Homework 1

Zhaoxia Yu

2025-03-31

Due on 11:59pm, Monday, April 14 2025

Problem 1

- Suppose X_1, X_2, Y_1, Y_2 are mutually independent.

 - $-X_1$ and X_2 are iid from $N(\mu=0,\sigma_x^2=2^2)$ $-Y_1$ and Y_2 are iid from $N(\mu=0,\sigma_y^2=1^2)$ Consider the two pairs (X_1,X_2) and (Y_1,Y_2) . Which pair tends to have a larger difference? To answer the question, please calculate and estimate the following two probabilities:

$$P(|X_1 - X_2| > 4), P(|Y_1 - Y_2| > 4)$$

• The hints for calculating/estimating $P(|X_1 - X_2| > 4)$ can be found in the two slides. Using similar strategies, you can calculate/estimate $P(|Y_1 - Y_2| > 4)$

Calculate $P(|X_1 - X_2| > 4)$

- Hints for calculating $P(|X_1 X_2| > 4)$.
 - First find the distribution of $X_1 X_2$. Then standard it to have mean 0 and SD 1.
 - Second, express the probability to P(|Z| > z), where $Z \sim N(0, 1)$.
 - Next, expression the probability in terms of $\Phi(\cdot)$, the CDF of the standard normal distribution.
 - Last, use the "pnorm" function in R to find the numerical value.

Estimate $P(|X_1 - X_2| > 4)$

- The probability can be estimated by doing simulations/sampling.
- If you sample many (say 10,000) pairs of X_1 and X_2 , count how many pairs satisfying $|X_1 X_2| > 4$. The probability can be used to estimate $P(|X_1 - X_2| > 4)$

Problem 2

- Find a matrix A such that AY gives the difference of mean vectors between iris setosa and iris versicolor
- \bullet Find a matrix B such that YB is column-standardized, i.e., the standard deviation of each column/feature is 1.
- Check the following
 - Let $C = \mathbf{I}_{150} \frac{1}{150}J$, where $J_{150\times150}$ is an all-ones matrices. Use R to verify that CY centers each column/feature. The R code for C is "

– Let S be the sample covariance matrix. Use R to verify that each column of $CYS^{-1/2}$ has been centered and standardized (in fact, the columns have also been de-correlated). Hints:

S=cov(Y)

To compute $S^{-1/2}$, you may need an R package, such as "qtl2pleio".

Problem 3

• Choose a picture you like and conduct approximations using singular value decomposition (SVD).