Foundations of Data Science Assignment-3

Achyuta Krishna V	2018A7PS0165H
Jonathan Samuel J	2018AAPS0460H
Shubh Deep	2018A7PS0162H

Aim of the assignment :	2
The Model	3
Gradient Descent Algorithm	3
Stochastic Gradient Descent Algorithm	5
Regularization Ridge Regularization Lasso Regularization	6 6 7
Errors Without Regularization With Regularization Ridge Regularization Lasso Regularization	8 10 10 12
Surface Plots	14
 Questions to Ponder on What happens to the training and testing error as polynomials of higher degree are used for prediction? Does a single global minimum exist for Polynomial Regression as well? If yes, justify. Which form of regularization curbs overfitting better in your case? Can you thir of a case when Lasso regularization works better than Ridge? How does the regularization parameter affect the regularization process and weights? What would happen if a higher value for λ (> 2) was chosen? Regularization is necessary when you have a large number of features but limited training instances. Do you agree with this statement? If you are provided with D original features and are asked to generate new matured features of degree N, how many such new matured features will you hable to generate? Answer in terms of N and D. What is bias-variance trade off and how does it relate to overfitting and 	19 19 19 20 be 20
regularization.	20

Aim of the assignment:

To implement Polynomial Regression after adequate pre-processing of data using:

- 1. Gradient Descent
- 2. Stochastic Gradient Descent

Backed up by Lasso and Ridge Regularization

The Model

Our method involved developing 10 different models of degrees from 1 to 10. Each model of degree x contains all polynomial combinations of the features with degree less than or equal to x as the independent variables. In our case, the dataset contains 2 features: Age and BMI. A model of degree 2 for our dataset will have 5 independent variables: age, bmi, age*bmi, age², bmi². Assuming age to be x_1 , bmi to be x_2 and the target variable charge to be y, the resulting model would be:

$$y = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1 x_2 + w_4 x_1^2 + w_5 x_2^2$$

To generate the feature matrix for different degrees, we use the PolynomialFeatures() function available in the scikit-learn library in python. This helps us generate a new feature matrix consisting of all polynomial combinations of the features with degree less than or equal to the degree specified by us.

To get our matured polynomial features, we split the dataset into a feature set and a target set and then pass the feature set to the <code>poly_features(X, deg)</code> method defined by us.

After getting our polynomial features and the target set, we use the splitData() method to divide the dataset into a training set and testing set. We then use the standardize() method to standardize our datasets using the min-max normalization method.

Gradient Descent Algorithm

Gradient descent is an iterative optimization algorithm used to find the values of parameters(coefficients of the features) to minimize a cost function. The algorithm arrives at an optimal value of the global minimum by taking steps proportional to the negative of the gradient at the current point.

To implement this algorithm we defined a function, gradient_descent() which has a loop which runs for the number of iterations passed to the function. At each iteration of the loop, we first calculate the prediction by taking the dot product of our feature matrix and our current model. We then calculate the derivative of the cost function by using vectorized equations. Finally, we update our model(θ) by subtracting the product of the derivative and learning rate from the current model. After every 50th iteration, we calculate the training error as the Root Mean Square of all errors based on our current model and print its value.

To use the above function we define a separate function, gradient_descent_model() which obtains an optimal model by calling the gradient_descent() function. After obtaining the model, the testing and training errors are calculated as the root mean square of all errors and their values are printed.

To obtain models of degrees from 1 to 10 we have another loop of 10 iterations. At the ith iteration of the loop, we calculate the matured polynomial feature matrix for a polynomial of degree i+1. We then split the datasets into training and testing sets. We then standardize both our training and testing sets and finally call the gradient descent model() function by passing the arguments at the end of the loop.

Stochastic Gradient Descent Algorithm

Stochastic Gradient Descent is identical to gradient descent except here we select only one random data point in each iteration and use it to compute the gradient to reach the optimal value or the global minimum. This is done in order to decrease the computation power and time needed to train models with huge data sets.

To implement this algorithm we defined a function, stochastic_gradient_descent(). This function first shuffles the feature and target matrix so that the points we choose at each iteration of our algorithm are random. After this we have a loop similar to the gradient descent algorithm where we calculate the prediction value, and the derivative value based on just one random point and use these values to update our model. Similar to the previous method we output the RMSE of our model after every 50th iteration Also, we shuffle the dataset again once a full cycle of all points is completed and we can shuffle-start again.

