Capítulo 15

Cuerpos finitos

...as a longtime worker using only real or complex numbers, [Joseph F. Ritt] referred to finite fields as "monkey fields".

Steven Krantz, "Mathematical Apocrypha Redux"

En este capítulo vamos a construir los cuerpos finitos y ver sus propiedades básicas.

15.0.1. Observación. Todo cuerpo finito tiene p^n elementos donde p es algún número primo y $n=1,2,3,\ldots$

Demostración. Un cuerpo finito necesariamente tiene característica p para algún número primo p, y entonces es una extensión finita de \mathbb{F}_p . En particular, es un espacio vectorial de dimensión finita n sobre \mathbb{F}_p que tiene p^n elementos.

15.0.2. Teorema. Para todo primo p y $n = 1, 2, 3, \ldots$ existe un cuerpo finito de p^n elementos; específicamente, es un cuerpo de descomposición del polinomio $X^{p^n} - X \in \mathbb{F}_p[X]$. En particular, es único salvo isomorfismo.

Demostración. Consideremos una extensión \mathbb{F}/\mathbb{F}_p . Notamos que el polinomio $f:=X^{p^n}-X\in\mathbb{F}_p[X]$ no tiene raíces múltiples en \mathbb{F} : en efecto, si en $\mathbb{F}[X]$ se tiene

$$X^{p^n} - X = (X - \alpha)^2 g$$

para algún X, entonces, tomando las derivadas formales en $\mathbb{F}[X]$, se obtiene

$$-1 = p^n X^{p^n - 1} - 1 = 2(X - \alpha)g + (X - \alpha)^2 g',$$

de donde $(X - \alpha) \mid -1$, lo que es absurdo.

1) Sea \mathbb{F}/\mathbb{F}_p un cuerpo de descomposición de f. Por lo que acabamos de probar, \mathbb{F} contiene p^n raíces distintas de f. Notamos que las raíces de f forman un subcuerpo de \mathbb{F} . En efecto, está claro que f(0) = f(1) = 0. Sean $\alpha, \beta \in \mathbb{F}$ elementos tales que $f(\alpha) = f(\beta) = 0$; es decir, $\alpha^{p^n} = \alpha$ y $\beta^{p^n} = \beta$. Luego,

$$(\alpha\beta)^{p^n}=\alpha^{p^n}\,\beta^{p^n}=\alpha\beta,$$

y además

$$(\alpha + \beta)^{p^n} = \sum_{i+j=p^n} {p^n \choose i} \alpha^i \beta^j = \alpha^{p^n} + \beta^{p^n} = \alpha + \beta,$$

usando que $p\mid\binom{p^n}{i}$ para todo $i=1,\ldots,p^n-1$. En fin, si $\alpha\neq 0$, entonces

$$(\alpha^{-1})^{p^n} = (\alpha^{p^n})^{-1} = \alpha^{-1}.$$

Por la minimalidad de los cuerpos de descomposición, esto significa que todos los elementos de \mathbb{F} son raíces del polinomio f cuyo grado es p^n , así que $|\mathbb{F}| = p^n$.

- 2) Viceversa, notamos que si $\mathbb F$ es un cuerpo de p^n elementos, entonces $\mathbb F$ tiene característica p y $\mathbb F_p\subseteq \mathbb F$. El grupo multiplicativo $\mathbb F^\times$ tiene orden p^n-1 , así que todo elemento $\alpha\in \mathbb F^\times$ satisface $\alpha^{p^n-1}=1$ según el teorema de Lagrange, así que $\alpha^{p^n}=\alpha$. Para $\alpha=0$ esto también trivialmente se cumple. Luego, todos los p^n elementos de $\mathbb F$ son raíces del polinomio $f:=X^{p^n}-X\in \mathbb F_p[X]$ de grado p^n , así que $\mathbb F$ es un cuerpo de descomposición de f. Recordemos que un cuerpo de descomposición es único salvo isomorfismo.
- **15.0.3. Notación.** En vista del último resultado, se suele hablar de *el cuerpo* de p^n elementos y se usa la notación \mathbb{F}_{p^n} , o \mathbb{F}_q donde $q=p^n$.

15.0.4. Comentario. Note que para n > 1 el anillo $\mathbb{Z}/p^n\mathbb{Z}$ (los restos módulo p^n) tiene divisores de cero, y en particular no es un cuerpo. Entonces, \mathbb{F}_{p^n} es algo muy diferente de $\mathbb{Z}/p^n\mathbb{Z}$.

Para construir los cuerpos finitos de manera más explícita, notamos que si \mathbb{F}_{p^n} es un cuerpo de p^n elementos, entonces el grupo $\mathbb{F}_{p^n}^{\times}$ es cíclico (véase el capítulo 7); es decir, existe un generador $\alpha \in \mathbb{F}_{p^n}^{\times}$ tal que

$$\mathbb{F}_{p^n} = \{0, 1, \alpha, \alpha^2, \dots, \alpha^{p^n-2}\}.$$

Sea $f := m_{\alpha, \mathbb{F}_p}$ el polinomio mínimo de α sobre \mathbb{F}_p . Tenemos

$$\mathbb{F}_p[X]/(f) \cong \mathbb{F}_p(\alpha), \quad [\mathbb{F}_p(\alpha) : \mathbb{F}_p] = \deg f.$$

Pero $\mathbb{F}_p(\alpha) = \mathbb{F}_{p^n}$, así que deg f = n. Esto nos da el siguiente resultado.

15.0.5. Teorema. Para todo primo p y $n = 1, 2, 3, \dots$ existe un polinomio irreducible $f \in \mathbb{F}_p[X]$ de grado n.

15.0.6. Comentario. Si f es un polinomio irreducible en $\mathbb{F}_p[X]$ y $\mathbb{F} := \mathbb{F}_p[X]/(f)$, denotemos por α la imagen de X en el cociente. Este α no tiene por qué ser un generador del grupo multiplicativo \mathbb{F}^{\times} . Por ejemplo, consideremos un cuerpo finito de 9 elementos $\mathbb{F} := \mathbb{F}_3[X]/(X^2+1)$. En este caso $\alpha^2 = -1$, y luego $\alpha^4 = 1$. Siendo un grupo cíclico de 8 elementos, \mathbb{F}^{\times} tiene $\phi(8) = 4$ diferentes generadores y son $\alpha + 1$, $\alpha + 2$, $2\alpha + 1$, $2\alpha + 2$.

15.0.7. Ejemplo. He aquí algunos polinomios irreducibles en $\mathbb{F}_p[X]$.

Entonces, para construir un cuerpo de p^n elementos, se puede tomar un polinomio irreducible $f \in \mathbb{F}_p[X]$ de grado n y pasar al cociente $\mathbb{F}_p[X]/(f)$. Diferentes f dan el mismo resultado, salvo isomorfismo.

15.0.8. Ejemplo. Los polinomios

$$f_1 := X^3 + X + 1, f_2 := X^3 + X^2 + 1 \in \mathbb{F}_2[X]$$

son irreducibles y tiene que haber un isomorfismo entre los cuerpos finitos correspondentes

Vamos a definir un homomorfismo

$$\phi \colon \mathbb{F}_2[X] \to \mathbb{F}_2[X] \twoheadrightarrow \mathbb{F}_2[X]/(f_2)$$

tal que ker $\phi = (f_1)$. En este caso el primer teorema de isomorfía nos daría un homomorfismo invectivo

$$\overline{\phi} \colon \mathbb{F}_2[X]/(f_1) \xrightarrow{\cong} \operatorname{im} \phi \hookrightarrow \mathbb{F}_2[X]/(f_2),$$

y dado que $|\mathbb{F}_2[X]/(f_1)| = |\mathbb{F}_2[X]/(f_2)| = 8$, este sería automáticamente sobreyectivo. Necesitamos que se cumpla

$$\phi(f_1) = \phi(X^3 + X + 1) = \phi(X)^3 + \phi(X) + 1 \equiv 0 \pmod{X^3 + X^2 + 1}.$$

Se ve que hay tres opciones:

$$\phi_1: X \mapsto \overline{X+1}, \quad \phi_2: X \mapsto \overline{X^2+1}, \quad \phi_3: X \mapsto \overline{X^2+X}.$$

Cada una de estas aplicaciones induce un isomorfismo $\mathbb{F}_2[X]/(f_1)\cong \mathbb{F}_2[X]/(f_2)$. Notamos que los elementos $\overline{X+1}, \overline{X^2+1}, \overline{X^2+X}\in \mathbb{F}_2[X]/(f_2)$ están relacionados de la siguiente manera:

$$\overline{X^2 + 1} = (\overline{X + 1})^2$$
, $\overline{X^2 + X} = (\overline{X^2 + 1})^2 = (\overline{X + 1})^4$

(véase §15.2).

Sería interesante saber cuántas posibilidades hay para escoger al polinomio irreducible f. Denotemos por N_n el número de los polinomios mónicos irreducibles en $\mathbb{F}_p[X]$ de grado n. Nuestro objetivo es deducir una fórmula explícita para N_n .

15.1 La fórmula de Gauss

15.1.1. Lema.

- 1) Sea k cualquier cuerpo. El polinomio $X^{\ell} 1$ divide a $X^m 1$ en k[X] si y solo si $\ell \mid m$.
- 2) Sea a un entero ≥ 2 . El número $a^{\ell} 1$ divide a $a^m 1$ en \mathbb{Z} si y solo si $\ell \mid m$.
- 3) En particular, para un primo $p \ y \ d, n \ge 1$ se tiene $(X^{p^d} X) \mid (X^{p^n} X)$ si y solo si $d \mid n$.

