In [1]: !pip install pandas numpy seaborn matplotlib klib dtale scikit-learn joblib pandas-

```
Requirement already satisfied: pandas in c:\python3107\lib\site-packages (1.4.4)
Requirement already satisfied: numpy in c:\python3107\lib\site-packages (1.23.3)
Requirement already satisfied: seaborn in c:\python3107\lib\site-packages (0.11.2)
Requirement already satisfied: matplotlib in c:\python3107\lib\site-packages (3.5.
Requirement already satisfied: klib in c:\python3107\lib\site-packages (1.0.5)
Requirement already satisfied: dtale in c:\python3107\lib\site-packages (2.8.1)
Requirement already satisfied: scikit-learn in c:\python3107\lib\site-packages (1.
1.2)
Requirement already satisfied: joblib in c:\python3107\lib\site-packages (1.1.0)
Requirement already satisfied: pandas-profiling in c:\python3107\lib\site-packages
Requirement already satisfied: xgboost in c:\python3107\lib\site-packages (1.6.2)
Requirement already satisfied: pytz>=2020.1 in c:\python3107\lib\site-packages (fr
om pandas) (2022.2.1)
Requirement already satisfied: python-dateutil>=2.8.1 in c:\python3107\lib\site-pa
ckages (from pandas) (2.8.2)
Requirement already satisfied: scipy>=1.0 in c:\python3107\lib\site-packages (from
seaborn) (1.9.1)
Requirement already satisfied: fonttools>=4.22.0 in c:\python3107\lib\site-package
s (from matplotlib) (4.37.3)
Requirement already satisfied: kiwisolver>=1.0.1 in c:\python3107\lib\site-package
s (from matplotlib) (1.4.4)
Requirement already satisfied: packaging>=20.0 in c:\python3107\lib\site-packages
(from matplotlib) (21.3)
Requirement already satisfied: pillow>=6.2.0 in c:\python3107\lib\site-packages (f
rom matplotlib) (9.2.0)
Requirement already satisfied: pyparsing>=2.2.1 in c:\python3107\lib\site-packages
(from matplotlib) (3.0.9)
Requirement already satisfied: cycler>=0.10 in c:\python3107\lib\site-packages (fr
om matplotlib) (0.11.0)
Requirement already satisfied: Jinja2<4.0.0,>=3.0.3 in c:\python3107\lib\site-pack
ages (from klib) (3.1.2)
Requirement already satisfied: openpyxl in c:\python3107\lib\site-packages (from d
tale) (3.0.10)
Requirement already satisfied: xarray in c:\python3107\lib\site-packages (from dta
le) (2022.6.0)
Requirement already satisfied: kaleido in c:\python3107\lib\site-packages (from dt
ale) (0.2.1)
Requirement already satisfied: strsimpy in c:\python3107\lib\site-packages (from d
tale) (0.2.1)
Requirement already satisfied: dash-colorscales in c:\python3107\lib\site-packages
(from dtale) (0.0.4)
Requirement already satisfied: future>=0.14.0 in c:\python3107\lib\site-packages
(from dtale) (0.18.2)
Requirement already satisfied: et-xmlfile in c:\python3107\lib\site-packages (from
dtale) (1.1.0)
Requirement already satisfied: plotly>=5.0.0 in c:\python3107\lib\site-packages (f
rom dtale) (5.10.0)
Requirement already satisfied: lz4 in c:\python3107\lib\site-packages (from dtale)
(4.0.2)
Requirement already satisfied: xlrd in c:\python3107\lib\site-packages (from dtal
e) (2.0.1)
Requirement already satisfied: Flask-Compress in c:\python3107\lib\site-packages
(from dtale) (1.13)
Requirement already satisfied: missingno<=0.4.2 in c:\python3107\lib\site-packages
(from dtale) (0.4.2)
Requirement already satisfied: flask-ngrok in c:\python3107\lib\site-packages (fro
m dtale) (0.0.25)
Requirement already satisfied: Flask in c:\python3107\lib\site-packages (from dtal
e) (2.2.2)
```

```
Requirement already satisfied: networkx in c:\python3107\lib\site-packages (from d tale) (2.8.6)
```

Requirement already satisfied: six in c:\python3107\lib\site-packages (from dtale) (1.16.0)

Requirement already satisfied: dash-bootstrap-components in c:\python3107\lib\site -packages (from dtale) (1.2.1)

Requirement already satisfied: dash-daq in c:\python3107\lib\site-packages (from d tale) (0.5.0)

Requirement already satisfied: certifi in c:\python3107\lib\site-packages (from dt ale) (2022.9.24)

Requirement already satisfied: dash>=2.0.0 in c:\python3107\lib\site-packages (fro m dtale) (2.6.2)

Requirement already satisfied: statsmodels in c:\python3107\lib\site-packages (fro m dtale) (0.13.2)

Requirement already satisfied: squarify in c:\python3107\lib\site-packages (from d tale) (0.4.3)

Requirement already satisfied: requests in c:\python3107\lib\site-packages (from d tale) (2.28.1)

Requirement already satisfied: itsdangerous in c:\python3107\lib\site-packages (fr om dtale) (2.1.2)

Requirement already satisfied: threadpoolctl>=2.0.0 in c:\python3107\lib\site-pack ages (from scikit-learn) (3.1.0)

Requirement already satisfied: htmlmin==0.1.12 in c:\python3107\lib\site-packages (from pandas-profiling) (0.1.12)

Requirement already satisfied: visions[type_image_path] == 0.7.5 in c:\python3107\lib\site-packages (from pandas-profiling) (0.7.5)

