

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 08040896 A

(43) Date of publication of application: 13 . 02 . 96

(51) Int. CI

A61K 31/40 A61K 31/40 A61K 9/06 A61K 9/70 // C07D207/16

(21) Application number: 06183354

(22) Date of filing: 04 . 08 , 94

(71) Applicant:

TEISAN SEIYAKU KK

(72) Inventor:

TACHIMORI MOTOFUSA **HIDAKA NAGAFUMI**

(54) MEDICAL PREPARATION COMPOSED OF CAPTOPRIL ANALOGUE

(57) Abstract:

PURPOSE: To provide a new antihypertensive agent composed of a base containing a specified captopril analogue, exhibiting a more excellent percutaneous absorption than captopril itself, relatively low in side effect and excellent in safety.

CONSTITUTION: This preparation is composed of a base containing a captopril analogue of formula I (R1 is a 1 to 4C alkyl; R2 is H or a 2 to 4C acyl) preferably in an amount of about 5 to 50wt.%. For example, captopril methyl ester of formula II can be synthesized, e.g. by methanol. dichloromethane N,N-dimethylformamide to the captopril disulfide compound of formula III, adding dropwise and reacting thionyl chloride with the resultant solution in an atmosphere of nitrogen to obtain the ester compound of formula IV and further reacting tributylphosphine therewith in a solvent composed of acetonitrile and methanol.

COPYRIGHT: (C)1996,JPO

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平8-40896

(43)公開日 平成8年(1996)2月13日

(51) Int.Cl. ⁶ A 6 1 K 31/40	識別記号 庁内整理番号 ABU AEQ	₱ FI	技術表示箇所
9/06	S		
9/70	3 4 1		
// C07D 207/16			
		審查請求	未請求 請求項の数4 〇L (全 7 頁)
(21)出願番号	特顧平6-183354	(1-)	000215844 帝三製薬株式会社
(22)出顧日	平成6年(1994)8月4日		東京都中央区日本橋本町2丁目1番5号
		(72)発明者	日月 台房
			東京都羽村市緑ケ丘3丁目5番5号 帝三
			製薬株式会社内
		(72)発明者	日高 修文
			東京都羽村市緑ケ丘3丁目5番5号 帝三 製薬株式会社内

(74)代理人 弁理士 前田 純博

(54) 【発明の名称】 カプトプリル類似体からなる医薬製剤

(57)【要約】

【目的】血圧降下作用に優れたカプトプリル類似体を含 有する経皮吸収製剤を提供する。

【構成】一般式(I)

$$R_{2} SCH_{2} \stackrel{CH_{3}}{\underset{H}{\overset{C}{\longrightarrow}}}$$

$$(1)$$

(式中、R1は炭素数1~4のアルキル基を示し、R2 は水素原子又は炭素数2~4のアシル基を示す。)で表 されるカプトプリル類似体を含有する基剤からなる経皮 吸収製剤。

【特許請求の範囲】

【請求項1】 一般式(I)

【化1】

$$\begin{array}{c}
\text{COOR}_{1} \\
\text{CH}_{3} \\
\text{R}_{2} \text{SCH}_{2} - \text{CH} - \text{C} - \text{N} \\
\vdots \\
\text{H} & \text{O}
\end{array}$$
(1)

(式中、 R_1 は炭素数 $1 \sim 4$ のアルキル基を示し、 R_2 は水素原子又は炭素数 $2 \sim 4$ のアシル基を示す。) で表 10 されるカプトプリル類似体を含有する基剤からなる経皮吸収製剤。

【請求項2】 経皮吸収製剤が基剤としての粘着基剤と 支持体とからなる貼付剤である請求項1に記載の経皮吸収製剤。

【請求項3】 該カプトプリル類似体の該基剤中における含有量が約5~50重量%であって、該カプトプリル類似体の1製剤中の含有量が約10~60mgである請求項2記載の経皮吸収製剤。

