

§ 2 函数的极限

1. 自变量 $x \to \infty$ 时函数 f(x) 的极限.

分三种情况:

$$(1)$$
 $x \to +\infty$,

$$(2)$$
 $x \rightarrow -\infty$,

$$(3) \quad x \to \infty \ (|x| \to \infty).$$

考察 $f(x) = \frac{1}{x}$ 可无限接近**0**,只要 x 充分大,

对任意
$$\varepsilon > 0$$
, 只要 $x > M \triangleq \frac{1}{\varepsilon}$, 就有 $\left| \frac{1}{x} - 0 \right| < \varepsilon$.

定义1 (函数极限的 $\varepsilon - M$ 定义)

设函数 f(x) 在 $(a, +\infty)$ 上有定义, A 是一个数,

若对任意给定的正数 \mathcal{E} , 存在数 M(>a), 使得当 x>M 时有 $\left|f(x)-A\right|<\mathcal{E},$

则称 f(x) 当 $x \to +\infty$ 时有极限(值) A,

记为 $\lim_{x \to +\infty} f(x) = A$, 或 $f(x) \to A$ $(x \to +\infty)$.

定义1'(函数极限的 $\varepsilon-M$ 定义)

设函数 f(x) 在 $(-\infty, a)$ 上有定义,A 是一个数,

若对任意给定的正数 \mathcal{E} , 存在数 M(< a), 使得当 x < M 时有

$$|f(x)-A|<\varepsilon,$$

则称 f(x) 当 $x \to -\infty$ 时有极限(值) A,

记为 $\lim_{x \to -\infty} f(x) = A$, 或 $f(x) \to A$ $(x \to -\infty)$.

定义1"(函数极限的 $\varepsilon - M$ 定义)

设函数 f(x) 在 $(-\infty, -a) \cup (a, +\infty)$ 上有定义,A 是一个数, 若对任意给定的正数 \mathcal{E} ,存在正数M(>a),使得当 |x|>M 时有

$$|f(x)-A|<\varepsilon,$$

则称 f(x) 当 $x \to \infty$ 时有极限(值) A,

记为 $\lim_{x \to \infty} f(x) = A$, 或 $f(x) \to A$ $(x \to \infty)$.

例1 证明 $\lim_{x\to +\infty} \arctan x = \frac{\pi}{2}$.

证明 对任意 $\varepsilon > 0$, 不妨设 $0 < \varepsilon < \frac{\pi}{2}$,

要使 $\left| \arctan x - \frac{\pi}{2} \right| = \frac{\pi}{2} - \arctan x < \varepsilon,$

只要 $x > \tan\left(\frac{\pi}{2} - \varepsilon\right)$,

 $M = \tan\left(\frac{\pi}{2} - \varepsilon\right),\,$

则当 x > M 时,有 $\left| \arctan x - \frac{\pi}{2} \right| < \varepsilon$

所以 $\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$.

同理可证 $\lim_{x \to -\infty} \arctan x = -\frac{\pi}{2}$.

例2 证明
$$\lim_{x\to\infty}\frac{1}{x^n}=0$$
 (n 为正整数)

证明 对任意 $\varepsilon > 0$, 要使 $\left| \frac{1}{x^n} - 0 \right| < \varepsilon$

只要
$$|x| > \frac{1}{\sqrt[n]{\varepsilon}}$$
, 取 $M = \frac{1}{\sqrt[n]{\varepsilon}}$,

则当 |x| > M 时,有 $\left| \frac{1}{x^n} - 0 \right| < \varepsilon$,

所以
$$\lim_{x\to\infty}\frac{1}{x^n}=0.$$

例3 证明
$$\lim_{x\to\infty}\frac{x}{1+x}=1$$
.

