

REDES COMPUTACIONALES Prof. Juan Ignacio Iturbe

ACTIVIDAD GRUPAL - parte 2: INTRODUCCIÓN, ARQUITECTURA DE PROTOCOLOS y NIVEL DE TRANSPORTE

Exigencia: 70%

1. INTRODUCCIÓN

1.1 Contexto

La empresa "**TechMove**" se especializa en **logística y distribución** de última milla. Debido a su crecimiento, ahora cuenta con 60 empleados administrativos y 40 operativos en su oficina central. La empresa planea digitalizar su sistema de rastreo de paquetes y gestión de inventario, lo que requiere una red confiable y accesible para sus empleados.

El gerente de la empresa, **enfocado en la rapidez de implementación**, ha solicitado que la red sea funcional de inmediato, sin preocuparse demasiado por la seguridad en esta primera fase. Se requiere una red Wi-Fi abierta para los empleados y que todos los dispositivos puedan conectarse sin restricciones dentro de la red interna.

Requerimientos de la Red:

- Se debe diseñar una red LAN cableada e inalámbrica para los empleados.
- La asignación de IPs será automática en el rango 172.16.1.100-240.
- La dirección del router será 172.16.1.1, funcionando como puerta de enlace y asignador de direcciones IP mediante DHCP.
- La empresa cuenta con cuatro servidores esenciales:
 - Servidor Web (HTTP/HTTPS) 172.16.1.10
 - Servidor de Archivos (FTP) 172.16.1.11
 - Servidor de Correo (SMTP/IMAP) 172.16.1.12
 - Servidor DNS 172.16.1.13

С

- Todos los dispositivos deben poder comunicarse sin restricciones entre sí.
- Se debe incluir al menos 3 switch de 24 puertos para los dispositivos cableados.
- La red Wi-Fi debe ser abierta y accesible sin autenticación.
- Se debe configurar una conexión a Internet simulada en Packet Tracer.

Este escenario refleja algunas **malas prácticas** comunes en implementaciones rápidas, como la falta de segmentación, la ausencia de seguridad en la red Wi-Fi, y la exposición de servicios críticos sin protección. Sin embargo, estos aspectos han sido intencionalmente dejados de lado para **priorizar la velocidad** en la puesta en marcha de la red.

2. OBJETIVOS

2.1 Objetivo General

Diseñar, simular y analizar una red LAN en Packet Tracer, evaluando el comportamiento de los protocolos de aplicación mediante la captura y comparación de tráfico en entornos simulados y reales, contrastando los resultados con la teoría establecida en las RFCs.

2.2 Objetivos Específicos

- Configurar y simular la red en Packet Tracer, asegurando la conectividad entre dispositivos cableados e inalámbricos mediante DHCP y direcciones IP fijas para los servidores internos (HTTP, FTP, SMTP/IMAP y DNS).
- 2. Generar y capturar tráfico de red en Packet Tracer, simulando interacciones con los servidores configurados y analizando el comportamiento de los protocolos de aplicación.
- 3. Utilizar Wireshark para capturar y analizar tráfico real de los mismos protocolos, identificando patrones de comunicación y funcionamiento en redes reales.
- 4. Comparar los resultados de la simulación en Packet Tracer y las capturas en Wireshark con la teoría oficial de los protocolos, basada en la documentación de las RFCs, señalando similitudes, diferencias y posibles razones de estas variaciones.
- 5. Elaborar un informe técnico con el análisis de tráfico, incluyendo capturas, diferencias entre lo simulado y lo real, explicaciones basadas en la teoría y conclusiones sobre el funcionamiento de los protocolos en distintos entornos.

