Instruction Scheduling of the PE Array

4 Nov. 2020

Below is an idea of *Iterative Modulo Scheduling* which is very efficient on hardware.

	Sciew is an idea of the active into action Series and Willer is very efficient of including.						
Cycle	PE_0	PE_1	PE_2	PE_K	PE_K+1	PE255	
32	$\uparrow X_0^T, Y_0^T$						
32	MULT	X_1^T , Y_0^T					
160	FFT_32	MULT	X_2^T , Y_0^T				
16	Output	FFT_32	MULT	••••			
32	$X_0^T Y_1^T$	Output	FFT_32		•••••		
32	MULT	$X_1^T Y_1^T$	Output			X_{255}^T , Y_0^T	
160	FFT_32	MULT	$X_2^T Y_1^T$			MULT	
16	Output	FFT_32	MULT	•••••		FFT_32	
	<u> </u>	Output	FFT_32		•••••	Output	
II			Output			X_{255}^{T} , Y_{1}^{T}	
						MULT	
						FFT_32	
						Output	
	₩						
	$X^{\prime T}_{0}$, $Y^{\prime T}_{0}$						
		X_1^T, Y_0^T					

Latency = 32 * 255 + (32 + 32 + 160 + 16) * 256 cycles = 69600 cycles = **0.139 ms** (@500MHz)

Throughput = 1 / II = 1 / ((32 + 32 + 160 + 16) * 256 * 2ns) = 8138 samples/s

Proposed PE array consumes 1,024 DPSs and 512 BRAMs (1 PE uses 4 DSPs and 2 BRAMs).

Available resource on Xilinx RFSoC (ZCU111) platform:

LUT	FF	BRAM	DSP	URAM
425,280	850,560	1,080 (36Kb)	4,272	80 (288Kb)