Preliminaries

Preliminaries

Geometric Series

A **geometric series** is the sum of a(n) (in)finite number of terms that have a constant ratio r between successive terms as

$$a+ar+ar^2+\cdots+ar^U=\sum_{n=0}^{U}ar^n$$

For r
eq 1, the sum S of U-L+1 terms of a geometric series is

$$egin{array}{lcl} S & = & r^L + r^{L+1} + r^{L+2} \cdots + r^U \ rS & = & r^{L+1} + r^{L+2} \cdots + r^U + r^{U+1} \ S - rS & = & r^L - r^{U+1} \ (1-r)\,S & = & r^L - r^{U+1} \ S & = & rac{r^L - r^{U+1}}{1-r} \end{array}$$

The general formula is

$$\sum_{n=L}^{U} ar^n = a\left(rac{r^L - r^{U+1}}{1-r}
ight).$$

In particular, when L=0, the formula reduces to

$$\sum_{n=0}^{U} ar^n = a\left(rac{1-r^{U+1}}{1-r}
ight).$$

As U approaches infinity, the absolute value of r must be less than one for the series to converge. The sum then becomes

$$\sum_{n=0}^{\infty}ar^n=rac{a}{1-r},\quad |r|<1.$$

Symmetric vs Periodic Windows

In the symmetric case, the second half of the window, $M \le n \le N-1$, is obtained by reflecting the first half around the midpoint. The symmetric option is the preferred method when using a window in FIR filter design.

The periodic window is constructed by extending the desired window length L by one sample to L=N+1, constructing a symmetric window, and removing the last sample. The periodic version is the preferred method when using a window in spectral analysis without zero-padding because the discrete Fourier transform assumes periodic extension of the input vector. Zero-padding removes the advantage of symmetry.

Fourier Transforms

Discrete-Time Fourier Transform

The discrete-time Fourier transform (DTFT) of the sequence $x\left(n\right)$ is

$$X\left(ilde{\omega}
ight) = \sum_{n=-\infty}^{\infty} x\left(n
ight) e^{-j ilde{\omega}n},$$

where $\tilde{\omega} \triangleq \omega T_s \in [-\pi,\pi)$ is the *continuous* normalized radian frequency variable and $T_s = \frac{1}{f_s}$ is the sampling period, the inverse of the sampling frequency f_s . Note that $\omega = 2\pi f$ is the radian frequency in rad/s and f is the frequency in Hertz.

Therefore, the DTFT uses the continuous angular frequency variable $\tilde{\omega}$, whereas the discrete Fourier transform (DFT) is obtained from the DTFT by discretization of $\tilde{\omega}$ as $\omega T_s = \omega_k T_s$, where ω_k are the normalized discrete radian frequency given by

$$\omega_k = rac{2\pi}{N} k, ext{ where } k = 0, 1, \ldots, N-1,$$

where N is the size of the DFT.

Useful Relationships

Variable	Name	Unit
T	Period	S
$f = \frac{1}{T}$	Frequency	Hz (cycle/s)
$\omega=2\pi f$	Angular frequency	rad/s
f_s	Sampling frequency	samples/s
$ ilde{T}=rac{1}{ u}=rac{f_s}{f}$	Normalized period	samples
$ u = \frac{f}{f_s} $	Normalized frequency	cycles/sample
$ ilde{\omega}=2\pi u$	Normalized angular frequency	rad/sample
k	Frequency bin	samples
$\frac{k}{N}$	Discrete frequency	-

Variable	Name	Unit
$\omega_k=2\pirac{k}{N}$	Discrete angular frequency	radians

Window size $M=mrac{f_s}{f_0}$ samples, where m is an integer number of periods.

Angular frequency $ilde{\omega} f_s = 2\pi f = \omega$ radians/s

Normalized frequency $\frac{k}{N}=\frac{f}{f_s}$