2020 级理科数学分析 (II) 期终考试试题 A 卷

座号_		班级		学号			姓名			
题 号	1	2	3	4	5	6	7	8		
得分										
签 名										

1. (10分)

- (1) 已知 $\triangle ABC$ 的三个顶点为 A(1,1,0), B(1,-1,2) 和 C(2,3,1). 求 $\triangle ABC$ 的面积.
- (2) 求过点 (-3,2,4) 且垂直于平面 2x+y-z-4=0 的直线方程,并求出此直线与平面 x-2y+3z=0 的交点.

2. (16分)求下列函数的偏导数

(1) 设
$$z = \ln(x + y^2)$$
, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 和 $\frac{\partial^2 z}{\partial x \partial y}$.

(2) 设函数
$$z = z(x, y)$$
 由方程 $x^2 + 2y^2 + 3z^2 + xy - z - 9 = 0$ 确定,求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 和 $\frac{\partial^2 z}{\partial x^2}$.

3. (15分)

(1) 求二重积分
$$I = \iint_D xydxdy$$
,其中 D 为由 $xy = 1, x + y = \frac{5}{2}$ 所围的区域.

(2) 求三重积分
$$I = \iiint_{\Omega} \sqrt{x^2 + y^2} dx dy dz$$
, 其中 Ω 为由 $x^2 + y^2 = z^2, z = 1$ 所围区域.

(3) 求第二型曲面积分
$$I = \iint_S x^2 dy dz + y^2 dz dx + z^2 dx dy$$
, 其中 S 为 $x^2 + y^2 + z^2 = 1$ 外侧.

4. (10 分) 求 $f(x) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$ 的极值.

- 5. (15 分)(1) 求幂级数 $\sum_{n=1}^{+\infty} \frac{3^n + (-2)^n}{n} (x+1)^n$ 的收敛半径,收敛域.
- (2) 求幂级数 $\sum_{n=0}^{+\infty} (n+1)x^{2n}$ 的和函数表达式.

6. (12 分) 设
$$f(x) = \frac{1}{x^2 + 4x + 7}$$
.

- (1) 求 f(x) 在 x = -2 的 Taylor 级数展开式;
- (2) 求 $f^{(10)}(-2)$.

7. (12 分) 证明: 证明: $\int_{1}^{+\infty} \frac{e^{\sin x} \cos x}{x^{p}} dx$ 当 p > 1 时绝对收敛; 当 0 时条件收敛; 当 <math>p < 0 时发散.

8. (10 分) 设 $a_n = \int_0^{\frac{\pi}{4}} \tan^n x dx$

(2)证明:对任意的正数 p, $\sum_{n=1}^{+\infty} \frac{a_n}{n^p}$ 收敛.