\mathcal{Q}	
I What is a gro	aph 99
	(any network)
	•
1) Nodes	(Vertices)
ર) દેવવુડ	
→ Graph is a edges.	collection of nodes of
U	
dru	Graph
\sim \sim \sim	
5 75 0	9 9 9
5000	<i>D</i> —— <i>D</i>
1) Tree is hiera	rchical date structure
unlike groph.	
	·
2) No. 1 edges	in a tree with N
nodu =	N-1 no eycle.
	→ no eycle.
	V

/ \

Weight = 1 (Un weighted graph)

V edger weight = w.> 1 → Weightel.

Classification

4

Directed/ Undirected Weighted) Un-weighted.

 $2) \quad \triangle \longrightarrow \qquad B$

AB

FaceSook

Connected \Rightarrow A set of vertices in a bomponent graph where every vertex (Undirected from every other vertex. Graph)

Strongly Connected Component (Last session)

l How Groph is given as an amount??

(Collection of nodes € edges)

* Representation

1) Adjacency Matrix [V, E]

 $C_2 = (v)(v-1) = O(v^2)$

V vertices → [o, N-i] = VXV

V vertices $\rightarrow [1 + N] = (V+1) \times (V+1)$

V	E		M	at [6]	[e]		
5	7		0	1	2	3		5
u	~	0	X	X	×	X	×	×
1	4 -	t	X	0	7	0	1	0
2	S <i>U</i>	2	X	1	0	1	1	1
3	2 -	3	X	0	1	0	1	1
4	3 -	4	X	1	1	1	0	O
2	4 -	5	×	0	1	1	0	0
3	5 /							

Mat [i][j]	⇒	Information the edge node i &	about
J		the edge	5/w te
		node i &	node i
			J

0 → No edge 1 → Edge

	Un Weighted	Weighted (u.v, w) Met [u][v] = w
Undir cetal	of Mat [u][v] = 1	Mat [u][v] = w
	Then Mat [~] [u] = 1	Met [v][u]=w
Directed		
	Mat [u][v] = 1	Met [u](v] = w

on general weights are non zero.

$$T \cdot (\cdot = 0) (\varepsilon)$$

$$S \cdot (\cdot = 0) (v^2)$$

2=7

1) Check if there is an edge 5/w

u #V

(MINSIV) # MIVISIV)

2) Add an edge 5/10 n ± v.

3) Remove an edge

Cons

1) Space (Sparece matrix)
majorty or o

2) Add a new Mode

2) Adjacency List (LL of Edges)
[V, E]

Array / Lint of size V+1 (Linked Lint)

Vertex = $\frac{2}{4}$ Vertex = $\frac{2}{4}$ $\frac{2}{4}$ $\frac{4}{4}$ $\frac{2}{4}$ $\frac{4}{4}$ $\frac{3}{4}$ $\frac{5}{4}$

