$8. \frac{\pi^2 abc}{4}.$

9. $\frac{3}{2}$.

10. $\frac{8\pi}{5}$.

11. 提示:用反证法及积分中值定理.

(B)

1. (1) πa^3 ; (2) $\frac{\pi}{6}$; (3) $\frac{2}{3}\pi(5\sqrt{5}-4)$.

2. (1) $\frac{3}{35}$; (2) $\frac{abc}{3}$.

3. (1) $\frac{\pi^2 a^3}{4\sqrt{2}}$; (2) $\frac{1}{2}$.

习题 10.5 答案与提示

(A)

1. (1) $\frac{7}{2}$; (2) $\frac{88}{105}$. 2. (1) $\frac{7}{3}$ ln2; (2) $\frac{2\pi}{3}$ ($b^3 - a^3$).

3. $(1)\bar{x} = \frac{3}{5}x_0$, $\bar{y} = \frac{3}{8}y_0$; $(2)\bar{x} = 0$, $\bar{y} = \frac{4b}{3\pi}$; $(3)\bar{x} = \frac{35}{48}$, $\bar{y} = \frac{35}{54}$.

4. (1) $(0,0,\frac{3}{4});$ (2) $\left(0,0,\frac{3(A^4-a^4)}{8(A^3-a^3)}\right);$ (3) $\left(\frac{2}{5}a,\frac{2}{5}a,\frac{7}{30}a^2\right).$

5. (1) $I_y = \frac{1}{4}\pi a^3 b$; (2) $I_x = \frac{1}{3}ab^3$, $I_y = \frac{1}{3}a^3 b$.

6. $I_i = \frac{1}{2} \rho_0 \pi a^2 (\rho_0 \ 为薄片密度)$.

7. $I_x = \frac{2}{3} \rho_0 a^5 (\rho_0)$ 为立方体密度).

8. $\frac{1}{2}a^2M(M=\pi a^2h\rho_0$ 为圆柱体的质量).

(B

1. $F_z = 2k\rho_0\pi c\left(\frac{1}{c} - \frac{1}{\sqrt{R^2 + c^2}}\right)(\rho_0$ 为均匀薄片密度).

2. $F_z = 0$, $F_y = 0$, $F_z = 2\left(1 - \frac{1}{\sqrt{2}}\right)G\pi(G)$ 为引力常数).

3. 设均匀球体的密度为 ρ_0 ,则 $\rho_0 = \frac{3M}{4\pi R^3}$ (这里只考虑 $a \ge 0$ 的情况,对于 a < 0 的情况可同样考

虑). 当 $a \geqslant R$ 时, $Z = -\frac{kMm}{a^2}$;当 $0 \leqslant a \leqslant R$ 时, $Z = -\frac{kMm}{R^3}a$.

总习题 10 答案与提示

1. (1)(A); (2)(C); (3)(B).

r-by1, 1.03

2. (1)
$$\frac{1}{2}$$
 (e-1); (2) $\frac{1-\cos 81}{4}$; (3) $\frac{2}{3}\sqrt{3} - \frac{4}{9}\sqrt{2}$; (4) $1-\sin 1$.

- 3. $\frac{11}{15}$.
- 4. $\frac{a^2}{2}$.
- 5. $\pi \frac{40}{9}$.
- 6. $\frac{1}{6} [\sqrt{2} + \ln(1 + \sqrt{2})].$
- 7. $\frac{ab^2}{30}$.
- 8. $\frac{3\pi}{2}$.
- $9. \frac{1}{3}(b-a)\ln\frac{q}{p}.$
- 10. 略.
- 11. 略.
- 12. $\frac{250\pi}{3}$.

13.
$$\int_0^{\pi} d\theta \int_0^{\sin\theta} r dr \int_0^{\sqrt{3}r} f(\sqrt{r^2 + z^2}) dz, \int_0^{\pi} d\theta \int_{\pi/3}^{\pi/2} \sin\varphi d\varphi \int_0^{\frac{\sin\theta}{\sin\rho}} r^2 f(r) dr.$$

- 14. $\frac{\sqrt{2}}{2}a$.
- 15. $\frac{365}{105}\rho$.

习题 11.1 答案与提示

- 1. (1)1+ln2-ln(1+e); (2) $\frac{\pi}{4}$; (3)8/3.
- 2. (1) $\frac{\pi}{8}$ ln2,提示:利用 $\frac{\ln(1+ax)}{1+x^2}$ dx 对 α 求导; (2) $\frac{1}{2}$ ln $\frac{1+(b+1)^2}{1+(a+1)^2}$.
- 3. (1) $I'(y) = 2ye^{-y^5} e^{-y^2} \int_y^{y^2} x^2 e^{-x^2 y} dx;$ $(2) \left(\frac{1}{y} + \frac{1}{b+y}\right) \sin y(b+y) - \left(\frac{1}{y} + \frac{1}{a+y}\right) \sin y(a+y); \quad (3)3f(x) + 2xf'(x).$
- 4. $(1)\pi \ln \frac{a+b}{2}$; $(2)\pi \cdot \arcsin a$.

习题 11.2 答案与提示

- 1. (1) 致收敛; (2) 致收敛; (3) 致收敛; (4) 非一致收敛.
- 2. 略.