- **5.9** Let $C^k([0,1])$ be the space of functions on [0,1] possessing continuous derivatives up to order k on [0,1], including one-sided derivatives at the endpoints.
 - a. If $f \in C([0,1])$, then $f \in C^k([0,1])$ iff f is k times continuously differentiable on (0,1) and $\lim_{x \searrow 0} f^{(j)}(x)$ and $\lim_{x \searrow 1} f^{(j)}(x)$ exist for $j \le k$. (The mean value theorem is useful.)
 - b. $||f|| = \sum_{0}^{k} ||f^{(j)}||_{u}$ is a norm on $C^{k}([0,1])$ that makes $C^{k}([0,1])$ into a Banach space. (Use induction on k. The essential point is that if $\{f_{n}\}\subseteq C^{1}([0,1]), f_{n}\to f$ uniformly and $f'_{n}\to g$ uniformly, then $f\in C^{1}([0,1])$ and f'=g. The easy way to prove this is to show that $f(x)-f(0)=\int_{0}^{x}g(t)\,\mathrm{d}t.$)

Solution a. " \Longrightarrow "

This direction is clear from definition.

" 🚐 "

Let $1 \le j \le k$. The limits exist for j = 0 by continuity.

To show differentiability at the endpoints, we just need to show that

$$\lim_{\delta \to 0^+} \frac{f^{(j-1)}(\delta) - f^{(j-1)}(0)}{\delta} \quad \text{and} \quad \lim_{\delta \to 1^-} \frac{f^{(j-1)}(1) - f^{(j-1)}(\delta)}{1 - \delta}$$

exist.

By the mean value theorem, given $\delta \in (0,1)$, there exists $\zeta \in (0,\delta)$ so that

$$\frac{f^{(j-1)}(\delta) - f^{(j-1)}(0)}{\delta} = f^{(j)}(\zeta).$$

If we let $\delta \to 0^+$, we get $\zeta \to 0^+$ and by assumption,

$$\lim_{\delta \to 0^+} \frac{f^{(j-1)}(\delta) - f^{(j-1)}(0)}{\delta} = \lim_{\zeta \to 0^+} f^{(j)}(\zeta)$$

exists. Similarly, we get $\eta \in (\delta, 1)$ so that

$$\frac{f^{(j-1)}(1) - f^{(j-1)}(\delta)}{1 - \delta} = f^{(j)}(\eta).$$

Letting $\delta \to 1^-$, we get $\eta \to 1^-$, so by assumption,

$$\lim_{\delta \to 1^{-}} \frac{f^{(j-1)}(1) - f^{(j-1)}(\delta)}{1 - \delta} = \lim_{\zeta \to 1^{-}} f^{(j)}(\eta)$$

exists also.

b. We proceed by induction.

Base step:

We already know that C([0,1]) is a Banach space with the uniform norm.

Inductive step:

Suppose that $C^k([0,1])$ is complete with the given metric. We wish to show that $C^{k+1}([0,1])$ is also complete. We follow the hint:

Assume that $f_n \xrightarrow{n \to \infty} f$ and $f'_n \xrightarrow{n \to \infty} g$ uniformly. Then

$$f_n(x) - f_n(0) = \int_0^x f'_n(t) dt.$$

By uniform convergence, we get

$$f(x) - f(0) = \int_0^x g(t) dt.$$

Notice that since each f'_n was continuous, uniform convergence tells us that g is also continuous, and so $\int_0^x g(t) dt$ is continuous. Thus, it follows that f is differentiable, and that

$$f'(x) = g(x),$$

which also shows that f is C^1 .

Now suppose that $\{f_n\} \subseteq C^{k+1}([0,1])$ is Cauchy, so it is also Cauchy in $C^k([0,1])$, so by the inductive hypothesis, we know that the limit function f exists and is C^k . Also, by definition of the norm, we know that $\{f_n^{(k+1)}\}$ is Cauchy in C([0,1]). By completeness, it converges to some continuous function g, and by the hint, we know that $(f^{(k)})' = g$, so $f^{(k)} \in C^1([0,1])$, so $f \in C^{k+1}([0,1])$, so $C^{k+1}([0,1])$ with the given norm is a Banach space.

