

ELCN201 - Electronics-2

Project 2: Frequency Response & Current Mirror

Program: CCEE

Prepared by:

Alhussein Gamal Hussein Ali (1200399)

Submitted to:

Eng. Hossam Sayed

Under the supervision of:

Dr. Mohamed Refky & Dr. Ahmed Hussein

Problem (1): Frequency Response

Design the amplifier with the following specifications:

- $A_v \text{ (mid-band gain)} \ge 26 dB$
- Accommodate an input signal with frequency
- band from 500Hz to 30 MHz
- Current consumption $\leq 100 \mu A$
- $C_L = 0.5 pF$

Design Procedure:

Note: $Kp = 40uA/V^2$ from the model parameters

We choose ID = 95uA

By direct analysis on the schematic or using the SSM:

$$KCL: \frac{Vout}{R} = \frac{Vin - Vout}{ro} + gmVsg, \qquad Vsg = Vin,$$

Substituting and rearranging:

$$Vout\left(\frac{1}{ro} + \frac{1}{R}\right) = Vin\left(\frac{1}{ro} + gm\right) \rightarrow \frac{Vout}{Vin} = Av = \left(\frac{1}{ro} + gm\right)(R // ro)$$

$$lambda = 0 \rightarrow ro = infinity \rightarrow Rout = (R // ro) = R, \qquad Rin = \frac{1}{am}, \qquad Av = gmR$$

From the gain spec: $Av \ge 26dB \rightarrow To$ leave a margin, let $Av = 28dB \rightarrow Av = 10^{\frac{28}{20}} \approx 25$

AC Analysis:

$$f_L = \frac{1}{2\pi * Rin * C} = \frac{gm}{2\pi * C} = 500 \text{ Hz}$$

 $f_H = \frac{1}{2\pi * Rout * CL} = \frac{1}{2\pi * R * CL} = 30 \ MHz \rightarrow R = 10.61 \ kohm \rightarrow let \ R = 12 \ kohm$ to make some margin for ignoring ro.

Hence,
$$gm = \frac{Av}{R} \cong 2 \text{ mS} \rightarrow \text{substituting in } f_L = \frac{gm}{2\pi * C} \rightarrow C \cong 637 \text{ nF}$$

$$ID = \frac{Kp}{2} * (|VSG| - |Vtp|)^2$$

$$gm = sqrt\left(up * Cox*\left(\frac{W}{L}\right)*ID*2\right) \rightarrow \frac{W}{L} = 526 \rightarrow let \frac{L}{L} = 1um \text{ and } W = 526um$$

Using Square law:
$$ID = \frac{1}{2} * up * Cox * \frac{W}{L} * Vov^2 \rightarrow Vov = 0.095 \cong 0.1$$

From Sat. Condition: $VDG \leq |Vtp| \rightarrow I_{DC} * R - V_{DC} \leq 0.8 \rightarrow V_{DC} \geq 0.34 \rightarrow let V_{DC} = 0.5V$

a) Calculate the input linear range and the output signal swing for your design.

$$LIR: Vin \leq 0.2 * Veff = 0.02V$$

Swing: Voutmin = 0V, Voutmax - VG \leq |Vtp| \rightarrow Voutmax = 1.3V, Swing = 1.3V

Document the design procedure and the results of the following simulations: Circuit Schematic

DC analysis and show the Q-point (ISD, VSD, Veff), and VDC

DC Operating Point

		Design1 DC Operating Point Analysis			
	Variable	Operating point value			
1	V(vg)	500.00000 m			
2	V(vs)-V(vd)	451.10681 m			
3	V(vs)-V(vg)-0.8	291.10681 m			
4	I(MQ1[IS])	95.00000 u			

$$VDC = 0.5V$$
, $VSD = 0.45V$, $Veff = 0.29V$, $ID = 95uA$

AC analysis and show the gain (frequency response) up to 1GHz.

Magnitude and Phase are both shown. The gain is annotated on the right.

