Математическая статистика

Основные понятия математической статистики

Попов Юрий, СКБ-172

ОГЛАВЛЕНИЕ

Задание 2.1 Моделирование выбранных случайных величин	3
2.1.1 Геометрическое распределение	3
2.1.2 Экспоненциальное распределение	3
Задание 2.2 Построение эмпирической функции распределения	4
2.2.1 Геометрическое распределение	4
2.2.2 Экспоненциальное распределение	7
Задание 2.3 Построение вариационного ряда выборки	9
2.3.1 Геометрическое распределение	10
2.3.2 Экспоненциальное распределение	12
Залание 2.4 Построение гистограммы и полигон частот	13

Предисловие

Все графики, которые в дальнейшем будут вставлены в эту работу, были сконструированы с помощью различных библиотек, основные которые - это matplotlib и numpy в Jupyter Notebook

K работе приложены 2 основных файла: DZ_2_Geom и DZ_2_Exp , в которых указаны расчеты соотвественно геометрического и экспоненциального распределения

Также есть файл get_quantile_geom, в котором расписан процесс нахождения квантиля.

Большая часть определений, которые представлены в этой работы взять с лекций нашего курса.

Также некоторые определения взяты из источника Г.И. Ивченко, Ю.И. Медведев "Ведение в математическую статистику"

Задание 2.1 Моделирование выбранных случайных величин

Реализация выборки

Определение 1. Реализация выборки - это набор из п наблюдений $\hat{x} = (x_1, x_2, \dots, x_n)$

2.1.1 Геометрическое распределение

Используя итоговый из задания 1 для моделирования случайных величин, подчиняющих геометрическому распределению, были построены по 5 реализаций выборок различных объемов(5, 10, 100, 1000, 10**5)

Вот, пример по 5 реализаций выборки объема 5 и 10 соответственно:

Реализация выборки объема 5:

```
1): [5, 3, 14, 0, 1]
2): [8, 7, 13, 13, 5]
3): [5, 0, 4, 31, 0]
4): [21, 13, 2, 3, 8]
5): [3, 8, 3, 20, 2]
```

Рис. 1: n= 5

Реализация выборки объема 10:

```
1): [6, 29, 1, 4, 19, 0, 4, 3, 6, 3]
2): [2, 18, 10, 2, 4, 5, 12, 17, 5, 4]
3): [6, 16, 5, 1, 2, 0, 25, 12, 11, 6]
4): [9, 1, 9, 3, 23, 11, 28, 5, 5, 12]
5): [27, 14, 2, 6, 8, 8, 9, 25, 0, 18]
```

Рис. 2: n = 10

2.1.2 Экспоненциальное распределение

Используя итоговый из задания 1 для моделирования случайных величин, подчиняющих геометрическому распределению, были построены по 5 реализаций выборок различных объемов(5, 10, 100, 1000, 10**5)

Вот, пример по 5 реализаций выборки объема 5 и 10 соответственно:

```
Реализация выборки экспоненциального распределени объема 5:
```

1): [6.8, 8.87, 4.05, 7.33, 8.5] 1): [6.8, 8.87, 4.05, 7.33, 8.5] 2): [2.47, 4.11, 8.82, 12.82, 2.63] 3): [21.41, 5.13, 14.58, 14.41, 1.86] 4): [26.62, 5.43, 25.14, 4.77, 6.53] 5): [14.35, 1.79, 4.8, 2.95, 2.96]

Рис. 3: n = 5

Реализация выборки экспоненциального распределени объема 10:

1): [13.09, 1.96, 2.08, 3.38, 6.32, 10.56, 19.55, 4.73, 1.99, 5.26]
2): [8.61, 12.9, 12.63, 2.0, 13.55, 24.12, 2.99, 10.89, 0.94, 5.52]
3): [14.83, 0.92, 6.12, 10.23, 9.63, 11.85, 1.71, 2.68, 2.23, 1.92]
4): [30.82, 3.75, 4.27, 4.03, 4.74, 12.96, 0.34, 12.99, 10.11, 9.32
5): [6.34, 3.49, 8.41, 34.44, 2.45, 1.67, 8.66, 6.01, 23.6, 1.64]

Рис. 4: n = 10

Задание 2.2 Построение эмпирической функции распределения

Эмпирическая функция распределения

Определение 2. Для произвольного числа $x \in R$ рассмотрим случайную величину

$$\mu_n(x) = \sum_{i=1}^n Ind(X_i \le x)$$

равную числу элементов выборки меньших или равных x. Тогда функция $\hat{F}(x) = \frac{\mu_n(x)}{n}$ называется эмпирической функцией распределения(э.ф.р)

