# Early Classification of Time Series: Cost-based Multi-class Algorithms: Supplementary material

1<sup>st</sup> Paul-Emile Zafar *Orange Labs* Châtillon, France zafarpe@gmail.com 2<sup>nd</sup> Youssef Achenchabe *Orange Labs Université Paris-Saclay* Paris, France

3<sup>rd</sup> Alexis Bondu

Orange Labs
Châtillon, France
alexis.bondu@orange.com

youssef.achenchabe@universite-paris-saclay.fr

5th Vincent Lem

4<sup>th</sup> Antoine Cornuéjols *Université Paris-Saclay*Paris, France

antoine.cornuejols@agroparistech.fr

5<sup>th</sup> Vincent Lemaire

Orange Labs

Lannion, France
vincent.lemaire@orange.com

#### I. COMPLEXITY ANALYSIS

#### A. ECONOMY- $\gamma$

The computational complexity of each step of learning phase of the Economy- $\gamma$  algorithm can be estimated as follows:

- Learn a classifier at each time step:  $\mathcal{O}(T.Learn)$
- Sort confidence values to make intervals  $I^j_{\tau_1 \leq j \leq K}$  at each time step  $t \colon \mathcal{O}(T.|\mathcal{S}|.log(|\mathcal{S}|))$
- Confusion matrices at each time step  $\mathcal{O}(T.|\mathcal{S}|.Predict)$
- Compute prior probabilities for each class in each group:  $|\mathcal{Y}|.K.|\mathcal{S}|$
- Estimate transition matrices:  $\mathcal{O}(|\mathcal{S}|^2K^2)$

(where Learn and Predict are respectively the learning and prediction complexities of the classifiers used). Thus the computational complexity of the ECONOMY- $\gamma$  algorithm learning part is  $\mathcal{O}(T.Learn+T.|\mathcal{S}|.log(|\mathcal{S}|)+T.|\mathcal{S}|.Predict+|\mathcal{Y}|.K.|\mathcal{S}|+|\mathcal{S}|^2K^2)$ .

### B. Confidence scores aggregating probabilities

These four approaches differ only in the confidence scores they use. Their complexity only differ from the ECONOMY- $\gamma$  method in the confidence score function. The four proposed methods use functions whose complexity is  $\mathcal{O}(K)$  as they run through a vector of size K, thus giving a total complexity of  $\mathcal{O}(T.Learn + T.(K.|\mathcal{S}| + |\mathcal{S}|.log(|\mathcal{S}|)) + T.|\mathcal{S}|.Predict + |\mathcal{Y}|.K.|\mathcal{S}| +$ 

 $|\mathcal{S}|^2K^2$ ) where  $T.|\mathcal{S}|$  is the complexity of applying the confidence function to all elements in the set  $\mathcal{S}$ .

# C. Clustering

Given a clustering complexity Clustering, and that calibration requires sorting of size |S| for each class, we get respectively the following complexities:

 $\mathcal{O}(T.Learn + T.Clustering + T.|\mathcal{S}|.Predict + |\mathcal{Y}|.K.|\mathcal{S}| + |\mathcal{S}|^2K^2)$ 

and

 $\mathcal{O}(T.Learn + T.K.|\mathcal{S}|.log(|\mathcal{S}|) + T.Clustering + T.|\mathcal{S}|.Predict + |\mathcal{Y}|.K.|\mathcal{S}| + |\mathcal{S}|^2K^2)$ 

#### II. MULTI-CLASS DATASETS

Below are presented the full results obtained for the 33 datasets from [1] with more than 2 classes.



Fig. 1: Comparison of ECONOMY approaches for  $\alpha$  = 0.001 using (a) Nemenyi and (b) Wilcoxon signed-rank tests



Fig. 2: Comparison of ECONOMY approaches for  $\alpha$  = 0.01 using (a) Nemenyi and (b) Wilcoxon signed-rank tests



Fig. 7: Comparison of ECONOMY approaches for  $\alpha$  = 0.5 using (a) Nemenyi and (b) Wilcoxon signed-rank tests



Fig. 3: Comparison of ECONOMY approaches for  $\alpha$  = 0.1 using (a) Nemenyi and (b) Wilcoxon signed-rank tests



Fig. 8: Comparison of ECONOMY approaches for  $\alpha$  = 0.6 using (a) Nemenyi and (b) Wilcoxon signed-rank tests



Fig. 4: Comparison of ECONOMY approaches for  $\alpha$  = 0.2 using (a) Nemenyi and (b) Wilcoxon signed-rank tests



