

Scalable K-Core Decomposition for Static Graphs Using a Dynamic Graph Data Structure

Alok Tripathy

College of Computing

Computational Science and Engineering

What I'll Show

- Maximal k-core algorithm
 - Up to 4*X* faster than previous research
 - Up to 58X faster than popular graph libraries
- k-core edge decomposition algorithm
 - Up to 8X faster than previous research
 - Up to 129*X* faster than popular graph libraries

What I'll Show

- Maximal k-core algorithm
 - Up to 4X faster than previous research
 - Up to 58*X* faster than popular graph libraries
- k-core edge decomposition algorithm
 - Up to 8X faster than previous research
 - Up to 129X faster than popular graph libraries
 - Uses a dynamic graph operations

Takeaways

 Algorithms on static graphs can use dynamic graph operations efficiently with the GPU.

- Dynamic graph operations can be computed on a GPU efficiently.
 - Check out the Hornet data structure!
 - https://github.com/hornet-gt/hornet

Motivation

- Two types of graphs
 - Static graphs that don't change
 - Dynamic graphs that change frequently
 - Edge/vertex insertions/deletions
 - e.g. Facebook, road networks

Motivation

- Two types of graphs
 - Static graphs that don't change
 - Dynamic graphs that change frequently
 - Edge/vertex insertions/deletions
 - e.g. Facebook, road networks

 Algorithms on static graphs can benefit from dynamic graph operations

Dynamic Operations on Static Graphs

• *k*-truss problem

Dynamic Operations on Static Graphs

- k-truss problem
 - Subgraph where all edges belong to at least k-2 triangles
 - Can be extended to maximal k-truss

Dynamic Operations on Static Graphs

- *k*-truss problem
 - Subgraph where all edges belong to at least k-2 triangles
 - Can be extended to maximal k-truss
 - Applications: community detection, anomaly detection

k-truss Algorithm

- $E_m = \text{all edges in } \geq k 2 \text{ triangles}$
- while $|E_m| > 0$
 - delete E_m from ${\sf G}$
 - update triangles in G
 - $E_m = \text{all edges in } \geq k 2 \text{ triangles}$

Takeaways

 Algorithms on static graphs can use dynamic graph operations efficiently with the GPU.

- Dynamic graph operations can be computed on a GPU efficiently.
 - Check out the Hornet data structure!
 - https://github.com/hornet-gt/hornet

Widely used graph data structures

Names	Pros	Cons	
Dense Adjacency Matrix	Supports updates	Poor localityMassive storage requirements	
Linked lists	Flexible	Poor localityLimited parallelismAllocation time is costly	
COO (Edge list) - unsorted	Has some flexibilityUpdates are simpleLots of parallelism	Poor localityStores both the source and destination	
CSR	 Uses exact amount of memory Good locality Lots of parallelism 	• Inflexible	

These data structures don't cut it

Compressed Sparse Row (CSR)

Pros:

- Uses precise storage requirements
- Great locality
 - Good for GPUs
- Handful of arrays
 - Simple to use and manage

Cons:

- Inflexible.
- Network growth unsupported
- Topology changes unsupported
- Property graphs not supported

Hornet – A High Level View

Hornet in Detail

Hornet Insertion

(b) The updated graph.

Hornet Insertion Pseudocode

- parallel for (u, v) in batch
 - if u's block is too full
 - allocate a new block
 - queue.add(u)
- parallel for v in queue
 - copy adjacency list to new block
- parallel for (u, v) in batch
 - add (u, v) to u's block

Insertion Rates

- Supports over 150M updates per second
- Hornet
 - -4X 10X faster than cuSTINGER
 - Does not have performance dip like cuSTINGER
- Scalable growth in update rate

Takeaways

 Algorithms on static graphs can use dynamic graph operations efficiently with the GPU.

- Dynamic graph operations can be computed on a GPU efficiently.
 - Check out the Hornet data structure!
 - https://github.com/hornet-gt/hornet

Motivation

- Current idea:
 - Dynamic graph operations are only for dynamic graphs, not static graphs.
 - Very expensive
 - Why bother?

Motivation

- Current idea:
 - Dynamic graph operations are only for dynamic graphs, not static graphs.
 - Very expensive
 - Why bother?

- New idea: Algorithms on static graphs can benefit from dynamic graph operations
 - If we can efficiently parallelize operations

What I'll Show

- 3 static graph algorithms
 - All 3 leverage NVIDIA P100 GPUs.
 - 2 beat the state-of-the-art
 - 1 does not (does not have good GPU utilization)

Algorithms

- Old maximal k-core algorithm
- New maximal k-core algorithm
- k-core edge decomposition

Algorithms

- Old maximal k-core algorithm \odot
- New maximal k-core algorithm
- k-core edge decomposition

Maximal k-core Definitions

- *k*-core
 - Maximal subgraph where all vertices have degree at least k

Maximal k-core Definitions

- k-core
 - Maximal subgraph where all vertices have degree at least k
- Maximal k-core
 - Largest k such that k-core exists in graph

Maximal k-core Definitions

- k-core
 - Maximal subgraph where all vertices have degree at least k
- Maximal k-core
 - Largest k such that k-core exists in graph
- Applications: visualization, community detection

Maximal k-core High-Level

peel = 0 while vertices exist in G

- delete all vertices
 with degree <= peel</pre>
- if there aren't anyincrement peel

Maximal k-core High-Level

peel = 2

peel = 0 while vertices exist in G

- delete all vertices
 with degree <= peel</pre>
- if there aren't anyincrement peel

Maximal *k*-core High-Level

peel = 3

peel = 0 while vertices exist in G

- delete all vertices
 with degree <= peel</pre>
- if there aren't anyincrement peel

Old Maximal k-core Algorithm

peel = 1

$$peel = 0$$
 while vertices exist in G

- reset colors
- color all vertices with degree $\leq peel$
- if #coloredvertices > 0
 - delete colored vertices
 - delete incident edges
 - insert vertices in \widehat{G}
 - insert edges in \widehat{G}
- else
 - increment *peel*

Old Maximal k-core Code

```
while (nv > 0) {
    forAllVertices(hornet, SetColor { vertex color });
    forAllVertices(hornet, CheckDeg { vqueue, peel vqueue, vertex pres, vertex color,
                     peel });
    vqueue.swap();
    nv -= vqueue.size();
    if (vqueue.size() > 0) {
        gpu::memsetZero(hd().counter);
        forAllEdges(hornet, vqueue, PeelVertices { hd, vertex color }, load balancing);
        cudaMemcpy(&size, hd().counter, sizeof(int), cudaMemcpyDeviceToHost);
        if (size > 0) {
            oper bidirect batch(hornet, hd().src, hd().dst, size, DELETE);
            oper bidirect batch(h copy, hd().src, hd().dst, size, INSERT);
        *ne -= size:
        vqueue.clear();
    } else {
        peel++;
        peel vqueue.swap();
*max peel = peel;
```


Compared Against

- ParK
 - parallel k-core algorithm; IEEE BigData 2014
 - Some parallelism
 - No dynamic graph operations
- igraph
 - network analysis toolkit
 - Sequential
 - No dynamic graph operations
- Both run on Intel Xeon E5-2695; 36 cores, 72 threads

Old Maximal k-core Results

- Our algorithm is sometimes better than igraph.
- Our algorithm never beats ParK.
- Why are we so slow?

Name	V	E	Our algorithm	ParK	igraph
dblp – author	5.5 <i>M</i>	8.6 <i>M</i>	2.2 <i>X</i>	15 <i>X</i>	1 <i>X</i>
patentcite	3.8 <i>M</i>	16.5 <i>M</i>	1.3 <i>X</i>	15 <i>X</i>	1 <i>X</i>
soc — LiveJournal1	4.8 <i>M</i>	42.9 <i>M</i>	ООМ	11.3 <i>X</i>	1 <i>X</i>
soc – pokec – relationships	1.6 <i>M</i>	22.3 <i>M</i>	0.6 <i>X</i>	16.6 <i>X</i>	1 <i>X</i>
trackers	27.7 <i>M</i>	140.6 <i>M</i>	OOM	6.8 <i>X</i>	1 <i>X</i>
wikipedia – link – de	3.2 <i>M</i>	65.8 <i>M</i>	OOM	5.1 <i>X</i>	1 <i>X</i>

GPU Utilization

GPU Utilization / Batch Size

Algorithms

- Old maximal k-core algorithm \otimes
- New maximal k-core algorithm
- k-core edge decomposition

Algorithms

- Old maximal k-core algorithm \otimes
- New maximal k-core algorithm ©
- *k*-core edge decomposition

New Maximal k-core Algorithm

Flag vertices instead of deleting them.

while not every vertex is flagged

- flag all vertices with degree <= peel</p>
- if there aren't any
 - increment peel
- else
 - for each flagged vertex v
 - for each neighbor of v
 - decrement neighbor's degree

New Maximal k-core Code

```
int n active = active queue.size();
uint32 t peel = 0;
while (n active > 0) {
    forAllVertices(hornet, active queue,
            PeelVerticesNew { vertex pres, deg, peel, peel queue, iter queue} );
    iter queue.swap();
    n active -= iter queue.size();
    if (iter queue.size() == 0) {
        peel++;
        peel queue.swap();
        if (n active > 0) {
            forAllVertices(hornet, active queue, RemovePres { vertex pres });
    } else {
        forAllEdges(hornet, iter queue, DecrementDegree { deg }, load balancing);
```


New Maximal k-core Results

- Our algorithm always beats igraph.
- Our algorithm is sometimes better than ParK.
 - At best, 3.9X faster
 - At worst, 4.3*X* slower
- Learned that batch size affected performance.

Name	V	E	Our algorithm	ParK	igraph
dblp – author	5.5 <i>M</i>	8.6 <i>M</i>	58 <i>X</i>	15 <i>X</i>	1 <i>X</i>
patentcite	3.8 <i>M</i>	16.5 <i>M</i>	26 <i>X</i>	15 <i>X</i>	1 <i>X</i>
soc – LiveJournal1	4.8 <i>M</i>	42.9 <i>M</i>	7.4 <i>X</i>	11.3 <i>X</i>	1 <i>X</i>
soc – pokec – relationships	1.6 <i>M</i>	22.3 <i>M</i>	15 <i>X</i>	16.6 <i>X</i>	1 <i>X</i>
trackers	27.7 <i>M</i>	140.6 <i>M</i>	1.6 <i>X</i>	6.8 <i>X</i>	1 <i>X</i>

Algorithms

- Old maximal k-core algorithm \otimes
- New maximal k-core algorithm ©
- *k*-core edge decomposition

Algorithms

- Old maximal k-core algorithm \otimes
- New maximal k-core algorithm ©
- *k*-core edge decomposition ©

k-core Decomp. Definitions

- k-core edge decomposition
 - For each edge, what is the largest k-core that edge belongs to?

k-core Decomp. Algorithm

while vertices exist in G

- find the maximal k-core in G
- mark all edges in k-core with valuek
- delete k-core from G

k-core Decomp. Code

```
while (peel edges < ne) {</pre>
    uint32 t max peel = 0;
    int batch size = 0;
    maximal kcore(hornet, hd data, peel vqueue, active queue, iter queue,
                     load balancing, vertex deg, vertex pres, &max peel, &batch size);
    if (batch size > 0) {
        cudaMemcpy(src + peel edges, hd data().src,
                   batch size * sizeof(vid t), cudaMemcpyDeviceToHost);
        cudaMemcpy(dst + peel edges, hd data().dst,
                   batch size * sizeof(vid t), cudaMemcpyDeviceToHost);
        #pragma omp parallel for
        for (uint32 t i = 0; i < batch size; i++) {</pre>
            peel[peel edges + i] = max peel;
        peel edges += batch size;
    oper bidirect batch(hornet, hd data().src, hd data().dst, batch size, DELETE);
```


