UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE

Theis title
2nd line

A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY

Ву

 $\begin{array}{c} {\rm XYZ} \\ {\rm Norman,\ Oklahoma} \\ 2014 \end{array}$

Theis title 2nd line

A DISSERTATION APPROVED FOR THE Department of COMPUTER SCIENCE and Engineering

Dr. Md. Shohrab Hossain

Dr.

Dr.

© Copyright by XYZ 2014 All Rights Reserved.

Dedication

This dissertation is dedicated to .

Acknowledgements

This work has been possible because of a number of individuals. First of all, I would like to express my sincere gratitude to my faculty advisor Dr. Mohammed Atiquzzaman for his expert advice, patience and continuous supervision throughout my PhD studies, which made this work possible.

I am truly grateful to my committee members: Dr. John K. Antonio, Dr. Changwook Kim, Dr. Dean Hougen and Dr. Zahed Siddique for their valuable advice and time to review the dissertation. Their comments and suggestions have been very helpful to improve the quality of this dissertation.

I am also thankful to all the faculty and staff members of the School of Computer Science at the University of Oklahoma for providing a supportive environment for my study. Moreover, numerous discussion with my fellow researchers Dr. Abu Zafar Shahriar, Mr. Sazzadur Rahman, Syed Maruful Huq and Yasmin Jahir, and their technical expertise led to the improvements of this work.

The author would like to acknowledge the financial support of National Aeronautics and Space Administration (NASA) to carry out this project.

Last but not least, I would like to thank my wife Nusrat and my daughter Tasneem for accompanying and supporting me through all the tough times, and my parents and sister for providing moral support.

Table of Contents

Acknowledgements List of Tables			iv vi	
\mathbf{A}	bstra	ct	viii	
1	Intr	roduction	1	
	1.1	Introduction	1	
	1.2	Motivation and Problem Statement	1	
	1.3	Objectives	2	
	1.4	Contributions		
	1.5	Organization of the Dissertation	2	
Bibliography			2	
		dix A		
	Aore	anuma	11	

List of Tables

List of Figures

Abstract

Today mobile computing has become a necessity and we are witnessing explosive growth in the number of mobile devices accessing the Internet. To facilitate continuous Internet connectivity for nodes and networks in motion, mobility protocols are required and they exchange various signaling messages with the mobility infrastructure for protocol operation. Proliferation in mobile computing has raised several research issues for the mobility protocols. First, it is essential to perform cost and scalability analysis of mobility protocols to find out their resource requirement to cope with future expansion. Secondly, mobility protocols have survivability issues and are vulnerable to security threats, since wireless communication media can be easily accessible to intruders. The third challenge in mobile computing is the protection of signaling messages against losses due to high bandwidth requirement of multimedia in mobile environments. However, there is lack of existing works that focus on the quantitative analysis of cost, scalability, survivability and security of mobility protocols.

In this dissertation, we have performed comprehensive evaluation of mobility protocols. We have presented tools and methodologies required for the cost, scalability, survivability and security analysis of mobility protocols. We have proposed a dynamic scheduling algorithm to protect mobility signaling message against losses due to increased multimedia traffic in mobile environments and have also proposed a mobile network architecture that aims at maximizing bandwidth utilization. The analysis presented in this work can help network engineers compare different mobility protocols quantitatively, thereby choose one that is reliable, secure, survivable and scalable.

Chapter 1

Introduction

Next generation networks are gradually converging towards the all-IP networks which can enable true global mobility and Internet connectivity to mobile devices.

1.1 Introduction

Internet Protocol (IP) is the underlying communication protocol that allows an end host to get connected to other hosts over the public Internet. Therefore, to facilitate continuous Internet connectivity for mobile nodes, Internet Engineering Task Force (IETF) proposed Mobile IPv6 [1], an IP-based mobility protocol.

This aggregated mobility management can significantly reduce signaling requirement and power consumption.

