Examen 3

Curso Álgebra Lineal

Pregunta 1

Resolver el siguiente producto de matrices:

 ${\rm Sean}$

$$A = \begin{pmatrix} 2 & 0 \\ 1 & 2 \\ -1 & x \end{pmatrix} \quad I = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Encontrar el valor real de x, o demostrar que no existe, que hace que se cumpla la ecuación

$$A \cdot A^t \cdot I \cdot I^t = 0$$

donde 0 representa la matriz cuadrada nula de orden 3.

Pregunta 2

Dada la matriz

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

calcular su inversa.

Pregunta 3

Sean \vec{u} y \vec{w} dos vectores de \mathbb{R}^n tales que $||\vec{u}|| = 3$ y $||\vec{w}|| = 4$ y tales que si α es el ángulo que forman \vec{u} y \vec{w} , tenemos que $\cos(\alpha) = \frac{1}{2}$.

Consideremos los vectores $\vec{x} = \vec{u} - 3 \cdot \vec{w}$ y $\vec{y} = 2 \cdot \vec{u} + \cdot \vec{w}$.

Se pide:

- a. Calcular $||\vec{x}||$, $||\vec{y}||$.
- b. Calcular $\langle \vec{x}, \vec{y} \rangle$.

Pregunta 4

Sea $B_u = \{u_1, u_2, u_3\}$ una base de $\mathbb{R}^3.$ Sabiendo que

$$\begin{cases} v_1 = u_1 + u_2 - u_3 \\ v_2 = u_1 - u_2 - u_3 \\ v_3 = u_1 - u_2 + u_3 \end{cases}$$

- a. Demostrar que $B_v=\{v_1,v_2,v_3\}$ es una base de $\mathbb{R}^3.$ b. Calcula las coordenadas de u_1,u_2 y u_3 en la base $B_v.$
- c. Si (1,1,-1) son las coordenadas de un vector en la base B_u ¿cuáles son sus coordenadas en la base