
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Durreshwar Anjum

Timestamp: [year=2009; month=5; day=27; hr=8; min=21; sec=10; ms=2;]

Validated By CRFValidator v 1.0.3

Application No: 10587372 Version No: 1.0

Input Set:

Output Set:

Started: 2009-05-18 17:12:43.129

Finished: 2009-05-18 17:12:43.492

Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 363 ms

Total Warnings: 0

Total Errors: 0

No. of SeqIDs Defined: 12

Actual SeqID Count: 12

SEQUENCE LISTING

- <110> BAROJA FERNANDEZ, Miren Edurne
 MUNOZ PEREZ, Francisco Jose
 POZUETA ROMERO, Francisco Javier
 MORAN ZORZANO, Maria Teresa
 ALONSO CASAJUS, Nora
 <120> METHOD OF PRODUCTION OF RECOMBINA
- <120> METHOD OF PRODUCTION OF RECOMBINANT SUCROSE SYNTHASE, USE THEREOF IN THE MANUFACTURE OF KITS FOR DETERMINATION OF SUCROSE, PRODUCTION OF ADPGLUCOSE AND PRODUCTION OF TRANSGENIC PLANTS WHOSE LEAVES AND STORAGE ORGANS ACCUMULATE HIGH CONTENTS OF ADPGLUCOSE AND STARCH

25

27

- <130> U 016405-8
- <140> 10587372
- <141> 2009-05-18
- <160> 12
- <170> PatentIn version 3.3
- <210> 1
- <211> 25
- <212> DNA
- <213> Solanum tuberosum
- <220>
- <223> Promoter of the 5' region of SS4
- <400> 1
- ctgccatggc tgaacgtgtt ttgac
- <210> 2 <211> 27
- 1211/ 2/
- <212> DNA
- <213> Solanum tuberosum
- <220>
- <223> Promoter of the 3' region of SS4
- <400> 2
- cttcattcac tcagcagcca atggaac
- <210> 3
- <211> 2418
- <212> DNA
- <213> Solanum tuberosum

<400> 3

<400> 3						
atggctgaac	gtgttttgac	tcgtgttcat	agccttcgtg	aacgtgttga	tgcaacttta	60
gctgctcacc	gcaatgagat	actgctgttt	ctttcaagga	tcgaaagcca	cggaaaaggg	120
atattgaaac	ctcatgagct	tttggctgag	ttcgatgcaa	ttcgccaaga	tgacaaaaac	180
aaactgaacg	aacatgcatt	cgaagaactc	ctgaaatcca	ctcaggaagc	gattgttctg	240
cccccttggg	ttgcacttgc	tattcgtttg	aggcctggtg	tctgggaata	catccgtgtg	300
aacgtcaatg	cactagttgt	cgaggagctg	tccgtccctg	agtatttgca	attcaaggaa	360
gaacttgtcg	acggagcctc	gaatggaaat	tttgttctcg	agttggattt	cgagcctttc	420
actgcatcct	ttcctaaacc	aaccctcacc	aaatctattg	gaaatggagt	tgaattcctc	480
aataggcacc	tctctgccaa	aatgttccat	gacaaggaaa	gcatgacccc	gcttctcgaa	540
tttcttcgcg	ctcaccatta	taagggcaag	acaatgatgc	tgaatgatag	gatacagaat	600
tcgaatactc	ttcaaaatgt	cctaaggaag	gcagaggaat	acctcattat	gctttcccca	660
gatactccat	atttcgaatt	cgagcacaag	ttccaagaaa	tcggattgga	gaagggatgg	720
ggggacacgg	cggagcgtgt	gctagagatg	gtatgcatgc	ttcttgatct	ccttgaggct	780
cctgactcat	gtactcttga	gaagttcttg	gggagaattc	ctatggtttt	caatgtggtt	840
atcctttccc	ctcatggata	ttttgcccaa	gaaaatgtct	tgggttatcc	cgacaccggt	900
ggccaggttg	tctacattct	agatcaagtt	cccgccttgg	agcgtgaaat	gcttaagcgc	960
ataaaggagc	aaggacttga	tatcatcccc	cgtattctta	ttgttactcg	tctgctgccc	1020
gatgcagttg	gaaccacttg	tggtcagagg	attgagaagg	tgtatggagc	agaacactca	1080
catattctta	gggtcccttt	taggactgag	aagggcattg	ttcgcaaatg	gatctctcgc	1140
tttgaagtgt	ggccatacat	ggagacattc	attgaggatg	ttgcaaaaga	aatttctgca	1200
gaacrgcagg	ccaagccaga	tttgataatt	ggaaactaca	gtgagggcaa	tcttgctgct	1260
tctttgctag	ctcacaagtt	aggcgtaact	cagtgcacsa	ttgcccacgc	gttggagaaa	1320
acgaagtatc	ctgattccga	catttactgg	aaaaagtttg	atgaaaaata	ccatttctcg	1380
tcccagttta	ccgctgatct	cattgcaatg	aatcacactg	atttcatcat	caccagcacc	1440
ttccaggaga	ragcaggaag	caaggacact	gtaggacaat	atgagagcca	tatggcattc	1500
acaatgcctg	gattgtacag	agttgttcac	ggcattaatg	tgttcgaccc	caaattcaac	1560
attgtctcac	ctggagctga	tattaatctc	tacttctcgt	actccgaaac	ggagaagaga	1620

