

Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра прикладной математики и информатики Учебная практика

РЕШЕНИЕ ГАРМОНИЧЕСКИХ КРАЕВЫХ ЗАДАЧ

Группа ПМ-92 АРТЮХОВ РОМАН

Преподаватели ДОМНИКОВ П.А.

Новосибирск, 2022

СОДЕРЖАНИЕ

1.	Постановка задачи	3
2.	Теоретическая часть	4
	2.1. Вариационная постановка	4
	2.2. Конечноэлементная дискретизация	5
	2.3. Локальные матрицы и векторы прямоугольных EDGE-элементов	6
	Метод решения СЛАУ	9
4.	Тесты и исследования	10
	4.1. Тест №1 (Полином первой степени)	10
	4.2. Тест №2 (Полином второй степени)	11
	4.3. Тест №3 (Полином третьей степени)	12
	4.4. Тест №4 (Полином четвертой степени)	13
	4.5. Исследование №1 (Оценка порядка аппроксимации)	14

1. Постановка задачи

Векторный МКЭ для двумерной краевой задачи с гармоническими по времени источниками в декартовой системе координат. Базисные векторфункции на прямоугольнике.

Уравнение имеет следующий вид:

$$\frac{1}{\mu_0} \operatorname{rot} \operatorname{rot} \vec{A} + \iota \sigma \omega \vec{A} = \vec{J}, \tag{1.1}$$

Уравнение 1.1 задано в некторой области Ω с границей S и краевым условием:

$$\left(\stackrel{\rightarrow}{A}\times\stackrel{\rightarrow}{n}\right)\bigg|_{S}=\stackrel{\rightarrow}{A^{g}}\times\stackrel{\rightarrow}{n},\tag{1.2}$$

2. Теоретическая часть

2.1. Вариационная постановка

Вариационная формулировка в форме Галёркина для уравнения 1.1 с краевым условием 1.2 имеет вид:

$$\int_{\Omega} \frac{1}{\mu_0} \operatorname{rot} \stackrel{\rightarrow}{A} \operatorname{rot} \stackrel{\rightarrow}{\Psi} d\Omega + \int_{\Omega} \iota \sigma \omega \stackrel{\rightarrow}{A} \stackrel{\rightarrow}{\Psi} d\Omega = \int_{\Omega} \stackrel{\rightarrow}{J} \stackrel{\rightarrow}{\Psi} d\Omega \quad \forall \stackrel{\rightarrow}{\Psi} \in \mathbb{H}_0^{rot}, \tag{2.1}$$

Преобразуем первое слагаемое вариационного уравнения 2.1 с использованием векторной формулы Грина:

$$\int_{\Omega} \operatorname{rot} \left(\frac{1}{\mu_0} \operatorname{rot} \stackrel{\rightarrow}{A} \right) \stackrel{\rightarrow}{\Psi} d\Omega + \int_{\Omega} \iota \sigma \omega \stackrel{\rightarrow}{A} \stackrel{\rightarrow}{\Psi} d\Omega = \int_{\Omega} \stackrel{\rightarrow}{J} \stackrel{\rightarrow}{\Psi} d\Omega \quad \forall \stackrel{\rightarrow}{\Psi} \in \mathbb{H}_0^{rot}, \quad (2.2)$$

Поскольку пробные вектор-функции $\stackrel{\rightarrow}{\Psi}$ являются произвольными элементами \mathbb{H}_0^{rot} , мы можем выбирать из них вектор-функции $\stackrel{\rightarrow}{\Psi^0}$, касательные составляющие которых равны нулю на всей границе S. Тогда уравнение 2.2 принимает вид:

$$\int_{\Omega} \left(\operatorname{rot} \left(\frac{1}{\mu_0} \operatorname{rot} \stackrel{\rightarrow}{A} \right) \stackrel{\rightarrow}{\Psi} + \iota \sigma \omega \stackrel{\rightarrow}{A} - \stackrel{\rightarrow}{J} \right) \stackrel{\rightarrow}{\Psi^0} d\Omega
\forall \stackrel{\rightarrow}{\Psi^0} \in \mathbb{H}_0^{rot} : \stackrel{\rightarrow}{\Psi^0} \times \stackrel{\rightarrow}{n} \Big|_{S} = 0,$$
(2.3)

Краевое же условие 1.2 выполняется по определению пространства \mathbb{H}_g^{rot} , в котором ищется решение $\stackrel{\rightarrow}{A}$.