1.2 Motivation and Problem Statement

In a mobile computing environment, a number of *network parameters* (such as, network size, mobility rate, traffic rate) influence the signaling costs related to mobility management. With the rapid growth and popularity of mobile and wireless networks,

Finally, mobility protocols can be vulnerable to security threats.

1.3 Objectives

The *objectives* of this research are as follows:

- The first objective of this research is to perform a comprehensive cost and scalability evaluation of the
- The second objective of this research is the quantitative evaluation of survivability of the mobility infrastructure and the associated components.
- The fourth objective of this research is to protect mobility protocols from security threats.
- Finally, mobility protocols require a realistic mobility model that can mimic the movement pattern of nodes in motion.

1.4 Contributions

The *contributions* of the dissertation are summarized as follows:

- Perform entity-wise cost evaluation of host and network mobility protocols.
- Perform quantitative scalability analysis of host and network mobility protocols.
- Perform multi-class queuing analysis and propose a dynamic scheduling algorithm to protect crucial control messages (of mobility management) against losses.

1.5 Organization of the Dissertation

The rest of the dissertation is organized as follows. Chapter ?? presents a review of host and network mobility protocols.

Bibliography

- [1] C. Perkins, D. Johnson, and J. Arkko, "Mobility support in IPv6," IETF RFC 6275, Jul 2011.
- [2] V. Devarapalli, R. Wakikawa, A. Petrescu, and P. Thubert, "NEtwork MObility (NEMO) basic support protocol," RFC 3963, Jan 2005.
- [3] S. Fu and M. Atiquzzaman, "SIGMA: A Transport Layer Handover Protocol for Mobile Terrestrial and Space Networks," e-Business and Telecommunication Networks, Springer, pp. 41–52, 2006.
- [4] P. Chowdhury, M. Atiquzzaman, and W. Ivancic, "SINEMO: An IP-diversity based approach for network mobility in space," in *Second IEEE International Conference on Space Mission Challenges for Information Technology (SMC-IT)*, Pasadena, CA, Jul 17-21, 2006.
- [5] H. Soliman, C. Castelluccia, K. El Malki, and L. Bellier, "Hierarchical Mobile IPv6 mobility management (HMIPv6)," IETF RFC 5380, Oct 2008.
- [6] R. Stewart, Q. Xie, and M. Tuexen et al., "Stream Control Transmission Protocol (SCTP) dynamic address reconfiguration," IETF RFC 5061, Sep 2007.
- [7] S. Fu and M. Atiquzzaman, "Handover latency comparison of SIGMA, FMIPv6, HMIPv6, and FHMIPv6," in *IEEE GLOBECOM*, St. Louis, MO, Nov 28-Dec 02, 2005.
- [8] S. Fu and M. Atiquzzaman, "Hierarchical location management for transport layer mobility," in *IEEE GLOBECOM*, San Francisco, CA, Nov 27-Dec 1, 2006.
- [9] A. S. Reaz, M. Atiquzzaman, and S. Fu., "Performance of DNS as location manager for wireless systems in IP networks," in *IEEE GLOBECOM*, St. Louis, MI, Nov 28 Dec 2, 2005.
- [10] S. Fu and M. Atiquzzaman, "Signaling cost and performance of SIGMA: A seamless handover scheme for data networks," Wireless Communication and Mobile Computing, vol. 5, no. 7, pp. 825–845, Nov 2005.

