My Project

Generated by Doxygen 1.9.1

1	Hierarchical Index	1
	1.1 Class Hierarchy	1
2	Class Index	3
	2.1 Class List	3
3	Class Documentation	5
	3.1 AddedEdge Struct Reference	5
	3.1.1 Detailed Description	5
	3.2 astar_goal_visitor< Vertex > Class Template Reference	5
	3.3 Car Class Reference	6
	3.3.1 Constructor & Destructor Documentation	6
	3.3.1.1 Car()	6
	3.3.2 Member Function Documentation	7
	3.3.2.1 GetWaitingTime()	7
	3.3.2.2 IsReturning()	7
	3.3.2.3 StartReturning()	7
	3.4 ChargingStation Class Reference	8
	3.4.1 Detailed Description	8
	3.4.2 Constructor & Destructor Documentation	8
	3.4.2.1 ChargingStation() [1/2]	8
	3.4.2.2 ChargingStation() [2/2]	9
	3.4.3 Member Function Documentation	9
	3.4.3.1 AddCustomer()	9
	3.4.3.2 GetChargingTime()	9
	3.4.3.3 GetExpectedWaitingTime()	10
	3.4.3.4 NextCustomer()	10
	3.4.3.5 RemoveCustomer()	10
	3.5 City Struct Reference	10
	3.5.1 Detailed Description	11
	3.6 ComponentsDistance Struct Reference	11
	3.6.1 Detailed Description	11
	3.7 distance_heuristic< m_graph, CostType, LocMap > Class Template Reference	12
	3.8 Edge Class Reference	12
	3.8.1 Detailed Description	13
	3.8.2 Constructor & Destructor Documentation	13
	3.8.2.1 Edge()	13
	3.8.3 Member Function Documentation	13
	3.8.3.1 AddType() [1/2]	13
	3.8.3.2 AddType() [2/2]	13
	3.8.3.3 GetBatteryLevels()	14
	3.8.3.4 GetLength()	14
	3.8.3.5 GetNumSegments()	14
	,	

3.8.3.6 GetRoadType()		14
3.8.3.7 GetRoadTypeChar()		15
3.8.3.8 ResetSimulation()		15
3.8.3.9 SetLength()		15
3.8.3.10 UpdateSegmentData()		15
3.8.3.11 UpdateTransitTime()		16
3.9 found_goal Struct Reference		16
3.10 GeneticParameters Struct Reference		16
3.10.1 Detailed Description		17
3.11 GraphAdjuster Class Reference		17
3.11.1 Detailed Description		17
3.11.2 Member Function Documentation		17
3.11.2.1 AddCityCoordinate()		17
3.11.2.2 ComputeCitiesDistances()		18
3.11.2.3 GetAddedEdges()		18
3.11.2.4 GetCitiesCoordinates()		18
3.11.2.5 GetCitiesDistances()		18
3.11.2.6 MergeDegreeTwoVertex()		18
3.11.2.7 MergeDegreeTwoVertices()		19
3.11.2.8 MergeTwoComponents()		19
3.12 GreedyParameters Struct Reference	:	20
3.12.1 Detailed Description		20
3.13 KMeansParameters Struct Reference		20
3.13.1 Detailed Description		21
3.14 location Struct Reference		21
3.15 Map Class Reference		21
3.15.1 Detailed Description		22
3.15.2 Constructor & Destructor Documentation		22
3.15.2.1 Map()		22
3.15.3 Member Function Documentation		23
3.15.3.1 AddChargingStation()		23
3.15.3.2 AddCity()		23
3.15.3.3 AddEdge() [1/2]		23
3.15.3.4 AddEdge() [2/2]		24
3.15.3.5 AddNode()		24
3.15.3.6 ComputeSphericalDistance()		25
3.15.3.7 DijkstraFindDistances()		25
3.15.3.8 ExistNode()	:	25
3.15.3.9 FindCitiesNearestChargingStations()		26
3.15.3.10 FindCityNodes()		26
3.15.3.11 FindClosestPositionToCoordinates()		26
3.15.3.12 FindShortestPath()		27

3.15.3.13 FindVehiclePath()	. 27
3.15.3.14 GetAllSegments()	. 27
3.15.3.15 GetChargingStation()	. 28
3.15.3.16 GetChargingStations()	. 28
3.15.3.17 GetCitiesPopulation()	. 28
3.15.3.18 GetCityNodes()	. 28
3.15.3.19 GetCityPairDistance()	. 29
3.15.3.20 GetConstGraph()	. 29
3.15.3.21 GetGraph()	. 29
3.15.3.22 GetLastChargingStation()	. 29
3.15.3.23 GetNode()	. 30
3.15.3.24 InitHeuristicLocations()	. 31
3.15.3.25 ResetSimulation()	. 31
3.15.3.26 SetCitiesDistances()	. 31
3.15.3.27 SimulateVehiclePassedThroughEdge()	. 31
3.15.3.28 TestComponents()	. 32
3.16 MapPosition Class Reference	. 32
3.16.1 Detailed Description	. 33
3.16.2 Constructor & Destructor Documentation	. 33
3.16.2.1 MapPosition() [1/2]	. 33
3.16.2.2 MapPosition() [2/2]	. 33
3.16.3 Member Function Documentation	. 33
3.16.3.1 ChangeParameters()	. 34
3.16.3.2 GetDistanceFromCloserVertex()	. 34
3.17 MapReader Class Reference	. 34
3.17.1 Constructor & Destructor Documentation	. 35
3.17.1.1 MapReader()	. 35
3.17.2 Member Function Documentation	. 35
3.17.2.1 GetGraphAdjuster()	. 35
3.17.2.2 LoadChargingStations()	. 35
3.17.2.3 LoadCities()	. 36
3.17.2.4 LoadEdges()	. 36
3.17.2.5 LoadMap()	. 37
3.17.2.6 LoadNodesCities()	. 37
3.17.2.7 WriteAddedEdges()	. 37
3.17.2.8 WritePreparedCombinedNodes()	. 38
3.17.2.9 WritePreparedEdges()	. 38
3.17.2.10 WriteStations()	. 38
3.18 ModelRepresentation Class Reference	. 39
3.18.1 Detailed Description	. 39
3.18.2 Constructor & Destructor Documentation	. 39
3.18.2.1 ModelRepresentation() [1/2]	. 40

3.18.2.2 ModelRepresentation() [2/2]
3.18.3 Member Function Documentation
3.18.3.1 SaveModelRepresentation()
3.19 MyGreater Struct Reference
3.20 Node Class Reference
3.20.1 Detailed Description
3.20.2 Constructor & Destructor Documentation
3.20.2.1 Node() [1/2]
3.20.2.2 Node() [2/2] 4
3.21 Optimizer Class Reference
3.21.1 Detailed Description
3.21.2 Constructor & Destructor Documentation
3.21.2.1 Optimizer()
3.21.3 Member Function Documentation
3.21.3.1 GeneticAlgorithm()
3.21.3.2 GreedyAlgorithm()
3.21.3.3 KMeansAlgorithm()
3.21.3.4 ModelLoss()
3.21.3.5 RunMultipleSimulations()
3.22 OptimizerParameters Class Reference
3.22.1 Constructor & Destructor Documentation
3.22.1.1 OptimizerParameters() [1/2]
3.22.1.2 OptimizerParameters() [2/2]
3.23 SimulationParameters Class Reference
3.23.1 Detailed Description
3.23.2 Constructor & Destructor Documentation
3.23.2.1 SimulationParameters()
3.24 StationParameters Class Reference
3.24.1 Detailed Description
3.24.2 Constructor & Destructor Documentation
3.24.2.1 StationParameters() [1/2]
3.24.2.2 StationParameters() [2/2]
3.25 TableEvent Class Reference
3.25.1 Detailed Description
3.25.2 Constructor & Destructor Documentation
3.25.2.1 TableEvent()
3.26 TimeTable Class Reference
3.26.1 Detailed Description
3.26.2 Constructor & Destructor Documentation
3.26.2.1 TimeTable()
3.26.3 Member Function Documentation
3.26.3.1 AddEvent()

3.26.3.2 GetAllMapSegmentsInfo()	 51
3.26.3.3 GetBatteryDifferences()	 52
3.26.3.4 GetChargingLevels()	 52
3.26.3.5 GetNextEvent()	 52
3.26.3.6 GetRunDownPositions()	 52
3.26.3.7 GetTrafficSimulator()	 52
3.26.3.8 GetTravelDurations()	 53
3.26.3.9 GetWaitingTimes()	 53
3.26.3.10 LoadMap()	 53
3.26.3.11 RandomlyGenerateChargingStations()	 53
3.26.3.12 ResetSimulation()	 54
3.26.3.13 RunRestSimulation()	 54
3.26.3.14 RunSimulation()	 54
3.27 TrafficSimulator Class Reference	 54
3.27.1 Detailed Description	 55
3.27.2 Constructor & Destructor Documentation	 55
3.27.2.1 TrafficSimulator()	 55
3.27.3 Member Function Documentation	 56
3.27.3.1 DeleteCar()	 56
3.27.3.2 GenerateBatteryTreshold()	 56
3.27.3.3 GenerateCar()	 56
3.27.3.4 GenerateChargingStation()	 56
3.27.3.5 GenerateChargingStations()	 57
3.27.3.6 GenerateNextDepartureTime()	 57
3.27.3.7 GetCarlterator()	 57
3.27.3.8 GetMap()	 58
3.27.3.9 LoadMap()	 58
3.27.3.10 ResetSimulation()	 58
3.28 Vehicle Class Reference	 59
3.28.1 Detailed Description	 60
3.28.2 Constructor & Destructor Documentation	 61
3.28.2.1 Vehicle()	 61
3.28.3 Member Function Documentation	 61
3.28.3.1 BatteryLevelToGoCharging()	 61
3.28.3.2 ChangedCity()	 62
3.28.3.3 ChargeBattery()	 62
3.28.3.4 GetBatteryLevel()	 62
3.28.3.5 GetChargingStationID()	 62
3.28.3.6 GetEndPosition()	 63
3.28.3.7 GetExpectedEdgeTransitBatteryLevel()	 63
3.28.3.8 GetExpectedPathBatteryLevel()	 63
3.28.3.9 GetExpectedPathTransitTime()	 64

	3.28.3.10 GetNextNodeTransitTime()	64
	3.28.3.11 GetPathSize()	64
	3.28.3.12 GetPosition()	65
	3.28.3.13 GetStartBatteryLevel()	65
	3.28.3.14 GetStartingSegment()	65
	3.28.3.15 GetStartLineWaitingTime()	66
	3.28.3.16 GetStartTime()	66
	3.28.3.17 GetStationPosition()	66
	3.28.3.18 GoCharging() [1/2]	66
	3.28.3.19 GoCharging() [2/2]	67
	3.28.3.20 GoingToStation()	67
	3.28.3.21 IsFinishing()	67
	3.28.3.22 IsIncreasing()	68
	3.28.3.23 IsInsideEdge()	68
	3.28.3.24 MoveFirstSegment()	68
	3.28.3.25 MoveToFinalSegment()	69
	3.28.3.26 MoveToNextNode()	69
	3.28.3.27 PopFirstPathVertex()	69
	3.28.3.28 SetChargingTry()	69
	3.28.3.29 SetStartLineWaitingTime()	70
	3.28.3.30 StartGoingCharging()	70
	3.28.3.31 TriedCharging()	70
	3.28.3.32 UpdateVehiclePath()	70
Index		73

Chapter 1

Hierarchical Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

AddedEdge
boost::astar_heuristic
distance_heuristic< m_graph, CostType, LocMap >
ChargingStation
City
ComponentsDistance
boost::default_astar_visitor
astar_goal_visitor< Vertex >
Edge
found_goal
GeneticParameters
GraphAdjuster
GreedyParameters
KMeansParameters
location
Map
MapPosition
MapReader
ModelRepresentation
MyGreater
Node
Optimizer
OptimizerParameters
SimulationParameters
StationParameters
TableEvent
TimeTable
TrafficSimulator
Vehicle
Car

2 Hierarchical Index

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

AddedEdge
Struct to store all necessary info about edge
astar_goal_visitor< Vertex >
Car
ChargingStation
Class representing one charging station
City
Struct to store city coordinates
ComponentsDistance
Struct to store necessary info about the pair of vertices
$distance_heuristic < m_graph, \ CostType, \ LocMap > \dots $
Edge
Class for edge representation (road between the junctions)
$found_goal \dots \dots \dots \dots \dots \dots \dots \dots \dots $
GeneticParameters
Parameters for the genetic algorithm
GraphAdjuster
Class to do preprocessing of the graph
GreedyParameters
Parameters for the greedy algorithm
KMeansParameters
Parameters for the K-Means optimalization
location
Мар
Class to store and do basic operation with map objects
MapPosition
Class to store info about the position in the map (edge and its segment)
MapReader
ModelRepresentation
Class to represent one model
MyGreater
Node
Class representing road junction
Optimizer
Class to optimize number of charging stations and its locations

Class Index

OptimizerParameters	45
SimulationParameters	
Class to manage program arguments	46
StationParameters	
Struct to store information about the charging station	48
TableEvent	
Class to store info about the simulation event (for discrete simulation)	49
TimeTable	
Class to manage all high level simulation logic	50
TrafficSimulator	
Class for managing simulator operations	54
Vehicle	
Parent class of all vehicle objects for the simulation	59

Chapter 3

Class Documentation

3.1 AddedEdge Struct Reference

Struct to store all necessary info about edge.