- **5.15** Suppose that \mathcal{X} and \mathcal{Y} are normed vector spaces and $T \in L(\mathcal{X}, \mathcal{Y})$. Let $\mathcal{N}(T) = \{x \in \mathcal{X} \mid Tx = 0\}$.
 - a. $\mathcal{N}(T)$ is a closed subspace of \mathcal{X} .
 - b. There is a unique $S \in L(\mathcal{X}/\mathcal{N}(T), \mathcal{Y})$ such that $T = S \circ \pi$ where $\pi \colon \mathcal{X} \to \mathcal{X}/\mathcal{M}$. Moreover, ||S|| = ||T||.

Solution a. Let $\{x_n\} \subseteq \mathcal{N}(T)$ be a convergent sequence in \mathcal{X} , and let its limit be x. By continuity of T,

$$Tx = \lim_{n \to \infty} Tx_n = \lim_{n \to \infty} 0 = 0 \implies x \in \mathcal{N}(T)$$

so $\mathcal{N}(T)$ is closed in \mathcal{X} .

b. Let S be such a function. Then for any $x \in \mathcal{X}$, we have

$$T(x) = S(x + \mathcal{M}),$$

so such an S is unique.

We will show that such an S is well-defined and that $S \in L(\mathcal{X}/\mathcal{N}(T), \mathcal{Y})$.

Well-definedness:

Let $x, x' \in \mathcal{X}$ so that $x - x' \in \mathcal{M}$. Then

$$T(x) = S(x + \mathcal{M}) = S(x - (x - x') + \mathcal{M}) = S(x' + \mathcal{M}) = T(x'),$$

so S is well-defined.

Linearity:

Let $x, y \in \mathcal{X}$. Then

$$S(x + \mathcal{M} + y + \mathcal{M}) = S(x + y + \mathcal{M}) = T(x + y) = T(x) + T(y) = S(x + \mathcal{M}) + S(y + \mathcal{M}).$$

Now let $\lambda \in K$. Then

$$S(\lambda x + \mathcal{M}) = T(\lambda x) = \lambda T(x) = \lambda S(\lambda x + \mathcal{M}),$$

so S is linear.

Boundedness:

By exercise 12, $\|\pi\| = 1$, so $\|T\| \le \|S\| \|\pi\| = \|S\|$.

On the other hand,

$$||S(x+\mathcal{M})|| = ||Tx|| = ||T(x+y)|| \le ||T|| ||x+y||,$$

where $y \in \mathcal{M}$. If we take the infimum over \mathcal{M} , ||x+y|| becomes $||x+\mathcal{M}||$, by definition, so

$$||S(x + \mathcal{M})|| \le ||T|| ||x + \mathcal{M}||,$$

so $||S|| \leq ||T||$, as desired.

Thus, S is a well-defined linear functional which is in $L(\mathcal{X}/\mathcal{N}(T), \mathcal{Y})$.

- **5.20** If \mathcal{M} is a finite-dimensional subspace of a normed vector space \mathcal{X} , there is a closed subspace \mathcal{N} such that $\mathcal{M} \cap \mathcal{N} = \{0\}$ and $\mathcal{M} + \mathcal{N} = \mathcal{X}$.
- **Solution** Let $\{v_1, \ldots, v_n\}$ be an orthonormal basis for \mathcal{M} .

Let T be the natural isomorphism between \mathcal{M} and K^n . It's clear that T and T^{-1} are bounded, since all the coordinates will be bounded by 1, if ||x|| = 1. Now consider the coordinate projections on K^n , $\pi_i \colon K^n \to K$. These functions give us the linear functionals $\pi_i \circ T$ on \mathcal{M} , which is like a "coordinate projection to K."

By Hahn-Banach, for any $x \in \mathcal{X} \setminus \mathcal{M}$, there exists a linear functional $f_i \in \mathcal{X}$ so that $f_i(x) \neq 0$ which extends the "projection" to all of \mathcal{X} .

Now consider the set $\mathcal{N} := \bigcap_{i=1}^n \ker f_i$. This is a closed subspace since kernels are closed subspaces, and because intersections of closed sets are closed.

