CS-2209A Assignment 2 Ian Borwick – 250950449

1. P(x) = pens Q(x) = pencils

- a. $\forall x (P(x) \lor Q(x))$
- b. $\exists x (\neg(P(x)) \rightarrow (Q(x))$
- c. $\exists x (\neg P(x) \land \neg Q(x))$
- d. $\neg \forall x (P(x) \land Q(x))$

2.

a.

1	$\forall z((\exists y P(x,y) \rightarrow \forall x Q(x)) \rightarrow R(z))$	Question
2	$\forall z (\neg(\exists y P(x,y) \rightarrow \forall x Q(x)) \lor R(z))$	Conditional Identity 1
3	$\forall z (\neg (\neg \exists y P(x,y) \lor \forall x Q(x)) \lor R(z))$	Conditional Identity 2
4	$\forall z((\neg \neg \exists y P(x,y) \land \neg \forall x Q(x)) \lor R(z))$	DeMorgans Law 3
5	$\forall z((\exists y P(x,y) \land \neg \forall x Q(x)) \lor R(z))$	Double Negation 4
6	$\forall z((\exists y P(x,y) \land \exists x \neg Q(x)) \lor R(z))$	DeMorgans Law 5
7	$\forall z \exists y \exists x ((P(x,y) \land \neg Q(x)) \lor R(z))$	Shifting Quantifiers 6
8	$\forall z \exists y \exists x ((R(z) \lor P(x,y)) \land (R(z) \lor \neg Q(x)))$	Distributive Law 7

b.

1	$((A(y) \rightarrow \forall x_1 B(x_1)) \rightarrow \exists x_2 : C(x)$	Question
2	$\neg((A(y) \rightarrow \forall x_1 B(x_1)) \lor \exists x_2 C(x_2)$	Conditionally Identity 1
3	$\neg(\neg(A(y)\lor\forall x_1B(x_1))\lor\exists x_2\ C(x_2)$	Conditional Identity 2
4	$(\neg \neg A(y) \land \neg \forall x_1 B(x_1)) \lor \exists x_2 C(x_2)$	DeMorgans Law 3
5	$(A(y) \land \neg \forall x_1 B(x)) \lor \exists x_2 C(x_2)$	Double Negation Law 4
6	$(A(y) \land \exists x_1 \neg B(x_1)) \lor \exists x_2 \ C(x_2)$	DeMorgans Law 5
7	$(\exists x_2 C(x_2) \lor A(y)) \land (\exists x_2 C(x_2) \lor \exists x_1 \neg B(x_1))$	Distribution Law 6
8	$\exists x_2 \exists x_1 \ (C(x_2) \lor A(y)) \land (C(x_2) \lor \neg B(x_1))$	Shifting Quantifiers 7

c.

1	$\exists x_1(P(x_1) \rightarrow \forall yQ(x_1,y)) \rightarrow \forall x_2B(x_2)$	Question
2	$\exists x_1 \neg (P(x_1) \rightarrow \forall y Q(x_1, y)) \lor \forall x_2 B(x_2)$	Conditional Identity 1
3	$\exists x_1 \neg (\neg P(x_1) \lor \forall y Q(x_1, y)) \lor \forall x_2 B(x_2)$	Conditional Identity 2
4	$\exists x_1 \neg (\neg P(x_1) \lor \forall y Q(x_1, y)) \lor \forall x_2 B(x_2)$	DeMorgans Law 3
5	$\exists x_1(\neg \neg P(x_1) \land \exists y \neg Q(x_1, y)) \lor \forall x_2 B(x_2)$	DeMorgans Law 4
6	$\exists x_1(P(x_1) \land \neg \exists y \neg Q(x_1,y)) \lor \forall x_2B(x_2)$	Double Negation Law 5
7	$((\forall x_2B(x_2)\lor\exists x_1P(x_1))\land((\forall x_2B(x_2)\lor\exists y\neg Q(x_1,y))$	Distributive Law 6
8	$\forall x_2 \exists x_1 \exists y ((B(x_2) \lor P(x_1)) \land ((B(x_2) \lor \neg Q(x_1, y))$	Shifting Quantifiers 7

a.

