

AXI RAM (Beta Release)

Version 0.1

Copyright

Copyright © 2021 Rapid Silicon. All rights reserved. This document may not, in whole or part, be reproduced, modified, distributed, or publicly displayed without prior written consent from Rapid Silicon ("Rapid Silicon").

Trademarks

All Rapid Silicon trademarks are as listed at www.rapidsilicon.com. Synopsys and Synplify Pro are trademarks of Synopsys, Inc. Aldec and Active-HDL are trademarks of Aldec, Inc. Modelsim and Questa are trademarks or registered trademarks of Siemens Industry Software Inc. or its subsidiaries in the United States or other countries. All other trademarks are the property of their respective owners.

Disclaimers

NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS "AS IS" WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY, NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL RAPID SILICON OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER (WHETHER DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OF OR INABILITY TO USE THE INFORMATION PROVIDED IN THIS DOCUMENT, EVEN IF RAPID SILICON HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF CERTAIN LIABILITY, SOME OF THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

Rapid Silicon may make changes to these materials, specifications, or information, or to the products described herein, at any time without notice. Rapid Silicon makes no commitment to update this documentation. Rapid Silicon reserves the right to discontinue any product or service without notice and assumes no obligation to correct any errors contained herein or to advise any user of this document of any correction if such be made. Rapid Silicon recommends its customers obtain the latest version of the relevant information to establish that the information being relied upon is current and before ordering any products.

Contents

IP Summary	3
Introduction	3
Features	3
Overview	4
AXI RAM	4
IP Specification	5
Standards	6
IP Support Details	6
Resource Utilization	6
Port List	7
Parameters	8
Design Flow	9
IP Customization and Generation	9
Parameters Customization	9
Test Bench	10
Revision History	11

IP Summary

Introduction

The AXI RAM IP Core is a configurable IP block designed for use in FPGA and SoC designs. It provides a simple, high-performance memory interface that supports the AMBA AXI4 protocol, making it easy to integrate with other AXI-compliant IP cores. It can be configured to support a range of memory sizes and data widths. It provides a flexible and efficient solution for integrating FPGA embedded block RAM into the user designs, with a simple and standardized interface that facilitates system-level integration.

Features

- · AXI4 (memory mapped) slave interface
- · Configurable data width 8, 16, 32, 64 bits
- Supports memory size up to 512 MBytes.
- Compatible with AXI4 Interconnect

Overview

AXI RAM

The AXI RAM IP Core provides a simple and efficient memory interface that supports the widely used AMBA AXI4 protocol. This allows for easy integration with other AXI4-compliant IP cores, simplifying system-level design and verification. It can be customized to support a range of memory sizes and data widths, making it flexible and adaptable to different design requirements. This allows designers to optimize the use of FPGA resources and minimize the cost and complexity of the overall system.

Figure 1: AXI RAM Block Diagram

IP Specification

The AXI RAM IP Core is a simple memory component that supports the ARM Advanced eXtensible Interface (AXI) protocol. It provides a configurable memory block with read and write interfaces that support multiple outstanding transactions. It has configurable memory size and width. This IP Core supports both read and write operations. Read transaction return the data stored in the memory at specific address while write transaction store the data provided at the specific address. It provides a configuration interface to allow user to configure memory size, width and address range. It has a single clock domain and reset signal to initialize the memory to a known state.

Figure 2: Top Module

Standards

The AXI4 Slave interface is compliant with the AMBA® AXI Protocol Specification.

IP Support Details

The Table 1 gives the support details for AXI RAM.

Com	pliance	IP Resources			Tool I	low		
Device	Interface	Source Files	Constraint File	Testbench	Simulation Model	Analyze and Elaboration	Simulation	Synthesis
GEMINI	AXI4	Verilog	-	Cocotb	-	Raptor	Raptor	Raptor

Table 1: Support Details

Resource Utilization

The parameters for computing the maximum and the minimum resource utilization are given in Table 2.