3. ENTREGAS

3.1 HITOS

3.1.1 Hito 1: Anteproyecto

Se debe cumplir y considerar lo siguiente:

- Objetivo General y Específicos: Ya están definidos anteriormente.
- Actividades por Objetivo Específico: Listado detallado de las actividades que se deben realizar para alcanzar cada uno de los objetivos específicos.
- Roles de cada Integrante: Descripción de las responsabilidades y funciones de cada miembro del equipo.
- Matriz RACI: Un cuadro que identifica quién es Responsable, Quién Aprueba, Quién es Consultado, y Quién es Informado para cada actividad.
- Hitos de Entrega: Fechas clave para la entrega de avances y de la presentación.
- Esfuerzo Requerido (HH): Estimación del tiempo que se espera invertir en cada tarea, que debe ser repartido equitativamente entre los miembros del equipo.
- Carta Gantt: Un gráfico que visualiza el cronograma del proyecto, incluyendo las actividades, hitos y responsables.
- Mecanismo interno de solución a problemáticas grupales: definir un mecanismo que les permita solucionar los problema que se generen al interior del grupo.
- Esquema inicial de la red: el cual debe ser una captura de pantalla de packet tracer.

3.1.2 Hito 2: Avance intermedio

En esta entrega, los grupos deberán entregar el **diseño de la red LAN** propuesto para la empresa "TechMove" utilizando **Cisco Packet Tracer** y un análisis preliminar de tráfico con **Wireshark**. La red debe cumplir con los requerimientos de la empresa, incluyendo la conexión de los dispositivos personales de los empleados, la configuración de servidores y la conexión a internet. Además, se debe considerar un análisis de captura de tráfico preliminar.

Entregables:

• Evaluación de avances en relación con lo planificado en el anteproyecto.

- Ajustes en el diseño de la red según retroalimentación inicial.
- Revisión de conectividad y configuración básica en Packet Tracer.
- Análisis preliminar de captura de tráfico con Wireshark contrastando con documentación de los RFC de los protocolos.

3.2 ASIGNACIÓN DE PROTOCOLOS

Utilizando **Wireshark**, a cada grupo se le asignará un par de protocolos y analizarán su comportamiento de los protocolos de capa de aplicación, así como su interacción con los protocolos de transporte (TCP/UDP). La simulación debe reflejar la **interacción sin restricciones** de la red y la falta de medidas de seguridad.

Tabla 3.1 Asignación de protocolos por grupo

Grupo	Protocolo no seguro	Protocolo seguro	Puerto no seguro	Puerto seguro	Enfoque
А	нттр	нттрѕ	80	443	Comparar transferencia web con y sin cifrado.
В	DNS	DNSsec	53	53 (con DNSsec)	Autenticación y validación de respuestas DNS.
С	FTP	FTPS	21	990	Comparar transferencias de archivos con y sin cifrado.
D	SMTP	SMTPS	25	465	Comparar envío de correos electrónicos con y sin cifrado.
E	Telnet	SSH	23	22	Comparar conexiones remotas con y sin cifrado.
F	IMAP	IMAPS	143	993	Comparar acceso a correos con y sin cifrado.

3.3 INFORME FINAL

Cada grupo debe consolidar el trabajo realizado en los hitos en un informe final (utilizar formato de seminario de titulación), en el cual además debe:

- Contrastar lo definido en el anteproyecto con lo finalmente realizado. Identificar brechas y aportes de cada integrante del grupo. Indicar problemáticas y cómo se solucionaron.
- Identificar problemas de seguridad en la red: Los grupos deben analizar teóricamente las vulnerabilidades presentes en la red diseñada, basándose en las malas prácticas establecidas desde el inicio del proyecto.
- **Investigar los impactos de las vulnerabilidades**: Cada grupo deberá investigar las posibles consecuencias de las vulnerabilidades identificadas, incluyendo la exposición a ataques.
- **Proponer mejoras de seguridad**: Con base en la investigación, los grupos deberán proponer soluciones específicas para **mitigar los riesgos de seguridad** en la red.
- Posibles incidentes de seguridad si estas medidas no se materializan.
- Indicar sus apreciaciones sobre el presente trabajo y que sugerencias realizan para la siguiente parte.

