0.1 整除与带余除法

定义 0.1 (整除的定义)

设 f(x), g(x) 是 \mathbb{F} 上的 g 多项式, 若存在 \mathbb{F} 上的 g 多项式 g g g

$$f(x) = g(x)h(x),$$

则称 g(x) 是 f(x) 的因式, 或称 g(x) 可整除 f(x)(也称 f(x) 可被 g(x) 整除), 记为 $g(x) \mid f(x)$.

命题 0.1 (整除的基本性质)

设 $f(x), g(x), h(x) \in \mathbb{K}[x], 0 \neq c \in \mathbb{K}$, 则

- (1) 若 $f(x) \mid g(x)$, 则 $cf(x) \mid g(x)$, 因此非零常数多项式 c 是任一非零多项式的因式;
- (2) f(x) | f(x);
- (3) <math> $f(x) \mid g(x), g(x) \mid h(x), \ \ \bigcup \ f(x) \mid h(x);$
- (4) 若 f(x) | g(x), f(x) | h(x), 则对任意的多项式 u(x), v(x), 有

$$f(x) \mid g(x)u(x) + h(x)v(x);$$

(5) 设 $f(x) \mid g(x), g(x) \mid f(x)$ 且 f(x), g(x) 都是非零多项式,则存在 $\mathbb K$ 中非零元 c,使

$$f(x) = cg(x)$$
.

(6) $\exists g_1(x) \mid f(x), g_2(x) \mid f(x), \ y \ g_1(x)g_2(x) \mid f^2(x).$

证明

(1) 若 g(x) = f(x)p(x), 则

$$g(x) = (cf(x))(c^{-1}p(x)).$$

此即 $cf(x) \mid g(x)$.

特别地, 任取 $a \in \mathbb{K}$, 令 g(x) = a, 则 $a \mid a$, 从而 $ca \mid a$, 故 $c \not\in a$ 的因式.

- (2) 显然.
- (3) 若 g(x) = f(x)p(x), h(x) = g(x)q(x), 则

$$h(x) = (f(x)p(x))q(x) = f(x)(p(x)q(x)).$$

$$g(x)u(x) + h(x)v(x) = f(x)(p(x)u(x) + q(x)v(x)).$$

(5) $\mbox{if } g(x) = f(x)p(x), f(x) = g(x)q(x), \mbox{ } \mbox{!}$

$$f(x) = f(x)(p(x)q(x)).$$

由此即得

$$\deg f(x) = \deg f(x) + \deg(p(x)q(x)),$$

从而

$$\deg(p(x)q(x)) = 0,$$

于是

$$\deg p(x) = \deg q(x) = 0.$$

因此 p(x) 及 q(x) 均为非零常数多项式, 即 f(x) 和 g(x) 相差一个非零常数倍.

(6) 由 $g_1(x), g_2(x) \mid f(x)$ 可知, 存在多项式 $h_1(x), h_2(x)$, 使得

$$f(x) = g_1(x)h_1(x) = g_2(x)h_2(x).$$

1

从而 $f^2(x) = g_1(x)g_2(x)h_1(x)h_2(x)$, 故 $g_1(x)g_2(x) \mid f^2(x)$.

定义 0.2 (相伴多项式)

若 $f(x) \mid g(x), g(x) \mid f(x)$ 且 f(x), g(x) 都是非零多项式,则 f(x), g(x)(即可以互相整除的两个多项式) 称 为相伴多项式,记为 $f(x) \sim g(x)$.

🕏 笔记 由整除的基本性质 (5)可知, 相伴的多项式只相差一个非零常数倍.

命题 0.2 (相伴多项式的基本性质)

若 $f(x) \sim g(x)$, 则任意的多项式 u(x) 都有 $f(x)u(x) \sim g(x)u(x)$.

证明 由 $f(x) \sim g(x)$ 及整除的基本性质 (4)可知, 任意的多项式 u(x) 都有 $f(x)u(x) \mid g(x)u(x), g(x)u(x) \mid f(x)u(x)$. 故 $f(x)u(x) \sim g(x)u(x)$.

定理 0.1 (多项式的带余除法)

设 $f(x), g(x) \in \mathbb{F}[x], g(x) \neq 0$, 则必存在唯一的 $g(x), r(x) \in \mathbb{F}[x]$, 使得

$$f(x) = g(x)q(x) + r(x),$$

且 deg $r(x) < \deg g(x)$.

