## Formalisations pour les compositions de services

#### Aurélie Hurault

6 Juillet 2018

IRIT - Équipe ACADIE
Toulouse INP - ENSEEIHT

Soutenance en vue de l'obtention de l'Habilitation à Diriger les Recherches

#### **JURY**

Bernadette Charron-Bost

Directrice de recherche - CNRS LIX

CATHERINE DUBOIS

Professeur des universités - ENSIIE

Pascal Poizat

Professeur des universités - Université Paris Nanterre

SANDRINE BLAZY

Professeur des universités - Université Rennes 1

Bertrand Meyer

Professeur - Politecnico di Milano et Innopolis University

Marc Shapiro

Directeur de recherche - INRIA

Philippe Quéinnec

Professeur des universités - Université de Toulouse

Rapporteur

Rapporteur

Rapporteur

Examinatrice

Examinateur

Examinateur

Correspondant

Correspondani

Positionnement

## Positionnement : informatique omniprésente

#### Il est 10h00 et ce matin certains :

- se sont réveillés (de bonne heure) grâce à leur smartphone;
- ont consulté la météo toulousaine sur leur téléphone;
- ont ouvert et démarré leur voiture grâce à une carte;
- ont suivi le GPS jusqu'à l'aéroport;
- ont eu leurs plaques d'immatriculation scannées pour entrer sur le parking de l'aéroport;
- ont consulté les panneaux d'affichage pour connaître la porte d'embarquement;
- ont payé leur petit-déjeuner à une caisse automatique;
- ont fait valider leur carte d'embarquement sur leur téléphone;
- ont pris un avion;
- ont consulté le compteur du taxi;
- sont passés à l'accueil chercher un badge d'accès pour les tourniquets;
- ont les yeux rivés sur ces transparents projetés grâce au système multimédia.

## Positionnement : informatique omniprésente

Il est 10h00 et ce matin certains :

- se sont réveillés (de bonne heure) grâce à leur smartphone;
- ont consulté la météo toulousaine sur leur téléphone ;
- ont ouvert et démarré leur voiture grâce à une carte;
- ont suivi le GPS jusqu'à l'aéroport;
- ont eu leurs plaques d'immatriculation scannées pour entrer sur le parking de l'aéroport;
- ont consulté les panneaux d'affichage pour connaître la porte d'embarquement;
- ont payé leur petit-déjeuner à une caisse automatique;
- ont fait valider leur carte d'embarquement sur leur téléphone;
- ont pris un avion;
- ont consulté le compteur du taxi;
- sont passés à l'accueil chercher un badge d'accès pour les tourniquets;
- ont les yeux rivés sur ces transparents projetés grâce au système multimédia.

Domaine critique : normes de certification

## Positionnement : informatique omniprésente

#### Il est 10h00 et ce matin certains :

- se sont réveillés (de bonne heure) grâce à leur smartphone;
- ont consulté la météo toulousaine sur leur téléphone;
- ont ouvert et démarré leur voiture grâce à une carte;
- ont suivi le GPS jusqu'à l'aéroport;
- ont eu leurs plaques d'immatriculation scannées pour entrer sur le parking de l'aéroport;
- ont consulté les panneaux d'affichage pour connaître la porte d'embarquement;
- ont payé leur petit-déjeuner à une caisse automatique;
- ont fait valider leur carte d'embarquement sur leur téléphone;
- ont pris un avion;
- ont consulté le compteur du taxi;
- sont passés à l'accueil chercher un badge d'accès pour les tourniquets ;
- ont les yeux rivés sur ces transparents projetés grâce au système multimédia.

Domaine non critique : aucune garantie

## Positionnement : Méthodologie

Besoin de garantie quelle que soit la criticité de l'application.