3.4 PRESENTACIÓN FINAL

Cada grupo realizará una presentación de **15 minutos** donde se mostrará el diseño final de la red, el análisis de tráfico y las conclusiones. La presentación debe incluir:

- Descripción del diseño de la red y su implementación en Packet Tracer.
- Análisis del tráfico y la exposición de riesgos derivados de los protocolos no seguros.
- Identificación de **problemas y propuestas** de seguridad.
- Conclusiones sobre la configuración de la red y los desafíos de seguridad.

4. AUTOEVALUACIÓN GRUPAL

Se realizará una autoevaluación grupal (%AG):

- Este consiste en una evaluación anónima en donde cada uno de los integrantes del grupo evaluará la contribución del resto y de sí mismo (%AG: 0% a 120%).
- Se evaluarán aspectos como participación en la actividad grupal, responsabilidad, organización, cumplimiento de los compromisos, entre otros.
- La anterior evaluación se ponderará con la nota final del grupo (NFG). Dejando la nota final del estudiante (NFE) cómo: NFE = NFG * %AG
- Si un/a estudiante se siente perjudicado por la presente medida, puede apelar a esta decisión enviando un correo al profesor entregando evidencia de lo realizado en el transcurso del trabajo.

5. NOTAS

Tener en cuenta las siguientes consideraciones.

- Podrán optar al puntaje óptimo aquellas simulaciones en vivo.
- Todos los grupos deben estar preparados para presentar en la fecha de entrega.
- Todos los estudiantes deben demostrar conocimientos en todos los aspectos de lo solicitado. En la presentación se realizarán preguntas a los integrantes sobre cualquiera de los temas.

- Si utiliza para el desarrollo del trabajo herramientas de IA generativa (ej. chatgpt, gemini u
 otro), debe indicar en un anexo del informe asociado los prompts utilizados y las respuestas
 de forma integra. Si se detecta su uso y no se transparenta el trabajo será calificado con nota
 mínima.
- Todos los documentos deben ser entregados a través de un link de google drive en el foro grupal en formato PDF (grupoX_entregaY.pdf), formatos de packet tracer y wireshark (NO SE ACEPTARÁN DOCUMENTOS CON FECHAS POSTERIORES AL FECHA DE ENTREGA).

6. RÚBRICA

La nota de la actividad se evaluará de acuerdo a los puntajes de la siguiente tabla con una exigencia del 70%.

- RA1: Diferenciar los modelos de referencia OSI y TCP/IP utilizando simulaciones de software, liderando y colaborando en equipos.
- RA2: Analizar críticamente el funcionamiento y la seguridad de los principales protocolos de los niveles de aplicación y transporte articulando problemáticas asociadas y soluciones propuestas.

Criterio	1 punto (Insuficiente)	2 puntos (Aceptable)	3 puntos (Bueno)	4 puntos (Óptimo)	Factor
Diseño y Configuración de la Red en Packet Tracer	El diseño de la red está incompleto o no cumple con los requisitos de la empresa.	El diseño de la red cumple con algunos de los requisitos, pero hay configuraciones incorrectas o faltantes.	El diseño de la red está casi completo y cumple con los principales requisitos, aunque con algunos detalles menores.	El diseño de la red es completo y cumple con todos los requisitos indicados, reflejando la estructura solicitada.	2
Asignación Automática de IPs (DHCP)	La configuración de DHCP es incorrecta o no está implementada.	La configuración de DHCP funciona parcialmente, pero presenta errores o asignaciones fuera del rango.	La configuración de DHCP es funcional, aunque hay detalles menores que podrían mejorarse.	La configuración de DHCP es totalmente funcional y asigna las IPs correctamente dentro del rango especificado.	1
Asignación de IPs Fijas a los Servidores	No se asignaron IPs fijas a los servidores o la configuración es incorrecta.	Se asignaron IPs fijas a algunos servidores, pero hay errores o inconsistencias en la configuración.	Las IPs fijas se asignaron correctamente a todos los servidores, aunque con algunos detalles que mejorar.	Las IPs fijas se asignaron correctamente y cumplen con los requisitos establecidos, sin errores de configuración.	1
Conexión de la Red a Internet	La red no tiene salida a internet o la configuración del router es incorrecta.	La red tiene salida a internet, pero presenta problemas de estabilidad o accesibilidad en algunos dispositivos.	La red tiene salida a internet de forma estable, aunque con pequeñas mejoras posibles en la configuración del router.	La red está configurada correctamente, con salida a internet para todos los dispositivos sin problemas de conectividad.	2
Simulación y Análisis de	No se realizaron capturas de tráfico	Se realizaron capturas de tráfico,	Se realizaron capturas completas	Se realizaron capturas detalladas y el análisis	4