证明 对任意
$$\varepsilon > 0$$
, 要使 $\left| \frac{x}{1+x} - 1 \right| < \varepsilon$

由于
$$\left| \frac{x}{1+x} - 1 \right| = \left| \frac{1}{1+x} \right| \le \frac{1}{|x|-1},$$

只要
$$\frac{1}{|x|-1}$$
< ε , 即 $|x|>1+\frac{1}{\varepsilon}$, 取 $M=1+\frac{1}{\varepsilon}$,

则当
$$|x|>M$$
 时,有 $\left|\frac{x}{1+x}-1\right|<\varepsilon$,

所以
$$\lim_{x\to\infty}\frac{x}{1+x}=1$$
.

三种极限的一个关系

由于 |x| > M 等价于 x > M 或 x < -M,

定理1"设函数 f(x) 在 $(-\infty, -a) \cup (a, +\infty)$ 上有定义,

$$\lim_{x \to \infty} f(x) = A \iff \lim_{x \to +\infty} f(x) = A, \lim_{x \to -\infty} f(x) = A.$$

例 因为 $\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$, $\lim_{x \to -\infty} \arctan x = -\frac{\pi}{2}$.

所以 $\lim_{x\to\infty}$ 不存在.

无穷大量的定义

定义2 (无穷大量的 G-M 定义)

设函数 f(x) 在 $(a, +\infty)$ 上有定义,

若对任意给定的正数 G, 存在正数 M(>a), 使得当 x>M 时有 |f(x)|>G,

则称 f(x) 是当 $x \to +\infty$ 时的无穷大量.

记为 $\lim_{x \to +\infty} f(x) = \infty$, 或 $f(x) \to \infty$ $(x \to +\infty)$.

类似可以定义其它趋势下的无穷大量,正无穷大量,负无穷大量.

无穷大量的例子

例4 按定义证明 $\lim_{x\to +\infty} \ln x = +\infty$.

证明 对任意 G > 0,要使 $\ln x > G$,

只要 $x > e^G$, 取 $M = e^G$,

则当 x > M 时,有 $\ln x > G$,

所以 $\lim_{x\to +\infty} \ln x = +\infty$.

2. 自变量趋于有限值的函数极限

自变量 $x \rightarrow x_0 \ (x \neq x_0)$ 时的函数极限:

考察当
$$x \xrightarrow{x \neq \frac{1}{2}} \frac{1}{2}$$
 时, $f(x) = \frac{4x^2 - 1}{2x - 1} \rightarrow ?$

$$\Rightarrow x \neq \frac{1}{2}, \quad f(x) = 2x + 1 \xrightarrow{x \to \frac{1}{2}} 2?$$

是否只要
$$\left| x - \frac{1}{2} \right|$$
 充分小,就有 $\left| \frac{4x^2 - 1}{2x - 1} - 2 \right| < \varepsilon$,

给定
$$\boldsymbol{\varepsilon} = \frac{1}{10^k}$$
,要使 $\left| \frac{4x^2 - 1}{2x - 1} - 2 \right| = \left| 2x - 1 \right| < \frac{1}{10^k}$,只要 $0 < \left| x - \frac{1}{2} \right| < \frac{1}{2 \cdot 10^3}$,

对任给
$$\varepsilon > 0$$
, 要使 $\left| \frac{4x^2 - 1}{2x - 1} - 2 \right| < \varepsilon$, 只要 $0 < \left| x - \frac{1}{2} \right| < \frac{1}{2} \varepsilon = \delta$,

定义3 (函数极限的 $\varepsilon - \delta$ 定义)

设函数 f(x) 在 $U^0(x_0,h)$ 上有定义,A 是一个数,

若对任意给定的正数 \mathcal{E} , 存在数 $\delta > 0$, 使得当 $0 < |x - x_0| < \delta$ 时有

$$|f(x)-A|<\varepsilon,$$

则称 f(x) 当 $x \to x_0$ 时有极限(值) A,

记为 $\lim_{x \to x_0} f(x) = A$, 或 $f(x) \to A$ $(x \to x_0)$.

