Assume all spaces are locally compact.

Proposition 1. The following are all equivalent winning conditions for $Con_{O,P}(X^*,\infty)$:

- The points chosen by P converge to ∞ .
- All compact subsets of X contain finitely many points chosen by P.
- No compact subset of X contains infinite points chosen by P.

The following are all equivalent winning conditions for $Clus_{O,P}(X^*,\infty)$:

- The points chosen by P cluster about ∞ .
- All compact subsets of X miss infinitely many points chosen by P.
- ullet No compact subset of X contains cofinite points chosen by P.

Proposition 2. The winning condition for $Con_{O,P}(X^*,\infty)$ is equivalent to the winning condition of $LF_{K,P}(X)$.

Proof. First, suppose that the points chosen by P have a limit point l, the contradiction of $LF_{K,P}(X^*)$'s winning condition. Every open set about l contains infinitely many points, including a compact neighborhood of l. This contradicts the winning condition of $Con_{O,P}(X^*,\infty)$.

Then, suppose that there was a compact subset of X containing infinite points chosen by P, the contradiction of $Con_{O,P}(X^*,\infty)$'s winning condition. Every infinite subset of a compact set has a limit point, contradicting $LF_{K,P}(X^*)$'s winning condition.

Theorem 3. The following are all equivalent.

- X is metacompact.
- $O \uparrow_{tact} Con_{O,P}(X^*, \infty)$.
- $O \uparrow_{tact} Clus_{O,P}(X^*, \infty)$.

Proof. Gruenhage has shown X is metacompact $\Rightarrow K \uparrow_{\text{tact}} LF_{K,P}(X)$ (which is equivalent to $O \uparrow_{\text{tact}} Con_{O,P}(X^*,\infty)$), and obviously $O \uparrow_{\text{tact}} Con_{O,P}(X^*,\infty) \Rightarrow O \uparrow_{\text{tact}} Clus_{O,P}(X^*,\infty)$. We proceed by modifying Gruenhage's proof that $K \uparrow_{\text{tact}} LF_{K,P}(X)$ implies X is metacompact to show $O \uparrow_{\text{tact}} Clus_{O,P}(X^*,\infty)$ does also.

Let \mathcal{U} be a cover of X, and refine it to open F_{σ} sets with compact closures. Let $K: X^* \to K[X]$ be the complement of a winning clustering strategy for O such that K(x) is a compact neighborhood of x for all $x \in X$.

Let
$$A(x) = \{p : x \notin K(p)\}.$$

For each x, we claim x is not even a limit point of A(x). To see this, suppose there was such an x, and choose any compact neighborhood N of x. If x was a limit of A(x), then $N \cap A(x) \neq \emptyset$. We choose $x_0 \in N \cap A(x)$, and note $x \notin K(x_0)$ since $x_0 \in A(x)$.

This makes $N \setminus K(x_0)$ a neighborhood of x, which must then intersect A(x). We may then pick an x_1 in $N \cap A(x) \setminus K(x_0)$. By continuing this process inductively we find x_n in $N \cap A(x) \setminus \bigcup_{0 \le i < n} K(x_i)$. Since the x_n are all in the compact set N, the winning condition for $Clus_{O,P}(X^*,\infty)$ is not met for the play $\langle x_0, X^* \setminus K(x_0), x_1, X^* \setminus K(x_1), \ldots \rangle$, contradicting the fact that K is the complement of a winning strategy.

Let $K'(x) = Int(K(x) \setminus A(x))$. We note that $x \in K'(x)$ since x was not a limit point or member of A(x). So for each K let $\{K'(x) : x \in K\}$ be an open cover, and take a finite subset $F(K) \subset K$ which yields the subcover $\{K'(x) : x \in F(K)\}$.

