格的理论、算法和应用 一份入门性的介绍

陈经纬

二〇二〇年十二月四日

堆球问题

Sir Walter Raleigh (1552–1618)

• Raleigh 爵士: 如何让有限的炮弹仓尽量多地携带加农炮?

Harriot 方案

Thomas Harriot (1560-1621)

Harriot 给出的堆球方案

• Harriot: 每个球都恰好跟 12 个球相切.

Harriot 方案的堆球密度

面心立方填充 (face-centered cubic)

- 4 个半径为 r 的球的体积: $4 \cdot \text{vol}(\mathscr{B}(\mathbf{0}, r)) = \frac{16}{3} \pi r^3$.
- 边长为 $a = 2\sqrt{2}r$ 的立方体体积: $a^3 = 16\sqrt{2}r^3$.
- 堆球密度: $\frac{\pi}{\sqrt{18}} \approx 0.74$.

Kepler 猜想

Johannes Kepler (1571–1630)

猜想 (J. Kepler. *The Six-Cornered Snow Flake*, 1611)¹

在一个容器中堆放同样的小球, 所能得到的最大密度是 $\pi/\sqrt{18}$.

¹1998年,被 Thomas Hales 用计算机程序证明; 2014年完成形式化验证.

思考题

给定一个10×10的正方形,最多可以放进多少个直径为1的圆?

可放入100个直径为1的圆.

思考题

给定一个10×10的正方形,最多可以放进多少个直径为1的圆?

可放入105个直径为1的圆.

思考题

给定一个10×10的正方形,最多可以放进多少个直径为1的圆?

可放入106个直径为1的圆.

Gauß的无心插柳

Carl Friedrich Gauß (1777–1885)

Gauß 的贡献

在三维空间中堆同样大小的球. 若它们的球心构成一个格 (或者格的一部分), 那么堆球的密度不会超过 $\pi/\sqrt{18}$.

格 (Lattice)

$$\Lambda = \left\{ \sum_{i=1}^{n} z_i \boldsymbol{b}_i \colon z_i \in \mathbb{Z} \right\}$$

是由 b_1, b_2, \ldots, b_n 生成的一个格. 称这组向量为格 Λ 的一个基.

由 b₁ 和 b₂ 生成的一个 2-维格

格的数学名人堂

Joseph-Louis Lagrange (1736–1813)

Charles Hermite (1822–1901)

Hermann Minkowski (1864–1909)

研究过格的 Fields 奖得主

- Gregori Aleksandrovich Margulis (1978)
- Elon Lindenstrauss (2010)
- Stanislav Smirnov (2010)
- Manjul Bhargava (2014)
- Akshay Venkatesh (2018)

提纲

- 格的理论概要
 - 格的定义
 - 格的不变量
 - 格中的计算问题
- 2 格基约化算法简介
 - Lagrange 算法
 - LLL 格基约化算法
- ③ 应用举例
 - 整数关系问题求解
 - 背包问题的求解

提纲

- 格的理论概要
 - 格的定义
 - 格的不变量
 - 格中的计算问题
- 2 格基约化算法简介
- ③ 应用举例

格的定义

设矩阵 $B = (b_1, \dots, b_d) \in \mathbb{R}^{n \times d}$ 列满秩. 定义由 B 生成的格是

$$\Lambda = \mathscr{L}(\mathbf{B}) = \{ \mathbf{B}\mathbf{z} \colon \mathbf{z} \in \mathbb{Z}^d \} = \left\{ \sum_{i=1}^d z_i \cdot \mathbf{b}_i \colon \forall i, \ z_i \in \mathbb{Z} \right\}.$$

矩阵 B 称为格 Λ 的一个基. 整数 d 被称作格的秩, 记作 rank(Λ). 若 d = n, 则 $\Lambda = \mathcal{L}(B)$ 被称作满秩格.

$$B = \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix}$$

$$\Lambda = \mathcal{L}(B)$$

格的基

设 Λ 是秩为 d 的格. 当 $d \ge 2$ 时, Λ 可以被不同的基表示.

$$(\mathbf{e}_1, \mathbf{e}_2) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$(\mathbf{b}_1, \mathbf{b}_2) = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$
$$\mathbf{e}_1 = 2\mathbf{b}_1 - \mathbf{b}_2$$
$$\mathbf{e}_2 = -\mathbf{b}_1 + \mathbf{b}_2$$

单位矩阵 I_2 和 (b_1, b_2) 都是格 \mathbb{Z}^2 的基

基的质量

好基的判断标准

- 向量长度较短;
- 向量间接近正交 (垂直).

子格

设 Λ 是一个格. 称 Λ' 为 Λ 的一个子格, 若 Λ' 满足:

- $\Lambda' \subset \Lambda$;
- Λ′ 是一个格.

 $\mathbb{Z}^2 = \mathcal{L}(I_2)$ 的子格

幺模矩阵: ℤ上的可逆矩阵

称 $U \in \mathbb{Z}^{n \times n}$ 在 \mathbb{Z} 上可逆, 若存在 $V \in \mathbb{Z}^{n \times n}$ 使得 $UV = VU = I_n$.

