



### EIVIA 2025: Deep Learning for Time Series and Applications to Healthcare

Gonzalo Uribarri KTH Royal Institute of Technology & SciLifeLab



digital futures





## Healthcare Applications

# Parkinson's Diagnosis Based on Eye-Tracking Data

#### Parkinson's disease

- Incidence 83/10000 (+15% since 1990).
- Motor and cognitive symptoms.
- Diagnosis and prognosis methodology is not ideal.

#### Parkinson's Disease Symptoms



#### Parkinson's disease

- ☐ Incidence 83/10000 (+15% since 1990).
- Motor and cognitive symptoms.
- Diagnosis and prognosis methodology is not ideal.

#### Parkinson's Disease Symptoms



#### **Our Goal:**

Develop a quantitative methodology that can help medical doctors in diagnosis and prognosis.

#### The Dataset

- ☐ MEG and eye-tracking dataset recorded by **Josefine Waldthaler** and **Per Svenningson** from **Karolinska Hospital** in Stockholm.
- ☐ The dataset consists of 84 subjects, 54 non-demented patients with PD (stages 1-3) and 30 HC.
- Experiment in which two different data modalities are recorded:

- **■** MEG
- Eye Tracking



#### The Dataset

- ☐ MEG and eye-tracking dataset recorded by **Josefine Waldthaler** and **Per Svenningson** from **Karolinska Hospital** in Stockholm.
- ☐ The dataset consists of 84 subjects, 54 non-demented patients with PD (stages 1-3) and 30 HC.
- Experiment in which two different data modalities are recorded:

- MEG
- Eye Tracking



#### **Experimental Protocol**

The subjects perform a **Saccade** protocol.



#### **Data description**

We take ≈1.5s segments corresponding to the **preparation phase** of one saccade or antisaccade event.



1 session - 12 trials

#### **Data description**

We take ≈1.5s segments corresponding to the **preparation** phase of one saccade or antisaccade event.



#### **Data description**

We take ≈1.5s segments corresponding to the preparation phase of one saccade or antisaccade event.



We have ≈100 trials per subject

We have ≈1.5s segments of eye movement data corresponding to fixation moments during the experiment.

4-dimensional time series



We have ≈1.5s segments of eye movement data corresponding to fixation moments during the experiment.

4-dimensional time series



We have ≈1.5s segments of eye movement data corresponding to fixation moments during the experiment.

4-dimensional time series



We **100** trials per subject, but we only have **84** subjects.

We have ≈1.5s segments of eye movement data corresponding to fixation moments during the experiment.

4-dimensional time series



We **100** trials per subject, but we only have **84** subjects.



We need a proper TSC algorithm

#### **Dataset Splitting**





30 - HC



54 - PD Patients (on and off medication)

#### **Inference Pipeline**

Models are trained to perform a **trial classification**. We then aggregate all trials of one subject to perform a subject classification.



#### **Classification Results**

|                     | Trial           |                      |  |  |
|---------------------|-----------------|----------------------|--|--|
| Model               | uF1-Score       | Accuracy             |  |  |
| InceptionTime       | $0.52 \pm 0.02$ | $55.73\% \pm 2.84\%$ |  |  |
| ROCKET              | $0.63 \pm 0.02$ | $68.04\% \pm 2.23\%$ |  |  |
| Detach-ROCKET       | $0.66 \pm 0.02$ | $73.46\% \pm 0.85\%$ |  |  |
| Brien et al. (2023) |                 |                      |  |  |

Detach-ROCKET models retained, on average, merely 7% of the original number of features.



#### **Classification Results**

|                                    |                                                       | Trial                                                                   | Subject                                               |                                                                               |  |
|------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------|--|
| Model                              | uF1-Score                                             | Accuracy                                                                | uF1-Score                                             | Accuracy                                                                      |  |
| InceptionTime ROCKET Detach-ROCKET | $0.52 \pm 0.02$<br>$0.63 \pm 0.02$<br>$0.66 \pm 0.02$ | $55.73\% \pm 2.84\%$ $68.04\% \pm 2.23\%$ $\mathbf{73.46\%} \pm 0.85\%$ | $0.74 \pm 0.04$<br>$0.86 \pm 0.04$<br>$0.96 \pm 0.04$ | $77.50\% \pm 5.59\%$<br>$87.50\% \pm 4.42\%$<br>$\mathbf{96.25\%} \pm 3.42\%$ |  |
| Brien et al. (2023)                |                                                       |                                                                         |                                                       | $82\% \pm 6.7\%$                                                              |  |

Detach-ROCKET models retained, on average, merely 7% of the original number of features.



