GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA

Métodos Numéricos

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Cuarto Semestre	110401	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Desarrollar la habilidad para resolver problemas de ingeniería a través de los métodos numéricos y evaluar la solución numérica conociendo sus ventajas y limitaciones.

TEMAS Y SUBTEMAS

- 1. Errores y aproximaciones
 - 1.1. Error absoluto y error relativo.
 - 1.2. Errores de redondeo.
- 2. Solución de ecuaciones no lineales
 - 2.1. Método de bisección.
 - 2.2. Método de punto fijo.
 - 2.3. Método de Newton.
 - 2.4. Método de la secante.
 - 2.5. Método de Steffensen.
 - 2.6. Orden de convergencia de los métodos iterativos.
- 3. Solución numérica de sistemas de ecuaciones lineales
 - 3.1. Métodos de eliminación gaussiana con pivote.
 - 3.2. Método de Jacobi.
 - 3.3. Método de Gauss-Seidel.
 - 3.4. Método SOR para resolver sistemas de ecuaciones lineales.
- 4. Interpolación y mínimos cuadrados
 - 4.1. Polinomio de interpolación de Lagrange.
 - 4.2. Interpolación polinomial de Newton en diferencias divididas.
 - 4.3. Aproximación lineal con mínimos cuadrados.
 - 4.4. Aproximación polinomial con mínimos cuadrados.
- 5. Integración numérica
 - 5.1. Regla del trapecio.
 - 5.2. Regla de Simpson.
 - 5.3. Regla compuesta del trapecio.
 - 5.4. Regla compuesta de Simpson.
- 6. Solución numérica de ecuaciones diferenciales ordinarias.
 - 6.1. Método de Euler.
 - 6.2. Métodos de Runge-Kutta.
 - 6.3. Ecuaciones diferenciales de orden superior y sistemas de ecuaciones diferenciales.
- 7. Solución numérica de ecuaciones diferenciales parciales
 - 7.1. Introducción a las ecuaciones diferenciales parciales.
 - 7.2. Ecuación de Poisson en diferencias finitas.
 - 7.3. Método de Crank-Nicolson.
 - 7.4. Ecuación de onda en diferencias finitas.

ACTIVIDADES DE APRENDIZAJE

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medica de apoyo didáctico como son la computadora, los retroproyectores y la videograbadora. Asimismo, se desarrollarán propriama son de computadora y los problemas del curso. cómputo sobre los temas y los problemas del curso.

GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

CRITERIOS Y PROCEDIMIENO DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender al menos tres evaluaciones parciales que tendrán una equivalencia del 50% y un examen final equivalente al 50%, la suma de estos dos porcentajes dará la calificación final.

BIBLIOGRAFÍA

Libros básicos

- Numerical Methods for Engineers, Chapra, S.C., Canale, 6a Ed., McGraw-Hill, 2010.
- Métodos numéricos aplicados a la ingeniería, A. Nieves, F. A., Domínguez, 3a Ed., CECSA.
- Numerical Analysis, Burden, R. L., Faires J. D., 9a Ed., Brooks/Cole Cengage Learning, 2011.
- Fundamentals of engineering numerical analysis, Parviz Moin, Cambridge University Press, second edition, 2010.

Libros de consulta

- 1. Numerical Analysis Mathematics of Scientific Computing, Ward Cheney, David Kincaid, 3a Ed., American Mathematical Society, 2009.
- Numerical Mathematics and Computing, Ward Cheney, David Kincaid, 6a Ed., Thomson Brooks/Cole,
- Numerical Methods, Rao V. Dukkipati, New Age International Publishers, 2010.

PERFIL PROFESIONAL DEL DOCENTE

Maestro en ciencias con especialidad en matemáticas o afín.