定理

设U为整数方阵.则U在 \mathbb{Z} 上可逆当且仅当 $|\det(U)|=1$.

因此, 亦称 Z 上的可逆矩阵为幺模矩阵.

定理

设 $B \in \mathbb{R}^{n \times d}$ 和 $C \in \mathbb{R}^{n \times d}$ 为两个格基. 则 $\mathcal{L}(B) = \mathcal{L}(C)$ 的充要条件是存在 d 阶幺模矩阵 U 使得 B = CU.

证明

(⇐): 由 U 是幺模矩阵且 B = CU 知

$$\mathcal{L}(B) = \mathcal{L}(CU) \subseteq \mathcal{L}(C) = \mathcal{L}(BU^{-1}) \subseteq \mathcal{L}(B).$$

整数初等变换

矩阵 $B \in \mathbb{R}^{n \times d}$ 的一个整数初等列变换有以下三种:

• $swap(i, j): (b_i, b_j) := (b_j, b_i), i \neq j.$

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

• invert(i): $b_i := (-b_i)$, $i = 1, \dots, n$.

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

• add(i, c, j): $b_i := b_i + c \cdot b_j$, $i \neq j \perp c \in \mathbb{Z}$.

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix}$$

以上三种整数初等列变换都是幺模变换,从而不改变原来的格.

提纲

- 格的理论概要
 - 格的定义
 - 格的不变量
 - 格中的计算问题
- 2 格基约化算法简介
- ③ 应用举例

基本平行六面体

设 $B = (b_1, ..., b_d)$ 为格 Λ 的一个基. 定义格 $\Lambda = \mathcal{L}(B)$ 的基本平行六面体 为

$$\mathscr{P}(B) = B[0, 1)^d = \left\{ \sum_{i=1}^d z_i \cdot b_i : \forall i, 0 \le z_i < 1 \right\}.$$

不同的基定义不同的基本平行六面体

格的行列式

命题

设 $B \in \mathbb{R}^{m \times d}$ 的列是格 Λ 的一个基, 其基本平行六面体为 $\mathcal{P}(B)$. 则 $\mathcal{P}(B)$ 的 d-维体积

$$\operatorname{vol}(\mathscr{P}(B)) = \sqrt{\det(B^{\mathrm{T}}B)}.$$

推论

设 $B \cap C$ 是格 Λ 的任意两个基.证明: $vol(\mathscr{P}(B)) = vol(\mathscr{P}(C))$.

定义

定义格 Λ 的行列式为其任意基本平行六面体的体积, 记为 $\det(\Lambda)$.

性质

格的行列式是幺模变换下的不变量.

最小距离

对任意的格 $\Lambda \subseteq \mathbb{R}^n$,定义其最小距离 (又称 Minkowski 极小值)为任意两个格点间距离的最小值:

$$\lambda(\Lambda) = \min \{ ||x - y|| : x, y \in \Lambda, x \neq y \}$$
$$= \min \{ ||b|| : b \in \Lambda \setminus \mathbf{0} \}.$$

性质

格的最小距离是幺模变换下的不变量.

Minkowski 第一定理

Blichfeldt 引理

设 Λ 是一个格, 并设集合 $S \subseteq \text{Span}(\Lambda)$ 有体积. 若 $\text{vol}(S) > \text{det}(\Lambda)$, 则存在 $z_1 \neq z_2 \in S$ 使得 $z_1 - z_2 \in \Lambda$.

Minkowski 第一定理

Minkoski 凸胞定理

Minkowski 凸胞定理

Minkowski 第一定理

Minkowski 第一定理

对任意的满秩格 $\Lambda \in \mathbb{R}^n$, $\lambda(\Lambda) \leq \sqrt{n} \det(\Lambda)^{1/n}$.

圆的内接正方形: $r = \lambda(\Lambda)$

$$\left(\frac{2\lambda(\Lambda)}{\sqrt{n}}\right)^n \leq \operatorname{vol}(\mathcal{B}(\mathbf{0},\lambda(\Lambda))) \leq 2^n \det(\Lambda).$$

提纲

- 1 格的理论概要
 - 格的定义
 - 格的不变量
 - 格中的计算问题
- 2 格基约化算法简介
- ③ 应用举例

最短向量问题 (SVP)

- 捜索版 SVP: 给一个格基 $B \in \mathbb{Z}^{n \times n}$, 计算 $v \in \mathcal{L}(B)$ 使得 $\|v\| = \lambda(\mathcal{L}(B))$.
- 判定版 SVP: 给定一个格基 B 和 $\mu \in \mathbb{Q}$, 判断下式是否成立 $\lambda(\mathcal{L}(B)) \leq \mu$.
- SVP $_{\gamma}$: 给定 B, 求 $v \in \Lambda = \mathcal{L}(B)$ 使得 $||v|| \leq \gamma \cdot \lambda(\mathcal{L}(B)).$
- GapSVP $_{\gamma}$: 给定 B 和 $\mu \in \mathbb{Q}$, 判断属于下面哪种情况 $\lambda(\mathcal{L}(B)) \leq \mu \quad \text{或} \quad \lambda(\mathcal{L}(B)) \geq \gamma \cdot \mu.$

复杂性结果

- 搜索版 SVP ≤ 判定版 SVP.
- 对常数 γ , GapSVP γ 在随机归约下是 NP-难问题. (Khot '04)

提纲

- 1 格的理论概要
- 2 格基约化算法简介
 - Lagrange 算法
 - LLL 格基约化算法
- 3 应用举例

格基约化算法

给定格的一个基,通过一系列幺模变换逐步改善基的质量,得到该格一个质量更好的基是常常采用的一种计算策略. 称这种策略为格基约化 (lattice basis reduction).

