

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 1 092 764 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

18.04.2001 Bulletin 2001/16

(51) Int. Cl.⁷: C12M 1/36

(21) Application number: 00121663.9

(22) Date of filing: 04.10.2000

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 11.10.1999 EP 99120289

08.09.2000 EP 00119676

(71) Applicant:

F. HOFFMANN-LA ROCHE AG
4070 Basel (CH)

(72) Inventors:

• Bartok, Attila
8002 Zürich (CH)

• Müh, Thorsten

51375 Leverkusen (DE)

• Rückel, Markus

82377 Penzberg (DE)

(74) Representative:

Müller, Ingrid, Dr. et al
Grenzacherstrasse 124
CH-4070 Basel (CH)

Remarks:

The sequence listing, which is published as annex to the application documents, was filed after the date of filing. The applicant has declared that it does not include matter which goes beyond the content of the application as filed.

(54) Continuous fermentation process

(57) The invention is concerned with a continuous process for the manufacture of proteins by means of protein-producing microorganism in which process the microorganism is optionally immobilized on a solid carrier and/or the nutrients and other agents required for the growth of the microorganism and the optimal pro-

duction of protein are fed into the reactor individually at a constant dilution rate. Furthermore, the invention is concerned with a process for the manufacture of proteins using a fermentation assembly.

Description

[0001] The present invention relates to a continuous process for the manufacture of proteins.

[0002] In accordance with the present invention it has been found that splitting of cultivation media used in a continuous fermentation process allows to study the influence on growth and metabolite-production of microorganisms and thus to determine optimal conditions for the fermentation process. A continuously delivered fermentation medium can generally be split into as many fractions as it contains ingredients. Examples of such ingredients are carbon, nitrogen, phosphorus and sulfur sources as well as vitamins and complex substrates such as corn steep, yeast extract and other natural products. Furthermore, every required mineral, micro- or trace element can be provided separately as a solution of a water-soluble salt, such as a chloride, sulfate or nitrate. In this manner a fermentation medium of any desired composition can be obtained, provided that the desired amounts of the ingredients are (water)-soluble and no disturbing interactions (e.g., precipitation, reaction) occur in the individual feed solutions or in the fermentation medium.

[0003] In one aspect, the present invention is concerned with a continuous process for the manufacture of proteins by means of protein-producing microorganism.

[0004] More particularly, the invention is concerned with a continuous process for the manufacture of proteins by means of protein-producing microorganism in which process the microorganism is optionally immobilized on a solid carrier and/or the nutrients and other agents required for the growth of the microorganism and the optimal production of protein are fed into the reactor individually at a constant dilution rate.

[0005] In a preferred aspect, the invention is concerned with a process for the manufacture of proteins using a fermentation assembly that comprises

a vessel suitable for carrying out reactions involving living or inactivated cells;

at least two storage flasks connected to said vessel for supply of liquids and means to transport said liquids from said storage flasks to said vessel;

individual appliances monitoring the supply of the contents of said storage flasks to said vessel;

a harvest flask connected to said vessel and means to transport fermentation broth from said vessel to said harvest flask; and

a device for controlling and maintaining a constant dilution rate in said vessel with varying rates of individual supply of liquid from said storage flasks to said vessel.

[0006] Any conventional fermentation vessel can be used for the purpose of this invention. The vessel may be made of materials such as stainless steel, glass or ceramics and may have a volume of from e.g., 100 ml to 2500 m³ although these figures are not critical to the invention. For continuous operation the inside of the vessel is optionally equipped with, e.g., a receptacle or sieve plate for uptake of immobilized cells. Further, the fermentation vessel is connected to a series of storage flasks that contain nutrient solutions and solutions for maintaining and controlling a desired pH and other parameters, such as foam formation, redox potential etc. in the fermentation broth. Depending on the particular needs of the fermentation, there may be separate storage flasks for individual supply of substrates that serve as carbon or nitrogen or mineral source for the living cells.

[0007] It has been found in accordance with the invention that the process is advantageously carried out at a constant dilution rate in the fermentation vessel. As used herein, the term "dilution rate" denotes the total volume of liquids supplied to the fermentation vessel per volume of the fermentation vessel per hour [h⁻¹].

[0008] Accordingly, it is a particular feature of the present invention to carry out the fermentation process at a constant dilution rate in the fermentation vessel while varying the supply of individual nutrient components or other additives during the fermentation process. To facilitate this task a storage flask containing an inert component, e.g., water is optionally provided that allows to complement the supply of liquids thus keeping the total supply of liquid constant.

[0009] The assembly that is preferably used to carry out the process of this invention further comprises means to transport the individual components of the fermentation medium from the storage flasks to the fermentation vessel, and appliances for monitoring the amount of liquid supplied to the fermentation vessel. Every combination of measuring instruments (e.g., volumetric or mass flow rate by either gravimetric, anemometric, magnetic, ultrasonic, Venturi, J, cross-relation, thermal, Coriolis, radiometric) and transfer units (e.g., pumps or pressure difference) can be used for this purpose. Additionally, every transfer unit can be applied as a dosing unit (e.g., gear, peristaltic, piston, membrane or excenter pump). For operation on small scale the supply is suitably monitored by weighing the storage flasks that contain nutrient or additive solutions in a predetermined concentration.

[0010] The device for controlling and maintaining a constant dilution rate in the fermentation vessel is suitably a sys-

tem comprising a measuring instrument that monitors the flow from the storage flasks and a controlling unit, e.g., a computer-software control that calculates the actual mass flow rates, compares them to the desired value and adjusts the pump setting accordingly. An appropriate system is, e.g., the Process Automation System, National Instruments, Bridge View, USA, for Windows NT 4.0 (represented by National Instruments, Sonnenbergstrasse 53, 5408 Ennetbaden, Switzerland) that is connected to the various operating units (scales, pumps) through a serial-interface box (Rocket Port, Comtrol Europe Ltd, Great Britain, represented by Technosoftware AG Rothackerstrasse 13, 5702 Nied-erlenz, Switzerland).

[0011] An assembly that can be used in the process of this invention is depicted in Figure 1.

[0012] The fermentation vessel 1 (Fermentor) is equipped with inlet tubes 2a from storage flasks 2 (suitably equipped with a stirrer) for supply of salt solution (Salts), nutrient solution (Nutrients), particular substrates (Substrate 1 and Substrate 2) for supply of, e.g., distinct carbon sources, agent for controlling the pH (Base), water for controlling a constant dilution rate, and antifoam. Pumps 3 transport liquids from the storage flasks 2 to the fermentor 1. Scales 4 monitor the amount of liquids supplied to and discharged from the fermentor. Further, the fermentor has inlet tubes 9 for oxygen supply and outlet tubes 10 for exhaust controlled by units 14 and 15. Pump 6 discharges fermentation broth via outlet tubes 5a to a harvest flask 5. A main controlling unit 7 monitors and steers the overall process. Controlling unit 11 monitors and steers individual control systems 17 for temperature, pH, gas pressure, fermentor content and supply of antifoam agents. Circuit 12 including pump 13 is used for taking samples from the fermentation broth and for providing a controlled gas flow for moving the fermentation broth. Inlet and outlet gas flow is controlled by flow control 14 and 15. Sterile filters 16 are provided optionally. Optionally, the fermentation vessel 1 is equipped with a thermostating unit 8.

[0013] In the process of the present invention, any protein-producing microorganism either natural, e.g. fungal origin or bacterial origin or microorganisms which have been transformed by protein encoding DNA whereby such transformed microorganisms can be bacteria or fungi or yeasts, preferably from the genus Peniophora, Aspergillus, Hansenula or Pichia, especially *Aspergillus niger*, *Aspergillus awamori*, *Aspergillus sojae*, *Aspergillus oryzae* or *Hansenula polymorpha* or *Pichia pastoris*.

[0014] In this context, the skilled person in the art selects such a protein-producing microorganism which is known to be useful for the production of a desired protein.

[0015] In a preferred embodiment of the present invention the protein is selected from the group consisting of proteins having the activity of an enzyme such as catalase, lactase, phenoloxidase, oxidase, oxidoreductase, glucanase, cellulase, xylanase and other polysaccharide, peroxidase, lipase, hydrolase, esterase, cutinase, protease and other proteolytic enzymes, aminopeptidase, carboxypeptidase, phytase, lyase, pectinase and other pectinolytic enzymes, amylase, glucosidase, mannosidase, isomerase, invertase, transferase, ribonuclease, chitinase, and desoxyribonuclease. Furthermore, in a preferred embodiment of the present invention the protein is selected from the group of therapeutic proteins such as antibodies, vaccines, antigens, or of antibacterial and/or health-beneficial proteins such as lactoternin, lactoperoxidase or lysozyme.

[0016] It will be understood by those skilled in the art that the term "activity" includes not only native activities referring to naturally occurring enzymes or therapeutic functions, but also those activities or functions which have been modified by amino acid substitutions, deletions, additions, or other modifications which may be made to enhance or modify the desired activity, or the thermostability, pH tolerance and/or further properties.

[0017] In a most preferred embodiment of the invention the selected protein is a protein having the activity of a phytase.

[0018] Examples of proteins having the activity of a phytase are described in EP 684 313, EP 897 010, EP 897 985 or in Examples 6 to 16 and Figures 2 - 22 of the present invention.

Figure 2: Design of the consensus phytase sequence. The letters represent the amino acid residues in the one-letter code. The following sequences were used for the alignment: *phyA* from *Aspergillus terreus* 9A-1 (Mitchell et al, 1997; from amino acid (aa) 27), *phyA* from *A. terreus* cbs116.46; (van Loon et al., 1998; from aa 27), *phyA* from *Aspergillus niger* var. *awamori* (Piddington et al, 1993; from aa 27), *phyA* from *A. niger* T213; Mitchell et al. 1997 from aa 27), *phyA* from *A. niger* strain NRRL3135 (van Hartingsveldt et al, 1993; from aa 27), *phyA* from *Aspergillus fumigatus* ATCC 13073 (Pasamontes et al, 1997; from aa 25), *phyA* from *A. fumigatus* ATCC 32722 (EP 897 985; Figur 1; from aa 27), *phyA* from *A. fumigatus* ATCC 58128 (EP 897 985; Figur 1; from aa 27), *phyA* from *A. fumigatus* ATCC 26906 (EP 897 985; Figur 1; from aa 27), *phyA* from *A. fumigatus* ATCC 32239 (EP 897 985; Figur 1; from aa 30), *phyA* from *Emericella nidulans* (Pasamontes et al, 1997a; from aa 25), *phyA* from *Talaromyces thermophilus* (Pasamontes et al, 1997a; from aa 24), and *phyA* from *Myceliophthora thermophila* (Mitchell et al, 1997; from aa 19). The alignment was calculated using the program PILEUP. The location of the gaps was refined by hand. Capitalized amino acid residues in the alignment at a given position belong to the amino acid coalition that establish the consensus residue. In bold, beneath the calculated consensus sequence, the amino acid sequence of the finally constructed consensus phytase (Fcp) is shown. The gaps in the calculated consensus

sequence were filled by hand according to principals stated in Example 6.

Figure 3: DNA sequence of the consensus phytase-1 gene (*fcp*) and of the primers used for the gene construction. The calculated amino acid sequence (Figure 2) was converted into a DNA sequence using the program BACK-TRANSLATE (Devereux *et al.*, 1984) and the codon frequency table of highly expressed yeast genes (GCG program package, 9.0). The signal peptide of the phytase from *A. terreus* cbs.116.46 was fused to the N-terminus. The bold bases represent the sequences of the oligonucleotides used to generate the gene. The names of the respective oligonucleotides are alternately noted above or below the sequence. The underlined bases represent the start and stop codon of the gene. The bases written in italics show the two introduced *Eco RI* sites.

Figure 4: Alignment and consensus sequence of five *Basidiomycetes* phytases. The letters represent the amino acid residues in the one-letter code. The amino acid sequences of the phytases from *Paxillus involutus*, phyA1 (aa 21) and phyA2 (aa 21, WO 98/28409), *Trametes pubescens* (aa 24, WO 98/28409), *Agrocybe pediades* (aa 19, WO 98/28409), and *Periophora lycii* (aa 21, WO 98/28409) starting with the amino acid residues mentioned in parentheses, were used for the alignment and the calculation of the corresponding consensus sequence called "Basidio" (Example 7). The alignment was performed by the program PILEPUP. The location of the gaps was refined by hand. The consensus sequence was calculated by the program PRETTY. While a vote weight of 0.5 was assigned to the two *P. involutus* phytases, all other genes were used with a vote weight of 1.0 for the consensus sequence calculation. At positions, where the program was not able to determine a consensus residue, the Basidio sequence contains a dash. Capitalized amino acid residues in the alignment at a given position belong to the amino acid coalition that establish the consensus residue.

Figure 5: Design of consensus phytase-10 amino acid sequence. Adding the phytase sequence of *Thermomyces lanuginosus* (Berka *et al.*, 1998) and the consensus sequence of the phytases from five *Basidiomycetes* to the alignment of Figure 2, an improved consensus sequence was calculated by the program PRETTY. Additionally, the amino acid sequence of *A. niger* T213 was omitted; therefore, a vote weight of 0.5 was used for the remaining *A. niger* phytase sequences. For further information see Example 8.

Figure 6: DNA and amino acid sequence of consensus phytase-10. The amino acid sequence is written above the corresponding DNA sequences using the one-letter code. The sequence of the oligonucleotides which were used to assemble the gene are in bold letters. The labels of oligonucleotides and the amino acids which were changed compared to those for consensus phytase -1 are underlined. The *fcp10* gene was assembled from the following oligonucleotides: CP-1, CP-2, CP-3.10, CP-4.10, CP-5.10, CP-6, CP-7.10, CP-8.10, CP-9.10, CP-10.10, CP-11.10, CP-12.10, CP-13.10, CP-14.10, CP-15.10, CP-16.10, CP-17.10, CP18.10, CP-19.10, CP-20.10, CP-21.10, CP-22.10. The newly synthesized oligonucleotides are additionally marked by number 10. The phytase contains the following 32 exchanges relative to consensus phytase -1: Y54F, E58A, D69K, D70G, A94K, N134Q, I158V, S187A, Q188N, D197N, S204A, T214L, D220E, L234V, A238P, D246H, T251N, Y259N, E267D, E277Q, A283D, R291I, A320V, R329H, S364T, I366V, A379K, S396A, G404A, Q415E, A437G, A463E. The mutations accentuated in bold letters revealed a stabilizing effect on consensus phytase-1 when tested as single mutations in consensus phytase-1.

Figure 7: Alignment for the design of consensus phytase-11. In contrast to the design of consensus phytase-10, for the design of the amino acid sequence of consensus phytase-11, all *Basidiomycete* phytases were used as independent sequences using an assigned vote weight of 0.2 for each *Basidiomycete* sequence. Additionally, the amino acid sequence of *A. niger* T213 phytase was used in that alignment, again.

Figure 8: DNA and amino acid sequence of consensus phytase-1-thermo[8]-Q50T-K91A. The amino acid sequence is written above the corresponding DNA sequence using the one-letter code. The replaced amino acid residues are underlined. The stop codon of the gene is marked by a star (*).

Figure 9: DNA and amino acid sequence of consensus phytase-10-thermo[3]-Q50T-K91A. The amino acid sequence is written above the corresponding DNA sequence using the one-letter code. The replaced amino acid residues are underlined. The stop codon of the gene is marked by a star (*).

Figure 10: DNA and amino acid sequence of *A. fumigatus* ATCC 13073 phytase α -mutant. The amino acid sequence is written above the corresponding DNA sequence using the one-letter code. The replaced amino acid residues are underlined. The stop codon of the gene is marked by a star (*).

Figure 11: DNA and amino acid sequence of consensus phytase-7. The amino acids are written above the corresponding DNA sequence using the one-letter code. The sequences of the oligonucleotides used to assemble the gene are in bold letters. Oligonucleotides and amino acids that were exchanged are underlined and their corresponding triplets are highlighted in small cases. The *fcp7* gene was assembled from the following oligonucleotides: CP-1, CP-2, CP-3, CP-4.7, CP-5.7, CP-6, CP-7, CP-8.7, CP-9, CP-10.7, CP-11.7, CP-12.7, CP-13.7, CP-14.7, CP-15.7, CP-16, CP-17.7, CP-18.7, CP-19.7, CP-20, CP-21, CP-22. The newly synthesized oligonucleotides are additionally marked by number 7. The phytase contains the following 24 exchanges in comparison to the original consensus phytase -1: S89D, S92G, A94K, D164S, P201S, G203A, G205S, H212P, G224A, D226T, E255T, D256E, V258T, P265S, Q292H, G300K, Y305H, A314T, S364G, M365I, A397S, S398A, G404A, and A405S.

Figure 12: Differential scanning calorimetry (DSC) of consensus phytase-1 and consensus phytase-10. The protein samples were concentrated to ca. 50-60 mg/ml and extensively dialyzed against 10 mM sodium acetate, pH 5.0. A constant heating rate of 10 °C/min was applied up to 95 °C. DSC of consensus phytase-10 (upper graph) yielded a melting temperature of 85.4 °C, which is 7.3 °C higher than the melting point of consensus phytase-1 (78.1 °C, lower graph).

Figure 13: Differential scanning calorimetry (DSC) of consensus phytase-10-thermo[3]-Q50T and consensus phytase-10-thermo[3]-Q50T-K91A. The protein samples were concentrated to ca. 50-60 mg/ml and extensively dialyzed against 10 mM sodium acetate, pH 5.0. A constant heating rate of 10 °C/min was applied up to 95 °C. DSC of consensus phytase-10-thermo-[3]-Q50T (upper graph) yielded a melting temperature of 88.6 °C, while the melting point of consensus phytase-10-thermo[3]-Q50T-K91A was found at 89.3 °C.

Figure 14: Comparison of the temperature optimum between consensus phytase-1, consensus phytase-10 and consensus phytase-10-thermo[3]-Q50T. For the determination of the temperature optimum, the phytase standard assay was performed at a series of temperatures between 37 and 86 °C. The diluted supernatant of transformed *S. cerevisiae* strains was used for the determination. The other components of the supernatant showed no influence on the determination of the temperature optimum: △, consensus phytase-1; ◇, consensus phytase-10; ■, consensus phytase 10-thermo[3]-Q50T.

Figure 15: pH-dependent activity profile and substrate specificity of consensus phytase-10 and its variants thermo[3]-Q50T and thermo[3]-Q50T-K91A. Graph a) shows the pH-dependent activity profile of consensus phytase- 10 (□), consensus phytase-10-thermo[3]-Q50T (△), and consensus phytase-10-thermo[3]-Q50T-K91A (Δ).The phytase activity was determined using the standard assay in appropriate buffers (see Example 15) at different pH-values. Graph b) shows the corresponding substrate specificity tested by replacement of phytate by the indicated compounds in the standard assay; open bars, consensus phytase-10 (white bars, consensus phytase-10-thermo-Q50T; dark bars, consensus phytase-10-thermo-Q50T-K91A). The numbers correspond to the following compounds: 1, phytate; 2, *p*-nitrophenyl phosphate; 3, phenyl phosphate; 4, fructose-1,6-bisphosphate; 5, fructose-6-phosphate; 6, glucose-6-phosphate; 7, ribose-5-phosphate; 8, DL-glycerol-3-phosphate; 9, glycerol-2-phosphate; 10, 3-phosphoglycerate; 11, phosphoenolpyruvate; 12, AMP; 13, ADP; 14, ATP.

Figure 16: pH-dependent activity profile and substrate specificity of consensus phytase-1-thermo[8]-Q50T and of consensus phytase-1-thermo[8]-Q50T-K91A.. Graph a) shows the pH-dependent activity profile of the Q50T- (■) and the Q50T-K91A-variant (Δ).The phytase activity was determined using the standard assay in appropriate buffers (see Example 15) at different pH-values Graph b) shows the corresponding substrate specificities tested by replacement of phytate by the indicated compounds in the standard assay (open bars, consensus phytase-1-thermo[8]-Q50T; filled bars, consensus phytase-1-thermo[8]-Q50T-K91A). The substrates are listed in the legend of Figure 15.

Figure 17: Differential scanning calorimetry (DSC) of consensus phytase-1-thermo[8]-Q50T and consensus phytase-1-thermo[8]-Q50T-K91A. The protein samples were concentrated to ca. 50-60 mg/ml and extensively dialyzed against 10 mM sodium acetate, pH 5.0. A constant heating rate of 10 °C/min was applied up to 95 °C. DSC of consensus phytase-1-thermo[8]-Q50T (upper graph) showed a melting temperature of 84.7 °C, while the melting point of consensus phytase-1-thermo[8]-Q50T-K91A was found at 85.7 °C.

Figure 18: Comparison of the temperature optimum between consensus phytase-1, consensus phytase-1-thermo[3] and consensus phytase-1-thermo[8]. For the determination of the temperature optimum, the phytase standard assay was performed at a series of temperatures between 37 and 86 °C. Purified protein from the supernatant of transformed *S. cerevisiae* strains was used for the determination. O, consensus phytase-1;□, consensus

phytase-1-thermo [3]; Δ , consensus phytase-1-thermo[8].

Figure 19: Comparison of the pH-dependent activity profile and substrate specificity of consensus phytase-1, consensus phytase-7, and of the phytase from *A. niger* NRRL 3135.. Graph a) shows the pH-dependent activity profile of consensus phytase-1 (■), the phytase from *A. niger* NRRL 3135 (O), and of consensus phytase-7 (Δ). The phytase activity was determined using the standard assay in appropriate buffers (see Example 15) at different pH-values Graph b) shows the corresponding substrate specificity tested by replacement of phytate by the indicated compounds in the standard assay (black bars, *A. niger* NRRL 3135 phytase; grey bars, consensus phytase-1, dashed bars, consensus phytase-7). The substrates are listed in the legend of Figure 15.

Figure 20: Differential scanning calorimetry (DSC) of the phytase from *A. fumigatus* ATCC 13073 and of its stabilized α -mutant, which contains the following amino acid exchanges: F55Y, V100I, F114Y, A243L, S265P, N294D.

The protein samples were concentrated to ca. 50-60 mg/ml and extensively dialyzed against 10 mM sodium acetate, pH 5.0. A constant heating rate of 10 °C/min was applied up to 95 °C. DSC of consensus *A. fumigatus* 13073 phytase (lower graph) revealed a melting temperature of 62.5 °C, while the melting point of the α -mutant was found at 67.0 °C

Figure 21: Comparison of the temperature optimum of *A. fumigatus* 13073 wild-type phytase, its α -mutant, and a further stabilized α -mutant (E59A-S126N-R329H-S364T-G404A). For the determination of the temperature optimum, the phytase standard assay was performed at a series of temperatures between 37 and 75 °C. The diluted supernatants of transformed *S. cerevisiae* strains were used for the determination. The other components of the supernatant showed no influence on the determination of the temperature optimum. O, *A. fumigatus* ATCC 13073 phytase; Δ , *A. fumigatus* ATCC 13073 α -mutant; \square , *A. fumigatus* ATCC 13073 alpha-mutant-(E59A-S126N-R329H-S364T-G404A)-Q27T; ■, *A. fumigatus* ATCC 13073 α -mutant-(E59A-S126N-R329H-S364T-G404A)-Q27T-K68A. The mutations Q51T and K92A in the *A. fumigatus* α -mutants correspond to -1 Q50T and K91A in consensus phytase, respectively.

Figure 22: Amino acid sequence of consensus phytase -12 (consphy12) which contains a number of active site residues transferred from the "basidio" consensus sequence to consensus phytase-10-thermo[3]-Q50T-K91A.

[0019] The culture medium used in the fermentation process in accordance with the present invention usually contains nutrients for the cells or microorganisms such as digestible nitrogen sources and inorganic substances, vitamins, micro- and trace elements and other growth-promoting factors. In addition, the culture medium contains a carbon source. Various organic or inorganic substances may be used as nitrogen sources in the fermentation process in accordance with the present invention, such as nitrates, ammonium salts, yeast extract, meat extract, peptone, casein, cornsteep liquor, amino acids and urea. Typical inorganic substances that can be used in the fermentation are calcium, iron, zinc, nickel, manganese, cobalt, copper, molybdenum, and alkali salts such as chlorides, sulphates and phosphates as well as boric acid. As a carbon source, glycerol or sugar-like mono-, di-, oligo- or polysaccharides, e.g., glucose, fructose, sucrose, maltose, starch, glycogen, cellulose or substrates containing such substances, e.g., molasses, glucose syrups and fructose syrups can be used. The concentration of glucose and / or methanol in the total feed stream may vary from about 10 to about 500 g/l for each component and is preferably from about 200 to about 300 g/l. While the fermentation medium is principally an aqueous medium such medium may contain organic solvents such as alcohols, e.g. methanol, ethanol or isopropanol. Further, the fermentation medium may also be a dispersion or suspension, in which case the fermentation is suitably carried out with stirring.

[0020] For continuous operation, the cells are optionally immobilized on a solid porous carrier. Any solid porous carrier with any porosity, size and geometry conventionally used in fermentation processes and exerting no toxic effects on the particular cell or microorganism which is to be immobilized can be used for the purpose of this invention. Examples of such carriers are those made from inorganic material and having a pore diameter of from about 0.5 to about 100 μ m, preferably from about 10 to about 30 μ m diameter. Examples of inorganic materials are ceramics and natural minerals such as steatite, zeolite, bentonite, silicates (glasses), aluminum silicates, aluminum oxide, magnesium aluminum silicates and magnesium aluminum oxides. Such carriers are commercially available, e.g., from Ceramtec, Marktredwitz, Germany, Schott Engineering GmbH, Mainz, Germany and others. Preferably, the carriers are spherical with a mean diameter of from about 0,2 to about 20 mm diameter. The carriers can be loaded with the living cells in a manner known per se by contacting the carrier particles with an appropriate cell culture. If desired, the carrier particles loaded with the cells can be further processed by applying a membrane-type coating layer, such as described in German Offenlegungsschrift DE 3421049. Suitably, the carrier is present in the fermentation vessel on a fixed bed. Further, the culture medium, its components and their containments, respectively are suitably sterilized prior to use if autosterilization (e.g., by methanol, ethanol, ammonia) cannot be guaranteed. Heat sterilization with steam (e.g., at 121°C and 1 bar pressure

during 20 minutes) and filtration ($0.2 \mu\text{m}$) for sensitive components are preferred. Alternative sterilization methods may be applied. Media components need not necessarily be sterilized when running the process in continuous mode.

[0021] Depending on the particular cell or organism used the fermentation may be carried out at a pH between about 2 and about 11. In a preferred aspect of the invention, the fermentation process for the manufacture of phytase is carried out using the microorganism, *Hansenula polymorpha* transformed by a phytase encoding DNA sequence as described in EP 897 010, EP 897 985, or Example 11 of the present case. According to that particular aspect of the invention, the preferred carbon source is a mixture of glucose and methanol. Further, in accordance with that particular aspect of the invention, the fermentation may be carried out at a pH between about 4 and 5, preferably at about pH 4.6. A preferred temperature range for carrying out such fermentation process is between about 10 and 50 °C, more preferably the fermentation temperature is about 30 °C. The aeration rate is preferably adjusted to between about 0.01 and about 1.5 volume of gas per volume of liquid with a dissolved oxygen concentration (DO) of in between 0.01 and about 500 %. A DO of 100 % denotes oxygen saturation of the solution at atmospheric pressure (1 bar) and reactor temperature. The fermentation can be carried out at a pressure of from about 0.1 to about 100 bar, preferably, the fermentation is carried out at atmospheric pressure, i.e., at about 1 bar. The dilution rate can vary from about 0.001 to about 0.5 per hour.

[0022] The invention is illustrated further by the Examples given below.

Example 1

[0023] Storage solutions for feed medium were prepared as follows:

1.1 $\text{CaCl}_2/\text{H}_3\text{BO}_3$ Solution

[0024]

25

30	$\text{CaCl}_2 \cdot 2 \text{ H}_2\text{O}$	18.75	g/l
	H_3BO_3	0.0125	g/l

[0025] This solution was sterilized at 121 °C for 20 minutes.

1.2 Microelements Solution

35

[0026]

40

$(\text{NH}_4)_2\text{Fe}(\text{SO}_4)_2 \cdot 6 \text{ H}_2\text{O}$	2.5	g/l
$\text{CuSO}_4 \cdot 5 \text{ H}_2\text{O}$	0.2	g/l
$\text{ZnSO}_4 \cdot 7 \text{ H}_2\text{O}$	0.75	g/l
$\text{MnSO}_4 \cdot 5 \text{ H}_2\text{O}$	1.0	g/l
Na-EDTA	2.5	g/l

[0027] This solution was sterilized at 121 °C for 20 minutes.

50

1.3 Trace Elements Solution

[0028]

55

$\text{NiSO}_4 \cdot 6 \text{ H}_2\text{O}$	0.025	g/l
---	-------	-----

(continued)

5	CoCl ₂ • 6 H ₂ O	0.025	g/l
	Na ₂ MoO ₄ • 2 H ₂ O	0.025	g/l
	KJ		

[0029] This solution was sterilized at 121 °C for 20 minutes.

10 1.4 Salts + Vitamin Solution

[0030]

15

	KH ₂ PO ₄	50.0	g/l
	NH ₄ H ₂ PO ₄	100.0	g/l
20	MgSO ₄ • 7 H ₂ O	45.0	g/l
	(NH ₄) ₂ SO ₄	50.0	g/l
	KCl	23.0	g/l
	NaCl	5.0	g/l
25	vitamin solution (D-biotin, 600 mg/l thiamin • HCl 200 g/l in 50 % isopropanol/water)	5.0	ml/l

[0031] The vitamin solution was sterilized by filtration (0.2 µm) and added to the salt solution that was sterilized at 121 °C for 20 minutes.

30

1.5 Glucose Solution

[0032] 770 g of D-glucose • H₂O were dissolved in 480 g of water and sterilized (121 °C, 20 min) to yield 1 l solution containing 57 % (by weight) of D-glucose.

35

1.6 Methanol

[0033] Pure methanol was assumed to be sterile and filled into a sterilized flask.

40 1.7 Antifoam

[0034] A sterilized (121 °C, 20 min) solution of 10% antifoam (Struktol J 673, Schill & Seilacher, Hamburg, Germany) was provided for supply on demand by foam-control.

45 1.8 Base

[0035] A solution of ca. 12,5 % (by weight) of ammonia in sterile water was filled into a sterilized flask.

Example 2

50

[0036] A fixed bed bioreactor (1 litre) was set up following the principle illustrated in Figure 1 with individual storage flasks being provided for the solutions 1.1 to 1.8 of Example 1. The fixed bed of porous steatite spheres (4 mm diameter, pore diameter 10-30 µm, 280 pores per ml, CeramTec, Marktredwitz, Germany) was contained by a sieve plate at the top. The reactor was sterilized (121 °C, 20 min) and thereafter filled with an inoculum culture of *Hansenula polymorpha* transformed with a phytase encoding DNA as described, e.g. in EP 897 010, EP 897 985 or Example 11. Then the connection to the storage flasks was established. The inoculum culture was grown on a medium containing glycerol as a carbon source instead of glucose. The reactor was put to batch operation until all glycerol was consumed, which was determined by a rise of the dissolved oxygen concentration. Then the feed stream was turned on and the fermentation

was run under process conditions as given below:

5	Temperature	30	°C
	pH	4.6	Diluted oxygen concentration
10	P _{total}	10 ⁵	N/m ²
	P _{O₂}	10 ⁵	N/m ²
15	Dilution rate	0.0067	h ⁻¹
	aeration rate	100	ml/min
	V _{fluid}	1190	ml ⁻¹
	V _{fixed bed}	950	ml ⁻¹

[0037] Substrate composition as provided by storage flasks 1-8; (actual concentrations in feed stream given) :

25	D-glucose	305	g/l
	Methanol	264	g/l
30	CaCl ₂ /H ₃ BO ₃ Solution	12.2	g/l
	Microelement Solution	20.9	g/l
	Trace Element Solution	17.2	g/l
	Salts + vitamin Solution	44.7	g/l

Analytics:

[0038] Bio-Rad Protein Assay Kit I (Bio-Rad, Glattbrugg, Switzerland) was used to determine the total protein concentration. A factor for the calculation of phytase concentration (c_{phyt}) from total protein concentration (c_{tp}) was determined as $c_{phyt} = 0.76 \cdot c_{tp}$.

[0039] To determine the biomass in the medium two samples of 1 ml were centrifuged, washed with 1 ml of water, centrifuged again, dried at 85 °C for two days and weighed.

Results:

[0040] Under the above process conditions the biomass was 59 g/l. Given a dilution rate of 0.0067 per hour the productivity was 0.078 g of phytase per litre per hour.

[0041] In a fermentation that was run fed-batch-wise the biomass was 125 g/l; the productivity, however, was calculated to 0.054 g phytase per litre per hour.

Example 3

[0042] A fermentation in analogy to Example 2 but omitting the steatite spheres (i.e., without immobilisation of the microorganism) was carried out. A nutrient and a salt and vitamin solution of the following composition were pumped into the reactor separately:

Nutrient Solution:

[0043]

5

10

15

20

Salts + Vitamins Solution:

25

[0044]

30

35

40

<chem>NiSO4 · 6 H2O</chem>	8.33	mg/l
<chem>CoCl2 · 6 H2O</chem>	8.33	mg/l
<chem>Na2MoO4 · 2 H2O</chem>	8.33	mg/l
KJ	8.33	mg/l
<chem>(NH4)2Fe(SO4)2 · 6 H2O</chem>	833.33	mg/l
<chem>CuSO4 · 5 H2O</chem>	66.67	mg/l
<chem>ZnSO4 · 7 H2O</chem>	250	mg/l
<chem>MnSO4 · 5 H2O</chem>	333.33	mg/l
Na-EDTA	833.33	mg/l
<chem>CaCl2 · 2 H2O</chem>	6250	mg/l
<chem>H3BO3</chem>	4.17	mg/l

<chem>KH2PO4</chem>	50.0	g/l
<chem>NH4H2PO4</chem>	100.0	g/l
<chem>MgSO4 · 7 H2O</chem>	45.0	g/l
<chem>(NH4)2SO4</chem>	50.0	g/l
KCl	23.0	g/l
NaCl	5.0	g/l
vitamin solution (D-biotin, 600 mg/l thiamin · HCl 200 g/l in 50 % isopropanol/water)	5.0	ml/l

[0045] The supply of these two solutions was adjusted to provide in the feed stream a concentration of 51 g/l of Nutrient Solution and 61 g/l of Salts + Vitamins Solution. The dilution rate was adjusted to 0.009 h^{-1} . The pH was kept at 4.6 by addition of 12.5 wt% ammonium hydroxide.

[0046] Furthermore, Glucose Solution as in Example 1 and methanol were fed into the reactor separately to maintain a glucose concentration of 275 g/l and a methanol concentration of 260 g/l in the feed stream.

[0047] The productivity of this fermentation was 0.088 g phytase per litre per hour. Biomass in outflow was 58 g/l.

Example 4

50

[0048] In a fermentation process in analogy to Example 3 but adjusting glucose concentration to 290 g/l, methanol concentration to 260 g/l, and keeping the dilution rate constant at 0.009 h^{-1} , the productivity was 0.092 g phytase per litre per hour. Biomass in outflow was 60.4 g/l.

55

Example 5

[0049] In a fermentation process in analogy to Example 3 but adjusting glucose concentration to 270 g/l, methanol concentration to 280 g/l, and keeping the dilution rate constant at 0.009 h^{-1} , the productivity was 0.094 g phytase per

litre per hour. Biomass in outflow was 56.8 g/l.

Example 6:

5 Design of the amino acid sequence of consensus phytase-1

Alignment of the amino acid sequences

[0050] The alignment was calculated using the program PILEUP from the GCG Sequence Analysis Package Release 9.0 (Devereux *et al.*, 1984) with the standard parameters (gap creation penalty 12, gap extension penalty 4). The location of the gaps was refined using a text editor. Table 1 shows the sequences (see Figure 2), without the signal sequence, that were used for the performance of the alignment starting with the amino acid (aa) as mentioned in Table 1.

15

Table 1

Origin and vote weight of the phytase amino acid sequences used for the design of consensus phytase-1

-
- *phyA* from *Aspergillus terreus* 9A-1, aa 27, vote weight 0.5 (Mitchell *et al.*, 1997)
 - 20 - *phyA* from *Aspergillus terreus* cbs116.46, aa 27, vote weight 0.5 (EP 897 985; Figur 1)
 - *phyA* from *Aspergillus niger* var. *awamori*, aa 27, vote weight 0.33 (Piddington *et al.*, 1993)
 - *phyA* from *Aspergillus niger* T213, aa 27, vote weight 0.33
 - 25 - *phyA* from *Aspergillus niger* strain NRRL3135, aa 27, vote weight 0.33 (van Hartingsveldt *et al.*, 1993)
 - *phyA* from *Aspergillus fumigatus* ATCC 13073, aa 26, vote weight 0.2 (Pasamontes *et al.*, 1997)
 - *phyA* from *Aspergillus fumigatus* ATCC 32722, aa 26, vote weight 0.2 (EP 897 985; Figur 1)
 - *phyA* from *Aspergillus fumigatus* ATCC 58128, aa 26, vote weight 0.2 (EP 897 985; Figur 1)
 - 30 - *phyA* from *Aspergillus fumigatus* ATCC 26906, aa 26, vote weight 0.2 (EP 897 985; Figur 1)
 - *phyA* from *Aspergillus fumigatus* ATCC 32239, aa 30, vote weight 0.2 (EP 897 985; Figur 1)
 - *phyA* from *Emericella nidulans*, aa 25, vote weight 1.0 (Pasamontes *et al.*, 1997a)
 - 35 - *phyA* from *Talaromyces thermophilus* ATCC 20186, aa 24, vote weight 1.0 (Pasamontes *et al.*, 1997a)
 - *phyA* from *Myceliophthora thermophila*, aa 19, vote weight 1.0 (Mitchell *et al.*, 1997)

Calculation of the amino acid sequence of consensus phytase-1

40

[0051] Using the refined alignment as input, the consensus sequence was calculated by the program PRETTY from the GCG Sequence Analysis Package Release 9.0 (Devereux *et al.*, 1984). PRETTY prints sequences with their columns aligned and can display a consensus sequence for an alignment. A vote weight that pays regard to the similarity between the amino acid sequences of the aligned phytases was assigned to all sequences. The vote weight was set in such a way that the combined impact of all phytases from one sequence subgroup (same species, but from different strains), e. g. the amino acid sequences of all phytases from *A. fumigatus*, on the election was set one, that means that each sequence contributes with a value of 1 divided by the number of strain sequences (see Table 1). By this means, it was possible to prevent that very similar amino acid sequences, e. g. of the phytases from different *A. fumigatus* strains, dominate the calculated consensus sequence.