#### Modélisation formelle

- Des éléments manipulés
- Du problème à résoudre

### Outils et méthodes prouvés

Fournir à l'utilisateur non expert des méthodes formelles des outils

- Faciles d'utilisation
- Automatisés
- Prouvés

## Domaine d'application

Composition de services

### Les "services"



## Diversité des services météorologiques

- Même fonctionnalité
- Probablement une API et différentes interactions avec l'environnement
- Qualités de service différentes

Les "services"

### Modélisation des services

- Signature : nom et types des entrées et des sorties
- Sémantique : fonctionnalité réalisée par le service
- Comportement : interaction avec l'environnement
- Qualité de service

## La composition de services



## La composition de services

## Problématiques liées à la composition de services

- Découverte avec ou sans plan
- Sélection
- Validation
- Adaptation

|            | Sémantique | Signature | Qualité de service | Comportement                                     |
|------------|------------|-----------|--------------------|--------------------------------------------------|
| Découverte | Grid-      | TLSE      |                    |                                                  |
|            | Сои        | rtier     | n guidée QoS       |                                                  |
| Sélection  |            |           | Temps d'exécution  |                                                  |
| Validation |            |           |                    | Interactions asynchrones  Priorités applicatives |
| Adaptation |            |           |                    | Filonies applicatives                            |

|            | Sémantique | Signature                  | Qualité de service | Comportement             |
|------------|------------|----------------------------|--------------------|--------------------------|
| Découverte |            | TLSE<br>rtier Construction | n guidée QoS       |                          |
| Sélection  |            |                            | Temps d'exécution  |                          |
| Validation |            |                            |                    | Interactions asynchrones |
| Adaptation |            |                            |                    | Priorités applicatives   |

|            | Sémantique | Signature    | Qualité de service | Comportement                                     |
|------------|------------|--------------|--------------------|--------------------------------------------------|
| Découverte |            | TLSE         |                    |                                                  |
| Sélection  |            | Construction | Temps d'exécution  |                                                  |
| Validation |            |              |                    | Interactions asynchrones  Priorités applicatives |
| Adaptation |            |              |                    | Thoracs applicatives                             |

|            | Sémantique   | Signature | Qualité de service | Comportement                                     |
|------------|--------------|-----------|--------------------|--------------------------------------------------|
| Découverte | Grid-<br>Cou | rtier     | n guidée QoS       |                                                  |
| Sélection  |              |           | Temps d'exécution  |                                                  |
| Validation |              |           |                    | Interactions asynchrones  Priorités applicatives |
| Adaptation |              |           |                    | r nontes applicatives                            |

# Encadrements, collaborations et projets



Co-encadrement Philippe Quéinnec

<sup>&</sup>lt;sup>2</sup> Co-encadrement Allaoua Chaoui

|            | Sémantique | Signature         | Qualité de service | Comportement                                     |
|------------|------------|-------------------|--------------------|--------------------------------------------------|
| Découverte |            | TLSE Construction | n guidée QoS       |                                                  |
| Sélection  |            |                   | Temps d'exécution  |                                                  |
| Validation |            |                   |                    | Interactions asynchrones  Priorités applicatives |
| Adaptation |            |                   |                    | Thoracs applicatives                             |

Découverte et sélection des

Modélisation formelle :

compositions

#### Contexte



#### **Problèmes**

- Comment construire la/les composition(s) de services à partir des services?
- Comment choisir la meilleure composition pour un environnement donné?

#### **Particularité**

• Domaine d'application : algèbre linéaire

### Découverte : Courtier - Contexte

### Objectif

 Découverte d'une composition, sans plan connu, pour obtenir une fonctionnalité souhaitée

### Contraintes

- Description des services et de la fonctionnalité rendue réalisable par les experts en algèbre linéaire
- Automatisation
- Correction et complétude

#### La bonne idée

• Tirer profit des particularités de l'algèbre linéaire

### Découverte : Courtier - Solution

#### Solution

- Domaine d'application
  - Signature hétérogène avec sous-typage
  - Équations donnant la sémantique des opérateurs (TAA)
- Services et requête : termes sur une signature hétérogène avec sous-typage
- Algorithme : unification équationnelle
  - Trouver  $\sigma$  tel que :  $\sigma(t_1) =_E \sigma(t_2)$

### Exemple

Domaine

$$\begin{split} \Sigma &= \{0, I : \rightarrow \textit{Matrix} \quad, \quad +, * : \textit{Matrix} \times \textit{Matrix} \rightarrow \textit{Matrix} \} \\ \mathcal{E} &= \{x, y, z : \textit{Matrix} : x * I = x \quad, \quad x * 0 = 0 \quad, \quad x + 0 = x \quad, \quad x + y = y + x \quad, \\ x + (y + z) &= (x + y) + z \quad, \quad x * (y * z) = (x * y) * z \quad, \quad \ldots \} \end{split}$$

- Services dgemm(x, y, z : Matrix) = x \* y + z : Matrix , daxpy(x, y : Matrix) = x + y : Matrix
- Requête  $r = \{a, b, c, d : Matrix\} : a * b + c * d$
- Compositions solutions daxpy(dgemm(a, b, 0), dgemm(c, d, 0)) , dgemm(a, b, dgemm(c, d, 0)) , ...

