FIRST-ORDER CHEMICAL REACTIONS IMPLEMENTATION IN RUBY

DIEGO HERRERA

Contents

1.	Theory	1
App	endix A. Notation	2
A.1.	Maths	2
A.2.	Physics	3
A.3.	Dimensional analysis	4

1. Theory

Consider a batch reactor hosting a first-order-kinetics chemical reaction of the form $R \xrightarrow{k} P$, where R represents the reactant and P the product and k the reaction kinetic coefficient, dim k = 1/T.

Let t represent the chemical reaction duration, $\dim t = \mathsf{T}$, let r = r[t] be R molar concentration and let p = p[t] be P molar concentration, $\dim r = \dim p = \mathsf{N}/\mathsf{L}^3$. Consider r_i to be the reactant concentration when t = 0. Then, model the reaction kinetics by applying the mass conservation principle to the reactor:

$$r' = -kr$$
 and $r[0] = r_i$,

where r' represents the reactant accumulation rate, dim $r' = N/TL^3$.

To find the reactant concentration, solve the differential equation by separating variables and applying the initial condition to have

$$r = r_{\rm i} \exp\left[-kt\right] \, .$$

Choose the set $\{N, L, T\}$ as a dimensional system. Then, non-dimensionalize the model by applying the transformations

$$r_{\mathrm{i}} \Pi_r = r \,, \qquad r_{\mathrm{i}} \Pi_p = p \qquad \mathrm{and} \qquad \Pi_t = kt \,,$$

which yields

$$\Pi_r = \exp\left[-\Pi_t\right] .$$

Next, to calculate the product concentration, apply the stoichiometric 1 condition $\Pi_r+\Pi_p=1$:

$$\Pi_p = 1 - \exp\left[-\Pi_t\right] .$$

Now, compute the half-life time, $\Pi_{t=0.5}$, defined as the time at which the product concentration equals the half of the reactant concentration:

$$\Pi_{t=0.5} = \ln{[2]}$$
.

Finally, find the 99.99%-life time, $\Pi_{t=0.9999}$: the time at which the product concentration equals 99.99% of the reactant concentration:

$$\Pi_{t=0.9999} = -\ln[1 - 0.9999] = \ln[10000]$$
.

Date: July 5, 2013.

Key words and phrases. first-order chemical-reaction, ruby-implementation.

¹ In dimensional form, the stoichiometric condition is $r + p = r_i$.

D. HERRERA

$$E = \frac{-\Delta G}{ZF} - \frac{RT}{ZF}e_n\left(\frac{P_x}{P_y}\right)$$

APPENDIX A. NOTATION

A.1. Maths.

A.1.1. Sets.

- set: set A, \mathcal{A} .
- n-dim set: nset nA, \mathcal{A}^n .
- $\bullet\,$ n-dim. Euclidean space: espace n
, $\mathcal{E}^n.$
- region: region A, A.

A.1.2. Functions.

• function value at: vat x, [x].

A.1.3. Geometric objects.

- boundary: bound, ∂ .
- surface: surf, s.
- volume: vol, v.

A.1.4. Geometric algebra.

- magnitude: magn u, |u|.
- inner product: iprod, $a \cdot b$.
- outer product: oprod, $a \wedge b$.
- inverse: inv a, a^{-1} .
- unit vector: uvec a, \hat{a} .

A.1.5. Geometric calculus.

- geometric derivative: gder, ∇ .
- Laplace operator (derivative): lder, ∇^2 .
- divergence: div, div.
- gradient: grad, grad.
- Laplace operator: lap, lap.

A.1.6. Calculus.

- differential operator: dx, d.
- difference operator: Dx, Δ .

$A.1.7.\ Derivatives.$

- dot derivative: dt a, \dot{a} .
- $\bullet\,$ dot dot derivative: ddt a, $\ddot{a}.$
- expanded ordinary derivative: xod at, $\frac{da}{dt}$.
- expanded partial derivative: xpd at, $\frac{oa}{\partial t}$.
- indexed ordinary derivative: iod t, d_t .
- indexed partial derivative: ipd t, ∂_t .
- indexed geometric derivative: igder k, ∂_k .
- $\bullet\,$ comma derivative: cder Tt, $T_{,t}.$

A.1.8. Index notation.

- basis vector: bvec, γ .
- frame (basis) element: fbvec 1, γ_1 .
- reciprocal frame (basis) element: rbvec 1, γ^1 .
- frame: frm k, $\{\gamma_k\}$.
- reciprocal frame: rfrm k, $\{\gamma^k\}$.
- \bullet metric: met, g.
- metric in frame: fmet 12, g_{12} .
- metric in reciprocal frame: rmet 12, g^{12} .

- up indexed partial derivative: upipd 1, ∂^1 .
- down indexed partial derivative: dnipd 1, ∂_1 .
- frame (contravariant) components: fvec pos 1, ξ^1 .
- reciprocal frame (covariant) components: rvec pos 1, ξ_1 .

A.1.9. Matrices.

- diagonal: diag, diag.
- signature: sig, sig.

A.1.10. Brackets.

• Iverson brackets: iverson k, $[k]_{Iv}$.

A.2. Physics.

A.2.1. Mechanics.

- position: pos, ξ .
- pressure: press, p.

A.2.2. Energy transport.

- time change rate: rate a, a'.
- flow: flow q, q'.
- flux: flux q, q''.
- thermal energy (heat): then, e.
- mechanical work: work, w.
- internal energy: ien, i.
- accumulation (e.g., internal energy): accu ien, i'.
- thermodynamic temperature: temp, θ .
- specific heat capacity: kshcap, c.
- thermal diffusivity: kthdiff, α .
- \bullet thermal conductivity: kthcond, k.
- \bullet local film (heat transfer) coefficient (thermal convection): kthconv, f.
- global (average) film coefficient: kavthconv, \bar{f} .
- time constant (conduction-convection lumped solution): ktime, τ .
- thermal radiation absorbance: absorb, α .
- thermal radiation reflectance: reflect, ρ .
- thermal radiation transmittance: transm, τ .
- $\bullet\,$ body energy flux distribution function: dbflux, $\check{e}_{\lambda_{\mathrm{body}}}.$
- black-body energy flux: bbflux, $e_{bb}^{"}$.
- black-body energy flux distribution function: dbbflux, $\check{e}_{\lambda_{\rm bb}}$.

$A.2.3.\ Mass\ transport.$

- n (number of) particles: npart, n.
- mass: mass, m.
- mass density: dens, ρ .
- \bullet chemical reaction thermal energy: chthen, r.
- mass concentration: conc, c.
- species mass concentration: sconc A, A.
- \bullet chemical reaction kinetic coefficient: kchrcoeff, k.
- life time: lifetime(0.5), $t_{0.5}$.

A.2.4. Waves.

- wavelength: wlen, λ .
- wave frequency: wfreq, μ .

D. HERRERA

$A.2.5.\ Physical\ constants.$

- Boltzmann constant: kboltz, $k_{\rm b}$.
- \bullet Stefan-Boltzmann constant: kstef, $\sigma_{\rm sb}.$
- Planck constant: kplanck, $h_{\rm p}$.
- speed of light in vacuum: klight, c_0 .
- ideal gas constant: kgas, $r_{\rm g}$.
- Avogadro's number: kavog, n_a .

A.3. Dimensional analysis.

- \bullet units of a physical quantity: unit q, unit q.
- \bullet dimension of a physical quantity: dim q, dim q.
- dimensionless quantity: kdim, Π .
- physical dimension: phdim L, L.
- Biot number: kbiot, Π_{bi} .