Эмпирическая функция распределения принимает значения $\{0,\frac{1}{n},\frac{2}{n},\ldots,\frac{n}{n}\}$

$$P(\hat{F}(x) = \frac{k}{n}) = C_k^m F^k(x) (1 - F(x))^{n-k}$$

2.2.1 Геометрическое распределение

Для каждой выборки построим эфр. На каждом графике приведены графики э.ф.р 5 реализаций одинакового объема, а также график функции распределения, помеченный синим цветом. Для его построения использовался модуль scipy.stats

Теперь найдем точную верхнюю границу разности каждой пары эмпирических функций распределения:

Для этого выберет какое-то значение на оси x(например x=4), и посмотри чему равно f(x) э.ф.р для данного икса. Приведем результаты для выборок различного объема:

Для n = 5:		Для n = 10:	
M = make_vibor(5)		M = make_vibor(10)	
upper_limit(M, 5, 4)		upper_limit(M, 10, 4)	
Точная верхняя граница выбо	рки объема 5: 0.2	Точная верхняя граница выборки объема 10: 0	3.3
n=5 для n = 100:		n=10 Для $n=1000$:	
M = make_vibor(100)		M = make_vibor(1000)	
upper_limit(M, 100, 4)		upper_limit(M, 1000, 4)	
Точная верхняя граница выборки объема 1	100: 0.159999999999999	Точная верхняя граница выборки объема 1000: 0.0800000000	0000007
n = 100) Для n = 10**5:	n = 1000	
	M = make_vibor(10**5)		
	upper_limit(M, 10**5, 4)		
	Точная верхняя граница выб $n=1$	орки объема 100000: 0.07 ООООО	

2.2.2 Экспоненциальное распределение

Для каждой выборки построим эфр. На каждом графике приведены графики э.ф.р 5 реализаций одинакового объема, а также график функции распределения, помеченный синим цветом. Для его построения использовался модуль scipy.stats

Теперь найдем точную верхнюю границу разности каждой пары эмпирических функций распределения:

Для этого выберет какое-то значение на оси x(например x=4), и посмотри чему равно f(x) э.ф.р для данного икса.

Приведем результаты для выборок различного объема:

Эфр для выборок объема 5:

```
M = make_vibor_exp(0.8, 5)
make_cdf_expon()
make_efr_expon(M, 5)
```


Эфр для выборок объема 100:

```
M = make_vibor_exp(0.8, 100)
make_cdf_expon()
make_efr_expon(M, 100)
```


Эфр для выборок объема 10:

```
M = make_vibor_exp(0.8, 10)
make_cdf_expon()
make_efr_expon(M, 10)
```


Эфр для выборок объема 1000:

```
M = make_vibor_exp(0.8, 1000)
make_cdf_expon()
make_efr_expon(M, 1000)
```


Эфр для выборок объема 10**5:

```
M = make_vibor_exp(0.8, 10**5)
make_cdf_expon()
make_efr_expon(M, 10**5)
```



```
Для n = 5:
```

```
M = make_vibor_exp(0.8, 5)
upper_limit_expon(M, 5, 4)
```

Точная верхняя граница выборки объема 5: 0.2

$$n = 5$$

Для n = 100:

```
M = make_vibor_exp(0.8, 100)
upper_limit_expon(M, 100, 4)
```

Точная верхняя граница выборки объема 100: 0.04

```
M = make_vibor_exp(0.8, 10)
upper_limit_expon(M, 10, 4)
```

Точная верхняя граница выборки объема 10: 0.1

$$n = 10$$

Для n = 1000:

```
M = make_vibor_exp(0.8, 1000)
upper_limit_expon(M, 1000, 4)
```

Точная верхняя граница выборки объема 1000: 0.03

$$n = 100$$
 $n = 1000$ Для $n = 10**5$:

Точная верхняя граница выборки объема 100000: 0.01

$$n = 100000$$

Задание 2.3 Построение вариационного ряда выборки

Вариационный ряд выборки

Определение 3. Пусть есть

$$\vec{X} = (X_1, \dots, X_n),$$

где $X_i, i = \overline{1, n}$ —независимые одинаково распределенные случайные величины из распределения ξ . И $\vec{x} = (x_1, \cdots, x_n)$ является реализацией имеющейся выборки \vec{X} . Отсортируем вектор \vec{x} по возрастанию:

$$x_{(1)} \le x_{(2)} \le \ldots \le x_{(n)}$$

Тогда $x_{(1)} = \min(x_1, x_2, \dots x_n)$, а $x_{(n)} = \max(x_1, x_2, \dots, x_n)$. Через $X_{(i)}$ обозначают случайную величину, которая для каждой реализации выборки принимает значение $X_{(i)}$. Вектор $(X_{(1)}, X_{(2)}, \dots, X_{(n)})$ называют вариационным рядом выборки.

