

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Publication number:

0 445 646 A2

b1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 91102937.9

(51) Int. Cl.5: C12N 15/53, C07H 21/04,
C12P 13/02

(22) Date of filing: 27.02.91

The microorganism(s) has (have) been deposited with Fermentation Research Institute under numbers FERM BP-1478, BP-2777, BP-2778, BP-1937.

(33) Priority: 28.02.90 JP 48078/90

(43) Date of publication of application:
11.09.91 Bulletin 91/37

(84) Designated Contracting States:
AT BE CH DE DK ES FR GB IT LI NL SE

(71) Applicant: NITTO CHEMICAL INDUSTRY CO., LTD.
No. 5-1, Marunouchi 1-chome Chiyoda-ku Tokyo(JP)

Applicant: Beppu, Teruhiko
No. 5-21, 1-chome Horinouchi Suginami-ku, Tokyo(JP)

Applicant: YAMADA, Hideaki
19-1 Matsugasaki-Kinomoto-cho Sakyo-ku Kyoto-shi Kyoto-Fu(JP)

(72) Inventor: Teruhiko, Beppu
5-21, Horinouchi 1-chome, Suginami-ku, Tokyo(JP)
Inventor: Hideaki, Yamada
19-1, Matsugasaki Kinomotocho, Sakyo-ku, Kyoto-shi, Kyoto-fu(JP)
Inventor: Toru, Nagasawa
1-7, Takano Higashihirakicho, Sakyo-ku, Kyoto-shi, Kyoto-fu(JP)
Inventor: Sueharu Horinouchi
3-16-403 Etsuchujima 1-chome, Koutou-ku, Tokyo(JP)
Inventor: Makoto, Nishiyama
16-11, Nishiochiai 2-chome, Shinjuku-ku, Tokyo(JP)

(74) Representative: Vossius & Partner
Siebertstrasse 4 P.O. Box 86 07 67
W-8000 München 86(DE)

A2

(54) DNA fragment encoding a polypeptide having nitrile hydratase activity, a transformant containing the DNA fragment and a process for the production of amides using the transformant.

(57) The present invention discloses the amino acid sequence and nucleotide sequence of the α - and β -subunits of two types of nitrile hydratase derived from Rhodococcus rhodochrous J-1. The DNA fragment encoding nitrile hydratase is inserted into an expression vector and the recombinant vector is used for transformation. The transformant contains multiple copies of the gene and can produce much higher levels of nitrile hydratase than conventionally used microorganisms.

EP 0 445 646 A2

The present invention relates to a DNA fragment derived from Rhodococcus rhodochrous J-I and encoding a polypeptide having nitrile hydratase activity which hydrates nitriles to amides. The invention also relates to a recombinant DNA containing the above DNA fragment, and a transformant transformed with the recombinant DNA. The present invention further relates to a method of producing nitrile hydratase using the 5 transformant and of amides using nitrile hydratase.

Nitrile hydratase or nitrilase is known as an enzyme that hydrates nitriles to amides. Microorganisms that produce nitrile hydratase include those belonging to the genus Bacillus, the genus Bacteridium, the genus Micrococcus and the genus Brevibacterium (See, JP-B-62-21517/1989, USP No. 4,001,081), the genus Corynebacterium and the genus Nocardia (See, JP-B-56-17918/1981, USP No. 4,248,968), the genus Pseudomonas (See, JP-B-59-37951/1984, USP No. 4,637,982), the genus Rhodococcus, the genus Arthrobacter and the genus Microbacterium (See, JP-A-61-162193/1986, EP-A-0188316), and Rhodococcus rhodochrous (See, JP-A-2-470/1990, EP-A-0307926).

Nitrile hydratase has been used to hydrate nitriles to amides. In the invention, microorganisms are engineered to contain multiple copies of a recombinant DNA encoding nitrile hydratase according to a 10 recombinant DNA technology. The recombinant produces a remarkably high level of nitrile hydratase compared with conventionally used microorganisms.

The present inventors previously disclosed a DNA fragment derived from Rhodococcus sp. N-774 (FERM BP-1936) which also encodes a polypeptide having nitrile hydratase activity (JP-A-2-119778/1988).

In contrast, the present inventors utilizes a DNA fragment derived from Rhodococcus rhodochrous J-I 20 for the production of nitrile hydratase. We isolated the gene encoding nitrile hydratase, inserted the gene into a suitable plasmid vector and transformed an appropriate host with the recombinant plasmid, thus successfully obtained the transformant producing nitrile hydratase which has high activity also on aromatic nitriles.

The present invention relates to
 25 (1) a DNA^(H) fragment encoding a polypeptide having nitrile hydratase activity, said polypeptide comprising the $\alpha^{(H)}$ -subunit as defined in the Sequence Listing by SEQ ID: No. 1 and the $\beta^{(H)}$ -subunit as defined in the Sequence Listing by SEQ ID: No. 2;
 (2) a DNA^(L) fragment encoding a polypeptide having nitrile hydratase activity, said polypeptide comprising the $\alpha^{(L)}$ -subunit as defined in the Sequence Listing by SEQ ID: No. 3 and the $\beta^{(L)}$ -subunit as defined in the Sequence Listing by SEQ ID: No. 4;
 30 (3) the DNA^(H) fragment of (1) which contains a nucleotide sequence encoding said $\alpha^{(H)}$ - and $\beta^{(H)}$ -subunits, comprising the DNA sequence of the $\alpha^{(H)}$ -subunit as defined in the Sequence Listing by SEQ ID: No. 5 and the DNA sequence of the $\beta^{(H)}$ -subunit as defined in the Sequence Listing by SEQ ID: No. 6;
 (4) the DNA^(L) fragment of (2) which contains a nucleotide sequence encoding said $\alpha^{(L)}$ - and $\beta^{(L)}$ -subunits, comprising the DNA sequence of the $\alpha^{(L)}$ -subunit as defined in the Sequence Listing by SEQ ID: No. 7 and the DNA sequence of the $\beta^{(L)}$ -subunit as defined in the Sequence Listing by SEQ ID: No. 8;
 (5) a recombinant DNA comprising the DNA^(H) or the DNA^(L) of (1)-(4) in a vector;
 (6) a transformant transformed with the recombinant DNA of (5);
 40 (7) a method for the production of nitrile hydratase which comprises culturing the transformant as described in (6) and recovering nitrile hydratase from the culture;
 (8) a method for the production of amides which comprises hydrating nitriles using nitrile hydratase as described in (7) to form amides; and
 (9) a method for the production of amides which comprises culturing the transformant as described in 45 (6), and hydrating nitriles using the resultant culture, isolated bacterial cells, treated matter thereof, or a fixed material of them, to form amides.

The present invention is described in detail as follows.

The present invention is carried out by the steps (1)-(8):

50 (1) Isolation and Purification of Nitrile Hydratase and Partial Amino Acid Sequencing of Nitrile Hydratase

Two types of nitrile hydratase (designated as H type and L type, respectively) are isolated and purified from Rhodococcus rhodochrous J-I (FERM BP-1478) and the both enzymes are separated into α and β subunits using HPLC. N-Terminal amino acid sequence each of the subunits is determined and shown in 55 the Sequence Listing by SEQ ID: Nos. 9-12.

(2) Preparation of a DNA Probe for a Nitrile Hydratase Gene

A DNA probe is prepared from JM105/pYUK121 (FERM BP-1937) as described in JP-A-2-119778/1990 due to the high degree of homology in the amino acid sequence between the nitrile hydratase β subunit of Rhodococcus sp. N-774 described in said Japanese Patent Official Gazette and those of Rhodococcus rhodochrous J-I. Plasmid pYUK121 containing nitrile hydratase gene derived from Rhodococcus sp. N-774 is prepared from a JM105/pYUK121 culture. pYUK121 DNA is digested with SphI and SalI. The SphI-SalI fragment contains the nitrile hydratase gene (shown in the Sequence Listing by SEQ ID: No. 13) of Rhodococcus sp. N-774. The DNA fragment is radiolabeled.

(3) Detection of a DNA Segment Containing a Nitrile Hydratase Gene from the Chromosome of Rhodococcus rhodochrous J-I

Chromosomal DNA is prepared from a Rhodococcus rhodochrous J-I culture. The chromosomal DNA is digested with restriction enzymes and hybridized to the probe described in (2) using the Southern hybridization method [Southern, E.M., J. Mol. Biol. 98, 503 (1975)].

