Math 341: Final

Daniel Ko

Spring 2020

§1

For $c \in \mathbb{R}$, we define the matrix $\mathbf{A}_c \in \mathbb{R}^{3 \times 3}$ by

$$\mathbf{A}_{c} = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 2 & 0 \\ 3 & c & 2 \end{bmatrix}$$

a. Compute $det(\mathbf{A}_c)$. Does it depend of c?

Proof.

$$det(\mathbf{A}_c) = 1 \cdot det \begin{bmatrix} 2 & 0 \\ c & 2 \end{bmatrix} - (-1) det \begin{bmatrix} 2 & 0 \\ 3 & 2 \end{bmatrix} + 1 \cdot det \begin{bmatrix} 2 & 2 \\ 3 & c \end{bmatrix}$$
$$= (4) + (4) + (2c - 6)$$
$$= 2c + 2$$

Yes, it depends on c.

b. For which c is the matrix \mathbf{A}_c invertible?

Proof. Corollary to Theorem 4.7 states that a matrix is invertible if and only its determinant does not equal 0. From (a),

$$\det(\mathbf{A}_{c}) = 2c + 2 = 0$$

$$c = -1$$

 $det(\mathbf{A}_c) = 0$ when c = -1. Hence, \mathbf{A}_c is invertible for all c except c = -1.

c. Compute \mathbf{A}_0^{-1} (i.e. when c = 0).

Proof. Using the proof to Theorem 3.2, we compute the inverse by constructing an agumented matrix $(\mathbf{A}_0|I_3)$ and applying elementary row operations to transform it into the form of

 $(I_3|\mathbf{A}_0^{-1}).$

$$(\mathbf{A}_0|I_3) = \begin{bmatrix} 1 & -1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 0 & 0 & 1 & 0 \\ 3 & 0 & 2 & 0 & 0 & 1 \end{bmatrix}$$

$$R_2 \leftarrow R_2 - 2R_1 \quad R_3 \leftarrow R_3 - 3R_1 = \begin{bmatrix} 1 & -1 & 1 & 1 & 0 & 0 \\ 0 & 4 & -2 & -2 & 1 & 0 \\ 0 & 3 & -1 & -3 & 0 & 1 \end{bmatrix}$$

$$R_1 \leftarrow R_1 + \frac{1}{4}R_2 \quad R_3 \leftarrow R_3 - \frac{3}{4}R_2 = \begin{bmatrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{4} & 0 \\ 0 & 4 & -2 & -2 & 1 & 0 \\ 0 & 0 & \frac{1}{2} & -\frac{3}{2} & -\frac{3}{4} & 1 \end{bmatrix}$$

$$R_1 \leftarrow R_1 - R_3 \quad R_2 \leftarrow R_2 + 4R_3 = \begin{bmatrix} 1 & 0 & 0 & 2 & 1 & -1 \\ 0 & 4 & 0 & -8 & -2 & 4 \\ 0 & 0 & \frac{1}{2} & -\frac{3}{2} & -\frac{3}{4} & 1 \end{bmatrix}$$

$$R_2 \leftarrow \frac{1}{4}R_2 \quad R_3 \leftarrow 2R_3 = \begin{bmatrix} 1 & 0 & 0 & 2 & 1 & -1 \\ 0 & 1 & 0 & -2 & -\frac{1}{2} & 1 \\ 0 & 0 & 1 & -3 & -\frac{3}{2} & 2 \end{bmatrix}$$

Therefore,

$$\mathbf{A}_0^{-1} = \begin{bmatrix} 2 & 1 & -1 \\ -2 & -\frac{1}{2} & 1 \\ -3 & -\frac{3}{2} & 2 \end{bmatrix}$$

d. Let $b = (1, -4, 2)^t$, find the solution of $\mathbf{A}_0 x = b$

Proof. Let $x = (x_1, x_2, x_3)^t$.