【請求項4】 R_1 がエチル基で、 R_2 が水素原子である請求項 $1\sim3$ 項のいずれか1項に記載の経皮吸収製剤。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、安全性の高い新規なる 血圧降下剤に関する。

[0002]

【従来の技術】高血圧は、重大な成人病の1つである。 かかる高血圧を治療する薬としては、β遮断薬、カルシ ウム拮抗薬、サイアザイド系利尿薬、中枢神経抑制薬、 アンジオテンシン変換酵素阻害薬などが症状に応じて使 い分けられたり、併用されたりしている。

【0003】これらの薬物のほとんどは経口剤であり、 最近では消化管内での溶出を制御することにより持続時間を24時間とした薬剤もみられるが、効果の持続時間 はほとんどが12時間以内である。

【0004】薬物による血圧の降下においては、多くの場合薬物血中濃度と血圧低下の間にはほぼ比例関係が認められるが、経口で薬物を投与した場合、薬物の血中濃度は投与後1~5時間に最大血中濃度となり、以降ほぼ 40指数的に低下し、8~12時間後には最大血中濃度の半分近くとなるのが普通である。

【0005】したがって、必要な血圧低下を得るのに必要十分な最適な範囲の血中濃度を維持することは実際には難しく、平均的にみて有効な血中濃度を維持する治療方法が臨床での試験により確立されるのが現状である。しかし、投与後の初期にあらわれる必要以上の薬物濃度のために、立ちくらみ等の副作用を伴うことが多い。

【0006】かかる問題に対処するために、血中濃度をある一定に保つのに有効な方法として経皮投与が注目さ

れている。冠血管拡張剤のニトログリセリンや硝酸イソ ソルビドにおいては、経皮吸収製剤が着実に経口剤にと って代わりつつある。

【0007】かかるニトログリセリンや硝酸イソソルビドは非常に経皮吸収され易いため、薬物の代謝も大きいが、結果的に経皮吸収に適していると考えられる。

【0008】しかし、一般的に血圧降下剤は、経皮吸収性が悪く、たとえ製剤化しても、結果として必要とする貼付面積が大きくなり、皮膚刺激等の副作用が大きくなるため経口剤に比較して臨床的有用性が高くならない等の問題がある。

【0009】かかる事情から、経皮吸収性の良好な血圧 降下剤が望まれている。かかる経皮吸収の降圧剤の研究 の主力は、従来、経口剤、注射剤として使用されている 薬物をそのまま用い、製剤的に経皮吸収性を高めるため の工夫や、経皮吸収促進剤の開発が中心となっている。

【0010】一方で、薬効の確立された薬剤を化学的に 修飾して、もともとの薬効を維持させた上で経皮吸収に 適した薬剤にしようとする、いわゆるプロドラッグ化の 考えも提案されているが、また緒についたばかりであ り、試行錯誤の段階である。

[0011]

20

30

【課題を解決するための手段】本発明者らは、高血圧用 薬剤の中で比較的副作用の少ないものとして近年注目さ れてきているアンジオテンシン変換酵素阻害剤、特にそ の代表的薬物であるカプトプリルに注目し、その類似体 について鋭意検討した。

【0012】カプトプリルは、以下の一般式(II)

[0013]

【化2】

【0014】を有する化合物であり、融点103~10 4℃の固体である。

【0015】カプトプリル類似体が経皮吸収に適したものであるためには、(1)類似体は、カプトプリルそのものより経皮吸収性が優れていること、(2)類似体は、カプトプリルに相当する薬効を維持していることが望ましく、その他にも類似体の安定性は十分であることが望ましい。

【0016】カプトプリルを化学的に修飾するとき、修飾できる部位及び修飾する反応基はほとんど無限に考えられる。そして、現在の経皮吸収理論の実情からは、どのように化学修飾すれば本発明の目的を達成できるかを予測することは非常に困難である。

【0017】本発明者らは、多くの検討の中からカプトプリルを一般式(I)で表される化合物とすることが好

1

3

ましいことを見出した。

[0018]