45 [0052] The program PRETTY was started with the following parameters: The plurality defining the number of votes below which there is no consensus was set on 2.0. The threshold, which determines the scoring matrix value below which an amino acid residue may not vote for a coalition of residues, was set on 2. PRETTY used the PrettyPep.Cmp consensus scoring matrix for peptides.

50 [0053] Ten positions of the alignment (position 46, 66, 82, 138, 162, 236, 276, 279, 280, 308; Figure 2), for which the program was not able to determine a consensus residue, were filled by hand according to the following rules: if a most frequent residue existed, this residue was chosen (138, 236, 280); if a prevalent group of similar equivalent residues occurred, the most frequent or, if not available, one residue of this group was selected (46, 66, 82, 162, 276, 308). If there was neither a prevalent residue nor a prevalent group, one of the occurring residues was chosen according to

common assumptions on their influence on the protein stability (279). Eight other positions (132, 170, 204, 211, 275, 317, 384, 447; Figure 2) were not filled with the amino acid residue selected by the program but normally with amino acids that occur with the same frequency as the residues that were chosen by the program. In most cases, the slight underrating of the three *A. niger* sequences (sum of the vote weights: 0.99) was eliminated by this correction.

5

Conversion of the consensus phytase-1 amino acid sequence to a DNA sequence

[0054] The first 26 amino acid residues of *A. terreus* cbs116.46 phytase were used as signal peptide and, therefore, fused to the N-terminus of all consensus phytases. For this stretch, we used a special method to calculate the corresponding DNA sequence. Purvis et al (1987) proposed that the incorporation of rare codons in a gene has an influence on the folding efficiency of the protein. The DNA sequence for the signal sequence was calculated using the approach of Purvis et al (1987) and optimized for expression in *S. cerevisiae*. For the remaining parts of the protein, we used the codon frequency table of highly expressed *S. cerevisiae* genes, obtained from the GCG program package, to translate the calculated amino acid sequence into a DNA sequence.

[0055] The resulting sequence of the *fcp* gene is shown in Figure 3.

Construction and cloning of the consensus phytase-1 gene

[0056] The calculated DNA sequence of consensus phrase-1 (*fcp*) was divided into oligonucleotides of 85 bp, alternately using the sequence of the sense and the anti-sense strand. Every oligonucleotide overlaps 20 bp with its previous and its following oligonucleotide of the opposite strand. The location of all primers, purchased from Microsynth, Balgach (Switzerland) and obtained in a PAGE-purified form, is indicated in Figure 3.

PCR-Reactions

25

[0057] In three PCR reactions, the synthesized oligonucleotides were composed to the entire gene. For the PCR, the High Fidelity Kit from Boehringer Mannheim (Boehringer Mannheim, Germany) and the thermo cycler The Protokol (TM) from AMS Biotechnology (Europe) Ltd. (Lugano, Switzerland) were used.

[0058] Oligonucleotides CP-1 to CP-10 (Mix 1, Figure 3) were mixed to a concentration of 0.2 pmol/ μ l of each oligonucleotide. A second oligonucleotide mixture (Mix 2) was prepared with CP-9 to CP-22 (0.2 pmol/ μ l of each oligonucleotide). Additionally, four short primers were used in the PCR reactions:

CP-a: *Eco RI*

35

5'-TATATGAATTCATGGGCCTGTTCGTC-3' (SEQ ID No. 1)

CP-b:

5'-TGAAAAGTTCATTGAAGGTTTC-3' (SEQ ID No. 2)

40

CP-c:

5'-TCTTCGAAAGCAGTACAAGTAC-3' (SEQ ID No. 3)

45

CP-e: *Eco RI*

50

5'-TATATGAATTCTAACGCAAAC-3' (SEQ ID No. 4)

55 PCR reaction a:

10 μ l Mix 1 (2.0 pmol of each oligonucleotide)
 2 μ l nucleotides (10 mM each nucleotide)
 2 μ l primer CP-a (10 pmol/ μ l)
 2 μ l primer CP-c (10 pmol/ μ l)

EP 1 092 764 A2

10.0 μ l PCR buffer
0.75 μ l polymerase mixture (2.6U)
73.25 μ l H₂O

5 PCR reaction *b*: 10 µl Mix 2 (2.0 pmol of each oligonucleotide)
 2 µl nucleotides (10 mM each nucleotide)
 2 µl primer CP-b (10 pmol/µl)
 2 µl primer CP-e (10 pmol/µl)
 10,0 µl PCR buffer
 0.75 µl polymerase mixture (2.6 U)
 73.25 µl H₂O

10

Reaction conditions for PCR reactions *a* and *b*: step 1 2 min - 45°C
step 2 30 sec - 72°C
step 3 30 sec - 94°C
step 4 30 sec - 52°C
step 5 1 min - 72°C

[0059] Steps 3 to 5 were repeated 40-times.
[0060] The PCR products (670 and 905 bp) were purified by an agarose gel electrophoresis (0.9% agarose) and a following gel extraction (QIAEX II Gel Extraction Kit, Qiagen, Hilden, Germany). The purified DNA fragments were used for the PCR reaction c.

PCR reaction c:
 25 6 µl PCR product of reaction a (\approx 50 ng)
 6 µl PCR product of reaction b (\approx 50 ng)
 2 µl primer CP-a (10 pmol/µl)
 2 µl primer CP-e (10 pmol/µl)
 10,0 µl PCR buffer
 0.75 µl polymerase mixture (2.6 U)
 30 73,25 µl H₂O

Reaction conditions for PCR reaction c:
step 1 2 min - 94°C
step 2 30 sec - 94°C
step 3 30 sec - 55°C
step 4 1 min - 72°C

[0061] Steps 2 to 4 were repeated 31-times.
[0062] The resulting PCR product (1.4 kb) was purified as mentioned above, digested with *Eco* RI, and ligated in an *Eco* RI-digested and dephosphorylated pBSk(-)-vector (Stratagene, La Jolla, CA, USA). 1 µl of the ligation mixture was used to transform *E. coli* XL-1 competent cells (Stratagene, La Jolla, CA, USA). All standard procedures were carried out as described by Sambrook *et al.* (1987). The DNA sequence of the constructed consensus phytase gene (*fcp*, Figure 3) was controlled by sequencing as known in the art.

Example 7

45 Design of an improved consensus phytase (consensus phytase-10) amino acid sequence

[0063] The alignments used for the design of consensus phytase-10 were calculated using the program PILEUP from the GCG Sequence Analysis Package Release 9.0 (Devereux *et al.*, 1984) with the standard parameters (gap creation penalty 12, gap extension penalty 4). The location of the gaps was refined using a text editor.

[0064] The following sequences were used for the alignment of the *Basidiomycete* phytases starting with the amino acid (aa) mentioned in Table 2:

Table 2

5 Origin and vote weight of five *Basidiomycete* phytases used for the calculation of the corresponding amino acid consensus sequence (basidio)

-
- *phyA1* from *Paxillus involutus* NN005693, aa 21, vote weight 0.5 (WO 98/28409)
 - *phyA2* from *Paxillus involutus* NN005693, aa 21, vote weight 0.5 (WO 98/28409)
 - 10 - *phyA* from *Trametes pubescens* NN9343, aa 24, vote weight 1.0 (WO 98/28409)
 - *phyA* from *Agrocybe pediades* NN009289, aa 19, vote weight 1.0 (WO 98/28409)
 - *phyA* from *Peniophora lycii* NN006113, aa 21, vote weight 1.0 (WO 98/28409)

15 [0065] The alignment is shown in Figure 4.

[0066] In Table 3 the genes, which were used for the performance of the final alignment, are arranged. The first amino acid (aa) of the sequence which is used in the alignment is mentioned behind the organism's designation.

Table 3

20 Origin and vote weight of the phytase sequences used for the design of consensus phytase 10

-
- *phyA* from *Aspergillus terreus* 9A-1, aa 27, vote weight 0.5 (Mitchell *et al.*, 1997)
 - *phyA* from *Aspergillus terreus* cbs116.46, aa 27, vote weight 0.5 (EP 897 985; Figur 1)
 - 25 - *phyA* from *Aspergillus niger* var. *awamori*, aa 27, vote weight 0.5 (Piddington *et al.*, 1993)
 - *phyA* from *Aspergillus niger* strain NRRL3135, aa 27, vote weight 0.5 (van Hartingsveldt *et al.*, 1993)
 - *phyA* from *Aspergillus fumigatus* ATCC 13073, aa 26, vote weight 0.2 (Pasamontes *et al.*, 1997)
 - 30 - *phyA* from *Aspergillus fumigatus* ATCC 32722, aa 26, vote weight 0.2 (EP 897 985; Figur 1)
 - *phyA* from *Aspergillus fumigatus* ATCC 58128, aa 26, vote weight 0.2 (EP 897 985; Figur 1)
 - *phyA* from *Aspergillus fumigatus* ATCC 26906, aa 26, vote weight 0.2 (EP 897 985; Figur 1)
 - 35 - *phyA* from *Aspergillus fumigatus* ATCC 32239, aa 30, vote weight 0.2 (EP 897 985; Figur 1)
 - *phyA* from *Emericella nidulans*, aa 25, vote weight 1.0 (Pasamontes *et al.*, 1997a)
 - *phyA* from *Talaromyces thermophilus* ATCC 20186, aa 24, vote weight 1.0 (Pasamontes *et al.*, 1997a)
 - *phyA* from *Myceliophthora thermophila*, aa 19, vote weight 1.0 (Mitchell *et al.*, 1997)
 - 40 - *phyA* from *Thermomyces lanuginosa*, aa 36, vote weight 1.0 (Berka *et al.*, 1998)
 - Consensus sequence of five *Basidiomycete* phytases, vote weight 1.0 (Basidio, Figure 4)

45 [0067] The corresponding alignment is shown in Figure 5.

Calculation of the amino acid sequence of consensus phytase-10

[0068] To improve the alignment, we combined the consensus sequence of five phytases from four different *Basidiomycetes*, called Basidio, still containing the undefined sequence positions (see Figure 4), nearly all phytase 50 sequences used for calculation of the original consensus phytase and one new phytase sequence from the *Ascomycete* *Thermomyces lanuginosus* to a larger alignment.

We set plurality on 2.0 and threshold on 3. The used vote weights are listed in Table 3. The alignment and the corresponding consensus sequence are presented in Figure 5. The new consensus phytase -10 sequence has 32 different 55 amino acids in comparison to the original consensus phytase. Positions for which the program PRETTY was not able to calculate a consensus amino acid residue were filled according to rules mentioned in Example 6. None of the residues suggested by the program was replaced.

[0069] Furthermore, we included all Basidiomycete phytases as single amino acid sequences but assigning a vote weight of 0.2 in the alignment. The corresponding alignment is shown in Figure 7. The calculated consensus amino acid

sequence (consensus phytase-11) has the following differences to the sequence of consensus phytase-10: D35X, X(K)69K, X(E)100E, A101R, Q134N, X(K)153N, X(H)190H, X(A)204S, X(E)220D, E222T, V227A, X(R)271R, H287A, X(D)288D, X(K)379K, X(I)389I, E390X, X(E)415E, X(A)416A, X(R)446L, E463A, where the numbering is as in Fig. 6.

[0070] Letter X means that the program was not able to calculate a consensus amino acid; the amino acid in parenthesis corresponds to the amino acid finally included into the consensus phytase-10.

[0071] We also checked single amino acid replacements suggested by the improved consensus phytase sequences 10 and 11 on their influence on the stability of the original consensus phytase -1. The approach is described in example 8.

10 Conversion of consensus phytase-10 amino acid sequence to a DNA sequence

[0072] The first 26 amino acid residues of *A. terreus* cbs116.46 phytase were used as signal peptide and, therefore, fused to the N-terminus of consensus phytase-10. The used procedure is further described in Example 6.

[0073] The resulting sequence of the *fcp10* gene is shown in Figure 6.

15 Construction and cloning of the consensus phytase-10 gene (*fcp10*)

[0074] The calculated DNA sequence of *fcp10* was divided into oligonucleotides of 85 bp, alternately using the sequence of the sense and the anti-sense strand. Every oligonucleotide overlaps 20 bp with its previous and its following oligonucleotide of the opposite strand. The location of all primers, purchased from Microsynth, Balgach (Switzerland) and obtained in a PAGE-purified form, is indicated in Figure 6.

PCR-Reactions

25 [0075] In three PCR reactions, the synthesized oligonucleotides were composed to the entire gene. For the PCR, the High Fidelity Kit from Boehringer Mannheim (Boehringer Mannheim, Mannheim, Germany) and the thermocycler The Protokol™ from AMS Biotechnology (Europe) Ltd. (Lugano, Switzerland) were used. The following oligonucleotides were used in a concentration of 0.2 pmol/ml.

30 Mix 1.10: CP-1, CP-2, CP-3.10, CP-4.10, CP-5.10, CP-6, CP-7.10, CP-8.10, CP-9.10, CP-10.10

Mix 2.10: CP-9.10, CP-10.10, CP-11.10, CP-12.10, CP-13.10, CP-14.10, CP-15.10, CP-16.10, CP-17.10, CP-18.10, CP-19.10, CP-20.10, CP-21.10, CP-22.10

35 [0076] The newly synthesized oligonucleotides are marked by number 10. The phytase contains the following 32 exchanges, which are underlined in Figure 6, in comparison to the original consensus phytase -1: Y54F, E58A, D69K, D70G, A94K, N134Q, I158V, S187A, Q188N, D197N, S204A, T214L, D220E, L234V, A238P, D246H, T251N, Y259N, E267D, E277Q, A283D, R291I, A320V, R329H, S364T, I366V, A379K, S396A, G404A, Q415E, A437G, A463E.

[0077] Four short PCR primers were used for the assembling of the oligonucleotides:

40 CP-a: *Eco RI*
5'-TATATGAATTCATGGCGTGTTCGTC-3' (SEQ, ID No. 1)

CP-b:
45 5'-TGAAAAGTTCATTAAGGTTTC-3' (SEQ, ID No. 2)

CP-c.10:
50 5'-TCTTCGAAAGCAGTACACAAAC-3' (SEQ, ID No. 5)

CP-e: *Eco RI*
55 5'-TATATGAATTCTTAAGCGAAC-3' (SEQ, ID No. 4)

PCR reaction *a*:

10 µl Mix 1.10 (2.0 pmol of each oligonucleotide)
 2 µl nucleotides (10 mM each nucleotide)
 2 µl primer CP-a (10 pmol/ml)
 2 µl primer CP-c.10 (10 pmol/ml)
 10,0 µl PCR buffer
 0.75 µl polymerase mixture (2.6 U)
 73.25 µl H₂O

PCR reaction *b*:

10 µl Mix 2.10 (2.0 pmol of each oligonucleotide)
 2 µl nucleotides (10 mM each nucleotide)
 2 µl primer CP-b (10 pmol/ml)
 2 µl primer CP-e (10 pmol/ml)
 10,0 µl PCR buffer
 0.75 µl polymerase mixture (2.6 U)
 73.25 µl H₂O

Reaction conditions for PCR reactions *a* and *b*:

step 1 2 min - 45°C
 step 2 30 sec - 72 °C
 step 3 30 sec - 94 °C
 step 4 30 sec - 52 °C
 step 5 1 min - 72°C

[0078] Steps 3 to 5 were repeated 40-times.

[0079] The PCR products (670 and 905 bp) were purified by an agarose gel electrophoresis (0.9% agarose) and a following gel extraction (QIAEX II Gel Extraction Kit, Qiagen, Hilden, Germany). The purified DNA fragments were used for the PCR reaction *c*.

PCR reaction *c*:

6 µl PCR product of reaction *a* (~50 ng)
 6 µl PCR product of reaction *b* (~50 ng)
 2 µl primer CP-a (10 pmol/ml)
 2 µl primer CP-e (10 pmol/ml)
 10,0 µl PCR buffer
 0.75 µl polymerase mixture (2.6 U)
 73.25 µl H₂O

Reaction conditions for PCR reaction *c*:

step 1 2 min - 94°C
 step 2 30 sec - 94 °C
 step 3 30 sec - 55 °C
 step 4 1 min - 72°C

Steps 2 to 4 were repeated 31-times.

[0080] The resulting PCR product (1.4 kb) was purified as mentioned above, digested with *Eco* RI, and ligated in an *Eco* RI-digested and dephosphorylated pBsk(-)-vector (Stratagene, La Jolla, CA, USA). 1 µl of the ligation mixture was used to transform *E. coli* XL-1 competent cells (Stratagene, La Jolla, CA, USA). All standard procedures were carried out as described by Sambrook *et al.* (1987). The DNA sequence of the constructed gene (*fcp10*) was checked by sequencing as known in the art.

Example 8

Increasing the thermostability of consensus phytase-1 by introduction of single mutations suggested by the amino acid sequence of consensus phytase-10 and/or consensus phytase-11

[0081] In order to increase the thermostability of homologous genes, it is also possible to test the stability effect of each differing amino acid residue between the protein of interest and the calculated consensus sequence and to combine all stabilizing mutations into the protein of interest. We used the consensus phytase -1 as protein of interest and tested the effect on the protein stability of 34 amino acids, which differed between consensus phytase -1 on one hand and consensus phytases 10 and/or -11 on the other hand, by single mutation..

[0082] To construct muteins for expression in *A. niger*, *S. cerevisiae*, or *H. polymorpha*, the corresponding expression plasmid containing the consensus phytase gene was used as template for site-directed mutagenesis (see Examples 11 - 13). Mutations were introduced using the "quick exchange™ site-directed mutagenesis kit" from Stratagene (La Jolla, CA, USA) following the manufacturer's protocol and using the corresponding primers. All mutations made and their corresponding primers are summarized in Table 4. Plasmids harboring the desired mutation were identified by DNA sequence analysis as known in the art.

Table 4: Primers used for site-directed mutagenesis of consensus phytases

(Exchanged bases are highlighted in bold. The introduction of a restriction site is marked above the sequence. When a restriction site is written in parenthesis, the mentioned site was destroyed by introduction of the mutation.)

mutation Primer set

		<i>Kpn</i> I
20	Q50T	5'-CACTTGTGGGGTACCTACTCTCCATACTTCTC-3' (SEQ ID No. 6) 5'-GAGAAGTATGGAGAGTAGGTACCCCACAAGTG-3' (SEQ ID No. 7)
25	Y54F	5'-GGTCAATACTCTCCATTCTTCTCTTTGGAAG-3' (SEQ ID No. 8) 5'-CTTCCAAAGAGAAGAATGGAGAGTATTGACC-3' (SEQ ID No. 9)
30	E58A	5'-CATACTCTCTTGGCAGACGAATCTGC-3' (SEQ ID No. 10) 5'-GCAGATTCTGTCTGCCAAAGAGAAGTATG-3' (SEQ ID No. 11)

35

40

45

50

55

5

		<i>Aat</i> II
D69K	5'-CTCCAGACGTCCCAAAGGACTGTAGAGTTAC-3' (SEQ ID No. 12) 5'-GTAACTCTACAGTCCTTGGGACGTCTGGAG-3' (SEQ ID No. 13)	
		<i>Aat</i> II
D70G	5'-CTCCAGACGTCCCAGACGGCTGTAGAGTTAC-3' (SEQ ID No. 14) 5'-GTAACTCTACAGCCGTCTGGGACGTCTGGAG-3' (SEQ ID No. 15)	
10		
K91A	5'-GATACCCAACCTCTCTCGCTCTAAGGCTTACTCTG-3' (SEQ ID No. 16) 5'-CAGAGTAAGCCTTAGACGCAGAAGAAGTTGGGTATC-3' (SEQ ID No. 17)	
15		
		<i>Sca</i> I
A94K	5'-CTTCTAACGTCTAAGAAGTACTCTGCTTTG-3' (SEQ ID No. 18) 5'-CAAAGCAGAGTACTCTTAGACTTAGAAG-3' (SEQ ID No. 19)	
20		
A101R	5'-GCTTACTCTGCTTGATTGAACGGATTCAAAAGAACGCTAC-3' 5'-GTAGCGTTCTTTGAATCCGTTCAATCAAAGCAGAGTAAGC-3'	
25		
N134Q	5'-CCATT CGGTGAACAGCAAATGGTTAACTC-3' (SEQ ID No. 22) 5'-GAGTTAACCATTTGCTGTTCACCGAATGG-3' (SEQ ID No. 23)	
30		
K153N	5'-GATACAAGGCTCTCGCGAGAACATTGTTCTG-3' (SEQ ID No. 24). 5'-GGAACAATGTTCTCGCGAGAGCCTGTATC-3' (SEQ ID No. 25)	
35		
I158V	5'-GATTGTTCCATT CGTGC CGC GTTCTGGTTC-3' (SEQ ID No. 26) 5'-GAACCAGAAGCGCGCACGAATGGAACAATC-3' (SEQ ID No. 27)	
		<i>Bss</i> HI
D197N	5'-CTCCAGTTATT AACGTGATCATTCCAGAAGG-3' (SEQ ID No. 28) 5'-CCTTCTGGAATGATCACGTTAATAACTGGAG-3' (SEQ ID No. 29)	
40		
		<i>Bcl</i> I
S187A	5'-GGCTGACCCAGGGGCCAACCAACACCCAAGC-3' (SEQ ID No. 30) 5'-GCTTGGTGTGGTTGGGCCCTGGTCAGCC-3' (SEQ ID No. 31)	
45		
		<i>Apa</i> I
T214L	5'-CACTTGGACCATGGTCTTGTACTGCTTTCG-3' (SEQ ID No. 32) 5'-CGAAAGCAGTACAAAGACCATGGTCAAAGTG-3' (SEQ ID No. 33)	
		<i>Nco</i> I
E222T	5'-GCTT TCGAAGACTCTACCC TAGGT GACGAC GTT G-3' (SEQ ID No. 34) 5'-CAACGTCGTACCTAGGGTAGAGTCTTCGAAAGC-3' (SEQ ID No. 35)	
50		
55		

V227A	5'-GGTGACGACGCTGAAGCTAACTTCAC-3' (SEQ ID No. 36) 5'-GTGAAGTTAGCTTCAGCGTCGTCAACC-3' (SEQ ID No. 37)
5 L234V	<i>Sac</i> II 5'-CTAACCTCACCGCGGTGTTGCTCCAG-3' (SEQ ID No. 38) 5'-CTGGAGCGAACACCGCGGTGAAGTTAG-3' (SEQ ID No. 39)
10 A238P	5'-GCTTGTTGCTCCACCTATTAGAGCTAGATTGG-3' (SEQ ID No. 40) 5'-CCAATCTAGCTCTAATAGGTGGAGCGAACAAAGC-3' (SEQ ID No. 41)
15 T251N	<i>Hpa</i> I 5'-GCCAGGTGTTAACTTGACTGACGAAG-3' (SEQ ID No. 42) 5'-TTCGTCAGTCAAGTTAACACACCTGGC-3' (SEQ ID No. 43)
20 Y259N	<i>Aat</i> II 5'-GACGAAGACGTCGTTAACTTGATGGAC-3' (SEQ ID No. 44) 5'-GTCCATCAAGTTAACGACGTCTTCGTC-3' (SEQ ID No. 45)
25 E267D	<i>Asp</i> I 5'-GTCCATTGACACTGTCGCTAGAACTT C-3' (SEQ ID No. 46) 5'-GAAGTTCTAGCGACAGTGTGCAATGGAC-3' (SEQ ID No. 47)
30 E277Q	5'-CTGACGCTACTCAGCTGTCTCCATTC-3' (SEQ ID No. 48) 5'-GAATGGAGACAGCTGAGTAGCGTCAG-3' (SEQ ID No. 49)
35 A283D	5'-GTCTCATTCTGTGATTGTTCACTCAC-3' (SEQ ID No. 50) 5'-GTGAGTGAACAAATCACAGAATGGAGAC-3' (SEQ ID No. 51)
40 H287A	<i>Ksp</i> I 5'-GCTTGTTCACCGCGGACGAATGGAG-3' (SEQ ID No. 52) 5'-CTCCATTGTCGCGGGTGAACAAAGC-3' (SEQ ID No. 53)
R291I	<i>Bam</i> HI 5'-CACGACGAATGGATCCAATACGACTAC-3' (SEQ ID No. 54) 5'-GTAGTCGTATTGGATCCATTGTCGTG-3' (SEQ ID No. 55)
45 Q292A	<i>Bsi</i> WI 5'-GACGAATGGAGAGCGTACGACTACTTG-3' (SEQ ID No. 56) 5'-CAAGTAGTCGTACGCTCTCCATTGTC-3' (SEQ ID No. 57)
50 A320V	<i>Hpa</i> I 5'-GGTGGTGGTTGTTGTTAACGAATTGATTGC-3' (SEQ ID No. 58) 5'-GCAATCAATTGTTAACGAAACCAACACC-3' (SEQ ID No. 59)

		<i>(Bgl II)</i>
5	R329H	5'-GCTAGATTGACTCACTCTCCAGTTCAAG-3' (SEQ ID No. 60) 5'-CTTGAAGTGGAGAGTGAGTCATCTAGC-3' (SEQ ID No. 61)
		<i>Eco RV</i>
10	S364T	5'-CTCACGACAACACTATGATATCTATTTCTTC-3' (SEQ ID No. 62) 5'-GAAGAAAATAGATATCATAGTGTGTCGTGAG-3' (SEQ ID No. 63)
		<i>Nco I</i>
15	I366V	5'-CGACAACTCCATGGTTCTATTTCTTCGC-3' (SEQ ID No. 64) 5'-GCGAAGAAAATAGAAACCATGGAGTTGTCG-3' (SEQ ID No. 65)
		<i>Kpn I</i>
20	A379K	5'-GTACAACGGTACCAAGCCATTGTCTAC-3' (SEQ ID No. 66) 5'-GTAGACAATGGCTTGGTACCGTTGTAC-3' (SEQ ID No. 67)
25	G404A	5'-CTGACGGTTACGCTGCTTCTGGAC-3' (SEQ ID No. 68) 5'-GTCCAAGAACGAGCGTAACCGTCAG-3' (SEQ ID No. 69)
30	Q415E	5'-GATGCAATGTGAAGCTGAAAAGGAACC-3' (SEQ ID No. 72) 5'-GGTTCCCTTCAGCTCACATTGCATC-3' (SEQ ID No. 73)
		<i>Sal I</i>
35	A437G	5'-CACGGTTGTGGTGTGACAAAGTTGGG-3' (SEQ ID No. 74) 5'-CCCAACTTGTGACACACCACAACCGTG-3' (SEQ ID No. 75)
		<i>Mun I</i>
40	A463E	5'-GATCTGGTGGCAATTGGGAGGAATGTTCG-3' (SEQ ID No. 76) 5'-CGAAACATTCTCCCAATTGCCACCAAGATC-3' (SEQ ID No. 77)

and accordingly for other mutations.

45

[0083] The temperature optimum of the purified phytases, expressed in *Saccharomyces cerevisiae* (Example 14), was determined as outlined in Example 14. Table 5 shows the effect on the stability of consensus phytase -1 for each mutation introduced.

Table 5: Stability effect of the individual amino acid replacements in consensus phytase-1

(+ or - means a positive, respectively, negative effect on the protein stability up to 1 °C, ++ and -- means a positive, respectively, negative effect on the protein stability between 1 and

3 °C; the number 10 or 11 corresponds to the consensus phytase sequence that suggested
5 the amino acid replacement.)

10

15

20

25

30

35

40

45

50

55

	stabilizing		neutral		destabilizing	
	mutation	effect	mutation	effect	mutation	effect
5	E58A (10)	+	D69A	±	Y54F (10)	-
10	D69K (11)	+	D70G (10)	±	V73I	-
15	D197N (10)	+	N134Q (10)	±	A94K (10)	-
20	T214L (10)	++	G186H	±	A101R (11)	-
25	E222T (11)	++	S187A (10)	±	K153N (11)	-
30	E267D (10)	+	T214V	±	I158V (10)	--
35	R291I*	+	T251N (10)	±	G203A	--
40	R329H (10)	+	Y259N (10)	±	G205S	-
45	S364T (10)	++	A283D (10)	±	A217V	-
50	A379K (11)	+	A320V (10)	±	V227A (11)	--
	G404A (10)	++	K445T	±	L234V (10)	-
			A463E (10)	±	A238P (10)	--
					E277Q (10)	-
					H287A (11)	-
					Q292A (10)	-
					I366V (10)	-
					S396A (10)	--
					Q415E (11)	-
					A437G (10)	--
					E451R	--

*: This amino acid replacement was found in another round of mutations.

55

[0084] We combined eight positive mutations (E58A, D197N, E267D, R291I, R329H, S364T, A379K, G404A) in consensus phytase -1 using the primers and the technique mentioned above in this example. Furthermore, the mutations Q50T and K91A were introduced which mainly influence the catalytical characteristics of the phytase (see EP 897

985 as well as Example 14). The DNA and amino acid sequence of the resulting phytase gene (consensus phytase-1-thermo[8]-Q50T-K91A) is shown in Figure 8. In this way, the temperature optimum and the melting point of the consensus phytase was increased by 7 °C (Figure 16, 17, 18).

[0085] Using the results of Table 5, we further improved the thermostability of consensus phytase 10 by the following back mutations K94A, V158I, and A396S that revealed a strong negative influence on the stability of consensus phytase -1. The resulting protein is consensus phytase-10-thermo [3]. Furthermore, we introduced the mutations Q50T and K91A which mainly influence the catalytical characteristics of consensus phytase (see EP 897 485 as well as Example 14 and Figures 15 and 16). The resulting DNA and amino acid sequence is shown in Figure 9. The optimized phytase showed a 4 °C higher temperature optimum and melting point than consensus phytase -10 (Figures 13 and 14). Furthermore, the phytase has also a strongly increased specific activity with phytate as substrate of 250 U/mg at pH 5.5 (Figure 15).

Example 9

[15] Stabilization of the phytase of *A. fumigatus* ATCC 13073 by replacement of amino acid residues with the corresponding consensus phytase-1 and consensus phytase-10 residues

[0086] At six typical positions where the *A. fumigatus* 13073 phytase is the only or nearly the only phytase in the alignment of Figure 2 that does not contain the corresponding consensus phytase amino acid residue, the non-consensus amino acid residue was replaced by the consensus one. In a first round, the following amino acids were substituted in *A. fumigatus* 13073 phytase, containing the Q51T substitution and the signal sequence of *A. terreus* cbs.116.46 phytase (see Figure 10):

F55(28)Y, V100(73)I, F114(87)Y, A243(220)L, S265(242)P, N294(282)D.

25

[0087] The numbers in parentheses refer to the numbering of Figure 2.

[0088] In a second round, four of the seven stabilizing amino acid exchanges (E59A, R329H, S364T, G404A) found in the consensus phytase-10 sequence and, tested as single mutations in consensus phytase-1 (Table 5), were additionally introduced into the *A. fumigatus* α-mutant. Furthermore, the amino acid replacement S154N, shown to reduce the protease susceptibility of the phytase, was introduced.

[0089] The mutations were introduced as described in example 8 (see Table 6) and expressed as described in example 11 to 13. The resulting *A. fumigatus* 13073 phytase variants were called α-mutant and α-mutant-E59A-S154N-R329H-S364T-G404A.

[0090] The temperature optimum (60 °C, Figure 21) and the melting point (67.0 °C, Figure 20) of the *A. fumigatus* 13073 phytase α-mutant were increased by 5 - 7°C in comparison to the values of the wild-type (temperature optimum: 55 °C, T_m : 60 °C). The five additional amino acid replacements further increased the temperature optimum by 3 °C (Figure 21).

40

45

50

55

Table 6: Mutagenesis primers for stabilization of *A. fumigatus* phytase ATCC 13073

5	Mutation	Primer
	F55Y	5'-CACGTACTCGCCATACTTTCGCTCGAG-3' (SEQ ID No. 78) 5'-CTCGAGCGAAAAGTATGGCGAGTACGTG-3' (SEQ ID No. 79)
10		(<i>Xba</i> I)
	E58A	5'-CCATACTTTCGCTCGCGACGAGCTGTCCGTG-3' (SEQ ID NO. 80) 5'-CACGGACAGCTCGTCCGCGAGCGAAAAGTAGG-3' (SEQ ID NO. 81)
15		
20	V100I	5'-GTATAAGAACGTTATTACGGCGATCCAGGCC-3' (SEQ ID No. 82) 5'-GGCCTGGATGCCGTAATAAGCTTCTTATAC-3' (SEQ ID No. 83)
25		
	F114Y	5'-CTTCAAGGGCAAGTACGCCTTTGAAGACG-3' (SEQ ID No. 84) 5'-CGTCTTCAAAAAGGCGTACTTGCCCTTGAAG-3' (SEQ ID No. 85)
30		
	A243L	5'-CATCCGAGCTCGCCTCGAGAACGATCTTC-3' (SEQ ID No. 86) 5'-GAAGATGCTTCTCGAGGCGAGCTCGGATG-3' (SEQ ID No. 87)
35		
	S265P	5'-CTAATGGA TGTGTCCGTTGATACGGTAG-3' (SEQ ID No. 88) 5'-CTACCGTATCAAACGGACACATGTCCATTAG-3' (SEQ ID No. 89)
40		
45		
50		
55		

N294D 5'-GTGGAAGAAGTACGACTACCTTCAGTC-3' (SEQ ID No. 90)
 5'-GACTGAAGGTAGTCGTACTTCTCCAC-3' (SEQ ID No. 91)

R329H 5'-GCCCGGTTGACGCATTGCCAGTGCAGG-3' (SEQ ID No. 92)
 5'-CCTGCACTGGCGAATGCGTCAACCGGGC-3' (SEQ ID No. 93)

S364T 5'-CACACGACAACACCATGGTTCCATCTTC-3' (SEQ ID No. 94)
 5'-GAAGATGGAAACCATGGTGTTGTCGTGTG-3' (SEQ ID No. 95)

G404A 5'-GTGGTGCCTTCGCCGCGAGCCTACTTC-3' (SEQ ID No. 96)
 5'-GAAGTAGGCTCGCGGGCGAAAGGCACCAC-3' (SEQ ID No. 97)

Example 10Introduction of the active site amino acid residues of the *A. niger* NRRL 3135 phytase into the consensus phytase-1

[0091] We used the crystal structure of the *Aspergillus niger* NRRL 3135 phytase to define all active site amino acid residues (see Reference Example and EP 897 010). Using the alignment of Figure 2, we replaced the following active site residues and additionally the non-identical adjacent ones of the consensus phytase -1 by those of the *A. niger* phytase:

S89D, S92G, A94K, D164S, P201S, G203A, G205S, H212P, G224A, D226T, E255T, D256E, V258T, P265S, Q292H, G300K, Y305H, A314T, S364G, M365I, A397S, S398A, G404A, and A405S

[0092] The new protein sequence consensus phytase -7 was backtranslated into a DNA sequence (Figure 11) as described in Example 6. The corresponding gene (*fcp7*) was generated as described in Example 6 using the following oligonucleotide mixes:

Mix 1.7: CP-1, CP-2, CP-3, CP-4.7, CP-5.7, CP-6, CP-7, CP-8.7, CP-9, CP-10.7
 Mix 2.7: CP-9, CP-10.7, CP-11.7, CP-12.7, CP-13.7, CP-14.7, CP-15.7, CP-16, CP-17.7, CP-18.7, CP-19.7, CP-20, CP-21, CP-22.

[0093] The DNA sequences of the oligonucleotides are indicated in Figure 11. The newly synthesized oligonucleotides are additionally marked by number 7. After assembling of the oligonucleotides using the same PCR primers as mentioned in Example 6, the gene was cloned into an expression vector as described in Examples 11 - 13.

[0094] The pH-profile of consensus phytase-7, purified after expression in *Hansenula polymorpha*, was very similar to that of *A. niger* NRRL 3135 phytase (see Figure 19).

Example 11Expression of the consensus phytase genes in *Hansenula polymorpha*

[0095] The phytase expression vectors, used to transform *H. polymorpha* RB11 (Gellissen *et al.*, 1994), were constructed by inserting the *Eco* RI fragment of pBsk'*fcp* or variants thereof into the multiple cloning site of the *H.*

polymorpha expression vector pFPMT121, which is based on an *ura3* selection marker from *S. cerevisiae*, a formate dehydrogenase (*FMD*) promoter element and a methanol oxidase (*MO*) terminator element from *H. polymorpha*. The 5' end of the *fcp* gene is fused to the *FMD* promoter, the 3' end to the *MOX* terminator (Gelissen *et al.*, 1996; EP 0299 108 B). The resulting expression vectors were designated pFPMT*fcp*, pFPMT*fcp10*, pFPMT*fcp7*.

