Regressão Linear

Prática 03: Regressão de Cume

Prof^a Deborah Magalhães Monitor: Davi Luis de Oliveira

Olá!

Curso: Bacharelado em Sistema de Informação

Disciplina: Sistemas Inteligentes

Predição com Regressão de Cume

Você pode me encontrar em **deborah.vm@gmail.com** (Dúvidas e sugestões serão bem-vindas =D)

Passo 1: Importar as bibliotecas

Prática 02: Regressão de Cume

1. Importando as bibliotecas necessárias

```
import graphlab
import random
import math
import numpy
from matplotlib import pyplot as plt
%matplotlib inline
```

Passo 2: Gerando os dados sinteticamente

2. Gerando artificialmente os dados

```
random.seed(98103)
n = 30
x = graphlab.SArray([random.random() for i in range(n)]).sort()
```

X

dtype: float

Rows: 30
[0.03957894495006575, 0.04156809967912256, 0.0724319480800758, 0.1502890446221763, 0.16133414450223427, 0.19195631279497838, 0.23283391714465285, 0.25990098016580054, 0.3801458148686865, 0.432444723507992, 0.47056698189428126, 0.4714946037956341, 0.47870640066103853, 0.49053553924712967, 0.5467800590828905, 0.5696803579782542, 0.6079324536462045, 0.6202375373443129, 0.630093133764472, 0.6450096693254694, 0.6467576040906915, 0.6990897790220533, 0.7902450464374043, 0.8103846511814395, 0.829320894073608, 0.8501115576007019, 0.8863684369527574. 0.891

Passo 2: Gerando os dados sinteticamente

```
y = x.apply(lambda x: math.sin(4*x))
dtype: float
Rows: 30
[0.15765527330715118, 0.16550731513895361, 0.28569137317201587, 0.565
5963310738573, 0.6014673638641537, 0.6945723182799316, 0.802417733662
6097, 0.8622036562183355, 0.9987395887969133, 0.9873888679370947, 0.9
518836143289069, 0.9507399491702666, 0.9414033048470645, 0.9243965533
386744, 0.8160088904398481, 0.759712729130455, 0.6517297472208435, 0.
6136242987242347, 0.5820277559882728, 0.5325021703779891, 0.526571194
9509843, 0.3384164444332101, -0.019386317630007324, -0.09977963765619
023, -0.17478846590569042, -0.25597249131754973, -0.3929901249560022,
```

-0.4104720422761508, -0.4581930879372578, -0.52809087550212221

Passo 2: Gerando os dados sinteticamente

Adicionando aos dados um ruído gaussiano

```
random.seed(1) e = graphlab.SArray([random.gauss(0,1.0/3.0) for i in range(n)]) y = y + e
```

Passo 3: Criar um SFrame

3. Dispor os dados gerados em formato de SFrame

```
data = graphlab.SFrame({'X1':x,'Y':y})
```

data

X1	Y
0.0395789449501	0.587050191026
0.0415680996791	0.648655851372
0.0724319480801	0.307803309485
0.150289044622	0.310748447417
0.161334144502	0.237409625496
0.191956312795	0.705017157224
0.232833917145	0.461716676992
0.259900980166	0.383260507851

Passo 4: Definir as características do modelo de regressão

4. Definir uma função para criar as características do modelo de regressão polinomial de qualquer grau

```
def polynomial_features(data, deg):
    data_copy=data.copy()
    for i in range(1,deg):
        data_copy['X'+str(i+1)]=data_copy['X'+str(i)]*data_copy['X1']
    return data_copy
```

Passo 5: Definir uma função para ajustar um modelo de regressão linear polinomial do grau "deg" aos dados "data"

```
def regressao_polinomial_cume(data, deg, l2_penalty):
    model =
graphlab.linear_regression.create(polynomial_features(data,deg),
                       target='Y', l2_penalty=l2_penalty,
                       validation_set=None,verbose=False)
    return model
```

Passo 6: Imprimir os coeficientes do modelo

6. Definir a função que imprime os coeficientes do modelo

```
def print_coefficients(model):
    deg = len(model.coefficients['value'])-1
    w = list(model.coefficients['value'])

    print 'Coeficientes do polinômio de grau ' + str(deg) + ':'
    w.reverse()
    print numpy.poly1d(w)
```

Passo 7: Plotar dados e previsões

7. Defina a função para plotar dados e previsões

```
def plot_data(data):
    plt.plot(data['X1'],data['Y'],'k.')
    plt.xlabel('x')
    plt.ylabel('y')

plot_data(data)
```

Passo 7: Plotar dados e previsões

Passo 7: Plotar dados e previsões

```
def plot_predicoes(data, model):
     plot_data(data)
     deg = len(model.coefficients['value'])-1
     x_pred = graphlab.SFrame({'X1':[i/200.0 for i in range(200)]})
     y_pred = model.predict(polynomial_features(x_pred,deg))
     plt.plot(x_pred['X1'], y_pred, 'g-', label='degree ' + str(deg) + ' fit')
     plt.legend(loc='upper left')
     plt.axis([0,1,-1.5,2])
```

Passo 8: modelo de regressão (grau 16) com lambda pequeno

8. Encontre um modelo de regressão de cume utilizando um polinômio de grau 16 usando com um parâmetro de ajuste muito pequeno

Passo 8: modelo de regressão (grau 16) com lambda pequeno

Passo 9: modelo de regressão (grau 16) com lambda grande

9. Encontre um modelo de regressão de cume utilizando um polinômio de grau 16 usando com um parâmetro de ajuste muito grande

Passo 9: modelo de regressão (grau 16) com lambda grande

Passo 10: Plotar dados e previsões

```
for l2_penalty in [1e-25, 1e-10, 1e-6, 1e-3, 1e2]:
     model = polynomial_ridge_regression(data, deg=16, l2_penalty=l2_penalty)
     print 'lambda = %.2e' % l2_penalty
     print coefficients(model)
     print '\n'
     plt.figure()
     plot_predicoes(data,model)
     plt.title('Ridge, lambda = %.2e' % l2_penalty)
```

Qual o melhor coeficiente?

Dúvidas?Sugestões? Inquietações? Aconselhamentos?

Desabafe em: deborah.vm@gmail.com