一维情形: Euclid 算法 (辗转相除法)

将 \mathbb{R} 看成是一个一维欧氏空间, 则整数 α 和 b 是 \mathbb{R} 中的两个"向量", 它们生成的格是

$$\Lambda = \{ sa + tb : s, t \in \mathbb{Z} \}.$$

- $\Lambda \subseteq \mathbb{Z}$ 是由 a 和 b 生成的一个理想 $\Lambda = \langle d \rangle$, $d = \gcd(a, b)$.
- d 是 Λ 中最小的正整数 且 Λ 中的每一个元素都是 d 的倍数.
- "向量" d 形成了 Λ 的一个基, 并且 $\lambda(\Lambda) = ||d|| = d$.

Lagrange 约化基

定理

对任意的二维格 Λ , 存在 Λ 的一组基 b_1 和 b_2 使得

- $\|\boldsymbol{b}_1\| = \lambda_1(\Lambda)$.
- $|\langle b_2, b_1 \rangle| \le \frac{1}{2} ||b_1||^2$.

Lagrange 约化基

Lagrange 算法 (1773)

输入: 二维格 Λ 的一个基 $(\boldsymbol{b}_1, \boldsymbol{b}_2)$. 输出: 格 Λ 的一个 Lagrange 约化基 $(\boldsymbol{b}_1, \boldsymbol{b}_2)$. 1: **repeat** 2: $(\boldsymbol{b}_1, \boldsymbol{b}_2) := (\boldsymbol{b}_2, \boldsymbol{b}_1)$ 3: $k := \left\lceil \frac{\langle \boldsymbol{b}_2, \boldsymbol{b}_1 \rangle}{\langle \boldsymbol{b}_1, \boldsymbol{b}_1 \rangle} \right\rfloor /_* \left\lceil a \right\rfloor := \left\lfloor a + 0.5 \right\rfloor */$ 4: $\boldsymbol{b}_2 := \boldsymbol{b}_2 - k \boldsymbol{b}_1$ 5: **until** $\|\boldsymbol{b}_1\| \le \|\boldsymbol{b}_2\|$

定理

Lagrange 格基约化算法是正确的; 所需的循环次数不超过

$$O\bigg(\log \frac{\|\boldsymbol{b}_1\|}{\sqrt{\det \Lambda}}\bigg).$$

•
$$\Re \wedge (\boldsymbol{b}_1, \boldsymbol{b}_2) = \begin{pmatrix} 12 & 13 \\ 2 & 4 \end{pmatrix}$$
.

例

•
$$\hat{m} \wedge (b_1, b_2) = \begin{pmatrix} 12 & 13 \\ 2 & 4 \end{pmatrix}$$
.

•
$$(b_1, b_2) := \begin{pmatrix} 13 & 12 \\ 4 & 2 \end{pmatrix}$$
.

•
$$\hat{\mathbf{m}} \wedge (\mathbf{b}_1, \mathbf{b}_2) = \begin{pmatrix} 12 & 13 \\ 2 & 4 \end{pmatrix}$$
.

•
$$(b_1, b_2) := \begin{pmatrix} 13 & 12 \\ 4 & 2 \end{pmatrix}$$
.

•
$$\left\lceil \frac{\langle \boldsymbol{b}_2, \, \boldsymbol{b}_1 \rangle}{\langle \boldsymbol{b}_1, \, \boldsymbol{b}_1 \rangle} \right\rfloor = \left\lceil \frac{164}{185} \right\rfloor = 1$$
. 于是 $\boldsymbol{b}_2 := \boldsymbol{b}_2 - 1 \cdot \boldsymbol{b}_1 = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$.

例

- $\Re \wedge (b_1, b_2) = \begin{pmatrix} 12 & 13 \\ 2 & 4 \end{pmatrix}$.
- $(b_1, b_2) := \begin{pmatrix} 13 & 12 \\ 4 & 2 \end{pmatrix}$.
- $\left\lceil \frac{\langle \boldsymbol{b}_2, \, \boldsymbol{b}_1 \rangle}{\langle \boldsymbol{b}_1, \, \boldsymbol{b}_1 \rangle} \right\rfloor = \left\lceil \frac{164}{185} \right\rfloor = 1$. $\exists \mathcal{B} \ \boldsymbol{b}_2 := \boldsymbol{b}_2 1 \cdot \boldsymbol{b}_1 = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$.
- $\|\boldsymbol{b}_1\| > \|\boldsymbol{b}_2\|$, $\& (\boldsymbol{b}_1, \boldsymbol{b}_2) := \begin{pmatrix} -1 & 13 \\ -2 & 4 \end{pmatrix}$.

