# Experiment Berechnung des Luftwiderstands

N. Meier, P. Günthard Berufsbildungsschule Winterthur, 6MT13v

28. August 2016

#### **Inhaltsverzeichnis**

| 1 | Einleitung                   |   |  |  |
|---|------------------------------|---|--|--|
| 2 | Beschreibung des Experiments | 2 |  |  |
|   | 2.1 Aufbau des Experiments   | 2 |  |  |
|   | 2.2 Ablauf des Experiments   | 3 |  |  |
| 3 | Ergebnisse                   | 3 |  |  |
| 4 | Analyse                      |   |  |  |
| 5 |                              | 4 |  |  |
|   |                              | 4 |  |  |
|   | 5.2 Turbulenzen              | 4 |  |  |
|   | 5.3 Grafische Darstellung    | 4 |  |  |
| 6 | Schlussfolgerung & Fazit     | 4 |  |  |

## 1 Einleitung

Dieses Experiment wurde im Rahmen des Physikunterichts der Klasse 6MT13v der BBW durchgeführt. Begleitende Lehrperson war X. Würms.

# 2 Beschreibung des Experiments

Das Experiment dient dazu, die physikalischen Gesetze des Luftwiderstand zu erarbeiten und zu erlernen.

#### 2.1 Aufbau des Experiments

Für das Experiment wurden folgende Mittel verwendet:

- 1 Entfernungsmesser
- 6 Testobjekte in Form von Papierkegel
- 1 Rechner zur Aufzeichnung und Speicherung der Ergebnisse des Entfernungsmesser
  - Betriebssystem: Windows 10
  - Aufzeichnungssoftware: Logger Pro (Trial)

Diese wurden wie in der Abbildung 1 angeordnet.



Abbildung 1: Aufbau des Experiments

## 2.2 Ablauf des Experiments

# 3 Ergebnisse



# 4 Analyse

Analyse

## 5 Formeln

$$v^2 \sim m \sim F_L$$

| v | F Laminar | F Turbulent |
|---|-----------|-------------|
| 0 | 0         | 0           |
| 1 | 1         | 1           |
| 2 | 2         | 4           |
| 3 | 3         | 9           |
| 4 | 4         | 16          |
| 5 | 5         | 25          |

Abbildung 2:

### 5.1 Laminar

$$F_L = k * v$$

#### 5.2 Turbulenzen

$$F_T = k * v^2$$

## 5.3 Grafische Darstellung

Siehe Abbildung 2

# 6 Schlussfolgerung & Fazit