0 = world frame - Gaing to use understanding
1 = base frame
2 = 1st link frame
3 = 2nd (final) link frame

dynamics for our problem

rotation matrix FROM O frame TO I from

$$R_{01} = R_{Z}(q_{1}) = \begin{bmatrix} cos q_{1} - sin q_{1} & 0 \\ sin q_{1} & cos q_{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rotation matrix FROM O frame TO I from

 $R_{01}^{T} = R_{10}$

Io = Ro, I, Ro! - with this notation,
I know the answer
resolves in the frame
furthest to the left

- Far our problem:

$$R_{01} = R_{2}(q_{1}) = \begin{bmatrix} cq_{1} - sq_{1} & 0 \\ sq_{1} & cq_{1} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, $R_{10} = R_{01}^{T}$

$$Z_{12} = Z_{\gamma}(q_2) = \begin{bmatrix} cq_2 & 0 & sq_2 \\ 0 & 1 & 0 \\ -sq_2 & 0 & cq_2 \end{bmatrix}$$

$$R_{23} = R_y (9_3) = \begin{bmatrix} cq_3 & 0 & sq_3 \\ 0 & 1 & 0 \\ -sq_3 & 0 & cq_3 \end{bmatrix}$$

Ryan Lush ME699-RMC Assignment Z

$$Z_{0} = \begin{cases} c_{q_1} - s_{q_1} & 0 \\ s_{q_1} & c_{q_1} & 0 \\ 0 & 0 & 1 \end{cases}$$

$$R_{02} = R_{01}R_{12} = \begin{cases} cq_1 & -sq_1 & 0 \\ sq_1 & cq_1 & 0 \\ 0 & 0 & 1 \end{cases} \begin{pmatrix} cq_2 & 0 & sq_2 \\ 0 & 1 & 0 \\ -sq_2 & 0 & cq_2 \end{cases}$$

$$Roz = \begin{bmatrix} c_{9}, c_{9z} & -s_{9}, & c_{9,59z} \\ s_{9}, c_{9z} & c_{9}, & s_{9,59z} \\ -s_{9z} & O & c_{7z} \end{bmatrix}$$

$$R_{20} = R_{12}^{T} R_{01}^{T} = R_{21} R_{10} = \begin{bmatrix} cq_{2} & 0 & -sq_{2} \\ 0 & 1 & 0 \\ -sq_{1} & cq_{1} & 0 \end{bmatrix}$$

$$\begin{bmatrix}
 203 = R_{01}R_{12}R_{23} = \begin{bmatrix}
 cq_1 & -sq_1 & 0 \\
 sq_1 & cq_1 & 0 \\
 0 & 0 & 1
\end{bmatrix}
 \begin{bmatrix}
 cq_2 & 0 & sq_2 \\
 0 & 1 & 0 \\
 -sq_2 & 0 & cq_2
\end{bmatrix}
 \begin{bmatrix}
 cq_3 & 0 & sq_3 \\
 0 & 1 & 0 \\
 -sq_2 & 0 & cq_2
\end{bmatrix}
 \begin{bmatrix}
 cq_3 & 0 & sq_3 \\
 0 & 1 & 0 \\
 -sq_2 & 0 & cq_3
\end{bmatrix}$$

$$\begin{bmatrix}
 cq_1 & -sq_1 & 0 \\
 cq_1 & -sq_2 & 0 \\
 sq_1 & cq_3 & -sq_2 & sq_3
\end{bmatrix}
 \begin{bmatrix}
 cq_1 & -sq_1 & 0 \\
 -sq_2 & sq_3 & +sq_2 & cq_3
\end{bmatrix}$$

$$\begin{bmatrix}
 cq_1 & -sq_1 & 0 \\
 cq_1 & -sq_2 & 0 \\
 sq_1 & cq_3 & -sq_2 & sq_3
\end{bmatrix}$$

$$\begin{bmatrix}
 cq_1 & -sq_1 & 0 \\
 cq_1 & -sq_2 & -sq_2 & sq_3
\end{bmatrix}$$

$$\begin{bmatrix}
 cq_1 & -sq_1 & 0 \\
 cq_1 & -sq_2 & -sq_2 & sq_3
\end{bmatrix}$$

$$\begin{bmatrix}
 cq_1 & -sq_1 & 0 \\
 cq_1 & -sq_2 & -sq_2 & sq_3
\end{bmatrix}$$

$$\begin{bmatrix}
 cq_1 & -sq_1 & 0 \\
 cq_1 & -sq_2 & -sq_2 & sq_3
\end{bmatrix}$$

$$\begin{bmatrix}
 cq_1 & -sq_1 & 0 \\
 cq_1 & -sq_2 & -sq_2 & sq_3
\end{bmatrix}$$

$$\begin{bmatrix}
 cq_1 & -sq_1 & 0 \\
 cq_1 & -sq_2 & -sq_2 & sq_3
\end{bmatrix}$$

$$\begin{bmatrix}
 cq_1 & -sq_1 & 0 \\
 cq_1 & -sq_2 & -sq_2 & sq_3
\end{bmatrix}$$