Two DNA fragments of a different length are screened.

(4) Construction of a Recombinant Plasmid

A recombinant plasmid is constructed by inserting the chromosomal DNA fragment as prepared in (3) into a plasmid vector.

(5) Transformation and Screening for a Transformant Containing the Recombinant Plasmid

Transformants are prepared using the recombinant plasmid as described in (4). The transformant containing the recombinant plasmid is selected using the probe as described in (2) according to the colony hybridization method [R. Bruce Wallace et. al., Nuc. Ac. Res. 9, 879 (1981)]. Additionally, the presence of the nitrile hydratase gene in the recombinant plasmid is confirmed using the Southern hybridization method. The plasmids thus selected are designated as pNHJ10H and pNHJ20L.

(6) Isolation and Purification of Plasmid DNA and Construction of the Restriction Map

Plasmid DNAs of pNHJ10H and pNHJ20L as prepared in (5) are isolated and purified. The restriction map of the DNAs is constructed (Fig. 1) to determine the region containing nitrile hydratase gene.

(7) DNA Sequencing

The extra segment of the inserted DNA fragment in pNHJ10H and pNHJ20L is excised using an appropriate restriction enzyme. The inserted DNA fragment is then used for sequencing. The nucleotide sequence of the DNA fragment (SEQ: ID Nos. 14, 15) reveals that it contains the sequence deduced from the amino acid sequence as described in (1).

(8) Production of Nitrile Hydratase Using the Transformant and Conversion of Nitriles to Amides

The transformant as described in (8) is cultured. The bacterial cells are mixed with nitriles, a substrate of nitrile hydratase, and amides are produced.

Rhodococcus rhodochrous J-I was deposited with Fermentation Research Institute, Agency of Industrial Science and Technology, and was assigned the accession number FERM BP-1478. A transformant TGI/pNHJ10H containing pNHJ10H as described in (5) and a transformant TGI/pNHJ20L containing pNHJ20L as described in (5) were deposited with the above and assigned the accession number FERM BP-2777 and FERM BP-2778, respectively.

Any vectors including a plasmid vector (e.g., pAT153, pMP9, pHG624, pKC7, etc.), a phage vector (e.g., λ gt11 (Toyobo), Charon 4A (Amersham), etc.) may be used. Enzymes which may be used include SphI, SalI, EcoRI, BamHI, SacI, and the like, which are commercially available (Takara Shuzo). Various hosts may be used for transformation including but not limited to *E. coli* JM105 and *E. coli* TGI.

Culture media for the transformant are those ordinarily used in the art.

Conversion of nitriles to amides is carried out using nitrile hydratase, crude nitrile hydratase, the culture of the transformant, the isolated bacterial cells or treated matter thereof, and the like, prepared from the culture of the transformant.

Suitable nitriles in the invention include aromatic nitriles having 4-10 carbon atoms in the aromatic moiety and aliphatic nitriles having 2-6 carbon atoms, which are described in the European Patent Publication No. 0,307,926. Typical examples of the nitriles are 4-, 3- and 2-cyanopyridines, benzonitrile, 2,6-difluorobenzonitrile, 2-thiophene carbonitrile, 2-furanitrile, cyanopyrazine, acrylonitrile, methacrylonitrile, 5 crotonitrile, acetonitrile and 3-hydroxypropionitrile.

The present invention discloses the amino acid sequence and nucleotide sequence of the α - and β -subunits of two types of nitrile hydratase derived from *Rhodococcus rhodochrous* J-I. The DNA fragment encoding nitrile hydratase is inserted into an expression vector and the recombinant vector is used for transformation. The transformant contains multiple copies of the gene and can produce much higher levels 10 of nitrile hydratase than conventionally used microorganisms.

Fig. 1 shows restriction maps of recombinant plasmids, pNHJ10H and pNHJ20L.

The present invention is illustrated by the following Example.

The following abbreviations are used in the Example.

TE:	Tris-HCl (10 mM; pH 7.8), EDTA (1 mM, pH 8.0)
TNE:	Tris-HCl (50 mM; pH 8.0), EDTA (1 mM, pH 8.0), NaCl (50 mM)
STE:	Tris-HCl (50 mM; pH 8.0), EDTA (5 mM, pH 8.0), Sucrose (35 mM)
2x YT medium:	1.6% Tryptone; 1.0% Yeast extract, 0.5% NaCl

Example

20 (1) Isolation and Purification of Nitrile Hydratase and Partial Amino Acid Sequencing of Nitrile Hydratase

Rhodococcus rhodochrous J-I was cultured in a medium (3 g/l of yeast extract, 0.5 g/l of KH₂PO₄, 0.5 g/l of K₂HPO₄, 0.5 g/l of MgSO₄·4H₂O, 0.01 g/l of CoCl₂, and 3 g/l of crotonamide, pH 7.2) at 28 °C for 25 80 hours. The bacterial cells were harvested. 50 g of the bacterial cells was disrupted and fractionated with ammonium sulfate. The sample was dialyzed and the dialysate was centrifuged. The supernatant was loaded on DEAE-Cellulofine chromatography, Phenyl-Sepharose chromatography, Sephadex G-150 chromatography and Octyl-Sepharose chromatography. Two fractions with enzyme activity were obtained and dialyzed. The dialysates were loaded on a high performance liquid chromatography using a reversed 30 phase column (Senshu Pak VP-304-1251, Senshu Kagaku), and two respective subunits (α and β) were obtained. N-terminal amino acid sequence of $\alpha_1^{(H)}$, $\beta_1^{(H)}$, $\alpha_1^{(L)}$ and $\beta_1^{(L)}$ -subunits was determined using an Applied Biosystems model 470A protein sequencer. The amino acid sequences are shown in the Sequence Listing by SEQ ID: Nos. 9-12.

35 (2) Preparation of a DNA Probe for Nitrile Hydratase Gene

E. coli JM105 (FERM BP-1937) containing pYUK121 was cultured in 100 ml of 2xYT medium containing 50 µg/ml of ampicillin at 30 °C overnight (12 hours). The bacterial cells were harvested and TNE was added to the cells. The cell suspension was then centrifuged. 8 ml of STE and 10 mg of lysozyme 40 were added to the pellet. The mixture was incubated at 0 °C for five minutes followed by the addition of 4 ml of 0.25M EDTA. 2 ml of 10% SDS and 5 ml of 5M NaCl were then added to the mixture at room temperature. The resultant mixture was incubated at 0-4 °C for three hours and then ultracentrifuged. 1/2 volume of 30% PEG 6000 was added to the supernatant. The mixture was incubated at 0-4 °C overnight (12 hours) and centrifuged. TNE was added to the pellet to bring the volume to 7.5 ml and CsCl was then 45 added to the suspension. The mixture was centrifuged to remove proteins. Then, 300-500 mg/ml of ethidium bromide was added to the supernatant. The mixture was transferred to a centrifuge tube. The tube was heat-sealed and then ultracentrifuged. cccDNA was extracted using a peristaltic pump. A bit more than equal amount of isopropyl alcohol saturated with water was added to the extract to rid of ethidium bromide. The sample was dialyzed against TE. About 3 ml of purified pYUK121 was obtained.

50 pYUK121 DNA was digested with SphI and SalI, resulting in a 2.07 kb DNA fragment containing a nitrile hydratase gene derived from *Rhodococcus* sp. N-774. The fragment was radiolabeled with ³²P to produce a probe. The nucleotide sequence of the probe is shown in the Sequence Listing by SEQ ID: No. 13.

