Attention mechanisms & Transformers

Motivación

Muchas tareas no necesitan de toda la entrada para predecir la salida.

Ejemplo: Predecir la clase de una imagen.

Motivación

Muchas tareas no necesitan de toda la entrada para predecir la salida.

Ejemplo: Predecir la clase de una imagen.

Motivación

Muchas tareas no necesitan de toda la entrada para predecir la salida.

Ejemplo: Transformar audio en texto.

Motivación

Muchas tareas no necesitan de toda la entrada para predecir la salida.

Ejemplo: Traducir entre idiomas.

Motivación

En tareas de Secuencia a Secuencia, las RNN condensan toda la información de la entrada en un único elemento. No es la mejor opción, sobre todo en largas secuencias.

Tema 4: Arquitecturas y aplicaciones de las redes neuronales profundas

En este contexto surgen los Transformers¹.

Esta nueva arquitectura:

- Mejora la eficiencia comptutacional de las RNN.
- Permite al modelo centrarse en partes concretas de la entrada para predecir la salida.
- Soluciona el problema de la memoria corto-placista de las RNN:
 - Permiten asociar palabras en una secuencia aunque estén muy separadas entre sí.

¹Attention is all you need, Ashish Vaswani et al

Attention mechanisms & Transformers

Attention mechanisms

Attention mechanisms

Antes de comenzar a hablar de *Transformers*, es necesario entender el funcionamiento de su componente principal, los **attention mechanisms**.

Definición

Los mecanismos de atención seleccionan que elementos de la(s) secuencia(s) de entrada son más importantes para predecir la secuencia salida.

Detalles:

- La entrada de estos mecanismos espera una o varias secuencias de datos.
- Dentro de los *Transformers* se utilizan la llamada *Self-attention* pero, como verás a continuación, existen muchas otras variaciones.

Variaciones

Variaciones

Para comprender como funciona, imaginemos el siguiente escenario:

- Secuencia de entrada: x_1, x_2, \ldots, x_t
- Secuencia de salida: y_1, y_2, \ldots, y_t
- Todos los vectores tienen dimensión k.

Para producir cada vector y_i de la secuencia de salida, simplemente se obtiene la media ponderada de las entradas.

$$y_i = \sum_j w_{i,j} x_j$$

Donde la j recorre toda la secuencia y la suma de todos los $w_{i,j}$ es igual a 1.

El peso $w_{i,j}$ no es un parámetro, como en una DNN, se deriva de una función sobre x_i y x_j .

La opción más sencilla para esta función es el producto escalar:

$$\mathbf{w}_{ij}^{'} = \left\langle \mathbf{x}_{i}^{T}, \mathbf{x}_{j} \right\rangle$$

El peso representa la importancia de cada elemento de la entrada para el elemento actual.

- Nótese que x_i es el vector de entrada en la misma posición que el vector de salida actual.
- Para y_{i+1} , obtenemos una serie completamente nueva de productos escalares y una suma ponderada diferente.

El producto escalar anterior nos da valores entre $[-\inf,\inf]$.

- Para obtener valores entre [0, 1], aplicamos una softmax.
- De esta forma, para cada i, todos los j pesos sumarán 1.

Finalmente:

$$w_{ij} = rac{ ext{exp } w_{ij}^{'}}{\sum_{j} ext{exp } w_{ij}^{'}}$$

De forma gráfica (softmax omitida por simplicidad):

Tema 4: Arquitecturas y aplicaciones de las redes neuronales profundas

Cross-attention

Multihead-attention

Attention mechanisms & Transformers

Transformers