AMENDMENTS TO THE CLAIMS

Please amend the claims as follows.

 (Currently Amended) A method of inhibiting human stearoyl-CoA desaturase (hSCD) activity comprising contacting a source of hSCD with a compound of formula (i):

wherein:

x and v are each independently 1, 2 or 3;

W is -O-, -N(R¹)-, -C(R¹)₂-, -C(O)-, -OC(O)-, -S(O)_r-; (where t is 0, 1 or 2),

 $-N(R^1)S(O)_{\Gamma} \text{ (where t is 1 or 2), } -S(O)_2N(R^1)-, -C(O)N(R^1)-, -C(S)N(R^1)-, -OS(O)_2N(R^1)-, -OS$

 $-OC(O)N(R^1)-, \ -OC(S)N(R^1)-, \ -N(R^1)C(O)N(R^1)- \ or \ -N(R^1)C(S)N(R^1)-;$

 $V \ \text{is -C(O)-, -C(S)-, -C(O)N(R^1)-, -C(O)O-, -C(S)O-, -S(O)_{r}} \\ (\text{where t is 1 or 2)},$

 $-S(O)_tN(R^1)$ - (where t is 1 or 2) or $-C(R^{11})H$;

each R1 is independently selected from the group consisting of hydrogen,

C1-C12alkyl, C2-C12hydroxyalkyl, C4-C12cycloalkylalkyl and C7-C19aralkyl;

 $R^2 \ is \ selected from the group consisting of C_1-C_{12} alkyl, \ C_2-C_{12} alkenyl, \\ C_2-C_{12} hydroxyalkyl, \ C_2-C_{12} hydroxyalkyl, C_3-C_{12} cycloalkyl, \\ C_3-C_{12} hydroxyalkyl, C_3-C_{12} cycloalkyl, \\ C_3-C_{12} hydroxyalkyl, C_3-C_{12} cycloalkyl, \\ C_3-C_{12} hydroxyalkyl, \\ C_3-C_{12} cycloalkyl, \\ C_3-C_{12} cyclo$

C₄-C₁₂cycloalkylalkyl, aryl, C₇-C₁₉aralkyl, C₃-C₁₂heterocyclyl, C₃-C₁₂heterocyclylalkyl,

C₁-C₁₂heteroaryl, and C₃-C₁₂heteroarylalkyl;

or R^2 is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl and where some or all of the rings may be fused to each other;

 $R^3 \text{ is selected from the group consisting of $C_1\text{-}C_{12}$alkyl, $C_2\text{-}C_{12}$alkeyl, $C_2\text{-}C_{12}$alkeyl, $C_2\text{-}C_{12}$alkeyl, $C_2\text{-}C_{12}$alkeyl, $C_2\text{-}C_{12}$alkeyl, $C_3\text{-}C_{12}$cycloalkyl, $C_3\text{-}C_{12}$cycloalkyl, $R_3\text{-}C_{12}$cycloalkyl, $R_3\text{-}C_{12}$alkeyl, $R_3\text{-$

or R3 is a multi-ring structure having 2 to 4 rings wherein the rings are

independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl and where some or all of the rings may be fused to each other;

 R^4 , R^6 and R^6 are each independently selected from hydrogen, bromo, fluoro, chloro, methyl, methoxy, trifluoromethyl, cyano, nitro or -N(R^{15})₂;

 R^7 , R^{7a} , R^8 , R^{8a} , R^9 , R^{9a} , R^{10} , and R^{10a} are each independently selected from hydrogen or Cr-C-alkVI:

or R⁷ and R^{7a} together, or R⁸ and R^{8a} together, or R⁹ and R^{8a} together, or R^{4a} and R^{5a} together, or R^{4a} and R^{5a} together are an oxe group, provided that when V-is—C(O)—R⁷ and R^{7a} together or R⁸ and R^{8a} together do not form an oxe group, while the remaining R⁷ + R^{7a} + R⁸ + R^{8a} + R⁹ + R^{9a} + R

or one of R^{10} , R^{10a} , R^{2} , and R^{2a} together with one of R^{8} , R^{8a} , R^{9} and R^{9a} form an alkylene-bridge, while the remaining R^{10} , R^{10a} , R^{2} , R^{7a} , R^{8a} , R^{9} , and R^{9a} are each independently selected from hydrogen or G_{2} - G_{3} alkyli;

R11 is hydrogen or C1-C3alkyl; and

each R13 is independently selected from hydrogen or C1-C6alkyl;

a stereoisomer, enantiomer or tautomer thereof, a pharmaceutically acceptable salt thereof, a pharmaceutical composition thereof or a prodrug thereof.

 (Currently Amended) A method of treating a disease or condition mediated by stearoyl-CoA desaturase (SCD) in a mammal, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of a compound of formula (I):

wherein:

x and y are each independently 1, 2 or 3;

 $\label{eq:wis-o-1} W \text{ is } -O^-, -N(R^1)_-, -C(R^1)_{2^-}, -C(O)_-, -OC(O)_-, -S(O)_\Gamma; \text{ (where t is 0, 1 or 2),} \\ -N(R^1)S(O)_\Gamma \text{ (where t is 1 or 2), } -S(O)_2N(R^1)_-, -C(O)N(R^1)_-, -C(S)N(R^1)_-, -OS(O)_2N(R^1)_-, -OC(O)N(R^1)_-, -OC(S)N(R^1)_-, -N(R^1)C(O)N(R^1)_-, -OC(S)N(R^1)_-, -N(R^1)C(O)N(R^1)_-, -OC(S)N(R^1)_-, -N(R^1)C(O)N(R^1)_-, -OC(S)N(R^1)_-, -N(R^1)C(O)N(R^1)_-, -OC(S)N(R^1)_-, -N(R^1)C(O)N(R^1)_-, -OC(S)N(R^1)_-, -O$

 $\label{eq:Vis-C(O)-,-C(S)-,-C(O)N(R^1)-,-C(S)N(R^1)-,-C(O)O-,-C(S)O-,-S(O)-, (where t is 1 or 2), -S(O),N(R^1)- (where t is 1 or 2) or -C(R^1)H;}$

each R^1 is independently selected from the group consisting of hydrogen, C_{1} - C_{12} alkyl, C_{2} - C_{12} hydroxyalkyl, C_{4} - C_{12} cycloalkylalkyl and C_{7} - C_{19} aralkyl;

 $R^2 \text{ is selected from the group consisting of } C_1\text{-}C_{12}\text{alkyl}, C_2\text{-}C_{12}\text{alkenyl}, \\ C_2\text{-}C_{12}\text{hydroxyalkyl}, C_2\text{-}C_{12}\text{hydroxyalkenyl}, C_2\text{-}C_{12}\text{alkoxyalkyl}, C_3\text{-}C_{12}\text{cycloalkyl}, \\ C_4\text{-}C_{12}\text{cycloalkylalkyl}, \text{aryl}, C_7\text{-}C_{19}\text{aralkyl}, C_3\text{-}C_{12}\text{heterocyclyl}, C_3\text{-}C_{12}\text{heterocyclylalkyl}, \\ C_4\text{-}C_{43}\text{-}\text{heteroaryl}, \text{and } C_3\text{-}C_{12}\text{heteroarylalkyl}, \\ C_{4}\text{-}C_{43}\text{-}\text{heteroaryl}, \text{and } C_3\text{-}C_{12}\text{heteroarylalkyl}, \\ C_{4}\text{-}C_{43}\text{-}\text{heteroaryl}, \\ C_{5}\text{-}C_{5}\text{-}\text{heteroaryl}, \\ C_{5}\text{-}C_{5}\text{-}\text{heteroaryl}$

or R^2 is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl and where some or all of the rings may be fused to each other;

 $R^3 \ is \ selected from the group consisting of $C_1-C_{12}alkyl, $C_2-C_{12}alkenyl, $C_2-C_{12}alkenyl, $C_2-C_{12}alkenyl, $C_2-C_{12}alkenyl, $C_2-C_{12}alkenyl, $C_3-C_{12}alkenyl, $C_3-C_{12}alkeny$

or R³ is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl and where some or all of the rings may be fused to each other;

 R^4 , R^5 and R^6 are each independently selected from hydrogen, bromo, fluoro, chloro, methyl, methoxy, trifluoromethyl, cyano, nitro or -N(R^{15})₂;

 $R^7,\,R^{7a},\,R^8,\,R^{8a},\,R^9,\,R^{9a},\,R^{10},$ and R^{10a} are each independently selected from

or R^7 and R^{7a} together, or R^9 and R^{8a} together, or R^9 and R^{8a} together, or R^{10} and R^{10a} together are an exergeup, provided that when V is -C(O), R^7 and R^{7a} -together or R^8 and R^{8a} together do not form an exergeup, while the remaining R^7 , R^{7a} , R^8 , R^{8a} , R^9 , R^{80} , R^{10} , and R^{10a} are each independently selected from hydrogen or C_1 - C_2 alkyl;

or one of R^{10} , R^{10} , R^{10} , R^{2} , and R^{2} together with one of R^{8} , R^{8} , R^{9} and R^{90} form an alkylene bridge, while the remaining R^{10} , R^{10} , R^{7} , R^{7} , R^{8} , R^{9} , and R^{60} -are each independently selected from hydrogen or C_{3} - C_{3} alkyl;

R¹¹ is hydrogen or C₁-C₃alkyl; and

each R¹³ is independently selected from hydrogen or C₁-C₆alkyl;

a stereoisomer, enantiomer or tautomer thereof, a pharmaceutically acceptable salt thereof, a pharmaceutical composition thereof or a prodrug thereof.

hydrogen or C₁-C₃alkyl;

3. (Original) The method of Claim 2 wherein the mammal is a human.

4. (Currently Amended) The method of Claim 3 wherein the disease or condition is selected from the group consisting of Type II diabetes, fatty liver, non-alcoholic steatohepatitis, impaired glucose tolerance, insulin resistance, obesity, dyslipidemia, acne, and metabolic syndrome and any combination of these.

