Geometría Euclidiana

Taller: Métodos de demostración

Docente: Wilson Mutis

Mayo de 2020

Definición axiomática de los números reales 0.1.

0.1.1.Axiomas algebraicos

Existe un conjunto no vacío \mathbb{R} cuyos elementos se denominan números reales y que satisfacen los siguientes axiomas

Axioma (Algebraicos). Los axiomas algebraicos dan las propiedades de la suma y la multiplicación (o producto) de números reales.

- 1. **Propiedades de clausura:** Para todo par de números $x, y \in \mathbb{R}$ existe un número real único que denotamos x + y, llamado suma de x e y, también existe un número real único que denotamos xy, llamado producto de x e y.
- 2. **Propiedades asociativas:** Para todo los números $x, y, z \in \mathbb{R}$ se tiene

a)
$$(x+y) + z = x + (y+z)$$
 b) $(xy)z = x(yz)$

b)
$$(xy)z = x(yz)$$

3. **Propiedades conmutativas:** Para todo par de números $x, y \in \mathbb{R}$ se tiene

a)
$$x + y = y + x$$

b)
$$xy = yx$$

4. Propiedades de identidad:

- a) Existe un número real 0, llamado cero, tal que 0 + x = x, para todo $x \in \mathbb{R}$.
- b) Existe un número real 1, llamado uno, tal que 1x = x, para todo $x \in \mathbb{R}$.
- 5. Propiedades de inversos:
 - a) Para cada $x \in \mathbb{R}$ existe un $y \in \mathbb{R}$ tal que x + y = 0.
 - b) Para cada $x \in \mathbb{R}$, con $x \neq 0$, existe un $y \in \mathbb{R}$ tal que xy = 1.
- 6. **Propiedad distributiva:** Para todo los números $x, y, z \in \mathbb{R}$ se tiene

$$x(y+z) = xy + xz$$

Teorema 1. Los números cero y uno, de las propiedades de identidad, son únicos.

Prueba: Hagamos la prueba por contradicción para el cero, la prueba para la unicidad del número uno es similar y queda como ejercicio. El teorema para el número cero lo podemos escribir así

Si~0	+x=x	para	toda x	$\in \mathbb{R}$,	entonces	0	es	único.
------	------	------	--------	--------------------	----------	---	----	--------

No	Afirmaciones	Justificación
(1)	$\forall x \in \mathbb{R}, 0 + x = x$	Hipótesis
(2)	El número 0 no es único	Negación de la tesis
(3)	$\exists \theta \in \mathbb{R}, \theta \neq 0, \text{ tal que}$	Interpretación de (2)
	$\forall x \in \mathbb{R}, \theta + x = x$. ,
(4)	$0 + \theta = \theta$	Por (1), tomando $x = \theta$
(5)	$\theta + 0 = 0$	Por (3), tomando $x = 0$
(6)	$0+\theta=\theta+0$	Propiedad conmutativa
(7)	heta=0	sustituyendo (4) y (5) en (6)
(8)	$(\theta \neq 0) \land (\theta = 0)$	Por (3) y (7) $(\rightarrow \leftarrow)$

Teorema 2. Si $x \in \mathbb{R}$ entonces existe un único $y \in \mathbb{R}$ tal que x + y = 0.

Prueba: Por las propiedades de inversos ya se garantiza la existencia de un número $y \in \mathbb{R}$ tal que x+y=0. Demostremos la unicidad por contradicción, es decir, vamos a probar el siguiente teorema

 $Si \ x \in \mathbb{R} \ e \ y \ es \ un \ número \ real \ tal \ que \ x+y=0, \ entonces \ y \ es \ único.$

No	Afirmaciones	Justificación
(1)	$x \in \mathbb{R}$ e y es un número real talque $x+y=0$	Hipótesis
(2)	El número y no es único	Negación de la tesis
(3)	$\exists z \in \mathbb{R}, z \neq y, \text{ tal que } x + z = 0$	Interpretación de (2)
(4)	y = 0 + y	Propiedad de identidad para la suma
(5)	y = (x+z) + y	Sustituyendo (3) en (4)
(6)	y = z + (x + y)	Propiedad conmutativa y asociativa
(7)	y = z + 0	sustituyendo (1) en (6)
(8)	y = z	Conmutativa e identidad para la suma
(9)	$(y \neq z) \land (y = z)$	Por (3) y (8) $(\rightarrow \leftarrow)$

Observación. Por el teorema anterior, para cada $x \in \mathbb{R}$ existe un único $y \in \mathbb{R}$ tal que x + y = 0. Debido a la unicidad de este número real, de aquí en adelante, lo denotaremos -x y lo llamaremos inverso aditivo de x, es decir, -x es el único número real tal que

$$x + (-x) = (-x) + x = 0.$$

Además, para todo $x, y \in \mathbb{R}$ utilizaremos la siguiente notación

$$x - y = x + (-y)$$

es decir, el número real x-y denota la suma de x con el inverso aditivo de y.