55 (3) Preparation of a DNA Fragment Containing a Nitrile Hydratase Gene of Chromosome

Rhodococcus rhodochrous J-I was cultured in 100 ml of a medium (10 g/l of glucose, 0.5 g/l of KH₂PO₄, 0.5 g/l of K₂HPO₄, 0.5 g/l of MgSO₄·7H₂O, 1 g/l of yeast extract, 7.5 g/l of peptone, 0.01 g/l of CoCl₂, 7.5 g/l of urea, 1% glycine or 0.2 µg/ml of ampicillin, 1 l of water, pH 7.2). The bacterial cells

- were harvested and the pellet was washed with TNE. The pellet was then suspended in 10 ml of TE. 4 ml of 0.25M EDTA, 10-20 mg of lysozyme, 10-20 mg of achromoprotease and 10 ml of 10×SDS were added to the suspension. The suspension was incubated at 37 °C for three hours. 15 ml of phenol was added to the suspension. The mixture was incubated at room temperature for 15 minutes and then centrifuged. The upper layer was removed, and 0.7 ml of 2.5M sodium acetate and diethyl ether were added to the supernatant. The mixture was centrifuged and the upper layer was discarded. Two volumes of ethanol were added to the bottom layer and DNA was removed with a glass rod. DNA was rinsed for five minutes each with TE:ethanol 2:8, 1:9, and 0:10 (v/v). DNA was then resuspended in 2-4 ml of TE (37 °C). 10 µl of a mixture of RNase A and T₁ was added to the suspension and the mixture was incubated at 37 °C. An equal amount of phenol was added to the mixture which was then centrifuged. More than equal amount of ether was added to the supernatant. The mixture was centrifuged again, and the upper layer was discarded and the bottom layer was saved. The bottom layer was dialyzed against 2 l of TE containing a small amount of chloroform overnight and further dialyzed against fresh TE for 3-4 hours. 4 ml of crude chromosomal DNA was obtained.
- 15 10 µl of TE, 3 µl of reaction buffer (10x) and 2 µl of SacI were added to 15 µl of crude chromosomal DNA. The mixture was incubated at 37 °C for an hour and electrophoresed on an agarose gel at 60 V for three hours. The Southern hybridization of chromosomal DNA was carried out using the probe as described in (2). About 6.0 kb and 9.4 kb fragments were found to show a strong hybridization.
- 16 15 µl of chromosomal DNA was digested with SacI and electrophoresed on an agarose gel, as described above. 6.0 kb and 9.4 kb DNA fragments were cut out from the gel and taken in three volumes each of 8M NaClO₄. After solubilization, each solution was dotted on GF/C (Whatman) filter paper (6 mm in diameter). Ten drops (\approx 100 µl) of TE containing 6M NaClO₄ and then ten drops (\approx 100 µl) of 95% ethanol were added to the filter paper. The paper was air-dried for 3 minutes and placed in 0.5 ml Eppendorf tube. 40 µl of TE was added to the tube and the whole was incubated at 47 °C for 30 minutes. The tube was then centrifuged. About 40 µl of the supernatant was obtained which contained 6.0 kb and 9.4 kb DNA fragments containing a nitrile hydratase gene of chromosomal DNA.
- The method of inserting the 6.0 kb DNA fragment into a vector is described below. The same method is applied for the insertion of the 9.4 kb DNA fragment into a vector.
- 30 (4) Insertion of the Chromosomal DNA Fragment into a Vector
- 31 10 µl of TE, 3 µl of reaction buffer (10x) and 2 µl of SacI was added to 10 µl of pUC19. The mixture was incubated at 30 °C for an hour. 2 µl of 0.25M EDTA was added to the mixture to stop the reaction. Then, 7 µl of 1m Tris-HCl (pH 9) and 3 µl of BAP (bacterial alkaline phosphatase) were added to the mixture. The mixture was incubated at 65 °C for an hour. TE was then added to the mixture to make a total volume to 100 µl. The mixture was extracted 3x with an equal amount of phenol. An equal amount of ether was added to the extract. The bottom layer was removed and 10 µl of 3M sodium acetate and 250 µl of ethanol were added to the bottom layer. The mixture was incubated at -80 °C for 30 minutes, centrifuged, dried, and resuspended in TE.
- 32 5 µl of pUC19 DNA thus obtained and 40 µl of the 6.0 kb DNA fragment as described in (3) were mixed. 6 µl of ligation buffer, 6 µl of ATP (6 mg/ml) and 3 µl of T4 DNA ligase were added to the mixture. The mixture was incubated at 4 °C overnight (12 hours) to produce the recombinant plasmid containing the 6.0 kb DNA fragment encoding the desired enzyme in the SacI site of pUC19.
- 33 (5) Transformation and Screening of Transformants
- 34 E. coli TGI (Amersham) was inoculated into 10 ml of 2xYT medium and incubated at 37 °C for 12 hours. After incubation, the resultant culture was added to fresh 2xYT medium to a concentration of 1%, and the mixture was incubated at 37 °C for two hours. The culture was centrifuged and the pellet was suspended in 5 ml of cold 50 mM CaCl₂. The suspension was placed on ice for 40 minutes and then centrifuged. 0.25 ml of cold 50 mM CaCl₂ and 60 µl of the recombinant DNA as described in (4) were added to the pellet. The mixture was incubated at 0 °C for 40 minutes, heat-shocked at 42 °C for two minutes, placed on ice for five minutes, and added to 10 ml of 2xYT medium. The mixture was incubated at 37 °C for 90 minutes with shaking, then centrifuged. The pellet was suspended in 1 ml of 2xYT medium, and two 10 µl aliquots of the suspension were plated on a 2xYT agar plate containing 50 µg/ml of ampicillin separately. The plate was incubated at 37 °C. The colony grown on the plate was selected by the colony hybridization method: The colony was transferred to a nitrocellulose filter and digested. The DNA was fixed on the filter and hybridized to the probe as described in (2). The filter was autoradiographed and

a recombinant colony was selected. Additionally, the presence of a nitrile hydratase gene in the transformant was confirmed according to the Southern hybridization method.

5 (6) Isolation and Purification of Recombinant Plasmid and Construction of the Restriction Map of the Inserted DNA Fragments

The transformant selected as described in (5) was grown in 100 ml of 2 \times YT medium containing 50 μ g/ml of ampicillin at 37 °C overnight (12 hours). The bacterial cells were harvested and TNE was added to the cells. The cells were collected again by centrifugation, and 8 ml of STE and 10 mg of lysozyme were 10 added to the cells. The mixture was incubated at 0 °C for five minutes. 4 ml of 0.25M EDTA, 2 ml of 10% SDS (at room temperature) and 5 ml of 5M NaCl were added to the mixture. The mixture was incubated at 0-4 °C for three hours, and ultracentrifuged. 1/2 volume of 30% PEG 6000 was added to the supernatant. The mixture was incubated at 0-4 °C overnight (12 hours) and centrifuged again. TNE was added to the pellet to bring the volume up to 7.5 ml. CsCl was added to the suspension to rid of proteins. Then, 300-500 15 mg/ml of ethidium bromide was added to the supernatant and the mixture was transferred to a centrifuge tube. The tube was heat-sealed and ultracentrifuged. cccDNA was removed using a peristaltic pump. A bit more than equal amount of isopropyl alcohol saturated with water was added to cccDNA to remove ethidium bromide. The DNA sample was dialyzed against TE, resulting in about 3 ml of purified recombinant DNA. The recombinant plasmid thus obtained containing a 6.7 kb DNA fragment was designated as pNHJ10H. 20 (The recombinant plasmid containing a 9.4 kb DNA fragment was designated as pNHJ20L).

These plasmid DNAs were digested with EcoRI, BamHI, PstI, SacI and Sall. The restriction maps were constructed and are shown in Fig. 1.

25 (7) DNA Sequencing

The location of a nitrile hydratase gene in the DNA fragment of pNHJ10H was determined according to the restriction map constructed and to the Southern hybridization method. An extra segment in pNHJ10H was cleaved off with PstI and Sall: The 6.0 kb DNA fragment resulted in 1.97 kb. Similarly, an extra segment in pNHJ20L was cleaved off with EcoRI and SacI: The 9.4 kb DNA fragment resulted in 1.73 kb.

30 These DNA fragments were sequenced by the Sanger method [Sanger, F., Science 214: 1205-1210 (1981)] using M13 phage vector. The nucleotide sequence of the 1.97 kb DNA fragment (pNHJ10H) and the 1.73 kb DNA fragment (pNHJ20L) are shown in the Sequence Listing by SEQ ID: No. 14 and SEQ ID: No. 15, respectively.

35 The amino acid sequence deduced from the nucleotide sequence was found fully identical to the amino acid sequence as determined in (1). The sequence analysis also revealed that the DNA fragment contained the sequence coding for the α - and β -subunits.