- $\Re \wedge (b_1, b_2) = \begin{pmatrix} 12 & 13 \\ 2 & 4 \end{pmatrix}$.
- $(b_1, b_2) := \begin{pmatrix} 13 & 12 \\ 4 & 2 \end{pmatrix}$.
- $\left\lceil \frac{\langle \boldsymbol{b}_2, \, \boldsymbol{b}_1 \rangle}{\langle \boldsymbol{b}_1, \, \boldsymbol{b}_1 \rangle} \right\rfloor = \left\lceil \frac{164}{185} \right\rfloor = 1$. 于是 $\boldsymbol{b}_2 := \boldsymbol{b}_2 1 \cdot \boldsymbol{b}_1 = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$.
- $\|\boldsymbol{b}_1\| > \|\boldsymbol{b}_2\|$, $\& (\boldsymbol{b}_1, \boldsymbol{b}_2) := \begin{pmatrix} -1 & 13 \\ -2 & 4 \end{pmatrix}$.
- $\left\lceil \frac{\langle \boldsymbol{b}_2, \boldsymbol{b}_1 \rangle}{\langle \boldsymbol{b}_1, \boldsymbol{b}_1 \rangle} \right\rfloor = \left\lceil -\frac{21}{5} \right\rfloor = -4. \ \text{fb} \ \boldsymbol{b}_2 := \boldsymbol{b}_2 + 4 \cdot \boldsymbol{b}_1 = \begin{pmatrix} 9 \\ -4 \end{pmatrix}.$

•
$$\hat{\mathbf{m}} \wedge (\mathbf{b}_1, \mathbf{b}_2) = \begin{pmatrix} 12 & 13 \\ 2 & 4 \end{pmatrix}$$
.

•
$$(b_1, b_2) := \begin{pmatrix} 13 & 12 \\ 4 & 2 \end{pmatrix}$$
.

•
$$\left\lceil \frac{\langle \boldsymbol{b}_2, \, \boldsymbol{b}_1 \rangle}{\langle \boldsymbol{b}_1, \, \boldsymbol{b}_1 \rangle} \right\rfloor = \left\lceil \frac{164}{185} \right\rfloor = 1$$
. $\exists \mathcal{B} \ \boldsymbol{b}_2 := \boldsymbol{b}_2 - 1 \cdot \boldsymbol{b}_1 = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$.

•
$$\|\boldsymbol{b}_1\| > \|\boldsymbol{b}_2\|$$
, $\& (\boldsymbol{b}_1, \boldsymbol{b}_2) := \begin{pmatrix} -1 & 13 \\ -2 & 4 \end{pmatrix}$.

•
$$\left[\frac{\langle \boldsymbol{b}_2, \boldsymbol{b}_1 \rangle}{\langle \boldsymbol{b}_1, \boldsymbol{b}_1 \rangle}\right] = \left[-\frac{21}{5}\right] = -4$$
. $f \not\in \boldsymbol{b}_2 := \boldsymbol{b}_2 + 4 \cdot \boldsymbol{b}_1 = \begin{pmatrix} 9 \\ -4 \end{pmatrix}$.

•
$$||b_1|| \le ||b_2||$$
, 故输出 $\begin{pmatrix} -1 & 9 \\ -2 & -4 \end{pmatrix}$.

提纲

- 1 格的理论概要
- 2 格基约化算法简介
 - Lagrange 算法
 - LLL 格基约化算法
- ③ 应用举例

Gram-Schmidt 正交化

称 $m{x}_1^*, m{x}_2^*, \ldots, m{x}_n^*$ 是 $m{x}_1, m{x}_2, \ldots, m{x}_n$ 的 Gram-Schmidt 正交化, 若 $m{x}_1^* = m{x}_1,$ $m{x}_i^* = m{x}_i - \sum_{j=1}^{i-1} \mu_{i,j} m{x}_j^*, \qquad (2 \leq i \leq n)$ $m{\mu}_{i,j} = \frac{\langle m{x}_i, m{x}_j^* \rangle}{\langle m{x}_j^*, m{x}_j^* \rangle}, \qquad (1 \leq j < i \leq n)$

其中 $\mu_{i,j}$ 被称为 Gram-Schmidt 正交化系数.

Gram-Schmidt 正交化 和最小距离

定理

对格基 B 和它的 Gram-Schmidt 正交化 B^* , $\lambda(\mathcal{L}(B)) \geq \min_i \|b_i^*\|$.

 $\mathcal{L}(B)$ 分层: 每层与 b_d^* 正交, 层与层之间的距离为 $||b_d^*||$.

Lenstra-Lenstra-Lovász (LLL) 约化基

称一组基 $b_1, ..., b_d \in \mathbb{R}^n$ 是LLL 约化的, 若如下条件都成立:

- (Siegel \$ $\rlap/$) $1 \le i \le n-1$, $||b_i^*||^2 \le 2||b_{i+1}^*||^2$.

