MAT351 Tutorial 3

PARTIAL DIFFERENTIAL EQUATIONS

WRITTEN BY

DAVID KNAPIK

 $University\ of\ Toronto\\ david.knapik@mail.utoronto.ca$

Diffusion on the whole line

Recall that the IVP for the diffusion equation,

$$\begin{cases} u_t = ku_{xx} & \text{on } \mathbb{R} \times (0, \infty) \\ u(x, 0) = g(x) & \text{on } \mathbb{R} \end{cases}$$

has solution formula

$$u(x,t) = \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} e^{\frac{-(x-y)^2}{4kt}} g(y) dy = (\Phi(\cdot,t) * g)(x) = \int_{-\infty}^{\infty} \Phi(x-y,t) g(y) dy$$
 (1.1)

where

$$\Phi(x,t) := \frac{1}{\sqrt{4\pi kt}} e^{\frac{-x^2}{4kt}}, \quad x \in \mathbb{R}, t > 0$$

is the fundamental solution of the diffusion equation (also called the heat kernel).

Error function

Often, one cannot evaluate the integral (1.1) completely in terms of elementary functions. Sometimes one may encounter integrals of the form $\int_0^x e^{-p^2} dp$. To that end, it is fruitful to recall the error function:

$$\operatorname{erf}(x) := \frac{2}{\sqrt{\pi}} \int_0^x e^{-p^2} dp$$

Strauss 2.4.1

Solve the diffusion equation with the initial condition

$$\phi(x) = 1$$
 for $|x| < l$ and $\phi(x) = 0$ for $|x| > l$

Write your answer in terms of erf(x).

Making the following substitution $p = \frac{(x-y)}{\sqrt{4kt}}$, by the solution formula we have that:

$$\begin{split} u(x,t) &= \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} e^{\frac{-(x-y)^2}{4kt}} \phi(y) dy \\ &= \frac{1}{\sqrt{4\pi kt}} \int_{-l}^{l} e^{\frac{-(x-y)^2}{4kt}} dy \\ &= -\frac{1}{\sqrt{\pi}} \int_{(x+l)/(\sqrt{4kt})}^{(x-l)/(\sqrt{4kt})} e^{-p^2} dp \\ &= \frac{1}{\sqrt{\pi}} \int_{(x-l)/(\sqrt{4kt})}^{(x+l)/(\sqrt{4kt})} e^{-p^2} dp \\ &= \frac{1}{\sqrt{\pi}} \int_{(x-l)/(\sqrt{4kt})}^{0} e^{-p^2} dp + \frac{1}{\sqrt{\pi}} \int_{0}^{(x+l)/(\sqrt{4kt})} e^{-p^2} dp \\ &= -\frac{1}{\sqrt{\pi}} \int_{0}^{(x-l)/(\sqrt{4kt})} e^{-p^2} dp + \frac{1}{\sqrt{\pi}} \int_{0}^{(x+l)/(\sqrt{4kt})} e^{-p^2} dp \\ &= -\frac{1}{2} \mathrm{erf} \left(\frac{x-l}{\sqrt{4kt}} \right) + \frac{1}{2} \mathrm{erf} \left(\frac{x+l}{\sqrt{4kt}} \right) \end{split}$$

Strauss 2.4.6

Compute $\int_0^\infty e^{-x^2} dx$.

You should have seen such an integral before perhaps in a calculus class. The reason I do it here is for the next exercise, which will then be used for Strauss 2.4.3. The standard trick is to let $I = \int_0^\infty e^{-x^2} dx$ then

$$I^{2} = \left(\int_{0}^{\infty} e^{-x^{2}} dx\right) \left(\int_{0}^{\infty} e^{-y^{2}} dy\right)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^{2}+y^{2})} dx dy$$

$$= \int_{0}^{\pi/2} \int_{0}^{\infty} e^{-r^{2}} r dr d\theta$$

$$= \int_{0}^{\frac{\pi}{2}} \left[\frac{-e^{-r^{2}}}{2}|_{0}^{\infty}\right] d\theta$$

$$= \int_{0}^{\pi/2} \frac{1}{2} d\theta$$

$$= \frac{\pi}{4}$$

so we conclude that $I = \frac{\sqrt{\pi}}{2}$.

Strauss 2.4.7

Using the previous exercise, show that $\int_{-\infty}^{\infty} e^{-p^2} dp = \sqrt{\pi}$.

Since e^{-x^2} is even, via symmetry we simply have that

$$\int_{-\infty}^{\infty} e^{-p^2} dp = 2 \int_{0}^{\infty} e^{-p^2} dp = \sqrt{\pi}$$

Strauss 2.4.3

Solve the diffusion equation if $\phi(x) = e^{3x}$.

