Project "ACH" (Applied Crypto Hardening)

www.bettercrypto.org

Motivation

Don't give them anything for free

It's your home, you fight

TL;DR - Quickinfos

- Website: www.bettercrypto.org
- Git repo: https://git.bettercrypto.org
- Mailing list: http://lists.cert.at/cgi-bin/mailman/listinfo/
 ach

Why is this relevant for you?

- You run networks and services. These are targets.
 If you believe it or not.
- Your customer's data might leak
- Your customer might leak your data
- However good crypto is hard to achieve
- Crypto does not solve all problems, but it helps

"The Bottom Line Is That Encryption Does Work",
Edward Snowden

Who?

Wolfgang Breyha (uni VIE), David Durvaux (CERT.be), Tobias Dussa (KIT-CERT), L. Aaron Kaplan (CERT.at), Christian Mock (coretec), Daniel Kovacic (A-Trust), Manuel Koschuch (FH Campus Wien), Adi Kriegisch (VRVis), Ramin Sabet (A-Trust), Aaron Zauner (azet.org), Pepi Zawodsky (maclemon.at),

New contributors: IAIK, A-Sit

Idea

- Do at least something against the Cryptocalypse
- Check SSL, SSH, PGP crypto Settings in the most common services and certificates:
 - Apache, Nginx, lighthttp
 - IMAP/POP servers (dovecot, cyrus, ...)
 - openssl.conf
 - Etc.
- Create easy, copy & paste-able settings which are "OK" (as far as we know) for sysadmins.
- Keep it short. There are many good recommendations out there written by cryptographers for cryptographers
- Many eyes must check this!

Contents so far

- Disclaimer
- Methods
- Elliptic Curve Cryptography
- Keylengths
- Random Number Generators
- Cipher suites general overview & how to choose one
- Recommendations on practical settings
- Tools
- Links

Methods

- How we develop this whitepaper
- Public review
- We need your review!

GENERAL REMARKS ON CRYPTO

Some thoughts on ECC

- Currently this is under heavy debate
- Trust the Math
- "Nothing Up My Sleeve Numbers"
 - eg. NIST P-256 (http://safecurves.cr.yp.to/rigid.html)
 - Coefficients generated by hashing the unexplained seed c49d3608 86e70493 6a6678e1 139d26b7 819f7e90.
- Might have to change settings tomorrow
- Most Applications only work with NIST-Curves

Keylengths

- http://www.keylength.com/
- Recommended Keylengths, Hashing algorithms, etc.
- Currently:
 - RSA: >= 3248 bits (Ecrypt II)
 - ECC: >= 256
 - SHA 2+ (SHA 256,...)
 - AES 128 is good enough

AES 128? Isn't that enough?

- "On the choice between AES256 and AES128: I
 would never consider using AES256, just like I
 don't wear a helmet when I sit inside my car.
 It's too much bother for the epsilon
 improvement in security."
 - Vincent Rijmen in a personal mail exchange Dec
 2013
- Some theoretical attacks on AES-256

Choose a Method

Lenstra and Verheul Equations (2000)
Lenstra Updated Equations (2004)
ECRYPT II Recommendations (2012)
NIST Recommendations (2012)
ANSSI Recommendations (2010)
Fact Sheet NSA Suite B Cryptography (2013)
Network Working Group RFC3766 (2004)
BSI Recommendations (2014)

Compare all Methods

1 Reference for the comparison

You can enter the year until when your system should be protected and see the corresponding key sizes or you can enter a key/hash/group size and see until when you would be protected.