LLL 约化基的性质

设 $b_1, ..., b_n \in \mathbb{R}^n$ 是格 Λ 的一个 LLL 约化基. 则

$$||\boldsymbol{b}_1|| \leq 2^{\frac{n-1}{2}} \lambda(\Lambda).$$

证明

由LLL约化基的定义知

$$\|\boldsymbol{b}_{n}^{*}\|^{2} \ge \frac{1}{2} \|\boldsymbol{b}_{n-1}^{*}\|^{2} \ge \cdots \ge \frac{1}{2^{n-1}} \|\boldsymbol{b}_{1}^{*}\|^{2} = \frac{1}{2^{n-1}} \|\boldsymbol{b}_{1}\|^{2}.$$

于是对任意的 $i \leq n$

$$\|\boldsymbol{b}_1\| \le 2^{\frac{i-1}{2}} \|\boldsymbol{b}_i^*\| \le 2^{\frac{n-1}{2}} \|\boldsymbol{b}_i^*\|,$$

所以

$$\|\boldsymbol{b}_1\| \le 2^{\frac{n-1}{2}} \min_{i} \|\boldsymbol{b}_i^*\| \le 2^{\frac{n-1}{2}} \lambda(\Lambda).$$

LLL 算法 (1982)

```
输入: 格 \Lambda \subseteq \mathbb{Z}^n 的一组基 (\boldsymbol{b}_i)_{i \leq n}, \delta \in (\frac{1}{4}, 1).
输出·格Λ的一组δ-111 约化基
 1: 计算 (b_i)_{i < n} 的 GSO (b_i^*)_{i < n} 和 GSO 系数 (\mu_{i,i}).
 2: for i = 2, 3, \dots, n do
       for i = i - 1, i - 2, \dots, 1 do
 3:
          b_i := b_i - [\mu_{i,i}]b_i, 更新 GSO
 4:
 5:
       end for
      if ||b_i^*||^2 \le 2||b_{i+1}^*||^2 then
 6:
          i := i + 1
 7:
 8:
       else
          交换 b_i 和 b_{i+1}, 更新 GSO, 令 i := \max\{i-1,2\}
 9:
       end if
10:
11: end for
12: return (b_i)_{i < n}
```


•
$$\hat{\mathbf{m}} \wedge (\mathbf{b}_1, \mathbf{b}_2) = \begin{pmatrix} 12 & 13 \\ 2 & 4 \end{pmatrix}$$
.

•
$$\hat{\mathbf{m}} \wedge (\mathbf{b}_1, \mathbf{b}_2) = \begin{pmatrix} 12 & 13 \\ 2 & 4 \end{pmatrix}$$
.

•
$$\left[\frac{\langle \boldsymbol{b}_2, \boldsymbol{b}_1 \rangle}{\langle \boldsymbol{b}_1, \boldsymbol{b}_1 \rangle}\right] = \left[\frac{41}{37}\right] = 1$$
. 于是 $\boldsymbol{b}_2 := \boldsymbol{b}_2 - 1 \cdot \boldsymbol{b}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

•
$$\hat{\mathbf{m}} \wedge (\mathbf{b}_1, \mathbf{b}_2) = \begin{pmatrix} 12 & 13 \\ 2 & 4 \end{pmatrix}$$
.

•
$$\left\lceil \frac{\langle \boldsymbol{b}_2, \, \boldsymbol{b}_1 \rangle}{\langle \boldsymbol{b}_1, \, \boldsymbol{b}_1 \rangle} \right\rfloor = \left\lceil \frac{41}{37} \right\rfloor = 1$$
. 于是 $\boldsymbol{b}_2 := \boldsymbol{b}_2 - 1 \cdot \boldsymbol{b}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

•
$$\|\boldsymbol{b}_1^*\|^2 > 2\|\boldsymbol{b}_2^*\|^2$$
, $\& (\boldsymbol{b}_1, \boldsymbol{b}_2) := \begin{pmatrix} 1 & 12 \\ 2 & 2 \end{pmatrix}$.

•
$$\hat{\eta} \wedge (b_1, b_2) = \begin{pmatrix} 12 & 13 \\ 2 & 4 \end{pmatrix}$$
.

- $\left\lceil \frac{\langle \boldsymbol{b}_2, \, \boldsymbol{b}_1 \rangle}{\langle \boldsymbol{b}_1, \, \boldsymbol{b}_1 \rangle} \right\rfloor = \left\lceil \frac{41}{37} \right\rfloor = 1$. 于是 $\boldsymbol{b}_2 := \boldsymbol{b}_2 1 \cdot \boldsymbol{b}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.
- $\|\boldsymbol{b}_1^*\|^2 > 2\|\boldsymbol{b}_2^*\|^2$, $\& (\boldsymbol{b}_1, \boldsymbol{b}_2) := \begin{pmatrix} 1 & 12 \\ 2 & 2 \end{pmatrix}$.
- $\left\lceil \frac{\langle \boldsymbol{b}_2, \boldsymbol{b}_1 \rangle}{\langle \boldsymbol{b}_1, \boldsymbol{b}_1 \rangle} \right\rfloor = \left\lceil \frac{16}{5} \right\rfloor = 3$. $f \notin \boldsymbol{b}_2 := \boldsymbol{b}_2 3 \cdot \boldsymbol{b}_1 = \begin{pmatrix} 9 \\ -4 \end{pmatrix}$.

