Chomsky Classification of Grammar Type 0 Grammar: Unrestricted

- In this grammar G=(N,T,P,S) production rules are of the form
- ightharpoonup a ightharpoonup ho
- LHS of the rule a ∈ V*NV* (V= N U T, a is a string of symbols of the alphabet N U T and a must contain at least one non terminal)
- RHS of the rule β ∈ V* (β is a string over alphabet V)
- No restriction on the rules of the grammar

Chomsky Classification of Grammar Type 0 Grammar: Unrestricted

Grammar AB → CD

- AaBD → defBD
- lacktriangle ASB \rightarrow aS

Chomsky Classification of Grammar Type 1 Grammar: Context Sensitive

- In this grammar G=(N,T,P,S) production rules are of the form
- lacksquare a \rightarrow β
- □ a ∈ V*NV* (V= N U T, a is a string of symbols of the alphabet N U T and it must contain at least one non terminal)
- $β ∈ V^+$ (β is a string over alphabet V and it cannot by empty string)
- Restriction on rules $|\alpha| <= |\beta|$ (length of LHS of the rule is less than equal to RHS of the rule)
- Length Increasing Grammar

Chomsky Classification of Grammar Type 1 Grammar: Context Sensitive Grammar ASB - ACB

- $aABCc \rightarrow aAbdCc$
- A → ab

Chomsky Classification of Grammar Type 1 Grammar : Context Sensitive

- In this grammar G=(N,T,P,S) production rules are of the form
- aAβ → aγβ
- **■** $\alpha,\beta \in V^*$ (V=N U T, α and β are strings of symbols of the alphabet N U T)
- $A \in N$ (A is a symbol over alphabet N)
- $ightharpoonup \gamma \in V^+$ (V=N U T, γ is a string over alphabet N U T, and it can not be empty string)
- We read rule $aAβ \rightarrow aγβ$ as A is rewritten as γ in the context of a and β.
- \blacksquare a is called left context and β is called right context of the production rule.
- Indian languages are CSL

Chomsky Classification of Grammar Type 2 Grammar : Context Free

- In this grammar G=(N,T,P,S) production rules are of the form
- ightharpoonup A \rightarrow a
- \blacktriangle A \in N (A is a symbol of alphabet N)
- $a \in V^*$ (V=N U T, a is a string over alphabet N U T)
- There is no concept of left or right context in the grammar rules.
- LHS of the rule is context free
- Note The rule $S \to \epsilon$ is allowed only if S does not appear on the RHS of any rule in the grammar.
- Most European languages are CFL

Chomsky Classification of Grammar Type 2 Grammar: Context Free Grammar A → gAg

- ightharpoonup $S \rightarrow ab$
- ightharpoonup A \rightarrow abB

Chomsky Classification of Grammar Type 3 Grammar : Regular Grammar

- In this grammar G=(N,T,P,S) production rules are of the form
- \blacksquare A \rightarrow aB or A \rightarrow b
- \blacksquare A,B \in N (A is a symbol of alphabet N)
- $a \in T$ and $b \in T$ U ϵ (a,b are symbols over alphabet T and b can be empty string also)
- RHS of the rule must contain a terminal followed by non terminal or only terminal symbol
- Note The rule S \rightarrow ϵ is allowed only if S does not appear on the RHS of any rule in the grammar.

Chomsky Classification of Grammar Type 3 Grammar : Regular Grammar

- ightharpoonup A \rightarrow a
- ightharpoonup A \rightarrow bC
- ightharpoonup B ightharpoonup c
- ightharpoonup S ightharpoonup aS

Chomsky Classification of Grammar Summary

Туре	Rules of the form	Restriction	Examples
Type 0 Unrestricted Grammar	$a \rightarrow \beta$ $a \in V*NV* (V=N U T)$ $\beta \in V*$	No restriction	$\begin{array}{l} \textbf{AB} \rightarrow \textbf{CD} \\ \textbf{AaBD} \rightarrow \textbf{defBD} \\ \textbf{ASB} \rightarrow \textbf{aS} \end{array}$
Type 1 Context Sensitive Grammar	$\begin{array}{l} \alpha A\beta \rightarrow \alpha \gamma \beta \\ \alpha,\beta \in V^* \\ A \in N \ and \ \gamma \in V^* \end{array}$	Length of LHS of the rule <= length of RHS of the rule	$\begin{array}{l} ASB \to AcB \\ aABCc \to aAbdCc \\ A \to ab \end{array}$
Type 2 Context Free Grammar	$A \rightarrow \alpha$ $A \in N$ $\alpha \in V^*$	LHS of the rule is context free	$\begin{array}{l} \textbf{A} \rightarrow \textbf{a} \textbf{A} \textbf{a} \\ \textbf{S} \rightarrow \textbf{a} \textbf{b} \\ \textbf{A} \rightarrow \textbf{a} \textbf{b} \textbf{B} \end{array}$
Type 3 Regular Grammar	$A \rightarrow \alpha B \text{ Or } A \rightarrow b$ $A,B \in N$ $\alpha \in T \text{ and } b \in T \cup \epsilon$	RHS of the rule has either terminal or terminal followed by non terminal	$egin{aligned} A & ightarrow a \ A & ightarrow bC \ B & ightarrow c \ S & ightarrow aS \end{aligned}$

Grammar Notation Convention

- Non terminal symbols are denoted by upper case alphabets A,B,C,D,...
- Terminal symbols are denoted by by lower case alphabets a,b,c,d...
- A **sentential form a** is a string of non terminal and terminal symbols that can be derived from start symbol S in the grammar G [$\alpha \in (N \cup T)^*$ and $S \Rightarrow^* \alpha$]
- It is usually denoted by symbols α , β , γ .
- A sentence w is a string consisting of terminal symbols only that can be derived from start symbol S in the grammar G [$\mathbf{w} \in \mathbf{T}^*$ and $\mathbf{S} \Rightarrow^* \mathbf{w}$]
- It is usually denoted by symbols w,x,y,z
- Notation ⇒ directly derives or derives in one step
- Notation ⇒* derives in zero or more steps (Reflexive transitive closure of ⇒)