1	$\forall x (P(x) \rightarrow Q(x))$	Hypothesis
2	$\forall x(Q(x) \rightarrow R(x))$	Hypothesis
3	$\forall x (P(x) \rightarrow R(x))$	Hypothetical Syllogism 1,2

b.

1	$\exists x (P(x) \land R(x))$	Hypothesis
2	(c is a particular element) \land (P(c) \land R(c))	Existential instantiation 1
3	(c is a particular element)	Simplification 2
4	$(P(c)\land R(c))\land (c \text{ is a particular element})$	Commutative law 2
5	$P(c) \land R(c)$	Simplification 4
6	$\forall x (P(x) \rightarrow (Q(x) \land S(x))$	Hypothesis
7	$P(c) \rightarrow (Q(c) \land S(c))$	Universal instantiation 4,5
8	$\neg P(c) \lor (Q(c) \land S(c))$	Conditional Identity 7
9	$\neg P(c) \lor (S(c) \land Q(c))$	Commutative Law 8
10	$\neg P(c) \lor S(c)$	Simplification 9
11	$S(c) \lor \neg P(c)$	Commutative Law 10
12	$(S(c) \lor \neg P(c)) \land (P(c) \land R(c))$	Conjunction 5,11
13	$S(c) \land F \land R(c)$	Complement Law 12
14	$S(c) \land R(c)$	Domination Law
15	$R(c) \land S(c)$	Commutative Law 14
16	(c is a particular element) \land (R(c) \land S(c))	Conjunction 3,15
17	$\exists x (R(x) \land S(c))$	Existential Generalization 16

c.

1	$\forall x (P(x) \lor Q(x))$	Hypothesis
2	$\forall x(\neg Q(x) \lor S(x))$	Hypothesis
3	$\forall x (R(x) \rightarrow \neg S(x))$	Hypothesis
4	$\exists x (\neg P(x))$	Hypothesis
5	(c is a particular element) \land (\neg P(c))	Existential Instantiation 4
6	$(\neg P(c)) \land (c \text{ is a particular element})$	Commutative Law 5
7	C is a particular element	Simplification 5
8	$P(C)\lor Q(c)$	Universal Instantiation 1, 7
9	$\neg Q(c) \lor S(c)$	Universal Instantiation 2,7
10	$R(c) \rightarrow \neg S(c)$	Universal Instantiation 3,7
11	$\neg P(c)$	Simplification 6
12	$Q(c)\lor P(c)$	Commutative Law 8
13	$P(c)\lor S(c)$	Resolution 9,12
14	S(c)	Disjunctive Syllogism 11,13
15	$\neg R(c)$	Modus Tollens 10,14
16	(c is a particular element) $\land \neg R(x)$	Conjunction 7,16
17	$\exists x (\neg R(x))$	Existential Generalization 16

a. P(x): some pizza store open in London

H(x): there is a party

s: there is a party at Sally's house

d: there is a party at Dan's house

 $\exists x P(x) \rightarrow H(d)$

 $\neg H(d) \land \neg H(s)$

 $\forall x \neg P(x)$

1	$\exists x P(x) \rightarrow H(d)$	Hypothesis
2	$\neg H(d) \land \neg H(s)$	Hypothesis
3	$\neg H(d)$	Simplification 2
4	$\neg \exists x P(x)$	Modus Tollens 1,3
5	$\forall x \neg P(x)$	De Morgans Law 4

Therefore the statement is valid

b. P: Darryl is happy

Q: it is raining outside

R: pigs have wings

p∨q

 $\neg q \lor r$

R

¬р

To prove validity, we check

 $(p\lor q)\land (\neg q\lor r)\land (r)\rightarrow \neg p$: C

P	Q	R	¬р	$\neg Q$	p∨q	¬q∨r	$(p\lor q)\land (\neg q\lor r)$	$(p\lor q)\land (\neg q\lor r)\land (r)$	C
T	T	T	F	F	T	T	T	T	F
T	T	F	F	F	T	F	F	F	T
T	F	T	F	T	T	T	T	T	F
T	F	F	F	T	T	T	T	F	T
F	T	T	T	F	T	T	T	T	T
F	T	F	T	F	T	F	F	F	T
F	F	T	T	T	F	T	F	F	T
F	F	F	T	T	F	T	F	F	T