2.2. Конечноэлементная дискретизация

По условию задачи, область исследования разбивается на подобласти, которыми являются прямоугольные элементы.

Рассмотрим прямоугольный конечный элемент $\Omega_{rs} = [x_r, x_{r+1}] \times [y_s, y_{s+1}],$ изображённый на рисунке 2.1. Определим на нем четыре локальные базисные вектор-функции:

$$\hat{\psi}_{1} = \begin{pmatrix} 0 \\ \frac{x_{r+1} - x}{h_{x}} \end{pmatrix}, \qquad \hat{\psi}_{2} = \begin{pmatrix} 0 \\ \frac{x - x_{r}}{h_{x}} \end{pmatrix},
\hat{\psi}_{3} = \begin{pmatrix} \frac{y_{s+1} - y}{h_{y}} \\ 0 \end{pmatrix}, \qquad \hat{\psi}_{4} = \begin{pmatrix} \frac{y - y_{s}}{h_{y}} \\ 0 \end{pmatrix}.$$
(2.4)

Базисные вектор-функции $\overset{\hat{}}{\psi_1}$ и $\overset{\hat{}}{\psi_2}$ направлены вдоль оси y и их модули $\overset{\hat{}}{\phi}$ $\overset{\hat{}}{|\psi_1|}$ и $|\psi_2|$ меняются линейно вдоль оси x.

 $|\stackrel{\rightarrow}{\psi_1}|$ и $|\stackrel{\rightarrow}{\psi_2}|$ меняются линейно вдоль оси x. Так $|\stackrel{\rightarrow}{\psi_1}|$ меняется от единицы на ребре 1 до нуля на ребре 2, а $|\stackrel{\rightarrow}{\psi_2}|$ меняется от единицы на ребре 2 до нуля на ребре 1.

Аналогично базисные вектор-функции $\stackrel{\hat{}}{\psi_3}$ и $\stackrel{\hat{}}{\psi_4}$ направлены вдоль оси x и их модули меняются линейно вдоль оси y.

Рисунок 2.1 – Локальная нумерация рёбер и базисных вектор-функций на прямоугольном конечном элементе

Каждая из базисных вектор-функций 2.4 только на одном ребре прямоугольника Ω_{rs} имеет ненулевую касательную составляющую:

 $\hat{\psi}_1$ - на ребре 1, $\hat{\varphi}_2$ - на ребре 2, $\hat{\varphi}_3$ - на ребре 3, $\hat{\psi}_4$ - на ребре 4.

2.3. Локальные матрицы и векторы прямоугольных EDGE-элементов

Получим формулы для вычисления локальных матриц прямоугольного конечного элемента $\Omega_{rs} = [x_r, x_{r+1}] \times [y_s, y_{s+1}]$ с базисом 2.4.

Сначала вычислим роторы локальных базисных вектор-функций на Ω_{rs} :

$$\cot_{z} \stackrel{\widehat{\rightarrow}}{\psi_{1}} = \frac{\partial}{\partial x} \frac{x_{r+1} - x}{h_{x}} = -\frac{1}{h_{x}}, \qquad \cot_{z} \stackrel{\widehat{\rightarrow}}{\psi_{2}} = \frac{\partial}{\partial x} \frac{x - x_{r}}{h_{x}} = \frac{1}{h_{x}},
\cot_{z} \stackrel{\widehat{\rightarrow}}{\psi_{3}} = -\frac{\partial}{\partial y} \frac{y_{s+1} - y}{h_{y}} = \frac{1}{h_{y}}, \qquad \cot_{z} \stackrel{\widehat{\rightarrow}}{\psi_{4}} = -\frac{\partial}{\partial y} \frac{y - y_{s}}{h_{y}} = -\frac{1}{h_{y}}. \tag{2.5}$$

