Global Precipitation Measurement (GPM) Mission

An International Partnership & Precipitation Satellite Constellation

for Research on Global Water & Energy Cycle

NASA's Scientific Agenda for **GPM Mission**

- 3rd GPM International Planning Meeting
- NASA/Goddard Space Flight Center, Greenbelt, MD 20771
- [tel: 301-286-5770; fax: 301-286-1626; eric.a.smith@nasa.gov; http://gpmscience.gsfc.nasa.gov]
- June 24-26, 2003; ESA/ESTEC, Noordwijk, The Netherlands

GPM Mission Design

OBJECTIVES

 Understand horizontal & vertical structure of rainfall, its macro- & micro-physical nature, & its associated latent heating

algorithms for constellation Train & calibrate retrieval radiometers

Constellation

OBJECTIVES

reduce uncertainties in shortterm rainfall accumulations Provide sufficient global sampling to significantly

Extend scientific and societal applications

Core Satellite

- TRMM-like spacecraft (NASA)
- H2-A rocket launch (NASDA)
- Non-sun-synchronous orbit
 - ~ 65° inclination
- ~400 km altitude
- Dual frequency radar (NASDA) ~ 4 km horizontal resolution K-Ka Bands (13.6-35 GHz) ~250 m vertical resolution
- Multifrequency radiometer (NASA)

10.7, 19, 22, 37, 85, (150/183?) GHz V&H

Precipitation Processing Center

- Produces global precipitation products
 - Products defined by GPM partners

Constellation Satellites

- experimental & dedicated satellites Pre-existing operationalwith PMW radiometers
- Revisit time

3-hour goal at ~90% of time

Sun-synch & non-sun-synch orbits 600-900 km altitudes

Precipitation Validation Sites for Error Characterization

- quality radar, up looking radiometer-radar-profiler system, raingage-• Select/globally distributed ground validation "Supersites" (research disdrometer network, & T-q soundings)
- Dense & frequently reporting regional raingage networks

June 24, 2003

Notional International Constellation Architecture

Drone

do-oo

GPM

Partners

Eric A. Smith

eric.a.smith@nasa.gov

June 24, 2003

http://gpmscience.gsfc.nasa.gov

GPM Mission is Being Formulated within Context of with Foremost Science Goals Focusing On Global Water & Energy Cycle

- variations in rainfall with associated error bars and improvements in achieving properties & climate variations as mediated by accompanying accelerations in Improved Climate Predictions: through quantifying trends & space-time understanding relationship between rain microphysics/latent heating/DSD water budget closure from low to high latitudes -- plus focused GCM research on global water cycle (both atmosphere & surface branches).
- globally distributed measurements of instantaneous rainrate & latent heat release -- plus focused NWP research on advanced techniques in satellite precipitation • Improved Weather Predictions: through accurate, precise, frequent & data assimilation & error characterization of precipitation retrievals.
- forecasting, ■ Improved Hydrometeorological Predictions: through frequent sampling & complete continental coverage of high resolution rainfall measurements including snowfall -- plus focused research on innovative designs in hydrometeorological modeling encompassing hazardous flood <u>seasonal draught-flood</u> outlooks, & *fresh water resources* prediction.

Relevance of Global Water Cycle

Availability & quality of water is essential to life on earth.

- GWC is core of climate-weather-hydrology system, affecting all physical, chemical, & ecological components & their interactions.
- water cycle is essential for addressing wide variety of socially Accurate assessment of spatial-temporal variation of land surface relevant science, education, applications, & management issues:
- rainfall-runoff, flood, & drought prediction
- meteorological processes & weather prediction
- climate system & ecosystem modeling
- soil system science
- crop systems & agriculture production
 - water supply, human health, & disease
- forest ecology & management
- civil engineering
- water resources management
- military operations

climate, water supplies, crop production, biogeochemical cycles, ecological balances of biosphere at various time scales.

