Matemáticas Discretas

Clase 2: Lógica Proposicional

Andrés Abeliuk

Departamento de Ciencias de la Computación Universidad de Chile

^{*}Estas diapositivas fueron diseñadas a partir de diapositivas del profesor Alejandro Hevia y Federico Olmedo.

Recapitulación

Sintaxis

Definición (sintaxis de la lógica proposicional)

Dado un conjunto $P = \{p, q, r, ...\}$ de proposiciones, el conjunto de fórmulas bien formadas sobre P, notado $\mathcal{L}(P)$, se define recursivamente (o inductivamente) de la siguiente manera:

Caso base: Si $p \in P$, entonces $p \in \mathcal{L}(P)$. Caso inductivo: Si $\alpha, \beta \in \mathcal{L}(P)$, entonces $(\neg \alpha)$, $(\alpha \land \beta)$, $(\alpha \lor \beta)$, $(\alpha \to \beta) \in \mathcal{L}(P)$.

Observacion: El lenguaje se puede definir como una gramática libre de contexto:

$$S \rightarrow p \mid q \mid r \mid \ldots \mid \neg S \mid (S \land S) \mid (S \lor S) \mid (S \rightarrow S)$$

2

Semántica

Definición (semántica de la lógica proposicional)

Sea

$$\sigma\colon P\to\{0,1\}$$

una valuación de las proposiciones en $P = \{p, q, r, ...\}$, es decir una función que le asigna un valor de verdad a las proposiciones en P. La función

$$\hat{\sigma} \colon \mathcal{L}(P) \to \{0,1\}$$

le asigna un valor de verdad a cada fórmula en $\mathcal{L}(P)$ de la siguiente manera:

$$\begin{array}{lll} \hat{\sigma}(p) & = & \sigma(p) \quad \text{para } p \in P \\ \hat{\sigma}(\neg \alpha) & = & 1 - \hat{\sigma}(\alpha) \\ \hat{\sigma}(\alpha \wedge \beta) & = & \min\left\{\hat{\sigma}(\alpha), \, \hat{\sigma}(\beta)\right\} \\ \hat{\sigma}(\alpha \vee \beta) & = & \max\left\{\hat{\sigma}(\alpha), \, \hat{\sigma}(\beta)\right\} \\ \hat{\sigma}(\alpha \rightarrow \beta) & = & \max\left\{1 - \hat{\sigma}(\alpha), \, \hat{\sigma}(\beta)\right\} \end{array}$$

3

Argumentos válidos

Premisas ⇒ Conclusion

- Un argumento es una secuencia de proposiciones.
- Todo menos la proposición final del argumento se llama premisas y la proposición final se llama conclusión.
- Un argumento se llama válido si, y solo si, siempre que todos los las premisas son verdaderas, la conclusión también es verdadera

Contenido clase de hoy

Lógica Proposicional

- 1. Clasificación de fórmulas
- 2. Equivalencia de fórmulas
- 3. Consecuencia lógica

Clasificación de fórmulas

Ahora ya podemos clasificar algunas de las fórmulas de la lógica proposicional de acuerdo a las siguientes definiciones:

Definición (satisfactibilidad)

Un conjunto de fórmulas $\Gamma = \{\alpha, \beta, \gamma, \ldots\} \subseteq \mathcal{L}(P)$ se dice satisfactible sii existe *alguna* valuación que hace a todas sus fórmulas simultáneamente verdaderas, es decir, sii¹ existe $\sigma \colon P \to \{0,1\}$ tal que $\hat{\sigma}(\alpha) = \hat{\sigma}(\beta) = \hat{\sigma}(\gamma) = \ldots = 1$.

En caso contrario se dice que Γ es insatisfactible.

¹De aquí en adelante vamos a usar "sii" como una abreviación de "si y sólo si".

Ahora ya podemos clasificar algunas de las fórmulas de la lógica proposicional de acuerdo a las siguientes definiciones:

Definición (satisfactibilidad)

Un conjunto de fórmulas $\Gamma = \{\alpha, \beta, \gamma, \ldots\} \subseteq \mathcal{L}(P)$ se dice satisfactible sii existe *alguna* valuación que hace a todas sus fórmulas simultáneamente verdaderas, es decir, sii¹ existe $\sigma \colon P \to \{0,1\}$ tal que $\hat{\sigma}(\alpha) = \hat{\sigma}(\beta) = \hat{\sigma}(\gamma) = \ldots = 1$.

