The rainbow Turán number of even cycles

Oliver Janzer

University of Cambridge and ETH Zurich

Definition

The Turán number of a graph H, denoted ex(n, H), is the maximum number of edges in an H-free graph on n vertices.

Definition

The Turán number of a graph H, denoted ex(n, H), is the maximum number of edges in an H-free graph on n vertices.

Definition (Keevash-Mubayi-Sudakov-Verstraëte '07)

The rainbow Turán number of a graph H, denoted $ex^*(n, H)$, is the maximum number of edges in a properly edge-coloured graph on n vertices which does not contain a rainbow copy of H as a subgraph.

Definition

The Turán number of a graph H, denoted ex(n, H), is the maximum number of edges in an H-free graph on n vertices.

Definition (Keevash-Mubayi-Sudakov-Verstraëte '07)

The rainbow Turán number of a graph H, denoted $ex^*(n, H)$, is the maximum number of edges in a properly edge-coloured graph on n vertices which does not contain a rainbow copy of H as a subgraph.

Clearly, $ex^*(n, H) \ge ex(n, H)$.

Definition

The Turán number of a graph H, denoted ex(n, H), is the maximum number of edges in an H-free graph on n vertices.

Definition (Keevash-Mubayi-Sudakov-Verstraëte '07)

The rainbow Turán number of a graph H, denoted $ex^*(n, H)$, is the maximum number of edges in a properly edge-coloured graph on n vertices which does not contain a rainbow copy of H as a subgraph.

Clearly, $ex^*(n, H) \ge ex(n, H)$.

Theorem (Keevash et al. '07)

For any non-bipartite graph H, we have

$$ex^*(n, H) = (1 + o(1))ex(n, H).$$

Definition

The Turán number of a graph H, denoted ex(n, H), is the maximum number of edges in an H-free graph on n vertices.

Definition (Keevash-Mubayi-Sudakov-Verstraëte '07)

The rainbow Turán number of a graph H, denoted $ex^*(n, H)$, is the maximum number of edges in a properly edge-coloured graph on n vertices which does not contain a rainbow copy of H as a subgraph.

Clearly, $ex^*(n, H) \ge ex(n, H)$.

Theorem (Keevash et al. '07)

For any non-bipartite graph H, we have

$$ex^*(n, H) = (1 + o(1))ex(n, H).$$

They also showed that this fails for $H = C_6$.

Theorem (Bondy-Simonovits '74)

$$ex(n, C_{2k}) = O(n^{1+1/k}).$$

Theorem (Bondy-Simonovits '74)

$$ex(n, C_{2k}) = O(n^{1+1/k}).$$

This is known to be tight only when $k \in \{2, 3, 5\}$.

Theorem (Bondy–Simonovits '74)

$$ex(n, C_{2k}) = O(n^{1+1/k}).$$

This is known to be tight only when $k \in \{2, 3, 5\}$.

Theorem (Keevash et al. '07)

$$ex^*(n, C_{2k}) = \Omega(n^{1+1/k}).$$

Theorem (Bondy–Simonovits '74)

$$ex(n, C_{2k}) = O(n^{1+1/k}).$$

This is known to be tight only when $k \in \{2, 3, 5\}$.

Theorem (Keevash et al. '07)

$$\operatorname{ex}^*(n, C_{2k}) = \Omega(n^{1+1/k}).$$

Conjecture (Keevash et al. '07)

$$ex^*(n, C_{2k}) = \Theta(n^{1+1/k}).$$

Theorem (Bondy–Simonovits '74)

$$\operatorname{ex}(n, C_{2k}) = O(n^{1+1/k}).$$

This is known to be tight only when $k \in \{2, 3, 5\}$.

Theorem (Keevash et al. '07)

$$\operatorname{ex}^*(n, C_{2k}) = \Omega(n^{1+1/k}).$$

Conjecture (Keevash et al. '07)

$$ex^*(n, C_{2k}) = \Theta(n^{1+1/k}).$$

They have verified their conjecture for $k \in \{2,3\}$.

Even cycles continued

Theorem (Das-Lee-Sudakov '13)

$$\operatorname{ex}^*(n,C_{2k}) = O\left(n^{1+\frac{(1+\epsilon_k)\ln k}{k}}\right),$$

where $\varepsilon_k \to 0$ as $k \to \infty$.

Even cycles continued

Theorem (Das-Lee-Sudakov '13)

$$\operatorname{ex}^*(n,C_{2k}) = O\left(n^{1+\frac{(1+\varepsilon_k)\ln k}{k}}\right),$$

where $\varepsilon_k \to 0$ as $k \to \infty$.

Theorem (J. '20+)

$$ex^*(n, C_{2k}) = \Theta(n^{1+1/k}).$$

Even cycles continued

Theorem (Das–Lee–Sudakov '13)

$$\operatorname{ex}^*(n,C_{2k}) = O\left(n^{1+\frac{(1+\varepsilon_k)\ln k}{k}}\right),$$

where $\varepsilon_k \to 0$ as $k \to \infty$.