By the solution formula we have that:

$$u(x,t) = \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} e^{\frac{-(x-y)^2}{4kt}} \phi(y) dy$$

$$= \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} e^{\frac{-(x-y)^2}{4kt}} e^{3y} dy$$

$$= \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} \exp\left(\frac{-(x-y)^2 + 12kty}{4kt}\right) dy$$

$$= \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} \exp\left(\frac{-(y-x-6kt)^2 + 36k^2t^2 + 12kxt}{4kt}\right) dy$$

$$= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-p^2} e^{9kt+3x} dp$$

$$= e^{9kt+3x}$$

where we let $p = \frac{y-x-6kt}{\sqrt{4kt}}$ and we have used the result for the integral from the previous exercise.

Strauss 2.4.9

Solve the diffusion equation $u_t = ku_{xx}$ with the initial condition $u(x,0) = x^2$ by the following special method. First show that u_{xxx} satisfies the diffusion equation with zero initial condition. Therefore, by uniqueness, $u_{xxx} \equiv 0$. Integrating this result thrice, obtain $u(x,t) = A(t)x^2 + B(t)x + C(t)$. Finally, it's easy to solve for A, B, C by plugging into the original problem.

Let u be the solution to the diffusion equation. Then $(u_t)_{xxx} = (ku_{xx})_{xxx}$ and hence $(u_{xxx})_t = k(u_{xxx})_{xx}$ so that u_{xxx} satisfies the diffusion equation with initial condition $u_{xxx}(x,0) = \frac{d^3}{dx^3}x^2 = 0$. So by uniqueness we have that $u_{xxx} \equiv 0$. Now, integrate with respect to x three times:

$$\begin{cases} u_{xx} = a(t) \\ u_x = a(t)x + B(t) \\ u = \frac{1}{2}a(t)x^2 + B(t)x + C(t) = A(t)x^2 + B(t)x + C(t) \end{cases}$$

where we let $A(t) := \frac{1}{2}a(t)$.

Now, substituting into $u_t = ku_{xx}$ we have that $A'(t)x^2 + B'(t)x + C'(t) = 2kA(t)$. Hence

A'(t) = B'(t) = 0 and C'(t) = 2kA(t). Therefore:

$$\begin{cases} A(t) = A_0 \\ B(t) = B_0 \\ C(t) = 2kA_0t + C_0 \end{cases}$$

so that

$$u(x,t) = A_0 x^2 + B_0 x + 2kA_0 t + C_0$$

Now, by the initial condition $u(x,0)=x^2$ we have that $x^2=A_0x^2+B_0x+C_0$. So $A_0=1$, $B_0=0$, and $C_0=0$. We conclude:

$$u(x,t) = x^2 + 2kt$$

Indeed, for a sanity check: $u_t = 2k$ and $ku_{xx} = k(2)$.

Strauss 2.4.18

Solve the heat equation with convection:

$$u_t - ku_{xx} + Vu_x = 0$$
 for $-\infty < x < \infty$ with $u(x,0) = \phi(x)$

where V is a constant. Hint: go to a moving frame of reference by substituting y = x - Vt.

Let y = x - Vt and v(y,t) = u(y + Vt,t). Then

$$\begin{cases} v_t(y,t) = Vu_x(y+Vt,t) + u_t(y+Vt,t) \\ v_y(y,t) = u_x(y+Vt,t) \\ v_{yy}(y,t) = u_{xx}(y+Vt,t) \end{cases}$$

Hence,

$$v_t(y,t) - kv_{yy}(y,t) = Vu_x(y+Vt,t) + u_t(y+Vt,t) - ku_{xx}(y+Vt,t) = 0$$

and so v solves the diffusion equation with initial data $v(y,0) = u(y,0) = \phi(y)$. Therefore,

$$v(y,t) = \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} e^{\frac{-(y-w)^2}{4kt}} \phi(w) dw$$

And then our solution is:

$$u(x,t) = v(x - Vt, t) = \frac{1}{\sqrt{4\pi kt}} \int_{-\infty}^{\infty} e^{\frac{-(x - Vt - w)^2}{4kt}} \phi(w) dw$$

Bibliography

- $[1]\ {\rm R.\ Choksi},\ Partial\ Differential\ Equations:\ A\ First\ Course,\ {\rm AMS\ 2022}$
- [2] W. Strauss, Partial Differential Equations: An Introduction, 2nd edition, Wiley