Demostración. En la primera parte, escribamos $m = q\ell + r$ donde $0 \le r < \ell$. Tenemos en k(X)

$$\frac{X^m-1}{X^\ell-1} = \frac{(X^{q\ell+r}-X^r)+(X^r-1)}{X^\ell-1} = X^r \frac{X^{q\ell}-1}{X^\ell-1} + \frac{X^r-1}{X^\ell-1} = X^r \sum_{0 \leq i \leq q} X^{i\ell} + \frac{X^r-1}{X^\ell-1}.$$

Esto es un polinomio si y solamente si $\frac{X^r-1}{X^\ell-1}$ lo es. Pero $r<\ell$, así que la única opción es r=0. La segunda parte se demuestra de la misma manera. La última parte es una combinación de 1) y 2):

$$(X^{p^d} - X) \mid (X^{p^n} - X) \iff (X^{p^d - 1} - 1) \mid (X^{p^n - 1} - 1) \iff (p^d - 1) \mid (p^n - 1) \iff d \mid n.$$

15.1.2. Lema. Denotemos por f_d el producto de todos los polinomios mónicos irreducibles de grado d en $\mathbb{F}_p[X]$. Luego,

$$X^{p^n} - X = \prod_{d|n} f_d.$$

Demostración. Ya hemos notado en la prueba de 15.0.2 que el polinomio $X^{p^n}-X$ no tiene raíces múltiples en su cuerpo de descomposición. En particular, $X^{p^n}-X$ no puede tener factores irreducubles múltiples en $\mathbb{F}_p[X]^*$. Sería entonces suficiente comprobar que un polinomio mónico irreducible $f\in\mathbb{F}_p[X]$ es de grado d divide a $X^{p^n}-X$ si y solo si $d\mid n$.

Consideremos el cuerpo finito

$$\mathbb{F} := \mathbb{F}_p[X]/(f)$$

y denotemos por $\alpha \in \mathbb{F}$ la imagen de X en el cociente. En este caso f es el polinomio mínimo de α sobre \mathbb{F}_p . Siendo un cuerpo de p^d elementos, \mathbb{F} es un cuerpo de descomposición del polinomio $X^{p^d} - X \in \mathbb{F}_p[X]$.

1) Si $d \mid n$, entonces, según el lema anterior, $(X^{p^d} - X) \mid (X^{p^n} - X)$. Entonces, todas las raíces de $X^{p^d} - X$ son también raíces de $X^{p^n} - X$, y en particular $\alpha^{p^n} - \alpha = 0$. Tenemos entonces

$$f \mid (X^{p^n} - X).$$

2) Viceversa, si $f \mid (X^{p^n} - X)$, entonces $f(\alpha) = 0$ implica que $\alpha^{p^n} - \alpha = 0$. Además, para cualquier elemento

$$x = a_{d-1} \alpha^{d-1} + \dots + a_1 \alpha + a_0 \in \mathbb{F},$$

donde $a_0, a_1, \ldots, a_{d-1} \in \mathbb{F}_p$, se tiene

$$x^{p^n} = a_{d-1} (\alpha^{p^n})^{d-1} + \dots + a_1 (\alpha^{p^n}) + a_0 = x,$$

así que todos los elementos de $\mathbb F$ son raíces de $X^{p^n}-X$. Se sigue que $(X^{p^d}-X)\mid (X^{p^n}-X)$, y luego $d\mid n$ por el lema anterior.

^{*}Sin pasar al cuerpo de descomposición, basta notar que si $X^{p^n} - X = f^2 g$, entonces, tomando las derivadas formales en $\mathbb{F}_p[X]$, se obtiene $2f f' g + f^2 g' = -1$, así que $f \mid -1$ y $f \in \mathbb{F}_p^{\times}$ es una constante invertible.

15.1.3. Ejemplo. Se sigue que para obtener todos los polinomios irreducibles de grado $d \mid n$ en $\mathbb{F}_p[X]$, basta factorizar el polinomio $X^{p^n} - X$ en $\mathbb{F}_p[X]$. Por ejemplo, en $\mathbb{F}_2[X]$ se tiene

$$X^{16} - X = X(X+1)(X^2 + X+1)(X^4 + X+1)(X^4 + X^3 + 1)(X^4 + X^3 + X^2 + X+1).$$

y en $\mathbb{F}_3[X]$

$$X^{9} - X = X(X+1)(X+2)(X^{2}+1)(X^{2}+X+2)(X^{2}+2X+2).$$

15.1.4. Corolario. Se cumple

$$p^n = \sum_{d|n} d \cdot N_d.$$

Demostración. Basta comparar grados a ambos lados de la identidad $X^{p^n} - X = \prod_{d|n} f_d$ en $\mathbb{F}_p[X]$.

Para obtener una fórmula para N_n , se puede usar la fórmula de inversión de Möbius, revisada en el apéndice D.

15.1.5. Teorema (Gauss). El número de polinomios mónicos irreducibles de grado n en $\mathbb{F}_p[X]$ es igual a

$$N_n := \frac{1}{n} \sum_{d|n} \mu\left(\frac{n}{d}\right) p^d,$$

donde µ denota la función de Möbius;

$$\mu(1) := 1$$
, $\mu(n) = 0$ si n no es libre de cuadrados,

y para n libre de cuadrados se pone

$$\mu(p_1\cdots p_k):=(-1)^k,$$

donde k es el número de diferentes números primos que aparecen en la factorización de n.

Demostración. Consideremos la función $f(n) := n N_n$. Luego,

$$F(n) := \sum_{d|n} f(d) = \sum_{d|n} d N_d = p^n,$$

usando 15.1.4. La fórmula de inversión de Möbius nos da

$$f(n) = n N_n = \sum_{d|n} \mu\left(\frac{n}{d}\right) F(d) = \sum_{d|n} \mu\left(\frac{n}{d}\right) p^d.$$

15.1.6. Ejemplo. Hay

$$\frac{1}{6} \left(\mu(1) \cdot 2^6 + \mu(3) \cdot 2^2 + \mu(2) \cdot 2^3 + \mu(6) \cdot 2 \right) = \frac{1}{6} \left(64 - 4 - 8 + 2 \right) = 9$$

polinomios mónicos irreducibles en $\mathbb{F}_2[X]$ de grado 6. Factorizando el polinomio $X^{2^6}-X$ en $\mathbb{F}_2[X]$, se puede ver que son

$$X^6 + X + 1,$$
 $X^6 + X^4 + X^3 + X + 1,$ $X^6 + X^5 + X^3 + X^2 + 1,$ $X^6 + X^3 + 1,$ $X^6 + X^5 + 1,$ $X^6 + X^5 + X^4 + X + 1,$ $X^6 + X^5 + X^4 + X + 1,$ $X^6 + X^5 + X^4 + X^2 + 1.$

p n	1	2	3	4	5	6
2	2	1	2	3	6	9
3	3	3	8	18	48	116
5	5	10	40	150	624	2 580
7	7	21	112	588	3 360	19 544
11	11	55	440	3 630	32 208	295 020
13	13	78	728	7 098	74 256	804 076
17	17	136	1 632	20 808	283 968	4 022 064
19	19	171	2 280	32 490	495 216	7 839 780

He aquí algunos valores de N_n para diferentes p y n.

El número de los polinomios mónicos irreducibles de grado n en $\mathbb{F}_p[X]$

En particular, la fórmula de Gauss implica que para todo $n \ge 1$ existe un polinomio mónico irreducible $f \in \mathbb{F}_p[X]$ de grado n en $\mathbb{F}_p[X]$. En efecto,

$$N_n=rac{1}{n}\left(p^n+\sum_{\substack{d\mid n\ d
eq n}}\pm p^d
ight)\geq rac{1}{n}\left(p^n-(p^{n-1}+\cdots+p^2+p)
ight)>0,$$

dado que

$$p^{n-1} + \dots + p^2 + p = \frac{p^n - 1}{p - 1} - 1 < p^n.$$

15.2 Automorfismos de cuerpos finitos

La construcción de cuerpo finito de p^n elementos depende de una elección de un polinomio irreducible de grado n en $\mathbb{F}_p[X]$. Aunque probamos su existencia, no hay un modo canónico de escogerlo. Sin embargo, sabemos que todos los cuerpos de orden p^n son isomorfos entre sí. Esto nos lleva a la siguiente pregunta: ¿cuántos automorfismos tiene un cuerpo finito \mathbb{F}_{p^n} ?

Para un cuerpo K los automorfismos $\sigma: K \xrightarrow{\cong} K$ forman un grupo Aut(K) respecto a la composición.

15.2.1. Teorema. Para un cuerpo finito \mathbb{F}_{p^n} el grupo de automorfismos $\operatorname{Aut}(\mathbb{F}_{p^n})$ es cíclico de orden n. Específicamente,

$$\operatorname{Aut}(\mathbb{F}_{p^n}) = \langle F \rangle \cong \mathbb{Z}/n\mathbb{Z},$$

donde F denota el automorfismo de Frobenius

$$F: x \mapsto x^p$$
.

Demostración. Notamos primero que F es un automorfismo. Para cualesquiera $x,y\in \mathbb{F}_{p^n}$ tenemos obviamente

$$(xy)^p = x^p y^p$$
.

Para las sumas, notamos que \mathbb{F}_{p^n} es un cuerpo de característica p, así que

$$(x+y)^p = \sum_{i+j=p} {p \choose i} x^i y^j = x^p + y^p,$$

puesto que $p\mid\binom{p}{i}$ para $i=1,\ldots,p-1$. Esto demuestra que F es un homomorfismo $F\colon\mathbb{F}_{p^n}\to\mathbb{F}_{p^n}$. Como todo homomorfismo de cuerpos, F es automáticamente inyectivo. Puesto que \mathbb{F}_{p^n} es finito, F es sobreyectivo.

El grupo multiplicativo $\mathbb{F}_{p^n}^{\times}$ es cíclico y podemos escoger un generador $\alpha \in \mathbb{F}_{p^n}^{\times}$. Todo elemento $x \in \mathbb{F}_{p^n}^{\times}$ es de la forma α^i para $i = 0, 1, \ldots, p^n - 2$, y para cualquier automorfismo $\sigma \colon \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ se tiene

$$\sigma(\alpha^i) = \sigma(\alpha)^i$$
.

