Data Mining

CLUSTERING K-MEANS ALGORITHM

Prof. Dr. Hikmat Ullah Khan Department of Information Technology

UNIVERSITY OF SARGODHA, SARGODHA

Lesson from Holy Quran

Quranic Dua

أَنِي مَسَّنِي الظُّرُّ وَأَنتَ أَرْحَمُ الرَّاحِينِ

(My Lord!) Indeed, distress has seized me, and You are the Most Merciful of all those who show mercy.

The Quran 21:83 (Surah al-Anbiya)

www.QuranicQuotes.com

What is Un-Supervised Learning?

- Categorization of objects into different groups
- No concept of Class Labels
- □ The <u>partitioning</u> of a <u>data set</u> into <u>subsets</u> (clusters),
- Data in each subset share some common trait
 - according to some defined <u>distance measure</u>.
- □ Aim:
 - Maximum Intra Cluster Similarity
 - Minimum Inter Cluster Similarity (Maximum Inter Cluster Dis-similarity)

Types of clustering

- Hierarchical algorithms: these find successive clusters using previously established clusters.
 - 1. Agglomerative ("bottom-up"):

Begin with each element as a separate cluster and merge them into successively larger clusters.

2. Divisive ("top-down"):

Divisive algorithms begin with the whole set and proceed to divide it into successively smaller clusters.

2. Partitional clustering:

Determine all clusters at once.

K-means and derivatives

Common Distance measures

- Determine how the *similarity* of two elements is calculated. They include:
- 1. The **Euclidean distance**:
- 2. The Manhattan distance:

$$d(x,y) = \sqrt[2]{\sum_{i=1}^{p} |x_i - y_i|^2} \qquad d(x,y) = \sum_{i=1}^{p} |x_i - y_i|$$

Common Distance measures

3.The <u>maximum norm</u> is given by:

$$d(x, y) = \max_{1 \le i \le p} |x_i - y_i|$$

7

The **k-means algorithm** is an algorithm to <u>cluster</u> n objects based on attributes into k partitions, where k < n.

How the K-Mean Clustering algorithm works?

- \square **Step 1:** Begin with a decision on the value of k = number of clusters.
- Step 2: Take any k elements as Centre element for k cluster
- □ Step 3:
 - Compute the distance of each element from the centroid of each of the clusters.
 - Find the <u>new Centroid</u> by averaging the element values.
- □ **Step 4**. Repeat step 3 until convergence is achieved,

A Simple example showing the implementation of k-means algorithm (using K=2)

Individual	Variable 1	Variable 2
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

□ Step 1:

- Randomly choose two centroids (k=2) for two clusters.
- □ For instance, m1=(1.0,1.0) and m2=(5.0,7.0).

Individual	Variable 1	Variable 2
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

	Individual	Mean Vector
Group 1	1	(1.0, 1.0)
Group 2	4	(5.0, 7.0)

NOTE the Data Points

- 1. Calculate The Euclidean Distance of each Element from Each Centroid Point:
- 2. Prepare a table showing distances of Each element from Each Centroid.
- For instance, The distance of 2nd element from both centroids are calculated as follows:

Value	Distance from Centroid 1	Distance from Centroid 2

$$d(m_1,2) = \sqrt{|1.0 - 1.5|^2 + |1.0 - 2.0|^2} = 1.12$$

$$d(m_2,2) = \sqrt{|5.0 - 1.5|^2 + |7.0 - 2.0|^2} = 6.10$$

□ Have you got the same result as follows:

Individual	Centrold 1	Centrold 2
1	0	7.21
2 (1.5, 2.0)	1.12	6.10
3	3.61	3.61
4	7.21	0
5	4.72	2.5
6	5.31	2.06
7	4.30	2.92

Step 2:

Thus, we obtain two clusters containing:

{1,2,3} and {4,5,6,7}.

