数值分析第六次上机练习报告

——数值积分与数值微分

周懿

カ 1-2021013053

一、 问题的描述

试用不同数值积分方法计算 $I(f)=\int_1^3 f(x)dx$ 的近似值,其中 $f(x)=\frac{1}{x^2}sin\frac{2\pi}{x}$. 注: I(f)=-0.238732414637843...

- 1. 把[1,3] 分成 4 个子区间, 用五点 Gauss-Legendre 求积公式的复合求积公式计算;
- 2. 用 Romberg 求积算法计算积分,取 $\varepsilon=10^{-7}$,并与第一种办法比较。

二、 方法描述

(a) Gauss-Legendre 五点复合积分公式

我们先给出 Gauss-Legendre 五点积分的算法。记 n 阶 Legendre 多项式为 $P_n(x)$,那么对于 n=5,我们取 $P_n(x)=P_5(x)$ 的零点。Legendre 多项式表如下:

Order	Legendre			
0	1			
1	$\frac{1}{x}$			
2	$\frac{3x^2-1}{2}$			
3	$\frac{2}{5x^3 - 3x}$			
4	$\frac{2}{35x^4 - 30x^2 + 3}$			
5	$ \begin{array}{c c} 8 \\ 63x^5 - 70x^3 + 15x \end{array} $			
-	$\frac{8}{231x^6 - 315x^4 + 105x^2 - 5}$			
6	16			

表 1: Legendre 多项式表

仍然使用求积公式:

$$I(f) = \sum_{k=0}^{n} A_k f(x_k) \tag{1}$$

其中 $\{x_k\}$ 为 $P_5(x)$ 的零点。然后计算 A_k :

$$A_k = \frac{2}{n+1} \frac{1}{P_n(x_k) P'_{n+1}(x_k)}$$
 (2)

(b)Romberg 求积算法

Romberg 求积算法的核心是将梯形公式减半加密网络与 Richardson 外推结合。

我们先给出梯形公式减半加密网络的算法: 设积分区间为 [a,b], 记 $h_j = 2^{-j}(b-a)$, 也就是减半加密网格的宽度,那么我们有:

$$T_1^{(0)} = \frac{b-a}{2}(f(a) + f(b)) \tag{3}$$

$$T_1^{(1)} = \frac{1}{2} \left[T_1^{(0)} + h_0 f(\frac{(a+b)}{2}) \right] \tag{4}$$

$$\dots$$
 (5)

$$T_1^{(k)} = \frac{1}{2} [T_1^{k-1} + h_{k-1} H_{k-1}]$$
(6)

其中

$$H_j = \sum_{l=1}^{2^j} f(a + (l - \frac{1}{2})h_j). \tag{7}$$

然后我们在此基础上进行 Richardson 外推,实际上是对梯形公式进行加速: 设 $\varphi(h)$ 在 $h \to 0$ 时可以收敛到 $\varphi(0) = \varphi^*$,那么我们定义新序列:

$$\varphi_1(h) = \varphi(h) \tag{8}$$

$$\varphi_{m+1}(h) = \frac{\varphi_m(qh) - q^{p_m}\varphi_m(h)}{1 - q^{p_m}}, m = 1, 2, \dots$$
(9)

那么 $\varphi_m(h)$ 就可以以更快的速度收敛到 φ^* 。在这里我们取 $p_k = 2^k, q = \frac{1}{2}$,于是我们就得到了 Richardson 外推部分的算法:

$$T_{j+1}^{(k-1)} = \frac{4^j T_j^{(k)} - T_j^{(k-1)}}{4^j - 1}, j = 1, 2, ...; k = 1, 2, ...$$
(10)

