EVALUACIÓN DE LOS MODELOS

5	Does Not Have Heart Disease	False Positives	
	Has Heart Disease	True Positives	
		Has Heart Disease	
TP	Sensitivity = $\frac{TP + FN}{TP + FN}$ [same as recall; aka true positive rate]	Specificity = $\frac{TN + FP}{TN + FP}$ [ake true negative rate]	

La curva ROC nos permite ver todos leer +1000 matrices de confusión los umbrales de clasificación sin

True Negatives

False Negatives

Does Not Have

Heart Disease

ROC CURVE

PERFECT CLASSIFIER

TRUE POSITIVE RATE

- (hospitalización, mortalidad, cirugía, urgencias) 1. Seleccionar un desenlace a modelar
- Pre-procesar los datos en el formato correcto.
- construir el modelo y para probarlo (10 Fold CV) 3. Fraccionar el conjunto de datos en partes para
 - 4. Definir una métrica de base para comparar
- 3.141592 5. Escoger varios modelos, evaluar sus métricas y seleccionar el mejor.
- 6. Usar el modelo por cada paciente en una medición.
- (epidemiología, dirección de salud) y publicar. 7. Validar la metodología con investigación

NUESTRO MODELO IPS DE MORTALIDAD

Modelo de predicción de mortalidad datos del 2020 del PGP

n=5511 pacientes

1377 para prueba entrenamiento **4134** datos de

	Does Not Have Heart Disease			False Negatives True Negatives
Actual	Has Heart Disease	Se		False Negatives
Truth fallecido		Has Heart	Disease	Does not have Heart Disease
e oviv	-	panne as recen, aka true positive rate]	Predicted P	[aka true negative rate]
Ę	$Sensitivity = \frac{TP}{TP + FN}$	aka true	$Specificity = \frac{TN}{TN + FP}$	[aka tru

Universidad de Antioquia

Modelo Mortalidad XGBoost con grid de 100 modelos y 10-Fold CV	10-Fold CV
.metric	estimate.
sens	0.9919225
sbec	0.4748201
accuracy	0.9397240
roc_auc	0.9119431

NUESTRO MODELO IPS DE MORTALIDAD

Modelo de predicción de mortalidad datos del 2020 del PGP

Fold06

Universidad de Antioquia

NUESTRO MODELO IPS DE MORTALIDAD

Model-agnostic variable importance (XGBoost Classifier)

Pasos en el algoritmo de Gradient Boosting

Input: Data $\{(x_i, y_i)\}_{i=1}^n$, and a differentiable Loss Function $L(y_i, F(x))$

Step 1: Initialize model with a constant value: $F_0(x) = \operatorname*{argmin} \sum_{r=1}^{\gamma} L(\mathbf{y}_i, \mathbf{\gamma})$

Step 2: for m = 1 to M:

(A) Compute
$$r_{im} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x) = F_{m-1}(x)}$$
 for $i = 1, ..., r$

(B) Fit a regression tree to the r_{im} values and create terminal regions R_{jm} , for $j = 1...J_m$

(C) For
$$j = 1...J_m$$
 compute $\gamma_{jm} = \underset{\gamma}{\operatorname{argmin}} \sum_{x_i \in R_{ij}} L(y_i, F_{m-1}(x_i) + \gamma)$

(D) Update
$$F_m(x) = F_{m-1}(x) + \nu \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$$

Step 3: Output $F_M(x)$