

ОНЛАЙН-ОБРАЗОВАНИЕ

Теория пределов

Часть 1. Предел последовательности. Предел функции.

Меня хорошо слышно && видно?

Напишите в чат, если есть проблемы! Ставьте + если все хорошо

- Заканчиваю механико-математический факультет МГУ им. Ломоносова
- Учился в Техносфере от Mail.Ru Group
- Являюсь ментором в Техносфере
- Работаю программистом-исследователем в Mail.Ru Group
- Веду лекции открытого курса mlcourse.ai

Правила вебинара

Активно участвуем

Задаем вопросы в чат

🗱 slack Off-topic обсуждаем в Slack

Вопросы вижу в чате, могу ответить не сразу

После занятия вы сможете:

Понять что такое предел числовой последовательности.

Работать с пределами в неравенствах.

Понять что такое предел функции.

Числовые последовательности

Определение. Пусть X - это множество вещественных или комплексных чисел. Тогда последовательность $(x_n)_{n=1}^{\infty}$ из элементов множества X будет называться числовой последовательностью.

Примеры.

- $((-1)^n)_{n=1}^{\infty}$ (целые числа)
- \bullet $(1/n)_{n=1}^{\infty}$ (рациональные числа)
- (картинка) (вещественные числа)

Операции над последовательностями

Определение. Пусть на множестве X определена N-арная операция f. Тогда для $x_1=(x_{1n})_{n=1}^{\infty}$, $x_2=(x_{2n})_{n=1}^{\infty}$, ..., $x_N=(x_{Nn})_{n=1}^{\infty}$ множества всех последовательностей элементов множества X операция f будет определяться следующим образом:

$$f\left(x_{1},x_{2},\cdots,x_{N}
ight)=\left(f\left(x_{1n},x_{2n},\cdots,x_{Nn}
ight)
ight)_{n=1}^{\infty}$$

Примеры.

- ullet $z_n=x_n+y_n$ (сумма)
- ullet $z_n=x_n-y_n$ (разность)
- ullet $z_n=x_n\cdot y_n$ (произведение)
- $z_n = \left(rac{x_n}{y_n}
 ight)_{n=1}^{\infty}$ (частное)

Подпоследовательности

Определение. Подпоследовательность последовательности (x_n) - это последовательность (x_{n_k}) , где (n_k) - возрастающая последовательность из множества натуральных чисел.

Примеры.

- Последовательность простых чисел является подпоследовательностью множества целых чисел.
- Последовательность из натуральных чисел, кратных 3, является подпоследовательностью натуральных чисел.
- Последовательность из рациональных чисел с числителем 1, является подпоследовательностью рациональных чисел.

Свойства подпоследовательности

- 1. Всякая последовательность является своей подпоследовательностью.
- 2. Для всякой подпоследовательности (x_{k_n}) верно, что $orall n \in \mathbb{N}$: $k_n \geqslant n$
- 3. Подпоследовательность сходящейся последовательности сходится к тому же пределу, что и исходная последовательность.
- 4. Если все подпоследовательности некоторой исходной последовательности сходятся, то их пределы равны.
- 5. Любая подпоследовательность бесконечно большой последовательности также является бесконечно большой.
- 6. Из любой неограниченной числовой последовательности можно выделить бесконечно большую подпоследовательность, все элементы которой имеют определенный знак.
- 7. Из любой числовой последовательности можно выделить любую сходящуюся подпоследовательность, все элементы которой имеют определенный знак.

Предел последовательности

(Определение) Предельная точка последовательности - это точка, в любой окрестности которой содержится бесконечно много элементов этой последовательности.

(Определение) Предел последовательности - это число, к которому члены последовательности приближаются с ростом номера.

(Определение 2) Предел последовательности - это число, в любой окрестности которого лежат все члены последовательности, начиная с некоторого.

(Определение) Частичный предел последовательности - это предел одной из подпоследовательностей.

(Определение) Верхний предел последовательности - это наибольшая предельная точка последовательности.

(Определение) Нижний предел последовательности - это наименьшая предельная точка последовательности.

Определение. Число a называется пределом числовой последовательности $\{x_n\}_{n=1}^{\infty}$, если все элементы, начиная с некоторого, по модулю меньше любого заранее заданного числа.

$$\lim_{n o\infty}x_n=a \ \Leftrightarrow \ orallarepsilon>0\ \exists N(arepsilon)\in\mathbb{N}:\ n\geqslant N\ \Rightarrow |x_n-a|$$

Виды последовательности

Определение. Ограниченная сверху последовательность - это последовательность элементов множества X, все члены которой не превышают некоторого элемента из этой последовательности. Этот элемент называется верхней гранью данной последовательности.

$$(x_n)$$
 ограниченная сверху $\Leftrightarrow \exists M \in X \ orall n \in \mathbb{N}$: $x_n \leqslant M$

Определение. Ограниченная снизу последовательность - это последовательность элементов множества X, все члены которой не меньше некоторого элемента из этой последовательности. Этот элемент называется нижней гранью данной последовательности.

$$(x_n)$$
 ограниченная снизу $\Leftrightarrow \exists m \in X \, orall n \in \mathbb{N} \colon x_n \geqslant m$

Определение. Ограниченная последовательность - это последовательность элементов множества X, которая ограничена сверху и ограничена снизу.

Основные теоремы о последовательностях

Теорема Больцано-Вейерштрасса. Из любой ограниченной последовательности можно выделить сходящуюся подпоследовательность.

Пример.

$$\lim_{n o\infty}rac{\left(-1
ight)^n}{n}$$

$$\lim_{n\to\infty} (-1)^n$$

Основные теоремы о последовательностях

Теорема Больцано-Вейерштрасса. Из любой ограниченной последовательности можно выделить сходящуюся подпоследовательность.

