Кратчайшие пути в графе

Лекция 5

Кратчайший путь

Пусть задан связный ориентированный граф G = (V, E) с весовой функцией $w: E \to R^+$.

Вес пути $p=\langle v_0,v_1,...,v_k \rangle$ равен суммарному весу входящих в него ребер:

$$\delta(p) = \sum_{i=1}^k w(v_{i-1}, v_i)$$
 , где $(v_{i-1}, v_i) \in E$

Вес кратчайшего пути из вершины v в вершину u определяется соотношением $\delta(v,u) = \begin{cases} \min\{\delta(p)|\ p-\text{путь из } v \text{ в } u\}, \text{ если существуют пути } p \text{ из } v \text{ в } u \\ \infty, \text{ в противном случае.} \end{cases}$

Кратчайший путь ≡ путь минимального веса (вес=длина).

Кратчайшее расстояние между вершинами ≡ длина кратчайшего пути между ними

Разновидности задач о кратчайших путях

- \blacktriangleright Найти кратчайшее расстояние от заданной вершины s до остальных вершин (Алгоритм Дейкстры).
- ightharpoonup Найти кратчайшее расстояние от заданной вершины s до вершины t (Алгоритм Дейкстры).
- \blacktriangleright Найти кратчайшее расстояние от любой вершины до заданной вершины s (Алг Дейкстры наоборот).
- ▶ Найти кратчайшее расстояние между всеми парами вершин (п раз Алг Дейкстры или Алг Флойда-Уоршалла).

Алгоритм Дейкстры $(w: E \rightarrow R^+)$

Найти кратчайшее расстояние от заданной вершины s до остальных вершин

- ightharpoonup W множество вершин, для которых уже вычислены кратчайшие расстояния из s.
- $\delta(x)$ вес минимального пути из s в x.
- $\pi(x)$ предпоследняя вершина в минимальном пути из s в x.
- 1. Положить $W = \emptyset$, $\delta(s) = 0$, $\delta(x) = \infty$, $\forall x \in V \setminus \{s\}$
- 2. Пока $W \neq V$ выполнять:
 - 1. Найти $x \in V \setminus W$, такую, что $\delta(x) = \min\{\delta(y) | y \in V \setminus W\}$
 - 2. $W := W \cup \{x\};$
 - 3. Для всех $y \in V \setminus W$

Если
$$\delta(y) > \delta(x) + w(x,y)$$
, то $\delta(y) = \delta(x) + w(x,y)$, $\pi(y) = x$;

Массив $\pi(x)$ нужен для восстановления кратчайшего пути в вершину x (узнаем предыдущую для x (это $\pi(x)$), для нее ее предыдущую и так до x0 мак до x1 мак до x2. Кратчайшие пути

Алгоритм Дейкстры

	S	Α	В	С	D
$\delta(x)$	0	8	8	8	8
S		10		5	

	Α	В	С	D
$\delta(x)$	10	8	5	8
C	8	14		11

		Α	В	D
δ((x)	8	14	11
A	4		9	

		В		D
$\delta(x)$		9		11
D	-		-	10

$$W = \emptyset$$

Находим вершину с мин δ , это S Обновляем $\delta(A)$, $\delta(C)$,

$$W = \{S\}$$

Находим вершину с мин δ , это C

Обновляем $\delta(A)$, $\delta(B)$, $\delta(D)$

$$W = \{S, C\}$$

Находим вершину с мин δ , это A

Обновляем $\delta(B)$

$$W = \{S, C, A\}$$

Находим вершину с мин δ , это B Обновляем $\delta(D)$

Алгоритм Дейкстры. Теорема

Теорема 1

Алгоритм Дейкстры находит кратчайшие пути из вершины s до каждой из остальных вершин за время $O(|V|^2)$.

Доказательство. Покажем, что на каждой итерации:

- а) $\forall x \in W$ величина $\delta(x)$ равна длине кратчайшего из путей от s до x.
- б) $\forall y \in V$ величина $\delta(y)$ равна длине кратчайшего из путей от s до y, все промежуточные вершины которых принадлежат W.

Так как в конце работы алгоритма W=V, то из а) следует, что $\delta(x)$ — вектор кратчайших расстояний.

Алгоритм Дейкстры. Теорема продолжение

- ... Покажем, что на каждой итерации:
- а) $\forall x \in W$ величина $\delta(x)$ равна длине кратчайшего из путей от s до x.
- б) $\forall y \in V$ величина $\delta(y)$ равна длине кратчайшего из путей от s до y, все промежуточные вершины которых принадлежат W.

Докажем по индукции. При $W = \{s\}$ утверждения а) и б) верны.

Пусть а) и б) верны до некоторого шага, покажем, что они остаются верны.

На шаге 2.1 выбирается вершина x, такая что $\delta(x) = \min\{\delta(y) | y \in V \setminus W\}$. Вершина x добавляется в W, нужно проверить для нее условие а). Пусть а) не выполняется для вершины x. Значит существует путь (s, v_1, \dots, v_t, x) , длина которого меньше $\delta(x)$. Тогда из б) следует, что в этом пути есть вершина $v_i \notin W$. Если таких несколько, выберем вершину с наименьшим номером.

Ёсли таких несколько, выберем вершину с наименьшим номером. Тогда $\delta(v_i) \leq$ длина $(s, v_1, ..., v_i) \leq$ длина $(s, v_1, ..., v_t, x) < \delta(x)$, что противоречит выбору x. Значит такого пути нет и $\delta(x)$ — длина кратчайшего пути от s до x и а) будет выполняться после добавления x к W.

На шаге 2.3 выполняется пересчет для вершин y через новую добавленную к W вершину x. Значит б) будет выполняться, т.к. путь будет либо без x (и верно по предположению индукции) либо через x он короче.

Трудоемкость: Цикл 2 требует O(|V|) итераций. На каждой итерации 2.1 или 2.3 требуется O(|V|) действий. Итого $O(|V|^2)$

Алгоритм Флойда-Уоршалла

Найти кратчайшее расстояние $\delta(i,j)$ между всеми вершинами

```
Инициализация \forall (i,j) \in E, \delta(i,j) = w(i,j), остальные \delta(i,j) = \infty For j=1..n do For i=1..n do \text{For } k=1..n \text{ do} If (i \neq j) \& (k \neq j) \& (i \neq k) z \coloneqq \delta(i,k); \delta(i,k) \coloneqq \min\{\delta(i,k); \ \delta(i,j) + \delta(j,k)\}; \ \text{т. e. } \delta(i,k) \leq \delta(i,j) + \delta(j,k) \text{ - операция треугольник} если \delta(i,k) < z, то \pi(i,k) = j.
```

Время $O(|V|^3)$.

Алгоритм работает корректно, даже если есть дуги отрицательной длины, но нет контуров отрицательной длины.

Алгоритм Флойда-Уоршалла. Теорема

Теорема 2

Алгоритм Флойда-Уоршалла находит длины кратчайших путей из каждой вершины до остальных вершин за время $O(|V|^3)$.

Доказательство. Трудоемкость очевидна.

- ▶ Покажем, что для каждого j после выполнения операций треугольника для t=1,2,...,j элемент $\delta(i,k)$ для любых i u k равен длине кратчайшего пути из i в k среди всех путей, промежуточные вершины которых имеют номера не больше j.
- ightharpoonup Для j=1 это утверждение очевидно.
- ▶ Пусть утверждение верно для j=t-1, и проводится операция для t: $\delta(i,k) \coloneqq \min\{\delta(i,k); \ \delta(i,j) + \delta(j,k)\}.$ Рассмотрим подграф G' орграфа G на вершинах $\{1,2,...,t,i,k\}$. Если кратчайший путь из i в k в G' не проходит через t, то минимум достигается на первом аргументе и утверждение верно. Если же он проходит через t, то $\delta(i,t) + \delta(t,k) \le \delta(i,k)$, а по предыдущему предположению $\delta(i,t)$ и $\delta(t,k)$ длины кратчайших путей из i в t и из t в k по вершинам c номерами не более t.

Задача о кратчайшей связывающей сети

Кратчайшая связывающая сеть = остовное дерево минимального веса

Остовное дерево — ациклический связный подграф данного связного неориентированного графа, в который входят все его вершины.

Неформально говоря, остовное дерево состоит из некоторого подмножества рёбер графа, таких, что из любой вершины графа можно попасть в любую другую вершину, двигаясь по этим рёбрам, и в нём нет циклов, то есть из любой вершины нельзя попасть в саму себя, не пройдя какое-то ребро дважды.

Алгоритм Краскала $(w: E \rightarrow R^+)$

- 1. Отсортировать ребра в порядке неуменьшения веса $w(e_1) \le w(e_2) \le \cdots \le w(e_m)$.
- Z. $T = \emptyset$
- 3. For i = 1 to m
- 4. Если $T \cup e_i$ не содержит цикл, то добавить e_i к T

Полученное дерево T является искомым