Отчёт по лабораторной работе №14

Имитационное моделирование

Астраханцева А. А.

Содержание

1	Цель работы	4
2	Задание	5
3	Теоретическое введение	6
4	Выполнение лабораторной работы 4.1 Модель оформления заказов клиентов одним оператором 4.2 Построение гистограммы распределения заявок в очереди 4.3 Модель обслуживания двух типов заказов от клиентов в интернетмагазине 4.4 Модель оформления заказов несколькими операторами	8 8 16 20 29
5	Выводы	38
Сп	исок литературы	39

Список иллюстраций

4.1	Модель оформления заказов клиентов одним оператором	9
4.2	Отчёт по модели оформления заказов в интернет-магазине	10
4.3	Модель оформления заказов клиентов одним оператором, упраж-	
	нение	13
4.4	Отчёт по модели оформления заказов в интернет-магазине, упраж-	
	нение	14
4.5	Построение гистограммы распределения заявок в очереди	16
4.6	Отчёт по модели оформления заказов в интернет-магазине при	
	построении гистограммы распределения заявок в очереди	17
4.7	Отчёт по модели оформления заказов в интернет-магазине при	
	построении гистограммы распределения заявок в очереди	18
4.8	Гистограмма распределения заявок в очереди	18
4.9	Модель обслуживания двух типов заказов от клиентов в интернет-	
	магазине	22
4.10	Отчёт по модели оформления заказов двух типов	23
4.11	Модель обслуживания двух типов заказов с условием, что число	
	заказов с дополнительным пакетом услуг составляет 30% от общего	
	числа заказов	26
4.12	Отчёт по модели оформления заказов двух типов заказов	27
4.13	Модель оформления заказов несколькими операторами	30
4.14	Отчет по модели оформления заказов несколькими операторами	31
4.15	Модель оформления заказов несколькими операторами с учетом	
	отказов клиентов	34
4.16	Отчет по модели оформления заказов несколькими операторами с	
	учетом отказов клиентов	35

1 Цель работы

Реализовать модели обработки заказов и провести анализ результатов.

2 Задание

Реализовать с помощью gpss:

- модель оформления заказов клиентов одним оператором;
- построение гистограммы распределения заявок в очереди;
- модель обслуживания двух типов заказов от клиентов в интернет-магазине;
- модель оформления заказов несколькими операторами.

3 Теоретическое введение

GPSS (General Purpose Simulation System) — это один из первых специализированных языков программирования для имитационного моделирования, созданный в 1961 году американским инженером Джеффри Гордоном в корпорации IBM. Первоначально язык разрабатывался для нужд моделирования сложных логистических и производственных процессов в промышленных и военных системах, где требовался учёт случайных событий и взаимодействия большого количества объектов во времени.

GPSS стал знаковым инструментом в истории моделирования: он заложил основы событийного подхода и ввёл понятие транзакта как активного объекта, перемещающегося по блокам логики системы. Эти концепции впоследствии легли в основу многих других языков и программных сред моделирования. Благодаря модульной структуре и простой записи моделей, GPSS получил широкое распространение в университетах и научных учреждениях как средство обучения и анализа дискретных систем.

Практическое применение GPSS охватывает широкий спектр задач:

- Организация работы производственных цехов: моделирование потока деталей между станками, учёт времени обработки, простоев и загрузки оборудования;
- Системы массового обслуживания: моделирование очередей в банках, поликлиниках, аэропортах с целью оценки времени ожидания и необходимости в дополнительном персонале;

- Логистика и склады: моделирование перемещения товаров между зонами хранения, погрузки и разгрузки, анализ загрузки транспортных средств;
- Транспорт: моделирование движения автобусов, поездов, планирование расписаний с учётом времени на посадку и высадку пассажиров;
- Военные приложения: планирование операций снабжения, имитация действий в сложных логистических цепочках.

Одним из достоинств GPSS является то, что язык допускает использование случайных величин (например, времени обслуживания или интервалов между заявками), что позволяет создавать реалистичные модели, приближенные к поведению реальных систем. Также GPSS даёт возможность легко собирать статистику по ключевым метрикам: времени пребывания объектов в системе, загрузке ресурсов, количеству отказов и пр.

Несмотря на то, что с момента своего создания прошло более шестидесяти лет, GPSS продолжает использоваться как в учебных целях, так и в инженерной практике благодаря своей простоте, наглядности и эффективности в решении прикладных задач, связанных с анализом и оптимизацией дискретных процессов.

