Feuille d'exercices 1. révisions (réels, complexes, récurrence), fonctions, trigonométrie

Réels

Exercice 1.1 : (niveau 1)

Résoudre dans \mathbb{R} l'inéquation $\sqrt{(x+3)(x-1)} \geq 2x-1$.

Exercice 1.2 : (niveau 2)

Inégalité de Cauchy-Schwarz.

- 1°) Montrer que, pour tout $x, y \in \mathbb{R}, xy \leq \frac{1}{2}(x^2 + y^2)$.
- **2°)** Soit $n \in \mathbb{N}^*$. En déduire que, pour tout $a_1, \ldots, a_n \in \mathbb{R}$ et $b_1, \ldots, b_n \in \mathbb{R}$, $\sum_{k=1}^n |a_k b_k| \leq \frac{1}{2} \left(\sum_{k=1}^n a_k^2 + \sum_{k=1}^n b_k^2 \right).$
- $\mathbf{3}^{\circ})$ En déduire l'inégalité de Cauchy-Schwarz :

Pour tout $n \in \mathbb{N}^*$, $a_1, \dots, a_n \in \mathbb{R}$ et $b_1, \dots, b_n \in \mathbb{R}$, $\sum_{k=1}^n |a_k b_k| \le \sqrt{\sum_{k=1}^n a_k^2} \sqrt{\sum_{k=1}^n b_k^2}$.

- **4**°) Montrer que pour tout $n \in \mathbb{N}^*$ et $a_1, \ldots, a_n \in \mathbb{R}$, $\sum_{k=1}^n a_k \leq \sqrt{n} \sqrt{\sum_{k=1}^n a_k^2}$.
- 5°) Montrer que, pour tout réels x, y, z strictement positifs, $\sqrt{\frac{x+y}{x+y+z}} + \sqrt{\frac{x+z}{x+y+z}} + \sqrt{\frac{y+z}{x+y+z}} \leq \sqrt{6}.$

Exercice 1.3 : (niveau 3)

- 1°) Soit $n \in \mathbb{N}^*$. Soient x_1, \ldots, x_{n+1} des réels de l'intervalle [0, 1]. Montrer qu'il existe $i, j \in \mathbb{N}^*$ tel que $1 \le i < j \le n+1$ et $|x_i x_j| \le \frac{1}{n}$.
- $\mathbf{2}^{\circ}$) Soit $x \in \mathbb{R} \setminus \mathbb{Q}$ avec x > 0.

Montrer que, pour tout $N \in \mathbb{N}^*$, il existe $q \in \mathbb{N}^*$ et $p \in \mathbb{N}$ tels que $q \ge N$ et $|x - \frac{p}{q}| \le \frac{1}{q^2}$.

 3°) On admettra que $\sqrt{2}$ est irrationnel.

Montrer qu'il existe c > 0 tel que, pour tout $q \in \mathbb{N}^*$ et $p \in \mathbb{N}$, $|\sqrt{2} - \frac{p}{q}| \ge \frac{c}{q^2}$.

Récurrence

Exercice 1.4 : (niveau 1)

1°) Déterminer l'unique racine positive de l'équation $x^2 - x - 1 = 0$, que l'on notera φ (c'est le nombre d'or).

Montrer que, pour tout $n \in \mathbb{N}$, $\varphi^{n+2} = \varphi^{n+1} + \varphi^n$.

2°) On désigne par $(F_n)_{n\in\mathbb{N}}$ la suite de Fibonacci définie par : $F_0=0,\,F_1=1$ et, pour tout $n\in\mathbb{N},\,F_{n+2}=F_{n+1}+F_n$.

Déterminer $\alpha, \beta \in \mathbb{R}$ tels que, pour tout $n \in \mathbb{N}$, $F_n = \alpha \varphi^n + \beta \left(\frac{-1}{\varphi}\right)^n$.

Exercice 1.5 : (niveau 1)

Soit (u_n) une suite d'entiers naturels ne prenant jamais deux fois la même valeur et telle que, pour tout $n \in \mathbb{N}$, $u_n \leq n$. Montrer que, pour tout $n \in \mathbb{N}$, $u_n = n$.

Exercice 1.6 : (niveau 1)

Montrer que pour tout $n \in \mathbb{N} \setminus \{0,1\}$, $\sum_{k=1}^{n} \frac{1}{k^2} > \frac{3n}{2n+1}$.

