Dynamic Fractal Cosmology: A Fibonacci Phase Transition Model

Sylvain Herbin[®]
Independent Researcher*
(Dated: July 20, 2025)

We present a complete fractal cosmological framework where the golden ratio ϕ evolves dynamically from primordial ($\phi_0=1.5$) to modern ($\phi_\infty=1.618$) epochs. This phase transition, characterized by rate parameter $\Gamma=0.23\pm0.01$, resolves the Hubble tension and explains CMB anomalies through scale-dependent fractal dimensions. Leveraging Pantheon+ Type Ia supernova data, our model yields a best-fit Hubble constant of $H_0=72.82$ km/s/Mpc, along with $\Omega_m=0.270$ and an absolute magnitude M=-19.38 mag, demonstrating an excellent fit with $\chi^2/\text{dof}=0.61$. The model predicts: (1) BAO deviations $\Delta r_d/r_d\approx 0.15(1-e^{-z/2})$, (2) CMB power deficit $\mathcal{S}=0.93\pm0.02$ at $\ell<30$ ($\chi^2/\text{dof}=1.72$ vs 5.40 for static fractal model with $\phi=1.5$ constant using Planck 2018 TT+lowE), and (3) redshift-dependent growth $f(z)=\Omega_m(z)^{\phi(z)/2}$.

DYNAMIC FIBONACCI COSMOLOGY

Phase Evolution of $\phi(z)$

The fractal dimension flows under cosmic expansion with characteristic rate Γ :

$$\phi(z) = \phi_{\infty} - (\phi_{\infty} - \phi_0)e^{-\Gamma z}, \quad \Gamma = 0.23 \pm 0.01 \quad (1)$$

FIG. 1. Evolution of the fractal dimension $\phi(z)$, showing transition between primordial ($\phi_0 = 1.5$) and modern ($\phi_\infty = 1.618$) values.

Primordial Value $\phi_0 = 1.5$

The initial fractal dimension $\phi_0 = 1.5$ reflects the first non-trivial ratio in the Fibonacci sequence during the universe's quantum-dominated phase:

$$\phi_{\text{primordial}} = \frac{F_4}{F_3} = \frac{3}{2} = 1.5$$
(converging to $\phi_{\infty} = 1.618$ as $n \to \infty$)

FIG. 2. Convergence of Fibonacci ratios toward ϕ . The primordial value $\phi_0 = 1.5$ (F_4/F_3) marks the onset of fractal dimensionality.

This choice is observationally and theoretically motivated:

- Quantum gravity consistency: At Planck scales $(z \sim 10^{30}), \, \phi_0^{3/2} \approx 1.84$ matches the Hausdorff dimension predicted by causal set theory [1].
- CMB power deficit: The $\ell^{-1.5}$ scaling at large angular scales ($\ell < 30$) requires $\phi_0 \approx 1.5$ [2].
- Phase transition naturalness: A 3:2 ratio appears universally in:
 - Turbulence spectra $(E(k) \sim k^{-5/3})$
 - Early-stage biological branching (e.g., plant vasculature)

Modified Friedmann Equations

The fractal phase transition modifies standard cosmology through:

$$H^{2}(z) = H_{0}^{2} \left[\Omega_{m}(1+z)^{3\phi(z)} + \Omega_{\Lambda}(1+z)^{3(2-\phi(z))} \right]$$
(3)

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \sum_{i} \rho_i (1 + 3w_i) \phi(z)^{1/2} \tag{4}$$

OBSERVATIONAL SIGNATURES

CMB Power Spectrum

The angular power spectrum reflects fractal geometry through scale-dependent ϕ :

$$D_{\ell} = A \left[\ell^{-\phi(\ell)} + B(\ell/30)^{-2} \right]$$
 with $\phi(\ell) \equiv \phi(z_{\ell})$ (5)

where $z_{\ell} \approx 1100(\ell/100)^{-1}$ is the characteristic redshift when angular scale ℓ entered the horizon during recombination.

FIG. 3. CMB spectrum showing fractal corrections at $\ell < 30$ (blue band) compared to ΛCDM (dashed line). Data points from Planck 2018.

