



审视数学,你会发现,它不仅是颠扑不破的真理,而且是至高无上的美丽——那种冷峻而朴素的美,不需要唤起人们任何的怜惜,没有绘画和音乐的浮华装饰,纯粹,只有伟大艺术才能展现出来的严格完美。

Mathematics, rightly viewed, possesses not only truth, but supreme beauty — a beauty cold and austere, like that of sculpture, without appeal to any part of our weaker nature, without the gorgeous trappings of painting or music, yet sublimely pure, and capable of a stern perfection such as only the greatest art can show.

—— 伯特兰·罗素 (Bertrand Russell) | 英国哲学家、数学家 | 1872 ~ 1970



- ◀ pymc3.Normal() 定义正态先验分布
- ▼ pymc3.HalfNormal() 定义半正态先验分布
- ▼ pymc3.plot\_posterior() 绘制后验分布
- ◀ pymc3.sample() 产生随机数
- ◀ pymc3.traceplot() 绘制后验分布随机数轨迹图



### 6.1回顾贝叶斯推断

简单来说,**贝叶斯推断** (Bayesian inference) 就是结合"经验 (先验)"和"实践 (样本)",得出"结论 (后验)"。贝叶斯推断把模型参数看作随机变量。在得到样本之前,根据主观经验和既有知识给出未知参数的概率分布叫做**先验分布** (prior)。获得样本数据后,根据贝叶斯定理,基于给定的样本数据先计算**似然分布** (likelihood),然后模型参数的**后验分布** (posterior)。



图 1. 贝叶斯推断

上面这段文字对应如下这个公式:

$$\underbrace{f_{\Theta|X}(\theta|x)}_{Posterior} = \underbrace{\underbrace{f_{X|\Theta}(x|\theta)f_{\Theta}(\theta)}_{f_{\Theta}(x|\theta)f_{\Theta}(\theta)}_{f_{\Theta}(\theta)d\theta} \tag{1}$$

最后根据参数的后验分布进行统计推断。贝叶斯推断对应的优化问题为**最大化后验概率** (Maximum A Posteriori, MAP)。本章介绍如何利用贝叶斯推断完成线性回归。

大家如果对(1)感到陌生的话,请回顾《统计至简》第20、21两章。

### 线性回归模型

为了配合贝叶斯推断,把多元线性回归模型写成:

$$\hat{\mathbf{y}}^{(i)} = \theta_0 + \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)} + \dots + \theta_D x_D^{(i)}$$
 (2)

其中, i 为样本序号, D 为特征数。

当 D = 1 时,一元线性回归模型为:

$$\hat{\mathbf{y}}^{(i)} = \theta_0 + \theta_1 x_1^{(i)} \tag{3}$$

### 似然

似然函数可以写成:

$$f_{\gamma \Theta}(\mathbf{y} \mid \boldsymbol{\theta}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp \left(-\frac{\left(y^{(i)} - \left(\theta_{0} + \theta_{1}x_{1}^{(i)} + \theta_{2}x_{2}^{(i)} + \dots + \theta_{D}x_{D}^{(i)}\right)\right)^{2}}{2\sigma^{2}}\right)$$
(4)

这意味着假设残差  $\varepsilon$  服从  $N(0, \sigma^2)$ 。

#### 贝叶斯定理

利用贝叶斯定理, 我们可以得到后验分布:

$$f_{\Theta|\gamma}(\boldsymbol{\theta} \mid \boldsymbol{y}) = \frac{f_{\gamma|\Theta}(\boldsymbol{y} \mid \boldsymbol{\theta}) \cdot f_{\Theta}(\boldsymbol{\theta})}{f_{\gamma}(\boldsymbol{y})}$$
 (5)

最大后验优化:

$$\hat{\boldsymbol{\theta}}_{\text{MAP}} = \arg\max_{\boldsymbol{\theta}} f_{\Theta|\boldsymbol{y}} \left( \boldsymbol{\theta} \mid \boldsymbol{y} \right) \tag{6}$$

如图2所示,随着样本不断引入,MAP优化结果不断接近真实参数。

由于后验 α 似然 × 先验,最大后验优化等价于:

$$\hat{\boldsymbol{\theta}}_{\text{MAP}} = \arg\max_{\boldsymbol{\theta}} f_{\gamma \mid \Theta} (\boldsymbol{y} \mid \boldsymbol{\theta}) \cdot f_{\Theta} (\boldsymbol{\theta})$$
 (7)

为了避免算数下溢,取对数后,优化问题可以写成:

$$\hat{\boldsymbol{\theta}}_{\text{MAP}} = \arg\max_{\boldsymbol{\theta}} \ln \left( f_{\gamma \mid \Theta} \left( \boldsymbol{y} \mid \boldsymbol{\theta} \right) \cdot f_{\Theta} \left( \boldsymbol{\theta} \right) \right)$$
 (8)

鸢尾花书之前介绍过,**算术下溢** (arithmetic underflow) 也称为**浮点数下溢** (floating point underflow), 是指计算机浮点数计算的结果小于可以表示的最小数。

(8) 进一步整理为:

$$\hat{\boldsymbol{\theta}}_{\text{MAP}} = \arg\max_{\boldsymbol{\theta}} \ln f_{\gamma \mid \Theta} \left( \boldsymbol{y} \mid \boldsymbol{\theta} \right) + \ln f_{\Theta} \left( \boldsymbol{\theta} \right) \tag{9}$$



图 2. 贝叶斯回归后验概率随样本变化

# 6.2 贝叶斯回归: 无信息先验



没有先验信息,或者先验分布不清楚,我们可以用常数或均匀分布作为先验分布,比如  $f(\theta) = 1$ 。最大后验优化就可以写成:

$$\hat{\boldsymbol{\theta}}_{\text{MAP}} = \arg\max_{\boldsymbol{\theta}} \ln f_{\gamma \mid \Theta} \left( \boldsymbol{y} \mid \boldsymbol{\theta} \right) \tag{10}$$

这和 MLE 的目标函数一致:

$$\hat{\boldsymbol{\theta}}_{\text{MLE}} = \arg\max_{\boldsymbol{\theta}} \ln f\left(\boldsymbol{y}; \boldsymbol{\theta}\right) \tag{11}$$

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

将 (4) 代入  $\ln f(y|\theta)$  得到:

$$\ln f_{\gamma \mid \Theta} \left( \mathbf{y} \mid \boldsymbol{\theta} \right) = -\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} \left( y^{(i)} - \left( \theta_{0} + \theta_{1} x_{1}^{(i)} + \theta_{2} x_{2}^{(i)} + \dots + \theta_{D} x_{D}^{(i)} \right) \right)^{2} + n \ln \frac{1}{\sqrt{2\pi\sigma^{2}}}$$

$$= -\frac{\left\| \mathbf{y} - \mathbf{X}\boldsymbol{\theta} \right\|_{2}^{2}}{2\sigma^{2}} + n \ln \frac{1}{\sqrt{2\pi\sigma^{2}}}$$
(12)

忽略常数,最大化后验 MAP 优化问题等价于如下最小化问题:

$$\hat{\boldsymbol{\theta}}_{\text{MAP}} = \arg\min_{\boldsymbol{\theta}} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}\|_{2}^{2} \tag{13}$$

这和前文的 OLS 线性回归优化问题一致。

## 6.3 使用 PyMC 完成贝叶斯回归

本节利用 PyMC 完成模型为  $y = \theta_0 + \theta_1 x_1$  贝叶斯回归。PyMC 是一个用于概率编程的 Python 库,主要用于进行贝叶斯统计建模和贝叶斯推断。 PyMC 允许用户使用贝叶斯统计方法来建模复杂的问题。通过定义随机变量、概率分布和观测数据,用户可以构建灵活的概率模型。PyMC 使用先进的 MCMC 算法来进行贝叶斯推断。这些算法帮助估计参数的后验分布。

如图 3 所示,黑色线为真实模型,参数为截距  $\theta_0 = 1$ 、斜率  $\theta_1 = 2$ 。图 3 中蓝色散点为样本点。



图 3. 真实模型和样本点

Bk7\_Ch06\_01.ipynb 绘制本节图像,下面我们聊聊其中关键代码片段。

代码 1 构造贝叶斯回归模型。

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

- <sup>3</sup> 将 pymc3 导入,简作 pm。请大家特别注意,目前 pymc3 版本已经被 pymc 代替。想要使用 pymc 的话,建议大家专门创建合适的虚拟环境,请参考。
- https://www.pymc.io/projects/docs/en/latest/installation.html
- □ 创建了一个贝叶斯推断模型的基础对象 basic\_model, 它是 pm.Model() 的实例。这个对象将用于容纳整个概率模型的定义。
- ○使用 with 语句,确保在接下来的代码块中定义的所有随机变量和分布都被正确地添加到 basic\_model 中。
- ②这一行定义了一个随机变量 intercept, 表示线性回归模型中的截距项。它的先验分布是正态分布, 使用 pm.Normal()创建, 命名为 'alpha', 平均值 mu 为 0, 标准差 sigma 为 20。
- ②定义了另一个随机变量 slope,表示线性回归模型中的斜率项。同样,它的先验分布是正态分布,也是使用 pm.Normal() 创建,命名为 'beta',平均值 mu 为 0,标准差 sigma 为 20。
- ① 定义了一个随机变量 sigma, 表示线性回归模型中的误差项的标准差。先验分布选择了半正态分布, 使用 pm.HalfNormal() 创建, 并且设置了标准差为 20。
  - ②定义了线性回归模型。
- ① 定义了观测数据的似然分布。Y\_obs 表示观测数据的随机变量,其分布是正态分布,均值 mu 由线性模型给出,标准差 sigma 为前面定义的误差项的标准差。observed=y 表示将实际观测数据 y 传递给这个分布,用于贝叶斯推断。

```
a import pymc3 as pm
basic_model = pm.Model()
  # 创建贝叶斯推断模型
  # 模型定义
o with basic_model:
      # 先验
      intercept = pm.Normal('alpha', mu=0, sigma=20) # b_0
d
      # 截距项先验为正态分布
              = pm.Normal('beta', mu=0, sigma=20) # b_1
      # 斜率项先验也是正态分布
              = pm.HalfNormal('sigma', sigma=20) # or pm.HalfCauchy
      # 误差项为半正态分布
      mu = intercept + slope*x
      # 线性回归模型
      # 似然, 引入实际观测数据
      Y_obs = pm.Normal('Y_obs', mu=mu, sigma=sigma, observed=y)
```

代码 1. 构造贝叶斯回归模型 | 🕀 Bk7\_Ch06\_01.ipynb

图 4 所示为三个参数的后验分布随机数轨迹图。随机数轨迹由 PyMC3 中**马尔科夫链蒙特卡洛** (Markov Chain Monte Carlo, MCMC) 生成。图中只绘制达到平稳状态后的轨迹。每个参数模拟两条轨迹。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

前文提过残差  $\varepsilon$  服从  $N(0, \sigma^2)$ ,所以残差也是一个模型参数。本章配套代码中,残差的先验分布为**半 正态分布** (half normal distribution),如图 5 所示。有关半正态分布,大家可以参考:

https://www.pymc.io/projects/docs/en/latest/api/distributions/generated/pymc.HalfNormal.html



图 4. 后验分布随机数轨迹图

代码 2 用 MCMC 生成后验分布样本并绘制图 4。

- ②是一个上下文管理器,确保在 basic\_model 定义的范围内正确管理资源。
- ⓑ使用马尔科夫链蒙特卡洛模拟 MCMC 生成后验分布的样本。draws=1000 设定生成 1000 个后验样本。chains=2 表示使用两条链进行采样。tune=200 在开始采样之前进行 200 步的调整,以帮助 MCMC 模拟收敛。discard\_tuned\_samples=True 表示在采样结束后,丢弃调整期间的样本,只保留后验采样的样本。trace 是 pm.sample() 返回的包含后验样本的对象。
- © traceplot 提供了一个方便的方式来可视化参数的后验分布。通常,追踪图包括直方图和核密度图,以及沿 MCMC 链的参数值随迭代次数的演变图,可以用于分析参数的不确定性和收敛情况。



本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套徽课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

代码 2. 用 MCMC 生成后验分布样本并绘制轨迹图 | Bk7\_Ch06\_01.ipynb



图 5. 半正态分布概率密度曲线

图 6 所示为后验分布随机数的直方图,用 plot\_posterior() 方法绘制。直方图合并两条 MCMC 轨迹。图中均值可以视作 MAP 的优化解。HDI 代表**最大密度区间** (highest density interval),即后验分布的可信区间。可信区间越窄,后验分布的确信度越高。图 7 所示为参数  $\theta_0$  和  $\theta_1$  后验分布随机生数构成的分布。

