Лабораторная работа №6

Изучение основного уравнения динамики вращательного движения

Цель работы: исследовать зависимость углового ускорения диска от момента силы упругости нити, приводящего диск во вращение.

Оборудование: массивный диск на оси с двумя шкивами разного диаметра, блок, штатив, штангенциркуль, набор грузов, нить, секундомер.

Содержание и метод выполнения работы

Угловое ускорение вращающегося тела β прямо пропорционально моменту сил M, под действием которого тело получает угловое ускорение:

$$\beta = \frac{M}{I}$$
.

Величина \it{I} , зависящая от свойств самого тела, называется моментом инерции.

Для проверки этого уравнения, называемого основным уравнением динамики вращательного движения твердого тела, воспользуемся установкой, изображенной на рисунке.

На один из шкивов радиуса R намотаем нить. Нить перекинем через блок и κ ее концу подвесим груз массой m.

Момент M силы упругости F нити равен M = FR.

Модуль F силы упругости нити можно определить, применив для груза второй закон Ньютона: mg - F = ma, F = m(g - a).

В условиях работы ускорение a груза намного меньше ускорения свободного падения (a << g). Следовательно, можно считать, что $F \approx mg$ и $M \approx mgR$.

Угловое ускорение β по определению равно: $\beta = \frac{\omega_t - \omega_0}{t}$.

Так как в данном опыте начальная угловая скорость ω_0 равна нулю, то $\beta = \frac{\omega_t}{t}$, где ω_t – угловая скорость вращения диска, которую он приобретает за время t падения груза.

Порядок выполнения работы

Задание 1. Установите зависимость углового ускорения диска от действующей силы при постоянном плече этой силы.

1. Наматывая нить на верхний шкив радиуса R_1 , поднимите груз массой $m_1 = 0,1$ кг на максимальную высоту. Опустите груз и с помощью секундомера определите время t_1 его падения.

Измерьте время п полных оборотов диска при разматывании нити. Возьмите максимальное количество оборотов сколько успевает сделать диск при отпускании груза до пола. (На разных шкивах п будут разные. Для малого шкива это 5 оборотов, для большого - 2)

$$\omega_1 = \frac{2\varphi_1}{t_1} = \frac{4\pi n_1}{t_1}.$$

- 2. Вычислите угловое ускорение β_1 .
- 3. Повторив опыт с грузом массой $m_2 = 0.2$ кг, вычислите угловую скорость ω_2 и угловое ускорение β_2 .
 - 4. Результаты измерений и вычислений занесите в отчетную таблицу 1.

Отчетная таблица 1

<i>R</i> ₁ ,м	F1, H	F2, H	$\frac{F_1}{F_2}$	<i>t</i> ₁ , c	t2, c	ω ₁ , c ⁻¹	ω ₂ , c ⁻¹	β_1 , c $^{-2}$	β_2 , c $^{-2}$	$\frac{\beta_1}{\beta_2}$
	1	2	0,5							

Рассчитайте границы погрешностей измерений, сравните $\frac{F_1}{F_2}$ и $\frac{\beta_1}{\beta_2}$. Сделайте вывод.

Задание 2. Исследуйте зависимость углового ускорения диска от плеча действующей силы.

1. Наматывая нить на шкив радиуса R_2 , поднимите груз массой $m_1 = 0,1$ кг; опустив его, определите время падения груза t_3 .

- 2. После достижения грузом поверхности пола вычислите угловую скорость вращения диска и угловое ускорение: $\omega_3 = \frac{4\pi n_2}{t_3}$ и $\beta_3 = \frac{\omega_3}{t_3}$.

 3. Сравните отношения R_1/R_2 и β_1/β_3 , сделайте вывод. (Значения R_1 и β_1 получены при
- выполнении первого задания.)
 - 4. Результаты измерений и вычислений занесите в отчетную таблицу 2.

Отчетная таблица 2

m_1 , кг	<i>R</i> ₁ , м	<i>R</i> ₂ , м	$\frac{R_1}{R_2}$	<i>t</i> ₃ , c	ω3, c ⁻¹	β_1 , c^{-2}	β ₃ , c ⁻²	$\frac{\beta_1}{\beta_3}$
0,1								

По результатам выполнения двух заданий сделайте общий вывод о зависимости углового ускорения диска от момента сил. Для этого сравните отношения угловых ускорений и соответствующих моментов сил.

Контрольные вопросы

- 1. Поясните принцип действия установки, с помощью которой проверяют основное уравнение динамики вращательного движения твердого тела.
- 2. Вычислите линейное ускорение движения груза и сравните его с ускорением свободного падения. Правильным ли было предположение, что в данной работе a << g?