构造演算(The Calculus of Constructions)

读书笔记

许博

1 λ C 系统

 λC 组合了第二章到第五章中介绍的系统,拥有四种可能的选择,即依赖于项/类型的项/类型。

 λ P 与 λ C 只有一处不同,但足以扩展 λ P 到 λ C = λ 2 + $\lambda \omega$ + λ P: $(form_{\lambda P}) \frac{\Gamma \vdash A : * \quad \Gamma, x : A \vdash B : s}{\Gamma \vdash \Pi x : A.B : s}$

在这条规则中,关键点是 A:*,为了保证类型 $\Pi x:A.B$ 的成员(inhabitant)是项或者依赖于项的类型。但在舍弃了这个限制之后,我们就获

看起来将 A:* 替换为 A:s,其中 s 为 * 或 \square ,就足够了,但是规则中已经出现了 s,观察 $\lambda \underline{\omega}$ 的 (form)-规则:

$$(form_{\lambda\underline{\omega}}) \ \frac{\Gamma \vdash A : s \quad \Gamma \vdash B : s}{\Gamma \vdash A \to B : s}$$

得了我们想要的泛化: 依赖于项/类型的项/类型。

只能表示依赖于项的项和依赖于类型的类型,而不能相互交叉(cross-over)。

因此在 λ C 的 (from)-规则中,使用了两个 s: s_1 和 s_2 :

$$(form_{\lambda C}) \frac{\Gamma \vdash A : s_1 \quad \Gamma, x : A \vdash B : s_2}{\Gamma \vdash \Pi x : A.B : s_2}$$

 $\Pi x: A.B$ 的类型继承自 B,也即依赖于项/类型(1)的项/类型(2)依然是项/类型(与 2 统一)。因此有一个有趣的事实是:假设 A 中不存在与

抽象的类型变量相同的自由类型变量,* \rightarrow A 是一个类型,而 $A \rightarrow$ * 是一个种类 (kind)。

假设有一个函数 $\lambda x:A.b$,它的类型是 $\Pi x:A.B$,可以通过 (abst)-规则构建 (b:B),通过 $(form_{\lambda C})$ -规则可知 A 的类型是 s_1 ,B 的类型是 s_2 ,则有以下可能:

$x : A : s_1$	$b:B:s_2$	(s_1, s_2)	$\lambda x : A . b$	from
*	*	(*,*)	term-depending-on-term	$\lambda \!\! o$
	*	$(\square,*)$	term-depending-on-type	$\lambda 2$
		(\Box,\Box)	type-depending-on-type	$\lambda \underline{\omega}$
*		(∗,□)	type-depending-on-term	λP

2 λ -cube

对于 $\lambda \to \pm$ 础上的三个扩展,彼此之间相互独立,可以被看作是扩展时的三个相互垂直的方向,给出坐标轴的三维系统:

Figure 6.1 Directions of extending $\lambda \rightarrow$

三个扩展共同组成了 λ C,而将 λ → 与这三种扩展中的两个相组合而成的系统分别叫做 $\lambda\omega$ (λ → + λ 2 + $\lambda\underline{\omega}$), λ P2 和 λ P $\underline{\omega}$ 。

所有的八个系统可以在一个立方体中定位,也即所谓的 λ -cube 或者巴 伦德雷格立方体(Barendregt cube):

system: combinations (s_1, s_2) allowed: $\lambda 2$ $(\square, *)$ $\lambda \underline{\omega}$ λP (\square,\square) $(*,\Box)$ $_{(\square,\,*)}^{(\square,\,*)}$ (\Box, \Box) $\lambda \omega$ $(*,\Box)$ $(*,\Box)$ $(*,\Box)$ $\lambda P2$ $\lambda P \underline{\omega}$ (\square,\square) (\Box,\Box) $\lambda P\omega = \lambda C$ $(\square, *)$

