How do we account for spatial-scale in resource selection?

How do we account for spatial-scale in resource selection?

How do we account for spatial-scale in resource selection?

Example: A pig from Tejon Ranch

Fruit and nut fields in the proximity of Tejon ranch pigs

Example: A pig from Tejon Ranch

How is pig movement affected by resource when not in the resource?

- 1. Sum of global distance-to-resource pixel vectors
- 2. Distance-to-nearest resource
- 3. Some combination of the two?

1. Sum of global distance-to-resource pixel vectors

1. Sum of global distance-to-resource pixel vectors

- Accounts for patch size and distance
- Can easily explore functional form of distance decay
 - e.g. $\exp(-\gamma D_{ij}^2)$ vs. $\exp(-\gamma D_{ij})$
 - How does γ vary w/ resources? Individuals? Populations?
- Computationally infeasible for abundant resources pixels
 - Randomly sub-sample resource pixels?

Distance-to-nearest resource

Distance-to-nearest resource

Distance-to-nearest resource

- Computationally more feasible
- Distance-to-nearest "X" is commonly used
- Ignores simultaneous influence of multiple patches
- Compromise: Distance to all patches weighted by patch area?