Notite examen - Probabilitati si Statistica

Dinu Florin-Silviu grupa 231

Cuprins

1	\mathbf{Pro}	babilitati	1								
	1.1	Evenimente independente	1								
	1.2	Schema bilei nerevenite	1								
	1.3	Schema bilei revenite	2								
	1.4	Probabilitati conditionate	2								
	1.5	Formula probabilitatii totale	3								
	1.6	Bayes	3								
	1.7	Variabile aleatoare discrete	5								
	1.8	Variabile discrete bidimensionale	6								
	1.9	Variabile continue unidimensionale	7								
	1.10	Variabile continue bidimensionale	8								
	1.11	Repartitii clasice	9								
2	Stat	iistica	10								
	2.1	Intervale de incredere	10								
	2.2	Actualizare Bayesiana	10								
	2.3	Verosimilitate maxima (MLE)	10								
3	Ane	exa 1 - Derivate si integrale	11								
	3.1	Functia Γ	11								
	3.2	Functia B	11								
	3.3	Integralele Wallis	11								
4	Ane	exa 2 - Functii trigonometrice	14								
5	Ane	Anexa 3 - Tabele statistice 20									

Probabilitati

1.1 Evenimente independente

Exemplu Se considera 2 urne $U_1(3a,5n)$ si $U_2(4a,6n)$. Din fiecare se extrage o bila. Care este probabilitatea ca bila sa fie alba?

Solutie Notam

1. $A = \text{extragem din } U_1 \text{ o bila alba}$

2. B = extragem din U_2 o bila alba

Calculam $P(A \cup B)$

$$\mathbf{P}(\mathbf{A} \cup \mathbf{B}) = \mathbf{P}(\mathbf{A}) + \mathbf{P}(\mathbf{B}) - \mathbf{P}(\mathbf{A} \cap \mathbf{B}) = \frac{3}{8} + \frac{4}{10} - \frac{3}{8} * \frac{4}{10} = \frac{5}{8}$$

1.2 Schema bilei nerevenite

$$P_n(k) = \frac{C_a^k \cdot C_b^{n-k}}{C_{a+b}^n}$$

Exemplu Intr-o bila se afla 5 bile rosii, 6 albe si 7 negre. Se extrag simultan din urna 4 bile.

- 1. Care e probabilitatea ca toate bilele sa fie rosii?
- 2. Toate sa fie albe?
- 3. Nicio bila sa nu fie rosie?
- 4. O bila sa fie rosie si una alba?
- 5. Cel putin 2 bile sa fie rosii?

Solutie

$$P_{18}(4) = \frac{C_5^4 \cdot C_{13}^0}{C_{18}^4}$$

2.

$$P_{18}(4) = \frac{C_6^4 \cdot C_{13}^0}{C_{18}^4}$$

3.

$$P_{18}(4) = \frac{C_{13}^4 \cdot C_{13}^0}{C_{18}^4}$$

4.

$$P = \frac{C_1^5 \cdot C_1^6 \cdot C_7^2}{C_{18}^4}$$

5.

$$P = \frac{C_2^5 \cdot C_{13}^2 + C_5^3 \cdot C_{13}^1 \cdot C_5^4}{C_{18}^4}$$

1.3 Schema bilei revenite

$$P_n(k) = C_n^k \cdot p^k \cdot (1-p)^{n-k}$$

Exemplu Aruncam o moneda de 3 ori. Care e probabilitatea a 3 aversuri?

Solutie

$$P_3(3) = C_3^3 \cdot (\frac{1}{2})^3 \cdot (1 - \frac{1}{2})^0 = \frac{1}{8}$$

1.4 Probabilitati conditionate

$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$

Exemplu Aruncam o moneda de 3 ori. Care este probabilitatea a 3 aversuri stiind ca prima aruncare a fost un avers?

Solutie Fie A = 3 aversuri si B = prima a fost avers

$$P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{8}}{\frac{1}{2}}$$

Exemplul 2 Se arunca succesiv 2 zaruri. A = primul zar obtinem cel mult 3 puncte si B = suma cifrelor sa fie 8. Calculati: P(A), P(B), P(B/A), P(A/B).

Solutie

$$P(A) = \frac{3}{6} = \frac{1}{2}$$

$$P(B) = \frac{5}{36}$$

$$P(B/A) = \frac{P(B \cap A)}{P(A)} = \frac{\frac{1}{18}}{\frac{5}{36}} = \frac{2}{5}$$

1.5 Formula probabilitatii totale

Fie spatiul Ω impartit in 3 evenimente disjuncte 2 cate 2: B_1 , B_2 , B_3 . Pentru orice eveniment A:

$$P(A) = P(A \cap B_1) + P(A \cap B_2) + P(A \cap B_3) =$$

= $P(A/B_1) \cdot P(B_1) + P(A/B_2) \cdot P(B_2) + P(A/B_3) \cdot P(B_3)$

1.6 Bayes

$$P(B/A) = \frac{P(A/B) \cdot P(B)}{P(A)}$$

Exemplu Intr-un depozit sunt aduse piese de acelasi fel fabricate in 2 ateliere, primul are 3 masini si produce in proportie de 99% piese corespunzatoare si de 1% defecte. Al doilea are 2 masini si produce 98% corespunzatoare si 2% defecte.

- 1. Care este probabilitatea ca o piesa luata aleatoriu din depozit sa fie corespunzatoare
- 2. Daca se ia la intamplare o piesa corespunzatoare, cu ce probabilitatea provine de la primul atelier?

Solutie Notam B_1 = piesa de la atelierul 1, B_2 = piesa de la atelierul 2 si A = piesa corespunzatoare

1. Metoda 1:
$$P(B_1) = \frac{3}{5} \text{ si } P(B_2) = \frac{2}{5}$$

$$P(A) = P(A/B_1) \cdot P(B_1) + P(A/B_2) \cdot P(B_2)$$
$$= \frac{99}{100} \cdot \frac{3}{5} + \frac{98}{100} \cdot \frac{2}{5} = \frac{493}{500}$$

1. Metoda 2:

$$P(A) = \frac{3}{5} \cdot \frac{99}{100} + \frac{2}{5} \cdot \frac{98}{100} = \frac{493}{500}$$

2.

$$P(B_1/A) = \frac{P(A/B_1) \cdot P(B_1)}{P(A)}$$
$$= \frac{\frac{99}{100} \cdot \frac{3}{5}}{\frac{493}{500}} = \frac{99}{493}$$

Exemplul 2. Se considera 2 urne avand $U_1(6a, 4n)$ si $U_2(5a, 10n)$. Se arunca un zar si daca se obtine un numar impar, se scoate 1 bila din prima urna, iar daca se obtine numar par, se scoate 1 bila din a doua urna.

- 1. Care este probabilitatea de a obtine o bila alba?
- 2. Se extrage 1 bila alba. Care e probabilitatea sa fie din U_1 ?

Solutie Notam $B_1 = \text{nr}$ impar si $B_2 = \text{nr}$ par si A = bila extrasa este alba.

1. Metoda 1:

$$P(A) = P(A/B_1) \cdot P(B_1) + P(A/B_2) \cdot P(B_2)$$
$$= \frac{6}{10} \cdot \frac{1}{2} + \frac{5}{15} \cdot \frac{1}{2} = \frac{7}{15}$$

1. Metoda 2:

2.

$$P(B_1/A) = \frac{P(A/B_1) \cdot P(B_1)}{P(A)}$$
$$= \frac{\frac{6}{10} \cdot \frac{1}{2}}{\frac{7}{15}} = \frac{9}{14}$$

1.7 Variabile aleatoare discrete unidimensionale

Definitii

Fie

$$X \sim \begin{bmatrix} x_1 & x_2 & \dots & x_n \\ p_1 & p_2 & \dots & p_n \end{bmatrix}$$

$$Y \sim \begin{bmatrix} y_1 & y_2 & \dots & y_n \\ q_1 & q_2 & \dots & q_n \end{bmatrix}$$

Functia de repartitie (cdf) $F: \mathbb{R} \to [0,1], F(X) = P(X \le x)$

$$F(x) = \begin{cases} 0, x \le x_1 \\ 0 + p_1, x \in (x_1, x_2] \\ 0 + p_1 + p_2, x \in (x_2, x_3] \\ \dots \\ \sum_{i=1}^n p_i, x \in (x_{n-1}, x_n] \\ 1, x \in (x_n, \infty) \end{cases}$$

Aritmetica

$$X + Y \sim \begin{bmatrix} x_i + y_j \\ p_{ij} \end{bmatrix}$$

$$X \cdot Y \sim \begin{bmatrix} x_i \cdot y_j \\ p_{ij} \end{bmatrix}$$

$$\frac{X}{Y} \sim \begin{bmatrix} \frac{x_i}{y_j} \\ p_{ij} \end{bmatrix}$$

$$a + X \sim \begin{bmatrix} x_i + a \\ p_i \end{bmatrix}$$

$$a \cdot X \sim \begin{bmatrix} x_i \cdot a \\ p_i \end{bmatrix}$$

$$X^n \sim \begin{bmatrix} x_i^n \\ p_i \end{bmatrix}$$

Media

$$E(X) = \sum_{i=1}^{n} x_i * p_i$$

$$E(X + Y) = E(X) + E(Y)$$

$$E(cX) = c \cdot E(X)$$

$$E(c) = c$$

Dispersia

$$Var(X) = E(X^2) - E^2(X)$$

$$Var(aX) = a^2 \cdot Var(X)$$

$$Var(X+Y) = Var(X) + Var(Y) - cov(X,Y) \\$$

Deviatia standard

$$\sigma = \sqrt{Var(X)}$$

Covarianta

$$cov(X,Y) = E(X \cdot Y) - E(X) \cdot E(Y)$$

 $\operatorname{cov}(X,Y) = 0 \to \operatorname{necorelate}$

 $\mathbf{X},\,\mathbf{Y}\,\,\mathbf{independente}\,\,\,\, o \mathrm{cov}(\mathbf{X},\mathbf{Y}) = 0$ (inversa nu e valabila)

1.8 Variabile discrete bidimensionale

Definitii

х	y_1	y_2		y_n	p_i
x_1	p_{11}	p_{12}		p_{1n}	p_1
x_2	p_{21}	p_{22}		p_{2n}	p_n
		• • •	• • •	• • •	• • • •
x_m	p_{m1}	p_{m2}		p_{mn}	p_m
q_j	q_1	q_2		q_n	1

$$X \sim \begin{bmatrix} x_1 & x_2 & \dots & x_n \\ p_1 & p_2 & \dots & p_n \end{bmatrix}$$

$$Y \sim \begin{bmatrix} y_1 & y_2 & \dots & y_n \\ q_1 & q_2 & \dots & q_n \end{bmatrix}$$

Covarianta

$$cov(X, Y) = E(X \cdot Y) - E(X) \cdot E(Y)$$

 $\operatorname{cov}(X,Y) = 0 \to \operatorname{necorelate}$

 $X, Y independente \rightarrow cov(X,Y) = 0$ (inversa nu e valabila)

Coeficientul de corelatie

$$\rho_{X,Y} = \frac{cov(X,Y)}{\sqrt{Var(X)} \cdot \sqrt{Var(Y)}} = \frac{E(X \cdot Y) - E(X) \cdot E(Y)}{\sqrt{Var(X)} \cdot \sqrt{Var(Y)}}$$

Verificare dependenta

Verificam daca $P(X = x, Y = y) = P(X = x) \cdot P(Y = y)$

1.9 Variabile continue unidimensionale

Definitie

Fie X variabila aleatoare avand functia de repartitie (cdf) F. X este de tip continuu daca $F(x) = \int_{-\infty}^{x} f(t)dt, \forall x \in \mathbb{R}$

Densitatea de repartitie - pmf

Densitatea de repartitie (**pmf**) este $f : \mathbb{R} \to \mathbb{R}$ cu proprietatile:

- 1. $f(x) \ge 0$
- $2. \int_{-\infty}^{\infty} f(x) dx = 1$

Observatie:

$$P(X \le a) = P(X \le a) = F(a) = \int_{-\infty}^{a} f(x)dx$$

$$P(X > a) = 1 - P(X \le a)$$

$$P(a \le X \le b) = P(X \le b) - P(X \le a)$$

Media

$$E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx$$

Dispersia

$$Var(X) = E(X^2) - E^2(X)$$

Unde

$$E(X^2) = \int_{-\infty}^{\infty} x^2 \cdot f(x) dx$$

Deviatia standard

$$\sigma = \sqrt{Var(X)}$$

1.10 Variabile continue bidimensionale

Definitie

La fel ca la unidimensionale, doar cu 2 variabile

Densitatea de repartitie - pmf

Densitatea de repartitie (**pmf**) este $f: \mathbb{R}x\mathbb{R} \to \mathbb{R}$ cu proprietatile:

- 1. $f(x,y) \ge 0$
- 2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1$

Repartitiile marginale

$$\begin{split} f_{\mathbf{x}}(\mathbf{x}) &= \int_{-\infty}^{\infty} f(x,y) \mathbf{dy} \\ f_{\mathbf{y}}(\mathbf{y}) &= \int_{-\infty}^{\infty} f(x,y) \mathbf{dx} \end{split}$$

Independenta

$$f(x,y) = f_x(x) \cdot f_y(y)$$

Media

$$E(X) = \int_{-\infty}^{\infty} x \cdot f_x(x) dx$$

$$E(Y) = \int_{-\infty}^{\infty} x \cdot f_y(y) dy$$

$$E(X \cdot Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \cdot y \cdot f(x, y) dy dx$$

Dispersia

$$Var(X) = E(X^2) - E^2(X)$$

Covarianta

$$cov(X, Y) = E(X \cdot Y) - E(X) \cdot E(Y)$$

 $\operatorname{cov}(X,Y) = 0 \to \operatorname{necorelate}$

 $\mathbf{X},\,\mathbf{Y}\,\,\mathbf{independente}\,\,\,\, o \mathrm{cov}(\mathbf{X},\mathbf{Y}) = 0$ (inversa nu e valabila)

1.11 Repartitii clasice

Normale

$$f(x) = \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Bernoulli

$$P_n(k) = C_n^k \cdot p^k \cdot (1-p)^{n-k}$$

Geometrice

$$f(x) = 1 - (1 - p)^{x+1}$$

Exponentiale

$$f_{x_i}(x_i) = \lambda \cdot e^{-\lambda \cdot x_i}$$

Statistica

2.1 Intervale de incredere

Repartitia normala

 $N(\mu, \sigma)$

$$\overline{X} - Z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} + Z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$$

Normal conservatoare

$$\overline{X} - Z_{\frac{\alpha}{2}} \cdot \frac{1}{2 \cdot \sqrt{n}} \le \mu \le \overline{X} + Z_{\frac{\alpha}{2}} \cdot \frac{1}{2 \cdot \sqrt{n}}$$

Regula degetului mare 95%

$$\overline{X} - \frac{1}{\sqrt{n}} \le \mu \le \overline{X} + \frac{1}{\sqrt{n}}$$

2.2 Actualizare Bayesiana

$$O(E) = \frac{P(E)}{P(\overline{E})}$$

$$O(M/F) = \frac{P(M/F)}{P(M/\overline{F})}$$

2.3 Verosimilitate maxima (MLE)

$$\frac{\partial \ln p}{\partial p} = 0$$

Anexa 1 - Derivate si integrale

3.1 Functia Γ

$$\Gamma(z) = \int_0^\infty t^{z-1} \cdot e^{-t} dt$$

$$n \in \mathbb{N}$$

$$\Gamma(n) = (n-1)!$$

3.2 Functia B

$$B(x,y) = \int_0^1 t^{x-1} \cdot (i-t)^{y-1} dt$$

$$Re(x) > 0 \text{ si } Re(y) > 0$$

$$B(x,y) = \frac{\Gamma(x) \cdot \Gamma(y)}{\Gamma(x+y)} = B(y,x)$$

$$\int e^{\alpha \cdot x} = \frac{e^{\alpha \cdot x}}{\alpha} + C$$

3.3 Integralele Wallis

$$W_n = \int_0^{\frac{\pi}{2}} \sin^n \Theta d\Theta = \int_0^{\frac{\pi}{2}} \cos^n \Theta d\Theta$$
$$W_n = \frac{1}{2} \cdot B(\frac{n+1}{2}, \frac{1}{2})$$

Nr.	Derivate
1	c' = 0
2	x'=1
3	$\left(x^{n}\right) = nx^{n-1}$
4	$\left(\sqrt{x}\right) = \frac{1}{2\sqrt{x}}$
5	$\left(\frac{1}{x}\right)' = -\frac{1}{x^2}$
6	$(e^x)'=e^x$
7	$(a^x) = a^x \ln a$
8	$(\ln x)' = \frac{1}{x}$
9	$(\log_a x)' = \frac{1}{x \ln a}$
10	$\left(\operatorname{arctg} x\right)' = \frac{1}{x^2 + 1}$
11	$\left(\operatorname{arcctg} x\right)' = -\frac{1}{x^2 + 1}$
12	$(\operatorname{arcctg} x)' = -\frac{1}{x^2 + 1}$ $(\operatorname{arcsin} x)' = \frac{1}{\sqrt{1 - x^2}}$
13	$\left(\arccos x\right)' = -\frac{1}{\sqrt{1-x^2}}$
14	$(\sin x)' = \cos x$
15	$(\cos x)' = -\sin x$
16	$(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$
17	$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$
18	$\left(\sqrt{x^2 - a^2}\right) = \frac{x}{\sqrt{x^2 - a^2}}$
19	$\left(\sqrt{x^2 + a^2}\right) = \frac{x}{\sqrt{x^2 + a^2}}$
20	$\left(\sqrt{a^2 - x^2}\right) = -\frac{x}{\sqrt{a^2 - x^2}}$

Nr.	Integrale nedefinite
1	$\int dx = x + C$
2	$\int x dx = \frac{x^2}{2} + C$
3	$\int x^n dx = \frac{x^{n+1}}{n+1} + C$
4	$\int \sqrt{x} dx = \frac{2}{3} x \sqrt{x} + C$
5	$\int e^x dx = e^x + C$
6	$\int a^x dx = \frac{a^x}{\ln a} + C$
7	$\int \frac{1}{x} dx = \ln x + C$
8	$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \left \frac{x - a}{x + a} \right + C$
9	$\int \frac{1}{x^2 + 1} dx = \arctan x + C$
10	$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \arctan \frac{x}{a} + C$
11	$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left x + \sqrt{x^2 - a^2} \right + C$
12	$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right) + C$
13	$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C$
14	$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + C$
15	$\int \sin x dx = -\cos x + C$
16	$\int \cos x dx = \sin x + C$
17	$\int \mathrm{tg} x dx = -\ln \cos x + C$
18	$\int \operatorname{ctg} x dx = \ln \left \sin x \right + C$
19	$\int \frac{1}{\cos^2 x} dx = \operatorname{tg} x + C$
20	$\int \frac{1}{\sin^2 x} dx = -\operatorname{ctg} x + C$
21	$\int \frac{x}{\sqrt{x^2 - a^2}} dx = \sqrt{x^2 - a^2} + C$
22	$\int \frac{x}{\sqrt{x^2 + a^2}} dx = \sqrt{x^2 + a^2} + C$
23	$\int \frac{x}{\sqrt{a^2 - x^2}} dx = -\sqrt{a^2 - x^2} + C$

Nr.	Opera ii	Formule						
1	$(f \pm g)' = f' \pm g'$	Derivarea func iilor compuse						
2	$(f \cdot g)' = f' \cdot g + f \cdot g'$	$\int f(u) = f(u) \cdot u$						
3	$\left(cf\right)' = c \cdot f'$							
4	$\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}$	Derivata fuc iei inverse $(f^{-1})(y) = \frac{1}{f'(x)}, unde \ y = f(x)$						
5	$\int [f(x) + g(x)]dx = \int f(x)dx + \int g(x)dx$	Formula Leibniz-Newton $\int_{a}^{b} f(x)dx = F(x)\Big _{a}^{b} = F(b) - F(a), F \text{ o primitiva } f$						
6	$\int \alpha \cdot f(x) dx = \alpha \int f(x) dx$	Integrarea prin p r i $\int_{a}^{b} f(x)g'(x)dx = f(x)g(x)\Big _{a}^{b} - \int_{a}^{b} f'(x)g(x)dx$						
7	$\int [f(x) - g(x)] dx = \int f(x) dx - \int g(x) dx$	Prima schimbare de variabil $\int_{a}^{b} f(\varphi(x)) \cdot \varphi'(x) dx = \int_{\varphi(a)}^{\varphi(b)} f(t) dt$						

Anexa 2 - Functii trigonometrice

X	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\tan x$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	/
$\cot x$	/	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

Formule trigonometrice

1.
$$\sin \alpha = \frac{a}{c}$$
; $\cos \alpha = \frac{b}{c}$; $\tan \alpha = \frac{a}{b}$; $\cot \alpha = \frac{b}{a}$; $\cot \alpha = \frac{b}{a}$; a, b - catetele, c - ipotenuza triunghiului dreptunghic, α - unghiul, opus catetei a).

2.
$$tg \alpha = \frac{\sin \alpha}{\cos \alpha}$$
; $ctg \alpha = \frac{\cos \alpha}{\sin \alpha}$.

3.
$$tg \alpha ctg \alpha = 1$$
.

4.
$$\sin\left(\frac{\pi}{2} \pm \alpha\right) = \cos \alpha; \quad \sin(\pi \pm \alpha) = \mp \sin \alpha.$$

5.
$$\cos\left(\frac{\pi}{2} \pm \alpha\right) = \mp \sin \alpha; \quad \cos(\pi \pm \alpha) = -\cos \alpha.$$

6.
$$\operatorname{tg}\left(\frac{\pi}{2} \pm \alpha\right) = \mp \operatorname{ctg}\alpha; \quad \operatorname{ctg}\left(\frac{\pi}{2} \pm \alpha\right) = \mp \operatorname{tg}\alpha.$$

7.
$$\sec\left(\frac{\pi}{2} \pm \alpha\right) = \mp \csc \alpha; \quad \csc\left(\frac{\pi}{2} \pm \alpha\right) = \sec \alpha.$$

8.
$$\sin^2 \alpha + \cos^2 \alpha = 1$$
.

9.
$$1 + tg^2 \alpha = \sec^2 \alpha$$
.

10.
$$1 + \operatorname{ctg}^2 \alpha = \operatorname{cosec}^2 \alpha$$
.

11.
$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \sin \beta \cos \alpha$$
.

12.
$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$
.

13.
$$tg(\alpha \pm \beta) = \frac{tg \alpha \pm tg \beta}{1 \mp tg \alpha tg \beta}$$

14.
$$\operatorname{ctg}(\alpha \pm \beta) = \frac{\operatorname{ctg} \alpha \operatorname{ctg} \beta \mp 1}{\operatorname{ctg} \beta \pm \operatorname{ctg} \alpha}$$
.

15.
$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$
.

16.
$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$
.

17.
$$\operatorname{tg} 2\alpha = \frac{2\operatorname{tg}\alpha}{1 - \operatorname{tg}^2\alpha}$$
.

18.
$$\operatorname{ctg} 2\alpha = \frac{\operatorname{ctg}^2 \alpha - 1}{2\operatorname{ctg} \alpha}$$
.

19.
$$\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha$$

$$20. \cos 3\alpha = 4\cos^3 \alpha - 3\cos \alpha.$$

O Copyright©1999 ONG TCV Scoala Virtuala a Tanarului Matematician http://math.ournet.md

$$21. \ \left| \sin \frac{\alpha}{2} \right| = \sqrt{\frac{1 - \cos \alpha}{2}}.$$

$$22. \left| \cos \frac{\alpha}{2} \right| = \sqrt{\frac{1 + \cos \alpha}{2}}.$$

23.
$$\left| \operatorname{tg} \frac{\alpha}{2} \right| = \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}.$$

24.
$$\operatorname{tg} \frac{\alpha}{2} = \frac{\sin \alpha}{1 + \cos \alpha} = \frac{1 - \cos \alpha}{\sin \alpha}.$$

25.
$$\left| \operatorname{ctg} \frac{\alpha}{2} \right| = \sqrt{\frac{1 + \cos \alpha}{1 - \cos \alpha}}.$$

26.
$$\operatorname{ctg} \frac{\alpha}{2} = \frac{\sin \alpha}{1 - \cos \alpha} = \frac{1 + \cos \alpha}{\sin \alpha}.$$

$$27. \ 1 + \cos \alpha = 2\cos^2 \frac{\alpha}{2}.$$

$$28. \ 1 - \cos \alpha = 2\sin^2 \frac{\alpha}{2}.$$

29.
$$\sin \alpha \pm \sin \beta = 2 \sin \frac{\alpha \pm \beta}{2} \cos \frac{\alpha \mp \beta}{2}$$
.

30.
$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$
.

31.
$$\cos \alpha - \cos \beta = -2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}$$
.

32.
$$\operatorname{tg} \alpha \pm \operatorname{tg} \beta = \frac{\sin(\alpha \pm \beta)}{\cos \alpha \cos \beta}$$

33.
$$\operatorname{ctg} \alpha \pm \operatorname{ctg} \beta = \frac{\sin(\beta \pm \alpha)}{\sin \alpha \sin \beta}$$
.

