Roll No.

D-3699

B. Sc. (Part III) EXAMINATION, 2020

MATHEMATICS

Paper Second

(Abstract Algebra)

Time: Three Hours]

[Maximum Marks : 50

नोट: प्रत्येक प्रश्न से कोई दो भाग हल कीजिए। सभी प्रश्नों के अंक समान हैं।

Attempt any two parts of each question. All questions carry equal marks.

इकाई—1

(UNIT—1)

1. (अ) यदि G एक समूह है तथा g, G का कोई स्थिर अवयव है, तब सिद्ध कीजिए कि प्रतिचित्रण $T_g:G\to G$ जो :

$$T_g(x) = g x g^{-1} \forall x \in G$$

से परिभाषित है, G का एक स्वाकारिता है।

If G is a group and g is a fixed element of G, then prove that mapping $T_g: G \rightarrow G$ defined by :

$$T_g(x) = g x g^{-1} \forall x \in G$$

is an automorphism of G.

(A-69) P. T. O.

(ब) यदि A एवं B एक समूह G के परिमित उपसमूह हैं, तो सिद्ध कीजिए कि :

$$o(AxB) = \frac{o(A)o(B)}{o(A \cap xBx^{-1})}$$

If A and B are finite subgroup of a group G, then show that :

$$o(AxB) = \frac{o(A)o(B)}{o(A \cap xBx^{-1})}$$

(स) सिलो का प्रथम प्रमेय लिखिए एवं सिद्ध कीजिए।

State and prove Sylow's first theorem.

इकाई—2

(UNIT-2)

2. (अ) यदि $f: R \to R'$ एक वलय समाकारिता है और यदि R क्रम-विनिमेय वलय है, तो सिद्ध कीजिए कि R' भी क्रमविनिमेय वलय है।

If $f: R \to R'$ is a ring homomorphism and if R is commutative ring, then show that R' is also a commutative ring.

(ब) रिंग (वलय) $(I_6, +_6, \times_6)$ पर निम्नलिखित बहुपदों का योग और गुणन ज्ञात कीजिए :

$$f(x)=5+4x+3x^2+2x^3$$

$$g(x)=1+4x+5x^2+x^3$$

जहाँ $I_6 = \{0, 1, 2, 3, 4, 5\}.$

(A-69)

Find the sum and product of the following polynomials over the ring $(I_6, +_6, \times_6)$:

$$f(x) = 5 + 4x + 3x^2 + 2x^3$$

$$g(x)=1+4x+5x^2+x^3$$

where $I_6 = \{0, 1, 2, 3, 4, 5\}.$

(स) सिद्ध कीजिए कि एक R-मॉड्यूल M के किन्हीं **दो** उपमॉड्यूलों का रैखिक योग भी M का एक उपमॉड्यूल होता है।

Prove that the linear sum of any *two* submodules of an R-module M is also a submodule of M.

डकाई—3

(UNIT-3)

- 3. (31) सिद्ध कीजिए कि किसी सदिश समिष्ट V(F) की दो उपसमिष्टियों W_1 एवं W_2 का सर्वनिष्ठ $W_1 \cap W_2$ भी V(F) की एक उपसमिष्ट होता है।
 - Prove that the intersection of any *two* subspaces W_1 and W_2 of a vector pace V(F) is also a subspace of V(F).
 - (ब) सिंदशों (1,1,-1),(2,-3,5) और (-2,1,4) के $V_3(R)$ में रैखिकतः स्वतंत्रता या परतंत्रता की जाँच कीजिए।

Examine linearly independency or dependency of vectors (1,1,-1),(2,-3,5) and (-2,1,4) in $V_3(R)$.

(A-69) P. T. O.

(स) यदि W एक परिमित विमीय सदिश समष्टि V (F) का एक उपसमष्टि है, तो सिद्ध कीजिए :

$$\dim \frac{V}{W} = \dim V - \dim W$$

If W is a subspace of a finite dimensional vector space V (F), then prove that :

$$\dim \frac{V}{W} = \dim V - \dim W$$

इकाई—4

(UNIT-4)

Show that the mapping $T: V_3(R) \to V_2(R)$ defined by T(a, b, c) = (c, a+b) is a linear transformation.

- (ब) यदि V_1 और V_2 क्षेत्र F पर सिंदश समिष्टियाँ हैं तथा रूपान्तरण $T:V_1 \to V_2$ एकैकी आच्छादक रैखिक रूपान्तरण है, तो सिद्ध कीजिए कि $T^{-1}:V_2 \to V_1$ भी एक रैखिक रूपान्तरण होगा। If V_1 and V_2 be two vector spaces over the field F and if $T:V_1 \to V_2$ is one-one and onto linear transformation, then prove that $T^{-1}:V_2 \to V_1$ is also linear.
- (स) दर्शाइए कि निम्निलिखित आव्यृह A विकर्णीय है :

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$$

(A-69)

Show that the following matrix A is diagonalizable:

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$$

इकाई—5

(UNIT-5)

5. (अ) यदि α, β एक आंतर गुणन समिष्ट V के सिदश हैं, तो सिद्ध कीजिए कि :

$$\|\alpha + \beta\| \le \|\alpha\| + \|\beta\|$$

तथा ज्यामितीय व्याख्या दीजिए।

If α , β are vectors in an inner product space V, prove that:

$$||\alpha + \beta|| \le ||\alpha|| + ||\beta||$$

and give geometric interpretation.

(ब) यदि $S = \{\alpha_1, \alpha_2, \dots, \alpha_m\}$ एक आंतर गुणन समिष्ट V में शून्येतर सदिशों का एक लांबिक समुच्चय है तथा कोई सदिश $\beta \in V$, S के रैखिकतः विस्तृति में हो, तो सिद्ध कीजिए कि :

$$\beta = \sum_{k=1}^{m} \frac{(\beta, \alpha_k)}{\|\alpha_k\|^2} \alpha_k$$

If $S = {\alpha_1, \alpha_2, ..., \alpha_m}$ be an orthogal set of non-zero vectors in an inner product space V and a vector $\beta \in V$ is in the linear span of S, then prove that:

$$\beta = \sum_{k=1}^{m} \frac{(\beta, \alpha_k)}{\|\alpha_k\|^2} \alpha_k$$

(A-69) P. T. O.

(स) ग्राम-श्मिट के लांबिक प्रक्रम का प्रयोग करके V_3 (R) के आधार $B = \{\beta_1, \beta_2, \beta_3\}$ से प्रसामान्य लाम्बिक आधार प्राप्त कीजिए, जहाँ :

$$\beta_1 = (1, 0, 1), \ \beta_2 = (1, 2, -2), \ \beta_3 = (2, -1, 1)$$

Using Gram-Schmidt orthogonalization process find the orthonormal basis from the basis $B = \{\beta_1, \beta_2, \beta_3\}$ of V_3 (R), where :

$$\beta_1 = (1, 0, 1), \ \beta_2 = (1, 2, -2), \ \beta_3 = (2, -1, 1)$$

D-3699 2,600

(A-69)