

Faculty of Informatics Masaryk University Brno

Cvičení k předmětům IB005 Formální jazyky a automaty a IB102 Automaty, gramatiky a složitost

poslední modifikace 5. května 2015

Tato sbírka byla vytvořena z příkladů ke cvičení z předmětu Formální jazyky a automaty I, které byly původně připraveny Ivanou Černou. Na opravě chyb a doplnění příkladů se podílelo mnoho studentů a cvíčící předmětů IB005 a IB102 Jiří Barnat, Vojtěch Řehák a Jan Strejček.

Formální jazyky, regulární gramatiky

- **1.1** Jsou dány jazyky L_1 , L_2 nad abecedou $\{x, y, z\}$, kde $L_1 = \{xy, y, yx\}$, $L_2 = \{y, z\}$. Vypočítejte:
 - a) $L_1 \cup L_2$
 - b) $L_1 \cap L_2$
 - c) $L_1 \cdot L_2$, $L_2 \cdot L_1$
 - d) L_2^0 , L_2^1 , L_2^2 , L_2^3 , L_2^* , L_2^+
 - e) $co L_2$
- 1.2 Vypočítejte:
 - a) \emptyset^* , \emptyset^+ , $\{\varepsilon\}^*$, $\{\varepsilon\}^+$
 - b) $\emptyset \cup \{\varepsilon\}, \emptyset \cap \{\varepsilon\}, \emptyset \cap L, \{\varepsilon\} \cap L$
 - c) $\emptyset \cdot \{\varepsilon\}, \emptyset \cdot L, \{\varepsilon\} \cdot \{\varepsilon\}, \{\varepsilon\} \cdot L$
- **1.3** Jsou dané jazyky $L_1, L_2 \subseteq \{a, b, c, d\}^*$, kde $L_1 = \{a, aa, ba\}$, $L_2 = \{ba, abc, a, \varepsilon\}$.
 - a) Vypočítejte $L_1 \cup L_2$.
 - b) Vypočítejte $L_1 \cap L_2$.
 - c) Vypočítejte $L_1 \cdot L_2$.
 - d) Rozhodněte, zda platí $L_1 \cdot L_2 = L_2 \cdot L_1$.
 - e) Najděte slovo $w \in L_1 \cdot L_2 \cap L_2 \cdot L_1$.
 - f) Rozhodněte, zda platí $L_1\subseteq L_1\cdot L_2$. Pokud ano, platí tvrzení pro libovolnou dvojici jazyků L_1,L_2 ? Pro pokročilé: platí $\varepsilon\in L_2\iff L_1\subseteq L_1\cdot L_2$?
 - g) Rozhodněte, zda platí
 - $aabaabc \in L_2^4$
 - $baaabc \in L_2^6$
 - $ababc \in L_2^3$
 - h) Popište $co L_2$ (komplement jazyka L_2).
- ${\bf 1.4}\,$ Buď Llibovolný jazyk, rozhodněte zda platí:
 - a) pro $\forall i \in \mathbb{N}$ platí $L^i = \{w^i \mid w \in L\}$
 - b) pro $\forall i \in \mathbb{N}$ platí $w \in L^i \Rightarrow |w| = i$
 - c) najděte jazyk, pro který oba výše uvedené vztahy platí
- ${\bf 1.5}\,$ Porovnejte (slovně popište) jazyky a rozhodněte zda $L_1=L_4$
 - $L_1 = \{x, y, z\}^*$
 - $L_2 = \{xyz\}^*$
 - $L_3 = \{x\}^* \cdot \{y\}^* \cdot \{z\}^*$
 - $L_4 = (\{x\}^* \cdot \{y\}^* \cdot \{z\}^*)^*$
 - $L_5 = (\{x,y\}^* \cup \{z\}^*)^*$

- $L_6 = \{x, y, z\}^* \cdot \{x\} \cdot \{x, y, z\}^*$
- **1.6** Porovnejte (slovně popište) jazyky a rozhodněte zda $L_1 = L_3$
 - $L_1 = \{x, y, z\}^*$
 - $L_2 = \{x, y, z\}^+$
 - $L_3 = \{x\}^* \cdot \{y\}^* \cdot \{z\}^*$
 - $L_4 = \{x\}^* \cdot \{y\}^2 \cdot \{z\}^*$
 - $L_5 = (\{x\}^* \cdot \{y\}^* \cdot \{z\}^*)^*$
 - $L_6 = \{x, y, z\}^* \cdot \{x\} \cdot \{x, y, z\}^*$
- **1.7** Pomocí jazyků $L_1 = \{a\}, L_2 = \{b\}$ nad abecedou $\{a,b\}$ a množinových operací sjednocení (\cup) , průniku (\cap) , konkatenace (\cdot) , iterace $(*,^+)$ a doplňku (co-) vyjádřete jazyk, obsahující všechna slova, která
 - a) obsahují alespoň 2 znaky a
 - b) mají sudou délku
 - c) začínají znakem a a končí znakem b
 - d) začínají a končí stejným znakem
 - e) obsahují podslovo aba
 - f) splňují b) a c)
 - g) nesplňují b)
- 1.8 Pro libovolné jazyky L_1 , L_2 , L_3 dokažte, zda platí, nebo neplatí:
 - a) $L_1 \subset L_1 \cdot L_2$
 - b) $(L_1 \cup L_2) \cdot L_3 = (L_1 \cdot L_3) \cup (L_2 \cdot L_3)$
 - c) $(L_1 \cap L_2) \cdot L_3 = (L_1 \cdot L_3) \cap (L_2 \cdot L_3)$
 - d) pro $\forall i \in \mathbb{N}$ platí $L_1^i \cdot L_2^i = (L_1 \cdot L_2)^i$
 - e) $L_1^* \cup L_2^* = (L_1 \cup L_2)^*$
 - f) $L_1^* \cdot L_1^* = L_1^*$
 - g) $(L_1 \cup L_2)^* = (L_1^* \cdot L_2 \cdot (L_1)^*)^*$
- 1.9 Jaký jazyk generuje gramatika G a jakého je typu?
 - a) $G = (\{S, A, B, C\}, \{a, b, c, d\}, P, S)$, kde $P = \{S \rightarrow aSb \mid cAd, cA \rightarrow aB \mid Ca, Bd \rightarrow Sb \mid A, Cad \rightarrow ab \mid \varepsilon \}$
 - b) $G = (\{S, A\}, \{b, c, a\}, P, S), \text{ kde } P = \{S \rightarrow bS \mid cS \mid aA, A \rightarrow aA \mid bA \mid cA \mid a \mid b \mid c \}$
- 1.10 Jaký jazyk generuje následující gramatika? Diskutujte vhodné označení neterminálů $(S_{00}, S_{01}, S_{10}, S_{11})$.

$$\begin{split} G &= (\{S,A,B,C\}, \{a,b\}, P, S), \, \text{kde} \\ P &= \{ \begin{array}{ccc} S &\to aA & | & bB & | & \varepsilon, \\ A &\to aS & | & bC, \\ B &\to aC & | & bS, \\ C &\to aB & | & bA \, \} \end{split}$$

- 1.11 Navrhněte regulární gramatiky pro následující jazyky:
 - a) $L = \{a, b, c, d\}^*$

- b) $L = \{a, b, c, d\}^i \{a, b, c, d\}^*; i = 2, 10, 100$
- c) $L = \{w \mid w \in \{a, b\}^*, |w| \ge 3\}$
- d) $L = \{w \mid w \in \{a, b\}^*, |w| = 3k, k \ge 0\}$
- e) $L = \{w \mid w \in \{a, b, c\}^*, w \text{ obsahuje podslovo } abb\}$
- f) $L = \{w \cdot w^R \mid w \in \{a, b\}^*\}$
- g) $L = \{w \mid w \in \{a,b,c\}^*, \, \operatorname{první} \, 3$ znaky $w = \operatorname{poslední} \, 3$ znaky $w\}$
- h) $L = \{w \mid w \in \{a,b,c\}^*, w$ neobsahuje podslovo $abb\}$
- i) $L = \{w \mid w \in \{a, b, c\}^*, \#_a(w) = 2k, \#_b(w) = 3l + 1, k, l \ge 0\}$
- j) $L = \{w \mid w \in \{0, 1, \dots, 9\}^*, w$ je zápis přir. čísla dělitelného 5}
- k) $L = \{w \mid w \in \{0, 1, \dots, 9\}^*, w$ je zápis přir. čísla dělitelného $3\}$
- l) $L = \{ w \mid w \in \{0, 1, \dots, 9\}^*, w$ je zápis přir. čísla dělitelného 25 }

Deterministické konečné automaty, pumping lemma

2.1 Je dán následující konečný automat: $A = (\{q_0, q_1, q_2, q_3\}, \{a, b\}, \delta, q_0, \{q_3\})$

$$\begin{array}{ll} \delta(q_0,a) = q_1 & \delta(q_0,b) = q_2 \\ \delta(q_1,a) = q_3 & \delta(q_1,b) = q_1 \\ \delta(q_2,a) = q_2 & \delta(q_2,b) = q_2 \\ \delta(q_3,a) = q_1 & \delta(q_3,b) = q_2 \end{array}$$

- a) Uveď te jinou formu zápisu automatu.
- b) Popište jazyk akceptovaný konečným automatem A.
- c) Diskutujte variantu konečného automatu, kde $F = \{q_3, q_2\}; \ \delta(q_3, a) = q_0$
- 2.2 Konstruujte deterministické FA, které rozpoznávají následující množiny
 - a) $\{a, b, c\}^5 \cdot \{a, b, c\}^*$
 - b) $\{w \mid w \in \{a\}^*; |w| = 2k \text{ nebo } |w| = 7l; k, l \ge 0\}$
 - c) $\{w \mid w \in \{a, b\}^*; \ \#_a(w) = 3k; k \ge 0\}$
 - d) $\{w \mid w \in \{a,b\}^*; w \text{ obsahuje podslovo } abbab\}$
 - e) $\{w \mid w \in \{a, b\}^*; w \text{ obsahuje podslovo } ababb\}$
 - f) $\{w \mid w \in \{a, b\}^*; w \text{ neobsahuje podslovo } abbab\}$
 - g) $\{a,b\}^* \cdot (\{c,d\} \cup (\{d\} \cdot \{a,b\}^* \cdot \{c\})) \cdot \{a,b\}^+$
 - h) $(\{a\} \cup \{b\} \cdot \{a\} \cdot \{b\}^* \cdot \{a\} \cdot \{b\})^*$
- **2.3** Konstruujte **deterministické** FA pro následující jazyk nad abecedou $\{a, b, c, d\}$
 - a) $L = \{a, b\}^* \cdot \{c\} \cdot \{aa, b\}^* \cdot \{d\}^+$
 - b) $L = \{w \mid w \in \{a, b, c\}^*, w \text{ neobsahuje podslovo } babb\}$
 - c) $L = \{a, b\}^* \cdot (\{cd\}^+ \cdot \{d\} \cdot \{a, b\}^* \cdot \{c\}) \cdot \{a, b\}^+$
- **2.4** Pomocí množin $\{a\}, \{b\}, \{c\}, \{d\}$ a množinových operací sjednocení (\cup) , průniku (\cap) , konkatenace (\cdot) , iterace (*, +) a doplňku (co-) vyjádřete jazyk akceptovaný automatem:

2.5 Co akceptuje následující automat? ($\#_a(w) = \#_b(w)$ je špatná odpověď)

2.6 Pomocí věty o vkládání dokažte, že jazyk L není regulární:

- a) $L = \{a^i b^j \mid j > i \ge 1\}$
- b) $L = \{ w \mid w \in \{a, b\}^*; \ \#_a(w) = \#_b(w) \}$
- c) $L = \{w \cdot w^R \mid w \in \{a, b\}^*\}$
- d) $L = \{a^n \mid n = 2^i; i \ge 0\}$
- e) $L = \{a^i b^j \mid i \neq j; i, j \geq 0\}$
- f) $L = \{a^n b^{(n!)^2} \mid n \ge 0\}$
- g) $L = \{c^i a^j b^k \mid j \le k; i, j, k \in \mathbb{N}\}$
- **2.7** Pro pokročilé: Zkonstruujte konečný automat A rozpoznávající jazyk $L = \{a\}^* \cdot \{b\}$. Dokažte, že automat rozpoznává zadaný jazyk, tedy že L(A) = L.
- 2.8 Konstruujte deterministické FA pro všechny regulární jazyky příkladu 1.11.

Minimalizace DFA, nedeterministické FA, (Myhill-)Nerodova věta

- 3.1 Pro následující konečné automaty zadané tabulkou:
 - oveřte, že všechny stavy jsou dosažitelné
 - zkonstruujte minimální automat
 - $\bullet\,$ minimální automat zapište v kanonickém tvaru

a)

	a	b
$\rightarrow 1$	2	3
2	5	2
3	3	5
$\leftarrow 4$	12	2
$\leftarrow 5$	7	8
6	4	9
7	12	11
8	4	6
9	10	8
← 10	3	2
← 11	12	6
12	3	10

b)

	a	b
$\leftrightarrow 1$	3	2
2	6	4
3	3	5
$\leftarrow 4$	4	2
5	10	8
6	6	7
6 ← 7	6 7	7 5
_		·
← 7	7	5
← 7 ← 8	7 8	5
$ \begin{array}{c} \leftarrow 7 \\ \leftarrow 8 \\ \leftarrow 9 \end{array} $	7 8 11	5 2 2

3.2 Odstraňte nedosažitelné stavy z DFA zadaného tabulkou vlevo a minimalizujte ho a převeďte do kanonického tvaru. Poté ověřte, zda je výsledný automat ekvivalentní s automatem zadaným tabulkou vpravo.

a)

	a	b
$\rightarrow 1$	5	2
2	2	8
3	2	7
$\leftarrow 4$	9	4
5	2	1
6	2	5
← 7	8	6
8	2	4
9	8	9

	a	b
$\rightarrow 1$	4	2
2	2	5
3	3	6
4	4	2
$\leftarrow 5$	5	3
← 6	6	2

b)

	a	b
1	3	1
$\rightarrow 2$	9	4
3	_	1
$\leftarrow 4$	9	4
5	8	5
6	5	4
$\leftarrow 7$	6	9
8	11	_
9	7	9
10	12	3
11	8	1
12	_	10

	a	b
A	В	A
\leftarrow B	С	A
С	D	E
D	D	D
\rightarrow E	A	Е

3.3 Ověřte, zda DFA z příkladu 3.1 a) je ekvivalentní s následujícím DFA zadaným tabulkou

	a	b
A	A	С
\rightarrow B	D	A
$\leftarrow C$	D	A
D	С	D

3.4 Navrhněte nedeterministické konečné automaty pro následující jazyky:

a) $L = \{w \in \{a, b, c, d\}^* \mid w \text{ obsahuje podslovo } abbc \text{ nebo } bba \text{ nebo } aba\}$

b) $L = \{w \in \{a, b, c\}^* \mid w \text{ obsahuje podslovo } abbc \text{ nebo } acbca \text{ nebo } bcabb\}$

c) $L = \{w \in \{a, b, c, d\}^* \mid w \text{ končí řetězcem } aaaa\}$

d) $L = \{w \in \{0,1\}^* \mid w \text{ má čtvrtý symbol od konce } 1\}$

e) $L = \{w \in \{0,1\}^* \mid w \text{ končí řetězcem } 01011\}$

f) $L = ((\{0\}^* \cdot \{1\}) \cup (\{0\}^+ \cdot \{1\}^* \cdot \{0\})^*)^*$

g) $L = ((\{0\} \cdot \{0\} \cdot \{0\}^*) \cup (\{1\} \cdot \{1\} \cdot \{1\}^*))^*$

3.5 K daným nedeterministickým FA zkonstrujte deterministické FA.

a)

	a	b	c
$\rightarrow 1$	$\{2,3\}$	$\{3,4\}$	{1}
$\leftarrow 2$	{3}	{4}	{2}
3	$\{1,2,3\}$	{1}	{3,4}
4	{1}	{1}	{3,4}

b)

	a	b	c
$\rightarrow 1$	{1,2}	{1}	{1}
$\leftarrow 2$	Ø	{3}	Ø
3	Ø	Ø	{4}
4	{5}	Ø	Ø
5	Ø	{6}	Ø
6	{7}	Ø	Ø
← 7	Ø	Ø	Ø

3.6 Popište jazyk akceptovaný automatem:

3.7 Kolik různých jazyků rozhodují automaty s jedním nebo se dvěma stavy nad abecedou $\{x\}$ nebo $\{x,y\}$?

3.8 Dokažte, že neexistuje automat se 4 stavy, který akceptuje jazyk:

a) $L = \{w \in \{a, b\}^* \mid |w| \ge 4\}$

- b) $L = \{w \in \{a, b\}^* \mid |w| = 5k, k \in \mathbb{N}_0\}$
- **3.9** Najděte a formálně popište alespoň dvě relace $\sim \subseteq \{a,b\}^* \times \{a,b\}^*$ splňující podmínky Nerodovy věty pro jazyk

$$L = \{w \mid w \in \{a, b\}^*, w \text{ obsahuje podslovo } abb\}.$$

Určete indexy těchto relací.

- ${\bf 3.10}\,$ Pomocí Nerodovy věty a posléze pomocí Myhill-Nerodovy věty dokažte, že není regulární:
 - a) $L = \{a^n \mid n = 2^i, i \ge 0\}$
 - b) $L = \{a^n b^m \mid n \le m \le 2n, \ n, m > 0\}$
 - c) $L = \{ww^R \mid w \in \{a, b\}^+\}$
 - d) $L = \{a^i b^j | i \neq j; i, j \geq 0\}$
- 3.11 Pomocí MN věty dokažte, že je regulární:
 - $L = \{w \in \{a, b\}^* \mid \#_a(w) = 3k, \ k \ge 0\}$
- **3.12** Každý jazyk jednoznačně určuje relaci \sim_L předpisem $u \sim_L v$ právě když pro každé w platí $uw \in L \Leftrightarrow vw \in L$. Určete index této relace pro jazyky:
 - a) $L = \{a\}^* \cdot \{b\}^* \cdot \{c\}^*$
 - b) $L = \{a^n b^n c^n \mid n > 0\}$
- **3.13** Nechť $\Sigma = \{a, b\}$. Uvažte následující relace na množině Σ^* :
 - a) $u \sim v \iff \#_a(u) \mod 4 = \#_a(v) \mod 4$
 - b) $u \sim v \iff \#_a(u) \bmod 4 = \#_a(v) \bmod 4$ nebo u i v končí na stejné písmeno
 - c) $u \sim v \iff \#_a(u) \mod 4 = \#_a(v) \mod 4$ a u i v končí na stejné písmeno

(Prázdné slovo končí na stejné písmeno jako prázdné slovo, ale žádné neprázdné slovo na stejné písmeno nekončí.) U každé relace určete, zda je to ekvivalence. Pokud ano, určete její index a zda je pravou kongruencí. Pokud ano, nalezněte jazyk L takový, že $\sim_L = \sim$. Nakonec nalezněte jazyk L', který je sjednocením některých tříd rozkladu Σ^*/\sim , ale přitom $\sim_{L'} \neq \sim$.

Regulární gramatiky a výrazy \Leftrightarrow FA, ε -kroky, Kleeneho věta

4.1 Zkonstruujte ekvivalentní konečný automat k následující gramatice:

$$\begin{split} G &= (\{S,A,C,B\}, \{a,b,c\},P,S), \, \text{kde} \\ P &= \{ \, S \, \rightarrow \, aA \, \mid \, bC \, \mid \, a \, \mid \, \, \varepsilon, \\ A &\rightarrow \, bB \, \mid \, aA \, \mid \, b \, \mid \, c, \\ B &\rightarrow \, aB \, \mid \, bC \, \mid \, aC \, \mid \, cA \, \mid \, c, \\ C &\rightarrow \, a \, \mid \, b \, \mid \, aA \, \mid \, bB \, \} \end{split}$$

4.2 Zkonstruujte ekvivalentní konečný automat k následující gramatice:

$$\begin{split} G &= (\{S, X, Y, Z\}, \{a, b, c\}, P, S), \text{ kde } \\ P &= \{ \begin{array}{ccc|c} S & \to & aX & | & bY & | & c, \\ X & \to & bX & | & bS, \\ Y & \to & bS & | & cZ, \\ Z & \to & aS & | & b & | & c \end{array} \} \end{split}$$

4.3 Zkonstruujte ekvivalentní gramatiku k automatu:

4.4 Zkonstruujte ekvivalentní gramatiku k automatu:

4.5 K danému automatu s ε -kroky zkonstruujte ekvivalentní automat bez ε -kroků.

4.6 K danému automatu s ε -kroky zkonstruujte ekvivalentní automat bez ε -kroků.

4.7 K danému automatu s ε -kroky zkonstruujte ekvivalentní automat bez ε -kroků.

	a	b	c	ε
$\rightarrow 1$	{1,2}	Ø	Ø	{2}
2	{5}	$\{3,5\}$	Ø	Ø
3	Ø	{6}	Ø	Ø
4	Ø	{4}	Ø	{1,5}
5	{5}	Ø	{3}	{6}
← 6	Ø	Ø	{3,6}	{2}

4.8 K danému regulárnímu výrazu zkonstruujte ekvivalentní FA

a)
$$(ab)^*(aa + bb)(a + ab)^*$$

b)
$$((a+b(a+c))^* + (b+c))^*$$

c)
$$(((a+b)^*+c)^*+d)^*$$

4.9 K danému FA zkonstruujte ekvivalentní regulární výraz

4.10 K danému FA zkonstruujte ekvivalentní regulární výraz

4.11 Pomocí regulárních výrazů popište násl. jazyky:

a)
$$L = \{w \in \{a, b\}^* \mid w \text{ končí na } ab\}$$

b)
$$L = \{w \in \{a, b\}^* \mid \#_a(w) = 2k, k \ge 0\}$$

c)
$$L = \{w \in \{a, b\}^* \mid w \text{ začíná a končí stejným symbolem } \}$$

d)
$$L = \{w \in \{a, b\}^* \mid |w| = 2k, k \ge 0\}$$

4.12 Ukažte, jaký je vztah mezi třídou regulárních jazyků $\mathcal R$ a nejmenší třídou

- a) M_1 , která obsahuje všechny konečné jazyky a je uzavřená vzhledem k sjednocení, zřetězení a průniku (\cup,\cdot,\cap) .
- b) M_2 , která obsahuje všechny konečné jazyky a je uzavřená vzhledem k sjednocení, průniku a komplementu $(\cup,\cap,co-)$.
- c) M_3 , která obsahuje všechny konečné jazyky a je uzavřená vzhledem k sjednocení, průniku a mocnině $(\cup, \cap, ^n)$.

10

Uzávěrové vlastnosti $\mathcal R$

5.1 Rozhodněte, zda platí: jsou-li jazyky L_1, L_2, L_3, \ldots regulární, pak i jazyk

$$\bigcup_{i=1}^{\infty} L_i$$

je regulární jazyk.

5.2 Najděte takovou posloupnost regulárních jazyků L_1, L_2, L_3, \ldots aby jazyk

$$\bigcap_{i=1}^{\infty} L_i$$

nebyl regulární.

5.3 Nechť L_1, L_2 jsou **ne**regulární jazyky nad abecedou $\{a, b\}$. Dokažte nebo vyvraťte, zda je či není regulární:

- a) $L_1 \cap L_2$
- b) $L_1 \cup L_2$
- c) $L_1 \setminus L_2$
- d) $L_1 \cdot L_2$
- e) L_1^*
- f) $co-L_1$

5.4 Nechť L_1 je regulární a $L_1 \cap L_2$ je neregulární jazyk. Platí, že jazyk L_2 je nutně neregulární?

5.5 Platí následující implikace?

- a) L_1 je regulární, L_2 je neregulární $\Rightarrow L_1 \cap L_2$ je neregulární
- b) L_1 je regulární, L_2 je neregulární $\Rightarrow L_1 \cap L_2$ je regulární
- c) L_1 je regulární, L_2 je neregulární $\Rightarrow L_1 \smallsetminus L_2$ je neregulární
- d) L_1 je regulární, L_2 je neregulární $\Rightarrow L_1 \setminus L_2$ je regulární
- e) L_1 je regulární, L_2 je neregulární $\Rightarrow L_2 \setminus L_1$ je neregulární
- f) L_1 je regulární, L_2 je neregulární $\Rightarrow L_2 \smallsetminus L_1$ je regulární

 ${\bf 5.6~Def:}$ operace \odot rozšířeného sjednocení dvou jazyků takto:

$$L_1 \odot L_2 = \{u \cdot v \mid u, v \in (L_1 \cup L_2)\}$$

Dokažte, že jestliže jsou jazyky L_1 a L_2 regulární, pak i jazyk $L_1 \odot L_2$ je regulární. Dále najděte dva takové neregulární jazyky L_1 a L_2 , aby jazyk $L_1 \odot L_2$ byl regulární.

