Practica 8

Fundamentos de programación

Alejandro Alonso Membrila

Conclusiones:

EJERCICIO 1: INTRODUCCIÓN DE NÚMEROS Y PROMEDIO

Este ejercicio enseña los fundamentos de los arreglos en Java, mostrando cómo almacenar múltiples valores y realizar operaciones básicas como el cálculo del promedio. Es ideal para comprender la interacción con el usuario mediante la consola y el uso de bucles para procesar datos.

EJERCICIO 2: INTRODUCCIÓN DE NOMBRES DE ESTUDIANTES

Aquí se practica el trabajo con arreglos de cadenas, almacenando nombres ingresados por el usuario. El ejercicio enseña la importancia de estructurar datos textuales y mostrarlos de manera organizada.

EJERCICIO 3: CREAR UN ARREGLO DE TEMPERATURAS

Este ejercicio muestra cómo inicializar arreglos con valores predeterminados y recorrerlos para visualizar su contenido. Es útil para aprender a representar datos reales, como temperaturas diarias, y para practicar el acceso secuencial a los elementos de un arreglo.

EJERCICIO 4: ARREGLO DE CALIFICACIONES

Similar al Ejercicio 1, pero con valores fijos, este ejercicio refuerza el cálculo de promedios y el manejo de arreglos predefinidos, es la mejor forma para entender cómo trabajar con datos estáticos y aplicar operaciones matemáticas sobre ellos.

EJERCICIO 5: USO DE LA PROPIEDAD LENGTH

Este ejercicio enseña a utilizar la propiedad length para determinar dinámicamente el tamaño de un arreglo. Es clave para evitar errores al iterar sobre arreglos y para escribir código más flexible.

EJERCICIO 6: ARREGLO PARCIALMENTE LLENO

Aquí se aprende a manejar arreglos que no están completamente llenos, filtrando posiciones vacías. Es útil para situaciones donde la entrada de datos es opcional o incompleta. El ejercicio también refuerza el uso de condicionales para validar y procesar elementos no nulos.

EJERCICIO 7: COPIA MANUAL DE UN ARREGLO

Este ejercicio demuestra cómo copiar manualmente los elementos de un arreglo a otro mediante un bucle, esto sirve para entender el proceso subyacente en la manipulación de arreglos y para practicar el acceso a cada elemento individualmente y ademas, refuerza el concepto de iteración.

EJERCICIO 8: COPIA CON SYSTEM.ARRAYCOPY()

Introduce el método System.arraycopy() para copiar arreglos de manera eficiente. Muestra una alternativa más optimizada y legible que la copia manual, destacando las ventajas de usar métodos integrados en Java. También ayuda a comprender cómo trabajar con herramientas nativas del lenguaje.

EJERCICIO 9: DESPLAZAMIENTO A LA DERECHA

Enseña a rotar los elementos de un arreglo hacia la derecha, moviendo el último elemento al inicio. Este ejercicio es ideal para practicar la manipulación de posiciones dentro de un arreglo y entender cómo reorganizar datos. También refuerza el manejo de índices y condiciones.

EJERCICIO 10: DESPLAZAMIENTO A LA IZQUIERDA

Similar al ejercicio anterior, pero desplazando elementos hacia la izquierda, moviendo el primer elemento al final. Ayuda a consolidar el conocimiento sobre reorganización de arreglos y el uso de variables temporales.

EJERCICIO 11: PROMEDIO DE NOTAS

Combina la entrada dinámica de datos con el cálculo de promedios usando arreglos. Este ejercicio es útil para aplicaciones académicas, mostrando cómo procesar múltiples valores ingresados por el usuario y también refuerza el uso de bucles y operaciones matemáticas.

EJERCICIO 12: PROMEDIO DE EDADES

Permite ingresar edades hasta que se introduce un valor negativo, calculando luego el promedio. Ideal para manejar entradas variables y condiciones de terminación y además, enseña a trabajar con tamaños dinámicos de datos en arreglos.