$$\mathbf{A}_{0}x = b$$

$$\begin{bmatrix} 1 & -1 & 1 \\ 2 & 2 & 0 \\ 3 & 0 & 2 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} 1 \\ -4 \\ 2 \end{bmatrix}$$

$$\begin{cases} x_{1} - x_{2} + x_{3} = 1 \\ 2x_{1} + 2x_{2} = -4 \\ 3x_{1} + 2x_{3} = 2 \end{cases}$$

$$x_{1} = -4$$

$$x_{2} = 2$$

 $x_3 = 7$

e. Compute $det(\mathbf{A}_c^2)$

Proof. From Theorem 4.7, we know that

$$det(\mathbf{A}_c^2) = det(\mathbf{A}_c\mathbf{A}_c)$$

$$= det(\mathbf{A}_c) \cdot det(\mathbf{A}_c)$$

$$= (2c+2)(2c+2)$$

$$= 4c^2 + 8c + 4$$

f. Compute $det(5\mathbf{A}_c)$

Proof. Using the second "Properties of the Determinant" on pg 234,

$$det(5\mathbf{A}_{c}) = 5^{3} det(\mathbf{A}_{c})$$
$$= 5^{3}(2c + 2)$$
$$= 250c + 250$$

g. Compute $det(\mathbf{E}_k \mathbf{A}_c)$ where,

$$\mathbf{E}_{k} = \begin{bmatrix} 1 & 0 & 0 \\ k & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Proof.

$$\det(\mathbf{E}_{k}) = 1 \cdot \det \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - 0 \cdot \det \begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix} + 0 \cdot \det \begin{bmatrix} k & 1 \\ 0 & 0 \end{bmatrix}$$
$$= 1$$

From Theorem 4.7, we know that,

$$det(\mathbf{E}_{k}\mathbf{A}_{c}) = det(\mathbf{E}_{k}) det(\mathbf{A}_{c})$$
$$= (1)(2c + 2)$$
$$= 2c + 2$$

h. Compute $det(\mathbf{D}_k \mathbf{A}_c)$ where,

$$\mathbf{D}_{k} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Proof.

$$\det(\mathbf{D}_{k}) = 1 \cdot \det \begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix} - 0 \cdot \det \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} + 0 \cdot \det \begin{bmatrix} 0 & k \\ 0 & 0 \end{bmatrix}$$

$$= k$$

From Theorem 4.7, we know that,

$$det(\mathbf{E}_{k}\mathbf{A}_{c}) = det(\mathbf{D}_{k}) det(\mathbf{A}_{c})$$
$$= (k)(2c + 2)$$
$$= 2kc + 2k$$

i. Compute $det(\mathbf{A}_0^{-1})$

Proof. From (c) we know that,

$$\mathbf{A}_0^{-1} = \begin{bmatrix} 2 & 1 & -1 \\ -2 & -\frac{1}{2} & 1 \\ -3 & -\frac{3}{2} & 2 \end{bmatrix}$$

It follows that,

$$\begin{split} \det(\mathbf{A}_0^{-1}) &= 2 \cdot \det \begin{bmatrix} -\frac{1}{2} & 1 \\ -\frac{3}{2} & 2 \end{bmatrix} - 1 \cdot \det \begin{bmatrix} -2 & 1 \\ -3 & 2 \end{bmatrix} - 1 \cdot \det \begin{bmatrix} -2 & -\frac{1}{2} \\ -3 & -\frac{3}{2} \end{bmatrix} \\ &= 2(\frac{1}{2}) - 1(-1) - 1(\frac{3}{2}) \\ &= \frac{1}{2} \end{split}$$

j. Compute the eigenvalues of \mathbf{A}_0 . Can you diagonalize \mathbf{A}_0 ?

Proof. Using Theorem 5.2, we compute the eigenvalues of \mathbf{A}_0 by computing its characteristic polynomial.

$$\det(\mathbf{A}_0 - \lambda I) = \det \begin{bmatrix} 1 - \lambda & -1 & 1 \\ 2 & 2 - \lambda & 0 \\ 3 & 0 & 2 - \lambda \end{bmatrix}$$
$$= -(\lambda - 2)(\lambda^2 - 3\lambda + 1)$$