可证(略) (1)
$$\lim_{x \to x_0} C = C$$
, (2) $\lim_{x \to x_0} x = x_0$.

$$(2) \quad \lim_{x \to x_0} x = x_0.$$

例5 证明
$$\lim_{x\to x_0} \sqrt{x} = \sqrt{x_0}, (x_0 > 0).$$

证明 对任意
$$\varepsilon > 0$$
, 要使 $\left| \sqrt{x} - \sqrt{x_0} \right| < \varepsilon$,

曲于
$$\left| \sqrt{x} - \sqrt{x_0} \right| = \frac{|x - x_0|}{\sqrt{x} + \sqrt{x_0}} < \frac{|x - x_0|}{\sqrt{x_0}},$$

只要
$$|x-x_0| < \sqrt{x_0}\varepsilon$$
, 取 $\delta = \min\{\sqrt{x_0}\varepsilon, x_0\}$,

则当
$$0<|x-x_0|<\delta$$
时,有 $|\sqrt{x}-\sqrt{x_0}|<\varepsilon$,

所以
$$\lim_{x \to x_0} \sqrt{x} = \sqrt{x_0}$$
.

三角不等式

为求三角函数的极限,证明下面的不等式。

当
$$-\frac{\pi}{2} < x < \frac{\pi}{2}$$
 时,有 $\left| \sin x \right| \le \left| x \right| \le \left| \tan x \right|$.

证 当 x=0 不等式为等式.

当
$$0 < x < \frac{\pi}{2}$$
 时,有 $S_{\Delta OAB} < S_{\overline{\beta} ROAB} < S_{\Delta OAC}$,

$$\lim_{x \to \infty} \frac{1}{2} \sin x < \frac{1}{2} x < \frac{1}{2} \tan x, \quad 0 < \sin x < x < \tan x,$$

由上面知 $0 < \sin(-x) < -x < \tan(-x)$, 即 $0 > \sin x > x > \tan x$,

所以当
$$-\frac{\pi}{2} < x < \frac{\pi}{2}$$
 时,有 $\left| \sin x \right| \le \left| x \right| \le \left| \tan x \right|$.

例6 证明
$$\lim_{x\to x_0} \sin x = \sin x_0$$
.

证明 由于
$$\left| \sin x - \sin x_0 \right| = \left| 2\cos \frac{x + x_0}{2} \sin \frac{x - x_0}{2} \right|$$

$$\leq \left| 2\sin \frac{x - x_0}{2} \right| \leq \left| x - x_0 \right|,$$

对任意 $\varepsilon > 0$, 要使 $|\sin x - \sin x_0| < \varepsilon$, 只要 $|x - x_0| < \varepsilon$,

取
$$\delta = \varepsilon$$
, 则当 $0 < |x - x_0| < \delta$ 时,有 $|\sin x - \sin x_0| < \varepsilon$,

所以 $\lim_{x\to x_0} \sin x = \sin x_0$.

同理可证 $\lim_{x\to x_0}\cos x = \cos x_0$.

TORMAL OF THE LAW

右极限的定义

定义4 (函数右极限的 $\varepsilon - \delta$ 定义)

设函数 f(x) 在 $(x_0, x_0 + h)(h > 0)$ 上有定义, A 是一个数,

若对任意给定的正数 \mathcal{E} , 存在数 $\delta > 0$, 使得当 $0 < x - x_0 < \delta$ 时有

$$|f(x)-A|<\varepsilon,$$

则称 f(x) 当 $x \to x_0^+$ 时有极限(值) A,

或称 A 为 f(x) 在 x_0 处的右极限,

记为
$$\lim_{x \to x_0^+} f(x) = A$$
, 或 $f(x) \to A$ $(x \to x_0^+)$.

也记
$$f(x_0 + 0) = \lim_{x \to x_0^+} f(x)$$
.

例7 证明
$$\lim_{x\to 0^+} \sqrt{x} = 0$$
.