- (Original) The method of Claim 4 wherein the disease or condition is Type II
 diabetes.
 - 6. (Original) The method of Claim 4 wherein the disease or condition is obesity.
- (Original) The method of Claim 4 wherein the disease or condition is metabolic syndrome.
 - (Original) The method of Claim 4 wherein the disease or condition is fatty liver.
- (Original) The method of Claim 4 wherein the disease or condition is nonalcoholic steatchepatitis.
 - (Currently Amended) A compound of formula (IIa):

wherein:

x and y are each independently 1, 2 or 3;

 $R^1 \ is \ selected from the group consisting of hydrogen, \ C_1-C_{12} alkyl, \\ C_2-C_{12} hydroxyalkyl, \ C_4-C_{12} cycloalkylalkyl \ and \ C_7-C_{19} aralkyl;$

 $R^2 is selected from the group consisting of $C_7-C_{12}alkyl, $C_3-C_{12}alkenyl$, $C_7-C_{12}hydroxyalkyl$, $C_2-C_{12}alkoxyalkyl$, $C_3-C_{12}hydroxyalkenyl$, $C_3-C_{12}cycloalkyl$, $C_4-C_{12}cycloalkylalkyl$, $C_1-C_{12}heteroaryl$, $C_3-C_{12}heterocyclylalkyl$, $C_3-C_{12}heterocyclylalkyl$, $C_3-C_{12}heterocyclyl$, and $C_3-C_{12}heteroarylalkyl$, provided that R^2 is not pyrazinyl$, pyridinonyl$, pyrrolidinonyl or imidazolyl$;} \label{eq:reconstant}$

or R^2 is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl, where some or all of the rings may be fused to each other;

 $R^3 \ is \ selected from the group consisting of $C_3-C_{12}alkyl, $C_3-C_{12}alkenyl, $C_3-C_{12}alkyl, $C_3-C_{12}alkenyl, $C_3-C_{12}alkyl, $C_3-C_{12}cycloalkyl, $C_3-C_{12}cycl$

or R^3 is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl and where some or all of the rings may be fused to each other,

 R^4 , R^5 and R^8 are each independently selected from hydrogen, bromo, fluoro, chloro, methyl, methoxy, trifluoromethyl, cyano, nitro or $-N(R^{15})_2$;

 R^7 , R^{7a} , R^a , R^{8a} , R^9 , R^{8a} , R^{10} and R^{10a} are each independently selected from hydrogen or C_1 - C_3 alkyl;

er R^oand R^oa-together, or R^o-and R^{oa}-together form an exe group, while the remaining R^oa-R^{oa}-R^{oa}-R^{oa}-R^{oa}-R^{oa}-R^{oa}-R^{oa}-R^{oa}-R^{oa}-Roand R^{oa}-are each independently selected from hydrogen or Ca-Callytin

er one of R^2 , R^{2a} , R^{10} and R^{10a} , together with one of R^8 , R^{8a} , R^9 and R^{20} , form an alkylene bridge, while the remaining R^{10} , R^{10a} , R^7 , R^7 , R^8 , R^8 , R^9 and R^{6a} are each independently selected from hydrogen or C_3 - C_3 alkyl; and

each R^{13} is independently selected from hydrogen or $C_1\text{-}C_6$ alkyl;

a stereoisomer, enantiomer or tautomer thereof, a pharmaceutically acceptable salt thereof, a pharmaceutical composition thereof or a prodrug thereof.

. 11. (Currently Amended) The compound of Claim 10 wherein:

x and y are each independently 1, 2-er-3;

R¹ is selected from the group consisting of hydrogen, C₁-C₁₂alkyl,

C₂-C₁₂hydroxyalkyl, C₄-C₁₂cycloalkylalkyl and C₇-C₁₈aralkyl;

 R^2 is selected from the group consisting of C_7 - C_{12} alkyl, C_3 - C_{12} alkenyl, C_3 - C_{12} hydroxyalkyl, C_3 - C_{12} hlydroxyalkyl, C_3 - C_{12} cycloalkyl, C_3 - C_{12} cycloalkylalkyl, C_3 - C_{12} cycloalkylalkyl, C_3 - C_{12} -aralkyl, C_1 - C_{12} -heteroaryl, C_3 - C_{12} -heterocyclylalkyl, C_3 - C_{12} -heterocyclyl and C_3 - C_{12} -heteroarylalkyl, provided that R^2 is not pyrazinyl, pyridinonyl, pyrrolldinonyl or imidazolyl;

 $R^3 \text{ is selected from the group consisting of $C_3-C_{12}alkyl, $C_3-C_{12}alkenyl,$$$ $C_5-C_{12}hydroxyalkyl, $C_3-C_{12}hydroxyalkyl, $C_3-C_{12}alkoxyalkyl, $C_3-C_{12}cycloalkyl,$$$$ $C_4-C_{12}cycloalkyl, aryl, $C_7-C_{12}aralkyl, $C_3-C_{12}heterocyclyl, $C_3-C_{12}heterocyclylalkyl, $C_1-C_{12}heteroaryl and $C_3-C_{12}heteroarylalkyl;$$$$$

 R^4 , R^5 and R^5 are each independently selected from hydrogen, bromo, fluoro, chloro, methyl, methoxy, trifluoromethyl, cyano, nitro or -N(R^{15})₂;

 $R^7,\,R^{7a},\,R^a,\,R^{a_0},\,R^a,\,R^{9a},\,R^{10}$ and R^{10a} are each independently selected from hydrogen or C_1 - C_3 alkyl; and

each R^{13} is independently selected from hydrogen or $C_1\text{-}C_6$ alkyl.

(Original) The compound of Claim 11 wherein:

x and y are each 1;

R1 is selected from the group consisting of hydrogen or C1-C12alkyl;

R2 is selected from the group consisting of C7-C12alkyl, C3-C12alkenyl,

 $C_{3}-C_{12} \\ \text{cycloalkyl}, \ C_{4}-C_{12} \\ \text{cycloalkylalkyl}, \ C_{13}-C_{19} \\ \text{aralkyl}, \ C_{1}-C_{12} \\ \text{heteroaryl}, \ C_{3}-C_{12} \\ \text{heteroarylalkyl}; \\ \text{and} \ C_{3}-C_{12} \\ \text{heteroarylalkyl}; \\ \text{hetero$

 $R^3 is selected from the group consisting of C_3-C_{12} alkyl, C_3-C_{12} cycloalkyl, \\ C_4-C_{12} cycloalkylalkyl, aryl, C_7-C_{12} aralkyl, C_3-C_{12} heterocyclyl, C_3-C_{12} heterocyclylalkyl, C_1-C_{12} heteroaryl and C_3-C_{12} heteroarylalkyl; \\$

 R^4 , R^5 and R^8 are each independently selected from hydrogen, bromo, fluoro, chloro, methyl, methoxy, trifluoromethyl, cyano, nitro or -N(R^{18})₂;

 R^7 , R^{7a} , R^8 , R^{8a} , R^9 , R^{9a} , R^{10} and R^{10a} are each independently selected from hydrogen or C_1 - C_3 alkyl; and

each R¹³ is independently selected from hydrogen or C₁-C₀alkyl.

(Original) The compound of Claim 12 wherein:
 R² is C₃-C₁₂cycloalkyl or C₄-C₁₂cycloalkylalkyl;
 R³ is selected from the group consisting of C₃-C₁₂cycloalkyl or

C4-C12cycloalkylalkyl;

 R^4 , R^5 and R^6 are each hydrogen; and R^7 , R^{7a} , R^8 , R^{8a} , R^9 , R^{9a} R^{10} and R^{10a} are each hydrogen or C_1 - C_3 alkyl.

14. (Original) The compound of Claim 13 wherein:

R2 is C2-C12cvcloalkyl; and

R3 is C3-C12cycloalkyl.

- (Original) The compound of Claim 14, namely, Cyclohexanecarboxylic acid [6-(4-cyclohexanecarbonyl-piperazin-1-yl)pyridin-3-yl]amide.
- 16. (Original) A method of treating a disease or condition mediated by stearoyl-CoA desaturase (SCD) in a mammal, wherein the method comprises administering to a mammal in need thereof a therapeutically effective amount of a compound of Claim 10.
- (Original) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a therapeutically effective amount of a compound of Claim 10.
 - 18. (Currently Amended) A compound of formula (IIb):

$$R^{1} = R^{4} = R^{6} R^{10a} R^{7a} R^{7a}$$

$$R^{2} = R^{6} R^{9a} R^{8a} R^{8a}$$

$$R^{2} = R^{8a} R^{8a}$$
(IIIb)

wherein:

x and y are each independently 1, 2 or 3;

 $R^1 \ is \ selected from the group consisting of hydrogen, \ C_{1^2}C_{12} alkyl, \\ C_{2^-}C_{12} hydroxyalkyl, \ C_{4^-}C_{12} cycloalkylalkyl \ and \ C_{7^-}C_{19} aralkyl;$

 $R^2 \text{ is selected from the group consisting of } C_1\text{-}C_{12}\text{alkyl}, C_2\text{-}C_{12}\text{alkenyl}, \\ C_2\text{-}C_{12}\text{hydroxyalkyl}, C_2\text{-}C_{12}\text{hydroxyalkenyl}, C_1\text{-}C_6\text{alkoxy}, C_3\text{-}C_{12}\text{alkoxyalkyl}, C_3\text{-}C_{12}\text{cycloalkyl}, \\ C_4\text{-}C_{12}\text{cycloalkylalkyl}, C_7\text{-}C_{19}\text{aralkyl}, C_3\text{-}C_{12}\text{ heterocyclyl}, C_3\text{-}C_{12}\text{heterocyclylalkyl}, \\ \text{-}C_{12}\text{-}C_$

C.-C.-heteroarvl and C.-C.-heteroarvlalkyl;

or R^2 is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl, where some or all of the rings may be fused to each other,

 R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, cyano, nitro, hydroxy, $C_1\text{-}C_0\text{ellkyl},\ C_1\text{-}C_0\text{trihaloalky},\ C_1\text{-}C_0\text{ellkyl},\ C_1\text{-}C_0\text{e$

 R^4 , R^5 and R^6 are each independently selected from hydrogen, bromo, fluoro, chloro, methyl, methoxy, trifluoromethyl, cyano, nitro or $-N(R^{15})_z$;

 R^7 , R^{7a} , R^8 , R^{9a} , R^9 , R^{9a} , R^{10} , and R^{10a} are each independently selected from hydrogen or C_1 - C_3 alkyl;

or R^9 and R^{9a} -together, or R^{10} and R^{10a} -together form an exe group, while the remaining R^7 , R^{7a} , R^8 , R^{9a} , R^{9a} , R^{10} , and R^{10a} are each independently selected from hydrogen or C_1 - C_2 alkyl;

or one of R^7 , R^{7o} , R^{1o} and R^{1oo} , together with one of R^8 , R^{8o} , R^9 and R^{1o} , form an alkylene bridge, while the remaining R^{1o} , R^{1o} , R^{7o} , R^7 , R^8 , R^8 , R^9 , and R^{1o} are each independently selected from hydrogen or G_4 - G_5 alkyl; and

each R^{12} is independently selected from hydrogen, $C_{1^{\circ}}C_{0}$ alkyl, C_{0} - C_{0} cycloalkyl, aryl or aralkyl; and

each R¹³ is independently selected from hydrogen or C₁-C₅alkyl;

a stereoisomer, enantiomer or tautomer thereof, a pharmaceutically acceptable sait thereof, a pharmaceutical composition thereof or a prodrug thereof.