Тогда локальная матрица жёсткости этого элемента имеет вид:

$$G = \frac{1}{\mu_0} \begin{pmatrix} \frac{h_y}{h_x} & -\frac{h_y}{h_x} & -1 & 1\\ -\frac{h_y}{h_x} & \frac{h_y}{h_x} & 1 & -1\\ -1 & 1 & \frac{h_x}{h_y} & -\frac{h_x}{h_y}\\ 1 & -1 & -\frac{h_x}{h_y} & \frac{h_x}{h_y} \end{pmatrix}$$
(2.6)

Локальная матрицы массы выглядит следующим образом:

$$M = \sigma \omega \frac{h_x h_y}{6} \begin{pmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$
 (2.7)

Чтобы вычислить компоненты локального вектора правой части b конечного элемента Ω_{rs} , сначала нужно представить правую часть \vec{J} дифференциального уравнения 1.1 в виде интерполянта.

$$\overrightarrow{J} \approx J_{y} \left(x_{r}, y_{s+\frac{1}{2}} \right) \widehat{\psi}_{1} + J_{y} \left(x_{r+1}, y_{s+\frac{1}{2}} \right) \widehat{\psi}_{2} +
+ J_{x} \left(x_{r+\frac{1}{2}}, y_{s} \right) \widehat{\psi}_{3} + J_{x} \left(x_{r+\frac{1}{2}}, y_{s+1} \right) \widehat{\psi}_{4}, \text{ где } J_{y} \left(x_{r}, y_{s+\frac{1}{2}} \right),
J_{y} \left(x_{r+1}, y_{s+\frac{1}{2}} \right), J_{x} \left(x_{r+\frac{1}{2}}, y_{s} \right), J_{x} \left(x_{r+\frac{1}{2}}, y_{s+1} \right) - \text{ значения}$$

касательной составляющей \vec{J} в серединах рёбер.

Локальный вектор правой части b при использовании представления \vec{J} в виде 2.8 может быть вычислен с помощью локальной матрицы M^1 :

$$b = M^{1} \begin{pmatrix} J_{y} \left(x_{r}, y_{s+\frac{1}{2}} \right) \\ J_{y} \left(x_{r+1}, y_{s+\frac{1}{2}} \right) \\ J_{x} \left(x_{r+\frac{1}{2}}, y_{s} \right) \\ J_{x} \left(x_{r+\frac{1}{2}}, y_{s+1} \right) \end{pmatrix},$$

$$(2.9)$$

где M^1 матрица массы, определяемая соотношением 2.7 при значении коэффициентов σ и ω , равными единице.

3. Метод решения СЛАУ

Локально-оптимальная схема с диагональным предобуславливанием матрицы

 $L^{-1} = U^{-1}$ – диагональная матрица неполной факторизации.

Выбирается начальное приближение x^0 и полагается:

$$\tilde{r}^0 = L^{-1} (f - Ax^0),$$

$$\hat{z}^0 = U^{-1} \tilde{r}^0, \qquad \hat{p}^0 = L^{-1} A \hat{z}^0$$

Далее для k=1,2,... производятся следующие вычисления:

$$\tilde{\alpha}_{k} = \frac{\left(\hat{p}^{k-1}, \tilde{r}^{k-1}\right)}{\left(\hat{p}^{k-1}, \hat{p}^{k-1}\right)},$$