En caso contrario se dice que Γ es insatisfactible.

Ejemplo

¹De aquí en adelante vamos a usar "sii" como una abreviación de "si y sólo si".

Ahora ya podemos clasificar algunas de las fórmulas de la lógica proposicional de acuerdo a las siguientes definiciones:

Definición (satisfactibilidad)

Un conjunto de fórmulas $\Gamma = \{\alpha, \beta, \gamma, \ldots\} \subseteq \mathcal{L}(P)$ se dice satisfactible sii existe *alguna* valuación que hace a todas sus fórmulas simultáneamente verdaderas, es decir, sii¹ existe $\sigma \colon P \to \{0,1\}$ tal que $\hat{\sigma}(\alpha) = \hat{\sigma}(\beta) = \hat{\sigma}(\gamma) = \ldots = 1$.

En caso contrario se dice que Γ es insatisfactible.

• $\{p \lor q\}$ satisfactible

¹De aquí en adelante vamos a usar "sii" como una abreviación de "si y sólo si".

Ahora ya podemos clasificar algunas de las fórmulas de la lógica proposicional de acuerdo a las siguientes definiciones:

Definición (satisfactibilidad)

Un conjunto de fórmulas $\Gamma = \{\alpha, \beta, \gamma, \ldots\} \subseteq \mathcal{L}(P)$ se dice satisfactible sii existe *alguna* valuación que hace a todas sus fórmulas simultáneamente verdaderas, es decir, sii¹ existe $\sigma \colon P \to \{0,1\}$ tal que $\hat{\sigma}(\alpha) = \hat{\sigma}(\beta) = \hat{\sigma}(\gamma) = \ldots = 1$.

En caso contrario se dice que Γ es insatisfactible.

• $\{p \lor q\}$ satisfactible

• $\{p \land q, p \land \neg q\}$ insatisfactible

 $^{^{1}\}mathrm{De}$ aquí en adelante vamos a usar "sii" como una abreviación de "si y sólo si".

Definición (tautología y contradicción)

Una fórmula $\alpha \in \mathcal{L}(P)$ es una tautología sii es *verdadera* bajo cualquier valuación, es decir, sii $\hat{\sigma}(\alpha) = 1$ para toda valuación $\sigma \colon P \to \{0,1\}$.

Definición (tautología y contradicción)

Una fórmula $\alpha \in \mathcal{L}(P)$ es una tautología sii es *verdadera* bajo cualquier valuación, es decir, sii $\hat{\sigma}(\alpha) = 1$ para toda valuación $\sigma \colon P \to \{0,1\}$.

Una fórmula $\alpha \in \mathcal{L}(P)$ es una contradicción sii es *falsa* bajo cualquier valuación, es decir, sii $\hat{\sigma}(\alpha) = 0$ para toda valuación $\sigma \colon P \to \{0,1\}$.

7

Definición (tautología y contradicción)

Una fórmula $\alpha \in \mathcal{L}(P)$ es una tautología sii es *verdadera* bajo cualquier valuación, es decir, sii $\hat{\sigma}(\alpha) = 1$ para toda valuación $\sigma \colon P \to \{0,1\}$.

Una fórmula $\alpha \in \mathcal{L}(P)$ es una contradicción sii es *falsa* bajo cualquier valuación, es decir, sii $\hat{\sigma}(\alpha) = 0$ para toda valuación $\sigma \colon P \to \{0,1\}$.

Ejemplo

p ∨ ¬p es tautología

Definición (tautología y contradicción)

Una fórmula $\alpha \in \mathcal{L}(P)$ es una tautología sii es *verdadera* bajo cualquier valuación, es decir, sii $\hat{\sigma}(\alpha) = 1$ para toda valuación $\sigma \colon P \to \{0,1\}$.

Una fórmula $\alpha \in \mathcal{L}(P)$ es una contradicción sii es *falsa* bajo cualquier valuación, es decir, sii $\hat{\sigma}(\alpha) = 0$ para toda valuación $\sigma \colon P \to \{0,1\}$.

