Chapter 1

Groups

Lectured by Dr Michele Zordan Typed by Yu Coughlin Spring 2024

Introduction

The following are supplementary reading:

- $\bullet\,$ J B Fraleigh, A first course in abtract algebra, 2014
- $\bullet\,$ R B J T Allenby, Rings, field and groups: an introduction to abstract algebra, 1991
- A W Knapp, Basic Algebra, 2006

Lecture 1 Thursday 10/01/19

Contents

1	Gro	oups	1
L1	1	Binary operations and groups	3
	2	Subgroups	3
		2.1 Subgroups	3
		2.2 Cyclic groups and orders	4
		2.3 Cosets	4
		2.4 Lagrange's theorem	5
		2.5 Generating groups	5
	3	Group homomorphisms	5
	4	Symmetric groups	6
		4.1 Disjoint cycle decomposition	6
		4.2 Alternating groups	7
		4.3 Dihedral groups	7
	5	Group-like objects*	7

1 Binary operations and groups

Definition 1.0.1 (Binary operation). Given a set G a binary operation on G is a mapping $\cdot : G \times G \to G$ written $\cdot (g,h) = g \cdot h$ (and sometimes gh) for all $g,h \in G$.

Definition 1.0.2 (Group). A **group** is a pair $G = (G, \cdot)$, for some set G and a binary operation \cdot , satisfying the following properties:

- (G1) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in G$ (the binary operation is **associative**),
- (G2) $\exists e \in G$ such that $\forall g \in Gg \cdot e = e \cdot g = g$ (there is an **identity** element),
- (G3) $\forall g \in G, \exists g^{-1} \in G \text{ such that } g \cdot g^{-1} = g^{-1} \cdot g = e \text{ (every element has an inverse)}.$

In some literature, the condition of **closure** is also required however this is given in the fact that \cdot is a binary operation on G.

Theorem 1.0.3 (Uniqueness of identity). The identity element for some group G is unique. The inverse, g^{-1} , of any element $g \in G$ is also unique.

Proof. Given identities
$$e_1, e_2 \in G$$
, $e_1 = e_1 \cdot e_2 = e_2$.

Lemma 1.0.4 (Inverse of product). Given a group G and the elements $g_1, g_2, \ldots, g_n \in G$ we have,

$$(g_1g_2...g_n)^{-1} = g_n^{-1}g_{n-1}^{-1}...g_1^{-1}.$$

Proof.
$$(g_1g_2...g_n)(g_n^{-1}...g_2^{-1}g_1^{-1}) = e$$
 clearly, so $(g_1g_2...g_n)^{-1} = g_n^{-1}g_{n-1}^{-1}...g_1^{-1}$.

Lemma 1.0.5 (Uniquess of inverses). The inverse of an element $g \in G$ is unique.

Proof. Suppose
$$a, b$$
 are inversers of $g \in G$, $ag = e = bg \implies a = b$.

Definition 1.0.6 (Abelian Group). If a group G also satisfies the condition $g \cdot h = h \cdot g$ for all $g, h \in G$ (commutativity), then G is an abelian group.

Definition 1.0.7 (Powers of elements). Given a group G and some $g \in G$ the nth power of g in G is defined recursively as,

$$g^{n} := \begin{cases} e & \text{if } n = 0 \\ g^{n-1}g & \text{if } n > 0 \\ (g^{n})^{-1} & \text{if } n < 0 \end{cases}$$

Definition 1.0.8 (Order of group). The **order** of a group G, written G, is the cardinality of the set of G.

Example 1.0.9 (Symmetric group). The **symmetric group of size** n, denoted S_n , is the set of bijections on the interval [1, n], for $n \in \mathbb{N}$, under function composition. In generarl, given a set X, $\operatorname{Sym}(X)$ is the group of permutations of X.

2 Subgroups

2.1 Subgroups

Definition 2.1.1 (Subgroup). Given a group (G, \cdot) and a subset $H \subseteq G$ we say (H, \cdot) is a **subgroup** of G, written $H \subseteq G$, if (H, \cdot) is a group. H is a **proper subgroup** iff $H \neq G$.

