Лекции по математическому анализу для 1 курса ФН2, 3

Власова Е. А.

2024-2025 год.

Содержание

1	Введение					
	1.1	Элементы теории множеств	4			
	1.2	Кванторные операции	5			
	1.3	Метод математической индукции	5			
2	Множество действительных чисел					
	2.1	Аксиоматика действительных чисел	6			
	2.2	Интерпретации \mathbb{R}	7			
	2.3	Числовые промежутки	8			
	2.4	Бесконечные числовые промежутки (лучи)	8			
	2.5	Окрестности точки	8			
	2.6	Принцип вложенных отрезков (Коши-Кантора)	10			
	2.7	Ограниченные и неограниченные числовые множества	11			
	2.8	Точные грани числового множества	12			
	2.9	Принцип Архимеда	14			
3	Функции или отображения 16					
	3.1	Ограниченные и неограниченные числовые функции	18			
	3.2	Обратные функции	20			
	3.3	Четные и нечетные функции	21			
	3.4	Периодические функции	21			
	3.5	Сложная функция (композиция)	22			
	3.6		24			
4	Числовые последовательности и их пределы 26					
	4.1	Арифметические операции с числовыми последовательно-				
		СТЯМИ	26			
	4.2	Ограниченные и неограниченные числовые последователь-				
		ности	27			
	4.3	Предел числовой последовательности	27			
	4.4	Бесконечные пределы	28			
	4.5	Свойства сходящихся последовательностей	29			
	4.6	Монотонные числовые последовательности	31			
	4.7	Число е	32			
	4.8	Гиперболические функции	33			
	4.9	Предельные точки числового множества	34			
	4.10	- · · ·	38			
	4 11	Фундаментальные последовательности	40			

5	Πpe	Пределы функций						
	5.1	Определение предела по Коши	44					
	5.2	Бесконечно малые функции	49					
	5.3	Свойства бесконечно малых функций	50					
	5.4	Арифметические операции с функциями, имеющими пре-						
		делы	52					
	5.5	Бесконечно большие функции	57					
	5.6	Первый замечательный предел	59					
	5.7	Второй замечательный предел	59					
	5.8	Сравнение бесконечно малых	61					
	5.9	Таблица эквивалентных бесконечно малых	62					
	5.10	Свойства эквивалентных бесконечно малых	62					
	5.11	О-символика	62					
	5.12	Сравнение бесконечно больших	62					
	5.13	Свойства эквивалентных бесконечно больших	62					
6	Непрерывность							
	6.1	Непрерывность функции в точке	63					
	6.2	Приращение аргумента в точке и приращение функции	63					
	6.3	Точки разрыва	64					
	6.4	Классификация точек разрыва	64					
	6.5	Односторонняя непрерывность	65					
	6.6	Свойства функций, непрерывных в точке	65					
	6.7	Свойства функций, непрерывных на отрезке	66					
	6.8	Непрерывность монотонных функций	67					

Модуль 1

1 Введение

1.1 Элементы теории множеств

"Множество есть многое, мыслимое как единое."

(Г. Кантор)

Множество — то же, что и класс, семейство, совокупность, набор; может состоять из любых различимых объектов; однозначно определяется набором составляющих его объектов.

Важные обозначения:

- A, B, C множества;
- $a \in A$ элемент a принадлежит множеству A;
- $a \notin A$ элемент a не принадлежит множеству A;
- $A \subset B A$ является подмножеством множества B, т.е. любой элемент множества A будет являться элементом множества B;
- \varnothing пустое множество или множество, не содержащее элементов;
- Если x объект, P свойство, P(x) обозначение того, что x обладает свойством P, то через $\{x:P(x)\}$ или $\{x\mid P(x)\}$ обозначают все множество объектов, обладающих свойством P.

Пять основных операций над множествами:

- 1. $A \cup B = C \iff C = \{c \in C : c \in A$ или $c \in B\};$
- 2. $A \cap B = C \iff C = \{c \in C : c \in A \text{ if } c \in B\};$
- 3. $A \setminus B = C \iff C = \{c \in C : c \in A \text{ if } c \notin B\};$
- 4. $\overline{A} = X \backslash A$. Говорят, что \overline{A} дополнение A до X;
- 5. Декартово произведение множеств.

$$X \times Y = \{(x, y) : x \in X, y \in Y\},$$

 $X_1 \times X_2 \times \ldots \times X_n = \{(x_1, x_2, \ldots, x_n) : x_k \in X_k, k \in 1, \ldots, n\}.$

1.2 Кванторные операции

Высказывание, содержащее переменную, называется предикатом и обозначается P(x). Отрицание P(x) обозначается $\overline{P}(x)$.

- \forall квантор общности. $\forall x \in X : P(x)$ "для любого элемента x из множества X выполняется высказывание P(x)".
- \exists квантор существования. $\exists x \in X : P(x)$ "существует элемент x из множества X, для которого выполняется высказывание P(x).
- \exists ! квантор существования и единственности. $\exists x \in X : P(x)$ "существует единственный элемент x из множества X, для которого выполняется высказывание P(x). Например, \exists ! $x \in \mathbb{R} : \log_2 x = 1$.

Следующая выкладка иллюстрирует правило построения отрицаний высказываний, содержащих кванторы.

$$Q = \forall x \in X : P(x), \quad \overline{Q} = \exists x \in X : \overline{P}(x),$$

 $R = \exists x \in X : P(x), \quad \overline{R} = \forall x \in X : \overline{P}(x),$

1.3 Метод математической индукции

Пусть A(n) — некоторое высказывание. Докажем, что $\forall n \in \mathbb{N} : A(n)$.

- 1. Проверяем истинность A(n) при n = 1 (или $n = n_1$, где n_1 число, с которого целесообразно начать).
- 2. Полагаем, что A(n) верно для некоторого $n \in \mathbb{N}$.
- 3. Доказываем, что A(n+1) верно, используя 2). $A(1) \implies A(2) \implies \dots \implies A(n) \implies A(n+1)$

Пример 1.1. Докажем по индукции неравенство Бернулли:

$$\forall n \in \mathbb{N} : (1+x)^n > 1 + nx, x > 0.$$

- 1. Проверим верность для n = 1. Неравенство $1 + x \ge 1 + x$ верно.
- 2. Пусть $(1+x)^n \ge 1 + nx$ для некоторого $n \in \mathbb{N}$.
- 3. Используя верность для n, докажем верность для n+1:

$$(1+x)^{n+1} = (1+x)^n (1+x) \ge (1+nx)(1+x) =$$

= 1+nx+x+nx² > 1+nx+1 \implies (1+x)ⁿ⁺¹ > 1+(n+1)x.

2 Множество действительных чисел

2.1 Аксиоматика действительных чисел

Определение 2.1. Множество \mathbb{R} называется множеством действительных чисел, если элементы этого множества удовлетворяют следующему комплексу условий:

(I) Аксиомы сложения

На \mathbb{R} определена операция сложения "+", то есть задано отображение, которое каждой упорядоченной паре $(x,y) \in \mathbb{R}^2$ ставит в соответствие элемент из \mathbb{R} , называемый суммой x+y и удовлетворяющий следующим аксиомам:

- 1. $\exists 0 \in \mathbb{R}$, такой, что $\forall x \in \mathbb{R} : x + 0 = 0 + x = x$;
- 2. $\forall x \exists npomusonoложный элемент -x, такой, что <math>x+(-x)=(-x)+x=0$;
- 3. Ассоциативность. $\forall x, y, z \in \mathbb{R} : (x+y) + z = x + (y+z);$
- 4. Коммутативность. $\forall x, y \in \mathbb{R} : x + y = y + x$.

(II) Аксиомы умножения

На \mathbb{R} определена операция умножения "·", то есть $\forall (x,y) \in \mathbb{R}^2$ ставится в соответствие элемент $(x \cdot y) \in \mathbb{R}$.

- 1. \exists нейтральный элемент $1 \in \mathbb{R}$, такой, что $\forall x \in \mathbb{R} : 1 \cdot x = x \cdot 1 = x$;
- 2. $\forall x \in \mathbb{R} \setminus \{0\}$ \exists обратный элемент " x^{-1} ", такой, что $x \cdot x^{-1} = x^{-1} \cdot x = 1$;
- 3. Ассоциативность. $\forall x, y, z \in \mathbb{R} \setminus \{0\} : (x \cdot y) \cdot z = x \cdot (y \cdot z);$
- 4. Коммутативность. $\forall x, y \in \mathbb{R} \setminus \{0\} : x \cdot y = y \cdot x$.

(I, II) Связь операций сложения и умножения

Операция умножения дистрибутивна по отношению к операции сложения.

$$\forall x, y, z \in \mathbb{R} : (x+y)z = xz + yz$$

(III) Аксиомы порядка

Для \mathbb{R} определено отношение " \leq ".

- 1. $\forall x \in \mathbb{R} : x < x$;
- 2. $\forall x, y \in \mathbb{R} : (x < y \land y < x) \implies x = y$;
- 3. Транзитивность. Если $x \le y$ и $y \le z$, то $x \le z$;
- 4. $\forall x, y \in \mathbb{R}(x \leq y) \ u \ (y \leq x)$.

(I, III) Связь сложения с неравенством

Если $x \leq y$, то $\forall z \in \mathbb{R} : x + z \leq y + z$.

(II, III) Связь умножения с неравенством

Eсли $0 \le x$ и $0 \le y$, то $0 \le x \cdot y$.

(IV) Аксиома полноты $\mathbb R$

Для любых ненулевых подмножеств X и Y множества \mathbb{R} , таких, что $\forall x \in X, \ \forall y \in Y : x \leq y$, существует $c \in \mathbb{R}$, такое, что $(\forall x \in \mathbb{R} \ u \ \forall y \in \mathbb{R}) : x \leq c \leq y$.

2.2 Интерпретации $\mathbb R$

Геометрическая

Между прямой и \mathbb{R} существует взаимно-однозначное соответствие, т.е. отображение из \mathbb{R} на прямую биективно. Для задания этого отображения определяется

- 1. начальное положение, которому соответствует $0 \in \mathbb{R}$,
- 2. положительное направление,
- 3. масштаб, то есть положение $1 \in \mathbb{R}$.

Ox — числовая прямая. Каждое действительное число можно найти на числовой оси и для каждой точки числовой оси существует действительное число.

Десятичная форма записи чисел из **R**

$$a \in \mathbb{R} \iff a = a_0, a_1, \dots, a_n : a_0 \in \mathbb{Z}, a_k \in \{0, 1, \dots, 9\}.$$

Если $a \in \mathbb{Q}$, то в десятичной форме записи $a = a_0, a_1, \dots, a_n$ представляется конечной или бесконечной периодической дробью.

2.3 Числовые промежутки

Возьмем числа $a, b \in \mathbb{R}$, такие, что a < b.

- $(a; b) = \{c \in \mathbb{R} : a < c < b\}$ интервал;
- $[a; b] = \{c \in \mathbb{R} : a \le c \le b\}$ отрезок;
- $(a; b] = \{c \in \mathbb{R} : a < c \le b\}$ полуинтервал;
- $[a;b) = \{c \in \mathbb{R} : a \le c < b\}$ полуинтервал.

2.4 Бесконечные числовые промежутки (лучи)

Возьмем $a \in \mathbb{R}$.

- $(a; +\infty) = \{c \in \mathbb{R} : c > a\}$ открытый луч;
- $[a; +\infty) = \{c \in \mathbb{R} : c \ge a\}$ замкнутый луч;
- $(-\infty; a) = \{c \in \mathbb{R} : c < a\}$ открытый луч;
- $(-\infty;a]=\{c\in\mathbb{R};c\leq a\}$ замкнутый луч.

2.5 Окрестности точки

Пусть ε — некоторое положительное число.

Определение 2.2. Окрестностью точки $a \in \mathbb{R}$ называется любой интервал, содержащий точку a. Будем обозначать его так: U(a).

Определение 2.3. ε -окрестностью точки $a \in \mathbb{R}$ называется интервал $(a - \varepsilon; a + \varepsilon)$ и обозначается $U_{\varepsilon}(a)$.

$$c \in U_{\varepsilon}(a) \iff |a - c| < \varepsilon.$$

Определение 2.4. Проколотой ε -окрестностью точки $a \in \mathbb{R}$ называется множество $(a-\varepsilon;a) \cup (a;a+\varepsilon) = U_{\varepsilon}(a) \setminus \{a\}$ и обозначается $\mathring{U}_{\varepsilon}(a)$.

Определение 2.5. Окрестностью бесконечности называют любое множество вида $(-\infty; a) \cup (b; +\infty)$.

Определение 2.6. ε -окрестностью бесконечности называют множество $(-\infty; -\varepsilon) \cup (\varepsilon; +\infty)$.

Замечание 2.0.1. $U_{\varepsilon}(\infty) = \mathring{U}_{\varepsilon}(\infty)$.

2.6 Принцип вложенных отрезков (Коши-Кантора)

Определение 2.7. Пусть $\{X_n\}_{n=1}^{\infty}$ — последовательность некоторых множеств. Если $\forall n \in \mathbb{N} : X_n \supset X_{n+1}$, то эта последовательность называется последовательностью вложенных отрезков.

Теорема 2.1 (принцип Коши-Кантора). Во всякой последовательности $\{I_n\}_{n=1}^{\infty}$, $I_n = [a_n, b_n]$ вложенных отрезков найдется точка $c \in \mathbb{R}$, принадлежащая всем этим отрезкам. Или, что то же,

$$\forall \{I_n\}_{n=1}^{\infty}, \ I_n = [a_n, b_n] \quad \exists c \in \mathbb{R} : (\forall n \in \mathbb{N} : c \in I_n).$$

Если, кроме того, известно, что для любого $\varepsilon > 0$ в последовательности можно найти отрезок I_k , длина которого $|I_k| < \varepsilon$, то $c - e \partial u$ нственная общая точка всех отрезков.

Доказательство. Заметим сначала, что для любых двух отрезков $I_m = [a_m; b_m], \ I_n = [a_n, b_n]$ нашей последовательности имеет место $a_n \leq b_m$, т.е. $\forall n, m \in \mathbb{N} : a_n \leq b_m$. Докажем "от противного". Предположим, что $\exists n, m \in \mathbb{N} : a_n > b_m$

 $a_m < b_m < a_n < b_n \implies I_n \cap I_m = \emptyset$, что противоречит условию $\forall n, m \in \mathbb{N} : a_n \leq b_m$.

Пусть $A = \{a_n, n \in \mathbb{N}\}, B = \{b_m, m \in \mathbb{N}\}, A, B \neq \emptyset, A \subset \mathbb{R}, B \subset \mathbb{R}$. По аксиоме полноты IV $\forall n, m \in \mathbb{N}: a_n \leq b_m$ существует $c \in \mathbb{R}: \forall n, m \in \mathbb{N}: a_n \leq c \leq b_m$. Следовательно, $c \in [a_n; b_n] = I_n$, т.е. c — общая точка всех отрезков.

Пусть $\forall \varepsilon > 0 \ \exists n \in \mathbb{N} : |I_n| = b_n - a_n < \varepsilon$. Докажем "от противного". Предположим, что общая точка не является единственной, то есть существуют $c_1, c_2, c_1 \neq c_2$, такие, что $c_1 \in I_n$ и $c_2 \in I_n$. Пусть для определенности $c_1 < c_2$.

Выберем $\varepsilon = \frac{c_2 - c_1}{2}$. $\forall n \in \mathbb{N} : a_n \leq c_1 < c_2 \leq b_n$, следовательно, $b_n - a_n \geq c_2 - c_1$. По условию $\exists n \in \mathbb{N} : |I_n| = b_n - a_n < \varepsilon = \frac{c_2 - c_1}{2}$, но $c_2 - c_1 \leq b_n - a_n < \frac{c_2 - c_1}{2}$ — противоречие, следовательно, $c_1 = c_2$. Единственность доказана.

2.7 Ограниченные и неограниченные числовые множества

Определение 2.8. Множество $X \subset \mathbb{R}$ называется ограниченным сверху, если существует такое число $M \in R$, что $\forall x \in X : x \leq M$. В этом случае M называют верхней гранью множества X.

Множесство $X \subset \mathbb{R}$ называется ограниченным снизу, если существует такое число $m \in R$, что $\forall x \in X : x \geq m$. В этом случае m называют нижней гранью множесства X.

Множество $X \subset \mathbb{R}$ называется ограниченным, если X ограничено сверху и снизу, т.е. существуют такие числа $M, m \in \mathbb{R}$, что $\forall x \in X : m \leq x \leq M$. Или, что то же, существует такое число M > 0, что $\forall x \in X : |x| \leq M$.