#### **Exploring the model**



#### **Exploring the model**



#### Correlation of model confidence with metadata of patients:

With **UDRS** (severity of symptoms) [c=0.24, p=0.0007 < 0.05]

**Correlation** 

With **disease duration** [c=0.17, p= 0.01 < 0.05]

**Correlation** 

With **age** of patient [c=-0.02, p=0.6 > 0.05]

**No Correlation** 

## **Brain Activity Data**

#### **Brain Activity Data**

Brain activity measurements with non-invasive techniques:

• **EEG**: Measures electrical activity.

Number of channels: ~19-64.

MEG: Measures magnetic activity.

Number of channels: ~306

<u>fMRI</u>: Measures BOLD signal.

Number of channels: ~100,000.





#### **Brain Activity Data**

Brain activity measurements with non-invasive techniques:

• **EEG**: Measures electrical activity.

Number of channels: ~19-64.

MEG: Measures magnetic activity.

Number of channels: ~306

<u>fMRI</u>: Measures BOLD signal.

Number of channels: ~100,000.





Large number of channels (C)

#### **ROCKET Strengths and Weaknesses**



State-of-the-art performance for TSC



Fast and simple training



Less prone to overfitting (less parameters)



It produces many features (many useless)



Scales poorly with the number of channels





Difficult to interpret

We need a very large number of kernels to have good coverage.













Explores a large set of kernels.





Explores a large set of kernels.



The resulting model is small.





Explores a large set of kernels.



Provides channel relevance.



The resulting model is small.





Explores a large set of kernels.



The resulting model is small.



Provides channel relevance.



Provides label probability! \*





Explores a large set of kernels.



The resulting model is small.



Provides channel relevance.



Provides label probability! \*



Larger training time.

**24 subject** (16 train, 7 test) and **306 channels**. Classification task: is the subject observing a regular face or a scrambled face? \*

**24 subject** (16 train, 7 test) and **306 channels**. Classification task: is the subject observing a regular face or a scrambled face? \*

| Model                    | Train (%) | Test (%)       |
|--------------------------|-----------|----------------|
| MiniRocket (20k kernles) | 80.2±0.2  | 59.7±1.5       |
| D-MiniRocket             | 72.2±2.9  | $60.8 \pm 0.5$ |
| Arsenal                  | 87.4±0.1  | $61.5 \pm 0.4$ |
| D-Rocket<br>Ensemble     | 78.6±0.3  | $64.3{\pm}0.5$ |

D-Rocket Ensemble performs better

**24 subject** (16 train, 7 test) and **306 channels**. Classification task: is the subject observing a regular face or a scrambled face? \*

| Model                    | Train (%) | Test (%)       |
|--------------------------|-----------|----------------|
| MiniRocket (20k kernles) | 80.2±0.2  | 59.7±1.5       |
| D-MiniRocket             | 72.2±2.9  | 60.8±0.5       |
| Arsenal                  | 87.4±0.1  | 61.5±0.4       |
| D-Rocket<br>Ensemble     | 78.6±0.3  | $64.3{\pm}0.5$ |



D-Rocket Ensemble performs better

**24 subject** (16 train, 7 test) and **306 channels**. Classification task: is the subject observing a regular face or a scrambled face? \*

| Model                    | Train (%) | Test (%)       |
|--------------------------|-----------|----------------|
| MiniRocket (20k kernles) | 80.2±0.2  | 59.7±1.5       |
| D-MiniRocket             | 72.2±2.9  | $60.8 \pm 0.5$ |
| Arsenal                  | 87.4±0.1  | 61.5±0.4       |
| D-Rocket<br>Ensemble     | 78.6±0.3  | $64.3{\pm}0.5$ |



D-Rocket Ensemble performs better

We find the same relevant area

**65 subject** (LOSO CV) and **19 channels**. Classification task: is the subject a patient with **Alzheimer's Disease or a Healthy Control**?

**65 subject** (LOSO CV) and **19 channels**. Classification task: is the subject a patient with **Alzheimer's Disease or a Healthy Control**?

| Type        | ${ m AD/CN}$ model    | ACC    | SENS   | SPEC   | PREC   | $\mathbf{F1}$ |
|-------------|-----------------------|--------|--------|--------|--------|---------------|
|             | LightGBM              | 76.28% | 76.08% | 76.52% | 79.67% | 77.83%        |
| ring        | XGBoost               | 75.53% | 76.08% | 74.87% | 78.55% | 77.29%        |
| engineering | CatBoost              | 75.39% | 75.50% | 75.25% | 76.68% | 77.05%        |
| eng         | SVM+PCA               | 73.75% | 71.51% | 76.46% | 78.60% | 74.89%        |
| ure         | PCA-kNN               | 72.52% | 70.30% | 75.19% | 77.41% | 73.69%        |
| Feature     | MLP *                 | 73.69% | 72.98% | 74.81% | 77.80% | 75.31%        |
|             | DICE-net [18] *       | 83.28% | 79.81% | 87.94% | 88.94% | 84.12%        |
|             | EEGNet [15] *         | 41%    | 47.20% | 37.67% | 37.89% | 42.04%        |
| EEG         | EEGNetSSVEP [28] *    | 51.46% | 56.78% | 45.39% | 47.65% | 51.82%        |
| Raw E       | DeepConvNet [23] *    | 54.21% | 45.43% | 57.59% | 48.71% | 47.01%        |
|             | ShallowConvNet [23] * | 42.18% | 46.50% | 41.11% | 49.74% | 48.07%        |
|             | D-Rocket Ensemble     | 79.86% | 78.89% | 80.47% | 74.89% | 76.84%        |

