

ON FINITE SIMPLE GROUPS OF ESSENTIAL DIMENSION 3

ARNAUD BEAUVILLE

ABSTRACT. We show that the only finite simple groups of essential dimension 3 (over \mathbb{C}) are \mathfrak{A}_6 and possibly $\mathrm{PSL}_2(\mathbb{F}_{11})$. This is an easy consequence of the classification by Prokhorov of rationally connected threefolds with an action of a simple group.

INTRODUCTION

Let G be a finite group, and X a complex projective variety with a faithful action of G . We will say that X is a *linearizable* if there exists a complex representation V of G and a rational dominant G -equivariant map $V \dashrightarrow X$ (such a map is called a *compression* of V). The *essential dimension* $\mathrm{ed}(G)$ of G (over \mathbb{C}) is the minimal dimension of all linearizable G -varieties. We have to refer to [BR] for the motivation behind this definition; in a very informal way, $\mathrm{ed}(G)$ is the minimum number of parameters needed to define all Galois extensions L/K with Galois group G and $K \supset \mathbb{C}$.

The groups of essential dimension 1 are the cyclic groups and the dihedral group D_n , n odd [BR]. The groups of essential dimension 2 are classified in [D2]; the list is already large, and such classification becomes probably intractable in higher dimension. However the *simple* (finite) groups in the list are only \mathfrak{A}_5 and $\mathrm{PSL}_2(\mathbb{F}_7)$. In this note we try to go one step further:

Proposition. *The simple groups of essential dimension 3 are \mathfrak{A}_6 and possibly $\mathrm{PSL}_2(\mathbb{F}_{11})$.*

The result is an easy consequence of the remarkable paper of Prokhorov [P], who classifies all rationally connected threefolds admitting the action of a simple group. We can rule out most of the groups appearing in [P] thanks to a simple criterion [RY]: if a G -variety X is linearizable, any abelian subgroup of G must fix a point of X . Unfortunately this criterion does not apply to $\mathrm{PSL}_2(\mathbb{F}_{11})$, whose only abelian subgroups are cyclic or isomorphic to $(\mathbb{Z}/2)^2$.

1. PROKHOLOV'S LIST

Let G be a finite simple group with $\mathrm{ed}(G) = 3$. By definition there exists a linearizable projective G -threefold X . This implies in particular that X is rationally connected. Such pairs (G, X) have been classified in [P]: up to conjugation, we have the following possibilities:

Date: January 19, 2011.

- (1) $G = \mathrm{SL}_2(\mathbb{F}_8)$ acting on a Fano threefold $X \subset \mathbb{P}^8$;
- (2) $G = \mathfrak{A}_5, \mathfrak{A}_6, \mathfrak{A}_7, \mathrm{PSL}_2(\mathbb{F}_7), \mathrm{PSL}_2(\mathbb{F}_{11})$, or $\mathrm{PSp}_4(\mathbb{F}_3)$.

The groups $\mathfrak{A}_5, \mathfrak{A}_6, \mathfrak{A}_7$ have essential dimension 2,3 and 4 respectively, and $\mathrm{PSL}_2(\mathbb{F}_7)$ has essential dimension 2 [D1]. We are not able to settle the case $G = \mathrm{PSL}_2(\mathbb{F}_{11})$ (see §3). As for $\mathrm{PSp}_4(\mathbb{F}_3)$, we have:

Proposition 1. *The essential dimension of $\mathrm{PSp}(4, \mathbb{F}_3)$ is 4.*

Proof : The group $\mathrm{Sp}(4, \mathbb{F}_3)$ has a linear representation on the space W of functions on \mathbb{F}_3^2 , the *Weil representation*, for which we refer to [AR], Appendix I. This representation splits as $W = W^+ \oplus W^-$, the spaces of even and odd functions; we have $\dim W^+ = 5$, $\dim W^- = 4$. The central element $(-I)$ of $\mathrm{Sp}(4, \mathbb{F}_3)$ acts on W by $(-I)F(x) = F(-x)$, hence it acts trivially on W^+ , and as $-\mathrm{Id}$ on W^- . Thus we get a faithful representation of $\mathrm{PSp}(4, \mathbb{F}_3)$ on W^+ , with a compression to $\mathbb{P}(W^+) \cong \mathbb{P}^4$, hence $\mathrm{ed}(\mathrm{PSp}(4, \mathbb{F}_3)) \leq 4$.

To prove that we have equality, we observe¹ that $\mathrm{PSp}(4, \mathbb{F}_3)$ contains a subgroup isomorphic to $(\mathbb{Z}/2)^4$. One way to see this is to use the isomorphism $\mathrm{PSp}(4, \mathbb{F}_3) \cong \mathrm{SO}^+(5, \mathbb{F}_3)$: the group of diagonal matrices with entries ± 1 and determinant 1 is contained in $\mathrm{SO}^+(5, \mathbb{F}_3)$, and isomorphic to $(\mathbb{Z}/2)^4$. By [BR] we have

$$\mathrm{ed}(\mathrm{PSp}(4, \mathbb{F}_3)) \geq \mathrm{ed}((\mathbb{Z}/2)^4) = 4. \quad \blacksquare$$

2. THE GROUP $\mathrm{SL}_2(\mathbb{F}_8)$

It remains to prove that the pair $(\mathrm{SL}_2(\mathbb{F}_8), X)$ mentioned in (1) is not linearizable. To do this we will use the following criterion ([RY], Appendix):

Lemma 1. *If (G, X) is linearizable, every abelian subgroup of G has a fixed point in X .*

Proposition 2. *The essential dimension of $\mathrm{SL}_2(\mathbb{F}_8)$ is ≥ 4 .*

The group $\mathrm{SL}_2(\mathbb{F}_8)$ has a representation of dimension 7, hence its essential dimension is ≤ 6 – we do not know its precise value.