Gain = $27 \sim 28.6$ dB. The requirement is satisfied

AC analysis and show Rin, and Rout vs. frequency (up to 10GHz).

Rin vs frequency

Rout vs frequency

Transient analysis with Vin=A.sin(2πft) and plot Vout. Where A=10mV and f=100kHz

A = 10mV

A = 100 mV

<u>Perform Fourier analysis for the same two cases of the transient analysis and. plot Vout in the frequency domain. Calculate HD2, HD3, and THD.</u>

Case 1: A = 10mV

			×		77.5	Design1		
1	Fourier analysis for V(vd):							
200	DC component:	1.14457						
3	No. Harmonics:	9						
4	THD:	2.34722 %						
5	Grid size:	256						
6	Interpolation Degree:	1						
7								
8	Harmonic	Frequency	Magnitude	Phase	Norm. Mag	Norm. Phase		
9	0	0	1.14457	0	4.24715	0		
10	1	100000	0.269492	0.0690633	1	0		
11	2	200000	0.00632336	-89.409	0.023 464	-89,478		
12	3	300000	0.00016594	-0.25145	0.000615753	-0.32051		
13	4	400000	1.32 494e -05	-13,002	4.91644e-05	-13.071		
14	5	500000	1.01877e-05	2.35491	3.78034e-05	2.28585		
15	6	600000	8.57151e-06	2.98916	3.18062e-05	2.9201		
16	7	700000	7.24366e-06	4.20279	2.6879e-05	4.13372		

HD= (Harmonic/fundamental) * 100

HD2= (0.0063/0.2695) * 100=2.346 %

HD3= (0.000166/0.2695) * 100=0.0616 %

THD=2.347 %

Case 2: A = 100 mV

1 Fourier analysis for V(vd):					
2 DC component:	0.950619				
3 No. Harmonics:	9				
4 THD:	27.4828 %				
5 Grid size:	256				
6 Interpolation Degree:	1				
7					
8 Harmonic	Frequency	Magnitude	Phase	Norm. Mag	Norm. Phase
9 0	0	0.950619	0	1.03284	0
10	100000	0.920397	-0.11399	1	0
11 2	200000	0.10514	89.6692	0.114233	89.7832
12 3	300000	0.196823	-0.3918	0.213846	-0.27782
13 4	400000	0.0565486	89.4757	0.0614394	89.5897
14 5	500000	0.0850352	-0.7111	0.0923897	-0.59712
15 6	600000	0.031003	89.2762	0.0336843	89.3902
16 7	700000	0.0440795	-1,0866	0.0478919	-0.97263

HD= (Harmonic/fundamental) * 100 HD2= (0.10514/0.920397) * 100=11.4 %

HD3= (0.196823/0.920397) * 100=21.4 %

THD=27.48 %

Discussion:

- The specs on the gain and current consumption are satisfied by a good margin.
- Rin and Rout are the close to the hand calculations.
- The circuit doesn't consume a large DC voltage and could have even worked reasonably with a lower current consumption.
- For Vin's amplitude = 10mV within Vin's linear input range -- the presence of distortion harmonics is almost negligible and hence there's little or no distortion.
- For Vin's amplitude = 100mV beyond Vin's linear input range -- the presence of distortion harmonics is noticeable and the signal is visibly distorted.
- The distortion increases as the value of Vin exceeds it linear range as elaborated through the transient simulations on signals with amplitudes 10mV and 100mV and also as can be seen from the value of the THD.
- By careful inspection of the harmonics, we can notice that the odd harmonics make for a larger distortion.

Problem (2): Current Mirror

Circuit Schematic

(a) Design the simple current mirror in Fig. 2(a) such that Iin=100μA, Iout=200μA, and Veff is 0.2V for all transistors. Use L=1μm.

