CS57300 PURDUE UNIVERSITY JANUARY 22, 2019

DATA MINING

HYPOTHESIS TESTING

TYPES OF HYPOTHESES

Broad categories

- Descriptive: propositions that describe a characteristic of an object
- ▶ Relational: propositions that describe relationship between 2+ variables
- Causal: propositions that describe the effect of one variable on another

Specific characteristics

- Non-directional: an differential outcome is anticipated but the specific nature of it is not known (e.g., the tuning parameter will affect algorithm performance)
- Directional: a specific outcome is anticipated (e.g., the use of pruning will increase accuracy of models compared to no pruning)

Descriptive Hypothesis

Non-Directional Relational Hypothesis

Directional Relational Hypothesis

Directional Causal Hypothesis

HYPOTHESES EXAMPLE

- The query response time is measured for a few different search engines
- Different hypotheses
 - Descriptive: The query response time for Google follows a normal distribution
 - Non-directional relational: The average response time for a new search engine, QuickSearch, is different from Google's average response time
 - Directional relational: The average response time of QuickSearch is shorter than that of Google's
 - Directional causal: The response time of QuickSearch is shorter than Google's because they cache results of more queries

HYPOTHESIS TESTING

> Statistical hypothesis test is a method used in statistics that tells you the likelihood of a specific result would happen by chance

Null hypothesis (H₀):

Presumed true until statistical inference indicates otherwise; set up to be refuted by alternative

▶ Alternative hypothesis (H₁):

- Rival hypothesis; that we conjecture is true
- Assuming the null hypothesis is true, what's the probability of getting a statistic that is at least as extreme as the statistic that was actually obtained through the data?

HYPOTHESIS TESTING STRATEGY

https://towardsdatascience.com/data-science-simplified-hypothesis-testing-56e180ef2f71

- Formulate null and alternative hypothesis
 - ▶ H₀: QuickSearch' mean response time = Google's mean response time
 - ► H₁: QuickSearch' mean response time ≠ Google's mean response time
- Gather a sample statistic (e.g., δ = difference of QuickSearch's and Google's mean response time)
- Determine the sampling distribution for the statistic under the null hypothesis
-) Use the sampling distribution to calculate the probability of obtaining the observed value of δ , given H_0
 - If the probability is low, reject H₀ in favor of H₁

REJECTING THE NULL HYPOTHESIS

STATISTICAL SIGNIFICANCE

A value of a statistic is **statistically significant** if it is unlikely to occur under the

null hypothesis

$$\alpha = p(reject\ H_0|H_0\ true) = p(type\ 1\ error)$$

ERRORS

		Decision				
		Reject H ₀	Don't reject H ₀			
Truth	H ₀	Type 1 error				
	H ₁		Type 2 error			

- Type 1: null is rejected when it is true
 - E.g., conclude cancer drug increases life expectancy when in fact it doesn't
 - Generally considered to be most serious error
- Type 2: null is accepted when it is false
 - E.g., conclude that cancer drug does not increase life expectancy when in fact it does

STATISTICAL POWER

- \blacktriangleright Lack of statistical significance does not necessarily imply that H_0 is true
- Test could have low statistical power: $(1-\beta)$ portion of sampling distribution for alternative that is above threshold

$$\beta = p(accept \ H_0|H_0 \ false) = p(type \ 2 \ error)$$

HOW TO INCREASE POWER

- Increase sample size
- Decrease sample variability
 - Matching, sample selection, control for confounding variables, increase precision of measurements
- Increase effect size
 - More extreme experimental conditions, avoid ceiling/floor effects
- Increase alpha (e.g., from 0.05 to 0.10, but this increases type 1 errors)

DATA AND MEASUREMENT

REFLECTING REAL WORLD THROUGH DATA

Goal: map domain entities to symbolic representations

WHAT IS DATA?

- Collection of entities and their attributes
- Attribute: property or characteristic of an entity (e.g., eye color, temperature)
- Entity: collection of attributes
 Aka: record, point, case, sample, object, or instance

Entities

Attributes

Name	Thread pitch (mm)	Minor diameter tolerance	Nominal diameter (mm)	Head shape	Price for 50 screws	Available at factory outlet?	Number in stock	Flat or Phillips head?
M4	0.7	4g	4	Pan	\$10.08	Yes	276	Flat
M5	0.8	4g	5	Round	\$13.89	Yes	183	Both
M6	1	5g	6	Button	\$10.42	Yes	1043	Flat
M8	1.25	5g	8	Pan	\$11.98	No	298	Phillips
M10	1.5	6g	10	Round	\$16.74	Yes	488	Phillips
M12	1.75	7g	12	Pan	\$18.26	No	998	Flat
M14	2	7g	14	Round	\$21.19	No	235	Phillips
M16	2	8g	16	Button	\$23.57	Yes	292	Both
M18	2.1	8g	18	Button	\$25.87	No	664	Both
M20	2.4	8g	20	Pan	\$29.09	Yes	486	Both
M24	2.55	9g	24	Round	\$33.01	Yes	982	Phillips
M28	2.7	10g	28	Button	\$35.66	No	1067	Phillips
M36	3.2	12g	36	Pan	\$41.32	No	434	Both
M50	4.5	15g	50	Pan	\$44.72	No	740	Flat