+

- S'étend à tout domaine applicatif pouvant être décrit par une signature hétérogène avec sous-typage
- Opérationnel : intégration dans des intergiciels de grilles ([J. Grid Comput'13, J. Supercomp'13, VECPAR'10, VECPAR'08])

-

- Domaines applicatifs restreints
- Non efficace

### Sélection: Contexte

### **Objectif**

Sélectionner la meilleure (temps d'exécution) composition parmi celles proposées par le courtier

#### Contraintes

- Automatisation
- Prise en compte de toute architecture matérielle (multicœur, parallèle,...)
- Solution proche de l'optimale

#### La bonne idée

- Ne pas construire à la main un modèle du temps d'exécution (modèle de la composition de service et de l'environnement d'exécution),
- mais laisser à l'apprentissage automatique le soin de le faire.

## Sélection : Modélisation et méthodologie

#### Modélisation

- Composition de service : espace de caractéristiques composé de
  - nombre d'appels aux services
  - tailles des matrices
  - complexité théorique des services
- Environnement d'exécution : données d'entraînement
- Algorithme : apprentissage automatique

### Méthodologie

- Tests de plusieurs espaces caractéristiques
- Tests d'une grande variété d'algorithmes d'apprentissage automatique
- Tests de plusieurs librairies d'algèbre linéaire (ATLAS et OpenBlas)
- Comparaison avec l'existant : composition sélectionnée meilleure ou équivalente à la solution choisie par Octave

+

- Donne de bons résultats (régression linéaire)
- Apprentissage réalisé sur matrices de petites tailles
- S'adapte à toute architecture (sous réserve de rejouer la phase d'entraînement)

-

- Vérification empirique, pas de garantie formelle
- Spécifique au domaine d'application

#### Modélisations

### Modélisations des services / composition de services

- Découverte : Termes sur une signature hétérogène avec sous-typage
- Sélection : Agrégat de valeurs numériques

### **Algorithmes**

- Découverte : Unification équationnelle
- Sélection : Apprentissage automatique

Outils et méthodes prouvés : Vérification des compositions



### Domaine d'application

- Système réparti communiquant par messages
- Communication asynchrone

## **Objectifs**

- Outil automatique et prouvé pour la vérification d'une propriété sur une composition de services
- Formalisation des interactions asynchrones

## Communication asynchrone

### Communication synchrone

• Rendez-vous entre émission et réception



## Communication asynchrone

• Pas de synchronisation entre émission et réception





## Communication asynchrone

#### Modèles de communication

• Contraintes sur l'ordre des délivrances

## **Objectifs**

- Recensement de la diversité des modèles
- Formalisations avec différents niveaux d'abstraction
- Comparaisons

