Регуляризация траектории параметров модели глубокого обучения на основе дистилляции

Мария Горпинич

Московский физико-технический институт

Курс: Автоматизация научных исследований (практика, В.В. Стрижов)/Группа 874

Эксперт: В.В. Стрижов

Консультант: О. Ю. Бахтеев

Задача дистилляции знаний

Цель

Предложить метод оптимизации метапараметров в задаче обучения с применением дистилляции знаний.

Исследуемая проблема

Назначение метапараметров задачи дистилляции является вычислительно сложной задачей.

Решение

Предлагается рассмотреть задачу как двухуровневую задачу оптимизации. Решение задачи оптимизации метапараметров производится градиентными методами. Для ускорения вычислительно затратной процедуры оптимизации метапараметров производится прогнозирование локально-линейными моделями.

Оптимизация параметров модели на основе дистилляции знаний

Назовем дистилляцией знаний задачу оптимизации параметров модели, при которой учитывается информация, содержащаяся в выборке и в сторонней модели (модели-учителе).

T — температура, λ_1 — доля правдоподобия исходной выборки в функции потерь

Основная литература

- Geoffrey E. Hinton, Oriol Vinyals μ Jeffrey Dean. "Distilling the Knowledge in a Neural Network". B: CoRR abs/1503.02531 (2015). URL: http://arxiv.org/abs/1503.02531.
- Jelena Luketina и др. "Scalable Gradient-Based Tuning of Continuous Regularization Hyperparameters". в: CoRR abs/1511.06727 (2015). url.: http://arxiv.org/abs/1511.06727.
- Oleg Yu. Bakhteev и Vadim V. Strijov. "Comprehensive analysis of gradient-based hyperparameter optimization algorithms". в: Ann. Oper. Res 289.1 (2020), с. 51—65.
- Marcin Andrychowicz и др. "Learning to learn by gradient descent by gradient descent". в: CoRR abs/1606.04474 (2016). URL: http://arxiv.org/abs/1606.04474.

Постановка задачи дистилляции

Задана выборка

$$\mathfrak{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^m, \ \mathbf{x}_i \in \mathbb{R}^n, \qquad y_i \in \mathbb{Y} = \{1, \dots, K\}, \qquad \mathfrak{D} = \mathfrak{D}_{\mathsf{train}} \sqcup \mathfrak{D}_{\mathsf{val}}.$$

 ${f f}$ — зафиксированная модель учителя, ${f g}$ — модель ученика.

Функция ошибки дистилляции

$$\mathcal{L}_{\mathsf{train}}(\mathbf{w}, \boldsymbol{\lambda}) = \\ -\lambda_1 \sum_{(\mathbf{x}, y) \in \mathfrak{D}_{\mathsf{train}}} \underbrace{\sum_{k=1}^K y^k \log \mathbf{g}(\mathbf{x}, \mathbf{w})|_{T=1}}_{\mathsf{исходная}} -\lambda_2 \underbrace{\sum_{(\mathbf{x}, y) \in \mathfrak{D}_{\mathsf{train}}} \underbrace{\sum_{k=1}^K \mathbf{f}(\mathbf{x})|_{T=T_0} \log \mathbf{g}(\mathbf{x}, \mathbf{w})|_{T=T_0}}_{\mathsf{слагаемое}}$$

Алгоритм решения оптимизационной задачи

Множество метапараметров:

$$\lambda = [\lambda_1, \lambda_2, T].$$

Оптимизационная задача:

$$\hat{\pmb{\lambda}} = \text{arg} \, \max_{\pmb{\lambda} \in \mathbb{R}^3} \mathcal{L}_{\mathsf{val}}(\hat{\pmb{w}}, \pmb{\lambda}),$$

$$\hat{\mathbf{w}} = rg \min_{\mathbf{w} \in \mathbb{R}^s} \mathcal{L}_{\mathsf{train}}(\mathbf{w}, \boldsymbol{\lambda}).$$

Оптимизационную задачу решает оператор градиентного спуска:

$$U(\mathbf{w}, \boldsymbol{\lambda}) = \mathbf{w} - \gamma \nabla \mathcal{L}_{\mathsf{train}}(\mathbf{w}, \boldsymbol{\lambda}).$$

Обновим метапраметры последовательно согласно правилу:

$$\boldsymbol{\lambda}' = \boldsymbol{\lambda} - \gamma_{\boldsymbol{\lambda}} \nabla_{\boldsymbol{\lambda}} \mathcal{L}_{\mathsf{val}}(\boldsymbol{\mathit{U}}(\mathbf{w}, \boldsymbol{\lambda}), \boldsymbol{\lambda}) = \boldsymbol{\lambda} - \gamma_{\boldsymbol{\lambda}} \nabla_{\boldsymbol{\lambda}} \mathcal{L}_{\mathsf{val}}(\mathbf{w} - \gamma \nabla \mathcal{L}_{\mathsf{train}}(\mathbf{w}, \boldsymbol{\lambda}), \boldsymbol{\lambda}).$$

$$oldsymbol{\lambda}' = oldsymbol{\lambda} + \mathbf{c}^{ op} egin{pmatrix} z \ 1 \end{pmatrix},$$

где σ — сигмоида, z — номер итерации по модулю периодичности обучения линейной модели, \mathbf{c} — коэффициенты линейного многочлена.

Эксперимент на синтетической выборке

Целью вычислительного эксперимента является анализ градиентной оптимизации и проверка гипотезы об аппроксимации траектории оптимизации локально-линейной моделью.

Выборка

$$\mathfrak{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^m, \ x_{ij} \in \mathcal{N}(0, 1), \qquad j = 1, 2, \qquad x_{i3} = [\operatorname{sign}(x_{i1}) + \operatorname{sign}(x_{i2}) > 0],$$
$$y_i = \operatorname{sign}(x_{i1} \cdot x_{i2} + \delta) \in \mathbb{Y}.$$

Размер выборки модели-ученика намного меньше размера выборки модели-учителя.

Выбор периодичности перезапусков

График зависимости точности классификации от номера итерации при различном количестве перезапусков

Наилучшее качество достигается при периодичности равной 2.

Зависимость метапараметров от количества итераций

Графики зависимости значений метапараметров от номера итерации: a) λ_1 ; б) λ_2 ; в) температуры

Сравнение подходов к оптимизации

График зависимости точности классификации от номера итерации

Точность модели с предсказанными метапараметрами близка к точности модели с оптимизированными метапараметрами.

Результаты эксперимента на выборке CIFAR-10

График зависимости точности классификации от номера итерации

Точность модели с предсказанными метапараметрами выше точности модели с оптимизированными метапараметрами.

Заключение

- Исследовано применение градиентных методов оптимизации для метапараметров задачи дистилляции.
- Предложена и проверена гипотеза по аппроксимации траектории оптимизации метапараметров.
- Вычислительный эксперимент показал, что оптимизация метапараметров применима к задаче дистилляции.
- Подтверждена возможность аппроксимации метапараметров локально-линейными моделями.
- Планируется дальнейшее исследование оптимизационной задачи и анализ качества аппроксимации траектории оптимизации метапараметров более сложными прогностическими моделями.