Определение 2.9. Множество $X \subset \mathbb{R}$ называется неограниченным, если для любого числа M > 0 найдется такой $x \in X$, что |x| > M.

Определение 2.10. Число $M \in \mathbb{R}$ называется максимальным элементом множества $X \subset \mathbb{R}$, если $M \in X$ и $\forall x \in X : x < M$.

Число $m \in \mathbb{R}$ называется минимальным элементом множества $X \subset \mathbb{R},\ ecnu\ m \in X\ u\ \forall x \in X: x \geq M.$

Теорема 2.2. Если числовое множество $X \subset \mathbb{R}$ имеет максимальный (минимальный) элемент, то он единственный.

Доказательство. Пусть существует максимальный элемент для $X \subset \mathbb{R}$, т.е. существует такое число $a \in X$, что $\forall x \in X : x \leq a$.

Будем доказывать "от противного". Предположим, что существует такое $b \in X$, что $\forall x \in X : x \leq b$, причем $a \neq b$. $a = \max X, \ b \in X$, следовательно, $b \leq a$. С другой стороны, $b = \max X, \ a \in X$, следовательно, $a \leq b$. Таким образом, a = b, что противоречит предположению, а значит, максимальный элемент единственен.

Упражнение 1. Доказать теорему 2.2 для минимального элемента.

2.8 Точные грани числового множества

Определение 2.11. Пусть множество $X \subset \mathbb{R}$ ограничено сверху, тогда минимальный элемент множества всех верхних граней множества X называется точной верхней гранью множества X и обозначается X. Или, что то же,

$$\sup X = \min \{ M \in \mathbb{R} : \forall x \in X : x \le M \}.$$

Пусть теперь множество $X \subset \mathbb{R}$ ограничено снизу, тогда максимальный элемент множества всех нижних граней множества X называется точной нижней гранью множества X и обозначается X. Или, что то же,

$$\inf X = \max\{m \in \mathbb{R} : \forall x \in X : x \ge m\}.$$

Пример 2.1. Рассмотрим множество X = [0; 1).

$$\min X = 0,$$

$$\max X = \emptyset,$$

$$\sup X = 1,$$

$$\inf X = 0.$$

Теорема 2.3 (о существовании точных граней числового множества). $Ecnu\ X$ — непустое числовое множества, ограниченное сверху (снизу), то для X существует точная верхняя (нижняя) грань, причем единственная.

Доказательство. $X \subset \mathbb{R}, \ X \neq \emptyset$. Пусть X ограничено сверху. Пусть $Y = \{y \in \mathbb{R} : \forall x \in X : x \leq y\}$. Очевидно, $Y \neq \emptyset$.

 $\forall x \in X, \ \forall y \in Y: x \leq y,$ тогда по аксиоме полноты найдется такое число M, что $x \leq M \leq y.$ $\forall x \in X: x \leq M,$ следовательно, M — верхняя грань множества X, т.е. $M \in Y;$ в то же время $\forall y \in Y: M \leq y,$ следовательно, $M = \min Y.$ Таким образом, $M = \sup X.$

Поскольку минимальный элемент множества единственен, M — единственный минимальный элемент Y, т.е. точная верхняя грань множества единственна.

Теорема 2.4. Пусть $X \subset \mathbb{R}$ — непустое числовое множество. Тогда $M = \sup X$ тогда и только тогда, когда

1.
$$\forall x \in X : x \leq M$$
;

2.
$$\forall \varepsilon > 0 \quad \exists x_{\varepsilon} \in X : x_{\varepsilon} > M - \varepsilon$$
.

$$\begin{array}{cccc}
 & & & x_{\varepsilon} \\
 & & & + \\
 & & M & & M
\end{array}$$

Доказательство. Докажем необходимость.

$$M=\sup X\implies M$$
 — минимальный элемент множества всех верхних граней множества $X\implies M$ — верхняя грань множества $X\implies \forall x\in X: x\leq M.$

Первый пункт доказан. Докажем второй "от противного". Предположим, что $\exists \varepsilon > 0 \quad \forall x \in X: x \leq M - \varepsilon$. Тогда $M - \varepsilon$ — верхняя грань множества X. Но $M - \varepsilon < M$, что противоречит тому, что M — минимальный элемент множества всех верхних граней множества X. Второй пункт доказан.

Докажем достаточность. Пусть выполняются следующие условия:

- 1. $\forall x \in X : x \leq M$;
- 2. $\forall \varepsilon > 0 \quad \exists x_{\varepsilon} \in X : x_{\varepsilon} > M \varepsilon$.

Из первого условия следует, что M — верхняя грань множества X, и X ограничено сверху. Утверждение, что $M=\sup X$ будем доказывать "от противного". Предположим, что $M_1=\sup X$, причем $M_1< M$. Из второго условия следует, что для $\varepsilon=\frac{M-M_1}{2}$ найдется такой x_{ε} , что

$$x_{\varepsilon} > M - \varepsilon = M - \frac{M - M_1}{2} = \frac{M + M_1}{2} > \frac{M_1 + M_1}{2} = M_1.$$

Таким образом, $\exists x_{\varepsilon} > M_1$, что противоречит тому, что $M_1 = \sup X$. А значит, нет верхней грани множества X, которая меньше M. Следовательно, $M = \sup X$.

Теорема 2.5. Пусть $X \subset \mathbb{R}$ — непустое числовое множество. Тогда $m = \inf X$ тогда и только тогда, когда

- 1. $\forall x \in X : x \geq m$;
- 2. $\forall \varepsilon > 0 \quad \exists x_{\varepsilon} \in X : x_{\varepsilon} < m + \varepsilon$.

Упражнение 2. Доказать теорему 2.5.

2.9 Принцип Архимеда

Теорема 2.6. В любом непустом ограниченном сверху подмножестве N имеется максимальный элемент.

Доказательство. Пусть $X \subset \mathbb{N}$ ограничено сверху и непусто. Тогда существует и единственно число $M = \sup X$, т.е. выполняются два условия:

- 1. $\forall x \in X : x \leq M;$
- 2. $\forall \varepsilon > 0 \quad \exists x_{\varepsilon} \in X : x_{\varepsilon} > M \varepsilon$.

Положим $\varepsilon = 1$, тогда найдется такое $n_1 \in X$, что $\forall x \in X : n_1 > M-1$. $\forall x \in X : x \leq M \implies n_1 \leq M$. Докажем "от противного", что n_1 — максимальный элемент множества X. Пусть $\exists n > n_1$. Тогда

$$n > n_1 \implies n \ge n_1 + 1 > M - 1 + 1 = M.$$

Таким образом, $n > M = \sup X$, следовательно, n не может быть максимальным элементом множества X. А значит, $n = \max X$.

Теорема 2.7. В любом непустом ограниченном сверху (снизу) подмножестве \mathbb{Z} имеется максимальный (минимальный) элемент.

Теорема 2.8. *Множество* \mathbb{Z} *не ограничено ни сверху, ни снизу.*

Теорема 2.9 (принцип Архимеда). Если фиксировать произвольное число h > 0, то для любого $x \in \mathbb{R}$ найдется и притом единственное $k \in \mathbb{Z}$, такое, что $(k-1)h \le x < kh$.

Доказательство. $\forall h>0$ и $\forall x\in\mathbb{R}$ множество $Y=\{n\in\mathbb{Z}:\frac{x}{h}< n\}$ непусто, т.к. \mathbb{Z} не ограничено сверху. Y ограничено снизу: $\frac{x}{h}$ — нижняя грань. Значит, существует $\min Y=k\in\mathbb{Z}:\frac{x}{h}< k$. Тогда $(k-1)\not\in Y$, следовательно, $(k-1)\leq\frac{x}{h}$. Воспользовавшись тем, что h>0, получим

$$(k-1) \le \frac{x}{h} < k \implies (k-1)h \le x < kh.$$

Следствие 2.9.1. Для любого положительного числа ε существует натуральное число n такое, что $\frac{1}{n} < \varepsilon$. Или, что то же,

$$\forall \varepsilon > 0 \quad \exists n \in \mathbb{N} : \frac{1}{n} < \varepsilon.$$

Следствие **2.9.2.** Пусть $x \ge 0$. Если $\forall n \in \mathbb{N} : x < \frac{1}{n}$, то x = 0.

Следствие 2.9.3. Для любых чисел $a, b \in \mathbb{R}$ таких, что a < b, найдется рациональное число $r \in \mathbb{Q}$ такое, что a < r < b. Или, что то же,

$$\forall a, b \in \mathbb{R} : a < b \quad \exists r \in \mathbb{Q} : a < r < b.$$

Доказательство. a < b, следовательно, b-a>0. Учитывая следствие 1, подберем $n \in \mathbb{N}$ так, что $n \in \mathbb{N}: \frac{1}{n} < b-a$. По принципу Архимеда найдем такое число $m \in \mathbb{Z}$, что

$$(m-1)\frac{1}{n} \le a < m\frac{1}{n}.$$

Докажем, что $\frac{m}{n} \in (a;b)$ "от противного". Предположим, что $b \leq \frac{m}{n}$. Тогда

$$\frac{m-1}{n} \le a < b \le \frac{m}{n},$$

T.e.
$$(a;b) \subset \left\lceil \frac{m-1}{n}; \frac{m}{n} \right\rceil$$
,

следовательно, $b-a \leq \frac{1}{n}$, что противоречит выбору n. Таким образом, $\frac{m}{n} \in (a;b), \, \frac{m}{n} \in \mathbb{Q}.$

Следствие 2.9.4. Для любого числа $x \in \mathbb{R}$ существует и притом единственное число $k \in \mathbb{Z}$, такое, что $k \le x < k+1$. Или, что то же,

$$\forall x \in \mathbb{R} \quad \exists! k \in \mathbb{Z} : k \le x < k+1.$$

Указанное число k обозначается [x] и называется целой частью числа x.

3 Функции или отображения

Определение 3.1. Пусть $X \ u \ Y - \kappa a \kappa u e$ -то множества.

Если $\forall x \in X$ поставлен в соответствие элемент $y \in Y$, то говорят, что задана функция $f: X \to Y$, переводящая множество X во множество Y.

В этом случае множество $D_f = X$ называется областью определения f, а множество $E_f = \{y \in Y : (\exists x \in X : f(x) = y)\}$ называется множеством значений f.

Значение $f(x) \in Y$, которое функция принимает на элементе $x \in X$, называют образом элемента x. C другой стороны, если для $y \in E_f$ выполнено y = f(x), то x называют прообразом элемента y при отображении f.

Пусть $A \subset X$. Тогда множество

$$f(A) = \{ y \in Y : (\exists x \in A : f(x) = y) \}.$$

называется образом множества A при отображении f.

 $\Pi ycm b \ B \subset E_f$. Тогда множество

$$f^{-1}(B) = \{ x \in X : f(x) \in B \}.$$

называется прообразом множества B при отображении f.

Определение 3.2. Если $X \subset \mathbb{R}$, $Y \subset \mathbb{R}$, то $f: X \to Y$ называется числовой функцией одного действительного аргумента.

Определение 3.3. Функцию $f: X \to Y$ называют интекцией, если $\forall x_1, x_2 \in X: (x_1 \neq x_2 \implies f(x_1) \neq f(x_2)),$ т.е. различные элементы имеют различные образы.

Определение 3.4. Функцию $f: X \to Y$ называют сюръекцией, если $E_f = Y, \ m.e. \ \forall y \in Y \ \exists x \in X: f(x) = y.$

Определение 3.5. Функцию $f: X \to Y$ называют биекцией или взаимнооднозначным отображением, если f является и интекцией, и сюръекцией.

Определение 3.6. Если существует биекция $f: X \to \mathbb{N}$, то множество X называют счетным и обозначают $X \sim \mathbb{N}$.

Упражнение 3. Доказать, что \mathbb{Q} — счетное множество.

Определение 3.7. Пусть $f: X \to Y$. Графиком f называется множество Γ_f всех упорядоченных пар x,y, где $x \in X, \ y = f(x)$. Или, что то же,

$$\Gamma_f = \{(x, y) : x \in X, \ y = f(x)\}.$$

Геометрическая интерпретация графика функции

График функции принято изображать в декартовой системе координат.

3.1 Ограниченные и неограниченные числовые функции

Определение 3.8. Функцию $f: X \subset \mathbb{R} \to \mathbb{R}$ называют ограниченной сверху тогда и только тогда, когда множество значений функции E_f ограничено сверху, т.е. найдется такое число $M \in \mathbb{R}$, что $\forall x \in X: f(x) \leq M$.

Функцию $f: X \subset \mathbb{R} \to \mathbb{R}$ называют ограниченной снизу тогда и только тогда, когда множество значений функции E_f ограничено снизу, т.е. найдется такое число $m \in \mathbb{R}$, что $\forall x \in X: f(x) \geq m$.

Функцию $f: X \subset \mathbb{R} \to \mathbb{R}$ называют ограниченной тогда и только тогда, когда f ограничена и сверху, и снизу, т.е. найдется такое число $M \in \mathbb{R}$, что $\forall x \in X: |f(x)| \geq M$.

Функцию $f:X\subset\mathbb{R}\to\mathbb{R}$ называют неограниченной тогда и только тогда, когда для любого числа $M\in\mathbb{R}$, найдется такой $x\in X$, что |f(x)|>M.

Пример 3.1. Рассмотрим функцию $y = x^2$. Ее множество значений $E_f = [0; +\infty]$ ограничено снизу, следовательно, функция y ограничена снизу.

Определение 3.9. Функция $f:X\subset\mathbb{R}\to\mathbb{R}$ называется

- 1. возрастающей, если $\forall x_1, x_2 : (x_1 < x_2 \implies f(x_1) < f(x_2)).$
- 2. убывающей, если $\forall x_1, x_2 : (x_1 < x_2 \implies f(x_1) > f(x_2)).$
- 3. неубывающей, если $\forall x_1, x_2 : (x_1 < x_2 \implies f(x_1) \le f(x_2)).$
- 4. невозрастающей, если $\forall x_1, x_2 : (x_1 < x_2 \implies f(x_1) \ge f(x_2)).$

Все перечисленные функции называются монотонными. Первые две называются строго монотонными.

Пример 3.2. Рассмотрим функцию $y = x^2$. На своей области определения $D_f = \mathbb{R}$ она не является монотонной. Однако она является возрастающей на участке $[0; +\infty) \subset D_f$ и убывающей на участке $[-\infty; 0] \subset D_f$.

Пример 3.3. Рассмотрим функцию y = C, где C — константа. Эта функция является монотонной.

Пример 3.4. Рассмотрим функцию
$$y = \operatorname{sgn} x = \begin{cases} 1, x > 0, \\ 0, x = 0, \\ -1, x < 0. \end{cases}$$

Она является неубывающей на всей своей области определения.

Утверждение 3.1. Если $f: X \subset \mathbb{R} \to Y \subset \mathbb{R}$, $E_f = Y$, $u \ f - cmporo$ монотонная, то f - биекция множества X на множество Y.

3.2 Обратные функции

Определение 3.10. Пусть $f: X \to Y$ — биекция. Если $\forall y \in Y$ поставлен в соответствие тот единственный $x \in X$, для которого y = f(x), то полученное отображение множества Y на множество X называется обратной функцией κ f и обозначается f^{-1} .

$$D_{f^{-1}} = Y, \quad E_{f^{-1}} = X,$$

$$\Gamma_{f^{-1}} = \{(x, y) : y \in Y, \ x \in f^{-1}(y)\}.$$

Заметим, что $\Gamma_{f^{-1}}$ симметричен Γ_f относительно прямой y=x.

Пример 3.5. Рассмотрим функцию $y = \sin x$ на отрезке $\left[\frac{-\pi}{2}; \frac{\pi}{2}\right]$. Представим ее как $f: \left[\frac{-\pi}{2}; \frac{\pi}{2}\right] \to [-1; 1]$. Тогда $D_f = \left[\frac{-\pi}{2}; \frac{\pi}{2}\right]$, $E_f = [-1; 1]$. Рассмотрим теперь функцию $y = \arcsin x$. $D_f = [-1; 1]$, $E_f = \left[\frac{-\pi}{2}; \frac{\pi}{2}\right]$.

 $\forall x \in [-1; 1] : (y = \arcsin x \iff x = \sin y).$

3.3 Четные и нечетные функции

Определение 3.11. Функцию $f: X \subset \mathbb{R} \to \mathbb{R}$ называют четной тогда и только тогда, когда

- 1. Область определения функции D_f симметрична относительна нуля;
- 2. $\forall x \in X : f(-x) = f(x)$.