- 5 [0096] The constructed plasmids were propagated in *E. coli*. Plasmid DNA was purified using standard state of the art procedures. The expression plasmids were transformed into the *H. polymorpha* strain RP11 deficient in orotidine-5'-phosphate decarboxylase (*ura3*) using the procedure for preparation of competent cells and for transformation of yeast as described in Gelissen *et al.* (1996). Each transformation mixture was plated on YNB (0.14% w/v Difco YNB and 0.5% ammonium sulfate) containing 2% glucose and 1.8% agar and incubated at 37 °C. After 4 to 5 days individual
10 transformant colonies were picked and grown in the liquid medium described above for 2 days at 37 °C. Subsequently, an aliquot of this culture was used to inoculate fresh vials with YNB-medium containing 2% glucose. After seven further passages in selective medium, the expression vector is integrated into the yeast genome in multimeric form. Subsequently, mitotically stable transformants were obtained by two additional cultivation steps in 3 ml non-selective liquid medium (YPD, 2% glucose, 10 g yeast extract, and 20 g peptone). In order to obtain genetically homogeneous recombinant strains an aliquot from the last stabilization culture was plated on a selective plate. Single colonies were isolated for analysis of phytase expression in YNB containing 2% glycerol instead of glucose to derepress the *fmd* promoter. Purification of the consensus phytases was done as described in Example 12.

Example 12

- 20 Expression of the consensus phytase genes in *Saccharomyces cerevisiae* and purification of the phytases from culture supernatant

25 [0097] The consensus phytase genes were isolated from the corresponding Bluescript-plasmid (pBsk*fcp*, pBSK*fcp10*, pBsk*fcp7*) and ligated into the *Eco* RI sites of the expression cassette of the *Saccharomyces cerevisiae* expression vector pYES2 (Invitrogen, San Diego, CA, USA) or subcloned between the shortened GAPFL (glyceraldehyde-3-phosphate dehydrogenase) promoter and the *pho5* terminator as described by Janes *et al.* (1990). The correct orientation of the gene was checked by PCR. Transformation of *S. cerevisiae* strains, e. g. INVSc1 (Invitrogen, San Diego, CA, USA) was done according to Hinnen *et al.* (1978). Single colonies harboring the phytase gene under the control of
30 the GAPFL promoter were picked and cultivated in 5 ml selection medium (SD-uracil, Sherman *et al.*, 1986) at 30°C under vigorous shaking (250 rpm) for one day. The preculture was then added to 500 ml YPD medium (Sherman *et al.*, 1986) and grown under the same conditions. Induction of the *gal1* promoter was done according to the manufacturer's instructions. After four days of incubation cell broth was centrifuged (7000 rpm, GS3 rotor, 15 min, 5°C) to remove the cells and the supernatant was concentrated by way of ultrafiltration in Amicon 8400 cells (PM30 membranes) and ultra-
35 free-15 centrifugal filter devices (Biomax-30K, Millipore, Bedford, MA, USA). The concentrate (10 ml) was desalting on a 40 ml Sephadex G25 Superfine column (Pharmacia Biotech, Freiburg, Germany), with 10 mM sodium acetate, pH 5.0, serving as elution buffer. The desalting sample was brought to 2 M (NH₄)₂SO₄ and directly loaded onto a 1 ml Butyl Sepharose 4 Fast Flow hydrophobic interaction chromatography column (Pharmacia Biotech, Freiburg, Germany) which was eluted with a linear gradient from 2 M to 0 M (NH₄)₂SO₄ in 10 mM sodium acetate, pH 5.0. Phytase was
40 eluted in the break-through, concentrated and loaded on a 120 ml Sephadryl S-300 gel permeation chromatography column (Pharmacia Biotech, Freiburg, Germany). Consensus phytase -1 and consensus phytase -7 eluted as a homogeneous symmetrical peak and was shown by SDS-PAGE to be approx. 95% pure.

Example 13

- 45 Expression of the consensus phytase genes in *Aspergillus niger*

[0098] The Bluescript-plasmids pBsk*fcp*, pBSK*fcp10*, and pBsk*fcp7* were used as template for the introduction of a *Bsp* HI-site upstream of the start codon of the genes and an *Eco* RV-site downstream of the stop codon. The
50 Expand™ High Fidelity PCR Kit (Boehringer Mannheim, Mannheim, Germany) was used with the following primers:

Primer Asp-1:

5 *Bsp* HI

10 5'-TATATCATGAGCGTGTCGTCGTGCTACTGTTTC-3' (SEQ ID No. 98)

10 Primer Asp-2 used for cloning of *fcp* and *fcp7*:15 *Eco* RV

20 3'-ACCCGACTTACAAAGCGAATTCTATAGATATAT-5' (SEQ ID No. 99)

15 Primer Asp-3 used for cloning of *fcp10*:20 *Eco* RV

25 3'-ACCCTTCTTACAAAGCGAATTCTATAGATATAT-5' (SEQ ID No. 100)

20

[0099] The reaction was performed as described by the supplier. The PCR-amplified *fcp*-genes had a new *Bsp* HI site at the start codon, introduced by primer Asp-1, which resulted in a replacement of the second amino acid residue glycine by serine. Subsequently, the DNA-fragment was digested with *Bsp* HI and *Eco* RV and ligated into the *Nco* I site downstream of the glucoamylase promoter of *Aspergillus niger* (*glaA*) and the *Eco* RV site upstream of the *Aspergillus nidulans* tryptophan C terminator (*trpC*) (Mullaney *et al.*, 1985). After this cloning step, the genes were sequenced to detect possible failures introduced by PCR. The resulting expression plasmids which basically correspond to the pGLAC vector as described in Example 9 of EP 684 313 contained the orotidine-5'-phosphate decarboxylase gene (*pyr4*) of *Neurospora crassa* as a selection marker. Transformation of *Aspergillus niger* and expression of the consensus phytase genes was done as described in EP 684 313. The consensus phytases were purified as described in Example 12.

Example 14

35

Determination of phytase activity and of temperature optimum

[0100] Phytase activity was determined basically as described by Mitchell *et al* (1997). The activity was measured in an assay mixture containing 0.5% phytic acid (\approx 5 mM) in 200 mM sodium acetate, pH 5.0. After 15 min of incubation at 37 °C, the reaction was stopped by addition of an equal volume of 15% trichloroacetic acid. The liberated phosphate was quantified by mixing 100 µl of the assay mixture with 900 µl H₂O and 1 ml of 0.6 M H₂SO₄, 2% ascorbic acid and 0.5% ammonium molybdate. Standard solutions of potassium phosphate were used as reference. One unit of enzyme activity was defined as the amount of enzyme that releases 1 µmol phosphate per minute at 37 °C. The protein concentration was determined using the enzyme extinction coefficient at 280 nm calculated according to Pace *et al* (1995): consensus phytase -1.101; consensus phytase -7, 1.068; consensus phytase -1 10, 1.039.

[0101] In case of pH-optimum curves, purified enzymes were diluted in 10 mM sodium acetate, pH 5.0. Incubations were started by mixing aliquots of the diluted protein with an equal volume of 1% phytic acid (\approx 10 mM) in a series of different buffers: 0.4 M glycine/HCl, pH 2.5; 0.4 M acetate/NaOH, pH 3.0, 3.5, 4.0, 4.5, 5.0, 5.5; 0.4 M imidazole/HCl, pH 6.0, 6.5; 0.4 M Tris/HCl pH 7.0, 7.5, 8.0, 8.5, 9.0. Control experiments showed that pH was only slightly affected by the mixing step. Incubations were performed for 15 min at 37 °C as described above.

[0102] For determinations of the substrate specificities of the phytases, phytic acid in the assay mixture was replaced by 5 mM concentrations of the respective phosphate compounds. The activity tests were performed as described above.

[0103] For determination of the temperature optimum, enzyme (100 µl) and substrate solution (100 µl) were pre-incubated for 5 min at the given temperature. The reaction was started by addition of the substrate solution to the enzyme. After 15 min incubation, the reaction was stopped with trichloroacetic acid and the amount of phosphate released was determined.

[0104] The pH-optimum of the original consensus phytase was around pH 6.0-6.5 (80 U/mg). By introduction of the

Q50T mutation, the pH-optimum shifted to pH 6.0 (130 U/mg). After introduction of K91A, the pH optimum shifted one pH-unit into the acidic pH-range showing a higher specific activity between pH 2.5 and pH 6.0. That was shown for the stabilized mutants and for consensus phytase-10, too (Figure 15 and 16).

[0105] Consensus phytase-7, which was constructed to transfer the catalytic characteristics of the *A. niger* NRRL 3135 phytase into consensus phytase-1, had a pH-profile very similar to that of *A. niger* NRRL 3135 phytase (see Figure 19). The substrate specificity of consensus phytase-7 also resembled more to that of *A. niger* NRRL 3135 phytase than to that of consensus phytase-1.

[0106] The temperature optimum of consensus phytase-1 (71 °C) was 16-26 °C higher than the temperature optimum of the wild-type phytases (45-55 °C, Table 7) which were used to calculate the consensus sequence. The improved consensus phytase-10 showed a further increase of its temperature optimum to 80 °C (Figure 12). The temperature optimum of the consensus phytase-1-thermo[8] phytase was found in the same range (78 °C) when using the supernatant of an overproducing *S. cerevisiae* strain. The highest temperature optimum reached of 82 °C was determined for consensus phytase-10-thermo[3]-Q50T-K91A.

15

Table 7

Temperature optimum and T_m -value of consensus phytase and of the phytases from <i>A. fumigatus</i> , <i>A. niger</i> , <i>E. nidulans</i> and <i>M. thermophila</i> . The determination of the temperature optimum was performed as described in Example 14. The T_m -values were determined by differential scanning calorimetry as described in Example 15.		
phytase	temperature optimum [°C]	T_m [°C]
Consensus phytase-10-thermo[3]-Q50T-K91A	82	89.3
Consensus phytase-10-thermo[3]-Q50T	82	88.6
Consensus phytase-10	80	85.4
Consensus phytase-1-thermo[8]-Q50T	78	84.7
Consensus phytase-1-thermo[8]-Q50T-K91A	78	85.7
Consensus phytase-1	71	78.1
<i>A. niger</i> NRRL3135	55	63.3
<i>A. fumigatus</i> 13073	55	62.5
<i>A. fumigatus</i> 13073 α -mutant	60	67.0
<i>A. fumigatus</i> 13073 α -mutant (optimized)	63	-
<i>A. terreus</i> 9A-1	49	57.5
<i>A. terreus</i> cbs.116.46	45	58.5
<i>E. nidulans</i>	45	55.7
<i>M. thermophila</i>	55	n. d.
<i>T. thermophilus</i>	45	n. d.

50 Example 15Determination of the melting point by differential scanning calorimetry (DSC)

[0107] In order to determine the unfolding temperature of the phytases, differential scanning calorimetry was applied as previously published by Lehmann et al (2000). Solutions of 50-60 mg/ml homogeneous phytase were used for the tests. A constant heating rate of 10 °C/min was applied up to 90-95 °C.

[0108] The determined melting points reflect the results obtained for the temperature optima (Table 7). The most stable consensus phytase designed is consensus phytase-10-thermo[3]-Q50T-K91A showing a melting temperature

under the chosen conditions of 89.3 °C. This is 26 to 33.6 °C higher than the melting points of the wild-type phytases used.

Example 16

5

Transfer of basidiomycete phytase active site into consensus phytase-10-thermo[3]-Q50T-K91A

[0109] As described previously (Example 8), mutations derived from the basidiomycete phytase active site were introduced into the consensus phytase -10. The following five constructs a) to e) were prepared:

10

a) This construct is called consensus phytase -12, and it comprises a selected number of active site residues of the basidio consensus sequence. Its amino acid sequence (consphy12) is shown in Fig. 22 (the first 26 amino acids forms the signal peptide, amended positions are underlined);

15

b) a cluster of mutations (Cluster II) was transferred to the consensus phytase 10 sequence, viz.: S80Q, Y86F, S90G, K91A, S92A, K93T, A94R, Y95I;

c) analogously, another cluster of mutations (Cluster III) was transferred, viz.: T129V, E133A, Q143N, M136S, V137S, N138Q, S139A;

20

d) analogously, a further cluster of mutations (Cluster IV) was transferred, viz.: A168D, E171T, K172N, F173W;

e) and finally, a further cluster of mutations (Cluster V) was transferred, viz.: Q297G, S298D, G300D, Y305T.

25

[0110] These constructs were expressed as described in Examples 11 - 13.

References:

[0111]

30

Akanuma, S., Yamagishi, A., Tanaka, N. & Oshima, T. (1998). Serial increase in the thermal stability of 3-isopropylmalate dehydrogenase from *Bacillus subtilis* by experimental evolution. *Prot. Sci.* 7, 698-705.

Arase, A., Yomo, T., Urabe, I., Hata, Y., Katsube, Y. & Okada, H. (1993). Stabilization of xylanase by random mutagenesis. *FEBS Lett.* 316, 123-127.

35

Berka, R. M., Rey M. W., Brown, K. M., Byun, T. & Klotz, A. V. (1998). Molecular characterization and expression of a phytase gene from the thermophilic fungus *Thermomyces lanuginosus*. *Appl. Environ. Microbiol.* 64, 4423-4427.

Blaber, M., Lindstrom, J. D., Gassner, N., Xu, J., Heinz, D. W. & Matthews, B. W. (1993). Energetic cost and structural consequences of burying a hydroxyl group within the core of a protein determined from Ala'Ser and Val'Thr substitutions in T4 lysozyme. *Biochemistry* 32, 11363-11373.

40

Cosgrove, D.J. (1980) Inositol phosphates - their chemistry, biochemistry and physiology: studies in organic chemistry, chapter 4. Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York.

Devereux, J., Haeberli, P. & Smithies, O. (1984) A comprehensive set of sequence analysis programs for the VAX. *Nucleic Acids Res.* 12, 387-395.

45

Gellissen, G., Hollenberg, C. P., Janowicz, Z. A. (1994) Gene expression in methylotrophic yeasts. In: Smith, A. (ed.) Gene expression in recombinant microorganisms. Dekker, New York, 395-439.

Gellissen, G., Piontek, M., Dahlems, U., Jenzelewski, V., Gavagan, J. E., DiCosimo, R., Anton, D. I. & Janowicz, Z. A. (1996) Recombinant *Hansenula polymorpha* as a biocatalyst: coexpression of the spinach glycolate oxidase (GO) and the *S. cerevisiae* catalase T (CTT1) gene. *Appl. Microbiol. Biotechnol.* 46, 46-54.

50

Gerber, P. and Müller, K. (1995) Moloc molecular modeling software. *J. Comput. Aided Mol. Des.* 9, 251-268

Hinnen, A., Hicks, J. B. & Fink, G. R. (1978) Transformation of yeast. *Proc. Natl. Acad. Sci. USA* 75, 1929-1933.

Imanaka, T., Shibasaki, M. & Takagi, M. (1986). A new way of enhancing the thermostability of proteases. *Nature* 324, 695-697.

55

Janes, M., Meyhack, B., Zimmermann, W. & Hinnen, A. (1990) The influence of GAP promoter variants on hirudine production, average plasmid copy number and cell growth in *Saccharomyces cerevisiae*. *Curr. Genet.* 18, 97-103.

Karpusas, M., Baase, W. A., Matsumura, M. & Matthews, B. W. (1989). Hydrophobic packing in T4 lysozyme probed by cavity-filling mutants. *Proc. Natl. Acad. Sci.(USA)* 86, 8237-8241.

Lehmann, L., Kostrewa, D., Wyss, M., Brugger, R., D'Arcy, A., Pasamontes, L., van Loon, A. (2000), From DNA

- sequence to improved functionality: using protein sequence comparisons to rapidly design a thermostable consensus phytase. *Protein Engineering* 13, 49-57.
- Margarit, I., Campagnoli, S., Frigerio, F., Grandi, G., Fillipis, V. D. & Fontana, A. (1992). Cumulative stabilizing effects of glycine to alanine substitutions in *Bacillus subtilis* neutral protease. *Prot. Eng.* 5, 543-550.
- Matthews, B. W. (1987a). Genetic and structural analysis of the protein stability problem. *Biochemistry* 26, 6885-6888.
- Matthews, B. W. (1993). Structural and genetic analysis of protein stability. *Annu. Rev. Biochem.* 62, 139-160.
- Matthews, B. W., Nicholson, H. & Becktel, W. (1987). Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. *Proc. Natl. Acad. Sci. (USA)* 84, 6663-6667.
- Mitchell, D. B., Vogel, K., Weimann, B. J., Pasamontes, L. & van Loon, A. P. G. M. (1997) The phytase subfamily of histidine acid phosphatases: isolation of genes for two novel phytases from the fungi *Aspergillus terreus* and *Myceliophthora thermophila*. *Microbiology* 143, 245-252.
- Mullaney, E. J., Hamer, J. E., Roberti, K. A., Yelton, M. M. & Timberlake, W. E. (1985) Primary structure of the *trpC* gene from *Aspergillus nidulans*. *Mol. Gen. Genet.* 199, 37-46.
- Munoz, V. & Serrano, L. (1995). Helix design, prediction and stability. *Curr. Opin. Biotechnol.* 6, 382-386.
- Pace, N. C., Vajdos, F., Fee, L., Grimsley, G. & Gray, T. (1995). How to measure and predict the molar absorption coefficient of a protein. *Prot. Sci.* 4, 2411-2423.
- Pantoliano, M. W., Landner, R. C., Brian, P. N., Rollence, M. L., Wood, J. F. & Poulos, T. L. (1987). Protein engineering of subtilisin BPN': enhanced stabilization through the introduction of two cysteines to form a disulfide bond. *Biochemistry* 26, 2077-2082.
- Pasamontes, L., Haiker, M., Henriquez-Huecas, M., Mitchell, D. B. & van Loon, A. P. G. M. (1997a). Cloning of the phytases from *Emericella nidulans* and the thermophilic fungus *Talaromyces thermophilus*. *Biochim. Biophys. Acta* 1353, 217-223.
- Pasamontes, L., Haiker, M., Wyss, M., Tessier, M. & van Loon, A. P. G. M. (1997) Cloning, purification and characterization of a heat stable phytase from the fungus *Aspergillus fumigatus*. *Appl. Environ. Microbiol.* 63, 1696-1700.
- Piddington, C. S., Houston, C. S., Paloheimo, M., Cantrell, M., Miettinen-Oinonen, A., Nevalainen, H., & Rambousek, J. (1993) The cloning and sequencing of the genes encoding phytase (*phy*) and pH 2.5-optimum acid phosphatase (*aph*) from *Aspergillus niger* var. *avamori*. *Gene* 133, 55-62.
- Purvis, I. J., Bettany, A. J. E., Santiago, T. C., Coggins, J. R., Duncan, K., Eason, R. & Brown, A. J. P. (1987). The efficiency of folding of some proteins is increased by controlled rates of translation *in vivo*. *J. Mol. Biol.* 193, 413-417.
- Risse, B., Stempfer, G., Rudolph, R., Schumacher, G. & Jaenicke, R. (1992). Characterization of the stability effect of point mutations of pyruvate oxidase from *Lactobacillus plantarum*: protection of the native state by modulating coenzyme binding and subunit interaction. *Prot. Sci.* 1, 1710-1718.
- Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989) *Molecular Cloning: A Laboratory Manual*, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
- Sauer, R., Hehir, K., Stearman, R., Weiss, M., Jeitler-Nilsson, A., Suchanek, E. & Pabo, C. (1986). An engineered intersubunit disulfide enhances the stability and DNA binding of the N-terminal domain of 1-repressor. *Biochemistry* 25, 5992-5999.
- Serrano, L., Day, A. G. & Fersht, A. R. (1993). Step-wise mutation of barnase to binase. A procedure for engineering increased stability of proteins and an experimental analysis of the evolution of protein stability. *J. Mol. Biol.* 233, 305-312.
- Sheman, J. P., Finck, G. R. & Hicks, J. B. (1986) Laboratory course manual for methods in yeast genetics. Cold Spring Harbor University.
- Steipe, B., Schiller, B., Plueckthun, A. & Steinbach, S. (1994). Sequence statistics reliably predict stabilizing mutations in a protein domain. *J. Mol. Biol.* 240, 188-192.
- van den Burg, B., Vriend, G., Veltman, O. R., Venema & G., Eijsink, V. G. H. (1998). Engineering an enzyme to resist boiling. *Proc. Natl. Acad. Sci. (USA)* 95, 2056-2060.
- Van Etten, R.L. (1982) Human prostatic acid phosphatase: a histidine phosphatase. *Ann. NY Acad. Sci.* 390, 27-50.
- van Hartingsveldt, W., van Zeijl, C. M. F., Harteveld, G. M., Gouka, R. J., Suykerbuyk, M. E. G., Luiten, R. G. M., van Paridon, P. A., Selten, G. C. M., Veenstra, A. E., van Gorcom, R. F. M., & van den Hondel, C. A. M. J. J. (1993) Cloning, characterization and overexpression of the phytase-encoding gene (*phyA*) of *Aspergillus niger*. *Gene* 127, 87-94.

Annex to the application documents - subsequently filed sequence listing

[0112]

5 SEQUENCE LISTING.txt

SEQUENCE LISTING

10 <110> F. Hoffmann-La Roche AG

<120> Continuous fermentation process

<130> Case 20486 EP2

15 <140> EP 00121663.9

<141> 2000-10-04

<150> EP 99120289.6

<151> 1999-10-11

20 <150> EP 00119676.5

<151> 2000-09-08

<160> 113

25 <170> PADAT Sequenzmodul, Version 1.0

<210> 1

<211> 26

30 <212> DNA

<213> Artificial Sequence

<220>

<223> Primer

35 <400> 1

tatatgaatt catgggcgtg ttcgtc

40 <210> 2

<211> 22

<212> DNA

<213> Artificial Sequence

45 <220>

<223> Primer

<400> 2

50 tgaaaagttc attgaaggtt tc

<210> 3

<211> 22

<212> DNA

55 <213> Artificial Sequence

SEQUENCE LISTING.txt

5 <220>
5 <223> Primer
5 <400> 3

10 tcttcgaaag cagtacaagt ac 22

15 <210> 4
15 <211> 22
15 <212> DNA
15 <213> Artificial Sequence

20 <220>
20 <223> Primer
20 <400> 4

25 tatatgaatt cttaagcgaa ac 22

25 <210> 5
25 <211> 22
25 <212> DNA
25 <213> Artificial Sequence

30 <220>
30 <223> Primer
30 <400> 5

35 tcttcgaaag cagtgacacaa ac 22

40 <210> 6
40 <211> 32
40 <212> DNA
40 <213> Artificial Sequence

45 <220>
45 <223> Primer
45 <400> 6

50 cacttgtggg gtacaccttc tccataacttc tc 32

55

SEQUENCE LISTING.txt

5 <220>
5 <223> Primer
10 <400> 7

10 gagaagtatg gagagtaggt accccacaag tg 32

15 <210> 8
15 <211> 31
15 <212> DNA
15 <213> Artificial Sequence

20 <220>
20 <223> Primer
20 <400> 8

25 ggtaatact ctccattttt ctctttggaa g 31
25 <210> 9
25 <211> 31
25 <212> DNA
25 <213> Artificial Sequence

30 <220>
30 <223> Primer
30 <400> 9

35 cttccaaaga gaagaatgga gagtattgac c 31
35 <210> 10
35 <211> 28
35 <212> DNA
35 <213> Artificial Sequence

40 <220>
40 <223> Primer
40 <400> 10
45 catacttctc tttggcagac gaatctgc 28
45 <210> 11
45 <211> 28
45 <212> DNA
45 <213> Artificial Sequence

55

SEQUENCE LISTING.txt

5 <220>
<223> Primer

10 <400> 11

gcagattcgt ctgccaaaga gaagtatg 28

15 <210> 12
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

20 <400> 12

ctccagacgt cccaaaggac tgttagagtt a c 31

25 <210> 13
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

30 <400> 13

gtaactctac agtcctttgg gacgtctgga g 31

35 <210> 14
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

40 <400> 14

ctccagacgt cccagacggc tgttagagtt a c 31

45 <210> 15
<211> 31
<212> DNA
<213> Artificial Sequence

SEQUENCE LISTING.txt

5 <220>
5 <223> Primer

10 <400> 15

10 gtaactctac agccgtctgg gacgtctgga g 31

15 <210> 16
15 <211> 36
15 <212> DNA
15 <213> Artificial Sequence

20 <220>
20 <223> Primer

20 <400> 16

25 gatacccaac ttcttctgcg tctaaggctt actctg 36
25 <210> 17
25 <211> 36
25 <212> DNA
25 <213> Artificial Sequence

30 <220>
30 <223> Primer

30 <400> 17

35 cagagtaagc ctttagacgca gaagaagtgg ggtatc 36
35 <210> 18
35 <211> 29
35 <212> DNA
35 <213> Artificial Sequence

40 <220>
40 <223> Primer

40 <400> 18

45 cttcttaagtc taagaagtac tctgctttg 29

50 <210> 19
50 <211> 29
50 <212> DNA
50 <213> Artificial Sequence

SEQUENCE LISTING.txt

5 <220>
5 <223> Primer

10 <400> 19

10 caaaggcagag tacttcttag acttagaag 29

15 <210> 20
15 <211> 41
15 <212> DNA
15 <213> Artificial Sequence

20 <220>
20 <223> Primer

20 <400> 20

25 gcttactctg ctttgattga acggattcaa aagaacgcta c 41
25 <210> 21
25 <211> 41
25 <212> DNA
25 <213> Artificial Sequence

30 <220>
30 <223> Primer

30 <400> 21

35 gtagcggtct tttgaatccg ttcaatcaaa gcagagtaag c 41
35 <210> 22
35 <211> 29
35 <212> DNA
35 <213> Artificial Sequence

40 <220>
40 <223> Primer

40 <400> 22
45
45 ccattcggtg aacagcaaat ggttaactc 29

50 <210> 23
50 <211> 29
50 <212> DNA
50 <213> Artificial Sequence

SEQUENCE LISTING.txt

5 <220>
5 <223> Primer
10 <400> 23

10 gagttAACCA TTTGCTGTTc ACCGAATGG 29

15 <210> 24
15 <211> 30
15 <212> DNA
15 <213> Artificial Sequence

20 <220>
20 <223> Primer
20 <400> 24

25 gatacaAGGC TCTCGCGAGA AACATTGTTc 30
25 <210> 25
25 <211> 31
25 <212> DNA
25 <213> Artificial Sequence

30 <220>
30 <223> Primer
30 <400> 25

35 ggaacaATGT TTCTCGCGAG AGCCTTGTAT C 31
35 <210> 26
35 <211> 30
35 <212> DNA
35 <213> Artificial Sequence

40 <220>
40 <223> Primer
40 <400> 26
45 gattgttCCA TTCGTGCGCG CTTCTGGTTc 30

50 <210> 27
50 <211> 30
50 <212> DNA
50 <213> Artificial Sequence

SEQUENCE LISTING.txt

5 <220>
 <223> Primer
 <400> 27

10 gaaccagaag cgcgcacgaa tggaacaatc 30

15 <210> 28
 <211> 31
 <212> DNA
 <213> Artificial Sequence

20 <220>
 <223> Primer
 <400> 28

25 ctccagttat taacgtgatc attccagaag g 31

30 <210> 29
 <211> 31
 <212> DNA
 <213> Artificial Sequence

35 <220>
 <223> Primer
 <400> 29

40 ccttctggaa tgatcacgtt aataactgga g 31

45 <210> 30
 <211> 30
 <212> DNA
 <213> Artificial Sequence

50 <220>
 <223> Primer
 <400> 30

55 ggctgaccca ggggccccaac cacaccaagc 30

50 <210> 31
 <211> 30
 <212> DNA
 <213> Artificial Sequence

SEQUENCE LISTING.txt

5 <220>
<223> Primer

10 <400> 31

15 gcttggtgtg gttgggcccc tgggtcagcc 30

15 <210> 32
<211> 32
<212> DNA
<213> Artificial Sequence

20 <220>
<223> Primer

<400> 32

25 cacttggac catggtcttt gtactgcttt cg 32

25 <210> 33
<211> 32
<212> DNA
<213> Artificial Sequence

30 <220>
<223> Primer

<400> 33

35 cgaaaggagt acaaagacca tggtccaaag tg 32

35 <210> 34
<211> 34
<212> DNA
<213> Artificial Sequence

40 <220>
<223> Primer

<400> 34

45 gcttcgaag actctaccct aggtgacgac gttg 34

50 <210> 35
<211> 34
<212> DNA
<213> Artificial Sequence

SEQUENCE LISTING.txt

5 <220>
5 <223> Primer
5 <400> 35

10 caacgtcgta acctaggta gagtcttcga aagc 34

15 <210> 36
15 <211> 26
15 <212> DNA
15 <213> Artificial Sequence

20 <220>
20 <223> Primer
20 <400> 36

25 ggtgacgacg ctgaagctaa cttcac 26

25 <210> 37
25 <211> 26
25 <212> DNA
25 <213> Artificial Sequence

30 <220>
30 <223> Primer
30 <400> 37

35 gtgaagttag cttcagcgta gtcacc 26

35 <210> 38
35 <211> 27
35 <212> DNA
35 <213> Artificial Sequence

40 <220>
40 <223> Primer
40 <400> 38

45 ctaacttcac cgcggtgttc gtcagg 27

50 <210> 39
50 <211> 27
50 <212> DNA
50 <213> Artificial Sequence

55

SEQUENCE LISTING.txt

5 <220>
5 <223> Primer

10 <400> 39

10 ctggagcgaa caccgcggtg aagttag 27

15 <210> 40
<211> 34
<212> DNA
<213> Artificial Sequence

15 <220>
15 <223> Primer

20 <400> 40

20 gctttgttcg ctccacctat tagagctaga ttgg 34

25 <210> 41
<211> 34
<212> DNA
<213> Artificial Sequence

25 <220>
25 <223> Primer

30 <400> 41

30 ccaatcttagc tctaataagg ggagcgaaca aagc 34

35 <210> 42
<211> 26
<212> DNA
<213> Artificial Sequence

40 <220>
40 <223> Primer

45 <400> 42

45 gccaggtgtt aacttgactg acgaag 26

50 <210> 43
<211> 25
<212> DNA
<213> Artificial Sequence

SEQUENCE LISTING.txt

5 <220>
<223> Primer

10 <400> 43

15 ttcgtcagtc aagttaaacac ctggc 25

15 <210> 44
<211> 27
<212> DNA
<213> Artificial Sequence

20 <220>
<223> Primer

20 <400> 44

25 gacgaagacg tcgttaactt gatggac 27

25 <210> 45
<211> 27
<212> DNA
<213> Artificial Sequence

30 <220>
<223> Primer

30 <400> 45

35 gtccatcaag ttaacgacgt cttcgtc 27

35 <210> 46
<211> 28
<212> DNA
<213> Artificial Sequence

40 <220>
<223> Primer

40 <400> 46

45 gtccattcga cactgtcgct agaacttc 28

50 <210> 47
<211> 28
<212> DNA
<213> Artificial Sequence

SEQUENCE LISTING.txt

5 <220>
<223> Primer

10 <400> 47

15 gaagttctag cgacagtgtc gaatggac 28

<210> 48
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

20 <400> 48

ctgacgctac tcagctgtct ccattc 26

25 <210> 49
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

30 <400> 49

gaatggagac agctgagtag cgtcag 26

35 <210> 50
<211> 28
<212> DNA
<213> Artificial Sequence

40 <220>
<223> Primer

<400> 50

45 gtctccattc tgtgatttgt tcactcac 28

50 <210> 51
<211> 28
<212> DNA
<213> Artificial Sequence

SEQUENCE LISTING.txt

5 <220>
5 <223> Primer

10 <400> 51

10 gtgagtgaac aaatcacaga atggagac 28

15 <210> 52
15 <211> 26
15 <212> DNA
15 <213> Artificial Sequence

20 <220>
20 <223> Primer

20 <400> 52

25 gctttgttca ccgcggacga atggag 26

25 <210> 53
25 <211> 26
25 <212> DNA
25 <213> Artificial Sequence

30 <220>
30 <223> Primer

30 <400> 53

35 ctccattcgt ccgcggtgaa caaagc 26
35

40 <210> 54
40 <211> 27
40 <212> DNA
40 <213> Artificial Sequence

45 <220>
45 <223> Primer

45 <400> 54

45 cacgacgaat ggatccaata cgactac 27

50 <210> 55
50 <211> 27
50 <212> DNA
50 <213> Artificial Sequence

55

SEQUENCE LISTING.txt

5 <220>
5 <223> Primer

10 <400> 55

10 gtagtcgtat tggatccatt cgtcgtg 27

15 <210> 56
15 <211> 27
15 <212> DNA
15 <213> Artificial Sequence

20 <220>
20 <223> Primer

20 <400> 56

25 gacgaatgga gagcgtacga ctacttg 27

25 <210> 57
25 <211> 27
25 <212> DNA
25 <213> Artificial Sequence

30 <220>
30 <223> Primer

30 <400> 57

35 caagtagtcg tacgctctcc attcgtc 27

35 <210> 58
35 <211> 29
35 <212> DNA
35 <213> Artificial Sequence

40 <220>
40 <223> Primer

40 <400> 58

45 ggtgttggtt tcgttaacga attgattgc 29

50 <210> 59
50 <211> 29
50 <212> DNA
50 <213> Artificial Sequence

55

SEQUENCE LISTING.txt

5 <220>
5 <223> Primer

10 <400> 59

10 gcaatcaaatt cgtaaacgaa accaacacc 29

15 <210> 60
15 <211> 28
15 <212> DNA
15 <213> Artificial Sequence

20 <220>
20 <223> Primer

20 <400> 60

25 gcttagattga ctcactctcc agttcaag 28

25 <210> 61
25 <211> 28
25 <212> DNA
25 <213> Artificial Sequence

30 <220>
30 <223> Primer

30 <400> 61

35 cttgaactgg agagtgagtc aatcttagc 28
35

40 <210> 62
40 <211> 32
40 <212> DNA
40 <213> Artificial Sequence

45 <220>
45 <223> Primer

45 <400> 62

45 ctcacgacaa cactatgata tctatttct tc 32

50 <210> 63
50 <211> 32
50 <212> DNA
50 <213> Artificial Sequence

55

SEQUENCE LISTING.txt

5 <220>
5 <223> Primer
10 <400> 63

10 gaagaaaata gatatcatag tgggtcgta ag 32

15 <210> 64
15 <211> 30
15 <212> DNA
15 <213> Artificial Sequence

20 <220>
20 <223> Primer
20 <400> 64

25 cgacaactcc atggtttcta ttttcttcgc 30

25 <210> 65
25 <211> 30
25 <212> DNA
25 <213> Artificial Sequence

30 <220>
30 <223> Primer
30 <400> 65

35 gcgaagaaaa tagaaaccat ggagttgtcg 30

35 <210> 66
35 <211> 27
35 <212> DNA
35 <213> Artificial Sequence

40 <220>
40 <223> Primer
40 <400> 66

45 gtacaacggt accaagccat tgtctac 27

50 <210> 67
50 <211> 27
50 <212> DNA
50 <213> Artificial Sequence

SEQUENCE LISTING.txt

5 <220>
5 <223> Primer

10 <400> 67

10 gtagacaatg gcttggtaacc gttgtac 27

15 <210> 68
<211> 25
<212> DNA
<213> Artificial Sequence

15 <220>
<223> Primer

20 <400> 68

20 ctgacggtta cgctgcttct tggac 25

25 <210> 69
<211> 25
<212> DNA
<213> Artificial Sequence

25 <220>
<223> Primer

30 <400> 69

35 gtccaaagaag cagcgtaacc gtcag 25

35 <210> 70
<211> 26
<212> DNA
<213> Artificial Sequence

40 <220>
<223> Primer

45 <400> 70

45 ctgttccatt cgctgctaga gcttac 26

50 <210> 71
<211> 26
<212> DNA
<213> Artificial Sequence

SEQUENCE LISTING.txt

5 <220>
<223> Primer

10 gtaagctcta gcagcgaatg gaacag 26

15 <210> 72
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

20 <400> 72

gatgcaatgt gaagctgaaa aggaacc 27

25 <210> 73
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

30 <400> 73

ggttcccttt cagcttcaca ttgcata 27

35 <210> 74
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

40 <400> 74

cacggttgtg gtgtcgacaa gttggg 26

45 <210> 75
<211> 26
<212> DNA
<213> Artificial Sequence

SEQUENCE LISTING.txt

5 <220>
5 <223> Primer
5 <400> 75

10 cccaaacttgt cgacaccaca accgtg 26

15 <210> 76
<211> 30
<212> DNA
<213> Artificial Sequence

20 <220>
<223> Primer
<400> 76

25 gatctggtgg caattggag gaatgttcg 30

25 <210> 77
<211> 30
<212> DNA
<213> Artificial Sequence

30 <220>
<223> Primer
<400> 77

35 cgaaacattc ctcccaattg ccaccagatc 30

35 <210> 78
<211> 28
<212> DNA
<213> Artificial Sequence

40 <220>
<223> Primer
<400> 78

45 cacgtactcg ccataacttt cgctcgag 28

50 <210> 79
<211> 28
<212> DNA
<213> Artificial Sequence

SEQUENCE LISTING.txt

5 <220>
5 <223> Primer

10 <400> 79

10 ctcgagcgaa aagtatggcg agtacgtg 28

15 <210> 80
<211> 33
<212> DNA
<213> Artificial Sequence

15 <220>
15 <223> Primer

20 <400> 80

20 ccatactttt cgctcgccga cgagctgtcc gtg 33

25 <210> 81
<211> 32
<212> DNA
<213> Artificial Sequence

25 <220>
25 <223> Primer

30 <400> 81

30 cacggacagc tcgtccgcga gcgaaaagta gg 32

35 <210> 82
<211> 31
<212> DNA
<213> Artificial Sequence

40 <220>
40 <223> Primer

45 <400> 82

45 gtataagaag cttattacgg cgatccaggc c 31

50 <210> 83
<211> 31
<212> DNA
<213> Artificial Sequence

SEQUENCE LISTING.txt

5 <220>
5 <223> Primer
5 <400> 83

10 ggcctggatc gccgtataa gcttcttata c 31

15 <210> 84
15 <211> 31
15 <212> DNA
15 <213> Artificial Sequence

20 <220>
20 <223> Primer
20 <400> 84

25 cttcaagggc aagtacgcct ttttgaagac g 31

25 <210> 85
25 <211> 31
25 <212> DNA
25 <213> Artificial Sequence

30 <220>
30 <223> Primer
30 <400> 85

35 cgtcttcaaa aaggcgtact tgcccttgaa g 31

35 <210> 86
35 <211> 29
35 <212> DNA
35 <213> Artificial Sequence

40 <220>
40 <223> Primer
40 <400> 86

45 catccgagct cgccctcgaga agcatcttc 29

50 <210> 87
50 <211> 29
50 <212> DNA
50 <213> Artificial Sequence

SEQUENCE LISTING.txt

5 <220>
5 <223> Primer

10 <400> 87

10 gaagatgctt ctcgaggcga gctcggatg 29

15 <210> 88
<211> 29
<212> DNA
<213> Artificial Sequence

15 <220>
<223> Primer

20 <400> 88

20 ctaatggatg tgtccgtttg atacggtag 29

25 <210> 89
<211> 31
<212> DNA
<213> Artificial Sequence

25 <220>
<223> Primer

30 <400> 89

35 ctaccgtatac aaacggacac atgtccatt a g 31

35 <210> 90
<211> 27
<212> DNA
<213> Artificial Sequence

40 <220>
<223> Primer

45 <400> 90

45 gtggaagaag tacgactacc ttcaagtc 27

50 <210> 91
<211> 27
<212> DNA
<213> Artificial Sequence

SEQUENCE LISTING.txt

5 <220>
 <223> Primer
 <400> 91

10 gactgaaggt agtcgtactt cttccac 27

15 <210> 92
 <211> 28
 <212> DNA
 <213> Artificial Sequence

20 <220>
 <223> Primer
 <400> 92

25 gcccggttga cgcatcgcc agtgcagg 28

25 <210> 93
 <211> 28
 <212> DNA
 <213> Artificial Sequence

30 <220>
 <223> Primer
 <400> 93

35 cctgcactgg cgaatgcgtc aaccgggc 28

40 <210> 94
 <211> 29
 <212> DNA
 <213> Artificial Sequence

45 <220>
 <223> Primer
 <400> 94

45 cacacgacaa caccatgggt tccatcttc 29

50 <210> 95
 <211> 29
 <212> DNA
 <213> Artificial Sequence

SEQUENCE LISTING.txt

```

5 <220>
<223> Primer

10 <400> 95

15 gaagatggaa accatggtgt tgtcgtgtg 29

20 <210> 96
<211> 30
<212> DNA
<213> Artificial Sequence

25 <220>
<223> Primer

30 <400> 96

35 gtggtgccctt tcgcccgcgcg agcctacttc 30

40 <210> 97
<211> 30
<212> DNA
<213> Artificial Sequence

45 <220>
<223> Primer

50 <400> 97

55 gaagtagggct cgcgcggcga aaggcaccac 30

60 <210> 98
<211> 33
<212> DNA
<213> Artificial Sequence

65 <220>
<223> Primer

70 <400> 98

75 tataatcatga gcgtgttcgt cgtgctactg ttc 33

80 <210> 99
<211> 33
<212> DNA
<213> Artificial Sequence

