Incremental Construction of Inductive Clauses for Indubitable Correctness

or simply: IC3 A Simplified Description

Based on "SAT-Based Model Checking without Unrolling" Aaron Bradley, <u>VMCAI 2011</u>

"Efficient Implementation of Property Directed Reachability" Niklas Een, Alan Mishchenko, Robert Brayton, <u>FMCAD 2011</u>

Safety Properties

Safety property: AG p

"p holds in every reachable state of the system"

Using automata-theoretic methods, model checking of all safety properties reduces to checking AG p

Reachability: Does the transition system have a finite run ending in a state satisfying ¬p?

Modeling with Propositional Formulas

Finite-state system modeled as (V, INIT, T):

- V finite set of Boolean variables
 - Four states → Boolean variables: v₁ v₂
- INIT(V) describes the set of initial states
 - INIT = $\neg v_1$
- T(V,V') describes the set of transitions

•
$$T = (v_1' \leftrightarrow \neg v_1 \lor (v_1 \land v_2)) \land (v_2' \leftrightarrow (v_1 \land v_2))$$

state =
valuation to
variables

Property:

- p(V) describes the set of states satisfying p
 - $p = \neg v_1 \lor \neg v_2$ (Bad = $\neg p = v_1 \land v_2$)

Induction for proving AG P

- The simple case: P is an inductive invariant
 - $INIT(V) \Rightarrow P(V)$
 - $P(V) \wedge T(V, V') \Rightarrow P(V')$

P(V') – the value of P in the next state

Induction for proving AG P

• Usually, P is not an inductive invariant

- BUT a stronger inductive invariant F may exist
 - INIT => F
 - $F \wedge T => F'$
 - -F=>P

Invariant Inference by Forward Reachability

R is the strongest inductive invariant

Invariant Inference by Approximate Reachability

 $F_{i+1}(V') \Leftarrow F_i(V) \land T(V,V')$

If $F_{k+1} \equiv F_k$ then F_k is an inductive invariant

C3 (Bradley, VMCAI 2010)

 IC3 = Incremental Construction of Inductive Clauses for Indubitable Correctness

- The Goal: Find an Inductive Invariant stronger than P
 - Recall: F is an inductive invariant stronger than P if
 - INIT => F
 - F ∧ T => F'
 - F => P
- by learning relatively inductive facts (incrementally)
- In a property directed manner
 - Also called "Property Directed reachability" (PDR)

What Makes IC3 Special?

- All previous SAT-based approaches require unrolling of the transition relation T
 - Searching for an inductive invariant
 - Unrolling used to strengthen the invariant

- IC3 performs no unrolling
 - strengthens by learning relatively inductive facts locally

IC3 Basics

• Iteratively compute Over-Approximated Reachability Sequence (OARS) $\langle F_0, F_1, ..., F_{k+1} \rangle$ s.t.

$$- F_0 = INIT$$

$$- F_{i} => F_{i+1}$$

$$- F_{i \wedge} T \Rightarrow F'_{i+1}$$

$$-F_i => P$$

$$F_i \subseteq F_{i+1}$$

Simulates one forward step

p is an invariant up to k+1

- F_i CNF formula given as a set of clauses
- F_i over-approximates R_i
- If $F_{i+1} => F_i$ then fixpoint

OARS

If $F_{k+1} \equiv F_k$ then F_k is an inductive invariant

IC3 Basics (cont.)

- c is inductive relative to F if
 - -INIT => c
 - $F \wedge c \wedge T \Rightarrow c'$

Notation:

- cube s: conjunction of literals
 - $v_1 \wedge v_2 \wedge \neg v_3$ Represents a state
- s is a cube => -s is a clause (DeMorgan)

IC3 - Initialization

- Check satisfiability of the two formulas:
 - INIT $\wedge \neg P$
 - $INIT \wedge T \wedge \neg P'$
- If at least one is satisfiable: cex found
- If both are unsatisfiable then:
 - -INIT => P
 - $INIT \wedge T => P'$
- Therefore
 - $F_0 = INIT, F_1 = P$
 - $\langle F_0, F_1 \rangle$ is an OARS

- $F_0 = INIT$
- $-F_i => F_{i+1}$
- $F_{i \wedge} T \Rightarrow F'_{i+1}$
- $-F_i => P$

