VR20	Reg. No:	•
VELAGAPUDI RAMAKRISHNA		
SIDDHARTHAENG	GINEERING COLLEGE	
(AUT)	ONOMOUS)	

II/IV B.Tech. DEGREE EXAMINATION, March, 2022
Third Semester

ELECTRONICS AND INSTRUMENTATION ENGINEERING

20EI3303 DIGITAL CIRCUITS & SYSTEMS

Time: 3 hours

Max. Marks: 70

Part-A is compulsory
Answer One Question from each Unit of Part - B

Answer to any single question or its part shall be written at one place only

PART-A

 $10 \times 1 = 10M$

- 1. a. What are Universal Gates?
 - b. Write the expressions for De Morgan's Laws.
 - c. What is the 10's complement of 74546?
 - d. Sketch the symbol of Exclusive OR gate with its truth table.
 - e. Name some combinational circuits.
 - f. Define flip flop.
 - g. Design a half adder.
 - h. Write the applications of multiplexer.
 - i Difference between synchronous and asynchronous counters.
 - i. List out some programmable memories.

20EI3303 PART-B

 $4 \times 15 = 60M$

7M

UNIT-I

- a. Convert the following numbers.
 i) (26153.7406)₈ to binary.
 ii) (2155.3)₈ to binary and then to Hexa Decimal.
 iii) (FACE.2)₁₆ to decimal.
 - b. Assume that the even parity hamming code is (0100111)₂ is transmitted and that (0100011)₂ is received. The receiver does not know what is transmitted. Determine the bit location where error has occurred in the code received.
 8M

(or)

- 3. a. Explain the properties of Exclusive-OR function in detail. 5M
 - b. Minimize the following using Karnaugh map. 10M $F(P,Q,R,S,T)=\sum m(1,2,3,6,13,14,15,18,19,23,24,25,26,31)$

UNIT-II

- 4. a. Design a BCD to gray code converter. 8M
 - b. Construct a 4 to 16 line decoder using 2 to 4 line decoder. 7M

(or)

5. a. Design a BCD to seven segment decoder which is need for society.

8M

b. Apply the following Boolean function using 4:1 MUX $F(A,B,C,D)=\sum m(0,1,2,4,6,9,12,14)$. 7M

VR20

20EI3303

UNIT-III

- 6. a. Analyze the operation of JK flip flop with truth table with excitation table. 7M
 - b. Discuss how can we avoid race around condition in JK flip flop. 8M

(or)

- 7. a. Discuss the applications of shift registers. 7M
 - b. Convert SR Flip-Flop to D Flip-Flop. 8M

UNIT-IV

8. a. Write a program for logic gates using behavioural model of VHDL.

10M

b. Realize the following functions using a 8X3 PROM. 5M $F_1 = \sum m(0,4,7), F_2 = \sum m(1,3,6), F_3 = \sum m(1,2,4,6)$

(or)

- 9. a. Write a detailed note on MOS and CMOS logic families. 7M
 - b. Explain in detail the different types of RAMS. 8M

* * *