Best Available Copy

PCT/JP03/08447

日本国特許庁 JAPAN PATENT OFFICE

02.07.03

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2002年 7月 2日

出 願 番 号 Application Number:

特願2002-192881

[ST. 10/C]:

[JP2002-192881]

REC'D 2 2 AUG 2003

WIPO

PCT

出 願 人
Applicant(s):

松下電器産業株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年 8月 7日

【書類名】

特許願

【整理番号】

2015440016

【提出日】

平成14年 7月 2日

【あて先】

特許庁長官 殿

【国際特許分類】

H01J 65/04

【発明者】

【住所又は居所】

大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】

橋本谷 磨志

【発明者】

【住所又は居所】

大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】

▲荒▼川 剛

【発明者】

【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】

保知 昌

【発明者】

【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】

片瀬 幸一

【発明者】

【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】

小俣 雄二

【発明者】

【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式

会社内

【氏名】

萩原 慶久

【特許出願人】

【識別番号】 000005821

【氏名又は名称】 松下電器産業株式会社

【代理人】

【識別番号】

100077931

【弁理士】

【氏名又は名称】 前田 弘

【選任した代理人】

【識別番号】 100094134

【弁理士】

【氏名又は名称】 小山 廣毅

【選任した代理人】

【識別番号】 100110939

【弁理士】

【氏名又は名称】 竹内 宏

【選任した代理人】

【識別番号】 100110940

【弁理士】

【氏名又は名称】 嶋田 高久

【選任した代理人】

【識別番号】 100113262

【弁理士】

【氏名又は名称】 竹内 祐二

【選任した代理人】

【識別番号】 100115059

【弁理士】

【氏名又は名称】 今江 克実

ページ: 3/E

【選任した代理人】

【識別番号】 100115510

【弁理士】

【氏名又は名称】 手島 勝

【選任した代理人】

【識別番号】 100115691

【弁理士】

【氏名又は名称】 藤田 篤史

【手数料の表示】

【予納台帳番号】 014409

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】 要約書 1

【包括委任状番号】 0006010

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 電球型無電極放電ランプおよび無電極放電ランプ点灯装置 【特許請求の範囲】

【請求項1】 水銀と希ガスとを含む放電ガスが封入された発光管と、

前記発光管の近傍に設けられた誘導コイルと、

前記誘導コイルに高周波電力を供給する点灯回路と、

前記点灯回路に電気的に接続された口金と

を備え、

前記発光管と前記誘導コイルと前記点灯回路と前記口金とは一体に構成されており、

前記発光管は、略球形状あるいは略回転楕円形状を有しており、

前記発光管のうちの前記点灯回路側には、前記誘導コイルが挿入される凹入部が設けられており、

前記凹入部は、前記点灯回路側に開口部を有する略円筒形状を有し、且つ、前 記凹入部のうち前記開口部と反対側に位置する部位は、前記放電ガスの対流を抑 制する機能を有しており、

前記発光管の最大直径は、60mm以上80mm以下であり、

安定点灯時における前記発光管の管壁負荷は、 $0.08W/cm^2$ 以上0.1 $1W/cm^2$ 以下であり、そして、

前記発光管の前記最大直径(D)に対する、前記凹入部における前記開口部の端面を基準とした前記発光管の高さ(h)の比(h/D)は、1.0以上1.3以下であり、

前記凹入部の直径をDcとし、前記凹入部のうちの前記開口部と反対側に位置する前記凹入部の頂面と、前記凹入部の前記頂面と対向する前記発光管の頂部との間隔を Δh としたときに、

 $\Delta h \leq 1$. 92×Dc-27.6 [mm]

の関係を満たす、電球型無電極放電ランプ。

【請求項2】 前記直径Dcと前記間隔△hとが、

 $\Delta h \ge 1$. 16×Dc-17. 4 [mm]

の関係を満たす、請求項1に記載の電球型無電極放電ランプ。

【請求項3】 前記発光管の前記最大直径は65mm以上75mm以下である、請求項1または2に記載の電球型無電極放電ランプ。

【請求項4】 前記誘導コイルは、コアと、当該コアに巻き付けられた巻線とから構成されており、

前記コアにおける前記巻線が巻き付けられている部分の、長手方向についての中心部位は、前記発光管の前記最大直径が存在する平面よりも、前記点灯回路側の方へ4mm以上8mm以下の距離だけ離れた範囲内に位置している、請求項1から3の何れか一つに記載の電球型無電極放電ランプ。

【請求項5】 水銀と希ガスとを含む放電ガスが封入された発光管と、

前記発光管の近傍に設けられた誘導コイルと、

前記誘導コイルに高周波電力を供給する点灯回路と、

前記点灯回路に電気的に接続された口金と

を備え、

前記発光管と前記誘導コイルと前記点灯回路と前記口金とは一体に構成されており、

前記発光管は、略球形状あるいは略回転楕円形状を有しており、

前記発光管のうちの前記点灯回路側には、前記誘導コイルが挿入される凹入部が設けられており、

前記凹入部は、前記点灯回路側に開口部を有する略円筒形状を有し、且つ、前記凹入部のうち前記開口部と反対側に位置する部位は、前記放電ガスの対流を抑制する機能を有しており、

前記発光管の最大直径は、55mm以上75mm以下であり、

安定点灯時における前記発光管の管壁負荷は、 $0.05\,\mathrm{W/c\,m^2}$ 以上 $0.0\,\mathrm{W/c\,m^2}$ 以上 $0.0\,\mathrm{W/c\,m^2}$ 表満であり、そして、

前記発光管の前記最大直径(D)に対する、前記凹入部における前記開口部の端面を基準とした前記発光管の高さ(h)の比(h/D)は、1.0以上1.3以下であり、

前記凹入部の直径をDcとし、前記凹入部のうちの前記開口部と反対側に位置

する前記凹入部の頂面と、前記凹入部の前記頂面と対向する前記発光管の頂部と の間隔をΔhとしたときに、

 $\Delta h \leq 1$. 92×Dc-22. 4 [mm]

の関係を満たす、電球型無電極放電ランプ。

【請求項6】 前記直径Dcと前記間隔 Δhとが、

 $\Delta h \ge 1. \ 1.6 \times Dc - 1.7.4 \ [mm]$

の関係を満たす、請求項5に記載の電球型無電極放電ランプ。

【請求項7】 前記発光管の前記最大直径は60mm以上70mm以下である、請求項5または6に記載の電球型無電極放電ランプ。

【請求項8】 前記誘導コイルは、コアと、当該コアに巻き付けられた巻線とから構成されており、

前記コアにおける前記巻線が巻き付けられている部分の、長手方向についての中心部位は、前記発光管の前記最大直径が存在する平面上に実質的に存在している、請求項5から7の何れか一つに記載の電球型無電極放電ランプ。