Theorem (J. '20+)

$$ex^*(n, C_{2k}) = \Theta(n^{1+1/k}).$$

Since the lower bound was already established, we just need to prove the upper bound.

Goal: if some properly edge-coloured *n*-vertex graph has at least $Cn^{1+1/k}$ edges (C sufficiently large), then G contains a rainbow C_{2k} .

Goal: if some properly edge-coloured n-vertex graph has at least $Cn^{1+1/k}$ edges (C sufficiently large), then G contains a rainbow C_{2k} .

Definition

For graphs H and G, let us write hom(H,G) for the number of graph homomorphisms $V(H) \to V(G)$.

Goal: if some properly edge-coloured n-vertex graph has at least $Cn^{1+1/k}$ edges (C sufficiently large), then G contains a rainbow C_{2k} .

Definition

For graphs H and G, let us write hom(H,G) for the number of graph homomorphisms $V(H) \to V(G)$.

In our proof we will investigate the quantities hom $(C_{2\ell},G)$ for every $2 \le \ell \le k$.

Goal: if some properly edge-coloured *n*-vertex graph has at least $Cn^{1+1/k}$ edges (C sufficiently large), then G contains a rainbow C_{2k} .

Definition

For graphs H and G, let us write hom(H,G) for the number of graph homomorphisms $V(H) \to V(G)$.

In our proof we will investigate the quantities hom $(C_{2\ell},G)$ for every $2 \le \ell \le k$.

One of our main results is as follows.

Lemma

Let k be a fixed positive integer and let G be a properly edge-coloured non-empty graph on n vertices. Suppose that for some $2 \le \ell \le k$ we have $hom(C_{2\ell}, G) \ge c_k \Delta(G) hom(C_{2\ell-2}, G)$, where $c_k = 2^{18} k^7$. Then G contains a rainbow C_{2k} .

Recall from the main lemma from the previous slide.

Lemma

Let k be a fixed positive integer and let G be a properly edge-coloured non-empty graph on n vertices. Suppose that for some $2 \le \ell \le k$ we have $hom(C_{2\ell}, G) \ge c_k \Delta(G) hom(C_{2\ell-2}, G)$, where $c_k = 2^{18} k^7$. Then G contains a rainbow C_{2k} .

Recall from the main lemma from the previous slide.

Lemma

Let k be a fixed positive integer and let G be a properly edge-coloured non-empty graph on n vertices. Suppose that for some $2 \le \ell \le k$ we have $hom(C_{2\ell}, G) \ge c_k \Delta(G) hom(C_{2\ell-2}, G)$, where $c_k = 2^{18} k^7$. Then G contains a rainbow C_{2k} .

Corollary

Let k be a fixed positive integer and let G be a properly edge-coloured non-empty graph on n vertices. Suppose that we have $hom(C_{2k}, G) \geq c_k^k n\Delta(G)^k$. Then, for n sufficiently large, G contains a rainbow C_{2k} .

Recall from the main lemma from the previous slide.

Lemma

Let k be a fixed positive integer and let G be a properly edge-coloured non-empty graph on n vertices. Suppose that for some $2 \le \ell \le k$ we have $hom(C_{2\ell}, G) \ge c_k \Delta(G) hom(C_{2\ell-2}, G)$, where $c_k = 2^{18} k^7$. Then G contains a rainbow C_{2k} .

Corollary

Let k be a fixed positive integer and let G be a properly edge-coloured non-empty graph on n vertices. Suppose that we have $hom(C_{2k}, G) \geq c_k^k n\Delta(G)^k$. Then, for n sufficiently large, G contains a rainbow C_{2k} .

So we want to find a subgraph of our original graph which has many homomorphic 2k-cycles but which has small maximum degree.

Recall from the main lemma from the previous slide.

Lemma

Let k be a fixed positive integer and let G be a properly edge-coloured non-empty graph on n vertices. Suppose that for some $2 \le \ell \le k$ we have $hom(C_{2\ell}, G) \ge c_k \Delta(G) hom(C_{2\ell-2}, G)$, where $c_k = 2^{18} k^7$. Then G contains a rainbow C_{2k} .

Corollary

Let k be a fixed positive integer and let G be a properly edge-coloured non-empty graph on n vertices. Suppose that we have $hom(C_{2k}, G) \geq c_k^k n\Delta(G)^k$. Then, for n sufficiently large, G contains a rainbow C_{2k} .

So we want to find a subgraph of our original graph which has many homomorphic 2k-cycles but which has small maximum degree. This will be an almost-regular subgraph.

The deduction of $\operatorname{ex}^*(n, \mathcal{C}_{2k}) = O(n^{1+1/k})$ continued

We say that a graph G is K-almost regular if $\Delta(G) \leq K\delta(G)$.