证明 若 $\deg f(x) < \deg g(x)$,只需令 q(x) = 0, r(x) = f(x) 即可. 现设 $\deg f(x) \ge \deg g(x)$,对 f(x) 的次数用数学归纳法. 若 $\deg f(x) = 0$,则 $\deg g(x) = 0$. 因此可设 f(x) = a, g(x) = b, g(x) = b, 这时令 $g(x) = ab^{-1}$, g(x) = 0, 即可. 作为归纳假设,我们设结论对小于 $g(x) = ab^{-1}$, $g(x) = ab^{-1}$, g

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, a_n \neq 0,$$

$$g(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0, b_m \neq 0,$$

由于 $n \ge m$, 可令

$$f_1(x) = f(x) - a_n b_m^{-1} x^{n-m} g(x),$$

则 $\deg f_1(x) < n$. 由归纳假设,有

$$f_1(x) = g(x)q_1(x) + r(x),$$

且 $\deg r(x) < \deg g(x)$, 于是

$$f(x) - a_n b_m^{-1} x^{n-m} g(x) = g(x) q_1(x) + r(x).$$

因此

$$f(x) = g(x)(a_n b_m^{-1} x^{n-m} + q_1(x)) + r(x).$$

\$

$$q(x) = a_n b_m^{-1} x^{n-m} + q_1(x),$$

即得 f(x) = g(x)q(x) + r(x).

再证明唯一性. 设另有 p(x), t(x), 使

$$f(x) = g(x)p(x) + t(x),$$

且 $\deg t(x) < \deg g(x)$,则

$$g(x)(q(x) - p(x)) = t(x) - r(x).$$

注意上式左边若 $q(x) - p(x) \neq 0$, 便有

$$\deg g(x)(q(x) - p(x)) \ge \deg g(x) > \deg (t(x) - r(x)),$$

引出矛盾. 因此只可能 p(x) = q(x), t(x) = r(x).

推论 0.1

设 $f(x), g(x) \in \mathbb{F}[x], g(x) \neq 0$, 必存在唯一的 $q(x), r(x) \in \mathbb{F}[x]$, 使得 f(x) = g(x)q(x) + r(x). 则 $g(x) \mid f(x)$ 的充要条件是 r(x) = 0.

例题 **0.1** 设 $g(x) = ax + b \in \mathbb{F}[x]$ 且 $a \neq 0$,又 $f(x) \in \mathbb{F}[x]$,求证: $g(x) | f(x)^2$ 的充要条件是 g(x) | f(x)。 证明 充分性显然,只需证明必要性。

证法一: 设 f(x) = g(x)q(x) + r,则

$$f(x)^{2} = g(x)^{2}q(x)^{2} + 2rg(x)q(x) + r^{2}.$$

由 $g(x) | f(x)^2$ 可得 $g(x) | r^2$, 故 $r^2 = 0$, 即 r = 0, 从而 g(x) | f(x)。

证法二: 由余数定理,
$$f\left(-\frac{b}{a}\right)^2 = 0$$
, 故 $f\left(-\frac{b}{a}\right) = 0$, 从而 $g(x) \mid f(x)$ 。

例题 0.2 设 $g(x) = ax^2 + bx + c(abc \neq 0)$, $f(x) = x^3 + px^2 + qx + r$, 满足 $g(x) \mid f(x)$, 求证:

$$\frac{ap-b}{a} = \frac{aq-c}{b} = \frac{ar}{c}.$$

证明 用待定系数法,设

$$x^{3} + px^{2} + qx + r = (ax^{2} + bx + c)(mx + n) = amx^{3} + (an + bm)x^{2} + (bn + cm)x + cn.$$

比较系数得

$$am = 1$$
, $an + bm = p$, $bn + cm = q$, $cn = r$.

由此即可得到所需等式.

0.1.1 凑项法

"凑项法"是指在要证明的等式中添加若干项再减去若干项来证明结论的方法.

命题 0.3

$$(x^d - a^d) \mid (x^n - a^n)$$
 的充要条件是 $d \mid n$, 其中 $a \neq 0$.

证明 (⇐): 由 d|n 可设 n = kd, $k \in \mathbb{N}_+$ 。从而

$$x^{n} - a^{n} = (x^{d})^{k} - (a^{d})^{k} = (x^{d} - a^{d})(x^{d(k-1)} + x^{d(k-2)}a^{d} + \dots + a^{d(k-1)}).$$

故 $(x^d - a^d)|(x^n - a^n)$ 。

(⇒): 假设 $d \nmid n$, 则由带余除法可知,存在 $q,r \in \mathbb{N}_+$ 且 $0 \leq r < d$,使得 n = qd + r。于是

$$x^{n} - a^{n} = x^{dq+r} - a^{dq+r} = (x^{dq} - a^{dq})x^{r} + x^{r}a^{dq} - a^{dq+r} = (x^{dq} - a^{dq})x^{r} + a^{dq}(x^{r} - a^{r}).$$

证明 由命题 0.3可知, $(x^3-1)|(x^{3k}-1)$, $\forall k \in \mathbb{N}_+$ 。又因为 $(x^2+x+1)|(x^3-1)$,所以 $(x^2+x+1)|(x^{3k}-1)$, $\forall k \in \mathbb{N}_+$ 。 注意到

$$x^{3m} + x^{3n+1} + x^{3p+2} = (x^{3m} - 1) + x(x^{3n} - 1) + x^2(x^{3p} - 1) + (x^2 + x + 1).$$

再结合
$$(x^2+x+1)|(x^{3m}-1), (x^{3n}-1), (x^{3p}-1)$$
 可得 $g(x)|f(x)$ 。