[1,2].

4 Выполнение лабораторной работы

4.1 Модель оформления заказов клиентов одним оператором

Порядок блоков в модели соответствует порядку фаз обработки заказа в реальной системе:

- 1) клиент оставляет заявку на заказ в интернет-магазине;
- 2) если необходимо, заявка от клиента ожидает в очереди освобождения оператора для оформления заказа;
- 3) заявка от клиента принимается оператором для оформления заказа;
- 4) оператор оформляет заказ;
- 5) клиент получает подтверждение об оформлении заказа (покидает систему).

Модель будет состоять из двух частей: моделирование обработки заказов в интернет-магазине и задание времени моделирования. Для задания равномерного распределения поступления заказов используем блок GENERATE, для задания равномерного времени обслуживания (задержки в системе) — ADVANCE. Для моделирования ожидания заявок клиентов в очереди используем блоки QUEUE и DEPART, в которых в качестве имени очереди укажем орегаtor_q Для моделирования поступления заявок для оформления заказов к оператору используем блоки SEIZE и RELEASE с параметром орегаtor — имени «устройства обслуживания».

Требуется, чтобы модельное время было 8 часов. Соответственно, параметр блока GENERATE – 480 (8 часов по 60 минут, всего 480 минут). Работа программы начинается с оператора START с начальным значением счётчика завершений, равным 1; заканчивается – оператором TERMINATE с параметром 1, что задаёт ординарность потока в модели.

Таким образом, имеем (рис. fig. 4.1).

```
lab14.gps
;operator
GENERATE 15,4
QUEUE operator q
SEIZE operator
DEPART operator q
ADVANCE 10,2
RELEASE operator
TERMINATE
; timer
GENERATE 480
TERMINATE 1
```

Рис. 4.1: Модель оформления заказов клиентов одним оператором

После запуска симуляции получаем отчёт (рис. fig. 4.2).

Рис. 4.2: Отчёт по модели оформления заказов в интернет-магазине

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0. Имена, используемые в программе модели: operator, operator_q.

Далее идёт информация о блоках текущей модели, в частности, ENTRY COUNT – количество транзактов, вошедших в блок с начала процедуры моделирования.

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 33 заказа от клиентов (значение поля OWNER=33), но одну заявку оператор не успел принять в обработку до окончания рабочего времени (значение поля ENTRIES=32). Полезность работы оператора составила 0, 639. При этом среднее время занятости оператора составило 9, 589 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=1 в очереди находилось не более одной ожидающей заявки от клиента;
- CONT=0 на момент завершения моделирования очередь была пуста;
- ENTRIES=32 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=31 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=0, 001 заявок от клиентов в среднем были в очереди;
- AVE. TIME=0.021 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=0, 671 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях:

• XN=33 – порядковый номер заявки от клиента, ожидающей поступления для оформления заказа у оператора;

- PRI=0 все клиенты (из заявки) равноправны;
- BDT=489, 786 время назначенного события, связанного с данным транзактом;
- ASSEM=33 номер семейства транзактов;
- CURRENT=5 номер блока, в котором находится транзакт;
- NEXT=6 номер блока, в который должен войти транзакт.

Упражнение

Скорректируйте модель в соответствии с изменениями входных данных: интервалы поступления заказов распределены равномерно с интервалом 3.14 ± 1.7 мин; время оформления заказа также распределено равномерно на интервале 6.66 ± 1.7 мин. Проанализируйте отчёт, сравнив результаты с результатами предыдущего моделирования.