Enter an elliptic curve key size: \$ 256 bits

2 Compare

Method	Date	Symmetric	Asymmetric	Discrete Logarithm Key Group	Elliptic Curve	Hash
[1] Lenstra / Verheul 🕜	2084	135	7813 6816	241 7813	257	269
[2] Lenstra Updated	2090	128	4440 6974	256 4440	256	256
[3] ECRYPT II	2031 - 2040	128	3248	256 3248	256	256
[4] NIST	> 2030	128	3072	256 3072	256	256
[5] ANSSI	> 2020	128	4096	200 4096	256	256
[6] NSA		128			256	256
[7] RFC3766 @	-	136	3707	272 3707	257	-
[8] BSI (signature only)	> 2020	-	1976	256 2048	250	256

Forward Secrecy-Motivation:

- Three letter agency (TLA) stores all ssl traffic
- Someday TLA gains access to ssl-private key (Brute Force, Physical Force)
- TLA can decrypt all stored traffic

Perfect Forward Secrecy

- DHE: Diffie Hellman Ephemeral
- Ephemeral: new key for each execution of a key exchange process
- SSL private-Key only for authentication
- Alternative new ssl private key every x days months
- Pro:
 - Highest Security against future attacks
- Contra:
 - Elliptic Curve
 - Processing costs

RNGs

- RNGs are important.
- Nadia Heninger et al / Lenstra et al

	Our TL	S Scan	Our SS	H Scans
Number of live hosts	12,828,613	(100.00%)	10,216,363	(100.00%)
using repeated keys	7,770,232	(60.50%)	6,642,222	(65.00%)
using vulnerable repeated keys	714,243	(5.57%)	981,166	(9.60%)
using default certificates or default keys	670,391	(5.23%)		
using low-entropy repeated keys	43,852	(0.34%)		
using RSA keys we could factor	64,081	(0.50%)	2,459	(0.03%)
using DSA keys we could compromise			105,728	(1.03%)
using Debian weak keys	4,147	(0.03%)	53,141	(0.52%)
using 512-bit RSA keys	123,038	(0.96%)	8,459	(0.08%)
identified as a vulnerable device model	985,031	(7.68%)	1,070,522	(10.48%)
model using low-entropy repeated keys	314,640	(2.45%)		

• Entropy after startup: embedded devices

RNGs

- Weak RNG
 - Dual EC DRBG is weak (slow, used in RSA-toolkit)
 - Intel RNG? Recommendation: add System-Entropy (Network). Entropy only goes up.
- Tools (eg. HaveGE http://dl.acm.org/citation.cfm?id=945516)
- RTFM
 - when is the router key generated
 - Default Keys ?
- Re-generate keys from time to time

ATTACKS

Attacks - BEAST

- Browser Exploit Against SSL/TLS (*BEAST*) attack
 - Predict IV of CBC

- Subsequent packet use IV that is the last cyphertext block of the previous packet
- Chosen Plaintext Attack (eg. Cookie-name)

Attacks - CRIME

- Compression Ratio Info-leak Made Easy (CRIME) attack
 - Sidechannel attack
 - Information based on compressed size of http requests
 - MITM, Bruteforce: Client Javascript to Browse to ...

```
POST /secretcookie=0 HTTP/1.1
Host: example.com
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:14.0) Gecko/20100101 Firefox/14.0.1
Cookie: secretcookie=7xc89f94wa96fd7cb4cb0031ba249ca2
Accept-Language: en-US,en;q=0.8

( ... body of the request ...)
```

Compressed size smaller when secretcookie correct.

CIPHER SUITES

Some general thoughts on settings

General

- Disable SSL 2.0 (weak algorithms)
- Disable SSL 3.0 (BEAST vs IE/XP)
- Enable TLS 1.0 or better
- Disable TLS-Compression (SSL-CRIME Attack)
- Implement HSTS (HTTP Strict Transport Security)
- Variant A: fewer supported clients
- Variant B: more clients, weaker settings

Variant A

'EECDH+aRSA+AES256:EDH+aRSA+AES256:!SSLv3'