We compute when $-(\lambda-2)(\lambda^2-3\lambda+1)=0$. When $\lambda=2$, the characteristic polynomial equals 0. Using the quadratic formula, when $\lambda=\frac{3\pm\sqrt{5}}{2}$, the characteristic polynomial equals 0. Hence the eigenvalues of ${\bf A}_0$ are

$$2, \frac{3+\sqrt{5}}{2}, \frac{3-\sqrt{5}}{2}$$

We can rewrite the characteristic polynomial as

$$f(\lambda) = -(\lambda - 2)(\lambda - \frac{3 + \sqrt{5}}{2})(\lambda - \frac{3 - \sqrt{5}}{2})$$

Using the "Test for Diagonalization" outlined in pg 269, we determine if \mathbf{A}_0 can be diagonalized. It is clear that the first condition, the characteristic polynomial of T splits, holds. By Theorem 5.7, condition 2 is automatically satisfied for eigenvalues of multiplicity 1. Therefore, A is diagonalizable.

k. Compute the eigenvalues of \mathbf{A}_0^{-1}

Proof. Notice that since eigenvalues are non zero,

$$\mathbf{A}_0 x = \lambda x$$

$$\mathbf{A}_0^{-1} \mathbf{A}_0 x = \mathbf{A}_0^{-1} \lambda x$$

$$x = \mathbf{A}_0^{-1} \lambda x$$

$$\frac{1}{\lambda} x = \mathbf{A}_0^{-1} x$$

Thus the eigenvalues of \mathbf{A}_0^{-1} are

$$\frac{1}{2}$$
, $\frac{3+\sqrt{5}}{2}$, $\frac{3-\sqrt{5}}{2}$

§2

Consider the transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$ given by

$$T(\mathbf{x}) = \begin{pmatrix} x_2 - x_1 + \alpha \left(x_2^2 + x_3^3\right) \\ x_1 + x_2 + 2gx_3 + \alpha x_1^2 \\ x_1 + x_2 + 2x_3 \\ hx_3 + q \end{pmatrix}, \text{ where } \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

in which, h, g, q and α are real numbers.

a. What are the condition on α and q such that the transformation is linear? Explain briefly.

Proof. We know that if T is linear then T(0)=0. Hence q=0 for T to be linear. Notice that we must not have any terms higher than degree 1 because for example if we have a transformation $U(x)=x^2$ and let $c\in\mathbb{R}$ then,

$$U(cx) = (cx)^{2}$$
$$= c^{2}x^{2}$$
$$\neq cU(x)$$

which means U is not a linear transformation. Thus, $\alpha=0$ so that there are no terms higher than degree 1.

b. From now we suppose that q=0 and $\alpha=0$. Write the representation matrix $A=[T]^{\epsilon_4}_{\epsilon_3}$.

Proof. We now define

$$T(\mathbf{x}) = \begin{pmatrix} x_2 - x_1 \\ x_1 + x_2 + 2gx_3 \\ x_1 + x_2 + 2x_3 \\ hx_3 \end{pmatrix}, \text{ where } \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

We now compute the representation matrix

$$T(e_1) = \begin{pmatrix} -1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$
 $T(e_2) = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$ $T(e_3) = \begin{pmatrix} 0 \\ 2g \\ 2 \\ h \end{pmatrix}$

$$A = [[T(e_1)]_{\epsilon_4}[T(e_2)]_{\epsilon_4}[T(e_3)]_{\epsilon_4}]$$

$$= \begin{bmatrix} -1 & 1 & 0 \\ 1 & 1 & 2g \\ 1 & 1 & 2 \\ 0 & 0 & h \end{bmatrix}$$

c. What are the conditions on h and g such that the transformation T maps \mathbb{R}^3 onto \mathbb{R}^4 ? Explain briefly.

Proof. Since $T: \mathbb{R}^3 \to \mathbb{R}^4$, there are no h and g such that T is onto. This is because T is onto if and only if the range of T equals the codomain, but in this linear transformation, the dimension of codomain is greater than the domain so by rank nullity, T cannot be onto. \square

d. What are the conditions on h and g such that the transformation T is one to one? Explain briefly.

