合鍵 (Keys)

IOI 2009 Bulgaria 銅メダル 東京大学医学部医学科5年 平野湧一郎 (nai)

2015年3月21日 情報オリンピック春合宿

問題概要

- 社員N人中K人に合鍵を配る
- ・全員1回ずつ外出する
- 錠が閉まっている時間を最大化しよう

小課題

1. N ≤ 20, M ≤ 100万

 $2.N \le 2000$

小課題

1. N ≤ 20, M ≤ 100万

 $2.N \le 2000$

部分点解法1

- 合鍵の渡し方を全部試す
- 合鍵の渡し方を決めたときに、錠の 開け閉めを最適化しよう!

考察

- ・ 隣り合った2人の出入りを考える
- 時刻aから時刻bまで錠を閉めることのできる条件は?
 - 社員AとBの出入りで場合分け

(1) in-out 型

A、Bが合鍵を持っているかどうかに よらず、常に錠を閉めることができる

(2) in-in 型

• Bが合鍵を持っていればOK

(3) out-out 型

• Aが合鍵を持っていればOK

(4) out-in 型

• AとBの**両方**が合鍵を持っている必要が ある

まとめ

Α	В	錠を閉められる条件
in	out	いつでも
in	in	Bに合鍵
out	out	Aに合鍵
out	in	A, B両方に合鍵

部分点解法1

- 合鍵の渡し方を全て試す
- ・ 隣り合う出入り全てに対し、上述の場合分けにより錠が閉められるかを 判定

さらに考察

- 合鍵を渡すことで、「錠を閉められる時間」が伸びるのは2パターン
 - (1)社員Aに合鍵を渡す
 - (2)社員A, Bの両方に合鍵を渡す

グラフにする

- 社員それぞれが頂点の N頂点のグラフを作る
- 頂点:(1)で得する時間
- 辺:(2)で得する時間

問題の言い換え

- N頂点のうちK点に色を 塗り、
 - 頂点に書いてある数+ 両端点が塗られた辺に 書いてある数
- の総和を最大化!

問題の言い換え

- N頂点のうちK点に色を 塗り、
 - 頂点に書いてある数+ 両端点が塗られた辺に 書いてある数
- の総和を最大化!

→解けない __

('ω')

試しに描いてみよう!

サンプル1

とあるinput

問題文をよく読む

• 今日は偶然にも,

どの社員もちょうど 1回ずつ外出する.

何が嬉しいか

- 頂点の次数は高々2
- グラフに閉路が存在しない

何が嬉しいか

- 頂点の次数は高々2
- グラフに閉路が存在しない

わかったこと

グラフに閉路や分岐なし→グラフはパスの集合

• ※パス:

さらに言い換え

- パスがいくつかある
- 頂点と辺に数が書いてある
- N頂点のうちK個に色を塗る
- 利益の合計を最大化しよう

さらに言い換え

- パスがいくつかある
- 頂点と辺に数が書いてある
- N頂点のうちK個に色を塗る
- 利益の合計を最大化しよう

→解けそう ※('ω'※)三※('ω')※三(※'ω')※

パスが1本のみの場合

- 頂点に左から順に1..Nの番号を付ける
- 「今見ている頂点」「今まで塗った頂点の数」「最後の頂点を選んだか」でDP

パスがC本ある場合

- パスに1...Cの番号を付ける
- それぞれのパスに対し、「K個塗った時 の最大利益」を各Kについて求めておく
- 「今見ているパス」「今まで塗った頂点の数」でDP

満点解法

- 考察でパスの問題に落としこむ
- DP2回で解ける
- $O(N^2)$

結論

- 考察が本質!
 - 条件をうまく利用
 - 小さいケースで実験
 - グラフに落としこむ

得点分布

おまけ

端点の扱い

時刻Mに会社を出て、時刻Oに会社に戻る変な社員N+1を作ればよい

DP2回もしたくない

- パスとパスをOの辺で結ぶ
- パスが1本だと思ってDP
- 楽

驚愕の事実

パスの端点以外に書かれた 値はすべて()

これを利用して計算量を 下げることが可能? (できるとは言ってない)