ID	OpenSSL Name	Version	KeyEx	Auth	Cipher	Hash
0xC030	ECDHE-RSA-AES256-GCM-SHA384	TLSv1.2	ECDH	RSA	AESGCM(256)	AEAD
0xC028	ECDHE-RSA-AES256-SHA384	TLSv1.2	ECDH	RSA	AES(256)	SHA384
0x009F	DHE-RSA-AES256-GCM-SHA384	TLSv1.2	DH	RSA	AESGCM(256)	AEAD
0x006B	DHE-RSA-AES256-SHA256	TLSv1.2	DH	RSA	AES(256)	SHA256

Compatibility:

Only clients which support TLS1.2 are covered by these cipher suites (Chrome 30, Win 7 and Win 8.1, Opera 17, OpenSSL ≥ 1.0.1e, Safari 6 / iOS 6.0.1, Safari 7 / OS X 10.9)

Variant B

weaker ciphers, many clients

'EECDH+aRSA+AESGCM: EECDH+aRSA+SHA384: EECDH+aRSA+SHA256: EDH+CAMELLIA256: EECDH:
EDH+aRSA:+SSLv3:!aNULL:!eNULL:!LOW:!3DES:!MD5:!EXP:!PSK:!SRP:!DSS:!RC4:!SEED

: ! AES128 : ! CAMELLIA128 : ! ECDSA : AES256 - SHA '

ID	OpenSSL Name	Version	KeyEx	Auth	Cipher	Hash
0xC030	ECDHE-RSA-AES256-GCM-SHA384	TLSv1.2	ECDH	RSA	AESGCM(256)	AEAD
0xC028	ECDHE-RSA-AES256-SHA384	TLSv1.2	ECDH	RSA	AES(256)	SHA384
0x009F	DHE-RSA-AES256-GCM-SHA384	TLSv1.2	DH	RSA	AESGCM(256)	AEAD
0x006B	DHE-RSA-AES256-SHA256	TLSv1.2	DH	RSA	AES(256)	SHA256
8800x0	DHE-RSA-CAMELLIA256-SHA	SSLv3	DH	RSA	Camellia(256)	SHA1
0xC014	ECDHE-RSA-AES256-SHA	SSLv3	ECDH	RSA	AES(256)	SHA1
0x0039	DHE-RSA-AES256-SHA	SSLv3	DH	RSA	AES(256)	SHA1
0x0035	AES256-SHA	SSLv3	RSA	RSA	AES(256)	SHA1

Variant B: Compatibility

Handshake Simulation			
Bing Oct 2013	TLS 1.0	TLS_DHE_RSA_WITH_AES_256_CBC_SHA (0x39) FS	256
Chrome 31 / Win 7	TLS 1.2	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) FS	256
Firefox 10.0.12 ESR / Win 7	TLS 1.0	TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA (0x88) FS	256
Firefox 17.0.7 ESR / Win 7	TLS 1.0	TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA (0x88) FS	256
Firefox 21 / Fedora 19	TLS 1.0	TLS_DHF_BCA (0x88) FS	256
Firefox 24 / Win 7	TLS 1.0	End-of-life	256
Googlebot Oct 2013	TLS 1.0	Lilu-oi-ille	256
IE 6 / XP No FS 1 No SNI 2			Fail ³
IE 7 / Vista	TLS 1.0	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) FS	256
IE 8 / XP No FS 1 No SNI 2			Fail ³
IE 8-10 / Win 7	TLS 1.0	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) FS	256
IE 11 / Win 7	TLS 1.2	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) FS	256
IE 11 / Win 8.1	TLS 1.2	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) FS	256
Java 6u45 No SNI ²			Fail ³
Java 7u25			Fail ³
OpenSSL 0.9.8y	TLS 1.0	TLS_DHE_RSA_WITH_AES_256_CBC_SHA (0x39) FS	256
OpenSSL 1.0.1e	TLS 1.2	TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (0xc030) FS	256
Opera 17 / Win 7	TLS 1.2	TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 (0x6b) FS	256
Safari 5.1.9 / OS X 10.6.8	TLS 1.0	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) FS	256
<u>Safari 6 / iOS 6.0.1</u>	TLS 1.2	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (0xc028) FS	256
Safari 6.0.4 / OS X 10.8.4	TLS 1.0	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) FS	256
Safari 7 / OS X 10.9	TLS 1.2	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (0xc028) FS	256
Tor 17.0.9 / Win 7	TLS 1.0	TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA (0x88) FS	256
Yahoo Slurp Oct 2013	TLS 1.0	TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA (0x88) FS	256

