Modelling the effects of lymph node swelling on T-cell response.

Supplementary File 2.

Parameter tables citing the parameter range, the assumed distribution and source data where relevant.

2.1 Parameters that were not varied in the global sensitivity analysis

Table 1: Parameters that were not varied in the global sensitivity analysis

Symbol	Parameter	Value	Reference				
Model Geometry							
r_p	Initial paracortex radius	$200 \mu \mathrm{m}$	[1,2]				
-	Entry radius	$0.5 \; \mathrm{r}_p$	[1,2]				
-	Exit radius	$0.07 \mathrm{r}_p$	[1,2]				
-	Sub Capsular Sinus height	$0.7r_p$	[1,2]				
GS	Grid Size	$6 \mu \mathrm{m}$	-				
TC Properties							
-	Initial occupation	55%	[3]				
-	Ratio CD4:CD8	0.7:0.3	[1,2]				
-	Lifespan naive	$0.5 \; \mathrm{r}_p$	[4]				
-	Lifespan naive	$0.5 r_p$	[5]				
-	TC entry Afferent:HEV ratio	0.1:0.9	[6,7]				
Actl ₄₊	Slope of CD4 ⁺ activation curve	-69.81	-				
Actl ₈₊	Slope of CD4 ⁺ activation curve	-80.71	-				
Difl ₄₊	Slope of $CD4^+$ differentiation curve	-17.26	-				
Difl ₈₊	Slope of $CD8^+$ differentiation curve	-13.58	-				
T cell movement							
β	Probability of movement	0.6	[8–12]				
P_e	Probability of egress	0.0126	-				
γ	Max cells per grid	2	-				
T_{res}	TC residence time	24hrs	[13, 14]				
DC properties							
-	DC span	2 grids	[15,16]				
-	DC Lifespan	2.5days	[17–19]				

2.2 Parameters that were varied in the global sensitivity analysis

Table 2: Parameters varied in the global sensitivity analysis. Continued overleaf.

Symbol	Parameter Description	Default	Min	Max	Mean	SD	Distrib.	Ref
TC response parameters								
$\mathrm{Act}\mu_4$	CD4 ⁺ activation curve mean	120	70	230	-	-	Unif	[20–25]
$\mathrm{Act}\mu_8$	CD8 ⁺ activation curve mean	140	90	250	-	-	Unif	[20–25]
$\mathrm{Dif}\mu_4$	CD4 ⁺ differentiation curve mean	60	30	90	-	-	Unif	[20–25]
$\mathrm{Dif}\mu_8$	CD8 ⁺ differentiation curve mean	40	20	60	-	-	Unif	[20–25]
TP_4	Min time between CD4 ⁺ proliferations (hrs)	11	-	-	11	1.16	Norm	[26–29]
TP_8	Min time between CD8 ⁺ proliferations (hrs)	7	-	-	7	0.88	Norm	[26,28]
Max_{P8}	Max proliferations CD8 ⁺	16	-	-	16	1.2	Norm	[30-33]
${ m Max}_{P4}$	Max proliferations CD4 ⁺	10	-	-	10	1.2	Norm	[27-29]
$\operatorname{Dif}_{early}$	Early Memory:Effector cell differentiation	0.01	0.001	0.02	0.01	-	Exp	[34]
Dif_{late}	Late Memory:Effector cell differentiation	0.04	0.01	0.08	-	-	Unif	[34]
	TC interactio	n dynamics	i					
T_{NC}	Mean non-cognate T- DC interaction (min)	3.5	-	-	3.5	1	Norm	[19,35]
T_{short}	Short cognate TC-DC interaction (min)	10-15	-	-	10	3	Norm	[19,35,36]
T_{long}	Long cognate TC-DC interaction (min)	50-70	-	-	50	12	Norm	[36–39]
T_{change}	Time TCs switch to long interactions (hr)	8	-	-	8	1	Norm	[36–39]
B_{max}	Max TCs a DC can bind per-step	3	1	5	-	-	Unif	-
B_{step}	Max TCs a DC can bind	15	4	20	-	-	Unif	[40]
	TC Stim	ulation						
K_s	Stim. gain coefficient	0.015	0.005	0.02		-	Unif	-
λ	TC stim. decay factor	0.99	0.99545	0.9999		-	Unif	-
MHC_i	Initial MHCI/II	250	150	350	-	-	Unif	[41-44]
$\mathrm{MHCI}_{1/2}$	MHCI half life (hrs)	19.7	-	-	19.7	6	Norm	[41, 42]
$\mathrm{MHCII}_{1/2}$	MHCII half life (hrs)	60	-	-	60	6	Norm	[43,44]
F_{cog}	Frequency of cognate TCs that enter	1e-4	5e-5	1.5e-4	-	-	Unif	[27,45–47]
Φ_{DC}	Total DCs entering as % of initial TCs	0.04	0.02	0.06	-	-	Unif	[17]
T_{DCin}	DC entry duration (days)	2.5	0.5	4.5	-	-	Unif	[17]