40 (8) Production of Nitrile Hydratase Using the Transformant and Conversion of Nitriles to Amides Using Nitrile Hydratase

TG1 /pNHJ10H and TG1/pNHJ20L were inoculated into 10 ml of 2 \times YT medium containing 50 μ g/ml of ampicillin and incubated at 30 °C overnight (12 hours). 1 ml of the resultant culture was added to 100 ml of 2 \times YT medium (50 μ g/ml of ampicillin, 0.1 g of CoCl₂•6H₂O/l). The mixture was incubated at 30 °C for 4 hours. IPTG was added to the mixture to a final concentration of 1 mM. The mixture was incubated at 30 °C 45 for 10 hours. After harvesting the cells, the cells were suspended in 5 ml of 0.1 M phosphate buffer (pH 7.5). The suspensions were disrupted by sonification for 5 min and centrifuged at 12,000 \times g for 30 min. The resulting supernatants were used for the enzyme assay. The enzyme assay was carried out in a reaction mixture (12 ml) containing 50 mM potassium phosphate buffer (pH 7.5), 6 mM benzonitrile and an appropriate amount of the enzyme. The reaction was carried out at 20 °C for 30 min and stopped by the 50 addition of 0.2 ml 1 M HCl. The amount of benzamide formed in the reaction mixture was determined by HPLC. As a control, the mixture obtained by the same procedure as described above but from E. coli TG1 was used. The levels of nitrile hydratase activity in cell-free extracts of E. coli containing pNHJ10H and pNHJ20L were 1.75×10^{-3} and 6.99×10^{-3} units/mg, respectively, when cultured in 2 \times YT medium in the presence of CoCl₂ and IPTG. Benzamide was found in the reaction mixture of TG1/pNHJ10H and pNHJ20L, whereas no benzamide was found in the reaction mixture of TG1.

(1) INFORMATION FOR SEQ ID NO: 1

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 203 amino acids

(B) TYPE: Amino acid

(C) STRANDEDNESS:

(D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Peptide

(vi) ORIGINAL SOURCE

(A) ORGANISM: Rhodococcus rhodochrous

(B) STRAIN: J-1 (FERM BP-1478)

(ix) FEATURES

(A) OTHER INFORMATION

 $\alpha^{(H)}$ -subunit

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1

5	Met	Ser	Glu	His	Val	Asn	Lys	Tyr	Thr	Glu	Tyr	Glu	Ala	Arg	Thr	15	
20																30	
35	Lys	Ala	Alle	Glu	Thr	Leu	Leu	Tyr	Glu	Arg	Gly	Leu	lle	Thr	Pro	45	
50	Ala	Ala	Val	Asp	Arg	Val	Val	Ser	Tyr	Tyr	Glu	Asn	Gl	lle	Gly	60	
65	Pro	Met	Gly	Gly	Ala	Lys	Val	Val	Ala	Ala	Lys	Ser	Trp	Val	Asp	Pro	75
80	Glu	Tyr	Arg	Lys	Trp	Leu	Glu	Glu	Asp	Ala	Thr	Ala	Ala	Met	Ala	90	
95	Ser	Leu	Gly	Tyr	Ala	Gly	Glu	Gln	Ala	His	Gln	lle	Ser	Ala	Val	105	
110	Phe	Asn	Asp	Ser	Gln	Thr	His	His	Val	Val	Val	Cys	Thr	Leu	Cys	120	
125	Ser	Cys	Tyr	Pro	Trp	Pro	Val	Leu	Gly	Leu	Pro	Pro	Ala	Trp	Tyr	135	
130	Lys	Ser	Met	Glu	Tyr	Arg	Ser	Arg	Val	Val	Ala	Asp	Pro	Arg	Gly		

5
10
15
20
25
30
35
40
45
50
55

Val Leu Lys Arg Asp Phe Gly Phe Asp Ile Pro Asp Glu Val Glu
 140 145 150
 Val Arg Val Trp Asp Ser Ser Ser Glu Ile Arg Tyr Ile Val Ile
 155 160 165
 Pro Glu Arg Pro Ala Gly Thr Asp Gly Trp Ser Glu Glu Glu Leu
 170 175 180
 Thr Lys Leu Val Ser Arg Asp Ser Met Ile Gly Val Ser Asn Ala
 185 190 195
 Leu Thr Pro Gln Glu Val Ile Val
 200

15
(2) INFORMATION FOR SEQ ID NO: 2

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 229 amino acids

(B) TYPE: Amino acid

(C) STRANDEDNESS:

(D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Peptide

(vi) ORIGINAL SOURCE

(A) ORGANISM: Rhodococcus rhodochrous

(B) STRAIN: J-1 (FERM BP-1478)

(ix) FEATURES

(A) OTHER INFORMATION

$\beta^{(H)}$ -subunit

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2

5 10 15
 Met Asp Gly Ile His Asp Thr Gly Gly Met Thr Gly Tyr Gly Pro
 20 25 30
 Val Pro Tyr Gln Lys Asp Glu Pro Phe Phe His Tyr Glu Trp Glu
 35 40 45
 Gly Arg Thr Leu Ser Ile Leu Thr Trp Met His Leu Lys Gly Ile
 50 55 60
 Ser Trp Trp Asp Lys Ser Arg Phe Phe Arg Glu Ser Met Gly Asn
 65 70 75
 Glu Asn Tyr Val Asn Glu Ile Arg Asn Ser Tyr Tyr Thr His Trp

(3) INFORMATION FOR SEQ ID NO: 3

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 207 amino acids

- (B) TYPE: Amino acid

(C) STRANDEDNESS:

- (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Peptide

- i) ORIGINAL SOURCE

- (A) ORGANISM: *Rhodococcus rhodochrous*

(B) STRAIN: J-1 (FE)

- ## x) FEATURES

OTHER INFORMATION

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3

10

15

20

25

30

35

40

50

55

5 10 15
 MetThrAlaHisAsnProValGlnGlyThrLeuProArgSerAsn
 20 25 30
 GluGlutIleAlaAlaArgValLysAlaMetGluAlaIleLeuVal
 35 40 45
 AspLysGlyLeuIleSerThrAspAlaIleAspHisMetSerSer
 50 55 60
 ValTyrGluAsnGluValGlyProGlnLeuGlyAlaLysIleVal
 65 70 75
 AlaArgAlaTrpValAspProGluPheLysGlnArgLeuLeuThr
 80 85 90
 AspAlaThrSerAlaCysArgGluMetGlyValGlyGlyMetGin
 95 100 105
 GlyGluGluMetValValLeuGluAsnThrGlyThrValHisAsn
 110 115 120
 MetValValCysThrLeuCysSerCysTyrProTrpProValLeu
 125 130 135
 GlyLeuProProAsnTrpTyrLysTyrProAlaTyrArgAlaArg
 140 145 150
 AlaValArgAspProArgGlyValLeuAlaGluPheGlyTyrThr
 155 160 165
 ProAspProAspValGluIleArgIleTrpAspSerSerAlaGlu
 170 175 180
 LeuArgTyrTrpValLeuProGlnArgProAlaGlyThrGluAsn
 185 190 195
 PheThrGluGluGlnLeuAlaAspLeuValThrArgAspSerLeu
 200 205
 IleGlyValSerValProThrThrProSerLysAla

(4) INFORMATION FOR SEQ ID NO: 4

(i) SEQUENCE CHARACTERISTICS:

45 (A) LENGTH: 226 amino acids

(B) TYPE: Amino acid

(C) STRANDEDNESS:

50 (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Peptide

)

(vi) ORIGINAL SOURCE

5 (A) ORGANISM: Rhodococcus rhodochrous

(B) STRAIN: J-1 (FERM BP-1478)

10 (ix) FEATURES

10 (A) OTHER INFORMATION

 $\beta^{(L)}$ -subunit

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4

	5	10	15	
20	MetAspGlyIleHisAspLeuGlyGlyArgAlaGlyLeuGlyPro			
	IleLysProGluSerAspGluProValPheHisSerAspTrpGlu	25	30	
	ArgSerValLeuThrMetPheProAlaMetAlaLeuAlaGlyAla	35	40	45
25	PheAsnLeuAspGlnPheArgGlyAlaMetGluGlnIleProPro	50	55	60
	HisAspTyrLeuThrSerGlnTyrTyrGluHisTrpMetHisAla	65	70	75
30	MetIleHisHisGlyIleGluAlaGlyIlePheAspSerAspGlu	80	85	90
	LeuAspArgArgThrGlnTyrTyrMetAspHisProAspAspThr	95	100	105
35	ThrProThrArgGlnAspProGlnLeuValGluThrIleSerGln	110	115	120
	LeuIleThrHisGlyAlaAspTyrArgArgProThrAspThrGlu	125	130	135
40	AlaAlaPheAlaValGlyAspLysValIleValArgSerAspAla	140	145	150
	SerProAsnThrHisThrArgArgAlaGlyTyrValArgGlyArg	155	160	165
45	ValGlyGluValValAlaThrHisGlyAlaTyrValPheProAsp	170	175	180
	ThrAsnAlaLeuGlyAlaGlyGluSerProGluHisLeuTyrThr	185	190	195
50	ValArgPheSerAlaThrGluLeuTrpGlyGluProAlaAlaPro	200	205	210
	AsnValValAsnHisIleAspValPheGluProTyrLeuLeuPro	215	220	225
	Ala			

