Synthetic experiments: baseline comparisons

- Comparison against Davenport (2013) and a variant of our estimator which assumes Euclidean distance
- Assume true metric is Mahalanobis

"How well can we recover the ideal point?"

"How well can we recover the 20 most preferred items?"

Real-world example: graduate admissions

- 3,000+ candidates in 3 categories: Admitted with Fellowship, Admitted without Fellowship, and Denied
 - Form paired comparisons between categories
- 5 features: GPA, GRE verbal, GRE quantitative, GRE writing, letters of rec. score (LoR)

Feature interactions in $\widehat{\boldsymbol{M}}$.	
$\lambda_1 = 1991$	0.909 GRE writing -0.392 GPA
$\lambda_2 = 1971$	0.919 GPA + 0.393 GRE writing
$\lambda_3 = 1178$	0.982 LoR
$\lambda_4 = 861$	0.942 GRE quant -0.310 GRE verbal
$\lambda_5 = 286$	$0.942~\mathrm{GRE}~\mathrm{verbal} + 0.319~\mathrm{GRE}~\mathrm{quant}$