MACHINE LEARNING --LINEAR REGRESSION

import pandas as pd

df = pd.read_csv('/content/Salary_Data.csv')
df

df.head()

YearsExperience		Salary
0	1.1	39343.0
1	1.3	46205.0
2	1.5	37731.0
3	2.0	43525.0
4	2.2	39891.0

df.info()

<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 30 entries, 0 to 29

Data columns (total 2 columns):

#	Column	Non-Null Count	Dtype
0	YearsExperience		float64
1	Salary	30 non-null	float64

dtypes: float64(2) memory usage: 608.0 bytes

#divide the data into input and output

x = df.iloc[:,[0]].values #two dimensional input
y = df.iloc[:,1].values #one dimensional output

x.ndim

2

Х

#import the algorithm
from sklearn.linear_model import LinearRegression
#all models are in sklearn (package name)
#family library name (linear_model)
#LinearRegression (model name)

linear - lowercase

Linear - Sentence case # LINEAR - UPPERCASE

IINEAR - tOGGLE case

Linearregression - Sentence case

linearRegression - camel case

LinearRegression - Pascal case

model = LinearRegression()
model.fit(x,y) #fitting the model , or , creating the model

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

y_pred = model.predict(x) #predicted output
y_pred

y #actual output

from sklearn.metrics import r2_score r2_score(y,y_pred) #regression score / model accuracy

0.9569566641435086

import matplotlib.pyplot as plt
plt.scatter(x,y) #original points
plt.plot(x,y_pred, c = 'r') #predicted line / best fit line
plt.show()


```
model.coef_ #slope value - m array([9449.96232146])
```

model.intercept_ # c value

25792.200198668696

73042.0118059687

model.predict([[5.0]]) # testing data array([73042.01180594])

#mx+c 9449.96232146*5.0 + 25792.200198668696

×