Exercise 1:

1.	Sachant que $(0,0)$ est un point critique de $f(x,y)=x^3+y^3$, le calcul du discriminant $D(0,0)$ est-il concluant pour déterminer sa nature (i.e., min, max ou point-selle)?		
	□ oui		
	\square non		
2.	On considère la fonction $f(x,y) = \ln(1+x^2y^2)$. Combien y a-t-il de points critiques?		
	\square 0		
	\square 2		
	une infinité		
	□ Aucune des réponses ci-dessus		
3.	Laquelle des expressions suivantes correspond à l'expression du Lagrangien de la fonction $f(x,y) = (x+1)^2 + y^2$ sous la contrainte $x^2 + 4y^2 = 16$?		
	$\Box \mathcal{L}(x,y,\lambda) = (\lambda - 1)x^{2} + (1 + 4\lambda)y^{2} + 2x - 16\lambda + 1$		
	$\Box \mathcal{L}(x,y,\lambda) = (1-\lambda)x^{2} + (1-4\lambda)y^{2} + 2x + 16\lambda + 1$		
	$\Box \mathcal{L}(x,y,\lambda) = (\lambda - 1)x^2 + (4\lambda - 1)y^2 + 2x - 16\lambda + 1$		
	$\Box \mathcal{L}(x,y,\lambda) = -\lambda(x^2 + 4y^2 - 16) + y^2 + x^2 + 2x + 1$		
	□ Aucune des réponses ci-dessus		
4.	On considère la fonction $f(x,y)=x^2y^3$ sous la contrainte $x+y=5$. Combien y a-t-il de points critiques?		
	\Box 1		
	\square 2		
	□ Augune des répenses ei dessus		
5.	\square Aucune des réponses ci-dessus La fonction $f(x,y)=x^2-3y^2$ sous la contrainte $x+2y=1$ possède		
	□ un minimum sous contrainte		
	un maximum sous contrainte		
	\square un minimum sous contrainte et un maximum sous contrainte		
	$\hfill\Box$ un minimum sous contrainte et deux maximum sous contrainte		
	\square Aucune des réponses ci-dessus		
6.	Quels sont les points critiques de $f(x,y)=81x^2+y^2$ sous la contrainte $4x^2+y^2=9$		
	$\Box \left(-\frac{3}{2},0\right); \left(\frac{3}{2},0\right); (-3,0); (3,0),$		
	$\Box \left(-\frac{3}{2},0\right); \left(\frac{3}{2},0\right); (0,-3); (0,3),$		

Université de Genève Mathématiques I Mucyo Karemera

GSI Printemps 2021 **Série 9**

$\left(-\frac{3}{2},0\right);$	$\left(\frac{3}{2},0\right)$,
(-3,0);	(3,0),
Aucune d	es réponses ci-dessus

Exercise 2:

Déterminer les points critiques sous contraintes les fonctions données aux questions 3 et 4 du qcm. Quelles est leur nature?