From zero to PCB hero

A small intro to KiCad

The plan for today

- Get KiCad installed
- Baby's first KiCad project
- Exporting for manufacture
- Organizing large projects
- Best practice, cheatsheets and all that good stuff

The important questions

- Where is it?
- What is it?
- Why should we use it?

Where is KiCad?

https://www.kicad.org/download/

What is KiCad?

- Schematic design
- PCB design
- Bill of materials
- Simulation
- Much much more

Why is KiCad?

- No license needed
- Open source
- Runs on every operating system
- It's Free!

The design flow in broad terms

- Schematic
- Pcb layout
- (Crying because you forgot footprints)
- More Pcb layout
- Ordering / Routing yourself
- Finished physical pcb

Setting up a new KiCad project

- Empty project
- From template
- Clone from Repository

Schematic setup

	Paper			Drawing Sheet	
iize:	297mm		File:		
		~			
Orientati Landsca		~		Title Block	
		-	Number of sl	heets: 1 Sheet number: 1	
ustom eight:	paper size: 11000	mils	Inner Date:	2025 02 12	A 05
/idth:	17000	mils	Issue Date:	2025-03-13 <> [18/03/2025]	Export to other sheets
· IUU II	17000	111115	Revision:	1	Export to other sheets
Export to other sheets		Title:	2 Mic Array	Export to other sheets	
			Company:	ESD211	Export to other sheets
	Preview	<u>v</u>	Comment1:		Export to other sheets
			Comment2:	Jacob S. Wanzenried	Export to other sheets
			Comment3:		Export to other sheets
			Comment4:		Export to other sheets
			Comment5:		Export to other sheets
			Comment6:		Export to other sheets
<u></u>			Comment7:		Export to other sheets
——————————————————————————————————————		Comment8:		Export to other sheets	
			Comment9:		Export to other sheets

Jacob S. Wanzenried ESD211 Sheet: / File: microphone_array_2mic.kicad_sch Title: 2 Mic Array Size: A4 Date: 2025-03-13 Rev: 1	ı
ESD211 Sheet: / File: microphone_array_2mic.kicad_sch Title: 7 Mic Array	
ESD211 Sheet: /	
Jacob S. Wanzenried	

PCB setup

 Name
 Clearance
 Track Width
 Via Size
 Via Hole
 μVia Size
 uVia Hole
 DP Width
 DP Gap
 PCB Color

 Default
 0,2 mm
 0,4 mm
 1,2 mm
 0,7 mm
 0,3 mm
 0,1 mm
 0,2 mm
 0,25 mm

- Board layers
- Routing constraints
- Track and via sizes
- Net classes

• And much more...

Copper			
<u></u> ▼ → → →	Minimum clearance:	0,1	mm
/ * /	Minimum track width:	0,1	mm
₽ ‡ (Minimum connection width:	0	mm
1	Minimum annular width:	0,15	mm
**	Minimum via diameter:	0,5	mm
7	Copper to hole clearance:	0,25	mm
J↔	Copper to edge clearance:	0,5	mm
Holes			
※	Minimum through hole:	0,3	mm
.k.y.	Hole to hole clearance:	0,25	mm
uVias			
**	Minimum uVia diameter:	0,2	mm
×	Minimum uVia hole:	0,1	mm
Silkscreen			
	Minimum item clearance:	0	
		0	mm
	Minimum text height:	0,8	mm
	Minimum text thickness:	0,08	mm

Simple buck converter with LM2575

A small starter project

Only 5 components ©

https://www.komponenten.es.aau.dk/fileadmin/komponenten/Data_Sheet/Spaendingsreg/LM2575.pdf

Let us go into KiCad

But first, a 3.14 minute break

Inserting a symbol

- Press A
- Search for the symbol/part you want to insert
- Remember to select a footprint

Schematic editor shortcuts

- A place component
- W draw connection
- P place power label
- L place local label
- Ctrl+L place global label

Pcb editor shortcuts

- V Switch between top/bottom layer
- F move selected to other layer
- X Route single track
- U select whole track
- B Recalculate all filled zones

Exporting your board for production

- In-house fabrication
- Ordering

In-house

Ordering

- Same procedure, but more options can be exported
- Check exported files using JLCDFM before ordering
- https://jlcdfm.com/

1) Create a project

File	→	New Project →		New Project
THE)	NewTroject	Ų	TVCVV T TOJCCC

2) 🛂 Schematic Editor

Add components :		[A]
Move item ¹ :	β+	M
Grab item ¹ :	Ø+	G
Expand selection:	ft	+ 🖳
Deselect items: Ctrl +	ft	+ 🖳
Delete item :	- ([Del
Edit Symbol : Ctrl)+	E
Rotate item :	4	R
Mirror item : 🖟 + 🔀)/	Y
Add wires :		W
Edit properties :		E
Edit value :		V
Add power symbols :		P
Add no-connect :		Q
Add text:		
Add labels :		
List of shortcuts : ····· Ctrl + 쇼 Shift)+	F1
¹grab keeps connections, move doesn't		

@ 00 Anthony Gautier / KiCad Team

Kicad Cheatsheet

https://forum.kicad.info/t/kicad-v8-cheatsheet/51774

PCB design pitfalls

- Always use as wide a trace as possible
 - 0.4 mm / 0.6mm is ideal for traces
- Every component/IC/Transistor/Regulator should be decoupled using a 1-100n capacitor
 - Except some rare cases
- The goal is to get the shortest path for every trace from A to B
- Good PCB-design Requires a certain level of OCD

Examples – what not to do

A project doomed from the start

"You already paid for all the copper so you might as well use it" – Axel Olsson

Examples – what not to do

A garden pump controller Designed by yours truely (It never worked that well)

Other things

- Avoid Highspeed
 - If $l_{trace} > \frac{1}{3} \lambda_{signal}$ you have a problem
- High currents?
 - Your traces are resistors (and fuses as well)

BREAK TIME

Power and Ground stackup

• Life is short, use 4 layer for "real" pcb's

Source: https://resources.altium.com/p/4-layer-pcb-stackup

Organizing larger projects

- Building on Ben's lovely PCB course
 - Hierchal sheets
- Pin management
- Vector/Group Busses

Hierarchical design

Splitting the board into functionalities

Hierarchical design – interfaces

The pin connectors

A Local labels

Use for local connections local sheet only

Global variable across all sheets – Shares properties with "power" labels

Hierachal label

Makes a pin visible on the hierarchy block

Hierarchical design – interfaces cont.

• (like humans) Almost all pins have a type

Vector / Group bus

Vector bus

Group bus

MEMORY{A[7..0] D[7..0] OE WE}

```
ADC{REF, V1, V2, V3, I1, I2} ADC{REF, V1, V2, V3, I2, I2}
```

Source: https://docs.kicad.org/master/en/eeschema/eeschema.html#buses

Vector / Group bus

Bus aliases

Bus aliases are shortcuts that allow you to work with large group buses more efficiently. They allow you to define a group bus and give it a short name that can then be used instead of the full group name across the schematic.

Source: https://docs.kicad.org/master/en/eeschema/eeschema.html#buses

The Design rule checker <3

- Our constraints
 - In house fabrication
 - JLC standard
- DFM checker from kicad

Life saving plugins

- Interactive HTML-BOM
- JLC export

https://octopart.com/

Exercise: How to make shield

- You dont have to know everything, fortunately.
 - We've done some work for you.
- https://github.com/aausat/a6hwcommon/tree/main/CommonDE VBoard/shield_template_rev1
 - kortlink.dk/2s42v