CHAPTER REVIEW

For more practice, go to the Problem Bank in Appendix D.

Aqueous Solutions and the Concept of pH

SECTION 1 REVIEW

- **1.** Why is pure water a very weak electric conductor?
- **2.** What does it mean when the formula of a particular ion or molecule is enclosed in brackets?
- **3.** a. What is the $[H_3O^+]$ of pure water at 25°C?
 - b. Is this true at all temperatures? Why or why not?
- **4.** a. What is always true about the [H₃O⁺] value of acidic solutions?
 - b. What is true about the $[H_3O^+]$ value of acidic solutions at 25°C?
- **5.** a. Describe what is meant by the pH of a solution.
 - b. Write the equation for determining pH.
 - c. Explain and illustrate what is meant by the common logarithm of a number.
- **6.** Identify each of the following solutions that are at 25°C as acidic, basic, or neutral:
 - a. $[H_3O^+] = 1.0 \times 10^{-7} \text{ M}$
 - b. $[H_3O^+] = 1.0 \times 10^{-10} \text{ M}$
 - c. $[OH^-] = 1.0 \times 10^{-7} \text{ M}$
 - d. $[OH^{-}] = 1.0 \times 10^{-11} \text{ M}$
 - e. $[H_3O^+] = [OH^-]$
 - f. pH = 3.0
 - g. pH = 13.0
- **7.** Arrange the following common substances in order of increasing pH:
 - a. eggs

f. potatoes

b. apples

- g. lemons
- c. tomatoes
- h. milk of magnesia

d. milk

- i. sea water
- e. bananas

PRACTICE PROBLEMS

- **8.** Calculate the [H₃O⁺] and [OH⁻] for each of the following. (Hint: See Sample Problem A.)
 - a. 0.030 M HCl
 - b. $1.0 \times 10^{-4} \text{ M NaOH}$
 - c. $5.0 \times 10^{-3} \text{ M HNO}_3$
 - d. 0.010 M Ca(OH)₂

- **9.** Determine the pH of each of the following solutions. (Hint: See Sample Problem B.)
 - a. 1.0×10^{-2} M HCl
- c. 1.0×10^{-5} M HI
- b. 1.0×10^{-3} M HNO₃
- d. 1.0×10^{-4} M HBr
- **10.** Given the following [OH⁻] values, determine the pH of each solution.
 - a. $1.0 \times 10^{-6} \text{ M}$
- c. $1.0 \times 10^{-2} \text{ M}$
- b. $1.0 \times 10^{-9} \text{ M}$
- d. $1.0 \times 10^{-7} \text{ M}$
- 11. Determine the pH of each solution.
 - a. $1.0 \times 10^{-2} \text{ M NaOH}$
 - b. $1.0 \times 10^{-3} \text{ M KOH}$
 - c. $1.0 \times 10^{-4} \text{ M LiOH}$
- **12.** Determine the pH of solutions with each of the following $[H_3O^+]$. (Hint: See Sample Problem C.)
 - a. 2.0×10^{-5} M
 - b. $4.7 \times 10^{-7} \text{ M}$
 - c. $3.8 \times 10^{-3} \text{ M}$
- **13.** Given the following pH values, determine the [H₃O⁺] for each solution. (Hint: See Sample Problem D.)
 - a. 3.0

- c. 11.0 d. 5.0
- b. 7.00 d. 5.0
 14. Given the following pH values, determine the [OH⁻] for each solution.
 - a. 7.00

c. 4.00

b. 11.00

- d. 6.00
- **15.** Determine [H₃O⁺] for solutions with the following pH values. (Hint: See Sample Problem E.)
 - a. 4.23
 - b. 7.65
 - c. 9.48
- **16.** A nitric acid solution is found to have a pH of 2.70. Determine each of the following:
 - a. $[H_3O^+]$
 - b. [OH-]
 - c. the number of moles of HNO₃ required to prepare 5.50 L of this solution
 - d. the mass of HNO₃ in the solution in part (c)
 - e. the milliliters of concentrated acid needed to prepare the solution in part (c) (Concentrated nitric acid is 69.5% HNO₃ by mass and has a density of 1.42 g/mL.)