Eric A. Smith

Sampling Frequency & Global Coverage

Percent Sampling of 3-Hr Bins & Global Mean Revisit Time

GPM

NPOESS/Lite GCOM-B1 DMSP/F18 DMSP/F19 CORE

EGPM MEGHA-TROPIQUES FY-3

Eric A. Smith

eric.a.smith@nasa.gov

June 24, 2003

→ 90N-90S - +··· 60N-60S -· +·· 30N-30S -× Global Mean Average

http://gpmscience.gsfc.nasa.gov

Observing Simulation System Experiment (OSSE) for Orthodox 8-Member Sun-Synchronous Constellation Producing Global 3-Hour Sampling

[Flown at Two Swath Widths]

Precipitation field produced by Colorado State University General Circulation Model [characteristic monthly errors order 0.25 mm day-1 or \sim 7 W m⁻²] (GCM) simulating January conditions

Rainfall Deviations (satellite sampled minus fully sampled in mm day-1)

Revisit (Hours Since Previous Overpass)

SSMI from DMSP F-13, F-14, F-15 (conical) Gold:

AMSU-B from NOAA-15, NOAA-16, NOAA-17 (x-track) Green:

TMI from TRMM (conical) Blue:

AMSR-E from EOS-Aqua (conical)(shaded regions represent 15-minute coverage) Red:

Turk, F.J., E. Ebert, B-J. Sohn, H-J. Oh, V. Levizzani, E.A. Smith, & R. Ferraro, 2002: Validation of global operational blendedsatellite precipitation analysis at short time scales. Bull. Amer. Meteorol. Soc., for submission.

Eric A. Smith

eric.a.smith@nasa.gov

June 24, 2003

http://gpmscience.gsfc.nasa.gov

Measurement Resolution & Microphysical Dexterity

http://gpmscience.gsfc.nasa.gov

eric.a.smith@nasa.gov

Improving Precipitation Retrievals

Cloud Macrophysical & Microphysical Fundamentals

Determination of: drop size distribution [DSD(r)], mass mixing ratio [q(z)_{hydro(r)}], rain mass flux [F_r(z)], fall velocity [w(z)_{hydro(r)}], & latent heating [LH(z)]

3-D KWAJEX AMPR V4.0 E-S INDEX WITH 0.5-1 KM LAYER ARMAR REFLECTIVITY 28 FLIGHTS TOTAL --- 40140 SUPERPIXELS

■ 19 SATU=NO: 37 DEDR=NO ■ 19 SATU=VES: 37 DEDR=VES ■ 19 SATU=NO: 37 DEDR=VES ■ 19 SATU=VES: 37 DEDR=NO

Accompanied by COMPREHENSIVE TESTING Capability within PPS Implementation of Fully Modular OPEN ACCESS Facility Algorithms

Resolution Above All Else because Beamfilling Error Rules!

In The Use of Satellite Data in Smith, E.A., and S.Q. Kidder, 1978: A multispectral satellite approach to rainfall estimates. Rainfall Monitoring (authored by E.C. Barrett and D.W. Martin), Academic Press, 160-163.

Hurricane Bonnie at 19 GHz

GMI-Core (1.2 m) @ 400 km

TMI (0.6 m) @ 400 km

PRC/MI-FY3 (0.75 m) @ 835 km MADRAS (0.8 m) @ 865 km

SSMIS (0.6 m) @ 860 km SSM/I (0.6 m) @ 860 km

Brightness Temperature in Kelvin

120 140 160 180 200 220 240
140
120

Beam Filling Induced Retrieval Error at 10.7 & 19 GHz

	10/18	20/36	30 / 54	40/72	50 / 91	60 / 109
I 19 GHz	11.4	20.6	25.9	29.7	32.6	35
110.7 GHz	5.9	8.7	10.3	11.5	12.4	13.1

Wang, S.A., 1996: Modeling the beamfilling correction for microwave retrieval of oceanic rainfall. Ph.D. Dissertation, Dept. of Meteorology, Texas A&M University, College Station, TX, 100 pp. [T.T. Wilheit, Major Professor]

TRMM & GPM Rainrate Retrieval Simulations Under Varying Mean Adj Drop Diameter Profiles