```

SEQUENCE LISTING.txt

5 <220>
 <223> Primer
 <400> 99
 acccgactta caaaggaaat tctatagata tat
 10 <210> 100
 <211> 33
 <212> DNA
 <213> Artificial Sequence
 15 <220>
 <223> Primer
 <400> 100
 acccttctta caaaggaaat tctatagata tat
 20 <210> 101
 <211> 467
 <212> PRT
 <213> Artificial Sequence
 25 <220>
 <223> consensus phytase-1
 <400> 101
 30 Met Gly Val Phe Val Val Leu Leu Ser Ile Ala Thr Leu Phe Gly Ser
 1 5 10 15
 Thr Ser Gly Thr Ala Leu Gly Pro Arg Gly Asn Ser His Ser Cys Asp
 20 25 30
 Thr Val Asp Gly Gly Tyr Gln Cys Phe Pro Glu Ile Ser His Leu Trp
 35 40 45
 Gly Gln Tyr Ser Pro Tyr Phe Ser Leu Glu Asp Glu Ser Ala Ile Ser
 50 55 60
 Pro Asp Val Pro Asp Asp Cys Arg Val Thr Phe Val Gln Val Leu Ser
 65 70 75 80
 Arg His Gly Ala Arg Tyr Pro Thr Ser Ser Lys Ser Lys Ala Tyr Ser
 85 90 95
 Ala Leu Ile Glu Ala Ile Gln Lys Asn Ala Thr Ala Phe Lys Gly Lys
 100 105 110
 Tyr Ala Phe Leu Lys Thr Tyr Asn Tyr Thr Leu Gly Ala Asp Asp Leu
 115 120 125
 Thr Pro Phe Gly Glu Asn Gln Met Val Asn Ser Gly Ile Lys Phe Tyr
 130 135 140
 Arg Arg Tyr Lys Ala Leu Ala Arg Lys Ile Val Pro Phe Ile Arg Ala
 145 150 155 160
 Ser Gly Ser Asp Arg Val Ile Ala Ser Ala Glu Lys Phe Ile Glu Gly
 165 170 175
 Phe Gln Ser Ala Lys Leu Ala Asp Pro Gly Ser Gln Pro His Gln Ala
 180 185 190

SEQUENCE LISTING.txt

Ser Pro Val Ile Asp Val Ile Ile Pro Glu Gly Ser Gly Tyr Asn Asn
 195 200 205
 5 Thr Leu Asp His Gly Thr Cys Thr Ala Phe Glu Asp Ser Glu Leu Gly
 210 215 220
 Asp Asp Val Glu Ala Asn Phe Thr Ala Leu Phe Ala Pro Ala Ile Arg
 225 230 235 240
 Ala Arg Leu Glu Ala Asp Leu Pro Gly Val Thr Leu Thr Asp Glu Asp
 245 250 255
 10 Val Val Tyr Leu Met Asp Met Cys Pro Phe Glu Thr Val Ala Arg Thr
 260 265 270
 Ser Asp Ala Thr Glu Leu Ser Pro Phe Cys Ala Leu Phe Thr His Asp
 275 280 285
 15 Glu Trp Arg Gln Tyr Asp Tyr Leu Gln Ser Leu Gly Lys Tyr Tyr Gly
 290 295 300
 Tyr Gly Ala Gly Asn Pro Leu Gly Pro Ala Gln Gly Val Gly Phe Ala
 305 310 315 320
 Asn Glu Leu Ile Ala Arg Leu Thr Arg Ser Pro Val Gln Asp His Thr
 325 330 335
 20 Ser Thr Asn His Thr Leu Asp Ser Asn Pro Ala Thr Phe Pro Leu Asn
 340 345 350
 Ala Thr Leu Tyr Ala Asp Phe Ser His Asp Asn Ser Met Ile Ser Ile
 355 360 365
 Phe Phe Ala Leu Gly Leu Tyr Asn Gly Thr Ala Pro Leu Ser Thr Thr
 370 375 380
 25 Ser Val Glu Ser Ile Glu Glu Thr Asp Gly Tyr Ser Ala Ser Trp Thr
 385 390 395 400
 Val Pro Phe Gly Ala Arg Ala Tyr Val Glu Met Met Gln Cys Gln Ala
 405 410 415
 Glu Lys Glu Pro Leu Val Arg Val Leu Val Asn Asp Arg Val Val Pro
 420 425 430
 30 Leu His Gly Cys Ala Val Asp Lys Leu Gly Arg Cys Lys Arg Asp Asp
 435 440 445
 Phe Val Glu Gly Leu Ser Phe Ala Arg Ser Gly Gly Asn Trp Ala Glu
 450 455 460
 35 Cys Phe Ala
 465

<210> 102
 <211> 1426
 40 <212> DNA
 <213> Artificial Sequence

<220>
 <223> consensus phytase-1
 45 <400> 102

tataatgaatt catgggcgtg ttctgtcggt tactgtccat tgccacacctg ttccggttcca
 60
 50 catccggta cgccttgggt cctcgtggta attctcaactt ttgtgacact gttgacggtg
 120
 gttaccaatg tttcccagaa atttctcaact tttgggtca atactctcca tacttcttt
 180

SEQUENCE LISTING.txt

tggaaagacga atctgctatt tctccagacg ttccagacga ctgttagagtt actttcggtc
 240
 5 aagttttgtc tagacacggt gctagatacc caacttcttc taagtctaag gcttactctg
 300
 ctttgattga agctattcaa aagaacgcta ctgcttcaa gggtaagtac gctttcttga
 360
 10 agacttacaa ctacactttg ggtgctgacg acttgactcc attcggtgaa aaccaaatgg
 420
 ttaactctgg tattaaggta tacagaagat acaaggctt ggctagaaaag attgttccat
 480
 tcatttagagc ttctgggtct gacagagtta ttgcttctgc tgaaaagttc attgaaggtt
 540
 15 tccaatctgc taagttggct gaccagggtt ctcaaccaca ccaagcttct ccagttattg
 600
 acgttattat tccagaagga tccggttaca acaacacttt ggaccacggt acttgactg
 660
 ctttcgaaga ctctgaattt ggtgacgacg ttgaagctaa cttcactgct ttgttcgctc
 720
 20 cagctatttag agctagattt gaagctgact tgccaggtgt tactttgact gacgaagacg
 780
 ttgtttactt gatggacatg tgtccattcg aaactgttgc tagaacttct gacgctactg
 840
 aattgtctcc attctgtgct ttgttcactc acgacgaatg gagacaatac gactacttgc
 900
 25 aatctttggg taagtactac gtttacggtg ctggtaaccc attgggtcca gctcaaggtg
 960
 ttgggttcgc taacgaattt attgctagat tgactagatc tccagttcaa gaccacactt
 1020
 ctactaacca cactttggac tctaaccag ctactttccc attgaacgct actttgtacg
 1080
 30 ctgacttctc tcacgacaac tctatgattt ctatttctt cgctttgggt ttgtacaacg
 1140
 gtactgctcc attgtctact acttctgttg aatctattga agaaactgac gtttactctg
 1200
 35 cttcttggac tttccattc ggtgcttagag cttacgttga aatgatgcaa tgtcaagctg
 1260
 aaaaggaacc attgggtttaa gttttgggtta acgacagagt tgtccattt cacgggttgt
 1320
 40 ctgttgacaa gttgggtttaa tgtaagagag acgacttcgt tgaaggtttgc tctttcgctc
 1380
 gatctgggtgg taactgggct gaatgtttcg cttaaaggatt catata
 1426

45 <210> 103
 <211> 467
 <212> PRT
 <213> Artificial Sequence

50 <220>
 <223> consensus phytase-10
 <400> 103

SEQUENCE LISTING.txt

Met Gly Val Phe Val Val Leu Leu Ser Ile Ala Thr Leu Phe Gly Ser
 1 5 10 15
 5 Thr Ser Gly Thr Ala Leu Gly Pro Arg Gly Asn Ser His Ser Cys Asp
 20 25 30
 Thr Val Asp Gly Gly Tyr Gln Cys Phe Pro Glu Ile Ser His Leu Trp
 35 40 45
 Gly Gln Tyr Ser Pro Phe Phe Ser Leu Ala Asp Glu Ser Ala Ile Ser
 50 55 60
 10 Pro Asp Val Pro Lys Gly Cys Arg Val Thr Phe Val Gln Val Leu Ser
 65 70 75 80
 Arg His Gly Ala Arg Tyr Pro Thr Ser Ser Lys Ser Lys Lys Tyr Ser
 85 90 95
 15 Ala Leu Ile Glu Ala Ile Gln Lys Asn Ala Thr Ala Phe Lys Gly Lys
 100 105 110
 Tyr Ala Phe Leu Lys Thr Tyr Asn Tyr Thr Leu Gly Ala Asp Asp Leu
 115 120 125
 Thr Pro Phe Gly Glu Gln Gln Met Val Asn Ser Gly Ile Lys Phe Tyr
 130 135 140
 20 Arg Arg Tyr Lys Ala Leu Ala Arg Lys Ile Val Pro Phe Val Arg Ala
 145 150 155 160
 Ser Gly Ser Asp Arg Val Ile Ala Ser Ala Glu Lys Phe Ile Glu Gly
 165 170 175
 Phe Gln Ser Ala Lys Leu Ala Asp Pro Gly Ala Asn Pro His Gln Ala
 180 185 190
 25 Ser Pro Val Ile Asn Val Ile Ile Pro Glu Gly Ala Gly Tyr Asn Asn
 195 200 205
 Thr Leu Asp His Gly Leu Cys Thr Ala Phe Glu Glu Ser Glu Leu Gly
 210 215 220
 Asp Asp Val Glu Ala Asn Phe Thr Ala Val Phe Ala Pro Pro Ile Arg
 225 230 235 240
 30 Ala Arg Leu Glu Ala His Leu Pro Gly Val Asn Leu Thr Asp Glu Asp
 245 250 255
 Val Val Asn Leu Met Asp Met Cys Pro Phe Asp Thr Val Ala Arg Thr
 260 265 270
 35 Ser Asp Ala Thr Gln Leu Ser Pro Phe Cys Asp Leu Phe Thr His Asp
 275 280 285
 Glu Trp Ile Gln Tyr Asp Tyr Leu Gln Ser Leu Gly Lys Tyr Tyr Gly
 290 295 300
 Tyr Gly Ala Gly Asn Pro Leu Gly Pro Ala Gln Gly Val Gly Phe Val
 305 310 315 320
 40 Asn Glu Leu Ile Ala Arg Leu Thr His Ser Pro Val Gln Asp His Thr
 325 330 335
 Ser Thr Asn His Thr Leu Asp Ser Asn Pro Ala Thr Phe Pro Leu Asn
 340 345 350
 Ala Thr Leu Tyr Ala Asp Phe Ser His Asp Asn Thr Met Val Ser Ile
 355 360 365
 45 Phe Phe Ala Leu Gly Leu Tyr Asn Gly Thr Lys Pro Leu Ser Thr Thr
 370 375 380
 Ser Val Glu Ser Ile Glu Glu Thr Asp Gly Tyr Ala Ala Ser Trp Thr
 385 390 395 400
 Val Pro Phe Ala Ala Arg Ala Tyr Val Glu Met Met Gln Cys Glu Ala
 405 410 415
 50 Glu Lys Glu Pro Leu Val Arg Val Leu Val Asn Asp Arg Val Val Pro
 420 425 430
 Leu His Gly Cys Gly Val Asp Lys Leu Gly Arg Cys Lys Arg Asp Asp

SEQUENCE LISTING.txt

435 440 445
 Phe Val Glu Gly Leu Ser Phe Ala Arg Ser Gly Gly Asn Trp Glu Glu
 5 450 455 460
 Cys Phe Ala
 465

10 <210> 104
 <211> 1426
 <212> DNA
 <213> Artificial Sequence

15 <220>
 <223> consensus phytase-10

<400> 104

20 tatatgaatt catgggcgtg ttcgtcgtgc tactgtccat tgccacacctg ttcggttcca
 60 catccggta cgccttggtt cctcgtggta attctcaactc ttgtgacact gttgacggtg
 120 gttaccaatg tttcccagaa atttctcaact tgtggggtca atactctcca ttcttctctt
 180 180
 25 tggctgacga atctgctatt tctccagacg ttccaaaggg ttgttagagtt actttcggttc
 240 240
 aagttttgtc tagacacggt gctagatacc caacttcttc taagtctaag aagtactctg
 300 300
 ctttgattga agctattcaa aagaacgcta ctgctttcaa gggtaagtac gctttcttga
 360 360
 agacttacaa ctacactttg ggtgctgacg acttgactcc attcggtgaa caacaaatgg
 420 420
 ttaactctgg tattaagttc tacagaagat acaaggcttt ggctagaaaag attgttccat
 480 480
 tcgtagagc ttctgggtct gacagagtta tgcgttctgc tgaaaagttc attgaaggtt
 540 540
 tccaatctgc taagttggct gaccagggtg ctaacccaca ccaagcttct ccagttatta
 600 600
 acgttattat tccagaaggt gctggttaca acaacacttt ggaccacggt ttgtgtactg
 660 660
 40 ctttcgaaga atctgaattt ggtgacgacg ttgaagctaa ctcaactgct gttttcgctc
 720 720
 cacctattag agctagattt gaagctcaact tgccaggtgt taacttgact gacgaagacg
 780 780
 ttgttaactt gatggacatg tgtccattcg acactgttgc tagaacttct gacgctactc
 840 840
 45 aattgtctcc attctgtgac ttgttcaactc acgacgaatg gattcaatac gactacttgc
 900 900
 aatctttggg taagtactac ggttacggtg ctggtaaccc attgggtcca gctcaagggtg
 960 960
 ttggttcgt taacgaattt attgcttagat tgactcaactc tccagttcaa gaccacactt
 1020 1020
 50 ctactaacca cactttggac tctaacccag ctactttccc attgaacgct actttgtacg
 1080 1080
 ctgacttctc tcacgacaac actatggttt ctatttctt cgctttgggt ttgtacaacg

SEQUENCE LISTING.txt

1140
 5 gtactaaagcc attgtctact acttctgttg aatctattga agaaaactgac ggttacgctg
 1200
 cttcttggac tggccatTC gctgcttagAG cttacgttGA aatgatgcaA tgtgaagctG
 1260
 aaaaggaacc attgggtAGA gttttggta acgacagAGt tgTTCCATTG cacggTTGTG
 1320
 10 gtgttgacAA gttgggtAGA tgtaagAGAG acgacttcgt tgaaggTTG tcTTTcgcta
 1380
 gatctggTGG taactggAA gaatgttCG cttaagaATT catata
 1426

15 <210> 105
 <211> 467
 <212> PRT
 <213> Artificial Sequence

20 <220>
 <223> consensus phytase-1-thermo[8]-Q50T-K91A

<400> 105

25 Met Gly Val Phe Val Val Leu Leu Ser Ile Ala Thr Leu Phe Gly Ser
 1 5 10 15
 Thr Ser Gly Thr Ala Leu Gly Pro Arg Gly Asn Ser His Ser Cys Asp
 20 25 30
 Thr Val Asp Gly Gly Tyr Gln Cys Phe Pro Glu Ile Ser His Leu Trp
 35 40 45
 30 Gly Thr Tyr Ser Pro Tyr Phe Ser Leu Ala Asp Glu Ser Ala Ile Ser
 50 55 60
 Pro Asp Val Pro Asp Asp Cys Arg Val Thr Phe Val Gln Val Leu Ser
 65 70 75 80
 Arg His Gly Ala Arg Tyr Pro Thr Ser Ser Ala Ser Lys Ala Tyr Ser
 85 90 95
 35 Ala Leu Ile Glu Ala Ile Gln Lys Asn Ala Thr Ala Phe Lys Gly Lys
 100 105 110
 Tyr Ala Phe Leu Lys Thr Tyr Asn Tyr Thr Leu Gly Ala Asp Asp Leu
 115 120 125
 40 Thr Pro Phe Gly Glu Asn Gln Met Val Asn Ser Gly Ile Lys Phe Tyr
 130 135 140
 Arg Arg Tyr Lys Ala Leu Ala Arg Lys Ile Val Pro Phe Ile Arg Ala
 145 150 155 160
 Ser Gly Ser Asp Arg Val Ile Ala Ser Ala Glu Lys Phe Ile Glu Gly
 165 170 175
 45 Phe Gln Ser Ala Lys Leu Ala Asp Pro Gly Ser Gln Pro His Gln Ala
 180 185 190
 Ser Pro Val Ile Asn Val Ile Ile Pro Glu Gly Ser Gly Tyr Asn Asn
 195 200 205
 Thr Leu Asp His Gly Thr Cys Thr Ala Phe Glu Asp Ser Glu Leu Gly
 210 215 220
 50 Asp Asp Val Glu Ala Asn Phe Thr Ala Leu Phe Ala Pro Ala Ile Arg
 225 230 235 240
 Ala Arg Leu Glu Ala Asp Leu Pro Gly Val Thr Leu Thr Asp Glu Asp

SEQUENCE LISTING.txt

245 250 255
 Val Val Tyr Leu Met Asp Met Cys Pro Phe Asp Thr Val Ala Arg Thr
 5 260 265 270
 Ser Asp Ala Thr Glu Leu Ser Pro Phe Cys Ala Leu Phe Thr His Asp
 10 275 280 285
 Glu Trp Ile Gln Tyr Asp Tyr Leu Gln Ser Leu Gly Lys Tyr Tyr Gly
 15 290 295 300
 Tyr Gly Ala Gly Asn Pro Leu Gly Pro Ala Gln Gly Val Gly Phe Ala
 20 305 310 315 320
 Asn Glu Leu Ile Ala Arg Leu Thr His Ser Pro Val Gln Asp His Thr
 25 325 330 335
 Ser Thr Asn His Thr Leu Asp Ser Asn Pro Ala Thr Phe Pro Leu Asn
 30 340 345 350
 15 Ala Thr Leu Tyr Ala Asp Phe Ser His Asp Asn Thr Met Ile Ser Ile
 35 355 360 365
 Phe Phe Ala Leu Gly Leu Tyr Asn Gly Thr Lys Pro Leu Ser Thr Thr
 20 370 375 380
 Ser Val Glu Ser Ile Glu Glu Thr Asp Gly Tyr Ser Ala Ser Trp Thr
 25 385 390 395 400
 Val Pro Phe Ala Ala Arg Ala Tyr Val Glu Met Met Gln Cys Gln Ala
 30 405 410 415
 Glu Lys Glu Pro Leu Val Arg Val Leu Val Asn Asp Arg Val Val Pro
 35 420 425 430
 Leu His Gly Cys Ala Val Asp Lys Leu Gly Arg Cys Lys Arg Asp Asp
 40 435 440 445
 Phe Val Glu Gly Leu Ser Phe Ala Arg Ser Gly Gly Asn Trp Ala Glu
 45 450 455 460
 Cys Phe Ala
 50 465
 30
<210> 106
<211> 1404
<212> DNA
<213> Artificial Sequence
 35
<220>
<223> consensus phytase-1-thermo[8]-Q50T-K91A
 40
<400> 106
 45
atgggcgtgt tcgtcgtgct actgtccatt gccaccttgt tcggttccac atccggtacc
 60
gccttggtc ctcgtggtaa ttctcaactt tggcacactg ttgacgggtgg ttaccaatgt
 120
ttcccagaaa ttctcaactt gtgggttacc tactctccat acttctcttt ggcagacgaa
 180
tctgctattt ctccagacgt tccagacgac tgttagagtta ctttcgttca agttttgtct
 240
agacacggtg ctagataccc aacttcttct gcgtctaagg cttactctgc tttgattgaa
 300
gctattcaaa agaacgctac tgcttcaag ggtaagtacg ctttcttcaa gacttacaac
 360
tacactttgg gtgctgacga cttgactcca ttcggtgaaa accaaatggtaactctgg
 55

SEQUENCE LISTING.txt

420 attaagttct acagaagata caaggcttg gctagaaaaga ttgttccatt cattagagct
 5 480 tctggttctg acagagttat tgcttctgct gaaaagttca ttgaaggttt ccaatctgct
 10 540 aagttggctg acccaggttc tcaaccacac caagcttctc cagttattaa cgtgatcatt
 600 ccagaaggat ccggttacaa caacacttg gaccacggta cttgtactgc tttcgaaagac
 660 tctgaatttag gtgacgacgt tgaagctaac ttcactgctt tgttcgctcc agctattaga
 720 gctagattgg aagctgactt gccaggtgtt actttgactg acgaagacgt tgtttacttg
 780 15 atggacatgt gtccattcga cactgtcgct agaacttctg acgctactga attgtctcca
 840 ttctgtgctt tgttcactca cgacgaatgg atccaatacg actacttgca aagcttgggt
 900 aagtactacg gttacggtgc tggtAACCCCA ttgggtccag ctcaagggtgt tggttgcgt
 960 20 aacgaattga ttgcttagatt gactcactct ccagttcaag accacacttc tactaaccac
 1020 actttggact ctaacccagc tactttccca ttgaacgcta ctttgcgtc tgacttctct
 1080 25 cacgacaaca ctatgatatc tattttcttc gctttgggtt tgtacaacgg taccaagcca
 1140 ttgtctacta cttctgttga atctattgaa gaaactgacg gttactctgc ttcttggact
 1200 gttccattcg ctgctagagc ttacgttcaa atgatcaat gtcaagctga aaaggaacca
 1260 30 ttggtagag ttttggtaa cgacagagtt gttccattgc acgggtgtgc tggtgacaag
 1320 ttggtagat gtaagagaga cgacttcgtt gaaggttgt cttdcgctag atctgggtgg
 1380 aactgggctg aatgttgc ttAA
 1404
 35
 <210> 107
 <211> 467
 <212> PRT
 40 <213> Artificial Sequence
 <220>
 <223> consensus phytase-10-thermo[3]-Q50T-K91A
 <400> 107
 45
 Met Gly Val Phe Val Val Leu Leu Ser Ile Ala Thr Leu Phe Gly Ser
 1 5 10 15
 Thr Ser Gly Thr Ala Leu Gly Pro Arg Gly Asn Ser His Ser Cys Asp
 20 25 30
 50 Thr Val Asp Gly Gly Tyr Gln Cys Phe Pro Glu Ile Ser His Leu Trp
 35 40 45
 Gly Thr Tyr Ser Pro Phe Phe Ser Leu Ala Asp Glu Ser Ala Ile Ser

SEQUENCE LISTING.txt

5	50	55	60
	Pro Asp Val Pro Lys Gly Cys Arg Val Thr Phe Val Gln Val Leu Ser		
	65	70	75
	Arg His Gly Ala Arg Tyr Pro Thr Ser Ser Ala Ser Lys Ala Tyr Ser		80
	85	90	95
10	Ala Leu Ile Glu Ala Ile Gln Lys Asn Ala Thr Ala Phe Lys Gly Lys		
	100	105	110
	Tyr Ala Phe Leu Lys Thr Tyr Asn Tyr Thr Leu Gly Ala Asp Asp Leu		
	115	120	125
	Thr Pro Phe Gly Glu Gln Gln Met Val Asn Ser Gly Ile Lys Phe Tyr		
	130	135	140
15	Arg Arg Tyr Lys Ala Leu Ala Arg Lys Ile Val Pro Phe Ile Arg Ala		
	145	150	155
	Ser Gly Ser Asp Arg Val Ile Ala Ser Ala Glu Lys Phe Ile Glu Gly		
	165	170	175
20	Phe Gln Ser Ala Lys Leu Ala Asp Pro Gly Ala Asn Pro His Gln Ala		
	180	185	190
	Ser Pro Val Ile Asn Val Ile Ile Pro Glu Gly Ala Gly Tyr Asn Asn		
	195	200	205
	Thr Leu Asp His Gly Leu Cys Thr Ala Phe Glu Glu Ser Glu Leu Gly		
	210	215	220
25	Asp Asp Val Glu Ala Asn Phe Thr Ala Val Phe Ala Pro Pro Ile Arg		
	225	230	235
	Ala Arg Leu Glu Ala His Leu Pro Gly Val Asn Leu Thr Asp Glu Asp		
	245	250	255
	Val Val Asn Leu Met Asp Met Cys Pro Phe Asp Thr Val Ala Arg Thr		
	260	265	270
30	Ser Asp Ala Thr Gln Leu Ser Pro Phe Cys Asp Leu Phe Thr His Asp		
	275	280	285
	Glu Trp Ile Gln Tyr Asp Tyr Leu Gln Ser Leu Gly Lys Tyr Tyr Gly		
	290	295	300
	Tyr Gly Ala Gly Asn Pro Leu Gly Pro Ala Gln Gly Val Gly Phe Val		
	305	310	315
35	Asn Glu Leu Ile Ala Arg Leu Thr His Ser Pro Val Gln Asp His Thr		
	325	330	335
	Ser Thr Asn His Thr Leu Asp Ser Asn Pro Ala Thr Phe Pro Leu Asn		
	340	345	350
40	Ala Thr Leu Tyr Ala Asp Phe Ser His Asp Asn Thr Met Val Ser Ile		
	355	360	365
	Phe Phe Ala Leu Gly Leu Tyr Asn Gly Thr Lys Pro Leu Ser Thr Thr		
	370	375	380
	Ser Val Glu Ser Ile Glu Glu Thr Asp Gly Tyr Ser Ala Ser Trp Thr		
	385	390	395
45	Val Pro Phe Ala Ala Arg Ala Tyr Val Glu Met Met Gln Cys Glu Ala		
	405	410	415
	Glu Lys Glu Pro Leu Val Arg Val Leu Val Asn Asp Arg Val Val Pro		
	420	425	430
	Leu His Gly Cys Gly Val Asp Lys Leu Gly Arg Cys Lys Arg Asp Asp		
	435	440	445
50	Phe Val Glu Gly Leu Ser Phe Ala Arg Ser Gly Gly Asn Trp Glu Glu		
	450	455	460
	Cys Phe Ala		
	465		

SEQUENCE LISTING.txt

5 <210> 108
 <211> 1404
 <212> DNA
 <213> Artificial Sequence

 10 <220>
 <223> consensus phytase-10-thermo-[3]-Q50T-K91A

 15 <400> 108

 atggcggtgt tcgtcgtgct actgtccatt gccacccgt tcggttccac atccggtaacc
 60
 gccttgggtc ctcgtggtaa ctctcaactct tgtgacactg ttgacgggtgg ttaccaatgt
 120
 tteccagaaa tttctcaactt gtggggtaca tactctccat tcttctcttt ggctgacgaa
 180
 tctgttattt ctccagacgt tccaaagggt tgttagagtta ctttcggtca agttttgtct
 240
 agacacggtg ctagataccc aacttcttct gcgtctaagg cgtactctgc tttgattgaa
 300
 gctattcaaa agaacgctac tgcttcaag ggtaagtacg ctttcttcaa gacttacaac
 360
 tacactttgg gtgctgacga ctgtactcca ttccgtgaac aacaaatggtaaactctgg
 420
 attaagttct acagaagata caaggctttg gctagaaaga ttgttccatt cattagagct
 480
 tctggttctg acagagttat tgcttctgct gaaaagttca ttgaagggtt ccaatctgct
 540
 30 aagtggctg acccaggtgc taacccacac caagcttctc cagttattaa cgttatttt
 600
 ccagaaggtg ctggttacaa caacactttg gaccacgggt tttgtactgc tttcgaagaa
 660
 tctgaattgg gtgacgacgt tgaagctaac ttcaactgctg ttttcgctcc accaattt
 720
 35 gctagattgg aagctcaattt gccaggtgtt aacttgactg acgaagacgt tgtaactt
 780
 atggacatgt gtccattcga cactgttgc agaacttctg acgctactca attgtctcca
 840
 40 ttctgtgact tgttcaactca cgacgaatgg attcaatacg actacttgca atctttgggt
 900
 aagtactacg gttacgggtgc tggtaaccca ttgggtccag ctcaagggtgt tggttgc
 960
 aacgaatttga ttgcttagatt gactcaactct ccagttcaag accacacttc tactaaccac
 1020
 45 actttggact ctaacccagc tactttccca ttgaacgcta ctttgtacgc tgacttctct
 1080
 cacgacaaca ctaggttccat tattttcttgc tttttgggtt tgtacaacgg tactaagcca
 1140
 ttgtctacta cttctgttga atctattgaa gaaactgacg gttactctgc ttcttgact
 1200
 50 gttccattcgttgc ctagttagacg ttacgttcaa atgatgcaat gtgaagctga aaaggaacca
 1260
 ttgggttagag ttttggttaa cgacagagtt gttccattgc acgggtgtgg tgttgacaag
 1320

SEQUENCE LISTING.txt

ttgggttagat gtaagagaga cgacttcgtt gaaggtttgt cttcgctag atctggtggt
 1380
 5 aactgggaag aatgtttcgc ttaa
 1404

10 <210> 109
 <211> 467
 <212> PRT
 <213> Artificial Sequence

15 <220>
 <223> A.fumigatus ATCC 13073 phytase alpha-mutant

<400> 109

Met Gly Val Phe Val Val Leu Leu Ser Ile Ala Thr Leu Phe Gly Ser
 1 5 10 15
 20 Thr Ser Gly Thr Ala Leu Gly Pro Arg Gly Asn His Ser Lys Ser Cys
 20 25 30
 Asp Thr Val Asp Leu Gly Tyr Gln Cys Ser Pro Ala Thr Ser His Leu
 35 40 45
 Trp Gly Thr Tyr Ser Pro Tyr Phe Ser Leu Glu Asp Glu Leu Ser Val
 50 55 60
 Ser Ser Lys Leu Pro Lys Asp Cys Arg Ile Thr Leu Val Gln Val Leu
 65 70 75 80
 Ser Arg His Gly Ala Arg Tyr Pro Thr Ser Ser Lys Ser Lys Tyr
 85 90 95
 30 Lys Lys Leu Ile Thr Ala Ile Gln Ala Asn Ala Thr Asp Phe Lys Gly
 100 105 110
 Lys Tyr Ala Phe Leu Lys Thr Tyr Asn Tyr Thr Leu Gly Ala Asp Asp
 115 120 125
 Leu Thr Pro Phe Gly Glu Gln Gln Leu Val Asn Ser Gly Ile Lys Phe
 130 135 140
 35 Tyr Gln Arg Tyr Lys Ala Leu Ala Arg Ser Val Val Pro Phe Ile Arg
 145 150 155 160
 Ala Ser Gly Ser Asp Arg Val Ile Ala Ser Gly Glu Lys Phe Ile Glu
 165 170 175
 Gly Phe Gln Gln Ala Lys Leu Ala Asp Pro Gly Ala Thr Asn Arg Ala
 180 185 190
 40 Ala Pro Ala Ile Ser Val Ile Ile Pro Glu Ser Glu Thr Phe Asn Asn
 195 200 205
 Thr Leu Asp His Gly Val Cys Thr Lys Phe Glu Ala Ser Gln Leu Gly
 210 215 220
 45 Asp Glu Val Ala Ala Asn Phe Thr Ala Leu Phe Ala Pro Asp Ile Arg
 225 230 235 240
 Ala Arg Leu Glu Lys His Leu Pro Gly Val Thr Leu Thr Asp Glu Asp
 245 250 255
 Val Val Ser Leu Met Asp Met Cys Pro Phe Asp Thr Val Ala Arg Thr
 260 265 270
 50 Ser Asp Ala Ser Gln Leu Ser Pro Phe Cys Gln Leu Phe Thr His Asn
 275 280 285
 Glu Trp Lys Lys Tyr Asp Tyr Leu Gln Ser Leu Gly Lys Tyr Tyr Gly
 290 295 300

SEQUENCE LISTING.txt

5 Tyr Gly Ala Gly Asn Pro Leu Gly Pro Ala Gln Gly Ile Gly Phe Thr
 305 310 315 320
 Asn Glu Leu Ile Ala Arg Leu Thr Arg Ser Pro Val Gln Asp His Thr
 325 330 335
 Ser Thr Asn Ser Thr Leu Val Ser Asn Pro Ala Thr Phe Pro Leu Asn
 340 345 350
 Ala Thr Met Tyr Val Asp Phe Ser His Asp Asn Ser Met Val Ser Ile
 355 360 365
 Phe Phe Ala Leu Gly Leu Tyr Asn Gly Thr Glu Pro Leu Ser Arg Thr
 370 375 380
 Ser Val Glu Ser Ala Lys Glu Leu Asp Gly Tyr Ser Ala Ser Trp Val
 385 390 395 400
 Val Pro Phe Gly Ala Arg Ala Tyr Phe Glu Thr Met Gln Cys Lys Ser
 405 410 415
 Glu Lys Glu Pro Leu Val Arg Ala Leu Ile Asn Asp Arg Val Val Pro
 420 425 430
 Leu His Gly Cys Asp Val Asp Lys Leu Gly Arg Cys Lys Leu Asn Asp
 435 440 445
 20 Phe Val Lys Gly Leu Ser Trp Ala Arg Ser Gly Gly Asn Trp Gly Glu
 450 455 460
 Cys Phe Ser
 465

25 <210> 110
 <211> 1404
 <212> DNA
 <213> Artificial Sequence

30 <220>
 <223> A.fumigatus ATCC 13073 phytase alpha-mutant

<400> 110

35 atgggggttt tcgtcgttct attatctatc gcgactctgt tcggcagcac atcgggcact
 60
 gcgctgggcc cccgtggaaa tcactccaag tcctgcata cggttagacct agggtaccag
 120
 40 tgctccccctg cgacttctca tctatgggc acgtactcgc catacttttc gctcgaggac
 180
 gagctgtccg tgtcgagtaa gcttccaaag gattgccga tcaccttggt acaggtgcta
 240
 tcgcgccatg gagcgcgta cccaaccagc tccaagagca aaaagtataa gaagcttatt
 300
 45 acggcgatcc aggccaatgc caccgactc aaggcaagt acgcctttt gaagacgtac
 360
 aactatactc tgggtgcgga tgacctact ccctttgggg agcagcagct ggtgaactcg
 420
 ggcatacaagt tctaccagag gtacaaggct ctggcgcgca gtgtggtgcc gtttattcgc
 480
 50 gcctcaggct cggaccgggt tattgcttcg ggagagaagt tcatcgaggg gttccagcag
 540
 gcgaagctgg ctgatccctgg cgcgacgaac cgcgccgctc cggcgattag tgtgattatt
 600

