

Channabasaveshwara Institute of Technology NH-206(B.H Road) Gubbi, Tumakuru 572216, Karnataka

CROP YIELD AND RAINFALL PREDICTION FOR TUMKUR DISTRICT FARMERS USING MACHINE LEARNING

Guided by:

Girish L.M.Tech

Project done by:

Chaitra T

CONTENT

- AGRICULTURE
- ROLE OF AGRICULTURE
- AGRICULTURE DEPENDS ON
- MAIN CROPS IN TUMKUR DISTRICT
- PROBLEM STATEMENT
- EXISTING SYSTEM
- PROPOSED SYSTEM
- PREDICTION ALGORITHM
- ALGORITHM EFFICIENCY FOR RAIN FALL DATA
- SVM ALGORITHM FOR RAIN FALLA DATA
- ALGORITHM EFFICIENCY FOR MARKET DATA
- SVM ALGORITHM FOR MARKET DATA
- OUTCOME
- CONCLUSION
- FUTURE WORK
- REFERENCE

AGRICULTURE

The science or practice of farming, including cultivation of the soil for the growing of crops

ROLE OF AGRICULTURE

AGRICULTURE DEPENDS ON

MAIN CROPS IN TUMKUR DISTRICT

Coconut

Areca nut

PROBLEM STATEMENT

EXISTING SYSTEM

- Farmers cannot get proper information about the future rainfall details and also market price.
- In existing system there is no such prediction system in agriculture to help the farmers.

PROPOSED SYSTEM

To solve the existing problem, we proposed a project that uses a prediction algorithm to predict the rainfall data and crop yield by predicting market price.

PREDICTION ALGORITHMS

Some of prediction algorithms used in our project are:

- Linear Regression Algorithm
- SVM Algorithm
- KNN Algorithm
- Decision Tree Algorithm

ALGORITHM EFFICIENCY TABLE FOR RAINFALL DATA

Algorithm	Input		Expected Output	Predicted Output	Efficiency
	Year	Rainfall (mm)	Range		
SVM	2016	515	450-650	551	93% efficient
K-NN	2016	515	450-650	602	85% efficient
Linear regression	2016	515	450-650	645	79% efficient
Decision tree	2016	515	450-650	637	80% efficient

SVM ALGORITHM FOR RAINFALL DATA

Sample data:

Year	Rainfall (mm)
2012	473
2013	584
2014	690
2015	511
2016	515

Graph:

ALGORITHM EFFICIENCY TABLE FOR MARKET DATA

Algorithm	Input		Expected Output Range		Predicted Output		Efficiency
	Year	Arrival (quintal)	Min	Max	Min	Max	
SVM	2016	21948	500-17500	11000-50000	2162	19563	89% efficient
K-NN	2016	21948	500-17500	11000-50000	6067	41848	52% efficient
Linear regression	2016	21948	500-17500	11000-50000	3700	19000	86% efficient
Decision tree	2016	21948	500-17500	11000-50000	17100	44500	49% efficient

SVM ALGORITHM FOR MARKET DATA

Year	Arrival (quintal)
2012	15966
2013	19177
2014	12617
2015	15351
2016	21948

OUTCOME

- Our proposed project can be implemented in the Government sectors, APMC yard and other agricultural centres.
- Using our proposed project farmers can easily get the information about crop production and also market price.

- In this project we have performed the predictive analysis using some real time data collected from agricultural department and some government website.
- By applying predictive analysis on the collected data we can suggest the farmers about crop yield and rainfall.

FUTURE WORK

- In future we are planned to predict the disease of the crop by using image processing to increase the yield of the crop.
- We are planning to develop an web application that gives information about crops and predicted details of crops.
- In future planned to develop mobile application this can be accessed in remote areas by farmers.

REFERENCE

- [1] P.Revathi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2180-2182 file:///E:/project/d3dbbd0bc14d22e7c0a7bdc14a0301f9a249.pdf
- [2] International Journal On Engineering Technology and Sciences IJETSTM file:///E:/project/E0160303005.pdf
- [3]International Journal of Advanced Research in Computer and Communication engineering file://E:/project/IJARCCE%2087.pdf
- [4] file://E:/project/papers/Crop%20pest%20prediction.pdf Available online at www.sciencedirect.com
- [5] <u>file:///E:/project/papers/Machine%20learning%20model%20for%20prediction.pdf</u> Narayanan Balakrishnan1 and Dr.GovindarajanMuthukumarasamy
- [6] file:///E:/project/papers/Weather%20prediction.pdf Sanjay D. Sawaitul1, Prof. K. P. Wagh2, Dr. P. N. Chatur