Gradual Intersection Types

Pedro Ângelo, Mário Florido February 9, 2018

1 Language Definition

Syntax

```
Types \ I ::= \ Int \mid Bool \mid Dyn \mid I \rightarrow T \mid I \cap \ldots \cap I
            T ::= Int \mid Bool \mid Dyn \mid T \rightarrow T
Ground\ Types\ G\ ::=\ Int\ |\ Bool\ |\ Dyn\to Dyn
Casts \ c \ ::= c : T \Rightarrow^l T^{\ cl} \mid blame \ T \ T^{\ l^{\ cl}} \mid \varnothing \ T^{\ cl}
Expressions e := x \mid \lambda x : I \cdot e \mid e \mid e \mid n \mid true \mid false
                              |e:c\cap\ldots\cap c| blame<sub>I</sub> l
Cast\ Values\ cv:=cv1\mid cv2
                      cv1 ::= \varnothing \ T^{\ cl} : G \Rightarrow^l Dyn^{\ cl}
                                  \mid \varnothing \ T^{\ cl}: T_1 \to T_2 \Rightarrow^l T_3 \to T_4^{\ cl}
                                  |cv1:G\Rightarrow^l Dyn^{cl}
                                  |cv1:T_1 \to T_2 \Rightarrow^l T_3 \to T_4<sup>cl</sup>
                       cv2 \ ::= blame \ T \ l^{\ cl}
                                  \mid \varnothing T^{cl} \mid
Values \ v \ ::= x \mid \lambda x : I \ . \ e \mid n \mid true \mid false \mid blame_I \ l
                     |v:cv_1\cap\ldots\cap cv_n| such that
                      \neg(\forall_{i\in 1...n} \ . \ cv_i = blame \ T \ l^{cl}) \land
                       \neg(\forall_{i\in 1..n} \ . \ cv_i = \varnothing \ T^{cl})
```

Figure 1: Gradual Intersection System

Figure 2: Gradual Intersection Type System $(\vdash_{\cap G})$

 $x \sqsubseteq x$

$$\begin{array}{c} \operatorname{Static} \operatorname{type} \operatorname{system} \; (\Gamma \vdash_{\cap S} e : T) \operatorname{rules} \operatorname{and} \\ \\ \frac{\Gamma \vdash_{\cap CC} e_1 : T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2} \qquad \Gamma \vdash_{\cap CC} e_2 : T_{11} \cap \ldots \cap T_{n1}}{\Gamma \vdash_{\cap CC} e_1 e_2 : T_{12} \cap \ldots \cap T_{n2}} \text{ T-App'} \\ \\ \frac{\Gamma \vdash_{\cap CC} e : T \qquad \vdash_{\cap IC} c_1 : T_1 \quad \ldots \vdash_{\cap IC} c_n : T_n}{\operatorname{initialType}(c_1) \cap \ldots \cap \operatorname{initialType}(c_n) = T} \text{ T-IntersectionCast} \\ \hline \Gamma \vdash_{\cap CC} e : c_1 \cap \ldots \cap c_n : T_1 \cap \ldots \cap T_n} \text{ T-Blame} \\ \\ \hline \operatorname{initialType}(c) = T \\ \\ \operatorname{initialType}(c : T_1 \Rightarrow^l T_2 \stackrel{el}{=}) = \operatorname{initialType}(c) \\ \operatorname{initialType}(blame T_l T_F l \stackrel{el}{=}) = T_l \\ \\ \operatorname{finalType}(c) = T \\ \\ \hline \operatorname{finalType}(c : T_1 \Rightarrow^l T_2 \stackrel{el}{=}) = T_2 \\ \\ \operatorname{finalType}(blame T_l T_F l \stackrel{el}{=}) = T_F \\ \\ \end{array}$$

Figure 3: Intersection Cast Calculus $(\vdash_{\cap CC})$

 $\Gamma \vdash_{\cap CC} e \leadsto e : T \mid \text{Compilation}$ $\frac{x:T\in\Gamma}{\Gamma\vdash_{\cap CC}x\leadsto x:T}\text{ C-Var}$ $\frac{\Gamma, x: T_1 \cap \ldots \cap T_n \vdash_{\cap CC} e \leadsto e': T}{\Gamma \vdash_{\cap CC} (\lambda x: T_1 \cap \ldots \cap T_n \cdot e) \leadsto (\lambda x: T_1 \cap \ldots \cap T_n \cdot e'): T_1 \cap \ldots \cap T_n \to T} \text{ C-Abs}$ $\frac{\Gamma, x : T_i \vdash_{\cap CC} e \leadsto e' : T}{\Gamma \vdash_{\cap CC} (\lambda x : T_1 \cap \ldots \cap T_n \cdot e) \leadsto (\lambda x : T_1 \cap \ldots \cap T_n \cdot e') : T_i \to T} \text{ C-Abs'}$ $\frac{\Gamma \vdash_{\cap CC} e \leadsto e' : T_1 \ \dots \ \Gamma \vdash_{\cap CC} e \leadsto e' : T_n}{\Gamma \vdash_{\cap CC} e \leadsto e' : T_1 \cap \dots \cap T_n} \text{ C-Gen} \qquad \frac{\Gamma \vdash_{\cap CC} e \leadsto e' : T_1 \cap \dots \cap T_n}{\Gamma \vdash_{\cap CC} e \leadsto e' : T_i} \text{ C-Inst}$ $\frac{}{\Gamma \vdash_{\cap CC} true \leadsto true : Bool} \text{ C-True}$ $\frac{\Gamma \vdash_{\bigcirc CC} n \rightsquigarrow n : Int}{\Gamma \vdash_{\bigcirc CC} n \rightsquigarrow n : Int}$ C-Int $\frac{}{\Gamma \vdash_{\bigcirc GC} false \leadsto false : Bool} \text{ C-False}$ $instances(T) = \{T\}$ $instances(Int) = \{Int\}$ $instances(Bool) = \{Bool\}$ $instances(Dyn) = \{Dyn\}$ $\frac{instances(T_1) = \{T_{11}, \dots, T_{1n}\}}{instances(T_1 \to T_2) = \{T_{11} \to T_2, \dots, T_{1n} \to T_2\}}$ $instances(T_1) = \{T_{11}, \dots, T_{1m}\} \dots instances(T_n) = \{T_{n1}, \dots, T_{nj}\}$ $instances(T_1 \cap \ldots \cap T_n) = \{T_{11}, \ldots, T_{1m}, \ldots, T_{n1}, \ldots, T_{ni}\}$ $S, S, e \hookrightarrow e$

$$\{T_{1}\}, \ \{T_{2}\}, \ e \hookrightarrow e : (\varnothing \ T_{1}^{\ 0} : T_{1} \Rightarrow^{l} T_{2}^{\ 0})$$

$$\{T_{11}, \dots, T_{1n}\}, \ \{T_{21}, \dots, T_{2n}\}, \ e \hookrightarrow e : (\varnothing \ T_{11}^{\ 0} : T_{11} \Rightarrow^{l_{1}} T_{21}^{\ 0}) \cap \dots \cap (\varnothing \ T_{1n}^{\ 0} : T_{1n} \Rightarrow^{l_{n}} T_{2n}^{\ 0})$$

$$\{T_{11}, \dots, T_{1n}\}, \ \{T_{2}\}, \ e \hookrightarrow e : (\varnothing \ T_{11}^{\ 0} : T_{11} \Rightarrow^{l_{1}} T_{2}^{\ 0}) \cap \dots \cap (\varnothing \ T_{1n}^{\ 0} : T_{1n} \Rightarrow^{l_{n}} T_{2}^{\ 0})$$

$$\{T_{1}\}, \ \{T_{21}, \dots, T_{2n}\}, \ e \hookrightarrow e : (\varnothing \ T_{1}^{\ 0} : T_{1} \Rightarrow^{l_{1}} T_{21}^{\ 0}) \cap \dots \cap (\varnothing \ T_{1}^{\ 0} : T_{1} \Rightarrow^{l_{n}} T_{2n}^{\ 0})$$

Figure 4: Compilation to the Cast Calculus

$e \longrightarrow_{\cap CC} e$ Evaluation

$$\frac{e_1 \longrightarrow_{\cap CC} e'_1}{e_1 \ e_2 \longrightarrow_{\cap CC} e'_1 \ e_2} \text{ E-App1} \qquad \frac{e_2 \longrightarrow_{\cap CC} e'_2}{v_1 \ e_2 \longrightarrow_{\cap CC} v_1 \ e'_2} \text{ E-App2}$$

$$\frac{(\lambda x : T_1 \cap \ldots \cap T_n \ . \ e) \ v \longrightarrow_{\cap CC} [x \mapsto v] e}{e \longrightarrow_{\cap CC} e'}$$

$$\frac{e \longrightarrow_{\cap CC} e'}{e : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} e' : c_1 \cap \ldots \cap c_n} \text{ E-Evaluate}$$

Simulate casts on data types

$$\frac{is \ value \ (v_1: cv_1 \cap \ldots \cap cv_n) \quad \exists i \in 1..n \ . \ is Arrow Compatible (cv_i)}{((c_{11}, c_{12}, c_1^s), \ldots, (c_{m1}, c_{m2}, c_m^s)) = simulate Arrow (cv_1, \ldots, cv_n)}{(v_1: cv_1 \cap \ldots \cap cv_n) \ v_2 \longrightarrow_{\cap CC} (v_1: c_1^s \cap \ldots \cap c_m^s) \ (v_2: c_{11} \cap \ldots \cap c_{m1}) : c_{12} \cap \ldots \cap c_{m2} }$$
 E-Simulate Arrow