New centroids are:

$$m_1 = (\frac{1}{3}(1.0 + 1.5 + 3.0), \frac{1}{3}(1.0 + 2.0 + 4.0)) = (1.83, 2.33)$$

$$m_2 = (\frac{1}{4}(5.0 + 3.5 + 4.5 + 3.5), \frac{1}{4}(7.0 + 5.0 + 5.0 + 4.5))$$

= (4.12,5.38)

individual	Centrold 1	Centrold 2
1	0	7.21
2 (1.5, 2.0)	1.12	6.10
3	3.61	3.61
4	7.21	0
5	4.72	2.5
6	5.31	2.06
7	4.30	2.92

Step 3:

- Now using these centroids, we compute the Euclidean distance of each object, as shown in table.
- □ Therefore, the new clusters are: {1,2} and {3,4,5,6,7}
- New Centroid?
- Next centroids are: m1=(1.25,1.5) and m2 = (3.9,5.1)

Individual	Centroid 1	Centroid 2
1	1.57	5.38
2	0.47	4.28
3	2.04	1.78
4	5.64	1.84
5	3.15	0.73
6	3.78	0.54
7	2.74	1.08

□ Step 4:

The clusters obtained are:

{1,2} and {3,4,5,6,7}

- Therefore, there is no change in the cluster.
- □ Thus, the algorithm comes to a halt here and final result consist of 2 clusters {1,2} and {3,4,5,6,7}.

Individual	Centroid 1	Centroid 2
1	0.56	5.02
2	0.56	3.92
3	3.05	1.42
4	6.66	2.20
5	4.16	0.41
6	4.78	0.61
7	3.75	0.72

(PLOT for each Iteration will help you how K-means works)

Value of K

- Now us consider the same example values
- □ Take k-3
 - We are interested in finding three clusters
- □ Re-apply K-Means Algorithms again

(with K=3)

□ For instance, Take FIRST THREE ELEMENTS AS THREE CENTROIDS

Individual	Variable 1	Variable 2
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

(with K=3)

Individual	m ₁ = 1	m ₂ = 2	m ₃ = 3	cluster
1	0	1.11	3.61	1
2	1.12	0	2.5	2
3	3.61	2.5	0	3
4	7.21	6.10	3.61	3
5	4.72	3.61	1.12	3
6	5.31	4.24	1.80	3
7	4.30	3.20	0.71	3

clustering with initial centroids (1, 2, 3)

Step 1

(with K=3)

Individual	m ₁ = 1	m ₂ = 2	m ₃ = 3	cluster	
1	0	1.11	3.61	1	
2	1.12	0	2.5	2	
3	3.61	2.5	0	3	
4	7.21	6.10	3.61	3	
5	4.72	3.61	1.12	3	
6	5.31	4.24	1.80	3	
7	4.30	3.20	0.71	3	

Individual	m ₁ (1.0, 1.0)	m ₂ (1.5, 2.0)	m ₃ (3.9,5.1)	cluster
1	0	1.11	5.02	1
2	1.12	0	3.92	2
3	3.61	2.5	1.42	3
4	7.21	6.10	2.20	3
5	4.72	3.61	0.41	3
6	5.31	4.24	0.61	3
7	4.30	3.20	0.72	3

clustering with initial centroids (1, 2, 3)

Step 1

Step 2

Real-Life Numerical Example

We have 4 medicines as our training data points object and each medicine has 2 attributes. Each attribute represents coordinate of the object. We have to determine which medicines belong to cluster 1 and which medicines belong to the other cluster.

Real-Life Numerical Example

Medicine	Weight	pH-Index	
Α	1	1	
В	2	1	
С	4	3	
D	5	4	

Medicine	Weight	pH-Index	
А	1	1	
В	2	1	
С	4	3	
D	5	4	

Step 1: Use initial seed points for partitioning

$$c_{1} = A, c_{2} = B$$

$$\mathbf{D}^{0} = \begin{bmatrix} 0 & 1 & 3.61 & 5 \\ 1 & 0 & 2.83 & 4.24 \end{bmatrix} \quad \mathbf{c}_{1} = (1,1) \quad group - 1 \\ 4.24 \quad \mathbf{c}_{2} = (2,1) \quad group - 2 \end{bmatrix}$$

