Question	Answer		Mark
Number			
18(a)	 Ratio of stress to strain (for a material). Or stress per unit strain. Or σ / ε with symbols defined. 		
	Or $\frac{F x}{A \Delta x}$ with symbols defined.	(1)	(1)
18(b)(i)	• Mean diameter = 0.234 mm (rounds to)	(1)	
	• Use of $A = \pi r^2$		
	• $A = 4.3 \times 10^{-8} \mathrm{m^2 \ or} \ 0.043 \mathrm{mm^2}$	(1)	
	Example of calculation Mean diameter = $\frac{1}{4}$ (0.230 + 0.235 + 0.230 + 0.240) = 0.234 mm	(1)	
	Area = $\pi \frac{(0.234 \times 10^{-3} \text{ m})^2}{4} = 4.30 \times 10^{-8} \text{ m}^2$		(3)
18(b)(ii)	• Use of $W = m g$	(1)	
	• Use of gradient = $m / \Delta x$ in Young Modulus formula i.e. $E = \text{gradient} \times g \times x / A$	(1)	
	• $E = 1.6 \times 10^{11} \text{ Pa}$ e.c.f. from (b)(i)	(1)	
	Example of calculation Young modulus = $195 \times 9.81 \text{ N kg}^{-1} \times \frac{3.50 \text{ m}}{4.30 \times 10^{-8} \text{ m}^2}$		
	$= 1.56 \times 10^{11} \text{Pa}$		(3)
18(b)(iii)	Shorter wire gives greater gradient.	(1)	
	Young modulus the same.	(1)	
			(2)
	Total for question 18		9