【請求項9】 前記水銀は、アマルガムの形態でなく、水銀元素の形態で前記 発光管に封入されている、請求項1から8の何れか一つに記載の電球型無電極放 電ランプ。

【請求項10】 前記希ガスの封入圧力は、60Pa以上300Pa以下である、請求項1から9の何れか一つに記載の電球型無電極放電ランプ。

【請求項11】 前記発光管の内表面に蛍光体層が形成されている、請求項1 から10の何れか一つに記載の電球型無電極放電ランプ。

【請求項12】 水銀と希ガスとを含む放電ガスが封入され、凹入部を有する 発光管と、

前記凹入部に挿入された誘導コイルと、

前記誘導コイルに高周波電力を供給する点灯回路と を備え、

前記発光管は、略球形状あるいは略回転楕円形状を有しており、

前記凹入部は、前記点灯回路側に開口部を有する略円筒形状を有し、

前記発光管の最大直径は、60mm以上80mm以下であり、

安定点灯時における前記発光管の管壁負荷は、 $0.08W/cm^2$ 以上0.1 $1W/cm^2$ 以下であり、そして、

前記発光管の前記最大直径(D)に対する、前記凹入部における前記開口部の端面を基準とした前記発光管の高さ(h)の比(h/D)は、1.0以上1.3以下であり、

前記凹入部の直径をDcとし、前記凹入部のうちの前記開口部と反対側に位置する前記凹入部の頂面と、前記凹入部の前記頂面と対向する前記発光管の頂部との間隔をΔhとしたときに、

 $\Delta h \leq 1$. 92×Dc-27. 6 [mm]

の関係を満たす、無電極放電ランプ点灯装置。

【請求項13】 水銀と希ガスとを含む放電ガスが封入され、凹入部を有する 発光管と、

前記凹入部に挿入された誘導コイルと、

前記誘導コイルに高周波電力を供給する点灯回路と

を備え、

前記発光管は、略球形状あるいは略回転楕円形状を有しており、 前記凹入部は、前記点灯回路側に開口部を有する略円筒形状を有し、 前記発光管の最大直径は、

55mm以上75mm以下であり、

安定点灯時における前記発光管の管壁負荷は、 0.05 W/cm^2 以上 0.08 W/cm^2 未満であり、そして、

前記発光管の前記最大直径(D)に対する、前記凹入部における前記開口部の端面を基準とした前記発光管の高さ(h)の比(h/D)は、1.0以上1.3以下であり、

前記凹入部の直径をDcとし、前記凹入部のうちの前記開口部と反対側に位置する前記凹入部の頂面と、前記凹入部の前記頂面と対向する前記発光管の頂部との間隔を Δh としたときに、

 $\Delta h \leq 1$. 9 2 × D c - 2 2. 4 [mm]

の関係を満たす、無電極放電ランプ点灯装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、電球型無電極放電ランプおよび無電極放電ランプ点灯装置に関する

[0002]

【従来の技術】

近年、地球環境保護と経済性の視点から、白熱電球に比べて効率が約5倍高く、寿命も約6倍長い有電極の電球型蛍光ランプが、住宅やホテルなどにおいて白熱電球代替用として広く利用されてきている。さらに、最近、従来から存在する有電極の電球型蛍光ランプの他に、無電極の電球型蛍光ランプが普及し始めている。無電極蛍光ランプは、電極が無いことから寿命が有電極蛍光ランプに比べて更に2倍以上長いため、今後ますます普及していくことが期待される。

[0003]

従来白熱電球にはさまざまな形状のものが創案され、実用化されているが、もっとも広く使用されているのは洋ナシ型の形状を持つものである。これはJIS C 7710-1988において定義されたA型と呼ばれる形状であり、国際的にもIEC 6088 7-1988によって同様に定義されていて、この規格に従って米国や欧州などにおいても同様の規格が設けられている。白熱電球を点灯させる灯具もこのA型の白熱電球の使用を前提としたものが多い。そのため電球型蛍光ランプも、特にこうしたA型の白熱電球に近似した形状、大きさのものを提供することが実用上求められている。

[0004]

一般的に用いられる上記A型の白熱電球のサイズは、例えば入力100Wの白熱電球の場合で直径60mm、バルブ頂上から口金先端までの高さ110mm程度の大きさであり、白熱電球を代替するためには、電球型蛍光ランプのサイズは前述のサイズを著しく越えないことが重要である。

[0005]

白熱電球と異なり、上記蛍光ランプは放電によって励起された水銀が放出する

紫外線を、外管バルブ(発光管)に塗布された蛍光体で可視光に変換することで 光源として機能する。この水銀が放出する紫外線のなかでも特に波長が253. 7nmの輝線が、蛍光体での可視光への変換効率も高い。すなわち、蛍光ランプ の効率は、253.7nmの紫外輝線の放射効率によって決定される。蛍光ラン プでのこの効率は、ランプ内での水銀の原子の密度、言い換えると蒸気圧で決定 され、約6mTorr(約798mPa)の時に最高効率となる。これは、水銀 液滴の摂氏40℃前後での飽和蒸気圧に相当する。このため、効率の高い蛍光ラ ンプを設計するためには、外管バルブの少なくとも最も温度が低くなる箇所(以 下最冷点と呼ぶ)の温度を摂氏40℃近傍になるようにすることが望ましい。最 冷点において過剰な水銀蒸気が液滴となるからである。

[0006]

ところが一般に、白熱電球の代替を目的とした電球型蛍光ランプでは、直管蛍光ランプなどに比べると、ランプに投入される電力に対してランプのサイズが小さい。そのため動作時には発光管の温度が高くなり、摂氏40℃近傍にすることが原理的に困難である。つまり、直管蛍光ランプなどに比べ、電球型蛍光ランプは単位表面積当たりの電力が大きいので、ランプ表面からの放熱が十分に行われず、発光管の温度が高くなるのである。

[0007]

従来このような課題に対する対策としては、例えば特開平11-31476号 公報に開示されたような、アマルガムを使用する方法がある。これは、動作時に 温度上昇によって最適値よりも過剰になった水銀蒸気をアマルガムに吸着させる ことによって、動作時の水銀蒸気圧を最適値付近にコントロールする方法で、水 銀蒸気圧制御機能を有するBi-In系やBi-Pb-Sn系等のアマルガムが 用いられる。

[0008]

また、別の対策方法としては、特開2001-325920号公報に開示されたような、発光管の最も温度が低くなる部分に、発光管の外側に向かって隆起部を設けて局所的に放熱を高めることで、その部分の温度を摂氏40℃付近となるようにする方法がある。

[0009]

【発明が解決しようとする課題】

しかし、アマルガムを使用する方法では、ランプの温度が低い消灯状態からランプを点灯した場合、アマルガムの温度が上昇して吸着された水銀が再度放出されるまでに時間がかかるため、点灯してからランプが十分な明るさを得るまでの明るさの立ち上がりに数分以上の時間がかかるという課題があった。