Requirement already satisfied: tangled-up-in-unicode==0.2.0 in c:\python3107\lib\s ite-packages (from pandas-profiling) (0.2.0)

Requirement already satisfied: tqdm<4.65,>=4.48.2 in c:\python3107\lib\site-packag es (from pandas-profiling) (4.64.1)

Requirement already satisfied: pydantic<1.10,>=1.8.1 in c:\python3107\lib\site-pac kages (from pandas-profiling) (1.9.2)

Requirement already satisfied: PyYAML<6.1,>=5.0.0 in c:\python3107\lib\site-packag es (from pandas-profiling) (6.0)

Requirement already satisfied: phik<0.13,>=0.11.1 in c:\python3107\lib\site-packag es (from pandas-profiling) (0.12.2)

Requirement already satisfied: multimethod<1.9,>=1.4 in c:\python3107\lib\site-pac kages (from pandas-profiling) (1.8)

Requirement already satisfied: attrs>=19.3.0 in c:\python3107\lib\site-packages (f rom visions[type image path]==0.7.5->pandas-profiling) (22.1.0)

Requirement already satisfied: imagehash in c:\python3107\lib\site-packages (from visions[type_image_path]==0.7.5->pandas-profiling) (4.3.1)

Requirement already satisfied: dash-html-components==2.0.0 in c:\python3107\lib\si te-packages (from dash>=2.0.0->dtale) (2.0.0)

Requirement already satisfied: dash-table==5.0.0 in c:\python3107\lib\site-package s (from dash>=2.0.0->dtale) (5.0.0)

Requirement already satisfied: dash-core-components==2.0.0 in c:\python3107\lib\si te-packages (from dash>=2.0.0->dtale) (2.0.0)

Requirement already satisfied: Werkzeug>=2.2.2 in c:\python3107\lib\site-packages (from Flask->dtale) (2.2.2)

Requirement already satisfied: click>=8.0 in c:\python3107\lib\site-packages (from Flask->dtale) (8.1.3)

Requirement already satisfied: MarkupSafe>=2.0 in c:\python3107\lib\site-packages (from Jinja2<4.0.0,>=3.0.3->klib) (2.1.1)

Requirement already satisfied: tenacity>=6.2.0 in c:\python3107\lib\site-packages (from plotly>=5.0.0->dtale) (8.1.0)

Requirement already satisfied: typing-extensions>=3.7.4.3 in c:\python3107\lib\sit e-packages (from pydantic<1.10,>=1.8.1->pandas-profiling) (4.3.0)

Requirement already satisfied: idna<4,>=2.5 in c:\python3107\lib\site-packages (from requests->dtale) (3.4)

Requirement already satisfied: urllib3<1.27,>=1.21.1 in c:\python3107\lib\site-pac

bigmartsalesprediction kages (from requests->dtale) (1.26.12) Requirement already satisfied: charset-normalizer<3,>=2 in c:\python3107\lib\sitepackages (from requests->dtale) (2.1.1) Requirement already satisfied: patsy>=0.5.2 in c:\python3107\lib\site-packages (fr om statsmodels->dtale) (0.5.2) Requirement already satisfied: colorama in c:\python3107\lib\site-packages (from t qdm<4.65,>=4.48.2->pandas-profiling) (0.4.5) Requirement already satisfied: brotli in c:\python3107\lib\site-packages (from Fla sk-Compress->dtale) (1.0.9) Requirement already satisfied: PyWavelets in c:\python3107\lib\site-packages (from imagehash->visions[type_image_path]==0.7.5->pandas-profiling) (1.4.1) [notice] A new release of pip available: 22.2.2 -> 22.3 [notice] To update, run: python.exe -m pip install --upgrade pip In [2]: import pandas as pd import numpy as np %matplotlib inline #magic function in IPython In[101] import matplotlib.pyplot as plt # is a collection of command style functions th import seaborn as sns In [3]: df_train= pd.read_csv(r'D:\5th_semester\MiniProject2A\Projectworking\dataset\Train. df_test= pd.read_csv(r'D:\5th_semester\MiniProject2A\Projectworking\dataset\Test.cs In [4]: df_train.head() # displays the first five rows of the dataframe by default Out[4]: Item_Identifier Item_Weight Item_Fat_Content Item_Visibility Item_Type Item_MRP Outlet_Ic 0 FDA15 9.30 Low Fat 0.016047 249.8092 Dairy 1 DRC01 5.92 Regular 0.019278 Soft Drinks 48.2692 2 FDN15 17.50 Low Fat 0.016760 Meat 141.6180 Fruits and 3 FDX07 0.000000 182.0950 19.20 Regular Vegetables 4 NCD19 8.93 0.000000 Household 53.8614 Low Fat #df_test.head() In [5]: df train.shape # a tuple of array dimensions that tells the number of rows and col Out[6]: (8523, 12)