SEQUENCE LISTING.txt

ccggagagcg agacgttcaa caatacgctg gaccacggtg tgtcacgaa gtttggaggcg
 660
 5 agtcagctgg gagatgaggt tgcggccaat ttcaactgcgc tctttgcacc cgacatccga
 720
 gctcgccctcg agaagcatct tcctggcgtg acgctgacag acgaggacgt tgtcagtcta
 780
 10 atggacatgt gtccgtttga tacggtagcg cgcaccagcg acgcaagtca gctgtcaccg
 840
 15 ttctgtcaac tcttcactca caatgagtgg aagaagtacg actacattca gtccttggc
 900
 aagtactacg gctacggcgc aggcaaccct ctgggaccgg ctcagggat agggttcacc
 960
 aacgagctga ttgcccgtt gacgcgttcg ccagtgcagg accacaccag cactaactcg
 1020
 15 actctagtct ccaacccggc caccttcccg ttgaacgcta ccatgtacgt cgactttca
 1080
 cacgacaaca gcatggttt catcttctt gcattggcc tgtacaacgg cactgaaccc
 1140
 20 ttgtccccga cctcggttga aagcgccaag gaattggatg ggtattctgc atcctgggtg
 1200
 gtgccttgcg gcgcgcgagc ctacttcgag acgatgcaat gcaagtcgga aaaggagcct
 1260
 cttgtcgcg ctttgattaa tgaccgggtt gtgccactgc atggctgcga tgtggacaag
 1320
 25 ctggggcgat gcaagctgaa tgactttgtc aaggattga gttggccag atctggggc
 1380
 aactggggag agtgctttag ttga
 1404

30 <210> 111
 <211> 467
 <212> PRT
 <213> Artificial Sequence

35 <220>
 <223> consensus phytase-7

<400> 111

40 Met Gly Val Phe Val Val Leu Leu Ser Ile Ala Thr Leu Phe Gly Ser
 1 5 10 15
 Thr Ser Gly Thr Ala Leu Gly Pro Arg Gly Asn Ser His Ser Cys Asp
 20 25 30
 45 Thr Val Asp Gly Gly Tyr Gln Cys Phe Pro Glu Ile Ser His Leu Trp
 35 40 45
 Gly Gln Tyr Ser Pro Tyr Phe Ser Leu Glu Asp Glu Ser Ala Ile Ser
 50 55 60
 Pro Asp Val Pro Asp Asp Cys Arg Val Thr Phe Val Gln Val Leu Ser
 65 70 75 80
 55 Arg His Gly Ala Arg Tyr Pro Thr Asp Ser Lys Gly Lys Lys Tyr Ser
 85 90 95
 Ala Leu Ile Glu Ala Ile Gln Lys Asn Ala Thr Ala Phe Lys Gly Lys
 100 105 110

SEQUENCE LISTING.txt

Tyr Ala Phe Leu Lys Thr Tyr Asn Tyr Thr Leu Gly Ala Asp Asp Leu
 115 120 125
 5 Thr Pro Phe Gly Glu Asn Gln Met Val Asn Ser Gly Ile Lys Phe Tyr
 130 135 140
 Arg Arg Tyr Lys Ala Leu Ala Arg Lys Ile Val Pro Phe Ile Arg Ala
 145 150 155 160
 Ser Gly Ser Ser Arg Val Ile Ala Ser Ala Glu Lys Phe Ile Glu Gly
 165 170 175
 10 Phe Gln Ser Ala Lys Leu Ala Asp Pro Gly Ser Gln Pro His Gln Ala
 180 185 190
 Ser Pro Val Ile Asp Val Ile Ile Ser Glu Ala Ser Ser Tyr Asn Asn
 195 200 205
 15 Thr Leu Asp Pro Gly Thr Cys Thr Ala Phe Glu Asp Ser Glu Leu Ala
 210 215 220
 Asp Thr Val Glu Ala Asn Phe Thr Ala Leu Phe Ala Pro Ala Ile Arg
 225 230 235 240
 Ala Arg Leu Glu Ala Asp Leu Pro Gly Val Thr Leu Thr Asp Thr Glu
 245 250 255
 20 Val Thr Tyr Leu Met Asp Met Cys Ser Phe Glu Thr Val Ala Arg Thr
 260 265 270
 Ser Asp Ala Thr Glu Leu Ser Pro Phe Cys Ala Leu Phe Thr His Asp
 275 280 285
 Glu Trp Arg His Tyr Asp Tyr Leu Gln Ser Leu Lys Lys Tyr Tyr Gly
 290 295 300
 25 His Gly Ala Gly Asn Pro Leu Gly Pro Thr Gln Gly Val Gly Phe Ala
 305 310 315 320
 Asn Glu Leu Ile Ala Arg Leu Thr Arg Ser Pro Val Gln Asp His Thr
 325 330 335
 Ser Thr Asn His Thr Leu Asp Ser Asn Pro Ala Thr Phe Pro Leu Asn
 340 345 350
 30 Ala Thr Leu Tyr Ala Asp Phe Ser His Asp Asn Gly Ile Ile Ser Ile
 355 360 365
 Phe Phe Ala Leu Gly Leu Tyr Asn Gly Thr Ala Pro Leu Ser Thr Thr
 370 375 380
 35 Ser Val Glu Ser Ile Glu Glu Thr Asp Gly Tyr Ser Ser Ala Trp Thr
 385 390 395 400
 Val Pro Phe Ala Ser Arg Ala Tyr Val Glu Met Met Gln Cys Gln Ala
 405 410 415
 Glu Lys Glu Pro Leu Val Arg Val Leu Val Asn Asp Arg Val Val Pro
 420 425 430
 40 Leu His Gly Cys Ala Val Asp Lys Leu Gly Arg Cys Lys Arg Asp Asp
 435 440 445
 Phe Val Glu Gly Leu Ser Phe Ala Arg Ser Gly Gly Asn Trp Ala Glu
 450 455 460
 Cys Phe Ala
 465

45
 <210> 112
 <211> 1426
 <212> DNA
 50 <213> Artificial Sequence

<220>
 <223> consensus phytase-7

SEQUENCE LISTING.txt

<400> 112

5

tatataattt catgggcgtg ttcgtcgtgc tactgtccat tgccacccctt ttcgggttccca
60
catccggta cgccttgggt cctcggttta attctcaact ttgtgacact gttgacgggt
120
gttaccaatg tttccccagaa atttctcaact tgtgggttca atactctcca tactttctt
180
tggaaagacga atctgctatt tctccagacg ttccagacga ctgttagagtt actttcggtt
240
aagtttgtc tagacacggt gctagatacc caactgactc taagggttaag aagtactctg
300
ctttgattga agctattcaa aagaacgcta ctgtttcaa gggtaagtac gctttcttga
360
agacttacaa ctacactttg ggtgctgacg acttgactcc attcggtttaa aaccaaattgg
420
ttaactctgg tattaagttt tacagaagat acaaggctt ggctagaaaag attgtccat
480
tcatttagagc ttctggttct tcttagagttt ttgcttctgc tgaaaagttt attgaaggtt
540
tccaaatctgc taagttggct gaccagggtt ctcaaccaca ccaagcttct ccagttattt
600
acgttattat ttctgacgct ttttttaca acaacacttt ggacccaggta acttgtactg
660
ctttcgaaga ctctgaattt gctgacactg ttgaagctaa cttcactgct ttgttcgctc
720
cagcttattag agcttagattt gaagctgact tgccagggtt tactttgact gacactgaag
780
ttacttactt gatggacatg tgtttttcg aaactgttgc tagaacttct gacgctactg
840
aattgtctcc attctgttgc ttgttcaactc acgacgaatg gagacactac gactacttgc
900
aatcttgaa gaagtactac ggtcacgggtg ctggtaaccc attgggttcca actcaaggtg
960
ttggtttcgc taacgaattt attgcttagat tgacttagatc tccagttcaa gaccacactt
1020
ctactaacca cactttggac tctaaccagg ctactttccc attgaacgct actttgtacg
1080
ctgacttctc tcacgacaaac ggttattat ttttcttcc cgcttgggt ttgtacaacg
1140
gtactgctcc attgtctact acttctgttg aatctattga agaaaactgac ggttactt
1200
ctgcttggac tgttccattt ctttcttagag cttacgttga aatgtatgcaa tgtcaagctg
1260
aaaaggaacc attgggtttaga gttttgggttta acgacagagt tgttccattt cacgggtt
1320
ctgttgacaa gtgggtttaga tgtaagagag acgacttcgt tgaaggtttgc tctttcgctt
1380
gatctgggtgg taactgggttgc gaatgtttcg cttaagaattt catata
1440

216 112

<210> 113

66

SEQUENCE LISTING.txt

<212> PRT
 <213> Artificial Sequence
 5
 <220>
 <223> consensus phytase-12
 10
 <400> 113
 Met Gly Val Phe Val Val Leu Leu Ser Ile Ala Thr Leu Phe Gly Ser
 1 5 10 15
 Thr Ser Gly Thr Ala Leu Gly Pro Arg Gly Asn Ser His Ser Cys Asp
 20 25 30
 15 Thr Val Asp Gly Gly Tyr Gln Cys Phe Pro Glu Ile Ser Ser Asn Trp
 35 40 45
 Ser Pro Tyr Ser Pro Tyr Phe Ser Leu Ala Asp Glu Ser Ala Ile Ser
 20 50 55 60
 25 Pro Asp Val Pro Lys Gly Cys Arg Val Thr Phe Val Gln Val Leu Gln
 65 70 75 80
 Arg His Gly Ala Arg Phe Pro Thr Ser Gly Ala Ala Thr Arg Ile Ser
 85 90 95
 30 Ala Leu Ile Glu Ala Ile Gln Lys Asn Ala Thr Ala Phe Lys Gly Lys
 100 105 110
 Tyr Ala Phe Leu Lys Thr Tyr Asn Tyr Thr Leu Gly Ala Asp Asp Leu
 115 120 125
 Val Pro Phe Gly Ala Asn Gln Ser Ser Gln Ala Gly Ile Lys Phe Tyr
 130 135 140
 35 Arg Arg Tyr Lys Ala Leu Ala Arg Lys Ile Val Pro Phe Ile Arg Ala
 145 150 155 160
 Ser Gly Ser Asp Arg Val Ile Asp Ser Ala Thr Asn Trp Ile Glu Gly
 165 170 175
 40 Phe Gln Ser Ala Lys Leu Ala Asp Pro Gly Ala Asn Pro His Gln Ala
 180 185 190
 Ser Pro Val Ile Asn Val Ile Ile Pro Glu Gly Ala Gly Tyr Asn Asn
 195 200 205
 45 Thr Leu Asp His Gly Leu Cys Thr Ala Phe Glu Glu Ser Glu Leu Gly
 210 215 220
 Asp Asp Val Glu Ala Asn Phe Thr Ala Val Phe Ala Pro Pro Ile Arg
 225 230 235 240
 50 Ala Arg Leu Glu Ala His Leu Pro Gly Val Asn Leu Thr Asp Glu Asp
 245 250 255

SEQUENCE LISTING.txt

5 Val Val Asn Leu Met Asp Met Cys Pro Phe Asp Thr Val Ala Arg Thr
260 265 270

10 Ser Asp Ala Thr Glu Leu Ser Pro Phe Cys Asp Leu Phe Thr His Asp
275 280 285

15 Glu Trp Ile Gln Tyr Asp Tyr Leu Gly Asp Leu Asp Lys Tyr Tyr Gly
290 295 300

20 Thr Gly Ala Gly Asn Pro Leu Gly Pro Ala Gln Gly Val Gly Phe Val
305 310 315 320

25 Asn Glu Leu Ile Ala Arg Leu Thr His Ser Pro Val Gln Asp His Thr
325 330 335

30 Ser Thr Asn His Thr Leu Asp Ser Asn Pro Ala Thr Phe Pro Leu Asn
340 345 350

35 Ala Thr Leu Tyr Ala Asp Phe Ser His Asp Asn Thr Met Val Ala Ile
355 360 365

40 Phe Phe Ala Leu Gly Leu Tyr Asn Gly Thr Lys Pro Leu Ser Thr Thr
370 375 380

45 Ser Val Glu Ser Ile Glu Glu Thr Asp Gly Tyr Ser Ala Ser Trp Leu
385 390 395 400

50 Val Pro Phe Ser Ala Arg Met Tyr Val Glu Met Met Gln Cys Glu Ala
405 410 415

55 Glu Lys Glu Pro Leu Val Arg Val Leu Val Asn Asp Arg Val Val Pro
420 425 430

60 Leu His Gly Cys Gly Val Asp Lys Leu Gly Arg Cys Lys Arg Asp Asp
435 440 445

65 Phe Val Glu Gly Leu Ser Phe Ala Arg Ser Gly Gly Asn Trp Glu Glu
450 455 460

70 Cys Phe Ala
465

75

Claims

- 50 1. A fermentation assembly comprising
- a vessel suitable for carrying out reactions involving living cells;
- 55 at least two storage flasks connected to said vessel for supply of liquids and means to transport said liquids from said storage flasks to said vessel;
- individual appliances monitoring the supply of the contents of said storage flasks to said vessel;

a harvest flask connected to said vessel and means to transport fermentation broth from said vessel to said harvest flask; and

5 a device for controlling and maintaining a constant dilution rate in said vessel with varying rates of individual supply of liquid from said storage flasks to said vessel.

2. An assembly as in claim 1 and in accordance with Figure 1 comprising

10 a fermentor 1 equipped with inlet tubes 2a from storage flasks 2 for supply of liquids; pumps 3 for transporting liquids from the storage flasks 2 to fermentor 1; scales 4 for monitoring the amount of liquids supplies to and discharged from the fermentor; gas inlet tubes 9 and outlet tubes 10; pump 6 for discharging fermentation broth via outlet tubes 5a to a harvest flask 5; main controlling unit 7 for overall process monitoring and steering; controlling unit 11 for monitoring and steering individual control systems 17 for temperature, pH, gas pressure, fermentor content and antifoam agents; circuit 12 including pump 13 for gas supply and taking samples; gas inlet and outlet flow control 14 and 15; and, optionally, sterile filters 16 and thermostating unit 8.

15 3. An assembly as in claims 1 or 2, wherein said storage flasks comprise individual flasks for solutions of carbon, nitrogen, and mineral sources required for the growth of said cells and optimal formation of the desired reaction product.

20 4. An assembly as in any one of claims 1 to 3, wherein said storage flasks comprise at least one individual flask containing a controlling agent.

25 5. An assembly as in any one of claims 1 to 4, wherein said storage flasks comprise an individual flask containing water.

6. An assembly as in any one of claims 1 to 5, wherein said vessel contains a fixed bed and/or an expanded bed and/or a moving bed of immobilized living cells.

30 7. An assembly as in claim 6 wherein the living cells are immobilized on a porous carrier.

8. A continuous process for the manufacture of proteins from cultures of living cells in which process the nutrients and other agents required for the growth of the cells and the optimal production of the desired protein are fed into the reactor individually at a constant dilution rate.

35 9. A continuous process according to claim 8 wherein the protein is selected from the group consisting of catalase, lactase, phenoloxidase, oxidase, oxidoreductase, glucanase cellulase, xylanase and other polysaccharide, peroxidase, lipase, hydrolase, esterase, cutinase, protease and other proteolytic enzymes, aminopeptidase, carboxypeptidase, phytase, lyase, pectinase and other pectinolytic enzymes, amylase, glucosidase, mannosidase, isomerase, invertase, transferase, ribonuclease, chitinase, and desoxyribonuclease or the protein is selected from the group of therapeutic proteins such as antibodies, vaccines, antigens, or of antibacterial and/or health-beneficial proteins such as lactoternin, lactoperoxidase or lysozyme.

40 10. A continuous process according to claim 8 wherein the protein is selected from the group consisting of proteins having the activity of a therapeutic protein such as antibodies, vaccines, antigens.

11. A process as in any one of claims 8 to 10 wherein the cells are immobilized.

12. A process as in any one of claims 8 to 11 wherein the cell is a phytase-producing microorganism.

50 13. A process as in claim 12, wherein the phytase-producing microorganism is *Hansenula polymorpha*.

14. A process as in claim 13, wherein the phytase-producing microorganism is *Hansenula polymorpha* transformed by a DNA encoding a phytase of fungal or consensus origin.

55 15. A process as in any one of claims 8 to 14, wherein the cell or microorganism is in a fixed bed and/or an expanded bed and/or a moving bed on a porous carrier.

16. A process as in any one of claims 8 to 15, wherein the carbon source is glycerol or a sugar like a mono-, di- or polysaccharide.

17. A process as in claim 16, wherein the carbon source is glucose.

5

18. A process as in any one of claims 8 to 15, wherein the carbon source is methanol.

19. A process as in any one of claims 8 to 15, wherein the carbon source is glucose and methanol.

10 20. A process as in 19, wherein the total amount of methanol and glucose is from about 10 to about 500 g/l each.

15

20

25

30

35

40

45

50

55

Figure 2

1

50

<i>A. terreus</i> 9A-1	KhsDCNSVDh GYQCFPELSH kWG1YAPYFS
LQDESPP1D VPEDChITFV	NhsDCTSVDr GYQCFPELSH kWG1YAPYFS
<i>A. terreus</i> cbs	NqsTCDTVdq GYQCFSETSH LWGQYAPFFS
LQDESPP1D VPDDChITFV	NqsSCDTVdq GYQCFSETSH LWGQYAPFFS
<i>A. niger</i> var. <i>awamori</i>	NqsSCDTVdq GYQCFSETSH LWGQYAPFFS
LANESAISPD VPAGCrVTFA	GSkSCDTVd1 GYQCspATSH LWGQYSPFFS
<i>A. niger</i> T213	GSkSCDTVd1 GYQCspATSH LWGQYSPFFS
LANESVISPD VPAGCrVTFA	GSkACDTVEL GYQCspPGTSH LWGQYSPFFS
<i>A. niger</i> NRRL3135	QNHSCNTADG GYQCFPNVSH VWGQYSPYFS
LANESVISPE VPAGCrVTFA	DSHSCNTVEG GYQCrPEISH swGQYSPFFS
<i>A. fumigatus</i> 13073	ESRPCDTpD1 GFQCgTAISH FWGQYSPYFS
LEDElSVSSK LPKDCrITLV	
<i>A. fumigatus</i> 32722	
LEDElSVSSK LPKDCrITLV	
<i>A. fumigatus</i> 58128	
LEDElSVSSK LPKDCrITLV	
<i>A. fumigatus</i> 26906	
LEDElSVSSK LPKDCrITLV	
<i>A. fumigatus</i> 32239	
LEDElSVSSD LPKDCrVTFA	
<i>E. nidulans</i>	
IEQESAISeD VPHGCeVTFA	
<i>T. thermophilus</i>	
LADQSEISPD VPQNCKITFV	
<i>M. thermophila</i>	
VpSE1DaS.. IPDDCeVTFA	
Consensus	NSHSCDTVdg GYQCFPEISH LWGQYSPYFS
LEDESAISPD VPDDC-VTFV	
Consensus phytase	NSHSCDTVdg GYQCFPEISH LWGQYSPYFS
LEDESAISPD VPDDCRVTFA	

51

100

<i>A. terreus</i> 9A-1	QVLARHGARs PThSKtKAYA AtIAAIQKSA
TaFpGKYAFL QSYNYSLDSE	QVLARHGARs PTDSKtKAYA AtIAAIQKNA
<i>A. terreus</i> cbs	QVLSRHGARY PTESKgKkYS ALIEEIQQNV
TaLpGKYAFL KSYNYSMGSE	QVLSRHGARY PTESKgKkYS ALIEEIQQNV
<i>A. niger</i> var. <i>awamori</i>	QVLSRHGARY PTESKgKkYS ALIEEIQQNV
TtFDGKYAFL KTYNYSLGAD	QVLSRHGARY PTESKgKkYS ALIEEIQQNV
<i>A. niger</i> T213	QVLSRHGARY PTESKgKkYS ALIEEIQQNV
TtFDGKYAFL KTYNYSLGAD	QVLSRHGARY PTESKgKkYS ALIEEIQQNA
<i>A. niger</i> NRRL3135	QVLSRHGARY PTESKgKkYS ALIEEIQQNA
TtFDGKYAFL KTYNYSLGAD	QVLSRHGARY PTSSKsKkYK kLVTAlQaNA
<i>A. fumigatus</i> 13073	QVLSRHGARY PTSSKsKkYK kLVTAlQaNA
TdFKGKFAFL KTNYTTLGAD	QVLSRHGARY PTSSKsKkYK kLVTAlQaNA
<i>A. fumigatus</i> 32722	QVLSRHGARY PTSSKsKkYK kLVTAlQaNA
TdFKGKFAFL KTNYTTLGAD	QVLSRHGARY PTSSKsKkYK kLVTAlQaNA
<i>A. fumigatus</i> 58128	QVLSRHGARY PTSSKsKkYK kLVTAlQaNA
TdFKGKFAFL KTNYTTLGAD	QVLSRHGARY PTSSKsKkYK kLVTAlQaNA
<i>A. fumigatus</i> 26906	QVLSRHGARY PTSSKsKkYK kLVTAlQaNA
TdFKGKFAFL KTNYTTLGAD	QVLSRHGARY PTASKsKkYK kLVTAlQKNA
<i>A. fumigatus</i> 32239	
TeFKGKFAFL ETYNYTLGAD	

<i>E. nidulans</i>	QVLSRHGARY PTESKsKAYS GLIEAIQKNA
TsFwGQY AFL ESY NYTLGAD	
<i>T. thermophilus</i>	QLLSRHGARY PTSSKtE LYS QLISrI QKTA
TaYKGyYAFL KDYrYqLGAN	
<i>M. thermophila</i>	QVLSRHGARa PT1KRaaSYv DLIDrIHhGA
IsYgPgYEFL RTYDYTLGAD	
Consensus	QVLSRHGARY PTSSK-KAYS ALIEAIQKNA T-
FKGKY AFL KTNYN TYTLGAD	
Consensus phytase	QVLSRHGARY PTSSKSKAYS ALIEAIQKNA
TAFKGKY AFL KTNYN TYTLGAD	

101

150	
<i>A. terreus</i> 9A-1	ELTPFGrNQL rD1GaQFYeR YNALTRhInP
FVRATDASRV hESAEKFVEG	
<i>A. terreus</i> cbs	NLTPFGrNQL qD1GaQFYRR YDTLTRhInP
FVRAADSSRV hESAEKFVEG	
<i>A. niger</i> var. <i>awamori</i>	DLTPFGEQEL VNSGIKFYQR YESLTRNIIP
FIRSSGSSRV IASGEKFIEG	
<i>A. niger</i> T213	DLTPFGEQEL VNSGIKFYQR YESLTRNIIP
FIRSSGSSRV IASGEKFIEG	
<i>A. niger</i> NRRL3135	DLTPFGEQEL VNSGIKFYQR YESLTRNIVP
FIRSSGSSRV IASGKKFIEG	
<i>A. fumigatus</i> 13073	DLTPFGEQQL VNSGIKFYQR YKALAR SVVP
FIRASGSDRV IASGEKFIEG	
<i>A. fumigatus</i> 32722	DLTPFGEQQL VNSGIKFYQR YKALAR SVVP
FIRASGSDRV IASGEKFIEG	
<i>A. fumigatus</i> 58128	DLTPFGEQQL VNSGIKFYQR YKALAR SVVP
FIRASGSDRV IASGEKFIEG	
<i>A. fumigatus</i> 26906	DLTAFGEQQL VNSGIKFYQR YKALAR SVVP
FIRASGSDRV IASGEKFIEG	
<i>A. fumigatus</i> 32239	DLTPFGEQQM VNSGIKFYQK YKALAgSVVP
FIRSSGSDRV IASGEKFIEG	
<i>E. nidulans</i>	DLTiFGEnQM VDSGaKFYRR YKNLARKnTP
FIRASGSDRV VASAEEKFING	
<i>T. thermophilus</i>	DLTPFGENQM IQ1GIKFYnH YKSLARNaVP
FVRCSGSDRV IASGr1FIEG	
<i>M. thermophila</i>	ELTRtGQQQM VNSGIKFYRR YRALARKsIP
FVRTAGqDRV VhSAENFTQG	
Consensus	DLTPFGENQM VNSGIKFYRR YKALARK-VP
FVRASGSDRV IASAEKFIEG	
Consensus phytase	DLTPFGENQM VNSGIKFYRR YKALARKIVP
FIRASGSDRV IASAEKFIEG	

151

200

<i>A. terreus</i> 9A-1	FQTARqDDHh ANpHQSPPrV DVaIPEGSAY
NNTLEHSICT AFES...STV	
<i>A. terreus</i> cbs	FQNARqGDPH ANpHQSPPrV DVVIPEGTAY
NNTLEHSICT AFEA...STV	
<i>A. niger</i> var. <i>awamori</i>	FQSTKLkDPr AqpgQSSPki DVVISEASSs
NNTLDPGTCT VFED...SEL	
<i>A. niger</i> T213	FQSTKLkDPr AqpgQSSPki DVVISEASSs
NNTLDPGTCT VFED...SEL	
<i>A. niger</i> NRRL3135	FQSTKLkDPr AqpgQSSPki DVVISEASSs
NNTLDPGTCT VFED...SEL	
<i>A. fumigatus</i> 13073	FQqAKLADPG A.TNRAAPAI SVIYPESETF
NNTLDHGVCT kFEA...SQL	
<i>A. fumigatus</i> 32722	FQqAKLADPG A.TNRAAPAI SVIYPESETF
NNTLDHGVCT kFEA...SQL	
<i>A. fumigatus</i> 58128	FQqAKLADPG A.TNRAAPAI SVIYPESETF
NNTLDHGVCT kFEA...SQL	
<i>A. fumigatus</i> 26906	FQqAKLADPG A.TNRAAPAI SVIYPESETF
NNTLDHGVCT kFEA...SQL	
<i>A. fumigatus</i> 32239	FQqANVADPG A.TNRAAPVI SVIYPESETY
NNTLDHSVCT NFEE...SEL	
<i>E. nidulans</i>	FRKAQLhDHG S..gQATPVV NVIIPEiDGF
NNTLDHSTCV SFEN...DEr	
<i>T. thermophilus</i>	FQSAKVLDPH SDKHDAPPtI NVIIeEGPSY
NNTLDtGSCP VFED...SSg	
<i>M. thermophila</i>	FHSALLADRG STvRPTlPyd mVVIPETAGa
NNTLHNNDICT AFEEgpySTI	
 Consensus	FQSAKLADEPG S-PHQASPVI NVIYPEGSY
NNTLDHGCT AFED---SEL	
 Consensus phytase	FQSAKLADEPG SQPHQASPVI DVIIYPEGSY
NNTLDHGCT AFED...SEL	

201

250

<i>A. terreus</i> 9A-1	GDDAvANFTA VFAPAIaQRL EADLPGVqLS
TDDVVnLMAM CPFETVS1TD	
<i>A. terreus</i> cbs	GDAAADNFTA VFAPAIakRL EADLPGVqLS
ADDVVnLMAM CPFETVS1TD	
<i>A. niger</i> var. <i>awamori</i>	ADTVEANFTA TFAPSIRQRL ENDLSGVTLT
DTEVTVLMDM CSFDTISTST	
<i>A. niger</i> T213	ADTVEANFTA TFAPSIRQRL ENDLSGVTLT
DTEVTVLMDM CSFDTISTST	
<i>A. niger</i> NRRL3135	ADTVEANFTA TFVPSIRQRL ENDLSGVTLT
DTEVTVLMDM CSFDTISTST	
<i>A. fumigatus</i> 13073	GDEVAANFTA 1FAPDIRARA EkHLPGVTLT
DEDVVSLMDM CSFDTVARTS	
<i>A. fumigatus</i> 32722	GDEVAANFTA 1FAPDIRARA EkHLPGVTLT
DEDVVSLMDM CSFDTVARTS	
<i>A. fumigatus</i> 58128	GDEVAANFTA 1FAPDIRARA EkHLPGVTLT
DEDVVSLMDM CSFDTVARTS	
<i>A. fumigatus</i> 26906	GDEVAANFTA 1FAPDIRARA KkHLPGVTLT
DEDVVSLMDM CSFDTVARTS	
<i>A. fumigatus</i> 32239	GDEVEANFTA 1FAPPAIRARI EKHLPGVqLT
DDDVVSLMDM CSFDTVARTA	
<i>E. nidulans</i>	ADEIEANFTA IMGPIRKRL ENDLPGIKLT
NENVIyLMDM CSFDTMARTA	
<i>T. thermophilus</i>	GHDAQEKFak qFAPAIleKI KDHLPGVDLA
vSDVpyLMDL CPFETLARNh	
<i>M. thermophila</i>	GDDAQDTY1S TFAGPItARV NANLPGANLT
DADTVaLMDL CPFETVASSs	

Consensus GDDAEANFTA TFAPAIRARL EADLPGVTLT DEDVV-
LMDM CPFETVARTS
Consensus phytase GDDVEANFTA LFAPAIRARL EADLPGVTLT
DEDVVYLMMDM CPFETVARTS

251

300

<i>A. terreus</i> 9A-1DAhTSPFC DLFTAtEWtq
YNYLLSLDKY YGYGGGNPLG	
<i>A. terreus</i> cbsDAhTSPFC DLFTAaEWtq
YNYLLSLDKY YGYGGGNPLG	
<i>A. niger</i> var. <i>awamori</i>vDTKLSPFC DLFTHdEwiH
YDYLQSLkKY YGHGAGNPLG	
<i>A. niger</i> T213vDTKLSPFC DLFTHdEwiH
YDYLRLSLkKY YGHGAGNPLG	
<i>A. niger</i> NRRL3135vDTKLSPFC DLFTHdEwin
YDYLQSLKKY YGHGAGNPLG	
<i>A. fumigatus</i> 13073DASQLSPFC QLFTHnEWkk
YNYLQSLGKY YGYGAGNPLG	
<i>A. fumigatus</i> 32722DASQLSPFC QLFTHnEWkk
YNYLQSLGKY YGYGAGNPLG	
<i>A. fumigatus</i> 58128DASQLSPFC QLFTHnEWkk
YNYLQSLGKY YGYGAGNPLG	
<i>A. fumigatus</i> 26906DASQLSPFC QLFTHnEWkk
YNYLQSLGKY YGYGAGNPLG	
<i>A. fumigatus</i> 32239DASELSPFC AIFTHnEWkk
YDYLQSLGKY YGYGAGNPLG	
<i>E. nidulans</i>HGTELSPFC AIFTEKEWlq
YDYLQSLSKY YGYGAGSPLG	
<i>T. thermophilus</i>TDT.LSPFC ALsTQeEWqa
YDYYQSLGKY YGnGGGNPLG	
<i>M. thermophila</i>	sdpatadagga gNGrpLSPFC rLFSEsEWra
YDYLQSVGKW YGYGPGNPLG	
Consensus	----- -DATELSPFC ALFTE-EW--
YDYLQSLGKY YGYGAGNPLG	
Consensus phytaseDATELSPFC ALFTHDEWRQ
YDYLQSLGKY YGYGAGNPLG	

301

350

A. <i>terreus</i> 9A-1	PVQGVGWA _N E LMARLTRAPV HDHTCVNNTL
DASPATFPLN ATLYADFSHD	
A. <i>terreus</i> cbs	PVQGVGWA _N E LIARLTRSPV HDHTCVNNTL
DANPATFPLN ATLYADFSHD	
A. <i>niger</i> var. <i>awamori</i>	PTQGVGYA _N E LIARLTHSPV HDDTSSNHTL
DSNPATFPLN STLYADFSHD	
A. <i>niger</i> T213	PTQGVGYA _N E LIARLTHSPV HDDTSSNHTL
DSNPATFPLN STLYADFSHD	
A. <i>niger</i> NRRL3135	PTQGVGYA _N E LIARLTHSPV HDDTSSNHTL
DSSPATFPLN STLYADFSHD	
A. <i>fumigatus</i> 13073	PAQGIGFTNE LIARLTRSPV QDHTSTNsTL
vSNPATFPLN ATMYVDFSHD	
A. <i>fumigatus</i> 32722	PAQGIGFTNE LIARLTRSPV QDHTSTNsTL
vSNPATFPLN ATMYVDFSHD	
A. <i>fumigatus</i> 58128	PAQGIGFTNE LIARLTRSPV QDHTSTNsTL
vSNPATFPLN ATMYVDFSHD	
A. <i>fumigatus</i> 26906	PAQGIGFTNE LIARLTRSPV QDHTSTNsTL
vSNPATFPLN ATMYVDFSHD	
A. <i>fumigatus</i> 32239	PAQGIGFTNE LIARLTNSPV QDHTSTNsTL
DSDPATFPLN ATIYVDFSHD	
E. <i>nidulans</i>	PAQGIGFTNE LIARLTQSPV QDNTSTNHTL
DSNPATFPLD rKLYADFSHD	
T. <i>thermophilus</i>	PAQGVGFvNE LIARMTHSPV QDYTTVNHTL
DSNPATFPLN ATLYADFSHD	
M. <i>thermophila</i>	PTQGVGFvNE LLARLAGvPV RDgTSTNR _L
DGDPrTFPLG rPLYADFSHD	
 Consensus	PAQGVGF-NE LIARLTHSPV QDHTSTNHTL
DSNPATFPLN ATLYADFSHD	
 Consensus phytase	PAQGVGFANE LIARLTRSPV QDHTSTNHTL
DSNPATFPLN ATLYADFSHD	

351

400

A. <i>terreus</i> 9A-1	SNLVSIFWAL GLYNGTAPLS qTSVESVSQT
DGYAAAWTVP FAARAYVEMM	
A. <i>terreus</i> cbs	SNLVSIFWAL GLYNGTKPLS qTTVEDITrT
DGYAAAWTVP FAARAYIEMM	
A. <i>niger</i> var. <i>awamori</i>	NGIISILFAL GLYNGTKPLS TTTVENITQT
DGFSSAWTVP FASR1YVEMM	
A. <i>niger</i> T213	NGIISILFAL GLYNGTKPLS TTTVENITQT
DGFSSAWTVP FASR1YVEMM	
A. <i>niger</i> NRRL3135	NGIISILFAL GLYNGTKPLS TTTVENITQT
DGFSSAWTVP FASR1YVEMM	
A. <i>fumigatus</i> 13073	NSMVSIFFAL GLYNGTEPLS rTSVEsAKE1
DGYSASWVVP FGARAYFETM	
A. <i>fumigatus</i> 32722	NSMVSIFFAL GLYNGTGPLS rTSVEsAKE1
DGYSASWVVP FGARAYFETM	
A. <i>fumigatus</i> 58128	NSMVSIFFAL GLYNGTEPLS rTSVEsAKE1
DGYSASWVVP FGARAYFETM	
A. <i>fumigatus</i> 26906	NSMVSIFFAL GLYNGTEPLS rTSVEsAKE1
DGYSASWVVP FGARAYFETM	
A. <i>fumigatus</i> 32239	NGMIPIFFAM GLYNGTEPLS qTSeESTKES
NGYSASWAVP FGARAYFETM	
E. <i>nidulans</i>	NSMISIFFAM GLYNGTQPLS mDSVESIQEm
DGYAASWTVP FGARAYFELM	
T. <i>thermophilus</i>	NTMTSIFaAL GLYNGTAkLS TTEIKSIEET
DGYSAAWTVP FGGRAYIEMM	
M. <i>thermophila</i>	NDMMGVLGAL GaYDGVPPLD KTArrDpEE1
GGYAASWAVP FAARIYVEKM	

Consensus NSMISIFFAL GLYNGTAPLS TTSVESIEET
DGYAASWTVP FGARAYVEMM

Consensus phytase NSMISIFFAL GLYNGTAPLS TTSVESIEET
DGYSASWTVP FGARAYVEMM

401

450

A. terreus 9A-1 QC..... RAEKE PLVRVLVNDR
VMPLHGCPTD KLGRCKrDAF

A. terreus cbs QC..... RAEKQ PLVRVLVNDR
VMPLHGCACD NLGRCKrDDF

A. niger var. *awamori* QC..... QAEQE PLVRVLVNDR
VVPLHGCPIID aLGRCTrDSF

A. niger T213 QC..... QAEQE PLVRVLVNDR
VVPLHGCPIID aLGRCTrDSF

A. niger NRRL3135 QC..... QAEQE PLVRVLVNDR
VVPLHGCPIVD aLGRCTrDSF

A. fumigatus 13073 QC..... KSEKE PLVRALINDR
VVPLHGCDVD KLGRCKLNDF

A. fumigatus 32722 QC..... KSEKE PLVRALINDR
VVPLHGCDVD KLGRCKLNDF

A. fumigatus 58128 QC..... KSEKE SLVRALINDR
VVPLHGCDVD KLGRCKLNDF

A. fumigatus 26906 QC..... KSEKE PLVRALINDR
VVPLHGCDVD KLGRCKLNDF

A. fumigatus 32239 QC..... KSEKE PLVRALINDR
VVPLHGCAVD KLGRCKLKDF

E. nidulans QC..... E.KKE PLVRVLVNDR
VVPLHGCAVD KFGRCTLDDW

T. thermophilus QC..... DDSDE PVVRVLVNDR
VVPLHGCEVD SLGRCKrDDF

M. thermophila RCsggggggg ggegrQEKDE eMVRVLVNDR
VMTLkGCGAD ErGMCTLErF

Consensus QC----- QAEKE PLVRVLVNDR
VVPLHGCAVD KLGRCKLDDF

Consensus phytase QC..... QAEKE PLVRVLVNDR
VVPLHGCAVD KLGRCKrDDF

451

471

A. terreus 9A-1 VAGLSFAQAG GNWADCF~~~ ~
A. terreus cbs VEGLSFARAG
GNWAECF~~~ ~

A. niger var. *awamori* VrGLSFARSG GDWAECsA~~~ ~
A. niger T213 VrGLSFARSG GDWAECFA~~~ ~
A. niger NRRL3135 VrGLSFARSG
GDWAECFA~~~ ~

A. fumigatus 13073 VKGLSWARSG GNWGECFS~~~ ~
A. fumigatus 32722 VKGLSWARSG GNWGECFS~~~ ~
A. fumigatus 58128 VKGLSWARSG GNWGECFS~~~ ~
A. fumigatus 26906 VKGLSWARSG GNWGECFS~~~ ~
A. fumigatus 32239 VKGLSWARSG
GNSEQSFS~~~ ~

E. nidulans VEGLNFARSG GNWkTCFT1~ ~
T. thermophilus VrGLSFARqG GNWEGCYAas e
M. thermophila IESMAFARGN GKWD1CFA~~~ ~

Consensus VEGLSFARSG GNWAECFA-- ~
Consensus phytase VEGLSFARSG GNWAECFA.. .

