6.8 Laplace Transform: General Formulas

Formula	Name, Comments	Sec.
$F(s) = \mathcal{L}\lbrace f(t)\rbrace = \int_0^\infty e^{-st} f(t) dt$ $f(t) = \mathcal{L}^{-1}\lbrace F(s)\rbrace$	Definition of Transform Inverse Transform	6.1
$\mathcal{L}\{af(t) + bg(t)\} = a\mathcal{L}\{f(t)\} + b\mathcal{L}\{g(t)\}$	Linearity	6.1
$\mathcal{L}\lbrace e^{at}f(t)\rbrace = F(s-a)$ $\mathcal{L}^{-1}\lbrace F(s-a)\rbrace = e^{at}f(t)$	s-Shifting (First Shifting Theorem)	6.1
$\mathcal{L}(f') = s\mathcal{L}(f) - f(0)$ $\mathcal{L}(f'') = s^2 \mathcal{L}(f) - sf(0) - f'(0)$ $\mathcal{L}(f^{(n)}) = s^n \mathcal{L}(f) - s^{(n-1)} f(0) - \cdots$ $\cdots - f^{(n-1)}(0)$ $\mathcal{L}\left\{\int_{0}^{t} f(\tau) d\tau\right\} = \frac{1}{s} \mathcal{L}(f)$	Differentiation of Function Integration of Function	6.2
$(f*g)(t) = \int_0^t f(\tau)g(t-\tau) d\tau$ $= \int_0^t f(t-\tau)g(\tau) d\tau$ $\mathcal{L}(f*g) = \mathcal{L}(f)\mathcal{L}(g)$	Convolution	6.5
$\mathcal{L}\lbrace f(t-a)u(t-a)\rbrace = e^{-as}F(s)$ $\mathcal{L}^{-1}\lbrace e^{-as}F(s)\rbrace = f(t-a)u(t-a)$	t-Shifting (Second Shifting Theorem)	6.3
$\mathcal{L}\lbrace tf(t)\rbrace = -F'(s)$ $\mathcal{L}\left\lbrace \frac{f(t)}{t} \right\rbrace = \int_{s}^{\infty} F(\widetilde{s}) d\widetilde{s}$	Differentiation of Transform Integration of Transform	6.6
$\mathcal{L}(f) = \frac{1}{1 - e^{-ps}} \int_0^p e^{-st} f(t) dt$	f Periodic with Period p	6.4 Project 16

6.9 Table of Laplace Transforms

For more extensive tables, see Ref. [A9] in Appendix 1.

	$F(s) = \mathcal{L}\{f(t)\}\$	f(t)	Sec.
1 2	1/s 1/s ²	1 t	
3	$1/s^n \qquad (n=1,2,\cdots)$	$t^{n-1}/(n-1)!$	6.1
4	$1/\sqrt{s}$	$1/\sqrt{\pi t}$	
5	$1/s^{3/2}$	$2\sqrt{t/\pi}$ $t^{a-1}/\Gamma(a)$	
6	$1/s^a \qquad (a > 0)$	1 -/1 (a)	J
7	$\frac{1}{s-a}$	e^{at}	
-8	$\frac{1}{(s-a)^2}$	te ^{at}	
9	$\frac{1}{(s-a)^n} \qquad (n=1,2,\cdots)$	$\frac{1}{(n-1)!}t^{n-1}e^{at}$	6.1
10	$\frac{1}{(s-a)^k} \qquad (k>0)$	$\frac{1}{\Gamma(k)} t^{k-1} e^{at}$	J
11	$\frac{1}{(s-a)(s-b)} \qquad (a \neq b)$	$\frac{1}{a-b}(e^{at}-e^{bt})$	
12	$\frac{s}{(s-a)(s-b)} \qquad (a \neq b)$	$\frac{1}{a-b}(ae^{at}-be^{bt})$	
13	$\frac{1}{s^2 + \omega^2}$	$\frac{1}{\omega}\sin \omega t$	
14	$\frac{s}{s^2 + \omega^2}$	$\cos \omega t$	
15	$\frac{1}{s^2-a^2}$	$\frac{1}{a}\sinh at$	6.1
16	$\frac{s}{s^2-a^2}$	cosh at	0.1
17	$\frac{1}{(s-a)^2+\omega^2}$	$\frac{1}{\omega}e^{at}\sinh \omega t$	
18	$\frac{s-a}{(s-a)^2+\omega^2}$	$e^{at}\cos\omega t$	J
19	$\frac{1}{s(s^2+\omega^2)}$	$\frac{1}{\omega^2}(1-\cos\omega t)$ $\frac{1}{\omega^3}(\omega t-\sin\omega t)$	6.2
20	$\frac{1}{s^2(s^2+\omega^2)}$	$\frac{1}{\omega^3}(\omega t - \sin \omega t)$	J

