Sprawozdanie Algorytmy Metaheurysyczne - Labolarorium

Radosław Wojtczak, Witold Karaś

- 1 przypadek testowy 1
- 1.1 Cel:
- 1.2 Założenia:
- 1.3 Wyniki:
- 1.4 Wykresy:
- 1.5 Wnioski:

2.1 Cel:

Celem badania jest sprawdzenie czy rzeczywista złożoność czasowa dla algorytmu k-random jest zgodna z oczekiwanym O(n).

2.2 Założenia:

Podczas badania korzystać będziemy z losowych instancji grafów pełnych, symetrycznych o $n \in \{100, 200, 300 \dots 1000\}$ wierzchołkach oraz ustalonym k = 1000. Badanie czasu każdego rozmiaru grafów zostało powtórzone 100 razy.

2.3 Wyniki:

Tabela czasów: przedstawia czasy wykonania programu. Dane w tabach, dla czytelności, zostały zaokrąglone do 3 miejsc po przecinku. W dalszych obliczeniach korzystaliśmy z danych dokładnych zamieszczonych w pliku csy/xlsx.

n	100	200	300	400	500	600	700	800	900	1000
T [s]	0.781	0.810	0.860	0.903	0.922	0.957	0.996	1.007	1.044	1.074
SD	0.009	0.010	0.223	0.033	0.037	0.028	0.029	0.020	0.020	0.012
SE	0.001	0.001	0.022	0.003	0.004	0.003	0.003	0.002	0.002	0.001

Tabela 1: T - średni czas wykoniania (w sekundach), SD - odchylenie standardowe, SE - błąd standardowy

Odchylenie standardowe oraz błąd standardowy zostały obliczone według wzorów:

$$\sigma = \sqrt{\frac{\sum_{n=1}^{100} (\bar{x} - x_n)^2}{100}} \tag{1}$$

odchylenie standardowe 1

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{100}} \tag{2}$$

błąd standardowy 2

2.4 Wykresy:

Na osi OX wykresu naniesione zostały n dla których wykonywany był pomiar, na osi OY uśrednione wartości czasów wykonania wraz z zaznaczonymi błędami standardowymi. Zauważyć można że punkty wskazujące średnie czasy wykonania ustaiwione są w zależności liniowej.

Rysunek 1: średnie czasy wykonania wraz z błędami standardowymi

2.5 Wnioski:

Zmierzone dane potwierdziły tezę, że złożoność czasowa metody k-random przy ustalonym k jest liniowa względem wielkości grafu.

2.6 Tabela czasów:

100	200	300	400	500	600	700	800	900	1000
0.791	0.803	0.855	0.975	0.895	0.921	1.063	1.008	1.028	1.073
0.776	0.819	0.831	0.961	0.937	0.921	1.020	1.006	1.032	1.081
0.790	0.810	0.836	0.934	0.963	0.946	1.026	1.019	1.044	1.076
0.783	0.817	0.836	0.942	0.945	0.971	1.038	1.000	1.033	1.080
0.788	0.808	0.834	0.932	0.935	0.917	1.022	1.025	1.039	1.062
0.783	0.803	0.841	0.929	0.938	0.942	1.022	1.011	1.032	1.090
0.784	0.815	0.843	0.926	0.898	0.930	1.042	1.007	1.034	1.105
0.780	0.806	0.829	0.968	0.892	0.921	1.025	1.006	1.036	1.099
0.781	0.813	0.853	0.955	0.918	0.909	1.033	0.999	1.016	1.082
0.786	0.800	0.838	0.936	0.918	0.922	1.030	1.003	1.039	1.091
0.778	0.805	0.850	0.912	0.953	0.931	1.028	1.009	1.036	1.075
0.786	0.811	0.833	0.954	0.961	0.922	1.027	1.004	1.031	1.091
0.772	0.812	0.836	0.866	0.898	0.925	1.027	0.994	1.054	1.079
0.784	0.810	0.834	0.856	0.886	0.941	1.035	0.993	1.027	1.080
0.784	0.812	0.846	0.862	0.917	0.943	1.032	1.000	1.023	1.095
0.785	0.803	0.833	0.873	0.949	0.936	1.022	1.000	1.030	1.071
0.793	0.812	0.840	0.862	1.006	0.946	1.063	1.019	1.021	1.093
0.789	0.797	0.825	0.868	1.000	0.922	1.070	0.993	1.034	1.084
0.781	0.807	0.839	0.859	1.034	0.918	1.038	0.996	1.039	1.061
0.793	0.856	0.842	0.872	1.051	0.955	1.028	1.021	1.032	1.094
0.768	0.799	0.837	0.868	1.032	0.986	1.034	1.010	1.039	1.097
0.790	0.839	0.834	0.871	0.974	0.944	1.040	1.012	1.036	1.078
0.785	0.810	0.833	0.863	0.921	1.006	1.033	1.007	1.047	1.105
0.775	0.815	0.841	0.863	0.927	1.010	1.031	0.993	1.034	1.066
0.786	0.800	0.840	0.863	0.921	0.939	1.035	0.994	1.030	1.079
0.781	0.821	0.842	0.892	0.913	0.948	1.019	1.016	1.025	1.078
0.785	0.814	0.829	0.935	0.974	0.944	0.971	1.026	1.026	1.079
0.797	0.812	0.816	0.915	0.988	0.972	0.975	1.033	1.040	1.078
0.790	0.799	0.843	0.932	0.947	0.949	0.982	1.067	1.027	1.066
0.775	0.861	0.831	0.876	0.933	0.998	0.969	1.020	1.026	1.075
0.780	0.792	0.833	0.872	0.937	0.950	0.958	1.005	1.025	1.073
0.776	0.812	0.827	0.887	0.908	0.950	0.971	0.986	1.032	1.075
0.788	0.813	0.831	0.870	0.964	0.933	0.969	0.976	1.040	1.094
0.785	0.797	0.832	0.916	0.976	0.902	0.962	1.035	1.034	1.073
0.783	0.814	0.840	0.900	0.944	0.945	0.979	1.004	1.040	1.078
0.768	0.814	0.829	0.906	0.915	0.966	0.964	1.010	1.034	1.070
0.769	0.812	0.831	0.896	0.960	0.911	0.980	1.041	1.066	1.066
0.789	0.808	0.836	0.910	0.956	0.932	0.974	1.009	1.050	1.074
0.779	0.807	0.831	0.905	0.977	1.009	0.964	0.977	1.031	1.073
0.783	0.799	0.829	0.933	0.912	0.993	0.982	1.010	1.029	1.074
0.780	0.808	0.833	0.918	0.943	0.975	0.971	1.004	1.033	1.062
0.767	0.802	0.830	0.941	0.925	0.994	0.973	0.982	1.028	1.080
0.793	0.815	0.841	0.912	0.957	1.005	0.968	1.039	1.090	1.092
0.786	0.807	0.832	0.927	0.923^{4}	0.973	0.970	0.990	1.045	1.075
0.778	0.815	0.832	0.938	0.928	1.012	0.986	0.988	1.051	1.064
0.767	0.812	0.833	0.937	0.943	1.014	0.981	0.980	1.038	1.086
0.788	0.815	0.827	0.925	0.956	1.027	0.960	1.041	1.035	1.069
0.780	0.815	0.838	0.871	0.927	1.000	0.963	1.000	1.022	1.083
0.778	0.818	0.844	0.869	0.971	1.004	0.983	1.044	1.022	1.070
0.788	0.806	0.830	0.910	0.943	0.998	0.966	0.965	1.019	1.084