34.
$$\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)].$$

35.
$$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)].$$

36.
$$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)].$$

O Copyright©1999 ONG TCV Scoala Virtuala a Tanarului Matematician http://math.ournet.md

37. Ecuatii trigonometrice elementare:

$$\sin x = a, \ |a| \le 1; \ x = (-1)^n \arcsin a + \pi n;
\cos x = a, \ |a| \le 1; \ x = \pm \arccos a + 2\pi n;
\operatorname{tg} x = a, \ x = \operatorname{arctg} a + \pi n;
\operatorname{ctg} x = a, \ x = \operatorname{arcctg} a + \pi n$$

$$n \in \mathbf{Z}.$$

- 38. $\arcsin x + \arccos x = \frac{\pi}{2}, \quad |x| \le 1.$
- 39. $\operatorname{arctg} x + \operatorname{arcctg} x = \frac{\pi}{2}$.
- 40. $\operatorname{arcsec} x + \operatorname{arccosec} x = \frac{\pi}{2}, \quad |x| \ge 1.$
- 41. $\sin(\arcsin x) = x$, $x \in [-1; +1]$.
- 42. $\arcsin(\sin x) = x$, $x \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$.
- 43. $\cos(\arccos x) = x, \quad x \in [-1; +1].$
- 44. $\arccos(\cos x) = x$, $x \in [0; \pi]$.
- 45. $\operatorname{tg}(\operatorname{arctg} x) = x, \quad x \in \mathbf{R}$
- 46. $\operatorname{arctg}(\operatorname{tg} x) = x, \quad x \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right).$
- 47. $\operatorname{ctg}(\operatorname{arcctg} x) = x, \quad x \in \mathbf{R}.$
- 48. $\operatorname{arcctg}(\operatorname{ctg} x) = x, \quad x \in (0; \pi).$

49.
$$\arcsin x = \arccos \sqrt{1-x^2} = \arctan \frac{x}{\sqrt{1-x^2}} = \operatorname{arcctg} \frac{\sqrt{1-x^2}}{x}, \quad 0 < x < 1.$$

50.
$$\arccos x = \arcsin \sqrt{1 - x^2} = \arctan \frac{\sqrt{1 - x^2}}{x} = \operatorname{arcctg} \frac{x}{\sqrt{1 - x^2}}, \quad 0 < x < 1.$$

51.
$$\arctan x = \arcsin \frac{x}{\sqrt{1+x^2}} = \arccos \frac{1}{\sqrt{1+x^2}} = \arctan \frac{1}{x}, \quad 0 < x < +\infty.$$

52.
$$\operatorname{arcctg} x = \arcsin \frac{1}{\sqrt{1+x^2}} = \arccos \frac{x}{\sqrt{1+x^2}} = \operatorname{arctg} \frac{1}{x}, \quad 0 < x < +\infty.$$

$$53. \arcsin x + \arcsin y = \begin{bmatrix} \arcsin(x\sqrt{1-y^2} + y\sqrt{1-x^2}), & \operatorname{daca} xy \leq 0 \text{ sau } x^2 + y^2 \leq 1; \\ \pi - \arcsin(x\sqrt{1-y^2} + y\sqrt{1-x^2}), & \operatorname{daca} x > 0, \ y > 0 \text{ si } x^2 + y^2 > 1; \\ -\pi - \arcsin(x\sqrt{1-y^2} + y\sqrt{1-x^2}), & \operatorname{daca} x < 0, y < 0 \text{ si } x^2 + y^2 > 1. \end{bmatrix}$$

O Copyright©1999 ONG TCV Scoala Virtuala a Tanarului Matematician http://math.ournet.md

54.
$$\arcsin x - \arcsin y = \begin{bmatrix} \arcsin(x\sqrt{1-y^2} - y\sqrt{1-x^2}), & \operatorname{daca} xy \ge 0 \text{ sau } x^2 + y^2 \le 1; \\ \pi - \arcsin(x\sqrt{1-y^2} - y\sqrt{1-x^2}), & \operatorname{daca} x > 0, y < 0 \text{ si } x^2 + y^2 > 1; \\ -\pi - \arcsin(x\sqrt{1-y^2} - y\sqrt{1-x^2}), & \operatorname{daca} x < 0, y > 0 \text{ si } x^2 + y^2 > 1. \end{bmatrix}$$
55. $\arccos x + \arccos y = \begin{bmatrix} \arccos(xy - \sqrt{(1-x^2)(1-y^2)}), & \operatorname{daca} x + y \ge 0; \\ 2\pi - \arccos(xy - \sqrt{(1-x^2)(1-y^2)}), & \operatorname{daca} x + y < 0. \end{bmatrix}$

55.
$$\arccos x + \arccos y = \begin{bmatrix} \arccos(xy - \sqrt{(1-x^2)(1-y^2)}), & \operatorname{daca} x + y \ge 0; \\ 2\pi - \arccos(xy - \sqrt{(1-x^2)(1-y^2)}), & \operatorname{daca} x + y < 0. \end{bmatrix}$$

56.
$$\arccos x - \arccos y = \begin{bmatrix} -\arccos(xy + \sqrt{(1-x^2)(1-y^2)}), & \operatorname{daca} x \ge y; \\ \arccos(xy + \sqrt{(1-x^2)(1-y^2)}), & \operatorname{daca} x < y. \end{bmatrix}$$

57.
$$\operatorname{arctg} x + \operatorname{arctg} y = \begin{bmatrix} \operatorname{arctg} \frac{x+y}{1-xy}, & \operatorname{daca} xy < 1; \\ \pi + \operatorname{arctg} \frac{x+y}{1-xy}, & \operatorname{daca} x > 0 \text{ si } xy > 1; \\ -\pi + \operatorname{arctg} \frac{x+y}{1-xy}, & \operatorname{daca} x < 0 \text{ si } xy > 1. \end{bmatrix}$$

$$58. \ \operatorname{arctg} x - \operatorname{arctg} y = \begin{bmatrix} \arctan \frac{x-y}{1+xy}, & \operatorname{daca} xy > -1; \\ \pi + \operatorname{arctg} \frac{x-y}{1+xy}, & \operatorname{daca} x > 0 \text{ si } xy < -1; \\ -\pi + \operatorname{arctg} \frac{x-y}{1+xy}, & \operatorname{daca} x < 0 \text{ si } xy < -1. \end{bmatrix}$$

$$59. \ 2\arcsin x = \begin{bmatrix} \arcsin(2x\sqrt{1-x^2}), & \text{daca } |x| \le \frac{\sqrt{2}}{2}; \\ \pi - \arcsin(2x\sqrt{1-x^2}), & \text{daca } \frac{\sqrt{2}}{2} < x \le 1; \\ -\pi - \arcsin(2x\sqrt{1-x^2}), & \text{daca } -1 \le x < -\frac{\sqrt{2}}{2}. \end{bmatrix}$$

60.
$$2\arccos x = \begin{bmatrix} \arccos(2x^2 - 1) & \text{cand } 0 \le x \le 1; \\ 2\pi - \arccos(2x^2 - 1) & \text{cand } -1 \le x < 0. \end{bmatrix}$$

$$61. \ 2 \operatorname{arctg} x = \begin{bmatrix} \operatorname{arctg} \frac{2x}{1 - x^2}, & \operatorname{daca} |x| < 1; \\ \pi + \operatorname{arctg} \frac{2x}{1 - x^2}, & \operatorname{daca} x > 1; \\ -\pi + \operatorname{arctg} \frac{2x}{1 - x^2}, & \operatorname{daca} x < -1. \end{bmatrix}$$

Copyright©1999 ONG TCV Scoala Virtuala a Tanarului Matematician http://math.ournet.md

62.
$$\frac{1}{2}\arcsin x = \begin{bmatrix} \arcsin\sqrt{\frac{1-\sqrt{1-x^2}}{2}}, & \text{daca } 0 \le x \le 1; \\ -\arcsin\sqrt{\frac{1-\sqrt{1-x^2}}{2}}, & \text{daca } -1 \le x < 0. \end{bmatrix}$$

63.
$$\frac{1}{2}\arccos x = \arccos\sqrt{\frac{1+x}{2}}$$
, daca $-1 \le x \le 1$.

64.
$$\frac{1}{2} \operatorname{arctg} x = \begin{bmatrix} \operatorname{arctg} \frac{\sqrt{1+x^2}-1}{x}, \operatorname{daca} x \neq 0; \\ 0, \operatorname{daca} x = 0. \end{bmatrix}$$

O Copyright©1999 ONG TCV Scoala Virtuala a Tanarului Matematician http://math.ournet.md

Anexa 3 - Tabele statistice

Cumulative normal distribution

Critical values of the *t* distribution

Critical values of the *F* distribution

Critical values of the chi-squared distribution

Table A.1

Cumulative Standardized Normal Distribution

A(z) is the integral of the standardized normal distribution from $-\infty$ to z (in other words, the area under the curve to the left of z). It gives the probability of a normal random variable not being more than z standard deviations above its mean. Values of z of particular importance:

-		
z	A(z)	
1.645	0.9500	Lower limit of right 5% tail
1.960	0.9750	Lower limit of right 2.5% tail
2.326	0.9900	Lower limit of right 1% tail
2.576	0.9950	Lower limit of right 0.5% tail
3.090	0.9990	Lower limit of right 0.1% tail
3.291	0.9995	Lower limit of right 0.05% tail

