

Python libraries for estimation of Weibull parameters

- ▼ You can see this file by checking out the link below
 - Python libraries for estimation of Weibull parameters

Libraries that I used

- pandas → for data preprocessing
- surpyval → for reliability analysis
- reliability → for reliability analysis

Pandas

- Pandas is a software library in Python for data manipulation and analysis. It supports dataframe to manipulate a database table.
- You can use Series and DataFrame with Pandas.

SurPyval

https://surpyval.readthedocs.io/en/latest/index.html

https://surpyval.readthedocs.io/en/latest/

- Reliability and survival analysis library in Python
- This library can estimate parameters and print a plot.

SurPyval Modeling Methods

<u>Aa</u> Method	Para/Non-Para	Observed	≡ Censored	≡ Truncated
Maximum Likelihood (MLE)	Parametric	✓	Yes	Yes
Probability Plotting (MPP)	Parametric	✓	Yes	Limited
Mean Square Error (MSE)	Parametric	✓	Yes	Limited
Method of Moments (MOM)	Parametric	~	No	No

<u>Aa</u> Method	Para/Non-Para	Para/Non-Para Observed		≡ Truncated
Maximum Product Spacing (MPS)	Parametric	<u>~</u>	Yes	No (planned)
Kaplan-Meier	Non-Parametric	✓	Right only	Left only
Nelson-Aalen	Non-Parametric	<u>~</u>	Right only	Left only
Fleming-Harrington	Non-Parametric	<u>~</u>	Right only	Left only
Turnbull	Non-Parametric	✓	Yes	Yes

- In specific distribution, 'MLE' is default method. But, you can use other methods.
- SurPyval attempts to make parameter estimation possible for any distribution with arbitrary combnations of observations, censoring, and truncation.
- You can use various parametric and non-parametric estimation methods.

Caution when you use the SurPyval

- The censored code is 1, and the failure code is 0 in Surpyval library → Therefore, you should be careful when you preprocess data.
- In minitab, you can set the censored code, and the failure code as you want.
- In Reliability, you can set censored values, failure values (not the censored code)
 - However, You should convert a DataFrame to a list.

How to use

· Jupyter notebook, colab, vscode, etc.

```
# Install the library
pip install surpyval
```

```
# estimation of paramters by using the weibull distribution of surpyval
import surpyval as surv

result = surv.Weibull.fit([uptimes(722, 0 ...)], [censored code(0/1)], how = 'what modeling methods? ex)MLE')
# print a plot
result.plot()
```

```
# MTTF
result.mean()
# For more details, refer to my python code.
```

Reliability

https://reliability.readthedocs.io/en/latest/

- reliability is a Python library for reliability engineering and survival analysis.
- It significantly extends the functionality of scipy.stats.
- Plot is more intuitive than SurPyval.

Supported Distributions

Aa Parametric Models	
Weibull Distribution	Fit_Weibull_2P
Exponential Distribution	Fit_Exponential_1P
Normal Distribution	Fit_Normal_2P
Lognormal Distribution	Fit_Lognormal_2P
Gamma Distribution	Fit_Gamma_2P
Beta Distribution	Fit_Beta_2P
Loglogistic Distribution	Fit_Loglogistic_2P
Gumbel Distribution	Fit_Gumbel_2P
Location shifting the distributions	

Caution when you use Reliability

- You can set failure values and censored values, but each information must be separated.
- In the case of Excel data, it is possible to import and convert your data by using the reliability.
 - → https://reliability.readthedocs.io/en/latest/Converting data between different formats.html


```
# Install the library
pip install reliability
```

```
# estimation of parameters and print a plot
from reliability.Fitters import Fit_Weibull_2P
from reliability.Probability_plotting import Weibull_probability_plot
from reliability.Distributions import Weibull_Distribution
import matplotlib.pyplot as plt

# you should convert a DataFrame to list !

result = Fit_Weibull_2P(failure = [failure uptimes(722,0...)], right_censored = [censored uptimes(3, 500...)])

# print a plot
Weibull_probability_plot(failures = list_fail, right_censored = list_censored)
plt.show()

# MTTF
MTTF = Weibull_Distribution(alpha = result.alpha, beta = result.beta).mean
```

Minitab vs Python Library's Results with sample data

	Python-SurPyval	Python-Reliability	Minitab
shape parameter	0.47797	0.47797	0.477968
scale parameter	1294973.76215	1294977.38490	1294974
MTTF	2824605.90102	2824615.69632	2824606

• The results between the minitab and SurPyval are the most similar.

Comparison of each program's result

Python - SurPyval

<u>Aa</u> Data	# Shape Parameter	# Scale Parameter	# MTTF	# Probability of Failure	# Reliability	# Number of Suspension	Number of Fail
Sample Data(1)	0.48137	1197531.18433	2575438.40219	0.02794	0.97206	1129	44
Sample Data(2)	0.47368	1396342.62614	3101719.32397	0.02751	0.97249	1130	43
Sample Data(3)	0.47877	1302376.87262	2831225.08271	0.02737	0.97263	1147	43

Python - Reliability

<u>Aa</u> Period	# Shape Parameter	# Scale Parameter	# MTTF	# Probability of Failure	# Reliability	# Number of Suspension	Number of Fail
Sample Data(1)	0.48139	1197182.60554	2574489.25144	0.02794	0.97206	1129	44
Sample Data(2)	0.47369	1396107.83235	3101057.05628	0.02751	0.97249	1130	43
Sample Data(3)	0.47877	1302438.1842	2831393.55533	0.02737	0.97263	1147	43

Minitab

<u>Aa</u> Period	# Shape Parameter	# Scale Parameter	# MTTF	# Probability of Failure	# Reliability	# Number of Suspension	Number of Fail
Sample Data(1)	0.48137	1197531	2575438	0.02794	0.97206	1129	44
Sample Data(2)	0.47368	1396343	3101719	0.02751	0.97249	1130	43
Sample Data(3)	0.47877	1302377	2831225	0.02737	0.97263	1147	43

Weibull++

<u>Aa</u> Period	# Shape Parameter	# Scale Parameter	# MTTF	# Probability of Failure	# Reliability	# Number of Suspension	Number of
Sample Data(1)	0.48	1196754	2573277	0.0279	0.9721	1129	44
Sample Data(2)	0.47	1398258	3107226	0.0275	0.9725	1130	43
Sample Data(3)	0.48	1301719	2829379	0.0274	0.9726	1147	43

Comparing each plot

Minitab's Plot

Python - Surpyval's PLOT

• You can save the plot, but you can't modify it.

Python - Reliability's PLOT

- · Plot can be modified and saved.
- · An intuitive graph

Using Weibayse, not the weibull distribution

- Weibayes small sample, zero and sudden death failure test and data analysis techniques in order to
 mathematically and graphically quantify the risk associated with assuming an incorrect value of the
 Weibull shape parameter, beta (beta).
- It should be used considering that it may be somewhat inaccurate.

The library I used

· Weibull library

- It is necessary to convert a DataFrame to a list.
- https://weibull.readthedocs.io/en/v0.0.11/

result.plot()

How to use

```
# Install the library
pip install weibull

# estimation of parameters and print a plot
import weibull

# you can designate a confidence level and beta

result = weibull.Weibayes(data = [uptimes], confidence_level= 0.95, beta = 1)

# print a plot
```

Python - Weibull's Plot (Weibayes)

