Simulación de un dipolo a través de un conductor

Arif Morán Velázquez IFI/A01234442
Jeannette Arjona Hernández ITC/A01236226
José Alfonso López Blanco IIT/A01236245
Sebastián Resendiz Varela INA/A01236336
Alan Martínez Varela ITC/A01236407

Principios empleados

Ley de Lorentz

Es la fuerza ejercida por el campo electromagnético que recibe una partícula cargada o una corriente eléctrica.

$$F = q * (v \times B)$$

$$F = I(\vec{L} \times \vec{B})$$

Ley de Gauss (Flujo magnético)

El flujo magnético es una medida del campo magnético total que pasa a través de un área dada.

$$\Phi = BA\cos\theta$$

Unit of Flux is the Weber (Wb) Flux is a vector term

Flux linkage of a coil = $N \times \Phi$ = $N \times B \times A$

Ley de Lenz/Faraday

Mientras el flujo magnético a través de un circuito vaya variando con el tiempo, este generará corrientes eléctricas inducidas.

$$\varepsilon = k \frac{d\phi}{dt}$$

Esta ley nos indica que el sentido de la corriente inducida es tal que se opone a la causa que la produce, por lo cual se denomina por la siguiente expresión:

$$\varepsilon = -\frac{d\Phi}{dt}$$

Ley de Ohm

Establece la relación que guardan la tensión y la corriente que circula por una resistencia. Su forma más célebre es

Segunda Ley de Newton

Movimiento de un dipolo magnético

Esta ley nos indica que la fuerza es igual a la masa por una aceleración; por lo cual en el contexto del reto, podemos notar que el imán está en caída libre, y por ende, su fuerza neta es equivalente a, como indica la ley, su masa por aceleración.

Cálculos Dipolo magnético gráfico

Fuerza de Polo

$$\begin{split} \overrightarrow{B_p} &= \frac{\mu_0}{4\pi} \frac{p}{r^2} \\ p &= fuerza \ de \ polo \\ B &= \frac{\mu_0}{4\pi} \frac{p}{r_1^2} - \frac{\mu_0}{4\pi} \frac{p}{r_2^2} = \frac{\mu_0 p}{4\pi} \left(\frac{1}{r_1^2} - \frac{1}{r_2^2} \right) \\ \frac{\mu_0 p}{4\pi} \left(\frac{1}{r_1^2} - \frac{1}{r_2^2} \right) &= \frac{\mu_0 p}{4\pi} \left(\frac{r_2^2 - r_1^2}{r_1^2 r_2^2} \right) \rightarrow \frac{\mu_0 p}{4\pi} \left(\frac{d^2 + l^2 + 2ld - (d^2 + l^2 - 2dl)}{(d - l)^2 (d + l)^2} \right) \rightarrow \frac{\mu_0 p}{4\pi} \left(\frac{4ld}{(d^2 - l^2)^2} \right) \\ \mu &= 2pl \ \therefore \ \overrightarrow{B} = \frac{\mu_0}{4\pi} \left(\frac{2\mu d}{(d^2 - l^2)^2} \right) \rightarrow l = 0 \ \overrightarrow{B} = \frac{\mu_0}{4\pi} \frac{2\mu}{d^3} \\ \overrightarrow{B} &= \frac{\mu_0}{4\pi} \frac{2\mu}{r^3} \rightarrow \mu = \frac{\overrightarrow{B} 2\pi r^3}{\mu_0} \\ p &= \frac{\mu}{2l} \end{split}$$