df_train.isnull().sum() #seeing the number of null values in the dataset

```
Out[7]: Item Identifier
                                         0
         Item Weight
                                      1463
         Item_Fat_Content
                                         0
         Item Visibility
                                         0
         Item_Type
                                         0
         Item_MRP
                                         0
         Outlet Identifier
                                         0
         Outlet_Establishment_Year
                                         0
         Outlet_Size
                                      2410
         Outlet_Location_Type
                                         0
         Outlet_Type
                                         0
         Item_Outlet_Sales
                                         0
         dtype: int64
In [8]: df_test.isnull().sum()
Out[8]: Item_Identifier
                                         0
         Item_Weight
                                       976
         Item Fat Content
                                         0
         Item_Visibility
                                         0
         Item Type
                                         0
         Item_MRP
                                         0
         Outlet_Identifier
                                         0
         Outlet_Establishment_Year
         Outlet Size
                                      1606
         Outlet_Location_Type
                                         0
         Outlet_Type
                                         0
         dtype: int64
In [9]: df_train.info() #seeing the detailed info of the dataset and its types of target
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 8523 entries, 0 to 8522
         Data columns (total 12 columns):
             Column
                                         Non-Null Count Dtype
         --- -----
                                         _____
             Item_Identifier
          0
                                         8523 non-null
                                                         object
             Item_Weight
                                         7060 non-null
                                                         float64
          1
          2
             Item_Fat_Content
                                         8523 non-null
                                                         object
          3
              Item Visibility
                                         8523 non-null
                                                         float64
          4
              Item Type
                                         8523 non-null
                                                         object
          5
              Item MRP
                                         8523 non-null
                                                         float64
              Outlet_Identifier
          6
                                         8523 non-null
                                                         object
          7
              Outlet_Establishment_Year 8523 non-null
                                                         int64
          8
              Outlet_Size
                                         6113 non-null
                                                         object
          9
              Outlet Location Type
                                         8523 non-null
                                                         object
          10 Outlet Type
                                         8523 non-null
                                                         object
                                         8523 non-null
          11 Item Outlet Sales
                                                         float64
         dtypes: float64(4), int64(1), object(7)
         memory usage: 799.2+ KB
In [10]: df_train.describe() # to generate descriptive statistics that summarize the centro
                              # shape of a dataset's distribution, excluding NaN values.
```

Out[10]:

	Item_Weight	Item_Visibility	Item_MRP	Outlet_Establishment_Year	Item_Outlet_Sales
count	7060.000000	8523.000000	8523.000000	8523.000000	8523.000000
mean	12.857645	0.066132	140.992782	1997.831867	2181.288914
std	4.643456	0.051598	62.275067	8.371760	1706.499616
min	4.555000	0.000000	31.290000	1985.000000	33.290000
25%	8.773750	0.026989	93.826500	1987.000000	834.247400
50%	12.600000	0.053931	143.012800	1999.000000	1794.331000
75%	16.850000	0.094585	185.643700	2004.000000	3101.296400
max	21.350000	0.328391	266.888400	2009.000000	13086.964800

Item_Weight is numerical column so we fill it with Mean Imputation

```
In [11]: df_train['Item_Weight'].describe() #seeing all the central tendenies of the datase
Out[11]: count
                  7060.000000
         mean
                    12.857645
         std
                     4.643456
                     4.555000
         min
         25%
                     8.773750
         50%
                    12.600000
         75%
                    16.850000
                    21.350000
         Name: Item_Weight, dtype: float64
In [12]: df_train['Item_Weight'].fillna(df_train['Item_Weight'].mean(),inplace=True)
         df_test['Item_Weight'].fillna(df_train['Item_Weight'].mean(),inplace=True)
In [13]: df_train.isnull().sum() #no null values in item weight
Out[13]: Item_Identifier
                                          0
         Item_Weight
                                          0
         Item_Fat_Content
                                          0
         Item Visibility
                                          0
                                          0
         Item_Type
         Item_MRP
         Outlet_Identifier
                                          0
         Outlet_Establishment_Year
                                          0
                                       2410
         Outlet Size
         Outlet_Location_Type
                                          0
         Outlet_Type
                                          0
         Item_Outlet_Sales
                                          0
         dtype: int64
In [14]: df train['Item Weight'].describe()
```

```
Out[14]: count 8523.000000
         mean
                  12.857645
                   4.226124
         std
                    4.555000
         min
         25%
                    9.310000
         50%
                    12.857645
         75%
                    16.000000
         max
                    21.350000
         Name: Item_Weight, dtype: float64
```

Outlet_Size is catagorical column so we fill it with Mode Imputation

```
In [15]: df_train['Outlet_Size'] #it is a categorical value
Out[15]: 0
                 Medium
                 Medium
         2
                 Medium
         3
                    NaN
                   High
         8518
                   High
         8519
                    NaN
         8520
                  Small
         8521
                 Medium
         8522
                  Small
         Name: Outlet_Size, Length: 8523, dtype: object
In [16]: df_train['Outlet_Size'].value_counts()
Out[16]: Medium
                   2793
         Small
                   2388
                    932
         Name: Outlet_Size, dtype: int64
In [17]: df_train['Outlet_Size'].mode()
Out[17]: 0
              Medium
         Name: Outlet Size, dtype: object
In [18]: | df_train['Outlet_Size'].fillna(df_train['Outlet_Size'].mode()[0],inplace=True)
         df_test['Outlet_Size'].fillna(df_test['Outlet_Size'].mode()[0],inplace=True)
```

pandas treats the mode as something special since they can be unimodal, bimodal or multimodal distributions they

had to make sure that 1 value could be returned "Always return series even if only one value is returned"

```
In [19]: df_train.isnull().sum() #no null value :)
```

```
Out[19]: Item Identifier
                                       0
         Item Weight
                                       0
         Item_Fat_Content
                                       0
         Item_Visibility
                                       0
         Item_Type
                                       0
         Item_MRP
         Outlet_Identifier
                                       0
         Outlet_Establishment_Year
         Outlet_Size
         Outlet_Location_Type
                                       0
         Outlet_Type
                                       0
         Item_Outlet_Sales
                                       0
         dtype: int64
In [20]: df_test.isnull().sum()
Out[20]: Item_Identifier
                                       0
         Item_Weight
                                       0
         Item Fat Content
                                       0
         Item_Visibility
                                       0
         Item Type
         Item_MRP
                                       0
         Outlet_Identifier
         Outlet_Establishment_Year
         Outlet Size
         Outlet_Location_Type
                                       0
         Outlet_Type
         dtype: int64
```

