筆答専門試験科目(午前)

30 大修

数学系

時間 9:00~11:30

注意事項

- 1. 試験開始時刻まではこの問題冊子を開いてはならない.
- 2. 以下の問題5題すべてに解答せよ.
- 3. 解答は1題毎に別々の解答用紙に記入せよ.
- 4. 各解答用紙毎に必ず問題番号および受験番号を記入せよ.
- 5. この問題冊子はこの表紙を入れて全体で3ページからなる.
- 6. 口頭試問を代数分野,幾何分野,解析分野のどれで受けることを希望するかを解答用紙の 1ページ目の受験番号の下に書くこと.

記号について: ℝ は実数全体を表す.

[1] 変数 x,y に関する 3 次斉次多項式全体のなす $\mathbb R$ 上のベクトル空間を V とする. すなわち

$$V = \{ ax^3 + bx^2y + cxy^2 + dy^3 \mid a, b, c, d \in \mathbb{R} \}.$$

このとき $f = f(x,y) \in V$ に対して

$$T(f) = (x+y)\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right)f$$

と定める.

- (1) T は V の線形変換であることを示せ.
- (2) Tの固有ベクトルから成る V の基底を求めよ.

[2] $f: \mathbb{R}^n \to \mathbb{R}^m$ を \mathbb{R} 上の線形写像とし、その階数を r とする. また、

$$S = \{W \subset \mathbb{R}^n \mid W \text{ は } r \text{ 次元部分空間で } f|_W \text{ が単射} \}$$

とする.

- (1) *S* は空でないことを示せ.
- (2) r > 0 であるとき,任意の $x \in \mathbb{R}^n$ について, $x \in W + W'$ となる $W, W' \in S$ が存在することを示せ.

[3] \mathbb{R}^2 の部分集合

$$\begin{split} X &= \left\{ (x,y) \in \mathbb{R}^2 \, \left| \, x^2 + y^2 \le 1 \, \right\}, \right. \\ A &= \left\{ (x,y) \in \mathbb{R}^2 \, \left| \, x^2 + y^2 \le 1, \, -1 < x < 1, \, -1 < y < 1 \, \right\} \right. \end{split}$$

を考える. X の部分集合族 \mathcal{O} を

$$\mathcal{O} = \{ U \subset X \mid (0,0) \notin U \} \cup \{ U \subset X \mid A \subset U \}$$

によって定義する.

- (1) のが開集合系の公理をみたすことを示せ.
- (2) 位相空間 (X, \mathcal{O}) がハウスドルフ空間ではないことを示せ.
- (3) 位相空間 (X, \mathcal{O}) がコンパクトであることを示せ.
- (4) 位相空間 (X, \mathcal{O}) が可分ではないことを示せ、ただし、位相空間が可分であるとは、稠密な高々可算な部分集合をもつことである.

- [4] 連続関数 $f:[0,\infty) \to \mathbb{R}$ は極限値 $\alpha = \lim_{x \to \infty} f(x) \in \mathbb{R}$ をもつものとする.
 - $(1) \ g(t) = \frac{1}{t} \int_0^t f(x) \, dx \ に対し, \\ \lim_{t \to \infty} g(t) = \alpha \ \text{であることを示せ}.$
 - $(2) \ h(t) = \frac{1}{t^2} \int_0^t x f(x) \, dx \ \texttt{に対} \ \texttt{し}, \ \text{極限} \lim_{t \to \infty} h(t) \, \text{が存在することを示} \ \texttt{し}, \ \texttt{その極限値を求めよ}.$
- [5] $f: \mathbb{R} \to \mathbb{R}$ を C^2 級関数とする. 任意の $a \in \mathbb{R}$ に対し, x < a < y かつ $x, y \to a$ のとき

$$\frac{4}{(x-y)^2}\left\{f(x)-2f\left(\frac{x+y}{2}\right)+f(y)\right\}\to f''(a)$$

が成り立つことを示せ.

筆答専門試験科目(午後)

30 大修

数学系

時間 13:00~15:00

注意事項

- 1. 試験開始時刻まではこの問題冊子を開いてはならない.
- 2. 以下の問題のうち2題を選択して解答せよ.
- 3. 解答は1題毎に別々の解答用紙に記入せよ.
- 4. 各解答用紙毎に必ず問題番号および受験番号を記入せよ.
- 5. この問題冊子はこの表紙を入れて全体で4ページからなる.
- 6. 口頭試問を代数分野, 幾何分野, 解析分野のどれで受けることを希望するかを解答用紙の 1ページ目の受験番号の下に書くこと. (午前と同じ分野を書くこと.)

記号について:

- № は正の整数全体を表す.
- ℤ は整数全体を表す. ℚ は有理数全体を表す.
- ℝ は実数全体を表す.
- ℂ は複素数全体を表す.