Proof. By Theorem 2.4, T is one to one if and only if $N(T) = \{0\}$. Using the rank nullity theorem, this is equivalent to saying that rank(T) = 3, i.e.

$$dim(\mathbb{R}^3) = rank(T) + nullity(T)$$

 $3 = rank(T)$

We know that $rank(T) = rank([T]_{\epsilon_3}^{\epsilon_4})$ by Theorem 3.3. Additionally by Theorem 3.5., the rank of a matrix is the number of linearly independent columns. It is clear that A will have rank 3 if $h \neq 0$. There are no conditions for q.

e. Suppose that h = 0, then

$$A = \begin{bmatrix} -1 & 1 & 0 \\ 1 & 1 & 2g \\ 1 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$
 and let $b = \begin{bmatrix} 0 \\ 2 \\ r \\ 0 \end{bmatrix}$

What are the conditions on r and g such that the system Ax = b has a solution? When is the solution unique?

Proof. We begin by putting the augmented matrix (A|b) in its reduced form.

$$(A'|b') = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & 2 & 2g & 2 \\ 0 & 0 & 2 - 2g & r - 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

By Theorem 3.11 and 3.13, a system is consistent if and only if rank(A') = rank(A'|b'). So for the system to have as solution, $2 - 2g \neq 0$ if $r - 2 \neq 0$. If r - 2 = 0, there is no conditions on g.

In summary, for the system to have as solution if $r \neq 2$ then $g \neq 1$. If r = 2, there are no conditions on g.

Combining Theorem 3.10 and the corollary to Theorem 4.7, we get that a system has a unique solution if and only if $det(A) \neq 0$. The determinant of an upper triangular matrix is the product of its diagonal entries by property 4 of determinants in section 4.4. Using this

fact we can compute the condition of g as such that

$$-1 * 2 * (2 - 2g) \neq 0$$
$$4g - 4 \neq 0$$
$$g \neq 1$$

There is no conditions for r when the solution is unique.

f. Suppose that h=0, g=1, r=2. Solve $\mathbf{A}\mathbf{x}=\mathbf{b}$ and give the answer in parametric form.

Proof. We define

$$\mathbf{A} = \begin{bmatrix} -1 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} 0 \\ 2 \\ 2 \\ 0 \end{bmatrix}$$

We can compute a solution space to $\mathbf{A}\mathbf{x} = \mathbf{b}$ as outlined in Theorem 3.9. We start by first computing the solution set to $\mathbf{A}\mathbf{x} = 0$ denoted by K_H . It is clear that $rank(\mathbf{A}) = 2$ because the first two columns are linearly independent and the third column is the sum of the first two columns. By Theorem 3.8, $dim(K_H) = 3 - 2 = 1$. Thus any nonzero solution constitutes a basis for K. For example, since

$$\begin{pmatrix} 1 \\ 1 \\ -1 \\ 0 \end{pmatrix}$$

is a solution to the $\mathbf{A}\mathbf{x}=0$, it is a basis for K_H by Corollary 2 of Theorem 1.10. So a solution set to K_H would be

$$\mathcal{K}_{H} = \left\{ t \begin{pmatrix} 1 \\ 1 \\ -1 \\ 0 \end{pmatrix} : t \in \mathbb{R} \right\}$$

A solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ is

$$\begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

Therefore, by Theorem 3.9 we compute the solution space as

$$K = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ -1 \\ 0 \end{pmatrix} : t \in \mathbb{R} \right\}$$

§3

Let T and U be positive semidefinite operators on an inner product space V. Prove the following results

a. T + U is positive semidefinite.

Proof. By definition, $\langle T(x), x \rangle \geq 0$, $\langle U(x), x \rangle > 0$ for all $x \neq 0$

$$\langle (T + U)(x), x \rangle = \langle T(x) + U(x), x \rangle$$
$$= \langle T(x), x \rangle + \langle U(x), x \rangle$$
$$\geq 0$$

T + U is self adjoint because

$$(T+U)^* = T^* + U^*$$
$$= T + U$$

Therefore, T + U is positive semidefinite.

b. If c > 0, then cI + T is positive definite, where I is the identity transformation.

