

物质的量的计算

日期:	时间:	姓名:	
Date:	Time:	Name:	

初初

初露锋芒

物质的量及其起源

物质的量是国际单位制中7个基本物理量之一,它和"长度","质量","时间"等概念一样,是一个物理量的整体名词。其符号为n,单位为摩尔。物质的量是表示物质所含微粒数与阿伏加德罗常数之比。是把微观粒子与宏观可称量物质联系起来的一种物理量。

摩尔一词来源于拉丁文 moles, 原意为大量和堆集。早在 20 世纪 40 至 50 年代, 就曾在欧美的化学教科书中作为克分子量的符号。1961 年, 化学家 E.A.Guggenheim 将摩尔称为"化学家的物质的量", 并阐述了它的涵义。同年, 在美国《化学教育》杂志上展开了热烈的讨论, 大多数化学家发表文章表示赞同使用摩尔。

1971年,在由41个国家参加的第14届国际计量大会上,正式宣布了**国际纯粹和应用化学联合会、国际 纯粹和应用物理联合会和国际标准化组织**关于必须定义一个物质的量的单位的提议,并作出了决议。

从此,"物质的量"就成为了国际单位制中的一个基本物理量。摩尔是由克分子发展而来的,起着统一克分子、克原子、克离子、克当量等许多概念的作用,同时把物理上的光子、电子及其他粒子群等"物质的量"也概括在内,使在物理和化学中计算"物质的量"有了一个统一的单位。

学习目标

&

- 1. 掌握物质的量、摩尔质量、阿伏伽德罗常数等概念。
- 2. 掌握以物质的量为中心,相互之间的转化关系。
- 3. 能够掌握考查 NA 题型的解答方法及技巧。

重难点

掌握以物质的量为中心相互之间的转化关系

根深蒂固

一、物质的量(n)

1.	物质	的量	的概念:
1.	איי נצר	U) #	T T T T T T T T T T T T T T T T T T T

(1) 七个基本物理量之一,	物质的量是表示	0

(2) 符号为:	,单位为:	,简称	

【注意】

- ①"物质的量"四个字是专有名词,既不能拆开,也不能称为"物质量",不能理解为物质的质量或物质的数量;
 - ②摩尔只适用于计量微观粒子(如:分子、原子、离子、电子、质子、中子),不适用于宏观物质;
 - ③使用摩尔时必须指明物质微粒名称或符号或化学式或符号的特定组合。
 - 如 1molH, 或 1mol 氢原子。

二、阿伏加德罗常数(N_A):

1. 定义:	即阿伏加德罗常数,常用符号
其近似值为	

2. 作为物质的量的基准:

即 1mol 任何物质含有阿伏伽德罗常数个粒子(N_A),约为 6.02×10²³ 个。

三、摩尔质量(M):

1. 摩尔质量的概念:			符号:
表达式:	单位:	o	

一般摩尔质量为已知值(数值上等于相对原子(分子)质量或式量),可由 m=M×n,得到质量。

【练一练】下列说法正确的是 ()

- A. NaOH 的摩尔质量是 40g
- B. 1molCO₂的质量是 44g.mol⁻¹
- C. 440gCO₂的物质的量是 10mol
- D. H₂O 的摩尔质量等于 H₂O 的相对分子质量

四、物质的量(n)、物质的质量(m)、微粒数(N)之间的换算关系:

【练一练】

1.	物质的量与质量的关系式:		o
	①9 克水的物质的量是多少	?	
	②1mol 一氧化碳和 1mol 二	氧化碳的质量分别是	多少?
2.	物质的量与微粒个数的关系	式:	0
	①3molH ₂ SO ₄ 中含有	个 H ₂ SO ₄ ,含有	个 H 原子。
	②6.02×10 ²³ 个水分子中有	个氢原子、	个氧原子

枝繁叶茂

知识点 1: 物质的量、阿伏加德罗常数 (NA)

