

TRGN 515:

Advanced Human Genomic Analysis Methods

Lecture 1 – Week 1: Administrivia & Expectations & Basics

Bilgenur Baloglu, Ph.D.

Clinical Instructor of Translation Genomics,

USC Keck School of Medicine

Bioinformatics scientist III, Thermo Fisher Scientific

Email: baloglu@usc.edu

Outline for lecture 1

- Get to know your instructor
- Course things
 - Homework
 - Course etiquette
 - Course outline
 - Things you should know and you will need
- Bioinformatics? Machine learning? Python?
- Q&A
- Jump into Python crash course

My academic path

- BSc in Molecular Biology and Genetics at Istanbul Technical University, Turkey
- Exchange year at Munich Technical University, Germany
- PhD in biological sciences at the National University of Singapore, Singapore
- Postdoc at the Centre for Biodiversity Genomics, University of Guelph, Canada

My industry career

- Won the All-Genetics award for industrial applications using DNA barcoding and DNA metabarcoding for environmental DNA study category
- Managed to get to the top 5% in the application process of 'Sci-Founder Fellowship' among 371 applicants for start up idea (then got rejected)
- Got accepted into Braid Theory's Celsius: Ocean Synthetic Biology Pre-Accelerator (currently debating)
- Bioinformatics lead, Sequential Skin (Feb August 2021)
 - Developed bioinformatics pipelines to process MiSeq and ONT 16S data. Products: Python based primer designing algorithm, bash & R based MiSeq ecological analysis tool
- Bioinformatics scientist III, Thermo Fisher Scientific (August 2021)

My path from academia to industry

Open Access

(CrossMark

Baloğlu et al. Frontiers in Zoology (2018) 15:31 https://doi.org/10.1186/s12983-018-0276-7

Frontiers in Zoology

ROYAL SOCIETY OPEN SCIENCE

rsos.royalsocietypublishing.org

RESEARCH

NGS barcoding reveals high resistance of a hyperdiverse chironomid (Diptera) swamp fauna against invasion from adjacent freshwater reservoirs

Bilgenur Baloğlu¹, Esther Clews² and Rudolf Meier^{1,3*}

RESOURCE ARTICLE

WILEY MOLECULAR ECOLOGY

A MinION[™]-based pipeline for fast and cost-effective DNA barcoding

Amrita Srivathsan^{1,*} | Bilgenur Baloğlu^{1,*} | Wendy Wang² | Wei X. Tan¹ | Denis Bertrand³ | Amanda H. Q. Ng³ | Esther J. H. Boey³ | Jayce J. Y. Koh³ |

Methods in Ecology and Evolution

RESEARCH ARTICLE 🚊 Open Access 🔘 🕦

A workflow for accurate metabarcoding using nanopore MinIOI sequencing

Bilgenur Baloğlu 🔀 Zhewei Chen. Vasco Elbrecht, Thomas Braukmann, Shanna MacDonald, Dirk Steinl

Cite this article: Lim NKM, Tay YC, Srivathsan A, Tan JWT, Kwik JTB, Baloğlu B, Meier R, Yeo DCJ. 2016 Next-generation freshwater bioassessment: eDNA metabarcoding with a conserved metazoan primer reveals species-rich and reservoir-specific communities. R. Soc. open sci. 3: 160635. http://dx.doi.org/10.1098/rsos.160635

Received: 25 August 2016

Next-generation freshwater bioassessment: eDNA metabarcoding with a conserved metazoan primer reveals species-rich and reservoir-specific communities

Nicholas K. M. Lim¹, Ywee Chieh Tay¹, Amrita Srivathsan¹, Jonathan W. T. Tan¹, Jeffrey T. B. Kwik¹, Bilgenur Baloğlu¹, Rudolf Meier^{1,2} and Darren C. J. Yeo¹

My path from academia to industry

Algorithms

[1] **Baloglu, B.**, Chen, Z. Python-based bioinformatics algorithm for analyzing metabarcoding data obtained with Nanopore sequencing. Github site

[2] Srivathsan, A.*, **Baloglu, B.***, Wang, W., Tan, W.X., Bertrand, D., Ng, A.H.Q., Boey, E.J.H., Koh, J.J.Y., Nagarajan, N. and Meier, R. Python-based bioinformatics algorithm for analyzing DNA barcoding data obtained with Nanopore sequencing. <u>Github site</u>

Course info

- Lecture (Tue/Thu)
 - 5-7 pm
- 6 Homeworks, ~20% of final grade
 - Due on Sunday night (11:59 pm) via Blackboard
 - Homework 1 is released as of this lecture!
 - Check /scratch/trgn515/Homework
 - Due this Sunday
 - 1 Midterm exam, at week 9, 20% of final grade
 - 1 Final project, due week 14, 30% of final grade
 - Final exam, week 15, 10% of final grade

Plan accordingly w/ trgn515!