Ejemplo

- $p \lor \neg p$ es tautología
- $p o p \lor q$ es tautología

Definición (tautología y contradicción)

Una fórmula $\alpha \in \mathcal{L}(P)$ es una tautología sii es *verdadera* bajo cualquier valuación, es decir, sii $\hat{\sigma}(\alpha) = 1$ para toda valuación $\sigma \colon P \to \{0,1\}$.

Una fórmula $\alpha \in \mathcal{L}(P)$ es una contradicción sii es *falsa* bajo cualquier valuación, es decir, sii $\hat{\sigma}(\alpha) = 0$ para toda valuación $\sigma \colon P \to \{0,1\}$.

Ejemplo

- p ∨ ¬p es tautología
- $p \rightarrow p \lor q$ es tautología

• $p \land \neg p$ es contradicción

Definición (tautología y contradicción)

Una fórmula $\alpha \in \mathcal{L}(P)$ es una tautología sii es *verdadera* bajo cualquier valuación, es decir, sii $\hat{\sigma}(\alpha) = 1$ para toda valuación $\sigma \colon P \to \{0,1\}$.

Una fórmula $\alpha \in \mathcal{L}(P)$ es una contradicción sii es *falsa* bajo cualquier valuación, es decir, sii $\hat{\sigma}(\alpha) = 0$ para toda valuación $\sigma \colon P \to \{0,1\}$.

Ejemplo

- $p \lor \neg p$ es tautología
- $p \rightarrow p \lor q$ es tautología

• $p \land \neg p$ es contradicción

Ejercicio. ¿Qué relación hay entre las nociones de contradicción e (in)satisfactibilidad?

Equivalencia de fórmulas

Informalmente, dos fórmulas $\alpha, \beta \in \mathcal{L}(P)$ se dicen equivalentes si tienen la misma tabla de verdad. Formalmente:

Definición (equivalencia)

Dos fórmulas $\alpha, \beta \in \mathcal{L}(P)$ son (semánticamente) equivalentes, notado $\alpha \equiv \beta$, si y sólo si

$$\hat{\sigma}(\alpha) = \hat{\sigma}(\beta)$$

para toda valuación $\sigma \colon P \to \{0,1\}.$

Informalmente, dos fórmulas $\alpha, \beta \in \mathcal{L}(P)$ se dicen equivalentes si tienen la misma tabla de verdad. Formalmente:

Definición (equivalencia)

Dos fórmulas $\alpha, \beta \in \mathcal{L}(P)$ son (semánticamente) equivalentes, notado $\alpha \equiv \beta$, si y sólo si

$$\hat{\sigma}(\alpha) = \hat{\sigma}(\beta)$$

para toda valuación $\sigma \colon P \to \{0,1\}.$

Ejemplo Probar que $\neg(p \lor q) \equiv \neg p \land \neg q$.

Informalmente, dos fórmulas $\alpha, \beta \in \mathcal{L}(P)$ se dicen equivalentes si tienen la misma tabla de verdad. Formalmente:

Definición (equivalencia)

Dos fórmulas $\alpha, \beta \in \mathcal{L}(P)$ son (semánticamente) equivalentes, notado $\alpha \equiv \beta$, si y sólo si

$$\hat{\sigma}(\alpha) = \hat{\sigma}(\beta)$$

para toda valuación $\sigma \colon P \to \{0,1\}.$

Ejemplo Probar que $\neg(p \lor q) \equiv \neg p \land \neg q$.

р	q	$\neg(p \lor q)$	$\neg p \land \neg q$
1	1		
1	0		
0	1		
0	0		

Informalmente, dos fórmulas $\alpha, \beta \in \mathcal{L}(P)$ se dicen equivalentes si tienen la misma tabla de verdad. Formalmente:

Definición (equivalencia)

Dos fórmulas $\alpha, \beta \in \mathcal{L}(P)$ son (semánticamente) equivalentes, notado $\alpha \equiv \beta$, si y sólo si

$$\hat{\sigma}(\alpha) = \hat{\sigma}(\beta)$$

para toda valuación $\sigma \colon P \to \{0,1\}.$

Ejemplo Probar que $\neg(p \lor q) \equiv \neg p \land \neg q$.

