School of Computing and Information Systems The University of Melbourne COMP90049 Introduction to Machine Learning (Semester 1, 2021)

Week 3

1. For the following dataset:

apple	ibm	lemon	sun	CLASS	
Training Instances					
4	0	1	1	FRUIT	
5	0	5	2	FRUIT	
2	5	0	0	COMPUTER	
1	2	1	7	COMPUTER	
TEST INSTANCES					
2	0	3	1	?	
1	2	1	0	?	

- (i). Using the Euclidean distance measure, classify the test instances using the 1-NN method.
- (ii). Using the Manhattan distance measure, classify the test instances using the 3-NN method, for the three weightings we discussed in the lectures: majority class, inverse distance, inverse linear distance.
- (iii). Can we do weighted k-NN using cosine similarity?
- 2. Approximately 1% of women aged between 40 and 50 have breast cancer. 80% of mammogram screening tests detect breast cancer when it is there. 90% of mammograms DO NOT show breast cancer when it is **NOT** there¹. Based on this information, complete the following table.

Cancer	Probability	
No	99%	
Yes	1%	

Cancer	Test	Probability
Yes	Positive	80%
Yes	Negative	? 0. 2
No	Positive	? 0,
No	Negative	90%

- 3. Based on the results in question 1, calculate the marginal probability of 'positive' results in a Mammogram Screening Test.
- Mammogram Screening Test. $P(P) = \sum_{i \in \{NC,C\}} P(P|i)P(i) = \sum_{i \in \{NC,C\}} P(P,i)$ 4. Based on the results in question 1, calculate P(Cancer = 'Yes' | Test = 'Positive'), using the Bayes = p(p(c)p(c)+p(p)nc)p(nc)

Rule.
$$= p(p(c) p(c) + p(p(nc) p(nc))$$

$$= 0.8 \times 0.1 + 0.1 \times 0.99 = 0.107$$

$$p(N|c) = 1 - p(p(c)) = 1 - 0.8 = 0.2$$

$$p(c|p) = p(p(c)) p(c)$$

$$p(N|Nc) = 1 - p(N|Nc) = 1 - 0.9 = 0.1$$

$$p(N|Nc) = 0.9$$

$$= 0.8 \times 0.1$$

$$p(p) = 0.8 \times 0.1$$

¹ Remember these numbers are not accurate and simplified to ease the calculations in this quest