4-1 Groups

Jun Ma

majun@nju.edu.cn

2021年3月10日

Write out Cayley tables for groups formed by the symmetries of a rectangle and for $(\mathbb{Z}_4, +)$.

How many elements are in each group?

Are the groups the same? Why or why not?

Symmetries of a rectangle

Figure 3.5: Rigid motions of a rectangle

sym	id	180	v-ref	h-ref
id	id	180	v-ref	h-ref
180	180	id	h-ref	v-ref
$\mathbf{v}\text{-}\mathbf{ref}$	v-ref	h-ref	id	180
h-ref	h-ref	v-ref	180	id

+	(0,0)	(0, 1)	(1,0)	(1, 1)
(0,0)	(0,0)	(0, 1)	(1,0)	(1,1)
(0, 1)	(0,1)	(0, 0)	(1, 1)	(1, 0)
(1, 0)	(1,0)	(1, 1)	(0, 0)	(0, 1)
(1, 1)	(1,1)	(1, 0)	(0, 1)	(0, 0)

Table 3.29: Addition table for $\mathbb{Z}_2 \times \mathbb{Z}_2$

Let $S = \mathbb{R} \setminus \{-1\}$ and define a binary operation on S by a * b = a + b + ab.

Prove that (S, *) is an abelian group.

(S,*) is a group

Let
$$a, b, c \in S$$

▶ **Associative**: a * (b * c) = (a * b) * c

$$a*(b*c) = a*(b+c+bc)$$

= $a+(b+c+bc)+a(b+c+bc)$
= $a+b+c+bc+ab+ac+abc$

$$(a*b)*c = (a+b+ab)*c$$

= $(a+b+ab)+c+(a+b+ab)c$
= $a+b+c+ab+ac+bc+abc$

(S,*) is a group

▶ **Identity**: e = 0 is the identity

$$0 * a = 0 + a + 0a = a$$

$$a * 0 = a + 0 + a0 = a$$

(S,*) is a group

▶ **Inverse**: for each $a \in S$, $\exists a^{-1}$ s.t. $a * a^{-1} = a^{-1} * a = 0$

$$a * (\frac{-a}{1+a}) = a + \frac{-a}{1+a} + a \frac{-a}{1+a}$$
$$= \frac{a+a^2-a-a^2}{1+a}$$
$$= 0$$

(S,*) is an abelian group

▶ Communicative: a * b = b * a

$$a * b = a + b + ab = b + a + ba = b * a$$

Let $\mathbb{T} = \{z \in \mathbb{C}^* : |z| = 1\}$. Prove that \mathbb{T} is a subgroup of \mathbb{C}^* .

Hint: \mathbb{C}^* : the multiplicative group of nonzero complex numbers.

Let $\mathbb{T} = \{z \in \mathbb{C}^* : |z| = 1\}$. Prove that \mathbb{T} is a subgroup of \mathbb{C}^* . *Hint*: \mathbb{C}^* : the multiplicative group of nonzero complex numbers.

Proposition 3.31. Let H be a subset of a group G. Then H is a subgroup of G if and only if $H \neq \emptyset$, and whenever $g, h \in H$ then gh^{-1} is in H.

Let $\mathbb{T} = \{z \in \mathbb{C}^* : |z| = 1\}$. Prove that \mathbb{T} is a subgroup of \mathbb{C}^* . Hint: \mathbb{C}^* : the multiplicative group of nonzero complex numbers.

Proposition 3.31. Let H be a subset of a group G. Then H is a subgroup of G if and only if $H \neq \emptyset$, and whenever $g, h \in H$ then gh^{-1} is in H.

Obviously, $1 \in \mathbb{T}$ and $\mathbb{T} \neq \emptyset$

Let $\mathbb{T} = \{z \in \mathbb{C}^* : |z| = 1\}$. Prove that \mathbb{T} is a subgroup of \mathbb{C}^* . *Hint*: \mathbb{C}^* : the multiplicative group of nonzero complex numbers.

Proposition 3.31. Let H be a subset of a group G. Then H is a subgroup of G if and only if $H \neq \emptyset$, and whenever $g, h \in H$ then gh^{-1} is in H.

Obviously, $1 \in \mathbb{T}$ and $\mathbb{T} \neq \emptyset$

$$\begin{array}{c} \text{Let } a,b\in\mathbb{T},\,|a|=|b|=1\\ \text{Then } 1=|a|=|a(b^{-1}b)|=|(ab^{-1})b|=|ab^{-1}||b|\\ \text{So, } |ab^{-1}|=1,\,ab^{-1}\in\mathbb{T} \end{array}$$

Let G be the group of 2×2 matrices under addition and

$$H = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) : a + d = 0 \right\}$$

Prove that H is a subgroup of G.

11/38

Let G be the group of 2×2 matrices under addition and

$$H = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) : a + d = 0 \right\}$$

Prove that H is a subgroup of G.

Proposition 3.30. A subset H of G is a subgroup if and only if it satisfies the following conditions.

- 1. The identity e of G is in H.
- 2. If $h_1, h_2 \in H$, then $h_1h_2 \in H$.
- 3. If $h \in H$, then $h^{-1} \in H$.

$$H = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) : a + d = 0 \right\}$$

证明.

 $\qquad \qquad \bullet \quad \text{Obviously, } \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right) \in H$

$$H = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) : a + d = 0 \right\}$$

证明.

- Let $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in H$, $\begin{pmatrix} u & v \\ w & x \end{pmatrix} \in H$. So, a+d=u+x=0; then, a+u+d+x=0, i.e. $\begin{pmatrix} a+u & b+v \\ c+w & d+x \end{pmatrix} \in H$

$$H = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) : a + d = 0 \right\}$$

证明.

- ▶ Obviously, $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in H$
- Let $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in H$, $\begin{pmatrix} u & v \\ w & x \end{pmatrix} \in H$. So, a+d=u+x=0; then, a+u+d+x=0, i.e. $\begin{pmatrix} a+u & b+v \\ c+w & d+x \end{pmatrix} \in H$
- Let $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in H$, then $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \begin{pmatrix} -a & -b \\ -c & -d \end{pmatrix}$. As a+d=0, -a+-d=0. Therefore, $\begin{pmatrix} -a & -b \\ -c & -d \end{pmatrix} \in H$

TJ 4-49

Let a and b be elements of a group G. If $a^4b = ba$ and $a^3 = e$, prove that ab = ba.

TJ 4-49

Let a and b be elements of a group G. If $a^4b = ba$ and $a^3 = e$, prove that ab = ba.

证明.

$$ba = a^4b = (a^3a)b = a^3(ab) = e(ab) = ab$$

Let H be a subgroup of G. If $g \in G$, show that $gHg^{-1} = \{ghg^{-1} : h \in H\}$ is also a subgroup of G.

Let H be a subgroup of G. If $g \in G$, show that $gHg^{-1} = \{ghg^{-1} : h \in H\}$ is also a subgroup of G.

Proposition 3.31. Let H be a subset of a group G. Then H is a subgroup of G if and only if $H \neq \emptyset$, and whenever $q, h \in H$ then qh^{-1} is in H.

 $gHg^{-1} \neq \emptyset$

$$gHg^{-1} \neq \emptyset$$

证明.

As
$$e \in H$$
, $geg^{-1} = e \in gHg^{-1}$.

Let $a, b \in gHg^{-1}$, then $ab^{-1} \in gHg^{-1}$

Let $a, b \in gHg^{-1}$, then $ab^{-1} \in gHg^{-1}$

证明.

▶ Assume $a = gxg^{-1}$ and $b = gyg^{-1}$, where $x, y \in H$

>

$$\begin{array}{ll} ab^{-1} &= (gxg^{-1})(gyg^{-1})^{-1} \\ &= (gxg^{-1})(gy^{-1}g^{-1}) \\ &= gxg^{-1}gy^{-1}g^{-1} \\ &= gxy^{-1}g^{-1} \end{array}$$

 $y \in H \Rightarrow y^{-1} \in H$. Then $xy^{-1} \in H$. So, $gxy^{-1}g^{-1} \in H$.

TJ 4-1

Prove or disprove each of the following statements.

- (a) All of the generators of \mathbb{Z}_{60} are prime.
- (b) U(8) is cyclic.
- (c) Q is cyclic.
- (d) If every proper subgroup of a group G is cyclic, then G is a cyclic group.
- (e) A group with a finite number of subgroups is finite.

All of the generators of \mathbb{Z}_{60} are prime?

All of the generators of \mathbb{Z}_{60} are prime?

All of the generators of \mathbb{Z}_{60} are prime?