cttacagcat	ttcaccctga	aattgatgag	ctgctgtata	gtgatgttga	gaatgacgag	1680
catctgtgtg	tgctcaagga	caggactaaa	ccaattttat	tcacaatggc	aaggttggat	1740
cgtgtgaaga	atttaactgg	acttgttgag	tggtacgcca	agaatccacg	actaagggga	1800
ttggttaacc	tggttgtagt	tggcggagat	cgaaggaagg	aatccaaaga	tttggaagag	1860
caggcagaga	tgaagaagat	gtatgagcta	attgagactc	ataatttgaa	tggccaattc	1920
agatggattt	cttcccagat	gaaccgagtg	aggaatggtg	agctctaccg	atacattgct	1980
gacactaagg	gagctttcgt	tcagcctgca	ttctacgagg	cctttggtct	gactgttgtc	2040
gaagcaacga	crtgtggttt	gcctacattt	gcaactaatc	acggtggtcc	agctgagatc	2100
atcgttcatg	gaaagtccgg	cttccacatt	gatccatatc	acggtgagca	agctgctgat	2160
ctgctagctg	atttctttga	gaaatgcaag	aaagagcctt	cacattggga	aaccatttcg	2220
acgggtggcc	tgaagcgcat	ccaagagaag	tacacttggc	aaatctactc	cgaaaggcta	2280
ttgacactgg	ctgctgttta	tgggrtctgg	aaacatgttt	ctaaacttga	tcgtctagaa	2340
acccgrcgct	atcttgasat	gttttatgct	ctcaagtacc	gtaagatggc	rgaagctgtt	2400
ccattggcrg	ctgagtga					2418

<210> 4

<211> 841

<212> PRT

<213> Solanum tuberosum

<220>

<223> SSX fused with a histidine-rich amino acid tail deducted after expression of SSX in the PET-28a(+) expression plasmid