Esto demuestra que σ está definido por la imagen de α . Consideremos las potencias del automorfismo de Frobenius

$$F^k := \underbrace{F \circ \cdots \circ F}_{k} \colon x \mapsto x^{p^k}.$$

Tenemos $F^k = \operatorname{id}$ si y solo si $\alpha^{p^k} = \alpha$; es decir, $\alpha^{p^k-1} = 1$ en $\mathbb{F}_{p^n}^{\times}$. Dado que α tiene orden $p^n - 1$ en el grupo $\mathbb{F}_{p^n}^{\times}$, lo último sucede si y solo si $(p^n - 1) \mid (p^k - 1)$; es decir, si y solo si $n \mid k$. Podemos concluir que

$$F^0 = id, F, F^2, \ldots, F^{n-1}$$

son n diferentes automorfismos de \mathbb{F}_{p^n} . Para terminar la prueba, hay que ver que \mathbb{F}_{p^n} no tiene otros automorfismos.

Sea $f=m_{\alpha,\mathbb{F}_p}$ el polinomio mínimo de α sobre \mathbb{F}_p . Luego,

$$\mathbb{F}_p[X]/(f) \cong \mathbb{F}_p(\alpha) = \mathbb{F}_{p^n}.$$

En particular,

$$\deg f = [\mathbb{F}_p(\alpha) : \mathbb{F}_p] = [\mathbb{F}_{p^n} : \mathbb{F}_p] = n.$$

Tenemos $f(\alpha) = 0$, y para cualquier automorfismo $\sigma: \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ necesariamente

$$f(\sigma(\alpha)) = \sigma(f(\alpha)) = \sigma(0) = 0,$$

así que $\sigma(\alpha)$ debe ser una raíz de f. Pero f, siendo un polinomio de grado n, tiene a lo sumo n raíces, y esto demuestra que $|\operatorname{Aut}(\mathbb{F}_{p^n})| \leq n$.

15.2.2. Corolario. En un cuerpo finito \mathbb{F}_{p^n} todo elemento es una p-ésima potencia.

Demostración. Se sigue de la sobreyectividad del automorfismo de Frobenius $F: \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$.

15.2.3. Teorema. Los subcuerpos de un cuerpo finito \mathbb{F}_{v^n} corresponden a los divisores de n: son precisamente

$$\mathbb{F}_{n^d} := \{ x \in \mathbb{F}_{p^n} \mid x^{p^d} = x \}.$$

Demostración. Primero, si tenemos un subcuerpo $\mathbb{F} \subseteq \mathbb{F}_{p^n}$, entonces necesariamente $\mathbb{F}_p \subseteq \mathbb{F}$ y $|\mathbb{F}| = p^d$ para algún d. Luego,

$$n = [\mathbb{F}_{p^n} : \mathbb{F}_p] = [\mathbb{F}_{p^n} : \mathbb{F}] \cdot [\mathbb{F} : \mathbb{F}_p] = [\mathbb{F}_{p^n} : \mathbb{F}] \cdot d,$$

demuestra que $d \mid n$. Dado que el grupo multiplicativo \mathbb{F}^{\times} es cíclico de orden $p^d - 1$, los elementos de \mathbb{F} son precisamente las raíces del polinomio $X^{p^d} - X \in \mathbb{F}_p[X]$:

$$\mathbb{F} = \mathbb{F}_d := \{ x \in \mathbb{F}_{p^n} \mid x^{p^d} - x = 0 \} = \{ x \in \mathbb{F}_{p^n} \mid F^d(x) = x \}.$$

donde $F: x \mapsto x^p$ denota el automorfismo de Frobenius. Viceversa, para cualquier $d \mid n$ el conjunto \mathbb{F}_{d^n} de arriba tiene p^d elementos: tenemos $(X^{p^d} - X) \mid (X^{p^n} - X)$ y el polinomio $X^{p^n} - X$ se descompone en factores lineales en $\mathbb{F}_{p^n}[X]$. Además, para cualquier cuerpo K y un endomorfismo $\sigma: K \xrightarrow{\cong} K$, el conjunto

$$K^{\sigma} := \{ x \in K \mid \sigma(x) = x \}$$

es un subcuerpo de K: esto se sigue de las identidades

$$\sigma(x+y) = \sigma(x) + \sigma(y), \quad \sigma(1) = 1, \quad \sigma(xy) = \sigma(x) \, \sigma(y), \quad \sigma(x^{-1}) = \sigma(x)^{-1}.$$

15.2.4. Ejemplo. Consideremos un cuerpo de $2^6 = 64$ elementos

$$\mathbb{F}_{64} = \mathbb{F}_2[X]/(X^6 + X^5 + X^3 + X^2 + 1).$$

Denotemos por α la imagen de X en el cociente. Tenemos

$$\mathbb{F}_{64} = \{a_5 \alpha^5 + a_4 \alpha^4 + a_3 \alpha^3 + a_2 \alpha^2 + a_1 \alpha + a_0 \mid a_i = 0, 1\}.$$

Los elementos fijos bajo el automorfismo de Frobenius $F: x \mapsto x^2$ corresponden al subcuerpo

$$\mathbb{F}_2 = \{0, 1\}.$$

Los elementos fijos por F^2 : $x \mapsto x^4$ corresponden al subcuerpo

$$\mathbb{F}_4 = \{0, 1, \alpha^4 + \alpha^2 + \alpha, \alpha^4 + \alpha^2 + \alpha + 1\}.$$

Los elementos fijos por F^3 : $x \mapsto x^8$ corresponden al subcuerpo

$$\mathbb{F}_8 = \{0, 1, \alpha^2 + \alpha, \alpha^2 + \alpha + 1, \alpha^4 + \alpha, \alpha^4 + \alpha + 1, \alpha^4 + \alpha^2, \alpha^4 + \alpha^2 + 1\}.$$

15.2.5. Comentario. Notamos que $\operatorname{Aut}(\mathbb{F}_{p^n}) = \langle F \rangle$ es el grupo cíclico de orden n generado por el automorfismo de Frobenius $F \colon x \mapsto x^p$. Los subgrupos de $\operatorname{Aut}(\mathbb{F}_{p^n})$ son precisamente $\langle F^d \rangle$ para $d \mid n$, y entonces hemos obtenido una biyección entre los subcuerpos de \mathbb{F}_{p^n} y los subgrupos de $\operatorname{Aut}(\mathbb{F}_{p^n})$. Esto no es una coincidencia: es un caso particular de la **teoría de Galois**.

15.3 Cuerpos finitos y la reciprocidad cuadrática

Recordemos que para un número entero a y un primo p el símbolo de Legendre se define mediante

$$\left(\frac{a}{p}\right) := \begin{cases} +1, & \text{si } p \nmid a \text{ y } a \text{ es un cuadrado módulo } p, \\ -1, & \text{si } p \nmid a \text{ y } a \text{ no es un cuadrado módulo } p, \\ 0, & \text{si } p \mid a. \end{cases}$$

Tenemos las siguientes propiedades elementales.

a) El símbolo de Legendre es multiplicativo: se tiene

$$\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right)$$

para cualesquiera $a, b \in \mathbb{Z}$.

b) Si p es un primo impar, entonces entre los números $\{1,2,\ldots,p-1\}$ precisamente la mitad son cuadrados módulo p y la mitad no son cuadrados módulo p; en particular,

$$\sum_{0 \le i \le p-1} \left(\frac{i}{p}\right) = 0.$$

c) El símbolo de Legendre puede ser interpretado mediante el **criterio de Euler**: si *p* es un primo impar, entonces

$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}.$$

Todas estas propiedades se deducen fácilmente del hecho de que \mathbb{F}_p^{\times} sea un grupo cíclico: existe un generador $\alpha \in \mathbb{F}_p^{\times}$ tal que todo elemento de \mathbb{F}_p^{\times} es de la forma α^i para algún $i \in \mathbb{Z}$. Luego, α^i es un cuadrado si y solo si i es par (véase el capítulo 7 para los detalles).

El objetivo de esta sección es presentar una aplicación de cuerpos finitos en una prueba de la **ley de reciprocidad cuadrática** de Gauss.

1) Si p y q son diferentes primos impares, entonces

$$\left(\frac{q}{p}\right) = (-1)^{\frac{q-1}{2}\frac{p-1}{2}} \left(\frac{p}{q}\right) = \begin{cases} +\left(\frac{p}{q}\right), & \text{si } p \equiv 1 \text{ o } q \equiv 1 \pmod{4}, \\ -\left(\frac{p}{q}\right), & \text{si } p \equiv 3 \text{ y } q \equiv 3 \pmod{4}. \end{cases}$$

2) La **primera ley suplementaria**: si p es un primo impar, entonces

$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} = \begin{cases} +1, & \text{si } p \equiv 1 \pmod{4}, \\ -1, & \text{si } p \equiv 3 \pmod{4}. \end{cases}$$

3) La **segunda ley suplementaria**: si p es un primo impar, entonces

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2 - 1}{8}} = \begin{cases} +1, & \text{si } p \equiv \pm 1 \pmod{8}, \\ -1, & \text{si } p \equiv \pm 3 \pmod{8}. \end{cases}$$

15.3.1. Ejemplo. He aquí una pequeña tabla de los valores de $\left(\frac{p}{q}\right)$.

pq	3	5	7	11	13	17	19	23	29	31
-1	_	+	_	_	+	+	_	_	+	_
2	_	_	+		_	+	_	+	_	+
3	0	_	_	+	+	_	_	+	_	_
5	_	0	_	+	_	_	+	_	+	+
7	+	_	0	-	_	_	+	_	+	+
11	ı	+	+	0	ı	_	+	_	_	_
13	+	_	_	ı	0	+	_	+	+	_
17	ı	_	ı	ı	+	0	+	_	_	_
19	+	+	ı	ı	ı	+	0	_	_	+
23	ı	_	+	+	+	_	+	0	+	_
29	_	+	+	I	+	_		+	0	_
31	+	+	_	+	_	_	_	+	_	0

Notamos que la primera ley suplementaria se deduce inmediatamente del criterio de Euler. Otro modo de verlo: para $\alpha \in \mathbb{F}_p^{\times}$ se tiene $\alpha^2 = -1$ si y solamente si el orden de α es igual a 4. Entonces, -1 es un cuadrado si y solo si $4 \mid (p-1)$.