Theorem 2.1.2 (Subgroup test). Given a group (G, \cdot) , (H, \cdot) is a subgroup iff:

- (S1) H is non-empty (existence),
- (S2) for all $h_1, h_2 \in H$ we have $h_1 \cdot h_2 \in H$ (closure under group operation),
- (S3) for all $h \in H$ we have $h^{-1} \in H$ (closure under inverses).

Proof. (\Leftarrow) is simple. For (\Rightarrow): group axioms \Rightarrow (S1) and (S2), as H is a group, h must have an inverse $h' \in H$, inverses are unique \Rightarrow (S3).

2.2 Cyclic groups and orders

Definition 2.2.1 (Cyclic group). We say a group G is cyclic if there is an element $g \in G$ such that

$$G = \langle g \rangle := \{ g^n : n \in \mathbb{N} \}.$$

We say that G is **generated** by g or g is a **generator** of G.

Definition 2.2.2 (Order of elements). Given a group G and some $g \in G$, the **order** of g in G, written ord g, is the smallest positive integer n such that $g^n = e$ or ∞ if no such n exists.

Theorem 2.2.3. Suppose G is a group with $g \in G$ having finite order n, $\langle g \rangle = \{e, g, g^2, \dots, g^{n-1}\}$.

Lemma 2.2.4. For $a, b \in \mathbb{Z}$, $g^a = g^b \Leftrightarrow a \equiv b \pmod{n}$

Proof. (\Leftarrow) is simple. For (\Rightarrow), $g^a = g^b \Rightarrow g^{a-b} = e$, by division algorithm $\Rightarrow e = g^{qn+r} = (g^n)^q \cdot g^r = g^r$ so r = 0 and n|a - b.

Proof of 2.2.3. All $m \in \mathbb{Z}$ are congruent to one of $0, 1, \ldots, n-1 \pmod n$ so $\langle g \rangle = \{g^m : m \in \mathbb{Z}\} = \{e, g, \ldots, g^{n-1}\}.$

Theorem 2.2.5. Suppose G is a cyclic group with $G = \langle g \rangle$, the three statements:

- 1. $H \leq G \Rightarrow H$ is cyclic,
- 2. suppose |G| = n and $m \in \mathbb{Z}$ with $d = \gcd(m, n)$,

$$\langle g^m \rangle = \langle g^d \rangle$$
 and $|\langle g^m \rangle| = \frac{n}{d}$.

In particular, $\langle g^m \rangle = G$ iff gcd(m, n) = 1,

3. if |G| = n and $k \le n$, then G has a subgroup of order k iff k|n, this subgroup is $\langle g^{n/k} \rangle$.

Proof. 1. Have $H \neq \{e\}$, consider $d := \min\{n \in \mathbb{N} : g^n \in H\}$, clearly $\langle g^d \rangle \leq H$. For all $h = g^m \in H$, $g^m = g^{pd+r} = (g^d)^p \cdot g^r \Rightarrow g^r = h(g^d)^{-p} \in H$ therefore r = 0 so $h \in \langle g^d \rangle$ and $H = \langle g^d \rangle$.

- 2. (\subseteq) $g^d = g^{km} \in \langle g^m \rangle$. (\supseteq) Have d = am + bn (Bézout's identity), $g^d = g^{am+bn} = g^{am}g^{bn} = (g^m)^a \in \langle g^d \rangle$.
- 3. (\Rightarrow) 1. (\Leftarrow) 2.

Definition 2.2.6 (Euler totient). The **Euler totient** function ϕ is defined as $\phi(n) := |\{k \in \mathbb{N} : k \le n \text{ and } \gcd(k,n)=1\}|$.

Corollary 2.2.7. For $n \in \mathbb{N}$:

$$\sum_{d|n} \phi(d) = n.$$

Proof. Consider the cyclic group of order n, G. If d|n, $\langle g^{n/k} \rangle$ is the subgroup with all elements of order d with $\phi(d)$ elements of order d. By summing this for d|n (orders of elements in G) we count all of the n elements of G by their order.

2.3 Cosets

Definition 2.3.1 (Coset). Given a group G with $H \leq G$ and $g \in G$ then

$$gH := \{gh : h \in H\},\$$

is a **left coset** of H in G (similarly for a **right cosets**). We will now assume all **cosets** to be left cosets.