[0010]

また、明るさの立ち上がりを向上させるためにアマルガムを使用せずに水銀液滴を発光管に封入し、発光管外壁上に隆起部を設ける方法では、最冷点の温度を摂氏40℃付近にコントロールする効果はあるものの、隆起部分のガラスが強度的にどうしても弱くなり割れやすくなる。さらには白熱電球にはそのような隆起部が存在しないため、白熱電球を代替して使用する場合、審美的観点から好ましくない、という課題があった。

[0011]

本発明はかかる諸点に鑑みてなされたものであり、その主な目的は、従来とは 異なるアプローチで最冷点の温度を好適な範囲に制御した電球型無電極放電ラン プ及び無電極放電ランプ点灯装置を提供することにある。

$[0\ 0\ 1\ 2]$

【課題を解決するための手段】

本発明による第一の電球型無電極放電ランプは、水銀と希ガスとを含む放電ガスが封入された発光管と、前記発光管の近傍に設けられた誘導コイルと、前記誘導コイルに高周波電力を供給する点灯回路と、前記点灯回路に電気的に接続された口金とを備え、前記発光管と前記誘導コイルと前記点灯回路と前記口金とは一体に構成されており、前記発光管は、略球形状あるいは略回転楕円形状を有しており、前記発光管のうちの前記点灯回路側には、前記誘導コイルが挿入される凹入部が設けられており、前記凹入部は、前記点灯回路側に開口部を有する略円筒形状を有し、且つ、前記凹入部のうち前記開口部と反対側に位置する部位は、前記放電ガスの対流を抑制する機能を有しており、前記発光管の最大直径は、60mm以上80mm以下であり、安定点灯時における前記発光管の管壁負荷は、0

. $0.8\,\mathrm{W/c}\,\mathrm{m}^2$ 以上 $0.1\,\mathrm{W/c}\,\mathrm{m}^2$ 以下であり、そして、前記発光管の前記最大直径(D)に対する、前記凹入部における前記開口部の端面を基準とした前記発光管の高さ(h)の比(h/D)は、 $1.0\,\mathrm{以}$ 上 $1.3\,\mathrm{以}$ 下であり、前記凹入部の直径を $0.5\,\mathrm{m}$ であり、前記凹入部の直径を $0.5\,\mathrm{m}$ であり、前記凹入部の頂面と、前記凹入部の前記頂面と対向する前記発光管の頂部との間隔を $0.5\,\mathrm{m}$ の頂面と、前記凹入部の前記頂面と対向する前記発光管の頂部との間隔を $0.5\,\mathrm{m}$ かじたときに、 $0.5\,\mathrm{m}$ の関係を満たすものである。

[0013]

ある実施形態において、前記直径Dcと、前記間隔 Δh とが、 $\Delta h \ge 1.16$ $\times Dc - 17.4 [mm]$ の関係を満たす。

[0014]

前記発光管の前記最大直径は65mm以上75mm以下であることが好ましい。また、前記発光管の最冷点となる前記頂部又はその近傍に隆起部を設けないことが好ましい。

[0015]

ある実施形態において、前記誘導コイルは、コアと、当該コアに巻き付けられた巻線とから構成されており、前記コアにおける前記巻線が巻き付けられている部分の、長手方向についての中心部位は、前記発光管の前記最大直径が存在する平面よりも、前記点灯回路側の方へ4mm以上8mm以下の距離だけ離れた範囲内に位置している。

$[0\ 0\ 1\ 6]$

本発明による第二の電球型無電極放電ランプは、水銀と希ガスとを含む放電ガスが封入された発光管と、前記発光管の近傍に設けられた誘導コイルと、前記誘導コイルに高周波電力を供給する点灯回路と、前記点灯回路に電気的に接続された口金とを備え、前記発光管と前記誘導コイルと前記点灯回路と前記口金とは一体に構成されており、前記発光管は、略球形状あるいは略回転楕円形状を有しており、前記発光管のうちの前記点灯回路側には、前記誘導コイルが挿入される凹入部が設けられており、前記凹入部は、前記点灯回路側に開口部を有する略円筒形状を有し、且つ、前記凹入部のうち前記開口部と反対側に位置する部位は、前

記放電ガスの対流を抑制する機能を有しており、前記発光管の最大直径は、5.5 mm以上7.5 mm以下であり、安定点灯時における前記発光管の管壁負荷は、0.05 W/c m 2 以上0.08 W/c m 2 未満であり、そして、前記発光管の前記最大直径(D)に対する、前記凹入部における前記開口部の端面を基準とした前記発光管の高さ(h)の比(h/D)は、1.0 以上1.3 以下であり、前記凹入部の直径をDcとし、前記凹入部のうちの前記開口部と反対側に位置する前記凹入部の頂面と、前記凹入部の前記頂面と対向する前記発光管の頂部との間隔を Δ h としたときに、 Δ h \leq 1.92 × Dc - 22.4 [mm]の関係を満たすものである。

[0017]

ある実施形態において、前記直径Dcと前記間隔 Δh とが、 $\Delta h \ge 1$. $16 \times Dc - 17$. 4 $\lceil mm \rceil$ の関係を満たす。

[0018]

前記発光管の前記最大直径は60mm以上70mm以下であることが好ましい

[0019]

ある実施形態において、前記誘導コイルは、コアと、当該コアに巻き付けられた巻線とから構成されており、前記コアにおける前記巻線が巻き付けられている部分の、長手方向についての中心部位は、前記発光管の前記最大直径が存在する平面上に実質的に存在している。

[0020]

ある実施形態において、前記水銀は、アマルガムの形態でなく、水銀元素の形態で前記発光管に封入されている。

[0021]

ある実施形態において、前記希ガスの封入圧力は、60Pa以上300Pa以下である。

[0022]

ある実施形態において、前記発光管の内表面に蛍光体層が形成されている。

[0023]

本発明による第一の無電極放電ランプ点灯装置は、水銀と希ガスとを含む放電ガスが封入され、凹入部を有する発光管と、前記凹入部に挿入された誘導コイルと、前記誘導コイルに高周波電力を供給する点灯回路とを備え、前記発光管は、略球形状あるいは略回転楕円形状を有しており、前記凹入部は、前記点灯回路側に開口部を有する略円筒形状を有し、前記発光管の最大直径は、60mm以上80mm以下であり、安定点灯時における前記発光管の管壁負荷は、0.08W/cm²以上0.11W/cm²以下であり、そして、前記発光管の前記最大直径(D)に対する、前記凹入部における前記開口部の端面を基準とした前記発光管の高さ(h)の比(h/D)は、1.0以上1.3以下であり、前記凹入部の直径をDcとし、前記凹入部のうちの前記開口部と反対側に位置する前記凹入部の頂面と、前記凹入部の前記頂面と対向する前記発光管の頂部との間隔を△hとしたときに、△h≤1.92×Dc-27.6[mm]の関係を満たすものである。

[0024]

本発明による第二の無電極放電ランプ点灯装置は、水銀と希ガスとを含む放電ガスが封入され、凹入部を有する発光管と、前記凹入部に挿入された誘導コイルと、前記誘導コイルに高周波電力を供給する点灯回路とを備え、前記発光管は、略球形状あるいは略回転楕円形状を有しており、前記凹入部は、前記点灯回路側に開口部を有する略円筒形状を有し、前記発光管の最大直径は、

[0025]

【発明の実施の形態】

本願発明者は数多くの実験を繰り返すことで、アマルガムを使用せずに、かつ ランプの外観に影響を与えることなく、最冷点の温度を好適な範囲に制御できる ランプ内部の構造物の寸法の最適な範囲を見出した。

[0026]

ここで、図2を参照しながら、安定点灯時の発光管の最冷点の温度がどのよう に決まるかを説明する。図2は無電極蛍光ランプが「ベース(高周波電源回路2 03及び口金202)を上にした」状態で点灯されている様子を表している(以 降はベースアップ点灯と呼ぶ)。白熱電球は、通常はこのようなベースアップ点 灯で使用される。図2において発光管101はJIS C 7710-1988に おいて定義されたA型形状の白熱電球に近似した略回転楕円体形状であり、光透 過性のガラス、例えばソーダライムガラスによって形成される。凹入部102は 発光管101と同じ材質で形成された略円筒形状であり、その開口端103にお いて発光管101と溶着されている。発光管101は、排気管104から一旦真 空に排気されたのち、放電ガスとして少量の液状水銀(図示せず)と希ガス、例 えばKrが室温時に60Paから100Paの圧力で封入されている(図示せず)。なお、ここで水銀は最初に水銀蒸気圧制御機能を有しない2n-Hgにより 発光管101内に入れられるが、Zn-Hgから高温により放出された水銀は再 度Zn-Hgに吸着されることはなく、一旦使用をはじめた無電極蛍光ランプで は、水銀元素の形態として封入されている。つまり、Zn-Hgが水銀の供給源 であっても実質的に水銀元素の形態として封入されていることになる。発光管1 01の内壁面には、ソーダライムガラスに含まれるナトリウムと水銀とが反応し て黒化することを防ぐために、アルミナの保護膜(図示せず)が途布され、その 上から蛍光体膜(図示せず)が塗布されている。また、凹入部102の発光管1 01側の面には、アルミナよりなる可視光反射膜(図示せず)が塗布され、さら にその上に蛍光体膜(図示せず)が塗布されている。

[0027]

凹入部102の内側には、Mn-Zn系の軟磁性フェライトからなる磁芯(コア)106上に、絶縁被覆された銅のより線(リッツワイヤ)からなる励起コイル(巻線)105が、ソレノイド状に巻回されている。励起コイル105の両端

[0028]

通常の白熱電球用ソケットから直接給電できる口金202を介して供給された 商用電源電力は、高周波電源回路203を通して周波数が約400kHzの高周 波電流に変換されて励起コイル105に投入される。励起コイル105にこの高 周波電流を与えることで、発光管101内部に誘導電場(図示せず)が生じる。 この誘導電場の中で放電ガス中の電子が加速されて希ガスや水銀の原子と衝突し 、励起と電離を繰り返すことで持続放電が生起し、図2に示すようにプラズマが 発生する。

[0029]

ここで高周波電源回路203が励起コイル105に印加する高周波電圧の周波 数は約400kHzとしているが、実用的に一般的に使用されているISM帯の 13.56MHzまたは数MHzに比べると、これは低い周波数である。この理 由は、まず、13.56MHzまたは数MHzのような比較的高い周波数領域で 動作させる場合、高周波電源回路203から発生するラインノイズを抑制するた めのノイズフィルタが大型となり、高周波電源回路203の体積が大きくなって しまう。また、ランプから放射または伝播されるノイズが高周波ノイズの場合、 髙周波ノイズには非常に厳しい規制が法令にて設けられているため、その規制を クリアするには高価なシールドを設けて使用する必要があり、コストダウンを図 る上で大きな障害となる。一方40kHz~1MHz程度の周波数領域で動作さ せる場合には、高周波電源回路203を構成する部材として、一般電子機器用の 電子部品として使用されている安価な汎用品を使用することができるとともに、 寸法の小さい部材を使用することが可能となるため、コストダウンおよび小型化 を図ることができ、利点が大きいからである。ただし、本構成においては約40 0 MHzに限らず、40kHz~1MHzの範囲での別の周波数領域や、13. 56MHzまたは数MHzのような比較的高い周波数領域においても動作させる ことができる。

[0030]

図2において、発光管101内部で最も温度が高くなるのは、一般に励起コイル105からの誘導電場のエネルギーが、放電ガス中でジュール加熱の形で消費されるプラズマ部分である。このプラズマ部分で発生した熱は、発光管101外表面から外気へと放出される。従って、発光管101の中でプラズマ部分から最も離れていて、かつ外気と接している部分、すなわち発光管101の頂部が最冷点となる。安定点灯時には、発生する熱量と、外気へと放出される熱量とがつりあうことによって、最冷点の温度が決定される。なお、安定点灯時というのは、点灯後十分な時間(通常は数分から数十分)が経過し、プラズマ部分や励起コイル105、高周波電源回路203からの発熱と外気による冷却とが平衡状態に達して発光管101の温度部分布が一定して、それによって定まる蒸気圧の水銀が発光に寄与する状態をいう。

[0031]

次に、このような構成よりなる無電極蛍光ランプにおいて、最冷点温度がラン プ効率にどのような影響を与えるかを説明する。図3は、図2に示すような無電 極蛍光ランプを実際に試作し、周囲の環境温度を変化させて強制的に最冷点の温 度を制御し、その時のランプの全光束を測定する実験をおこなった結果である。 図3において横軸は最冷点の温度(℃)、縦軸は全光束(1m)である。また本 実験で用いた無電極蛍光ランプは、図2に示す構造を有しており、発光管101 の最大直径(D)は70mm、凹入部102の開口端103から測った発光管1 01の高さ(h)は80mmであり、発光管101内部には微量の水銀液滴と、 Krガスを室温時に80Paとなるように封入した。発光管101の最大直径は 、発光管101の回転対称軸に直交する平面内におけるもので、発光管101の 外壁側におけるものである。凹入部102の直径(外径)は21mm、凹入部1 02の開口端103から測った凹入部102の頂上部までの高さは58mmであ った。発光管101や凹入部102の厚みは約0.8mmと小さいので、各直径 や高さは厚み分を誤差として無視をして内径部分等を直径や高さにしてもよいし 、厳密に厚み分まで換算して各直径や高さの値を算出してもよい。また口金20 2を通して投入した電力は20Wであり、高周波電源回路203での損失を加味 した発光管101への実際の投入電力は約18Wであった。このような条件で点 灯した場合の発光管 101 での単位表面積あたりの電力、すなわち安定点灯時の管壁負荷は約0.09 W/c m^2 である。