Componentes de Campo magnético

$$\overrightarrow{B_N} = \frac{\mu_0}{4\pi} \frac{p_N}{r^2}$$

$$\overrightarrow{B_S} = \frac{\mu_0}{4\pi} \frac{p_S}{r^2}$$

$$\overrightarrow{B_N} = \frac{\mu_0}{4\pi} \frac{p_N}{r^2} \cos(\theta) \,\hat{\imath} + \frac{\mu_0}{4\pi} \frac{p_N}{r^2} \sin(\theta) \,\hat{\jmath}$$

$$\overrightarrow{B_S} = \frac{\mu_0}{4\pi} \frac{p_S}{r^2} \cos(\theta) \,\hat{\imath} + \frac{\mu_0}{4\pi} \frac{p_S}{r^2} \sin(\theta) \,\hat{\jmath}$$

$$\cos(\theta) = \frac{x}{r}; \sin(\theta)) = \frac{y}{r}; |\overrightarrow{r}| = \sqrt{x^2 + y^2}$$

$$\overrightarrow{B_N} = \frac{\mu_0}{4\pi} \frac{xp_N}{\left(\sqrt{x^2 + y^2}\right)^3} \,\hat{\imath} + \frac{\mu_0}{4\pi} \frac{yp_N}{\left(\sqrt{x^2 + y^2}\right)^3} \,\hat{\jmath}$$

$$\overrightarrow{B_S} = \frac{\mu_0}{4\pi} \frac{xp_S}{\left(\sqrt{x^2 + y^2}\right)^3} \,\hat{\imath} + \frac{\mu_0}{4\pi} \frac{yp_S}{\left(\sqrt{x^2 + y^2}\right)^3} \,\hat{\jmath}$$

Principios aplicados al reto

Ley de Biot y Savart

Primero teníamos que sacar el campo magnético en z de un solenoide a un punto p.

- El solenoide es el tubo de cobre
 - dispositivo físico capaz de crear un campo magnético sumamente uniforme e intenso en su interior.
- Punto P es el punto donde está el imán

Tomando como base esta ley, se usó la siguiente fórmula para calcular campo magnético.

$$\overrightarrow{B_z} = \frac{\mu_0 \mu}{4\pi r^3} \left[\frac{3z^2}{r^2} - 1 \right]$$

Oposición de Polos

Dentro del solenoide hay una corriente sobre el imán:

- La corriente va en contra de las manecillas del reloj
- Las líneas de campo en el centro van hacia arriba

Debajo del imán:

- Corriente de imán va conforme las manecillas del reloj.
- Las líneas de campo en el centro van hacia abajo

Así se genera una repulsión, lo que afecta al imán mientras viaja dentro del solenoide, pues este se frena.

Campo magnético en la espira

Ley de Gauss

La Ley de Gauss era necesaria para sacar el flujo de campo magnético dentro del solenoide (tubo cobre).

En este caso será el campo **magnético** total que pasa a través del área del solenoide (tubo cobre).

Éste nos será de utilidad para poder encontrar el voltaje fem.

$$\phi_{\overrightarrow{B}} = \int B \cdot dA$$

$$dA = 2\pi a da$$

Esta es la vista superior del solenoide:

a=radio da=grosor del tubo

Ley de Lenz

La Ley de Lenz es necesaria para obtener el voltaje (fem) del imán dentro del tubo de cobre.

 Se usa el flujo magnético previamente obtenido y el diferencial de flujo se divide entre el diferencial de tiempo.

Con el voltaje se obtiene la corriente usando **Ley de Ohms:**

- \bullet I=E/R
- determina la relación entre corriente (I), voltaje
 (E) y resistencia (R).

$$\varepsilon = -\frac{a\phi}{dt}$$
:

$$I = \frac{\epsilon}{R}$$

Ley de Lorentz

La Ley de Lorentz para obtener la fuerza que ejerce el solenoide.

Debido a que el solenoide se compone de muchas espiras, es necesario primero sacar la ecuación de la fuerza para 1 sola.