$Merge\ casts$

$$\frac{s \ value \ (v: cv_1 \cap \ldots \cap cv_n)}{v: c''_1 \cap \ldots \cap c''_j = mergeCasts (v: cv_1 \cap \ldots \cap cv_n : c'_1 \cap \ldots \cap c'_m)}{v: cv_1 \cap \ldots \cap cv_n : c'_1 \cap \ldots \cap c'_m \longrightarrow_{\cap CC} v: c''_1 \cap \ldots \cap c''_j} \text{ E-MergeCasts}$$

Evaluate intersection casts

$$\frac{\neg(\forall i \in 1..n \ . \ is \ cast \ value \ c_i) \qquad c_1 \longrightarrow_{\cap IC} cv_1 \ ... \ c_n \longrightarrow_{\cap IC} cv_n}{v: c_1 \cap ... \cap c_n \longrightarrow_{\cap CC} v: cv_1 \cap ... \cap cv_n} \text{ E-Evaluate Casts}$$

Transition from cast values to values

$$\frac{1}{v: \mathit{blame}\ I_1\ F_1\ l_1\ ^{\mathit{cl}_1}\cap\ldots\cap\mathit{blame}\ I_n\ F_n\ l_n\ ^{\mathit{cl}_n}\longrightarrow_{\cap CC}\mathit{blame}_{(F_1\cap\ldots\cap F_n)}\ l_1} }{v:\varnothing\ T_1\ ^{\mathit{cl}_1}\cap\ldots\cap\varnothing\ T_n\ ^{\mathit{cl}_n}\longrightarrow_{\cap CC}v} } \\ = \frac{1}{v:\varnothing\ T_1\ ^{\mathit{cl}_1}\cap\ldots\cap\varnothing\ T_n\ ^{\mathit{cl}_n}\longrightarrow_{\cap CC}v} }$$

Figure 5: Cast Calculus Semantics $(\longrightarrow_{\cap CC})$

$$\begin{array}{c} \overline{\langle c \rangle^{cl}} = \mathbf{c} \\ \\ \langle c : T_1 \Rightarrow^l T_2 \ ^{cl} \rangle^{cl'} = \langle c \rangle^{cl'} : T_1 \Rightarrow^l T_2 \ ^{cl'} \\ \\ \langle blame \ T_I \ T_F \ l \ ^{cl'} \rangle^{cl} = blame \ T_I \ T_F \ l \ ^{cl} \\ \\ \langle \varnothing \ T \ ^{cl'} \rangle^{cl} = \varnothing \ T \ ^{cl} \end{array}$$

isArrowCompatible(c) = Bool

$$isArrowCompatible(c: T_{11} \rightarrow T_{12} \Rightarrow^{l} T_{21} \rightarrow T_{22} \stackrel{cl}{}) = isArrowCompatible(c)$$

 $isArrowCompatible(\varnothing (T_{1} \rightarrow T_{2}) \stackrel{cl}{}) = True$

separateIntersectionCast(c) = (c, c)

$$separateIntersectionCast(c:T_1 \Rightarrow^l T_2 \stackrel{cl}{}) = (\varnothing \ T_1 \stackrel{cl}{}: T_1 \Rightarrow^l T_2 \stackrel{cl}{}, c)$$

$$separateIntersectionCast(\varnothing \ T \stackrel{cl}{}) = (\varnothing \ T \stackrel{cl}{}, \varnothing \ T \stackrel{cl}{})$$

breakdownArrowType(c) = (c, c)

$$breakdownArrowType(\varnothing\ T_{11}\rightarrow T_{12}\ ^{cl}:T_{11}\rightarrow T_{12}\Rightarrow ^{l}T_{21}\rightarrow T_{22}\ ^{cl})=\\ (\varnothing\ T_{21}\ ^{cl}:T_{21}\Rightarrow ^{l}T_{11}\ ^{cl},\varnothing\ T_{12}\ ^{cl}:T_{12}\Rightarrow ^{l}T_{22}\ ^{cl})$$

$$breakdownArrowType(\varnothing\ T_{1}\rightarrow T_{2}\ ^{cl})=(\varnothing\ T_{1}\ ^{cl},\varnothing\ T_{2}\ ^{cl})$$

simulateArrow
$$(c_1, \ldots, c_n) = ((c_{11}, c_{12}, c_1^s), \ldots, (c_{m1}, c_{m2}, c_m^s))$$

$$(c_1', \ldots, c_m') = filter \ isArrowCompatible \ (c_1, \ldots, c_n)$$

$$((c_1^f, c_1^s), \ldots, (c_m^f, c_m^s)) = map \ separateIntersectionCast \ (\langle c_1' \rangle^0, \ldots, \langle c_m' \rangle^0)$$

$$\underline{((c_{11}, c_{12}), \ldots, (c_{m1}, c_{m2})) = map \ breakdownArrowType \ (\langle c_1^f \rangle^1, \ldots, \langle c_m^f \rangle^m)}$$

$$simulateArrow(c_1, \ldots, c_n) = ((c_{11}, c_{12}, c_1^s), \ldots, (c_{m1}, c_{m2}, c_m^s))$$

Figure 6: Definitions for auxiliary semantic functions

```
\begin{split} \text{getCastLabel}(c) &= \text{cl} \\ \\ \text{getCastLabel}(c: T_1 \Rightarrow^l T_2 \ ^{cl}) &= cl \\ \\ \text{getCastLabel}(blame \ T_I \ T_F \ l \ ^{cl}) &= cl \\ \\ \text{getCastLabel}(o \ T \ ^{cl}) &= cl \\ \\ \text{sameCastLabel}(c, c) &= \text{Bool} \\ \\ \text{sameCastLabel}(c_1, c_2) &= \text{getCastLabel}(c_1) &== 0 \\ \\ \text{sameCastLabel}(c_1, c_2) &= \text{getCastLabel}(c_2) &== 0 \\ \\ \text{sameCastLabel}(c_1, c_2) &= \text{getCastLabel}(c_1) &== \text{getCastLabel}(c_2) \\ \\ \text{joinCasts}(c, c) &= c \\ \\ \text{joinCasts}(blame \ T_I \ T_F \ l^{cl}, c) &= blame \ T_I \ T_F \ l^{cl} \\ \\ \text{getCastLabel}(\varnothing \ T^{cl}, c) &= blame \ T_I \ T_F \ l^{cl} \\ \\ \text{getCastLabel}(\varnothing \ T^{cl}, c) &= \langle c \rangle^{cl} \\ \\ \hline \\ \text{mergeCasts}(e) &= e \\ \\ \frac{(c'_1, \ldots, c'_o)}{sameCastLabel} \ y \ x \ \& x \ initialType(y) &= finalType(x)] \\ \hline \\ \text{mergeCasts}(e) &= c : c'_1 \cap \ldots \cap c'_o \\ \\ \hline \end{array}
```

Figure 7: Definitions for auxiliary semantic functions

$$\frac{\vdash_{\cap IC} c:T}{\vdash_{\cap IC} (c:T_1 \longrightarrow {}^l T_2 \stackrel{cl}{=}):T_2} \text{ T-SingleIC} \qquad \frac{\vdash_{\cap IC} blame \ T_I \ T_F \ l \stackrel{cl}{=}:T_F} }{\vdash_{\cap IC} (c:T_1 \Rightarrow^l T_2 \stackrel{cl}{=}):T_2} \text{ T-BlameIC}$$

$$\overline{\vdash_{\cap IC} \varnothing \ T \stackrel{cl}{=}:T} \text{ T-EmptyIC}$$
 Figure 8: Intersection Casts Type System $(\vdash_{\cap IC})$

Push blame to top level

$$\overline{blame~T_I~T_F~l_1~^{cl_1}:T_1\Rightarrow^{l_2}T_2~^{cl_2}\longrightarrow_{\cap IC}blame~T_I~T_2~l_1~^{cl_1}}~\text{E-PushBlameIC}$$

 $Evaluate\ inside\ casts$

$$\frac{\neg(is\; cast\; value\; c) \qquad c \longrightarrow_{\cap IC} c'}{c: T_1 \Rightarrow^l T_2 \stackrel{cl}{} \longrightarrow_{\cap IC} c': T_1 \Rightarrow^l T_2 \stackrel{cl}{}} \; \text{E-EvaluateIC}$$

Detect success or failure of casts

$$\frac{is \ cast \ value \ 1 \ c \lor is \ empty \ cast \ c}{c: T \Rightarrow^l T \stackrel{cl}{\longrightarrow}_{\cap IC} c} \to \text{E-IdentityIC}$$

$$\frac{is\; cast\; value\; 1\; c \vee is\; empty\; cast\; c}{c:G\Rightarrow^{l_1}Dyn\stackrel{cl_1}{\Rightarrow^{l_2}}Dyn\Rightarrow^{l_2}G\stackrel{cl_2}{\longrightarrow}_{\cap IC}c}\; \text{E-Succeedic}$$

$$\frac{is \ cast \ value \ 1 \ c \lor is \ empty \ cast \ c}{c: G_1 \Rightarrow^{l_1} Dyn^{\ cl_1}: Dyn \Rightarrow^{l_2} G_2 \xrightarrow{cl_2} \longrightarrow_{\cap IC} blame \ T_I \ G_2 \ l_2 \xrightarrow{cl_1}} \text{ E-FailIC}$$

Mediate the transition between the two disciplines

$$\frac{is \ cast \ value \ 1 \ c \lor is \ empty \ cast \ c}{c: T \Rightarrow^l Dyn^{\ cl} \longrightarrow_{\cap IC} c: T \Rightarrow^l G^{\ cl}: G \Rightarrow^l Dyn^{\ cl}} \xrightarrow{} \text{E-GroundIC}$$

$$\frac{is \ cast \ value \ 1 \ c \lor is \ empty \ cast \ c}{c: Dyn \Rightarrow^l T \ ^{cl} \longrightarrow_{\cap IC} c: Dyn \Rightarrow^l G \ ^{cl}: G \Rightarrow^l T \ ^{cl}} \ \text{E-ExpandIC}$$

Figure 9: Intersection Casts Semantics $(\longrightarrow_{\cap IC})$

2 Proofs

Lemma 1 (Consistency reduces to equality when comparing static types). If T_1 and T_2 are static types then $T_1 = T_2 \iff T_1 \sim T_2$.