证明 对任意
$$\varepsilon > 0$$
, 要使 $|\sqrt{x} - 0| < \varepsilon$, 只要 $|x - 0| < \varepsilon^2$,

取
$$\delta = \varepsilon^2$$
, 则当 $0 < x < \delta$ 时,有

$$\left|\sqrt{x}-0\right|<\varepsilon,$$

所以
$$\lim_{x\to 0^+} \sqrt{x} = 0.$$

WORMAL OF RELLINGS

左极限的定义

定义4' (函数左极限的 $\varepsilon - \delta$ 定义)

设函数 f(x) 在 $(x_0 - h, x_0)(h > 0)$ 上有定义, A 是一个数,

若对任意给定的正数 \mathcal{E} , 存在数 $\delta > 0$, 使得当 $-\delta < x - x_0 < 0$ 时有

$$|f(x)-A|<\varepsilon,$$

则称 f(x) 当 $x \to x_0^-$ 时有极限(值) A,

或称 A 为 f(x) 在 x_0 处的左极限,

记为
$$\lim_{x \to x_0^-} f(x) = A$$
, 或 $f(x) \to A$ $(x \to x_0^-)$.

也记
$$f(x_0 - 0) = \lim_{x \to x_0^-} f(x)$$
.

极限与左右极限的关系

由极限和左右极限的定义知:

定理2
$$\lim_{x \to x_0} f(x) = A \iff \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = A$$
.

定理2
$$\lim_{x \to x_0} f(x) = A \iff \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = A.$$
例8 设 $f(x) = \begin{cases} x, & x < 1, \\ x^2, & x \ge 1, \end{cases}$ 说明 $\lim_{x \to 1} f(x)$ 存在性?

解 因为
$$f(1+0)=1$$
, $f(1-0)=1$, 所以 $\lim_{x\to 1} f(x)=1$.

例9 说明 sgn(x) 在 x=0 处无极限.

解 因为
$$\limsup_{x\to 0^-} \operatorname{sgn} x = -1 \neq \lim_{x\to 0^+} \operatorname{sgn} x = 1$$
, 所以 $\operatorname{sgn}(x)$ 在 $x = 0$ 处无极限.

THORMAL DEPARTMENT OF THE PARTMENT OF THE PART

无穷大量的定义

定义2 (无穷大量的 $G - \delta$ 定义)

设函数f(x)在 $U^0(x_0,h)$ 内有定义,

若对任意给定的正数G,存在正数 $\delta > 0$,使得当 $0 < |x - x_0| < \delta$ 时有 |f(x)| > G,

则称 f(x)是当 $x \to x_0$ 时的无穷大量.

记为
$$\lim_{x \to x_0} f(x) = \infty$$
,或 $f(x) \to \infty$ $(x \to x_0)$.

类似可以定义其它趋势下的无穷大量,正无穷大量,负无穷大量.

无穷大量的例子

例10 按定义证明
$$\lim_{x\to -1}\frac{1}{1+x}=\infty$$
.

证明 对任意
$$G>0$$
, 要使 $|\frac{1}{1+x}|>G$, 只要 $|x+1|<\frac{1}{G}$, 取 $\delta=\frac{1}{G}$,

则当
$$0 < |x+1| < \delta$$
 时,有 $|\frac{1}{1+x}| > G$,

所以
$$\lim_{x\to -1}\frac{1}{1+x}=\infty$$
.

3. 函数极限的性质

定理3(唯一性) 若 $\lim_{x\to x_0} f(x)$ 存在, 则极限唯一.

证明思路与数列极限的唯一性及定理5证明类似.

定理4(局部有界性) 若 $\lim_{x\to x_0} f(x)$ 存在,则存在 $\delta > 0$,

使得 f(x) 在 $U^0(x_0,\delta)$ 内有界.

证 设 $\lim_{x \to x_0} f(x) = A$, 则对 $\varepsilon = 1$, $\exists \delta > 0$,

当 $0 < |x - x_0| < \delta$ 时,有 |f(x) - A| < 1,

 $|f(x)| = |f(x) - A + A| \le |f(x) - A| + |A| < 1 + |A|$

所以f(x) 在 $U^0(x_0,\delta)$ 内有界.

不等式性质

定理5 设 $\lim_{x\to a} f(x) = A$, $\lim_{x\to a} g(x) = B$, A > B,

则 $\exists \delta > 0$, 当 $x \in U^0(x_0; \delta)$ 时,有 f(x) > g(x). (严)大极限 (严)大数

证 取
$$\varepsilon = \frac{A-B}{2} > 0$$
,

由 $\lim_{x \to x} f(x) = A$, $\exists \delta_1 > 0$, 当 $x \in U^0(x_0; \delta_1)$ 时, 有

$$|f(x) - A| < \varepsilon = \frac{A - B}{2}, \Rightarrow \frac{A + B}{2} = A - \varepsilon < f(x) < A + \varepsilon(*),$$

由 $\lim_{x \to \infty} g(x) = B$, $\exists \delta_2 > 0$, 当 $x \in U^0(x_0; \delta_2)$ 时,有

$$|g(x) - B| < \varepsilon = \frac{A - B}{2}, \Rightarrow B - \varepsilon < g(x) < B + \varepsilon = \frac{A + B}{2}(**),$$

令 $\delta = \min\{\delta_1, \delta_2\}$,则当 $x \in U^0(x_0; \delta)$ 时,有 $f(x) > \frac{A+B}{2} > g(x)$.

局部保号性

推论1(局部保号性) 设 $\lim_{x\to x_0} f(x) = A$, A>0,

则 $\exists \delta > 0$, 当 $x \in U^0(x_0; \delta)$ 时,有 $f(x) > \frac{A}{2} > 0$.

对于**A< 0**, 类似有 $f(x) < \frac{A}{2} < 0$.

推论**2** 设 $\lim_{x\to x_0} f(x) = A$, $\lim_{x\to x_0} g(x) = B$,

且 $\exists \delta > 0$, 当 $x \in U^0(x_0; \delta)$ 时, 有 $f(x) \ge g(x)$,

则 $A \ge B$.

NORMAL CHARGES IVE

迫敛性

4. 无穷小量及其运算

定义6 若 f(x) 在趋势 $x \to x_0^+, x_0^-, x_0^-, x_0^-, +\infty, -\infty, \infty$ 下极限为**0**,

则称 f(x) 是该过程下的无穷小量。

(1)
$$y = \frac{1}{\sqrt{x}}$$
 是当 $x \to +\infty$ 时的无穷小量.

(2)
$$f(x) = x^2 + x$$
是当 $x \to 0$ 与 $x \to -1$ 时的无穷小量.

(3)
$$\left\{\frac{1}{\ln n}\right\}$$
 是当 $n \to \infty$ 时的无穷小量.

(4) 0是任何过程下的无穷小量.

无穷大量与无穷小量

定理7 设在 $X \rightarrow X_0$ 下,

- (1) f(x) 为无穷大量 $\Rightarrow \frac{1}{f(x)}$ 是无穷小量;

(2)
$$f(x)$$
 为无穷小量且 $f(x) \neq 0 \Rightarrow \frac{1}{f(x)}$ 是无穷大量. 证 (1) 对 $\forall \varepsilon > 0$,要使 $\left| \frac{1}{f(x)} - 0 \right| < \varepsilon$,即要 $\left| f(x) \right| > \frac{1}{\varepsilon}$.

记
$$G = \frac{1}{\varepsilon}$$
, 由于 $f(x)$ 是无穷大量, $\exists \delta > 0$,

当
$$x \in U^{\circ}(x_0; \delta)$$
 时,有 $|f(x)| > G$,即 $\left| \frac{1}{f(x)} - 0 \right| < \varepsilon$,(1)得证.

对(2)类似可证.

无穷小量化

定理8 $\lim_{x \to x_0} f(x) = A \Leftrightarrow f(x) - A$ 是当 $x \to x_0$ 时的无穷小量.

证明 因为左右两端的 ε $-\delta$ 定义都是

$$\forall \varepsilon > 0, \exists \delta > 0, st.$$
当 $0 < |x - x_0| < \delta,$ 有
$$|f(x) - A| < \varepsilon, \quad \mathbb{P} |(f(x) - A) - 0| < \varepsilon.$$

推论
$$\lim_{x \to x_0} f(x) = A \iff f(x) = A + \alpha(x),$$

$$\alpha(x) \text{ 是当 } x \to x_0 \text{ 时的无穷小量.}$$

讨论的这些性质对 $x \to x_0^+, x_0^-, +\infty, -\infty, \infty$ 也成立

无穷小量的四则运算

定理9 无穷小量的四则运算(趋势不妨设 $x \rightarrow x_0$)

(1) 两个无穷小量的和 与差 仍是无穷小量.

