semana 4

luis

19/7/2021

Contents

resión regularizada	1
egresion lasso	
Notas y futuras lecturas	6
binando predictores	6
Notas y otros recursos	8
nosticos	8
Notas y otros recursos	13
liccion sin supervision	13
Votas v lectura adicional	16

Regresión regularizada

Idea básica

- 1. Ajustar un modelo de regresión
- 2. Penalizar (o reducir) los coeficientes grandes

Pros:

- Puede ayudar con la compensación de sesgo / varianza
- Puede ayudar con la selección del modelo

Contras:

- Puede ser computacionalmente exigente en grandes conjuntos de datos
- No funciona tan bien como bosques random forests y boosting.

ejemplo motivacional:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

donde X_1 y X_2 están casi perfectamente correlacionados (colineales). Puede aproximar este modelo por:

$$Y = \beta_0 + (\beta_1 + \beta_2)X_1 + \epsilon$$

El resultado es:

- $\bullet\,$ Obtendrá una buena estimación de Y
- ullet La estimación (de Y) estará sesgada

• Podemos reducir la variación en la estimación.

con datos de cancer de prostata

library(ElemStatLearn); data(prostate) str(prostate)

```
'data.frame':
                   97 obs. of 10 variables:
                   -0.58 -0.994 -0.511 -1.204 0.751 ...
##
   $ lcavol : num
   $ lweight: num
                   2.77 3.32 2.69 3.28 3.43 ...
                   50 58 74 58 62 50 64 58 47 63 ...
##
   $ age
            : int
   $ lbph
##
                   -1.39 -1.39 -1.39 -1.39 ...
            : num
            : int
##
   $ svi
                   0 0 0 0 0 0 0 0 0 0 ...
                   -1.39 -1.39 -1.39 -1.39 ...
##
   $ lcp
            : num
                   6 6 7 6 6 6 6 6 6 6 ...
##
   $ gleason: int
   $ pgg45 : int 0 0 20 0 0 0 0 0 0 0 ...
##
##
                   -0.431 -0.163 -0.163 -0.163 0.372 ...
            : num
   $ train : logi TRUE TRUE TRUE TRUE TRUE TRUE ...
```

podemos ver que llega un punto en que el error aumenta si aumenta el número de variables

Prostate cancer data

entonces el patron mas comun es

Model complexity

Enfoque de selección de modelos: muestras divididas

- Acercarse
 - 1. Divida los datos en entrenamiento / prueba / validación
 - 2. Trate la validación como datos de prueba, entrene todos los modelos competidores en los datos del train y elija el mejor para la validación.
 - 3. Para evaluar adecuadamente el rendimiento sobre nuevos datos, aplique al conjunto de prueba.
 - 4. Puede volver a dividir y volver a realizar los pasos 1-3
- Dos problemas comunes
 - Datos limitados
 - Complejidad computacional

http://www.biostat.jhsph.edu/~ririzarr/Teaching/649/ http://www.cbcb.umd.edu/~hcorrada/PracticalML/descomposición de Error de predicción esperado

sea
$$Y_i = f(X_i) + \epsilon_i$$

$$EPE(\lambda) = E\left[\{Y - \hat{f}_{\lambda}(X)\}^{2}\right]$$

supongamos que \hat{f}_{λ} es la estimación de los datos de entrenamiento y mira un nuevo punto de datos $X=x^*$

$$E\left[\{Y - \hat{f}_{\lambda}(x^*)\}^2\right] = \sigma^2 + \{E[\hat{f}_{\lambda}(x^*)] - f(x^*)\}^2 + var[\hat{f}_{\lambda}(x_0)]$$

= Error irreducible + sesgo² + varianza

Umbral duro

- Modelo $Y = f(X) + \epsilon$
- Establecer $\hat{f}_{\lambda}(x) = x'\beta$

- Restrinja solo los coeficientes λ para que sean distintos de cero.
- El problema de selección es después de elegir λ averiguar qué coeficientes $p-\lambda$ hacen distintos de cero Regularización para regresión

Si los β_j no están restringidos: * Pueden explotar * Y, por tanto, son susceptibles a variaciones muy elevadas Para controlar la varianza, podríamos regularizar/reducir los coeficientes.

$$PRSS(\beta) = \sum_{j=1}^{n} (Y_j - \sum_{i=1}^{m} \beta_{1i} X_{ij})^2 + P(\lambda; \beta)$$

donde PRSS es una forma penalizada de la suma de cuadrados. Cosas que se buscan comúnmente

- La penalización reduce la complejidad
- La penalización reduce la varianza
- La penalización respeta la estructura del problema.