#include <GraphAdjuster.h>

Public Member Functions

• AddedEdge (vertex_t first, vertex_t second, char type, double length)

Public Attributes

- vertex_t FirstVertex
- vertex_t SecondVertex
- · char Type
- · double Length

3.1.1 Detailed Description

Struct to store all necessary info about edge.

The documentation for this struct was generated from the following file:

· GraphAdjuster.h

3.2 astar_goal_visitor< Vertex > Class Template Reference

Inheritance diagram for astar_goal_visitor< Vertex >:

Public Member Functions

- astar_goal_visitor (Vertex goal)
- template < class Graph > void examine_vertex (Vertex u, Graph &g)

The documentation for this class was generated from the following file:

· Map.h

3.3 Car Class Reference

Inheritance diagram for Car:

Public Member Functions

• Car (double startTime, double waiting, MapPosition start, MapPosition end, double consumption, double batteryLevel, double relativeSpeed)

Initializes car object.

void StartReturning (double actualTime)

Appropriately changes car setup to returning to start. Changes start and end position and sets flags of the car to returning.

- bool IsReturning ()
- double GetWaitingTime ()

Additional Inherited Members

3.3.1 Constructor & Destructor Documentation

3.3.1.1 Car()

```
Car::Car (

double startTime,
double waitingTime,
MapPosition start,
MapPosition end,
double consumption,
double batteryLevel,
double relativeSpeed)
```

Initializes car object.

3.3 Car Class Reference 7

Parameters

startTime	Time of the car departure.	
waitingTime	Waiting time for start returning (after reaching end position).	
start	Start position.	
end	End position.	
consumption	Car consumption (battery percentages per minute).	
batteryLevel	eryLevel Starting battery level.	
relativeSpeed	relativeSpeed Speed of the car (in kilometers per minute (1/60 * km/hr)).	

3.3.2 Member Function Documentation

3.3.2.1 GetWaitingTime()

```
double Car::GetWaitingTime ( )
```

Returns

Returns waiting time of the car in the end to start returnning.

3.3.2.2 IsReturning()

```
bool Car::IsReturning ( )
```

Returns

Returns true if car is returning (already has been in the original finish).

3.3.2.3 StartReturning()

Appropriately changes car setup to returning to start. Changes start and end position and sets flags of the car to returning.

The documentation for this class was generated from the following files:

- · Car.h
- Car.cpp

3.4 ChargingStation Class Reference

Class representing one charging station.

#include <ChargingStation.h>

Public Member Functions

· ChargingStation ()

Initializes charging station.

 ChargingStation (int32_t stationID, MapPosition position, int32_t capacity, int32_t closestCityID, double chargingWaitingTime, double estimatedChargingLevel)

Initializes charging station.

void AddCustomer (int32_t carID)

Adds customer into the waiting line.

• void RemoveCustomer ()

Updates information about customers when some customer left the charging station.

• int NextCustomer ()

Returns ID of the next customer waiting in line for charging and removes it from the waiting queue.

double GetChargingTime (double batteryLevel)

Computes waiting time needed for the vehicle to be fully charged.

double GetExpectedWaitingTime ()

Estimates waiting time of the vehicle which just aproached charging station until it starts charging.

Public Attributes

- int32 t StationID
- MapPosition Position_
- int32_t CityID_
- int32_t Capacity_
- int32_t NumCustomers_

3.4.1 Detailed Description

Class representing one charging station.

3.4.2 Constructor & Destructor Documentation

3.4.2.1 ChargingStation() [1/2]

ChargingStation::ChargingStation ()

Initializes charging station.

3.4.2.2 ChargingStation() [2/2]

```
ChargingStation::ChargingStation (
    int32_t stationID,
    MapPosition position,
    int32_t capacity,
    int32_t closestCityID,
    double chargingWaitingTime,
    double estimatedChargingLevel )
```

Initializes charging station.

Parameters

stationID	ID of the station.
position	Station position.
capacity	Station capacity.
closestCityID	Closest city center from the station.
chargingWaitingTime	Waiting time of the complete charge of the battery.
estimatedChargingLevel	Estimated charing level of the customers.

3.4.3 Member Function Documentation

3.4.3.1 AddCustomer()

Adds customer into the waiting line.

Parameters

carID	ID of the customers car.
-------	--------------------------

3.4.3.2 GetChargingTime()

Computes waiting time needed for the vehicle to be fully charged.

Parameters

vehicle Vehicle object to compute waiting time (for possible different types of the vehicle extension).

Returns

Returns computed waiting time.

3.4.3.3 GetExpectedWaitingTime()

```
double ChargingStation::GetExpectedWaitingTime ( )
```

Estimates waiting time of the vehicle which just aproached charging station until it starts charging.

Returns

Return estimated waiting time in the queue for the charging.

3.4.3.4 NextCustomer()

```
int ChargingStation::NextCustomer ( )
```

Returns ID of the next customer waiting in line for charging and removes it from the waiting queue.

Returns

Returns ID of the next waiting customer or -1 if no next customer available.

3.4.3.5 RemoveCustomer()

```
void ChargingStation::RemoveCustomer ( )
```

Updates information about customers when some customer left the charging station.

The documentation for this class was generated from the following files:

- · ChargingStation.h
- · ChargingStation.cpp

3.5 City Struct Reference

Struct to store city coordinates.

```
#include <GraphAdjuster.h>
```

Public Member Functions

• City (double lat, double lon)

Public Attributes

- double Lat
- · double Lon

3.5.1 Detailed Description

Struct to store city coordinates.

The documentation for this struct was generated from the following file:

· GraphAdjuster.h

3.6 ComponentsDistance Struct Reference

Struct to store necessary info about the pair of vertices.

#include <GraphAdjuster.h>

Public Member Functions

• ComponentsDistance (double distance, vertex t firstID, vertex t secondID)

Public Attributes

- double Distance
- vertex_t FirstVertexID
- vertex_t SecondVertexID

3.6.1 Detailed Description

Struct to store necessary info about the pair of vertices.

The documentation for this struct was generated from the following file:

· GraphAdjuster.h

3.7 distance_heuristic< m_graph, CostType, LocMap > Class Template Reference

Inheritance diagram for distance_heuristic< m_graph, CostType, LocMap >:

Public Member Functions

- · distance heuristic (LocMap I, vertex t goal)
- CostType operator() (vertex_t u)

The documentation for this class was generated from the following file:

· Map.h

3.8 Edge Class Reference

Class for edge representation (road between the junctions).

```
#include <Edge.h>
```

Public Member Functions

• Edge ()

Initializes the edge.

• void ResetSimulation ()

Resets all simulation information.

void AddType (char type)

Sets proper edge type based on the input.

void AddType (PermitedRoadTypes type)

Sets proper edge type based on the input.

void SetLength (double length, double segmentLength)

Sets length of the edge in kilometers, prepares segmentation of the edge (for battery levels and car generations) and sets capacity of the road.

- double GetLength ()
- int32_t GetNumSegments ()
- PermitedRoadTypes GetRoadType ()
- char GetRoadTypeChar ()
- std::vector< BateryPair > & GetBatteryLevels ()
- void UpdateTransitTime (bool increase)

Updates transition time based on the change of the traffic (vehicle either left or enter the edge).

bool UpdateSegmentData (std::pair< double, double > batteryPair, int32_t startSegment, bool segment
 —
 Increase, int32_t endSegment)

Updates segments information about the battery levels.

Public Attributes

• double TransitTime

Static Public Attributes

• static double CapacityOverflowConstant = 1

3.8.1 Detailed Description

Class for edge representation (road between the junctions).

3.8.2 Constructor & Destructor Documentation

3.8.2.1 Edge()

```
Edge::Edge ( )
```

Initializes the edge.

3.8.3 Member Function Documentation

3.8.3.1 AddType() [1/2]

Sets proper edge type based on the input.

Parameters

```
type Type of the road (supported types: m - motorway, t - trunk, p - primary, o - other).
```

3.8.3.2 AddType() [2/2]

Sets proper edge type based on the input.

Parameters

type	Type of the road.
------	-------------------

3.8.3.3 GetBatteryLevels()

```
std::vector< BateryPair > & Edge::GetBatteryLevels ( )
```

Returns

Returns reference to contatiner of battery levels data of the edge.

3.8.3.4 GetLength()

```
double Edge::GetLength ( )
```

Returns

Returns length of the edge.

3.8.3.5 GetNumSegments()

```
int32_t Edge::GetNumSegments ( )
```

Returns

Returns number of segments of the edge.

3.8.3.6 GetRoadType()

```
PermitedRoadTypes Edge::GetRoadType ( )
```

Returns

Returns type of the road.

3.8.3.7 GetRoadTypeChar()

```
char Edge::GetRoadTypeChar ( )
```

Returns

Returns type of the road in char representation (m - motorway, t - trunk, p - primary, o - other).

3.8.3.8 ResetSimulation()

```
void Edge::ResetSimulation ( )
```

Resets all simulation information.

3.8.3.9 SetLength()

Sets length of the edge in kilometers, prepares segmentation of the edge (for battery levels and car generations) and sets capacity of the road.

Parameters

length	Length of the edge in kilometers.

3.8.3.10 UpdateSegmentData()

Updates segments information about the battery levels.

Parameters

batteryPair	Pair of start and end battery levels.
startSegment	Index of the start segment.
segmentIncrease	Flag if vehicle moving in increasing order of the segment indices true or decreasing order
	false.
endSegment	Index of the end segment (if vehicle movement ends in the middle of the edge), (if -1, then
Generated by Doxygen	automaticaly choosen the appropriate end of the edge).

Returns

Returns true if update was successful, else false.

3.8.3.11 UpdateTransitTime()

Updates transition time based on the change of the traffic (vehicle either left or enter the edge).

