Class 7: Machine Learning 1

Allen (A16897142)

Table of contents

Clustering	1
K-means	4
Hierarchal Clustering	7
Principal Component Analysis (PCA)	9
PCA to the rescue!	12

We will be exploring unsupervised machine learning methods. The first ones are clustering and dimensionality reduction.

Clustering

Let's make up some data to cluster where we know what the answer will be. The rnorm() function will be able to help us.

hist(rnorm(1000,mean=3))

Histogram of rnorm(1000, mean = 3)

Now we want to return 30 numbers centered on -3

```
tmp <- c(rnorm (30, mean=-3),
rnorm (30, mean=+3))

x <- cbind(x=tmp,y=rev(tmp))</pre>
```

```
[1,] -2.7211154
                  4.6073881
 [2,] -2.2561009
                  2.5291685
 [3,] -4.1488060
                  3.4799248
 [4,] -2.6466059
                  2.5423427
 [5,] -2.8172904
                  0.7845324
 [6,] -4.0912523
                  3.8160377
 [7,] -2.8593696
                  2.9955223
 [8,] -2.3291621
                  2.1004532
 [9,] -2.6968424
                  3.0637487
[10,] -3.5589850
                  2.7832871
[11,] -3.1108965
                  3.7758852
[12,] -3.1803577
                  4.3338815
[13,] -2.4546093
                  2.8520330
```

- [14,] -3.4248771 3.7533475
- [15,] -2.6182381 1.8417334
- [16,] -2.4041042 3.0908535
- [17,] -3.9916901 3.0862243
- [18,] -4.7702208 3.2931729
- [19,] -1.8830801 2.1288483
- [20,] -3.8954701 3.9470548
- [21,] -3.0113889 2.4465219
- [22,] -3.6988116 2.4763069
- [23,] -2.8942964 4.9663322
- ____
- [24,] -2.8261994 2.0377633
- [25,] -2.0688641 3.6225027
- [26,] -3.1965448 2.8077999
- [27,] -3.4266845 4.0793622
- [28,] -4.7915374 4.0087171
- [29,] -1.4176593 2.2974603
- [30,] -3.5531841 3.0718452
- [31,] 3.0718452 -3.5531841
- [32,] 2.2974603 -1.4176593
- [33,] 4.0087171 -4.7915374
- [55,] 4.006/1/1 -4.79155/4
- [34,] 4.0793622 -3.4266845
- [35,] 2.8077999 -3.1965448
- [36,] 3.6225027 -2.0688641
- [37,] 2.0377633 -2.8261994
- [38,] 4.9663322 -2.8942964
- [39,] 2.4763069 -3.6988116
- [40,] 2.4465219 -3.0113889
- [41,] 3.9470548 -3.8954701
- [42,] 2.1288483 -1.8830801
- [43,] 3.2931729 -4.7702208
- [44,] 3.0862243 -3.9916901
- [45,] 3.0908535 -2.4041042
- [46,] 1.8417334 -2.6182381
- [10,] 1.011,001 2.0102001
- [47,] 3.7533475 -3.4248771
- [48,] 2.8520330 -2.4546093
- [49,] 4.3338815 -3.1803577
- [50,] 3.7758852 -3.1108965
- [51,] 2.7832871 -3.5589850
- [52,] 3.0637487 -2.6968424
- [53,] 2.1004532 -2.3291621
- [54,] 2.9955223 -2.8593696
- [55,] 3.8160377 -4.0912523
- [56,] 0.7845324 -2.8172904

```
[57,] 2.5423427 -2.6466059
[58,] 3.4799248 -4.1488060
[59,] 2.5291685 -2.2561009
[60,] 4.6073881 -2.7211154
```

Now plot x

plot(x)

K-means

Base R's main function for K-means clustering is called kmeans():

```
km <- kmeans(x,centers =2)
km</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

Cluster means:

2 3.087335 -3.091475

Clustering vector:

Within cluster sum of squares by cluster:

[1] 42.74942 42.74942

(between_SS / total_SS = 93.1 %)

Available components:

[1] "cluster" "centers" "totss" "withinss" "tot.withinss"

[6] "betweenss" "size" "iter" "ifault"

Thekmeans() function is now able to return a list with 9 components and you can see the named components of any list with attribuets() function.

attributes(km)

\$names

[1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "betweenss" "size" "iter" "ifault"

\$class

[1] "kmeans"

How many points are in each cluster?

km\$size

[1] 30 30

Cluster Membership/Assignment:

km\$cluster

Cluster center:

km\$centers

```
x y
1 -3.091475 3.087335
2 3.087335 -3.091475
```

Make a plot of kmeans() results showing cluster assignment using different colors for each group or points and cluster centers in blue.

