Ecercício sobre dimensionamento de condutores

Precisa-se dimensionar o condutor que irà alimentar très cargas I, II, III descritas a seguir.

I: 1000 W+jO VAR

II: 2000 W+j 1000 VAR

III: 3000 W+ 1900 VAR.

Considere os seguintes dados de projeto:

e existe a possibilidade de alimentar as cargas em tensão de 127 V ou 220 V. Portanto, devem ser consideradas as duas epções, indicando o condutor escolhido para cada situação;

· temperatura ambienti considerada: 23°C;

· es eletrodutes a serem usades deverão abrigar outro circuito alim desse;

· o fator de crescimente da carga é 1,20;

- · o comprimente de condutor, de quadre até a carga, é de 30 m;
- · deve-se utilizar condutor de PVC;
- es condutores serão acondicionados em eletroduto de seção circular sobre parede de madeira (método de referência 31).

Os tabelas para consulta são dadas a seguir.

Capacidade de condução de corrente (A) de condutores com isolamento em PVC, em função da forma de instalação e do número de condutores carregados

Seções		Métodos de referência								
nominais	Α	.1	A2		В	B1		D		
(mm ²)	2 cond	3 cond	2 cond	3 cond	2 cond 3 cond .			2 cond	3 cond	
0,5	7	7	7	7	9	8		12	10	
0,75	9	9	9	9	11	10		15	12	
1	11	10	11	10	14	12		18	15	
1,5	14,5	13,5	14	13	17,5	15,5		22	18	
2,5	19,5	18	18,5	17,5	24	21		29	24	
4	26	24	25	23	32	28		38	31	
6	34	31	32	29	41	36		47	39	
10	46	42	43	39	57	50		63	52	
16	61	56	57	52	76	68		81	67	
25	80	73	75	68	101	89		104	86	
35	99	89	92	83	125	110		125	103	
50	119	108	110	99	151	134		148	122	

Condutores isolados, cabos unipolares e multipolares, isolação PVC

Temperatura no condutor = 70° C

Temperatura ambiente = 30°C

Forma de instalação:

Métodos de referência, NBR 5410

Referência	Descrição
A1	Condutores isolados em eletroduto de seção circu- lar embutido em parede termicamente isolante
A2	Cabo multipolar em eletroduto de seção circular em- butido em parede termicamente isolante
B1	Condutores isolados em eletroduto de seção circular sobre parede de madeira
B2	Cabo multipolar em eletroduto de seção circular so- bre parede de madeira
D	Cabo multipolar em eletroduto enterrado no solo
	•••

Correção da capacidade de corrente em função da temperatura

linhas não subterrâneas

Temperatura	Isolação			
ambiente (°C)	PVC	EPR ou XLPE		
10	1,22	1,15		
15	1,17	1,12		
20	1,12	1,08		
25	1,06	1,04		
30	1,00	1,00		
35	0,94	0,96		
40	0,87	0,91		

linhas subterrâneas

Temperatura	Isolação				
do solo (°C)	PVC	EPR ou XLPE			
10	1,10	1,07			
15	1,05	1,04			
20	1,00	1,00			
25	0,95	0,96			
30	0,89	0,93			
35	0,84	0,89			

Fatores de agrupamento

		Número de circuitos							
Item	Forma de agrupamento	ou de cabos multipolares						Métodos de	
Item	dos condutores	1	2	3	4	5	6		referência
1	Em feixe ao ar livre ou sobre superfície; embutidos em condutos fechados	1,00	0,80	0,70	0,65	0,60	0,57		AaF
2	Camada única sobre parede, piso, ou em bandeja não perfurada ou prateleira	1,00	0,85	0,79	0,75	0,73	0,72		С

EPUSP 10

Seção de condutores (mm²) pelo critério da queda de tensão - 127 V

Corrente(A)	Comprimento do circuito (em metros)							
Oonente(A)	15	30	45	60	80	100		
8,7	2,5	4	6	10	10	16		
13,1	2,5	6	10	16	16	25		
17,5	4	10	10	16	25	25		
21,8	6	10	16	25	25	35		
26,2	6	10	16	25	35	50		
30,6	6	16	25	35	35	50		
34,9	10	16	25	35	50	50		
39,3	10	16	25	35	50	70		
43,7	10	25	25	50	50	70		
52,5	10	25	50	50	70	95		
61,2	16	25	35	70	70	95		
69,9	25	35	50	70	95	120		

Fator de potência da carga 0,90; queda de tensão máxima admissível de 2%; condutor de cobre embutido em eletroduto de PVC

EPUSP

Seção de condutores (mm²) pelo critério da queda de tensão - 220 V

Corrente(A)	Comprimento do circuito (em metros)							
Oonente(A)	15	30	45	60	80	100		
5,0	1,5	1,5	2,5	2,5	4	4		
7,5	1,5	2,5	4	4	6	6		
10,1	1,5	2,5	4	6	10	10		
12,6	1,5	4	6	6	10	10		
15,1	1,5	4	6	10	10	16		
17,6	2,5	4	10	10	16	16		
20,2	2,5	6	10	10	16	16		
22,7	4	6	10	16	16	25		
25,2	4	6	10	16	16	25		
30,3	6	10	16	16	25	25		
35,3	6	10	16	25	25	35		
40,4	10	10	16	25	35	35		

Fator de potência da carga 0,90; queda de tensão máxima admissível de 2%; condutor de cobre embutido em eletroduto de PVC

EPUSP

calculando inicialmente a coviente necessária para as três cargas, considerando a tensão de 127V.

Carga total: 6000W + 12900 VAN

Carga total:
$$6000^{2} + 2900^{2} = 52,47$$
 A
$$I = |5| \qquad I = \sqrt{6000^{2} + 2900^{2}} = 52,47$$
 A
$$127 \qquad 127 \qquad$$

a covente I' à ser buscada na tabela de cajacidade de corrente para condutions de PVC é dada por

I'= I fores. fator devide à Temperatura

ft: fator devide à Temperatura

ft: fator devide à ao agrupamente de

ara. T= 23°C. It des

Para T=23°C, ft dere ser détide por interpolação.

$$\frac{1}{25-106} = \frac{1.12-1.06}{25-20}$$

$$\frac{1}{1084}$$

Buscando na tabela de capacidade pelo condutor que suporte essa corrente, considerando método B1 e 2 condutores carrigados, 5=16 mm².

Considerando o critério da queda de tensão, a corrente a ser considerada é I" = 52,47.1,20 = 62,97 A. Os fatores 1 ft e fagr impactam a elevação de temperatura. e tim pouca influência na queda de tensão.

Pelo critério da queda de tensão, consultando a tabela (1271)

 $5 = 35 \, \text{mm}^2$.

Du seja, para tensão de 127V, o condutor deveria ter S=35 mm².

considerando a Tensão de 220V:

$$I = \sqrt{6000^2 + 3200^2} = 3029 A$$

ft, fagre four sois es mesmos da situação antérior:

Pela tabela de capacidade de corrente, $S=10 \, \text{mm}^2$ Pela tabela de queda de tensão, para 220 V, considerando $I''=30,29\cdot 1,20=36,35$, $S=10 \, \text{mm}^2$.

Para tensão de 2201, o condutor diveria ter 5=10 mm².