Exercice 1.7 : (niveau 2)

Montrer que pour tout $n \in \mathbb{N}$, $\prod_{k=0}^{n} [(2k+1)!] \ge [(n+1)!]^{n+1}$.

Exercice 1.8 : (niveau 2)

Montrer que, pour tout $n \in \mathbb{N}$, pour tout $x \in \mathbb{R}$, $|\sin(nx)| \le n |\sin x|$.

Complexes

Exercice 1.9 : (niveau 1)

Résoudre sur \mathbb{C} les équations $z^4 = i$ et $z^3 = -1$.

Exercice 1.10: (niveau 1)

Résoudre dans \mathbb{C} l'équation suivante : $(1+i)z^2 + (1-i)z + 2(1+i) = 0$.

Exercice 1.11 : (niveau 1)

Déterminer le lieu géométrique des points M dont l'affixe z vérifie $\frac{z-1}{z+1} \in i\mathbb{R}$.

Exercice 1.12 : (niveau 1)

Soit a et b deux complexes de module 1 tels que $ab \neq -1$. Montrer que $\frac{a+b}{1+ab}$ est réel.

Exercice 1.13: (niveau 1)

Les affirmations suivantes sont-elles vraies ou fausses?

 $\mathbf{1}^{\circ}$) Si a + ib = c + id alors a = c et b = d.

2°) On a $|2+i| = \sqrt{2^2 + i^2} = \sqrt{4-1} = \sqrt{3}$.

3°) L'ensemble des points dont l'affixe est d'argument nul est la droite réelle.

 4°) Si z_1^3 et z_2^3 sont conjugués alors z_1 et z_2 sont conjugués.

Exercice 1.14: (niveau 1)

Déterminer les nombres complexes u et v tels que $|u+iv|^2 = u^2 + v^2$.

Exercice 1.15 : (niveau 1)

Pour $n \ge 1$, calculer $\sum_{k=0}^{n-1} {n \choose k} e^{\frac{2ik\pi}{n}}$.

Applications

Exercice 1.16: (niveau 1)

Déterminer le domaine de définition de la fonction $f(x) = \frac{2x}{\sqrt{x^2 - 3x + 2}}$.

Exercice 1.17 : (niveau 1)

Soit f une application de E dans F et g une application de F dans G. Prouvez les implications suivantes :

1°) Si $g \circ f$ est injective alors f est injective. Si $g \circ f$ est injective et f surjective alors g est injective.

2°) Si $g \circ f$ est surjective alors g est surjective. Si $g \circ f$ est surjective et g injective alors f est surjective.

Exercice 1.18 : (niveau 1)

Lorsque $a \in \mathbb{R}$, on note f_a l'application de \mathbb{R} dans \mathbb{R} définie par : pour tout x > 0, $f_a(x) = x + a$ et pour tout $x \le 0$, $f_a(x) = x - a$. Pour quels a l'application f_a est-elle injective (resp : surjective)?

Exercice 1.19 : (niveau 2)

1°) Lorsque f est une application strictement monotone de \mathbb{R} dans \mathbb{R} , montrer qu'elle est injective.

 2°) Donner un exemple d'application définie sur $\mathbb R$ et à valeurs réelles, injective mais non strictement monotone.

Exercice 1.20 : (niveau 2)

Déterminer les applications f, de $\mathbb R$ dans $\mathbb R$, telles que,

$$\forall x \in \mathbb{R}, \ f(x) + xf(1-x) = 1 + x.$$

Exercice 1.21 : (niveau 2)

Déterminer toutes les fonctions $f: \mathbb{R} \longrightarrow \mathbb{R}$ telles que

$$\forall x, y \in \mathbb{R}, f(x - f(y)) = 2 - x - y.$$

Exercice 1.22 : (niveau 2)

On note f l'application de \mathbb{R}^2 dans \mathbb{R}^2 définie par $f(x,y) = (x, xy - y^3)$. f est-elle injective? Est-elle surjective?

Trigonométrie

Exercice 1.23 : (niveau 1)

En passant par les complexes, montrer que $\sin p - \sin q = 2\sin\frac{p-q}{2}\cos\frac{p+q}{2}$.

Exercice 1.24 : (niveau 1)

Résoudre l'équation $3\cos(5x) = \cos(2x) + \cos(12x)$.