$$x^{k} = x^{k-1} + \tilde{\alpha}_{k}\hat{z}^{k-1},$$

$$\tilde{r}^{k} = \tilde{r}^{k-1} - \tilde{\alpha}_{k}\hat{p}^{k-1},$$

$$\tilde{\beta}_{k} = -\frac{\left(\hat{p}^{k-1}, L^{-1}AU^{-1}\tilde{r}^{k}\right)}{\left(\hat{p}^{k-1}, \hat{p}^{k-1}\right)},$$

$$\hat{z}^{k} = U^{-1}\tilde{r}^{k} + \tilde{\beta}_{k}\hat{z}^{k-1},$$

$$\hat{p}^{k} = L^{-1}AU^{-1}\tilde{r}^{k} + \tilde{\beta}_{k}\hat{p}^{k-1}.$$

Выход из итерационного процесса осуществляется:

- 1. По условию малости относительной невязки: $\frac{\|r^k\|}{\|f\|} < \varepsilon$, где \mathbf{f} вектор правой части.
- 2. (Аварийно) По превышению максимального допустимого числа итераций.

4. Тесты и исследования

4.1. Тест №1 (Полином первой степени)

Сетка:
$$[0,1] \times [0,1]$$
 Шаги: $(h_x,h_y)=(0.2,0.8)$ Коэффициент разрядки: $(k_x,k_y)=(5,1.1)$ $\overrightarrow{A}=\begin{pmatrix} 2x+3y+\iota\left(6x+7y\right)\\ 3x-2y+\iota\left(x+y\right) \end{pmatrix}$ $\sigma=[1,2]$ $\omega=1$ $\mu_0=2$ $\overrightarrow{A}=\frac{1}{\mu_0}+\iota\sigma\omega$ \overrightarrow{A} Solution

	Solution	4	
A`	A	A` - A	A` - A
<2,000E-001; 6,000E-001>	<2,000E-001; 6,000E-001>	<2,776E-017; 1,110E-016>	1,285E-015
<1,200E+000; 3,600E+000>	<1,200E+000; 3,600E+000>	<0,000E+000; 4,441E-016>	
<-8,000E-001; 4,000E-001>	<-8,000E-001; 4,000E-001>	<0,000E+000; 5,551E-017>	
<-2,000E-001; 6,000E-001>	<-2,000E-001; 6,000E-001>	<3,220E-015; 3,331E-015>	
<2,200E+000; 1,400E+000>	<2,200E+000; 1,400E+000>	<4,441E-016; 2,220E-016>	
<2,600E+000; 6,200E+000>	<2,600E+000; 6,200E+000>	<1,421E-014; 1,155E-014>	
<3,600E+000; 9,200E+000>	<3,600E+000; 9,200E+000>	<3,553E-015; 3,553E-015>	
<-1,800E+000; 9,000E-001>	<-1,800E+000; 9,000E-001>	<0,000E+000; 1,110E-016>	
<-1,200E+000; 1,100E+000>	<-1,200E+000; 1,100E+000>	<1,066E-014; 1,110E-014>	
<1,200E+000; 1,900E+000>	<1,200E+000; 1,900E+000>	<2,220E-016; 2,220E-016>	
<3,200E+000; 7,600E+000>	<3,200E+000; 7,600E+000>	<0,000E+000; 0,000E+000>	İ
<4,200E+000; 1,060E+001> +	<4,200E+000; 1,060E+001> +	<0,000E+000; 0,000E+000>	

4.2. Тест №2 (Полином второй степени)

Сетка:
$$[0,1] \times [0,1]$$
Шаги:
$$(h_x,h_y) = (0.2,0.8)$$
Коэффициент разрядки:
$$(k_x,k_y) = (5,1.1)$$

$$\overrightarrow{A} = \begin{pmatrix} 2x^2 + 3y^2 + \iota \left(6x^2 + 7y^2\right) \\ 3x^2 - 2y^2 + \iota \left(x^2 + y^2\right) \end{pmatrix}$$

$$\sigma = [1,2]$$

$$\omega = 1$$

$$\mu_0 = 2$$

$$\overrightarrow{A} = \frac{1}{\mu_0} \cdot \begin{pmatrix} -6 + \iota \left(-14\right) \\ -6 + \iota \left(-2\right) \end{pmatrix} + \iota \sigma \omega \overrightarrow{A}$$

