

# **CLASSROOM CONTACT PROGRAMME**

(Academic Session: 2024 - 2025)

# **LEADER & ACHIEVER COURSE**

PHASE: MLA, MAZA, MAZB, MAZC, MAZD, MAZL, MAZN, MAZO, MAAX, MAAY, MAPA, MAPB, LAKSHYA

**TARGET: PRE MEDICAL 2025** 

Test Type: MAJOR Test Pattern: NEET (UG)

TEST DATE: 06-03-2025

| ANSWER KEY |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Q.         | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  | 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  |
| A.         | 1   | 1   | 3   | 3   | 1   | 2   | 1   | 2   | 4   | 4   | 3   | 3   | 4   | 2   | 2   | 1   | 3   | 3   | 1   | 2   | 2   | 3   | 4   | 2   | 2   | 1   | 1   | 1   | 1   | 2   |
| Q.         | 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  | 40  | 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 50  | 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 60  |
| A.         | 1   | 3   | 1   | 3   | 2   | 1   | 3   | 2   | 3   | 3   | 4   | 3   | 2   | 2   | 1   | 3   | 4   | 2   | 4   | 1   | 3   | 2   | 3   | 2   | 3   | 4   | 1   | 1   | 2   | 1   |
| Q.         | 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 70  | 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  | 81  | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  | 90  |
| A.         | 4   | 2   | 3   | 1   | 4   | 3   | 4   | 3   | 4   | 2   | 1   | 2   | 4   | 3   | 2   | 2   | 3   | 1   | 3   | 2   | 1   | 3   | 4   | 3   | 4   | 4   | 2   | 2   | 3   | 2   |
| Q.         | 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 |
| A.         | 3   | 3   | 1   | 4   | 3   | 2   | 3   | 4   | 2   | 3   | 1   | 1   | 2   | 2   | 3   | 1   | 4   | 4   | 4   | 2   | 2   | 3   | 4   | 4   | 3   | 1   | 4   | 1   | 2   | 2   |
| Q.         | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 |
| A.         | 3   | 1   | 2   | 3   | 1   | 3   | 4   | 3   | 2   | 2   | 1   | 2   | 3   | 3   | 2   | 3   | 2   | 4   | 3   | 3   | 3   | 4   | 3   | 2   | 1   | 3   | 4   | 1   | 4   | 2   |
| Q.         | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 |
| Α.         | 2   | 3   | 1   | 3   | 4   | 3   | 2   | 1   | 1   | 2   | 3   | 1   | 3   | 3   | 2   | 2   | 3   | 3   | 1   | 4   | 3   | 3   | 3   | 3   | 2   | 1   | 1   | 3   | 1   | 3   |

# HINT - SHEET

- 1. Ans (1) NCERT-XI, Pg # 150
- 2. Ans (1) NCERT, Pg. # 140, 141
- 3. Ans (3) NCERT XI, Page No. 134, 135
- 4. Ans (3)
  NCERT XI Page No. 136, 140, 147, 150
- 5. Ans (1) NCERT-XI, Pg. No. - 145
- 6. Ans (2) XI NCERT Pg. # 143
- 7. Ans (1) NCERT, Pg. # 135
- 8. Ans (2) NCERT, Pg. # 146

- 9. Ans (4) NCERT, Pg. # 147
- 10. Ans (4) NCERT, Pg # 142
- 11. Ans (3) NCERT, Pg # 142
- 12. Ans (3) NCERT, Pg. # 143
- 13. Ans (4) NCERT Pg. # 142, 143
- **14. Ans (2)** NCERT, Pg. # 140
- 15. Ans (2) NCERT Pg. # 139
- **16. Ans (1)** NCERT, Pg. # 150

### **ALLEN®**

- **17. Ans (3)** NCERT, Pg. # 145, 146
- **18. Ans ( 3 )** NCERT, Pg # 137, 146
- **19. Ans ( 1 )** NCERT Pg. # 157, 160
- **20. Ans (2)** NCERT, Pg. # 159, 160
- **21. Ans ( 2 )** NCERT Pg. # 155, 158
- 22. Ans (3) NCERT XI Page No. 157, 162, 163
- 23. Ans (4) NCERT XI Pg # 157
- **24. Ans (2)** NCERT, Pg. # 154, 157
- **25. Ans (2)** NCERT XI, Pg. # 157
- **26. Ans (1)** NCERT-XI, Pg. # 158
- **27. Ans (1)** NCERT XI Page No. 161
- 28. Ans (1) NCERT Pg. # 162
- **29. Ans (1)** NCERT-XII, Pg. # 156
- **31. Ans (1)** NCERT XI Pg # 159
- 32. Ans (3) NCERT Pg. # 164
- **33. Ans (1)** NCERT Pg. # 162
- **34. Ans (3)** NCERT Pg. # 158
- 35. Ans (2) NCERT Pg. # 161