Global Water Cycling & Climate

June 24, 2003

Global Water Budget & Water Cycle

General Equation

water tendency water divergence
$$\frac{\text{water divergence}}{\frac{\partial q(p)}{d(p)} + \nabla \cdot \frac{\overrightarrow{U}(p) q(p)}{d(p)} + \frac{\partial p}{\partial p(p) q(p)}} / \partial p = S(q)$$

turbulent eddy diffusion
$$D(q)$$

Employing Reynolds Decomposition and Ignoring Horizontal Eddy Fluxes

total water tendency vapor or cloud water (vapor or cloud water) divergence

$$\frac{\partial [\omega(p)' \, q_v(p)']}{\partial p} / \frac{\partial p}{\partial p}$$

$$\frac{\partial \frac{1}{q_v(p)}}{\partial \frac{1}{q_c(p)}} / \frac{\partial t}{\partial t} + \nabla \bullet \overline{\dot{U}(p)} \frac{1}{q_v(p)} + \frac{\partial \omega(p)}{\omega(p)} \frac{q_v(p)}{q_v(p)} / \frac{\partial p}{\partial p} = +\overline{\dot{e}(p)}$$

$$\frac{\partial \frac{1}{q_v(p)}}{\partial q_v(p)} / \frac{\partial t}{\partial t} + \nabla \bullet \overline{\dot{U}(p)} \frac{1}{q_v(p)} + \frac{\partial \omega(p)}{\omega(p)} \frac{1}{q_v(p)} / \frac{\partial p}{\partial t} = -\overline{\dot{e}(p)}$$

$$\begin{array}{c} c(p) \\ c(p) \end{array}$$

$$-\frac{\partial_{[\omega(p)',q_v(p)']}}{\partial_{[\omega_c(p)',q_c(p)']}}/\frac{\partial p}{\partial p}$$

Vertically Integrate

cloud water storage advection advection evaporation precipitation vapor cloud water surface combined vapor &

 $= \frac{\nabla \cdot \overrightarrow{U} \cdot \overrightarrow{W}}{\nabla \cdot \overrightarrow{U} \cdot \overrightarrow{W}} + \frac{\nabla \cdot \overrightarrow{U} \cdot \overrightarrow{W}}{\nabla \cdot \overrightarrow{U} \cdot \overrightarrow{W}} =$

$$\frac{W_t}{W_t} = \frac{\vec{U} \cdot \vec{\nabla} W_v}{\vec{U} \cdot \vec{\nabla} W_v} = \frac{\vec{E}}{\vec{E}} = \frac{\vec{P}}{\vec{P}}$$
 signifying no mass divergence out of column

$$\begin{array}{ccc}
\mathbf{W}_{\mathbf{C}} \bullet \nabla \overrightarrow{\mathbf{U}} = 0 \\
\mathbf{W}_{\mathbf{C}} \bullet \nabla \overrightarrow{\mathbf{U}} = 0
\end{array}$$

eric.a.smith@nasa.gov

Acceleration of Water Cycle

What is Acceleration of Water Cycle in Oceanic Context?

first, above derivation gives water budget in divergence form, as follows

storage
$$\frac{9}{W}$$
 $\frac{1}{2}$

$$\partial \overline{W_t} / \partial t$$

$$\nabla \cdot \vec{\mathbf{U}} \mathbf{W}_{\mathbf{c}}$$

 $\nabla \cdot \overrightarrow{\mathbf{U}} \mathbf{W_v}$

II

thus, acceleration of oceanic water budget is rate of change of

$$= \partial \overline{E} / \partial t$$

$$\partial \overline{\mathrm{P}} \; / \, \hat{\sigma}$$

$$\partial^2 \overline{\mathbf{W_t}} / \partial \mathbf{t}^2 +$$

$$\partial \nabla \cdot \overrightarrow{U} W_v / \partial t + \partial \nabla \cdot \overrightarrow{U} W_c / \partial t = \partial \overline{E} / \partial t -$$

$$= \partial \overline{E} / \partial t -$$

$$\partial \overline{\mathrm{P}} \ / \ \partial \mathbf{t}$$

What is Acceleration of Water Cycle in Continental Context?

