Lecture 25: Magnetic Forces and Torques

ECE221: Electric and Magnetic Fields

Prof. Sean V. Hum

Winter 2019

Outline

Magnetic Force on a Current-Carrying Conductor

- 2 Force and Torque on a Current-Carrying Loop
- Magnetic Dipole

Force on a Current Element

Review:

$$m{F} = \int_C I dm{\ell} imes m{B}$$

If the current path is closed:

$$m{F} = \oint_C Idm{\ell} imes m{B}$$

zcom: B is uniform over

a very short length

"I" of conductor:

= I | I x B

Magnetic flux density B can be thought of as the force per unit current element, much as electric field is force per unit charge.

$$F = \iint_{S} K \times B dS = \iiint_{V} J \times B dv$$

Contour Integrals for Force Calculations

If B is uniform, it does not matter which path we take from a to b when calculating F

Example: Force on a Semicircular Conductor

A semicircular loop lies in a uniform field $B = \hat{y}B_0$. Calculate the force on the loop if it carries a current I. Determine force F on straight section.

l= aa; j= x aa F= IP xB = \$2aI xŷB = 22IaB [N]
Force F on curred section

Winter 2019

... but these will be some torque on the

Forces Between Two Current Elements

Find force on loop (1)
Find the (differential) force on element
I, dl, produced by IIdl2 d(dfi)= I,dti ×dBs $d\vec{B}_{2} = \mu_{0} \cdot \vec{I}_{2} \cdot d\vec{l}_{2} \times \vec{R}_{1}$ d(dFi) = MoIId (Isolo x Rsi)

Example: Force on a Loop

Calculate the force on the loop if it carries a current as shown.

$$\frac{15}{B} = \frac{15}{4} = \frac{15}{2\pi} = \frac{16}{2\pi} = \frac{16}$$

Force and Torque on a Current-Carrying Loop

non-Jeno)!

Torque, or **moment**, is defined about a point O such that if r (a **moment arm** joins O and P,

$$T = r \times F$$
 [N·m]

Torque Analysis: Magnetic Field in Plane of a Loop

Remainder: there's no net free on the loop.

①
$$\vec{F}_1 = I(-\hat{y}_1b) \times (\hat{x}_1B_2) = \hat{f}_1IbB_0$$
② $\vec{F}_2 = O(B/I) Id\hat{f}_1$
③ $\vec{F}_3 = I(\hat{y}_1b) \times (\hat{x}_1B_2) = -\hat{f}_1IbB_0$
④ $\vec{F}_4 = O(B/I) Id\hat{f}_1$

Torque about $O:$

$$\vec{T} = \vec{d}_1 \times \vec{f}_1 + \vec{d}_2 \times \vec{f}_3$$

$$= (\frac{-9}{2}\hat{x}_1) \times (\hat{f}_1IbB_2) + (\frac{9}{2}\hat{x}_1) \times (-\hat{f}_1IbB_2)$$

$$= \hat{f}_1IA_{Loop}B_0$$

$$\vec{T} = \hat{f}_1IA_{Loop}B_0$$

Torque Analysis: B Perpendicular to Axis of a Loop

Fig. F.4 are non-zero (current is at an angle)
but they caucell out
$$I\overline{l_2} \times \overline{B} \neq 0$$

$$\overrightarrow{T} = (-\overline{a} \xrightarrow{a}) \times (\overline{f} IbB_0) + (\overline{a} \xrightarrow{a}) \times (-\overline{f} IbB_0)$$

$$= \widehat{y} I \xrightarrow{a} b B_0 \overline{sin}\Theta + \widehat{y} \xrightarrow{a} B_0 \overline{sin}\Theta$$

$$= \widehat{y} I abB_0 \overline{sin}\Theta = \widehat{y} I A_{loop}B_0 \overline{sin}\Theta$$

$$\overrightarrow{T} \times \overline{sin}\Theta$$

$$\therefore \text{ when loop is harisontal.} T is maximum.

$$\text{loop is perendialer.} T = 0$$
Lecture 25$$

The Magnetic Dipole

Recall the circular loop we analyzed before. If the loop is \mathbf{small} such that $r\gg a,$ then

$$m{A}pprox rac{\mu_0 I\pi a^2\sin heta\hat{m{\phi}}}{4\pi r^2}$$

Dipoles