Corollary 4.14. The generators of \mathbb{Z}_n are the integers r such that $1 \leq r < n$ and $\gcd(r,n)=1$.

All of the generators of \mathbb{Z}_{60} are prime?

Corollary 4.14. The generators of \mathbb{Z}_n are the integers r such that $1 \leq r < n$ and gcd(r,n) = 1.

49?

(b)

U(8) is cyclic?

	1	3	5	7
1	1	3	5	7
3 5	3	1	7	5
5	5	7	1	3
7	7	5	3	1

Table 3.12: Multiplication table for U(8)

(b)

U(8) is cyclic?

	1	3	5	7
1	1	3	5	7
3	3	1	7	5
5	5	7	1	3
7	7	5	3	1

Table 3.12: Multiplication table for U(8)

- |1| = 1
- |3| = |5| = |7| = 2

(b)

$$U(8)$$
 is cyclic?

	1	3	5	7
1	1	3	5	7
3 5	3 5	1	7	5
5	5	7	1	3
7	7	5	3	1

Table 3.12: Multiplication table for U(8)

- |1| = 1
- |3| = |5| = |7| = 2

(c)

Q is cyclic?

(c)

Q is cyclic?

► (Q, +): X

▶ Identity: 0

▶ Inverse: -a

(c)

Q is cyclic?

- ► (Q, +): **X**
 - ► Identity: 0
 - ▶ Inverse: -a
- ► (ℚ, *): X
 - ▶ Identity: 1
 - ▶ Inverse: 1/a? If a = 0?
 - \triangleright (\mathbb{Q} , *) is not a group!

If every proper subgroup of a group G is cyclic, then G is a cyclic group?

If every proper subgroup of a group G is cyclic, then G is a cyclic group?

$$B \quad identity \quad B \quad id = \begin{pmatrix} A & B & C \\ A & B & C \end{pmatrix}$$

$$B \quad rotation \quad A \quad \rho_1 = \begin{pmatrix} A & B & C \\ B & C & A \end{pmatrix}$$

$$C \quad C \quad B \quad \rho_2 = \begin{pmatrix} A & B & C \\ B & C & A \end{pmatrix}$$

$$C \quad A \quad D \quad A \quad \rho_2 = \begin{pmatrix} A & B & C \\ C & A & B \end{pmatrix}$$

$$A \quad C \quad A \quad B \quad \rho_3 = \begin{pmatrix} A & B & C \\ A & C & B \end{pmatrix}$$

$$A \quad C \quad A \quad D \quad A \quad \rho_4 = \begin{pmatrix} A & B & C \\ A & C & B \end{pmatrix}$$

$$A \quad C \quad C \quad A \quad A \quad \rho_5 = \begin{pmatrix} A & B & C \\ B & A & C \end{pmatrix}$$

$$A \quad C \quad C \quad A \quad A \quad \rho_6 = \begin{pmatrix} A & B & C \\ C & B & A \end{pmatrix}$$

$$A \quad C \quad C \quad A \quad A \quad \rho_8 = \begin{pmatrix} A & B & C \\ C & B & A \end{pmatrix}$$

$$A \quad C \quad C \quad A \quad A \quad \rho_8 = \begin{pmatrix} A & B & C \\ C & B & A \end{pmatrix}$$

$$A \quad C \quad C \quad A \quad A \quad \rho_8 = \begin{pmatrix} A & B & C \\ C & B & A \end{pmatrix}$$

Figure 3.6: Symmetries of a triangle

 S_3

0	id	ρ_1	ρ_2	μ_1	μ_2	μ_3
id	id	ρ_1	ρ_2	μ_1	μ_2	μ_3
	ρ_1					
$ ho_2$	ρ_2	id	ρ_1	μ_2	μ_3	μ_1
μ_1	μ_1	μ_2	μ_3	id	ρ_1	ρ_2
μ_2	μ_2	μ_3	μ_1	$ ho_2$	id	ρ_1
μ_3	μ_3	μ_1	μ_2	ρ_1	ρ_2	id

Table 3.7: Symmetries of an equilateral triangle

If every proper subgroup of a group G is cyclic, then G is a cyclic group? X

Example 4.7. Not every group is a cyclic group. Consider the symmetry group of an equilateral triangle S_3 . The multiplication table for this group is Table 3.7. The subgroups of S_3 are shown in Figure 4.8. Notice that every subgroup is cyclic; however, no single element generates the entire group.

