TD 2: Tests et Boucles

DUT 1ère Année, Module d'Algorithmique-Programmation

Contact: Frédéric Koriche (koriche@cril.fr)

Exercice 1. Construire un arbre de décision et l'algorithme correspondant permettant de déterminer la catégorie sportive d'un enfant selon son âge :

- poussin de 6 à 7 ans
- pupille de 8 à 9 ans
- minime de 10 à 11 ans
- cadet de 12 à 14 ans

Exercice 2. Construire un arbre de décision et l'algorithme correspondant permettant de lire une note, de vérifier si cette note est bien entre 0 et 20, et de déterminer la mention associée à cette note :

- insuffisant en dessous de 10
- passable de 10 à 11
- assez bien de 12 à 13
- bien de 14 à 15
- très bien de 16 à 20

Exercice 3. Construire un algorithme permettant de résoudre le problème suivant :

- Données : les coefficients réels a, b et c d'une équation du second degré $ax^2 + bx + c = 0$,
- Résultat : le nombre de solutions de l'équation.

Exercice 4. Construire un algorithme permettant de résoudre le problème suivant :

- Données : une série de trois entiers *a*, *b* et *c* donnés par l'utilisateur
- Résultat : "vrai" si $a \le b \le c$ et "faux" sinon

Exercice 5. Construire un algorithme permettant de résoudre le problème suivant :

- Données : une série de trois entiers a, b et c donnés par l'utilisateur
- Résultat : une permutation $\langle a', b', c' \rangle$ de $\langle a, b, c \rangle$ telle que $a' \leq b' \leq c'$

Par exemple, si l'algorithme lit la série (50, 100, 10) il affichera (10, 50, 100)

Exercice 6. Construire un algorithme permettant de simuler une calculette : l'algorithme lit en entrée deux nombres réels et un opérateur arithmétique, et affiche en sortie le calcul de l'opération. Les opérateurs sont +, -, * et /.

Exercice 7. Construire un algorithme permettant de convertir des températures : l'algorithme lit au départ un réel (la température), une unité d'entrée et une unité de sortie. Il doit produire la conversion correspondante. Les unités possibles sont *C* pour degré Celcius, *F* pour degré Fahrenheit, et *K* pour Kelvin. La correspondance entre ces unités est donnée par le système d'équations suivant.

$$T_c = (T_f - 32) * \frac{5}{9} = T_k - 273.15$$

où T_c (resp. T_f, T_k) est la température en degrés Celcius (resp. degrés Fahrenheit, Kelvins).

Exercice 8. Construire un algorithme permettant de résoudre le problème suivant :

- Données : un entier k (la taille de la séquence), une séquence de k entiers $\langle x_1, x_2, \dots, x_k \rangle$
- Résultat : la moyenne $\frac{1}{k} \sum_{i=1}^{k} x_i$ de la séquence

Exercice 9. Construire un algorithme permettant de résoudre le problème suivant :

- Données : un entier k (la taille de la séquence), une séquence de k entiers $\langle x_1, x_2, ..., x_k \rangle$
- Résultat : le maximum $\max_{i=1}^k (x_i)$ de la séquence

Exercice 10. Construire un algorithme permettant de résoudre le problème suivant :

- Données : une séquence contenant un nombre arbitraire d'entiers strictement positifs, et terminée par 0 : $\langle x_1, x_2, \dots, 0 \rangle$.
- Résultat : le maximum $\max_i(x_i)$ de la séquence

Exercice 11. Construire un algorithme permettant de résoudre le problème suivant :

- Données : un entier *n*
- Résultat : sa factorielle $n! = n(n-1)(n-2)\cdots 1$

Exercice 12. Construire un algorithme permettant de simuler une caisse automatique distribuant la monnaie :

- Données : une quantité *n* euros que demande l'utilisateur
- Résultat : la monnaie de *n* en billets de 100, de 50, de 10, de 5 euros, ainsi qu'en pièces de 2 et 1 euros.

La correspondance est donnée naturellement par :

$$n = 100b_{100} + 50b_{50} + 10b_{10} + 5b_5 + 2p_2 + 1p_1$$

où b_i est la quantité de billets de i euros, et p_j est la quantité de pièces de j euros.

Exercice 13 Construire un algorithme permettant d'associer à un nombre entre 0 et 365, le mois et le jour qui lui correspondent dans l'année. Nous supposerons que l'année n'est pas bissextile. Rappelons que :

- Le mois de février fait 28 jours,
- Les mois d'avril, juin, septembre et novembre font 30 jours,
- Les autres mois font 31 jours

Par exemple, le nombre 60 correspond au premier jour du troisième mois (mars).

Exercice 14 Construire un algorithme permettant de calculer le plus grand commun diviseur (PGCD) de deux entiers naturels x et y. Rappelons que :

- (1) PGCD(x, x) = x
- (2) PGCD(x, y) = PGCD(y, x)
- (3) PGCD(x, y) = PGCD(x y, x) si x > y

Par exemple, le PGCD de 60 et 40 est 20.

Exercice 15 Construire un algorithme permettant de convertir un entier naturel n en base 2. Rappelons que :

$$n = \sum_{i=0}^{\lfloor \log_2 x \rfloor} a_i 2^i$$

où a_i est le ième chiffre booléen dans la conversion binaire de n.

Exercice 16. Construire un algorithme permettant de donner le résultat de la suite harmonique.

- Donnée : un nombre entier positif *n*
- Résultat : le résultat de la suite harmonique : $\sum_{i=1}^{n} \frac{1}{i}$

Exercice 17 Nous souhaiterions approximer le nombre π à partir de la série suivante :

$$\pi = 4 * \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots\right)$$

Rappelons que dans la série, le nombre rationnel 1 est le premier terme, le nombre rationnel 1/3 est le deuxième terme, etc. Construire un algorithme qui demande à l'utilisateur le nombre n de termes utilisés pour calculer π et affiche une approximation de π calculée à partir des n premiers termes de la série. Par exemple, si l'utilisateur saisit la valeur 3 en entrée, l'algorithme affiche la valeur :

$$4*\left(1-\frac{1}{3}+\frac{1}{5}\right)\sim 3.46667$$

Exercice 18* Construire un algorithme permettant de déterminer si un entier naturel *n* est *premier*.