GravLens

Renkun Kuang

History

Gravitational
Lensing Theories

Applications

Gravitational Lensing Theories, Questions and Applications

Renkun Kuang

Tsinghua University

November 7, 2019

Overview

GravLens

Renkun Kuang

History

Gravitational
Lensing Theories

related Quest

Applications

History

Gravitational Lensing Theories

Related Questions

History

Gravitational Lensing Theories

- ► First proposed by Soldner (1801) using Newtonian theory, given a deflection angle (Appendix-1 (Page 27) for derivation).
 - $\alpha = \frac{2GM}{c^2r}$, 0.85 arcsec for the Sun
- ► Einstein (1911) derived the same result using Equivalence principle and Euclidean metric
- ► Einstein (1915) derived the new result using General Relativity.
 - $\alpha = \frac{4GM}{c^2r}$, 1.7 arcsec for the Sun

Eddington's observation of the Solar Eclipse

► In 1919, Eddington measured a value close to GR's prediction using the data collected during an eclipse, stars with apparent position near the sun become visible.

GravLens

Renkun Kuang

History

Gravitational Lensing Theories Related Questions

Applications

Earth

The first example for GravLens: 0957+561

Eddington (1920): Multiple light paths \rightarrow multi images

- ▶ Walsh et al., (1979) quasar QSO 957+561 A,B found at $z\sim1.4$, two seen images separated by $6^{''}$
- Lens: evidence
 - 1. Lensing galaxy at $z \sim 0.36$
 - 2. Similar spectra
 - 3. Ratio of optical and radio flux
 - 4. VLBI imging: small scale features

GravLens

Renkun Kuang

History

Gravitational
ensing Theories

related Ques

Walsh, Carswell & Weymann 1979, 0957+561 A, B: twin quasistellar objects or gravitational lens? https://ui.adsabs.harvard.edu/abs/1979Natur.279..381W/abstract

► Einstein Field Equations:

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$$

Geodesic equations:

$$\frac{d^2x^{\beta}}{d\lambda^2} + \Gamma^{\beta}_{\mu\nu} \frac{dx^{\nu}}{d\lambda} \frac{dx^{\nu}}{d\lambda} = 0$$

We can calculate how gravity bends light by solving geodesic eqution.

▶ To compute the Christoffel symbols $\Gamma^{\beta}_{\mu\nu}$, requires solving for the metric tensor $g_{\mu\nu}$, which requires solving the curvature equations $R_{\mu\nu}=0$, \leftarrow ten nonlinear partial differential equations.

General Relaticity and light deflection

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Applications

Or, the velocity of the photon from the Schwarzshild metric, $ds^2 = -(1+2\Phi)dt^2 + (1-2\Phi)(dx^2+dy^2+dz^2),$

- ▶ and Poisson Equation. $\nabla^2 \Phi = 4\pi G \rho$.
- ▶ and light interval: $g_{\mu\nu} \frac{dx^{\mu}}{d\lambda} \frac{dx^{\nu}}{d\lambda} = 0$
- which gives,

$$v = \frac{\sqrt{dx^2 + dy^2 + dz^2}}{dt} = \sqrt{\frac{1 + 2\Phi}{1 - 2\Phi}} \approx 1 + 2\Phi$$

The gravitational field decreases the speed of propagation

 $https://web.stanford.edu/\ oas/SI/SRGR/notes/SchwarzschildSolution.pdf,\ The\ Schwarzschild\ Solution$

General Relaticity and light deflection

$$v=\frac{\sqrt{dx^2+dy^2+dz^2}}{dt}=\sqrt{\frac{1+2\Phi}{1-2\Phi}}\approx 1+2\Phi$$
 (natural units) $\rightarrow v=c\left(1+\frac{2}{c^2}\Phi\right)$ (SI)

- \blacktriangleright define refraction index: $n=1-\frac{2}{c^2}\Phi=1+\frac{2}{c^2}|\Phi|\geq 1$
- \blacktriangleright deflection angle: $\vec{\hat{\alpha}} = -\int \vec{\nabla}_{\perp} n dl = \frac{2}{c^2} \int \vec{\nabla}_{\perp} \Phi dl$
- which is twice of the Newtonian prediction,
- for point mass lens, $\hat{\alpha} = \frac{4GM}{bc^2}$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Thin screen approximation

