微波布拉格衍射实验报告

吴熙楠

2021年5月29日

目录

1	实验目的	2
2	实验器材	2
3	实验过程及数据整理3.1 模拟晶体布拉格衍射3.1.1 [100] 面模拟布拉格衍射3.1.2 [110] 面模拟布拉格衍射3.1.2 [110] 面模拟布拉格衍射3.2 单缝衍射5.2 单缝衍射3.3 迈克尔逊干涉5.3 迈克尔逊干涉	2 4 5
4	分析与讨论	6
5	收获与感想	7

1 实验目的 2

摘要

晶体有规则的几何形状,晶体中原子按规则排列组成晶格,对于晶体的散射而言,同一层的 散射线,当散线与晶面间的夹角等于掠射角时,在这个方向上射线产生相长干涉,而对于不同层 的散射线,当光程差为波长的整数倍时,各个面的散射线相互加强,形成光强的极大,即布拉格 衍射。我们在本次实验中将会采用模拟晶体进行微波布拉格衍射实验,从而证明布拉格公式。

关键词:晶体,散射,布拉格公式

1 实验目的

- (1) 了解并学习微波器件的使用;
- (2) 了解布拉格衍射原理,利用微波在模拟晶体上的衍射验证布拉格公式。

2 实验器材

微波分光仪,模拟晶体,单缝,反射板(两块),分束板

3 实验过程及数据整理

- 3.1 模拟晶体布拉格衍射
- 3.1.1 [100] 面模拟布拉格衍射

	X 1. [100] 面积X面积加加和数据X						
θ/°	$I/\mu A$	$\theta/^{\circ}$	$I/\mu A$	θ /°	$I/\mu A$	$\theta/^{\circ}$	$I/\mu A$
90	44	69	62	55	5	37	20
89	64	68	49	50	6	36	22
88	87	67	26	45	4	35	15
87	98	66	20	44	6	34	10
86	100	65	19	43	8	33	6
85	87	64	12	42	8	32	5
84	52	63	7	41	10	31	6
80	4	62	4	40	12	30	10
75	7	61	3	39	14	25	2
70	30	60	2	38	18	_	-

表 1: [100] 面模拟晶体布拉格衍射数据表

图 1: [100] 面模拟布拉格衍射

从图中我们可以看到有三个峰,其中前两个是我们需要的,而最后一个峰是因为微波在不同晶面的透射导致的增强,因此我们只计入前两个峰的角度, $\theta_1 = 37^\circ, \theta_2 = 69^\circ$

其中我们按照理论公式计算出的理论值为: $\theta_1 = 36.9^\circ$, $\theta_2 = 66.4^\circ$, 可见实际上我们模拟晶体的布拉格衍射还算较为准确(在可以允许的误差范围内),但由于转动角度不能准确读出以及初始位置没有准确对准等原因,与理论值还是有一些偏差。

3.1.2 [110] 面模拟布拉格衍射

100								
1	9/°	$I/\mu A$	$\theta/^{\circ}$	$I/\mu A$	$\theta/^{\circ}$	$I/\mu A$		
	90	52	80	42	54	14		
	89	54	75	12	53	11		
	88	58	70	2	52	6		
	87	58	65	1	51	4		
	86	64	60	8	50	4		
	85	77	59	14	45	0		
	84	90	58	18	40	0		
	83	90	57	20	35	0		
	82	78	56	18	30	0		
	81	66	55	15	25	0		

表 2: [110] 面模拟晶体布拉格衍射数据表

图 2: [110] 面模拟布拉格衍射

从图中我们可以看到有两个峰,其中第一个是我们需要的,而第二个峰是因为微波在不同晶面的透射导致的增强,因此我们只计入第一个峰的角度, $\theta=57^\circ$

3 实验过程及数据整理

其中我们按照理论公式计算出的理论值为: $\theta = 55.5^\circ$,可见实际上我们模拟晶体的布拉格衍射还算较为准确(在可以允许的误差范围内),但由于转动角度不能准确读出以及初始位置没有准确对准等原因,与理论值还是有一些偏差。

3.2 单缝衍射

表 3: 单缝衍射数据表	Ę
--------------	---

7. 2. 1. 2.11/47/2004							
θ/°	$I/\mu A$	$\theta/^{\circ}$	$I/\mu A$	$\theta/^{\circ}$	$I/\mu A$	$\mid \theta /^{\circ} \mid$	$I/\mu A$
0	82	24	2	-10	42	-27	1
5	68	26	1	-15	24	-28	0
10	45	27	0	-20	8	-29	0
15	22	28	0	-22	6	-30	0
20	4	30	0	-24	4	-	-
22	3	-5	72	-26	2	-	-

图 3: 模拟单缝衍射图

我们通过测量数据可得:微波在衍射第一次达到极小值的时候 $\theta \approx \frac{28^\circ + 27^\circ}{2} = 27.5^\circ \Rightarrow \lambda = asin\theta = 3.23cm$

4 分析与讨论 6

我们比较微波波长的理论值 $\lambda = \frac{c}{f} = 3.20cm$ 可得,我们利用单缝衍射的方法测得的微波波长也是较为准确的。

3.3 迈克尔逊干涉

表 4: 迈克尔逊干涉数据表

n	1	2	3	4
d/mm	59.962	43.417	26.965	11.785

图 4: 模拟迈克尔逊干涉实验数据图

我们从图中作图可得斜率为: $\frac{\lambda}{2} = 16.098mm \Rightarrow \lambda = 32.2mm$

而实际上我们计算理论值可得 $\lambda = \frac{c}{f} = 32.02mm$,可见我们用迈克尔逊干涉的方法测出的 微波波长还是较为准确的。

4 分析与讨论

为何在模拟晶体布拉格衍射实验中入射角在 80°+ 时会出现一个衍射峰?

5 收获与感想 7

答:因为入射角超过 80°时,因为已经接近垂直入射,而模拟晶体中间间隙为空的,因此微波的透射被接收器接受到的几率增大,因此接收到的电流强度会增大,但因为模拟晶体的小球有一定的体积大小,故如果完全垂直入射,则必然会导致微波被小球 180°反射的几率增大,接受到的电流减小,故两种效应叠加将会在 80°-90°范围内形成一个峰位。

5 收获与感想

在本次实验中,我们了解并学习了微波器件的使用,了解了布拉格衍射原理,同时我们利用微波在模拟晶体上的衍射验证了布拉格公式。布拉格衍射为我们学习晶体以及光学中的重要知识,本次实验给我们拓宽了眼界同时从实验方面了解了此公式的意义。