TAIL — CONTEÚDOS EXTRAS

Diretoria de Matématica - Tail

11/09/2020

1 Métricas de avaliação de modelos de Classificação

Agora já que as métricas de avaliação de modelos de regressão foram vistas, vamos abordar as métricas de avaliação de modelos de classificação.

1.1 Matriz de confusão

O mais simples dentre os meios de avaliação de modelos de classificação, porém a base para todas as outras métricas. A matriz de confusão é composta por todas as informações que nosso modelo obteve, Falso Negativo (FN), Falso Positivo (FP), Verdadeiro Negativo (VN) e Verdadeiro Positivo (VP). Além disso, esse meio de avaliação nos permite a visualização **direta** se nosso modelo está classificando um grupo melhor que o outro, ou seja, favorecendo um dos grupos sujeitos.

		Predito	
		Positivo	Negativo
Real	Positivo	VP	FN
	Negativo	FP	\mathbf{VF}

1.2 Acurácia

A acurácia é uma métrica muito usada para avaliar o desempenho de modelos de classificação, identificando quantas observações de fato foram classificadas de forma correta, seja ela da classe negativa, positiva ou qualquer outra. Porém, a acurácia apresenta alguns problemas como o não ponderamento, digamos que temos uma amostra de 5000 observações, sendo 4890 da classe positiva e apenas 110 da classe negativa, logo nosso modelo classificará melhor o a classe positiva, por fim, poderemos ver que nosso modelo não estará trabalhando bem.

$$\frac{\mathbf{VP} + \mathbf{VN}}{\mathbf{VP} + \mathbf{VN} + FP + FN}$$

1.3 Precisão

Perceba que a precisão trabalha em cima das observações classificadas como positivas, ou seja, essa métrica nos ajuda a identificar: Dentre os exemplos classificados como positivos, quantos são realmente **positivos**?.

$$\frac{\mathbf{VP}}{\mathbf{VP} + FP}$$

1.4 Recall

O recall ou sensibilidade é a quantidade de observações positivas (reais) sobre a quantidade de classificações positivas encontradas, tanto verdadeiras quanto falsas. Quanto mais próximo de 1, menos erros o modelo cometeu em marcar valores como verdadeiro.

$$\frac{\mathbf{VP}}{\mathbf{VP} + FN}$$

1.5 F1-Score

Perceba uma dependência dessa métrica com o **Recall** e da **Precisão**, assim sendo, quanto maior nosso F1-score, podemos afirmar que nosso modelo esta tendo uma precisão mais alta (Capacidade de classificar melhor as classes) e maior será meu recall, evidenciando que o nosso modelo erra menos as classes classificadas como positivas

$$2 \cdot \frac{Preciso \cdot Recall}{Preciso + Recall}$$

1.5.1 Curva ROC

Receiver Operating Characteristic Curve ou simplesmente Curva ROC, é um meio de avaliação diferente dos outros, justamente pelo fato de não ser sensível ao desbalanço entre classes diferentes. Podemos analisar a curva ROC da seguinte forma:

Quanto maior a área da curva ROC e mais próxima da parte superior esquerda do gráfico, melhor será nosso modelo. Para o cálculo da curva ROC utilizamos dois valores bem importantes: Taxa de Falso Positivo (FPR) e a Taxa de Verdadeiro Positivo (TPR) que auxiliam na construção de um limiar para o gráfico, onde tudo que estiver superior a ele será classificado como positivo, caso esteja abaixo, classificado como negativo. Sendo o valor perfeito o (0, 1).

$$TPR = \frac{\mathbf{VP}}{\mathbf{VP} + FN}$$

$$FPR = \frac{FP}{\mathbf{VP} + FP}$$

A reta azul tracejada representa um modelo que apenas classifica os dados de forma aleatória, evidenciada para comparação com seu modelo.