

Practical Machine Learning

Day 11: Mar24 DBDA

Kiran Waghmare

Agenda

- Clustering
- K-Means
- https://www.naftaliharris.com/blog/visualizingk-means-clustering/
- Hierarchical
- DB-SCAN

Concepts: Preliminary

- DBSCAN is a density-based algorithm
- DBScan stands for Density-Based Spatial Clustering of Applications with Noise
- Density-based Clustering locates regions of high density that are separated from one another by regions of low density

Density = number of points within a specified radius (Eps)

Concepts: Preliminary

Original Points

Point types: core, border and noise

$$Eps = 10$$
, $MinPts = 4$

Density-Based Clustering

***** Basic Idea:

Clusters are dense regions in the data space, separated by regions of lower object density

Why Density-Based Clustering?

Concepts: Preliminary

- A point is a core point if it has more than a specified number of points (MinPts) within Eps
 - These are points that are at the interior of a cluster
- A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point
- A noise point is any point that is not a core point or a border point

Concepts: Core, Border, Noise

Concepts: ε-Neighborhood

- ε-Neighborhood Objects within a radius of ε from an object. (epsilon-neighborhood)
- Core objects ε-Neighborhood of an object contains at least MinPts of objects


```
ε-Neighborhood of p
ε-Neighborhood of q

p is a core object (MinPts = 4)

q is not a core object
```

DBScan: Reachability

Directly density-reachable

 An object q is directly density-reachable from object p if q is within the ε-Neighborhood of p and p is a core object.

- q is directly densityreachable from p
- p is not directly densityreachable from q.

DBScan: Reachability

Core, Border & Outlier

 $\varepsilon = 1$ unit, MinPts = 5

Given ε and *MinPts*, categorize the objects into three exclusive groups.

A point is a core point if it has more than a specified number of points (MinPts) within Eps These are points that are at the interior of a cluster.

A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point.

A noise point is any point that is not a core point nor a border point.

Example

 M, P, O, and R are core objects since each is in an Eps neighborhood containing at least 3 points

Minpts = 3

Eps=radius of the circles

Density-Connectivity

- **■**Density-reachable is not symmetric
 - □ not good enough to describe clusters
- Density-Connected
 - □A pair of points p and q are density-connected if they are commonly density-reachable from a point o.

■ Density-connectivity is symmetric

Core, Border, Noise points representation

Original Points

Point types: core, border and noise

Eps = 10, MinPts = 4

Clustering

- Resistant to Noise
- Can handle clusters of different shapes and sizes

DBScan Algorithm

Input: N objects to be clustered and global parameters Eps, MinPts.

Output: Clusters of objects.

Algorithm:

- Arbitrary select a point P.
- Retrieve all points density-reachable from P wrt Eps and MinPts.
- If P is a core point, a cluster is formed.
- 4) If P is a border point, no points are density-reachable from P and DBSCAN visits the next point of the database.
- 5) Continue the process until all of the points have been processed.

DBScan: Flowchart

DBScan: Example

Summary of DBSCAN

Good:

- can detect arbitrary shapes,
- not very sensitive to noise,
- supports outlier detection,
- complexity is kind of okay,
- beside K-means the second most used clustering algorithm.

•Parameter **DBSCAN Algorithm: Example**

- $\varepsilon = 2$ cm
- MinPts = 3


```
for each o \in D do

if o is not yet classified then

if o is a core-object then

collect all objects density-reachable from o

and assign them to a new cluster.

else

assign o to NOISE
```

DBSCAN Algorithm: Example

Parameter

- $\varepsilon = 2$ cm
- MinPts = 3


```
for each o \in D do

if o is not yet classified then

if o is a core-object then

collect all objects density-reachable from o

and assign them to a new cluster.

else

assign o to NOISE
```


- 1. Check the ε-neighborhood of p;
- 2. If p has less than MinPts neighbors then mark p as outlier and continue with the next object
- 3. Otherwise mark p as processed and put all the neighbors in cluster C

- 1. Check the unprocessed objects in C
- 2. If no core object, return C
- 3. Otherwise, randomly pick up one core object p₁, mark p₁ as processed, and put all unprocessed neighbors of p₁ in cluster C

Example

Original Points

Point types: core, border and outliers

 ε = 10, MinPts = 4

When DBSCAN Works Well

- Resistant to Noise
- Can handle clusters of different shapes and sizes

When DBSCAN Does NOT Work Well

Original Points

- Cannot handle Varying densities
- sensitive to parameters

(MinPts=4, Eps=9.92).

(MinPts=4, Eps=9.75)

DBSCAN: Sensitive to Parameters

Figure 8. DBScan results for DS1 with MinPts at 4 and Eps at (a) 0.5 and (b) 0.4.

Figure 9. DBScan results for DS2 with MinPts at 4 and Eps at (a) 5.0, (b) 3.5, and (c) 3.0.

Agenda

- Association
 - Apriori
 - Market Basket Analysis

`Basket data'

A very common type of data; often also called *transaction* data.

Next slide shows example *transaction database*, where each record represents a transaction between (usually) a customer and a shop.

Each record in a supermarket's transaction DB, for example, corresponds to a basket of specific items.