5.7 Nechť L je regulární jazyk. Dokažte, že jazyky $L^{\#}$ jsou regulární:

- a) $L^{\#} = \{v \mid \text{existuje } u \text{ takové, že } u.v \in L\}$
- b) $L^{\#} = \{ w \mid \text{existuje } x, y, z \text{ takové, že } y \in L \text{ a } w = xyz \}$

- **5.8** Dokažte, že pro libovolný jazyk L a libovolný konečný jazyk K platí:
 - a) L je regulární $\iff L \setminus K$ je regulární
 - b) L je regulární $\iff L \cup K$ je regulární
- **5.9 Def:** Homomorfismus $h: \Sigma^* \to \Delta^*$ je daný předpisem:

$$h(\varepsilon) = \varepsilon$$

 $h(u.v) = h(u).h(v)$ pro všechny $u, v \in \Sigma^*$

Def: Nechť L je jazyk, pak $h(L) = \{w \mid w = h(u), \text{ kde } u \in L\}$

Def: Inverzní Homomorfismus:

$$h^{-1}(y) = \{x \in \Sigma^* \mid h(x) = y\}$$

$$h^{-1}(L) = \{x \in \Sigma^* \mid h(x) \in L\}$$

Příklad

$$h(a) = 01$$

 $h(b) = 011$, pak

- h(abb) = 01011011
- $h^{-1}(0101011) = \{aab\}$
- $h^{-1}(0010) = \emptyset$
- pokud navíc $h(c) = \varepsilon$ pak $h^{-1}(01011) = L(c^*ac^*bc^*)$

Ukažte, že \mathcal{R} je uzavřena na h, h^{-1} .

- **5.10** Nechť je dána abeceda $\{a,b,c\}$ a homomorfismus h; h(a) = ac, h(b) = cb, h(c) = ca. Určete:
 - h(aabc), h(cbaa)
 - $h^{-1}(cccaaccb), h^{-1}(accba)$
 - $h(L), L = \{a^n b^n c^n \mid n > 0\}$
- **5.11** Nechť je dána abeceda $\{a, b, c\}$ a homomorfismus h; h(a) = aa, h(b) = ba, h(c) = a. Určete:
 - $h^{-1}(aabaaabaa)$
 - $h(L), L = \{w \in \{a^*, b^*\} \mid \#_a(w) = \#_b(w)\}$
 - $h^{-1}(L), L = \{w \in \{a^*\} \mid |w| = 2k, k \in N\}$
- 5.12 Dokažte nebo vyvraťte
 - $h(L_1 \cdot L_2) = h(L_1) \cdot h(L_2)$
 - $h(L_1 \cup L_2) = h(L_1) \cup h(L_2)$
 - $h((L_1 \cdot L_2)^R) = h(L_1^R) \cdot h(L_2^R)$
 - $h(L_1 \cap L_2) = h(L_1) \cap h(L_2)$
 - h(h(L)) = h(L)
 - $\bullet \ h^{-1}(h(L)) = L$
 - $h^{-1}(L_1 \cdot L_2) = h^{-1}(L_1) \cdot h^{-1}(L_2)$
 - $h^{-1}(L_1 \cup L_2) = h^{-1}(L_1) \cup h^{-1}(L_2)$
 - $h^{-1}(L_1 \cap L_2) = h^{-1}(L_1) \cap h^{-1}(L_2)$

Bezkontextové gramatiky

6.1 Co generují tyto gramatiky?

$$\begin{array}{ll} {\rm a)} \;\; G = (\{S,B,A\},\{a,b\},P,S), \; {\rm kde} \\ P = \{ \; S \; \to \; aB \; \mid \; bA \; \; \mid \; \varepsilon, \\ A \; \to \; aS \; \mid \; bAA, \\ B \; \to \; bS \; \mid \; aBB \; \} \\ {\rm b)} \;\; G = (\{S,A\},\{a,b\},P,S), \; {\rm kde} \end{array}$$

b)
$$G = (\{S, A\}, \{a, b\}, P, S)$$
, kde $P = \{S \rightarrow aAS \mid a, A \rightarrow ba \mid Sba\}$

6.2 Pro následující gramatiku

$$\begin{split} G &= (\{S,A,B\},\{a,b\},P,S), \text{ kde } \\ P &= \{\begin{array}{ccc} S &\rightarrow & AaB & | & BaA, \\ &A &\rightarrow & AB & | & a, \\ &B &\rightarrow & BB & | & b \end{array} \right\} \end{split}$$

- a) najděte derivační strom s výsledkem bbbbaa
- b) je tento strom určený jednoznačně?
- c) kolik různých nejlevějších odvození má slovo bbbbaa
- d) je gramatika jednoznačná?
- e) je jazyk L(G) jednoznačný?
- **6.3** Jaké mají charakteristikcé vlastnosti derivační stromy pro regulární gramatiky?
- 6.4 Obsahuje množina jednoznačných CFL všechny regulární jazyky?
- 6.5 Odpovězte zda pro

$$G = (\{S\}, \{a\}, P, S), \text{ kde } P = \{S \rightarrow SSS \mid a\}$$

- a) je gramatika jednoznačná?
- b) je jazyk L(G) jednoznačný?
- **6.6** Navrhněte jednoznačnou gramatiku generující jazyk $L = \{ww^R \mid w \in \{a,b\}^*\} \cup \{a^k \mid k \geq 1\}.$
- **6.7** Navrhněte gramatiku pro jazyk $L = \{a^i b^j c^k \mid i, j, k \ge 1, i = j \text{ nebo } j \ne k\}$, je gramatika jednoznačná?
- 6.8 Najděte ekvivalentní redukovanou gramatiku k této gramatice:

$$\begin{split} G &= (\{S, A, B, C, E, F, D\}, \{a, b, c\}, P, S), \, \text{kde} \\ P &= \{ \begin{array}{ccc|c} S &\to aA & | & bB, \\ A &\to aAB & | & aa & | & AC & | & AE, \\ B &\to bBA & | & bb & | & CB & | & BF, \\ C &\to DE, & & & & \\ D &\to cc & | & DD, \\ E &\to FF & | & FE, \\ F &\to EcE \, \} \end{split}$$

- **6.9** Najděte bezkontextovou gramatiku, na níž lze ukázat, že opačné pořadí aplikace odstranění nenormovaných neterminálů a odstranění nedosažitelných symbolů vede k neredukované gramatice.
- 6.10 Je jazyk generovaný gramatikou G bezkontextový?

$$\begin{split} G &= (\{S,T\},\!\{x,y\},\!P,S), \text{ kde } \\ P &= \{\begin{array}{ccc} S & \rightarrow & xT, \\ T & \rightarrow & Sx, \\ & & xTx & \rightarrow & y \end{array}\} \end{split}$$

- 6.11 Navrhněte bezkontextové gramatiky pro jazyky:
 - a) $L = \{ww^R \mid w \in \{a, b, c\}^*\}$
 - b) $L = \{w \mid w \in \{a, b, c\}^*, w = w^R\}$
 - c) $L = \{a^{3n+2}b^{2n} \mid n \ge 2\}$
 - d) $L = \{a^n b^n b^{m+1} c^{m-1} \mid n \ge 0, m \ge 1\}$
 - e) $L = \{a^n b^m c^m d^n \mid n, m \ge 0\}$
 - f) $L = \{uxv \mid u, x, v \in \{a, b, c\}^*, uv = (uv)^R, x = ca^n b^{2n}c, n \ge 0\}$
 - g) $L = \{ w \mid w \in \{a, b\}^*, \#_a(w) > \#_b(w) \}$
 - h) $L = \{w \mid w \in \{a, b\}^*, \#_a(w) = 2 * \#_b(w)\}$

Normální formy CFG, pumping lemma pro CFL

7.1 Odstraňte ε -pravidla:

$$\begin{split} G &= (\{S,A,B,C,D\},\{b,c,a\},P,S), \text{ kde} \\ P &= \{S \rightarrow ABC, \\ A \rightarrow AbA \mid BC, \\ B \rightarrow bB \mid b \mid cBbAa \mid \varepsilon, \\ C \rightarrow cD \mid c \mid Ab \mid \varepsilon, \\ D \rightarrow SSS \mid b \; \} \end{split}$$

7.2 Odstraňte ε -pravidla:

$$\begin{split} G &= (\{S,A,B,C,D\},\{b,c\},P,S), \text{ kde} \\ P &= \{S \rightarrow ABC, \\ A \rightarrow Ab \mid BC, \\ B \rightarrow bB \mid b \mid Ab \mid \varepsilon, \\ C \rightarrow cD \mid c \mid Ac \mid \varepsilon, \\ D \rightarrow SSD \mid cSAc \, \} \end{split}$$

7.3 Odstraňte ε -pravidla:

$$\begin{split} G &= (\{S, X, Y, Z\}, \{1, 0\}, P, S), \text{ kde } \\ P &= \{ \begin{array}{c|ccc} S & \to & 1X & | & Y1 & | & XZ, \\ X & \to & 0YZ1 & | & S1X & | & Y, \\ Y & \to & 1 & | & X1 & | & \varepsilon, \\ Z & \to & SZ & | & 0 & | & \varepsilon \end{array} \} \end{split}$$

7.4 Význam konstrukce množin N_{ε} na příkladu

$$G = (\{A, B, C\}, \{a, b, c\}, P, A), \text{ kde } P = \{A \rightarrow BC \mid a \mid \varepsilon, B \rightarrow aB \mid ACC \mid b, C \rightarrow cC \mid AA \mid c \}$$

7.5 Odstraňte jednoduché pravidla. Diskuse o významu N_A .

$$G = (\{S, X, Y, A, D, B, C\}, \{b, a\}, P, S), \text{ kde } P = \{S \rightarrow X \mid Y, \\ A \rightarrow bS \mid D, \\ D \rightarrow ba, \\ B \rightarrow Sa \mid a, \\ X \rightarrow aAS \mid C, \\ C \rightarrow aD \mid S, \\ Y \rightarrow SBb \}$$

7.6 Převeď te do Chomského normální formy

$$\begin{split} G &= (\{S,A,B\},\{a,b\},P,S), \text{ kde} \\ P &= \{ \begin{array}{cccc} S &\rightarrow & SaSbS & | & aAa & | & bBb, \\ A &\rightarrow & aA & | & aaa & | & B & | & \varepsilon, \\ B &\rightarrow & Bb & | & bb & | & b \end{array} \} \end{split}$$

7.7 Převeď te do Chomského normální formy

$$\begin{split} G &= (\{S, H, L\}, \{0, 1\}, P, S), \, \text{kde} \\ P &= \{ \, S \ \rightarrow \ 0H1 \ | \ 1L0 \ | \ \varepsilon, \\ H &\rightarrow HH \ | \ 0H1 \ | \ LH \ | \ \varepsilon, \\ L &\rightarrow LL \ | \ 1L0 \ | \ HL \ | \ \varepsilon \, \} \end{split}$$

7.8 Navrhněte gramatiku v CNF:

a)
$$L = \{ww^R \mid w \in \{a, b\}^*\}$$

b) $L = \{a^{2i}b^{3i}c^j \mid i > 1, j > 0\}$

- **7.9** Nechť G je gramatika v CNF. Nechť $w \in L(G), |w| = n$. Jaká je minimální a maximální délka odvození slova w v G?
- 7.10 Odstraňte levou rekurzi a transformujte do GNF

$$\begin{split} G &= (\{S,A,B\},\{a,b\},P,S), \text{ kde} \\ P &= \{\begin{array}{ccc|c} S \rightarrow Aa & \mid Bb & \mid aaA & \mid SaA \mid SbB, \\ A \rightarrow AAb \mid ab & \mid SBb, \\ B \rightarrow Bbb \mid BBB \mid bAb \end{array}\} \end{split}$$

7.11 Odstraňte levou rekurzi a transformujte do GNF

$$\begin{split} G &= (\{S,A,B\},\{1,0\},P,S), \text{ kde} \\ P &= \{ \begin{array}{ccc|c} S &\to & A1 & | & 0 & | & 1B, \\ A &\to & BS0 & | & 10 & | & SB0, \\ B &\to & 0B & | & B1B & | & S0 \end{array} \} \end{split}$$

7.12 Odstraňte levou rekurzi a transformujte do GNF

$$G = (\{S, X, Y\}, \{c, d, b, a\}, P, S), \text{ kde } P = \{S \rightarrow Xc \mid Yd \mid Yb, X \rightarrow Xb \mid a, Y \rightarrow SaS \mid Xa \}$$

7.13 Odstraňte levou rekurzi a transformujte do GNF

$$\begin{split} G &= (\{S,T\}, \{t,s\}, P, S), \text{ kde} \\ P &= \left\{ \begin{array}{cccc} S &\rightarrow & TTt & \mid & TS & \mid & s, \\ T &\rightarrow & SsT & \mid & TsT & \mid & t \end{array} \right\} \end{split}$$