Заметим, что в этом случае Γ_f симметричен относительно оси Oy.

Пример 3.6. Рассмотрим функцию $y = x^2$. $D_y = \mathbb{R}$, $(-x)^2 = x^2$, следовательно, $y = x^2$ — четная функция.

Пример 3.7. Рассмотрим функцию $y=x^2, x \in [-1;5]$. Ее область определения несимметрична, следовательно, данная функция не является четной.

Определение 3.12. Функцию $f:X\subset\mathbb{R}\to\mathbb{R}$ называют нечетной тогда и только тогда, когда

- 1. Область определения функции D_f симметрична относительна нуля;
- 2. $\forall x \in X : f(-x) = -f(x)$.

Заметим, что в этом случае Γ_f симметричен относительно оси Ox.

Пример 3.8.

$$y = \sin x;$$
$$y = x^{2n-1}, \ n \in \mathbb{N}.$$

3.4 Периодические функции

Определение 3.13. Число T называется периодом функции $f: X \subset \mathbb{R} \to \mathbb{R}$ тогда и только тогда, когда

1.
$$\forall x \in X : x + T \in X, x - T \in X$$
:

2.
$$\forall x \in X : f(x+T) = f(x-T) = f(x)$$
.

Если f имеет ненулевой период, то она называется периодической. Если среди положительных периодов есть наименьший, то он называется основным. 3амечание 3.0.1. Если T — период функции f, то $\forall n \in \mathbb{Z}$ и $\forall x \in X$ f(x+nT) = f(x).

Пример 3.9. y = C — периодическая, не имеет основного периода.

Пример 3.10. Рассмотрим функцию Дирихле: $y = D(x) = \begin{cases} 1, x \in \mathbb{Q}, \\ 0, x \in \mathbb{R} \backslash \mathbb{Q}. \end{cases}$ Докажем, что $\forall r \in \mathbb{Q}$ будет ее периодом.

- 1. Если $x \in \mathbb{Q}$, то $x + r \in \mathbb{Q}$, D(x + r) = 1 = D(x).
- 2. Если $x \in \mathbb{R} \setminus \mathbb{Q}$, то $x + r \in \mathbb{R} \setminus \mathbb{Q}$, D(x + r) = 0 = D(x).

Следовательно, T = r — период функции Дирихле. Основного периода у этой функции нет, т.к. $\forall r \in \mathbb{Q}$ найдется $r' \in \mathbb{Q}$: r' < r.

Пример 3.11. Рассмотрим функцию $y = \sin x, \ x \in \mathbb{R}.\ T = 2\pi$ — ее основной период.

3.5 Сложная функция (композиция)

Определение 3.14. Если отображения $f: X \to Y$ и $g: Y \to Z$ таковы, что одно из них (в нашем случае g) определено на множестве значений другого (f), т.е. $D_q = E_f$, то можно построить новое отображение

$$g \circ f : X \to Z$$

Значения которого на элементах множества X определяются формулой

$$(g \circ f)(x) = g(f(x)).$$

Построенное составное отображение $g \circ f$ называют композицией отображения f и отображения g.

Пример 3.12. Рассмотрим сложную функцию $z=\sin x^2$. Она является композицией функций $z=g(y)=\sin y$ и $y=f(x)=x^2$.

$$f: \mathbb{R} \to [0; +\infty) = Y,$$

$$g:Y\to\mathbb{R}.$$

3.6 Основные элементарные функции

Определение 3.15. Следующие функции называются основными элементарными функциями.

1. Постоянная.

$$y = C;$$

2. Степенная.

$$y = x^n, \ n \in \mathbb{N}.$$

Рассмотрим частный случай $y = \sqrt[n]{x}$. Пусть $k \in \mathbb{Z}$. Если n = 2k, то $D = [0; +\infty)$, если же n = 2k - 1, то $D = \mathbb{R}$.

3. Многочлен степени п.

$$P(x) = a_0 x^n + a_1 x^{n-1} + \ldots + a_n,$$

 $r\partial e \ a_k \in \mathbb{R}, \ k = 0, \dots, n, \ a_0 \neq 0;$

4. Рациональная.

$$P(x) = \frac{P_n(x)}{Q_m(x)},$$

 $rde\ P_n(x), Q_m(x)$ — многочлены степеней $n\ u\ m;$

5. Тригонометрические и их обратные.

$$y = \sin x$$
 $y = \arcsin x$,
 $y = \cos x$ $y = \arccos x$,
 $y = \operatorname{tg} x$ $y = \operatorname{arctg} x$,
 $y = \operatorname{ctg} x$ $y = \operatorname{arctg} x$;

6. Показательная и логарифм. Пусть $a \in \mathbb{R} : (a > 0, \ a \neq 1)$.

$$y = a^x$$

$$D = \mathbb{R}, \ E = (0; +\infty);$$

$$y = \log_a x,$$

$$D = (0; +\infty), \ E = \mathbb{R};$$

$$y = x^{\alpha} = e^{\alpha \ln x},$$

 $r\partial e \ x > 0, \ \alpha \in \mathbb{R}.$

Определение 3.16. Числовую функцию $f: X \subset \mathbb{R} \to \mathbb{R}$ называют элементарной тогда и только тогда, когда эта функция может быть получена из основных элементарных функций путем применения к ним арифметических операций сложения, вычитания, умножения, деления и композиций, взятых конечное число раз.

Пример 3.13.

$$y = \frac{\log_3(\operatorname{tg}(\arcsin x - 3x^4))}{2^{x^2 - 1} + \sqrt[4]{\arctan x^2 + 3}}.$$

4 Числовые последовательности и их пределы

Определение 4.1. Функция $f: \mathbb{N} \to X$, областью определения которой является множество натуральных чисел, называется последовательностью элементов из множества X и обозначается $\{x_n\}_{n=1}^{\infty}$. Или, что то же,

$$\forall n \in \mathbb{N} : f(n) = x_n \quad \{x_n\}_{n=1}^{\infty} \subset X.$$

 $Ecлu\ X\subset \mathbb{R},\ mo\ f:\mathbb{N}\to\mathbb{R}$ — числовая последовательность, т.е. $x_n\in\mathbb{R}.$

Пример 4.1.

$$\left\{\frac{n+1}{n^2+3}\right\}_{n=1}^{\infty}, \ f(n) = \frac{n+1}{n^2+3}.$$

$$x_1 = 0,3;$$

$$x_2 = 0,33;$$

$$x_n = 0,\underbrace{33\dots 3}_{n}.$$

Пример 4.2.

$$\{x_n\}_{n=1}^{\infty}, \ x_n = a + bn.$$

$$a_1 = a + b,$$

$$a_2 = a + 2b,$$

$$a_n = a + bn.$$

Геометрическая интерпретация числовой последовательности

4.1 Арифметические операции с числовыми последовательностями

1. $\forall k \in \mathbb{R}, \ \forall \{x_n\}_{n=1}^{\infty} : \ k \cdot \{x_n\}_{n=1}^{\infty} = \{k \cdot x_n\}_{n=1}^{\infty},$

2. $\forall \{x_n\}_{n=1}^{\infty}, \ \{y_n\}_{n=1}^{\infty} : \ \{x_n\}_{n=1}^{\infty} \pm \{y_n\}_{n=1}^{\infty} = \{x_n \pm y_n\}_{n=1}^{\infty},$

3.
$$\forall \{x_n\}_{n=1}^{\infty}, \{y_n\}_{n=1}^{\infty} : \{x_n\}_{n=1}^{\infty} \cdot \{y_n\}_{n=1}^{\infty} = \{x_n \cdot y_n\}_{n=1}^{\infty},$$

4.

$$\forall \{x_n\}_{n=1}^{\infty}, \ \{y_n\}_{n=1}^{\infty}, \ \forall n \in \mathbb{N} : y_n \neq 0 : \frac{\{x_n\}_{n=1}^{\infty}}{\{y_n\}_{n=1}^{\infty}} = \left\{\frac{x_n}{y_n}\right\}_{n=1}^{\infty}.$$

4.2 Ограниченные и неограниченные числовые последовательности

Определение 4.2. Числовая последовательность $\{x_n\}_{n=1}^{\infty}$ называется

- 1. ограниченной сверху, если $\exists M \in \mathbb{R} : \forall n \in \mathbb{N} : x_n \leq M;$
- 2. ограниченной снизу, если $\exists M \in \mathbb{R} : \forall n \in \mathbb{N} : x_n \geq M;$
- 3. ограниченной, если $\exists M \in \mathbb{R} : \forall n \in \mathbb{N} : |x_n| \leq M;$
- 4. неограниченной, если $\exists M \in \mathbb{R} : \forall n \in \mathbb{N} : |x_n| > M;$

4.3 Предел числовой последовательности

Определение 4.3. Число $a \in \mathbb{R}$ называется пределом числовой последовательности, если $\forall \varepsilon > 0$ существует такой номер N, зависящий от ε , что при всех n > N имеем $|x_n - a| < \varepsilon$. Или, что то же,

$$\lim_{n \to \infty} x_n = a \iff \forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \in \mathbb{N} \quad \forall n > n : |x_n - a| < \varepsilon.$$

Пример 4.3.

$$\lim_{n\to\infty}\frac{1}{n}=0\iff \forall \varepsilon>0 \exists N=N(\varepsilon)\in \mathbb{N}\quad \forall n>N:\frac{1}{n}<\varepsilon.$$

$$\frac{1}{n} < \varepsilon \implies n > \frac{1}{\varepsilon}$$
. Возьмем $N(\varepsilon) = \left[\frac{1}{\varepsilon}\right]$. Тогда $\forall n > \left[\frac{1}{\varepsilon}\right]$ имеем $\frac{1}{n} < \varepsilon$.

Определение 4.4. Если $\{x_n\}_{n=1}^{\infty}$ имеет конечный предел a, то эта последовательность называется сходящейся, в противном случае — расходящейся.

Определение 4.5. Если $\lim_{n\to\infty} x_n = 0$, то последовательность $\{x_n\}_{n=1}^{\infty}$ называется бесконечно малой.

4.4 Бесконечные пределы

Определение 4.6.

$$\lim_{n \to \infty} x_n = \infty \iff \forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \in \mathbb{N} \quad \forall n > N : |x_n| > \varepsilon,$$

m.e., начиная c некоторого номера, $x_n \in U_{\varepsilon}(\infty) = (-\infty; \varepsilon) \cup (\varepsilon; +\infty).$

В этом случае на отрезке $[-\varepsilon; \varepsilon]$ последовательность $\{x_n\}_{n=1}^{\infty}$ содержит не более конечного числа элементов.

Определение 4.7. Если $\lim_{n\to\infty} x_n = \infty$, то последовательность $\{x_n\}_{n=1}^{\infty}$ называется бесконечно большой.

Пример 4.4.

$$\lim_{n \to \infty} (-1)^n n = \infty.$$

Определение 4.8.

$$\lim_{n \to \infty} x_n = +\infty \iff \forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \in \mathbb{N} \quad \forall n > N : x_n > \varepsilon,$$

m.e., начиная c некоторого номера, $x_n \in U_{\varepsilon}(+\infty)$.

Определение 4.9.

$$\lim_{n \to \infty} x_n = -\infty \iff \forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \in \mathbb{N} \quad \forall n > N : x_n < \varepsilon,$$

m.e., начиная c некоторого номера, $x_n \in U_{\varepsilon}(-\infty)$.

Пример 4.5. Докажем, что $\frac{3}{2}$ — предел последовательности $\left\{\frac{3n-2}{2n+1}\right\}_{n=1}^{\infty}$.

$$\begin{split} \lim_{n \to \infty} \left\{ \frac{3n-2}{2n+1} \right\}_{n=1}^{\infty} &= \frac{3}{2} \iff \\ \iff \forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \in \mathbb{N} \quad \forall n > N : \left| \frac{3n-2}{2n+1} - \frac{3}{2} \right| < \varepsilon. \end{split}$$

Выразим n из полученного неравенства.

$$\left|\frac{3n-2}{2n+1} - \frac{3}{2}\right| < \varepsilon \iff \left|\frac{6n-4-6n-3}{2(2n+1)}\right| < \varepsilon \iff \left|-\frac{7}{4n+2}\right| < \varepsilon \iff \frac{7}{4n+2} < \varepsilon \iff \frac{4n+2}{7} < \frac{1}{\varepsilon} \iff n > \frac{7}{4\varepsilon} - \frac{1}{2},$$

тогда
$$N(\varepsilon) = \left\lceil \frac{7}{4\varepsilon} - \frac{1}{2} \right\rceil$$
.

ε	0,1	0,01	0,001
$N(\varepsilon)$	17	174	1749

4.5 Свойства сходящихся последовательностей

Теорема 4.1 (о единственности предела). Любая сходящаяся последовательность имеет только один предел.

Доказательство. "От противного". Пусть $\{x_n\}_{n=1}^{\infty}$ — сходящаяся последовательность. Предположим, что $\exists \lim_{n \to \infty} x_n = a$ и $\exists \lim_{n \to \infty} x_n = b$, причем $a \neq b$. Пусть для определенности a < b.

$$\lim_{n \to \infty} x_n = a \iff \forall \varepsilon > 0 \quad \exists N_1 = N_1(\varepsilon) \in \mathbb{N} : \forall n > N_1 : |x_n - a| < \varepsilon,$$

$$\lim_{n \to \infty} x_n = b \iff \forall \varepsilon > 0 \quad \exists N_2 = N_2(\varepsilon) \in \mathbb{N} : \forall n > N_2 : |x_n - b| < \varepsilon.$$

$$N = \max\{N_1, n_2\} \implies \forall n > N : \begin{cases} |x_n - a| < \varepsilon, \\ |x_n - b| < \varepsilon. \end{cases}$$

Выберем $\varepsilon = \frac{b-a}{4} > 0$. Найдем $N_1(\varepsilon), N_2(\varepsilon), N = \max\{N_1, N_2\}$, тогда

$$\forall n > N \quad |x_n - a| < \frac{b - a}{4}, \quad |x_n - b| < \frac{b - a}{4}.$$

Следовательно,

$$0 < b - a = |b - a| = |b - x_n + x_n - a| \le |x_n - b| + |x_n - a| < \frac{b - a}{2},$$

то есть

$$0 < b - a < \frac{b - a}{2}.$$

Мы пришли к противоречию, следовательно, $a = b \implies \{x_n\}_{n=1}^{\infty}$ имеет единственный предел.

Теорема 4.2 (об ограниченности сходящейся последовательности). Любая сходящаяся последовательность является ограниченной.

Доказательство. Если $\{x_n\}_{n=1}^{\infty}$ сходится, то

$$\exists \lim_{n \to \infty} = a \in \mathbb{R} \implies \forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \in \mathbb{N} \quad \forall n > N : |x_n - a| < \varepsilon$$

Пусть
$$\varepsilon=1 \implies \exists N=N(1) \quad \forall n>N: |x_n-a|<1.$$
 Следовательно,
$$|x_n|=|x_n-a+a|<|x_n-a|+|a|<1+|a|.$$

Пусть
$$M_0 = 1 + |a| \implies \forall n > N : x_n < M_0.$$

Пусть
$$M = \max\{|x_1|, |x_2|, \dots, |x_n|, M_0\}$$
, тогда $\forall n \in \mathbb{N} : x_n \leq M \implies \{x_n\}_{n=1}^{\infty}$ является ограниченной.

Замечание 4.2.1. Ограниченность является необходимым условием сходимости числовой последовательности. В то же время условие ограниченности не является достаточным для сходимости числовой последовательности. Например, $\{(-1)^n\}_{n=1}^{\infty}$ — ограниченная, но не сходящаяся числовая последовательность.

Теорема 4.3 (об арифметических операциях со сходящимися последовательностями). $\Pi ycmb \; \exists \lim_{n \to \infty} x_n = a \in \mathbb{R}, \; \exists \lim_{n \to \infty} y_n = b \in \mathbb{R}. \; Tor \partial a$

$$\exists \lim_{n \to \infty} (x_n \pm y_n) = a \pm b;$$

$$\exists \lim_{n \to \infty} (x_n \cdot y_n) = ab;$$

если $y_n \neq 0 \ \forall n \in \mathbb{N}, b \neq 0, mo$

$$\exists \lim_{n \to \infty} \frac{x_n}{y_n} = \frac{a}{b}.$$

4.6 Монотонные числовые последовательности

Определение 4.10. Числовая последовательность $\{x_n\}_{n=1}^{\infty}$ называется

- 1. возрастающей, если $\forall n \in \mathbb{N} : x_n < x_{n+1};$
- 2. убывающей, если $\forall n \in \mathbb{N} : x_n > x_{n+1};$
- 3. неубывающей, если $\forall n \in \mathbb{N} : x_n \leq x_{n+1}$;
- 4. невозрастающей, если $\forall n \in \mathbb{N} : x_n \geq x_{n+1}$

Для монотонных числовых последовательностей ограниченность является достаточным условием для сходимости.