Enumerate $\mathcal{U} = \{U_{\alpha} : \alpha < \lambda\}$. We define \mathcal{U}_{α} for $\alpha < \lambda$ to fulfill the following:

- \mathcal{U}_{α} is countable
- $\{U_{\beta}: \beta < \alpha\} \subseteq \bigcup_{\beta < \alpha} \mathcal{U}_{\beta}$
- If

$$N_{\alpha} = \left(\bigcup \mathcal{U}_{\alpha}\right) \setminus \bigcup_{\beta < \alpha} \left(\bigcup \mathcal{U}_{\beta}\right)$$

(that is, N_{α} contains the points covered by \mathcal{U}_{α} and not covered by a previous \mathcal{U}_{β}) then there exists a countable $S_{\alpha} \subseteq N_{\alpha}$ where

$$N_{\alpha} \subseteq \bigcup_{x \in S_{\alpha}} K'(x) \subseteq \bigcup_{x \in S_{\alpha}} K(x) \subseteq \bigcup \mathcal{U}_{\alpha}$$

To start, let \mathcal{U}_0 and \mathcal{U}_{α} for every limit α be the empty set. For the successor ordinal $\alpha + 1$, let $\mathcal{U}_{\alpha+1,0} = \{U_{\alpha}\}$ and $S_{\alpha+1,0} = \emptyset$. Then let $O_{\alpha+1} = \bigcup_{\beta \leq \alpha} \bigcup \mathcal{U}_{\beta}$, the points covered by previous \mathcal{U}_{β} .

We then define

$$S_{\alpha+1,n+1} = \bigcup_{U \in \mathcal{U}_{\alpha+1,n}} F(Cl(U) \setminus O_{\alpha+1})$$

and let $\mathcal{U}_{\alpha+1,n+1} \subseteq \mathcal{U}$ be a finite cover of $\bigcup_{x \in S_{\alpha+1,n+1}} K(x)$. Note that $S_{\alpha,n}$ and $U_{\alpha,n}$ are finite at every step n, so we may define $S_{\alpha} = \bigcup_{n < \omega} S_{\alpha,n}$ and $U_{\alpha} = \bigcup_{n < \omega} U_{\alpha,n}$.

Such \mathcal{U}_{α} may be seen to fulfill the above requirements.

Let $W_{\alpha} = \bigcup_{x \in S_{\alpha}} K'(x)$. Note W_{α} contains everything in \mathcal{U}_{α} not covered by lower \mathcal{U}_{β} .

We now show the collection of W_{α} is point-finite. Suppose it wasn't: if $x \in W_{\alpha_n}$ for $\alpha_0 < \alpha_1 < \dots$, then for each n choose some $x_n \in S_{\alpha_n}$ where $x \in K'(x_n)$.

FINISH THIS

Example 4. Let X be a zero-dimensional, compact L-space (hereditarally Lindeloff and non-separable). It is a fact that there exists a point-countable collection $\mathcal{U} = \{U_{\alpha} : \alpha < \omega_1\}$ of clopen sets in X, and it is also true that any point-finite subcollection of \mathcal{U} is countable.

Let $C = \{c_{\alpha} : \alpha < \omega_1\}$ be any uncountable subset of the Cantor space 2^{ω} . Let $X_s = X \times \{s\}$ for each $s \in 2^{<\omega}$, and $U_{\alpha,s} = U_{\alpha} \times \{s\}$.

Finally, let

$$\mathbb{X} = C \cup \bigcup_{s \in 2^{<\omega}} X_s$$

be a tree of $2^{<\omega}$ copies of X, and where

$$c_{\alpha} \cup \bigcup_{n < \omega} U_{\alpha, x_{\alpha} \upharpoonright n}$$

is an open set about each c_{α} .

Definition 5. Let $S \in [\omega_1]^{<\omega}$ and $m < \omega$. Define

$$K_S = \bigcup_{\alpha \in S} \left(c_\alpha \cup \left(\bigcup_{s < c_\alpha} U_{\alpha, s} \right) \right)$$
$$A = \{ z^{\smallfrown} \langle 1 \rangle : z \in 1^{<\omega} \}$$
$$K_S^* = K_S \setminus \bigcup_{s \in A} X_s$$

and

$$L_m = \bigcup_{s \in 2^{< m}} X_s$$

and observe that every compact set is dominated by $K_S^* \cup L_m$ for some S, m. Intuitively, K_S^* collects the branches of U_α converging up to c_α for each $\alpha \in S$ while avoiding copies X_s of X for each s in an antichain A, and L_m collects the copies X_s of X with |s| < m at the base of the tree.

