# Multi-cycle Architecture



The following design was implemented using verilog HDL in Xilinx 14.7 software

#### **Instruction Format**

| Instruction | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8  | 7  | 6 | 5          | 4 | 3               | 2 | 1 | 0 |  |
|-------------|----|----|----|----|----|----|---|----|----|---|------------|---|-----------------|---|---|---|--|
| add         | 0  | 0  | 0  | 0  | rs |    |   | rt |    |   | rd         |   |                 | Х | Х | Х |  |
| sub         | 0  | 0  | 0  | 1  | rs |    |   | rt |    |   | rd         |   |                 | Х | Х | Χ |  |
| addc        | 0  | 0  | 1  | 0  | rs |    |   | rt |    |   | rd         |   |                 | Х | Х | Χ |  |
| addic       | 0  | 0  | 1  | 1  |    | rs |   |    | rt |   | imm(6bits) |   |                 |   |   |   |  |
| shift       | 0  | 1  | 0  | 0  |    | rs |   |    | rt |   | Х          | Χ | shiftAmt(4bits) |   |   |   |  |
| mul         | 0  | 1  | 0  | 1  |    | rs |   |    | rt |   | Х          | Х | Х               | Х | Х | Х |  |

### **Control circuit**

## **State Diagram:**



| State#  | Stage     | Control Signals |      |       |         |       |        |         |         |       |      |      |        |  |
|---------|-----------|-----------------|------|-------|---------|-------|--------|---------|---------|-------|------|------|--------|--|
|         |           | pcWr            | irWr | memRd | regDest | regWr | regSrc | aluSrcA | aluSrcB | aluOp | hiWr | loWr | flagWr |  |
| State0  | IF        | 1               | 1    | 1     | 0       | 0     | 0      | 0       | 01      | 00    | 0    | 0    | 0      |  |
| State1  | ID        | 0               | 0    | 0     | 0       | 0     | 0      | 0       | 00      | 00    | 0    | 0    | 0      |  |
| State2  | EX(add)   | 0               | 0    | 0     | 0       | 0     | 0      | 1       | 00      | 00    | 0    | 0    | 1      |  |
| State3  | WB(add)   | 0               | 0    | 0     | 1       | 1     | 1      | 0       | 00      | 00    | 0    | 0    | 0      |  |
| State4  | EX(sub)   | 0               | 0    | 0     | 0       | 0     | 0      | 1       | 00      | 01    | 0    | 0    | 1      |  |
| State5  | WB(sub)   | 0               | 0    | 0     | 1       | 1     | 1      | 0       | 00      | 00    | 0    | 0    | 0      |  |
| State6  | EX(addc)  | 0               | 0    | 0     | 0       | 0     | 0      | 1       | 00      | 00    | 0    | 0    | 1      |  |
| State7  | WB(addc)  | 0               | 0    | 0     | 1       | 1     | 0      | 0       | 00      | 00    | 0    | 0    | 0      |  |
| State8  | EX(addic) | 0               | 0    | 0     | 0       | 0     | 0      | 1       | 10      | 00    | 0    | 0    | 1      |  |
| State9  | WB(addic) | 0               | 0    | 0     | 0       | 1     | 0      | 0       | 00      | 00    | 0    | 0    | 0      |  |
| State10 | EX(shift) | 0               | 0    | 0     | 0       | 0     | 0      | 1       | 11      | 10    | 0    | 0    | 1      |  |
| State11 | WB(shift) | 0               | 0    | 0     | 0       | 1     | 1      | 0       | 00      | 00    | 0    | 0    | 0      |  |
| State12 | EX(mul)   | 0               | 0    | 0     | 0       | 0     | 0      | 1       | 00      | 11    | 1    | 1    | 0      |  |

#### WaveForm:

