CNN - Lista de Exercícios 2

September 19, 2019

1 Convoluções sobre volumes

- 1- Suponha uma entrada de tamanho $63 \times 63 \times 16$. Ao aplicar uma convolução nessa entrada com 32 filtros de tamanho 7×7 , usando stride igual a 2 e sem padding. Qual será o volume de saída?
- **2-** Suponha uma entrada de tamanho $15 \times 15 \times 8$. Usando a operação de padding igual 2, qual é a dimensão do dado de saída após o padding?
- **3-** Dado uma entrada de dimensão $63 \times 63 \times 16$ e uma convolução com 32 filtros de dimensão 7×7 cada e um stride igual a 1, qual deverá ser o tamanho do padding utilizado para que você obtenha uma saída com o mesmo tamanho da entrada (same padding)?
- **4-** Considere um volume de entrada $65\times65\times3$ e um filtro $11\times11\times3$. Quantas operações de multiplicação serão feitas em cada um dos casos:
 - a) Valid padding e stride = 1.
 - **b)** Valid padding e stride = 3.
 - c) Same padding e stride = 1.
 - d) Same padding e stride = 3.
- 5- Repita as alternativas a) e c) do exercício anterior para um filtro de tamanho $5\times 5.$

2 Pooling

- **6-** Suponha uma entrada de tamanho $32 \times 32 \times 16$. Seja a aplicação do max pooling com stride e tamanho de filtro iguais a 2. Quais são as dimensões da saída?
- 7- Suponha uma entrada de tamanho $6 \times 6 \times 3$. Seja a aplicação de um pooling (average ou max) com stride e tamanho de filtro iguais a 2. Responda:
 - a) Quais são as dimensões da saída?

Assumindo que os valores do primeiro canal estão mostrados na matriz abaixo, mostre o resultado obtido ao aplicar o seguinte pooling:

$$\begin{bmatrix} 4 & 9 & 2 & 5 & 8 & 3 \\ 5 & 6 & 2 & 4 & 0 & 3 \\ 2 & 4 & 5 & 4 & 5 & 2 \\ 5 & 6 & 5 & 4 & 7 & 8 \\ 5 & 7 & 7 & 9 & 2 & 1 \\ 5 & 8 & 5 & 3 & 8 & 4 \end{bmatrix}$$

- b) Max pooling
- c) Average pooling
- **8-** Explique como as camadas de pooling, apesar de não possuírem parâmetros, afetam o cálculo do backpropagation.

3 CNNs

- ${\bf 9}\text{-}$ Por que as conexões em camadas convolucionais são consideradas esparsas?
- 10- Suponha que a entrada para uma rede neural de convolução seja uma imagem colorida (RGB) 32×32 . A primeira camada contém oito filtros 5×5 com três canais, utilizando Valid padding e stride = 2. Qual o formato da saída dessa camada?
- 11- Dado uma imagem de dimensão 224×224 com 3 canais (RGB), desenhe a rede convolucional, incluindo as dimensões das matrizes de entrada e saída, de acordo com as operações descritas abaixo.
- 1. Aplique uma convolução com "Valid padding" com 96 filtros de tamanho 7 e stride igual a 2. Em seguida, aplique um max pooling com filtro de tamanho

3e stride igual a 2. A saída dessa camada será chamada de $A^{\left[1\right]}.$

- 2. Aplique uma convolução com "Valid padding" com 256 filtros de tamanho 5 e stride igual a 2. Em seguida, aplique um max pooling com filtro de tamanho 3 e stride igual a 2. A saída dessa camada será chamada de $A^{[2]}$.
- 3. Aplique uma convolução com "Same padding" com 384 filtros de tamanho 3 e stride igual a 1. A saída dessa camada será chamada de $A^{[3]}$.
- 4. Aplique uma convolução com "Same padding" com 384 filtros de tamanho 3 e stride igual a 1. A saída dessa camada será chamada de $A^{[4]}$.
- 5. Aplique uma convolução com "Same padding" com 256 filtros de tamanho 3 e stride igual a 1. Em seguida, aplique um max pooling com filtro de tamanho 3 e stride igual a 2. A saída dessa camada será chamada de $A^{[5]}$.
- 6. Aplique uma camada fully-connected com 4096 nós. A saída dessa camada será chamada de $A^{[6]}$.
- 7. Aplique uma camada fully-connected com 4096 nós. A saída dessa camada será chamada de $A^{[7]}$.
- 8. Por fim, aplique uma softmax (aqui não é necessário se preocupar com a dimensão da saída). A saída dessa camada será chamada de $A^{[8]}$.
- 12- Quantos parâmetros possui a rede convolucional *LeNet*, mostrada na figura abaixo? A cada passo, mostre a quantidade de pesos existentes em cada operação sobre as camadas.

