۱ جلسهی بیست و پنجم

 $\sum_{n=1}^{\infty} \frac{1}{n^{!}}$ بررسی علت واگرائی سری $\sum_{n=1}^{\infty} \frac{1}{n}$ و علت همگرائی سری

توجه ١.

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{Y} + (\frac{1}{Y} + \frac{1}{Y}) + (\frac{1}{\Delta} + \frac{1}{Y} + \frac{1}{Y}) + (\frac{1}{\Delta} + \frac{1}{Y} + \frac{1}{Y}) + (\frac{1}{A} + \frac{1}{Y} + \frac{1}{Y} + \frac{1}{Y} + \frac{1}{Y} + \frac{1}{Y} + \frac{1}{Y}) + \dots$$

$$\sum_{n=1}^{\infty} \frac{1}{n} \geqslant 1 + \frac{1}{Y} + (\frac{1}{Y} + \frac{1}{Y}) + (Y \times \frac{1}{A}) + (A \times \frac{1}{Y}) + (Y \times \frac{1}{Y}) + \dots$$

$$\sum_{n=1}^{\infty} \frac{1}{n} \geqslant 1 + \frac{1}{Y} + \frac{1}{Y} + \frac{1}{Y} + \frac{1}{Y} + \dots$$

$$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n} \mapsto \infty$$

پس این سری واگراست.

توجه ۲.

$$\sum_{n=1}^{\infty} \frac{1}{n^{7}} = 1 + (\frac{1}{Y^{7}} + \frac{1}{Y^{7}}) + (\frac{1}{Y^{7}} + \frac{1}{A^{7}} + \frac{1}{Y^{7}} + \frac{1}{Y^{7}}) + (\frac{1}{Y^{7}} + \frac{1}{Y^{7}} + \frac{1}{Y^$$

پس این سری همگراست.

نکته ۳. به طور کلی سری $\sum_{n=1}^{\infty} \frac{1}{n^p}$ واگراست اگر و تنها اگر p < 1. پس برای p > 1 این سری همگراست و برای $p \leqslant 1$ واگراست.

مثال ۴. $\sum_{n=1}^{\infty} \frac{1}{n^n}$ همگراست یا واگرا؟

پاسخ.

$$\sum_{n=1}^{\infty} \frac{1}{n^{\mathsf{r}}} \leqslant \sum_{n=1}^{\infty} \frac{1}{n^{\mathsf{r}}}$$

چون $\sum_{n=1}^\infty \frac{1}{n^{ ext{r}}}$ همگراست پس نتیجه می شود که $\frac{1}{n^{ ext{r}}} \sum_{n=1}^\infty \frac{1}{n^{ ext{r}}}$ نیز پیوسته است.

مثال ۵. $\frac{1}{\sqrt{n}}$ همگراست یا واگرا؟

پاسخ.

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \geqslant \sum_{n=1}^{\infty} \frac{1}{n}$$

چون $rac{1}{\sqrt{n}}$ واگراست پس نتیجه می شود که $rac{1}{n}$ نیز واگراست.

مثال ۶. $\sum_{n=1}^{\infty} \frac{1}{n^{7}+1}$ همگراست یا واگراست؟

پاسخ.

$$\sum_{n=1}^{\infty} \frac{1}{n^{\mathsf{Y}} + 1} \leqslant \sum_{n=1}^{\infty} \frac{1}{n^{\mathsf{Y}}}$$

 \square چون $\sum_{n=1}^{\infty} \frac{1}{n^{7}+1}$ نیز همگراست. چون $\sum_{n=1}^{\infty} \frac{1}{n^{7}}$ نیز همگراست.

قضیه ۷. فرض کنید $a_n \leqslant b_n$ و $a_n \leqslant b_n$ در سری با جملات نامنفی باشند. اگر $a_n \leqslant b_n$ و $a_n \leqslant b_n$ و $a_n \leqslant b_n$ و اگرا باشد $\sum_{n=.}^{\infty} a_n$ همگرا باشد، آنگاه $a_n \geqslant b_n$ همگراست. اگر $a_n \geqslant b_n$ و اگراست. آنگاه $a_n \geqslant b_n$ و اگراست.