The deduction of $\operatorname{ex}^*(n, C_{2k}) = O(n^{1+1/k})$ continued

We say that a graph G is K-almost regular if $\Delta(G) \leq K\delta(G)$.

Lemma (Erdős–Simonovits, Jiang–Seiver)

Let ε,c be positive reals, where $\varepsilon<1$ and $c\geq 1$. Let n be a positive integer that is sufficiently large as a function of ε . Let G be a graph on n vertices with $e(G)\geq cn^{1+\varepsilon}$. Then G contains a K-almost regular subgraph G' on $m\geq n^{\frac{\varepsilon-\varepsilon^2}{2+2\varepsilon}}$ vertices such that $e(G')\geq \frac{2c}{5}m^{1+\varepsilon}$ and $K=20\cdot 2^{\frac{1}{\varepsilon^2}+1}$.

We say that a graph G is K-almost regular if $\Delta(G) \leq K\delta(G)$.

Lemma (Erdős–Simonovits, Jiang–Seiver)

Let ε,c be positive reals, where $\varepsilon<1$ and $c\geq 1$. Let n be a positive integer that is sufficiently large as a function of ε . Let G be a graph on n vertices with $e(G)\geq cn^{1+\varepsilon}$. Then G contains a K-almost regular subgraph G' on $m\geq n^{\frac{\varepsilon-\varepsilon^2}{2+2\varepsilon}}$ vertices such that $e(G')\geq \frac{2c}{5}m^{1+\varepsilon}$ and $K=20\cdot 2^{\frac{1}{\varepsilon^2}+1}$.

• So, informally, in any n-vertex graph with at least $cn^{1+1/k}$ edges there exists a subgraph G' with $m=\omega(1)$ vertices and at least $\frac{2c}{5}m^{1+1/k}$ edges which is almost-regular.

The deduction of $\operatorname{ex}^*(n,C_{2k})=O(n^{1+1/k})$ continued

We say that a graph G is K-almost regular if $\Delta(G) \leq K\delta(G)$.

Lemma (Erdős–Simonovits, Jiang–Seiver)

Let ε,c be positive reals, where $\varepsilon<1$ and $c\geq 1$. Let n be a positive integer that is sufficiently large as a function of ε . Let G be a graph on n vertices with $e(G)\geq cn^{1+\varepsilon}$. Then G contains a K-almost regular subgraph G' on $m\geq n^{\frac{\varepsilon-\varepsilon^2}{2+2\varepsilon}}$ vertices such that $e(G')\geq \frac{2c}{5}m^{1+\varepsilon}$ and $K=20\cdot 2^{\frac{1}{\varepsilon^2}+1}$.

- So, informally, in any n-vertex graph with at least $cn^{1+1/k}$ edges there exists a subgraph G' with $m=\omega(1)$ vertices and at least $\frac{2c}{5}m^{1+1/k}$ edges which is almost-regular.
- Let \bar{d} be the average degree of G'. By Sidorenko's conjecture, hom $(C_{2k}, G') \geq \bar{d}^{2k}$.

The deduction of $\mathrm{ex}^*(n,\mathit{C}_{2k}) = O(n^{1+1/k})$ continued

We say that a graph G is K-almost regular if $\Delta(G) \leq K\delta(G)$.

Lemma (Erdős–Simonovits, Jiang–Seiver)

Let ε,c be positive reals, where $\varepsilon<1$ and $c\geq 1$. Let n be a positive integer that is sufficiently large as a function of ε . Let G be a graph on n vertices with $e(G)\geq cn^{1+\varepsilon}$. Then G contains a K-almost regular subgraph G' on $m\geq n^{\frac{\varepsilon-\varepsilon^2}{2+2\varepsilon}}$ vertices such that $e(G')\geq \frac{2c}{5}m^{1+\varepsilon}$ and $K=20\cdot 2^{\frac{1}{\varepsilon^2}+1}$.

- So, informally, in any n-vertex graph with at least $cn^{1+1/k}$ edges there exists a subgraph G' with $m=\omega(1)$ vertices and at least $\frac{2c}{5}m^{1+1/k}$ edges which is almost-regular.
- Let \bar{d} be the average degree of G'. By Sidorenko's conjecture, hom $(C_{2k}, G') \geq \bar{d}^{2k}$.
- However, by almost-regularity, $\Delta(G') \leq K\bar{d}$, so we have $\text{hom}(C_{2k}, G') \geq c' m \Delta(G')^k$ for some constant c' that tends to infinity as $c \to \infty$.

Proof of the main lemma

Recall the statement of our main lemma.

Lemma

Let k be a fixed positive integer and let G be a properly edge-coloured non-empty graph on n vertices. Suppose that for some $2 \le \ell \le k$ we have $hom(C_{2\ell}, G) \ge c_k \Delta(G) hom(C_{2\ell-2}, G)$, where $c_k = 2^{18} k^7$. Then G contains a rainbow C_{2k} .

