Apple Store Reviews

```
In [24]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
In [25]: df=pd.read_csv('Apple_Store_Reviews.csv')
df
```

	Review_ID	App_Name	User_Age	Review_Date	Rating	Review_Text	Likes	Device_
0	1	Candy Crush Saga	21	2023-01-16	4	Great game, but too many in-game purchases.	70	iPhor
1	2	Spotify	57	2024-02-01	1	Good, but has connection issues sometimes.	49	iPhor
2	3	TikTok	33	2023-11-30	5	Awesome app! Best entertainment content.	98	iPhor
3	4	Audible	40	2023-04-03	5	Great app, but it's a bit pricey.	74	iPhor
4	5	Spotify	44	2023-05-01	1	Good, but has connection issues sometimes.	47	iPhor
•••								
995	996	Headspace	30	2023-11-15	3	Good, but the premium content is expensive.	65	iPhor
996	997	Duolingo	19	2024-09-27	1	Disappointing. Hard to follow and buggy.	4	iPhor
997	998	Duolingo	38	2023-06-07	5	Excellent for learning new skills!	85	iPhor
998	999	Instagram	52	2024-03-04	4	Great app, but sometimes it lags.	55	iPhor
999	1000	Audible	25	2024-02-20	2	Terrible. Very limited selection of books.	7	iPhor

1000 rows × 12 columns

Out[25]:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 12 columns):
    Column
                   Non-Null Count Dtype
--- -----
                   -----
                  1000 non-null
0
   Review ID
                                  int64
1
    App_Name
                   1000 non-null
                                  object
 2
    User_Age
                    1000 non-null
                                   int64
                  1000 non-null
 3
    Review Date
                                   object
4
    Rating
                  1000 non-null
                                   int64
                 1000 non-null
 5
    Review_Text
                                  object
                  1000 non-null
                                  int64
 6
   Likes
   Device_Type 1000 non-null
Version_Used 1000 non-null
 7
                                  object
                                   object
9 Country
                    1000 non-null
                                   object
10 Purchase_Amount 1000 non-null
                                   float64
```

dtypes: float64(1), int64(4), object(7)

1000 non-null

memory usage: 93.9+ KB

11 Category

In [27]: df.describe()

Out[27]:

	Review_ID	User_Age	Rating	Likes	Purchase_Amount
count	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000
mean	500.500000	39.211000	2.869000	44.776000	5.361120
std	288.819436	11.908917	1.467649	28.685444	5.755652
min	1.000000	18.000000	1.000000	0.000000	0.000000
25%	250.750000	30.000000	1.000000	17.000000	0.000000
50%	500.500000	39.000000	3.000000	42.500000	4.995000
75%	750.250000	49.000000	4.000000	71.000000	10.192500
max	1000.000000	60.000000	5.000000	100.000000	19.970000

object

1. Calculate the mean, median, and mode of the app ratings in the dataset. Which measure (mean, median, or mode) best represents the central tendency of the ratings?

```
In [28]: #calculating mean of rating column in dataset.
    rating_mean = round(float(df['Rating'].mean()),2)
    rating_mean

Out[28]: 2.87

In [29]: #calculating median of rating column in dataset.
    rating_median = round(float(df['Rating'].median()),2)
    rating_median
```

Out[29]: 3.0

```
#calculating mode of rating column in dataset.
In [30]:
         rating_mode = float(df['Rating'].mode()[0])
         rating_mode
Out[30]: 1.0
In [31]: print(f"Mean of rating : {rating_mean} .")
         print(f"Median of rating : {rating_median} .")
         print(f"Mode of rating : {rating_mode} .")
        Mean of rating : 2.87 .
        Median of rating: 3.0.
        Mode of rating : 1.0 .
In [32]: plt.figure(figsize=(12,4))
         plt.bar(x=["Mean","Median","Mode"],height=[rating_mean,rating_median,rating_mode])
         plt.title("Best measure to represent central tendency in Rating.")
         plt.xlabel("Measure")
         plt.ylabel("Values")
         plt.show()
```


As we can see from above analysis, Median of 'Rating' column tends to have greater value than compare to others. So we can say that 'Median' represents the best central tendency for Rating column.

2. Find the range and interquartile range (IQR) of the Purchase_Amount in the dataset. How do these values help in understanding the spread of the data?

