1

Assignment - 2

Soham Bhatt SM21MTECH14004

PROBLEM

1. Find the in-center of the triangle formed by the following points lie,

SOLUTION

First, we need to find the intersection point of given three lines,

Let's find the intersection of line (i) and (ii),

Let's write it in AX = B form,

$$\begin{pmatrix} X_1 & Y_1 \\ X_2 & Y_2 \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} C_1 \\ C_2 \end{pmatrix}$$

$$\begin{pmatrix} 5 & -12 \\ 5 & 12 \end{pmatrix} \begin{pmatrix} X_1 \\ Y_1 \end{pmatrix} = \begin{pmatrix} 0 \\ -60 \end{pmatrix}$$

By solving above equation, we are getting the intersection point of line (i) and (ii), Let's call it as M:

$$\mathbf{M} = \begin{pmatrix} X_1 \\ Y_1 \end{pmatrix} = \begin{pmatrix} -6 \\ 2.5 \end{pmatrix} \tag{1}$$

In the same way, intersection of line (ii) and (iii) is,

$$\begin{pmatrix} 5 & 12 \\ 12 & 5 \end{pmatrix} \begin{pmatrix} X_2 \\ Y_2 \end{pmatrix} = \begin{pmatrix} -60 \\ 60 \end{pmatrix}$$

By solving above equation, we are getting the intersection point of line (ii) and (iii), Let's call it as N:

$$\mathbf{N} = \begin{pmatrix} X_2 \\ Y_2 \end{pmatrix} = \begin{pmatrix} 8.571 \\ -8.571 \end{pmatrix} \tag{2}$$

In the same way, intersection of line (i) and (iii) is,

$$\begin{pmatrix} 5 & -12 \\ 12 & -5 \end{pmatrix} \begin{pmatrix} X_3 \\ Y_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 60 \end{pmatrix}$$

By solving above equation, we are getting the intersection point of line (i) and (iii), Let's call it as O:

$$O = \begin{pmatrix} X_3 \\ Y_3 \end{pmatrix} = \begin{pmatrix} 4.260 \\ 1.775 \end{pmatrix} \tag{3}$$

Now we need to find difference between each vectors,

Difference between vectors N and O:

$$N = \begin{pmatrix} 8.571 \\ -8.571 \end{pmatrix}, O = \begin{pmatrix} 4.260 \\ 1.775 \end{pmatrix}$$

$$0-N = \begin{pmatrix} -4.311 \\ 10.345 \end{pmatrix}$$

$$\|\mathbf{O} - \mathbf{N}\| = \sqrt{(-4.311^2 + 10.345^2)}$$

$$\|\mathbf{O} - \mathbf{N}\| = 11.207$$

$$(\mathbf{D_1})$$

Difference between vectors M and O:

$$\mathbf{M} = \begin{pmatrix} -6\\2.5 \end{pmatrix}, \mathbf{O} = \begin{pmatrix} 4.260\\1.775 \end{pmatrix}$$
$$0 \cdot \mathbf{M} = \begin{pmatrix} 10.26\\-0.725 \end{pmatrix}$$
$$\|\mathbf{O} - \mathbf{M}\| = \sqrt{(10.26^2 + -0.725^2)}$$
$$\|\mathbf{O} - \mathbf{M}\| = 10.285 \qquad (\mathbf{D_2})$$

Difference between vectors M and N:

$$\mathbf{M} = \begin{pmatrix} -6\\2.5 \end{pmatrix}, \ \mathbf{N} = \begin{pmatrix} 8.571\\-8.571 \end{pmatrix}$$

$$\mathbf{N} \cdot \mathbf{M} = \begin{pmatrix} 14.571\\-11.071 \end{pmatrix}$$

$$\|\mathbf{N} - \mathbf{M}\| = \sqrt{(14.571^2 + -11.071^2)}$$

$$\|\mathbf{N} - \mathbf{M}\| = 18.299 \qquad (\mathbf{D_3})$$

Formula for finding in-center (I) of triangle with three given coordinates is,

$$\left(\frac{D_1X_1 + D_2X_2 + D_3X_3}{D_1 + D_2 + D_3}, \quad \frac{D_1Y_1 + D_2Y_2 + D_3Y_3}{D_1 + D_2 + D_3}\right)$$

By putting all the values,

$$\left(\frac{(11.207)(-6) + (10.285)(8.571) + (18.299)(4.260)}{11.207 + 10.285 + 18.299}, \frac{(11.207)(2.5) + (10.285)(-8.571) + (18.299)(1.775)}{11.207 + 10.285 + 18.299}\right)$$

$$I = \begin{pmatrix} 2.485 \\ -0.695 \end{pmatrix}$$