- **36. Ans (1)** XI NCERT Pg # 175, 176, 177, 178
- **37. Ans (3)** NCERT-XI, Pg # 177
- **38. Ans ( 2 )** NCERT XI Pg. # 166, 171
- **39. Ans (3)** NCERT-XI, Pg # 177
- **40. Ans ( 3 )** NCERT-XI, Pg. # 174, 175
- **41. Ans (4)** NCERT, Pg. # 175
- **42. Ans (3)** NCERT Pg. # 167
- **43. Ans ( 2 )** NCERT Pg. # 168, 169
- **44. Ans ( 2 )** NCERT Pg. # 170
- **45. Ans (1)** NCERT Pg. # 172
- **46. Ans ( 3 )** NCERT XI Pg. # 234
- **47. Ans (4)** NCERT 316
- **48. Ans ( 2 )** NCERT Page No. 319
- **49. Ans (4)** NCERT XI Pg. No. 232
- **50. Ans (1)** NCERT XI Pg. No. # 320, 321
- **51. Ans (3)** NCERT-XI, Pg. # 321, Para-3
- **52. Ans ( 2 )** NCERT-XI, Pg. # 107
- 53. Ans (3) NCERT XI Pg#321

54. Ans (2)

NCERT XI Pg. # 247

55. Ans (3)

NCERT -XI, Pg. # 245

56. Ans (4)

NCERT-XI, Pg. # 242

57. Ans (1)

NCERT Pg. No. # 240

58. Ans (1)

NCERT XI, Pg. No. 339, Para - 22.4

59. Ans (2)

NCERT XI Page No. # 336

60. Ans (1)

NCERT-XI, Pg. # 242

61. Ans (4)

NCERT Pg. # 333

62. Ans (2)

NCERT Pg # 332

63. Ans (3)

NCERT, Pg # 334,336,337

64. Ans (1)

MSH help in dispersion of melanin while ACTH stimulate adrenal cortex for the secretion of mineralo-cocorticoides and glucocorticoides.

65. Ans (4)

NCERT Page#336

66. Ans (3)

NCERT Page#338.

67. Ans (4)

NCERT Page#335.

68. Ans (3)

NCERT-XI Pg#227

69. Ans (4)

NCERT (XI) Pg. # 311, 312

70. Ans (2)

NCERT-XI, Pg No. 306

71. Ans (1)

NCERT XI (E)Pg.# 219

72. Ans (2)

NCERT Page No 227

73. Ans (4)

NCERT (XIth) Pg. # 227

74. Ans (3)

NCERT XI Pg # 224

75. Ans (2)

NCERT XI - Page No. 221

76. Ans (2)

NCERT XI Page No. 220

77. Ans (3)

NCERT Pg. # 236

Broca's area — motor speech area

Wernicke's area – Language comprehension area Somaesthetic area – Somatic sensation like touch, pain, pressure, temperature

78. Ans (1)

NCERT XI Pg. No. # 233

79. Ans (3)

NCERT-XI, Pg. # 236

80. Ans (2)

NCERT XI Pg. No. 232

81. Ans (1)

NCERT XI Page No. # 247-248

82. Ans (3)

NCERT Pg # 244, 245, 246

83. Ans (4)

NCERT Pg. No. # 242-243

84. Ans (3)

NCERT Page # 244

85. Ans (4)

NCERT XI Page # 334 (II Para)

86. Ans (4)

NCERT Page-335/337/342(E)

87. Ans (2)

NCERT XI Pg # 311

88. Ans (2)

NCERT (XI) Pg. # 222

89. Ans (3)

Module, Pg. # 163

90. Ans (2)

NCERT (XI) Pg. # 221

91. Ans (3)

According to FLOT:-

$$Q = W + \Delta U$$

In Cyclic process :-  $\Delta U = 0$ 

- $\therefore$  Q = W = -2PV
- ∴ Heat Rejected = 2 PV
- 92. Ans (3)

$$(C_{V})_{mix} = \frac{n_{1}(C_{V})_{1} + n_{2}(C_{V})_{2}}{n_{1} + n_{2}}$$

$$= \frac{2\left(\frac{5R}{2}\right) + 8\left(\frac{3R}{2}\right)}{2 + 8}$$

$$= \frac{17R}{10} = 1.7 R$$

93. Ans (1)

By second law of thermodynamics (SLOT)