Теорема 4.4 (Вейерштрасса о сходимости монотонных числовых последовательностей). Если последовательность не убывает и ограничена сверху, то она является сходящейся. Если последовательность не возрастает и ограничена снизу, то она является сходящейся. В общем, любая монотонная ограниченная последовательность сходится.

Доказательство. Пусть $\{x_n\}_{n=1}^{\infty}$ не убывает и ограничена сверху \Longrightarrow $\exists M \in \mathbb{R} : \forall n \in \mathbb{N} : x_n \leq M \Longrightarrow$

- \Longrightarrow множество значений этой последовательности $\{x_1, x_2, \dots, x_n, \dots\} = A$ является ограниченным сверху числовым множеством \Longrightarrow $\exists \sup A \in \{x_n\}_{n=1}^{\infty} = a$, то есть
- 1. $\forall n \in \mathbb{N} : x_n \leq a;$
- 2. $\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N} : x_N > a \varepsilon$.

 $\{x_n\}_{n=1}^{\infty}$ — неубывающая последовательность, то есть

$$\forall n > N = N(\varepsilon) : x_n \ge x_N \implies$$

$$\implies a - \varepsilon < x_N \le x_n \le a < a + \varepsilon \implies$$

$$\implies a - \varepsilon < x_n < a + \varepsilon \implies |x_n - a| < \varepsilon \implies$$

$$\implies \forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \in \mathbb{N} : \forall n > N : |x_n - a| < \varepsilon \implies$$

$$\implies \exists \lim_{n \to \infty} x_n = a \in \mathbb{R} \implies \{x_n\}_{n=1}^{\infty} \text{ сходится.}$$

Если $\{x_n\}_{n=1}^{\infty}$ — невозрастающая и ограниченная снизу последовательность, то

$$\exists \lim_{n \to \infty} x_n = \inf A, A = \{x_1, x_2, \dots, x_n, \dots\}.$$

Доказательство аналогично.

4.7 Число e

Теорема 4.5. Числовая последовательность $\{(1+\frac{1}{n})^n\}_{n=1}^{\infty}$ является сходящейся, т.е. $\exists \lim_{n\to\infty} (1+\frac{1}{n})^n = e.$

Доказательство. $x_n = (1 + \frac{1}{n})^n, n \in \mathbb{N}$. Рассмотрим последовательность $\{y_n\}_{n=1}^{\infty}, y_n = (1 + \frac{1}{n})^{n+1}$. Докажем, что $\{y_n\}_{n=1}^{\infty}$ ограничена снизу. Т.к. $\forall n \in \mathbb{N} : (1 + \frac{1}{n})^{n+1} > 0 \implies \{y_n\}_{n=1}^{\infty}$ ограничена снизу. Теперь докажем, что $\{y_n\}_{n=1}^{\infty}$ убывает.

$$\forall n \ge 2 \quad \frac{y_{n-1}}{y_n} = \frac{(1 + \frac{1}{n-1})^n}{(1 + \frac{1}{n})^{n+1}} = \frac{(1 + \frac{1}{n-1})}{(1 + \frac{1}{n})^n (1 + \frac{1}{n})} = \left(\frac{\frac{n}{n-1}}{\frac{n+1}{n}}\right)^n \cdot \frac{n}{n+1} = \left(\frac{n^2}{n^2 - 1}\right)^n \cdot \frac{n}{n+1} = \left(1 + \frac{1}{n^2 - 1}\right)^n \cdot \frac{n}{n+1}.$$

Воспользуемся неравенством $\forall n \in \mathbb{N} : (1+x)^n \ge 1+nx, x \ge 0$, известным как неравенство Бернулли.

$$\left(1 + \frac{1}{n^2 - 1}\right)^n \cdot \frac{n}{n+1} \ge \left(1 + \frac{n}{n^2 - 1}\right) \cdot \frac{n}{n+1} > \left(1 + \frac{n}{n^2}\right) \cdot \frac{n}{n+1} = \\ = \frac{n+1}{n} \cdot \frac{n}{n+1} = 1.$$

Таким образом, $\forall n \geq 2 \quad \frac{y_{n-1}}{y_n} > 1 \implies y_{n-1} > y_n \implies \{y_n\}_{n=1}^{\infty}$ убывает. $\{y_n\}_{n=1}^{\infty}$ убывает и ограничена снизу \implies по теореме Вейерштрасса $\exists \lim_{n\to\infty} y_n = e \in \mathbb{R}$. Вернемся к x_n :

$$x_n = \left(1 + \frac{1}{n}\right)^n = \frac{\left(1 + \frac{1}{n}\right)^{n+1}}{\left(1 + \frac{1}{n}\right)} = \frac{y_n}{\left(1 + \frac{1}{n}\right)},$$

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \lim_{n \to \infty} \frac{y_n}{\left(1 + \frac{1}{n} \right)} = \frac{e}{1 + 0} = e \implies$$

$$\implies \exists \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e.$$

Замечание 4.5.1. $x_n = (1 + \frac{1}{n})^n$ — возрастающая последовательность и ограничена сверху: $2 < x_n < 3$; e — иррациональное число, т.е. $e \in \mathbb{R} \setminus \mathbb{Q}$; $e \approx 2,718281828459045$.

4.8 Гиперболические функции

Определение 4.11. Функция

$$y = \operatorname{sh} x = \frac{e^x - e^{-x}}{2}$$

называется гиперболическим синусом.

Определение 4.12. Функция

$$y = \operatorname{ch} x = \frac{e^x + e^{-x}}{2}$$

называется гиперболическим косинусом.

Упражнение 4. Доказать равенство $\cosh^2 x - \sinh^2 x = 1$.

4.9 Предельные точки числового множества

Определение 4.13. Точка $a \in \mathbb{R}$ называется предельной точкой множества $X \subset \mathbb{R} \iff$ любая окрестность U(a) содержит бесконечно много элементов множества X.

3амечание 4.5.2. Множество A называется бесконечным или содержащим бесконечно много элементов, если при вычитании из A любого его конечного подмножества получается непустое множество.

Множество всех предельных точек множества X называется производным множеством для X и обозначается X'.

Утверждение 4.1. Точка $a \in \mathbb{R}$ является предельной для $X \subset \mathbb{R} \iff$ в любой проколотой δ -окрестности точки а содержится хотя бы один элемент множества X, т.е.

$$\forall \delta > 0 \quad \exists x \in X \cap \mathring{U}(a).$$

Доказательство. (\Longrightarrow) Необходимость.

a — предельная для $X \subset \mathbb{R} \implies$

 \Longrightarrow любая U(a) содержит бесконечно много элементов из $X\Longrightarrow$ \Longrightarrow $\mathring{U}(a)$ тоже содержит бесконечно много элементов из $X\Longrightarrow$ \Longrightarrow любая \mathring{U} содержит хотя бы один элемент $x\in X$. (\Longleftrightarrow) Достаточность.

$$\forall \delta > 0 \quad \exists x \in X \cap \mathring{U}(a).$$

Выберем любую U(a). Тогда

$$\exists \delta_1 > 0 : \mathring{U}(a) \subset U(a) \implies \exists x_1 \in X : x_1 \in \mathring{U}_{\delta_1}(a).$$

Пусть $\delta_2 = \frac{|x_1 - a|}{2} > 0$. Тогда

$$\exists x_2 \in \mathring{U}_{\delta_2}(a) : x_2 \neq x_1.$$

Пусть $\delta_3 = \frac{|x_2 - a|}{2} > 0$. Тогда

$$\exists x_3 \in \mathring{U}_{\delta_3}(a) : x_3 \neq x_2$$

и т.д. На шаге n:

$$\delta_n = \frac{|x_{n-1} - a|}{2} > 0 \implies \exists x_n \in \mathring{U}_{\delta_n}(a) : x_n \neq x_k, k = 1, 2, \dots, n - 1.$$

Таким образом,

$$\exists \{x_n\}_{n=1}^{\infty} \in U(a) : x_n \in X, x_n \neq x_k, n \neq k,$$

а значит, любая окрестность U(a) содержит бесконечно много элементов из $X \implies a$ — предельная точка.

Утверждение 4.2. Если точка $a \in \mathbb{R}$ является предельной точкой для множества $X \subset \mathbb{R}$, то

$$\exists \{x_n\}_{n=1}^{\infty} \subset X : \lim_{n \to \infty} x_n = a.$$

 $\ \ \, \mathcal{A}$ оказательство. a — предельная точка для $X\subset \mathbb{R}\iff \forall \delta>0$ содержит хотя бы одну точку множества X (по утверждению 1). Выберем $\{\delta_n\}_{n=1}^\infty, \delta_n = \frac{1}{n} > 0$, тогда

$$\forall n \in \mathbb{N} \quad \exists x_n \in X : x_n \in \mathring{U}_{\delta_n}(a),$$

то есть

$$0<|x_n-a|<\frac{1}{n}.$$

T.K. $\lim_{n\to\infty} \frac{1}{n} = 0$,

$$\forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \in \mathbb{N} \quad \forall n > N : \frac{1}{n} < \varepsilon,$$

а значит,

$$|x_n - a| < \frac{1}{n} < \varepsilon \implies \lim_{n \to \infty} x_n = a.$$

Теорема 4.6 (принцип Больцано-Вейерштрасса). Любое ограниченное бесконечное числовое множество имеет хотя бы одну предельную точ- κy .

есть $\exists I_1 = [a_1, b_1] : X \subset [a_1, b_1]$. Пусть $c_1 = \frac{a_1 + b_1}{2}$, т.е. середина отрезка I_1 .

Так как множество X бесконечное, то либо отрезок $[a_1, c_1]$, либо отрезок $[c_1, b_1]$ содержит бесконечно много элементов множества X. Обозначим ту половину отрезка I_1 , которая содержит бесконечно много элементов множества X через $I_2 = [a_2, b_2], I_2 \subset I_1$. Выразим длину отрезка I_2 :

$$|I_2| = b_2 - a_2 = \frac{b_1 - a_1}{2} = \frac{|I_1|}{2}.$$

На отрезке I_2 содержится бесконечно много элементов множества X. Пусть $c_2=\frac{a_2+b_2}{2}$ — середина I_2 , тогда либо $[a_2,c_2]$, либо $[c_2,b_2]$ содержит бесконечно много элементов множества X. Обозначим ту половину I_2 , где бесконечно много элементов множества X через $I_3=[a_3,b_3]$. Тогда

$$|I_3| = \frac{|I_1|}{2^2}$$

и т.д. На шаге n: $I_n = [a_n, b_n], c_n = \frac{a_n + b_n}{2}$ — середина I_n , I_n содержит бесконечно много элементов из X, тогда либо $[a_n, c_n]$, либо $[c_n, b_n]$ содержит бесконечно много элементов из $X \implies I_{n+1} = [a_{n+1}, b_{n+1}] \subset I_n$ и содержит бесконечно много элементов из X. Таким образом, мы получили последовательность вложенных отрезков $\{I_n\}_{n=1}^{\infty}: I_1 \supset I_2 \supset \ldots \supset I_n \supset I_{n+1} \supset \ldots$

$$|I_n| = \frac{|I_1|}{2^{n-1}} \implies \lim_{n \to \infty} \frac{|I_1|}{2^{n-1}} = 0 \implies$$

$$\implies \forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \in \mathbb{N} \quad \forall n > N : |I_n| < \varepsilon.$$

По принципу Коши-Кантора $\exists !$ общая точка c, т.е. $\forall n \in \mathbb{N} : c \in I_n$.

$$orall U(c)$$
 $\exists \varepsilon > 0$ $U_{\varepsilon}(c) \subset U(c) \implies \exists n \in \mathbb{N} : I_n = [a_n, b_n] \subset U_{\varepsilon}(c)$ (например, $|I_n| < \frac{\varepsilon}{2}$).

Отрезок I_n содержит бесконечно много элементов множества X по построению последовательности $\{I_n\}_{n=1}^{\infty} \implies$ окрестность U(c) содержит бесконечно много элементов из $X \implies c$ — предельная.

4.10Предельные точки числовых последовательностей

Определение 4.14. Точка $a \in \mathbb{R}$ называется предельной точкой числовой последовательности $\{x_n\}_{n=1}^{\infty}\iff$ любая окрестность U(a) содержит бесконечно много элементов последовательности $\{x_n\}_{n=1}^{\infty}$.

3амечание 4.6.1. Если a — предельная точка $\{x_n\}_{n=1}^{\infty}$, то любая U(a)содержит какую-либо подпоследовательность $\{x_n\}_{n=1}^{\infty}$.

Пример:
$$\{x_n\}_{n=1}^{\infty}, x_n = (-1)^n$$
.

$$\begin{array}{c|c}
x_{2n-1} & x_{2n} \\
\hline
-1 & 1
\end{array}$$

Теорема 4.7. Точка $a \in \mathbb{R}$ является предельной для $\{x_n\}_{n=1}^{\infty}$ тогда uтолько тогда, когда $\exists \{x_{n_k}\}_{k=1}^{\infty} : \lim_{k \to \infty} x_{n_k} = a.$

 Доказательство. Докажем необходимость. Пусть a — предельная точка последовательности $\{x_n\}_{n=1}^{\infty}$. Выберем $\{\varepsilon_n\}_{n=1}^{\infty}$, $\varepsilon_n=\frac{1}{n}>0$. Для n=1 $U_{\varepsilon_1=1}(a)$ содержит ∞ много элементов \Longrightarrow $\exists x_{n_1}\in U_{\varepsilon_1}(a)$,

T.e. $|x_{n_1} - a| < 1$.

Для n=2 $U_{\varepsilon_2=\frac{1}{2}}(a)$ содержит ∞ много элементов $\implies \exists n_2>n_1:$

$$x_{n_2} \in U_{\varepsilon_2}(a)$$
, r.e. $|x_{n_2} - a| < \frac{1}{2}$.

Для n=3 $U_{\varepsilon_3=\frac{1}{3}}(a)$ содержит ∞ много элементов $\implies \exists n_3>n_2:$ $x_{n_3} \in U_{\varepsilon_3}(a)$, т.е. $|x_{n_3} - a| < \frac{1}{3}$ и т.д.

Для n=k $U_{\varepsilon_k=\frac{1}{k}}(a)$ содержит ∞ много элементов $\Longrightarrow \exists n_k > n_{k-1}:$ $x_{n_k} \in U_{\varepsilon_k}(a)$, т.е. $|x_{n_k}-a|<\frac{1}{k}\Longrightarrow \{x_{n_k}\}_{k=1}^\infty$ является подпоследовательность последовательность $\{x_n\}_{n=1}^\infty \Longrightarrow \forall k \in \mathbb{N}: |x_{n_k}-a|<\frac{1}{k}.$

$$\lim_{k \to \infty} \frac{1}{k} = 0 \implies \forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \in \mathbb{N} \quad \forall k > N : \frac{1}{k} < \varepsilon \implies$$

$$\implies \forall k > N \quad |x_{n_k} - a| < \frac{1}{k} < \varepsilon \implies \exists \lim_{k \to \infty} x_{n_k} = a.$$

Докажем достаточность.

Пусть $\exists \{x_{n_k}\}_{k=1}^{\infty}: \lim_{k\to\infty} x_{n_k}=a$. Выберем любую U(a) и найдем такое $\varepsilon>0$, что $U_{\varepsilon}(a)\subset U(a)$:

$$\exists N = N_{\ell} \varepsilon \in \mathbb{N} \quad \forall k > N : |x_{n_k} - a| < \varepsilon \implies x_{n_k} \in U_{\varepsilon}(a) \subset U(a).$$

Следовательно, U(a) содержит бесконечно много элементов $\{x_n\}_{n=1}^{\infty}$, а значит, a — предельная.

Теорема 4.8. Если $\exists \lim_{n\to\infty} x_n = a$, то а является предельной точкой для $\{x_n\}_{n=1}^{\infty}$, причем единственной.

Доказательство. a — предельная, если $\lim_{n\to\infty} x_n = a$ (по теореме 1).