Al tener esta, la integramos para obtener la fuerza de todas las espiras que conforman al solenoide (tubo cobre).

$$F = I(\vec{L} \times \vec{B})$$

$$dF = I(\vec{dL} \times \vec{B})$$

$$F = \int_0^{2\pi a} IdLB = 2I\pi aB$$

Segunda Ley de Newton

Fuerzas ejercidas en el imán al estar en caída libre:

- Peso = masa * gravedad
- Fuerza que experimenta con el campo magnético ejercido al pasar por el tubo conductor

Por ende, la sumatoria de fuerzas ejercidas en el imán es igual a la fuerza del campo magnético menos el peso del imán. Sabemos que la fuerza neta es igual a la masa por aceleración, entonces lo sustituimos en la ecuación de sumatoria de fuerzas. Ahora tenemos que la masa por aceleración, es decir, la fuerza neta, es igual a la fuerza del campo magnético menos el peso del imán (masa por gravedad). Finalmente, despejamos por 'a' para obtener la aceleración.

$$\sum F_{net} = -W + F_{\overrightarrow{B}}$$

$$F_{net} = ma$$

$$ma = -mg + F_{\overrightarrow{B}}$$

$$a = -g + \frac{F_{\overrightarrow{B}}}{m}$$

Cálculos Ecuación diferencial

Campo magnético del dipolo magnético

$$\vec{B} = \frac{\mu_0}{4\pi r^3} \left[\frac{3(\vec{\mu} \cdot \vec{r})\vec{r}}{r^2} - \vec{\mu} \right]$$

$$\vec{B}_z = \vec{B} \cdot \hat{z}$$

$$r = z\hat{k}$$

$$\vec{B}_z = \vec{\mu}z \quad \vec{B}_z = \frac{\mu_0}{4\pi r^3} \left[\frac{3(\mu z)z}{r^2} - \mu \right]$$

$$\vec{B}_z = \frac{\mu_0 \mu}{4\pi r^3} \left[\frac{3z^2}{r^2} - 1 \right]$$

Flujo magnético

$$\phi_{\overrightarrow{B}} = \int B_z \cdot dA$$
$$|\vec{r}| = \sqrt{z^2 + a^2}$$

$$dA = 2\pi a \, da \, \therefore \int \frac{\mu_0 \mu}{4\pi r^3} \left[\frac{3z^2}{r^2} - 1 \right] \cdot 2\pi a \, da = \frac{\mu_0 \mu}{2} \int_0^y \left| \frac{3z^2}{(z^2 + a^2)^5} - \frac{1}{(z^2 + a^2)^3} \right| da$$

$$y = a$$

$$\mu_0 \mu a^2$$

$$\phi_{\vec{B}} = \frac{\mu_0 \mu a^2}{2(a^2 + z^2)^{3/2}}$$

Voltaje y Corriente inducida

$$\varepsilon = -\frac{d\phi}{dt} = N\frac{d\phi}{dz}\frac{dz}{dt} = -N\frac{d\left(\frac{\mu_0\mu a^2}{2(a^2 + z^2)^{3/2}}\right)}{dz}\frac{dz}{dt} = \frac{3\mu_0\mu a^2 * 2z}{4(a^2 + z^2)^{5/2}}\frac{dz}{dt} = \frac{3\mu_0\mu a^2 z}{2(a^2 + z^2)^{5/2}}\frac{dz}{dt}$$

$$I = \frac{V}{R} : I = \frac{3\mu_0 \mu a^2 z}{2R(a^2 + z^2)^{5/2}} \frac{dz}{dt}$$

$$R = \frac{\rho L}{A} \& \rho = 1.72 * 10^{-8} \& A = \pi \left(\frac{g}{2}\right)^{2} \& L = 2\pi a : \frac{(1.72 * 10^{-8})(2\pi a)}{\left(\pi \left(\frac{g}{2}\right)^{2}\right)} \Omega$$

