mapped to exactly one range element:

$$x \mapsto y \in f \land y' \neq y \implies x \mapsto y' \notin f$$

If x is mapped to y, then x cannot be mapped to another value y'.

Function Application

We can use function application for partial functions.

If $x \in dom(f)$, then we write f(x) for the unique range element associated with x in f.

If $x \notin dom(f)$, then f(x) is undefined.

Examples

```
dir1 = \{ mary \mapsto 398620, \quad dir2 = \{ mary \mapsto 287573, \}
             jim \mapsto 493028,
                                                      mary \mapsto 398620,
             jane \mapsto 493028
                                                     jane \mapsto 493028 }
              dir1 \in Person \rightarrow Phone
              dir1(jim) = 493028
              dir1(sarah) is undefined
```

 $dir2 \notin Person \rightarrow Phone$

Well-definedness and application definitions

Expression	Well-definedness condition	
f(x)	$x \in dom(f) \land f \in X \rightarrow Y$	

The following definition of function application assumes that f(x) is well-defined:

Predicate	Definition	
y = f(x)	$x \mapsto y \in f$	

Birthday Book Example

Birthday book relates people to their birthday.

Each person has one birthday.

People can share birthdays.

sets PERSON DATE

variables birthday invariants birthday \in PERSON \rightarrow DATE

initialisation $birthday := \{\}$

Adding and checking birthdays

Add an entry to the directory:

```
 AddEntry \triangleq \textbf{any} \ p, d \ \textbf{where} \\ p \in Person \\ p \not\in dom(birthday) \\ d \in Date \\ \textbf{then} \\ birthday := birthday \cup \{p \mapsto d\} \\ \textbf{end}
```

Check a person's birthday:

```
Check \hat{=} any p, result where p \in dom(birthday) result = birthday(p) end
```


Domain Restriction

Given $R \in S \leftrightarrow T$ and $A \subseteq S$, the domain restriction of R by A is writen $A \triangleleft R$

Restrict relation R so that it only contains pairs whose first part is in the set A.

Example:

```
directory = { mary \mapsto 287573, mary \mapsto 398620, john \mapsto 829483, jim \mapsto 398620 }
```

$$\{john, jim, jane\} \triangleleft directory = \{ john \mapsto 829483, \\ jim \mapsto 398620 \}$$

Domain Subtraction

Given $R \in S \leftrightarrow T$ and $A \subseteq S$, the domain subtraction of R by A is written $A \triangleleft R$

Remove those pairs from R whose first part is in A.

Example:

```
directory = { mary \mapsto 287573, mary \mapsto 398620, john \mapsto 829483, jim \mapsto 398620 }
```

```
\{john, jim, jane\} \triangleleft directory = \{ mary \mapsto 287573, \\ mary \mapsto 398620 \}
```


Domain and Range, Restriction and Substraction

Assume $R \in S \leftrightarrow T$ and $A \subseteq S$ and $B \subseteq T$

Predicate	Definition	
$x \mapsto y \in A \triangleleft R$	$x \mapsto y \in R \land x \in A$	domain restriction
$x \mapsto y \in A \triangleleft R$	$x \mapsto y \in R \land x \notin A$	domain subtraction
$x \mapsto y \in R \triangleright B$	$x \mapsto y \in R \land y \in B$	range restriction
$x \mapsto y \in R \triangleright B$	$x \mapsto y \in R \land y \notin B$	range subtraction

Removing Entries from the Directory

Remove all the entries associated with a person in the directory:

```
RemovePerson \hat{=} any p where p \in Person then dir := \{p\} \triangleleft dir end
```

Remove all the entries associated with a number in the directory:

```
RemoveNumber \hat{=} any n where n \in PhoneNum then dir := dir \triangleright \{n\} end
```

Function Overriding

Override
$$f$$
 by g $f \Leftrightarrow g$

f and g must be partial functions of the same type

Override: replace existing mappings with new ones

Examples:

```
dir1 = \{ mary \mapsto 398620, jim \mapsto 493028, jane \mapsto 493028 \}
dir1 \Leftrightarrow \{ mary \mapsto 674321 \}
= \{ mary \mapsto 674321, jim \mapsto 493028, jane \mapsto 493028 \}
dir1 \Leftrightarrow \{ mary \mapsto 674321, jane \mapsto 829483 \}
= \{ mary \mapsto 674321, jim \mapsto 493028, jane \mapsto 829483 \}
```


Function Overriding Definition

Definition in terms of function override and set union:

$$f \Leftrightarrow \{a \mapsto b\} = (\{a\} \lessdot f) \cup \{a \mapsto b\}$$

 $f \Leftrightarrow g = (\text{dom}(g) \lessdot f) \cup g$

Modifying a birthday

Modify an entry in the directory:

```
\begin{tabular}{lll} \textit{ModifyEntry} & \hat{=} & \textbf{any} \ p, d \ \textbf{where} \\ & p \in \textit{dom}(\textit{birthday}) \\ & d \in \textit{Date} \\ & \textbf{then} \\ & \textit{birthday} := \textit{birthday} \Leftrightarrow \{p \mapsto d\} \\ & \textbf{end} \\ \end{tabular}
```

Syntactic shorthand:

```
ModifyEntry \triangleq \mathbf{any} \ p, d \ \mathbf{where}
p \in Person
d \in Date
\mathbf{then}
birthday(p) := d
\mathbf{end}
```

Event-B Lecture Notes

- For overview of modelling with sets in Event-B see Notes:
- http://eprints.soton.ac.uk/402239/
- (also linked from COMP1216 web page)

Read Sections 1-7