ETEC SJC Desenvolvimento de Sistemas

Internet e Protocolos

Topologias e Tipos de Redes

(Cisco Exploration 4.0 e livros)

Jean.costa12@etec.sp.gov.br

O que é Rede de Computador

Definições

"Grupo de computadores conectados por um meio de comunicação de dados de forma a compartilhar recursos" (Soares).

"Coleção de computadores autônomos interconectados por uma só tecnologia. Dois computadores são ditos interconectados se eles são capazes de trocar informações" (Tannenbaum).

Meios Físicos de Rede

Meios físicos de Rede

Cobre

Fibra Ótica

Topologias de Redes

Podemos ver Redes de duas maneiras:

- **Fisicamente**: observando como os nós estão fisicamente interligados (topologia física);
- Logicamente: observando como os nós trocam informações (topologia lógica).

Topologias de Redes

Topologias de Redes

Topologia Física

A topologia física de uma rede é um diagrama que mostra como seus elementos estão conectados fisicamente. Esses elementos são chamados de **nós**, e podem ser computadores, impressoras, câmeras e outros equipamentos.

Topologia Lógica

Representa o modo como esses nós se comunicam, independente de como estão conectados fisicamente.

Topologia Física de Redes

Consideraremos para efeito deste curso, baseado em observações práticas de mercado, 5 topologias físicas:

- Barramento
- Estrela
- Anel
- Árvore
- Malha (não LAN)

Topologia Física Barramento Esquema

Detalhes Cabo Coaxial

- A revestimento de plástico
- B malha de cobre
- C isolador dielétrico interno
- D núcleo de cobre.

Conectores Topologia Física Barramento

Conector BNC T

Conector BNC

Vampiro (Coaxial grosso)

Vantagens Topologia Física Barramento

- Para adicionar um novo equipamento na rede é preciso, apenas, montar um segmento de cabo coaxial com um conector BNC em cada ponta e inseri-lo na rede;
- Baixo custo.

Desvantagens Topologia Física Barramento

- Dificuldade de detecção de defeitos;
- Qualquer descontinuidade no cabo, a rede inteira fica inoperante;
- Tecnologia descontinuada.

Meio Físico Ethernet e Topologia Iniciais

Topologia

Física: Barramento

Lógica: Barramento

Migração para

Topologia

Física: Estrela

Lógica: Barramento

Topologia Física Anel

Topologia Física Anel

Esta topologia é empregada pelas redes "Token Ring", da IBM e FDDI. Foi muito popular nos anos 80. Hoje sua utilização é restrita.

Características Topologia Física Anel

Possui características determinísticas, o seu mecanismo de controle de acesso ao meio físico é via token, ou seja, um sinal que circula no anel e a máquina que estiver de posse desse token, tem a autorização de "falar". Desse modo não há o componente de aleatoriedade que há nas redes barramentos, via Ethernet (CSMA-CD).

A taxa efetiva de transferência de dados chega a 96% da taxa nominal, ou seja, em redes FDDI 100Mbps, tem-se taxa efetiva de 96Mbps.

Topologia Física Estrela

Detalhes Topologia Física Estrela

- Caracteriza-se por possuir concentradores (hub ou switch), interligando os nós;
- Embora seja fisicamente uma estrela, logicamente funciona como um barramento (caso o concentrador seja um hub);
- Utiliza cabos par trançado TP (Twisted Pair);
- Utiliza conectores denominados RJ45 (macho e fêmea);

Topologia Física em árvore

Este tipo de rede é formado por estrelas conectadas. É bastante comum nas redes modernas que possuem um número grande de nós.

Topologia em Malha

A topologia em Malha caracteriza-se por interligar cada nó com vários outros nós. É típico nas interligações de roteadores em uma rede de comutação de pacotes.

Padronização Internacional

As organizações internacionais de padronização são classificadas pelo seu foco técnico e por sua estrutura política-geográfica.

As mais importantes na área de TI são:

- ISO: International Organization for Standardization
- IEC: International Eletrotechnical Comission
- ITU: International Telecommunications Union (ONU)

Não confundir ISO com OSI!!

