Teoría de Comunicaciones y Señales Prof. Jacqueline Arzate Gordillo PROBLEMARIO 2º parcial

Sección 1. Convolución Continua

Problema 1. Calcular las siguientes integrales de convolución.

a).
$$u(t) * e^{-t} u(t)$$

j). u(t)*tu(t)

b).
$$u(t)*u(t)$$

e). $e^{-t}u(t)*tu(t)$

c).
$$e^{-t}u(t)*e^{-3t}u(t)$$

f). $e^{-3t}u(t)*e^{-t}$

Problema 2. Calcular $f_1(t)*f_2(t)$ para cada par de señales de la figura 1

Figura 1. Gráficas para el problema 2.

Problema 3. Evalúe las funciones de convolución para las señales mostradas en la figura 2.

- a) $f_1(t) * f_2(t)$.
- b) $f_1(t) * f_3(t)$.
- c) $f_2(t) * f_3(t)$.

Figura 2. Gráficas para el problema 3.

Problema 4. Obtener y dibujar $f_1(t) * h(t)$, para las funciones mostradas en la figura 3.

Figura 3. Gráficas para el problema 4.

Sección 2. Teorema de Muestreo y Tiempo Discreto

- 1. Defina Procesamiento Digital de señales, procesador digital de señales y dibuje el diagrama a bloques de un sistema de procesamiento digital de señales (adquisición de datos)
- 2. Enuncie el teorema de muestreo
- 3. ¿A qué se refiere el Efecto Alias?
- 4. Considere la siguiente función en el tiempo f(t) y su transformada $F(\omega)$. Desarrolle gráfica y matemáticamente el muestreo ideal de f(t).

- 5. Determinar la rapidez mínima de muestreo y el intervalo de Nyquist de las siguientes señales:
 - a)Sa(100t)
 - b)Sa²(100t)
 - c)Sa(100t) + Sa(50t)
- 6. Se sabe que una señal de valor real x(t) ha sido determinada sólo por sus muestras cuando la frecuencia de muestreo es $ω_s$ =10,000 π t. ¿Para qué valores de ω se garantiza que F(ω)sea cero.
- 7. Aquella frecuencia que de acuerdo con el teorema de muestreo, debe ser excedida por la frecuencia de muestreo se llama razón de Nyquist. Determine la razón de Nyqist correspondiente a cada una de las siguientes señales:
 - a) $x(t)=10 sen \omega t + 5 sen 2\omega t$
 - b) $x(t)=1 + cos(2000\pi t) + sen(4000\pi t)$
- 8. Una señal continua x(t) se obtiene a la salida de un filtro paso bajo ideal con frecuencia de corte ω_c =1000 π . Si el muestreo con tren de impulsos se realiza sobre x(t), ¿Cuál de los siguientes periodos de muestreo garantiza que x(t) se pueda recuperar a partir de sus versiones muestreadas usando un filtro paso bajas adecuado?
 - a) $T=0.5 \times 10^{-3}$
 - b) $T=2 \times 10^{-3}$
 - c) $T=10^{-4}$
- 9. Dibuje la función de transferencia $H(\omega)$ de un filtro pasabajas con ganancia 5 y frecuencia de corte f=100 Hz.
- 10. Dibuje la función caracteristica h(t) del filtro anterior.
- 11. Considere el sistema mostrado en la figura siguiente. La señal de entrada al sistema es: $x_a(t) = 3\cos 100 \pi t + 2\sin 250 \pi t$.

Determine la versión discreta de $X_a(t)$. ¿Es posible recuperar la señal original a partir de x(n) usando un filtro pasabajas adecuado?

12. Analice las siguientes secuencias (esto es, su frecuencia digital), e indique si son o no periódicas. En caso de ser periódicas, halle su periodo.

a)10
$$sen\left(\frac{3}{2}\pi n\right)$$
 b) 5 $cos\left(\frac{4}{9}\pi n\right)$ c) 2 $cos\left(\frac{4}{9}n\right)$

b) 5
$$cos\left(\frac{4}{9}\pi n\right)$$

c) 2
$$cos\left(\frac{4}{9}n\right)$$

d)
$$x[n] = \cos \frac{2\pi n}{3} + e^{\pi n}$$

e)
$$y[n] = 2 + \text{Re}\left\{e^{j\frac{\pi n}{3}}\right\} + \cos\frac{3\pi n}{2}$$

13. Grafique la siguiente señal y(n) que es una suma de sinusoides, indique su periodo. ¿Cuál es el periodo de la suma de dos sinusoides de periodo N1 y N2?

$$y(n) = 10 \operatorname{sen}\left(\frac{3}{2}\pi n\right) + 5 \cos\left(\frac{4}{9}\pi n\right)$$

Sección 3. Operaciones Básicas entre secuencias

PROBLEMA 1. Considere las secuencias siguientes y realice con ellas las operaciones indicadas.

