Graphic Lasso: Accuracy for precision matrices

Jiaxin Hu

March 18, 2021

1 Penalized vs Hard Constraint

	Penalized	Hard Constraint
Problem	$\min_{\boldsymbol{U},\Theta^l} \sum_{k=1}^K \langle S^k, \Omega^k \rangle - \log \det(\Omega^k) + \lambda \left\ \Omega^k \right\ _1$ with constraint $\Omega^k = \sum_{l=1}^r u_{kl} \Theta^l, k = 1,, K$	$\begin{aligned} & \min_{\boldsymbol{U},\Theta^l} \sum_{k=1}^K \langle S^k, \Omega^k \rangle - \log \det(\Omega^k) \\ & \text{with constraint} \\ & \left\ \Theta^l \right\ _0 \leq q, \Omega^k = \sum_{l=1}^r u_{kl} \Theta^l, k = 1,, K \\ & \text{and } \lambda > 0, \boldsymbol{U} \text{ is a membership matrix.,} \end{aligned}$
Accuracy	and $\lambda > 0$, U is a membership matrix. A1: Suppose $\Lambda_1 \sqrt{\frac{\log p}{n}} \le \lambda \le \Lambda_2 \sqrt{\frac{1 + p/q}{nK}}$ for Λ_1, Λ_2 large enough, we have $\sum_{k=1}^K \ \Delta_k\ _F \le C\sqrt{K} \sqrt{\frac{(p+q)\log p}{n}}.$	where q represents the true sparasity. A2: We have $\sum_{k=1}^{K} \ \Delta_k\ _F \leq C' \sqrt{K} \sqrt{\frac{(p+q)\log p}{n}}$

2 Proof

Notations.

- 1. Let $\mathcal{L}(\boldsymbol{U}, \Theta^l) = \sum_{k=1}^K \langle S^k, \Omega^k \rangle \log \det(\Omega^k) + \lambda \|\Omega^k\|_1$, where $\Omega^k = \sum_{l=1}^r u_{kl} \Theta^l, k = 1, ..., K$.
- 2. Let D denote the confusion matrix between the estimation $\{\hat{U}, \hat{\Theta}^k\}$ and the true parameters, in which $D_{al} = \sum_{k=1}^K I\{u_{ka} = \hat{u}_{kl} = 1\}$.

- 3. Let I_l denote the index set of the categories in the k-th group based on the parameter U, i.e., $I_l = \{k : u_{kl} = 1\}$. Let \hat{I}_l denote the estimated set by \hat{U} . Note that $|\hat{I}_l \cap I_a| = D_{al}$.
- 4. $\tau = \max_{l \in [r]} \varphi_{\max}(\Theta^l)$ is the maximal singular value of the true precision matrices.
- 5. $T = \bigcup_{l=1}^r T_l$, where T_l is an index set such that for all $(i,j) \in T_l$ we have $\Theta_{i,j}^l \neq 0$.
- 6. q = |T| be the upper bound of the number of non-zero entries for all Θ^l .

Proof for A_1 . First, we define the function $G(\hat{U}, \hat{\Theta}^k)$, where

$$\begin{split} G(\hat{\boldsymbol{U}}, \hat{\boldsymbol{\Theta}}^l) &= \mathcal{L}(\hat{\boldsymbol{U}}, \hat{\boldsymbol{\Theta}}^l) - \mathcal{L}(\boldsymbol{U}, \boldsymbol{\Theta}^l) \\ &= \sum_{l=1}^r \sum_{a=1}^r \sum_{k \in \hat{I}_l \cap I_a} \langle S^k, \hat{\boldsymbol{\Theta}}^l \rangle - \langle S^k, \boldsymbol{\Theta}^a \rangle - \log \det(\hat{\boldsymbol{\Theta}}^l) + \log \det(\boldsymbol{\Theta}^a) + \lambda \left\| \hat{\boldsymbol{\Theta}}^l \right\|_1 - \lambda \left\| \boldsymbol{\Theta}^a \right\|_1 \\ &= \sum_{l=1}^r \sum_{a=1}^r G_{al}(\hat{\boldsymbol{U}}, \hat{\boldsymbol{\Theta}}^l). \end{split}$$

Define $\Delta_{al} = \hat{\Theta}^l - \Theta^a, l \in [r], a \in [r]$. Then, the function $G(\hat{U}, \hat{\Theta}^l)$ is a function of $\{\Delta_{al}\}$ denoted by $G(\Delta_{al})$ and G(0) = 0. If we take a closed convex set around 0 and show that the function G strictly positive at the boundary, then we obtain accuracy rate based on our construction of the convex set. Particularly, we set the set $\mathcal{A} = \left\{ \sum_{a,l} \sqrt{D_{al}} \|\Delta_{al}\|_F \leq M \sqrt{\frac{(p+q)\log p}{n}} \right\}$.

With arbitrary pair of a, l, consider the decomposition

$$G_{al}(\hat{U}, \hat{\Theta}^l) = A_{al,1} + A_{al,2} + A_{al,3} + A_{al,4},$$

where

$$\begin{split} A_{al,1} &= \sum_{k \in \hat{I}_l \cap I_a} \langle S^k - \Sigma^a, \Delta_{al} \rangle, \\ A_{al,2} &= D_{al} (\operatorname{vec}(\Delta_{al}))^T \int_0^1 (1 - v) (\Theta^a + v \Delta_{al})^{-1} \otimes (\Theta^a + v \Delta_{al})^{-1} dv \operatorname{vec}(\Delta_{al}), \\ A_{al,3} &= \lambda D_{al} \left(\left\| \hat{\Theta}^l_{T^c} \right\|_1 \right), \\ A_{al,4} &= \lambda D_{al} \left(\left\| \hat{\Theta}^l_{T} \right\|_1 - \left\| \Theta^a_T \right\|_1 \right). \end{split}$$

For $A_{al,1}$, by Note 0115 an 0113, we have $|A_{al,1}| \leq A_{al,11} + A_{al,12}$, where

$$\begin{split} A_{al,11} &\leq \sqrt{D_{al}} \left(C_1 \sqrt{\frac{q \log p}{n}} + C_2 \sqrt{\frac{p \log p}{n}} \right) \left\| \Delta_{al} \right\|_F, \\ &\leq \sqrt{D_{al}} \left(C \sqrt{\frac{(q+p) \log p}{n}} \right) \left\| \Delta_{al} \right\|_F, \\ A_{al,12} &= \sqrt{D_{al}} C_1 \sqrt{\frac{\log p}{n}} \left\| \Delta_{al,T^c} \right\|_1. \end{split}$$

For $A_{al,2}$, we have

$$A_{al,2} \ge \frac{D_{al}}{2\tau^2 + \|\Delta_{al}\|_F^2} \|\Delta_{al}\|_F^2 \ge \frac{1}{4\tau^2} \|\Delta_{al}\|_F^2,$$

where the second inequality holds when n is large enough.

For $A_{al,4}$, we have

$$|A_{al,4}| \le \lambda D_{al} \left(\left\| \hat{\Theta}_T^l - \Theta_T^a \right\|_1 \right) \le \lambda D_{al} \sqrt{q} \left\| \Delta_{al} \right\|_F.$$

Combining the decomposition results for all pairs a, l, we obtain that

$$G(\Delta_{al}) = \sum_{a,l} G_{al}(\Delta_{al})$$

$$\geq \sum_{al} A_{al,2} - A_{al,11} - A_{al,12} + A_{al,3} - |A_{al,4}|$$

$$= \frac{1}{4\tau^{2}} \sum_{al} D_{al} \|\Delta_{al}\|_{F}^{2} - \sum_{al} \sqrt{D_{al}} \left(C\sqrt{\frac{(q+p)\log p}{n}} \right) \|\Delta_{al}\|_{F} - \sum_{al} \lambda D_{al}\sqrt{q} \|\Delta_{al}\|_{F}$$

$$+ \sum_{al} \lambda D_{al} \left(\left\| \hat{\Theta}_{T^{c}}^{l} \right\|_{1} \right) - \sum_{al} \sqrt{D_{al}} C_{1} \sqrt{\frac{\log p}{n}} \|\Delta_{al,T^{c}}\|_{1}.$$
(1)

Note that

$$\sum_{al} \lambda D_{al} \left(\left\| \hat{\Theta}_{T^{c}}^{l} \right\|_{1} \right) - \sum_{al} \sqrt{D_{al}} C_{1} \sqrt{\frac{\log p}{n}} \left\| \Delta_{al,T^{c}} \right\|_{1}$$

$$\geq \sum_{al} \lambda \sqrt{D_{al}} \left(\left\| \hat{\Theta}_{T^{c}}^{l} \right\|_{1} \right) - \sum_{al} \sqrt{D_{al}} C_{1} \sqrt{\frac{\log p}{n}} \left\| \Delta_{al,T^{c}} \right\|_{1}$$

$$= \left(\lambda - C_{1} \sqrt{\frac{\log p}{n}} \right) \sum_{al} \sqrt{D_{al}} \left(\left\| \hat{\Theta}_{T^{c}}^{l} \right\|_{1} \right) \geq 0,$$

where the last inequality follows by the assumption that $\lambda \geq \Lambda_1 \sqrt{\frac{\log p}{n}}$ for Λ_1 large enough.

Note that

$$\sum_{al} D_{al} \|\Delta_{al}\|_F \le \sqrt{K} \sum_{al} \sqrt{D_{al}} \|\Delta_{al}\|_F \le \sqrt{K} M \sqrt{\frac{(p+q)\log p}{n}},$$

and by Cauchy Schwartz we have

$$\sum_{al} D_{al} \|\Delta_{al}\|_F^2 \ge \frac{1}{r^2} (\sum_{al} \sqrt{D_{al}} \|\Delta_{al}\|_F)^2.$$

Then, the function (1) becomes

$$G(\Delta_{al}) \ge \frac{1}{4\tau^2} \sum_{al} D_{al} \|\Delta_{al}\|_F^2 - \sum_{al} \sqrt{D_{al}} \left(C \sqrt{\frac{(q+p)\log p}{n}} \right) \|\Delta_{al}\|_F - \sum_{al} \lambda D_{al} \sqrt{q} \|\Delta_{al}\|_F$$

$$\ge \frac{1}{4\tau^2 r^2} M^2 \frac{(q+p)\log p}{n} - C M \frac{(q+p)\log p}{n} - \Lambda_2 M \frac{(q+p)\log p}{n}$$

$$> 0,$$

when M is large enough. Therefore, there is a local minima inside the convex set A and the convex set implies that

$$\sum_{k=1}^{K} \left\| \Omega^k - \hat{\Omega}^k \right\|_F = \sum_{al} D_{al} \left\| \Delta_{al} \right\|_F \le \sqrt{KC} \sqrt{\frac{(p+q)\log p}{n}}.$$