本节内容

指令系统

CISC和RISC

本章总览

类比:有很多库 函数的C语言

CISC和RISC

类比:没有库函数的C语言

CISC: Complex Instruction Set Computer

设计思路: 一条指令完成一个复杂的基本功能。

代表: x86架构,主要用于笔记本、台式机等

80-20规律: 典型程序中 80% 的语句仅仅使用处理机中 20% 的指令

RISC: Reduced Instruction Set Computer

设计思路:一条指令完成一个基本"动作";

多条指令组合完成一个复杂的基本功能。

代表: ARM架构, 主要用于手机、平板等

比如设计一套能实现整数、矩阵加/减/乘运算的指令集:

CISC的思路:除了提供整数的加减乘指令除之外,还提供矩阵的加法指令、矩阵的减法指令、矩阵的乘法指令

一条指令可以由一个专门的电路完成 有的复杂指令用纯硬件实现很困难 → 采用"存储程序"的设计思想,由一个比较通用的电路配合存储部件完成一条指令 RISC的思路: 只提供整数的加减乘指令

一条指令一个电路,电路设计相对简单,功耗更低

"并行"、"流水线"

CISC和RISC

类 别 对比项目	CISC	RISC	
指令系统	复杂, 庞大	简单,精简	
指令数目	一般大于200条	一般小于100条	
指令字长	不固定	定长	
可访存指令	不加限制	只有Load/Store指令	
各种指令执行时间	相差较大	绝大多数在一个周期内完成	
各种指令使用频度	相差很大	都比较常用	
通用寄存器数量	较少	多	
目标代码	难以用优化编译生成高效的目标代码程序	采用优化的编译程序,生成代码较为高效	
控制方式	绝大多数为微程序控制	绝大多数为组合逻辑控制	
指令流水线	可以通过一定方式实现	必须实现	

计算机的工作过程

乘法指令可以访存,一定是CISC

上一条指令取指后PC自动+1, (PC)=1; 执行后, (ACC)=2

#1: (PC)→MAR, 导致(MAR)=1

#3: M(MAR)→MDR,导致(MDR)=000100 0000000110

#4: (MDR)→IR,导致(IR)= **000100 0000000110**

#5: OP(IR)→CU, 指令的操作码送到CU, CU分析后得知, 这是"乘法"指令

#6: Ad(IR)→MAR, 指令的地址码送到MAR, 导致(MAR)=6

#8: M(MAR)→MDR, 导致(MDR)=0000000000000011=3

#9: (MDR)→MQ, 导致(MQ)=000000000000011=3

#10: (ACC)→X,导致(X)=2

#11: (MQ)*(X)→ACC,由ALU实现乘法运算,导致(ACC)=6,如果乘积太大,则需要MQ辅助存储

主存地址	指令		>}- ₩ ∀
	操作码	地址码	注释
0	000001	0000000101	取数a至ACC
1	000100	0000000110	乘b得ab,存于ACC中
2	000011	0000000111	加c得ab+c,存于ACC中
3	000010	0000001000	将 $ab+c$,存于主存单元
4	000110	0000000000	停机
5	000000000000000000000000000000000000000		原始数据a=2
6	0000000000000011		原始数据 <i>b=3</i>
7	0000000000000001		原始数据 $c=1$
8	0000000000000000		原始数据y=0
	Sec. Cal		-

取指令(#1~#4) 分析指令(#5) 执行乘法指令(#6~#11)

王道考研/CSKAOYAN.COM

△ 公众号: 王道在线

b站: 王道计算机教育

抖音: 王道计算机考研