解答解説のページへ

自然数の2乗となる数を平方数という。

- (1) 自然数 a, n, k に対して, $n(n+1)+a=(n+k)^2$ が成り立つとき, $a \ge k^2 + 2k 1$ が成り立つことを示せ。
- (2) n(n+1)+14 が平方数となるような自然数 n をすべて求めよ。

解答解説のページへ

関数 $f(x) = 1 + \sin x - x \cos x$ について、以下の問いに答えよ。

- (1) f(x)の $0 \le x \le 2\pi$ における増減を調べ、最大値と最小値を求めよ。
- (2) f(x)の不定積分を求めよ。
- (3) 次の定積分の値を求めよ。 $\int_0^{2\pi} |f(x)| dx$

解答解説のページへ

複素数平面上に 3 点 O, A, B を頂点とする $\triangle OAB$ がある。ただし, O は原点とする。 $\triangle OAB$ の外心を P とする。3 点 A, B, P が表す複素数を,それぞれ α , β , z とするとき, $\alpha\beta=z$ が成り立つとする。

- (1) 複素数 α の満たすべき条件を求め、点 $A(\alpha)$ が描く図形を複素数平面上に図示せよ。
- (2) 点 P(z) の存在範囲を求め、複素数平面上に図示せよ。

4 解答解説のページへ

さいころを続けて投げて、数直線上の点 P を移動させるゲームを行う。初め点 P は原点 0 にいる。さいころを投げるたびに、出た目の数だけ、点 P を現在の位置から正の向きに移動させる。この試行を続けて行い、点 P が 10 に達するか越えた時点でゲームを終了する。n 回目の試行でゲームが終了する確率を p_n とする。

- (1) $p_{10} = \left(\frac{1}{6}\right)^9$ となることを示せ。
- (2) p₉の値を求めよ。
- (3) *p*₃の値を求めよ。

解答解説のページへ

座標平面上の 3 点 A(1, 0), B(3, 1), C(2, 2) を頂点とする $\triangle ABC$ の内部および 境界を T とおく。実数 a に対して,条件 $AP^2 + BP^2 + CP^2 \le a$ を満たす座標平面上 の点 P の全体を D とする。ただし,AP は点 A と点 P の距離を表す。

- (1) D が少なくとも 1 つの点 P を含むような a の値の範囲を求めよ。
- (2) Dが Tを含むような a の値の範囲を求めよ。
- (3) (1)のもとで、Dが Tに含まれるような aの値の範囲を求めよ。

問題のページへ

- (1) 自然数 a, n, k に対して、 $n(n+1) + a = (n+k)^2 \cdots \oplus 0$ とき、 $a = (n+k)^2 n(n+1) = 2kn + k^2 n = k^2 + (2k-1)n$ ここで、 $n \ge 1$, $2k-1 \ge 1$ より、 $(2k-1)n \ge 2k-1$ となり、 $a \ge k^2 + 2k 1 \cdots \oplus 0$
- (2) n が自然数でn(n+1)+14 が平方数のとき、 $n(n+1)+14>n^2$ より、①から、 $n(n+1)+14=(n+k)^2$ (k は自然数) ……3 すると、②から、 $14 \ge k^2+2k-1$ となり、 $k^2+2k-15 \le 0$ (k+5)(k-3) ≤ 0 , $-5 \le k \le 3$ k は自然数から、k=1、2、3となる。
 - (i) k=1 のとき ③から、 $n(n+1)+14=(n+1)^2$ となり、n=13
 - (ii) k=2 のとき ③から、 $n(n+1)+14=(n+2)^2$ となり、 $n=\frac{10}{3}$ より不適
 - (iii) k = 3 のとき ③から、 $n(n+1) + 14 = (n+3)^2$ となり、n = 1
 - (i) \sim (iii)より、n=1、13である。

[解 説]

整数問題ですが、(1)の誘導が強力なため、基本的な内容になっています。

問題のページへ

- (1) $f(x) = 1 + \sin x x \cos x$ に対して、 $f'(x) = \cos x \cos x + x \sin x = x \sin x$ すると、 $0 \le x \le 2\pi$ における f(x) の 増減は右表のようになる。これより、f(x) は $x = \pi$ のとき最大値 $1 + \pi$ 、 $x = 2\pi$ のとき最小値 $1 2\pi$ をとる。
- (2) $F(x) = \int f(x)dx$ とおき、C を積分定数とすると、 $F(x) = \int (1+\sin x x\cos x)dx = x \cos x x\sin x + \int \sin x dx$ $= x \cos x x\sin x \cos x + C = x x\sin x 2\cos x + C$

