ENGR 305

MOSFET Circuits at DC

September 30, 2025

MOSFET Circuits at DC

- We now look at some examples involving only dc voltages and currents.
- To keep matters simple we will generally neglect channellength modulation in the examples.
- Will work in terms of the overdrive voltage
 - $V_{OV} = V_{GS} V_{tn}$ for NMOS
 - $|V_{OV}| = V_{SG} |V_{tp}|$ for PMOS
- Since we are dealing with dc quantities, we will use uppercase symbols with uppercase subscripts for all currents and voltages.

Design the circuit shown; determine the values of R_D and R_S so that the transistor operates at $I_D=0.2~mA$ and $V_D=+0.2~V$. The NMOS transistor has $V_t=0.5~V$, $\mu_n C_{ox}=400\mu A/V^2$, $L=0.5\mu m$, and $W=15\mu m$. Neglect the channel length modulation effect (i.e., assume that $\lambda=0$).

■ In order for V_D to equal +0.2 V at the drain, we must select R_D as follows:

$$Arr R_D = rac{V_{DD} - V_D}{I_D} = rac{1 - 0.2}{0.2 \ mA} = 4 \ k\Omega$$

- In order to determine the value for R_S , we need to know the voltage at the source. This can be found if we know V_{GS} .
- We note that since V_D is greater than $V_G = 0$, the NMOS transistor is operating in the saturation region.
- We use the saturation-region expression of i_D to find the required value of V_{OV}

- Substituting $I_D=0.2~mA=200\mu A$, $\mu_n C_{ox}=400\mu A/V^2$ and $^W/_L=15/0.5$,
 - $200 = \frac{1}{2} \times 400 \times \frac{15}{0.5} V_{OV}^2$
 - This gives $V_{OV} = 0.18 V$
- Then, $V_{GS} = V_t + V_{OV} = 0.5 + 0.18 = 0.68 V$
- We see that the gate is grounded and the source must be at -0.68 V.
- lacktriangle The required value of R_S can be determined from

$$R_S = \frac{V_S - V_{SS}}{I_D} = \frac{-0.68 - (-1)}{0.2 \, mA} = 1.6 \, k\Omega$$

The figure shows an NMOS transistor with its drain and gate terminals connected together. Find the i-v relationship of the resulting two-terminal device in terms of the MOSFET parameters $k_n = k'_n(W/L)$ and V_{tn} . Neglect channel-length modulation. Note that this two-terminal device is known as a **diode-connected transistor**.

We first determine in which region the MOSFET is operating. Since $v_D = v_G$, operation is in the saturation mode.

lacksquare Now $i=i_D$ and $v=v_{GS}$ and

$$i = \frac{1}{2} k_n' \left(\frac{W}{L} \right) (v - V_{tn})^2$$

Replacing $k'_n\left(\frac{W}{L}\right)$ by k_n results in

$$i = \frac{1}{2}k_n(v - V_{tn})^2$$

Design the circuit to establish a dc drain voltage of 0.1 V. What is the effective resistance between drain and source at this operating point? Let $V_{tn}=0.5V$ and $k_n'(W/L)=2mA/V^2$

- Since the drain voltage is lower than the gate voltage by 1.9 V and $V_{tn}=0.5\ V$, the MOSFET is operating in the triode region.
- The drain current is given by

$$I_D = 2 \times \left[(2 - 0.5) \times 0.1 - \frac{1}{2} \times 0.01 \right] = 0.29 \, mA$$

 \blacksquare The required value for R_D can be found as

$$R_D = \frac{V_{DD} - V_D}{I_D} = \frac{2 - 0.1}{0.29} = 6.55 \, k\Omega$$

In a practical discrete-circuit design problem, one selects the closest standard value available for, say, 5% resistors – in this case, 6.8 $k\Omega$.

Since the transistor is operating in the triode region with a small V_{DS} , the effective drain-to-source resistance can be determined as follows:

$$r_{DS} = \frac{V_{DS}}{I_D} = \frac{0.1 \, V}{0.29 \, mA} = 345 \, \Omega$$

lacktriangle Alternately, we can determine r_{DS} by using the formula

$$ightharpoonup r_{DS} = rac{1}{k_n V_{OV}}$$
 to obtain

$$r_{DS} = \frac{1}{2 \times (2 - 0.5)} = 0.333 \ k\Omega = 333 \ \Omega$$

■ This is close to the value found above.

Analyze the circuit shown to determine the voltages at all nodes and the currents through all branches. Let $V_{tn} = 1 V$ and $k'_n(W/L) = 1 mA/V^2$. Neglect the channel-length modulation effect $(\lambda = 0)$.

Design the circuit shown so that the transistor operates in saturation with $I_D=0.5\ mA$ and $V_D=+3\ V$. Let the PMOS transistor have $V_{tp}=-1\ V$ and $k_p'(W/L)=1\ mA/V^2$. Assume $\lambda=0$. What is the largest value that R_D can have while maintaining saturation-region operation?

The NMOS and PMOS transistors in the circuit shown are matched, with $k_n'(^{W_n}/_{L_n}) = k_p'(^{W_p}/_{L_p}) = 1 \, mA/V^2$ and $V_{tn} = -V_{tp} = 1 \, V$. Assuming $\lambda = 0$ for both devices, find the drain currents I_{DN} and I_{DP} , as well as the voltage V_O , for $V_I = 0 \, V$, $+2.5 \, V$, and $-2.5 \, V$.

