Recommender Systems: Advanced

Jaemin Yoo

School of Electrical Engineering
Kim Jaechul Graduate School of Al

Outline

- 1. Graph-based recommendation
- 2. Graph neural networks
- 3. Neural graph collaborative filtering
- 4. Summary

Graphs

- Data structure that represents connections and relationships.
 - A graph consists of **nodes** (e.g., users) and **edges** (e.g., friendship).
 - A graph is represented as a sparse adjacency matrix.
 - $a_{ij} = 1$ if nodes i and j are connected; $a_{ij} = 0$ otherwise.

2 1 0 0 1 1 1 3 1 1 1 0 0 1 4 1 0 1 0 0 0		0	1	2	3	4	5
2 1 0 0 1 1 1 3 1 1 1 0 0 1 4 1 0 1 0 0 0	0	0	1	1	1	1	0
3 1 1 1 0 0 1 4 1 0 1 0 0 0	1	1	0	0	1	0	0
4 1 0 1 0 0 0	2	1	0	0	1	1	1
	3	1	1	1	0	0	1
5 0 0 1 1 0 0	4	1	0	1	0	0	0
	5	0	0	1	1	0	0

Graph Data: Social Networks

Graph Data: Communication

Various Types of Graphs

Event Graphs

Image credit: Wikipedia

Food Webs

Computer Networks

Image credit: Pinterest

Particle Networks

Disease Pathways

Image credit: visitlondon.com

Underground Networks

Image credit: Maximilian Nickel et al

Knowledge Graphs

Image credit: ResearchGate

Code Graphs

Directed vs. Undirected Graphs

• We focus on undirected graphs, which is a simpler structure.

Undirected

Links: undirected (symmetrical, reciprocal)

Directed

Links: directed

What to Do with Graphs: Link Prediction

- We can solve various tasks defined on graph datasets.
- Link prediction is to predict the appearance of new edges.
 - Identifying possible friends in Facebook.
 - Recommending new movies to users in Netflix.

What to Do with Graphs: Node Classification

- Node classification is to classify each node in a graph.
 - Identifying political stance of users in Facebook.
 - Categorizing movies in Netflix, going over typical genres.

Representation Learning in Graphs

- Both tasks can be solved by graph representation learning.
 - For (i) nodes, (ii) subgraphs, or the (iii) entire graph.
 - Learn low-dimensional embeddings.
 - Such that their relationships reflect the graph structure.

Example of Node Embeddings

- 2D embedding of nodes of the Zachary's Karate Club network
 - Each node is originally a |V| (= 34)-dimensional sparse vector

Recommender System as a Graph

- Recommender system is modeled as a bipartite graph.
- Edges connect users and items:
 - User-item interaction (e.g., click, purchase, review etc.).
 - Often associated with timestamp (timing of the interaction).

Recommendation Task

- Given past user-item interactions (as a graph).
 - Implicit feedback is assumed for simplicity.
- Predict items each user will interact in the future.
 - Can be cast as a link prediction problem.
 - Predict new user-item edges given the past edges
 - Aim to learn a real-valued score function f(u, v).
 - Between a user u and an item v.
 - Recommend items with the highest f(u, v).

Outline

- 1. Graph-based recommendation
- 2. Graph neural networks
- 3. Neural graph collaborative filtering
- 4. Summary

Deep Learning on Graphs

• Modern deep learning focuses on simple sequences and grids.

Deep Learning on Graphs

- Graph-structured data are far more complex.
 - Graphs have arbitrary size and complex topological structure.
 - No fixed node ordering or reference point.
 - Graph G with nodes (1,2,3) is the same as G' with nodes (1,3,2)?

Problem Definition

- Given a graph G = (A, X).
 - $A \in \{0,1\}^{|V| \times |V|}$ is a (symmetric) adjacency matrix.
 - $X \in \mathbb{R}^{|V| \times d}$ is a node feature matrix.
 - It can be a learnable matrix.
- Goal: Train a neural network for useful graph tasks.
 - E.g., node classification or link prediction.
 - Different types of labels will be given based on the task.

Graph Neural Networks

- Graph neural networks (GNNs) are neural nets for graphs.
- Idea: Node's neighborhood defines a computation graph.
 - Generalize the chain graph of an MLP.

Propagate and transform information

Computation Graph

- Computation graph creates a tree structure through layers.
 - Let $h_A^{(l)}$ be the hidden representation of node A at layer l.
 - $h_A^{(l)}$ is computed from $h_A^{(l-1)}$, $h_B^{(l-1)}$, $h_C^{(l-1)}$, and $h_D^{(l-1)}$ at layer l-1.

Computation Graph

• Every node defines a computation graph based on its neighborhood, in parallel.

GNN Layers

- GNN layers are a core building block of GNNs.
 - The number of layers determines the expressiveness of GNNs.
 - L-layer GNN considers the L-hop neighborhood of each node.

Components of Each Layer

- GNN layer is a function from a set of vectors into a single vector.
 - 1. Message: Transform each vector.
 - **2.** Aggregation: Aggregate the messages.

Message Computation

- Message is defined as $m_u^{(l)} = \mathrm{MSG}^{(l)}(h_u^{(l-1)})$.
 - Intuition: Each node creates a message, which is sent to other nodes.
 - Example: Linear layer $m_u^{(l)} = W^{(l)} h_u^{(l-1)}$.