مثال ٨. سرى زير همگراست يا واگرا؟

$$\sum_{n=1}^{\infty} \frac{\Delta}{\mathsf{T}n^{\mathsf{T}} + \mathsf{T}n + \mathsf{T}}$$

پاسخ.

$$\sum_{n=1}^{\infty} \frac{\Delta}{\mathsf{Y} n^{\mathsf{Y}} + \mathsf{Y} n + \mathsf{Y}} \leqslant \sum_{n=1}^{\infty} \frac{\Delta}{\mathsf{Y} n^{\mathsf{Y}}} = \frac{\Delta}{\mathsf{Y}} \sum_{n=1}^{\infty} \frac{\mathsf{Y}}{\mathsf{Y} n^{\mathsf{Y}}}$$

چون $\sum_{n=1}^{\infty} \frac{\delta}{n^{\intercal}+ ^{\intercal}n+ ^{\intercal}}$ همگراست پس جون $\sum_{n=1}^{\infty} \frac{\delta}{n^{\intercal}+ ^{\intercal}n+ ^{\intercal}}$ نیز همگراست.

تمرین ۹. نشان دهید که $\frac{\ln k}{k}$ واگراست.

$$\frac{\ln k}{k} > \frac{\ln e}{k} = \frac{1}{k}$$

یک تابع صعودی است. میخواهیم $\ln k > \ln e$ پس k > e در نتیجه k > 0 در $\ln x$ جملهی سوم به بعد عناصر سری از $\frac{1}{k}$ بیشترند، پس این سری واگراست.

 $\sum_{n=.}^{\infty} a_n$ است آنگاه $l \neq \infty$ و $l > \cdot$ و $\lim_{n \to \infty} \frac{a_n}{b_n} = l$ و $a_n, b_n \geqslant \cdot$ است آنگاه $\sum_{n=.}^{\infty} b_n$ همگراست اگر و تنها اگر $\sum_{n=.}^{\infty} b_n$ همگراست اگر و تنها اگر م

مثال ۱۱. $\sum_{n=1}^{\infty} \frac{1}{n^{7}-1}$ همگراست یا واگرا؟

$$b_n = \frac{1}{n^{7}}$$

می دانیم که سری $\frac{1}{n^{\gamma}}$ همگراست.

$$a_n = \frac{1}{n^{\gamma} - 1}$$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^{\mathsf{r}}}{n^{\mathsf{r}} - \mathsf{r}} = \mathsf{r}$$

پس بنا به آزمون مقایسهی حدی سری $\sum_{n=1}^{\infty} \sum_{n} d^{2}$ همگراست.

مثال ۱۲. $\frac{1}{n^{\gamma}-n}$ مثال ۱۲. $\frac{1}{n^{\gamma}-n}$ همگراست یا واگرا؟

پاسخ.

$$\frac{1}{n^{\gamma} - n} = \frac{1}{n(n-1)} = \frac{1}{n-1} - \frac{1}{n}$$

$$\sum_{n=\gamma}^{\infty} \frac{1}{n^{\gamma} - n} = \sum_{n=\gamma}^{\infty} \left(\frac{1}{n-1} - \frac{1}{n}\right)$$

$$s_{\gamma} = \left(1 - \frac{1}{\gamma}\right) + \left(\frac{1}{\gamma} - \frac{1}{\gamma}\right) + \left(\frac{1}{\gamma} - \frac{1}{\gamma}\right) = 1 - \frac{1}{\gamma}$$

$$s_{m} = \left(1 - \frac{1}{\gamma}\right) + \left(\frac{1}{\gamma} - \frac{1}{\gamma}\right) + \left(\frac{1}{\gamma} - \frac{1}{\gamma}\right) + \dots + \left(\frac{1}{m-1} - \frac{1}{m}\right) = 1 - \frac{1}{m}$$

$$\lim_{m \to \infty} s_{m} = 1$$

پس سری مورد نظر همگراست.

نکته ۱۳.

$$\sum_{k=1}^{n} (a_k - a_{k+1}) = a_1 - a_{n+1}$$

مثال ۱۴ مثال مثال مثال $\sum_{n=1}^{\infty} \frac{1}{n^{7}-1}$ همگراست یا واگرا؟

پاسخ.

$$\sum_{n=1}^{\infty} \frac{1}{n^{7}-1} = \frac{1}{7} \sum_{n=1}^{\infty} \left(\frac{1}{1-n} - \frac{1}{n+1} \right) = \frac{1}{7} \sum_{n=1}^{\infty} \left(\frac{1}{1-n} - \frac{1}{n} + \frac{1}{n} - \frac{1}{n+1} \right) = \frac{1}{7} \sum_{n=1}^{\infty} \left(\frac{1}{1-n} - \frac{1}{n} \right) + \underbrace{\frac{1}{7} \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right)}_{B}$$

قسمت A همانند مثال قبل حل می شود و همگراست. قسمت B نیز همگراست:

$$s_m = \sum_{n=1}^m (\frac{1}{n} - \frac{1}{n+1}) = \frac{1}{1} - \frac{1}{m+1}$$

$$\lim_{m \to \infty} s_m = \frac{1}{1}$$

پس B نیز همگراست.

