Pertemuan 2 Estimasi dan Error

Berapa kecepatannya?

48 km/jam?

49 km/jam?

Dengan ketelitian 1 digit di belakang koma?

48,7 km/jam?

48,8 km/jam?

Dengan ketelitian 2 digit di belakang koma?

Speedometer dan Odometer

- Angka signifikan menyatakan suatu keandalan sebuah nilai numeric.
- Banyaknya angka signifikan adalah banyaknya digit tertentu yang dapat meyakinkan kita.

Speedometer

*Angka signifikan: 3

*Contoh : 48,7

Odometer

*Angka signifikan: 7

*Contoh : 87.324,45

 Beberapa angka 0 (nol) tak selamanya angka signifikan, karena mereka diperlukan menepatkan sebuah titik decimal.

0,00001848 0,0001848 → 4 angka signifikan 0,001848

 Jika beberapa angka 0 dipakai di bagian ekor suatu bilangan, tak jelas berapa banyaknya 0 yang signifikan.

45.300 Tidak dapat ditentukan banyaknya angka signifikan

Alternatifnya, ditulis dalam notasi ilmiah:

4,53 x 10⁴ (3 angka signifikan)

4,530 x 10⁴ (4 angka signifikan)

4,5300 x 10⁴ (5 angka signifikan)

Implikasi dari angka signifikan:

- MetNum mengandung hasil aproksimasi (pendekatan).
 Keyakinannya ditentukan oleh angka signifikan.
- Pernyataan secara eksak besar-besaran yang signifikan seperti
 π, dibatasi oleh tipa data yang dapat disimpan oleh komputer
 sampai sejumlah digit tertentu selebihnya diabaikan.
 Pengabaian ini dinamakan dengan kesalahan pembulatan
 (round-off error)

Error pada perhitungan numerik timbul karena:

- Kesalahan pemotongan (truncation error), dihasilkan sewaktu aproksimasi digunakan untuk menyatakan suatu prosedur matematika eksak.
- Kesalahan pembualatan (round-off error), dihasilkan bila angkaangka aproksimasi dipakai untuk menyatakan angka-angka eksak.

Hubungan antara harga sebenarnya (true value), aproksimasi dan error adalah:

Harga sebenarnya = Aproksimasi + Error (E_t) atau

 E_t = Harga sebenarnya – Aproksimasi

Bila besaran diperhitungkan dengan menormalisasikan error terhadap harga sebenarnya, maka diperoleh:

Error relatif pecahan =
$$\frac{E_t}{\text{Harga sebenarnya}}$$

Bila pers. di atas dinyatakan dalam persen:

$$\varepsilon_{t} = \frac{E_{t}}{\text{Harga sebenarnya}} \times 100\%$$

$$\varepsilon_{t} = \text{persen error relatif}$$

Contoh:

Terdapat tugas untuk mengukur panjang sebuah jembatan dan sebuah paku. Diperoleh nilai 9.999 cm untuk panjang jembatan dan 9 cm untuk panjang paku. Jika harga sebenarnya adalah 10.000 cm dan 10 cm, maka hitunglah (a) Error dan (b) Error relative persen, untuk setiap kasus!

Jawab

(a) Error

Jembatan : $E_t = 10.000 - 9.999 = 1 \text{ cm}$

 $: E_{t} = 10 - 9 = 1 \text{ cm}$ Paku

(b) Error relative persen

: $\varepsilon_t = \frac{1}{10.000} \times 100\% = 0.01\%$: $\varepsilon_t = \frac{1}{10} \times 100\% = 10\%$ **Jembatan**

Paku

Jadi, walaupun memiliki error yang sama (yaitu $E_t = 1$), tetapi pengukuran dikatakan lebih baik untuk jembatan.

- Dalam kenyataanya, jarang sekali kita bisa mengetahui harga sesungguhnya.
- Error Aproksimasi, alternatif untuk menormalisasi error dengan menggunakan pendekatan (aproksimasi) dari harga sebenarnya, yaitu:

$$\varepsilon_a = \frac{\text{error aproksimasi}}{\text{aproksimasi}} \times 100\%$$

Jika digunakan pendekatan iterasi/perulangan untuk menghitung jawaban. Maka aproksimasinya dibuat berdasarkan suatu aproksimasi sebelumnya, dan proses ini dilakukan secara berulang.

$$\varepsilon_a = \frac{\text{aproksimasi sekarang - aproksimasi sebelumnya}}{\text{aproksimasi sekarang}} \times 100\%$$

■ Proses iterasi/perulangan akan berakhir pada suatu **nilai persentase** toleransi praspesifikasi. $|\varepsilon_a| < \varepsilon_s$

Q

Hubungan Error dan Banyaknya Angka Signifikan

Jika kriteria berikut dipenuhi, dapat dijamin bahwa hasilnya adalah betul hingga sekurang-kurangnya n angka signifikan [Scarborough, 1966]

$$\varepsilon_s = (0.5 \times 10^{2-n})\%$$

Fungsi eksponensial, dapat dihitung dengan rumus sebagai berikut

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots + \frac{x^{n}}{n!}$$

Perluasan deret MacLaurin

Semakin banyak suku ditambahkan dalam deret, aproksimasinya akan lebih baik.

Soal: Dengan menggunakan metode iterasi/perulangan, hitunglah hasil dari $e^{0,5}$ sampai minimal memiliki 3 angka signifikan!