Dimesnsionality reduction of item identifier and outlet identifier

```
In [21]: df_train.drop(['Item_Identifier','Outlet_Identifier'],axis=1,inplace=True)
    df_test.drop(['Item_Identifier','Outlet_Identifier'],axis=1,inplace=True)
In [22]: df_train
```

Out[22]:		Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Establishment_
	0	9.300	Low Fat	0.016047	Dairy	249.8092	
	1	5.920	Regular	0.019278	Soft Drinks	48.2692	
	2	17.500	Low Fat	0.016760	Meat	141.6180	
	3	19.200	Regular	0.000000	Fruits and Vegetables	182.0950	
	4	8.930	Low Fat	0.000000	Household	53.8614	
	•••						
	8518	6.865	Low Fat	0.056783	Snack Foods	214.5218	
	8519	8.380	Regular	0.046982	Baking Goods	108.1570	
	8520	10.600	Low Fat	0.035186	Health and Hygiene	85.1224	
	8521	7.210	Regular	0.145221	Snack Foods	103.1332	
	8522	14.800	Low Fat	0.044878	Soft Drinks	75.4670	
	8523 r	ows × 10 colu	mns				
4							•

In [23]: df_test

Out[23]:		Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Establishment_
	0	20.750000	Low Fat	0.007565	Snack Foods	107.8622	
	1	8.300000	reg	0.038428	Dairy	87.3198	
	2	14.600000	Low Fat	0.099575	Others	241.7538	
	3	7.315000	Low Fat	0.015388	Snack Foods	155.0340	
	4	12.857645	Regular	0.118599	Dairy	234.2300	
	•••						
	5676	10.500000	Regular	0.013496	Snack Foods	141.3154	
	5677	7.600000	Regular	0.142991	Starchy Foods	169.1448	
	5678	10.000000	Low Fat	0.073529	Health and Hygiene	118.7440	
	5679	15.300000	Regular	0.000000	Canned	214.6218	
	5680	9.500000	Regular	0.104720	Canned	79.7960	
	5681 r	rows × 9 colun	nns				

EDA using Pandas profiling

In [26]: pip install ipywidgets

```
bigmartsalesprediction
Requirement already satisfied: ipywidgets in c:\python3107\lib\site-packages (8.0.
2)
Requirement already satisfied: ipython>=6.1.0 in c:\python3107\lib\site-packages
(from ipywidgets) (8.5.0)
Requirement already satisfied: jupyterlab-widgets~=3.0 in c:\python3107\lib\site-p
ackages (from ipywidgets) (3.0.3)
Requirement already satisfied: ipykernel>=4.5.1 in c:\python3107\lib\site-packages
(from ipywidgets) (6.16.0)
Requirement already satisfied: widgetsnbextension~=4.0 in c:\python3107\lib\site-p
ackages (from ipywidgets) (4.0.3)
Requirement already satisfied: traitlets>=4.3.1 in c:\python3107\lib\site-packages
(from ipywidgets) (5.4.0)
Requirement already satisfied: packaging in c:\python3107\lib\site-packages (from
ipykernel>=4.5.1->ipywidgets) (21.3)
Requirement already satisfied: debugpy>=1.0 in c:\python3107\lib\site-packages (fr
om ipykernel>=4.5.1->ipywidgets) (1.6.3)
Requirement already satisfied: psutil in c:\python3107\lib\site-packages (from ipy
kernel>=4.5.1->ipywidgets) (5.9.2)
Requirement already satisfied: pyzmq>=17 in c:\python3107\lib\site-packages (from
ipykernel>=4.5.1->ipywidgets) (24.0.1)
Requirement already satisfied: tornado>=6.1 in c:\python3107\lib\site-packages (fr
om ipykernel>=4.5.1->ipywidgets) (6.2)
Requirement already satisfied: nest-asyncio in c:\python3107\lib\site-packages (fr
om ipykernel>=4.5.1->ipywidgets) (1.5.5)
Requirement already satisfied: jupyter-client>=6.1.12 in c:\python3107\lib\site-pa
ckages (from ipykernel>=4.5.1->ipywidgets) (7.3.5)
Requirement already satisfied: matplotlib-inline>=0.1 in c:\python3107\lib\site-pa
ckages (from ipykernel>=4.5.1->ipywidgets) (0.1.6)
Requirement already satisfied: backcall in c:\python3107\lib\site-packages (from i
python>=6.1.0->ipywidgets) (0.2.0)
Requirement already satisfied: prompt-toolkit<3.1.0,>3.0.1 in c:\python3107\lib\si
te-packages (from ipython>=6.1.0->ipywidgets) (3.0.31)
Requirement already satisfied: jedi>=0.16 in c:\python3107\lib\site-packages (from
ipython>=6.1.0->ipywidgets) (0.18.1)
Requirement already satisfied: pygments>=2.4.0 in c:\python3107\lib\site-packages
(from ipython>=6.1.0->ipywidgets) (2.13.0)
Requirement already satisfied: colorama in c:\python3107\lib\site-packages (from i
python>=6.1.0->ipywidgets) (0.4.5)
Requirement already satisfied: stack-data in c:\python3107\lib\site-packages (from
ipython>=6.1.0->ipywidgets) (0.5.1)
Requirement already satisfied: decorator in c:\python3107\lib\site-packages (from
ipython>=6.1.0->ipywidgets) (5.1.1)
Requirement already satisfied: pickleshare in c:\python3107\lib\site-packages (fro
m ipython>=6.1.0->ipywidgets) (0.7.5)
Requirement already satisfied: parso<0.9.0,>=0.8.0 in c:\python3107\lib\site-packa
ges (from jedi>=0.16->ipython>=6.1.0->ipywidgets) (0.8.3)
Requirement already satisfied: python-dateutil>=2.8.2 in c:\python3107\lib\site-pa
ckages (from jupyter-client>=6.1.12->ipykernel>=4.5.1->ipywidgets) (2.8.2)
Requirement already satisfied: entrypoints in c:\python3107\lib\site-packages (fro
m jupyter-client>=6.1.12->ipykernel>=4.5.1->ipywidgets) (0.4)
Requirement already satisfied: jupyter-core>=4.9.2 in c:\python3107\lib\site-packa
ges (from jupyter-client>=6.1.12->ipykernel>=4.5.1->ipywidgets) (4.11.1)
Requirement already satisfied: wcwidth in c:\python3107\lib\site-packages (from pr
ompt-toolkit<3.1.0,>3.0.1->ipython>=6.1.0->ipywidgets) (0.2.5)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in c:\python3107\lib\site-
packages (from packaging->ipykernel>=4.5.1->ipywidgets) (3.0.9)
Requirement already satisfied: executing in c:\python3107\lib\site-packages (from
stack-data->ipython>=6.1.0->ipywidgets) (1.1.0)
Requirement already satisfied: asttokens in c:\python3107\lib\site-packages (from
stack-data->ipython>=6.1.0->ipywidgets) (2.0.8)
```