- Our OARS contains F₀ and F₁
- Initialize F₂ to P
 - If P is an inductive invariant done! ☺
 - Otherwise: $F_1 \wedge T \neq F_2$
 - => F₁ should be strengthened

OARS:

$$- F_0 = INIT$$

$$-F_i => F_{i+1}$$

$$- F_{i \wedge} T \Rightarrow F'_{i+1}$$

$$-F_i => P$$

• If P is not an inductive invariant

- $-F_1 \wedge T \wedge \neg P'$ is satisfiable
- From the satisfying assignment get a state s that can reach the bad states

OARS:

$$- F_0 = INIT$$

$$-F_i => F_{i+1}$$

$$- F_{i \wedge} T \Rightarrow F'_{i+1}$$

$$-F_i => P$$

- Is s reachable in one transition from the previous set?
 - backward search: Check $F_0 \wedge T \wedge s'$
 - If satisfiable, s is reachable from F₀: CEX
 - Otherwise, block s, i.e. remove it from F₁
 - $F_1 = F_1 \wedge \neg S$

• Iterate this process until $F_1 \wedge T \wedge \neg P'$ becomes unsatisfiable

```
- F_1 \wedge T => P' holds

• (F \wedge T \wedge \neg P') unsat IFF (F \wedge T => P') valid

- < F_0, F_1, F_2 > is an OARS
```


- New iteration, initialize F_3 to P, check $F_2 \wedge T \wedge \neg P'$
 - If satisfiable, get s that can reach ¬P
 - Now check if s can be reached from F_1 by $F_1 \wedge T \wedge s'$
 - If it can be reached, get t and try to block it

- To block t, check $F_0 \land T \land t'$
 - If satisfiable, a CEX
 - If not, t is blocked, get a "new" t* by F₁ ∧ T ∧ s' and try to block t*

- When $F_1 \wedge T \wedge s'$ becomes unsatisfiable
 - s is blocked, get a "new" s* by $F_2 \wedge T \wedge \neg P'$ and try to block s*

.....You get the picture ©

General Iteration

If s_k is reachable (in k steps): counterexample

If s_k is unreachable: strengthen F_k to exclude s_k

General Iteration

Until $F_k \wedge T \wedge \neg P'$ is unsatisfiable i.e. $F_k \wedge T => P'$

- Given an OARS $\langle F_0, F_1, ..., F_k \rangle$, define $F_{k+1} = P$
- Apply a backward search
 - Find predecessor s_k in F_k that can reach a bad state
 - $F_k \wedge T \neq > P'$ ($F_k \wedge T \wedge \neg P'$ is sat)
 - If none exists, move to next iteration
 - If exists, try to find a predecessor s_{k-1} to s_k in F_{k-1}
 - $F_{k-1} \wedge T \neq > \neg s_k'$ $(F_{k-1} \wedge T \wedge s_k' \text{ is sat})$
 - If none exists, s_k can be removed from F_k
 - $F_k := F_k \wedge \neg S_k$
 - Otherwise: Recur on (s_{k-1}, F_{k-1})
 - We call (s_{k-1},k-1) a proof obligation
- If we reach INIT, a CEX exists

That Simple?

- Looks simple
- But this "simple" does NOT work
- Simple = State Enumeration
 - Too many states...
- Are we enumerating states?
 - No removing more than one state at a time
 - But, yes (when IC3 doesn't perform well)

Generalization

Try to deduce a general fact from a blocked state

s in F_k can reach a bad state in one transition

- But $F_{k-1} \wedge T => \neg s' \text{ holds}$
 - Therefore s is not reachable in k transitions
 - $F_k := F_k \land \neg s$
- We want to generalize this fact
 - s is a single state
 - Goal: learn a stronger fact
 - Find a set of states, unreachable in k transitions

Generalization

- We know $F_{k-1} \wedge T => \neg s'$
- And, ¬s is a clause
- Generalization:

Find a sub-clause $c \subseteq \neg s$ s.t. $F_{k-1} \land T => c'$

- Less literals implies less satisfying assignments
 - (a v b) vs. (a v b v c)
- $-c => \neg s$ i.e. c is a stronger fact
- $F_k := F_k \wedge c$
 - More states are removed from F_{k_i} making it stronger/more precise (closer to R_k)