first, continental water budget is formulated differently than oceanic budget

interflow runoff & base flow precipitation
$$\overrightarrow{U}_{\epsilon} \cdot \nabla q_{1} + \overrightarrow{RO} + \overrightarrow{RF} = \overrightarrow{P}$$

$$\overrightarrow{\overline{U_s}} \cdot \nabla q_1 + \overline{RO} + \overline{BF}$$

evaporation

thus, acceleration of continental water budget is rate of change of

d S/ dt

$$\partial \overline{U_s} \cdot \nabla q_1 / \partial t + \partial (\overline{RO} + \overline{BF}) / \partial t = \partial \overline{P} / \partial t$$

$$\partial \overline{E}/\partial t$$

& sublimation

Gulf of Mexico & Caribbean Basins Satellite-based Water Budget of

[P. Santos & E.A. Smith, 2003]

Gulf-Caribbean Basins &

Eric A. Smith

eric.a.smith@nasa.gov

June 24, 2003

http://gpmscience.gsfc.nasa.gov

Winter

10 0 2

E - P (cm/month)

http://gpmscience.gsfc.nasa.gov

June 24, 2003

eric.a.smith@nasa.gov

Diurnally-Averaged Monthly Framework

 $|E-P| = \delta(PW+LWP)/\delta t = \nabla \cdot Q$

30

Percentage (%)

8 4

ξ._{ζ.}

eric.a.smith@nasa.gov

Summary of Water Budget Calculations

GPM

eric.a.smith@nasa.gov

June 24, 2003

http://gpmscience.gsfc.nasa.gov

Key Objective of Water Cycle Research Precipitation Prediction:

Associated with Shift of ENSO from Negative to Positive Phase **TRMM & GPM Retrieved Rainrates Presuming** Interannual Perturbation in Rain Microphysics [formulated by decrease/increase in mean adj drop size]

GPM Validation Program Data Assimilation & Weather Prediction,

eric.a.smith@nasa.gov

Legend

Data Acquisition-Analysis Facility Multiparameter Radar

Uplk Mtchd Radiom/Radar 90 GHz Cloud Radar S-/X-Band Profilers

Meteorological Tower & Sounding System Site Scientist (3)

Technician (3)

Retrieval Error Synthesis

Improvement Guidance Algorithm

Validation Analysis

 50-Gage Site Hi-Res Domain Center-Displaced with

· Upward S-/X-band Doppler Radar Profilers & 90 10.7,19,22,37,85,150 GHz/14,35 GHz GHz Cloud Radar

Centered on Multi-parm Radar 100-Gage Site Lo-Res Domain

eric.a.smith@nasa.gov

Eric A. Smith

June 24, 2003

http://gpmscience.gsfc.nasa.gov

Error Characterization (Precision)

$$J(x) = (x^b - x)^T F^{-1} (x^b - x) + (y^o - H(x))^T (O + P)^{-1} (y^o - H(x))$$

forecast model, observations, & forward model (precip parameterization), where y^o , H, & x are observation, forward model, & control variable. F, O, & P are error covariance matrices associated with

Space-Time Observational Error Covariance (O)

Space-Time Autocorrelation Structure Given By

- volume scanning ground radars
 (dual-polarization enables DPR calibration cross-checks)
- · research-quality, uniformly distributed, dense,
 - & hi-frequency sampled raingage networks

Impact of TMI Rain Assimilation on Tropical Cyclone Dynamics

Horizontal & Vertical Winds in Tropical Cyclone Bonnie

J.-F. Mahfouf

Eric A. Smith

eric.a.smith@nasa.gov

TRMM-SSM/I Data Assimilation

Hurricane Intensity (ECMWF) -- Mahfouf et al

Impact of TMI Rain Assimilation on Tropical Cyclone Dynamics

Horizontal & Vortical Winds in Tropical Cyclone Bonnie

Tropical Convection (NOAA/NCEP) -- Kuligowski et al

SSM/I & TRMM Data Assimilation Reduces Overprediction of Tropical Convection in NOAA GDAS Simulations

Hurricane Track (FSU) -- Krishnamurti et al

Superensemble: RMS Error of Global Precipitation (0 - 360E; 90S - 90N)

Climate Re-analysis (NASA/DAO) -- Hou et al

TRMM & SSM/1 Rainfall + TPW Data Assimilation Improves Hydrological Parameters, Clouds, & TOA Radiation in GEOS Analysis

