National University of Computer and Emerging Sciences, Lahore Campus

AND WALL	Course Name:	Advanced Computer Architecture	Course Code:	EE502
MITIONAL	Program:	MS(Computer Science)	Semester:	Fall 2020
S S S S S S S S S S S S S S S S S S S			Total Marks:	30
	Due Date:	21-12-2020	Weight	~3
SHIMI SHIT	Evaluation Type:	Assignment 5	Page(s):	3

Question 1 [10]

Suppose we have following two configurations

- **a.** 32-bit operating system, 4-KB page size, 1 GB of RAM
- **b.** 64-bit operating system, 16-KB page size, 16 GB of RAM
 - 1. How many bits are required for each of the following entries: P stands for Physical and V stands for Virtual

Config.	V. Addr bits	P. Addr bits	V. Page no. bits (index in V. addr)	P. Page no. bits (index in P. addr)	Offset
a					
b					

2. What are some advantages and disadvantages of using a larger page size?

Question 2 [20]

Consider a memory sub-system—with 16-bit addresses—that has two levels of cache (L1 and L2). L1 is a direct-mapped cache with 16 bytes block size and cache capacity of 4 KB. L2 is an 8-way set associative cache with 256 bytes block size and cache capacity of 32 KB.

a. Calculate the size of tag, index, and offset fields for the L1 cache (3 marks)		Number of t	ag bits		
		Number of index bits			
		Number of offset bits			
	Calculate the size of tag, index, and offset	Number of tag bits			
1	fields for the L2 cache (3 marks)	Number of index bits			
		Number of o	ffset bits		
Note betweether	A test application attempts to read the following 16-bit memory addresses (in right column). List all generated events that might take place for each read access. Possible events include L1-Hit, L1-Miss, L2-Hit, L2-Miss, and Mem (for memory read). (10 marks) e that memory blocks are only transferred veen adjacent memory levels. This means when data is read from memory, the block aining it will be moved into L2 only. L1	Memory Address (to read from) 0x1562 0x1588 0x1581 0x1562		Events (L1-Hit, L1-Miss, e-Miss, and Mem)	

will be populated when relevant data is found		0x4562	
in the L2 cache. Least Recently Used (LRU) replacement policy is used where required.		0x45BC	
The caches are initially empty.		0x4562	
The following cases (see below) generate the following events (see below). Use this information to fill the table in the right-box.		0x1562	
		0x45BC	
		0x45B2	
Cases	Generated Events		
L1-Hit	L1-Hit		
L2-Hit	L1-Miss, L2-Hit		
Memory Access	L1-Miss, L2-Miss, Mem		
d. Assume that th		d. solution	
Clock rate is 1 GHz,			
Clock rate	IS I GHZ,		
	•		
L1 access t	ime is 2 cycle,		
L1 access t L2 access t	ime is 2 cycle, ime is 15 cycles,		
L1 access t L2 access t	ime is 2 cycle, ime is 15 cycles, ccess time is 200 cycles,		
L1 access t L2 access t Memory ac	ime is 2 cycle, ime is 15 cycles, ccess time is 200 cycles, is 80%,		
L1 access t L2 access t Memory ac L1 hit rate L2 hit rate	ime is 2 cycle, ime is 15 cycles, ccess time is 200 cycles, is 80%, is 90%.		
L1 access t L2 access t Memory ac L1 hit rate L2 hit rate What is the average	ime is 2 cycle, ime is 15 cycles, ccess time is 200 cycles, is 80%,		
L1 access t L2 access t Memory ac L1 hit rate L2 hit rate	ime is 2 cycle, ime is 15 cycles, ccess time is 200 cycles, is 80%, is 90%.		
L1 access t L2 access t Memory ac L1 hit rate L2 hit rate What is the average	ime is 2 cycle, ime is 15 cycles, ccess time is 200 cycles, is 80%, is 90%.		
L1 access t L2 access t Memory ac L1 hit rate L2 hit rate What is the average	ime is 2 cycle, ime is 15 cycles, ccess time is 200 cycles, is 80%, is 90%.		
L1 access t L2 access t Memory ac L1 hit rate L2 hit rate What is the average	ime is 2 cycle, ime is 15 cycles, ccess time is 200 cycles, is 80%, is 90%.		