EXAMPLE 8.2.1

Let

$$A = \neg \exists y \forall z (P(z, y) \equiv \neg \exists x (P(z, x) \land P(x, z))).$$

First, we negate A and eliminate \equiv . We obtain the sentence

$$\exists y \forall z [(\neg P(z,y) \lor \neg \exists x (P(z,x) \land P(x,z))) \land (\exists x (P(z,x) \land P(x,z)) \lor P(z,y))].$$

Next, we put in this formula in NNF:

$$\exists y \forall z [(\neg P(z,y) \lor \forall x (\neg P(z,x) \lor \neg P(x,z))) \land (\exists x (P(z,x) \land P(x,z)) \lor P(z,y))].$$

Next, we eliminate existential quantifiers, by the introduction of Skolem symbols:

$$\forall z [(\neg P(z, a) \lor \forall x (\neg P(z, x) \lor \neg P(x, z))) \land ((P(z, f(z)) \land P(f(z), z)) \lor P(z, a))].$$

We now put in prenex form:

$$\forall z \forall x [(\neg P(z,a) \lor (\neg P(z,x) \lor \neg P(x,z))) \land \\ ((P(z,f(z)) \land P(f(z),z)) \lor P(z,a))].$$

We put in CNF by distributing \land over \lor :

$$\forall z \forall x [(\neg P(z, a) \lor \neg P(z, x) \lor \neg P(x, z)) \land (P(z, f(z)) \lor P(z, a)) \land (P(f(z), z)) \lor P(z, a))].$$

Omitting universal quantifiers, we have the following three clauses:

$$\begin{split} C_1 &= (\neg P(z_1, a) \vee \neg P(z_1, x) \vee \neg P(x, z_1)), \\ C_2 &= (P(z_2, f(z_2)) \vee P(z_2, a)) \text{ and } \\ C_3 &= (P(f(z_3), z_3) \vee P(z_3, a)). \end{split}$$

We will now show that we can prove that $B = \neg A$ is unsatisfiable, by instantiating C_1 , C_2 , C_3 to ground clauses and use the resolution method of Chapter 4.

8.3 Ground Resolution

The ground resolution method is the resolution method applied to sets of ground clauses.

EXAMPLE 8.3.1

Consider the following ground clauses obtained by substitution from C_1 , C_2 and C_3 :

 $G_1 = (\neg P(a, a))$ (from C_1 , substituting a for x and z_1) $G_2 = (P(a, f(a)) \lor P(a, a))$ (from C_2 , substituting a for z_2) $G_3 = (P(f(a), a)) \lor P(a, a))$ (from C_3 , substituting a for z_3). $G_4 = (\neg P(f(a), a) \lor \neg P(a, f(a)))$ (from C_1 , substituting f(a) for z_1 and a for x).

The following is a refutation by (ground) resolution of the set of ground clauses G_1 , G_2 , G_3 , G_4 .

We have the following useful result.

Lemma 8.3.1 (Completeness of ground resolution) The ground resolution method is complete for ground clauses.

Proof: Observe that the systems G' and GCNF' are complete for quantifier-free formulae of a first-order language without equality. Hence, by theorem 4.3.1, the resolution method is also complete for sets of ground clauses. \square

However, note that this is not the case for quantifier-free formulae with equality, due to the need for equality axioms and for inessential cuts, in order to retain completeness.

Since we have shown that a conjunction of ground instances of the clauses C_1 , C_2 , C_3 of example 8.2.1 is unsatisfiable, by the Skolem-Herbrand-Gödel theorem, the sentence A of example 8.2.1 is valid.

Summarizing the above, we have a method for finding whether a sentence B is unsatisfiable known as *ground resolution*. This method consists in converting the sentence B into a set of clauses B', instantiating these clauses to ground clauses, and applying the ground resolution method.

By the completeness of resolution for propositional logic (theorem 4.3.1), and the Skolem-Herbrand-Gödel theorem (actually the corollary to theorem 7.6.1 suffices, since the clauses are in CNF, and so in NNF), this method is complete.