Problem I. Connecting Towns

OS Linux

Cities on a map are connected by a number of roads. The number of roads between each city is in an array and city $\mathbf{0}$ is the starting location. The number of roads from city $\mathbf{0}$ to city $\mathbf{1}$ is the first value in the array, from city $\mathbf{1}$ to city $\mathbf{2}$ is the second, and so on.

How many paths are there from city **0** to the last city in the list, modulo **1234567**?

Example

$$n=4 \ routes = [3,4,5]$$

There are 3 roads to city 1, 4 roads to city 2 and 5 roads to city 3. The total number of roads is $3 \times 4 \times 5 \mod 1234567 = 60$.

Note

Pass all the towns T_i for i=1 to n-1 in numerical order to reach T_n .

Function Description

Complete the *connectingTowns* function in the editor below.

connectingTowns has the following parameters:

- *int n*: the number of towns
- int routes[n-1]: the number of routes between towns

Returns

• *int*: the total number of routes, modulo 1234567.

Input Format

The first line contains an integer T, T test-cases follow.

Each test-case has 2 lines.

The first line contains an integer N (the number of towns).

The second line contains N – 1 space separated integers where the i^{th} integer denotes the number of routes, N_i , from the town T_i to T_{i+1}

Constraints

1 <= T<=1000

```
2< N <=100
1 <= routes[i] <=1000
```

Sample Input

2

3

1 3

4

2 2 2

Sample Output

3

8

Explanation

Case 1: 1 route from T_1 to T_2 , 3 routes from T_2 to T_3 , hence only 3 routes.

Case 2: There are 2 routes from each city to the next, hence 2 * 2 * 2 = 8.