Proposition 6. Without loss of generality, P always plays points in $\bigcup_{s\in 2^{<\omega}} X_s$.

Proposition 7. $K \uparrow LF_{K,P}(\mathbb{X})$.

Proof. In response to a point $\langle x, s \rangle$, K observes that there are only countably many α such that $U_{\alpha} \times \{s\}$ contains $\langle x, s \rangle$ (by point-countability of X). Enumerate these as α_n . K makes a promise that during round m, K will forbid some superset of $K_{\{\alpha_n:n\leq m\}}$. Finally, K also always forbids a superset of $L_{|s|+1}$.

Suppose P's moves clustered at some point. Since K forbade $L_{|s|+1}$ during each round, that point must be c_{α} for some α . P's play then must have included a subsequence of points $\langle x_0, s_0 \rangle, \langle x_1, s_1 \rangle, \langle x_2, s_2 \rangle \dots$ such that $x_n \in U_{\alpha}$ and $s_n \leq s_{n+1} \leq c_{\alpha}$. However, in response to $\langle x_0, s_0 \rangle, K$ made a promise to eventually forbid a superset of $K_{\{\alpha\}}$, making every $\langle x_n, t_n \rangle$ illegal after that round.

Theorem 8. $K \gamma_{tact} LF_{K,P}(X)$.

Proof. (Vanished somewhere during my editing... looking for it now!)

Theorem 9. $K \uparrow_{2-tact} LF_{K,P}(\mathbb{X})$.

Proof. Suppose $\sigma(\langle x, s \rangle, \langle y, t \rangle)$ was a winning 2-tactical strategy. We may define $S(x, y, n) \in [\omega_1]^{<\omega}$ (increasing on n) and $n < m(x, y, n) < \omega$ such that for each (x, y),

$$\bigcup_{s,t\in 2^{\leq n}} \sigma(\langle x,s\rangle,\langle y,t\rangle) \subseteq K_{S(x,y,n)}^* \cup L_{m(x,y,n)}$$

and so we assume

$$\sigma(\langle x, s \rangle, \langle y, t \rangle) = K_{S(x, y, \max(|s|, |t|))}^* \cup L_{m(x, y, \max(|s|, |t|))}$$

Select an arbitrary point $x' \in X$. We define a tactical strategy

$$\tau(x,s) = K^*_{S(x,x',m(x,x',|s|)+1)} \cup L_{m(x,x',m(x,x',|s|)+1)}$$

We complete the proof by showing τ is a winning tactical strategy (a contradiction).

Suppose

$$\langle x_0, s_0 \rangle, \langle x_1, s_1 \rangle, \langle x_2, s_2 \rangle, \dots$$

successfully countered τ by clustering at $c \in C$ (the strategy trivially prevents clustering elsewhere). Let $z_n = \langle 0, \dots, 0 \rangle$ with n zeros. We claim

$$\langle x_0, s_0 \rangle, \langle x', z_{m(x_0, x', |s_0|)} \cap \langle 1 \rangle \rangle, \langle x_1, s_1 \rangle, \langle x', z_{m(x_1, x', |s_1|)} \cap \langle 1 \rangle \rangle, \langle x_2, s_2 \rangle, \langle x', z_{m(x_2, x', |s_2|)} \cap \langle 1 \rangle \rangle, \dots$$

is a successful counter to σ .

We will need the fact that:

$$|s_i| < m(x_i, x', |s_i|) + 1 = |z_{m(x_i, x', |s_i|)} \cap \langle 1 \rangle|$$

$$< m(x_i, x', m(x_i, x', |s_i|) + 1) = m(x_i, x', |z_{m(x_i, x', |s_i|)} (1)) \le |s_{i+1}|$$

Note that $m(x, y, \max(|s|, |t|))$ is increasing throughout this play of the game:

$$m(x_{i}, x', \max(|s_{i}|, |z_{m(x_{i}, x', |s_{i}|)} \cap \langle 1 \rangle |)) \leq |s_{i+1}|$$

$$< m(x_{i+1}, x', \max(|s_{i+1}|, |z_{m(x_{i}, x', |s_{i}|)} \cap \langle 1 \rangle |)) \leq |z_{m(x_{i+1}, x', |s_{i+1}|)} \cap \langle 1 \rangle |$$

$$< m(x_{i+1}, x', \max(|s_{i+1}|, |z_{m(x_{i+1}, x', |s_{i+1}|)} \cap \langle 1 \rangle |))$$

