BUNDESREPUBLIK DEUTSCHLAND

1 6, NOV 2004 REC'D WIPO

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 52 784.2

Anmeldetag:

12. November 2003

Anmelder/Inhaber:

Rohde & Schwarz GmbH & Co KG,

81671 München/DE

Bezeichnung:

Richtkoppler in Koaxialleitungstechnik

IPC:

H 01 P 5/08

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

> München, den 4. Oktober 2004 **Deutsches Patent- und Markenamt** Der Präsident

Im Auftrag

Remus

COMPLIANCE WITH RULE 17.1(a) OR (b)

Richtkoppler in Koaxialleitungstechnik

Die Erfindung betrifft einen Richtkoppler in Koaxialleitungstechnik.

5

10

Richtkoppler werden in der Hochfrequenztechnik zur getrennten Messung von hin- und rücklaufender Welle in einer Leitung verwendet. In Endstufen von Verstärkern werden Richtkoppler z. B. zur Messung des Stehwellen-Verhältnisses eingesetzt. Hierbei wird schwerpunktmäßig ein Richtkoppler in Koaxialleitungstechnik verwendet.

15

Ein derartiger Richtkoppler in Koaxialleitungstechnik ist z. B. in der US 5,926,076 beschrieben. Der Richtkoppler Koaxialleitung mit einer besteht hierbei aus geführten Innenleiter den um einem Innenleiter, hohlzylindrischen Dielektrikum und einem am Mantel des. aufgebrachten Dielektrikums hohlzylindrischen hohlzylindrischen Außenleiter und einer Leiterplatte, auf der im wesentlichen die beiden Auskoppeleinheiten des Koaxialleitung und sind. aufgebracht Richtkoppler einem Auskoppeleinheiten sind in Leiterplatte mit Gehäuse einem in zueinander einstellbaren Abstand angeordnet.

25

20

Nachteilig an dieser Anordnung ist der vergleichsweise hohe Aufwand hinsichtlich einer mechanischen und auch elektrischen Verbindung zwischen der Koaxialleitung und den beiden Auskoppeleinheiten sowie deren Anschlüsse über eine gemeinsame Beabstandung, Befestigung und Lagerung in einem gemeinsamen Gehäuse. Auch die gezielte und effiziente Abführung von entstandener Wärme aus der Richtkopplerschaltung mittels Widerständen und Hitzeableitungsschienen ist vergleichsweise aufwendig gestaltet.

35

30

Der Erfindung liegt daher die Aufgabe zugrunde, einen Richtkoppler in Koaxialleitungstechnik zu schaffen, bei dem die mechanische und auch elektrische Verbindung zwischen der Koaxialleitung und den Anschlüssen des

Richtkopplers, insbesondere den Auskoppelanschlüssen, unter minimalem zusätzlichem gerätetechnischem Aufwand realisiert ist.

5 Die Aufgabe der Erfindung wird durch einen Richtkoppler in Koaxialleitungstechnik mit den Merkmalen des Anspruches 1 gelöst.

Die elektrische Verbindung zwischen dem Innen- und 10 Außenleiter der Koaxialleitung und den einzelnen Anschlüssen des Richtkopplers erfolgt am Ein- und Ausgang der Koaxialleitung über jeweils ein Widerstandsnetzwerk.

15

20

25

30

35

Die mechanische Verbindung zwischen der Koaxialleitung und den einzelnen Anschlüssen des Richtkopplers, die auf einer sind, wird dadurch planaren Leiterplatte positioniert realisiert, dass die Koaxialleitung z. B. halbringförmig oder U-förmig gebogen ausgeführt ist und somit mit ihren beiden Anschlußflächen parallel zur planaren Leiterplatte. ausgerichtet ist und somit über Verbindungsleitungen bzw. Widerstände, die zu den obengenannten Widerstandsnetzwerken gehören, eine vergleichsweise einfache mechanische Außenleiter Innenund dem Verbindung zwischen Richtkopplers Koaxialleitung und den Anschlüssen des verwirklicht wird.

Eine derart realisierte elektrische und mechanische Verbindung zwischen einer Koaxialleitung und den Anschlüssen eines Richtkopplers stellt eine hinsichtlich Material- und Fertigungsaufwand kostenminimierte Lösung dar.

Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben.

Die planare Leiterplatte kann in SMD-Technologie ausgeführt sein. Insbesondere die Anordnung der Widerstände der beiden Widerstandsnetzwerke, die an den beiden Enden der Koaxialleitung die Schirmung und damit den Außenleiter der Koaxialleitung auf Massepotenzial führen, sind für die Richtkopplercharakteristik ganz entscheidend und können so relativ flexibel angeordnet werden.