Proof of the main lemma

Recall the statement of our main lemma.

Lemma

Let k be a fixed positive integer and let G be a properly edge-coloured non-empty graph on n vertices. Suppose that for some $2 \le \ell \le k$ we have $hom(C_{2\ell}, G) \ge c_k \Delta(G) hom(C_{2\ell-2}, G)$, where $c_k = 2^{18} k^7$. Then G contains a rainbow C_{2k} .

The proof has two main steps. First, we upper bound the number of 'bad' homomorphic copies of $C_{2\ell}$ in terms of hom $(C_{2\ell}, G)$ and hom $(C_{2\ell-2}, G)$. A copy is 'bad' for us if it is not an injective homomorphism or if it is not rainbow.

We say that a graph homomorphism $V(C_{2\ell}) \to V(G)$ is rainbow if the images of the edges of $C_{2\ell}$ are of different colours.

Lemma

Let $\ell \geq 2$ be a positive integer and let G be a properly edge-coloured graph. Then the number of graph homomorphisms $V(C_{2\ell}) \to V(G)$ which are not rainbow is at most

$$16\ell(\ell\Delta(G)\operatorname{\mathsf{hom}}(C_{2\ell-2},G)\operatorname{\mathsf{hom}}(C_{2\ell},G))^{1/2}$$
.

We say that a graph homomorphism $V(C_{2\ell}) \to V(G)$ is rainbow if the images of the edges of $C_{2\ell}$ are of different colours.

Lemma

Let $\ell \geq 2$ be a positive integer and let G be a properly edge-coloured graph. Then the number of graph homomorphisms $V(C_{2\ell}) \to V(G)$ which are not rainbow is at most

$$16\ell(\ell\Delta(G)\operatorname{\mathsf{hom}}(C_{2\ell-2},G)\operatorname{\mathsf{hom}}(C_{2\ell},G))^{1/2}$$
.

In particular, this shows that if $\hom(C_{2\ell},G)=\omega(\Delta(G)\hom(C_{2\ell-2},G))$, then almost all homomorphic $C_{2\ell}$'s in G are rainbow, and in particular there is a rainbow $C_{2\ell}$. This is a variant of the main lemma.

For notational convenience, we shall focus on the case $\ell=4$. That is, we are bounding the number of homomorphic 8-cycles which are not rainbow.

For notational convenience, we shall focus on the case $\ell=4$. That is, we are bounding the number of homomorphic 8-cycles which are not rainbow.

Figure: A non-rainbow 8-cycle

For notational convenience, we shall focus on the case $\ell=4$. That is, we are bounding the number of homomorphic 8-cycles which are not rainbow.

Figure: A non-rainbow 8-cycle

We will bound the number of subgraphs of the above form. Here the black colours are not necessarily the same, but the red ones are.

• For simplicity, let us assume that all pairs (v_1, v_5) have roughly the same number of walks of length 4 between them, denote this number by s.

- For simplicity, let us assume that all pairs (v_1, v_5) have roughly the same number of walks of length 4 between them, denote this number by s.
- Assume also that all pairs (v_8, v_5) have roughly the same number of walks of length 3 between them, denote this number by t.

- For simplicity, let us assume that all pairs (v_1, v_5) have roughly the same number of walks of length 4 between them, denote this number by s.
- Assume also that all pairs (v_8, v_5) have roughly the same number of walks of length 3 between them, denote this number by t.
- Since any pair (v_1, v_5) has roughly s walks of length 4 between them, the number of possible choices for the sequence $(v_5, v_4, v_3, v_2, v_1)$ is at most $\frac{\text{hom}(C_8, G)}{s}$.

• Since the edges v_1v_8 and v_3v_4 must have the same colour and the colouring is proper, there is only one way to extend our choice of $\{v_5, v_4, v_3, v_2, v_1\}$ with a suitable v_8 .

- Since the edges v_1v_8 and v_3v_4 must have the same colour and the colouring is proper, there is only one way to extend our choice of $\{v_5, v_4, v_3, v_2, v_1\}$ with a suitable v_8 .
- Then, since we assume that every pair (v_8, v_5) has roughly t walks between them, there are roughly t choices for v_7 and v_6 .

- Since the edges v_1v_8 and v_3v_4 must have the same colour and the colouring is proper, there is only one way to extend our choice of $\{v_5, v_4, v_3, v_2, v_1\}$ with a suitable v_8 .
- Then, since we assume that every pair (v_8, v_5) has roughly t walks between them, there are roughly t choices for v_7 and v_6 .
- Altogether, we get an upper bound $\frac{\mathsf{hom}(\mathcal{C}_8,G)}{s} \cdot t$ on the number of non-rainbow 8-cycles.

