Unit-III Fixed Bears and Continous Bears. Pixed Beam A beam is two fined end is called ay foo fixed Beam.

continous Beam A beam with more than two supports is consider as continous Beam TATOP clapey non's three moment therom (3 moment eqn. $Ma\left(\frac{L_{1}}{\Gamma_{1}}\right) + 2Mb\left(\frac{L_{1}}{\Gamma_{1}} + \frac{L_{2}}{\Gamma_{2}}\right) + Mc\left(\frac{L_{2}}{\Gamma_{2}}\right) = \frac{6a_{1}\overline{x_{1}}}{L_{1}\Gamma_{1}} + \frac{6a_{2}\overline{x_{2}}}{L_{2}\Gamma_{2}}$ If those getsection area are different If AB and BC cross sections are similar then II=IL Mali + 2Mb (L,+L) + Mc (I) = 6an, +6an, LI Mali + 2Mb(Li+li) + Mcl2 = $\frac{6ax_1}{L_1} + \frac{6a_2x_2}{L_2}$ Case-1 + 2Mc($\frac{1}{2}$ + $\frac{1}{2}$) + Mo($\frac{1}{3}$) = $\frac{6ax_1}{227}$ + $\frac{6a_2x_2}{42}$ Beam with war fixed end Just replace the fixed end with an imagine beam try to apply the capeyrons three moment therom Bending Moment Aveu SSB WIT WIT wab

July 10 ml3 -> A fixed beam with point load 10 Mg, 6 L Mg, 16 Mo, (40) + 2 Ma (40+4,) + Mo(40) = 6 aoxo + 6aix, 2 MaL, + MbL = 6a, X, 26Ma + Mb) L = 6[w/2/2/2] $2Ma+Mb = 3\omega L \rightarrow 0$ ABO Mall) + 2 Mo (L+Lo) + Moz(Lo) = 6 aix, + 6000 Mal + 2Mol = 6/4/2/2/ (Ma +2Mb) L = 3/8 W/2 Ma+2Mb = 3/2 WL -> 0 From 0+2

-Ma + Mb = 0 Ma = Mb Flaced BA sub eq@ in MasMb 2Ma + Mb = 3 WL BMa = BWL Mas wel 1. Ma= Mb= WL -> A fined beam with will load By applying conclapetoson's therom, Mo, AB Mo(Lo) + 2MA (40+L) + MB(L) = 600x0 + 601x1 + 2MAL+MBL = 6/W13//2 $(2M_A + M_B)L = \frac{3\omega L^4}{12}$ 2MA + MB = 2 WL2 - 9 0

On ABMO, MA(L) +2MO(L+LO) + MO(LO) = 602x2 +60 MAL + 2MBL = 6 (W/3) (8) MA +2MB = WL3. 89 Oado 2MA + MB = WLB MA + 2MB = 1018 3AA MA-7MB = Q MA = MB 2MA + MB = WL 3 MA = WLL MA = WLL $M_A = M_B = \frac{wl^2}{12}$

Scanned with CamScanner

Applying the dapeyron's three moment-equation. for Mo, AB > Mo(Lo) + 2Mal Lo+L) + Mb(L) = 600x0 + 600x0 2Ma L + MoL = 6ax 2Mal + Mbl = 6 (wab) (3/4) (3/2). 2Mal + Mbl = 3 wabl+b) 2Ma +Mb = 2 was (Lta) -> FOY ABMO, Ma(L) + 2Mb(L+lo) + Mollo) = 6ax, + 6aoxo Mall) \$ 2Mbl = 60x Mall) + 2Mol = 6/wab/(2) Mal + 2Mbl = 3/2 wabll+9

Ma (8) + 2Mb (4) Ma +2Mb = Wab(L+a) solving () and (). 2Ma + Mb = (Wab (L+b) 2Ma + 4Mb = 12 wab(lfa) 3Mb = 2 wab (L+a) - wab (L+b) 3Mb = wab [21+a) - (1+b) $3 Mb = \frac{wab}{L^2} [2L + 2a - L - b]$ 3 Mb = wab [1 +2a-b] 3 Mp: wab [a+b] +2a-b] 3 Mb = wab [3a]

Mb = wab Ma = wash

athere's a beam ABC which is continue boarn AB of span of span am Moment of Inertia it comes of sport of 20 M/m of overthe span and beanse By Carries a point load 30 FN/m at 1m from the mount of ELSISSER STATE OF THE STATE OF At Beam and Area of parabola = $\frac{73}{3} \times L \times \frac{|w|^4}{8}$. tentrod = $\overline{x} = \frac{1}{2} = \frac{1}{2}$ = 30243 = 106-66 Area of frangle = $\frac{1}{2} \times b \times h$ $\frac{1}{2} \times b \times \frac{b \times h}{b}$ $\frac{1}{2} \times b \times \frac{b \times h}{b}$ = 120, Apply in classyon's three moment ABC $M_{A}[\frac{4}{1}] + 2M_{b}[\frac{4}{2}] + \frac{6}{21} + \frac{6(106.6)^{2}}{6(121)} = \frac{6(106.6)^{2}}{41} + \frac{6(106)(6)}{6(121)}$ $0 + 2M_b \left(\frac{4}{1} + \frac{6}{21}\right) + 0 = 319.80 + \frac{160}{7}$