Choosing your own cipher string (1)

- Rolling your own cipher suite string involves a trade-off between:
 - Compatibility (server <-> client), vs.
 - Known weak ciphers/hashes/MACs
 - The choice ECC or not, vs.
 - Support by different ssl libs (gnutls, openssl,...) vs.
 - Different versions of ssl libs
- In case of ssl lib version issues: do you want to recompile the whole server for a newer version?
- Be aware of these issues before choosing your own cipher suite

Choosing your own cipher string (2)

- Complexity
- Multi-dimensional optimisation

- Consider strong alternatives to de-facto standards
- Potential future solution: generator for settings?

PRACTICAL SETTINGS

What we have so far

- Web server: Apache, nginx, MS IIS, lighttpd
- Mail: Dovecot, cyrus, Postfix, Exim
- DBs: Mysql, Oracle, Postgresql, DB2
- VPN: OpenVPN, IPSec, Checkpoint, ...
- Proxies: Squid, Pound
- GnuPG
- SSH
- IM servers (jabber, irc)

What we would like to see

- Mail: Exchange
- SIP
- RDP

- Everything as HTML (easier to copy & paste)
- Config generator on the website

Example: Apache

Selecting cipher suites:

```
SSLProtocol All -SSLv2 -SSLv3

SSLHonorCipherOrder On

SSLCompression off

# Add six earth month HSTS header for all users...

Header add Strict-Transport-Security "max-age=15768000"

# If you want to protect all subdomains, use the following header

# ALL subdomains HAVE TO support https if you use this!

# Strict-Transport-Security: max-age=15768000; includeSubDomains

SSLCipherSuite 'EECDH+aRSA+AESGCM:EECDH+aRSA+SHA384:EECDH+aRSA+SHA256:EDH

+CAMELLIA256:EECDH:EDH+aRSA:+SSLv3:!aNULL:!eNULL:!LOW:!3DES::MDS.JEXP

:!PSK:!SRP:!DSS:!RC4:]SEED:!AES128:!CAMELLIA128:!ECD(A:AES256-SHA')
```

Additionally:

TESTING

How to test? - Tools

- openssl s_client (or gnutls-cli)
- ssllabs.com: checks for servers as well as clients
- xmpp.net
- sslscan
- SSLyze