$$A \quad B \quad C \quad D$$

$$\begin{bmatrix} 1 & 2 & 4 & 5 \\ 1 & 1 & 3 & 4 \end{bmatrix} \quad Y$$

$$d(D, c_{1}) = \sqrt{(5-1)^{2} + (4-1)^{2}} = 5$$

$$d(D, c_{2}) = \sqrt{(5-2)^{2} + (4-1)^{2}} = 4.24$$

Assign each object to the cluster with the nearest seed point

Step 2: Compute new centroids of the current partition

Knowing the members of each cluster, now we compute the new centroid of each group based on these new memberships.

$$c_2 = \left(\frac{2+4+5}{3}, \frac{1+3+4}{3}\right)$$
$$= \left(\frac{11}{3}, \frac{8}{3}\right)$$

 $c_1 = (1, 1)$

Step 2: Renew membership based on new centroids

Compute the distance of all objects to the new centroids

$$\mathbf{D}^{1} = \begin{bmatrix} 0 & 1 & 3.61 & 5 \\ 3.14 & 2.36 & 0.47 & 1.89 \end{bmatrix} \quad \begin{array}{c} \mathbf{c}_{1} = (1,1) & group - 1 \\ \mathbf{c}_{2} = (\frac{11}{3}, \frac{8}{3}) & group - 2 \\ A & B & C & D \\ \begin{bmatrix} 1 & 2 & 4 & 5 \\ 1 & 1 & 3 & 4 \end{bmatrix} \quad X \\ Y \end{array}$$

Assign the membership to objects

Step 3: Repeat the first two steps until its convergence

Knowing the members of each cluster, now we compute the new centroid of each group based on these new memberships.

$$c_1 = \left(\frac{1+2}{2}, \frac{1+1}{2}\right) = \left(1\frac{1}{2}, 1\right)$$

$$c_2 = \left(\frac{4+5}{2}, \frac{3+4}{2}\right) = \left(4\frac{1}{2}, 3\frac{1}{2}\right)$$

Step 3: Repeat the first two steps until its convergence

Compute the distance of all objects to the new centroids

$$\mathbf{D}^{2} = \begin{bmatrix} 0.5 & 0.5 & 3.20 & 4.61 \\ 4.30 & 3.54 & 0.71 & 0.71 \end{bmatrix} \quad \mathbf{c}_{1} = (1\frac{1}{2}, 1) \quad group - 1$$

$$A \quad B \quad C \quad D$$

$$\begin{bmatrix} 1 & 2 & 4 & 5 \\ 1 & 1 & 3 & 4 \end{bmatrix} \quad X$$

Stop due to no new assignment Membership in each cluster no longer change

■ We get the final grouping as the results as:

Object	Feature1(X): weight index	Feature2 (Y): pH	Group (result)
Medicine A	1	1	1
Medicine B	2	1	1
Medicine C	4	3	2
Medicine D	5	4	2

Relevant Issues

- Other problems
 - Need to specify *K*, the *number* of clusters, in advance
 - Unable to handle noisy data and outliers
 - Applicable only when mean is defined, then what about categorical data
 - NOT Applicable for Categorical Data

Advantages and Applications of K-Mean Clustering

Advantages:

- It is *efficient* algorithm (Fast Computation).
- Simple, easy to implement and understand and apply
- Widely used in Machine Learning, Data mining, etc
- Applications
 - Speech Recognition and Signal Processing
 - Data compression
 - Noise reduction
 - Digital Image Segmentation
 - Web Studies for grouping of People based on Similar Characteristics (Homophily)

Exercise

- 1. Take any Ten Elements, each of two attributes
- Take different values of K
 - \Box (for instance, k=2, k=3, and k=4)
- Apply K-Means Algorithm
- Take Different Starting Centroids for different values of k

 2. Try to take sample/downloaded data and run K-means using Weka, other tools (discussed in class) and/OR Languages (R or Python)

TEAMWORK

coming together is a beginning keeping together is progress working together is success

- Henry Ford