Les alcènes en synthèse organique

C3 – Chimie organique – Chapitre 2

I. Additions électrophiles (A_E)

1. Mécanisme général

2. Régiosélectivité de la réaction

On pourrait former les intermédiaires *I* et *II*, mais seul celui dont le C+ est le plus stable est formé. Le C+ est stabilisé par effets +M, +I et HC.

Effet mésomère +M	Hyperconjugaison (HC)	Effet inducteur +I
H_3C \longleftrightarrow H_3C \longleftrightarrow H_3C	H ₃ C—CH CH ₃	$H_3C \xrightarrow{+} CH$ CH_3
Stabilise en dispensant la charge.	Les H en position α stabilisent le C^+ en se délocalisant dans son orbitale p vide.	

$$+M \gg HC \geq +I > -M > -I$$

3. Principales réactions et particularités

H-Nu	X-OH (⇔ X-X dans H₂O)	X-X en milieu organique
 Nu = X = F, Cl, Br, I H-Nu = H₂O (H⁺ catalyseur) Nu = autre nucléophile 	X = Cl, BrAddition anti.	X = Cl, BrIntermédiaire avec pont.
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 Addition anti. 2 intermédiaires et attaques ≠ mais un même produit méso achiral (R-R = S-S).

II. Hydroboration

$$C = C + \mathbb{I}BH_3 \longrightarrow H \longrightarrow \mathbb{B}H_2 2 \text{ molécules d'alcène } + \mathbb{C}H \longrightarrow \mathbb{B}H_2 \text{ peuvent encore réagir } + \mathbb{C}H \longrightarrow \mathbb{B}H_3 \longrightarrow \mathbb{B}H_2 \longrightarrow \mathbb{$$

le B se fixe sur le C le moins substitué

Permet d'obtenir un alcool avec une régiosélectivité différente de celle de l'addition électrophile de H^{\dagger}/H_2O .

Les alcènes en synthèse organique

C3 – Chimie organique – Chapitre 2

III. Oxydation

1. Bis-hydroxylation (syn)

$$(Violet foncé) \\ KMnO_4 \\ + \frac{10}{10} \overline{O}I \\ + \frac{10}{10} \overline{O}I$$

2. Epoxylation (anti)

Les alcènes sont oxydés par les peracides : $R-C-\overline{Q}-\overline{Q}-H \iff R-C-\overline{Q}-\overline{Q}-H \iff R-C-\overline{Q}-H \iff R$

+
$$H_3C-C-\overline{Q}-\overline{Q}-H$$
 + $H_3C-C-\overline{Q}-H$ O epoxyde acide acétique

Les époxydes sont des cycles très tendus et peuvent réagir avec des nucléophiles en s'ouvrant (Anti) :

3. Ozonolyse

Si réducteur, pas de réaction

Réducteurs commun : Zn/CH₃COOH, H₂, Me-S-Me

IV. Hydrogénation (syn)

$$R_4$$
 R_4 R_4