5

Durch Bestückung der Koaxialleitung mit Ferriten erreicht man eine nutzbare Charakteristik des Richtkopplers über mehrere Oktaven.

10 Die Ausführungsform der Erfindung wird in der Zeichnung dargestellt und wird nachfolgend näher beschrieben. Es zeigen:

15

ein Schaltungsdiagramm eines erfindungsgemäßen Richtkopplers in Koaxialleitungstechnik;

Fig. 2

Fig. 1

eine Seitenansicht eines erfindungsgemäßen Richtkopplers in Koaxialleitungstechnik und

20

30

Fig. 3 eine Draufsicht eines erfindungsgemäßen Richtkopplers in Koaxialleitungstechnik.

Der erfindungsgemäßen Richtkoppler in Koaxialleitungs-25 technik wird in seiner Ausführungsform nachfolgend unter Bezugnahme auf Fig. 1 bis Fig. 3 beschrieben.

Der erfindungsgemäße Richtkoppler in Koaxialleitungstechnik umfaßt gemäß Fig. 1 im wesentlichen eine Koaxialleitung 1, die aus einem Innenleiter 2 und über ein Dielektrikum getrennt aus einem Außenleiter 3 besteht. Die Koaxialleitung 1 ist an ihrem Außenmantel von mehreren aneinander gereihten Ferritkernringen 4 umgeben.

Die Koaxialleitung 1 ist an ihrer ersten Anschlußfläche 8 mit den ersten Anschluß 5 und dem ersten Auskoppelanschluß 6 des Richtkoppler über ein erstes Widerstandsnetzwerk 7 und an ihrer zweiten Anschlußfläche 9 mit dem zweiten Anschluß 10 und dem zweiten Auskoppelanschluß 11 über ein

zum ersten Widerstandsnetzwerk 7 symmetrisches zweites Widerstandsnetzwerk 12 verbunden.

Das erste Widerstandnetzwerk 7 besteht aus einer Serienschaltung eines Widerstandes R_{71} und R_{72} in der Verbindungsleitung 73 zwischen dem ersten Anschluß 5 und dem ersten Auskoppelanschluß 6 und einem Widerstand R_{74} in der Verbindungsleitung 75 zwischen dem Außenleiter 3 der Koaxialleitung 1 und dem ersten Auskoppelanschluß 6 sowie zwischen direkten Verbindungsleitung 76 Innenleiter 2 der Koaxialleitung 1 und den ersten Anschluß 5.

Das zweite Widerstandnetzwerk 12 besteht symmetrisch zum ersten Widerstandsnetzwerk 7 aus einer Serienschaltung eines Widerstandes R_{121} und R_{122} in der Verbindungsleitung 15 123 zwischen dem zweiten Anschluß 10 und den zweiten Auskoppelanschluß 11 und einem Widerstand R_{124} in der Verbindungsleitung 125 zwischen dem Außenleiter 3 der Koaxialleitung 1 und den zweiten Auskoppelanschluß 11 sowie einer direkten Verbindungsleitung 126 zwischen den 20 Innenleiter 2 der Koaxialleitung 1 und dem Anschluß 10.

Der Außenleiter 3 ist an der ersten Anschlußfläche 8 der Koaxialleitung 1 mit einem dritten Widerstandsnetzwerk 13 auf Massepotenzial geführt. Das dritte Widerstandsnetzwerk besteht aus einer Parallelschaltung von mehreren niederohmigen Widerständen R_{131} , R_{132} , R_{133} , . . . , $R_{13(n-1)}$,

30 R13n.

10

Der Außenleiter 3 an der zweiten Anschlußfläche 9 der Koaxialleitung 1 ist mit einem vierten Widerstandsnetzwerk vollkommen symmetrisch Widerstandsnetzwerk 13 ausgeführt ist, auf Massepotenzial geführt. Das vierte Widerstandnetzwerk 14 besteht demnach aus einer Parallelschaltung von mehreren niederohmigen Widerständen R_{141} , R_{142} , R_{143} ,..., $R_{14(n-1)}$, R_{14n} .

Die Widerstände R_{71} , R_{72} und R_{74} des ersten Widerstands netzwerkes 7 und die Widerstände R_{121} , R_{122} , R_{124} des zweiten Widerstandsnetzwerkes 12 sind höherohmig ausgelegt als die niederohmigen Widerstände R_{131}, \ldots, R_{13n} des dritten Widerstandsnetzwerkes 13 und die niederohmigen Widerstände R_{141}, \ldots, R_{14n} des vierten Widerstandsnetzwerkes 14.