Fig. 9: Comparison of ECONOMY approaches for  $\alpha$  = 0.7 using (a) Nemenyi and (b) Wilcoxon signed-rank tests



Fig. 5: Comparison of ECONOMY approaches for  $\alpha=0.3$  using (a) Nemenyi and (b) Wilcoxon signed-rank tests



Fig. 10: Comparison of ECONOMY approaches for  $\alpha$  = 0.8 using (a) Nemenyi and (b) Wilcoxon signed-rank tests



Fig. 6: Comparison of ECONOMY approaches for  $\alpha$  = 0.4 using (a) Nemenyi and (b) Wilcoxon signed-rank tests



Fig. 11: Comparison of ECONOMY approaches for  $\alpha$  = 0.9 using (a) Nemenyi and (b) Wilcoxon signed-rank tests



Fig. 12: Comparison of ECONOMY approaches for  $\alpha$  = 1 using (a) Nemenyi and (b) Wilcoxon signed-rank tests

# III. FULL BENCHMARK, INCLUDING BINARY CLASSIFICATION

This section presents the same experiments as before, but carried out on the 45 datasets used in [1], including 12 binary classification datasets.

| Algorithm                 | wins | defeats | ties | balance |
|---------------------------|------|---------|------|---------|
| ECO- $\gamma$ -gini       | 22   | 0       | 50   | +22     |
| ECO- $\gamma$ -max        | 15   | 0       | 57   | +15     |
| ECO- $\gamma$ -entropy    | 12   | 3       | 57   | +9      |
| ECO-K                     | 8    | 6       | 58   | +2      |
| ECO- $\gamma$ -margins    | 2    | 9       | 61   | -7      |
| ECO- $\gamma$ -Kmeans-cal | 2    | 18      | 52   | -16     |
| ECO- $\gamma$ -Kmeans     | 0    | 25      | 47   | -25     |

TABLE I: ECONOMY approaches comparison using Wilcoxon signed-rank test: significant wins / defeats of each approach (against all the other) counted for all  $\alpha$ , based onthe AvgCost criterion.

# REFERENCES

[1] U. Mori, A. Mendiburu, S. Dasgupta, and J. A. Lozano, "Early classification of time series by simultaneously optimizing the



Fig. 13: Average Earliness vs. Average Kappa score obtain over the 45 datasets by varying the slope of the time cost, such as  $\alpha \in [10^{-3},1]$ .



Fig. 14: Comparison of ECONOMY approaches for  $\alpha$  = 0.001 using (a) Nemenyi and (b) Wilcoxon signed-rank tests



Fig. 15: Comparison of ECONOMY approaches for  $\alpha$  = 0.01 using (a) Nemenyi and (b) Wilcoxon signed-rank tests



Fig. 16: Comparison of ECONOMY approaches for  $\alpha = 0.1$  using (a) Nemenyi and (b) Wilcoxon signed-rank tests



Fig. 17: Comparison of ECONOMY approaches for  $\alpha$  = 0.2 using (a) Nemenyi and (b) Wilcoxon signed-rank tests



Fig. 18: Comparison of ECONOMY approaches for  $\alpha$  = 0.3 using (a) Nemenyi and (b) Wilcoxon signed-rank tests



Fig. 19: Comparison of ECONOMY approaches for  $\alpha$  = 0.4 using (a) Nemenyi and (b) Wilcoxon signed-rank tests



Fig. 20: Comparison of ECONOMY approaches for  $\alpha$  = 0.5 using (a) Nemenyi and (b) Wilcoxon signed-rank tests



Fig. 21: Comparison of ECONOMY approaches for  $\alpha = 0.6$  using (a) Nemenyi and (b) Wilcoxon signed-rank tests



Fig. 22: Comparison of ECONOMY approaches for  $\alpha$  = 0.7 using (a) Nemenyi and (b) Wilcoxon signed-rank tests



Fig. 23: Comparison of ECONOMY approaches for  $\alpha$  = 0.8 using (a) Nemenyi and (b) Wilcoxon signed-rank tests



Fig. 24: Comparison of ECONOMY approaches for  $\alpha$  = 0.9 using (a) Nemenyi and (b) Wilcoxon signed-rank tests



Fig. 25: Comparison of ECONOMY approaches for  $\alpha$  = 1 using (a) Nemenyi and (b) Wilcoxon signed-rank tests

accuracy and earliness," *IEEE transactions on neural networks and learning systems*, vol. 29, no. 10, pp. 4569–4578, 2017.