### Diversité des multiplicités

Point-à-point

• Multicast : 1 vers N

• Mergecast : N vers 1

#### Diversité des contraintes de délivrance

- Contraintes de délivrance applicatives
- Contraintes de délivrance génériques

### Diversité des multiplicités

Point-à-point

• Multicast : 1 vers N

• Mergecast : N vers 1

#### Diversité des contraintes de délivrance

- Contraintes de délivrance applicatives
- Contraintes de délivrance génériques



## Contraintes de délivrance génériques

- Asynchrone pur √
   FIFO<sub>n-1</sub>
- FIFO<sub>1-1</sub>
- Causal

- FIFO<sub>1-n</sub>
  - FIFO<sub>n-n</sub>

RSC



## Contraintes de délivrance génériques

- Asynchrone pur
  - ✓  $FIFO_{n-1}$
- FIFO<sub>1-1</sub>

- $\times$  FIFO<sub>1-n</sub>
- Causal

• FIFO<sub>n-n</sub>



## Contraintes de délivrance génériques

- Asynchrone pur
- ✓ FIFO<sub>n-1</sub>

• FIFO<sub>1-1</sub>

✓ • FIFO<sub>1-n</sub>

Causal

• FIFO<sub>n-n</sub>

RSC



RSC

## Contraintes de délivrance génériques

- Asynchrone pur
- ✓ FIFO<sub>n-1</sub>

• FIFO<sub>1-1</sub>

- $\checkmark$  FIFO<sub>1-n</sub>
- Causal

- $\times$  FIFO<sub>n-n</sub>



## Contraintes de délivrance génériques

- Asynchrone pur
- ✓ FIFO<sub>n-1</sub>

• FIFO<sub>1-1</sub>

- $\checkmark$  FIFO<sub>1-n</sub>

Causal

- ✓ FIFO<sub>n-n</sub>

RSC



## Contraintes de délivrance génériques

- Asynchrone pur
- $\checkmark$  FIFO<sub>n-1</sub>

RSC

• FIFO<sub>1-1</sub>

- ✓ FIFO<sub>1-n</sub>
- Causal

- ✓ FIFO<sub>n-n</sub>



## Contraintes de délivrance génériques

- Asynchrone pur v
- $\checkmark$  FIFO<sub>n-1</sub>

✓ • RSC

- FIFO<sub>1-1</sub>
- $\checkmark$  FIFO<sub>1-n</sub>
- Causal

✓ • FIFO<sub>n-n</sub>



## Contraintes de délivrance génériques

- Asynchrone pur
  - $\checkmark$  FIFO<sub>n-1</sub>

RSC

• FIFO<sub>1-1</sub>

- $\checkmark$  FIFO<sub>1-n</sub>

- ✓ FIFO<sub>n-n</sub>



## Contraintes de délivrance génériques

- Asynchrone pur
  - $\checkmark$  FIFO<sub>n-1</sub>

RSC

- FIFO<sub>1-1</sub>
- $\checkmark$  FIFO<sub>1-n</sub>

- ✓ FIFO<sub>n-n</sub>



## Contraintes de délivrance génériques

- Asynchrone pur v
- ✓  $FIFO_{n-1}$

RSC

- FIFO<sub>1-1</sub>
- $\checkmark$  FIFO<sub>1-n</sub>
- $\checkmark$

- $\checkmark$  FIFO<sub>n-n</sub>
- ×



## Contraintes de délivrance génériques

- Asynchrone pur
- ✓  $FIFO_{n-1}$

RSC

• FIFO<sub>1-1</sub>

- $\checkmark$  FIFO<sub>1-n</sub>

- √ FIFO<sub>n-n</sub>



## Contraintes de délivrance génériques

- Asynchrone pur
  - $\checkmark$  FIFO<sub>n-1</sub>

RSC

- FIFO<sub>1-1</sub>
- √ FIFO<sub>1-n</sub>

 $\checkmark$ 

- √ FIFO<sub>n-n</sub>
- $\checkmark$



## Contraintes de délivrance génériques

- Asynchrone pur
  - ✓ FIFO<sub>n-1</sub>

RSC

• FIFO<sub>1-1</sub>

- $\checkmark$  FIFO<sub>1-n</sub>

- ✓ FIFO<sub>n-n</sub>

#### Formalisation axiomatique

- Exécutions et calculs distribués formalisés comme séquences d'événements
  - Réception sur un pair p d'un message  $m: r_p(m)$
  - Émission sur un pair p d'un message  $m: s_p(m)$
  - Événement interne :  $\tau$
- Formalisation des modèles : contraintes sur l'ordre des événements
  - Trois ordres : local, causal, global
  - $\mathsf{FIFO}_{1-1} : s_{p_a}(m_1) \prec s_{p_a}(m_2) \Rightarrow \neg (r_{p_b}(m_2) \prec r_{p_b}(m_1))$
- Formalisation similaire en multicast

## Formalisations des modèles de communication asynchrone

#### Formalisations opérationnelles

- Utilisées dans le cadre du framework de vérification
- Modélisation des pairs et des modèles de communication : systèmes de transition

#### Formalisation opérationnelle unifiée basée histoire

- Formalisation reposant sur :
  - Histoires locales, causales et globales
  - Ensemble de messages en transit
- Formalisation des modèles :
  - Transition d'envoi : contraintes sur la capacité du réseau
  - Transition de réception : contrainte sur les histoires des messages
- Correspondance histoires / ordres

## Formalisations opérationnelles avec structures ad hoc

• Ensemble, file, vecteur d'horloge, compteur, ...