مثال ۱۵. واگرایی و همگرایی $\sum_{n=1}^{\infty} \frac{1}{\mathsf{Y}^n-\mathsf{Y}}$ را بررسی کنید.

پاسخ. می دانیم که $\sum_{n=1}^{\infty} \frac{1}{7^n}$ همگراست.

$$\lim_{n\to\infty}\frac{\mathbf{Y}^n}{\mathbf{Y}^n-\mathbf{Y}}=\mathbf{Y}$$

پس بنا به آزمون مقایسهی حدی $\frac{1}{\mathsf{r}^n-\mathsf{l}}$ همگراست.

۱.۱ آزمون نسبت

 $\lim_{n \to \infty} rac{a_{n+1}}{a_n} = l$ کنید $\sum_{n=1}^\infty a_n$ یک سری با جملات نامنفی باشد. فرض کنید

انگاه $\sum a_n$ همگراست. اگر ا

راست.
$$\sum a_n$$
 واگراست. $l > \infty$ یا $l > 1$ واگراست.

۳. اگر l=1 این آزمون هیچ نتیجهای بدست نمی دهد.

مثال ۱۶. نشان دهید که $\sum_{n=1}^{\infty} \frac{1}{n!}$ همگراست.

پاسخ.

$$a_n = \frac{1}{n!}$$
 , $a_{n+1} = \frac{1}{(n+1)!}$
$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{1}{(n+1)!}}{\frac{1}{n!}} = \lim_{n \to \infty} \frac{n!}{(n+1)!} = \lim_{n \to \infty} \frac{n!}{(n+1)!} = \lim_{n \to \infty} \frac{n!}{(n+1)!} = \lim_{n \to \infty} \frac{1}{(n+1)!} = \lim_{n$$

$$\sum_{n=\cdot}^{\infty} \frac{1}{n!} = 1 + \frac{1}{1!} + \frac{1}{1!} + \frac{1}{1!} + \frac{1}{1!} + \frac{1}{1!} + \dots$$

(عدد نپر)
$$e:=\sum_{n=1}^{\infty}\frac{1}{n!}=e^{1}$$

نکته ۱۷.

$$\sum_{n=1}^{\infty} \frac{1}{n^{r}} = \frac{\pi^{r}}{s}$$
 اویلر

مثال ۱۸. نشان دهید که برای هر عدد دلخواه $\sum_{n=-\infty}^{\infty} \frac{x^n}{n!}$ همواره همگراست.

پاسخ.

$$\sum_{n=\cdot}^{\infty} \frac{x^n}{n!} = 1 + \frac{x}{1!} + \frac{x}{1!} + \frac{x}{1!} + \frac{x}{1!} + \frac{x}{1!} + \frac{x}{1!} + \dots$$

$$a_n = \frac{x^n}{n!} \quad , \quad a_{n+1} = \frac{x^{n+1}}{(n+1)!}$$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{x^{n+1}}{(n+1)!}}{\frac{x^n}{n!}} = \lim_{n \to \infty} \frac{x^{n+1}n!}{x^n(n+1)!} = \lim_{n \to \infty} \frac{x}{n+1} = \cdot < 1$$

$$\lim_{n \to \infty} \frac{x}{n+1} = \cdot < 1$$

تابع زیر را در نظر بگیرید:

$$x \stackrel{e^x}{\mapsto} 1 + x + \frac{x^{\mathsf{r}}}{\mathsf{r}!} + \frac{x^{\mathsf{r}}}{\mathsf{r}!} + \dots$$

به تابع فوق، تابع نمایی گفته میشود.

در درسهای آینده خواهیم دید که نمایش سری تیلور تابع e^x برابر است با

$$e^x = 1 + x + \frac{x^{\mathsf{r}}}{\mathsf{r}!} + \frac{x^{\mathsf{r}}}{\mathsf{r}!} + \dots$$