Requirement already satisfied: pure-eval in c:\python3107\lib\site-packages (from

stack-data->ipython>=6.1.0->ipywidgets) (0.2.2)

Requirement already satisfied: pywin32>=1.0 in c:\python3107\lib\site-packages (fr om jupyter-core>=4.9.2->jupyter-client>=6.1.12->ipykernel>=4.5.1->ipywidgets) (30 4)

Requirement already satisfied: six>=1.5 in c:\python3107\lib\site-packages (from p ython-dateutil>=2.8.2->jupyter-client>=6.1.12->ipykernel>=4.5.1->ipywidgets) (1.1 6.0)

Note: you may need to restart the kernel to use updated packages.

[notice] A new release of pip available: 22.2.2 -> 22.3
[notice] To update, run: python.exe -m pip install --upgrade pip

In [27]: from pandas_profiling import ProfileReport

```
2022-10-30 16:41:46,325 - INFO - Pandas backend loaded 1.4.4

2022-10-30 16:41:46,354 - INFO - Numpy backend loaded 1.23.3

2022-10-30 16:41:46,357 - INFO - Python backend NOT loaded

2022-10-30 16:41:46,357 - INFO - Python backend loaded
```

```
In [28]: profile = ProfileReport(df_train, title ="Pandas Profiling Report")
```

In [29]: profile

```
Summarize dataset: 0% | 0/5 [00:00<?, ?it/s]

Generate report structure: 0% | 0/1 [00:00<?, ?it/s]

Render HTML: 0% | 0/1 [00:00<?, ?it/s]
```

Overview

Dataset statistics

Number of variables	10
Number of observations	8523
Missing cells	0
Missing cells (%)	0.0%
Duplicate rows	0
Duplicate rows (%)	0.0%
Total size in memory	666.0 KiB
Average record size in memory	80.0 B

Variable types

Numeric	5
Categorical	5

Alerts

```
Item_MRP is highly correlated with Item_Outlet_Sales

High correlation

Item_Outlet_Sales is highly correlated with Item_MRP

High correlation

Outlet_Location_Type is highly correlated with
Outlet_Establishment_Year and 2_other fields
```

Out[29]:

```
In [85]: plt.figure(figsize=(10,5))
    sns.heatmap(df_train.corr(),annot=True)
    plt.show()

    C:\Users\Mayur\AppData\Local\Temp\ipykernel_6196\909663478.py:3: UserWarning:
    Matplotlib is currently using agg, which is a non-GUI backend, so cannot show the figure.
```

EDA using Klib library

```
In [86]:
          import klib
In [87]: # klib.describe - functions for visualizing datasets
          klib.cat_plot(df_train) # returns a visualization of the number and frequency of co
          No columns with categorical data were detected.
In [88]: klib.corr_mat(df_train) # returns a color-encoded correlation matrix
Out[88]:
                                  item_weight item_fat_content item_visibility item_type item_mrp
                      item_weight
                                         1.00
                                                         -0.02
                                                                       -0.01
                                                                                  0.03
                                                                                            0.02
                                         -0.02
                                                          1.00
                                                                        0.03
                                                                                            -0.00
                  item_fat_content
                                                                                  -0.12
                                                                                           -0.00
                    item_visibility
                                         -0.01
                                                          0.03
                                                                        1.00
                                                                                 -0.04
                                         0.03
                                                                       -0.04
                                                                                  1.00
                                                                                            0.03
                        item_type
                                                         -0.12
                        item mrp
                                         0.02
                                                         -0.00
                                                                       -0.00
                                                                                  0.03
                                                                                            1.00
                                                                                  0.00
                                                                                            0.01
          outlet_establishment_year
                                         -0.01
                                                         -0.00
                                                                       -0.07
                                         -0.01
                                                                       0.07
                                                                                 -0.00
                                                                                            0.01
                       outlet_size
                                                         -0.01
                                                                                  0.00
                                                                                            0.00
               outlet_location_type
                                         0.00
                                                         -0.00
                                                                       -0.03
                                                                                  0.00
                                                                                           -0.00
                       outlet_type
                                         -0.00
                                                         -0.00
                                                                       -0.17
                                                                                            0.57
                  item_outlet_sales
                                         0.01
                                                          0.01
                                                                       -0.13
                                                                                  0.02
          klib.corr_plot(df_train) # returns a color-encoded heatmap, ideal for correlations
In [89]:
Out[89]: <AxesSubplot:title={'center':'Feature-correlation (pearson)'}>
In [90]: klib.dist_plot(df_train) # returns a distribution plot for every numeric feature
Out[90]: <AxesSubplot:xlabel='item_outlet_sales', ylabel='Density'>
In [91]: klib.missingval plot(df train) # returns a figure containing information about miss
          No missing values found in the dataset.
          Data cleaning Klib
In [37]: # klib.clean - functions for cleaning datasets
          klib.data_cleaning(df_train) # performs datacleaning (drop duplicates & empty rows)
          Shape of cleaned data: (8523, 10) - Remaining NAs: 0
          Dropped rows: 0
               of which 0 duplicates. (Rows (first 150 shown): [])
          Dropped columns: 0
```

