Permit Number 81011

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Source	Air Contaminant	<u>Emissio</u>	n Rates_
Name (2)	Name (3)	lb/hr	TPY
		'	
Preheater/Regenerative Therma	I PM/PM ₁₀	4.86	14.74
Oxidizer (3 Asphalt Blowing Stil	ls/ VOC	7.76	12.49
Converters, 15 Asphalt Plant A	ctive	CO	28.63
119.49			
·			24.03
Loading Racks)			159.43
			1.23
			0.03
			0.01
	HAPs (5)	0.62	2.62
Process Steam Generator Boiler	PM/PM ₁₀	0.09	0.41
	VOC	0.07	0.30
		1.04	4.54
			5.41
	-		0.03
			<0.01
	HAPs (5)	0.02	0.10
Asphalt Loading Rack Fugitives	and PM/PM ₁₀	0.04	0.18
BD Oil Loading System (4)	VOC		1.24
			1.11
			< 0.01
	H₂S	0.03	0.15
Tank 1 Heater	PM/PM ₁₀	0.01	0.05
	VOC	0.01	0.04
	CO	0.12	0.54
	NO_x	0.15	0.64
			< 0.01
			< 0.01
	HAPs (5)	<0.01	0.01
	Preheater/Regenerative Therma Oxidizer (3 Asphalt Blowing Stil Converters, 15 Asphalt Plant Ad 119.49 Storage Tanks, Asphalt Truck Loading Racks) Process Steam Generator Boiler Asphalt Loading Rack Fugitives BD Oil Loading System (4)	Preheater/Regenerative Thermal Oxidizer (3 Asphalt Blowing Stills/ VOC Converters, 15 Asphalt Plant Active 119.49 Storage Tanks, Asphalt Truck NOx Loading Racks) Process Steam Generator Boiler PM/PM10 VOC CO NOx SO2 H2S CH2O COS HAPs (5) Process Steam Generator Boiler PM/PM10 VOC CO NOx SO2 CH2O COS HAPs (5) Asphalt Loading Rack Fugitives and PM/PM10 BD Oil Loading System (4) VOC CO COS H2S Tank 1 Heater PM/PM10 VOC CO COS COS COS COS COS COS	Name (2) Name (3) Ib/hr Preheater/Regenerative Thermal Oxidizer (3 Asphalt Blowing Stills/ VOC 7.76 Converters, 15 Asphalt Plant Active CO 7.76 CO 119.49 Storage Tanks, Asphalt Truck NO₂ 38.84 H₂S 0.32 CH₂O 0.01 COS 4.001

Emission	Source	Air Contaminant	<u>Emission</u>	Rates
Point No. (1)	Name (2)	Name (3)	lb/hr	<u>TPY</u>
224	Tank 2 Heater	PM/PM ₁₀	0.01	0.05
		VOC	0.01	0.04
		CO	0.12	0.54
		NO_x	0.15	0.64
		SO_2	<0.01	< 0.01
		CH₂0	<0.01	<0.01
		HAPs (5)	<0.01	0.01
227	Tank 3 Heater	PM/PM ₁₀	0.01	0.05
		VOC	0.01	0.04
		CO	0.12	0.54
		NO _x	0.15	0.64
		SO_2	<0.01	<0.01
		CH ₂ 0	<0.01	< 0.01
		HAPs (5)	<0.01	0.01
230	Tank 4 Heater	PM/PM ₁₀	0.01	0.05
		VOC	0.01	0.04
		CO	0.12	0.54
		NO_x	0.15	0.64
		SO_2	<0.01	< 0.01
		CH₂0	<0.01	<0.01
		HAPs (5)	<0.01	0.01
233	Tank 6 Heater	PM/PM ₁₀	0.01	0.03
		VOC	<0.01	0.02
		CO	0.07	0.29
		NO _x	0.08	0.34
		SO_2	<0.01	< 0.01
		CH ₂ 0	<0.01	< 0.01
		HAPs (5)	<0.01	0.01
236	Tank 13 Heater	PM/PM ₁₀	0.01	0.03
		VOC	< 0.01	0.02
		CO	0.07	0.29