【化3】

$$\begin{array}{c}
 & \text{COOR}_1 \\
 & \text{CH}_3 \\
 & \text{R}_2 \text{ SCH}_2 - \text{CH} - \text{C-N} \\
 & \text{H} & \text{O}
\end{array}$$
(1)

【0019】 (式中、R1は炭素数1~4のアルキル基 を示し、R2は水素原子又は炭素数2~4のアシル基を 示す。)

* カプトプリルについては、従来から経口剤としても持続 性を高めたり、副作用を軽減するためにプロドラッグ化 の検討がなされており、そのうちのいくつかは製剤とし て市販されている。それらの検討は式(I)のR,を水 素以外の反応基で置換したものであったり、持続性をも たせるためにR₁を他の置換基でおきかえたものであ り、その代表的なものは式(III)で示されるアセラプ リルである。

[0020]

【化4】

10

【0021】しかし、アセラプリルはカプトプリルより はるかに経皮吸収に関しては困難であった。

【0022】そこで、本発明者らは各種の誘導体を評価 した結果に基づきプロリン骨格に着目し、その一COO H基のエステル置換体-COOR,を合成し、その経皮 吸収性及び薬理について調査した結果、R₁としてメチ ル基、エチル基、n-プロピル基、n-ブチル基を用い たとき、特に経皮吸収性が母体であるカプトプリルより 大きくなること、またこれらの置換体がカプトプリルと 同様の薬理作用を示すことを見い出した。これらのエス テル体の特徴は、母体であるカプトプリルが固体である のに対し、室温で液体であることである。

【0023】R₁をエステル化した経皮吸収の効果は、 式(I)のR,が水素原子以外のアシル基である場合も 確認された。

【0024】すなわち本発明は、一般式(1)

[0025]

【化5】

$$R_{2} SCH_{2} \stackrel{CH_{3}}{\underset{H}{\overset{C}{\longrightarrow}}} (I)$$

【0026】(式中、R1は炭素数1~4のアルキル基 を示し、R2は水素原子又は炭素数2~4のアシル基を 示す。) で表されるカプトプリル類似体を含有する基剤 からなる経皮吸収製剤である。

【0027】本発明の式(I)で表されるカプトプリル 類似体において、R」は炭素数1~4のアルキル基を表 し、そのようなアルキル基としては具体的にメチル基、 エチル基、n-プロピル基、i-プロピル基、n-プチ 50 後、必要に応じSH基の脱保護することにより製造する

ル基、secーブチル基、tーブチル基等を挙げること ができる。これらのなかでもエチル基を好ましいものと して挙げることができる。

【0028】またR,は水素原子又は炭素数2~4のア シル基を示し、そのようなアシル基としてはアセチル 基、プロピオニル基、 (n-, i-) ブチリル基等を挙 げることができるが、これらのなかでもR₂としては水 素原子又はアセチル基が好ましく、特に水素原子が好ま

【0029】R₁とR₂の好ましい組み合せとしては、 R, がエチル基でR₂が水素原子又はアセチル基である 場合、なかでもR」がエチル基でR。が水素原子である 場合がより好ましい。

【0030】本発明のカプトプリルエステル誘導体を製 造する方法としては、カプトプリルをエステル化する方 法、あるいはプロリンの該エステルをアシル化する方法 などがある。

【0031】カプトプリルをエステル化する方法は、通 常の化学的手段を用いることができる。例えば、必要に 応じ、例えばカプトプリルのジスルフィド体等のSH基 の保護されたカプトプリルを、目的のエステルのアルコ ール中で塩化チオニル、塩化ホスホリルなどの結合剤と ともに反応させた後、必要に応じSH基の脱保護するこ とにより目的のエステルを製造することができる。

【0032】また、レープロリンの該エステルをアシル 化する方法は、通常のアミノ酸エステルのアシル化で用 いられる化学的手段を用いることができる。例えば、必 要に応じSH基の保護された〔25〕-3-メルカプト - 2 - メチループロピオン酸またはそのカルボキシル基 における反応性誘導体とレープロリンエステルを反応

