識別記号

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平11-115882

(43)公開日 平成11年(1999)4月27日

(51) Int CL°	
B63B	35/44
	21/00

FΙ

B 6 3 B 35/44

· C

21/00

(74)代理人 弁理士 曾我 道照

(外6名)

審査請求 未請求 請求項の数8 OL (全 6 頁)

		在 宣射水	木間水 間水項の数8 しし (主 6 貝)
(21)出願番号	特顯平9-28806 9	(71)出願人	591043477 寄神建設株式会社
(22)出顧日	平成9年(1997)10月21日	(71)出顧人	兵庫県神戸市兵庫区七宮町2丁目1番1号 000000240 太平洋セメント株式会社 東京都千代田区西神田三丁目8番1号
		(72)発明者	西脇 裕二 兵庫県神戸市兵庫区七宮町2-1-1 寄 神建設株式会社内
		(72)発明者	石川 寛 大阪府大阪市北区梅田1-8-17 秩父小 野田株式会社内

(54) 【発明の名称】 コンクリートプラント船

(57)【要約】

【課題】 この発明は、荒天時であっても品質が均一な コンクリートの安定供給が可能で且つどのような場所で も確実に係留することができるコンクリートプラント船 を提供することを課題とする。

【解決手段】 岸壁8の近傍の海底にスパット10の下端部を着底させて台船2を水面の上方に固定し、材料供給船5の各サイロ12~14内のコンクリート材料を材料供給ベルトコンベヤ15により台船2の受入れホッパー6へ供給し、さらにベルトコンベヤ7によって計量ホッパー4へ搬送してコンクリートプラント3によりコンクリートの製造を行う。製造されたコンクリートはアジテータ車17に積み込まれ、アジテータ車17は台船2からランプウエイ9を陸上へと渡り、打設目的箇所へ移動する。

BEST AVAILABLE COPY

1

【特許請求の範囲】

【請求項1】 台船と、

前記台船上に搭載されたコンクリートプラントと、 前記台船に昇降自在に設けられた複数のスパットとを備 え、複数のスパットを降下して海底に着底させることに より前記台船を水面の上方に固定した状態で前記コンク リートプラントを稼働させることを特徴とするコンクリ ートプラント船。

【請求項2】 前記台船の近傍に係留された材料供給船 ーを備えた請求項1に記載のコンクリートプラント船。 【請求項3】 陸上に設置された材料ヤードから前記コ ンクリートプラントへコンクリート材料を搬送するため の材料搬送手段を備えた請求項1または2に記載のコン クリートプラント船。

【請求項4】 前記台船と岸壁とを連絡してアジテータ 車を通行させるためのランプウエイを備えた請求項1~ 3のいずれか一項に記載のコンクリートプラント船。

【請求項5】 前記コンクリートプラントで製造された コンクリートを打設現場に直接供給するためのディスト 20 リビュータを備えた請求項1~4のいずれか一項に記載 のコンクリートプラント船。

【請求項6】 プレクーリング用の冷却プラントを備え た請求項1~5のいずれか一項に記載のコンクリートプ ラント船。

【請求項7】 海水からコンクリート製造に用いる淡水 を生成する淡水化装置を備えた請求項1~6のいずれか 一項に記載のコンクリートプラント船。

【請求項8】 コンクリート材料を収容する材料ストッ カを備えた請求項1~7のいずれか一項に記載のコンク 30 リートプラント船。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、コンクリートプ ラント船に係り、特にコンクリートプラントが搭載され た台船をスパットを用いて水面の上方に固定することが できる自己昇降式のコンクリートプラント船に関する。 [0002]

【従来の技術】陸地から離れている島や埋立地等にコン クリートの打設を行う場合に、新たにコンクリート製造 40 プラントを築造しようとすると、広大な築造場所と莫大 な費用がかかると共に必要に応じて打設が完了した後に プラントを撤去しなければならない。そこで、台船上に コンクリートプラントを搭載したコンクリートミキサ船 が従来から用いられている。陸上のコンクリートの打設 目的箇所に近い海上位置までコンクリートミキサ船を移 動し、プラントで製造されたコンクリートをベルトコン ベヤ、ボンプ圧送等により目的箇所に打設したり、ある いはアジテータ車を用いて打設目的簡所までコンクリー トを搬送する。

【0003】このようなコンクリートミキサ船を用いる ことにより、新たにコンクリート製造プラントを築造す

ることなく陸上の目的箇所へのコンクリートの打設が可 能になる。また、コンクリートの打設が完了した後は、 コンクリートミキサ船を移動させるだけでよく、一旦築

造したプラントを撤去する必要がない。

[0004]

【発明が解決しようとする課題】しかしながら、従来の コンクリートミキサ船は、海上に浮いた台船上のプラン からコンクリート材料を受け入れるための受入れホッパ 10 トでコンクリートを製造するため、うねりや波高の高い 荒天時には台船と共にプラントが動揺し、コンクリート 材料の計量誤差が生じて品質が均一なコンクリートを安 定して供給することが困難であるという問題点があっ た。また、従来のコンクリートミキサ船においては、台 船上にウインチを搭載し、岸壁の係留設備を利用すると 共に台船の後方へアンカーを投錨して台船の係留を行っ ていた。このため、岸壁に係留設備がない場合や、台船 の後方へアンカーを投錨できるような広大な工事区域を 確保できない場合には、台船の係留が困難になるという 問題点もあった。この発明はこのような問題点を解消す るためになされたもので、荒天時であっても品質が均一 なコンクリートの安定供給が可能で且つどのような場所 でも確実に係留することができるコンクリートプラント 船を提供することを目的とする。

[0005]

【課題を解決するための手段】この発明に係るコンクリ ートプラント船は、台船と、台船上に搭載されたコンク リートプラントと、台船に昇降自在に設けられた複数の スパットとを備え、複数のスパットを降下して海底に着 底させることにより台船を水面の上方に固定した状態で コンクリートプラントを稼働させるものである。なお、 コンクリート材料は、台船の近傍に係留された材料供給 船から受入れホッパーを介して供給する、あるいは陸上 に設置された材料ヤードから材料搬送手段を介して供給 するようにすることができる。また、製造されたコンク リートは、台船と岸壁とをランプウエイで連絡してアジ テータ車により搬送する、あるいはディストリビュータ により打設現場に直接供給することができる。さらに、 プレクーリング用の冷却プラント、海水から淡水を生成 する淡水化装置、コンクリート材料を収容する材料スト ッカを備えることもできる。

[0006]

【発明の実施の形態】以下、この発明の実施の形態を添 付図面に基づいて説明する。

実施の形態1.図1~3にこの発明の実施の形態1に係 るコンクリートプラント船1を示す。台船2上の中央部 に2系列のコンクリートプラント3が搭載されている。 各コンクリートプラント3は、計量ホッパー4を有する と共に、図示しないミキサ及びコンクリート供給部等を 50 備えている。また、台船2上の後部には、各コンクリー

トプラント3に対応して材料供給船5からコンクリート 材料を受け入れるための二つの受入れホッパー6が設け られると共に各受入れホッパー6に受け入れられたコン クリート材料を対応するコンクリートプラント3の計量 ホッパー4へ搬送するためのベルトコンベヤ7が設けら れている。一方、台船2上の前部には、岸壁8と台船2 とを連絡するランプウエイ9が回動自在に設けられている

【0007】さらに、台船2の四隅には、それぞれスパット10が立設されている。各スパット10は、台船2 10 する。を鉛直方向に貫通しており、それぞれ昇降機構11によって昇降可能に設けられている。各スパット10を上昇させると、台船2は海面に浮かび、曳航船等によって海上を自由に曳航することができる。一方、各スパット1 0を下降させてその下端部を海底に着底させ、さらに台船2に対してスパット10を下降させると、相対的に台船2はスパット10に対して上昇し、図1及び図3に示されるように台船2を水面の上方に固定することができる。

【0008】このような実施の形態1に係るコンクリー 20トプラント船1の動作について説明する。まず、各スパット10を上昇させて台船2を海面に浮かべ、曳航船等によって海上を曳航して、陸上のコンクリートの打設目的箇所に近い岸壁8の近傍まで移動させる。ここで、台船2の四隅に設けられた昇降機構11により各スパット10を下降し、各スパット10の下端部を海底に着底させる。さらに、昇降機構11で各スパット10を下降させることにより、台船2を相対的にスパット10に対して上昇させ、図1及び図3に示されるように台船2を水面の上方に固定する。これにより、海上にうねりや高い 30波があっても、台船2は動揺することなく、確実に固定される。さらに、図1及び図2に示されるように、台船2の前部に設けられたランプウエイ9を回動して岸壁8と台船2とを連絡させる。

【0009】次に、台船2の後方の海上に材料供給船5を位置させ、アンカーを投錨して係留させる。材料供給船5は、粗骨材サイロ12、細骨材サイロ13及びセメントサイロ14を有すると共にこれらのサイロ内に格納されたコンクリート材料を搬送する材料供給ベルトコンベヤ15を有している。材料供給船5が係留された後、材料供給船5の材料供給ベルトコンベヤ15の一端が台船2の受入れホッパー6に連結される。なお、材料供給船5の各サイロには材料運搬船16を介してそれぞれ材料が供給される。

水面の上方に固定されているので、海上のうねりや波の 影響を受けにくく、荒天時であっても陸上のプラントと 同様の精度で計量を行うことができる。従って、品質が 均一なコンクリートを安定して製造することが可能とな

【0011】製造されたコンクリートは、コンクリートプラント3の図示しないコンクリート供給部からアジテータ車17に積み込まれ、アジテータ車17は台船2からランプウエイ9を陸上へと渡り、打設目的箇所へ移動する。

【0012】なお、昇降機構11により台船2の水面上の高さ位置を調節することができるので、岸壁8の高さに無関係にランプウエイ9の角度を一定にすることが可能となる。また、従来のように台船2が海面に浮かんでいるのであれば、台船2上の全重量の変化による喫水差に応じてランプウエイ9の角度が変わるが、この発明においては台船2が海面の上方に固定されるため、台船2上の全重量が変化してもランプウエイ9の角度が変わることはない。従って、アジテータ車17はランプウエイ9上をスムーズに走行することができる。

【0013】台船2は鉛直方向に移動する4本のスパット10により海面の上方に固定されるので、岸壁8の係留設備を利用したり、アンカーを投錨して台船2を係留させる必要がない。このため、他の船舶等との接触の惧れが少なく、狭い工事区域でも作業を行うことができる。また、台船2上に係留用のウインチを搭載する必要もない。

【0014】実施の形態2.図4及び5に実施の形態2に係るコンクリートプラント船21を示す。このコンクリートプラント船21は、図1~3に示した実施の形態1のコンクリートプラント船1において、材料供給ベルトコンベヤ22は、岸壁8に設置された材料ヤード23からコンクリートプラント3の計量ホッパー4までコンクリート材料を搬送するための材料搬送手段となるもので、この実施の形態2においては、材料供給船5を用いず、陸上の材料ヤード23からコンクリート材料のコンクリートプラント3への供給が行われる。

【0015】すなわち、岸壁8の近傍の海底にスパット 10の下端部を着底させて、台船2を水面の上方に固定 し、ランプウエイ9で岸壁8と台船2とを連絡させると 共に材料供給ベルトコンベヤ22の先端を岸壁8上の材 料ヤード23に連結する。材料ヤード23に格納されて いたコンクリート材料が材料供給ベルトコンベヤ22に より台船2のコンクリートプラント3の計量ホッパー4 へ搬送され、海上のうねりや波の影響を受けることな く、品質が均一なコンクリートが安定して製造される。 製造されたコンクリートはアジテータ車17に積み込ま れ、アジテータ車17は台船2からランプウエイ9を陸 50 トへと渡り、打設目的箇所へ移動する。

【0016】 このように、岸壁8に材料ヤード23を設 置できれば、あるいは予め材料ヤード23が設置されて いる岸壁8においては、材料供給船5及び材料運搬船1 6を用いることなく台船2のコンクリートプラント3に 材料を供給することができ、さらに狭い工事区域であっ ても作業を行うことが可能となる。

【0017】実施の形態3. 図6~8に実施の形態3に 係るコンクリートプラント船31を示す。このコンクリ ートプラント船31は、図1~3に示した実施の形態1 のコンクリートプラント船1において、台船2の前部に 10 コンクリート打設用のディストリビュータ32を設けた ものである。例えば、沖合等の水深の大きい場所に打設 目的箇所33がある場合には、アジテータ車17でコン クリートを搬送することができないので、台船2に設け たディストリビュータ32を用いて目的箇所33にコン クリートを直接打設することが望ましい。

【0018】すなわち、打設目的箇所33の近傍の海底 にスパット10の下端部を着底させて、台船2を水面の 上方に固定し、ディストリビュータ32の先端を打設目 的箇所33へ向ける。また、台船2の後方の海上に材料 20 ルトコンベヤ63を設けたものである。 供給船5を係留させ、材料供給船5の材料供給ベルトコ ンベヤ15の先端を台船2の受入れホッパー6に連結さ せる。材料供給船5の各サイロ12~14に格納されて いたコンクリート材料が材料供給ベルトコンベヤ15に より台船2の受入れホッパー6へ供給され、さらに台船 2のベルトコンベヤ7によってコンクリートプラント3 の計量ホッパー4へ搬送され、海上のうねりや波の影響 を受けることなく、品質が均一なコンクリートが安定し て製造される。製造されたコンクリートはディストリビ ュータ32を介して目的箇所33へ打設される。

【0019】 このように、台船2にディストリビュータ 32を設けることにより、コンクリートプラント3で製 造されたコンクリートを目的箇所33に直接打設するこ とが可能となる。

【0020】実施の形態4. 図9に実施の形態4に係る コンクリートプラント船41を示す。このコンクリート プラント船41は、図1~3に示した実施の形態1のコ ンクリートプラント船1において、コンクリートプラン ト3に隣接してプレクーリング用の冷却プラント42を 設けたものである。冷却プラント42としては、粗骨 材、細骨材及びセメント等の材料を冷却する装置、練混 ぜ水を冷却する装置、練混ぜ水の代わりに用いる氷を製 造する装置、練混ぜ中のコンクリートを冷却する装置、 製造されたコンクリートを冷却する装置等のいずれを用 いることもできる。また、冷却の方法としては、冷水、 冷風、冷凍機、製氷機、液体窒素、ドライアイス等によ る各種の方法を用いることができる。

【0021】このような冷却プラント42を備えること により、マスコンクリート、暑中コンクリートに対応し た良質のコンクリートを安定して製造・供給することが 50 可能となる。

【0022】実施の形態5. 図10に実施の形態5に係 るコンクリートプラント船51を示す。このコンクリー トプラント船51は、図1~3に示した実施の形態1の コンクリートプラント船1において、台船2上に淡水化 装置52を設けたものである。淡水化装置52は、海水 を取り込んで、海水からコンクリート製造に用いる淡水 (練混ぜ水)を生成する装置である。

- 6

【0023】このような淡水化装置52を備えることに より、台船2の周辺に豊富に存在する海水を用いて淡水 を生成することができ、材料供給船5あるいは陸上から コンクリートプラント3に淡水を供給しなくても済む。 【0024】実施の形態6. 図11に実施の形態6に係 るコンクリートプラント船61を示す。このコンクリー トプラント船61は、図1~3に示した実施の形態1の コンクリートプラント船1において、台船2上にコンク リート材料を収容する材料ストッカ62を設けると共 に、材料ストッカ62内のコンクリート材料をコンクリ ートプラント3の計量ホッパー4へ搬送する材料供給べ

【0025】このような材料ストッカ62を台船2上に 備えることにより、材料供給船5あるいは陸上からコン クリートプラント3にコンクリート材料を供給しなくて も、コンクリートの製造を行うことができる。従って、 材料供給船5を係留させる程の広い工事区域を確保でき ない場合や、岸壁8に材料ヤード等の施設がない場合で あっても、材料ストッカ62の材料収容量に応じた量の コンクリートを製造することが可能となる。

【0026】なお、上述した各実施の形態に係るコンク 30 リートプラント船においては、台船2上に2系列のコン クリートプラント3が搭載されているので、要求される コンクリート供給量に応じて、いずれか一方のコンクリ ートプラント3あるいは双方のコンクリートプラント3 を稼働させることができる。また、コンクリートプラン ト3は2系列に限るものではなく、1系列のみ、あるい は3系列以上のコンクリートプラントを搭載してもよ

【0027】図9~図11に示した実施の形態4~6に おいては、いずれもランプウエイ9で台船2と岸壁8と を連絡し、アジテータ車によりコンクリートを打設現場 40 へ搬送する形式で図示されたが、実施の形態3のように ディストリビュータを備え、打設目的箇所にコンクリー トを直接打設するように構成してもよい。さらに、実施 の形態4~6においては、それぞれ台船2上に冷却プラ ント42、淡水化装置52及び材料ストッカ62を備え たが、これら冷却プラント42、淡水化装置52及び材 料ストッカ62の設備の全て、あるいはいずれか二つの 設備を一つの台船2上に備えるようにしてもよい。

[0028]

【発明の効果】以上説明したように、この発明によれ

ば、スパットにより台船を水面の上方に固定した状態で コンクリートプラントを稼働することにより、うねりや 波高の高い荒天時であっても品質が均一なコンクリート を安定して製造することが可能となる。また、岸壁の係 留設備やアンカーを用いることなく、スパットによって 台船を固定するため、狭い工事区域でも作業を行うこと ができる。

【図面の簡単な説明】

【図1】この発明の実施の形態1に係るコンクリートプラント船を示す側面図である。

【図2】実施の形態1に係るコンクリートプラント船を示す平面図である。

【図3】実施の形態1に係るコンクリートプラント船を示す正面図である。

【図4】実施の形態2に係るコンクリートプラント船を示す側面図である。

【図5】実施の形態2に係るコンクリートプラント船を示す平面図である。

【図6】実施の形態3に係るコンクリートプラント船を示す側面図である。

【図7】実施の形態3に係るコンクリートプラント船を 示す平面図である。

【図8】実施の形態3に係るコンクリートプラント船を示す正面図である。

【図9】実施の形態4に係るコンクリートプラント船を

示す平面図である。

【図10】実施の形態5に係るコンクリートプラント船を示す平面図である。

8

【図11】実施の形態6に係るコンクリートプラント船を示す平面図である。

【符号の説明】

- 1,21,31,41,51,61 コンクリートプ ラント船
- 2 台船
- 10 3 コンクリートプラント
 - 4 計量ホッパー
 - 5 材料供給船
 - 6 受入れホッパー
 - 7 ベルトコンベヤ
 - 8 岸壁
 - 9 ランプウエイ
 - 10 スパット
 - 11 昇降機構
 - 17 アジテータ車
- 20 22,63 材料供給ベルトコンベヤ
 - 23 材料ヤード
 - 32 ディストリビュータ
 - 42 冷却プラント
 - 52 淡水化装置
 - 62 材料ストッカ

【図1】

【図3】

【図9】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.