Figure 3

CP-1

Eco RI M G V F V V L L S I A T L F G S T
TATATGAATTCATGGCGTGTCGTGTGCTACTGTCCATTGCCACCTTGTTCGGTTCCA

1 -----+-----+-----+-----+-----+-----+ 60

ATATACTTAAGTACCCGCACAAGCAGCACGATGACAGGTAACGGTGGAACAGCCAAGGT

S G T A L G P R G N S H S C D T V D G G

CATCCGGTACCGCCTTGGGTCCCTCGTGGTAATTCTCACTCTTGACACTGTTGACGGTG

61 -----+-----+-----+-----+-----+-----+ 120

GTAGGCCATGGCGAACCCAGGAGCACCATTAAGAGTGAGAACACTGTGACAACTGCCAC

CP-2

CP-3

Y Q C F P E I S H L W G Q Y S P Y F S L
GTTACCAATGTTCCCAGAAATTCTCACTTGTGGGTCAATACTCTCCATACTCTCTT

121 -----+-----+-----+-----+-----+-----+ 180

CAATGGTTACAAAGGGTCTTAAAGAGTGAAACACCCAGTTATGAGAGGTATGAAGAGAA

E D E S A I S P D V P D D C R V T F V Q

TGGAAGACGAATCTGCTATTCTCCAGACGTTCCAGACGACTGTAGAGTTACTTCGTC

181 -----+-----+-----+-----+-----+-----+ 240

ACCTTCTGCTTAGACGATAAAGAGGTCTGCAAGGTCTGCTGACATCTCAATGAAAGCAAG

CP-4

CP-5

V L S R H G A R Y P T S S K S K A Y S A

AAGTTTGTCTAGACACGGTGCTAGATAACCAACTCTTCTAAGTCTAAGGCTTACTCTG

241 -----+-----+-----+-----+-----+-----+-----+ 300

TTCAAAACAGATCTGTGCCACGATCTATGGGTTGAAGAAGATTCAAGATTCCAATGAGAC

L I E A I Q K N A T A F K G K Y A F L K

CTTTGATTGAAGCTATTCAAAGAACGCTACTGCTTTCAAGGGTAAGTACGCTTCCTTGA

301 -----+-----+-----+-----+-----+-----+-----+ 360

GAAACTAACCTCGATAAGTTTCTTGCATGACGAAAGTTCCCATTCAATGCGAAAGAACT

CP-6

CP-7

T Y N Y T L G A D D L T P F G E N Q M V

AGACTTACAAC~~T~~ACACTTGGGTGCTGACC~~A~~CTTGACTCCATTGGTGA~~A~~ACCAATGG

361 -----+-----+-----+-----+-----+-----+-----+ 420

TCTGAATGTTGATGTGA~~A~~ACCCACGACTGCTGA~~A~~CTGAGGTAA~~G~~CCACTTTGGTTACC

N S G I K F Y R R Y K A L A R K I V P F

TTA~~A~~CTCTGGTATTAAGTTCTACAGAAGATA~~C~~ACGGCTTG~~G~~CTAGAAAGATTGTTCCAT

421 -----+-----+-----+-----+-----+-----+-----+ 480

AATTGAGACCATAATTCAAGATGTCTTCTATGTTCCGAACCGATCTTCTAACAGGTA

CP-8

CP-9

I R A S G S D R V I A S A E K F I E G F

TCATTAGAGCTTCTGGTCTGACAGAGTTATTGCTTCTGCTGA~~A~~AGTT~~C~~ATTGAAGGTT

481 -----+-----+-----+-----+-----+-----+-----+ 540

AGTAATCTCGAAGACCAAGACTGTCTCAATAACGAAGACGACTTTCAAGTAAC~~T~~CCAA

EP 1 092 764 A2

Q S A K L A D P G S Q P H Q A S P V I D
TCCAATCTGCTAAGTTGGCTGACCCAGGTTCTCAACCACACCAAGCTTCTCCAGTTATTG

541 -----+-----+-----+-----+-----+-----+-----+ 600

AGGTTAGACGATTCAACCGACTGGGTCCAAGAGTTGGTGTGGTC**GAAGAGGTCAATAAC**

CP-10

CP-11

V I I P E G S G Y N N T L D H G T C T A
ACGTTATTATTCCAGAAGGATCcGGTTACAACAACTTGGACCACGGTACTTGTACTG****

601 -----+-----+-----+-----+-----+-----+-----+ 660

TGCAATAATAAGGTCTCCtAGgCCAATGTTGTTGAAACCTGGTGCCATGAACATGAC

F E D S E L G D D V E A N F T A L F A P

CTTTCGAAGACTCTGAATTGGGTGACGACGTTGAAGCTAACCTCACTGCTTGTTCGCTC

661 -----+-----+-----+-----+-----+-----+-----+ 720

GAAAGCTTCTGAGACTTAACCCACTGCTGCAACTTCGATTGAAGTGACGAAACAGCGAG

CP-12

A I R A R L E A D L P G V T L T D E D V

CAGCTATTAGAGCTAGATTGGAAGCTGACTTGCCAGGTGTTACTTGACTGACGAAGACG

721 -----+-----+-----+-----+-----+-----+-----+ 780

GTGATAATCTCGATCTAACCTTCGACTGAACGGTCCACAATGAAACTGACTGCTTCTGC

CP-13

V Y L M D M C P F E T V A R T S D A T E

TTGTTTACCTGATGGACATGTGTCCTTCGAAACTGTTGCTAGAACTTCTGACGCTACTG

781 -----+-----+-----+-----+-----+-----+-----+ 840

AACAAATGAACTACCTGTACACAGGTAAGCTTGACAACGATCTGAAGACTGCGATGAC

L S P F C A L F T H D E W R Q Y D Y . L Q

AATTGTCTCCATTCTGTGCTTGTTCACTCACGACGAATGGAGACAATACGACTACTG

841 -----+-----+-----+-----+-----+-----+-----+ 900

TTAACAGAGGTAAGACACGAAACAAGTGAGTGCTGCTTACCTCTGTTATGCTGATGAACG

CP-14

CP-15

S L G K Y Y G Y G A G N P L G P A Q G V

AATCTTGGTAAGTACTACGGTTACGGTGCTGGTAACCCATTGGTCCAGCTCAAGGTG

901 -----+-----+-----+-----+-----+-----+ 960

TTAGAAAACCCATTCATGATGCCAATGCCACGACCATTGGTAACCCAGGTGAGTTCCAC

G F A N E L I A R L T R S P V Q D H T S

TTGGTTTCGCTAACGAATTGATTGCTAGATTGACTAGATCTCCAGTTCAAGACCACACTT

961 -----+-----+-----+-----+-----+-----+ 1020

1020

AACCAAAGCGATTGCTTAACGATCTAACTGATCTAGAGGTCAAGTTCTGGTGTGAA

CP-16

CP-17

T N H T L D S N P A T F P L N A T L Y A

CTACTAACACACTTGGACTCTAACCCAGCTACTTCCCATTGAACGCTACTTGTACG

1021 -----+-----+-----+-----+-----+-----+

1080

GATGATTGGTGTGAAACCTGAGATTGGGTCGATGAAAGGGTAACTTGCGATGAAACATGC

D F S H D N S M I S I F F A L G L Y N G

CTGACTTCTCTCACGACAACCTATGATTCTATTTCTTCGCTTGGTTGTACAACG

1081 -----+-----+-----+-----+-----+-----+
1140

GACTGAAGAGAGTGCTGTTGAGATACTAAAGATAAAAGAAGCGAAACCCAAACATGTTGC

CP-18

CP-19

T A P L S T T S V E S I E E T D G Y S A

GTACTGCTCCATTGTCTACTACTTCTGTTGAATCTATTGAAGAAACTGACGGTTACTCTG

1141 -----+-----+-----+-----+-----+-----+
1200

CATGACGGAGGTAACAGATGATGAAGACAACCTAGATAACTTCTTGACTGCCAATGAGAC

S W T V P F G A R A Y V E M M Q C Q A E

CTTCTGGACTGTTCCATTGGTGTAGAGCTTACGTTGAAATGATGCAATGTCAAGCTG

1201 -----+-----+-----+-----+-----+-----+
1260

GAAGAACCTGACAAGGTAAGCCACGATCTGAATGCAACTTACTACGTTACAGTCGAC

CP-20

CP-21

K E P L V R V L V N D R V V P L H G C A

AAAAGGAACCATTGGTTAGAGTTTGGTTAACGACAGAGTTGTTCCATTGCACGGTTGTG

1261 -----+-----+-----+-----+-----+-----+
1320

TTTTCCTGGTAACCAATCTCAAAACCAATTGCTGTCTCAACAAGGTAACGTGCCAACAC

V D K L G R C K R D D F V E G L S F A R
CTGTTGACAAGTTGGGTAGATGTAAGAGAGACGACTTCGTTGAAGGTTGTCTTCGCTA

1321 -----+-----+-----+-----+-----+-----+
 1380

GACAACTGTTCAACCCATCTACATTCTCTGCTGAAGCAACTTCC**AAACAGAAAGCGAT**

CP-22

S G G N W A E C F A * Eco RI

GATCTGGTGGTAACGGGCTGAATGTTCGCTTAAGAATTCATATA

1381 -----+-----+-----+-----+-----+----- 1426

CTAGACCACCATTGACCCGACTTACAAAGCGAATTCTTAAGTATAT

Figure 4

1
 50

P. involutus (phyA1) SvP.KnTAPt FPIPeSeQrn WSPYSPYFPL AeYkAPPAGC
 QInQVNIIQR

P. involutus (phyA2) SvP.RnIAPK FSIPeSeQrn WSPYSPYFPL AeYkAPPAGC
 EInQVNIIQR

T. pubescens hiPlRdTSAc LdVTrDvQqs WSmYSPYFPa AtYvAPPASC
 QInQVHIIQR

A. pediades GgvvQaTfvQ pfFPpQiQds WAAYTPYYPV qaYtPPPkDC
 KitQVNIIQR

P. lycii StQfsfvAAQ LPiPaQntsW GGPYdPFFPV EpYaAPPEGC
 tVtQVNLIQR

Basidio
QVNIIQR

S-P-R-TAAQ LPIP-Q-Q-- WSPYSPYFPV A-Y-APPAGC QI-

51

100

P. involutus (*phyA1*) HGARFPTSGA TTRIKAGLTK LQGvqnFTDA KFNFIksfkY
dLGnsDLVPF

P. involutus (*phyA2*) HGARFPTSGA ATRIKAGLSK LQSvqnFTDP KFDFIksfTY
dLGtsDLVPF

T. pubescens HGARFPTSGA AkRIQTAVAK LKAAsnyTDP lLAFVtNyTY
sLGqDsLVeL

A. pediades HGARFPTSGA GTRIQAAVkk LQSAktyTDP RLDFLtNyTY
tLGhDDLVPF

P. lycii HGARWPTSGA rSRqvAAVAK IQmArpFTDP KYEFLnDfvY
kFGvADLLPF

Basidio HGARFPTSGA ATRIQAAVAK LQSA---TDP KLDFL-N-TY -LG-
DDLVPF

101

150

P. involutus (*phyA1*) GAaQSfDAGQ EAFARYSkLV SkNNLPFIRA dGSDRVVDSA
TNWTAGFAsA

P. involutus (*phyA2*) GAaQSfDAG1 EvFARYSkLV SsDNLPFIRS dGSDRVVDTA
TNWTAGFAsA

T. pubescens GAtQSSEAGQ EAFTRYSsLV SaDELPFVRA SGSDRVVATA
nNWTAGFAlA

A. pediades GALQSSQAGE ETFqRYSfLV SKENLPFVRA SSSNRVVDSA
TNWTEGFSAA

P. lycii GAnQShQTGt DmYTRYStLf egGDVPFVRA AGdQRVVDSs
TNWTAGFGdA

Basidio GA-QSSQAGQ EAFTTRYS-LV S-DNLPPFVRA SGSDRVVDSA
TNWTAGFA-A

151

200

P. involutus (phyA1) ShNTvqPkLn LILPQtGNDT LEDNMCPaAG DSDPQvNaWL
AVafPSITAR

P. involutus (phyA2) SrNAiqPkLd LILPQtGNDT LEDNMCPaAG ESDPQvDaWL
AsafPSVTAQ

T. pubescens SsNSitPvLs VIISEaGNDT LDDNMCPaAG DSDPQvNqWL
AqFAPPMTAR

A. pediades ShHvlnPiLf VILSEslNDT LDDaMCPnAG sSDPQtGiWt
SIYGTPIAAnR

P. lycii SgETvlPtLq VVLqEeGNcT LcNNMCPnEv DGDest.tWL
GVFAPnITAR

Basidio S-NT--P-L- VILSE-GNDT LDDNMCP-AG DSDPQ-N-WL
AVFAPPITAR

201

250

P. involutus (phyA1) LNAAAPSvNL TDtDAfNLvs LCAF1TVSkE kkSdFCtlFE
giPGsFeAFa

P. involutus (*phyA2*) LNAAAPGANL TD~~a~~DAfNLvs LCPFmTVSkE qkSdFCtLFE
giPGsFeAFa

T. pubescens LNAGAPGANL TD~~t~~DTyNLlt LCPFETVAtE rrSeFCDIYE
elQAE.dAFa

A. pediades LNqqAPGANI TAaDvsNLip LCAFETIVkE tpSpFCNLF.
.tPEEFaqFe

P. lycii LNAAAPSANL SDsDALtLmd MCPFDLSSG naSpFCDLF.
.tAEEYvSYe

Basidio LNAAAPGANL TD-DA-NL-- LCPFETVS-E --S-FCDLFE --PEEF-
AF-

251

300

P. involutus (*phyA1*) YgGDLDKFYG TG~~Y~~GQeLGPV QGVGYVNELI ARLTnsAVRD
NTQTNRTLDA

P. involutus (*phyA2*) YaGDLDKFYG TG~~Y~~GQALGPV QGVGYINELL ARLTnsAVnD
NTQTNRTLDA

T. pubescens YnADLDKFYG TG~~Y~~GQPLGPV QGVGYINELI ARLTaQnVsD
HTQTNsTLDS

A. pediades YfGDLDKFYG TG~~Y~~GQPLGPV QGVGYINELL ARLTemPVRD
NTQTNRTLDS

P. lycii YyyDLDKYYG TG~~p~~GNALGPV QGVGYVNELL ARLTgQAVRD
ETQTNRTLDS

Basidio Y-GDLDKFYG TG~~Y~~GQPLGPV QGVGYINELL ARLT-QAVRD
NTQTNRTLDS

301

350

P. involutus (*phyA1*) SPvTFPLNKT FYADFSHDN1 MVAVFSAMGL FrQPAPLsts
vPNPwRTWrt

P. involutus (*phyA2*) APdTFPLNKT MYADFSHDN1 MVAVFSAMGL FrQSAPLsts
tPDPNRTWLt

T. pubescens SPeTFPLNRT LYADFSHDNQ MVAIFSAMGL FNQSAPLDPT
tPDPaRTFLv

A. pediades SP1TFPLDRS IYADLSHDNQ MIAIFSAMGL FNQSSPLDPS
fPNPKRTWVT

P. lycii dPaTFPLNRT FYADFSHDNt MVPIFAALGL FNaTA.LDPl
kPDeNRlWvd

Basidio SP-TFPLNRT FYADFSHDNQ MVAIFSAMGL FNQSAPLDPS -
PDPNRTWVT

351

400

P. involutus (*phyA1*) SsLVPPFSGRM VVERLsC..f GT..... tkV
RVLVQDqVQP

P. involutus (*phyA2*) SsVVPPFSARM aVERLsC..a GT..... tkV
RVLVQDqVQP

T. pubescens KKIVPPFSARM VVERLdC..g GA..... qsv
RLLVNDAVQP

A. pediades SRLtPFSARM VtERLlCqrd GTgsggpsri mrngnvqtfv
RILVNDAQp

P. lycii SKLVPFSGHM tVEKLaC... sgkeav
RVLVNDAVQP

Basidio SKLVPPFSARM VVERL-C--- GT----- -----V
RVLVNDAVQP

401

441

P. involutus (*phyA1*) LEFCGGDrNG lCTLAkFVES QtFARsDGaG DFEKCFATSa ~

P. involutus (*phyA2*) LEFCGGDqDG 1CALDKFVES QaYARsGGaG DFEKCLATTv ~

T. pubescens LAFCGADtsG vCTLDASFVES QaYARNDGEG DFEKCFAT~~ ~

A. pediades LKFCGGDmDS lCTLEAFVES QkYAREDGQG DFEKCFD~~~ ~

P. lycii LEFCGG.vDG vCeLsAFVES QtYARENQG DFAKCgfVPs e

Basidio LEFCGGD-DG -CTLDASFVES Q-YAREDGQG DFEKCFATP- -

Figure 5

1

50

<i>A. terreus</i> 9a1	KhsdCNSVDh GYQCfPELSH kWG1YAPYFS LqDESPFP1D VPeDCHITFV
<i>A. terreus</i> cbs	NhsdCtSVDr GYQCfPELSH kWG1YAPYFS LqDESPFP1D VPdDCHITFV
<i>A. niger</i> var. <i>awamori</i>	NqsTCDTVDq GYQCfSEtSH LWGQYAPFFS LANESAISPD VPaGCRVTFa
<i>A. niger</i> NRRL3135	NqsSCDTVDq GYQCfSEtSH LWGQYAPFFS LANEsVISPE VPaGCRVTFa
<i>A. fumigatus</i> 13073	GSkSCDTVD1 GYQCSPAtSH LWGQYSPFFS LEDE1SVSSK LPkDCRITLV
<i>A. fumigatus</i> 32722	GSkSCDTVD1 GYQCSPAtSH LWGQYSPFFS LEDE1SVSSK LPkDCRITLV
<i>A. fumigatus</i> 58128	GSkSCDTVD1 GYQCSPAtSH LWGQYSPFFS LEDE1SVSSK LPkDCRITLV
<i>A. fumigatus</i> 26906	GSkSCDTVD1 GYQCSPAtSH LWGQYSPFFS LEDE1SVSSK LPkDCRITLV
<i>A. fumigatus</i> 32239	GSkACDTVE1 GYQCSPGtSH LWGQYSPFFS LEDE1SVSSD LPkDCRVTFV
<i>E. nidulans</i>	QNHCNTaDG GYQCfPNVSH VWGQYSPYFS IEQESAISeD VPhGCeVTFV
<i>T. thermophilus</i>	DSHSCNTVEG GYQCfPEISH swGQYSPFFS LADQSEISPD VPqNCKITFV
<i>T. lanuginosa</i>	~~~~~ ~~~nVDIAR hWGQYSPFFS LAEvSEISPA VPkGCRVeFV

M. thermophila ESRPCDTpD1 GFQCgTAISH FWGQYSPYFS VPSe1Das..
IPdDCeVTFa

Basidio xSxPxrxxtAA qLPipxQxqx xWSPYSPYFP VAxyxA....
pPaGCQIxqV

Consensus NSHSCDTVdg GYQC-PEISH LWGQYSPFFS LADESAISPD VP-
GCRVTFV

Fcp10 NSHSCDTVdg GYQCFPEISH LWGQYSPFFS LADESAISPD
VPKGCRVTFV

51

100

A. terreus 9al QVLARHGARs PThSKTKaYA AtIaAIQKSA TaFpGKYAFL
QSYNYSLDSE

A. terreus cbs QVLARHGARs PTdSKTKaYA AtIaAIQKNA TaLpGKYAFL
KSYNYSMGSE

A. niger var. *awamori* QVLSRHGARY PTeSKGKKYS ALIeEIQQNv TtFDGKYAFL
KTYNYSLGAD

A. niger NRRL3135 QVLSRHGARY PTdSKGKKYS ALIeEIQQNA TtFDGKYAFL
KTYNYSLGAD

A. fumigatus 13073 QVLSRHGARY PTSSKSKKYk kLVtAIQaNA TdFKGKFAFL
KTNYTLCAD

A. fumigatus 32722 QVLSRHGARY PTSSKSKKYk kLVtAIQaNA TdFKGKFAFL
KTNYTLCAD

A. fumigatus 58128 QVLSRHGARY PTSSKSKKYk kLVtAIQaNA TdFKGKFAFL
KTNYTLCAD

A. fumigatus 26906 QVLSRHGARY PTSSKSKKYk kLVtAIQaNA TdFKGKFAFL
KTNYTLCAD

A. fumigatus 32239 QVLSRHGARY PTASKSKKYK kLVtAIQKNA TeFKGKFAFL
ETYNYTLGAD

E. nidulans QVLSRHGARY PTeSKSKaYS GLIeAIQKNA TsFwGQY AFL
ESYNYTLGAD

T. thermophilus QLLSRHGARY PTSSKTE1YS qLIsrIQKtA TaYKGyY AFL
KdYrYqLGAN

T. lanuginosa QVLSRHGARY PTAhKSEvYA ELLqrIQDtA TeFKGDF AFL
RdYaYhLGAD

M. thermophila QVLSRHGARa PTlkRAasYv DLIdrIHhGA isYgPgYE AFL
RTYDYLGAD

Basidio NIIqRHGARF PTSGaAtRiq AaVakLQsax xxtdPKLDFL
xnxtYxLGxD

Consensus QVLSRHGARY PTSSKSKKYS ALI-AIQKNA T-FKGKY AFL
KTYNYTLGAD

Fcp10 QVLSRHGARY PTSSKSKKYS ALIEAIQKNA TAFKGKY AFL
KTYNYTLGAD

101

150

A. terreus 9a1 ELTPFGrNQL rD1GaQFYeR YNAL.TRhIn PFVRATDAsR
VhESAEKFVE

A. terreus cbs NLTPFGrNQL qD1GaQFYRR YDTL.TRhIn PFVRAADSsR
VhESAEKFVE

A. niger var. *awamori* DLTPFGEQEL VNSGIKFYQR YESL.TRnII PFIRSSGSSsR
VIASGEKFIE

A. niger NRRL3135 DLTPFGEQEL VNSGIKFYQR YESL.TRnIV PFIRSSGSSsR
VIASGKKFIE

A. fumigatus 13073 DLTPFGEQQL VNSGIKFYQR YKAL.ARsVV PFIRASGSDR
VIASGEKFIE

A. fumigatus 32722 DLTPFGEQQL VNSGIKFYQR YKAL.ARsVV PFIRASGSDR
VIASGEKFIE

A. fumigatus 58128 DLTPFGEQQL VNSGIKFYQR YKAL.ARsVV PFIRASGSDR
VIASGEKFIE

A. fumigatus 26906 DLTAfGEQQL VNSGIKFYQR YKAL.ARsVV PFIRASGSDR
VIASGEKFIE

A. fumigatus 32239 DLTPFGEQQM VNSGIKFYQK YKAL.AgsVV PFIRSSGSDR
VIASGEKFIE

E. nidulans DLTifGENQM VDSGaKFYRR YKnL.ARknt PFIRASGSDR
VVASAEKFIN

T. thermophilus DLTPFGENQM IQ1GIKFYnH YKSL.ARnaV PFVRCSGSDR
VIASGr1FIE

T. lanuginosa NLTRFGEQQM MESGrQFYHR YReq.AReIV PFVRAAGSAR
VIASAEffFnr

M. thermophila ELTRtGQQQM VNSGIKFYRR YRAL.ARksi PFVRTAGqDR
VvhSAENFtQ

Basidio DLvPFGAxQs sQAGqEaFtR YsxLvSxdnL PFVRASGSDR
VVDSATNWtA

Consensus DLTPFGEQQM VNSGIKFYRR YKAL-AR-IV PFVRASGSDR
VIASAEKFIE

Fcp10 DLTPFGEQQM VNSGIKFYRR YKAL.ARkIV PFVRASGSDR
VIASAEKFIE

151

200

A. terreus 9a1 GFQTARqDDh hAnphQPSPr VDVaIPEGsA YNNTLEHSLC
TAFEs...St

A. terreus cbs GFQNARqGDP hAnphQPSPr VDViIPEGtA YNNTLEHSIC
TAFEa...St

A. niger var. *awamori* GFQSTKLkDP rAcpqQSSPk IDVVISEAsS sNNTLTpGtC
TvFEd...SE

A. niger NRRL3135 GFQSTKLkDP rAcpqQSSPk IDVVISEAsS sNNTLTpGtC
TvFEd...SE

A. fumigatus 13073 GFQqAKLADP gAt.nRAAPa ISVIIPESeT FNNTLDHGVC
TkFEa...SQ

A. fumigatus 32722 GFQqAKLADP gAt.nRAAPa ISVIIPESeT FNNTLDHGVC
TkFEa...SQ

A. fumigatus 58128 GFQqAKLADP gAt.nRAAPa ISVIIPESeT FNNTLDHGVC
TkFEa...SQ

A. fumigatus 26906 GFQqAKLADP gAt.nRAAPa ISVIIPESeT FNNTLDHGVC
TkFEa...SQ

A. fumigatus 32239 GFQqANVADP gAt.nRAAPV ISVIIPESeT YNNTLDHSVC
TnFEa...SE

E. nidulans GFRkAQLhDh g.s.gQATPV VNVIIPeIdG FNNTLDHStC
vSFEn...dE

T. thermophilus GFQSAKVLDP hSdkhDAPPt INVIIeEGps YNNTLDtGsC
PvFEd...Ss

T. lanuginosa GFQdAKdrDP rSnkdQAEpV INVIISEEtG sNNTLDgltC
PAaEe...Ap

M. thermophila GFHSALLADR gStvrPTlPy dmVVIPETaG aNNTLHNDLC
TAFEegPySt

Basidio GFaxA..... .sxntxxPx LxVILSExg. .NDTLDDNMC
 PxAG

Consensus GFQSAKLADP -A---QASPV INVIIPEG-G YNNTLDHGLC
 TAFE--P-SE

Fcp10 GFQSAKLADP GANPHQASPV INVIIPEGAG YNNTLDHGLC
 TAFEE...SE

201

250

A. terreus 9a1 VGDDavANFT AVFAPAIaqR LEAdLPGVQL StDDVVNLMA
 MCPFETVS1T

A. terreus cbs VGDAaADNFT AVFAPAIakR LEAdLPGVQL SADDVVNLMA
 MCPFETVS1T

A. niger var. *awamori* LADtVEANFT AtFAPSIRqR LEndLSGVtL TDtEVtyLMD
 MCSFDTIStS

A. niger NRRL3135 LADtVEANFT AtFvPSIRqR LEndLSGVtL TDtEVtyLMD
 MCSFDTIStS

A. fumigatus 13073 LGDEVAANFT ALFAPdIRAR aEkhLPGVtL TDEDVVSLMD
 MCSFDTVArT

A. fumigatus 32722 LGDEVAANFT ALFAPdIRAR aEkhLPGVtL TDEDVVSLMD
 MCSFDTVArT

A. fumigatus 58128 LGDEVAANFT ALFAPdIRAR aEkhLPGVtL TDEDVVSLMD
 MCSFDTVArT

A. fumigatus 26906 LGDEVAANFT ALFAPdIRAR aKkhLPGVtL TDEDVVSLMD
 MCSFDTVArT

A. fumigatus 32239 LGDEVEANFT ALFAPAIRAR IEkhLPGVQL TDDDVVSLMD
 MCSFDTVArT

E. nidulans rADEIEANFT AIMGPPIRkR LEndLPGIKL TNENVIyLMD
MCSFDTMArT

T. thermophilus gGHDaQEKFKA kqFAPAIKEK IKDhLPGVDL AvsDVpyLMD
LCPFETLArn

T. lanuginosa .DptqpAEFl qVFGPRV1kK ItkhMPGVNL T1EDVp1FMD
LCPFDTVGsd

M. thermophila IGDDaQDtY1 StFAGPItAR VNAnLPGaNL TDADtVaLMD
LCPFETVAsS

Basidio dSDpqxnW1 AVFAPPItAR LNAAaPGaNL TDxDaxNLxx
LCPFETVS..

Consensus LGDDVEANFT AVFAPPiRAR LEA-LPGVNL TDEDVVNLMD
MCPFDTVA-T

Fcp10 LGDDVEANFT AVFAPPiRAR LEAHLPGVNL TDEDVVNLMD
MCPFDTVART

251

300

A. terreus 9a1 dD..Aht...LSPF CDLFTA..tE WtQNYL1SL
dKYYGYGGGN

A. terreus cbs dD..Aht...LSPF CDLFTA..aE WtQNYL1SL
dKYYGYGGGN

A. niger var. *awamori* Tv..DTK...LSPF CDLFTH..dE WiHYDYLQSL
KKYYGHGAGN

A. niger NRRL3135 Tv..DTK...LSPF CDLFTH..dE WINYDYLQSL
KKYYGHGAGN

A. fumigatus 13073 SD..ASQ...LSPF CQLFTH..nE WkKYNYLQSL
gKYYGYGAGN

A. fumigatus 32722 SD..ASQ...LSPF CQLFTH..nE WKKYNYLQSL
gKYYGYGAGN

A. fumigatus 58128 SD..ASQ...LSPF CQLFTH..nE WKKYNYLQSL
gKYYGYGAGN

A. fumigatus 26906 SD..ASQ...LSPF CQLFTH..nE WKKYNYLQSL
gKYYGYGAGN

A. fumigatus 32239 AD..ASE...LSPF CAIFTH..nE WKKYDYLQSL
gKYYGYGAGN

E. nidulans AH..GTE...LSPF CAIFTE..kE WlQYDYLQSL
sKYYGYGAGS

T. thermophilus ht..DT....LSPF CALsTQ..eE WqaYDYYQSL
gKYYGnGGGN

T. lanuginosa PvlfPrQ...LSPF CHLFTA..dD WmaYDYYyTL
dKYYSHGGGS

M. thermophila SsdpATadag ggngrpLSPF CrLFSE..sE WraYDYLQSV
gKWYGYGPGN

BasidioxexxSxF CDLFexxpeE FxaFxYxgdL
dKFYGtGyGQ

Consensus SD--ATQ--- -----LSPF CDLFTH---E W-QYDYLQSL -
KYYGYGAGN

Fcp10 SD..ATQ...LSPF CDLFTH..DE WIQYDYLQSL
GKYYGYGAGN

A. terreus 9a1 PLGPvQGVGW aNELMARLTR A.PVHDHTCv NNTLDASPAT
FPLNATLYAD

A. terreus cbs PLGPvQGVGW aNELIARLTR S.PVHDHTCV NNTLDANPAT
FPLNATLYAD

A. niger var. *awamori* PLGPTQGVGY aNELIARLTH S.PVHDDTSS NHTLDSNPAT
FPLNSTLYAD

A. niger NRRL3135 PLGPTQGVGY aNELIARLTH S.PVHDDTSS NHTLDSSPAT
FPLNSTLYAD

A. fumigatus 13073 PLGPAQGIGF tNELIARLTR S.PVQDHTST NsTLvSNPAT
FPLNATMYvD

A. fumigatus 32722 PLGPAQGIGF tNELIARLTR S.PVQDHTST NsTLvSNPAT
FPLNATMYvD

A. fumigatus 58128 PLGPAQGIGF tNELIARLTR S.PVQDHTST NsTLvSNPAT
FPLNATMYvD

A. fumigatus 26906 PLGPAQGIGF tNELIARLTR S.PVQDHTST NsTLvSNPAT
FPLNATMYvD

A. fumigatus 32239 PLGPAQGIGF tNELIARLTN S.PVQDHTST NsTLDSDPAT
FPLNATIYvD

E. nidulans PLGPAQGIGF tNELIARLTQ S.PVQDNTST NHTLDSNPAT
FPLDrkLYAD

T. thermophilus PLGPAQGVGF vNELIARMTH S.PVQDYTTv NHTLDSNPAT
FPLNATLYAD

T. lanuginosa AFGPSRGVGF vNELIARMTg N1PVKDHTTv NHTLddNPET
FPLDAvLYAD

M. thermophila PLGPTQGVGF vNELLARLA. GvPVRDgTST NRTLDGDPrT
FPLGrPLYAD

Basidio PLGPvQGVGY iNELLARLTx qa.VRDNTqT NRTLDSSPxT
FPLNrTFYAD

Consensus PLGPAQGVGF -NELIARLTH S-PVQDHTST NHTLDSNPAT
FPLNATLYAD

Fcp10 PLGPAQGVGF VNELIARLTH S.PVQDHTST NHTLDSNPAT
FPLNATLYAD

351

400

A. terreus 9al FSHDSnLVSI FWALGLYNGT aPLSqtSVE. .SvsQTDGYA
 AAWTVPPFAAR

A. terreus cbs FSHDSnLVSI FWALGLYNGT kPLSqtTTVE. .ditrQTDGYA
 AAWTVPPFAAR

A. niger var. *awamori* FSHDNGIISI LFALGLYNGT kPLSTTTVE. .NitQTDGFS
 SAWTVPPFASR

A. niger NRRL3135 FSHDNGIISI LFALGLYNGT kPLSTTTVE. .NitQTDGFS
 SAWTVPPFASR

A. fumigatus 13073 FSHDNSMVSI FFALGLYNGT ePLSrTSVE. .SaKE1DGYS
 ASWvVPFGAR

A. fumigatus 32722 FSHDNSMVSI FFALGLYNGT gPLSrTSVE. .SaKE1DGYS
 ASWvVPFGAR

A. fumigatus 58128 FSHDNSMVSI FFALGLYNGT ePLSrTSVE. .SaKE1DGYS
 ASWvVPFGAR

A. fumigatus 26906 FSHDNSMVSI FFALGLYNGT ePLSrTSVE. .SaKE1DGYS
 ASWvVPFGAR

A. fumigatus 32239 FSHDNGMIPI FFAMGLYNGT ePLSqtSeE. .StKESNGYS
 ASWAvgPFGAR

E. nidulans FSHDNSMISI FFAMGLYNGT qPLSmrdSVE. .SiQEmDGYS
 ASWTVPFGAR

T. thermophilus FSHDNTMTSI FaALGLYNGT akLSTTeIK. .SIEETDGYS
 AAWTVPPGGR

T. lanuginosa FSHDNTMTGI FsAMGLYNGT kPLSTSkiQP pTgAAADGYA
 ASWTVPFAAR

M. thermophila FSHDNDMMGV LgALGaYDGv pPLdkTA..R rdpEE1GGYA
ASWAVPFAAR

Basidio FSHDNqMVAI FsAMGLFNqS aPLdPSxpDP nrt.....Wv
TSklVPPFSAR

Consensus FSHDNTMVSI FFALGLYNGT -PLSTTSVEP -S-EETDGYA
ASWTVPFAAR

Fcp10 FSHDNTMVSI FFALGLYNGT KPLSTTSVE. .SIEETDGYA
ASWTVPFAAR

401

450

A. terreus 9al AYVEMMQC.. ra..... EKEPL VRVLVNDRVM
PLHGCPTDKL

A. terreus cbs AYIEMMQC.. ra..... EKQPL VRVLVNDRVM
PLHGCADVNL

A. niger var. *awamori* 1YVEMMQC.. Qa..... EQEPL VRVLVNDRVV
PLHGCPIDaL

A. niger NRRL3135 1YVEMMQC.. Qa..... EQEPL VRVLVNDRVV
PLHGPVVDaL

A. fumigatus 13073 AYfEtMQC.. Ks..... EKEPL VRaLINDRVV
PLHGCDVDKL

A. fumigatus 32722 AYfEtMQC.. Ks..... EKEPL VRaLINDRVV
PLHGCDVDKL

A. fumigatus 58128 AYfEtMQC.. Ks..... EKESL VRaLINDRVV
PLHGCDVDKL

A. fumigatus 26906 AYfEtMQC.. Ks..... EKEPL VRaLINDRVV
PLHGCDVDKL

A. fumigatus 32239 AYfEtMQC.. Ks..... EKEPL VRaLINDRVV
PLHGCAVDKL

E. nidulans AYFELMQC.. E..... KKEPL VRVLVNDRVV
PLHGCAVDKF

T. thermophilus AYIEMMQC.. Dd..... sDEPV VRVLVNDRVV
PLHGCEVDsL

T. lanuginosa AYVELLRC.. Etetsseeee EG...EDEPF VRVLVNDRVV
PLHGCrVDRW

M. thermophila iYVEkMRC.. sggggggggg EGqeKDEeM VRVLVNDRVM
TLkGCGaDER

Basidio mvVERLxCxx xgtxxxxxxx xxxxxxxxx VRVLVNDaVq
PLEfCGgDxd

Consensus AYVEMMQC-- E----- EG---EKEPL VRVLVNDRVV
PLHGCGVDKL

Fcp10 AYVEMMQC.. EA..... EKEPL VRVLVNDRVV
PLHGCGVDKL

451 482

A. terreus 9a1 GRCKrDAFVA GLSFAQAG.. GNWADCF~~~ ~~

A. terreus cbs GRCKrDDFVE GLSFARAG.. GNWAECF~~~ ~~

A. niger var. awamori GRCtrDsFVr GLSFARSG.. GDWAECsA~~ ~~

A. niger NRRL3135 GRCtrDsFVr GLSFARSG.. GDWAECFA~~ ~~

A. fumigatus 13073 GRCK1NDFVK GLSWARSG.. GNWGECFS~~ ~~

A. fumigatus 32722 GRCK1NDFVK GLSWARSG.. GNWGECFS~~ ~~

A. fumigatus 58128 GRCK1NDFVK GLSWARSG.. GNWGECFS~~ ~~

A. fumigatus 26906 GRCK1NDFVK GLSWARSG.. GNWGECFS~~ ~~

A. fumigatus 32239 GRCK1KDFVK GLSWARSG.. GNSEQSFS~~ ~~

<i>E. nidulans</i>	GRCt1DDWVE GLNFARSG.. GNWKTcFT1- --
<i>T. thermophilus</i>	GRCKrDDFVr GLSFARqG.. GNWEGCYAas e-
<i>T. lanuginosa</i>	GRCRrDEWI K GLTFARqG.. GHWDrcF--- ~~
<i>M. thermophila</i>	GmCt1ErFIE SMAFARGN.. GKWD1CFA~~ ~~
Basidio	GxCt1DAFVE SqxYAReDgq GDFEKCFAtp xx
Consensus	GRCK-DDFVE GLSFARSG-- GNWEECFA-- --
Fcp10	GRCKRDDFVE GLSFARSG.. GNWEECFA... .