- [11] A. S Reaz, P. K. Chowdhury, and M. Atiquzzaman, "Signaling cost analysis of SINEMO: Seamless End-to-End Network Mobility," in *First ACM/IEEE International Workshop on Mobility in the Evolving Internet Architecture*, San Francisco, CA, Dec 1, 2006.
- [12] Christian Makaya and Samuel Pierre, "An analytical framework for performance evaluation of IPv6-based mobility management protocols," *IEEE Transactions on Wireless Communications*, vol. 7, no. 3, pp. 972–983, Mar 2008.
- [13] Kumudu S. Munasinghe and Abbas Jamalipour, "Analysis of signaling cost for a roaming user in a heterogeneous mobile data network," in *IEEE Globecom*, New Orleans, LA, Nov 26-30, 2008.
- [14] Jong-Hyouk Lee, Sri Gundavelli, and Tai-Myoung Chung, "A performance analysis on route optimization for Proxy Mobile IPv6," in *IEEE International Conference on Communications*, Dresden, Germany, Jun 14-18, 2009.
- [15] Jiang Xie and Uday Narayanan, "Performance analysis of mobility support in IPv4/IPv6 mixed wireless networks," *IEEE Transactions on Vehicular Technology*, vol. 59, no. 2, Feb 2010.
- [16] J. Xie and I.F. Akyildiz, "A novel distributed dynamic location management scheme for minimizing signaling costs in Mobile IP," *IEEE Transactions on Mobile Computing*, vol. 1, no. 3, pp. 163–175, Jul 2002.
- [17] C. Perkins, D. Johnson, and J. Arkko, "Mobility support in IPv6," IETF RFC 6275, Jul 2011.
- [18] R. Stewart, Q. Xie, and M. Tuexen et al., "Stream Control Transmission Protocol (SCTP) dynamic address reconfiguration," IETF RFC 5061, Sep 2007.
- [19] C.A. Santivanez, B. McDonald, I. Stavrakakis, and R. Ramanathan, "On the scalability of Ad hoc routing protocols," in *IEEE INFOCOM*, New York, NY, June 23-27, 2002.
- [20] Sumesh J. Philip, Joy Ghosh, Swapnil Khedekar, and Chunming Qiao, "Scalability analysis of location management protocols for Mobile Ad hoc Networks," in *IEEE WCNC*, Atlanta, GA, Mar 21-25, 2004.
- [21] Lubna K. Alazzawi, Ali M. Elkateeb, Aiyappa Ramesh, and Waleed Aljuhar, "Scalability analysis for wireless sensor networks routing protocols," in 22nd International Conference on Advanced Information Networking and Applications, Okinawa, Japan, Mar 25-28, 2008.
- [22] Youngjune Gwon, James Kempf, and Alper Yegin, "Scalabilty and robustness analysis of Mobile IPv6, Fast Mobile IPv6, Hierarchical Mobile IPv6, and hybrid

- IPv6 mobility protocols using a large-scale simulation," in *IEEE ICC*, Paris, France, Jun 20-24, 2004.
- [23] Terho Hautala, Timo Braysy, Juha Makela, Janne Lehtomki, and Tommi Saarinen, "Scalability of mobility signaling in IEEE 802.11 WLAN," in *IEEE Vehicular Technology Conference*, Orlando, FL, Oct 6-9, 2003.
- [24] Hoang Nam Nguyen and Iwao Sasase, "Downlink queuing model and packet scheduling for providing lossless handoff and QoS in 4G mobile network," *IEEE Transactions on Mobile Computing*, vol. 5, no. 5, pp. 452–462, May 2006.
- [25] Mohsin Iftikhar, Tejeshwar Singh, Bjorn Landfeldt, and Mine Caglar, "Multiclass G/M/1 queueing system with self-similar input and non-preemptive priority," *Computer Communications*, vol. 31, pp. 1012–1027, Mar 2008.
- [26] Mohsin Iftikhar, Bjorn Landfeldt, and Mine Caglar, "Towards the formation of comprehensive SLAs between heterogeneous wireless DiffServ domains," *Telecommunication Systems*, vol. 42, pp. 179–199, Dec 2009.
- [27] Gunter Bolch, Stefan Greiner, Hermann de Meer, and Kishor S. Trivedi, Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications, Wiley-Interscience, New York, NY, 1998.
- [28] "The network simulation ns-2," http://www.isi.edu/nsnam/ns/.
- [29] Harkirat Singh, Julan Hsu, Lochan Verma, Scott Seongwook Lee, and Chiu Ngo, "Green operation of multi-band wireless LAN in 60 GHz and 2.4/5 GHz," in Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, Jan 2011.
- [30] Eldad Perahia, Carlos Cordeiro, Minyoung Park, and L. Lily Yang, "IEEE 802.11ad: defining the next generation multi-gbps Wi-Fi," in 7th IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, Jan 2010.
- [31] Ian F. Akyildiz, David M. Gutierrez-Estevez, and Elias Chavarria Reyes, "The evolution to 4G cellular systems: LTE-advanced," *Physical Communication*, vol. 3, pp. 217–244, Mar 2010.
- [32] Sumit Singh, Raghuraman Mudumbai, and Upamanyu Madhow, "Distributed coordination with deaf neighbors: Efficient medium access for 60 GHz mesh networks," in *IEEE INFOCOM*, San Diego, CA, Mar 2010.
- [33] Yi bing Lin, Wei ru Lai, and Rong jaye Chen, "Performance analysis for dual band PCS networks," *IEEE Transactions on Computers*, vol. 49, pp. 148–159, Feb 2000.

