

CHUONG 5

CÂY KHUNG CỰC TIỂU CỦA ĐỒ THỊ

Nội dung

- Bài toán cây khung cực tiểu MST
- 2 Khái niệm cây và cây khung đồ thị
- Thuật toán Prim
- Thuật toán Kruskal
- Thảo luận & Bài tập

Các bài toán đặt ra:

- Làm sao xây dựng mạng giao thông nối các thành phố với chi phí xây dựng và vận hành thấp nhất?
- Trong lý thuyết mạch, làm thế nào để xây dựng một mạch điện tử có kích thước, chi phí thấp nhất và tốc độ truyền tín hiệu nhanh nhất?
- Trong mạng máy tính, đòi hỏi xây dựng hệ thống mạng có chi phí kết nối thấp nhất và tốc độ truyền dữ liệu cao nhất?
- ...

Bài toán cây khung cực tiểu (2/3)

Bài toán cây khung cực tiểu (3/3)

Phát biểu

• Cho đồ thị vô hướng, có trọng số G(V,E,C)

Yêu cầu

- Tìm cây khung của đồ thị thỏa mãn điều kiện:
- Tổng trọng số của nó \rightarrow MIN

Cây và cây khung cực tiểu (1/4)

Định nghĩa

• Cây là đơn đồ thị liên thông và không có chu trình

Cây và cây khung cực tiểu (2/4)

Cây và cây khung cực tiểu (3/4)

- Dịnh nghĩa cây khung:
 - Giả sử G(V,E) là đồ thị vô hướng liên thông, khi đó:
 - Cây dung T(V,E') của G là đồ thị con của G, sao cho:
 - T liên thông
 - · và không có chu trình.
 - Tức là E' là tập con của E.

Cây và cây khung cực tiểu (4/4)

 $\dot{D} \dot{\hat{o}}$ thị G(V,E)

Các cây khung T(V,E')

Thuật toán Prim tìm cây khung cực tiểu (1/11)

- Đầu vào: Đồ thì vô hướng, có trọng số G(V,E).
- Đầu ra: Cây khung cực tiểu T(V,E') của G

Thuật toán Prim tìm cây khung cực tiểu (2/11)

Bước 1:

• Khởi tạo từ 1 đỉnh bất kỳ, nạp đỉnh đó vào *MST* rỗng.

Buốc 2:

- Lặp lại đến khi mọi đỉnh của G đều được nạp vào MST:
 - Tìm tất cả các cạnh nối đỉnh mới nhất trong MST với các đỉnh không thuộc MST, và đặt vào 1 hàng đợi (ưu tiên). Nếu có nhiều hơn 1 cạnh nối với cùng đỉnh đích thì chọn cạnh có trọng số nhỏ nhất.
 - Chọn cạnh có trọng số nhỏ nhất trong hàng đợi, và bổ sung cạnh này cùng với đỉnh đích tương ứng vào MST.

Thuật toán Prim tìm cây khung cực tiểu (3/11)

Đỉnh →	1	2	3	4	5	6
0	0,1	5,1	∞ ,1	∞ ,1	∞ ,1	1,1

Thuật toán Prim tìm cây khung cực tiểu (4/11)

	1	2	3	4	5	6
0	0,1	5,1	∞,1	∞ ,1	∞ ,1	1,1
1			4,6		6,6	

Thuật toán Prim tìm cây khung cực tiểu (5/11)

	1	2	3	4	5	6
0	0,1	5,1	∞ ,1	∞,1	∞,1	1,1
1			4,6		6,6	

Thuật toán Prim tìm cây khung cực tiểu (6/11)

	1	2	3	4	5	6
0	0,1	5,1	∞,1	∞,1	∞,1	1,1
1			4,6		6,6	
2		3,3		8,3		

Thuật toán Prim tìm cây khung cực tiểu (7/11)

	1	2	3	4	5	6
0	0,1	5,1	∞,1	∞,1	∞ ,1	1,1
1			4,6		6,6	
2		3,3		8,3		

Thuật toán Prim tìm cây khung cực tiểu (8/11)

	1	2	3	4	5	6
0	0,1	5,1	∞,1	∞,1	∞,1	1,1
1			4,6		6,6	
2		3,3		8,3		
3						

Thuật toán Prim tìm cây khung cực tiểu (9/11)

	1	2	3	4	5	6
0	0,1	5,1	∞ ,1	∞ ,1	∞ ,1	1,1
1			4,6		6,6	
2		3,3		8,3		
3						
4				2,5		

Thuật toán Prim tìm cây khung cực tiểu (10/11)

	1	2	3	4	5	6
0	0,1	5,1	∞,1	∞ ,1	∞ ,1	1,1
1			4,6		6,6	
2		3,3		8,3		
3						
4				2,5		

Thuật toán Prim tìm cây khung cực tiểu (11/11)