Proof. We proceed by structural induction on T.

Base cases:

- $T_1 = Int$.
 - If Int = Int then, by the definition of \sim , $Int \sim Int$.
 - If $Int \sim Int$, then Int = Int.
- $T_1 = Bool$.
 - If Bool = Bool then, by the definition of \sim , $Bool \sim Bool$.
 - If $Bool \sim Bool$, then Bool = Bool.

Induction step:

- $T_1 = T_{11} \to T_{12}$.
 - If $T_{11} \to T_{12} = T_{21} \to T_{22}$, for some T_{21} and T_{22} , then $T_{11} = T_{21}$ and $T_{12} = T_{22}$. By the induction hypothesis, $T_{11} \sim T_{21}$ and $T_{12} \sim T_{22}$. Therefore, by the definition of \sim , $T_{11} \to T_{12} \sim T_{21} \to T_{22}$.
 - If $T_{11} \to T_{12} \sim T_2$, then by the definition of \sim , $T_2 = T_{21} \to T_{22}$ and $T_{11} \sim T_{21}$ and $T_{12} \sim T_{22}$. By the induction hypothesis, $T_{11} = T_{21}$ and $T_{12} = T_{22}$. Therefore, $T_{11} \to T_{12} = T_{21} \to T_{22}$.
- $T_1 = T_{11} \cap ... \cap T_{1n}$.
 - If $T_{11} \cap \ldots \cap T_{1n} = T_2$, then $\exists T_{21} \ldots T_{2n}$. $T_2 = T_{21} \cap \ldots \cap T_{2n}$ and $T_{11} = T_{21}$ and ... and $T_{1n} = T_{2n}$. By the induction hypothesis, $T_{11} \sim T_{21}$ and ... and $T_{1n} \sim T_{2n}$. Therefore, by the definition of \sim , $T_{11} \cap \ldots \cap T_{1n} \sim T_{21} \cap \ldots \cap T_{2n}$.
 - If $T_{11} \cap \ldots \cap T_{1n} \sim T_2$, then either:
 - * $\exists T_{21} ... T_{2n} . T_2 = T_{21} \cap ... \cap T_{2n}$ and $T_{11} \sim T_{21}$ and ... and $T_{1n} \sim T_{2n}$. By the induction hypothesis, $T_{11} = T_{21}$ and ... and $T_{1n} = T_{2n}$. Therefore, $T_{11} \cap ... \cap T_{1n} = T_{21} \cap ... \cap T_{2n}$.
 - * $T_{11} \sim T_2$ and ... and $T_{1n} \sim T_2$. By the induction hypothesis, $T_{11} = T_2$ and ... and $T_{1n} = T_2$. As $T_2 \cap \ldots \cap T_2 = T_2$, then $T_{11} \cap \ldots \cap T_{1n} = T_2$.

Theorem 1 (Conservative Extension). Depends on Lemma 1. If e is fully static and T is a static type, then $\Gamma \vdash_{\cap S} e : T \iff \Gamma \vdash_{\cap G} e : T$.

Proof. We proceed by induction on the length of the derivation tree of $\vdash_{\cap S}$ and $\vdash_{\cap G}$ for the right and left direction of the implication, respectively.

Base case:

- Rule T-Var.
 - If $\Gamma \vdash_{\cap S} x : T$, then $x : T \in \Gamma$. Therefore, $\Gamma \vdash_{\cap G} x : T$.
 - If $\Gamma \vdash_{\cap G} x : T$, then $x : T \in \Gamma$. Therefore, $\Gamma \vdash_{\cap S} e : T$.
- Rule T-Int.
 - If $\Gamma \vdash_{\cap S} n : Int$, then $\Gamma \vdash_{\cap G} n : Int$.
 - If $\Gamma \vdash_{\cap G} n : Int$, then $\Gamma \vdash_{\cap S} n : Int$.
- Rule T-True.
 - If $\Gamma \vdash_{\cap S} true : Bool$, then $\Gamma \vdash_{\cap G} true : Bool$.
 - If $\Gamma \vdash_{\cap G} true : Bool$, then $\Gamma \vdash_{\cap S} true : Bool$.
- Rule T-False.
 - If $\Gamma \vdash_{\cap S} false : Bool$, then $\Gamma \vdash_{\cap G} false : Bool$.
 - If $\Gamma \vdash_{\cap G} false : Bool$, then $\Gamma \vdash_{\cap S} false : Bool$.

- Rule T-Abs.
 - If $\Gamma \vdash_{\cap S} \lambda x : T_1 \cap \ldots \cap T_n : e : T_1 \cap \ldots \cap T_n \rightarrow T$, then $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap S} e : T$. By the induction hypothesis, $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap G} e : T$. Therefore, $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n : e : T_1 \cap \ldots \cap T_n \rightarrow T$.
 - If $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n : e : T_1 \cap \ldots \cap T_n \rightarrow T$, then $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap G} e : T$. By the induction hypothesis, $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap S} e : T$. Therefore, $\Gamma \vdash_{\cap S} \lambda x : T_1 \cap \ldots \cap T_n : e : T_1 \cap \ldots \cap T_n \rightarrow T$.
- Rule T-Abs'.
 - If $\Gamma \vdash_{\cap S} \lambda x : T_1 \cap \ldots \cap T_n : e : T_i \to T$, then $\Gamma, x : T_i \vdash_{\cap S} e : T$. By the induction hypothesis, $\Gamma, x : T_i \vdash_{\cap G} e : T$. Therefore, $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n : e : T_i \to T$.
 - If $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n : e : T_i \to T$, then $\Gamma, x : T_i \vdash_{\cap G} e : T$. By the induction hypothesis, $\Gamma, x : T_i \vdash_{\cap S} e : T$. Therefore, $\Gamma \vdash_{\cap S} \lambda x : T_1 \cap \ldots \cap T_n : e : T_i \to T$.
- Rule T-App.
 - If $\Gamma \vdash_{\cap S} e_1 e_2 : T$ then $\Gamma \vdash_{\cap S} e_1 : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap S} e_2 : T_1 \cap \ldots \cap T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap G} e_1 : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap G} e_2 : T_1 \cap \ldots \cap T_n$. By the definition of \triangleright , $T_1 \cap \ldots \cap T_n \to T \triangleright T_1 \cap \ldots \cap T_n \to T$. By the definition of consistency $(T \sim T), T_1 \cap \ldots \cap T_n \sim T_1 \cap \ldots \cap T_n$. Therefore, $\Gamma \vdash_{\cap G} e_1 e_2 : T$.
 - If $\Gamma \vdash_{\cap G} e_1 e_2 : T$ then $\Gamma \vdash_{\cap G} e_1 : PM$, $PM \rhd T_1 \cap \ldots \cap T_n \to T$, $\Gamma \vdash_{\cap G} e_2 : T'_1 \cap \ldots \cap T'_n$ and $T'_1 \cap \ldots \cap T'_n \sim T_1 \cap \ldots \cap T_n$. By the definition of \rhd , $PM = T_1 \cap \ldots \cap T_n \to T$, therefore $\Gamma \vdash_{\cap G} e_1 : T_1 \cap \ldots \cap T_n \to T$. By Lemma 1, $T'_1 \cap \ldots \cap T'_n = T_1 \cap \ldots \cap T_n$, and therefore $\Gamma \vdash_{\cap G} e_2 : T_1 \cap \ldots \cap T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap S} e_1 : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap S} e_2 : T_1 \cap \ldots \cap T_n$. Therefore, $\Gamma \vdash_{\cap S} e_1 e_2 : T$.
- Rule T-Gen.