证 设
$$\lim_{x\to x_0} \boldsymbol{\alpha}(x) = 0$$
, $\lim_{x\to x_0} \boldsymbol{\beta}(x) = 0$,

对 $\forall \varepsilon > 0$, 有共同 $\delta > 0$, 使得当 $x \in U^{\circ}(x_0; \delta)$ 时, 有

$$|\boldsymbol{\alpha}(x)| < \frac{\boldsymbol{\varepsilon}}{2}, |\boldsymbol{\beta}(x)| < \frac{\boldsymbol{\varepsilon}}{2}.$$

从而
$$|\alpha(x) \pm \beta(x)| \le |\alpha(x)| + |\beta(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$
.

所以
$$\lim_{x\to x_0} (\boldsymbol{\alpha}(x) \pm \boldsymbol{\beta}(x)) = 0.$$

无穷小量的四则运算

(2) 无穷小量与有界函数的乘积是无穷小量

证 设
$$\lim_{x\to x_0} \boldsymbol{\alpha}(x) = 0$$
, $\left|\boldsymbol{\beta}(x)\right| \leq M$,

对 $\forall \varepsilon > 0$, 存在 $\delta > 0$, 使得当 $x \in U^{\circ}(x_0; \delta)$ 时, 有

$$\left| \boldsymbol{\alpha}(x) \right| < \frac{\boldsymbol{\varepsilon}}{M},$$

从而
$$|\alpha(x) \cdot \beta(x)| = |\alpha(x)| \cdot |\beta(x)| < \frac{\varepsilon}{M} \cdot M = \varepsilon.$$

所以
$$\lim_{x\to x_0} \boldsymbol{\alpha}(x)\boldsymbol{\beta}(x) = 0.$$

推论1 无穷小量与常数的乘积是无穷小量.

推论2 两无穷小量之积是无穷小量.

无穷小量的四则运算

(3) 无穷小量除以极限不为零的量是无穷小量.

证 设
$$\lim_{x\to x_0} f(x) = 0$$
, $\lim_{x\to x_0} g(x) = b \neq 0$, 不妨设 $b > 0$,

由局部保号性,存在 $\delta > 0$, 使得当 $x \in U^{\circ}(x_0; \delta)$ 时, 有

$$g(x) > \frac{b}{2} > 0$$
, $\mathbb{P} \quad 0 < \frac{1}{g(x)} < \frac{2}{b}$

从而
$$\frac{f(x)}{g(x)} = f(x) \cdot \frac{1}{g(x)} =$$
无穷小量×有界函数,

仍为无穷小量.

无穷小量的例子

例11 求 (1)
$$\lim_{x \to +\infty} \left(\frac{1}{x^3} + e^{-x} \right)$$
; (2) $\lim_{x \to 0} \left(x^2 \sin \frac{1}{x} \right)$.

$$\text{#} \quad \text{(1)} \lim_{x \to +\infty} \left(\frac{1}{x^3} + e^{-x} \right) = \lim_{x \to +\infty} \frac{1}{x^3} + \lim_{x \to +\infty} \frac{1}{e^x} = 0 + 0 = 0.$$

(2) 因为
$$\lim_{x\to 0} x^2 = 0$$
, $\sin\frac{1}{x}$ 有界, 所以 $\lim_{x\to 0} \left(x^2 \sin\frac{1}{x}\right) = 0$.

类似地,对正整数k,

$$\lim_{x \to 0} \left(x^k \sin \frac{1}{x} \right) = 0, \quad \lim_{x \to 0} \left(x^k \arctan \frac{1}{x} \right) = 0, \quad \lim_{x \to 0} \left(x^k \arctan \frac{1}{x} \right) = 0.$$