(Currently Amended) The compound of Claim 18 wherein:
 x and y are each independently 1, 2-or-3;
 R¹ is selected from the group consisting of hydrogen, C₁-C₁₂alkyl,

C₂-C₁₂hydroxyalkyl, C₄-C₁₂cycloalkylaikyl and C₇-C₁₉aralkyl;

R² is selected from the group consisting of C₁-C₁₂alkyl, C₂-C₁₂alkenyl, C₂-C₁₂hydroxyalkyl, C₂-C₁₂hydroxyalkenyl, C₁-C₆alkoxy, C₃-C₁₂alkoxyalkyl, C₃-C₁₂cycloalkyl, C₄-C₁₂cycloalkylalkyl, C₇-C₁₆aralkyl, C₃-C₁₂ heterocyclyl, C₃-C₁₂heterocyclylalkyl, C₇-C₁₆heteroaryl and C₃-C₁₂heteroarylalkyl;

 R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, cyano, nitro, hydroxy, $C_1\text{-}C_0\text{ellkyl}$, $C_1\text{-}C_0\text{trihaloalky}$, $C_1\text{-}C_0\text{ellkyl}$, $C_1\text{-}C_0\text{ellkyl}$, $C_1\text{-}C_0\text{ellkyl}$, $C_1\text{-}C_0\text{ellkyl}$, $C_1\text{-}C_0\text{ellkyl}$, $C_1\text{-}C_0\text{ellkyl}$, heterocyclyl, heteroaryl and heteroarylcycloalkyl, provided that R^3 is not phenyl substituted with optionally substituted thienyl;

 R^4 , R^5 and R^5 are each independently selected from hydrogen, bromo, fluoro, chloro, methyl, methoxy, trifluoromethyl, cyano, nitro or $-N(R^{15})_2$;

 R^7 , R^{7a} , R^8 , R^{8a} , R^9 , R^{9a} , R^{10} , and R^{10a} are each independently selected from hydrogen or Cr-Callkyl. or

 R^{10} and R^{10a} together form an oxo group and the remaining $R^7,\,R^{7a},\,R^8,\,R^{8a},\,R^9$ and R^{9a} are each hydrogen;

 $each\ R^{12}\ is\ independently\ selected\ from\ hydrogen,\ C_1\text{-}C_6alkyl,\ C_3\text{-}C_ccycloalkyl,}$ aryl or aralkyl; and

each R^{13} is independently selected from hydrogen or $C_1\text{--}C_6alkyl.$

(Original) The compound of Claim 19 wherein:

x and y are each 1;

R1 is hydrogen or C1-C12alkyl;

 $R^2 is selected from the group consisting of C_1-C_{12}alkyl, C_2-C_{12}alkenyl, C_2-C_{12}hydroxyalkyl, C_2-C_{12}hydroxyalkyl, C_3-C_{12}hydroxyalkyl, C_3-C_{12}alkoxy, C_3-C_{12}alkoxyalkyl, C_3-C_{12}cycloalkyl, C_3-C_{12}heterocyclyl, C_3-C_{12}heterocyclylalkyl, C_3-C_{12}heteroaryl and C_3-C_{12}heteroarylalkyl; C_3-C_{12}heteroaryl and C_3-C_{12}heteroarylalkyl; C_3-C_{12}heteroa$

 R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, cyano, nitro, hydroxy, $C_1\text{-}C_0\text{elkyl},\ C_1\text{-}C_0\text{trihaloalkyy},\ C_1\text{-}C_0\text{elkyl},\ C_1\text{-}C_0\text{e$

R⁴, R⁵ and R⁶ are each hydrogen;

R7, R7a, R8, R8a, R9, R9a, R10 and R10a are each hydrogen; or

 R^{10} and R^{10a} together form an oxo group and the remaining R^7 , R^{7a} , R^8 , R^{8a} , R^9 and R^{9a} are each hydrogen; and

each R^{12} is independently selected from hydrogen, C_t - C_e alkyl, C_3 - C_e cycloalkyl, arvl or aralkyl.

21. (Original) The compound of Claim 20 wherein:

R2 is C1-C12alkyl; and

 R^3 is phenyl optionally substituted by one or more substituents selected from halo, C_1 - C_6 alkyl, C_1 - C_6 trihaloalkyl and C_1 - C_6 trihaloalkoxy.

 (Original) The compound of Claim 21 selected from the group consisting of the following:

4-Methylpentanoic acid {6-[4-(2-trifluoromethylbenzoyl)piperazin-1-yl]pyridin-3-yl}amide;
Hexanoic acid {6-[4-(2-trifluoromethylbenzoyl)piperazin-1-yl]pyridin-3-yl}amide;
Heptanoic acid {6-[4-(2-trifluoromethylbenzoyl)piperazin-1-yl]pyridin-3-yl}amide;
Heptanoic acid {6-[4-(2,5-dichlorobenzoyl)piperazin-1-yl]pyridin-3-yl]amide; and
Hexanoic acid {6-[4-(2,5-dichlorobenzoyl)piperazin-1-yl]pyridin-3-yl]amide.

23. (Original) The compound of Claim 20 wherein:

R2 is C3-C12cycloalkyl; and

 R^3 is phenyl optionally substituted by one or more substituents selected from halo, C_1 - C_6 trihaloalkyl, C_1 - C_6 trihaloalkyl and C_1 - C_6 trihaloalkoxy.

- 24. (Original) The compound of Claim 23, namely, Cyclohexanecarboxylic acid {6-{4-(2-trifluoromethylbenzoyl)piperazin-1-yl]pyridin-3-yl}amide.
 - 25. (Original) The compound of Claim 20 wherein:

 $R^2 \text{ is } C_{7^*}C_{12} \text{aralkyl optionally substituted by one or more substituents selected from halo, } C_{1^*}C_8 \text{alkyl, } C_{1^*}C_8 \text{trihaloalkyl and } C_{1^*}C_8 \text{trihaloalkoxy; and}$

 $R^3 \ \text{is phenyl optionally substituted by one or more substituents selected from halo, $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ trihaloalkyl and $C_1\text{-}C_6$ trihaloalkoxy.}$

 (Original) The compound of Claim 25 selected from the group consisting of the following:

3-Phenyl-N-{6-[4-(2-trifluoromethylbenzoyl)piperazin-1-yl]-pyridin-3-yl}propionamide;

4-Phenyl-N-{6-[4-(2-trifluoromethylbenzoyl)piperazin-1-yl]-pyridin-3-yl}butyramide; and

N-{6-[2-Oxo-4-(2-trifluoromethylbenzoyl)piperazin-1-yl]-pyridin-3-yl}-4-phenylbutyramide.

(Original) A method of treating a disease or condition mediated by stearoyl-CoA
desaturase (SCD) in a mammal, wherein the method comprises administering to a mammal in
need thereof a therapeutically effective amount of a compound of Claim 18.

- (Original) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a therapeutically effective amount of a compound of Claim 18.
 - 29. (Currently Amended) The compound of formula (III):

$$R^{2} = \sum_{N=1}^{R^{4}} \sum_{N=1}^{R^{4}} \sum_{N=1}^{R^{5}} \sum_{N=1}^{R^{10a}} \sum_{N=1}^{R^{10}} \sum_{N=1}^{R^{7}a} \sum_{N=1}^{R^{3}} \sum_{N=1}^{R^{10}} \sum_{N=1}^{R^{10}}$$

wherein:

x and v are each independently 1, 2 or 3;

 $V_a \text{ is -C(O)-, -C(S)-, -C(O)N(R^1)-, -C(S)N(R^1)-, -C(O)O-, -C(S)O-, -S(O),-(where t is 1 or 2) or -S(O),N(R^1)- (where t is 1 or 2);} \\$

each R1 is independently selected from the group consisting of hydrogen,

C1-C12alkyl, C2-C12hydroxyalkyl, C4-C12cycloalkylalkyl and C7-C19aralkyl;

 R^2 is selected from the group consisting of C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} hydroxyalkyl, C_2 - C_{12} hydroxyalkenyl, C_1 - C_6 alkoxy, C_3 - C_{12} alkoxyalkyl, C_3 - C_{12} cycloalkyl, C_4 - C_{12} cycloalkylalkyl, aryl, C_7 - C_{19} aralkyl, C_3 - C_{12} heterocyclyl, C_3 - C_{12} heterocyclylalkyl, C_3 - C_{12} heteroaryl and C_3 - C_{12} heteroarylalkyl;

or R^2 is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl, where some or all of the rings may be fused to each other;

 $R^3 \ is \ selected from the group consisting of $C_1\text{-}C_{12}$alkyl, $C_2\text{-}C_{12}$alkenyl, $C_2\text{-}C_{12}$alkenyl, $C_2\text{-}C_{12}$alkenyl, $C_2\text{-}C_{12}$alkenyl, $C_2\text{-}C_{12}$alkenyl, $C_3\text{-}C_{12}$alkenyl, $C_3\text$

Docket No.: 17243/003001

Application No.: 10/566,193

or R³ is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl and where some or all of the rings may be fused to each other;

 R^4 , R^5 and R^5 are each independently selected from hydrogen, bromo, fluoro, chloro, methyl, methoxy, trifluoromethyl, cyano, nitro or -N(R^{15})₂;

 R^7 , R^{7a} , R^8 , R^{8a} , R^9 , R^{9a} , R^{10} , and R^{10a} are each independently selected from hydrogen or C_1 - C_3 alkyl;

or R⁷ and R^{7a}-together, or R⁸ and R^{8a}-together, or R⁹ and R^{8a}-together, or R^{4a}-and R^{4a}-together are an exe group, provided that when V_a-is - C(O), R⁷ and R^{7a}-together or R⁸ and R^{8a}-together de not form an exe group, while the remaining R⁷, R^{7a}, R⁸, R^{8a}, R⁹, R^{8a}, R^{1a}, and R^{1aa}-are each independently selected from hydrogen or C₄-C₃alkyl;

or-one of R^{10} , R^{10} , R^{7} , and R^{7} , together with one of R^{8} , R^{8} , R^{9} , and R^{9} form an alkylene bridge, while the remaining R^{10} , R^{10} , R^{7} , R^{7} , R^{8} , R^{8} , R^{9} , and R^{98} are each independently selected from hydrogen or C_{2} - C_{3} alkyl; and

each R¹³ is independently selected from hydrogen or C₁-C₀alkyl;

a stereoisomer, enantiomer or tautomer thereof, a pharmaceutically acceptable salt thereof, a pharmaceutical composition thereof or a prodrug thereof.

