#### Zadanie numeryczne 7

9. (Zadanie numeryczne NUM7) Zadany jest ciąg punktów  $x_i = -1 + 2\frac{i}{n}$ , n = 0, ..., n oraz odpowiadających im wartości funkcji  $y_i \equiv f(x_i)$ . Przyjmijmy, że  $f(x) = \frac{1}{1+25x^2}$  (por. zadanie NUM6). Skonstruuj naturalny splajn kubiczny s(x) przechodzący przez punkty  $(x_i, y_i)$ . Wykreśl, na jednym wykresie, funkcje f(x) i s(x) na przedziale  $\langle -1, 1 \rangle$  dla kilku wyborów parametru n. Przeanalizuj, jak zachowuje się różnica |f(x) - s(x)| pomiedzy wezłami interpolacji.

### Wprowadzenie

Celem zadania jest napisanie programu znajdującego interpolacje danej funkcji za pomocą naturalnych splajnów kubicznych.

#### Wynik

Funkcja generująca splajny znajduje się w pliku shared.py, z którego korzystają pozostałe programy.

Tworzenie splajnów kubicznych przechodzących przez n przebiega następująco:

Tworzona jest siatka punktów  $x_i = -1 + 2\frac{i}{n}$ ; i = 0, ..., n oraz odpowiadających im  $y_i = f(x_i)$ .

Wtedy wartość funkcji sklejanej wynosi:

$$s(x) = \xi_{i-1} \frac{(x_i - x)^3}{6h} + \xi_i \frac{(x - x_{i-1})^3}{6h} + A_i(x - x_{i-1}) + B_i \text{ dla } x \in \langle x_{i-1}, x_i \rangle$$

Gdzie 
$$h = \frac{x_n - x_0}{n}$$
,  $A_i = \frac{y_i - y_{i-1}}{h} - \frac{h}{6}(\xi_i - \xi_{i-1})$ ,  $B_i = y_{i-1} - \xi_{i-1} \frac{h^2}{6}$ ,

 $\xi_0=\xi_n=0$  , a pozostałe wartości  $\xi$  można wyliczyć rozwiązując równanie z macierzą:

$$\begin{pmatrix} 4 & 1 & 0 \\ 1 & 4 & 1 \\ 0 & 1 & 4 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_{n-1} \end{pmatrix} = \frac{6}{h^2} \begin{pmatrix} y_0 - 2y_1 + y_2 \\ \vdots \\ y_{n-2} - 2y_{n-1} + y_n \end{pmatrix}$$

W celu rozwiązania równania z macierzą została wykorzystana procedura *scipy.sparse.linalg.solve* z biblioteki *scipy*, służąca do rozwiązywania równań liniowych z macierzą rzadką. Sama macierz jest generowana za pomocą procedury *scipy.sparse.diaqs* i przechowywana w formacie CSR.

Program drawSplines.py generuje i wykreślna na wykresie funkcje f(x) oraz kilka funkcji s(x) dla kilku wybranych n.

Program *splineDiff.py* oblicza i wykreśla na wykresach różnicę |f(x) - s(x)| dla kilku wybranych n.

# Otrzymane wykresy:



Błąd przy interpolacji funkcji  $f(x) = \frac{1}{1+25x^2}$  za pomocą naturalnych splajnów kubicznych, w zależności od ilości punktów, przez które przechodzi spline









## Dyskusja wyników

Na wykresie widać, że interpolacja za pomocą splajnów jest dobra nawet dla takiej funkcji, dla której interpolacja wielomianami przy jednorodnej siatce skutkowała oscylacjami na krańcach przedziału.

Już przy n=16 widać, że interpolacja jest bardzo precyzyjna, a dla nieco niższych n też nie ma żadnych sporych odchyleń. Widać też, że wybranie nieparzystego n skutkuje parzystą ilością punktów w siatce, co dla niskich n skutkuje sporym odchyleniem na środku przedziału spowodowanym braku punktu na wierzchołku wykresu.

Na wykresach analizujących różnicę |f(x) - s(x)| widać, że pomiędzy węzłami interpolacji różnica rośnie w miarę oddalania się od najbliższego węzła, podczas gdy w samych węzłach wynosi 0. Widać także, że wraz ze wzrostem ilości węzłów interpolacji maleje maksymalne odchylenie któremu podlega funkcja sklejana.