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999							

TABLE A.2

t Distribution: Critical Values of t

		Significance level							
Degrees of	Two-tailed test:	10%	5%	2%	1%	0.2%	0.1%		
freedom	One-tailed test:	5%	2.5%	1%	0.5%	0.1%	0.05%		
1		6.314	12.706	31.821	63.657	318.309	636.619		
2		2.920	4.303	6.965	9.925	22.327	31.599		
3		2.353	3.182	4.541	5.841	10.215	12.924		
4 5		2.132 2.015	2.776 2.571	3.747 3.365	4.604 4.032	7.173 5.893	8.610 6.869		
6		1.943	2.447	3.143	3.707	5.208	5.959		
7 8		1.894	2.365	2.998	3.499	4.785	5.408 5.041		
8 9		1.860 1.833	2.306 2.262	2.896 2.821	3.355 3.250	4.501 4.297	4.781		
10		1.812	2.228	2.764	3.169	4.144	4.587		
11 12		1.796 1.782	2.201 2.179	2.718 2.681	3.106 3.055	4.025 3.930	4.437 4.318		
13		1.771	2.179	2.650	3.033	3.852	4.221		
14		1.761	2.145	2.624	2.977	3.787	4.140		
15		1.753	2.131	2.602	2.947	3.733	4.073		
16		1.746	2.120	2.583	2.921	3.686	4.015		
17		1.740	2.120	2.567	2.898	3.646	3.965		
18		1.734	2.101	2.552	2.878	3.610	3.922		
19		1.729	2.093	2.539	2.861	3.579	3.883		
20		1.725	2.086	2.528	2.845	3.552	3.850		
21		1.721	2.080	2.518	2.831	3.527	3.819		
22		1.717	2.074	2.508	2.819	3.505	3.792		
23		1.714	2.069	2.500	2.807	3.485	3.768		
24		1.711	2.064	2.492	2.797	3.467	3.745		
25		1.708	2.060	2.485	2.787	3.450	3.725		
26		1.706	2.056	2.479	2.779	3.435	3.707		
27		1.703	2.052	2.473	2.771	3.421	3.690		
28		1.701	2.048	2.467	2.763	3.408	3.674		
29 30		1.699 1.697	2.045 2.042	2.462 2.457	2.756 2.750	3.396 3.385	3.659 3.646		
32		1.694	2.037	2.449	2.738	3.365	3.622		
34 36		1.691 1.688	2.032 2.028	2.441 2.434	2.728 2.719	3.348 3.333	3.601 3.582		
38		1.686	2.028	2.434	2.719	3.333	3.566		
40		1.684	2.021	2.423	2.704	3.307	3.551		
42				2 410					
42 44		1.682 1.680	2.018 2.015	2.418 2.414	2.698 2.692	3.296 3.286	3.538 3.526		
46		1.679	2.013	2.410	2.687	3.277	3.515		
48		1.677	2.011	2.407	2.682	3.269	3.505		
50		1.676	2.009	2.403	2.678	3.261	3.496		
60		1.671	2.000	2.390	2.660	3.232	3.460		
70		1.667	1.994	2.381	2.648	3.211	3.435		
80		1.664	1.990	2.374	2.639	3.195	3.416		
90		1.662	1.987	2.368	2.632	3.183	3.402		
100		1.660	1.984	2.364	2.626	3.174	3.390		
120		1.658	1.980	2.358	2.617	3.160	3.373		
150		1.655	1.976	2.351	2.609	3.145	3.357		
200		1.653	1.972	2.345	2.601	3.131	3.340		
300 400		1.650 1.649	1.968 1.966	2.339 2.336	2.592 2.588	3.118 3.111	3.323 3.315		
500		1.648	1.965	2.334	2.586	3.107	3.310		
600		1.647	1.964	2.333	2.584	3.104	3.307		
∞		1.645	1.960	2.326	2.576	3.090	3.291		

Table A.3

F Distribution: Critical Values of F (5% significance level)

v ₁	1	2	3	4	5	6	7	8	9	10	12	14	16	18	20
v_2	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54	241.88	243.91	245.36	246.46	247.32	248.01
2	18.51	19.00		19.25		19.33	19.35	19.37		19.40	19.41	19.42		19.44	19.45
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.71	8.69	8.67	8.66
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.87	5.84	5.82	5.80
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.64	4.60	4.58	4.56
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.96	3.92	3.90	3.87
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.53	3.49	3.47	3.44
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.24	3.20	3.17	3.15
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.03	2.99	2.96	2.94
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.86	2.83	2.80	2.77
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.74	2.70	2.67	2.65
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.64	2.60	2.57	2.54
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.55	2.51	2.48	2.46
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.48	2.44	2.41	2.39
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.42	2.38	2.35	2.33
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.37	2.33	2.30	2.28
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.33	2.29	2.26	2.23
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.29	2.25	2.22	2.19
19 20	4.38 4.35	3.52 3.49	3.13 3.10	2.90 2.87	2.74 2.71	2.63 2.60	2.54 2.51	2.48 2.45	2.42 2.39	2.38 2.35	2.31 2.28	2.26 2.22	2.21 2.18	2.18 2.15	2.16 2.12
		3.47													
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2.20	2.16	2.12	2.10
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.17	2.13	2.10	2.07
23 24	4.28 4.26	3.42	3.03	2.80 2.78	2.64	2.53 2.51	2.44 2.42	2.37	2.32 2.30	2.27 2.25	2.20	2.15 2.13	2.11	2.08	2.05
25	4.24	3.40 3.39	3.01 2.99	2.76	2.62 2.60	2.49	2.42	2.36 2.34	2.30	2.23	2.18 2.16	2.13	2.09 2.07	2.05 2.04	2.03 2.01
26	4.22	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.15	2.09	2.05	2.02	1.99
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	2.13	2.08	2.04	2.00	1.97
28 29	4.20 4.18	3.34 3.33	2.95 2.93	2.71 2.70	2.56 2.55	2.45 2.43	2.36 2.35	2.29 2.28	2.24 2.22	2.19 2.18	2.12 2.10	2.06 2.05	2.02 2.01	1.99 1.97	1.96 1.94
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.10	2.03	1.99	1.96	1.93
35 40	4.12 4.08	3.27 3.23	2.87 2.84	2.64 2.61	2.49 2.45	2.37 2.34	2.29 2.25	2.22 2.18	2.16 2.12	2.11	2.04	1.99	1.94	1.91 1.87	1.88
50	4.08	3.23	2.79	2.56	2.43	2.34	2.23	2.18	2.12	2.08 2.03	2.00 1.95	1.95 1.89	1.90 1.85	1.81	1.84 1.78
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.92	1.86	1.82	1.78	1.75
70	3.98	3.13	2.74	2.50	2.35	2.23	2.14	2.07	2.02	1.97	1.89	1.84	1.79	1.75	1.72
80	3.96	3.11	2.72	2.49	2.33	2.21	2.13	2.06	2.00	1.95	1.88	1.82	1.77	1.73	1.70
90	3.95	3.11	2.72	2.49	2.33	2.21	2.13	2.00	1.99	1.93	1.86				1.69
100	3.94	3.09	2.70	2.46	2.31	2.19	2.10	2.03	1.97	1.93	1.85	1.79	1.75	1.71	1.68
120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96	1.91	1.83	1.78	1.73	1.69	1.66
150	3.90	3.06	2.66	2.43	2.27	2.16	2.07	2.00	1.94	1.89	1.82	1.76	1.71	1.67	1.64
200	3.89	3.04	2.65	2.42	2.26	2.14	2.06	1.98	1.93	1.88	1.80	1.74	1.69	1.66	1.62
250	3.88	3.03	2.64	2.41	2.25	2.13	2.05	1.98	1.92	1.87	1.79	1.73	1.68	1.65	1.61
300	3.87	3.03	2.63	2.40	2.24	2.13	2.04	1.97		1.86	1.78	1.72	1.68	1.64	1.61
400	3.86	3.02	2.63	2.39	2.24	2.12	2.03	1.96	1.90	1.85	1.78	1.72	1.67	1.63	1.60
500	3.86	3.01	2.62	2.39	2.23	2.12	2.03	1.96	1.90	1.85	1.77	1.71	1.66	1.62	1.59
600	3.86	3.01	2.62	2.39	2.23	2.11	2.02	1.95	1.90	1.85	1.77	1.71	1.66	1.62	1.59
750	3.85	3.01	2.62	2.38	2.23	2.11	2.02	1.95	1.89	1.84	1.77	1.70	1.66	1.62	1.58
1000	3.85	3.00	2.61	2.38	2.22	2.11	2.02	1.95	1.89	1.84	1.76	1.70	1.65	1.61	1.58

Table A.3 (continued)

F Distribution: Critical Values of F (5% significance level)

