Análisis Funcional I

Tarea 3

Maite Fernández Unzueta. maite@cimat.mx Antonio Barragán Romero. antonio.barragan@cimat.mx

Problema 1

Considera un espacio normado $(E, \|\cdot\|)$. Denotemos por (E^*, d^*) al espacio métrico completado de (E, d), donde d es la métrica inducida en E por $\|\cdot\|$. Demuestra que E^* admite una estructura vectorial y que $\|\cdot\|$ se puede extender a una función $\|\cdot\|: E^* \times E^* \to [0, \infty)$ cumpliendo que $(E^*, \|\cdot\|^*)$ es un espacio de Banach y que $\|\cdot\|_{E\times E}^* = \|\cdot\|$.

Demostraci'on: Sea $i: E \to E^*$ la isometria tal que E es isometrico a i(E) que es un subespacio denso de E^* . Dados $x^*, y^* \in E^*$ existen sucesiones $\left\{x_n\right\}_n, \left\{y_n\right\}_n \subset E$ tales que $i(x_n) \to x^*$ y $i(y_n) \to y^*$, como E es un espacio normado tenemos que $\left\{x_n + y_n\right\}_n$ es una sucesión en E, más aún $\left\{i(x_n + y_n)\right\}_n$ es una sucesión de Cauchy pues i es isometria por lo cual converge en E^* , asi podemos definir la suma en E^* como:

$$x^* + y^* \coloneqq \lim_{n \to \infty} i(x_n + y_n),$$

de manera similar dado un escalar λ tenemos que $\{\lambda x_n\}_n$ es una sucesión en E y ademas $\{i(\lambda x_n)\}_n$ es de Cauchy, pues i es isometria, por lo cual converge y entonces podemos definir la multiplicación escalar como:

$$\lambda x^* = \lim_{n \to \infty} i(\lambda x_n).$$

Notemos que tanto la suma como la multiplicación escalar están bien definidas pues

Ademas podemos ver que la conmutatividad, asociatividad y distributividad en E^* se cumplen por que se cumplen en E.

Definamos ahora una norma en E^* , dado $x^* \in E^*$ existe sucesión $\{x_n\}_n \subset E$ tal que $i(x_n) \to x^*$, notemos que $\{\|x_n\|\}_n$ es de Cauchy, pues $\{i(x_n)\}$ es de Cauchy e i es isometria.

Como $\mathbb R$ es completo se sigue que $\{\|x_n\|\}$ converge en $[0,\infty]$, pues la sucesión no es negativa. Asi pues, podemos definir la norma $\|\cdot\|^*$ en E^* como $\|x^*\| = \lim_{n \to \infty} \|x_n\|$

Veamos que efectivamente es una norma.

• Si $||x^*|| = 0$, entonces $\lim_{n \to \infty} ||x_n|| = 0$, para alguna sucesión $\{x_n\}_n \subset E$. Notemos que

$$d^*(x^*,i(0)) \leqslant d^*(x^*,i(x_n)) + d^*(i(x_n),i(0))$$

y obtenemos $d * (x^*, i(0)) = 0$, por lo cual $x^* = i(0)$.

• Dado λ y $x^* \in E^*$ tenemos que

$$\|\lambda x^*\| = \lim_{n \to \infty} \|\lambda x_n\| = \lim_{n \to \infty} |\lambda| \|x_n\| = |\lambda| \lim_{n \to \infty} \|x_n\| = |\lambda| \|x^*\|$$

Problema 2 6C 7

Muestra que ℓ^1 con la norma definida por $\|(a_1,a_2,...)\| = \sum_{k=1}^{\infty} |a_k|$ es un espacio de Banach.

Demostración: Veamos que ℓ^1 es un espacio vectorial. Si $\boldsymbol{x} = \left\{x_n\right\}_n, \boldsymbol{y} = \left\{y_n\right\}_n \in \ell^1$ tenemos que, para $m \geqslant n$ se cumple que

$$\sum_{i=1}^{n} |x_i + y_i| \leqslant \sum_{i=1}^{n} |x_i| + \sum_{i=1}^{n} |y_i| \leqslant \sum_{i=1}^{m} |x_i| + \sum_{i=1}^{m} |y_i|,$$

al tomar el limite $m \to \infty$, vemos que para todo n,

$$\sum_{i=1}^{n} |x_i + y_i| \leqslant \sum_{i=1}^{\infty} |x_i| + \sum_{i=1}^{\infty} |y_i|,$$

por lo cual $\{x_n + y_n\}_n$ es acotada y no decreciente, por tanto converge, haciendo $n \to \infty$ tenemos que $x + y \in \ell^1$, más aún, notemos que lo anterior muestra la desigualdad del tringulo para $\|\cdot\|$. De manera similar podemos ver $\lambda x \in \ell^1$ para todo escalar λ .

Primero veamos que ℓ^1 es un espacio vectorial normado, para ellos veamos que $\|\cdot\|$ es una norma sobre ℓ^1 .

- Veamos que $\|\cdot\|$ es **definida positiva**. Notemos que $\|(a_1, a_2, ...,)\| = 0$ si y solo si $\sum_{k=1}^{\infty} |a_k|$ lo cual pasa si y solo si $|a_k| = 0$ para todo $k \in \mathbb{N}$, es decir, si $a_k = 0$ para todo $k \in \mathbb{N}$.
- Notemos que dado $\lambda \in \mathbb{F}$,

$$\begin{split} \|\lambda(a_1,a_2,\ldots)\| &= \|(\lambda a_1,\lambda a_2,\ldots)\| \\ &= \sum_{k=1}^{\infty} |\lambda a_k| \\ &= \sum_{k=1}^{\infty} |\lambda|(a_k) = |\lambda| \left(\sum_{k=1}^{\infty} |a_k|\right) = |\lambda| \|(a_1,a_2,\ldots)\|. \end{split}$$

Ahora veamos que ℓ^1 es completo.