Teorema 3. Si $x \in \mathbb{R}$ y $x \neq 0$, entonces existe un único $y \in \mathbb{R}$ tal que xy = 1.

Prueba: Por las propiedades de inversos ya se garantiza la existencia de un número $y \in \mathbb{R}$ tal que xy = 1. La demostración se hace de forma similar a la prueba del teorema anterior y se deja como ejercicio. Es decir, deben probar el siguiente teorema

 $Si \ x \in \mathbb{R} \ e \ y \ es \ un \ número \ real \ tal \ que \ xy = 1, \ entonces \ y \ es \ único.$

Observación. Por el teorema anterior, para cada $x \in \mathbb{R}$, con $x \neq 0$ existe un único $y \in \mathbb{R}$ tal que xy = 1. Debido a la unicidad de este número real, de aquí en adelante, lo denotaremos $\frac{1}{x}$ (o x^{-1}) y lo llamaremos inverso (o recíproco) de x, es decir, $\frac{1}{x}$ es el único número real tal que

$$x\left(\frac{1}{x}\right) = \left(\frac{1}{x}\right)x = 1.$$

Además, para todo $x, y \in \mathbb{R}$, con $y \neq 0$, utilizaremos la siguiente notación

$$\frac{x}{y} = x\left(\frac{1}{x}\right)$$

es decir, el número real $\frac{x}{y}$ denota el producto de x con el recíproco de y.

Teorema 4. Sean $x, y \in \mathbb{R}$. Si $x \neq y$, entonces $-x \neq -y$

Prueba: Por contrarecíproco

No	Afirmaciones	Justificación
(1)	-x = -y	Negación de la tesis
(2)	x + (-x) = 0 $y + (-y) = 0$	Inverso aditivo
(3)	x = 0 + x	Propiedad de identidad de la suma
(4)	x = (y + (-y)) + x	Sustituyendo (2) en (3)
(5)	x = y + ((-y) + x)	Propiedad asociativa
(6)	x = y + ((-x) + x)	Sustituyendo (1) en (5)
(7)	x = y + 0	Sustituyendo (2) en (6)
(8)	x = y	Propiedad de identidad de la suma Negación de la hipótesis

Teorema 5. Sean x e y dos números reales diferentes de cero. Si $x \neq y$, entonces $\frac{1}{x} \neq \frac{1}{y}$

Prueba: Por contrarecíproco y se deja como ejercicio.

Ejercicios

Probar los siguientes teoremas

1. Propiedade cancelativa de la suma:

Si
$$x, y, z \in \mathbb{R}$$
 y $x + z = y + z$, entonces $x = y$.

2. Propiedade cancelativa del producto:

Si
$$x, y, z \in \mathbb{R}$$
, $z \neq 0$ y $xz = yz$, entonces $x = y$.

- 3. Para todo $x \in \mathbb{R}$ se tiene 0x = 0.
- 4. Para todo $x \in \mathbb{R}$ se tiene -(-x) = x.
- 5. Para todo $x \in \mathbb{R}$ se tiene (-1)x = -x.
- 6. Para todo $x, y \in \mathbb{R}$ se tiene -(xy) = (-x)y = x(-y).

0.1.2. Axiomas de orden

Axioma (Axiomas para la relación de orden). Existe un subconjunto de \mathbb{R} denominado conjunto de los reales positivos y denotado \mathbb{R}^+ que satisface los siguentes axiomas

- 1. $0 \notin \mathbb{R}^+$
- 2. Para todo $x \in \mathbb{R}$, con $x \neq 0$, se tiene $x \in \mathbb{R}^+$ o $-x \in \mathbb{R}^+$ pero no ambos.
- 3. Para todo $x, y \in \mathbb{R}^+$ se tiene $x + y \in \mathbb{R}^+$, también, $xy \in \mathbb{R}^+$

Definición (Orden en \mathbb{R}). Sean x e y dos números reales distintos. Decimos que x es menor que y si $y - x \in \mathbb{R}^+$. Con x < y (o y > x) denotamos que x es menor que y, además, con $x \le y$ (o $y \ge x$) denotaremos que x < y o x = y. Es decir,

$$x \le y \equiv (x < y) \lor (x = y) \equiv (y - x \in \mathbb{R}^+) \lor (x = y)$$

Observación. Por la definición anterior, para todo $x \in \mathbb{R}$ se tiene $x \leq x$.

Teorema 6. Si $x \in \mathbb{R}$, entonces la proposición x < x es falsa.