7.14 Transformujte do Greibachové NT. Výslednou gramatiku převeď te do 3GNF.

$$\begin{split} G &= (\{A,B,C,D\},\{a,b\},P,A), \text{ kde } \\ P &= \{\begin{array}{ccc} A &\rightarrow BC, \\ B &\rightarrow CD & \mid AB, \\ C &\rightarrow Aa & \mid b, \\ D &\rightarrow bA & \mid DD \end{array}\} \end{split}$$

7.15 Dokažte, že následující jazyky nejsou bezkontextové

a)
$$L = \{wcw \mid w \in \{a,b\}^*\}$$

b) $L = \{a^nb^nc^n \mid n \ge 1\}$
c) $L = \{a^nb^mc^nd^m \mid n,m \ge 1\}$

Zásobníkové automaty

8.1 Daný ZA $A = (\{q_0, q_1, q_2, q_3, q_4\}, \{a, b, c, d\}, \{Z, A\}, \delta, q_0, Z, \{q_4\})$

```
\begin{array}{ll} \delta(q_0,a,Z) = \{(q_0,AZ)\} & \delta(q_0,a,A) = \{(q_0,AA)\} \\ \delta(q_0,b,A) = \{(q_1,\varepsilon)\} & \delta(q_1,b,A) = \{(q_1,\varepsilon)\} \\ \delta(q_1,\varepsilon,A) = \{(q_2,A),(q_3,A)\} & \delta(q_2,c,A) = \{(q_2,\varepsilon)\} \\ \delta(q_3,d,A) = \{(q_3,\varepsilon)\} & \delta(q_2,\varepsilon,Z) = \{(q_4,Z)\} \\ \delta(q_3,\varepsilon,Z) = \{(q_4,Z)\} \end{array}
```

- $\bullet\,$ Načrtněte stavový diagram ZA A.
- Naznačte 4 různé výpočty na vstupu a^3b^2c (stačí na obrázku).
- Popište jazyk L(A).
- **8.2** Je daný ZA $A = (\{q_0, q_1, q_2, q_3, q_4\}, \{a, b, c, d\}, \{X, Y, Z\}, \delta, q_0, Z, \{q_2, q_4\}),$ kde

$$\begin{array}{ll} \delta(q_0,a,Z) = \{(q_0,X)\} & \delta(q_0,a,X) = \{(q_0,XX),(q_1,YX)\} \\ \delta(q_1,a,Y) = \{(q_1,YY)\} & \delta(q_1,b,Y) = \{(q_2,\varepsilon)\} \\ \delta(q_2,b,Y) = \{(q_2,\varepsilon)\} & \delta(q_2,c,X) = \{(q_3,\varepsilon)\} \\ \delta(q_3,c,X) = \{(q_3,\varepsilon)\} & \delta(q_3,d,X) = \{(q_4,\varepsilon)\} \end{array}$$

- a) Popište jazyk akceptovaný automatem, pokud $F = \{q_2\}.$
- b) Popište jazyk akceptovaný automatem s původním F, tj. $F = \{q_2, q_4\}$.
- 8.3 Konstruujte ZA (akceptující koncovým stavem nebo prázdným zásobníkem) pro jazyky:
 - a) $L = \{a^i b^j \mid i \neq j, i, j \geq 0\}$
 - b) $L = \{w \mid w \in \{a, b\}^*; w = w^R\}$
 - c) $L = \{a^{3n}b^{2n} \mid n \ge 1\}$
 - d) $L = \{a^{3n+2}b^{2n-1} \mid n \ge 1\}$
 - e) $L = \{w \mid w \in \{a, b, c\}^*; \#_a(w) = \#_b(w)\}$
 - f) $L = \{w \mid w \in \{a, b, c\}^*; \#_a(w) \neq \#_b(w)\}$
 - g) $L = \{a^k b^j \mid 1 \le j \le k \le 2j\}$
 - h) $L = \{a^{n+m}b^{m+p}c^{p+n} \mid m, p, n \ge 1\}$
 - i) $L = \{a^i b^j c^j \mid i, j \ge 1\} \cup \{a^k b^k c^m \mid k, m \ge 1\}$
 - j) $L = \{a^{k_1}ba^{k_2}b\dots ba^{k_r} \mid r > 1, k_i \ge 1 \ (i = 1, \dots, r; \text{ existuje } p, s : p \ne s, k_p = k_s)\}$
- **8.4** Daný ZA $A = (\{q_0, q_1\}, \{a, b\}, \{Z, A\}, \delta, q_0, Z, \{q_1\})$ akceptující koncovým stavem transformujte na ekvivalentní automat akceptující prázdným zásobníkem. Určete L(A).

$$\delta(q_0, a, Z) = \{(q_0, AZ)\}
\delta(q_0, a, A) = \{(q_0, AA)\}
\delta(q_0, b, A) = \{(q_1, \varepsilon)\}$$

8.5 Daný ZA $A = (\{q\}, \{(,)\}, \{Z, L, P\}, \delta, q, Z, \emptyset)$ akceptující prázdným zásobníkem transformujte na ekvivalentní automat akceptující koncovým stavem. Určete L(A).

$$\begin{split} &\delta(q,(,Z)=\{(q,L)\}\\ &\delta(q,(,L)=\{(q,LL)\}\\ &\delta(q,),L)=\{(q,\varepsilon)\} \end{split}$$

- $8.6\,$ Pro danou G navrhněte (rozšířený) ZA, který provádí syntaktickou analýzu:
 - a) shora dolů,
 - b) zdola nahoru.

 ${\bf V}$ obou případech proveď te analýzu slova ababaa.

$$\begin{split} G &= (\{S,A,B\},\{a,b\},P,S), \text{ kde } \\ P &= \{\begin{array}{ccc} S &\rightarrow \varepsilon & \mid abSA, \\ A &\rightarrow AaB \mid aB & \mid a, \\ B &\rightarrow aSS \mid bA \end{array}\} \end{split}$$

- 8.7 Rozšířený zásobníkový automat, který vznikl metodou syntaktické analýzy zdola nahoru z gramatiky z příkladu 8.6 převeď te na standardní zásobníkový automat.
- 8.8 Daný ZA $A=(\{q_0,q_1,q_2\},\{a,b,c\},\{A,B,C\},\delta,q_0,A,\emptyset\})$ akceptující prázdným zásobníkem transformujte na ekvivalentní bezkontextovou gramatiku.

$$\begin{array}{ll} \delta(q_0,a,A) = \{(q_1,B)\} & \delta(q_1,c,A) = \{(q_2,\varepsilon)\} \\ \delta(q_0,b,A) = \{(q_1,AB)\} & \delta(q_1,a,B) = \{(q_0,ABC)\} \end{array} \qquad \begin{array}{ll} \delta(q_2,\varepsilon,B) = \{(q_2,\varepsilon)\} \\ \delta(q_2,\varepsilon,C) = \{(q_0,A)\} \end{array}$$

Uzávěrové vlastnosti CFL

- 9.1 O každé z následujících implikací rozhodněte, zda je pravdivá
 - a) L_1, L_2 bezkontextové $\Rightarrow L_1 \cup L_2$ je kontextový
 - b) L_1 bezkontextový \wedge $L_1 \cap L_2$ není bezkontextový \Rightarrow L_2 není bezkontextový
 - c) L_1 regulární \wedge L_2 bezkontextový $\Rightarrow co (L_1 \cap L_2)$ bezkontextový
 - d) L_1 konečný \wedge L_2 bezkontextový $\Rightarrow co (L_1 \cap L_2)$ bezkontextový
- 9.2 Jsou dané jazyky

$$L = \{ww^R \mid w \in \{a, b\}^*\}$$
$$R = L((a^*b^+a)^* + a^*)$$

Navrhněte ZA pro jazyk $L\cap R$

$$\begin{array}{lll} \delta_L(q_0,x,Z) = \{(q_0,xZ)\} & \forall x \in \{a,b\} \\ \delta_L(q_0,x,y) = \{(q_0,xy)\} & \forall x,y \in \{a,b\} \\ \delta_L(q_0,\varepsilon,x) = \{(q_1,x)\} & \forall x \in \{a,b,Z\} \\ \delta_L(q_1,x,x) = \{(q_1,\varepsilon)\} & \forall x \in \{a,b\} \\ \delta_L(q_1,\varepsilon,Z) = \{(q_2,Z)\} \\ F_L = \{q_2\} & F_R = \{p_0\} \end{array}$$

9.3 Je dána bezkontextová gramatika

$$G = (\{S\}, \{a, b\}, P, S), \text{ kde}$$

 $P = \{S \rightarrow aS \mid Sb \mid a\}$

- a) Má tato gramatika vlastnost sebevložení?
- b) Má jazyk generovaný gramatikou vlastnost sebevložení?
- c) Je jazyk generovaný gramatikou regulární?
- d) Jaký je vztah mezi vlastností sebevložení a regularitou?
- **9.4** Je dán bezkontextový jazyk $L, L \subseteq \{a, b\}^*$

Zkonstruujeme nový jazyk L_1 takto:

a)
$$L_1 = \{x \mid \exists y \in \{a, b\}^*; xy \in L\}$$

b)
$$L_1 = \{x \mid \exists y \in \{a, b\}^*; \ yx \in L\}$$

Dokažte, že L_1 je taky bezkontextový.

Konstrukce Turingových strojů

- **10.1** Navrhněte determinstický jednopáskový Turingův stroj rozhodující jazyk $L = \{a^n b^m c^n d^m \mid m, n \geq 1\}$
- 10.2 Navrhněte deterministický jednopáskový TS se vstupní abecedou $\{0,1\}$ a takový, že výpočty na slovech tvaru 0*1* jsou akceptující a výpočty na ostatních slovech jsou nekonečné.
- 10.3 Navrhněte 3-páskový (vstupní + 2 pracovní pásky) TS pro jazyk $L = \{w \in \{a,b\}^* \mid \#_a(w) = \#_b(w)\}$
- 10.4 Navrhněte TS (determ. nebo nedeterm.) TS pro jazyk:
 - a) $L = \{a^i b^j c^k \mid k = ij, i, j \in \mathbb{N}\}$
 - b) $L = \{ww \mid w \in \{a, b\}^*\}$
 - c) $L = \{a^p \mid p \text{ není prvočíslo }\}$
 - d) $L = \{a^n w \mid w \in \{0,1\}^*, w \text{ je binární zápis čísla } n\}$

Vztah TS a gramatik typu 0, uzávěrové vlastnosti

- 11.1 Objsaněte rozdíl mezi pojmy TS akceptuje a TS rozhoduje.
- 11.2 Je daný DTS T (resp. jeho část). Podle algoritmu ze skript navrhněte k němu ekvivalentní gramatiku:

$$\begin{array}{ll} \delta(q,\rhd) = (q,\rhd,R) & \delta(q,a) = (p,A,R) \\ \delta(p,b) = (q,a,L) & \delta(q,\sqcup) = (p,A,R) \\ \delta(p,\sqcup) = (q,a,L) & \delta(q,a) = (q_{accept},A,R) \end{array}$$

Kde \triangleright je levá koncová značka, \sqcup označuje prázdné políčko, stavy jsou $\{p,q,q_{accept}\}$, q je počáteční stav, vstupní abeceda je $\{a,b\}$ a pásková abeceda odpovídá množině $\{\triangleright,\sqcup,A,a,b\}$.

- 11.3 O každé z následujících implikací rozhodněte, zda je pravdivá.
 - a) R je regulární, L je rekurzivně spočetný $\Rightarrow R \cap L$ je regulární
 - b) L je rekurzivní \Rightarrow co-L je rekurzivní
 - c) L je rekurzivní $\Rightarrow L^*$ je rekurzivní
 - d) L je kontextový \Rightarrow co-L je rekurzivní
 - e) L není rekurzivní $\Rightarrow co-L$ není rekurzivní
 - f) Lnení rekurzivní a R je rekurzivní $\Rightarrow L \smallsetminus R$ není rekurzivní
 - g) Lnení rekurzivní, R je rekurzivní a $R\subseteq L\Rightarrow L\smallsetminus R$ není rekurzivní
- 11.4 Navrhněte gramatiky pro následující jazyky:
 - $\{w \mid w \in \{a, b, c\}^*, \#_a(w) = \#_b(w) = \#_c(w)\}$
 - $\{ww \mid w \in \{a, b, c\}^*\}$
 - $\bullet \ \{a^nb^nc^n \mid n \ge 0\}$
 - $\{a^n \mid n \text{ je mocnina } 2\}$
- **11.5** Ukažte, že jazyk $L = \{w \mid w \text{ je k\'od dvojice } (A, v) \text{ takov\'e, že TS } A zastav\'e svůj výpočet nad slovem <math>v\}$ je jazyk typu 0 dle Chomského hierarchie.
- 11.6 Existuje jazyk, který není ani jazykem typu 0 dle Chomského hierarchie?

