Sage Quick Reference for 2MMC10

(based on work by Peter Jipsen and Wiliam Stein)

Python

Python and sage use indentation for expressing syntax. Interactive versions need an extra return to run. conditional statement: if expr: statements ... elif expr: statements .. else: statements .. value identity if a==1:... if a!=1:... if a>=1:...while loop while expr: statements escape while loop while True: ... if cond: break extended $\gcd g = sa + tb = \gcd(a,b)$: g,s,t=xgcd(a,b) for loop for target in iter: statements end loop/jump to next break / continue print print ("hello world")

Sage notebook

Evaluate cell: (shift-enter) Evaluate cell creating new cell: (alt-enter)

Split cell: (control-;)

Join cells: (control-backspace)

Insert math cell: click blue line between cells Insert text/HTML cell: shift-click blue line between cells

Delete cell: delete content then backspace

Sage command line

 $com\langle tab \rangle$ complete command*bar*? list command names containing "bar" $command?\langle tab \rangle$ shows documentation command??(tab) shows source code

a. \langle tab \rangle shows methods for object a (more: dir(a))

a._\(\tab\) shows hidden methods for object a

search_doc("string or regexp") fulltext search of docs search_src("string or regexp") search source code

_ is previous output

Numbers

Integers: Z = ZZ e.g. -2 -1 0 1 10^100 Rationals: Q = QQ e.g. 1/2 1/1000 314/100 -2/1 Reals: $\mathbf{R} \approx \mathtt{RR} \ \text{e.g.} \ .5 \ \text{0.001} \ \text{3.14} \ \text{1.23e10000}$ Complex: $\mathbf{C} \approx \mathtt{CC}$ e.g. $\mathtt{CC}(1,1)$ $\mathtt{CC}(2.5,-3)$ Mod $n: \mathbb{Z}/n\mathbb{Z} = \text{Zmod}$ e.g. Mod(2,3) Zmod(3)(2)

Finite fields: $\mathbf{F}_q = \mathsf{GF}$ e.g. $\mathsf{GF(3)(2)}$ $\mathsf{GF(9,"a").0}$ x is assumed to be a polynomial variable, all other variables need to be declared y=var("y") or as follows: Polynomials: R[x, y] e.g. S. $\langle x, y \rangle = QQ[]$ Series: R[[t]] e.g. S.<t>=QQ[[]] $1/2+2*t+0(t^2)$ Algebraic closure: $\overline{\mathbf{Q}} = \mathtt{QQbar} \ \mathrm{e.g.} \ \mathtt{QQbar}(2^{(1/5)})$

Integers

n divided by m has remainder n % m gcd(n,m), gcd(list) lcm(n,m), lcm(list) binomial coefficient $\binom{m}{n}$ = binomial(m,n) digits in a given base: n.digits(base) number of digits: n.ndigits(base) (base is optional and defaults to 10) divides $n \mid m$: n.divides(m) if nk = m some kdivisors – all d with $d \mid n$: n.divisors() factorial - n! = n.factorial()

Prime Numbers and Number theory

primality testing: is_prime(n), is_pseudoprime(n) prime power testing: is_prime_power(n) $\pi(x) = \#\{p : p \le x \text{ is prime}\} = \text{prime_pi(x)}$ set of prime numbers: Primes() $\{p : m \le p < n \text{ and } p \text{ prime}\} = prime_range(m,n)$ first n primes: primes_first_n(n) next and previous primes: next_prime(n), previous_prime(n), next_probable_prime(n) Factor: factor(n), qsieve(n), ecm.factor(n) Continued fractions: continued_fraction(x)

Discrete math

|x| = floor(x) [x] = ceil(x)Strings: e.g. s = "Hello" = "He"+'llo' s[3:]="lo" s[-1]="o" s[1:3]="el" Lists: e.g. [1, "Hello", x] = [] + [1, "Hello"] + [x]Tuples: e.g. (1, "Hello", x) (immutable) Length of list or tuple len(1), len(t) Sets: e.g. $\{1,2,1,a\} = Set([1,2,1,"a"])$ (= $\{1,2,a\}$) Adjoin elements of t to s s.update(t)

Intersect t and s s.intersection_update(t) Remove elements in t from s s.difference_update(t) List comprehension \approx set builder notation, e.g. $\{f(x): x \in X, x > 0\} = Set([f(x) \text{ for } x \text{ in } X \text{ if } x > 0])$

Modular Arithmetic and Congruences Number field: R.<x>=QQ[]; K.<a>=NumberField(x 3 +x+1) a modulo n as element of $\mathbb{Z}/n\mathbb{Z}$: Mod(a, n) Remainder of n divided by k = n kk|n iff n%k==0Euler's $\phi(n)$ function: euler_phi(n) Kronecker symbol $\left(\frac{a}{b}\right)$ = kronecker_symbol(a,b) Quadratic residues: quadratic_residues(n) Quadratic non-residues: quadratic_residues(n) ring $\mathbf{Z}/n\mathbf{Z} = \text{Zmod}(\mathbf{n}) = \text{IntegerModRing}(\mathbf{n})$ primitive root modulo $n = primitive_root(n)$ inverse of $n \pmod{m}$: n.inverse_mod(m) power $a^n \pmod{m}$: power_mod(a, n, m) Chinese remainder theorem: x = crt(a,b,m,n)finds x with $x \equiv a \pmod{m}$ and $x \equiv b \pmod{n}$ discrete log: log(Mod(6,7), Mod(3,7))order of $a \pmod{n} = Mod(a,n) .multiplicative_order()$ square root of $a \pmod{n} = Mod(a,n).sqrt()$

Matrix algebra

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} = \text{vector}([1,2])$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} = \text{matrix}(QQ,2,3,[1,2,3,\ 4,5,6])$$

$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = \text{det}(\text{matrix}(QQ,[[1,2],[3,4]]))$$

$$Av = A*v \quad A^{-1} = A^{-1} \quad A^t = A.\text{transpose}()$$

Groups

Order of group G G.cardinality() Generators of G G.gens()

Elliptic curves

E = EllipticCurve(K, [a1,a2,a3,a4,a6]) E = EllipticCurve(K, [c4,c6]) The field parameter K is optional if $a_i \in K$ Point P = (s, t): P = E(s,t) Scalar multiplication: 5*P Point at infinity P = E(0,1,0) or P = E(0)