```
In [33]: #Max value in Purchase_Amount column.
    max_purchase_amount = float(df['Purchase_Amount'].max())
    max_purchase_amount

Out[33]: 19.97

In [34]: #Min value in Purchase_Amount column.
    min_purchase_amount = float(df['Purchase_Amount'].min())
    min_purchase_amount
```

```
In [35]: #Range of Purchase_Amount column.
    range_purchase_amount = max_purchase_amount-min_purchase_amount
    print(f"Range of Purchase_Amount column in {range_purchase_amount} .")
```

Range of Purchase_Amount column in 19.97 .

```
In [36]: plt.figure(figsize=(12,4))
  plt.boxplot(df['Purchase_Amount'])
  plt.title("Spread of data")
  plt.ylabel("Purchase Amount")

# Add text labels for min and max
  plt.text(1.1, min_purchase_amount, f'Min: {min_purchase_amount}', va='center')
  plt.text(1.1, max_purchase_amount, f'Max: {max_purchase_amount}', va='center')
  plt.show()
```


3. Calculate the variance and standard deviation for the number of likes received on reviews. What does the standard deviation indicate about the spread of the data?

```
In [39]: variance_likes = float(round(df['Likes'].var(),2))
variance_likes

Out[39]: 822.85

In [38]: standard_deviation_likes = float(round(df['Likes'].std(),2))
standard_deviation_likes

Out[38]: 28.69
```

Observation: As we can observe, the standard deviation is **28.69**, which is a relatively high value. This indicates that the number of likes varies widely between reviews.

4. Determine the correlation between the likes and the rating given. Is there a positive, negative, or no correlation between these variables?

```
In [46]: plt.figure(figsize=(12,4))
    sns.regplot(data=df,x='Likes',y='Rating', scatter_kws={'alpha':0.5})
    plt.title('Correlation between Likes and Rating')
    plt.show()
```



```
In [53]: # Calculate correlation value
    correlation = round(df['Likes'].corr(df['Rating']),2)

if(correlation>0):
    print(f"Correlation coefficient have Positive relationship b/w Likes and Rating
    elif(correlation<0):
        print(f"Correlation coefficient have Negative relationship b/w Likes and Rating
    else:
        print(f"Correlation coefficient have no relationship b/w Likes and Rating with</pre>
```

Correlation coefficient have Positive relationship b/w Likes and Rating with value o f 0.84 .

5. Plot the distribution of the app ratings. Is the distribution positively or negatively skewed? What does this indicate about user satisfaction?

```
In [61]: plt.figure(figsize=(6,4))
    sns.histplot(df['Rating'], bins=10, kde=True, color='skyblue')
    plt.title('Distribution of App Ratings')
    plt.xlabel('Rating')
    plt.ylabel('Frequency')
    plt.show()
```

Distribution of App Ratings


```
In [68]: skew_value = round(df['Rating'].skew(),2)
#print("Skewness:", skew_value)
if skew_value >0:
    print(f"There is Right Skewed/Positive Skewness. This means Mean and Median > M
elif skew_value < 0:
    print(f"There is Left Skewed/Negative Skewness. This means Mean and Median < Mo
else:
    print(f"There is Normal Destribution. This means Mean=Median=Mode")</pre>
```

There is Right Skewed/Positive Skewness. This means Mean and Median > Mode.

6. Perform a hypothesis test to determine if the average rating for Instagram is significantly higher than the average rating for WhatsApp. Use a 95% confidence level.

```
else:
    #p_value ≥ 0.05
    print(f"Fail to reject H₀ -> No significant evidence that Instagram's average r
```

Fail to reject $H_0 \to No$ significant evidence that Instagram's average rating is high er.

7. Take random samples of ratings from the dataset and calculate their means. Create a sampling distribution and explain how this relates to the Central Limit Theorem.

```
In [81]: sample_means = []

for i in range(1000):
    sample = df['Rating'].sample(n=30, replace=True)
    sample_means.append(sample.mean())

sample_means = np.array(sample_means)

In [82]: plt.figure(figsize=(12,4))
    plt.hist(sample_means, bins=30, color='skyblue', edgecolor='black')
    plt.title('Sampling Distribution of the Mean (n=30, 1000 samples)')
    plt.xlabel('Sample Mean')
    plt.ylabel('Frequency')
    plt.show()
```



```
In [ ]:
In [ ]:
```