Fuerza magnética

$$F = I(\overrightarrow{L} \times \overrightarrow{B})$$

$$dF = I(\overrightarrow{dL} \times \overrightarrow{B})$$

$$F = \int_{0}^{2\pi a} IdLB = 2I\pi aB$$

$$dF = 2\pi aBdI$$

$$c = \frac{1}{R} = \frac{A}{\rho l}$$

$$I = \frac{\varepsilon}{R} = \varepsilon c = \frac{\varepsilon \sigma A}{l}$$

$$dI = \frac{\varepsilon \sigma dA}{l}$$

$$l = 2\pi a$$

$$dF = 2\pi aB \frac{\varepsilon \sigma dA}{2\pi a} = B\varepsilon \sigma dA$$

Pasaremos el Campo magnético a coordenadas cilíndricas

$$\begin{split} |\vec{r}| &= \sqrt{x^2 + y^2 + z^2} \\ r &= \sqrt{a^2 + z^2} \stackrel{.}{...} a = \sqrt{x^2 + y^2} \\ B_a &= \sqrt{B_x^2 + B_y^2} = \frac{\mu_0 \mu}{4\pi} \frac{3z}{r^5} \sqrt{y^2 + x^2} = \frac{3\mu_0 \mu}{4\pi} \frac{3za}{r^{5/2}} \\ dF &= B_a \varepsilon \sigma dA = \frac{3\mu_0 \mu}{4\pi} \frac{3za}{r^{5/2}} \frac{3\mu_0 \mu a^2 z}{2(a^2 + z^2)^{5/2}} \sigma \frac{dz}{dt} dz da = \frac{9\mu_0^2 \mu^2}{8\pi} \frac{a^3 z^2}{(a^2 + z^2)^5} \frac{dz}{dt} dz da \\ dF &= \frac{9\mu_0^2 \mu^2}{8\pi} \frac{a^3 z^2}{(a^2 + z^2)^5} \frac{dz}{dt} dz da \\ F &= \int_{a_1}^{a_2} \int_{-\infty}^{\infty} \frac{9\mu_0^2 \mu^2}{8\pi} \frac{a^3 z^2}{(a^2 + z^2)^5} \frac{dz}{dt} dz da \\ F &= \int_{a_1}^{a_2} \frac{9\mu_0^2 \mu^2 a^3}{8\pi} \frac{5\pi}{128a^7} \frac{dz}{dt} da \end{split}$$

$$F = \left[-\frac{9\mu_0^2 \mu^2}{8\pi} \frac{5\pi}{128} \frac{1}{3a^3} \frac{dz}{dt} \right]_{a_1}^{a_2} = \frac{15}{1024} \mu_0^2 \mu^2 \frac{1}{R} \left(\frac{1}{{a_1}^3} - \frac{1}{{a_2}^3} \right) \frac{dz}{dt}$$

Ecuación diferencial

Aplicamos segunda ley de newton

$$\sum F_Z = -W + F_{\vec{B}}$$

$$m\frac{d^2z}{dt^2} = -mg - \frac{15}{1024}\mu_0^2\mu^2\frac{1}{R}\left(\frac{1}{a_1^3} - \frac{1}{a_2^3}\right)\frac{dz}{dt}$$

$$\frac{d^2z}{dt^2} = -g - \frac{15}{1024m}\mu_0^2\mu^2\frac{1}{R}\left(\frac{1}{a_1^3} - \frac{1}{a_2^3}\right)\frac{dz}{dt}$$