100	200	300	400	500	600	700	800	900	1000
0.776	0.806	0.833	0.902	0.939	1.008	1.017	1.020	1.018	1.062
0.773	0.808	0.839	0.885	0.911	0.998	0.972	0.974	1.037	1.068
0.794	0.803	0.837	0.885	0.895	0.989	0.969	0.996	1.041	1.080
0.775	0.817	0.844	0.890	0.917	0.949	0.967	0.981	1.029	1.067
0.774	0.812	0.841	0.901	0.938	0.963	0.970	0.994	1.022	1.077
0.766	0.806	0.835	0.905	0.920	0.945	0.972	0.977	1.025	1.072
0.796	0.807	0.826	0.929	0.896	0.945	0.976	0.968	1.067	1.077
0.774	0.791	0.830	0.893	0.903	1.003	0.980	0.975	1.066	1.071
0.793	0.821	0.828	0.914	0.871	1.015	0.976	0.967	1.029	1.061
0.765	0.799	0.824	0.952	0.892	0.999	0.969	1.007	1.020	1.088
0.791	0.799	0.837	0.956	0.867	0.973	0.982	1.015	1.047	1.069
0.778	0.813	0.843	0.953	0.878	0.947	0.965	0.985	1.050	1.060
0.782	0.808	0.841	0.948	0.887	0.965	0.966	1.010	1.026	1.057
0.774	0.797	0.841	0.947	0.872	0.952	0.970	1.031	1.026	1.069
0.781	0.819	0.839	0.894	0.877	0.960	0.976	0.970	1.094	1.059
0.784	0.802	0.836	0.869	0.894	0.948	0.975	1.029	1.047	1.083
0.782	0.818	0.849	0.878	0.908	0.956	0.970	1.053	1.044	1.071
0.781	0.811	0.843	0.877	0.900	0.961	0.963	1.049	1.028	1.061
0.805	0.821	0.843	0.861	0.926	0.954	0.969	1.056	1.042	1.061
0.776	0.803	0.828	0.871	0.902	0.974	0.980	1.013	1.050	1.058
0.797	0.804	0.834	0.909	0.904	0.968	0.985	0.994	1.035	1.083
0.782	0.809	0.846	0.865	0.907	0.961	0.976	1.011	1.014	1.066
0.767	0.805	0.841	0.868	0.909	0.941	0.975	1.007	1.100	1.049
0.791	0.811	0.836	0.873	0.917	0.952	0.979	1.008	1.086	1.065
0.763	0.812	0.844	0.852	0.895	0.945	0.977	1.007	1.065	1.056
0.779	0.812	0.836	0.852	0.894	0.945	0.976	1.018	1.043	1.066
0.771	0.817	0.835	0.855	0.896	0.984	0.990	1.011	1.099	1.058
0.788	0.806	0.859	0.884	0.904	0.950	0.982	1.034	1.081	1.073
0.769	0.807	0.839	0.864	0.887	0.948	0.970	1.006	1.075	1.058
0.786	0.801	0.839	0.919	0.911	0.958	0.965	0.998	1.040	1.065
0.784	0.800	0.840	0.959	0.890	0.945	1.002	1.038	1.057	1.063
0.785	0.803	0.839	0.919	0.895	0.947	0.982	1.004	1.111	1.068
0.786	0.811	0.858	0.908	0.894	0.937	0.986	1.019	1.092	1.062
0.782	0.810	0.831	0.904	0.876	0.956	0.989	0.999	1.053	1.072
0.766	0.801	0.845	0.910	0.882	0.952	1.001	1.013	1.071	1.050
0.765	0.811	0.852	0.904	0.897	0.950	1.019	1.003	1.067	1.064
0.794	0.808	0.835	0.926	0.877	0.959	0.995	1.007	1.072	1.062
0.778	0.796	0.844	0.939	0.905	0.956	1.045	1.020	1.036	1.079
0.784	0.806	0.838	0.905	0.891	0.942	1.029	1.008	1.068	1.080
0.781	0.810	0.830	0.880	0.890	0.941	0.977	1.010	1.038	1.069
0.767	0.797	0.828	0.865	0.890	0.944	1.001	1.015	1.055	1.077
0.789	0.808	0.848	0.871	0.897	0.939	0.999	1.003	1.049	1.104
0.785	0.804	0.849	0.892	0.895	0.953	1.034	1.022	1.038	1.083
0.774	0.812	0.832	0.906	0.880^{5}	0.944	1.037	1.003	1.057	1.076
0.782	0.817	0.839	0.923	0.917	0.952	1.011	1.009	1.059	1.065
0.773	0.815	0.835	0.913	0.898	0.939	0.988	1.002	1.040	1.075
0.766	0.823	0.849	0.951	0.901	0.939	0.999	1.004	1.059	1.070
0.765	0.815	0.879	0.958	0.885	0.956	0.994	1.010	1.045	1.093
0.769	0.799	0.864	0.886	0.897	0.932	1.003	1.000	1.054	1.075
0.781	0.826	3.061	0.860	0.896	0.973	1.001	1.015	1.037	1.072

- 3 przypadek testowy 3
- 3.1 Cel:
- 3.2 Założenia:
- 3.3 Wyniki:
- 3.4 Wykresy:
- 3.5 Wnioski:

4.1 Cel:

Celem badania jest sprawdzenie czy rzeczywista złożoność czasowa dla algorytmu two-opt jest zgodna z oczekiwanym $O(n^3)$.

4.2 Założenia:

Podczas badania korzystać będziemy z losowych instancji grafów pełnych, symetrycznych o $n \in \{30, 40, 50 \dots 100\}$ wierzchołkach. Badanie czasu każdego rozmiaru grafów zostało powtórzone 30 razy.