	1	2	3	4	5	6
0	0,1	5,1	∞,1	∞,1	∞,1	1,1
1			4,6		6,6	
2		3,3		8,3		
3						
4				2,5		
Kết luận	0,1	3,3	4,6	2,5	6,6	1,1

Thuật toán Kruskal (1/10)

- ❖ Bước 1:
 - Sắp xếp danh sách các cạnh E của G theo trọng số tăng dần.
 - Khởi tạo cây khung T rỗng.
- ♣ Bước 2: Lặp lại cho đến khi tìm được cây khung cực tiểu hoặc E rỗng
 - Chọn cạnh (u,v) thỏa điều kiện:
 - c(u,v) là trọng số nhỏ nhất trong {c(E)}
 - Cạnh (u,v) hợp với T không tạo ra chu trình
 - Nạp (u,v) vào T
 - Loại cạnh (u,v) ra khỏi E

Thuật toán Kruskal (2/10)

• Làm thế nào để biết việc bổ sung cạnh (u,v) vào cây T có tạo ra chu trình hay không?

Giải pháp gán nhãn (make-set)

- Nhãn là một số nguyên được gán cho các đỉnh.
- Các đỉnh thuộc cùng thành phần liên thông trong T sẽ có cùng nhãn.
- Mỗi thành phần liên thông của T có 1 nhãn khác nhau.

Đỉnh	1	2	3	4	5	6
Nhãn	1	2	3	4	5	6

Cạnh	Trọng số	Chọn
(1,6)	1	
(2,6)	1	
(5,6)	1	
(1,2)	2	
(2,5)	2	
(2,3)	3	
(4,5)	3	
(3,4)	4	
(3,5)	5	

Thuật toán Kruskal (4/10)

1	2	3	4	5	6
1	2	3	4	5	1

Cạnh	Trọng số	Chọn
(1,6)	1	X
(2,6)	1	
(5,6)	1	
(1,2)	2	
(2,5)	2	
(2,3)	3	
(4,5)	3	
(3,4)	4	
(3,5)	5	

Thuật toán Kruskal (5/10)

1	2	3	4	5	6
1	1	3	4	5	1

Cạnh	Trọng số	Chọn
(1,6)	1	X
(2,6)	1	X
(5,6)	1	
(1,2)	2	
(2,5)	2	
(2,3)	3	
(4,5)	3	
(3,4)	4	
(3,5)	5	

Thuật toán Kruskal (6/10)

1	2	3	4	5	6
1	1	3	4	1	1

Cạnh	Trọng số	Chọn
(1,6)	1	X
(2,6)	1	X
(5,6)	1	X
(1,2)	2	
(2,5)	2	
(2,3)	3	
(4,5)	3	
(3,4)	4	
(3,5)	5	

Thuật toán Kruskal (7/10)

1	2	3	4	5	6
1	1	3	4	1	1

Cạnh	Trọng số	Chọn
(1,6)	1	X
(2,6)	1	X
(5,6)	1	X
(1,2)	2	tạo chu trình
(2,5)	2	
(2,3)	3	
(4,5)	3	
(3,4)	4	
(3,5)	5	

Thuật toán Kruskal (8/10)

1	2	3	4	5	6
1	1	3	4	1	1

Cạnh	Trọng số	Chọn
(1,6)	1	X
(2,6)	1	X
(5,6)	1	X
(1,2)	2	tạo chu trình
(2,5)	2	tạo chu trình
(2,3)	3	
(4,5)	3	
(3,4)	4	
(3,5)	5	

Thuật toán Kruskal (9/10)

Cạnh	Trọng số	Chọn
(1,6)	1	X
(2,6)	1	X
(5,6)	1	X
(1,2)	2	tạo chu trình
(2,5)	2	tạo chu trình
(2,3)	3	X
(4,5)	3	
(3,4)	4	
(3,5)	5	

Thuật toán Kruskal (10/10)

1	2	3	4	5	6
1	1	1	1	1	1

Cạnh	Trọng số	Chọn
(1,6)	1	X
(2,6)	1	X
(5,6)	1	X
(1,2)	2	tạo chu trình
(2,5)	2	tạo chu trình
(2,3)	3	X
(4,5)	3	X
(3,4)	4	
(3,5)	5	

Thảo luận & bài tập (1/1)

* Một số bài toán:

- 1. Thuật toán Kruskal có thể sử dụng để kiểm tra tính liên thông hay không?
- 2. Làm thế nào để tìm cây khung cực tiểu với điều kiện nó phải chứa (các) cạnh cho trước nào đó?
- 3. Nên biểu diễn đồ thị dưới dạng nào (ma trận trọng số, danh sách kề, danh sách cạnh) để hỗ trợ tốt cho các thuật toán Prim và Kruskal?
- 4. Độ phức tạp tính toán của 2 thuật toán này?
- 5. Xây dựng thuật toán kiểm tra đồ thị có chứa chu trình (đơn) hay không?
- 6. Cài đặt các thuật toán trên máy tính?