Symbol	Parameter Description	Default	Min	Max	Mean	SD	Distrib.	Ref
Sphingosine-1-phosphate receptor regulation								
SP_{entry}	S1P ₁ r expression post entry	0.1	0.01	1	-	-	Unif	[48–50]
SP_{act}	S1P ₁ r expression when activated	0.01	0.001	0.02	-	-	Unif	[48–51]
S1 _{early}	Effector S1P ₁ r (Proliferation<=6)	0.4	0.01	1	-	-	Unif	[48,51]
SP_{late}	Effector S1P ₁ r (Proliferation>6)	0.8	0.3	1.3	-	-	Unif	[48,51]
SP_{mem}	Memory S1P ₁ rr	1	-	-	1	0.1	Norm	[48,51]
SP_{IF}	$S1P_1r$ on all TCs during inflam.	0.4	0.2	0.8	-	-	Unif	-
T_{Entry}	Time S1P ₁ rr is low post-entry (min)	60	13	120	-	-	Unif	-
T_{Inflam}	Time to alter $S1P_1r$ during inflam.(hr)	4	1	7.5	-	-	Unif	-
	T cell recruitment							
RT1	recruitment increase stim. threshold	2e4	2e4	1e5	-	-	Unif	[52–55]
RT2	Stim. threshold for max. recruitment	4e5	2e5	2e6	-	-	Unif	[52–55]
R_F	Recruitment Factor	3e-6	1e-6	4e-6	-	-	Unif	[52–55]
	Paracortex expansion							
V_{Max}	Max fold-volume increase	1.00	2.00	2.50	-	-	Unif	-
1	Rate of volume change around m	7e-05	3e-05	1e-04	-	-	Unif	-
T_{mid}	No. of TCs for 50% max-volume	120000	90000	150000	-	-	Unif	-

References

[1] Mueller SN, Germain RN. Stromal cell contributions to the homeostasis and functionality of the immune system. Nature Reviews Immunology. 2009 07;9:618–29.

- [2] Kuka M, Iannacone M. The role of lymph node sinus macrophages in host defense. Annals of the New York Academy of Sciences. 2014;1319(1):38–46.
- [3] He Y. Scanning electron microscope studies of the rat mesenteric lymph node with special reference to high-endothelial venules and hitherto unknown lymphatic labyrinth. Archivum histologicum Japonicum. 1985;(48):1–15.
- [4] Tough DF, Sprent J. Life span of naive and memory t cells. STEM CELLS. 1995;13(3):242–249.
- [5] Sprent J, Tough DF. T Cell Death and Memory. Science. 2001;293(5528):245-248.
- [6] Smith JB, McIntosh GH, Morris B. The traffic of cells through tissues: a study of peripheral lymph in sheep. Journal of Anatomy. 1970 07;107(Pt 1):87–100.
- [7] Hall J, Morris B. The immediate effect of antigens on the cell output of a lymph node. British journal of experimental pathology. 1965;46(4):450–454.
- [8] Park E, Peixoto A, Imai Y, Goodarzi A, Cheng G. Distinct roles for LFA-1 affinity regulation during T-cell adhesion, diapedesis, and interstitial migration in lymph nodes. Blood. 2010;115(8):1572–81.
- [9] Boscacci R, Pfeiffer F, Gollmer K, Sevilla A. Comprehensive analysis of lymph node stromaexpressed Ig superfamily members reveals redundant and nonredundant roles for ICAM-1, ICAM-2, and VCAM-1 in lymphocyte homing. Blood. 2010;116(6):915–25.
- [10] Park C, Hwang I, Sinha R, Kamenyeva O. Lymph node B lymphocyte trafficking is constrained by anatomy and highly dependent upon chemo-attractant desensitization. Blood. 2012;119(4):978–989.
- [11] Girard JP, Moussion C, Förster R. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat Rev Immunol. 2012;12(11):762–73.
- [12] Miller MJ, Wei SH, Parker I, Cahalan MD. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science. 2002;296(5574):1869–73.
- [13] Catron DM, Itano AA, Pape KA, Mueller DL, Jenkins MK. Visualizing the first 50 hr of the primary immune response to a soluble antigen. Immunity. 2004;21(3):341–347.
- [14] Tomura M, Yoshida N, Tanaka J. Monitoring cellular movement in vivo with photoconvertible fluorescence protein 'Kaede' transgenic mice. PNAS. 2008;105(31):10871–6.
- [15] Nitschké M, Aebischer D, Abadier M, Haener S, Lucic M, Vigl B, et al. Differential requirement for ROCK in dendritic cell migration within lymphatic capillaries in steady-state and inflammation. Blood. 2012;120(11):2249–2258.
- [16] Paharkova-Vatchkova V, Maldonado R, Kovats S. Estrogen Preferentially Promotes the Differentiation of CD11c+ CD11bintermediate Dendritic Cells from Bone Marrow Precursors. The Journal of Immunology. 2004;172(3):1426–1436.

