WORKED-OUT EXAMPLES WOODGROVE BANK ON

NOISE POLLUTION

Dr Indranil Ghosh.

Example 1

Calculate the intensity of 50 dB sound.

(Given reference intensity = 10^{-12} w/m²).

We know that,

Sound level L (dB) =
$$10 \log_{10} \frac{I}{I_0}$$

where, I = measured intensity

$$I_0 = \text{reference intensity} = 1 \times 10^{-12} \, \text{w/m}^2$$
.

 \therefore When sound level = 50 dB. then

$$50 = 10\log_{10} \frac{I}{1 \times 10^{-12}}$$

or
$$5 = \log_{10} \frac{I}{1 \times 10^{-12}}$$

or
$$\frac{I}{1 \times 10^{-12}} = 10^5$$

$$I = 10^5 \times 10^{-12}$$

or
$$I = 10^{-7}$$

$$\therefore$$
 The intensity is 1×10^{-7} w/m².

Example 2

How much is a sound of 100 dB louder than a sound of 90 dB. [Reference

intensity =
$$1 \times 10^{-12}$$
 w/m²]

Solution:

We know that,

Sound level L (dB) =
$$10 \log \frac{I}{I_0}$$

Where, I = measured intensity

 I_0 = reference intensity

In the first case, i.e. when sound level is 100 dB then,

$$L_1 = 10\log \frac{I}{I_0}$$

or,
$$\log \frac{I}{I_0} = \frac{L_1}{10}$$

or,
$$\frac{I_1}{I_0} = 10^{\frac{L_1}{10}}$$

$$I_1 = I_0 \times 10^{L_1/10} - (1)$$

In the sound case, i.e. when sound level is 90 dB then,

$$L_2 = 10\log\frac{I_2}{I_0}$$

or
$$\log \frac{I_2}{I_0} = \frac{L_2}{10}$$

or
$$\frac{I_2}{I_0} = 10^{\frac{I_2}{10}}$$

$$I_2 = I_0 \times 10^{\frac{L_2}{10}} - (2)$$

Now,
$$\frac{I_1}{I_2} = \frac{I_0 \times 10^{\frac{L_1}{10}}}{I_0 \times 10^{\frac{L_2}{10}}} = \frac{1 \times 10^{\frac{L_1}{10}}}{1 \times 10^{\frac{L_2}{10}}}$$

Now,
$$L_1 = 100 \text{ dB}$$

$$L_2 = 90 \text{ dB}.$$

$$\therefore \frac{I_1}{I_2} = \frac{1 \times 10^{\frac{100}{10}}}{1 \times 10^{\frac{90}{10}}} = \frac{10^{10}}{10^9} = 10 \text{ times.}$$

So, 100 dB sound is louder than 90 dB sound by 10 times.

Example

A single machine produces 100 dB sound at time of take start. If two identical machines take start from same place and same time, what would be the total sound level?

Solution:

Consider that the first machine produces L₁ sound level at the time of taking start.

So,
$$L_1 = 10 \log \frac{I_1}{I_0}$$
 ... (1)

Where, I_1 = intensity of sound level L_1

 I_0 = reference intensity.

Similarly, the second machine produces L₂ sound level at the time of taking start.

So,
$$L_2 = 10 \log \frac{I_2}{I_0}$$
 ... (2)

When, I_2 = intensity of sound level L_2

 I_0 = reference intensity.

So, when both the machine take start from same place and same time, then the total intensity of sound

$$I_3 = I_1 + I_2$$

After, arranging the equation (1), we get

$$L_1 = 10 \log \frac{I_1}{I_0}$$

or,
$$\log \frac{I_1}{I_0} = \frac{L_1}{10}$$

or,
$$\frac{I_1}{I_0} = 10^{\frac{L_1}{10}}$$

$$\vdots \qquad I_1 = I_0 \times 10^{\frac{L_1}{10}} \qquad \dots (4)$$

Similarly,

$$I_2 = I_0 \times 10^{L_2/10} \qquad \dots (5)$$

When both the machine take start from same time and same place, then the total sound produced is –

$$L_{3} = 10\log \frac{I_{3}}{I_{0}}$$

$$= 10\log \frac{I_{0}\left(1 \times 10^{\frac{L_{1}}{10}} + 1 \times 10^{\frac{L_{2}}{10}}\right)}{I_{0}}$$

$$= 10\log \left(10^{\frac{L_{1}}{10}} + 10^{\frac{L_{2}}{10}}\right) \qquad ... (7)$$

As,
$$L_1 = L_2 = 100 \text{ dB}.$$

$$L_3 = 10 \log \left(10^{100/10} + 10^{100/10}\right)$$

$$= 10 \log \left(10^{10} + 10^{10}\right) = 10 \log 2 \times 10^{10}$$

$$= 10 (\log 2 + 10) = 103$$

So, when both the machine takes start from same place and same time, then the total sound would be 103 dB.

THANK YOU

Dr Indranil Ghosh

+9830153972

☑ indranilghosh74@gmail.com

www.nsec.ac.in