Комбінації, перестановки, розміщення

- Комбінації $C_n^k = \frac{n!}{k!(n-k)!}$ Порядок не важливий
- Комбінації з повтореннями $\overline{C_n^k} = C_{n+k-1}^k$
- Розміщення $A_n^k=k!C_n^k=rac{n!}{(n-k)!}$ Порядок важливий
- Розміщення з повтореннями $\overline{A_n^k}=n^k$
- Перестановки $P_n = n!$
- Перестановки з повтореннями $\overline{P_n} = \frac{n!}{n_1! n_2! ... n_k!}$

Математичне сподівання

$$M(x) = np$$

Дисперсія

$$D(x) = npq$$

Функція розподілу

- 1. Неспадна функція
- 2. Значення лежить в межах [0;1]
- 3. Неперервна зліва
- 4. {0 .. 1

Щільність розподілу

- 1. > 0
- $2. \int_{-\infty}^{+\infty} f(x) dx = 1$

Найімовірніше число появи випадкової події

$$np - q \le m_0 \le np + p$$

Схема Бернуллі

Ймовірність того, що незалежна подія настане рівно m разів з n випробувань $P_n(m) = C_n^m \cdot p^m \cdot q^{n-m}$

Локальна теорема Мавра-Лапласа

Яка ймовірність настання незалежної події рівно m разів з n випробувань з ймовірністю успіху p< ймовірності невдачі q

$$P_n(m) = \frac{1}{\sqrt{npq}}\phi(x), x = \frac{m-np}{\sqrt{npq}}$$

Інтегральна теорема Мавра-Лапласа

Яка ймовірність настання незалежної події від m_1 до m_2 разів з n випробувань з ймовірністю успіху p< ймовірності невдачі q

$$P_n(m) = \Phi(x_2) - \Phi(x_1), \ x_1 = \frac{m_1 - np}{\sqrt{npq}}, \ x_2 = \frac{m_2 - np}{\sqrt{npq}}$$

 $\Phi(-x) = -\Phi(x)$

Розподіли

Дискретні розподіли

Дано *п* - кількість випробувань

- Пуассона $(p \downarrow \downarrow n \uparrow \uparrow, np < 10)$
- Геометричний (до першого успіху)
- Біномний незалежні спроби

Неперервні розподіли

- Рівномірний щільність розподілу = const
- Показниковий λ
- Нормальний σ a