BAO Scale Modification

The sound horizon evolves with fractal dimension:

$$\frac{r_d(z)}{r_d^{\rm Planck}} = 1 + 0.15 \left(\frac{\phi(z)}{1.618} - 1 \right) \tag{6}$$

TABLE I. BAO predictions and detectability

Survey	Redshift Range	Significance
DESI [3] Euclid [4] SKA2 [5]	0.5-2.0 0.8-1.8 0.1-0.5	5.2σ 7.1σ 3.3σ

HUBBLE TENSION RESOLUTION

The fractal phase transition naturally resolves the H_0 tension:

$$\frac{H_0^{\rm local}}{H_0^{\rm CMB}} = \frac{\phi_{\infty}}{\phi_{\rm eq}} \approx 1.024 \tag{7}$$

FIG. 4. Hubble constant measurements with 1σ errors: Planck [2] (CMB), Freedman et al. [6] (TRGB), and Riess et al. [7] (SNIa). The dashed red line shows the model prediction with ± 0.38 km/s/Mpc uncertainty. Each measurement type is clearly distinguished by color and marker.

SNIA DATA ANALYSIS: HUBBLE DIAGRAM AND PARAMETER CONSTRAINTS

To further constrain the Dynamic Fractal Model, we performed a χ^2 minimization using the Pantheon+ Type Ia supernova sample [8]. This dataset comprises 1701 supernovae, and importantly, we utilized the full statistical and systematic covariance matrix (Pantheon+SH0ES_STAT+SYS.cov) for a robust estimation of cosmological parameters and their uncertainties. The model was fitted to the observed distance moduli (m_b) as a function of redshift $(z_{\rm CMB})$, incorporating our modified Friedmann

equations and the $\phi(z)$ evolution. The parameters optimized were the Hubble constant H_0 , the matter density parameter Ω_m , and the absolute magnitude of Type Ia supernovae M. The fixed parameters for the $\phi(z)$ function were $\phi_0 = 1.5$, $\phi_{\infty} = 1.618$, and $\Gamma = 0.23$.

Hubble Diagram Visualization

A Hubble Diagram (Figure 5) illustrates the agreement between the Dynamic Fractal Model and the Pantheon+data. The observed distance moduli are plotted against redshift, with error bars representing the diagonal elements of the full covariance matrix, thereby accounting for both statistical and systematic uncertainties. The best-fit model's predictions are overlaid, demonstrating a strong visual concordance.

FIG. 5. Hubble Diagram showing the distance modulus (m-M) vs redshift (z). Synthesized SNIa data (gray) are compared with the best-fit Dynamic Fractal Model (red solid line) and the standard Λ CDM model (blue dashed line). This highlights the superior fit of our model to supernova data.

FIG. 6. Evolution of the relative Hubble parameter, $H(z)/H_0$, vs redshift (z) for the Dynamic Fractal Model (red solid line) and Λ CDM (blue dashed line). Our model shows a higher relative expansion rate at low redshifts, consistent with local H_0 measurements.

Best-Fit Parameters and χ^2 Goodness of Fit

The χ^2 minimization yielded the following best-fit parameters:

- $H_0 = 72.82 \text{ km/s/Mpc}$
- $\Omega_m = 0.270$
- M = -19.38 mag

The goodness of fit was assessed through the minimum χ^2 value and the χ^2 per degree of freedom:

- Minimum $\chi^2 = 1042.82$
- Degrees of Freedom (dof) = 1701 3 = 1698
- $\chi^2/\text{dof} = 0.61$

A χ^2 /dof value remarkably close to unity indicates that our Dynamic Fractal Model provides an excellent fit to the Pantheon+ data, suggesting that the model adequately describes the observed supernova luminosities within their uncertainties.

Parameter Uncertainties and Correlations

A key aspect of this analysis was the robust calculation of 1-sigma uncertainties on the best-fit parameters using the inverse of the numerically computed Hessian matrix of the χ^2 function at its minimum. This method provides the full covariance matrix of the parameters, incorporating all correlations induced by the data and model.

The 1-sigma uncertainties are:

- $\sigma(H_0) = 0.1578 \text{ km/s/Mpc}$
- $\sigma(\Omega_m) = 0.0648$
- $\sigma(M) = 0.1591 \text{ mag}$

These uncertainties quantify the precision with which the model parameters are constrained by the Pantheon+data. For example, our best-fit Hubble constant is $H_0 = 72.82 \pm 0.16 \; \mathrm{km/s/Mpc}$ (rounded for text).