spécification (Event-B et/ou TLA<sup>+</sup>)
 → raffine (preuve Event-B)
 → raffine (preuve Event-B, TLA<sup>+</sup> et Why3)

- Liens verticaux : hiérarchie des modèles
- Liens horizontaux : correction et complétude des modèles



spécification (Event-B et/ou TLA<sup>+</sup>)
 → raffine (preuve Event-B)
 → raffine (preuve papier)
 → raffine (preuve Event-B, TLA<sup>+</sup> et Why3)

- Liens verticaux : hiérarchie des modèles
- Liens horizontaux : correction et complétude des modèles



spécification (Event-B et/ou TLA<sup>+</sup>)
 → raffine (preuve Event-B)
 → raffine (preuve papier)
 → raffine (preuve Event-B, TLA<sup>+</sup> et Why3)

- Liens verticaux : hiérarchie des modèles
- Liens horizontaux : correction et complétude des modèles



spécification (Event-B et/ou TLA<sup>+</sup>)
 → raffine (preuve Event-B)
 → raffine (preuve papier)
 → raffine (preuve Event-B, TLA<sup>+</sup> et Why3)

- Liens verticaux : hiérarchie des modèles
- Liens horizontaux : correction et complétude des modèles

# Correction et complétude des modèles de communication

#### Correction

- Validité des traces
- Pas de faux négatif

## Complétude

- Exhaustivité des traces
- Pas de faux positif



http://vacs.enseeiht.fr/

Outil et méthode prouvés

## Framework de vérification

+

- Formalisation axiomatique
  - Uniforme
  - Hiérarchie étendue
  - Diffusion
- Formalisation opérationnelle
  - Uniforme
  - Outil automatique et fiable
  - Correction et complétude
- Cartographie des modèles
  - Vue globale
  - Preuve des liens

\_

- Mécanisation de la preuve de complétude
- Complétude des modèles ad hoc
- Non prise en compte des défaillances

# Autres travaux

## **Autres travaux**

|            | Sémantique | Signature | Qualité de service | Comportement                                     |
|------------|------------|-----------|--------------------|--------------------------------------------------|
| Découverte |            | TLSE      | n guidée QoS       |                                                  |
| Sélection  |            |           | Temps d'exécution  |                                                  |
| Validation |            |           |                    | Interactions asynchrones  Priorités applicatives |
| Adaptation |            |           |                    | Filonites applicatives                           |

## Problématique

- Découverte d'une composition de services avec plan connu
  - Découverte des services répondant au contraintes du scénario (plan) et des paramètres d'entrées (matrices).

#### Modélisation

- Composition de services : workflow mélangeant opérateurs d'exécution (services) et opérateurs de transformation de flux
- Service (solveur linéaire) : métadonnées

#### **Financements**

Projet LEGO (ANR-CICG05-11), Projet FP3C (ANR-JST FP3C), Projet COOP (ANR-09-COSI-001), ...

#### **Collaborations**

- Partenaires académiques : CERFACS, IRIT, LaBRI et LIP-ENS Lyon
- Partenaires industriels : CEA, CNES, EDF et IFP

## **Autres travaux**

|            | Sémantique                       | Signature | Qualité de service | Comportement             |
|------------|----------------------------------|-----------|--------------------|--------------------------|
| Découverte | Grid-                            | TLSE      |                    |                          |
|            | Courtier Construction guidée QoS |           |                    |                          |
| Sélection  |                                  |           | Temps d'exécution  |                          |
| Validation |                                  |           |                    | Interactions asynchrones |
| Adaptation |                                  |           |                    | Priorités applicatives   |

## **Problématique**

 Découverte et sélection d'une composition de services dans le but d'optimiser la qualité de service

#### Modélisation

- Services / Composition de services : types des entrées et des sorties
- Qualité de service : valeurs numériques agrégées ou non
- Algorithme : algorithme d'optimisation, méthode approchée basée sur l'intelligence en essaim

#### Encadrement de thèse

- Sériel Boussalia (thèse soutenue en mai 2016)
- Co-encadrement avec Allaoua Chaoui, université de Constantine II

## **Autres travaux**

|            | Sémantique | Signature          | Qualité de service | Comportement             |
|------------|------------|--------------------|--------------------|--------------------------|
| Découverte | Grid-      | TLSE               |                    |                          |
|            | Cou        | rtier Construction | n guidée QoS       |                          |
| Sélection  |            |                    | Temps d'exécution  |                          |
| Validation |            |                    |                    | Interactions asynchrones |
| Adaptation |            |                    |                    | Priorités applicatives   |

## Problématique

- Vérifier qu'une composition de services valide une propriété lorsque la communication est asynchrone
- Adapter une composition de services pour qu'une propriété soit validée (inférence d'un modèle de communication garantissant la propriété)

#### Extension du framework et des modèles axiomatiques

- Priorité relative des messages
- Utilisation de canaux pour marquer les messages et exprimer les propriétés
- Inférence des contraintes

#### Encadrement

- Nathanaël Sensfelder
  - master soutenu en septembre 2016



## Perspectives à long terme

#### Modélisation formelle

• Aider à la généralisation des modélisations formelles.

#### Outils et méthodes prouvés

- Fournir des outils et méthodes prouvés.
- Aider à la généralisation des preuves (mécanisées) formelles.

## Méthodologie

- L'enseignement
- L'exemple
- L'interaction avec les développeurs d'assistants de preuve, de vérificateurs de modèles, . . .

## Perspectives à court terme

## Trois domaines d'applications

- Systèmes répartis avec défaillances
  - Projet ANR PARDI (verification of PARameterized DIstributed systems)
  - Thèse Adam Shimi
- Systèmes non bloquants
  - Projet Toulouse Tech InterLabs SNOB (Systèmes NOn Bloquants)
  - Collaborations :
    - LAAS
    - Instituto de Matematicas, UNAM, Mexico City
- Systèmes interactifs
  - Collaboration : ENAC

#### Zoom sur ...

- Modélisation des systèmes répartis avec défaillances
- Vérification des systèmes non bloquants

## Perspectives : modélisation des systèmes répartis avec défaillances

#### Défaillances dans les systèmes répartis

- Inévitables
- De natures diverses : arrêt définitif d'un site, perte de messages, . . .

## Objectif

- Raisonner sur des systèmes distribués asynchrones défaillants paramétrés
  - Résultats génériques sur l'abstraction des défaillances
  - Résultats génériques sur la réduction de l'asynchronie
  - Résultats génériques sur la paramétrisation (nombre de processus, modèle de communication, modèle de défaillance,...)

#### **Pistes**

- Se concentrer sur les modèles par tour
- Abstraire les défaillances

# Perspectives : modélisation des systèmes répartis avec défaillances

## Modèle par tour synchrone

- A chaque tour, les pairs diffusent un message; reçoivent des messages; calculent leur nouvel état; passent au tour suivant.
- Plus facile pour raisonner que sans structure générale
- Couvre une grande partie des algorithmes tolérants aux fautes

## Abstraction des types de défaillance : le modèle Heard-Of

- Prédicat HO(p, r) représentant l'ensemble des expéditeurs des messages reçus par le pair p au tour r.
- Modélise
  - Les différents types de défaillances
  - La dynamicité du réseau de communication
- Peut être forcé ou observé

## Version asynchrone?

## Perspectives : modélisation des systèmes répartis avec défaillances

## Modèle par tour asynchrone

- Quand le processus décide-t-il de passer au tour suivant ?
  - Synchrone : borne de temps calcul + transfert message
  - Asynchrone : nombre de messages reçus vs risque de blocage
- Modélisation par jeux
  - Environnement : maître du jeu
  - Processus : stratégie de changement de tour
  - Stratégie gagnante : aucun pair n'est bloqué
- Différents types de stratégies
  - Que le présent (sans mémoire)
  - Tout le passé et le présent
  - Un aperçu du futur

Comment construire une stratégie pour un modèle de défaillances? Optimale?

## Domaine d'application

Systèmes concurrents à mémoire partagée

#### Intérêts des systèmes non bloquants

- Résistance à l'arrêt (crash) d'un processus
- Vitesse de progression indépendante de celle des autres activités
- Gain de performance : augmentation du parallélisme