图 8 所示为贝叶斯线性回归的结果,图中红色线为预测模型。图中的浅蓝色线为 50 条后验分布的采样函数,它们对应图 7 中的 50 个散点。红色线相当于这些浅蓝色线"取平均"。



代码及 PDF 文件下载:https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466



图 7. 参数  $\theta_0$ 和  $\theta_1$ 后验分布随机生数构成的分布



图 8. 贝叶斯线性回归结果

代码 3 绘制图 8, 下面聊聊其中关键语句。

- ⓐ 创建索引数组,采样频率为 40,即每 40 个样本保留一个。这样可以减少后续绘图数量,保证图形清晰。
  - ⑤和 ⑥分别计算 alpha 和 beta 的后验均值,用于在后续可视化中绘制平均回归线。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

- ●中 for 循环每次迭代绘制一条回归线,展示贝叶斯回归模型中的不确定性。● 绘制真实回归线。

代码 3. 绘制贝叶斯回归结果 | Bk7\_Ch06\_01.ipynb

### 6.4 贝叶斯视角理解 Ridge 正则化

上一章的岭回归可以从贝叶斯推断角度理解。

本章中假设线性回归参数服从正态分布:

$$f_{\Theta_j}(\theta_j) = \frac{1}{\sqrt{2\pi\tau^2}} \exp\left(-\frac{\theta_j^2}{2\tau^2}\right) \tag{14}$$

图 9 所示为先验分布随 τ 变化。τ 越大代表越不确信、τ 越小代表确信程度越高。



本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

#### 图 9. 先验分布随 τ 变化

#### (8) 所示的优化问题等价于:

$$\arg\max_{\theta} \left[ \ln \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left( -\frac{\left(y^{(i)} - \left(\theta_{0} + \theta_{1}x_{1}^{(i)} + \theta_{2}x_{2}^{(i)} + \dots + \theta_{D}x_{D}^{(i)}\right)\right)^{2}}{2\sigma^{2}} \right) + \ln \prod_{j=1}^{D} \frac{1}{\sqrt{2\pi\tau^{2}}} \exp\left( -\frac{\theta_{j}^{2}}{2\tau^{2}} \right) \right]$$
(15)

上式目标函数可以分为两部分整理。大家已经清楚, 第一部分为:

$$-\frac{\|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|_{2}^{2}}{2\sigma^{2}} + n \ln \frac{1}{\sqrt{2\pi\sigma^{2}}}$$
(16)

第二部分为:

$$-\frac{\|\boldsymbol{\theta}\|_{2}^{2}}{2\tau^{2}} + D\ln\frac{1}{\sqrt{2\pi\tau^{2}}}$$
Constant

忽略常数后, (15) 优化问题进一步整理为:

$$\underset{\theta}{\operatorname{arg\,max}} \left[ -\frac{\left\| \mathbf{y} - \mathbf{X}\boldsymbol{\theta} \right\|_{2}^{2}}{2\sigma^{2}} - \frac{\left\| \boldsymbol{\theta} \right\|_{2}^{2}}{2\tau^{2}} \right]$$
 (18)

将上式最大化问题调整为最小化问题:

$$\arg\min_{\boldsymbol{\theta}} \frac{1}{2\sigma^2} \left( \left\| \mathbf{y} - \mathbf{X}\boldsymbol{\theta} \right\|_2^2 + \frac{\sigma^2}{\tau^2} \left\| \boldsymbol{\theta} \right\|_2^2 \right)$$
 (19)

**令** 

$$\lambda = \frac{\sigma^2}{\tau^2} \tag{20}$$

(19) 等价于:

$$\underset{\theta}{\operatorname{arg\,min}} \underbrace{\|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|_{2}^{2}}_{\text{OLS}} + \lambda \|\boldsymbol{\theta}\|_{2}^{2} \tag{21}$$

这和上一章的岭回归优化问题完全一致。

《统计至简》第 20 章介绍过,先验的影响力很大,MAP 的结果向先验均值"收缩"。这种效果常被称作**贝叶斯收缩** (Bayes shrinkage)。

根据 (20), $\sigma$  保持不变条件下, $\tau$  越小代表确信度越高, $\lambda$  越大,通过 MAP 得到的优化解向原点  $\theta$  (先验均值) 收缩。图 10 上可以看到,优化解随着约束项参数  $\lambda$  不断增大运动轨迹,"收缩"的这种现象显而易见。