Figure 6

CP-1

Eco RI M G V F V V L L S I A T L F G S T 17

TATATGAATTCATGGCGTGTCGTGCTACTGTCCATTGCCACCTTGT_{CGGTTCCA}

1 -----+-----+-----+-----+-----+-----+-----+ 60

ATATACTTAAGTACCCGCACAAGCAGCACGATGACAGGTAACGGTGGAACAGCCAAGGT

S G T A L G P R G N S H S C D T V D G G 37

CATCCGGTACCGCCTGGGTCTCGTGGTAATTCTCACTCTTGTGACACTGTTGACGGTG

61 -----+-----+-----+-----+-----+-----+-----+ 120

GTAGGCCATGGCGAACCCAGGAGCACCATTAAGAGTGAGAACACTGTGACA_{ACTGCCAC}

CP-2

CP-3.10

Y Q C F P E I S H L W G Q Y S P F F S L 57

GTTACCAATGTTCCCAGAAATTCTCACTGTGGGTCAATACTCTCCATTCTCTTT

121 -----+-----+-----+-----+-----+-----+ 180

CAATGGTTACAAAGGGTCTTAAAGAGTGAACACCCCAGTTATGAGAGGTAAAGAAGAGAA

A D E S A I S P D V P K G C R V T F V Q 77

TGGCTGACGAATCTGCTATTCCTCCAGACGTCCAAAGGGTTGTAGAGTTACTTCGTT

181 -----+-----+-----+-----+-----+-----+-----+ 240

ACCGACTGCTTAGACGATAAAAGAGGTCTGCAAGGTTCCGACATCTCAATGAAAGCAAG

CP-4.10

CP-5.10

V L S R H G A R Y P T S S K S K K Y S A 97

AAGTTTGCTAGACACGGTGTAGATAACCCAACTTCTCTAAGTCTAAGAAGTACTCTG

241 -----+-----+-----+-----+-----+-----+-----+ 300

TTCAAAACAGATCTGTGCCACGATCTATGGGTGAAGAAGATTGAGATTCTTCATGAGAC

L I E A I Q K N A T A F K G K Y A F L K 117

CTTGATTGAAGCTATTCAAAAGAACGCTACTGCTTCAAGGGTAAGTACGCTTCTTGA

301 -----+-----+-----+-----+-----+-----+-----+ 360

GAAACTAACCGATAAGTTCTTGCATGACGAAAGTTCCCATTGCGAAAGAAACT

CP-6

CP-7.10

T Y N Y T L G A D D L T P F G E Q Q M V 137

AGACTTACAACACTTGGGTGCTGACGACTTGACTCCATTGGTGAACAAACAAATGG

361 -----+-----+-----+-----+-----+-----+-----+ 420

TCTGAATGTTGATGTGAAACCCACGACTGCTGAAC TGAGGTAAAGCCACTTGTGTTACC

N S G I K F Y R R Y K A L A R K I V P F 157

TTAACTCTGGTATTAAGTTCTACAGAAGATAACAAGGCTTGCGTAGAAAGATGTTCCAT

421 -----+-----+-----+-----+-----+-----+ 480

AATTGAGACCATAATTCAAGATGTCTTCTATGTTCCGAAACCGATCTTCTAACAGGTA

CP-8.10

CP-9.10

V R A S G S D R V I A S A E K F I E G F 177
TCGTTAGAGCTCTGGTCTGACAGAGTTATGCTTCTGCTGCTGAAAGTTCATGAAAGGTT

481 -----+-----+-----+-----+-----+-----+ 540

AGCAATCTCGAAGACCAAGACTGTCTCAATAACGAAGACGACTTTCAAGTAACCCCAA

Q S A K L A D P G A N P H Q A S P V I N 197
TCCAATCTGCTAAGTTGGCTGACCCAGGTGCTAACCCACACCAAGCTTCTCCAGTTATTA

541 -----+-----+-----+-----+-----+-----+ 600

AGGTTAGACGATTCAACCGACTGGGTCCACGATTGGGTGTGGTTGAAAGAGGTCAATAAT

CP-10.10

CP-11.10

V I I P E G A G Y N N T L D H G L C T A 217
ACGTTATTATTCCAGAAGGTGCTGGTTACAACAAACACTTGGACACGGTTGTGTACTG

601 -----+-----+-----+-----+-----+-----+ 660

TGCAATAATAAGGTCTCCACGACCAATGTTGTTGAAACCTGGTGCCAACACATGAC

F E E S E L G D D V E A N F T A V F A P 237

CTTTCGAAGAATCTGAATTGGGTGACGACGTTGAAGCTAACCTCACTGCTGTTTCGCTC

661 -----+-----+-----+-----+-----+-----+ 720

GAAAGCTTCTTAGACTTAACCCACTGCTGCAACTTCGATTGAAGTGACGACAAAAGCGAG

CP-12.10

P I R A R L E A H L P G V N L T D E D V 257

CACCTATTAGAGCTAGATTGGAAGCTCACTGCCAGGTGTTAACTGACTGACGAAGACCG

721 -----+-----+-----+-----+-----+-----+ 780

GTGGATAATCTCGATCTAACCTCGAGTGAACGGTCCACAATTGAAC TGACTGCTTCTGC

CP-13.10

V N L M D M C P F D T V A R T S D A T Q 277

TTGTTAAC TTGATGGACATGTGCCATTGACACTGTTGCTAGAACTTGACTGACGCTACTC

781 -----+-----+-----+-----+-----+-----+ 840

AACAATTGAAC TACCTGTACACAGGTAAGCTGTGACAACGATCTGAAGACTGCGATGAG

L S P F C D L F T H D E W I Q Y D Y L Q 297

AATTGTCTCCATTCTGTGACTTGTCACTCACGACGAATGGATTCAATACGACTACTTGC

841 -----+-----+-----+-----+-----+-----+ 900

TTAACAGAGGTAAGACACTGAACAA GTGAGTGCTGCTTACCTAACATTGCTGATGAACG

CP-14.10CP-15.10

S L G K Y Y G Y G A G N P L G P A Q G V 317

AATCTTGGTAAGTACTACGGTACGGTGTGGTAACCCATTGGTCCAGCTCAAGGTG

901 -----+-----+-----+-----+-----+-----+ 960

TTAGAAAACCCATTCATGATGCCAATGCCACGACCATTGGTAACCCAGGTGAGTTCCAC

G F V N E L I A R L T H S P V Q D H T S 337

TTGGTTTGTAA CGAATTGATTGCTAGATTGACTCACTCTCCAGTTCAAGACCACACTT

961 -----+-----+-----+-----+-----+

1020

AACCAAAGCAATTGCTTAACTAACGATCTAACTGAGTGAGAGGTCAAGTTCTGGTGTGAA

CP-16.10CP-17.10

T N H T L D S N P A T F P L N A T L Y A 357

CTACTAACACACTTGGACTCTAACCCAGCTACTTCCCATTGAACGCTACTTTGTACG

1021 -----+-----+-----+-----+-----+-----+

1080

GATGATTGGTGTGAAACCTGAGATTGGGTCATGAAAGGGTAACTTGCGATGAAACATGC

D F S H D N T M V S I F F A L G L Y N G 377

CTGACTTCTCTCACGACAACACTATGGTTCTATTTCTTCGCTTGGTTGTACAACG

1081 -----+-----+-----+-----+-----+-----+

1140

GACTGAAGAGAGTGTGTTGATACCAAAGATAAAAGAAGCGAAACCAAACATGTTGC

CP-18.10CP-19.10

T K P L S T T S V E S I E E T D G Y A A 397

GTACTAACGCCATTGTCTACTACTTCTGTTGAATCTATTGAAGAAACTGACGGTTACGCTG

1141 -----+-----+-----+-----+-----+-----+

1200

CATGATTGGTAACAGATGATGAAGACAACTTAGATAACTTCTTTGACTGCCAATGCGAC

S W T V P F A A R A Y V E M M Q C E A E 417

CTTCTTGGACTGTTCCATTGCTGCTAGAGCTTACGTTGAATGATGCAATGTGAAGCTG

1201 -----+-----+-----+-----+-----+-----+

1260

GAAGAACCTGACAAGGTAAGCCACGATCTGAATGCAACTTACTACGTTACACTTCGAC

CP-20.10CP-21.10K E P L V R V L V N D R V V P L H G C G 437

AAAAGGAACCATTGGTTAGAGTTGGTAACGACAGAGTTGTTCCATTGCACGGTTGTG

1261 -----+-----+-----+-----+-----+-----+

1320

TTTCCTTGGTAACCAATCTCAAAACCAATTGCTGTCACAACAGGTAACGTGCCAACAC

V D K L G R C K R D D F V E G L S F A R 457

GTGTTGACAAGTTGGTAGATGTAAGAGAGACGACTTCGTTGAAGGTTGTCTTCGCTA

1321 -----+-----+-----+-----+-----+-----+

1380

CACAACTGTTCAACCCATCTACATTCTCTGCTGAAGCAACTTC**CAAAACAGAAAGCGAT**CP-22.10S G G N W E E C F A * Eco RI 467**GATCTGGTGGTA**CTGGGAAGAATGTTGCTTAAGAATTCAATA

1381 -----+-----+-----+-----+----- 1426

CTAGACCACCATTGACCCTTCTAACAAAGCGAATTCTTAAGTATAT

Figure 7

1

50

P. involutus (*phyA1*) ~~~~~ ~FPipeseqR nWSPYSPYFP LAEykA....

pPaGCQInqV

P. involutus (*phyA2*) ~~~~~ ~FsipeseqR nWSPYSPYFP LAEykA....

pPaGCeInqV

T. pubescens ~~~~~ ~LDvtRDVqQ sWSmYSPYFP aAtyvA....

pPaSCQInqV

A. pediades ~~~~~ ~pffpPQIqD sWAaYTPYYP VqAyTP....

pPKDCKITqV

P. lycii ~~~~~ ~LPipAQnTs nWGPydPFFFV VEpyAA....

pPEGCtVTqV

A. terreus 9a1 KhsdCNSVDh GYQCfPELSh kWGLYAPYFS LqDESPFP1D

VPEDCHITFV

A. terreus cbs NhsdCtSVDr GYQCfPELSh kWGLYAPYFS LqDESPFP1D

VPDDCHITFV

A. niger var. awamori NqsTCDTVDq GYQCfSEtSH LWGQYAPFFS LANESAISPD

VPaGCRVTFa

A. niger T213 NqsSCDTVDq GYQCfSEtSH LWGQYAPFFS LANESvISPD

VPaGCRVTFa

A. niger NRRL3135 NqsSCDTVDq GYQCfSEtSH LWGQYAPFFS LANESvISPE

VPaGCRVTFa

A. fumigatus ATCC13073 GSksCDTVD1 GYQCSPAtSH LWGQYSPPFS LEDElSVSSK

LPKDCRITLV

A. fumigatus ATCC32722 GSksCDTVD1 GYQCSPAtSH LWGQYSPPFS LEDElSVSSK

LPKDCRITLV

A. fumigatus ATCC58128 GSksCDTVD1 GYQCSPAtSH LWGQYSPPFS LEDElSVSSK

LPKDCRITLV

A. fumigatus ATCC26906 GS_kSCDTVD1 GYQC_sPAtSH LWGQYSPFFS LEDE1SVSSK
LPKDCRITLV

A. fumigatus ATCC32239 GS_kACDTVE1 GYQC_sPGtSH LWGQYSPFFS LEDE1SVSSD
LPKDCRVTFV

E. nidulans QNHSCNTaDg GYQCfPNVSH VWGQYSPYFS IEQESAISeD
VPhGCeVTFV

T. thermophilus DSHSCNTVEg GYQC_rPEISH sWGQYSPFFS LADQSEISPD
VPQNCKITFV

T. lanuginosa ~~~~~ ~~~~~nVDIAR hWGQYSPFFS LAEvSEISPA
VPKGCRVeFV

M. thermophila ESRPCDTpD1 GFQCgTAISH FWGQYSPYFS VP_sElDaS..
IPDDCeVTFa

Consensus Seq. 11 NSHSCDTVD- GYQC-PEISH LWGQYSPFFS LADESAISePD
VPKGCRVTFV

51

100

P. involutus (*phyA1*) NIIqRHGARF PTSGaTtRik AgL_tKLQgvq nftDAKF_nFI
KSFKYdLGns

P. involutus (*phyA2*) NIIqRHGARF PTSGaAtRik AgL_sKLQsvq nftDPKFDFI
KS_ftYdLGTs

T. pubescens HIIqRHGARF PTSGaAKRiq TaVAKLKaaS ny_tDP1LAFV
tnYtYSLGqD

A. pediades NIIqRHGARF PTSGaGtRiq AaVKKLQsak Ty_tDPRLD_{FL}
tnYtYTLGhD

P. lycii NLIqRHGARW PTSGarsRqv AaVAKIQmar PftDPKYEFL
NdFvYkFGvA

A. terreus 9al QVLARHGARS PThSKTKaYA AtIAaIQKSA TaFpGKYAFL
QSYNYSLDSE

A. terreus cbs QVLARHGARS PTdSKTKaYA AtIAaIQKNA TaLpGKYAFL
KSYNYSMGSE

A. niger var. *awamori* QVLSRHGARY PTeSKGKKYS ALIEeIQQNv TtFDGKYAFL
KTYNYSLGAD

A. niger T213 QVLSRHGARY PTeSKGKKYS ALIEeIQQNv TtFDGKYAFL
KTYNYSLGAD

A. niger NRRL3135 QVLSRHGARY PTdSKGKKYS ALIEeIQQNA TtFDGKYAFL
KTYNYSLGAD

A. fumigatus ATCC13073 QVLSRHGARY PTSSKSKKYk kLVtaIQaNA TdFKGKFAFL
KTNYTTLGAD

A. fumigatus ATCC32722 QVLSRHGARY PTSSKSKKYk kLVtaIQaNA TdFKGKFAFL
KTNYTTLGAD

A. fumigatus ATCC58128 QVLSRHGARY PTSSKSKKYk kLVtaIQaNA TdFKGKFAFL
KTNYTTLGAD

A. fumigatus ATCC26906 QVLSRHGARY PTSSKSKKYk kLVtaIQaNA TdFKGKFAFL
KTNYTTLGAD

A. fumigatus ATCC32239 QVLSRHGARY PTASKSKKYk kLVtaIQKNA TeFKGKFAFL
ETNYTTLGAD

E. nidulans QVLSRHGARY PTeSKSKaYS GLIEaIQKNA TsFwGQY AFL
ESNYTTLGAD

T. thermophilus QLLSRHGARY PTSSKTELys qLiSRIQKtA TaYKGyy AFL
KdYrYqLGAN

T. lanuginosa QVLSRHGARY PTAhKSEvYA ELLQRIQDtA TeFKGDF AFL
RdYaYhLGAD

M. thermophila QVLSRHGARa PTlkRAasYv DLIDRIHhGA isYgPgYEFL
RTYDYTTLGAD

Consensus Seq. 11

**QVLSRHGARY PTSSKKYS ALIERIQKNA T-FKGKYAFL
KTNYNTLGAD**

101

150

P. involutus (*phyA1*) DLvPFGAAQs fDAGqEaFaR YskLvSKNnL PFIRAdGSDR
VVDSATNWtA

P. involutus (*phyA2*) DLvPFGAAQs fDAGLEVFaR YskLvSsDnL PFIRSdGSDR
VVDTATNWtA

T. pubescens sLveLGAtQs sEAGqEaFtR YsSLvSaDeL PFVRASGSDR
VVATANNWtA

A. pediades DLvPFGAlQs sQAGEEtFQR YsfLvSKEnL PFVRASSSNR
VVDSATNWtE

P. lycii DL1PFGANQs hQTGtDMYtR YsTlfEgGdV PFVRAAGdQR
VVDSStNWtA

A. terreus 9a1 ELTPFGrNQL rD1GaQFYeR YNAL.TRHIn PFVRATDAsR
VhESAEKFVE

A. terreus cbs NLTPFGrNQL qD1GaQFYRR YDTL.TRHIn PFVRAADSSR
VhESAEKFVE

A. niger var. *awamori* DLTPFGEQEL VNSGIKFYQR YESL.TRNII PFIRSSGSSR
VIASGEKFIE

A. niger T213 DLTPFGEQEL VNSGIKFYQR YESL.TRNII PFIRSSGSSR
VIASGEKFIE

A. niger NRRL3135 DLTPFGEQEL VNSGIKFYQR YESL.TRNIV PFIRSSGSSR
VIASGKKFIE

A. fumigatus ATCC13073 DLTPFGEQQL VNSGIKFYQR YKAL.ARSVV PFIRASGSDR
VIASGEKFIE

A. fumigatus ATCC32722 DLTPFGEQQL VNSGIKFYQR YKAL.ARSVV PFIRASGSDR
VIASGEKFIE

A. fumigatus ATCC58128 DLTPFGEQQL VNSGIKFYQR YKAL.ARSVV PFIRASGSDR
 VIASGEKFIE

A. fumigatus ATCC26906 DLTAFGEQQL VNSGIKFYQR YKAL.ARSVV PFIRASGSDR
 VIASGEKFIE

A. fumigatus ATCC32239 DLTPFGEQQM VNSGIKFYQK YKAL.AgSVV PFIRSSGSDR
 VIASGEKFIE

E. nidulans DLTiFGENQM VDSGaKFYRR YKnL.ARKnT PFIRASGSDR
 VVASAEEKFIN

T. thermophilus DLTPFGENQM IQlGIKFYnH YKSL.ARNaV PFVRCSGSDR
 VIASGr1FIE

T. lanuginosa NLTRFGEQQM MESGrQFYHR YREq.AREIV PFVRAAGSAR
 VIASAEffNnr

M. thermophila ELTRtGQQQM VNSGIKFYRR YRAL.ARksI PFVRTAGqDR
 VVhSAENFTQ

Consensus Seq. 11 DLTPFGENQM VNSGIKFYRR YKAL-ARNIV PFVRASGSDR
VIASAEKFIE

151

200

P. involutus (phyA1) GFaSA..... .shNtvqPk LNLILPQ..T gNDTLEDNMC
 PAaGD.....

P. involutus (phyA2) GFaSA..... .srNaigPk LDLILPQ..T gNDTLEDNMC
 PAaGE.....

T. pubescens GFa1A..... .ssNsitPV LSVIISE..A gNDTLDDNMC
 PAaGD.....

A. pediades GFsAA..... .shHvlnPI LfVILSE..S LNDTLDDAMC
 PnaGs.....

P. lycii GFgdA..... .sgEtvlPt LQVVLQE..E gNcTLCNNMC
PnevD.....

A. terreus 9a1 GFQTARqDDh hAnpHQPSPr VDVaIPEGSA YNNTLEHSLC
TAFEs...ST

A. terreus cbs GFQNARqGDP hAnpHQPSPr VDVIPEGTA YNNTLEHSIC
TAFEA...ST

A. niger var. *awamori* GFQSTKLkDP rAqpgQSSPk IDVVISEASS sNNTLDPGtC
TvFED...Se

A. niger T213 GFQSTKLkDP rAqpgQSSPk IDVVISEASS sNNTLDPGtC
TvFED...Se

A. niger NRRL3135 GFQSTKLkDP rAqpgQSSPk IDVVISEASS sNNTLDPGtC
TvFED...Se

A. fumigatus ATCC13073 GFQqAKLADP gAt.NRAAPa ISVIIPESeT FNNTLDHGVC
TkFEA...Sq

A. fumigatus ATCC32722 GFQqAKLADP gAt.NRAAPa ISVIIPESeT FNNTLDHGVC
TkFEA...Sq

A. fumigatus ATCC58128 GFQqAKLADP gAt.NRAAPa ISVIIPESeT FNNTLDHGVC
TkFEA...Sq

A. fumigatus ATCC26906 GFQqAKLADP gAt.NRAAPa ISVIIPESeT FNNTLDHGVC
TkFEA...Sq

A. fumigatus ATCC32239 GFQqANVADP gAt.NRAAPV ISVIIPESeT YNNTLDSVC
TnFEA...Se

E. nidulans GFRKAQLhDh g.s.gQATPV VNVIIPeIdG FNNTLDHStC
vSFEN...de

T. thermophilus GFQSAKV1DP hSdKHDAPPt INVIIeEGPS YNNTLDtGsC
PvFED...SS

T. lanuginosa GFQdAKdrDP rSnkDQAEPV INVIISEETG sNNTLDGltC
PAaEE...AP

M. thermophila GFHSA1LADR gStvRPT1Py dmVVIPETAG aNNTLHNDLC
TAFEEgpyST

Consensus Seq. 11 GFQSAKLADP -A--HQASPV INVIIPEGSG YNNNTLDHGLC
TAFED---ST

201

250

P. involutus (*phyA1*) .SDpqvnaWl AVafPSItAR LNAAaPSVNL TDtDafNLVs
LCAF1TVSK.

P. involutus (*phyA2*) .SDpqvDaWl AsafPSVtAQ LNAAaPGaNL TDADafNLVs
LCPFmTVSK.

T. pubescens .SDpqvnQWl AqFAPPmtAR LNAgapGaNL TDtDtyNLLt
LCPFETVAt.

A. pediades .SDpqtGiWT SIYGTPIanR LNqqaPGaNI TAADVsnLIP
LCAFETIVK.

P. lycii .GDEST.tWl GVFAPnItAR LNAAaPSaNL SDsDaLtLMD
MCPFDTLSs.

A. terreus 9a1 VGDDAvANFT AVFAPAIaqR LEAdLPGVQL StDDVVNLMA
MCPFETVS1T

A. terreus cbs VGDAAADNFT AVFAPAIakR LEAdLPGVQL SADDVVNLMA
MCPFETVS1T

A. niger var. *awamori* LADtvEANFT AtFAPSIRqR LEndLSGVtL TDtEVtyLMD
MCSFDTIStS

A. niger T213 LADtvEANFT AtFAPSIRqR LEndLSGVtL TDtEVtyLMD
MCSFDTIStS

A. niger NRRL3135 LADtvEANFT AtFvPSIRqR LEndLSGVtL TDtEVtyLMD
MCSFDTIStS

A. fumigatus ATCC13073 LGDEvAANFT ALFAPdIRAR aEkhLPGVtL TDEDVVSLMD
MCSFDTVART

A. fumigatus ATCC32722 LGDEvAANFT ALFAPdIRAR aEkhLPGVtL TDEDVVSLMD
MCSFDTVART

A. fumigatus ATCC58128 LGDEvAANFT ALFAPdIRAR aEkhLPGVtL TDEDVVSLMD
MCSFDTVART

A. fumigatus ATCC26906 LGDEvAANFT ALFAPdIRAR aKkhLPGVtL TDEDVVSLMD
MCSFDTVART

A. fumigatus ATCC32239 LGDEvEANFT ALFAPAIRAR IEkhLPGVQL TDDVVSLMD
MCSFDTVART

E. nidulans rADEiEANFT AIMGPIRK R LEndLPGIKL TNENVIyLMD
MCSFDTMART

T. thermophilus gGHDAQEKF A kqFAPAI1EK IKDhLPGVDL AvsDVpyLMD
LCPFETLARn

T. lanuginosa .DptqpAEF1 qVFGPRV1kk ItkhMPGVNL T1EDVp1FMD
LCPFDTVGsd

M. thermophila IGDDAQD1Y1 StFAGP1AR VNAnLPGaNL TDADtVaLMD
LCPFETVAss

Consensus Seq. 11 LGDDAEANFT AVFAPP1RAR LEA-LPGVNL TDEDVVNLMD
MCPFD1TVART

251

300

P. involutus (phyA1)ekkSdF CtLFegiPGs FeaFAYggdL
dKFYGtGyGQ

P. involutus (phyA2)eqkSdF CtLFegiPGs FeaFAYagdL
dKFYGtGyGQ

T. pubescenserrSeF CDIYeelqAE .daFAYnadL
 dKFYGTGyGQ

A. pediadesetpSPF CNLF..TPEE FaQFEYFgdL
 dKFYGTGyGQ

P. lyciignaSPF CDLF..TAEE YvsYEYYydL
 dKYYGTGPGN

A. terreus 9aldD..Aht... LSPF CDLF..TAtE WtQNYNL1SL
 dKYYGYGGGN

A. terreus cbsdD..Aht... LSPF CDLF..TAAE WtQNYNL1SL
 dKYYGYGGGN

A. niger var. *awamori* Tv..DTK... LSPF CDLF..ThDE WiHYDYLQSL
 kKYYGHGAGN

A. niger T213Tv..DTK... LSPF CDLF..ThDE WiHYDYLRSI
 kKYYGHGAGN

A. niger NRRL3135Tv..DTK... LSPF CDLF..ThDE WiNYDYLQSL
 kKYYGHGAGN

A. fumigatus ATCC13073 SD..ASQ... LSPF CQLF..ThNE WkKYNYLQSL
 gKYYGYGAGN

A. fumigatus ATCC32722 SD..ASQ... LSPF CQLF..ThNE WkKYNYLQSL
 gKYYGYGAGN

A. fumigatus ATCC58128 SD..ASQ... LSPF CQLF..ThNE WkKYNYLQSL
 gKYYGYGAGN

A. fumigatus ATCC26906 SD..ASQ... LSPF CQLF..ThNE WkKYNYLQSL
 gKYYGYGAGN

A. fumigatus ATCC32239 AD..ASE... LSPF CAIF..ThNE WkKYDYLQSL
 gKYYGYGAGN

E. nidulans AH..GTE... LSPF CAIF..TEKE WlQYDYLQSL
 sKYYGYGAGS

T. thermophilus ht..DT.....LSPF CALS..TqEE WqaYDYYQSL
gKYYGnGGGN

T. lanuginosa PvlfPrQ...LSPF CHLF..TADD WmaYDYYyTL
dKYYSHGGGS

M. thermophila SsdpATadag ggngrpLSPF CrLF..SEsE WraYDYLQSV
gKWyGYGPGN

Consensus Seq. 11 SD--ATQ--- -----LSPF CDLF--TADE W-QYDYLQSL -
KYYGYGAGN

301

350

P. involutus (phyA1) eLGPvQGVGY vNELIARLTN S.AVRDNTqT NRTLDASPvT
FPLNkTFYAD

P. involutus (phyA2) ALGPvQGVGY iNELLARLTN S.AVNDNTqT NRTLDAApDT
FPLNkTMYAD

T. pubescens PLGPvQGVGY iNELIARLTa q.nVsDHTqT NsTLDSSPET
FPLNrTLYAD

A. pediades PLGPvQGVGY iNELLARLTm.PVRDNTqT NRTLDSSPlT
FPLDrSIYAD

P. lycii ALGPvQGVGY vNELLARLTg q.AVRDETqT NRTLDSDPAT
FPLNrTFYAD

A. terreus 9al PLGPvQGVGW aNELMARLTR A.PVHDHTCv NNTLDASPAT
FPLNATLYAD

A. terreus cbs PLGPvQGVGW aNELIARLTR S.PVHDHTCv NNTLDANPAT
FPLNATLYAD

A. niger var. *awamori* PLGPTQGVGY aNELIARLTH S.PVHDDTSS NHTLDSNPAT
FPLNSTLYAD

A. niger T213 PLGPTQGVGY aNELIARLTH S.PVHDDTSS NHTLDSPAT
FPLNSTLYAD

A. niger NRRL3135 PLGPTQGVGY aNELIARLTH S.PVHDDTSS NHTLDSSPAT
FPLNSTLYAD

A. fumigatus ATCC13073 PLGPAQGIGF tNELIARLTR S.PVQDHTST NstLvSNPAT
FPLNATMYvD

A. fumigatus ATCC32722 PLGPAQGIGF tNELIARLTR S.PVQDHTST NstLvSNPAT
FPLNATMYvD

A. fumigatus ATCC58128 PLGPAQGIGF tNELIARLTR S.PVQDHTST NstLvSNPAT
FPLNATMYvD

A. fumigatus ATCC26906 PLGPAQGIGF tNELIARLTR S.PVQDHTST NstLvSNPAT
FPLNATMYvD

A. fumigatus ATCC32239 PLGPAQGIGF tNELIARLTN S.PVQDHTST NstLSDSPAT
FPLNATIYvD

E. nidulans PLGPAQGIGF tNELIARLTQ S.PVQDNTST NHTLDSPAT
FPLDrkLYAD

T. thermophilus PLGPAQGVGF vNELIARMTH S.PVQDYTTv NHTLDSPAT
FPLNATLYAD

T. lanuginosa AFGPSRGVGF vNELIARMTg N1PVKDHTTv NHTLddNPET
FPLDAvLYAD

M. thermophila PLGPTQGVGF vNELLARLA. GvPVRDgTST NRTLDGDPrT
FPLGrPLYAD

Consensus Seq. 11 PLGPAQGVGF -NELIARLTH S-PVQDHTST NHTLDSPAT
FPLNATLYAD

P. involutus (*phyA1*) FSHDN1MVAV FsAMGLFrqP aPLSTSvpNP wrt.....Wr
TSS1VPFSGR

P. involutus (*phyA2*) FSHDN1MVAV FsAMGLFrqS aPLSTSTpDP nrt....:Wl
TSSvVPFSAR

T. pubescens FSHDNqMVAI FsAMGLFNqS aPLdPTTpDP art.....Fl
vkkiVPFSGR

A. pediades LSHDNqMIAI FsAMGLFNqS sPLdPSfpNP krt.....Wv
TSRltPFSAR

P. lycii FSHDNTMVPI FaALGLFNAT a.LdPlkpDe nrl.....Wv
DSklVPFSGH

A. terreus 9al FSHDSnLVSI FWALGLYNGT aPLSqTSVES Vs..QTDGYA
AAWTVPFAAR

A. terreus cbs FSHDSnLVSI FWALGLYNGT KPLSqTTVED It..rTDGYA
AAWTVPFAAR

A. niger var. *awamori* FSHDNGIISI LFALGLYNGT KPLSTTTVEN It..QTDGFS
SAWTVPFASR

A. niger T213 FSHDNGIISI LFALGLYNGT KPLSTTTVEN It..QTDGFS
SAWTVPFASR

A. niger NRRL3135 FSHDNGIISI LFALGLYNGT KPLSTTTVEN It..QTDGFS
SAWTVPFASR

A. fumigatus ATCC13073 FSHDNSMVSI FFALGLYNGT EPLSrTSVES ak..E1DGYS
ASWvVPFGAR

A. fumigatus ATCC32722 FSHDNSMVSI FFALGLYNGT gPLSrTSVES ak..E1DGYS
ASWvVPFGAR

A. fumigatus ATCC58128 FSHDNSMVSI FFALGLYNGT EPLSrTSVES ak..E1DGYS
ASWvVPFGAR

A. fumigatus ATCC26906 FSHDNSMVSI FFALGLYNGT EPLSrTSVES ak..E1DGYS
ASWvVPFGAR

A. fumigatus ATCC32239 FSHDNGMIPF FFAMGLYNGT EPLSqTSeES tk..ESNGYS
ASWAVPFGAR

E. nidulans FSHDNSMISI FFAMGLYNGT QPLSmdSVES Iq..EmDGYA
ASWTVPFGAR

T. thermophilus FSHDNTMtsSI FaALGLYNGT akLSTTeIKS Ie..ETDGYS
AAWTVPPGGR

T. lanuginosa FSHDNTMtGI FsAMGLYNGT KPLSTSkiQP ptgaAADGYA
ASWTVPFAAR

M. thermophila FSHDNDMMGV LgALGaYDGv pPLdkTArrd ..peElGGYA
ASWAVPFAAR

Consensus Seq. 11 FSHDNTMVsI FFALGLYNGT KPLSTTSVES I---ETDGYA
ASWTVPFAAR

401

450

P. involutus (phyA1) mvVERLsC.. fGT.....Tk VRVLVQDQVq
PLEfCGgDRn

P. involutus (phyA2) maVERLsC.. AGt.....Tk VRVLVQDQVq
PLEfCGgDQd

T. pubescens mvVERLDC.. GGa.....Qs VRLLVNDaVq
PLafCGaDts

A. pediades mvTERLlCqr DGtGsGGpsr imrNgnvQTF VRILVNDaLq
PLkfCGgDmd

P. lycii mtVEkLaC..sgKea VRVLVNDaVq
PLEfCGg.vd

A. terreus 9a1 AYVEMMQCrAEK...EPL VRVLVNDRVM
PLHGCPTDKL

A. terreus cbs AYIEMMQCrAEK...QPL VRVLVNDRVM
 PLHGCACVDNL

A. niger var. *awamori* LYVEMMQCQAEQ...EPL VRVLVNDRVM
 PLHGCPIDaL

A. niger T213 LYVEMMQCQAEQ...EPL VRVLVNDRVM
 PLHGCPIDaL

A. niger NRRL3135 LYVEMMQCQAEQ...EPL VRVLVNDRVM
 PLHGCPVDAcL

A. fumigatus ATCC13073 AYfEtMQCKSEK...EPL VRaLINDRVM
 PLHGCDVDKL

A. fumigatus ATCC32722 AYfEtMQCKSEK...EPL VRaLINDRVM
 PLHGCDVDKL

A. fumigatus ATCC58128 AYfEtMQCKSEK...ESL VRaLINDRVM
 PLHGCDVDKL

A. fumigatus ATCC26906 AYfEtMQCKSEK...EPL VRaLINDRVM
 PLHGCDVDKL

A. fumigatus ATCC32239 AYfEtMQCKSEK...EPL VRaLINDRVM
 PLHGCACVDKL

E. nidulans AYfELMQCE.KK...EPL VRVLVNDRVM
 PLHGCAVDF

T. thermophilus AYIEMMQCDDSD...EPV VRVLVNDRVM
 PLHGCEVDsL

T. lanuginosa AYVELLRCET ETsSeEEeEG ..ED...EPF VRVLVNDRVM
 PLHGCrVDRW

M. thermophila iYVEkMRCsG GGgGgGGgEG ..rQekdEeM VRVLVNDRVM
 TLkGCGaDER

Consensus Seq. 11 AYVEMMQCEA GG-G-GG-EG --EK---EPL VRVLVNDRVM
 PLHGCGVDKL

	451	482
<i>P. involutus</i> (phyA1)	GlCtLAKFVE SqTFARSDga GDFEKCFAts a-	
<i>P. involutus</i> (phyA2)	GlCaLDKFVE SqAYARSGga GDFEKCLAtt v~	
<i>T. pubescens</i>	GvCtLDAFVE SqAYARNDge GDFEKCFAt~ ~~	
<i>A. pediades</i>	S1CtLEAFVE SqkYAReDgq GDFEKCFD~~ ~~	
<i>P. lycii</i>	GvCELSAFVE SqTYAReNgq GDFAKCgfvp se	
<i>A. terreus</i> 9a1	GRCKrDAFVA GLSFAQAG.. GNWADCF~~~ ~~	
<i>A. terreus</i> cbs	GRCKrDDFVE GLSFARAG.. GNWAECF~~~ ~~	
<i>A. niger</i> var. <i>awamori</i>	GRCtrDsFVr GLSFARSG.. GDWAECsA~~ ~~	
<i>A. niger</i> T213	GRCtrDsFVr GLSFARSG.. GDWAECFA~~ ~~	
<i>A. niger</i> NRRL3135	GRCtrDsFVr GLSFARSG.. GDWAECFA~~ ~~	
<i>A. fumigatus</i> ATCC13073	GRCKLNDFVK GLSWARSG.. GNWGECFS~~ ~~	
<i>A. fumigatus</i> ATCC32722	GRCKLNDFVK GLSWARSG.. GNWGECFS~~ ~~	
<i>A. fumigatus</i> ATCC58128	GRCKLNDFVK GLSWARSG.. GNWGECFS~~ ~~	
<i>A. fumigatus</i> ATCC26906	GRCKLNDFVK GLSWARSG.. GNWGECFS~~ ~~	
<i>A. fumigatus</i> ATCC32239	GRCKLKDFVK GLSWARSG.. GNSEQSFS~~ ~~	
<i>E. nidulans</i>	GRCtLDDWVE GLNFARSG.. GNWktCFT1~ ~~	
<i>T. thermophilus</i>	GRCKrDDFVr GLSFARqG.. GNWEGCYAas e~	
<i>T. lanuginosa</i>	GRCRrDEWIK GLTFARqG.. GHWDrfCF~~~ ~~	
<i>M. thermophila</i>	GmCtLERFIE SMAFARGN.. GKWD1CFA~~ ~~	
Consensus Seq. 11	GRCKLDDFVE GLSFARSG-- GNWAECFA-- --	

