Integración y Series

Primera entrega de ejercicios

Agosto 31 de 2023

Juan Camilo Lozano Suárez

Los siguientes lemas serán usados en algunas soluciones:

Lema 1. Sea f una función monótona en [a,b]. Entonces $V_f(a,b) = |f(b) - f(a)|$.

Prueba. Analizamos dos casos:

■ Supongamos $f \nearrow en[a,b]$. Para cualquier partición $P \in \mathcal{P}[a,b]$ se tiene

$$\sum_{k=1}^{n} |\Delta f_k| = \sum_{k=1}^{n} |f(x_k) - f(x_{k-1})| = \sum_{k=1}^{n} (f(x_k) - f(x_{k-1})) = f(b) - f(a) = |f(b) - f(a)|.$$

 \blacksquare Supongamos $f \searrow en [a,b].$ Para cualquier partición $P \in \mathcal{P} [a,b]$ se tiene

$$\sum_{k=1}^{n} |\Delta f_k| = \sum_{k=1}^{n} |f(x_k) - f(x_{k-1})| = \sum_{k=1}^{n} (f(x_{k-1}) - f(x_k)) = f(a) - f(b) = |f(b) - f(a)|.$$

En cualquier caso, se tiene $V_f(a,b) = \sup \{\sum (P) : P \in \mathcal{P}[a,b]\} = \sup \{|f(b) - f(a)|\} = |f(b) - f(a)|.$

Lema 2. Sea f una función continua en [a,b], tal que f' existe y es acotada en (a,b). Entonces $f \in VA[a,b]$.

Prueba. Existe $A \ge 0$ tal que $|f'(c)| \le A$ para todo $c \in (a,b)$. Sea $P = \{x_0, x_1, \dots, x_n\} \in \mathcal{P}[a,b]$ cualquiera. Para cada $k=1,\dots, n$, por el teorema del valor medio para derivadas, existe $c_k \in (x_{k-1},x_k)$ tal que

$$f'(c_k) = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}} = \frac{\Delta f_k}{x_k - x_{k-1}}.$$

Luego, $\Delta f_k = f'(c_k)(x_k - x_{k-1})$. De este modo,

$$\sum_{k=1}^{n} |\Delta f_k| = \sum_{k=1}^{n} (|f'(c_k)| |x_k - x_{k-1}|)$$

$$\leq \sum_{k=1}^{n} A |x_k - x_{k-1}|$$

$$= A \sum_{k=1}^{n} (x_k - x_{k-1})$$

$$= A (b - a),$$

con lo cual $f \in VA[a, b]$.

Ejercicio 6.3. Probar que una función polinómica f es de variación acotada en todo intervalo compacto [a, b]. Describir un método que permita calcular la variación total de f en [a, b] conociendo los ceros de la derivada f'.

Prueba. Sea f una función polinómica en [a,b]. Sabemos que f es continua en [a,b] y que f' (que también es una función polinómica) existe y es acotada en (a,b). Por tanto f es de variación acotada en [a,b].

Si f es constante en [a, b], se tiene $V_f(a, b) = 0$. Supongamos $\operatorname{grado}(f) \geq 1$, de modo que $\operatorname{grado}(f') \geq 0$ y f' no es el polinomio nulo. Si f' no tiene ceros en [a, b], se sigue que f'(x) > 0 para todo x en [a, b], o f'(x) < 0 para todo x en [a, b] (si f'(c) > 0 y f'(d) > 0 para $c, d \in [a, b]$, por el teorema del valor intermedio f' tendría algún cero en [a, b]). En todo caso, f es monótona en [a, b] y $V_f(a, b) = |f(b) - f(a)|$. Supongamos que f' tiene ceros en [a, b]. Como f' tiene a lo más $\operatorname{grado}(f) \in \mathbb{Z}^+$ ceros en \mathbb{R} , podemos enumerarlos y ordenarlos. Así, sean $x_1 < x_2 < \cdots < x_m$ todos los ceros de f' en [a, b], y llamemos $x_0 := a$ y $x_{m+1} := b$. Notemos que en cada subintervalo $[x_{k-1}, x_k]$ (con $k \in \{1, \ldots, m+1\}$) la función f es monótona y por tanto $V_f(x_{k-1}, x_k) = |f(x_k) - f(x_{k-1})|$. Por la propiedad aditiva de la variación total, se sigue que

$$V_f(a,b) = \sum_{k=1}^{m+1} V_f(x_{k-1}, x_k) = \sum_{k=1}^{m+1} |f(x_k) - f(x_{k-1})|.$$

Ejercicio 7.1. Probar que $\int_a^b d\alpha(x) = \alpha(b) - \alpha(a)$, directamente a partir de la definición de integral de Riemann-Stieltjes.

