Number systems, digital number representations and Boolean logic

How a computer deals with numbers

Questions: raise your hand or type in at https://onlinequestions.org

Event number: 17582

Learning goals

Understand Binary and hexadecimal number systems

• Understand basic encodings including bits, bytes, words, floats.

Understand simple logical circuits and Boolean logic

Number systems in human culture

- A number system defines how to represent numbers using symbols sequences.
 - It defines the radix (the base number)
 - It defines a writing order (where goes the most and least significant digit)
- Decimal (10) system (most modern cultures)
 - Radix 10, 10 symbols (0...9)
 - Most significant (left) to least (right)
 - Example: $126 \rightarrow 1*10^2 + 2*10^1 + 6*10^0$
- Dozenal (12) (middle ages Europe, Romans)
 - Radix 12, 12 symbols (0..9, A, B)
 - Most significant (left) to least (right)
 - Example: A6 \rightarrow 10*12^1 + 6*12^0 (same quantity as 126 decimal)

Number systems in computers

- Computers work with discrete electric signals.
- Fundamentally, digital hardware works only with
 - 0 (low voltage) and 1 (high voltage)
 - Alternation of the voltage generates a signal, e.g., 01001011
 - Storage of signals also uses high and low voltages
 - See the course essentials for (much more) detail.
- What is important is that your computer works with these signal:
 - Using the binary number system, and
 - binary logic

Binary number system and number representations

The binary number system

- Radix 2, 2 symbols (0,1)
- Most significant (left) to least significant (right).
- Example: $1101 \rightarrow 1*2^3 + 1*2^2 + 0*2^1 + 1*2^0 (=13 \text{ decimal})$

- Calculations in the binary system
- Addition: 101 + 101 = 1010
- Subtraction: 1101 10 = 1011
- Multiplication: 11 * 110 = (110 + 1100) = 10010

Bits and bytes

- A single binary digit is called a bit
 - 0 or 1
- When you store 8 bits, we call this a byte
 - 11111111 (255 in decimal)
- And then we use the standard Greek extensions for sizes
 - Kilo (1000), Mega (1000000), Giga (100000000)
 - Except that in Computer Science we use the nearest powers of 2
 - Kilo, 2^10: 1024
 - Mega 2^20: 1048576
 - Giga 2^30: 1024* 1048576 = 1073741824
- How many bytes is your computer's RAM? And bits?

The Hexadecimal number system

- Problems with binary and decimal number systems
 - the decimal system and the binary system have a rather incompatible Radix (10 is not a power of 2) hence they do not convert well.
 - writing down binary numbers is cumbersome as they take up lots of space.
 - Humans are not good at "reading the matrix" (watch the movie!)
- So the Hexadecimal number system is often used:
 - Radix 16 (0...9, A...F)
 - Most significant (left) to least significant (right).
 - Example FF \rightarrow 15*16^1 + 15*16^0 = 255 (decimal) or 1111 1111 (binary)
- Binary data is easy to represent in hex form:
 - 1101 0111 \rightarrow D7
 - $11110010 \rightarrow F2$
 - 1101 0111 1111 0010 → D7 F2

Number representations in computing

- Careful: number representation is not the same as number system
 - all number representations in computers use the binary system!
- Number representations are about binary representations of common mathematical number types
 - Natural numbers, N
 - Integers, \mathbb{Z}
 - Real numbers, \mathbb{R}
- Computers use standards for representing these numbers
 - Unsigned integer = binary representation → N
 - Signed integer = signed binary with two's complement $\rightarrow \mathbb{Z}$
 - Floating point = exponent plus mantissa $\rightarrow \mathbb{R}$

Unsigned and signed integers

- Important: assume 8 bits for the number representation
- Unsigned integers (positive numbers including 0)
 - Simple binary representations
 - Most to least significant bits 00011011 → 27
- Signed integers (sign bit, then two's complement)
 - 1 sign bit (leftmost), then number bits (most to least)
 - Positive numbers, just as unsigned integers:
 - **0** 0011011 \rightarrow 27
 - Negative numbers use first bit 1 then two's complement
 - **1** 1100101 \rightarrow -27
 - Subtract 1 from absolute number, then invert (XOR)
 - Why: so that addition and subtraction is still properly defined:
 - 00011011 + 11100101 = 000000000 = 0 = 27 27

n1	n2	n1+n2
00000011 (3)	11111101 (-3)	00000000 (0)
00001000 (8)	11110111 (-9)	11111111 (-1)
00010100 (20)	11111011 (-5)	00001111 (15)

- What is 10000000 in two's complement signed integer in decimal value?
- How do you represent -15?