In der Seitenansicht in Fig. 2 sowie in der Draufsicht in Fig. 3 des erfindungsgemäßen Richtkopplers in Koaxialleitungstechnik ist die halb ringförmige bzw. U-förmige Gestaltung der Koaxialleitung 1 erkennbar. Die Verbiegung der ursprünglich linearen Koaxialleitung 1 in die ringförmige bzw. U-förmige Gestaltung gemäß Fig. 2 bzw. Fig. 3 ist durch den Einsatz der Semi-Rigid-Technologie beim Innenleiter 2, Dielektrikum und Außenseiter 3 der Koaxialleitung 1 möglich.

Aus Fig. 2 bzw. Fig. 3 ist ebenfalls die kegelförmige des R_{131}, \ldots, R_{13n} Widerstände der Anordnung Widerstandsnetzwerkes 13 bzw. der Widerstände R_{141},\ldots,R_{14n} zwischen Widerstandsnetzwerkes 14 vierten Außenleiter 3 der Koaxialleitung 1 und der planaren Leiterplatte 15 erkennbar, die den ersten und zweiten den ersten bzw.. 10 und 5 Anschluß Auskoppelanschluß 6 und 11 weitere Bauelemente, die z. B. sämtliche enthält. SMD-Technik angeordnet sind, Widerstände R_{131}, \dots, R_{13n} sowie R_{141}, \dots, R_{14n} sind, wie aus Fig. 2 bzw. Fig. 3 ersichtlich ist, auf die Leiterplatte aufgelötet.

30

35

15

20

25

In Fig. 2 ist schließlich auch die Verbindungsleitung 76 bzw. 126 vom Innenleiter 2 der Koaxialleitung zum ersten Anschluß 5 bzw. zum zweiten Anschluß 10 des Richtkopplers sowie der ebenfalls in konventioneller Technik ausgeführte Widerstand R_{74} des ersten Widerstandsnetzwerkes 7 bzw. der Widerstand R_{124} des zweiten Widerstandsnetzwerkes 12, die beide in die kegelförmige Anordnung der Widerstände R_{131}, \ldots, R_{13n} des dritten Widerstandsnetzwerkes 13 bzw. der

Widerstände R_{141},\ldots,R_{14n} des vierten Widerstandsnetzwerkes 14 eingereiht sind, zu erkennen.

In der Draufsicht in Fig. 3 sind schließlich die Widerstände R₇₁ und R₇₂ des ersten Widerstandsnetzwerkes 7 und die Widerstände R₁₂₁ und R₁₂₂ des zweiten Widerstandsnetzwerkes 12 erkennbar, die auch in konventioneller Technik ausgeführt und auf der planaren Leiterplatte 15, die im Ausführungsbeispiel in SMD-Technologie realisiert ist, aufgelötet sind.

15

20

25

30

35

wird.

Die Topologie des ersten, zweiten, dritten und vierten Widerstandsnetzwerkes 7, 12, 13 und 14, die geeignete Parametrierung der dazugehörigen Widerstände R_{71} , R_{72} , R_{74} , $R_{121},\ R_{122},\ R_{124}$ und R_{131},\ldots,R_{13n} sowie R_{141},\ldots,R_{14n} und die räumliche Anordnung insbesondere der Widerstände R74, $R_{124},\ R_{131},\dots,R_{13n}$ und R_{141},\dots,R_{14n} legen die Richtschärfe und Koppeldämpfung des Richtkopplers fest. Durch eine geeignete Wahl von Topologie, Parametrierung und räumlicher Anordnung der Widerstände kann dafür gesorgt werden, dass am ersten Auskoppelanschluß 6 eine konstruktive positive Überlagerung aus den zwischen erstem Anschluß 5 und erster Anschlußfläche 8 der Koaxialleitung 1 hin- und rücklaufenden Wellen ausgekoppelt wird, und am zweiten Auskoppelanschluß 11 eine gegenseitige Auslöschung der beiden Wellen, die aus den zwischen zweiten Anschluß 10 und zweiter Anschlußfläche 9 der Koaxialleitung 1 hin- und rücklaufenden Wellen ausgekoppelt werden, verwirklicht

Auf diese Weise läßt sich ein breitbandiger Richtkoppler ohne hohen Aufwand für Anwendungen insbesondere bei breitbandigen Verstärkern, beispielsweise zwischen 30 und 500 MHz, realisieren.

Die Erfindung ist nicht auf das dargestellte Ausführungsbeispiel beschränkt. Die beschriebenen Elemente sind im Rahmen der Erfindung beliebig miteinander kombinierbar.