Figure 4.8: Subgroups of S_3

22/38

(e)

A group with a finite number of subgroups is finite?

(e)

A group with a finite number of subgroups is finite?

 \Downarrow

An infinite group has infinite number of subgroups

引理-1

引理 (1)

Any group is a union of its cyclic subgroups.

证明.

For any $a \in G$, $\langle a \rangle$ is a subgroup of G

引理-2

引理 (2)

An infinite cyclic group has infinitely many (cyclic) subgroups.

- \blacktriangleright Let a be the generator of G
- ▶ Then $\langle a^k \rangle$ is a cyclic subgroup of G, for $k = 1, 2, \cdots$

证明.

证明.

Let G be an infinite group.

▶ G is the union of all its cyclic subgroups. (引理-1)

证明.

- ightharpoonup G is the union of all its cyclic subgroups. (引理-1)
- ▶ If G has finite number of cyclic subgroups, there must be at least one subgroup H which is **infinite**; Otherwise, G cannot be infinite.

证明.

- ▶ G is the union of all its cyclic subgroups. (引理-1)
- ▶ If G has finite number of cyclic subgroups, there must be at least one subgroup H which is **infinite**; Otherwise, G cannot be infinite.
- ▶ As H is cyclic, H has infinitely many cyclic subgourps.(引理-2)

证明.

- ▶ G is the union of all its cyclic subgroups. (引理-1)
- ▶ If G has finite number of cyclic subgroups, there must be at least one subgroup H which is **infinite**; Otherwise, G cannot be infinite.
- ▶ As H is cyclic, H has infinitely many cyclic subgourps.(引理-2)
- \triangleright Subgroups of H must be subgruops of G, so G has infinitely many subgroups.

How many generators does an infinite cyclic group have?

How many generators does an infinite cyclic group have?

Only 2

How many generators does an infinite cyclic group have?

Only 2

证明.

▶ If $G = \langle a \rangle = \langle b \rangle$ then $b = a^n$ for some n and $a = b^m$ for some m.

How many generators does an infinite cyclic group have?

Only 2

- ▶ If $G = \langle a \rangle = \langle b \rangle$ then $b = a^n$ for some n and $a = b^m$ for some m.

How many generators does an infinite cyclic group have?

Only 2

- ▶ If $G = \langle a \rangle = \langle b \rangle$ then $b = a^n$ for some n and $a = b^m$ for some m.
- ▶ Since G is an infinite cyclic group, nm = 1, which has only two solutions (1,1) and (-1,-1).

How many generators does an infinite cyclic group have?

Only 2

- ▶ If $G = \langle a \rangle = \langle b \rangle$ then $b = a^n$ for some n and $a = b^m$ for some m.
- $Therefore <math>a = b^m = (a^n)^m = a^{nm}$
- ▶ Since G is an infinite cyclic group, nm = 1, which has only two solutions (1,1) and (-1,-1).
- So, b = a or $b = a^{-1}$.

(a) Find a cyclic group with exactly one generator.

 \mathbb{Z}_1 : 0

 \mathbb{Z}_2 : 1

(b) Can you find cyclic groups with exactly two generators?

 $\mathbb{Z}_3:1,2$

 $\mathbb{Z}_4:1,3$

 $\mathbb{Z}_{6}:1,5$

 \mathbb{Z} :1,-1

(c) Four generators?

 \mathbb{Z}_5 : 1,2,3,4

 \mathbb{Z}_8 : 1,3,5,7

 \mathbb{Z}_{10} : 1,3,7,9

(d) How about n generators?

How about n generators?

How about n generators?

- ▶ Case 1: n > 2 and n is odd. Impossible!!!
 - ▶ If a is a generator, then a^{-1} must be a generator other than a.

How about n generators?

- ▶ Case 1: n > 2 and n is odd. Impossible!!!
 - ▶ If a is a generator, then a^{-1} must be a generator other than a.
- ▶ Case 2: n is even. \mathbb{Z}_m , where $m = \varphi(n)$

Euler φ -function

The Euler φ -function is the map $\varphi: \mathbb{N} \to \mathbb{N}$ defined by $\varphi(n) = 1$ for n = 1, and, for n > 1, $\varphi(n)$ is the number of positive integers m with $1 \le m < n$ and $\gcd(m, n) = 1$.