From the truth table we can see that the argument is not valid as not all truth values of C are true

5. a. 2.5.8.

i. $\forall x \forall y \ W(x) \land O(y) \rightarrow N(x,y)$

ii. $\exists x \forall y \ O(x) \rightarrow \neg N(x,y)$

iii. $\forall x \exists y \ N(x,y)$

iv. $\exists x \forall y \ N(x,y)$

v. $\forall x(\exists y \ N(x,y))$

vi. $\exists x \ N(x,sam)$

b. 2.4.2

ii. F) $\forall x \exists y P(x,y)$ True, for all x there is at least one y value that is true

iii. G) $\forall x \forall y P(x,y)$, false P(2,1), P(2,2),P(3,3) are all false

iv. I) $\forall x \forall y \neg S(x,y)$, true all values that exist are true

6.

a. Theorem: $\frac{1}{x} + \frac{1}{y} = 1$, x,y are positive integers

Proof:
$$\frac{1}{y} = 1 - \frac{1}{x}$$

$$\frac{1}{y} = \frac{x - 1}{x}$$

x-1 and x are two consecutive positive integers

Let p divide x-1 and x where $p \ge 1$ is a positive integer

Then x - 1 = pt1

X=pt2 and t2>t1, such that t2 and t1 are positive integers

So x-(x-1)=pt2-pt1

1 = p(t2-t1)

And p is positive in positive integers t2-t1>0 is a positive integer

So
$$p=1$$
, $t2-t1=1$

So if px and p(x-1) then p = 1

So x,
$$x-1 = 1$$

Hence 1/y and x-1/x are rational numbers with 1/y ae co-prime and x-1, x are coprime

So that 1/y=x-1/x

$$1 = x-1, y=x$$

$$Y=x=2$$

b. Theorem: For any positive integer a, if a³ is an even number then a is an even number.

Proof: If a is an odd number, then a³ is odd

Then a = 2m+1 for some integer

And
$$a^3 = (2m+1)^3$$

 $= (2m)^3 + 1^3 + 3(2m)^3 + 3*2m*1^2$
 $= 8m^3 + 12m^2 + 6m + 1$
 $= 2(4m^3 + 12m^2 + 3m) + 1$
Let $n = (4m^3 + 12m^2 + 3m)$
 $= 2n+1$

So a^3 is an odd number hence if a is not even then a^3 is not even or if a^3 is even then a is an even number

c. Theorem: $\sqrt[3]{2}$ is not a rational number

Proof: $\sqrt[3]{2}$ =a/b (we assume that a and b have no common factors and are therefore irreducible)

$$2=a^3/b^3$$

$$2b^{3}=a^{3}$$

Let
$$b^3 = n$$

2n=always even

```
=>a³ must be even

=a*a*a is even

= even*even*even => even

⇒ A is even =>a=2k

2b³=(2k)³

2b³=8k³

B³=4k³

⇒ B³ must be even

○ =4k³ must be even

○ B is even
```

If a and b are even then they both have common factors of 2 and therefore the original assumption of the a/b being irreducible is not true, this is a contradiction of the original statement therefore $\sqrt[3]{2}$ is not a rational number

d. Theorem: if (a, b >0) then a/b if there exists an integer k such that b=ka If a>1 then a does not divide a²+a+1 Proof:

$$a = a>1$$

$$b=a/a^2+a+1$$

$$a \rightarrow b$$

$$contrapositive \neg b \rightarrow \neg a$$

$$(a/a^2+a+1) \rightarrow 1 \ge a$$

$$1 \ge a$$

 $Ka = a^2 + a + 1$ where k is an integer

Therefore, the argument is invalid and by contrapositive the original theorem is true