Докажем единственность предельной точки для $\{x_n\}_{n=1}^{\infty}$ "от противного". Пусть $\exists b \neq a, b$ — предельная точка $\{x_n\}_{n=1}^{\infty}$, тогда $|b-a| \geq \delta > 0$. Т.к. $a = \lim_{n \to \infty} x_n$, любая ε -окрестность точки содержит бесконечно много элементов $\{x_n\}_{n=1}^{\infty}$, а именно все, начиная с номера $N(\varepsilon) + 1$, т.е. $\forall n > n(\varepsilon)$. Вне $U_{\varepsilon}(a)$ может содержаться не более конечного числа элементов $\{x_n\}_{n=1}^{\infty}$ (возможно x_n с номерами $1, 2, \ldots, N(\varepsilon)$).

Выберем $\varepsilon = \frac{\delta}{4} > 0$. Тогда $\forall n > N(\varepsilon) : x_n \in U_{\varepsilon}(a)$.

Но $U_{\varepsilon}(a) \cap U_{\varepsilon}(b) = \emptyset$, что противоречит тому, что b — предельная точка для $\{x_n\}_{n=1}^{\infty}$, т.е. $U_{\varepsilon}(b)$ должна содержать бесконечно много элементов $\{x_n\}_{n=1}^{\infty}$, а туда может попасть не более конечного. Следовательно, a=b.

Теорема 4.9. Любая ограниченная числовая последовательность имеет хотя бы одну предельную точку.

Доказательство. $\{x_n\}_{n=1}^{\infty}$ — ограниченная, $X = \{x_1, x_2, \dots, x_n, \dots\} \subset \mathbb{R}$, X — множество значений числовой последовательность $\{x_n\}_{n=1}^{\infty}$. Т.к. $\{x_n\}_{n=1}^{\infty}$ — ограниченная числовая последовательность, X — ограниченное числовое множество. Рассмотрим два случая.

Первый: X — бесконечное числовое множество. Тогда X по принципу Больцано-Вейерштрасса имеет хотя бы одну предельную точку a, т.е. в любую U(a) попадает бесконечно много элементов множества X, а значит, и бесконечно много элементов $\{x_n\}_{n=1}^{\infty}$. Следовательно, a — предельная точка последовательности $\{x_n\}_{n=1}^{\infty}$.

Второй: X — конечное числовое множество. Тогда хотя бы один элемент последовательности $\{x_n\}_{n=1}^{\infty}$ повторяется бесконечно много раз, т.е. \exists подпоследовательность $\{x_{n_k}\}_{k=1}^{\infty}$ (постоянная $\forall k \in \mathbb{N}$), $x_{n_k} = a \in X \implies$ а — предельная точка $\{x_n\}_{n=1}^{\infty}$, $\lim_{k\to\infty} x_{n_k} = a$.

Теорема 4.10 (критерий сходимости числовой последовательности). Для того, чтобы точка $a \in \mathbb{R}$ была пределом $\{x_n\}_{n=1}^{\infty}$, необходимо и достаточно, чтобы $\{x_n\}_{n=1}^{\infty}$ была ограниченной и имела единственную предельную точку.

Доказательство. Докажем необходимость. $\exists \lim_{n\to\infty} x_n = a \in \mathbb{R} \implies \{x_n\}_{n=1}^{\infty}$ ограничена (по свойству сходящейся последовательности), а значит, $\{x_n\}_{n=1}^{\infty}$ имеет единственную предельную точку (по теореме 2).

Докажем достаточность. Пусть a — единственная предельная точка ограниченной последовательности $\{x_n\}_{n=1}^{\infty}$. Докажем, что $\lim_{n\to\infty} x_n = a$.

Будем доказывать "от противного". Предположим, что $\{x_n\}_{n=1}^{\infty}$ не имеет предела. Тогда

$$\forall b \in \mathbb{R} \quad \exists \varepsilon > 0 \quad N \in \mathbb{N} \quad \exists n > N : |x_n - b| \ge \varepsilon,$$

а значит, вне $U_{\varepsilon}(a)$ лежит бесконечное множество элементов $\{x_n\}_{n=1}^{\infty}$. Тогда существует $\{x_{n_k}\}_{k=1}^{\infty}: |x_{n_k}-a|\geq \varepsilon$, т.е. $x_{n_k}\not\in U_{\varepsilon}(a)$. Следовательно, $\{x_{n_k}\}_{k=1}^{\infty}$ — ограниченная последовательность, лежащая вне $U_{\varepsilon}(a)$. У этой последовательности есть предельная точка b (по теореме 3). $U_{\varepsilon}(a)$ не содержит ни одного элемента $\{x_{n_k}\}_{k=1}^{\infty}$ \Longrightarrow $b\neq a$, что противоречит условию. Тогда $\lim_{n\to\infty} x_n=a$.

4.11 Фундаментальные последовательности

Определение 4.15. Последовательность $\{x_n\}_{n=1}^{\infty} \subset \mathbb{R}$ называется фундаментальной тогда и только тогда, когда

$$\forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \in \mathbb{N} \quad \forall n > N, \ \forall m > N : |x_n - x_m| < \varepsilon.$$

Теорема 4.11. Если числовая последовательность $\{x_n\}_{n=1}^{\infty}$ фундаментальна, то она ограничена.

Доказательство. $\{x_n\}_{n=1}^{\infty}$ — фундаментальная, т.е.

$$\forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \in \mathbb{N} \quad \forall n > N, \ \forall m > N : |x_n - x_m| < \varepsilon.$$

Пусть $\varepsilon = 1$, тогда

$$\exists N = N(1) \implies \forall n > N, \ m = N + 1 : |x_n - x_{N+1}| < 1 \implies$$

$$\implies \forall n > N : |x_n| = |x_n - x_{N+1} + x_{N+1}| \le$$

$$\le |x_n - x_{N+1}| + |x_{N+1}| < 1 + |x_{N+1}| = M_0 \implies$$

$$\implies \forall n > N : |x_n| < M_0.$$

Пусть $M = \max\{|x_1|, |x_2|, \dots, |x_N|, M_0\}$, тогда $\forall n \in \mathbb{N} : |x_n| \leq M$, следовательно, $\{x_n\}_{n=1}^{\infty}$ ограничена.

Пример 4.6. В обратную сторону Теорема 4.11 не работает. Например, $\{(-1)^n\}_{n=1}^{\infty}$ ограничена, но не фундаментальна.

$$\begin{array}{c|c}
 & x_{2n-1} & x_{2n} \\
 \hline
 & -1 & 1
\end{array}$$

Теорема 4.12 (критерий Коши сходимости числовой последовательности). Числовая последовательность $\{x_n\}_{n=1}^{\infty}$ сходится тогда и только тогда, когда она фундаментальна.

Доказательство. Докажем необходимость. По условию $\{x_n\}_{n=1}^{\infty}$ сходится $\Longrightarrow \exists \lim_{n\to\infty} x_n = a \in \mathbb{R}$. По числу $\varepsilon > 0$ найдем номер N так, чтобы при n > N иметь $|x_n - a| < \frac{\varepsilon}{2}$. Если теперь m > N и n > N, то $|x_m - x_n| < |x_m - a| + |x_n - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$ и, таким образом, проверено, что сходящаяся последовательность фундаментальна.

Докажем достаточность. По условию $\{x_n\}_{n=1}^{\infty}$ фундаментальна, следовательно, ограничена, а значит, у нее есть хотя бы одна предельная точка. Докажем, что эта предельная точка единственна "от противного". Предположим, что существует две предельные точки b и b_1 , $b \neq b_1$ последовательности $\{x_n\}_{n=1}^{\infty}$. По определению предельной точки для любого числа $\varepsilon > 0$ окрестности $U_{\varepsilon}(b)$ и $U_{\varepsilon}(b_1)$ содержат бесконечно много членов последовательности $\{x_n\}_{n=1}^{\infty}$.

Выберем удобный для дальнейших рассуждений ε . $b_1 \neq b$, следовательно, $\varepsilon = \frac{|b_1 - b|}{6} > 0$. Для выбранного ε найдем соответствующий номер $N = N(\varepsilon)$. По определению фундаментальной последовательности для этого номера выполняется, что $\forall n, m > N : |x_n - x_m| < \frac{|b_1 - b|}{6}$.

Т.к. в $U_{\varepsilon}(b)$ и $U_{\varepsilon}(b_1)$ попадает бесконечно много элементов $\{x_n\}_{n=1}^{\infty}$,

$$\exists n_1 > N : x_{n_1} \in U_{\varepsilon}(b)$$
 и $\exists m_1 > N : x_{m_1} \in U_{\varepsilon}(b_1).$

А значит, выполняется следующее неравенство:

$$0 < |b - b_1| = |b - x_{n_1} + x_{n_1} - x_{m_1} + x_{m_1} - b_1| \le$$

$$\le |x_{n_1} - b| + |x_{n_1} - x_{m_1}| + |x_{m_1} - b_1| < 3\varepsilon =$$

$$= \frac{3|b - b_1|}{6} = \frac{|b - b_1|}{2} \implies 0 < |b - b_1| < \frac{|b - b_1|}{2}$$

Получено противоречие $\implies b = b_1 \implies \{x_n\}_{n=1}^{\infty}$ имеет единственную предельную точку $\implies \{x_n\}_{n=1}^{\infty}$ сходится (по теореме 4 о предельной точке последовательности).

Пример 4.7. $\{x_n\}_{n=1}^{\infty}, x_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$. Существует ли $\lim_{n \to \infty} x_n$? Возьмем $m = 2n > n \quad \forall n \in \mathbb{N}$.

$$|x_n - x_{2n}| = |x_{2n} - x_n| = |1 + \frac{1}{2} + \dots + \frac{1}{2n} - 1 - \frac{1}{2} - \dots - \frac{1}{n}| =$$

$$= \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} > \frac{1}{2n} + \frac{1}{2n} + \dots + \frac{1}{2n} = \frac{n}{2n} = \frac{1}{2} \implies$$

$$\implies \exists \varepsilon = \frac{1}{2} \quad \forall N \in \mathbb{N} \quad \exists n > N, \ \exists m = 2n > N : |x_n - x_{2n}| > \frac{1}{2}$$

Следовательно, $\{x_n\}_{n=1}^{\infty}$ не является фундаментальной. Значит, конечный $\lim_{n\to\infty}x_n$ не существует, т.е. последовательность не является сходящейся.

Определение 4.16. Число b или $+\infty(-\infty)$ называют частичным пределом числовой последовательности $\{x_n\}_{n=1}^{\infty}$ тогда и только тогда, когда

$$\exists \{x_{n_k}\}_{k=1}^{\infty} : \lim_{k \to \infty} x_{n_k} = b.$$

Причем, если частичный предел есть конечное число, то это число является предельной точкой $\{x_n\}_{n=1}^{\infty}$.

Наибольший частичный предел (может быть $\pm \infty$) называют верхним пределом числовой последовательности и обозначают $\overline{\lim}_{n\to\infty} x_n$. Наименьший частичный предел (может быть $\pm \infty$) называют нижним пределом числовой последовательности и обозначают $\lim_{n\to\infty} x_n$.

Пример 4.8. Для последовательности $\{(-1)^n\}_{n=1}^{\infty}=x_n$ частичными пределами будут $\overline{\lim_{n\to\infty}}x_n=1$ и $\underline{\lim_{n\to\infty}}x_n=-1$.

Пример 4.9. Для последовательности $\{(-1)^n n\}_{n=1}^{\infty} = x_n$ частичными пределами будут $\overline{\lim_{n\to\infty} x_n} = +\infty$ и $\underline{\lim_{n\to\infty} x_n} = -\infty$.

Теорема 4.13. Верхний и нижний частичные пределы удовлетворяют неравенству

$$\underline{\lim_{n\to\infty} x_n} \le \overline{\lim_{n\to\infty} x_n}.$$

Теорема 4.14. Последовательность $\{x_n\}_{n=1}^{\infty}$ сходится тогда и только тогда, когда

$$\overline{\lim_{n\to\infty} x_n} = \lim_{n\to\infty} x_n,$$

и является конечным числом.

5 Пределы функций

5.1 Определение предела по Коши

Будем пользоваться следующими обозначениями:

*:
$$a$$
; $a + 0$; $a - 0$; ∞ ; $+\infty$; $-\infty$

**:
$$b; \infty; +\infty; -\infty$$

Пусть функция f(x) определена в некоторой проколотой окрестности *.

Определение 5.1 (предела функции по Коши). $\lim_{x\to *} f(x) = ** mor\partial a$ и только тогда, когда

$$\forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) > 0 \quad \forall x \in \mathring{U}_{\delta}(*) \implies f(x) \in U_{\varepsilon}(**).$$

*	$x \in \mathring{U}_{\delta}(*)$
a	$x \in \mathbb{R} : 0 < x - a < \delta$
a+0	$x \in \mathbb{R} : a < x < a + \delta$
a-0	$x \in \mathbb{R} : a - \delta < x < a$
∞	$x \in \mathbb{R} : x > \delta$
$+\infty$	$x \in \mathbb{R} : x > \delta$
$-\infty$	$x \in \mathbb{R} : x < -\delta$

**	$f(x) \in U_{\varepsilon}(**)$
b	$ f(x) - b < \varepsilon$
∞	$ f(x) > \varepsilon$
$+\infty$	$f(x) > \varepsilon$
$-\infty$	$f(x) < -\varepsilon$

$$x \in \mathring{U}_{\delta}(a+0)$$

$$x \in \mathring{U}_{\delta}(a-0)$$

$$\lim_{x \to a} f(x) = b \iff \\ \iff \forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) > 0 \quad \forall x \in \mathbb{R} : 0 < |x - a| < \delta \implies \\ \implies |f(x) - b| < \varepsilon.$$

x pprox a с точностью $< \delta = \delta(\varepsilon) \implies f(x) pprox b$ с точностью $< \varepsilon$.

$$\lim_{x \to +\infty} f(x) = b \iff \\ \iff \forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) > 0 \quad \forall x \in \mathbb{R} : x > \delta \implies \\ \implies |f(x) - b| < \varepsilon.$$

Пример 5.1. $\lim_{x\to +\infty} \operatorname{arctg} x = \frac{\pi}{2}$.

$$\lim_{x \to -\infty} f(x) = b \iff$$

$$\iff \forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) > 0 \quad \forall x \in \mathbb{R} : x < -\delta \implies$$

$$\implies |f(x) - b| < \varepsilon.$$

Пример 5.2. $\lim_{x\to -\infty} \operatorname{arctg} x = -\frac{\pi}{2}$.

- Если $*=a; \infty,$ то $\lim_{x\to *}f(x)$ называется двусторонним пределом.
- Если $* = a + 0; \ a 0; \ +\infty; \ -\infty, \text{ то } \lim_{x \to *} f(x)$ называется односторонним пределом.

- Если ** = b (конечное число), то $\lim_{x\to *} f(x) = b$ называют конечным пределом.
- Если ** = ∞ ; + ∞ ; - ∞ , то $\lim_{x\to *} f(x)$ называют бесконечным.

Теорема 5.1 (о связи двустороннего предела с односторонними).

$$\exists \lim_{x \to a} f(x) = b \iff \exists \lim_{x \to a+0} f(x) = b \ u \ \exists \lim_{x \to a-0} f(x) = b.$$

Доказательство. Докажем необходимость. Распишем определение двустороннего предела по Коши.

$$\exists \lim_{x \to a} f(x) = b \implies$$

$$\implies \forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) \quad \forall x \in \mathbb{R} : 0 < |x - a| < \delta \implies$$

$$\implies |f(x) - b| < \varepsilon.$$

Рассмотрим неравенство $0 < |x - a| < \delta$.

$$0 < |x - a| < \delta \iff x \in (a - \delta, a) \cup (a; a + \delta) \implies$$

$$\implies \begin{cases} \forall x \in \mathbb{R} : a < x < a + \delta \implies |f(x) - b| < \varepsilon, \\ \forall x \in \mathbb{R} : a - \delta < x < a \implies |f(x) - b| < \varepsilon. \end{cases} \implies$$

$$\implies \begin{cases} \exists \lim_{x \to a + 0} f(x) = b, \\ \exists \lim_{x \to a - 0} f(x) = b. \end{cases}$$

Докажем достаточность. Распишем определения односторонних пределов по Коши.

$$\lim_{x \to a+0} f(x) = b \iff$$

$$\iff \forall \varepsilon > 0 \quad \exists \delta_1 = \delta_1(\varepsilon) > 0 \quad \forall x \in \mathbb{R} : a < x < a + \delta_1 \implies$$

$$\implies |f(x) - b| < \varepsilon.$$

$$\lim_{x \to a \to 0} f(x) = b \iff$$

$$\iff \forall \varepsilon > 0 \quad \exists \delta_2 = \delta_2(\varepsilon) > 0 \quad \forall x \in \mathbb{R} : a - \delta_2 < x < a \implies$$

$$\implies |f(x) - b| < \varepsilon.$$

Пусть
$$\delta = \min\{\delta_1, \delta_2\} > 0$$
. Тогда $\mathring{U}_{\delta}(a) \subset (\mathring{U}_{\delta_1}(a) \cap \mathring{U}_{\delta_2}(a)) \implies$

$$\implies (\forall x \in \mathbb{R} : 0 < |x - a| < \delta \implies |f(x) - b| < \varepsilon) \implies \exists \lim_{x \to a} f(x) = b.$$

Замечание 5.1.1.

$$\lim_{x \to a} f(x) = \infty \iff \lim_{x \to a+0} f(x) = \infty, \lim_{x \to a-0} f(x) = \infty.$$

Замечание 5.1.2.

$$\lim_{x \to \infty} f(x) = \infty \iff \lim_{x \to +\infty} f(x) = b \ (\infty), \lim_{x \to -\infty} f(x) = b \ (\infty).$$

Определение 5.2 (Определение предела по Гейне). Пусть f(x) определена в некоторой $\mathring{U}(*)$.

$$\lim_{x \to *} f(x) = ** \iff \forall \{x_n\}_{n=1}^{\infty} \subset \mathring{U}(*) : \lim_{n \to \infty} x_n = * \implies \lim_{n \to \infty} f(x) = **,$$

$$e \partial_{\theta} x_n \neq * \forall n \in \mathbb{N}.$$

Теорема 5.2 (об эквивалентности определений предела по Коши и Гейне). Определения предела по Коши и по Гейне эквивалентны.