(continued)

Table of Laplace Transforms (continued)

	$F(s) = \mathcal{L}\{f(t)\}\$	f(t)	Sec.
21	$\frac{1}{(s^2+\omega^2)^2}$	$\frac{1}{2\omega^3}(\sin\omega t - \omega t\cos\omega t)$	
22	$\frac{s}{\left(s^2+\omega^2\right)^2}$	$\frac{t}{2\omega}\sin\omega t$	6.6
23	$\frac{s^2}{\left(s^2+\omega^2\right)^2}$	$\frac{1}{2\omega}(\sin\omega t+\omega t\cos\omega t)$	J
24	$\frac{s}{(s^2+a^2)(s^2+b^2)} (a^2 \neq b^2)$	$\frac{1}{b^2-a^2}(\cos at-\cos bt)$	
25	$\frac{1}{s^4 + 4k^4}$	$\frac{1}{4k^3}(\sin kt\cos kt - \cos kt\sinh kt)$	
26	$\frac{s}{s^4 + 4k^4}$	$\frac{1}{2k^2}\sin kt \sinh kt$	
27	$\frac{1}{s^4 - k^4}$	$\frac{1}{2k^3}(\sinh kt - \sin kt)$	
28	$\frac{s}{s^4 - k^4}$	$\frac{1}{2k^2}(\cosh kt - \cos kt)$	
29	$\sqrt{s-a}-\sqrt{s-b}$	$\frac{1}{2\sqrt{\pi t^3}}(e^{bt}-e^{at})$	
30	$\frac{1}{\sqrt{s+a}\sqrt{s+b}}$	$e^{-(a+b)t/2}I_0\left(\frac{a-b}{2}t\right)$	I 5.5
31	$\frac{1}{\sqrt{s^2 + a^2}}$	$J_0(at)$	J 5.4
32	$\frac{s}{(s-a)^{3/2}}$	$\frac{1}{\sqrt{\pi t}}e^{at}(1+2at)$	
33	$\frac{1}{(s^2-a^2)^k} \qquad (k>0)$	$\frac{\sqrt{\pi}}{\Gamma(k)} \left(\frac{t}{2a}\right)^{k-1/2} I_{k-1/2}(at)$	I 5.5
34	e^{-as}/s e^{-as}	$u(t-a)$ $\delta(t-a)$	6.3 6.4
35			J 5.4
36	$\frac{1}{s}e^{-k/s}$	$J_0(2\sqrt{kt})$	J J.4
37	$\frac{1}{\sqrt{s}}e^{-k/s}$	$\frac{1}{\sqrt{\pi t}}\cos 2\sqrt{kt}$	
38	$\frac{1}{\sqrt{s}}e^{-k/s}$ $\frac{1}{s^{3/2}}e^{k/s}$	$\frac{1}{\sqrt{\pi k}} \sinh 2\sqrt{kt}$	
39	$e^{-k\sqrt{s}}$ $(k>0)$	$\frac{k}{2\sqrt{\pi t^3}}e^{-k^2/4t}$	

(continued)

Table of Laplace Transforms (continued)