First, $\mathcal{M} \cap \mathcal{N} = \{0\}$. If not, then there exists $x \in \mathcal{M} \cap \mathcal{N}$ and $1 \leq i \leq n$ so that $(\pi_i \circ T)x \neq 0$. But since $x \in \mathcal{N} \subseteq \ker f_i$, this implies that $f_i(x) = 0$, but this cannot happen since $f_i|_{\mathcal{M}} = \pi_i \circ T$. Hence, their intersection is trivial.

Lastly, let $x \in \mathcal{X}$. Notice that

$$\sum_{i=1}^{n} f_i(x)v_i \in \mathcal{M} \quad \text{and} \quad x - \sum_{i=1}^{n} f_i(x)v_i \in \mathcal{N}.$$

The first one is true, since the v_i give us a basis of \mathcal{M} . As for the second, notice that

$$f_j\left(x - \sum_{i=1}^n f_i(x)v_i\right) = f_j(x) - f_j(x) = 0 \implies x - \sum_{i=1}^n f_i(x)v_i \in \ker f_j.$$

This works for all j, so it's in all the ker f_j , i.e., it's in \mathcal{N} . This shows that $\mathcal{M} + \mathcal{N}$, as needed.

- **5.21** If \mathcal{X} and \mathcal{Y} are normed vector spaces, define $\alpha \colon \mathcal{X}^* \times \mathcal{Y}^* \to (\mathcal{X} \times \mathcal{Y})^*$ by $\alpha(f,g)(x,y) = f(x) + g(y)$. Then α is an isomorphism which is isometric if we use the norm $\|(x,y)\| = \max(\|x\|, \|y\|)$ on $\mathcal{X} \times \mathcal{Y}$, the corresponding operator norm on $(\mathcal{X} \times \mathcal{Y})^*$, and the norm $\|(f,g)\| = \|f\| + \|g\|$ on $\mathcal{X}^* \times \mathcal{Y}^*$.
- Solution We'll first show that α is an isomorphism. It's clear that it's a homomorphism, since the linear functionals form a vector space. So, we just need to show that it's a bijection.

Suppose that $\alpha(f,g)(x,y) = \alpha(f',g')(x,y)$ for all $(x,y) \in \mathcal{X} \times \mathcal{Y}$. Then $(f-f')(x) + (g-g')(y) \equiv 0$. In particular, if we set x=0, then g=g' and similarly, we get that f=f', so α is injective.

For surjectivity, let $h(x,y) \in (\mathcal{X} \times \mathcal{Y})^*$. Notice that by linearity, we can decompose h into $h(x,0) + h(0,y) := h_x(x) + h_y(y)$, so $\alpha(h_x, h_y) = h$, which shows surjectivity.

Lastly, we need to show that α^{-1} is bounded. This is easy to see, as if we had h with ||h|| = 1, then

$$\|\alpha^{-1}(h)\| = \|(h(x,0),h(0,y))\| = \|h(x,0)\| + \|h(0,y)\| \le 2 \implies \|\alpha^{-1}\| \le 2.$$

Hence, α is an isomorphism.

We now need to show that it's an isometry. Let $(f,g) \in \mathcal{X}^* \times \mathcal{Y}^*$.

By the triangle inequality, $\|\alpha(f,g)\| = \sup_{\|x\|=1 \text{ or } \|y\|=1} |f(x)+g(y)| \le \|f\|+\|g\| = \|(f,g)\|.$

Conversely, let $\varepsilon > 0$. Then there exist $x \in \mathcal{X}$ and $y \in \mathcal{Y}$ with ||x|| = ||y|| = 1 so that $|f(x)| \ge ||f|| - \varepsilon/2$ and $|g(y)| \ge ||g|| - \varepsilon/2$. Then, by multiplying by a rotation $e^{i\theta}$ if necessary, we may assume that f(x) and g(x) have the same direction (this is mainly necessary in the complex case), which gives

$$||(f,g)|| - \varepsilon = ||f|| + ||g|| - \varepsilon \le |f(x)| + |g(y)| = |f(x) + g(y)| = |\alpha(f,g)(x,y)| \le ||\alpha(f,g)||.$$

Letting $\varepsilon \to 0$, we get that $\|\alpha(f,g)\| = \|(f,g)\|$, so α is an isometry.

