International TOR Rectifier

IRF7526D1

FETKY™ MOSFET & Schottky Diode

- Co-packaged HEXFET® Power MOSFET and Schottky Diode
- P-Channel HEXFET
- Low V_F Schottky Rectifier
- Generation 5 Technology
- Micro8[™] Footprint

A 1 1 K S 1 5 D Top View

$V_{DSS} = -30V$ $R_{DS(on)} = 0.20\Omega$ Schottky Vf = 0.39V

Description

The **FETKY**TM family of co-packaged HEXFETs and Schottky diodes offer the designer an innovative board space saving solution for switching regulator applications. Generation 5 HEXFETs utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. Combining this technology with International Rectifier's low forward drop Schottky rectifiers results in an extremely efficient device suitable for use in a wide variety of portable electronics applications like cell phone, PDA, etc.

The new Micro8TM package, with half the footprint area of the standard SO-8, provides the smallest footprint available in an SOIC outline. This makes the Micro8TM an ideal device for applications where printed circuit board space is at a premium. The low profile (<1.1mm) of the Micro8TM will allow it to fit easily into extremely thin application environments such as portable electronics and PCMCIA cards.

Absolute Maximum Ratings

	Parameter	Maximum	Units	
I _D @ T _A = 25°C	Continuous Proin Current V @ 45V	-2.0		
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -4.5V	-1.6 A		
I _{DM}	Pulsed Drain Current ①	-16		
P _D @T _A = 25°C	Power Dissipation	1.25	W	
P _D @T _A = 70°C	Fower Dissipation	0.8		
	Linear Derating Factor	10	mW/°C	
V _{GS}	Gate-to-Source Voltage	± 20	V	
dv/dt	Peak Diode Recovery dv/dt ②	-5.0	V/ns	
$T_{J,}T_{STG}$	Junction and Storage Temperature Range	-55 to +150	°C	

Thermal Resistance Ratings

Parameter		Maximum	Units
$R_{\theta JA}$	Junction-to-Ambient ④	100	°C/W

Notes:

- ① Repetitive rating pulse width limited by max. junction temperature (see Fig. 9)
- ② $I_{SD} \le -1.2A$, $di/dt \le 160A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_J \le 150$ °C
- ③ Pulse width \leq 300µs duty cycle \leq 2%
- When mounted on 1 inch square copper board to approximate typical multi-layer PCB thermal resistance www.irf.com

MOSFET Electrical Characteristics @ $T_1 = 25$ °C (unless otherwise specified)

	1001 ET Electrical Grianacteristics			IJ = 20 0 (diffees offici wise specified)			
	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-30			V	$V_{GS} = 0V, I_D = -250\mu A$	
R _{DS(on)}	Static Drain-to-Source On-Resistance		0.17	0.20	Ω	V _{GS} = -10V, I _D = -1.2A ③	
20(01)			0.30	0.40		V _{GS} = -4.5V, I _D = -0.60A ③	
V _{GS(th)}	Gate Threshold Voltage	-1.0			V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	
9 fs	Forward Transconductance	0.94			S	$V_{DS} = -10V, I_{D} = -0.60A$	
I _{DSS}	Drain-to-Source Leakage Current			-1.0		$V_{DS} = -24V, V_{GS} = 0V$	
יטכט	Brain to Course Esarage Surrent			-25	μA	$V_{DS} = -24V$, $V_{GS} = 0V$, $T_{J} = 125$ °C	
I _{GSS}	Gate-to-Source Forward Leakage			-100	nA	V _{GS} = -20V	
'GSS	Gate-to-Source Reverse Leakage			100	11/	V _{GS} = 20V	
Qg	Total Gate Charge		7.5	11		I _D = -1.2A	
Q_{gs}	Gate-to-Source Charge		1.3	1.9	nC	$V_{DS} = -24V$	
Q _{gd}	Gate-to-Drain ("Miller") Charge		2.5	3.7		$V_{GS} = -10V$, See Fig. 6 ③	
t _{d(on)}	Turn-On Delay Time		9.7			V _{DD} = -15V	
t _r	Rise Time		12		ns	$I_D = -1.2A$	
t _{d(off)}	Turn-Off Delay Time		19		115	$R_G = 6.2\Omega$	
t _f	Fall Time		9.3			$R_D = 12\Omega$, ③	
C _{iss}	Input Capacitance		180			$V_{GS} = 0V$	
Coss	Output Capacitance		87		pF	$V_{DS} = -25V$	
C _{rss}	Reverse Transfer Capacitance		42			f = 1.0MHz, See Fig. 5	