- If $\Gamma \vdash_{\cap S} e : T_1 \cap \ldots \cap T_n$ then $\Gamma \vdash_{\cap S} e : T_1$ and ... and $\Gamma \vdash_{\cap S} e : T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap G} e : T_1$ and ... and $\Gamma \vdash_{\cap G} e : T_n$. Therefore, $\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n$.
- If $\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n$ then $\Gamma \vdash_{\cap G} e : T_1$ and ... and $\Gamma \vdash_{\cap G} e : T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap S} e : T_1$ and ... and $\Gamma \vdash_{\cap S} e : T_n$. Therefore $\Gamma \vdash_{\cap S} e : T_1 \cap \ldots \cap T_n$.
- Rule T-Inst.
 - If $\Gamma \vdash_{\cap S} e : T_i$ then $\Gamma \vdash_{\cap S} e : T_1 \cap ... \cap T_n$, such that $T_i \in \{T_1, ..., T_n\}$. By the induction hypothesis, $\Gamma \vdash_{\cap G} e : T_1 \cap ... \cap T_n$. As $T_i \in \{T_1, ..., T_n\}$, then $\Gamma \vdash_{\cap G} e : T_i$.
 - If $\Gamma \vdash_{\cap G} e : T_i$ then $\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n$, such that $T_i \in \{T_1, \ldots, T_n\}$. By the induction hypothesis, $\Gamma \vdash_{\cap S} e : T_1 \cap \ldots \cap T_n$. As $T_i \in \{T_1, \ldots, T_n\}$, then $\Gamma \vdash_{\cap S} e : T_i$.

Theorem 2 (Monotonicity w.r.t. precision). If $\Gamma \vdash_{\cap G} e : T$ and $e' \sqsubseteq e$ then $\Gamma \vdash_{\cap G} e' : T'$ and $T' \sqsubseteq T$.

Proof. We proceed by induction on the length of the derivation tree of $\Gamma \vdash_{\cap G} e : T$.

Base case:

- Rule T-Var. If $\Gamma \vdash_{\cap G} x : T$ and $x \sqsubseteq x$, then $\Gamma \vdash_{\cap G} x : T$ and $T \sqsubseteq T$.
- Rule T-Int. If $\Gamma \vdash_{\cap G} n : Int$ and $n \sqsubseteq n$, then $\Gamma \vdash_{\cap G} n : Int$ and $Int \sqsubseteq Int$.
- Rule T-True. If $\Gamma \vdash_{\cap G} true : Bool$ and $true \sqsubseteq true$, then $\Gamma \vdash_{\cap G} true : Bool$ and $Bool \sqsubseteq Bool$.
- Rule T-False. If $\Gamma \vdash_{\cap G} false : Bool$ and $false \sqsubseteq false$, then $\Gamma \vdash_{\cap G} false : Bool$ and $Bool \sqsubseteq Bool$.

- Rule T-Abs. If $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_1 \cap \ldots \cap T_n \to T$ and $\lambda x : T'_1 \cap \ldots \cap T'_n \cdot e' \sqsubseteq \lambda x : T_1 \cap \ldots \cap T_n \cdot e$, then $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap G} e : T, T'_1 \cap \ldots \cap T'_n \sqsubseteq T_1 \cap \ldots \cap T_n$ and $e' \sqsubseteq e$. By the induction hypothesis, $\Gamma, x : T'_1 \cap \ldots \cap T'_n \vdash_{\cap G} e' : T'$ and $T' \sqsubseteq T$. As $\Gamma \vdash_{\cap G} \lambda x : T'_1 \cap \ldots \cap T'_n \cdot e' : T'_1 \cap \ldots \cap T'_n \to T'$, and by the definition of $\Gamma, T'_1 \cap \ldots \cap T'_n \to T'$ $T' \subseteq T_1 \cap \ldots \cap T_n \to T$, then it is proved.
- Rule T-Abs'. If $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_i \to T \text{ and } \lambda x : T'_1 \cap \ldots \cap T'_n \cdot e' \sqsubseteq \lambda x : T_1 \cap \ldots \cap T_n \cdot e$, then $\Gamma, x : T_i \vdash_{\cap G} e : T, T'_1 \cap \ldots \cap T'_n \sqsubseteq T_1 \cap \ldots \cap T_n \text{ and } e' \sqsubseteq e$. By the induction hypothesis, $\Gamma, x : T'_i \vdash_{\cap G} e' : T' \text{ and } T' \sqsubseteq T$. As $\Gamma \vdash_{\cap G} \lambda x : T'_1 \cap \ldots \cap T'_n \cdot e' : T'_i \to T'$, and by the definition of \sqsubseteq , $T'_i \to T' \sqsubseteq T_i \to T$, then it is proved.
- Rule T-App. If $\Gamma \vdash_{\cap G} e_1 \ e_2 : T \ \text{and} \ e'_1 \ e'_2 \sqsubseteq e_1 \ e_2 \ \text{then} \ \Gamma \vdash_{\cap G} e_1 : PM, PM \rhd T_{11} \cap \ldots \cap T_{1n} \rightarrow T, \Gamma \vdash_{\cap G} e_2 : T_{21} \cap \ldots \cap T_{2n}, \text{ and } T_{21} \cap \ldots \cap T_{2n} \sim T_{11} \cap \ldots \cap T_{1n}, e'_1 \sqsubseteq e_1 \text{ and } e'_2 \sqsubseteq e_2. \text{ By the induction hypothesis, } \Gamma \vdash_{\cap G} e'_1 : PM' \ and \ PM' \sqsubseteq PM \ and \ PM' \rhd T'_{11} \cap \ldots \cap T'_{1n} \rightarrow T' \text{ and } \Gamma \vdash_{\cap G} e'_2 : T'_{21} \cap \ldots \cap T'_{2n} \ and \ T'_{21} \cap \ldots \cap T'_{2n} \ \exists \ T_{21} \cap \ldots \cap T_{2n} \ and \ T'_{21} \cap \ldots \cap T'_{2n} \sim T'_{11} \cap \ldots \cap T'_{1n}.$ By the definition of \sqsubseteq and \rhd , $T'_{11} \cap \ldots \cap T'_{1n} \rightarrow T' \sqsubseteq T_{11} \cap \ldots \cap T_{1n} \rightarrow T$, and therefore, $T' \sqsubseteq T$. As $\Gamma \vdash_{\cap G} e'_1 \ e'_2 : T'$, it is proved.
- Rule T-Gen. If $\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n$ and $e' \sqsubseteq e$, then $\Gamma \vdash_{\cap G} e : T_1$ and \ldots and $\Gamma \vdash_{\cap G} e : T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap G} e' : T'_1$ and $T'_1 \sqsubseteq T_1$ and \ldots and $\Gamma \vdash_{\cap G} e' : T'_n$ and $T'_n \sqsubseteq T_n$. Then, $\Gamma \vdash_{\cap G} e' : T'_1 \cap \ldots \cap T'_n$ and by the definition of \sqsubseteq , $T'_1 \cap \ldots \cap T'_n \sqsubseteq T_1 \cap \ldots \cap T_n$, then it is proved.

• Rule T-Inst. If $\Gamma \vdash_{\cap G} e : T_i$ and $e' \sqsubseteq e$, then $\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n$ such that $T_i \in \{T_1, \ldots, T_n\}$. By the induction hypothesis, $\Gamma \vdash_{\cap G} e' : T'_1 \cap \ldots \cap T'_n$ and $T'_1 \cap \ldots \cap T'_n \sqsubseteq T_1 \cap \ldots \cap T_n$. Therefore, $\Gamma \vdash_{\cap G} e' : T'_i$ and by the definition of \sqsubseteq , $T'_i \sqsubseteq T_i$, then it is proved.

Theorem 3 (Type preservation of cast insertion). If $\Gamma \vdash_{\cap G} e : T$ then $\Gamma \vdash_{\cap CC} e \leadsto e' : T$ and $\Gamma \vdash_{\cap CC} e' : T$.

Proof. We proceed by induction on the length of the derivation tree of $\Gamma \vdash_{\cap G} e : T$.

Base case:

- Rule T-Var. If $\Gamma \vdash_{\cap G} x : T$ then $x : T \in \Gamma$. As $\Gamma \vdash_{\cap CC} x \leadsto x : T$ and $\Gamma \vdash_{\cap CC} x : T$, it is proved.
- Rule T-Int. As $\Gamma \vdash_{\cap G} n : Int$, $\Gamma \vdash_{\cap CC} n \leadsto n : Int$ and $\Gamma \vdash_{\cap CC} n : Int$, it is proved.
- Rule T-True. As $\Gamma \vdash_{\cap G} true : Bool$, $\Gamma \vdash_{\cap CC} true \leadsto true : Bool$ and $\Gamma \vdash_{\cap CC} true : Bool$, it is proved.
- Rule T-False. As $\Gamma \vdash_{\cap G} false : Bool$, $\Gamma \vdash_{\cap CC} false \leadsto false : Bool$ and $\Gamma \vdash_{\cap CC} false : Bool$, it is proved.