(5) INFORMATION FOR SEQ ID NO: 5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 609 base pairs

(B) TYPE: Nucleic acid

(C) STRANDEDNESS: Single

(D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

(vi) ORIGINAL SOURCE

(A) ORGANISM: *Rhodococcus rhodochrous*

(B) STRAIN: J-1 (FERM BP-1478)

(ix) FEATURES

(A) OTHER INFORMATION

$\alpha^{(H)}$ -subunit

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5

5 465 480 495
 GTCAGGGTTGGGACAGCAGCTCCGAAATCCGCTACATCGTCATC
 510 525 540
 CCGAACGGCCGGCCGGCACCGACGGTTGGTCCGAGGAGGAGCTG
 555 570 585
 ACCAAGCTGGTGACCCGGACTCGATGATCGGTGTCAGTAATGCG
 600
 CTCACACCGCAGGAAGTGATCGTA
 10

(6) INFORMATION FOR SEQ ID NO: 6

15 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 687 nucleic acids
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear

20 25 (ii) MOLECULE TYPE: Genomic DNA

(vi) ORIGINAL SOURCE

- (A) ORGANISM: Rhodococcus rhodochrous
- (B) STRAIN: J-1 (FERM BP-1478)

30 35 (ix) FEATURES

(A) OTHER INFORMATION

 $\beta^{(H)}$ -subunit

40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6

45 15 30 45
 ATGGATGGTATCCACGACACAGGCAGCATGACCGATAACGGACCG
 60 75 90
 GTCCCCTATCAGAAGGACGAGGCCCTTCTTCACTACGAGTGGAG
 105 120 135
 GGTGGGACCTGTCAATTCTGACTTGGATGCATCTCAAGGGATA
 150 165 180
 TCGTGGTGGGACAAGTCGGGTCTTCCGGGAGTCGATGGGAAC
 195 210 225
 GAAAACGTCAACGAGATTCCGAACTCGTACTACACCCACTGG
 240 255 270
 CTGAGTGCAGAACGTATCCTCGTCCGACAAGATCATCACC
 55

(7) INFORMATION FOR SEQ ID NO: 7

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 621 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

(vi) ORIGINAL SOURCE

- 45 (A) ORGANISM: Rhodococcus rhodochrous J-1
(FERM BP-1478)

(ix) FEATURES

- (A) OTHER INFORMATION

$\alpha^{(L)}$ -subunit

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7

5 ATGACCGCCCACAATCCCGTCCAGGGCACGTTGCCACGATCGAAC
 10 GAGGAGATCGCCGCACCGGTGAAGGCCATGGAGGCCATCCTCGTC
 15 GACAAGGGCCTGATCTCCACCGACGCCATCGACCACATGTCCTCG
 20 GTCTACGAGAACGAGGTGGTCCTCAACTCGGCGCCAAGATCGTC
 25 GCCCGCGCCTGGGTGATCCCGAGTTCAAGCAGCGCCTGCTCACCC
 30 GACGCCACCAAGCGCCTGCCGTGAAATGGCGTCGGCGGCATGCAG
 35 GGCAGAAGAAATGGTCGTGCTGGAAAACACCGGGCACGGTCCACAAAC
 40 ATGGTCGTATGTACCTTGTGCTCGTGCTATCCGTGGCCGGTTCTC
 45 GGCCTGCCACCCAACTGGTACAAGTACCCCGCCTACCGCGCCCCGC
 50 GCTGTCCGGGACCCCCCGAGGTGTGCTGGCCGAATTGGATATAACCC
 55 CCCGACCCCTGACGTGAGATCCGGATATGGGACTCGAGTGGCGAA
 60 CTTCGCTACTGGGTCCCTGCCGAAACGCCAGCCGGACCGAGAAC
 65 TTCAACCGAAGAACAACTCGCCGACCTCGTCACCCGGACTCGCTC
 70 ATCGGCGTATCCGTCCCCACCAACACCCAGCAAGGCC

(8) INFORMATION FOR SEQ ID NO: 8

40 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 678 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

(vi) ORIGINAL SOURCE

(A) ORGANISM: Rhodococcus rhodochrous

5 (B) STRAIN: J-1 (FERM BP-1478)

(ix) FEATURES

(A) OTHER INFORMATION

10 $\beta^{(L)}$ -subunit

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8

15 ATGGATGGAATCCACGACCTCGGTGGCCCGGCCCTGGTCCG
 60 ATCAAGCCGAATCCGATGAACCTGTTTCATTCCGATTGGGAG
 105 CGGTGGTTTGACGATGTTCCCGGCATGGCGCTGGCCGGCGC
 150 TTCAATCTGACCACTGATCCGGGGCGCATGGAGCAGATCCCCCG
 195 CACGACTACCTGACCTCGCAATACTACGAGCACTGGATGCACCG
 240 255 270 ATGATCCACCAACGGCATCGAGGGGGCATCTCGATTCCGACGAA
 285 300 315 CTCGACCGCCGACCCAGTACTACATGGACCATCCGGACGACAG
 330 345 360 ACCCCCACGGCAGGATCCGCAACTGGTGGAGACGATCTGCAA
 375 390 405 CTGATCACCCACGGAGCCGATTACCGACGCCGACCGAACCGAG
 420 435 450 GCCGCATTGCCGTAGGCAGAAAAGTCATCGTGGGTGGACGCC
 465 480 495 TCACCGAACACCCACACCCGCCGCGCCGATACGTCCGGTGT
 510 525 540 GTCGGCGAAGTCGTGGCGACCCACGGCGCTATGTCTTCCGGAC
 555 570 585 ACCAACGCACCTGGGCCGGCGAAAGCCCGAACACCTGTACACC
 600 615 630 GTGCGGTTCTCGGCACCGAGTTGTGGGCTGAACCTGCCGGCCCG
 645 660 675 AACGTCGTCAATCACATCGACGTGTTGAAACCGTATCTGCTACCG

GCC

50

(9) INFORMATION FOR SEQ ID NO: 9

(i) SEQUENCE CHARACTERISTICS:

- 5 (A) LENGTH: 26 amino acids

10 (B) TYPE: Amino acid

 (C) STRANDEDNESS:

 (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Peptide

- 15 (vi) ORIGINAL SOURCE

(A) ORGANISM: Rhodococcus rhodochrous

20 (B) STRAIN: J-1 (FERM BP-1478)

25 (ix) FEATURES

(ix) FEATURES

- (A) OTHER INFORMATION

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9

35 (10) INFORMATION FOR SEQ ID NO: 10

(i) SEQUENCE CHARACTERISTICS:

- 40 (A) LENGTH: 28 amino acids

45 (B) TYPE: Amino acid

 (C) STRANDEDNESS:

 (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Peptide

- 50 (vi) ORIGINAL SOURCE

(B) STRAIN: J-1 (FERM BP-1478)

5 (ix) FEATURES

(A) OTHER INFORMATION

10 $\beta^{(H)}$ -subunit: $\beta_1^{(H)}$

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10

15 Met-Asp-Gly-Ile-His-Asp-Thr-Gly-Gly-Met-Thr-Gly-Tyr-Gly-Pro
20 Val-Pro-Tyr-Gln-Lys-Asp-Glu-Pro-Phe-Phe-His-Tyr-Glu
25

20

(11) INFORMATION FOR SEQ ID NO: 11

25 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 15 amino acids

30 (B) TYPE: Amino acid

(C) STRANDEDNESS:

(D) TOPOLOGY: Linear

35 (ii) MOLECULE TYPE: Peptide

(vi) ORIGINAL SOURCE

40 (A) ORGANISM: Rhodococcus rhodochrous

(B) STRAIN: J-1 (FERM BP-1478)

45 (ix) FEATURES

(A) OTHER INFORMATION

$\alpha^{(L)}$ -subunit: $\alpha_1^{(L)}$

50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11

5 10 15
Thr-Ala-His-Asn-Pro-Val-Gln-Gly-Thr-Leu-Pro-Arg-?-Asn-Glu

5

(12) INFORMATION FOR SEQ ID NO: 12

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 19 amino acids

15 (B) TYPE: Amino acid

(C) STRANDEDNESS:

(D) TOPOLOGY: Linear

i) MOLECULE TYPE: Peptide

(vi) ORIGINAL SOURCE

25 (A) ORGANISM: *Rhodococcus rhodochrous*

(B) STRAIN: J-1 (FERM BP-1478)

(ix) FEATURES

(A) OTHER INFORMATION

$\beta^{(L)}$ -subunit: $\beta_1^{(L)}$

³⁵ (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12

Yard 1000 ft. 1000 ft. 1000 ft. 1000 ft. 1000 ft. 1000 ft.