- [34] Klaus Doppler, Carl Wijting, Tero Henttonen, and Kimmo Valkealahti, "Multiband scheduler for future communication systems," *I. J. Communications*, *Network and System Sciences*, vol. 1, no. 1, pp. 1–9, Feb 2008.
- [35] Lochan Verma and Scott Seongwook Lee, "Multi-band Wi-Fi systems: A new direction in personal and community connectivity," in *IEEE International Conference on Consumer Electronics*, Las Vegas, NV, Jan 2011.
- [36] Donald Gross, John Shortle, James Thompson, and Carl M. Harris, Fundamentals of Queueing Theory, Wiley-Interscience, Aug 2008.
- [37] Konstantin E. Avrachenkov, Nikita O. Vilchevsky, and Georgy L. Shevlyakov, "Priority queueing with finite buffer size and randomized push-out mechanism," *Performance Evaluation*, vol. 61, pp. 1–16, Jun 2005.
- [38] Guido Appenzeller, Isaac Keslassy, and Nick McKeown, "Sizing router buffers," Computer Communication Review, vol. 34, pp. 281–292, Oct 2004.
- [39] Gahng seop Ahn, Andrew T. Campbell, Andras Veres, and Li hsiang Sun, "Supporting service differentiation for real-time and best-effort traffic in Stateless Wireless Ad Hoc Networks (SWAN)," *IEEE Transactions on Mobile Computing*, vol. 1, pp. 192–207, Sep 2002.
- [40] Kuo-Tay Chen, Szu-Lin Su, and Rong-Feng Chang, "Design and analysis of dynamic mobility tracking in wireless personal communication networks," *IEEE Transactions on Vehicular Technology*, vol. 51, no. 3, May 2002.
- [41] Md. Shohrab Hossain, M. Atiquzzaman, and William Ivancic, "Survivability and scalability of space networks," in *NASA Earth Science Technology Forum*, Arlington, VA, Jun 22-24, 2010.
- [42] Yin Fu Huang and Min Hsiu Chuang, "Fault tolerance for home agents in Mobile IP," *Computer Networks*, vol. 50, no. 18, pp. 3686–3700, Dec 2006.
- [43] Jenn-Wei Lin and Joseph Arul, "An efficient fault-tolerant approach for Mobile IP in wireless systems," *IEEE Transactions on Mobile Computing*, vol. 2, no. 3, pp. 207–220, Jul-Sep 2003.
- [44] J. Jue and D. Ghosal, "Design and analysis of replicated server architecture for supporting IP-host mobility," *ACM Mobile Computing and Communications Review*, vol. 2, no. 3, pp. 16–23, Jul 1998.
- [45] J. Faizan Hesham EL-Rewini and M. Khalil, "Introducing reliability and load balancing in Mobile IPv6-based networks," Wireless Communication and Mobile Computing, vol. 8, no. 4, pp. 483–500, May 2008.