Design Procedure

From the given model parameters: $Kn = unCox = 120uA/V^2$, Vtn = 0.7

Given that L1 = L2 = 1um, Veff = 0.2V, In = 100uA, Iout = 200uA

$$ID = UnCox/2 * (W/L) * Vov^2 \rightarrow W/L = 41.6667 \sim 42$$

 $L1 = 1um \rightarrow W1 = 42um$

To get Iout = 200uA = 2 * Iin**>**W2 = <math>2*W1 = 84um

Vcompliance = Veff = 0.2V

Iout vs Vout

Vcompliance = 206mV. Close to analytical value.

Iout vs **Vout** (cursor at **Vout** = **1V**)

Error = ((206-200)/200) * 100 = 3%

Percentage of Error graph of (Iout vs Vout) cursor at Vout = 1V

From the cursor, Error = 3.1%. This the same result obtained above.

Rout vs frequency

Rout = 119.4kohm

Repeat (a) for Iin=200μA and Iout=400μA. Veff should be kept at 0.2V.

Iin = 200uA, Iout = 400uA

It is required to keep Veff at 0.2V. Since we double the current, we need to double the device width also. So W1 = 84um and W2 = 168um

Iout vs Vout

Vcompliance = 205mV

Iout vs Vout (cursor at Vout = 1V)

Error = ((407.56-400)/400) * 100 = 1.8%

Percentage of Error graph of (Iout vs Vout) cursor at Vout = 1V

From the cursor, Error = 1.86%, Almost same Result obtained above

Rout vs frequency

Rout = 60.5kohm.

As Iout is doubled, Rout is almost exactly halved.

(b) Use the same design from Fig. 2(a) to construct the cascode current mirror in Fig.2(b). Repeat the same simulations.

Cascode Current Mirror

Circuit Schematic

Iout vs Vout

Vcompliance = 409mV

Iout vs Vout (cursor at Vout = 1V)

Error = ((205-200)/200) * 100= 2.5%, a slight decrease in the error compared to the normal current mirror

Percentage of Error graph of (Iout vs Vout) cursor at Vout = 1V

From the cursor, Error = 2.49%, Almost same Result obtained above.

Rout vs frequency

Rout = 878.5kohm, which is a massive increase compared to the normal current mirror at the same conditions.

$\underline{Iin} = 200uA$, $\underline{Iout} = 400uA$

Iout vs Vout

Vcompliance = 609mV

Iout vs Vout (cursor at Vout = 1V)

Error = ((405-400)/400) * 100= 1.25.5%, a slight decrase in the error compared to the normal current mirror.

Percentage of Error graph of (Iout vs Vout) cursor at Vout = 1V

From the cursor, Error = 1.24%, Almost same Result obtained above.

Rout vs frequency

Rout = 557kohm, which is a massive increase compared to the normal current mirror at the same conditions.

Compared to the cascode with Iin = 100uA, Iin=200uA decreases Rout quite a bit.

Performance Comparison

	Simple Current Mirror		Cascode Current Mirror		
Iin	100uA	200uA	100uA	200uA	
Vcompliance	206mV	205mV	409mV	609mV	
Error in Current (at 1V)	3.1%	1.86%	2.5%	1.25%	
Rout	120 kohm	60 kohm	879 kohm	557 kohm	

Note: 1V was taken as a reference value for measuring the error in the current, but any voltage beyond Vcompliance will show the same trend.

Discussion:

- Iout isn't exactly equal to Iin. This can be due to ignoring the early effect or the differences in the VDS values, and more importantly in real life it is due to mismatches.
- As Iout is increases, Rout decreases.
- The cascode current mirror greatly boosts Rout, resulting in a much more reliable current mirror. This is demonstrated by the almost constant curve of Iout in the case of the cascode as opposed to the normal current mirror where Iout continues to increase as Vout increases. This was also demonstrated by the lower percentage errors in the currents.
- Generally, as Iout increases, the mismatching effect is less apparent, and the error decreases whether it is a cascode or a simple current mirror.
- The cascode current mirror, however, requires a larger compliance voltage for proper operation as a current mirror. This decreases the voltage headroom.
- For this reason, the cascode isn't preferred in recent applications where the supply voltage is already low.