4.3 Wyniki:

Tabela czasów przedstawia czasy wykonania programu. Dane w tabach, dla czytelności, zostały zaokrąglone do 3 miejsc po przecinku. W dalszych obliczeniach korzystaliśmy z danych dokładnych zamieszczonych w pliku csv/xlsx.

30	40	50	60	70	80	90	100
0.479	0.645	0.889	1.399	2.497	4.054	6.243	8.768
0.477	0.629	0.889	1.397	2.494	3.746	6.227	8.748
0.478	0.662	0.884	1.400	2.473	3.726	6.265	8.781
0.473	0.641	0.881	1.388	2.506	3.768	6.229	8.796
0.472	0.645	0.889	1.398	2.457	3.697	6.254	8.921
0.480	0.641	0.885	1.397	2.469	3.713	6.253	8.829
0.474	0.637	0.885	1.400	2.457	3.688	6.238	8.791
0.477	0.640	0.886	1.406	2.467	3.724	6.211	8.824
0.479	0.647	0.882	1.545	2.629	3.687	6.264	8.759
0.471	0.637	0.884	1.508	2.504	3.666	6.294	8.732
0.490	0.639	0.889	1.466	2.608	3.738	6.386	8.696
0.479	0.639	0.882	1.473	2.458	3.763	6.405	8.770
0.481	0.642	0.892	1.477	2.464	3.816	6.356	8.747
0.476	0.639	0.884	1.460	2.461	3.720	6.398	8.875
0.480	0.642	0.883	1.459	2.465	3.743	6.442	8.904
0.476	0.640	0.903	1.471	2.514	3.714	6.347	8.988
0.477	0.644	0.878	1.472	2.458	3.762	6.451	8.958
0.464	0.639	0.889	1.468	2.485	3.759	6.272	8.829
0.496	0.637	0.886	1.539	2.445	3.754	6.491	8.984
0.477	0.642	0.880	1.478	2.452	3.720	6.261	8.798
0.474	0.639	0.882	1.469	2.458	3.729	6.367	8.872
0.476	0.644	0.884	1.472	2.458	3.784	6.423	8.805
0.611	0.641	0.884	1.462	2.438	3.804	6.218	8.701
0.472	0.638	0.883	1.447	2.449	3.679	6.197	8.705
0.480	0.645	0.895	1.454	2.856	3.617	6.245	8.872
0.472	0.641	0.897	1.461	2.449	3.697	6.195	8.894
0.473	0.641	0.873	1.485	2.453	3.659	6.261	8.802
0.485	0.639	0.898	1.474	2.435	3.657	6.280	8.900
0.478	0.642	0.880	1.515	2.462	3.670	6.302	8.923
0.471	0.642	0.888	1.600	2.455	3.761	6.310	8.987

Tabela 3: tabela czasów dla poszczególnych n, czasy podane w sekundach

n	30	40	50	60	70	80	90
Τ	0.482	0.641	0.886	1.461	2.489	3.734	6.303
SD	0.025	0.005	0.006	0.050	0.082	0.076	0.083
SE	0.005	0.001	0.001	0.009	0.015	0.014	0.015

Tabela 4: T - średni czas wykoniania (w sekundach), SD - odchylenie standardowe, SE - błąd standardowy

Odchylenie standardowe oraz błąd standardowy zostały obliczone według wzorów:

Odchylenie standardowe:

$$\sigma = \sqrt{\frac{\sum_{n=1}^{100} (\bar{x} - x_n)^2}{100}}$$

Błąd standardowe:

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{100}}$$

4.4 Wykresy:

Rysunek 2: średnie czasy wykonania wraz z błędami standardowymi

Na osi OX wykresu naniesione zostały n dla których wykonywany był pomniar, na osi OY uśrednione wartości czasów wykonania wraz z zaznaczonymi błędami standardowymi.

4.5 Wnioski:

Zmierzone dane potwierdziły tezę, że złożoność czasowa metody two-opt ustalonym jest $O(n^3)$.

5.1 Cel:

Celem badania jest sprawdzenie jak dokładne są rozwiązania metodą twoopt dla instancji testowych problemów symetrycznych i asymetrycznych z TSPLIB.