•
$$\hat{\eta} \wedge (b_1, b_2) = \begin{pmatrix} 12 & 13 \\ 2 & 4 \end{pmatrix}$$
.

•
$$\left\lceil \frac{\langle \boldsymbol{b}_2, \, \boldsymbol{b}_1 \rangle}{\langle \boldsymbol{b}_1, \, \boldsymbol{b}_1 \rangle} \right\rfloor = \left\lceil \frac{41}{37} \right\rfloor = 1$$
. 于是 $\boldsymbol{b}_2 := \boldsymbol{b}_2 - 1 \cdot \boldsymbol{b}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

•
$$\|\boldsymbol{b}_1^*\|^2 > 2\|\boldsymbol{b}_2^*\|^2$$
, $\& (\boldsymbol{b}_1, \boldsymbol{b}_2) := \begin{pmatrix} 1 & 12 \\ 2 & 2 \end{pmatrix}$.

•
$$\left\lceil \frac{\langle \boldsymbol{b}_2, \boldsymbol{b}_1 \rangle}{\langle \boldsymbol{b}_1, \boldsymbol{b}_1 \rangle} \right\rfloor = \left\lceil \frac{16}{5} \right\rfloor = 3. \ \text{for } \boldsymbol{b}_2 := \boldsymbol{b}_2 - 3 \cdot \boldsymbol{b}_1 = \begin{pmatrix} 9 \\ -4 \end{pmatrix}.$$

•
$$\|\boldsymbol{b}_1^*\|^2 \le 2\|\boldsymbol{b}_2^*\|^2$$
, 故输出 $\begin{pmatrix} 1 & 9 \\ 2 & -4 \end{pmatrix}$.

LLL 算法的正确性和终止性

定理 (Lenstra-Lenstra-Lovász, 1982)

对 $B \in \mathbb{Z}^{n \times n}$, LLL 算法在对位长不超过 $O(n \log ||B||)$ 的整数进行不超过 $O(n^4 \log ||B||)$ 次算术操作后输出 $\mathcal{L}(B)$ 的一组 LLL 约化基.

左起: L. Lovász, H. Lenstra, A. Lenstra

LLL 算法分析的动力学模型

沙堆模型

设B是一个秩为 n 的格的基. 经典的分析工具

$$\Pi(\mathbf{B}) = \sum_{i=1}^{n-1} (n-i) \log ||\mathbf{b}_i^*||.$$

针对一类特殊格的一个新工具 (C.-Stehlé-Villard, 2018):

$$\Pi_k(\boldsymbol{B}) = \sum_{j=1}^{k-1} (k-j) \log \|\boldsymbol{b}_{\ell_j}^*\| - \sum_{i=1}^{n-k} i \log \|\boldsymbol{b}_{s_i}^*\| + \sum_{i=1}^{n-k} s_i.$$

提纲

- 1 格的理论概要
- 2 格基约化算法简介
- ③ 应用举例
 - 整数关系问题求解
 - 背包问题的求解

整数关系问题

• 给定 $x \in \mathbb{R}^n$, 称 $m \in \mathbb{Z}^n$ 是x 的一个整数关系, 若

$$\langle \boldsymbol{x}, \boldsymbol{m} \rangle = \sum_{i=1}^{n} m_i x_i = 0.$$

- $A_x = \{m \in \mathbb{Z}^n : \langle x, m \rangle = 0\}$ 是一个格.
- 整数关系问题: 给定 $x \in \mathbb{R}^n$, 判定 $\Lambda_x = \{0\}$? 若否, 如何找到 一个整数关系或 Λ_x 的一个基?
 - (Babai, et al. 1988): 在精确的算术模型下是不可判定的.

整数关系问题:实际应用的考量

输入的是近似的浮点数据

$$(\widetilde{x}_1,\ldots,\widetilde{x}_n).$$

如 HJLS/PSLQ² 和基于 LLL 的整数关系算法, 在计算机实现时

- 要么返回一个可能的答案和对应的"可信度",
- 要么就精度用尽.