Generalization

- How do we find a sub-clause $c \subseteq \neg s$ s.t. $F_{k-1} \land T => c'$?
- Trial and Error
 - Try to remove literals from ¬s while $F_{k-1} \wedge T \wedge \neg c'$ remains unsatisfiable
- Use the UnSAT Core
 - $\mathbf{F_{k-1}} \wedge \mathbf{T} \wedge \mathbf{s'}$ is unsatisfiable
 - Conflict clauses can also be used

Observation 1

- Assume a state s in F_k can reach a bad state in a number of transitions
- Important Fact: s is not in F_{k-1} (!!)

$$- F_{k-1} \wedge T => F_k$$

- $-F_k => P$
- If s was in F_{k-1} we would have found it in an earlier iteration
- Therefore: $F_{k-1} = > \neg s$

Observation 1

- Assume a state s in F_k can reach a bad state in a number of transitions
- Therefore: $F_{k-1} = > \neg s$
- Assume $F_{k-1} \wedge T => \neg s'$ holds
 - s is not reachable in k transitions
- So, this is equivalent to $F_{k-1} \land \neg s \land T => \neg s'$
- Further INIT => ¬s
 - Otherwise, CEX!
 (INIT ≠> ¬s IFF s is in INIT)
- This looks familiar!
 - ¬s is inductive relative to F_{k-1}

Inductive Generalization

- We now know that \neg s is inductive relative to F_{k-1}
- And, ¬s is a clause
- Inductive Generalization:

Find sub-clause $c \subset \neg s$ s.t.

$$\mathbf{F_{k-1}} \wedge \mathbf{c} \wedge \mathbf{T} => \mathbf{c'}$$
 (and INIT => c)

- Stronger inductive fact
- $F_k := F_k \wedge C$
 - It may be the case that $F_{k-1} \wedge T => F_k$ no longer holds
 - Why?

Inductive Generalization

- $F_{k-1} \wedge c \wedge T => c'$ and INIT => c hold
- $F_k := F_k \wedge C$
- c is also inductive relative to F_{k-1} , F_{k-2} ,..., F_0
 - Add c to all of these sets
 - $-F_i^* = F_i \wedge C$
- $F_i^* \wedge T => F_{i+1}^*$ holds

Observation 2

- Assume state s in F_i can reach a bad state in a number of transitions
- s is also in F_j for j > i $(F_i => F_j)$
 - a longer CEX may exist
 - s may not be reachable in i steps, but it may be reachable in j steps
- If s is blocked in F_i, it must be blocked in F_j for j > i
 - Otherwise, a CEX exists

Push Forward

Push Forward

- Suppose s is removed from F_i
 - by conjoining a sub-clause c
 - $F_i = F_i \wedge C$
- c is a clause learnt at level i
- try to push c forward for j > i
 - If $F_i \wedge c \wedge T => c'$ holds
 - c is inductive in level j
 - $F_{i+1} = F_{i+1} \wedge C$
 - Else: s was not blocked at level j > i
 - Add a proof obligation (s,j)
 - If s is reachable from INIT in j steps, CEX!

IC3 – Key Ingredients

Backward Search

- Find a state s that can reach a bad state in a number of steps
- s may not be reachable (over-approximations)

Block a State

- Do it efficiently, block more than s
 - Generalization

Push Forward

- An inductive fact at frame i, may also be inductive at higher frames
- If not, a longer CEX is found

IC3 – High Level Alg

```
If INIT \land \neg P is SAT return false; // CEX
If INIT \wedge T \wedge ¬P' is SAT return false; // CEX
OARS = \langle INIT, P \rangle; // \langle F_0, F_1 \rangle
                                                      F<sub>i</sub> represented by set of clauses.
k=1
                                                      Check implication by set inclusion
while (OARS.is fixpoint() == false) do
     extend(OARS); // F_{k+1} = P
     while (F_k \wedge T \wedge \neg P' \text{ is SAT}) do
          s = get state();
          If (block_state(s, k) == false) // recursive function
                     return false; // CEX
     push_forward();
     k = k+1
return valid;
```

