Questão 2

Shai Vaz, Heron Goulart, Alexandre Almeida, João Pedro Pedrosa, Roberto Orenstein 2023-10-04

Questão 2: Modelo Fama-French

Modelo

Adaptando Cochrane (2005) e Fama and French (1993) :

1. Etapa painel

$$R_{i,t}^e = R_{i,t} - Rf_{i,t} = a_i + \widehat{\beta_{i,Mkt}}(R_{Mkt,t} - Rf) + \widehat{\beta_{i,SMB}}SMB + \widehat{\beta_{i,HML}}HML + \epsilon_{i,t}$$

2. Etapa Cross-Section

$$\mathbb{E}[R_{i,t}^e] = \alpha + \beta_{i,Mkt} \widehat{\lambda_{Mkt}} + \beta_{i,SMB} \widehat{\lambda_{SMB}} + \beta_{i,HML} \widehat{\lambda_{HML}} + \eta_i$$

Importação dos dados

Baixamos os portfólios.

```
port <- read_xlsx(
   "Avg_Val_Weight_Ret_25port1.xlsx",
) %>%
   mutate(
   month = as_date(month)
)
```

Agora, baixamos os fatores.

```
fac <- read_xlsx(
    "F-F_Research_Data_Factors1.xlsx"
) %>%
    mutate(
    month = as_date(month)
)
```

Unificamos os dois.

```
FF <- full_join(
  fac, port,
  by = "month"
)
remove(fac, port)</pre>
```

Em seguida, pivotamos as colunas de portfólios para long format. A coluna i, contém os portfólios, e a coluna R contém os seus retornos.

```
FF_long <- FF %>%
  pivot_longer(
    !1:5,
    names_to = "i",
    values_to = "R"
) %>%
  mutate(
    Mkt = as.numeric(Mkt),
    SMB = as.numeric(SMB),
    HML = as.numeric(HML),
    RF = as.numeric(RF)
)
```

Vamos calcular também o Excesso de Retorno dos portfólios. Notemos que o retorno de mercado (Mkt) já está representado também em excesso de retornos.

```
FF_long <- FF_long %>%
  mutate(
    Re = R - RF
)
```

Regressão em Painel

Agora, vamos regredir os retornos de cada um dos 25 portfólios nos 3 fatores de Fama-French. Há uma versão em que a variável dependente é o Retorno Bruto, e outra em que a variável dependente é o retorno bruto, e outra com o excesso de retorno.

```
painel_R <- pvcm(
  R ~ Mkt + SMB + HML,
  data = FF_long,
  model = "within",
  index = c("i", "month")
)</pre>
```

```
betas_R <- coef(painel_R) %>%
  rownames_to_column(var = "i") %>%
  rename(
    a = "(Intercept)",
    b_Mkt = Mkt,
    b_SMB = SMB,
    b_HML = HML
)
```

```
painel_Re <- pvcm(
  Re ~ Mkt + SMB + HML,
  data = FF_long,
  model = "within",
  index = c("i", "month")
)

betas_Re <- coef(painel_Re) %>%
  rownames_to_column(var = "i") %>%
  rename(
   a = "(Intercept)",
   b_Mkt = Mkt,
   b_SMB = SMB,
   b_HML = HML
```

Resultados do Painel

	Retornos Brutos				Excesso de retornos			
Portfólios	a	β_{Mkt}	β_{SMB}	β_{HML}	a	β_{Mkt}	β_{SMB}	β_{HML}
BIG HiBM	0.093	1.174	-0.173	1.013	-0.176	1.177	-0.171	1.011
$\operatorname{BIG}\ \operatorname{LoBM}$	0.367	1.027	-0.153	-0.266	0.098	1.030	-0.151	-0.269
ME1~BM2	-0.138	1.070	1.535	0.207	-0.406	1.073	1.538	0.205
ME1~BM3	0.126	1.073	1.244	0.544	-0.142	1.076	1.246	0.541
ME1 BM4	0.348	0.939	1.221	0.578	0.079	0.942	1.224	0.575
ME2~BM1	0.030	1.085	1.133	-0.215	-0.239	1.088	1.136	-0.218
ME2~BM2	0.288	1.018	0.991	0.124	0.019	1.021	0.994	0.121
ME2~BM3	0.292	0.987	0.823	0.346	0.024	0.990	0.825	0.343
ME2~BM4	0.301	0.964	0.811	0.569	0.033	0.967	0.814	0.566
ME2~BM5	0.315	1.066	0.916	0.881	0.047	1.069	0.919	0.878
ME3 BM1	0.143	1.127	0.807	-0.219	-0.125	1.130	0.810	-0.222
ME3~BM2	0.370	1.016	0.541	0.039	0.101	1.019	0.544	0.037
ME3~BM3	0.328	0.983	0.441	0.324	0.060	0.986	0.443	0.322
ME3~BM4	0.326	0.996	0.468	0.565	0.057	0.999	0.470	0.562
ME3~BM5	0.210	1.111	0.578	0.860	-0.059	1.114	0.581	0.858
ME4 BM1	0.330	1.074	0.331	-0.338	0.061	1.077	0.334	-0.341
ME4~BM2	0.280	1.026	0.231	0.108	0.011	1.029	0.233	0.105
ME4~BM3	0.282	1.004	0.204	0.344	0.013	1.007	0.207	0.342
ME4~BM4	0.287	1.036	0.204	0.567	0.018	1.039	0.207	0.564
ME4~BM5	0.115	1.186	0.315	0.947	-0.153	1.189	0.317	0.944
ME5~BM2	0.276	0.973	-0.194	0.024	0.007	0.976	-0.191	0.021
ME5 BM3	0.262	0.957	-0.237	0.329	-0.006	0.960	-0.235	0.326
$\mathrm{ME}5~\mathrm{BM}4$	0.031	1.029	-0.189	0.664	-0.238	1.032	-0.186	0.661
$\mathrm{SMALL}\ \mathrm{HiBM}$	0.399	0.975	1.306	0.900	0.130	0.978	1.309	0.898
SMALL LoBM	-0.426	1.275	1.464	0.360	-0.695	1.278	1.466	0.358

