P300을 활용한 이상형 얼굴 구현

이환수 최예빈

목차

- 1. 문제 정의
- 2. 시스템 설계
- 3. 시스템 구현
- 4. 프로젝트 분석

문제 정의

문제 정의

16 PERSONALITIES INTJ INTP ENTJ ENTP INFJ INFP ENFJ ENFP ISTJ ISFJ ESTJ ESFJ ISTP ISFP ESTP ESFP

'AI 프로필' 열풍, MZ부터 X세대까지 매료 \cdots 1)

문제 정의 - 유사 서비스

더 이상형에 가까운 인물 선택

이상형 관련 서비스 부재

문제 정의 - 서비스 컨셉

학생, 30대 중반

뇌파

여러 인물들의 특징

이상형 <mark>생성</mark>

시스템 설계 - 기능

- 여러 인물 얼굴 사진들을 사용자에게 제시
- ERP의 P300을 통해 사용자가 가장 선호하는 상위 8장을 추출
- 8장의 인물 사진과 StyleGAN을 통해 인물들의 특징을 조합한 새로운 이상형 얼굴 생성

시스템 설계 - 자극시스템

- 사진이 매력적으로 느껴진다면 스페이스바를 누르도록 사전 공지
- 사용자에게 무작위 순서의 30장 얼굴 사진을 각 1초 제시 (이미지 보여주는 시간 1초, 암전 1초)
- 사람의 호감 판단 속도 0.1초 미만²⁾, 반응 속도를 고려해 0.1~0.45초 사이에서 P300 검출

시스템 설계 - 인터페이스

- PyGame GUI를 통해 자극과 결과 이미지 제시

시스템 구현 - 환경

- Google Colab
 - V100 GPU
 - Ubuntu 22.04.3 LTS
 - Python 3.10.12
 - CUDA 12.1
- Local
 - Windows 11
 - Python 3.8.16
 - CUDA 11.8

시스템 구현 - 전체 시스템 데이터 플로우

시스템 구현 - GAN 학습 데이터 플로우

=> ADAM => optimise latent_W

시스템 구현 - 예측 데이터 플로우

시스템 구현 - 구현 방법 - 크롤링

- 데이터는 한국 여자 연예인으로 진행하였다. (남자 연예인도 진행하려고 하였으나 시간이 부족하여 생략하였다.)
- 데이터 수집은 크롤링을 사용하여 인터넷에서 수집하였다.
- 크롤링은 Selenium 라이브러리를 사용하여 진행하였다.
- 구글이미지 검색에서 1500장, 핀터레스트에서 1125장 수집하였다.
- 검색어는 '한국 여자 연예인 프로필', '여자 연예인 정면', '여자 배우 정면', '연자 연예인 얼굴' 등으로 설정하여 데이터를 수집하였다.

시스템 구현 - 구현 방법 - 데이터셋

- 데이터셋은 수집된 크롤링 이미지에 대하여 **Deepfake 라이브러리**를 사용하여 face detection 및 정렬을 수행하여 (1024, 1024)크기의 이미지로 crop 하여 구축하였다.
- 수집된 크롤링 이미지 2625개 => face detection 및 정렬 후 이미지 4336개
- 수집된 데이터셋에 대하여 파일의 용량을 기준으로 용량이 큰 이미지만 선택하여 고화질 이미지를 확보하였다.
- 수집된 고화질 이미지 중 latent vector를 임베딩 하기 좋은 이미지를 휴리스틱하게 30장 선별하여 이미지 임베딩을 진행하였다.

시스템 구현 - 구현 방법 - P300 detection

- 필터링: lowcut = 1, highcut = 15
 (lowcut 0.1, highcut 15에서 p300 검출이 가장 잘된다는 연구 결과³⁾가 존재.
 실험 결과 MAVE에서는 lowcut 1, highcut 15가 가장 잘 맞는 것 같아 해당 주파수 대역 채택
- 5번 수행 후 Grand Average 수행
- 자극 제시 후 0.1~0.45초 사이 amplitude의 MAX 값을 P300으로 설정

시스템 구현 - 구현 방법 - 이상형 후보군 recommendation

- Active와 Passive한 결과에 대한 모든 recommendation 제시 (Active: 주관적인 나의 이상형, Passive: 선천적인 나의 이상형 탐색을 위해)
- **Active:** 스페이스바를 누른 자극 기준과 P300 값으로 정렬을 진행하여 상위 8개 후보군으로 채택 (자극을 누른 횟수가 같은 경우가 존재하여 P300으로 정렬하는 방법을 부득이하게 추가하였다.
- Passive: P300의 amplitude 값이 가장 큰 순으로 정렬을 진행하여 상위 8개 후보군으로 채택
- 정확도: 정확도는 이상형이라는 추상적인 주제에 대해서 마땅히 측정할 방법이 없다고 판단.
 => Active task를 진행하여 스페이스바를 누른 HIT로 정렬한 Active한 recommendation과 P300으로만 정렬하여 생성한 Passive한 recommendation의 같은 인물의 존재 비율을 정확도로 설정