IC3 – Alternative Description

```
If INIT \land \neg P is SAT return false; // CEX
If INIT \wedge T \wedge ¬P' is SAT return false; // CEX
OARS = \langle INIT, P \rangle; // \langle F_0, F_1 \rangle
                                                       F<sub>i</sub> represented by set of clauses.
k=1
                                                       Check implication by set inclusion
while (OARS.is_fixpoint() == false) do
     extend(OARS); //\frac{F_{k+1} = P}{F_{k+1}} = true
    while (F_k \wedge T \wedge P' \text{ is SAT}) \text{ do} while (F_{k+1} \wedge P' \text{ is SAT}) \text{ do}
          s = get_state();
          If (block_state(s, k) == false) // recursive function
                     return false; // CEX
     push_forward();
     k = k+1
return valid;
```

General Iteration

 $SAT(F_k \land T \land \neg P')$?

General Iteration: Alternative

SAT($F_{k+1} \land \neg P'$) ? SAT($F_k \land T \land s'$) ?

Correctness

PDR vs. CEGAR

CEGAR:

- computes strongest inductive invariant (least fixpoint) with respect to given abstraction
 - Invariant computation is **not** property guided
 - But the abstraction and refinement are property guided
- Requires abstract transformer
- Requires refinement mechanism that reveals new predicates (e.g., interpolation)
- Counterexample analysis uses unrolling of TR

What About Infinite State Systems?

Use first-order logic instead of propositional logic

```
{ h is a list }
  void filter(Node h){
    Node i:=h; j:=null;
    while (i ≠ null){
        if ¬C(i) then {
            if i = h then h:=i.n
            else j.n:=i.n;
        }
        else j:=i;
        i:=i.n;
}}
```

{ post-condition: all C-elements were removed, other remained while preserving original order }

From Programs to Logic

Vocabulary:

V= < h, i, j, null,
$$n(\cdot, \cdot)$$
, $C(\cdot)$ > constants relations

Program state:

first-order structure

D =
$$\{e_1,..., e_5\}$$

I(h) = e_1
I(i) = e_3
I(j) = e_2
I(null) = e_5
I(n) = $\{(e_1,e_2), (e_2,e_3)...\}$

Filter Example: Assertions

```
\{H = h \land \forall x,y. \ n^*(x,y) \leftrightarrow L(x,y) \}
  void filter(Node h){
                                                             V= < h, i, j, null,
     Node i:=h; j:=null;
                                                                     n(\cdot, \cdot), C(\cdot),
     while (i ≠ null){
        if \neg C(i) then {
                                                                     H, L(\cdot, \cdot) >
          if i = h then h:=i.n
          else j.n:=i.n;
                                                              Auxiliary symbols
       else j:=i;
       i:=i.n;
  }}
\{ \forall z. \ h\neq null \land n^*(h,z) \rightarrow C(z) \}
   \forall z. \ L(H,z) \land C(z) \rightarrow n^*(h,z)
   \forall x,y. \ L(H,x) \land L(x,y) \land C(x) \land C(y) \rightarrow n^*(x,y) \ \}
```

From Programs to Transition Systems

 Transition relation: first-order formula TR(V,V') describing loop body

 Initial and Bad states: first-order formulas Init(V), Bad(V)

```
\{H = h \land \forall x,y. \ n^*(x,y) \leftrightarrow L(x,y) \}
   void filter(Node h){
      Node i:=h; j:=null;
      while (i ≠ null){
         if \neg C(i) then {
           if i = h then h:=i.n
           else j.n:=i.n;
        else j:=i;
        i:=i.n;
   }}
\{ \forall z. \ h \neq null \land n^*(h,z) \rightarrow C(z) \}
    \forall z. \ L(H,z) \land C(z) \rightarrow n^*(h,z)
   \forall x,y. \ L(H,x) \land L(x,y) \land C(x) \land C(y) \rightarrow n^*(x,y) \ \}
```

```
void filter(Node h){
      Node i:=h; j:=null;
     \{ H = h \land i = h \land j = null \land \forall x,y. \ n^*(x,y) \longleftrightarrow L(x,y) \}
     while (i ≠ null){
         if \neg C(i) then {
            if i = h then h:=i.n
            else j.n:=i.n;
        else j:=i;
        i:=i.n;
   }}
\{ i=null \rightarrow \forall z. h\neq null \land n^*(h,z) \rightarrow C(z) \}
                   \forall z. \ L(H,z) \land C(z) \rightarrow n^*(h,z)
\forall x,y. \ L(H,x) \land L(x,y) \land C(x) \land C(y) \rightarrow n^*(x,y) }
```