ことができる。

【0033】本発明の効果はプロリン構造の-COOH 基をメチル、エチル、プロピル基、ブチル基でエステル 化することにより得られるのであり、母体のカプトプリ ルにその性質に本質的に影響しない範囲で、その一部に 置換基を導入することにより化学修飾しても得られるで あろう。

【0034】本発明の経皮吸収剤とは例えば貼付剤、軟 育剤、クリーム剤、ローション等の液剤等の経皮吸収製剤をいう。特に、本発明のカプトプリル類似体は、高血 圧薬として副作用を少なくして、長時間安定して用いることにより従来の経口剤に比較してメリットを発揮できるのであるが、この目的に最も適する剤型は貼付剤であるためこれら経皮吸収製剤のうちでも貼付剤が好ましい。

【0035】このような貼付剤としては従来公知の粘着 基剤と支持体とからなるものが挙げられ、本発明のカプ トプリル類似体を粘着剤中に含有させ、支持体をとりつ けて所定の大きさに裁断することによって得られる。

【0036】本発明のカプトプリル類似体とともに用い 20 る粘着剤としては、公知のアクリル系粘着剤、シリコーン系粘着剤、ゴム系粘着剤等が挙げられるが、これらの粘着剤は単独で用いてもよく、あるいは混合して用いてもよい。また、本発明のカプトプリル類似体を含有する異なる粘着剤を積層して用いることもできる。なかでもアクリル系粘着剤が薬物との親和性が高く、また経皮吸収性も良好であり、好ましい。

【0037】支持体としては、ポリエチレンやポリプロピレンのようなポリオレフィン、ポリエチレンテレフタレートやポリエチレンナフテートのようなポリアステル、ナイロン66やナイロン6のようなポリアミド、エチレン一酢酸ビニル共重合体等からなるフィルムを用いることができる。これらのフィルムは、単体で用いてもよく、複合したり、また積層して用いてもよい。

【0038】本発明において、カプトプリル類似体は基 剤中に任意の量を含有せしめられるが、好ましくは約5 ~50重量含有させることができるが、例えば貼付剤と する場合には、粘着剤中での好ましい範囲は粘着剤に対 して約5~50重量%である。特に好ましくは約7~4* * 0 重量%である。また、本発明のカプトプリル類似体は ヒト用貼付剤とするとき、製剤1枚当りの薬物量として は約3~100mgとするのが好ましい。特に好ましい 含量は約10~60mgである。

【0039】また、本発明の経皮吸収製剤のうち、軟育剤、液剤等は、それぞれ従来公知の賦形剤等を用いて目的とする軟育剤、液剤等を得ることができる。

【0040】本発明の経皮吸収製剤には公知の経皮吸収 促進剤、安定剤、溶解補助剤、充填剤、着色剤、皮膚刺 激防止剤等を併用することができる。

[0041]

【実施例】以下、実施例により本発明をさらに詳細に説明する。なお、実施例中、「%」は「重量%」を示す。 【0042】 [実施例1] (1) <u>カプトプリルメチル</u> エステル

(A) カプトプリルジスルフィド体2. 18g(5ミリモル)にメタノール25ml、ジクロロメタン10ml及びN, Nージメチルホルムアミド0. 1mlを加えた液をかき混ぜながら、塩化チオニル3mlを窒素ガス雰囲気下15分間にわたり滴下し、その後20分間かき混ぜた。減圧濃縮後、残留物にアセトニトリル35ml及びメタノール10mlを加えて溶かし、1N塩酸5ml及びトリブチルホスフィン2. 9gを加え、4時間かき混ぜた。減圧濃縮し、残留物をジクロロメタンに溶かし、水洗後無水硫酸ナトリウムで乾燥し、減圧濃縮後残留物をシリカゲルカラムクロマトグラフィーで精製し、オイル状のカプトプリルメチルエステルを1. 96g(収率82%)得た。