Words and Longs

- Some languages / computers distinguish between 8, 16 and 32 bit integer sizes
- An **8-bit integer (**1 byte) stores values from:
 - Unsigned: 0 to 255
 - Signed: -128 to +127 (using two's complement)
- A word is typically a 16-bit (2 bytes) integer:
 - Unsigned: 0 to 65,535
 - Signed: -32,768 to +32,767
- A **long** is often a 32-bit (4 bytes) integer:
 - Unsigned: 0 to 4,294,967,295
 - Signed: -2,147,483,648 to +2,147,483,647

Floating points

- Again assume 8 bits for the representation
- The problem with integers: loads of bits to represent large numbers.
 - E.g. the number 1230000000 would need at least 30 bits (10^9 in binary notations would need log2(10^9) digits at minimum)
 - But, if an approximation is ok, the precision we need is only 3 decimal digits, which would fit in 1 byte!
 - So, sometimes better to represent the precision and the exponent! Floating points to the rescue!
- Floating point 8 bit (minifloat standard, not official!).
 - 1 sign bit (1 is negative)
 - 3 exponent bits (-3 to +3, 000 110)
 - 4 mantissa (precision) bits
 - (-1)^Sign * 1.mantissa * 2^(exponent bias)
- Trade-off between bit-for-bit accuracy in favor of compactness and dynamic range

Floating point examples

- Formula: (-1)^Sign * 1.mantissa * 2^(exponent bias) = decimal
- 0 100 1000 \rightarrow ?:
 - Sign = positive
 - Exponent = 4 (-3 for bias range) = 1
 - Mantissa = 1.1000 (pay attention to the leading binary 1 used to represent more precision) = 1.5 (decimal)
 - $(-1)^0 * 1.5 * 2^1 = 1 * 1.5 * 2 = 3$
- -0.45 → ?
 - Sign = negative → sign bit = 1
 - Write the number in normalized binary form.
 - Mantissa (repeat times 2 to retrieve the powers of 2 in the fraction) 0.45 = 0.011100...
 - Normalized 1.1100 * 2^-2 (if you shift to the left 2 times, you end up at 1.XXXX)
 - Exp of normalized form = -2 so -2+3=1=001
 - 1 001 1100, which is -0.4375 and closest possible to original

Boolean (or binary) logic

Boolean logic

- Very often when you program you need to check for things:
 - If the user presses a Buy button and there is an item in the basket then order the item
- This assumes you understand Boolean logic
 - This will be covered in much more detail in the courses Essentials and Logic 1, but you need to know the basics now.
- Boolean logic is a set of rules about operations you can do on symbols that are either True or False
- Computers represent False as 0 and True as 1.
- Important mental note for later: programming languages represent True and False more flexibly
 - True = 1 bit, False = 0 bit, or,
 - Any number not 0 = True, otherwise False
 - A variable that is not defined is False, one that is defined = True
 - Etc...

Boolean logic example

• If the-user-presses-a-Buy-button and there-is-an-item-in-the-basket then order the item

- If buyButtonPressed() and itemInBasket() then orderBasket()
- If BP and IB then OB
- (BP & IB) → OB
- This says, if BP is True and IB is True then OB must be true as well

Boolean logic operators

Operator	Symbol	Meaning	Remark
AND	ΑΛВ	A and B must both be True	In programming we use &
OR	AVB	A or B or both are True	In programming we use
NOT	¬ A	A is False (inverts truth value)	In programming we use!
XOR	А⊕В	A or B is True but not both	In programming we use ^ but this can also be power so be careful
NAND (NOT AND)	A⊼B	NOT (A AND B)	Used in hardware (generic)
NOR (NOT OR)	A⊽B	NOT (A OR B)	Used in hardware (generic)
IF (implication)	A→B	if A is true then B must be true, otherwise the operator decides True (don't care if A is false)	Used in Logic and in programming we use <i>then</i> to define what to do when the if is True
IFF (if and only if)	A↔B	B is True only if A is True	Mostly used in logic, not so much in programming

Logic systems and Truth tables

- If buyButtonPressed() and itemInBasket() then orderBasket()
- A way to "proof" if a set of logical sentences is ever True is by enumeration
 - List all combinations of True/False values for all symbols
 - Add the rules as columns to the table
 - Check where all rules are True
- See table right, proofing that indeed
 - We only order when the rule is true

ВР	IB	ОВ	BP ∧ IB	$(BP \land IB) \leftrightarrow OB$
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	0
1	1	0	1	0
1	1	1	1	1

Questions and exercise.

See Brightspace (or for those without access use the following QR)