Tentukan nilai persentase toleransi praspesifikasi.

$$\varepsilon_s = (0.5 \times 10^{2-3})\% = 0.05\%$$
 Ingat: syarat $|\varepsilon_a| < \varepsilon_s$

Sebagai pembanding, nilai sebenarnya dari $e^{0,5} = 1,648721271$

- 1) Iterasi ke-1: $e^x \approx 1$
- 2) Iterasi ke-2

$$e^x \approx 1 + x$$

 $x = 0.5 \rightarrow e^{0.5} \approx 1 + 0.5 = 1.5$

$$\varepsilon_t = \frac{1,648721271 - 1,5}{1,648721271} \times 100\% = 9,02\%$$

$$\varepsilon_a = \frac{1,5-1}{1,5} \times 100\% = 33,3\%$$

$$|\varepsilon_a| > \varepsilon_s \rightarrow \text{iterasi dilanjutkan}$$

3) Iterasi ke-3
$$e^{x} \approx 1 + x + \frac{x^{2}}{2!}$$

$$x = 0.5 \rightarrow e^{0.5} \approx 1.5 + \frac{(0.5)^2}{2!} = 1.625$$

$$\varepsilon_t = \frac{1,648721271 - 1,625}{1.648721271} \times 100\% = 1,44\%$$

4) Iterasi ke-4
$$e^{x} \approx 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!}$$

$$x = 0.5 \rightarrow e^{0.5} \approx 1.625 + \frac{(0.5)^3}{3!} = 1.6458333333 = 1.27\%$$

$$\varepsilon_{t} = \frac{1,648721271 - 1,645833333}{1,648721271} \times 100\% = 0.175\% \quad \left| \varepsilon_{a} \right| > \varepsilon_{s} \rightarrow \text{iterasi dilanjutkan}$$

$$\varepsilon_a = \frac{1,625 - 1,5}{1,625} \times 100\% = 7,69\%$$

$$|\varepsilon_a| > \varepsilon_s \rightarrow iterasi dilanjutkan$$

$$\varepsilon_a = \frac{1,645833333 - 1,625}{1,6458333333} \times 100\%$$

$$|\varepsilon_a| > \varepsilon_s \rightarrow$$
iterasi dilanjutkan

 $\varepsilon_s = 0.05\%$ Syarat: $|\varepsilon_a| < \varepsilon_s$ Nilai sebenarnya: $e^{0.5} = 1.648721271$

Iterasi	Hasil	$\varepsilon_{t}(\%)$	ε_a (%)
1	1		
2	1,5	9,02	33,3
3	1,625	1,44	7,69
4	1,645833333	0,175	1,27
5	1,648437500	0,0172	0,158
6	<u>1,6486</u> 97917	0,00142	0,0158

Jadi, pada iterasi ke-6 diperoleh hasil bahwa e^{0,5} ① 1,648697917 dengan error aproksimasi 0,0158% (kurang dari 0,05%)

Round-Off Error (Kesalahan Pembulatan)

- Komputer hanya dapat menyimpan sejumlah angka signifikan selama kalkukasi. **Contoh** $\pi = 3,141592$ dengan mengabaikan suku-suku lainnya diperoleh $E_t = 0,00000065 \dots$
- Nama teknik penyimpanan ini adalah chopping, jadi tergantung tipe data yang digunakan.
- Tipe chopping
 - ✓ Mengambil digit bilangan sesuai dengan maksimal tipe datanya
 - ✓ Mengambil digit bilangan sesuai dengan maksimal tipe datanya dan memperhitungkan digit selanjutnya setelah dipotong, apakah perlu dibulatkan ataukah tidak. Cara ini memperlama waktu komputasi.

Soal: Hitung Aproksimasi Error dengan Iterasi

1) Hitunglah nilai dari sebenarnya dari **e**^{0,25} sampai dengan **minimal 3 angka signifikan** dengan menggunakan deret MacLaurin berikut.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots + \frac{x^{n}}{n!}$$

 Hitunglah nilai dari sebenarnya dari cos(π/3) sampai dengan minimal 2 angka signifikan dengan menggunakan deret MacLaurin berikut.

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} + \dots$$

Cara Meminimalkan Round-Off Error

1. Pengelompokan

Ketika melakukan perhitungan pada bilangan yang kecil, seperti menjumlahkan, mengurangkan dll, pengelompokan membantu mengurangi rounf round-off errors.

Contoh: menjumlahkan 0.00001 sebanyak 10.000 kali, dapat dikelompokkan menjadi 100 grup dengan setiap grup terdiri dari 100 nilai.

Cara Meminimalkan Round-Off Error

- 2. Perluasan Deret Taylor
- 3. Menuliskan Kembali Persamaan yang Mencegahnya dari Operasi Pengurangan

$$f(x) = x(\sqrt{x+1} - \sqrt{x})$$

$$f(x) = \frac{x}{\sqrt{x+1} + \sqrt{x}}$$

Tugas bab 2

- Silahkan kerjakan Soal yang ada dihal 15
- Soal no.1 bagi yang angka terakhir dari NIM adalah ganjil\
- Soal no.2 bagi yang angka terakhir dari NIM adalah nol atau genap
- Jawaban dikerjaka tulis tangan dikumpulkan max besok jumat pukul 10.00wib ke email merarinta@yahoo.com dg judul Metnumti3p2-NIM