	Solution		
A`	A	A` - A	A` - A
<2,000E-002; 6,000E-002>	<2,000E-002; 6,000E-002>	<0,000E+000; 0,000E+000>	5,381E-016
<7,200E-001; 2,160E+000>	<7,200E-001; 2,160E+000>	<0,000E+000; 0,000E+000>	
<-3,200E-001; 1,600E-001>	<-3,200E-001; 1,600E-001>	<5,551E-017; 2,776E-017>	İ
<-2,000E-001; 2,000E-001>	<-2,000E-001; 2,000E-001>	<3,886E-016; 3,608E-016>	
<2,680E+000; 1,160E+000>	<2,680E+000; 1,160E+000>	<4,441E-016; 0,000E+000>	
<1,940E+000; 4,540E+000>	<1,940E+000; 4,540E+000>	<4,219E-015; 3,553E-015>	
<2,640E+000; 6,640E+000>	<2,640E+000; 6,640E+000>	<1,332E-015; 8,882E-016>	
<-1,620E+000; 8,100E-001>	<-1,620E+000; 8,100E-001>	<0,000E+000; 1,110E-016>	
<-1,500E+000; 8,500E-001>	<-1,500E+000; 8,500E-001>	<3,109E-015; 5,218E-015>	
<1,380E+000; 1,810E+000>	<1,380E+000; 1,810E+000>	<0,000E+000; 2,220E-016>	
<3,020E+000; 7,060E+000>	<3,020E+000; 7,060E+000>	<0,000E+000; 8,882E-016>	
<3,720E+000; 9,160E+000>	<3,720E+000; 9,160E+000>	<4,441E-016; 1,776E-015>	

4.3. Тест №3 (Полином третьей степени)

Сетка:
$$[0,1] \times [0,1]$$
Шаги:
$$(h_x, h_y) = (0.2, 0.8)$$
Коэффициент разрядки:
$$(k_x, k_y) = (5, 1.1)$$

$$\stackrel{\rightarrow}{A} = \begin{pmatrix} 2x^3 + 3y^3 + \iota \left(6x^3 + 7y^3\right) \\ 3x^3 - 2y^3 + \iota \left(x^3 + y^3\right) \end{pmatrix}$$

$$\sigma = [1,2]$$

$$\omega = 1$$

$$\mu_0 = 2$$

$$\stackrel{\rightarrow}{A} = \frac{1}{\mu_0} \cdot \begin{pmatrix} -18y + \iota \left(-42y\right) \\ -18x + \iota \left(-6x\right) \end{pmatrix} + \iota \sigma \omega \stackrel{\rightarrow}{A}$$

	Solution .	+	·+
A`	A	A` - A	A` - A
<2,000E-003; 6,000E-003>	<2,000E-003; 6,000E-003>	<4,337E-019; 8,674E-019>	7,174E-016
<4,320E-001; 1,296E+000>	<4,320E-001; 1,296E+000>	<5,551E-017; 2,220E-016>	
<-1,280E-001; 6,400E-002>	<-1,280E-001; 6,400E-002>	<0,000E+000; 0,000E+000>	
<-1,040E-001; 7,200E-002>	<-1,040E-001; 7,200E-002>	<1,568E-015; 1,596E-015>	İ
<2,872E+000; 1,064E+000>	<2,872E+000; 1,064E+000>	<0,000E+000; 0,000E+000>	
<1,538E+000; 3,590E+000>	<1,538E+000; 3,590E+000>	<2,442E-015; 4,885E-015>	İ
<1,968E+000; 4,880E+000>	<1,968E+000; 4,880E+000>	<4,441E-016; 1,776E-015>	
<-1,458E+000; 7,290E-001>	<-1,458E+000; 7,290E-001>	<2,220E-016; 0,000E+000>	İ
<-1,434E+000; 7,370E-001>	<-1,434E+000; 7,370E-001>	<5,551E-015; 5,884E-015>	İ
<1,542E+000; 1,729E+000>	<1,542E+000; 1,729E+000>	<2,220E-016; 0,000E+000>	
<3,002E+000; 7,006E+000>	<3,002E+000; 7,006E+000>	<4,441E-016; 8,882E-016>	
<3,432E+000; 8,296E+000>	<3,432E+000; 8,296E+000>	<0,000E+000; 0,000E+000>	