Lemma 2.3.2. Given a group G with $H \leq G$, all cosets of H in G have the same size.

Proof. Lemma 3.0.4
$$\Rightarrow$$
 $|H| = |gH|$ for all $g \in G$.

Lemma 2.3.3. If G is a finite group with $H \leq G$, the cosets of H form a partition of G.

Proof. 1. If $g_1 \in g_2H$ (by h), for some $g_1h' \in g_1H$, $g_1h' = g_2(hh') \in g_2H$, $g_2 = g_1h^{-1} \in g_1H$.

2. If $x \in g_1H \cap g_2H$ $(g_1H \cap g_2H \neq \emptyset)$, apply 1. twice to get $g_1H = xH = g_2H$.

2.4 Lagrange's theorem

Theorem 2.4.1 (Lagrange's theorem). If G is a finite group and $H \leq G$, |H| divides |G|.

Proof. Partition G into the $n \in \mathbb{N}$ distinct cosets of H all with size |H|, |G| = n|H|. Have n := [G : H]. \square

Corollary 2.4.2. Given a group G with $H \leq G$, the relation \sim on G given by: $g \sim k$ iff $g^{-1}k \in H$, is an equivalence relation with equivalence classes given by cosets of H.

Proof. $g \sim k \implies k \in gH$ equivalence relation from partition (IUM part 1) given by cosets of G by H.

Corollary 2.4.3. Given a group G of order n, for all $g \in G$, ord $g \mid n$ and $g^n = e$.

Proof. Apply Lagrange's theorem with $H = \langle g \rangle$, $g^n = (g^{\text{ord } g})^{n/\text{ ord } g} = e^{n/\text{ ord } g} = e$ (due to first part).

Corollary 2.4.4 (Fermat's little theorem). Let p be prime. If $x \in \mathbb{Z}$ and $p \nmid x$, then $x^{p-1} \equiv 1 \pmod{p}$.

Proof. Let
$$G = (\mathbb{Z}/p\mathbb{Z})^*$$
, $|G| = p - 1$ and (by Corollary 2.4.3) $[x^{p-1}] = [x]^{p-1} = [1]$ for all $[x] \in G$.

Corollary 2.4.5. If a group G is of prime order, G is cyclic and $\langle g \rangle = G$ for all $(g \neq e) \in G$.

Proof. By Lagrange's Theorem
$$|\langle g \rangle|$$
 divides p , as $g \neq e$, $|\langle g \rangle| = p \Rightarrow \langle g \rangle = G$.

2.5 Generating groups

Definition 2.5.1. Given a group G with $S \subseteq G$, $S^{-1} := \{g^{-1} \in G : g \in S\}$.

Definition 2.5.2 (Subgroup generated by a set). Let G be a group with non-empty $S \subseteq G$. The **subgroup** generated by S is defined as

$$\langle S \rangle := \{ g_1 g_2 \dots g_k \in G : k \in \mathbb{N} \text{ and } g_i \in S \cup S^{-1} \text{ for all } i \in [1, k] \}.$$

Lemma 2.5.3. Given a group G with non-empty $S \subseteq G$, $\langle S \rangle \leq G$ and, $H \leq G$, $S \subseteq H \Rightarrow \langle S \rangle \leq H$. This is equivalent to saying " $\langle S \rangle$ is the smallest subgroup of G containing S".

3 Group homomorphisms

Definition 3.0.1 (Group homomorphism). If (G,\cdot) and (H,*) are goups, $\phi: G \to H$ is a **group homomorphism** iff $\phi(g_1)*\phi(g_2) = \phi(g_1\cdot g_2)$ for all $g_1,g_2\in G$. If ϕ is bijective then it is called a **group isomorphism** with G and H being **isomorphic**, written $G\cong H$.

Example 3.0.2 (determinant). The **determinant** is a group homomorphism, suppose \mathbb{F} is a field:

$$\det: \mathrm{GL}(n,\mathbb{F}) \to (\mathbb{F}^*,\times).$$

Lemma 3.0.3. If G,H are groups with $\phi:G\to H$,

- 1. $\phi(e_G) = e_H$
- 2. $\phi(g^{-1})(\phi(g))^{-1}$ for all $g \in G$.