Let p and q be distinct primes. How many generators does \mathbb{Z}_{pq} have?

Let p and q be distinct primes. How many generators does \mathbb{Z}_{pq} have?

How many r are there satisfying $0 \le r < pq$, and GCD(pq, r) = 1?

Let p and q be distinct primes. How many generators does \mathbb{Z}_{pq} have?

How many
$$r$$
 are there satisfying $0 \le r < pq$, and $GCD(pq, r) = 1$?
Answer: $pq - (p-1) - (q-1) - 1 = pq - p - q + 1$

$$\begin{array}{ccc}
p & q \\
2p & 2q \\
\dots & \dots \\
(q-1)p & (p-1)q \\
qp & pq
\end{array}$$

$$\varphi(p)\varphi(q) = (p-1)(q-1) = pq - p - q + 1$$

Let G be a finite cyclic group of order n generated by x. Show that if $y = x^k$ where gcd(k, n) = 1, then y must be a generator of G.

Let G be a finite cyclic group of order n generated by x. Show that if $y = x^k$ where gcd(k, n) = 1, then y must be a generator of G.

Theorem 4.13. Let G be a cyclic group of order n and suppose that $a \in G$ is a generator of the group. If $b = a^k$, then the order of b is n/d, where $d = \gcd(k, n)$.

Let G be a finite cyclic group of order n generated by x. Show that if $y = x^k$ where gcd(k, n) = 1, then y must be a generator of G.

Theorem 4.13. Let G be a cyclic group of order n and suppose that $a \in G$ is a generator of the group. If $b = a^k$, then the order of b is n/d, where $d = \gcd(k, n)$.

So, the order of y is n/gcd(k, n) = n, i.e. y is a generator of G.

Z_p

证明: 设 p 为素数,则 $Z_p = \{1, 2, ..., p-1\}$ 关于 p **乘法**构成的 p-1 阶循环群。(此处的 1, 2, ..., p-1 是模 p 等价类的代表元)

Z_p^* is an (abelian) group

- ► **Associative**: Obviously.
- ▶ Identity: $1 \in \mathbb{Z}_p$.
- ▶ **Inverse**: for any $a \in Z_p$, $ax = 1 \mod p$ has an unique root.
- ► **Abelian**: Obviously.

引理 (1)

Let $a \in G$, with |a| = n, Then, for any k|n, there exists $a \in G$ with |c| = k.

引理 (1)

Let $a \in G$, with |a| = n, Then, for any k|n, there exists $a \in G$ with |c| = k.

Let
$$c = a^{n/k}$$

引理 (2)

Let $a, b \in G$, with |a| = n, |b| = m, and gcd(n, m) = 1. Then, there exists $a \in G$ with |c| = nm.

引理 (2)

Let $a,b \in G$, with |a| = n, |b| = m, and $\gcd(n,m) = 1$. Then, there exists $a \in G$ with |c| = nm.

- $(ab)^{nm} = (a^n)^m (b^m)^n = 1^m 1^n = 1.$ (G is abelian).
- Let |ab| = k, then k|nm. $(ab)^k = 1 \Rightarrow a^k b^k = 1 \Rightarrow a^k = b^{-k}$.
- ► Then, $(a^k)^m = (b^{-k})^m \Rightarrow a^{mk} = 1$. Thus, n|mk.
- ▶ However, as gcd(n, m) = 1, we have n|k.
- ightharpoonup Similarly, m|k.
- ▶ So, nm|k. And finally nm = k

引理 (3)

Let $a, b \in G$, with |a| = n, |b| = m. Then, there exists $a \in G$ with |c| = lcm(n, m).

引理 (3)

Let $a, b \in G$, with |a| = n, |b| = m. Then, there exists $a \in G$ with |c| = lcm(n, m).

证明.

▶ By lemma(1), there exists $c_1, c_2, c_3 \in G$ with

$$|c_1| = \gcd(n, m); |c_2| = \frac{n}{\gcd(n, m)}; |c_3| = \frac{m}{\gcd(n, m)}$$

引理 (3)

Let $a, b \in G$, with |a| = n, |b| = m. Then, there exists $a \in G$ with |c| = lcm(n, m).

证明.

