Курс "Анализ изображений"

Лекция#1.

Введение. Задачи компьютерного зрения. Формирование цифрового изображения

ФИВТ МФТИ 2019

Как выглядит лектор?

Александр Жуковский

- CTO, NVI Solutions
- TeamLead, Smart Engines
- mailto: zhukovsky@phystech.edu

Где лежит всё по курсу?

Основной ресурс: github.com/miptcv/cv19

- Слайды: <u>/lectures</u>
- Код с семинаров: <u>/code</u>
- Заготовки для домашних заданий: <u>/homework</u>
- Задачи и сроки: <u>/issues</u>
- Рефераты: github.com/miptcv/wiki cv

Какого цвета учебник?

Основная:

- Forsyth, Ponce CV. A modern approach, 2004
- Horn Robot vision, 1989
- Shapiro, Stockman CV, 2006
- Goodfellow, Bengio, Courville –
 Deep Learning, 2016

Еще:

- Szelinsky CV. Algorithms and applications, 2011
- Prince CV. Models, learning and inference, 2012
- Hartley, Zisserman Multiple view geometry in CV, 2003
- Сойфер **Методы** компьютерной обработки изображений, 2003

Программа курса

- 1. Классическое CV:
- Базовая обработка изображений
- Локальные особенности
- Геометрия
- Цвет и сегментация
- Сжатие изображений
- Работа с видео

- 2. ML/DL:
- Классификация и регрессия
- Детектирование объектов
- Сегментация
- Style transfer
- Распознавание лиц
- 3. Kaggle ML контест

Задачи компьютерного зрения

Задачи компьютерного зрения

- Распознавание текста
- Распознавание документов
- Обнаружение лиц
- Распознавание лиц
- Картография
- Медицина
- Автономные автомобили
- Навигация роботов

- Камеры наблюдения
- Поиск фото/видео
- Виртуальная реальность
- Дополненная реальность
- Интеллектуальная обработка фотографий

• ...

#1. Лица

- Обнаружение
- Отслеживание
- Сравнение двух на совпадение (= распознавание)
- Определение эмоций
- Сегментация
- Фильтрация

Сегментация

#2. Перенос художественного стиля (Artistic Style Transfer)

#3. Распознавание документов

Распознавание документов

Распознавание текста:

- Печатного
- Рукопечатного
- Рукописного
- Онлайн распознавание
- Текст в сцене

Распознавание документов:

- Жесткие формы
- Гибкие формы
- Паспорта
- Водительские права
- Банковских карты
- Сравнение двух договоров

#4. Автономные автомобили

#5. DeepFake

Анализ дорожной сцены

- Пешеходы
- Автомобили
- Велосипедисты
- Мотоциклисты
- Животные
- Препятствия
- Ямы
- Дорожное полотно
- Линии разметки

- Светофоры
- Дорожные знаки
- Сигналы автомобилей
- Номера автомобилей
- Согласованность камер с радарами, GPS, ...

Kто? Tesla, Google, Uber, Mercedes, Mobileye, ...

Формирование цифрового изображения

Цифровое изображение

- 3-х мерный тензор *W* х *H* х *C*
- С количество каналов (3 для RGB, 1 для полутоновых, 4 с альфа каналом)
- Тип: для хранения обычно байтовый [0..255]
- для обработки часто float32

Формирование изображения. Геометрия

Проективное преобразование:

$$p' = Hp$$

$$H = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & 1 \end{pmatrix}; p = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Из оптики: преобразование центральной проекции

Формирование изображения. Цвет

EVOLUTION OF MY UNDERSTANDING OF COLOR OVER TIME:

Формирование изображения. Цвет

Цвет — это общее свойство излучений разного спектрального состава, неразличимых для человека — *Эрвин Шредингер*

$$a_r = \int R(\lambda)L(\lambda)d\lambda$$
 $a_g = \int G(\lambda)L(\lambda)d\lambda$ $a_b = \int B(\lambda)L(\lambda)d\lambda$

 $R(\lambda), G(\lambda), B(\lambda)$ — функции абсолютной спектральной чувствительности колбочковых приёмников

 $L(\lambda)$ — спектральный состав света

 $a_{r,g,b}$ — составляющие совокупного действия света на все приёмники глаза