Proof. 1. $\phi(e_G) = \phi(e_G e_G) = \phi(e_G)\phi(e_G) \Rightarrow \phi(e_G) = e_H$.

2.
$$e_H = \phi(e_G) = \phi(gg^{-1}) = \phi(g)\phi(g^{-1}).$$

Lemma 3.0.4 (Isomorphism from group operation). Given g in the group G, $\phi_g : G \to G$ given by $\phi_g : x \mapsto gx$ is an isomorphism (same for right multiplication).

Proof. injectivity: $\phi_g(x) = \phi_g(y) \Rightarrow gx = gy \Rightarrow x = y$, surjectivity: given $x \in G$, $\phi_g(g^{-1}x) = x$.

Definition 3.0.5 (Image and kernel of group homomorphism). If G,H are groups with $\phi: G \to H$, the image of ϕ is:

$$\operatorname{im} \phi := \{ h \in H : \exists g \in G, h = \phi(g) \}.$$

and the **kernel** of ϕ is

$$\ker \phi := \{ g \in G : \phi(g) = e_H \}.$$

These are each subgroups of H and G respectively.

Lemma 3.0.6. A group homomorphism, $\phi: G \to H$, is injective iff $\ker \phi = \{e_H\}$.

Proof. (\Rightarrow) $\phi(g) = e_H = \phi(e_G)$ so $g = e_G$ and $\ker \phi = \{e_G\}$.

 (\Leftarrow) Supposing $\phi(g_1) = \phi(g_2), \ \phi(g_1g_2^{-1}) = e_H \ \Rightarrow \ g_1g_2^{-1} \in \ker \phi = \{e_G\} \text{ therefore } g_1 = g_2.$

Theorem 3.0.7. The composition of two compatible group homomorphisms is also a group homomorphism.

Proof. Have groups G, H, J with homomorphisms $\phi : G \to H, \psi : H \to J, \psi(\phi(g_1g_2)) = \psi(\phi(g_1)\phi(g_2)) = \psi(\phi(g_1)\psi(\phi(g_2)).$

Theorem 3.0.8. All cyclic groups of the same order are isomorphic.

Proof. Have $G = \langle g \rangle$ and $H = \langle h \rangle$ both order n with $\phi : G \to H$, $\phi : g^k \mapsto h^j$, one can be clearly show, with Lemma 2.2.4, ϕ is an isomorphism.

4 Symmetric groups

4.1 Disjoint cycle decomposition

Definition 4.1.1. If $f, g \in S_n$ and $x \in [1, n]$ then f fixes x if f(x) = x and f moves x otherwise.

Definition 4.1.2. The support of $f \in S_n$ is the set of points f moves, supp $(f) := \{x \in [1, n] : f(x) \neq x\}$.

Definition 4.1.3. If $f, g \in S_n$ satisfy $\operatorname{supp}(f) \cap \operatorname{supp}(g) = \emptyset$, f and g are disjoint.

Lemma 4.1.4. If $f, g \in S_n$ are disjoint, fg = gf.

Proof. For all $x \in [1, n]$ if x is fixed by both f and g we are done, otherwise wlog have f fix $x \Rightarrow x \neq g(x) \neq g(g(x))$ so $g(x) \in \text{supp}(g) \Rightarrow g(x) \notin \text{supp}(f)$ giving f(g(x)) = g(x) = g(f(x)).

Definition 4.1.5 (Cycles). If $f \in S_n$ with $i_1, i_2, \ldots, i_r \in [1, n]$ for some $r \leq n$ such that,

$$f(i_s) = i_{s+1 \pmod{(r)}}$$
 for all $s \in [1, r]$,

with f fixing all other elements of [1, n], then f is a cycle of length r or an r-cycle and we write $f = (i_1 i_1 \dots i_r)$.

Theorem 4.1.6 (Disjoint cycle form). if $f \in S_n$ then there exists $f_1, f_2, \ldots, f_k \in S_n$ all with disjoint supports such that $f = f_1 f_2 \ldots f_n$. If we further have, for all $i \in [1, k]$, both f_i is not a 1-cycle when $f \neq \text{id}$ and $\sup(f_i) \subseteq \sup(f)$. We say f is in **disjoint cycle form** or **d.c.f**.