 $Regresion\ Ridge$

Resuelve:

$$\sum_{i=1}^{N} \left(y_i - \beta_0 + \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

equivalente a resolver

 $\sum_{i=1}^{N} \left(y_i - \beta_0 + \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 \text{ sujeto a } \sum_{j=1}^{p} \beta_j^2 \leq s \text{ donde } s \text{ es inversamente proporcional a } \lambda$ La inclusión de λ hace que el problema no sea singular incluso si $X^T X$ no es invertible.

trayectorias de los coeficentes al aumentar λ

Parámetro de ajuste λ

- λ controla el tamaño de los coeficientes
- λ controla la cantidad de regularización $\{\}$
- cuando $\lambda \to 0$ obtenemos la solución de mínimos cuadrados cuando $\lambda \to \infty$ tenemos $\hat{\beta}^{ridge}_{\lambda=\infty}=0$

regresion lasso

$$\sum_{i=1}^N \left(y_i-\beta_0+\sum_{j=1}^p x_{ij}\beta_j\right)^2$$
 sujeto a $\sum_{j=1}^p |\beta_j| \leq s$ equivalente a

$$\sum_{i=1}^{N} \left(y_i - \beta_0 + \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

Para matrices de diseño ortonormal (¡no la norma!), Esto tiene una solución de forma cerrada

$$\hat{\beta}_j = sign(\hat{\beta}_j^0)(|\hat{\beta}_j^0 - \gamma)^+$$

but not in general.

http://www.biostat.jhsph.edu/~ririzarr/Teaching/649/http://www.cbcb.umd.edu/~hcorrada/PracticalML/

Notas y futuras lecturas

- Hector Corrada Bravo's Practical Machine Learning lecture notes
- Hector's penalized regression reading list
- Elements of Statistical Learning
- In caret methods are:
 - ridge
 - lasso
 - relaxo

combinando predictores

Ideas claves

- Puede combinar clasificadores promediando / votando
- La combinación de clasificadores mejora la precisión
- La combinación de clasificadores reduce la interpretabilidad.
- Boosting, bagging, y random forests son variantes de este tema.

_Supongamos que tenemos 5 clasificadores completamente independientes

Si la precisión es del 70% para cada uno: * $10 \times (0.7)^3 (0.3)^2 + 5 \times (0.7)^4 (0.3)^2 + (0.7)^5$ * 83,7% de precisión del voto mayoritario

Con 101 clasificadores independientes * 99,9% de precisión del voto mayoritario_

como se calculo

Enfoques para combinar clasificadores

- 1. Bagging, boosting, random forests
- Suelen combinar clasificadores similares
- 2. Combinando diferentes clasificadores
 - Modelo de apilamiento (stacking)
 - Modelos de ensamble (ensembling)

ejemplo con datos wage

creando conjuntos de training, test y validation

```
## [1] 1474 10
dim(testing)
```

```
## [1] 628 10
```

dim(validation)