р	q	$\neg(p \lor q)$	$\neg p \land \neg q$
1	1	0	0
1	0	0	0
0	1	0	0
0	0	1	1

Algunas equivalencias útiles

Leyes de De Morgan

$$\neg(p \land q) \equiv \neg p \lor \neg q$$
$$\neg(p \lor q) \equiv \neg p \land \neg q$$

Asociatividad de \land y \lor

$$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$$

 $p \vee (q \vee r) \equiv (p \vee q) \vee r$

Caracterización alternativa de \rightarrow

$$p \rightarrow q \equiv \neg p \lor q$$

Algunas equivalencias útiles

Leyes de De Morgan

$$\neg(p \land q) \equiv \neg p \lor \neg q$$
$$\neg(p \lor q) \equiv \neg p \land \neg q$$

Asociatividad de \land y \lor

$$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$$

 $p \vee (q \vee r) \equiv (p \vee q) \vee r$

Caracterización alternativa de \rightarrow

$$p \to q \equiv \neg p \lor q$$

Ejercicio: ¿Es \rightarrow es asociativo?

Ejercicio: ¿Es \rightarrow es asociativo?

$$\mbox{$\not :$} (p \rightarrow q) \rightarrow r \ \equiv \ p \rightarrow (q \rightarrow r) \ ?$$

Consecuencia lógica

Intuición

Llegamos a nuestra noción más importante, la que captura cuándo una conclusión sigue lógicamente o se deriva de un conjunto de premisas.

Sea Γ un conjunto de fórmulas (premisas) y α una fórmula (conclusión). Informalmente decimos que α es consecuencia lógica de Γ sii cada vez que las fórmulas en Γ son verdaderas, α también es verdadera.

En ese caso escribimos $\Gamma \models \alpha$.

Intuición

Llegamos a nuestra noción más importante, la que captura cuándo una conclusión sigue lógicamente o se deriva de un conjunto de premisas.

Sea Γ un conjunto de fórmulas (premisas) y α una fórmula (conclusión). Informalmente decimos que α es consecuencia lógica de Γ sii cada vez que las fórmulas en Γ son verdaderas, α también es verdadera.

En ese caso escribimos $\Gamma \models \alpha$.

Ejemplos

Modus ponens: $\{p, p \rightarrow q\} \models q$

Modus tollens: $\{\neg q, p \rightarrow q\} \models \neg p$

Transitividad del \rightarrow : $\{p \rightarrow q, q \rightarrow r\} \models p \rightarrow r$

Modus ponens: $\{p, p \rightarrow q\} \models q$

Modus ponens: $\{p, p \rightarrow q\} \models q$

р	q	$p \rightarrow q$	q
1	1	1	1
1	0	0	0
0	1	1	1
0	0	1	0

Modus ponens: $\{p, p \rightarrow q\} \models q$

р	q	$p \rightarrow q$	q
1	1	1	1
1	0	0	0
0	1	1	1
0	0	1	0

La única valuación donde $p \ y \ p \to q$ son verdaderas (primer fila de la tabla), q también es verdadera.

Modus ponens: $\{p, p \rightarrow q\} \models q$

р	q	$p \rightarrow q$	q
1	1	1	1
1	0	0	0
0	1	1	1
0	0	1	0

La única valuación donde p y $p \to q$ son verdaderas (primer fila de la tabla), q también es verdadera.

Modus tollens: $\{\neg q, p \rightarrow q\} \models \neg p$

Modus ponens: $\{p, p \rightarrow q\} \models q$

р	q	$p \rightarrow q$	q
1	1	1	1
1	0	0	0
0	1	1	1
0	0	1	0

La única valuación donde p y $p \to q$ son verdaderas (primer fila de la tabla), q también es verdadera.

Modus tollens: $\{\neg q, p \rightarrow q\} \models \neg p$

р	q	$\neg q$	p o q	$\neg p$
1	1	0	1	0
1	0	1	0	0
0	1	0	1	1
0	0	1	1	1

Modus ponens: $\{p, p \rightarrow q\} \models q$

р	q	$p \rightarrow q$	q
1	1	1	1
1	0	0	0
0	1	1	1
0	0	1	0

La única valuación donde p y $p \rightarrow q$ son verdaderas (primer fila de la tabla), q también es verdadera.