Vamos a probar la segunda ley suplementaria y luego la ley principal. Nuestra exposición sigue [IR1990, Chapter 6], pero en lugar de las raíces de la unidad ζ_n usamos los cuerpos finitos, según lo indicado en [IR1990, §7.3].

La segunda ley suplementaria

Antes de probar la ley principal, empecemos por la segunda ley suplementaria. Si p es un primo impar, entonces $p^2 \equiv 1 \pmod{8}$, puesto que cualquier cuadrado de un número impar es congruente a 1 módulo 8:

$$1^2 = 1$$
, $3^2 = 9$, $5^2 = 25$, $7^2 = 49$.

Consideremos el cuerpo finito \mathbb{F}_{p^2} . El grupo multiplicativo $\mathbb{F}_{p^2}^{\times}$ es cíclico de orden p^2-1 , y dado que $8\mid (p^2-1)$, existe un elemento $\alpha\in\mathbb{F}_{p^2}^{\times}$ de orden 8. Notamos que

$$(\alpha^4 - 1)(\alpha^4 + 1) = \alpha^8 - 1 = 0.$$

Dado que $\alpha^4 \neq 1$, tenemos $\alpha^4 = -1$, de donde se siguen las identidades

$$\alpha^2 + \alpha^{-2} = 0$$
, $\alpha^3 = -\alpha^{-1}$.

Pongamos

$$\tau := \alpha + \alpha^{-1}$$
.

Notamos que $\tau \neq 0$. En efecto, si $\alpha^{-1} = -\alpha$, entonces $\alpha^2 = -1$ y luego $\alpha^4 = 1$, pero no es el caso.

$$\tau^{p-1} = (\tau^2)^{\frac{p-1}{2}} = (\alpha^2 + 2 + \alpha^{-2})^{\frac{p-1}{2}} = 2^{\frac{p-1}{2}} = \left(\frac{2}{p}\right),$$

donde la última igualdad se sigue del criterio de Euler. En consecuencia

$$\alpha^p + \alpha^{-p} = (\alpha + \alpha^{-1})^p = \tau^p = \left(\frac{2}{p}\right)\tau.$$

Dado que α tiene orden 8, la expresión a la izquierda depende solamente del residuo de p módulo 8:

$$\alpha^p + \alpha^{-p} = \left\{ \begin{matrix} \alpha + \alpha^{-1} = \tau, & p \equiv \pm 1 \pmod 8 \\ \alpha^3 + \alpha^{-3} = -\tau, & p \equiv \pm 3 \pmod 8 \end{matrix} \right\} = (-1)^{\frac{p^2-1}{8}} \tau.$$

Comparando las últimas dos identidades, se obtiene

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2 - 1}{8}}.$$

15.3.2. Comentario. El mismo argumento funciona para la raíz de la unidad ζ_8 en lugar de α y el anillo $\mathbb{Z}[\zeta_8]$ en lugar de \mathbb{F}_{p^2} . En este caso hay que considerar identidades en $\mathbb{Z}[\zeta_8]$ módulo p.

La ley principal

Sean p y q dos diferentes primos impares. Podemos escoger un número $n = 1, 2, 3, \ldots$ tal que

$$q^n \equiv 1 \pmod{p}$$

(por ejemplo, basta tomar n=p-1). Consideremos el cuerpo finito \mathbb{F}_{q^n} . El grupo multiplicativo $\mathbb{F}_{q^n}^{\times}$ es cíclico de orden q^n-1 . Por nuestra elección de n, se tiene $p\mid (q^n-1)$, así que existe un elemento $\alpha\in\mathbb{F}_{q^n}^{\times}$ de orden p.

Para $a \in \mathbb{Z}$ pongamos

$$au_a := \sum_{0 \le i \le p-1} \left(rac{i}{p}
ight) lpha^{ai} \in \mathbb{F}_{q^n}.$$

En particular, definamos

$$\tau := \tau_1$$
.

A partir de ahora y hasta el final de esta sección, todos los sumatorios serán entre 0 y p-1, así que por brevedad vamos a escribir " \sum_i " en lugar de " $\sum_{0 \le i \le p-1}$ ".

15.3.3. Lema. *Tenemos*

$$\sum_{i} \alpha^{ai} = \begin{cases} p, & si \ p \mid a, \\ 0, & si \ p \nmid a. \end{cases}$$

Demostración. Si $p \mid a$, entonces $\alpha^{ai} = 1$ para todo $0 \le i \le p-1$, así que

$$\sum_{i} \alpha^{ai} = p.$$

Si $p \nmid a$, entonces $\alpha^a \neq 1$, y luego

$$\sum_{i} \alpha^{ai} = \frac{\alpha^{ap} - 1}{\alpha^a - 1} = 0.$$

15.3.4. Proposición (Gauss). En \mathbb{F}_{q^n} se cumplen las identidades

1)
$$\tau_a = \left(\frac{a}{p}\right) \tau$$
.

2)
$$\tau^2 = (-1)^{\frac{p-1}{2}} p$$
.

Demostración. Si $p \mid a$, entonces

$$\left(\frac{a}{p}\right) = 0.$$

Por otro lado, tenemos $\alpha^{ai}=1$ para todo $0 \le i \le p-1$, dado que el orden de α es igual a p, y luego,

$$\tau_a = \sum_{i} \left(\frac{i}{p}\right) = 0$$

por (15.1). Si $p \nmid a$, entonces calculamos que

$$\left(\frac{a}{p}\right) \tau_a = \sum_i \left(\frac{ai}{p}\right) \alpha^{ai} = \sum_j \left(\frac{j}{p}\right) \alpha^j = \tau$$

—el símbolo de Legendre $\left(\frac{j}{p}\right)$ y el elemento α^j dependen solo del resto de j módulo p y los números ai para $0 \le i \le p-1$ nos dan todos los restos módulo p. Ahora $\left(\frac{a}{p}\right) = \pm 1$, así que al multiplicar la identidad de arriba por $\left(\frac{a}{p}\right)$ nos queda la identidad 1)

$$\tau_a = \left(\frac{a}{p}\right) \tau.$$

Probemos la segunda identidad. Notamos que si $p \nmid a$, entonces la identidad 1) nos da

$$\tau_a \, \tau_{-a} = \left(\frac{a}{p}\right) \left(\frac{-a}{p}\right) \, \tau^2 = \left(\frac{-1}{p}\right) \, \tau^2,$$

y si $p \mid a$, entonces $\tau_a \tau_{-a} = 0$. Luego,

(15.2)
$$\sum_{a} \tau_{a} \tau_{-a} = \left(\frac{-1}{p}\right) (p-1) \tau^{2}.$$

Por otro lado, tenemos

$$\tau_a \, \tau_{-a} = \sum_i \sum_j \left(\frac{i}{p} \right) \, \left(\frac{j}{p} \right) \, \alpha^{a \, (i-j)},$$

y sumando estas identidades para $0 \le a \le p-1$, se obtiene

$$\sum_{a} \tau_{a} \tau_{-a} = \sum_{i} \sum_{j} \left(\frac{i}{p} \right) \left(\frac{j}{p} \right) \sum_{a} \alpha^{a} (i-j).$$

El cálculo del lema 15.3.3 nos dice que

$$\sum_{a} \alpha^{a (i-j)} = \begin{cases} p, & \text{si } i = j, \\ 0, & \text{si } i \neq j. \end{cases}$$

Entonces,

(15.3)
$$\sum_{a} \tau_{a} \tau_{-a} = \sum_{i} \left(\frac{i}{p}\right)^{2} p = (p-1) p.$$

Comparando (15.2) y (15.3), tenemos

$$\left(\frac{-1}{p}\right)(p-1)\tau^2 = (p-1)p,$$

de donde

$$\tau^2 = \left(\frac{-1}{p}\right) \ p = (-1)^{\frac{p-1}{2}} \ p.$$

Estamos listos para probar la ley de reciprocidad cuadrática. Denotemos

$$p^* := (-1)^{\frac{p-1}{2}} p.$$

La segunda identidad de 15.3.4 nos dice que

$$\tau^2 = p^*$$
 en \mathbb{F}_{q^n} .

Entonces

$$\left(rac{p^*}{q}
ight)=1\iff au\in \mathbb{F}_q\subset \mathbb{F}_{q^n}\iff au^q= au.$$

(En efecto, si p^* es un cuadrado en \mathbb{F}_q , entonces $p^*=x^2$ para algún $x\in\mathbb{F}_q$. Pero en este caso $\tau=\pm x$, así que $\tau\in\mathbb{F}_q$. Viceversa, si $\tau\in\mathbb{F}_q$, entonces $p^*=\tau^2$ es un cuadrado en \mathbb{F}_q .) Luego, tenemos en \mathbb{F}_{q^n}

$$au^q = \left(\sum_i \left(rac{i}{p}
ight) \, lpha^i
ight)^q = \sum_i \left(rac{i}{p}
ight)^q \, lpha^{qi} = \sum_i \left(rac{i}{p}
ight) \, lpha^{qi} = au_q = \left(rac{q}{p}
ight) \, au,$$

según la primera identidad 15.3.4. Entonces, la condición $\tau^q = \tau$ equivale a

$$\left(\frac{q}{p}\right) = 1.$$

Hemos probado que

$$\left(\frac{p^*}{q}\right) = 1 \iff \left(\frac{q}{p}\right) = 1.$$

Esto equivale a la identidad

$$\left(\frac{q}{p}\right) = \left(\frac{p^*}{q}\right) = \left(\frac{-1}{q}\right)^{\frac{p-1}{2}} \left(\frac{p}{q}\right) = (-1)^{\frac{q-1}{2}\frac{p-1}{2}} \left(\frac{p}{q}\right).$$

15.3.5. Comentario. Estos cálculos se pueden hacer con la raíz de la unidad ζ_p en lugar de α . En este caso la expresión

$$g_a := \sum_{0 \le a \le n-1} \left(\frac{a}{p}\right) \zeta_p^a, \quad g := g_1$$

se conoce como la **suma cuadrática de Gauss**. Muchas pruebas de la reciprocidad cuadrática, incluso una de las pruebas de Gauss, se basan en la identidad

$$g^2 = \left(\frac{-1}{p}\right) p.$$

En el tratado de Gauss "Disquisitiones Arithmeticae" aparecen ocho pruebas diferentes de la reciprocidad cuadrática, y hoy en día se conocen alrededor de 250°. Para más información sobre las leyes de reciprocidad en el contexto histórico, véase el libro [Lem2000].