(Currently Amended) The compound of Claim 29 wherein:
 x and y are each independently 1, 2-er-3;
 V_a is -C(O)- or -C(S)-;

R¹ is selected from the group consisting of hydrogen, C₁-C₁₂alkyl,

 $C_2\text{--}C_{12}\text{hydroxyalkyl},\ C_4\text{--}C_{12}\text{cycloalkylalkyl}\ \text{and}\ C_7\text{--}C_{19}\text{aralkyl};$

 $R^2 \text{ is selected from the group consisting of } C_1\text{--}C_{12}\text{alkyl}, C_2\text{--}C_{12}\text{alkenyl}, \\ C_2\text{--}C_{12}\text{hydroxyalkyl}, C_2\text{--}C_{12}\text{hydroxyalkenyl}, C_1\text{--}C_6\text{alkoxy}, C_3\text{--}C_{12}\text{alkoxyalkyl}, C_3\text{--}C_{12}\text{cycloalkyl}, \\ C_4\text{--}C_{12}\text{cycloalkylalkyl}, \text{aryl}, C_7\text{--}C_1\text{aralkyl}, C_3\text{--}C_{12}\text{ heterocyclyl}, C_3\text{--}C_{12}\text{heterocyclylalkyl}, \\ C_7\text{--}C_1\text{heteroaryl} \text{ and } C_3\text{--}C_1\text{heteroarylalkyl}; \\ C_7\text{--}C_1\text{heteroaryl} \text{ and } C_3\text{--}C_1\text{heteroarylalkyl}; \\ C_7\text{--}C_1\text{heteroaryl} \text{ and } C_3\text{--}C_1\text{--}\text{heteroarylalkyl}; \\ C_7\text{--}C_1\text{heteroaryl} \text{ and } C_3\text{--}C_1\text{--}\text{heteroarylalkyl}; \\ C_7\text{--}C_1\text{--}\text{heteroaryl} \text{ and } C_3\text{--}C_1\text{--}\text{heteroarylalkyl}; \\ C_7\text{--}C_1\text{--}\text{heteroarylalkyl}; \\ C_$

 $R^3 \text{ is selected from the group consisting of } C_{1^*}C_{12}\text{alkyl}, C_{2^*}C_{12}\text{alkenyl}, \\ C_{2^*}C_{12}\text{hydroxyalkyl}, C_{2^*}C_{12}\text{hydroxyalkenyl}, C_{2^*}C_{12}\text{alkoxyalkyl}, C_{3^*}C_{12}\text{cycloalkyl}, \\ C_{4^*}C_{12}\text{cycloalkylalkyl}, \text{aryl}, C_{7^*}C_{19}\text{aralkyl}, C_{3^*}C_{12}\text{heterocyclyl}, C_{3^*}C_{12}\text{heterocyclylalkyl}, \\ C_{1^*}C_{1^*}\text{beteroaryl} \text{ and } C_{3^*}C_{12}\text{heteroarylalkyl}; \\$

 R^4 , R^5 and R^8 are each independently selected from hydrogen, bromo, fluoro, chloro, methyl, methoxy, trifluoromethyl, cyano, nitro or -N(R^{18})₂;

 $R^7, R^{7a}, R^8, R^{8a}, R^9, R^{8a}, R^{10}, \text{ and } R^{10a} \text{ are each independently selected from hydrogen or } C_1\text{-} C_3\text{alkyl}; \text{ and }$

each R^{13} is independently selected from hydrogen or $C_1\text{-}C_\epsilon alkyl$.

31. (Original) The compound of Claim 30 wherein:

x and y are each 1;

V_a is -C(O)-;

R1 is hydrogen or C1-C12alkyl;

 $R^2 is selected from the group consisting of C_1-C_{12}alkyl, C_2-C_{12}alkenyl, \\ C_2-C_{12}hydroxyalkyl, C_2-C_{12}hydroxyalkenyl, C_1-C_6alkoxy, C_3-C_{12}alkoxyalkyl, C_3-C_{12}cycloalkyl, \\ C_4-C_{12}cycloalkylalkyl, aryl, C_7-C_{19}aralkyl, C_3-C_{12} heterocyclyl, C_3-C_{12}heterocyclylalkyl, \\ C_1-C_{12}heteroaryl and C_3-C_{12}heteroarylalkyl; \\$

 R^3 is naphthyl or phenyl, each optionally substituted by one or more substituents selected from the group consisting of halo, cyano, nitro, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 trihaloalkyl, C_1 - C_6 trihaloalkoxy, C_1 - C_6 alkylsulfonyl, -N(R^{12})₂, -OC(O) R^{12} , -C(O)O R^{12} , -S(O)₂N(R^{12})₂, cycloalkyl, heterocyclyl, heteroaryl and heteroarylcycloalkyl;

R4, R5 and R6 are each hydrogen;

 R^7 , R^{7a} , R^8 , R^{8a} , R^9 , R^{9a} , R^{10} , and R^{10a} are each hydrogen; and each R^{12} is independently selected from hydrogen, C_1 - C_0 alkyl, C_3 - C_0 cycloalkyl, aryl or aralkyl.

32. (Original) The compound of Claim 31 wherein:

 $R^2 \text{ is } C_1\text{-}C_{12}\text{alkyl or } C_7\text{-}C_{12}\text{aralkyl optionally substituted by one or more substituents selected from the group consisting of halo, $C_1\text{-}C_6\text{alkyl}$, $C_1\text{-}C_6\text{trihaloalkyl}$ and $C_1\text{-}C_6\text{trihaloalkoxy}$;}$

 $R^3 \ \text{is naphthyl or phenyl, each optionally substituted by one or more substituents} \\ \text{selected from the group consisting of halo, $C_1-C_2 = C_2 = C$

33. (Original) The compound of Claim 32 selected from the group consisting of the following:

Pentane-1-sulfonic acid (6-[4-(2-trifluoromethylbenzoyl)-piperazin-1-yl]pyridin-3-yl]amide; Butane-1-sulfonic acid (6-[4-(2-trifluoromethylbenzoyl)-piperazin-1-yl]pyridin-3-yl]amide; Hexane-1-sulfonic acid (6-[4-(2-trifluoromethylbenzoyl)-piperazin-1-yl]pyridin-3-yl]amide;

Docket No.: 17243/003001

Pentane-1-sulfonic acid {6-[4-(2-bromobenzoyl)piperazin-1-yl]pyridin-3-yl]amide;

Hexane-1-sulfonic acid {6-[4-(2,5-dichlorobenzoyl)-piperazin-1-yl]pyridin-3-yl]amide;

Pentane-1-sulfonic acid {6-[4-(2,5-dichlorobenzoyl)-piperazin-1-yl]pyridin-3-yl]amide;

Hexane-1-sulfonic acid {6-[4-(naphthalene-1-carbonyl)-piperazin-1-yl]pyridin-3-yl]amide;

Pentane-1-sulfonic acid {6-[4-(naphthalene-1-carbonyl)-piperazin-1-yl]pyridin-3-yl]amide; and

3-Phenylpropane-1-sulfonic acid {6-[4-(2-trifluoromethyl-benzoyl)piperazin-1-yl]pyridin-3-yl]amide.

34. (Original) The compound of Claim 31 wherein: $R^2 \text{ is } C_{4^*}C_{12} \text{cycloalkylalkyl, } C_{7^*}C_{19} \text{aralkyl, } C_{3^*}C_{12} \text{heterocyclylalkyl or } C_{3^*}C_{12} \text{heteroarylalkyl'};$

 $R^3 \ \text{is naphthyl or phenyl, each optionally substituted by one or more substituents} \\ \text{selected from the group consisting of halo, $C_1-C_0\text{elkyl}$, $C_1-C_0\text{trihaloalkyl}$ and $C_1-C_0\text{trihaloalkoxy}$.}$

- 35. (Original) A method of treating a disease or condition mediated by stearoyl-CoA desaturase (SCD) in a mammal, wherein the method comprises administering to a mammal in need thereof a therapeutically effective amount of a compound of Claim 29.
- (Original) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a therapeutically effective amount of a compound of Claim 29.
 - 37. (Currently Amended) The compound of formula (IV):

wherein:

x and y are each independently 1, 2 or 3;

 V_a is -C(O)-, -C(S)-, -C(O)N(R¹)-, -C(S)N(R¹)-, -C(O)O-, -C(S)O-, -S(O)_t-(where t

is 1 or 2) or -S(O)_tN(R1)- (where t is 1 or 2);

 $each \ R^1 \ is \ independently \ selected \ from \ the \ group \ consisting \ of \ hydrogen, \\ C_{1^-}C_{12} likyl, \ C_{2^-}C_{12} hydroxyalkyl, \ C_{4^-}C_{12} cycloalkylalkyl \ and \ C_{7^-}C_{16} a ralkyl;$

 $R^2 \text{ is selected from the group consisting of } C_1\text{-}C_{12} \text{alkyl}, C_2\text{-}C_{12} \text{alkenyl}, C_2\text{-}C_{12} \text{hydroxyalkyl}, C_3\text{-}C_{12} \text{nydroxyalkenyl}, C_3\text{-}C_{12} \text{alkoxyalkyl}, C_3\text{-}C_{12} \text{cycloalkyl}, \\ C_4\text{-}C_{12} \text{cycloalkylalkyl}, \text{aryl}, C_7\text{-}C_{19} \text{aralkyl}, C_3\text{-}C_{12} \text{ heterocyclyl}, C_3\text{-}C_{12} \text{heterocyclylalkyl}, \\ C_1\text{-}C_{12} \text{heteroaryl} \text{ and } C_3\text{-}C_{12} \text{heteroarylalkyl}; \\ \end{aligned}$

or R^2 is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl, where some or all of the rings may be fused to each other;

