P Vs NP Problem

Sr.No	Key Points	P Class	NP Class
1	Problem Nature	P problems are decision problems that can be solved efficiently in polynomial time	NP problems are decision problems for which a proposed solution can be verified efficiently in polynomial time
2	Solving vs. Verifying	P focuses on finding a solution to a problem efficiently	NP focuses on verifying a given solution efficiently
3	Algorithm Efficiency	P problems have algorithms that can solve them in polynomial time	NP problems may have algorithms to verify solutions in polynomial time but may not have known algorithms to solve them efficiently.
4	Algorithm Complexity	P problems have deterministic algorithms with known time complexity	NP problems generally lack known deterministic algorithms with efficient time complexity.
5	Potential Equivalence	If P = NP, it implies that problems with verified solutions also have efficient algorithms to find solutions.	If P ≠ NP, it means that finding solutions may be significantly more challenging than verifying them.
6	Deterministic vs. Non- deterministic	P problems are solvable by deterministic algorithms (always produce the same output for a given input).	deterministic algorithms
7	Certainty vs. Guessing	P problems are about certainty—finding a solution deterministically.	NP problems may involve a level of "guesswork" in finding a potential solution that can be efficiently verified.
8	Algorithm Speed	Algorithms for P problems run in a predictable,	-

		efficient manner based on	can vary based on the
		the size of the input.	"lucky guesses" made
			during the solving
			process.
9	Complexity	P is a subset of NP (P ⊆	It is unknown whether P
	Classes	NP), as any problem that	is equal to NP (P = NP) or
		can be solved quickly (in	not (P ≠ NP), and this is
		P) can also be verified	the essence of the P vs.
		quickly (in NP).	NP problem.
10	Examples	Selection sort, Linear	Travelling salesman
		Search	problem and the
			knapsack problem.