<400> 4

Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro
1 5 10 15

Arg Gly Ser His Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg 20 25 30

Gly Ser Glu Phe Met Ala Glu Arg Val Leu Thr Arg Val His Ser Leu 35 40 45

Arg Glu Arg Val Asp Ala Thr Leu Ala Ala His Arg Asn Glu Ile Leu 50 55 60

Leu 65	Phe	Leu	Ser	Arg	Ile 70	Glu	Ser	His	Gly	Lys 75	Gly	Ile	Leu	Lys	Pro 80
His	Glu	Leu	Leu	Ala 85	Glu	Phe	Asp	Ala	Ile 90	Arg	Gln	Asp	Asp	Lys 95	Asn
Lys	Leu	Asn	Glu 100	His	Ala	Phe	Glu	Glu 105	Leu	Leu	Lys	Ser	Thr 110	Gln	Glu
Ala	Ile	Val 115	Leu	Pro	Pro	Trp	Val 120	Ala	Leu	Ala	Ile	Arg 125	Leu	Arg	Pro
Gly	Val 130	Trp	Glu	Tyr	Ile	Arg 135	Val	Asn	Val	Asn	Ala 140	Leu	Val	Val	Glu
Glu 145	Leu	Ser	Val	Pro	Glu 150	Tyr	Leu	Gln	Phe	Lys 155	Glu	Glu	Leu	Val	Asp 160
Gly	Ala	Ser	Asn	Gly 165	Asn	Phe	Val	Leu	Glu 170	Leu	Asp	Phe	Glu	Pro 175	Phe
Thr	Ala	Ser	Phe 180	Pro	Lys	Pro	Thr	Leu 185	Thr	Lys	Ser	Ile	Gly 190	Asn	Gly
Val	Glu	Phe 195	Leu	Asn	Arg	His	Leu 200	Ser	Ala	Lys	Met	Phe 205	His	Asp	Lys
Glu	Ser 210	Met	Thr	Pro	Leu	Leu 215	Glu	Phe	Leu	Arg	Ala 220	His	His	Tyr	Lys
Gly 225	Lys	Thr	Met	Met	Leu 230	Asn	Asp	Arg	Ile	Gln 235	Asn	Ser	Asn	Thr	Leu 240
Gln	Asn	Val	Leu	Arg 245	Lys	Ala	Glu	Glu	Tyr 250	Leu	Ile	Met	Leu	Ser 255	Pro
Asp	Thr	Pro	Tyr 260	Phe	Glu	Phe	Glu	His 265	Lys	Phe	Gln	Glu	Ile 270	Gly	Leu
Glu	Lys	Gly 275	Trp	Gly	Asp	Thr	Ala 280	Glu	Arg	Val	Leu	Glu 285	Met	Val	Cys

Met Leu Leu Asp Leu Leu Glu Ala Pro Asp Ser Cys Thr Leu Glu Lys

290 295 300

Phe Leu Gly Arg Ile Pro Met Val Phe Asn Val Val Ile Leu Ser Pro 305 310 315 320 His Gly Tyr Phe Ala Gln Glu Asn Val Leu Gly Tyr Pro Asp Thr Gly 325 330 Gly Gln Val Val Tyr Ile Leu Asp Gln Val Pro Ala Leu Glu Arg Glu 340 345 350 Met Leu Lys Arg Ile Lys Glu Gln Gly Leu Asp Ile Ile Pro Arg Ile 355 360 365 Leu Ile Val Thr Arg Leu Pro Asp Ala Val Gly Thr Thr Cys Gly 370 375 380 Gln Arg Ile Glu Lys Val Tyr Gly Ala Glu His Ser His Ile Leu Arg 385 390 395 400 Val Pro Phe Arg Thr Glu Lys Gly Ile Val Arg Lys Trp Ile Ser Arg 405 410 415 Phe Glu Val Trp Pro Tyr Met Glu Thr Phe Ile Glu Asp Val Ala Lys 420 425 430 Glu Ile Ser Ala Glu Leu Gln Ala Lys Pro Asp Leu Ile Ile Gly Asn 440 445 435 Tyr Ser Glu Gly Asn Leu Ala Ala Ser Leu Leu Ala His Lys Leu Gly 450 455 460 Val Thr Gln Cys Thr Ile Ala His Ala Leu Glu Lys Thr Lys Tyr Pro 465 470 475 480 Asp Ser Asp Ile Tyr Trp Lys Lys Phe Asp Glu Lys Tyr His Phe Ser 485 490 495 Ser Gln Phe Thr Ala Asp Leu Ile Ala Met Asn His Thr Asp Phe Ile 505