Compared Against

- ParK Extension
 - parallel k-core algorithm; IEEE BigData 2014
 - Some parallelism
 - No dynamic graph operations vertex flagging
- igraph Extension
 - network analysis toolkit
 - Sequential
 - Uses edge deletions
- Both run on Intel Xeon E5-2695; 36 cores, 72 threads

k-core Decomp. Results

- Our algorithm always beats igraph
- Our algorithm always beats ParK (1.2X 7.8X).
 - Usually $\sim 2X$ faster
- Our algorithm uses dynamic graph operations
 - And effectively uses the GPU

Name	V	E	Our algorithm	ParK	igraph
dblp-author	5.5 <i>M</i>	8.6 <i>M</i>	129.2 <i>X</i>	51.5 <i>X</i>	1 <i>X</i>
patentcite	3.8 <i>M</i>	16.5 <i>M</i>	63.8 <i>X</i>	25 <i>X</i>	1 <i>X</i>
soc – LiveJournal1	4.8 <i>M</i>	42.9 <i>M</i>	25.9 <i>X</i>	3.3 <i>X</i>	1 <i>X</i>
soc – pokec – relationships	1.6 <i>M</i>	22.3 <i>M</i>	85.9 <i>X</i>	36.3 <i>X</i>	1 <i>X</i>
trackers	27.7 <i>M</i>	140.6 <i>M</i>	4.7 <i>X</i>	4.1 <i>X</i>	1 <i>X</i>

k-core Decomp. GPU Utilization

Decomp. vs. Slow Maximal k-core

Conclusion

- Dynamic graph operations can be computed on a GPU efficiently.
- Current idea:
 - Dynamic graph operations are only for dynamic graphs, not static graphs

- New idea: Static graph algorithms can benefit from dynamic graph operations
 - If we can efficiently utilize the system

Takeaway

- Consider dynamic graph operations when you implement graph algorithms
 - Even if the graph doesn't change over time.

Thank you

Scalable K-Core Decomposition for Static Graphs Using a Dynamic Graph Data Structure

Alok Tripathy
Georgia Tech
atripathy8@gatech.edu
@alokpathy
www.aloktripathy.me

Fred Hohman
Georgia Tech
fredhohman@gatech.edu
@fredhohman
fredhohman.com

Georgia Tech
polo@gatech.edu
@PoloChau
cc.gatech.edu/~dchau/

Oded Green Georgia Tech/NVIDIA ogreen@gatech.edu @OdedGreen

- k-core Paper: Proceedings of IEEE BigData 2018
- k-truss, Hornet Paper: Proceedings of IEEE HPEC 2017/18
- Code: https://github.com/hornet-gt/hornet

Backup slides

Performance

- Compared against
 - ParK: parallel k-core algorithm; BigData 2014
 - igraph: network analysis toolkit
- Dynamic graph data structure
 - Hornet, GPU-based
- Systems used
 - Our algorithms: NVIDIA P100
 - ParK, igraph: Intel Xeon E5-2695; 36 cores, 72 threads
 - igraph is sequential

Performance

- Compared against
 - Wang & Cheng: sequential algorithm for finding k-truss
 - Graphulo: parallel algorithm for finding k-tru
- Dynamic graph data structure
 - cuSTINGER-Delta, GPU-based
 - Evolved into Hornet
- Systems used
 - Our algorithm: NVIDIA P100
 - Wang & Cheng: Intel Core2 dual-core 2.80GHz CPU
 - Graphulo: 2 Intel i7dual-core

GPU Utilization / Batch Size

HKS (maximal k-core) results

- ParK: k-core algorithm from IEEE Big Data 2014
- HKS run on NVIDIA P100 with Hornet data structure.

Name	V	E	HKS (sec.)	ParK (sec.)	igraph (sec.)
dblp — author	5.5 <i>M</i>	8.6 <i>M</i>	0.731 2.2 <i>X</i>	0.105 15 <i>X</i>	1.633 1 <i>X</i>
patentcite	3.8 <i>M</i>	16.5 <i>M</i>	2.953 1.3 <i>X</i>	0.253 15 <i>X</i>	3.825 1 <i>X</i>
soc – LiveJournal1	4.8 <i>M</i>	42.9 <i>M</i>	00M 00M	0.549 11.3 <i>X</i>	6.191 1 <i>X</i>
soc – pokec – relationships	1.6 <i>M</i>	22.3 <i>M</i>	4.331 0.6 <i>X</i>	0.155 16.6 <i>X</i>	2.586 1 <i>X</i>
trackers	27.7 <i>M</i>	140.6 <i>M</i>	00M 00M	3.052 6.8 <i>X</i>	20.693 1 <i>X</i>
wikipedia – link – de	3.2 <i>M</i>	65.8 <i>M</i>	00M 00M	0.764 5.1 <i>X</i>	3.954 1 <i>X</i>

HDS (k-core decomp) results

- ParK: k-core algorithm from IEEE Big Data 2014
- HDS run on NVIDIA P100 with Hornet data structure.

Name	V	E	HDS (sec.)	ParK (sec.)	igraph (sec.)
dblp — author	5.5 <i>M</i>	8.6 <i>M</i>	6.184 13.3 <i>X</i>	1.595 51.5 <i>X</i>	82.066 1 <i>X</i>
patentcite	3.8 <i>M</i>	16.5 <i>M</i>	91.481 3.6 <i>X</i>	13.294 25 <i>X</i>	331.538 1 <i>X</i>
soc – LiveJournal1	4.8 <i>M</i>	42.9 <i>M</i>	00M 00M	487.112 3.3 <i>X</i>	1572.985 1 <i>X</i>
soc — pokec — relationships	1.6 <i>M</i>	22.3 <i>M</i>	50.049 4.7 <i>X</i>	6.488 36.3 <i>X</i>	235.790 1 <i>X</i>
trackers	27.7 <i>M</i>	140.6 <i>M</i>	00M 00M	1148.638 4.1 <i>X</i>	4725.317 1 <i>X</i>
wikipedia – link – de	3.2 <i>M</i>	65.8 <i>M</i>	00M 00M	1397.323 2.1 <i>X</i>	3003.166 1 <i>X</i>

