

Jim McKeeth GDK Software

Embarcadero Delphi MVP Director of Consulting jim@gdksoftware.com gdksoftware.com

- Color theory
- TAlphaColor vs TColor
- RGB, HSL, & CMYK
- Complementary colors
- Palettes & Blending
- Gradients, shades, tints, tones
- Color names

Early Color Theory

 322 BCE: Early musings on color in Aristotle's On Colors

1800s: formalized "color theory" with

Isaac Newton's Opticks

Vellowfin

 Newton showed a prism separates white sunlight into the visible spectrum

Color Wheel

- Illustrative organization of color hues around a circle (360°)
- Shows the relationships of colors
- 0° and 360° are red

Gradient RGB/CMY color wheel

Primary Colors

- Additive primary colors
 - Red, Green, Blue (RGB)
 - When mixing light
 - All three create white
- Subtractive primary colors
 - Cyan, Magenta, & Yellow (CMY)
 - When mixing pigments on white
 - All three create black

- Scientific study of color: lighting; optics; measurement; physiology; psychophysics; modeling of color vision; and color reproduction
- The modern evolution of Color Theory

https://en.wikipedia.org/wiki/Color_theory https://en.wikipedia.org/wiki/Color_science

Human Color Vision Sensitivity

 Relative brightness sensitivity as a function of wavelength \rightarrow

 A linear representation of the visible light spectrum 1

TColor vs TAlphaColor = Incompatible

```
unit System.UITypes;
```

```
TAlphaColor = type Cardinal;
TColor = -$7FFFFFFF-1..$7FFFFFF;
                                                 TAlphaColorRec = record
TColorRec = record
                                                     // TAlphaColor constants
// TColor constants
                                                     class var ColorToRGB:
 class var ColorToRGB:
                                                       function (Color: TAlphaColor): Longint;
      function (Color: TColor): Longint;
                                                     case Cardinal of
  case Cardinal of
                                                       0: (Color: TAlphaColor);
    0: (Color: TColor);
                                                       2: (HiWord, LoWord: Word);
    2: (HiWord, LoWord: Word);
                                                       3: (B, G, R, A: System.Byte);
    3: (R, G, B, A: System. Byte);
                                                 end:
end;
```

- TColor is an integer (+ & -) subrange, while TAlphaColor is a full cardinal (+ only).
- TColor orders the bytes R, G, B, A and TAlphaColor orders them B, G, R, A
- They are incompatible, but the compiler implicitly converts them

Working with CMYK

- Cyan, Magenta, Yellow & Black (or Key)
- The subtractive primary colors
- CMYK, by its nature, is not native for a display screen
- Converting an approximation and frequently makes use of color management systems (color space or color profile).

RGBToCMYK

```
uses System.Math;
// Handle black manually
var r := 1 - (Red / 255);
var g := 1 - (Green / 255);
var b := 1 - (Blue / 255);
var k := Min(r, Min(g, b));
Cyan := (r - k) / (1 - k);
Magenta := (g - k) / (1 - k);
Yellow := (b - k) / (1 - k);
Key := k;
```


CMYKtoRGB

CG CodeGear

Going back is relatively easy

```
:= Round(255 * (1-Cyan) * (1-Key));
Red
Green := Round(255 * (1-Magenta) * (1-Key));
     := Round(255 * (1-Yellow) * (1-Key));
Blue
```


- Each is a Single with a range of 0 to 1
- Hue is the color in 0° to 360°
- Saturation is amount of color
 - 0% = Grey; 100% = Pure color
- Lightness
 - \circ 0% = White
 - 50% = Pure color
 - 100% = Black

Working with HSL

```
unit System.UIConsts;
// Create TAlphaColor from HSL
function HSLtoRGB(H, S, L: Single): TAlphaColor;
// Convert TAlphaColor to HSL
procedure RGBtoHSL(RGB: TAlphaColor;
                 out H, S, L: Single);
// Changes the TAlphaColor by the HSL delta provided
function ChangeHSL(const C: TAlphaColor;
                 dH, dS, dL: Single): TAlphaColor;
```


Making a Rainbow Gradient

Newton's		Modern		Hue		
Color	Hex	Color	Hex	Color	Hex	Hue
Red	FF0000	Red	FF0000	Red	FF0000	0°
Orange	FFA500	Orange	FF8000	Yellow	FFFF00	60°
Yellow	FFFF00	Yellow	FFFF00	Green	00FF00	120°
Green	00FF00	Green	00FF00	Cyan	00FFFF	180°
Blue	0000FF	Cyan	00FFFF	Blue	0000FF	240°
Indigo	4400FF	Blue	0000FF	Magenta	FF00FF	300°
Violet	9900FF	Magenta	FF00FF			

Palates & Complementary Colors

- Its easy with HSL, just modify the hue
 - Complementary: 0°, 180°
 - Split-complementary: 0°, 150°, 210°
 - Analogous: 0°, 30°, 330°
 - Triadic: 0°, 120°, 240°
 - Tetradic: 0°, 60°, 180°, 240°
 - Hexadic: 0°, 60°, 120°, 180°, 240° and 300°

Shades, Tints, and Tones

- Start with a pure color (hue)
- Tint
 - Lightness from 1 to 0.5
- Shade
 - Lightness from 0 to 0.5
- Tone
 - Saturation from 0 to 1

- Slides
 - o github.com/jimmckeeth/Programming-the-Rainbow
- Samples (and a whole lot more)
 - o github.com/jimmckeeth/FMXColorDialog