Regressão em Cross-Section

Novamente, teremos uma versão em que os retornos dos portfólios estão brutos, e outra versão em que estão líquidos da taxa livre de risco, portanto em excesso de retorno.

Inicialmente, preparamos o dataframe de Retornos Esperados (ER) dos portfólios. A seguir, juntaremos esse dado com os betas estimados anteriormente.

```
FF_expected <- FF_long %>%
select(
  i,R,Re
) %>%
group_by(i) %>%
```

```
summarise(
   ER = mean(R),
   ERe = mean(Re)
)
```

Agora, juntamos com os betas.

```
FF_ER <- FF_expected %>%
full_join(
  betas_R,
  by = "i"
)
```

```
FF_ERe <- FF_expected %>%
full_join(
  betas_Re,
  by = "i"
)
```

A seguir, rodamos regressões em Cross-Section dos retornos esperados nos betas, tanto com retornos brutos quanto com excessos de retorno.

```
cross_ER <- lm(
  ER ~ b_Mkt + b_SMB + b_HML,
  data = FF_ER
)</pre>
```

```
cross_ERe <- lm(
   ERe ~ b_Mkt + b_SMB + b_HML,
   data = FF_ERe
)</pre>
```

Conclusões

Percebe-se que os prêmios de riscos λ não variam se utilizamos qualquer um dos modelos, alterando apenas o intercepto. O que faz sentido. A diferença na constante é precisamente a esperança do retorno do ativo livre de risco $\mathbb{E}[R_f]$.

A seguir, temos os resultados da regressão em Cross-Section, com as duas variáveis dependentes diferentes $(\mathbb{E}[R_i] \in \mathbb{E}[R_i^e])$ utilizadas.

	$Dependent\ variable:$			
	Expected Return	Expected Excess Return		
	(1)	(2)		
λ_{Mkt}	-0.984***	-0.984^{***}		
	(0.323)	(0.323)		
λ_{SMB}	0.117**	0.117**		
	(0.046)	(0.046)		
λ_{HML}	0.371***	0.371***		
	(0.064)	(0.064)		
Constant	1.982***	1.719***		
	(0.334)	(0.335)		
Observations	25	25		
\mathbb{R}^2	0.679	0.679		
Adjusted R^2	0.633	0.633		
Residual Std. Error $(df = 21)$	0.124	0.124		
F Statistic ($df = 3; 21$)	14.783***	14.783***		

Note:

*p<0.1; **p<0.05; ***p<0.01

Gráfico

Podemos visualizar as inclinações λ no gráfico a seguir.

```
FF_ER %>%
  pivot_longer(
    cols = c("b_Mkt","b_SMB","b_HML"),
    names_to = "names",
    values_to = "Betas"
) %>%
  ggplot() +
  aes(x=Betas, y=ER) +
  geom_point() +
  geom_smooth(method = "lm") +
  facet_wrap(
    "names",
    scales = "free_x"
) +
  theme_minimal()
```

'geom_smooth()' using formula = 'y \sim x'

References

Cochrane, John H. 2005. Asset Pricing. Princeton, NJ: Princeton University Press.

Fama, Eugene F., and Kenneth R. French. 1993. "Common Risk Factors in the Returns on Stocks and Bonds." Journal of Financial Economics 33 (1): 3–56. https://doi.org/10.1016/0304-405x(93)90023-5.