To use the above function we define a separate function, stochastic_gradient_descent_model() which obtains an optimal model by calling the stochastic_gradient_descent() function. After obtaining the model, the testing and training errors are calculated as the root mean square of all errors and their values are printed.

To obtain models of degrees from 1 to 10 we have another loop of 10 iterations. At the ith iteration of the loop, we calculate the matured polynomial feature matrix for a polynomial of degree i+1. We then split the datasets into training and testing sets. We then standardize both our training and testing sets and finally call the stochastic_gradient_descent_model() function by passing the arguments at the end of the loop.

Regularization

Ridge Regularization

In ridge regularization the cost function is altered by adding a penalty equivalent to square of the magnitude of the coefficients. The cost function after modification is:

$$\sum_{i=1}^{M} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{M} \left(y_i - \sum_{j=0}^{p} w_j \times x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} w_j^2$$

When the new cost function is differentiated, the update step simplifies to

$$\theta_j := \theta_j (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

To implement ridge regularization, we modified the update features step of our original gradient descent functions. The updated functions gradient_descent_ridge() and stochastic_gradient_descent_ridge() have the same loop as their non-regularized counterparts. These functions now take a new argument, the regularization parameter(λ). The update step of our regression algorithm is now changed and becomes

```
for i in range(num_iters):
    pred = X.dot(theta)
    cost_der = (1/m)*np.dot(X.transpose(), (pred-Y))
    theta = theta*(1 - alpha*lam) - alpha*cost_der
```

The update step is changed similarly in stochastic_gradient_descent_ridge() function as well.

Lasso Regularization

In lasso regularization the cost function is altered by adding a penalty equivalent to the absolute value of the coefficients. The cost function after modification is:

$$\sum_{i=1}^{M} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{M} \left(y_i - \sum_{j=0}^{p} w_j \times x_{ij} \right)^2 + \lambda \sum_{j=0}^{p} |w_j|$$

To implement lasso regularization, two new functions were defined, gradient_descent_lasso() and stochastic_gradient_desscent_lasso(). Both these methods have two nested loops. The outer loop runs for the number of iterations passed to the function. The inner loop traverses every feature in our model. At each iteration it checks the value of the weight of that feature. If the feature is negative, the penalty term is subtracted in the update feature and if it's positive, the penalty term in the derivative of the cost function is added. For the 0th weight in our feature, the penalty term is ignored as only the coefficients of our features and not the bias column are regularized.

Similarly,the stochastic_grdient_descent_lasso() method is changed as well where X and Y are defined such that they consider only one random data point at each iteration.

Errors

Without Regularization

The following tables show the minimum training and testing errors (RMSE) achieved by us when using the 2 algorithms without regularization.

Gradient Descent				
Degree	Training Error	Testing Error		
1	12429.457840641535	13009.745375207587		
2	12325.864056635874	12963.346663554885		
3	12307.072736991606	12985.509385093808		
4	12305.745261851276	13009.877859362405		
5	12308.04928449048	13025.900462908057		
6	12309.941944316204	13032.481026879872		
7	12310.557808869966	13032.139190097356		
8	12310.098041588537	13027.682732900297		
9	12309.008291995753	13021.45148437517		
10	12307.631589247554	13014.957506622986		

Stochastic Gradient Descent				
Degree	Training Error	Testing Error		
1	12424.089498909932	13000.588858942969		
2	12321.98603471101	12952.472416613264		
3	12316.837139548254	12983.926103318845		
4	12338.862208514023	13028.725833254322		
5	12374.68763394292	13077.191743158704		
6	12419.521974251391	13128.991109631692		
7	12471.848584276437	13184.079333396992		
8	12531.56794074707	13243.765554455098		
9	12596.567741680266	13308.210392166637		
10	12666.533389739761	13377.09735625821		

With Regularization

The following tables show the minimum training, validation and testing errors achieved by us when using the 2 algorithms with regularization