DISCRETE AND CONTINUOUS ATTRIBUTES

- Discrete
 - Has only a finite or countably infinite set of values
 - Examples: zip codes, set of words in a collection of documents
 - Often represented as integer variables
- Continuous
 - Has real numbers as attribute values
 - Examples: temperature, height
 - Continuous attributes are typically represented as floating-point variables

TABULAR DATA

Collection of records, each of which consists of a fixed set of attributes

Name	Thread pitch (mm)	Minor diameter tolerance	Nominal diameter (mm)	Head shape	Price for 50 screws	Available at factory outlet?	Number in stock	Flat or Phillips head?
M4	0.7	4g	4	Pan	\$10.08	Yes	276	Flat
M5	0.8	4g	5	Round	\$13.89	Yes	183	Both
M6	1	5g	6	Button	\$10.42	Yes	1043	Flat
M8	1.25	5g	8	Pan	\$11.98	No	298	Phillips
M10	1.5	6g	10	Round	\$16.74	Yes	488	Phillips
M12	1.75	7g	12	Pan	\$18.26	No	998	Flat
M14	2	7g	14	Round	\$21.19	No	235	Phillips
M16	2	8g	16	Button	\$23.57	Yes	292	Both
M18	2.1	8g	18	Button	\$25.87	No	664	Both
M20	2.4	8g	20	Pan	\$29.09	Yes	486	Both
M24	2.55	9g	24	Round	\$33.01	Yes	982	Phillips
M28	2.7	10g	28	Button	\$35.66	No	1067	Phillips
M36	3.2	12g	36	Pan	\$41.32	No	434	Both
M50	4.5	15g	50	Pan	\$44.72	No	740	Flat

DOCUMENT DATA

• Each document is represented as a **term** vector, where each attribute records the number of times the term occurs in the document

Terms	Documents													
	MI	M2	M3	M4	M5	M6	M7	M8	M9	M10	MII	M12	M13	M14
abnormalities	0	0	0	0	0	0	0	1	0	1	0	0	0	0
age	1	0	0	0	0	0	0	0	0	0	0	1	0	0
behavior	0	0	0	0	1	1	0	0	0	0	0	0	0	0
blood	0	0	0	0	0	0	0	1	0	0	1	0	0	0
close	0	0	0	0	0	0	1	0	0	0	1	0	0	0
culture	1	1	0	0	0	0	0	1	1	0	0	0	0	0
depressed	1	0	1	1	1	0	0	0	0	0	0	0	0	0
discharge	1	1	0	0	0	1	0	0	0	0	0	0	0	0
disease	0	0	0	0	0	0	0	0	1	0	1	0	0	0
fast	0	0	0	0	0	0	0	0	0	1	0	1	1	1
generation	0	0	0	0	0	0	0	0	1	0	0	0	1	0
oestrogen	0	0	1	1	0	0	0	0	0	0	0	0	0	0
patients	1	1	0	1	0	0	0	1	0	0	0	0	0	0
ргеззиге	0	0	0	0	0	0	0	0	0	0	1	0	0	1
rats	0	0	0	0	0	0	0	0	0	0	0	0	1	1
respect	0	0	0	0	0	0	0	1	0	0	0	1	0	0
rise	0	0	0	1	0	0	0	0	0	0	0	0	0	1
atudy	1	0	1	0	0	0	0	0	1	0	0	0	0	0

TRANSACTION DATA

- Each record corresponds to a transaction that involves a set of items
- E.g., in a grocery store purchase, the set of products purchased by a customer constitute a transaction, while the individual products that were purchased are the items

Customer ID	Transaction ID	Items Bought
1	0001	$\{a,d,e\}$
1	0024	{a,b,c,e}
2	0012	{a,b,d,e}
2	0031	$\{a,c,d,e\}$
3	0015	{b,c,e}
3	0022	{b.d.e}
4	0029	$\{c,d\}$
4	0040	$\{a,b,c\}$
5	0033	{a,d,e}
5	0038	{a,b,e}

ELEMENTS OF DATA MINING ALGORITHMS

DATA MINING PROCESS

rayyad, et al. (1992), rrom knowledge Discovery to Data ining: An Overview," Advances in Knowledge Discovery and ata Mining, U. Fayyad et al. (Eds.), AAAI/MIT Press

OVERVIEW

- Task specification
- Knowledge representation
- Learning technique
 - Search + scoring
- Prediction and/or interpretation

OVERVIEW

- Task specification
- Knowledge representation
- Learning technique
 - Search + scoring
- Prediction and/or interpretation

TASK SPECIFICATION

- Dbjective of the person who is analyzing the data
- Description of the characteristics of the analysis and desired result

EXPLORATORY DATA ANALYSIS

- Goal
 - Interact with data without clear objective
 - Summarize the main characteristics of the data
- Techniques
 - Mostly visualization

EXPLORATORY DATA ANALYSIS EXAMPLE

What influences the amount of tip that a dining party will give to the waiter?

