Домашнее задание на 2.05 (Алгебра)

Емельянов Владимир, ПМИ гр №247

№1 Мы знаем, что:

$$A = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix}$$
 — обратима $\Leftrightarrow \det A \neq 0 \Leftrightarrow ac \neq 0 \Leftrightarrow \begin{cases} a \neq 0 \\ c \neq 0 \end{cases}$

Значит все обратимые элементы имеют вид:

$$\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}$$
, где $a \neq 0$ и $c \neq 0$

В кольце матриц A — нулевой делитель (левый или правый) тогда и только тогда, когда $\det A = 0$, то есть

$$ac = 0$$
.

1) Если a = 0:

$$A = \begin{pmatrix} 0 & 0 \\ b & c \end{pmatrix}$$

Возьмём, например,

$$X = \begin{pmatrix} c & 0 \\ -b & 0 \end{pmatrix} \neq 0.$$

Тогда

$$AX = \begin{pmatrix} 0 & 0 \\ b & c \end{pmatrix} \begin{pmatrix} c & 0 \\ -b & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ bc - cb & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Значит, A — левый нулевой делитель.

1) Если c = 0:

$$A = \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix}$$

Можно взять

$$X = \begin{pmatrix} 0 & a \\ 0 & -b \end{pmatrix} \neq 0$$

и проверить AX = 0 аналогично.

Аналогично для правых делителей, если ac=0, то существует ненулевое Y с YA=0.

Найдём все нильпотентные $A = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix}$

Вычислим

$$A^{2} = \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} = \begin{pmatrix} a^{2} & 0 \\ b a + c b & c^{2} \end{pmatrix} = \begin{pmatrix} a^{2} & 0 \\ b (a + c) & c^{2} \end{pmatrix}.$$

Приравниваем к нулевой матрице:

$$\begin{cases} a^2 = 0, \\ c^2 = 0, \\ b(a+c) = 0. \end{cases}$$

В этом уравнении над полем $\mathbb R$ из $a^2=0$ и $c^2=0$ сразу следует

$$a = 0, \quad c = 0.$$

Тогда третье уравнение $b\left(a+c\right)=b\cdot 0=0$ выполняется при любом b.

Значит

$$A^2 = 0 \quad \Longleftrightarrow \quad a = 0, \ c = 0,$$

Так $A^n = A^2 \cdot A^{n-2} \ n \geqslant 2$, то все нильпотентные элементы имеют вид:

$$A = \begin{pmatrix} 0 & 0 \\ b & 0 \end{pmatrix}, \quad b \in \mathbb{R}.$$

№2 Допустим, что

$$I = (x - 2, y) = (g)$$

для некоторого $g \in \mathbb{Q}[x,y], g \neq 0.$

Тогда и $x-2 \in I$, и $y \in I$ должны делиться на g. То есть

$$g \mid (x-2)$$
 и $g \mid y$ \Longrightarrow $g \mid \gcd(x-2, y)$.

Так как:

$$\gcd(x-2, y) = 1$$

то любой их общий делитель g — обязательно обратимая константа из \mathbb{Q}^{\times} .

Если g — единица, то

$$I = (g) = \mathbb{Q}[x, y],$$

то есть идеал совпадёт со всем кольцом. Но это невозможно, потому что, например, $1 \notin (x-2,y)$

Следовательно, этот идеал не главный

№3 Определим гомоморфизм колец $\varphi:\mathbb{C}[x]\to\mathbb{C}\oplus\mathbb{C}$ формулой:

$$\varphi(f(x)) = (f(0), f(-2)).$$

Проверим корректность:

• Сложение:

$$\varphi(f+g) = ((f+g)(0), (f+g)(-2)) = (f(0)+g(0), f(-2)+g(-2)) = \varphi(f)+\varphi(g)$$

• Умножение:

$$\varphi(f \cdot g) = ((f \cdot g)(0), (f \cdot g)(-2)) = (f(0)g(0), f(-2)g(-2)) = \varphi(f) \cdot \varphi(g)$$

• Единица:

$$\varphi(1) = (1,1)$$

Ядро гомоморфизма:

 $\ker \varphi$ состоит из многочленов f(x), для которых:

$$f(0) = 0$$
 и $f(-2) = 0$

Так как x и x+2 взаимно просты, их произведение $x(x+2)=x^2+2x$ делит f(x). Следовательно:

$$\ker \varphi = (x^2 + 2x)$$

Для любых $(a,b) \in \mathbb{C} \oplus \mathbb{C}$ построим многочлен f(x), такой что:

$$f(0) = a, \quad f(-2) = b$$

Например, подходит линейный многочлен:

$$f(x) = \frac{a(x+2) - bx}{2}$$

Проверка:

$$f(0) = \frac{a \cdot 2}{2} = a, \quad f(-2) = \frac{a \cdot 0 - b \cdot (-2)}{2} = b$$

Значит, φ сюръективен. Следовательно, $\operatorname{Im} \varphi = (\mathbb{C}, \mathbb{C})$

По теореме о гомоморфизме для колец:

$$\mathbb{C}[x]/\ker\varphi\cong\operatorname{Im}\varphi$$

Подставляя $\ker \varphi = (x^2 + 2x)$ и $\operatorname{Im} \varphi = \mathbb{C} \oplus \mathbb{C}$, получаем:

$$\mathbb{C}[x]/(x^2+2x) \simeq \mathbb{C} \oplus \mathbb{C}$$

- \mathbf{N} •4(⇒) Если R/I поле, то $I \neq R$ и нет собственных идеалов J, содержащих I.
 - Предположим, R/I поле. Тогда R/I нетривиально (т.к. $0+I \neq 1+I$), поэтому $I \neq R$.
 - Допустим, существует идеал $J \triangleleft R$, такой что $I \subsetneq J \subsetneq R$ $(J \subsetneq R$ т.к. в поле $0+J \neq 1+J)$. Рассмотрим факторкольцо J/I. Оно является идеалом в R/I:

(Для любого $r+I\in R/I$ и $j+I\in J/I$ произведение (r+I)(j+I)=rj+I принадлежит J/I, так как J — идеал в R и $rj\in J$.)

Но поле не имеет собственных нетривиальных идеалов, кроме $\{0\}$ и самого себя. Следовательно, $J/I=\{0\}$ (т.к. если $J/I=R/I \implies J=R$ — противоречит $J\subsetneq R$), откуда J=I. Это противоречит условию $I\subsetneq J$. Значит, таких идеалов J не существует.

(⇐) :(