[0032]

図3から明らかなように、最冷点が40℃付近において無電極蛍光ランプの発光効率は最高となり、最冷点温度が上昇するにつれて急激に低下する。この実験に用いたランプでは、常温すなわち環境温度25℃における最冷点温度は47.2℃で、全光束は13801mであり、最冷点温度40℃での全光束最高値より6%以上低い値となった。もし最冷点の温度を少なくとも45℃以下にすることができれば、全光束の低下を最高値の約3%以内に抑えることが可能である。このため、本願発明者は、最冷点温度が決定されるメカニズムに立ち返って、最冷点温度の抑制手段の検討を行った。

[0033]

上記メカニズムを考える上で重要なのは、発光管 1 0 1 内での熱の移動がどのように行われるかということであるが、本実験で用いられた発光管 1 0 1 内の圧力は 8 0 P a と小さいので、従来は発光管 1 0 1 内部の熱の移動は、熱伝導によるものがほとんどであると考えられてきた。即ち、液晶プロジェクター用の高圧水銀灯に代表される高輝度放電ランプとは異なり、蛍光ランプ内のような低圧放電プラズマでは放電ガスの圧力が数百分の1気圧と非常に低いために、蛍光ランプの発光管内での、熱の散逸機構としての対流は従来無視されてきたのである。ここで本願発明者は、今まで熱移動に寄与すると考えられることのなかった対流に着目した。

[0034]

上記蛍光ランプの発光管101内の対流を考えてみると、まず発光管101内の放電ガスはプラズマ部分で加熱され、ハウジング201側へと上昇する。一方発光管101の管壁の、外気と接する領域では、外気への熱伝達によって放電ガスが冷却されるため、放電ガスはハウジング201側から発光管101頂部へと降下する。この結果、安定点灯中には発光管101内には図2中の矢印のような対流が存在すると考えられる。したがって、プラズマ部分で発生した熱は、放電ガスからの熱伝導のみでなく、この対流によっても移送されるので、こうしたプ

ラズマ部分からの熱の移送経路が最も長くなり、かつ外気と接している部分、すなわち発光管101の頂部がやはり最冷点となるわけである。安定点灯時には、この最冷点へ熱伝導と対流によって移送される熱量と、発光管101外表面から外気へと放出される熱量とがつりあうことによって、最冷点の温度が決定されると考えることができる。

[0035]

なお、図2ではベースアップ点灯時について説明したが、逆向きに点灯した場合、つまりハウジング201が下になるように点灯された場合には、対流の向きが逆になるものの、やはり熱源であるプラズマ部分から遠くかつ外気と接触している発光管101の頂部がベースアップ点灯時と同様に最冷点となる。最冷点への熱の移送経路も同様である。

[0036]

ここで本願発明者は、なんらかの方法で、発光管101中の最高温部分である プラズマ部分から最冷点への対流を妨げてやることで、最冷点の温度を制御する ことが可能なのではないかと発想したのである。

[0037]

上記発想を確認するため熱流体シミュレーション技術を使用して、安定点灯時の発光管101内での放電ガスの動きを計算した。その結果、図2の凹入部102項上付近に模式的に表したごとく、凹入部102の頂上付近では放電ガスの流れが大きく乱されることがわかった。この結果から、凹入部102を最冷点に近づけることで、プラズマ部分から最冷点への対流による熱移送を妨げ、最冷点の温度上昇を抑制することができるのではないかとの着想を得た。

[0038]

そこで、発光管101の大きさを一定として、凹入部102の長さの異なる無電極蛍光ランプを多数試作し、最冷点温度と、凹入部102の頂上と発光管101の頂部の間隔 Δh との相関を調べる実験を繰り返した。

[0039]

図4にその結果を示す。図4において横軸は△h、縦軸は最冷点の温度を示している。2本の線のうち、実線で示したのは凹入部102の直径が21mmの場

合であり、点線は凹入部102の直径が25.4mmの場合のデータである。図4から明らかなように、Δhが小さいほど、つまり凹入部102の頂上部と発光管101の頂部との間隔が狭いほど最冷点の温度が低下し、またその効果は凹入部102の直径が大きいほうが顕著であることがわかった。

[0040]

なお、本実験において、凹入部102の直径を21mmと25.4mmとの2 種類とした理由を述べる。凹入部102は、その内側に励起コイル105および 磁芯106を収容し、さらにその内側に排気管104が配置されるが、図2に示 すような無電極蛍光ランプでは、ランプの始動時にはプラズマが存在しないため 、放電を開始するために上記励起コイル105には安定点灯時の10倍以上の電 流が流れる。このような大電流が励起コイル105に流れると、磁芯106の、 励起コイル105の巻回面に平行な断面積が十分に大きくない場合には、磁芯1 06内で過大な励磁場による飽和という現象を起こすため磁芯として機能しなく なる。その結果発光管101内に十分な誘導電場を発生させることができずラン プが点灯できなくなる。このため、おのずから凹入部102の直径には下限が生 じる。また、逆に凹入部102の直径が大きすぎる場合には、点灯時にプラズマ が存在する空間、すなわち凹入部102と発光管101の外壁との間隔が小さく なる。この結果、この部分でのプラズマの両極性拡散損失が増大し、安定放電を 維持することが困難となる。これらの理由から、通常の白熱電球代替を目的とし た無電極蛍光ランプのサイズと消費電力を勘案すると、実用的に使用可能な凹入 部102の直径は21mmから25.4mmの範囲の中およびその近傍にあると 考えられる。

[0041]

図4から、最冷点温度が45℃以下となる領域をDcとΔhの関係として表現すると、図6の点線で示した関係より下側の領域となり、数式表現としては、

 $\Delta h \leq 1$. 92×Dc-27. 6 [mm]

を満たす関係であればよいという結論を得た。

[0042]

なお、発光管101の全体的な温度は、概ね発光管101の単位面積あたりの

投入電力、つまり管壁負荷によって決まるため、白熱電球の代替を目的として無電極蛍光ランプを設計する際には管壁負荷が大きく、一般的にここで検討された課題を有している。また、このようなDcとΔhの関係としたので、最冷点、即ち発光管101の頂部又はその近傍に冷却のための隆起部を設けなくてもよく、従って、隆起部を設けることに起因する強度の低下及び審美的観点からの不都合も生じない。

[0043]

ここまでに説明したように、最冷点の温度を抑制するためには、 Δh は小さく、Dcは大きくすればより大きな効果を得ることができる。しかしながら、より大きな効果を得るために Δh をどんどん小さく、またDcを大きくしていった場合、今度は発光管 101の頂部、最冷点の近傍に、凹入部 102の輪郭の影ができるという新たな課題が生じる。これは最冷点近傍から見た場合、 Δh が小さくなれば、またDcが大きくなれば、プラズマ部分から放射される紫外線が凹入部 102の頂上部でさえぎられる割合が大きくなるために生じる効果である。

