Hall Effect

Lab 5

Dhruva Sambrani, Gowri A (Group 6)

April 18, 2022

Contents

Aim	2
Theory	2
Method	2
Observation	2
Results	3
References	4

Aim

1. To measure the Hall effect in a semiconductor, and hence derive certain electrical properties of the semiconductor.

Theory

The Hall effect is the production of a voltage difference (the Hall voltage) across an electrical conductor that is transverse to an electric current in the conductor and to an applied magnetic field perpendicular to the current.

When a current-carrying semiconductor is kept in a magnetic field, the charge carriers of the semiconductor experience a force in a direction perpendicular to both the magnetic field and the current. At equilibrium, a voltage appears at the semiconductor edges, whose field applies the same force as the Lorentz force.

Method

- 1. Measure the thickness of the sample as t and resistance as R
- 2. Make connections such that you can pass current and measure the voltage perpendicular to each other in the sample.
- 3. Connect and place the Electromagnet such that the resulting magnetic field is perpendicular to both current and voltage axes.
- 4. Place a gauss meter between Electromagnet and sample
- 5. Calibrate Gauss meter
- 6. Pass current through the Electromagnet such that the gauss meter reads 1.5k gauss. Record it as B
- 7. Pass current through the sample from about 1mA to 15 mA.
- 8. Measure the corresponding voltage.
- 9. Plot and fit the graph to y = mx, with m giving us mean value of V_H/I
- 10. Use m to find the following-
 - 1. $R_H = mt/B$
 - 2. $n = 1/R_H e$
 - 3. r = Rt
 - 4. $\mu = R_H/r$
 - 5. $\theta_H = \tan^-(\mu B)$

Observation

Quantity	Value
t	$5 \cdot 10^{-4} m$
В	0.1464 T
R	0.870Ω

V (mV)	I (mA)	V (mV)	I (mA)
0.86	8.1	16.7	165.5
1.93	18.3	17.14	171.2

V (mV)	I (mA)	V (mV)	I (mA)
3.02	28.5	-1.91	-17.8
4.06	38.2	-3.42	-32.1
5.00	47.1	-4.46	-42.1
6.00	56.9	-5.16	-48.6
7.35	69.6	-7.06	-67.1
7.99	75.8	-8.55	-81.6
9.42	89.8	-9.28	-88.8
10.16	97.3	-10.45	-100.6
11.11	106.8	-11.84	-114.9
12.00	116.0	-12.97	-126.8
13.16	128.0	-15.56	-153.9
14.71	144.2	-17.07	-170.1
15.60	153.8		

Figure 1: Hall Effect Experimental Setup

Results

Figure 2: Plot

- 1. Mean of $V_H/I=9.76\pm0.3\%\Omega$ 2. Hall Coefficient $R_H=0.0333\pm2.368\%\Omega mT^{-1}$

- 3. Volume density of carriers $n=1.88\cdot 10^{20}\pm 2.368\%$ 4. Resistivity $r=4.35\cdot 10^-4\pm 2.11\%\Omega m$
- 5. Mobility $\mu = 76.6 \pm 4.478\% m^2 V^{-1} s^{-1}$ 6. Hall angle $\theta_H = 1.48 rad$

References

- 1. Wikipedia contributors. "Hall effect." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 26 Mar. 2022. Web. 18 Apr. 2022.
- 2. Hall Effect Lab Manual