GPU Utilization

GPU Utilization / Batch Size

peel = 3

while there are non-flagged vertices

flag all vertices with degree <= peel

if there aren't any
 increment peel
else

for each flagged vertex v for each neighbor of v decrement neighbor's degree


```
peel \leftarrow 1
Q \leftarrow \{\}
num\_active = |V(G)|
color[v] \leftarrow 0 \forall v \in V(G)
deg[v] \leftarrow G.deg(v) \forall v \in V(G)
while num_{-}active > 0 do
    V_b \leftarrow \{\}
    parallel for v \in V(G) \land !flag[v] do
         if deg[v] \leq peel then
             flag[v] \leftarrow 1
             V_b.enqueue(v)
    end parallel for
    Q \leftarrow Q \cup V_h
    num\_active \leftarrow num\_active - |V_b|
    if |V_b| > 0 then
         parallel for (u, v) : u \in V_b, v \in adj(u) do
             deg[u] \leftarrow deg[u] - 1
             deg[v] \leftarrow deg[v] - 1
         end parallel for
    else
         peel \leftarrow peel + 1
         Q \leftarrow \{\}
return (induced\_subgraph(G, Q), peel)
```



```
peel \leftarrow 1
Q \leftarrow \{\}
\widehat{G} \leftarrow (\{\}, \{\})
while |V(G)| > 0 do
    color[v] \leftarrow 0 \forall v \in V(G)
    V_b \leftarrow \{\}
    // Mark vertices with degree \leq peel
    parallel for v \in V(G) do
        if deg[v] \leq peel then
             color[v] \leftarrow 1
             V_b.enqueue(v)
    end parallel for
    if |V_b| > 0 then
        E_b \leftarrow \{\}
        // Mark edges with at least one marked vertex
        parallel for (u, v) : u \in V_b, v \in adj(u) do
             if color[u] or color[v] then
                 E_b.enqueue((u,v))
        end parallel for
         // Delete these edges from G
        G.delete\_edges(E_b)
         G.delete\_vertices(V_b)
         // Insert these edges into \widehat{G}
         \widehat{G}.insert\_vertices(V_b)
         \widehat{G}.insert\_edges(E_b)
        Q \leftarrow Q \cup V_b
    else
        peel \leftarrow peel + 1
        Q \leftarrow \{\}
return (induced\_subgraph(\widehat{G}, Q), peel)
```



```
peel \leftarrow 1
Q \leftarrow \{\}
\widehat{G} \leftarrow (\{1\}, \{1\})
while |V(G)| > 0 do
    color|v| \leftarrow 0 \forall v \in V(G)
    V_b \leftarrow \{\}
    // Mark vertices with degree \leq peel
    parallel for v \in V(G) do
        if deg[v] \leq peel then
             color[v] \leftarrow 1
             V_b.enqueue(v)
    end parallel for
    if |V_b| > 0 then
        E_b \leftarrow \{\}
        // Mark edges with at least one marked vertex
        parallel for (u, v) : u \in V_b, v \in adj(u) do
             if color[u] or color[v] then
                 E_{h}.engueue((u,v))
        end parallel for
         // Delete these edges from G
        G.delete\_edges(E_b)
         G.delete\_vertices(V_b)
         // Insert these edges into \widehat{G}
         \widehat{G}.insert\_vertices(V_b)
         \widehat{G}.insert\_edges(E_b)
        Q \leftarrow Q \cup V_b
    else
        peel \leftarrow peel + 1
        Q \leftarrow \{\}
return (induced\_subgraph(\widehat{G}, Q), peel)
```



```
peel \leftarrow 1
Q \leftarrow \{\}
\widehat{G} \leftarrow (\{\}, \{\})
while |V(G)| > 0 do
    color|v| \leftarrow 0 \forall v \in V(G)
    V_b \leftarrow \{\}
    // Mark vertices with degree \leq peel
    parallel for v \in V(G) do
        if deg[v] \leq peel then
             color[v] \leftarrow 1
             V_b.enqueue(v)
    end parallel for
    if |V_b| > 0 then
        E_b \leftarrow \{\}
        // Mark edges with at least one marked vertex
        parallel for (u, v) : u \in V_b, v \in adj(u) do
             if color[u] or color[v] then
                 E_{h}.engueue((u,v))
```

end parallel for


```
peel \leftarrow 1
Q \leftarrow \{\}
\widehat{G} \leftarrow (\{\}, \{\})
while |V(G)| > 0 do
    color[v] \leftarrow 0 \forall v \in V(G)
    V_b \leftarrow \{\}
    // Mark vertices with degree \leq peel
    parallel for v \in V(G) do
        if deg[v] \leq peel then
             color[v] \leftarrow 1
             V_b.enqueue(v)
    end parallel for
    if |V_b| > 0 then
         E_{L} \leftarrow \{\}
       // Mark edges with at least one marked vertex
         parallel for (u, v) : u \in V_b, v \in adj(u) do
             if color[u] or color[v] then
                 E_b.enqueue((u, v))
        end parallel for
         // Delete these edges from G
         G.delete\_edges(E_b)
         G.delete\_vertices(V_b)
         // Insert these edges into \widehat{G}
         \widehat{G}.insert\_vertices(V_b)
         \widehat{G}.insert\_edges(E_b)
        Q \leftarrow Q \cup V_b
        peel \leftarrow peel + 1
        Q \leftarrow \{\}
return (induced\_subgraph(\widehat{G}, Q), peel)
```



```
peel \leftarrow 1
Q \leftarrow \{\}
\widehat{G} \leftarrow (\{\}, \{\})
while |V(G)| > 0 do
    color[v] \leftarrow 0 \forall v \in V(G)
    V_b \leftarrow \{\}
    // Mark vertices with degree \leq peel
    parallel for v \in V(G) do
        if deg[v] \leq peel then
             color[v] \leftarrow 1
             V_b.enqueue(v)
    end parallel for
    if |V_b| > 0 then
        E_b \leftarrow \{\}
        // Mark edges with at least one marked vertex
        parallel for (u, v) : u \in V_b, v \in adj(u) do
             if color[u] or color[v] then
                 E_b.enqueue((u, v))
        end parallel for
         // Delete these edges from G
        G.delete\_edges(E_b)
         G.delete\_vertices(V_b)
         // Insert these edges into \widehat{G}
         \widehat{G}.insert\_vertices(V_b)
         \widehat{G}.insert\_edges(E_b)
         Q \leftarrow Q \cup V_b
    else
        peel \leftarrow peel + 1
         Q \leftarrow \{\}
return (induced\_subgraph(\widehat{G}, Q), peel)
```


K-Core Decomp. Algorithm 1 (HDS)

```
\widehat{G} \leftarrow (\{\}, \{\})
while |V(G)| > 0 do
    // Find maximal k-core of G
    K, k\_num \leftarrow KcoreNum1(G, \widehat{G})
    // Mark edges in the maximal k-core with the peel number
    parallel for e \in E(K) do
       peels[e] \leftarrow k\_num
    end parallel for
    // Delete the k-core edges and vertices
    G.delete\_edges(E(K))
    G.delete\_vertices(V(K))
    swap(G,\widehat{G})
return peels
```


HKO (maximal k-core) results

- ParK: k-core algorithm from IEEE Big Data 2014
- HKO run on NVIDIA P100 with Hornet data structure.

Name	V	<i>E</i>	HKO (sec.)	ParK (sec.)	igraph (sec.)
dblp — author	5.5 <i>M</i>	8.6 <i>M</i>	0.028 15 <i>X</i>	0.105 15 <i>X</i>	1.633 1 <i>X</i>
patentcite	3.8 <i>M</i>	16.5 <i>M</i>	0.147 26 <i>X</i>	0.253 15 <i>X</i>	3.825 1 <i>X</i>
soc – LiveJournal1	4.8 <i>M</i>	42.9 <i>M</i>	0.838 7.4 <i>X</i>	0.549 11.3 <i>X</i>	6.191 1 <i>X</i>
soc — pokec — relationships	1.6 <i>M</i>	22.3 <i>M</i>	0.174 15 <i>X</i>	0.155 16.6 <i>X</i>	2.586 1 <i>X</i>
trackers	27.7 <i>M</i>	140.6 <i>M</i>	13.160 1.6 <i>X</i>	3.052 6.8 <i>X</i>	20.693 1 <i>X</i>
wikipedia – link – de	3.2 <i>M</i>	65.8 <i>M</i>	1.987 2 <i>X</i>	0.764 5.1 <i>X</i>	3.954 1 <i>X</i>

HDO (k-core decomp) results

- ParK: k-core algorithm from IEEE Big Data 2014
- HDO run on NVIDIA P100 with Hornet data structure.

Name	V	E	HDO (sec.)	ParK (sec.)	igraph (sec.)
dblp — author	5.5 <i>M</i>	8.6 <i>M</i>	0.635 129.2 <i>X</i>	1.595 51.5 <i>X</i>	82.066 1 <i>X</i>
patentcite	3.8 <i>M</i>	16.5 <i>M</i>	5.200 63.8 <i>X</i>	13.294 25 <i>X</i>	331.538 1 <i>X</i>
soc – LiveJournal1	4.8 <i>M</i>	42.9 <i>M</i>	60.755 25.9 <i>X</i>	487.112 3.3 <i>X</i>	1572.985 1 <i>X</i>
soc – pokec – relationships	1.6 <i>M</i>	22.3 <i>M</i>	2.756 85.9 <i>X</i>	6.488 36.3 <i>X</i>	235.790 1 <i>X</i>
trackers	27.7 <i>M</i>	140.6 <i>M</i>	1006.954 4.7 <i>X</i>	1148.638 4.1 <i>X</i>	4725.317 1 <i>X</i>
wikipedia – link – de	3.2 <i>M</i>	65.8 <i>M</i>	266.923 11.3 <i>X</i>	1397.323 2.1 <i>X</i>	3003.166 1 <i>X</i>

