Using stargazer to create nice table output

Here is the latex table in a PDF document:

This is a notebook based on vignette("stargazer"):

To create a summary statistics table from the 'attitude' data frame (which should be available with your default installation of R), simply run the following:

Table 1:

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
rating	30	64.633	12.173	40	58.8	71.8	85
complaints	30	66.600	13.315	37	58.5	77	90
privileges	30	53.133	12.235	30	45	62.5	83
learning	30	56.367	11.737	34	47	66.8	75
raises	30	64.633	10.397	43	58.2	71	88
critical	30	74.767	9.895	49	69.2	80	92
advance	30	42.933	10.289	25	35	47.8	72

Or, if we want to have word-oudput (not for now, put in R chunk to try out, change output to word_document in top op page):

{r word_table, comment = ''} /#Stargazer table in microsoft word:v /#stargazer(attitude, type = 'text')]]

To output the contents of the first four rows of some data frame, specify the part of the data frame you would like to see, and set the summary option to FALSE:

Table 2:

rating	complaints	privileges	learning	raises	critical	advance
43	51	30	39	61	92	45
63	64	51	54	63	73	47
71	70	68	69	76	86	48
61	63	45	47	54	84	35

Now, let us try to create a simple regression table with three side-by-side models – two Ordinary Least Squares (OLS) and one probit regression model – using the lm() and glm() functions. We can set the align argument to TRUE, so that coefficients in each column are aligned along the decimal point. Table 3 shows the result.

- % Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
- % Date and time: Fri, Mar 22, 2019 14:51:15
- % Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
- % Date and time: Fri, Mar 22, 2019 14:51:15

In Table 4, we go a little bit further, and make some formatting and labeling adjustments. In particular, we remove all empty lines from the table (using no.space), and use omit.stat to leave out several statistics – namely, the log-likelihood ("LL"), residual standard error ("ser") and the F-statistic ("f"). Additionally, we label each of the dependent and independent variables with an easy-to-understand name. To do so, we use the dep.var.labels and covariate.labels arguments. The result is a complex, publication-quality LATEX table. The relevant command call looks like this:

Table 3: Results

	Dependent variable:				
	rat	ing	high.rating		
	OLS		probit		
	(1)	(2)	(3)		
complaints	0.692***	0.682***			
	(0.149)	(0.129)			
privileges	-0.104	-0.103			
	(0.135)	(0.129)			
learning	0.249	0.238*	0.164***		
	(0.160)	(0.139)	(0.053)		
raises	-0.033				
	(0.202)				
critical	0.015		-0.001		
	(0.147)		(0.044)		
advance			-0.062		
			(0.042)		
Constant	11.011	11.258	-7.476**		
	(11.704)	(7.318)	(3.570)		
Observations	30	30	30		
\mathbb{R}^2	0.715	0.715			
Adjusted R ²	0.656	0.682			
Log Likelihood			-9.087		
Akaike Inf. Crit.			26.175		
Residual Std. Error	7.139 (df = 24)	6.863 (df = 26)			
F Statistic	$12.063^{***} (df = 5; 24)$	$21.743^{***} (df = 3; 26)$			

Note: *p<0.1; **p<0.05; ***p<0.01

 $\begin{array}{ccc} \text{Table 4: Results} \\ & & \\ \hline & & \\ \text{FALSE} \end{array}$

Table 5: Regression Results

	$Dependent\ variable:$			
	Overall Rating		High Rating	
	0.	OLS		
	(1)	(2)	(3)	
Handling of Complaints	0.692***	0.682***		
	(0.149)	(0.129)		
No Special Privileges	-0.104	-0.103		
	(0.135)	(0.129)		
Opportunity to Learn	0.249	0.238*	0.164***	
	(0.160)	(0.139)	(0.053)	
Performance-Based Raises	-0.033			
	(0.202)			
Too Critical	0.015		-0.001	
	(0.147)		(0.044)	
Advancement			-0.062	
			(0.042)	
Constant	11.011	11.258	-7.476**	
	(11.704)	(7.318)	(3.570)	
Observations	30	30	30	
\mathbb{R}^2	0.715	0.715		
Adjusted R^2	0.656	0.682		
Akaike Inf. Crit.			26.175	

Note:

*p<0.1; **p<0.05; ***p<0.01