Si:

$$x[n] = {\overline{0},1,2,3,4,5,6,7,8}$$

$$y[n] = \{2,4,8,16,\overline{32}\}$$

$$z[n] = \sum_{k=-3}^{3} \delta(n-k)$$

$$g[n] = \{\frac{1}{3}, \frac{1}{6}, \frac{1}{9}, \overline{\frac{1}{12}}, \frac{1}{15}, \frac{1}{18}, \dots\}$$

$$k[n] = 2u(n-2)$$

Encuentre:

$$a)g[-n]$$

$$b)z[n] + y[n]$$

$$c)3g[n]-6z[n]$$

$$d$$
) $y[n-6]$

$$e)\frac{1}{2}y[n+3]$$

$$f$$
) $x[n-2]$

$$g(x) = 3n - 3$$

$$h)x[\frac{n}{2}+5]$$

$$i)y[\frac{n-3}{3}]$$

$$j)k[\frac{4n-3}{10}]$$

$$k)k[-\frac{n}{4}+10]$$

$$lx[\frac{3n-3}{3}]-g[-\frac{8n-7}{3}]$$

$$m$$
) $u[n]. $g[n] + z[n]$$

$$n)x[\frac{n}{2}] * y[\frac{n}{3}]$$

$$\tilde{n}$$
) $g[\frac{3n-1}{2}]*y[\frac{2n}{2}+2]$

ez >

PROBLEMA 2. Encuentre la gráfica de la secuencia de convolución de dos secuencias definidas como: $x(n) = \{1, 2, 3, 4, 3, 2, 1\}$ y $y(n) = \{-2, -1, 0, 1, 2\}$. Use cualquier método.

PROBLEMA 3. A PARTIR DE LA SECUENCIA MOSTRADA EN LA FIGURA,

Encuentre: $x\left(\frac{3n+3}{-4}\right)$ &

$$g[n] = x[n] * \{x[\frac{n}{2}+1] \cdot (u[n+1]-u[n-3])\}$$

NOTA: Use interpolación escalón.

PROBLEMA 4. Las extensiones periódicas de dos secuencias, $x_1(n)$ y $x_2(n)$, se definen como:

 $x_1(n) = \{1, 2, 0, -1, 1\}$ y $x_2(n) = \{1, 3, -1, -2\}$. Halle la secuencia de convolución .

Sección 4. Transformada de Fourier y Transformada Z

PROBLEMA 1. Halle la transformada de Fourier de:

$$y(n) = \left(\frac{1}{8}\right)^n u(n+2) + 2^n u(-n)$$

PROBLEMA 2. Halle la transformada de Fourier de:

$$\mathbf{y(n)} = \begin{cases} a^n & n \ge 0 \\ a^{-n} & n < 0 \end{cases}$$

PROBLEMA 3. Encuentre la transformada inversa de Fourier de $X(\Omega)$:

$$\mathbf{X}(\mathbf{\Omega}) = \begin{cases} 2i & 0 < \Omega < \pi \\ -2i & -\pi < \Omega < 0 \end{cases}$$

PROBLEMA 4. Calcule la transformada discreta de Fourier (DFT) de x(n)

$$x(n) = [0, \frac{1}{2}, 1, 2, -3, -4]$$

PROBLEMA 5. Use la forma matricial de la DFT y calcule:

$$q[n] = [0.5, 0, 2, 5]$$

PROBLEMA 6. Grafique la señal en el tiempo cuya transformada discreta de Fourier es la mostrada:

$$G(k) = [18, 4-6i, 6, 4+6i]$$

PROBLEMA 7. Halle la FFT para la siguiente secuencia:

$$x[n] = [0.5, 1, 0, 12]$$

PROBLEMA 8. Halle la IFFT para la siguiente secuencia:

$$X[k] = [28, -4 + 9.657i, -4 + 4i, -4 + 1.657i, -4, -4 - 1.657i, -4 - 4i, -4 - 9.657i]$$

PROBLEMA 9. Encuentre la transformada Z y grafique la región de convergencia de x(n)

$$x(n) = \left(\frac{1}{4}\right)^n u(n) + 2\left(\frac{1}{2}\right)^n u(-n-1)$$

PROBLEMA 10. Encuentre la transformada Z y grafique la región de convergencia de x(n)

$$\mathbf{h(n)=} \left\{ \begin{array}{cc} \left(\frac{1}{6}\right)^n & n \geq 0 \\ 0 & n \leq 0 \end{array} \right.$$