Ile Thr Ser Thr Phe Gln Glu Ile Ala Gly Ser Lys Asp Thr Val Gly

525

520

515

Gln	Tyr 530	Glu	Ser	His	Met	Ala 535	Phe	Thr	Met	Pro	Gly 540	Leu	Tyr	Arg	Val
Val 545	His	Gly	Ile	Asn	Val 550	Phe	Asp	Pro	Lys	Phe 555	Asn	Ile	Val	Ser	Pro 560
Gly	Ala	Asp	Ile	Asn 565	Leu	Tyr	Phe	Ser	Tyr 570	Ser	Glu	Thr	Glu	Lys 575	Arg
Leu	Thr	Ala	Phe 580	His	Pro	Glu	Ile	Asp 585	Glu	Leu	Leu	Tyr	Ser 590	Asp	Val
Glu	Asn	Asp 595	Glu	His	Leu	Cys	Val 600	Leu	Lys	Asp	Arg	Thr 605	Lys	Pro	Ile
Leu	Phe 610	Thr	Met	Ala	Arg	Leu 615	Asp	Arg	Val	Lys	Asn 620	Leu	Thr	Gly	Leu
Val 625	Glu	Trp	Tyr	Ala	Lys 630	Asn	Pro	Arg	Leu	Arg 635	Gly	Leu	Val	Asn	Leu 640
Val	Val	Val	Gly	Gly 645	Asp	Arg	Arg	Lys	Glu 650	Ser	Lys	Asp	Leu	Glu 655	Glu
Gln	Ala	Glu	Met 660	Lys	Lys	Met	Tyr	Glu 665	Leu	Ile	Glu	Thr	His 670	Asn	Leu
Asn	Gly	Gln 675	Phe	Arg	Trp	Ile	Ser 680	Ser	Gln	Met	Asn	Arg 685	Val	Arg	Asn
Gly	Glu 690	Leu	Tyr	Arg	Tyr	Ile 695	Ala	Asp	Thr	Lys	Gly 700	Ala	Phe	Val	Gln
Pro 705	Ala	Phe	Tyr	Glu	Ala 710	Phe	Gly	Leu	Thr	Val 715	Val	Glu	Ala	Met	Thr 720
Cys	Gly	Leu	Pro	Thr 725	Phe	Ala	Thr	Asn	His 730	Gly	Gly	Pro	Ala	Glu 735	Ile
Ile	Val	His	Gly 740	Lys	Ser	Gly	Phe	His 745	Ile	Asp	Pro	Tyr	His 750	Gly	Glu

```
Gln Ala Ala Asp Leu Leu Ala Asp Phe Phe Glu Lys Cys Lys Lys Glu
                        760
Pro Ser His Trp Glu Thr Ile Ser Thr Gly Gly Leu Lys Arg Ile Gln
   770
            775
                                      780
Glu Lys Tyr Thr Trp Gln Ile Tyr Ser Glu Arg Leu Leu Thr Leu Ala
785
                790
                                  795
Ala Val Tyr Gly Phe Trp Lys His Val Ser Lys Leu Asp Arg Leu Glu
             805
                               810
Ile Arg Arg Tyr Leu Glu Met Phe Tyr Ala Leu Lys Tyr Arg Lys Met
                   825
Ala Glu Ala Val Pro Leu Ala Ala Glu
   835
              840
<210> 5
<211> 41
<212> DNA
<213> Solanum tuberosum
<220>
<223> "Forward" promoter required for the point mutagenesis of SSX
<400> 5
cgaacatgca ttcgaagaac ccctgaaatc cactcaggaa g
                                                               41
<210> 6
<211> 41
<212> DNA
<213> Solanum tuberosum
<220>
<223> "Reverse" promoter required for the point mutagenesis of SSX
<400> 6
cttcctgagt ggatttcagg ggttcttcga atgcatgttc g
                                                               41
<210> 7
<211> 42
<212> DNA
```