40 [Home](#) [About](#) [Contact](#)

45

(13) INFORMATION FOR SEQ ID NO: 13

50 (i) SEQUENCE CHARACTERISTICS:

55

- (A) LENGTH: 2070 base pairs
- 5 (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: Linear
- 10 (ii) MOLECULE TYPE: Genomic DNA
- (vi) ORIGINAL SOURCE
 - 15 (A) ORGANISM: Rhodococcus sp.
 - (B) STRAIN: N-774 (FERM BP-1936)
- (ix) FEATURES
 - 20 from nucleotide No. 675 to 1295: subunit α
 - from nucleotide No. 1225 to 1960: subunit β
- 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13

30 Sph I
 GCATGCTTCCACATCTGGAACGTGATCGCCACGGACGGTGGTG
 CCTACCAGATGTTGGACGGAACGGATACGGCATGAACGCCAAG
 35 GTTTGTACGATCCGGA⁵⁰ACTGATGGCACACTTGCTTCTCGACGCA
 TTCAGCACGCCGACGCT¹⁰⁰TGTCCGAAACCGTCAAAC¹⁵⁰GTGGTGGCCC
 40 TGACCGGCCACCACGGCATCAC²⁰⁰CCACCTCGCCGGCGAGCTACG
 GCAAAGCCCCGGAAC²⁵⁰CTCGTACCGCTTGGCGCCGCCTACGACA
 CTGCC³⁰⁰TTGAGACAATTGACGTCTGGTATGCCAACGCTGCCCT
 45 ACGTCGCATCCGAATTGCCGGGAAGGACGTAGATCGTGC³⁵⁰AACCT

5 TCATCACCAAGGCTCTGGGATGATGCCAACACGGCACCATTG⁴⁰⁰
 10 ACGTGACCGGACATCCGTCCTGTCCGTTCCGGCGGCCTGGTGA
 15 ACGGGGTTCCGGTCGAATGATGATCACCGGCAGACACTTGACG⁴⁵⁰
 20 ATGCGACAGTCCTCGTGTGGACGGCATTGAAAGCTTCGCG^{Hind III}
 25 GCCGGTTCCGACGCCGGCGAACGCCCTCCAACCTCTGCCACCAC
 30 AACTCAGCCCCGCCTAGTCCTGACGCACTGTCAGACAACAAATT⁵⁰⁰
 35 CACCGATTCACACATGATCAGCCCACATAAGAAAAGGTGAACCA⁵⁵⁰
 40 ATGTCAGTAACGATCGACCACACAACGGAGAACGCCGACCGGCC⁶⁰⁰
 45 MetSerValThrIleAspHisThrThrGluAsnAlaAlaProAla
 50 Subunit α
 55 CAGGCGGGCGGTCTCGACCGGGCGTGGGCACTGTTCCGCGCACTC⁶⁵⁰
 60 GlnAlaAlaValSerAspArgAlaTrpAlaLeuPheArgAlaLeu
 65 Kpn I⁷⁰⁰
 70 GACGGTAAGGGATTGGTACCCGACGGTTACGTCGAGGGATGGAAG⁷⁵⁰
 75 AspGlyLysGlyLeuValProAspGlyTyrValGluGlyTrpLys
 80 AAGACCTCCGAGGAGGACTTCAGTCCAAGGCGGGAGCGGAATTG⁸⁰⁰
 85 LysThrSerGluGluAspPheSerProArgArgGlyAlaGluLeu
 90 Pvu II
 95 GTAGCGCGCGCATGGACCGACCCGAGTTCCGGCAGCTGCTTCTC
 100 ValAlaArgAlaTrpThrAspProGluPheArgGlnLeuLeu
 105 Kpn I⁹⁵⁰
 110 ACCGACGGTACCGCCGAGTTGCCAGTACGGATACTGGCCCC
 115 ThrAspGlyThrAlaAlaValAlaGlnTyrGlyTyrLeuGlyPro
 120 CAGGCGGCCTACATCGTGGCAGTCGAAGACACCCGACACTCAAG¹⁰⁰⁰
 125 GlnAlaAlaTyrIleValAlaValGluAspThrProThrLeuLys
 130 AACGTGATCGTGTGCTCGCTGTGTTCATGCACCGCGTGGCCCATC¹⁰⁵⁰
 135 AsnValIleValCysSerLeuCysSerCysThrAlaTrpProlle
 140 CTCGGTCTGCCACCCACCTGGTACAAGAGCTTCGAATACCGTGC¹¹⁰⁰
 145 LeuGlyLeuProProThrTrpTyrLysSerPheGluTyrArgAla

50

55

100
 CGCGTGGTCCCGAACCACGGAAAGGTTCTCTCCGAGATGGGAACC
 ArgValValArgGluProArgLysValLeuSerGluMetGlyThr
 5
 1150
 GAGATCGCGTCGGACATCGAGATTCGCGTCTACGACACCACCGCC
 GluIleAlaSerAspIleGluIleArgValTyrAspThrThrAla
 1200
 GAAACTCGCTACATGGTCTCCCAGCGTCCGCCGGCACCGAA
 GluThrArgTyrMetValLeuProGlnArgProAlaGlyThrGlu
 10 Pst I 1250
 GGCTGGAGCCAGGAACAACTGCAGGAAATCGTCACCAACGGACTGC
 GlyTrpSerGlnGluGlnLeuGlnGluIleValThrLysAspCys
 1300
 15 CTGATCGGGTTGCAATCCGCAGGTTCCCACCGTCTGATCACCC
 LeuIleGlyValAlaIleProGlnValProThrValTRM
 CGACAAGAACAGAACACACC-ATGGATGGAGTACACGATCTGCC
 20 MetAspGlyValHisAspLeuAla
 Subunit β
 1350
 GGAGTACAAGGCTCGGCAAAGTCCCGATAACGTAAACGCCAC
 GlyValGlnGlyPheGlyLysValProHisThrValAsnAlaAsp
 25 1400
 ATCGGCCACCTTCACGCCGAATGGAACACCTGCCCTACAGC
 IleGlyProThrPheHisAlaGluTrpGluHisLeuProTyrSer
 1450 Sall
 CTGATGTTGCCCGTGTGCCGAACCTGGGGCCTTCAGCGTCGAC
 30 LeuMetPheAlaGlyValAlaGluLeuGlyAlaPheSerValAsp
 1500
 GAAGTGCATACTCGTCGAGCGGATGGAGCCGGCCACTACATG
 GluValArgTyrValValGluArgMetGluProGlyHisTyrMet
 35 1550
 ATGACCCCGTACTACGAGAGGTACGTACATGGTGTGCGACATTG
 MetThrProTyrTyrGluArgTyrValIleGlyValAlaThrLeu
 1600
 40 ATGGTCAAAAGGAACTTGACGCCAGGACGAACTCGAAAGCCTT
 MetValGluLysGlyIleLeuThrGlnAspGluLeuGluSerLeu
 1650
 45 GCAGGGGGACCGTCCACTGTCACGGCCAGCGAATCCGAAGGG
 AlaGlyGlyProPheProLeuSerArgProSerGluSerGluGly