Redukce

- 12.1 Rozhodněte, zda platí následující implikace. Své rozhodnutí zdůvodněte.
 - a) $A \leq_m B \Rightarrow co A \leq_m co B$
 - b) $A \leq_m B$ a Bje regulární $\Rightarrow A$ je regulární
 - c) Aje rekurzivně spočetná a $co A \leq_m A \Rightarrow A$ je rekurzivní
 - d) Aje rekurzivně spočetná a $A \leq_m co A \Rightarrow A$ je rekurzivní
 - e) $A \leq_m B$ a A je rekurzivní $\Rightarrow B$ je rekurzivní
 - f) A je rekurzivně spočetná $\Rightarrow A \leq_m HALT$
- **12.2** Je dán jazyk $A = \{\langle M \rangle \mid \text{výpočet TM } M \text{ na slově } \varepsilon \text{ je konečný} \}.$

Dokažte, že A není rekurzivní. (Návod: najděte redukci problému zastavení na A.)

Je jazyk A rekurzivně spočetný?

Je komplement jazyka \hat{A} rekurzivně spočetný?

12.3 Nalezněte řešení následujícího Postova systému:

$$\left\{ \left[\frac{aa}{a}\right], \left[\frac{ab}{abab}\right], \left[\frac{b}{a}\right], \left[\frac{aba}{b}\right] \right\}$$

- 12.4 Ukažte, že Postův korespondenční problém je nerozhodnutelný, i když se omezíme na abecedu $\{0,1\}$.
- 12.5 Ukažte, že problém ekvivalence dvou Turingových strojů

$$EQ = \{ \langle \mathcal{M}_1, \mathcal{M}_2 \rangle \mid \mathcal{M}_1 \text{ a } \mathcal{M}_2 \text{ jsou Turingovy stroje a } L(\mathcal{M}_1) = L(\mathcal{M}_2) \}$$

je nerozhodnutelný.

Složitost

- 13.1 Rozhodněte, které z následujících vztahů platí. Odpovědi zdůvodněte.
 - a) $2n \in \mathcal{O}(n)$
 - b) $n^2 \in \mathcal{O}(n)$
 - c) $n \log_2 n \in \mathcal{O}(n^2)$
 - d) $n \log_2 n \in \mathcal{O}(n)$
 - e) $3^n \in 2^{\mathcal{O}(n)}$
 - f) $3n^2 + 4n + 17 \in \mathcal{O}(n^2 n + 1)$
 - g) $(2n)! \in \mathcal{O}(n!^2)$
- 13.2 Rozhodněte, zda platí následující vztah. Odpověď zdůvodněte.

$$g(n) \notin \mathcal{O}(f(n)) \implies f(n) \in o(g(n))$$

- 13.3 Dokažte, že třída P je uzavřená na operace sjednocení, komplement a zřetězení. Rozhodněte, na které z těchto operací je uzavřena třída NP. Odpověď zdůvodněte.
- 13.4 Třída co
NP je definována jako co NP = $\{co-L \mid L \in \mathsf{NP}\}$. Rozhodněte, které z následují
cích tvrzení platí. Odpovědi zdůvodněte.
 - a) coNP = co-NP
 - b) $L_1, L_2 \in \mathsf{coNP} \implies L_1 \cap L_2 \in \mathsf{coNP}$
 - c) $L_1 \in \mathsf{NP}, L_2 \subsetneq L_1, L_2 \in \mathsf{coNP} \implies L_1 \setminus L_2 \in \mathsf{NP}$
- **13.5** Rozhodněte, zda jsou následující formule splnitelné. U splnitelných formulí popište nějaké splňující přiřazení.
 - a) $(x \lor y) \land (x \lor \neg y) \land (\neg x \lor y) \land (\neg x \lor \neg y)$
 - b) $(x \vee \neg y) \wedge (x \vee y \vee z) \wedge (\neg x \vee \neg y) \wedge (\neg x \vee y) \wedge (x \vee \neg z)$
 - c) $(x \vee \neg y) \wedge (x \vee \neg y \vee z) \wedge (\neg x \vee \neg y) \wedge (\neg x \vee y) \wedge (x \vee \neg z)$
 - d) $(u \lor \neg v \lor \neg w) \land (w \lor \neg y \lor z) \land (w \lor \neg z \lor x) \land (x \lor y \lor z)$
 - e) $(x \lor y \lor z) \land (\neg x \lor y \lor z) \land (x \lor \neg y \lor z) \land (x \lor y \lor \neg z) \land (\neg x \lor \neg y \lor z) \land (x \lor \neg y \lor \neg z) \land (\neg x \lor \neg y \lor \neg z)$
- 13.6 Dokažte, že následující problémy jsou NP-úplné.
 - a) Problém Hamiltonovské cesty v grafu: $HAMPATH = \{ \langle G, s, t \rangle \mid G \text{ je orientovaný graf obsahující Hamiltonovskou cestu z } s \text{ do } t \}$
 - b) Problém k-kliky (k-klika je úplný podgraf s k vrcholy): $CLIQUE = \{\langle G, k \rangle \mid G \text{ je neorientovaný graf s } k$ -klikou}
 - c) Problém podgrafového izomorfismu (Subgraph Isomorphism, SGI): $SGI = \{ \langle H,G \rangle \mid H = (V,E), G = (U,F) \text{ jsou neorientovan\'e grafy takov\'e, \'e existuje injektivn\'e zobrazen\'e } f:V \to U \text{ splňuj\'ec\'e } (u,u') \in E \Longrightarrow (f(u),f(u')) \in F \}$

- 13.7 Určete vztahy inkluze/rovnost mezi následujícími dvojicemi složitostních tříd. Svoje tvrzení zdůvodněte.
 - a) $\mathsf{TIME}(n^2)$ a $\mathsf{TIME}(n^3)$
 - b) $\mathsf{SPACE}(2n^2)$ a $\mathsf{SPACE}(100n^2)$
 - c) $\mathsf{SPACE}(n^2)$ a $\mathsf{TIME}(n^2)$
 - d) $\mathsf{NSPACE}(n^2)$ a $\mathsf{SPACE}(n^5)$
 - e) P a $\mathsf{TIME}(2^n)$
- 13.8 Zkonstruujte jednopáskový deterministický Turingův stroj, který rozhoduje jazyk $L=\{0^k1^k\mid k\geq 0\}$ v čase $\mathcal{O}(n\log n)$. Není nutné uvádět formální popis stroje.

Zadání cvičení IB005

1. cvičení: Operace nad jazyky

- Připomeňte základní terminologii a definice
- Připomeňte základní operace nad jazyky a přitom cvičte příklady 1.1 a 1.2
- Cvičte 1.3, u 1.3 d) nacvičte "neplatnost tvrzení dokazujeme protipříkladem".
- Cvičte 1.4
- Cvičte 1.6
- Cvičte 1.7
- Cvičte 1.8 b) a c) (jednu inkluzi skutečně dokažte)
- Připomeňte pojem gramatiky
- Cvičte 1.9
- Dle zbývajícího času, jinak za DÚ, přiklady 1.10, 1.11

2. cvičení: Konečné automaty a regulární gramatiky

- K čemu slouží Konečné automaty?
- Na příkladu 2.1 vysvětlete co jsou a jak fungují konečné automaty
- Uveďte formální definici DFA
- Příklad 2.2a-d,f (!deterministické FA!)
- Příklad 2.2g,h volitelně dle času
- Příklad 2.3a
- Příklad 2.4
- Příklad 2.5
- Příklad 1.11

3. cvičení: Pumping lemma, (Myhill-)Nerodova věta

- Znění a použití Pumping Lemma pro regulární jazyky
- Příklad 2.6a poctivě, b zrychleně, g poctivě, e zrychleně
- Znění Nerodovy věty a Myhill-Nerodovy věty
- \bullet Vztah \sim a deterministických automatů a vztah \sim_L a mininimálního automatu

- Příklad 3.9
- Příklad 3.12
- Příklad 3.10 jednu odrážku pořádně, další případně zrychleně

4. cvičení: Minimalizace a kanonizace DFA, nedeterministické FA a determinizace

- Připomeňte si \sim_L .
- Definujte minimální konečný automat.
- Příklad 3.2
- Příklad 3.3
- Definujte nedeterministikcé FA, a způsob akceptování NFA.
- Příklad 3.4
- Příklad 3.5
- Upozorněte, ze pro minimalizaci, je třeba vyjít z deterministického automatu.

5. cvičení: Ekvivalence FA, regulárních gramatik a regulárních výrazů, ε -kroky, Kleeneho věta

- Vysvětlete princip transformace odstranění ε -kroků
- Příklad 4.7
- Zopakujte vyjadřovací ekvivalenci dosud známých formalismů
- Formulujte podstatu algoritmů pro převod FA na regulární gramatiky a zpět
- Příklad 4.2
- Příklad 4.4
- Připomeňte si definici regulárních výrazů (syntax a sémantika)
- Příklad 4.11
- Princip transformace regulárních výrazů na FA a zpět
- Příklad 4.8 c)
- Příklad 4.10

6. cvičení: Uzávěrové vlastnosti regulárních jazyků

- Příklad 5.1
- Příklad 5.2
- Příklad 5.3a formulujte formalní konstrukci synchronního součinu
- Příklad 5.3b-f slovní argumentace (hint důkazu) proč ano či ne
- Příklad 5.4
- Příklad 5.5

- Příklad 5.6
- Příklad 5.7 formální konstrukce
- Příklad 4.12 a) a diskuze k 4.12 b)

7. cvičení: Bezkontextové gramatiky a derivační stromy, redukovaná CFG

- Připomeňte CFG a ukažte jak vypadá a jak funfuje CFG pro $\{a^nb^n\mid n\geq 0\}$
- Příklad 6.1
- Příklad 6.2
- Příkald 6.3
- Příklad 6.4
- Příklad 6.5
- Příklad 6.6
- Příklad 6.8
- Příklad 6.9
- Příklad 6.10
- Příklad 6.11 (dle času)
- Příklad 6.7 rozmyslet za DÚ

8. cvičení: Normální formy CFG

- Připomeňte princip ostraňování ε -pravidel
- Příklad 7.2
- Připomeňte princip ostraňování jednoduchých pravidel
- Příklad 7.5
- Definujte Chomského NF (CNF) a připomeňte postup převodu CFG do CNF
- Příklad 7.6
- Příklad 7.8a)
- Příklad 7.9
- Vysvětlete odtranění přímé levé rekurze na $A -> Ab \mid Ac \mid d \mid e$
- Příklad 7.12

9. cvičení: Zásobníkové automaty a syntaktická analýza

- Příklad 8.1 (zadejte přechodovou relaci tabulkou $[q_0Z/a \rightarrow (q_0,AZ)]$
- Příklad 8.2
- Příklad 8.3b
- Příklad 8.6
- Příklad 8.8
- Diskutujte ekvivalence způsobu akceptování zás. automatů a podstatu převodu
- Zbude-li čas, cvičte příklady 8.4, 8.5 a 8.7

10. cvičení: Uzávěrové vlastnosti bezkontextových jazyků a pumping lemma pro bezkontextové jazyky

- Příklad 7.15
- Příklad 9.1
- Příklad 9.2 (není nutné konstruovat celou přechodovou funkci)
- Příklad 9.3
- Příklad 9.4 (formální konstrukce)

11. cvičení: Konstrukce Turingových strojů

- Připomeňte jak fungují Turingovy stroje
- Příklad 10.1
- Příklad 10.2
- Příklad 10.3
- Příklad 10.4 formulujte princip algoritmu pro TS

12. cvičení: Vztah TS a gramatik typu 0, uzávěrové vlastnosti

- Příklad 11.1
- Diskutujte vztah TS acceptuje/rozhoduje a gramatiky typu 0
- Příklad 11.2
- Příkald 11.3
- Příklad 11.4a
- Příklad 11.4b-d pouze myšlenky fungování CFG
- \bullet Příklad 11.5
- Příklad 11.6

13. cvičení: Redukce

Zadání cvičení IB102

1. cvičení: Operace nad jazyky

- Připomeňte pojmy abeceda, slovo, jazyk apod.
- Připomeňte základní operace nad jazyky a procvičte je s využitím příkladů 1.1 (průnik a sjednocení cvičit netřeba) a 1.2.
- Příklad 1.3 d) e) f) h). U d) vysvětlete, že neplatnost tvrzení dokazujeme protipříkladem.
- Příklad 1.4.
- V sudých skupinách cvičte příklad 1.5, v lichých příklad 1.6.
- Příklad 1.7.
- Příklad 1.8 b). Zdůrazněte, že dva jazyky jsou stejné, právě když platí obě inkluze ⊆ a ⊇. Jednu inkluzi dokažte.
- Příklad 1.8 c). Pozor, rovnost neplatí.