[1] 898 10

despues creamos 2 diferentes modelos

luego predecimos en el connjunto de testing, por el color vemos que no funciona del todo bien

```
pred1 <- predict(mod1,testing); pred2 <- predict(mod2,testing)
qplot(pred1,pred2,colour=wage,data=testing)</pre>
```


ahora construimos un modelos que combine los dos predictores

```
predDF <- data.frame(pred1,pred2,wage=testing$wage)
combModFit <- train(wage ~.,method="gam",data=predDF)
combPred <- predict(combModFit,predDF)</pre>
```

errores en testing

```
sqrt(sum((pred1-testing$wage)^2))
## [1] 774.6612
sqrt(sum((pred2-testing$wage)^2))
## [1] 835.0531
sqrt(sum((combPred-testing$wage)^2))
## [1] 753.6058
prediciendo en el conjunto de validación
pred1V <- predict(mod1, validation); pred2V <- predict(mod2, validation)</pre>
predVDF <- data.frame(pred1=pred1V,pred2=pred2V)</pre>
combPredV <- predict(combModFit,predVDF)</pre>
evaluando en validacion
sqrt(sum((pred1V-validation$wage)^2))
## [1] 1045.166
sqrt(sum((pred2V-validation$wage)^2))
## [1] 1091.822
sqrt(sum((combPredV-validation$wage)^2))
```

Notas y otros recursos

[1] 1063.127

- Incluso una simple mezcla puede ser útil
- Modelo típico para datos binarios/multiclase
 - Construye un número impar de modelos.
 - Predecir con cada modelo
 - Predecir la clase por mayoría de votos
- Esto puede volverse mucho más complicado
 - Mezcla simple de intercalación: caretEnsemble (júsala bajo tu propio riesgo!)
 - Wikipedia ensembbe learning

Pronosticos

¿Que es diferente?

- Los datos dependen del tiempo
- Tipos de patrones específicos
 - Tendencias: aumento o disminución a largo plazo
 - Patrones estacionales: patrones relacionados con la época de la semana, mes, año, etc.
 - Ciclos: patrones que suben y bajan periódicamente
- Submuestreo en entrenamiento / prueba es más complicado
- Surgen problemas similares en los datos espaciales
 - Dependencia entre observaciones cercanas
 - Efectos específicos de la ubicación
- Normalmente, el objetivo es predecir una o más observaciones en el futuro.
- Se pueden utilizar todas las predicciones estándar (¡con precaución!)
- ¡Cuidado con las correlaciones falsas!

• También es común en análisis geográficos ** Beware extrapolation!*

ejemplo con datos de google

```
library(quantmod)
from.dat <- as.Date("01/01/08", format="%m/%d/%y")
to.dat <- as.Date("12/31/13", format="%m/%d/%y")
getSymbols("GOOG", src="yahoo", from = from.dat, to = to.dat)</pre>
```

```
## [1] "GOOG"
```

head(GOOG)

```
##
              GOOG.Open GOOG.High GOOG.Low GOOG.Close GOOG.Volume GOOG.Adjusted
## 2008-01-02 345.1413 347.3829 337.5996
                                            341.3157
                                                         8646087
                                                                      341.3157
## 2008-01-03 341.3505 342.1426 336.9969
                                            341.3854
                                                                      341.3854
                                                         6529382
## 2008-01-04 338.5759 339.2086 326.2770
                                            327.2733
                                                        10759780
                                                                      327.2733
## 2008-01-07 325.7490 329.9034 317.4850
                                            323.4128
                                                        12854803
                                                                      323.4128
## 2008-01-08
              325.2808
                        328.7478 314.3218
                                            314.6606
                                                        10718225
                                                                      314.6606
## 2008-01-09 313.8436 325.4501 310.0927
                                            325.3804
                                                        13529924
                                                                      325.3804
```

Resumir mensualmente y almacenar como series de tiempo

```
mGoog <- to.monthly(GOOG)
googOpen <- Op(mGoog)
ts1 <- ts(googOpen,frequency=12)</pre>
```


Ejemplo de descomposición de series de tiempo

- Tendencia: patrón en constante aumento a lo largo del tiempo
- estacional: cuando hay un patrón durante un período de tiempo fijo que se repite.
- ciclo: cuando los datos aumentan y disminuyen durante períodos no fijos https://www.otexts.org/ $\mathrm{fpp}/6/1$

plot(decompose(ts1),xlab="Years+1")