Modus tollens: $\{\neg q, p \rightarrow q\} \models \neg p$

р	q	$\neg q$	p o q	$\neg p$
1	1	0	1	0
1	0	1	0	0
0	1	0	1	1
0	0	1	1	1

La única valuación donde $\neg q$ y $p \rightarrow q$ son verdaderas (última fila de la tabla), $\neg p$ también es verdadera.

Definición formal

Consecuencia lógica

Sea Γ un conjunto de fórmulas (premisas) en $\mathcal{L}(P)$ y α una fórmula (conclusión) en $\mathcal{L}(P)$. Decimos que α es consecuencia lógica de Γ , notado $\Gamma \models \alpha$, sii para cada valuación $\sigma \colon P \to \{0,1\}$,

si
$$\hat{\sigma}(\Gamma)=1$$
, entonces $\hat{\sigma}(\alpha)=1$ $\widehat{\sigma}(\gamma)=1$ para cada $\gamma\in\Gamma$

Definición formal

Consecuencia lógica

Sea Γ un conjunto de fórmulas (premisas) en $\mathcal{L}(P)$ y α una fórmula (conclusión) en $\mathcal{L}(P)$. Decimos que α es consecuencia lógica de Γ , notado $\Gamma \models \alpha$, sii para cada valuación $\sigma \colon P \to \{0,1\}$,

si
$$\hat{\sigma}(\Gamma)=1,$$
 entonces $\hat{\sigma}(lpha)=1$ $\widehat{\sigma}(\gamma)=1$ para cada $\gamma\in\Gamma$

Nota: No nos importan aquellas valuaciones σ donde $\hat{\sigma}(\Gamma) \neq 1$. El valor de α en esas valuaciones es irrelevante.

Para todo conjunto de fórmulas Γ en $\mathcal{L}(P)$ y todo par de fórmulas α, β en $\mathcal{L}(P)$, se cumple que:

 $\bullet \quad \alpha \equiv \beta \text{ si y s\'olo si } \{\alpha\} \models \beta \text{ y } \{\beta\} \models \alpha.$

- $\alpha \equiv \beta$ si y sólo si $\{\alpha\} \models \beta$ y $\{\beta\} \models \alpha$.
- $\Gamma \models \alpha$ si y sólo si $\Gamma \cup \{\neg \alpha\}$ es insatisfactible.

- $\alpha \equiv \beta$ si y sólo si $\{\alpha\} \models \beta$ y $\{\beta\} \models \alpha$.
- $\Gamma \models \alpha$ si y sólo si $\Gamma \cup \{\neg \alpha\}$ es insatisfactible.
- $\Gamma \models \alpha \rightarrow \beta$ si y sólo si $\Gamma \cup \{\alpha\} \models \beta$ (regla de deducción).

- $\alpha \equiv \beta$ si y sólo si $\{\alpha\} \models \beta$ y $\{\beta\} \models \alpha$.
- $\Gamma \models \alpha$ si y sólo si $\Gamma \cup \{\neg \alpha\}$ es insatisfactible.
- $\Gamma \models \alpha \rightarrow \beta$ si y sólo si $\Gamma \cup \{\alpha\} \models \beta$ (regla de deducción).
- Si $\Gamma \models \alpha$ entonces $\Gamma \cup \{\beta\} \models \alpha$ (monotonía).

Ejercicio: Demuestre que $\Gamma \models \alpha$ si y sólo si $\Gamma \cup \{\neg \alpha\}$ es insatisfactible.

Demostración

Ejercicio: Demuestre que $\Gamma \models \alpha$ si y sólo si $\Gamma \cup \{\neg \alpha\}$ es insatisfactible.

Demostración

Ejercicio: Demuestre que $\Gamma \models \alpha$ si y sólo si $\Gamma \cup \{\neg \alpha\}$ es insatisfactible.

Demostración

 (\Rightarrow) Como Γ $\models \alpha$, tenemos que para cada valuación σ , si $\hat{\sigma}(\Gamma) = 1$, entonces $\hat{\sigma}(\alpha) = 1$.

Ejercicio: Demuestre que $\Gamma \models \alpha$ si y sólo si $\Gamma \cup \{\neg \alpha\}$ es insatisfactible.

