ГУАП

КАФЕДРА № 44

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ		
ПРЕПОДАВАТЕЛЬ		
доц., канд. техн. наук, доц. должность, уч. степень, звание	подпись, дата	О.О.Жаринов инициалы, фамилия
ОТЧЕТ С) ЛАБОРАТОРНОЙ РАБО	TE № 7
РАЗРАБОТКА ФОРМИ	РОВАТЕЛЯ ИМПУЛЬСОІ ЦИФРОВЫМ КОДОМ	В, УПРАВЛЯЕМОГО
Γ	10 курсу: СХЕМОТЕХНИКА	
D. FORW D. 170 W. 171		
РАБОТУ ВЫПОЛНИЛ		
СТУДЕНТ гр. № 4141	подпись, дата	Р. А. Лысенко инициалы, фамилия

Вариант №12

1. Цель работы: разработать проект формирователя импульсов, параметры которых задаются внешним двоичным параллельным кодом, в среде программирования Quartus.

2. Вариант задания.

Задание заключается в формировании импульсов, параметры которых однозначно определяются цифровым управляющим 6-разрядным двоичным кодом.

Bap.	12
K_1	N
K ₀	6

3. Краткое описание концепции разработки схемы.

Идея разработки схемы, решающей поставленную задачу, была придумана тремя людьми из группы 4141: Лысенко Р.А., Карабаева Д.К., Громыш Я.Р. на лабораторном занятии 08.11.2023 числа.

Схема разработана при помощи двух счетчиков и одного D-триггера, который выступает в роли RS — триггера. Первый счетчик считает заданное число N, второй — фазу нуля. D-триггер регулирует работу двух счетчиков, которые считают последовательно. Установленное пользователем значение N запоминается схемой благодаря 6-разрядному регистру 74174, что не требует постоянного ввода числа для работы устройства.

Также в схеме присутствует JK-триггер 74112о, который был добавлен для игнорирования иголки, мешающей устройству выводить правильный сигнал.

4. Сложности при разработке схемы.

При разработке схемы возникли следующие проблемы:

- 1. Второй счетчик, считающий фазу ноль, не обновлялся и «залипал» в тройке. Для решения проблемы выходной сигнал счетчика (сигнал переполнения) подали на синхронный сброс этого счетчика счетчик стал сбрасываться при переполнении.
- 2. Возникла проблема с числами, превышающими число 15. Если ввести

такое число, то будет возникать иголка, нарушающая выходную последовательность при переходе от числа 16 до 15:

Рисунок 1 – Проблемная Иголка

Для решения данной проблемы было принято решение использовать дополнительный триггер 741120, через который сигнал outN (превышение счетчиком числа N) проходит всегда, а иголка минуется триггером, так как возрастающий сигнал иголки триггер игнорирует:

Рисунок 2 – Решение проблемы с иголкой

До этого выход outN и вход next были соединены через инвертор, поэтому на выходе JK-триггера я тоже добавил инвертор.

5. Схема устройства в Quartus.

Рисунок 3 – Схема устройства

6. Временная диаграмма

Рисунки 4-13 – Выходной сигнал на временной диаграмме

7. Схема подключения ПЛИС

На рисунке 14 представлено размещение входов и выходов логической схемы на ПЛИС MAX II EPM240F100C4.

Рисунок 14 – ПЛИС

На рисунке 15 представлен результат компиляции схемы при использовании ПЛИС.

Flow Status Successful - Tue Dec 12 00:07:49 2023 Quartus II Version 9.1 Build 222 10/21/2009 SJ Web Edition

Revision Name laba7 Top-level Entity Name laba7 Family MAX II

EPM240F100C4 Device

Timing Models Final Met timing requirements Yes

Total logic elements 24 / 240 (10 %) Total pins 9 / 80 (11 %)
Total virtual pins 0
UFM blocks 0 / 1 (0 %)

Рисунок 15 – Информация о компиляции

8. Выводы

В результате выполнения лабораторной работы я разработал проект модуля счётного устройства, работающего по заданному алгоритму, в среде программирования Quartus. Была произведена работы над ошибками после компилирования и вывода неверной временной диаграммы. Также я приобрёл навыки работы со счётчиками и триггерами и создал схему, состоящую из двух счетчиков и пары триггеров.