Emission	Source	Air Contaminant	<u>Emission</u>	<u>Rates</u>
Point No. (1)	Name (2)	Name (3)	lb/hr	<u>TPY</u>
		NOx SO2 CH20 HAPs (5)	0.08 <0.01 <0.01 <0.01	0.34 <0.01 <0.01 0.01
239	Tank 14 Heater 1	PM/PM_{10} VOC CO NO_x SO_2 CH_2O HAPs (5)	0.02 0.01 0.21 0.25 <0.01 <0.01	0.08 0.06 0.90 1.07 0.01 <0.01 0.02
240	Tank 14 Heater 2	PM/PM_{10} VOC CO NO_{\times} SO_{2} $CH_{2}O$ HAPs (5)	0.02 0.01 0.21 0.25 <0.01 <0.01	0.08 0.06 0.90 1.07 0.01 <0.01 0.02
243	Tank 15 Heater 1	PM/PM_{10} VOC CO NO_{\times} SO_{2} $CH_{2}O$ HAPs (5)	0.02 0.01 0.21 0.25 <0.01 <0.01	0.08 0.06 0.90 1.07 0.01 <0.01 0.02
244	Tank 15 Heater 2	PM/PM ₁₀ VOC CO NO _x	0.02 0.01 0.21 0.25	0.08 0.06 0.90 1.07

Emission	Source	Air Contaminant	Emission	n Rates_
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY
		SO ₂ CH ₂ 0 HAPs (5)	<0.01 <0.01 <0.01	0.01 <0.01 0.02
247	Tank 16 Heater	PM/PM_{10} VOC CO NO_x SO_2 CH_2O HAPs (5)	0.01 <0.01 0.07 0.08 <0.01 <0.01 <0.01	0.03 0.02 0.29 0.34 <0.01 <0.01 0.01
250	Tank 17 Heater 1	PM/PM_{10} VOC CO NO_x SO_2 CH_2O HAPs (5)	0.02 0.01 0.21 0.25 <0.01 <0.01	0.08 0.06 0.90 1.07 0.01 <0.01 0.02
251	Tank 17 Heater 2	PM/PM_{10} VOC CO NO_x SO_2 CH_2O HAPs (5)	0.02 0.01 0.21 0.25 <0.01 <0.01	0.08 0.06 0.90 1.07 0.01 <0.01 0.02
254	Tank 18 Heater	PM/PM_{10} VOC CO NO_x	0.01 <0.01 0.07 0.08	0.03 0.02 0.29 0.34

Emission	Source	Air Contaminant	<u>Emissior</u>	n Rates_
Point No. (1)	Name (2)	Name (3)	<u>lb/hr</u>	<u>TPY</u>
		SO₂ CH₂0 HAPs (5)	<0.01 <0.01 <0.01	<0.01 <0.01 0.01
258	Tank 20 (Diesel Storage)	VOC	<0.01	<0.01
280, 282, 283, 284, 285, 286	Asphalt Pouring Sheds	PM/PM ₁₀ VOC CO H ₂ S COS HAPs (5)	0.54 1.93 0.10 0.05 0.07 1.82	0.17 0.59 0.03 0.01 <0.01 0.56
287	Asphalt Solvent Cold Cleaner	VOC	0.08	0.33
313	Asphalt Solvent Cold Cleaner	VOC	0.08	0.33
4	3-Tab Line Filler Storage Silo Baghouse Stack	PM/PM ₁₀	0.09	0.39
5	3-Tab Line Filler Upper Surge Hopper Baghouse Stack	PM/PM ₁₀	0.05	0.23
6	3-Tab/Lam Line Filler Heater an Lower Surge Hopper Baghouse		0.01	0.04
10	Lam Line Sand Silo Baghouse Stack	PM/PM ₁₀	0.05	0.23
11	3-Tab Line Process Baghouse Stack	PM/PM ₁₀ VOC CO cS 0.51	0.01 4.85 3.80 0.88	0.04 4.25 4.04

Emission	Source	Air Contaminant	<u>Emissio</u>	n Rates_
Point No. (1)	Name (2)	Name (3)	lb/hr	<u>TPY</u>
		CH₂0 COS	0.37 0.07	1.64 0.30
16	3-Tab Line Filler Oil Heater	PM/PM ₁₀ VOC CO NO _x SO ₂ CH ₂ 0 HAPs (5)	0.11 0.08 1.24 1.47 0.01 <0.01 0.03	0.49 0.35 5.41 6.44 0.04 <0.01 0.12
18	3-Tab Line Process Oil Heater	PM/PM_{10} VOC CO NO_x SO_2 CH_2O HAPs (5)	0.09 0.07 1.03 1.23 0.01 <0.01 0.02	0.41 0.30 4.51 5.37 0.03 <0.01 0.10
23-A, 23-B, 23-C, and 23-D	3-Tab Line Cooling Stacks	PM/PM ₁₀ VOC	4.60 0.64	20.15 2.79
312	3-Tab Line Asphalt Preheater	PM/PM ₁₀ VOC CO NO _x SO ₂ CH ₂ 0 HAPs (5)	0.04 0.03 0.33 0.39 <0.01 <0.01	0.16 0.12 1.44 1.72 0.01 <0.01 0.04
318	Lam Line Filler Hot Oil Heater	PM/PM_{10} VOC CO NO_x	0.03 0.02 0.33 0.39	0.13 0.09 1.44 1.72

