Notebook – doc2query

Conceitos do exercício

- 1. Indexar TREC-COVID e testar com BM25
- 2. Treinar um modelo seq2seq usando MS MARCO (X, Y) => (DOCUMENTO, QUERY)
- 3. Usar o modelo treinado para inferir queries para os doc do TREC-COVID e enriquecer a base (usei 10 queries, top_p = 0.9)
- 4. Indexar a base enriquecida e testar com BM25

Problemas e soluções no desenvolvimento

Principal dificuldade foi com a biblioteca (HF)

=> Solução: caderno da Monique

Tempo de treinamento

Resultados interessantes/inesperados

Método	nDCG@10								
BM25	0,5956								
BM25 doc. original + expansão	0,6719								
BM25 sem doc. original + expansão	0,5225								

Resultados para k1 = 0.82 b = 0.68

Resultados interessantes/inesperados

Melhor nDCG@10 encontrado buscando parâmetros k1, b

	0,80	0,82	0,84	0,86	0,88	0,90	0,92	0,94	0,96	0,98	1,00	1,02	1,04	1,06	1,08	1,10	1,12	1,14	1,16	1,19	1,20
0,4																0,7001	0,703	0,7055	0,7062	10/6	0,7055
0,42																0,7004	0,7029	0,7048	0,7081	0,7068	0,7075
0,44																0,7037	0,7023	0,705	0,7052	0,7067	0,7058
0,46																0,7009	0,7031	0,7015	0,7047	0,7050	0,7064
0,48																0,703	0,7059	0,7046	0,7058	0,7069	0,7067
0,50														0,6988	0,7003	0,7025	0,7031	0,7041	0,7034	0,7022	0,7022
0,52														0,6992	0,6973	0,6967	0,6969	0,6979	0,7026	0,7034	0,7029
0,54														0,6924	0,693	0,6917	0,6938	0,694	0,6957	0,6978	0,7018
0,56														0,6904	0,6906	0,6913	0,6906	0,6894	0,6908	0,6916	0,6948
0,58														0,6868	0,687	0,6882	0,6885	0,6911	0,6917	0,6929	0,6955
0,60	0,6710	0,6730	0,6793	0,6797	0,6816	0,6815	0,6826	0,6830	0,6852	0,6859	0,6854	0,6855	0,6855	0,6863	0,6884	0,6896					
0,62	0,6712	0,6720	0,6783	0,6785	0,6802	0,6812	0,6813	0,6837	0,6851	0,6859	0,6857	0,6860	0,6863	0,6883	0,6887	0,6895					
0,64	0,6693	0,6733	0,6759	0,6758	0,6770	0,6782	0,6818	0,6816	0,6841	0,6857	0,6851	0,6858	0,6861	0,6896	0,6892	0,6904					
0,66	0,6688	0,6732	0,6740	0,6772	0,6792	0,6796	0,6804	0,6834	0,6841	0,6832	0,6829	0,6845	0,6881	0,6891	0,6885	0,6870					
0,68	0,6667	0,6719	0,6740	0,6764	0,6780	0,6785	0,6803	0,6815	0,6825	0,6826	0,6829	0,6859	0,6877	0,6878	0,6858	0,6857					
0,70	0,6685	0,6704	0,6734	0,6762	0,6780	0,6780	0,6794	0,6802	0,6813	0,6817	0,6849	0,6848	0,6859	0,6850	0,6841	0,6841					
0,72	0,6685	0,6700	0,6705	0,6763	0,6767	0,6775	0,6787	0,6788	0,6797	0,6819	0,6826	0,6816	0,6814	0,6789	0,6801	0,6812					
0,74	0,6655	0,6688	0,6691	0,6725	0,6739	0,6765	0,6752	0,6757	0,6764	0,6791	0,6778	0,6781	0,6778	0,6777	0,6758	0,6748					
0,76														0,6723							
0,78	0,6597	0,6644	0,6650	0,6658	0,6655	0,6712	0,6714	0,6740	0,6742	0,6723	0,6711	0,6698	0,6682	0,6695	0,6695	0,6691					

Para (k1, b) = (1.16, 0.42): 0.7081 (com expansão) e 0.6255 (sem expansão)

Obrigado

Leandro Carísio carisio@gmail.com