- Most deflection occurs near to the lens $(|z| \sim b)$ \rightarrow treat all deflection as in the lens plane
- Projected surface density: $\Sigma(\vec{\xi}) = \int \rho(\vec{\xi}, z) dz$
- ▶ Deflection angle: $\hat{\alpha}(\vec{\xi}) = \frac{4G}{c^2} \int \frac{(\vec{\xi} \vec{\xi'})\Sigma(\vec{\xi'})}{|\vec{\xi} \vec{\xi'}|^2} d^2 \vec{\xi'}$
- In circular symmetry cases: $\hat{\alpha}(\xi) = \frac{4GM(\xi)}{c^2\xi}$ $M(\xi) = 2\pi \int_0^\xi \Sigma(\xi') \xi' d\xi'$

GravLens

Renkun Kuang

Histor

Gravitational Lensing Theories

related Question

The Lens Equation

Connecting the position of images in the Lens plane and corresponding sources the Source plane.

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Quest

Case 1: Point mass Lens

$$\begin{cases} \hat{\alpha}(\xi) = \frac{4GM(\xi)}{c^2 \xi} \\ \vec{\alpha}(\vec{\theta}) = \frac{D_{ds}}{D_s} \hat{\alpha}(D_d \vec{\theta}) \end{cases} \rightarrow \vec{\alpha}(\vec{\theta}) = \frac{4GM}{c^2} \frac{D_{ds}}{D_d D_s} \frac{\vec{\theta}}{|\vec{\theta}|^2}$$

Source

Lens

Observer

and $\vec{\beta} = \vec{\theta} - \vec{\alpha}(\vec{\theta})$, if $\beta = 0$, gives the Einstein Radius,

$$\theta_E = \sqrt{\frac{4GM}{c^2} \frac{D_{ds}}{D_d D_s}}$$

 $\theta_E = \sqrt{-c^2} \, \overline{D_d D_s}$

The Lens equation: $\vec{\beta} = \vec{\theta} - \theta_E^2 \frac{\theta}{|\vec{\theta}|^2}$ • if $\beta > \theta_E \rightarrow$, weakly lensed and weakly distorted image.

• if $\beta < \theta_E \rightarrow$, stronly lensed and multi images:

$$\theta_{\pm} = \frac{1}{2} \left(\beta \pm \sqrt{\beta^2 + 4\theta_E^2} \right)$$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

elated Questions

Case 1: Point mass Lens

Hewitt+ 1987, First Einstein Ring discovered in Radio Band & VLA

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Questic

Magnification

Gravitational lensing preserves surface brightness (Liouville's Theorem), but changes the apparent solid angle of the source $\rightarrow magnification = \frac{Area_{image}}{Area_{source}}$

Renkun Kuang

History

Gravitational Lensing Theories

itelated Ques

GravLens

Possible Gravitational Microlensing of a Star in the Large Magellanic Cloud https://arxiv.org/pdf/astro-ph/9309052v1.pdf

Magnification

Local properties of the lens mapping, described by its Jacobian matrix \boldsymbol{A}

$$A \equiv \frac{\partial \vec{\beta}}{\partial \vec{\theta}} = \left(\delta_{ij} - \frac{\partial \alpha_i(\vec{\theta})}{\partial \theta_j}\right) = \left(\delta_{ij} - \frac{\partial^2 \Psi(\vec{\theta})}{\partial \theta_i \partial \theta_j}\right)$$
$$\mu = \left|\det\left(\frac{\partial \vec{\beta}}{\partial \vec{\theta}}\right)\right|^{-1} \equiv \left|\det\left(\frac{\partial \beta_i}{\partial \theta_j}\right)\right|^{-1}$$

If circularly symmetric,

$$\mu = \frac{\theta}{\beta} \frac{d\theta}{d\beta}$$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

.....