- **5.22** Suppose that \mathcal{X} and \mathcal{Y} are normed vector spaces and $T \in L(\mathcal{X}, \mathcal{Y})$.
 - a. Define $T^{\dagger}: \mathcal{Y}^* \to \mathcal{X}^*$ by $T^{\dagger}f = f \circ T$. Then $T^{\dagger} \in L(\mathcal{Y}^*, \mathcal{X}^*)$ and $||T^{\dagger}|| = ||T||$.
 - b. Applying the construction in (a) twice, one obtains $T^{\dagger\dagger} \in L(\mathcal{X}^{**}, \mathcal{Y}^{**})$. If \mathcal{X} and \mathcal{Y} are identified with their natural images $\hat{\mathcal{X}}$ and $\hat{\mathcal{Y}}$ in \mathcal{X}^{**} and \mathcal{Y}^{**} , then $T^{\dagger\dagger}|_{\mathcal{X}} = T$.
 - c. T^{\dagger} is injective iff the range of T is dense in \mathcal{Y} .
 - d. If the range of T^{\dagger} is dense in \mathcal{X}^* , then T is injective; the converse is true if \mathcal{X} is reflexive.
- **Solution** a. Since \mathcal{X}^* and \mathcal{Y}^* are vector spaces, it follows that T^{\dagger} is linear, so we just need to show that it is bounded. By definition, it is clear that if $||f||_{\mathcal{Y}^*} = 1$, then

$$||T^{\dagger}f||_{\mathcal{X}^*} = ||f \circ T||_{\mathcal{X}^*} \le ||f||_{\mathcal{V}^*} ||T||_{\text{op}} = ||T||_{\text{op}}$$

so
$$||T^{\dagger}||_{\text{op}} \le ||T||_{\text{op}}$$
.

Conversely, by definition, there exists $x_n \in \mathcal{X}$ with $||x_n|| = 1$ for each n so that $||Tx_n|| \xrightarrow{n \to \infty} ||T||$. By an application of Hahn-Banach, for each $n \ge 1$, there exists $f_n \in \mathcal{Y}^*$ so that $||f_n|| = 1$ and $f_n(Tx_n) = ||Tx_n||$. Thus,

$$||T^{\dagger}||_{\text{op}} \ge ||T^{\dagger}f_n|| \ge ||(f_n \circ T)x_n|| = ||Tx_n|| \xrightarrow{n \to \infty} ||T||_{\text{op}},$$

so
$$||T^{\dagger}||_{\text{op}} = ||T||_{\text{op}}$$
.

b. For $x \in \mathcal{X}$, we identify it with $\hat{x} \in \mathcal{X}^{**}$, where $\hat{x}(f) = f(x)$. Then

$$T^{\dagger\dagger}\hat{x} = \hat{x} \circ T^{\dagger} = T^{\dagger}\hat{x} = \hat{x} \circ T = Tx,$$

for any
$$x \in \mathcal{X}$$
, so $T^{\dagger\dagger}|_{\mathcal{X}} = T$.

Let T^{\dagger} be injective, and suppose that $T(\mathcal{X})$ is not dense in \mathcal{Y} . Then there exists $x \in \mathcal{Y}$ with positive distance δ to $T(\mathcal{X})$. By Hahn-Banach, there exists $f \in \mathcal{X}^*$ so that ||f|| = 1, $f(x) = \delta$, and $f|_{T(\mathcal{X})} = 0$.

Thus, $T^{\dagger}f = 0$ and $f \neq 0$, but this cannot happen, since T^{\dagger} is injective. Thus, $T(\mathcal{X})$ must be dense in \mathcal{Y} .

Let $T(\mathcal{X})$ be dense in \mathcal{Y} , and assume that T^{\dagger} is not injective, so that there exists a non-zero $f \in \mathcal{Y}^*$ with $T^{\dagger}f = 0$.

By definition, this means that $f \circ T = 0$, so $T(\mathcal{X}) \subseteq \ker f$. But $T(\mathcal{X})$ is dense in \mathcal{Y} and f is a continuous linear functional, which means that $Y \subseteq \ker f$, but this means that f = 0, a contradiction. Thus, T must be injective.

d. " \Longrightarrow "

Let $T^{\dagger}(\mathcal{Y}^*)$ be dense in \mathcal{X}^* , and suppose that T is not injective, i.e., there exists a non-zero $x \in \ker T$. Hahn-Banach gives us a functional $f \in \mathcal{X}^*$ so that ||f|| = 1 and f(x) = ||x|| > 0.