Tiro parabólico

Tracker

Código del matlab

```
g=0.0005; %Grosor 2 mm
pitch = 0.02;
syms th
r = d/2;
x = r*sin(th);
v = r*cos(th);
z1 = th/(2*pi)*pitch;
tmax = 2*pi*h/pitch;
miu0=4*pi*(10^-7);%Constante de resistividad
miu1=(2*pi*B*0.001^2)/miu0; %Se obtiene el valor de miu al despejar
ro=1.72e-08;
om=59.6*10^6;
Loops=sizem/g;%h/g;
%Tiempo
dt=0.01; %segundos
tl=3.2;%Tiempo final
t=0:dt:tl;%Vector de valores tiempo de 0 hasta tl con paso de .01
%F=i*(E+cross(v))
t t=length(t);
a=-9.81;%Aceleración
Pm=zeros(1,t t); %Vector donde se tienen los valores de la altura
Pm(1)=h+h2;%Valor inicial de altura
```

```
al=zeros(1,t t); %Vector para aceleración
a1(1)=a; %Valor inicial de aceleración
v=zeros(1,t t); %Vector para velocidad
v(1)=0;%Valor inicial de velocidad
%Caida libre
%Se calcula la trayectoria del imán de la altura sobre el tubo
%hasta la altura del tubo
for i=1:(t t-1)
    Pm(i+1)=Pm(i)+v(i)*dt+(a1(i)*dt^2)/2;
    v(i+1)=v(i)+a1(1)*dt;
    a1(i+1)=a;
    if Pm(i+1)<=h
        break
    end
end
p=i; %Se guarda el valor de i para graficar la posición del imán
```

```
R = log((r+g)/(r))/(2*pi*h*om);%Ohms
c=1/R;
 km=(9*(miu0^2)*(miu1^2)*(r^4)*(Loops^2))/(4*R*m);
 f=0(z,v)-9.81-(km*(z.^2)/((z.^2+r^2).^5)).*v;
f=\emptyset(z,v)-9.81-((15/1024)*(miu0^2)*(miu1^2)*c*(1/(r^3)-1/(r+g)^3))*v/m;
dydt=0(y)[y(2); f(y(1),y(2))];
for i5=p:t t-1
    z0=[Pm(i5);v(i5)];
    k1=dydt(z0);
    k2=dydt(z0+(dt*k1)/2);
    k3 = dvdt(z0 + (dt*k2)/2);
    k4=dvdt(z0+dt*k3);
    Pm(i5+1)=Pm(i5)+(dt/6)*(k1(1)+2*k2(1)+2*k3(1)+k4(1));
    v(i5+1)=v(i5)+(dt/6)*(k1(2)+2*k2(2)+2*k3(2)+k4(2));
    a1(i5+1)=f(Pm(i5),v(i5));
    if Pm(i5+1)<=0
        break
    end
end
```

```
%Grafica la espira
fplot3(app.UIAxes,x, y, z1, [0 tmax], 'color', [0.9100
                                                          0.4100
                                                                    0.1700], 'LineWidth', 1) %Tubo
axis(app.UIAxes, 'equal')
grid(app.UIAxes, 'on')
hold(app.UIAxes, 'on')
zero=zeros(length(Pm));
for i4=1:i5
     %Simulación del imán
     plot3(app.UIAxes,zero(i4),zero(i4),Pm(i4),'k.','MarkerSize',10)
     pause(0.01)
    %Grafica la posición contra el tiempo
     plot(app.UIAxes2,t(i4),Pm(i4),'k*','MarkerSize',5)
     plot(app.UIAxes2,t(1:i4),Pm(1:i4),'k','Linewidth',1)
     axis(app.UIAxes2, [0 t(i5) -0.1 max(Pm)])
     grid(app.UIAxes2, 'on')
     %Grafica el tiempo contra la velocidad
     plot(app.UIAxes4,t(i4),v(i4),'r*','Markersize',5)
     plot(app.UIAxes4,t(1:i4),v(1:i4),'r','Linewidth',1)
     axis(app.UIAxes4, [0 t(i5) min(v)-0.1 0.001])
    grid(app.UIAxes4, 'on')
     %Grafica el tiempo contra la aceleración
     plot(app.UIAxes5,t(i4),a1(i4),'b*','Markersize',5)
     plot(app.UIAxes5,t(1:i4),a1(1:i4),'b','Linewidth',1)
     axis(app.UIAxes5, [0 t(i5) min(a1)-0.1 max(a1)])
    grid(app.UIAxes5, 'on')
     pause(0.1)
```

end

Gracias