[解 説]

定積分の計算問題です。(3)は $f(\frac{3}{2}\pi)=0$ を見つけるのがポイントですが、これは(1)の増減表とf(x)の形から判断します。

問題のページへ

(1) 原点 O, 点 $A(\alpha)$, 点 $B(\beta)$ を頂点とする \triangle OAB について、 $\alpha \neq 0$. $\beta \neq 0$. $\alpha \neq \beta \cdots (1)$

ここで、
$$z = \alpha\beta$$
 を②に代入すると、 $|\alpha\beta| = |\alpha\beta - \alpha|$ となり、①から $|\alpha| \neq 0$ より、 $|\alpha||\beta| = |\alpha||\beta - 1|$ 、 $|\beta| = |\beta - 1|$ ……④

同様に、 $z = \alpha\beta$ を③に代入すると、 $|\alpha\beta| = |\alpha\beta - \beta|$ となり、①から $|\beta| \neq 0$ より、 $|\alpha||\beta| = |\alpha-1||\beta|, |\alpha| = |\alpha-1| \cdots 5$

④⑤より、点 $A(\alpha)$ 、点 $B(\beta)$ は、ともに原点と点 1 を結ぶ線 分の垂直二等分線上にある。ただし、①から $\alpha \neq \beta$ である。 以上より、 α の満たすべき条件は $|\alpha|=|\alpha-1|$ であり、点 $A(\alpha)$ の描く図形は右図の直線である。

(2) (1)より, $\alpha = \frac{1}{2} + ai$, $\beta = \frac{1}{2} + bi$ ($a \neq b$) とおくことができ, $z = \alpha\beta = \left(\frac{1}{2} + ai\right)\left(\frac{1}{2} + bi\right) = \left(\frac{1}{4} - ab\right) + \frac{1}{2}(a+b)i$ ここで、z = x + yi とおくと、 $x = \frac{1}{4} - ab$ 、 $y = \frac{1}{2}(a+b)$ となり、 $a+b=2y\cdots\cdots$ 6, $ab=\frac{1}{4}-x\cdots$

⑥⑦より、a、 $b(a \neq b)$ は、t についての 2 次方程式 $t^2 - 2yt + \left(\frac{1}{4} - x\right) = 0$ の異なる実数解となり、その条件は、

よって、点P(z)の存在範囲を図示すると、右図の網点部 となる。ただし、境界は領域に含まない。

[解 説]

複素数と図形に領域が絡んだ問題です。(1)は共役複素数を用いた形で、 $\alpha + \alpha = 1$ を結論としてもよいでしょう。なお、O、A、B が一直線上にないということについて は、(1)の結果から満たしていることがわかります。

問題のページへ

(1) さいころを投げ、数直線上で初め原点にいた点 P を、出た目の数だけ正の向きに移動させる。そして、点 P が 10 に達するか越えた時点で終了する。このとき、k 回目終了後の点 P の位置を X_k とおく。

さて、 $X_9 \ge 9$ より、10 回目で終了する場合は、 $X_9 = 9$ すなわち 9 回目まで 1 の目が出て、10 回目が任意なので、その確率 p_{10} は、

$$p_{10} = \left(\frac{1}{6}\right)^9 \times 1 = \left(\frac{1}{6}\right)^9$$

- (2) $X_8 \ge 8$ より、9 回目で終了する場合は、 $X_8 = 8$ 、9 である。
 - (i) $X_8 = 8$ のとき このとき、8回目までは1の目が出て、9回目は2以上の目なので、その確率は $\left(\frac{1}{6}\right)^8 \times \frac{5}{6} = 5\left(\frac{1}{6}\right)^9$ となる。
 - (ii) $X_8 = 9$ のとき このとき、8回目までは1の目が7回、2の目が1回出て、9回目は任意なので、その確率は ${}_8C_1\left(\frac{1}{6}\right)^7\frac{1}{6}\times 1 = 8\left(\frac{1}{6}\right)^8$ となる。
 - (i)(ii)より、9回目で終了する確率 p_9 は、

$$p_9 = (5 + 8 \cdot 6) \left(\frac{1}{6}\right)^9 = 53 \left(\frac{1}{6}\right)^9$$

