

Function Approximation Case Study: Smart Sensor

1

Smart Sensor Diagram

Collected Data

Raw Data

Normalized Data

$$\mathbf{p} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$t = y$$

3

Network Architecture

23

Training Performance ($S^1=10$)

Final performance using five random initial weights.

1.121e-003	8.313e-004	1.068e-003	8.672e-004	8.271e-004
------------	------------	------------	------------	------------

5

Effective Number of Parameters

Number of Hidden Layer Neurons

Sum Squared Error

$S^1 = 3$	$S^1 = 5$	$S^1 = 8$	$S^1 = 10$	$S^1 = 20$
4.406e-003	9.227e-004	8.088e-004	8.672e-004	8.096e-004

After a sufficient number of neurons is reached (~5) the error does not go down, if Bayesian regularization is used.

-

Scatter Plots

Error Histogram

$$\mathbf{a} = (\mathbf{a}^n + 1) \cdot * \underbrace{(\mathbf{t}^{max} - \mathbf{t}^{min})}_{2} + \mathbf{t}^{min}$$

Trained Network Response