▶ By lemma(1), there exists $c_1, c_2, c_3 \in G$ with

$$|c_1| = \gcd(n, m); |c_2| = \frac{n}{\gcd(n, m)}; |c_3| = \frac{m}{\gcd(n, m)}$$

 $ightharpoonup |c_1|, |c_2|, |c_3|$ are co-primes, by lemma(2), there exists a $c \in G$, s.t.

$$|c| = \gcd(n, m) \frac{n}{\gcd(n, m)} \frac{m}{\gcd(n, m)} = \frac{nm}{\gcd(n, m)}$$

引理 (4)

For d|p-1, $x^d-1=0$ has exactly d roots in \mathbb{Z}_p^* .

▶ Assume $G = Z_p^*$ is **not cyclic**.

- Assume $G = Z_p^*$ is **not cyclic**.
- Assume $|i| = m_i$ for $i \in \{1, 2, \dots, p-1\}$, let $d = lcm(m_1, m_2, \dots, m_{p-1})$

- Assume $G = Z_p^*$ is **not cyclic**.
- Assume $|i| = m_i$ for $i \in \{1, 2, \dots, p-1\}$, let $d = lcm(m_1, m_2, \dots, m_{p-1})$
- ▶ There is a $c \in G$ with |c| = d. (by Lemma(3))

- Assume $G = Z_p^*$ is **not cyclic**.
- Assume $|i| = m_i$ for $i \in \{1, 2, \dots, p-1\}$, let $d = lcm(m_1, m_2, \dots, m_{p-1})$
- ▶ There is a $c \in G$ with |c| = d. (by Lemma(3))
- ▶ As Z_p^* is **not cyclic**, d must be a strict divisor of p-1.

- ▶ Assume $G = Z_p^*$ is **not cyclic**.
- Assume $|i| = m_i$ for $i \in \{1, 2, \dots, p-1\}$, let $d = lcm(m_1, m_2, \dots, m_{p-1})$
- ▶ There is a $c \in G$ with |c| = d. (by Lemma(3))
- ▶ As Z_p^* is **not cyclic**, d must be a strict divisor of p-1.
- ▶ For every $i \in G$, we have:

$$i^{d} - 1 = (i^{m_i})^{d/m_i} - 1 = 1^{d/m_i} - 1 = 0$$

- Assume $G = Z_p^*$ is **not cyclic**.
- Assume $|i| = m_i$ for $i \in \{1, 2, \dots, p-1\}$, let $d = lcm(m_1, m_2, \dots, m_{p-1})$
- ▶ There is a $c \in G$ with |c| = d. (by Lemma(3))
- ▶ As Z_p^* is **not cyclic**, d must be a strict divisor of p-1.
- ▶ For every $i \in G$, we have:

$$i^d - 1 = (i^{m_i})^{d/m_i} - 1 = 1^{d/m_i} - 1 = 0$$

▶ So, every $i \in G$ is a root of $x^d - 1 = 0$. Totally, p - 1 roots.

- Assume $G = Z_p^*$ is **not cyclic**.
- Assume $|i| = m_i$ for $i \in \{1, 2, \dots, p-1\}$, let $d = lcm(m_1, m_2, \dots, m_{p-1})$
- ▶ There is a $c \in G$ with |c| = d. (by Lemma(3))
- ▶ As Z_p^* is **not cyclic**, d must be a strict divisor of p-1.
- ▶ For every $i \in G$, we have:

$$i^d - 1 = (i^{m_i})^{d/m_i} - 1 = 1^{d/m_i} - 1 = 0$$

- ▶ So, every $i \in G$ is a root of $x^d 1 = 0$. Totally, p 1 roots.
- $ightharpoonup x^d 1 = 0$ would have exactly d roots (by Lemma(5))

- Assume $G = Z_p^*$ is **not cyclic**.
- Assume $|i| = m_i$ for $i \in \{1, 2, \dots, p-1\}$, let $d = lcm(m_1, m_2, \dots, m_{p-1})$
- ▶ There is a $c \in G$ with |c| = d. (by Lemma(3))
- ▶ As Z_p^* is **not cyclic**, d must be a strict divisor of p-1.
- ▶ For every $i \in G$, we have:

$$i^{d} - 1 = (i^{m_i})^{d/m_i} - 1 = 1^{d/m_i} - 1 = 0$$

- ▶ So, every $i \in G$ is a root of $x^d 1 = 0$. Totally, p 1 roots.
- $x^d 1 = 0$ would have exactly d roots (by Lemma(5))
- As d is a strict divisor of p-1, d < p-1. Contradiction!

Thank You!