

CSE322 Normal forms: CNF & GNF

Lecture #28

Normal Forms

In this section, we shall introduce context-free grammars to two special forms, one is **Chomsky normal form**(CNF), the other is **Greiback normal form**(GNF).

Definition 5: A CFG G = (V, T, P, S) is in Chomsky normal form if for each product of G is of the forms

$$A \rightarrow BC$$
, or $A \rightarrow a$.

Here, A, B and C are in V, and a is in T.

Definition 6: A CFG G = (V, T, P, S) is in Greiback normal form if for each product of G is of the form

 $A \rightarrow a\alpha$, where $A \in V$, $a \in T$ and $\alpha \in V^*$.

An ε -production is of the form $A \to \varepsilon$.

But, if the language L generated by a grammar G does not include ϵ , we can modify the grammar G to an equivalent grammar G' so that there are no ϵ -productions in G'.

The algorithm to modify a grammar G to G' is as follows.

while (there is a an ϵ -production $A \to \epsilon$ in G) do

remove the ϵ -production $A \to \epsilon$ from G

If there is a production $B \rightarrow xAy$ from G,

then add a production $B \rightarrow xy$ to G

Example: Consider the grammar G

$$S \rightarrow 0T0 \mid 1T1$$

$$T \rightarrow 0T0 \mid 1T1 \mid \epsilon$$

Then
$$L(G) = L = \{ x x^R \mid x \in T^*, \text{ and } x \neq \epsilon \}.$$

We can modify the above grammar to a grammar without ε productions as the following and generating the same language L.

$$S \to 0T0 \mid 1T1 \mid 00 \mid 11$$

$$T \rightarrow 0T0 \mid 1T1 \mid 00 \mid 11$$

The above grammar is equivalent to the following grammar.

$$S \to 0S0 \mid 1S1 \mid 00 \mid 11$$

Useless variables

A is a useful variable if $A \Rightarrow^* w$ for some $w \in T^*$.

For a CFG G, we can modify the grammar G to an equivalent grammar G' so that there are no useless variables in G'.

The algorithm to modify a grammar G to G' is as follows.

First, let the set $S \leftarrow \emptyset$, flag \leftarrow TRUE

while (flag) do // get useful variables

 $flag \leftarrow FALSE$

If $B \to \alpha \in T^*$ in G, or $B \to x_1A_1x_2A_2...x_kA_ky$ in G, where $y, x_i \in T^*$ and $A_i \in S$, i = 1, 2, ..., k,

then $S \leftarrow S \cup \{B\}$, flag \leftarrow TRUE

The set $V \setminus S$ is a set of useless variables.

Next, if there is a useless production

$$B \rightarrow x_1 A_1 x_2 A_2 ... x_k A_k y$$
 in G, where y, $x_i \in T^*$ and one of B and A_i , $i = 1, 2, ..., k$, is in $V \setminus S$,

then remove the production $B \to x_1 A_1 x_2 A_2 \dots x_k A_k y$ from G.

The algorithm to remove useless variables and useless productions from the grammar G to get an equivalent grammar G' without useless variables and useless productions.

Unit productions

A unit production is of the form $A \rightarrow B$, where A and B are variables.

A unit production basically is a redundant production. Therefore, we can eliminate the unit productions by the following method:

For each unit production $A \rightarrow B$, remove the production from the grammar, and add the following productions:

For each non-unit production $B\rightarrow w$ in G, add the production $A\rightarrow w$ to G.

By the above algorithms, we are able to obtain the following theorem.

Theorem 5 : For each CFL L without ε , there is a CFG G with no useless variables, ε -productions or unit productions such that L(G) = L.

Theorem 6 : For each CFL L without ε , there is a CFG G in Chomsky normal form such that L(G) = L, i.e., each production in G is of the form $A \to BC$, or $A \to a$, where A, B and C are in V, and a is in T.

Proof:

For each CFL L without ε , there is a CFG G with no useless variables, ε -productions or unit productions such that L(G) = L.

First step, for each production $A \rightarrow \alpha$ in G, if $|\alpha| = 1$, then $\alpha \in T$.

Otherwise, $|\alpha| > 1$, say $\alpha = X_1 X_2 ... X_k$, k > 1.

If X_i , say i=1 and $X_1=a$, is a terminal and there is a production $B \rightarrow a$, then replace X_1 by B to get a new production $A \rightarrow BX_2...X_k$, and remove the production $A \rightarrow \alpha$.

If X_i , say i = 1 and $X_1 = a$, is a terminal and there is no production $B \rightarrow a$, then add a new variable C, and replace X_1 by C to get a new production $A \rightarrow CX_2...X_k$, remove the production $A \rightarrow \alpha$ and add a new production $C \rightarrow a$.

After the first step, all productions are of the form either

 $A \rightarrow a$, or

 $A \rightarrow \alpha$, where $|\alpha| > 1$ and $\alpha \in V^+$

Second step, for each production of the form $A \to \alpha$, where $|\alpha| > 1$, we know that $\alpha \in V^+$. If $|\alpha| = 2$, then we do not need to modify the production.

