

Sahi Prep Hai Toh Life Set Hai

TRIANGLE-4

->12-15 min

INTERNAL ANGLE BISECTOR THEOREM

Given AD is angle bisector of \angle BAC.

$$\frac{AB}{AC} = \frac{BD}{DC}$$

2 Jg PQ = 20cm PR= 25cm 2 QR= 30cm FindPS= ??? 5n= 25

E.g. In a \triangle ABC, AD is the angle bisector of \angle BAC, where D is point on BC. If AB = 20 cm, AC = 25 cm, BC = 18 cm, find the length of DC.

LENGTH OF ANGLE BISECTOR

CONVERSE OF ANGLE BISECTOR THEOREM

$$\frac{AB}{AC} = \frac{BD}{DC}$$

Then AD \rightarrow Angle bisector of \angle BAC.

EXTERNAL ANGLE BISECTOR THEOREM

Def: Meeting point of Angle Bisector.

I -> Incentur

If you take any point on the angle bisector of $\angle A$, then that point is equidistant from the sides AB and AC.

Incentu is equidistant from sides of D

Incentre is the centre of the circle inscribed in a triangle and it is equidistant from the sides of the triangle.

13

Area of DABC - Area of (DAIB + DBIC+ ACIA)

= 21.5

The bisector of $\angle A$ of $\triangle ABC$ may or may not intersect side BC at point E where the incircle touches the side BC of the triangle and the same is true for other angle bisectors.

Area of $\Delta = \mathbf{r} \cdot \mathbf{s}$

Where, r is the inradius of ∆ABC and s is semi-perimeter

If I is the incentre of $\triangle ABC$,

$$\angle BIC = 90 + \frac{\angle A}{2}$$

I've Incentur of DAIC

Find (BIC = ??

135 26

The external angle bisectors of $\angle B$ and $\angle C$ meet at point E.

$$\angle BEC = 90 - \frac{\angle A}{2}$$

B+ C+ 90-C + COTC = 180 DBTC B+5+CBFC = 90 B/C+4/2 +CBTC= 72+8/2+8/2

Eg. The bisectors of the internal angle $\angle B$ and external angle $\angle C$ of a triangle ABC intersect at O. If $\angle BOC = 50$, then $\angle A$ is:

(b) 60

(c) 120

(d) 90

1 BOC

In a \triangle ABC, **I** is the incentre

$$\frac{AI}{ID} = \frac{b+c}{a}$$

AABD

$$\frac{AB}{BD} = \frac{AI}{ID}$$

$$\frac{\cancel{E}(Ct)}{\cancel{E}} = \frac{AI}{ID}$$

$$\cancel{CQ} = \frac{AI}{ID}$$

E.g. In a \triangle ABC, AD is the angle bisector of \angle A meeting BC at D. If AB = 11 cm, BC = 15 cm and AC = 19 cm Find AI : ID (where I is the incentre of \triangle ABC)

E.g. In a \triangle ABC, AE is perpendicular to BC and AD is the angle bisector of \angle BAC meeting BC at E and D respectively. If \angle B = 50 and \angle C = 65.

Find ∠EAD.

CIRCUM CENTRE

Def: M eeting point of all perpendicular bisector.

Any point on perpendicular bisector of AB, is equidistant from the end points of line segment AB.

Circum centre is equidistant from the vertices of triangle.

CIRCUM RADIUS (R) =
$$\frac{abc}{4\Delta}$$

POSITION OF CIRCUM CENTRE

(1) Acute angle $\Delta \rightarrow$ lies inside the Δ

(2) Right angle ∆ → mid-point of hypotenuse

E.g. If O be the circumcentre of a triangle PQR and \angle QOR =110, \angle OPR = 25, the measure of \angle PRQ is:

(1) In all Δ 's O, G & Care collinear.

(2) In Isosceles Δ , O, G, C and I are collinear.

(3) In Equilateral Δ , O, G, C and I are coincide.

All Mathematics
My Knowledge

 \approx

Euler's Line

Centroid divides the line segment which joins orthocentre & circumcentre in 2 : 1.

OG:GC=2:1

Distance between Cand I

$$D = \sqrt{R^2 - 2Rr}$$

where,

R → circumradius

 $r \rightarrow inradius$

$$R^2-2Rr\geq 0$$

$$R^2 \ge 2Rr$$

$$R \ge 2r$$

$$\frac{R}{-} \geq 2$$

Equilateral Δ

$$\frac{R}{r}=2$$

Distance between G and C

$$D^2 = R^2 - \frac{1}{9}(a^2 + b^2 + c^2)$$

where,

R → circumradius

a, b, c are sides of Δ

Sahi Prep Hai Toh Life Set Hai

Practise topic-wise quizzes

Keep attending live classes