Proof. We use strong induction on $m := |\operatorname{supp}(f)|$. If m = 0: $f = \operatorname{id}$. If, instead, $m \ge 1$: have some $i_1 \in \operatorname{supp}(f)$ and set $f(i_1) = i_2, f(i_2) = i_3, \ldots$ with i_r being the first satisfying $f(i_r) \in \{i_1, i_2, \ldots i_{r-1}\}$, due to bijectivity of f, $f(i_r) = i_1$ we can now have $f = gf_1$ where $f_1 = (i_1i_2 \ldots i_r)$ with $|\operatorname{supp}(g)| < m$ so, inductively, f can be decomposed into disjoint cycles.

Theorem 4.1.7 (Uniqueness of disjoint cycles). The disjoint cycle form of some $f \in S_n$ is unique up to rearrangement.

Proof. Have $f \in S_n$ with $g_1g_2 \dots g_k = f = h_1h_2 \dots h_l$ by rearring f and individul cycles have $i_1 \in f_k$ and $i_1 \in h_l$ with $r \in \mathbb{N}$ the minimum value with $f^r(i_1) = i_1$. $g_k = (i, f(i), f^2(i), \dots, f^{r-1}(i)) = h_l \Rightarrow g_1g_2 \dots g_{k-1} = h_1h_2 \dots h_{l-1}$ so, by induction, l = k and $g_i = h_i$ for all $i \in [1, k]$ def is unique.

Theorem 4.1.8. If $f \in S_n$ is written in d.c.f as $f = f_1 f_2 \dots f_k$ where f_i is an r_i -cycle for $i \in [1, k]$ then,

- 1. $f^m = \text{id iff } f_i^m = \text{id for all } i \in [1, k],$
- 2. ord $(f) = \text{lcm}(r_1, r_2, \dots r_k)$.

Proof. 1. (\Rightarrow) $f_1^m f_2^m \dots f_k^m = id$ and f_i^m having disjoint supports \Rightarrow $f_i^m(x) = x$ so $f_i^m = id$. (\Leftarrow) product of identities is the identity.

2. $f^m = \mathrm{id} \iff f_i^m = \mathrm{id} \iff r_i | m$, the least m satisfying this for all r_i is $\mathrm{lcm}(r_1, r_2, \ldots, r_i)$.

4.2 Alternating groups

Theorem 4.2.1. Every permutation in S_n can be written as the product of 2-cycles.

Proof.
$$(a_1 a_2 \dots a_n) = (a_1 a_2)(a_2 a_3) \dots (a_{n-1} a_n).$$

Definition 4.2.2 (Sign of a permutation). We define the **sign** of a permutation with the group homomorphism, $\operatorname{sgn}: S_n \to \{-1,1\}$ with $\operatorname{sgn}(i\ j) := -1$ for all $i,j \in [1,n]$ with $i \neq j$. This is defined over all permutations by the decomposition into 2-cycles, the sign of a permutation is unique. We say $f \in S_n$ is **even** if $f \in \ker(\operatorname{sgn})$ and **odd** otherwise.

Definition 4.2.3 (Alternating group). The alternating group of size n is $A_n := \ker(\operatorname{sgn})$ with $A_n \leq S_n$.

4.3 Dihedral groups

Definition 4.3.1 (Dihedral group). The **dihedral group** of order 2n, denoted D_{2n} , is the group of symmetries of a regular n-gon in \mathbb{R}^3 centered at the origin, it is often written at

$$D_{2n} = \{e, r, r^2, \dots, r^{n-1}, s, sr, sr^2, \dots, sr^{n-1}\},$$

where r is a rotation by $\frac{2\pi}{n}$ and s is the reflection along the centre of the polygon and the first vertex.

Theorem 4.3.2. The elements of D_{2n} can be written as elements of S_n giving $D_{2n} \leq S_n$. Specifically, $r = (1 \ 2 \ \dots \ n)$ and $s = (1)(2 \ n)(3 \ n - 1) \dots$ or $(1 \ n)(2 \ n - 1) \dots$ if n is odd or even respectively.

Proof. Given in definition.
$$\Box$$

5 Group-like objects*

Definition 5.0.1 (Group-like objects). There are multiple axioms in the defintion of a group, sometimes we are interested in objects which lack some / all of these axioms; the names of said objects are:

