ROMBERG INTEGRATION

Assume the following formulation to compute the true value of the integral

I (h,) + E(h,) = I (hz) + E(hz) ___ (2)

was accurate

The can be shown that the true error could be written - , in general as:

$$E = A_1h^2 + A_2h^4 + A_3h^6 + \dots ---(3)$$

for small h, we can.

$$E = A, h^2 + \Theta(h^4)$$

For two different step sizes:

$$\frac{E(h_1)}{E(h_2)} \approx \frac{A_1 h_1^2}{A_1 h_2^2} \Rightarrow E(h_1) = E(h_2) \left(\frac{h_1}{h_2}^2 - -(5)\right)$$

By (5) in (2)
$$T(h_1) + E(h_2) \left(\frac{h_1}{h_2}\right)^2 = T(h_2) + E(h_2) --- (6)$$
Solve by $E(h_2)$

$$E(h_2) = \frac{T(h_2) - T(h_1)}{\left(\frac{h_1}{h_2}\right)^2 - 1} -- (7)$$

Expressing (1) for hz:

$$I = I(h_z) + E(h_z) - --(8)$$

$$I = I(h_z) + \frac{I(h_z) - I(h_1)}{(h_1/h_z)^2 - 1} - --(9)$$

Where I(hz) is the approximation more accurate and I(h,) is the approximation has accurate

for the special case of halking the step size for each new approximation

$$h_{2} = \frac{h_{1}}{2} \implies \frac{h_{1}}{h_{2}} = 2$$

$$T = I(h_{2}) + \frac{I(h_{2}) - I(h_{1})}{2^{2} - 1}$$

$$T = I(h_{2}) + \frac{I(h_{2}) - I(h_{1})}{3} + O(h^{4}) = (10)$$

the method eau be applied again but $E \approx A, h^4 + O(h^6)$ ---(1)

For two different step sizes:

$$\frac{E(h_1)}{E(h_2)} \approx \frac{A_1 h_1^4}{A_2 h_2^4} = \left(\frac{h_1}{h_2}\right)^4 - - - (12)$$

Plug in (12) in (6). approximation with Romberty Inte-

I(h,)+E(h2)(h1)4= I(h2)+E(h2) --- (13)

approx $\frac{1}{(h_z)} = \frac{\pm (h_z -) - \pm (h_1)}{(\frac{h_1}{h_2})^4 - 1} = ---(14)$

Plus in (14) in (8):

$$I = I(h_2) + \frac{I(h_2) - I(h_1)}{\left(\frac{h_1}{h_2}\right)^4 - 1} - --(15)$$

vew step size $h_2 = h_1/2 \Rightarrow h_1/h_2 = 2$

$$I = I(h_2) + \frac{I(h_2) - I(h_1)}{2^4 - 1}$$
 --- (16)

$$I = I(h_2) + \frac{I(h_2) - I(h_1)}{15} - 17$$

$$V \otimes (h^b)$$

In general
$$T_{k} = \frac{4^{i} T_{k}^{i-1} - T_{k-1}^{i-1}}{4^{i} - 1} \qquad \text{for the special case}$$

$$\frac{b_{i}}{h_{i}} = 2$$

$$\frac{b_{i}}{h_{i-1}} = 2$$

$$L=1,$$

$$T_{k}^{1} = \frac{4T_{k}^{o} - T_{k-1}}{4^{2} - 1} = \frac{4T_{k}^{o} - T_{k-1}}{3}$$

$$i=2$$
,
$$T_{k}^{2} = \frac{4^{2}T_{k}^{\prime} - T_{k-1}^{\prime}}{4^{2}-1} = \frac{16}{4^{2}-1} = \frac{16}{15}$$

$$\frac{1=3}{T_{R}^{3}} = \frac{4^{3}T_{R}^{2} - T_{R-1}^{2}}{4^{3} - 1} = \frac{64T_{R}^{2} - T_{R-1}^{2}}{63}$$

$$\hat{L} = \frac{4}{T_{R}} = \frac{4^{4}T_{R}^{3} - T_{R-1}^{3}}{4^{4} - 1} = \frac{256T_{R} - T_{R-1}}{255}$$

$$i=5 \\ T_{R} = \frac{4^{5} T_{R}^{4} - T_{R-1}^{4}}{4^{5} - 1} = \frac{1024 T_{R}^{2} - T_{R-1}^{2}}{1023}$$