 $R^3 \ is \ selected from the group consisting of $C_1\text{-}C_{12}$alkyl, $C_2\text{-}C_{12}$alkenyl, $C_2\text{-}C_{12}$alkenyl, $C_2\text{-}C_{12}$bydroxyalkyl, $C_2\text{-}C_{12}$bydroxyalkyl, $C_3\text{-}C_{12}$alkenyl, $C_3\text{-}C_{12}$alkenyl, $C_3\text{-}C_{12}$bydroxyalkyl, $C_3\text{-}C_{12}$beterocyclyl, $C_3\text{-}C_{12}$beterocyclylalkyl, $C_3\text{-}C_1$beterocyclylalkyl, $C_3\text{-}C_1$beterocycl$

or R³ is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl and where some or all of the rings may be fused to each other;

 R^4 , R^5 and R^6 are each independently selected from hydrogen, bromo, fluoro, chloro, methyl, methoxy, trifluoromethyl, cyano, nitro or $-N(R^{13})_2$;

 R^7 , R^{7a} , R^8 , R^{8a} , R^9 , R^{9a} , R^{10} , and R^{10a} are each independently selected from hydrogen or Cr-Csalkyl;

or R^7 and R^{7a} together, or R^8 and R^{8a} together, or R^9 and R^{8a} together, or R^{10} and R^{4a} together are an exe-group, provided that when V_a is C(O), R^7 and R^{7a} together or R^8 and R^{8a} together do not form an exe-group, while the remaining R^7 , R^{7a} , R^8 , R^{8a} , R^9 , R^{8a} , R^{10} , and R^{10a} are each independently selected from hydrogen or C_4 - C_4 - C_4 - C_4 - C_5 -

or-one of R¹⁰-R¹⁰-R²-and R²⁰-together with one of R⁸-R⁸⁰-R²-and R⁸⁰-form an alkylene-bridge, while the remaining R¹⁰-R¹⁰⁰-R²⁰-R²-R²-R⁸-R⁸-R⁹, and R⁸⁰-are each independently-selected from hydrogen-or C₃-C₃alkyl; and

each R13 is independently selected from hydrogen or C1-C6alkyl;

a stereoisomer, enantiomer or tautomer thereof, a pharmaceutically acceptable salt thereof, a pharmaceutical composition thereof or a prodrug thereof.

38. (Currently Amended) The compound of Claim 37 wherein:

x and v are each independently 1, 2 or 3;

 V_s is -C(O)-, -C(S)-, -C(O)N(R¹)-, -C(S)N(R¹)-, -C(O)O-, -S(O)_C(where t is 1 or 2) or -S(O)N(R¹)- (where t is 1 or 2);

each R¹ is independently selected from the group consisting of hydrogen, C₁-C₁₂alkyl, C₂-C₁₂hydroxyalkyl, C₄-C₁₂cycloalkylalkyl and C₇-C₁₉aralkyl;

 R^2 is selected from the group consisting of C_1 - C_{12} alkyl, C_2 - C_{12} alkenyl, C_2 - C_{12} hydroxyalkyl, C_2 - C_{12} hydroxyalkenyl, C_3 - C_{12} alkoxyalkyl, C_3 - C_{12} cycloalkyl, C_3 - C_{12} cycloalkyl, aryl, C_7 - C_{19} aralkyl, C_3 - C_{12} heterocyclyl, C_3 - C_{12} heterocyclylalkyl, C_1 - C_1 -heteroaryl and C_3 - C_1 -heteroarylalkyl;

 $R^3 \ is \ selected \ from \ the \ group \ consisting \ of \ C_1-C_{12} alkyl, \ C_2-C_{12} alkenyl, \\ C_2-C_{12} hydroxyalkyl, \ C_2-C_{12} hydroxyalkenyl, \ C_2-C_{12} alkoxyalkyl, \ C_3-C_{12} cycloalkyl, \\ C_4-C_{12} cycloalkylalkyl, \ aryl, \ C_7-C_{19} aralkyl, \ C_3-C_{12} heterocyclylalkyl, \\ C_1-C_{12} heteroaryl \ and \ C_3-C_{12} heteroarylalkyl; \\ C_1-C_{12} heteroaryl \ and \ C_3-C_{12} heteroarylalkyl; \\ C_1-C_{12} heteroaryl \ and \ C_3-C_{12} heteroarylalkyl; \\ C_1-C_{12} heteroarylalkyl, \ C_1-C_{12} heteroarylalkyl; \\ C_1-C_{12} heteroarylalkyl, \ C_1-C_{12} heteroarylalkyl; \\ C_1-C_{12} heteroarylalkyl, \ C_$

 R^4 , R^5 and R^8 are each independently selected from hydrogen, bromo, fluoro, chloro, methyl, methoxy, trifluoromethyl, cyano, nitro or $-N(R^{13})_2$;

 $R^7,\,R^{7a},\,R^8,\,R^{8a},\,R^9,\,R^{9a},\,R^{10},\,and\,R^{10a}\,are\,each\,independently\,selected\,from\,hydrogen\,or\,C_1-C_5alkyl;\,and$

each R¹³ is independently selected from hydrogen or C₁-C₈alkyl.

39. (Original) The compound of Claim 38 wherein:

x and y are each 1;

V_a is -C(O)-:

each R1 is independently hydrogen or C1-C6alkyl;

 $R^2 \text{ is selected from the group consisting of $C_1\text{-}C_{12}\text{alkeyl}$, $C_2\text{-}C_{12}\text{alkenyl}$, $C_3\text{-}C_{12}\text{hydroxyalkyl}$, $C_3\text{-}C_{12}\text{hydroxyalkenyl}$, $C_3\text{-}C_{12}\text{alkoxyalkyl}$, $C_3\text{-}C_{12}\text{cycloalkyl}$, $C_4\text{-}C_{12}\text{cycloalkyl}$, aryl, $C_7\text{-}C_{19}\text{aralkyl}$, $C_3\text{-}C_{12}$ heterocyclyl, $C_3\text{-}C_{12}\text{heterocyclylalkyl}$, $C_1\text{-}C_1\text{-}heteroaryl and $C_3\text{-}C_1\text{-}heteroarylalkyl}$, $C_1\text{-}C_1\text{-}heteroarylalkyl}$, $C_1\text{-}C_1\text{-}heteroary$

 $R^3 \text{ is selected from the group consisting of } C_3\text{-}C_{12} \text{alkyl}, C_3\text{-}C_{12} \text{alkenyl}, \\ C_3\text{-}C_{12} \text{hydroxyalkyl}, C_3\text{-}C_{12} \text{hydroxyalkenyl}, C_3\text{-}C_{12} \text{alkoxyalkyl}, C_3\text{-}C_{12} \text{cycloalkyl}, \\ C_4\text{-}C_{12} \text{cycloalkylalkyl}, \text{aryl}, C_7\text{-}C_1 \text{aralkyl}, C_3\text{-}C_{12} \text{heterocyclyl}, C_3\text{-}C_1 \text{heterocyclylalkyl}, \\ \text{cycloalkylalkyl}, C_7\text{-}C_1 \text{aralkyl}, C_7\text{-}C_1 \text{heterocyclylalkyl}, \\ \text{cycloalkylalkyl}, C_7\text{-}C_1 \text{-}C_1 \text{-}C_1$

R4, R5 and R6 are each hydrogen;

 $R^7,\,R^{7a},\,R^8,\,R^{8a},\,R^9,\,R^{9a},\,R^{10},$ and R^{10a} are each hydrogen; and

each R^{12} is independently selected from hydrogen, C_t - C_e alkyl, C_5 - C_e cycloalkyl, aryl or aralkyl.

40. (Original) The compound of Claim 39 wherein:

R² is C₁-C₁₂alkyl or C₇-C₁₂aralkyl optionally substituted by one or more substituents selected from the group consisting of halo, C₁-C₀alkyl, C₁-C₀trihaloalkyl and C₁-C₀trihaloalkoxy; and

 $R^{s} \ is \ selected from the group consisting of C_{5}\text{-}C_{12} \text{cycloalkyl, aryl,}$ $C_{5}\text{-}C_{12} \text{heterocyclyl or } C_{1}\text{-}C_{12} \ \text{heteroaryl.}$

- 41. (Original) The compound of Claim 40 wherein R3 is C3-C12cycloalkyl.
- 42. (Original) The compound of Claim 41 selected from the group consisting of the following:
- 1-[6-(4-Cyclohexanecarbonylpiperazin-1-yl)pyridin-3-yl]-3-pentylurea; and 1-[6-(4-Cyclopentanecarbonylpiperazin-1-yl)pyridin-3-yl]-3-pentylurea.
- 43. (Original) The compound of Claim 40 wherein R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, C_1 - C_6 alkyl, C_1 - C_6 trihaloalkyl and C_1 - C_6 trihaloalkoxy.
- 44. (Original) The compound of Claim 43 selected from the group consisting of the following:
- 1-Pentyl-3-{6-[4-(2-trifluoromethylbenzoyl)piperazin-1-yl]-pyridin-3-yl}urea;
- 1-Butyl-3-{6-[4-(2-trifluoromethylbenzoyl)piperazin-1-yl]-pyridin-3-yl}urea;
- 1-Phenethyl-3-{6-[4-(2-trifluoromethylbenzoyl)piperazin-1-yl]pyridin-3-yl}urea;
- 1-Benzyl-3-{6-[4-(2-trifluoromethylbenzoyl)piperazin-1-yl]-pyridin-3-yl}urea; and
- 1-(4-Fluorobenzyl)-3-{6-[4-(2-trifluoromethylbenzoyl)-piperazin-1-yl]pyridin-3-yl}urea.
- 45. (Original) The compound of Claim 40 wherein R³ is piperidinyl optionally substituted by C₁-C₆alkyl or C₇-C₁₂aralkyl, wherein the C₇-C₁₂aralkyl group is optionally substituted by one or more substituents selected from the group consisting of halo, C₁-C₆alkyl, C₁-C₆trihaloalkyl and C₁-C₆trihaloalkoxy.

46. (Original) The compound of Claim 45, namely, 1-(6-[4-(1-Benzylpiperidine-4-carbonyl)ciperazin-1-yll-pyridin-3-yll-3-pentylurea.

