Elasticity of Demand

Elasticity of Demand

- The demand and supply analysis helps us to understand the direction in which price and quantity would change in response to shifts in demand or supply.
- What economists would like to know is 'what will happen to demand when price, income, price of the related goods changes?'
 - How the sensitivity of quantity demanded to a change in price is measured by the elasticity of demand and what factors influence it.
 - How elasticity is measured at a point or over a range.
 - How income elasticity is measured and how it varies with different types of goods.

Defining & Measuring Price Elasticity of Demand

 Demand elasticity is measured by a ratio: the percentage change in quantity demanded divided by the percentage change in price that brought it about.

GOOD A	Original	New	% Change	Elasticity
Quantity	100	95	-5%	
	(Q)	(Q ₁)		-5%/10%
			10%	= -0.5%
Price	1	1.10		
	(P)	(P ₁)		

Measuring Elasticity of Demand

Measuring Elasticity of Demand

$$e_{p} = \frac{\Delta Q}{\Delta P} \times \frac{P}{Q}$$

$$e_{p} = \frac{1}{Slope} \times \frac{P}{Q}$$

$$e_{p} = \frac{1}{PD/PR} \times \frac{P}{Q}$$

$$e_{p} = \frac{PR}{PD} \times \frac{OP}{OQ}$$

$$e_{p} = \frac{PR}{PD} \times \frac{OP}{OQ}$$

$$e_{p} = \frac{OQ}{PD} \times \frac{OP}{OQ} \Rightarrow \frac{OP}{PD}$$

$$e_{p} = \frac{OP}{PD} = \frac{RD_{1}}{RD}$$

This ratio is zero where the curve intersects the quantity axis and 'infinity' where it intersects the price axis.

Vertical axis formula **PR** is Parallel to **OD**1 in **ODD**1 \triangle

Elasticity along a Linear Demand Curve

- Perfectly inelastic(Elasticity=0)
- Inelastic (0<Elasticity<1)</p>
- Unit elastic (Elasticity=1)
- − Elastic (1<Elasticity< ∞)</p>
- Perfectly elastic(Elasticity= ∞)

Elastic and Inelastic

Perfectly Inelastic

- •Implies that quantity demanded remains constant when price changes occur.
- •Price elasticity of demand = 0

Perfectly Elastic

- •Implies that if price changes by any percentage quantity demanded will fall to 0.
- •Price elasticity of demand = ∞

Elastic and Inelastic

- Implies the percentage change in quantity demanded is less than the percentage change in price.
- Price elasticity of demand > 0 and < 1

- •Implies the percentage change in quantity demanded is greater than the percentage change in price.
- •Price elasticity of demand > 1 and $< \infty$

Elastic and Inelastic

- •Implies that the percentage change in quantity demanded equals the percentage change in price.
- Price elasticity of demand = 1

The Factors that Influence the Elasticity of Demand

- Nature of the Goods
 - Essential goods are highly inelastic
 - Luxury goods are highly elastic
- Availability of Substitutes
 - Higher the number of substitutes greater is the elasticity
- Number of uses of a good
 - The demand for multi-used goods is more elastic
- Distribution of Income
 - Demand for products is inelastic by the high income group
- Level of Prices
 - Demand for high and low priced goods in inelastic
- Proportion of Total Expenditure
- Time factor
 - Longer the time period higher the elasticity
- Complementary goods

Some Real-World Price Elasticities of Demand

Good or Service	Elasticity
Elastic Demand	
Metals	1.52
Electrical engineering products	1.30
Mechanical engineering products	1.30
Furniture	1.26
Motor vehicles	1.14
Instrument engineering products	1.10
Professional services	1.09
Transportation services	1.03
Inelastic Demand	
Gas, electricity, and water	0.92
Oil	0.91
Chemicals	0.89
Beverages (all types)	0.78
Clothing	0.64
Tobacco	0.61
	0.56
	_
· · · · · · · · · · · · · · · · · · ·	
Banking and insurance services Housing services Agricultural and fish products Books, magazines, and newspapers Food	0.56 0.55 0.42 0.34 0.12

Significance of Elasticity of Demand

- Useful for Business
 - Fixation of Prices
- Significant for Government Economic Policies
 - Controlling business cycles, removing inflationary and deflationary gaps, price stabilization
 - Goods with inelastic demand are taxed more
 - Fixation of wages
 - Incidence of taxes
- International Trade
 - Import commodities with more elastic demand, Export commodities with less elastic demand
- Market forms and Determination of Price of Public Utilities
- Paradox of Poverty and Effects on Employment

Elasticity and Total Revenue

- Total revenue = Price x Quantity
- Marginal Revenue = $\Delta TR/\Delta Q$
- Price elasticity of demand: $e_p = \frac{\Delta Q}{\Delta P} \times \frac{P}{Q}$
- What happens to total revenue if the price rises?