Regarding homeworks

- If you have prior experience with Python
 - Should be pretty straightforward (2-3 hours)
- If you do not...
 - Might take a while (3-4 hours?)
 - But don't worry, you will catch up as long as you follow the notebooks and run them on your own time

Late submission policy

- Up to 24 free late hours
- Specify # of late hours used when submitting

Course etiquette

- Feel free to ask questions during lecture
- Adhere to the academic integrity
 - Do not copy each other's solutions

Course website

- Link here (but you should create your own repositories and add me as a collaborator):
 - https://github.com/BBaloglu/TRGN515_USC
- Link to my personal website
 - https://bbaloglu.github.io/
- Up-to-date office hours, zoom links, additional reading, etc.:
 - Check Blackboard

Course outline

- Python crash course and Python libraries for data visualization
 - 3 weeks
- Introduction to Bioinformatics with Biopython library
 - 2 weeks
- Introduction to machine learning
 - 3 weeks
- Building machine learning models
 - 4-5 weeks
- Final project: Throughout the course with presentation in week 14

What should you know

- Pandas, numpy, Scikit
- Python
- Basic statistics
- Basic knowledge of biology and DNA sequencing
- Basic competency with UNIX/Linux (can use a terminal)
- Familiarity with some ML terminology
 - Don't worry. You will get there!

What do you need

- Python 3.7
- Jupyter notebooks
- If you want to access Jupyter on your own PC, then you will also need Anaconda3 installation (version 4.5.12)
- GitHub account: This is where you will upload your homeworks and projects, where you will add me as a collaborator in order to share them with me
- CRITICAL THINKING!

How you will operate

- Make your own directories and subdirectories on the TRGN server in /scratch directory
- Copy the lecture and homework notebooks in your own directory
- Work on homework in your own directory (not in the shared directory)
- Copy or transfer the final homework in your Github repository (ideally keep the same directory system), which should notify me if I am added as a collaborator

What is bioinformatics?

- Dealing with biological challenges using computer science tools?
- Biggest part of bioinformatics: Dealing with DNA sequencing data
 - DNA sequencing is the process of reading biological material and translating it into a computer readable data representation.
 - The sequencing process is complex and introduces many challenges such as gaps between reads, lack of coverage and various other sequencing errors

What is machine learning?

"Machine learning is fitting a function to examples and using that function to generalize and make predictions about new examples."

Derek Jedamski, GitHub

What is machine learning?

- Make a machine (computer) learn a model (hypothesis) with enough data of a given type, so it becomes able to identify one or more patterns within it.
- Identified (learned) patterns can then be used for making estimates (predictions) on unseen data of similar type as the data which was used to learn the pattern.
- The amount of required data may vary based on the difficulty of the pattern to learn.
- The learning process is often referred to as training, while the process of making decisions is called classification

Why use Python for Machine learning

- Popular and has large user base, various resources like stack overflow
- Python has more machine learning packages than other languages
- Easy to learn, easy to use

Should we even use machine learning?

- Is this a type of problem that can be solved using machine learning?
 - Does this problem require a prediction or some type of bucketing into categories?
- Do you have all the components needed to build a model?
 - Do I have data with labels?
 - Do I have the ability to assess the quality of the model?
 - Do I know what an acceptable accuracy threshold looks like?

Common challenges with machine learning

- Problem scoping
 Dealing with the wrong problem
 Tolerance threshold (i.e., accuracy %) not determined
- Data
 - Lack of data
 - Too much data
 - Lack of labels in the data
 - Data is noisy, dirty etc.
 Infrastructure
- - Lack skills to automate

 - Not enough compute power Inability to test quality of the model
- Latency

 - Model takes too long to train Model takes too long at inference time

Exploratory data analysis

Why?

- Understand the shape of the data
- Learn which features of might be useful
- Inform the cleaning that will come next

What?

- Counts or distribution of all variables
- Data types of each feature
- Missing data
- Correlations
- Duplicates

Data cleaning

Why?

- No data out there are served clean
- Shape data so model can pick the best signal
- Remove irrelevant data
- Adjust features to be acceptable for a model

What?

- Encode categorical variables
- Fill missing data
- Scale data to account for outliers

