NET 363 Introduction to LANs

Subnetting

Greg Brewster
DePaul University

IP Subnetting

- IP Subnetting is the process by which an organization takes an IP address block assigned to them by an ISP and <u>divides it into</u> <u>smaller subnets</u> that are used for internal routing within the organization's network.
- Any large IP Subnet can be split into 2ⁿ smaller subnets
 networks by borrowing n bits from the Host bits, and adding
 them to the prefix length.
 - Example: Original Subnet is 22.5.4.0/24 (contains 256 IP addresses). To split this into 4 equal-sized subnets of 64 IPs each, you can <u>borrow 2 bits</u> and add them to prefix length (now /26)
 - New subnets are: 22.5.4.0/26, 22.5.4.64/26, 22.5.4.128/26
 and 22.5.4.192/26 (4 subnets of 64 IPs each).

Reasons for Subnetting

Large networks need to be segmented into smaller sub-networks, creating smaller groups of devices and services in order to:

- Control traffic by containing broadcast traffic within subnetwork
- Reduce overall network traffic and improve network performance

Subnetting - process of segmenting a network into multiple smaller network spaces called subnetworks or **Subnets**.

Communication Between Subnets

- A router is necessary for devices on different networks and subnets to communicate.
- Each router interface must have an IPv4 host address that belongs to the network or subnet that the router interface is connected to.
- Devices on a network and subnet use the router interface attached to their LAN as their default gateway.

Subnetted IP Structure

- Each IP address has 3 parts:
 - A <u>Network Prefix</u> part this is the address prefix originally assigned to an organization or site.
 - An <u>Subnet</u> part that is used by internal routers within the organization to deliver packets to a particular smaller Subnet within the internal network.
 - An <u>IP Host</u> part that identifies a particular individual device.

Address Example: 130.88.55.12

Network		Subnet	Host
130	88	55	12

Network = 130.88.0.0/16 (in backbone router tables) Subnet = 130.88.55.0/24 (in local router tables) Host = 12 (used by last router to ARP)

Subnetting an IPv4 Network

IP Subnetting is FUNdamental

Planning requires decisions on each subnet in terms of size, the number of hosts per subnet, and how host addresses will be assigned.

Subnetting an IPv4 Network Subnets in Use

Subnet 0

Network 192.168.1.0-127/25

192.168.1.0/25

PC2 G0/1 R1

192.168.1.128/25

Subnet 1

Network 192.168.1.128-255/25

Address Range for 192.168.1.0/25 Subnet

Network Address

192. 168. 1. 0 000 0000 = 192.168.1.0

First Host Address

192. 168. 1. 0 000 0001 = 192.168.1.1

Last Host Address

192. 168. 1. 0 111 1110 = 192.168.1.126

Broadcast Address

192. 168. 1. 0 111 1111 = 192.168.1.127

Address Range for 192.168.1.128/25 Subnet

Network Address

192. 168. 1. 1 000 0000 = 192.168.1.128

First Host Address

192. 168. 1. 1 000 0001 = 192.168.1.129

Last Host Address

192. 168. 1. 1 111 1110 = 192.168.1.254

Broadcast Address

192. 168. 1. 1 111 1111 = 192.168.1.255

Subnetting an IPv4 Network

Subnetting Formulas

Calculate Number of Subnets

Calculate Number of Hosts

```
Hosts = 2^n (where n = host bits remaining)

192. 168. 1. 0 000 0000

7 bits remain in host field

2^7 = 128 hosts per subnet
```

Subnetting an IPv4 Network

Creating 4 Subnets

■Borrowing 2 bits to create 4 subnets. 2² = 4 subnets

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

FIGURE 4.2 Implementing a Class C /26 logical network

192.168.10.0

Router#show ip route

[output cut]

C 192.168.10.0 is directly connected to Ethernet 0

C 192.168.10.64 is directly connected to Ethernet 1

C 192.168.10.128 is directly connected to Ethernet 2

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

IP Subnetting Details

• "Straight IP Subnetting" breaks an <u>initial IP subnet</u> of 2^X addresses (X host bits; prefix length = (32-X)) into 2ⁿ equal-sized smaller IP subnets of size 2^{X-n} by borrowing n bits from the Host bits.

The n "borrowed bits" are now the Subnet bits

This increases the prefix length by <u>n</u>.

After subnetting

Number of smaller subnets created = 2^n

Prefix length of each smaller subnet = /(32-X+n)

Size of each smaller subnet = $2^{(X-n)}$

Subnetting Example Based on Subnet Requirements

• BrewCo was allocated IP address block 201.16.72.0/24 by their ISP. They have 6 departments and want to use 8 subnets internally. What Subnet Mask should they use?

Initial subnet = 201.16.72.0 / 24

Initial prefix, subnet mask = /24 or 255.255.255.0

Size of initial subnet = $2^{(32-24)}$ = 2^8 = 256 IP addresses

Number of new subnets = $8 = 2^3$

New prefix length = 24 + 3 = /27

New subnet mask = 255.255.255.224

Size of each new subnet = $2^{(32-24-3)} = 2^5 = 32$

Result: Original block of 256 addresses is split into 8 subnets of 32 IP addresses each.

Listing New Subnets

- Original subnet = <u>201.16.72.0/24</u>.
- Using mask 255.255.255.224, the <u>8 new subnets</u> are:

Subnet 201.16.72.0 /27

Valid host range = 201.16.72.1 - 201.16.72.30

Subnet broadcast address = 201.16.72.31

Subnet 201.16.72.32 /27

Valid host range = 201.16.72.33 - 201.16.72.62

Subnet broadcast address = 201.16.72.63

Subnet 201.16.72.64 /27

Valid host range = 201.16.72.65 - 201.16.72.94

Subnet broadcast address = 201.16.72.63

(... leaving four subnets out here ...)

Subnet 201.16.72.224 /27

Valid host range = 201.16.72.225 - 201.16.72.254

Subnet broadcast address = 201.16.72.255

Subnetting Example Based on Host Requirements

- JoyCo Corp. has been allocated IP network 130.88.0.0/16 and is split into departments that may have up to 1000 computers each.
 - How many equal-sized subnets can they create with at least 1000 valid host addresses in each?
 - What subnet mask should they use?
 - What are the resulting Subnet IDs?
 - What are the first and last assignable IP address in each of these new subnets?

JoyCo Example

- Subnet sizes must be powers of 2. The smallest power of 2 that is greater than 1000 is $2^{10} = 1024$. This would give them 1024 2 = 1022 valid host addresses in each subnet. Thus, each IP address has 10 Host bits.
- The new prefix length will be 32 10 = /22.
 - So, new Subnet mask is <u>255.255.252.0</u>.
- The difference between old prefix length (16) and new prefix length (22) is 22-16 = 6, so 6 bits are borrowed:
 - Number of new subnets = $2^6 = 64$ subnets
 - We also could have figured this as <u>65,536 / 1024 = 64</u>

Calculating JoyCo Subnets

- First Subnet ID will be the original network address with the new prefix length.
 - First Subnet ID is 130.88.0.0 / 22
 - New Subnet Mask = 255.255.252.0
- Calculate other subnet IDs using Jump Factor:
 - Start with first subnet ID and add 1024 IP addresses to it. This will increase value in 3^{rd} byte by 1024 / 256 = 4.
 - OR 3rd byte jump factor = 256 252 = 4*
- So, 2nd subnet ID is <u>130.88.4.0 / 22</u>
- 3rd, 4th and subsequent subnet IDs calculated same way.

Joyco Subnets

- 1st Subnet: 130.88.0.0 / 22
 - Valid IPs 130.88.0.1 130.88.3.254 (1022 addresses)
 - Subnet broadcast address = 130.88.3.255
- 2nd Subnet: <u>130.88.4.0 / 22</u>
 - Valid IPs 130.88.4.1 130.88.7.254 (1022 addresses)
 - Subnet broadcast address = 130.88.7.255
- 3rd Subnet: 130.88.8.0 / 22
 - Valid IPs 130.88.8.1 130.88.11.254 (1022 addresses)
 - Subnet broadcast address = 130.88.11.255
- ... (leaving out 60 subnets here) ...
- 64th Subnet: **130.88.252.0 / 22**
 - IPs 130.88.252.1 130.88.255.254 (1022 addresses)
 - Subnet broadcast address = 130.88.255.255

Benefits of Variable Length Subnet Masking Traditional Subnetting Wastes Addresses

- Traditional subnetting same number of addresses is allocated for each subnet.
- Subnets that require fewer addresses have unused (wasted) addresses. For example, WAN links only need 2 addresses.
- Variable Length Subnet Mask (VLSM) or subnetting a subnet provides more efficient use of addresses.