<i>v</i> ₁	25	30	35	40	50	60	75	100	150	200
v ₂ 1 2 3 4 5	249.26 19.46 8.63 5.77 4.52	250.10 19.46 8.62 5.75 4.50	250.69 19.47 8.60 5.73 4.48	251.14 19.47 8.59 5.72 4.46	251.77 19.48 8.58 5.70 4.44	19.48 8.57	19.48 8.56	253.04 19.49 8.55 5.66 4.41	19.49 8.54	19.49 8.54 5.65
6 7 8 9 10	3.83 3.40 3.11 2.89 2.73	3.81 3.38 3.08 2.86 2.70	3.79 3.36 3.06 2.84 2.68	3.77 3.34 3.04 2.83 2.66	3.75 3.32 3.02 2.80 2.64	3.74 3.30 3.01 2.79 2.62	3.73 3.29 2.99 2.77 2.60	3.71 3.27 2.97 2.76 2.59	2.96 2.74	3.69 3.25 2.95 2.73 2.56
11 12 13 14 15	2.60 2.50 2.41 2.34 2.28	2.57 2.47 2.38 2.31 2.25	2.55 2.44 2.36 2.28 2.22		2.51 2.40 2.31 2.24 2.18	2.49 2.38 2.30 2.22 2.16	2.28 2.21	2.46 2.35 2.26 2.19 2.12	2.24 2.17	2.43 2.32 2.23 2.16 2.10
16 17 18 19 20	2.23 2.18 2.14 2.11 2.07	2.19 2.15 2.11 2.07 2.04	2.17 2.12 2.08 2.05 2.01	2.15 2.10 2.06 2.03 1.99	2.12 2.08 2.04 2.00 1.97	2.11 2.06 2.02 1.98 1.95		2.07 2.02 1.98 1.94 1.91		1.91
21 22 23 24 25	2.05 2.02 2.00 1.97 1.96	2.01 1.98 1.96 1.94 1.92	1.98 1.96 1.93 1.91 1.89	1.96 1.94 1.91 1.89 1.87	1.94 1.91 1.88 1.86 1.84		1.87 1.84	1.88 1.85 1.82 1.80 1.78	1.83 1.80 1.78	1.84 1.82 1.79 1.77 1.75
26 27 28 29 30	1.94 1.92 1.91 1.89 1.88	1.90 1.88 1.87 1.85 1.84	1.87 1.86 1.84 1.83 1.81	1.85 1.84 1.82 1.81 1.79	1.82 1.81 1.79 1.77 1.76	1.80 1.79 1.77 1.75 1.74	1.75 1.73	1.76 1.74 1.73 1.71 1.70	1.72 1.70 1.69	1.73 1.71 1.69 1.67 1.66
35 40 50 60 70	1.82 1.78 1.73 1.69 1.66	1.79 1.74 1.69 1.65 1.62	1.76 1.72 1.66 1.62 1.59	1.74 1.69 1.63 1.59 1.57	1.70 1.66 1.60 1.56 1.53	1.68 1.64 1.58 1.53 1.50	1.55	1.63 1.59 1.52 1.48 1.45	1.50	1.60 1.55 1.48 1.44 1.40
80 90 100 120 150	1.64 1.63 1.62 1.60 1.58	1.57	1.57 1.55 1.54 1.52 1.50	1.54 1.53 1.52 1.50 1.48	1.51 1.49 1.48 1.46 1.44	1.45 1.43	1.45 1.44 1.42 1.40 1.38	1.39	1.36	1.38 1.36 1.34 1.32 1.29
200 250 300 400 500	1.56 1.55 1.54 1.53 1.53	1.52 1.50 1.50 1.49 1.48	1.48 1.47 1.46 1.45 1.45	1.46 1.44 1.43 1.42 1.42	1.41 1.40 1.39 1.38 1.38	1.39 1.37 1.36 1.35 1.35	1.35 1.34 1.33 1.32 1.31	1.32 1.31 1.30 1.28 1.28	1.28 1.27 1.26 1.24 1.23	1.26 1.25 1.23 1.22 1.21
600 750 000	1.52 1.52 1.52	1.48 1.47 1.47	1.44 1.44 1.43		1.37 1.37 1.36	1.34 1.34 1.33	1.31 1.30 1.30	1.27 1.26 1.26	1.23 1.22 1.22	1.20 1.20 1.19

Table A.3 (continued)

F Distribution: Critical Values of F (1% significance level)

<i>v</i> ₁	1	2	3	4	5	6	7	8	9	10	12	14	16	18	20
1 2 3 4 5	98.50 34.12 21.20 16.26	4999.50 99.00 30.82 18.00 13.27	5403.35 99.17 29.46 16.69 12.06	5624.58 99.25 28.71 15.98 11.39	5763.65 99.30 28.24 15.52 10.97	5858.99 99.33 27.91 15.21 10.67		99.37		99.40 27.23 14.55	6106.32 99.42 27.05 14.37 9.89	6142.67 99.43 26.92 14.25 9.77	6170.10 99.44 26.83 14.15 9.68	6191.53 99.44 26.75 14.08 9.61	
6 7 8 9 10	13.75 12.25 11.26 10.56 10.04	10.92 9.55 8.65 8.02 7.56	9.78 8.45 7.59 6.99 6.55	9.15 7.85 7.01 6.42 5.99	8.75 7.46 6.63 6.06 5.64	8.47 7.19 6.37 5.80 5.39	8.26 6.99 6.18 5.61 5.20	8.10 6.84 6.03 5.47 5.06	7.98 6.72 5.91 5.35 4.94	5.81 5.26	7.72 6.47 5.67 5.11 4.71	7.60 6.36 5.56 5.01 4.60	7.52 6.28 5.48 4.92 4.52	7.45 6.21 5.41 4.86 4.46	7.40 6.16 5.36 4.81 4.41
11 12 13 14 15	9.65 9.33 9.07 8.86 8.68	7.21 6.93 6.70 6.51 6.36	6.22 5.95 5.74 5.56 5.42	5.67 5.41 5.21 5.04 4.89	5.32 5.06 4.86 4.69 4.56	5.07 4.82 4.62 4.46 4.32	4.89 4.64 4.44 4.28 4.14	4.74 4.50 4.30 4.14 4.00	4.63 4.39 4.19 4.03 3.89		4.40 4.16 3.96 3.80 3.67	4.29 4.05 3.86 3.70 3.56	4.21 3.97 3.78 3.62 3.49	4.15 3.91 3.72 3.56 3.42	4.10 3.86 3.66 3.51 3.37
16 17 18 19 20	8.53 8.40 8.29 8.18 8.10	6.23 6.11 6.01 5.93 5.85	5.29 5.18 5.09 5.01 4.94	4.77 4.67 4.58 4.50 4.43	4.44 4.34 4.25 4.17 4.10	4.20 4.10 4.01 3.94 3.87	4.03 3.93 3.84 3.77 3.70	3.89 3.79 3.71 3.63 3.56	3.78 3.68 3.60 3.52 3.46	3.51 3.43	3.55 3.46 3.37 3.30 3.23	3.45 3.35 3.27 3.19 3.13	3.37 3.27 3.19 3.12 3.05	3.31 3.21 3.13 3.05 2.99	3.26 3.16 3.08 3.00 2.94
21 22 23 24 25	8.02 7.95 7.88 7.82 7.77	5.78 5.72 5.66 5.61 5.57	4.87 4.82 4.76 4.72 4.68	4.37 4.31 4.26 4.22 4.18	4.04 3.99 3.94 3.90 3.85	3.81 3.76 3.71 3.67 3.63	3.64 3.59 3.54 3.50 3.46	3.51 3.45 3.41 3.36 3.32	3.40 3.35 3.30 3.26 3.22	3.26 3.21	3.17 3.12 3.07 3.03 2.99	3.07 3.02 2.97 2.93 2.89	2.99 2.94 2.89 2.85 2.81	2.93 2.88 2.83 2.79 2.75	2.88 2.83 2.78 2.74 2.70
26 27 28 29 30	7.72 7.68 7.64 7.60 7.56	5.53 5.49 5.45 5.42 5.39	4.64 4.60 4.57 4.54 4.51	4.14 4.11 4.07 4.04 4.02	3.82 3.78 3.75 3.73 3.70	3.59 3.56 3.53 3.50 3.47	3.42 3.39 3.36 3.33 3.30	3.29 3.26 3.23 3.20 3.17	3.18 3.15 3.12 3.09 3.07		2.96 2.93 2.90 2.87 2.84	2.86 2.82 2.79 2.77 2.74	2.78 2.75 2.72 2.69 2.66	2.72 2.68 2.65 2.63 2.60	2.66 2.63 2.60 2.57 2.55
35 40 50 60 70	7.42 7.31 7.17 7.08 7.01	5.27 5.18 5.06 4.98 4.92	4.40 4.31 4.20 4.13 4.07	3.91 3.83 3.72 3.65 3.60	3.59 3.51 3.41 3.34 3.29	3.37 3.29 3.19 3.12 3.07	3.20 3.12 3.02 2.95 2.91	3.07 2.99 2.89 2.82 2.78	2.96 2.89 2.78 2.72 2.67		2.74 2.66 2.56 2.50 2.45	2.64 2.56 2.46 2.39 2.35	2.56 2.48 2.38 2.31 2.27	2.50 2.42 2.32 2.25 2.20	2.44 2.37 2.27 2.20 2.15
80 90 100 120 150	6.96 6.93 6.90 6.85 6.81	4.88 4.85 4.82 4.79 4.75	4.04 4.01 3.98 3.95 3.91	3.56 3.53 3.51 3.48 3.45	3.26 3.23 3.21 3.17 3.14	3.04 3.01 2.99 2.96 2.92	2.87 2.84 2.82 2.79 2.76	2.74 2.72 2.69 2.66 2.63	2.64 2.61 2.59 2.56 2.53	2.52 2.50		2.31 2.29 2.27 2.23 2.20	2.23 2.21 2.19 2.15 2.12	2.17 2.14 2.12 2.09 2.06	2.12 2.09 2.07 2.03 2.00
200 250 300 400 500	6.76 6.74 6.72 6.70 6.69	4.71 4.69 4.68 4.66 4.65	3.88 3.86 3.85 3.83 3.82	3.41 3.40 3.38 3.37 3.36	3.11 3.09 3.08 3.06 3.05	2.89 2.87 2.86 2.85 2.84	2.73 2.71 2.70 2.68 2.68	2.60 2.58 2.57 2.56 2.55	2.50 2.48 2.47 2.45 2.44	2.39 2.38 2.37	2.24	2.17 2.15 2.14 2.13 2.12	2.09 2.07 2.06 2.05 2.04	2.03 2.01 1.99 1.98 1.97	1.97 1.95 1.94 1.92 1.92
600 750 1000	6.68 6.67 6.66	4.64 4.63 4.63	3.81 3.81 3.80	3.35 3.34 3.34	3.05 3.04 3.04	2.83 2.83 2.82	2.67 2.66 2.66	2.54 2.53 2.53	2.44 2.43 2.43	2.34		2.11 2.11 2.10	2.03 2.02 2.02	1.96 1.96 1.95	1.91 1.90 1.90