Demostración

(\Rightarrow) Como Γ $\models \alpha$, tenemos que para cada valuación σ , si $\hat{\sigma}(\Gamma) = 1$, entonces $\hat{\sigma}(\alpha) = 1$. Pero como $\hat{\sigma}(\neg \alpha) = 0$,

Ejercicio: Demuestre que $\Gamma \models \alpha$ si y sólo si $\Gamma \cup \{\neg \alpha\}$ es insatisfactible.

Demostración

 (\Rightarrow) Como $\Gamma \models \alpha$, tenemos que para cada valuación σ , si $\hat{\sigma}(\Gamma) = 1$, entonces $\hat{\sigma}(\alpha) = 1$. Pero como $\hat{\sigma}(\neg \alpha) = 0$, tenemos que si $\hat{\sigma}(\Gamma) = 1$ entonces $\hat{\sigma}(\neg \alpha) = 0$

Ejercicio: Demuestre que $\Gamma \models \alpha$ si y sólo si $\Gamma \cup \{\neg \alpha\}$ es insatisfactible.

Demostración

 (\Rightarrow) Como $\Gamma \models \alpha$, tenemos que para cada valuación σ , si $\hat{\sigma}(\Gamma) = 1$, entonces $\hat{\sigma}(\alpha) = 1$. Pero como $\hat{\sigma}(\neg \alpha) = 0$, tenemos que si $\hat{\sigma}(\Gamma) = 1$ entonces $\hat{\sigma}(\neg \alpha) = 0$

Ejercicio: Demuestre que $\Gamma \models \alpha$ si y sólo si $\Gamma \cup \{\neg \alpha\}$ es insatisfactible.

Demostración

 $(\Rightarrow) \ \mathsf{Como} \ \Gamma \models \alpha, \ \mathsf{tenemos} \ \mathsf{que} \ \mathsf{para} \ \mathsf{cada} \ \mathsf{valuaci\'{o}n} \ \sigma, \ \mathsf{si} \ \hat{\sigma}(\Gamma) = 1, \\ \mathsf{entonces} \ \hat{\sigma}(\alpha) = 1. \ \mathsf{Pero} \ \mathsf{como} \ \hat{\sigma}(\neg \alpha) = 0, \ \mathsf{tenemos} \ \mathsf{que} \ \mathsf{si} \ \hat{\sigma}(\Gamma) = 1 \\ \mathsf{entonces} \ \hat{\sigma}(\neg \alpha) = 0 \ \mathsf{y} \ \mathsf{por} \ \mathsf{lo} \ \mathsf{tanto} \ \Gamma \cup \{\neg \alpha\} \ \mathsf{es} \ \mathsf{insatisfactible}.$

(⇔)

Ejercicio: Demuestre que $\Gamma \models \alpha$ si y sólo si $\Gamma \cup \{\neg \alpha\}$ es insatisfactible.

Demostración

- (\Rightarrow) Como $\Gamma \models \alpha$, tenemos que para cada valuación σ , si $\hat{\sigma}(\Gamma) = 1$, entonces $\hat{\sigma}(\alpha) = 1$. Pero como $\hat{\sigma}(\neg \alpha) = 0$, tenemos que si $\hat{\sigma}(\Gamma) = 1$ entonces $\hat{\sigma}(\neg \alpha) = 0$ y por lo tanto $\Gamma \cup \{\neg \alpha\}$ es insatisfactible.
- (\Leftarrow) Como $\Gamma \cup \{\neg \alpha\}$ es insatisfactible, no existe ninguna valuación σ tal que simultáneamente $\hat{\sigma}(\Gamma) = 1$ y $\hat{\sigma}(\neg \alpha) = 1$.

Ejercicio: Demuestre que $\Gamma \models \alpha$ si y sólo si $\Gamma \cup \{\neg \alpha\}$ es insatisfactible.

Demostración

- (\Rightarrow) Como $\Gamma \models \alpha$, tenemos que para cada valuación σ , si $\hat{\sigma}(\Gamma) = 1$, entonces $\hat{\sigma}(\alpha) = 1$. Pero como $\hat{\sigma}(\neg \alpha) = 0$, tenemos que si $\hat{\sigma}(\Gamma) = 1$ entonces $\hat{\sigma}(\neg \alpha) = 0$ y por lo tanto $\Gamma \cup \{\neg \alpha\}$ es insatisfactible.
- (\Leftarrow) Como $\Gamma \cup \{\neg \alpha\}$ es insatisfactible, no existe ninguna valuación σ tal que simultáneamente $\hat{\sigma}(\Gamma) = 1$ y $\hat{\sigma}(\neg \alpha) = 1$. Por lo tanto, para cada valuación σ , si $\hat{\sigma}(\Gamma) = 1$, deber ser $\hat{\sigma}(\neg \alpha) = 0$,

Ejercicio: Demuestre que $\Gamma \models \alpha$ si y sólo si $\Gamma \cup \{\neg \alpha\}$ es insatisfactible.