Пример 5.3. $\lim_{x\to 0}\sin\frac{1}{x}$ не определен.

Пример 5.4.

$$x_n = \frac{1}{\pi n} \quad \lim_{n \to \infty} x_n = 0 \quad \lim_{n \to \infty} \sin x_n = \lim_{n \to \infty} \sin \pi n = 0.$$

$$y_n = \frac{1}{\frac{\pi}{2} + 2\pi n} \quad \lim_{n \to \infty} y_n = 0 \quad \lim_{n \to \infty} \sin y_n = \lim_{n \to \infty} \sin \frac{\pi}{2} + 2\pi n = 1.$$
 $0 \neq 1 \implies \lim_{n \to \infty} f(x)$ не существует.

Теорема 5.3 (о единственности предела функции). *Если существует* $\lim_{x\to *} f(x) = b \in \mathbb{R}$, то этот предел единственный (при $x\to *$).

Доказательство. Воспользуемся определением предела по Гейне.

$$\exists \lim_{x \to *} f(x) = b \in \mathbb{R} \implies \forall \{x_n\}_{n=1}^{\infty}, x_n \neq *, \lim_{n \to \infty} x_n = * \implies \lim_{n \to \infty} f(x_n) = b.$$

Числовая последовательность $\{f(x_n)\}_{n=1}^{\infty}$ сходится, следовательно, имеет единственный предел b (по теореме о единственности предела последовательности).

Определение 5.3. Функция f(x) называется локально ограниченной при $x \to *$ (в точке * или в окрестности *), если существуют такие $\mathring{U}(*)$ и M > 0, что f(x) определена в $\mathring{U}(*)$ и $\forall x \in \mathring{U}(*): |f(x)| \leq M$.

Замечание 5.3.1. Если функция f(x) локально ограничена при $x \to *$, то в точке * такая функция может быть как определена, так и не определена.

Теорема 5.4 (о локальной ограниченности функции, имеющей конечный предел). Пусть $\exists \lim_{x \to *} f(x) = b \in \mathbb{R}$. Тогда f(x) локально ограничена $npu \ x \to *$.

Доказательство. По определению предела функции по Коши,

$$\lim_{x \to *} f(x) = b \iff$$

$$\iff \forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) > 0 \quad \forall x \in \mathring{U}_{\delta}(*) \implies |f(x) - b| < \varepsilon \implies$$

$$\implies \forall x \in \mathring{U}_{\delta}(*) : |f(x)| = |f(x) - b + b| \le |f(x) - b| + |b| < \varepsilon + |b| = M.$$

Выберем любой $\varepsilon > 0$, например, $\varepsilon = 1$. Для соответствующей ему $\delta > 0$ будет верно, что $\forall x \in \mathring{U}_{\delta}(*) : |f(x)| < 1 + |b| = M$, а значит, f(x) локально ограничена при $x \to *$.

5.2 Бесконечно малые функции

Определение 5.4. Функцию $\alpha(x)$ называют бесконечно малой (б.м.) при $x \to *$ тогда и только тогда, когда

$$\lim_{x \to \infty} \alpha(x) = 0 \iff \forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) > 0 \quad \forall x \in \mathring{U}_{\delta}(*) \implies |\alpha(x)| < \varepsilon.$$

Пример 5.5. Рассмотрим функцию $y = 2^{\frac{1}{x}}$. Если $x \to 0 + 0$, то

$$\lim_{x \to 0+0} 2^{\frac{1}{x}} = [2^{+\infty}] = +\infty.$$

Если же $x \to 0 - 0$, то

$$\lim_{x \to 0-0} 2^{\frac{1}{x}} = [2^{-\infty}] = 0 \implies f(x)$$
 бесконечно малая при $x \to 0-0$.

Теорема 5.5 (о связи функции, ее предела и бесконечно малой).

$$\lim_{x\to *} f(x) = b \iff$$

$$\iff f(x) = b + \alpha(x), \ \textit{где } \alpha(x) - \textit{бесконечная малая при } x\to *.$$

Доказательство. Докажем необходимость.

$$\exists \lim_{x \to *} f(x) = b \iff \\ \iff \forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) \quad \forall x \in \mathring{U}_{\delta}(*) : |f(x) - b| < \varepsilon.$$

Рассмотрим функцию $\alpha(x) = f(x) - b$, тогда $\forall x \in \mathring{U}_{\delta}(*) : |\alpha(x)| < \varepsilon \Longrightarrow \lim_{x \to *} \alpha(x) = 0 \Longrightarrow \alpha(x)$ — бесконечно малая при $x \to * \Longrightarrow f(x) = b + \alpha(x)$ при $x \to *$, где $\alpha(x)$ — бесконечно малая при $x \to *$. Докажем достаточность. Пусть $f(x) = b + \alpha(x)$, $\alpha(x)$ — бесконечно малая при $x \to *$, тогда $\alpha(x) = f(x) - b \to 0$ при $x \to *$. По определению бесконечно малой,

$$\lim_{x \to *} \alpha(x) = 0 \iff$$

$$\iff \forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) > 0 \quad \forall x \in \mathring{U}_{\delta}(*) \implies |\alpha(x)| < \varepsilon \implies$$

$$\implies \forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) > 0 \quad \forall x \in \mathring{U}_{\delta}(*) \implies |f(x) - b| < \varepsilon \implies$$

$$\implies \exists \lim_{x \to *} f(x) = b.$$

5.3 Свойства бесконечно малых функций

Теорема 5.6. Пусть $\alpha(x)$ и $\beta(x)$ — бесконечно малые при $x \to *$. Тогда $\alpha(x) + \beta(x)$ — бесконечно малая при $x \to *$.

Доказательство. Распишем определение по Коши.

$$\lim_{x \to *} \alpha(x) = 0 \implies \forall \varepsilon > 0 \quad \exists \delta_1 = \delta_1(\varepsilon) > 0 \quad \forall x \in \mathring{U}_{\delta_1}(*) \implies |\alpha(x)| < \frac{\varepsilon}{2},$$

$$\lim_{x \to *} \beta(x) = 0 \implies \forall \varepsilon > 0 \quad \exists \delta_2 = \delta_2(\varepsilon) > 0 \quad \forall x \in \mathring{U}_{\delta_2}(*) \implies |\beta(x)| < \frac{\varepsilon}{2}.$$

Пусть $\delta = \min\{\delta_1, \delta_2\}$, если *: a, a + 0, a - 0,

и пусть $\delta = \max\{\delta_1, \delta_2\}$, если $*: \infty, +\infty, -\infty$.

Следовательно, $\mathring{U}_{\delta}(*) = \mathring{U}_{\delta_1}(*) \cap \mathring{U}_{\delta_2}(*)$, а значит $\forall x \in \mathring{U}_{\delta}(*)$ имеем $\alpha(x) < \frac{\varepsilon}{2}$ и $\beta(x) < \frac{\varepsilon}{2}$. Воспользовавшись формулой модуля суммы, получим

$$|\alpha(x) + \beta(x)| \le |\alpha(x)| + |\beta(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Получили, по сути, определение предела по Коши: взяли $\forall \varepsilon > 0$, нашли такую $\delta(\varepsilon)$, что $\forall x \in \mathring{U}_{\delta}(*)$ выполняется $|\alpha(x) + \beta(x)| < \varepsilon$. Следовательно,

$$\lim_{x \to *} (\alpha(x) + \beta(x)) = 0,$$

а значит, $\alpha(x) + \beta(x)$ — бесконечно малая при $x \to *$.

Следствие 5.6.1. Сумма конечного числа бесконечно малых $npu \ x \to *$ есть бесконечно малая $npu \ x \to *$.

Теорема 5.7 (произведение бесконечно малой на ограниченнную). Пусть α - бесконечно малая при $x \to *$, f(x) локально ограничена при $x \to *$. Тогда $\alpha(x) \cdot f(x)$ есть бесконечно малая при $x \to *$.

Доказательство. f(x) — локально ограничена при $x \to *$, т.е. существуют такие $\mathring{U}_{\delta_1}(*)$ и M>0, что $\forall x \in \mathring{U}_{\delta_1}(*): |f(x)| < M$.

 $\alpha(x)$ — бесконечно малая при $x \to *$, т.е.

$$\forall \varepsilon > 0 \quad \exists \delta_2 = \delta_2(\varepsilon) > 0 \quad \forall x \in \mathring{U}_{\delta_2}(*) \implies |\alpha(x)| < \frac{\varepsilon}{M}.$$

Выберем δ так, что $\mathring{U}_{\delta} = \mathring{U}_{\delta_1}(*) \cap \mathring{U}_{\delta_2}(*)$. Пусть

- $\delta = \min\{\delta_1, \delta_2\}$, если *: a, a+0, a-0;
- $\delta = \max\{\delta_1, \delta_2\}$, если $*: \infty, +\infty, -\infty$.

Тогда $\forall x \in \mathring{U}_{\delta}(*)$ имеем |f(x)| < M и $|\alpha(x)| < \frac{\varepsilon}{M}$. Следовательно,

$$|\alpha(x) \cdot f(x)| = |\alpha(x)| \cdot |f(x)| < \frac{\varepsilon}{M} \cdot M = \varepsilon,$$

т.е. $\lim_{x\to *}\alpha(x)\cdot f(x)=0,$ а значит, $\alpha(x)\cdot f(x)$ — бесконечно малая при $x\to *.$ \Box

Пример 5.6.

$$\lim_{x \to 0} x \sin \frac{1}{x} = 0,$$

$$\lim_{x \to 0} x^2 \arctan \frac{1}{x^{100}} = 0.$$

Теорема 5.8 (о произведении двух бесконечно малых). Если $\alpha(x)$, $\beta(x)$ — бесконечно малые при $x \to *$, то $\alpha(x) \cdot \beta(x)$ — бесконечно малая при $x \to *$.

Доказательство. $\beta(x)$ — бесконечно малая при $x \to *$, т.е. $\lim_{x \to *} \beta(x) = 0$. Тогда по теореме о локальной ограниченности функции, имеющей конечный предел, $\beta(x)$ локально ограничена при $x \to *$. Следовательно, $\alpha(x) \cdot \beta(x)$ — произведение бесконечно малой на локально ограниченную при $x \to *$, тогда по теореме о произведении бесконечно малой на локально ограниченную $\alpha \cdot \beta$ — бесконечно малая при $x \to *$.

Следствие 5.8.1. Произведение конечного числа бесконечно малых при $x \to *$ есть бесконечно малая при $x \to *$.

5.4 Арифметические операции с функциями, имеющими пределы

Теорема 5.9 (об арифметических операциях с функциями, имеющими пределы). Пусть существуют $\lim_{x\to *} f(x) = A \in \mathbb{R}$ $u \lim_{x\to *} g(x) = B \in \mathbb{R}$. Тогда

- 1. $\exists \lim_{x \to *} (f(x) \pm g(x)) = A \pm B;$
- 2. $\exists \lim_{x \to *} (f(x)g(x)) = AB;$
- 3. Echu $B \neq 0$, mo $\exists \lim_{x \to *} \frac{f(x)}{g(x)} = \frac{A}{B}$.

Доказательство. Существуют $\lim_{x\to *} f(x) = A$ и $\lim_{x\to *} g(x) = B$, следовательно, по теореме о связи функции, ее предела и бесконечно малой, $f(x) = A + \alpha(x), \ g(x) = B + \beta(x),$ где $\alpha(x), \ \beta(x)$ — бесконечно малые при $x\to *$.

Докажем первый пункт. $f(x) \pm g(x) = (A + \alpha(x)) \pm (B + \beta(x)) = A \pm B + \alpha(x) \pm \beta(x) = A \pm B + \gamma(x)$, где $\gamma(x)$ — бесконечно малая при $x \to *$. Следовательно, по теореме о связи функции, ее предела и бесконечно малой, $\lim_{x \to *} (f(x) \pm g(x)) = A \pm B$.

Докажем второй пункт. $f(x)\cdot g(x)=(A+\alpha(x))(B+\beta(x))=AB+B\alpha(x)+A\beta(x)+\alpha(x)\beta(x)=AB+\gamma(x)$, где $\gamma(x)$ — бесконечно малая при $x\to *$. Тогда по теореме о связи предела функции, ее предела и бесконечно малой $\lim_{x\to *}(f(x)\cdot g(x))=AB$

Докажем третий пункт.

$$\frac{f(x)}{g(x)} = \frac{A + \alpha(x)}{B + \beta(x)} = \frac{A}{B} + \frac{A + \alpha(x)}{B + \beta(x)} - \frac{A}{B}.$$

Пусть $\gamma(x) = \frac{A + \alpha(x)}{B + \beta(x)} - \frac{A}{B}$. Тогда

$$\gamma(x) = \frac{AB + B\alpha(x) - AB - A\beta(x)}{B(B + \beta(x))} = \frac{B\alpha(x) - A\beta(x)}{B} \cdot \frac{1}{B + \beta(x)}.$$

 $\frac{B\alpha(x)-A\beta(x)}{B}$ — бесконечно малая при $x\to *$ по свойствам бесконечно малых.

Докажем, что $\phi(x) = \frac{1}{B + \beta(x)}$ локально ограничена при $x \to *$.

 $\beta(x)$ — бесконечно малая при $x \to *$, т.е. для любого $\varepsilon > 0$ найдется дельта, зависящая от ε , такая, что $\forall x \in \mathring{U}_{\delta}(*)$ выполняется неравенство $|\beta(x)| < \varepsilon$. Выберем $\varepsilon = \frac{|B|}{2} > 0$, найдем соответствующую $\delta = \delta(\varepsilon) > 0$.

Получается, $\forall x \in \mathring{U}_{\delta}(*)$ верно, что $|\beta(x)| < \frac{|B|}{2}$. Воспользуемся обратным неравенством треугольника $|a+b| \geq |a| - |b|$.

$$\begin{split} |B+\beta(x)| \geq |B| - |\beta(x)| > |B| - \frac{|B|}{2} &= \frac{|B|}{2} \implies \\ \implies \forall x \in \mathring{U}_{\delta}(*) : |B+\beta(x)| > \frac{|B|}{2} > 0 \implies \\ &\implies \frac{1}{B+\beta(x)} < \frac{2}{|B|} \implies \\ \implies \phi(x) &= \frac{1}{B+\beta(x)} \text{ локально ограничена при } x \to *. \end{split}$$

 $\gamma(x)$ — произведение бесконечно малой на локально ограниченную при $x \to *$, т.е. бесконечно малая при $x \to *$ по свойству бесконечно малой.

Теорема 5.10 (о знакопостоянстве функции, имеющей ненулевой предел). Пусть $\exists \lim_{x \to *} f(x) = b \in \mathbb{R}, \ b \neq 0.$ Тогда $\exists \mathring{U}_{\delta}(*) \ \forall x \in \mathring{U}_{\delta}(*) : |f(x)| > \frac{|b|}{2}.$

Кроме того, если b>0, то $\forall x\in \mathring{U}_{\delta}(*): f(x)>\frac{b}{2}$, т.е. f(x) имеет тот же знак, что и предел; если же b<0, то $\forall x\in \mathring{U}_{\delta}(*): f(x)<\frac{b}{2}$, т.е. f(x) имеет тот же знак, что и предел.

