Assignment 3

Gaurang Dangayach Number Theory and Applications

June 9, 2022

Problem (Question 1). Prove that $19|2^{2^{6k+2}} + 3$ for $k = 0, 1, 2, 3, \cdots$

Solution. We would prove this using mathematical induction. Let the statement be true for n = k. Now, for n = k + 1, we have -

$$2^{2^{6(k+1)+2}} + 3 = (2^{2^{6k+2}})^{2^6} + 3$$

$$= (19k - 3)^{2^6} + 3 \pmod{19}$$

$$= 3^{2^6} + 3 \pmod{19}$$

$$= 9^{2^5} + 3 \pmod{19}$$

$$= 81^{2^4} + 3 \pmod{19}$$

$$= 5^{2^4} + 3 \pmod{19}$$

$$= 625^{2^2} + 3 \pmod{19}$$

$$= (-2)^4 + 3 \pmod{19}$$

$$= 16 + 3 \pmod{19}$$

$$= 0 \pmod{19}$$

Hence, by mathematical induction, the statement is true.

Problem (Question 2). Prove that for $F_n = 2^{2^n} + 1$ we have $F_n | 2^{F_n} - 2$ where $n = 1, 2, 3, \cdots$

Solution. I would be using the property that for Fermat numbers FN_n and FN_m where m > n, $FN_n|FN_m - 2$

We can see that F_n is a Fermat number. Also, $F_{2^n} = 2^{2^{2^n}} + 1$ is also a Fermat number.

$$2^{F_n} - 2 = 2 \cdot 2^{2^{2^n}}$$

$$= 2 \cdot (F_{2^n} - 1) - 2$$

$$= 2 \cdot (F_{2^n} - 2)$$

So, by using the above stated property, $F_n|2.(F_{2^n}-2)$

Problem (Question 3). Find all integers n > 1 such that $1^n + 2^n + \cdots + (n-1)^n$ is divisible by n.

Solution. When n is odd, $1^n + 2^n + (n-1)^n \pmod{n} = 1^n + 2^n + \cdots + (-2)^n + (-1)^n \pmod{n}$. As number of terms in this expression is even, the i^{th} term from starting (i^n) will be cancelled by i^{th} term from end $((-i)^n)$. So the statement is true for any n where n is odd. Now, if n is even,

Let e be the highest power of 2 dividing n.

Each of the terms 2^n , 4^n , 6^n ,..., $(n2)^n$ is a multiple of 2^e . On the other hand, for each $k \in \{1, 3, 5, \ldots, n-1\}$,

 $k^{\phi(2^e)} \equiv 1 \pmod{2^e}$ by Euler's theorem. Since $\phi(2^e) = 2^{e-1} | n$, it follows that $k^n \equiv 1 \pmod{2^e}$ for each such k.

Hence, $S(n) = 1^n + 2^n + \cdots + (n-1)^n \pmod{2^e} = n/2 \pmod{2^e}$

Now if n|S(n), then $2^e|S(n)$. But then $2^e|(n/2)$, and $2^{e+1}|n$, which contradicts the definition of e given above.

Hence, the statement is true for all odd integers only.

Problem (Question 4). Prove that for every odd prime p there exist infinitely many positive integers n such that $p|n.2^n + 1$.

Solution. We want to find n such that $n ext{.} 2^n \equiv (-1) \pmod{p}$ Consider the sequences, $a_n = n$ and $b_n = 2^n$.

$$a_n$$
 1 2 3 4 b_n 2¹ 2² 2³ 2⁴

In the (mod p) periodicity of a_n is p and of b_n is p-1 (using Fermat's Little Theorem), so we can get every combination of a_n and b_n in mod p as p and p-1 are co-prime. And, the combination will keep on repeating after p.(p-1) terms, so we can infinitely many such n.

Problem (Question 5). Does there exist an integer n such that n/2 is a perfect square, n/3 is a cube and n/5 a fifth power?

Solution. Let $n = 2^a \cdot 3^b \cdot 5^c \cdot m$, where gcd(m, 30) = 1.

n/2 is a square \iff 2|(a-1), 2|b, 2|c, and m is a square.

n/3 is a cube \iff 3|a, 3|(b-1), 3|c, and m is a cube.

n/5 is a fifth power \iff 5|a, 5|b, 5|(c-1), and m is a fifth power.