50

55

CGGCCGGCACCCGTCGAGACGACCACCTCGAAGTCGGGCAGCGA¹⁷⁰⁰
 ArgProAlaProValGluThrThrThrPheGluValGlyGlnArg
 5 GTACCGCGTACGCCGACGAGTACGTTCCGGGGCATATTGAATGCC¹⁷⁵⁰
 ValArgValArgAspGluTyrValProGlyHisIleArgMetPro
 10 GCATACTGCCGTGGACGAGTGGAAACCATCTCTCATCGAACTACC¹⁸⁰⁰
 AlaTyrCysArgGlyArgValGlyThrIleSerHisArgThrThr
 GluLysTrpProPheProAspAlaIleGlyHisGlyArgAsnAsp
 15 GCCGGCGAACGAAACCGACCGTACCACTACGTGAAGTTGCCGCCGAGGAA¹⁸⁵⁰
 AlaGlyGluGluProThrTyrHisValLysPheAlaAlaGluGlu
 LeuPheGlySerAspThrAspGlyGlySerValValValAspLeu¹⁹⁰⁰
 20 TTGTTCGGTAGCGACACCGACGGTGGAAAGCGTCGTGTCGACCTC¹⁹⁵⁰
 Sal I
 PheGluGlyTyrLeuGluProAlaAlaTRM
 25 GGCGGCGGTACCGCGATCACAGCGGTTCTGCGACCGCCGCTGA²⁰⁰⁰
 TCACCAACGATTCACTCATTGGAAAGGACACTGGAAATCATGGTCG²⁰⁵⁰
 Sal I
 AC

(14) INFORMATION FOR SEQ ID NO: 14

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1970 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: Linear

(ii) MOLECULE TYPE: Genomic DNA

(vi) ORIGINAL SOURCE

(A) ORGANISM: Rhodococcus rhodochrous J-1

(FERM BP-1478)

5 (ix) FEATURES

from nucleotide No. 408 to 1094: subunit $\beta^{(H)}$ 10 from nucleotide No. 1111 to 1719: subunit $\alpha^{(H)}$

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14

15 10 20 30 40 50 60
 CTGCAGCTCGAACATCGAAGGGTGCAGGCCGAGAGATCGGAGACGCAGACACCCGGAGGG

20 70 80 90 100 110 120
 AACTTAGCCTCCCGACCGATGCGTGTCTGCCAACGCCCTCAAAATTCAAGTCAAGCGAT

25 130 140 150 160 170 180
 TCAATCTTGTACTTCCAGAACCGAATCACGTCCCCGTACTGTGCGGGGAGAGCGCCCGA

30 190 200 210 220 230 240
 ACGCAGGGATGGTATCCATGCGCCCCCTCTTTTCAACGAGAACCGGCCGTACAGCC

35 250 260 270 280 290 300
 GACCCGGAGACACTGTGACGCCGTTAACGATTGTTGTGCTGTGAAGGATTACCCAAAGC

40 310 320 330 340 350 360
 CAACTGATATGCCATTCCGTTGCCGGAACATTGACACCTTCTCCCTACGACTAGAACG

45 370 380 390 400 410 420
 CAGCTGGACCCCTCTTGAGGCCAGCTCCGATGAAAGGAATGAGGAAATGGATGGTATCC
 MetAspGlyIleH
 Subunit $\beta^{(H)}$

50 430 440 450 460 470 480
 ACGACACAGGCGGCATGACCGGATACGGACCGCTCCCTATCAGAAGGACGAGCCCTCT
 isAspThrGlyGlyMetThrGlyTyrGlyProValProTyrGlnLysAspGluProPheP

55 490 500 510 520 530 540
 TCCACTACGAGTGGAGGGTCGGACCCCTGTCATTCTGACTTGGATGCATCTCAAGGGCA
 heHisTyrGluTrpGluGlyArgThrLeuSerIleLeuThrTrpMetHisLeuLysGlyI

60 550 560 570 580 590 600
 TATCGTGGTGGACAAGTCGGCTTCTTCCGGAGTCGATGGGAAACGAAAATACGTCA

65 610 620 630 640 650 660
 leSerTrpTrpAspLysSerArgPhePheArgGluSerMetGlyAsnGluAsnTyrValA
 snGluIleArgAsnSerTyrTyrThrHisTrpLeuSerAlaAlaGluArgIleLeuValA

70 670 680 690 700 710 720
 CCGACAAGATCATCACCGAAGAAGAGCGAAAGCACCCTGTGCAAGAGATCCTTGAGGGTC
 laAspLysIleIleThrGluGluGluArgLysHisArgValGlnGluIleLeuGluGlyA

40

45

50

1450 1460 1470 1480 1490 1500
 CCGCTGCTTGGTCTCCGCCGCTGGTACAAGACATGGAGTACCGGTCCCAGTGTA
 ProValLeuGlyLeuProProAlaTrpTyrLysSerMetGluTyrArgSerArgValVal

5 1510 1520 1530 1540 1550 1560
 GCGGACCTCTCGTGGAGTGCTCAAGCGCATTTCGGTTTCGACATCCCCGATGAGGTGGAG
 AlaAspProArgGlyValLeuLysArgAspPheGlyPheAspIleProAspGluValGlu

10 1570 1580 1590 1600 1610 1620
 GTCAGGGTTGGGACAGCAGCTCCGAAATCCGCTACATCGTCATCCGGAACGGCCGCC
 ValArgValTrpAspSerSerGluIleArgTyrIleValIleProGluArgProAla

15 1630 1640 1650 1660 1670 1680
 GGCACCGACGGTTGGTCCGAGGAGGAGCTGACGAAGCTGGTGAGCCGGACTCGATGATC
 GlyThrAspGlyTrpSerGluGluLeuThrLysLeuValSerArgAspSerMetIle

20 1690 1700 1710 1720 1730 1740
 GGTGTCAGTAATGGCCTCACACCGCAGGAAGTGATCGTATGAGTGAAGACACACTCACTG
 GlyValSerAsnAlaLeuThrProGinGluValIleVal

25 1750 1760 1770 1780 1790 1800
 ATCGGCTCCCGCGACTGGGACCGCCGACCGCCCCCGACAATGGCGAGCTTGTATTCA

30 1810 1820 1830 1840 1850 1860
 CCGAGCCTTGGGAACCAACGGCATTGGGGTCGCCATCGCGCTTCGGATCAGAAGTCGT

35 1870 1880 1890 1900 1910 1920
 ACGAATGGGAGTTCTTCCGACACCGTCTCATTCACTCCATCGCTGAGGCCAACGGTTGCG

40 1930 1940 1950 1960 1970

AGGCATACTACGAGAGCTGGACAAAGGGCTCGAGGCCAGCGTGGTCGAC

30

35

40

(15) INFORMATION FOR SEQ ID NO: 15

45 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1731 base pairs
- 50 (B) TYPE: Nucleic acid

55

(C) STRANDEDNESS: Single

(D) TOPOLOGY: Linear

5 (ii) MOLECULE TYPE: Genomic DNA

(vi) ORIGINAL SOURCE

10 (A) ORGANISM: *Rhodococcus rhodochrous*

(B) STRAIN: J-1 (FERM BP-1478)

(ix) FEATURES

15 from nucleotide No. 171 to 848: subunit $\beta^{(L)}$ from nucleotide No. 915 to 1535: subunit $\alpha^{(L)}$

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15

25 10 20 30 40 50 60
 GAGCTCCCTGGAGCCACTCGCGCCGACGCATCCACGCTGGACAGCCCACGGTGC GGATC

30 70 80 90 100 110 120
 ACCCCTGTTCGTCGGTAACAGAACAGTAACATGTCATCACGTCACTGACGTGTTGACGCAT

35 130 140 150 160 170 180
 TAGACGAGGGCACATAGGGTTGGTACTCACGCCACAAGGAGAGCATTCTATGGATGAA
 MetAspGlyI
 Subunit $\beta^{(L)}$

40 190 200 210 220 230 240
 TCCACGACCTCGTGGCCGCCGGCTGGGTCCGATCAAGCCCGAATCCGATGAACCTG
 leHisAspLeuGlyGlyArgAlaGlyLeuGlyProIleLysProGluSerAspGluProV

45 250 260 270 280 290 300
 TTTTCCATTCCGATTGGGAGCGGGTGGTTTGACGATGTCCTCCGGCATGGCGCTGGCCG
 alPheHisSerAspTrpGluArgSerValLeuThrMetPheProAlaMetAlaLeuAlaG