- Since the edges v_1v_8 and v_3v_4 must have the same colour and the colouring is proper, there is only one way to extend our choice of $\{v_5, v_4, v_3, v_2, v_1\}$ with a suitable v_8 .
- Then, since we assume that every pair (v_8, v_5) has roughly t walks between them, there are roughly t choices for v_7 and v_6 .
- Altogether, we get an upper bound $\frac{\text{hom}(C_8,G)}{s} \cdot t$ on the number of non-rainbow 8-cycles.
- Let us now get a different upper bound by counting the number of such 8-cycles "from the other direction".

• Since any pair (v_8, v_5) has roughly t walks of length 3 between them, the number of possible choices for the sequence (v_5, v_6, v_7, v_8) is at most $\frac{\text{hom}(C_6, G)}{t}$.

- Since any pair (v_8, v_5) has roughly t walks of length 3 between them, the number of possible choices for the sequence (v_5, v_6, v_7, v_8) is at most $\frac{\text{hom}(C_6, G)}{t}$.
- Given such a choice, there are at most $\Delta(G)$ ways to pick v_1 .

- Since any pair (v_8, v_5) has roughly t walks of length 3 between them, the number of possible choices for the sequence (v_5, v_6, v_7, v_8) is at most $\frac{\text{hom}(C_6, G)}{t}$.
- ullet Given such a choice, there are at most $\Delta(G)$ ways to pick v_1 .
- Then, since we assume that every pair (v_1, v_5) has roughly s walks between them, there are roughly s choices for v_2 , v_3 and v_4 .

- Since any pair (v_8, v_5) has roughly t walks of length 3 between them, the number of possible choices for the sequence (v_5, v_6, v_7, v_8) is at most $\frac{\text{hom}(C_6, G)}{t}$.
- Given such a choice, there are at most $\Delta(G)$ ways to pick v_1 .
- Then, since we assume that every pair (v_1, v_5) has roughly s walks between them, there are roughly s choices for v_2 , v_3 and v_4 .
- Altogether, we get an upper bound $\frac{\text{hom}(C_6,G)}{t} \cdot \Delta(G) \cdot s$ on the number of non-rainbow 8-cycles.

- Since any pair (v_8, v_5) has roughly t walks of length 3 between them, the number of possible choices for the sequence (v_5, v_6, v_7, v_8) is at most $\frac{\text{hom}(C_6, G)}{t}$.
- Given such a choice, there are at most $\Delta(G)$ ways to pick v_1 .
- Then, since we assume that every pair (v_1, v_5) has roughly s walks between them, there are roughly s choices for v_2 , v_3 and V_4 .
- ullet Altogether, we get an upper bound $rac{\mathsf{hom}(\mathcal{C}_6,G)}{^t}\cdot\Delta(G)\cdot s$ on the number of non-rainbow 8-cycles.
- Taking the geometric mean of our upper bounds $\frac{\text{hom}(C_8,G)}{\varepsilon}t$ and $\frac{\text{hom}(C_6,G)}{t}\Delta(G)s$, we get that the number of non-rainbow 8-cycles is at most $(\Delta(G) \operatorname{hom}(C_6, G) \operatorname{hom}(C_8, G))^{1/2}$.

Bounding the number of non-injective homomorphisms.

We have sketched the proof of the following result.

Lemma

Let $\ell \geq 2$ be a positive integer and let G be a properly edge-coloured graph. Then the number of graph homomorphisms $V(C_{2\ell}) \rightarrow V(G)$ which are not rainbow is at most

$$16\ell(\ell\Delta(G)\operatorname{hom}(C_{2\ell-2},G)\operatorname{hom}(C_{2\ell},G))^{1/2}$$
.

Bounding the number of non-injective homomorphisms.

We have sketched the proof of the following result.

Lemma

Let $\ell \geq 2$ be a positive integer and let G be a properly edge-coloured graph. Then the number of graph homomorphisms $V(C_{2\ell}) \to V(G)$ which are not rainbow is at most

$$16\ell(\ell\Delta(G)\operatorname{hom}(C_{2\ell-2},G)\operatorname{hom}(C_{2\ell},G))^{1/2}$$
.

Using a very similar argument, we can also bound the number of non-injective homomorphisms $V(C_{2\ell}) \to V(G)$.

Lemma

Let $\ell \geq 2$ be a positive integer and let G be a graph. Then the number of non-injective graph homomorphisms $V(C_{2\ell}) \to V(G)$ is at most

$$16\ell(\ell\Delta(G)\operatorname{hom}(C_{2\ell-2},G)\operatorname{hom}(C_{2\ell},G))^{1/2}$$
.

Once again, we recall the statement of our main lemma.

Lemma

Let k be a fixed positive integer and let G be a properly edge-coloured non-empty graph on n vertices. Suppose that for some $2 \le \ell \le k$ we have $hom(C_{2\ell}, G) \ge c_k \Delta(G) hom(C_{2\ell-2}, G)$, where $c_k = 2^{18} k^7$. Then G contains a rainbow C_{2k} .

Once again, we recall the statement of our main lemma.

Lemma

Let k be a fixed positive integer and let G be a properly edge-coloured non-empty graph on n vertices. Suppose that for some $2 \le \ell \le k$ we have $hom(C_{2\ell}, G) \ge c_k \Delta(G) hom(C_{2\ell-2}, G)$, where $c_k = 2^{18} k^7$. Then G contains a rainbow C_{2k} .

• We have already seen that under the conditions of the lemma, almost all homomorphisms $V(C_{2\ell}) \to V(G)$ are rainbow and injective.

Once again, we recall the statement of our main lemma.

Lemma

Let k be a fixed positive integer and let G be a properly edge-coloured non-empty graph on n vertices. Suppose that for some $2 \le \ell \le k$ we have $hom(C_{2\ell}, G) \ge c_k \Delta(G) hom(C_{2\ell-2}, G)$, where $c_k = 2^{18} k^7$. Then G contains a rainbow C_{2k} .

- We have already seen that under the conditions of the lemma, almost all homomorphisms $V(C_{2\ell}) \to V(G)$ are rainbow and injective.
- Since most homomorphisms of $C_{2\ell}$ into G are injective, for most paths of length ℓ there exist many internally vertex-disjoint paths of length ℓ with the same endpoints. Since most homomorphisms of $C_{2\ell}$ into G are rainbow, many of these paths are colour-disjoint.

Figure: Many internally vertex-disjoint paths of length 4 featuring different colours

Figure: Many internally vertex-disjoint paths of length 4 featuring different colours

• Recall that our assumption is that $hom(C_{2\ell}, G) \geq c_k \Delta(G) hom(C_{2\ell-2}, G)$.

Figure: Many internally vertex-disjoint paths of length 4 featuring different colours

- Recall that our assumption is that $hom(C_{2\ell}, G) \ge c_k \Delta(G) hom(C_{2\ell-2}, G)$.
- Hence, there exists a vertex v such that the number of homomorphic 2ℓ -cycles involving v is at least $c_k\Delta(G)$ times the number of homomorphic $(2\ell-2)$ -cycles involving v.

• Let Z be the set of endpoints of the paths of length ℓ starting at v.

- Let Z be the set of endpoints of the paths of length ℓ starting at ν .
- Consider the bipartite graph H whose parts are Z and V(G) and which is induced by G.

- Let Z be the set of endpoints of the paths of length ℓ starting at ν .
- Consider the bipartite graph H whose parts are Z and V(G) and which is induced by G.

- Let Z be the set of endpoints of the paths of length ℓ starting at ν .
- Consider the bipartite graph H whose parts are Z and V(G) and which is induced by G.

• We aim to find a rainbow path of length $2k-2\ell$ in H with both endpoints in Z.

- Let Z be the set of endpoints of the paths of length ℓ starting at ν .
- Consider the bipartite graph H whose parts are Z and V(G) and which is induced by G.

- We aim to find a rainbow path of length $2k 2\ell$ in H with both endpoints in Z.
- This can be extended to a rainbow cycle of length 2k through V.

• To show that a rainbow $P_{2k-2\ell}$ exists in H, it suffices to find a subgraph of H which has minimum degree at least 4k.

- To show that a rainbow $P_{2k-2\ell}$ exists in H, it suffices to find a subgraph of H which has minimum degree at least 4k.
- If such a subgraph doesn't exist, we use the following lemma.

Lemma

Let H be a bipartite graph and suppose that it does not contain a non-empty subgraph with minimum degree at least d. Then the largest eigenvalue of H is at most $2\sqrt{d\Delta(H)}$.

- To show that a rainbow $P_{2k-2\ell}$ exists in H, it suffices to find a subgraph of H which has minimum degree at least 4k.
- If such a subgraph doesn't exist, we use the following lemma.

Lemma

Let H be a bipartite graph and suppose that it does not contain a non-empty subgraph with minimum degree at least d. Then the largest eigenvalue of H is at most $2\sqrt{d\Delta(H)}$.

• We use this bound to compare the number of $(2\ell-2)$ -cycles involving v with the number of 2ℓ -cycles involving v.

- To show that a rainbow $P_{2k-2\ell}$ exists in H, it suffices to find a subgraph of H which has minimum degree at least 4k.
- If such a subgraph doesn't exist, we use the following lemma.

Lemma

Let H be a bipartite graph and suppose that it does not contain a non-empty subgraph with minimum degree at least d. Then the largest eigenvalue of H is at most $2\sqrt{d\Delta(H)}$.

- We use this bound to compare the number of $(2\ell-2)$ -cycles involving v with the number of 2ℓ -cycles involving v.
- For every $x \in V(G)$, write f(x) for the number of walks of length $\ell-1$ between v and x.

- To show that a rainbow $P_{2k-2\ell}$ exists in H, it suffices to find a subgraph of H which has minimum degree at least 4k.
- If such a subgraph doesn't exist, we use the following lemma.