OSI – Open Systems Interconnection

Motivação

Quando as redes de computadores surgiram, as soluções eram, na maioria das vezes, proprietárias, isto é, uma determinada tecnologia só era suportada por seu próprio fabricante.

Não havia a possibilidade de se misturar soluções de fabricantes diferentes. Um mesmo fabricante, normalmente desenvolvia a solução completa para toda a rede.

Com a padronização estabelecida pela ISO foi possível construir uma rede, utilizando-se equipamentos dos mais diversos fabricantes.

Modelo em Camadas - OSI

- O modelo OSI é composto por sete camadas. Começando pela de menor hierarquia 1 (Física) e segue até a mais alta 7 (Aplicação).
- É organizado em camadas hierárquicas, onde cada camada usa as funções da própria camada ou da camada anterior, para esconder a complexidade e transparecer as operações para o usuário, seja ele um programa ou uma outra camada.
- Facilita a compreensão do problema como um todo, sendo dividido e detalhado em partes.
- Cria uma independência das camadas, definindo exatamente o que cada camada deve realizar.
- Detalha o trabalho de deslocamento de dados de um ponto para outro.

Camadas do Modelo OSI

OSI - 7 Camadas

OSI - 7 Camadas

Camada 7 - Aplicação

Serviços

- Possui os serviços que fornecem suporte aos aplicativos que farão acesso aos recursos da rede;
- Transfere dados de aplicativo para aplicativo;
- Controle de fluxo e recuperação de erros.

Funções

- Transferência de arquivos (FTP);
- Emulação de terminais (TelNet);
- Correio eletrônico (SMTP);
- Gerenciamento da rede (SNMP);
- Acesso remoto a arquivos e impressoras, etc...

Resumo Camada 6

- Realiza a formatação e tradução nos dados antes do seu envio;
- Converte o dado do formato do aplicativo para o formato que deverá entrar na rede;
- Gerencia a segurança dos dados na rede;
- Criptografa e compacta os dados, tornando a transmissão mais rápida e eficiente.

Funções Camada 5 - Sessão

- Administração da sessão;
- Estabelecimento da conexão;
- Sincronização da sessão;
- Transferência de dados;
- Liberação da conexão.

Camada 4 - Transporte

- Preocupa-se com a transferência confiável de dados através de controles de erro e de fluxo de dados entre a origem e o destino.
- Neste nível a mensagem é particionada em segmentos para serem enviados.
- Responsável pela entrega dos segmentos, porém não garante que os mesmos não contenham erros de conteúdo.
- Utiliza número de portas para controle dos segmentos de acordo com a aplicação.
- Faz o controle de:
 - Fluxo, para evitar congestionamento de pacotes;
 - Erros;
 - Sequência dos pacotes.

Camada 3 - Rede

- Responsável por gerenciar o tráfego dos dados;
- Define as rotas de transporte;
- Efetua a tradução de nomes lógicos para nomes físicos;
- Transferência dos dados independente do meio e da topologia;
- Controla e previne o congestionamento;
- A unidade básica de informação é o pacote.
- Utiliza endereços IP para identificar os pacotes.

Camada 2 - Enlace

- A camada 2 faz com que as camadas acima dela não assumam nenhum erro de transmissão, sendo de sua responsabilidade a transferência segura dos dados;
- Organiza os dados em estruturas denominadas frames ou quadros;
- Um trailer denominado CRC (Cyclical Redundancy Check
 Verificação de Redundância Cíclica) é acrescentado ao quadro nesta camada;
- Recebe os bits da Camada Física e se encarrega de reconhecer os frames e entregá-los à Camada de Rede sem erros de transmissão.

Camada Física

- Refere-se às conexões de hardware (Interfaces elétricas, ópticas, Cabos, etc.);
- Transmite bits de um computador para outro, regulando as transmissões através do meio físico;
- Responsável pelo tipo de transmissão (half ou full-duplex), como estabelecer e cancelar a conexão, quantos pinos serão usados no conector da rede, os níveis do sinal elétrico, o tipo de cabo que será utilizado;
- Define a técnica de transmissão a ser utilizada: Baseband ou Broadband.
- Deve garantir que os bits enviados entre origem e destino sejam entregues corretamente;
- Verifica a velocidade de transmissão entre um bit e outro.

That's all Thanks