EJERCICIO 13: HISTOGRAMA DE NÚMEROS

Genera un histograma de frecuencias para números en un rango específico. Introduce conceptos básicos de estadística y conteo de ocurrencias, esto es importante para aprender a visualizar datos y trabajar con arreglos de frecuencias.

EJERCICIO 14: HISTOGRAMA DE CARACTERES

Cuenta la frecuencia de cada letra en una cadena, ignorando mayúsculas y minúsculas. Perfecto para aprender procesamiento de texto y manejo de caracteres y tambien muestra cómo convertir cadenas a minúsculas o mayúsculas para simplificar el análisis.

EJERCICIO 15: BÚSQUEDA SECUENCIAL (NÚMEROS)

Implementa una búsqueda secuencial en un arreglo de números predefinidos. Enseña algoritmos básicos de búsqueda y el manejo de condiciones para encontrar elementos.

EJERCICIO 16: BÚSQUEDA SECUENCIAL (CADENAS)

Similar al anterior, pero aplicado a cadenas. Refuerza la comparación de strings y la búsqueda en arreglos textuales.

EJERCICIO 17: BÚSQUEDA BINARIA (NÚMEROS)

Implementa búsqueda binaria en arreglos ordenados, mostrando un algoritmo más eficiente que la búsqueda secuencial, es importantepara entender la importancia del orden en los datos y cómo aprovecharlo para optimizar búsquedas.

EJERCICIO 18: BÚSQUEDA BINARIA (CADENAS)

Aplica búsqueda binaria en arreglos de cadenas ordenadas alfabéticamente, esto demuestra como trabajar con comparaciones de strings en algoritmos eficientes. También refuerza el concepto de ordenamiento previo para búsquedas rápidas.

EJERCICIO 19: ORDENAMIENTO POR SELECCIÓN (NÚMEROS)

Ordena un arreglo de números usando el algoritmo de selección. Introduce uno de los métodos más básicos de ordenación, destacando su funcionamiento paso a paso.

EJERCICIO 20: ORDENAMIENTO POR SELECCIÓN (CADENAS)

Aplica el mismo algoritmo para ordenar cadenas alfabéticamente. Refuerza el manejo de comparaciones entre strings y muestra cómo adaptar algoritmos numéricos a datos textuales. También enseña el uso de compareTo() para comparar cadenas.

EJERCICIO 21: ORDENAMIENTO CON ARRAYS.SORT()

Utiliza el método Arrays.sort() para ordenar números, mostrando la simplicidad de las herramientas integradas en Java, esto para aprender a aprovechar las bibliotecas estándar y escribir código más conciso.

EJERCICIO 22: ORDENAMIENTO CON COLLECTIONS.SORT()

Ordena una lista de cadenas con Collections.sort(), introduciendo el uso de colecciones dinámicas. Ideal para entender las diferencias entre arreglos y listas, y cómo trabajar con estructuras más flexibles.

EJERCICIO 23: SUMA DE MATRIZ 2D

Calcula la suma de todos los elementos en una matriz 3x3. Introduce el manejo de estructuras bidimensionales y bucles anidados, esto para entender cómo trabajar con datos organizados en filas y columnas.

EJERCICIO 24: PROMEDIO DE FILA EN MATRIZ 2D

Obtiene el promedio de una fila específica en una matriz 4x4. Practica el acceso selectivo a datos en matrices y el cálculo de promedios parciales y refuerza el uso de índices para navegar en estructuras bidimensionales.

EJERCICIO 25: MATRIZ 3X3X3

Crea y visualiza una matriz tridimensional, mostrando cómo manejar estructuras complejas. Desafía la comprensión de múltiples dimensiones y su representación, esta es una forma ideal para aprender a trabajar con datos organizados en cubos.

EJERCICIO 26: BÚSQUEDA EN MATRIZ 3D

Busca un número en una matriz 3D y muestra sus coordenadas si se encuentra. Combina búsqueda secuencial con estructuras tridimensionales, reforzando el manejo de índices en múltiples niveles.