Tools: openss s_client

openssl s_client -showcerts -connect git.bettercrypto.org:443

```
New, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES256-GCM-SHA384
Server public key is 4096 bit
Secure Renegotiation IS supported
Compression: NONE
Expansion: NONE
SSL-Session:
    Protocol : TLSv1.2
            : ECDHE-RSA-AES256-GCM-SHA384
    Session-ID: 53D90B7D9D1FFC7EA98C105A2FC27F752B9CE9026CDAB57F4A7D4491C3C5ECC6
    Session-ID-ctx:
    Master-Key: 8F06DE9669BD6BF9628A38DF4F92C2CEBA6B7EA91F465164440CF31F7E8F55F2A67E7320B388D6E7AC4BC141C2FF3F68
    Key-Arg : None
    PSK identity: None
    PSK identity hint: None
    SRP username: None
    TLS session ticket lifetime hint: 300 (seconds)
    TLS session ticket:
    0000 - fe 5b 93 84 a8 c6 ab 4a-74 b8 59 81 dc 3e 52 40
                                                             .[....Jt.Y..>R@
    0010 - 0e dd f6 59 b4 a1 d2 54-65 df 9a 1b c9 fb 0d 2e
                                                             ...Y...Te.....
    0020 - 64 9c 65 cf 1c 0d d9 19-57 a6 cd 50 a5 d9 16 a4
                                                             d.e....W..P....
    0030 - 17 b6 e8 38 ac e5 76 15-a4 9d d5 62 ee 51 55 09
                                                             ...8..v...b.QU.
    0040 - 52 36 58 84 04 0f 93 94-7b a9 dc e3 6f 8e 2f 7a
                                                             R6X.....{...o./z
    0050 - 9f bf 3d 4f a1 e1 bb 83-21 0f 7d f2 bd 02 48 a6
    0060 - 5a 96 82 fd dc a6 5a 55-77 b3 9f fb 60 0d 86 66
    0070 - f1 68 42 e2 90 93 8b f6-25 aa 85 cf 08 07 c6 76
                                                             .hB.....%.....v
    0080 - 06 62 37 32 09 4f ac 23-28 9c db b9 29 c0 23 1b
                                                             .b72.0.#(...).#.
    0090 - e4 c3 d2 a3 a4 b4 87 b5-0e 5c 68 16 73 07 96 90
    Start Time: 1385118946
    Timeout : 300 (sec)
    Verify return code: 21 (unable to verify the first certificate)
```

Tools: sslscan

```
Copyright Ian Ventura-Whiting 2009
Testing SSL server git.bettercrypto.org on port 443
            SSLv2 168 bits DES-CBC3-MD5
  Failed
  Failed
            SSLv2 128 bits IDEA-CBC-MD5
  Failed
            SSLv2 128 bits RC2-CBC-MD5
  Failed
            SSLv2 128 bits RC4-MD5
  Failed
            SSLv2 56 bits
                             DES-CBC-MD5
  Failed
            SSLv2 40 bits
                             EXP-RC2-CBC-MD5
  Failed
                             EXP-RC4-MD5
  Failed
            SSLv3 256 bits ECDHE-RSA-AES256-GCM-SHA384
            SSLv3 256 bits
  Failed
                            ECDHE-ECDSA-AES256-GCM-SHA384
  Failed
            SSLv3 256 bits ECDHE-RSA-AES256-SHA384
  Failed
            SSLv3 256 bits ECDHE-ECDSA-AES256-SHA384
  Rejected SSLv3 256 bits
                            ECDHE-RSA-AES256-SHA
            SSLv3 256 bits
                            ECDHE-ECDSA-AES256-SHA
            SSLv3 256 bits
                            SRP-DSS-AES-256-CBC-SHA
  Rejected SSLv3 256 bits
                            SRP-RSA-AES-256-CBC-SHA
            SSLv3 256 bits
  Failed
                            DHE-DSS-AES256-GCM-SHA384
  Failed
            SSLv3 256 bits DHE-RSA-AES256-GCM-SHA384
  Failed
            SSLv3 256 bits
                            DHE-RSA-AES256-SHA256
  Failed
            SSLv3 256 bits
                            DHE-DSS-AES256-SHA256
  Rejected SSLv3 256 bits
                            DHE-RSA-AES256-SHA
  Rejected SSLv3 256 bits
                            DHE-DSS-AES256-SHA
            SSLv3 256 bits
                            DHE-RSA-CAMELLIA256-SHA
            SSLv3
                   256 bits
                            DHE-DSS-CAMELLIA256-SHA
            SSLv3 256 bits AECDH-AES256-SHA
  Rejected SSLv3 256 bits SRP-AES-256-CBC-SHA
  Failed
            SSLv3 256 bits ADH-AES256-GCM-SHA384
  Failed
                   256 bits
                            ADH-AES256-SHA256
  Rejected SSLv3 256 bits
                            ADH-AES256-SHA
  Rejected SSLv3 256 bits ADH-CAMELLIA256-SHA
```

Tools: ssllabs

ssllabs (2)