- 47. (Original) The compound of Claim 40 wherein R³ is pyridinyl optionally substituted by one or more substituents selected from the group consisting of halo or C₁-C₀alkyl.
- 48. (Original) The compound of Claim 47 selected from the group consisting of the following:

1-Pentyl-3-{6-[4-(pyridine-2-carbonyl)piperazin-1-yl]-pyridin-3-yl}urea; and 1-Pentyl-3-{6-[4-(pyridine-4-carbonyl)piperazin-1-yl]-pyridin-3-yl}urea.

- 49. (Original) A method of treating a disease or condition mediated by stearoyl-CoA desaturase (SCD) in a mammal, wherein the method comprises administering to a mammal in need thereof a therapeutically effective amount of a compound of Claim 37.
- (Original) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a therapeutically effective amount of a compound of Claim 37.
 - 51. (Currently Amended) The compound of formula (V):

$$R^{2} - W_{a} - V_{a} - V_{a$$

wherein:

x and y are each independently 1, 2 or 3;

 W_a is -O-, -N(R¹)- or -S(O)_t- (where t is 0, 1 or 2);

 $V_a \text{ is -C(O)-, -C(S)-, -C(O)N(R^1)-, -C(S)N(R^1)-, -C(O)O-, -C(S)O-, -S(O)-(where t is 1 or 2) or -S(O)_tN(R^1)- (where t is 1 or 2);}$

each R^1 is independently selected from the group consisting of hydrogen, $C_{1-C_{12}alkyl}$, $C_{2-C_{12}hydroxyalkyl}$, $C_{4-C_{12}cycloalkylalkyl}$ and $C_{7-C_{19}aralkyl}$;

 $R^2 \text{ is selected from the group consisting of } C_1\text{-}C_{12} \text{alkyl}, C_2\text{-}C_{12} \text{alkenyl}, \\ C_2\text{-}C_{12} \text{hydroxyalkyl}, C_2\text{-}C_{12} \text{hydroxyalkenyl}, C_3\text{-}C_{12} \text{alkoxyalkyl}, C_3\text{-}C_{12} \text{cycloalkyl}, \\ C_4\text{-}C_{12} \text{cycloalkylalkyl}, \text{aryl}, C_7\text{-}C_{19} \text{aralkyl}, C_3\text{-}C_{12} \text{ heterocyclyl}, C_3\text{-}C_{12} \text{heterocyclylalkyl}, \\ C_1\text{-}C_{12} \text{heteroaryl} \text{ and } C_3\text{-}C_{12} \text{heteroarylalkyl}; \\ \end{cases}$

or R² is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl, where some or all of the rings may be fused to each other;

 $R^3 \ \text{is selected from the group consisting of } C_1\text{-}C_{12} \text{alkyl}, \ C_2\text{-}C_{12} \text{alkenyl}, \\ C_2\text{-}C_{12} \text{hydroxyalkyl}, \ C_2\text{-}C_{12} \text{hydroxyalkenyl}, \ C_2\text{-}C_{12} \text{alkoxyalkyl}, \ C_3\text{-}C_{12} \text{cycloalkyl}, \\ C_4\text{-}C_{12} \text{cycloalkylalkyl}, \ \text{aryl}, \ C_7\text{-}C_{19} \text{aralkyl}, \ C_3\text{-}C_{12} \text{heterocyclyl}, \ C_3\text{-}C_{12} \text{heterocyclylalkyl}, \\ C_1\text{-}C_{12} \text{heteroaryl} \ \text{and} \ C_3\text{-}C_{12} \text{heteroarylalkyl}, \\ C_1\text{-}C_{12} \text{heteroarylalkyl}, \\ C_2\text{-}C_{12} \text{heteroarylalky$

or R³ is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl and where some or all of the rings may be fused to each other;

 R^4 , R^5 and R^6 are each independently selected from hydrogen, bromo, fluoro, chloro, methyl, methoxy, trifluoromethyl, cyano, nitro or $-N(R^{19})_{z}$;

 R^7 , R^{7s} , R^8 , R^{8a} , R^9 , R^{9a} , R^{10} , and R^{10s} are each independently selected from hydrogen or C_1 - C_3 alkyl;

or R⁷-and R^{7a}-together, or R⁸and R^{8a}-together, or R⁹and R^{9a}-together, or R^{9a}-and R^{1a}-together, or R^{9a}-and R^{1a}-together are an exe-group, provided that when V_a-is – C(O) – R⁷and R^{7a}-together or R⁸ and R^{8a}-together do not form an exe-group, while the remaining R⁷ – R^{7a} – R⁸ , R⁸ , R^{8a} – R⁹ , R^{8a} – R⁹ , R^{8a} – R⁹ – R^{9a} – R⁹

er one of R^{10} , R^{7} , and R^{7a} together with one of R^{8} , R^{8a} , R^{9} and R^{6a} form an alkylene bridge, while the remaining R^{10} , R^{9a} , R^{7a} , R^{8} , R^{8a} , R^{9} , and R^{8a} are each independently solected from hydrogen or C_3 - C_3 alkyl; and

each R13 is independently selected from hydrogen or C₁-C₀alkyl;

a stereoisomer, enantiomer or tautomer thereof, a pharmaceutically acceptable salt thereof, a pharmaceutical composition thereof or a prodrug thereof.

(Currently Amended) The compound of Claim 51 wherein:
 x and y are each independently 1, 2 or 3;

W_a is -O-, -N(R¹)- or -S(O)_t- (where t is 0, 1 or 2);

 $V_a \text{ is -C(O)-, -C(S)-, -C(O)N(R^1)-, -C(S)N(R^1)-, -C(O)O-, -S(O)-(where t \text{ is 1 or 2})} \\ \text{or -S(O),N(R^1)- (where t \text{ is 1 or 2});} \\$

each R¹ is independently selected from the group consisting of hydrogen, C₁-C₁₂alkyl, C₂-C₁₂hydroxyalkyl, C₄-C₁₂cycloalkylalkyl and C₇-C₁₉aralkyl;

 $R^2 \text{ is selected from the group consisting of } C_1\text{-}C_{12} \text{alkyl}, C_2\text{-}C_{12} \text{alkenyl}, C_2\text{-}C_{12} \text{nydroxyalkenyl}, C_3\text{-}C_{12} \text{alkoxyalkyl}, C_3\text{-}C_{12} \text{cycloalkyl}, C_3\text{-}C_{12} \text{cycloalkyl}, C_3\text{-}C_{12} \text{cycloalkylalkyl}, aryl, C_7\text{-}C_{19} \text{aralkyl}, C_3\text{-}C_{12} \text{ heterocyclyl}, C_3\text{-}C_{12} \text{heterocyclylalkyl}, C_1\text{-}C_4\text{-}heteroaryl and } C_3\text{-}C_1\text{-}heteroarylalkyl};$

 $R^3 \ is \ selected from the group consisting of $C_1\text{-}C_{12}$alkyl, $C_2\text{-}C_{12}$alkenyl, $C_2\text{-}C_{12}$alkenyl, $C_2\text{-}C_{12}$bydroxyalkyl, $C_2\text{-}C_{12}$bydroxyalkenyl, $C_2\text{-}C_{12}$alkenyl, $C_3\text{-}C_{12}$cycloalkyl, $C_3\text{-}C_{12}$cycloalkyl, aryl, $C_7\text{-}C_9$aralkyl, $C_3\text{-}C_{12}$heterocyclyl, $C_3\text{-}C_{12}$heterocyclylalkyl, $C_1\text{-}C_9$heteroaryl and $C_3\text{-}C_{12}$heteroarylalkyl;}$

R⁴, R⁵ and R⁵ are each independently selected from hydrogen, bromo, fluoro, chloro, methyl, methoxy, trifluoromethyl, cyano, nitro or -N(R¹³)₂;

 $R^7,\,R^{7a},\,R^8,\,R^{8a},\,R^9,\,R^{9a},\,R^{10},\,\text{and}\,R^{10a}\,\text{are each independently selected from hydrogen or C_1-C_3alkyl; and}$

each R¹³ is independently selected from hydrogen or C₁-C₀alkyl.

53. (Original) The compound of Claim 52 wherein:

x and y are each 1;

W_a is -O-:

 V_a is -C(O)- or -C(S)-;

 $R^2 is selected from the group consisting of C_1-C_{12}alkyl, C_2-C_{12}alkenyl, \\ C_2-C_{12}hydroxyalkyl, C_2-C_{12}hydroxyalkenyl, C_3-C_{12}alkoxyalkyl, C_3-C_{12}cycloalkyl, \\ C_4-C_{12}cycloalkylalkyl, aryl, C_7-C_{19}aralkyl, C_3-C_{12} heterocyclyl, C_3-C_{12}heterocyclylalkyl, \\ C_1-C_{12}heteroaryl and C_3-C_{12}heteroarylalkyl; \\ C_1-C_{12}heteroaryl and C_3-C_{12}heteroarylalkyl; \\ \\$

 $R^3 \ \text{is selected from the group consisting of C_3-C_{12}alkyl, C_3-C_{12}alkenyl, C_3-C_{12}alkenyl, C_3-C_{12}bydroxyalkyl, C_3-C_{12}alkoxy, C_3-C_{12}alkoxyalkyl, C_3-C_{12}vcloalkyl, C_3-C_{12}vcloalkylalkyl, aryl, C_7-C_{19}aralkyl, C_3-C_{12}heterocyclyl, C_3-C_{12}heterocyclylalkyl, C_1-C_{12}heteroaryl and C_3-C_{12}heteroarylalkyl;$

 R^4 , R^5 and R^8 are each hydrogen; and R^7 , R^{7a} , R^8 , R^8 , R^8 , R^{8} , R^{10} , and R^{10a} are each hydrogen.

