Machine Learning

CSCI 567 Spring 2021 (April 14, 2021)

Discussion: Constrained Optimization and EM

- (1) Consider a mixture of two exponential distributions, with parameters λ_1, λ_2 respectively. Let $z \in \{0,1\}$ be the hidden variable to indicate which exponential distribution the observed data x is drawn from (z=0) if $\text{Exp}(\lambda_1)$ is sampled, else z=1 for $\text{Exp}(\lambda_2)$). Let the prior probability of z=1 be denoted using parameter $\pi \in (0,1)$, i.e., $p(z=1)=\pi$. Note: An exponential distribution with parameter λ has the following density function: $p(x)=\lambda e^{-\lambda x}, \forall x \geq 0$. Each example in the dataset $\{x_i\}_{i=1}^N$ is drawn i.i.d. from the mixture model. Write the E-step and M-step to estimate parameters $\lambda_1, \lambda_2, \pi$. Solve the M-step to obtain the update equations
- (2) Find the maxima and minima of $f(x,y) = 8x^2 2y$ subject to the constraint $x^2 + y^2 = 1$.

for the parameters at each iteration of EM algorithm.