图 10. 不断增大 礼, 岭回归优化解变化路径

### 6.5 贝叶斯视角理解套索正则化

如果先验分布为拉普拉斯分布:

$$f_{\Theta_j}(\theta_j) = \frac{1}{2b} \exp\left(-\frac{|\theta_j|}{b}\right)$$
 (22)



图 11. 先验分布随 b 变化

### (8) 所示的优化问题等价于:

$$\arg\max_{\theta} \left[ \ln \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left( -\frac{\left(y^{(i)} - \left(\theta_{0} + \theta_{1}x_{1}^{(i)} + \theta_{2}x_{2}^{(i)} + \dots + \theta_{D}x_{D}^{(i)}\right)\right)^{2}}{2\sigma^{2}} \right) + \ln \prod_{j=1}^{D} \frac{1}{2b} \exp\left( -\frac{\left|\theta_{j}\right|}{b} \right) \right]$$
(23)

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

也是分两部分来看上式。第一部分和上一节完全相同:

$$-\frac{\|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|_{2}^{2}}{2\sigma^{2}} + n \ln \frac{1}{\sqrt{2\pi\sigma^{2}}}$$
Constant (24)

第二部分为:

$$-\frac{1}{b}\sum_{j=1}^{D}\left|\theta_{j}\right| + \underbrace{D\ln\frac{1}{2b}}_{\text{Constant}} = -\frac{1}{b}\left\|\boldsymbol{\theta}\right\|_{1} + \underbrace{D\ln\frac{1}{2b}}_{\text{Constant}}$$
(25)

忽略常数后, 优化问题为:

$$\underset{\theta}{\operatorname{arg max}} - \frac{\left\| \mathbf{y} - \mathbf{X}\boldsymbol{\theta} \right\|_{2}^{2}}{2\sigma^{2}} - \frac{1}{b} \left\| \boldsymbol{\theta} \right\|_{1}$$
 (26)

最大化问题调整为最小化问题得到:

$$\arg\min_{\theta} \|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|_{2}^{2} + \frac{2\sigma^{2}}{b} \|\boldsymbol{\theta}\|_{1}$$
 (27)

今

$$\lambda = \frac{2\sigma^2}{b} \tag{28}$$

(27) 等价于

$$\arg\min_{\boldsymbol{\theta}} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}\|_{2}^{2} + \lambda \|\boldsymbol{\theta}\|_{1}$$
 (29)

这和上一章套索回归的优化问题的目标函数本质上一致。

图 12 所示为不断增大 A,套索回归参数变化轨迹;可以发现参数变化轨迹有两段,第一段从 OLS 结果为起始点,几乎沿着斜线靠近 y 轴  $(\theta_0 = 0)$ ,直至到达 y 轴。到达 y 轴时,回归系数  $\theta_0$  为  $\theta_0$  第二 段,沿着 y 轴朝着原点运动。

请大家自己思考从贝叶斯推断视角来看,套索回归的先验概率分布应该是什么?



图 12. 不断增大 礼,套索回归优化解变化轨迹



贝叶斯回归是一种基于贝叶斯理论的回归分析方法,它不仅考虑了自变量与因变量之间的线性关系,还考虑了模型的不确定性和误差。在贝叶斯回归中,模型的参数被视为概率变量,因此可以通过贝叶斯定理来计算模型参数的后验分布,从而得到对未来数据的预测结果。贝叶斯回归不仅可以有效地避免过拟合和欠拟合等问题,还可以处理噪声和缺失数据等复杂情况,具有广泛的应用前景。

从贝叶斯回归角度理解正则化回归,可以将正则化项视为参数的先验分布。正则化回归通过在损失 函数中加入先验分布,来约束模型参数的取值范围,从而避免过拟合和提高泛化能力。在贝叶斯回归 中,先验分布可以通过经验知识或者领域知识来确定,这种方法可以更好地适应实际问题的复杂性和不 确定性。因此,正则化回归可以看作是贝叶斯回归在参数估计中的一种特殊情况。



想深入学习贝叶斯推断和贝叶斯回归的读者可以参考开源图书 Bayesian Modeling and Computation in Python:

https://bayesiancomputationbook.com/welcome.html