Lemma

Let H be a bipartite graph and suppose that it does not contain a non-empty subgraph with minimum degree at least d. Then the largest eigenvalue of H is at most $2\sqrt{d\Delta(H)}$.

- We use this bound to compare the number of $(2\ell-2)$ -cycles involving ν with the number of 2ℓ -cycles involving ν .
- For every $x \in V(G)$, write f(x) for the number of walks of length $\ell 1$ between ν and x.
- Then the number of cycles of length $2\ell 2$ involving v is $\sum_{x \in V(G)} f(x)^2$.

$(2\ell-2)$ -cycles and 2ℓ -cycles involving ν

• For every $z \in Z$, let g(z) be the number of walks of length ℓ between v and z.

$(2\ell-2)$ -cycles and 2ℓ -cycles involving ν

- For every $z \in Z$, let g(z) be the number of walks of length ℓ between v and z.
- Then the number of 2ℓ -cycles involving v is $\sum_{z\in Z} g(z)^2$.

$(2\ell-2)$ -cycles and 2ℓ -cycles involving v

- For every $z \in Z$, let g(z) be the number of walks of length ℓ between v and z.
- Then the number of 2ℓ -cycles involving v is $\sum_{z\in Z} g(z)^2$.
- Also, $g(z) = \sum_{x:xz \in E(H)} f(x)$.

$(2\ell-2)$ -cycles and 2ℓ -cycles involving v

- For every $z \in Z$, let g(z) be the number of walks of length ℓ between v and z.
- Then the number of 2ℓ -cycles involving v is $\sum_{z\in Z} g(z)^2$.
- Also, $g(z) = \sum_{x:xz \in E(H)} f(x)$.
- Since the largest eigenvalue of H is at most $2\sqrt{4k\Delta(H)}$, we have $\sum_{z\in Z}g(z)^2\leq 16k\Delta(H)\sum_{x\in V(G)}f(x)^2$.

$(2\ell-2)$ -cycles and 2ℓ -cycles involving v

- For every $z \in Z$, let g(z) be the number of walks of length ℓ between v and z.
- Then the number of 2ℓ -cycles involving v is $\sum_{z\in Z} g(z)^2$.
- Also, $g(z) = \sum_{x:xz \in E(H)} f(x)$.
- Since the largest eigenvalue of H is at most $2\sqrt{4k\Delta(H)}$, we have $\sum_{z\in Z}g(z)^2\leq 16k\Delta(H)\sum_{x\in V(G)}f(x)^2$.
- Hence, the number of 2ℓ -cycles involving v is at most $16k\Delta(G)$ times the number of $(2\ell-2)$ -cycles involving v, which contradicts to our earlier assumption.

Blow-ups of cycles

The r-blowup of a graph H is obtained by replacing the vertices and edges of H by independent sets of size r and copies of $K_{r,r}$, respectively.

Figure: The 2-blowup of C_6

Blow-ups of cycles

The r-blowup of a graph H is obtained by replacing the vertices and edges of H by independent sets of size r and copies of $K_{r,r}$, respectively.

Figure: The 2-blowup of C_6

Write C[r] for the set $\{C_{2k}[r]: k \geq 2\}$.

Blow-ups of cycles

The r-blowup of a graph H is obtained by replacing the vertices and edges of H by independent sets of size r and copies of $K_{r,r}$, respectively.

Figure: The 2-blowup of C_6

Write C[r] for the set $\{C_{2k}[r]: k \geq 2\}$.

Conjecture (Jiang and Newman '17)

For any positive integer r and any $\varepsilon > 0$, $\operatorname{ex}(n, \mathcal{C}[r]) = O(n^{2-\frac{1}{r}+\varepsilon})$.

Blow-ups of cycles

The r-blowup of a graph H is obtained by replacing the vertices and edges of H by independent sets of size r and copies of $K_{r,r}$, respectively.

Figure: The 2-blowup of C_6

Write C[r] for the set $\{C_{2k}[r]: k \geq 2\}$.

Conjecture (Jiang and Newman '17)

For any positive integer r and any $\varepsilon > 0$, $\operatorname{ex}(n, \mathcal{C}[r]) = O(n^{2-\frac{1}{r}+\varepsilon})$.

Theorem (J, '20+)

For any positive integer r, $\operatorname{ex}(n, \mathcal{C}[r]) = O(n^{2-\frac{1}{r}}(\log n)^{7/r})$.

Conjecture (Erdős and Simonovits)

Let H be a bipartite graph with minimum degree s. Then there exists $\varepsilon > 0$ such that $\operatorname{ex}(n, H) = \Omega(n^{2 - \frac{1}{s-1} + \varepsilon})$.

Conjecture (Erdős and Simonovits)

Let H be a bipartite graph with minimum degree s. Then there exists $\varepsilon > 0$ such that $\operatorname{ex}(n,H) = \Omega(n^{2-\frac{1}{s-1}+\varepsilon})$.