PROBLEMA 11. Encuentre la transformada Z y grafique la región de convergencia de x(n)

$$h(n) = \begin{cases} (10)^n & n < 0 \\ \left(\frac{1}{10}\right)^n & n \ par \\ \left(\frac{1}{5}\right)^n & n \ impar \end{cases}$$

PROBLEMA 12. Encuentre la transformada Z inversa:

$$Y(z) = \frac{z}{2z^2 - 3z + 3} \quad |z| > \frac{3}{2}$$

PROBLEMA 13. Encuentre la transformada Z inversa:

$$X(z) = \frac{z(z+1)(z-5)}{z^3 - 5z^2 + 7z - 3} \quad |z| > \frac{1}{3}$$

PROBLEMA 14. Encuentre y(n) y dibuje su ROC, si ésta se define como:

$$y(n) = x(n) + w(n)$$

Donde:

$$w(n) = 5^n u(-n-1).$$

x(n) Suponga que está limitada por la izquierda. Y se conoce que su transformada Z es:

$$X(z) = \frac{z(z+2)}{(z+3)(z+1)^2}$$
,

Tabla	8.2.	Parejas	de	transform	adas	Z

	$x(n)$ para $n \ge 0$	X(z)	Radio de convergencia $ z > 1$	
1.	$\delta(n)$	1 shell adserble oblestoss	. 0	
2.	$\delta(n-m)$	z - m	0	
2	Plant Scangless	2		
3. u(n)	u(n)	$\overline{z1}$		
		. z		
4.	n	$\overline{(z-1)^2}$	tensel ma	
	Plane ; complete	z(z+1)		
5.	n ²	$(z-1)^3$		
		z ,		
6.	a^n	$\overline{z-a}$		
		az		
7.	na ⁿ	$(z-a)^2$	a	
		z^2		
8.	$(n+1)a^n$	$(z-a)^2$	a	
	$(n+1)(n+2)\cdots(n+m)a^n$	Z^{m+1}	'fasteO'	
9.	m!	$\frac{1}{(z-a)^{m+1}}$	a .	
m:	m.	$z(z-\cos\Omega_0)$		
10.	$\cos \Omega_0 n$	$\frac{z^2 - 2z\cos\Omega_0 + 1}{z^2 - 2z\cos\Omega_0 + 1}$	1	
		$z \sin \Omega_0$		
11.	$\operatorname{sen}\Omega_0 n$	$\frac{z^2 - 2z\cos\Omega_0 + 1}{z^2 - 2z\cos\Omega_0 + 1}$	1	
		$z(z - a\cos\Omega_0)$		
12.	$a^n \cos \Omega_0 n$	$\frac{z^2 - 2za\cos\Omega_0}{z^2 - 2za\cos\Omega_0 + a^2}$	a	
		$z = 2zu\cos sz_0 + u$ $za \sin \Omega_0$		
13.	$a^n \operatorname{sen} \Omega_0 n$	$\frac{z^2 - 2za\cos\Omega_0 + a^2}{z^2 - 2za\cos\Omega_0 + a^2}$	a	
		$z - zza\cos\Omega_0 + a$		
14.	$\exp[-anT]$		$ \exp[-aT] $	
		$z - \exp[-aT]$ Tz		
15.	nT ·	$\frac{12}{(z-1)^2}$	1	
16.	$nT\exp\left[-anT\right]$	$\frac{Tz\exp\left[-aT\right]}{Tz\exp\left[-aT\right]}$	$ \exp[-aT] $	
		$[z - \exp[-aT]]^2$		
17.	$\cos n\omega_0 T$		1	
	(z), X, p +	$z^2 - 2z\cos\omega_0 T + 1$		
18.	$sen n\omega_0 T$	$z \operatorname{sen} \omega_0 T$	1	
	8) " s(m)z (-)	$z^2 - 2z\cos\omega_0 T + 1$		
19.	$\exp[-anT]\cos n\omega_0 T$	$z[z - \exp[-aT]\cos\omega_0 T]$	$ \exp[-aT] $	
	8) - Falsk K +6	$z^2 - 2z \exp\left[-aT\right] \cos \omega_0 T + \exp\left[-2aT\right]$		
20.	$\exp[-anT] \operatorname{sen} n\omega_0 T$	$z[z - \exp[-aT] \sin \omega_0 T]$	$ \exp[-aT] $	
1-8)		$z^2 - 2z \exp[-aT] \cos \omega_0 T + \exp[-2aT]$	cionement no obstruct	

NOTA: Para x(n) cuando n < 0 (secuencias anticausales o limitadas a la izquierda), lo que se obtiene es la señal

x(n)u[-n-1], donde x(n) es la secuencia que aparece en la tabla