3.2 1.6) C)

In Exercises 1–14, to establish a big-O relationship, find witnesses C and k such that $|f(x)| \le C|g(x)|$ whenever x > k.

1. Determine whether each of these functions is O(x).

b)
$$f(x) = 3x + 7$$

c)
$$f(x) = x^2 + x + 1$$

there is no constant
$$C$$
 s.t. $|x^2+x+1| \leq C|x|$ for all sufficiently large x .

3.3 3,19 a)

3. Give a big-O estimate for the number of operations, where an operation is a comparison or a multiplication, used in this segment of an algorithm (ignoring comparisons used to test the conditions in the **for** loops, where $a_1, a_2, ..., a_n$ are positive real numbers).

$$m := 0$$

for $i := 1$ **to** n
for $j := i + 1$ **to** n
 $m := \max(a_i a_j, m)$

- => Executed roughly 11/2 times.
- => The number of operations is O(n²)

- 19. How much time does an algorithm using 2^{50} operations need if each operation takes these amounts of time?
 - a) 10^{-6} s

2 36 years.

M:= 0

for i:= | to n

for j:= i+ | to n.

H=+3+...+ Cn-2)+ Cn-1)

= $\frac{n \cdot (n-1)}{2}$ the number of total iterations

There are 2 operations per loop, i.e. Comparison & maltiplication, so the iteration is 2. $\frac{n \cdot (n-1)}{2}$ => $\int_{-1}^{2} cn = n^{2} - n$ => $\int_{-1}^{2} cn = n^{2} - n$ Hence, the algorithm is Ocn²) with C=1

& k=1.

approximate

OR I can also use 365 days
I will get the same result.