אוניברסיטת אריאל בשומרון

מבחן לדוגמא

פקולטה: מדעי הטבע. מחלקה: מתמטיקה מדעי המחשב. שם הקורס: לוגיקה ותורת הקבוצות.

קוד הקורס: 2-7016510.

משך הבחינה: 3 שעות. חומר עזר: דפי הנוסחאות שמצורפים בסוף. עליכם להשיב על

השאלות הבאות. כל תשובה נכונה מזכה ב-20 נקודות.

 ${
m Q}$ סימונים: מספרים טבעיים: $N=\{0,1,2,3\dots\}$ רציונלים מ

ממשיים: R

לגבי כל אחד מהפסוקים הבאים קבע האם הוא מתקיים במבנה <N,<,+>. אין צורך לנמק (1

(7 נקי)
$$\alpha = \exists x [\neg[[\exists y(y < x)] \rightarrow [\exists y(y + x \neq y)]]]$$

(ז נקי)
$$\beta = \forall x \exists y \forall z [\neg((x < y) \rightarrow (y = x + 1 \lor z + z = x + y))]$$
 ב

$$(3 \ \zeta \gamma) \gamma = \exists y \forall x (x < y)$$
 ג) $\gamma = \exists y \forall x (x < y)$

2) לגבי כל זוג מבנים, המופיע בכל סעיף, קבע האם הם איזומורפיים. אין צורך לנמק כלל.

(א מתחלק
$$N,<$$
), א) א) א) ($N,<$) (א מתחלק n), א) א) א

$$(N,+),(Z,+)$$
 ב) ($N,+$) ($Z,+$)

(א נקי) (
$$P(N)$$
, $(P(Z)$, $($) (א נקי) (א נקי)

3) לגבי כל זוג קבוצות, המופיע בכל סעיף, קבע איזו קבוצה עוצמתה גדולה יותר או האם עוצמות הקבוצות שוות. אין צורך לנמק כלל.

(ז נקי)
$$A = P(R), B = P(P(N))$$
 (א

(ז נקי)
$$A = \{a \in R : a^3 \in Q \text{ N} : a^7 \in Q \cup \{\sqrt{n} : n \in N\} \}, B = N$$
 (בקי)

(0 <
$$x$$
 < 2 מסמן את הקטע (0,2). $A = P(R)$, $B = (0,2)$ (ג) (8 נקי)

- . (שאלה מחוברת הקורס). $P(A) \subseteq P(B)$ נתון: $A \subseteq B$. הוכיחו או הפריכו: (4)
- על A כך: A קבוצת הזוגות S^* של מספרים שלמים כך ש-n, נגדיר יחס S^* על A כך: A קבוצת הזוגות A קבוצת הזוגות A קבוצת הזוגות A אסיים עבור שני אברים A אסיים A אסיים עבור שני אברים A אסיים A אס

.A-ב a כנגד כל Ca וסמן של קבוע אישי L-ב ב-L יש סמן יחס דו-מקומי S נגדיר אוצר המילים

ב- מתפרש ב- Ca .S* כיחס M מתפרש ב- S .A כך: העולם שלו הוא ב Cb שמפרש את שמפרש הבנה M כקבוע האישי Δ .

נגדיר תורות: (To=Th(M, כלומר קבוצת הפסוקים ב-L שמתקיימים ב-M.

.(L-) הוא סמן של קבוע אישי שאיננו שייך d) $T_1=T_0$ (S(ca,d):a∈A}

$$T_2=T_0\cup\{S(d,c_a):a\in A\}$$

$$T_3=T_1\cup T_2$$

- א. לגבי כל אחת מהתורות T₁,T₂,T₃ עליכם לבחור באפשרות היחידה הנכונה מבין האפשרויות הבאות: 1. לא עקבית 2. עקבית ויש לה מודל שהוא העשרה של 3 M. עקבית, אבל אין לה מודל שהוא העשרה של M. בחלק זה, אין צרך לנמק כלל. (העשרה במקרה הזה, פרושו שמוסיפים פרוש ל-d, כלומר שהוא מתפרש כאבר בעולם של M, שהוא A). (8 נקודות)
 - ב. בחרו תורה לגביה בחרתם בחלק א באפשרות 3 והוכיחו שהיא אכן עקבית. (12 נקודות)

בהצלחה!