Related Questio

Applications

Trajectories

Time (tm)

Images:

$$\theta_{\pm} = \frac{1}{2} \left(\beta \pm \sqrt{\beta^2 + 4\theta_E^2} \right)$$

► Define $u = \beta \theta_E^{-1}$, Magnification:

$$\mu_{\pm} = \left[1 - \left(\frac{\theta_E}{\theta_{\pm}}\right)^4\right]^{-1}$$
$$= \frac{u^2 + 2}{2u\sqrt{u^2 + 4}} \pm \frac{1}{2}$$

► Total magnification:

$$\mu = |\mu_+| + |\mu_-| = \frac{u^2 + 2}{u\sqrt{u^2 + 4}}$$

e.g. for source on the Einstein Ring:

$$\beta = \theta_E, u = 1 \rightarrow \mu = 1.34 \rightarrow$$
 magnitude increase 0.32.

Magnification

- Passage through potential also leads to time delay
- lacktriangle without potential: $t_0 = \int rac{dl}{c}$
- with potential:

$$t_{1} = \int_{src}^{obs} \frac{dl}{v} = \int_{src}^{obs} \frac{dl}{c - \frac{2}{c}|\Phi|}$$
$$= \int_{src}^{obs} \frac{dl/c}{1 - \frac{2}{c^{2}}|\Phi|} = \int_{src}^{obs} \frac{dl}{c} [1 + \frac{2}{c^{2}}|\Phi|]$$

- $lackbox{ so, } \Delta t = \int_{src}^{obs} rac{2}{c^3} |\Phi| dl
 ightarrow {\sf Shapiro delay} \ m{(1964)}$
- Total time delay is the sum of the extra path length from the deflection and the gravitational time delay

$$t(\vec{\theta}) = \frac{1 + z_d}{c} \frac{D_d D_s}{D_{ds}} \left[\frac{1}{2} (\vec{\theta} - \vec{\beta})^2 - \psi \vec{\theta} \right] = t_{geom} + t_{grav}$$

- Galaxy lenses, the distributed nature of mass
- \blacktriangleright Simple model assumes that mass \rightarrow particles of ideal gas
- ► ideal gas:
 - equation of state: $p = \frac{\rho kT}{m}$
 - In thermal equilibrium, T is related to the 1-d velocity dispersion: $m\sigma_v^2 = kT$
 - In hydrostatic equilibrium,

$$\frac{p'}{\rho} = -\frac{GM(r)}{r^2}, M'(r) = 4\pi r^2 \rho$$

- solve the EOS \rightarrow density profile: $\rho(r) = \frac{\sigma_v^2}{2\pi G} \frac{1}{r^2}$
- ightharpoonup so mass profile: $M(r)=rac{2\sigma_v^2}{G}$

Case 2: Singular Isothemal Sphere (SIS)

For ideal gas, rotational velocity in circular orbit:

$$\frac{p'}{\rho} = -\frac{GM(r)}{r^2}, M'(r) = 4\pi r^2 \rho$$

Surface mass density:

$$\begin{split} v_{rot}^2 &= GM/r \rightarrow \\ dM &= \frac{v_{rot}^2}{G} dr = 4\pi r^2 \rho(r) \rightarrow \\ \rho(r) &= \frac{v_{rot}^2}{4\pi G} \frac{dr}{r^2} \rightarrow \\ \Sigma(\xi) &= \frac{v_{rot}^2}{4\pi G} \int_{-\infty}^{\infty} \frac{dz}{(z+\xi)^2} = \frac{v_{rot}^2}{4G\xi} = \frac{\sigma_v^2}{2G\xi} \end{split}$$

where,
$$M(\xi)=2\pi\int_0^\xi \Sigma(\xi')\xi'd\xi'$$
 , and $\hat{\alpha}(\xi)=\frac{4GM(\xi)}{c^2\xi}$ which gives: $\hat{\alpha}=4\pi\frac{\sigma_v^2}{c^2}$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

iverated Quesi

Case 2: Singular Isothemal Sphere (SIS)

$$\text{ using } \left\{ \begin{array}{l} \hat{\alpha} = 4\pi\sigma_v^2/c^2 \\ \vec{\alpha}(\vec{\theta}) = \hat{\alpha}(D_d\vec{\theta})D_{ds}/D_s \end{array} \right.$$

and lens equation $\vec{\beta} = \vec{\theta} - \vec{\alpha}(\vec{\theta})$

we can get:

$$\alpha = \hat{\alpha} \frac{D_{ds}}{D_s} = 4\pi \frac{\sigma_v^2}{c^2} \frac{D_{ds}}{D_s} = \theta_E$$

for strong lensing, get two images as for point mass:

$$\vec{\beta} = \vec{\theta} - \theta_E \frac{\vec{\theta}}{|\vec{\theta}|}, \frac{\vec{\theta}}{|\vec{\theta}|} = \pm 1 \rightarrow \theta_{\pm} = \beta \pm \theta_E$$

