Neural Networks for Sentiment Analysis in Cryptocurrency Market

Baptiste PROVENDIER

CID: 01553706

Introduction

"the question is no longer [...] whether investor sentiments affect stock prices but rather how to measure investor sentiments and quantify its effects" – Malcolm Baker

Motivations & Objectives

Autonomous system with:

- Data collection
- Sentiment analysis
- Price prediction
- Trading strategy

MSE: 0.3%

Correlation: 0.99

Return on investment using trading strategy: -13% in two days

Accuracy: 44%

System design

Sentiment features:

- Number of tweets
- Additive sentiment score
- Mean sentiment score
- Polarity sentiment score
- Number of positive tweets
- Percentage of positive tweets

Raw tweet	🇧🇷 Rio de Janeiro will allow residents to pay property taxes in #Bitcoin & #cryptocurrency beginning in 2023.
Cleaned tweet	rio de janeiro will allow residents to pay property taxes in bitcoin cryptocurrency beginning in 2023

Implementation

Hyperparameters:

Sequence length: 24

Batch size: 32

Hidden size: 32

Number of layers: 2

Dropout rate: 0.1

Learning rate: 0.01

Type of model: GRU

Background: Neural networks

Unrolled recurrent neural network

Background: Sentiment analysis

BERT: Bidirectional Encoder Representations from Transformers – Google, 2018

Background: Performance metrics

<u>Technical Indicators used:</u>

- Relative Strength Index
- Stochastic Oscillator
- Williams Percentage Range
- Moving Average Convergence
 Divergence
- On Balance Volume

Traditional error metrics:

- Mean squared error
- Root mean squared error
- Mean average error
- Mean average percentage error
- Accuracy
- F1-score

Financial evaluation metrics:

- Return on investment
- Sharpe ratio
- Value at risk

Results

Results

	ROI	Sharpe ratio	Number of trades
Buy and hold	-26%	-0.36	-
0% threshold	-7.1%	-0.17	396
0.2% threshold	+8.6%	+0.16	28

	ROI	Sharpe ratio	Number of trades
Buy and hold	-26%	-0.36	-
0% threshold	-58%	-1.72	396
0.2% threshold	+2.8%	+0.04	28

Evaluation to previous methods

Evaluation to previous methods

Model	0% threshold	0.2% threshold
Custom loss	443	237
State of the art	840	372
Project's sentiment model	396	28

Number of trades made for different models and threshold values

Evaluation to previous methods

Model	0% threshold	0.2% threshold
Custom loss	443	237
State of the art	840	372
Project's sentiment model	396	28

Number of trades made for different models and threshold values

Sentiment importance

Sentiment features total 26% of the prediction's importance

Conclusion

Future work

Improvements:

- More robust trading strategy
- Improve quality and quantity of the collected sentiment data
- Denoise sentiment data
- Loss function designed for trading purposes
- Real-time implementation

Questions

Code and report available on: https://github.com/bprovendier/NN-for-Sentiment-Analysis

LSTM and GRU architecture

Forget gates (LSTM) and reset gate (GRU) help regulate the learning gradient and get rid of the unnecessary information in order to prevent fast decaying gradient.

Why use crypto?

- Inefficient markets (news travel slower, less participants, and more illiquid)
- More volatile
- No intrinsic value, purely driven by speculation

Hyperparameter selection