The following result about r-blowups of cycles disproves this conjecture when s is even.

Conjecture (Erdős and Simonovits)

Let H be a bipartite graph with minimum degree s. Then there exists $\varepsilon>0$ such that $\mathrm{ex}(n,H)=\Omega(n^{2-\frac{1}{s-1}+\varepsilon})$.

The following result about r-blowups of cycles disproves this conjecture when s is even.

Theorem (J, '20+)

For any
$$r, k$$
, $ex(n, C_{2k}[r]) = O(n^{2-\frac{1}{r} + \frac{1}{k+r-1} + o(1)})$.

Conjecture (Erdős and Simonovits)

Let H be a bipartite graph with minimum degree s. Then there exists $\varepsilon>0$ such that $\mathrm{ex}(n,H)=\Omega(n^{2-\frac{1}{s-1}+\varepsilon})$.

The following result about r-blowups of cycles disproves this conjecture when s is even.

Theorem (J, '20+)

For any
$$r, k, \exp(n, C_{2k}[r]) = O(n^{2-\frac{1}{r} + \frac{1}{k+r-1} + o(1)}).$$

On the other hand, random graphs show that if H is a bipartite graph with minimum degree s, then $\exp(n, H) = \Omega(n^{2-\frac{2}{s}+\delta})$ for some $\delta > 0$.

Open problem

What is the maximum number of edges in a properly edge-coloured *n*-vertex graph without a rainbow cycle of arbitrary length?

Open problem

What is the maximum number of edges in a properly edge-coloured *n*-vertex graph without a rainbow cycle of arbitrary length?

Keevash et al. gave a lower bound $\Omega(n \log n)$, while we proved an upper bound $O(n(\log n)^4)$.

Open problem

What is the maximum number of edges in a properly edge-coloured *n*-vertex graph without a rainbow cycle of arbitrary length?

Keevash et al. gave a lower bound $\Omega(n \log n)$, while we proved an upper bound $O(n(\log n)^4)$.

Open problem

Is it true that $ex(n, C[r]) = O(n^{2-1/r})$?

Open problem

What is the maximum number of edges in a properly edge-coloured *n*-vertex graph without a rainbow cycle of arbitrary length?

Keevash et al. gave a lower bound $\Omega(n \log n)$, while we proved an upper bound $O(n(\log n)^4)$.

Open problem

Is it true that $ex(n, C[r]) = O(n^{2-1/r})$?

Our upper bound is $O(n^{2-1/r}(\log n)^{7/r})$.

Open problem

What is the maximum number of edges in a properly edge-coloured *n*-vertex graph without a rainbow cycle of arbitrary length?

Keevash et al. gave a lower bound $\Omega(n \log n)$, while we proved an upper bound $O(n(\log n)^4)$.

Open problem

Is it true that $ex(n, C[r]) = O(n^{2-1/r})$?

Our upper bound is $O(n^{2-1/r}(\log n)^{7/r})$.

Conjecture (Grzesik, J., Nagy '19+)

$$ex(n, C_{2k}[r]) = O(n^{2-\frac{1}{r}+\frac{1}{kr}}).$$

Open problem

What is the maximum number of edges in a properly edge-coloured *n*-vertex graph without a rainbow cycle of arbitrary length?

Keevash et al. gave a lower bound $\Omega(n \log n)$, while we proved an upper bound $O(n(\log n)^4)$.

Open problem

Is it true that $ex(n, C[r]) = O(n^{2-1/r})$?

Our upper bound is $O(n^{2-1/r}(\log n)^{7/r})$.

Conjecture (Grzesik, J., Nagy '19+)

$$ex(n, C_{2k}[r]) = O(n^{2-\frac{1}{r}+\frac{1}{kr}}).$$

Our approach gives $ex(n, C_{2k}[r]) = O(n^{2-\frac{1}{r} + \frac{1}{k+r-1} + o(1)}).$

Open problem

What is the maximum number of edges in a properly edge-coloured *n*-vertex graph without a rainbow cycle of arbitrary length?

Keevash et al. gave a lower bound $\Omega(n \log n)$, while we proved an upper bound $O(n(\log n)^4)$.

Open problem

Is it true that $ex(n, C[r]) = O(n^{2-1/r})$?

Our upper bound is $O(n^{2-1/r}(\log n)^{7/r})$.

Conjecture (Grzesik, J., Nagy '19+)

$$\operatorname{ex}(n, C_{2k}[r]) = O(n^{2-\frac{1}{r}+\frac{1}{kr}}).$$

Our approach gives $ex(n, C_{2k}[r]) = O(n^{2-\frac{1}{r} + \frac{1}{k+r-1} + o(1)})$. The conjecture was proved by Janzer, Nagy and Methuku for k = 3, r = 2.

Thank you for your attention!