시스템 구현 - 구현 방법 - 잠재 변수 최적화

원본

- 이미지에 대한 잠재 변수 2계층 최적화

500 epoch 별 결과

시스템 구현 - 구현 방법 - 가중치 탐색 실험

원본

잠재 변수의 각 차원이 의미하는 바를 확인하여 이미지간의 가중합에 사용할 가중치를 탐색

F1 latent vector with modified weight

index 0

시스템 구현 - 구현 방법 - 가중치 탐색 실험

원본

잠재 변수의 차원 묶음이 의미하는 바를 확인하여 이미지간의 가중합에 사용할 가중치를 탐색

F1 latent vector with modified weight

section 0

section 1

index 0~3

3~5

6~8

9~11

12~16

시스템 구현 - 구현 결과 (이상형 후보군 결과)

[passive] 당신의 선택은 [24, 7, 3, 13, 11, 26, 4, 9] 입니다.

[active] 당신의 선택은 [24, 3, 11, 4, 1, 23, 8, 19] 입니다.

정확도: 0.5

순서를 포함한 정확도: 0.125

이미지 순위별 가중치 [0.5, 0.3, 0.1, 0.05, 0.02, 0.01, 0.01, 0.01]

시스템 구현 - 구현 결과 (이상형 이미지 생성 결과)

[passive] 당신의 선택은 [24, 7, 3, 13, 11, 26, 4, 9] 입니다.

[active] 당신의 선택은 [24, 3, 11, 4, 1, 23, 8, 19] 입니다.

프로젝트 분석 - 확장 가능성

1. 소개팅 어플, 결혼정보회사

- 본인의 이상형에 맞는 사람과 매칭 가능

2. 자신의 취향 파악 서비스

- MBTI 검사 서비스 같은 새로운 자신에 대해 파악할 수 있는 서비스로 사용 가능

프로젝트 분석 - 발전 가능성 1

1. P300 detection

a. P300을 단순히 max값 기반의 detection이 아니라 머신러닝 알고리즘을 결합하면 조금 더 높은 정확도의 결과를 얻을 수 있을 것이다.

2. 이미지 수집

- **a.** 크롤링된 이미지가 얼굴 부분만 자르게 되어 머리 전체가 아니라 안면부만 있는 경향이 있는 데이터를 사용했는데, 머리 전체가 나온 이미지로 TASK를 수행한다면 더 좋은 결과물을 기대할 수 있을 것이다.
- **b.** StyleGAN을 현재 FFHQ 데이터셋으로 pre-trained된 모델을 사용하고 있는데, 한국인 데이터셋으로, 얼굴 전체 사진을 학습한다면 더 좋은 결과를 기대할 수 있을 것이다.
- c. 시간 부족으로 한국 남자 연예인은 수집하지 못하였다. (크롤링은 얼마 걸리지 않지만, 이미지 임베딩 시 장 당 30분 소요) 따라서 한국 남자 연예인의 이미지도 수집한다면 좀 더 범용성 높은 서비스로 발전할 수 있을 것이다.

프로젝트 분석 - 발전 가능성 2

1. TASK 수정

- 현재 TASK의 모든 Trial에서 같은 이미지 30장으로 수행했으나, 각 Trial에서 다른 이미지 30장으로 수행하고
 P300 값이 높은 8장으로 Trial을 대표하는 새로운 얼굴을 생성한다.
- **b.** 생성된 Trial 대표 얼굴 이미지로 전체 TASK의 대표 얼굴을 생성한다면 조금 더 신뢰성있고 재미있는 결과를 도출할 수 있을 것이다.

2. 정확도

a. 현재 정확도는 단순히 HIT 기준으로 정렬한 Active한 결과와 P300으로 정렬한 Passive한 결과에서 어느 사진이 선택되었는지 그 비율만으로 정확도를 측정하는데, 이에 대한 추가적인 보완 방법을 고안한다면 더욱 신뢰성있는 서비스가 될 수 있을 것이다.

관련 선행 연구

- 1) Karras, T., Aittala, M., Laine, S., Härkönen, E., Hellsten, J., Lehtinen, J., & Aila, T. (2021). Alias-free generative adversarial networks. *Advances in Neural Information Processing Systems*, *34*, 852-863.
- 2) M. Spapé, K. M. Davis, L. Kangassalo, N. Ravaja, Z. Sovijärvi-Spapé and T. Ruotsalo, "Brain-Computer Interface for Generating Personally Attractive Images," in IEEE Transactions on Affective Computing, vol. 14, no. 1, pp. 637-649, 1 Jan.-March 2023.
- 3) 임연수(Yeon-Soo Lim),김창민(Chang-Min Kim),석정민(Jeong-Min Seok),박덕원(Deok-Won Park),and 김태형 (Tae-Hyong Kim). "StyleGAN을 이용한 이상형 생성 웹 서비스 개발." 한국통신학회 학술대회논문집 2020.8 (2020): 1368-1369.
- 4) L. Bougrain1, C. Saavedra1, R. Ranta. (2012). Finally, what is the best filter for P300 detection?