Proof. By definition, $\langle T(x), x \rangle \geq 0$, $\langle x, x \rangle > 0$ for all $x \neq 0$

$$\langle (cI + T)(x), x \rangle = \langle cI(x) + T(x), x \rangle$$

$$= \langle cI(x), x \rangle + \langle T(x), x \rangle$$

$$= c\langle x, x \rangle + \langle T(x), x \rangle$$

$$> 0$$

cI + T is self adjoint because

$$(cI + T)^* = (cI)^* + T^*$$
$$= \overline{c}I^* + T^*$$
$$= cI + T$$

Therefore, cI + T is positive definite.

c. $(cI+T)^{-1}$ is positive definite. From (b) we know that cI+T is self adjoint because. It follows that

Proof. Let $y = (cI + T)^{-1}(x)$.

$$\langle (cI+T)^{-1}(x), x \rangle = \langle y, (cI+T)(y) \rangle$$

$$= \langle (cI+T)^*(y), y \rangle$$

$$= \langle (cI+T)(y), y \rangle$$

$$> 0$$

 $(cI + T)^{-1}$ is self adjoint because

$$((cI+T)^{-1})^* = ((cI+T)^*)^{-1}$$
$$= (cI+T)^{-1}$$

Therefore, $(cI + T)^{-1}$ is positive definite.

§4

Let V be a finite-dimensional inner product space. Suppose that U is a partial isometry of W on V, where W is a subspace of V, and let $\{v_1, v_2, \cdots, v_k\}$ be an orthonormal basis for W.

a. Show that $\{U(v_1), U(v_2), \dots, U(v_k)\}$ is an orthonormal basis for R(U)

Proof. By definition ||U(w)|| = ||w|| for all $w \in W$. By Theorem 6.18 (b), we know that $\langle U(w_1), U(w_2) \rangle = \langle w_1, w_2 \rangle$ where $w_1, w_2 \in W$.

Notice that $\langle U(v_i), U(v_j) \rangle = \langle v_i, v_j \rangle$ which means that $\{U(v_1), U(v_2), \dots, U(v_k)\}$ is an orthonormal basis for U(W) because $\{v_1, v_2, \dots, v_k\}$ is an orthonormal basis and the fact that U is a partial isometry.

Additionally, suppose $w \in W$ and $w' \in W^{\perp}$. Then by definition of partial isometry we know that U(w + w') = w. This implies that U(W) = R(U).

Therefore, since $\{U(v_1), U(v_2), \dots, U(v_k)\}$ is an orthonormal basis for U(W), it is an orthonormal basis for R(U),

b. Show that there exists an orthonormal basis γ for V such that the first k columns of $[U]_{\gamma}$ form an orthonormal set and the remaining columns are zero.

Proof. Suppose the dimension of V is n. Using Corollary 2 of Theorem 1.10 (Replacement Theorem), we can extend the orthonormal basis for W from (a) $\{v_1, v_2, \cdots, v_k\}$ to orthonormal basis for V, denoted as $\gamma = \{v_1, v_2, \cdots, v_k, v_{k+1}, \cdots, v_{n-1}, v_n\}$. Notice that $U(v_i) \neq 0$ where $1 \leq i \leq k$ by (a). Since γ is an orthonormal basis, $v_i \in W^\perp \Rightarrow U(v_i) = 0$ where $k+1 \leq i \leq n$.

Therefore, there exists an orthonormal basis γ for V such that the first k columns of $[U]_{\gamma}$ form an orthonormal set and the remaining columns are zero.

c. Let $\left\{w_1, w_2, \cdots, w_j \right\}$ be an orthonormal basis for $\mathsf{R}(\mathsf{U})^\perp$ and

$$\beta = \{ U(v_1), U(v_2), \cdots, U(v_k), w_1, \cdots, w_i \}$$

Show that β is an orthonormal basis for V

Proof.

Lemma 4.1

Let V be an inner product space and W be a finite-dimensional subspace of V. Then, $V=W\oplus W^\perp$

Proof. From Theorem 6.6, $V = W + W^{\perp}$.

