

FUCO5A - Análise De Circuitos Elétricos 1Aula 02

Professor: Renan Silva Maciel

e-mail: renansmaciel@utfpr.edu.br

(slides adaptados de AC64-2018/1 – Prof. Maurício Zardo)

Tópicos:

- Introdução à teoria de circuitos;
- Sistema de unidades;
- Tensão e corrente elétrica;
- Potência e energia

O que são circuitos elétricos ?

 Uso em comunicação ou transmissão de energia de um ponto a outro.

- Interconexão entre componente ou dispositivos elétricos.
- Cada componente do circuito é denominado elemento.

Importância de Circuitos:

 Geração de energia, máquinas elétricas, controle, eletrônica, comunicações e instrumentação.

Circuitos - Análise x Projeto:

- Como ele responde a uma determinada entrada?
- Como os elementos e dispositivos interconectados interagem no circuito?

- Engenharia e Solução de Problemas:
 - Análise, Planejamento, Experiência

Conceitos básicos:

- Carga;
- Corrente;
- Tensão;
- Potência e energia.

Sistemas de unidades

- Quantidades mensuráveis em uma linguagem-padrão.
- O Sistema Internacional de Unidades (SI), adotado pela Conferência Geral de Pesos e Medidas em 1960.

Tabela 1.1	•	As seis t	unidades	SI	básicas	e u	ma	unidade	relevante	usada ne	este
livro.											

Quantidade	Unidade básica	Símbolo
Comprimento	metro	m
Massa	quilograma	kg
Tempo	segundo	S
Corrente elétrica	ampère	A
Temperatura termodinâmica	kelvin	K
Intensidade luminosa	candela	cd
Carga	coulomb	С

Sistemas de unidades – prefixos

Multiplicador	Prefixo	Símbolo
10 ¹⁸	exa	Е
10 ¹⁵	peta	P
10 ¹²	tera	T
10 ⁹	giga	G
10 ⁶	mega	M
10 ³	quilo	k
10^{2}	hecto	h
10	deka	da

Multiplicador	Prefixo	Símbolo
10 ⁻¹	deci	d
10-2	centi	с
10^{-3}	mili	m
10 ⁻⁶	micro	μ
10 ⁻⁹	nano	n
10^{-12}	pico	р
10 ⁻¹⁵	femto	f
10 ⁻¹⁸	atto	a

• Carga elétrica:

Carga é uma propriedade elétrica das partículas atômicas que compõem a matéria, medida em coulombs (C).

- É o princípio fundamental para explicar todos os fenômenos elétricos (interações eletromagnéticas).
- Quantidade mais elementar em um circuito elétrico é a carga elétrica.

Fluxo de cargas elétricas:

 Ela pode ser transferida de um lugar a outro, onde pode ser convertida em outra forma de energia.

A lei da conservação das cargas: cargas não podem ser criadas nem destruídas, apenas transferidas. Portanto, a soma algébrica das cargas elétricas de um sistema não se altera.

Corrente elétrica:

Corrente elétrica é o fluxo de carga por unidade de tempo, medido em ampères (A).

- Por convenção, o fluxo da corrente é aquele das cargas positivas - Benjamin Franklin (1706 - 1790).
- Corrente em condutores metálicos se deve a elétrons carregados negativamente.

Corrente elétrica:

- A corrente é medida em ampéres (A) é1 ampére = 1 coulomb/segundo
- A carga transferida entre o instante t_0 e o instante t é obtida integrando ambos os lados da equação:

$$Q \triangleq \int_{t_0}^t i \, dt$$

Corrente contínua (CC):

- É uma corrente que permanece constante ao longo do tempo.
- Pode-se assumir por convenção: I para corrente invariante no tempo e i (ou i(t)) para corrente variante no tempo
- Essa convenção será usada parcialmente neste curso

Sentido de fluxo da corrente:

- Uma corrente de 5A poderia ser representada positiva ou negativamente.
- Uma corrente negativa de –5A fluindo em um determinado sentido, é a mesma que uma corrente de +5A fluindo no sentido oposto.

Tensão:

- Para deslocar o elétron em um condutor a determinado sentido é necessário algum trabalho ou transferência de energia.
- Esse trabalho é realizado por uma força eletromotriz (FEM), também é conhecida como tensão ou diferença de potencial.

• Tensão v_{ab} entre dois pontos a e b:

Tensão (ou **dif. de potencial**) é a energia necessária para deslocar uma carga unitária através de um elemento, em volts (V).

$$v_{ab} \stackrel{\Delta}{=} \frac{dw}{dq}$$

- − w é a energia em joules (J)
- -q é a carga em coulombs (C).
- <Alessandro Antonio Volta (1745-1827)>

$$1 V = 1 J/C = 1 N.m/C$$

Os sinais (+) e (-) são usados para definir sentido referencial da polaridade da tensão:

$$v_{ab} = -v_{ba}$$

- o ponto a se encontra a um potencial de v_{ab} volts mais alto que o ponto b, ou o potencial no ponto a em relação ao ponto b é v_{ab} .

- (a) o ponto a se encontra + 9V acima do ponto b:
 - existe uma *queda de tensão* de 9V de *a* para *b* ou, de forma equivalente, uma *elevação de tensão* de *b* para *a*.
- (b) o ponto b se encontra -9V acima do ponto a.

 Uma queda de tensão de a para b é equivalente a uma elevação de tensão de b para a.

Analogia Tensão x Corrente:

 Corrente e tensão são as duas variáveis básicas em circuitos elétricos.

Analogia Tensão x Corrente:

Potência:

Diferença entre lâmpadas de 100 W e 60 W?

 Contas de luz: pagas pela energia elétrica consumida ao longo de certo período.

Potência é a velocidade com que se consome ou se absorve energia, em watts (W).

Potência:

$$p \triangleq \frac{dw}{dt}$$

 onde p é a potência em watts (W), w é a energia em joules (J) e t é o tempo em segundos (s).

Segue que

$$p = \frac{dw}{dt} = \frac{dw}{dq} \cdot \frac{dq}{dt} = vi$$

(potência instantânea)

p = vi

Potência Absorvida e Fornecida:

 Se a potência tem um sinal +, ela está sendo absorvida pelo elemento.

 Se a potência tiver um sinal –, a potência está sendo fornecida pelo elemento. Convenção de sinal passivo:

– A corrente entra pela polaridade positiva da tensão:

A **convenção de sinal passivo** é realizada quando a corrente entra pelo terminal positivo de um elemento e p = +vi. Se a corrente entra pelo terminal negativo, p = -vi.

Convenção de sinal passivo:

- -p = +vi ou vi > 0, elemento está absorvendo potência.
- -p = -vi ou vi < 0, o elemento está fornecendo potência.

• Em geral:

+ Potência absorvida = - Potência fornecida

• *Lei da conservação da energia* em circuito elétrico.

$$\sum p = 0$$

• A energia absorvida ou fornecida por um elemento do instante t_0 ao instante t é

$$w = \int_{t_0}^t p \, dt = \int_{t_0}^t vi \, dt$$

- Energia é a capacidade de realizar trabalho e é medida em joules (J).
- As concessionárias de energia elétrica medem a energia em watts-hora (Wh), em que

$$1 \text{ Wh} = 3.600 \text{ J}$$

 Exemplo - Elemento com absorção de potência de 12 W:

(a)
$$p = 4 \times 3 = 12 W$$
;

(b)
$$p = 4 \times 3 = 12 W$$
.

