

Tutorial on S parameters – Issue 2

We consider an octopole (figure 1), geometrically symmetrical with respect to the planes P_1 et P_2 , composed of 4 lossless lines of length $\lambda_0/4$. Their characteristic admittances are noted Y_1 and Y_2 . They are normalized with respect to $Z_0 = 50 \Omega$.

$$y_1 = Y_1 . Z_0$$
 $y_2 = Y_2 . Z_0$

The device is realized with microstrip technology with different widths w₁, w₂. [S] parameter calculations will be performed at the junctions boundaries, the length of the access lines, of characteristic impedance Z_0 not being considered in the analysis (ℓ negligible).

Figure 1

Matrix [S] and chain matrix [A] calculations are performed at $f_0 = v/\lambda_0$, where v is the phase velocity of the wave in the different media.

To calculate the [S] parameters of the octopole, it is interesting to decompose it into even and odd modes.

1) Excitation in even mode

a) Show that, for even-mode excitation, the behavior of the circuit is not disturbed if it is treated as follows (Figure 3):

Figure 2

Figure 3

Erasmus+ E(rasmus) Mundus on Innovative Microwave Electronics and Optics Master

b) Calculate the chain matrix[A] of a section of a characteristic admittance line section Y_1 and length ℓ (figure 4).

c) We give the input impedance Z_i of a line of characteristic impedance Z₀, of length ℓ loaded at its end by Z_L :

$$Z_{i} = Z_{0} \frac{Z_{L} + jZ_{0} \tan \beta \ell}{Z_{0} + jZ_{I} \tan \beta \ell}$$

Give the chain matrix of the quadripole presented in figure 5:

Figure 5

- d) Give the chain matrix of the quadripole presented in figure 3 and deduce the normalized chain matrix with respect to $Z_0 = 50 \Omega$.
- e) The conversion relationships between the normalized chain matrix [C_N] and matrix [S] of a quadripole are as follows:

$$\begin{split} \big[S\big] = & \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} \\ S_{11} = & \frac{a+b-c-d}{a+b+c+d} & S_{12} = \frac{2}{a+b+c+d} \\ S_{22} = & \frac{-a+b-c+d}{a+b+c+d} \end{split} \qquad S_{21} = \frac{2.(a.d-b.c)}{a+b+c+d} \end{split}$$

Show that the matrix [S]^P of the quadripole presented in figure 3 is written:

$$S_{11}^{P} = \frac{\frac{j}{y_{1}} - j \left(y_{1} - \frac{y_{2}^{2}}{y_{1}}\right)}{-2 \frac{y_{2}}{y_{1}} + \frac{j}{y_{1}} + j \left(y_{1} - \frac{y_{2}^{2}}{y_{1}}\right)} \qquad S_{21}^{P} = \frac{2}{-2 \frac{y_{2}}{y_{1}} + \frac{j}{y_{1}} + j \left(y_{1} - \frac{y_{2}^{2}}{y_{1}}\right)}$$

$$S_{12}^{P} = S_{21}^{P}$$
 $S_{11}^{P} = S_{22}^{P}$

2) Excitation in odd mode

a) Show that, for odd-mode excitation, the octupole works as shown figure 7.

b) Repeat the procedure in part 1-b) to calculate the parameters [S]ⁱ of the quadripole presented in figure 7.

Show that:

$$S_{11}^{i} = \frac{\frac{j}{y_{1}} - j\left(y_{1} - \frac{y_{2}^{2}}{y_{1}}\right)}{2\frac{y_{2}}{y_{1}} + j\left(\frac{1}{y_{1}} + y_{1} - \frac{y_{2}^{2}}{y_{1}}\right)} \qquad S_{21}^{i} = \frac{2}{2\frac{y_{2}}{y_{1}} + j\left(\frac{1}{y_{1}} + y_{1} - \frac{y_{2}^{2}}{y_{1}}\right)} \qquad S_{12}^{i} = S_{21}^{i}$$

$$S_{11}^i = S_{22}^i$$

- 3) Give the relationships between the matrix [S] of the octopole and the matrix [S]ⁱ and $[S]^P$.
- 4) Give a condition, relationship between y₁ and y₂, so that is matching at the 4 accesses of the octopole. Show then that S_{21} is equal to 0.
 - 5) Give the conditions on y_1 and y_2 to obtain, at f_0 , $|S_{31}| = |S_{41}| = -3dB$. Have you designed a good 3 dB coupler?