

Vorlesung: "Künstliche Intelligenz"

- KI heute, KI morgen, KI übermorgen-

Inhaltliche Planung für die Vorlesung

- 1) Definition und Geschichte der KI, PROLOG
- 2) Expertensysteme
- √ 3) Logisches Schließen, Resolution
- 4) Suche und Spieltheorie
- 5) Optimierungen und Heuristiken (Spieleprogrammierung)
- √ 6) Mustererkennung
- 7) Neuronale Netze
- 8) General Game Playing
- 9) Maschinelles Lernen
- **√** 10) Evolutionäre Algorithmen und kollektive Intelligenz
- 11) KI heute, KI morgen, KI übermorgen
 - 12) Robotik, Pathfinding

2

der rote Vorlesungsfaden...

- Expertensysteme?
- Resolution?
- A*-Suche?
- kNN?
- K-Means?
- Gauß-Klassifikator?
- Perzeptron-Lernen?
- Neuronale Feedforward-Netze?
- Hopfield-Netze?
- Boltzmannmaschine?
- Kohonen-Netze?
- Monte-Carlo?
- Temporale Differenz?
- Schwarmverhalten?
- Ant Colony Optimization?

Lernen mit Hilfe von Entscheidungsbäumen

Basierend auf lokalen Entscheidungsregeln wird ein hierarchischer Entscheidungsbaum aufgebaut.

Solche Entscheidungsbäume werden häufig in der Stochastik und im Data-Mining eingesetzt.

Welche Entscheidungen zuerst und welche später zu treffen sind, um ein optimales Ergebnis zu erzielen, kann maschinell erlernt werden.

ID3-Algorithmus

Vorhersage V	Temperatur T	Luftfeuchtigkeit L	Windig W	Spielausgang S
Sonnig	Warm	Hoch	Nein	Niederlage
Sonnig	Warm	Hoch	Ja	Niederlage
Bewölkt	Warm	Hoch	Nein	Sieg
Regen	Mild	Hoch	Nein	Sieg
Regen	Kühl	Normal	Nein	Sieg
Regen	Kühl	Normal	Ja	Niederlage
Bewölkt	Kühl	Normal	Ja	Sieg
Sonnig	Mild	Normal	Nein	Niederlage
Sonnig	Kühl	Normal	Nein	Sieg
Regen	Mild	Normal	Nein	Sieg
Sonnig	Mild	Normal	Ja	Sieg
Bewölkt	Mild	Hoch	Ja	Sieg
Bewölkt	Warm	Normal	Nein	Sieg
Regen	Mild	Normal	Ja	Niederlage

S? S? S?

Welche Reihenfolge für Entscheidungen?

ID3-Algorithmus

V	Т	L	W	S
Sonnig	Warm	Hoch	Nein	Niederlage
Sonnig	Warm	Hoch	Ja	Niederlage
Bewölkt	Warm	Hoch	Nein	Sieg
Regen	Mild	Hoch	Nein	Sieg
Regen	Kühl	Normal	Nein	Sieg
Regen	Kühl	Normal	Ja	Niederlage
Bewölkt	Kühl	Normal	Ja	Sieg
Sonnig	Mild	Normal	Nein	Niederlage
Sonnig	Kühl	Normal	Nein	Sieg
Regen	Mild	Normal	Nein	Sieg
Sonnig	Mild	Normal	Ja	Sieg
Bewölkt	Mild	Hoch	Ja	Sieg
Bewölkt	Warm	Normal	Nein	Sieg
Regen	Mild	Normal	Ja	Niederlage

Entropie entscheidet über Informationsgehalt einer Entscheidung:

5 Niederlagen

9 Siege

$$P(N) = 5/14$$

$$P(S) = 9/14$$

$$H(S) = -\sum_{i=1}^{n} P_i * log_2 P_i$$

Für Menge S mit Untermengen $S_0, S_1, ..., S_n$

- Mittlerer Informationsgehalt
- Mittlere Anzahl an Bits zum speichern
- Mittlere Anzahl an Entscheidungen
- Unordnung einer Zahlenmenge

Berechne daher maximalen Gain für Menge S und Attributmenge m:

$$G(S, m) = H(S) - \sum_{i=1}^{j} \frac{|S_{m_i}|}{|S|} H(S_{m_i})$$

ID3-Algorithmus

V	Т	L	W	S
Sonnig	Warm	Hoch	Nein	Niederlage
Sonnig	Warm	Hoch	Ja	Niederlage
Bewölkt	Warm	Hoch	Nein	Sieg
Regen	Mild	Hoch	Nein	Sieg
Regen	Kühl	Normal	Nein	Sieg
Regen	Kühl	Normal	Ja	Niederlage
Bewölkt	Kühl	Normal	Ja	Sieg
Sonnig	Mild	Normal	Nein	Niederlage
Sonnig	Kühl	Normal	Nein	Sieg
Regen	Mild	Normal	Nein	Sieg
Sonnig	Mild	Normal	Ja	Sieg
Bewölkt	Mild	Hoch	Ja	Sieg
Bewölkt	Warm	Normal	Nein	Sieg
Regen	Mild	Normal	Ja	Niederlage