三、 方案设计

我们通过编写 MATLAB 程序来进行线性方程组的求解。

- 1. main.m: 主程序。该程序会生成题目给定的函数和积分区间,并分别调用两个求积公式 计算该积分。在本程序中我们在题目要求的基础上增加了复合公式的网格密度和 Romberg 求积算法的精度,进行多次试验,最终会给出题目要求的两个积分结果,并且绘出两个 积分公式的误差随着网格密度和外推次数增加的变化图。
- 2. gaussLegendre5_comp.m: 使用 Gauss-Legendre 五点公式进行积分的程序。该程序接受被积函数句柄,积分上限和下限,以及复合公式划分的区间数,最终返回积分值。
- 3. romberg.m:使用 Romberg 求积算法进行积分的程序。该程序接受被积函数句柄,积分上限和下限,指定最高外推次数和精度,最终返回积分值。

四、 计算结果及其分析

图 1是我们根据程序计算结果得到的数据。此处为了更清楚的显示误差和方便显示有效数字位数的变化,我们记录了 lg(E) 来近似有效位数(位数差别不会超过 1)。

Gauss-Legendre-5			Romberg		
n-section	I(f)	Number of significant digits	n-richardson	I(f)	Number of significant digits
4	-0.238732340343646	7	4	-0.239276089268083	3
5	-0.238732413461231	9	5	-0.238909004534682	4
6	-0.238732415956953	9	6	-0.238734543948288	6
7	-0.238732415253616	9	7	-0.238732414267790	9
8	-0.238732414880270	10	8	-0.238732414621624	11
9	-0.238732414733968	10	9	-0.238732414637833	14
10	-0.238732414677675	10	10	-0.238732414637843	16
11	-0.238732414655229	11	11	-0.238732414637843	16
12	-0.238732414645832	11	12	-0.238732414637843	16
13	-0.238732414641695	11	13	-0.238732414637843	16
14	-0.238732414639784	12	14	-0.238732414637843	16
15	-0.238732414638861	12	15	-0.238732414637843	16
16	-0.238732414638396	12	16	-0.238732414637843	16
17	-0.238732414638154	13	17	-0.238732414637843	16
18	-0.238732414638023	13	18	-0.238732414637843	16
19	-0.238732414637950	13	19	-0.238732414637843	16
20	-0.238732414637908	13	20	-0.238732414637843	16
21	-0.238732414637884	13	21	-0.238732414637843	16
22	-0.238732414637869	14	22	-0.238732414637843	16
23	-0.238732414637860	14	23	-0.238732414637843	16

图 1: 计算结果

(a) 使用 Gauss-Legendre 五点公式的求解结果

如表中 Gauss-Legendre-5 部分所示。从数据中我们可以看到随着网格的加密,有效数字的位数在提高。其中第一行 (n-section=4) 即为题目要求的求积结果,可以看到有效数字已经达到了 6 位。

(b) 使用 Romberg 求积算法的求解结果

如表中 Romberg 部分所示。从数据中我们可以看到随着外推次数(也就是外推矩阵的形状)的增加,有效数字的位数在提高,并且提高的速度比 Gauss 求积公式更快,但是最初的计算结果并不好,这也说明梯形公式的精度不如 Gauss 求积公式,起主要作用的应该是外推部分。其中第四行(n-richardson=7)时已经达到题目要求($\varepsilon < 1^{-7}$),并且有效数字已经达到 9 位。

为了清楚的比较两种求积公式的误差,我们给出了误差随着迭代次数的变化曲线,如图 2所示。由图可知,随着网格的加密,Gauss-Legendre 在五点的情况下,即使不把网格取得很密,也可以获得较为精确的解,但是收敛的速度相比 Romberg 要慢一些,但是 Romberg 算法 在初期因为梯形公式本身精度的问题,在外推次数较少的情况下无法取得较为精确的解。但是,只要合理设置外推次数,可以更快地获得更加精确的解。

五、 结论

在本次上机实验中,我们分别采用 Gauss-Legendre 五点积分公式和 Romberg 求积算法分别对指定函数和区间进行了积分,从中我们可以看出两种公式各有利弊,Gauss-Legendre

图 2: 误差变化示意图

公式不需要过密的网格就可以得到精确解,而 Romberg 加速效率更到,但是在参数设置得当的情况下,两种公式均可以取得很好的结果。