Variable Length Subnet Masking Variable Length Subnet Masks (VLSM)

- •VLSM allows a network space to be divided in unequal parts.
- Subnet mask will vary depending on how many bits have been borrowed for a particular subnet.
- Network is first subnetted, and then the subnets are subnetted again.
- Process repeated as necessary to create subnets of various sizes.

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Benefits of Variable Length Subnet Masking

Basic VLSM

- Company allocated IP address space 192.168.20.0/24
- Company has 4 LANs up to 30 devices on each.
- Company has 3 Pt-Pt WAN links 2 routers on each.
- Straight subnetting => split into 8 subnets, 32 IPs on each

VLSM Subnetting Scheme

```
11000000.10101000.00010100.00000000 192.168.20.0/24
  11000000.10101000.00010100 .000 00000 192.168.20.0/27
  11000000.10101000.00010100.00100000 192.168.20.32/27
                                                              LANs
  11000000.10101000.00010100 .010 00000 192.168.20.64/27
                                                              A, B, C, D
  11000000.10101000.00010100 .011 00000 192.168.20.96/27
4 11000000.10101000.00010100 .100 00000 192.168.20.128/27
                                                              Unused/
  11000000.10101000.00010100.10100000 192.168.20.160/27
                                                              Available
  11000000,10101000,00010100,110,00000,192,168,20,192/27
  11000000.10101000.00010100.11100000 192.168.20.224/27
 3 more bits borrowed from subnet 7:
7:0 11000000.10101000.00010100 .111000 00 192.168.20.224/30
7:1 11000000.10101000.00010100.11100100 192.168.20.228/30
                                                              WANs
7:2 11000000.10101000.00010100.11101000 192.168.20.232/30
7:3 11000000.10101000.00010100.11101100 192.168.20.236/30
7:4 11000000.10101000.00010100.11110000 192.168.20.240/30
                                                              Unused/
7:5 11000000.10101000.00010100 .111101 00 192.168.20.244/30
                                                              Available
7:6 11000000.10101000.00010100.111111000 192.168.20.248/30
7:7 11000000.10101000.00010100.111111100 192.168.20.252/30_
```

Presentation_ID 20

Benefits of Variable Length Subnet Masking VLSM in Practice

- Using VLSM subnets, the LAN and WAN segments in example below can be addressed with minimum waste.
- Each LANs will be assigned a subnet with /27 mask.
- Each WAN link will be assigned a subnet with /30 mask.

Network Topology: VLSM Subnets


```
R1(config) #interface gigabitethernet 0/0
R1(config-if) #ip address 192.168.20.1 255.255.255.224
R1(config-if) #exit
R1(config) #interface serial 0/0/0
R1(config-if) #ip address 192.168.20.225 255.255.255.252
R1(config-if)#end
R1#
```


VLSM Subnetting of 192.168.20.0 /24

	/27 Network	Hosts
Blda A	.0	.130
Bldg B	.32	.3362
Blda C	.64	.6594
Bldg D	.96	.97126
Unused	.128	.129158
Unused	.160	.161190
Unused	.192	.193222
	.224	.225254

	/30 Network	Hosts
WAN R1-R2	.224	.225226
WAN R2-R3	.228	.229230
WAN R3-R4	.232	.233234
Unused	.236	.237238
Unused	.240	.241242
Unused	.244	.245246
Unused	.248	.249250
Unused	.252	.253254

VLSM Design Example

- BigCo has been allocated IP address block **192.168.10.0** /24 for use on their corporate network. They have these subnet requirements:
 - Reception: 6 IP addresses
 - IT Staff: 12 IP addresses
 - Executive: 10 IP addresses
 - Research: 25 IP addresses
 - Point-to-point link: 2 IP addresses
- Determine a Subnet ID (address range) and subnet mask for each group that meets their address needs while keeping as much address space as possible free for <u>future use.</u>

VLSM Solution Steps

- Solution steps:
 - Sort groups by size, largest to smallest
 - Determine minimum possible subnet size for each group (size must be power of 2).
 - Based on required size, write down subnet mask and prefix length (/n) for each group.
 - Allocate IP addresses, starting with largest group and proceeding down to smallest.