Dr. W. Spann

F. Hänle, M. Oelker

6. Tutorium zur Linearen Algebra für Informatiker und Statistiker

T21) Gegeben seien die reellen Matrizen

$$A_1 := \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 , $A_2 := \begin{pmatrix} -2 & 4 \\ 3 & 1 \\ 2 & 0 \end{pmatrix}$, $A_3 := \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$.

Bestimmen Sie, so weit möglich, die Matrizenprodukte $A_i \cdot A_j$, i, j = 1, 2, 3.

T22) (a) Zeigen Sie die folgende Gleichung für reelle 2×2 Matrizen:

$$\begin{pmatrix} -4 & -3 \\ 8 & 6 \end{pmatrix}^k = 2^{k-1} \cdot \begin{pmatrix} -4 & -3 \\ 8 & 6 \end{pmatrix} \qquad (k \in \mathbb{N})$$

- (b) Gilt die Gleichung aus (a) auch für k = 0?
- T23) Sei $G := \{ z \in \mathbb{C} : |z| = 1 \}.$
 - (a) Zeigen Sie, dass (G, \cdot) eine Gruppe ist.
 - (b) Sei $n \in \mathbb{N}$. Zeigen Sie, dass $\phi: G \to G$, $z \mapsto z^n$ ein surjektiver Gruppenhomomorphismus ist.
 - (c) Für welche $n \in \mathbb{N}$ ist ϕ aus (b) ein Gruppenisomorphismus?
- T24) (a) Seien $(R,+,\cdot)$ und (S,\oplus,\odot) Ringe mit Einselement 1_R bzw. 1_S . Zeigen Sie: $(R\times S,\boxplus,\boxdot)$ mit

$$(r_1, s_1) \boxplus (r_2, s_2) := (r_1 + r_2, s_1 \oplus s_2)$$
 und $(r_1, s_1) \boxdot (r_2, s_2) := (r_1 \cdot r_2, s_1 \odot s_2)$

ist ein Ring mit Einselement $(1_R, 1_S)$.

(Bez.:
$$(R, +, \cdot) \times (S, \oplus, \odot)$$
)

(b) Seien $m, n \in \mathbb{N}$ mit ggT(m, n) > 1. Zeigen Sie, dass die Ringe $(\mathbb{Z}_{mn}, +, \cdot)$ und $(\mathbb{Z}_m, +, \cdot) \times (\mathbb{Z}_n, +, \cdot)$ nicht isomorph sind.

Definition: Seien $(R, +, \cdot)$ und (S, \oplus, \odot) Ringe mit Einselement 1_R bzw. 1_S . Eine Abbildung $\phi: R \to S$ heißt Ringhomomorphismus, wenn gilt:

$$\phi(a+b) = \phi(a) \oplus \phi(b) \quad (a, b \in R)$$

$$\phi(a \cdot b) = \phi(a) \odot \phi(b) \quad (a, b \in R)$$

$$\phi(1_R) = 1_S$$

Ist sie zusätzlich bijektiv, so wird sie Ringisomorphismus genannt. Entsprechend sind die Begriffe Körperhomomorphismus und Körperisomorphismus definiert.