We turn to showing that $\langle x', z_{m(x_{i+1}, x', |s_{i+1}|)} \cap \langle 1 \rangle \rangle$ is always a legal move. Since $z_{m(x_{i+1}, x', |s_{i+1}|)} \cap \langle 1 \rangle$ is on the antichain avoided by any K^* , the problem is reduced to showing that this move isn't forbidden by

$$L_{m(x_{i+1},x',\max(|s_{i+1}|,|z_{m(x_i,x',|s_i|)} \cap \langle 1 \rangle|))}$$

which we can see here:

$$m(x_{i+1}, x', \max(|s_{i+1}|, |z_{m(x_i, x', |s_i|)} \cap \langle 1 \rangle |)) = m(x_{i+1}, x', |s_{i+1}|) < |z_{m(x_{i+1}, x', |s_{i+1}|)} \cap \langle 1 \rangle |$$

We can conclude by showing that $\langle x_{i+1}, s_{i+1} \rangle$ is always a legal move. We can see it avoids

$$L_{m(x_i,x',\max(|s_i|,|z_{m(x_i,x',|s_i|)} \cap \langle 1 \rangle|))}$$

since

$$m(x_i, x', \max(|s_i|, |z_{m(x_i, x', |s_i|)} \cap \langle 1 \rangle |)) = m(x_i, x', |z_{m(x_i, x', |s_i|)} \cap \langle 1 \rangle |) \le |s_{i+1}|$$

Since $\langle x_{i+1}, s_{i+1} \rangle$ was legal against τ , it avoided

$$K_{S(x_j,x',m(x_j,x',|s_j|)+1)}^* = K_{S(x_j,x',\max(|s_j|,|z_{m(x_j,x',|s_j|)} \cap \langle 1 \rangle|))}^*$$

for $j \leq i$. And when j < i,

$$\begin{split} K_{S(x_{j+1},x',\max(|s_{j+1}|,|z_{m(x_{j},x',|s_{j}|)} \cap \langle 1 \rangle|))}^* &= K_{S(x_{j+1},x',|s_{j+1}|)}^* \\ &\subseteq K_{S(x_{j+1},x',m(x_{j+1},x',|s_{j+1}|)+1)}^* \end{split}$$

This concludes the proof.

Theorem 10. $K \uparrow_{k-tact} LF_{K,P}(\mathbb{X})$.

Proof. The proof proceeds similarly to the proof of $K \not\uparrow_{2\text{-tact}} LF_{K,P}(\mathbb{X})$.

Suppose $\sigma(\langle \overline{x}, \overline{s} \rangle, \langle y, t \rangle)$ was a winning k+1-tactical strategy, where $\langle \overline{x}, \overline{s} \rangle$ represents $\langle x_0, s_0 \rangle, \ldots, \langle x_{k-1}, s_{k-1} \rangle$. We may define $S(\overline{x}, y, n) \in [\omega_1]^{<\omega}$ (increasing on n) and $n < m(\overline{x}, y, n) < \omega$ such that for each (\overline{x}, y) ,

$$\bigcup_{\overline{s}, t \in 2^{\leq n}} \sigma(\langle \overline{x}, \overline{s} \rangle, \langle y, t \rangle) \subseteq K_{S(\overline{x}, y, n)}^* \cup L_{m(\overline{x}, y, n)}$$

and so we assume

$$\sigma(\langle x, s \rangle, \langle y, t \rangle) = K_{S(x, y, \max(|s|, |t|))}^* \cup L_{m(x, y, \max(|s|, |t|))}$$

Select an arbitrary point $x' \in X$. We define a tactical strategy

$$\tau(x,s) = K_{S(x,x',m(x,x',|s|)+1)}^* \cup L_{m(x,x',m(x,x',|s|)+1)}$$

We complete the proof by showing τ is a winning tactical strategy (a contradiction).