15.4 Perspectiva: ecuaciones sobre cuerpos finitos

Presently, the topic which amuses me most is counting points on algebraic curves over finite fields. It is a kind of applied mathematics: you try to use any tool in algebraic geometry and number theory that you know of... and you don't quite succeed!

Una entrevista a Jean-Pierre Serre, 1985

Consideremos un cuerpo finito \mathbb{F}_q . Sus extensiones finitas son de la forma \mathbb{F}_{q^k} para $k=1,2,3,\ldots$ Denotemos por

$$\mathbb{A}^n(\mathbb{F}_{q^k}) := \mathbb{F}_{q^k}^n$$

el espacio afín de dimensión n sobre \mathbb{F}_{q^k} . Para una colección de polinomios $f_1, f_2, \dots, f_s \in \mathbb{F}_q[X_1, \dots, X_n]$, consideremos el conjunto de sus ceros en común en $\mathbb{F}_{q^k}^n$:

$$V(\mathbb{F}_{a^k}) := \{ \underline{x} = (x_1, \dots, x_n) \in \mathbb{A}^n(\mathbb{F}_{a^k}) \mid f_1(\underline{x}) = f_2(\underline{x}) = \dots = f_s(\underline{x}) = 0 \}.$$

Este conjunto es finito, siendo un subconjunto de $\mathbb{A}^n(\mathbb{F}_{q^k})$ que tiene q^{kn} elementos. Entonces, cabe preguntarse, cómo el número de elementos de $V(\mathbb{F}_{q^k})$ depende de k. Este problema fue uno de los más importantes en las matemáticas del siglo XX. A saber, esto se estudia mediante **función zeta** definida por

$$Z(V_{/\mathbb{F}_q},t) := \exp\left(\sum_{k>1} \#V(\mathbb{F}_{q^k}) \, rac{t^k}{k}
ight).$$

Esta expresión también puede ser considerada como una serie formal en $\mathbb{Q}[t]$

En 1960 Bernard Dwork probó que $Z(V_{/\mathbb{F}_q},t)$ es siempre una función racional. En términos de las series formales, esto significa que $Z(V_{/\mathbb{F}_q},t)=f/g$ para algunos polinomios $f,g\in\mathbb{Q}[t]$. Conociendo esta función racional, se puede considerar los coeficientes de la serie $\log(f/g)$ para recuperar los números $\#V(\mathbb{F}_{q^k})$ para todo $k=1,2,3,\ldots$

La prueba de Dwork está explicada en el libro [Kob1984] y aquí vamos considerar solo un par de casos particulares.

Círculo unitario

El círculo unitario viene dado por la ecuación $X^2 + Y^2 = 1$. Consideremos entonces el conjunto

$$C(\mathbb{F}_q) := \{ (x, y) \in \mathbb{A}^2(\mathbb{F}_q) \mid x^2 + y^2 = 1 \}.$$

Primero, si $q=2^k$, entonces todo elemento de \mathbb{F}_{2^k} es un cuadrado: para todo $\alpha \in \mathbb{F}_{2^k}$ existe $\beta \in \mathbb{F}_{2^k}$ tal que $\alpha = \beta^2$. Además, este β es único: se tiene

$$X^2 - \alpha = (X - \alpha)^2.$$

 $^{{}^*}V\'{e}$ ase http://www.rzuser.uni-heidelberg.de/~hb3/fchrono.html

Entonces, cualquier $x \in \mathbb{F}_{2^k}$ define un punto único

$$(x,\sqrt{1-x^2})\in C(\mathbb{F}_{2^k}).$$

Se sigue que

$$\#C(\mathbb{F}_{2^k})=2^k.$$

15.4.1. Ejemplo. Sobre \mathbb{F}_2 , los puntos del círculo $C(\mathbb{F}_2)$ son

Sobre el cuerpo

$$\mathbb{F}_4 := \mathbb{F}_2[X]/(X^2 + X + 1) = \{0, 1, \alpha, \alpha + 1\}$$

los puntos del círculo $C(\mathbb{F}_4)$ son

$$(0,1)$$
, $(1,0)$, $(\alpha,\alpha+1)$, $(\alpha+1,\alpha)$.

En efecto, tenemos

$$\alpha^2 = \alpha + 1$$
, $(\alpha + 1)^2 = \alpha$.

Ahora si q es impar, el problema se vuelve más interesante. Analicemos algunos ejemplos.

15.4.2. Ejemplo. Tenemos

$$C(\mathbb{F}_3) = \{(0,1), (0,2), (1,0), (2,0)\},\$$

$$C(\mathbb{F}_5) = \{(0,1), (0,4), (1,0), (4,0)\},\$$

$$C(\mathbb{F}_7) = \{(0,1), (0,6), (1,0), (2,2), (2,5), (5,2), (5,5), (6,0)\}.$$

En el cuerpo

$$\mathbb{F}_9 := \mathbb{F}_3[X]/(X^2+1) = \{0,1,2,\alpha,\alpha+1,\alpha+2,2\alpha,2\alpha+1,2\alpha+2\}$$

Los cuadrados son

$$1^{2} = 2^{2} = 1,$$

$$\alpha^{2} = (2\alpha)^{2} = 2,$$

$$(\alpha + 1)^{2} = (2\alpha + 2)^{2} = 2\alpha,$$

$$(\alpha + 2)^{2} = (2\alpha + 1)^{2} = \alpha.$$

Luego,

$$\alpha^2 + \alpha^2 = (2\alpha)^2 + (2\alpha)^2 = \alpha^2 + (2\alpha)^2 = 1.$$

Tenemos

$$C(\mathbb{F}_9) = \{(0,1), (0,2), (1,0), (2,0), (\alpha,\alpha), (\alpha,2\alpha), (2\alpha,\alpha), (2\alpha,2\alpha)\}.$$

He aquí una pequeña tabla que podemos compilar con ayuda de una computadora:

<i>q</i> :	3	5	7	9	11	13	17	19	23	25	27	29	31	37	41	
q mód 4:	3	1	3	1	3	1	1	3	3	1	3	1	3	1	1	
$\#C(\mathbb{F}_q)$:	4	4	8	8	12	12	16	20	24	24	28	28	32	36	40	• • •

Se nota que $\#C(\mathbb{F}_q) = q \pm 1$. Para explicar qué está pasando, recordemos la parametrización del círculo. Sería instructivo hacer un dibujo del círculo real. El punto P = (-1,0) siempre está en el circulo. Podemos trazar una recta que pasa por P y tiene otra intersección con el círculo. Esta recta necesariamente tendrá ecuación

$$\ell$$
: $Y = tX + t$

para algún t.

La intersección de esta recta con el círculo viene dada por

$$Q = (x,y), \ y = t \ x + t, \ x^2 + y^2 = 1 \Longrightarrow (x,y) = \left(\frac{1 - t^2}{1 + t^2}, \frac{2t}{1 + t^2}\right).$$

Viceversa, la recta que pasa por P y Q = (x, y) tiene ecuación

$$Y = t X + t$$
, $t = \frac{y}{x+1}$.

Ahora si trabajamos sobre un cuerpo \mathbb{F}_q , puede pasar que $t^2=-1$. Entonces, lo que tenemos es una aplicación

$$\phi \colon \{t \in \mathbb{F}_q \mid t^2 \neq -1\} \to C(\mathbb{F}_q) \setminus \{(-1,0)\},$$
$$t \mapsto \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right).$$

Esta aplicación está bien definida:

$$\left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right) \neq (-1,0)$$

$$\cos\alpha = \frac{\cos^2(\alpha/2) - sen^2(\alpha/2)}{\cos^2(\alpha/2) + sen^2(\alpha/2)} = \frac{1 - tan^2(\alpha/2)}{1 + tan^2(\alpha/2)}$$

$$\operatorname{sen} \alpha = \frac{2 \operatorname{sen}(\alpha/2) \operatorname{cos}(\alpha/2)}{\operatorname{cos}^2(\alpha/2) + \operatorname{sen}^2(\alpha/2)} = \frac{2 \operatorname{tan}(\alpha/2)}{1 + \operatorname{tan}^2(\alpha/2)}.$$

y

^{*}El lector probablemente reconocerá las identidades trigonométricas

si q es impar. Notamos que si para $(x,y) \in C(\mathbb{F}_q)$ tenemos

$$\left(\frac{y}{x+1}\right)^2 = -1,$$

entonces

$$y^2 = -(x+1)^2,$$

y luego la ecuación

$$x^{2} + y^{2} = x^{2} - (x - 1)^{2} = -2x - 1 = 1$$

nos dice que (x,y) = (-1,0). Entonces, tenemos una aplicación bien definida

$$\psi \colon C(\mathbb{F}_q) \setminus \{(-1,0)\} \to \{t \in \mathbb{F}_q \mid t^2 \neq -1\},$$
$$(x,y) \mapsto \frac{y}{x+1}.$$

Las aplicaciones ϕ y ψ son mutualmente inversas:

$$\psi \circ \phi(t) = t$$
, $\phi \circ \psi(x, y) = (x, y)$

para cualesquiera $t \in \mathbb{F}_q$ con $t^2 \neq 1$ y $(x,y) \in C(\mathbb{F}_q)$ con $x \neq -1$. Esta biyección nos permite concluir que

$$\#C(\mathbb{F}_q) - 1 = \#\{t \in \mathbb{F}_q \mid t^2 \neq -1\}.$$

Ahora si -1 es un cuadrado en \mathbb{F}_q , la ecuación $t^2 = -1$ tiene dos soluciones. Tenemos entonces

$$\#C(\mathbb{F}_q) = \begin{cases} q+1, & \text{si } -1 \text{ no es un cuadrado en } k, \\ q-1, & \text{si } -1 \text{ es un cuadrado en } k. \end{cases}$$

Falta notar que -1 es un cuadrado en \mathbb{F}_q^{\times} si y solamente si $q \equiv 1 \pmod{4}$ (véase el ejercicio 15.9). Resumamos nuestros resultados.