4.4. Тест №4 (Полином четвертой степени)

Сетка:
$$[0,1] \times [0,1]$$
 Шаги:
$$(h_x,h_y) = (0.2,0.8)$$
 Коэффициент разрядки:
$$(k_x,k_y) = (5,1.1)$$

$$\overrightarrow{A} = \begin{pmatrix} 2x^4 + 3y^4 + \iota \left(6x^4 + 7y^4\right) \\ 3x^4 - 2y^4 + \iota \left(x^4 + y^4\right) \end{pmatrix}$$

$$\sigma = [1,2]$$

$$\omega = 1$$

$$\mu_0 = 2$$

$$\overrightarrow{A} = \frac{1}{\mu_0} \cdot \begin{pmatrix} -36y^2 + \iota \left(-84y^2\right) \\ -36x^2 + \iota \left(-12x^2\right) \end{pmatrix} + \iota \sigma \omega \overrightarrow{A}$$

	Solution		
A`	A	A` - A	A` - A
<2,000E-004; 6,000E-004>	<2,000E-004; 6,000E-004>	<0,000E+000; 1,084E-019>	7,372E-002
<2,592E-001; 7,776E-001>	<2,592E-001; 7,776E-001>	<0,000E+000; 0,000E+000>	
<-5,120E-002; 2,560E-002>	<-5,120E-002; 2,560E-002>	<0,000E+000; 3,469E-018>	
<-4,640E-002; 2,720E-002>	<-3,192E-001; -2,904E-002>	<2,728E-001; 5,624E-002>	
<2,949E+000; 1,026E+000>	<2,949E+000; 1,026E+000>	<4,441E-016; 0,000E+000>	
<1,229E+000; 2,868E+000>	<8,412E-001; 2,318E+000>	<3,878E-001; 5,501E-001>	
<1,488E+000; 3,645E+000>	<1,186E+000; 3,105E+000>	<3,017E-001; 5,394E-001>	
<-1,312E+000; 6,561E-001>	<-1,312E+000; 6,561E-001>	<2,220E-016; 0,000E+000>	
<-1,307E+000; 6,577E-001>	<-1,495E+000; 6,232E-001>	<1,881E-001; 3,453E-002>	
<1,688E+000; 1,656E+000>	<1,688E+000; 1,656E+000>	<0,000E+000; 2,220E-016>	
<3,000E+000; 7,001E+000>	<3,000E+000; 7,001E+000>	<4,441E-016; 1,776E-015>	
<3,259E+000; 7,778E+000>	<3,259E+000; 7,778E+000>	<4,441E-016; 0,000E+000>	

4.5. Исследование №1 (Оценка порядка аппроксимации)

Таблица 4.1 — Оценка порядка аппроксимации на тесте $\mathbb{N}^{2}4$

(h_x, h_y)	$ A^{\cdot} - A $	$\frac{\left(\ A^{\cdot}-A\ \right)_{i-1}}{\left(\ A^{\cdot}-A\ \right)_{i}}$	k
(0.2,0.8)	5,975E-002	-	-
(0.1, 0.4)	2,864E-002	2,0862	1,061
(0.05, 0.2)	1,046E-002	2,7380	1,453
(0.025, 0.1)	2,933E-003	3,5663	1,834
(0.0125, 0.05)	7,819E-004	3,7511	1,907