Multimedia Course

Multimedia Course

By

Dr. Mai Kamal El Den

Lecturer, Computer Science Department,
Faculty of Computers and Artificial Intelligence,
Benha University

Multimedia Course CSx58

Teams Link

https://teams.microsoft.com/l/team/19%3aY1IWWnAYjMb fpfphN770t sAvrDZz01ElBVMa-

oy2Dw1%40thread.tacv2/conversations?groupId=3677812 3-7bfe-4c77-86a1-fb733e69007c&tenantId=ff4a48d6-

4b5e-4fd3-8266-7eafc3e6e23e

Multimedia Course

Lecture 6

Multimedia Data Representations

Video Data Representations

Purpose of Using Video

- Video is an excellent tool for delivering multimedia.
- Video is the technology of electronically capturing, recording, processing, storing, transmitting, and reconstructing a sequence of still images representing scenes in motion.
- Digital video device produces excellent finished products
 at a fraction of the cost of analog.
- The video places the highest performance demand on the computer and its memory and storage.

Video Image or Frame

The video image is a projection of a 3-D scene onto a 2-D plane.

- 3-D scene consisting of several objects each with depth, texture, and illumination projected onto a plane to form a 2-D representation of the scene.
- The 2-D representation contains varying texture and lumination but no depth information.

Graphics and Video: Movies

- **Video** is an effective way to present information that cannot be delivered by any other media because it can convey meaning and information in a relatively shot period of time.
- Video or movie, is a series of images (frames) that slightly differ one from another, passing them one after the other at a certain speed (frame rate) will give the illusion of movement.
- Digital video has replaced analog video as the method of choice for making and delivering video for multimedia.
- Video can created from a variety of sources, one of them is signals themselves.

Graphics and Video: Movies

- Frame rate is the speed of flipping the frames one after another.
- **Films** are usually shot and displayed at 24 frames per seconds (**fps**).
- TV pictures are presented at between 25 and 30 fps, depending on what country you live in.
- High definition TV,uses 60 fps.

Sources of Video

Video Cassette Recorder (VCR)

Laser Disc

Betacam

Camcorder

How Video Works?

• When light reflected from an object passes through a video camera lens, that light is converted into an electronic signal by a special sensor called a **charge-coupled device** (CCD).

Video Image or Frame

In order to represent and process a visual scene digitally it is necessary to sample the real scene spatially and temporally.

Video Types

- Video classified into two categories:
 - Analog video is represented as a continuous (time-varying) signal.
 - ➤ Digital video is represented as a sequence of digital images.

Analog Signal

if signal is weak, picture is weak, lots of static

both signals weaken over distance

Digital ||))

as long as tv is receiving a signal, picture is perfect

- Video Information is stored using television video signals, film, videotape or other noncomputer media.
- Each frame is represented by a fluctuating voltage signal know as an analogue wave form.

is represented as a continuous time signal.

Each line in the video image represents continuous measurements of the color and brightness along the

horizontal axis.

 Analog video has a resolution measured in the number of horizontal scan lines (due to the nature of early cathode-tube cameras).

- Two different types of scanning systems used to "paint" the image on the screen.
 - Television signals and compatible displays are typically interlaced.
 - Computer signals and compatible displays are typically progressive.
- These two formats are incompatible with each other; one would need to be converted to the other before any common processing could be done.

Digital Video

- Digital video combines features of graphics and audio to create dynamic content for multimedia products.
- Video is simply moving pictures.
- Video is represented as a sequence of discrete images (frames) shown in quick succession.
- **Digital video** can be edited more easily.
- **Digital video file** can be extremely large.

Why Digital Video?

- The advantages of digital representation for video:
 - Storing video on digital devices or in memory, ready to be processed (noise removal, cut and paste, and so on) and integrated into various multimedia applications.
 - Direct access, which makes nonlinear video editing simple.
 - Repeated recording without degradation of image quality.
 - Ease of encryption and better tolerance to channel noise.

Exercises

 Consider a 2 hours film to be displayed on a computer at 24 fps. Each frame is 640x380 pixels and a 24-bit RGB color encoding is being used. How many bytes will be required represent the whole file?

- **Answer:** The number of pixels in one frame = 640 * 380 = 243200pixels.
 - The number of bytes needed to represent one frame = 243200 * 3 = 729600 bytes.
 - The number of seconds in 2 hours = 2 * 60 * 60 = 7200seconds.
 - \blacksquare The number of frames in 2 hours = 7200 * 24 = 172800 frames.
 - The number of bytes needed to represent the whole film = 172800 * 729600 = 126074880000 bytes.

 $= 126074880000 / 2^{30} = 117.416 \text{ GB}.$

Convert from Analog to Digital **Video**

- Digital video is the digitizing of analog video signals into numerical format.
- It creates the illusion of full motion by displaying a rapid sequence of charging images on a display device.
- Conversion from analog to digital requires the use of an ADC(Analog to Digital Converter).
- DCA (Digital to Analog Converter) can be used to

Convert from Analog to Digital Video

- Video source (video camera, VCR, or videodisk) is connected to a Video Capture Card (VCC) into a computer.
- As the video source is played, the analog signal is sent to the video card and convert into digital file (include sound from video).

