

LOCALIZAÇÃO INDOOR BASEADA EM TRILATERAÇÃO DE SINAIS E FINGERPRINT, UTILIZANDO WI-FI: UMA ANÁLISE DE VIABILIDADE E DESEMPENHO

Sidney José Rodrigues Lima

Orientador: Prof. Esp. Lucas Ferreira Mendes

Coorientador: Prof. Me. Eduardo de Olivindo Cavalcante

Sumário

- 1. Introdução
- 2. Fundamentação Teórica
- 3. Trabalhos Relacionados
- 4. Procedimentos Metodológicos
- 5. Resultados e Discussões
- 6. Considerações Finais
- 7. Referências

Introdução

- O Sistema de Posicionamento Global (GPS Global Positioning System) é um sistema essencial para a localização em ambientes externos (outdoor);
- Entretanto, ele possui restrições substanciais de funcionamento em relação a ambientes internos (indoor);
- Uma solução para prover precisão e acurácia em ambientes indoor, é a utilização de Sistema de Posicionamento Interno (IPS - Indoor Positioning System).

Introdução

- A tecnologia Wi-Fi é geralmente empregada nos IPSs utilizando o indicador de intensidade do sinal recebido (RSSI Received Signal Strength Indicator), para obter a localização de um nó alvo utilizando a técnica de trilateração, por exemplo.
- Para obter melhores resultados de localização podem ser utilizadas técnicas baseadas em aprendizado de máquina (machine learning), como por exemplo, o fingerprint.

Objetivo

Este trabalho se propõe a realizar uma análise da aplicação da técnica de trilateração em conjunto com a técnica de *fingerprint*, como suporte à localização de objetos em sistemas de posicionamento interno, por meio de uma prova de conceito aplicada em um ambiente real.

Fundamentação Teórica

Tecnologias utilizadas em IPSs: Bluetooth Low Energy (BLE), Wireless Fidelity (Wi-Fi), Radio frequency identification (RFID), Zigbee, dentre outras (MITTELSTADT, 2018).

Wi-Fi

- O Wi-Fi é uma tecnologia amplamente utilizada nos dias atuais, estando presente na maioria dos dispositivos;
- Wi-Fi foi muito aceito em sistemas de localização indoor.

Aprendizado de Máquina - Machine Learning

- É um segmento da inteligência artifical (IA) que tem o objetivo de criar algoritmos capazes de construir fluxos lógicos de decisão de forma automatizada;
- Divido em três grupos: supervisionado, não supervisionado e aprendizado por reforço.

Fundamentação Teórica

Aprendizado Supervisionado

- O termo supervisionado está relacionado ao fato de que os resultados corretos são conhecidos, servindo assim como um gabarito para o aprendizado do algoritmo;
- Consiste basicamente em duas etapas: treino (fase offline) e classificação (fase online);

KNN

- O KNN é um algoritmo classificador;
- Classifica dados n\u00e3o rotulados de acordo com sua similaridade com classes previamente definidas;
- ullet Para a classificação é necessário definir o valor de K vizinhos mais próximos.

Fundamentação Teórica Técnicas de Localização Indoor

- Algumas técnicas utilizadas para a localização em ambientes indoor: proximidade, trilateração, triangulação e análise de cena (fingerprint) (BERZ, 2015; BARROS, 2016);
- Essas técnicas podem ser utilizadas em conjunto ou separadamente.

Técnica de Trilateração

- Utilizada para estimar as coordenadas de um determinado objeto a partir de nós de referência previamente conhecidos;
- Com o modelo de propagação de sinal log-distância (Equação 1) é possível calcular a distância de dois nós utilizando o RSSI;

$$P(d) = P_r(d_0) - 10 \cdot \beta \cdot \log\left(\frac{d}{d_0}\right) \tag{1}$$

Fundamentação Teórica Técnicas de Localização Indoor | Técnica de Trilateração

Figura 1: Técnica de trilateração para determinar uma posição P

Fundamentação Teórica Técnicas de Localização Indoor

Técnica de Trilateração

• Sadowski e Spachos (2018), apresentam uma simplificação e redução utilizando o Teorema te Pitágoras para encontrar P(x, y), sendo necessário posicionar os APs no seguinte padrão: $AP_A(0, 0)$, $AP_B(p, 0)$, e $AP_C(q, r)$.

$$x = \frac{d_1^2 - d_2^2 + p^2}{2 \cdot p} \tag{2}$$

$$y = \frac{d_1^2 - d_3^2 + q^2 + r^2}{2 \cdot r} - x \cdot \frac{q}{r} \tag{3}$$