5.2 Założenia:

Podczas badania korzystać będziemy z wybranych instancji symetrycznych oraz asymetrycznych z biblioteki TSPLIB w trzech formatach danych FULL MATRIX, LOWER DIAG ROW i EUC 2D. Najlepszym wynikiem - referencyjnym będziemy określać najmniejszą długość ścieżki w grafie wyznaczoną przez jedną z trzech algorytmów: k-random, nearest-neighbor, two-opt.

5.3 Wyniki:

instance name	two-opt cost	reference cost	PRD
a280.tsp	2715	2715	0
bays29.tsp	2108	2108	0
berlin52.tsp	8384	8384	0
bier127.tsp	123545	123545	0
ch130.tsp	6457	6457	0
ch150.tsp	7056	7053	0.042535091
d198.tsp	16340	16340	0
d493.tsp	37645	37645	0
dantzig42.tsp	699	699	0
eil51.tsp	443	443	0
eil76.tsp	570	570	0
eil101.tsp	662	662	0
fl417.tsp	12188	12188	0
fri26.tsp	937	937	0
gil262.tsp	2601	2601	0
gr17.tsp	2211	2211	0
gr21.tsp	2801	2801	0
gr24.tsp	1278	1278	0
gr48.tsp	5278	5278	0
gr120.tsp	7390	7390	0
hk48.tsp	11718	11718	0
kroA100.tsp	22883	22883	0
kroA150.tsp	28600	28600	0
kroA200.tsp	31148	31148	0
kroB100.tsp	23134	23134	0
kroB150.tsp	28223	28223	0
kroB200.tsp	31767	31767	0
kroC100.tsp	22727	22727	0
kroD100.tsp	23218	23218	0
lin105.tsp	14941	14941	0
lin318.tsp	45721	45721	0
pr76.tsp	121207	121207	0
pr107.tsp	47691	46927	1.628060605
pr124.tsp	63212	63212	0
pr136.tsp	99770	99770	0
pr144.tsp	58796	58796	0
pr152.tsp	75662	75662	0

Tabela 5: TSP

instance name	two-opt cost	reference cost	PRD
br17.atsp	39	39	0
ft53.atsp	8657	8657	0
ft70.atsp	44669	43264	3.247503698
ftv170.atsp	5140	3959	29.83076534
ftv33.atsp	2036	1664	22.35576923
ftv35.atsp	2245	1869	20.11771001
ftv38.atsp	2264	1830	23.71584699
ftv44.atsp	2522	1884	33.8641189
ftv47.atsp	3136	2338	34.13173653
ftv55.atsp	2907	2344	24.01877133
ftv64.atsp	4173	2629	58.72955496
ftv70.atsp	3434	2715	26.4825046
kro124p.atsp	52705	44612	18.14085896
p43.atsp	5638	1023	451.1241447
rbg323.atsp	4251	1742	144.0298507
rbg358.atsp	4649	1806	157.4197121
rbg403.atsp	5207	3543	46.96584815
rbg443.atsp	5897	3913	50.70278559
ry48p.atsp	15965	15965	0

Tabela 6: aTSP

W tabelach przedstawione zostały wyniki eksperymentu oraz obliczone na ich podstawie PRD według wzoru

$$PRD_x = 100 \cdot \frac{x - x_{ref}}{x_{ref}}$$

wariant	tsp	atsp
średnie PRD	0.045151235	60.25670957
odchylenie standardowe	0.267548599	103.9669193

Tabela 7: średnie PRD dla obu wariantów

5.4 Wykresy:

Rysunek 3: Wartości PRD dla instancji TSP

Rysunek 4: Wartości PRD dla instancji ATSP

Na osi OX wykresu naniesione zostały nazwy instancji dla których wykonywany był pomniar, na osi OY zostały naniesione wartości PRD.

5.5 Wnioski:

Uzyskane dane sugerują, że algorytm two-opt dużo lepiej radzi sobie z instancjami symetrycznymi problemów. Otóż może być to część prawdy, gdyż w instancjach asymetrycznych nie są (nie muszą być) zachowane nierówności trójkąta. Z drugiej strony 2 instancje symetryczne w których algorytm nie dał najlepszego znanego wyniku miały postać euklidesową gdzie nierówności trójkąta były zachowane.

- 6 przypadek testowy 6
- 6.1 Cel:
- 6.2 Założenia:
- 6.3 Wyniki:
- 6.4 Wykresy:
- 6.5 Wnioski:

- 7.1 Cel:
- 7.2 Założenia:
- 7.3 Wyniki:
- 7.4 Wykresy:
- 7.5 Wnioski: