Relativistic Non-Ideal Flows

Laureando: Jacopo Tissino Relatore: prof. Roberto Turolla

24/09/2019

The Schwarzschild metric

Flat metric:

$$\mathrm{d}s^2 = -\,\mathrm{d}t^2 + \mathrm{d}r^2 + r^2\Big(\mathrm{d}\theta^2 + \sin^2\theta\,\mathrm{d}\varphi\Big)\,.$$

Schwarzschild metric:

$$\mathrm{d}s^2 = -\left(1 - \frac{2M}{r}\right)\mathrm{d}t^2 + \frac{1}{1 - \frac{2M}{r}}\mathrm{d}r^2 + r^2\left(\mathrm{d}\theta^2 + \sin^2\theta\,\mathrm{d}\varphi\right),$$

where c = G = 1.

Tetrads: the Local Rest Frame

$$\begin{split} \hat{e}_t &= u^{\mu} \\ \hat{e}_r &= a^{\mu} / \sqrt{a^{\nu} a_{\nu}} \\ \hat{e}_{\theta} &= \left(0, 0, 1/r, 0\right) \\ \hat{e}_t &= \left(0, 0, 0, 1/(r \sin \theta)\right) \end{split}$$

$$\mathsf{g}_{\mu\nu}\,\hat{\mathsf{e}}^{\mu}_{(\alpha)}\,\hat{\mathsf{e}}^{\nu}_{(\beta)}=\eta_{(\alpha)(\beta)}\,.$$

The Local Rest Frame

The Local Rest Frame

The stress-energy tensor

The component $T^{\mu\nu}$ is the flux of μ -th component of the four-momentum p^{μ} through a surface of constant coordinate x^{ν} . For an ideal fluid ($\eta = \xi = \kappa = 0$) in the Local Rest Frame:

$$T^{\mu
u}_{ ext{ideal fluid}} = egin{bmatrix}
ho & & & & \ &
ho & & & \ &
ho & & & \ &
ho & & &
ho \ & &
ho & &
ho \ & &
ho & &
ho \ & &
ho \ & &
ho \ \end{pmatrix}_{ ext{fid}} \,,$$

where $\rho = \rho_0(1+\varepsilon)$.

The radiation moments

$$w_0 = \int I \, d\Omega$$

$$w_1 = \int I \cos \theta \, d\Omega$$

$$w_2 = \int I \left(\cos^2 \theta - \frac{1}{3} \right) d\Omega$$

radiation energy density radiation energy flux radiation shear stress.

The radiation moments

The full stress-energy tensor

$$T^{\mu
u} = T^{\mu
u}_{ ext{ideal fluid}} + egin{bmatrix} w_0 & w_1 & 0 & 0 \ w_1 & rac{1}{3}w_0 + w_2 & 0 & 0 \ 0 & 0 & rac{1}{3}w_0 - rac{1}{2}w_2 & 0 \ 0 & 0 & 0 & rac{1}{3}w_0 - rac{1}{2}w_2 \end{bmatrix}_{ ext{fid}}$$

The equations to solve are:

$$\nabla_{\mu} T^{\mu\nu} = 0 \qquad \qquad 2 \text{ equations}$$

$$\nabla_{\mu} \big(\rho_0 u^{\mu} \big) = 0 \qquad \qquad 1 \text{ equation}$$
 conservation of photon number
$$\qquad \qquad 2 \text{ equations}.$$

Singularities

There is a singularity in the Euler equation at $v = v_s$:

$$(v^2 - v_s^2) \frac{(yv)'}{yv} - 2v_s^2 + \frac{M}{y^2r} = -\frac{r}{yv(p+\rho)} ((\Gamma - 1)s_0 + vs_1).$$

Also, since we assume $w_2 = f(\tau)w_1$, there is another singularity at the zeros of:

$$v^2 - vf(\tau) - \frac{1}{3}$$

Accretion efficiency

The Eddington luminosity is attained when the radiation pressure on a test electron-proton pair equals the gravitational pull on it. We have approximately:

$$rac{L_{\mathsf{Edd}}}{M} = rac{4\pi c G m_p}{\sigma_T} pprox 3.27 imes 10^4 rac{L_{\odot}}{M_{\odot}} \,.$$

From the numerical simulation, fixing the accretion rate \dot{M} , we get $L=4\pi r^2w_1$.

We can adimensionalize these with the Eddington luminosity and the Eddington accretion rate $\dot{M}_{\rm Edd} = L_{\rm Edd}/c^2$: we define $I = L/L_{\rm Edd}$ and $\dot{m} = \dot{M}/\dot{M}_{\rm Edd}$.

Accretion efficiency

Image credit: L. Nobili, R. Turolla, L. Zampieri. In: ApJ 383 (Dec. 1991).