Ansprüche

5

10

15

30

1. Richtkoppler mit
einem ersten Anschluß (5) zum Ein- oder Ausspeisen einer
Welle und einem ersten Auskoppelanschluß (6) zum
Auskoppeln einer gekoppelten Welle, die beide über ein
erstes Netzwerk (7) mit dem Innenleiter (2) und dem
Außenleiter (3) einer Koaxialleitung (3) an dessen erster
Anschlußfläche (8) verbunden sind, und
einem zweiten Anschluß (10) zum Ein- oder Ausspeisen der
vom ersten Anschluß (5) ein- oder ausgespeisten Welle und
einem zweiten Auskoppelanschluß (11) zum Auskoppeln einer
gekoppelten Welle, die beide über ein zweites Netzwerk
(12) mit dem Innenleiter (2) und dem Außenleiter (3) der
Koaxialleitung (1) an dessen zweiter Anschlußfläche (9)

verbunden sind,

20 wobei die Koaxialleitung (1) derart gebogen ist, daß ihre erste und zweite Anschlußfläche (8, 9) im wesentlichen parallel zu einer planaren Leiterplatte (15) ausgerichtet ist, die den ersten Anschluß (5), den zweiten Anschluß (10), den ersten Auskoppelanschluß (6) und/oder zweiten

25 Auskoppelanschluß (11) beinhaltet.

2. Richtkoppler nach Anschluß 1, dadurch gekennzeichnet, daß das erste Netzwerk (7) und das zweite Netzwerk (12) jeweils ein Widerstandsnetzwerk ist.

 Richtkoppler nach Anspruch 1 oder 2, dadurch gekennzeichnet,

daß der Außenleiter (3) der Koaxialleitung (1) an der 35, ersten Anschlußfläche (8) über ein drittes niederohmiges Widerstandsnetzwerk (13) und an der zweiten Anschlußfläche (9) über ein viertes niederohmiges Widerstandsnetzwerk (14) auf Massepotential geführt ist.

4. Richtkoppler nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Koaxialleitung (1) halbringförmig oder U-förmig gebogen ist.

5

Richtkoppler nach Anspruch 4, 5. dadurch gekennzeichnet, daß die halbringförmige oder U-förmige Koaxialleitung (1) an der ersten Anschlußfläche (8) mit ihrem Innenleiter (2) (76) und mit Verbindungsleiter über Außenleiter (3) über kegelförmig angeordnete Widerstände 10 und/oder ersten des R_{131},\ldots,R_{13n} der zweiten und an Widerstandsnetzwerkes (7, 13) Anschlußfläche (9) mit ihrem Innenleiter (2) über einen Verbindungsleiter (126) und mit ihrem Außenleiter (3) über kegelförmig angeordnete Widerstände $(R_{124}, R_{141}, \dots, R_{14n})$ 15 des zweiten und/oder vierten Widerstandsnetzwerkes (12, mit der planaren Leiterplatte (15) mechanisch und

20

elektrisch verbunden ist.

6. Richtkoppler nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß zumindest ein Ferritring (4) aus einem Ferrit-Material die Koaxialleitung (1) umschließt.

25

7. Richtkoppler nach Anspruch 6,
dadurch gekennzeichnet,
daß mehrere aneinander gereihte Ferritringe (4) die
Koaxialleitung (1) ummanteln.

30

35

8. Richtkoppler nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Widerstände (R_{71} , R_{72} , R_{74} , R_{121} , R_{122} , R_{124} , R_{131} , ..., R_{13n} , R_{141} , ..., R_{14n}) der Widerstandsnetzwerke (7, 12, 13, 14) in SMD-Technik auf die planare Leiterplatte (15) aufgelötete Bauelemente sind.

Zusammenfassung

5

10

15

20

25

Ein Richtkoppler umfaßt einen ersten Anschluß (5) zum Eineiner Welle, einen ersten Auskoppeloder Ausspeisen anschluß (6) zum Auskoppeln einer gekoppelten Welle, einen zweiten Anschluß (10) zum Ein- oder Ausspeisen der vom ersten Anschluß (5) ein- oder ausgespeisten Welle und einem zweiten Auskoppelanschluß (11) zum Auskoppeln einer gekoppelten Welle. Der erste Anschluß (5) und der erste Auskoppelanschluß (6) sind über ein erstes Netzwerk (7) mit dem Innenleiter (2) und dem Außenleiter (3) einer Koaxialleitung (3) an dessen erster Anschlußfläche (8) verbunden. Der zweite Anschluß (10) und Auskoppelanschluß (11) sind über ein zweites Netzwerk (12) mit dem Innenleiter (2) und dem Außenleiter (3) Koaxialleitung (1) an dessen zweiter Anschlußfläche (9) verbunden. Die Koaxialleitung (1) ist derart gebogen, daß sie mit einer planaren Leiterplatte (15), die den ersten den ersten Anschluß (5), den zweiten Anschluß (10), Auskoppelanschluß (6) und/oder zweiten Auskoppelanschluß (11) beinhaltet, hinsichtlich ihrer ersten und zweiten Anschlußfläche (8, 9) parallel angeordnet ist.

(Fig. 2)

P28 730