Elasticity and Total Revenue

Р	Q	TR	MR	\mathbf{E}_{d}		
10	1	10)	
9	2	18	8	6.33		
8	3	24	6	3.40	>	E _d > 1 (elastic demand
7	4	28	4	2.14		
6	5	30	2	1.44		
5	6	30	0	1.00)	E_d = 1 (unitary elastic), TR is
4	7	28	-2	0.69		max and MR is zero
3	8	24	-4	0.47		
2	9	18	-6	0.29		E _d < 1 (inelastic demand
1	10	10	-8	0.16		
)	

 $E_d > 1 \Rightarrow Demand\ elastic \Rightarrow MR > 0 \Rightarrow P\ and\ TR\ move\ in\ the\ opposite$ direction (negative relationship)

 $E_d < 1 \Rightarrow Demand\ inelastic \Rightarrow MR < 0 \Rightarrow P\ and\ TR\ move\ in\ the\ same$ direction (positive relationship)

 E_d = 1 \Rightarrow Demand unit elastic \Rightarrow MR = 0 \Rightarrow TR is maximum

Q

E _d	Demand	MR	Р	TR
E _d >1	Elastic	MR >0	1	↓
E _d < 1	Inelastic	MR < 0	1	1
E _d = 1	Unit elastic	MR = 0	-	Max.

Elasticity and Marginal Revenue

$$TR = P.Q$$

$$MR = \frac{d(P.Q)}{dQ}$$

$$MR = P + Q. \frac{dP}{dQ} = P \left[1 + \frac{dP}{dQ} * \frac{Q}{P} \right] = P \left[1 + \frac{1}{Ep} \right]$$

Defining & Measuring Income Elasticity of Demand

The responsiveness of demand for a product to changes in income is termed **income elasticity of demand**, and is defined as

Percentage change in quantity demanded
Income elasticity of demand =
Percentage change in Income

$$e_i = \frac{\Delta Q}{\Delta I} \times \frac{I}{Q}$$
 or $e_i = \frac{I}{Q} \times \frac{dQ}{dI}$

- A good is a normal good if income elasticity > 0.
- A good is an inferior good if income elasticity < 0.
- A good is a luxury good if income elasticity > 1.
- A good is a necessity good if income elasticity < 1 and < 0.

Defining & Measuring Income Elasticity of Demand

Normal Goo	d
An increase in income	increases demand.
A decrease in income Inferior Goo	decreases demand.
An increase in income	decreases demand.
A decrease in income	increases demand.

Normal Luxury	Normal Necessity	Inferior Good
International air travel	Fresh vegetables	Frozen vegetables
Fine wines	Instant coffee	Cigarettes
Luxury chocolates	Natural cheese	Processed cheese
Private education	Fruit juice	Margarine
Private health care	Spending on utilities	Tinned meat
Antique furniture	Shampoo / toothpaste / detergents	Value "own-brand" bread
Designer clothes	Rail travel	Bus travel

Defining & Measuring Cross Elasticity of Demand

The responsiveness of quantity demanded of one product to changes in the prices of other products is often of considerable interest.

$$e_{xy} = \frac{\Delta Qx}{\Delta Py} \times \frac{Py}{Qx}$$
 or $e_{xy} = \frac{Py}{Qx} \times \frac{dQx}{dPy}$

- Products are substitute if cross elasticity > 0.
- Products are complimentary if cross elasticity < 0.

Defining & Measuring Cross Elasticity of Demand

Cross Price Elasticity of Demand - Substitutes

Close substitutes – small rise in price of X causes large rise in demand for Y

Weak substitutes – large rise in price of S leads to small increase in demand for T

Cross Price Elasticity of Demand - Complements

Close complements: A small fall in price of A causes a large rise in demand for B

Weak complements: A large drop in price of E causes only small rise in demand for F

Summary

Price Elasticity of demand

Perfectly inelastic, Inelastic, Unit elastic, Elastic, Perfectly elastic

Income Elasticity of demand

Normal, Inferior, Luxury, Necessity

Cross Elasticity of demand

Substitute, Complimentary

Examples

Q1. Find the elasticity if the demand function is $\mathbf{Q} = \mathbf{25} - \mathbf{4P} + \mathbf{P}^2$ where Q is the demand for commodity at price P. Find out elasticity at (i) P = 4, (ii) P = 8, (iii) P = 5

Ans: (i)
$$P = 4$$
, ep = 0.64 (inelastic)
(ii) $P = 8$, ep = 1.7 (elastic)
(iii) $P = 5$ ep = 1 (unitarily elastic)

Q2. The demand function is given X = 10 - P at X = 4, P = 6. If the price increased by 5% determine the percentage decrease in demand and hence an approximation to the elasticity of demand.

Ans: Decrease in demand is 7.5% and elasticity is 1.5

Examples

Q3. If the current demand for economics books is 10,000 per year for a publishing house. The elasticity of demand is 0.75. The price increased by Rs 50 per book, calculate the change in the quantity of books demanded where price is Rs 150.

Ans: $\Delta Q = 2500$

Q4. Suppose demand for cars in a city as a function of income is given by the following equations. Q = 20,000 + 5M, where Q is quantity demanded and M is Per capita income. Find out income elasticity of demand when per capita annual income is Rs 15,000.

Ans: e_i = 0.8 (Normal)

Q5. Suppose the following demand function for coffee in terms of price of tea is given $Q_c = 100 + 2.5P_t$. Find out the cross elasticity of demand when price of tea rises from Rs 50 per 250gm pack to Rs 55 per 250gm pack.

Ans: e_{ct} = 0.51(Substitute)