$\mathbb{P}_{1/2}[top\ of\ \Lambda_n\ is\ connected\ to\ infinity\ outside\ \Lambda_n] \geq 1 - \mathbb{P}_{1/2}[\Lambda_n \longleftrightarrow \infty]^{1/4}.$

2. Deduce that the probability of the event \mathcal{B}_n that there exist infinite paths in ω from the top and bottom of Λ_n to infinity in $\mathbb{Z}^2 \setminus \Lambda_n$, and infinite paths in ω^* from the left and right sides to infinity satisfies

$$\mathbb{P}_{1/2}[\mathcal{B}_n] \ge 1 - 4\mathbb{P}_{1/2}[\Lambda_n \longleftrightarrow \infty]^{1/4}.$$

3. Using (FE) and the uniqueness of the infinite cluster, prove that $\mathbb{P}_{1/2}[\Lambda_n \leftrightarrow \infty]$ cannot tend to 0.

Sol

(1) To Show

 $\frac{\mathbb{P}_{1}}{2}$ (top of Λ_{n} is connected to infinity autside)

 $\geq 1 - \mathbb{P}_{1} \left(\Lambda_{n} \longleftrightarrow \infty \right) \frac{1}{4}$

Proof:

R_n

Let the top, bottom, right, left sides of Mn be Tn, Bn, Rn, Ln. By symmetry.

 $\mathbb{P}_{2}\left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right) = \mathbb{P}_{2}\left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right) = \mathbb{P}_{2}\left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right) = \mathbb{P}_{2}\left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right)$

note that $\{T_n \rightarrow \infty \text{ outside of } N_n \}$ is increasing for IE &T, R, B, L?. Therefore by the square root trick P_ () > 1 - P () 3 In is not connected by to so, sutside for the son of him $= 1 - \mathbb{P}_{\frac{1}{2}} \left(\wedge_n \leftarrow \rightarrow \infty \right)$ Shows (1) $\mathbb{P}_{\frac{1}{2}}(\mathcal{B}_{n}) = \mathbb{P}_{\frac{1}{2}}^{\frac{1}{2}} \{\mathbb{R}_{n}^{*} \rightarrow \infty \text{ in } \mathbb{Z}^{2} \setminus \Lambda_{n} \} \text{ } n \{\mathbb{B}_{n} \rightarrow \infty \text{ in } \mathbb{Z}^{2} \setminus \Lambda_{n} \}$ $\mathbb{I}_{\frac{1}{2}}(\mathcal{B}_{n}) = \mathbb{P}_{\frac{1}{2}}^{\frac{1}{2}} \{\mathbb{R}_{n}^{*} \rightarrow \infty \text{ in } (\mathbb{Z}^{2})^{*} - (\Lambda_{n})^{*} \}$ $\mathbb{I}_{\frac{1}{2}}(\mathcal{B}_{n}) = \mathbb{P}_{\frac{1}{2}}^{\frac{1}{2}} \{\mathbb{R}_{n}^{*} \rightarrow \infty \text{ in } (\mathbb{Z}^{2})^{*} - (\Lambda_{n})^{*} \}$ $\mathbb{I}_{\frac{1}{2}}(\mathcal{B}_{n}) = \mathbb{P}_{\frac{1}{2}}^{\frac{1}{2}} \{\mathbb{R}_{n}^{*} \rightarrow \infty \text{ in } (\mathbb{Z}^{2})^{*} - (\Lambda_{n})^{*} \}$ $\mathbb{I}_{\frac{1}{2}}(\mathcal{B}_{n}) = \mathbb{P}_{\frac{1}{2}}^{\frac{1}{2}} \{\mathbb{R}_{n}^{*} \rightarrow \infty \text{ in } (\mathbb{Z}^{2})^{*} - (\Lambda_{n})^{*} \}$ het the above events be I, II, II, II. Then $P(B_n) = 1 - P$ at least one of II, II, II, II?

does not happen

Since we are working at $P=\frac{1}{2}$ the processes on \mathbb{Z}^2 and $(\mathbb{Z}^2)^*$ are exactly the same, therefore $(\mathbb{P}_1(\mathbb{I}) = \mathbb{P}_1(\mathbb{I}) = \mathbb{P}_1(\mathbb{I}) = \mathbb{P}_1(\mathbb{I})$ Now by (1), P. (I does not happen) $\geq P(\Lambda_n \longleftrightarrow \infty) \Psi$ Thus by union bound P(Bn) > 1-4P(1,00)= 3) Now Suppose $P_{\frac{1}{2}}(\Lambda_n 2 + 3 \infty)$ tends to 0 as $n \to \infty$. Then $\mathbb{P}(\mathcal{B}_n) \to 1$ as $n \to \infty$. Let In be the event that all edges in In are open, Then by Finite Energy (FE) Pick n S.t. P₁ (tn OBn) >0, it is easy to see tn OBn C 2 2 at least 2 infinite? Clusters in Z²

Thus P(3 atleast 2 infinite) > 0 So P1 (My 4) cannot tend to 0, and thus b>1.