安徽大学 2019—2020 学年第二学期

《高等数学A(二)》考试试卷(A卷) (闭卷 时间 120 分钟)

考场登记表序号

题 号	 =	Ξ	四	五	总分
得分					
阅卷人					

	洗择题	(毎小颙	2分.	共10分)
-	KETTKO	141,60	4 /3 9	74 10 11

1. 方程 $y' = -y + xe^{-x}$ 是 ().

(A) 一阶非齐次线性方程 (B)一阶齐次线性方程

(C) 齐次方程

(D) 可分离变量方程

- 2. 向量场 $\bar{a} = (x^2y + y^3)\bar{i} + (x^3 xy^2)\bar{j}$ 的散度为(
- (A) 2 (B) $2x^2-4y^2$ (C) 2xy (D) 0
- 3. 设 $f(x,y) = \sqrt{|xy|}$, 则在(0,0)处 f(x,y) (
- (A) 偏导数不存在 (B) 不连续 (C) 不可微 (D) 可微

4. 设
$$L: y = x^2 (0 \le x \le \sqrt{2})$$
, 则 $I = \int_L x ds = ($).

- (A) 2
- (B) 0 (C) $\frac{13}{6}$ (D) $\frac{5}{6}$
- 5. 级数 $\sum_{n^{p+1}}^{\infty}$ 发散的充分必要条件是 ().
- (A) p > 0 (B) $p \le 0$ (C) $p \le 1$ (D) p < 1

二、填空题(每小题2分,共10分)

得分

得分

- 6. 已知 $|\vec{a}| = 2$, $|\vec{b}| = 3$, $|\vec{a} \vec{b}| = \sqrt{7}$,则 \vec{a} , \vec{b} 的夹角为
- 7. 若 $z = \arctan \frac{x+y}{1-xy}$,则 $\frac{\partial z}{\partial x} =$ ______.
- 8. 计算 $I = \int_0^1 dx \int_1^1 e^{y^2} dy =$ ______

9. 设 $L: x^2 + y^2 = 9$, 方向为逆时针方向, $\oint_L (2xy - 2y)dx + (x^2 - 4x)dy = ______.$ 10. 函数 $f(x) = \begin{cases} -1, -\pi \le x \le 0 \\ 1 + x^2, 0 < x \le \pi \end{cases}$,以 2π 为周期的傅里叶级数在点 $x = \pi$ 处收敛于

三、计算题(每小题9分,共54分)

得分

- 12. 求微分方程 4y'' + 4y' + y = 0 满足初始条件 $y|_{x=0} = 2$, $y'|_{x=0} = 0$ 的特解.
- 13. 计算三重积分 $\iint_{V} (x^2 + y^2) dv$, 其中 $V \to x^2 + y^2 = 2z$ 与平面 z = 2 所围成.
- 14. 求过点 Q(3,-1,3) 及直线 $\begin{cases} x = 2+3t \\ y = -1+t \text{ 的平面方程.} \\ z = 1+2t \end{cases}$
- 15. 计算第二类曲面积分 $\iint_{\Sigma} x dy dz$,其中 Σ 是柱面 $x^2 + y^2 = 1$ 被平面 z = 0, z = 3 所截得的在第 \mathbb{I} 卦限内的部分的前侧.
- 16. 求幂级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$ 的收敛域及和函数.

四、应用题 (每小题 10 分, 共 20 分)

得分

- 17: 求 $z=x^2+y^2+5$ 在约束条件x+y=1下的极值,并说明是极小值还是极大值.
- 18. 设一三角形薄片, 顶点分别为(0,0),(a,0),(0,a), 其薄片上各点处的面密度为 $\rho(x,y)=x+y$, 求该薄片的质量.

五、证明题(每小题6分,共6分)

得分

19. 证明: 级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\ln(1+n)}$ 是条件收敛.