Lemoine Line

Zhifeng Wang¹, zhifenw2@uci.edu (last updated: June 3, 2023)

Definition 1

Given a triangle $\triangle ABC$ and its circumcircle O, let EF, FD and DE be the tangent lines of the circle O at points A, B and C, respectively. Then $\triangle DEF$ is called the tangential triangle of $\triangle ABC$.

It is well-known that the lines DA, EB and FC are concurrent, and the intersection is called the Gergonne point of the triangle $\triangle DEF$ (see Topic 8). Alternatively, we have the following result

Theorem 1. (Lemoine Line)

Let $\triangle ABC$ be inscribed in circle O. The tangent lines AP, BQ, CR forms the tangent triangle of $\triangle ABC$. Then P, Q, R are collinear. This line is called the Lemoine Line, or the Lemoine Axis.

Proof: Since $\angle CAP = \angle B$ and $\angle CPA = \angle APB$ (By Alternate Segment Theo-

¹The author thanks Dr. Zhiqin Lu for his help and Stephanie Wang for her careful reading and many comments.

rem), we have $\triangle PCA \backsim \triangle PAB$. Thus

$$\frac{BP}{BA} = \frac{PA}{AC}, \quad \frac{PC}{AC} = \frac{AP}{AB}.$$

As a result,

$$\frac{BP}{PC} = \frac{AB^2}{CA^2}.$$

Similarly, we have

$$\frac{AR}{RB} = \frac{CA^2}{BC^2}, \quad \frac{CQ}{QA} = \frac{BC^2}{AB^2}.$$

Therefore

$$\frac{BP}{PC} \cdot \frac{CQ}{QA} \cdot \frac{AR}{RB} = \frac{AB^2}{CA^2} \cdot \frac{BC^2}{AB^2} \cdot \frac{CA^2}{BC^2} = 1.$$

By Menelaus' Theorem, P,Q,R are collinear.

The above theorem about the Lemoine line is a limiting case of the following Pascal's theorem.

Theorem 2. (Pascal's Theorem)

Let Hexagon AA'BB'CC' be inscribed in a circle. Let AA' and B'C intersect at X; BB' and C'A intersect at Y; and CC' and A'B intersect at Z. Then X,Y,Z are collinear.

If A' is sufficiently close to A, then the secant line AA' becomes the tangent line of the circle at A. Similarly, if B' is sufficiently close to B and C' is sufficiently close to C, then the Pascal's line is reduced to the Lemoine's line.