Parameters

increase	If vehicle entered the edge true, else if vehicle left false.
----------	---

The documentation for this class was generated from the following files:

- · Edge.h
- Edge.cpp

3.9 found_goal Struct Reference

The documentation for this struct was generated from the following file:

· Map.h

3.10 GeneticParameters Struct Reference

Parameters for the genetic algorithm.

```
#include <OptimizerParameters.h>
```

Public Member Functions

• **GeneticParameters** (int32_t populationSize, int32_t numGenerations, int32_t numBestSelection, double tournamentSelectionTreshold, double mutationTreshold, double memberSizeVariance)

Public Attributes

- int32_t PopulationSize_
- int32_t NumGenerations_
- int32 t NumBestSelection
- double TournamentSelectionTreshold_
- double MutationTreshold
- double MemberSizeVariance_

3.10.1 Detailed Description

Parameters for the genetic algorithm.

The documentation for this struct was generated from the following file:

· OptimizerParameters.h

3.11 GraphAdjuster Class Reference

Class to do preprocessing of the graph.

```
#include <GraphAdjuster.h>
```

Public Member Functions

void AddCityCoordinate (double lat, double lon)

Adds City coordinates to the proper container.

- std::vector < City > & GetCitiesCoordinates ()
- std::vector< AddedEdge > GetAddedEdges ()

Moves added edges container to the user. From that moment it is not permited to use any function from GraphAdjuster which uses container this->addedEdges_. Typical usage is right before destroying this object to retrieve information about added edges.

std::vector< std::vector< double > > GetCitiesDistances ()

Moves container of the distances between each city pair to the user. After calling this function it is not permited to use any function from GraphAdjuster which uses container this->citiesDistances_. Typical usage is right before destroying this object to retrieve information about cities distances.

void ComputeCitiesDistances ()

Computes distances between all pairs of the cities.

bool MergeTwoComponents (Map &map, int32_t numComponents, std::vector< vertex_t > &&vertices← Components)

Finds closest component from the component with index 0 and merges them. Distance is computed with the closest cities of each component and distances of the closest vertices from the cities center. Merges components with the new edge of type OTHER between the closest vertices of the components with distance: distance = cities distance + vertex1_city_distance + vertex2_city_distance

bool MergeDegreeTwoVertices (Map &map)

For every vertex of degree 2 conected with edges of the same road type, merges its edges (to avoid current vertex) and finally deletes the vertex.

bool MergeDegreeTwoVertex (vertex_t vertex_to_merge, Map &map)

Tries to merge given vertex (if degree two and the same road type).

3.11.1 Detailed Description

Class to do preprocessing of the graph.

3.11.2 Member Function Documentation

3.11.2.1 AddCityCoordinate()

Adds City coordinates to the proper container.

Parameters

lat	Latitude of the city.
lon	Longitude of the city.

3.11.2.2 ComputeCitiesDistances()

```
void GraphAdjuster::ComputeCitiesDistances ( )
```

Computes distances between all pairs of the cities.

3.11.2.3 GetAddedEdges()

```
std::vector< AddedEdge > GraphAdjuster::GetAddedEdges ( )
```

Moves added edges container to the user. From that moment it is not permited to use any function from GraphAdjuster which uses container this->addedEdges_. Typical usage is right before destroying this object to retrieve information about added edges.

Returns

Return container of all added edges to the graph in order to merge all graph components.

3.11.2.4 GetCitiesCoordinates()

```
\verb|std::vector| < City > & GraphAdjuster::GetCitiesCoordinates ( )|\\
```

Returns

Returns reference to coordinates of all cities.

3.11.2.5 GetCitiesDistances()

Moves container of the distances between each city pair to the user. After calling this function it is not permited to use any function from GraphAdjuster which uses container this->citiesDistances_. Typical usage is right before destroying this object to retrieve information about cities distances.

Returns

Returns container of the distanes between each pair of cities.

3.11.2.6 MergeDegreeTwoVertex()

Tries to merge given vertex (if degree two and the same road type).

Parameters

vertex_to_merge	Vertex id to be merged.
тар	Map object where to do the graph changes.

Returns

Returns true if vertex should be deleted (network was reconected), false do not delete the node.

3.11.2.7 MergeDegreeTwoVertices()

For every vertex of degree 2 conected with edges of the same road type, merges its edges (to avoid current vertex) and finally deletes the vertex.

Parameters

ap Map object where to do the graph changes.
--

3.11.2.8 MergeTwoComponents()

Finds closest component from the component with index 0 and merges them. Distance is computed with the closest cities of each component and distances of the closest vertices from the cities center. Merges components with the new edge of type OTHER between the closest vertices of the components with distance: $distance = cities_distance + vertex1_city_distance + vertex2_city_distance$

Parameters

graph	Graph to work with.
numComponents	Number of components of the graph.
verticesComponents	Vector of IDs of each vertex from the component.

Returns

Returns true if merging was successfull, else false.

The documentation for this class was generated from the following files:

- · GraphAdjuster.h
- · GraphAdjuster.cpp

3.12 GreedyParameters Struct Reference

Parameters for the greedy algorithm.

```
#include <OptimizerParameters.h>
```

Public Member Functions

• GreedyParameters (int32_t maxIterations, int32_t numThrowAway)

Public Attributes

- int32_t MaxIterations_
- int32 t NumThrowAway

3.12.1 Detailed Description

Parameters for the greedy algorithm.

The documentation for this struct was generated from the following file:

· OptimizerParameters.h

3.13 KMeansParameters Struct Reference

Parameters for the K-Means optimalization.

```
#include <OptimizerParameters.h>
```

Public Member Functions

• KMeansParameters (int32_t numIterationsOneRun, int32_t numGenerations)

Public Attributes

- int32 t NumlterationsOneRun
- int32_t NumGenerations_

3.13.1 Detailed Description

Parameters for the K-Means optimalization.

The documentation for this struct was generated from the following file:

· OptimizerParameters.h

3.14 location Struct Reference

Public Attributes

- · double Latitude
- · double Longitude

The documentation for this struct was generated from the following file:

· Node.h

3.15 Map Class Reference

Class to store and do basic operation with map objects.

```
#include <Map.h>
```

Public Member Functions

• Map (int32 t numClosestStations, double segmentLength)

Initializes map object.

• void InitHeuristicLocations ()

Initializes vector of locations for each vertex (for a-star heuristic function).

void ResetSimulation ()

Resets simulation information in the object (deletes charging stations and info about them and resets edges information about its battery levels).

Adds node on the graph and sets its properties.

void AddEdge (int32_t firstID, int32_t secondID, char type, double length)

Adds edge on the map and sets its properties.

void AddEdge (vertex t firstID, vertex t secondID, PermitedRoadTypes type, double length)

Adds edge on the map and sets its properties.

· void AddCity (int32_t cityID, int32_t population)

Adds population of the given city into the desired storage. If city already initialized, then rewrites the info. If cities with lower cityID not defined, defines it with zero population.

void AddChargingStation (ChargingStation chargingStation)

Adds given charging station object to the container of all charging stations of the map.

void SetCitiesDistances (Double2DMatrix citiesDistances)

Stores cities distances information into proper variable.

- const Graph & GetConstGraph ()
- Graph & GetGraph ()
- const Node & GetNode (int32 t nodeID)
- std::vector< std::unique ptr< ChargingStation > > & GetChargingStations ()
- std::unique ptr< ChargingStation > & GetChargingStation (int32 t stationID)
- double GetCityPairDistance (int32 t firstCityID, int32 t secondCityID)
- const std::vector< int32 t > & GetCitiesPopulation ()
- const std::vector< vertex t > & GetCityNodes (int32 t cityID)
- std::unique ptr< ChargingStation > & GetLastChargingStation ()
- std::map< edge t, std::vector< BateryPair > & > GetAllSegments ()
- bool ExistNode (int32_t nodeID)

Checks whether node with given ID exists.

double ComputeSphericalDistance (double firstLatitude, double firstLongitude, double secondLatitude, double secondLongitude)

Computes distance between 2 cities based on longitude and latitude (using the 'Haversine' formula).

void FindCityNodes ()

Finds all nodes which belongs to the city and stores them into proper container.

void FindCitiesNearestChargingStations ()

Finds this->numClosestStations_ nearest stations for each city in the map and stores them in ascending order (by distance from city) in the proper container. For path searching through charging stations.

MapPosition FindClosestPositionToCoordinates (double latitude, double longitude)

Finds the closest vertex from the given coordinates, then its neighbor closest to the given coordinates and on the edge connecting these two vertices randomly generates segment closer to the closest vertex. It (partly randomly) approximates the position of the given coordinates (for K-Means algorithm and finding centroids there).

LengthPathPair FindVehiclePath (vertex_t start, vertex_t end, bool goCharging)

Finds estimated shortest path between two given vertices. If we want to go charging, then finds estimated shorted path through some charging station (returns only path to the charging station, rest of the path should be computed after the vehicle is charged).

• LengthPathPair FindShortestPath (const vertex t &start, const vertex t &goal)

Finds shortest path between two choosen vertices using A-Star algorithm.

std::vector< double > DijkstraFindDistances (vertex_t start)

Performs Dijkstra algorithm to find distance of each vertex from the start vertex.

Finds components of the graph.

void SimulateVehiclePassedThroughEdge (edge_t edge, std::pair< double, double > batteryPair, int32_

 t startSegment, bool segmentIncrease, int32_t endSegment)

Simulates vehicle passage through the given edge (updates battery usage info).

3.15.1 Detailed Description

Class to store and do basic operation with map objects.

3.15.2 Constructor & Destructor Documentation

3.15.2.1 Map()

Initializes map object.

Parameters

numClosestStations	Number of closest charging station to conside while planning the vehicle route	
segmentLength	Length of the segment.	

3.15.3 Member Function Documentation

3.15.3.1 AddChargingStation()

Adds given charging station object to the container of all charging stations of the map.

Parameters

chargingSta	ion Object representing charging station to be add	ded.
-------------	--	------

3.15.3.2 AddCity()

Adds population of the given city into the desired storage. If city already initialized, then rewrites the info. If cities with lower cityID not defined, defines it with zero population.

Parameters

cityID	ID of the city to add.
population	Population of the city.

3.15.3.3 AddEdge() [1/2]

Adds edge on the map and sets its properties.

Parameters

firstID	ID of the first node of the edge.
secondID	ID of the second node of the edge.
type	Type of the edge (m - motorway, t - trunk, p - primary, o - other).
length	Length of the edge (in kilometers).

3.15.3.4 AddEdge() [2/2]

Adds edge on the map and sets its properties.

Parameters

firstID	ID of the first node of the edge.
secondID	ID of the second node of the edge.
type	Road type of the edge.
length	Length of the edge (in kilometers).

3.15.3.5 AddNode()

Adds node on the graph and sets its properties.

Parameters

newID	Current ID of the node.
latitude	Latitude of the node in the real world.
longitude	longitude of the node in the real world.
cityID	ID of the nearest city of the node.
distance	Distance between the node and its nearest city.
oldID	Original ID of the node (from the source map), if not specified -1 by default.

3.15.3.6 ComputeSphericalDistance()

Computes distance between 2 cities based on longitude and latitude (using the 'Haversine' formula).

Parameters

firstCity	First city coordinates.
secondCity	Second city coordinates.

Returns

Returns distance between 2 cities in kilometers.

3.15.3.7 DijkstraFindDistances()

Performs Dijkstra algorithm to find distance of each vertex from the start vertex.

Parameters

start	Start vertex to compute distance from.

Returns

Returns container of distances of each vertex from the start vertex.

3.15.3.8 ExistNode()

Checks whether node with given ID exists.

Parameters

```
nodeID Node ID to check.
```

Returns

Returns true if node exists, else false.

3.15.3.9 FindCitiesNearestChargingStations()

```
void Map::FindCitiesNearestChargingStations ( )
```

Finds this->numClosestStations_ nearest stations for each city in the map and stores them in ascending order (by distance from city) in the proper container. For path searching through charging stations.