- [46] Hui Deng, X. Huang, Kai Zhang, Zhisheng Niu, and Masahiro Ojima, "A hybrid load balance mechanism for distributed home agents in Mobile IPv6," Personal, Indoor and Mobile Radio Communications, pp. 2842–2846, Jan 2003.
- [47] Romain Kuntz, Julien Montavont, and Thomas Noel, "Multiple mobile routers in nemo: How neighbor discovery can assist default router selection," in *IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)*, Poznan, Poland, Sep 15-18, 2008.
- [48] Poul E. Heegaard and Kishor S. Trivedi, "Network survivability modeling," *Computer Networks*, vol. 53, no. 8, Jun 2009.
- [49] S. Fu and M. Atiquzzaman, "Survivability evaluation of SIGMA and Mobile IP," Wireless Personal Communications, vol. 43, no. 3, pp. 933–944, Nov 2007.
- [50] R. Wakikawa, V. Devarapalli, G. Tsirtsis, T. Ernst, and K. Nagami, "Multiple care-of addresses registration," IETF RFC 5648, Oct 2009.
- [51] Jen-Yi Pan, Jing-Luen Lin, and Kai-Fung Pan, "Multiple care-of addresses registration and capacity-aware preference on multi-rate wireless links," in *International Conference on Advanced Information Networking and Applications*, Okinawa, Japan, Mar 25-28, 2008.
- [52] Romain Kuntz, "Deploying reliable IPv6 temporary networks thanks to NEMO basic support and multiple care-of addresses registration," in *International Symposium on Applications and the Internet Workshops*, Hiroshima, Japan, Jan 15-19, 2007.
- [53] Xiaohua Chen, Hongke Zhang, Yao-Chung Chang, and Han-Chieh Chao, "Experimentation and performance analysis of multi-interfaced mobile router scheme," *Simulation Modelling Practice and Theory*, vol. 18, no. 4, Apr 2010.
- [54] Md. Sazzadur Rahman, Outman Bouidel, M. Atiquzzaman, and William Ivancic, "Performance Comparison between NEMO BSP and SINEMO," in *IEEE GLOBECOM*, New Orleans, LA, Nov 30-Dec 4 2008.
- [55] Henrik Petander, Eranga Perera, Kun-Chan Lan, and Aruna Seneviratne, "Measuring and improving the performance of network mobility management in IPv6 networks," *IEEE Journal on Selected Areas in Communications*, vol. 24, no. 9, pp. 1671–1681, Sep 2006.
- [56] "NEPL (NEMO Platform for Linux) howto," http://www.nautilus6.org/doc/nepl-howto/.
- [57] R. Kuntz, "NEMO Basic Support implementation tests at the 6th IPv6 TAHI interoperability test event," http://www.nautilus6.org/doc/tc-nemotahi-interop-20050207-KuntzR.txt, Feb 2005.

- [58] James Kempf, Jari Arkko, and Pekka Nikander, "Mobile IPv6 security," Wireless Personal Communications, vol. 29, pp. 398–414, Jun 2004.
- [59] Dong Hu, Dong Zhou, and Ping Li, "PKI and secret key based mobile IP security," in *International Conference on Communications, Circuits and Systems*, Guilin, China, June 2006.
- [60] Khaled Elgoarany and Mohamed Eltoweissy, "Security in Mobile IPv6: A survey," *Information Security Technical Report*, vol. 12, no. 1, pp. 32–43, Jun 2007.
- [61] Errata Exist, S. Kent, and K. Seo, "Security architecture for the internet protocol," IETF RFC 4301, Dec 2005.
- [62] C. Kaufman, P. Hoffman, Y. Nir, and P. Eronen, "Internet Key Exchange Protocol Version 2 (IKEv2)," IETF RFC 5996, September 2010.
- [63] S. Kent, "IP Authentication Header," IETF RFC 4302, Dec 2005.
- [64] S. Kent, "IP Encapsulating Security Payload (ESP)," IETF RFC 4303, Dec 2005.
- [65] W. Diffie and M. Hellman, "New directions in cryptography," *IEEE Transaction on Information Theory*, vol. 22, no. 6, pp. 644–654, Nov 1976.
- [66] T. Aura, "Cryptographically Generated Addresses (CGA)," IETF RFC 3972, March 2005.
- [67] Greg O'Shea and Michael Roe, "Child-proof authentication for MIPv6 (CAM)," *ACM Computer Communications Review*, vol. 31, no. 2, Apr 2001.
- [68] J. Harri, F. Filali, and C. Bonnet, "Mobility models for vehicular ad hoc networks: a survey and taxonomy," *IEEE Communications Surveys and Tutorials*, vol. 11, no. 4, pp. 19–41, Dec 2009.
- [69] Christian Bettstetter, Hannes Hartenstein, and Xavier Prez-Costa, "Stochastic properties of Random Waypoint mobility model," *Wireless Networks*, vol. 10, no. 5, pp. 555–567, Sep 2004.
- [70] Kuo-Hsing Chiang and Nirmala Shenoy, "A 2-d random-walk mobility model for location-management studies in wireless networks," *IEEE Transactions on Vehicular Technology*, vol. 53, no. 2, Mar 2004.
- [71] Tariq Ali and Mohammad Saquib, "Performance evaluation of wlan/cellular media access for mobile voice users under random mobility models," *IEEE Transactions on Wireless Communications*, vol. 10, no. 10, pp. 3241–3255, Oct 2011.

- [72] Enrica Zola and Francisco Barcelo-Arroyo, "Probability of handoff for users moving with the random waypoint mobility model," in *IEEE Conference on Local Computer Networks*, Bonn, Germany, 2011.
- [73] Plamen I. Bratanov and Ernst Bonek, "Mobility model of vehicle-borne terminals in urban cellular systems," *IEEE Transactions on Vehicular Technology*, vol. 52, no. 4, pp. 947–952, Jul 2003.
- [74] G. Hosein Mohimani Farid Ashtiani Adel Javanmard and Maziyar Hamdi, "Mobility modeling, spatial traffic distribution, and probability of connectivity for sparse and dense vehicular ad hoc networks," *IEEE Transactions on Vehicular Technology*, vol. 58, no. 4, pp. 1998–2007, May 2009.
- [75] Amir Reza Momen and Paeiz Azmi, "A stochastic vehicle mobility model with environmental condition adaptation capability," *Wireless Communications and Mobile Computing*, vol. 9, no. 8, pp. 1070–1080, Aug 2009.
- [76] Andrea Clementi, Angelo Monti, and Riccardo Silvestri, "Modelling mobility: A discrete revolution," Ad Hoc Networks, vol. 9, no. 6, pp. 998–1014, Aug 2011.
- [77] Kahina Ait Ali, Mustapha Lalam, Laurent Moalic, and Oumaya Baala, "V-mbmm: Vehicular mask-based mobility model," in 9th International Conference on Networks, Menuires, France, Apr 11-16, 2010.
- [78] J. Chung and D. Go, "Stochastic vector mobility model for mobile and vehicular ad hoc network simulation," *IEEE Transactions on Mobile Computing* (published online), Aug 2011.
- [79] Francisco J. Martinez, Juan-Carlos Cano, Carlos T. Calafate, and Pietro Manzoni, "CityMob: A mobility model pattern generator for VANETs," in *IEEE ICC Workshops*, Beijing, China, May 2008.
- [80] Amit Kumar Saha and David B. Johnson, "Modeling mobility for Vehicular Ad hoc Networks," in *ACM International Workshop on Vehicular Ad Hoc Networks* (VANET), Philadelphia, PA, Oct 2004.
- [81] Amit Jardosh, Elizabeth M. Belding-Royer, Kevin C. Almeroth, and Subhash Suri, "Towards realistic mobility models for mobile ad hoc networks," in *International Conference on Mobile Computing and Networking (MOBICOM)*, San Diego, CA, Sep 14-19, 2003.
- [82] J. Harri, F. Filali, C. Bonnet, and Marco Fiore, "VanetMobiSim: Generating realistic mobility patterns for VANETs," in *ACM International Workshop on Vehicular Ad Hoc Networks (VANET)*, Los Angeles, CA, Sep 29, 2006.