Columns: []

Dropped missing values: 0

of which 0 single valued.

Reduced memory by at least: 0.46 MB (-70.77%)

Out[37]:		item_weight	item_fat_content	item_visibility	item_type	item_mrp	outlet_establishment_y
	0	9.300000	Low Fat	0.016047	Dairy	249.809204	1
	1	5.920000	Regular	0.019278	Soft Drinks	48.269199	2
	2	17.500000	Low Fat	0.016760	Meat	141.617996	1
	3	19.200001	Regular	0.000000	Fruits and Vegetables	182.095001	1
	4	8.930000	Low Fat	0.000000	Household	53.861401	1
	•••						
	8518	6.865000	Low Fat	0.056783	Snack Foods	214.521805	1
	8519	8.380000	Regular	0.046982	Baking Goods	108.156998	2
	8520	10.600000	Low Fat	0.035186	Health and Hygiene	85.122398	2
	8521	7.210000	Regular	0.145221	Snack Foods	103.133202	2
	8522	14.800000	Low Fat	0.044878	Soft Drinks	75.467003	1
	8523 r	ows × 10 colu	ımns				

In [38]: klib.clean_column_names(df_train) # cleans and standardizes column names, also call

Out[38]:	it	em_weight	item_fat_content	item_visibility	item_type	item_mrp	outlet_establishment_ye
	0	9.300	Low Fat	0.016047	Dairy	249.8092	19
	1	5.920	Regular	0.019278	Soft Drinks	48.2692	20
	2	17.500	Low Fat	0.016760	Meat	141.6180	19
	3	19.200	Regular	0.000000	Fruits and Vegetables	182.0950	19
	4	8.930	Low Fat	0.000000	Household	53.8614	19
	•••						
	8518	6.865	Low Fat	0.056783	Snack Foods	214.5218	19
	8519	8.380	Regular	0.046982	Baking Goods	108.1570	20
	8520	10.600	Low Fat	0.035186	Health and Hygiene	85.1224	20
	8521	7.210	Regular	0.145221	Snack Foods	103.1332	20
	8522	14.800	Low Fat	0.044878	Soft Drinks	75.4670	19
	8523 row	ıs × 10 colu	mns				
4							>
In [39]:	df_trai	n.info()					
	RangeIn Data co # Co 0 it 1 it 2 it 3 it 4 it 5 ou 6 ou 7 ou 8 ou	dex: 8523 lumns (tot lumn em_weight em_fat_con em_visibil em_type em_mrp	ity lishment_year ion_type	3522	float6 cobject cobject cobject cobject cobject cobject cobject cobject cobject	4	
	dtypes:), int64(1), ob	oject(5)			

In [40]: df_train=klib.convert_datatypes(df_train) # converts existing to more efficient dty

df_train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8523 entries, 0 to 8522
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	item_weight	8523 non-null	float32
1	item_fat_content	8523 non-null	category
2	item_visibility	8523 non-null	float32
3	item_type	8523 non-null	category
4	item_mrp	8523 non-null	float32
5	outlet_establishment_year	8523 non-null	int16
6	outlet_size	8523 non-null	category
7	outlet_location_type	8523 non-null	category
8	outlet_type	8523 non-null	category
9	item_outlet_sales	8523 non-null	float32

dtypes: category(5), float32(4), int16(1)

memory usage: 192.9 KB

Tn	[41]	klib.mv	col	handling	(df	train))
	7.1	KTTO • III v	COT	Halluttilg	uı	сі атіі	,

Out[41]:		item_weight	item_fat_content	item_visibility	item_type	item_mrp	outlet_establishment_y
	0	9.300000	Low Fat	0.016047	Dairy	249.809204	1
	1	5.920000	Regular	0.019278	Soft Drinks	48.269199	2
	2	17.500000	Low Fat	0.016760	Meat	141.617996	1
	3	19.200001	Regular	0.000000	Fruits and Vegetables	182.095001	1
	4	8.930000	Low Fat	0.000000	Household	53.861401	1
	•••						
	8518	6.865000	Low Fat	0.056783	Snack Foods	214.521805	1
	8519	8.380000	Regular	0.046982	Baking Goods	108.156998	2
	8520	10.600000	Low Fat	0.035186	Health and Hygiene	85.122398	2
	8521	7.210000	Regular	0.145221	Snack Foods	103.133202	2
	8522	14.800000	Low Fat	0.044878	Soft Drinks	75.467003	1
	8523 r	ows × 10 colu	umns				