(3) $2 \le X_2 \le 12$ であるが、3回目で終了する場合は、 $4 \le X_2 \le 9$ となる。

ここで, 1 回目と 2 回目の目の数とその和を まとめると右表のようになる。

- (i) $X_2 = 4$ のとき 1 回目と 2 回目の数の組は 3 通りで、3 回目は 6 なので、その確率は $3\left(\frac{1}{6}\right)^2 \times \frac{1}{6} = 3\left(\frac{1}{6}\right)^3$ となる。
- (ii) $X_2 = 5$ のとき 1 回目と 2 回目の数の組は 4 通りで、3 回目は 5 または 6 なので、その確率は $4\left(\frac{1}{6}\right)^2 \times \frac{2}{6} = 8\left(\frac{1}{6}\right)^3$ となる。

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

- (iii) $X_2 = 6$ のとき 1 回目と 2 回目の数の組は 5 通りで、3 回目は 4 以上なので、 その確率は $5\left(\frac{1}{6}\right)^2 \times \frac{3}{6} = 15\left(\frac{1}{6}\right)^3$ となる。
- (iv) $X_2=7$ のとき 1 回目と 2 回目の数の組は 6 通りで、3 回目は 3 以上なので、その確率は $6\left(\frac{1}{6}\right)^2 \times \frac{4}{6} = 24\left(\frac{1}{6}\right)^3$ となる。
- (v) $X_2=8$ のとき 1回目と2回目の数の組は5通りで、3回目は2以上なので、その確率は $5\left(\frac{1}{6}\right)^2 \times \frac{5}{6} = 25\left(\frac{1}{6}\right)^3$ となる。

- (vi) $X_2 = 9$ のとき 1 回目と 2 回目の数の組は 4 通りで、3 回目は任意なので、その確率は $4\left(\frac{1}{6}\right)^2 \times 1 = 4\left(\frac{1}{6}\right)^2$ となる。
- (i) \sim (vi)より、 $3回目で終了する確率<math>p_3$ は、

$$p_3 = (3+8+15+24+25+4\cdot6)\left(\frac{1}{6}\right)^3 = 99\left(\frac{1}{6}\right)^3 = \frac{11}{24}$$

[解 説]

確率の基本的な問題ですが、注意力が要求されます。解答例のように、表を作った 方が安心です。

問題のページへ

(1) 3 点 A(1, 0), B(3, 1), C(2, 2) に対して, 条件 $AP^2 + BP^2 + CP^2 \le a$ を満たす点 P(x, y) 全体を D とすると,

$$(x-1)^2 + y^2 + (x-3)^2 + (y-1)^2 + (x-2)^2 + (y-2)^2 \le a$$
$$3x^2 + 3y^2 - 12x - 6y \le a - 19, \ x^2 + y^2 - 4x - 2y \le \frac{a - 19}{3}$$

変形すると、
$$D:(x-2)^2+(y-1)^2 \le \frac{a-4}{3}$$
 ……①

すると、D が少なくとも 1 つの点 P を含むような a の値の範囲は、 $\frac{a-4}{3} \ge 0$ より $a \ge 4$ である。

(2) $\triangle ABC$ の内部および境界 T を図示すると、右図の網点部となる。また、 $a \ge 4$ のとき、①から D は中心 D(2,1)で半径 $\sqrt{\frac{a-4}{3}}$ の内部または周上である。 すると、D が T を含む条件は、 $AD = \sqrt{2}$ 、BD = 1 、CD = 1 より、 $\sqrt{\frac{a-4}{3}} \ge \sqrt{2}$ 、 $a \ge 10$

(3) 点 D と直線 AB, BC, CA の距離をそれぞれ d_1 , d_2 , d_3 とおく。このとき、AB: x-2y-1=0 より、

$$d_1 = \frac{|2 - 2 - 1|}{\sqrt{1 + 4}} = \frac{1}{\sqrt{5}}$$

また、対称性より、 $d_2 = \frac{1}{\sqrt{2}}$ 、 $d_3 = \frac{1}{\sqrt{5}}$ となる。

すると、 $a \ge 4$ のとき D が T に含まれる条件は、

$$\sqrt{\frac{a-4}{3}} \le \frac{1}{\sqrt{5}}, \ \ 0 \le a-4 \le \frac{3}{5}, \ \ 4 \le a \le \frac{23}{5}$$

[解 説]

領域が題材の基本題です。円や三角形に対称性が設定されているので、計算も簡単です。