Induction step:

- Rule T-Abs. If $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_1 \cap \ldots \cap T_n \to T$ then $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap G} e : T$. By the induction hypothesis, $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap CC} e \leadsto e' : T$ and $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap CC} e' : T$. As $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cap \ldots \cap T_n \cdot e \leadsto \lambda x : T_1 \cap \ldots \cap T_n \cdot e' : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cap \ldots \cap T_n \cdot e' : T_1 \cap \ldots \cap T_n \to T$, it is proved.
- Rule T-Abs'. If $\Gamma \vdash_{\cap G} \lambda x : T_1 \cap \ldots \cap T_n : e : T_i \to T \text{ then } \Gamma, x : T_i \vdash_{\cap G} e : T$. By the induction hypothesis, $\Gamma, x : T_i \vdash_{\cap CC} e \leadsto e' : T \text{ and } \Gamma, x : T_i \vdash_{\cap CC} e' : T$. As $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cap \ldots \cap T_n : e \leadsto \lambda x : T_1 \cap \ldots \cap T_n : e' : T_i \to T \text{ and } \Gamma \vdash_{\cap CC} \lambda x : T_1 \cap \ldots \cap T_n : e' : T_i \to T$, it is proved.
- Rule T-Gen. If $\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n$ then $\Gamma \vdash_{\cap G} e : T_1$ and \ldots and $\Gamma \vdash_{\cap G} e : T_n$. By the induction hypothesis, $\Gamma \vdash_{\cap CC} e \rightsquigarrow e' : T_1$ and \ldots and $\Gamma \vdash_{\cap CC} e \rightsquigarrow e' : T_n$, and $\Gamma \vdash_{\cap CC} e' : T_1$ and \ldots and $\Gamma \vdash_{\cap CC} e' : T_1 \cap \ldots \cap T_n$ and $\Gamma \vdash_{\cap CC} e' : T_1 \cap \ldots \cap T_n$.
- Rule T-Inst. If $\Gamma \vdash_{\cap G} e : T_i$ then $\Gamma \vdash_{\cap G} e : T_1 \cap \ldots \cap T_n$, such that $T_i \in \{T_1, \ldots, T_n\}$. By the induction hypothesis, $\Gamma \vdash_{\cap CC} e \leadsto e' : T_1 \cap \ldots \cap T_n$ and $\Gamma \vdash_{\cap CC} e' : T_1 \cap \ldots \cap T_n$. Therefore, $\Gamma \vdash_{\cap CC} e \leadsto e' : T_i$ and $\Gamma \vdash_{\cap CC} e' : T_i$.

Theorem 4 (Monotonicity of cast insertion). If $\Gamma \vdash_{\cap CC} e_1 \leadsto e'_1 : T$ and $\Gamma \vdash_{\cap CC} e_2 \leadsto e'_2 : T$ and $e_1 \sqsubseteq e_2$ then $e'_1 \sqsubseteq e'_2$.

Theorem 5 (Conservative Extension). If e is fully static, then $e \longrightarrow_{\cap S} e' \iff e \longrightarrow_{\cap CC} e'$.

Proof. We proceed by induction on the length of the derivation tree of $\longrightarrow_{\cap S}$ and $\longrightarrow_{\cap CC}$ for the right and left direction of the implication, respectively. Base case:

• Rule E-AppAbs. If $(\lambda x: T_1 \cap ... \cap T_n \cdot e) \ v \longrightarrow_{\cap S} [x \mapsto v]e$ and $(\lambda x: T_1 \cap ... \cap T_n \cdot e) \ v \longrightarrow_{\cap CC} [x \mapsto v]e$, then it is proved.

Induction step:

- Rule E-App1.
 - If $e_1 \ e_2 \longrightarrow_{\cap S} e'_1 \ e_2$ then $e_1 \longrightarrow_{\cap S} e'_1$. By the induction hypothesis, $e_1 \longrightarrow_{\cap CC} e'_1$. Therefore, $e_1 \ e_2 \longrightarrow_{\cap CC} e'_1 \ e_2$
 - If $e_1 \ e_2 \longrightarrow_{\cap CC} e'_1 \ e_2$ then $e_1 \longrightarrow_{\cap CC} e'_1$. By the induction hypothesis, $e_1 \longrightarrow_{\cap S} e'_1$. Therefore, $e_1 \ e_2 \longrightarrow_{\cap S} e'_1 \ e_2$
- Rule E-App2.
 - If $v_1 \ e_2 \longrightarrow_{\cap S} v_1 \ e_2'$ then $e_2 \longrightarrow_{\cap S} e_2'$. By the induction hypothesis, $e_2 \longrightarrow_{\cap CC} e_2'$. Therefore, $v_1 \ e_2 \longrightarrow_{\cap CC} v_1 \ e_2'$
 - If $v_1 \ e_2 \longrightarrow_{\cap CC} v_1 \ e_2'$ then $e_2 \longrightarrow_{\cap CC} e_2'$. By the induction hypothesis, $e_2 \longrightarrow_{\cap S} e_2'$. Therefore, $v_1 \ e_2 \longrightarrow_{\cap S} v_1 \ e_2'$

Lemma 2 (Type preservation of $\longrightarrow_{\cap IC}$). If $c \longrightarrow_{\cap IC} c$ and

- $\vdash_{\cap IC} c : T \ then \vdash_{\cap IC} c' : T$.
- initialType(c) = T then initialType(c') = T.

Proof. We proceed by induction on the length of the derivation tree of $\longrightarrow_{\cap IC}$.

Base cases:

- Rule E-PushBlameIC.
 - $\begin{array}{l} \vdash_{\cap IC} blame\ T_I\ T_F\ l_1\ ^{cl_1}: T_1 \Rightarrow^{l_2} T_2\ ^{cl_2}: T_2\ \text{and by rule E-PushBlameIC}, blame\ T_I\ T_F\ l_1\ ^{cl_1}: \\ T_1 \Rightarrow^{l_2} T_2\ ^{cl_2} \longrightarrow_{\cap IC} blame\ T_I\ T_2\ l_1\ ^{cl_1}: As \vdash_{\cap IC} blame\ T_I\ T_2\ l_1\ ^{cl_1}: T_2, \ \text{then it is proved}. \end{array}$
 - By the definition of initial Type, $initial Type(blame\ T_I\ T_F\ l_1\ ^{cl_1}: T_1 \Rightarrow^{l_2} T_2\ ^{cl_2}) = T_I.$ By rule E-PushBlameIC, $blame\ T_I\ T_F\ l_1\ ^{cl_1}: T_1 \Rightarrow^{l_2} T_2\ ^{cl_2} \longrightarrow_{\cap IC} blame\ T_I\ T_2\ l_1\ ^{cl_1}.$ Since $initial Type(blame\ T_I\ T_2\ l_1\ ^{cl_1}) = T_I$, it is proved.
- Rule E-IdentityIC.
 - If $\vdash_{\cap IC} c: T \Rightarrow^l T^{cl}: T$, then $\vdash_{\cap IC} c: T$. By rule E-IdentityIC, $c: T \Rightarrow^l T^{cl} \longrightarrow_{\cap IC} c$. Therefore it is proved.
 - By the definitions of initial Type, $initial Type(c:T\Rightarrow^l T^{cl})=initial Type(c)$. By rule E-IdentityIC, $c:T\Rightarrow^l T^{cl}\longrightarrow_{\cap IC} c$. Therefore it is proved.

• Rule E-SucceedIC.

- If $\vdash_{\cap IC} c: G \Rightarrow^{l_1} Dyn \stackrel{cl_1}{:} Dyn \Rightarrow^{l_2} G \stackrel{cl_2}{:} G$, then $\vdash_{\cap IC} c: G$. By rule E-SucceedIC, $c: G \Rightarrow^{l_1} Dyn \stackrel{cl_1}{:} Dyn \Rightarrow^{l_2} G \stackrel{cl_2}{:} \longrightarrow_{\cap IC} c$. Therefore it is proved.
- Rule E-SucceedIC. By the definition of initialType, $initialType(c: G \Rightarrow^{l_1} Dyn^{cl_1}: Dyn \Rightarrow^{l_2} G^{cl_2}) = initialType(c)$. By rule E-SucceedIC, $c: G \Rightarrow^{l_1} Dyn^{cl_1}: Dyn \Rightarrow^{l_2} G^{cl_2} \longrightarrow_{\cap IC} c$. Therefore it is proved.

• Rule E-FailIC.

- If $\vdash_{\cap IC} c: G_1 \Rightarrow^{l_1} Dyn \stackrel{cl_1}{:} Dyn \Rightarrow^{l_2} G_2 \stackrel{cl_2}{:} G_2$, and by rule E-FailIC, $c: G_1 \Rightarrow^{l_1} Dyn \stackrel{cl_1}{:} Dyn \Rightarrow^{l_2} G_2 \stackrel{cl_2}{:} \longrightarrow_{\cap IC} blame T_I G_2 l_2 \stackrel{cl_1}{:} and \vdash_{\cap IC} blame T_I G_2 l_2 \stackrel{cl_1}{:} G_2$, it is proved.
- By the definition of initial Type, $initial Type(c:G_1 \Rightarrow^{l_1} Dyn^{cl_1}:Dyn \Rightarrow^{l_2} G_2^{cl_2}) = T_I$. By rule E-FailIC, $c:G_1 \Rightarrow^{l_1} Dyn^{cl_1}:Dyn \Rightarrow^{l_2} G_2^{cl_2} \longrightarrow_{\cap IC} blame\ T_I\ G_2\ l_2^{cl_1}$. Since $initial Type(blame\ T_I\ G_2\ l_2^{cl_1}) = T_I$, it is proved.

• Rule E-GroundIC.

- If $\vdash_{\cap IC} c: T \Rightarrow^l Dyn^{-cl}: Dyn$ then $\vdash_{\cap IC} c: T$. By rule E-GroundIC, $c: T \Rightarrow^l Dyn^{-cl} \longrightarrow_{\cap IC} c: T \Rightarrow^l G^{-cl}: G \Rightarrow^l Dyn^{-cl}$. As $\vdash_{\cap IC} c: T \Rightarrow^l G^{-cl}: G \Rightarrow^l Dyn^{-cl}: Dyn$, it is proved.
- By the definition of initialType, $initialType(c:T\Rightarrow^l Dyn^{cl})=initialType(c)$. By rule E-GroundIC, $c:T\Rightarrow^l Dyn^{cl}\longrightarrow_{\cap IC}c:T\Rightarrow^l G^{cl}:G\Rightarrow^l Dyn^{cl}$. Since $initialType(c:T\Rightarrow^l G^{cl}:G\Rightarrow^l Dyn^{cl})=initialType(c)$, it is proved.