Table A.3 (continued)

F Distribution: Critical Values of F (1% significance level)

v_1 v_2	25	30	35	40	50	60	75	100	150	200
	6239.83 99.46 26.58 13.91 9.45	99.47 26.50 13.84	99.47	99.47 26.41	6302.52 99.48 26.35 13.69 9.24	26.32	99.49 26.28	99.49 26.24 13.58	99.49	99.49
6 7 8 9 10	7.30 6.06 5.26 4.71 4.31		7.18 5.94 5.15 4.60 4.20		7.09 5.86 5.07 4.52 4.12	5.03	7.02 5.79 5.00 4.45 4.05	4.96 4.41	6.95 5.72 4.93 4.38 3.98	6.93 5.70 4.91 4.36 3.96
11 12 13 14 15	4.01 3.76 3.57 3.41 3.28	3.51 3.35	3.89 3.65 3.46 3.30 3.17	3.27	3.81 3.57 3.38 3.22 3.08	3.78 3.54 3.34 3.18 3.05		3.47 3.27	3.67 3.43 3.24 3.08 2.94	3.66 3.41 3.22 3.06 2.92
16 17 18 19 20	3.16 3.07 2.98 2.91 2.84	2.92 2.84	3.05 2.96 2.87 2.80 2.73	2.84	2.97 2.87 2.78 2.71 2.64		2.71	2.76 2.68 2.60	2.83 2.73 2.64 2.57 2.50	2.81 2.71 2.62 2.55 2.48
21 22 23 24 25	2.79 2.73 2.69 2.64 2.60	2.67 2.62 2.58	2.67 2.62 2.57 2.53 2.49	2.58 2.54 2.49	2.58 2.53 2.48 2.44 2.40	2.55 2.50 2.45 2.40 2.36	2.46 2.41 2.37	2.37	2.44 2.38 2.34 2.29 2.25	2.42 2.36 2.32 2.27 2.23
26 27 28 29 30	2.57 2.54 2.51 2.48 2.45	2.47 2.44 2.41	2.45 2.42 2.39 2.36 2.34	2.33	2.36 2.33 2.30 2.27 2.25			2.22 2.19 2.16		2.19 2.16 2.13 2.10 2.07
35 40 50 60 70	2.35 2.27 2.17 2.10 2.05	2.20 2.10	2.23 2.15 2.05 1.98 1.93	2.19 2.11 2.01 1.94 1.89	2.14 2.06 1.95 1.88 1.83	2.02 1.91	1.98 1.87	1.94 1.82 1.75	1.98 1.90 1.78 1.70 1.65	1.96 1.87 1.76 1.68 1.62
80 90 100 120 150	2.01 1.99 1.97 1.93 1.90	1.89 1.86	1.89 1.86 1.84 1.81 1.77	1.80 1.76	1.79 1.76 1.74 1.70 1.66	1.75 1.72 1.69 1.66 1.62	1.70 1.67 1.65 1.61 1.57	1.62 1.60 1.56	1.61 1.57 1.55 1.51 1.46	1.58 1.55 1.52 1.48 1.43
200 250 300 400 500	1.87 1.85 1.84 1.82 1.81	1.77 1.76	1.74 1.72 1.70 1.69 1.68	1.69 1.67 1.66 1.64 1.63	1.63 1.61 1.59 1.58 1.57	1.58 1.56 1.55 1.53 1.52	1.53 1.51 1.50 1.48 1.47	1.42	1.42 1.40 1.38 1.36 1.34	1.39 1.36 1.35 1.32 1.31
600 750 000	1.80 1.80 1.79	1.72	1.67 1.66 1.66	1.63 1.62 1.61	1.56 1.55 1.54	1.51 1.50 1.50	1.46 1.45 1.44	1.39	1.34 1.33 1.32	1.30 1.29 1.28

Table A.3 (continued)

F Distribution: Critical Values of F (0.1% significance level)

