2017~ 2018 学年第二学期

2017级《高等数学》(下) 联考试卷参考答案及评分标准

一、单项选择题(本大题共5个小题,每小题3分,总计15分)

1	2	3	4	5
В	A	C	D	D

二、填空题(本大题共5个小题,每小题3分,总计15分)

6	7	8	9	10
				重邮: 0
$\frac{x-2}{3} = \frac{y+3}{-1} = \frac{z-4}{2}$	(1,-2,-1)	x + y + z - 2 = 0	π	交大: $\sum_{n=0}^{\infty} (-1)^n x^{2n}$
				理工: $y = (c_1 + c_2 x)e^{\frac{1}{2}x}$

三、计算题(本大题共2个小题,每小题10分,总计20分)

11、解: (1) 由于
$$\frac{\partial z}{\partial x} = (1+xy)e^{xy}$$
; $\frac{\partial z}{\partial y} = x^2e^{xy}$ (3分)

于是
$$dz\Big|_{\substack{x=-1\\y=0}} = \frac{\partial z}{\partial x}\Big|_{\substack{x=-1\\y=0}} dx + \frac{\partial z}{\partial y}\Big|_{\substack{x=-1\\y=0}} dy = dx + dy$$
(5分)

(2) 由
$$\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial \left(\frac{\partial z}{\partial x}\right)}{\partial y} = x(2+xy)e^{xy}$$
 得 $\frac{\partial^2 z}{\partial x \partial y}\Big|_{\substack{x=-1\\y=0}} = -2$ (10分)

12、解: (1)
$$\frac{\partial z}{\partial x} = \ln y f_1' - \frac{y}{x^2} f_2'$$
 (5 分)

(2) 方程组两边对x求导得

$$\begin{cases} 1 + \frac{dy}{dx} + \frac{dz}{dx} = 0 \\ x + y \frac{dy}{dx} + z \frac{dz}{dx} = 0 \end{cases} \qquad \text{APA} \qquad \begin{cases} \frac{dy}{dx} = \frac{x - z}{z - y} \\ \frac{dz}{dx} = \frac{y - x}{z - y} \end{cases} \qquad (10 \%)$$

四、计算题(本大题共2个小题,每小题10分,总计20分)

14、解: 令 P = 2x + z, Q = 0, R = z, Ω 是曲面 $z = x^2 + y^2$ 与平面 z = 1 围成的闭区域. 由于 Σ 取的是 Ω 的整个边界曲面的内侧,故由高斯公式有

$$I = -\iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dv = -\iiint_{\Omega} 3dv \qquad (4 \%)$$

$$= -\int_{0}^{2\pi} d\theta \int_{0}^{1} d\rho \int_{\rho^{2}}^{1} 3\rho dz$$

$$= -2\pi \int_{0}^{1} 3\rho (1 - \rho^{2}) d\rho \qquad (10 \%)$$

$$= -\frac{3}{2}\pi$$

五、综合题(本大题共2个小题,每小题10分,总计20分)

15、(1) 证明: 令
$$P = e^y + 2x$$
, $Q = xe^y$

则整个
$$xoy$$
平面有 $\frac{\partial P}{\partial y} = e^y = \frac{\partial Q}{\partial x}$

故该曲线积分在整个xoy平面上与路径无关(5分)

(2) 解:
$$I = \int_{(0,0)}^{(1,1)} (e^y + 2x) dx + xe^y dy = \int_0^1 (1+2x) dx + \int_0^1 e^y dy = 1 + e$$
(10 分)

16.
$$\Re$$
: (1) $\diamondsuit a_n = \frac{1}{n \, 2^{n-1}}$

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{2} \lim_{n \to \infty} \frac{n}{n+1} = \frac{1}{2},$$
 所以收敛半径 $R = 2$ (2 分)

当
$$x = 2$$
 时,级数 $\sum_{n=1}^{\infty} \frac{1}{n2^{n-1}} x^n = \sum_{n=1}^{\infty} \frac{2}{n}$ 发散;

当
$$x = -2$$
 时,级数 $\sum_{n=1}^{\infty} \frac{1}{n2^{n-1}} x^n = \sum_{n=1}^{\infty} (-1)^n \frac{2}{n}$ 收敛;

所以幂级数
$$\sum_{n=1}^{\infty} \frac{1}{n2^{n-1}} x^n$$
 收敛域为[-2,2) (5 分)

(2) 设和函数为
$$S(x)$$
, 即 $s(x) = \sum_{n=1}^{\infty} \frac{1}{n2^{n-1}} x^n$, $x \in [-2,2)$

由逐项求导得:

$$S'(x) = \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} x^{n-1} = \sum_{n=1}^{\infty} \left(\frac{x}{2}\right)^{n-1} = \frac{1}{1 - \frac{x}{2}} = \frac{2}{2 - x} \quad (-2 < x < 2) \quad \dots \quad (8 \ \%)$$

于是
$$S(x) = \int_0^x \frac{2}{2-x} dx = -2\ln(2-x) + 2\ln 2 = 2\ln\frac{2}{2-x}, \ (-2 \le x < 2) \ \dots (10 分)$$

六、综合题(本大题总计10分)

17、解: 先求驻点,令
$$\begin{cases} f_x(x,y) = 3x^2 - 3y = 0 \\ f_y(x,y) = 3y^2 - 3x = 0 \end{cases}$$
, 解得
$$\begin{cases} x = 0 \\ y = 0 \end{cases}$$
,
$$\begin{cases} x = 1 \\ y = 1 \end{cases}$$

即驻点为(0,0), (1,1) (3分)

为了判断这两个驻点是否为极值点,求二阶导数

$$\begin{cases} f_{xx}(x,y) = 6x \\ f_{xy}(x,y) = -3 & \dots \\ f_{yy}(x,y) = 6y \end{cases}$$
 (5 $\%$)

在点
$$(0,0)$$
 处, $A = f_{xx}(0,0) = 0$, $B = f_{xy}(0,0) = -3$, $C = f_{yy}(0,0) = 0$

类似的, 在点(1,1)处,
$$A = f_{xx}(1,1) = 6$$
, $B = f_{xy}(1,1) = -3$, $C = f_{yy}(1,1) = 6$

因为
$$A = 6 > 0$$
, $AC - B^2 = 27 > 0$,

所以(1,1)是极小值点,极小值为f(1,1) = -1 (10分)