Idea of Artificial Intelligence (AI)

Human's brain and neuron

Neuron Network and neuron

 $= f(\vec{x}, \vec{w}, b) = f(\vec{x}) \checkmark$

AI & ML

A program that can sense, reason, act, and adapt

ARTIFICIAL INTELLIGENCE

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time

DEEP Learning

Subset of machine learning in which multilayered neural networks learn from vast amounts of data Goal

1950s

Al

1980s

ML

Describing automated systems (machine) that can perform tasks considered to acquire "intelligence"

Means

The process of developing machine with the ability to learn from and make predictions using data.

	Supervised learning	Unsupervised learning	Semi-supervised learning
Definition	X → Model → Y	X→ Model →	X → Model →(Y)
Labelled data	0	X	Little
Unlabelled data	X	0	Most
Methods	Classification, Regression	Clustering,維度 降低	Autoencoder

Labelled data vs. Unlabelled data

Machine learning workflow

Training, validation, and testing data should be independent of each other.

How to train the model in machine learning?

Machine learning is a process of look for the best function and features to solve the problem.

Problem: How to distinguish between cat and dog?

- ② Label identifies what a collection of data (the model input) represents.
 - ✓ Example: For a cancer model, it would be cancer present or absent.

Evaluate the models

Confusion matrix and the derivative metrics.

		Actual condition	
		Positive	Negative
Predicted condition	Positive	True Positive (TP)	False Positive (FP)
	Negative	False Negative (FN)	True Negative (TN)

	Metrics Definition		Formula	
Trade-off	Accuracy	Predict the correct proportion (Meet paradox when unbalanced data)	$\frac{TP + TN}{TP + FN + TN + FP}$	
	Precision	True positive Predicted positive	$\frac{TP}{TP + \mathbf{FP}}$	
	Recall	True positive Actual positive	$\frac{TP}{TP + \mathbf{FN}}$	
	F1 score	Harmonic mean of precision and recall (model performance)		

Evaluate the models

 Evaluate the model by Receiver operating characteristic (ROC) curve and its area under curve (AUC; Concordance/C index)

Optimize the models

Cross validation

Five-fold

Divided patients into 5 groups stratified by cisplatin/carboplatin and AKI/non-AKI

Average metrics = (A1 + A2 + A3 + A4 + A5)/5

Leave-one-out

Every individual patient as a group

Average metrics = $(A1 + A2 + \cdots + AN)/N$

Bias-variance trade-off

- Solution to overfitting: lower the prediction error
 - ☐ Bias-variance trade-off decomposition: analyze the expected the prediction error

	Underfitting	Overfitting
Bias	High	Low
Variance	Low	High
Solutions	Redesign model	More dataRegularizationAdjust features based on algorithms
Pattern		

Overfitting

Common problem: Overfitting (Over-learning)

Definition

The model is trained to fit the training data too well and could not generalize to testing data.

Characteristics

- ✓ Testing error rates significantly increase.
- ✓ Often related to model complexity. complex model.

Reason

To find the best model complexity from a high-variance low-bias complex model.

Hyperparameter selection: Grid search

• To find the best prediction performance with <u>best hyperparameters</u> combination of ANN, LR, RF and SVM.