Demostración

- (\Rightarrow) Como $\Gamma \models \alpha$, tenemos que para cada valuación σ , si $\hat{\sigma}(\Gamma) = 1$, entonces $\hat{\sigma}(\alpha) = 1$. Pero como $\hat{\sigma}(\neg \alpha) = 0$, tenemos que si $\hat{\sigma}(\Gamma) = 1$ entonces $\hat{\sigma}(\neg \alpha) = 0$ y por lo tanto $\Gamma \cup \{\neg \alpha\}$ es insatisfactible.
- (\Leftarrow) Como $\Gamma \cup \{\neg \alpha\}$ es insatisfactible, no existe ninguna valuación σ tal que simultáneamente $\hat{\sigma}(\Gamma) = 1$ y $\hat{\sigma}(\neg \alpha) = 1$. Por lo tanto, para cada valuación σ , si $\hat{\sigma}(\Gamma) = 1$, deber ser $\hat{\sigma}(\neg \alpha) = 0$, o equivalentemente, $\hat{\sigma}(\alpha) = 1$. Por lo tanto, $\Gamma \models \alpha$.

Ш

Ejercicio: Demuestre que $\Gamma \models \alpha \rightarrow \beta$ si y sólo si $\Gamma \cup \{\alpha\} \models \beta$.

.

Ejercicio: Demuestre que $\Gamma \models \alpha \rightarrow \beta$ si y sólo si $\Gamma \cup \{\alpha\} \models \beta$.

Demostración

 (\Rightarrow)

.

Ejercicio: Demuestre que $\Gamma \models \alpha \rightarrow \beta$ si y sólo si $\Gamma \cup \{\alpha\} \models \beta$.

Demostración

 (\Rightarrow) Sea σ una valuación tal que $\hat{\sigma}(\Gamma \cup \{\alpha\}) = 1$. Debemos probar que $\hat{\sigma}(\beta) = 1$.

16

Ejercicio: Demuestre que $\Gamma \models \alpha \rightarrow \beta$ si y sólo si $\Gamma \cup \{\alpha\} \models \beta$.

Demostración

 (\Rightarrow) Sea σ una valuación tal que $\hat{\sigma}(\Gamma \cup \{\alpha\}) = 1$. Debemos probar que $\hat{\sigma}(\beta) = 1$. De $\hat{\sigma}(\Gamma \cup \{\alpha\}) = 1$ tenemos que

$$\hat{\sigma}(\Gamma) = 1$$
 y $\hat{\sigma}(\alpha) = 1$.

.

Ejercicio: Demuestre que $\Gamma \models \alpha \rightarrow \beta$ si y sólo si $\Gamma \cup \{\alpha\} \models \beta$.

Demostración

(⇒) Sea σ una valuación tal que $\hat{\sigma}(\Gamma \cup \{\alpha\}) = 1$. Debemos probar que $\hat{\sigma}(\beta) = 1$. De $\hat{\sigma}(\Gamma \cup \{\alpha\}) = 1$ tenemos que

$$\hat{\sigma}(\Gamma) = 1$$
 y $\hat{\sigma}(\alpha) = 1$.

Ahora como $\Gamma \models \alpha \rightarrow \beta$ (hipótesis) y $\hat{\sigma}(\Gamma) = 1$, tenemos que $\hat{\sigma}(\alpha \rightarrow \beta) = 1$.

Ejercicio: Demuestre que $\Gamma \models \alpha \rightarrow \beta$ si y sólo si $\Gamma \cup \{\alpha\} \models \beta$.