Изменияем строки GENERATE и ADVANCE (рис. fig. 4.3).

```
🅌 lab14.gps
;operator
GENERATE 3.13,1.7
QUEUE operator q
SEIZE operator
DEPART operator q
ADVANCE 6.66,1.7
RELEASE operator
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 4.3: Модель оформления заказов клиентов одним оператором, упражнение

После запуска симуляции получаем отчёт (рис. fig. 4.4).

	G:	PSS World	Simu	latio	n Re	eport -	1abl4	.2.1				
		пятни	ца, м	иая 09	, 20	25 16:	38:01					
	STAR	T TIME		EN	ID T	IME BL	ocks	FACILI	TIES	STORA	GES	
		0.000										
	N	AME				VAT	IIF.					
	ODEDA	TOR				VAL 10001.	000					
	OPERA	IOR Q				100001.						
	OLLINA	ion_e				10000.	000					
LABEL		LOC	BLOG	CK TYP	E	ENTR	Y COUN	T CURRE	ENT CO	OUNT R	ETRY	
		1	GENE	ERATE			151		0		0	
		2	QUE	JE			151		80		0	
		3	SEIZ	ZE			71		0		0	
		4	DEPA	ART			71		0		0	
		5	ADVA	ANCE			71		1		0	
		6	RELE	EASE			70		0		0	
		7	TERM	MINATE			70		0		0	
		8	GENE	CRATE			1		0		0	
		9	TERM	MINATE	2		1		0		0	
FACTLIT'	,	ENTRIES	IITI	TT.	AVE	TIME	AVATI.	OWNER	PFND	INTER	RETRY	DFI.A
OPERAT	DR.					6.700						
OI LIMI		/-				0.700	-	7-2				
QUEUE		MAX C	ONT.	ENTRY	ENT	TRY(0)	AVE.CO	NT. AVE	E.TIME	AVI	E.(-0)	RETR
OPERATO	OR_Q	80	80	151	-0	1	38.53	4 12	22.491	1:	23.307	0
FEC XN	PRI	BDT		ASSE	M (CURRENT	NEXT	PARAN	METER	VA	LUE	
72	0	481. 484. 960.	491	72	2	5	6					
153	0	484.	233	153	3	0	1					
154	0	960.	000	154		0	8					

Рис. 4.4: Отчёт по модели оформления заказов в интернет-магазине, упражнение

Проанализируем отчёт:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0. Имена, используемые в программе модели: operator, operator_q.

Далее идёт информация о блоках текущей модели, в частности, ENTRY COUNT – количество транзактов, вошедших в блок с начала процедуры моделирования = 151.

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 72 заказа от клиентов (значение поля OWNER=72), но одну заявку оператор не успел принять в обработку до окончания рабочего времени (значение поля ENTRIES=71). Полезность работы оператора составила 0,991. При этом среднее время занятости оператора составило 6,7 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ= 80 в очереди находилось 82 ожидающих заявки от клиента;
- CONT= 80 на момент завершения моделирования очередь была полна (82 заявки);
- ENTRIES= 151 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)= 1 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT = 38,534 заявок от клиентов в среднем были в очереди;
- AVE. TIME = 122,491 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=123,307 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

4.2 Построение гистограммы распределения заявок в очереди

Требуется построить гистограмму распределения заявок, ожидающих обработки в очереди в примере из предыдущего упражнения. Для построения гистограммы необходимо сформировать таблицу значений заявок в очереди, записываемых в неё с определённой частотой.

Команда описания такой таблицы QTABLE имеет следующий формат: Name QTABLE A, B, C, D Здесь Name — метка, определяющая имя таблицы. Далее должны быть заданы операнды: А задается элемент данных, чьё частотное распределение будет заноситься в таблицу (может быть именем, выражением в скобках или системным числовым атрибутом (СЧА)); В задается верхний предел первого частотного интервала; С задает ширину частотного интервала — разницу между верхней и нижней границей каждого частотного класса; D задаёт число частотных интервалов.

Код программы будет следующим(рис. fig. 4.5).

```
Waittime QTABLE operator_q,0,2,15
GENERATE 3.34,1.7
TEST LE Q$operator_q,1,Fin
SAVEVALUE Custnum+,1
ASSIGN Custnum,X$Custnum
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 6.66,1.7
RELEASE operator
Fin TERMINATE 1
```

Рис. 4.5: Построение гистограммы распределения заявок в очереди

Здесь Waittime — метка оператора таблицы очередей QTABLE, в данном случае название таблицы очереди заявок на заказы. Строка с оператором TEST по смыс-

лу аналогично действиям оператора IF и означает, что если в очереди 0 или 1 заявка, то осуществляется переход к следующему оператору, в данном случае к оператору SAVEVALUE, в противном случае (в очереди более одной заявки) происходит переход к оператору с меткой Fin, то есть заявка удаляется из системы, не попадая на обслуживание. Строка с оператором SAVEVALUE с помощью операнда Custnum подсчитывает число заявок на заказ, попавших в очередь. Далее оператору ASSIGN присваивается значение СЧА оператора Custnum.

Получим отчет симуляции (рис. fig. 4.6, fig. 4.7).

	GPSS World	Simulati	on Rep	ort -	Untitl	led Mod	del 2.	4.1		
	пятни	ца, мая 0	9, 202	5 16:5	4:44					
s	TART TIME	E	ND TIM	E BLO	CKS E	FACILIT	TIES	STORA	GES	
	0.000		353.89	5 1	0	1		0		
	NAME			VALU	Ε					
CU	STNUM		1	0002.0	00					
FI	N			10.0	00					
OP	ERATOR		1	0003.0	00					
OP	ERATOR_Q		1	0001.0	00					
WA	ITTIME		1	0.000.0	00					
LABEL	1 2 3 4 5 6	BLOCK TY GENERATE TEST SAVEVALU ASSIGN QUEUE SEIZE	E	1	02 02	CURRE	0			
		DEPART			53		0		0	
		ADVANCE			53		0		0	
		RELEASE			53		0		0	
FIN	10	TERMINAT	E	1	00		0		0	
FACILITY	ENTRIES									
OPERATOR		0.987		6.470	1	98	0	0	0	1
QUEUE OPERATOR_Q	MAX C	ONT. ENTR								
OPERATOR_Q	2	2 5	5	1	1.652	1	10.628		10.824	U

Рис. 4.6: Отчёт по модели оформления заказов в интернет-магазине при построении гистограммы распределения заявок в очереди

		ENTRIES	UTIL. A	VE. TIME	AVAIL.	OWNER P	END I	NTER	RETRY	DELAY
OPERATO	OR	54	0.987	6.47	0 1	98	0	0	0	1
QUEUE		MAX CON	IT. ENTRY	ENTRY(0)	AVE.CO	NT. AVE.	TIME	AVE	. (-0)	RETRY
OPERATO	OR_Q	2	2 55	1	1.65	2 10	.628	1	0.824	0
TABLE		MEAN		R	ANGE			FREC	UENCY	CUM. 4
WAITTIN	ME	10.709	2.702				0			
						0.000				1.89
				0.000 -		ATT 15 AT				1.89
				2.000 -		4.000				3.77
				4.000 -		6.000				3.77
				6.000 -		8.000				11.32
				8.000 -						33.96
				0.000 -						66.04
				2.000 -						92.45
			1	4.000 -		16.000			4	100.00
SAVEVAL	UE	RE	TRY	VALUE						
CUSTNU	M		0	55.000						
CEC XN	PRI	Ml	ASSEM	CURREN	T NEXT	PARAME	TER	VAL	UE	
	0		6 98							
						CUSTNU	M	54.	000	
FEC XN	PRI	BDT	ASSEM	CURREN	T NEXT	PARAME	TER	VAL	.UE	
103	0		3 103							

Рис. 4.7: Отчёт по модели оформления заказов в интернет-магазине при построении гистограммы распределения заявок в очереди

И гистограмму(рис. fig. 4.8):

Рис. 4.8: Гистограмма распределения заявок в очереди

Упражнение

Требуется проанализировать отчёт и гистограмму по результатам моделирования.

Проанализируем отчёт:

• модельное время в начале моделирования: START TIME=0.0;

- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=353.895;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=10;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: custnum, fin, operator, operator_q, waittime.

• количество транзактов, вошедших в блок с начала процедуры моделирования ENTRY COUNT = 102;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 98 заказов от клиентов (значение поля OWNER=98), но оператор успел принять в обработку до окончания рабочего времени только 54 (значение поля ENTRIES=54). Полезность работы оператора составила 0,987. При этом среднее время занятости оператора составило 6,470 мин.

Далее информация об очереди:

- QUEUE=operator q имя объекта типа «очередь»;
- МАХ=2 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=2 на момент завершения моделирования в очереди было два клиента;
- ENTRIES=55 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=1 число заявок от клиентов, попавших к оператору без ожидания в очереди;

- AVE. CONT=1,652 заявок от клиентов в среднем были в очереди;
- AVE. TIME=10,628 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=10,824 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Также появилась таблица с информацией для гистограммы: частотность разделена на 15 частотных интервалов с шагом 2 и началом в 0, а также в таблице указана частота, количество обрабатываемых заявок.

В конце отчёта идёт информация о будущих событиях.

Проанализируем гистограмму:

Частотное распределение времени обработки заявок было сформировано на основе 15 равных интервалов шириной 2 минуты, начиная с нуля, в соответствии с заданными параметрами.

- Максимальное количество заявок (17) обрабатывалось в интервале 10–12 минут.
- Второй по частоте интервал 12-14 минут, в котором обрабатывалось 14 заявок.
- Третий по частоте 8–10 минут с 12 заявками.
- Во всех остальных интервалах количество заявок варьировалось от 0 до 4, что свидетельствует о низкой вероятности соответствующего времени обработки.

4.3 Модель обслуживания двух типов заказов от клиентов в интернет-магазине

Необходимо реализовать отличие в оформлении обычных заказов и заказов с дополнительным пакетом услуг. Такую систему можно промоделировать с

помощью двух сегментов. Один из них моделирует оформление обычных заказов, а второй – заказов с дополнительным пакетом услуг. В каждом из сегментов пара QUEUE-DEPART должна описывать одну и ту же очередь, а пара блоков SEIZE-RELEASE должна описывать в каждом из двух сегментов одно и то же устройство и моделировать работу оператора. Код и отчет результатов моделирования следующие (рис. fig. 4.9, fig. 4.10).

```
; order
GENERATE 15,4
QUEUE operator q
SEIZE operator
DEPART operator q
ADVANCE 10,2
RELEASE operator
TERMINATE 0
; order and service package
GENERATE 30,8
QUEUE operator q
SEIZE operator
DEPART operator q
ADVANCE 5,2
ADVANCE 10,2
RELEASE operator
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 4.9: Модель обслуживания двух типов заказов от клиентов в интернетмагазине

	751272										
	GPS	S World	Simula	tion	Report	- Unti	tled M	odel 3	.1.1		
		пятни	ца, мая	09,	2025 17	7:08:29					
	START	TIME		END	TIME F	BLOCKS	FACIL	ITIES	STORAG	ES	
	0	TIME .000		480	0.000	17	1		0		
	NAM	E			VI	ALUE					
	OPERATO	R			1000	.000					
	OPERATO	R_Q			10000						
LABEL		LOC	BLOCK	TYPE	ENT	TRY COU	NT CUR	RENT CO	OUNT RE	TRY	
		1	GENERA QUEUE SEIZE DEPART ADVANC RELEAS	TE		32		0		0	
		2	QUEUE			32		4		0	
		3	SEIZE			28		0		0	
		4	DEPART			28		0		0	
		5	ADVANC	E		28		1		0	
		6	RELEAS	E		27		0		0	
		7	TERMIN.	ATE		27		0		0	
		8	GENERA QUEUE	TE		15		0		0	
		9	QUEUE			15		3		0	
		10	SEIZE			12		0		0	
		11	SEIZE DEPART			12 12		0		0	
		12	ADVANC	E		12		0		0	
		13	ADVANC:	F		12		0		0	
		14	PELEAS	F		12		0		0	
		15	RELEAS:	ATE		12		0		0	
		16	GENEDA	TF		1		0		0	
		17	GENERA TERMIN	ATE		1		0		0	
ACTITEV		PMTDIFC		2.5	E TIM	2 21/2 77	OWNE	חבאה	THITED	DETDV	DELY
UEUE		MAX C	ONT. EN	TRY F	NTRY (O	AVE, CO	ONT. A	VE.TIM	E AVE	. (-0)	RETR
OPERATOR	L_Q	8	7	47	2	3.3	55	34.26	1 3	5.784	0
EC XN	PRI 0 0 0 0	BDT	A	SSEM	CURRE	IT NEX	I PAR	AMETER	VAL	UE	
42	0	487.	825	42	5	6					
50	0	493.	164	50	0	1					
49	0	499.	562	49	0	8					
	3337	0.000		17.5							

Рис. 4.10: Отчёт по модели оформления заказов двух типов

Задание: проанализировать отчёт.

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=17;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;

• количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

- количество транзактов, вошедших в блок:
 - первого типа заказов с начала процедуры моделирования ENTRY COUNT
 = 32;
 - второго типа(с дополнительными услугами) ENTRY COUNT = 15;
 - обработано 39 (потому что 12+27 = 39);

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 42 заказ от клиентов (значение поля OWNER=42), но оператор успел принять в обработку до окончания рабочего времени только 40 (значение поля ENTRIES=40). Полезность работы оператора составила 0,947. При этом среднее время занятости оператора составило 11,365 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- MAX=8 в очереди находилось не более восьми ожидающих заявок от клиента;
- CONT=7 на момент завершения моделирования в очереди было 7 клиентов;
- ENTRIES=47 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=2 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=3,355 заявок от клиентов в среднем были в очереди;
- AVE.TIME=34,261 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);

• AVE. (-0)=35,784 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

Упражнение

Нужно было скорректировать модель так, чтобы учитывалось условие, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов.