From Programs to Transition Systems

```
H = h \land \forall x,y. \ n^*(x,y) \leftrightarrow L(x,y)

\forall z. \ h \neq null \land n^*(h,z) \rightarrow C(z)

\forall z. \ L(H,z) \land C(z) \rightarrow n^*(h,z)

\forall x,y. \ L(H,x) \land L(x,y) \land C(x) \land C(y) \rightarrow n^*(x,y)
```

Problems:

- FOL + transitive closure is undecidable
- McCarthy assignment rule for wlp does not work for heap manipulations x.n := e

Reachability Predicates

Use n* instead of n:

$$V = \langle h, i, j, null, n^*(\cdot, \cdot), C(\cdot) \rangle$$

Axiomatize n*:

Acyclicity + reflexivity
Transitivity
linearity

$$\Gamma_{\text{linOrd}} = \forall \alpha, \beta : n^*(\alpha, \beta) \land n^*(\beta, \alpha) \leftrightarrow \alpha = \beta \land \forall \alpha, \beta, \gamma : n^*(\alpha, \beta) \land n^*(\beta, \gamma) \rightarrow n^*(\alpha, \gamma) \land \forall \alpha, \beta, \gamma : n^*(\alpha, \beta) \land n^*(\alpha, \gamma) \rightarrow (n^*(\beta, \gamma) \lor n^*(\gamma, \beta))$$

Effectively Propositional (EPR)

- Satisfiability is deciadable
- Finite model property

```
void filter(Node h){
      Node i:=h; j:=null;
     \{ H = h \land i = h \land j = null \land \forall x,y. \ n^*(x,y) \longleftrightarrow L(x,y) \}
     while (i ≠ null){
         if \neg C(i) then {
            if i = h then h:=i.n
            else j.n:=i.n;
        else j:=i;
        i:=i.n;
   }}
\{ i=null \rightarrow \forall z. h\neq null \land n^*(h,z) \rightarrow C(z) \}
                   \forall z. \ L(H,z) \land C(z) \rightarrow n^*(h,z)
\forall x,y. \ L(H,x) \land L(x,y) \land C(x) \land C(y) \rightarrow n^*(x,y) }
```

```
void filter(Node h){
      Node i:=h; j:=null;
     \{ H = h \land i = h \land j = null \land \forall x,y. \ n^*(x,y) \longleftrightarrow L(x,y) \}
     while {I} (i ≠ null){
         if \neg C(i) then {
            if i = h then h:=i.n
            else j.n:=i.n;
        else j:=i;
        i:=i.n;
   }}
\{ i=null \rightarrow \forall z. h\neq null \land n^*(h,z) \rightarrow C(z) \}
                   \forall z. \ L(H,z) \land C(z) \rightarrow n^*(h,z)
\forall x,y. \ L(H,x) \land L(x,y) \land C(x) \land C(y) \rightarrow n^*(x,y) }
```

Inductive Invariants

- Setting
 - V relational vocabulary
 - TR(V, V') transition relation
 - Init(V) initial states
 - Bad(V) bad states (determined by assertions)
- I(V) is an inductive invariant if:
 - Init \Rightarrow I
 - $I(V) \land TR(V,V') \Rightarrow I(V')$
 - $1 \Rightarrow \neg Bad$
- Infer inductive invariant with PDR (IC3)

Universal Property Directed Reachability

- Given: V, TR(V,V'), Init(V), Bad(V)
- UPDR searches for inductive invariant I(V) in the form of a universal formula

$$\forall \bar{x} \; (|_{1,1}(\bar{x}) \vee ... \vee |_{1,1}(\bar{x})) \wedge ... \wedge \forall \bar{x} \; (|_{n,1}(\bar{x}) \vee ... \vee |_{n,m}(\bar{x}))$$
Clause / lemma

iteratively infers universal lemmas until fixpoint

IC3 General Iteration

But now σ is not a formula!

