Problem Set #1

Latest Submission Grade 100%

1.	3-way-Merge Sort: Suppose that instead of dividing in half at each step of Merge Sort, you divide into thirds, sort each third, and finally combine all of them using a three-way merge subroutine. What is the overall asymptotic running time of this algorithm? (Hint: Note that the merge step can still be implemented in $O(n)$ time.)	1 / 1 point
	$\bigcap n^2 \log(n)$	
	$igodeline n \log(n)$	
	$\bigcap n(\log(n))^2$	
	Correct That's correct! There is still a logarithmic number of levels, and the overall amount of work at each level is still linear.	
2.	You are given functions f and g such that $f(n) = O(g(n))$. Is $f(n) * log_2(f(n)^c) = O(g(n) * log_2(g(n)))$? (Here c is some positive constant.) You should assume that f and g are nondecreasing and always bigger than 1.	1/1 point
	True	
	igcirc Sometimes yes, sometimes no, depending on the functions f and g	
	igcirc Sometimes yes, sometimes no, depending on the constant c	
	O False	
	Correct That's correct! Roughly, because the constant c in the exponent is inside a logarithm, it becomes part of the leading constant and gets suppressed by the big-Oh notation.	

3.	Assume again two (positive) nondecreasing functions f and g such that $f(n) = O(g(n))$. Is $2^{f(n)} = O(2^{g(n)})$? (Multiple answers may be correct, you should check all of those that apply.)	1 / 1 point
	☐ Never	
	lacksquare Sometimes yes, sometimes no (depending on f and g)	
	⊘ Correct	
	Always	
	$lacksquare$ Yes if $f(n) \leq g(n)$ for all sufficiently large n	
	⊘ Correct	
4.	k-way-Merge Sort. Suppose you are given k sorted arrays, each with n elements, and you want to combine them into a single array of kn elements. Consider the following approach. Using the merge subroutine taught in lecture, you merge the first 2 arrays, then merge the 3^{rd} given array with this merged version of the first two arrays, then merge the 4^{th} given array with the merged version of the first three arrays, and so on until you merge in the final (k^{th}) input array. What is the running time taken by this successive merging algorithm, as a function of k and k 0 (Optional: can you think of a faster way to do the k-way merge procedure?)	1/1 point
	$left{igorphi} heta(nk^2)$	
	\bigcap $\theta(nk)$	
	\bigcap $ heta(n^2k)$	
	$\bigcap \theta(n\log(k))$	
	\bigcirc Correct That's correct! For the upper bound, the merged list size is always $O(kn)$, merging is linear in the size of the larger array, and there are k iterations. For the lower bound, each of the last $k/2$ merges takes $\Omega(kn)$ time.	

5.	Arrange the following functions in increasing order of growth rate (with $g(n)$ following $f(n)$ in your list if and only if $f(n) = O(g(n))$).	1 / 1 point
	a) \sqrt{n}	
	b) 10^n	
	C) $n^{1.5}$	
	d) $2^{\sqrt{\log(n)}}$	
	e) $n^{5/3}$	
	Write your 5-letter answer, i.e., the sequence in lower case letters in the space provided. For example, if you feel	

that the answer is a->b->c->d->e (from smallest to largest), then type abcde in the space provided without any spaces before / after / in between the string.

You can assume that all logarithms are base 2 (though it actually doesn't matter).

daceb

One approach is to graph these functions for large values of n. Once in a while this can be misleading, however. Another useful trick is to take logarithms and see what happens (though again be careful, as in Question 3).