

Задание 2.2. Рекомендательные системы. Библиотека Surprise

Тушканова Ольга Николаевна

Санкт-Петербург 2020

Входные данные

Набор **ml-100k**

user, item, rating, timestamp

943 users1682 items100000 ratings

-			
62	498	4	879373848
62	382	3	879375537
28	209	4	881961214
135	23	4	879857765
32	294	3	883709863
90	382	5	891383835
286	208	4	877531942
293	685	3	888905170
216	144	4	880234639
166	328	5	886397722
250	496	4	878090499
271	132	5	885848672
160	174	5	876860807
265	118	4	875320714
198	498	3	884207492
42	96	5	881107178
168	151	5	884288058
110	307	4	886987260
58	144	4	884304936
90	648	4	891384754
271	346	4	885844430

Задание

- 1. Оценить по метрике **RMSE** с помощью функции **cross_validate** следующие алгоритмы:
- о прогнозирование случайного рейтинга на основе распределения всех рейтингов в наборе;
- \circ user-based коллаборативную фильтрацию, метод kNN, **k = 30**, метрика **косинуса**;
- user-based коллаборативную фильтрацию, метод kNN, k = 30, метрика Mean
 Squared Difference;
- user-based коллаборативную фильтрацию, метод kNN, k = 30, метрика корреляция Пирсона;
- \circ SVD алгоритм.
- 2. Для лучшего алгоритма по метрике RMSE рассчитать метрики precision@k and recall@k для k=5 и порога отсечения 3.52, усредненные по всем пользователям.
- 3. Для заданного пользователя (номер в списке) с помощью лучшего алгоритма по метрике RMSE вывести **топ-5** рекомендаций (те фильмы, для которых у пользователя **нет оценки**) с названиями, датой выхода и рейтингом.

Выходные данные

Пример вывода:

```
User 88

1240 ('Ghost in the Shell (1995)', '12-Apr-1996') 4.51

1368 ('Mina Tannenbaum (1994)', '01-Jan-1994') 4.403

1449 ('Pather Panchali (1955)', '22-Mar-1996') 4.338

1131 ('Safe (1995)', '01-Jan-1995') 4.214

922 ('Dead Man (1995)', '10-May-1996') 4.186
```

Примечание 1

 \circ Для расчета оценки \hat{r}_{ui} пользователя и и для фильма і в подходе user-based коллаборативной фильтрации, метод kNN, использовать формулу

$$\hat{r}_{ui} = \bar{r}_u + \frac{\sum_{v=1}^{k} sim_{vu} \cdot (r_{vi} - \bar{r}_v)}{\sum_{v=1}^{k} |sim_{vu}|}$$

где \hat{r}_{ui} - рассчитываемая оценка,

 \bar{r}_u - средняя оценка у пользователя u,

 \bar{r}_{v} - средняя оценка у пользователя v,

 r_{vi} - оценка пользователя v для фильма i,

 sim_{vu} - значение метрики сходства для пользователей и и v

Примечание 2

- ~/.surprise_data/ml-100k/ml-100k/README
- описание формата данных
- ~/.surprise_data/ml-100k/ml-100k/u.item
- информация о фильмах

Конфигурация метрики сходства

https://surprise.readthedocs.io/en/stable/prediction_algorithms.html#similarity-measures-configuration

Часто задаваемые вопросы

https://surprise.readthedocs.io/en/stable/FAQ.html#

Как сдать?

- 0. Не списывать.
- 1. Выгрузить на GitHub код своего рекомендательного алгоритма.
- 2. Текстовый файл с предсказаниями выгрузить на курс в «Сдать задание №2.2. Рекомендательные системы: Библиотека Surprise».
- 3. Получить мой комментарий.
- 4. Подойти ко мне на практике и обсудить код.
- 5. После 03.10 баллы снижаются на 30%.

Баллы

о 0-10 за все задание

Спасибо за внимание!