Теорема Вейерштрасса. Любая ограниченная сверху монотонно возрастающая последовательность имеет предел, причем предел равен ее точной верхней грани.

Теорема Вейерштрасса (другая формулировка). Любая ограниченная снизу монотонно убывающая последовательность имеет предел, причем предел равен ее точной нижней грани.

Предельный переход в неравенствах

Теорема. Пусть заданы 2 последовательности (x_n) и (y_n) . Если $\lim_{n\to\infty}(x_n)=a$, $\lim_{n\to\infty}(y_n)=b$ и, начиная с некоторого номера, $x_n\le y_n$, то выполняется неравенство: $a\le b$

Теорема (о 2 милиционерах). Если последовательность (x_n) такая, что \mathcal{Z}_n $|\leq (x_n) \leq (y_n)$ для всех x в некоторой окрестности точки a, причем последовательности \mathcal{Z}_n и (y_n) имеют одинаковый предел равный A при $x \to a$, то:

Предел функции

Определение (по Гейне). Значение A называется пределом функции f(x) в точке x_0 , если для любой последовательности точек $\{x_n\}_{n=1}^{\infty}$, сходящейся к , но не содержащей в качестве одного из своих элементов, последовательность значений функции $\operatorname{cxo}(\mathbf{f}(\mathbf{x}_n))$

Определение (по Коши). Значение A называется пределом функции f(x) в точке x_0 , если выполняется равенство:

$$\lim_{x o x_{0}}f\left(x
ight)=A\Leftrightarroworallarepsilon>0\;\exists\delta=\delta\left(arepsilon
ight)>0:\;orall x\;0<\left|x-x_{0}
ight|<\delta\Rightarrow\left|f\left(x
ight)-A
ight|$$

Свойства предела функции

1.
$$\left(\lim_{x o a}f(x)=A
ight)\wedge\left(\lim_{x o a}g(x)=B
ight)\Rightarrow\left(\lim_{x o a}\left[f(x)+g(x)
ight]=A+B
ight)$$

2.
$$\left(\lim_{x o a}f(x)=A
ight)\wedge\left(\lim_{x o a}g(x)=B
ight)\Rightarrow\left(\lim_{x o a}\left[f(x)\cdot g(x)
ight]=A\cdot B
ight)$$

$$\mathsf{G} \cdot \left(\lim_{x o a} f(x) = A
ight) \wedge \left(\lim_{x o a} g(x) = B
eq 0
ight) \Rightarrow \left(\lim_{x o a} \left[rac{f(x)}{g(x)}
ight] = rac{A}{B}
ight)$$

Теорема (о 2 милиционерах). Если функция y = f(x) такая, что

 $\varphi(x)\leqslant f(x)\leqslant \psi(x)$ для всех x в некоторой окрестности точки a, причем функции $\varphi(x)$ и $\psi(x)$ имеют одинаковый предел равный A при $x\to a$, то:

$$\lim_{x o a} arphi(x) = \lim_{x o a} \psi(x) = A \Rightarrow \lim_{x o a} f(x) = A.$$

Примеры пределов последовательностей

Найдите следующие пределы:

•
$$\lim_{n\to\infty} \left(\frac{1^n}{n}\right)$$

$$ullet \lim_{n o \infty} (rac{n}{n^2+1})$$

•
$$\lim_{n\to\infty} \left(\frac{3^n}{n!}\right)$$

$$_ullet x_{n+1} = rac{1}{2}(x_n + rac{5}{x_n})$$
 , $\lim_{n o \infty} (x_n)$

Примеры пределов последовательностей

Найдите следующие пределы:

•
$$\lim_{n\to\infty} (\frac{1}{n}) = 0$$

$$\bullet$$
 $\lim_{n\to\infty} \left(\frac{n}{n^2+1}\right) = 0$

•
$$\lim_{n\to\infty} \left(\frac{3^n}{n!}\right) = 0$$

$$_ullet x_{n+1} = rac{1}{2}(x_n + rac{5}{x_n})$$
 , $\lim_{n o \infty} (x_n) = \sqrt{5}$

Примеры пределов последовательностей

Найдите следующие пределы:

$$\lim_{n\to\infty}(rac{3^n}{n!})=0$$

$$x_{n+1} = rac{3}{n+1} x_n \hspace{0.2in} \Longrightarrow \hspace{0.2in} x_{n+1} \leq x_n$$

Значит последовательность убывающая.

Пусть
$$\lim_{n \to \infty} x_n = b$$

$$b = \lim_{n o \infty} rac{3}{n+1} b = 0$$

Примеры пределов функции

$$\lim_{x o\infty} rac{6x^2-19x+100}{2x^2+400x+1} = \lim_{x o\infty} rac{rac{6x^2}{x^2}-rac{19x}{x^2}+rac{100}{x^2}}{rac{2x^2}{x^2}+rac{400x^0}{x^2}+rac{1}{x^2}} = 3$$

$$ullet \lim_{x o\infty} rac{x^2-x+1}{2x^3} = \lim_{x o\infty} rac{rac{x^2}{\sqrt{x^3}} - rac{x^4}{\sqrt{x^3}} + rac{1}{\sqrt{x^3}}}{rac{2x^3}{x^3}} = 0$$

Есть вопросы или замечания?

Напишите в чат свои вопросы и замечания! Ставьте + если все понятно

Антон Лоскутов

Mail: antonloskutov@yandex.ru

Telegram: @LoskutovAnton

Slack: @LoskutovAnton

Пройдите опрос

Помогите нам стать лучше! https://otus.ru/polls/5932/

Спасибо за внимание!

