# Projektierungsanleitung AC Servoantriebe FHA-C Mini





# <u>Inhalt</u>

| 1.   | Allgemeines                                              | 3  |
|------|----------------------------------------------------------|----|
| 1.1  | Erläuterung der verwendeten Symbolik                     | 4  |
| 1.2  | Haftungsausschluss und Copyright                         |    |
|      |                                                          |    |
| 2.   | Sicherheits- und Inbetriebnahmehinweise                  |    |
| 2.1  | Gefahren                                                 |    |
| 2.2  | Bestimmungsgemäße Verwendung                             | 6  |
| 2.3  | Nicht bestimmungsgemäße Verwendung                       | 7  |
| 2.4  | Konformitätserklärung                                    | 7  |
| 2    | Tarakas landan Danadasas likuwan                         | 0  |
| 3.   | Technische Beschreibung                                  |    |
| 3.1  | Produktbeschreibung                                      |    |
| 3.2  | Bestellbezeichnung                                       |    |
| 3.3  | Kombinationen                                            |    |
| 3.4  | Technische Daten                                         |    |
|      | 3.4.1 Allgemeine technische Daten                        |    |
|      | 3.4.2 Antriebsdaten                                      |    |
|      | 3.4.3 Abmessungen                                        |    |
|      | 3.4.4 Genauigkeit                                        | 27 |
|      | 3.4.5 Torsionssteifigkeit                                | 27 |
|      | 3.4.6 Abtriebslager                                      | 28 |
|      | 3.4.7 Motorfeedbacksysteme                               | 29 |
|      | 3.4.8 Temperatursensoren                                 | 32 |
|      | 3.4.9 Batterieboxen                                      | 32 |
|      | 3.4.10 Elektrische Anschlüsse                            | 36 |
| 1    | Antvichenucleaung                                        | 20 |
| 4.   | Antriebsauslegung                                        |    |
| 4.1. | Auswahlschema und Auslegungsbeispiel                     |    |
| 4.2  | Ermittlung des Torsionswinkels                           |    |
| 4.3  | Abtriebslager                                            |    |
|      | 4.3.1 Lebensdauer                                        |    |
|      | 4.3.2 Kippwinkel                                         | 45 |
| 5.   | Installation und Betrieb                                 | 46 |
| 5.1  | Transport und Lagerung                                   |    |
| 5.2  | Aufstellung                                              |    |
| 5.3  | Mechanische Installation                                 |    |
| 5.4  | Elektrische Installation                                 |    |
| 5.5  | Inbetriebnahme                                           |    |
| 5.6  | Überlastschutz                                           |    |
| 5.7  | Schutz vor Korrosion und dem Eindringen von Fremdkörpern |    |
| 5.8  | Stillsetzen und Wartung                                  |    |
| _    | Au Caulantiis la calaisea ann d'Eustrananna              |    |
| 6.   | Außerbetriebnahme und Entsorgung                         | 52 |
| 7.   | Glossar                                                  | 53 |
| 7.1  | Technische Daten                                         | 53 |
| 7.2  | Kennzeichnung, Richtlinien und Verordnungen              |    |

# 1. Allgemeines

#### Über diese Dokumentation

Die vorliegende Dokumentation beinhaltet Sicherheitsvorschriften, technische Daten und Betriebsvorschriften für Servoantriebe und Servomotoren der Harmonic Drive AG.

Die Dokumentation wendet sich an Planer, Projekteure, Maschinenhersteller und Inbetriebnehmer. Sie unterstützt bei Auswahl und Berechnung der Servoantriebe und Servomotoren sowie des Zubehörs.

#### Hinweise zur Aufbewahrung

Bitte bewahren Sie diese Dokumentation während der gesamten Einsatz- bzw. Lebensdauer bis zur Entsorgung des Produktes auf. Geben Sie bei Verkauf diese Dokumentation weiter.

#### Weiterführende Dokumentation

Zur Projektierung von Antriebssystemen mit Antrieben und Motoren der Harmonic Drive AG benötigen Sie nach Bedarf weitere Dokumentationen, entsprechend der eingesetzten Geräte. Die Harmonic Drive AG stellt für ihre Produkte die gesamte Dokumentation auf ihrer Website im PDF-Format zur Verfügung.

www.harmonicdrive.de

#### Fremdsysteme

Dokumentationen für externe, mit Harmonic Drive® Komponenten verbundene Systeme sind nicht Bestandteil des Lieferumfanges und müssen von diesen Herstellern direkt angefordert werden.

Vor der Inbetriebnahme der Servoantriebe und Servomotoren der Harmonic Drive AG an Regelgeräten ist die spezifische Inbetriebnahmedokumentation des jeweiligen Gerätes zu beachten.

#### Ihr Feedback

Ihre Erfahrungen sind für uns wichtig. Verbesserungsvorschläge und Anmerkungen zu Produkt und Dokumentation senden Sie bitte an:

Harmonic Drive AG Marketing und Kommunikation Hoenbergstraße 14 65555 Limburg / Lahn E-Mail: info@harmonicdrive.de

1015763 07/2019 V05

3

# 1.1 Erläuterung der verwendeten Symbolik

| Symbol             | Bedeutung                                                                                                                                          |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| <u> </u>           | Bezeichnet eine unmittelbar drohende Gefahr. Wenn sie nicht gemieden wird, sind Tod oder schwerste Verletzungen die Folge.                         |
| ⚠ WARNUNG          | Bezeichnet eine möglicherweise drohende Gefahr. Wenn sie nicht gemieden wird, können Tod oder schwerste Verletzungen die Folge sein.               |
| <b>⚠</b> VORSICHT  | Bezeichnet eine möglicherweise drohende Gefahr. Wenn sie nicht gemieden wird, können leichte oder geringfügige Verletzungen die Folge sein.        |
| HINWEIS            | Bezeichnet eine möglicherweise schädliche Situation. Wenn sie nicht gemieden wird, kann die Anlage oder etwas in ihrer Umgebung beschädigt werden. |
| INFO               | Dies ist kein Sicherheitssymbol.  Das Symbol weist auf wichtige Informationen hin.                                                                 |
|                    | Warnung vor einer Gefahr (allgemein). Die Art der Gefahr wird durch den nebenstehenden Warntext spezifiziert.                                      |
| 4                  | Warnung vor gefährlicher elektrischer Spannung und deren Wirkung.                                                                                  |
|                    | Warnung vor heißer Oberfläche.                                                                                                                     |
|                    | Warnung vor hängenden Lasten.                                                                                                                      |
|                    | Vorsichtsmaßnahmen bei der Handhabung elektrostatisch empfindlicher<br>Bauelemente beachten.                                                       |
| (( <sub>2</sub> )) | Warnung vor elektromagnetischer Umweltverträglichkeit                                                                                              |

# 1.2 Haftungsausschluss und Copyright

Die in diesem Dokument enthaltenen Inhalte, Bilder und Grafiken sind urheberrechtlich geschützt. Logos, Schriften, Firmen und Produktbezeichnungen können, über das Urheberrecht hinaus, auch marken- bzw. warenzeichenrechtlich geschützt sein. Die Verwendung von Texten, Auszügen oder Grafiken bedarf der Zustimmung des Herausgebers bzw. Rechteinhabers.

Wir haben den Inhalt der Druckschrift geprüft. Dennoch können Abweichungen nicht ausgeschlossen werden, so dass wir für die vollständige Übereinstimmung keine Gewähr übernehmen. Die Angaben in dieser Druckschrift werden regelmäßig überprüft, und notwendige Korrekturen sind in den nachfolgenden Auflagen enthalten. Für Verbesserungsvorschläge sind wir dankbar.

# 2. Sicherheits- und Inbetriebnahmehinweise

Zu beachten sind die Angaben und Anweisungen in diesem Dokument sowie im Katalog. Sonderausführungen können in technischen Details von den nachfolgenden Ausführungen abweichen! Bei eventuellen Unklarheiten wird dringend empfohlen, unter Angabe von Typbezeichnung und Seriennummer, beim Hersteller anzufragen.

### 2.1 Gefahren





Elektrische Servoantriebe und Motoren haben gefährliche, spannungsführende und rotierende Teile. Alle Arbeiten während dem Anschluss, der Inbetriebnahme, der Instandsetzung und der Entsorgung sind nur von qualifiziertem Fachpersonal auszuführen. EN 50110-1 und IEC 60364 beachten!

Vor Beginn jeder Arbeit, besonders aber vor dem Öffnen von Abdeckungen, muss der Antrieb vorschriftsmäßig freigeschaltet sein. Neben den Hauptstromkreisen ist dabei auch auf eventuell vorhandene Hilfsstromkreise zu achten.

#### Einhalten der fünf Sicherheitsregeln:

- Freischalten
- Gegen Wiedereinschalten sichern
- Spannungsfreiheit feststellen
- Erden und kurzschließen
- Benachbarte unter Spannung stehende Teile abdecken oder abschranken

Die zuvor genannten Maßnahmen dürfen erst dann zurückgenommen werden, wenn die Arbeiten abgeschlossen sind und der Antrieb vollständig montiert ist. Unsachgemäßes Verhalten kann Personen- und Sachschäden verursachen. Die jeweils geltenden nationalen, örtlichen und anlagespezifischen Bestimmungen und Erfordernisse sind zu gewährleisten.





Die Oberflächentemperatur der Antriebe kann im Betrieb über 55 °C betragen! Die heißen Oberflächen dürfen nicht berührt werden!

### **HINWEIS**

Anschlusskabel dürfen nicht in direkten Kontakt mit heißen Oberflächen kommen.



# 

Betriebsbedingt auftretende elektrische, magnetische und elektromagnetische Felder stellen im Besonderen für Personen mit Herzschrittmachern, Implantaten oder ähnlichem eine Gefährdung dar. Gefährdete Personengruppen dürfen sich daher nicht in unmittelbarer Nähe des Produktes aufhalten.





Eingebaute Haltebremsen sind nicht funktional sicher. Insbesondere bei hängender Last kann die funktionale Sicherheit nur mit einer zusätzlichen externen mechanischen Bremse erreicht werden.





Verletzungsgefahr durch unsachgemäße Handhabung von Batterien.

#### Einhalten der Sicherheitsregeln für Batterien

- Nicht verpolen. Die + und Zeichen auf Batterie und Gerät beachten.
- Nicht kurzschließen.
- Nicht wiederaufladen.
- Nicht gewaltsam öffnen oder beschädigen.
- Nicht mit Feuer, Wasser oder hohen Temperaturen in Kontakt bringen.
- Erschöpfte Batterien gleich entfernen und entsorgen.
- Von Kindern fernhalten. Bei Verschlucken sofort einen Arzt aufsuchen.

# 

Der einwandfreie und sichere Betrieb der Servoantriebe und Motoren setzt einen sachgemäßen Transport, fachgerechte Lagerung, Aufstellung und Montage sowie eine sorgfältige Bedienung und Wartung voraus.



# ∧ VORSICHT

Bewegen und heben Sie Servoantriebe und Motoren mit einem Gewicht >20 kg ausschließlich mit dafür geeigneten Hebevorrichtungen.

#### INFO

Sondervarianten der Servoantriebe und Motoren können in ihrer Spezifikation vom Standard abweichen. Mitgeltende Angaben aus Datenblättern, Katalogen und Angeboten der Sondervarianten sind zu berücksichtigen.

### 2.2 Bestimmungsgemäße Verwendung

Die Harmonic Drive® Servoantriebe und Motoren sind für industrielle oder gewerbliche Anwendungen bestimmt. Sie entsprechen den relevanten Teilen der harmonisierten Normenreihe EN 60034. Falls im Sonderfall, beim Einsatz in nicht industriellen oder nicht gewerblichen Anlagen, erhöhte Anforderungen gestellt werden, so sind diese Bedingungen bei der Aufstellung anlagenseitig zu gewährleisten.

Typische Anwendungsbereiche sind Robotik und Handhabung, Werkzeugmaschinen, Verpackungs- und Lebensmittelmaschinen und ähnliche Maschinen.

Die Servoantriebe und Motoren dürfen nur innerhalb der in der Dokumentation angegebenen Betriebsbereiche und Umweltbedingungen (Aufstellhöhe, Schutzart, Temperaturbereich usw.) betrieben werden.

Vor Inbetriebnahme von Anlagen und Maschinen, in welche Harmonic Drive® Servoantriebe und Motoren eingebaut werden, ist die Konformität der Anlage oder Maschine zur Maschinenrichtlinie, Niederspannungsrichtlinie und EMV-Richtlinie herzustellen.

Anlagen und Maschinen mit umrichtergespeisten Drehstrommotoren müssen den Schutzanforderungen der EMV-Richtlinie genügen. Die Durchführung der sachgerechten Installation liegt in der Verantwortung des Anlageerrichters. Signal- und Leistungsleitungen sind geschirmt auszuführen. Die EMV-Hinweise des Umrichterherstellers zur EMV gerechten Installation sind zu beachten.

# 2.3 Nicht bestimmungsgemäße Verwendung

Die Verwendung der Servoantriebe und Motoren außerhalb der vorgenannten Anwendungsbereiche oder unter anderen als in der Dokumentation beschriebenen Betriebsbereichen und Umweltbedingungen gilt als nicht bestimmungsgemäßer Betrieb.

### **HINWEIS**

Ein direkter Betrieb am Netz ist untersagt.

Nachfolgende Anwendungsbereiche gehören zur nicht bestimmungsgemäßen Verwendung:

- Luft- und Raumfahrt
- Explosionsgefährdete Bereiche
- Speziell für eine nukleare Verwendung konstruierte oder eingesetzte Maschinen, deren Ausfall zu einer Emission von Radioaktivität führen kann
- Vakınım
- Geräte für den häuslichen Gebrauch
- Medizinische Geräte, die in direkten Kontakt mit dem menschlichen Körper kommen
- Maschinen oder Geräte zum Transport und Heben von Personen
- Spezielle Einrichtungen für die Verwendung auf Jahrmärkten und in Vergnügungsparks

## 2.4 Konformitätserklärung

Für die in der Projektierungsanleitung beschriebenen Harmonic Drive® Servoantriebe und Motoren besteht Konformität mit der Niederspannungsrichtlinie.

Gemäß der Maschinenrichtlinie sind die Harmonic Drive® Servoantriebe und Servomotoren elektrische Betriebsmittel zur Verwendung innerhalb bestimmter Spannungsgrenzen nach Niederspannungsrichtlinie und somit vom Anwendungsbereich der Maschinenrichtlinie ausgenommen. Die Inbetriebnahme ist so lange untersagt, bis die Konformität des Endproduktes mit der Maschinenrichtlinie festgestellt ist.

Im Sinne der EMV-Richtlinie 2014/30/EU gelten Harmonic Drive® Servoantriebe und Motoren als unkritische Betriebsmittel, die weder elektromagnetische Störungen verursachen noch durch diese beeinträchtigt werden.

Die Konformität zu den gültigen EU-Richtlinien von Betriebsmitteln, Anlagen und Maschinen in welche Harmonic Drive® Servoantriebe und Motoren eingebaut sind ist durch den Nutzer vor der Inbetriebnahme herzustellen.

Betriebsmittel, Anlagen und Maschinen mit umrichtergespeisten Drehstrommotoren müssen den Schutzanforderungen der EMV-Richtlinie genügen. Die Durchführung der sachgerechten Installation liegt in der Verantwortung des Nutzers.

# 3. Technische Beschreibung

# 3.1 Produktbeschreibung

# Kompakter Miniservoantrieb mit Hohlwelle

Die Servoantriebe der Baureihe FHA-C Mini mit zentraler Hohlwelle bestehen aus einem Synchron-Servomotor, einem Einbausatz der Baureihe HFUC sowie einem speziell entwickelten Abtriebslager.

Die Miniservoantriebe sind erhältlich in drei Baugrößen mit den Untersetzungen 30, 50 und 100 bei einem maximalen Drehmoment zwischen 2 und 28 Nm. Das kippsteife Abtriebslager ermöglicht die direkte Anbringung hoher Nutzlasten ohne weitere Abstützung und erlaubt so eine einfache und platzsparende Konstruktion.

Die integrierte Hohlwelle kann zur Durchführung von Versorgungsleitungen für weiterführende Antriebssysteme genutzt werden. Aufgrund der Positioniergenauigkeit sind stabile Maschineneigenschaften bei kurzen Taktzeiten garantiert und durch die kompakte Bauform geringster Platzbedarf sichergestellt.

Mit den Servoreglern der Baureihen YukonDrive® und HA-680, die speziell auf die Bedürfnisse der Servoantriebe FHA-C Mini abgestimmt sind, steht ein vorkonfiguriertes Antriebssystem aus einer Hand zur Verfügung – und das selbstverständlich in spezifischer Ausführung maßgeschneidert für Ihre Anwendung. Die FHA-C Mini Baureihe ist darüber hinaus kompatibel zu vielen gängigen Servoreglern auf dem Markt.

# Kompakter Mini Servoantrieb mit multiturn absolutem Encoder

Die Servoantriebe der Baureihe FHA-C Mini mit EnDat® multiturn Absolutencoder bestehen aus einem Synchron-Servomotor, einem Einbausatz der Baureihe HFUC sowie einem speziell entwickelten Abtriebslager.

Die Miniservoantriebe sind erhältlich in drei Baugrößen mit den Untersetzungen 30, 50 und 100 bei einem maximalen Drehmoment zwischen 1,8 und 28 Nm. Das kippsteife Abtriebslager ermöglicht die direkte Anbringung hoher Nutzlasten ohne weitere Abstützung und erlaubt so eine einfache und platzsparende Konstruktion.

Aufgrund der Positioniergenauigkeit sind stabile Maschineneigenschaften bei kurzen Taktzeiten garantiert und durch die kompakte Bauform geringster Platzbedarf sichergestellt.

Das multiturn absolute Motorfeedbacksystem erfasst die absolute Position an der Last über weit mehr als 600 Umdrehungen mit höchster Genauigkeit. Die Produktivität der Antriebsachse wird gesteigert, da ein unproduktives Referenzieren nicht notwendig ist. Die neuen drehbaren Steckverbinder sorgen darüber hinaus für eine effiziente und einfache Montage.

In Kombination mit dem Servoregler YukonDrive® steht ein vorkonfiguriertes und abgestimmtes Antriebssystem zur Verfügung – maßgeschneidert für Ihre Anwendung und problemlos über moderne Feldbusschnittstellen integrierbar.

# 3.2 Bestellbezeichnung

#### Tabelle 9.1

| Baureihe | Baugröße<br>Version | Un | tersetz | ung | Motorfeedback-<br>system | Motor-<br>wicklung | Kabelabgang | Kabellänge | Sonder-<br>ausführung |                             |  |  |
|----------|---------------------|----|---------|-----|--------------------------|--------------------|-------------|------------|-----------------------|-----------------------------|--|--|
|          | 8C                  | 30 | 50      | 100 | D200                     |                    |             |            |                       |                             |  |  |
| FHA      | 11C                 | 30 | 50      | 100 |                          |                    | -<br>F      | –<br>K     | –<br>M1               | Nach Kunden-<br>anforderung |  |  |
|          | 14C 30 50 100       |    | .,      |     |                          |                    |             |            |                       |                             |  |  |

Bestellbezeichnung

FHA - 8C - 100 - D200 - EKM1 - SP

Tabelle 9.2

| Baureihe | Baugröße<br>Version | Un | tersetz | ung | Motorfeedback-<br>system | Motor-<br>wicklung | Stecker-<br>konfiguration | Sonder-<br>ausführung       |  |  |  |  |  |  |
|----------|---------------------|----|---------|-----|--------------------------|--------------------|---------------------------|-----------------------------|--|--|--|--|--|--|
|          | 8C                  | 30 | 50      | 100 | MZE - Y                  |                    |                           |                             |  |  |  |  |  |  |
| FHA      | 11C                 | 30 | 50      | 100 |                          | -<br>F             | -<br>E                    | Nach Kunden-<br>anforderung |  |  |  |  |  |  |
|          | 14C                 | 30 | 50      | 100 |                          | <u></u>            |                           | 22.36.45                    |  |  |  |  |  |  |

Bestellbezeichnung

FHA - 8C - 100 - MZE - Y - SP

Tabelle 9.3

| Motorfeedbacksystem |                   |               |  |  |  |  |
|---------------------|-------------------|---------------|--|--|--|--|
| Bestellbezeichnung  | Тур               | Protokoll     |  |  |  |  |
| D200                | Inkrementell      | -             |  |  |  |  |
| MZE                 | Multiturn Absolut | EnDat® 2.2/22 |  |  |  |  |

Tabelle 9.4

| Motorwicklung       |                    |                                              |  |  |  |  |  |
|---------------------|--------------------|----------------------------------------------|--|--|--|--|--|
| Baugröße<br>Version | Bestellbezeichnung | Maximale stationäre<br>Zwischenkreisspannung |  |  |  |  |  |
| 80                  |                    |                                              |  |  |  |  |  |
| 11C                 | -                  | 330 VDC                                      |  |  |  |  |  |
| 14C                 |                    |                                              |  |  |  |  |  |
| 8C                  |                    |                                              |  |  |  |  |  |
| 11C                 | E                  | 48 VDC                                       |  |  |  |  |  |
| 14C                 |                    |                                              |  |  |  |  |  |

#### Tabelle 10.1

| Kabelabgang        |                        |  |  |  |  |
|--------------------|------------------------|--|--|--|--|
| Bestellbezeichnung | Beschreibung           |  |  |  |  |
| -                  | Kabelabgang seitlich   |  |  |  |  |
| K                  | Kabelabgang rückseitig |  |  |  |  |

Tabelle 10.2

| Kabellänge         |              |  |  |  |  |  |
|--------------------|--------------|--|--|--|--|--|
| Bestellbezeichnung | Beschreibung |  |  |  |  |  |
| -                  | 0,3 m        |  |  |  |  |  |
| M1                 | 1,0 m        |  |  |  |  |  |

### Tabelle 10.3

| Steckerkonfiguration |               |                |                          |  |  |  |  |  |
|----------------------|---------------|----------------|--------------------------|--|--|--|--|--|
| Bestellbezeichnung   | Motorfeedback | Motor          | Motorfeed-<br>backsystem |  |  |  |  |  |
| Υ                    | MZE           | 9 pol. (ytec®) | 12 pol. (ytec®)          |  |  |  |  |  |

10 1015763 07/2019 V05

# 3.3 Kombinationen

Tabelle 11.1

| Baugröße<br>Version  |                   | 8C | 11C | 14C |
|----------------------|-------------------|----|-----|-----|
|                      | 30                | •  | •   | •   |
| Untersetzung         | 50                | •  | •   | •   |
|                      | 100               | •  | •   | •   |
| Mataufaadhaalayataa  | D200              | •  | •   | •   |
| Motorfeedbacksystem  | MZE <sup>1)</sup> | •  | •   | •   |
| Makawaitaliwa        | -                 | •  | •   | •   |
| Motorwicklung        | Е                 | •  | •   | •   |
| Steckerkonfiguration | Y 1)              | •  | •   | •   |
| W. I. I. I.          | -                 | •  | •   | •   |
| Kabelabgang          | K                 | 0  | 0   | 0   |
| K-b-ll#n             | -                 | •  | •   | •   |
| Kabellänge           | M1                | •  | •   | •   |

FHA-C Mini

FHA-C Mini MZE





1015763 07/2019 V05 11

 $<sup>\</sup>bullet$  verfügbar  $\:\:$  O auf Anfrage  $^{0}$  Motorfeedbacksystem MZE nur in Verbindung mit Steckerkonfiguration Y lieferbar.

# 3.4 Technische Daten

# 3.4.1 Allgemeine technische Daten

### FHA-C Mini

Tabelle 12.1

| Isolationsklasse (EN 60034-1)                            |                  | В                    |
|----------------------------------------------------------|------------------|----------------------|
| Isolationswiderstand (500 VDC)                           | МΩ               | 100                  |
| Isolationsspannung (60 s)                                | V <sub>eff</sub> | 1500                 |
| Isolationsspannung (60 s) Version E                      | $V_{\rm eff}$    | 500                  |
| Schmierung                                               |                  | Harmonic Drive® SK-2 |
| Schutzart (EN 60034-5)                                   |                  | IP44                 |
| Umgebungstemperatur Betrieb                              | °C               | 0 40                 |
| Umgebungstemperatur Lagerung                             | °C               | -20 60               |
| Aufstellhöhe (ü. NN)                                     | m                | < 1000               |
| Relative Luftfeuchte (ohne Kondensation)                 | %                | 20 80                |
| Vibrationsbeständigkeit (DIN IEC 68 Teil 2-6, 10 500 Hz) | g                | 2,5                  |
| Schockfestigkeit (DIN IEC 68 Teil 2-27, 18 ms)           | g                | 30                   |
| Korrosionsschutz (DIN IEC 68 Teil 2-11 Salzsprühtest)    | h                | -                    |
| Temperatursensor FHA-C Mini                              |                  | -                    |

Die im nachfolgenden angegebenen Dauerbetriebskennlinien gelten bei einer Umgebungstemperatur von 40 °C und einer Aluminiumkühlfläche mit folgenden Abmessungen.

Tabelle 12.2

| Baureihe | Baugröße<br>Version | Symbol<br>[Einheit] | Abmessung     |
|----------|---------------------|---------------------|---------------|
|          | 8C                  | [mm]                | 150 x 150 x 6 |
| FHA      | 11C                 | [mm]                | 150 x 150 x 6 |
|          | 14C                 | [mm]                | 200 x 200 x 6 |

### 3.4.2 Antriebsdaten

# Technische Daten FHA-xC-D200

Tabelle 13.1

|                                           | C                                                                         |      |        |         |      |        |      |      |        |      |
|-------------------------------------------|---------------------------------------------------------------------------|------|--------|---------|------|--------|------|------|--------|------|
|                                           | Symbol<br>[Einheit]                                                       |      | FHA-8C |         | F    | HA-11C |      | F    | HA-14C |      |
| Motorwicklung                             |                                                                           |      | -      |         |      | -      |      |      | -      |      |
| Motorfeedbacksystem                       |                                                                           |      | D200   |         |      | D200   |      | D200 |        |      |
| Untersetzung                              | i[]                                                                       | 30   | 50     | 100     | 30   | 50     | 100  | 30   | 50     | 100  |
| Maximales Drehmoment                      | T <sub>max</sub> [Nm]                                                     | 1,8  | 3,3    | 4,8     | 4,5  | 8,3    | 11   | 9    | 18     | 28   |
| Maximale Drehzahl                         | n <sub>max</sub> [min <sup>-1</sup> ]                                     | 200  | 120    | 60      | 200  | 120    | 60   | 200  | 120    | 60   |
| Maximalstrom                              | I <sub>max</sub> [A <sub>eff</sub> ]                                      | 0,61 | 0,64   | 0,48    | 1,5  | 1,6    | 1,1  | 2,9  | 3,2    | 2,4  |
| Stillstandsdrehmoment                     | T <sub>0</sub> [Nm]                                                       | 0,75 | 1,5    | 2,0     | 1,8  | 2,9    | 4,2  | 3,5  | 4,7    | 6,8  |
| Stillstandstrom                           | I <sub>0</sub> [A <sub>eff</sub> ]                                        | 0,31 | 0,34   | 0,26    | 0,74 | 0,69   | 0,54 | 1,27 | 1,06   | 0,85 |
| Maximale stationäre Zwischenkreisspannung | U <sub>DCmax</sub> [V <sub>DC</sub> ]                                     | 330  |        |         | 330  |        |      | 330  |        |      |
| Elektrische Zeitkonstante (20 °C)         | $	au_{_{ m e}}$ [ms]                                                      | 0,4  |        | 0,9     |      |        |      | 1,3  |        |      |
| Lastfreier Anlaufstrom (20 °C)            | $I_{NLS}[A_{eff}]$                                                        | 0,12 | 0,12   | 0,12    | 0,27 | 0,25   | 0,22 | 0,44 | 0,41   | 0,40 |
| Leerlaufstromkonstante (20 °C)            | K <sub>INL</sub> [x10 <sup>-3</sup> A <sub>eff</sub> /min <sup>-1</sup> ] | -    | -      | -       | -    | -      | -    | -    | -      | -    |
| Drehmomentkonstante (Motor)               | k <sub>TM</sub> [Nm/A <sub>eff</sub> ]                                    |      | 0,14   |         |      | 0,14   |      |      | 0,15   |      |
| AC-Spannungskonstante (L-L, 20°C, Motor)  | k <sub>EM</sub> [V <sub>eff</sub> /1000min <sup>-1</sup> ]                |      | 9,8    |         |      | 9,8    |      |      | 10,6   |      |
| Motor maximale Drehzahl                   | n <sub>max</sub> [min <sup>-1</sup> ]                                     |      | 6000   |         |      | 6000   |      |      | 6000   |      |
| Motor Bemessungsdrehzahl                  | n <sub>N</sub> [min <sup>-1</sup> ]                                       |      | 3500   |         |      | 3500   |      |      | 3500   |      |
| Widerstand (L-L, 20 °C)                   | $R_{L-L}[\Omega]$                                                         |      | 28,0   |         |      | 7,4    |      |      | 2,8    |      |
| Drehfeldinduktivität                      | L <sub>d</sub> [mH]                                                       | 8,7  |        |         | 5,1  |        |      | 2,7  |        |      |
| Polpaarzahl                               | p[]                                                                       | 5    |        |         | 5    |        |      | 5    |        |      |
| Gewicht ohne Bremse                       | m [kg]                                                                    | 0,4  |        | 0,4 0,6 |      |        |      | 1,2  |        |      |
| Gewicht mit Bremse                        | m [kg]                                                                    | -    |        | -       |      |        | -    |      |        |      |
| Hohlwellendurchmesser                     | d <sub>H</sub> [mm]                                                       |      | 6,2    |         | 8,0  |        |      |      |        |      |

# $\\Mass entr\"{a}ghe its momente$

Tabelle 13.2

|                                               | Symbol<br>[Einheit]        |        | FHA-8C |       |       | FHA-11C |       | FHA-14C |       |      |
|-----------------------------------------------|----------------------------|--------|--------|-------|-------|---------|-------|---------|-------|------|
| Motorfeedbacksystem                           |                            |        | D200   |       |       | D200    |       |         | D200  |      |
| Untersetzung                                  | i[]                        | 30     | 50     | 100   | 30    | 50      | 100   | 30      | 50    | 100  |
| Massenträgheitsmomente abtriebsseitig         |                            |        |        |       |       |         |       |         |       |      |
| Massenträgheitsmoment ohne Bremse             | J <sub>out</sub> [kgm²]    | 0,0026 | 0,0074 | 0,029 | 0,006 | 0,017   | 0,067 | 0,018   | 0,05  | 0,20 |
| Massenträgheitsmoment mit Bremse              | J <sub>out</sub> [kgm²]    | -      | -      | -     | -     | -       | -     | -       | -     | -    |
| Massenträgheitsmomente motorseitig            |                            |        |        |       |       |         |       |         |       |      |
| Massenträgheitsmoment motorseitig ohne Bremse | J [x10 <sup>-4</sup> kgm²] |        | 0,029  |       |       | 0,067   |       |         | 0,200 |      |
| Massenträgheitsmoment motorseitig mit Bremse  | J [x10 <sup>-4</sup> kgm²] |        | -      |       |       | -       |       |         | -     |      |

### Leistungscharakteristik

Die dargestellten Leistungskurven sind gültig für die spezifizierte Umgebungstemperatur (Betrieb) und sofern die Motorklemmenspannung mindestens dem in der Tabelle "Technische Daten" genannten Wert entspricht.













#### Legende

Intermittierender Betrieb Dauerbetrieb

S3-ED 50% (1 min) ————









#### Legende

1015763

Intermittierender Betrieb – Dauerbetrieb – S3-ED 50% (1 min)

# Technische Daten FHA-xC-D200-E

Tabelle 16.1

|                                           | Symbol<br>[Einheit]                                                       | ı    | FHA-8C |      | F     | HA-11C |      | ı     | -HA-14C |      |
|-------------------------------------------|---------------------------------------------------------------------------|------|--------|------|-------|--------|------|-------|---------|------|
| Motorwicklung                             |                                                                           |      | Е      |      |       | Е      |      |       | Е       |      |
| Motorfeedbacksystem                       |                                                                           |      | D200   |      |       | D200   |      |       | D200    |      |
| Untersetzung                              | i[]                                                                       | 30   | 50     | 100  | 30    | 50     | 100  | 30    | 50      | 100  |
| Maximales Drehmoment                      | T <sub>max</sub> [Nm]                                                     | 1,8  | 3,3    | 4,8  | 4,5   | 8,3    | 11   | 9     | 18      | 28   |
| Maximale Drehzahl                         | n <sub>max</sub> [min <sup>-1</sup> ]                                     | 200  | 120    | 60   | 200   | 120    | 60   | 200   | 120     | 60   |
| Maximalstrom                              | I <sub>max</sub> [A <sub>eff</sub> ]                                      | 3,0  | 3,3    | 2,4  | 7,8   | 8,2    | 5,6  | 14,8  | 16,4    | 12,3 |
| Stillstandsdrehmoment                     | T <sub>0</sub> [Nm]                                                       | 0,75 | 1,5    | 2,0  | 1,8   | 2,9    | 4,2  | 3,5   | 4,7     | 6,8  |
| Stillstandstrom                           | I <sub>o</sub> [A <sub>eff</sub> ]                                        | 1,6  | 1,7    | 1,3  | 3,7   | 3,5    | 2,8  | 6,5   | 5,4     | 4,4  |
| Maximale stationäre Zwischenkreisspannung | U <sub>DCmax</sub> [V <sub>DC</sub> ]                                     | 48   |        | 48   |       |        |      | 48    |         |      |
| Elektrische Zeitkonstante (20 °C)         | $oldsymbol{	au_{_{ m e}}}$ [ms]                                           | 0,4  |        | 0,6  |       |        |      | 0,9   |         |      |
| Lastfreier Anlaufstrom (20 °C)            | I <sub>NLS</sub> [A <sub>eff</sub> ]                                      | 0,66 | 0,55   | 0,56 | 1,45  | 1,27   | 1,18 | 2,13  | 2,04    | 2,06 |
| Leerlaufstromkonstante (20 °C)            | K <sub>INL</sub> [x10 <sup>-3</sup> A <sub>eff</sub> /min <sup>-1</sup> ] | -    | -      | -    | -     | -      | -    | -     | -       | -    |
| Drehmomentkonstante (Motor)               | k <sub>TM</sub> [Nm/A <sub>eff</sub> ]                                    |      | 0,027  |      | 0,026 |        |      | 0,029 |         |      |
| AC-Spannungskonstante (L-L, 20°C, Motor)  | k <sub>EM</sub> [V <sub>eff</sub> /1000min <sup>-1</sup> ]                |      | 2,0    |      |       | 1,8    |      |       | 2,0     |      |
| Motor maximale Drehzahl                   | n <sub>max</sub> [min <sup>-1</sup> ]                                     |      | 6000   |      |       | 6000   |      |       | 6000    |      |
| Motor Bemessungsdrehzahl                  | n <sub>N</sub> [min <sup>-1</sup> ]                                       |      | 3500   |      |       | 3500   |      |       | 3500    |      |
| Widerstand (L-L, 20 °C)                   | $R_{_{L-L}}[\Omega]$                                                      |      | 1,08   |      |       | 0,38   |      |       | 0,14    |      |
| Drehfeldinduktivität                      | L <sub>d</sub> [mH]                                                       | 6,5  |        |      | 0,29  |        |      | 0,11  |         |      |
| Polpaarzahl                               | p[]                                                                       | 5    |        |      | 5     |        |      | 5     |         |      |
| Gewicht ohne Bremse                       | m [kg]                                                                    | 0,4  |        | 0,6  |       |        |      |       | 1,2     |      |
| Gewicht mit Bremse                        | m [kg]                                                                    | -    |        | -    |       |        | -    |       |         |      |
| Hohlwellendurchmesser                     | d <sub>H</sub> [mm]                                                       | 6,2  |        | 8,0  |       |        | 13,5 |       |         |      |

# Massenträgheitsmomente

Tabelle 16.2

|                                               | Symbol<br>[Einheit]        |        | FHA-8C |       |       | FHA-11C |       | FHA-14C |       |      |
|-----------------------------------------------|----------------------------|--------|--------|-------|-------|---------|-------|---------|-------|------|
| Motorfeedbacksystem                           |                            |        | D200   |       |       | D200    |       |         | D200  |      |
| Untersetzung                                  | i [ ]                      | 30     | 50     | 100   | 30    | 50      | 100   | 30      | 50    | 100  |
| Massenträgheitsmomente abtriebsseitig         |                            |        |        |       |       |         |       |         |       |      |
| Massenträgheitsmoment ohne Bremse             | J <sub>out</sub> [kgm²]    | 0,0026 | 0,0074 | 0,029 | 0,006 | 0,017   | 0,067 | 0,018   | 0,05  | 0,20 |
| Massenträgheitsmoment mit Bremse              | J <sub>out</sub> [kgm²]    | -      | -      | -     | -     | -       | -     | -       | -     | -    |
| Massenträgheitsmomente motorseitig            |                            |        |        |       |       |         |       |         |       |      |
| Massenträgheitsmoment motorseitig ohne Bremse | J [x10⁻⁴ kgm²]             |        | 0,029  |       |       | 0,067   |       |         | 0,200 |      |
| Massenträgheitsmoment motorseitig mit Bremse  | J [x10 <sup>-4</sup> kgm²] |        | -      |       |       | -       |       |         | -     |      |

16 1015763 07/2019 V05

### Leistungscharakteristik

Die dargestellten Leistungskurven sind gültig für die spezifizierte Umgebungstemperatur (Betrieb) und sofern die Motorklemmenspannung mindestens dem in der Tabelle "Technische Daten" genannten Wert entspricht.



#### Legende

Intermittierender Betrieb  $U_{\rm M}$  = 18 VAC S3-ED 50% (1 min)  $U_{\rm M}$  = 18 VAC







#### Legende

Intermittierender Betrieb – Dauerbetrieb – U<sub>M</sub> = 18 VAC ----

S3-ED 50% (1 min) ———

# Technische Daten FHAxC-MZE-Y

Tabelle 19.1

|                                           | Symbol<br>[Einheit]                                                       |      | FHA-8C |      | F    | -HA-11C |      | FHA-14C |      |      |
|-------------------------------------------|---------------------------------------------------------------------------|------|--------|------|------|---------|------|---------|------|------|
| Motorwicklung                             |                                                                           |      | -      |      |      | -       |      |         | -    |      |
| Motorfeedbacksystem                       |                                                                           |      | MZE    |      |      | MZE     |      |         | MZE  |      |
| Untersetzung                              | i[]                                                                       | 30   | 50     | 100  | 30   | 50      | 100  | 30      | 50   | 100  |
| Maximales Drehmoment                      | T <sub>max</sub> [Nm]                                                     | 1,8  | 3,3    | 4,8  | 4,5  | 8,3     | 11   | 9       | 18   | 28   |
| Maximale Drehzahl                         | n <sub>max</sub> [min <sup>-1</sup> ]                                     | 200  | 120    | 60   | 200  | 120     | 60   | 200     | 120  | 60   |
| Maximalstrom                              | I <sub>max</sub> [A <sub>eff</sub> ]                                      | 0,61 | 0,64   | 0,48 | 1,5  | 1,6     | 1,1  | 2,9     | 3,2  | 2,4  |
| Stillstandsdrehmoment                     | T <sub>0</sub> [Nm]                                                       | 0,75 | 1,5    | 2,0  | 1,8  | 2,9     | 4,2  | 3,5     | 4,7  | 6,8  |
| Stillstandstrom                           | I <sub>o</sub> [A <sub>eff</sub> ]                                        | 0,31 | 0,34   | 0,26 | 0,74 | 0,69    | 0,54 | 1,27    | 1,06 | 0,85 |
| Maximale stationäre Zwischenkreisspannung | U <sub>DCmax</sub> [V <sub>DC</sub> ]                                     | 330  |        | 330  |      |         |      | 330     |      |      |
| Elektrische Zeitkonstante (20 °C)         | $oldsymbol{	au_{_{ m e}}}$ [ms]                                           | 0,4  |        | 0,9  |      |         |      | 1,3     |      |      |
| Lastfreier Anlaufstrom (20 °C)            | I <sub>NLS</sub> [A <sub>eff</sub> ]                                      | 0,12 | 0,12   | 0,12 | 0,27 | 0,25    | 0,22 | 0,44    | 0,41 | 0,40 |
| Leerlaufstromkonstante (20 °C)            | K <sub>INL</sub> [x10 <sup>-3</sup> A <sub>eff</sub> /min <sup>-1</sup> ] | -    | -      | -    | -    | -       | -    | -       | -    | -    |
| Drehmomentkonstante (Motor)               | k <sub>TM</sub> [Nm/A <sub>eff</sub> ]                                    |      | 0,14   |      |      | 0,14    |      | 0,15    |      |      |
| AC-Spannungskonstante (L-L, 20°C, Motor)  | k <sub>EM</sub> [V <sub>eff</sub> /1000min <sup>-1</sup> ]                |      | 9,8    |      |      | 9,8     |      |         | 10,6 |      |
| Motor maximale Drehzahl                   | n <sub>max</sub> [min <sup>-1</sup> ]                                     |      | 6000   |      |      | 6000    |      |         | 6000 |      |
| Motor Bemessungsdrehzahl                  | n <sub>N</sub> [min <sup>-1</sup> ]                                       |      | 3500   |      |      | 3500    |      |         | 3500 |      |
| Widerstand (L-L, 20 °C)                   | $R_{_{L-L}}[\Omega]$                                                      |      | 28,0   |      |      | 7,4     |      |         | 2,8  |      |
| Drehfeldinduktivität                      | L <sub>d</sub> [mH]                                                       | 8,7  |        |      | 5,1  |         |      | 2,7     |      |      |
| Polpaarzahl                               | p[]                                                                       | 5    |        |      | 5    |         |      | 5       |      |      |
| Gewicht ohne Bremse                       | m [kg]                                                                    | 0,5  |        | 0,7  |      |         |      |         | 1,3  |      |
| Gewicht mit Bremse                        | m [kg]                                                                    | -    |        | -    |      |         | -    |         |      |      |
| Hohlwellendurchmesser                     | d <sub>H</sub> [mm]                                                       |      | -      |      | -    |         |      | -       |      |      |

# Massenträgheitsmomente

Tabelle 19.2

|                                               | Symbol<br>[Einheit]        | FHA-8C |        |        |        | FHA-11C |        | FHA-14C |        |        |
|-----------------------------------------------|----------------------------|--------|--------|--------|--------|---------|--------|---------|--------|--------|
| Motorfeedbacksystem                           |                            | MZE    |        |        |        | MZE     |        | MZE     |        |        |
| Untersetzung                                  | i[]                        | 30     | 50     | 100    | 30     | 50      | 100    | 30      | 50     | 100    |
| Massenträgheitsmomente abtriebsseitig         |                            |        |        |        |        |         |        |         |        |        |
| Massenträgheitsmoment ohne Bremse             | J <sub>out</sub> [kgm²]    | 0,0026 | 0,0074 | 0,0294 | 0,0062 | 0,0173  | 0,0690 | 0,0194  | 0,0538 | 0,2150 |
| Massenträgheitsmoment mit Bremse              | J <sub>out</sub> [kgm²]    | -      | -      | -      | -      | -       | -      | -       | -      | -      |
| Massenträgheitsmomente motorseitig            | •                          |        |        |        |        |         | '      | '       |        |        |
| Massenträgheitsmoment motorseitig ohne Bremse | J [x10 <sup>-4</sup> kgm²] |        | 0,0294 |        |        | 0,0690  |        |         | 0,2150 |        |
| Massenträgheitsmoment motorseitig mit Bremse  | J [x10 <sup>-4</sup> kgm²] |        | -      |        |        | -       |        |         | -      |        |

### Leistungscharakteristik

Die dargestellten Leistungskurven sind gültig für die spezifizierte Umgebungstemperatur (Betrieb) und sofern die Motorklemmenspannung mindestens dem in der Tabelle "Technische Daten" genannten Wert entspricht.













#### Legende

Intermittierender Betrieb Dauerbetrieb S3-ED 50% (1 min) —————









#### Legende

1015763

Intermittierender Betrieb – Dauerbetrieb – S3-ED 50% (1 min)

# Technische Daten FHAxC-MZE-EY

Tabelle 22.1

|                                           | Symbol<br>[Einheit]                                         | ı           | FHA-8C |         | F     | -HA-11C |      | F     |      |      |
|-------------------------------------------|-------------------------------------------------------------|-------------|--------|---------|-------|---------|------|-------|------|------|
| Motorwicklung                             |                                                             |             | Е      |         |       | Е       |      |       | Е    |      |
| Motorfeedbacksystem                       |                                                             |             | MZE    |         |       | MZE     |      |       | MZE  |      |
| Untersetzung                              | i [ ]                                                       | 30          | 50     | 100     | 30    | 50      | 100  | 30    | 50   | 100  |
| Maximales Drehmoment                      | T <sub>max</sub> [Nm]                                       | 1,8         | 3,3    | 4,8     | 4,5   | 8,3     | 11   | 9     | 18   | 28   |
| Maximale Drehzahl                         | n <sub>max</sub> [min <sup>-1</sup> ]                       | 200         | 120    | 60      | 200   | 120     | 60   | 200   | 120  | 60   |
| Maximalstrom                              | $I_{max}[A_{eff}]$                                          | 3,0 3,3 2,4 |        | 7,8     | 8,2   | 5,6     | 14,8 | 16,4  | 12,3 |      |
| Stillstandsdrehmoment                     | T <sub>0</sub> [Nm]                                         | 0,75        | 1,5    | 2,0     | 1,8   | 2,9     | 4,2  | 3,5   | 4,7  | 6,8  |
| Stillstandstrom                           | I <sub>0</sub> [A <sub>eff</sub> ]                          | 1,6         | 1,7    | 1,3     | 3,7   | 3,5     | 2,8  | 6,5   | 5,4  | 4,4  |
| Maximale stationäre Zwischenkreisspannung | $U_{DCmax}\left[V_{DC}\right]$                              | 48          |        | 48      |       |         |      |       |      |      |
| Elektrische Zeitkonstante (20 °C)         | $	au_{_{ m e}}$ [ms]                                        | 0,4         |        | 0,6     |       |         |      | 0,9   |      |      |
| Lastfreier Anlaufstrom (20 °C)            | $I_{NLS}[A_{eff}]$                                          | 0,66        | 0,55   | 0,56    | 1,45  | 1,27    | 1,18 | 2,13  | 2,04 | 2,06 |
| Leerlaufstromkonstante (20 °C)            | $K_{INL}$ [x10 <sup>-3</sup> $A_{eff}$ /min <sup>-1</sup> ] | -           | -      | -       | -     | -       | -    | -     | -    | -    |
| Drehmomentkonstante (Motor)               | $k_{TM} [Nm/A_{eff}]$                                       |             | 0,027  |         | 0,026 |         |      | 0,029 |      |      |
| AC-Spannungskonstante (L-L, 20°C, Motor)  | k <sub>EM</sub> [V <sub>eff</sub> /1000min <sup>-1</sup> ]  |             | 2,0    |         |       | 1,8     |      |       | 2,0  |      |
| Motor maximale Drehzahl                   | n <sub>max</sub> [min <sup>-1</sup> ]                       |             | 6000   |         |       | 6000    |      |       | 6000 |      |
| Motor Bemessungsdrehzahl                  | n <sub>N</sub> [min <sup>-1</sup> ]                         |             | 3500   |         |       | 3500    |      |       | 3500 |      |
| Widerstand (L-L, 20 °C)                   | $R_{_{L-L}}[\Omega]$                                        |             | 1,08   |         |       | 0,38    |      |       | 0,14 |      |
| Drehfeldinduktivität                      | L <sub>d</sub> [mH]                                         | 6,5         |        |         | 0,29  |         |      | 0,11  |      |      |
| Polpaarzahl                               | p[]                                                         | 5           |        |         | 5     |         |      | 5     |      |      |
| Gewicht ohne Bremse                       | m [kg]                                                      | 0,5         |        | 0,5 0,7 |       |         |      | 1,3   |      |      |
| Gewicht mit Bremse                        | m [kg]                                                      | -           |        | -       |       |         | -    |       |      |      |
| Hohlwellendurchmesser                     | d <sub>H</sub> [mm]                                         |             | -      |         | -     |         |      | -     |      |      |

# Massenträgheitsmomente

Tabelle 22.2

|                                               | Symbol<br>[Einheit]        |        | FHA-8C |        |        | FHA-11C |        | FHA-14C |        |        |
|-----------------------------------------------|----------------------------|--------|--------|--------|--------|---------|--------|---------|--------|--------|
| Motorfeedbacksystem                           |                            | MZE    |        |        |        | MZE     |        | MZE     |        |        |
| Untersetzung                                  | i [ ]                      | 30     | 50     | 100    | 30     | 50      | 100    | 30      | 50     | 100    |
| Massenträgheitsmomente abtriebsseitig         |                            |        |        |        |        |         |        |         |        |        |
| Massenträgheitsmoment ohne Bremse             | J <sub>out</sub> [kgm²]    | 0,0026 | 0,0074 | 0,0294 | 0,0062 | 0,0173  | 0,0690 | 0,0194  | 0,0538 | 0,2150 |
| Massenträgheitsmoment mit Bremse              | J <sub>out</sub> [kgm²]    | -      | -      | -      | -      | -       | -      | -       | -      | -      |
| Massenträgheitsmomente motorseitig            |                            |        |        |        |        |         |        | •       |        |        |
| Massenträgheitsmoment motorseitig ohne Bremse | J [x10 <sup>-4</sup> kgm²] |        | 0,0294 |        |        | 0,0690  |        |         | 0,2150 |        |
| Massenträgheitsmoment motorseitig mit Bremse  | J [x10⁻⁴ kgm²]             |        | -      |        |        | -       |        |         | -      |        |

22 1015763 07/2019 V05

### Leistungscharakteristik

Die dargestellten Leistungskurven sind gültig für die spezifizierte Umgebungstemperatur (Betrieb) und sofern die Motorklemmenspannung mindestens dem in der Tabelle "Technische Daten" genannten Wert entspricht.



#### Legende

Intermittierender Betrieb  $U_{\rm M}$  = 18 VAC S3-ED 50% (1 min)  $U_{\rm M}$  = 18 VAC







#### Legende

Intermittierender Betrieb – Dauerbetrieb – U<sub>M</sub> = 18 VAC -----

S3-ED 50% (1 min) ————

### 3.4.3 Abmessungen







Detaillierte 2D-Zeichnungen und 3D-Modelle finden Sie unter folgendem Quicklink: QUICKLINK www.harmonicdrive.de/CAD1030







# HINWEIS

Winkeleinbaudose horizontal um ±110° drehbar. Leistungsstecker: Steckseite rechts

26 1015763 07/2019 V05

# 3.4.4 Genauigkeit

### Tabelle 27.1

|                         | Symbol [Einheit] |         | FHA-8C  |         |         | FHA-11C |         | FHA-14C |         |         |  |
|-------------------------|------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--|
| Untersetzung            | i[]              | 30      | 50      | 100     | 30      | 50      | 100     | 30      | 50      | 100     |  |
| Übertragungsgenauigkeit | [arcmin]         | < 2,5   | < 2     | < 2     | < 2     | < 1,5   | < 1,5   | < 2     | < 1,5   | < 1,5   |  |
| Wiederholgenauigkeit    | [arcmin]         | < ± 0,1 | < ± 0,1 | < ± 0,1 | < ± 0,1 | < ± 0,1 | < ± 0,1 | < ± 0,1 | < ± 0,1 | < ± 0,1 |  |
| Hystereseverlust        | [arcmin]         | < 3     | < 3     | < 2     | < 3     | < 2     | < 2     | < 3     | < 2     | < 2     |  |
| Lost Motion             | [arcmin]         | < 1     | < 1     | < 1     | < 1     | < 1     | < 1     | < 1     | < 1     | < 1     |  |

# 3.4.5 Torsionssteifigkeit

Tabelle 27.2

|                | Symbol [Einheit] |      | FHA-8C |      |      | FHA-11C |     |     | FHA-14C |     |
|----------------|------------------|------|--------|------|------|---------|-----|-----|---------|-----|
| T1             | [Nm]             |      | 0,29   |      |      | 0,8     |     |     | 2       |     |
| T2             | [Nm]             |      | 0,75   |      |      | 2       |     |     | 6,9     |     |
| Untersetzung   | i[]              | 30   | 50     | 100  | 30   | 50      | 100 | 30  | 50      | 100 |
| $K_3$          | [x10³ Nm/rad]    | 0,54 | 0,84   | 1,2  | 1,6  | 3,2     | 4,4 | 3,4 | 5,7     | 7,1 |
| K <sub>2</sub> | [x10³ Nm/rad]    | 0,44 | 0,67   | 1    | 1,3  | 3       | 3,4 | 2,4 | 4,7     | 6,1 |
| K <sub>1</sub> | [x10³ Nm/rad]    | 0,34 | 0,44   | 0,91 | 0,84 | 2,2     | 2,7 | 1,9 | 3,4     | 4,7 |

### 3.4.6 Abtriebslager

Die Servoantriebe sind mit einem hochbelastbaren Abtriebslager ausgerüstet. Dieses speziell für den Antrieb entwickelte Lager nimmt sowohl Axial- und Radialkäfte als auch große Kippmomente auf. Es verhindert ein Verkippen des Getriebes, so dass eine lange Lebensdauer und gleichbleibende Genauigkeit erreicht werden. Für den Anwender bedeutet die Integration dieses Abtriebslagers eine erhebliche Reduzierung der Konstruktions- und Fertigungskosten, da zusätzliche externe Lagerstellen nicht vorgesehen werden müssen.

#### Technische Daten

Tabelle 28.1

|                                      | Symbol [Einheit]             | FHA-8C | FHA-11C | FHA-14C |
|--------------------------------------|------------------------------|--------|---------|---------|
| Lagertyp <sup>1)</sup>               |                              | С      | С       | С       |
| Teilkreisdurchmesser                 | d <sub>p</sub> [mm]          | 35,0   | 42,5    | 54,0    |
| Abstand                              | R [mm]                       | 12,9   | 14,0    | 14,0    |
| Dynamische Tragzahl                  | C [N]                        | 5800   | 6500    | 7400    |
| Statische Tragzahl                   | C <sub>0</sub> [N]           | 8000   | 9900    | 12800   |
| Dynamisches Kippmoment <sup>2)</sup> | M <sub>dyn (max)</sub> [Nm]  | 15     | 40      | 75      |
| Statisches Kippmoment 3)             | M <sub>0 (max)</sub> [Nm]    | 93     | 140     | 230     |
| Kippsteifigkeit <sup>5)</sup>        | K <sub>B</sub> [Nm/arcmin]   | 5,8    | 11,8    | 23,5    |
| Dynamische Axiallast 4)              | F <sub>A dyn (max)</sub> [N] | 200    | 300     | 500     |
| Dynamische Radiallast 4)             | F <sub>R dyn (max)</sub> [N] | 1163   | 2857    | 5357    |

- 1) C = Kreuzrollenlager, F = Vierpunktlager
- 2) Diese Daten gelten für drehende Getriebe. Sie basieren nicht auf der Lebensdauergleichung des Abtriebslagers, sondern auf der max. zulässigen Verkippung des Harmonic Drive® Einbausatzes. Die angegebenen Daten dürfen auch dann nicht überschritten werden, wenn die Lebensdauerberechnung des Lagers höhere Werte zulässt.
- 3) Diese Daten gelten für statisch belastete Getriebe und einem statischen Sicherheitsfaktor f. = 1,8 für die Baugrößen 14 ... 20 und  $f_s = 1,5$  für die Baugrößen 25 ... 58.
- 4) Diese Daten gelten für n = 15 min<sup>-1</sup> und  $L_{10}$  = 15000 h.
- 3,4) Die Daten gelten unter folgenden Voraussetzungen.  $M_0: F_a = 0 N; F_r = 0 N$

 $F_a: M_0 = 0 \text{ Nm}; F_r = 0 \text{ Nm}; F_s = 0$ 

5) Mittelwert

Abbildung 28.2



### Toleranzen

Tabelle 28.3

|   | Symbol [Einheit] | FHA-8C | FHA-11C | FHA-14C |
|---|------------------|--------|---------|---------|
| a | [mm]             | 0,010  | 0,010   | 0,010   |
| b | [mm]             | 0,010  | 0,010   | 0,010   |
| С | [mm]             | 0,040  | 0,040   | 0,040   |
| d | [mm]             | 0,040  | 0,040   | 0,040   |

### 3.4.7 Motorfeedbacksysteme

#### Aufhau und Funktionsweise

Zum genauen Einstellen der Position sind der Servomotor und seine Regelung mit einer Messeinrichtung (Feedback) versehen, welche die aktuelle Position (z.B. den zurückgelegten Drehwinkel bezüglich einer Anfangsposition) des Motors bestimmt.

Diese Messung erfolgt über einen Drehgeber, z.B. einen Resolver, einen Inkrementalgeber oder einen Absolutwertgeber. Die elektronische Regelung vergleicht das Signal dieses Gebers mit einem vorgegebenen Positions-Sollwert. Liegt eine Abweichung vor, so wird der Motor in diejenige Richtung gedreht, die einen geringeren Verfahrweg zum Sollwert darstellt. Dies führt dazu, dass sich die Abweichung verringert. Die Prozedur wiederholt sich solange, bis der aktuelle Wert inkrementell oder via Approximation innerhalb der Toleranzgrenzen des Sollwerts liegt. Alternativ kann die Motorposition auch digital erfasst und mittels einer geeigneten Rechnerschaltung mit einem Sollwert verglichen werden.

Servomotoren und Servoantriebe der Harmonic Drive AG verwenden unterschiedliche Motorfeedbacksysteme, welche als Lagegeber mehrere Aufgaben erfüllen:

### Kommutierung

Kommutierungssignale oder absolute Positionswerte liefern die notwendigen Informationen über die Rotorlage, um die korrekte Kommutierung zu gewährleisten.

#### Drehzahlistwert

Das zur Drehzahlregelung notwendige Istwertsignal wird im Servoregler aus der zyklischen Änderung der Lageinformation gewonnen.

### Lageistwert

#### Inkrementalgeber

Das zur Lageregelung notwendige Istwertsignal wird durch Aufaddieren inkrementeller Lageänderungen gebildet. Bei

Inkrementalgebern mit Rechtecksignalen kann die Auflösung durch Flankenauswertung vervierfacht werden (quadcounting). Bei Inkrementalgebern mit SIN / COS Signalen kann die Auflösung durch Interpolation im Regelgerät erhöht werden.



Absolutwertgeber liefern eine absolute Lageinformation über eine (Singleturn) oder mehrere (Multiturn) Umdrehungen. Aus dieser Information kann zum einen die Rotorlage zur Kommutierung ermittelt werden, zum anderen kann ggf. eine Referenzfahrt entfallen. Bei Absolutwertgebern mit zusätzlichen Inkrementalsignalen wird typischerweise die absolute Lageinformation beim Einschalten ausgelesen, anschließend werden zur Drehzahl- und Lageistwertbildung die Inkrementalsignale ausgewertet. Volldigitale Absolutwertgeber als Motorfeedbacksystem besitzen eine so hohe Auflösung des Absolutwertes, dass auf zusätzliche Inkrementalsignale verzichtet werden kann.

#### Auflösung

In Verbindung mit den hochpräzisen Getrieben der Harmonic Drive AG kann über das Motorfeedbacksystem die abtriebsseitige Lage erfasst werden, ohne zusätzliche Winkelmessgeräte einsetzen zu müssen. Die Auflösung des Motorfeedbacksystems wird zusätzlich über die Untersetzung des Getriebes vervielfacht.

### Getriebeabtriebsseitige Winkelmessgeräte

Bei Anwendungen mit erhöhter Anforderung an die abtriebsseitige Genauigkeit oder zur Kompensation der Torsion bei hohen Drehmomentbelastungen kann der Lageistwert auch von einem zusätzlichen, abtriebsseitigen Geber erfasst werden.

Die Adaption eines Messsystems an die Getriebeabtriebsseite lässt sich bei den Hohlwellenservoantrieben sehr einfach realisieren.



# D200

### Inkrementelles Motorfeedbacksystem mit Rechtecksignalen, Referenzsignal und Kommutierungssignalen (RS-422 Standard)

Tabelle 30.1

|                                          | ı                          | l                    |       |     |  |  |
|------------------------------------------|----------------------------|----------------------|-------|-----|--|--|
| Bestellbezeichnung                       | Symbol [Einheit]           |                      | D200  |     |  |  |
| Herstellerbezeichnung                    |                            | -                    |       |     |  |  |
| Spannungsversorgung 1)                   | U₅[VDC]                    | 5 ± 5%               |       |     |  |  |
| Stromaufnahme (max., ohne Last) 1)       | I [mA]                     |                      | 250   |     |  |  |
| Inkrementalsignale                       |                            |                      | RS422 |     |  |  |
| Signalform                               |                            | Rechteck             |       |     |  |  |
| Strichzahl                               | n <sub>1</sub> [A / B]     | 2000                 |       |     |  |  |
| Kommutierungssignale                     |                            | RS422                |       |     |  |  |
| Signalform                               |                            | Rechteck             |       |     |  |  |
| Strichzahl                               | n <sub>2</sub> [U / V / W] | 5                    |       |     |  |  |
| Referenzsignal                           | n <sub>3</sub> [Z]         | 1                    |       |     |  |  |
| Genauigkeit <sup>1)</sup>                | [arcsec]                   | -                    |       |     |  |  |
| Auflösung inkrementell (motorseitig) 2)  | [qc ]                      | 8000                 |       |     |  |  |
|                                          |                            | Getriebeuntersetzung |       |     |  |  |
| Auflösung (abtriebsseitig) <sup>2)</sup> | i[]                        | 30                   | 50    | 100 |  |  |
|                                          | [arcsec]                   | 5,4                  | 3,3   | 1,7 |  |  |

<sup>1)</sup> Quelle: Hersteller

# Signalverlauf

Abbildung 30.2



Abbildung 30.3



$$\begin{split} T &= 360^{\circ}/2000 \\ a, \ b, \ c, \ d &= 0,25\ T \pm 0,15\ T \\ Tz &= T \pm 0,5\ T \\ HN &= 360^{\circ}\ /\ 5\ /\ 6 = 12^{\circ} \\ \delta &\leq \pm\ 3^{\circ}\ el. \end{split}$$

Gültig bei Drehrichtung im Uhrzeigersinn mit Blick auf den Abtriebsflansch.

<sup>&</sup>lt;sup>2)</sup> Bei Vierfach - Flankenauswertung (quadcounting)



#### Multiturn absolutes Motorfeedbacksystem mit EnDat® 2.2/22 Datenschnittstelle

Tabelle 31.1

| Bestellbezeichnung                                   | Symbol [Einheit]     | MZE                                                                 |               |       |  |
|------------------------------------------------------|----------------------|---------------------------------------------------------------------|---------------|-------|--|
| Herstellerbezeichnung                                |                      |                                                                     | EBI 1135      |       |  |
| Protokoll                                            |                      |                                                                     | EnDat® 2.2/22 |       |  |
| Spannungsversorgung <sup>1)</sup>                    | U <sub>b</sub> [VDC] |                                                                     | 3,6 14        |       |  |
| Stromaufnahme (typ. @ 5 VDC, ohne Last) 1)           | I [mA]               |                                                                     | 80            |       |  |
| Stromaufnahme Pufferung (bei 25 °C) 1) 2)            | I [mA]               |                                                                     | 12            |       |  |
| Inkrementalsignale                                   | $u_{pp}[V_{ss}]$     |                                                                     | -             |       |  |
| Signalform                                           |                      | -                                                                   |               |       |  |
| Strichzahl                                           | n <sub>1</sub>       | -                                                                   |               |       |  |
| Absolute Positionswerte / Umdrehung (motorseitig) 3) |                      | 262144 (18 bit)                                                     |               |       |  |
| Anzahl Umdrehungen                                   |                      | 65536 (16 bit)<br>batteriegepuffert<br>(externe Batterie notwendig) |               |       |  |
| Empfohlene Pufferbatterie                            |                      | Lithium Thionylchlorid<br>3,6V / ≥2,0Ah<br>Tadiran SL-760A Size: AA |               |       |  |
| Typische Batterielebensdauer 4)                      | [a]                  |                                                                     | 10            |       |  |
| Batterieaustausch Intervall                          | [a]                  |                                                                     | 10            |       |  |
| Genauigkeit <sup>1)</sup>                            | [arcsec]             | ± 120                                                               |               |       |  |
| Auflösung motorseitig                                | [arcsec]             | 4,94                                                                |               |       |  |
| Getriebeuntersetzung                                 | i[]                  | 30                                                                  | 50            | 100   |  |
| Auflösung Absolutwert (abtriebsseitig)               | [arcsec]             | 0,165                                                               | 0,099         | 0,049 |  |
| Anzahl Umdrehungen (abtriebsseitig)                  |                      | 2184                                                                | 1310          | 655   |  |

<sup>1)</sup> Quelle: Hersteller

# ★ VORSICHT

Bei Ausfall oder Unterbrechung der Batteriespannung und gleichzeitigem Ausfall oder Unterbrechung der Spannungsversorgung ist nach dem Wiedereinschalten die gemeldete Position fehlerhaft! Undefinierte Positioniervorgänge können Verletzungen von Personen oder Schäden an Anlageteilen hervorrufen.

### **HINWEIS**

Nicht an Siemens Servoregler SINAMICS S120 verwendbar!

### HINWEIS

Zum Betrieb des batteriegepufferten multiturn absoluten Motorfeedbacksystems MZE ist eine externe Batterieversorgung notwendig. Hierfür steht eine Batteriebox MZE zur Verfügung. Die Handhabung der Batteriebox MZE und die elektrische Anschlussbelegung finden Sie im Kapitel "Batterieboxen".

Die typische Lebensdauer 10 a der Pufferbatterie gilt bei einer Batterietemperatur von 25 °C, 1%/a Selbstentladung und einem Einsatz von 10 h/Tag im Normalbetrieb. Um eine hohe Standzeit der Pufferbatterie zu erreichen, muss während bzw. direkt nach dem Anschließen der Pufferbatterie die Hauptversorgung  $U_b$  an das Messgerät angelegt werden. Damit wird das Messgerät nach einem komplett spannungslosen Zustand vollständig initialisiert. Ansonsten ist mit einem deutlich erhöhten Batteriestromverbrauch des Messgerätes bis zum erstmaligen Anlegen der Hauptspannung zu rechnen.

<sup>&</sup>lt;sup>2)</sup> Quelle: Hersteller. Gilt bei abgeschalteter Versorgungsspannung im Stillstand

<sup>3)</sup> Ansteigende Positionswerte bei Drehrichtung

<sup>-</sup> CCW der Motorwelle (mit Blick von vorne auf die Motorwelle)

<sup>-</sup> CW des Abtriebsflansches

<sup>4)</sup> Typische Batterielebensdauer bei 10 h/Tag im Normalbetrieb, Batterietemperatur 25°C und 1%/a Selbstentladung

### 3.4.8 Temperatursensoren

Bei der Baureihe FHA-C Mini sind aufgrund der kompakten Bauform keine Temperatursensoren zum Motorschutz integriert. Das verwendete Regelgerät muss den Antrieb vor Überlastung schützen.

### 3.4.9 Batterieboxen

### Batteriebox für multiturn absolutes Motorfeedbacksystem MZE

Die Batteriebox ist ein Zubehör zum Betrieb des multiturn absoluten Motorfeedbacksystems MZE und dient der Pufferung der Positionsdaten bei abgeschalteter Spannungsversorgung.

Die Batteriebox ist zur Montage im Schaltschrank vorgesehen. Zum Schutz vor Verdrahtungsfehlern ist eine entsprechende Schutzbeschaltung integriert.

Abbildung 32.1 Batteriebox Mat.-Nr. 1024385



### HINWEIS

Die Batterie ist nicht im Lieferumfang enthalten.

Empfohlene Batterie: Lithium Thionylchlorid

 $3,6V / \ge 2,0Ah / AA$  z.B. Tadiran SL-760S

Abbildung 32.2





Abbildung 33.1 Abmessungen



Abbildung 33.1

Anschlussbelegung

| Sensor<br>15. pol. Sub D Buchse |                  | Batterie |    | Controller<br>15. pol. Sub D Stecker |
|---------------------------------|------------------|----------|----|--------------------------------------|
| 1                               | -                |          | 1  | -                                    |
| 2                               | -                |          | 2  | -                                    |
| 3                               | U <sub>p</sub>   |          | 3  | U <sub>p</sub>                       |
| 4                               | DATA +           |          | 4  | DATA +                               |
| 5                               | DATA -           |          | 5  | DATA -                               |
| 6                               | -                |          | 6  | -                                    |
| 7                               | UBAT+            | UBAT+    | 7  | -                                    |
| 8                               | UBAT- (OV / GND) | UBAT-    | 8  | UBAT- (OV / GND)                     |
| 9                               | Temp -           |          | 9  | Temp -                               |
| 10                              | Temp +           |          | 10 | Temp +                               |
| 11                              | -                |          | 11 | -                                    |
| 12                              | Sense +          |          | 12 | Sense +                              |
| 13                              | Sense -          |          | 13 | Sense -                              |
| 14                              | CLOCK +          |          | 14 | CLOCK +                              |
| 15                              | CLOCK -          |          | 15 | CLOCK -                              |

Abbildung 33.2

# Verkabelung Motorfeedback



### Anschlusskabelsatz zum Anschluss an den Servoregler YukonDrive® oder Fremdregler

Der Anschlusskabelsatz besteht aus Motorleistungskabel und Motorfeedbackkabel. Das Motorfeedbackkabel wird an die Batteriebox angeschlossen.

Tabelle 34.1

| Variante  | MatNr.  | Länge [m] |
|-----------|---------|-----------|
|           | 1028684 | 3         |
| FHA-MZE-Y | 1028685 | 5         |
|           | 1028686 | 10        |
|           | 1028687 | 15        |

#### Verbindungskabel Batteriebox zum Servoregler YukonDrive® X7

Tabelle 34.2

| Variante | MatNr.  | Länge [m] |
|----------|---------|-----------|
| MZE      | 1025481 | 0,5       |
|          | 1025482 | 1,0       |
|          | 1025483 | 2,0       |

### Verbindungskabel mit offenem Kabelende von der Batteriebox zum Fremdregler

Tabelle 34.3

| Variante | MatNr.  | Länge [m] |
|----------|---------|-----------|
| MZE      | 1025484 | 0,5       |
|          | 1025485 | 1,0       |
|          | 1025486 | 2,0       |

### **HINWEIS**

Der Anschlussstecker für die Batteriebox ist bereits montiert. Der Anschluss zum Fremdregler ist offen.

#### Austausch der Batterie

Damit bei einem Austausch der Batterie die Absolutwertgeberposition erhalten bleibt, sind folgende Voraussetzungen sicherzustellen.

### HINWEIS

- die Versorgungsspannung des Motorfeedbacksystems durch den Antriebsregler ist vorhanden
- das Motorfeedbacksystem ist mit dem Antriebsregler verbunden

# 

Bei Ausfall oder Unterbrechung der Batteriespannung und gleichzeitigem Ausfall oder Unterbrechung der Spannungsversorgung ist nach dem Wiedereinschalten die gemeldete Position fehlerhaft! Undefinierte Positioniervorgange können Verletzungen von Personen oder Schäden an Anlageteilen hervorrufen.



- Deckel der Batteriebox öffnen
- Platine mit Batterie herausziehen
- Alte Batterie herausnehmen und entsprechend den geltenden Richtlinien entsorgen
- Neue Batterie einsetzen
- Platine mit Batterie einsetzen
- Deckel der Batteriebox schließen
- Fehler- und Warnbit zurücksetzen

34 1015763 07/2019 V05

#### Rücksetzen von Fehler- und Warnbit

Das Motorfeedbacksystem MZE überwacht die angeschlossene Batterie und liefert neben den Positionswerten auch ein Fehlerbit und ein Warnbit, die über die EnDat® Schnittstelle übertragen werden.

- Warnmeldung "Batterieladung" ≤ 2,8 V ±0,2 V im Normalbetriebsmodus
- Fehlermeldung "M Stromausfall"
   ≤ 2,2 V ±0,2 V im batteriegepufferten Betriebsmodus (Neureferenzierung des Gebers erforderlich)

Das Warnbit wird gesetzt, wenn die Batteriespannung im Betrieb den kritischen Wert erreicht. Nach Auftreten der Warnmeldung "Batterieladung" ist umgehend die Batterie auszutauschen.

Die Fehlermeldung wird bei gleichzeitigem Ausfall oder Unterbrechung der Batteriespannung und der Spannungsversorgung gesetzt.

Fehlerbit und Warnbit werden über die EnDat® Schnittstelle zurückgesetzt.

# HINWEIS

Zur korrekten Ansteuerung des Motorfeedbacksystems MZE (Heidenhain EBI135) sind die EnDat® Spezifikation und die EnDat® "Application Notes" der Fa. Heidenhain für batteriegepufferte Messgeräte zu beachten.

### 3.4.10 Elektrische Anschlüsse

### FHA-xC-D200

### **Kabelkonfiguration Standard**



### Kabelkonfiguration "Option M1"

Abbildung 36.2



# HINWEIS

Motor- und Encoderkabel sind nicht für bewegte Verlegung geeignet!

Tabelle 36.3

| Motorphase  | U                                             | V    | W       | PE           |  |  |  |
|-------------|-----------------------------------------------|------|---------|--------------|--|--|--|
| Aderfarbe   | rot                                           | weiß | schwarz | grün<br>gelb |  |  |  |
| Querschnitt | AWG 24 (FHA-8C / FHA-11C)<br>AWG 20 (FHA-14C) |      |         |              |  |  |  |

Tabelle 36.4

| D200 Signal | A+     | A-              | B+   | B-   | Z+   | Z-               | U+    | U-      | V+   | V-       | W+     | W-   | GND     | Up  |
|-------------|--------|-----------------|------|------|------|------------------|-------|---------|------|----------|--------|------|---------|-----|
| Aderfarbe   | grün   | dunkel-<br>grün | grau | weiß | gelb | trans-<br>parent | braun | magenta | blau | hellblau | orange | rosa | schwarz | rot |
| Querschnitt | AWG 29 |                 |      |      |      |                  | AW    | G 29    |      |          |        |      |         |     |

# Anschlusskabelsatz der FHA-C Mini SP-Variante mit Stecker zum Anschluss an YukonDrive®

Tabelle 36.5

| Variante                                | Material-Nummer               | Länge [m]    |
|-----------------------------------------|-------------------------------|--------------|
| FHA-C Mini-SP<br>(SP = Anschlußstecker) | 1010968<br>1006450<br>1001325 | 3<br>5<br>10 |

### FHA-xC-MZE-Y

#### Tabelle 37.1

| Motorstecker  | Intercontec ytec®                                                                    |
|---------------|--------------------------------------------------------------------------------------|
| Kabelkupplung | Intercontec springtec®<br>Gehäuse: ESTB-202-NN00-34-0500-000<br>Buchse 9 x 61.251.11 |

#### Tabelle 37.3

|              | FHA-xC-MZE-Y |   |   |    |   |   |   |   |   |
|--------------|--------------|---|---|----|---|---|---|---|---|
| Steckerstift | А            | В | С | PE | 1 | 2 | 3 | 4 | 5 |
| Motorphase   | U            | V | W | PE | - | - | - | - | - |

#### Abbildung 37.2



Tabelle 37.4

| Encoderstecker | Intercontec ytec®                                                                     |
|----------------|---------------------------------------------------------------------------------------|
| Kabelkupplung  | Intercontec springtec®<br>Gehäuse: ESTB-002-NN00-33-0001-000<br>Buchse 12 x 60.252.11 |

Abbildung 37.5



Tabelle 37.6

| Steckerstift | 1   | 2     | 3     | 4      | 5      | 6     | 7   | 8 | 9 | 10 | 11 | 12    |
|--------------|-----|-------|-------|--------|--------|-------|-----|---|---|----|----|-------|
| Signal       | Up+ | DATA+ | DATA- | CLOCK+ | CLOCK- | UBAT- | GND | - | - | _  | -  | UBAT+ |

#### Anschlusskabel zum Anschluss an Servoregler YukonDrive® Anschlusskabel mit offenem Kabelende und an die Batteriebox MZE

Tabelle 37.7

| Variante | MatNr.                                   | Länge [m]          |
|----------|------------------------------------------|--------------------|
| MZE-Y 1) | 1028684<br>1028685<br>1028686<br>1028687 | 3<br>5<br>10<br>15 |

Tabelle 37.8

| Variante | MatNr.                 | Länge [m]          |
|----------|------------------------|--------------------|
| MZE-Y    | -<br>-<br>1031279<br>- | 3<br>5<br>10<br>15 |

<sup>1)</sup> Das Motorfeedbackkabel kann auch an die Batteriebox angeschlossen werden

1015763 07/2019 V05 37

# 4. Antriebsauslegung

### **HINWEIS**

Gerne übernehmen wir für Sie die Antriebsauslegung.

### 4.1. Auswahlschema und Auslegungsbeispiel

### Flussdiagramm zur Systemauswahl

Gleichung 38.1

$$T_1 = T_L + \frac{2\pi}{60} \cdot \frac{(J_{out} + J_L) \cdot n_2}{t_1}$$

Gleichung 38.2

$$T_{2} = T_{L}$$

$$T_{3} = T_{L} - (T_{1} - T_{L})$$

$$T_{rms} = \sqrt{\frac{T_{1}^{2} \cdot t_{1} + T_{2}^{2} \cdot t_{2} + T_{3}^{2} \cdot t_{3}}{t_{1} + t_{2} + t_{3} + t_{p}}}$$

Gleichung 38.3

$$n_{av} = \frac{\left| \begin{array}{c|c} n2 \end{array} \right|}{2} \cdot t_{_{1}} + \left| \begin{array}{c|c} n2 \end{array} \right| \cdot t_{_{2}} + \frac{\left| \begin{array}{c|c} n2 \end{array} \right|}{2} \cdot t_{_{3}} \\ t_{_{1}} + t_{_{2}} + t_{_{3}} + t_{_{p}} \end{array}$$

Gleichung 38.4

ED = 
$$\frac{t_1 + t_2 + t_3}{t_1 + t_2 + t_3 + t_p} \cdot 100 \%$$

Bestimmung der Bewegungsart: Linearbewegung oder Rotationsbewegung Berechnung des Lastdrehmomentes (T<sub>1</sub>) und des Massenträgheitsmomentes der Last (J<sub>I</sub>): Seite 39.3/Seite 39.5 Ermittlung des Drehzahlzyklus anhand der Belastungskurve Vorauswahl des Servoantriebes anhand der Belastungsdaten Berechnung des Beschleunigungsdrehmomentes (T<sub>1</sub>): Gleichung 38.1 Ist das benötigte Beschleunigungsdrehmoment geringer als das max. Abtriebsdrehmoment des Servoantriebes? Bestimmung der auftretenden Drehmomente und Berechnung des Effektivdrehmomentes (T<sub>rms</sub>): Gleichung 38.2 Berechnung der durchschnittlichen Drehzahl (nav): Gleichung 38.3 Berechnung der Einschaltdauer (ED): Gleichung 38.4 T<sub>rms</sub> und n<sub>av</sub> innerhalb des Dauerbetriebsbereiches Ja Anforderungen erfüllt

### Bedingungen für die Vorauswahl

Tabelle 39.1

| Last                                | Bedingung              | Tabellierter Wert | Einheit              |
|-------------------------------------|------------------------|-------------------|----------------------|
| Max. Drehzahl der Last (n₂)         | ≤ n <sub>max</sub>     | Max. Drehzahl     | [min <sup>-1</sup> ] |
| Massenträgheitsmoment der Last (ار) | ≤ 3J <sub>0ut</sub> ¹) | Trägheitsmoment   | [kgm²]               |

 $<sup>^{1)}</sup>$   $J_{L} \leq 3 \cdot J_{0ut}$  wird für hochdynamische Einsatzfälle empfohlen (hohe Dynamik und Genauigkeit).

### Lineare Horizontalbewegung

Abbildung 39.2



#### Gleichung 39.3

$$J_{L} = J_{S} + m \left(\frac{P}{2\pi}\right)^{2} [kgm^{2}]$$

$$T_{L} = \frac{\mu \cdot m \cdot P \cdot g}{2\pi \cdot \eta} [Nm]$$

### Rotationsbewegung

Abbildung 39.4



#### Gleichung 39.5

$$J_{L} = \frac{m}{8} \cdot D^{2} [kgm^{2}]$$
 $T_{L} = \mu \cdot m \cdot g \cdot r [Nm] g = 9,81 [m/s^{2}]$ 

#### Abbildung 39.6



### Beispiel einer Antriebsauslegung

### Belastungsdaten

Benötigt wird ein Servoantrieb, der bei einer horizontalen Drehachse eine Masse zyklisch positionieren muss.

Tabelle 40.1

| Drehzahl der Last              | $n_2 = 40 \text{ [min}^{-1}\text{]}$ |
|--------------------------------|--------------------------------------|
| Lastdrehmoment (z. B. Reibung) | T <sub>L</sub> = 5 [Nm]              |
| Trägheitsmoment der Last       | $J_L = 1.3 \text{ [kgm}^2\text{]}$   |
| Zykluszeiten                   |                                      |
| Beschleunigen; Bremsen         | $t_1 = t_3 = 0.1 [s]$                |
| Fahren mit Arbeitsdrehzahl     | t <sub>2</sub> = 0,1 [s]             |
| Stillstand                     | t <sub>p</sub> = 1 [s]               |
|                                | ·                                    |

Bemerkung: Die Berechnungswerte für die Auslegung müssen auf den Abtrieb des Servoantriebes bezogen werden.

Abbildung 40.2



### Antriebsdaten (im Beispiel: CanisDrive-25A-50)

Tabelle 40.3

| Max. Drehmoment       | T <sub>max</sub> = 127 [Nm]                 |
|-----------------------|---------------------------------------------|
| Max. Drehzahl         | n <sub>max</sub> = 112 [min <sup>-1</sup> ] |
| Massenträgheitsmoment | J <sub>Out</sub> = 1,063 [kgm²]             |

#### Antriebsauswahl







# 4.2 Ermittlung des Torsionswinkels

#### Gleichung 42.1

 $T \leq T_1$   $\varphi = \frac{T}{K_1}$ 

#### Gleichung 42.2

 $T_1 < T \le T_2$   $\phi = \frac{T_1}{K_1} + \frac{T - T_1}{K_2}$ 

#### Gleichung 42.3

 $T > T_2$   $\phi = \frac{T_1}{K_1} + \frac{T_2 - T_1}{K_2} + \frac{T - T_2}{K_3}$ 

φ = Winkel [rad] T = Drehmoment [Nm]

K = Steifigkeit [Nm/rad]

### Beispiel CanisDrive-32A-100

T = 60 Nm  $K_1 = 6.7 \cdot 10^4 \text{ Nm/rad}$ 

 $T_1 = 29 \text{ Nm}$   $K_2 = 1.1 \cdot 10^5 \text{ Nm/rad}$ 

 $T_2 = 108 \text{ Nm}$   $K_3 = 1.2 \cdot 10^5 \text{ Nm/rad}$ 

 $\phi = \frac{29 \text{ Nm}}{6.7 \cdot 10^4 \text{ Nm/rad}} + \frac{60 \text{ Nm} - 29 \text{ Nm}}{11 \cdot 10^4 \text{ Nm/rad}}$ 

 $\varphi = 7,15 \cdot 10^{-4} \text{ rad}$ 

φ = 2,5 arc min

#### Gleichung 42.4

 $\varphi$  [arc min] =  $\varphi$  [rad]  $\cdot \frac{180 \cdot 60}{\pi}$ 

### 4.3 Abtriebslager

#### 4.3.1 Lebensdauer

### Lebensdauer bei Schwenkbewegungen

Die Lebensdauer bei reinen Schwenkbewegungen (oszillierende Bewegungen) wird mittels Gleichung 43.1 berechnet.

Gleichung 43.1

$$L_{oc} = \frac{10^6}{60 \cdot n_1} \cdot \frac{180}{\varphi} \cdot \left(\frac{C}{f_w \cdot P_c}\right)^B$$

mit:

 $L_{OC}[h]$  = Lebensdauer bei reiner Schwenkbewegung

 $n_1$  [cpm] = Anzahl Schwingungen/Minute\*

C [N] = Dynamische Tragzahl

 $P_c[N]$  = Dynamische Äquivalentlast

 $\varphi$  [Grad] = Schwenkwinkel

f<sub>w</sub> = Betriebsfaktor (Tabelle 43.5)

Abbildung 43.2

#### Schwenkwinkel



Bei Schwenkwinkeln <  $5^\circ$  kann infolge Mangelschmierung Reibkorrosion auftreten. Wir bitten ggf. um Rücksprache.

Lagertyp des gewählten Produktes siehe <u>Kapitel 3.4.6 "Technische Daten Abtriebslager".</u>

#### Tabelle 43.3

| Lagertyp         | В    |
|------------------|------|
| Kreuzrollenlager | 10/3 |
| Vierpunktlager   | 3    |

#### Lebensdauer bei kontinuierlichem Betrieb

Die Lebensdauer des Abtriebslagers kann mit Gleichung 43.4 bestimmt werden.

#### Gleichung 43.4

$$L_{10} = \frac{10^6}{60 \cdot n_{av}} \cdot \left(\frac{C}{f_w \cdot P_C}\right)^B$$

mit:

 $L_{10}$  [h] = Lebensdauer

 $n_{av}$  [min<sup>-1</sup>] = durchschnittl. Abtriebsdrehzahl

C [N] = Dynamische Tragzahl

 $P_c[N]$  = Dynamische Äquivalentlast

f<sub>w</sub> = Betriebsfaktor (Tabelle 43.5)

#### **Durchschnittliche Abtriebsgeschwindigkeit**

$$n_{av} = \frac{|n_1| t_1 + t_2 + \dots + |n_n| t_n}{t_1 + t_2 + \dots + t_n + t_p}$$

Tabelle 43.5

| Lastbedingungen               | f <sub>w</sub> |
|-------------------------------|----------------|
| Keine Stöße oder Schwingungen | 11,2           |
| Normale Belastung             | 1,2 1,5        |
| Stöße und/oder Schwingungen   | 1,5 3          |

<sup>\*</sup> eine Schwingung entspricht  $2\phi$ 

### Dynamische Äquivalentlast

#### Gleichung 44.1

$$P_C = x \cdot \left(F_{rav} + \frac{2M}{dp}\right) + y \cdot F_{aav}$$

#### Gleichung 44.2

$$F_{\mathsf{rav}} = \left( \begin{array}{c} \left| n_1 \right| \cdot t_1 \cdot ( \ |F_n|)^B + |n_2| \cdot t_2 \cdot (|F_{12}|)^B + \ldots + |n_n| \cdot t_n \cdot ( \ |F_m|)^B \\ \\ \left| n_1 \right| \cdot t_1 + |n_2| \cdot t_2 + \ldots + |n_n| \cdot t_n \end{array} \right)^{1/B}$$

#### Gleichung 44.3

$$F_{aav} = \left( \begin{array}{c} \left| n_1 \right| \cdot t_1 \cdot \left( \left| F_{a1} \right| \right.)^B + \left| n_2 \right| \cdot t_2 \cdot \left( \left| F_{a2} \right| \right)^B + \ldots + \left| n_n \right| \cdot t_n \cdot \left( \left| F_{an} \right| \right.)^B \\ \left| n_1 \right| \cdot t_1 + \left| n_2 \right| \cdot t_2 + \ldots + \left| n_n \right| \cdot t_n \end{array} \right)^{1/B}$$

mit:

 $F_{rav}\left[N\right]$ Radialkraft

 $F_{aav}\left[N\right]$ Axialkraft

 $d_p[m]$ Teilkreis

Radialkraftfaktor (Tabelle 44.4)

Axialkraftfaktor (Tabelle 44.4)

Μ Kippmoment

#### Tabelle 44.4

| Lastfaktoren                                       | x    | У    |
|----------------------------------------------------|------|------|
| $\frac{F_{aav}}{F_{rav} + 2 \cdot M / dp} \le 1,5$ | 1    | 0,45 |
| $\frac{F_{aav}}{F_{rav} + 2 \cdot M / dp} > 1,5$   | 0,67 | 0,67 |

#### Abbildung 44.5



Abbildung 44.6



#### Hinweis:

 $\mathsf{F}_{\mathsf{rx}}$  entspricht der maximal auftretenden Radialkraft.

 $F_{ax}$  entspricht der maximal auftretenden Axialkraft.  $t_p$  stellt die Pausenzeit dar.

V05

### 4.3.2 Kippwinkel

Der Auslenkungswinkel als Funktion des anliegenden Kippmomentes am Abtriebslager kann mit Gleichung 45.1 berechnet werden:

Gleichung 45.1

$$\gamma = \frac{M}{K_B}$$

mit:

γ [arcmin] = Auslenkungswinkel des Abtriebslagers M [Nm] = Anliegendes Kippmoment am Abtriebslager
K<sub>B</sub> [Nm/arcmin] = Kippsteifigkeit des Abtriebslagers

1015763 07/2019 V05 45

# 5. Installation und Betrieb

### 5.1 Transport und Lagerung

Der Transport sollte grundsätzlich in der Originalverpackung erfolgen.

Werden die Produke nach der Auslieferung nicht gleich in Betrieb genommen, so sind sie in einem trockenen, staub- und erschütterungsfreien Innenraum zu lagern. Sie sollten nicht länger als 2 Jahre bei Raumtemperatur (+5 °C bis +40 °C) gelagert werden, damit die Fettgebrauchsdauer erhalten bleibt.

### INFO

Zugkräfte an den Anschlusskabeln sind zu vermeiden.

### **HINWEIS**

Motorfeedbacksysteme können Lithiumbatterien enthalten. Lithiumbatterien sind Gefahrgut nach UN3090. Sie unterliegen daher im allgemeinen Transportvorschriften, abhängig vom Verkehrsträger.

Die in den Motorfeedbacksystemen verbauten Batterien enthalten nicht mehr als 1 g Lithium oder Lithiumlegierung und sind von den Gefahrgutvorschriften freigestellt.

### 5.2 Aufstellung

Beachten Sie die Leistungsdaten und Schutzart und prüfen Sie die Eignung für die Verhältnisse am Einbauort. Durch geeignete konstruktive Maßnahmen ist dafür zu sorgen, dass keine Fremdmedien (Wasser, Bohr-, Kühlemulsion, Späne oder dergleichen) in das Gehäuse eindringen können.

#### **HINWEIS**

Die Montage muss ohne Schläge und Druck auf den Antrieb erfolgen.

Der Anbau muss so erfolgen, dass eine ausreichende Ableitung der Verlustwärme gewährleistet ist.

Bei Hohlwellenantrieben dürfen auf das Schutzrohr der Antriebshohlwelle keine Radialkräfte und Axialkräfte wirken.

Während der Verschraubung mit dem Maschinengestell muss geprüft werden, ob sich der Antrieb in der Zentrierung des Maschinengehäuses ohne Klemmen drehen lässt. Bereits geringes Klemmen kann die Genauigkeit des Getriebes beeinträchtigen. In diesem Fall muss die Passung des Maschinengehäuses geprüft werden.

**46** 1015763 07/2019 V05

# 5.3 Mechanische Installation

Die erforderlichen Angaben zur Last- und Gehäusebefestigung sind in der folgenden Tabelle dargestellt.

Tabelle 47.1

|                      | Symbol<br>[Einheit] | FHA-8C   | FHA-11C  | FHA-14C  |  |
|----------------------|---------------------|----------|----------|----------|--|
| Montage der Last     |                     |          |          |          |  |
| Anzahl der Schrauben |                     | 6        | 6        | 6        |  |
| Schraubengröße       |                     | M3       | M4       | M5       |  |
| Schraubenqualität    |                     | 12.9     | 12.9     | 12.9     |  |
| Teilkreisdurchmesser | [mm]                | 25,5     | 33       | 44       |  |
| Anzugsdrehmoment     | [Nm]                | 2        | 4,5      | 9        |  |
| Montage des Gehäuses |                     |          |          |          |  |
| Anzahl der Bohrungen |                     | 4 x Ø3,4 | 4 x Ø4,5 | 4 x Ø5,5 |  |
| Schraubengröße       |                     | M3       | M4       | M5       |  |
| Schraubenqualität    |                     | 8.8      | 8.8      | 8.8      |  |
| Teilkreisdurchmesser | [mm]                | 58       | 70       | 88       |  |
| Anzugsdrehmoment     | [Nm]                | 1,2      | 2,7      | 5,4      |  |

Die Daten in der Tabelle sind gültig für vollständig entfettete Anschlussflächen (Reibungskoeffizient  $\mu$ =0,15).

### 5.4 Elektrische Installation

Alle Arbeiten nur im spannungslosen Zustand der Anlage vornehmen.





Elektrische Servoantriebe und Motoren haben gefährliche, spannungsführende und rotierende Teile. Alle Arbeiten während dem Anschluss, der Inbetriebnahme, der Instandsetzung und der Entsorgung sind nur von qualifiziertem Fachpersonal auszuführen. EN 50110-1 und IEC 60364 beachten!

Vor Beginn jeder Arbeit, besonders aber vor dem Öffnen von Abdeckungen, muss der Antrieb vorschriftsmäßig freigeschaltet sein. Neben den Hauptstromkreisen ist dabei auch auf eventuell vorhandene Hilfsstromkreise zu achten.

#### Einhalten der fünf Sicherheitsregeln:

- Freischalten
- Gegen Wiedereinschalten sichern
- Spannungsfreiheit feststellen
- Erden und kurzschließen
- Benachbarte unter Spannung stehende Teile abdecken oder abschranken

Die zuvor genannten Maßnahmen dürfen erst dann zurückgenommen werden, wenn die Arbeiten abgeschlossen sind und der Antrieb vollständig montiert ist. Unsachgemäßes Verhalten kann Personen- und Sachschäden verursachen. Die jeweils geltenden nationalen, örtlichen und anlagespezifischen Bestimmungen und Erfordernisse sind zu gewährleisten.



⚠ GEFAHR

Wegen der eingebauten Dauermagnete liegt bei rotierendem Läufer an den Motoranschlüssen Spannung an.

#### **HINWEIS**

- Die Anschlussleitungen müssen den Umgebungsbedingungen, Stromstärken, den auftretenden Spannungen und mechanischen Anforderungen angepasst sein.
- Der Schutzleiter muss mit PE verbunden werden.
- · Alle Anschlusskabel müssen geschirmt sein. Das Signalkabel muss zusätzlich paarig verseilt sein.
- Steckverbindungen nur in trockenem, spannungslosem Zustand trennen oder verbinden.
- EMV gerechte Kabelverlegung beachten. Signalleitungen und Leistungsleitungen sind getrennt zu führen
- Potenzialausgleich beachten

#### **HINWEIS**

Bei Montage der Antriebe auf beweglichen Teilen ist ein zusätzlicher Potenzialausgleichsleiter (≥ 10 mm²) möglichst nah am Antrieb anzuschließen.



HINWEIS

Geber und Sensoren enthalten elektrostatisch gefährdete Komponenten, ESD-Maßnahmen beachten!

48 1015763 07/2019 V05

### 5.5 Inbetriebnahme

### **HINWEIS**

#### Maßgebend für die Inbetriebnahme ist die Herstellerdokumentation der Harmonic Drive AG.

#### Vor Inbetriebnahme ist zu prüfen, ob

- der Antrieb ordnungsgemäß montiert ist
- alle elektrischen Anschlüsse sowie mechanischen Verbindungen nach Vorschrift ausgeführt sind
- der Schutzleiter bzw. die Schutzerdung ordnungsgemäß hergestellt ist
- eventuell vorhandene Zusatzeinrichtungen (Bremse, ...) funktionsfähig sind
- Berührungsschutzmaßnahmen für bewegte und spannungsführende Teile getroffen sind
- ullet die Grenzdrehzahl  $n_{\max}$  nicht überschritten wird
- das Regelgerät mit den korrekten Motordaten parametriert ist
- · die Kommutierung korrekt eingestellt ist

# **⚠** VORSICHT

Die Drehrichtung ist im ungekoppelten Zustand ohne Abtriebselemente zu kontrollieren. Eventuell vorhandene lose Teile (z.B. Passfedern) sind zu entfernen oder zu sichern.

Beim Auftreten von erhöhten Temperaturen, Geräuschen oder Schwingungen ist im Zweifelsfall der Antrieb abzuschalten. Ursache ermitteln, eventuell Rücksprache mit dem Hersteller halten. Schutzeinrichtungen, auch im Probebetrieb, nicht außer Funktion setzen

Diese Auflistung könnte unvollständig sein. Weitere Prüfungen könnten notwendig sein.

### **HINWEIS**

Aufgrund der Eigenerwärmung des Antriebes ist nur ein kurzer Probelauf außerhalb des endgültigen Einbauortes und mit relativ geringer Drehzahl zulässig. Typische Richtwerte sind max. 5 Minuten Testdauer (S1-Betrieb) bei einer Motordrehzahl von ca. 1000 min<sup>-1</sup>.

Oben genannte Richtwerte müssen beachtet werden, um Beschädigungen durch Überhitzung zu vermeiden!

### 5.6 Überlastschutz

Zum Schutz der Servoantriebe und Motoren vor unzulässigen Temperaturen sind Temperatursensoren in die Motorwicklungen integriert.

Die Temperatursensoren alleine gewährleisten keinen Motorvollschutz. Ein Schutz vor Überlastung der Motorwicklung ist nur bei Drehzahl > 0 möglich. Bei speziellen Anwendungen (z. B. Belastung im Stillstand oder sehr niedrigen Drehzahlen) ist ein zusätzlicher Überlastungsschutz durch Begrenzen der Überlastdauer vorzusehen.

Die im Antriebssystem verbauten Temperatursensoren und deren Spezifikation finden Sie in den technischen Daten.

Darüber hinaus empfiehlt sich der Schutz der Motorwicklung vor Überlastung durch eine im Regelgerät integrierte I<sup>2</sup>t Überwachung.

Nebenstehende Grafik zeigt beispielhaft die Abhängigkeit der Ansprechzeit der I<sup>2</sup>t Überwachung vom Überlastfaktor. Der Überlastfaktor beschreibt das Verhältnis zwischen aktuellem Effektivstrom und zulässigem Stillstandsstrom.



### 5.7 Schutz vor Korrosion und dem Eindringen von Fremdkörpern

Das Produkt erreicht bei montierten und gesteckten Steckern und Gegensteckern die Schutzart gemäß Tabelle "Technische Daten", wenn die Stecker für die o. g. Schutzart geeignet sind, und durch die Umgebungsbedingungen (Flüssigkeiten, Gase, Taubildung) keine Korrosion an den Laufflächen der Radialwellendichtungen hervorgerufen wird. Sonderausführungen können von obiger Schutzart abweichen.

Scharfkantige oder abrasiv wirkende Teile (Späne, Splitter, Staub aus Metall, Mineralien, usw.) dürfen nicht mit Radialwellendichtungen in Kontakt kommen.

Ein permanent auf der Radialwellendichtung stehender Flüssigkeitsfilm muss verhindert werden. Infolge wechselnder Betriebstemperaturen entstehen Druckdifferenzen im Antrieb, die zum Einsaugen der auf der Wellendichtung stehenden Flüssigkeit führt.

Eine zusätzliche kundenseitige Wellendichtung oder ein Sperrluftanschluss sind vorzusehen, wenn ein permanent auf dem Wellendichtring stehender Flüssigkeitsfilm nicht verhindert werden kann. Eine Einhausung oder ein Sperrluftanschluss ist vorzusehen, wenn in der Umgebung des Antriebes ständig mit z. B. Ölnebel zu rechnen ist.

### HINWEIS

Spezifikation Sperrluft: konstanter Überdruck im Antrieb; die zugeführte Luft muss getrocknet und gefiltert sein, Überdruck max. 10<sup>4</sup> Pa.

### 5.8 Stillsetzen und Wartung

#### Bei Störungen, Wartungsmaßnahmen oder zum Stillsetzen der Motoren führen Sie folgende Schritte aus:

- 1. Beachten Sie die Anweisungen der Maschinendokumentation.
- 2. Bringen Sie den Antrieb über die maschinenseitigen Steuerkommandos geregelt zum Stillstand.
- 3. Schalten Sie die Leistungs- und Steuerspannung des Regelgerätes ab.
- 4. Nur bei Motoren mit Lüftereinheit: Schalten Sie den Motorschutzschalter für die Lüftereinheit ab.
- 5. Schalten Sie den Hauptschalter der Maschine ab.
- 6. Sichern Sie die Maschine gegen unvorhersehbare Bewegungen und gegen Bedienung durch Unbefugte.
- 7. Warten Sie die Entladezeit der elektrischen Systeme ab und trennen Sie dann alle elektrischen Verbindungen.
- 8. Sichern Sie Motor und ggf. Lüftereinheit vor der Demontage gegen Herabfallen oder Bewegungen, bevor Sie die mechanischen Verbindungen lösen.

**50** 1015763 07/2019 V05



#### Lebensgefahr durch elektrische Spannungen. Arbeiten im Bereich von spannungsführenden Teilen ist lebensgefährlich.

- Arbeiten an der elektrischen Anlage dürfen nur durch Elektrofachkräfte durchgeführt werden. Elektrowerkzeug ist unbedingt notwendig.
- Vor der Arbeit:
  - 1. Freischalten
  - 2. Gegen Wiedereinschalten sichern
  - 3. Spannungsfreiheit feststellen
  - 4. Erden und kurzschließen
  - 5. Benachbarte, unter Spannung stehende Teile abdecken oder abschranken
- Prüfen Sie vor Arbeitsbeginn mit geeignetem Messgerät, ob an der Anlage noch Teile unter Restspannung stehen (z.B. durch Kondensatoren usw.). Deren Entladezeiten abwarten.

Die zuvor genannten Maßnahmen dürfen erst dann zurückgenommen werden, wenn die Arbeiten abgeschlossen sind und der Antrieb vollständig montiert ist. Unsachgemäßes Verhalten kann Personen- und Sachschaden verursachen. Die jeweils geltenden nationalen, örtlichen und anlagespezifischen Bestimmungen und Erfordernisse sind zu gewährleisten.



#### Verbrennungen durch heiße Oberflächen mit Temperaturen über 100 °C!

Lassen Sie die Motoren vor Beginn der Arbeiten abkühlen. Die in den technischen Daten angegebene thermische Zeitkonstante ist ein Maß für die Abkühlzeit. Abkühlzeiten bis 140 Minuten können erforderlich sein!

Tragen Sie Schutzhandschuhe.

Arbeiten Sie nicht an heißen Oberflächen.



#### Personen- und Sachschaden bei Wartungsarbeiten im laufenden Betrieb!

Führen Sie niemals Wartungsarbeiten an laufenden Maschinen durch. Sichern Sie die Anlage während der Wartungsarbeiten gegen Wiederanlauf und unbefugte Benutzung.

#### Reinigung

Übermäßiger Schmutz, Staub oder Späne können die Funktion der Motoren negativ beeinflussen, in Extremfällen auch zum Ausfall der Motoren führen. In regelmäßigen Abständen (spätestens nach Ablauf eines Jahres) sollten Sie deshalb die Kühlrippen der Motoren säubern, um eine ausreichend große Wärmeabstrahlungsfläche zu erreichen. Sind die Kühlrippen teilweise mit Schmutz bedeckt, ist eine ausreichende Wärmeabfuhr über die Umgebungsluft nicht mehr möglich. Ungenügende Wärmeabstrahlung kann unerwünschte Folgen haben. Die Lagerlebensdauer verringert sich durch Betrieb bei unzulässig hohen Temperaturen (Lagerfett zersetzt sich). Übertemperaturabschaltung trotz Betrieb nach Auswahldaten, weil die entsprechende Kühlung fehlt.

Ungenügende Wärmeabstrahlung kann unerwünschte Folgen haben.

- Die Lagerlebensdauer verringert sich durch Betrieb bei unzulässig hohen Temperaturen (Lagerfett zersetzt sich)
- Übertemperaturabschaltung trotz Betrieb nach Auswahldaten, weil die entsprechende Kühlung fehlt.

#### Kontrolle der elektrischen Anschlüsse

# 

#### Tödlicher Stromschlag durch Berührung spannungsführender Teile!

Bei geringsten Defekten des Kabelmantels ist die Anlage sofort außer Betrieb zu nehmen und das Kabel zu erneuern. Keine provisorischen Reparaturen an den Anschlussleitungen vornehmen.

- · Anschlusskabel in regelmäßigen Abständen auf Beschädigungen prüfen und bei Bedarf austauschen.
- Optional vorhandene Energieführungsketten (Schleppketten) auf Defekte überprüfen.
- Schutzleiteranschluss in regelmäßigen Abständen auf ordnungsgemäßen Zustand und festen Sitz überprüfen und ggf. erneuern.

#### Kontrolle der mechanischen Befestigungen

Kontrollieren Sie in regelmäßigen Abständen die Befestigungsschrauben des Gehäuses und der Last.

### Wartungsintervalle für batteriegepufferte Motorfeedbacksysteme

Beachten Sie die Hinweise zur Batterielebensdauer im Kapitel "Motorfeedbacksysteme"!

# 6. Außerbetriebnahme und Entsorgung

Die Servoantriebe und Motoren beinhalten Schmierstoffe für Lager und Harmonic Drive® Getriebe sowie elektronische Bauteile und Platinen. Je nach verwendetem Motorfeedbacksystem beinhaltet das Antriebssystem auch eine Lithium-Thionylchlorid-Batterie. Daher muss auf fachgerechte Entsorgung entsprechend der nationalen und örtlichen Vorschriften geachtet werden.

Da Schmierstoffe (Fette und Öle) und Batterien Gefahrstoffe sind und entsprechend den gültigen Gesundheitsschutzvorschriften behandelt werden sollten, empfehlen wir bei Bedarf das gültige Sicherheitsdatenblatt bei uns anzufordern.

### **HINWEIS**

- Lithiumbatterien enthalten keine gefährlichen Stoffe gemäß der europäischen RoHS Richtlinien 2011/65/EU.
- Die europäische Batterierichtlinie 2006/66 EU ist in den meisten EU Mitgliedsstaaten umgesetzt worden.
- Lithiumbatterien werden mit dem Symbol der durchgestrichenen Mülltonne gekennzeichnet (siehe Abbildung). Das Symbol erinnert Endnutzer daran, dass Batterien nicht mit dem Hausmüll entsorgt werden dürfen, sondern seperat gesammelt werden müssen.
- Auf Anfrage bietet die Harmonic Drive AG einen Entsorgungsdienst an.

X

### 7. Glossar

### 7.1 Technische Daten

#### Abstand R [m] oder [mm]

Distanz zwischen Abtriebslagermitte und Angriffspunkt der Last.

### AC-Spannungskonstante k<sub>FM</sub> [V<sub>eff</sub> / 1000 min<sup>-1</sup>]

Effektivwert der induzierten Motorklemmenspannung bei einer Drehzahl von 1000 min<sup>-1</sup> und einer Antriebstemperatur von 20 °C.

#### Baugröße

#### 1) Antriebe / Getriebe mit Harmonic Drive® Getriebe oder Harmonic Planetengetriebe

Die Baugröße ist abgeleitet vom Teilkreisdurchmesser der Verzahnung in Zoll multipliziert mit 10.

#### 2) Servomotor CHM

Die Baugröße der CHM Servomotoren beschreibt das Stillstandsdrehmoment in Ncm.

#### 3) Direktantriebe TorkDrive®

Die Baugröße der Baureihe TorkDrive® wird durch den Außendurchmesser des Eisenkerns im Stator beschrieben.

### Bemessungsdrehmoment T<sub>N</sub> [Nm]

Abtriebsdrehmoment, mit dem der Antrieb oder Motor bei Nennantriebsdrehzahl kontinuierlich belastet werden kann. Dabei muss der Antrieb oder Motor, abhängig von der Baugröße, auf eine definierte Kühlfläche montiert werden.

### Bemessungsdrehzahl n<sub>N</sub> [min<sup>-1</sup>]

Abtriebsdrehzahl, welche bei Belastung des Antriebes oder Motors mit Nenndrehmoment T<sub>N</sub> kontinuierlich auftreten darf. Dabei muss der Antrieb oder Motor, abhängig von der Baugröße, auf eine definierte Kühlfläche montiert werden.

### Bemessungsleistung P<sub>N</sub> [W]

Abgegebene Leistung bei Bemessungsdrehzahl und Bemessungsdrehmoment.

### Bemessungsspannung $U_{N}[V_{eff}]$

Anschlussspannung bei Betrieb mit Bemessungsdrehmoment und Bemessungsdrehzahl. Angegeben ist der Effektivwert der Leiterspannung.

### Bemessungsstrom $I_N [A_{eff}]$

Effektivwert des sinusförmigen Stroms bei Belastung des Antriebes mit Bemessungsdrehmoment und Bemessungsdrehzahl.

### Bremsenspannung U<sub>Rr</sub> [VDC]

Anschlussspannung der Haltebremse.

#### Drehfeldinduktivität L<sub>a</sub> [mH]

Summe aus Luftspaltinduktivität und Streufeldinduktivität bezogen auf das einphasige Ersatzschaltbild der Synchronmaschine.

### Drehmomentkonstante (Abtrieb) $k_{Tout}$ [Nm/A<sub>eff</sub>]

Quotient aus Stillstandsdrehmoment und Stillstandsstrom unter Berücksichtigung der Getriebeverluste.

1015784 05/2019 V02 **53** 

### Drehmomentkonstante (Motor) k<sub>TM</sub> [Nm/A<sub>eff</sub>]

Quotient aus Stillstandsdrehmoment und Stillstandsstrom.

### Durchschnittsdrehmoment T<sub>A</sub> [Nm]

Wird das Getriebe mit wechselnden Lasten beaufschlagt, so sollte das durchschnittliche Drehmoment berechnet werden. Dieser Wert sollte den angegebenen Grenzwert  $T_{\scriptscriptstyle A}$  nicht überschreiten.

### Dynamische Axiallast F<sub>A dyn (max)</sub> [N]

Bei rotierendem Lager maximal zulässige Axiallast, wobei keine zusätzlichen Kippmomente oder Radialkräfte wirken dürfen.

# Dynamisches Kippmoment $M_{dyn (max)}$ [Nm]

Bei rotierendem Lager maximal zulässiges Kippmoment, wobei keine Axial- oder Radialkräfte wirken dürfen. Der Wert basiert nicht auf der Lebensdauergleichung des Abtriebslagers, sondern auf der maximal zulässigen Verkippung des Harmonic Drive® Einbausatzes. Die angegebenen Daten dürfen auch dann nicht überschritten werden, wenn die Lebensdauerberechnung des Lagers höhere Werte zulässt.

### Dynamische Radiallast F<sub>R dyn (max)</sub> [N]

Bei rotierendem Lager maximal zulässige Radiallast, wobei keine zusätzlichen Kippmomente oder Axialkräfte wirken dürfen.

#### Dynamische Tragzahl C [N]

Maß für die Last, die ein Abtriebslager aufnimmt, bevor es bei dynamischer Dauerbelastung unnötig schnell bleibenden Schaden erleidet.

### Elektrische Zeitkonstante $\tau_{o}$ [s]

Die Zeitkonstante gibt an, in welcher Zeit der Strom 63 % des maximal möglichen Wertes bei konstanter Klemmenspannung erreicht.

### Entmagnetisierungsstrom I<sub>F</sub> [A<sub>eff</sub>]

Beginn der Entmagnetisierung der Rotormagnete.

#### Gewicht m [kg]

Das im Katalog angegebene Gewicht ist das Nettogewicht ohne Verpackung und gilt nur für Standardausführungen.

### Haltemoment der Bremse T<sub>Br</sub> [Nm]

Drehmoment, bezogen auf den Abtrieb, das der Antrieb bei geschlossener Bremse halten kann.

### Haltestrom der Bremse $I_{Br}[A_{DC}]$

Strom zum Halten der Bremse.

### Hohlwellendurchmesser d<sub>1</sub> [mm]

Freier Innendurchmesser der axialen, durchgängigen Hohlwelle.

54 1015784 05/2019 V02

#### Hystereseverlust (Harmonic Drive® Getriebe)

Harmonic Drive® Getriebe zeigen bei Beaufschlagung mit einem Drehmoment die in der Hysteresekurve dargestellte Charakteristik. Zur Ermittlung der Hysteresekurve wird bei blockierter Eingangswelle ein Drehmoment an der Abtriebswelle eingeleitet. Ausgehend vom O-Punkt werden nacheinander die Punkte A-B-A'-B'-A angefahren (siehe Abbildung). Der Betrag B-B' wird als Hystereseverlust bezeichnet.



 $T_N$  = Nenndrehmoment  $\varphi$  = Abtriebsdrehwinkel

### Induktivität (L-L) L<sub>I-I</sub> [mH]

Berechnete Anschlussinduktivität ohne Berücksichtigung der magnetischen Sättigung der Motoraktivteile.

### Kippsteifigkeit K<sub>R</sub> [Nm/arcmin]

Beschreibt das Verhältnis zwischen anliegendem Kippmoment und dem Kippwinkel am Abtriebslager.

### Kollisionsdrehmoment T<sub>M</sub> [Nm]

Im Falle einer Not-Ausschaltung oder einer Kollision kann das Harmonic Drive® Getriebe mit einem kurzzeitigen Kollisionsdrehmoment beaufschlagt werden. Die Anzahl und die Höhe dieses Kollisionsdrehmomentes sollten möglichst gering sein. Unter keinen Umständen sollte das Kollisionsdrehmoment während des normalen Arbeitszyklus erreicht werden. Die erlaubte Anzahl von Kollisionsdrehmoment-Ereignissen kann mit der im Auslegungsschema angegebenen Gleichung berechnet werden, siehe Kapitel "Antriebsauslegung".

### Lost Motion (Harmonic Drive® Getriebe) [arcmin]

Harmonic Drive® Getriebe weisen kein Spiel in der Verzahnung auf. Der Begriff Lost Motion wird verwendet, um die Torsionssteifigkeit im Bereich kleiner Drehmomente zu charakterisieren.

Das Bild zeigt den Verdrehwinkel  $\phi$  in Abhängigkeit des anliegenden Abtriebsdrehmomentes als Hysteresekurve bei fixiertem Wave Generator. Die Lost Motion Messung wird mit einem Abtriebsdrehmoment von ca.  $\pm 4$  % des Nenndrehmomentes des Getriebes durchgeführt.



### Massenträgheitsmoment J [kgm²]

Massenträgheitsmoment des Rotors.

### Massenträgheitsmoment J<sub>in</sub> [kgm<sup>2</sup>]

Das im Katalog angegebene Massenträgheitsmoment des Getriebes bezieht sich auf den Getriebeeingang.

### Massenträgheitsmoment J<sub>out</sub> [kgm²]

Massenträgheitsmoment bezogen auf den Abtrieb.

1015784 05/2019 V02 **55** 

### Maximale Antriebsdrehzahl (Fettschmierung) n<sub>in (max)</sub> [min<sup>-1</sup>]

Maximal kurzzeitig zulässige Getriebeeingangsdrehzahl bei Fettschmierung. Die maximale Antriebsdrehzahl kann kurzzeitig beliebig oft angefahren werden, solange die durchschnittliche Antriebsdrehzahl der Anwendung kleiner ist als die zulässige mittlere Antriebsdrehzahl des Getriebes.

# Maximale Antriebsdrehzahl (Ölschmierung) $n_{in (max)}$ [min<sup>-1</sup>]

Maximal kurzzeitig zulässige Getriebeeingangsdrehzahl bei Ölschmierung. Die maximale Antriebsdrehzahl kann kurzzeitig beliebig oft angefahren werden, solange die durchschnittliche Antriebsdrehzahl der Anwendung kleiner ist als die zulässige mittlere Antriebsdrehzahl des Getriebes.

### Maximale Drehzahl n<sub>max</sub> [min<sup>-1</sup>]

Die maximal zulässige Abtriebsdrehzahl. Diese darf aus Erwärmungsgründen nur kurzzeitig während des Arbeitszyklus wirken. Die maximale Abtriebsdrehzahl kann beliebig oft auftreten, solange die kalkulierte Durchschnittsdrehzahl über den Zyklus im zulässigen Dauerbetrieb der Kennlinie liegt.

### Maximales Drehmoment T<sub>max</sub> [Nm]

Gibt die maximal zulässigen Beschleunigungs- und Bremsdrehmomente an. Für hochdynamische Vorgänge steht das maximale Drehmoment kurzfristig zur Verfügung. Das maximale Drehmoment kann durch den im Regelgerät parametrierten maximalen Strom begrenzt werden. Das maximale Drehmoment kann beliebig oft aufgebracht werden, solange das durchschnittliche Drehmoment innerhalb des zulässigen Dauerbetriebes liegt.

### Maximaler Hohlwellendurchmesser d<sub>H (max)</sub> [mm]

Bei Getrieben mit Hohlwelle gibt dieser Wert den maximalen Durchmesser der axialen Hohlwelle an.

### Maximale Leistung P<sub>max</sub> [W]

Maximal abgegebene Leistung.

# Maximale stationäre Zwischenkreisspannung $U_{DC \, (max)} \, [VDC]$

Gibt die für den bestimmungsgemäßen Betrieb des Antriebes maximal zulässige stationäre Zwischenkreisspannung an. Während des Bremsbetriebes kann diese kurzfristig überschritten werden.

# $\mathsf{Maximalstrom}\ \mathsf{I}_{\mathsf{max}}\ [\mathsf{A}]$

Der Maximalstrom ist der kurzzeitig zulässige Strom.

### Mechanische Zeitkonstante $\tau_m$ [s]

Die Zeitkonstante gibt an, in welcher Zeit die Drehzahl 63 % des maximal möglichen Wertes bei konstanter Klemmenspannung ohne Last erreicht.

# Mittlere Antriebsdrehzahl (Fettschmierung) $n_{av(max)}$ [min<sup>-1</sup>]

Maximal zulässige durchschnittliche Getriebeeingangsdrehzahl bei Fettschmierung. Die durchschnittliche Getriebeeingangsdrehzahl der Anwendung muss kleiner sein als die mittlere Antriebsdrehzahl des Getriebes.

# Mittlere Antriebsdrehzahl (Ölschmierung) $n_{av (max)} [min^{-1}]$

Maximal zulässige durchschnittliche Getriebeeingangsdrehzahl bei Ölschmierung. Die durchschnittliche Getriebeeingangsdrehzahl der Anwendung muss kleiner sein als die mittlere Antriebsdrehzahl des Getriebes.

56 1015784 05/2019 V02

### Motor Bemessungsdrehzahl n<sub>N</sub> [min<sup>-1</sup>]

Drehzahl, welche bei Belastung des Motors mit Nenndrehmoment  $T_N$  kontinuierlich auftreten darf. Dabei muss der Motor, abhängig von der Baugröße, auf eine definierte Kühlfläche montiert werden.

### Motorklemmenspannung (nur Grundwelle) U<sub>M</sub> [V<sub>off</sub>]

Erforderliche Grundwellenspannung zum Erreichen der angegebenen Performance. Zusätzliche Spannungsverluste können zur Einschränkung der maximal erreichbaren Drehzahl führen.

### Motor maximale Drehzahl n<sub>max</sub> [min<sup>-1</sup>]

Die maximal zulässige Motordrehzahl.

### Nenndrehmoment T<sub>N</sub> [Nm]

Das Nenndrehmoment ist ein Referenzdrehmoment für die Berechnung der Getriebelebensdauer.

Bei Belastung mit dem Nenndrehmoment und der Nenndrehzahl erreicht das Kugellager des Wave Generators die nominelle Lebensdauer  $L_n$  mit 50 % Ausfallwahrscheinlichkeit. Das Nenndrehmoment  $T_N$  wird nicht für die Dimensionierung angewendet.

### Nenndrehzahl n<sub>N</sub> [min<sup>-1</sup>], Mechanik

Die Nenndrehzahl ist eine Referenzdrehzahl für die Berechnung der Getriebelebensdauer. Bei Belastung mit dem Nenndrehmoment und der Nenndrehzahl erreicht das Kugellager des Wave Generators die nominelle Lebensdauer  $L_n$  mit 50 % Ausfallwahrscheinlichkeit. Die Nenndrehzahl  $n_N$  wird nicht für die Dimensionierung angewendet.

| Produktreihe                                     | Einheit              | n <sub>N</sub> |
|--------------------------------------------------|----------------------|----------------|
| CobaltLine®, HFUC, HFUS, CSF, CSG, CSD, SHG, SHD | [min <sup>-1</sup> ] | 2000           |
| PMG Baugröße 5                                   | [min <sup>-1</sup> ] | 4500           |
| PMG Baugröße 8 bis 14                            | [min <sup>-1</sup> ] | 3500           |
| HPG, HPGP, HPN                                   | [min <sup>-1</sup> ] | 3000           |

### Nominelle Lebensdauer L<sub>n</sub> [h]

Bei Belastung mit dem Nenndrehmoment und der Nenndrehzahl erreicht das Kugellager des Wave Generators rechnerisch mit 50 % Ausfallwahrscheinlichkeit die nominelle Lebensdauer L<sub>n</sub>. Bei abweichender Belastung kann die Lebensdauer des Kugellagers des Wave Generators mit den Gleichungen im Kapitel "Antriebsauslegung" berechnet werden.

### Öffnungsstrom der Bremse $I_{OBr}$ $[A_{DC}]$

Strom zum Öffnen der Bremse.

### Öffnungszeit der Bremse t₀ [ms]

Verzögerungszeit zum Öffnen der Bremse.

#### Polpaarzahl p []

Anzahl der Paare von magnetischen Polen innerhalb von rotierenden elektrischen Maschinen.

### Schließzeit der Bremse t<sub>r</sub> [ms]

Verzögerungszeit zum Schließen der Bremse.

1015784 05/2019 V02 **57** 

#### Schutzart IP

Die Schutzart nach EN 60034-5 gibt die Eignung für verschiedene Umgebungsbedingungen an.

### Spiel (Harmonic Planetengetriebe) [arcmin]

Harmonic Planetengetriebe zeigen bei Beaufschlagung mit einem Nenndrehmoment die in der Hysteresekurve dargestellte Charakteristik. Zur Ermittlung der Hysteresekurve wird bei blockierter Eingangswelle ein Drehmoment an der Abtriebswelle eingeleitet.

Ausgehend von Punkt O werden nacheinander die Punkte A-B-A'-B'-A angefahren (siehe Abbildung). Der Betrag B-B' wird als Spiel (oder Hystereseverlust) bezeichnet.



### Statische Tragzahl C<sub>n</sub> [N]

Maß für die Last, die ein Abtriebslager aufnimmt, bevor es bei statischer Belastung bleibenden Schaden erleidet.

### Statisches Kippmoment M<sub>n</sub> [Nm]

Bei stillstehendem Lager maximal zulässiges Kippmoment, wobei keine Axial- oder Radialkräfte wirken dürfen.

### Stillstandsdrehmoment T<sub>n</sub> [Nm]

Zulässiges Drehmoment bei stillstehendem Antrieb.

### Stillstandsstrom $I_0$ [A<sub>eff</sub>]

Effektivwert des Motorstrangstroms zur Erzeugung des Stillstandsdrehmomentes.

### Teilkreisdurchmesser d<sub>n</sub> [m]

Teilkreisdurchmesser der Wälzkörperlaufbahn des Abtriebslagers.

# Torsionssteifigkeit (Harmonic Drive® Getriebe) K<sub>1</sub>, K<sub>2</sub>, K<sub>3</sub> [Nm/rad]

Das Maß der elastischen Verdrehung am Abtrieb bei einem bestimmten Drehmoment und blockiertem Wave Generator. Für die Ermittlung der Torsionssteifigkeit wird die Drehmoment-Torsions-Kurve in drei Bereiche aufgeteilt und die Torsionssteifigkeiten  $K_1$ ,  $K_2$  und  $K_3$  durch Linearisierung ermittelt.

 $K_1$ : Bereich kleiner Drehmomente  $C_1 = C_2$ : Bereich mittlerer Drehmomente  $C_2 = C_3$ : Bereich höherer Drehmomente  $C_3 = C_4$ 

Die angegebenen Werte für die Torsionssteifigkeiten  $\rm K_1, \, K_2$  und  $\rm K_3$  sind Durchschnittswerte, die während zahlreicher

Torsion  $\varphi$   $\varphi_{2}$   $\varphi_{3}$   $\varphi_{4}$   $\varphi_{5}$   $\varphi_{7}$   $\varphi_{7}$   $\varphi_{7}$   $\varphi_{7}$   $\varphi_{8}$   $\varphi_{8}$   $\varphi_{7}$   $\varphi_{8}$   $\varphi_{8}$ 

Tests ermittelt wurden. Die Grenzdrehmomente T<sub>1</sub> und T<sub>2</sub> sowie Hinweise zur Berechnung des Gesamtverdrehwinkels sind in den Kapiteln "Torsionssteifigkeit" sowie "Ermittlung des Torsionswinkels" dieser Dokumentation zu finden.

58 1015784 05/2019 V02

# Torsionssteifigkeit (Harmonic Planetengetriebe) K<sub>3</sub> [Nm/rad]

Das Maß der elastischen Verdrehung am Abtrieb bei einem bestimmten Drehmoment und blockierter Eingangswelle. Die Torsionssteifigkeit der Harmonic Planetengetriebe beschreibt die Verdrehung des Abtriebes oberhalb eines Referenzdrehmoments von 15 % des Nenndrehmomentes.

In diesem Bereich ist die Torsionssteifigkeit nahezu linear.



### Umgebungstemperatur (Betrieb) [°C]

Gibt den für den bestimmungsgemäßen Betrieb zulässigen Temperaturbereich an.

#### Untersetzung i []

Die Untersetzung ist das Verhältnis von Antriebsdrehzahl zu Abtriebsdrehzahl.

Hinweis für Harmonic Drive® Getriebe: Bei der Standardausführung ist der Wave Generator das Antriebselement, der Flexspline das Abtriebselement und der Circular Spline am Gehäuse fixiert. Da sich die Drehrichtung von Antrieb (Wave Generator) zu Abtrieb (Flexspline) umkehrt, ergibt sich eine negative Untersetzung.

### Übertragungsgenauigkeit [arcmin]

Die Übertragungsgenauigkeit eines Getriebes beschreibt den absoluten Positionsfehler am Abtrieb. Die Messung erfolgt während einer vollständigen Umdrehung des Abtriebselementes mit Hilfe eines hochauflösenden Messsystems. Eine Drehrichtungsumkehr erfolgt nicht. Die Übertragungsgenauigkeit ist definiert als die Summe der Beträge der maximalen positiven und negativen Differenz zwischen theoretischem und tatsächlichem Abtriebswinkel.



### Wiederholbares Spitzendrehmoment T<sub>R</sub> [Nm]

Gibt die maximal zulässigen Beschleunigungs- und Bremsdrehmomente an. Während des normalen Arbeitszyklus sollte das wiederholbare Spitzendrehmoment  $T_{\rm R}$  nicht überschritten werden. Das wiederholbare Spitzendrehmoment kann kurzzeitig beliebig oft aufgebracht werden, solange das durchschnittliche Abtriebsdrehmoment der Anwendung unterhalb des zulässigen Durchschnittsdrehmomentes des Getriebes liegt.

1015784 05/2019 V02 **59** 

### Wiederholgenauigkeit [arcmin]

Die Wiederholgenauigkeit eines Getriebes beschreibt die Positionsabweichung, die beim wiederholten Anfahren eines Sollwertes aus jeweils der gleichen Drehrichtung auftritt. Die Wiederholgenauigkeit ist definiert als die Hälfte der maximalen Abweichung, versehen mit einem ± Zeichen.



### Widerstand (L-L, 20 °C) $R_{I-I}$ [ $\Omega$ ]

Wicklungswiderstand gemessen zwischen zwei Leitern bei einer Wicklungstemperatur von 20 °C. Die Wicklung ist in Sternschaltung ausgeführt.

### 7.2 Kennzeichnung, Richtlinien und Verordnungen

#### CE-Kennzeichnung

Mit der CE-Kennzeichnung erklärt der Hersteller oder EU-Importeur gemäß EU-Verordnung, dass das Produkt den geltenden Anforderungen, die in den Harmonisierungsrechtsvorschriften der Gemeinschaft über ihre Anbringung festgelegt sind, genügt.



### **REACH-Verordnung**

Die REACH-Verordnung ist eine EU-Chemikalienverordnung. REACH steht für Registration, Evaluation, Authorisation and Restriction of Chemicals, also für die Registrierung, Bewertung, Zulassung und Beschränkung von Chemikalien.



#### RoHS EG-Richtlinie

Die RoHS EG-Richtlinie zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten regelt die Verwendung von Gefahrstoffen in Geräten und Bauteilen.



60 1015784 05/2019 V02