Técnica de Fingerprint

- Consiste de duas epatas: treinamento (fase offline) e localização (fase online).
- Utiliza-se o aprendizado supervisionado, visto que realiza-se as fases de treinamento (offline) e classificação (online);

Trabalhos Relacionados

Quadro 1: Resumo trabalhos relacionados

Autores	Titulo	Tecnologias e Técnicas	
		Android; Wi-Fi;	
Aravena e Delzari (2021)	Desenvolvimento de aplicativo para auxílio	RSSI; Centroide;	
Araveria e Deizari (2021)	à navegação em ambientes internos	Centróide ponderado;	
		Trilateração;	
Moreira, Farias e Carvalho (2017)	Posicionamento em Ambientes Internos com	ESP8266; Wi-Fi;	
	Dispositivos Wi-Fi de Baixo Custo	RSSI; Trilateração;	
	Towards IoT; Comparison of RSS based	Rede Neural Artificial;	
Weerasinghe e Dissanayake (2019)	indoor localization using supervised	ESP8266; Wi-Fi; RSSI;	
	learning and trilateration in WSN	Trilateração; MQTT;	
Mari, Kiong e Kim (2018)	A hybrid trilateration and fingerprinting	Wi-Fi; RSSI; Trilateração;	
Ivian, Riong e Rim (2016)	approach for indoor localization base on wifi	fingerprint; KOS-ELM;	

Projeto de Experimento

- Realizou-se uma Revisão Sistemática da Literatura (RSL);
- Utilizou-se a tecnologia Wi-Fi como o parâmetro RSSI;
- Nó sensor de captura do RSSI utilizado: smartphone modelo Redmi Note 9S;
- Nós de referência utilizados: três roteadores modelo RE163 (1,25 m do piso);
- Para o fingerprint utilizou-se o algoritmo KNN para treinar e testar o modelo de classificação, implementado em Python utilizando a biblioteca scikit-learn;
- Para a trilateração aplicou-se o modelo log-distância utilizando a linguagem Python com a biblioteca pandas para manipulação dos dados.

Ambiente de Aplicação

- Ambiente de aplicação foi uma sala de aula do IFCE Campus Tauá;
- Dimensões adotadas para o experimento: 8 m (L) × 6 m (C), uma área de 48 m²;
- Para o fingerprint dividiu-se a sala em 12 regiões de 4 m² (numeradas de 1 a 12);
- Coordenadas dos APs (em metros), em relação à área delimitada para o experimento: AP_A (0.17, 0), AP_B (5.83, 0), AP_C (3.30, 7.90);
- Coordenadas dos APs para a trilateração: AP_A (0, 0), AP_B (5.66, 0), AP_C (3.13, 7.90);
- As coordenadas das aplicações de teste são apresentadas na Tabela 1.

Tabela 1: Coordenadas das posições de coleta

Posição	Região 1 (R ₁)	Região 5 (R ₅)	Região 8 (R ₈)	Região 12 (R ₁₂)
Central (C)	R ₁ C (1.15, 1.00)	R ₅ C (3.15, 3.00)	R ₈ C (3.15, 5.00)	R ₁₂ C (5.15, 7.00)
Posição 1 (P ₁)	R_1P_1 (0.73, 1.37)	R ₅ P ₁ (3.86, 3.39)	R ₈ P ₁ (3.54, 5.83)	R ₁₂ P ₁ (4.83, 6.63)
Posição 2 (P ₂)	R_1P_2 (1.38, 0.29)	R ₅ P ₂ (2.73, 2.49)	R ₈ P ₂ (2.32, 5.71)	R ₁₂ P ₂ (5.69, 6.16)
		Fonte: Autor (202	21)	

Figura 2: Divisão das regiões e disposição dos APs

Condução do Experimento

- Para o mapeamento do fingerprint (fase offline), realizou-se no período da tarde a captura dos RSSIs em cada centro de região (60 medições);
- Desenvolveu-se um aplicativo para facilitar e automatizar a coleta dos dados, configurando alguns parâmetros;
- Ao término da fase *offline* obteve-se um total de 720 medições, armazenadas em um único arquivo csv, onde realizou-se um processo de normalização dos dados;
- ullet Em seguida, realizou-se o treinamento do modelo de classificação utilizando o KNN, usando um valor de K=26;
- Após a fase *offline*, obteve-se os valores de β (coeficiente de perda de percurso) para cada região do *fingerprint* para ser aplicado na técnica de trilateração.

Figura 3: Aplicativo desenvolvido para a captura dos RSSIs

Fonte: Autor (2021).