2. cvičení: Gramatiky, deterministické konečné automaty

- Připomeňte pojem gramatiky a cvičte příklad 1.9 a) anebo b).
- Příklad 1.11 a) d).
- Příklad 2.1.
- Příklad 2.2 a) b) c) d). Dejte prosím studentům možnost, aby se pokusili alespoň nějaký automat sestrojit sami. Pozor, automaty musí být deterministické.
- Příklad 2.3 a) b).
- Pokud vám zbyde čas, cvičte příklad 2.5 a zbylé části příkladu 1.11.

3. cvičení: Pumping lemma, minimalizace a kanonizace konečných automatů, nedeterministické automaty

- Zopakujte Pumping lemma.
- Příklad 2.6. Z lehčích příkladů a)-c) udělejte jeden pořádně, ostatní zrychleně. Dále udělejte pořádně příklad g) a zrychleně příklad e). Upozorněte studenty, že vlastní text důkazu zůstává v podstatě stejný (důkaz lze prezentovat jako formulář, který se vždy na pár místech doplní).
- Zdůrazněte, že před minimalizací automatu je třeba odstranit nedosažitelné stavy a ztotálnit přechodovou funkci.
- Příklad 3.2 b).

- Budete-li mít pocit, ze jeden příklad na minimalizaci nestačil, pokračujte příkladem 3.1 a) a případně 3.3.
- Zopakujte nedeterministické FA.
- Příklad 3.4 a) c) d). Zbude-li čas, udělejte i ostatní části.

4. cvičení: Determinizace, odstranění ε -kroků, uzávěrové vlastnosti regulárních jazyků

- Zopakovat determinizaci.
- Příklad 3.5 a) nebo b). Upozorněte, že determinizací může vzniknout stav ∅ a jeho následníci se počítají běžným způsobem.
- Zopakovat odstranění ε -kroků.
- Příklad 4.5. Příklad řešte pomocí tabulkového zápisu. Chcete-li, můžete nejdřív ukázat, jak snadno se v
 tom udělá chyba, když se to dělá přímo na grafu.
- Budete-li mít pocit, že příklad 4.5 nestačil, pokračujte příkladem 4.7 (obvykle stačí spočítat jen pár řádků).
- Zopakujte, na které operace jsou regulární jazyky uzavřené. Diskutujte, na které operace je/není uzavřena třída konečných jazyků.
- Příklad 5.8. Tento příklad ukazuje, že konečná změna jazyka (tj. přidání či odebrání konečně mnoha slov) nemá vliv na jeho (ne)regularitu. Toto pozorování lze použít v dalších příkladech, např. v příkladu 5.3.
- Příklad 5.1.
- Dokažte uzavřenost neregulárních jazyků na komplement (včetně formálního důkazu).
- Příklad 5.2.
- Příklad 5.3.
- Příklad 5.4.

5. cvičení: Regulární výrazy, ekvivalence FA, regulárních výrazů a gramatik

- Příklad 5.5.
- Příklad 5.6.
- Příklad 4.8. Stačí 2 odrážky.
- Příklad 4.9.
- Příklad 4.10.
- Příklad 4.11.
- $\bullet\,$ Příklad 4.2.
- Příklad 4.4.

6. cvičení: Bezkontextové gramatiky, derivační stromy, jednoznačnost, redukované gramatiky

- Příklad 6.11 a).
- Příklad 6.1. U druhé gramatiky neztrácejte moc času, příklad slouží jen jako demonstrace popisné síly bezkontextových gramatik.
- Příklad 6.2.
- Příklad 6.3.
- Příklad 6.5.
- Příklad 6.6. Není třeba formálně dokazovat, že je navržená gramatika jednoznačná. Slovní argumentace postačí.
- Příklad 6.7. Stačí identifikovat problém.
- Příklad 6.8. Připomeňte, že nejdříve je třeba odstranit nenormované symboly a až pak ty nedosažitelné. Opačné pořadí může vyústit v neredukovanou gramatiku, což lze ukázat i na příkladu 6.8.
- Zbyde-li čas, dělejte další odrážky z příkladu 6.11.

7. cvičení: Transformace bezkontextových gramatik

- Příklad 7.2.
- Příklad 7.5.
- Příklad 7.6.
- Příklad 7.8 a). Pokud stíháte, udělejte i část b).
- Připomeňte odstranění přímé levé rekurze na pravidlech $A \to Ab \mid Ac \mid dA \mid e$.
- Příklad 7.12. Cvičte pouze odstranění levé rekurze (transformaci do GNF v IB102 neučíme). Pokud by jeden příklad nestačil, udělejte ještě příklad 7.13 nebo 7.10.

8. cvičení: Pumping lemma pro bezkontextové jazyky, zásobníkové automaty

- Příklad 7.15. Jednu odrážku udělejte pečlivě, v dalších se soustřeď te jen na to podstatné.
- Příklad 8.1. Zmiňte prosím, že byl definován pojem *krok výpočtu*, ale pojem *výpočet* pro PDA definován nebyl. Lze si představit hned několik definic, které kromě zjevných požadavků splňují i tyto:
 - 1. Musí se přečíst celý vstup. V tom případě by v příkladu existoval jen 1 výpočet.
 - 2. Musí se číst "dokud to lze". V tomto případě existují 4 výpočty.
 - 3. Stačí přečíst libovolnou část vstupu. V tom případě je výpočtů hodně.
- Příklad 8.3. Udělejte pořádně aspoň dvě odrážky včetně c). Zbude-li čas, cvičte další odrážky.

9. cvičení: Nedeterministická syntaktická analýza, uzávěrové vlastnosti bezkontextových, rekursivních a rekursivně spočetných jazyků

- Příklad 8.6. Ukažte, jak lze konstrukci analyzátoru shora dolů použít u příkladů na konstrukci PDA: nejdřív se zkonstruuje CFG a z ní pak lehce PDA. Velmi elegantně tak lze řešit třeba příklad 8.3 c).
- Příklad 9.1.
- Příklad 9.3.
- Příklad 11.3 a) d) e) f) g).
- Zbude-li čas, řešte příklad 11.4.

10. cvičení: Konstrukce TM, redukce a rozhodnutelnost problémů

- Příklad 10.1.
- Příklad 10.2.
- Příklad 12.1.

11. cvičení: Redukce a rozhodnutelnost problémů, P a NP

- Příklad 12.2.
- S využitím příkladu 12.3 připomeňte definici Postova korespondenčního problému.
- Příklad 12.4.
- Příklad 12.5.
- Příklad 13.3.
- Příklad 13.4.

12. cvičení: Složitostní třídy, NP-úplné problémy

- Zopakujte pojem konjunktivní normální forma (cnf-forma) formulí, pojem 3cnf-forma a problém 3SAT. Ke zopakování můžete využít část příkladu 13.5.
- Příklad 13.6 b) c).
- Příklad 13.7.
- Zbude-li čas, udělejte i příklady 13.6 a) a 13.8.

Řešení některých příkladů

Formální jazyky, regulární gramatiky

- 1.1 a) $\{xy, y, yx, z\}$ b) $\{y\}$ c) $\{xyy, xyz, yy, yz, yxy, yxz\}$, $\{yxy, yy, yyx, zxy, zy, zyx\}$ d) $\{\varepsilon\}$, $\{y, z\}$, $\{yy, yz, zy\}$, $\{yyy, yyz, yzy, yzz, zyy, zyz, zzy, zzz\}$, $\{\varepsilon, y, z, yy, yz, zy, yzz, yyy, yzz, zyy, zzz, zzy, zzz, \ldots\}$ tj. libovolné slovo z písmenek y a z včetně ε , $\{y, z, yy, yz, zy, zz, yyy, yyz, zzy, yzz, zzy, zzz, \ldots\}$ tj. libovolné slovo z písmenek y a z kromě ε
 - e) $\{x,y,z\}^* \setminus \{y,z\}$ tj. libovolné slovo složené z písmenek x,y a z včetně ε , kromě slovy a z
- **1.2 a)** $\{\varepsilon\}$, \emptyset , $\{\varepsilon\}$, $\{\varepsilon\}$ **b)** $\{\varepsilon\}$, \emptyset , \emptyset , $\{\varepsilon\}$ pokud $\varepsilon \in L$ jinak \emptyset **c)** \emptyset , \emptyset , $\{\varepsilon\}$, L
- **1.3 a)** $\{a, aa, ba, abc, \varepsilon\}$ **b)** $\{a, ba\}$ **c)** $\{aba, aabc, aa, a, aaba, aaabc, aaa, baba, baabc, baa, ba\}$ **d)** ne, protipříklad baa **e)** jedno slovo z množiny $\{a, aa, ba, aba, aba, aba, baa\}$ **f)** ano, protože $\varepsilon \in L_2$; ne, protipříklad $L_1 = \{a\}, L_2 = \{b\}$; pro pokročilé: implikace " \Longrightarrow " platí, implikace " \Longleftrightarrow " platí pouze v upravené podobě $\varepsilon \in L_2 \Longleftrightarrow (L_1 \subseteq L_1 \cdot L_2 \wedge L_1 \neq \emptyset)$ **g)** ano, ano, ne **h)** všechna slova nad danou abecedou, kromě slov z jazyka L_2 , formálně: $\{a, b, c, d\}^* \setminus L_2$
- **1.4 a)** Neplatí. Protipříklad: $L = \{aa, bb\}, i = 2, L^i = \{aaaa, aabb, bbaa, bbbb\}, \{w^i \mid w \in L\} = \{aaaa, bbbb\}$ **b)** Neplatí. Protipříklad: $L = \{aa\}, L^2 = \{aaaa\}, \text{ ale } |aaaa| \neq 2$ **c)** $L = \{a\}$
- **1.5** $L_1 = L_4 = L_5 \supsetneq L_2, \ L_1 = L_4 = L_5 \supsetneq L_3, \ L_1 = L_4 = L_5 \supsetneq L_6,$ neporovnatelné: L_2, L_3, L_6

 L_1 – všechna slova nad $\{x, y, z\}$

 L_2 – všechna slova nad $\{x, y, z\}$ tvaru xyzxyzxyz...xyz

 L_3 – všechna slova nad $\{x,y,z\}$, ve kterých jsou všechna x před všemi y a z a všechna y před všemi z

 L_4 – všechna slova nad $\{x,y,z\};$ protože $\{x,y,z\}\subset \{x\}^*\cdot \{y\}^*\cdot \{z\}^*$

 L_5 – všechna slova nad $\{x,y,z\}$; protože $\{x,y,z\}\subset\{x,y\}^*\cup\{z\}^*$

 L_6 – všechna slova nad $\{x,y,z\}$, která obsahují alespoň jeden výskyt x

 $\textbf{1.6} \ \ L_1=L_5\supsetneq L_2\supsetneq L_6, \ L_1=L_5\supsetneq L_3\supsetneq L_4, \ L_2\supsetneq L_4, \ \text{neporovnateln\'e:} \ L_2 \ \text{a} \ L_3, \ L_6 \ \text{a} \ L_4$

 L_1 – všechna slova nad $\{x, y, z\}$

 L_2 – všechna slova nad $\{x,y,z\}$, kromě ε

 L_3 – všechna slova nad $\{x,y,z\}$, ve kterých jsou všechna x před všemi y a z a všechna y před všemi z

 L_4 – ty slova z $L_3,$ která mají právě 2 výskyty \boldsymbol{y}

 L_5 – všechna slova nad $\{x,y,z\};$ protože $\{x,y,z\}\subset \{x\}^*\cdot \{y\}^*\cdot \{z\}^*$

