Peeling for L0-Regularized Least-Squares

Gilles Monnoyer*, Théo Guyard†, Cédric Herzet† and Clément Elvira‡

*ICTEAM, UCLouvain, Belgium

†SIMSMART, Inria, France

[‡]IETR, CentraleSupelec, France

EUSIPCO - European Signal Processing Conference Helsinki, Finland September 4-8, 2023

L0-Regularized Least-Squares

Linear approximation \langle Sparse linear model \rangle Sparse solution \rangle Sparse solution

s.t. $L \le x \le U$

Branch-and-Bound

Node problem

$$\mathsf{min}_{\mathbf{x} \in [\mathbf{L}, \mathbf{U}]} \ \ \tfrac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{\mathbf{2}}^{\mathbf{2}} + \lambda \|\mathbf{x}\|_{\mathbf{0}}$$

Node problem

$$\mathrm{min}_{\mathbf{x} \in [\mathbf{L}, \mathbf{U}]} \ \ \tfrac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{\mathbf{2}}^{2} + \lambda \|\mathbf{x}\|_{\mathbf{0}}$$

Node problem

$$\mathrm{min}_{\mathbf{x} \in [\mathbf{L}, \mathbf{U}]} \ \ \tfrac{\mathbf{1}}{\mathbf{2}} \| \mathbf{y} - \mathbf{A} \mathbf{x} \|_{\mathbf{2}}^{\mathbf{2}} + \lambda \| \mathbf{x} \|_{\mathbf{0}}$$

Node problem

$$\mathsf{min}_{\mathbf{x} \in [\mathbf{L}, \mathbf{U}]} \ \ \tfrac{\mathbf{1}}{\mathbf{2}} \| \mathbf{y} - \mathbf{A} \mathbf{x} \|_{\mathbf{2}}^{\mathbf{2}} + \lambda \| \mathbf{x} \|_{\mathbf{0}}$$

Relaxation

$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda g(\mathbf{x})$$

Node problem $\min_{\mathbf{x} \in [\mathbf{L}, \mathbf{U}]} \ \ \frac{\mathbf{1}}{2} \| \mathbf{y} - \mathbf{A} \mathbf{x} \|_{\mathbf{2}}^2 + \lambda \| \mathbf{x} \|_{\mathbf{0}}$

Relaxation

$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda g(\mathbf{x})$$

Dilemma in the choice of [L, U]

- Wide interval [L, U] to recover the solution
- Tight interval [L, U] to build strong relaxations

Node problem

$$\mathrm{min}_{\mathbf{x} \in [\mathbf{L}, \mathbf{U}]} \ \ \tfrac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{\mathbf{2}}^2 + \lambda \|\mathbf{x}\|_{\mathbf{0}}$$

Relaxation

$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda g(\mathbf{x})$$

Dilemma in the choice of [L, U]

- Wide interval [L, U] to recover the solution
- Tight interval [L, U] to build strong relaxations

Our solution: Peeling

Peeling

Propagation along branches

Standard BnB

Propagation along branches

Standard BnB

BnB with peeling

Propagation along branches

Standard BnB

BnB with peeling

- ✔ Branches pruned early-on
- ✓ Less nodes explored
- ✔ Reduce solve time

$$\text{min}_{x \in [L,U]} \ \ \tfrac{1}{2} \|y - Ax\|_2^2 + \lambda \|x\|_0$$

Data A **and** y : Sparse regression **Bounds** L **and** U : $-M1 \le x \le M1$

Parameter λ : Set statistically Parameter γ : $M = \gamma ||\mathbf{x}^*||_{\infty}$

$$\mathsf{min}_{\mathsf{x} \in [\mathsf{L},\mathsf{U}]} \ \ \tfrac{1}{2} \| \mathsf{y} - \mathsf{A} \mathsf{x} \|_2^2 + \lambda \| \mathsf{x} \|_0$$

Data A **and** y : Sparse regression **Bounds** L **and** U : $-M1 \le x \le M1$

Parameter λ : Set statistically

Parameter $\gamma: M = \gamma \|\mathbf{x}^{\star}\|_{\infty}$

${\min}_{{\bf x} \in [{\bf L},{\bf U}]} \ \ \tfrac{1}{2} \|{\bf y} - {\bf A}{\bf x}\|_2^2 + \lambda \|{\bf x}\|_0$

Parameter $\gamma \,:\, M = \gamma \|\mathbf{x}^\star\|_\infty$

Take-home message

Question time