[17] Acton SE, Farrugia AJ, Astarita JL, Mourao-Sa D, Jenkins RP, Nye E, et al. Dendritic cells control fibroblastic reticular network tension and lymph node expansion. Nature. 2014 10;514(7523):498–502.

- [18] Kamath AT, Henri S, Battye F, Tough DF, Shortman K. Developmental kinetics and lifespan of dendritic cells in mouse lymphoid organs. Blood. 2002;100(5):1734–1741.
- [19] Bousso P. T-cell activation by dendritic cells in the lymph node: lessons from the movies. Nature Reviews Immunology. 2008 09;8:675–84.
- [20] Bajénoff M, Granjeaud S, Guerder S. The strategy of T cell antigen-presenting cell encounter in antigen-draining lymph nodes revealed by imaging of initial T cell activation. Journal of Experimental Med. 2003;198(5):715–724.
- [21] Yoon H, Legge KL, Sung SsJ, Braciale TJ. Sequential Activation of CD8+ T Cells in the Draining Lymph Nodes in Response to Pulmonary Virus Infection. The Journal of Immunology. 2007;179(1):391–399.
- [22] Lawrence CW, Braciale TJ. Activation, Differentiation, and Migration of Naive Virus-Specific CD8+ T Cells during Pulmonary Influenza Virus Infection. The Journal of Immunology. 2004;173(2):1209–1218. Available from: http://www.jimmunol.org/content/173/2/1209.
- [23] Demotz S, Grey H, Sette A. The minimal number of class II MHC-antigen complexes needed for T cell activation. Science. 1990;249(4972):1028–1030.
- [24] Lee WT, Pasos G, Cecchini L, Mittler JN. Continued Antigen Stimulation Is Not Required During CD4+ T Cell Clonal Expansion. The Journal of Immunology. 2002;168(4):1682–1689.
- [25] Arens R, Schoenberger SP. Plasticity in programming of effector and memory CD8(+) T-cell formation. Immunological reviews. 2010 05;235(1):190–205.
- [26] De Boer RJ, Homann D, Perelson AS. Different Dynamics of CD4+ and CD8+ T Cell Responses During and After Acute Lymphocytic Choriomeningitis Virus Infection. The Journal of Immunology. 2003;171(8):3928–3935.
- [27] Nelson RW, Beisang D, Tubo NJ, Dileepan T, Wiesner DL, Nielsen K, et al. T cell receptor cross-reactivity between similar foreign and self peptides influences naïve cell population size and autoimmunity. Immunity. 2015 01;42(1):95–107.
- [28] Foulds KE, Zenewicz LA, Shedlock DJ, Jiang J, Troy AE, Shen H. Cutting Edge: CD4 and CD8 T Cells Are Intrinsically Different in Their Proliferative Responses. The Journal of Immunology. 2002;168(4):1528–1532.
- [29] Tubo NJ, Pagán AJ, Taylor JJ, Nelson RW, Linehan JL, Ertelt JM, et al. Single Naive CD4⁺ T Cells from a Diverse Repertoire Produce Different Effector Cell Types during Infection. Cell. 2013 04;153(4):785–796.
- [30] Butz EA, Bevan MJ. Massive Expansion of Antigen-Specific CD8(+) T Cells during an Acute Virus Infection. Immunity. 1998 02;8(2):167–175.
- [31] Murali-Krishna K, Altman JD, Suresh M, Sourdive DJD, Zajac AJ, Miller JD, et al. Counting Antigen-Specific CD8 T Cells: A Reevaluation of Bystander Activation during Viral Infection. Immunity. 1998 07;8(2):177–187.

[32] Busch DH, Pilip IM, Vijh S, Pamer EG. Coordinate Regulation of Complex T Cell Populations Responding to Bacterial Infection. Immunity. 1998 07;8(3):353–362.