• Rule E-ExpandIC.

- If $\vdash_{\cap IC} c: Dyn \Rightarrow^l T^{cl}: T$ then $\vdash_{\cap IC} c: Dyn$. By rule E-ExpandIC, $c: Dyn \Rightarrow^l T^{cl} \longrightarrow_{\cap IC} c: Dyn \Rightarrow^l G^{cl}: G \Rightarrow^l T^{cl}$. As $\vdash_{\cap IC} c: Dyn \Rightarrow^l G^{cl}: G \Rightarrow^l T^{cl}: T$, it is proved.
- By the definition of initialType, $initialType(c:Dyn \Rightarrow^l T^{cl}) = initialType(c)$. By rule E-ExpandIC, $c:Dyn \Rightarrow^l T^{cl} \longrightarrow_{\cap IC} c:Dyn \Rightarrow^l G^{cl}:G \Rightarrow^l T^{cl}$. Since $initialType(c:Dyn \Rightarrow^l G^{cl}:G \Rightarrow^l T^{cl}) = initialType(c)$, it is proved.

Induction step:

• Rule E-EvaluateIC.

- If $\vdash_{\cap IC} c: T_1 \Rightarrow^l T_2 \stackrel{cl}{:} T_2$ then $\vdash_{\cap IC} c: T_1$. By rule E-EvaluateIC, $c \longrightarrow_{\cap IC} c'$. By the induction hypothesis, $\vdash_{\cap IC} c': T_1$. By rule E-EvaluateIC, $c: T_1 \Rightarrow^l T_2 \stackrel{cl}{:} \longrightarrow_{\cap IC} c': T_1 \Rightarrow^l T_2 \stackrel{cl}{:} T_2 \stackrel{cl}{:} T_1 \Rightarrow^l T_2 \stackrel{cl}{:} T_2 \stackrel$
- By the definition of initialType, $initialType(c: T_1 \Rightarrow^l T_2^{cl}) = initialType(c)$. By rule E-EvaluateIC, $c \longrightarrow_{\cap IC} c'$. By the induction hypothesis, initialType(c') = initialType(c). By rule E-EvaluateIC, $c: T_1 \Rightarrow^l T_2^{cl} \longrightarrow_{\cap IC} c': T_1 \Rightarrow^l T_2^{cl}$. Since $initialType(c': T_1 \Rightarrow^l T_2^{cl}) = initialType(c')$, it is proved.

Lemma 3 (Progress of $\longrightarrow_{\cap IC}$). If $\Gamma \vdash_{\cap IC} c : T$ and $initialType(c) = T_I$ then either c is a cast value or there exists a c' such that $c \longrightarrow_{\cap IC} c'$.

Proof. We proceed by induction on the length of the derivation tree of $\vdash_{\cap IC} c: T$.

Base case:

- Rule T-BlameIC. As $\vdash_{\cap IC}$ blame T_I T_F l cl : T_F , initialType(blame T_I T_F l cl) = T_I and blame T_I T_F l cl is a cast value, it is proved.
- Rule T-EmptyIC. As $\vdash_{\cap IC} \varnothing T^{cl} : T$, $initialType(\varnothing T^{cl}) = T$ and $\varnothing T^{cl}$ is a cast value, it is proved.

Induction step:

- Rule T-SingleIC. If $\vdash_{\cap IC} c: T_1 \Rightarrow^l T_2 \ ^{cl}: T_2$ and $initialType(c: T_1 \Rightarrow^l T_2 \ ^{cl}) = T_I$ then $\vdash_{\cap IC} c: T_1$ and $initialType(c) = T_I$. By the induction hypothesis, either c is a cast value or there is a c' such that $c \longrightarrow_{\cap IC} c'$. If c is a cast value, then c can either be of the form $blame\ T_I\ T_F\ l\ ^{cl}$, in which case by rule E-PushBlameIC, $blame\ T_I\ T_F\ l\ ^{cl}: T_1 \Rightarrow^l T_2\ ^{cl} \longrightarrow_{\cap IC} blame\ T_I\ T_2\ l\ ^{cl}$ or c is a cast value 1 or is an empty cast. If c is a cast value 1 or is an empty cast then $c: T_1 \Rightarrow^l T_2\ ^{cl}$ can be of one of the following forms:
 - $-c:T\Rightarrow^l T^{cl}$. Then by rule E-IdentityIC, $c:T\Rightarrow^l T^{cl}\longrightarrow_{\cap IC} c$.
 - $-c: G \Rightarrow^{l_1} Dyn^{cl_1}: Dyn \Rightarrow^{l_2} G^{cl_2}$. Then by rule E-SucceedIC, $c: G \Rightarrow^{l_1} Dyn^{cl_1}: Dyn \Rightarrow^{l_2} G^{cl_2} \longrightarrow_{\cap IC} c$.
 - $c: G_1 \Rightarrow^{l_1} Dyn^{cl_1}: Dyn \Rightarrow^{l_2} G_2^{cl_2}$. Then by rule E-FailIC, $c: G_1 \Rightarrow^{l_1} Dyn^{cl_1}: Dyn \Rightarrow^{l_2} G_2^{cl_2} \longrightarrow_{\cap IC} blame T_I G_2^{l_2} l_2^{cl_1}$.
 - $-c:T\Rightarrow^l Dyn^{cl}$. Then by rule E-GroundIC, $c:T\Rightarrow^l Dyn^{cl}$ → $_{\cap IC}$ $c:T\Rightarrow^l G^{cl}:G\Rightarrow^l Dyn^{cl}$.
 - $c: Dyn \Rightarrow^l T^{cl}$. Then by rule E-ExpandIC, $c: Dyn \Rightarrow^l T^{cl}$ → $_{\cap IC}$ $c: Dyn \Rightarrow^l G^{cl}: G \Rightarrow^l T^{cl}$.

If there is a c' such that $c \longrightarrow_{\cap IC} c'$, then by rule E-EvaluateIC, $c: T_1 \Rightarrow^l T_2 \ ^c l \longrightarrow_{\cap IC} c': T_1 \Rightarrow^l T_2 \ ^c l$.

Lemma 4 (Type preservation of $\longrightarrow_{\cap CC}$). Depends on Lemmas 2 and 3. If $\Gamma \vdash_{\cap CC} e : T$ and

Proof. We proceed by induction on the length of the derivation tree of $\longrightarrow_{\cap CC}$.

Base case:

 $e \longrightarrow_{\cap CC} e' \ then \ \Gamma \vdash_{\cap CC} e' : T.$

• Rule E-AppAbs. There exists a type $T_1 \cap \ldots \cap T_n$ such that we can deduce $\Gamma \vdash_{\cap CC} (\lambda x : T_1 \cap \ldots \cap T_n \cdot e) v : T$ from $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap CC} v : T_1 \cap \ldots \cap T_n$ (x does not occur in Γ). Moreover, $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cap \ldots \cap T_n \cdot e : T_1 \cap \ldots \cap T_n \to T$ only if $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap CC} e : T$. By rule E-AppAbs, $(\lambda x : T_1 \cap \ldots \cap T_n \cdot e) v \longrightarrow_{\cap CC} [x \mapsto v]e$. To obtain $\Gamma \vdash_{\cap CC} [x \mapsto v]e : T$, it is sufficient to replace, in the proof of $\Gamma, x : T_1 \cap \ldots \cap T_n \vdash_{\cap CC} e : T$, the statements $x : T_i$ (introduzed by the rules T-Var and T-Inst) by the deductions of $\Gamma \vdash_{\cap CC} v : T_i$ for $1 \le i \le n$. (Proof adapted from [1])