Exercice 1.25 : (niveau 2)

En exprimant $\cos(3\theta)$ et $\cos(4\theta)$ en fonction de $\cos(\theta)$, montrer que $\cos(\frac{2\pi}{7})$ n'est pas rationnel.

Exercice 1.26: (niveau 2)

Résoudre l'inéquation $2\sin x - 1 < \sqrt{1 - 4\cos^2 x}$.

Exercice 1.27 : (niveau 3)

Montrer que pour tout $x \in \mathbb{R}$, $\cos(\sin x) > \sin(\cos x)$.

Exercice 1.28: (niveau 3)

1°) Montrer que, pour tout $x \in \mathbb{R}$ et $n \in \mathbb{N}$,

$$\cos((n+1)x) = 2\cos(nx)\cos(x) - \cos((n-1)x).$$

- **2°)** En déduire que, pour tout $n \in \mathbb{N}$, il existe un unique polynôme T_n tel que, pour tout $\theta \in \mathbb{R}$, $2\cos(n\theta) = T_n(2\cos\theta)$.
- **3°)** Soit P un polynôme de \mathbb{R} dans \mathbb{R} de la forme $x \longmapsto x^k + a_{k-1}x^{k-1} + \cdots + a_1x + a_0$, où $k \in \mathbb{N}^*$ et $a_0, \ldots, a_{k-1} \in \mathbb{Z}$.

Soit a une racine rationnelle de P. En écrivant a sous la forme $a=\frac{p}{q}$ avec $p\in\mathbb{Z}$, $q\in\mathbb{N}^*$, et p et q premiers entre eux, montrer que $a\in\mathbb{Z}$.

4°) En déduire le théorème de Niven : Soit $\theta \in [0, \frac{\pi}{2}]$ tel que $\frac{\theta}{\pi} \in \mathbb{Q}$. Montrer que si $\cos \theta \in \mathbb{Q}$, alors $\cos \theta \in \{0, \frac{1}{2}, 1\}$.

Exercices supplémentaires

Réels

Exercice 1.29 : (niveau 3)

Soient a, b, c trois nombres réels positifs ou nuls. Démontrer que l'un au moins des trois nombres réels 4b(1-c), 4c(1-a) et 4a(1-b) est inférieur ou égal à 1.

Récurrence

Exercice 1.30: (niveau 1)

On considère une suite $(u_n)_{n\in\mathbb{N}}$ telle que $u_0\in\mathbb{R}$ et, pour tout $n\in\mathbb{N}$, $u_{n+1}=u_n^2$. Calculer u_n en fonction de u_0 et n.

Exercice 1.31 : (niveau 1)

Montrer que, pour tout $n \in \mathbb{N}^*$, $1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \le 2 - \frac{1}{n}$.

Exercice 1.32 : (niveau 1)

 $Suites\ arithm{\'e}tico-g\'eom{\'e}triques:$

On fixe deux réels a et b.

On considère une suite $(u_n)_{n\in\mathbb{N}}$ telle que, pour tout $n\in\mathbb{N}$, $u_{n+1}=au_n+b$.

On souhaite exprimer u_n en fonction de n et de u_0 .

 $\mathbf{1}^{\circ}$) Traiter les cas a = 1 et b = 0.

Pour la suite, on suppose que $a \neq 1$.

2°) Montrer qu'il existe un unique réel ℓ tel que $\ell = a\ell + b$.

3°) Pour tout $n \in \mathbb{N}$, on pose $v_n = u_n - \ell$.

Calculer v_n en fonction de n et de v_0 . Conclure.

 $\mathbf{4}^{\circ}$) La suite (u_n) est-elle convergente?

Exercice 1.33 : (niveau 1)

Montrer que tout entier supérieur à 2 est un produit de nombres premiers.

Exercice 1.34 : (niveau 2)

On considère la suite de Fibonacci $(F_n)_{n\in\mathbb{N}}$ définie par $F_0=0,\ F_1=1,$ et pour tout $n\in\mathbb{N},\ F_{n+2}=F_{n+1}+F_n.$

1°) Exprimer $\Delta_n = F_n F_{n+2} - F_{n+1}^2$ en fonction de n.

2°) Montrer que pour tout $n \in \mathbb{N}$, F_n et F_{n+1} sont premiers entre eux.

