1-S) MC

· homing withit Pm, exits at Palm=1004 · Elevit deff. blun fact & pipe is regligible . Stends, incompresse, fully day, entrance/ent negligite Puls= 1000 ks/m3 and Must= 12103 ks

 $\frac{P_{m}}{P_{9}} + \frac{V_{1}^{2}}{Z_{9}} = \frac{P_{stm}}{P_{9}} + \frac{V_{2}^{2}}{Z_{9}} + h_{L, P_{1}P_{1}O} + 3V_{2,brd} + \frac{V_{ann}^{2}}{Z_{9}}$

14. Re= DVarg L = 1000 = 1000 = 1000 = (060 Re= (060

15.16) , Reuz=1060 frinkil flows, pisttus, flowie tribling

15. Copa Tudis => Tubles &= 0.0015 mm

17. = 0.0015 mm = 3.76×10-5

18, F= 64 18, F= 0.0604

19. hp= FLV=3 = 0.0604.20.026573 = 0.00108

21. Out of T: ~ 11

FIGURE A-27
The Moody chart for the friction factor for fully developed flow in circular pipes for use in the head loss relation $\Delta P_L = f \frac{L}{D} \frac{\rho V^2}{2}$. Friction factors in the turbulent flow are evaluated from the Colebrook equation $\frac{1}{\sqrt{f}} = -2\log_{10}\left(\frac{\varepsilon/D}{3.7} + \frac{2.51}{\text{Re}\sqrt{f}}\right)$.

TABLE 14-4 (CONCLUDED)

90° miter bend (without vanes): $K_l = 1.1$

90° miter bend (with vanes): $K_t = 0.2$

45° threaded elbow: $K_{I} = 0.4$

Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

TABLE 15-2

Representative drag coefficients C_D for various three-dimensional bodies based on the frontal area for Re $> 10^4$ unless stated otherwise (for use in the drag force relation $F_D = C_D A \rho V^2/2$ where V is the upstream velocity)

Cube, $A = D^2$

$$C_D = 1.05$$

Thin circular disk, $A = \pi D^2/4$

$$C_D = 1.1$$

Cone (for $\theta = 30^{\circ}$), $A = \pi D^2/4$

$$C_D = 0.5$$

Sphere, $A = \pi D^2/4$

Laminar: Re $\lesssim 2 \times 10^5$ $C_D = 0.5$ Turbulent: Re $\gtrsim 2 \times 10^6$ $C_D = 0.2$

See Fig. 11–36 for C_D vs. Re for smooth and rough spheres. Ellipsoid, $A = \pi D^2/4$

	$\mathcal{C}_{\mathcal{D}}$		
L/D	Laminar	Turbulent	
	$Re \lesssim 2 \times 10^5$	$Re \gtrsim 2 \times 10^6$	
0.75	0.5	0.2	
1	0.5	0.2	
2	0.3	0.1	
4	0.3	0.1	
8	0.2	0.1	

Hemisphere, $A = \pi D^2/4$

$$C_D = 0.4$$

$$C_D = 1.2$$

Finite cylinder, vertical, A = LD

Values are for laminar flow $(Re \leq 2 \times 10^5)$

Finite cylinder, horizontal, $A = \pi D^2/4$

	1	LID	C_D
	D	0.5	1.1
	10000	1	0.9
	<u>+</u>	2	0.9
<u> </u>		4	0.9
		8	1.0