MOSFET Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current(Body Diode)			-1.25	_	
I _{SM}	Pulsed Source Current (Body Diode)			-9.6	A	
V _{SD}	Body Diode Forward Voltage			-1.2	V	$T_J = 25^{\circ}C$, $I_S = -1.2A$, $V_{GS} = 0V$
t _{rr}	Reverse Recovery Time (Body Diode)		30	45	ns	T _J = 25°C, I _F = -1.2A
Qrr	Reverse Recovery Charge		37	55	nC	di/dt = 100A/µs ③

Schottky Diode Maximum Ratings

	,					
	Parameter	Max.	Units	Conditions		
I _{F(av)}	Max. Average Forward Current	1.9		50% Duty Cycle. Rectangular Wave, T _A = 25°C		
		1.3	1 A	See Fig. 14	$T_A = 70^{\circ}C$	
I _{SM}	Max. peak one cycle Non-repetitive	120		5µs sine or 3µs Rect. pulse	Following any rated	
	Surge current	11	Α	10ms sine or 6ms Rect. pulse	load condition &	
					with V _{RRM} applied	

Schottky Diode Electrical Specifications

	Parameter	Max.	Units	Conditions
V_{FM}	Max. Forward voltage drop	0.50		I _F = 1.0A, T _J = 25°C
		0.62	V	I _F = 2.0A, T _J = 25°C
		0.39		$I_F = 1.0A, T_J = 125^{\circ}C$
		0.57		I _F = 2.0A, T _J = 125°C.
I _{RM}	Max. Reverse Leakage current	0.06	mA	$V_R = 30V$ $T_J = 25^{\circ}C$
		16		T _J = 125°C
Ct	Max. Junction Capacitance	92	pF	V _R = 5Vdc (100kHz to 1 MHz) 25°C
dv/dt	Max. Voltage Rate of Charge	3600	V/µs	Rated V _R

(HEXFET is the reg. TM for International Rectifier Power MOSFET's)

Power Mosfet Characteristics

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Power Mosfet Characteristics

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

www.irf.com

4

Power Mosfet Characteristics

Fig 9. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 10. Typical On-Resistance Vs. Drain Current

Fig 11. Typical On-Resistance Vs. Gate Voltage

Schottky Diode Characteristics

Fig. 12 -Typical Forward Voltage Drop Characteristics

Fig. 13 - Typical Values of Reverse Current Vs. Reverse Voltage

Fig.14 - Maximum Allowable Ambient Temp. Vs. Forward Current

IRF7526D1

Micro8[™] Package Details

Part Marking

EXAMPLE: THIS IS AN IRF7501

WW = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

WW = (27-52) IF PRECEDED BY A LETTER

YEAR	Υ	WORK WEEK	w
2001	Α	27	Α
2002	В	28	В
2003	С	29	С
1994	D	30	D
1995	Ε		
1996	F		
1997	G		
1998	Н		
1999	J	1	1
2000	K	50	X
		51	Υ
		52	Z

Micro8[™] Tape & Reel

- 1. OUTLINE CONFORMS TO EIA-481 & EIA-541.
- 2. CONTROLLING DIMENSION: MILLIMETER.

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

International IOR Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 221 8371 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936 http://www.irf.com/ Data and specifications subject to change without notice . 5/99