```
plot(x,col=km$cluster)
points (km$centers,col="blue",pch=15, cex=2)
```


Run kmeans() again on x and this cluster into 4 groups/clusters and plot the same resulting figure as above:

```
km4 <- kmeans(x,centers =4)
plot(x,col=km4$cluster)
points (km4$centers,col="blue",pch=15, cex=2)</pre>
```


key-point: K-means clustering is super popular but can easily be misused. A limitation is that it can force a clustering pattern even if data shows an otherwise natural grouping that does not exist in terms of centers.

Hierarchal Clustering

The main function in base R for Hierarchical Clustering is called hclust()

Note: You can not just pass a data set as is into hclust(). You need to give a distance matrix.

```
d <- dist(x)
hc <- hclust(d)
hc</pre>
```

Call:

hclust(d = d)

Cluster method : complete
Distance : euclidean

Number of objects: 60

The results of hclust() are not very useful typically. And there is no useful print() method. However, there is a special plot().

```
plot(hc)
abline(h=8,col="red")
```

Cluster Dendrogram

d hclust (*, "complete")

To get our cluster assignment aka membership vector, you will need to cut the tree at the goal posts in different areas.

```
grps <- cutree(hc, h=8)
grps</pre>
```

table(grps)

grps

```
plot(x, col=grps)
```


Hierarchical Clustering is distinct as the dendrogram can reveal groups in your data that K-means clustering can not accomplish.

Principal Component Analysis (PCA)

PCA is used as a dimensional reduction technique and to find which dimension is the primary dimension in the data.

Data from the UK on food consumption will be used.

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)
head(x)</pre>
```

```
X England Wales Scotland N.Ireland
1
          Cheese
                     105
                           103
                                    103
                                               66
2 Carcass_meat
                     245
                           227
                                    242
                                              267
3
     Other_meat
                     685
                           803
                                    750
                                              586
4
            Fish
                           160
                                    122
                                               93
                     147
5 Fats_and_oils
                     193
                           235
                                    184
                                              209
          Sugars
                     156
                           175
                                    147
                                              139
```

```
rownames(x) <- x[,1]
x <- x[,-1]
head(x)
```

	England	Wales	${\tt Scotland}$	${\tt N.Ireland}$
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url, row.names=1)
head(x)</pre>
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

```
barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))
```


A "paris" plot can be useful as it compares two countries. Wherever the country is on axis wise is where it is on the pairs plot.

pairs(x, col=rainbow(10), pch=16)

PCA to the rescue!

The main function in base R for PCA is prcomp().

```
## the PCA code
pca <- prcomp(t(x))
##overview of results
summary (pca)</pre>
```

Importance of components:

```
        PC1
        PC2
        PC3
        PC4

        Standard deviation
        324.1502
        212.7478
        73.87622
        2.921e-14

        Proportion of Variance
        0.6744
        0.2905
        0.03503
        0.000e+00

        Cumulative Proportion
        0.6744
        0.9650
        1.00000
        1.000e+00
```

The prcomp() function returns a list object with our results.

```
attributes(pca)
```

```
$names
[1] "sdev"     "rotation" "center"     "scale"     "x"
$class
[1] "prcomp"
```

The main results that we are looking for are pca\$x and pca\$rotation. pcz\$x contains the scores of data on the PC axis we use the make our PCA plot with.

pca\$x

```
PC1 PC2 PC3 PC4
England -144.99315 -2.532999 105.768945 -9.152022e-15
Wales -240.52915 -224.646925 -56.475555 5.560040e-13
Scotland -91.86934 286.081786 -44.415495 -6.638419e-13
N.Ireland 477.39164 -58.901862 -4.877895 1.329771e-13
```

```
library(ggrepel)

#Make a plot of pca$x with PC1 vs PC2

ggplot(pca$x)+
   aes(PC1, PC2, label=rownames(pca$x))+
   geom_point()+
   geom_text_repel()
```


Figure 1: Plot demonstrating different countries on their average food group consumption aligned on PC1 axis vs PC2 axis using Principal Component Analysis.

pca\$rotation contains our second major result. To see what PCA is picking up:

```
ggplot(pca$rotation)+
  aes(PC1,rownames(pca$rotation))+
  geom_col()
```


Figure 2: Barplot indicating which foods explains the trend on the PC plot. If the bar is negative, that means it is more likely explained by a negative country in the PC plot. If the bar is positive, that means it is more likely explained by a positive country in the PC plot.