15/35

Condução do Experimento

- Para a fase online, realizou-se as medições de acordo com as coordenadas de testes apresentados na Tabela 1;
- As coletas de teste foram realizadas em três períodos distintos: manhã, tarde, e noite;
- Para cada bateria foram realizadas 20 medições de RSSI em intervalos de 10 s;
- Ao término da fase *online* obteve-se um total de 720 medições, sendo armazenadas em três arquivos csv;
- Os dados de teste foram submetidos ao modelo treinado, onde o KNN realizou o processo de predição dos dados, retornando a região classificada;
- ullet Comparou-se os dados retornados com as regiões reais e aplicou-se o valor eta a cada AP na técnica de trilateração.

Resultados e Discussões Aplicação da Técnica de Fingerprint

Figura 4: Média e desvio padrão de RSSI para cada AP em cada região

Resultados e Discussões

Aplicação da Técnica de Fingerprint

- Para a técnica do *fingerprint*, obteve-se 57,36% de acurácia geral na classificação correta das regiões, para todos os pontos em todos os períodos;
- A região que apresentou a maior acurácia foi a região 1 (91,67%) e a com menor acurácia foi região 5 (42,22%);
- Entretanto, a região 5 obteve-se classificações de regiões próximas, sendo as regiões 4 (16,11%) e 8 (15%) suas vizinhas do lado esquerdo e acima, respectivamente.

Resultados e Discussões Aplicação da Técnica de Fingerprint

Figura 5: Matriz de confusão da técnica de fingerprint para todos os pontos

Região Prevista

Fonte: Autor (2021).

Região Real

Resultados e Discussões Aplicação da Técnica de Fingerprint

Com o modelo treinado obteve-se as seguintes taxas de acurácia em cada período individualmente: 53,33% pela manhã, 54,16% pela tarde e 64,58% pela noite.

Tabela 2: Acurácia de classificação por período

Período	Acurácia							
	R ₁	R ₅	R ₈	R ₁₂				
Manhã	100%	40%	26,67%	46,67%				
Tarde	78,33%	38,33%	63,33%	36,67%				
Noite	96,67%	48,33%	45%	68,33%				

Tabela 3: Valores do fator de perda de percurso (β) em cada centro de região para cada AP

APS	R ₁ C	R ₂ C	R ₃ C	R ₄ C	R ₅ C	R ₆ C	R ₇ C	R ₈ C	R ₉ C	R ₁₀ C	R ₁₁ C	R ₁₂ C
AP_A	6,00	4,05	2,30	2,02	2,56	2,00	2,69	2,20	2,00	2,00	2,00	2,00
AP_B	2,01	2,00	2,00	2,00	2,00	2,00	2,01	2,00	2,00	2,00	2,00	2,00
AP_{C}	2,20	2,36	2,00	2,18	2,26	3,18	2,10	3,18	3,00	3,55	5,51	6,00

Resultados e Discussões

Aplicação da Técnica de Trilateração

- Para definir a posição estimada pela trilateração, utilizou-se os valores de β com base na região classificada pelo modelo treinado na aplicação do *fingerprint*;
- Para ajustar a posição estimada no método de trilateração, foram utilizados dois métodos de ajuste:
 - 1. Deslocamento para a região classificada no *fingerprint*, desde que obtido 75% de taxa de classificação em uma mesma região;
 - Combinação das posições estimadas com base nas duas regiões de maior taxa de classificação pelo modelo (se a taxa de classificação < 75%);

Resultados e Discussões

Figura 6: Divisão das regiões e disposição dos APs

Figura 7: Posições estimadas no período da manhã

Figura 8: Posições estimadas no período da tarde

Figura 9: Posições estimadas no período da noite

(a) Posições centrais

Resultados e Discussões

Aplicação da Técnica de Trilateração

 As métricas utilizadas para avaliar o desempenho das técnicas, em função do erro de localização, foram: erro médio absoluto (MAE) e raiz quadrática média dos erros (RMSE).

$$MAE = \frac{1}{n} \sum_{i=1}^{n} \left| d_i - \hat{d}_i \right| \tag{4}$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$
 (5)

Tabela 4: Erros de localização por período

Período	Posição	Erro (m)							
		R ₁	R ₅	R ₈	R ₁₂	MAE	RMSE		
Manhã	C	1,12	0,92	1,09	3,09				
	\mathbf{P}_1	1,80	0,52	1,15	0,87	1,25	1,47		
	\mathbf{P}_2	0,64	1,16	0,34	2,36				
	C	1,27	1,67	0,89	1,41				
Tarde	\mathbf{P}_1	1,36	1,15	1,21	2,75	1,88	2,47		
	\mathbf{P}_2	1,76	1,96	2,07	5,05				
Noite	C	1,23	1,03	0,81	1,41				
	\mathbf{P}_1	1,97	1,26	1,67	0,93	1,41	1,64		
	P_2	1,87	0,63	2,15	1,99				

- O menor erro de localização ocorreu no período da manhã (0,34 m) na posição R_8P_2 ;
- O maior erro de localização ocorreu no período da tarde (5,05 m) na posição $R_{12}P_2$;
- Percebe-se que houve variações nos erros de localização nos distintos períodos das capturas dos dados.