Suppose

$$\langle x_0, s_0 \rangle, \langle x_1, s_1 \rangle, \langle x_2, s_2 \rangle, \dots$$

successfully countered τ by clustering at $c \in C$ (the strategy trivially prevents clustering elsewhere). Let $z_n = \langle 0, \dots, 0 \rangle$ with n zeros. We claim

$$\langle x_0, s_0 \rangle, \langle x', z_{m(x_0, x', |s_0|)} \cap \langle 1 \rangle \rangle, \langle x_1, s_1 \rangle, \langle x', z_{m(x_1, x', |s_1|)} \cap \langle 1 \rangle \rangle, \langle x_2, s_2 \rangle, \langle x', z_{m(x_2, x', |s_2|)} \cap \langle 1 \rangle \rangle, \dots$$

is a successful counter to σ .

We will need the fact that:

$$|s_i| < m(x_i, x', |s_i|) + 1 = |z_{m(x_i, x', |s_i|)} \land \langle 1 \rangle|$$

$$< m(x_i, x', m(x_i, x', |s_i|) + 1) = m(x_i, x', |z_{m(x_i, x', |s_i|)} \land \langle 1 \rangle|) \le |s_{i+1}|$$

Note that $m(x, y, \max(|s|, |t|))$ is increasing throughout this play of the game:

$$\begin{split} m(x_i, x', \max(|s_i|, |z_{m(x_i, x', |s_i|)} \cap \langle 1 \rangle |)) &\leq |s_{i+1}| \\ &< m(x_{i+1}, x', \max(|s_{i+1}|, |z_{m(x_i, x', |s_i|)} \cap \langle 1 \rangle |)) \leq |z_{m(x_{i+1}, x', |s_{i+1}|)} \cap \langle 1 \rangle | \\ &< m(x_{i+1}, x', \max(|s_{i+1}|, |z_{m(x_{i+1}, x', |s_{i+1}|)} \cap \langle 1 \rangle |)) \end{split}$$

We turn to showing that $\langle x', z_{m(x_{i+1}, x', |s_{i+1}|)} \cap \langle 1 \rangle \rangle$ is always a legal move. Since $z_{m(x_{i+1}, x', |s_{i+1}|)} \cap \langle 1 \rangle$ is on the antichain avoided by any K^* , the problem is reduced to showing that this move isn't forbidden by

$$L_{m(x_{i+1},x',\max(|s_{i+1}|,|z_{m(x_i,x',|s_i|)} ^\frown \langle 1 \rangle|))}$$

which we can see here:

$$m(x_{i+1}, x', \max(|s_{i+1}|, |z_{m(x_i, x', |s_i|)} \cap \langle 1 \rangle |)) = m(x_{i+1}, x', |s_{i+1}|) < |z_{m(x_{i+1}, x', |s_{i+1}|)} \cap \langle 1 \rangle |$$

We can conclude by showing that $\langle x_{i+1}, s_{i+1} \rangle$ is always a legal move. We can see it avoids

$$L_{m(x_i,x',\max(|s_i|,|z_{m(x_i,x',|s_i|)} \cap \langle 1 \rangle|))}$$

since

$$m(x_i, x', \max(|s_i|, |z_{m(x_i, x', |s_i|)} \cap \langle 1 \rangle |)) = m(x_i, x', |z_{m(x_i, x', |s_i|)} \cap \langle 1 \rangle |) \le |s_{i+1}|$$

Since $\langle x_{i+1}, s_{i+1} \rangle$ was legal against τ , it avoided

$$K_{S(x_j,x',m(x_j,x',|s_j|)+1)}^* = K_{S(x_j,x',\max(|s_j|,|z_{m(x_j,x',|s_j|)} \cap \langle 1 \rangle|))}^*$$

for $j \leq i$. And when j < i,

$$\begin{split} K_{S(x_{j+1},x',\max(|s_{j+1}|,|z_{m(x_{j},x',|s_{j}|)} \cap \langle 1 \rangle|))}^* &= K_{S(x_{j+1},x',|s_{j+1}|)}^* \\ &\subseteq K_{S(x_{j+1},x',m(x_{j+1},x',|s_{j+1}|)+1)}^* \end{split}$$

This concludes the proof.