3.15.3.10 FindCityNodes()

```
void Map::FindCityNodes ( )
```

Finds all nodes which belongs to the city and stores them into proper container.

3.15.3.11 FindClosestPositionToCoordinates()

Finds the closest vertex from the given coordinates, then its neighbor closest to the given coordinates and on the edge connecting these two vertices randomly generates segment closer to the closest vertex. It (partly randomly) approximates the position of the given coordinates (for K-Means algorithm and finding centroids there).

Parameters

latitude	Latitude of the searched position.
longitude	Longitude of the searched position.

Returns

Returns the approximately nearest position on the map from the given position.

3.15.3.12 FindShortestPath()

Finds shortest path between two choosen vertices using A-Star algorithm.

Parameters

start	Start vertex.
goal	Final vertex.

Returns

Returns pair of estimated path length and reversed path of the vertices from start to goal.

3.15.3.13 FindVehiclePath()

Finds estimated shortest path between two given vertices. If we want to go charging, then finds estimated shorted path through some charging station (returns only path to the charging station, rest of the path should be computed after the vehicle is charged).

Parameters

start	Start vertex of the path.
end	Final vertex of the path.
goCharging	Flag if car should go charging then true, else false.

Returns

Returns the pair of estimated relative path duration and the container of the reversed path.

3.15.3.14 GetAllSegments()

```
std::map< edge_t, std::vector< BateryPair > & > Map::GetAllSegments ( )
```

Returns

Returns map of edge identifier and its corresponding battery levels data.

3.15.3.15 GetChargingStation()

```
\label{eq:std:unique_ptr} $$std::unique\_ptr<$$ChargingStation > \& Map::GetChargingStation ( $$int32_t $ stationID )$$
```

Parameters

stationID ID of the wanted charging stati	on.
---	-----

Returns

Returns reference to the charging station with given ID.

3.15.3.16 GetChargingStations()

```
\verb|std::vector| < \verb|std::unique_ptr| < \verb|ChargingStation| >> & \verb|Map::GetChargingStations| ( ) \\
```

Returns

Returns reference to the container of all charging stations.

3.15.3.17 GetCitiesPopulation()

```
const std::vector< int32_t > & Map::GetCitiesPopulation ( )
```

Returns

Returns const reference to each city population container.

3.15.3.18 GetCityNodes()

Parameters

cityID City ID to get vertices from.
--

Returns

Returns constant reference to the container of all city nodes for the given city.

3.15.3.19 GetCityPairDistance()

Parameters

firstCityID	ID of the first city.
secondCityID	ID of the second city.

Returns

Returns distance between two cities.

3.15.3.20 GetConstGraph()

```
const Graph & Map::GetConstGraph ( )
```

Returns

Returns constant reference to graph.

3.15.3.21 GetGraph()

```
Graph & Map::GetGraph ( )
```

Returns

Returns reference to graph of the map.

3.15.3.22 GetLastChargingStation()

```
std::unique_ptr< ChargingStation > & Map::GetLastChargingStation ( )
```

Returns

Returns reference to charging station which was used in the last route planning through charging station (typicaly used to get information about position of the station for vehicle object).

3.15.3.23 GetNode()

Parameters

nodeID	ID of the node to get reference.
--------	----------------------------------

Returns

Returns const reference to the node with given ID.

3.15.3.24 InitHeuristicLocations()

```
void Map::InitHeuristicLocations ( )
```

Initializes vector of locations for each vertex (for a-star heuristic function).

3.15.3.25 ResetSimulation()

```
void Map::ResetSimulation ( )
```

Resets simulation information in the object (deletes charging stations and info about them and resets edges information about its battery levels).

3.15.3.26 SetCitiesDistances()

Stores cities distances information into proper variable.

Parameters

citiesDistances Matrix of distances between each pair of the city (to be stored in the proper variable).

3.15.3.27 SimulateVehiclePassedThroughEdge()

```
void Map::SimulateVehiclePassedThroughEdge (
          edge_t edge,
          std::pair< double, double > batteryPair,
          int32_t startSegment,
```

```
bool segmentIncrease,
int32_t endSegment )
```

Simulates vehicle passage through the given edge (updates battery usage info).

Parameters

edge	Identifier of the edge to be updated.
batteryPair	Pair of in and out battery level.
startSegment	Starting segment of the vehicle.
segmentIncrease	Flag whether vehicle increasing in segments (true if so, else false).
endSegment	End Segment of the path (if -1 then automatically finds appropriate end of the edge).

3.15.3.28 TestComponents()

Finds components of the graph.

Parameters

numComponentsTuple	Tuple where to store number of components (first parameter) and vector of	
	component IDs for each vertex.	

The documentation for this class was generated from the following files:

- · Map.h
- Map.cpp

3.16 MapPosition Class Reference

Class to store info about the position in the map (edge and its segment).

```
#include <MapPosition.h>
```

Public Member Functions

- MapPosition ()
 - Intitilizes object.
- MapPosition (vertex_t firstVertex, vertex_t secondVertex, int32_t segment, Graph &graph)
 Intitilizes object.
- void ChangeParameters (vertex_t closer, vertex_t further, int32_t segment, Graph &graph)
 - Changes parameters of the object and computes other (if specified).
- double GetDistanceFromCloserVertex (Graph &graph, double segmentLength)

Computes distance from the closer vertex. Distance is only approximate (there could be difference of 1 segment length). We assume this function will be used only as a rough estimate of the distance from closer vertex.

Public Attributes

- edge_t EdgelD
- vertex_t CloserVertexID
- vertex t FurtherVertexID
- int32_t EdgeSegmentID

3.16.1 Detailed Description

Class to store info about the position in the map (edge and its segment).

3.16.2 Constructor & Destructor Documentation

3.16.2.1 MapPosition() [1/2]

```
MapPosition::MapPosition ( )
```

Intitilizes object.

3.16.2.2 MapPosition() [2/2]

```
MapPosition::MapPosition (
    vertex_t firstVertex,
    vertex_t secondVertex,
    int32_t segment,
    Graph & graph )
```

Intitilizes object.

Parameters

firstVertex	ID of the first vertex of the edge.
secondVertex	ID of the second vertex of the edge.
segment	ID of the segment on the edge.
graph	Graph object where the position is (to get edge ID).

3.16.3 Member Function Documentation

3.16.3.1 ChangeParameters()

```
void MapPosition::ChangeParameters (
    vertex_t closer,
    vertex_t further,
    int32_t segment,
    Graph & graph )
```

Changes parameters of the object and computes other (if specified).

Parameters

closer	New closer vertex ID.	
further	New further vertex ID.	
segment	New segment ID (if -1 then let it precompute by the function (the last or the first segment)).	
graph	Graph object to get all necessary info.	

3.16.3.2 GetDistanceFromCloserVertex()

Computes distance from the closer vertex. Distance is only approximate (there could be difference of 1 segment length). We assume this function will be used only as a rough estimate of the distance from closer vertex.

Parameters

graph	Graph object to get the distance from.
segmentLength	Length of one segment of the edge.

Returns

Returns estimated distance of the position from the closer vertex.

The documentation for this class was generated from the following files:

- · MapPosition.h
- · MapPosition.cpp

3.17 MapReader Class Reference

Public Member Functions

• MapReader ()

Initializes the reader.

• bool LoadMap (Map &map, SimulationParameters &simulationParameters)

Loads map from the file streams from given parameters in the appropriate format.

• bool LoadNodesCities (Map &map, std::istream &nodeCityStream)

Loads node-city pairs from the input.

• bool LoadEdges (Map &map, std::istream &edgeStream)

Loads edges from the input.

bool LoadCities (Map &map, std::istream &cityStream)

Loads cities from the input.

bool LoadChargingStations (Map &map, std::istream &chargingStationsStream)

Loads charging stations.

• bool WriteAddedEdges (std::ostream &addedEdgesStream)

Writes added edges used for components merging. In format: first_vertex second_vertex length type

bool WritePreparedCombinedNodes (Map &map, std::ostream &preparedNodesStream)

Writes preprocessed combined nodes (after removing degree 2 vertices from the original graph). In format: node← _ID latitude longitude nearest_city_ID city_distance

bool WritePreparedEdges (Map &map, std::ostream &preparedEdgesStream)

Writes preprocessed edges (after removing degree 2 vertices from the original graph). In format: node_id_1 node_id_2 length road_type

bool WriteStations (Map &map, std::ostream &stationsStream)

Writes all charging stations representations into the given stream. In format: station_ID closer_vertex further_vertex segment capacity city_ID waiting_time estimated_charging

GraphAdjuster & GetGraphAdjuster ()

3.17.1 Constructor & Destructor Documentation

3.17.1.1 MapReader()

```
MapReader::MapReader ( )
```

Initializes the reader.

3.17.2 Member Function Documentation

3.17.2.1 GetGraphAdjuster()

```
GraphAdjuster & MapReader::GetGraphAdjuster ( )
```

Returns

Returns reference to currently used GraphAdjuster object.

3.17.2.2 LoadChargingStations()

Loads charging stations.

Parameters

тар	Object to store info about the stations.
chargingStationsStream	Input stream.

Returns

Returns true if loading was successful, else false.

3.17.2.3 LoadCities()

Loads cities from the input.

Parameters

тар	Object to store info about the cities.
cityStream	Input stream.

Returns

Returns true if loading was successful, else false.

3.17.2.4 LoadEdges()

Loads edges from the input.

Parameters

тар	Object to store info about the edges.
edgeStream	Input stream.

Returns

Returns true if loading was successful, else false.

3.17.2.5 LoadMap()

Loads map from the file streams from given parameters in the appropriate format.

Parameters

тар	Object of the map to store the loaded information.
simulationParameters	Object which clusters all simulation parameters.

Returns

Return true if loading was successful, else false (error happened).

3.17.2.6 LoadNodesCities()

Loads node-city pairs from the input.

Parameters

тар	Object to store info about node-city pair.
nodeCityStream	Input stream.

Returns

Returns true if loading was successful, else false.

3.17.2.7 WriteAddedEdges()

Writes added edges used for components merging. In format: $first_vertex$ $second_vertex$ length type

Parameters

addedEdgesStream	Stream to write info about added adges.

Returns

Returns true if writing was successful, else false.

3.17.2.8 WritePreparedCombinedNodes()

Writes preprocessed combined nodes (after removing degree 2 vertices from the original graph). In format: node ← _ID latitude longitude nearest_city_ID city_distance

Parameters

тар	Map object to get graph info.
preparedNodesStream	Stream to write node-city info.

Returns

Returns true if writing was successful, else false.

3.17.2.9 WritePreparedEdges()

Writes preprocessed edges (after removing degree 2 vertices from the original graph). In format: $node_id_1$ $node_id_2$ length $road_type$

Parameters

тар	Map object to get graph info.
preparedEdgesStream	Stream to write edges info.

Returns

Returns true if writing was successful, else false.

3.17.2.10 WriteStations()

Writes all charging stations representations into the given stream. In format: station_ID closer_vertex further_vertex segment capacity city_ID waiting_time estimated_charging

Parameters

тар	Map object to load charging stations from.
stationsStream	Stream to write charging stations configurations.

Returns

Returns true if writing was successfull, else false.

The documentation for this class was generated from the following files:

- · MapReader.h
- · MapReader.cpp

3.18 ModelRepresentation Class Reference

Class to represent one model.

#include <ModelRepresentation.h>

Public Member Functions

• ModelRepresentation ()

Initializes the object.

- ModelRepresentation (double loss, std::vector < StationParameters > allStations)
 Initilizes the object.
- void SaveModelRepresentation (std::vector< std::unique_ptr< ChargingStation >> &allStations)
 Stores representation of the given model to this object.

Public Attributes

- · double Loss_
- std::vector < StationParameters > AllChargingStations_

3.18.1 Detailed Description

Class to represent one model.