- Rule E-SimulateArrow. If $\Gamma \vdash_{\cap CC} (v_1 : cv_1 \cap \ldots \cap cv_n) \ v_2 : T_{12} \cap \ldots \cap T_{n2}$, then $\Gamma \vdash_{\cap CC} v_1 : cv_1 \cap \ldots \cap cv_n : T_1 \cap \ldots \cap T_n$ with $\vdash_{\cap IC} cv_1 : T_1$ and \ldots and $\vdash_{\cap IC} cv_n : T_n$, such that $\exists i \in 1..n \ . \ T_i = T_{i1} \to T_{i2}$ and $\Gamma \vdash_{\cap CC} v_1 : T'_1 \cap \ldots \cap T'_i$ and $I_1 = initialType(cv_1)$ and \ldots and $I_n = initialType(cv_n)$ such that either $T'_1 \cap \ldots \cap T'_i = I_1 \cap \ldots \cap I_n$ or $\{I_1, \ldots, I_n\} \subset \{T'_1, \ldots, T'_i\}$ and $\Gamma \vdash_{\cap CC} v_2 : T_{11} \cap \ldots \cap T_{n1}$. For the sake of simplicity lets elide cast labels and blame labels. By the definition of SimulateArrow, we have that $c'_1 = c''_1 : T'_{11} \to T'_{12} \Rightarrow T_{11} \to T_{12}$ and \ldots and $c'_m = c''_m : T'_{m1} \to T'_{m2} \Rightarrow T_{m1} \to T_{m2}$. Also, $c_{11} = \varnothing T_{11} : T_{11} \Rightarrow T'_{11}$ and \ldots and $c_{m1} = \varnothing T_{m1} : T_{m1} \Rightarrow T'_{m1}$ and $c_{12} : \varnothing T'_{12} : T'_{12} \Rightarrow T_{12}$ and \ldots and $c_{m2} = \varnothing T'_{m2} : T'_{m2} \Rightarrow T_{m2}$ and $initialType(c^s_1) = I_1$ and \ldots and $initialType(c^s_m) = I_m$ and $\vdash_{\cap IC} c^s_1 : T'_{11} \to T'_{12}$ and \ldots and $\vdash_{\cap IC} c^s_1 : T'_{11} \to T'_{12} \cap \ldots \cap T'_{m1} \to T'_{m2}$ and $\Gamma \vdash_{\cap CC} v_2 : c_{11} \cap \ldots \cap c_{m1} : T'_{11} \cap \ldots \cap T'_{m1}$ and therefore $\Gamma \vdash_{\cap CC} (v_1 : c^s_1 \cap \ldots \cap c^s_m) (v_2 : c_{11} \cap \ldots \cap c_{m1}) : T'_{12} \cap \ldots \cap T'_{m2}$, when that $\{T_{12}, \ldots, T_{m2}\} \subset \{T_{12}, \ldots, T_{n2}\}$. By rule E-SimulateArrow, $(v_1 : cv_1 \cap \ldots \cap cv_n) \ v_2 \to_{\cap CC} (v_1 : c^s_1 \cap \ldots \cap c^s_m) (v_2 : c_{11} \cap \ldots \cap c_{m2}$, therefore it is proved.
- Rule E-MergeCasts. If $\Gamma \vdash_{\cap CC} v : cv_1 \cap \ldots \cap cv_n : c'_1 \cap \ldots \cap c'_m : F'_1 \cap \ldots \cap F'_m$ then $\vdash_{\cap IC} c'_1 : F'_1$ and $initialType(c'_1) = I'_1$ and \ldots and $\vdash_{\cap IC} c'_m : F'_m$ and $initialType(c'_m) = I'_m$ and $\Gamma \vdash_{\cap CC} v : cv_1 \cap \ldots \cap cv_n : F_1 \cap \ldots \cap F_n$ and $\vdash_{\cap IC} cv_1 : F_1$ and $initialType(cv_1) = I_1$ and \ldots and $\vdash_{\cap IC} cv_n : F_n$ and $initialType(cv_n) = I_n$ and $\Gamma \vdash_{\cap CC} v : T_1 \cap \ldots \cap T_l$ such that either $T_1 \cap \ldots \cap T_l = I_1 \cap \ldots \cap I_n$ or $\{I_1, \ldots, I_n\} \subset \{T_1, \ldots, T_l\}$. There are two possibilities:
 - $\begin{array}{l} -F_1\cap\ldots\cap F_n=I_1'\cap\ldots\cap I_m'. \text{ By the definition of mergeCasts, } \vdash_{\cap IC} c_1'':F_1'' \text{ and } \ldots\\ \text{ and } \vdash_{\cap IC} c_j'':F_j'' \text{ such that } F_1''\cap\ldots\cap F_j''=F_1'\cap\ldots\cap F_m' \text{ and } initial Type}(c_1'')=I_1''\\ \text{ and } \ldots \text{ and } initial Type}(c_j'')=I_j'' \text{ such that } I_1''\cap\ldots\cap I_j''=I_1\cap\ldots\cap I_n. \text{ Therefore }\\ \Gamma\vdash_{\cap CC} v:c_1''\cap\ldots\cap c_j':F_1''\cap\ldots\cap F_j''. \text{ By rule E-MergeCasts, } v:cv_1\cap\ldots\cap cv_n:c_1'\cap\ldots\cap c_m'\longrightarrow_{\cap CC} v:c_1''\cap\ldots\cap c_j''. \text{ Therefore it is proved.} \end{array}$
 - $-\{I'_1,\ldots,I'_m\}\subset \{F_1,\ldots,F_n\}. \text{ By the definition of mergeCasts, } \vdash_{\cap IC} c''_1:F''_1 \text{ and } initialType(c''_1)=I''_1 \text{ and } \ldots \text{ and } \vdash_{\cap IC} c''_j:F''_j \text{ and } initialType(c''_j)=I''_j \text{ such that } \{I''_1,\ldots,I''_j\}\subset \{I_1,\ldots,I_n\} \text{ and } \{F''_1,\ldots,F''_j\}\subset \{F'_1,\ldots,F'_m\}. \text{ Therefore, } \Gamma\vdash_{\cap CC} v:c''_1\cap\ldots\cap c''_j:F''_1\cap\ldots\cap F''_j. \text{ By rule E-MergeCasts, } v:cv_1\cap\ldots\cap cv_n:c'_1\cap\ldots\cap c'_m\longrightarrow_{\cap CC} v:c''_1\cap\ldots\cap c''_j. \text{ Therefore, it is proved.}$
- Rule E-EvaluateCasts. If $\Gamma \vdash_{\cap CC} v : c_1 \cap \ldots \cap c_n : T_1 \cap \ldots \cap T_n$ then $\vdash_{\cap IC} c_1 : T_1$ and $I_1 = initialType(c_1)$ and \ldots and $\vdash_{\cap IC} c_n : T_n$ and $I_n = initialType(c_n)$ and $\Gamma \vdash_{\cap CC} v : I_1 \cap \ldots \cap I_n$. By rule E-EvaluateCasts, $c_1 \longrightarrow_{\cap IC} cv_1$ and \ldots and $c_n \longrightarrow_{\cap IC} cv_n$. By Lemmas 2 and 3, $\vdash_{\cap IC} cv_1 : T_1$ and $initialType(cv_1) = I_1$ and \ldots and $\vdash_{\cap IC} cv_n : T_n$ and $initialType(cv_n) = I_n$. Therefore $\Gamma \vdash_{\cap CC} v : cv_1 \cap \ldots \cap cv_n : T_1 \cap \ldots \cap T_n$. By rule E-EvaluateCasts, $v : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} v : cv_1 \cap \ldots \cap cv_n$, then it is proved.
- Rule E-PropagateBlame. If $\Gamma \vdash_{\cap CC} v : blame \ T_1' \ T_1 \ l_1 \ ^{m_1} \cap \ldots \cap blame \ T_n' \ T_n \ l_n \ ^{m_n} : T_1 \cap \ldots \cap T_n$ and by rule E-PropagateBlame $v : blame \ T_1' \ T_1 \ l_1 \ ^{m_1} \cap \ldots \cap blame \ T_n' \ T_n \ l_n \ ^{m_n} \longrightarrow_{\cap CC} blame_{(T_1 \cap \ldots \cap T_n)} \ l_1$, and $\Gamma \vdash_{\cap CC} blame_{(T_1 \cap \ldots \cap T_n)} \ l_1 : T_1 \cap \ldots \cap T_n$, then it is proved.
- Rule E-RemoveEmpty. If $\Gamma \vdash_{\cap CC} v : \varnothing T_1 \stackrel{m_1}{\longrightarrow} \cap \ldots \cap \varnothing T_n \stackrel{m_n}{\longrightarrow} : T_1 \cap \ldots \cap T_n$, then $\vdash_{\cap IC} \varnothing T_1 \stackrel{m_1}{\longrightarrow} : T_1$ and $initialType(\varnothing T_1 \stackrel{m_1}{\longrightarrow}) = T_1$ and \ldots and $\vdash_{\cap IC} \varnothing T_n \stackrel{m_n}{\longrightarrow} : T_n$ and $initialType(\varnothing T_n \stackrel{m_n}{\longrightarrow}) = T_n$ and $\Gamma \vdash_{\cap CC} v : T_1 \cap \ldots \cap T_n$. By rule E-RemoveEmpty, $v : \varnothing T_1 \stackrel{m_1}{\longrightarrow} \cap \ldots \cap \varnothing T_n \stackrel{m_n}{\longrightarrow} \cap CC v$, therefore it is proved.

