ECE111|Digital Circuits
Dr. Vish Visweswaran

Lab_9:

Student Name: Shivam Agarwal

Roll No. : 2020123 Date : 04/4/2021

AIM 1 : Binary Ripple Counter

<u>Components Used</u>: 1 power supply, 4 resistors, 4 LEDs, 1 slide switches, 2 Dual J-K flip-flop(74HC73), 1 Square Function Generator

TinkerCad Link:

https://www.tinkercad.com/things/iqusvdx1kl1-binary-ripple-counter/editel?sharecode=4e25R62SIZ2niTLc6WE7ceWH84dmcCmMkqC6HgvD0YA

Screenshots:

<u>Circuit Diagram :</u>

Truth table:

Decimal	D	С	В	Α
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

Observations:

The circuit acts as a binary up counter and counts numbers from 0 to 15 using JK flip-flops. After counting upto 15 the counter goes back to 0 and starts counting again.

When the value of reset switch is given 0 then the value of the counter resets and counting starts again from 0.

Applications:

- 1. It can be used as frequency dividers with some changes
- 2. It can be used in time measurement for calculating time in timers.

AIM 2 : Decade Ripple Counter

<u>Components Used</u>: 1 power supply, 7 resistors, 2 Dual D flip-flop(74HC74), 1 Square Function Generator, 1 7-segment Decoder, 7 segment display, 1 Quad Nand Gate

TinkerCad Link:

https://www.tinkercad.com/things/2UPyZJEbHPd-copy-of-binary-ripple-counter/editel?sharecode=gAeUemVqyhljlKwrrQ3n2bp-ay0tjHe5U-BM6PJzk5c

Screenshots:

Circuit Diagram:

Truth Table:

Output	<u>D</u>	<u>C</u>	<u>B</u>	<u>A</u>
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
0	0	0	0	0
		•••		•••

Observations:

The Decade ripple counter acts as a binary up counter and counts numbers from 0 to 9 using JK flip-flops. After counting upto 9 the counter goes back to 0 and starts counting again.

When the output of the flip flops becomes 10 or 1010(DCBA) then the value of the reset switch becomes 0 and the counter restarts from 0

Applications:

- 1. They are used in clock circuits for time measurement.
- 2. They are used in frequency dividers.