[0044]

本願発明者はこの影響を最小限に止め得る $\Delta h \ Dc \ E$ の関係をも調べるために、 $\Delta h \ EDc \ E$ が異なる多くの無電極蛍光ランプを使用して、発光管 101の側面の最も明るい部分と最冷点付近の影が生じる部分それぞれの輝度を測定して、影の強さ $Edc \ EDc \ E$

C = (S s - S t) / (S s + S t)

で定義して、 Δ h とコントラストとの関係を調べたのが図5である。図5において横軸は Δ h、縦軸は上式で定義したコントラストであり、コントラストの値は大きいほど発光管101の側面と頂部とで明るさの差が激しい、すなわち影が目立つということを表している。実線で示したのはD c が 2 1 mmの場合の結果であり、点線で示したのはD c が 2 5. 4 mmの場合の結果である。図5に示すように、 Δ h が小さいほど、またD c が大きいほど、コントラストの値が大きくなり、輪郭影の影響が顕著になることがわかった。

[0045]

ここで、コントラストがどの程度になると違和感を持つかという主観評価実験を行ったところ、コシトラストの値が0.7程度になると、被験者8人中2人が 違和感を感じたという結果を得た。

[0046]

このコントラスト値が 0. 7以下となる領域を、 Δh とDc の関係として表現したものが、図 6の実線の関係であり、この線よりも上の領域では、凹入部 102の輪郭影の影響を最小限に抑え得るといえる。この領域を数式で表現すると、

 $\Delta h \ge 1. 16 \times Dc - 17. 4 [mm]$

との関係式を得る。以上から、 Δ hとDcを図6の点線と実線に囲まれた領域内の関係となるように設計すれば、外観上凹入部102の輪郭影の影響を最小限にしつつ、最冷点温度を45 \mathbb{C} 以下に抑制して好適なランプ効率を得ることができる。

[0047]

なお、この輪郭影の影響を抑えることがどこまで重要かは、このような無電極 蛍光ランプの実使用時の使用形態にも依存する。例えば開口部に拡散板を備えた ような器具内での使用であったり、また人間の視線より低い位置に設置されるよ うな場合には、輪郭影の影響はさほど重要ではない。このため、凹入部102の 輪郭影の影響を最小限にするための条件は、必ずしも必須のものではない。

[0048]

また、図12に示す米国特許第5291091号公報における無電極蛍光ランプや、図13に示す米国特許第5825130号公報における無電極蛍光ランプのような従来の公知の無電極蛍光ランプは、上記二つの式を満たす形状を有していない。

[0049]

次に、本願発明者は、発光効率をより高くするためにプラズマの発生位置に着目した。つまり、プラズマの発生する中心部がハウジング201に近すぎれば発光管101の管壁での両極性拡散が強くなり、プラズマを維持するために消費される電力が増加して効率が低下する。また逆に、プラズマの発生する中心部が最

冷点に近すぎると、凹入部102による対流抑制の効果が相殺されて最冷点の温度が上昇し、やはり効率が低下することになると考えたのである。プラズマの発生する中心部は、磁芯106における励起コイル105が巻き付けられている部分の、長手方向についての中心部にほぼ対応すると考えられ、この部分が発光管101の最大直径となる部分に一致すると、管壁での両極性拡散による損失が最も少なくなると推定した。

[0050]

図11は、発光管101内部のガスの流れをコンピュータでシュミレーションし、発光管101縦断面のうち半分を示した図である。ガスの流れを矢印で示している。励起コイル105の巻き付け長手方向の中心部112と、発光管101の最大直径部分114との距離ΔC [mm] は、最大直径部分114からベース側に向かう側を負としている。この図ではΔC=-8 [mm] としている。図より明らかなように、ガスの流れは、凹入部102と発光管101との中間であってかつ発光管101の最大直径部分114に当たるところを中心とした渦を形成している。この流れは、凹入部102に沿ってハウジング201の方へ向かい、ハウジング201が発光管101と重なる辺りで凹入部102から発光管101内壁側に向かい、それから発光管101内壁に沿って発光管101頂部(最冷点)の方に向かっていく。そして凹入部102の頂上に対応する辺りで発光管101内壁から凹入部102の方に向かい、再び凹入部102に沿ってハウジング201側へと向かっていく。

[0051]

ここで、図11では、DcとAhの関係が

 $\Delta h \le 1.92 \times Dc - 27.6 \text{ [mm]}$

を満たしているため、ガスの流れは、凹入部102の頂上部分と発光管101の頂部との間の領域116には入り込まないことがわかる。つまり、高温のガスの流れが最冷点にまで達しておらず、凹入部102による対流制御が功を奏しているがわかる。

[0052]

上記シュミレーションはガスの流れに関するものであるが、それとは別に、最

も発光効率のよいプラズマ発生位置を上記推定に従って調べるため、励起コイル 105の磁芯106への巻位置を種々変更して実験した。その結果、励起コイル 105の巻き付け長手方向の中心部112及び発光管101の最大直径部分114の距離 Δ C とランプの全光束との関係を表したものが図9である。この図から明らかなように、Δ C が - 4 ~ -8 mmであると実用上問題のない発光効率となり好ましく、Δ C が - 6 mmのときに光束が最大になり発光効率が最もよくなるためさらに好ましい。ここで、上記推定と異なって、Δ C = 0 [mm]のときに光束が最大にならなかったのは、Δ C が - 6 mmよりも大きくなって励起コイルの巻位置中心が最冷点の方に近づくと、高温のガスが最冷点に近づくことになるが、管壁負荷が大きいために、最冷点温度が上がってしまい効率が下がることが理由であると考えられる。つまり、従来考慮されることのなかった励起コイル105の磁芯106への巻位置およびDcとΔhの関係双方ともに考慮して、最適な効率となるように設定したので、励起コイル105の磁芯106への巻位置が発光管101の最大直径部分114からマイナス側へずれたのである。

[0053]

これまで説明してきた無電極蛍光ランプは、100Wの白熱電球に相当するいわゆる高ワットタイプと呼ばれるものであるが、60Wの白熱電球に相当するいわゆる低ワットタイプと呼ばれるものは、サイズや管壁負荷が高ワットタイプのものと異なるため、DcとΔhの関係を別途検討した。以下に、低ワットタイプの無電極蛍光ランプについて説明する。

[0054]

低ワットタイプの無電極蛍光ランプも、形状は高ワットタイプのものとほぼ同じであり図2に示す形状である。発光管101の最大直径(D)は65mm、凹入部102の開口端103から測った発光管101の高さ(h)は72mmであり、発光管101内部には微量の水銀液滴と、Krガスを室温において80Paとなるように封入した。凹入部102の直径(プラズマ部分と接する外直径で表す)は21mm、凹入部102の開口端103から測った凹入部102の頂上部までの高さは58mmであった。また口金202を通して投入した電力は12Wであり、高周波電源回路203での損失を加味した発光管101への実際の投入