- [1] $K = \mathbb{Q}\left(\sqrt{1+\sqrt{2}},\sqrt{-1}\right)$ とする.
 - (1) K/\mathbb{Q} はガロア拡大であることを示し、そのガロア群を求めよ.
 - (2) *K*/ℚ のすべての中間体を求めよ.
- [2] 有理数係数の 2 変数多項式環 $\mathbb{Q}[x,y]$ を単項イデアル (y^2-x^3-1) で割った剰余環 $A=\mathbb{Q}[x,y]/(y^2-x^3-1)$ を考える. $f\in\mathbb{Q}[x,y]$ の A における像を \overline{f} と記す.
 - (1) $P = (\bar{x}, \bar{y+1})$ は A の極大イデアルであることを示せ.
 - (2) \overline{x} は A の素元ではないことを示せ.
 - (3) \overline{x} は A の既約元であることを示せ.
- [3] (1) $V = \{(z_1, z_2, z_3) \in \mathbb{C}^3 \mid z_1^2 + z_2^2 + z_3^2 = 0, |z_1|^2 + |z_2|^2 + |z_3|^2 = 2\}$ が 3 次元 C^{∞} 級多様体になることを示せ.
 - (2) 行列式が正である 3 次実直交行列全体の集合 SO(3) は 3 次実正方行列全体の集合 $M_3(\mathbb{R})$ の 3 次元部分多様体である. これをみとめて (1) の V と SO(3) は微分同相であることを示せ. ただし, $M_3(\mathbb{R})$ は成分をとることにより \mathbb{R}^9 と同一視している.
- [4] $S^2=\left\{(x,y,z)\in\mathbb{R}^3\;\middle|\;x^2+y^2+z^2=1\right\}$ の \mathbb{R}^3 への包含写像を ι とし、 \mathbb{R}^3 上の 2 次微分形式 $\Omega=x\,dy\wedge dz+y\,dz\wedge dx+z\,dx\wedge dy$

を考える.

- (1) ι による引き戻し $\omega = \iota^*\Omega$ が S^2 上のいたるところ 0 でない微分形式であることを示せ.
- (2) 外微分 $d\Omega$ を計算せよ.
- (3) 3次実直交行列 A の定める線形写像 $\mathbb{R}^3 \to \mathbb{R}^3$ から誘導される C^∞ 級写像 $f_A:S^2 \to S^2$ に対して $\left|\int_{\mathbb{R}^2} f_A^* \omega\right|$ を計算せよ.

[5] 以下,

$$I = \{ t \in \mathbb{R} \mid -1 \le t \le 1 \},$$

$$A = \{ (x_1, x_2) \in \mathbb{R}^2 \mid (x_1 + 1)^2 + x_2^2 = 1 \} \cup \{ (x_1, x_2) \in \mathbb{R}^2 \mid (x_1 - 1)^2 + x_2^2 = 1 \}$$

のそれぞれに \mathbb{R} , \mathbb{R}^2 の通常の位相に関する相対位相を与えて位相空間と考える. $A \times I$ の二項関係 \sim を

$$((x_1,x_2),t) \sim ((x_1',x_2'),t') \Longleftrightarrow ((x_1,x_2),t) = ((x_1',x_2'),t') または \\ \lceil \left\{t,t'\right\} = \left\{-1,1\right\} かつ (x_1',x_2') = (-x_1,-x_2) \rfloor$$

によって定義する.

- (1) ~が $A \times I$ の同値関係であることを示せ.
- (2) $A \times I$ の整係数ホモロジー群を求めよ.
- (3) 商空間 $X = (A \times I) / \sim$ の整係数ホモロジー群を求めよ.
- [6] a>0を定数とする. このとき以下を示せ. ただし, R>0 で

$$L_{-}(R) = \{ -R + it \in \mathbb{C} \mid 0 \le t \le a \},$$

$$L_{+}(R) = \{ R + it \in \mathbb{C} \mid 0 \le t \le a \}$$

である. また
$$\int_{-\infty}^{\infty} e^{-x^2/2} dx = \sqrt{2\pi}$$
 は用いてよい.

(1)
$$\lim_{R \to \infty} \int_{L_{-}(R)} e^{-z^2/2} dz = \lim_{R \to \infty} \int_{L_{+}(R)} e^{-z^2/2} dz = 0.$$

(2)
$$\int_{0}^{\infty} e^{-x^{2}/2} \cos ax \, dx = \sqrt{\frac{\pi}{2}} e^{-a^{2}/2}.$$

- [7] 以下, (X, \mathcal{B}, μ) を測度空間とし, $\mu(X) < \infty$ とする.
 - (1) $f: X \to \mathbb{R}$ を可測関数, k を正の実数, λ を正の実数とする. このとき

$$e^{\lambda k}\mu\left(\left\{x\in X\mid f(x)>k\right\}\right)\leq \int_X e^{\lambda f(x)}\,d\mu(x)$$

が成り立つことを示せ.

(2) $X=\mathbb{R}$, \mathcal{B} をボレル集合族 $\mathcal{B}(\mathbb{R})$, k を正の実数, $d\mu(x)=\frac{1}{\sqrt{2\pi}}e^{-x^2/2}\,dx$ とする. このとき

$$\mu\left(\left\{x \in \mathbb{R} \mid x > k\right\}\right) \le e^{-k^2/2}$$

が成り立つことを示せ. ただし, $\int_{-\infty}^{\infty}e^{-x^2/2}\,dx=\sqrt{2\pi}$ は用いてよい.

[8] 常微分方程式の初期値問題

$$\begin{cases} x'' + 4x' + 5x = f(x, x'), \\ x(0) = x_0, \ x'(0) = x_1 \end{cases}$$

について以下の問いに答えよ. ただし, $x_0, x_1 \in \mathbb{R}$ とする.

- (1) f=0 であるとき解 x(t) を求めよ.
- (2) $f: \mathbb{R}^2 \to \mathbb{R}$ が C^1 級で f(0,0) = 0 および $\nabla f(0,0) = (0,0)$ をみたすとき, $(0,0) \in \mathbb{R}^2$ の ある近傍 U が存在して, $(x_0,x_1) \in U$ ならば $\lim_{t \to \infty} x(t) = 0$ となることを示せ. ただし, 解 x(t) が $0 \le t < \infty$ で存在することは仮定してよい.