3.18.2 Constructor & Destructor Documentation

3.18.2.1 ModelRepresentation() [1/2]

```
ModelRepresentation::ModelRepresentation ( )
```

Initializes the object.

3.18.2.2 ModelRepresentation() [2/2]

```
\label{loss_model} $$\operatorname{ModelRepresentation} \ ($$\operatorname{double} \ loss, $$ \operatorname{std}::\operatorname{vector}< \operatorname{StationParameters} > \operatorname{allStations} \ )
```

Initilizes the object.

Parameters

loss	Loss of the model.
allStations	Vector of all charging stations of the model.

3.18.3 Member Function Documentation

3.18.3.1 SaveModelRepresentation()

Stores representation of the given model to this object.

Parameters

allStations	Container of all charging stations of the model.
-------------	--

The documentation for this class was generated from the following files:

- · ModelRepresentation.h
- · ModelRepresentation.cpp

3.19 MyGreater Struct Reference

Public Member Functions

• bool operator() (const TableEvent &lhs, const TableEvent &rhs)

3.20 Node Class Reference 41

The documentation for this struct was generated from the following file:

· TimeTable.h

3.20 Node Class Reference

Class representing road junction.

```
#include <Node.h>
```

Public Member Functions

• Node ()

Initializes the object.

Node (int32_t newID, int32_t oldID, int32_t cityID, double cityDistance, double latitude, double longitude)
 Initializes the object.

Public Attributes

- int32 t NewID
- int32_t OldID_
- int32_t CityID_
- double CityDistance_
- location Location_

3.20.1 Detailed Description

Class representing road junction.

3.20.2 Constructor & Destructor Documentation

```
3.20.2.1 Node() [1/2]
```

```
Node::Node ( )
```

Initializes the object.

3.20.2.2 Node() [2/2]

Initializes the object.

Parameters

newID	Current node ID.
oldID	Old node ID (in the original map). To potentially project the node to the real map).
cityID	ID of the nearest city.
cityDistance	Distance between the node and its nearest city center.
latitude	Node latitude.
longitude	Node longitude.

The documentation for this class was generated from the following files:

- · Node.h
- · Node.cpp

3.21 Optimizer Class Reference

Class to optimize number of charging stations and its locations.

#include <Optimizer.h>

Public Member Functions

- Optimizer (SimulationParameters simulationParameters, OptimizerParameters optimizerParameters)
 Initilizes the optimizer object.
- double ModelLoss (double stationNumberParameter, double runDownParameter, double durationParameter, double batteryDifferenceParameter, double waitingTimesParameter)

Computes loss of the current station model. Score is just linear combination of:

• void RunMultipleSimulations (int16_t numIterations, bool logs)

Runs traffic simulation multiple times with randomly placed charing stations.

· void GreedyAlgorithm (bool logs)

Optimizes charging station positions and its number based on the station usage and positions of the battery run down vehicles. Maintains all at least once time used stations and rest randomly generates on the positions of battery run down and also some stations just doesn't use (to optimize number of stations too).

void GeneticAlgorithm (bool logs)

Optimizes charging stations position and number using the genetic algorithm approach. One model is considered to be an individual. All operations works only with the loss (fitness) and all charging stations of the model. For selection we take given number of best models and rest of the population we choose using the tournament selection. We then use one point crossover (changes stations from the given index in the vector of all charging stations). And in mutation we randomly delete stations and replace them with randomly generated one or we randomly delete or add some stations (mutation in position and also in number of stations).

void KMeansAlgorithm (bool logs)

Optimizes the position of the charging stations using the algorithm inspired by K-Means algorithm. Randomly generates centroids finds its clusters (approximately using Dijsktra algorithm) and then approximately computes new clusters (using geographical coordinates of the nodes).

3.21.1 Detailed Description

Class to optimize number of charging stations and its locations.

3.21.2 Constructor & Destructor Documentation

3.21.2.1 Optimizer()

```
Optimizer::Optimizer (
SimulationParameters simulationParameters,
OptimizerParameters optimizerParameters)
```

Initilizes the optimizer object.

Parameters

simulationParameters	Parameters of the traffic simulator.
optimizerParameters	Parameters of the optimizer.

3.21.3 Member Function Documentation

3.21.3.1 GeneticAlgorithm()

```
void Optimizer::GeneticAlgorithm (
          bool logs )
```

Optimizes charging stations position and number using the genetic algorithm approach. One model is considered to be an individual. All operations works only with the loss (fitness) and all charging stations of the model. For selection we take given number of best models and rest of the population we choose using the tournament selection. We then use one point crossover (changes stations from the given index in the vector of all charging stations). And in mutation we randomly delete stations and replace them with randomly generated one or we randomly delete or add some stations (mutation in position and also in number of stations).

Parameters

logs	Whether to write simulator logs.

3.21.3.2 GreedyAlgorithm()

```
void Optimizer::GreedyAlgorithm (
          bool logs )
```

Optimizes charging station positions and its number based on the station usage and positions of the battery run down vehicles. Maintains all at least once time used stations and rest randomly generates on the positions of battery run down and also some stations just doesn't use (to optimize number of stations too).

Parameters

simulator logs.	logs Whether to
-----------------	-----------------

3.21.3.3 KMeansAlgorithm()

```
void Optimizer::KMeansAlgorithm (
          bool logs )
```

Optimizes the position of the charging stations using the algorithm inspired by K-Means algorithm. Randomly generates centroids finds its clusters (approximately using Dijsktra algorithm) and then approximately computes new clusters (using geographical coordinates of the nodes).

Parameters

	logs	Whether to write simulator logs.	ı
--	------	----------------------------------	---

3.21.3.4 ModelLoss()

Computes loss of the current station model. Score is just linear combination of:

(number_of_charging_stations, number_of_battery_run_downs, average_travel_duration, average_battery_cidifference (difference between start and end battery level (negative - battery increase, positive - battery decrease)), average_waiting_time)

Each part of the linear combination has its apropriate multiplication contants.

Parameters

stationNumberParameter	Multiplication constant of the number of charging stations.
runDownParameter	Multiplication constant of the number of run down vehicles.
durationParameter	Multiplication constant of the average duration (in minutes).
batteryDifferenceParameter	Multiplication constant of the average battery level difference (values from -1 to 1 (negative values means battery level increases, positive - decreases)).
waitingTimesParameter	Multiplication constant for average waiting time in the charging station.

Returns

Returns loss value of the current charging stations model.

3.21.3.5 RunMultipleSimulations()

Runs traffic simulation multiple times with randomly placed charing stations.

Parameters

numIterations	Number of simulations to run.
logs	Whether to write simulator logs.

The documentation for this class was generated from the following files:

- · Optimizer.h
- · Optimizer.cpp

3.22 OptimizerParameters Class Reference

Public Member Functions

• OptimizerParameters ()

Initializes the optimizer parameters.

 OptimizerParameters (GreedyParameters greedyParameters, GeneticParameters geneticParameters, KMeansParameters kMeansParameters, double scoreDifference, double stationNumberParameter, double runDownParameter, double durationParameter, double batteryDifferenceParameter, double waitingTimes
 — Parameter)

Initializes the optimizer parameters.

Public Attributes

- GreedyParameters GreedyParameters_
- GeneticParameters GeneticParameters_
- KMeansParameters KMeansParameters_
- double ScoreDifferenceTreshold_
- double StationNumberParameter_
- double RunDownParameter_
- double **DurationParameter**_
- double BatteryDifferenceParameter
- double WaitingTimesParameter

3.22.1 Constructor & Destructor Documentation

3.22.1.1 OptimizerParameters() [1/2]

```
OptimizerParameters::OptimizerParameters ( )
```

Initializes the optimizer parameters.

3.22.1.2 OptimizerParameters() [2/2]

Initializes the optimizer parameters.

Parameters

greedyParameters	Parameters for greedy optimization.
geneticParameters	Parameters for genetic optimization.
kMeansParameters	Parameters for K-Means optimization.
scoreDifference	Treshold of score difference to continue in optimization (in some algorithms).
stationNumberParameter	Loss parameter for number of stations.
runDownParameter	Loss parameter for run down vehicles.
durationParameter	Loss parameter for travel duration.
batteryDifferenceParameter	Loss parameter for battery difference.
waitingTimesParameter	<loss for="" in="" param="" parameter="" stations.="" times="" waiting=""></loss>

The documentation for this class was generated from the following files:

- · OptimizerParameters.h
- · OptimizerParameters.cpp

3.23 SimulationParameters Class Reference

Class to manage program arguments.

#include <SimulationParameters.h>

Public Member Functions

• SimulationParameters ()

Initializes simulation parameters.

Public Attributes

- · bool SavePrepared
- int32 t SimulationTime
- int32_t NumClosestStations
- int32 t NumStations
- int32_t StationCapacity
- · double SegmentLength
- · double CarConsumption
- double ExponentialLambdaCities
- double ExponentialLambdaDepartures
- double EndCityRatio
- double BatteryTresholdLambda
- · double CarBatteryMean
- double CarBatteryDeviation
- double CarStartBatteryBottomLimit
- double ChargingTreshold
- double NotChargingTreshold
- double BatteryTolerance
- · double CarVelocity
- double ChargingWaitingTime
- double MeanChargingLevel
- std::string EdgesFile
- std::string NodeCityFile
- std::string CitiesFile
- std::string AddedEdgesFile
- std::string PreparedNodesFile
- std::string PreparedEdgesFile

3.23.1 Detailed Description

Class to manage program arguments.

3.23.2 Constructor & Destructor Documentation

3.23.2.1 SimulationParameters()

SimulationParameters::SimulationParameters ()

Initializes simulation parameters.

The documentation for this class was generated from the following files:

- · SimulationParameters.h
- SimulationParameters.cpp

3.24 StationParameters Class Reference

Struct to store information about the charging station.

```
#include <StationParameters.h>
```

Public Member Functions

• StationParameters ()

Initializes station parameters.

• StationParameters (int32_t stationID, MapPosition position, int32_t capacity, int32_t closestCityID, double chargingWaitingTime, double estimatedChargingLevel)

Initializes station parameters.

Public Attributes

- int32_t StationID_
- MapPosition Position_
- int32 t Capacity
- int32_t ClosestCityID_
- double ChargingWaitingTime_
- · double EstimatedChargingLevel_

3.24.1 Detailed Description

Struct to store information about the charging station.

3.24.2 Constructor & Destructor Documentation

3.24.2.1 StationParameters() [1/2]

```
StationParameters::StationParameters ( )
```

Initializes station parameters.

3.24.2.2 StationParameters() [2/2]

Initializes station parameters.

Parameters

stationID	ID of the station.
position	Position of the station.
capacity	Capacity of the station.
closestCityID	ID of the nearest city of the station.
chargingWaitingTime	Waiting time for full charge.
estimatedChargingLevel	Expected level to be charged on the station.

The documentation for this class was generated from the following files:

- · StationParameters.h
- StationParameters.cpp

3.25 TableEvent Class Reference

Class to store info about the simulation event (for discrete simulation).

```
#include <TableEvent.h>
```

Public Member Functions

TableEvent (int64_t carID, double actionTime, Actions action)
 Initializes the event object.

Public Attributes

- double ActionTime_
- int64_t CarID_
- Actions Action

3.25.1 Detailed Description

Class to store info about the simulation event (for discrete simulation).

3.25.2 Constructor & Destructor Documentation

3.25.2.1 TableEvent()

Initializes the event object.

Parameters

carID	ID of the vehicle of the event.
actionTime	Time of the event.
action	Type of the action.