GSFC-BAO

OPF Data Assimilation Experiments Over Korea

Hydrometeorlogical Prediction

GPM

Prediction of Precipitation from Tropical o Tornadic Storms & Consequent Flooding is

brown trajectories: > 2.0 km green trajectories: < 1.5 km precipitation feed precipitation feed

Geography & Orography
35/50 m s⁻¹ jet cores; 5 km MSL isobars (2 mb); white (surface) -- orange (1.5 km) Disturbances under Control of Fixed Arising within Mobile Westerly Amplifying Mesoscale Storms

50/35 M/S JET CORES 5 KM MSL ISOBRIES (24b) SURFACE TEMPERATURE

Friuli - 1998

Better Flood Predictions:

Analysis of Three (3) CRM Simulation & **Microphysical** Late Season

Mediterranean Floods

Ligurian, Ionian, & within Tyrrhenian, Low-Level Flows Simulation of

 □ surface flow convergence set up off-shore
 □ due to flow normal to high alps terrain
 □ flow surge lifted over convergence zone off-shore
 (335 θ_e surface) Barrier Convergence Zone

3 km MSL Brunt Vaisala Frequency Elevated Mixed Layer

Stable Brünt-Vaisala Frequency (dark shading) Inflow Cross-Section Surface $heta_e$ (shaded)

427 mm

Genova - 1992

Piemonte - 2000

eric.a.smith@nasa.gov

Eric A. Smith

June 24, 2003

http://gpmscience.gsfc.nasa.gov

Average Liquid Water Path, Ice Water Path, & Rainrate

eric.a.smith@nasa.gov

Vertically-Distributed Microphysical & Vert-Velocity Properties Between-Storm & Storm-Specific-Time Differences in [Rain Drops & Graupel Particles]

WATER CONTENT & SIZE DISTRIBUTION TOTAL STORM AREA (RR ≥ 1 mm h⁻¹)

Rain Drops

TOTAL STORM AREA (RR ≥ 1 mm h⁻¹) ICE CONTENT & SIZE DISTRIBUTION

Graupel Particles

STORM AREA (RR > 1 mm h⁻¹) **VERTICAL VELOCITY** TOTAL

"₽ 2 9 2

Mum Conc (cm-3 hm-1)

Height (km)

http://gpmscience.gsfc.nasa.gov

Vertically-Distributed Microphysical Properties Storm-Specific/Inter-Storm Differences in

[Rain Drops]

WATER CONTENT & SIZE DISTRIBUTION PERIPHERY & OUTER RAINBAND

eric.a.smith@nasa.gov

Conclusions

- spatial resolution & microphysical processes in retrieval will provide Global measurement coverage in conjunction with greater emphasis on framework for implementing GPM research program focused relationship between global water cycle & global climate variability.
- Aggressive error reduction error characterization validation program will provide quantitative conditional bias uncertainty/space-time error covariance information needed for objective rainfall data assimilation used in short and medium range weather forecasting.
- 3-hour sampling & research emphasis on achieving basin/global scale water budget closure will improve accuracy of hydrometeorological prediction models & their application to assessment of fresh water resources, prediction of seasonal flood-drought conditions, & hazardous flood forecasts. 3
- global & regional water cycles -- if data time series are extended to research emphasis is given to closure of time derivative form of water Although challenging, GPM mission data should reveal accelerations in decadal time scale, measurements become microphysics-centric,

eric.a.smith@nasa.gov

Backup Slides

GPM Core Satellite with GPM Microwave Imager (GMI) & Dual-Frequency Precipitation Radar (DPR)

June 24, 2003

http://gpmscience.gsfc.nasa.gov

eric.a.smith@nasa.gov

Why GPM?