50 310 320 330 340 350 360
 GCGCGTTCAATCTCGACCAAGTTCCGGGGCGCATGGAGCAGATCCCCCGCACGACTACC
 lyAlaPheAsnLeuAspGlnPheArgGlyAlaMetGluGlnIleProProHisAspTyrL

55 370 380 390 400 410 420
 TGACCTCGCAATACTACGAGCACTGGATGCACCGCGATGATCCACCA CGGCATCGAGGC GG
 euThrSerGlnTyrTyrGluHisTrpMetHisAlaMetIleHisHisGlyIleGluAlaG

60 430 440 450 460 470 480
 GCATCTTCGATTCCGACCAA CTGACCCGGCGACCCAGTACTACATGGACCATCCGGACG
 lyIlePheAspSerAspGluLeuAspArgArgThrGlnTyrTyrMetAspHisProAspA

50

55

480 500 510 520 530 540
 ACACGACCCCCCACGGCGCAGGATCCGAACTGGTGGAGACGATCTCGCAACTGATCACCC
 5 spThrThrProThrArgGlnAspProGlnLeuValGluThrIleSerGlnLeuIleThrII
 550 560 570 580 590 600
 ACGGAGCCGATTACCGACGCCCGACCGACCCGAGGCCGATTGCCGTAGGCCAACAAAG
 10 isGlyAlaAspTyrArgArgProThrAspThrGluAlaAlaPheAlaValGlyAspLysV
 610 620 630 640 650 660
 TCATCGTCGGTCCGACGCCCTCACCGAACACCCCACACCCGCCGCCGATACGTCCCG
 15 alIleValArgSerAspAlaSerProAsnThrHisThrArgArgAlaGlyTyrValArgG
 670 680 690 700 710 720
 GTCGTGTCGGCGAAGTCGTGGCGACCCACGGCGCGTATGTTCTTCCGGACACCAACGCAC
 20 lyArgValGlyGluValValAlaThrHisGlyAlaTyrValPheProAspThrAsnAlaL
 730 740 750 760 770 780
 TCGGCCGCCGGCGAAAGCCCCGAACACCTGTACACCGTGCCTCTCGGCACCGAGTTGT
 25 euGlyAlaGlyGluSerProGluHisLeuTyrThrValArgPheSerAlaThrGluLeuT
 790 800 810 820 830 840
 GGGGTGAAACCTGCCGCCCGAACGTCGTCAATCACATCGACGTGTTGAAACCGTATCTGC
 30 rpGlyGluProAlaAlaProAsnValValAsnHisIleAspValPheGluProTyrLeuL
 850 860 870 880 890 900
 TACCGGCCTGACCAGGTATCCGGTCCACCCAGCGAGACGTCCTTCACCAAGACAGAA
 35 euProAla
 910 920 930 940 950 960
 ACGAGCCCACCCCGATGACCGCCCACAATCCCGTCCAGGGCACGTTGCCACGATCGAACG
 40 MetThrAlaHisAsnProValGlnGlyThrLeuProArgSerAsnG
 Subunit $\alpha^{(L)}$
 970 980 990 1000 1010 1020
 AGGAGATGCCGCCACGCGTGAAGGCCATGGAGGCCATCCTCGTCGACAAGGGCCTGATCT
 45 luGluIleAlaAlaArgValLysAlaMetGluAlaIleLeuValAspLysGlyLeuIleS
 1030 1040 1050 1060 1070 1080
 CCACCGACGCCATCGACCACATGTCCTCGGTCTACGAGAACGAGGTGGTCCCTCAACTCG
 erThrAspAlaIleAspHisMetSerSerValTyrGluAsnGluValGlyProGlnLeuG
 1090 1100 1110 1120 1130 1140
 GCGCCAAGATCGCCGCCGCGCTGGTCGATCCGAGTTCAAGCAGGCCCTGCTCACCG
 50 lyAlaLysIleValAlaArgAlaTrpValAspProGluPheLysGlnArgLeuLeuThrA
 1150 1160 1170 1180 1190 1200
 ACGCCACCAGCCCTGCCGTGAAATGGCGTCCGGCATGCAGGGCGAAGAAATGGTCG
 spAlaThrSerAlaCysArgGluMetGlyValGlyGlyMetGlnGlyGluGluMetValV
 1210 1220 1230 1240 1250 1260
 TGCTGGAAAACACCGGGCACGGTCCACACATGGTCGTATGTTGCTCGTCTATC
 55 alLeuGluAsnThrGlyThrValHisAsnMetValValCysThrLeuCysSerCysTyrP
 1270 1280 1290 1300 1310 1320
 CGTGGCCGGTTCTGGCTGCCACCCAACTGGTACAAGTACCCGCCCTACCGCGCCCCCG
 roTrpProValLeuGlyLeuProProAsnTrpTyrLysTyrProAlaTyrArgAlaArgA
 1330 1340 1350 1360 1370 1380
 CTGTCCGGCACCCCCGAGGTGTGCTGCCGAATTGGATATAACCCCGACCCCTGACGTG
 laValArgAspProArgGlyValLeuAlaGluPheGlyTyrThrProAspProAspValG

1300 1400 1410 1420 1430 1440
 AGATCCGGATATGGGACTCGACTGCCGAACCTCGTACTGGTCCTGCCGAAACGCCAG
 IleArgIleTrpAspSerSerAlaGluLeuArgTyrTrpValLeuProGlnArgProA
 5 1450 1460 1470 1480 1490 1500
 CCGGCACCGAGAACCTCACCGAAGAACAACTCGCCGACCTCGTCACCCGGACTCGCTCA
 IaGlyThrGluAsnPheThrGluGluGlnLeuAlaAspLeuValThrArgAspSerLeuI
 10 1510 1520 1530 1540 1550 1560
 TCGCGGTATCCGTCCCCACCCACCCAGCAAGGCCTGACATGCCCGACTCAACGAACAA
 IeGlyValSerValProThrThrProSerLysAla
 15 1570 1580 1590 1600 1610 1620
 CCCCACCCGGGTCTCGAACCTCGCGACCTGGTACAGAATCTGCCGTTAACGAA
 1630 1640 1650 1660 1670 1680
 CGAATCCCCCGCGCTCCGGCGAGGTCGCCTCGATCAGGCCCTGGAGATCCGGCCCTTC
 1690 1700 1710 1720 1730
 AGCATTGCCACCGCATTGCCATGGCCAGGGCCGATTGAAATGGGACGAATTG

20

Claims

1. A DNA^(H) fragment encoding a polypeptide having nitrile hydratase activity, said polypeptide comprising the $\alpha^{(H)}$ -subunit as defined in the Sequence Listing by SEQ ID: No. 1 and the $\beta^{(H)}$ -subunit as defined in the Sequence Listing by SEQ ID: No. 2.
2. A DNA^(L) fragment encoding a polypeptide having nitrile hydratase activity, said polypeptide comprising the $\alpha^{(L)}$ -subunit as defined in the Sequence Listing by SEQ ID: No. 3 and the $\beta^{(L)}$ -subunit as defined in the Sequence Listing by SEQ ID: No. 4.
3. The DNA^(H) fragment of claim 1 which contains the nucleotide sequences of the $\alpha^{(H)}$ -subunit as defined in the Sequence Listing by SEQ ID: No. 5 and the $\beta^{(H)}$ -subunit as defined in the Sequence Listing by SEQ ID: No. 6.
4. The DNA^(L) fragment of claim 2 which contains the nucleotide sequences of the $\alpha^{(L)}$ -subunit as defined in the Sequence Listing by SEQ ID: No. 7 and the $\beta^{(L)}$ -subunit as defined in the Sequence Listing by SEQ ID: No. 8.
5. A recombinant DNA comprising a DNA^(H) or DNA^(L) of any one of claims 1-4 in a vector.
6. A transformant transformed with the recombinant DNA of claim 5.
7. A method of producing nitrile hydratase which comprises culturing the transformant as claimed in claim 6 and recovering nitrile hydratase from the culture.
8. A method of producing amides which comprises hydrating nitriles using nitrile hydratase obtained from the culture of the transformant of claim 6.
9. A method of producing amides which comprises culturing the transformant as claimed in claim 6, and hydrating nitriles to amides using the resultant culture, isolated bacterial cells, treated matter thereof, or a fixed material thereof.

55

FIG. 1