Из теории мы знаем, что:

Блок TRANSFER изменяет маршрут движения транзактов:

• TRANSFER [A],B,[C],[D]

Здесь A — режим перехода; В — метка первого альтернативного блока; С — метка второго альтернативного блока; D — константа, используемая для относительной переадресации транзактов (рис. fig. 4.11).

```
; order
GENERATE 15,4
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 10,2
TRANSFER 0.3,dst2,dst1
dst1 ADVANCE 5,2
dst2 RELEASE operator
TERMINATE 0

; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 4.11: Модель обслуживания двух типов заказов с условием, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов

Проанализируем результаты моделирования (рис. fig. 4.12).

	GPSS	World	Simu	lation	Repor	t -	Untitl	ed Mode	1 3.	3.1		
		пятни	1a, M	ия 09,	2025	17:2	6:13					
	START 1	TMF		FND	TIME	BLO	CKS F	ACTLITI	FS	STORA	FS	
	0.	000		48	0.000	1	1	1		0		
	NAME DST1 DST2					VALU	E					
	DST1					7.0						
	DST2					8.0	00					
	OPERATOR	3			100	01.0	00					
	DST2 OPERATOR OPERATOR	5_0			100	00.0	00					
LABEL		LOC	BLOC	K TYPE	E	NTRY	COUNT	CURREN	IT CO	UNT R	ETRY	
		1	GENE	RATE			33		0		0	
		2	QUEU	JE			33		0		0	
		3	SEIZ	E			33		0		0	
		4	DEPA	RT			33		0		0	
		6	TRAN	ISFER			33					
DST1		7 8 9	ADVA	NCE			8		1		0	
DST2		8	RELE	ASE			32					
		9	TERM	IINATE			32		-		-	
		10	GENE	RATE			1					
		11	TERM	IINATE			1		0		0	
FACILITY	I	ENTRIES	UTI	L. A	VE. TI	ME A	VAIL.	OWNER F	PEND	INTER	RETRY	DELAY
OPERATO	R	33	0.	766	11.	146	1	34	0	0	0	0
OUEUE		MAX CO	ONT.	ENTRY	ENTRY (0) A	VE.CON	IT. AVE.	TIME	AVI	E. (-0)	RETRY
OPERATO	R_Q	1	0	33	25	,	0.054		.781		3.220	0
				45.5								
FEC XN	PRI 0	BDT		ASSEM	CURR	RENT	NEXT	PARAME	TER	VAI	LUE	
34	0	482.5	925	34	7		8					
	0											
36	0	960.0	000	36	0)	10					

Рис. 4.12: Отчёт по модели оформления заказов двух типов заказов

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=11;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

- количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 33;
- обработано 32 заказа;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 34 заказа от клиентов (значение поля OWNER=34), но оператор успел принять в обработку до окончания рабочего времени только 33 (значение поля ENTRIES=33). Полезность работы оператора составила 0,766. При этом среднее время занятости оператора составило 11,146 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=1 в очереди находилось не более одной ожидающей заявки от клиента;
- CONT=0 на момент завершения моделирования в очереди было ноль клиентов;
- ENTRIES=33 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=25 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=0,054 заявок от клиентов в среднем были в очереди;
- AVE. TIME=0.781 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=3,220 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

4.4 Модель оформления заказов несколькими операторами

В интернет-магазине заказы принимают 4 оператора. Интервалы поступления заказов распределены равномерно с интервалом 5 ± 2 мин. Время оформления заказа каждым оператором также распределено равномерно на интервале 10 ± 2 мин. обработка поступивших заказов происходит в порядке очереди (FIFO). Требуется определить характеристики очереди заявок на оформление заказов при условии, что заявка может обрабатываться одним из 4-х операторов в течение восьмичасового рабочего дня

Для задания количества доступных операторов в системе используется команда STORAGE operator 4, где operator — имя ресурса, а число 4 указывает на то, что одновременно могут работать четыре оператора.

На этапе обработки каждой заявки добавляется команда ENTER operator,1, обозначающая, что для начала обслуживания необходимо зарезервировать одного оператора (рис. fig. 4.13).

