Costanti fisiche per il corso di FSF

Michele Busti

Giulio Spadaro

Febbraio 2023

1 Introduzione

Breve raccolta in forma tabulare delle costanti numeriche empiriche e di derivazione teorica di pertinenza al corso in Fisica dei Solidi e dei Fluidi.

	Descrizione	Valore Teorico	Valore Empirico
ℓ	libero cammino medio	$2.5 \times 10^{-7} \text{ m}$	/
p_{atm}	pressione atmosferica	/	$1.013 \times 10^5 \text{ Pa}$
η	viscosità (gas a 300 K)	$4.7 \times 10^{-5} \text{ Pa s}$	$1.86 \times 10^{-5} \text{ Pa s}$
η	viscosità (acqua a PTN)	/	10^{-3} Pa s
η_{eff}	viscosità rocce mantelliche	/	10^{21} Pa s
k_T	conducibilità azoto	$0.04~{ m W}~{ m m}^{-1}{ m K}^{-1}$	$0.026~{ m W}~{ m m}^{-1}{ m K}^{-1}$
k_T	conducibilità acqua a 20°C	/	$0.596~{ m W}~{ m m}^{-1}{ m K}^{-1}$
k_T	conducibilità ferro	/	$80~{ m W}~{ m m}^{-1}{ m K}^{-1}$
k_T	conducibilità rame	/	$400~{ m W}~{ m m}^{-1}{ m K}^{-1}$
D_T	diffusività termica acqua del mare	/	$1.86 \times 10^{-5} \text{ m}^2 \text{s}^{-1}$
D_T	diffusività termica solidi	/	$10^{-5} \text{ m}^2 \text{s}^{-1}$
D_T	diffusività termica rocce	/	$10^{-6} \text{ m}^2 \text{s}^{-1}$
$ au_{cond}$	tempo di conduzione roccia $(L = 1 \text{ km})$	/	3×10^4 anni
D_F	diffusività osmotica soluti in acqua	/	$10^{-5} \text{ m}^2 \text{s}^{-1}$
$ au_F$	tempo di diffusione $(L = 1 \text{ km})$	/	3×10^3 anni
γ	tensione superficiale acqua	/	$0.073 \; { m N/m}$
W_0	energia di legame NaCl	$7.6 \times 10^8 \text{ J/kmol}$	$7.7 \times 10^8 \text{ J/kmol}$
α	coeff. espansione termica rocce	$2.26 \times 10^{-5} \text{ K}^{-1}$	$3 \times 10^{-5} \text{ K}^{-1}$
α	coeff. espansione termica acqua PTN	/	$6 \times 10^{-4} \text{ K}^{-1}$
RT_0/g	altezza di scala isoterma	$7.4~\mathrm{km}$	/
K_T	incompressibilità isoterma rocce crosta	/	$50 - 70 \times 10^9 \text{ Pa}$
K_T	incompressibilità isoterma rocce mantello	/	$130 \times 10^{9} \text{ Pa}$
K_S	incompressibilità adiabatica acqua	/	$2.25 \times 10^{9} \text{ Pa}$
$(c_p - c_v)/c_p$	differenza relativa calori specifici (aria)	30%	/
$(c_p - c_v)/c_p$	differenza relativa calori specifici (acqua)	5%	/
$(c_p - c_v)/c_p$	differenza relativa calori specifici (rocce)	5%	/
Ra_{cr}	numero di Rayleigh (free-slip)	/	657
Ra_{cr}	numero di Rayleigh (no-slip)	/	1708
Γ_a	gradiente adiabatico (gas ideale)	-10 K/km	
Γ_a	gradiente adiabatico (oceano)	$-0.5~\mathrm{K/km}$	/
Γ_a	gradiente adiabatico (mantello)	$-0.3~\mathrm{K/km}$	/
c_1	termine correttivo gradiente adiabatico umido	-0.214	/
c_2	termine correttivo gradiente adiabatico umido	1.184	/

Simbolo	Descrizione	Valore Teorico	Valore Empirico
Γ	gradiente aria umida	-5.5 K/km	/
t	età della Terra	/	4.5 Ga
t	età della Terra (secondo Kelvin)	64 Ma	/
H_g	tasso produzione calore per u. d. m. (granito)	/	$1.14 \times 10^{-9} \text{ W/kg}$
q_m	flusso subcrostale medio dal mantello	$33 \mathrm{\ mW/m^2}$	$28 \mathrm{\ mW/m^2}$
q_s	flusso superficiale continentale	/	65 mW/m^2
q_s	flusso superficiale oceanico	/	100 mW/m^2
Γ_c	gradiente crostale	/	$22 \mathrm{\ K/km}$
Γ_g	gradiente ghiaccio	/	35 K/km
h	altezza ghiacciaio a base fredda	3200-3300 m	/
ν	modulo di Poisson (approssimazione geofisica)	0.25	/
c	velocità onde acustiche (aria)	$344 \mathrm{\ m/s}$	/
c	velocità onde acustiche (acqua)	$1500 \mathrm{\ m/s}$	/
Re	numero di Reynolds (regime turbolento)	/	2200