Preprocessing Task before Model Building

1) Label encoding

In [42]: from sklearn.preprocessing import LabelEncoder

```
le=LabelEncoder()
In [43]: | df_train['item_fat_content'] = le.fit_transform(df_train['item_fat_content'])
          df_train['item_type'] = le.fit_transform(df_train['item_type'])
          df_train['outlet_size']= le.fit_transform(df_train['outlet_size'])
          df_train['outlet_location_type']= le.fit_transform(df_train['outlet_location_type']
          df_train['outlet_type'] = le.fit_transform(df_train['outlet_type'])
In [44]: df_train.head(5)
Out[44]:
             item weight item fat content item visibility item type
                                                                    item mrp
                                                                              outlet establishment year
                                                                   249.809204
                9.300000
                                               0.016047
                                                                                                 1999
                5.920000
                                               0.019278
                                                                    48.269199
                                                                                                 2009
          2
                17.500000
                                       1
                                                                   141.617996
                                                                                                 1999
                                               0.016760
                                                               10
          3
                19.200001
                                               0.000000
                                                                   182.095001
                                                                                                 1998
                                                                    53.861401
          4
                8.930000
                                       1
                                               0.000000
                                                                9
                                                                                                 1987
```

2) Splitting our data into train and test files

3)Standarization

```
In [48]:
          X.describe()
                                                                                 item_mrp outlet_establishme
Out[48]:
                   item_weight item_fat_content item_visibility
                                                                    item_type
                   8523.000000
                                     8523.000000
                                                    8523.000000
                                                                  8523.000000
                                                                               8523.000000
                                                                                                          8523
           count
                     12.857646
                                                                                                          1997
                                        1.369354
                                                       0.066132
                                                                     7.226681
                                                                                140.992767
           mean
                      4.226124
                                        0.644810
                                                       0.051598
                                                                     4.209990
                                                                                 62.275066
              std
                                        0.000000
                                                       0.000000
                                                                     0.000000
                                                                                 31.290001
             min
                      4.555000
                                                                                                          1985
             25%
                      9.310000
                                        1.000000
                                                       0.026989
                                                                     4.000000
                                                                                 93.826500
                                                                                                          1987
             50%
                     12.857645
                                        1.000000
                                                       0.053931
                                                                     6.000000
                                                                                143.012802
                                                                                                          1999
             75%
                     16.000000
                                        2.000000
                                                       0.094585
                                                                    10.000000
                                                                                185.643700
                                                                                                          2004
                                        4.000000
                                                                                                          2009
             max
                     21.350000
                                                       0.328391
                                                                    15.000000
                                                                                266.888397
           from sklearn.preprocessing import StandardScaler
In [49]:
           sc= StandardScaler()
```

```
In [50]: X_train_std= sc.fit_transform(X_train) # learning how the data is in X train and t
In [51]: X test std= sc.transform(X test)
In [52]: X_train_std
Out[52]: array([[ 1.52290023, -0.57382672, 0.68469731, ..., -1.95699503,
                  1.08786619, -0.25964107],
                [-1.239856, -0.57382672, -0.09514746, ..., -0.28872895,
                 -0.13870429, -0.25964107],
                [1.54667619, 0.97378032, -0.0083859, ..., -0.28872895,
                 -0.13870429, -0.25964107],
                [-0.08197109, -0.57382672, -0.91916229, ..., 1.37953713,
                 -1.36527477, -0.25964107],
                [-0.74888436, 0.97378032, 1.21363045, ..., -0.28872895,
                 -0.13870429, -0.25964107],
                [0.67885675, -0.57382672, 1.83915361, ..., -0.28872895,
                  1.08786619, 0.98524841]])
In [53]: X_test_std
Out[53]: array([[-0.43860916, -0.57382672, -0.21609253, ..., -0.28872895,
                  1.08786619, 0.98524841],
                [1.22570184, -0.57382672, -0.52943464, ..., -1.95699503,
                  1.08786619, -0.25964107],
                [-1.2184578, 0.97378032, 0.16277341, ..., 1.37953713,
                 -1.36527477, -0.25964107],
                [0.65508101, -0.57382672, 0.8782423, ..., -0.28872895,
                  1.08786619, -1.50453056],
                [1.01171909, -0.57382672, -1.28409256, ..., -0.28872895,
                  1.08786619, 0.98524841],
                [-1.56558541, 0.97378032, -1.09265374, ..., -0.28872895,
                 -0.13870429, -0.25964107]])
In [54]: Y_train
Out[54]: 3684
                  163.786804
         1935
                 1607.241211
         5142
                 1510.034424
         4978
                 1784.343994
         2299
                 3558.035156
                    . . .
         599
                 5502.836914
         5695
                 1436.796387
         8006
                 2167.844727
         1361
                 2700.484863
         1547
                  829.586792
         Name: item_outlet_sales, Length: 6818, dtype: float32
In [55]: Y_test
```

```
Out[55]: 8179
                 904.822205
         8355
                 2795.694092
         3411
                1947.464966
         7089
                 872.863770
                 2450.144043
         6954
         1317
                 1721.093018
         4996
                 914.809204
         531
                  370.184814
         3891
                 1358.232056
                 2418.185547
         6629
         Name: item_outlet_sales, Length: 1705, dtype: float32
In [56]: import joblib
In [57]:
         joblib.dump(sc,r'D:\5th_semester\MiniProject2A\Projectworking\models\sc.sav')
Out[57]: ['D:\\5th_semester\\MiniProject2A\\Projectworking\\models\\sc.sav']
```