The documentation for this class was generated from the following files:

- · TableEvent.h
- TableEvent.cpp

3.26 TimeTable Class Reference

Class to manage all high level simulation logic.

```
#include <TimeTable.h>
```

Public Member Functions

• TimeTable (SimulationParameters &simulationParameters)

Initializes the timetable.

bool LoadMap (SimulationParameters &simulationParameters)

Loads map of the simulator from the given source and sets proper simulator parameters.

void RandomlyGenerateChargingStations (int32_t numStations, SimulationParameters &simulation←
 Parameters)

Randomly generates charging stations.

• void ResetSimulation ()

Resets all simulation information.

void RunSimulation (int32_t numStations, SimulationParameters &simulationParameters, bool logs)

Executes the simulation.

void AddEvent (TableEvent tableEvent)

Adds event to the timetable.

- const TableEvent & GetNextEvent ()
- void RunRestSimulation (SimulationParameters &simulationParameters, bool logs)

Executes simulation after generation of first 2 cars.

- std::vector< double > & GetTravelDurations ()
- std::vector< double > & GetBatteryDifferences ()
- std::vector< std::vector< double > > & GetChargingLevels ()
- std::vector< std::pair< int32_t, double >> & GetWaitingTimes ()
- std::map< edge_t, std::vector< BateryPair > & > GetAllMapSegmentsInfo ()
- TrafficSimulator & GetTrafficSimulator ()
- std::map< int32 t, std::vector< MapPosition > > & GetRunDownPositions ()

Public Attributes

- double ActualTime
- int32_t CarsBatteryRunDown_ = 0

3.26.1 Detailed Description

Class to manage all high level simulation logic.

3.26.2 Constructor & Destructor Documentation

3.26.2.1 TimeTable()

Initializes the timetable.

Parameters

simulationParameters	Parameters of the simulation.
----------------------	-------------------------------

3.26.3 Member Function Documentation

3.26.3.1 AddEvent()

Adds event to the timetable.

Parameters

```
tableEvent Event to be added.
```

3.26.3.2 GetAllMapSegmentsInfo()

```
\verb|std::map| < \verb|edge_t|, | \verb|std::vector| < \verb|BateryPair| > \& > \verb|TimeTable::GetAllMapSegmentsInfo| ( ) |
```

Returns

Returns map with key edge identifier and value reference to vector of battery info for each segment of the corresponding edge.

3.26.3.3 GetBatteryDifferences()

```
std::vector< double > & TimeTable::GetBatteryDifferences ( )
```

Returns

Returns reference to vector of all battery differences between start and end of the route.

3.26.3.4 GetChargingLevels()

Returns

Returns reference to vector of all charging level for each charging station.

3.26.3.5 GetNextEvent()

```
const TableEvent & TimeTable::GetNextEvent ( )
```

Returns

Returns const reference to next event to be done.

3.26.3.6 GetRunDownPositions()

Returns

Returns reference to all battery run down positions of each city.

3.26.3.7 GetTrafficSimulator()

```
TrafficSimulator & TimeTable::GetTrafficSimulator ( )
```

Returns

Returns reference to TrafficSimulator object.

3.26.3.8 GetTravelDurations()

```
std::vector< double > & TimeTable::GetTravelDurations ( )
```

Returns

Returns reference to vector of all finished travel durations of the simulation.

3.26.3.9 GetWaitingTimes()

```
std::vector < std::pair < int32_t, double > > & TimeTable::GetWaitingTimes ( )
```

Returns

Returns reference to vector of number of customers and sum of their waiting times for each charging station.

3.26.3.10 LoadMap()

Loads map of the simulator from the given source and sets proper simulator parameters.

Parameters

simulationParameters	Parameters of the simulation.
----------------------	-------------------------------

Returns

Returns true if loading was sucessfull, else false.

3.26.3.11 RandomlyGenerateChargingStations()

```
void TimeTable::RandomlyGenerateChargingStations ( int 32\_t \ numStations, SimulationParameters \& simulationPararemetrs )
```

Randomly generates charging stations.

Parameters

numStations	Number of station to be generated.
simulationParameters	Parameters of the simulation.

3.26.3.12 ResetSimulation()

```
void TimeTable::ResetSimulation ( )
```

Resets all simulation information.

3.26.3.13 RunRestSimulation()

Executes simulation after generation of first 2 cars.

Parameters

simulationParameters	Parameters of the simulation.
logs	Whether to write simulation logs (for debugging).

3.26.3.14 RunSimulation()

Executes the simulation.

Parameters

numStations	Number of charging stations.
simulationParameters	Parameters of the simulation.
logs	Whether to write simulation logs (for debugging).

The documentation for this class was generated from the following files:

- · TimeTable.h
- TimeTable.cpp

3.27 TrafficSimulator Class Reference

Class for managing simulator operations.

#include <TrafficSimulator.h>

Public Member Functions

• TrafficSimulator (int32_t numClosestStations, double segmentLength)

Intitilizes the object.

• bool LoadMap (SimulationParameters &simulationParameters)

Load map and stores all other necessary precomputed data (precomputed distances between each pair of cities).

void ResetSimulation ()

Reset simulation parameters.

• void GenerateChargingStations (int32_t numStations, SimulationParameters &simulationParameters)

Randomly generates charging stations (based on city probability and its distance from the center of the city) and stores it.

• ChargingStation GenerateChargingStation (int32_t stationID, SimulationParameters simulationParameters)

Randomly generates charging station.

• int64 t GenerateCar (double startTime, SimulationParameters &simulationParameters)

Generates car and adds it to the vector of all currently used cars.

• double GenerateNextDepartureTime ()

Generates next departure or waiting time.

double GenerateBatteryTreshold ()

Generates random additional part to battery treshold (for random part of the charging decision).

void DeleteCar (int64 t CarID)

Deletes the car from the container of all currently used cars.

- Map & GetMap ()
- Carlterator GetCarlterator (int64_t carlD)

Finds queried car and returns its reference as CarIterator value.

3.27.1 Detailed Description

Class for managing simulator operations.

3.27.2 Constructor & Destructor Documentation

3.27.2.1 TrafficSimulator()

Intitilizes the object.

Parameters

numClosestStations	Number of closest charging stations to consider during optimal path finding.
segmentLength	Length of the edge segment.

3.27.3 Member Function Documentation

3.27.3.1 DeleteCar()

Deletes the car from the container of all currently used cars.

Parameters

```
carlD ID of the car to delete.
```

3.27.3.2 GenerateBatteryTreshold()

```
double TrafficSimulator::GenerateBatteryTreshold ( )
```

Generates random additional part to battery treshold (for random part of the charging decision).

Returns

Returns randomly additional battery level above the bottom treshold.

3.27.3.3 GenerateCar()

Generates car and adds it to the vector of all currently used cars.

Returns

Returns ID of the new car.

3.27.3.4 GenerateChargingStation()

Randomly generates charging station.

Parameters

stationID	ID of the station.
simulationParameters	Parameters of the simulation.

Returns

3.27.3.5 GenerateChargingStations()

Randomly generates charging stations (based on city probability and its distance from the center of the city) and stores it.

Parameters

numStations	Number of stations to generate.	
simulationParameters	Parameters of the simulation.	

3.27.3.6 GenerateNextDepartureTime()

```
double TrafficSimulator::GenerateNextDepartureTime ( )
```

Generates next departure or waiting time.

Returns

Returns exponentialy randomly generated time.

3.27.3.7 GetCarIterator()

Finds queried car and returns its reference as CarIterator value.

Parameters

carID

ID of the car to find if -1, then return end of the container (we want to propagate information that this object doesn't exist).

Returns

Returns iterator to the given car into the container of all currently used cars or $this->allCars_.end()$ if this object doesn't exist.

3.27.3.8 GetMap()

```
Map & TrafficSimulator::GetMap ( )
```

Returns

Returns reference to map.

3.27.3.9 LoadMap()

Load map and stores all other necessary precomputed data (precomputed distances between each pair of cities).

Parameters

simulationParameters	Parameters of the simulation.
ominatation aramotors	i didinotoro di tilo dimalationi.

Returns

Returns true if loading was successful, else false.

3.27.3.10 ResetSimulation()

```
void TrafficSimulator::ResetSimulation ( )
```

Reset simulation parameters.

The documentation for this class was generated from the following files:

- · TrafficSimulator.h
- TrafficSimulator.cpp

3.28 Vehicle Class Reference

Parent class of all vehicle objects for the simulation.

```
#include <Vehicle.h>
```

Inheritance diagram for Vehicle:

Public Member Functions

- Vehicle (double startTime, MapPosition start, MapPosition end, double consumption, double batteryLevel)
 Initializes object.
- double GetBatteryLevel ()
- · const MapPosition & GetPosition ()
- const MapPosition & GetStationPosition ()
- const MapPosition & GetEndPosition ()
- double GetNextNodeTransitTime (Map &map, int32_t segment, bool increasing, int32_t secondSegment)

Computes expected transition time for current traffic.

- double GetExpectedPathTransitTime (double pathLength)

Computes expected battery level, if crossing the edge from given segment. Works also if we want to get to given segment, but in incresing should be flag for the direction from the segment to end of the edge.

• double GetExpectedPathBatteryLevel (double estimatedTime)

Computes estimated battery level after reaching the path end in estimated time.

- int32_t GetChargingStationID ()
- int32_t GetStartingSegment (bool isDecreasing, Edge &edge)

Computes starting segment ID (when not starting inside the edge). Decides whether start from the begin or the end side of the edge.

- bool IsIncreasing (vertex t start, vertex t end)
- · bool ChangedCity (Map &map)

Finds out whether car changed the city.

- bool GoingToStation ()
- double GetStartTime ()
- · double GetStartBatteryLevel ()
- double GetStartLineWaitingTime ()
- int32 t GetPathSize ()
- bool TriedCharging ()
- bool IsInsideEdge ()
- bool IsFinishing ()
- void StartGoingCharging ()

Sets proper flags to start going to the charging station.

void SetStartLineWaitingTime (double startTime)

Sets start time of the waiting in the charging station queue.

void SetChargingTry (bool value)

Sets whether vehicle tried to go to the charging station.

• bool GoCharging (vertex_t start, vertex_t end, Map &map, double batteryTreshold, SimulationParameters &simulationParameters)

Decides whether go charging or not (based on the battery level, using randomness and estimated battery level in the end (if enough -> don't go charging).

bool GoCharging (double batteryTreshold, SimulationParameters & simulationParameters)

Decides whether go charging or not (based on the battery level, using randomness and estimated battery level in the end (if enough -> don't go charging). Works without need to compute the path.

bool BatteryLevelToGoCharging (double bottomTreshold, double upperTreshold, double additionalTreshold)

Decides whether it is time to charge the battery or not (starts moving to the charging station) only based on the battery level (doesn't count with the expected battery level in the end).

• void UpdateVehiclePath (vertex_t start, vertex_t end, Map &map, double batteryTreshold, bool removeFirst, SimulationParameters &simulationParameters)

Updates vehicle path and decides whether it is neccesary to go to the charging station. If so then finds the path to the best estimated charging station.

• void ChargeBattery (double chargeLevel)

Increases the battery level (maximal capacity is 1) and stops charging.

bool MoveFirstSegment (Map &map, bool logs)

Moves the vehicle from the starting position to the closest node (either starting or leaving the charging station).

bool MoveToNextNode (Map &map, bool logs)

Moves the vehicle to the next node (without the last and first move).

bool MoveToFinalSegment (Map &map, bool logs)

Moves the vehicle on the final segment of the path (moving to the middle the edge).

void PopFirstPathVertex ()

Removes first vertex of the path (only use when we want to remove current vertex of the path start).

Protected Attributes

- MapPosition startPosition_
- MapPosition stationPosition_
- MapPosition endPosition_
- MapPosition currentPosition_
- double startTime_
- double startLineWaitingTime_
- int32_t chargingStationID_
- vertex_t previousVertex_
- bool insideEdge_
- double startBattervLevel
- double batteryConsumption
- · double batteryLevel_
- double relativeVelocity
- bool headingToChargingStation
- bool chargingTested
- std::vector< vertex_t > path_
- double pathLength_

3.28.1 Detailed Description

Parent class of all vehicle objects for the simulation.