Demostración

(⇒) Sea σ una valuación tal que $\hat{\sigma}(\Gamma \cup \{\alpha\}) = 1$. Debemos probar que $\hat{\sigma}(\beta) = 1$. De $\hat{\sigma}(\Gamma \cup \{\alpha\}) = 1$ tenemos que

$$\hat{\sigma}(\Gamma) = 1$$
 y $\hat{\sigma}(\alpha) = 1$.

Ahora como $\Gamma \models \alpha \rightarrow \beta$ (hipótesis) y $\hat{\sigma}(\Gamma) = 1$, tenemos que $\hat{\sigma}(\alpha \rightarrow \beta) = 1$. Esto último, junto con el hecho que $\hat{\sigma}(\alpha) = 1$ implica que $\hat{\sigma}(\beta) = 1$, como queríamos demostrar.

Ejercicio: Demuestre que $\Gamma \models \alpha \rightarrow \beta$ si y sólo si $\Gamma \cup \{\alpha\} \models \beta$.

Demostración

 (\Leftarrow)

Ejercicio: Demuestre que $\Gamma \models \alpha \rightarrow \beta$ si y sólo si $\Gamma \cup \{\alpha\} \models \beta$.

Demostración

(\Leftarrow) Sea σ una valuación tal que $\hat{\sigma}(\Gamma)=1$. Debemos probar que $\hat{\sigma}(\alpha \to \beta)=1$,

Ejercicio: Demuestre que $\Gamma \models \alpha \rightarrow \beta$ si y sólo si $\Gamma \cup \{\alpha\} \models \beta$.

Demostración

(\Leftarrow) Sea σ una valuación tal que $\hat{\sigma}(\Gamma) = 1$. Debemos probar que $\hat{\sigma}(\alpha \to \beta) = 1$, o equivalentemente, que si $\hat{\sigma}(\alpha) = 1$ entonces $\hat{\sigma}(\beta) = 1$.

Ejercicio: Demuestre que $\Gamma \models \alpha \rightarrow \beta$ si y sólo si $\Gamma \cup \{\alpha\} \models \beta$.

Demostración

(\Leftarrow) Sea σ una valuación tal que $\hat{\sigma}(\Gamma)=1$. Debemos probar que $\hat{\sigma}(\alpha \to \beta)=1$, o equivalentemente, que si $\hat{\sigma}(\alpha)=1$ entonces $\hat{\sigma}(\beta)=1$. Pero eso sigue inmediatamente de nuestra hipótesis $\Gamma \cup \{\alpha\} \models \beta$

Ejercicio: Demuestre que $\Gamma \models \alpha \rightarrow \beta$ si y sólo si $\Gamma \cup \{\alpha\} \models \beta$.

Demostración

(\Leftarrow) Sea σ una valuación tal que $\hat{\sigma}(\Gamma)=1$. Debemos probar que $\hat{\sigma}(\alpha \to \beta)=1$, o equivalentemente, que si $\hat{\sigma}(\alpha)=1$ entonces $\hat{\sigma}(\beta)=1$. Pero eso sigue inmediatamente de nuestra hipótesis $\Gamma \cup \{\alpha\} \models \beta$ (ya que $\hat{\sigma}(\Gamma)=1$ y $\hat{\sigma}(\alpha)=1$ implica $\hat{\sigma}(\beta)=1$.

17

Pregunta: ¿Es $\emptyset \models \alpha$ cierto para alguna fórmula α ?

Pregunta: ¿Es $\emptyset \models \alpha$ cierto para alguna fórmula α ?

Sí, para cualquier tautología $\alpha.$

Pregunta: ¿Es $\emptyset \models \alpha$ cierto para alguna fórmula α ?

Sí, para cualquier tautología α .

Pregunta: Sabemos que $\{p,\ p \to q\} \models q$. Por la monotonía de la consecuencia lógica, tenemos que $\{p,\ p \to q,\ \neg q\} \models q$. ¿Cómo es esto posible?

Pregunta: ¿Es $\emptyset \models \alpha$ cierto para alguna fórmula α ?

Sí, para cualquier tautología α .

Pregunta: Sabemos que $\{p,\ p\to q\}\models q$. Por la monotonía de la consecuencia lógica, tenemos que $\{p,\ p\to q,\ \neg q\}\models q$. ¿Cómo es esto posible?

Esto es posible porque a partir de un conjunto de premisas insatisfactible se puede derivar cualquier fórmula (ejercicio).