Universal PDR (UPDR)

- "bad state" σ is a finite first-order model
 - use Diag(σ) as an abstraction of σ :

$$\exists x_{0}, x_{1}, x_{2}. \ x_{0} \neq x_{1} \land x_{0} \neq x_{2} \land x_{1} \neq x_{2} \land \\ h = x_{0} \land j = x_{1} \land i = x_{2} \land null = x_{2} \land \\ n^{*}(x_{0}, x_{0}) \land n^{*}(x_{1}, x_{1}) \land n^{*}(x_{2}, x_{2}) \land n^{*}(x_{0}, x_{1}) \land \\ \neg n^{*}(x_{0}, x_{2}) \land \neg n^{*}(x_{1}, x_{0}) \land ...$$

 $\sigma' \mid = Diag(\sigma)$ iff σ is a sub-structure of σ'

Diagrams as Abstractions

• $\sigma' \mid = Diag(\sigma)$ iff σ is a sub-structure of σ'

If Diag(σ_{i+1}) is reachable from F_i : continue backwards

If Diag(σ_j) is unreachable from F_{j-1} : $F_j := F_j \land \neg Diag(\sigma_j)$

Why Diagrams?

- If there exists a universal inductive invariant I and σ_j is a "bad state", then all states in Diag(σ_j) are unreachable from Init
 - Blocking will succeed

•
$$F_j := F_j \land \neg Diag(\sigma_j)$$

universal clause

 $=> F_1, F_2, ...$ are universal formulas

More Intuition

If there exists a universal inductive invariant:

$$I = \underbrace{\forall \bar{x} \; (I_{1,1}(\bar{x}) \vee ... \vee I_{1,1}(\bar{x}))}_{\uparrow} \wedge ... \wedge \forall \bar{x} \; (I_{n,1}(\bar{x}) \vee ... \vee I_{n,m}(\bar{x}))$$
Clause / lemma

Then:

$$\neg \mathbf{I} \equiv \exists \bar{x} \ (\neg \mathbf{I}_{1,1}(\bar{x}) \land \dots \land \neg \mathbf{I}_{1,1}(\bar{x})) \lor \dots \lor \exists \bar{x} \ (\neg \mathbf{I}_{n,1}(\bar{x}) \land \dots \land \neg \mathbf{I}_{n,m}(\bar{x}))$$
Cube

UPDR tries to generate and block cex models that "cover" all cubes in ¬I

UPDR: Possible Outcomes

- Fixpoint: universal inductive invariant found
- Abstract counterexample:

UPDR: Possible Outcomes (cont.)

- Fixpoint: universal inductive invariant found
- Abstract counterexample:

Check if spurious using bounded model checking

- If concrete counterexample found:
 - program is unsafe
- If counterexample is spurious:
 - Unknown whether the program is safe, but
 - No universal inductive invariant exists
- Divergence

```
void filter(Node h){
      Node i:=h; j:=null;
     \{ H = h \land i = h \land j = null \land \forall x,y. \ n^*(x,y) \longleftrightarrow L(x,y) \}
     while {I} (i ≠ null){
         if \neg C(i) then {
            if i = h then h:=i.n
            else j.n:=i.n;
        else j:=i;
        i:=i.n
   }}
\{ i=null \rightarrow \forall z. h\neq null \land n^*(h,z) \rightarrow C(z) \}
                   \forall z. \ L(H,z) \land C(z) \rightarrow n^*(h,z)
\forall x,y. \ L(H,x) \land L(x,y) \land C(x) \land C(y) \rightarrow n^*(x,y) \ \}
```

Filter Example: Frame 2

Inferred Invariant

- $i \neq h \land i \neq null \rightarrow n^*(j;i)$
- $i \neq h \rightarrow C(h)$
- n*(h, j) ∨ i ≠ j
- $\forall x. i \neq h \land n^*(j, x) \land x \neq j \rightarrow n^*(i, x)$
- $i \neq h \rightarrow C(j)$
- $\forall x. \ x = h \lor j = null \lor \neg n^*(h, x) \lor \neg n^*(h, j) \lor \neg C(j)$
- $\forall x. j \neq null \land n^*(h, x) \land x \neq h \land \neg C(x) \rightarrow n^*(j, x)$

Summary

Property Directed Reachability

- SAT-based
- Performs local reasoning, no unrolling
- Complete for finite state systems
- No need for predefined predicates