【0043】<u>カプトプリルメチルエステルの物性値</u> TLC (キーゼルゲル60、シクロヘキサン・酢酸エチル(1:1)): R f = 0.23

IR (液膜):2550cm⁻¹ (-SH)、1742cm⁻¹ (エステルC=O)、1639cm⁻¹ (アミドC=O)

NMR (270MHz, CDC1,) : δ 4.52 (1 H, C

(1) $-\underline{H}$), $\delta 3.72$ (3 H, $-OC\underline{H}_3$) $\delta 1.22$ (3 H, -CH ($C\underline{H}_3$) -CO)

反応経路は以下の通りであった。

[0044]

【化6】

$$\left\{
\begin{array}{c}
cH_{1} \\
cH_{2} \\
cH_{3}
\end{array}
\right\}
\xrightarrow{cOOCH_{3}}
\left\{
\begin{array}{c}
cH_{3} \\
cH_{3}
\end{array}
\right\}
\left\{
\begin{array}{c}
cH_{3} \\
cH_$$

【0045】(B)(A)で得たカプトプリルのメチルエステルを 3.5μ のポリエチレンテレフタレートからなる支持体をとりつけたアクリル酸2-エチルヘキシル90%、メチルメタアクリル酸7%、アクリル酸3%からなるアクリル系粘着基剤中に、カプトプリル換算5%(メチルエステルの場合5.34%)を含有させた粘着層の厚みが 40μ mであり、面積30cm²の貼付剤を得た。

【0046】(C)(B)で得た貼付剤を平均体重34 0g(n=4)の除毛した雄SHRラットの背部に貼付 し、貼付24時間での薬物経皮吸収量及び貼付時の血圧 の変動を調べた。薬物の経皮吸収量は貼付前後の薬物量 から計算して求めた。血圧の変動は夏目製作所製の尾動 脈圧測定装置により求めた。結果を表1及び図1に示し た。

【0047】 [実施例2] (2) <u>カプトプリルエチル</u> エステル

(A) メタノールの代わりにエタノールを用いた以外は 実施例1と同様にしてオイル状のカプトプリルエチルエ ステルを2.04g(収率83%)得た。

【0048】<u>カプトプリルエチルエステルの物性値</u> TLC (キーゼルゲル60、シクロヘキサン・酢酸エチル (1:1)): Rf=0.30

IR (液膜):2550cm⁻¹ (-SH)、1740cm⁻¹ (エステルC=O)、1638cm⁻¹ (アミドC=O)

NMR (270MHz, CDC1,) : δ 4.53 (1 H, C

- (1) $-\underline{H}$) $\delta 4.17$ (2 H, $-OC\underline{H}_2$ CH,) δ 1.26 (3 H, $-CH_2$ CH,) δ 1.22 (3 H, -CH (CH,)-CO-)
- (B) このエチルエステルを用いて実施例1と同様にし 30 て得た貼付剤による経皮吸収量も表1に示した。

【0049】 [実施例3] (3) <u>カプトプリルイソプ</u> ロピルエステル

(A) メタノールの代わりに2-プロパノールを用いた 以外は実施例1と同様にしてオイル状のカプトプリルイ ソプロピルエステルを2.18g(収率84%)得た。

【0050】<u>カプトプリルイソプロピルエステルの物性</u> 値

TLC (キーゼルゲル60、シクロヘキサン・酢酸エチル (1:1)): R f = 0.35

IR (液膜):2550cm⁻¹ (-SH)、1737cm⁻¹ (エステルC=O)、1637cm⁻¹ (アミドC=O)

NMR (270MHz, CDC1₃): δ 5.03 (1 H, -OC \underline{H} (CH₃)₂), δ 4.50 (1 H, C (1) $-\underline{H}$), δ 1.22 (6 H, -OCH (\underline{C} H₃)₂), δ 1.22 (3 H, -CH (\underline{C} H₃) -CO-)