 L_6 – všechna slova nad $\{x,y,z\}$, která obsahují alespoň jeden výskyt x

- 1.7 a) $(L_1 \cup L_2)^* \cdot L_1 \cdot (L_1 \cup L_2)^* \cdot L_1 \cdot (L_1 \cup L_2)^*$ b) $(L_1 \cdot L_1 \cup L_1 \cdot L_2 \cup L_2 \cdot L_1 \cup L_2 \cdot L_2)^*$ c) $L_1 \cdot (L_1 \cup L_2)^* \cdot L_2$ d) $L_1 \cup L_2 \cup L_1 \cdot (L_1 \cup L_2)^* \cdot L_1 \cup L_2 \cdot (L_1 \cup L_2)^* \cdot L_2$ a pokud naznáme, že ε také začíná a končí stejným znakem, je třeba k řešení přidat $\cup (L_1^* \cap L_2^*)$ e) $(L_1 \cup L_2)^* \cdot L_1 \cdot L_2 \cdot L_1 \cdot (L_1 \cup L_2)^*$ f) $(L_1 \cdot L_1 \cup L_1 \cdot L_2 \cup L_2 \cdot L_1 \cup L_2 \cdot L_2)^* \cap L_1 \cdot (L_1 \cup L_2)^* \cdot L_2$ g) $((L_1 \cdot L_1 \cup L_1 \cdot L_2 \cup L_2 \cdot L_1 \cup L_2 \cdot L_2)^*)^C$
- **1.8 a)** ne, $L_1 = \{a\}$ a $L_2 = \{b\}$ **b)** ano, nutno dokázat obě inkluze \subseteq a \supseteq **c)** ne, $L_1 = \{a\}$, $L_2 = \{ab\}$ a $L_3 = \{b, \varepsilon\}$ **d)** ne, $L_1 = \{a\}$ a $L_2 = \{b\}$ **e)** ne, $L_1 = \{a\}$ a $L_2 = \{b\}$ **f)** ano, nutno dokázat obě inkluze \subseteq a \supseteq **g)** ne, $L_1 = \{a\}$ a $L_2 = \{b\}$
- **1.9 a)** $\{a^n b^n \mid n \in \mathbb{N}_0\}$, typu 0 **b)** $\{b, c\}^* \cdot \{a\} \cdot \{a, b, c\}^+$, typu 3 (regulární)
- **1.10** $\{w \in \{a,b\}^* \mid \#_a(w) = 2k, \#_b(w) = 2j; j, k \in \mathbb{N}_0\}$, dolní indexy u navržených neterminálů představují zbytek po dělení počtu 'a' (resp. 'b') dvěma

Deterministické konečné automaty, pumping lemma

b) $L = \{a\} \cdot \{b, aa\}^* \cdot \{a\}$ **c)** $L = (\{a\} \cdot \{b\}^* \cdot \{aa\})^* \cdot (\{a\} \cdot \{b\}^* \cdot (\{a\} \cup \{ab\} \cdot \{a, b\}^*) \cup \{b\} \cdot \{a, b\}^*)$

$$\mathbf{c}) \xrightarrow{a,b} 1 \xrightarrow{c} 2 \xrightarrow{d} 3 \xrightarrow{d} 4 \xrightarrow{c} 5 \xrightarrow{a,b} 6$$

- **2.4** $L = \{a\}.\{b\}^*.\{a\}.(\{c\}.\{d\})^* \cup \{b\}$
- **2.5** $L = \{w \in \{a,b\}^* \mid \#_a(w) = \#_b(w) \land w = u.v \Rightarrow |\#_a(u) \#_b(u)| \le 3\}$
- ${\bf 2.6}\,$ U příkladu e) je třeba volit slovo $a^nb^{n!+n}.$

1.11b
$$\longrightarrow S \xrightarrow{a,b,c,d} S_1 \xrightarrow{a,b,c,d} S_2$$

1.11f Není regulární.

Minimalizace DFA, nedeterministické FA, (Myhill-) Nerodova věta

3.1 a)				b)			
312 (4)		a	b	~)		a	b
	\rightarrow A	В	С		\leftrightarrow A	В	С
	В	D	В		В	В	С
	С	С	D		С	С	D
	\leftarrow D	С	В		\leftarrow D	D	С
3.2 a)	,			b)			
<i>'</i>		a	b	_ ′		a	b
	\rightarrow A	В	С		\rightarrow A	В	С
	В	С	A		В	D	В
	С	С	D		$\leftarrow C$	В	С
	D	С	Е		\leftarrow D	E	В
	← E	F	Е		Е	F	С
	F	D	F		F	F	F

Výsledné automaty v obou případech nejsou ekvivalentní automatům uvedeným v zadání vpravo.

3.3 Není.

3.5 a)					
,			a	b	c
	\rightarrow	[1]	[23]	[34]	[1]
	\leftarrow	[23]	[123]	[14]	[234]
		[34]	[123]	[1]	[34]
	\leftarrow	[123]	[123]	[134]	[1234]
		[14]	[123]	[134]	[134]
	\leftarrow	[234]	[123]	[14]	[234]
		[134]	[123]	[134]	[134]
	\leftarrow	[1234]	[123]	[134]	[1234]

		a	b	c
\rightarrow	[1]	[12]	[1]	[1]
\leftarrow	[12]	[12]	[13]	[1]
	[13]	[12]	[1]	[14]
	[14]	[125]	[1]	[1]
\leftarrow	[125]	[12]	[136]	[1]
	[136]	[127]	[1]	[14]
\leftarrow	[127]	[12]	[13]	[1]

- **3.6** $(\{a,b\},\{b\}\cup\{a,b\},\{b\},\{a,b\})^*,\{a,b\},\{b\})$
- **3.8 a)** Předpokládejme, že takový automat existuje. Pak ze slov a^0, a^1, a^2, a^3, a^4 musejí dvě nutně padnout do stejné třídy rozkladu Σ^*/\sim_L . Označme je $a^i, a^j \ (i \neq j)$ a bez újmy na obecnosti předpokládejme, že i < j. Pak platí

b)

 $a^{i}.a^{4-j} = a^{4+i-j} \notin L$ $a^{j}.a^{4-j} = a^{4} \in L$

a tedy $a^i \not\sim_L a^j \Rightarrow |\sim_L| \geq 5$.

- b) Analogicky jako v a).
- **3.10 a)** Důkaz sporem. Předpokládejme, že L je regulární. Pak prefixová ekvivalence \sim_L má konečný index, označme jej n. Pak ovšem ze slov $a, a^2, a^4, \dots, a^{2^n}$ nutně musí některá dvě slova padnout do stejné třídy rozkladu, označme je $a^k, a^l \ (k \neq l)$. Po přiřetězení slova a^k dostáváme slovo $a^k a^k \in L$ a slovo $a^l a^k \notin L$. Tím je dosažen spor s předpokladem a L není regulární.
 - b) $\varepsilon, a, a^2, ..., a^n$ z čehož a^k, a^l (BÚNO k < l), která $a^k b^k \in L, a^l b^k \notin L$
 - c) $abb, a^2bb, ..., a^{n+1}bb$ z čehož a^kbb, a^lbb $(k \neq l)$, která $a^kbba^k \in L, a^lbba^k \notin L$ d) $\varepsilon, a, a^2, ..., a^n$ z čehož a^k, a^l (BÚNO k < l), která $a^kb^k \notin L, a^lb^k \in L$
- **3.11** Definujeme binární relaci ~ takto: $u \sim v \iff \#_a(w) \equiv \#_b(w) \pmod{3}$ \sim je ekvivalence, \sim je pravá kongruence, $|\sim|=3$, tedy má konečný index, $L=\{w\mid \#_a(w)\mod 3=0\}$
- 3.12 a) 4 b) nemá konečný index
- **3.13 a)** \sim je ekvivalence i pravá kongruence, index je 4. L může být libovolný jazyk, jehož minimální automat odpovídá přímo relaci ~. Takových jazyků je 12, což je vidět po nakreslení automatu (bez akceptujících stavů) podle \sim a zvážení, pro které označení koncových stavů je automat minimální. Jazyky L' jsou právě ty, které lze popsat stejným automatem, ale s takovou množinou koncových stavů, při které automat není minimální. Např. $L' = \{a, b\}^*$.
 - **b)** ~ není ekvivalence (není tranzitivní).
 - c) ~ je ekvivalence i pravá kongruence, index je 9. Lze podle ní sestavit tento automat:

Je vidět, že automat nebude při žádném označení koncových stavů minimální: stavy $\varepsilon, 0a, 0b$ mají stejné přechody a vždy budou alespoň dva z nich označeny jako akceptující nebo neakceptující a tudíž ty dva stavy budou jazykově ekvivalentní. Naopak L' může být jakýkoliv jazyk rozpoznávaný uvedeným automatem s libovolným označením koncových stavů. Takových jazyků L' je tedy celkem 2^9 .

Regulární gramatiky a výrazy \Leftrightarrow FA, $\varepsilon\text{-kroky},$ Kleeneho věta

4.1

L				
		a	b	c
	$\leftrightarrow \overline{S}$	$\{\overline{A},q_f\}$	$\{\overline{C}\}$	Ø
	\overline{A}	$\{\overline{A}\}$	$\{\overline{B},q_f\}$	$\{q_f\}$
	\overline{B}	$\{\overline{B},\overline{C}\}$	$\{\overline{C}\}$	$\{\overline{A},q_f\}$
	\overline{C}	$\{\overline{A},q_f\}$	$\{\overline{B},q_f\}$	Ø
	$\leftarrow q_f$	Ø	Ø	Ø

4.2

	a	b	c
$\rightarrow \overline{S}$	$\{\overline{X}\}$	$\{\overline{Y}\}$	$\{q_f\}$
\overline{X}	Ø	$\{\overline{S},\overline{X}\}$	Ø
\overline{Y}	Ø	$\{\overline{S}\}$	$\{\overline{Z}\}$
\overline{Z}	$\{\overline{S}\}$	$\{q_f\}$	$\{q_f\}$
$\leftarrow q_f$	Ø	Ø	Ø

4.5

	a	b	c	d
$\leftrightarrow 0$	$\{0, 1, 2, 3, 4\}$	Ø	Ø	${\{3,4\}}$
1	$\{0, 1, 2, 3, 4\}$	Ø	Ø	${\{3,4\}}$
$\leftarrow 2$	$\{3, 4\}$	Ø	Ø	Ø
3	Ø	${\{3,4\}}$	{2}	Ø
4	Ø	${3,4}$	{2}	Ø

4.7

	a	b	c
$\rightarrow 1$	$\{1, 2, 5, 6\}$	$\{2, 3, 5, 6\}$	Ø
2	$\{2, 5, 6\}$	$\{2, 3, 5, 6\}$	Ø
3	Ø	$\{2, 6\}$	Ø
4	$\{1, 2, 5, 6\}$	$\{1, 2, 3, 4, 5, 6\}$	$\{2,3,6\}$
5	$\{2, 5, 6\}$	$\{2, 3, 5, 6\}$	$\{2, 3, 6\}$
$\leftarrow 6$	$\{2, 5, 6\}$	$\{2, 3, 5, 6\}$	$\{2,3,6\}$

- **4.11 a)** $(a+b)^*ab$ **b)** $b^*(ab^*ab^*)^*$ **c)** $a(a+b)^*a+b(a+b)^*b+a+b$ (pokud ε také začíná a končí na stejným symbolem, přičteme ještě ε) **d)** $((a+b)(a+b))^*$
- **4.12 a)** M_1 je třída všech konečných jazyků.

b) Nechť Σ_1 je nějaká abeceda. Pak $C(\Sigma_1)$ definujeme jako množinu všech slov, kde se každé písmeno z abecedy vyskytuje aspoň jednou, tj.

$$C(\Sigma') = \{ w \in \Sigma_1^* \mid \forall a \in \Sigma_1 : \#_a(w) > 0 \}.$$

Pak M_2 je třída všech jazyků L takových, že pro všechny Σ_1 , které jsou podmnožinou abecedy jazyka L, platí: $L \cap C(\Sigma_1)$ je konečný nebo $C(\Sigma_1) \setminus L$ je konečný.

Poměrně snadno se ukáže, že M_2 všechny takové jazyky musí obsahovat a že je tato třída zároveň uzavřená na sjednocení, průnik a komplement.

c) M_3 je třída všech konečných jazyků.