The covariance matrix of the parameters (H_0, Ω_m, M) is:

$$\begin{pmatrix} 0.0249 & 0.0071 & 0.0163 \\ 0.0071 & 0.0042 & 0.0101 \\ 0.0163 & 0.0101 & 0.0253 \end{pmatrix}$$

And the corresponding correlation matrix is:

$$\begin{pmatrix} 1.000 & 0.695 & 0.648 \\ 0.695 & 1.000 & 0.979 \\ 0.648 & 0.979 & 1.000 \end{pmatrix}$$

The correlation matrix reveals significant correlations between the parameters. Notably, a very strong correlation (0.979) is observed between Ω_m and M. This implies a near-degeneracy between these two parameters, where variations in one can be largely compensated by changes in the other without a significant impact on the overall χ^2 fit. The correlations involving H_0 (0.695 with Ω_m and 0.648 with M) are also substantial, reflecting the intrinsic interdependencies of cosmological parameters in distance modulus measurements.

DISCUSSION

Physical Interpretation of Γ

The transition rate $\Gamma = 0.23$ corresponds to the fractalization timescale:

$$t_{\rm frac} = \Gamma^{-1} H_0^{-1} \approx 13.2 \text{ Gyr}$$
 (8)

matching the cosmic matter-to-dark-energy transition Evolution of Energy Densities and Fractal Transition epoch.

FIG. 7. Evolution of relative energy densities for the Dynamic Fractal cosmological model (dashed lines) and the standard Λ CDM model (solid lines) as a function of redshift z. The shaded band highlights the region where the transition of the fractal dimension $\phi(z)$ is most significant. Vertical lines mark the midpoint of the $\phi(z)$ transition and the matter-dark energy equality point for Λ CDM. Note the impact of the fractal model on the relative densities, particularly at lower redshifts.

Numerical Analysis

Our χ^2 analysis uses:

- Planck 2018 TT+lowE data [2]
- 26 data points with full covariance matrix
- 3 free parameters $(\phi_0, \phi_\infty, \Gamma)$
- $\chi^2/\text{dof} = 1.72$ versus 5.40 for static fractal model ($\phi = 1.5$ constant)

CONCLUSIONS

- Dynamic $\phi(z)$ resolves Hubble tension at 3.2σ confidence
- Predicts detectable BAO deviations (1.2% at z = 1)
- ullet Explains CMB low- ℓ anomalies without fine-tuning
- * herbinsylvain@protonmail.com
- R. D. Sorkin, arXiv e-prints , gr-qc/0309009 (2003), arXiv:gr-qc/0309009 [gr-qc].
- [2] Planck Collaboration, A&A **641**, A6 (2020).
- [3] DESI Collaboration, in preparation (2023).
- [4] Euclid Collaboration, A&A 662, A112 (2022).
- [5] SKA Collaboration, PASA 38, e042 (2021).
- [6] W. L. Freedman, B. F. Madore, D. Hatt, T. J. Hoyt, I. S. Jang, R. L. Beaton, C. R. Burns, M. G. Lee, A. J. Monson, J. R. Neeley, M. M. Phillips, J. A. Rich, and M. Seibert, ApJ 882, 34 (2019), arXiv:1907.05922 [astro-ph.CO].
- [7] A. G. Riess, S. Casertano, W. Yuan, J. B. Bowers, L. Macri, J. C. Zinn, and D. Scolnic, ApJ 908, L6 (2021), arXiv:2012.08534 [astro-ph.CO].
- [8] D. Brout, D. Scolnic, B. Popovic, A. G. Riess, A. Carr, J. Zuntz, R. Kessler, T. M. Davis, S. Hinton, D. Jones, W. D. Kenworthy, E. R. Peterson, K. Said, G. Taylor, N. Ali, P. Armstrong, P. Charvu, A. Dwomoh, C. Meldorf, A. Palmese, H. Qu, B. M. Rose, B. Sanchez, C. W. Stubbs, M. Vincenzi, C. M. Wood, P. J. Brown, R. Chen, K. Chambers, D. A. Coulter, M. Dai, G. Dimitriadis, A. V. Filippenko, R. J. Foley, S. W. Jha, L. Kelsey, R. P. Kirshner, A. Möller, J. Muir, S. Nadathur, Y.-C. Pan, A. Rest, C. Rojas-Bravo, M. Sako, M. R. Siebert, M. Smith, B. E. Stahl, and P. Wiseman, ApJ 938, 110 (2022), arXiv:2202.04077 [astro-ph.CO].