1 DFA Proofs

Problem. Give a DFA that accepts the language $\{x \in \{0,1\}^* \mid \text{ the second last letter of } x \text{ is } 1\} = \mathfrak{L}((0+1)^*1(0+1).$

Solution.

For $\delta^*(q_{00}, \lambda)q_{00} \notin F$, $\delta^*(q_{00}, 1) = q_{01} \notin F$, $\delta^*(q_{00}, 0) = q_{00} \notin F$, we can prove by induction that

$$\forall n \in \mathbb{N}. (n \ge 2 \text{ IMPLIES} \tag{1}$$

$$(\forall x \in \{0,1\}^n. \tag{2}$$

$$[(\delta^*(q_{00}, x) = q_{00} \text{ IMPLIES 00 is a suffix of x}]$$
(3)

$$\delta^*(q_{00}, x) = q_{01} \text{ IMPLIES 01 is a suffix of x}$$
 (4)

$$\delta^*(q_{00}, x) = q_{10} \text{ IMPLIES 10 is a suffix of x}$$
 (5)

$$\delta^*(q_{00}, x) = q_{11} \text{ IMPLIES 11 is a suffix of x]})$$
(6)

We can start as follows.

Let $n \geq 2$.

 $\forall x \in \{0,1\}^n.\delta^*(q_{00},x) \in F \text{ IFF} \text{ the second last letter of } x \text{ is } 1.$

2 Nondetermenistic Finite Automata (NFA)

An NFA is a 5-tuple $(Q, \Sigma, \delta, q_0, f)$, wher Q is a finite set of states, Σ is a finite alphabet, $q_0 \in Q$ is an initial state, $F \subseteq Q$, and $\delta : Q \times \Sigma \to 2^Q$.

Then we define $\delta^*(q,\lambda) = \{\lambda\}.$

For all $a \in \Sigma$, $x \in \Sigma^*$, $\delta^*(q, xa) = \bigcup \{\delta(q', a) \mid q' \in \delta^*(q, x)\}$, or, equivalently, $\delta^*(q, ax) = \bigcup \{\delta^*(q', x) \mid q' \in \delta(q, a)\}$.

A string is accepted by a DFA if the path labelled by x starting from q_0 ends in a final stat.

x is accepted by a NFA if there exists a path labelled by x starting from q_0 that ends in a final state $L(M) = \{x \in \Sigma^* \mid \delta^*(q_0, x) \cap F \neq \emptyset\}.$

Every DFA $(Q, \Sigma, \delta, q_0, F)$ can be easily transformed to an NFA $(Q, \Sigma, \delta, q_0, F)$ by defining $\gamma(q, a) = \{\delta(q, a)\}.$

Question. Are there some languages that can be accepted by an NFA but not by a DFA?

3 Subset Construction

Theorem 3.1

For every NFA $M=(Q,\Sigma,\delta,q_0,F)$ there is a DFA $\widehat{M}=(\widehat{Q},\Sigma,\widehat{\delta},\widehat{q_0},\widehat{F})$ such that $\mathfrak{L}(M)=\mathfrak{L}(\widehat{M})$.

Proof.

Let $M = (Q, \Sigma, \delta, q_0, F)$ be an arbitrary NFA.

The DFA we construct keeps trakn of the possible states in which M can be as it reads the input string.

Let
$$\widehat{M} = (\widehat{Q}, \Sigma, \widehat{\delta}, \widehat{q_0}, \widehat{F})$$
, where $\widehat{Q} = 2^Q$, $\widehat{q_0} = \{q_0\}$. Note that $\widehat{q_0} \in \widehat{Q}$.

For
$$Q' \in 2^Q$$
 and $a \in \Sigma$, $\widehat{\delta}(Q', a) = \bigcup \{\delta(q, a) \mid q \in Q'\}$.

Let
$$\widehat{F} = \{ Q' \in 2^Q \mid Q' \cap F = \emptyset \}.$$

Claim. $\mathfrak{L}(M) = \mathfrak{L}(\widehat{M})$.

Proof.

For all
$$w \in \Sigma^*$$
, let $Q(w) = {}^{\circ}\widehat{\delta}^*(\{q_0\}, w) = \delta^*(q_0, w)$ ".

 $\forall w \in S^*.P(w)$ by induction on the length of w or structural induction on the string. \square