Ferienkurs Experimentalphysik 2

Lösung Übungsblatt 3

Tutoren: Elena Kaiser und Matthias Golibrzuch

4 Zeitlich veränderliche Felder

4.1 Wechselstromgenerator

Ein gewöhnlicher Wechselstromgenerator besteht aus einer rotierenden Spule in einem Magnetfeld. Im einfachsten Fall rotiert eine kreisförmige Leiterschleife in einem homogenen Magnetfeld. Dessen Stärke sei $|\vec{B}| = 1,25$ T und es zeige in die z-Richtung. Die Schleife rotiere mit der Frequenz f = 50, 0 Hz um die x-Achse und erzeuge eine maximale Spannung von $U_0 = 250$ V.

- a) Welchen Radius R hat die Schleife?
- b) Bei welchen Winkeln 'zwischen dem Flächenvektor \vec{A} der Schleife und der z-Achse liegen die maximalen Werte von |U(t)| vor? (Vernachlässigen Sie die Anschlussdrähte und betrachten Sie die Fläche der Schleife so, als sei sie geschlossen.)

Lösung

a) Wir benutzen das Induktionsgesetz

$$U_{ind} = -\dot{\phi} \tag{1}$$

Der Magnetische Fluss ist das Vektorprodukt aus Magnetischer Flussdichte und durchflossener Fläche. Damit vereinfacht sich unser Problem zu

$$U(t) = -\frac{d}{dt}BA\cos(\omega t) = \omega BA\sin(\omega t) = U_0\sin(\omega t)$$
 (2)

Daraus ergibt sich für U_0

$$U_0 = \omega B A = \omega B \pi R^2 \tag{3}$$

Und somit für R

$$R = \sqrt{\frac{U_0}{\omega B\pi}} = 0,45\text{m} \tag{4}$$

b) Die maximalen Werte ergeben sich wenn die Schleife senkrecht zum Magnetfeld liegt, dass heißt in der xy-Ebene. Und damit wenn der Vektor der Flächennormalen parallel oder anti-parallel zur z-Achse ist.

$$\varphi = n\pi \; , \quad n = 0, 1, 2, 3, \dots$$
 (5)

4.2 Induktion durch Zug

- a) Welche Spannung U wird zwischen den Schienen eines Eisenbahngleises mit der Spurweite l=1435 mm induziert, wenn ein Zug (m=100 Tonnen) mit der Geschwindigkeitv=100 km/h darüber hinwegfährt und die Vertikalkomponente des Erdmagnetfeldes $B_v=45$ μ T beträgt? Nehmen Sie an, dass die Schienen voneinander elektrisch isoliert sind und durch die Achsen der Wagen kurzgeschlossen werden. Der elektrische Widerstand des Zuges sei 0,1 Ω .
- b) Berechnen Sie die Kraft, die durch die Induzierte Spannung auf den Zug ausgeübt wird. In welche Richtung zeigt diese?
- c) Welche Arbeit muss der Zug insgesamt aufbringen um seine Geschwindigkeit zu halten, wenn er eine Strecke von $x=300~\mathrm{km}$ zurücklegt.

Lösung

a) Um die Spannung zu errechnen benutzen wir das Induktionsgesetz.

$$U(t) = -\dot{\phi} = -B\frac{dA}{dt} = -Bl\frac{dx}{dt} = -Blv = -1,8 \text{ mV}$$
(6)

b) Bei der auftretenden Kraft handelt es sich um die Lorentzkraft.

$$F_l = IlB = \frac{UlB}{R} = -\frac{B^2 l^2 v}{R} = -1,16 \times 10^{-6} \text{ N}$$
 (7)

c) Um die aufzubringende Arbeit zu errechnen integrieren wir die Lorentzkraft über die gefahrene Strecke.

$$W = -\int F_l dx = -F_l x = 0,35 \text{ J}$$
 (8)

4.3 Induktivität einer Spule

Eine Spule habe 1000 Windungen auf einem Kern der relativen Permeabilität $\mu=1000$. Länge und Durchmesser der Spule seien l=30 cm bzw. d=6 mm. Berechnen Sie die Induktivität L der Spule!

