VLSI Devices Lecture 12

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
Department of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology (GIST)

Charge-sheet model

- Simpler model with further approximations
 - Consider the previous method to calculate Q_i :

$$Q_{i} = -q \int_{\delta}^{\phi_{S}} \frac{\left(n_{i}^{2}/N_{a}\right) \exp\left(\frac{q}{k_{B}T}(\phi - V)\right)}{E_{x}(\phi, V)} d\phi$$

-A more simple way? Instead, Q_d is approximated as

$$Q_d = -qN_aW_d = -\sqrt{2\epsilon_{si}qN_a\phi_s}$$

Taur, Eq. (3.15)

-Then, Q_i can be approximated as

$$Q_i = Q_s - Q_d = -C_{ox}(V_{gs} - V_{fb} - \phi_s) + \sqrt{2\epsilon_{si}qN_a\phi_s}$$

Taur, Eq. (3.16)

(Of course, it is not exact.)

Pao-Sah versus charge-sheet

- Consider a bias condition of V_{gs} = 1.1 V and V_{ds} = 0.5 V.
 - Calculate ϕ_s within a maximum error of 0.01 mV. Then, apply the charge-sheet approximation.
 - -Only about 1 % error

Change of variable

- Now, Q_i can be a function of ϕ_S .
 - Variable change from V to ϕ_s :

$$I_{d} = \mu_{eff} \frac{W}{L} \int_{0}^{V_{ds}} [-Q_{i}(V)] dV = \mu_{eff} \frac{W}{L} \int_{\phi_{s,s}}^{\phi_{s,d}} [-Q_{i}(\phi_{s})] \frac{dV}{d\phi_{s}} d\phi_{s}$$
Taur, Eq. (3.17)

Surface potentials at the two ends, y = 0 and L. They can be calculated by solving Taur, Eq. (3.14).

$V(\phi_s)$?

Recall that

$$V_{gs} = V_{fb} + \phi_s + \frac{\sqrt{2\epsilon_{si}k_BTN_a}}{C_{ox}} \left[\frac{q\phi_s}{k_BT} + \frac{n_i^2}{N_a^2} \exp\left(\frac{q}{k_BT}(\phi_s - V)\right) \right]^{1/2}$$
Taur, Eq. (3.14)

- We can rearrange

$$\frac{C_{ox}^2 \left(V_{gs} - V_{fb} - \phi_s\right)^2}{2\epsilon_{si}k_B T N_a} = \frac{q\phi_s}{k_B T} + \frac{n_i^2}{N_a^2} \exp\left(\frac{q}{k_B T}(\phi_s - V)\right)$$

-Therefore,

$$V = \phi_{s} - \frac{k_{B}T}{q} \log \left\{ \frac{N_{a}^{2}}{n_{i}^{2}} \left[\frac{C_{ox}^{2} (V_{gs} - V_{fb} - \phi_{s})^{2}}{2\epsilon_{si}k_{B}TN_{a}} - \frac{q\phi_{s}}{k_{B}T} \right] \right\}$$

Taur, Eq. (3.18)

Pao-Sah result

- Consider three gate voltages, V_{qs} = 0.3 V, 0.7 V, and 1.1 V.
 - Draw the electron quasi-Fermi potential (V) as a function of the surface potential (ϕ_s). See Taur, Fig. 3.3.

$$\frac{dV}{d\phi_s}$$
? (1)

Recall that

$$V = \phi_{s} - \frac{k_{B}T}{q} \log \left\{ \frac{N_{a}^{2}}{n_{i}^{2}} \left[\frac{C_{ox}^{2} (V_{gs} - V_{fb} - \phi_{s})^{2}}{2\epsilon_{si}k_{B}TN_{a}} - \frac{q\phi_{s}}{k_{B}T} \right] \right\}$$
Taur, Eq. (3.18)

-Therefore,

$$\frac{dV}{d\phi_{s}} = 1 - \frac{k_{B}T}{q} \frac{\frac{C_{ox}^{2}(V_{gs} - V_{fb} - \phi_{s})}{\epsilon_{si}k_{B}TN_{a}} - \frac{q}{k_{B}T}}{\frac{C_{ox}^{2}(V_{gs} - V_{fb} - \phi_{s})^{2}}{2\epsilon_{si}k_{B}TN_{a}} - \frac{q\phi_{s}}{k_{B}T}}$$

GIST Lecture

/

$$\frac{dV}{d\phi_s}$$
? (2)

Simple rearrange yields

$$\frac{dV}{d\phi_{s}} = 1 + \frac{2k_{B}T}{q} \frac{C_{ox}^{2}(V_{gs} - V_{fb} - \phi_{s}) + \epsilon_{si}qN_{a}}{C_{ox}^{2}(V_{gs} - V_{fb} - \phi_{s})^{2} - 2\epsilon_{si}qN_{a}\phi_{s}}$$

Taur, Eq. (3.19)

– It is still very complicated...

Integrand

• When multiplied with $-Q_i(\phi_s)$,

$$(-Q_i(\phi_s))\frac{dV}{d\phi_s}$$

$$= -Q_i(\phi_s) + \frac{2k_BT}{q} \frac{C_{ox}^2(V_{gs} - V_{fb} - \phi_s) + \epsilon_{si}qN_a}{C_{ox}(V_{gs} - V_{fb} - \phi_s) + \sqrt{2\epsilon_{si}qN_a\phi_s}}$$

- -The second term is still very complicated...
- Is it really important?

Comparison between two terms

- Let's draw two terms.
 - -Assume that N_a = 10¹⁸ cm⁻³, t_{ox} = 1.2 nm, and V_{fb} = -1.08 V.
 - -The second term is small.
 - It is meaningful only when $Q_i \approx 0$.
 - This is corresponding to $C_{ox}(V_{gs} V_{fb} \phi_s)$ = $\sqrt{2\epsilon_{si}qN_a\phi_s}$.

Integrand, again

Within this condition,

$$(-Q_{i}(\phi_{s})) \frac{dV}{d\phi_{s}} \approx -Q_{i}(\phi_{s}) + \frac{k_{B}T}{q} \frac{C_{ox}\sqrt{2\epsilon_{si}qN_{a}\phi_{s}} + \epsilon_{si}qN_{a}}{\sqrt{2\epsilon_{si}qN_{a}\phi_{s}}}$$

$$= -Q_{i}(\phi_{s}) + \frac{k_{B}T}{q} C_{ox} + \frac{k_{B}T}{q} \frac{\sqrt{2\epsilon_{si}qN_{a}}}{2\sqrt{\phi_{s}}}$$

Its integration yields $\frac{k_BT}{q}C_{ox}\phi_s$.

Its integration yields $\frac{k_BT}{q}\sqrt{2\epsilon_{si}qN_a\phi_s}.$

Drain current

- Using the previous approximation,
 - We can obtain the following expression:

$$\begin{split} I_{d} &= \mu_{eff} \frac{W}{L} \bigg\{ C_{ox} \bigg(V_{gs} - V_{fb} + \frac{k_{B}T}{q} \bigg) \phi_{s} - \frac{1}{2} C_{ox} \phi_{s}^{2} - \frac{2}{3} \sqrt{2 \epsilon_{si} q N_{a}} \phi_{s}^{1.5} \\ &+ \frac{k_{B}T}{q} \sqrt{2 \epsilon_{si} q N_{a} \phi_{s}} \bigg\} \bigg|_{\phi_{s,s}}^{\phi_{s,d}} \end{split}$$
 Taur, Eq. (3.21)

–Only with $\phi_{s,s}$ and $\phi_{s,d}$, we can evaluate the drain current.

Thank you!