ISEN LILLE – AP3

PHYSIQUE TD 1: MÉCANIQUE

EXERCICE 1

Soient 3 points $M_a(10,-2,5)$, $M_b(-3,5,1)$ et $M_c(0,4,6)$. Déterminer les coordonnées du point M_d tel que l'on ait : $\overline{M_aM_b} = \overline{M_cM_d}$

EXERCICE 2

Soient 3 points $M_a(10,-2,5)$, $M_b(-3,5,1)$ et $M_c(0,4,6)$. On nomme \vec{A} , \vec{B} et \vec{C} les vecteurs reliant l'origine O à chacun de ces points.

- 1. Écrire les coordonnées des vecteurs \vec{A} , \vec{B} et \vec{C} .
- 2. Calculer les modules $|\vec{A}|$, $|\vec{B}|$ et $|\vec{C}|$ et l'angle que fait chaque vecteur avec les 3 axes.
- 3. Calculer les produits scalaires $\vec{A} \cdot \vec{B}$, $\vec{A} \cdot \vec{C}$ et $\vec{B} \cdot \vec{C}$.
- 4. Quelle propriété du produit scalaire est mise en évidence par la comparaison de $\vec{A} \cdot \vec{B}$ et de $\vec{B} \cdot \vec{A}$.
- 5. Calculer $(\vec{A} \cdot \vec{B})\vec{C}$. Interpréter le résultat.
- 6. Calculer les produits vectoriels $\vec{A} \wedge \vec{B}$, $\vec{B} \wedge \vec{A}$ et $\vec{A} \wedge \vec{C}$.
- 7. Calculer le module de ces produits vectoriels.
- 8. Calculer l'angle que forment entre eux ces 2 produits vectoriels.

EXERCICE 3

D'après le schéma suivant, quelles sont les coordonnées de \overrightarrow{OM} en fonction de la norme $|\overrightarrow{OM}| = R$ et des angles θ et ϕ ?

EXERCICE 4

Exprimer les vecteurs unitaires $\vec{u_r}$ et $\vec{u_\theta}$ des coordonnées polaires en fonction des vecteurs unitaires \vec{i} et \vec{j} des coordonnées cartésiennes.

EXERCICE 5

Un point M est repéré par ses coordonnées cartésiennes (x,y,z) et cylindrique (r,θ,z) . Exprimer un vecteur élémentaire \overrightarrow{dl} en fonction de :

- 1. dx, dy, dz
- 2. $dr, d\theta, dz$

EXERCICE 6

Un point M est repéré par ses coordonnées cartésiennes $x(t)=4t^2$, y(t)=-5t, $x(t)=3t^3$ Écrire les composantes des vecteurs $\frac{d \overline{OM}}{dt}$ et $\frac{d^2 \overline{OM}}{dt^2}$.

EXERCICE 7

Trois étudiants établissent les équations suivantes dans lesquelles x désigne la distance parcourue (m), a l'accélération $(m \cdot s^{-2})$, t le temps (s) et l'indice 0 indique que l'on considère la quantité à l'instant t = 0 s :

a.
$$x=vt^2$$
 b. $x=v_0t+\frac{at^2}{2}$ c. $x=v_0t+2at^2$

Parmi ces équations, lesquelles sont possibles ?

EXERCICE 8

Déterminer la dimension des grandeurs suivantes :

$$A = \frac{1}{2}mr^2\omega^2$$
; $B = mgv\cos\theta$; $C = mgl\sin\theta$; $D = \frac{1}{2}k(x-l)^2$; $E = \sqrt{\frac{k}{m}}$

R, x, l sont des distances, v est une vitesse, ω une vitesse angulaire, g est le champ de pesanteur, θ est un angle, k la raideur d'un ressort, m une masse.