v_1	1	2	3	4	5	6	7	8	9	10	12	14	16	18	20
	4.05e05 998.50 167.03 74.14 47.18	999.00 148.50	999.17	999.25	999.30	999.33	999.36 131.58	999.37	999.39	999.40 129.25	128.32	999.43	999.44	999.44	999.45
6	35.51	27.00	23.70	21.92	20.80	20.03	19.46	19.03	18.69	18.41	17.99	17.68	17.45	17.27	17.12
7	29.25	21.69	18.77	17.20	16.21	15.52	15.02	14.63	14.33	14.08	13.71	13.43	13.23	13.06	12.93
8	25.41	18.49	15.83	14.39	13.48	12.86	12.40	12.05	11.77	11.54	11.19	10.94	10.75	10.60	10.48
9	22.86	16.39	13.90	12.56	11.71	11.13	10.70	10.37	10.11	9.89	9.57	9.33	9.15	9.01	8.90
10	21.04	14.91	12.55	11.28	10.48	9.93	9.52	9.20	8.96	8.75	8.45	8.22	8.05	7.91	7.80
11	19.69	13.81	11.56	10.35	9.58	9.05	8.66	8.35	8.12	7.92	7.63	7.41	7.24	7.11	7.01
12	18.64	12.97	10.80	9.63	8.89	8.38	8.00	7.71	7.48	7.29	7.00	6.79	6.63	6.51	6.40
13	17.82	12.31	10.21	9.07	8.35	7.86	7.49	7.21	6.98	6.80	6.52	6.31	6.16	6.03	5.93
14	17.14	11.78	9.73	8.62	7.92	7.44	7.08	6.80	6.58	6.40	6.13	5.93	5.78	5.66	5.56
15	16.59	11.34	9.34	8.25	7.57	7.09	6.74	6.47	6.26	6.08	5.81	5.62	5.46	5.35	5.25
16	16.12	10.97	9.01	7.94	7.27	6.80	6.46	6.19	5.98	5.81	5.55	5.35	5.20	5.09	4.99
17	15.72	10.66	8.73	7.68	7.02	6.56	6.22	5.96	5.75	5.58	5.32	5.13	4.99	4.87	4.78
18	15.38	10.39	8.49	7.46	6.81	6.35	6.02	5.76	5.56	5.39	5.13	4.94	4.80	4.68	4.59
19	15.08	10.16	8.28	7.27	6.62	6.18	5.85	5.59	5.39	5.22	4.97	4.78	4.64	4.52	4.43
20	14.82	9.95	8.10	7.10	6.46	6.02	5.69	5.44	5.24	5.08	4.82	4.64	4.49	4.38	4.29
21	14.59	9.77	7.94	6.95	6.32	5.88	5.56	5.31	5.11	4.95	4.70	4.51	4.37	4.26	4.17
22	14.38	9.61	7.80	6.81	6.19	5.76	5.44	5.19	4.99	4.83	4.58	4.40	4.26	4.15	4.06
23	14.20	9.47	7.67	6.70	6.08	5.65	5.33	5.09	4.89	4.73	4.48	4.30	4.16	4.05	3.96
24	14.03	9.34	7.55	6.59	5.98	5.55	5.23	4.99	4.80	4.64	4.39	4.21	4.07	3.96	3.87
25	13.88	9.22	7.45	6.49	5.89	5.46	5.15	4.91	4.71	4.56	4.31	4.13	3.99	3.88	3.79
26	13.74	9.12	7.36	6.41	5.80	5.38	5.07	4.83	4.64	4.48	4.24	4.06	3.92	3.81	3.72
27	13.61	9.02	7.27	6.33	5.73	5.31	5.00	4.76	4.57	4.41	4.17	3.99	3.86	3.75	3.66
28	13.50	8.93	7.19	6.25	5.66	5.24	4.93	4.69	4.50	4.35	4.11	3.93	3.80	3.69	3.60
29	13.39	8.85	7.12	6.19	5.59	5.18	4.87	4.64	4.45	4.29	4.05	3.88	3.74	3.63	3.54
30	13.29	8.77	7.05	6.12	5.53	5.12	4.82	4.58	4.39	4.24	4.00	3.82	3.69	3.58	3.49
35	12.90	8.47	6.79	5.88	5.30	4.89	4.59	4.36	4.18	4.03	3.79	3.62	3.48	3.38	3.29
40	12.61	8.25	6.59	5.70	5.13	4.73	4.44	4.21	4.02	3.87	3.64	3.47	3.34	3.23	3.14
50	12.22	7.96	6.34	5.46	4.90	4.51	4.22	4.00	3.82	3.67	3.44	3.27	3.41	3.04	2.95
60	11.97	7.77	6.17	5.31	4.76	4.37	4.09	3.86	3.69	3.54	3.32	3.15	3.02	2.91	2.83
70	11.80	7.64	6.06	5.20	4.66	4.28	3.99	3.77	3.60	3.45	3.23	3.06	2.93	2.83	2.74
80	11.67	7.54	5.97	5.12	4.58	4.20	3.92	3.70	3.53	3.39	3.16	3.00	2.87	2.76	2.68
90	11.57	7.47	5.91	5.06	4.53	4.15	3.87	3.65	3.48	3.34	3.11	2.95	2.82	2.71	2.63
100	11.50	7.41	5.86	5.02	4.48	4.11	3.83	3.61	3.44	3.30	3.07	2.91	2.78	2.68	2.59
120	11.38	7.32	5.78	4.95	4.42	4.04	3.77	3.55	3.38	3.24	3.02	2.85	2.72	2.62	2.53
150	11.27	7.24	5.71	4.88	4.35	3.98	3.71	3.49	3.32	3.18	2.96	2.80	2.67	2.56	2.48
200	11.15	7.15	5.63	4.81	4.29	3.92	3.65	3.43	3.26	3.12	2.90	2.74	2.61	2.51	2.42
250	11.09	7.10	5.59	4.77	4.25	3.88	3.61	3.40	3.23	3.09	2.87	2.71	2.58	2.48	2.39
300	11.04	7.07	5.56	4.75	4.22	3.86	3.59	3.38	3.21	3.07	2.85	2.69	2.56	2.46	2.37
400	10.99	7.03	5.53	4.71	4.19	3.83	3.56	3.35	3.18	3.04	2.82	2.66	2.53	2.43	2.34
500	10.96	7.00	5.51	4.69	4.18	3.81	3.54	3.33	3.16	3.02	2.81	2.64	2.52	2.41	2.33
600	10.94	6.99	5.49	4.68	4.16	3.80	3.53	3.32	3.15	3.01	2.80	2.63	2.51	2.40	2.32
750	10.91	6.97	5.48	4.67	4.15	3.79	3.52	3.31	3.14	3.00	2.78	2.62	2.49	2.39	2.31
1000	10.89	6.96	5.46	4.65	4.14	3.78	3.51	3.30	3.13	2.99	2.77	2.61	2.48	2.38	2.30

Table A.3 (continued)

F Distribution: Critical Values of F (0.1% significance level)

	25	30	35	40	50	60	75	100	150	200
v ₂ 1 2 3 4 5		999.47	999.47 125.17	999.47	999.48 124.66		999.49 124.27	999.49		999.49
6	16.85	16.67	16.54	16.44	16.31	16.21	16.12	16.03	15.93	15.89
7	12.69	12.53	12.41	12.33	12.20	12.12	12.04	11.95	11.87	11.82
8	10.26	10.11	10.00	9.92	9.80	9.73	9.65	9.57	9.49	9.45
9	8.69	8.55	8.46	8.37	8.26	8.19	8.11	8.04	7.96	7.93
10	7.60	7.47	7.37	7.30	7.19	7.12	7.05	6.98	6.91	6.87
11	6.81	6.68	6.59	6.52	6.42	6.35	6.28	6.21	6.14	6.10
12	6.22	6.09	6.00	5.93	5.83	5.76	5.70	5.63	5.56	5.52
13	5.75	5.63	5.54	5.47	5.37	5.30	5.24	5.17	5.10	5.07
14	5.38	5.25	5.17	5.10	5.00	4.94	4.87	4.81	4.74	4.71
15	5.07	4.95	4.86	4.80	4.70	4.64	4.57	4.51	4.44	4.41
16	4.82	4.70	4.61	4.54	4.45	4.39	4.32	4.26	4.19	4.16
17	4.60	4.48	4.40	4.33	4.24	4.18	4.11	4.05	3.98	3.95
18	4.42	4.30	4.22	4.15	4.06	4.00	3.93	3.87	3.80	3.77
19	4.26	4.14	4.06	3.99	3.90	3.84	3.78	3.71	3.65	3.61
20	4.12	4.00	3.92	3.86	3.77	3.70	3.64	3.58	3.51	3.48
21	4.00	3.88	3.80	3.74	3.64	3.58	3.52	3.46	3.39	3.36
22	3.89	3.78	3.70	3.63	3.54	3.48	3.41	3.35	3.28	3.25
23	3.79	3.68	3.60	3.53	3.44	3.38	3.32	3.25	3.19	3.16
24	3.71	3.59	3.51	3.45	3.36	3.29	3.23	3.17	3.10	3.07
25	3.63	3.52	3.43	3.37	3.28	3.22	3.15	3.09	3.03	2.99
26	3.56	3.44	3.36	3.30	3.21	3.15	3.08	3.02	2.95	2.92
27	3.49	3.38	3.30	3.23	3.14	3.08	3.02	2.96	2.89	2.86
28	3.43	3.32	3.24	3.18	3.09	3.02	2.96	2.90	2.83	2.80
29	3.38	3.27	3.18	3.12	3.03	2.97	2.91	2.84	2.78	2.74
30	3.33	3.22	3.13	3.07	2.98	2.92	2.86	2.79	2.73	2.69
35	3.13	3.02	2.93	2.87	2.78	2.72	2.66	2.59	2.52	2.49
40	2.98	2.87	2.79	2.73	2.64	2.57	2.51	2.44	2.38	2.34
50	2.79	2.68	2.60	2.53	2.44	2.38	2.31	2.25	2.18	2.14
60	2.67	2.55	2.47	2.41	2.32	2.25	2.19	2.12	2.05	2.01
70	2.58	2.47	2.39	2.32	2.23	2.16	2.10	2.03	1.95	1.92
80	2.52	2.41	2.32	2.26	2.16	2.10	2.03	1.96	1.89	1.85
90	2.47	2.36	2.27	2.21	2.11	2.05	1.98	1.91	1.83	1.79
100	2.43	2.32	2.24	2.17	2.08	2.01	1.94	1.87	1.79	1.75
120	2.37	2.26	2.18	2.11	2.02	1.95	1.88	1.81	1.73	1.68
150	2.32	2.21	2.12	2.06	1.96	1.89	1.82	1.74	1.66	1.62
200	2.26	2.15	2.07	2.00	1.90	1.83	1.76	1.68	1.60	1.55
250	2.23	2.12	2.03	1.97	1.87	1.80	1.72	1.65	1.56	1.51
300	2.21	2.10	2.01	1.94	1.85	1.78	1.70	1.62	1.53	1.48
400	2.18	2.07	1.98	1.92	1.82	1.75	1.67	1.59	1.50	1.45
500	2.17	2.05	1.97	1.90	1.80	1.73	1.65	1.57	1.48	1.43
600	2.16	2.04	1.96	1.89	1.79	1.72	1.64	1.56	1.46	1.41
750	2.15	2.03	1.95	1.88	1.78	1.71	1.63	1.55	1.45	1.40
1000	2.14	2.02	1.94	1.87	1.77	1.69	1.62	1.53	1.44	1.38

Table A.4 $\chi^{2} \mbox{ (Chi-Squared) Distribution: Critical Values of } \chi^{2}$

		Significance level	
Degrees of freedom	5%	1%	0.1%
1	3.841	6.635	10.828
2	5.991	9.210	13.816
3	7.815	11.345	16.266
4	9.488	13.277	18.467
5	11.070	15.086	20.515
6	12.592	16.812	22.458
7	14.067	18.475	24.322
8	15.507	20.090	26.124
9	16.919	21.666	27.877
10	18.307	23.209	29.588