

MEASUREMENT OF NITROGEN CONTENT IN A
GAS MIXTURE BY TRANSFORMING THE
NITROGEN INTO A SUBSTANCE DETECTABLE
WITH NONDISPERSIVE INFRARED DETECTION

Inventors: Thomas E. Owen, et al.

Attorney Docket: 090936.0505 Page 1 of 6

GAS COMPONENT (DISSOCIATION)	MOLE %	COMPUTATION PATH	IONIZATION POTENTIAL (eV)	CHEMICAL BOND STRENGTH (kj/mol)
1-BUTANE AND C ₅ +	0.50	C ₄ H ₁₀ + e ⁻ → C ₄ H ₉ ⁺ + H ^o + 2e ⁻	10.57	411.1
PROPANE	0.80	C ₃ H ₈ + e ⁻ → C ₃ H ₇ ⁺ + H ^o + 2e ⁻	10.95	413.0
ETHANE	1.50	C ₂ H ₈ + e ⁻ → C ₂ H ₅ ⁺ + H ^o + 2e ⁻	11.52	422.8
METHANE	95.00	CH ₄ + e ⁻ → CH ₃ ⁺ + H ^o + 2e ⁻	12.51	438.5
DILUENT CARBON DIOXIDE	1.30	CO ₂ + e ⁻ → CO ⁺ + O + 2e ⁻	13.773	532.2
DILUENT NITROGEN	1.00	N ₂ + e ⁻ → N ⁺ + N + 2e ⁻	15.581	945.3
METHYL (CH ₃ // CH ₄)		CH ₃ ⁺ + e ⁻ → CH ²⁺ + H ^o + 2e ⁻	9.84	1095.0
GAS COMPONENT (ASSOCIATION)	MOLE %	COMPUTATION PATH	ENTHALPY OF FORMATION (kj/mol)	REQUIRED SOURCE COMPONENT
2-BUTANOL	0.4	3CH ₃ ^o + H ^o + O → C ₃ H ₁₀ O	658	CO ₂
ETHANOL	0.3	2CH ₃ ^o + O → C ₂ H ₆ O	776	CO ₂
ETHANOL	0.3	C ₂ H ₆ + O → C ₂ H ₆ O	776	CO ₂
METHANOL	0.3	CH ₄ + O → CH ₄ O	845	CO ₂
AMMONIA	2.0	N + 3H ^o → NH ₃	934	N ₂
ETHANE	5.7	2CH ₃ ^o → C ₂ H ₆	1027	CH ₄
METHANE	91.0	CH ₃ ^o + H ^o → CH ₄	1133	CH ₄
2-BUTANOL		H ^o + O → HO ^o	1293	CO ₂
HYDROXYL		CH ₃ ^o + HO ^o → CH ₄ O	845	CO ₂
METHANOL		3CH ₂ ^o + H ^o + HO ^o → C ₃ H ₈ O	704	CH ₃ /CO ₂
2-PROPANOL		4CH ₃ ^o + 2H ^o + O → C ₄ H ₁₀ O	658	CH ₃ /CO ₂

FIG. 1

MEASUREMENT OF NITROGEN CONTENT IN A
GAS MIXTURE BY TRANSFORMING THE
NITROGEN INTO A SUBSTANCE DETECTABLE
WITH NONDISPERSIVE INFRARED DETECTION

Inventors: Thomas E. Owen, et al.

Attorney Docket: 090936.0505 Page 2 of 6

FIG. 2

MEASUREMENT OF NITROGEN CONTENT IN A
GAS MIXTURE BY TRANSFORMING THE
NITROGEN INTO A SUBSTANCE DETECTABLE
WITH NONDISPERSIVE INFRARED DETECTION

Inventors: Thomas E. Owen, et al.

Attorney Docket: 090936.0505

Page 3 of 6

MEASUREMENT OF NITROGEN CONTENT IN A
GAS MIXTURE BY TRANSFORMING THE
NITROGEN INTO A SUBSTANCE DETECTABLE
WITH NONDISPERSIVE INFRARED DETECTION

Inventors: Thomas E. Owen, et al.

Attorney Docket: 090936.0505 Page 4 of 6

FIG. 3B

MEASUREMENT OF NITROGEN CONTENT IN A
GAS MIXTURE BY TRANSFORMING THE
NITROGEN INTO A SUBSTANCE DETECTABLE
WITH NONDISPERSIVE INFRARED DETECTION

Inventors: Thomas E. Owen, et al.

Attorney Docket: 090936.0505 Page 5 of 6

FIG. 4

MEASUREMENT OF NITROGEN CONTENT IN A GAS MIXTURE BY TRANSFORMING THE NITROGEN INTO A SUBSTANCE DETECTABLE WITH NONDISPERSIVE INFRARED DETECTION

Inventors: Thomas E. Owen, et al.

Attorney Docket: 090936.0505

Page 6 of 6

FIG. 5