²[Meichsner, 2001]: HJLS ≈ PSLQ

实验数学的一个典例 [Bailey '19]

•
$$x = \begin{bmatrix} t \\ 1 \\ \ln 2 \\ (\ln 2)^2 \\ \pi^2 \end{bmatrix}$$
, $t = \int_0^1 \int_0^1 \left(\frac{x-1}{x+1}\right)^2 \left(\frac{y-1}{y+1}\right)^2 \left(\frac{xy-1}{xy+1}\right)^2 dxdy$

实验数学的一个典例 [Bailey '19]

•
$$x = \begin{bmatrix} t \\ 1 \\ \ln 2 \\ (\ln 2)^2 \\ \pi^2 \end{bmatrix}$$
, $t = \int_0^1 \int_0^1 \left(\frac{x-1}{x+1}\right)^2 \left(\frac{y-1}{y+1}\right)^2 \left(\frac{xy-1}{xy+1}\right)^2 dxdy$

•
$$(1, -5, 4, -16, 1)$$
 ·
$$\begin{bmatrix} 0.04505509936 \\ 1.0 \\ 0.6931471806 \\ 0.4804530139 \\ 9.869604401 \end{bmatrix} = \varepsilon \ (\approx -8.2938 \times 10^{-14})$$

实验数学的一个典例 [Bailey '19]

•
$$x = \begin{bmatrix} t \\ 1 \\ \ln 2 \\ (\ln 2)^2 \\ \pi^2 \end{bmatrix}$$
, $t = \int_0^1 \int_0^1 \left(\frac{x-1}{x+1}\right)^2 \left(\frac{y-1}{y+1}\right)^2 \left(\frac{xy-1}{xy+1}\right)^2 dx dy$

•
$$(1, -5, 4, -16, 1) \cdot \begin{bmatrix} 0.04505509936 \\ 1.0 \\ 0.4804530139 \\ 9.869604401 \end{bmatrix} = \varepsilon (\approx -8.2938 \times 10^{-14})$$
• $1 \cdot t + (-5) \cdot 1 + 4 \cdot \ln 2 + (-16) \cdot (\ln 2)^2 + 1 \cdot \pi^2 = 0$?

•
$$1 \cdot t + (-5) \cdot 1 + 4 \cdot \ln 2 + (-16) \cdot (\ln 2)^2 + 1 \cdot \pi^2 = 0$$
?

基于 LLL 的整数关系算法

LLL 算法通过一系列幺模变换最终找到给定格中的"短"向量.

• 考虑下面矩阵的列生成的格

$$\begin{pmatrix} \mathbf{K} \cdot \mathbf{x}_1 & \mathbf{K} \cdot \mathbf{x}_2 & \cdots & \mathbf{K} \cdot \mathbf{x}_n \\ 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & 1 \end{pmatrix} \xrightarrow{\mathsf{LLL}} \begin{pmatrix} \varepsilon & * & \cdots & * \\ * & & & \\ * & \mathbf{u}_2 & \cdots & \mathbf{u}_n \\ \vdots & & & \\ * & & & \end{pmatrix}$$

- 若 K 足够大,则
 - x 的一个整数关系⇔ 上述格中一个"短"向量.
 - LLL 能够找到.

例: $\alpha = 3^{1/2} - 2^{1/2}, x = (1, \alpha, \dots, \alpha^4)$

$$\begin{pmatrix} 1000000.0 & 317837.2 & 101020.5 & 32108.1 & 10205.1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

例: $\alpha = 3^{1/2} - 2^{1/2}, x = (1, \alpha, \dots, \alpha^4)$

$$\begin{pmatrix} 1000000.0 & 317837.2 & 101020.5 & 32108.1 & 10205.1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

↓ LLL

$$\begin{pmatrix} -3.6 \times 10^{-12} & 6.855 & 11.532 & 3.182 & 4.841 \\ 1 & -1 & -1 & 5 & -4 \\ 0 & 1 & 6 & -15 & 13 \\ -10 & 2 & -7 & -1 & -1 \\ 0 & 14 & -4 & -6 & -7 \\ 1 & 3 & -7 & 6 & 19 \end{pmatrix}$$

提纲

- 1 格的理论概要
- 2 格基约化算法简介
- ③ 应用举例
 - 整数关系问题求解
 - 背包问题的求解

背包问题

给定正整数 $a_1, ..., a_n$ (重量) 和 s, 找到 $e_1, ..., e_n \in \{0, 1\}$ 使得

$$\sum_{i=1}^{n} e_i a_i = s.$$

- 背包问题是 NP-完全问题.
- 密码学应用: Merkle-Hellman 加密系统.
- 几乎所有的基于背包问题的加密系统都已被攻破 ...

一个容易求解的背包问题实例

例

对 i = 1, 2, ..., n, 设 $a_i = 2^{i-1}$. 则

背包问题有解 \Leftrightarrow $0 \leq s \leq 2^n - 1$.

且解向量 $(e_1, ..., e_n)$ 刚好对应于 s 的二进制表示:

$$s = \sum_{i=1}^{n} e_i a_i = \sum_{i=1}^{n} e_i 2^{i-1}.$$

一类容易求解的背包问题实例

超增长序列

称一个正整数序列 a_1, \ldots, a_n 是超增长 (superincreasing) 的, 若

$$a_i > \sum_{i=1}^{i-1} a_j, \quad i = 2, 3, ..., n.$$

对于超增长序列, 背包问题是容易求解的, 因为

$$e_n = 1 \iff s \ge a_n$$
,

且对于i = n-1, n-2, ..., 1,

$$e_i = 1 \Leftrightarrow s - \sum_{j=i+1}^n e_j a_j \ge a_i.$$

随机背包问题

假设

 a_1, \ldots, a_n 是从 $\{1, 2, \cdots, A\}$ 中独立随机选取得到的, 其中 $A \in \mathbb{Z}_+$.

