

Introduction to Robotics CSE 461

Riad Ahmed Lecturer, Dept. of Computer Science and Engineering Brac University

Lecture 3: Chapter 1(Introduction to robotics: basics)

Previous Class

1. Primitives

Recall

Paradigms of Robotics

Reactive Paradigm

Robot Primitives	INPUT	OUTPUT
SENSE	Sensor Data	Sensed Information
PLAN	/	
ACT	Sensed Information	Actuator Commands

The Hierarchical Paradigm

S,P,A organization of Hierarchical Paradigm

PLAN

ACT

ACT

T

Alternative description of how the 3 primitives interact in the Hierarchical Paradigm

Hybrid deliberative/reactive paradigm

Advantages

- Asynchronous processing technique allows to function Independently
- Planner can slowly compute next goal while robot can perform reactive task

Local and Global Model

- Reactive for Local control
- Deliberative for Global control
- However; Robot behavioral management requires to know its current mission, state and environment beside path-planning, map-making, monitoring etc. So, both local and global models are required to be considered for a robot performance.

Hybrid deliberate/reactive paradigm

Group Activity

A: Line Following Robot

B : Mini Baymax

Subsystems

Subsystems

Sensor

A sensor is a device that detects or measures physical, chemical, or biological properties of the environment or a system and converts them into a signal that can be processed or analyzed.

Sensor Examples

Physical Property Sensor

contact switch

distance ultrasound, radar, infrared

light level photocells, cameras

sound level microphone

rotation encoders and potentiometers

acceleration accelerometers gyroscopes

More Sensor Examples

Physical Property Sensor

magnetism compass

smell chemical

temperature thermal, infra red

inclination inclinometers, gyroscopes

pressure pressure gauges

altitude altimeters

strain strain gauges

Active sensors

Passive sensors

Ultrasonic Sensor

Converts electrical energy into acoustic wave, which is an ultrasonic wave travelling at above 18kHz frequency.

HC-SRo4 operates at 4okHz

a microcontroller is used for communication with an ultrasonic sensor.

Applications

- Measure wind speed and direction
- Navigation of UAV
- Measure tank depth

HC-SRo4 Ultrasonic Sensor (Source: Digikey)

Ultrasonic sensor measuring height during drone's flight.

(Source: RadioLink)

Ultrasonic Sensor: How It Works??

- a microcontroller is used for communication with an ultrasonic sensor.
- To begin measuring the distance, the microcontroller sends a trigger signal to the ultrasonic sensor. The duty cycle of this trigger signal is 10µS for the HC-SR04 ultrasonic sensor.
- When triggered, the ultrasonic sensor generates eight acoustic (ultrasonic) wave bursts and initiates a time counter.
- 4. As soon as the reflected (echo) signal is received, the timer stops. The output of the ultrasonic sensor is a high pulse with the same duration as the time difference between transmitted ultrasonic bursts and the received echo signal.

Infrared Sensors

- An electronic device that can detect and measure infrared (IR) radiation in the environment
- Anything that emits heat (everything that has a temperature above around five degrees Kelvin) gives off infrared radiation
- Applications
 - TV Remote
 - Motion Sensing
 - Proximity Sensing

Infrared Sensors: How Active Sensing Works

Lidar

- Laser generates an optical pulse(Up to 200,000+ pulses/second)
- After reflecting off an object, the pulse returns to the receiver sensor
- High-speed counter measures the time of flight from the start pulse to the return pulse
- Time measurement is converted to a distance
- An onboard computer records each laser's reflection point, translating this rapidly updating "point cloud" into an animated 3D representation of its surroundings.

Subsystems

Microcontrollers

A microcontroller is a small, integrated circuit that contains a processor, memory, and input/output peripherals.

Arduino

Arduino

Programmable Logic Controller (PLC)

Single board Computer

Raspberry PI 4, Tinkerboard

Little Panda and Jetson nano

Let's talk about a dream!

https://www.youtube.com/watch?v=fn3KWM1kuAw

Next Class

• Subsystem (Motion)

Thank You