Cours MO102 - Fonctions graphiques en Matlab

Partie I - Principales fonctions graphiques

Cette première partie a pour but de vous faire découvrir les fonctions graphiques usuelles de Matlab.

Graphiques 2D : principales fonctions

Mot clé	Fonction
plot	Graphe en 2D avec une échelle linéaire
plotyy	Graphe avec deux axes y différents à gauche et à droite
loglog	Graphe en 2D avec une échelle logarithmique pour les deux axes
semilogx	Graphe en 2D avec une échelle logarithmique pour l'axe des x
semilogy	Graphe en 2D avec une échelle logarithmique pour l'axe des y
figure, close	Permet d'ouvrir ou de fermer une figure
subplot	Tracer plusieurs graphes alignés sur une même figure

Exercice 1.1 : tracé d'une courbe 2D de type x y avec plot

- Définir le vecteur x = [0 pi/10 2pi/10 ... 2pi],
- calculer les vecteurs $y1 = \sin(x)$ et $y2 = \cos(x)$ correspondants au vecteur x,
- tracer la fonction sinus avec plot(x, y1),
- mettre un quadrillage de fond par la fonction grid on (inverse grid off),
- tracer sur le même graphique la fonction $y2 = \cos x$ (fonction hold on, inverse hold off),
- taper **figure** pour ouvrir une nouvelle fenêtre sans fermer la première, puis tracer $y = \exp(\cos(x))$.

Spécification des types de ligne avec plot

Taper help plot pour avoir la liste des options et la liste des styles et symboles.

Quelques exemples:

Style des lignes/couleur	Option dans plot
ligne continue rouge	-r
traits longs noirs	k
pointillés mauves	:m
traits longs + pointillés bleus	b
cercles verts	og
ligne continue + cercles jaunes	-yo
carrés bleu foncé	sb
croix bleu clair	xc
losanges + pointillés	.d
étoiles	h
Astérisques	*

Exercice 1.2 : styles de courbe

Utilisant le même vecteur $x = [0 \text{ pi/10 } 2\text{pi/10 } \dots 2\text{pi}]$ que dans l'exercice 1.1, tracer sur un même graphique les trois courbes $y1 = \sin(x)$, $y2 = \sin(x - 0.3)$ et $y3 = \sin(x - 0.5)$, de telle sorte que la courbe 1 soit une ligne continue rouge, la courbe 2 des cercles bleus, et la courbe 3 des pointillés noirs.

Tableau de graphes sur une même figure

Fonction **subplot(i,j,k)**

- i : nombre de lignes,
- j : nombre de colonnes,
- k : numéro du graphe actuel.

Exercice 1.3: utilisation de subplot

Reprendre le vecteur $x = [0 \text{ pi/}10 \text{ 2pi/}10 \dots 2pi]$, définir $y1 = \sin(x)$ et $y2 = \cos(x)$, puis utiliser subplot(2,1,1) et subplot(2,1,2) pour tracer sur une même figure les deux graphes des fonctions sinus et cosinus 1, l'un en dessous de l'autre.

Options du graphe : titre, labels, axes

Mot clé	Fonction
title	Définir le titre du graphe
xlabel	Label de l'axe des x
ylabel	Label de l'axe des y
zlabel	Label de l'axe des z
legend	Ajouter une légende sur le graphe
text	Permet d'ajouter du texte sur le graphe
axis	Définir xmin, xmax, ymin et ymax du graphe. voir aussi axis equal

Exercice 1.4: labellisation des axes et titre

- Tracer $y = \sin(x)$, mettre en police 24 'Temps' sur l'axe des x, et 'Signal' sur l'axe des y.
- Ajouter le titre : 'Tension en Volts' en police 36, en format helvetica et en gras.

Graphiques 3D : fonctions usuelles

Fonction	Usage
plot3	Tracé d'une ligne paramétrique en 3D
mesh	Tracé d'une surface en 3D, à partir de matrices de maillage
meshgrid	Définition de matrices de maillage à partir de deux vecteurs
surf	Tracé d'une surface en 3D avec dégradé de couleur, à partir de matrices de maillage
surfc	Tracé d'une surface en 3D avec dégradé de couleur et lignes d'iso-valeurs
ezmesh, ezmeshc	Tracé facile de surface (matrices de maillage définies par défaut)
ezsurf, ezsurfc	Tracé facile de surface avec dégradé de couleur (matrices de maillage définie par défaut)
sphere	Définition de matrices de maillage pour le tracé d'une sphère
cylinder	Définition de matrices de maillage pour le tracé d'un cylindre

Exercice 1.5 : ligne paramétrique

Tracer la ligne paramétrique x=cos t, y = sin t, z = t^2 en utilisant **plot3**, avec t=[0 pi/10,... 10pi].

Exercice 1.6: surface

Tracé de la surface $z = \sin r/r$, avec $r = \sqrt{x^2 + y^2}$.

- Définir la fonction elsombrero en écrivant dans le fichier elsombrero.m:

```
function z= elsombrero(x,y)
r = sqrt(x.^2 + y.^2);
z = sin(r)./r;
```

- Tracer la surface avec ezmesh puis ezsurfc. (taper ezmesh(@elsombrero))
- Pour un tracé de meilleure qualité (dégradé de couleur sans grid), taper ensuite shading interp.

Partie II: exercices optionnels

Exercice 2.1: boule de billard

- Définir les matrices de maillage en tapant [X, Y, Z] = sphere(N), avec N assez grand (20 ou plus).
- Tracer la sphère avec surf + options : **surf (X,Y,Z,'FaceColor','red','EdgeColor','none')**;
- Taper axis equal; (3D isométrique)
- Taper **lighting phong** ; (lissage du maillage)
- Taper camlight right; (apparition du relief)

Exercice 2.2 : visualisation de molécule

Le but de cet exercice est de donner un exemple d'interface graphique en entrée-sortie.

- Télécharger l'ensemble des fichiers contenus dans le fichier .tar situé à l'adresse :

http://perso.ensta-paristech.fr/~pcarpent/IN103/Cours/Exercices/Ex-graph/molview.tar

- Extraire les fichiers en tapant tar xvf molview.tar
- Taper intermol dans la fenêtre de commande, puis cliquer sur le bouton load
- Changer le nom complet d'un fichier .xyz (exemple : dna.xyz, c60.xyz, ...) dans la case à coté de load puis cliquer sur load
- Ouvrir le fichier intermol.m
- Remarquer l'ouverture des deux figures: tailles et positionnement
- Remarquer les appels de la fonction iucontrol(....) et déterminer leur rôle
- Ajouter un bouton **Quit** permettra de sortir du logiciel (on s'inspirera du bouton load); le bouton Quit fermera les figures de numéro a et b

(taper close(a); close(b); dans le callback de la fonction uicontrol).