$$\begin{bmatrix}
 cq_1 & -sq_1 & 0 \\
 cq_1 & -sq_2 & -sq_2 & sq_3
\end{bmatrix}$$

$$\begin{bmatrix}
 cq_1 & -sq_1 & 0 \\
 cq_1 & -sq_2 & -sq_2 & sq_3
\end{bmatrix}$$

$$\begin{bmatrix}
 cq_1 & -sq_1 & 0 \\
 cq_1 & -sq_2 & -sq_2 & sq_3
\end{bmatrix}$$

$$\begin{bmatrix}
 cq_1 & -sq_1 & 0 \\
 cq_1 & -sq_2 & -sq_2 & sq_3
\end{bmatrix}$$

$$\begin{bmatrix}
 cq_1 & -sq_1 & 0 \\
 cq_1 & -sq_2 & -sq_2 & sq_3
\end{bmatrix}$$

$$\begin{bmatrix}
 cq_1 & -sq_1 & 0 \\
 cq_1 & -sq_2 & -sq_2 & sq_3
\end{bmatrix}$$

$$\begin{bmatrix}
 cq_1 & -sq_1 & 0 \\
 cq_1 & -sq_2 & -sq_2 & sq_3
\end{bmatrix}$$

$$\begin{bmatrix}
 cq_1 & -sq_2 & -sq_2 & sq_3
\end{bmatrix}$$

$$\begin{bmatrix}
 cq_1 & -sq_2 & -sq_2 & sq_3
\end{bmatrix}$$

$$\begin{bmatrix}
 cq_1 & -sq_2 & -sq_2 & sq_3
\end{bmatrix}$$

$$\begin{bmatrix}
 cq_1 & -sq_2 & -sq_2 & sq_3
\end{bmatrix}$$

$$\begin{bmatrix}
 cq_1 & -sq_2 & -sq_2 & sq_3
\end{bmatrix}$$

$$\begin{bmatrix}
 cq_1 & -sq_2 & -sq_2 & sq_3
\end{bmatrix}$$

$$\begin{bmatrix}
 cq_1 & -sq_2 & -sq_3
\end{bmatrix}$$

$$\begin{bmatrix}
 cq_1 & -sq_2 & -sq_3
\end{bmatrix}$$

$$\begin{bmatrix}$$

$$R_{03} = \begin{bmatrix} c_{9_1}(c_{9_2}c_{9_3} - s_{9_2}s_{9_3}) & -s_{9_1} & c_{9_1}(c_{9_2}s_{9_3} + s_{9_2}c_{9_3}) \\ s_{9_1}(c_{9_2}c_{9_3} - s_{9_2}s_{1_3}) & c_{9_1} & s_{9_1}(c_{9_2}s_{9_3} + s_{9_2}c_{9_3}) \\ -s_{9_2}c_{9_3} - s_{9_3}c_{9_2} & 0 & -s_{9_2}s_{9_3} + c_{9_2}c_{9_3} \end{bmatrix}$$

$$\begin{aligned}
q_1 &= \begin{bmatrix} 0 \\ 0 \\ 9_1 \end{bmatrix} & q_1 &= \begin{bmatrix} 0 \\ 0 \\ 9_1 \end{bmatrix} & q_2 &= \begin{bmatrix} 0 \\ 0 \\ 9_1 \end{bmatrix} \\
q_2 &= \begin{bmatrix} 0 \\ 9_2 \\ 0 \end{bmatrix} & q_2 &= \begin{bmatrix} 0 \\ 9_2 \\ 0 \end{bmatrix} & q_3 &= \begin{bmatrix} 0 \\ 9_3 \\ 0 \end{bmatrix} & q_3 &= \begin{bmatrix} 0 \\ 9_3 \\ 0 \end{bmatrix} & q_3 &= \begin{bmatrix} 0 \\ 9_3 \\ 0 \end{bmatrix} & q_3 &= \begin{bmatrix} 0 \\ 9_3 \\ 0 \end{bmatrix}
\end{aligned}$$

- from online notes KE = = = = D(9) 9 =

where D(g) is the inertia matrix of the particular link expressed in the world frame (not its own body frame)

cutar of mass of link i

in world frame

PE=
$$mg[001]$$
 $C_i(q)$, C_i^2 - location of the cutor of mass of in world from $e_1(q_1) = R_0[0]$
 $e_1(q_1) = R_0[0]$
 $e_1(q_2) = R_0[0]$
 $e_2(q_3) = R_0[0]$
 $e_3(q_3) = R_0[0]$

E-L Equation for joint 1 L = KE - PE L = \frac{1}{2} [00 \quad q.] Roi I, Roi [8] - mg[001] Roi [8] \\ \quad \qq \quad \quad \quad \quad \quad \q $L = \frac{1}{2} \begin{bmatrix} 0 & 0 & 9 \\ 9 & 1 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 4 & 0 & 0 \\ 0 & 245 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 6 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 6 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 6 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$ $mg [00] \begin{cases} (q, -sq, 0) \\ sq, (q, 0) \\ 0 \end{cases}$ $[0, 0, 0] \begin{cases} (q, -sq, 0) \\ (q, -sq, 0) \\ (q, -sq, 0) \end{cases}$ L= \frac{1}{27,2} - mg \(1/2 \) Joint 1 Lagrangian d 87 20%. - Realized I started constructing these too early d 82 - 32 =

Joint Z Lagrangia

4

- going to attempt te shorten The first four steps using work from past joint E-L Equation for joint 3 L = KE-PE L= = [0 93 0][(1/12073-592593) -59, <9, (c92593 +592693) 59, (192193-592893) 59, (192593 +592693) (9) - 51 = 693 - 513 692 -592593 +692693 0 Ixx, 59, (192693-572592) Iyy,3 (9) - mg[001] [(9, (92593 +592 (93)) L3/2 | Iza, 59, (19259, +51267) L= = 193 [Ixx, 59, (1926) - 5925) 2 7 - Ixx, 5 (29, + Izz, 58, (1925) 5 + 592 49 3) - mg = (cq2 cg3 - 592573) Joint 3 Lagrangian - Expression for the full Lagrangian of the system. L= = 1 Iz, 9, 2 - mg 1/2 + = 92 (Ixx, 2529, c292 + Iyy, 2 c29, + Izz, 259, 592) - mg/2/2 c92 + 2 93 [Ixx, 529, (c9.c9,-5)259,) + Iyy, 29, +Izz, 53, (c9.59, +59. 673)2] - mg 2/2 (cg2cg3 - 592593) - going to do some simplification of this expression before rext step. subsequent - 529 since 92 + 93 are 18th of retations, (92693 = 692493, 592593=592493

 $L = \frac{1}{2} \frac{9}{9} \frac{1}{122,1} - \frac{m_5 L^{1/2}}{122,1} + \frac{1}{2} \frac{9}{9} \frac{1}{122,2} \frac{1}{2} \frac{9}{9} \frac{1}{122,2} \frac{1}{2} \frac{9}{9} \frac{1}{2} \frac{$

Di. = Izz, i.

 $\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right) = I_{22,i} \dot{q}_{i}$

 $\frac{\partial L}{\partial q_1} = \frac{1}{2} \frac{1}{9} \frac{1}{2} \left(I_{xx,2} s^2 q_1 c_{12}^2 - I_{yy,2} s^2 q_1 + I_{zz,2} s^2 q_1 s^2 q_2 \right) \\ + \frac{1}{2} \frac{1}{9} \frac{1}{3} \left[I_{xx,3} s^2 q_1 \left(c^2 (q_{z} + q_3) - Z_2 (q_{z} + q_3) s (q_{z} + q_3) + s^2 (q_{z} + q_3) \right) - I_{yy,3} s^2 q_1 \\ + I_{zz,5} s^2 q_1 \left(c^2 q_{z} s^2 q_3 + Z_2 (q_{z} + q_{3}) s (q_{z} + q_{3}) + s^2 q_{z} c_{13}^2 s \right) \right]$

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right) - \frac{\partial L}{\partial q_{i}} = \mathcal{T}_{i}$$

 $\frac{\partial L}{\partial q_{z}} = \frac{1}{2} \frac{1}{q_{z}} \left(-F_{cor,z} 6^{2}q_{z} 6^{2}q_{z} - F_{cor,z} 6^{2}q_{z} 6^{2}q_{z} \right) + mg \frac{L^{2}}{2} 5 q_{z} + 5 q_{z} 6^{2}q_{z} 6^{2}q_{z} + 2 sq_{z} 6q_{z} + 4 sq_{z} 6q_{z} 6q_{z}$

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_{2}}\right) - \frac{\partial L}{\partial q_{2}} = Z_{2}$$

DL = [In, 529, (c2 (92+93) - 2c(92+93) s(92+93) +52 (92+93)) + Iyy, 5 c29, D 93 + Izz, 53, (c2 9253 3+ 2c925)2c 135 13 +5292 c293)] 93

d (d () = [Ixx,3529, (22/2+93)-20/2+93) 6/2+93) +52/9+93) + Iyy,3029,
dt (d) = [Ixx,3529, (22/2+93)-20/2+93) +52/9+93) + Iyy,3029,
dt (d) = [Ixx,3529, (22/2+93)-20/2+93) +52/9+93) + Iyy,3029,

$$\frac{\partial L}{\partial q_3} = \frac{1}{2} \frac{93}{93} \left[\frac{1}{4} \times 1,3 \times 1^2 9, \left(-5^2 9_3 + 259_3 + 259_3 + 5^2 9_3 \right) + 1221_3 \times 1^2 9, \left(\frac{1}{2} \frac{1}{12} \frac{1}{12} \frac{1}{12} + 259_3$$

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_3}\right) - \frac{\partial L}{\partial q_3} = T_3$$

- We have now derived the equations of motion for this system. These equations, once provided 9,9, +9 will calculate the joint torques required to make those initial conditions.
- We now take these closed-fam expressions to

 Julia and use them & in the inverse dynamics

 function. The function will request as input from the

 user three 3x1 vectors for 9, 979.

 The function will return one 3x1 vector which

 will correspond to joint tangues [7].