Communication over a noisy channel.

(a) Let A be the event that a 0 is transmitted. Using the total probability theorem, the desired probability is

$$\mathbf{P}(A)(1-\epsilon_0) + (1-\mathbf{P}(A))(1-\epsilon_1) = p(1-\epsilon_0) + (1-p)(1-\epsilon_1).$$

(b) By independence, the probability that the string 1011 is received correctly is

$$(1-\epsilon_0)(1-\epsilon_1)^3.$$

(c) In order for a 0 to be decoded correctly, the received string must be 000, 001, 010, or 100. Given that the string transmitted was 000, the probability of receiving 000 is $(1 - \epsilon_0)^3$, and the probability of each of the strings 001, 010, and 100 is $\epsilon_0(1 - \epsilon_0)^2$. Thus, the probability of correct decoding is

$$3\epsilon_0(1-\epsilon_0)^2+(1-\epsilon_0)^3$$
.

(d) When the symbol is 0, the probabilities of correct decoding with and without the scheme of part (c) are $3\epsilon_0(1-\epsilon_0)^2+(1-\epsilon_0)^3$ and $1-\epsilon_0$, respectively. Thus, the probability is improved with the scheme of part (c) if

$$3\epsilon_0(1-\epsilon_0)^2 + (1-\epsilon_0)^3 > (1-\epsilon_0),$$

or

$$(1 - \epsilon_0)(1 + 2\epsilon_0) > 1,$$

which is equivalent to $0 < \epsilon_0 < 1/2$.

(e) Using Bayes' rule, we have

$$\mathbf{P}(0 \mid 101) = \frac{\mathbf{P}(0)\mathbf{P}(101 \mid 0)}{\mathbf{P}(0)\mathbf{P}(101 \mid 0) + \mathbf{P}(1)\mathbf{P}(101 \mid 1)}.$$

The probabilities needed in the above formula are

$$\mathbf{P}(0) = p$$
, $\mathbf{P}(1) = 1 - p$, $\mathbf{P}(101 \mid 0) = \epsilon_0^2 (1 - \epsilon_0)$, $\mathbf{P}(101 \mid 1) = \epsilon_1 (1 - \epsilon_1)^2$.