94. Ans (4)

$$\frac{R}{C_P + C_V} = \frac{1}{6} \Rightarrow C_P + C_V = 6R$$

$$C_{\rm P} - C_{\rm V} = R$$

$$\therefore C_P = \frac{7}{2}R, C_V = \frac{5}{2}R$$

$$\gamma = \frac{C_P}{C_V} = 1 + \frac{2}{R}$$

$$\Rightarrow$$
 f = 5

95. Ans (3)

$$\frac{\Delta L}{L} = \alpha \Delta T$$
$$= 12 \times 10^{-6} \times 50$$

$$= 6 \times 10^{-4}$$

Strain will be negative, as rod is in compressed

state.

96. Ans (2)

$$\therefore PV = nRT$$

$$P = \left(\frac{nR}{V}\right)T \Rightarrow \left(\frac{mR}{MV}\right)T$$

- $\therefore slope = \frac{mR}{MV}$
- : m is doubled and volume is halved.
- ∴ slope becomes 4 times.
- 97. Ans (3)

$$P = \frac{\rho RT}{M_w}$$

Slope = 
$$\frac{\rho R}{M_w}$$

98. Ans (4)

> As per Kirchoff's law a body can emit only those radiations at high temperature which it has absorbed at low temperature.

99. Ans (2)

> A cooking pot should have low specific heat so that it requires less heat in heating upto a particular temperature & consume less fuel or gas.

Its thermal conductivity should be high so that it cooks food in less time.

100. Ans (3)

Q<sub>R</sub> = Heat Required to melt all ice

$$= ms_{ice} \Delta T + mL_f$$

$$=200 \times 0.5 \times 5 + 200 \times 80$$

= 16500 calorie

 $Q_S$  = Heat supplied by hot water =  $ms_w \Delta T = 500 \times 1 \times 25$ 

Since,  $Q_S < Q_R$  all ice will not melt. Temperature of mixture

101. Ans (1)

$$\lambda m_1 T_1 = \lambda m_2 T_2$$

$$4 \times 900 = \lambda m_2 \times 1200$$

$$\lambda m_2 = \frac{4 \times 900}{1200} = 3 \mu m$$

102. Ans (1)

Black colour absorbs maximum at the time of heating so emits maximum at the time of cooling.

103. Ans (2)

A/C to Prevost - theory.

### 104. Ans (2)

$$\frac{80-64}{5} = K(72-T_0)$$

$$16 = 5K(72 - T_0) \dots (1)$$

$$\frac{64-52}{50}$$
 = K (58 – T<sub>0</sub>)

$$12 = 5K(58 - T_0)...(2)$$

Eq. 
$$(1) \div (2)$$

$$\frac{4}{3} = \frac{72 - T_0}{58 - T_0} \Rightarrow T_0 = 16^{\circ} \text{C}$$

### 105. Ans (3)



$$\cdot \cdot \cdot R_{aa} = 3R$$

$$i = \frac{\Delta T}{R_{eq.}} = \frac{180}{3R} = \frac{60}{R}$$

For AB :- 
$$i = \frac{200 - T_B}{P}$$

For AB :- i = 
$$\frac{200 - T_B}{R}$$
  
 $\frac{60}{R} = \frac{200 - T_B}{R}$   
 $T_B = 140^{\circ}C$ 

### 106. Ans (1)

$$T = 2\pi \sqrt{\frac{m}{k}}$$

$$T' = 2\pi \sqrt{\frac{m}{nk}} = \frac{T}{\sqrt{n}}$$

### 107. Ans (4)

resultant amplitude =  $\sqrt{(4)^2 + (4)^2}$ 

### 108. Ans (4)

$$T = 2\pi \sqrt{\frac{\ell}{g}} = 2\pi \sqrt{\frac{\ell r^2}{GM}} = 2\pi r \sqrt{\frac{\ell}{GM}}$$
$$\frac{T_2}{T_1} = \frac{r_2}{r_1} = \frac{(R+R)}{R} = \frac{2}{1}$$

