

Bearbeiten Sie von den elf Aufgaben mindestens fünf. Wählen Sie solche Aufgaben aus, von denen Sie meinen, dass Sie deren Bearbeitung herausfordert oder Sie eine inhaltliche Klärung erreichen können.

AUFGABE 11

Interpretieren Sie die Aussage der folgenden Zeile und visualisieren Sie sie in Form einer Freihandskizze.

$$\int_0^3 f(x) \, dx = 1$$

AUFGABE 2²

Wie lautet die Integralfunktion $I_2(x)$ zu der Berandungsfunktion $f(x) = 8x^3 - 2x + 3$?

AUFGABE 3³

Begründen Sie das unten abgebildete Beispiel unter Verwendung des Hauptsatzes der Differential und Integralrechnung (Teil 2):

$$\int_{1}^{2} 2x \, dx = [x^{2}]_{1}^{2} = 2^{2} - 1^{2}$$

AUFGABE 4 4

Geben Sie begründet zu den unten in a) und b) angegeben Funktionen je ein Intervall [a, b] mit a < 0 und b > 0 so an, dass gilt:

(1)
$$\int_a^b f(x) dx > 0$$
 (2) $\int_a^b f(x) dx = 0$ (3) $\int_a^b f(x) dx < 0$

(2)
$$\int_{a}^{b} f(x) dx = 0$$

$$(3) \quad \int_a^b f(x) \, dx < 0$$

Skizzieren Sie die Intervalle in den folgenden Koordinatensystemen und überprüfen Sie rechnerisch.

a)
$$f(x) = x^3 - 4x$$

b)
$$f(x) = -2x^2 + 2$$

AUFGABE 55

Bestimmen Sie den orientierten Inhalt der Fläche zwischen dem Graphen f mit $f(x) = x^2 - 5x + 4$ und der x-Ache in den Grenzen 3 und 6 unter Anwendung des Hauptsatzes der Differenzial- und Integralrechnung (Teil 2).

AUFGABE 6 6

Erklären Sie die folgenden Ergebnisse bzw. Umformungen:

a)
$$\int_{-5}^{5} x^5 dx = 0$$
 b) $\int_{-2}^{2} x^2 dx = 2 \cdot \int_{0}^{2} x^2 dx$

Erstellen Sie Freihandskizzen und visualisieren Sie die Aussagen bzw. Umformungen.

¹ Mathematik neue Wege – Übungsmaterialien Analysis; S. 94, A. 3

² Mathematik neue Wege – Analysis II; S. 155, Beispiel D

³ Calimero S II – Analysis: Methodische und didaktische Handreichung; S.71, A. 9

⁴ Mathematik neue Wege – Übungsmaterialien Analysis; S. 86, A. 2

Mathematik neue Wege – Analysis II; S. 155, Beispiel E
 Mathematik neue Wege – Übungsmaterialien Analysis; S. 94, A. 1

AUFGABE 77

a) Begründen Sie geometrisch anhand einer Skizze:

$$\int_{2}^{3} x^{2} dx = \int_{0}^{3} x^{2} dx - \int_{0}^{2} x^{2} dx$$

b) Begründen Sie anhand des Hauptsatzes der Differenzial- und Integralrechnung:

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

AUFGABE 88

Sei $I = \int_a^b x^3 dx$ mit a < b. Entscheiden Sie, ob die folgenden Aussagen wahr oder falsch

		wahr	falsch
(1)	Wenn a negativ und b positiv ist, dann hat das Integral I den Wert 0		
(2)	Zu jedem a < 0 gibt es genau ein b, so dass I = 0 gilt		
(3)	Falls a < 0, gilt I < 0		
(4)	Falls a > 0, gilt I > 0		
(5)	Wenn das Integral negativ ist, dann sind auch a und b negativ		

AUFGABE 99

Gegeben ist der Funktionsterm $f(x) = 3x^2 - 2x + 1$. Welche der folgenden Funktionen sind Stammfunktionen von f.

$$F_A(x) = x^3 - x^2 + x;$$
 $F_B(x) = x^3 - x^2 + x + 7$
 $F_C(x) = x^3 - x + 1;$ $F_D(x) = \int_0^x f;$ $F_E(x) = \int_2^x f$

Definition der Stammfunktion:

Eine Funktion F(x) heißt Stammfunktion zu f(x), wenn

$$F'(x) = f(x)$$
.

AUFGABE 10 10

Welche der Aussagen über die Integralfunktionen I zu den Berandungsfunktionen f sind richtig? Begründen Sie.

- a) $I_0(0) = 0$.
- b) $I_a(a) = 0$.
- c) $I_a(x)$ ist stets positiv.
- d) $I_a^{(x)}$ ist stets ungleich 0.
- e) $I_1(x) = I_0(x) + d$ (*d* konstant)

AUFGABE 11 11

Übersetzen Sie die nebenstehenden Aussagen (1) und (2) in die Schreibweise mit dem Integralzeichen.

Eigenschaften der Integralfunktion:

- (1) $I_a(a) = 0$
- (2) Für a < b < c gilt: $I_a(c) = I_a(b) + I_b(c)$

⁷ Calimero S II – Analysis: Arbeitsmaterialien; S. 56; A. 6; Schroedel-Verlag

⁸ Mathematik neue Wege – Übungsmaterialien Analysis; S. 85, A. 1

⁹ Mathematik neue Wege – Analysis II; S. 155, A. 12

Mathematik neue Wege – Analysis II; S. 153, A. 6
 Mathematik neue Wege – Analysis II; S. 153, A. 5