MAT2440, Classwork24, Spring2025

ID:______ Name:_____

1. The special Sequence with explicit formula: Arithmetic Sequences

An <u>arithmetic</u> sequence $\{a_n\}$ is a sequence of the form $a_n = a_1 + (n-1)d$:

$$a_1 = \underline{Q_1}, a_2 = \underline{Q_1} + \underline{Q_1}, a_3 = \underline{Q_1} + \underline{Q_1}, \cdots, a_k = \underline{Q_1} + \underline{Q_1} + \underline{Q_1}, \cdots, a_k = \underline{Q_1} + \underline{Q_1$$

where the $\frac{1}{\sqrt{1}}$ term a_1 and the common $\frac{difference}{d}$ are real numbers.

2. List the first five terms a_1, a_2, \dots, a_5 of the arithmetic sequence $\{a_n\}$ and find the common

difference d of the sequence. (a) $a_n = 3 + (n-1)(-4)$. (b) $a_n = -1 + 4n$.

(a)
$$\alpha_1 = 3 + (1 - 1) \cdot (-4) = 3$$
 $\alpha_2 = 3 + (2 - 1) \cdot (-4) = -12$
 $\alpha_3 = 3 + (3 - 1) \cdot (-4) = -52$
 $\alpha_4 = 3 + (4 - 1) \cdot (-4) = -9$
 $\alpha_5 = 3 + (5 - 1) \cdot (-4) = -13$
 $\alpha_5 = 7 + (5 - 1) \cdot (-4) = 7$
 $\alpha_5 = 7 + (5 - 1) \cdot (-4) = 7$
 $\alpha_5 = 7 + (5 - 1) \cdot (-4) = 7$
 $\alpha_5 = 7 + (7 - 1) \cdot (-4) = 7$
 $\alpha_5 = 7 + (7 - 1) \cdot (-4) = 7$
 $\alpha_5 = 7 + (7 - 1) \cdot (-4) = 7$
 $\alpha_5 = 7 + (7 - 1) \cdot (-4) = 7$
 $\alpha_5 = 7 + (7 - 1) \cdot (-4) = 7$
 $\alpha_5 = 7 + (7 - 1) \cdot (-4) = 7$
 $\alpha_5 = 7 + (7 - 1) \cdot (-4) = 7$
 $\alpha_5 = 7 + (7 - 1) \cdot (-4) = 7$
 $\alpha_5 = 7 + (7 - 1) \cdot (-4) = 7$

3. . The special Sequence with explicit formula: Geometric Sequences

An <u>growettic</u> sequence $\{a_n\}$ is a sequence of the form $a_n = a_1 r^{n-1}$:

$$a_1 = \underline{Q_1}, a_2 = \underline{Q_1 r}, a_3 = \underline{Q_1 r}, \dots, a_k = \underline{Q_1 r}, \dots,$$

where the $\underline{\text{Mitial}}$ term a_1 and the common $\underline{\text{Mitial}}$, r are real numbers.

4. List the first five terms a_1, a_2, \dots, a_5 of the geometric sequence $\{a_n\}$ and find the common

ratio *r* of the sequence. (a) $a_n = (-1)^n$. (b) $a_n = \left(-\frac{1}{2}\right)^{n-1}$.

$$\begin{array}{lll}
\text{(a) } Q_1 = (-1)^1 = -1 \\
Q_2 = (-1)^2 = -1 \\
Q_3 = (-1)^3 = -1 \\
Q_4 = (-1)^4 = 1 \\
Q_5 = (-1)^5 = -1
\end{array}$$

$$a_{n} = (-\frac{1}{2})$$

$$(b) \alpha_{1} = (-\frac{1}{2})^{n} = (-\frac{1}{2})^{n} = 1$$

$$\alpha_{2} = (-\frac{1}{2})^{n} = -\frac{1}{2}$$

$$\alpha_{3} = (-\frac{1}{2})^{n} = \frac{1}{4}$$

$$\alpha_{4} = (-\frac{1}{2})^{n} = -\frac{1}{6}$$

$$\alpha_{5} = (-\frac{1}{2})^{n} = \frac{1}{6}$$

5. Define a Sequence by Recursive Relations :	

Another popular method to define a sequence is to provide one or more ______ terms

together with a _____ rule for determining subsequent terms from those that precede

them.

6. Let $\{a_n\}$ be a sequence that satisfies the **initial term** $a_0 = 2$ and the **recurrence relation**

$$a_n = a_{n-1} + 3$$
 for $n = 1, 2, 3, \dots$

What are a_1 , a_2 , and a_3 ?

7. Let $\{a_n\}$ be a sequence that satisfies the **initial term** $a_0 = 3$ and the **recurrence relation**

$$a_n = \frac{1}{3}a_{n-1}$$
 for $n = 1, 2, 3, \dots$

What are a_1 , a_2 , and a_3 ?

8. (Fibonacci sequence) Let $\{f_n\}$ be a sequence that satisfies the **initial term** $f_0 = 1$, $f_1 = 1$, and **recurrence relation**

$$f_n = f_{n-1} + f_{n-2}$$
 for $n = 2, 3, 4, \dots$

What are the first five terms?

Explicit formula (also called a closed formula) of Fibonacci sequence:

$$f_n =$$