- [83] Jonghyun Kim, Vinay Sridhara, and S. Bohacek, "Realistic mobility simulation of urban mesh networks," *Ad Hoc Networks*, vol. 7, no. 2, pp. 411–430, Mar 2009.
- [84] Hongyu Huang, Yanmin Zhu, Xu Li, Minglu Li, and Min-You Wu, "Meta: A mobility model of metropolitan taxis extracted from gps traces," in *IEEE Wireless Communications and Networking Conference*, Sydney, Australia, Apr 18-21, 2010.
- [85] Md. Shohrab Hossain and M. Atiquzzaman, "Stochastic properties and application of city section mobility model," in *IEEE Global Communications Conference (GLOBECOM)*, Honolulu, HI, Nov 30-Dec 4, 2009.
- [86] "Google Maps," http://maps.google.com.
- [87] "City of New York: Department of Transportation," http://www.nyc.gov/html/dot/html/faqs/faqs_signals.shtml.
- [88] S. Gundavelli and K. Leung et al., "Proxy Mobile IPv6," IETF RFC 5213, Aug 2008.

Appendix A

Acronyms

AH Authentication Header

AR Access Router

AZS Anchor Zone Server

BA Binding Acknowledgement

BSP Basic Support Protocol

BU Binding Update

CGA Cryptographically Generated Address

CN Correspondent Node

CoA Care of Address

CoT Care-of Test

CoTI Care-of Test Init

DDoS Distributed Denial of Service

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DoS Denial of Service

ESP Encapsulating Security Payload

FTP File Transfer Protocol

HA Home Agent

HiSIGMA Hierarchical SIGMA

HIP Host Identification Protocol

HMIPv6 Hierarchical Mobile IP vesrion 6

HoA Home Address

HoT Home Test

HoTI Home Test Init

HZS Home Zone Server

ICMP Internet Control Message Protocol

IETF Internet Engineering Task Force

IKE Internet Key Exchange

IP Internet Protocol

IPsec IP security

LCoA Local Care of Address

LFN Local Fixed Node

LLM Local Location Manager

LM Location Manager

LMA Local Mobility Anchor

MAP Mobility Anchor Point

MH Mobile Host

MIP Mobile IP

MIPv6 Mobile IP vesrion 6

MITM Man In The Middle

MNN Mobile Network Node

MNP Mobile Network Prefix

MR Mobile Router

MSF Mobility Scalability Factor

NEMO NEtwork Mobility

NRT Non-Real Time

PDA Personal Digital Assistant

RA Router Advertisement

RBU Refreshing Binding Update

RCoA Regional Care of Address

RR Return Routability

RT Real Time

RTT Round Trip Time

SA Security Association

SCTP Stream Control Transport Protocol

SIGMA Seamless IP-diversity based Generalized Mobility Architecture

SINEMO Seamless IP-diversity based Network Mobility

SPI Security Parameters Index

TCP Transmission Control Protocol

TNRL Telecommunications and Networks Research Lab

UDP User Datagram Protocol

VMN Visiting Mobile Node