Berechne Entropie für alle Klassen der Menge S:

$$H(S) = -\sum_{i=1}^{n} P_i * log_2 P_i$$

Wenn Entropie = 0, dann fertig (nur noch Elemente einer Klasse)

Sonst berechne Gain für alle Merkmale

$$G(S, m) = H(S) - \sum_{i=1}^{j} \frac{|S_{m_i}|}{|S|} H(S_{m_i})$$

Nehme Merkmal I mit maximalem Gain und trenne Menge S in Untermengen $S_1, S_2, ..., S_j$

Verfahre rekursiv weiter mit Untermengen $S_1, S_2, ..., S_j$

ID3-Algorithmus

V	Т	L	W	S
Sonnig	Warm	Hoch	Nein	Niederlage
Sonnig	Warm	Hoch	Ja	Niederlage
Bewölkt	Warm	Hoch	Nein	Sieg
Regen	Mild	Hoch	Nein	Sieg
Regen	Kühl	Normal	Nein	Sieg
Regen	Kühl	Normal	Ja	Niederlage
Bewölkt	Kühl	Normal	Ja	Sieg
Sonnig	Mild	Normal	Nein	Niederlage
Sonnig	Kühl	Normal	Nein	Sieg
Regen	Mild	Normal	Nein	Sieg
Sonnig	Mild	Normal	Ja	Sieg
Bewölkt	Mild	Hoch	Ja	Sieg
Bewölkt	Warm	Normal	Nein	Sieg
Regen	Mild	Normal	Ja	Niederlage

$$\begin{split} G(S,windig) &= H(S) - \frac{|S_{Ja}|}{|S|} H(S_{Ja}) - \frac{|S_{Nein}|}{|S|} H(S_{Nein}) \\ &\quad H(S) = -\frac{5}{14} log_2(\frac{5}{14}) - \frac{9}{14} log_2(\frac{9}{14}) = 0,94 \\ &\quad H(S_{Ja}) = -\frac{3}{6} log_2(\frac{3}{6}) - \frac{3}{6} log_2(\frac{3}{6}) = 1 \\ &\quad H(S_{Nein}) = -\frac{6}{8} log_2(\frac{6}{8}) - \frac{2}{8} log_2(\frac{2}{8}) = 0,81 \\ \\ G(S,windig) &= 0,94 - \frac{6}{14} * 1 - \frac{8}{14} * 0,81 = 0,048 \\ \\ G(S,L) &= H(S) - \frac{|S_{Hoch}|}{|S|} H(S_{Hoch}) - \frac{|S_{Normal}|}{|S|} H(S_{Normal}) = 0,15 \\ \\ G(S,T) &= H(S) - \frac{|S_{Warm}|}{|S|} H(S_{Warm}) - \frac{|S_{Mild}|}{|S|} H(S_{Mild}) \\ &\quad - \frac{|S_{Kuhl}|}{|S|} H(S_{Kuhl}) = 0,03 \\ \\ G(S,V) &= 0,25 \end{split}$$

1950 Alan Turing (Turingtest):

"Im Zuge dieses Tests führt ein menschlicher Fragesteller über eine Tastatur und einen Bildschirm ohne Sicht- und Hörkontakt mit zwei ihm unbekannten Gesprächspartnern eine Unterhaltung.

Der eine Gesprächspartner ist ein Mensch, der andere eine Maschine. Beide versuchen, den Fragesteller davon zu überzeugen, dass sie denkende Menschen sind.

Wenn der Fragesteller nach der intensiven Befragung nicht klar sagen kann, welcher von beiden die Maschine ist, hat die Maschine den Turing-Test bestanden."

1955 John McCarthy:

"Ziel der KI ist es, Maschinen zu entwickeln, die sich verhalten, als verfügten sie über Intelligenz."

Braitenberg-Vehikel, Reaktion auf Lichtquelle

1991 Encyclopedia Britannica:

"KI ist die Fähigkeit digitaler Computer oder computergesteuerter Roboter, Aufgaben zu lösen, die normalerweise mit den höheren intellektuellen Verarbeitungsfähigkeiten von Menschen in Verbindung gebracht werden …"

1983 Elaine Rich:

"Artificial Intelligence is the study of how to make computers do things at which, at the moment, people are better."

Gute Beschreibung der Tätigkeit von Wissenschaftlern der KI in der Vergangenheit und sicher auch Zukunft.

Ziel: Im Laufe der Vorlesung zu einer eigenen Definition zu gelangen.

Was macht die Künstliche Intelligenz aus?

Interdisziplinär

Allgemein

Visionär

KI von morgen?

Milo aus Natal

KI von morgen?

... oder von übermorgen?

Spracherkennung

Gestenerkennung

Dialoge

KI von morgen?

... oder von übermorgen?

Multitouch

Objekterkennung

Gesten darstellen

Akustische Systeme

Kapazitive Systeme

Optische Systeme

- Lichtzeiger
- FTIR
- D
- Angulation

Frustrated Total Internal Reflection (FTIR)

Diffused Illumination (DI)

Weitere Systeme

Weitere Systeme