ID apples, beer, cheese, dates, eggs, fish, glue, honey, ice-cream

1	1	1		1			1	1	
2			1	1	1				
3		1	1			1			
4		1				1			1
5					1		1		
6						1			1
7	1			1				1	
8						1			1
9			1		1				
10		1					1		
11					1		1		
12	1								
13			1			1			
14			1			1			
15								1	1
16				1					
17	1					1			
18	1	1	1	1				1	
19	1	1		1			1	1	
20					1				

Execution of Apriori algorithm, $\varepsilon=2$

Iteration 1		Iteration 2		Iteration 3		on 3
Candidates of size 1	Support	Candidates of size 2	Support		Candidates of size 3	Support
Α	4	 A B	3		ABC	3
В	3	A C	4		A B D	
C	5	A D	2		ACD	2
D	3	BC	3			
E		BD	$=$ \pm			
		CD	3			

$$Support = \frac{frq(X,Y)}{N}$$

Rule:
$$X \Rightarrow Y \longrightarrow Confidence = \frac{frq(X,Y)}{frq(X)}$$

$$Lift = \frac{Support}{Supp(X) \times Supp(Y)}$$

$$Support = \frac{P(A \cap B)}{n}$$

$$Confidence = \frac{P(A \cap B)}{P(A)}$$

$$Lift = \frac{P(A \cap B)}{P(A) \cdot P(B)}$$

Support $(A \Rightarrow B) = P(A \cap B)$ Confidence $(A \Rightarrow B) = P(B \mid A)$

Confidence $(A \Rightarrow B) = P(B|A)$

Lift $(A \Rightarrow B) = P(B|A)/P(B)$

Discovering Rules

A common and useful application of data mining

A `rule' is something like this:

If a basket contains apples and cheese, then it also contains beer Any such rule has two associated measures:

- confidence when the `if' part is true, how often is the `then' bit true?
 This is the same as accuracy.
- coverage or support how much of the database contains the `if' part?

Apriori Algorithm – Iteration 4

Prune the itemset as its 3-item subset is not frequent in L3

Generating Association Rule Example

Frequent Itemset – {I1,I2,I5} Minimum Confidence = 70%

Association Rules

$$\{I1,I2\} => I5$$
 Confidence = $2/4 = 50\%$ X
 $\{I1,I5\} => I2$ Confidence = $2/2 = 100\%$ V
 $\{I2,I5\} => I1$ Confidence = $2/2 = 100\%$ V
 $I1 => \{I2,I5\}$ Confidence = $2/6 = 33\%$ X
 $I2 => \{I1,I5\}$ Confidence = $2/7 = 29\%$ X
 $I5 => \{I1,I2\}$ Confidence = $2/2 = 100\%$ V

Item set	Sup-count
Hot Dogs	4
Buns	2
Ketchup	2
Coke	3
Chips	4

Item set	Sup-count
Hot Dogs	4
Buns	2
Ketchup	2
Coke	3
Chips	4

Item set	Sup-count
Hot Dogs, Buns	2
Hot Dogs, Coke	2
Hot Dogs, Chips	2
Coke, Chips	3

Item set	Sup-count
Hot Dogs, Buns	2
Hot Dogs, Ketchup	1
Hot Dogs, Coke	2
Hot Dogs, Chips	2
Buns, Ketchup	1
Buns, Coke	0
Buns, Chips	0
Ketchup, Coke	0
Ketchup, Chips	1
Coke, Chips	3

Item set	Sup-count
Hot Dogs, Buns, Coke	0
Hot Dogs, Buns, Chips	0
Hot Dogs, Coke, Chips	2

Item set	Sup-count
Hot Dogs, Coke, Chips	2

Example:

What is the confidence and coverage of:

If the basket contains beer and cheese,
then it also contains honey

2/20 of the records contain both beer and cheese, so coverage is 10% Of these 2, 1 contains honey, so confidence is 50%

Interesting means surprising

We therefore have a prior expectation that just 4 in 1,000 baskets should contain **both** bread and washing up powder.

If we investigate, and discover that really it is 20 in 1,000 baskets, then we will be very surprised. It tells us that:

- Something is going on in shoppers' minds: bread and washing-up powder are connected in some way.
- There may be ways to exploit this discovery ... put the powder and bread at opposite ends of the supermarket?

Measure	Description	Formula
Support	The usefulness of discovered rule $A \rightarrow B$	$P(A \cap B)$
Confidence	The certainty of discovered rule $A \rightarrow B$	$P(B \mid A)$
Lift	The correlation between the occurrence of items in discovered rule $A \rightarrow B$.	$\frac{P(B \mid A)}{P(B)}$

Basic Concepts: Frequent Patterns

Tid	Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

- itemset: A set of one or more items
- k-itemset $X = \{x_1, ..., x_k\}$
- (absolute) support, or, support count of X: Frequency or occurrence of an itemset X
- (relative) support, s, is the fraction of transactions that contains X (i.e., the probability that a transaction contains X)
- An itemset X is *frequent* if X's support is no less than a *minsup* threshold

Basic Concepts: Association Rules

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- Find all the rules $X \rightarrow Y$ with minimum support and confidence
 - support, s, probability that a transaction contains X ∪ Y
 - confidence, c, conditional probability that a transaction having X also contains Y

Let minsup = 50%, minconf = 50%

Freq. Pat.: Beer:3, Nuts:3, Diaper:4, Eggs:3, {Beer, Diaper}:3

- Association rules: (many more!)
 - Beer → Diaper (60%, 100%)
 - Diaper → Beer (60%, 75%)