【例1】下列关于物质的量的叙述中,错误的是

- A. 1mol 任何物质都含有 6.02×10²³ 个分子
- B. 0.012kg¹²C中含有约6.02×10²³个碳原子
- C. lmol水中含有2mol氢和1mol氧
- D. 1molNe 含有 6.02×10²⁴ 个电子
- **变式 1:** 下列对"摩尔 mol"的叙述不正确的是 ()
 - A. 摩尔是一个单位,用于计量物质所含微观粒子的多少
 - B. 摩尔既能用来计量纯净物,又能用来计量混合物
 - C. 1mol 任何气体所含的气体分子数目都相等
 - D. 用"摩尔"而不用"个"计量微观粒子与用"纳米"而不用"米"计量原子直径,计量思路都是扩大单位
- 变式 2: 下列指定微粒的数目相等的是 ()
 - A. 等物质的量的水与重水含有的中子数
 - B. 等质量的 CO 和 N₂ 中含有的原子个数
 - C. 同温同压下,同体积的CO和NO含有的质子数
 - D. 等物质的量的铁和铝分别于足量氧气完全反应时转移的电子数

【方法提炼】

正确理解概念及其关系,是正确描述概念的前提。准确把握概念的内涵和外延,是解答问题的关键。 物质的量、摩尔、阿伏加德罗常数

(1) 基本概念间的关系

(2) 物质的量的表示方法。

如 0.2molH₂, 2molNa⁺, 3mol 水分子

(3) 物质的量与微粒个数、阿伏加德罗常数之间的关系为: $n=\frac{N}{N_A}$

知识点 2: 摩尔质量

【例1】下列关于摩尔质量的说法正确的是 ()

- A. 水的摩尔质量是 18g
- B. 2mol 水的摩尔质量是 1mol 水摩尔质量的 2 倍
- C. 任何物质的摩尔质量都等于它的相对分子质量或相对原子质量
- D. 水的摩尔质量是氢气摩尔质量的 9 倍

变式1: 下列对有关知识的理解正确的是 ()

- A. 物质的量是物质所含微粒的数量
- B. 1摩尔氧气的质量等于 N_A 个 O₂ 分子的相对分子质量之和
- C. 阿伏加德罗常数是人们规定的数,没有单位
- D. 当 H_2 的摩尔质量以 $g \cdot mol^{-1}$ 为单位时,在数值上与 H_2 的相对分子质量相等

【方法提炼】

正确理解概念及其关系, 是正确描述概念的前提。

准确把握概念的内涵和外延,是解答问题的关键。

摩尔质量

- (1) 摩尔质量是指单位物质的量的物质所具有的质量, 其符号为M, 单位为 $g \cdot mol^{-1}$ 。
- (2) 数值:以 g·mol⁻¹ 为单位时,任何粒子的摩尔质量在数值上等于该微粒的相对分子(或原子)质量。
- (3) 摩尔质量与物质的量、物质的质量之间的关系为: $n=\frac{m}{M}$ 。

1	49
0	
	- PAP
-	

瓜熟蒂落

-							
1.	2molO ₃ 和 3molO ₂ 的质量之比为, 分子数之	に比判	<u> </u>	,含氧	原子数之日	北为	o
2.	在 3.6gH ³⁵ Cl 的摩尔质量为, 其中含有		mol	中子,_	个□	电子。	
3.	3mol CH ₄ 分子中有mol 质子,	_mo	1中子。				
4.	0.2mol HNO ₃ 中含mol 氢原子,mol 氧	原子	,含 <u></u>	mol	质子, <u></u>	mol	孑。
5.	等物质的量的 SO ₂ 与 SO ₃ 所含分子数之比为	,原	子数之	.比为	,质量	之比为	°
6.	判断下列说法是否正确						
	(1)标准状况下,14g 氮气含有的核外电子数为	5N _A	()			
	(2) 18 g D₂O 中含有的质子数目为 10N _A		()			
	(3) 0.1mol ⁸¹ ₃₅ Br 原子中含中子数为 3.5×6.02×10 ²³	3	()			
	(4) 9gD ₂ O 中含有的电子数为 5N _A		()			
7.	下列说法中正确的是 ()						
	A. 2molCH ₄ 的质量和 O ₂ 的摩尔质量都是 32g	В.	1mol ∤	壬何气体	中都含有相	目同的原子	数
	C 0.5molNaCl 约含有 6.02×10 ²³ 个	D	1mo1/I	KCl 溶液	海山今有滚	质 1mol	

