MATH-UA 252/MA-UY 3204 - Fall 2022 - Worksheet #5

Problem 1. Let $f(x,y) = (x-2y)^2 + x^4$. Compute the Newton step at (x,y) = (2,1). Suppose we use a backtracking line search at this point. For what values of μ does $\alpha = 1$ satisfy the Armijo condition?

Problem 2. Let $f(x) = \frac{1}{2}x^{\top}Qx - c^{\top}x$. Let p be a descent direction for f at x. If we apply exact line search, show that:

$$\alpha = \frac{-p^{\top} \nabla f(x)}{p^{\top} Q p}.$$
 (1)

Problem 3. Assume that we're minimizing a function using exact line search, so that:

$$x_{k+1} = x_k + \alpha_k p_k, \qquad \alpha_k = \arg\min_{\alpha > 0} f(x_k + \alpha p_k).$$
 (2)

Prove that $\nabla f(x_{k+1})$ and p_k are orthogonal.

Problem 4. Let C be a symmetric matrix of rank 1. Show that it must have the form $C = \gamma w w^{\top}$, where $||w||_2 = 1$ and $\gamma \neq 0$. (*Hint*: consider the eigenvalue decomposition of C.)

Problem 5. Let $f(x) = \alpha x^2$, where $\alpha, x \in \mathbb{R}$ and $\alpha > 0$. Show that the secant method minimizes f(x) in exact one step from any starting point.