(B) このイソプロピルエステルを用いて実施例1と同様にして得た貼付剤による経皮吸収量も表1に示した。

【0051】 [実施例4] (4) カプトプリルブチル*

*エステル

(A) メタノールの代わりに1-ブタノールを用いた以外は実施例1と同様にしてオイル状のカプトプリルブチルエステルを2.22g(収率81%)得た。

8

【0052】<u>カプトプリルブチルエステルの物性値</u> TLC (キーゼルゲル60、シクロヘキサン・酢酸エチル (1:1)): R f = 0.39

IR (液膜):2550cm⁻¹ (-SH)、1740cm⁻¹ (エステルC=O)、1637cm⁻¹ (アミドC=O)

0 NMR (270MHz, CDC1₃): δ 4.55 (1 H, C(1) $-\underline{H}$), δ 4.12 (2 H, $-OC\underline{H}_2$ CH₂ CH₂ C H₃), δ 1.59 (2 H, $-OCH_2$ C \underline{H}_2 CH₂ C H₃), δ 1.37 (2 H, $-OCH_2$ CH₂ C \underline{H}_2 C

H₃) 、 δ1.22 (3 H, $-CH_2$ ($C\underline{H}_3$) -CO-) 、δ0.92 (3 H, $-OCH_2$ CH_2 CH_2 $C\underline{H}_3$)

(B) このブチルエステルを用いて実施例1と同様にして得た貼付剤による経皮吸収量も表1に示した。

【0053】 [比較例1] カプトプリル

実施例1でカプトプリルメチルエステルの代わりにカプトプリル (SIGMA製) 1.0gを用い、同様にしてカプトプリル含有貼付剤を得た。このカプトプリルを用いて実施例1と同様にして得た貼付剤による経皮吸収量も表1に示した。

【0054】 [比較例2] (1) <u>カプトプリルヘキシ</u> ルエステル

(A) メタノールの代わりに1-ヘキサノールを用いた 以外は実施例1と同様にしてオイル状のカプトプリルへ キシルエステル2.35g(収率78%)を得た。

【0055】 <u>カプトプリルへキシルエステルの物性値</u>TLC (キーゼルゲル<math>60、シクロへキサン・酢酸エチル(2:1)): R f = 0.27

IR (液膜):2550cm⁻¹ (-SH)、1739cm⁻¹ (エステルC=O)、1637cm⁻¹ (アミドC=O)

(B) このヘキシルエステルを用いて実施例1と同様にして得た貼付剤による経皮吸収量も表1に示した。

【0056】 [比較例3] (2) <u>カプトプリルオクチ</u> ルエステル

(A) メタノールの代わりに1-オクチノールを用いた 以外は実施例1と同様にしてオイル状のカプトプリルオ クチルエステル2. 44g(収率74%)を得た。

【0057】<u>カプトプリルオクチルエステルの物性値</u> TLC (キーゼルゲル60、シクロヘキサン・酢酸エチル(2:1)): R f = 0.30

IR (液膜):2550cm⁻¹ (-SH)、1738cm⁻¹ (エステルC=O)、1638cm⁻¹ (アミドC=O)

(B) このオクチルエステルを用いて実施例1と同様に して得た貼付剤による経皮吸収量も表1に示した。

[0058]

【表 1】

50

カプトプリル誘導体の合成及びヘアレスラットにおける経皮吸収量

(n-4平均)

10

No.	カプトプリル類似体	経皮吸収量 (カプトプリル検算) (mg/24hrs/cm ²)
実施例1	カプトプリルメチルエステル	0. 45
″ 2	カプトプリルエチルエステル	0. 46
″ 3	カプトプリル ロープロピルエステル	0. 42
" 4	カプトプリル—n—プチルエステル	0.38
比較例1	カプトプリル	0. 33
″ 2	カプトプリルー n 一へキシルエステル	0. 30
″ 3	カプトプリルーnーオクチルエステル	0. 12