電力は約11Wであった。このような条件で点灯した場合の発光管101での単位表面積あたりの電力、すなわち安定点灯時の管壁負荷は約0.06W/cm²である。

[0055]

高ワットタイプと同様にして、低ワットタイプでも最冷点温度および発光管1 01頂部での凹入部102の輪郭影の影響と、 Δ hおよびDcの関係とを調べる 実験を行った。その結果得られた好適な Δ hとDcの範囲は図7の2本の直線に はさまれた領域である。図7の詳細な説明は図6と同様であるので省略する。こ の図から得られる好適な Δ hとDcの関係の数式表現は、

 $\Delta h \leq 1$. 92×Dc-22. 4 [mm] および、

 Δ h ≥ 1. 16×Dc−17. 4 [mm] である。

[0056]

また、励起コイル105の磁芯106への巻位置を種々変更して実験した結果、励起コイル105の巻き付け長手方向の中心部112及び発光管101の最大直径部分114の距離ΔCとランプの全光束との関係を表したものが図10である。この図から明らかなように、ΔCがほぼ0mmであると光束が最大になり発光効率が最もよくなるため好ましい。なお、低ワットタイプでは高ワットタイプと異なり管壁負荷が小さいので、上記の推定の通りΔC=0 [mm] のときに光束が最大になった。

[0057]

以下、消費電力100Wの白熱電球相当の無電極蛍光ランプおよび消費電力60W相当の無電極蛍光ランプの構成についてより詳細に説明する。なお、本発明は、これらの例に限定されない。

[0058]

<100W用白熱電球相当の無電極蛍光ランプ>

図1は上記の検討結果を採用した、本発明にかかる無電極蛍光ランプの、一つの好適な実施の形態の例を示している。図2において説明した構成と同じ構成要

[0059]

図1において、発光管101と励起コイル(巻線)105及び磁芯(コア)1 06からなる誘導コイルと高周波電源回路(点灯回路)203と口金202とは 一体に構成されており、発光管101は、略球形状あるいは略回転楕円形状を有 しており、発光管101のうちの高周波電源回路203側には、誘導コイルが挿 入される凹入部102が設けられており、この凹入部102は、高周波電源回路 203側に開口部を有する略円筒形状を有し、且つ、凹入部102のうち開口部 と反対側に位置する部位(頂上部分)は、放電ガスの対流を抑制する機能を有し ている。また、磁芯106内には金属、好ましくは熱伝導率の高い銅またはアル ミニウム製の放熱チューブ108が配設され、放熱チューブ108は同じく銅ま たはアルミニウム製の放熱部材109に接続されている。これらによって、点灯 中の磁芯106および励起コイル105の温度を低く保つ。通常の白熱電球用ソ ケットに直接接続できる口金202によって供給された商用電源電力は、高周波 電源回路203によって周波数400kHzの高周波電流に変換され、励起コイ ル105の両端線107から励起コイル105へと投入される。また、放熱部材 109に発生する渦電流を低減させる目的で、放熱部材109と磁芯106の図 での最上部との間には空間が設けられている。口金202を通じてランプ全体で 消費される電力は20Wであり、これは消費電力100Wの白熱電球代替用の電 球型蛍光ランプとして好適なものである。このときの、高周波電源回路203に おける損失を考慮した、発光管101での管壁負荷の値は約0.085W/cm ²となった。

[0060]

この例において、発光管 1 0 1 の最大直径 (D) は 7 0 mm、凹入部 1 0 2 の 開口端 1 0 3 から測った発光管 1 0 1 の高さ (h) は 8 0 mm、凹入部 1 0 2 の 直径 D c は 2 3 mm、Δ h は 1 5 mmであり、この構成は先に説明した図 6 の 2 本の直線の間の領域にある。すなわち、

 $\Delta h \leq 1$. 92×Dc-27. 6 [mm] および

$\Delta h \ge 1. 16 \times Dc - 17. 4 [mm]$

の関係を満足しており、凹入部102の輪郭影の影響を最大限に抑えつつ、最冷 点温度を45℃以下に抑制することが可能となっている。また、磁芯106にお ける励起コイル105が巻き付けられている部分の、長手方向についての中心部 と発光管101の最大直径部分との距離△Cが−6mm±2mm、より好ましく は−6mm±1mmであり、最冷点温度制御とプラズマの抵抗とのバランスをと って発光効率を大きくしている。

[0061]

この例では、100W相当の白熱電球に近似した形状及びサイズのまま、凹入部102の直径Dc及び凹入部102の頂面とそれに対向する発光管101の頂部との間隔Δhを一定の関係とすることにより、無電極蛍光ランプの最冷点温度を制御することができ、アマルガムを用いなくても発光効率を高めることができる。また、励起コイル105の巻き付け長手方向の中心部を発光管101の最大直径部分から一定の距離範囲内にしているので、発光効率を高くすることができる。つまり、白熱電球代替を目的とした本発明の実施形態の電球型無電極放電ランプでは、凹入部の直径及び凹入部頂上と発光管頂部との距離を一定の関係とすることで、白熱電球に近似した外観、サイズを損なうことなく、最冷点の温度を制御することが可能となる。これによって、アマルガムを使用する必要がなくなり、明るさの立ち上がりとランプ効率を両立した電球型の無電極放電ランプとすることができる。

[0062]

< 60W用白熱電球相当の無電極蛍光ランプ>

図8は本発明にかかる好適なもう一つの実施の形態の例を示している。図8では、発光管101と励起コイル(巻線)105及び磁芯(コア)106からなる誘導コイルと高周波電源回路(点灯回路)203と口金202とは一体に構成されており、発光管101は、略球形状あるいは略回転楕円形状を有しており、発光管101のうちの高周波電源回路203側には、誘導コイルが挿入される凹入部102が設けられており、この凹入部102は、高周波電源回路203側に開口部を有する略円筒形状を有し、且つ、凹入部102のうち開口部と反対側に位

置する部位(頂上部分)は、放電ガスの対流を抑制する機能を有していて、消費電力60Wの白熱電球に相当する電球型蛍光ランプとして好適な構成となるような実施の形態の例である。この例では、より消費電力の小さいランプに好適なように、発光管101の最大直径(D)を65mmとし、また凹入部102の開口端103から測った発光管101の高さ(h)も72mmとしてランプの小型化を図っている。また口金202を通してランプ全体に供給される消費電力は11Wとしている。この場合の高周波電源回路203における損失を考慮した発光管101の管壁負荷は約0.06W/cm²となった。また、消費電力が小さくなったことから、金属製の放熱チューブ108および放熱部材109は使用していない。しかしながら、小型の灯具内での使用など、使用条件によって温度が上昇する可能性がある場合には、これらの部材を使用することももちろん可能である

[0063]

本実施の形態において、凹入部 102 の直径 Dc は 21 mm、 Δh は 12 mm であり、この構成は図 7 の 2 本の直線の間の領域にある。即ち、

 $\Delta h \leq 1$. 92×Dc-22. 4 [mm] および、

 $\Delta h \ge 1$. 16×Dc-17.4 [mm]

の関係を満足しており、凹入部102の輪郭影の影響を最大限に抑えつつ、最冷 点温度を45℃以下に抑制することが可能となっている。また、磁芯106にお ける励起コイル105が巻き付けられている部分の、長手方向についての中心部 と発光管101の最大直径部分との距離△Cが0mm±2mm、より好ましくは 0mm±1mmである。つまり、100W用に比べて管壁負荷が小さいため、プ ラズマの抵抗が最小となる△C=0mmにおいて最冷点温度も好適に制御できて 、発光効率を大きくしている。

[0064]

なお、ここまでに述べた例では、発光管101の内面には蛍光体膜を塗布した場合(図示はしていない)を記述しているが、蛍光体膜を塗布せず、また発光管101を紫外線を透過する材質、例えば適切な純度の溶融石英やフッ化マグネシ

ウムを使用して、水銀からの紫外線を直接利用するような無電極ランプとしても 、最冷点温度を抑制することで紫外線の強度を最適化することが可能である。

[0065]

本例では、60W相当の白熱電球に近似した形状及びサイズのまま、凹入部102の直径Dc及び凹入部102の頂面とそれに対向する発光管101の頂部との間隔 Δhを一定の関係とすることにより、実施の形態1と同様に無電極蛍光ランプの最冷点温度を制御することができ、アマルガムを用いなくても発光効率を高めることができる。また、励起コイル105の巻き付け長手方向の中心部を発光管101の最大直径部分と実質的に一致しているので、発光効率を高くすることができる。即ち、60W相当の白熱電球代替を目的とした本実施の形態の電球型無電極放電ランプでは、凹入部の直径及び凹入部頂上と発光管頂部との距離を一定の関係とすることで、白熱電球に近似した外観、サイズを損なうことなく、最冷点の温度を制御することが可能となる。これによって、アマルガムを使用する必要がなくなり、明るさの立ち上がりとランプ効率を両立した電球型の無電極放電ランプとすることができる。

[0066]

また、ここまでの実施の形態の例では、ランプ本体と高周波電源回路 2 0 3 が 一体となっている場合を述べてきたが、高周波電源回路 2 0 3 を別体としてラン プ本体から離して設置するような形態も同様に実施可能である。

[0067]

さらに、凹入部102の頂上部分にもアルミナなどによりなる可視光反射膜や 蛍光体膜、またはその両方を塗布することで、発光管101頂部の凹入部102 の輪郭影の影響を軽減することが可能である。

[0068]

また、図1や図8では、凹入部102の頂上は角が四角い形状を記載しているが、必ずしも鋭利な角を持つ必要はない。角が丸い、或いは傾斜した頂上部とすることも可能である。

[0069]

さらに、これまでの実施の形態の例では凹入部102の内部に励起コイル10

5を挿入する形態を説明してきたが、駆動周波数を更に高い、例えば13.56 MHzを使用し、励起コイル105を発光管101の外側に巻回するような構成においても、凹入部102の最冷点温度に対して与える影響は同様であり、同様の効果を得ることが出来る。また、励起コイル105を凹入部102内に挿入する形態でも、駆動周波数が高い、例えば13.56MHzを使用する場合には、磁芯106は必ずしも必要ではない。また、励起コイル105で生じた高周波磁場が金属製の放熱部材109内で渦電流損失を生じるのを抑制するため、電気伝導性の低い磁性体、好ましくはMn-Zn系またはNi-Zn系の軟磁性フェライトよりなる円板を放熱部材109と発光管101の図での最上部との間に配置してもよい。

[0070]

【発明の効果】

以上のように本発明によれば、従来とは異なるアプローチで最冷点の温度を好適な範囲に制御した電球型無電極放電ランプ及び無電極放電ランプ点灯装置を提供できる。

【図面の簡単な説明】

【図1】

本発明の好適な一実施の形態による無電極蛍光ランプの模式図である。

【図2】

無電極放電ランプの内部での放電ガスの対流の様子を示す模式図である。

【図3】

無電極放電ランプの最冷点温度と全光束との関係をしめすグラフである。

【図4】

無電極放電ランプにおけるΔhと最冷点温度の関係を示すグラフである。

【図5】

無電極放電ランプにおける、Δhと凹入部の輪郭影のコントラストとの関係を 示すグラフである。

【図6】

本発明による Δ h と D c の、高ワットタイプの無電極放電ランプの好適な範囲

ページ: 27/E

を示すグラフである。

【図7】

本発明による Δ h と D c の、低ワットタイプの無電極放電ランプの好適な範囲 を示すグラフである。

【図8】

本発明による好適な実施の形態の一つを表す無電極蛍光ランプの模式図である

【図9】

高ワットタイプの無電極放電ランプにおける励起コイル巻き付け中心位置と発 光管最大直径位置との差△Cと光束との関係を示すグラフである。

【図10】

低ワットタイプの無電極放電ランプにおける励起コイル巻き付け中心位置と発 光管最大直径位置との差△Cと光束との関係を示すグラフである。

【図11】

コンピューターシュミレーションによる発光管内のガスの流れを示す模式図で ある。

【図12】

公知の無電極蛍光ランプの一例を示す図である。

【図13】

公知の無電極蛍光ランプの他の例を示す図である。

高周波電源回路(点灯回路)

【符号の説明】

203

1 0 1	発光管
1 0 2	凹入部
1 0 3	凹入部の開口端
1 0 4	排気管
1 0 5	励起コイル(巻線)
1 0 6	磁芯(コア)
202	口金

【書類名】 図面

【図1】

【図3】

【図4】

【図8】

【図9】

【図10】

【図11】

【要約】

【課題】A型の白熱電球の代替となる、従来とは異なるアプローチで最冷点の 温度を好適な範囲に制御した電球型無電極放電ランプを提供する。

【解決手段】発光管101の最大直径が60mm以上かつ80mm以下で発光管101の管壁負荷が0.08W/cm²以上0.11W/cm²以下であり、凹入部102を備えた電球型無電極放電ランプにおいて、凹入部102の直径Dcと、凹入部102頂上と発光管101頂部の間隔Δhとの関係を、

△h≤1.92×Dc-27.6 [mm]を満たすような構成とする。

【選択図】 図1

特願2002-192881

出願人履歴情報

識別番号

[000005821]

1. 変更年月日 [変更理由]

1990年 8月28日 新規登録

住 所 氏 名

大阪府門真市大字門真1006番地

松下電器産業株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

PADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.