SCION over XIA

Vikram Rajkumar, Yue-Hsun Lin, XIA & SCION Teams 2014-05-08

Outline

- SCION Overview
- Bootstrapping SCION over XIA
- Using Data Plane
- Implementation Details
- Current Status

SCION Architectural Goals

- High availability, even for networks with malicious parties
 - Communication should be available if attacker-free path exists
- Explicit trust for network operations
- Minimal TCB: minimize trusted entities for any operation
 - Strong isolation from untrusted parties
- Operate with mutually distrusting entities
 - No single root of trust
- Balanced route control for ISPs, receivers, senders
- No circular dependencies during setup: enable rebootability
- Simplicity, efficiency, flexibility, and scalability

SCION Architecture Overview

- Trust domain (TD)s
 - Isolation and scalability
 - Enforceable accountability
- Path construction
 - Path construction beacons (PCBs)
- Path resolution
 - Control
 - Explicit trust
- Route joining (shortcuts)
 - Efficiency, flexibility

SCION Components

- Certificate Server
 - Certificate, Policy, Topology, Key management
- Beacon Server
 - Path Construction (PCB propagation, Path selection/registration (req), Path distribution)
- Path Server
 - Path registration/resolution
- Border Router
 - Opaque Field verification, packet forwarding
- Switch
 - Abstract intra-domain routing
- Gateway
 - Backward compatibility

Bootstrapping SCION over XIA

- 1. Each domain's controller populates intra-domain forwarding entries
 - a. This includes entries for SCION Beacon and Path Server SIDs
- 2. Each domain's controller uses XBGP to setup forwarding entries for reaching other ADs
- 3. As defined by SCION, Beacon Servers propagate PCBs to other ADs
 - a. Other ADs are reached using routes setup by XBGP
- 4. As defined by SCION, ADs use PCBs to construct and register paths with Path Servers

Example topology

Phase 1: beacon propagation

Phase 1: beacon propagation

Phase 2: path construction

Phase 2: path construction

SCION over XIA Data Plane

- Allow the choice to use SCION for inter-domain routing, when explicit endto-end trusted paths are desired
- Possibilities for who chooses the inter-domain routing protocol:
 - End-host can choose SCION:
 - On a per-packet basis but does not choose the SCION path
 - On a per-packet basis and chooses the SCION path
 - Transparent to end-host, domain controller can choose SCION:
 - On a per-packet basis
 - On a per-host basis
 - On a domain-wide basis*

^{*} We will implement this first for the sake of faster development.

Usage

- 1. We introduce a new principle type called XION for packets that should use SCION for inter-domain routing
 - a. For the sake of discussion, assume the end-host will choose SCION by specifying a DAG of the form "XION: 123, HID: 456" rather than one of the form "AD: 123, HID: 456"
- 2. When a gateway router receives a packet with a XION destination domain, it will query the Path Servers and construct a SCION path to that domain
- This path will then be added to the packet header as part of the XIA Extension Header
- The gateway router and all subsequent routers in the domain forward packet to the first egress router
- 5. Egress router sends it to the next domain's ingress router
- Repeat this until packet eventually reaches the final destination AD's ingress router
- 7. Routers within the final destination AD then forward packet to the final destination HID/SID

XION Principle Type

- How to handle XIDs which require additional routing information?
 - Option 1: Store the information in the XIA Extension Header.
 - Option 2: Encode the information in the DAG
 - e.g. with multiple/new XIDs or variable-length XIDs.
- We have chosen Option 1 for now as it will be simpler to implement

XION Principal Type

If Source needs *Explicit Trust* on the Path

(Network) to HID

Current Status

- Beacon service (done):
 - Generation at core AD: done
 - Propagation (including verification) at inter/stub ADs: done
- Path service (done):
 - Up-path parsing at inter/stub ADs
 - Up-path buffering at inter/stub ADs
 - Down-path registration at core AD
- Data plane:
 - Down-path request/response for destination ADs (path server) (done)
 - End-to-end path resolution (path server) (in progress)
 - Construction of XIA header using XION principal type (in progress)
 - End-to-end data communication between peer endhosts (in progress)

Backup

Trust Domain Decomposition

- Global set of TD (Trust Domains)
 - Map to geographic, political, legal boundaries
 - Usually corresponds to a jurisdiction
 - Provide enforceable accountability
- TD Core: set of top-tier ISPs that manage TD
 - Route to other TDs
 - Initiate path construction beacons
 - Manage Address and Path Translation Servers
 - Handle TD membership
 - Root of trust for TD: manage root key and certificates
- AD: Autonomous Domain
 - Transit AD or endpoint AD

Path Construction

Goal: each endpoint learns multiple verifiable paths to its core

- Discovering paths via Path Construction Beacons (PCBs)
 - TD Core periodically initiates PCBs
 - ADs asynchronously propagate PCBs
- ADs perform the following operations
 - Collect PCBs
 - For each customer/peer AD, select which k PCBs to forward
 - Update cryptographic information in PCBs
- Endpoint AD receives at least k PCBs from each provider AD, selects k down-paths to advertise

Forwarding Engine

- Principal-independent processing defines how to interpret the DAG
- Principal-dependent processing realizes forwarding semantics for each XID type

Architecture

