

EX3DV4- SN:3846 September 24, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3846

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.53	9.53	9.53	0.80	0.62	± 12.0 %
835	41.5	0.90	9.18	9.18	9.18	0.39	0.87	± 12.0 %
900	41.5	0.97	9.00	9.00	9.00	0.38	0.91	± 12.0 %
1450	40.5	1.20	7.90	7.90	7.90	0.60	0.75	± 12.0 %
1640	40.3	1.29	7.57	7.57	7.57	0.62	0.74	± 12.0 %
1750	40.1	1.37	7.64	7.64	7.64	0.46	0.91	± 12.0 %
1810	40.0	1.40	7.40	7.40	7.40	0.56	0.80	± 12.0 9
1900	40.0	1.40	7.26	7.26	7.26	0.39	0.98	± 12.0 9
2000	40.0	1.40	7.24	7.24	7.24	0.57	0.79	± 12.0 9
2100	39.8	1.49	7.33	7.33	7.33	0.40	0.93	± 12.0 9
2300	39.5	1.67	6.94	6.94	6.94	0.32	1.16	± 12.0 %
2450	39.2	1.80	6.56	6.56	6.56	0.31	1.18	± 12.0 9
2600	39.0	1.96	6.50	6.50	6.50	0.30	1.30	± 12.0 9
3500	37.9	2.91	6.75	6.75	6.75	0.81	0.65	± 13.1 9
3700	37.7	3.12	6.32	6.32	6.32	0.23	1.60	± 13.1 9
5200	36.0	4.66	5.00	5.00	5.00	0.40	1.80	± 13.1 %
5300	35.9	4.76	4.79	4.79	4.79	0.40	1.80	± 13.1 9
5500	35.6	4.96	4.64	4.64	4.64	0.40	1.80	± 13.1 9
5600	35.5	5.07	4.25	4.25	4.25	0.50	1.80	± 13.1 %
5800	35.3	5.27	4.44	4.44	4.44	0.40	1.80	± 13.1 9

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

FAI frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

EX3DV4- SN:3846

September 24, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3846

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.18	9.18	9.18	0.52	0.82	± 12.0 %
835	55.2	0.97	9.09	9.09	9.09	0.80	0.64	± 12.0 %
900	55.0	1.05	8.93	8.93	8.93	0.65	0.72	± 12.0 %
1450	54.0	1.30	7.79	7.79	7.79	0.60	0.70	± 12.0 %
1640	53.8	1.40	7.93	7.93	7.93	0.35	0.91	± 12.0 %
1750	53.4	1.49	7.43	7.43	7.43	0.63	0.69	± 12.0 %
1810	53.3	1.52	7.27	7.27	7.27	0.30	0.98	± 12.0 %
1900	53.3	1.52	7.15	7.15	7.15	0.38	0.87	± 12.0 %
2000	53.3	1.52	7.31	7.31	7.31	0.50	0.76	± 12.0 %
2100	53.2	1.62	7.42	7.42	7.42	0.31	0.94	± 12.0 %
2300	52.9	1.81	7.07	7.07	7.07	0.43	0.82	± 12.0 %
2450	52.7	1.95	6.90	6.90	6.90	0.80	0.50	± 12.0 %
2600	52.5	2.16	6.68	6.68	6.68	0.80	0.50	± 12.0 %
3500	51.3	3.31	6.25	6.25	6.25	0.41	1.04	± 13.1 %
3700	51.0	3.55	6.12	6.12	6.12	0.46	0.98	± 13.1 %
5200	49.0	5.30	4.32	4.32	4.32	0.40	1.90	± 13.1 %
5300	48.9	5.42	4.18	4.18	4.18	0.40	1.90	± 13.1 %
5500	48.6	5.65	3.80	3.80	3.80	0.45	1.90	± 13.1 %
5600	48.5	5.77	3.76	3.76	3.76	0.40	1.90	± 13.1 %
5800	48.2	6.00	3.86	3.86	3.86	0.50	1.90	± 13.1 9