### 109. Ans (4)

$$T.E = \frac{1}{2}ka^2$$

$$T.E \propto a^2$$

$$\omega = \frac{2\pi}{T} = \frac{2\pi}{8} = \frac{\pi}{4}$$

$$\Delta t = 4 - 2 = 2$$

$$\Delta \phi = \omega \, \Delta t = \frac{\pi}{4} \times 2 = \frac{\pi}{2}$$

#### 111. Ans (2)

$$a = -\omega^2 x$$

when x = 0 then a = 0

#### 112. Ans (3)

$$V_{\text{max}} = a\omega$$

$$\therefore 100 = 10\omega, \omega = 10$$

$$v = \omega \sqrt{a^2 - x^2}$$

$$\therefore 50 = 10\sqrt{(10)^2 - x^2}$$

$$\therefore 25 = 100 - x^2$$

$$\therefore x^2 = 75$$

$$x = 5\sqrt{3}$$
cm

### 113. Ans (4)

Periodic motion repeats itself after a certain fixed time interval.

### 114. Ans (4)

S.H.M is a periodic motion,

velocity is maximum at mean position in SHM, acceleration is directly proportional to the displacement in S.H.M,

## 115. Ans (3)

$$a_{max} = V_{max}$$

$$a\omega^2=a\omega$$

$$\omega = 1, \frac{2\pi}{T} = 1$$

$$T = 6.28 \text{ sec}$$

### 116. Ans (1)

$$v = n\lambda = 2 \times 5 = 10 \text{ cm/s}$$

### 117. Ans (4)

$$x = A \sin \omega t$$
  $v = A \omega \cos \omega t = v_0 \cos \omega t$ 

$$a = -v_0 \omega \sin \omega t = -\omega^2 A \sin \omega t = -\omega^2 x$$

$$a = -v_0 \omega \sqrt{1 - \cos^2 \omega t}$$

$$=-v_0\omega\sqrt{1-\frac{v^2}{v_0^2}}=-\omega\sqrt{v_0^2-v^2}$$

a-x graph is straight line passing through origin.

a-v graph is neither straight line nor a parabola.

v-t graph is of either sine or cosine function

### 118. Ans (1)

The velocity of particle executing S.H.M at its extreme position is zero, hence its momentum is also zero.

### 119. Ans (2)

For fundamental mode  $\frac{\lambda}{2} = 100 \text{ cm}$ ,  $\lambda = 200 \text{ cm}$  $V = n\lambda = 330 \times \frac{200}{100} = 660 \text{ m/s}$ 

# 120. Ans (2)

Path difference =  $\pi r - 2r = (2n - 1) \frac{\lambda}{2}$  {for minima}

$$(3.14 - 2)r = \frac{\lambda}{2}$$
 (For smallest radius n = 1)  

$$r = \frac{\lambda}{2 \times 1.14} = \frac{0.342}{2 \times 1.14} = 0.15 \text{ m}$$

### 121. Ans (3)

$$3 \times \frac{V}{4\ell_C} = 2 \times \frac{V}{2\ell_0}$$
$$\frac{\ell_C}{\ell_0} = \frac{3}{4}$$

### 122. Ans (1)

$$A_x = 4 \sin\left(\frac{\pi x}{15}\right)$$

At x = 5 cm, 
$$A_x = 4 \sin\left(\frac{\pi}{15} \times 5\right) = 4 \sin\frac{\pi}{3}$$
  
 $A_x = 4 \times \frac{\sqrt{3}}{2} = 2\sqrt{3} \text{ cm}$ 

# 123. Ans (2)

 $f_0 = 50 \text{ Hz}, f_1 = 3f_0, f_2 = 5f_0 \Rightarrow COP$ only odd harmonics

# 124. Ans (3)

Beat period  $T = \frac{1}{n_1 \sim n_2} = \frac{1}{384 - 380} = \frac{1}{4} \text{sec.}$ Hence minimum time interval between maxima and minima  $t = \frac{T}{2} = \frac{1}{8} \text{sec.}$ 

### 125. Ans (1)

$$L_2 - L_1 = \Delta L = 10 \log \frac{P_2}{P_1} = 10 \log \frac{600}{30}$$
  
 $\Delta L = 10 \log 20 \approx 13 \text{ dB}$ 

### 126. Ans (3)

$$V_S = \sqrt{\frac{E}{\rho}}$$

E: Coefficient of elasticity

ρ : Density of medium

### 128. Ans (3)

$$\omega = 60 \implies 2\pi n = 60 \implies n = \frac{30}{\pi} \text{ Hz}$$

$$V = \frac{\omega}{K} = \frac{60}{2} = 30 \text{ m/s}$$

$$K = \frac{2\pi}{\lambda} = 2 \implies \lambda = \pi \text{ metre}$$

## 129. Ans (2)

$$A^{2} = a_{1}^{2} + a_{2}^{2} + 2a_{1}a_{2}\cos\theta$$

$$a^{2} = a^{2} + a^{2} + 2a^{2}\cos\theta$$

$$\cos\theta = -\frac{1}{2}$$

$$\theta = \frac{2\pi}{3}$$

### 130. Ans (2)

### 131. Ans (1)

NCERT Pg. # 285  $y = 0.02 \sin(x + 30 t)$   $\omega = 30, K = 1$   $V = \frac{\omega}{K} = \frac{30}{1} = 30 \text{m/s}$   $\therefore V = \sqrt{\frac{T}{m}}$  $\therefore T = \text{mV}^2 = (30)^2 \times 10^{-4} = 9 \times 10^{-2}$ 

# 132. Ans (2)

T = 0.09 N

$$n_0 = \frac{V}{4\ell} = \frac{330}{4 \times 0.15} = 550 Hz$$

#### 133. Ans (3)

$$\ell_2 = 3 \, \ell_1 = 3 \times 16 = 48 \text{ cm}$$

# 134. Ans (3)

 $A = A_0 e^{-\gamma t}$ 

## 135. Ans (2)

 $V_{\rm rms} \propto \sqrt{T}$  & it is independent of pressure.

# 136. Ans (3)

NCERT 12<sup>th</sup> Page No. # 317

## 143. Ans (3)

NCERT-XII Pg#348

Fact

#### 148. Ans (1)

NCERT-XII, Pg. # 345

### 153. Ans (1)

NCERT (XI) Pg # 344, 3rd para

#### 157. Ans (2)

$$\begin{array}{cccc} \mathrm{CH_3-CH-Br} & \xrightarrow{\quad \mathrm{Na} \quad } \mathrm{CH_3-CH-CH-CH_3} \\ \mathrm{CH_3} & \mathrm{CH_3} & \mathrm{CH_3} \end{array}$$

#### 160. Ans (2)

$$2CH_4 + O_2 \xrightarrow{MO_2O_3} HCHO$$

### 161. Ans (3)

$$\bigcirc + \operatorname{Br}_2 \xrightarrow{\operatorname{AlCl}_3} \bigcirc$$

(Aromatic electrophilic substitution)

$$HC \equiv CH \xrightarrow{HBr} CH_2 = CH - Br$$
(Electrophilic addition)

$$CH_4 + Br_2 \xrightarrow{hv} CH_3 - Br + HBr$$
(Free radical substitution)

CH<sub>3</sub>-CH=CH<sub>2</sub>+HBr 
$$\xrightarrow{(C_6H_5COO)_2}$$
 CH<sub>2</sub>-CH-CH<sub>2</sub>-Br (Free radical addition)

162. Ans (1)

E-2 1-phenylpropene.

### 164. Ans (3)

C-C-C-C-C 
$$\xrightarrow{O_3}$$
 C-C-C-C-C + C-C-H

C-C O

NCERT (XIth) Part II, Pg. # 397

#### OR

$$\begin{array}{c} \text{CH}_3\text{-CH}_2\text{-C-CH}_2\text{-CH}_3\\ \text{Oll}\\ \text{Oll}\\ \text{OCH-CH}_3\\ \\ \text{(i) O}_3\text{/ (ii) H}_2\text{O/Zn}\\ \\ \text{CH}_3\text{-CH}_2\text{-C-CH}_2\text{-CH}_3\text{+CH}_3\text{-CHO}\\ \\ \text{O} \end{array}$$

### 166. Ans (2)

$$\begin{array}{c|c}
\hline
-CH \neq CH - CH_3 \xrightarrow{KMnO_4} \\
\hline
-CHO + CH_3CHO
\\
\hline
-COOH CH_3-COOH
\\
in absence of Zn)
\end{array}$$

# 169. Ans (1)

Fact Based

#### 171. Ans (3)

Cummene followed by FRSR mechanism.

#### 172. Ans (3)

Aniline do not show FCR.

#### 173. Ans (3)

A = Benzene B = Friedel craft reaction

### 175. Ans (2)

$$\% N = \frac{1.4}{w} \times NV = \frac{1.4}{0.1} \times 4 = 56\%$$

### 178. Ans (3)

Silver acetylides are obtained by passing 1-alkyne in the ammonical solution of silver nitrate (tollen's reagent)