Simulation study

Simulation study: why we need it?

Target: Evaluate the performance of the methodology using the user-generated data sets from the true model.

- 1. We are not sure of the real performance of a newly proposed method.
- 2. With the generated data sets, we can test whether the method can reproduce the true parameters.

Simulation study: procedures

- 1. specify your model
- 2. give true parameter values
- 3. generate data sets (usually 100 replications)
- 4. implement your method
- 5. summarize the estimation results (Bias, RMS, etc.)

1. Specify my model

Let y_i denotes the count outcome that follows $Pois(\mu_i)$, and the loglinear model can be expressed as follows:

$$y_i \sim Pois(\mu_i)$$

 $log(\mu_i) = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i}$

where x_1 and x_2 denote observed covariates, and β_0 , β_1 , β_2 are unknown parameters.

2. Give true parameter values

$$y_i \sim Pois(\mu_i)$$

 $log(\mu_i) = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i}$

- sample size: n = 300
- number of covariates: p = 2
- parameter true values: $\beta_0=0.5$, $\beta_1=1$, $\beta_2=-1$
- number of replications: $n_{rep} = 10$

3. Generate data sets

$$y_i \sim Pois(\mu_i)$$

$$\log(\mu_i) = 0.5 + x_{1i} - x_{2i}$$

- 1. generate x_{1i} , x_{2i} from N(0,1) (try other distributions!)
- 2. calculate μ_i based on the true model
- 3. generate y_i from poisson distribution with parameter μ_i
- 4. replicate for $n_{rep} = 10$ times and save

see examples/simu/glm_count.R generate data part

- **4. Implement your method** see examples/simu/glm_count.R estimation part
- **5. Summarize the estimation results** see examples/simu/glm_count.R summary part