Representation of Digital Video

- Two Important Properties for Video Representation
 - Frame rate: the number of frame per second.

• Scanning format: converting the video to 1D signal.

Dr Mai Kamal 2024

45

Analog Video Scanning(1) **Interlacing Scanning**

Analog Video Scanning(1) **Interlacing Scanning**

In fact, the odd lines (starting from 1) end up at the middle of a line at the end of the odd field, and the even scan starts at a half-way point.

- First the solid (odd) lines are traced—P to Q, then R to S, and so on, ending at T.
- **Then** the even field starts at U and ends at V.
- The scan lines are not horizontal because a small voltage is applied, moving the electron beam down over time.

49

Analog Video Scanning(1) **Interlacing Scanning**

- Interlacing was invented because, when standards were being defined, it was difficult to transmit the amount of information in a full frame quickly enough to avoid flicker, the double number of fields presented to the eye reduces the eye perceived flicker.
- The **jump** from *Q* to *R* and so on is called the *horizontal retrace*, during which the electronic beam in the CRT is blanked.
- The **jump** from T to U or V to P is called the *vertical retrace*.

Analog Video Scanning (2)Progressive Scanning

- A progressive (non-interlaced) image is painted on the screen by scanning all of the horizontal lines of the image in one pass from the top to the bottom.
- Require more bandwidth, however it not produce flicker and artifacts.

o Sc	anning	
<u>Com</u>	<u>parison</u>)
а	Progressive	Camera

Progressive Camera
Application: Digital cameras
Scanning: Sequential order
Transferring a frame at once
1/60 s
Computer-based systems
Better moving object images
No flicker
Higher vertical resolution

Video Color Transforms

- Video is represented by a sequence of fields (odd/and even lines). Two fields make a frame.
- Cameras, televisions, phones and computer monitors use the additive color model(RGB color model).
- YUV is used to transmit TV signals.
- In Europe, videotape uses the PAL or SECAM coding's, which are based on TV that uses a matrix transform called YUV.
- The luminance (brightness), Y, is retained separately from the chrominance (color).

YUV Color Model

- The Y component determines the brightness of the color (referred to as luminance or luma), while the and V components determine the color itself (it is called Chroma).
- U is the axis from blue to yellow and V is the axis from magenta to cyan.
- Y ranges from 0 to 1 (or 0 to 255 in digital formats), while U and V range from -0.5 to 0.5 (or -128 to 127 in signed digital form, or 0 to 255 in unsigned form).

YUV Color Model

- The Y is the component of a television signal which carries information on the brightness of the image.
- Y(Luminance) is the intensity of light emitted from a surface per unit area in a given direction.
- Chrominance refers to the difference between a color and a reference white at the same luminance.

YUV Color Model

RGB To YUV

$$Y = W_R R + W_G G + W_B B$$

$$U = U_{max} \frac{B - Y}{1 - W_B}$$

$$W_R = 0.299$$

 $W_B = 0.114$
 $W_G = 1 - W_R - W_G = 0.587$

$$V = V_{max} \frac{R - Y}{1 - W_R}$$

$$U_{max} = 0.436$$
$$V_{max} = 0.615$$

YUV To RGB

$$R = Y + V \frac{1 - W_R}{V_{max}}$$

$$G = \frac{Y}{W_G} - U \frac{W_B(1 - W_B)}{U_{max}W_G} - V \frac{W_R(1 - W_R)}{V_{max}W_G}$$

$$B = Y + U \frac{1 - W_B}{U_{max}}$$

Video Broadcasting (in analog form

Video Broadcasting (in analog form

- Video signals captured by digital cameras are represented in the RGB color space.
- For transmission, the YUV space is commonly used.
- Experiments with the human visual system have shown that this reduction in bandwidth still maintains an acceptable quality of video for broadcast.
 - Depending on the way subsampling is done, a varity of subsampling ratios can be achieved.

 Keeping the luminance untouched and subsampling the chrominance.

4:1:1

Example_1:

4:2:0 co-sited

Example_2:

– Subsample the following image with 4:2:2 and 4:2:0 sampling ratio?

	1	Y			1	U			,	V	
240	30	88	214	30	70	55	120	25	70	35	31
75	230	90	240	160	20	115	140	28	22	24	26
111111			210	-	_	_	135		20	_	-
200	150	95	60	200	100	55	60	40	56	31	33

	Y		U						,	V		
240	30	88	214	30	70	55	120		25	70	35	31
	7.77		240	160	20	115	140		28	22	24	26
	-	-	210	150	30	120	135		-	-	23	_
200	150	95	60	200	100	55	60		40	56	31	33

)	Y		1		U	V		
200	150	95	60	200	55	П	Т	
150	80	100	210			20	23	
75	230	90	240	160	115			
240	30	88	214			25	35	
Y					U		V	

	1	Y.			U		V
240	30	88	214	30	55	25	35
75	230	90	240	160	115	28	24
150	80	100	210	150	120	20	23
200	150	95	60	200	55	40	31

LEC.7: MORE ABOUT **VIDEO DATA REPRESENTATIONS**

Dr Mai Kamal 2024

Any question?