8. 下列叙述错误的是 ()

A. 1mol 任何物质都含有约 6.02×10²³ 个原子

	В.	0.012kg ¹² C 约含有	6.02×10 ²³ 个碳原子						
	C.	1mol 水中含有 2m	olH 和 1molO						
	D.	物质的量是国际单	位制七个基本物理量之	_					
9.	下列]数量的各物质所含	原子个数由大到小顺序	排列	」的是 ()			
	1)().5mol 氨气	②4g 氦气 ③4	℃时	†9mL水	④0.2mc	ol 磷酸钠		
	Α.	1432	B. 4321	C.	2341	D.	1423		
10.	在	下列说法中,正确的	的是 ()						
	A.	A. 氮原子的质量就是氮的相对原子质量							
	В.	3. 一个碳原子的质量是 12g							
	C.	氢氧化钠的摩尔质	這量是 40g						
	D.	氩气的摩尔质量在	医数值上等于它的相对原	三子原					
11.	1 1	个氧原子的质量约为	g ()						
	A.	16g	B. 16	C.	$\frac{16}{6.02 \times 10^{23}}$ g		D. $\frac{16}{6.02 \times 10^{23}}$		
12.	含	6.02×10 ²³ 个中子的	⁷ ₃ Li 的质量是 ()					
	A.	$\frac{4}{7}$ g	B. 4.7g	C.	7.4g	D.	$\frac{7}{4}$ g		
		/					4		
13.	体和	识相同的 NaCl、Mg	gCl ₂ 、AlCl ₃ 溶液,沉淀。	其中	的 Cl ⁻ ,消耗等:	量的 AgN	NO ₃ ,三种溶液的物质的量浓度之		
比为		()	•						
	Α.	3: 2: 1	B. 1: 2: 3	C.	6: 3: 2	D.	2: 3: 6		
1/	下2	<u>列</u> 关于相同物质的	量的两种气体 ¹² C ¹⁸ O 和	14 N I.	的判断正确的	是 ()		
17.		体积相等时密度相			原子数相等时		*		
		体积相等时具有的			质量相等时具				
	C.	件你相守时共有 0.	J.电 J 效相等	υ.	灰里相守时	行时从 1	奴 仰守		
15.			-	g,	用 N _A 表示阿伏	加德罗常	7数,下列说法正确的是		
	A.	氯元素的相对原子	产质量是 $\frac{12a}{b}$	В.	mg 该氯原子的	的物质的	量是 $\frac{m}{aN_A}$ mol		
	C.	该氯原子的摩尔质	i量是 aN _A g/mol	D.	ag 该氯原子所	f含质子数	数是 17N _A		
				6 页	艾 共 8 页				

