Regresja liniowa

Przypadek wielu zmiennych.

Sebastian Zalas

FAME|GRAPE, Uniwersytet Warszawski

Ekonometria 2022/23

Model regresji liniowei

Załóżmy, że zjawisko ekonomiczne można opisać modelem postaci:

$$y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \beta_3 x_{3,i} + \ldots + u_i,$$

gdzie:

- i indeks obserwacji, i = 1, ..., n;
- y_i zmienna zależna, objaśniana;
- $x_{1,i}, x_{2,i}, x_{3,i}, \ldots$ zmienne niezależne, objaśniające;
- β_0 , β_1 , β_2 , β_3 , ... nieznane (prawdziwe) parametry modelu
- u_i składnik losowy.

Oszacowanie MNK modelu liniowego

Korzystając z MNK otrzymujemy oszacowanie:

$$y_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1,i} + \hat{\beta}_2 x_{2,i} + \hat{\beta}_3 x_{3,i} + \ldots + u_i,$$

gdzie:

- i indeks obserwacji, i = 1, ..., n;
- $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\beta}_2$, $\hat{\beta}_3$, ... oszacowania nieznanych parametrów modelu
- *u_i* składnik losowy.
- wartości teoretyczne: $\hat{y_i} = \hat{\beta_0} + \hat{\beta_1} x_{1,i} + \hat{\beta_2} x_{2,i} + \hat{\beta_3} x_{3,i} + \dots$
- reszty: $\hat{u}_i = y_i \hat{y}_i$

MNK - interpretacja

Przyjmijmy, że oszacowaliśmy parametru modelu liniowego:

$$y_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1,i} + \hat{\beta}_2 x_{2,i} + \hat{\beta}_3 x_{3,i} + \ldots + u_i,$$

Interpretacja \hat{eta}_j

Jeśli x_j wzrośnie o jednostkę, to y wzrośnie o $\hat{\beta}_j$ jednostek, przy innych czynnikach niezmienionych (ceteris paribus)

Uwaga: j - indeks zmiennej, nie obserwacji!

Pytania? Wątpliwości? Dziękuję!

s.zalas@uw.edu.pl