Tráfico con Wireshark	o las capturas son incompletas.	pero el análisis es superficial o incompleto.	del tráfico de red y el análisis es adecuado, aunque puede profundizarse más.	es profundo, con una clara identificación de problemas y tráfico.	
Comparación entre Protocolos Seguros e Inseguros	No se compararon los protocolos o el análisis es inexacto.	Se realizó una comparación entre protocolos seguros e inseguros, pero de forma básica o incompleta.	La comparación entre protocolos seguros e inseguros es adecuada, pero falta profundización en los detalles críticos.	La comparación es completa y precisa, mostrando claramente las diferencias entre protocolos seguros e inseguros.	4
Identificación de Problemas de Seguridad	No se identifican problemas de seguridad relevantes o se mencionan de manera superficial.	Se identifican algunos problemas de seguridad, pero de forma general o sin suficiente profundidad.	Se identifican los principales problemas de seguridad con un análisis adecuado, pero podrían detallarse más.	Se identifican exhaustivamente todos los problemas de seguridad importantes, con un análisis profundo y detallado de cada vulnerabilidad.	3
Propuesta de Soluciones de Seguridad	No se propusieron soluciones de seguridad o las propuestas son irrelevantes.	Se propusieron soluciones de seguridad, pero son generales o insuficientes para los problemas identificados.	Las soluciones propuestas abordan adecuadamente los problemas de seguridad, aunque con margen de mejora.	Las soluciones propuestas son detalladas, viables y efectivas para mitigar las vulnerabilidades encontradas.	2
Trabajo en Equipo y Colaboración	Hubo poca colaboración entre los miembros del equipo y la asignación de roles no fue clara.	La colaboración fue adecuada, pero algunos miembros del equipo no participaron de manera equitativa.	El equipo trabajó de manera colaborativa y equitativa, aunque la asignación de roles podría ser más clara.	El equipo mostró una excelente colaboración, con una distribución clara de roles y responsabilidades.	2
Calidad de la Presentación Final	La presentación fue desorganizada, no cubrió los puntos clave o no se respetó el tiempo asignado.	La presentación cubrió la mayoría de los puntos, pero fue desorganizada o se excedió el tiempo límite.	La presentación fue clara y bien estructurada, aunque con pequeños desajustes en el tiempo o en la cobertura de temas.	La presentación fue excelente, bien organizada, cubriendo todos los puntos clave y respetando el tiempo asignado.	5
Calidad del informe final	El informe es desorganizado, incompleto, y presenta errores significativos en la redacción o en la presentación de los datos.	El informe cubre la mayoría de los puntos clave, pero tiene errores de redacción, falta de claridad o es superficial en algunos temas.	El informe es claro, bien estructurado y abarca todos los puntos principales, aunque con margen para mejorar en detalles o profundidad.	El informe es excelente, está bien organizado, redactado con claridad, y cubre de manera exhaustiva todos los aspectos del proyecto con precisión.	5

7. FECHAS

Hito 1 (Anteproyecto): 27 de Marzo 2025 Hito 2 (Avance intermedio): 7 de Abril 2025

Hito 3 (Entrega y presentación): 21 de Abril 2025