Ridge Regularization

Gradient Descent				
Degree	Training Error	Validation Error	Testing Error	Best Penalty Value
1	12341.5126546	13325.1834025	12817.6135568	0.01545834401
	17767	42412	25718	0213065
2	12430.8557528	13501.0840172	13119.5332484	0.21285845246
	58219	4584	73397	04823
3	12302.7343272	13362.1080667	12753.0231916	0.00377374645
	66777	31947	1517	63282197
4	12304.8567121	13387.8277122	12775.1558318	0.02155817763
	42442	23389	41754	5465414
5	12303.6227468	13387.2322595	12761.6347331	0.00822361195
	70366	13823	48523	021104
6	12313.5027250	13436.2491079	12821.6054301	0.06136515359
	70064	57934	97413	108852
7	12347.4662212	13522.9083831	12942.7455440	0.18172566349
	98715	9875	85416	72827
8	12298.0029868	13357.5836911	12762.4259709	0.00129274044
	2153	76565	21671	73989101
9	12359.7835201	13550.7062739	12966.2602703	0.20353956142
	4738	61565	50751	60218
10	12317.2735929	13450.5061460	12836.5045869	0.07975314113
	96282	47519	4072	789722

Stochastic Gradient Descent				
Degree	Training Error	Validation Error	Testing Error	Best Penalty Value
1	12467.4362940	13409.5516741	12911.3830679	0.10737358283
	75855	04063	40811	603637
2	12349.7791589	13301.8524433	12707.8437635	0.10944041427
	15333	88418	3357	958573
3	12356.5359671	13320.6796730	12554.2571479	0.02561599160
	81662	88158	35588	219985
4	12322.3972743	13359.2707401	12639.1083767	0.15063860475
	55992	04781	39112	54381
5	12354.6322800	13388.1865585	12571.5354091	0.06509270157
	7274	32261	4129	3216
6	12374.9546091	13372.0020984	12524.3865841	0.01366641377
	97484	64935	69426	6350583
7	12365.5645885	13402.6884863	12555.9691903	0.04788804332
	93215	84352	21834	2065865
8	12363.0310044	13410.2812827	12564.8597643	0.06126218193
	4519	05311	56512	0983095
9	12352.9929464	13440.8045970	12616.9014662	0.12186754505
	45487	4115	10045	308717
10	12383.9177222	13329.9950020	12488.5478895	0.00146806025
	51934	21047	82509	22822994

Lasso Regularization

Gradient Descent				
Degree	Training Error	Validation Error	Testing Error	Best Penalty Value
1	12369.8085075	13332.4738853	12820.2743457	0.04695617846
	48654	1869	27219	033018
2	12314.0963164	13323.0260099	12767.3707738	0.05464566607
	8974	03024	47393	764565
3	12306.8952520	13353.5473069	12766.1181380	0.97101689238
	28226	8739	72992	21021
4	12307.1674648	13375.3063290	12771.9955696	0.85901975809
	72877	42738	25724	90305
5	12308.1868834	13387.3654774	12775.3856326	0.80724388739
	39808	08594	43054	45543
6	12308.8919830	13388.5912889	12775.0033404	0.96119528799
	19053	52397	7284	18535
7	12309.4678910	13385.9386616	12777.4426494	0.97189660061
	24095	99873	04158	56333
8	12309.4521369	13385.3067526	12777.5382455	0.95414334786
	89443	04953	93525	49468
9	12308.8884244	13386.2707497	12774.4874219	0.41902255471
	69442	0387	38606	752015
10	12304.0625249	13377.8252189	12747.4868551	0.13884979808
	30405	24589	51015	376263

Stochastic Gradient Descent				
Degree	Training Error	Validation Error	Testing Error	Best Penalty Value
1	12595.1525863	13573.1621581	13149.8931704	0.00274163595
	6861	26368	98919	32291823
2	13151.2530347	14148.6973625	13796.0249200	0.79158210139
	4986	5332	18464	2465
3	12444.6862198	13496.2471542	13092.3081195	0.02248175400
	70684	89207	90063	8752408
4	12316.1398513	13400.2965995	12840.6163651	0.00526810354
	33703	22511	1133	6186675
5	13148.0100947	14145.2085573	13791.5357384	0.90302264047
	42678	02421	02617	24753
6	12833.6460705	13883.5674381	13584.3000086	0.05216712137
	5728	3412	97439	353685
7	12468.8624895	13554.3256140	13168.4325961	0.02331805409
	29207	4493	45849	8146135
8	12350.7021141	13473.4162976	12973.6049627	0.01032594792
	87761	3026	60075	649022
9	12424.7848317	13517.7132053	13104.5245737	0.01918546310
	40863	80946	11855	6915934
10	12336.4730918	13470.6111819	12932.1147872	0.00711644419
	55096	54042	55416	3793203

Surface Plots

Degree : 1

Degree : 2

Degree : 3

Degree : 4

Degree : 5

Degree : 6

Degree : 7

Degree : 8

Degree : 9

Degree : 10

How overfitting works?