Since $T^{\dagger}(\mathcal{Y}^*)$ is dense in \mathcal{X} , there exists $g_n \in \mathcal{Y}^*$ so that $T^{\dagger}(g_n) \xrightarrow{n \to \infty} f$. But

$$0 = g_n(0) = g_n(Tx) = T^{\dagger}(g_n)(x) \xrightarrow{n \to \infty} f(x) = ||x|| > 0,$$

which is impossible, so T must be injective.

Assume that \mathcal{X} is reflexive.

Now let T be injective, and assume that the range of T^{\dagger} is not dense in \mathcal{X}^* . So, there exists a non-zero $f \in \mathcal{X}^*$ with positive distance (with respect to the operator norm) from $T^{\dagger}(\mathcal{Y}^*)$. By Hahn-Banach, there exists $\hat{x} \in \mathcal{X}^{**} = \mathcal{X}$ so that $\|\hat{x}\| = 1$ and $\hat{x}|_{T^{\dagger}(\mathcal{Y}^*)} = 0$.

Since \mathcal{X} is reflexive, we may identify \hat{x} with $x \in \mathcal{X}$. Since $y \mapsto \hat{y}$ is an isometry, we have that $||x|| = ||\hat{x}|| > 0$ and by injectivity, $Tx \neq 0$. Again, by Hahn-Banach, there exists $g \in \mathcal{Y}^*$ so that $g(Tx) \neq 0$. But this means that

$$0 = \hat{x}(T^{\dagger}g) = \hat{x}(g \circ T) = g(Tx) \neq 0,$$

a contradiction. So the image of T^{\dagger} must be dense in \mathcal{X} .

- **5.25** If \mathcal{X} is a Banach space and \mathcal{X}^* is separable, then \mathcal{X} is separable. (Let $\{f_n\}_1^{\infty}$ be a countable dense subset of \mathcal{X}^* . For each n choose $x_n \in \mathcal{X}$ with $||x_n|| = 1$ and $|f_n(x_n)| \geq \frac{1}{2}||f_n||$. Then the linear combinations of $\{x_n\}_1^{\infty}$ are dense in \mathcal{X} .
- **Solution** We follow the hint, and let $\{f_n\}_1^{\infty}$ be a countable dense subspace in \mathcal{X}^* . Then for each $n \geq 1$, there exists $x_n \in \mathcal{X}$ so that $|f_n(x_n)| \geq \frac{1}{2} ||f_n||$, by definition of the operator norm. Now consider

$$\left\{ \sum_{j \in N} q_j x_j \mid N \subseteq \mathbb{N} \text{ finite, } q_j = a_j + ib_j, \text{ where } a_j, b_j \in \mathbb{Q} \right\},$$

which is countable, since the collection of finite subsets of $\mathbb N$ is countable and because $\mathbb Q \times \mathbb Q$ is countable.

We claim that this, which we call \mathcal{M} , is dense in \mathcal{X} .

Suppose otherwise, and that there exists $x \in \mathcal{X}$ with positive distance $\delta > 0$ from \mathcal{M} . Then by Hahn-Banach, there exists $f \in \mathcal{X}^*$ so that $f(x) = \delta$ and ||f|| = 1, and $f|_{\mathcal{M}} = 0$.

Since $\{f_n\}$ was dense in \mathcal{X}^* and \mathcal{X} is complete, there exists a sequence of linear combinations f_{n_k} so that $f_{n_k} \xrightarrow{k \to \infty} f$. But by assumption, for every k,

$$|f(x_{n_k}) - f_k(x_{n_k})| = |f_k(x_{n_k})| \ge \frac{\|f_{n_k}\|}{2} \implies \|f - f_{n_k}\| \ge \frac{\|f_{n_k}\|}{2}.$$

Thus, since $||f - f_k|| \xrightarrow{k \to \infty} 0$, we see that $||f_{n_k}|| \xrightarrow{k \to \infty} 0 \implies ||f|| = 0$, a contradiction. Thus, the linear combinations of $\{x_n\}$ must be dense in \mathcal{X} .