54. (Original) The compound of Claim 53 wherein:

Va is -C(O)-;

 $R^2 is selected from the group consisting of $C_1\text{-}C_{12}alkyl, $C_3\text{-}C_{12}cycloalkyl,$$$ $C_4\text{-}C_{12}cycloalkyl, aryl, $C_7\text{-}C_{19}aralkyl, $C_3\text{-}C_{12}$ heterocyclyl, $C_3\text{-}C_{12}$ heterocyclylalkyl, $C_7\text{-}C_7$ heteroaryl and $C_3\text{-}C_{12}$ heteroarylalkyl; are $C_3\text{-}C_{12}$ heteroarylalkyl; and $C_3\text{-}C_{12}$ heteroarylalkyl; are $C_3\text{-}C_{12}$ heteroary$

 $R^3 \text{ is selected from the group consisting of $C_3\text{-}C_{12}$ cycloalkyl, $C_4\text{-}C_{12}$ cycloalkyl, aryl, $C_7\text{-}C_{19}$ aralkyl, $C_3\text{-}C_{12}$ heterocyclylalkyl, $C_4\text{-}C_{12}$ heteroaryl and $C_3\text{-}C_{12}$ heteroarylalkyl.}$

55. (Original) The compound of Claim 52 wherein:

x and v are each 1;

W_a is -N(R¹)-;

V₂ is -C(O)- or -C(S)-;

R1 is hydrogen or C1-C6alkyl;

 $R^2 \text{ is selected from the group consisting of } C_1\text{-}C_{12} \text{alkeyl}, C_2\text{-}C_{12} \text{alkenyl}, C_2\text{-}C_{12} \text{hydroxyalkyl}, C_3\text{-}C_{12} \text{hydroxyalkenyl}, C_3\text{-}C_{12} \text{alkoxyalkyl}, C_3\text{-}C_{12} \text{cycloalkyl}, C_4\text{-}C_{12} \text{cycloalkyl}, \text{aryl}, C_7\text{-}C_{19} \text{aralkyl}, C_3\text{-}C_{12} \text{ heterocyclyl}, C_3\text{-}C_{12} \text{heterocyclylalkyl}, C_1\text{-}C_{12} \text{heteroaryl}, \text{ardl}, C_1\text{-}C_1\text{-}h \text{heteroaryl}, \text{ardl}, C_2\text{-}C_1\text{-}h \text{eteroaryl}, \text{ardl}, C_1\text{-}C_1\text{-}h \text{eteroaryl}, C_1\text{-}C$

 R^3 is selected from the group consisting of $C_3\text{-}C_{12}$ alkyl, $C_9\text{-}C_{12}$ alkenyl, $C_3\text{-}C_{12}\text{hydroxyalkyl}, C_3\text{-}C_{12}\text{hydroxyalkenyl}, C_3\text{-}C_{12}\text{alkoxy}, C_9\text{-}C_{12}\text{alkoxyalkyl}, C_3\text{-}C_{12}\text{cycloalkyl}, \\ C_4\text{-}C_{12}\text{cycloalkylalkyl}, \text{aryl}, C_7\text{-}C_{19}\text{aralkyl}, C_3\text{-}C_{12}\text{heterocyclyl}, C_3\text{-}C_{12}\text{heterocyclylalkyl}, \\ C_4\text{-}C_{12}\text{-}C_{12$

 $R^4,\,R^5$ and R^6 are each hydrogen; and $R^7,\,R^{7a},\,R^8,\,R^{8a},\,R^9,\,R^{9a},\,R^{10},\,\text{and}\,\,R^{10a}\,\text{are each hydrogen}.$

56. (Original) The compound of Claim 55 wherein:

 V_a is -C(O)-;

 $R^2 \text{ is selected from the group consisting of } C_1\text{-}C_{12}\text{alkyl}, C_3\text{-}C_{12}\text{cycloalkyl}, \\ C_4\text{-}C_{12}\text{cycloalkylalkyl}, \text{aryl}, C_7\text{-}C_{19}\text{aralkyl}, C_3\text{-}C_{12} \text{ heterocyclyl}, C_3\text{-}C_{12}\text{heterocyclylalkyl}, \\ C_1\text{-}C_{12}\text{heteroaryl} \text{ and } C_3\text{-}C_{12}\text{heteroarylalkyl}, \text{ and } C_3\text{-}C_{12}\text{heteroarylalkyl}, \\ C_1\text{-}C_{12}\text{heteroaryl} \text{ and } C_3\text{-}C_{12}\text{heteroarylalkyl}, \\ C_1\text{-}C_{12}\text{heteroaryl} \text{ and } C_3\text{-}C_{12}\text{heteroarylalkyl}, \\ C_1\text{-}C_{12}\text{heteroaryl} \text{ and } C_3\text{-}C_{12}\text{heteroarylalkyl}, \\ C_2\text{-}C_{12}\text{heteroaryl} \text{ and } C_3\text{-}C_{12}\text{heteroarylalkyl}, \\ C_3\text{-}C$

 $R^3 is selected from the group consisting of C_3-C_{12} cycloalkyl, C_4-C_{12} cycloalkylalkyl, aryl, C_7-C_{19} aralkyl, C_3-C_{12} heterocyclyl, C_3-C_{12} heterocyclylalkyl, C_7-C_{12} heteroaryl and constant of the c$

C3-C12heteroarylalkyl.

57. (Original) The compound of Claim 52 wherein:

x and y are each 1;

W_a is -S(O)_r- (where t is 0, 1 or 2);

V₂ is -C(O)- or -C(S)-;

 $R^2 is \ selected from the group consisting of C_1-C_{12} alkyl, \ C_2-C_{12} alkenyl, \\ C_2-C_{12} hydroxyalkyl, \ C_2-C_{12} hydroxyalkyl, C_3-C_{12} cycloalkyl, \\ C_3-C_{12} hydroxyalkyl, C_3-C_{12} cycloalkyl, \\ C_3-C_{12} hydroxyalkyl, C_3-C_{12} cycloalkyl, \\ C_3-C_{12} hydroxyalkyl, \\ C_3-C_{12} hydroxyalkyl$

C₂-C₁₂nydroxyalkyl, C₂-C₁₂nydroxyalkellyl, C₃-C₁₂nkoxyalkyl, C₃-C₁₂beterocyclylalkyl, aryl, C₇-C₁₉aralkyl, C₃-C₁₂ heterocyclyl, C₃-C₁₂heterocyclylalkyl, C₁-C₁₂heteroaryl and C₃-C₁₂heteroarylalkyl;

R³ is selected from the group consisting of C₃-C₁₂alkyl, C₃-C₁₂alkenyl,

$$\begin{split} &C_3\text{--}C_{12}\text{hydroxyalkyl},\ C_3\text{--}C_{12}\text{hydroxyalkenyl},\ C_3\text{--}C_{12}\text{alkoxy},\ C_3\text{--}C_{12}\text{alkoxyalkyl},\ C_3\text{--}C_{12}\text{cycloalkyl},\\ &C_4\text{--}C_{12}\text{cycloalkylalkyl},\ \text{aryl},\ C_7\text{--}C_{19}\text{aralkyl},\ C_3\text{--}C_{12}\text{heterocyclyl},\ C_3\text{--}C_{12}\text{heterocyclylalkyl},\ C_1\text{--}C_{12}\text{heteroaryl},\\ &\text{heteroaryl}\ \text{and}\ C_3\text{--}C_{12}\text{heteroarylalkyl}; \end{split}$$

 R^4 , R^5 and R^6 are each hydrogen; and R^7 , R^{7a} , R^8 , R^8 , R^9 , R^{9a} , R^{10} , and R^{10a} are each hydrogen.

(Original) The compound of Claim 57 wherein:

 V_a is -C(O)-;

 R^2 is selected from the group consisting of C_1 - C_{12} alkyl, C_3 - C_{12} cycloalkyl, C_4 - C_{12} cycloalkyl, aryl, C_7 - C_{19} aralkyl, C_3 - C_{12} heterocyclyl, C_3 - C_{12} heterocyclylalkyl, C_4 - C_4 -heteroaryl and C_3 - C_{12} heteroarylalkyl; and

 $R^3 is selected from the group consisting of C_3-C_{12} cycloalkyl, C_4-C_{12} cycloalkylalkyl,\\ aryl, C_7-C_{19} aralkyl, C_3-C_{12} heterocyclyl, C_3-C_{12} heterocyclylalkyl, C_1-C_{12} heteroaryl and C_3-C_{12} heteroarylalkyl.$

- 59. (Original) A method of treating a disease or condition mediated by stearoyl-CoA desaturase (SCD) in a mammal, wherein the method comprises administering to a mammal in need thereof a therapeutically effective amount of a compound of Claim 51.
- (Original) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a therapeutically effective amount of a compound of Claim 51.

61. (Currently Amended) A compound of formula (la):

wherein:

x and v are each independently 1, 2 or 3;

W is -N(R1)S(O)r (where t is 1 or 2);

 $\label{eq:Vis-C(O)-,-C(S)-,-C(O)N(R^1)-,-C(S)N(R^1)-,-C(O)O-,-C(S)O-,-S(O)-(where t is 1 or 2), -S(O),N(R^1)- (where t is 1 or 2) or -C(R^11)H;}$

each R1 is independently selected from the group consisting of hydrogen,

C₁-C₁₂alkyl, C₂-C₁₂hydroxyalkyl, C₄-C₁₂cycloalkylalkyl and C₇-C₁₉aralkyl;

R2 is selected from the group consisting of C1-C12alkyl, C2-C12alkenyl,

$$\begin{split} &C_{2^{**}}C_{12}\text{hydroxyalkyl},\ C_{2^{**}}C_{12}\text{hydroxyalkenyl},\ C_{2^{**}}C_{12}\text{alkoxyalkyl},\ C_{3^{**}}C_{12}\text{cycloalkyl},\\ &C_{4^{**}}C_{12}\text{cycloalkylalkyl},\ \text{aryi},\ C_{7^{**}}C_{19}\text{aralkyl},\ C_{3^{**}}C_{12}\text{heterocyclyl},\ C_{3^{**}}C_{12}\text{heterocyclylalkyl},\\ &C_{1^{**}}C_{11}\text{heteroaryl},\ \text{and}\ C_{3^{**}}C_{12}\text{heteroarylalkyl}; \end{split}$$

or R^2 is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl and where some or all of the rings may be fused to each other;

 $R^3 \ \text{is selected from the group consisting of $C_1\text{-}C_{12}$alkyl, $C_2\text{-}C_{12}$alkenyl, $C_2\text{-}C_{12}$alkenyl, $C_2\text{-}C_{12}$alkenyl, $C_2\text{-}C_{12}$alkenyl, $C_2\text{-}C_{12}$alkenyl, $C_3\text{-}C_{12}$alkenyl, $C_3\text$

or R³ is a multi-ring structure having 2 to 4 rings wherein the rings are independently selected from the group consisting of cycloalkyl, heterocyclyl, aryl and heteroaryl and where some or all of the rings may be fused to each other;

 R^4 , R^5 and R^6 are each independently selected from hydrogen, bromo, fluoro, chloro, methyl, methoxy, trifluoromethyl, cyano, nitro or $-N(R^{16})_2$;

 R^7 , R^{7a} , R^8 , R^{8a} , R^9 , R^{9a} , R^{10} , and R^{10a} are each independently selected from hydrogen or Cr-C-alkyl:

or R^7 -and R^{7o} -together, or R^8 and R^{8o} -together, or R^9 and R^{9o} -together, or R^{1o} -and R^{1o} -together are an oxo-group, provided that when V is -C(O), R^7 and R^{7o} -together or R^9 -and R^{8o} -together do not form an oxo-group, while the remaining R^7 , R^{7o} , R^8 , R^{8o} , R^9 , R^{8o} , R^{1o} , and R^{10o} -are each independently selected from hydrogen or C_1C_2 alkyl;

or one of R^{10} , R^{10a} , R^7 , and R^{7a} together with one of R^8 , R^{8a} , R^9 and R^{9a} form an alkylene bridge, while the remaining R^{10} , R^{10a} , R^7 , R^{7a} , R^8 , R^8 , and R^{8a} are each independently selected from hydrogen or C_3 . C_3 alkyl;

R11 is hydrogen or C1-C3alkyl; and

each R13 is independently selected from hydrogen or C1-C6alkyl;

a stereoisomer, enantiomer or tautomer thereof, a pharmaceutically acceptable salt thereof, a pharmaceutical composition thereof or a prodrug thereof.