Квантиль

Определение 4. *Квантилью уровня* $\alpha \in (0,1)$ функции распределения F(x) называется величина $\zeta_{\alpha} = \sup\{x : F(x) \leq p\} = F^{-1}(p)$.

Выборочный квантиль

Определение 5. *Выборочными квантилями* называют квантили выборочного распределения.

2.3.1 Геометрическое распределение

Для каждой выборки построим вариационный ряд. Вот, примеры вариационных рядов для выборок объема n=5 и для n=10:

Вариац	ц <mark>ионные</mark>	ряды для	5 реали	заций выб	борки,	объема	5
		1					
f:	1	2	1	1			
X:	0	2	6	9	25		
f:	1	1	1	1	1		
x:	1	4	5	7	8		
f:	1	1	1	1	1		
x:	0	8	13		21		
f:	1	1			1		
X:	0	1	3	7	18		
f:	1	1	1	1	1	1777777	

Рис. 5: n = 5

Вариа	ционные	ряды	для 5	pear	пизаций	выборки,	объема	10:			
x:	0	1		2	5	7	14	16	19	39	
f:	1	1		1	2	1	1	1	1	1	
x:	0	1				6		23			
f:	1	4				1					
x:	0	1		2	3	6	9	12	13	15	33
f:	1	1		1	1	1	1	1	1	1	1
x:	0	1		3	5	16	28				
f:	4	2		1	1	1					
x:	0			3	4	5	6	8	12	17	
f:	1					1				1	

Рис. 6: n = 10

Перейдем к нахождению выборочной квантили.

Поясним простыми словами на примере уровня квантиля 0.1, что такое выборочная квантиль:

Выборочная квантиль уровня 0.1 - это точка, левее которой (включая её саму) лежит не менее 10% всей выборки, и правее которой (снова включая её саму) - не менее 100% - 10% = 90% выборки.

Будем искать выборочную квантиль графическим способом: проведем прямую y= (уровень квантиля) до пересечения с графиком. И определим x, при котором прямая пересекает график. Если точка пересечения одна, то именно это значения x и будет выборочной квантиль. А если пересечение проходит по отрезку, то квантилей будет много. Например, если отрезок от 3 до 4 является прямой y, то квантилью будет любое число от 3 до 4. ля определённости в практической статистике в таких случаях выбирают по какому-то правилу одно из чисел "отрезка квантилей". Например, середину отрезка - в данном случае 3.5.

Ниже показано в первой строчке расчет выборочной квантильи уровня 0.1, 0.5, 0.7, а затем графическое предстваление для геометрического распределения. Жирной, серой чертой как раз и проведена линия уровня, по которой мы находим квантиль

2.3.2 Экспоненциальное распределение

Для каждой выборки построим вариационный ряд. Вот, примеры вариационных рядов для выборок объема n=5 и для n=10:

	0.0	0.4	0.7	1.9	3.8
	1	1	1	1	1
8	0.9	1.1	2.0	11.7	
:	1	1	2	1	
	0.1	0.2	0.4	1.2	2.2
 F:	1	1	1	1	1
K :	0.3	0.5	0.7	2.6	
f:	1	1	2	1	
X:	0.2	0.3	0.5	0.9	1.1
f:	1	1	1	1	1

Задание 2.4 Построение гистограммы и полигон частот

Гистограмма

Рис. 7: n = 5

Определение 4.Для непрерывной случайной величины ξ , обладающей непрерывной плотностью f(x), также можно построить по соответствующей выборке $X=(X_1,\ldots,X_n)$ статистический аналог $\hat{f}_n(x)$ для плотности f(x), который называется *гистограммой*

Полигон частот

Определение 5. Наряду с гистограммой, в качестве приближения для неизвестной теоретической плотности f(x) можно использовать кусочно-линейный график, называемый *полигоном частом*, и который строится так: если построена гистограмма $\hat{f}_n(x)$, то ординаты, соответствующие серединам интервалов группировки, последовательно соединяют отрезками прямых.

Литература

- [1]
- [2] ссылка1
- [3] ссылка2
- [4] // ссылка3
- [5] // ссылка4