

دانشکده سیستم های هوشمند و علوم داده

عنوان تكليف٧:

پیاده سازی مثال اسلاید ۴۴ با استفاده از فیلتر کیزر

استاد : دکتر قیمتگر

دانشجو :محمد رضا منصوری

شماره دانشجوی: ۴۰۲۰۷۲۳۱۰۸

گزارش کار پیادهسازی فیلترهای چندمرحلهای به روشIFIR

مقدمه

در طراحی فیلترهای دیجیتال، کاهش پیچیدگی محاسباتی و بهینهسازی مرتبه فیلترها از اهمیت زیادی برخوردار است. روش IFIR(فیلترهای چندمرحلهای) یکی از راهکارهای مناسب برای دستیابی به این هدف است. در این گزارش، مراحل طراحی و پیادهسازی فیلترهای چندمرحلهای IFIR شامل فیلترهای و میزان گزارش، مورد بررسی قرار گرفته و میزان روگاه و میزان خطای بین فیلتر اصلی و فیلتر چندمرحلهای محاسبه شده است.

مراحل پیادهسازی

مرحله اول: طراحي فيلتر (H(z

در این مرحله، یک فیلتر با مشخصات اولیه طراحی میشود:

- $\omega p=0.09\pi$ فركانس قطع باند گذر
 - ω s=0.11 π فركانس توقف
 - δ 1=0.02 تلفات باند گذر
 - δ 2=0.0011 توقف تلفات باند توقف

با استفاده از پنجره کایزر، فیلتر طراحی میشود. این فیلتر به عنوان فیلتر هدف یا H(z)در نظر گرفته میشود و پاسخ فرکانسی آن محاسبه و ترسیم میشود.

مرحله دوم: طراحی فیلتر (G(z

برای کاهش مرتبه فیلتر H(z) ، ابتدا فیلتر G(z)طراحی میشود. مشخصات فیلتر G(z)بهصورت زیر است:

- ωp =0.18 π فر کانس قطع باند گذر
 - ω s=0.22 π فركانس توقف
 - δ 1=0.01 عند الفات باند الفات باند

 δ 2=0.001 تلفات باند توقف \bullet

فیلتر (G(z)با توجه به مشخصات فوق طراحی میشود. این فیلتر یک فیلتر پهنتر نسبت به H(z)است که در مرحله بعدی، از آن برای ساخت فیلتر نهایی استفاده میشود.

مرحله سوم: طراحي فيلتر (I(Z)

پس از طراحی فیلتر (G(z)، یک فیلتر اضافی با مشخصات زیر طراحی میشود:

- ωp =0.09 π فركانس قطع باند گذر
 - ω s=0.89 π فركانس توقف
 - δ 1=0.01 عند الفات باند گذر
 - δ 2=0.001 تلفات باند توقف

فیلتر (z)اوظیفه دارد که نواحی اضافه در پاسخ فرکانسی فیلتر (G(z)را حذف کرده و به مشخصات نهایی فیلتر (H(z)نزدیک شود.

$G(z^2)$ مرحله چهارم: آیسمیل کردن فیلتر ایسمیل کردن فیلتر

برای ترکیب G(z) ابتدا فیلتر G(z)با استفاده از آپسمپلینگ به صورت $G(z^2)$ تغییر می یابد. این کار به این معنی است که ضرایب فیلتر G(z)با ضریب ۲ افزایش داده می شود تا فرکانس نایکوئیست آن کاهش یابد.

- آپسمپل کردن: از تابع upsampleبرای درج صفر در بین نمونههای فیلتر (G(z)استفاده میشود.
- محاسبه پاسخ فرکانسی :(c_x^2) پاسخ فرکانسی فیلتر آپسمپل شده با استفاده از تابع freqzمحاسبه و رسم می شود.

I(z) و $G(z^2)$ و مرحله پنجم: ترکیب فیلتر

برای بهدست آوردن فیلتر نهایی، فیلتر $G(z^2)$ و $G(z^2)$ ابا استفاده از کانولوشن ترکیب میشوند:

• کانولوشن: از تابع COnvبرای ترکیب ضرایب دو فیلتر استفاده میشود. • پاسخ فرکانسی: پاسخ فرکانسی فیلتر ترکیبی محاسبه و ترسیم میشود.

I(z) و $G(z^2)$ ترکیب و H(z) مرحله ششم: محاسبه خطا بین فیلتر

نتايج

Filter H - Order: 1138 Filter G - Order: 569 Filter I - Order: 29

Mean Squared Error (MSE) Between Filter H and Combined G+I: 4.259193e-03