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

FAt frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

Certificate No: EX3-3846_Sep14

At requencies below 3 GHz, the valuity of tissue parameters (s. and 6) can be relaxed to ± 10% iniquic compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s. and 6) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Applia/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

EX3DV4- SN:3846

September 24, 2014

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

EX3DV4- SN:3846 September 24, 2014

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

EX3DV4- SN:3846

September 24, 2014

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

EX3DV4- SN:3846 September 24, 2014

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (\$\phi\$, \$\text{9}\$), f = 900 MHz

EX3DV4- SN:3846

September 24, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3846

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-3846_Sep14

ANNEX H Dipole Calibration Certificate

835 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

CTTL (Auden)

Certificate No: D835V2-4d069 Aug14

Accreditation No.: SCS 108

Object	D835V2 - SN: 4d	069	
calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits abo	ve 700 MHz
Calibration date:	August 28, 2014		
The measurements and the direct	manties with confidence p	robability are given on the following pages an	o dio pari oi nio oo modio.
		ry facility: environment temperature (22 ± 3)°C	and humidity < 70%.
Calibration Equipment used (M&	TE critical for calibration)	•	
Calibration Equipment used (M&	TE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Calibration Equipment used (M& Crimary Standards Cower meter EPM-442A	TE critical for calibration) ID # GB37480704	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827)	Scheduled Calibration Oct-14
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A	TE critical for calibration) ID # GB37480704 US37292783	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827)	Scheduled Calibration Oct-14 Oct-14
rimary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A	TE critical for calibration) ID # GB37480704 US37292783 MY41092317	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828)	Scheduled Calibration Oct-14 Oct-14 Oct-14
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k)	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k)	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Aug-15
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID #	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check
Calibration Equipment used (M&Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 REGEORDARY Standards REF generator R&S SMT-06	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-14
Calibration Equipment used (M&Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-14
Calibration Equipment used (M&Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 REGEORDARY Standards REF generator R&S SMT-06	TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-14

Certificate No: D835V2-4d069_Aug14

No. I15Z40570-SEM01 Page 99 of 135

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C Service suisse d'étalonnage Servizio svizzero di taratura

Accreditation No.: SCS 108

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.0 ± 6 %	0.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	5000	(Market)

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.43 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.58 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.17 W/kg ± 16.5 % (k=2)

Body TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.2 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	1222	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.46 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.55 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.62 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.33 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$53.3 \Omega + 0.8 j\Omega$	
Return Loss	- 29.7 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.8 Ω - 1.4 jΩ	
Return Loss	- 34.5 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.393 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 09, 2007

DASY5 Validation Report for Head TSL

Date: 28.08.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d069

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.94 \text{ S/m}$; $\varepsilon_r = 42$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.22, 6.22, 6.22); Calibrated: 30.12.2013;

· Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.74 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.61 W/kg SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.58 W/kg

SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.58 W/kg Maximum value of SAR (measured) = 2.85 W/kg

0 dB = 2.85 W/kg = 4.55 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 27.08.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d069

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.01$ S/m; $\varepsilon_r = 55.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.09, 6.09, 6.09); Calibrated: 30.12.2013;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.97 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.60 W/kg SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.62 W/kg

SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.62 W/kgMaximum value of SAR (measured) = 2.87 W/kg

0 dB = 2.87 W/kg = 4.58 dBW/kg

Impedance Measurement Plot for Body TSL

1900 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

CTTL (Auden)

Accreditation No.: SCS 108

Certificate No: D1900V2-5d101_Jul14

CALIBRATION CERTIFICATE D1900V2 - SN: 5d101 Object QA CAL-05.v9 Calibration procedure(s) Calibration procedure for dipole validation kits above 700 MHz July 23, 2014 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) ID# Cal Date (Certificate No.) Scheduled Calibration Primary Standards Power meter EPM-442A GB37480704 09-Oct-13 (No. 217-01827) Oct-14 Power sensor HP 8481A US37292783 09-Oct-13 (No. 217-01827) Oct-14 Power sensor HP 8481A MY41092317 09-Oct-13 (No. 217-01828) Oct-14 Reference 20 dB Attenuator SN: 5058 (20k) 03-Apr-14 (No. 217-01918) Apr-15 Type-N mismatch combination SN: 5047.2 / 06327 03-Apr-14 (No. 217-01921) Apr-15 Reference Probe ES3DV3 SN: 3205 30-Dec-13 (No. ES3-3205_Dec13) Dec-14 30-Apr-14 (No. DAE4-601_Apr14) DAE4 SN: 601 Apr-15 Check Date (in house) Secondary Standards ID# Scheduled Check RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-13) In house check: Oct-16 Network Analyzer HP 8753E US37390585 S4206 18-Oct-01 (in house check Oct-13) In house check: Oct-14 Calibrated by: Laboratory Technician Jeton Kastrati Katja Pokovic Technical Manager Approved by: Issued: July 23, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d101_Jul14

Page 1 of 8

No. I15Z40570-SEM01 Page 107 of 135

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d101 Jul14

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1

AST System configuration, as far as not	given on page 1.	
DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.5 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	A-8-5;	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.25 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.5 ± 6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.35 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.4 W/kg ± 16.5 % (k=2)

Certificate No: D1900V2-5d101_Jul14

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$50.7 \Omega + 6.3 j\Omega$	
Return Loss	- 24.1 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$46.6 \Omega + 6.5 j\Omega$
Return Loss	- 22.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.203 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 28, 2008

DASY5 Validation Report for Head TSL

Date: 23.07.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d101

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.38$ S/m; $\varepsilon_r = 39.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.06, 5.06, 5.06); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.04 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.25 W/kg

SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.25 W/kgMaximum value of SAR (measured) = 12.8 W/kg

0 dB = 12.8 W/kg = 11.07 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 23.07.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d101

Communication System: UID 0 - CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.51$ S/m; $\epsilon_r = 52.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.76, 4.76, 4.76); Calibrated: 30.12.2013;

· Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.04.2014

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.79 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 17.7 W/kg SAR(1 g) = 10.1 W/kg: SAR(10 g) = 5.35 W/kg

SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.35 W/kgMaximum value of SAR (measured) = 12.8 W/kg

0 dB = 12.8 W/kg = 11.07 dBW/kg

Impedance Measurement Plot for Body TSL

2450 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D2450V2-853 Jul14

ALIBRATION C	ERTIFICATE		
Object	D2450V2 - SN: 85	53	
Calibration procedure(s)	QA CAL-05.v9 Calibration proces	dure for dipole validation kits above	ve 700 MHz
Calibration date:	July 24, 2014		
All sellbrations have been conduc	cted in the closed laborator	y facility: environment temperature (22 ± 3)°C	and humidity < 70%.
Calibration Equipment used (M&		Cal Date (Certificate No.)	Scheduled Calibration
Calibration Equipment used (M&	TE critical for calibration) ID # GB37480704	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827)	Scheduled Calibration Oct-14
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A	ID # GB37480704 US37292783	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827)	Scheduled Calibration Oct-14 Oct-14
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	ID # GB37480704 US37292783 MY41092317	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828)	Scheduled Calibration Oct-14 Oct-14 Oct-14
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k)	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921)	Scheduled Calibration Oct-14 Oct-14 Oct-14
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k)	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ID # GB37480704 US37292783 MY41092317 SN: 5056 (20k) SN: 5047.2 / 06327 SN: 3205	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. ES3-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14) Check Date (in house)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-15 Scheduled Check
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-15 Scheduled Check In house check: Oct-16
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. ES3-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14) Check Date (in house)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-15 Scheduled Check
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-15 Scheduled Check In house check: Oct-16
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-15 Scheduled Check In house check: Oct-16 In house check: Oct-14
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-15 Scheduled Check In house check: Oct-16 In house check: Oct-14
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-15 Scheduled Check In house check: Oct-16 In house check: Oct-14

Certificate No: D2450V2-853_Jul14

Page 1 of 8

No. I15Z40570-SEM01 Page 115 of 135

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-853 Jul14

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

ASY system configuration, as far as not	given on page 1.	
DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

the following parameters and eared attentions were specific	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		Mark Mark

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.6 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.7 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.6 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	7777	222

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.9 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-853_Jul14

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω + 3.3 j Ω	
Return Loss	- 27.3 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$50.4 \Omega + 5.0 j\Omega$	
Return Loss	- 26.0 dB	

General Antenna Parameters and Design

E
62 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 10, 2009

DASY5 Validation Report for Head TSL

Date: 24.07.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 853

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.85$ S/m; $\varepsilon_r = 37.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.12.2013;

• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.04.2014

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.2 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 28.2 W/kg SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.26 W/kg

SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.26 W/kgMaximum value of SAR (measured) = 18.0 W/kg

0 dB = 18.0 W/kg = 12.55 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 16.07.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 853

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.03$ S/m; $\epsilon_r = 50.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.35, 4.35, 4.35); Calibrated: 30.12.2013;

• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.04.2014

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.00 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 27.9 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.08 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.08 W/kg Maximum value of SAR (measured) = 17.6 W/kg

0 dB = 17.6 W/kg = 12.46 dBW/kg

Impedance Measurement Plot for Body TSL

ANNEX I SPOT CHECK TEST

As the test lab for 4028E,4028J from TCL Communication Ltd., we, CTTL(Shouxiang), declare on our sole responsibility that, according to "Declaration of changes" provided by applicant, only the Spot check test should be performed. The test results are as below.

I.1 Conducted power of selected case

Table I.1: The conducted power results for GSM850/1900

CCM		Conducted Power (dBm)	
GSM 850MHz	Channel 251(848.8MHz)	Channel 190(836.6MHz)	Channel 128(824.2MHz)
650IVIFI2	32.82	/	/
CCM		Conducted Power(dBm)	
GSM 1900MHz	Channel 810(1909.8MHz)	Channel 661(1880MHz)	Channel 512(1850.2MHz)
1900101112	/	/	29.56

Table I.2: The conducted power results for GPRS

GSM 850	Mea	sured Power (d	Bm)
GPRS (GMSK)	251	190	128
1 Txslot	32.83	/	/
PCS1900	Mea	sured Power (d	Bm)
GPRS (GMSK)	810	661	512
4 Txslots	24.21	/	/

Table I.3: The conducted power results for WCDMA

Itama	band		FDD V result	
Item	ARFCN	4233 (846.6MHz)	4182 (836.4MHz)	4132 (826.4MHz)
WCDMA	١	/	/	
Item	band		FDD II result	
item	ARFCN	9538 (1907.6MHz)	9400 (1880MHz)	9262 (1852.4MHz)
WCDMA	\	/	23.03	22.99

I.2 Spot Check test results

Table I.4: SAR Values (GSM 850 MHz Band - Head) - CAB60B0000C1

				Ambient	Temperature	: 22.4°C L	iquid Tempera	ture: 22.0 °C			
Frequ	ency		Test	Eiguro	Conducted	May tung up	Measured	Reported	Measured	Reported	Power
	, 	Side		Figure	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)(Drift
MHz	Ch.		Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)
848.8	251	Left	Touch	Fig.I.1	32.82	33.3	0.413	0.46	0.552	0.62	-0.03

Table I.5: SAR Values (GSM 850 MHz Band-Body) – CAB60B0000C1

			An	nbient Ter	mperature: 22	.4°C Liqui	d Temperature	e: 22.0 °C			
Frequ	ency	Mode	Test Figure		Conducted	Conducted Max. tune-up		Reported	Measured	Reported	Power
•	,	(number of	Position	No.	Power	Power (dBm)	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)	Drift
MHz	Ch.	timeslots)	FUSITION	INO.	(dBm)	rowei (abiii)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
848.8	251	GPRS (1)	Rear	Fig.I.2	32.83	33.3	0.447	0.50	0.591	0.66	-0.01

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table I.6: SAR Values (GSM1900 MHz Band - Head) - CAB60B0000C1

	Ambient Temperature: 22.4 °C Liquid Temperature: 22.0 °C												
Frequ	ency	0:4-	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power		
MHz	Ch.	Side	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g)(W/kg)	Drift (dB)		
1850.2	512	Left	Touch	Fig.I.3	29.56	30.3	0.252	0.30	0.395	0.47	0.04		

Table I.7: SAR Values (GSM 1900 MHz Band-Body) - CAB60B0000C1

			145.5	Til Tale	100 (00m 10	Joo IIII IE Barie	. 	37 (B00B00					
	Ambient Temperature: 22.4 °C Liquid Temperature: 22.0 °C												
Frequency		Mode (number of	Test	Test Figure Conducted			Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1a)	Reported SAR(1g)	Power Drift		
MHz	Ch.	timeslots)	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)		
1909.8	810	GPRS (4)	Bottom	Fig.I.4	24.21	25.0	0.300	0.36	0.551	0.66	-0.14		

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table I.8: SAR Values (WCDMA 850 MHz Band - Head) - CAB60B0000C1

	Ambient Temperature: 22.4 °C Liquid Temperature: 22.0 °C													
Fre	equer	псу		Test	Eiguro	Conducted	May tung up	Measured	Reported	Measured	Reported	Power		
	÷		Side	Position	Figure No.	Power	Max. tune-up	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)(Drift		
MH	Z	Ch.		Position	NO.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)		
836.	.4 4	4182	Left	Touch	Fig.I.5	23.00	24.0	0.506	0.64	0.659	0.83	0.00		

Table I.9: SAR Values (WCDMA 850 MHz Band-Body) - CAB60B0000C1

			Ambi	ent Temperatu	ıre: 22.4°C	Liquid Tempe	erature: 22.0 $^\circ$	CC		
Frequ	uency	Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
	1		ŭ	Power	_	SAR(10g)	SAR(10g)	SAR(1g)	SAR(1g)(Drift
MHz	Ch.	Position	No.	(dBm)	Power (dBm)	(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)
836.4	4182	Rear	Fig.I.6	23.00	24.0	0.574	0.72	0.759	0.96	-0.13

Note1: The distance between the EUT and the phantom bottom is 10mm.

Table I.10: SAR Values (WCDMA1900 MHz Band - Head) - CAB60B0000C1

				Ambient	Temperature:	22.4°C Li	quid Tempera	ture: 22.0 °C			
Frequ	iency		Test	Figure	Conducted	Max. tune-up	Measured	Reported	Measured	Reported	Power
MHz	Ch.	Side	Position	No.	Power (dBm)	Power (dBm)	SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g)(W/kg)	Drift (dB)
1852.4	9262	Left	Touch	Fig.I.7	22.99	24.0	0.430	0.54	0.675	0.85	0.08

Table I.11: SAR Values (WCDMA1900 MHz Band-Body) - CAB60B0000C1

Ambient Temperature: 22.4 °C Liquid Temperature: 22.0 °C										
Frequ	1	Test Position	Figure No.	Power	Max. tune-up	SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)(Power Drift
MHz	Ch.			(dBm)	, ,	(W/kg)	(W/kg)	(W/kg)	W/kg)	(dB)
1880	9400	Bottom	Fig.I.8	23.03	24.0	0.477	0.60	0.869	1.09	-0.07

Note1: The distance between the EUT and the phantom bottom is 10mm.

I.3 Measured SAR Comparison

SAR Values (GSM 850 MHz Band - Head)

Freque	Frequency		uency Side Test		Test	Pattory Type	SAR(1g) (W/kg)		
MHz	Ch.	Side	Position	Battery Type	Original data	Spot check data			
848.8	251	Left	Touch	CAB60B0000C1	0.631	0.552			

SAR Values (GSM 850 MHz Band - Body)

Freque	ency		Test	Spacing		SAR(1	g) (W/kg)
MHz	Ch.	Mode/Band	Position	(mm)	Battery Type	Original data	Spot check data
848.8	251	GPRS	Rear	10	CAB60B0000C1	0.830	0.591

SAR Values (PCS1900 MHz Band - Head)

Freque	ency	Side	Test	Pattory Type	SAR(1g) (W/kg)		
MHz	Ch.	Side	Position	Battery Type	Original data	Spot check data	
1850.2	512	Left	Touch	CAB60B0000C1	0.413	0.395	

SAR Values (PCS1900 MHz Band - Body)

Freque	ency		Toot	Specing		SAR(1g	g) (W/kg)
MHz	Ch.	Mode/Band	Test Position	Spacing (mm)	Battery Type	Original data	Spot check data
1909.8	810	GPRS	Bottom	10	CAB60B0000C1	0.645	0.551

SAR Values (WCDMA850 MHz Band - Head)

Frequ	Frequency		Test	Pattory Type	SAR(1g) (W/kg)		
MHz	Ch.	Side	Position	Battery Type	Original data	Spot check data	
836.4	4182	Left	Touch	CAB60B0000C1	0.691	0.659	

SAR Values (WCDMA850 MHz Band - Body)

Frequ	iency	Test	Spacing	Pattory Type	SAR(1	g) (W/kg)
MHz	Ch.	Position	(mm)	Battery Type	Original data	Spot check data
836.4	4182	Rear	10	CAB60B0000C1	0.790	0.759

SAR Values (WCDMA1900 MHz Band - Head)

Frequency		Side	Test Battery Type		SAR(1g) (W/kg)		
MHz	Ch.	Side	Position	Башегу туре	Original data	Spot check data	
1852.4	9262	Left	Touch	CAB60B0000C1	0.716	0.675	

SAR Values (WCDMA1900 MHz Band - Body)

Frequ	ency	Test	Spacing	Pattory Type	SAR(1	g) (W/kg)
MHz	Ch.	Position	(mm)	Battery Type	Original data	Spot check data
1880	9400	Bottom	10	CAB60B0000C1	1.01	0.869

I.4 Reported SAR Comparison

		Reported SAR	Reported SAR
Exposure Configuration	Technology Band	1g (W/Kg): original	1g (W/Kg): spot check
Head	GSM 850	0.76	0.62
	PCS 1900	0.53	0.47
(Separation Distance	UMTS FDD 5	0.89	0.83
0mm)	UMTS FDD 2	0.94	0.85
Dody worn	GSM 850	1.00	0.66
Body-worn	PCS 1900	0.86	0.66
(Separation Distance 10mm)	UMTS FDD 5	1.01	0.96
10111111)	UMTS FDD 2	1.31	1.09

850 Left Cheek High

Date: 2015-03-14

Electronics: DAE4 Sn777 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.934$ S/m; $\varepsilon_r = 42.144$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.4°C Liquid Temperature: 22.0°C

Communication System: GSM 850 Frequency: 848.8 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 - SN3846 ConvF(9.18, 9.18, 9.18)

Cheek High/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.563 W/kg

Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.22 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.699 W/kg

SAR(1 g) = 0.552 W/kg; SAR(10 g) = 0.413 W/kg

Maximum value of SAR (measured) = 0.591 W/kg

Fig.I.1 850MHz

850 Body Rear High

Date: 2015-03-14

Electronics: DAE4 Sn777 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 848.8 MHz; $\sigma = 0.966$ S/m; $\varepsilon_r = 54.071$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.4°C Liquid Temperature: 22.0°C

Communication System: GSM 850 GPRS Frequency: 848.8 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 - SN3846 ConvF(9.09, 9.09, 9.09)

Rear High/Area Scan (101x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.649 W/kg

Rear High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.46 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.736 W/kg

SAR(1 g) = 0.591 W/kg; SAR(10 g) = 0.447 W/kg

Maximum value of SAR (measured) = 0.649 W/kg

Fig.I.2 850 MHz

GSM1900 Left Cheek Low

Date: 2015-03-16

Electronics: DAE4 Sn777 Medium: Head 1900 MHz

Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.351$ S/m; $\varepsilon_r = 41.327$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.4°C Liquid Temperature: 22.0°C

Communication System: GSM 1900MHz Frequency: 1850.2 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 - SN3846 ConvF(7.26, 7.26, 7.26)

Cheek Low/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.451 W/kg

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.321 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.577 W/kg