```
operator STORAGE 4
GENERATE 5,2
QUEUE operator_q
ENTER operator,1
DEPART operator_q
ADVANCE 10,2
LEAVE operator,1
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 4.13: Модель оформления заказов несколькими операторами

Упражнение

1. Проанализируем отчет (рис. fig. 4.14).

		пятни	ща, 1	мая 09	, 202	5 17:3	3:22				
	START T	IME		EN	D TIM	E BLO	CKS F.	ACILITIES	STO	RAGES	
								0		1	
	NAME					VALU	E				
	OPERATOR				1	.0000.0	00				
	OPERATOR	Q			1	.0001.0	00				
LABEL		T.OC	BT.O	CK TYP	F	FNTPV	COUNT	CURRENT	COUNT	RETRY	
DADDD										0	
		2	OUF	UF.			93		0	0	
		3	ENT	ER			93		0		
				ANCE			93				
				VE			91		0	0	
		7	TER	MINATE			91		0	0	
				ERATE			1				
				MINATE			1		0		
QUEUE	_Q	MAX C	ONT.	ENTRY	ENTR	(0) Y	VE.CON	T. AVE.TI	ME .	AVE. (-0)	RETE
OPERATOR	_0	1	0	93		93	0.000	0.0	000	0.000) 0
STORAGE		CAP.	REM.	MIN.	MAX.	ENTRI	ES AVL	. AVE.C.	UTIL	. RETRY	DELAY
OPERATOR								1.926			
FFC XN	PRI	BDT		ASSE	м сп	IRRFNT	NEXT	PARAMETE	r R	VAI.UF	
95	0	480	457	95		0	1				
93	0	482	805	93		5	6				
94	0 0	483	473	94		5 5 0	6				
96	0	960	000	96		0	8				

Рис. 4.14: Отчет по модели оформления заказов несколькими операторами

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=0;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=1.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 93; обработан 91 заказ;

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=1 в очереди находилось не более одной ожидающей заявки от клиента;
- CONT=0 на момент завершения моделирования в очереди было ноль клиентов;
- ENTRIES=93 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=93 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=0,000 заявок от клиентов в среднем были в очереди;
- AVE. TIME=0,000 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=0,000 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Далее идет информация про многоканальное устройство STORAGE (представляющее операторов, оформляющих заказы), и мы можем сделать такие выводы:

- Общее число заявок, направленных к операторам, составило 93.
- Значение коэффициента полезности (или загрузки) STORAGE составило 0,482.
- Среднее время, в течение которого один оператор был занят одной заявкой, составило 1,926 минуты.
- САР. = 4, что означает возможность одновременной работы до четырёх операторов.

- Максимальное число одновременно задействованных операторов: 4 то есть в некоторые моменты все операторы находились в работе.
- Минимальное число задействованных операторов: 0 были периоды, когда ни один оператор не был занят.

В конце отчёта идёт информация о будущих событиях.

2. Изменим модель: требуется учесть в ней возможные отказы клиентов от заказа – когда при подаче заявки на заказ клиент видит в очереди более двух других заявок, он отказывается от подачи заявки, то есть отказывается от обслуживания (используем блок TEST и стандартный числовой атрибут Qj текущей длины очереди j).

Блок TEST определяет направление движения транзакта в зависимости от выполнения условия, заданного алгебраическим соотношением:

TEST XX A,B,[C]

Здесь XX — знак логической операции: L — меньше, G — больше, E — равно, LE — меньше или равно, GE — больше или равно, NE — не равно; A, B — сравниваемые значения; С — метка блока, куда перемещается транзакт в случае невыполнения заданного условия.

Добавми TEST LE Q\$operator_q, 2, Fin для проверки того, сколько заявоку в очереди. Если больше 2 - завершаем заявку, рна не попадает в очередь.

Ранее в отчёте было видно, что длина очереди ни разу не превышала двух человек. Это связано с тем, что заявки поступали довольно редко, и операторы успевали справляться с потоком. Чтобы проверить, как система поведёт себя при большей нагрузке, я изменила параметры модели:

- Вместо GENERATE 5,2 теперь используется GENERATE 3,1, то есть заявки приходят чаще в интервале от 2 до 4 минут.
- Команда ADVANCE 10,2 заменена на ADVANCE 15,5, чтобы одна заявка обрабатывалась дольше в среднем 15 минут.