3.28.2 Constructor & Destructor Documentation

3.28.2.1 Vehicle()

Initializes object.

Parameters

startTime	Time of the departure.
start	Starting position.
end	Ending position.
consumption	Battery consumption.
batteryLevel	Start battery level.

3.28.3 Member Function Documentation

3.28.3.1 BatteryLevelToGoCharging()

Decides whether it is time to charge the battery or not (starts moving to the charging station) only based on the battery level (doesn't count with the expected battery level in the end).

Parameters

batteryTreshold	Randomly generated additional battery level for decision if go charging or not (if level above	
	then go).	

Returns

Returns true if vehicle should go charging, else false.

3.28.3.2 ChangedCity()

Finds out whether car changed the city.

Parameters

previous	Previous vertex.
current	Current vertex.
тар	Map object to get info from.

Returns

Returns ${\tt true}$ if vehicle crossed the border of the city, else ${\tt false}.$

3.28.3.3 ChargeBattery()

Increases the battery level (maximal capacity is 1) and stops charging.

Parameters

chargeLevel	Battery percentage to be charged (needs to be non-negative value).

3.28.3.4 GetBatteryLevel()

```
double Vehicle::GetBatteryLevel ( )
```

Returns

Returns current battery level.

3.28.3.5 GetChargingStationID()

```
int32_t Vehicle::GetChargingStationID ( )
```

Returns

Returns ID of the charging station where the vehicle is heading or where currently is.

3.28.3.6 GetEndPosition()

```
const MapPosition & Vehicle::GetEndPosition ( )
```

Returns

Returns end position of the vehicle.

3.28.3.7 GetExpectedEdgeTransitBatteryLevel()

Computes expected battery level, if crossing the edge from given segment. Works also if we want to get to given segment, but in incresing should be flag for the direction from the segment to end of the edge.

Parameters

тар	Map to find corresponding edge info.
segment	ID of the segment from which we are begining.
increasing	Flag if increasing in segment ID (if we want to get from end of the edge to the segment, then opposite way).
secondSegment	ID of the final segment in the edge (if movent to the end of the edge, then set attribute to -1)

Returns

Returns expected battery level after crossing the edge.

3.28.3.8 GetExpectedPathBatteryLevel()

Computes estimated battery level after reaching the path end in estimated time.

Parameters

ı		
ĺ	estimatedTime	Estimated time to reach the end of the road.

Returns

Returns estimated end battery level.

3.28.3.9 GetExpectedPathTransitTime()

```
double Vehicle::GetExpectedPathTransitTime ( \label{eq:double_pathLength} \ )
```

Parameters

pathLength Lenght of the path to pass.
--

Returns

Returns expected transition time based on the path length.

3.28.3.10 GetNextNodeTransitTime()

Computes expected transition time for current traffic.

Parameters

тар	Map object to compute transit time from.
segment	ID of the segment from which we are begining.
increasing	Flag if increasing in segment ID (if we want to get from end of the edge to the segment, then opposite way).
secondSegment	ID of the final segment in the edge (if movent to the end of the edge, then set attribute to -1)

Returns

Returns transition time the vehicle needs to get from current node to the next node.

3.28.3.11 GetPathSize()

```
int32_t Vehicle::GetPathSize ( )
```

Returns

Returns number of vertices stored in the precomputed path.

3.28.3.12 GetPosition()

```
const MapPosition & Vehicle::GetPosition ( )
```

Returns

Returns current vehicle position.

3.28.3.13 GetStartBatteryLevel()

```
double Vehicle::GetStartBatteryLevel ( )
```

Returns

Returns battery level at the start of the path.

3.28.3.14 GetStartingSegment()

Computes starting segment ID (when not starting inside the edge). Decides whether start from the begin or the end side of the edge.

Parameters

isDecreasing	Flag indicating whether the vehicle is moving in decreasing segment IDs.
edge	The current edge object (to get number of segments).

Returns

Returns starting segment ID.

3.28.3.15 GetStartLineWaitingTime()

```
double Vehicle::GetStartLineWaitingTime ( )
```

Returns

Returns time of the start waiting to go charging.

3.28.3.16 GetStartTime()

```
double Vehicle::GetStartTime ( )
```

Returns

Returns start time of the vehicle (either of the start or when it starts returning).

3.28.3.17 GetStationPosition()

```
const MapPosition & Vehicle::GetStationPosition ( )
```

Returns

Returns charging station position.

3.28.3.18 GoCharging() [1/2]

```
bool Vehicle::GoCharging (  \mbox{double } batteryTreshold, \\ \mbox{SimulationParameters & } simulationParameters )
```

Decides whether go charging or not (based on the battery level, using randomness and estimated battery level in the end (if enough -> don't go charging). Works without need to compute the path.

Parameters

batteryTreshold	Randomly generated additional battery level for decision if go charging or not (if level above current level then go).
simulationParameters	Parameters of the simulation.

Returns

Returns whether go to the charging station true or not false.

3.28.3.19 GoCharging() [2/2]

Decides whether go charging or not (based on the battery level, using randomness and estimated battery level in the end (if enough -> don't go charging).

Parameters

start	Start vertex of the path.	
end	End vertex of the path.	
тар	Map object to find the path from.	
batteryTreshold	Randomly generated additional battery level for decision if go charging or not (if level above current level then go).	
simulationParameters	Parameters of the simulation.	

Returns

Returns true if go to the charging station, else false.

3.28.3.20 GoingToStation()

```
bool Vehicle::GoingToStation ( )
```

Returns

Returns true if vehicle is heading to the charging station, else false.

3.28.3.21 IsFinishing()

```
bool Vehicle::IsFinishing ( )
```

Returns

Returns true if vehicle is in the last step of the road or in the penultimate step, which is the further vertex (just get to the correct segment), (finish or charging station).

3.28.3.22 IsIncreasing()

Parameters

start	Start vertex identifier.
end	End vertex identifier.

Returns

Returns true if vehicle is moving in increasing order with the segments, else if decreasing false

3.28.3.23 IsInsideEdge()

```
bool Vehicle::IsInsideEdge ( )
```

Returns

Returns true if vehicle is inside the edge (segment not last or first), else false.

3.28.3.24 MoveFirstSegment()

Moves the vehicle from the starting position to the closest node (either starting or leaving the charging station).

Parameters

тар	Map to get information about the route.
logs	Whether to write simulation logs (for debugging).

Returns

Returns true if moving was successful, else `false (battery run down).

3.28.3.25 MoveToFinalSegment()

Moves the vehicle on the final segment of the path (moving to the middle the edge).

Parameters

тар	Map to get information about the route.
logs	Whether to write simulation logs (for debugging).

Returns

Returns true if moving was successful, else `false (battery run down).

3.28.3.26 MoveToNextNode()

Moves the vehicle to the next node (without the last and first move).

Parameters

тар	Map to get information about the route.
logs	Whether to write simulation logs (for debugging).

Returns

Returns true if moving was successful, else `false (battery run down).

3.28.3.27 PopFirstPathVertex()

```
void Vehicle::PopFirstPathVertex ( )
```

Removes first vertex of the path (only use when we want to remove current vertex of the path start).

3.28.3.28 SetChargingTry()

Sets whether vehicle tried to go to the charging station.

Parameters

```
value Flag if tried true, else false.
```

3.28.3.29 SetStartLineWaitingTime()

Sets start time of the waiting in the charging station queue.

Parameters

3.28.3.30 StartGoingCharging()

```
void Vehicle::StartGoingCharging ( )
```

Sets proper flags to start going to the charging station.

3.28.3.31 TriedCharging()

```
bool Vehicle::TriedCharging ( )
```

Returns

Returns true if car already tested if it should go charging, else false.

3.28.3.32 UpdateVehiclePath()

Updates vehicle path and decides whether it is neccesary to go to the charging station. If so then finds the path to the best estimated charging station.

Parameters

start	Start vertex of the path.
end	Final vertex of the path.
batteryTreshold	Randomly generated additional battery level for decision if go charging or not (if level above then go).
тар	Map object to compute path from.
removeFirst	Flag if remove first (current) vertex from the path (useful when not inside edge). If remove then true (if path has length 1, then don't remove the vertex (we want to know that it is end of the road), else false.

The documentation for this class was generated from the following files:

- Vehicle.h
- Vehicle.cpp

Index

AddChargingStation	Map, 25
Map, 23	distance_heuristic< m_graph, CostType, LocMap >, 12
AddCity	
Map, 23	Edge, 12
AddCityCoordinate	AddType, 13
GraphAdjuster, 17	Edge, 13
AddCustomer	GetBatteryLevels, 14
ChargingStation, 9	GetLength, 14
AddedEdge, 5	GetNumSegments, 14
AddEdge	GetRoadType, 14
Map, 23, 24	GetRoadTypeChar, 14
AddEvent	ResetSimulation, 15
TimeTable, 51	SetLength, 15
AddNode	UpdateSegmentData, 15
Map, 24	UpdateTransitTime, 16
AddType	ExistNode
Edge, 13	Map, 25
astar_goal_visitor< Vertex >, 5	1,
dotal_godi_violitor < vortex > , o	FindCitiesNearestChargingStations
BatteryLevelToGoCharging	Map, 26
Vehicle, 61	FindCityNodes
, -	Map, 26
Car, 6	FindClosestPositionToCoordinates
Car, 6	Map, 26
GetWaitingTime, 7	FindShortestPath
IsReturning, 7	Map, 26
StartReturning, 7	FindVehiclePath
ChangedCity	Map, 27
Vehicle, 61	found_goal, 16
ChangeParameters	
MapPosition, 33	GenerateBatteryTreshold
ChargeBattery	TrafficSimulator, 56
Vehicle, 62	GenerateCar
ChargingStation, 8	TrafficSimulator, 56
AddCustomer, 9	GenerateChargingStation
ChargingStation, 8	TrafficSimulator, 56
GetChargingTime, 9	GenerateChargingStations
GetExpectedWaitingTime, 10	TrafficSimulator, 57
NextCustomer, 10	GenerateNextDepartureTime
RemoveCustomer, 10	TrafficSimulator, 57
City, 10	GeneticAlgorithm
ComponentsDistance, 11	Optimizer, 43
ComputeCitiesDistances	GeneticParameters, 16
GraphAdjuster, 18	GetAddedEdges
ComputeSphericalDistance	GraphAdjuster, 18
Map, 25	GetAllMapSegmentsInfo
ινια μ , 23	TimeTable, 51
DeleteCar	GetAllSegments
TrafficSimulator, 56	Map, 27
DiikstraFindDistances	GetBattervDifferences

