Feature Weighting

Feature weighting is an alternative to keeping or eliminating features. More important features are assigned a higher weight, while less important features are given a lower weight. These weights are sometimes assigned based on domain knowledge about the relative importance of features. Alternatively, they can sometimes be determined automatically. For example, some classification schemes, such as support vector machines (Chapter 6), produce classification models in which each feature is given a weight. Features with larger weights play a more important role in the model. The normalization of objects that takes place when computing the cosine similarity (Section 2.4.5) can also be regarded as a type of feature weighting.

2.3.5 **Feature Creation**

It is frequently possible to create, from the original attributes, a new set of attributes that captures the important information in a data set much more effectively. Furthermore, the number of new attributes can be smaller than the number of original attributes, allowing us to reap all the previously described benefits of dimensionality reduction. Two related methodologies for creating new attributes are described next: feature extraction and mapping the data to a new space.

Feature Extraction

The creation of a new set of features from the original raw data is known as feature extraction. Consider a set of photographs, where each photograph is to be classified according to whether it contains a human face. The raw data is a set of pixels, and as such, is not suitable for many types of classification algorithms. However, if the data is processed to provide higher-level features, such as the presence or absence of certain types of edges and areas that are highly correlated with the presence of human faces, then a much broader set of classification techniques can be applied to this problem.

Unfortunately, in the sense in which it is most commonly used, feature extraction is highly domain-specific. For a particular field, such as image processing, various features and the techniques to extract them have been developed over a period of time, and often these techniques have limited applicability to other fields. Consequently, whenever data mining is applied to a relatively new area, a key task is the development of new features and feature extraction methods.

82 Chapter 2 Data

Although feature extraction is often complicated, Example 2.10 illustrates that it can be relatively straightforward.

Example 2.10 (Density). Consider a data set consisting of information about historical artifacts, which, along with other information, contains the volume and mass of each artifact. For simplicity, assume that these artifacts are made of a small number of materials (wood, clay, bronze, gold) and that we want to classify the artifacts with respect to the material of which they are made. In this case, a density feature constructed from the mass and volume features, i.e., density = mass/volume, would most directly yield an accurate classification. Although there have been some attempts to automatically perform such simple feature extraction by exploring basic mathematical combinations of existing attributes, the most common approach is to construct features using domain expertise.

Mapping the Data to a New Space

A totally different view of the data can reveal important and interesting features. Consider, for example, time series data, which often contains periodic patterns. If there is only a single periodic pattern and not much noise, then the pattern is easily detected. If, on the other hand, there are a number of periodic patterns and a significant amount of noise, then these patterns are hard to detect. Such patterns can, nonetheless, often be detected by applying a **Fourier transform** to the time series in order to change to a representation in which frequency information is explicit. In Example 2.11, it will not be necessary to know the details of the Fourier transform. It is enough to know that, for each time series, the Fourier transform produces a new data object whose attributes are related to frequencies.

Example 2.11 (Fourier Analysis). The time series presented in Figure 2.12(b) is the sum of three other time series, two of which are shown in Figure 2.12(a) and have frequencies of 7 and 17 cycles per second, respectively. The third time series is random noise. Figure 2.12(c) shows the power spectrum that can be computed after applying a Fourier transform to the original time series. (Informally, the power spectrum is proportional to the square of each frequency attribute.) In spite of the noise, there are two peaks that correspond to the periods of the two original, non-noisy time series. Again, the main point is that better features can reveal important aspects of the data.