**65 subject** (LOSO CV) and **19 channels**. Classification task: is the subject a patient with **Alzheimer's Disease or a Healthy Control**?

| Type        | ${ m AD/CN}$ model    | ACC    | SENS   | SPEC   | PREC   | $\mathbf{F1}$ |
|-------------|-----------------------|--------|--------|--------|--------|---------------|
|             | LightGBM              | 76.28% | 76.08% | 76.52% | 79.67% | 77.83%        |
| ring        | XGBoost               | 75.53% | 76.08% | 74.87% | 78.55% | 77.29%        |
| engineering | CatBoost              | 75.39% | 75.50% | 75.25% | 76.68% | 77.05%        |
| eng         | SVM+PCA               | 73.75% | 71.51% | 76.46% | 78.60% | 74.89%        |
| ure         | PCA-kNN               | 72.52% | 70.30% | 75.19% | 77.41% | 73.69%        |
| Feature     | MLP *                 | 73.69% | 72.98% | 74.81% | 77.80% | 75.31%        |
| Н Н         | DICE-net [18] *       | 83.28% | 79.81% | 87.94% | 88.94% | 84.12%        |
|             | EEGNet [15] *         | 41%    | 47.20% | 37.67% | 37.89% | 42.04%        |
| EEG         | EEGNetSSVEP [28] *    | 51.46% | 56.78% | 45.39% | 47.65% | 51.82%        |
|             | DeepConvNet [23] *    | 54.21% | 45.43% | 57.59% | 48.71% | 47.01%        |
| Raw         | ShallowConvNet [23] * | 42.18% | 46.50% | 41.11% | 49.74% | 48.07%        |
|             | D-Rocket Ensemble     | 79.86% | 78.89% | 80.47% | 74.89% | 76.84%        |

Not designed for EEG data!

## Interpretability: EEG Channel Relevance Estimate Intensity Default th: 0.5 0.6 0.8

#### **Experiments: EEG Dataset**

**65 subject** (LOSO CV) and **19 channels**. Classification task: is the subject a patient with **Alzheimer's Disease or a Healthy Control**?

| Type        | AD/CN model           | ACC    | SENS   | SPEC   | PREC   | F1     |
|-------------|-----------------------|--------|--------|--------|--------|--------|
|             | LightGBM              | 76.28% | 76.08% | 76.52% | 79.67% | 77.83% |
| ring        | XGBoost               | 75.53% | 76.08% | 74.87% | 78.55% | 77.29% |
| engineering | CatBoost              | 75.39% | 75.50% | 75.25% | 76.68% | 77.05% |
| eng         | SVM+PCA               | 73.75% | 71.51% | 76.46% | 78.60% | 74.89% |
| ure         | PCA-kNN               | 72.52% | 70.30% | 75.19% | 77.41% | 73.69% |
| Feature     | MLP *                 | 73.69% | 72.98% | 74.81% | 77.80% | 75.31% |
|             | DICE-net [18] $*$     | 83.28% | 79.81% | 87.94% | 88.94% | 84.12% |
|             | EEGNet [15] *         | 41%    | 47.20% | 37.67% | 37.89% | 42.04% |
| Raw EEG     | EEGNetSSVEP [28] *    | 51.46% | 56.78% | 45.39% | 47.65% | 51.82% |
|             | DeepConvNet [23] *    | 54.21% | 45.43% | 57.59% | 48.71% | 47.01% |
| Rav         | ShallowConvNet [23] * | 42.18% | 46.50% | 41.11% | 49.74% | 48.07% |
|             | D-Rocket Ensemble     | 79.86% | 78.89% | 80.47% | 74.89% | 76.84% |

Not designed for EEG data!

## Hands-on Time: Notebook 5

## **Detach-ROCKET**

#### **ROCKET models**

## This is KEY!

Random Convolutional Kernel Transform (ROCKET)\* is a transformation stage which can be applied to time-series data.

#### **ROCKET**

Kernels: Random Pooling: MAX + PPV # Features: 20000

#### **MiniRocket**

Kernels: Dictionary Pooling: PPV # Features: 10000

#### MultiRocket

Kernels: Dictionary
Pooling:
PPV+MPV+MIPV+LSPV
# Features: 50000



#### **Pruning ROCKET with SFD**

We propose an algorithm to select the most relevant features called Sequential Feature Detachment (SFD)\*.