Global Precipitation Climatology Center (GPCC) Global Rain Gauge Distribution [~6, 500 Real-Time Sites; ~38,000 Full-Network Sites]

NUMBER OF GPCC-MONITORING-STATIONS for JANUARY 1998

Single Gauge Catchment Area

Mean Gauge Catchment Area $\,pprox 0.031415~\mathrm{m}^2$ Ave Rain Gauge Radius (R) ≈ 10 cm

Cumulative Gauge Catchment Area

total catchment area of 39,000 global gauges $\approx 1,200 \text{ m}^2 (\sim 35 \text{ m x } 35 \text{ m})$ total catchment area of 13,000 U.S. gauges $\approx 400 \text{ m}^2 (\sim 20 \text{ m x } 20 \text{ m})$

Familiar Areal References

standard tennis court dimensions = 10.97 m x 23.77 mstandard basketball court dimensions = 28 m x 15 m

Eric A. Smith

GPCC

eric.a.smith@nasa.gov

June 24, 2003

http://gpmscience.gsfc.nasa.gov

P & W

Mission Overview

Percentage of 3-Hour Intervals Sampled in 7-Day Period

Precipitation Sampling Worldwide: Constant Area Pixels

GPM Era

EOS Era

GPM Core, DMSP-F18 & -F19, GCOM-B1, Megha-Tropiques, & 3 600-km Drones

TRMM, DMSP-F13, -F14, & -F15, Aqua, & ADEOS-II

0.2

http://gpmscience.gsfc.nasa.gov

Assessment of ATMS as Rain Instrument

ATMS

- total power radiometer
 - sun-synchronous orbit cross-track scanned

102% degradation

rms = 1.69 r = 0.66

- 824 km altitude
 - 2300 km swath
- 31.4 GHz (5.2 deg B/W) 23.8 GHz (5.2 deg B/W) 0.4 m antenna

90.0 GHz (2.2 deg B/W)

2

10⁴	
10³	(log scale)
102	equency
101	Pixel Freq

å

eric.a.smith@nasa.gov

Top Panel: TRMM Measurement of Hurricane Bonnie (8/22/98)

[based on TRMM Comb Alg 2B31 with resolution enhancement & mass-weighted mean adj drop diameter (D") assumed to decrease from surface to freezing level]

Middle Panel: Single-Frequency TRMM Combined Retrieval Algorithm

[restricted to retrieve invariant D" with altitude]

Bottom Panel: Dual-Frequency GPM Combined Retrieval Algorithm

[allowed to retrieve variation in D" with altitude]

during forward modeling before retrievals

Eric A. Smith eric.a.smith@

eric.a.smith@nasa.gov

June 24, 2003

Along Track Distance (km)

http://gpmscience.gsfc.nasa.gov

TRMM vs GPM Estimates of DSD Variability

Global Water Budget

Notes:

: (a) global uncertainties order ±25%

(b) transfers some 0.025-0.0025% of ocean reservoir

(c) ru = relative units

Verifying Accelerations in Water Cycle Different Analysis Procedures Will Require Convergence of

- 1. trend analysis of lengthy precipitation time series
- 2. balancing time-derivative forms of water balance eqns
- 3. detecting substantive changes in rain DSD properties

GPM Validation Strategy

Potential GPM Validation Sites

■ Supersite & Regional Raingage Site

http://gpmscience.gsfc.nasa.gov

Error Characterization (Accuracy)

Bias (B) & Bias Uncertainty (ΔB)

based on:

- physical error model (passive-active RTE model)
- matched satellite radiometer/radar instrument on ground with continuous calibration (eyeball)
- independent measurements of observational inputs needed for error model (DSD profile, T-q profile, surface)

Based on Physical Error Model

All retrievals from constellation radiometers & other satellite instruments are biasadjusted according to bias estimate from reference algorithm for core satellite.

Vertically-Distributed Microphysical Properties **Hydrometeor-Specific Differences in** [Cloud Droplets, Aggregates, Pristine Crystals]

WATER CONTENT & SIZE DISTRIBUTION TOTAL STORM AREA (RR ≥ 1 mm h-1)

Cloud Droplets

NTENSE

- - Bonnie Genova - - - Friuli Piemonte

Height (km)

.WC (g m-3)

ο εο β Diameter (μm)

Num Conc (cm-3 µm-1)

TOTAL STORM AREA (RR ≥ 1 mm h-1) ICE CONTENT & SIZE DISTRIBUTION

-- Bonnie Genova --- Friuli Piemonte

1WC (g m-3)

WEAKENING

eric.a.smith@nasa.gov