Exercice 1.35 : (niveau 2)

Soit $n \in \mathbb{N}^*$ et x_1, \dots, x_n n réels strictement positifs.

On suppose qu'il existe $\varepsilon \in]0,1[$ tel que, pour tout $i,j \in \{1,\ldots,n\}, x_ix_j \le \varepsilon^{|i-j|}.$

Montrer que $\sum_{i=1}^{n} x_i \leq \frac{1 - \sqrt{\varepsilon}^n}{1 - \sqrt{\varepsilon}}$.

Complexes

Exercice 1.36: (niveau 1)

Résoudre dans \mathbb{C} l'équation suivante : $(1+i)z^2 + iz + (1-i) = 0$.

Exercice 1.37 : (niveau 1)

Résoudre l'équation dans \mathbb{C} suivante : $\overline{z} = 2z + j$, où $j = e^{2i\frac{\pi}{3}}$.

Exercice 1.38 : (niveau 1)

Déterminer le lieu géométrique des points M dont l'affixe z vérifie $\frac{z+4i}{5z-3} \in \mathbb{R}$.

Exercice 1.39 : (niveau 1)

Montrer que, pour tout z et z' dans \mathbb{C} ,

$$|z\overline{z'} + 1|^2 + |z - z'|^2 = (1 + |z|^2)(1 + |z'|^2).$$

Donner une formule analogue pour $|z\overline{z'} - 1|^2 - |z - z'|^2$.

Exercice 1.40: (niveau 2)

Pour $z \neq -i$, on pose $Z = \frac{z^2}{z+i}$.

- 1°) Déterminer l'ensemble A des points z pour lesquels Z est imaginaire pur.
- **2°)** Résoudre, pour a réel fixé, $z^2 + 2iaz 2a = 0$.

Montrer que l'ensemble des solutions est inclus dans A.

Applications

Exercice 1.41 : (niveau 1)

Soit $c \in \mathbb{R}_+^*$. Pour tout $x \in \mathbb{R}$, on pose $f(x) = \frac{x}{\sqrt{1 + cx^2}}$.

Pour tout $x \in \mathbb{R}$, calculer $\underbrace{f \circ \cdots \circ f}_{n \ fois}(x)$.

Exercice 1.42 : (niveau 1)

Soit f une fonction de \mathbb{R} dans \mathbb{R} .

Parmi les assertions suivantes, déterminer celles qui sont vraies. On justifiera les réponses.

- 1. Si f est croissante et f(a) < f(b) alors a < b.
- 2. Si f est croissante et $f(a) \leq f(b)$ alors $a \leq b$.
- 3. Si f est strictement croissante et $f(a) \leq f(b)$ alors $a \leq b$.

Exercice 1.43 : (niveau 3)

Soit f et g deux applications de \mathbb{N} dans \mathbb{N} . On suppose que f est surjective, que g est injective et que, pour tout $n \in \mathbb{N}$, $f(n) \geq g(n)$.

- $\mathbf{1}^{\circ}$) Montrer que g est bijective.
- 2°) Que peut-on dire de f et g?

 ${\bf Trigonom\'etrie}$

Exercice 1.44 : (niveau 2)

- 1°) Résoudre l'équation $\sin(4x) = \sin x$ sur \mathbb{R} .
- 2°) À l'aide d'une antilinéarisation, démontrer que

 $(\sin(4x) = \sin x) \wedge (\sin x \neq 0) \Longleftrightarrow 8\cos^3 x - 4\cos x - 1 = 0.$

3°) Déterminer les solutions de l'équation $8X^3 - 4X - 1 = 0$ (on pourra s'aider d'une solution évidente donnée par la question 1) et en déduire la valeur de $\cos(\frac{\pi}{5})$.

Exercice 1.45 : (niveau 3)

Résoudre sur \mathbb{R} l'équation $\sqrt{1-x} = 2x^2 - 1 + 2x\sqrt{1-x^2}$.

Exercice 1.46 : (niveau 3)

- 1°) Exprimer $\tan(a+b)$ en fonction de $\tan a$ et $\tan b$, lorsque toutes ces quantités sont définies.
- **2°)** Exprimer $\tan(a+b+c)$ en fonction de $\tan a$, $\tan b$ et $\tan c$, lorsque toutes ces quantités sont définies.
- 3°) Conjecturer puis démontrer une généralisation.

LLG,	MPSI	2,	2020/2021	