西安交通大学考试题

成绩

课	程	算法分析与i	设计					
系	别。	计算机学院		考试日	日期		年 月	日
专业班号								
姓	名 _			学 号		期中	其	明末 ✓
一、判断题(正确的填 \checkmark , 不正确的填 $×$)(20 分):								
()2、如果一个归并排序算法在某台机器上用 1 秒钟排序 5000 个记录,则用 2 秒钟可以排序 10000 个记录。								
()3、分治法求解问题是采用自顶向下的计算方式。								
()	4、动	态规划所能求	解的问题	必须具有:	最优子结	构特	≆征。	
()	5 、在	求最小生成树	的算法中	', Kruskal	算法使用	目的是	是贪心策略	<mark>佟。</mark>
		用回溯法对问 扩展结点。	题的解空	间进行搜索	索过程,	一个	活结点可	多次成
()		分支限界法中 是回溯法。	,如果将	活结点用机	浅来存储	,则	这种分支	界限法
()	8、蚁	群算法是一种	概率算法	, o				
()	9、所	有 NP 难问题	都是 NP	问题。				
()	10、扌	拉斯维加斯算》	去通常用于	于求解问题	题的近似 的	解。		
		≧(每题2分,						
		法在最好情况		复杂度为	$\Theta(f(n)),$	则该	算法在平	均情况
-		时间为()) B. ♀) _o 2 (f(n))	c. e	$\Theta(f(n))$	D.	o(f(n))	

2、对于下列算法,执行调用 test(1,n)的时间复杂度是(int test(int i, int i){

if $(i \ge i)$ return 1;

else return test(i, (i+j)/2)+test((i+j)/2+1,j);

 $\Theta(\log n)$

B. $\Theta(n)$

C. $\Theta(n\log n)$ D. $\Theta(n^2)$

3、求解单源点最短路经的 dijkstra 算法是采用了(

)方法。

A. 贪心法 B. 分治法 C. 动态规划 D. 回溯法

4、下列哪一种算法的设计思想是采用了动态规划方法(

) 0

A. 最长公共子序列

B. 归并排序

C. 单源点最短路径

D. 哈夫曼树构造

- 5、在概率算法中,蒙特卡罗算法的特点是()。)。
 - A. 只能求问题的近似解 B. 所求近似解的精度依赖于算法的运行时间
 - C. 每次求解都是正确的 D. 求得正确解的概率依赖于算法的运行时间
- 6、对于 P、NP、NPC(NP 完全)和 NPH(NP 难)问题,下列命题中正确 的是()。

A. $P \subset NPC$

B. P⊂NPH

C. NP⊂NPH

D. NPC⊂NPH

- 三、简答(每题4分.共12分):
- 1、什么是算法的复杂性?什么是算法的渐进复杂性?
- 2、在回溯法中,什么是约束函数和界限函数?它们在搜索过程中的作用是 什么?
- 3、什么是最优子结构?请举例说明。

四、解答(共40分):

1、(10 分) 已知 Fibonacci 数 $f(n) = \begin{cases} 1 & n \leq 1 \\ f(n-1) + f(n-1) & n > 1 \end{cases}$ 的非递归表达

式为:
$$f(n) = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right)$$

对于下列求解 Fibonacci 数的递归算法:

西安交通大学考试题

int f(int n) {

if $(n \le 1)$ return 1;

return f(n-1)+f(n-2);

}

- 1) 在计算 f(n)的过程中,执行调用 f(0)的次数和执行调用 f(1)的次数分别是多少?
- 2)给出求该算法时间复杂度 T(n)的递归方程,并求出算法的时间复杂度。
- 2、(14分)给定实数数组 A[1..n](可能含有负数),要找到它的一个子数组 A[i..j],使得 A[i..j]中各个元素的乘积最大。
 - (1)对于 i 和 j 的不同取值,子数组 A[i..j]有多少个?如果使用穷举方 法求解此问题,则时间复杂度至少为多少?
 - (2) 若用分治法求解此问题,可设计一个递归算法 MaxProduct (*l*, *h*) 数组 A[*l*.. *h*]中的子数组元素乘积的最大值。请简述分治法求解此问题的基本思路或过程。并给出算法的时间复杂度。
 - (3) 假定用 M(k)表示以 A[k]为结尾的子数组中元素乘积的最大值,用 m(k)表示以 A[k]为结尾的子数组中元素乘积的最小值,那么 M(k) 和 m(k)可以由 M(k-1)和 m(k-1)递推求得。请给出 M(k)和 m(k)的 递归表达式,并根据此表达式给出一种求解此问题的动态规划算 法基本思路或过程。并给出算法的时间复杂度。
- 3、(8分)有一艘载重量为 c 的轮船和 n 个集装箱,每个集装箱的重量为 wi,要用回溯法找出一种装载方案,使得轮船极可能装满,即轮船所装载的集装箱重量尽可能大,但不能超过轮船载重量。
 - (1) 请定义该问题的解向量,并给其出约束条件;
 - (2) 当 W={20,30,50,80}, c=120 时, 画出解空间树(去掉不满足约束 条件的节点)。
- 4、(8分)集合覆盖问题是给定一个有限集 X 及 X 的一个子集族 F,对于 F 中的一个子集 C⊆F,若 C 中的 X 的子集覆盖了 X,即 X = U_{S∈C} S,则称 C 覆盖了 X。集合覆盖问题就是要找出 F 中覆盖 X 的最小子集 C*,使 得|C*|=min{|C| |C⊂F 且 C 覆盖 X}。

已知无向图的顶点覆盖问题是 NP 完全的,请证明上述集合覆盖问题 是 NP 难的。

注:【顶点覆盖问题】给定一个无向图 G=(V, E)和一个正整数 k,判定是否存在 $V'\subset V$,|V'|=k,使得对于任意 $(u, v)\in E$ 有 $u\in V'$ 或 $v\in V'$ 。

五、算法设计(共16分):

设 $X=\{R_1,R_2,...R_n\}$ 是实数轴上一组区间组成的集合(如下图所示),每个区间 R_i 用一个偶对[L_i , H_i]来表示区间的左右边界。如果 X 的一个子集 Y (Y \subset X) 中的区间能够覆盖 X 中的所有区间,则称 Y 是 X 的覆盖。覆盖的大小就是 Y 中的区间个数。假定 X 中的区间是按左边界从小到大排列,请设计一个贪心算法找出 X 的最小覆盖。

- (1) 设计一种贪心选择策略,并证明其最优性:
- (2) 用一种编程语言描述算法,并分析算法的时间复杂度;

图题五