Prueba: Por contradicción

No	Afirmaciones	Justificación
(1)	$x \in \mathbb{R}$	Hipótesis
(2)	La proposición $x < x$ es verdadera	Negación de la tesis

No	Afirmaciones	Justificación
(3)	$x - x \in \mathbb{R}^+$	Definición de orden en $\mathbb R$
(4)	$0 \in \mathbb{R}^+$	Inverso aditivo en (3)
(5)	$0 \notin \mathbb{R}^+$	Axioma de orden en \mathbb{R}
(6)	$(0 \in \mathbb{R}^+) \wedge (0 \notin \mathbb{R}^+)$	Afirmaciones (4) y (5) ($\rightarrow\leftarrow$)

Teorema 7 (Ley de tricotomia). Si $x, y \in \mathbb{R}$, entonces una y sólo una de las siguientes afirmaciones es verdadera

(1)
$$x = y$$
 (2) $x < y$ (3) $y < x$

Prueba: Por método directo

No	Afirmaciones	Justificación
(1)	$x, y \in \mathbb{R}$	Hipótesis
(2)	Caso 1: $x = y$	Primera opción
(3)	x < x es falsa	Teorema 4
(4)	x < y es falsa	Sustituyendo (2) en (3)
(5)	y < x es falsa	Sustituyendo (2) en (3)
(6)	Caso 2: $x \neq y$	Opción restante
(7)	$-x \neq -y$	Teorema 4
(8)	-x = -y es falsa	Negación de (7)
(8)	x = y es falsa	Primera lista de ejercicios
(9)	x < y es o bien verdadera o bien falsa	valor de verdad de una proposición

No	Afirmaciones	Justificación
(10)	Caso 2.1: $x < y$ es verdadera	Primera opción
(11)	$y - x \in \mathbb{R}^+$	Definición de orden en $\mathbb R$
(12)	$-(y-x) \notin \mathbb{R}^+$	Axioma 2 de orden en \mathbb{R}
(13)	$-y - (-x) \notin \mathbb{R}^+$	Propiedad distributiva y lista de ejercicios
(14)	$-(-x)-y\notin\mathbb{R}^+$	Propiedad conmutativa
(15)	$x - y \notin \mathbb{R}^+$	Lista de ejercicios
(16)	$\sim (x - y \in \mathbb{R}^+)$	Equivalencia lógica
(17)	$\sim (y < x)$	Definición de orden en $\mathbb R$
(18)	y < x es falsa	Negación de (17)
(19)	Caso 2.2: $x < y$ es falsa	Opción restante
(20)	$y - x \in \mathbb{R}^+$ es falsa	Definición de orden en $\mathbb R$
(21)	$\sim (y - x \in \mathbb{R}^+)$ es verdadera	Negación de (20)
(22)	$y - x \notin \mathbb{R}^+$ es verdadera	Equivalencia lógica
(23)	$-(y-x) \in \mathbb{R}^+$ es verdadera	Axioma 2 de orden en \mathbb{R}
(24)	$x - y \in \mathbb{R}^+$ es verdadera	Afirmación (13), (14), (15)
(25)	y < x es verdadera	Definición de orden en $\mathbb R$

Ejercicios

Probar los siguientes teoremas

1. Si
$$x \le y$$
 e $y \le x$, entonces $x = y$.

2. Si
$$x < y$$
 e $y < z$, entonces $x < z$.

3. Si
$$x \in \mathbb{R}^+$$
 e $y \notin \mathbb{R}^+$, entonces $xy \notin \mathbb{R}^+$.

4. Si
$$x, y \notin \mathbb{R}^+$$
, entonces $xy \in \mathbb{R}^+$.

5. Si
$$w, x, y, z \in \mathbb{R}$$
, $w < x$ e $y < z$, entonces $w + y < x + z$.

6. Si
$$x, y, z \in \mathbb{R}$$
 y $x < y$, entonces $x + z < y + z$.

7. Si
$$x,y,z \in \mathbb{R}$$
 y $x+z < y+z,$ entonces $x < y$

8. Sean
$$x, y, z \in \mathbb{R}$$
. Si $x < y$ y $z \in \mathbb{R}^+$, entonces $xz < yz$

9. Sean
$$x, y, z \in \mathbb{R}$$
. Si $x < y$ y $z \notin \mathbb{R}^+$, entonces $yz < xz$

10. Si
$$x \neq 0$$
 y $x \in \mathbb{R}^+$, entonces $\frac{1}{x} \in \mathbb{R}^+$.

11. Si
$$x \neq 0$$
 y $x \notin \mathbb{R}^+$, entonces $\frac{1}{x} \notin \mathbb{R}^+$.

12. Si
$$0 < x < y$$
, entonces $0 < \frac{1}{y} < \frac{1}{x}$.