Prueba. Sea $\varepsilon > 0$ cualquiera. Tomemos $P_{\varepsilon} = \{a,b\} \in \mathcal{P}[a,b]$ y $f:[a,b] \to \mathbb{R}$ la función constante en 1. Para cualquier $P \supseteq P_{\varepsilon}$ tenemos

$$|S(P, f, \alpha) - (\alpha(b) - \alpha(a))| = \left| \left(\sum_{k=1}^{n} f(t_k) \Delta \alpha_k \right) - (\alpha(b) - \alpha(a)) \right|$$

$$= \left| \left(\sum_{k=1}^{n} \alpha(x_k) - \alpha(x_{k-1}) \right) - (\alpha(b) - \alpha(a)) \right|$$

$$= |(\alpha(b) - \alpha(a)) - (\alpha(b) - \alpha(a))|$$

$$= 0$$

$$< \varepsilon,$$

lo que prueba $\int_{a}^{b} d\alpha (x) = \alpha (b) - \alpha (a)$.

Ejercicio 7.2. Si $f \in \mathcal{R}(\alpha)$ en [a,b] y si $\int_a^b f \ d\alpha = 0$ para cada f monótona en [a,b], probar que α es constante en [a,b].

 $Prueba. \text{ Sea } c \in (a,b) \text{ cualquiera. Definimos } f:[a,b] \to \mathbb{R} \text{ v\'a } f(x) = \begin{cases} 0 & \text{si } x \leq c \\ 1 & \text{si } x > c \end{cases} \text{ para todo } x \in [a,b].$ Claramente f es monótona en [a,b], así que por hipótesis $f \in \mathcal{R}(\alpha)$ en [a,b] y $\int_a^b f \ d\alpha = 0$. Como $f \in \mathcal{R}(\alpha)$ entonces $\alpha \in \mathcal{R}(f)$ en [a,b]. Veamos que $\int_a^b \alpha \ df = \alpha(c)$:

Sea $\varepsilon > 0$ cualquiera. Existe $P_{\varepsilon} \in \mathcal{P}[a,b]$ tal que para cualquier $P \supseteq P_{\varepsilon}$ y para cualquier elección $t_k \in [x_{k-1},x_k]$ se tiene $|S(P,\alpha,f)-\int_a^b \alpha \ df| < \varepsilon$. Tomemos $P=P_{\varepsilon} \cup \{c\} = \{x_0=a,\ldots,x_{\gamma}=c,\ldots,x_n=b\} \supseteq P_{\varepsilon}$ con la elección $t_k=x_{k-1} \in [x_{k-1},x_k]$. Se tiene

$$S(P, \alpha, f) = \sum_{k=1}^{n} \alpha(x_{k-1}) \Delta f_k$$
$$= \sum_{k=1}^{n} \alpha(x_{k-1}) (f(x_k) - f(x_{k-1})).$$

Para $1 \leq k \leq \gamma$ tenemos $f(x_k) - f(x_{k-1}) = 0 - 0 = 0$; para $k = \gamma + 1$ tenemos $f(x_{\gamma+1}) - f(x_{\gamma}) = f(x_{\gamma+1}) - f(c) = 1 - 0 = 1$; para $\gamma + 2 \leq k \leq n$ tenemos $f(x_k) - f(x_{k-1}) = 1 - 1 = 0$. De este modo $S(P, \alpha, f) = \alpha(x_{\gamma}) = \alpha(c)$. Así, $\left|\alpha(c) - \int_a^b \alpha \, df\right| = \left|S(P, \alpha, f) - \int_a^b \alpha \, df\right| < \varepsilon$. Como esto se tiene para $\varepsilon > 0$ arbitrario, se sigue que $\left|\alpha(c) - \int_a^b \alpha \, df\right| = 0$ y $\int_a^b \alpha \, df = \alpha(c)$.

Ahora, haciendo integración por partes tenemos

$$0 + \alpha(c) = \int_{a}^{b} f \, d\alpha + \int_{a}^{b} \alpha \, df = f(b) \alpha(b) - f(a) \alpha(a) = \alpha(b),$$

y $\alpha\left(c\right)=\alpha\left(b\right)$, para $c\in\left(a,b\right)$ cualquiera. Como además la función constante en 1 es monótona en [a,b], tenemos $\alpha\left(b\right)-\alpha\left(a\right)=\int_{a}^{b}d\alpha=0$, y $\alpha\left(a\right)=\alpha\left(b\right)$, completando la prueba de que α es constante en [a,b].