20% (4+3) = 479.8 14 Mb = 479.8 Mb = 34.27 KN-M. -> A beam ABC fixed at c span AB=5m sp BC is 4m span and AB corries a optot 30 kg and span BC has central point of low 93.75 FID Area of parabola. = 30/53 312-5 m

Area of 8 = 5x W/ 1 centrical = X = 1 ta = .10x4 Apply the clapeyron's therom. ABC Ma(5) + 2Mb(5+4) + Me(4) = 6(3/2.5)(25) + 6 (20) (2) 5Ma+18Mb+4Mc = 937.5 +60 At the entor continous bean the moment's note there so it is 2000 H8Mb + 4ML = 997.5 →0 Apply the clapeyron's therom BCD Mo(4) + 2Mc(4+10) + Mo.(Lo) = 6(20)(2) + 6000 4Mh + 2M((4+0) + Molo) = 60 + 0 4Mb + 8Mc = 60 ->(2) Equating (I and) Multiply ing ear with 2 18Mp +4Mc = 997.5 8 Mb + 12mc = 196 10Mb = 877.5

16 2 8TLS Mh = 87.75 KN-M Sub Mp value in eq 0 4(87.75) + 2(Mc) = 60 351 + 240 = 60 2Mc = 60 - 351 2Mc =-291 Me = -145,5 NN-M -) ABCO is a continous beam carring span AB: 4m, span BC:30 co = um AR cooxies a points load 40KN at center and spar Be caming upl 20km-m span co carrieg point load 40km Arreu 1012 = 4014 : W3 = 20123 ; W1 = 4014 central = 13.3 = 13.3 = 13.3 = 13.3 = 13.3 Apply the chapeyron's three moment throom MALE) + 2M3 (4+ b) + Mell) = 6a, x, + 6a, x, + 6a, x,

Ma(4) +2 Mb(4+2) + Mc(2) = 6(80(2) + 6(1333)0) 2Mp + 12Mb + 2Mc = 240 + 39.00 4MA & 12M0+2MC = 279.99 again applying on BCD MB (2) + 2Mc (2+4) + MO[6] = 6(13.33) (1) + 6(80) (12) 2MB + 12Mc + 6MB) = 39.99 + 240 2 MB + 2MC + 6MD = 279-99 - 3. Net Bending egn 4MA+ 12Mb+2Mc = 279-99 2 + 2MB + 12MC+6MD = 27999 A At the Simple sopposts beam at ends A and D are no moment so that o' places in MA and Mp 1. 12 Mb + 2Mc = 279.99 →3 2Mb +12Mc = 279-99. →@ Bu Multplying with 6 to eq 2 12MB + 72Mc = 1679.94 -> 5) solving eq Q and D 12 Mb + 2Mc = 27999 12Mp + 72Mc = 1679.94 70 Mc = 13 99 .95 M= 19.99 N-M. sub Mc in value in a 12 MB + 2 (19.99) = 27999

12M8 + 39.98 = 279.99 MB = 249.09 MB = 19.99 N-M 15-03 A beam AB, C.P.F., hinged at B rollers at C.D.E., span AB 2m. BC 3M, CD 6M, DE 4M EF 2M moment of inestice of ABUS EF = I, Moment of : nesta of CD = 2I , DF = 15I AB call upl of intenty your mall over the span. It carrier point load 60 KN at the center and span DE courses so KN at the center and they is point of 40KN at F

Free Bending diagram
6 6 10
Parabola $\frac{\omega l}{8}$ $= \frac{40(3)^2}{8}$ $= \frac{60(6)}{4}$ $= \frac{80(4)}{4}$ $= \frac{45}{8}$ $= \frac{25}{45}$ $= \frac{20}{45}$ $= \frac{20}{45}$
Area of Bending point load parabola = $\frac{\omega l^3}{12}$, point load $\frac{\omega l^4}{8}$ $\frac{40(3)^4}{12}$, $\frac{\omega 60(6)^4}{8}$, $\frac{80(4)^4}{8}$ $\alpha_1 = 90 \text{ m}$, $\alpha_2 = 270 \text{ m}$, $\alpha_3 = 160 \text{ m}^2$
centriod point load point load $\frac{1}{2} = \frac{3}{2}$ $\frac{3}{2} = \frac{6}{2}$ $\frac{1}{2} = \frac{4}{2}$ $\frac{4}{2} = \frac{6}{2}$ $\frac{1}{2} = \frac{4}{2}$ $\frac{4}{2} = \frac{4}{2}$ Applying dapeyron's three bending theorem
From Beam BCD $ \frac{M_{B}\left(\frac{3}{D}\right)}{M_{B}\left(\frac{3}{D}\right)} + 2M_{C}\left(\frac{3}{D}\right) + \frac{6}{2D} +$
$\frac{3}{2} \left[80 + 4Mc + 2Mo \right] = \frac{270}{2} + \frac{405}{2}$ $\frac{3}{2} \left[80 + 4Mc + 2Mo \right] = \frac{675}{2}$
80 + 4Mc + 2Mn = 225