Таким образом, модель теперь работает в условиях, когда операторов может не хватать, и появляется шанс, что очередь превысит допустимый предел в две заявки. Это позволяет проверить, как сработает фильтрация через TEST, и насколько сильно это повлияет на общий поток заявок (рис. fig:015).

```
operator STORAGE 4
GENERATE 3,1
TEST LE Q$operator_q,2,Fin
QUEUE operator_q
ENTER operator,1
DEPART operator_q
ADVANCE 15,5
LEAVE operator,1
Fin TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 4.15: Модель оформления заказов несколькими операторами с учетом отказов клиентов

3. Проанализируем полученный отчет (рис. fig. 4.16).

	GPSS	Worl	d Sim	ulatio	on Rep	ort -	Unti	tled	Model	4.7.1		
		пятн	ица,	мая 09	9, 202	5 17:5	57:00					
	START T	IME		El	ND TIM	E BLO	OCKS	FAC	ILITIES	STO	RAGES	
	0.0	000		4	180.00	0 1	10		0		1	
	NAME					VALU	JE					
	FIN					8.0	000					
	OPERATOR				1	0000.0	000					
	OPERATOR	Q				0001.0						
LABEL		LOC	BLO	CK TYI	PE	ENTR	cou	NT C	URRENT	COUNT	RETRY	
										0		
		2	TES	T		8.7	158			0	0	
		3	OUE	UE			131			0 2	0	
		4	ENT	ER								
		5	DEP	ER ART			129			0	0	
				ANCE			129			4	0	
		7		VE			125			0	0	
IN			TED	MINATE	-		152			0	0	
TIN		0	CEN	PDATE			1					
		10	TED	ERATE MINATE	7		1			0	0	
		10	ILK	PIINAII	-		1			U	U	
QUEUE OPERATOR_		MAX	CONT.	ENTR	Y ENTR	Y(0) I	AVE.C	ONT.	AVE.TI	ME	AVE.(-0)	RETE
OPERATOR_	_0	3	2	131		6	1.9	76	7.2	142	7.589	0
TORAGE											. RETRY	
OPERATOR		4	0	0	4	13	29	1	3.929	0.98	2 0	2
EC XN I	PRI	BD	Ī	ASSI	em cu	RRENT	NEX	T P	ARAMETE	IR.	VALUE	
160	0	480	.534	160)	0	1					
154	0	485	.260	154	9	6	7					
155	0	485	.872	155	5	6	7					
156	0	486	.540	156	5	6	7					
157	0 0 0	497	.819	15	7	6	7					
161	0	960	.000	161	1	0	9					

Рис. 4.16: Отчет по модели оформления заказов несколькими операторами с учетом отказов клиентов

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=10;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=0;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=1.

Имена, используемые в программе модели: operator, operator_q.

- количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 158;
- обработано 94 заказа;
- 27 человек отказались оставлять заявки, поскольку очередь была более двух заявок.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- MAX = 3 в очереди находилось не более трех ожидающих заявок от клиента(как и было указано);
- CONT = 2 на момент завершения моделирования в очереди было 2 клиента;
- ENTRIES=131 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=6 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=1,976 заявок от клиентов в среднем были в очереди;
- AVE. TIME=7,242 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=7,589 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Далее в отчёте представлена статистика по многоканальному устройству STORAGE, которое моделирует операторов, занимающихся оформлением заказов. Из данных видно следующее:

- К операторам было направлено 129 заявок от клиентов.
- Полезность работы (utilization) составила 0,982, то есть операторы были заняты почти всё время моделирования 98,2 % времени.
- В среднем один оператор тратил 3,929 минуты на обработку одной заявки.

- САР. = 4, что означает возможность одновременной работы до четырёх операторов.
- Максимальное число одновременно занятых операторов: 4.
- Минимальное число занятых операторов: 0 (были периоды простоя, хотя и редкие).

В конце отчёта идёт информация о будущих событиях.

5 Выводы

В ходе данной лабораторной работы я реализовала следующее:

- модель оформления заказов клиентов одним оператором;
- построение гистограммы распределения заявок в очереди;
- модель обслуживания двух типов заказов от клиентов в интернет-магазине;
- модель оформления заказов несколькими операторами.

Список литературы

- 1. В. К.А., С. К.Д. Руководство к лабораторной работе №14. Моделирование информационных процессов. Модели обработки заказов. 2025. С. 7.
- 2. Сосновиков Г.К., Воробейчиков Л.А. Компьютерное моделирование. Практикум по имитационному моделированию в среде GPSS World. Издательство не указано, 2023. С. 112.