15.4.3. Proposición. Se tiene

$$\#C(\mathbb{F}_q) = \begin{cases} q, & \text{si } q \text{ es par,} \\ q+1, & \text{si } q \equiv 3 \pmod{4}, \\ q-1, & \text{si } q \equiv 1 \pmod{4}. \end{cases}$$

Calculemos la función zeta correspondiente

$$Z(C_{/\mathbb{F}_q},t) := \exp\left(\sum_{k\geq 1} \#C(\mathbb{F}_{q^k}) \frac{t^k}{k}\right).$$

1) Si q es par, enconces $\#C(\mathbb{F}_{q^k}) = q^k$ y tenemos

$$Z(C_{/\mathbb{F}_q}, t) = \exp\left(\sum_{k\geq 1} \frac{(qt)^k}{k}\right).$$

Recordemos la serie para el logaritmo

$$\log(1+t) = \sum_{k>1} (-1)^{k+1} \frac{t^k}{k} = t - \frac{t^2}{2} + \frac{t^3}{3} - \frac{t^4}{4} + \cdots$$

Luego,

$$-\log(1-t) = \sum_{k>1} \frac{t^k}{k} = t - \frac{t^2}{2} + \frac{t^3}{3} - \frac{t^4}{4} + \cdots$$

En nuestro caso, tenemos

$$Z(C_{/\mathbb{F}_q}, t) = \exp(-\log(1 - qX)) = \frac{1}{1 - qX}.$$

2) Si $q \equiv 3 \pmod{4}$, entonces $q^k \equiv (-1)^k \pmod{4}$, de donde se obtiene

$$\#C(\mathbb{F}_{q^k}) = \begin{cases} q^k + 1, & \text{si } k \text{ es impar,} \\ q^k - 1, & \text{si } k \text{ es par.} \end{cases}$$

Luego,

$$Z(C_{/\mathbb{F}_q}, t) = \exp\left(\sum_{k \ge 1} \frac{(q\,t)^k}{k} + \sum_{k \ge 1} (-1)^{k+1} \, \frac{t^k}{k}\right) = \exp(-\log(1-qt) + \log(1+t)) = \frac{1+t}{1-qt}.$$

3) De la misma manera, si $q\equiv 1\pmod 4$, entonces $q^k\equiv 1\pmod 4$ para todo $k=1,2,3,\ldots$ y $\#\mathcal{C}(\mathbb{F}_{q^k})=q^k-1.$

La función zeta entonces viene dada por

$$Z(C_{/\mathbb{F}_q}, t) = \exp\left(\sum_{k > 1} \frac{(q\,t)^k}{k} - \sum_{k > 1} \frac{t^k}{k}\right) = \exp(-\log(1 - qt) + \log(1 - t)) = \frac{1 - t}{1 - qt}.$$

La curva $Y^2 = X^3 - X$

Consideremos el conjunto

$$E_0(\mathbb{F}_q) := \{(x,y) \in \mathbb{A}^2(\mathbb{F}_q) \mid y^2 = x^3 - x\}.$$

He aquí la gráfica de los puntos reales de la curva $y^2 = x^3 - x$:

De nuevo, nuestro objetivo sería investigar cómo la cardinalidad de $E_0(\mathbb{F}_q)$ depende de q. Como en el caso del círculo unitario, si $q=2^k$, entonces para todo $x\in\mathbb{F}_q$ existe un único y tal que $y^2=x^3-x$. Se sigue que

$$\#E_0(\mathbb{F}_{2^k})=2^k$$
.

En característica diferente de 2, no todo elemento es un cuadrado y el problema es mucho más interesante.

15.4.4. Ejemplo.

#
$$E_0(\mathbb{F}_3) = \{(0,0), (0,1), (0,2)\},\$$
$E_0(\mathbb{F}_5) = \{(0,0), (0,1), (0,4), (1,2), (2,3), (3,3), (2,3)\},\$
$E_0(\mathbb{F}_7) = \{(0,0), (0,1), (0,6), (1,5), (2,4), (5,4), (6,5)\}.$

Con ayuda de una computadora compilemos una pequeña tabla:

<i>q</i> :	3	5	7	9	11	13	17	19	23	25	27	29	31	37	41	•••
<i>q</i> mód 4:	3	1	3	1	3	1	1	3	3	1	3	1	3	1	1	• • •
$\#E_0(\mathbb{F}_q)$:	3	7	7	15	11	7	15	19	23	31	27	39	31	39	31	

Aquí se nota un patrón:

$$#E_0(\mathbb{F}_q) = q$$
, si $q \equiv 3 \pmod{4}$,

y esto es lo que vamos a probar en esta sección.

Usando el hecho de que el grupo \mathbb{F}_q^{\times} sea cíclico de orden q-1, se puede ver que precisamente la mitad de los elementos de \mathbb{F}_q^{\times} son cuadrados y la mitad no son cuadrados, con la siguiente "tabla de multiplicación":

×	cuadrado	no-cuadrado
cuadrado	cuadrado	no-cuadrado
no-cuadrado	no-cuadrado	cuadrado

Consideremos la función

$$f(x) := x^3 - x.$$

Primero notamos que la ecuación f(x) = 0 tiene tres diferentes soluciones $x = 0, \pm 1$. Esto nos da tres puntos

$$(0,0), (1,0), (-1,0) \in E_0(\mathbb{F}_q).$$

Asumamos que $q \equiv 3 \pmod 4$. En este caso -1 no es un cuadrado en \mathbb{F}_q^{\times} . Ahora si $x \neq 0, \pm 1$, tenemos $f(x) \neq 0$. Dado que f(x) = -f(-x) y -1 no es un cuadrado, precisamente un elemento entre f(x) y f(-x) es un cuadrado. Se sigue que exactamente para la mitad de los $x \neq 0, \pm 1$, el elemento f(x) es un cuadrado. En este caso la ecuación

$$y^2 = f(x)$$

tiene dos soluciones $y \in \mathbb{F}_q^{\times}$. Luego,

$$#E_0(\mathbb{F}_q) = 3 + 2 \cdot \frac{q-3}{2} = q.$$

15.4.5. Proposición. *Si q es par o q* \equiv 3 (mód 4), *entonces*

$$#E_0(\mathbb{F}_q) = q.$$

^{*}Véase el ejercicio 15.8.

Por otro lado, cuando $q\equiv 1\pmod 4$, las cosas se vuelven mucho más interesantes. Para formular la respuesta, recordemos que el anillo de los enteros de Gauss $\mathbb{Z}[\sqrt{-1}]$ es un dominio de factorización única. Recordemos (de los ejercicios del capítulo anterior) que un primo impar p es primo en $\mathbb{Z}[\sqrt{-1}]$ si $p\equiv 3\pmod 4$ y si $p\equiv 1\pmod 4$, entonces

$$p = N(\pi) = \pi \overline{\pi} = a^2 + b^2$$

para un primo $\pi = a + b\sqrt{-1} \in \mathbb{Z}[\sqrt{-1}]$. Notamos que los números a y b no son nulos y tienen diferente paridad, así que hay ocho diferentes opciones para escoger este π que corresponden al cambio del signo de a y de b y el intercambio de a con b. Se puede escoger uno de estos π que es **primario** en el siguiente sentido.

15.4.6. Definición. Se dice que un entero de Gauss no invertible $\alpha = a + b\sqrt{-1} \in \mathbb{Z}[\sqrt{-1}]$ es **primario** si $\alpha \equiv 1 \pmod{2 + 2\sqrt{-1}}$. Esto sucede si y solo si se cumple una de las dos condiciones:

- 1) $a \equiv 1$ y $b \equiv 0 \pmod{4}$;
- 2) $a \equiv 3$ y $b \equiv 2 \pmod{4}$.

15.4.7. Ejemplo. Si pedimos que $N(\pi) = 5$, entonces hay 8 posibilidades:

$$\pi = 2 \pm \sqrt{-1}, -2 \pm \sqrt{-1}, 1 \pm 2\sqrt{-1}, -1 \pm 2\sqrt{-1}.$$

Los elementos primarios son $-1 \pm 2\sqrt{-1}$.

15.4.8. Teorema ([IR1990, §18.4, Theorem 5]). Sean p un número primo tal que $p \equiv 1 \pmod{4}$ $y \pi \in \mathbb{Z}[\sqrt{-1}]$ un entero de Gauss tal que $N(\pi) = p$ y π es primario. Entonces,

$$#E_0(\mathbb{F}_p) = p - 2\operatorname{Re} \pi.$$

15.4.9. Ejemplo. He aquí una pequeña tabla de los π como en el teorema y el número de puntos correspondiente en la curva.

<i>p</i> :	5	13	17	29	37	41	• • •
π :	$-1\pm2\sqrt{-1}$	$3\pm2\sqrt{-1}$	$1\pm4\sqrt{-1}$	$-5\pm2\sqrt{-1}$	$-1\pm6\sqrt{-1}$	$5\pm4\sqrt{-1}$	• • •
$\#E_0(\mathbb{F}_p)$:	7	7	15	39	39	31	• • • •

Para obtener los números $\#E_0(\mathbb{F}_{p^k})$ nos puede ayudar la función zeta. Por ciertas razones, es más convieniente añadir a E_0 un punto extra, denotado por O, y trabajar con

$$E := E_0 \cup \{O\}.$$

Entonces,

$$#E(\mathbb{F}_q) = E_0(\mathbb{F}_q) + 1.$$

15.4.10. Teorema. Para q impar se tiene

$$Z(E_{/\mathbb{F}_q},t) = \frac{1-at+qt^2}{(1-t)\,(1-qt)} + 1$$
, donde $a = q+1-\#E(\mathbb{F}_q)$.