(Currently Amended) The compound of Claim 61 wherein:
 x and v are each independently 1, 2 or 3;

V is -C(O)- or -C(S)-:

R¹ is hydrogen, C₁-C₁₂alkyl, C₂-C₁₂hydroxyalkyl, C₄-C₁₂cycloalkylalkyl and

C7-C19aralkyl;

 $R^2 \text{ is selected from the group consisting of } C_1\text{-}C_12\text{alkyl}, C_2\text{-}C_12\text{alkenyl}, \\ C_2\text{-}C_{12}\text{hydroxyalkyl}, C_2\text{-}C_{12}\text{hydroxyalkenyl}, C_2\text{-}C_{12}\text{alkoxyalkyl}, C_3\text{-}C_{12}\text{cycloalkyl}, \\ C_4\text{-}C_{12}\text{cycloalkylalkyl}, \text{aryl}, C_7\text{-}C_{19}\text{aralkyl}, C_3\text{-}C_{12}\text{heterocyclyl}, C_3\text{-}C_{12}\text{heterocyclylalkyl}, \\ C_4\text{-}C_4\text{-heteroaryl}, \text{and } C_3\text{-}C_{12}\text{heteroarylalkyl}; \\ C_4\text{-}C_4\text{-heteroaryl}, \text{and } C_3\text{-}C_{12}\text{heteroarylalkyl}; \\ R_4\text{-}C_4\text{-heteroaryl}, \text{and } C_3\text{-}C_{12}\text{heteroarylalkyl}; \\ R_4\text{-}C_4\text{-heteroaryl}, \text{and } C_3\text{-}C_{12}\text{-heteroarylalkyl}; \\ R_4\text{-}C_4\text{-}C_4\text{-heteroarylalkyl}; \\ R_4\text{-}C_4\text{-}C_4\text{-heteroarylalkyl}; \\ R_4\text{-}C_4\text{-}C_4\text{-}C_4\text{-}C_4\text{-heteroarylalkyl}; \\ R_4\text{-}C$

 $R^3 \text{ is selected from the group consisting of } C_1\text{-}C_12\text{alkyl}, C_2\text{-}C_12\text{alkenyl}, \\ C_2\text{-}C_12\text{hydroxyalkyl}, C_2\text{-}C_{12}\text{hydroxyalkenyl}, C_1\text{-}C_12\text{alkoxy}, C_2\text{-}C_12\text{alkoxyalkyl}, C_3\text{-}C_12\text{cycloalkyl}, \\ C_4\text{-}C_12\text{cycloalkylalkyl}, \text{aryl}, C_7\text{-}C_19\text{aralkyl}, C_3\text{-}C_12\text{heterocyclyl}, C_3\text{-}C_12\text{heterocyclylalkyl}, \\ C_4\text{-}C_12\text{-}C_12\text{heteroaryl} \text{ and } C_3\text{-}C_12\text{heteroarylalkyl}; \\ C_3\text{-}C_12\text{-}C_12\text{heteroaryl} \text{ and } C_3\text{-}C_12\text{heteroarylalkyl}; \\ C_3\text{-}C_12\text{-}$

 R^4 , R^5 and R^8 are each independently selected from hydrogen, bromo, fluoro, chloro, methyl, methoxy, trifluoromethyl, cyano, nitro or $-N(R^{18})_2$;

 $R^7, R^{7a}, R^8, R^{8a}, R^9, R^{9a}, R^{10}, \text{ and } R^{10a} \text{ are each independently selected from hydrogen or } C_1\text{-}C_3\text{alkyl}; \text{ and }$

each R¹³ is independently selected from hydrogen or C₁-C₅alkyl.

63. (Original) The compound of Claim 62 wherein: x and v are each 1;

V is -C(O)-:

R1 is hydrogen, C1-C12alkyl or C4-C12cycloalkylalkyl;

 $R^2 \text{ is selected from the group consisting of } C_{1^*C_{12}} \text{alkyl}, C_{2^*C_{12}} \text{alkenyl}, \\ C_{3^*C_{12}} \text{cycloalkyl}, C_{4^*C_{12}} \text{cycloalkylalkyl}, C_{7^*C_{15}} \text{aralkyl}, C_{3^*C_{12}} \text{heterocyclylalkyl} \text{ and } C_{3^*C_{12}} \text{heteroarylalkyl}; \\$

 R^3 is aryl optionally substituted by one or more substituents selected from the group consisting of halo, cyano, nitro, hydroxy, $C_1\text{-}C_6$ alkyl, $C_1\text{-}C_6$ trihaloalkyl, $C_1\text{-}C_6$ trihaloalkyl, $C_1\text{-}C_6$ alkylsulfonyl, $\text{-N}(R^{12})_2$, $\text{-OC}(O)R^{12}$, $\text{-C}(O)OR^{12}$, $\text{-S}(O)_2N(R^{12})_2$, cycloalkyl, heterocyclyl, heteroaryl and heteroarylcycloalkyl;

 R^4 , R^5 and R^5 are each independently selected from hydrogen, bromo, fluoro, chloro, methyl, methoxy, trifluoromethyl, cyano, nitro or $-N(R^{13})_2$;

 R^7 , R^{7a} , R^a , R^{8a} , R^9 , R^{9a} , R^{10} , and R^{10a} are each independently selected from hydrogen or C_1 - C_3 alkyl; and

each R^{13} is independently selected from hydrogen or $C_1\text{-}C_6$ alkyl.

64. (Original) The compound of Claim 63 wherein:

x and y are each 1;

V is -C(O)-:

R1 is hydrogen, C1-C12alkyl or C4-C12cycloalkylalkyl;

R2 is C1-C12alkyl or C2-C12alkenyl;

 R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, cyano, nitro, hydroxy, C_1 - C_0 ellkyl, C_1 - C_0 trihaloalkyl, C_1 - C_0 trihaloalkyl, C_1 - C_0 ellkylsulfonyl, $-N(R^{12})_2$, $-OC(O)R^{12}$, $-C(O)OR^{12}$ and $-S(O)_2N(R^{12})_2$;

 \mbox{R}^4, \mbox{R}^5 and \mbox{R}^6 are each independently selected from hydrogen, bromo, fluoro or chloro; and

R7, R7a, R8, R8a, R9, R9a, R10 and R10a are each hydrogen.

65. (Original) The compoundof Claim 63 wherein:

x and v are each 1;

V is -C(O)-;

R1 is hydrogen, C1-C12alkyl or C4-C12cycloalkylalkyl;

R2 is C3-C12cycloalkyl or C4-C12cycloalkylalkyl;

R3 is phenyl optionally substituted by one or more substituents selected from the

Docket No.: 17243/003001

group consisting of halo, cyano, nitro, hydroxy, C₁-C₆alkyl, C₁-C₆trihaloalkyl, C₁-C₆trihaloalkoxy, C₁-C₆alkylsulfonyl, -N(R¹²)₂, -OC(O)R¹², -C(O)OR¹² and -S(O)₂N(R¹²)₂;

 R^4, R^5 and R^8 are each independently selected from hydrogen, bromo, fluoro or chloro: and

 R^7 , R^{7a} , R^8 , R^{8a} , R^9 , R^{9a} , R^{10} and R^{10a} are each hydrogen.

66. (Original) The compound of Claim 65 wherein:

R2 is C4-C12cycloalkylalkyl;

 R^3 is phenyl optionally substituted by one or more substituents selected from halo, C_1 - C_6 elikyl, C_1 - C_6 trihaloalkyl and C_1 - C_6 trihaloalkoxy;

R4 and R6 are both hydrogen; and

R⁵ is hydrogen or bromo.

- 67. (Original) The compound of Claim 66 selected from the group consisting of the following:
- 5-Bromo-6-[4-(5-fluoro-2-trifluoromethylbenzoyl)piperazin-1-yl]-pyridine-3-sulfonic acid (2-cyclopropylethyl)amide; and
- 6-[4-(5-fluoro-2-trifluoromethylbenzoyl)piperazin-1-yl]pyridine-3-sulfonic acid (2-cyclopropylethyl)amide.
 - 68. (Original) The compound of Claim 63 wherein:

x and y are each 1;

V is -C(O)-:

R1 is hydrogen, C1-C12alkyl or C4-C12cycloalkylalkyl;

R² is C₇-C₁₉aralkyl, C₃-C₁₂heterocyclylalkyl or C₃-C₁₂heteroarylalkyl;

 R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, cyano, nitro, hydroxy, C_1 - C_0 elikyl, C_1 - C_0 trihaloalkyl, C_1 - C_0 trihaloalkyxy, C_1 - C_0 trihaloalkyxy, C_1 - C_0 trihaloalkyl, C_1 - C_0 trihaloalkyxy, C_1 - C_0 trihaloalky

 $R^4, R^5 \, \text{and} \, R^6 \, \text{are each independently selected from hydrogen, bromo, fluoro or chloro: and$

R⁷, R^{7a}, R⁸, R^{8a}, R⁹, R^{9a}, R¹⁰, and R^{10a} are each hydrogen.

69. (Original) A method of treating a disease or condition mediated by stearoyl-CoA

desaturase (SCD) in a mammal, wherein the method comprises administering to a mammal in need thereof a therapeutically effective amount of a compound of Claim 61.

70. (Original) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a therapeutically effective amount of a compound of Claim 61.

28