- Rule E-App1. There are two possibilities:
 - If $\Gamma \vdash_{\cap CC} e_1 e_2 : T$, then $\Gamma \vdash_{\cap CC} e_1 : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap CC} e_2 : T_1 \cap \ldots \cap T_n$. By rule E-App1, $e_1 \longrightarrow_{\cap IC} e'_1$, so by the induction hypothesis, $\Gamma \vdash_{\cap CC} e'_1 : T_1 \cap \ldots \cap T_n \to T$. Therefore, $\Gamma \vdash_{\cap CC} e'_1 e_2 : T$. As by rule E-App1, $e_1 e_2 \longrightarrow_{\cap IC} e'_1 e_2$, it is proved.
 - If $\Gamma \vdash_{\cap CC} e_1 \ e_2 : T_{12} \cap \ldots \cap T_{n2}$, then $\Gamma \vdash_{\cap CC} e_1 : T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2}$ and $\Gamma \vdash_{\cap CC} e_2 : T_{11} \cap \ldots \cap T_{n1}$. By rule E-App1, $e_1 \longrightarrow_{\cap IC} e'_1$, so by the induction hypothesis, $\Gamma \vdash_{\cap CC} e'_1 : T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2}$. Therefore, $\Gamma \vdash_{\cap CC} e'_1 \ e_2 : T_{12} \cap \cdots \cap T_{n2}$. As by rule E-App1, $e_1 \ e_2 \longrightarrow_{\cap IC} e'_1 \ e_2$, it is proved.
- Rule E-App2. There are two possibilities:
 - If $\Gamma \vdash_{\cap CC} v_1 \ e_2 : T$, then $\Gamma \vdash_{\cap CC} v_1 : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap CC} e_2 : T_1 \cap \ldots \cap T_n$. By rule E-App2, $e_2 \longrightarrow_{\cap IC} e_2'$, so by the induction hypothesis, $\Gamma \vdash_{\cap CC} e_2' : T_1 \cap \ldots \cap T_n$. Therefore, $\Gamma \vdash_{\cap CC} v_1 \ e_2' : T$. As by rule E-App2, $v_1 \ e_2 \longrightarrow_{\cap IC} v_1 \ e_2'$, it is proved.
 - If $\Gamma \vdash_{\cap CC} v_1 \ e_2 : T_{12} \cap \ldots \cap T_{n2}$, then $\Gamma \vdash_{\cap CC} v_1 : T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2}$ and $\Gamma \vdash_{\cap CC} e_2 : T_{11} \cap \ldots \cap T_{n1}$. By rule E-App2, $e_2 \longrightarrow_{\cap IC} e_2'$, so by the induction hypothesis, $\Gamma \vdash_{\cap CC} e_2' : T_{11} \cap \ldots \cap T_{n1}$. Therefore, $\Gamma \vdash_{\cap CC} v_1 e_2' : T_{12} \cap \cdots \cap T_{n2}$. As by rule E-App1, $v_1 \ e_2 \longrightarrow_{\cap IC} v_1 \ e_2'$, it is proved.
- Rule E-Evaluate. If $\Gamma \vdash_{\cap CC} e : c_1 \cap \ldots \cap c_n : T_1 \cap \ldots \cap T_n$, then $\Gamma \vdash_{\cap CC} e : T$, $\vdash_{\cap IC} c_1 : T_1$ and \ldots and $\vdash_{\cap IC} c_n : T_n$ and $initialType(c_1) \cap \ldots \cap initialType(c_n) = T$. By rule E-Evaluate, $e \longrightarrow_{\cap IC} e'$, so by the induction hypothesis, $\Gamma \vdash_{\cap CC} e' : T$. Therefore, $\Gamma \vdash_{\cap CC} e' : c_1 \cap \ldots \cap c_n : T_1 \cap \ldots \cap T_n$. As by rule E-Evaluate, $e : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap IC} e' : c_1 \cap \ldots \cap c_n$, it is proved.

Lemma 5 (Progress of $\longrightarrow_{\cap CC}$). If $\Gamma \vdash_{\cap CC} e : T$ then either e is a value or there exists an e' such that $e \longrightarrow_{\cap CC} e'$.

Proof. We proceed by induction on the length of the derivation tree of $\Gamma \vdash_{\cap G} e : T$.

Base case:

- Rule T-Var. If $\Gamma \vdash_{\cap CC} x : T$, then $x : T \in \Gamma$. As x is a value, it is proved.
- Rule T-Int. As $\Gamma \vdash_{\cap CC} n : Int$ and n is a value, it is proved.
- Rule T-True. As $\Gamma \vdash_{\cap CC} true : Bool$ and true is a value, it is proved.
- Rule T-False. As $\Gamma \vdash_{\cap CC} false : Bool$ and false is a value, it is proved.

- Rule T-Abs. As $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cap \ldots \cap T_n : e : T_1 \cap \ldots \cap T_n \to T$ and $\lambda x : T_1 \cap \ldots \cap T_n : e$ is a value, it is proved.
- Rule T-Abs'. As $\Gamma \vdash_{\cap CC} \lambda x : T_1 \cap \ldots \cap T_n : e : T_i \to T$ such that $T_i \in \{T_1, \ldots, T_n\}$ and $\lambda x : T_1 \cap \ldots \cap T_n : e$ is a value, it is proved.

- Rule T-App. If $\Gamma \vdash_{\cap CC} e_1 \ e_2 : T$, then $\Gamma \vdash_{\cap CC} e_1 : T_1 \cap \ldots \cap T_n \to T$ and $\Gamma \vdash_{\cap CC} e_2 : T_1 \cap \ldots \cap T_n$. By the induction hypothesis, e_1 is either a value or there is a e'_1 such that $e_1 \longrightarrow_{\cap CC} e'_1$ and e_2 is either a value or there is a e'_2 such that $e_2 \longrightarrow_{\cap CC} e'_2$. If e_1 is not a value, then by rule E-App1, $e_1 \ e_2 \longrightarrow_{\cap CC} e'_1 \ e_2$. If e_1 is a value and e_2 is not a value, then by rule E-App2, $e_1 \ e_2 \longrightarrow_{\cap CC} e_1 \ e'_2$. If both e_1 and e_2 are values then e_1 must be an abstraction $(\lambda x : T_1 \cap \ldots \cap T_n \ . \ e)$, and by rule E-AppAbs $(\lambda x : T_1 \cap \ldots \cap T_n \ . \ e) \ e_2 \longrightarrow_{\cap CC} [x \mapsto e_2]e$.
- Rule T-Gen. If $\Gamma \vdash_{\cap CC} e : T_1 \cap ... \cap T_n$, then $\Gamma \vdash_{\cap CC} e : T_1$ and ... and $\Gamma \vdash_{\cap CC} e : T_n$. By the induction hypothesis, either e is a value or there exists an e' such that $e \longrightarrow_{\cap CC} e'$.
- Rule T-Inst. If $\Gamma \vdash_{\cap CC} e : T_i$, then $\Gamma \vdash_{\cap CC} e : T_1 \cap \ldots \cap T_n$, such that $T_i \in \{T_1, \ldots, T_n\}$. By the induction hypothesis, either e is a value or there exists an e' such that $e \longrightarrow_{\cap CC} e'$.
- Rule T-App'. If $\Gamma \vdash_{\cap CC} e_1 \ e_2 : T_{12} \cap \ldots \cap T_{n2}$, then $\Gamma \vdash_{\cap CC} e_1 : T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2}$ and $\Gamma \vdash_{\cap CC} e_2 : T_{11} \cap \ldots \cap T_{n1}$. By the induction hypothesis, e_1 is either a value or there is a e_1' such that $e_1 \longrightarrow_{\cap CC} e_1'$ and e_2 is either a value or there is a e_2' such that $e_2 \longrightarrow_{\cap CC} e_2'$. If e_1 is not a value, then by rule E-App1, $e_1 \ e_2 \longrightarrow_{\cap CC} e_1' \ e_2$. If e_1 is a value and e_2 is not a value, then by rule E-App2, $e_1 \ e_2 \longrightarrow_{\cap CC} e_1 \ e_2'$. If both e_1 and e_2 are values then e_1 must be an abstraction $(\lambda x : T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2}. \ e)$, and by rule E-AppAbs $(\lambda x : T_{11} \to T_{12} \cap \ldots \cap T_{n1} \to T_{n2}. \ e) \ e_2 \longrightarrow_{\cap CC} [x \mapsto e_2]e$.
- Rule T-IntersectionCast. If $\Gamma \vdash_{\cap CC} e : c_1 \cap \ldots \cap c_n : T_1 \cap \ldots \cap T_n$ then $\Gamma \vdash_{\cap CC} e : T$. By the induction hypothesis, e is either a value, or there is an e' such that $e \longrightarrow_{\cap CC} e'$. If e is a value, then by rule E-EvaluateCasts, $e : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} e : cv_1 \cap \ldots \cap cv_n$. If there is an e' such that $e \longrightarrow_{\cap CC} e'$, then by rule E-Evaluate, $e : c_1 \cap \ldots \cap c_n \longrightarrow_{\cap CC} e' : c_1 \cap \ldots \cap c_n$.

• Rule T-Blame. As $\Gamma \vdash_{\cap CC} blame_T \ l : T$ and $blame_T \ l$ is a value, it is proved.

Theorem 6 (Type Safety). Depends on Lemmas 4 and 5. Both Type Preservation and Progress hold.

Proof. By Lemma 4 we have Type Preservation. By Lemma 5 we have Progress. \Box

Theorem 7 (Blame Theorem). If $\Gamma \vdash_{\cap CC} e : T$ and $e \longrightarrow_{\cap CC} blame_T \ l$ then l is not a safe cast of e

Theorem 8 (Gradual Guarantee). If $\Gamma \vdash_{\cap CC} e_1 : T_1 \text{ and } \Gamma \vdash_{\cap CC} e_2 : T_2 \text{ and } e_1 \sqsubseteq e_2 \text{ then:}$

- 1. if $e_2 \longrightarrow_{\cap CC} e'_2$ then $e_1 \longrightarrow_{\cap IC} e'_1$ and $e'_1 \sqsubseteq e'_2$.
- 2. if $e_1 \longrightarrow_{\cap CC} e'_1$ then either $e_2 \longrightarrow_{\cap CC} e'_2$ and $e'_1 \sqsubseteq e'_2$ or $e'_2 \longrightarrow_{\cap CC} blame_T l$.

References

[1] Mario Coppo, Mariangiola Dezani-Ciancaglini, et al. An extension of the basic functionality theory for the λ-calculus. Notre Dame journal of formal logic, 21(4):685–693, 1980.