- [33] van Stipdonk MJB, Lemmens EE, Schoenberger SP. Naïve CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nature Immunology. 2001 05;2:423–9.
- [34] Williams MA, Bevan MJ. Shortening the Infectious Period Does Not Alter Expansion of CD8 T Cells but Diminishes Their Capacity to Differentiate into Memory Cells. The Journal of Immunology. 2004;173(11):6694–6702.
- [35] Miller MJ, Hejazi AS, Wei SH, Cahalan MD, Parker I. T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node. Proc Natl Acad Sci USA. 2004;101(4):998–1003.
- [36] Mempel TR, Henrickson SE, Von Andrian UH. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature. 2004;427(6970):154–9.
- [37] von Andrian U, Mackay C. T-cell function and migration, two sides of the same coin. New England Journal of Medicine. 2000;343(14):1020–34.
- [38] Hugues S, Fetler L, Bonifaz L, Helft J, Amblard F, Amigorena S. Distinct T cell dynamics in lymph nodes during the induction of tolerance and immunity. Nature Immunology. 2004 10;5:1235–42.
- [39] Stoll S, Delon J, Brotz T, Germain R. Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science. 2002;296(5574):1873–6.
- [40] Bousso P, Robey E. Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nature immunology. 2003;4:579–585.
- [41] Cella M, Salio M, Sakakibara Y, Langen H, Julkunen I, Lanzavecchia A. Maturation, Activation, and Protection of Dendritic Cells Induced by Double-stranded RNA. The Journal of Experimental Medicine. 1999 03;189(5):821–829.
- [42] Kukutsch NA, Rossner S, Austyn JM, Schuler G, Lutz MB. Formation and Kinetics of MHC Class I-Ovalbumin Peptide Complexes on Immature and Mature Murine Dendritic Cells. Journal of Investigative Dermatology. 2000;115(3):449 453.
- [43] Cella M, Engering A, Pinet V, Pieters J, Lanzavecchia A. Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature. 1997 08;388:782–7.
- [44] Baumgartner C, Ferrante A, Nagaoka M, Gorski J, Malherbe LP. Peptide-MHC Class II Complex Stability Governs CD4 T Cell Clonal Selection. Journal of immunology (Baltimore, Md: 1950). 2010 01;184(2):573–581.
- [45] Laouini D, Casrouge A, Dalle S, Lemonnier F, Kourilsky P, Kanellopoulos J. VI2 T Cell Repertoire of CD8+ Splenocytes Selected on Nonpolymorphic MHC Class I Molecules. The Journal of Immunology. 2000;165(11):6381–6386.
- [46] Blattman JN, Antia R, Sourdive DJ, Wang X, Kaech SM, Murali-Krishna K, et al. Estimating the Precursor Frequency of Naive Antigen-specific CD8 T Cells. The Journal of Experimental Medicine. 2002 03;195(5):657–664.

[47] Jenkins MK, Moon JJ. The role of naïve T cell precursor frequency and recruitment in dictating immune response magnitude. Journal of Immunology (Baltimore, Md: 1950). 2012 05;188(9):4135–4140.

- [48] Pham T, Okada T, Matloubian M, Lo C, Cyster J. S1P 1 receptor signaling overrides retention mediated by Gi-coupled receptors to promote T cell egress. Immunity. 2008;28(1):122–133.
- [49] Matloubian M, Lo C, Cinamon G, Lesneski M, Xu Y. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature. 2004;427(6972):355–60.
- [50] Lo C, Xu Y, Proia R, Cyster J. Cyclical modulation of sphingosine-1-phosphate receptor 1 surface expression during lymphocyte recirculation and relationship to lymphoid organ transit. Journal of Experimental Medicine. 2005;2(201):291–301.
- [51] Garris CS, Blaho VA, Hla T, Han MH. Sphingosine-1-phosphate receptor 1 signalling in T cells: trafficking and beyond. Immunology. 2014 07;142(3):347–353.
- [52] Hay JB, Hobbs BB. The flow of blood to lymph nodes and its relation to lymphocyte traffic and the immune response. Journal of Experimental Medicine. 1977;145(1):31–44.
- [53] Drayson MT, Smith ME. The sequence of changes in blood flow and lymphocyte influx to stimulated rat lymph nodes. Immunology. 1981;44:125–133.
- [54] Mackay C, Marston W, Dudler L. Altered patterns of T cell migration through lymph nodes and skin following antigen challenge. European journal of Imm. 1992;22(9):2205–10.
- [55] Webster B, Ekland EH, Agle LM, Chyou S, Ruggieri R, Lu TT. Regulation of lymph node vascular growth by dendritic cells. J Exp Med. 2006;203(8):1903–13.