## Problématiques des systèmes non bloquants

- Difficiles à écrire même si concis
- Complexes à analyser même si concis

## **Objectif**

• Preuve mécanisée des algorithmes non bloquants

## Spécification et implantation du splitter



## Objectif du splitter

• Partitionner les processus

# Preuve du splitter

- Réalisé avec Why3 et TLAPS
- · Invariant inductif

```
Prop1 == (pc[0]="spl1" \/ pc[0]="spl0") => (\neg Y)
Prop2 == X=0
Prop3 == pc[0]="spl1" \/ pc[0]="spl0" \/ pc[0]="spl3" \/ pc[0]="spl4" \/ pc[0]="spl5" \/ pc[0]="Done"
Prop4 == rval[0]=None \/ rval[0]=Stop
Prop5 == \A i \in ProcSet : rval[i] # None <=> pc[i]="Done"
Prop6 == (\E i \in ProcSet : (pc[i]="spl4") \/ (pc[i]="spl5") ) => Y
Prop7 ==(\E i \in ProcSet : rval[i]=Stop) => Y
Prop8 == \A i \in ProcSet : (pc[i]="spl5" => (X=i \/ pc[X]="spl1" \/ pc[X]="spl2" \/ (pc[X]="Done" /\ rval[X]=Right)))
Prop9 == \A i \in ProcSet : ((pc[i]="Done" /\ rval[i]=Stop) =>
    (X=i \ \ pc[X]="spl1" \ \ pc[X]="spl2" \ \ (pc[X]="Done" \ \ rval[X]=Right)))
Prop10 == \A i,j \in ProcSet :((pc[i]="spl5" /\ pc[j]="spl5") => i=j)
Prop11 == "(\E i, j \in ProcSet : pc[i]="spl5" /\ pc[j]="Done" /\ rval[j]=Stop)
Prop12 == \A i,j \in ProcSet : (rval[i]=Stop /\ rval[j]=Stop) => i=j
Prop13 == (\E i \in ProcSet : pc[i]="sp12" \/ rval[i]=Right) => Y
Prop14 == Y =>
    ((\E i \in ProcSet : pc[i]="spl4" /\ rval[i]=None) \/ (\E i \in ProcSet : pc[i]="spl5" /\ rval[i]=None)
    \/ (\E i \in ProcSet : pc[i]="spl6" /\ rval[i]=None) \/ (\E i \in ProcSet : pc[i]="Done" /\ rval[i]=Down)
    \/ (\E i \in ProcSet : pc[i]="Done" /\ rval[i]=Stop))
Prop15 == (\E i \in ProcSet : rval[i]#Right)
Prop16 == (pc[X]="sp10" /\ rval[X]=None) \/ (pc[X]="sp11" /\ rval[X]=None) \/ (pc[X]="sp12" /\ rval[X]=None)
     \/ (pc[X]="sp13" /\ rval[X]=None) \/ (pc[X]="sp14" /\ rval[X]=None) \/ (pc[X]="sp15" /\ rval[X]=None)
    \/ (pc[X]="Done" /\ rval[X]=Right) \/ (pc[X]="Done" /\ rval[X]=Stop)
Prop17 == \E i \in ProcSet : rval[i]#Down
```

## Exemple du renommage

```
4
                                   rename(id)
                                     while (d+r < NP-1 / !stop ) do
                                       X[d][r] := id;
0
                                       if Y[d][r]
                                       then r := r + 1 \* right
1
                                       else
                                        Y[d][r] := TRUE
                                         if (X[d][r] = id)
           10
                                        then stop := TRUE \* stop
                                         else d := d + 1 \* down
3
                                         endif
                                       endif
                                     end while
4
                                   return (NP*d) + r - (d*(d-1)) \setminus div 2
```

#### Spécification du renommage

Chaque processus obtient une valeur de retour (nouveau nom) distincte.

# Preuve du renommage

- Preuve papier par Moir et Anderson
  - Invariant inductif sur le modèle de celui du splitter
- Début de preuve TLAPS
- Problème : n'utilise pas les propriétés prouvées sur le Splitter, car les splitters ne sont pas des boîtes fonctionnelles à cause des entrelacements

#### Preuve des algorithmes non bloquants

- Comment faire réapparaître des "modules" pour pouvoir utiliser leur propriété?
- Possibilité de mécaniser cette réduction modulaire?

## Conclusion et Perspectives

## Besoin de garantie quelle que soit la criticité de l'application.

## Méthodologie

- Modélisation formelle
- Outils et méthodes prouvés

#### Composition de services

- Passé : services de calculs ; systèmes répartis sans défaillance
- Futur : systèmes interactifs; systèmes répartis avec défaillances; systèmes non bloquants