Corrigé du test no. 4 Hiver 2000

Question no.1

Le circuit suivant est initialement au repos.

La source v_s représente une source continue de 120 V que l'on applique brusquement à t = 0:

$$v_c = 120u(t)$$

- a) En utilisant la transformation de Laplace, déterminer (sans tracer) la tension $v_2(t)$.
- b) Quelle est la durée du régime transitoire?

a) Circuit transformé (domaine de Laplace):

La tension V₂ est calculée à l'aide de la loi du diviseur de tension:

$$V_2 = \frac{Z_2}{Z_2 + 0.1s + 20} \times V_s = \frac{\frac{10000}{s + 100}}{\frac{10000}{s + 100} + 0.1s + 20} \times \frac{120}{s} = \frac{1.2 \times 10^6}{s(0.1s^2 + 30s + 12000)} = \frac{1.2 \times 10^7}{s(s^2 + 300s + 1.2 \times 10^5)}$$

Les pôles de V_2 :

$$p_1 = 0$$

$$p_2 = -150 + j312.25$$
 $p_3 = -150 - j312.25$

On décompose V_2 en fractions partielles:

$$V_2 = \frac{1.2 \times 10^7}{s(s^2 + 300s + 1.2 \times 10^5)} = \frac{1.2 \times 10^7}{s(s + 150 - j312.25)(s + 150 + j312.25)}$$

$$V_2 = \frac{A}{s} + \frac{B}{(s + 150 - j312.25)} + \frac{B^*}{(s + 150 + j312.25)}$$

On calcule les constantes A et B:

$$A = \frac{1.2 \times 10^7}{\left(s^2 + 300s + 1.2 \times 10^5\right)} \bigg|_{s = 0} = 100$$

$$B = \frac{1.2 \times 10^7}{s(s + 150 + j312.25)} \bigg|_{s = -150 + j312.25} = 55.47e^{j2.694}$$

La tension $v_2(t)$ est égale à la transformée inverse de Laplace de V_2 :

$$v_2(t) = [100 + 110.94e^{-150t}\cos(312.25t + 2.694)]u(t)$$

b) La durée du régime transitoire est égale à 5 fois la constante de temps: $d = \frac{5}{150} = 33.3 \text{ ms}$.

Question no.2

Le circuit suivant est initialement au repos.

La source v_s représente une source sinusoïdale d'amplitude 60 V et de fréquence 50 Hz que l'on applique brusquement à t=0:

$$v_s = 60\cos(\omega t)u(t)$$

avec $\omega = 100\pi$.

- a) En utilisant la transformation de Laplace, déterminer (sans tracer) le courant $i_1(t)$.
- b) Quelle est la durée du régime transitoire?

Le courant I₁ est donné par:

$$I_{1} = \frac{V_{s}}{25 + Z_{2}} = \frac{60s}{s^{2} + \omega^{2}} \times \frac{1}{25 + \frac{10000s}{0.1s^{2} + 100000}} = \frac{60s}{s^{2} + \omega^{2}} \times \frac{0.1s^{2} + 100000}{2.5s^{2} + 10000s + 2.5 \times 10^{6}}$$

$$I_1 = \frac{60s}{s^2 + \omega^2} \times \frac{0.1s^2 + 100000}{2.5(s^2 + 4000s + 1 \times 10^6)} = \frac{6s(s^2 + 1 \times 10^6)}{2.5(s^2 + \omega^2)(s^2 + 4000s + 1 \times 10^6)}$$
Les pôles de I_1 sont: $p_1 = j\omega$ $p_2 = -j\omega$ $p_3 = -3732.1$ $p_4 = -267.9$

On décompose I₁ en fractions partielles:

$$I_1 = \frac{6s(s^2 + 1 \times 10^6)}{2.5(s - j\omega)(s + j\omega)(s + 3732.1)(s + 267.9)} = \frac{A}{s - j\omega} + \frac{A^*}{s + j\omega} + \frac{B}{s + 3732.1} + \frac{C}{s + 267.9}$$

On calcule les constantes A, B et C:

$$A = \frac{6s(s^2 + 1 \times 10^6)}{2.5(s + j\omega)(s + 3732.1)(s + 267.9)} \bigg|_{s = j\omega} = 0.7e^{-j0.949}$$

$$B = \frac{6s(s^2 + 1 \times 10^6)}{2.5(s^2 + \omega^2)(s + 267.9)}\bigg|_{s = -3732.1} = 2.752$$

$$C = \frac{6s(s^2 + 1 \times 10^6)}{2.5(s^2 + \omega^2)(s + 3732.1)} \bigg|_{s = -267.9} = -1.167$$

Le courant i₁(t) est égale à la transformée inverse de Laplace de I₁:

$$i_1(t) = [1.4\cos(100\pi t - 0.949) + 2.752e^{-3732.1t} - 1.167e^{-267.9t}]u(t)$$

b) La durée du régime transitoire est égale à 5 fois la constante de temps la plus longue: $d = \frac{5}{267.9} = 18.7 \text{ ms}$