Problema 3 6C 10

Supongamos que U es un subespacio de un espacio vectorial normado V tal que una bola abierta de V esta contenida en U. Prueba que U = V.

Demostración: Es claro que $U\subset V$, por lo cual veamos que $V\subset U$. Notemos primero que podemos trasladar la bola al origen, pues si $B(x_0,r)$ es la bola de V contenida en U, notemos que para todo $y\in B(x_0,r)$ se cumple que $\|y-x_0\|< r$ si y solo si $y-x_0\in B(0,r)$, como U es subespacio tenemos que $y-x_0\in U$, para $y\in U$, pues $x_0\in U$, por lo cual $B(0,r)\subset U$. Entonces, sin perdida de generalidad podemos suponer que $B(0,r)\in U$, luego, dado $x\in V$ notemos que $\frac{r}{2}\frac{x}{\|x\|}\in B(0,r)$, se sigue que

$$\left(2\frac{\|x\|}{r}\right)\left(\frac{r}{2}\frac{x}{\|x\|}\right) = x \in U,$$

pues $\left(2\frac{\|x\|}{r}\right)$ es un escalar, de lo anterior tenemos que $V\subset U$ como queremos. \square

Problema 4 6C 14

Supongamos que U es un subespacio de un espacio vectorial normado V. Suponga ademas que W es un espacio de Banach $y : U \to W$ es un mapeo lineal acotado.

- i) Prueba que existe una única función continua $T: \overline{U} \to W$ tal que $T|_U = S$.
- ii) Prueba que la función T en es un mapeo lineal acotado de \overline{U} hacia W y ||T|| = ||S||.
- iii) Da un ejemplo para ver que la puede fallar si la suposición que W es un espacio de Banach es remplazada por la suposición que W es un espacio vectorial normado.
- i) Demostración: Primero veamos la unicidad, si $T_1, T_2 : \overline{U} \to W$ tales que $T_1|_U = T_2|_U = S$ entonces como U es denso en \overline{U} tenemos que $T_1 = T_2$. Ahora mostraremos su existencia. Sea $u \in \overline{U}$, entonces existe $\{u_n\}_n \subset U$ tal que $u_n \to u$, consideremos $\{S(u_n)\}_n \subset W$ veamos es una sucesión de Cauchy en W. Como S es un mapeo lineal acotado tenemos que

$$\left\|S(u_n)-S(u_m)\right\|_W=\left\|S(u_n-u_m)\right\|_W\leqslant \left\|S\right\|\left\|u_n-u_m\right\|_U,$$

dado que $\{u_n\}_n$ es una sucesión de Cauchy tenemos que $\{S(u_n)\}_n$ también. El hecho que W es un espacio de Banach tenemos que $S(u_n) \to w$, para algún $w \in W$. De lo anterior podemos definir $T: \overline{U} \to W$, dada por

$$T(u) = \lim_{n \to \infty} S(u_n),$$

para $u_n \to u$. Es claro que T es un mapeo lineal. Notemos que T esta bien definida, pues $u_n \to u$ y $v_n \to u$, con $u \in \overline{U}$ Ademas es claro que $T|_U = S$

- ii) Demostración:
- iii) Solución 0.1: Consideremos el siguiente ejemplo:

Problema 5 6C 15

Supongamos que V es un espacio vectorial normado y U es un subespacio de V. Define $\|\cdot\|$ sobre V/U por

$$||f + U|| = \inf\{||f + g|| : g \in U\}.$$

- i) Prueba que $\|\cdot\|$ es una norma sobre V/U si y solo si U es un subespacio cerrado de V.
- ii) Prueba que si V es un espacio de Banach y U es un subespacio cerrado de V, entonces V/U (con la norma definida anteriormente) es un espacio de Banach.
- iii) Prueba que si U es un espacio de Banach (con la norma que hereda de V) y V/U es un espacio de Banach (con la norma definida anteriormente), entonces V es un espacio de Banach.
- i) Demostración: Primero notemos lo siguiente: $\|f + U\| = 0$ si y solo si $\inf\{\|f + g\| : g \in U\} = 0$ si y solo si para todo $\varepsilon > 0$ existe $g \in U$ tal que $\|f + g\| < \varepsilon$ si y solo si para todo $\varepsilon > 0$ existe $g \in U$ tal que $\|f g\| < \varepsilon$, pues $-g \in U$ al ser subespacio, si y solo si $f \in \overline{U}$.

Sabemos que V/U es un espacio vectorial.

Si $\|\cdot\|$ es una norma sobre V/U se cumple la observación anterior, a ademas podemos notar que [0] = U, por lo cual si $\|f + U\| = 0$ si y solo si f + U = U si y solo si

Supongamos ahora que U es cerrado entonces por la observación anterior $\|f + U\| = 0$ si y solo si $f \in U$, pues $U = \overline{U}$, de lo cual se sigue $\|f + U\| = 0$ si y solo si f + U = U.

ii)	$Demostraci\'on$:	
ni)	Demostración:	