

HEAP

- Heap is a special case of balanced binary tree data structure where root-node key is compared with its children and arranged accordingly
- If α has child node β then –

$$key(\alpha) \ge key(\beta)$$
 or $key(\alpha) \le key(\beta)$

Heap is a binary tree that stores priorities pair at node

HEAP PROPERTY

• Heap has two property:

- Structural property:
 All levels are full except last levels. Last level is left filled.
 A complete or nearly complete binary tree.
- Heap Property :

Priority of a node is as large or small as that of its parent

• Can be represented in an array and no pointers are necessary.

HEAP PROPERTY

• Based on this criteria a heap can be of two types:

Min Heap

where the value of root node is less than or equal to either of its children.

Max Heap

where the value of root node is greater than or equal to either of its children. Max heap is often called as heap

EXAMPLE OF NON-HEAPS

• Heap Property Violated:

EXAMPLE OF NON-HEAPS

• Structural Property Violated:

HEIGHT OF HEAPS

- Recall from complete binary tree : if height of the tree h, then number of nodes $n = 2^{h+1}$ -1
- Hence, $n+1=2^{levels}=2^{h+1}$ $=> log_2 (n+1) = h+1$ $=> h = log_2 (n+1) -1$ $=> h = log_2 (n+1) -1$

MAINTENANCE OPERATIONS

- Two basic maintenance operations are performed on heap.
 - > Insertion
 - Deletion
- To implement this basic operation we need two algorithm:
 - Reheap Up
 - Reheap down

REHEAP UP

- Suppose we have a nearly complete tree with N elements whose N-1 element satisfy the heap property but the last element does not
- The reheap Up operation repairs the structure so that it is a heap by floating the last element up the tree until that element is in its correct location in the tree.

REHEAP DOWN

• Repairs a "broken" heap by pushing the root of the subtree down until it is in its correct location.

IMPLEMENTING HEAPS

IMPLEMENTING HEAPS (CONT...)

- The implicit tree link : children of node i are 2i and 2i+1
- Why is this important?
 - In a binary representation a multiplication and division by 2 is a left/right shifts
 - > Adding 1 can be done by adding the lowest bit

REHEAP UP ALGORITHM

```
Algorithm ReheapUp(position)

If (position > 1)

parent = (position) / 2;

if (data[position] > data[parent])

swap(position, parent)

ReheapUp (parent)

return;

End ReheapUp
```

REHEAP DOWN ALGORITHM

```
Algorithm Reheapdown (position, lastPosition)
 leftChild = position*2
 rightChild = position*2 + 1
 largest = position
 if ((leftChild <= lastPosition) AND (data [leftChild] > data[largest])
     largest = leftChild
 if ((rightChild <= lastPosition) AND (data [rightChild] > data[largest])
     largest = rightChild
 if (largest!=position)
     swap(largest, position)
     ReheapDown (largest, lastPosition)
End ReheapDown
```

BUILD HEAP

- Suppose, given a filled array, to build the heap we need to rearrange the data so that each node in the heap is greater than or less than its children.
- We consider two parts of array, one is heap and other part contains element to be inserted into the array
- At the beginning, first node of array is in heap and rest of the array are data to be inserted.
- Then take the next element and check if it satisfies the heap property i.e parent root has value greater or smaller than the children. If heap property violate then call **reheap up** operation to solve the problem.
- This process sometimes referred to as **heapify**

BUILD MAX HEAP EXAMPLE

BUILD HEAP

```
Algorithm BuildHeap (listOfData)

count = 1

loop(count <= listOfData.Size())

data[count] = listOfData[count]

ReheapUp( count );

count = count + 1

end loop;

End BuildHeap
```


Recursive

```
InsertHeap(DataIn)
    if(heap is full)
    return overflow
    else
    data[count] = DataIn;
     ReheapUp( count)
     count = count+ 1
     end if;
    End InsertHeap
```

DELETE MIN HEAP

- Delete the top element
- The element in the last position is put to the position of the root, and Reheap Down is called for that position

DELETE MIN HEAP

DELETE HEAP

```
if (heap is empty)
  return underflow
else
  DeleteData = Data[1]
  Data[1] = Data[count]
  count = count - 1
  ReheapDown(1, count)
end if;
```