Devoir de Mathématiques n°13 - DH9 - à rendre le vendredi 21/12/2007

Exercice 1: domination

Soit f de R dans R définie par $f(x) = e^{x^2} (x \cos^2 x + \sin^2 x)$

- 1°)Montrer que f est strictement croissante au voisinage de +∞
- 2°)Montrer que f tend vers +∞ quand x tend vers +∞
- 3°)Soit q définie sur R⁺ par $g(x) = \sqrt{x}e^{x^2}$; montrer que, au voisinage de $+\infty$, f n'est pas dominée par g et que q n'est pas dominée par f (on pourra utiliser des suites « bien choisies »)

Exercice 2 : égalité de Taylor-Lagrange

Soit f une application de classe Cⁿ de l'intervalle fermé I d'extrémités a et b (a≠b) dans R, telle que f⁽ⁿ⁾ est dérivable sur l'intérieur de I. Montrer qu'il existe c élément de l'intérieur de I tel que :

$$f(b) = \sum_{k=0}^{n} \frac{(b-a)^{k}}{k!} f^{(k)}(a) + \frac{(b-a)^{n+1}}{(n+1)!} f^{(n+1)}(c)$$

Exercice 3: convexité

Soit I un intervalle de R et f de I dans R une application continue sur I. Montrer l'équivalence des deux assertions:

(i) f est convexe

(ii)
$$\forall (x_1,x_2) \in I^2$$
, $f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2}$

Indication: on pourra s'intéresser aux λ de la forme $\frac{k}{2^n}$

Exercice 4: développement asymptotique d'une suite de solutions d'équations

- 1) Soit $n \in \mathbb{N}$. Montrer que l'équation $\ln x + nx = 0$ possède une et une seule solution sur \mathbb{R}
- 2) Montrer que la suite $(x_n)_{n\in\mathbb{N}}$ est décroissante.
- 3) En déduire l'existence de $\lim_{n\to\infty} x_n$ et calculer cette limite.

On pose, pour tout $n \in \mathbb{N}$: $y_n = nx_n$. On remarquera qu'on a : $\forall n \in \mathbb{N}$, $y_n + \ln y_n = \ln r$

- 4) Montrer l'existence de $\lim_{n\to\infty} y_n$ et calculer cette limite. 5) Montrer que : $y_n \sim \lim_{n\to\infty} \ln n$. En déduire un équivalent de x_n lorsque n tend vers ∞ .
- 6)a) Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites strictement positives de limite ∞ telles que : Montrer que : $\ln u_n \sim \lim_{n\to\infty} \ln v_n$.
 - b) En déduire un équivalent de $x_n \frac{\ln n}{n}$ lorsque n tend vers ∞ .
- 7) Trouver finalement un équivalent de $x_n \frac{\ln n}{n} + \frac{\ln \ln n}{n}$ lorsque n tend vers ∞ .