El lector interesado puede consultar [Sil2009, §V.2] y [Kob1993, §II.1–2] para más detalles. En nuestro caso tenemos

<i>p</i> :	3	5	7	11	13	
$\#E(\mathbb{F}_p)$:						
$p+1-\#E(\mathbb{F}_p)$:	0	-2	0	0	6	• • •

Las funciones zeta correspondientes son entonces

$$Z(E_{/\mathbb{F}_{3}},t) = \frac{1+3t^{2}}{(1-t)(1-3t)},$$

$$Z(E_{/\mathbb{F}_{5}},t) = \frac{1+2t+5t^{2}}{(1-t)(1-5t)},$$

$$Z(E_{/\mathbb{F}_{7}},t) = \frac{1+7t^{2}}{(1-t)(1-7t)},$$

$$Z(E_{/\mathbb{F}_{11}},t) = \frac{1+11t^{2}}{(1-t)(1-11t)},$$

$$Z(E_{/\mathbb{F}_{13}},t) = \frac{1-6t+13t^{2}}{(1-t)(1-13t)},$$

de donde se calculan las series

$$\begin{split} \log Z(E_{/\mathbb{F}_3},t) &= 4\,t + \frac{16}{2}\,t^2 + \frac{28}{3}\,t^3 + \frac{64}{4}\,t^4 + \frac{244}{5}\,t^5 + \cdots \\ \log Z(E_{/\mathbb{F}_5},t) &= 8\,t + \frac{32}{2}\,t^2 + \frac{104}{3}\,t^3 + \frac{640}{4}\,t^4 + \frac{3208}{5}\,t^5 + \cdots \\ \log Z(E_{/\mathbb{F}_7},t) &= 8\,t + \frac{64}{2}\,t^2 + \frac{344}{3}\,t^3 + \frac{2304}{4}\,t^4 + \frac{16\,808}{5}\,t^5 + \cdots \\ \log Z(E_{/\mathbb{F}_{11}},t) &= 12\,t + \frac{144}{2}\,t^2 + \frac{1332}{3}\,t^3 + \frac{14\,400}{4}\,t^4 + \frac{161\,052}{5}\,t^5 + \cdots \\ \log Z(E_{/\mathbb{F}_{13}},t) &= 8\,t + \frac{160}{2}\,t^2 + \frac{2216}{3}\,t^3 + \frac{28\,800}{4}\,t^4 + \frac{372\,488}{5}\,t^5 + \cdots \end{split}$$

Tenemos entonces

<i>p</i> :	3	5	7	11	13	
$\#E(\mathbb{F}_p)$:	4	8	8	12	8	
$\#E(\mathbb{F}_{p^2})$:	16	32	64	144	160	• • •
$\#E(\mathbb{F}_{p^3})$:	28	104	344	1332	2216	
$\#E(\mathbb{F}_{p^4})$:	64	640	2304	14400	28 800	
$\#E(\mathbb{F}_{p^5})$:	244	3208	16808	161 052	372488	

El conteo de soluciones de ecuaciones polinomiales es un tema muy profundo. Por ejemplo, este es el hilo conductor del libro [IR1990].

15.5 Cerradura algebraica de \mathbb{F}_p

Consideremos un cuerpo finito \mathbb{F}_p . Sus extensiones son cuerpos finitos \mathbb{F}_{p^n} . Recordemos que si $m \mid n$, entonces $\mathbb{F}_{p^m} \subseteq \mathbb{F}_{p^n}$; específicamente, un subcuerpo de p^n elementos contiene un subcuerpo único de p^m

^{*}Un ejemplo de este cálculo en PARI/GP:

[?] $\log ((1+3*t^2)/((1-t)*(1-3*t)))$

 $^{\% = 4*}t + 8*t^2 + 28/3*t^3 + 16*t^4 + 244/5*t^5 + ...$

elementos. Respecto a estas inclusiones, podemos tomar

$$\mathbb{F}_{p^{\infty}}:=\bigcup_{n\geq 1}\mathbb{F}_{p^n}.$$

A saber, los elementos de $\mathbb{F}_{p^{\infty}}$ son $x \in \mathbb{F}_{p^m}$ e $y \in \mathbb{F}_{p^n}$, y para calcular xy o $x \pm y$, hay que encajar x e y en $\mathbb{F}_{n^{\text{mcm}(m,n)}}$. Se ve que esto es un cuerpo y es una extensión infinita de \mathbb{F}_p .

Todo polinomio $f \in \mathbb{F}_{p^{\infty}}[X]$ tendrá sus coeficientes en algún cuerpo finito \mathbb{F}_{p^n} para n suficientemente grande, y el cuerpo de descomposición de f, siendo una extensión finita de \mathbb{F}_{p^n} , también será de la forma \mathbb{F}_{p^n} y será un subcuerpo de $\mathbb{F}_{p^{\infty}}$. Esto demuestra que $\mathbb{F}_{p^{\infty}}$ es un cuerpo algebraicamente cerrado. Siendo la unión de extensiones finitas de \mathbb{F}_p , es una extensión algebraica de \mathbb{F}_p . Entonces, $\mathbb{F}_{p^{\infty}}$ es una cerradura algebraica de \mathbb{F}_p .

Sería interesante calcular el grupo de automorfismos $\operatorname{Aut}(\mathbb{F}_{p^{\infty}})$. Notamos que para todo automorfismo $\sigma \colon \mathbb{F}_{p^{\infty}} \xrightarrow{\cong} \mathbb{F}_{p^{\infty}}$ y todo polinomio $f \in \mathbb{F}_p[X]$ se cumple $f(\sigma(x)) = \sigma(f(x))$ para todo $x \in \mathbb{F}_{p^{\infty}}$. En particular, σ preserva los subcuerpos

$$\mathbb{F}_{p^n} = \{ x \in \mathbb{F}_{p^\infty} \mid x^{p^n} - x = 0 \},$$

y la restricción de σ a \mathbb{F}_{p^n} es algún automorfismo de \mathbb{F}_{p^n} . Recordemos nuestro cálculo de los automorfismos de \mathbb{F}_{p^n} en 15.2.1:

$$\operatorname{Aut}(\mathbb{F}_{p^n}) = \langle F \rangle \cong \mathbb{Z}/n\mathbb{Z},$$
$$F^k \mapsto [k]_n,$$

donde $F: x \mapsto x^p$ es el automorfismo de Frobenius. Puesto que \mathbb{F}_{p^∞} es la unión de los \mathbb{F}_{p^n} , el automorfismo σ está definido de modo único por sus restricciones a \mathbb{F}_{p^n} . Notamos que si $m \mid n$, entonces el automorfismo $F^k: \mathbb{F}_{p^m}$ se restringe al automorfismo $F^\ell: \mathbb{F}_{p^m} \stackrel{\cong}{\to} \mathbb{F}_{p^m}$, donde $k \equiv \ell \pmod{m}$. Estas consideraciones nos llevan a la siguiente descripción de grupo de automorfismos de \mathbb{F}_{p^∞} :

$$\operatorname{Aut}(\mathbb{F}_{p^\infty}) \cong \widehat{\mathbb{Z}} := \{(x_n)_{n \geq 1} \in \prod_{n \geq 1} \mathbb{Z}/n\mathbb{Z} \mid x_n \equiv x_m \pmod{m} \text{ para todo } m \mid n\}.$$

Este grupo se llama el grupo de los **enteros profinitos** y tiene cardinalidad 2^{\aleph_0} . (Aunque muy grande, considerado como un **grupo topológico**, el grupo $\widehat{\mathbb{Z}}$ deja de ser tan asombroso; de hecho, es un grupo muy natural e importante en aritmética.)

15.6 Ejercicios

Ejercicio 15.1.

1) Encuentre polinomios irreducibles de grado 2

$$f \in \mathbb{F}_2[X]$$
 y $g \in \mathbb{F}_3[X]$.

2) Consideremos los cuerpos finitos

$$\mathbb{F}_4 := \mathbb{F}_2[X]/(f)$$
 y $\mathbb{F}_9 := \mathbb{F}_3[X]/(g)$

de orden 4 y 9 respectivamente. Escriba las tablas de adición y multiplicación para F₄ y F₉.

- 3) Encuentre el orden de cada elemento del grupo multiplicativo \mathbb{F}_4^{\times} y \mathbb{F}_9^{\times} .
- 4) Consideremos la ecuación

$$y^2 = x^3 - x.$$

Enumere todas sus soluciones $(x, y) \in \mathbb{R}^2$, donde

$$R = \mathbb{F}_2$$
, \mathbb{F}_3 , \mathbb{F}_4 , \mathbb{F}_9 , $\mathbb{Z}/4\mathbb{Z}$, $\mathbb{Z}/9\mathbb{Z}$.

Ejercicio 15.2. Sea $q=p^k$ donde p es primo y k=1,2,3,... Demuestre que para cualquier n=1,2,3,... existe un polinomio mónico irreducible $f \in \mathbb{F}_q[X]$ de grado n. (Lo probamos en clase para k=1.)

Ejercicio 15.3. Encuentre isomorfismos explícitos entre los cuerpos

$$\mathbb{F}_3[X]/(X^2+1)$$
, $\mathbb{F}_3[X]/(X^2+X+2)$, $\mathbb{F}_3[X]/(X^2+2X+2)$.

Ejercicio 15.4. Encuentre los polinomios mónicos irreducibles de grado 3 en $\mathbb{F}_2[X]$ factorizando $X^8 - X$.

Ejercicio 15.5. Sean p un número primo y n = 1, 2, 3, ... Para $\alpha \in \mathbb{F}_{v^n}$ definamos

$$N(\alpha) := \alpha \alpha^p \alpha^{p^2} \cdots \alpha^{p^{n-1}}.$$

- 1) Demuestre que $N(\alpha) \in \mathbb{F}_p$ para todo $\alpha \in \mathbb{F}_{p^n}$.
- 2) Demuestre que

$$N(\alpha\beta) = N(\alpha) N(\beta), \quad N(a\alpha) = a^n N(\alpha)$$

para cualesquiera $a \in \mathbb{F}_p$, $\alpha, \beta \in \mathbb{F}_{p^n}$.

