Problema 3 (Tarefa): Robô Fazendeiro

Tarefa: O robô fazendeiro

1. Introdução

A empresa Robô Fazendeiro está desenvolvendo um protótipo de robô para realizar a identificação de rebanhos em fazendas pecuaristas, onde estes animais vivem soltos (pecuária extensiva). Este robô foi concebido com um **módulo de visualização** bastante avançado que consegue classificar se um animal é **bovino**, **caprino ou suíno**. Para melhorar a gestão da fazenda, como por exemplo, selecionar os alimentos que devem ser enviados para cada rebanho, faz-se necessário identificar quais rebanhos estão presentes nos lotes. Com o objetivo de economizar com viagens de transportes da alimentação, o robô deve enviar mensagens com solicitação de alimentação quando identificar uma quantidade mínima de indivíduos de um dado rebanho. Essas quantidades mínimas são definidas com o dono da fazenda. Entretanto, a empresa Robô Fazendeiro ainda não desenvolveu o módulo responsável por realizar a identificação mencionada.

Um dos técnicos da empresa Robô Fazendeiro, que coincidentemente é estudante de um dos cursos de Computação da UFBA, trouxe o problema para que seus colegas de turma pudessem, em equipe, trabalhar para apresentar o protótipo do módulo de identificação do robô. Por questões econômicas, a empresa Robô Fazendeiro está em busca de uma solução menos custosa possível nesse primeiro protótipo.

Nas pesquisas iniciais os estudantes perceberam que uma simples máquina de estados finitos é capaz de resolver este problema. Como eles chegaram a essa conclusão é uma boa questão. Outro achado na pesquisa foi a descoberta de uma expressão matemática muito usada em protocolos, de fácil compreensão, que pode ser parte da documentação da solução. Essa expressão pode ser construída a partir do momento em que a solução for implementada com uma máquina de estados finitos. Os estudantes comentaram sobre essa possibilidade numa reunião e a empresa se interessou em saber mais sobre este detalhamento.

A empresa também tem interesse em averiguar se existe alguma **regra** que permita **determinar a quantidade mínima de estados e de transições** a partir das

quantidades mínimas de cada rebanho que se deseja identificar, assim, será possível realizar orçamentos mais assertivos.

A ferramenta sugerida para simular o processo do módulo de identificação do robô é o JFLAP.

2. Processo

Durante o processo de construção da solução será utilizada a metodologia de ensino e aprendizagem Problem Based Learning (PBL) que se caracteriza pela utilização de problemas do mundo real para estimular o desenvolvimento do pensamento crítico, do trabalho em equipe e de habilidades para a resolução de problemas, além de contribuir para a construção de conhecimentos acerca de um tema específico. O processo deve ser documentado através do quadro-branco PBL que é composto pelas colunas QUESTÕES, FATOS, IDEIAS/HIPÓTESES e AÇÕES. Em cada reunião da equipe deve ser construída uma versão do quadro-branco e assim teremos a documentação dos passos para construção da solução. A descrição desse processo fará parte da avaliação do grupo. Além disso, será disponibilizado um documento compartilhado para o preenchimento do Diário de Bordo, conforme demonstrado em um encontro síncrono.

3. Produto

Um integrante da equipe deverá postar no AVA UFBA até as 20:20 do dia 31/03/2021, no espaço apropriado para tal, um arquivo para o simulador JFLAP com **módulo de identificação do robô**, bem como, um **relatório no modelo de artigos da SBC** (Sociedade Brasileira de Computação) que descreva com o máximo de detalhes a idealização de funcionamento do módulo de identificação do robô. O relatório deverá conter as operações executadas para funcionamento do sistema e, ao menos, 2 (dois) exemplos de funcionamento. Lembrando que esse relatório também deve contemplar os interesses/questionamentos da empresa com relação à documentação e orçamentos.

4. Conhecimentos/Conceitos Envolvidos

- 1. Máquina de estados (Finite state machines)
- 2. Linguagens Regulares (Regular languages)
 Formal languages and automata theory
- 3. Expressões Regulares
- 4. Hierarquia de Chomsky

5. Objetivos de Aprendizagem

5.10bjetivo Geral

Desenvolver um módulo de identificação de rebanhos para um protótipo de robô fazendeiro, utilizando conhecimentos em máquinas de estados finitos e expressões regulares.

5.2 Objetivos Específicos

Identificar as funcionalidades do módulo de identificação do robô fazendeiro.

- 1. **Aplicar** o conceito de máquinas de estados finitos para resolver o problema de identificação dos rebanhos.
- 2. **Pesquisar** e **utilizar** expressões regulares como parte da documentação e solução do problema.
- 3. **Investigar** a relação entre as quantidades mínimas de rebanhos a serem identificados e a quantidade mínima de estados e transições necessárias na máquina de estados finitos.
- Utilizar a ferramenta JFLAP para simular o processo de identificação do robô.
- 5. **Elaborar** um relatório detalhado, no modelo de artigos da SBC, descrevendo o funcionamento do módulo de identificação do robô, incluindo as operações executadas e exemplos de funcionamento.