Configuration

Protocols

TLS 1.2	Yes
TLS 1.1	Yes
TLS 1.0	Yes
SSL 3	No
SSL 2	No

Cipher Suites (SSL 3+ suites in server-preferred order, then SSL 2 suites where used)

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (0xc030) ECDH 256 bits (eq. 3072 bits RSA) FS	256
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (0xc028) ECDH 256 bits (eq. 3072 bits RSA) FS	256
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 (0x9f) DH 4096 bits (p: 512, g: 1, Ys: 512) FS	256
TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 (0x6b) DH 4096 bits (p: 512, g: 1, Ys: 512) FS	256
TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA (0x88) DH 4096 bits (p: 512, g: 1, Ys: 512) FS	256
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) ECDH 256 bits (eq. 3072 bits RSA) FS	256
TLS_DHE_RSA_WITH_AES_256_CBC_SHA (0x39) DH 4096 bits (p: 512, g: 1, Ys: 512) FS	256
TLS_RSA_WITH_AES_256_CBC_SHA (0x35)	256

Handshake Simulation

Bing Oct 2013	TLS 1.0	TLS_DHE_RSA_WITH_AES_256_CBC_SHA (0x39) FS	256
Chrome 31 / Win 7	TLS 1.2	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) FS	256
Firefox 10.0.12 ESR / Win 7	TLS 1.0	TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA (0x88) FS	256
Firefox 17.0.7 ESR / Win 7	TLS 1.0	TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA (0x88) FS	256
Firefox 21 / Fedora 19	TLS 1.0	TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA (0x88) FS	256
Firefox 24 / Win 7	TLS 1.0	TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA (0x88) FS	256
Googlebot Oct 2013	TLS 1.0	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) FS	256
IE 6 / XP No FS ¹ No SNI ²			Fail ³
IE 7 / Vista	TLS 1.0	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) FS	256
IE 8 / XP No FS ¹ No SNI ²			Fail ³
IE 8-10 / Win 7	TLS 1.0	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) FS	256
<u>IE 11 / Win 7</u>	TLS 1.2	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) FS	256
IE 11 / Win 8.1	TLS 1.2	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) FS	256
Java 6u45 No SNI ²			Fail ³
Java 7u25			Fail ³
OpenSSL 0.9.8y	TLS 1.0	TLS_DHE_RSA_WITH_AES_256_CBC_SHA (0x39) FS	256
OpenSSL 1.0.1e	TLS 1.2	TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (0xc030) FS	256
Opera 17 / Win 7	TLS 1.2	TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 (0x6b) FS	256
Safari 5.1.9 / OS X 10.6.8	TLS 1.0	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) FS	256
Safari 6 / iOS 6.0.1	TLS 1.2	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (0xc028) FS	256
Safari 6.0.4 / OS X 10.8.4	TLS 1.0	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014) FS	256
Safari 7 / OS X 10.9	TLS 1.2	TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 (0xc028) FS	256
Tor 17.0.9 / Win 7	TLS 1.0	TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA (0x88) FS	256
Yahoo Slurp Oct 2013	TLS 1.0	TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA (0x88) FS	256

WRAP-UP

Current state as of 2014/02/11

- ✓ Solid basis with Variant (A) and (B)
- ✓ Public draft was presented at the CCC
- Section "cipher suites" still a bit messy, needs more work
- Need to convert to HTML

How to participate

- 1. We need: cryptologists, sysadmins, hackers
- 2. Read the document, find bugs
- 3. Subscribe to the mailing list
- Understand the cipher strings Variant (A) and (B) before proposing some changes
- 5. If you add content to a subsection, make a sample config with variant (B)
- 6. Git repo is world-readable
- 7. We need:
 - 1. Add content to an subsection from the TODO list
 → send us diffs
 - 2. Reviewers!

Links

- Website: www.bettercrypto.org
- Git repo: https://git.bettercrypto.org
- Mailing list: http://lists.cert.at/cgi-bin/mailman/listinfo/ach

Thank you!