A = Yx Yy 3 2 (x+2=y) $(Z,+) \models A$ $(N,+) \models 7A$ SE 50 M/Z -e 110 B 8/1) f: N - Z - N13 - N10/0/1E H: P(N) -> P(Z) : 313 2 . 61 $=H(A_1)UH(A_2)$ (316 112) R = P(N) 20137 GeN 138 (318) 128 (R) = P(R) = P(R)) 1381 A = { \(\sq \) 2 \(\text{Q} \) \(\sq \) \(U { Tr I NEIN }

: N/7 60N 'DA (0,2) = [R) (3) P_13/8H 2B2 A N3/8 poll (R) > |R| P(A) SP(B) B' A S B MY : HOL INDINIX CA NIB XEP(A) FINDIN ae X rio ...) X CB por A CB XEP(B) | WN (9EB por ae A JE

על A כך: עבור שני S* על A כך: עבור שני (n,k) על A כך: עבור שני (n,k) על A כך: עבור שני (n,k) על A כך: עבור שני (n_1,k_1) עבור $(n_1,$

.A-ב a כנגד כל Ca וסמן של קבוע אישי L-ב : L נגדיר אוצר מילים L ב-L יש סמן יחס דו-מקומי

M- מתפרש ב- Ca .S* מתפרש ב- M מתפרש שלו הוא S .A כך: העולם שלו כך C מתפרש את מפרש האישי ה.

M- מגדיר תורות: T_0 =Th(M), כלומר קבוצת הפסוקים ב- T_0 =Th(M), כלומר קבוצת הפסוקים ב- T_0 =Th(M). כלומר קבוע היים ב- T_0 = T_0

- א. לגבי כל אחת מהתורות T₁,T₂,T₃ עליכם לבחור באפשרות היחידה הנכונה מבין האפשרויות ה באות: 1. לא עקבית 2. עקבית ויש לה מודל שהוא העשרה של 3 M. עקבית, אבל אין לה מודל שהוא העשרה של M. בחלק זה, אין צרך לנמק כלל. (העשרה במקרה הזה, פרושו שמוסיפים פרוש ל-d, כלומר שהוא מתפרש כאבר בעולם של M, שהוא A). (8 נקודות)
 - ב. בחרו תורה לגביה בחרתם בחלק א באפשרות 3 והוכיחו שהיא אכן עקבית. (12 נקודות)

: [פתרון

- א. T_1 עקבית, אבל אין לה מודל שהוא העשרה של M ואפשרות T_1 איננה עקבית (אמנם לא דרוש נמוק, אבל הנה נמוק: הפסוק T_2 שייך ל- T_3 איננה עקבית (אמנם לא דרוש נמוק, אבל הנה נמוק: הפסוק T_2 והם כמוכן T_3 . לפיכך שני הפסוקים T_3 איננה עקבית. T_3 איננה עקבית.
- ב. נוכיח ש- T_1 עקבית. תהי T_1 תת-קבוצה סופית של T_1 . לפי משפט הקומפקטיות, מספיק להוכיח ש- T_1 עקבית. תהי T_1 קבוצת הפסוקים מהצורה $S(c_{< n,k>,d})$ שמופיעים ב- T_1 . מכיון ש- T_1 סופית, ש- T_2 עקבית. תהי T_1 קבוצת הפסוקים מהצורה T_2 שמופיעים ב- T_3 מכיון ש- T_4 חוא אופית. לכן יש T_4 שלמים כך שלכל פסוק T_4 שלמים ב- T_4 מתקיים T_4 של T_4 הוא מודל ל- T_4 יהי T_5 מסוק ב- T_5 היי T_5 מסוק ב- T_5 .

 M^- מכיון ש- α במקרה א: α מקיים את הוא מודל של של הוא מודל של מקיים את מקיים את α במקרה א: α הוא העשרה של M גם הוא מקיים את α גם הוא מקיים את העשרה של הוא העשרה של מקיים את מקיים את מקיים את הוא העשרה של הוא העשרה של מקיים את מקיים את מקיים את מקיים את הוא העשרה של הוא מקיים את מקיים

מקרה ב: $\alpha \in T_0$. במקרה זה, $\alpha \in B$, כלומר ש- α הוא פסוק מהצורה ($\alpha \in B$. במקרה זה, $\alpha \in B$. במקרה זה, $\alpha \in B$ מתפרש כ- $\alpha \in T_0$. ב- $\alpha \in C_{<n,k>}$ מתפרש כ- $\alpha \in C_{<n,k>}$ מתפרש כ- $\alpha \in C_{<n,k>}$. מתקיים ב- $\alpha \in C_{<n,k}$. מ.ש.ל.]