Figure 6.2 The eight systems of the $\lambda\text{-cube}$

Figure 6.3 The λ -cube or Barendregt cube

这八个不同的系统可以通过推导规则的唯一个集合来描述:

$$(sort) \quad \emptyset \vdash *: \square$$

$$(var) \frac{\Gamma \vdash A : s}{\Gamma, \ x : A \vdash x : A} \quad \text{if } x \notin \Gamma$$

$$(weak) \frac{\Gamma \vdash A : B \quad \Gamma \vdash C : s}{\Gamma, \ x : C \vdash A : B} \quad \text{if } x \notin \Gamma$$

$$(form) \frac{\Gamma \vdash A : s_1 \quad \Gamma, \ x : A \vdash B : s_2}{\Gamma \vdash \Pi x : A . B : s_2}$$

$$(appl) \frac{\Gamma \vdash M : \Pi x : A . B \quad \Gamma \vdash N : A}{\Gamma \vdash M N : B[x := N]}$$

$$(abst) \frac{\Gamma, \ x : A \vdash M : B \quad \Gamma \vdash \Pi x : A . B : s}{\Gamma \vdash \lambda x : A . M : \Pi x : A . B : s}$$

$$(conv) \frac{\Gamma \vdash A : B \quad \Gamma \vdash B' : s}{\Gamma \vdash A : B'} \quad \text{if } B =_{\beta} B'$$

Figure 6.4 Derivation rules for the systems of the λ -cube

每一个系统都依赖于 (s_1, s_2) 的组合,根据表 Figure 6.2 可得。以 $\lambda \omega$ 为例,只需要将 $A \to B$ 看作是 $\Pi x : A.B$ 的缩写,又因为 $(s_1, s_2) \in \{(*, *), (\Box, \Box)\})$,所以再令 $s_1 = s_2 = s$ 即可。

3 λC 的性质

之前描述的大部分性质, λ C 依然保持,但措辞可能会有不同,对于某些直白的改变不再赘述。

定义 3.1 (λ C 的表达式, \mathcal{E})

 λC 的表达式的集合 $\mathcal{E} = V|\Box| * |(\mathcal{E}\mathcal{E})|(\lambda V : \mathcal{E}.\mathcal{E})|(\Pi V : \mathcal{E}.\mathcal{E})$

引理 3.2 (自由变量引理)

如果 $\Gamma \vdash A : B$,则 $FV(A), FV(B) \subseteq dom(\Gamma)$

引理 3.3(良构的上下文)

如果存在 A 和 B 使得 $\Gamma \vdash A : B$,则上下文 Γ 是良构的。

引理 3.4 (压缩引理, Condensing Lemma)

如果 $\Gamma', x: A, \Gamma'' \vdash B: C$ 且 x 不在 Γ'', B, C 中出现,则有 $\Gamma', \Gamma'' \vdash B: C$ 。

需要注意的是,压缩引理与 Lemma 2.10.5 不同: Lemma 2.10.5 中,所有多余声明可以一次性去掉,而新的引理中一次只能去除一个,因为 B,C中的自由变量可能依赖于上下文中其它的变量。

引理 3.5 (替换引理)

令 $\Gamma',x:A,\Gamma''\vdash B:C$ 且 $\Gamma'\vdash D:A$,则 $\Gamma',\Gamma''[x:D]\vdash B[x:D]:C[x:D]$

引理 3.6 (Subject Reduction)

如果 $\Gamma \vdash A : B$ 且 $A \mapsto_{\beta} A'$, 则 $\Gamma \vdash A' : B$ 。

在第四章中提到过,(SubjectReduction) 引理可以直接证明,而 (conv)-规则需要显式给出,因为出现过的项不能在声明中(以相同含义)出现第二次,无法同时引出两个类型,而相同类型可以多次出现,推导出不同的项即可。

定义 3.7 (Strong Normalisation Theorem / Termination Theorem) 每一个合法的 M 都是 strongly normalising。

定义 3.8 (良好定义和类型检查的可判定性)

在 λC 和它的子系统中,良好定义和类型检查都是可判定的。

项查找在 $\lambda \rightarrow$ 和 $\lambda \underline{\omega}$ 中是可判定的,但是在剩余的系统中是不可判定的。

尽管项查找在许多时候是不可判定的,但是计算机可以为定理证明提供大量的帮助,通过提供一些开放的目标,或者检查推导的过程是否符合规则。这样的程序被称为"证明助手(proof assistants)",在帮助人们解决逻辑或者代数问题时越来越有用,它们同样被用于证明计算机程序的正确性,比如证明一个给定的计算机程序是否满足它的规范。