Model building

In [58]:	X_test.head()										
Out[58]:		item_weight	item_fat_content	item_visibility	item_type	item_mrp	outlet_establishment_y				
	8179	11.000000	1	0.055163	8	100.335800	2(
	8355	18.000000	1	0.038979	13	148.641800	1!				
	3411	7.720000	2	0.074731	1	77.598602	1!				
	7089	20.700001	1	0.049035	6	39.950600	20				
	6954	7.550000	1	0.027225	3	152.934006	2(
4							>				
In [59]:	from	sklearn.met	rics import r2_	score, mean_a	bsolute_er	rror, mean_	_squared_error				

Linear Regression

```
In [60]: from sklearn.linear_model import LinearRegression
lr= LinearRegression()

In [61]: lr.fit(X_train_std,Y_train)

Out[61]: v LinearRegression
LinearRegression()

In [62]: Y_pred_lr=lr.predict(X_test_std)

In [63]: r2_score(Y_test,Y_pred_lr)

Out[63]: 0.5041875773270634
```

```
In [64]: print(r2_score(Y_test,Y_pred_lr))
    print(mean_absolute_error(Y_test,Y_pred_lr))
    print(np.sqrt(mean_squared_error(Y_test,Y_pred_lr)))

0.5041875773270634
    880.99990440845
    1162.4412631603452

In [65]: joblib.dump(lr,r'D:\5th_semester\MiniProject2A\Projectworking\models\lr.sav')

Out[65]: ['D:\\5th_semester\\MiniProject2A\\Projectworking\\models\\lr.sav']
```

Random Forest Regressor

```
In [66]: from sklearn.ensemble import RandomForestRegressor
         rf= RandomForestRegressor()
In [67]: rf.fit(X_train_std,Y_train)
Out[67]: • RandomForestRegressor
         RandomForestRegressor()
In [68]: Y_pred_rf= rf.predict(X_test_std)
In [69]: r2_score(Y_test,Y_pred_rf)
Out[69]: 0.5498450972136788
In [70]: print(r2_score(Y_test,Y_pred_rf))
         print(mean_absolute_error(Y_test,Y_pred_rf))
         print(np.sqrt(mean_squared_error(Y_test,Y_pred_rf)))
         0.5498450972136788
         779.8420976075874
         1107.6264243242706
In [71]: joblib.dump(rf,r'D:\5th_semester\MiniProject2A\Projectworking\models\rf.sav')
Out[71]: ['D:\\5th_semester\\MiniProject2A\\Projectworking\\models\\rf.sav']
```

XG Boost Regressor

```
In [72]: from xgboost import XGBRegressor
    xg= XGBRegressor()

In [73]: xg.fit(X_train_std, Y_train)
```

```
In [74]: Y_pred_xg= xg.predict(X_test_std)
In [75]: r2_score(Y_test,Y_pred_xg)
Out[75]: 0.5313160637898305
In [76]: print(r2_score(Y_test,Y_pred_xg))
    print(mean_absolute_error(Y_test,Y_pred_xg))
    print(np.sqrt(mean_squared_error(Y_test,Y_pred_xg)))
    0.5313160637898305
    800.45557
    1130.1923
In [80]: joblib.dump(rf,r'D:\5th_semester\MiniProject2A\Projectworking\models\xg.sav')
Out[80]: ['D:\\5th_semester\\MiniProject2A\\Projectworking\\models\\xg.sav']
```

Hyper parameter tuning

```
In [84]: from sklearn.model_selection import RepeatedStratifiedKFold
         from sklearn.model_selection import GridSearchCV
         # define models and parameters
         model = RandomForestRegressor()
         n_estimators = [10, 100, 1000]
         max depth=range(1,31)
         min_samples_leaf=np.linspace(0.1, 1.0)
         max features=["auto", "sqrt", "log2"]
         min_samples_split=np.linspace(0.1, 1.0, 10)
         # define grid search
         grid = dict(n estimators=n estimators)
         grid_search_forest = GridSearchCV(estimator=model, param_grid=grid, n_jobs=-1,
                                  scoring='r2',error_score=0,verbose=2,cv=2)
         grid_search_forest.fit(X_train_std, Y_train)
         # summarize results
         print(f"Best: {grid_search_forest.best_score_:.3f} using {grid_search_forest.best_k
         means = grid search forest.cv results ['mean test score']
         stds = grid_search_forest.cv_results_['std_test_score']
         params = grid_search_forest.cv_results_['params']
```

```
for mean, stdev, param in zip(means, stds, params):
    print(f"{mean:.3f} ({stdev:.3f}) with: {param}")

Fitting 2 folds for each of 3 candidates, totalling 6 fits
Best: 0.550 using {'n_estimators': 100}
    0.512 (0.010) with: {'n_estimators': 10}
    0.550 (0.006) with: {'n_estimators': 100}
    0.550 (0.006) with: {'n_estimators': 1000}

In []: grid_search_forest.best_params_

In []: grid_search_forest.best_score_

In []: Y_pred_rf_grid=grid_search_forest.predict(X_test_std)

In []: r2_score(Y_test,Y_pred_rf_grid)
```

Save the model

```
In [77]: import joblib

In [92]: joblib.dump(grid_search_forest,r'D:\5th_semester\MiniProject2A\Projectworking\random
Out[92]: ['D:\\5th_semester\\MiniProject2A\\Projectworking\\random_forest_grid.sav']

In [93]: model=joblib.load(r'D:\5th_semester\MiniProject2A\\Projectworking\\random_forest_grid.sav']

In [94]: model.predict(X_test_std)

Out[94]: array([1682.80950562, 3884.07737366, 1386.46859375, ..., 324.92371536, 1597.81347321, 2396.14098267])

In []:

In []:
```