Emission	Source	Air Contaminant	Emission	n Rates_
Point No. (1)	Name (2)	Name (3)	<u>lb/hr</u>	<u>TPY</u>
		SO₂ CH₂0 HAPs (5)	<0.01 <0.01 0.01	0.01 <0.01 0.03
319	Lam Line Process Oil Heater	PM/PM_{10} VOC CO NO_x SO_2 CH_2O HAPs (5)	0.01 0.01 0.16 0.20 <0.01 <0.01	0.07 0.05 0.72 0.86 0.01 <0.01 0.02
320	3-Tab Line Regenerative Thermal Oxidizer Stack (Sealant Bulk Tank, Coater, Coater Surger Tank)	PM/PM_{10} VOC CO H_2S NO_x SO_2 CH_2O HAPs (5)	0.03 0.16 0.22 0.02 0.16 1.68 <0.01 <0.01	0.12 0.36 0.72 0.03 0.69 2.31 0.01 0.02
321 and 322	General Ventilation and Fugitives (Roof Vent, 3-Tab and Lam Line Material Surfacing Areas, 3-Tab and Lam Line Cooling Section, 3-Tab and Lam Line Sealant Applicators, Lam Line Adhesive Applicator, 3-Tab and Lam Line Ink Jet Printers)	e VOC CO e H₂S n CH₂0 COS	5.32 2.19 0.32 0.76 0.09 0.04 0.04	23.29 9.64 1.40 1.32 1.40 0.19 0.18
323	Lam Line Filler Upper Surge Hopper Baghouse Stack	PM/PM ₁₀	0.04	0.19
324	Lam Line Process Baghouse Sta	ck PM/PM ₁₀ VOC CO	0.02 0.38 3.80	0.10 0.64 4.04

		H ₂ S CH ₂ 0 COS	0.51 0.50 0.09	0.88 2.17 0.40
325	Lam Line Regenerative Thermal Oxidizer Stack (Adhesive Bulk Tank, MSA Melt Tank, Adhesive Run Tank, Coater Coater Surge Tank, Sealant Applicator, Adhesive Applicator)	PM/PM_{10} VOC CO NO_x SO_2 H_2S CH_2O COS $HAPs$ (5)	1.07 0.38 0.48 0.16 5.33 0.06 <0.01 <0.01	0.17 0.64 1.34 0.69 7.18 0.10 0.02 <0.01 0.03
326	Lam Line Filler Storage Silo Baghouse Stack	PM/PM ₁₀	0.04	0.19
328	Lam Line Asphalt Preheater	PM/PM_{10} VOC CO NO_x SO_2 CH_2O HAPs (5)	0.02 0.01 0.21 0.25 <0.01 <0.01	0.08 0.06 0.90 1.07 0.01 <0.01
330	3-Tab Line Surfacing Materials Silos and Unloading	PM/PM ₁₀	<0.01	<0.01
331	Lam Line Surfacing Materials Silos and Unloading	PM/PM ₁₀	<0.01	<0.01
400	Adhesive Filler Bin Vent Filter	PM/PM ₁₀	0.02	0.08
401	Sealant Filler Bin Vent Filter	PM/PM ₁₀	0.02	0.08
MAT	Lam Line Mat Unwind Dry	PM/PM ₁₀	0.04	0.19

EMISSIONING PRODES OUNTAXED SUMMAX LICOLONA BLEGEN ASSISTED SUMMASSISTES N RATES

AIR CONTAMINANTS DATA

Emission	Source A	Air Contaminant	<u>Emissio</u>	Emission Rates *	
Point No. (1)	Name (2)	Name (3)	lb/hr	<u>TPY</u>	
	Looper Baghouse Stack				
Unload	Railcar/Truck Granule Unloading (Both Lines)	g PM PM ₁₀	<0.01 <0.01	0.01 <0.01	

- (1) Emission point identification either specific equipment designation or emission point number from a plot plan.
- (2) Specific point source names. For fugitive sources use area name or fugitive source name.
- (3) PM particulate matter suspended in the atmosphere, including PM₁₀.
 - PM_{10} particulate matter of 10 microns or less in diameter. Where PM is not listed, it shall be assumed that no PM greater than 10 microns is emitted.
 - VOC volatile organic compounds as defined in 30 Texas Administrative Code § 101.1
 - CO carbon monoxide
 - NO_X total oxides of nitrogen
 - SO₂ sulfur dioxide
 - H₂S hydrogen sulfide
 - CH₂0 formaldehyde
 - COS carbonyl sulfide
 - HAPS any of the Section 112(b), Federal Clean Air Act named compounds
- (4) Fugitive emissions are an estimate only.
- (5) HAPS other than H2S, CH20, and COS are included in the PM and VOC emission rates.

Dated <u>August 15, 2007</u>