consider a xx=b in the blowing Steactures (7/+) atx=b for a,b \in Z (-a) +a+x = (-a) +b ((-a) ta) tx = (-a) tb (associativity] 0 +x = -a+b x = -a+b (px,.) $a \cdot x = b$ $\alpha, b \in \mathbb{Q}^{k}$ $\frac{1}{a}(a \cdot x) = a \cdot b$ (1/2.a).x = 1/2.b x = b/6

Desimition

let 5* be an alg. structure

Then (5, *) is a group

Then (5, *) is a group

Then (5, *) is a group

1) × is associative iff $\forall a,b,c \in S (a*b) × (= a*(b*c)$

7) The identity element e is in S Je ES, Va ES axe = exa = a

3) All eleng of S have (enique) inverses in S (wit *) Va ES, Ja'ES, a *a' = e

examples

1) (R,+), (Q,+), (Z,+)-groups bes 1) addition is associated 2) identify is O

3) additive inverse of a 15 -a but (N, +) is not a group 125 N does not contain additive 2) (R* .) (Q* ,.) - groups i) mult is associative z) identity is 1 z) inverse of a ER* (d*) is 1/a (R* (Q*) but (Z/) is not a group bes not all clems have inverses

Definition

let (6,*) be a group Then 6 is an abelian group iff * is commutative Ya, bEG, 0x6 = bxa

Notice that all prev. examples were abelian groups.

example

(U,·) is a group (abelian)

1) complex # mult. is associative

2) Identity is 1+0; = e°i (U

3) Inverse of z is z-1 = e^{i (2π-0)} (U

8 (U,·) ~ (R_{2π}, +_{2π}) - abelian

group

Petinition

(et (5, x) be an alg. struct.

S is a semigroup iff

* is associative on S

Definition

Let (S, *) be a semigroup S is a manoid iff S contains the identity w.r.t. *

Definition

Let (S, *) be a monoid S is a group iff all elements of S have unique inverses with X

examples

(It, t) ~ semigroup

(It) ~ semigroup

(It) ~ commutative)

(M,(R),) ~ monoid

(M,(R),) ~ monoid

Properfies Lemma Let 6* b

Let 6x be a group w/ identity e The left 4 right = ancellation laws hold in G (that is)

 $\forall a,b,c \in G$, a * b = a * c = b = C $\land b * a = c * a = b = c$

Proof consider $a \star b = a \star c$ for $a,b,c \in G$ Then $\exists'a' \in G$, $a' \star a = e$ hence $a' \star (a \star b) = a' \star (a \star c)$ By group property O, $(a' \star a) \star b = (a' \star a) \star c$

By group prop 743 exb = exc >> b=c

let (G, X) be a group the inverse a' of a in G is a unique elem of G Assume a'4 a'' are inverses of a wtx a'*a = a *a' = P 1 a"*a = a *a" = P (by property 3) Since **a'=e na* a"=e, a*a' = a*a'' so a' = a''let (G, x) be a group (not abelian) $a \times x = b$ $\wedge x \times a = b$ have unique solas in G Proof

consider $a \times x = b$, by grop 3423/a/66, a/xa=e hence

a/*(a *x)= a/*b. By dearb book 1' (a'*a) * x = a'*bBy 1509 342 exx = a'xb 4 x=a'xb To show soln is unique, ussume both x, 4xz are solns t. axx=b $\alpha \times x_1 = b$ $\Lambda \alpha \times x_2 = b$ hence a*x, = a *x2 By property of cancellation, $X' = X^{2}$

Finite Croups + Group Tables

The least group is I element

(iei, *) with table

** Le

e te

consider 2-elem group struct.

(ie, ai, *) w/ teble

({ e , a 3 , *) w/ teble

* le a

e le a since all elems

a la e & mort have inverser,

a nort be its own

i merse

consider set $\mathbb{Z}_2 = \{0,1\}$ w.r.t. addition mod \mathbb{Z} The all odd integers all even integers

I set $\mathbb{Z}_2 = \{0,1\}$ w.r.t. addition mod \mathbb{Z}_2

Def The order of a group (G,*) is |G|

Note: There is only one group of order 1, the identity group

Note: There is only one group of order 2, up to isomorphism

(Tz, tz)

consider ({e,a,b3, x)

$$\begin{array}{c|cccc}
x & e & a & b \\
\hline
e & e & a & b \\
a & a & b & e \\
b & b & c & a
\end{array}$$

There is only 1 group of order 3, isomorphic to (Z3, t3)