Where k = more accurate representation k-1 = less accurate representation

One Example

Consider

$$\int_{1}^{2} \frac{1}{x} dx = \ln 2$$

We will use this integral to illustrate how Romberg integration works. First, compute the trapezoid approximations starting with n = 1 and doubling n each time:

$$\begin{array}{l} n=1:\ T_1^0=\left(1+\frac{1}{2}\right)\frac{1}{2}=0.75;\\ n=2:\ T_2^0=0.5\left(\frac{1}{1.5}\right)+\frac{0.5}{2}(1+\frac{1}{2})=0.708333333\\ n=4:\ T_3^0=0.25\left(\frac{1}{1.25}+\frac{1}{1.5}+\frac{1}{1.75}\right)+\frac{0.25}{2}(1+\frac{1}{2})=0.69702380952\\ n=8:\ T_4^0=0.69412185037\\ n=16:T_5^0=0.69314718191. \end{array}$$

Next we use the formula (for i=1,2,3...., don't use for i=0):

Romberg accurate, k accurate, k-1 order
$$T_k^i = \frac{4^i T_k^{i-1} - T_{k-1}^{i-1}}{4^i - 1}$$

where i is the order of the extrapolation. Initially, order i=0 is calculation of the Integrals with the regular Trapezoidal rule alone for different n's. Then, i=1 is the first iteration with Romberg integration method, and so on. The index k is the more accurate approximation of the integral and k-1 is the less accurate.

NOTE: Develop the formulas for first, second, third and fourth order Romberg integration.

m1 .	1	. 1 .		1	.11 . 11	C.1 C
The eaciest was	IT IC TO IZO	in track at	committations	ic to hi	uuld a tahla	of the term.
The easiest way	v 19 m vei	in track or	computations	15 (0 ()	unu a tame	OI LIIC IOI III.
	,	P				

Trapezoidal only with different n's	First Order			
T_1^0	T^1	Second Order	Fourth	
T_3^0	T_3^1	T_3^2	Order	Fifth Order
$T_4^0 \ T_5^0$	$T_4^1 \ T_5^1$	$T_4^2 \ T_5^2$	$T_4^3 \ T_5^3$	T_5^4

Starting with the first column (which we just computed), all other entries can be easily computed. For example starting with T_1^0 , T_2^0 we find

$$T_2^1 = \frac{4T_2^0 - T_1^0}{3} = 0.694444$$

$$T_3^1 = \frac{4T_3^0 - T_2^0}{3} = 0.693253; \quad T_3^2 = \frac{16T_3^1 - T_2^1}{15} = 0.69317460$$

and so on. Every entry depends only on its left and left-top neighbor. Continuing in this way, we get the following table:

Trapezoidal only with different n's	First Order	Second			
0.7 5000000000 0.7 0833333333	0.6944444444	Order	Fourth Order	Fifth	
0.69702380952	0.693 25396825	0.6931 7460317	Order	Order	
0.69 412185037	0.6931 5453065	0.693147 90148	0.693147 47764	Oldel	
0.69339120220	0.693147 65281	0.6931471 9429	0.69314718307	0.69314718191	

The correct digits are shown in bold (the exact answer to 15 digits is given by $\ln 2 = 0.693147180559945$). Here is the table listing error. $T_i^k - \ln 2$

9.7e-04 7.4e-06 7.2e-07 3.0e-07 2.4e-04 4.7e-07 1.4e-08 2.5e-09 1.4e-09

Note that each successive iteration yields around two extra digits. The final iteration only required n = 16 function evaluations, plus $O(\ln n)$ arithmetic operations to build the table.

Exercise. Use four iterations of Romberg integration to estimate Comment on the accuracy of your result.

$$\pi = \int_0^1 \frac{4}{1+x^2} dx.$$