某金属氯化物 MCl	₂ 40.5g,含 0.6mo1Cl-,	则该氯化物的摩尔质量	是,金属 M 的相对原子质量是	c			
跟 9gH ₂ O 中所含7	有的中子数相等的 D 2	O 的质量是 ()					
A. 4.4g	B. 6.7g	C. 8.0g	D. 10g				
下列物质中原子数	女最多的是 ()					
A. 4gH ₂	B. 3.01×10 ²³ 个	C. 0.8mo1	NH ₃ D. 4gNaOH				
1molH ₂ 和 2mol 复	[气具有相同的()					
A. 分子数	B. 原子数	C. 质子数	D. 质量				
²³ Na 分别与 ³⁵ Cl、	³⁷ Cl(氯元素的相对)	原子质量为 35.5)构成的	勺 10g 氯化钠中含 ³⁷ Cl 的质量是				
A. 1.49g	B. 1.50g	C. 1.55g	D. 1.58g				
某合金 5g 和足量	的盐酸反应,生成氢	气 0.25mol,则该合金可	能含 ()				
A. Mg 和 Zn	B. Al和 Zn	C. Fe 和 Zn	D. Fe 和 Mg				
mg 某金属与含 nr	molHCl 的盐恰好完全	:反应,生成 MCl ₂ 和氢 ^点	〔 ,则该金属的原子量()				
A. 2m/n	B. 2n/m	C. m/2n	D. n/2m				
如果 lgH ₂ O 中含有	f m 个氧原子,则阿d	伏加德罗常数可表示为_	°				
如果 1g 水中含有	n 个氢原子,则阿伏	加德罗常数是()					
A. n	B. 9n	C. 2n	D. n				
常温下,20滴水	体积为 1mL,水的密	度 1g/cm³, 1滴水中含 ε	个水分子,阿伏加德罗常数的值为()			
A. a	B. 20a	C. 18a	D. 360a				
		1 1 - 2 - 2 - 2 - 2 - 3					
_							
_			(人)				
· ·)				
	跟 9gH ₂ O 中所含存A. 4.4g 下列物质中原子类A. 4gH ₂ 1molH ₂ 和 2mol 复A. 分子数 ²³ Na 分别与 ³⁵ Cl、() A. 1.49g 某合金 5g 和足量A. Mg 和 Zn mg 某金属与含 nr A. 2m/n 如果 lgH ₂ O 中含存如果 1g 水中含有A. n 常温下,20 滴水A. a 判断正误—根据(1) 48gO ₃ 气体管(2) 14gCO 和 H(3) 7gC _n H _{2n} 中含(4) 120g 由 NaH	跟 9gH ₂ O 中所含有的中子数相等的 D ₂ A. 4.4g B. 6.7g 下列物质中原子数最多的是 (A. 4gH ₂ B. 3.01×10 ²³ 个 lmolH ₂ 和 2mol 氦气具有相同的 (A. 分子数 B. 原子数 23Na 分别与 35Cl、37Cl(氯元素的相对 () A. 1.49g B. 1.50g 某合金 5g 和足量的盐酸反应,生成氢 A. Mg 和 Zn B. Al 和 Zn mg 某金属与含 nmolHCl 的盐恰好完全 A. 2m/n B. 2n/m 如果 lgH ₂ O 中含有 m 个氧原子,则阿伏 A. n B. 9n 常温下,20 滴水体积为 lmL,水的密 A. a B. 20a 判断正误 根据质量求微粒数 (1) 48gO ₃ 气体含有约 6.02×10 ²³ 个 O (2) 14gCO 和 H ₂ 的混合物中总原子数 (4) 120g 由 NaHSO ₄ 和 KHSO ₃ 组成的	跟 9gH ₂ O 中所含有的中子数相等的 D ₂ O 的质量是 () A. 4.4g B. 6.7g C. 8.0g 下列物质中原子数最多的是 () A. 4gH ₂ B. 3.01×10 ²³ 个 O ₂ C. 0.8mol MolH ₂ 和 2mol 氦气具有相同的 () A. 分子数 B. 原子数 C. 质子数 2 ²³ Na 分别与 3 ⁵ Cl、 ³⁷ Cl(氯元素的相对原子质量为 35.5)构成的 () A. 1.49g B. 1.50g C. 1.55g 某合金 5g 和足量的盐酸反应,生成氢气 0.25mol,则该合金可A. Mg 和 Zn B. Al 和 Zn C. Fe 和 Zn mg 某金属与含 nmolHCl 的盐恰好完全反应,生成 MCl ₂ 和氢年A. 2m/n B. 2n/m C. m/2n 如果 lgH ₂ O 中含有 m 个氧原子,则阿伏加德罗常数可表示为_如果 lg 水中含有 n 个氢原子,则阿伏加德罗常数是 () A. n B. 9n C. 2n 常温下,20 滴水体积为 lmL,水的密度 lg/cm³,1 滴水中含 a A. a B. 20a C. 18a 判断正误——根据质量求微粒数 (1) 48gO ₃ 气体含有约 6.02×10 ²³ 个 O ₃ 分子 () (2) 14gCO 和 H ₂ 的混合物中总原子数为 N _A 个 () (3) 7gC _n H _{2n} 中含有的氢原子数目为 N _A ()	A. 4.4g B. 6.7g C. 8.0g D. 10g 下列物质中原子数最多的是 () A. 4gH₂ B. 3.01×10²³ 个 O₂ C. 0.8mo1NH₃ D. 4gNaOH ImolH₂和2mol 氦气具有相同的 () A. 分子数 B. 原子数 C. 质子数 D. 质量 ²Na 分別与 ³C1、³C1 (氯元素的相对原子质量为 35.5) 构成的 10g 氯化钠中含 ³C1 的质量是 () A. 1.49g B. 1.50g C. 1.55g D. 1.58g 某合金 5g 和足量的盐酸反应,生成氦气 0.25mol,则该合金可能含 () A. Mg和 Zn B. Al和 Zn C. Fe和 Zn D. Fe和 Mg mg 某金属与含 nmolHC1 的盐恰好完全反应,生成 MCl₂和氦气,则该金属的原子量 () A. 2m/n B. 2n/m C. m/2n D. n/2m 如果 1g 水中含有 n 个氢原子,则阿伏加德罗常数可表示为			

27.	判断正误——根据质量求微粒数
	(1) 常温常压下, 3g 甲醛 (HCHO) 气体含有的原子数是 0.4N _A ()
	(2) 25℃时,1.01×10⁵Pa 时,4g 氦气所含原子数为 N _A ()
	(3) 常温常压下,32g 氧气和臭氧混合气体中含有2NA个原子()
	(4) 62g 白磷 (P ₄) 中含有 0.5N _A 个白磷分子 ()
	(5) 106gNa ₂ CO ₃ 固体中含有 N ₄ 个 CO ₃ ²⁻ ()
28.	判断正误——同位素原子的差异
	(1) 18gD ₂ O 中含有的质子数目为 9N _A ()
	(2) 9gD ₂ O 中含有的电子数为 5N _A ()
	(3) 20g 重水(D ₂ O)中含有的电子数为 10N _A ()
	(4) 由 2 H 和 18 O 所组成的水 11 g,其中所含的中子数为 6 N _A (
29.	判断正误——同位素原子的差异
	(1) 0.5molDT 所含的中子数为 1.5N _A ()
	(2) 2g 重氢所含的中子数目为 N _A ()
	(3)3g 氚变为氚离子时失去的电子数目为 N _A ()
	(4) N _A 个氧分子与 N _A 个氢分子的质量比等于 16:1()
30.	N _A 表示阿伏加德罗常数,下列叙述正确的是()
	A. 等物质的量的 N_2 和 CO 所含分子数均为 N_A
	B. 1.7gH ₂ O ₂ 中含有的电子数为 0.9N _A
	C. 1molNa ₂ O ₂ 固体中含离子总数为 4N _A
	D. 标准状况下, 1LH ₂ O 所含分子数为 0.1N _A
31.	¹⁶ O 和 ¹⁸ O 是氧元素的两种原子, N _A 表示阿伏伽德罗常数, 下列说法正确的是()
	A. ¹⁶ O 与 ¹⁸ O 互为同分异构体
	B. ¹⁶ O 与 ¹⁸ O 核外电子排布方式不同
	C. 通过化学变化可以实现 16 O 与 18 O 间的相互转化
	D. 0.5mol ¹⁶ O ₂ 和 0.5mol ¹⁸ O ₂ 均含有 N _A 个氧原子