Aggregation

- Aggregation is defined as $h_v^{(l)} = AGG^{(l)}(\{m_u^{(l)} \mid u \in N(v)\}).$
 - Intuition: Aggregate the messages from node v's neighbors.
 - **Example:** Elementwise $sum(\cdot)$, $mean(\cdot)$, or $max(\cdot)$ operator.
 - Any many-to-one function is okay.

Self-Connection

- We should also include a self-connection at each layer.
 - We don't want to lose information from node v.
 - Use $N(v) \cup \{v\}$ instead of N(v).

General Framework

- Putting things together, we have a GNN layer defined as
 - Message: $m_u^{(l)} = \text{MSG}^{(l)}(h_u^{(l-1)})$ where $u \in \{N(v) \cup \{v\}\}$.
 - Aggregation: $\hat{h}_{v}^{(l)} = AGG^{(l)}(\{m_{u}^{(l)} \mid u \in N(v)\}, m_{v}^{(l)}).$
 - Activation function: $h_v^{(l)} = \sigma(h_v^{(l)})$.
 - The function σ can be ReLU, Sigmoid, etc., and is used for nonlinearity.
- There are many GNNs with different choices of components.
 - GCN, GraphSAGE, GAT, GIN, etc.

Graph Convolutional Network

Graph convolutional network (GCN) is defined as

$$\hat{h}_{v}^{(l)} = \sum_{u \in N(v) \cup \{v\}} \frac{W^{(l)} h_{u}^{(l-1)}}{\sqrt{(d_{v}+1)(d_{u}+1)}}$$

- where d_v is the degree of node v, i.e., $d_v = |N(v)|$.
- The actual representation is $h_v^{(l)} = \sigma(\hat{h}_v^{(l)})$ with nonlinearity.

GCN in the Matrix Form

- We implement a GNN with matrix-vector operations.
- For example, the following two are equivalent:

$$h_u^{(l)} = \sum_{u \in N(v) \cup \{v\}} \frac{W^{(l)} h_u^{(l-1)}}{\sqrt{(d_v + 1)(d_u + 1)}}, \qquad H^{(l)} = \widetilde{D}^{-1/2} \widetilde{A} \widetilde{D}^{-1/2} H^{(l-1)} W^{(l)}.$$

- $\tilde{A} = A + I$ is the adjacency matrix with self-loops.
- \widetilde{D} is the degree matrix of \widetilde{A} , such that $\widetilde{d}_{ii} = \sum_k \widetilde{a}_{ik}$.

Outline

- 1. Graph-based recommendation
- 2. Graph neural networks
- 3. Neural graph collaborative filtering
- 4. Summary

Recap: Latent Factor Models

Latent factor models:

- Learn an embedding \mathbf{z}_u and \mathbf{z}_v for every user u and item v, resp.
- Given a user u, find an item v with a high score $f(u,v) = \mathbf{z}_u^\mathsf{T} \mathbf{z}_v$.
- The score function can be modeled as a neural network.
 - Use $f_{\theta}(u, v)$ with learnable parameters θ as a score function.

Limitations of LFMs

- CF captures only the first-order structure.
 - Only u and v participate in computing f(u, v).
 - High-order graph structure (e.g. K-hop paths between u and v) is not explicitly captured.

• Example:

- K=2: Users u_1 and u_2 bought the same item.
- K=4: Users u_1 and u_2 bought items v_1 and v_2 that are bought by the same user u_3 .
 - Represents high-order similarity.

Neural Graph Collaborative Filtering

- Neural Graph Collaborative Filtering (NGCF):
 - Explicitly incorporates the high-order graph structure for embeddings.
 - Key idea: Use a GNN to generate graph-aware final embeddings.

NGCF Visualization

• A graph (with the matrix A) is created from the utility matrix R.

NGCF Framework

- **Given:** User-item bipartite graph *G*.
- NGCF framework:
 - Initialize learnable node embeddings *E*.
 - Use a GNN to propagate **E** through G.
- Contains two kinds of parameters:
 - Shallow user/item embeddings: O(D|V|).
 - |V| is the number of nodes.
 - *D* is the embedding dimension.
 - GNN's parameters: $O(LD^2)$.
 - *L* is the number of GNN layers.

Neighborhood Aggregation

- Step 1: Set embeddings as initial features.
 - Each node u has a learnable embedding $\boldsymbol{h}_{u}^{(0)}$.
- Step 2: Update the embeddings through layers.

$$\boldsymbol{h}_{u}^{(l+1)} = \operatorname{COMBINE}\left(\boldsymbol{h}_{u}^{(l)}, \operatorname{AGG}\left(\left\{\boldsymbol{h}_{v}^{(l)}\middle|v\in N(u)\right\}\right)\right).$$

- Done for all users/items simultaneously.
- COMBINE and AGG functions can be anything.

Score Function

- Get final embeddings $\boldsymbol{z}_u = \boldsymbol{h}_u^{(L)}$ and $\boldsymbol{z}_v = \boldsymbol{h}_v^{(L)}$.
- Use the inner product $\mathbf{z}_{u}^{\mathsf{T}}\mathbf{z}_{v}$ as a score function.
- Training done by (stochastic) gradient descent.
- Any loss function for implicit feedback is used.
 - E.g., BPR loss.

embeddings (graph-aware)

Outline

- 1. Graph-based recommendation
- 2. Graph neural networks
- 3. Neural graph collaborative filtering
- 4. Summary

Summary

- Graphs can represent various datasets and tasks.
- GNNs are a core deep learning architecture for graphs.
 - The main idea is to apply convolution to graphs.
- Graph-based recommendation utilize graph information.
 - We can capture high-order relationships of users/items.