6. Competências

- A Título: Desenvolver soluções de problemas usando Máquina de Estados Atitudes:
 - Investigativo, Colaborativo, Responsável, Proativo, Criativo

Conhecimentos e Habilidades:

- Aplicar (solucionar, desenvolver) x Autômato Finito
- **Compreender** x Análise de Requisitos
- **Aplicar** x Pensamento analítico e crítico (PFK)

Declaração: Os alunos devem ser capazes de, usando Máquina de Estados, desenvolver soluções eficientes para problemas específicos, demonstrando a aplicação prática dos conhecimentos e habilidades relacionados aos Autômatos Finitos, bem como a compreensão de análise de requisitos e a capacidade de aplicar o pensamento analítico e crítico para abordar problemas de forma eficaz.

B - Título: Determinar Expressões Regulares que representam autômatos **Atitudes**:

- Investigativo, Colaborativo, Responsável, Proativo, Criativo

Conhecimentos e Habilidades:

- **Compreender** x Autômato Finito
- **Aplicar** x Linguagens Regulares
- **Aplicar** x Pensamento analítico e crítico (PFK)

Declaração: Os alunos devem ser capazes de determinar Expressões Regulares que representam autômatos, demonstrando um profundo entendimento dos conceitos relacionados aos Autômatos Finitos e das Linguagens Regulares.

C - Título: Testar autômatos usando JFlap.

Atitudes:

- Investigativo, Colaborativo, Responsável, Proativo, Criativo

Conhecimentos e Habilidades:

- Aplicar (experimentar, relacionar, simular) x Autômato Finito
- Aplicar x Resolução de problemas e solução de problemas (PFK)

Declaração:Os alunos devem ser capazes de aplicar conhecimentos práticos e habilidades para experimentar, relacionar e simular autômatos usando a ferramenta JFlap.

- **D- Título:** Diferenciar as classificações das gramáticas formais **Atitudes:**
 - Investigativo, Colaborativo, Responsável, Proativo

Conhecimentos e Habilidades:

- Compreender (comparar, contrastar) x Linguagens Regulares
- **Aplicar** x Pensamento analítico e crítico (PFK)

Declaração:Os alunos devem ser capazes de diferenciar as classificações das gramáticas formais, demonstrando um profundo entendimento das Linguagens Regulares e sua comparação e contraste com outras classificações de gramáticas formais.

- E- Título: Realizar inferências e identificar padrões em máquinas de estados Atitudes:
 - Investigativo, criativo, meticuloso.

Conhecimentos e Habilidades:

- Analisar (descobrir, relacionar, simplificar) x Autômato Finito
- **Analisar (concluir)** x Pensamento analítico e crítico (PFK)

Declaração:Os alunos devem ser capazes de realizar inferências e identificar padrões em máquinas de estados, demonstrando habilidades analíticas para descobrir, relacionar e simplificar informações relacionadas a autômatos finitos.

F - Título: Escrever, em grupo, um relatório técnico.

Atitudes:

- Colaborativo, Meticuloso, Responsável

Conhecimentos e Habilidades:

Compreender (explicar, relacionar, esboçar, resumir) x
 Comunicação escrita (resultados)

Declaração: Os alunos devem ser capazes de escrever um relatório técnico de acordo com um padrão especificado.

7. Tabela Competências

Competência	Atitudes	Conhecimento	Habilidade
Desenvolver soluções de problemas usando Máquina de Estados	Investigativo, Colaborativo, Responsável, Proativo, Criativo	Autômato Finito	Aplicar (solucionar, desenvolver)
		Análise de Requisitos	Compreender
		Pensamento analítico e crítico	Aplicar
Determinar Expressões Regulares que representam autômatos	Investigativo, Colaborativo, Responsável, Proativo, Criativo	Autômato Finito	Compreender
		Linguagens Regulares	Compreender
		Pensamento analítico e crítico	Aplicar
Testar autômatos usando JFlap.	Investigativo, Colaborativo, Responsável, Proativo, Criativo	Autômato Finito	Aplicar (experimentar, relacionar, simular)
		Resolução de problemas e solução de problemas	Aplicar
Diferenciar as classificações das gramáticas formais	Investigativo, Colaborativo, Responsável, Proativo	Linguagens Regulares	Compreender (comparar, contrastar)

		Pensamento analítico e crítico	Aplicar
Realizar inferências e identificar padrões em máquinas de estados	Investigativo, criativo, meticuloso.	Autômato Finito	Analisar (descobrir, relacionar, simplificar)
		Pensamento analítico e crítico	Analisar (concluir)
Escrever, em grupo, um relatório técnico.	Colaborativo, Meticuloso, Responsável	Relatório Técnico	Compreender (explicar, relacionar, esboçar, resumir)

1. Referências

Recursos para aprendizagem _{RAMOS, M. V. M.; JOSE NETO, J.; VEGA,} I. S. Linguagens Formais: Teoria, Modelagem e Implementação. Editora Bookman, 2009.

MENEZES, Paulo Blauth. Linguagens formais e autômatos. 6. ed. Bookman, 2011.