${\bf academia deimos. es}$

1. Dado el número real a>0, estudie la convergencia de la sucesión definida recurrentemente a partir de $x_1=\sqrt{a}$ mediante

$$x_{n+1} = \sqrt{a + x_n} \qquad (n \in \mathbb{N})$$

Este problema figura resuelto en las páginas 548, 684 y 730 del volumen 2 de Problemas de Oposiciones de Editorial Deimos.

SOLUCIÓN:

■ La función asociada a la recurrencia es la función $f:[-a,+\infty)\to\mathbb{R}$ dada por $f(x)=\sqrt{a+x}$. Esta función es continua en el intervalo $[-a,+\infty)$ y derivable en el intervalo abierto $(-a,+\infty)$, siendo, para cada x>-a,

$$f'(x) = \frac{1}{2\sqrt{a+x}} > 0$$

luego f es estrictamente creciente en el intervalo $[-a, +\infty)$.

• $(x_n) \subset [-a, +\infty)$, pues $x_n > 0$ para todo $n \in \mathbb{N}^+$ (cosa que se prueba inmediatamente por inducción).

• (x_n) es estrictamente monótona por ser f estrictamente creciente. Como además $x_2 = \sqrt{a + \sqrt{a}} > \sqrt{a} = x_1$, la sucesión (x_n) es estrictamente creciente.

academia@academiadeimos.es

• Si la sucesión (x_n) fuese también acotada superiormente, sería convergente a un límite $\ell \in \mathbb{R}$ y, al tomar límites en $x_{n+1} = f(x_n)$, sería

$$\ell = f(\ell) \quad \Rightarrow \quad \ell = \sqrt{a + \ell} \quad \Rightarrow \quad \ell^2 - \ell - a = 0 \quad \stackrel{\ell \ge 0}{\Rightarrow} \quad \ell = \frac{1 + \sqrt{1 + 4a}}{2}$$

Este límite sería cota superior de (x_n) por ser ésta estrictamente creciente. Probamos que, efectivamente, la sucesión (x_n) está acotada superiormente por $\ell = \frac{1+\sqrt{1+4a}}{2}$. Es inmediato que $x_1 = \sqrt{a} < \frac{1+\sqrt{1+4a}}{2} = \ell$ y si suponemos que $x_n < \ell$, entonces, por ser f estrictamente creciente, será

$$x_{n+1} = f(x_n) < f(\ell) = \ell$$

Por tanto, (x_n) está acotada superiormente por $\ell = \frac{1+\sqrt{1+4a}}{2}$ y además es estrictamente creciente, así que (x_n) es convergente y $\lim_{n\to\infty} x_n = \ell = \frac{1+\sqrt{1+4a}}{2}$.