Tool	Raptor Design Suite					
FPGA Device	GEMINI					
	Configuration	n	Resource Utilization			
Minimum Resource	Options	Configuration	Resources	Utilized		
	DATA_WIDTH	8	BRAMS	1		
	ADDR_WIDTH	8	REGISTERS	66		
	ID_WIDTH	1	LUTS	75		
	PIP_OUT	False	-	-		
Maximum Resource	Options	Configuration	Resources	Utilized		
	DATA_WIDTH	64	BRAMS	16		
	ADDR_WIDTH	16	REGISTERS	256		
	ID_WIDTH	8	LUTS	177		
	PIP_OUT	True	-	-		

Table 2: Resource Utilization

Ports

Table 3 lists the top interface ports of the AXI RAM.

Signal Name	I/O	Description			
clk	I	Clock Signal of RAM			
rst	I	Active High Synchronous Reset Signal			
	Write Address Channel				
s_axi_awid	I	Write address ID			
s_axi_awaddr	I	Write address			
s_axi_awlen	I	Burst length			
s_axi_awsize	I	Burst size			
s_axi_awburst	I	Burst type			
s_axi_awlock	I	Lock type			
s_axi_awcache	I	Memory type			
s_axi_awprot	I	Protection type			
s_axi_awvalid	I	Write address valid			
s_axi_awready	0	Write address ready			
	,	Write Data Channel			
s_axi_wdata	I	Write data			
s_axi_wstrb	trb I Write strobe				
s_axi_wlast	I	Write last			
s_axi_wvalid	I	Write valid			
s_axi_wready	0	Write ready			
	Wr	ite Response Channel			
s_axi_bid	0	Response ID tag			
s_axi_bresp					
s_axi_bvalid	0	Write response valid			
s_axi_bready	I	Write response ready			
	Re	ead Address Channel			
s_axi_arid	I	Read address ID			
s_axi_araddr	I	Read address			
s_axi_arlen	I	Burst length			
s_axi_arsize	I	Burst size			
s_axi_arburst	I	Burst type			
s_axi_arlock	I	Lock type			
s_axi_arcache	I	Memory type			
s_axi_arprot	I	Protection type			
s_axi_arvalid	I	Read address valid			
s_axi_arready	0	Read address ready			
		Read Data Channel			
s_axi_rid	0	Read ID tag			
s_axi_rdata	0	Read data			
s_axi_rresp	0	Read response			

Signal Name	I/O	Description
s_axi_rlast	0	Read last
s_axi_rvalid	0	Read valid
s_axi_rready	I	Read ready

Table 3: Port List

Parameters

Table 4 lists the parameters of the AXI RAM.

Parameter	Values	Default Value	Description
DATA_WIDTH	8, 16, 32, 64	32	Data Width of RAM
ADDR_WIDTH	8,16	16	Address Width of RAM
ID_WIDTH	1-8	8	ID field of RAM
PIP_OUT	True/False	False	Piplelined Output

Table 4: Parameters

Design Flow

IP Customization and Generation

AXI RAM IP core is a part of the Raptor Design Suite Software. A customized memory can be generated from the Raptor's IP configuration window as shown in figure 3.

Figure 3: IP List

Parameters Customization

From the IP configuration window, the parameters of the AXI RAM can be configured and it's features can be enabled for generating a customized IP core that suits the user application requirements. All parameters are shown in Figure 4. In Figure 4, the module name specifies the name of both the Verilog file and the top-level IP name that will be generated based on above configured parameters. The Output Dir is a directory option that allows the user to specify where they want the generated IP to be saved.

Figure 4: IP Configuration

Test Bench

The AXI RAM IP is provided with a testbench which is based upon Cocotb verification environment. In this test, multiple read/write transactions are performed on memory. The input data is generated using a test data generator module. The output data is compared with the expected output data to verify the correctness of the IP core's operation. The dump file is generated to view the output of the test. In the end, there is status for passing or failure of the test.

Revision History

Date	Version	Revisions
May 10, 2023	0.1	Initial version AXI RAM User Guide