<213> Solanum tuberosum

```
<220>
<223> "Forward" promoter required for point mutagenesis of SSX
<400> 7
cggagaagag acttacagca tctcaccctg aaattgatga gc
                                                                     42
<210> 8
<211> 42
<212> DNA
<213> Solanum tuberosum
<220>
<223> "Reverse" promoter required for the point mutagenesis of SSX
<400> 8
                                                                     42
gctcatcaat ttcagggtga gatgctgtaa gtctcttctc cg
<210> 9
<211> 76
<212> DNA
<213> Solanum tuberosum
<220>
<223> "Forward" promoter required for point mutagenesis of SSX and
      production of SS5
<400> 9
gatttctttg agaaatgcaa gagagagcct tcacattggg aaaccatttc gacggatggc
                                                                     60
                                                                     76
ctgaagcgca tccaag
<210> 10
<211> 76
<212> DNA
<213> Solanum tuberosum
<220>
<223> "Reverse" promoter required for point mutagenesis of SSX and
      production of SS5
<400> 10
cttggatgcg cttctggcca tccgtcgaaa tggtttccca atgtgaaggc tctctcttgc
                                                                     60
                                                                     76
atttctcaaa gaaatc
<210> 11
<211> 2424
<212> DNA
<213> Solanum tuberosum
```

<400> 11

atggetgaac gtgttetgae tegtgtteat ageettegtg aaegtgtrga tgeaacteta 60 gctgcccacc gcaatgagat actgctgttt ctttcaagga tcgaaagcca cggaaaaggg 120 atattgaaac ctcacgagct tttggctgag ttcgatgcaa ttcgccaaga tgacaaaaac 180 240 aaactgaacg aacatgcatt cgaagaaccc ctgaaatcca ctcaggaagc gattgttctg cccccttggg ttgcacttgc tattcgtttg aggcctggtg tctgggaata catccgtgtg 300 aacgtcaatg cactagttgt cgaggagctg tccgtccctg agtatttgca attcaaggaa 360 420 gaacttgtcg acggagcctc gaatggaaat ttcgttctcg agttggattt cgagcctttc actgcatcct ttcctaaacc aaccctcacc aaatctattg gaaatggagt tgaattcctc 480 aataggcacc tctctgccaa aatgttccat gacaaggaaa gcatgacccc gcttctcgaa 540 600 tttcttcgcg ctcaccatta taagggcaag acaatgatgc tgaatgatag gatacagaat 660 tegaatacte tteaaaatgt eetaaggaag geagaggaat aceteaetat gettteeeca 720 gatactccat atttcgaatt cgagcacaag ttccaagaaa tcggattgga gaagggatgg ggggacacgg cggagcgtgt gctagagatg gtatgcatgc ttcttgatct ccttgaggct 780 cctgactcat gtactcttga gaagttcttg gggagaattc ctatggtttt caatgtggtt 840 900 atcctttccc ctcatggata ttttgcccaa gaaaatgtct tgggttatcc cgacaccggt ggccaggttg tctacatttt agatcaagtt cccgccttgg agcgtgaaat gcttaagcgc 960 1020 ataaaggagc aaggacttga tatcatcccc cgtattctta ttgttactcg tctgctgccc gatgcagttg gaaccacttg tggtcagagg attgagaagg tgtatggagc agaacactca 1080 catattetta gggteeettt taggaetgag aagggeattg ttegeaaatg gatetetege 1140 1200 tttgaagtgt ggccatacat ggagacattc attgaggatg ttgcaaaaga aacttctgca gaactgcagg ccaagccaga tttgataatt ggaaactaca gtgagggcaa tcttgctgct 1260 tctttgctag ctcacaagtt aggcgtaact cagtgcacca ttgcccacgc gttggagaaa 1320 acgaagtatc ctgattccga catttactgg aaaaagtttg atgaaaaata ccatttctcg 1380 teccagetta eegetgatet eattgeaatg aateaeaetg attteateat eaceayeaee 1440 1500 ttccaggaga tagcaggaag caaggacact gtgggacaat atgagagcca tatggcattc 1560 acaatgcctg gattgtacag agttgttcat ggcattaatg tgttcgaccc caaattcaac

