

Computer Electronics

Lecture 2: Introduction to lob-SoC, Git, Make

Recap of last lesson

The Processor Bus

- Processor buses can be complex, for example ARM's AXI
- In this course a minimalistic yet effective 6-signal bus called the Native Bus will be used:

	Signal Name	Direction wrt CPU	Width in bits (wires)	Description
REQUEST	Valid	Output	1	CPU wants to access data or instructions
	Address	Output	32	Address of the data
	Wdata	Output	32	Data to write
	Wstrb	Output	4	Byte write
RESPONSE	Rdata	Input	32	Data read
	Ready	Input	1	Slave is ready

24/09/2020

EC/SEC: DEEC/Instituto Superior Técnico

Master reading from slave

Master writing to slave

System on Chip & IP Cores

- <u>IP Core</u> providers design IP cores: ADC, MCU, PWM, etc
- <u>Fabless</u> Integrated
 Circuit providers
 integrate IP cores and
 make the <u>SoC</u> (AMD,
 Xilinx, etc)
- Foundries fabricate
 SoCs and other chips

System on Chip

- The SoC is an IP core assembly
- The whole system sits on a single chip
- Less components on Printed Circuit Boards
- Less weight and volume
- More performance
- Lower power consumption

IOb-SoC block diagram

- Developed by IP core provider IObundle Lda with the help of master students students (Roque,Silva,Ratinho,Mário, ..., Internships/Dissertations)
- Simple SoC comprising
 - The PicoRV32 RISC-V CPU (open-source)
 - Boot ROM (has small program to load user programs)
 - SRAM (on-chip memory for running small programs or storing fast access data)
 - Instruction and Data L1 Caches + shared L2 cache
 - UART interface for communication
 - Other optional modules: Ethernet, UART, DMA
 - Ready to attach user modules

Getting hands dirty on IOb-SoC

 Computer systems are inherently complex: use suitable tools!

Simple IOb-SoC assignment

- Hosted by Github
- Read the README file
- Clone the repository
- Move into its directory
- Simulate the design and visualize simulation waveforms
- Make the document

- Developed by Linus Torvalds (also Linux creator)
- Managing your project files efficiently
- Reduce storage and backup needs
- Manage different versions and development branches in large teams
- Access the project files anywhere
- Successor of CVS, SVN but better

The cloud

Meanwhile and the **Edge**

Common git commands

- git config –global user.name "your name"
- git config –global user.email "your@fantastic.email"
- git init: turns directory into git repository
- git status: shows differences to index
- git add: stages the files to be committed in index
- git commit: creates a new development node (commit or hash)
- git push: sends your commits to a remote
- git branch: creates a development branch

Development branches

- Develop each feature in a branch
- Test / Fix
- Merge with master branch
- Retest / Fix
- Release!

Common git commands

- git log: shows commit history
- git fetch: downloads branches from a remote
- git pull: same as git fetch + git merge
- git show: shows contents in any commit
- git remote: shows remote servers in use
- After you get up: eat breakfast then do git pull (update your repo)
- Before you go to bed: do git push (save your work) and brush your teeth

The Make utility program

- Make is a program that automates the process of building programs (compiling)
- Created by Steward Feldman in 1976
 - Also wrote the first Fortran 77 compiler
 - Part of the Bell Labs team who created the Unix operating system, the precursor of Linux for masses
- Make is still one of the best build automation tools to date!

The Make utility program

- Make programs are called Makefiles
- Makefile is based on rules. Example rule:

