Pascal Romon

Géométrie épipolaire

Géométrie épipolaire

Introduction:

La géométrie épipolaire permet d'établir une relation géométrique entre 2 images d'une même scène.

Géométrie épipolaire

La <u>droite épipolaire</u> représente l'ensemble des projetés possibles correspondants à \mathbf{x} ; elle passe nécessairement par l'épipôle \mathbf{e}_B .

Géométrie épipolaire

La recherche d'un point se fait sur une ligne, <u>ce qui diminue le temps</u> de calcul.

Epipoles

Epipoles:

toutes les droites épipolaires passent par les épipoles e et e'.

Epipoles

Propriété:

toutes les droites épipolaires passent par les épipoles e et e'.

Question

- comment trouver la droite épipolaire l', quand on connaît le point x ?
- comment savoir si deux points \mathbf{x}, \mathbf{x}' correspondent (c-à-d $\mathbf{x}' \in \mathbf{I}'$) ?

Principe

- la projection en coordonnées projectives est la multiplication par une matrice projective 3 × 4 de rang 3.
- de façon générale, $\mathbf{x} = \mathbf{P}\mathbf{X}$ en coordonnées projectives
- si X est restreint à un plan \mathcal{H} , alors la projection $\hat{P} = P_{|\mathcal{H}}$ est une bijection de \mathcal{H} dans \mathbb{R}^2 (attention au choix de \mathcal{H})
- si on a deux projections P et P', avec x = PX et x' = P'X, alors $x' = \hat{P}'\hat{P}^{-1}x$
- on a donc une transformation projective $\mathbf{H} = \hat{\mathbf{P}}'\hat{\mathbf{P}}^{-1}$ (matrice 3×3) telle que $\mathbf{H}\mathbf{x}$ soit dans la droite épipolaire \mathbf{I}' de \mathbf{x} (\mathcal{H} n'est pas unique, donc \mathbf{H} non plus !)
- $I' = e' \times Hx$

Digression sur le produit vectoriel

Rappel

$$\mathbf{u} \times \mathbf{v} = \begin{pmatrix} u_{x} \\ u_{y} \\ u_{z} \end{pmatrix} \times \begin{pmatrix} v_{x} \\ v_{y} \\ v_{z} \end{pmatrix} = \begin{pmatrix} u_{y}v_{z} - u_{z}v_{y} \\ u_{z}v_{x} - u_{x}v_{z} \\ u_{x}v_{y} - u_{y}v_{x} \end{pmatrix}$$

$$= \begin{bmatrix} 0 & -u_{z} & u_{y} \\ u_{z} & 0 & -u_{x} \\ -u_{y} & u_{x} & 0 \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & -u_{z} & u_{y} \\ u_{z} & 0 & -u_{x} \\ -u_{y} & u_{x} & 0 \end{bmatrix}}_{[\mathbf{u}]_{\times}} \begin{pmatrix} v_{x} \\ v_{y} \\ v_{z} \end{pmatrix}$$

on peut donc représenter l'opération produit vectoriel (à gauche) par \boldsymbol{u} par la multiplication par la matrice antisymétrique $[\boldsymbol{u}]_{\times}$

Matrice fondamentale

- la droite épipolaire de x est $I' = e' \times Hx = ([e']_{\times} H)x =: Fx$
- $\mathbf{F} := [\mathbf{e}']_{\times} \mathbf{H}$ est la matrice fondamentale ; elle est uniquement déterminée (à multiplication par une constante près), autrement dit, elle ne dépend pas du choix de \mathcal{H} .
- $\mathbf{x}' \in \mathbf{I}' \text{ ssi } \mathbf{x}'^{\top} \mathbf{I}' = 0$. donc $\mathbf{x}'^{\top} \mathbf{F} \mathbf{x} = 0$

Relation épipolaire

$$x \leftrightarrow x'$$
 ssi

$$\mathbf{x}'^{\mathsf{T}}\mathbf{F}\mathbf{x}=0$$

Relation épipolaire

Matrice fondamentale:

$$\mathbf{F} = \left[\begin{array}{ccc} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{array} \right]$$

Pour 2 points de correspondance $\mathbf{x} \leftrightarrow \mathbf{x}'$, on a :

$$\mathbf{x}'^{\top}\mathbf{F}\mathbf{x} = 0$$

Pascal Romon Géométrie épipolaire $11 \ / \ 31$

Relation épipolaire

$$\mathbf{F} = \left[egin{array}{ccc} f_{11} & f_{12} & f_{13} \ f_{21} & f_{22} & f_{23} \ f_{31} & f_{32} & f_{33} \ \end{array}
ight] \qquad \qquad \mathbf{x}'^{ op} \mathbf{F} \mathbf{x} = 0$$

$$\mathbf{x}'^{\top}\mathbf{F}\mathbf{x} = 0$$

Droites épipolaires :

$$\mathbf{x}'^{\top} \mathbf{F} \mathbf{x} = 0 \quad \Rightarrow \quad \mathbf{x}'^{\top} \mathbf{l}' = 0 \quad \Rightarrow \quad \mathbf{x}' \in \mathbf{l}' = \mathbf{F} \mathbf{x}$$

 $\mathbf{x}'^{\top} \mathbf{F} \mathbf{x} = 0 \quad \Rightarrow \quad \mathbf{l}^{\top} \mathbf{x} = 0 \quad \Rightarrow \quad \mathbf{x} \in \mathbf{l} = \mathbf{F}^{\top} \mathbf{x}'$

Epipoles

Propriété:

Toutes les droites épipolaires passent par leur épipoles e ou e'.

Pour tout x, on a:

$$\mathbf{e}' \in \mathbf{I}' \quad \Leftrightarrow \quad \mathbf{e}'^{\top} \mathbf{I}' = \mathbf{0}$$

comme I' = Fx, on a :

$$e'^{\top} F x = 0$$

la seule façon d'avoir $\mathbf{e}'^{\top} \mathbf{F} \mathbf{x} = 0 \ \forall \mathbf{x}$, est d'avoir $\mathbf{e}'^{\top} \mathbf{F} = \mathbf{0}$

Epipoles

Finalement, on a:

$$\mathbf{F}^{\top}\mathbf{e}'=\mathbf{0}$$
 et $\mathbf{F}\mathbf{e}=\mathbf{0}$

Calcul:

Pour calculer les épipoles, il suffit de calculer les noyaux de \mathbf{F} et \mathbf{F}^{\top} . (SVD et *right nullspace*)

Relation épipolaire

Propriétés de la matrice fondamentale

- F est une matrice projective 3 × 3 (définie à une constante multiplicative près)
- $Fe = F^{T}e' = 0$
- \hookrightarrow **F** est de rang 2
- F possède 7 degrés de liberté, donc est déterminée par 7 contraintes

I' = Fx

X

Relation épipolaire

Si on connait F:

la sélection d'un point sur une image nous donne la droite épipolaire sur l'autre image.

Contrainte épipolaire :

pour chaque point de correspondance $\mathbf{x}_i \leftrightarrow \mathbf{x}'_i$ entre les 2 images, la relation épipolaire doit être satisfaite :

Calcul

$$\mathbf{x}_{i}^{\prime\top}\mathbf{F}\mathbf{x}_{i}=0$$

Calcul:

Si l'on dispose de quelques points de correspondance (au moins 8) $x_i \leftrightarrow x_i'$, on peut calculer F.

Points de correspondance

Pour chaque $x_i \leftrightarrow x_i'$, on a :

$$\mathbf{x}_{i}^{\prime \top} \mathbf{F} \mathbf{x}_{i} = 0$$

Calcul 0000000

soit

$$\left(\begin{array}{ccc} x'_i & y'_i & w'_i \end{array} \right) \left[\begin{array}{ccc} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{array} \right] \left(\begin{array}{c} x_i \\ y_i \\ w_i \end{array} \right) = 0$$

on développe :

$$x_i x_i' f_{11} + x_i y_i' f_{12} + x_i w_i' f_{13} + y_i x_i' f_{21} + y_i y_i' f_{22} + \ldots + w_i w_i' f_{33} = 0$$

Renommage:

$$\begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \rightarrow \begin{bmatrix} f_{12} \\ f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \end{bmatrix}$$

Pour chaque $x_i \leftrightarrow x_i'$, on a :

$$x_i x_i' f_{11} + x_i y_i' f_{12} + x_i w_i' f_{13} + y_i x_i' f_{21} + y_i y_i' f_{22} + \ldots + w_i w_i' f_{33} = 0$$

soit

Reformulation matricielle:

$$\begin{bmatrix} x_{1}x'_{1} & x_{1}y'_{1} & x_{1}w'_{1} & y_{1}x'_{1} & y_{1}y'_{1} & \dots & w_{1}w'_{1} \\ x_{2}x'_{2} & x_{2}y'_{2} & x_{2}w'_{2} & y_{2}x'_{2} & y_{2}y'_{2} & \dots & w_{2}w'_{2} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{n}x'_{n} & x_{n}y'_{n} & x_{n}w'_{n} & y_{n}x'_{n} & y_{n}y'_{n} & \dots & w_{n}w'_{n} \end{bmatrix} \begin{pmatrix} r_{11} \\ f_{12} \\ f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \\ f_{33} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

on résout au sens des moindres carrés (SVD et right nullspace)

$$\begin{pmatrix} f_{11} \\ f_{12} \\ f_{13} \end{pmatrix}$$

$$\rightarrow \left[\begin{array}{ccc} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{array}\right]$$

Rang de F

Bilan:

- la matrice **F** est une matrice de rang 2.
- mais le calcul de F (moindres carrés) ne nous assure pas cette propriété.
- si *F* n'est pas de rang 2, les droites épipolaires ne passent pas exactement par les épipôles.
- ullet on peut forcer le rang de $m{F}$ en faisant une SVD : $m{F} = m{U}m{D}m{V}^{ op}$
- \hookrightarrow $F_2 = UD'V^{\top}$ où D' correspond à D ayant sa dernière valeur singulière annulée.

Principe:

Il s'agit de transformer les 2 images de telles sorte que:

- leurs droites épipolaires soient horizontales
- les points de correspondances aient les mêmes coordonnées verticales

Idée générale :

trouver une homographie qui place les épipoles à l'infini.

Homographie

Images de départ :

Images rectifiée:

Attention: la solution n'est pas unique.

Applications

Calcul de cartes de disparité :

Applications

Images stéréoscopiques sans parallaxe verticale :