attgtctcac ctggagctga tattaacctc tacttctcgt actccgaaac ggaaaagaga 1620 cttacagcat ctcaccctga aattgatgag ctgctgtata gtgacgttga gaatgacgaa 1680 catctgtgtg tgctcaagga taggactaaa ccaattttat tcacaatggc aaggttggat 1740 cgtgtgaaga atttaactgg acttgttgag tggtacgcca agaatccacg actaagggga 1800 ttggttaacc tggttgtagt tggcggagat cgaaggaagg aatccaaaga tttggaagag 1860 caggcagaga tgaagaagat gtatgagcta atagagactc ataatttgaa tggccaattc 1920 agatggattt cttcccagat gaaccgagtg aygaatggtg ayctctaccg atacattgct 1980 qacactaaqq qaqctttcqt tcaqcctqca ttctacqaqq cttttqqtct qactqttqtc 2040 gaaacaatga cttgtggttt gcctacattt gcaactaatc acggtggtcc agctgagatc 2100 atcgttcatg gaaagtccgg cttccacatt gatccatatc acggtgagca agctgctgat 2160 ctgctagctg atttctttga gaaatgcaag agagagcctt cacattggga aaccatttcg acggatggcc tgaagcgcat ccaagagaag tacacctggc aaatctactc cgaaaggcta 2280 ttgacactgg ctgctgttta tgggttctgg aaacatgttt ctaagcttga tcgtctagaa 2340 atccgtcgct atcttgaaat gttttatgct ctcaagtacc gtaagatggc tgaagctgtt 2400 2424 ccattggctg ctgagtgaat gaag

<210> 12

<211> 841

<212> PRT

<213> Solanum tuberosum

<220>

<223> SS5 fused with a histidine-rich amino acid sequence

<400> 12

Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro $1 \ \ \,$ 5

Arg Gly Ser His Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg
20 25 30

Gly Ser Glu Phe Met Ala Glu Arg Val Leu Thr Arg Val His Ser Leu
35 40 45

Arg Glu Arg Val Asp Ala Thr Leu Ala Ala His Arg Asn Glu Ile Leu 50 60

Leu 65	Phe	Leu	Ser	Arg	Ile 70	Glu	Ser	His	Gly	Lys 75	Gly	Ile	Leu	Lys	Pro 80
His	Glu	Leu	Leu	Ala 85	Glu	Phe	Asp	Ala	Ile 90	Arg	Gln	Asp	Asp	Lys 95	Asn
Lys	Leu	Asn	Glu 100	His	Ala	Phe	Glu	Glu 105	Pro	Leu	Lys	Ser	Thr 110	Gln	Glu
Ala	Ile	Val 115	Leu	Pro	Pro	Trp	Val 120	Ala	Leu	Ala	Ile	Arg 125	Leu	Arg	Pro
Gly	Val 130	Trp	Glu	Tyr	Ile	Arg 135	Val	Asn	Val	Asn	Ala 140	Leu	Val	Val	Glu
Glu 145	Leu	Ser	Val	Pro	Glu 150	Tyr	Leu	Gln	Phe	Lys 155	Glu	Glu	Leu	Val	Asp 160
Gly	Ala	Ser	Asn	Gly 165	Asn	Phe	Val	Leu	Glu 170	Leu	Asp	Phe	Glu	Pro	Phe