3) Demuestre que el homomorfismo de grupos multiplicativos $N \colon \mathbb{F}_p^{\times} \to \mathbb{F}_p^{\times}$ es sobreyectivo.

Indicación: demuestre que $|\ker N| = \frac{p^n-1}{p-1}$ e use el primer teorema de isomorfía.

Ejercicio 15.6. Sean p un número primo y n=1,2,3,... Para el cuerpo finito \mathbb{F}_{p^n} y un elemento $\alpha \in \mathbb{F}_{p^n}$ definamos $T(\alpha) := \alpha + \alpha^p + \cdots + \alpha^{p^{n-1}}$.

- 1) Demuestre que $T(\alpha) \in \mathbb{F}_p$.
- 2) Demuestre que $T: \mathbb{F}_{p^n} \to \mathbb{F}_p$ es una aplicación \mathbb{F}_p -lineal.
- 3) Demuestre que la aplicación $T \colon \mathbb{F}_{p^n} \to \mathbb{F}_p$ es sobreyectiva.

Ejercicio 15.7. Sean p y q dos diferentes primos impares. Demuestre que el número de polinomios mónicos irreducibles de grado q en $\mathbb{F}_p[X]$ es igual a $\frac{1}{a}$ $(p^q - p)$.

Ejercicio 15.8. *Sea k un cuerpo.*

1) Demuestre que los cuadrados en el grupo multiplicativo k^{\times} forman un subgrupo

$$(k^{\times})^2 := \{ \alpha \in k^{\times} \mid \alpha = x^2 \text{ para algún } x \in k^{\times} \} \subseteq k^{\times}.$$

- 2) Enumere los cuadrados en el grupo \mathbb{F}_{q}^{\times} para el cuerpo \mathbb{F}_{9} construido en el ejercicio anterior.
- 3) Calcule el grupo cociente $k^{\times}/(k^{\times})^2$ para $k = \mathbb{R}$ y $k = \mathbb{F}_q$, donde $q = p^k$ (considere por separado el caso de p = 2 y p impar).

Ejercicio 15.9. *Sea* $q = p^k$ *donde* p *es un primo impar* y k = 1, 2, 3, ...

- 1) Demuestre que -1 es un cuadrado en \mathbb{F}_q si y solamente si -1 tiene orden 4 en el grupo cíclico \mathbb{F}_q^{\times} .
- 2) Concluya que -1 es un cuadrado en \mathbb{F}_q si y solamente si $q \equiv 1 \pmod{4}$.
- 3) Exprese -1 como un cuadrado en \mathbb{F}_9 .

Ejercicio 15.10 (generalización de 15.8). Sea $q = p^k$ donde p es primo $y \ k = 1, 2, 3, ...$ Asumamos que $q \equiv 1 \pmod{n}$.

- 1) Demuestre que para todo $\alpha \in \mathbb{F}_q^{\times}$ la ecuación $x^n = \alpha$ o no tiene soluciones, o tiene n soluciones.
- 2) Demuestre que el subconjunto

$$\{ lpha \in \mathbb{F}_q^{\times} \mid lpha = x^n \ \textit{para algun} \ x \in \mathbb{F}_q^{\times} \}$$

es un subgrupo de \mathbb{F}_q^{\times} de orden $\frac{q-1}{n}$.

3) Por ejemplo, encuentre el subgrupo de cubos en \mathbb{F}_{13}^{\times} .

Ejercicio 15.11. Supongamos que p es un primo tal que $p \equiv 3 \pmod{4}$. Demuestre que el anillo cociente $\mathbb{Z}[\sqrt{-1}]/(p)$ es un cuerpo de p^2 elementos.

Ejercicio 15.12. Para un entero de Gauss no invertible $\alpha = a + b\sqrt{-1} \in \mathbb{Z}[\sqrt{-1}]$ demuestre que

$$\alpha \equiv 1 \pmod{2 + 2\sqrt{-1}}$$

si y solo si se cumple una de las dos condiciones:

- 1) $a \equiv 1$ y $b \equiv 0 \pmod{4}$;
- 2) $a \equiv 3$ y $b \equiv 2 \pmod{4}$.

Ejercicio 15.13. Usando los resultados que vimos en clase, encuentre la cardinalidad del conjunto

$$E_0(\mathbb{F}_p) := \{(x,y) \in \mathbb{A}^2(\mathbb{F}_p) \mid y^2 = x^3 - x\}$$

 $para\ p = 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.$

Ejercicio 15.14. Demuestre que si $p \equiv 1 \pmod 4$, entonces el número $\#E(\mathbb{F}_p) = \#E_0(\mathbb{F}_p) + 1$ es siempre divisible por 4.

Ejercicio 15.15. Consideremos

$$Z(t) = \frac{1 + 3t + 5t^2}{(1 - t)(1 - 5t)} \in \mathbb{Q}(t).$$

1) Exprese Z(t) como una serie

$$1 + \underbrace{a_1 t + a_2 t^2 + a_3 t^3 + a_4 t^4 + \cdots}_{=:f} \in \mathbb{Q}[\![t]\!]$$

(calcule por lo menos los coeficientes a_1 y a_2).

2) Calcule los coeficientes b_1 y b_2 de la serie

$$\log(1+f) := \sum_{k>1} (-1)^{k+1} \frac{f^k}{k} = b_1 t + \frac{b_2}{2} t^2 + \frac{b_3}{3} t^3 + \frac{b_4}{4} t^4 + \dots \in \mathbb{Q}[\![t]\!]$$

Ejercicio 15.16. Consideremos el espacio afín de dimensión n sobre el cuerpo finito \mathbb{F}_{o^k} :

$$\mathbb{A}^n(\mathbb{F}_{q^k})=\mathbb{F}_{q^k}^n.$$

Encuentre la expresión racional para la función zeta

$$Z(\mathbb{A}^n_{/\mathbb{F}_q}, t) := \exp\left(\sum_{k>1} \#\mathbb{A}^n(\mathbb{F}_{q^k}) \frac{t^k}{k}\right).$$

Ejercicio 15.17. Para los conjuntos

$$\begin{split} V_1(\mathbb{F}_{q^k}) &:= \{ (x,y) \in \mathbb{A}^2(\mathbb{F}_{q^k}) \mid xy = 0 \}, \\ V_2(\mathbb{F}_{q^k}) &:= \{ (x,y) \in \mathbb{A}^2(\mathbb{F}_{q^k}) \mid x^2 - y^2 = 0 \}, \\ V_3(\mathbb{F}_{q^k}) &:= \{ (x,y,z) \in \mathbb{A}^3(\mathbb{F}_{q^k}) \mid x^2 = y^2 = z^2 \} \end{split}$$

encuentre la expresión racional para $Z(V_{1/\mathbb{F}_a},t)$, $Z(V_{2/\mathbb{F}_a},t)$, $Z(V_{3/\mathbb{F}_a},t)$.

Ejercicio 15.18. Demuestre que si F es un cuerpo de característica diferente de 2 (posiblemente infinito), entonces existe una biyección entre los conjuntos

$$V_1(F) := \{(x,y) \in \mathbb{A}^2(F) \mid xy = 0\},\$$

$$V_2(F) := \{(x,y) \in \mathbb{A}^2(F) \mid x^2 - y^2 = 0\}.$$

Ejercicio 15.19. Sea p un número primo. Consideremos el polinomio $f := X^2 + X + 1 \in \mathbb{F}_p[X]$.

- 1) Demuestre que f es irreducible si y solo si $p \equiv 2 \pmod{3}$.
- 2) ¿Para cuáles p el polinomio f es separable?

Ejercicio 15.20. ¿Para cuáles p el polinomio $f := X^2 + X + 2 \in \mathbb{F}_p[X]$ es irreducible? ¿separable?

Ejercicio 15.21. Sean p un número primo y $a \in \mathbb{F}_p$ un elemento no nulo. Consideremos el polinomio

$$f := X^p - X + a \in \mathbb{F}_p[X].$$

En este ejercicio vamos a probar que f es irreducible.

- 1) Demuestre que f es separable.
- 2) Sea L un cuerpo de descomposición de f y sea $\alpha \in L$ un elemento tal que $f(\alpha) = 0$. Demuestre que las raíces de f en L son $\alpha, \alpha + 1, \ldots, \alpha + p 1$.
- 3) Asumamos que f = gh donde $g,h \in \mathbb{F}_p[X]$ son polinomios mónicos $y \deg g, \deg h < \deg f$. Analizando la suma de las raíces de g o h, concluya que $\alpha \in \mathbb{F}_p$.
- 4) Demuestre que en este caso f se descompone en factores lineales en $\mathbb{F}_p[X]$ y deduzca una contradicción.

Bibliografía

[IR1990] Kenneth Ireland and Michael Rosen, A classical introduction to modern number theory, second ed., Graduate Texts in Mathematics, vol. 84, Springer-Verlag, New York, 1990. MR1070716 https://doi.org/10.1007/978-1-4757-2103-4
 [Kob1984] Neal Koblitz, p-adic numbers, p-adic analysis, and zeta-functions, second ed., Graduate Texts in Mathematics, vol. 58, Springer-Verlag, New York, 1984. MR754003 http://dx.doi.org/10.1007/978-1-4612-1112-9
 [Kob1993] ______, Introduction to elliptic curves and modular forms, second ed., Graduate Texts in Mathematics, vol. 97, Springer-Verlag, New York, 1993. MR1216136 https://doi.org/10.1007/978-1-4612-0909-6
 [Lem2000] Franz Lemmermeyer, Reciprocity laws: From Euler to Eisenstein, Springer-Verlag Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-12893-0
 [Sil2009] Joseph H. Silverman, The arithmetic of elliptic curves, second ed., Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009. MR2514094 https://doi.org/10.1007/978-0-387-09494-6