Magnification can be very large for source aligned with lens, from $\mu=\frac{\theta}{\beta}\frac{d\theta}{d\beta}\to$:

$$\mu_{\pm} = \frac{\theta_{\pm}}{\beta} = 1 \pm \frac{\theta_E}{\beta} = \left(1 \mp \frac{\theta_E}{\theta_{\pm}}\right)^{-1}$$

Separation of the two images is typically \sim arcsec for galaxy lenses:

$$\theta_E = 1''.6 \left(\frac{\sigma_v}{200kms^{-1}}\right)^2 \left(\frac{D_{ds}}{D_s}\right)$$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

- ▶ Grav Lens changes the observed brightness of the source, determined by the Jacobian matrix from the lens equation: $A \equiv \frac{\partial \vec{\beta}}{\partial \theta} = \left(\delta_{ij} \frac{\partial \alpha_i(\vec{\theta})}{\partial \theta_j}\right) = \left(\delta_{ij} \frac{\partial^2 \Psi(\vec{\theta})}{\partial \theta_i \partial \theta_j}\right)$ $\mu(\theta) = \frac{1}{\det A(\theta)}$
- \blacktriangleright Image at $\vec{\theta}$ is magnified by a factor of $|\mu(\vec{\theta})|$
- Notice that $|\mu(\vec{\theta})|$ diverge at $det A(\theta) = 0 \to$ these points in the image plane form closed curves, which is so called <u>critical lines</u>.
- Corresponding curves in the source plane obtained via the lens equation are called caustics.

Caustics and Critical lines - Point sources

The Critical Curves(blue) of two point mass(green) lens with $\mu_1 = \mu_2$ and X = 0.30 The Critical Curves(blue) of two point mass(green) lens with $\mu_1 = \mu_2$ and X = 0.35

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

elated Question

Caustics and Critical lines - Point sources

GravLens

Renkun Kuang

Gravitational Lensing Theories

Caustics and Critical lines - Point sources

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

ciated Ques

Gravitational Lens vs Genuine Lens

 \blacktriangleright Grav lens: the observer sees the source at two distinct locations, $\alpha \propto b^{-1}$

Grav lens has no well-defined focal length and cannot produce genuine images, the "images" are corresponds merely to a direction of incidence of light on the observer, not a genuine image in the sky

▶ Genuine lens: $\alpha \propto b$

Grayl ens

Renkun Kuang

History

Gravitational Lensing Theories

elated Questio

Gravitational Lensing Applications

History

Gravitational Lensing Theories

Grayl ens

Renkun Kuang

riciated Quest

- ► Cosmic telescopes: distant, faint objects observation
- 2-d mass distribution of lenses, dark matter
- Hubble constant, cosmological constant, density parameter
-

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Applications

The End, Thanks!

Appendix-1, Newtonian prediction

$$\phi(b,z) = -\frac{GM}{(b^2 + z^2)^{1/2}}$$

$$\alpha = \frac{v_b}{c} = \frac{1}{c} \int \frac{d\Phi}{db} dt = \frac{1}{c^2} \int \frac{d\Phi}{db} dl$$

$$\approx \frac{1}{c^2} \int \frac{d\Phi}{db} dz$$

$$= \frac{GMb}{c^2} \int \frac{dz}{(b^2 + z^2)^{3/2}}$$

$$= \frac{GMb}{c^2} \left[\frac{z}{b^2 \sqrt{b^2 + z^2}} \Big|_{-\infty}^{+\infty} \right]$$

$$= \frac{2GM}{c^2b}$$

GravLens

Renkun Kuang

History

Gravitational Lensing Theories

Related Ques

Applications

b: impact factor

Gravitational potential simplify the calculation by integrating not along the deflected ray but along z axis