

Online, February 6-7th, 2025

tulips2 • EN

The Dutch Farmer (tulips2)

Did you know? Tulips were so valuable in the 17th century that they caused an economic phenomenon known as *Tulip Mania* - some bulbs were worth more than houses.

Figure 1: A tulip bouquet.

A field of tulips is represented as an axis-aligned rectangle, with irrigation sprinklers placed on its four sides. These sprinklers spray a fertilizing solution over the field.

The Dutch farmer, Jakob, wants to determine how many tulips will ripen faster because they are planted in a special fertilized zone.

There are N tulips planted at locations (X_i, Y_i) for i = 0...N - 1. A tulip is considered to be in the fertilized zone if, together with the four corners of the rectangle, it forms

- two acute-angled triangles, and
- two obtuse-angled triangles.

Your task is to count how many tulips meet this condition.

Among the attachments of this task you may find a template file tulips2.* with a sample incomplete implementation.

Input

The input file consists of:

- A line containing integers topLeftX, topLeftY.
- A line containing integers topRightX, topRightY.
- A line containing integers bottomRightX, bottomRightY.
- A line containing integers bottomLeftX, bottomLeftY.

tulips2 Page 1 of 3

- A line containing integer N.
- N lines, the *i*-th of which consisting of integers X_i , Y_i .

Output

The output file must contain a single line consisting of integer K, the number of tulips in the special zone.

Constraints

- All points, including the rectangle's corners, lie within the geometric space $[-1500, 1500] \times [-1500, 1500]$.
- The rectangle is axis-aligned, that is, the sides of the rectangle are parallel to the axes.
- $1 \le N \le 100\,000$.
- All tulips are inside the rectangle. There is no tulip located on a side of the rectangle.
- All tulip locations are unique (there are no identical (X_i, Y_i) positions).

Scoring

Your program will be tested against several test cases grouped in subtasks. In order to obtain the score of a subtask, your program needs to correctly solve all of its test cases.

Subtask 1 (0 points) Examples.
Subtask 2 (100 points) No additional limitations.

Examples

	input	output
	_	,
0	5	4
10	5	
10	0	
0	0	
5		
2	3	
1	4	
4	1	
9	1	
6	3	

tulips2 Page 2 of 3

	input	output
0	35	4
35	35	
35	0	
0	0	
10		
17	8	
16	5	
32	27	
18	32	
8	18	
17	30	
14	19	
5	11	
2	32	
2	11	

Explanation

In the following figures, the **red** areas are covered with fertilizer, while the **blue** areas are not. In the **first sample case**, the only tulip outside the fertilized area is located at position (2, 3).

In the **second sample case**, the tulips inside the fertilized area are located at the points: (32, 27), (14, 19), (5, 11), and (2, 32).

tulips2 Page 3 of 3