Decomposition of additive time series

creando conjuntos de prueba y de entrenamiento

```
ts1Train <- window(ts1,start=1,end=5)
ts1Test <- window(ts1,start=5,end=(7-0.01))
ts1Train</pre>
```

```
##
          Jan
                   Feb
                            Mar
                                     Apr
                                               May
                                                        Jun
                                                                 Jul
                                                                          Aug
## 1 345.1413 263.3479 234.8746 223.0340 288.0752 290.1624 258.8199 235.3728
## 2 153.7238 166.5208 166.0426 171.2481 196.7774 208.5832 211.3080 223.5322
## 3 312.3044 266.3018 263.6119 284.6082 262.2670 239.3180 221.8136 243.5820
## 4 297.1263 301.1163 307.7365 293.2807 271.8311 263.0341 252.4239 304.4688
## 5 325.2509
##
                   Oct
                            Nov
## 1 237.4948 204.8073 178.1224 142.8047
## 2 228.9817 245.5795 267.5372 292.9669
## 3 226.6405 264.0104 306.7154 280.4488
## 4 269.3654 253.9731 288.9669 298.8797
## 5
```

medias moviles simples

$$Y_t = \frac{1}{2 * k + 1} \sum_{j = -k}^{k} y_{t+j}$$

```
library(forecast)
plot(ts1Train)
lines(ma(ts1Train,order=3),col="red")
```


suavizado exponencial

$$\hat{y}_{t+1} = \alpha y_t + (1 - \alpha)\hat{y}_{t-1}$$


```
#ets1 <- ets(ts1Train,model="MMM")
#fcast <- forecast(ets1)
#plot(fcast); lines(ts1Test,col="red")</pre>
```

obteniendo la precision

#accuracy(fcast,ts1Test)

Notas y otros recursos

- Pronóstico y predicción de series temporales es un campo completo
- Rob Hyndman Pronóstico: principios y práctica es un buen lugar para comenzar
- Precauciones
 - Tenga cuidado con las correlaciones falsas
 - Tenga cuidado con lo lejos que predice (extrapolación)
 - Tenga cuidado con las dependencias a lo largo del tiempo
- Ver paquetes de quantmod o [quandl] (http://www.quandl.com/help/packages/r) para problemas relacionados con las finanzas.

prediccion sin supervision

Ideas claves

- A veces no conoce las etiquetas para la predicción
- Para construir un predictor

- Crear clústeres
- nombrar lis clústeres
- Construir predictor para clústeres
- En un nuevo conjunto de datos
 - Predecir clústeres

Ejemplo de iris ignorando las etiquetas de las especies

Cluster Dendrogram

distra hclust (*, "complete")

ahora creemos 3 grpos con k-means

```
kMeans1 <- kmeans(subset(training,select=-c(Species)),centers=3)
training$clusters <- as.factor(kMeans1$cluster)
qplot(Petal.Width,Petal.Length,colour=clusters,data=training)</pre>
```


comparando con las etiquetas reales

table(kMeans1\$cluster,training\$Species)

```
##
##
        setosa versicolor virginica
##
             0
                         32
                                    10
##
     2
             0
                          3
                                    25
            35
                          0
     3
                                     0
##
```

construyendo un predictor

modFit <- train(clusters ~.,data=subset(training,select=-c(Species)),method="rpart")
table(predict(modFit,training),training\$Species)</pre>

```
##
##
        setosa versicolor virginica
##
             0
                         35
                                    13
     1
             0
                          0
                                    22
##
     2
##
     3
            35
                                     0
```

aplicando en el conjunto de prueba

```
testClusterPred <- predict(modFit,testing)
table(testClusterPred ,testing$Species)</pre>
```

##
testClusterPred setosa versicolor virginica

##	1	0	15	3
##	2	0	0	12
##	3	15	0	0

Notas y lectura adicional

- La función cl_predict en el paquete clue proporciona una funcionalidad similar
- ¡Tenga cuidado con la interpretación excesiva de los grupos!
- Este es un enfoque básico para motores de recomendación
- Elementos del aprendizaje estadístico
- Introducción al aprendizaje estadístico