Now, a = 15.r, $r = 1 \pmod{2}$, b = 10.s, $s = 1 \pmod{3}$, c = 15.t, $t = 1 \pmod{5}$

From m is a square, a cube, and a fifth power, we have $m=u^{30}So, n=2^{15r}.3^{10s}.5^{6t}$ with $r=1 \pmod 2$, $s=1 \pmod 3$, $t=1 \pmod 5$.

The least positive n obtained by setting r = s = t = u = 1 is $n = 2^{15}.3^{10}.5^6$.

Problem (Question 6). (AIME-1989-9) One of the Euler's conjectures was disproved in the 1960s by three American mathematicians when they showed there was a positive integer such that

$$133^5 + 110^5 + 84^5 + 27^5 = n^5$$

Find the value of n.

Solution. Evaluating the equation in mod 2,30r5, we get - Using Fermat's Little Theorem, we get -

$$n \equiv 0 (\mod 2)$$
$$n \equiv 0 (\mod 3)$$

$$n \equiv 4 \pmod{5}$$

By using Chinese Remainder Theorem, we get $n \equiv 24 \pmod{30}$ Now, n > 133 also,

$$n^{5} = 133^{5} + 110^{5} + 84^{5} + 27^{5}$$

$$< 133^{5} + 110^{5} + (84 + 27)^{5}$$

$$= 133^{5} + 110^{5} + 111^{5}$$

$$< 3.133^{5}$$

So, $(n/133)^5 < 3$.

If $n \ge 174$, then $(n/133)^5 > 3$ So, only possible value of n = 144

Problem (Question 7). (AIME-2006-II-14) Let S_n be the sum of the reciprocals of the non-zero digits of the integers from 1 to 10^n inclusive. Find the smallest positive integer n for which S_n is an integer.

Solution. Every digit from 1 to 9 repeats $n.10^{(n-1)}$ in 1 to 10^n with 10^n excluded. This can be proved by induction or can be seen by observation. For S_n to be an integer, $n.10^{(n-1)}$ should be divisible by all integers from 2 to 9. As, 10 has 2 and 5 as its factors. For n > 3, $10^{(n-1)}$ is divisible by 2,4,5,8. Now, S_n should be divisible by 3,6,7–9. This is equivalent to n being divisible by 7 and 9.

Problem (Question 8). Implement Euler's Totient function in code. Given a number n, find $\phi(n)$.

```
Solution. \#Code in Python
\mathbf{def} \ \gcd(\mathbf{a}, \mathbf{b}):
     if b>a :
          i=b
          b=a
          a=i
     while (b!=0):
          rem=a\%b
          a=b
          b=rem
     return a
n=int(input())
count=0
for i in range (1, n+1):
     if gcd(i,n)==1:
          count = count + 1
print(count)
```

Problem (Question 9). (Code) Given a number n, find ϕ for all number less than and equal to n.

```
Solution. \#Code in Python
\mathbf{def} \ \gcd(\mathbf{a}, \mathbf{b}):
     if b>a :
          i=b
          b=a
          a=i
     while (b!=0):
          rem=a\%b
          a=b
          b=rem
     return a
\mathbf{def} utf(n):
     count=0
     for i in range (1, n+1):
          if gcd(i,n)==1:
               count = count + 1
     return count
n=int(input())
for i in range(n):
     print(i+1,":",utf(i+1))
```

Problem (Question 10). (Code) Compute the remainder when C_r^n is divided by p using fermat's little theorem. You are given n, r and p. Here p is a prime greater than n.

```
Solution. #Code in Python
def mod_fact(n,p):
    if (n==1 or n==0):
        return 1
    else:
        return (n*mod_fact(n-1,p))%p

def mod_inv(a,p):
    return (a**(p-2))%p

n,r,p=input().split()
n=int(n)
r=int(r)
p=int(p)

inv_r=mod_inv(mod_fact(r,p),p)
inv_nr=mod_inv(mod_fact(n-r,p),p)
print((mod_fact(n,p)*inv_r*inv_nr)%p)
```

Problem (Question 11). Implement Sieve of Eratosthenes in code. Given a number n, print all primes smaller than or equal to n.

4