the 8, Lab 5 due tonight Friday: little bit of R

11: HYPOTHESIS TESTING II

Larsen & Marx 6.4, 6.5 Prof Amanda Luby

Last time, we laid the groundwork for a more theoretical treatment of hypothesis testing. Today, we're going to continue that thread by talking about *power functions* and *testing errors* in a more theoretical framework. We'll end by introducing the *likelihood ratio test*, a method for deriving hypothesis test procedures.

· O: unknown parameter

H: 8 & D.

1 Power Function

· R: rejection vegion: {T: veget to}
· Ω. Ω,: nuit and alternative parameter spaces
· Ω. Δ. i veget (a respect to text > "reject to which T

In order to generalize hypothesis testing procedures, it is useful to define the power function of a test (sometimes called a power curve).

Power Function

Let δ be a test procedure and denote $\pi(\theta|\delta)$ as the power function of the test. If δ is defined in terms of T and rejection region R, then:

$$\pi(\theta|8) = P(T \in R \mid \theta)$$
 for $\theta \in \Omega$
This is a function of θ and gives $P(reject \mid H_{\theta})$

Note: Ideal Power Russian?

①
$$\theta \in \Omega_0 \Rightarrow \pi(\theta|8) = 0$$
 7 correct decision of probability 1
② $\theta \in \Omega_0 \Rightarrow \pi(\theta|8) = 1$) in practice, want $\pi(\theta|8)$ close to 0
when $\theta \in \Omega_0$ and close to 1 when

Example: Math curriculum example from last time: In the year of the study, 86 sophomores were randomly selected to participate in a special set of classes that integrated geometry and algebra. Those students averaged 502 on the SAT-I math exam; the nationwide average was 494 with a standard deviation of 124. Find the power function $\pi(\theta|\delta)$ for the test δ defined last time.

2 Types of Errors

In any hypothesis test procedure, there are two ways we can be wrong: we can (1) conclude H_0 is true when H_1 is actually true, or we can (2) conclude H_0 is false when H_0 is actually true.

			1 1 => = +
	${\cal H}_0$ True	${\cal H}_1$ True	P(Type I) =d
Reject H_0	Type I Error	Correct	PLTYPE II)
Fail to reject H_0	Correct	Type II Error	. 5 1

• If
$$\theta \in \Omega_0$$
: $\pi(\theta | \xi) = P(\tau y p \in \tau \text{ ever})$

• If
$$\theta \in \Omega_1$$
: $1 - \pi(\theta | \xi) = P(\text{type II emor})$

Solution:

Choose
$$0,1$$
 Such that $\pi(\theta|\xi) \leq \infty$ for all $\theta \in \Omega_0$.
Simply the: Set as such that $\pi(\theta|\xi) \in d_0$ for $\theta = \theta_0$

Level- α_0 Test

A test that satisfies the above is called a *level* α_0 *test* and we say it has *significance level* α_0 . In addition, the *size* $\alpha(\delta)$ of a test is defined as:

A test is a level α_0 test if and only if its size is at most α_0 . If H_0 is simple, $\alpha(\delta)=\pi(\theta|\delta)$.

Example: Suppose that a random sample $X_1, ..., X_n$ is taken from the uniform distribution on the interval $[0, \theta]$, where θ is unknown but positive, and suppose we wish to test the following hypotheses. Find the power function and size of the test.

$$H_0: 3 \leq \theta \leq 4$$

$$H_1: \theta < 3 \text{ or } \theta > 4$$

3 Likelihood Ratio Test

Many of the most popular hypothesis tests used in practice have the same conceptual heritage - a fundamental notion known as the *Generalized likelihood ratio* or GLR.

Example: Suppose $X_1,...,X_n \sim Unif(0,\theta)$ and we wish to test $H_0:\theta=\theta_0$ against $H_1:\theta<\theta_0$.

Generalized likelihood ratio

Let $y_1,...,y_n$ be iid from $f_y(y;\theta).$ The generalized likelihood ratio is defined as:

Generalized likelihood ratio test

A generalized likelihood ratio test (GLRT) is one that rejects ${\cal H}_0$ when

Let f_{Λ} denote the PDF of the GLR under H_0 . If we knew what the pdf was, we could find λ^* and δ by solving:

Generally, however, we can't find f_{Λ} . Instead, we find a quantity W that we do know the distribution of,

and show that Λ is a monotone function of W. Then, a test based on W is equivalent to one based on Λ . Back to example: