		S'	FU]	DE	NT I	ID N	10	
MULTIMEDIA LOT UNIVERSITY								
™ ™								

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2017/2018

EEN1046 – ELECTRONICS III (TE, RE, BE)

6 MARCH 2018 2:30 p.m. - 4:30 p.m. (2 Hours)

INSTRUCTIONS TO STUDENTS

- (a) This booklet consists of 6 pages including cover pages with 4 questions only.
- (b) Attempt ALL questions given. All questions carry equal marks and distribution of the marks for each question is given.
- (c) Please write all your answers in the Answer Booklet provided.
- (d) All necessary working MUST be shown.

Question 1

Sketch a symbol diagram of an op-amp and name all the input/output ports. (a)

[5 marks]

Given the op-amp configuration in Figure Q1 (b) below, determine the value of $R_{\rm f}$ (b) required to produce a closed loop voltage gain of -150. What type (inverting or non-inverting) of op-amp is this?

[5 marks]

Figure Q1 (b)

- Given the summing amplifier in Figure Q1 (c) with R_F = 20 k $\Omega,\,R_1$ = 2 k $\Omega,\,R_2$ = 4
 - Determine the type (inverting or non-inverting) of the summing amplifier in (i) Figure Q1 (c) and justify your answer.

[2 marks]

Express the output voltage, v_0 , in terms of v_{II} , v_{I2} , and v_{I3} . (ii)

[6 marks]

Determine the output voltage, v_0 , given the v_{I1} is 2 V, v_{I2} is 4 V, and $v_{I3} = 6$ V.

Modify the circuit components values so that the summing amplifier in Figure Q1 (c) gives $v_o = -(v_{I1} + v_{I2} + v_{I3})$.

[4 marks]

Question 2

Figure Q2 (a) shows a Band-Pass filter circuit with constant pass-band gains. Given $R_1=R_1'=R_F=R_F'=10k\Omega$, C=10nF, R=10 k Ω , C'=5nF, R'=12k Ω and Bandwidth, BW =1 kHz.

- Calculate the high pass gain, K_{HP} and low pass gain, K_{LP} . (i)
- Calculate the overall band pass gain, K_{BP} . (ii)

[2 marks]

[2 marks] Calculate the highest cutoff frequency, f_H and lower cutoff frequency, f_L . (iii)

[2 marks]

(iv) Calculate the quality factor Q.

[2 marks]

- The Darlington-pass transistor regulator circuit shown in Figure Q2 (b) regulates the output voltage to 5V. Given that the transistor current gain for Q1 and Q2 are 100 and $V_{BE} = 0.7V$.
 - Determine the total Darlington-pair current gain, h_{FE} (i)

[1 mark]

Calculate the Zener voltage, V_Z and Zener current I_Z . (ii)

[6 marks]

(c)

(i) What is the difference between sawtooth and triangular waveforms?

[2 marks]

(ii) Design a triangular wave generator, as shown in Figure Q2 (c), for an amplitude voltage of $\pm 10V$ and oscillation frequency of 10KHz. Assume $V_{CC}=\pm 15V$, C=1nF. Assume $R_1=1K\Omega$.

[6 marks]

(iii) Modify the circuit to produce a sawtooth waveform instead of triangular waveform.

[2 marks]

Question 3

(a) The op-amp in Figure Q3 has the following property obtained from datasheet:

Parameters	Conditions	Min	Тур	Max	Units
Input Offset Voltage	$T_4 = 25^{\circ}C$		1.0	3.0	mV
Input Offset Current	$T_{d} = 25^{\circ}C$		3.0	30	nA
Input Bias Current	$T_A = 25^{\circ}C$		15	80	nA
Input offset voltage drift coefficient	$D_{\rm v}$			15	$\mu V I^0 C$
Input offset current drift coefficient	D _i			0.5	$nA/^{0}C$
Input bias current drift coefficient	$D_{\mathfrak{b}}$		······································	0.5	$nA/^{0}C$
Power Supply Rejection Ratio	PSRR	75	85		dB

- Determine the drift output offset voltage of the circuit in Figure Q3 at (i) temperature T = 45°C.
 - [7 marks]
- Determine maximum output offset voltage due to V_{IO} , for an operating temperature of 45°C. Assuming $I_{IO} = I_B = 0$.
 - [3 marks]
- (iii) Determine the maximum output offset voltage due to V_{IO}, at room temperature (25°C). Assuming $I_{IO} = I_B = 0$.
 - [3 marks]
- (iv) Determine the maximum output offset voltage, taking into account the effect . of all the relevant dc offset value, for an operating temperature of 45°C.

[3 marks]

Stability is a very important consideration when using op-amps. Discuss the stability in op-amp while performing positive feedback and negative feedback respectively.

[9 marks]

Question 4

- A temperature sensor senses a temperature ranging from 0° to 20°C and output a corresponding voltage of from -5V to +5V. The output voltage linearly increases with the temperature sensed. Design a Schmitt trigger circuit that will turn on a heater (Schmitt trigger output = $+V_{sat}$) when the temperature drops below 5 °C and turn off the heater (Schmitt trigger output $= -V_{sat}$) when temperature rises above 15°C. Assume supply voltage $V_{cc} = \pm 12V$ and $V_{sat} = V_{cc} - 1$. Assume diode voltage of 0.7 V in your design.
 - What type of Schmitt trigger circuit is required in this sensing circuit? Justify (i) your answer.
 - (ii) Sketch and label the Schmitt trigger circuit.

[2 marks]

[3 marks] (iii) Sketch the output of the Schmitt trigger circuit in relation to the sensing input of the temperature sensor.

[3 marks]

(iv) Evaluate the analysis on the design in order to determine the resistive components values required for the Schmitt trigger circuit.

[5 marks]

(b) Assuming an ideal diode D as shown in Figure Q4 (b), a voltage V_{in} is connected to the inverting input of a precision clamper circuit.

Figure Q4 (b)

(i) If the input voltage $V_{in} = V_m \sin \omega t$, explain briefly the operation of the circuit and evaluate the output voltage, V_o from 0 to 2π time intervals.

[7 marks]

(ii) The input voltage, $V_{in} = 2 \sin \omega t$ is to be clamped to a DC level of +8V. Assuming an ideal op-amp and $\pm 12V$ supply voltage, modify the circuit in Figure Q4 (b) to obtain the required output.

[5 marks]