

Peer Pressure

Concepts

- 1 nearest data point
 - Green is majority: Prediction is green

- 2 nearest data points
 - Cannot make decision

- 3 nearest data points
 - Green is majority: Prediction is green

- 4 nearest data points
 - Cannot make decision

- 5 nearest data points
 - Red is majority: Prediction is red

- For binary classification
 - k is recommended to be the odd number
- For multi-classification
 - \circ k is recommended to be the odd number and at least 2C + 1

The number of nearest neighbor k plays important role for prediction

In common practice, the *k* is set to be some odd number

- For binary classification
 - k is recommended to be the odd number
- For multi-classification (C classes)
 - \circ k is recommended to be the odd number and at least 2C + 1

The number of nearest neighbor k plays important role for prediction

In common practice, the *k* is set to be some odd number

- For binary classification
 - k is recommended to be the odd number
- For multi-classification
 - \circ k is recommended to be the odd number and at least 2C + 1

The number of nearest neighbor k plays important role for prediction

In common practice, the *k* is set to be some odd number

- Euclidean Distance (0 to ∞)
 - 0: Exactly the same
 - ∞: Completely different
- In practice, ∞ of Euclidean distance is relatively impossible
- Magnitude does matter
- All features are recommended to have the same scale

Nearest Neighbors

Determining the *k* nearest neighbors relies on the **similarity measure**

There are several similarity measures

- Cosine similarity (-1 to 1)
 - 1: Similar
 - 0: Unable to detect similarity
 - -1: Unsimilar
 - Magnitude does not matter

Nearest Neighbors

Determining the k nearest neighbors relies on the similarity measure

There are several similarity measures

Import data

KNN Classification in Orange

Identify features and target

KNN Classification in Orange

Add model

KNN Classification in Orange

Evaluate Model

KNN Classification in Orange

• ROC Plot

KNN Classification in Orange

Confusion Matrix

KNN Classification in Orange

Build your model using Kaggle dataset

Exercise

Our sample data is very small for demonstration purpose

Now it is the time to work with the dataset churn prediction of telecom in Kaggle Competition