Nonlinear PDEs

Introduction

Where do PDEs stand

Physical reality

a phenomenon that we want to understand or control

Mathematical model: PDE

extracting the physical essence: derive relations between quantities

Discrete model

discretize the mathematical model into a finite-dimensional one

Numerical results

solve the discrete model using computer

Errors

Physical reality

a phenomenon that we want to understand or control

 e_0

Mathematical model: PDE

extracting the physical essence: derive relations between quantities

Discrete model

discretize the mathematical model into a finite-dimensional one

Numerical results

solve the discrete model using computer

Quantum physics • wave function

$$iu_t + \Delta u = 0$$
 ... Schrödinger equation

Error e_0

Heisenberg uncertainty principle

$$\Delta x \ \Delta p \ge \frac{\hbar}{2}$$

- ▶ Born's interpretation of wavefunction:
 - as probability distribution
- Example: throwing stone

Approximation by continuum

$$\frac{\partial u}{\partial t} = \Delta u + f(u)$$
 ... heat equation

Errors

Physical reality

a phenomenon that we want to understand or control

extracting the physical essence: derive relations between quantities

 e_1

Discrete model

discretize the mathematical model into a finite-dimensional one

Numerical results

solve the discrete model using computer

Error e_1

Examples:

- error of finite element method
- error of numerical quadrature
- error of approximation of curved boundary by a polygon
- error of approximation of nonlinearities
- error of approximation of initial or boundary conditions

Errors

Physical reality

a phenomenon that we want to understand or control

extracting the physical essence: derive relations between quantities

Discrete model

discretize the mathematical model into a finite-dimensional one

Numerical results

solve the discrete model using computer

Error e_2

- Rounding error
 - machine epsilon (floating point arithmetic)
- Error of iteration

Sound/light waves, string vibration...

$$\frac{\partial^2 u}{\partial t^2} = \Delta u + f(u)$$
 ... wave equation

Soap film

$$\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right)=0$$
 ... minimal surface equation

Traffic flow

(Youtube)

$$u_t + uu_x = 0$$

 $u_t + uu_x = 0$... Burgers' equation

Porous medium

(Youtube)

$$u_t - \Delta(u^\gamma) = 0$$

 $u_t - \Delta(u^\gamma) = 0$... porous media equation

Tsunami

$$u_t + uu_x + u_{xxx} = 0$$
 ... Korteweg-de Vries equation

Chemical reactions

$$oldsymbol{u}_t - \Delta oldsymbol{u} = oldsymbol{f}(oldsymbol{u}) \quad \dots \; \mathsf{Gray} ext{-Scott system}$$

Fluid flow

(Youtube)

$$\boldsymbol{u}_t + \boldsymbol{u} \cdot \nabla \boldsymbol{u} - \Delta \boldsymbol{u} = -\nabla p$$

 $\operatorname{div} \boldsymbol{u} = 0$

... Navier-Stokes equations

Superconductor

(Youtube)

 $iu_t + pu_{xx} + q|u|^2u = i\gamma u$... Ginzburg-Landau equation

Black hole formation

$$R_{\mu\nu}-rac{1}{2}g_{\mu\nu}\,R+g_{\mu\nu}\Lambda=rac{8\pi G}{c^4}T_{\mu\nu}\,$$
 ... Einstein's field equations

Quantum physics • wave function

 $iu_t + \Delta u = 0$... Schrödinger equation

Contents of this lecture

- In this lecture we will study the cases of
 - nonlinear stationary magnetic field
 - nonlinear problem of heat radiation
- and focus on
 - weak formulation of the model equation
 - the proof of <u>existence of solution</u> to these problems
 - constructing a practical <u>method for numerical computation</u> of these problems
 - examining the <u>convergence</u> and the speed of convergence of the numerical method

Maxwell's equations

```
rot H = J + \frac{\partial D}{\partial t},
                               (Ampère's law)
rot E = -\frac{\partial B}{\partial t},
                              (Faraday's law)
\operatorname{div} D = \rho,
                              (Gauss's law)
\operatorname{div} B = 0,
                              (Gauss's law for electromagnetism)
    D = \varepsilon E,
                               (constitutive relation)
     B = \mu H.
                               (constitutive relation)
                        H
                                          magnetic field intensity [A/m]
                                          electric field intensity [V/m]
                                          electric induction (or flux density) [C/m<sup>2</sup>]
                        B
                                          magnetic induction (or flux density) [Wb/m<sup>2</sup>]
                                 . . .
                                          current density [A/m^2]
                                          charge density [C/m<sup>3</sup>]
                                          permeability
                        \mu
                                          permittivity.
```


Divergence

$$\operatorname{div} a = \sum_{i=1}^{n} \frac{\partial a_i}{\partial x_i} \qquad \left(\operatorname{div} a = \operatorname{div} (a_1, a_2) = \frac{\partial a_1}{\partial x_1} + \frac{\partial a_2}{\partial x_2} \quad \text{for 2-dim case}\right)$$

Flux in *y*-direction:

$$a_2(y+dy)\,dx\,dz - a_2(y)\,dx\,dz = \left(a_2(y) + \frac{\partial a_2}{\partial y}dy\right)dx\,dz - a_2(y)\,dx\,dz = \frac{\partial a_2}{\partial y}\,dx\,dy\,dz$$
 Similarly in x , z directions $\left(\frac{\partial a_1}{\partial x} + \frac{\partial a_2}{\partial y} + \frac{\partial a_3}{\partial z}\right)dx\,dy\,dz$

Divergence = the extent to which the vector field flow behaves like a source or a sink at a given point - how much more is exiting an infinitesimal region of space than entering it.

Gradient

$$\nabla u = \left(\frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2}, \dots, \frac{\partial u}{\partial x_n}\right)^T \qquad \left(\nabla u = \left(\frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2}\right)^T \quad \text{for 2-dim case}\right)$$

- Rate of change of u w.r.t. distance in a particular direction is the projection of the gradient onto that direction.
- Gradient points in the direction of **greatest change** of u and has the magnitude equal to the rate of change of u w.r.t distance in that direction.
- Gradient is everywhere normal to the contour lines.

Rotation

$$\operatorname{rot} v = \operatorname{rot} (v_1, v_2, v_3) = \left(\frac{\partial v_3}{\partial x_2} - \frac{\partial v_2}{\partial x_3}, \frac{\partial v_1}{\partial x_3} - \frac{\partial v_3}{\partial x_1}, \frac{\partial v_2}{\partial x_1} - \frac{\partial v_1}{\partial x_2}\right)^T = \begin{vmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\ \frac{\partial}{\partial x_1} & \frac{\partial}{\partial x_2} & \frac{\partial}{\partial x_3} \\ v_1 & v_2 & v_3 \end{vmatrix}$$

Circulation of a vector around a closed curve is the line integral along this curve. **Rotation** of a field represents the vorticity, or circulation per unit area, of the field.