Proof : The group $\mathrm{SL}_2(\mathbb{F}_8)$ acts on a rational Fano threefold $X \subset \mathbb{P}^8$ in the following way [P]. Let U be an irreducible 9-dimensional representation of $\mathrm{SL}_2(\mathbb{F}_8)$; there exists a non-degenerate invariant quadratic form q on U , unique up to a scalar. Then $\mathrm{SL}_2(\mathbb{F}_8)$ acts on the orthogonal Grassmannian $\mathbb{G}_{\mathrm{iso}}(4, U)$ of 4-dimensional isotropic subspaces of U . This Grassmannian admits a $O(q)$ -equivariant embedding into \mathbb{P}^{15} , given by the half-spinor representation [M]. The threefold X is the intersection of $\mathbb{G}_{\mathrm{iso}}(4, U)$ with a subspace $\mathbb{P}^8 \subset \mathbb{P}^{15}$ invariant under $\mathrm{SL}_2(\mathbb{F}_8)$.

Let $N \subset \mathrm{SL}_2(\mathbb{F}_8)$ be the subgroup of matrices $\begin{pmatrix} I & a \\ 0 & I \end{pmatrix}$, $a \in \mathbb{F}_8$. We will show that N has no fixed point in $\mathbb{G}_{\mathrm{iso}}(4, U)$, and therefore in X .

¹I am indebted to A. Duncan for this observation.

Let χ_U be the character of the representation U . We have $\chi_U(n) = 1$ for $n \in N$, $n \neq 1$ (see for instance [C], 2.7). It follows that U restricted to N is the sum of the regular representation and the trivial one; in other words, as a N -module we have

$$U = \mathbb{C}_1^2 \oplus \sum_{\substack{\lambda \in \hat{N} \\ \lambda \neq 1}} \mathbb{C}_\lambda,$$

where \mathbb{C}_λ is the one-dimensional representation associated to the character λ . The subspaces \mathbb{C}_α and \mathbb{C}_β must be orthogonal for $\alpha \neq \beta$; since q is non-degenerate, its restriction to each \mathbb{C}_λ ($\lambda \neq 1$) and to \mathbb{C}_1^2 must be non-degenerate.

Now any vector subspace $L \subset U$ fixed by N must be the sum of some of the \mathbb{C}_λ , for $\lambda \neq 1$, and of some subspace of \mathbb{C}_1^2 ; this implies that L cannot be isotropic as soon as $\dim L \geq 2$. Hence N has no fixed point on $\mathbb{G}_{\text{iso}}(4, U)$, and X is not linearizable by Lemma 1. ■

3. ABOUT $\text{PSL}_2(\mathbb{F}_{11})$

The Weil representation W^- of $\text{SL}_2(\mathbb{F}_{11})$ factors through $\text{PSL}_2(\mathbb{F}_{11})$, hence provides a 5-dimensional representation of the latter group; thus its essential dimension is 3 or 4. According to [P] there are two rationally connected threefolds with an action of $\text{PSL}_2(\mathbb{F}_{11})$, the Klein cubic $X^k \subset \mathbb{P}^4$ given by $\sum_{i \in \mathbb{Z}/5} X_i^2 X_{i+1} = 0$ and a Fano threefold $X^a \subset \mathbb{P}^9$ of degree 14, birational to X^k . The group $\text{PSL}_2(\mathbb{F}_{11})$ has order $660 = 2^2 \cdot 3 \cdot 5 \cdot 11$; its abelian subgroups are cyclic, except the 2-Sylow subgroups which are isomorphic to $(\mathbb{Z}/2)^2$. A finite order automorphism of a rationally connected variety has always a fixed point (for instance by the holomorphic Lefschetz formula); one checks easily that a 2-Sylow subgroup of $\text{PSL}_2(\mathbb{F}_{11})$ has a fixed point on both X^k and X^a . So lemma 1 does not apply, and another approach is needed.

REFERENCES

- [AR] A. Adler, S. Ramanan: *Moduli of abelian varieties*. Lect. Notes in Math. **1644**, Springer-Verlag, Berlin (1996).
- [BR] J. Buhler, Z. Reichstein: *On the essential dimension of a finite group*. Compositio Math. **106** (1997), no. 2, 159–179.
- [C] M. Collins: *Representations and characters of finite groups*. Cambridge University Press (1990).
- [D1] A. Duncan: *Essential Dimensions of A_7 and S_7* . Math. Res. Lett. **17** (2010), no. 2, 263–266.
- [D2] A. Duncan: *Finite Groups of Essential Dimension 2*. Preprint arXiv:0912.1644, to appear in Comment. Math. Helv.
- [M] S. Mukai: *Curves and symmetric spaces*, I. Am. J. Math. **117** (1995), no. 6, 1627–1644.
- [P] Y. Prokhorov: *Simple finite subgroups of the Cremona group of rank 3*. Preprint arXiv:0908.0678.
- [RY] Z. Reichstein, B. Youssin: *Essential dimensions of algebraic groups and a resolution theorem for G -varieties*. With an appendix by J. Kollar and E. Szabo. Canad. J. Math. **52** (2000), no. 5, 1018–1056.

LABORATOIRE J.-A. DIEUDONNÉ, UMR 6621 DU CNRS, UNIVERSITÉ DE NICE, PARC VALROSE, F-06108
NICE CEDEX 2, FRANCE

E-mail address: arnaud.beauville@unice.fr