Ejercicio 7.11. Si $\alpha \nearrow en [a, b]$, probar que se verifica:

a) $\bar{\int}_a^b f \ d\alpha = \bar{\int}_a^c f \ d\alpha + \bar{\int}_c^b f \ d\alpha, \ (a < c < b),$

b) $\bar{\int}_a^b (f+g) \ d\alpha \leq \bar{\int}_a^b f \ d\alpha + \bar{\int}_a^b g \ d\alpha,$

c) $\int_a^b (f+g) d\alpha \ge \int_a^b f d\alpha + \int_a^b g d\alpha$.

Prueba. **a)** Sea $P \in \mathcal{P}[a,b]$ cualquiera. Tomamos $P' = P \cup \{c\}$. Supongamos $P' = \{a = x_0, \dots, x_\gamma = c, \dots, x_n = b\}$. Tomemos $P'_1 = \{a = x_0, \dots, x_\gamma = c\} \in \mathcal{P}[a,c]$ y $P'_2 = \{c = x_\gamma, \dots, x_n = b\} \in \mathcal{P}[c,b]$. Notemos que

$$U(P'_{1}, f, \alpha) + U(P'_{2}, f, \alpha) = \sum_{k=1}^{\gamma} M_{k}(f) \Delta \alpha_{k} + \sum_{k=\gamma+1}^{n} M_{k}(f) \Delta \alpha_{k}$$
$$= \sum_{k=1}^{n} M_{k}(f) \Delta \alpha_{k}$$
$$= U(P', f, \alpha).$$

Como $P' \supseteq P$, tenemos $U(P', f, \alpha) \le U(P, f, \alpha)$, y por tanto $U(P'_1, f, \alpha) + U(P'_2, f, \alpha) \le U(P, f, \alpha)$. Ya que $P'_1 \in \mathcal{P}[a, c]$ y $P'_2 \in \mathcal{P}[c, b]$, se sigue

$$\overline{\int_{a}^{c}} f \ d\alpha \leq U\left(P_{1}', f, \alpha\right), \quad y, \quad \overline{\int_{c}^{b}} f \ d\alpha \leq U\left(P_{2}', f, \alpha\right).$$

Por tanto

$$\int_{a}^{c} f \ d\alpha + \int_{c}^{b} f \ d\alpha \leq U\left(P_{1}', f, \alpha\right) + U\left(P_{2}', f, \alpha\right) \leq U\left(P, f, \alpha\right).$$

Como lo anterior se tiene para $P \in \mathcal{P}[a,b]$ arbitraria, $\bar{\int}_a^c f \ d\alpha + \bar{\int}_c^b f \ d\alpha$ es cota inferior del conjunto $\{U(P,f,\alpha): P \in \mathcal{P}[a,b]\}$, y por tanto

$$\int_{a}^{c} f \ d\alpha + \int_{c}^{b} f \ d\alpha \le \int_{a}^{b} f \ d\alpha. \tag{1}$$

Ahora, sea $\varepsilon > 0$ cuaquiera. Entonces $\frac{\varepsilon}{2} > 0$ y existen $P_1 = \{a = x_0, \dots, x_{\gamma} = c\} \in \mathcal{P}[a, c]$ y $P_2 = \{c = x_{\gamma}, \dots, x_n = b\} \in \mathcal{P}[c, b]$ tales que

$$U\left(P_{1},f,\alpha\right)<\int_{a}^{c}f\ d\alpha+\frac{\varepsilon}{2},\quad y,\quad U\left(P_{2},f,\alpha\right)<\int_{c}^{b}f\ d\alpha+\frac{\varepsilon}{2},$$

luego,

$$U(P_1, f, \alpha) + U(P_2, f, \alpha) < \int_a^c f \ d\alpha + \int_c^b f \ d\alpha + \epsilon.$$

Notemos que, como $P_1 \cup P_2 = \{a = x_0, \dots, x_{\gamma} = c, \dots, x_n = b\}$, entonces

$$U(P_1 \cup P_2, f, \alpha) = \sum_{k=1}^{n} M_k(f) \Delta \alpha_k$$
$$= \sum_{k=1}^{\gamma} M_k(f) \Delta \alpha_k + \sum_{k=\gamma+1}^{n} M_k(f) \Delta \alpha_k$$
$$= U(P_1, f, \alpha) + U(P_2, f, \alpha).$$

Por tanto $U(P_1 \cup P_2, f, \alpha) < \overline{\int_a^c} f \ d\alpha + \overline{\int_c^b} f \ d\alpha + \varepsilon$. Además, como $P_1 \cup P_2 \in \mathcal{P}[a, b]$, tenemos $\overline{\int_a^b} f \ d\alpha \leq U(P_1 \cup P_2, f, \alpha)$, y así

$$\int_{a}^{b} f \ d\alpha \le \int_{a}^{c} f \ d\alpha + \int_{c}^{b} f \ d\alpha + \varepsilon.$$

Lo anterior vale para $\varepsilon>0$ arbitrario, por lo que obtenemos

$$\int_{a}^{b} f \, d\alpha \le \int_{a}^{c} f \, d\alpha + \int_{c}^{b} f \, d\alpha.$$
(2)

De (1) y (2) se concluye $\bar{\int}_a^b f \ d\alpha = \bar{\int}_a^c f \ d\alpha + \bar{\int}_c^b f \ d\alpha$.

b) Sea $\varepsilon > 0$ cualquiera. Entonces $\frac{\varepsilon}{2} > 0$. Existen $P_1, P_2 \in \mathcal{P}[a, b]$ tales que

$$U(P_1, f, \alpha) < \int_a^b f \ d\alpha + \frac{\varepsilon}{2}, \quad y, \quad U(P_2, g, \alpha) < \int_a^b g \ d\alpha + \frac{\varepsilon}{2}.$$

Entonces $U\left(P_{1},f,\alpha\right)+U\left(P_{2},g,\alpha\right)<\bar{\int}_{a}^{b}f\ d\alpha+\bar{\int}_{a}^{b}g\ d\alpha+\varepsilon$. Como $P_{1}\cup P_{2}\in\mathcal{P}\left[a,b\right]$ y es más fina que P_{1} y que P_{2} , entonces $U\left(P_{1}\cup P_{2},f,\alpha\right)+U\left(P_{1}\cup P_{2},g,\alpha\right)\leq U\left(P_{1},f,\alpha\right)+U\left(P_{2},g,\alpha\right)$.

Ahora bien, notemos que en cada subintervalo $[x_{k-1}, x_k]$ de $P_1 \cup P_2$ tenemos

$$\begin{split} M_k \left(f + g \right) &= \sup \left\{ f \left(x \right) + g \left(x \right) : x \in [x_{k-1}, x_k] \right\} \\ &\leq \sup \left\{ f \left(x \right) : x \in [x_{k-1}, x_k] \right\} + \sup \left\{ g \left(x \right) : x \in [x_{k-1}, x_k] \right\} \\ &= M_k \left(f \right) + M_k \left(g \right), \end{split}$$

por tanto,

$$U(P_1 \cup P_2, f + g, \alpha) = \sum_{k=1}^{n} M_k (f + g) \Delta \alpha_k$$

$$\leq \sum_{k=1}^{n} (M_k (f) + M_k (g)) \Delta \alpha_k$$

$$= \sum_{k=1}^{n} M_k (f) \Delta \alpha_k + \sum_{k=1}^{n} M_k (g) \Delta \alpha_k$$

$$= U(P_1 \cup P_2, f, \alpha) + U(P_1 \cup P_2, g, \alpha).$$

También, $\bar{\int}_a^b (f+g) \ d\alpha \leq U(P_1 \cup P_2, f+g, \alpha)$. Por consiguiente,

$$\int_{a}^{b} (f+g) d\alpha \leq U(P_{1} \cup P_{2}, f+g, \alpha)$$

$$\leq U(P_{1} \cup P_{2}, f, \alpha) + U(P_{1} \cup P_{2}, g, \alpha)$$

$$< \int_{a}^{b} f d\alpha + \int_{a}^{b} g d\alpha + \varepsilon.$$

Como esto se tiene para $\varepsilon > 0$ arbitrario, concluimos

$$\int_{a}^{b} (f+g) \ d\alpha \le \int_{a}^{b} f \ d\alpha + \int_{a}^{b} g \ d\alpha.$$

c) Sea $\varepsilon > 0$ cualquiera. Entonces $\frac{\varepsilon}{2} > 0$. Existen $P_1, P_2 \in \mathcal{P}[a, b]$ tales que

$$\underline{\int}_{a}^{b} f \ d\alpha - \frac{\varepsilon}{2} < L(P_{1}, f, \alpha), \quad y, \quad \underline{\int}_{a}^{b} g \ d\alpha - \frac{\varepsilon}{2} < L(P_{2}, g, \alpha).$$

Entonces $\underline{\int}_a^b f \ d\alpha + \underline{\int}_a^b g \ d\alpha - \varepsilon < L\left(P_1, f, \alpha\right) + L\left(P_2, g, \alpha\right)$. Como $P_1 \cup P_2 \in \mathcal{P}\left[a, b\right]$ y es más fina que P_1 y que P_2 , entonces $L\left(P_1, f, \alpha\right) + L\left(P_2, g, \alpha\right) \leq L\left(P_1 \cup P_2, f, \alpha\right) + L\left(P_1 \cup P_2, g, \alpha\right)$.

Ahora bien, notemos que en cada subintervalo $[x_{k-1}, x_k]$ de $P_1 \cup P_2$ tenemos

$$m_k(f) + m_k(g) = \inf \{ f(x) : x \in [x_{k-1}, x_k] \} + \inf \{ g(x) : x \in [x_{k-1}, x_k] \}$$

 $\leq \inf \{ f(x) + g(x) : x \in [x_{k-1}, x_k] \}$
 $= m_k(f + g),$

por tanto,

$$L(P_1 \cup P_2, f, \alpha) + L(P_1 \cup P_2, g, \alpha) = \sum_{k=1}^{n} m_k(f) \Delta \alpha_k + \sum_{k=1}^{n} m_k(g) \Delta \alpha_k$$
$$= \sum_{k=1}^{n} (m_k(f) + m_k(g)) \Delta \alpha_k$$
$$\leq \sum_{k=1}^{n} m_k(f + g) \Delta \alpha_k$$
$$= L(P_1 \cup P_2, f + g, \alpha).$$

También, $L(P_1 \cup P_2, f + g, \alpha) \leq \int_a^b (f + g) d\alpha$. Por consiguiente,

$$\int_{a}^{b} f \ d\alpha + \int_{a}^{b} g \ d\alpha - \varepsilon < L(P_{1}, f, \alpha) + L(P_{2}, g, \alpha)$$

$$\leq L(P_{1} \cup P_{2}, f + g, \alpha)$$

$$\leq \int_{a}^{b} (f + g) \ d\alpha,$$

y así $\underline{\int}_a^b f \ d\alpha + \underline{\int}_a^b g \ d\alpha \le \underline{\int}_a^b (f+g) \ d\alpha + \varepsilon$. Como esto se tiene para $\varepsilon > 0$ arbitrario, concluimos

$$\underline{\int}_{a}^{b} f \ d\alpha + \underline{\int}_{a}^{b} g \ d\alpha \le \underline{\int}_{a}^{b} (f+g) \ d\alpha.$$

Ejercicio 7.12. Dar un ejemplo de una función acotada f y de una función creciente α definidas en [a,b] tales $que |f| \in \mathcal{R}(\alpha)$ pero para las $que \int_a^b f \ d\alpha$ no exista.

Solución. Tomemos

$$f:[0,1]\to\mathbb{R}$$

$$x\longmapsto f(x)=\begin{cases} 1 &\text{si }x\in\mathbb{Q}\\ -1 &\text{si }x\in\mathbb{I} \end{cases}$$

У

$$\alpha: [0,1] \to \mathbb{R}$$

$$x \longmapsto \alpha(x) = x.$$

Tenemos que |f| es la función constante en 1 en [0,1] y por el Ejercicio 7.1 se sigue que $|f| \in \mathcal{R}(\alpha)$ en [0,1]. Ahora bien, para toda $P \in \mathcal{P}[0,1]$ se tiene

$$U(P, f, \alpha) = \sum_{k=1}^{n} M_k(f) \Delta \alpha_k$$

$$= \sum_{k=1}^{n} \Delta \alpha_k$$

$$= \sum_{k=1}^{n} (\alpha(x_k) - \alpha(x_{k-1}))$$

$$= \sum_{k=1}^{n} (x_k - x_{k-1})$$

$$= 1,$$

y también

$$L(P, f, \alpha) = \sum_{k=1}^{n} m_k(f) \Delta \alpha_k$$
$$= \sum_{k=1}^{n} -\Delta \alpha_k$$
$$= -\sum_{k=1}^{n} \Delta \alpha_k$$
$$= -1.$$

con lo cual $\bar{\int}_0^1 f \ d\alpha = \inf \{ U(P, f, \alpha) : P \in \mathcal{P}[0, 1] \} = \inf \{ 1 \} = 1$, y $\underline{\int}_0^1 f \ d\alpha = \sup \{ L(P, f, \alpha) : P \in \mathcal{P}[0, 1] \} = \sup \{ -1 \} = -1$. Por tanto $\underline{\int}_0^1 f \ d\alpha \neq \bar{\int}_0^1 f \ d\alpha$ y $f \notin \mathcal{R}(\alpha)$ en [0, 1]. Con lo anterior concluimos que $\int_0^1 f \ d\alpha$ no existe.