Доказательство.

$$\lim_{x \to *} f(x) = b \neq 0 \implies$$

$$\implies \forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) > 0 \quad \forall x \in \mathring{U}_{\delta}(*) \implies |f(x) - b| < \varepsilon.$$

Выберем $\varepsilon=\frac{|b|}{2}>0,$ найдем соответствующую $\delta=\delta(\varepsilon)>0,$ тогда

$$\forall x \in \mathring{U}_{\delta}(*) : |f(x) - b| < \frac{|b|}{2},$$

т.е.
$$-\frac{|b|}{2} < f(x) - b < \frac{|b|}{2}$$
. Тогда

$$\forall x \in \mathring{U}_{\delta}(*) : |f(x)| = |b + f(x) - b| \ge |b| - |f(x) - b| > |b| - \frac{|b|}{2} = \frac{|b|}{2},$$

T.e.
$$|f(x)| > \frac{|b|}{2}$$
.

Пусть b > 0. Тогда $b - \frac{|b|}{2} < f(x) < b + \frac{|b|}{2}$, следовательно,

$$\forall x \in \mathring{U}_{\delta}(*) : f(x) > b - \frac{|b|}{2} = b - \frac{b}{2} = \frac{b}{2} > 0.$$

Пусть теперь b < 0. Тогда $b - \frac{|b|}{2} < f(x) < b + \frac{|b|}{2}$, следовательно,

$$\forall x \in \mathring{U}_{\delta}(*) : f(x) < b + \frac{|b|}{2} = b - \frac{b}{2} = \frac{b}{2} < 0.$$

П

Теорема 5.11 (о предельном переходе в неравенстве). Если существуют два предела $\lim_{x\to *} f(x) = b_1$, $\lim_{x\to *} g(x) = b_2$ и проколотая окрестность $\mathring{U}(*)$, такая, что для любого x из этой окрестности выполняется неравенство $f(x) \leq g(x)$, то $b_1 \leq b_2$.

Доказательство. Пусть существуют $\lim_{x\to *} f(x) = b_1$ и $\lim_{x\to *} g(x) = b_2$. Т.к. пределы конечны, по теореме об арифметических операциях с функциями, имеющими пределы, для разности $\phi(x) = g(x) - f(x)$ существует предел $\lim_{x\to *} \phi(x) = b_2 - b_1$.

Будем доказывать "от противного". Предположим, что $b_1 > b_2$. Из этого следует, что $b_2 - b_1 < 0$, тогда по теореме о знакопостоянстве функции, имеющей ненулевой предел, существует такая проколотая окрестность $\mathring{U}_1(*)$, что $\forall x \in \mathring{U}_1(*): \phi(x) = g(x) - f(x) < \frac{b_2 - b_1}{2} < 0$. Таким образом, g(x) < f(x), а тогда $\forall x \in \mathring{U}(*) \cap \mathring{U}_1(*)$ выполняются сразу два неравенства: $f(x) \leq g(x)$ и g(x) < f(x), что является противоречием. Значит, $b_1 \leq b_2$.

Замечание 5.11.1. Если существует $\mathring{U}(*)$, такая, что $\forall x \in \mathring{U}(*)$ верно неравенство f(x) < g(x), то для пределов $\lim_{x \to *} f(x) = b_1$ и $\lim_{x \to *} g(x) = b_2$ выполняется $b_1 \leq b_2$.

Теорема 5.12 (о пределе промежуточной функции или лемма о двух милиционерах). Если слева и справа от правонарушителя находится по милиционеру, каждый из которых держит его и идет в отделение милиции, то правонарушитель тоже придет в отделение милиции. Или, говоря простым языком, если существует $\lim_{x\to *} f(x) = b$, $\lim_{x\to *} g(x) = b$ и $\mathring{U}(*)$, такая, что $\forall x \in \mathring{U}(*)$ выполняется неравенство $f(x) \leq \phi(x) \leq g(x)$, то существует $\lim_{x\to *} \phi(x) = b$.

Доказательство. Пусть существуют $\lim_{x\to *} f(x) = b$ и $\lim_{x\to *} g(x) = b$. Распишем эти пределы по определению Коши:

$$\exists \lim_{x \to *} f(x) = b \iff \\ \iff \forall \varepsilon > 0 \quad \exists \delta_1 = \delta_1(\varepsilon) > 0 \quad \forall x \in \mathring{U}_{\delta_1}(*) \implies b - \varepsilon < f(x) < b + \varepsilon,$$

$$\begin{split} \exists \lim_{x \to *} g(x) &= b \iff \\ \iff \forall \varepsilon > 0 \quad \exists \delta_2 = \delta_2(\varepsilon) > 0 \quad \forall x \in \mathring{U}_{\delta_2}(*) \implies b - \varepsilon < g(x) < b + \varepsilon. \end{split}$$

Пусть $\delta > 0$ таково, что $\mathring{U}_{\delta}(*) \subset \mathring{U}(*) \cap \mathring{U}_{\delta_1}(*) \cap \mathring{U}_{\delta_2}(*)$. Тогда $\forall x \in \mathring{U}_{\delta}(*)$ выполняются неравенства $f(x) \leq \phi(x) \leq g(x), \, b - \varepsilon < f(x)$ и $g(x) < b + \varepsilon$. Записав их вместе, получим, что

$$b - \varepsilon < f(x) \le \phi(x) \le g(x) < b + \varepsilon \implies \exists \lim_{x \to *} \phi(x) = b.$$

Теорема 5.13 (о пределе сложной функции). Если существуют пределы $\lim_{x\to *} f(x) = A$ и $\lim_{y\to A} g(y) = B$, в некоторой окрестности $\mathring{U}(*)$ $f(x) \neq A$, и в этой окрестности определена сложная функция g(f(x)), то существует $\lim_{x\to *} g(f(x)) = B$.

Обратим внимание на то, как осуществляется замена:

$$(y = f(x), x \to *, y \to A) \implies \lim_{y \to A} g(y) = B.$$

Доказательство. По определению предела по Гейне

$$\exists \lim_{x \to *} f(x) = A \implies$$

$$\implies \forall \{x_n\}_{n=1}^{\infty} \subset \mathring{U}(*) : (\lim_{n \to \infty} x_n = * \implies \lim_{n \to \infty} f(x_n) = A), \quad (\Delta)$$

$$\exists \lim_{y \to A} g(y) = B \implies$$

$$\implies \forall \{y_n\}_{n=1}^{\infty}, y_n \neq A : (\lim_{n \to \infty} y_n = A \implies \lim_{n \to \infty} g(y_n) = B). \quad (\Delta\Delta)$$

Выберем любую $\{x_n\}_{n=1}^{\infty}: x_n \in \mathring{U}(*)$, тогда по (Δ) из того, что $\lim_{n\to\infty} x_n = *$, следует, что $\lim_{n\to\infty} f(x_n) = A$. Обозначим $y_n = f(x_n)$, по условию теоремы $y_n \neq A$, причем $\lim_{n\to\infty} y_n = \lim_{n\to\infty} f(x_n) = A$. Тогда по $(\Delta\Delta)$ существует $\lim_{n\to\infty} g(y_n) = \lim_{n\to\infty} g(f(x_n)) = B$. Следовательно, по определению предела по Гейне, существует $\lim_{x\to *} g(f(x)) = B$. \square

Замечание 5.13.1. Условие $f(x) \neq A$ в окрестности $\mathring{U}(*)$ является существенным. Если это условие отсутствует, то теорема может не выполниться.

Пример 5.7.

$$f(x) = \begin{cases} x, x \neq \frac{1}{n}, n \in \mathbb{N}, \\ 0, x = \frac{1}{n}, n \in \mathbb{N}. \end{cases} \quad g(y) = \begin{cases} 2, y \neq 0, \\ 5, y = 0. \end{cases}$$

 $\lim_{x\to 0}f(x)=0.$ x=0 в любой точке $x=\frac{1}{n},$ следовательно, в любой $\mathring{U}(0)$ есть точки, где f(x)=0.

Рассмотрим последовательность $\{x_n\}_{n=1}^{\infty} = \{\frac{1}{n}\}.$

$$\lim_{n \to \infty} x_n = 0 \implies \lim_{n \to \infty} f(x_n) = 0.$$

Заметим, что $f(x_n) = 0 \ \forall n$. Тогда можно записать так:

$$\lim_{n \to 0} g(f(x_n)) = \lim_{n \to 0} g(0) = 5.$$

Рассмотрим последовательность $\{\tilde{x_n}\}_{n=1}^{\infty} = \{e^{-n}\}.$

$$\lim_{n \to \infty} \tilde{x_n} = 0, \ e \notin \mathbb{N} \implies \lim_{n \to \infty} g(f(\tilde{x_n})) = \lim_{n \to \infty} g(e^{-n}) = 2.$$

Подведем итог:

$$\begin{cases} \lim_{n\to\infty} x_n = \lim_{n\to\infty} \tilde{x_n}, \\ \lim_{n\to0} g(f(x_n)) \neq \lim_{n\to\infty} g(f(\tilde{x_n})). \end{cases} \implies \beta \lim_{x\to0} g(f(x)).$$

5.5 Бесконечно большие функции

Определение 5.5. Функция f(x) называется бесконечно большой (б.б.) $npu\ x \to *$ тогда и только тогда, когда f(x) определена в некоторой $\mathring{U}(*)$ и ее предел $npu\ x \to *$ равен бесконечности, т.е.

$$\forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) > 0 \quad \forall x \in \mathring{U}(*) : |f(x)| > \varepsilon.$$

Пример 5.8. Рассмотрим функцию $y = \frac{1}{x}$. $\lim_{x\to 0} y = \infty$, следовательно, y — бесконечно большая при $x\to 0$.

Теорема 5.14 (о связи бесконечно большой с бесконечно малой).

- 1. Если f(x) бесконечно большая при $x \to *$, то $\frac{1}{f(x)}$ является бесконечно малой при $x \to *$.
- 2. Если $\alpha(x)$ бесконечно малая при $x \to *$ и существует такая проколотая окрестность $\mathring{U}(*)$, что $\forall x \in \mathring{U}(*): \alpha(x) \neq 0$, то $\frac{1}{\alpha(x)}$ является бесконечно большой при $x \to *$.

Доказательство. Докажем первый пункт. f(x) — бесконечно большая при $x \to *$, тогда для любого $\varepsilon_1 > 0$ найдется $\delta = \delta(\varepsilon) > 0$, такая, что для любого x из $\mathring{U}_{\delta}(*)$ выполняется неравенство $|f(x)| > \varepsilon_1$.

Выберем любой $\varepsilon > 0$, найдем $\varepsilon_1 = \frac{1}{\varepsilon}$ и $\delta = \delta(\varepsilon_1) = \delta(\frac{1}{\varepsilon})$. Тогда для любого x из $\mathring{U}_{\delta}(*)$ выполняется неравенство $|f(x)| > \frac{1}{\varepsilon}$, или, что то же, $\frac{1}{|f(x)|} < \varepsilon$. Положим $\alpha(x) = \frac{1}{f(x)}$, тогда для любого x из $\mathring{U}_{\delta}(*)$ верно, что $|\alpha(x)| < \varepsilon$, из чего следует, что предел $\alpha(x)$ при $x \to *$ равен нулю. Таким образом, $\alpha(x)$ — бесконечно малая при $x \to *$.

Докажем второй пункт. Пусть $\alpha(x)$ — бесконечно малая при $x \to *$ и для любого x из $\mathring{U}(*)$ верно, что $\alpha(x) \neq 0$.

$$\lim_{x \to *} \alpha(x) = 0 \implies \forall \varepsilon_1 > 0 \quad \exists \delta = \delta(\varepsilon) > 0 \quad \forall x \in \mathring{U}_{\delta}(*) : |\alpha(x)| < \varepsilon_1.$$

Выберем любой $\varepsilon>0$, найдем $\varepsilon_1=\frac{1}{\varepsilon}>0$ и соответствующую $\delta=\delta(\varepsilon_1)=\delta(\frac{1}{\varepsilon})>0$. Поскольку $\forall x\in \mathring{U}_\delta(*)$ имеем $\alpha(x)\neq 0$ и $|\alpha(x)|<\frac{1}{\varepsilon}$, дробь можно перевернуть:

$$\frac{1}{\alpha(x)} < \varepsilon.$$

Если $f(x) = \frac{1}{\alpha(x)}$, то $|f(x)| > \varepsilon$. Получается, $\forall \varepsilon$ мы нашли $\delta(\varepsilon)$ такую, что $\forall x \in \mathring{U}_{\delta}(*)$ выполняется $|f(x)| > \varepsilon$, следовательно,

$$\lim_{x \to *} f(x) = \infty,$$

т.е. $\frac{1}{\alpha(x)}$ — бесконечно большая при $x \to *$.

Замечание 5.14.1. Рассмотрим функцию $y=x\sin\frac{1}{x}$ при $x\to 0.\sin\frac{1}{x}$ — ограниченная, x — бесконечная малая, следовательно, $y=\alpha(x)$ — бесконечно малая.

Теперь рассмотрим функцию $f(x) = \frac{1}{x \sin x}$. В любой $\mathring{U}(0)$ есть хотя бы один x, следовательно, $\alpha(x)$ равна нулю, а значит, f(x) не существует.

5.6 Первый замечательный предел

Теорема 5.15.

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Утверждение 5.1. Если f(x) — элементарная функция, $a \in D_{(f)}$ — область определения f, то существует предел f(x), равный f(a) при $x \to a$.

Следствие 5.15.1.

$$\lim_{x \to 0} \frac{\operatorname{tg}(x)}{x} = \lim_{x \to 0} \left(\frac{\sin x}{x} \cdot \frac{1}{\cos x} \right) = 1 * 1 = 1.$$

Следствие 5.15.2.

$$\lim_{x\to 0} \frac{\arcsin x}{x} =$$

$$= |3 \text{амена } y = \arcsin x, x = \sin y, x \to 0 \implies y \to 0| =$$

$$= \lim_{y\to 0} \frac{y}{\sin y} = \lim_{y\to 0} \left(\frac{\sin y}{y}\right)^{-1} = 1.$$

Следствие 5.15.3.

$$\lim_{x\to 0} \frac{\operatorname{arctg} x}{x} =$$

$$= |3 a мена y = \operatorname{arctg} x, x = \operatorname{tg} y, x \to 0 \implies y \to 0| =$$

$$= \lim_{y\to 0} \frac{y}{\operatorname{tg} y} = \left(\lim_{y\to 0} \frac{\operatorname{tg} y}{y}\right)^{-1} = 1.$$

Следствие 5.15.4.

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2 / 2} = \lim_{x \to 0} \frac{2 \sin^2 \frac{x}{2}}{x^2 / 2} = \lim_{x \to 0} \left(\frac{\sin \frac{x}{2}}{x / 2}\right)^2 = 1.$$

5.7 Второй замечательный предел

Теорема 5.16.

$$\lim_{x \to \infty} \left(\frac{1}{x} + 1\right)^x = [1^\infty] = e.$$

Доказательство. Докажем, что предел функции $(1+\frac{1}{x})^x$ при $x\to +\infty$ равен e....

Теперь докажем, что предел функции $(1+\frac{1}{x})^x$ при $x\to -\infty$ равен e. . . .

По теореме о связи двустороннего предела с односторонним существует предел функции $(1+\frac{1}{x})^x$ при $x\to\infty$, равный e.

Следствие 5.16.1.

$$\lim_{x\to 0}(1+x)^{\frac{1}{x}}=[1^\infty]=$$

$$=|\mathit{Замена}\;x=\frac{1}{y},\;x\to 0\implies y\to \infty|=$$

$$=\lim_{y\to \infty}\left(1+\frac{1}{y}\right)^y=e.$$

Следствие 5.16.2.

$$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \lim_{x \to 0} \frac{1}{x} \log_a(1+x) = \lim_{x \to 0} \log_a(1+x)^{\frac{1}{x}} = \lim_{x \to 0} \frac{1}{x} \log_a(1+x) = \lim_{x \to 0} \log_a(1+x)^{\frac{1}{x}} = \lim_{x \to 0} \frac{1}{x} \log_a(1+x) = \lim_{x \to 0} \log_a(1+x)^{\frac{1}{x}} = \lim_{x \to 0} \frac{1}{x} \log_a(1+x) = \lim_{x \to 0} \log_a(1+x)^{\frac{1}{x}} = \lim_{x \to 0} \frac{1}{x} \log_a(1+x) = \lim_{x \to 0} \log_a(1+x)^{\frac{1}{x}} = \lim_{x \to 0} \log_$$

Следствие 5.16.3 (Частный случай следствия 2).

$$\lim_{x \to 0} \frac{\ln(1+x)}{r} = 1.$$

Следствие 5.16.4.

$$\begin{split} \lim_{x\to 0} \frac{a^x - 1}{x} &= \\ &= |\mathit{Замена}\ y = a^x - 1,\ x = \log_a(y+1),\ x\to 0 \implies y\to 0| = \\ &= \lim_{y\to 0} \frac{y}{\log_a(y+1)} = \lim_{y\to 0} \frac{1}{\frac{\log_a(y+1)}{y}} = \\ &= \frac{1}{\log_a e} = \ln a. \end{split}$$

Следствие 5.16.5 (Частный случай следствия 4).

