

Face Shape Recognition

Team Members:

Kapu Sukanya 1VE20CS056 Aishwarya R 1VE20CS007 Arpitha BM 1VE20CS020 Aneesha 1VE20CS015 Jhansi reddy 1VE20CS055

GUIDE:-SHILPA HARIRAJ

OUTLINE

- > Abstract
- > Problem Statement
- ➤ Aims, Objective & Proposed System/Solution
- ➤ System Design/Architecture
- System Development Approach (Technology Used)
- ➤ Algorithm & Deployment
- **➤** Conclusion
- > Future Scope
- > References
- ➤ Video of the Project

Abstract

Face shape recognition is a technology that aims to identify and classify the shape of a person's face. The objective of this project is to provide an overview of face shape recognition, its challenges, and the technology used.

Problem Statement

The diversity in human face shapes poses a challenge in accurately recognizing and classifying them. Manual face shape recognition is time-consuming and prone to errors. There is a need for an automated system that can analyze and categorize face shapes quickly and accurately.

AIM:-

The aim of face shape recognition is to develop a technology that can identify and classify different types of face shapes.

OBJECTIVES:-

- ➤ Develop algorithms for detecting and extracting facial landmarks to determine face shape.
- ➤ Implement machine learning techniques to train models for accurate face shape classification.
- ➤ Evaluate the performance and accuracy of the face shape recognition system through extensive testing.

Proposed Solution

- ➤ Utilize deep learning algorithms to train a neural network model that can accurately classify and identify different face shapes.
- ➤ Gather a diverse dataset of labeled face images representing various face shapes to ensure the model's robustness and accuracy.
- ➤ Implement a pre-processing step to normalize and align face images, ensuring consistent positioning and minimizing variations in lighting conditions.

System Architecture

System Deployment Approach

Face Detection

Used advanced algorithms to detect faces in images or videos.

Model Training

Train the face shape recognition model using large datasets.

Real-Time Recognition

Implementing the system for live face shape recognition in various applications.

Shape Analysis

Generate insights by analyzing face shape data and its correlations with other attributes.

Algorithm & Deployment

Convolutional Neural Networks (CNN)

CNNs leverage deep learning techniques to automatically learn and recognize complex patterns in face images, allowing for precise face shape recognition.

Conclusion

- Face shape recognition is an essential technology with numerous applications in various domains.
- ➤ Despite the challenges posed by diverse face shapes, advancements in computer vision and machine learning have made accurate recognition achievable.
- Further research and development in this field are crucial to improve the performance and reliability of face shape recognition systems.

Future Scope

- ➤ Improved Accuracy: Advancements in machine learning and computer vision will lead to more accurate face shape recognition.
- ➤ **Real-Time Applications**: Face shape recognition will become faster, enabling real-time analysis and response.
- ➤ Integration with Other Technologies: Face shape recognition can be integrated with augmented reality and wearable devices for enhanced user experiences.

Reference

- Zhang, H., & Tang, Y. (2019). A Deep Learning Approach for Face Shape Classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
- Liu, W., Anguelov, D., & Erhan, D. (2019). 3D Face Shapes Recognition Using Convolutional Neural Networks. In Proceedings of the European Conference on Computer Vision (ECCV).
- Shen, S., & Zafeiriou, S. (2020). Face Shape Classification with 3D Morphable Models. In Proceedings of the IEEE International Conference on Computer Vision (ICCV)

Thank you!