74 INDEX

TimeTable, 51	Edge, 14
GetBatteryLevel	GetPathSize
Vehicle, 62	Vehicle, 64
GetBatteryLevels	GetPosition
Edge, 14	Vehicle, 65
GetCarlterator	GetRoadType
TrafficSimulator, 57	Edge, 14
GetChargingLevels	GetRoadTypeChar
TimeTable, 52	Edge, 14
GetChargingStation	GetRunDownPositions
Map, 27	TimeTable, 52
GetChargingStationID	GetStartBatteryLevel
Vehicle, 62	Vehicle, 65
GetChargingStations	GetStartingSegment
Map, 28	Vehicle, 65
GetChargingTime	GetStartLineWaitingTime
Charging Station, 9	Vehicle, 65
GetCitiesCoordinates	GetStartTime
GraphAdjuster, 18	Vehicle, 66
	GetStationPosition
GetCitiesDistances	
GraphAdjuster, 18	Vehicle, 66
GetCitiesPopulation	GetTrafficSimulator
Map, 28	TimeTable, 52
GetCityNodes	GetTravelDurations
Map, 28	TimeTable, 52
GetCityPairDistance	GetWaitingTime
Map, 29	Car, 7
GetConstGraph	GetWaitingTimes
Map, 29	TimeTable, 53
GetDistanceFromCloserVertex	GoCharging
MapPosition, 34	Vehicle, 66, 67
GetEndPosition	GoingToStation
Vehicle, 62	Vehicle, 67
GetExpectedEdgeTransitBatteryLevel	GraphAdjuster, 17
Vehicle, 63	AddCityCoordinate, 17
GetExpectedPathBatteryLevel	ComputeCitiesDistances, 18
Vehicle, 63	GetAddedEdges, 18
GetExpectedPathTransitTime	GetCitiesCoordinates, 18
Vehicle, 64	GetCitiesDistances, 18
GetExpectedWaitingTime	MergeDegreeTwoVertex, 18
ChargingStation, 10	MergeDegreeTwoVertices, 19
GetGraph	
	Merge IWOCOMBONEINS. 19
•	MergeTwoComponents, 19 GreedyAlgorithm
Map, 29	GreedyAlgorithm
Map, 29 GetGraphAdjuster	GreedyAlgorithm Optimizer, 43
Map, 29 GetGraphAdjuster MapReader, 35	GreedyAlgorithm
Map, 29 GetGraphAdjuster MapReader, 35 GetLastChargingStation	GreedyAlgorithm Optimizer, 43 GreedyParameters, 20
Map, 29 GetGraphAdjuster MapReader, 35 GetLastChargingStation Map, 29	GreedyAlgorithm Optimizer, 43 GreedyParameters, 20 InitHeuristicLocations
Map, 29 GetGraphAdjuster MapReader, 35 GetLastChargingStation Map, 29 GetLength	GreedyAlgorithm Optimizer, 43 GreedyParameters, 20 InitHeuristicLocations Map, 31
Map, 29 GetGraphAdjuster MapReader, 35 GetLastChargingStation Map, 29 GetLength Edge, 14	GreedyAlgorithm Optimizer, 43 GreedyParameters, 20 InitHeuristicLocations Map, 31 IsFinishing
Map, 29 GetGraphAdjuster MapReader, 35 GetLastChargingStation Map, 29 GetLength Edge, 14 GetMap	GreedyAlgorithm Optimizer, 43 GreedyParameters, 20 InitHeuristicLocations Map, 31 IsFinishing Vehicle, 67
Map, 29 GetGraphAdjuster MapReader, 35 GetLastChargingStation Map, 29 GetLength Edge, 14 GetMap TrafficSimulator, 58	GreedyAlgorithm Optimizer, 43 GreedyParameters, 20 InitHeuristicLocations Map, 31 IsFinishing Vehicle, 67 IsIncreasing
Map, 29 GetGraphAdjuster MapReader, 35 GetLastChargingStation Map, 29 GetLength Edge, 14 GetMap TrafficSimulator, 58 GetNextEvent	GreedyAlgorithm Optimizer, 43 GreedyParameters, 20 InitHeuristicLocations Map, 31 IsFinishing Vehicle, 67 IsIncreasing Vehicle, 67
Map, 29 GetGraphAdjuster MapReader, 35 GetLastChargingStation Map, 29 GetLength Edge, 14 GetMap TrafficSimulator, 58 GetNextEvent TimeTable, 52	GreedyAlgorithm Optimizer, 43 GreedyParameters, 20 InitHeuristicLocations Map, 31 IsFinishing Vehicle, 67 IsIncreasing Vehicle, 67 IsInsideEdge
Map, 29 GetGraphAdjuster MapReader, 35 GetLastChargingStation Map, 29 GetLength Edge, 14 GetMap TrafficSimulator, 58 GetNextEvent TimeTable, 52 GetNextNodeTransitTime	GreedyAlgorithm Optimizer, 43 GreedyParameters, 20 InitHeuristicLocations Map, 31 IsFinishing Vehicle, 67 IsIncreasing Vehicle, 67 IsInsideEdge Vehicle, 68
Map, 29 GetGraphAdjuster MapReader, 35 GetLastChargingStation Map, 29 GetLength Edge, 14 GetMap TrafficSimulator, 58 GetNextEvent TimeTable, 52 GetNextNodeTransitTime Vehicle, 64	GreedyAlgorithm Optimizer, 43 GreedyParameters, 20 InitHeuristicLocations Map, 31 IsFinishing Vehicle, 67 IsIncreasing Vehicle, 67 IsInsideEdge Vehicle, 68 IsReturning
Map, 29 GetGraphAdjuster MapReader, 35 GetLastChargingStation Map, 29 GetLength Edge, 14 GetMap TrafficSimulator, 58 GetNextEvent TimeTable, 52 GetNextNodeTransitTime Vehicle, 64 GetNode	GreedyAlgorithm Optimizer, 43 GreedyParameters, 20 InitHeuristicLocations Map, 31 IsFinishing Vehicle, 67 IsIncreasing Vehicle, 67 IsInsideEdge Vehicle, 68
Map, 29 GetGraphAdjuster MapReader, 35 GetLastChargingStation Map, 29 GetLength Edge, 14 GetMap TrafficSimulator, 58 GetNextEvent TimeTable, 52 GetNextNodeTransitTime Vehicle, 64 GetNode Map, 29	GreedyAlgorithm Optimizer, 43 GreedyParameters, 20 InitHeuristicLocations Map, 31 IsFinishing Vehicle, 67 IsIncreasing Vehicle, 67 IsInsideEdge Vehicle, 68 IsReturning Car, 7
Map, 29 GetGraphAdjuster MapReader, 35 GetLastChargingStation Map, 29 GetLength Edge, 14 GetMap TrafficSimulator, 58 GetNextEvent TimeTable, 52 GetNextNodeTransitTime Vehicle, 64 GetNode	GreedyAlgorithm Optimizer, 43 GreedyParameters, 20 InitHeuristicLocations Map, 31 IsFinishing Vehicle, 67 IsIncreasing Vehicle, 67 IsInsideEdge Vehicle, 68 IsReturning

INDEX 75

KMeansParameters, 20	WritePreparedEdges, 38 WriteStations, 38
LoadChargingStations	MergeDegreeTwoVertex
MapReader, 35	9
LoadCities	GraphAdjuster, 18
MapReader, 36	MergeDegreeTwoVertices
•	GraphAdjuster, 19
LoadEdges	MergeTwoComponents
MapReader, 36	GraphAdjuster, 19
LoadMap	ModelLoss
MapReader, 36	Optimizer, 44
TimeTable, 53	ModelRepresentation, 39
TrafficSimulator, 58	ModelRepresentation, 39, 40
LoadNodesCities	SaveModelRepresentation, 40
MapReader, 37	MoveFirstSegment
location, 21	Vehicle, 68
	MoveToFinalSegment
Map, 21	Vehicle, 68
AddChargingStation, 23	MoveToNextNode
AddCity, 23	
AddEdge, 23, 24	Vehicle, 69
AddNode, 24	MyGreater, 40
ComputeSphericalDistance, 25	NortCustomer
DijkstraFindDistances, 25	NextCustomer
	ChargingStation, 10
ExistNode, 25	Node, 41
FindCitiesNearestChargingStations, 26	Node, 41
FindCityNodes, 26	
FindClosestPositionToCoordinates, 26	Optimizer, 42
FindShortestPath, 26	GeneticAlgorithm, 43
FindVehiclePath, 27	GreedyAlgorithm, 43
GetAllSegments, 27	KMeansAlgorithm, 44
GetChargingStation, 27	ModelLoss, 44
GetChargingStations, 28	Optimizer, 43
GetCitiesPopulation, 28	RunMultipleSimulations, 45
GetCityNodes, 28	OptimizerParameters, 45
GetCityPairDistance, 29	OptimizerParameters, 46
GetConstGraph, 29	
GetGraph, 29	PopFirstPathVertex
GetLastChargingStation, 29	Vehicle, 69
GetNode, 29	•
InitHeuristicLocations, 31	RandomlyGenerateChargingStations
	TimeTable, 53
Map, 22	RemoveCustomer
ResetSimulation, 31	ChargingStation, 10
SetCitiesDistances, 31	ResetSimulation
SimulateVehiclePassedThroughEdge, 31	Edge, 15
TestComponents, 32	Map, 31
MapPosition, 32	•
ChangeParameters, 33	TimeTable, 54
GetDistanceFromCloserVertex, 34	TrafficSimulator, 58
MapPosition, 33	RunMultipleSimulations
MapReader, 34	Optimizer, 45
GetGraphAdjuster, 35	RunRestSimulation
LoadChargingStations, 35	TimeTable, 54
LoadCities, 36	RunSimulation
LoadEdges, 36	TimeTable, 54
LoadMap, 36	
•	SaveModelRepresentation
LoadNodesCities, 37	ModelRepresentation, 40
MapReader, 35	SetChargingTry
WriteAddedEdges, 37	Vehicle, 69
WritePreparedCombinedNodes, 38	, = =

76 INDEX

SetCitiesDistances	Vehicle, 59
Map, 31	BatteryLevelToGoCharging, 61
SetLength	ChangedCity, 61
Edge, 15	ChargeBattery, 62
SetStartLineWaitingTime	GetBatteryLevel, 62
Vehicle, 70	GetChargingStationID, 62
SimulateVehiclePassedThroughEdge	GetEndPosition, 62
Map, 31	GetExpectedEdgeTransitBatteryLevel, 63
SimulationParameters, 46	GetExpectedPathBatteryLevel, 63
SimulationParameters, 47	GetExpectedPathTransitTime, 64
StartGoingCharging	GetNextNodeTransitTime, 64
Vehicle, 70	GetPathSize, 64
StartReturning	GetPosition, 65
Car, 7	GetStartBatteryLevel, 65
StationParameters, 48	GetStartingSegment, 65
StationParameters, 48	GetStartLineWaitingTime, 65
	GetStartTime, 66
TableEvent, 49	GetStationPosition, 66
TableEvent, 49	GoCharging, 66, 67
TestComponents	GoingToStation, 67
Map, 32	IsFinishing, 67
TimeTable, 50	IsIncreasing, 67
AddEvent, 51	IsInsideEdge, 68
GetAllMapSegmentsInfo, 51	MoveFirstSegment, 68
GetBatteryDifferences, 51	MoveToFinalSegment, 68
GetChargingLevels, 52	MoveToNextNode, 69
GetNextEvent, 52	PopFirstPathVertex, 69
GetRunDownPositions, 52	SetChargingTry, 69
GetTrafficSimulator, 52	SetStartLineWaitingTime, 70
GetTravelDurations, 52	StartGoingCharging, 70
GetWaitingTimes, 53	TriedCharging, 70
LoadMap, 53	UpdateVehiclePath, 70
RandomlyGenerateChargingStations, 53	Vehicle, 61
ResetSimulation, 54	
RunRestSimulation, 54	WriteAddedEdges
RunSimulation, 54	MapReader, 37
TimeTable, 51	WritePreparedCombinedNodes
TrafficSimulator, 54	MapReader, 38
DeleteCar, 56	WritePreparedEdges
GenerateBatteryTreshold, 56	MapReader, 38
GenerateCar, 56	WriteStations
GenerateChargingStation, 56	MapReader, 38
GenerateChargingStations, 57	
GenerateNextDepartureTime, 57	
GetCarlterator, 57	
GetMap, 58	
LoadMap, 58	
ResetSimulation, 58	
TrafficSimulator, 55	
TriedCharging	
Vehicle, 70	
UpdateSegmentData	
Edge, 15	
UpdateTransitTime	
Edge, 16	
UpdateVehiclePath	
Vehicle, 70	