CS275 – Intro to Databases

Relational Algebra - Chap. 6.1-6.2

The degree (or arity) of a relation is the number of fields.

- 1. True
- 2. False

A super key is...

- 1. A set of all candidate keys
- 2. A set of fields that contains a candidate key
- 3. A candidate key that is also the primary key
- 4. A set of fields that contains more than one candidate key

An integrity constraint limits the data that can be viewed by a database user

- 1. True
- 2. False

Using ON DELETE CASCADE, If the (a) _____ is deleted, then a (the) ____ is (are) deleted.

- 1. Student record; Enrolled record
- 2. Enrolled record; student record;
- 3. Enrolled table; Student table
- 4. Enrolled record; all student records

Query Languages

- Relational algebra
 - Procedural, explain how results are obtained

- Relational calculus
 - Will not cover in this course

Queries consist of a collection of operators

 Every operator accepts one or two relation instances as input and return a relation instance as output

 Combining these operators can form more complex queries

- Basic operators
 - Selection
 - Projection
 - Union
 - Intersection
 - Difference
 - Cross-product

Selection

$$\sigma_{GPA>3.5}(Students)$$

Projection

$$\pi_{SID,SName,GPA}(Students)$$

 Display the ID, Name, and GPA of students with a GPA > 3.5

 Display the ID, Name, and GPA of students with a GPA > 3.5

$$\pi_{SID,SName,GPA}(\sigma_{GPA>3.5}Students)$$

- Set operations
 - Union
 - Intersection
 - Difference
 - Cross-product

Union of two sets of relation instances

$$R \cup S$$

R

John	12345
Jean	54321

S

Mike	12405
Kathy	43109

Union of two sets of relation instances

$$R \cup S$$

R

John	12345
Jean	54321

S

Mike	12405
Kathy	43109

Mike	12405
Kathy	43109
John	12345
Jean	54321

Union of two sets of relation instances

$$R \cup S$$

R

John	12345
Jean	54321
Mike	12405

S

Mike	12405
Kathy	43109

Union of two sets of relation instances

$$R \cup S$$

R

John	12345
Jean	54321
Mike	12405

S

Mike	12405
Kathy	43109

Mike	12405
Kathy	43109
John	12345
Jean	54321

Union of two sets of relation instances

$$R \cup S$$

R

John	12345
Jean	54321

S

Mike	TX
Kathy	OR

Union of two sets of relation instances

$$R \cup S$$

R

John	12345
Jean	54321

S

Mike	TX
Kathy	OR

John	12345
Jean	54321
Mike	TX
Kathy	OR

Union of two sets of relation instances

R

John	12345
Jean	54321

5

Mike	TX
Kathy	OR

John	12345
Jean	54321
Mike	TX
Kathy	OR

- Union-compatibility
 - Same number of fields
 - Same domain for every corresponding field

R

John	12345
Jean	54321

S

Mike	TX
Kathy	OR

John	12345
Jean	54321
Mike	TX
Kathy	OR

Intersection

$$R \cap S$$

R

John	12345
Jean	54321
Mike	12405

S

Mike	12405
Kathy	43109

Intersection

$$R \cap S$$

R

John	12345
Jean	54321
Mike	12405

S

Mike	12405
Kathy	43109

 $R \cap S$

Mike	12405
------	-------

- Intersection
 - Do we need to be union-compatible?

R

John	12345
Jean	54321
Mike	12405

S

Mike	12405
Kathy	43109

 $R \cap S$

Mike	12405
------	-------

- Intersection
 - Do we need to be union-compatible?
 - Yes!

R

John	12345
Jean	54321
Mike	12405

S

Mike	12405
Kathy	43109

 $R \cap S$

Mike	12405
------	-------

Difference

$$R-S$$

R

John	12345
Jean	54321
Mike	12405

S

Mike	12405
Kathy	43109

R-S

John	12345
Jean	54321

- Difference
 - Do we need union-compatibility?

R

John	12345
Jean	54321
Mike	12405

S

Mike	12405
Kathy	43109

R-S

John	12345
Jean	54321

- Difference
 - Do we need union-compatibility?
 - You bet!

R

John	12345
Jean	54321
Mike	12405

S

Mike	12405
Kathy	43109

R-S

John	12345
Jean	54321

- Difference
 - Is this commutative, R-S = S-R?

S

Mike	12405
Kathy	43109

R

John	12345
Jean	54321
Mike	12405

- Difference
 - Is this commutative, R-S = S-R?
 - NO!!!!

S

Mike	12405
Kathy	43109

R

John	12345
Jean	54321
Mike	12405

S-R

Kathy | 43109

Cross Product

 $R \times S$

R

John	12345
Jean	54321
Mike	12405

S

TX	
OR	

 $R \times S$

John	12345	TX
Jean	54321	TX
Mike	12405	TX
John	12345	OR
Jean	54321	OR
Mike	12405	OR

Renaming

R

Name

Jean

Mike

S

ID

54321

12405

Name	ID
Marketing	6
Research	5

 $R \times S$

Renaming

$$ho_{\scriptscriptstyle (Dept,DeptID)}(S)$$

R

Name	ID
Jean	54321
Mike	12405

S

Name	ID
Marketing	6
Research	5

 $R \times S$

Name	ID	Dept	DeptID
Jean	54321	Marketing	6
Mike	12405	Marketing	6
Jean	54321	Research	5
Mike	12405	Research	5

Renaming

$$ho_{\scriptscriptstyle (DeptName,DeptID)}(S)$$

$$ho_{\scriptscriptstyle (NewS)}(S)$$

$$ho_{{\scriptscriptstyle \it NewS(DeptName,DeptID)}}(S)$$