We can see that as we increase the polynomial degree our model tries to fit as many as many data points as possible. In degree 1 we see the model is a plane very close to the bottom points because they are a lot compared to the points in the top. As we increase the degree our model tries to accommodate the top points also. So this is not good because the model tries to decrease the training error but sacrifices the testing error.

Therefore as the degree increases, overfitting increases which gives us bad testing error.

Questions to Ponder on

1. What happens to the training and testing error as polynomials of higher degree are used for prediction?

Ans: As the degree of our polynomial used for prediction increases, the training error decreases but the testing error increases. This happens because as the degree of our polynomial increases, the flexibility of the model increases which allows it to pass through more training points. As a result of this increased flexibility, the model starts describing the noise in the data too well. This model is said to be overfitting the data. As a result, the testing errors increase because the model starts describing the noise in the data and ignores the actual relationship between the feature and the target variables.

2. Does a single global minimum exist for Polynomial Regression as well? If yes, justify.

Ans: Yes, a single global minimum exists for polynomial regression as well. Even though the curve we are trying to fit is a polynomial of greater than or equal to 2 degrees, the error function obtained (ie., the sum of squared errors), is quadratic on the coefficients of the fitted polynomial similar to linear regression. Hence, the error function is convex and thus has only a single global minimum value.

3. Which form of regularization curbs overfitting better in your case? Can you think of a case when Lasso regularization works better than Ridge?

Ans: In our case, Ridge Regularization had slightly better results than Lasso Regularization. Lasso regularization performs better than Ridge regularization when we have a small number of significant features and other features have no effect on the target value. In such a case, Lasso regression can result in selecting only the relevant

such that the coefficients of the insignificant features become zero. In the case of ridge regression, the coefficients can get close to zero but not exactly zero. Thus, lasso regression helps us achieve feature selection

4. How does the regularization parameter affect the regularization process and weights? What would happen if a higher value for λ (> 2) was chosen?

Ans: The regularisation parameter λ , gives a value of the importance given to the regularisation of the weights as compared to the minimisation of the error function. If λ is small, then very little importance is given to regularisation of the weights. Hence it can lead to a case of overfitting. If a higher value for λ is chosen, importance is given to regularisation and we might end up with a model that is not a good fit at the cost of regularising the weights.

5. Regularization is necessary when you have a large number of features but limited training instances. Do you agree with this statement?

Ans: Yes, regularisation is required when we have a large number of features but limited number of training instances. With a limited number of training examples, the predicted model would tend to overfit the data points. Hence, regularization is required to get a generalised model.

6. If you are provided with D original features and are asked to generate new matured features of degree N, how many such new matured features will you be able to generate? Answer in terms of N and D.

Ans: The number of matured features of degree N for a dataset having D original features will be

$$Number\ of\ features = \frac{(N+D)!}{(N!)(D!)}$$

7. What is bias-variance trade off and how does it relate to overfitting and regularization.

Ans: Bias is the difference between the average prediction of our model and the correct value which we are trying to predict. Variance is the amount that the estimate of the target function will change if different training data was used. If a model has a high bias, then there is considerable difference between the predicted value and the actual

value. Hence, the model is said to be underfitting. On the other hand, if the variance is high, then on using a different training data, the target function changes considerably. This is because the predicted model overfits the data. We would want our model to neither be underfitting nor be overfitting, and therefore would want to minimise both the bias and the variance. Usually, the decrease in one leads to the increase in another, and this leads to a trade-off between bias and variance. Regularization tends to reduce the degree of overfitting, ie. the variance. However, too much regularization (by using a high value for the regularization parameter) can lead to an increase in bias.