§2. Геометрический и механический смысл производной

1°. Пусть функция y = f(x) определена и непрерывна в некоторой окрестности точки x_0 , а Γ – график этой функции. Прямая L, проходящая через точки

 $M_0(x_0,f(x_0)), M_1(x_0+\Delta x,f(x_0+\Delta x))\in \Gamma$, называется *секущей* по отношению к

Г (рис. 2.1). Уравнение:

$$y - y_0 = k(x - x_0), (2.1)$$

где $y_0 = f(x_0)$, задаёт все прямые, проходящие через точку M_0 с данным угловым коэффициентом k, кроме прямой $x = x_0$ (см. §3 глава 1 раздел 3). Подставив в (2.1) координаты точки M_1 , получим:

$$f(x_0 + \Delta x) - f(x_0) = k_1(x_0 + \Delta x - x_0)$$
 отсюда $\Delta y = k_1 \Delta x$, где $\Delta y = f(x_0 + \Delta x) - f(x_0)$, а $k_1 = \text{tg}\phi$ - угловой коэффициент секущей L (рис. 2.1). Имеем $k_1 = \Delta y/\Delta x$. Если $\Delta x \rightarrow 0$, то

Рис. 2.1. К понятию касательной к графику

 $\Delta y \to 0$ как приращение непрерывной функции, при этом точка $M_1 \in \Gamma$ приближается к точке $M_0 \in \Gamma$. Если данная функция имеет в точке $x = x_0$ производную $y'(x_0)$, то секущая L при $\Delta x \to 0$ имеет предельное положение,

характеризуемое угловым коэффициентом $k_0 = \operatorname{tg}\alpha = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = y'(x_0)$, которое называется *касательной T* к графику Γ в точке $M_0(x_0, y_0)$ (рис. 2.1). Уравнение касательной T получим из (2.1), взяв нужный угловой коэффициент:

$$y - y_0 = y'(x_0)(x - x_0). (2.2)$$

Итак, геометрически производная функции y=f(x) в точке x_0 интерпретируется как угловой коэффициент касательной, проведённой к графику этой функции в точке $M_0(x_0,y_0)$, где $y_0=f(x_0)$.

Пример 2.1. Написать уравнение касательной T к графику функции $f(x) = x^3 - x$ в точке (1,0).

▶ f'(1) = 2 (пример 1.1). Уравнение касательной T получим из соотношения (2.2): y - 0 = 2(x - 1) ($x_0 = 1$, $y_0 = 0$, $y'(x_0) = 2$ (пример 1.1)), T: y = 2x - 2. ◀

Если односторонние производные функции y=f(x) в точке x_0 не равны между собой, т. е. $y'_-(x_0) \neq y'_+(x_0)$, то её график Γ не имеет касательной в точке $M_0(x_0,y_0)$, где $y_0=f(x_0)$. Однако, в этом случае в точке $M_0(x_0,y_0)$ есть так называемые односторонние касательные T_1 и T_2 (левая и правая),

являющиеся предельным положением секущей L при $\Delta x \rightarrow -0$ или $\Delta x \rightarrow +0$, угловыми коэффициентами которых служат $y'_{-}(x_0)$, $y'_{+}(x_0)$. Касательные T_1

и T_2 определяются уравнениями:

Рис. 2.2. График функции

$$T_1: y-y_0=y'_-(x_0)(x-x_0),$$

(2.3)
$$I_1: y - y_0 = y_-(x_0)(x - x_0),$$

$$T_2: y-y_0=y'_+(x_0)(x-x_0).$$

Точка $M_0(x_0, y_0)$ при этом называется угловой точкой графика Г. Так, функция

$$f(x) = x |x+1| = \begin{cases} -(x^2 + x), & x < -1, \\ (x^2 + x), & x \ge -1, \end{cases}$$

f(x) = x |x+1|в точке x = -1 имеет производные: $f'_{+}(-1) = -1$ (пример 1.2), её график имеет в точке (-1, 0) односторонние касательные T_1 : y = x + 1 и T_2 : y = -x - 1 (рис. 2.2), их уравнения можно получить из (2.3) и (2.4). Точка (-1,0) – угловая точка графика.

График Γ функции y = f(x) имеет в точке $M_0(x_0, y_0)$, где $y_0 = f(x_0)$, вертикальную касательную, определяемую уравнением $x = x_0$, $f'(x_0) = \pm \infty$. Tak,

Рис. 2.3. График функции $f(x) = \sqrt[3]{x-1}$

Рис. 2.4. График функции $f(x) = \sqrt[3]{(x-1)^2}$

график функции $f(x) = \sqrt[3]{x-1}$ имеет в точке (1,0) вертикальную касательную T: x=1 (рис. 2.3), поскольку $f'(1)=+\infty$ (пример 1.3). Если $f'_-(x_0)$ и $f'_+(x_0)$ являются бесконечными производными разных знаков, график имеет в точке $M_0(x_0, y_0)$ так называемое остриё, через которое проходит вертикальная касательная. Например, график функции $f(x) = \sqrt[3]{(x-1)^2}$ имеет в точке (1,0) остриё, через него проходит вертикальная касательная x=1 (рис. 2.4), ибо $f'_{-}(1) = -\infty$, a $f'_{+}(1) = +\infty$ (пример 1.4).

2°. Пусть s = s(t) — путь, пройденный материальный точкой за время t при движении по прямой, тогда $s(t + \Delta t) - s(t) = \Delta s$ — путь, пройденный за время Δt , а отношение $\Delta s/\Delta t$ — средняя скорость движения на этом промежутке

времени. Если существует конечный $\lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \dot{s}(t)$, то он является мгновенной скоростью v точки в момент времени t, т.е. $\dot{s}(t) = v(t)$.

Итак, *механически* производная интерпретируется как *меновенная скорость движения*, если данная функция определяет путь, проходимый материальной точкой в прямолинейном движении.