Let $x \in W \cap W^{\perp}$. Since $x \in W^{\perp}$, $\langle x, g \rangle = 0$ for any $g \in W$. Since $x \in W$, this means that $\langle x, x \rangle = 0$. Thus, x = 0 and $W \cap W^{\perp} = \{0\}$.

Therefore, $V = W \oplus W^{\perp}$.

Since $R(U) \subseteq V$, by by our lemma we know that $V = R(U) \oplus R(U)^{\perp}$. From (a), we know that $\{U(v_1), U(v_2)\}$ is a basis for R(U). It directly follows that β is an orthonormal basis for V.

d. Show that U^* is a partial isometry.

Proof. We want to show that there exists a subspace X of V such that $||U^*(x)|| = ||x||$ for all $x \in X$ and U(x) = 0 for all $x \in X^{\perp}$.

We claim that X = R(U). Let $x \in R(U)$. We can express x as $\sum_{i=1}^k c_i U(v_i)$. It follows that,

$$||U^*(x)|| = ||U^*(\sum_{i=1}^k c_i U(v_i))||$$

$$= ||\sum_{i=1}^k c_i U^*(U(v_i))||$$

$$= ||\sum_{i=1}^k c_i v_i||$$

$$= ||\sum_{i=1}^k c_i U(v_i)||$$

$$= ||x||$$

by Theorem 6.18 and the fact that U is a partial isometry, i.e. $||U(v_i)|| = ||v_i||$. Let $x \in R(U)^{\perp}$. We can express x as $\sum_{i=1}^{j} \langle x, w_i \rangle w_i$ from (c) and Theorem 6.5.

$$U^*(x) = U^*(\sum_{i=1}^{j} \langle x, w_i \rangle w_i)$$

$$= \sum_{i=1}^{j} \langle U^*(x), w_i \rangle w_i$$

$$= \sum_{i=1}^{j} \langle x, U(w_i) \rangle w_i$$

$$= \sum_{i=1}^{j} \langle x, 0 \rangle w_i$$

$$= 0$$

Therefore, U^* is a partial isometry.

e. Show that U^*U is an orthogonal projection on W.

Proof. We first show that U^*U is a projection on W. From the lemma in (c), $x \in V$ can be expressed as x = w + w' where $w \in W$, $w' \in W^{\perp}$. Then by definition of partial isometry of U,

$$U^*U(x) = U^*U(w + w')$$

= $U^*U(w) + U^*U(w')$
= $U^*(w) + U^*U(0)$
= $U^*(w)$

Thus, U^*U is a projection on W.

Lemma 4.2

Let V be a finite dimensional inner product space and W be a subspace of V. Then, $(W^{\perp})^{\perp} = W$.

Proof. Let $w \in W$. For all $w' \in W^{\perp}$, $\langle w, w' \rangle = 0$. This implies that $w \in (W^{\perp})^{\perp}$. Let $w' \in (W^{\perp})^{\perp}$. That means for some $w \in W$, $\langle w', w \rangle = 0$. This implies that $w \in W$. Therefore, $(W^{\perp})^{\perp} = W$.

By definition, U^*U is an orthogonal projection if $R(U^*U)^{\perp} = N(U^*U)$ and $N(U^*U)^{\perp} = R(U^*U)$. We only need to prove one conditions because from our lemma,

$$R(U^*U)^{\perp} = N(U^*U)$$
$$(R(U^*U)^{\perp})^{\perp} = N(U^*U)^{\perp}$$
$$R(U^*U) = N(U^*U)^{\perp}$$

We claim that $R(U^*U)^{\perp} = N(U^*U)$. Let $x \in R(U^*U)^{\perp}$.

$$\langle U^*U(x), x \rangle = \langle U(x), U(x) \rangle$$

= 0

This implies that U(x) = 0, so $x \in N(U^*U)$.

Let $x \in N(U^*U)$. By definition, $U^*U(x) = 0$. Let $y \in R(U^*U)$,

$$\langle x, U^*U(y)\rangle = \langle U(x), U(y)\rangle$$
$$= \langle U^*U(x), y\rangle$$
$$= \langle 0, y\rangle$$
$$= 0$$

So $x \in R(U^*U)^{\perp}$.

Therefore, U^*U is an orthogonal projection on W.