Cook, D. And Dwayne, D. F. Interactive and Dynamic Graphics for Data Analysis: With R and GGobi

PREDICTIVE MODELING

- Goal
 - Learn model to predict the unknown value of a variable of interest given observed attribute values
- Techniques
 - Classification, regression

Also known as: supervised learning

PREDICTIVE MODELING EXAMPLE

- Zestimate: House sales price prediction!
- Predicting loan repayment (and thus decide whether to provide a loan)

DESCRIPTIVE MODELING

- Goal
 - Summarize the data or the underlying generative process
- Techniques
 - Density estimation, cluster analysis and segmentation, probabilistic graphical model

Also known as: unsupervised learning

DESCRIPTIVE MODELING EXAMPLE

Video/scene clustering

PATTERN DISCOVERY

- Goal
 - Detect patterns and rules that describe subsets of examples
- Techniques
 - Association rules, anomaly detection, etc.

Model: global summary of a data set

Pattern: local to a subset of the data

WHAT TASKS ARE THEY?

Sales and inventory forecast

Customer segmentation

OVERVIEW

- Task specification
- Knowledge representation
- Learning technique
 - Search + scoring
- Prediction and/or interpretation

KNOWLEDGE REPRESENTATION

- Underlying structure of the model or patterns that we seek from the data
 - Specifies the models/patterns that could be returned as the results of the data mining algorithm
 - Defines space of possible models/patterns for algorithm to search over

KNOWLEDGE REPRESENTATION EXAMPLE: PREDICTIVE MODELING

- If-then rule
 - If (personal income > \$70k) AND (criminal record = 'no'), then loan=yes
- Decision tree
 - Each node corresponds to an attribute
 - Each leaf is a class label

KNOWLEDGE REPRESENTATION EXAMPLE: PREDICTIVE MODELING

- \triangleright Conditional probability distributions (i.e., P(Y | X))
 - Logistic regression: $log \frac{P(Y=1|x)}{1-P(Y=1|x)} = \beta_0 + \beta x$
 - Model the log-odds as a linear combination of predictors
- Linear regression
 - $y = \beta_1 x_1 + \beta_2 x_2 ... + \beta_0$
 - y is the response variable, x is the predictor variable

KNOWLEDGE REPRESENTATION EXAMPLE: DESCRIPTIVE MODELING

Mixture model: Instances represented as a weighted combination of mixture distributions

KNOWLEDGE REPRESENTATION EXAMPLE: PATTERN DISCOVERY

- Association rules
 - $I = \{i_1, i_2, ..., i_n\}$ is a set of *n* items
 - $T = \{t_1, t_2, ..., t_m\}$ is a set of m transactions

Example database with 5 transactions and 5 items

transaction ID	milk	bread	butter	beer	diapers
1	1	1	0	0	0
2	0	0	1	0	0
3	0	0	0	1	1
4	1	1	1	0	0
5	0	1	0	0	0

- An association rule has the form $X \rightarrow Y$, where X and Y are subsets of I, which means if items in X appear in a transaction, then items in Y are likely to appear in that transaction
 - ► E.g., {beer} → {diaper}; {bread} → {milk}

OVERVIEW

- Task specification
- Knowledge representation
- Learning technique
 - Search + scoring
- Prediction and/or interpretation

LEARNING TECHNIQUE

Method to construct model or patterns from data

Model space

Choice of knowledge representation defines a set of possible models or patterns

Scoring function

Associates a numerical value (score) with each member of the set of models/patterns

Search technique

Defines a method for generating members of the set of models/patterns, determining their score, and identifying the ones with the "best" score

MODEL SPACE

- Defined by the choice of knowledge representation
- Decision tree:

MODEL PARAMETERS AND STRUCTURE

Models have both parameters and structure

Parameters:

- Feature values in classification tree
- Coefficients in regression model
- Probability estimates in graphical model

Structure:

- Nodes in classification tree
- Variables in regression model
- Edges in graphical model

SCORING FUNCTION

- A numeric score assigned to each possible model in a search space, **given a reference/input** dataset
 - Used to judge the quality of a particular model for the domain
- > Score function are statistics—estimates of a population parameter based on a sample of data
- Examples:
 - Misclassification
 - Squared error
 - Likelihood

PARAMETER ESTIMATION VS. STRUCTURE LEARNING

Parameters:

- Feature values in classification tree
- Coefficients in regression model
- Probability estimates in graphical model

Structure:

- Nodes in classification tree
- Variables in regression model
- Edges in graphical model

Search: Convex/smooth optimization techniques

Search: Heuristic approaches for combinatorial optimization