If $|\alpha| > 2$, say $\alpha = X_1 X_2 ... X_k$, k>2, then we need to introduce new variables $Y_1, Y_2, ..., Y_{k-2}$, and add the new productions as follows.

$$A \rightarrow X_1 Y_1 \\ Y_1 \rightarrow X_2 Y_2$$

$$Y_i \rightarrow X_{i+1} Y_{i+1}, i = 1, 2, ..., k-3,$$

$$Y_{k-3} \rightarrow X_{k-2}Y_{k-2}$$

$$Y_{k-2} \rightarrow X_{k-1}X_k$$

Therefore, we can modify the grammar to a new equivalent grammar in Chomsky normal form.

Theorem 7 : For each CFL L without ε , there is a CFG G in Greiback normal form such that L(G) = L.

Proof:

For each CFL L without ε , there is a CFG G" with no useless variables, ε -productions or unit productions such that L(G") = L.

By theorem 6, there is a CFG G'=(V', T, P', S') in Chomsky normal form such that L(G') = L(G'') = L.

Rewrite the k variables in V' with indices 1, 2, ..., k. Let it be $V = \{A_1, A_2, ..., A_k\}$ and the start variable is A_1 .

First step, modify the productions into the forms

$$A_i \rightarrow a\alpha$$
, where $a \in T$ and $\alpha \in V^*$, or

$$A_i \rightarrow A_j \alpha$$
, where $j > i$

To achieve the result, we start from A_1 .

If there is a production $A_1 \to a\alpha$, where $a \in T$ and $\alpha \in V^*$, then we keep the production.

If there is a production $A_1 \rightarrow A_1 \alpha$, then apply theorem 4 in section 4.2 to revise the left recursive production to a right recursive production until there is no A_1 recursive production.

Next we revise the A_2 productions until A_k .

A possible algorithm for this step is as follows.

for i=1 to k do

for
$$j=1$$
 to $i-1$ do

for each production $A_i \rightarrow A_j \alpha$ do

for each production $A_i \rightarrow \beta$ do

add production $A_i \rightarrow \beta \alpha$

remove production $A_i \rightarrow A_j \alpha$

for each production $A_i \rightarrow A_i \alpha$ do

add productions $B_i \rightarrow \alpha$ and $B_i \rightarrow \alpha B_i$

remove productions $A_i \rightarrow A_i \alpha$

for each production $A_i \rightarrow \beta$, where β does not begin with A_i do

add production $A_i \rightarrow \beta B_i$

After the first step, the productions are of the forms:

$$A_i \rightarrow a\alpha$$
, where $a \in T$ and $\alpha \in V^*$,

$$A_i \rightarrow A_j \alpha$$
, where $k \ge j > i$, or

$$B_i \rightarrow \alpha$$
, where $\alpha \in (V \cup \{B_1, B_2, ..., B_{i-1}\})^*$.

The A_k production must be of the form $A_k \to a\alpha$, where $a \in T$ and $\alpha \in V^*$,

The B_i production must be of the form

$$B_i \rightarrow A_j \alpha$$
, where $\alpha \in (V \cup \{B_1, B_2, ..., B_{i-1}\}) *$, or

$$B_i \rightarrow a\alpha$$
, where $a \in T$ and $\alpha \in (V \cup \{B_1, B_2, ..., B_{i-1}\}) *$,

Second step, modify each A_i production into the forms

 $A_i \rightarrow a\alpha$, where $a \in T$ and $\alpha \in V^*$.

To achieve the result, we start from A_{k-1} to modify the A_{k-1} productions so that the right side of the production starting with a terminal. Then proceed the same process until A_1 .

A possible algorithm for this step is as follows.

for i=k-1 to 1 do

for j=k to i +1 do

for each production $A_i \rightarrow A_j \alpha$ do

for each production $A_j \rightarrow \beta$ do

add production $A_i \rightarrow \beta \alpha$

remove production $A_i \rightarrow A_j \alpha$

Third step, modify each B; production into the forms

 $B_i \rightarrow a\alpha$, where $a \in T$ and $\alpha \in V^*$.

A possible algorithm for this step is as follows.

for i=1 to k do

for each production $B_i \to A_j \alpha$ do $\text{for each production } A_j \to \beta \text{ do}$ $\text{add production } A_j \to \beta \alpha$ $\text{remove production } B_i \to A_i \alpha$

Example: Consider the grammar G

$$S \to 0S0 \mid 1S1 \mid 00 \mid 11$$

An equivalent CFG in GNF is

$$S \rightarrow 0SZ \mid 1SY \mid 0Z \mid 1Y$$

$$Y \rightarrow 1$$

$$Y \rightarrow 1$$
 $Z \rightarrow 0$

An equivalent CFG in CNF is

$$S \rightarrow ZX \mid YW \mid ZZ \mid YY$$

$$X \rightarrow SZ$$

$$W \rightarrow SY$$

$$Y \rightarrow 1$$

$$Z \rightarrow 0$$

Example: Convert the grammar G in CNF to a grammar in GNF:

$$A_1 \rightarrow A_1 A_2 | A_3 A_1$$

$$A_2 \rightarrow A_1 A_3 | 0$$

$$A_3 \rightarrow A_1 A_2 | 1$$

Solution:

First stage:

Step 1: Introduce variable B₁ to modify the productions $A_1 \rightarrow A_1 A_2 | A_3 A_1$ to the following productions:

$$A_1 \rightarrow A_3 A_1 | A_3 A_1 B_1$$

$$B_1 \rightarrow A_2 | A_2 B_1$$

Step 2: Modify the productions $A_2 \rightarrow A_1 A_3 \mid 0$ to the following productions:

$$A_2 \rightarrow A_3 A_1 A_3 | A_3 A_1 B_1 A_3 | 0$$

Step 3: Modify the productions $A_3 \rightarrow A_1 A_2 \mid 1$ to the following productions:

$$A_3 \rightarrow A_3 A_1 A_2 | A_3 A_1 B_1 A_2 | 1$$

Step 4: Introduce variable B₃ to modify the productions A₃ \rightarrow A₃A₁A₂|A₃A₁B₁A₂|1 to the following production:

$$A_3 \rightarrow 1 \mid 1 B_3$$

$$B_3 \rightarrow A_1 A_2 B_3 | A_1 B_1 A_2 B_3 | A_1 A_2 | A_1 B_1 A_2$$

After the first stage we have the following productions:

$$A_1 \rightarrow A_3 A_1 | A_3 A_1 B_1$$

$$B_1 \rightarrow A_2 | A_2 B_1$$

$$A_2 \rightarrow A_3 A_1 A_3 |A_3 A_1 B_1 A_3| 0$$

$$A_3 \rightarrow 1 \mid 1 B_3$$

$$B_3 \rightarrow A_1 A_2 B_3 | A_1 B_1 A_2 B_3 | A_1 A_2 | A_1 B_1 A_2$$

Second stage:

Step 5: By A_3 productions $A_3 \rightarrow 1 \mid 1 \mid B_3$, modify the A_2 productions to the following productions:

$$A_2 \rightarrow 1 A_1 A_3 | 1 B_3 A_1 A_3 | 1 A_1 B_1 A_3 | 1 B_3 A_1 B_1 A_3 | 0$$

Step 6: Modify the A₁ productions to the following productions:

$$A_1 \rightarrow 1 A_1 | 1 B_3 A_1 | 1 A_1 B_1 | 1 B_3 A_1 B_1$$

After the second stage, we have the following productions:

$$A_1 \rightarrow 1 A_1 | 1 B_3 A_1 | 1 A_1 B_1 | 1 B_3 A_1 B_1$$

$$A_2 \rightarrow 1 A_1 A_3 | 1 B_3 A_1 A_3 | 1 A_1 B_1 A_3 | 1 B_3 A_1 B_1 A_3 | 0$$

$$A_3 \rightarrow 1 \mid 1 B_3$$
 $B_1 \rightarrow A_2 \mid A_2 B_1$

$$B_3 \rightarrow A_1 A_2 B_3 | A_1 B_1 A_2 B_3 | A_1 A_2 | A_1 B_1 A_2$$

Step 7: Modify the B productions to the following productions:

Step 7. Modify the B productions to the following productions:
$$A_1 \rightarrow 1A_1 | 1B_3A_1 | 1A_1B_1 | 1B_3A_1B_1$$

$$A_2 \rightarrow 1A_1A_3 | 1B_3A_1A_3 | 1A_1B_1A_3 | 1B_3A_1B_1A_3 | 0$$

$$A_3 \rightarrow 1 | 1B_3$$

$$B_1 \rightarrow 1A_1A_3 | 1B_3A_1A_3 | 1A_1B_1A_3 | 1B_3A_1B_1A_3 | 0$$

$$B_1 \rightarrow 1A_1A_3B_1 | 1B_3A_1A_3B_1 | 1A_1B_1A_3B_1 | 1B_3A_1B_1A_3B_1 | 0B_1$$

$$B_3 \rightarrow 1A_1A_2B_3 | 1B_3A_1A_2B_3 | 1A_1B_1A_2B_3 | 1B_3A_1B_1A_2B_3$$

$$B_3 \rightarrow 1A_1B_1A_2B_3 | 1B_3A_1B_1A_2B_3 | 1A_1B_1B_1A_2B_3 | 1B_3A_1B_1B_1A_2B_3$$

$$B_3 \rightarrow 1A_1A_2 | 1B_3A_1A_2 | 1A_1B_1A_2 | 1B_3A_1B_1A_2$$

$$B_3 \rightarrow 1A_1B_1A_2 | 1B_3A_1B_1A_2 | 1A_1B_1A_2 | 1B_3A_1B_1A_2$$