SAR(1 g) = 0.395 W/kg; SAR(10 g) = 0.252 W/kg

Maximum value of SAR (measured) = 0.424 W/kg

Fig.I.3 1900 MHz

GSM1900 Body Bottom High

Date: 2015-03-16

Electronics: DAE4 Sn777 Medium: Body 1900 MHz

Medium parameters used: f = 1910 MHz; $\sigma = 1.504 \text{ S/m}$; $\varepsilon_r = 53.966$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.4°C Liquid Temperature: 22.0°C

Communication System: GSM 1900MHz GPRS Frequency: 1910 MHz Duty Cycle: 1:2

Probe: EX3DV4 - SN3846 ConvF(7.15, 7.15, 7.15)

Bottom High/Area Scan (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.771 W/kg

Bottom High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.33 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.910 W/kg

SAR(1 g) = 0.551 W/kg; SAR(10 g) = 0.300 W/kg

Maximum value of SAR (measured) = 0.749 W/kg

Fig.I.4 1900 MHz

WCDMA 850 Left Cheek Middle

Date: 2015-03-14

Electronics: DAE4 Sn777 Medium: Head 850 MHz

Medium parameters used (interpolated): f = 836.4 MHz; $\sigma = 0.92$ S/m; $\varepsilon_r = 42.317$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.4°C Liquid Temperature: 22.0°C

Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(9.18, 9.18, 9.18)

Cheek Middle/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.673 W/kg

Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.33 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.816 W/kg

SAR(1 g) = 0.659 W/kg; SAR(10 g) = 0.506 W/kg

Maximum value of SAR (measured) = 0.695 W/kg

Fig.I.5 WCDMA 850

WCDMA 850 Body Rear Middle

Date: 2015-03-14

Electronics: DAE4 Sn777 Medium: Body 850 MHz

Medium parameters used (interpolated): f = 836.4 MHz; $\sigma = 0.953$ S/m; $\varepsilon_r = 54.184$; $\rho = 1000$

kg/m³

Ambient Temperature: 22.4°C Liquid Temperature: 22.0°C

Communication System: WCDMA; Frequency: 836.4 MHz; Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(9.09, 9.09, 9.09)

Rear Middle/Area Scan (101x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.923 W/kg

Rear Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 29.63 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.956 W/kg

SAR(1 g) = 0.759 W/kg; SAR(10 g) = 0.574 W/kg

Maximum value of SAR (measured) = 0.872 W/kg

Rear Middle/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 29.63 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.902 W/kg

SAR(1 g) = 0.642 W/kg; SAR(10 g) = 0.443 W/kg

Maximum value of SAR (measured) = 0.804 W/kg

Fig.I.6 WCDMA 850

WCDMA 1900 Left Cheek Low

Date: 2015-03-16

Electronics: DAE4 Sn777 Medium: Head 1900 MHz

Medium parameters used (interpolated): f = 1852.4 MHz; $\sigma = 1.353$ S/m; $\varepsilon_r = 41.315$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.4°C Liquid Temperature: 22.0°C

Communication System: WCDMA 1900 Frequency: 1852.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(7.26, 7.26, 7.26)

Cheek Low/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.763 W/kg

Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.003 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.974 W/kg

SAR(1 g) = 0.675 W/kg; SAR(10 g) = 0.430 W/kg

Maximum value of SAR (measured) = 0.726 W/kg

Fig.I.7 WCDMA1900

WCDMA 1900 Body Bottom Middle

Date: 2015-03-16

Electronics: DAE4 Sn777 Medium: Body 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.474 \text{ S/m}$; $\varepsilon_r = 54.048$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.4°C Liquid Temperature: 22.0°C

Communication System: WCDMA 1900 Frequency: 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(7.15, 7.15, 7.15)

Bottom Middle/Area Scan (61x51x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.24 W/kg

Bottom Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 24.40 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 1.44 W/kg

SAR(1 g) = 0.869 W/kg; SAR(10 g) = 0.477 W/kg

Maximum value of SAR (measured) = 1.18 W/kg

Fig.I.8 WCDMA1900

ANNEX J Accreditation Certificate