Tabela 5: Comparação entre resultados obtidos com utilização e sem utilização dos métodos propostos para ajuste de erro de localização

			Erro	(m)			
Período	S	em Método	o de Ajuste	Com Método de Ajuste			
	MAE	RMSE	Desvio Padrão	MAE	RMSE	Desvio Padrão	
Manhã	2,00	2,23	1,01	1,25	1,47	0,80	
Tarde	2,07	2,58	1,19	1,88	2,47	1,12	
Noite	2,01	2,57	1,16	1,41	1,64	0,51	

Fonte: Autor (2021).

- Observa-se uma redução do erro de localização em cada período: manhã (34,08%), tarde (4,26%) e noite (36,19%);
- No geral houve uma redução de 24,83% no erro médio de localização.

29 / 35

Figura 10: Erro de localização e desvio padrão por período

Considerações Finais

- No fingerprint a região com maior acurácia foi a região 1 (91,67%) e a região de menor acurácia foi a região 5 (42,22%);
- Assim, percebe-se que o período de coleta dos RSSIs não influencia diretamente na classificação das regiões, bem como na redução do erro de localização;
- Isso pode ocorrer devido à complexidade do ambiente interno, relativo a fatores que impactam no sinal propagado;
- O erro de localização utilizando a métrica RMSE: 1,47 m pela manhã, 2,47 m pela tarde e 1,64 m pela noite;
- Ressalta-se que os métodos propostos contribuíram significativamente com a minimização do erro médio de localização obtido, alcançando uma redução geral de 24,83%;

Considerações Finais

Trabalhos Futuros

- Analisar outros modelos de propagação de sinal que possam oferecer uma melhor caracterização do ambiente indoor;
- Aplicar filtros para reduzir os ruídos dos dados coletados;
- Analisar possíveis métodos para minimizar a onerosidade no processo de mapeamento do fingerprint;
- Implementar um sistema de localização em tempo real para um ambiente indoor, utilizando as técnicas em conjunto.

Referências

ARAVENA, C. A.; DELAZARI, L. S. Desenvolvimento de aplicativo para auxílio à navegação em ambientes internos. **Revista Brasileira de Cartografia**, [s. l.], v. 73, n. 2, p. 530-541, 2021.

BARROS, A. C. G. D. A. **Proposta de Técnica de Localização Interna para dispositivos móveis utilizando redes locais sem fio**. 2016. Dissertação de Mestrado (Mestrado em Ciêcia da Computação) – Universidade Federal de Pernambuco, Recife, PE, 2016.

BERZ, E. L. Sistema Híbrido de localização indoor baseado em RFID e análise visual. 2015. Tese (Doutorado em Ciência da Computação) – Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, 2015

MARI, S. K.; KIONG, L. C.; KIM, L. H. A hybrid trilateration and fingerprinting approach for indoor localization base on wifi. Fourth International Conference on Advances in Computing, Comunication Automation - ICACCA, Subang Jaya, p. 1-6, 2018.

Referências

MITTELSTADT, R. S. **BLUEPATH**: Sistema de localização indoor. 2018. Monografia (Curso de Engenharia de Computação) – Universidade do Vale do Taquari - UNIVATES, Lajeado, RS, 2018.

MOREIRA, F. M.; FARIAS, M. S.; CARVALHO, P. V. R. Posicionamento em Ambientes Internos com Dispositivos Wi-Fi de Baixo Custo. **International Nuclear Atlantic Conference - INAC**, Belo Horizonte, MG, n. 13, p. 22-27, 2017.

SADOWSKI, S.; SPACHOS, P. RSSI-Based Indoor Localization With the Internet of Things. **IEEE Access**, Canada, v. 6, p. 30149-30161, 2018.

WEERASINGHE, Y. S. P.; DISSANAYAKE, M. B. Towards IoT; Comparison of RSS based indoor localization using supervised learning and trilateration in WSN. **International Conference on Industrial an Information Systems - ICIISS**, Perandeniy, Sri Lanka, p. 290-295, 2019.

Agradecimentos

Duvidas, sugestões, questionamentos?

Obrigado pela Atenção!