设 $e = (e_1, ..., e_n) \in \{0, 1\}^n$ 是背包问题的解. 令 $t = \sum_{i=1}^n a_i$. 事实上. 可以假设

$$s \ge \frac{t}{2}$$
.

否则,可以考虑求解如下问题

$$\sum_{i=1}^{n} g_i a_i = t - s, \quad g_i = 1 - e_i \in \{0, 1\}, \quad i = 1, 2, \dots, n.$$

基于LLL算法求解背包问题

设 Ν 为一个充分大的正整数. 考虑由如下矩阵的列生成的格 Λ:

$$B = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \\ -Na_1 & -Na_2 & \cdots & -Na_n & Ns \end{pmatrix} \in \mathbb{Z}^{(n+1)\times(n+1)}.$$

- $\hat{\mathbf{e}} = (e_1, \ldots, e_n, 0) \in \Lambda$, 且 $||\hat{\mathbf{e}}|| \leq \sqrt{n}$, 从而 $\hat{\mathbf{e}}$ 是 Λ 中的短向量.
- LLL 算法可以找到一个向量 x̂ ∈ Λ 使得

$$\|\hat{\mathbf{x}}\| \le 2^{n/2} \lambda(\Lambda) \le 2^{n/2} \sqrt{n} =: \mathbf{M}.$$

● 因此, 可以对 B 调用 LLL 算法, 然后检验算法是否输出 ±ê.

概率分析

定理 (Lagarias-Odlyzko, 1983)

设 \hat{x} 是 LLL 算法输出的基中的最短向量, a_1 , ..., a_n 的分布服从假设, 其中 $A \ge 2^{(1/2+\varepsilon)n^2}$, $\varepsilon > 0$. 则

$$\Pr[\hat{\mathbf{x}} \neq \pm \hat{\mathbf{e}}] \leq \frac{(4M+1)(2M+1)^n}{A} = O(2^{-\varepsilon n^2/2}).$$

一个改进

$$B = \begin{pmatrix} 1 & 0 & \cdots & 0 & 1/2 \\ 0 & 1 & \cdots & 0 & 1/2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 1/2 \\ Na_1 & Na_2 & \cdots & Na_n & Ns \end{pmatrix}$$

定理 (Coster-Joux-LaMacchia-Odlyzko-Schnorr-Stern, 1992)

对 $A=2^{cn}$ $(c>c_0=1.0628\cdots)$ 的随机背包问题用 LLL 算法求解:

$$\lim_{n\to\infty} \Pr[\mathbf{x} \neq \pm \hat{\mathbf{e}}] = 0.$$

一个改进

$$\mathbf{B} = \begin{pmatrix} 1 & 0 & \cdots & 0 & 1/2 \\ 0 & 1 & \cdots & 0 & 1/2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 1/2 \\ Na_1 & Na_2 & \cdots & Na_n & Ns \end{pmatrix}$$

定理 (Coster-Joux-LaMacchia-Odlyzko-Schnorr-Stern, 1992)

对 $A=2^{cn}$ $(c>c_0=1.0628\cdots)$ 的随机背包问题用 LLL 算法求解:

$$\lim_{n\to\infty} \Pr[\mathbf{x} \neq \pm \hat{\mathbf{e}}] = 0.$$

• 这是目前关于 co 最小的一个结果.

总结

包含的内容

- 从 Kepler 猜想到 Kepler 定理
- 格的基本知识
- 格约化算法简介
- 在零误差计算和密码分析中的应用

总结

包含的内容

- 从 Kepler 猜想到 Kepler 定理
- 格的基本知识
- 格约化算法简介
- 在零误差计算和密码分析中的应用

未包含的内容

- Hermite 常数, 对偶格, 格上的概率分布...
- 求解 SVP 的算法 (BKZ, 筛法, ...)
- 与格有关的其他困难问题及算法 (CVP, SIS, LWE, ...)
- 用于攻击 RSA 系统
- 基于格的密码学构造 (PQC, FHE, ...)

Hilbert 第 18 问题第 3 小问 (Kepler 定理的推广)

David Hilbert (1862-1943)

● 在 n 维欧氏空间中, 如何堆放无穷多个同样的物体, 比如球和 正四面体, 使得堆积的密度最大?——尚待解决.

主要参考文献

膏 宗传明. 堆球的故事. 2014.

J. Lagrange. Nouveaux Mémoires de l'Académie de Berlin, 1773.

A. Lenstra, H. Lenstra, L. Lovász. Math. Ann., 261:515–534, 1982.

R. Kannan, et al. Math. Comput. 50: 235–250, 1988.

J. Lagarias, A. Odlyzko. In FOCS '83, p. 1–10, 1983.

M. Coster, et al. Comput. Compl. 2: 111-128, 1992.

- 本课件中人物肖像来自 wikipedia.org.
- 其余非本人制作的图片都有超链接.
- 本课件内容可从如下网址下载:

www.arcnl.org/jchen/download/intro2lattice.pdf