	$F(s) = \mathcal{L}\{f(t)\}$	f(t)	Sec.
40	$\frac{1}{s} \ln s$	$-\ln t - \gamma (\gamma \approx 0.5772)$	γ 5.5
41	$ \ln \frac{s-a}{s-b} $	$\frac{1}{t}(e^{bt}-e^{at})$	
42	$ \ln \frac{s^2 + \omega^2}{s^2} $	$\frac{2}{t}(1-\cos\omega t)$	6.6
43	$\ln \frac{s^2 + \omega^2}{s^2}$ $\ln \frac{s^2 - a^2}{s^2}$	$\frac{2}{t}\left(1-\cosh at\right)$	
44	$\frac{\omega}{s}$	$\frac{1}{t}\sin \omega t$	
45	$\frac{1}{s}$ arccot s	Si(t)	App. A3.1

AND PROBLEMS CHAPTER 6 REVIEW QUESTIONS

- 1. State the Laplace transforms of a few simple functions from memory.
- 2. What are the steps of solving an ODE by the Laplace transform?
- 3. In what cases of solving ODEs is the present method preferable to that in Chap. 2?
- 4. What property of the Laplace transform is crucial in solving ODEs?
- 5. Is $\mathcal{L}{f(t) + g(t)} = \mathcal{L}{f(t)} + \mathcal{L}{g(t)}$? $\mathcal{L}{f(t)g(t)} = \mathcal{L}{f(t)}\mathcal{L}{g(t)}$? Explain.
- 6. When and how do you use the unit step function and Dirac's delta?
- 7. If you know $f(t) = \mathcal{L}^{-1}{F(s)}$, how would you find $\mathcal{L}^{-1}\left\{F(s)/s^2\right\}$?
- 8. Explain the use of the two shifting theorems from memory.
- 9. Can a discontinuous function have a Laplace transform? Give reason.
- 10. If two different continuous functions have transforms, the latter are different. Why is this practically important?

11-19 LAPLACE TRANSFORMS

Find the transform, indicating the method used and showing the details.

11.
$$5 \cosh 2t - 3 \sinh t$$

11.
$$5 \cosh 2t - 3 \sinh t$$
 12. $e^{-t}(\cos 4t - 2 \sin 4t)$

13.
$$\sin^2(\frac{1}{2}\pi t)$$

14.
$$16t^2u(t-\frac{1}{4})$$

15.
$$e^{t/2}u(t-3)$$

$$e^{s/-}u(t-3)$$

16.
$$u(t-2\pi)\sin t$$

17.
$$t \cos t + \sin t$$

18.
$$(\sin \omega t) * (\cos \omega t)$$

19.
$$12t * e^{-3t}$$

INVERSE LAPLACE TRANSFORM 20-28

Find the inverse transform, indicating the method used and showing the details:

20.
$$\frac{7.5}{s^2 - 2s - 8}$$

21.
$$\frac{s+1}{s^2}e^{-s}$$

22.
$$\frac{\frac{1}{16}}{s^2 + s + \frac{1}{2}}$$
24.
$$\frac{s^2 - 6.25}{(s^2 + 6.25)^2}$$

23.
$$\frac{\omega \cos \theta + s \sin \theta}{s^2 + \omega^2}$$
25.
$$\frac{6(s+1)}{s^4}$$

24.
$$\frac{s^2-6.25}{(s^2+6.25)^2}$$

25.
$$\frac{6(s+1)}{4}$$

26.
$$\frac{2s-10}{s^3}e^{-5s}$$

27.
$$\frac{3s+4}{s^2+4s+5}$$

28.
$$\frac{3s}{s^2 - 2s + 2}$$

29-37 **ODES AND SYSTEMS**

Solve by the Laplace transform, showing the details and graphing the solution:

29.
$$y'' + 4y' + 5y = 50t$$
, $y(0) = 5$, $y'(0) = -5$

30.
$$y'' + 16y = 4\delta(t - \pi)$$
, $y(0) = -1$, $y'(0) = 0$