Figure 8

M G V F V V L L S I A T L F G S T S G T
20

ATGGGCGTGTTCGTCGTGCTACTGTCCATTGCCACCTTGTTCCACATCCGGTACC
1 -----+-----+-----+-----+-----+-----+-----+
60

TACCCGCACAAGCAGCACGATGACAGGTAACGGTGGAACAGCCAAGGTGTAGGCCATGG
40

A L G P R G N S H S C D T V D G G Y Q C
40

GCCTTGGGTCTCGTGGTAATTCTCACTCTTGACACTGTTGACGGTGGTTACCAATGT
61 -----+-----+-----+-----+-----+-----+-----+
120

CGGAACCCAGGAGCACCATTAAGAGTGAGAACACTGTGACAACGCCACCAATGGTTACA
60

F P E I S H L W G T Y S P Y F S L A D E
60

TTCCCAGAAATTCTCACTGTGGGTACCTACTCTCCATACTTCTCTTGGCAGACGAA
121 -----+-----+-----+-----+-----+-----+-----+
180

AAGGGTCTTAAAGAGTGAACACCCATGGATGAGAGGTATGAAGAGAAACCGTCTGCTT
80

S A I S P D V P D D C R V T F V Q V L S
80

TCTGCTATTCTCCAGACGTTCCAGACGACTGTAGAGTTACTTCGTTCAAGTTGTCT
187 -----+-----+-----+-----+-----+-----+-----+
240

AGACGATAAAGAGGTCTGCAAGGTCTGCTGACATCTCAATGAAAGCAAGTTCAAAACAGA

R H G A R Y P T S S A S K A Y S A L I E
100

AGACACGGTGTAGATAACCAACTTCTCTCGCTAAGGCTTACTCTGCTTGATTGAA
241 ---+-----+-----+-----+-----+-----+
300

TCTGTGCCACGATCTATGGGTTGAAGAAGACGCAGATTCCGAATGAGACGAAACTAACCT

A I Q K N A T A F K G K Y A F L K T Y N
120

GCTATTCAAAGAACGCTACTGCTTCAAGGGTAAGTACGCTTCTTGAAGACTTACAAC
301 ---+-----+-----+-----+-----+-----+
360

CGATAAGTTTCTTGCATGACGAAAGTTCCCATTGCGAAAGAACCTCTGAATGTTG
Y T L G A D D L T P F G E N Q M V N S G
140

TACACTTTGGGTGCTGACGACTTGACTCCATTGGTAAAACCAAATGGTTAAGTCTGGT
361 ---+-----+-----+-----+-----+-----+
420

ATGTGAAACCCACGACTGCTGAACTGAGGTAAGCCACTTTGGTTACCAATTGAGACCA

I K F Y R R Y K A L A R K I V P F I R A
160

ATTAAGTTCTACAGAAGATAACAAGGCTTGGCTAGAAAGATTGTTCCATTAGAGCT
421 ---+-----+-----+-----+-----+-----+
480

EP 1 092 764 A2

TAATTCAAGATGTCTTCTATGTTCCGAAACCGATCTTCTAACAGGTAAGTAATCTCGA

S G S D R V I A S A E K F I E G F Q S A

180

TCTGGTTCTGACAGAGTTATTGCTTCTGCTGAAAAGTTCATTAAGGTTCCAATCTGCT

481 ---+-----+-----+-----+-----+-----+-----+

540

AGACCAAGACTGTCTAACGAAAGACGACTTTCAAGTAACTTCCAAAGGTTAGACGA

K L A D P G S Q P H Q A S P V I N V I I

200

AAGTTGGCTGACCCAGGTTCTCAACCACACCAAGCTTCTCCAGTTATTAACGTGATCATT

541 ---+-----+-----+-----+-----+-----+-----+

600

TTCAACCGACTGGTCCAAGAGTTGGTGTGGTTCGAAGAGGTCAATAATTGCACTAGTAA

P E G S G Y N N T L D H G T C T A F E D

220

CCAGAAGGATCCGGTTACAACAAACACTTGGACCACGGTACTGTACTGCTTCGAAGAC

601 ---+-----+-----+-----+-----+-----+-----+

660

GGTCTTCCTAGGCCAATGTTGTTGAAACCTGGTGCATGAACATGACGAAAGCTTCTG

S E L G D D V E A N F T A L F A P A I R

240

TCTGAATTAGGTGACGACGTTGAAGCTAACCTCACTGCTTGTTGCTCCAGCTATTAGA

661 ---+-----+-----+-----+-----+-----+-----+

720

AGACTTAATCCACTGCTGCAACTTCGATTGAAGTGACGAAACAAGCGAGGTCGATAATCT

A R L E A D L P G V T L T D E D V V Y L

260

GCTAGATTGGAAGCTGACTTGCCAGGTGTTACTTGACTGACGAAGACGTTGTTACTTG

721 ---+-----+-----+-----+-----+-----+-----+-----+-----

780

CGATCTAACCTTCGACTGAACGGTCCACAATGAAACTGACTGCTTCTGCAACAAATGAAC

M D M C P F D T V A R T S D A T E L S P

280

ATGGACATGTGCCATTGACACTGTCGCTAGAACTTCTGACGCTACTGAATTGTCTCCA

781 ---+-----+-----+-----+-----+-----+-----+-----+-----

840

TACCTGTACACAGGTAAGCTGTGACAGCGATCTGAAGACTGCGATGACTAACAGAGGT

F C A L F T H D E W I Q Y D Y L Q S L G

300

TTCTGTGCTTGTTCACTCACGACGAATGGATCCAATACGACTACTTGCAAAGCTTGGGT

841 ---+-----+-----+-----+-----+-----+-----+-----+-----

900

AAGACACGAAACAAGTGAGTGCTGCTTACCTAGGTTATGCTGATGAACGTTCGAACCCA

K Y Y G Y G A G N P L G P A Q G V G F A

320

AAGTACTACGGTTACGGTGCTGGTAACCCATTGGGTCCAGCTCAAGGTGTTGGTTCGCT

901 ---+-----+-----+-----+-----+-----+-----+-----+-----

960

EP 1 092 764 A2

TTCATGATGCCAATGCCACGACCATTGGTAACCCAGGTCGAGTTCCACAACCAAAGCGA

N E L I A R L T H S P V Q D H T S T N H

340

AACGAATTGATTGCTAGATTGACTCACTCTCCAGTTCAAGACCAACTTCTACTAACAC

961 ---+-----+-----+-----+-----+-----+-----+

1020

TTGCTTAACTAACGATCTAACTGAGTGAGAGGTCAAGTTCTGGTGTGAAGATGATTGGTG

T L D S N P A T F P L N A T L Y A D F S

360

ACTTTGGACTCTAACCCAGCTACTTCCCATTGAACGCTACTTGTACGCTGACTTCTCT

1021 ---+-----+-----+-----+-----+-----+-----+

1080

TGAAACCTGAGATTGGTCGATGAAAGGGTAAC TGCGATGAAACATGCGACTGAAGAGA

H D N T M I S I F F A L G L Y N G T K P

380

CACGACAACACTATGATATCTATTTCTCGCTTGGTTGTACAACGGTACCAAGCCA

1081 ---+-----+-----+-----+-----+-----+-----+

1140

G TGCTGTTGTGATACTATAGATAAAAAGAAGCGAAACCCAAACATGTTGCCATGGTTCGGT

L S T T S V E S I E E T D G Y S A S W T

400

TTGTCTACTACTTCTGTTGAATCTATTGAAGAACTGACGGTTACTCTGCTTCTGGACT

1141 ---+-----+-----+-----+-----+-----+-----+

1200

AACAGATGATGAAGACAACCTAGATAACTTCTTGACTGCCAATGAGACGAAGAACCTGA

V P F A A R A Y V E M M Q C Q A E K E P

420

GTTCCATTGCGTAGAGCTACGTGAAATGATGCAATGTCAGCTGAAAAGGAACCA

1201 ---+-----+-----+-----+-----+-----+-----+

1260

CAAGGTAAGCGACGATCTGAATGCAACTTACGTTACAGTTCGACTTTCCCTGGT

L V R V L V N D R V V P L H G C A V D K

440

TTGGTAGAGTTGGTTAACGACAGAGTTGTCATTGCACGGTTGTGCTGTTGACAAG

1261 ---+-----+-----+-----+-----+-----+-----+

1320

AACCAATCTAAACCAATTGCTGTCTAACAGGTAAACGTGCCAACACGACAACGTTC

L G R C K R D D F V E G L S F A R S G G

460

TTGGGTAGATGTAAGAGAGACGACTTCGTTGAAGGTTGTCTTCGCTAGATCTGGTGGT

1321 ---+-----+-----+-----+-----+-----+-----+

1380

AACCCATCTACATTCTCTGCTGAAGCAACTTCAAACAGAAAGCGATCTAGACCACCA

N W A E C F A * 467

AACTGGGCTGAATGTTCGCTTAA

1381 ---+-----+-----+ 1410

TTGACCCGACTTACAAAGCGAATT

Figure 9

M G V F V V L L S I A T L F G S T S G T
20

ATGGGCGTGTTCGTCGTGCTACTGTCCATTGCCACCTTGGTCCACATCCGGTACC
1 -----+-----+-----+-----+-----+
60

TACCCGCACAAGCAGCACGATGACAGGTAACGGTGGAACAGCCAAGGTGTAGGCCATGG
40

A L G P R G N S H S C D T V D G G Y Q C
40

GCCTTGGGTCTCGTGGTAACCTCACTCTTGACACTGTTGACGGTGGTACCAATGT
61 -----+-----+-----+-----+-----+
120

CGGAACCCAGGAGCACCATTGAGAGTGAGAACACTGTGACAACGCCACCAATGGTTACA
60

A F P E I S H L W G T Y S P F F S L A D E
60

TTCCCAGAAATTCTCACTGTGGGTACATACTCTCCATTCTCTTTGGCTGACGAA
121 -----+-----+-----+-----+-----+
180

AAGGGTCTTAAAGAGTGAACACCCCATGTATGAGAGGTAAGAAGAGAAACCGACTGCTT
80

S A I S P D V P K G C R V T F V Q V L S
80

TCTGCTATTCTCCAGACGTTCAAAGGGTTGTAGAGTTACTTCGTTCAAGTTGTCT
181 -----+-----+-----+-----+-----+
240

AGACGATAAAGAGGTCTGCAAGGTTCCAACATCTCAATGAAAGCAAGTTCAAAACAGA

R H G A R Y P T S S A S K A Y S A L I E
100

AGACACGGTGCTAGATAACCAACTTCTTCGCGTCTAAGGCGTACTCTGCTTGATTGAA
241 -----+-----+-----+-----+-----+
300

TCTGTGCCACGATCTATGGGTTGAAGAAGACGCAGATTCCGCATGAGACGAAACTAACCTT
120

A I Q K N A T A F K G K Y A F L K T Y N
120

GCTATTCAAAAGAACGCTACTGCTTCAAGGGTAAGTACGCTTCTGAAGACTTACAAC
301 -----+-----+-----+-----+-----+
360

CGATAAGTTTCTGCGATGACGAAAGTTCCCATTGCGAAAGAACTTCTGAATGTTG
140

A Y T L G A D D L T P F G E Q Q M V N S G
140

TACACTTGGGTGCTGACGACTTGACTCCATTGGTGAACAAACAAATGGTTAACTCTGGT
361 -----+-----+-----+-----+-----+
420

ATGTGAAACCCACGACTGCTGAAGTGGACTTGGTGTACCAATTGAGACCA

I K F Y R R Y K A L A R K I V P F I R A
160

ATTAAGTTCTACAGAAGATAACAGGCTTGGTAGAAAGATTGTTCCATTAGAGCT
421 -----+-----+-----+-----+-----+
480

TAATTCAAGATGTCTTCTATGTTCCGAAACCGATCTTCTAACAAAGGTAAGTAATCTCGA

S G S D R V I A S A E K F I E G F Q S A

180

TCTGGTTCTGACAGAGTTATTGCTTCTGCTGAAAAGTTCAATTGAAGGTTCCAATCTGCT

481 -----+-----+-----+-----+-----+-----+

540

AGACCAAGACTGTCTCAATAACGAAGACGACTTTCAAGTAACTTCCAAGGTTAGACGA

K L A D P G A N P H Q A S P V I N V I I

200

AAGTTGGCTGACCCAGGTGCTAACCCACACCAAGCTTCTCCAGTTATTAAACGTTATTATT

541 -----+-----+-----+-----+-----+-----+-----+

600

TTCAACCGACTGGGTCCACGATTGGGTGTGGTTCGAAGAGGTCAATAATTGCAATAATAA

P E G A G Y N N T L D H G L C T A F E E

220

CCAGAAGGTGCTGGTTACAACAAACACTTGGACCACGGTTGTACTGCTTCGAAGAA

601 -----+-----+-----+-----+-----+-----+-----+

660

GGTCTTCCACGACCAATGTTGTTGTGAAACCTGGTGCACACATGACGAAAGCTTCTT

S E L G D D V E A N F T A V F A P P I R

240

TCTGAATTGGGTGACGACGTTGAAGCTAACCTCACTGCTGTTTCGCTCCACCAATTAGA

661 -----+-----+-----+-----+-----+-----+-----+

720

AGACTTAACCCACTGCTGCAACTCGATTGAAGTGACGACAAAGCGAGGTGGTTAATCT

A R L E A H L P G V N L T D E D V V N L

260

GCTAGATTGGAAGCTCACTGCCAGGTGTTAAC TGACTGACGAAGACGTTGTTAAC TTG

721 -----+-----+-----+-----+-----+-----+

780

CGATCTAACCTCGAGTGAACGGTCCACAATTGAAC TGACTGCTTCTGCAACAATTGAAC

M D M C P F D T V A R T S D A T Q L S P

280

ATGGACATGTGTCCATTCGACACTGTTGCTAGAAC TTCTGACTCAATTGTCTCCA

781 -----+-----+-----+-----+-----+-----+

840

TACCTGTACACAGGTAAGCTGTGACAACGATCTTGAAGACTGCGATGAGTTAACAGAGGT

F C D L F T H D E W I Q Y D Y L Q S L G

300

TTCTGTGACTTGTTCACTCACGACGAATGGATTCAATACGACTACTTGCAATCTTGGGT

841 -----+-----+-----+-----+-----+-----+

900

AAGACACTGAACAAGTGAGTGCTGCTTACCTAACGTTATGCTGATGAACGTTAGAAACCCA

K Y Y G Y G A G N P L G P A Q G V G F V

320

AACTACTACGGTTACGGTGCTGGTAACCCATTGGGTCCAGCTCAAGGTGTTGGTT CGTT

901 -----+-----+-----+-----+-----+-----+

960

TTCATGATGCCAATGCCACGACCATTGGTAACCCAGGTCGAGTCCACAACCAAAGCAA

N E L I A R L T H S P V Q D H T S T N H

340

AACGAATTGATTGCTAGATTGACTCACTCTCAGTTCAAGACCACACTCTACTAACAC

961 -----+-----+-----+-----+-----+-----+

1020

TTGCTTAACTAACGATCTAACTGAGTGAGAGGTCAAGTTCTGGTGTGAAGATGATTGGTG

T L D S N P A T F P L N A T L Y A D F S

360

ACTTTGGACTCTAACCCAGCTACTTTCCCATTGAACGCTACTTGTACGCTGACTCTCT

1021 -----+-----+-----+-----+-----+-----+

1080

TGAAACCTGAGATTGGTCGATGAAAGGGTAACCGCGATGAAACATGCGACTGAAGAGA

H D N T M V S I F F A L G L Y N G T K P

380

CACGACAACACTATGGTTCTATTTCTTCGCTTGGTTGTACAACGGTACTAAGCCA

1081 -----+-----+-----+-----+-----+-----+

1140

GTGCTGTTGTGATACCAAGATAAAAGAAGCGAACCCAAACATGTTGCCATGATTGGT

L S T T S V E S I E E T D G Y S A S W T

400

TTGTCTACTACTCTGTTGAATCTATTGAAGAACTGACGGTTACTCTGCTTCTGGACT

1141 -----+-----+-----+-----+-----+-----+

1200

AACAGATGATGAAGACAACCTTAGATAACTTCTTGACTGCCAATGAGACGAAGAACCTGA

V P F A A R A Y V E M M Q C E A E K E P
420

GTTCCATTGCTGCTAGAGCTTACGTTGAAATGATGCAATGTGAAGCTGAAAAGGAACCA
1201 -----+-----+-----+-----+-----+-----+
1260

CAAGGTAAGCGACGATCTCGAATGCAACTTACTACGTTACACTTCGACTTTCCCTGGT
L V R V L V N D R V V P L H G C G V D K
440

TTGGTTAGAGTTTGGTTAACGACAGAGTTGTTCCATTGCACGGTTGGTGTGACAAG
1261 -----+-----+-----+-----+-----+-----+
1320

AACCAATCTAAAACCAATTGCTGTCTCAACAAGGTAACGTGCCAACACCACAACTGTT
L G R C K R D D F V E G L S F A R S G G
460

TTGGGTAGATGTAAGAGAGACGACTTCGTTGAAGGTTGTCTTCGCTAGATCTGGTGGT
1321 -----+-----+-----+-----+-----+-----+
1380

AACCCATCTACATTCTCTGCTGAAGCAACTTCAAACAGAAAGCGATCTAGACCACCA
N W E E C F A * 467

AACTGGGAAGAATGTTCGCTTAA
1381 -----+-----+----- 1404

TTGACCCCTTCTTACAAAGCGAATT

Figure 10

M G V F V V L L S I A T L F G S T S G T 20
ATGGGGGTTTCGTCGTTCTATTATCTATCGCAGCTCTGTTGGCAGCACATGGGCACT
1 -----+-----+-----+-----+-----+-----+ 60
TACCCCCAAAAGCAGCAAGATAATAGATAGCGCTGAGACAAGCCGTGTTAGCCGTGA

A L G P R G N H S K S C D T V D L G Y Q 40
GCGCTGGGCCCGTGGAAATCACTCCAAGTCCTGCGATACGGTAGACCTAGGGTACCAAG
61 -----+-----+-----+-----+-----+-----+ 120
CGCGACCCGGGGCACCTTAGTGAGGTTAGGACGCTATGCCATCTGGATCCCATGGTC

C S P A T S H L W G T Y S P Y F S L E D 60
TGCTCCCCCTGCGACTTCTCATCTATGGGGCACGTACTGCCATaCTTTCGCTCGAGGAC
121 -----+-----+-----+-----+-----+-----+ 180
ACGAGGGGACGCTGAAGAGTAGATACCCGtgCATGAGCGGTatGAAAAGCGAGCTCCTG

E L S V S S K L P K D C R I T L V Q V L 80
GAGCTGTCCGTGTCGAGTAAGCTCCCAAGGATTGCCGGATCACCTTGGTACAGGTGCTA
181 -----+-----+-----+-----+-----+-----+ 240
CTCGACAGGCACAGCTCATTGAAGGGTCTAACGGCTAGTGGAACCATGTCCACGAT

S R H G A R Y P T S S K S K K Y K K L I 100
TCGCGCCATGGAGCGCGGTACCCAACCAGCTCCAAGAGCAAAAGTATAAGAAGCTTaTt
241 -----+-----+-----+-----+-----+-----+ 300

EP 1 092 764 A2

AGCGCGGTACCTCGGCCATGGGTTGGTCGAGGTTCTCGTTTCAATTCTCGAAtAa

T A I Q A N A T D F K G K Y A F L K T Y 120

ACGGCGATCCAGGCCAATGCCACCGACTTCAAGGGCAAGTAcGCCTTTGAAGACGTAC

301 -----+-----+-----+-----+-----+-----+ 360

TGCCGCTAGGTCCGGTTACGGTGGCTGAAGTCCCCTCATgCGGAAAAACTTCTGCATG

N Y T L G A D D L T P F G E Q Q L V N S 140

AACTATACTCTGGGTGCGGATGACCTCACTCCCTTGGGGAGCAGCAGCTGGTGAACTCG

361 -----+-----+-----+-----+-----+-----+ 420

TTGATATGAGAC~~C~~ACGCCACTGGACTTGAGTGAGGGAAACCCCTCGTCGACCACTTGAGC

G I K F Y Q R Y K A L A R S V V P F I R 160

GGCATCAAGTCTACCAGAGGTACAAGGCTCTGGCGCGAGTGTGGTGCCGTTATCGC

421 -----+-----+-----+-----+-----+-----+ 480

CCGTAGTTCAAGATGGTCTCCATGTTCCGAGACCGCGCAGTCACACCACGGCAAATAAGCG

A S G S D R V I A S G E K F I E G F Q Q 180

GCCTCAGGCTCGGACCGGGTTATTGCTTCGGAGAGAAGTTCATCGAGGGGTTCCAGCAG

481 -----+-----+-----+-----+-----+-----+ 540

CGGAGTCCGAGCCTGGCCAATAACGAAGCCCTCTTCAAGTAGCTCCCCAAGGTGTC

A K L A D P G A T N R A A P A I S V I I 200

GCGAAGCTGGCTGATCCTGGCGCACGAACCGCGCCGCTCCGGCATTAGTGTGATTATT

541 -----+-----+-----+-----+-----+-----+ 600

EP 1 092 764 A2

CGCTTCGACCGACTAGGACCGCGCTGCTGGCGGGCGAGGCCGCTAACATCACACTAATAA

P E S E T F N N T L D H G V C T K F E A 220

CCGGAGAGCGAGACGTTCAACAATACGCTGGACCACGGTGTGCACGAAGTTGAGGCG

601 -----+-----+-----+-----+-----+ 660

GGCCTCTCGCTCTGCAAGTTGTTATGCGACCTGGTGCCACACACGTGCTTCAAACCTCCGC

S Q L G D E V A A N F T A L F A P D I R 240

AGTCAGCTGGGAGATGAGGTTGCGGCCAATTCACTGCGCTCTTGCACCCGACATCCGA

661 -----+-----+-----+-----+-----+ 720

TCAGTCGACCCCTCTACTCCAACGCCGGTAAAGTGACCGAGAACGTGGCTGTAGGCT

A R L E K H L P G V T L T D E D V V S L 260

GCTCGCctCGAGAAGCATTTCTGGCGTGACGCTGACAGACGAGGACGTTGTCAGTCTA

721 -----+-----+-----+-----+-----+ 780

CGAGCGgaGCTTCTCGTAGAAGGACCGCACTGCGACTGTCAGTCAGTCTGCAACAGTCAGAT

M D M C P F D T V A R T S D A S Q L S P 280

ATGGACATGTGTCGTTGATACGGTAGCGCGCACCGACGCAAGTCAGCTGTCACCG

781 -----+-----+-----+-----+-----+ 840

TACCTGTACACAgGCAAACATGCCATCGCCGTGGTCGCTGCGTCAGTCAGTCAGTGGC

F C Q L F T H N E W K K Y D Y L Q S L G 300

TTCTGTCAACTCTTCACTCACAATGAGTGGAAAGAAGTACGACTACCTTCAGTCCTGGGC

841 -----+-----+-----+-----+-----+ 900

EP 1 092 764 A2

AAGACAGTTGAGAAAGTGAGTGTACTCACCTTCTTCATGcTGATGGAAGTCAGGAACCCG

K Y Y G Y G A G N P L G P A Q G I G F T 320

AAGTACTACGGCTACGGCGAGGCAACCCTCTGGGACCGGCTCAGGGATAGGGTTCACC

901 -----+-----+-----+-----+-----+-----+-----+ 960

TTCATGATGCCGATGCCCGTCCGTTGGAGACCCCTGGCCGAGTCCCCTATCCCAAGTGG

N E L I A R L T R S P V Q D H T S T N S

340

AACGAGCTGATTGCCCGGTTGACgCGTCGCCAGTGCAGGACCACACCAGCACTAAGTCG

961 -----+-----+-----+-----+-----+-----+-----+

1020

TTGCTCGACTAACGGCCAAC TGcGCAAGCGGTACGTCTGGTGTGGTCGTGATTGAGC

T L V S N P A T F P L N A T M Y V D F S

360

ACTCTAGTCTCAAACCGGCCACCTCCCGTTGAACGCTACCATGTACGTCGACTTTCA

1021 -----+-----+-----+-----+-----+-----+-----+

1080

TGAGATCAGAGGTTGGGCCGGTGGAAAGGGCAACTTGCGATGGTACATGCAGCTGAAAAGT

H D N S M V S I F F A L G L Y N G T E P

380

CACGACAACAGCATGGTTCCATCTTCTTGATTGGCCTGTACAACGGCACTGAACCC

1081 -----+-----+-----+-----+-----+-----+

1140

GTGCTGTTGTCGTACCAAAAGGTAGAAGAACGTAACCCGGACATGTTGCCGTGACTTGGG

L S R T S V E S A K E L D G Y S A S W V
400

TTGTCCCGGACCTCGGTGGAAAGCGCCAAGGAATTGGATGGTATTCTGCATCCTGGGTG

1141 -----+-----+-----+-----+-----+
1200

AACAGGGCCTGGAGCCACCTTCGCGGTTCTAACCTACCCATAAGACGTAGGACCCAC

V P F G A R A Y F E T M Q C K S E K E P
420

GTGCCTTCGGCGCGAGCCTACTCGAGACGATGCAATGCAAGTCGGAAAAGGAGCCT

1201 -----+-----+-----+-----+-----+
1260

CACGGAAAGCCCGCGCTCGGATGAAGCTCTGCTACGTTACGTTAGCCTTTCCCTCGGA

L V R A L I N D R V V P L H G C D V D K
440

CTTGTTCGCGTTGATTAATGACCGGGTTGTGCCACTGCATGGCTGGATGTGGACAAG

1261 -----+-----+-----+-----+-----+
1320

GAACAAGCGCAAACTAATTACTGGCCAACACGGTGACGTACCGACGCTACACCTGTT

L G R C K L N D F V K G L S W A R S G G
460

CTGGGGCGATGCAAGCTGAATGACTTGTCAAGGGATTGAGTTGGCCAGATCTGGGGC

1321 -----+-----+-----+-----+-----+
1380

GACCCCGCTACGTTGACTTACTGAAACAGTTCCCTAACTCAACCCGGTCTAGACCCCCG

N W G E C F S * 467

AACTGGGGAGAGTGCTTTAGTTGA

1381 -----+-----+---- 1404

TTGACCCCTCTCACGAAATCAACT

Figure 11

CP-1

Eco RI M G V F V V L L S I A T L F G S T
TATATGAATTCATGGCGTTTCGTGCTACTGTCCATTGCCACCTTGGTCCGTTCCA

1 -----+-----+-----+-----+-----+-----+-----+ 60

ATATACTTAAGTACCCGCACAAGCAGCACGATGACAGGTAACGGTGGAACAGCCAAGGT

S G T A L G P R G N S H S C D T V D G G
CATCCGGTACCGCCTGGGTCCCTCGTGGTAATTCTCACTCTTGTGACACTGTTGACGGTG

61 -----+-----+-----+-----+-----+-----+-----+ 120

GTAGGCCATGGCGAACCCAGGAGCACCATTAAGAGTGAGAACACTGTGACAACTGCCAC

CP-2

CP-3

Y Q C F P E I S H L W G Q Y S P Y F S L
GTTACCAATGTTCCCAGAAATTCTCACTGTGGGTCAATACTCTCCATACTTCTTT

121 -----+-----+-----+-----+-----+-----+-----+ 180

CAATGGTTACAAAGGGTCTTAAAGAGTGAAACACCCAGTTATGAGAGGTATGAAGAGAA

E D E S A I S P D V P D D C R V T F V Q
TGGAAGACGAATCTGCTATTCTCCAGACGTTCCAGACGACTGTAGAGTTACTTCGTT

181 -----+-----+-----+-----+-----+-----+-----+ 240

ACCTTCTGCTTAGACGATAAAGAGGTCTGCAAGGTCTGCTGACATCTCAATGAAAGCAAG

CP-4.7
CP-5.7

V L S R H G A R Y P T D S K G K K Y S A

AAGTTTGCTAGACACGGTAGATAACCAACTgactCTAAGggtaAGaaGACTCTG
 241 -----+-----+-----+-----+-----+-----+-----+ 300
 TTCAAAACAGATCTGCCACGATCTATGGGTTGActgAGATTCCcaTTCttcATGAGAC
 L I E A I Q K N A T A F K G K Y A F L K
 CTTGATTGAAGCTATTCAAAAGAACGCTACTGCTTCAGGGTAAGTACGCTTCTGA
 301 -----+-----+-----+-----+-----+-----+-----+ 360
 GAAACTAACCGATAAGTTCTGCATGACGAAAGTTCCCATTGCGAAAGAACT
 CP-6
 CP-7
 T Y N Y T L G A D D L T P F G E N Q M V
 AGACTTACAACACTACACTGGGTGCTGACGACTTGACTCCATTGGTGAACCAATGG
 361 -----+-----+-----+-----+-----+-----+-----+ 420
 TCTGAATGTTGATGTGAAACCCACGACTGCTGAACGTGAGGTAAGCCACTTTGGTTACC
 N S G I K F Y R R Y K A L A R K I V P F
 TTAACTCTGGTATTAAGTTCTACAGAAGATAACAAGGCTTGGCTAGAAAGATTGTTCCAT
 421 -----+-----+-----+-----+-----+-----+-----+ 480
 AATTGAGACCATAATTCAAGATGTCTCTATGTTCCGAAACCGATCTTCAACAAGGTA
CP-8.7
 CP-9
 I R A S G S S R V I A S A E K F I E G F
 TCATTAGAGCTCTGGTCTtctAGAGTTATTGCTCTGCTGAAAAGTTCAATTGAAGGTT
 481 -----+-----+-----+-----+-----+-----+-----+ 540
 AGTAATCTCGAAGACCAAGAAGatCTCAATAACGAAGACGACTTTCAAGTAACCTCCAA
 Q S A K L A D P G S Q P H Q A S P V I D
 TCCAATCTGCTAAGTTGGCTGACCCAGGTTCTCAACCACACCAAGCTTCTCCAGTTATG
 541 -----+-----+-----+-----+-----+-----+-----+ 600
 AGGTTAGACGATTCAACCGACTGGGTCCAAGAGACTGGTGTGGTCAAGAGGTCAATAAC
CP-10.7
CP-11.7
 V I I S E A S S Y N N T L D P G T C T A

ACGTTATTATTtctGAcgctTCTtctTACAACAACACTTGGACccAGGTACTTGTACTG
601 -----+-----+-----+-----+-----+-----+-----+ 660
TGCAATAATAagaCTgcgaAGGagaATGTTGTTGTGAAACCTGgggtCCATGAACATGAC

F E D S E L A D T V E A N F T A L F A P
 CTTTCGAAGACTCTGAATTG~~g~~^ctGACactGTTGAAGCTAAC~~T~~CACTGCTTGT~~C~~GCTC

661 -----+-----+-----+-----+-----+-----+-----+ 720
GAAAGCTTCTGAGACTTAACcgaCTGtgaCAACTCGATTGAAGTGACGAAACAAGCGAG

CP-12.7

A I R A R L E A D L P G V T L T D T E V
 CAGCTATTAGAGCTAGATTGGAAGCTGACTTGCCAGGTGTTACTTGACTGACactgaaG

721 -----+-----+-----+-----+-----+-----+-----+ 780
GTCGATAATCTCGATCTAACCTTCGACTGAACGGTCCACAATGAAACTGACTGtgaattC

CP-13.7

T Y L M D M C S F E T V A R T S D A T E
 TTactTACTTGATGGACATGTG~~t~~^ctTTCGAAACTGTTGCTAGAAC~~T~~CTGACGCTACTG

781 -----+-----+-----+-----+-----+-----+-----+ 840
AAtgaATGAACTACCTGTACACAagaAAGCTTGACAACGATCTGAAGACTGCGATGAC

L S P F C A L F T H D E W R H Y D Y L Q
 AATTGTCTCCATTCTGTGCTTGT~~T~~ACTCACGACGAATGGAGAcacTACGACTACTGC

841 -----+-----+-----+-----+-----+-----+-----+ 900
TTAACAGAGGTAAGACACGAAACAAGTGAGTGCTGCTTACCTCTgtgATGCTGATGAACG

CP-14.7
CP-15.7

S L K K Y Y G H G A G N P L G P T Q G V
 AATCTTGaagAAGTACTACGGT~~c~~acGGTGCTGGTAACCCATTGGGTCCAactCAAGGTG

901 -----+-----+-----+-----+-----+-----+-----+ 960
TTAGAAACttcTTCATGATGCCAgtgCCACGACCATTGGTAACCCAGGT~~t~~gaGTTCCAC

G F A N E L I A R L T R S P V Q D H T S
 TTGGTTTCGCTAACGAATTGATTGCTAGATTGACTAGATCTCCAGTTCAAGACCACACTT

961 -----+-----+-----+-----+-----+-----+-----+
 1020 AACCAAAGCGATTGCTTAAC~~T~~AACTAACGATCTAACTGATCTAGAGGTCAAGTCTGGTGTGAA

CP-16
CP-17.7

T N H T L D S N P A T F P L N A T L Y A
 CTACTAACACACTTGGACTCTAACCCAGCTACTTCCCATTGAACGCTACTTGTACG
 1021 -----+-----+-----+-----+-----+-----+
 1080 GATGATTGGTGTGAAACCTGAGATTGGTCGATGAAAGGGTAACTTGCGATGAAACATGC

 D F S H D N G I I S I F F A L G L Y N G
 CTGACTTCTCTCACGACAAcggtattATTTCTATTTCTTCGTTGGGTTGTACAACG
 1081 -----+-----+-----+-----+-----+-----+
 1140 GACTGAAGAGAGTGCTGTTGccataaTAAAGATAAAAGAAGCGAAACCCAAACATGTTGC

 CP-18.7
CP-19.7

 T A P L S T T S V E S I E E T D G Y S S
 GTACTGCTCCATTGTCTACTACTTCTGTTGAATCTATTGAAGAAACTGACGGTTACTCTt
 1141 -----+-----+-----+-----+-----+-----+
 1200 CATGACGAGGTAAACAGATGATGAAGACAACTTAGATAACTTCTTGACTGCCATGAGAa

 A W T V P F A S R A Y V E M M Q C Q A E
 ctgctTGGACTGTTCCATTGcgcttctAGAGCTTACGTTGAAATGATGCAATGTCAAGCTG
 1201 -----+-----+-----+-----+-----+-----+
 1260 gacgaACCTGACAAGGTAAGcgaagaTCTCGAATGCAACTTACTACGTTACAGTTGAC

 CP-20
 CP-21

 K E P L V R V L V N D R V V P L H G C A
 AAAAGGAACCATTGGTTAGAGTTGGTTAACGACAGAGTTGTTCCATTGCACGGTTGTG
 1261 -----+-----+-----+-----+-----+-----+
 1320 TTTTCCTTGGTAACCAATCTCAAAACCAATTGCTGTCTCAACAAGGTAACGTGCCAACAC

V D K L G R C K R D D F V E G L S F A R
CTGTTGACAAGTTGGGTAGATGTAAGAGAGACGACTTCGTTGAAGGTTGTCTTCGCTA
1321 -----+-----+-----+-----+-----+-----+-----+
1380 GACAAC TGTTCAACCCATCTACATTCTCTCTGCTGAAGCAACTTC **CAAACAGAAAGCGAT**
CP-22
S G G N W A E C F A * *Eco RI*
GATCTGGTGGTACTGGCTGAATGTTCGCTTAAGAATTCAATA
1381 -----+-----+-----+-----+----- 1426
CTAGACCACCATTGACCCGACTTACAAAGCGAATTCTTAAGTATAT

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

Figure 20

Figure 21

Figure 22

1 MGVVVLLSI ATLFGSTSGT ALGPRGNSHS CDTVGGYQC FPEISSNWSP
51 YSPYFSLADE SAISPDVPKG CRVTFVQVLQ RHGARFPTSG AATRISALIE
101 AIQKNATAFK GKYAFLKTYN YTLGADDLV FGANQSSQAG IKFYRRYKAL
151 ARKIVPFIRA SGSDRVIDSA TNWIEGFQSA KLADPGANPH QASPVINVII
201 PEGAGYNNTL DHGLCTAFAEE SELGDDVEAN FTAVFAPPR ARLEAHLPGV
251 NLTDEDVVNL MDMCPFDTVA RTSDATELSP FCDLFTHDEW IQYDYLGDLD
301 KYYGTGAGNP LGPAQGVGFV NELIARLTHS PVQDHTSTNH TLDSNPATFP
351 LNATLYADFS HDNTMVAIFF ALGLYNGTKP LSTTSVESIE ETDGYSASWL
401 VPFSARMYVE MMQCEAEKEP LVRVLVNDRV VPLHGCGVDK LGRCKRDDFV
451 EGLSFARSGG NWEECFA