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1.$$

Следствие 5.16.6.

$$\lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{\alpha x} =$$

$$= \lim_{x \to 0} \frac{e^{\alpha \ln(1+x)} - 1}{\alpha x} = \lim_{x \to 0} \left(\frac{e^{\alpha \ln(1+x)} - 1}{\alpha \ln(1+x)}\right) \cdot \left(\frac{\alpha \ln(1+x)}{\alpha x}\right) =$$

$$= 1.$$

Замечание 5.16.1.

$$\lim_{x \to \infty} (U(x))^{V(x)} = [1^{\infty}].$$

$$\begin{split} &\lim_{x\to *}(U(x))^{V(x)} = \lim_{x\to *}e^{\ln(U(x))^{V(x)}} = \lim_{x\to *}e^{V(x)\ln(U(x))} = \\ &= \lim_{x\to *}e^{V(x)\ln(1+U(x)-1)} = \lim_{x\to *}e^{\frac{V(x)\ln(1+U(x)-1)}{U(x)-1}\cdot(U(x)-1)} = \\ &= \begin{cases} e^{\lim_{x\to *}V(x)(U(x)-1)}, \text{ если } \lim_{x\to *}V(x)(U(x)-1) = A \in \mathbb{R}, \\ +\infty, \text{ если } \lim_{x\to *}V(x)(U(x)-1) = +\infty, \\ 0, \text{ если } \lim_{x\to *}V(x)(U(x)-1) = -\infty. \end{cases} \end{split}$$

Пример 5.9.

$$\lim_{x \to \infty} \left(\frac{x^2 + 1}{x^2 + 3} \right)^{x^2} = [1^{\infty}] = e^{\lim_{x \to \infty} x^2 \left(\frac{x^2 + 1}{x^2 + 3} - 1 \right)} = e^{\lim_{x \to \infty} \frac{x^2 - 2}{x^2 + 3} = e^{-2}}.$$

5.8 Сравнение бесконечно малых

Определение 5.6. Пусть $\alpha(x)$ и $\beta(x)$ — бесконечно малые при $x \to *$.

- 1. $\alpha(x)$ и $\beta(x)$ бесконечно малые одного порядка малости тогда и только тогда, когда $\lim_{x\to *} \frac{\alpha(x)}{\beta(x)} = C \neq 0 \neq \infty$.
- 2. $\alpha(x)$ и $\beta(x)$ эквивалентные бесконечно малые при $x \to *$ тогда и только тогда, когда $\lim_{x \to *} \frac{\alpha(x)}{\beta(x)} = 1$. Обозначается $\alpha(x) \sim \beta(x)$ при $x \to *$.
- 3. $\alpha(x)$ бесконечно малая более высокого порядка малости по сравнению с $\beta(x)$ при $x \to *$ тогда и только тогда, когда $\lim_{x \to *} \frac{\alpha(x)}{\beta(x)} = 0$. Обозначается $\alpha(x) = \overline{o}(\beta(x)), \ x \to *$.

4. $\alpha(x)$ имеет порядок n по сравенению c $\beta(x)$ при $x \to *$ тогда u только тогда, когда $\lim_{x \to *} \frac{\alpha(x)}{(\beta(x))^n} = C \neq 0 \neq \infty$. Если n < 0, то одна из сравниваемых функций — бесконечно большая.

5.9 Таблица эквивалентных бесконечно малых

- 1. $\sin x \sim x$
- 2. $\operatorname{tg} x \sim x$
- 3. $\arcsin \sim x$
- 4. $arctg \sim x$
- 5. $1 \cos x \sim \frac{x^2}{2}$
- 6. $\log_a(1+x) \sim \frac{x}{\ln a}$
- 7. $\ln(1+x) \sim x$
- 8. $a^x 1 \sim \ln a$
- 9. $e^x 1 \sim x$
- 10. $(1+x)^{\alpha} \sim \alpha x$

5.10 Свойства эквивалентных бесконечно малых

Теорема 5.17. Пусть $\alpha_0(x), \alpha_1(x), \ldots, \alpha_n(x)$ — бесконечно малые при $x \to *$, причем $\forall k = 1, \ldots n : \alpha_k(x) = \overline{o}(\alpha_0(x)),$ т.е. $\alpha_0(x)$ — бесконечно малая самого низкого порядка малости по сравнению с $\alpha_k(x), k = 1, \ldots, n$. Тогда $\alpha_0(x) + \sum_{k=1}^n \alpha_k(x) \sim \alpha_0(x)$ при $x \to *$.

5.11 *О*-символика

Правила работы с \bar{o}

5.12 Сравнение бесконечно больших

5.13 Свойства эквивалентных бесконечно больших

6 Непрерывность

6.1 Непрерывность функции в точке

Определение 6.1. Пусть функция f(x) определена в некоторой окрестности точки x_0 . Функцию f(x) называют непрерывной в точке x_0 тогда и только тогда, когда существует предел f(x) при $x \to x_0$, равный $f(x_0)$.

Приведем формально-логическую запись этого определения в формулировке по Kouu:

$$\forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) \quad \forall x \in \mathbb{R} : (|x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon),$$

и в формулировке по Гейне:

$$\forall \{x_n\}_{n=1}^{\infty} \subset D(f) : (\lim_{n \to \infty} x_n = x_0 \implies \lim_{n \to \infty} f(x_n) = f(x_0)).$$

6.2 Приращение аргумента в точке и приращение функции

Определение 6.2. Пусть f(x) определена в некоторой окрестности точки x_0 , т.е. в некотором интервале (a;b), содержащем x_0 . Выберем любую $\Delta x \in \mathbb{R}: x_0 + \Delta x \in (a;b)$. Таким образом, $\Delta y = f(x_0 + \Delta x) - f(x_0) - \phi$ ункция, зависящая от Δx .

 Δx — приращение аргумента в точке x_0 . Δy — приращение функциии f(x) в точке x_0 , отвечающее приращению аргумента Δx .

Теорема 6.1. Функция f(x) непрерывна в точке x_0 тогда и только тогда, когда $\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} (f(x_0 + \Delta x) - f(x_0)) = 0$.

Доказательство.

$$f(x)$$
 непрерывна в точке $x_0 \iff \lim_{x \to x_0} f(x) = f(x_0) \iff \lim_{x \to x_0} f(x) - f(x_0) = 0,$ |Замена $\Delta x = x - x_0, \ x = x_0 + \Delta x, \ x \to x_0, \ \Delta x \to 0 | \iff \lim_{\Delta x \to 0} (f(x_0 + \Delta x) - f(x_0)) = 0 \iff \lim_{\Delta x \to 0} \Delta y = 0.$

6.3 Точки разрыва

Определение 6.3. Пусть функция f(x) определена в некоторой проколотой окрестности точки а и в точке а f(x) не является непрерывной. Тогда точку а называют точкой разрыва. В самой точке функция f(x) может быть как определена, так и не определена.

6.4 Классификация точек разрыва

Определение 6.4. a-mочка устранимого разрыва тогда и только тогда, когда существует предел f(x), равный b при $x \to a$, a f(x) либо не определена в точке a, либо $f(a) \neq b$.

Пример 6.1.

$$f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0, \\ 2, & x = 0. \end{cases} \quad \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sin x}{x} = 1 \neq f(0) = 2.$$

Определение 6.5. a-mочка неустранимого разрыва I рода тогда u только тогда, когда существует предел f(x), равный $A \in \mathbb{R}$ при $x \to a-0$, u существует предел f(x), равный $B \in \mathbb{R}$ при $x \to a+0$, причем $A \neq B$.

h: B-A-cкачок функции в точке $a, h \neq 0$ — неустранимый разрыв I рода. Точку устранимого разрыва иногда называют точкой разрыва I рода c нулевым скачком.

Пример 6.2.

$$\begin{split} y &= \operatorname{arcctg} \frac{1}{x}, \ a = 0 \\ \lim_{x \to a - 0} \operatorname{arctg} \frac{1}{x} &= -\frac{\pi}{2}, \ \lim_{x \to a + 0} \operatorname{arctg} \frac{1}{x} = \frac{\pi}{2}. \end{split}$$

Следовательно, a — точка неустранимого разрыва I рода.

Определение 6.6. а — точка неустранимого разрыва II рода тогда и только тогда, когда хотя бы один из односторонних пределов функции f(x) равен бесконечности, либо предел функции f(x) при $x \to a$ не существует.

Пример 6.3.

$$y = 2^{\frac{1}{x}}, \ a = 0,$$

$$\lim_{x \to a+0} = 2^{\frac{1}{x}} = +\infty, \ \lim_{x \to a-0} 2^{\frac{1}{x}} = 0.$$

Следовательно, a — точка неустранимого разрыва II рода.

Пример 6.4.

$$y = \sin \frac{1}{x}$$
, $a = 0$. $\lim_{x \to a} \sin \frac{1}{x}$ не существует.

6.5 Односторонняя непрерывность

Не будем забывать, что если функция определена в окрестности точки, то она определена и в самой точке тоже.

Определение 6.7. Пусть функция f(x) определена в некоторой окрестности U(a+0). Если предел f(x) при $x \to a+0$ равен f(a), то говорят, что f(x) непрерывна в точке а справа. Функция f(x) непрерывна в точке а справа тогда и только тогда, когда f(a) = f(a+0).

$$\lim_{x \to a+0} f(x) = f(a+0).$$

Пусть функция f(x) определена в некоторой окрестности U(a-0). Если предел f(x) при $x \to a-0$ равен f(a), то говорят, что f(x) непрерывна в точке а слева. Функция f(x) непрерывна в точке а слева тогда и только тогда, когда f(a) = f(a-0).

$$\lim_{x \to a = 0} f(x) = f(a).$$

Пример 6.5. y = [x], x = 0 — левосторонний разрыв I рода.

6.6 Свойства функций, непрерывных в точке

Теорема 6.2. Функция f(x) непрерывна в точке а тогда и только тогда, когда f(x) непрерывна в точке а и слева, и справа.

Доказательство. f(x) непрерывна в точке $a \iff$ предел f(x) при $x \to a$ равен $f(a) \iff$ по теореме о связи двустороннего предела с односторонними существуют $\lim_{x\to a-0} f(x) = f(a)$ и $\lim_{x\to a+0} f(x) = f(a)$ \iff f непрерывна в a и слева, и справа.

Теорема 6.3 (о знакопостоянстве непрерывной функции). Пусть функция f(x) непрерывна в точке a u f(a) > 0 (f(a) < 0). Тогда существует такая окрестность точки a, что для любого x из этой окрестности f(x) > 0 (f(x) < 0).

Доказательство. f(x) непрерывна в точке a, следовательно, предел f(x) при $x \to a$ равен f(a). Тогда по теореме о знакопостоянстве функции, имеющей ненулевой предел, найдется такая окрестность точки a, что для любого x из этой окрестности f(x) > 0.

Теорема 6.4 (локальная ограниченность). Если f(x) непрерывна в точке $a, mo \ f(x)$ локально ограничена при $x \to a$.

Доказательство. f(x) непрерывна в точке a, т.е. существует предел f(x), равный f(a) при $x \to a$. Следовательно, по теореме о локально ограниченной функции, имеющей конечный предел, f(x) локально ограничена при $x \to a$.

Теорема 6.5 (об арифметических операциях с непрерывными функциями). Если f(x), g(x) непрерывны в точке a, то $f(x) \pm g(x)$, $f(x) \cdot g(x)$, а также $\frac{f(x)}{g(x)}$, если $g(a) \neq 0$, являются непрерывными в точке a функциями.

Доказательство. Пусть существуют $\lim_{x\to a} f(x) = f(a)$ и $\lim_{x\to a} g(x) = g(a)$. По теореме об арифметических операциях с функциями, имеющими конечные пределы, $f(x)\pm g(x),\ f(x)\cdot g(x),\ a$ также $\frac{f(x)}{g(x)},\ e$ сли $g(a)\neq 0,$ являются непрерывными в точке a функциями.

Теорема 6.6 (о пределе под знаком непрерывной функции). Пусть $\lim_{x\to *} f(x) = a$, функция g(y) непрерывна в точке a и в некоторой $\mathring{U}(*)$ определена сложная функция g(f(x)). Тогда существует

$$\lim_{x \to *} g(f(x)) = g(a) = g(\lim_{x \to *} f(x)).$$

Доказательство. Теорема верна по теореме о пределе сложной функции. Однажды мы изложим здесь более подробное доказательство.

Теорема 6.7 (о непрерывности композиции непрерывных функций). Пусть f(x) непрерывна в точке a, a g(y) непрерывна в точке b = f(a), u пусть в некоторой U(a) определена g(f(x)). Тогда g(f(x)) непрерывна в точке a.

6.7 Свойства функций, непрерывных на отрезке

Теорема 6.8 (о нулях непрерывной на отрезке функции или первая теорема Больцано-Коши). Пусть f(x) непрерывна на [a;b] и $f(a) \cdot f(b) < 0$ (на концах [a;b] принимает значения разных знаков). Тогда существует хотя бы одна точка $c \in [a;b]$, такая, что f(c) = 0.

Теорема 6.9 (о промежуточных значениях непрерывной на отрезке функции или вторая теорема Больцано-Коши). Пусть f(x) непрерывна на [a;b], f(a) = A, f(b) = B. Тогда для любой C, лежащей между A и B, найдется $c_0 \in [a;b]$, такая, что $f(c_0) = C$.

Теорема 6.10 (об ограниченности непрерывной на отрезке функции или первая теорема Вейерштрасса). Если f(x) непрерывна на отрезке, то она ограничена на этом отрезке.

Теорема 6.11 (о достижении непрерывной на отрезке функцией своих точных граней или вторая теорема Вейерштрасса). Пусть f(x) непрерывна на [a;b]. Тогда существуют такие $x_n, x_N \in [a;b]$, что

$$f(x_n) = m = \inf(f(x)), \ x \in [a; b] = \min f(x) \ \text{ha} \ [a; b],$$

 $f(x_N) = M = \sup(f(x)), \ x \in [a; b] = \max f(x) \ \text{ha} \ [a; b].$

6.8 Непрерывность монотонных функций

Теорема 6.12. Пусть f(x) непрерывна на [a;b]. Тогда f(x) является инъекцией тогда и только тогда, когда f(x) строго монотонна на [a;b].

Доказательство. Докажем необходимость. Пусть f(x) непрерывна на [a;b] и является инъекцией. Будем доказывать "от противного". Предположим, что f(x) не является строго монотонной, т.е. существуют такие $x_1, x_2, x_3 \in [a;b]$, что $x_1 < x_2 < x_3$, а значение $f(x_2)$ не лежит между $f(x_1)$ и $f(x_3)$. Всего у нас получится четыре случая.

Рассмотрим следующий случай: $f(x_1) > f(x_2)$, $f(x_1) < f(x_3)$, $f(x_2) < f(x_3)$. Тогда на отрезке $[x_2; x_3]$ функция f(x) непрерывна, следовательно, принимает все свои значения из $[f(x_2); f(x_3)]$, но $f(x_2) < f(x_1) < f(x_3)$, следовательно, существует $\widetilde{x} \in [x_2; x_3]$, такой, что $f(\widetilde{x}) = f(x_1)$, что противоречит инъективности f(x) на [a; b]. Доказательства остальных случаев аналогичны.

Докажем достаточность. Если f(x) строго монотонна (возрастает или убывает) на [a;b], то она инъективна. \Box

Теорема 6.13 (Вейерштрасса о существовании предела монотонной ограниченной функции). Пусть f(x) монотонна и ограничена на $[a; +\infty)$. Тогда существует $\lim_{x\to +\infty} f(x) = A \in \mathbb{R}$.

Документ подготовил Мамзелев В.С. Ссылка на github-репозиторий с исходным кодом: https://github.com/wirebedroom/matan-vlasova.