Uzávěrové vlastnosti \mathcal{R}

- **5.1** Neplatí. Jazyky $L_i = \{a^i b^i\}$ pro každé i > 0 jsou konečné a tudíž regulární, ale $\bigcup_{i=1}^{\infty} L_i = \{a^n b^n \mid n > 0\}$ není regulární.
- **5.2** $L_i = \{a, b\}^* \setminus \{a^i b^i\}$ pro každé i > 0. Pak $\bigcap_{i=1}^{\infty} L_i = \{a, b\}^* \setminus \{a^n b^n \mid n > 0\}$, což není regulární jazyk, protože $\{a^n b^n \mid n > 0\}$ není regulární jazyk a regulární jazyky jsou uzavřené na doplněk.
- **5.3** Neregulární jazyky jsou uzavřené na komplement. U všech ostatních operací lze najít jazyky takové, že výsledkem je neregulární jazyk, i takové, že výsledek je regulární. Nechť $R = \{a^n b^n \mid n > 0\}$ je jazyk nad $\Sigma = \{a, b\}$. R jistě není regulární.

operace	regulární výsledek	neregulární výsledek
$L_1 \cap L_2$	$R \cap co - R = \emptyset$	$R \cap R = R$
$L_1 \cup L_2$	$R \cup co - R = \Sigma^*$	$R \cup R = R$
$L_1 \setminus L_2$	$R \setminus R = \emptyset$	$R \setminus co - R = R$
$L_1 \cdot L_2$	$(R \cup \{\varepsilon\}) \cdot co - R = \Sigma^*$	$R \cdot R$
L_1^*	$(co-R)^* = \Sigma^*$	R^*

- **5.4** Platí.
- 5.5 Ani jedna implikace neplatí.
- **5.6** Stačí zvolit L_1 jako libovolný neregulární jazyk a L_2 jako doplněk L_1 .

Bezkontextové gramatiky

- **6.1 a)** $L = \{w \in \{a, b\}^* \mid \#_a(w) = \#_b(w)\}$ **b)** Jazyk se nedá moc rozumně popsat.
- 6.4 Ano, každý regulární jazyk je jednoznačný CFL.

Normální formy CFG, pumping lemma pro CFL

7.9 Minimální i maximální délka odvození je 2n-1.

Zásobníkové automaty

8.2 a) $\{a^ib^j \mid i>j>0\}$

Uzávěrové vlastnosti CFL

9.3 a) ano **b)** ne **c)** ano **d)** třída bezkontextových jazyků bez vlastnosti sebevložení se rovná třídě regulárních jazyků

Konstrukce Turingových strojů

10.2 Návod: TS bude donekonečna číst vstupní pásku a posouvat se vpravo, nebo bude ve dvou krocích opakovaně posunovat hlavu vlevo a vpravo.

Vztah TS a gramatik typu 0, uzávěrové vlastnosti

11.3 a) Neplatí. Stačí vzít libovolný neregulární rekurzivně spočetný L nad abecedou Σ a $R = \Sigma^*$. b) Platí (viz. skripta). c) Platí (viz. skripta). d) Platí. e) Platí. f) Neplatí. Stačí vzít $R \supseteq L$. g) Platí. Plyne z uzavřenosti rekurzivních jazyků na sjednocení.

11.6 $L = \{w \mid w \text{ je k\'od dvojice } (A, v) \text{ takov\'e, že TS } A \text{ nezastav\'e sv\'uj v\'epočet nad slovem } v\}$

Redukce

- 12.1 a) Platí (přímo z definičního vztahu). b) Neplatí. A = {ww | w ∈ {a,b}*}, B = {0}, f(x) = 0 pokud x je tvaru ww, f(x) = 1 jinak. c) Platí. d) Platí (připomeňme, že A ≤_m B implikuje co-A ≤_m co-B).
 e) Neplatí. A = ∅, B je problém zastavení. f(x) = y, kde y je libovolné slovo nad {0, 1, #}, které neleží v B. f) Platí. f(w) = ⟨M', w⟩, kde M' je TM akceptující A takový, že místo do zamítajícího stavu začne cyklit. Tedy M' akceptuje w právě když zastaví. Funkce f(w) = ⟨M, w⟩, kde M je libovolný zvolený TM akceptující A naopak redukcí být nemusí (např. pokud je A rekurzivní a M je úplný).
- 12.2 A není rekurzivní, protože na něj lze redukovat problém zastavení. A je rekurzivně spočetný (lze ukázat přímo nebo redukcí na problém akceptování). co-A není rekurzivně spočetný (A by pak byl rekurzivní).
- **12.3** Řešením je posloupnost 2, 2, 4, 3, 3, 1, 1.
- 12.4 Lze ukázat redukcí běžného PCP na problém ze zadání.
- **12.5** Lze ukázat redukcí co-NONEMPTY na EQ. $NONEMPTY = \{\langle \mathcal{M} \rangle \mid \mathcal{M} \text{ je TM a } L(\mathcal{M}) \neq \emptyset \}$ je problém neprázdnosti, který je nerozhodnutelný a tudíž i jeho doplňek je nerozhodnutelný.

Složitost

13.1 Postupujeme podle definice \mathcal{O} . Buď najdeme konstanty n_0 a c tak, že pro všechna $n \geq n_0$ platí definiční nerovnost, nebo ukážeme (většinou sporem), že takové konstanty neexistují. a) Volíme například $n_0 = 1$, c = 3. Pro všechna $n \geq n_0$ platí $2n \leq 3n = cn$ a proto $2n \in \mathcal{O}(n)$. b) Předpokládejme, že existují n_0 a c takové, že pro všechna $n \geq n_0$ platí $n^2 \leq cn$. Položme $m = \max\{c, n_0\} + 1$. Zjevně $m \geq n_0$, ale $m^2 > cm$. To je spor a proto $n^2 \notin \mathcal{O}(n)$. c) Platí. d) Neplatí. e) Nejprve připomeňme definici. Píšeme $f(n) \in 2^{\mathcal{O}(g(n))}$, pokud existují $n_0, c \in \mathbb{N}$ takové, že pro všechna $n \geq n_0$ platí $f(n) \leq 2^{c \cdot g(n)}$. Analogicky se definuje i význam dalších aritmetických výrazů obsahujících $\mathcal{O}(g(n))$, jako například $2^{2^{\mathcal{O}(g(n))}}$.

Vztah $3^n \in 2^{\mathcal{O}(n)}$ samozřejmě platí. Stačí zvolit $n_0 = 1$ a c = 2. f) Platí. Stačí zvolit c = 4 a dopočítat dostatečně velké n_0 . g) Neplatí. V důkazu sporem stačí zvolit $m = \max\{1, c, n_0\}$.

13.2 Tento vztah obecně neplatí. Protipříkladem jsou například funkce f(n) = 1 a

$$g(n) = \begin{cases} 1 & \text{pokud } n \text{ je sud\'e}, \\ n & \text{jinak.} \end{cases}$$

Zjevně $g(n) \notin \mathcal{O}(f(n))$, protože funkce g není shora omezená a tudíž pro každé $n_0, c \in \mathbb{N}$ existuje $n > n_0$ splňující $g(n) > c \cdot f(n) = c$. Vztah $f(n) \in o(g(n))$ ovšem neplatí, protože funkce $\frac{f(n)}{g(n)}$ nemá pro n jdoucí do nekonečna limitu.

13.3 Nechť M_A, M_B jsou jednopáskové deterministické Turingovy stroje pracující s časovou složitostí $\mathcal{O}(p_A), \mathcal{O}(p_B)$ (kde p_A a p_B jsou polynomy), které akceptují jazyky A, B. Nejprve ukážeme, že třída P je uzavřená na všechny tři operace.

Popíšeme dvoupáskový deterministický Turingův stroj M akceptující jazyk $A \cup B$. Stroj M pro vstup x nejprve zkopíruje vstup na druhou pásku (v čase $\mathcal{O}(n)$), pak na druhé pásce simuluje výpočet stroje M_A . Je-li v této simulaci dosažen akceptující stav stroje M_A , pak i stroj M akceptuje. V opačném případě stroj M simuluje na první pásce výpočet stroje M_B . Je-li v této simulaci dosažen akceptující stav stroje M_B , pak i stroj M akceptuje, jinak zamítá. Je zřejmé, že stroj M akceptuje jazyk $A \cup B$ a že pracuje v čase $\mathcal{O}(n+p_A(n)+p_B(n))$, tedy v polynomiálním čase.

Stroj akceptující komplement jazyka A získáme ze stroje M_A záměnou akceptujícího a zamítajícího stavu. Takto získaný stroj pracuje se stejnou časovou složitostí jako M_A .

Popíšeme třípáskový Turingův stroj M akceptující jazyk A.B. Stroj postupně zkouší rozdělit vstupní slovo $x = x_1x_2...x_n$ na všechny možné dvojice podslov (nejprve ε a x, pak x_1 a $x_2...x_n$, pak x_1x_2 a $x_3...x_n,...$, nakonec x a ε). První podslovo vždy zkopíruje na druhou pásku a simuluje na něm výpočet stroje M_A . Druhé podslovo zkopíruje na třetí pásku a simuluje na něm výpočet stroje M_B . Pokud obě simulace dospějí do akceptujícího stavu, stroj M akceptuje. V opačné situaci postup opakujeme pro další dvojici podslov. Pokud už byly vyzkoušeny všechny dvojice, stroj M zamítne. Stroj M pracuje v čase $\mathcal{O}(n \cdot (n + p_A(n) + p_B(n)))$, tedy v polynomiálním čase.

Třída NP je uzavřená na sjednocení i na zřetězení. V obou případech lze použít stejnou argumentaci jako u třídy P. V případě zřetězení lze algoritmus stroje M vylepšit tak, že neprochází všechny dvojice podslov, ale nedeterministicky uhodne správné rozdělení na podslova.

Uzavřenost třídy NP na komplement je otevřený problém (známý jako NP = conP?). Výše uvedená argumentace pro P v tomto případě nefunguje: záměnou akceptujícího a zamítajícího stavu u nedeterministického stroje získáme stroj, který akceptuje slovo w pokud existuje zamítající výpočet původního stroje nad tímto slovem. Žádoucí by ovšem bylo, aby zkonstruovaný stroj akceptoval slovo w pokud jsou v počety původního stroje nad tímto slovem zamítající.

- 13.4 a) Neplatí. Stačí uvážit libovolný jazyk $L \in P \subseteq NP$. Jelikož třída P je uzavřená na doplněk, tak i $co-L \in P \subseteq NP$. Tedy $co-L \notin co-NP$, ale přitom $co-L \in coNP$. b) Platí. Jelikož $co-L_1, co-L_2 \in NP$ a NP je uzavřené na sjednocení, tak $co-L_1 \cup co-L_2 \in NP$. Tedy $L_1 \cap L_2 \in coNP$. c) Platí. Jelikož $co-L_2 \in NP$ a NP je uzavřené na průnik (lze lehce dokázat), tak $L_1 \cap co-L_2 = L_1 \setminus L_2 \in NP$.
- 13.6 Příslušnost do NP lze dokázat snadno. NP-těžkost lze dokázat redukcí: a) z problému 3SAT (viz Sipser: Theorem 7.35 v 1. vydání, Theorem 7.46 ve 3. vydání) b) z problému 3SAT (viz Sipser: Theorem 7.26 v 1. vydání, Theorem 7.32 ve 3. vydání) c) z problému CLIQUE. pro danou instanci $\langle G, k \rangle$ problému CLIQUE lze v polynomiálním čase vytvořit dvojici $\langle H_k, G \rangle$, kde H_k je úplný graf s k vrcholy. Je zřejmé, že $\langle G, k \rangle \in CLIQUE$ právě tehdy, když $\langle H_k, G \rangle \in SGI$.

Abychom se ujistili, že redukce $CLIQUE \leq_p SGI$ je polynomiální i při binárním zakódování k, můžeme ji vylepšit tak, že nejprve ověříme, zda graf G má alespoň k vrcholů. V případě kladné odpovědi pokračujeme jako v předchozím případě (dvojici $\langle H_k, G \rangle$ lze jistě zkonstruovat v čase kvadratickém vzhledem k počtu vrcholů grafu G). V opačném případě jistě platí, že $\langle G, k \rangle \not\in CLIQUE$ a tudíž stačí vygenerovat libovolnou dvojici grafů, která nepatří do SGI (například $\langle H, G' \rangle$, kde H je graf s jedním vrcholem v a hranou (v, v) a G' je graf s jedním vrcholem, ale bez hrany).

- **13.7 a)** $\mathsf{TIME}(n^2) \subseteq \mathsf{TIME}(n^3)$ (ve skutečnosti lze dokázat i $\mathsf{TIME}(n^2) \subsetneq \mathsf{TIME}(n^3)$) **b)** $\mathsf{SPACE}(2n^2) = \mathsf{SPACE}(100n^2)$ **c)** $\mathsf{SPACE}(n^2) \supseteq \mathsf{TIME}(n^2)$ **d)** $\mathsf{NSPACE}(n^2) \subseteq \mathsf{SPACE}(n^5)$ (ve skutečnosti lze dokázat i $\mathsf{NSPACE}(n^2) \subsetneq \mathsf{SPACE}(n^5)$) **e)** $\mathsf{P} \subseteq \mathsf{TIME}(2^n)$, protože $n^k \in \mathcal{O}(2^n)$ pro každé k
- 13.8 viz Sipser, za Definition 7.7.