Lösung

Zunächst bestimmen wir das Magnetfeld dieser langen Spule.

$$B = \mu \mu_0 \frac{n}{l} I \tag{9}$$

Dies ergibt für jede Wickelung einen magnetischen Fluss von

$$\phi = \mu \mu_0 \frac{n}{l} I \frac{\pi}{4} d^2 \tag{10}$$

Und damit eine Induktivität von

$$\phi = \frac{n\phi}{I} = \mu \mu_0 \frac{n^2 \pi}{l^2} d^2 = 118 \text{ mH}$$
 (11)

5 Wechselstromkreise

5.1 Differentialgleichungen von Schaltungen

Eine Wechselspannungsquelle liefert die Effektivspannung U=6 V mit der Frequenz $\nu=50$ Hz ($\omega=2\pi\nu$). Zunächst wird ein Kondensator der Kapazität C angeschlossen und es fließt ein Effektivstrom $I_1=96$ mA. Dann wird statt des Kondensators eine Spule mit Induktivität L und Ohmschen Widerstand R angeschlossen, der Effektivstrom beträgt dann $I_2=34$ mA. Schließlich werden Kondensator und Spule hintereinandergeschaltet und es fließen $I_3=46$ mA.

- 1. Setzen Sie die Spannung der Stromquelle in komplexer Form als $U(t) = \hat{U}e^{i\omega t}$ an und leiten Sie aus den Differentialgleichungen allgemein den Scheinwiderstand (d.h. den Absolutbetrag des komplexen Widerstandes) her von:
 - (a) einer Kapazität C,
 - (b) einer reinen Induktivität L,
 - (c) einer Spule mit L und R,
 - (d) einer Reihenschaltung aus einer Kapazität C und einer Spule mit L und R.
- 2. Berechnen Sie die Kapazität des Kondensators sowie die Induktivität und den Ohmschen Widerstand der Spule aus den oben angegebenen experimentellen Werten.

Lösung

1. (a) Für die reine Kapazität gilt die Gleichung

$$\frac{1}{C}Q = U(t) \tag{12}$$

U(t) ist nun eine Oszillation $U(t)=\hat{U}e^{i\omega t}$ und für I(t) machen wir den Ansatz $I(t)=\hat{I}e^{i\omega t}$. Ableiten der Gleichung nach t führt dann auf

$$\frac{1}{C}\hat{I}e^{i\omega t} = \hat{U}i\omega e^{i\omega t} \tag{13}$$

also

$$\hat{I} = i\omega C\hat{U} \tag{14}$$

Somit ist der komplexe Widerstand

$$Z_C = \frac{\hat{U}}{\hat{I}} = \frac{1}{i\omega C} \tag{15}$$

und der Scheinwiderstand

$$|Z_C| = \frac{1}{\omega C} \tag{16}$$

(b) Für die reine Induktivität gilt die Differentialgleichung

$$L\dot{I} = U(t) \tag{17}$$

U(t) ist nun eine Oszillation $U(t)=\hat{U}e^{i\omega t}$ und für I(t) machen wir den Ansatz $I(t)=\hat{I}e^{i\omega t}$. Das führt auf

$$i\omega L\hat{I}e^{i\omega t} = \hat{U}e^{i\omega t} \tag{18}$$

also

$$\hat{I} = \frac{\hat{U}}{i\omega L} \tag{19}$$

Somit ist der komplexe Widerstand

$$Z_L = \frac{\hat{U}}{\hat{I}} = i\omega L \tag{20}$$

und der Scheinwiderstand

$$|Z_L| = \omega L \tag{21}$$

(c) Für L und R gilt die Differentialgleichung

$$L\dot{I} + RI = U(t) \tag{22}$$

U(t) ist nun eine Oszillation $U(t)=\hat{U}e^{i\omega t}$ und für I(t) machen wir (im eingeschwungenen Zustand) den Ansatz $I(t)=\hat{I}e^{i\omega't}$. Das führt dann auf

$$Li\omega'\hat{I}e^{i\omega't} + R\hat{I}e^{i\omega't} = \hat{U}e^{i\omega t}$$
(23)

Division durch $e^{i\omega't}$ ergibt

$$Li\omega'\hat{I} + R\hat{I} = \hat{U}e^{i(\omega - \omega')t}$$
(24)

Da auf der linken Seite eine Konstante steht, kann diese Gleichung für alle t nur dann gelten, wenn die rechte Seite auch konstant ist, d.h. wenn $\omega = \omega'$. Damit folgt

$$\hat{I} = \frac{\hat{U}}{i\omega L + R} \tag{25}$$

Somit ist der komplexe Widerstand

$$Z_{LR} = \frac{\hat{U}}{\hat{I}} = i\omega L + R \tag{26}$$

und der Scheinwiderstand

$$|Z_{LR}| = \sqrt{\omega^2 L^2 + R^2} \tag{27}$$

(d) Für L, R und C in Reihe gilt die Differentialgleichung

$$L\dot{I} + RI + \frac{1}{C}Q = U(t) \tag{28}$$

U(t) ist nun eine Oszillation $U(t)=\hat{U}e^{i\omega t}$ und für I(t) machen wir (im eingeschwungenen Zustand) den Ansatz $I(t)=\hat{I}e^{i\omega' t}$. Ableiten der Differentialgleichung nach t und Einsetzen des Ansatzes führt dann auf

$$-L\omega^{\prime 2}\hat{I}e^{i\omega^{\prime}t} + Ri\omega^{\prime}\hat{I}e^{i\omega^{\prime}t} + \frac{1}{C}\hat{I}e^{i\omega^{\prime}t} = \hat{U}i\omega e^{i\omega t}$$
(29)

Division durch $e^{i\omega't}$ ergibt

$$-L\omega^{\prime 2}\hat{I} + Ri\omega^{\prime}\hat{I} + \frac{1}{C}\hat{I} = \hat{U}i\omega e^{i(\omega - \omega^{\prime})t}$$
(30)

Da auf der linken Seite eine Konstante steht, kann diese Gleichung für alle t nur dann gelten, wenn die rechte Seite auch konstant ist, d.h. wenn $\omega' = \omega$. Damit folgt:

$$\hat{I} = \frac{\hat{U}}{R + i\left(\omega L - \frac{1}{\omega C}\right)} \tag{31}$$

Somit ist der komplexe Widerstand

$$Z_{LRC} = \frac{\hat{U}}{\hat{I}} = R + i\left(\omega L - \frac{1}{\omega C}\right) \tag{32}$$

und der Scheinwiderstand

$$|Z_{LRC}| = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} \tag{33}$$

2. Es gilt

$$I_{eff} = \frac{1}{\sqrt{2}} |\hat{I}| = \frac{1}{\sqrt{2}} \frac{1}{|Z_C|} |\hat{U}| = \frac{1}{|Z_C|} U_{eff}$$
 (34)

also

$$|Z_C| = \frac{U_{eff}}{I_{eff}} \tag{35}$$

Da andererseits

$$|Z_C| = \frac{1}{\omega C} \tag{36}$$

folgt also

$$C = \frac{1}{\omega} \frac{I_{eff}}{U_{eff}} = \frac{1}{\omega} \frac{I_1}{U} = 50.9 \mu F$$
 (37)

Um die Induktivität und den Widerstand der Spule zu berechnen, bestimmt man zuerst aus den experimentellen Werten die Scheinwiderstände:

$$|Z_{LR}| = \frac{U}{I_2} = 176.5\Omega \tag{38}$$

$$|Z_{LRC}| = \frac{U}{I_3} = 130.4\Omega$$
 (39)

Damit werden nun

$$|Z_{LR}| = \sqrt{\omega^2 L^2 + R^2} \tag{40}$$

$$|Z_{LRC}| = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} \tag{41}$$

zu zwei Gleichungen für die zwei Unbekannten R, L. Quadrieren und Subtraktion ergibt eine Gleichung für L mit der Lösung

$$L = \frac{C}{2} \left(|Z_{LR}|^2 - |Z_{LRC}|^2 + \frac{1}{\omega^2 C^2} \right) = 0.46H$$
 (42)

R folgt dann mit

$$R = \sqrt{|Z_{LR}|^2 - \omega^2 L^2} = 101.4\Omega \tag{43}$$

5.2 Hoch- oder Tiefpass

Betrachten Sie das obige Schaltbild! Es ist am Eingang eine Wechselspannung $U_{\rm in}(t) = U_0\cos{(\omega t)}$ angelegt. Berechnen Sie das Verhältnis der Beträge von Ein- und Ausgangsspannung $\frac{|U_{\rm out}|}{|U_{\rm in}|}$. Handelt es sich bei der Schaltung um einen Hoch- oder um einen Tiefpass?

Lösung

Die Kirchhoffsche Knotenregel in einem der beiden Knotenpunkte liefert die Beziehung:

$$\frac{U_{\rm in}}{Z_C + R} = \frac{U_{\rm out}}{Z_C} \implies U_{\rm out} = \frac{\frac{1}{i\omega C}}{\frac{1}{i\omega C} + R} U_{\rm in} = \frac{1}{1 + i \cdot R\omega C} U_{\rm in}$$
(44)

Erweiterung mit dem komplex Konjugierten des Nenners führt zu einer Aufspaltung in Real- und Imaginärteil. Dies ermöglicht die einfache Betragsbildung:

$$|U_{\text{out}}| = \sqrt{U_{\text{out}} \cdot U_{\text{out}}^*} = \frac{1}{\sqrt{1 + (R\omega C)^2}} \cdot |U_{\text{in}}|$$
(45)

Daraus folgt:

$$\lim_{\omega \to 0} \frac{|U_{\text{out}}|}{|U_{\text{in}}|} = 1$$

$$\lim_{\omega \to \infty} \frac{|U_{\text{out}}|}{|U_{\text{in}}|} = 0$$
(46)

Es handelt sich also um einen Tiefpass.

5.3 Schwingkreis

Betrachten Sie den elektrischen Schwingkreis in der obigen Abbildung! Angegeben sind die angelegte Wechselspannung $U_{\sim} = U_0 \cos(\omega t)$ mit Grundspannung U_0 und Frequenz ω , die Induktivität der Spule L, die Kapazität des Kondensators C sowie der ohmsche Widerstand R. An der eingezeichneten Stelle wird der Gesamtstrom $I_{\rm ges}$ gemessen. Geben Sie diesen in Abhängigkeit der gegebenen Größen an! Führen Sie zusätzlich, wo sinnvoll, den "Grundstrom" $I_0 := \frac{U_0}{R}$ ein.

Lösung

Die Kirchhoffsche Knotenregel liefert zunächst die triviale Beziehung, dass der Strom sich bei Eintritt in die beiden Zweige des Stromkreises in zwei Anteile aufteilt:

$$I_{\text{ges}} = I_1 + I_2 \tag{47}$$

Die Kirchhoffsche Maschenregel besagt weiterhin, dass für die beiden Maschen

$$U_0 \cos(\omega t) - L \cdot \dot{I}_1 = 0 \tag{48}$$

und

$$U_0 \cos(\omega t) - R \cdot I_2 - \frac{Q_C}{C} = 0 \tag{49}$$

gelten, wobei Q_C die Ladung am Kondensator darstellt, welche durch $I_2 = Q_C$ gegeben ist. Durch Integration der ersten Gleichung kommt man auf

$$I_1(t) = \frac{U_0}{\omega L} \sin(\omega t). \tag{50}$$

Da bei t=0 eine Gleichspannung herrscht und die Spule wie die Verbindungsdrähte als widerstandslos angenommen wird, fließt der Strom bei t=0 nur durch den anderen Zweig und $I_1(0) = 0$. Die Integrationskonstante wurde demnach als 0 gewählt. Die zweite Gleichung lässt sich lösen, wenn man statt des Stroms die Kondensatorladung betrachtet:

$$R\dot{Q_C} + \frac{1}{C}Q_C = U_0\cos(\omega t) \tag{51}$$

Ein sinnvoller Ansatz ist, wie im Hinweis beschrieben, eine reelle Ladungsoszillation, denn ein Imaginärteil würde Energieverlust bedeuten, der hier nicht auftritt:

$$Q_C(t) = A\sin(\Omega t) + B\cos(\Omega t) \tag{52}$$

Es gibt keinen Grund, weshalb die Frequenz der Oszillation eine andere sein könnte als die der Wechselspannung, daher kann man von vornherein $\Omega=\omega$ setzen. Nun gilt es, durch Einsetzen in die Gleichung die Konstanten A und B zu bestimmen. Einsetzen führt zunächst zu:

$$\left[RA\omega + \frac{B}{C} - U_0\right]\cos(\omega t) + \left[-RB\omega + \frac{A}{C}\right]\sin(\omega t) = 0$$
 (53)

Die Koeffizienten der Kosinus- und der Sinusfunktion müssen, da sie zeitunabhängig sind, beide Null sein. Daraus erhält man:

$$A = RC\omega \cdot B, \ B = \frac{U_0C}{1 + (RC\omega)^2}$$
 (54)

Einsetzen in den Lösungsansatz und anschließende Ableitung führt zu

$$I_2(t) = \dot{Q_C}(t) = \frac{\frac{U_0}{R} \cdot (RC\omega)^2}{1 + (RC\omega)^2} \cos(\omega t) - \frac{\frac{U_0}{R} \cdot RC\omega}{1 + (RC\omega)^2} \sin(\omega t)$$
 (55)

Setzt man in I_2 noch die vorgeschlagene Ersetzung $I_0=\frac{U_0}{R}$ ein, ergibt sich als Gesamtergebnis:

$$I_{\text{ges}}(t) = \frac{I_0 \cdot (RC\omega)^2}{1 + (RC\omega)^2} \cos(\omega t) + \left(\frac{U_0}{\omega L} - \frac{I_0 \cdot RC\omega}{1 + (RC\omega)^2}\right) \sin(\omega t)$$
 (56)