【0059】表1から本発明の貼付剤ではカプトプリル (比較例)に比べると約15%~40%もの経皮吸収量 の増加が認められることが判る。なお、実施例1~4の カプトプリルメチルエステル~ブチルエステルにおい て、R.がアセチル基である場合のカプトリル類似体を 有効成分とする貼付剤を実施例1と同様にして得てこれ*20

* らの貼付剤の経皮吸収量を測定した結果、実施例4の貼付剤に少し劣る程度の経皮吸収量が得られた。

【0060】[実施例5] 軟膏剤の製造 次の処方でカプトプリルエチルエステルの2%軟膏剤を 製造した。

処方

カプトプリルエチルエステル	2		%
マクロゴール400	60.	8	%
マクロゴール4000	3 0		%
マクロゴール20000	7		%
ジブチルヒドロキシトルエン	0.	2	%

[実施例6] クリーム剤の製造

※剤を製造した。

次の処方でカプトプリルエチルエステルの1%クリーム※

処方

• •		
カプトプリルエチルエステル	1	%
プロピレングリコール	6	%
フタル酸ジブチル	19	%
ステアリン酸	5	%
モノステアリン酸グリセリン	5	%
モノステアリン酸ポリエチレンソルビタン	3.	8 %
モノステアリン酸ソルビタン	1.	2 %
メチルパラベン	Ο.	06%
プロピルパラベン	Ο.	03%
エデト酸ナトリウム	Ο.	03%
ジブチルヒドロキシトルエン	Ο.	1 %
精製水	57.	78%

【図面の簡単な説明】

【図1】図1は本発明の実施例1で得られたカプトプリルメチルエステルを含有する貼付剤と比較例のカプトプ★

★ リルを含有する貼付剤をラットに貼付した場合の血圧変 動を示す。

【図1】

カプトプリル類似体貼付剤貼付後の直圧変動

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 07330627 A

(43) Date of publication of application: 19 . 12 . 95

(51) Int. CI

A61K 45/00

A61K 9/107

A61K 9/70

A61K 9/70

A61K 9/70

A61K 9/70

A61K 9/70

A61K 31/00

(21) Application number: 06120152

(22) Date of filing: 01 . 06 . 94

(71) Applicant:

SANWA KAGAKU KENKYUSHO

CO LTD

(72) Inventor:

TAKAGI YASUYOSHI GOTO YOSHITO SATO MAKOTO

(54) PERCUTANEOUSLY ABSORBED ANTIHYPERTENSIVE AGENT CAPABLE OF CONTROLLING RELEASE INITIATION TIME

(57) Abstract:

PURPOSE: To provide a percutaneously absorbed antihypertensive agent capable of controlling its medicine release initiation time and sustainedly supplying the medicine at a constant rate after the initiation of releasing.

CONSTITUTION: This percutaneously absorbed antihypertensive preparation contains as indispensable ingredients (A) a medicine, preferably a dihydropyridine-based calcium antagonist (e.g. nicaldipine hydrochloride) or an angiotensin I converting enzyme inhibitor (e.g. captopril), (B) a

hydrophilic substance, e.g. a 1–4C alcohol or a 2–40C polyhydric alcohol having 2 or more hydroxyl groups, (C) a lipophilic substance, e.g. a 10-20C unsaturated fatty acid or a 10-20C aliphatic alcohol and (D) a water absorbing substance, e.g. a polymer such as a crosslinked type acrylic acid polymer, or an inorganic filler such as a magnesium aluminate metasilicate. The blended amounts of each ingredient are 70-95wt.% ingredient B (10-100 fold the weight of A), 0.1-10wt.% ingredient C (0.01-10 fold the weight of A) and 0.1-10wt.% ingredient D, and (100:0.1)-(100:10) weight ratio of the ingredients B:C. The excessive hypotension during the night and the elevation of blood pressure before rising in early morning can be prevented by pasting this preparation before sleeping.

COPYRIGHT: (C)1995,JPO