# Beberapa Distribusi Peluang Kontinu

Bahan Kuliah *II2092 Probabilitas dan Statistik* 

Oleh: Rinaldi Munir

Sekolah Teknik Elektro dan Informatika ITB

# Distribusi Seragam Kontinu

- Distribusi Seragam kontinu adalah distribusi peluang kontinu yang paling sederhana.
- Fungsi padat peluang dari peubah acak seragam kontinu X pada selang [a, b] adalah:

$$f(x,a,b) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & x \text{ lainnya} \end{cases}$$

Kurva fungsi padat peluangnya →



- Contoh 1. Sebuah ruang konferensi dapat disewa untuk rapat yang lamanya tidak lebih dari 4 jam. Misalkan X adalah peubah acak yang menyatakan waktu rapat, yang mempunyai distribusi seragam.
  - Tentukan fungsi densitas peluang dari X.
  - Tentukan peluang suatu rapat berlangsung 3 jam atau lebih.

### Jawaban:

Jawaban:  
a) 
$$a = 0$$
,  $b = 4$ , sehingga  $f(x) = \begin{cases} \frac{1}{4}, & 0 \le x \le 4\\ 0, & x \text{ lainnya} \end{cases}$ 

b) 
$$P(X \ge 3) = \int_{3}^{4} \frac{1}{4} dx = \frac{1}{4} x |_{x=3}^{x=4} = \frac{4}{4} - \frac{3}{4} = \frac{1}{4}$$

Rataan dan variansi dari distribusi seragam kontinu adalah:

$$\mu = \frac{(a+b)}{2}$$
 dan  $\sigma^2 = \frac{(b-a)^2}{12}$ 

Fungsi kumulatif:

$$F(x) = \begin{cases} 0 & \text{for } x < a \\ \frac{x-a}{b-a} & \text{for } a \le x < b \\ 1 & \text{for } x \ge b \end{cases}$$

 Kasus khusus: jika a = 0 dan b = 1, maka distribusinya disebut distribusi seragam baku (standard uniform distribution), dilambangkan dengan U(0,1)

## **Distribusi Normal**

 Distribusi normal adalah distribusi yang paling penting di antara distribusi yang lain. Kurva dari distribusi normal mempunyai bentuk setangkup seperti lonceng:



- Nama lainnya: distribusi Gauss (Gaussian distribution)
- Kurva distribusi normal disebut juga kurva normal atau kurva topi orang Meksiko (mexican hat)





Lonceng sekolah



Sombrero, topi orang Meksiko



Sombrero, topi orang Meksiko

• Fungsi padat peluang (pdf) dari peubah acak normal X, dengan rataan  $\mu$  dan variansi  $\sigma^2$  adalah

$$n(x; \mu, \sigma) = \left(\frac{1}{\sigma \sqrt{2\pi}}\right) e^{-\frac{1}{2}\left[\frac{(x-\mu)}{\sigma}\right]^{2}}, -\infty < x < \infty$$

yang dalam hal ini  $\pi$  = 3.14159... dan e = 2.71828...

- Cukup dengan mengetahui  $\mu$  dan  $\sigma$ , maka seluruh kurva normal diketahui.
- Misalnya bila  $\mu$  = 30 dan  $\sigma$  = 8, maka ordinat n(x; 30, 8) dapat dihitung untuk berbagai nilai x dan kurvanya dapat digambarkan.

• Kurva normal dengan  $\mu_1 < \mu_2$  dan  $\sigma_1 = \sigma_2$ :



• Kurva normal dengan  $\mu_1 < \mu_2$  dan  $\sigma_1 < \sigma_2$ :



• Kurva normal dengan  $\mu_1 = \mu_2$  dan  $\sigma_1 < \sigma_2$ :



### **Sifat-Sifat Kurva Normal:**

- Modus, adalah suatu titik yang terletak pada sumbu x di mana kurva mempunyai nilai maksimum, yaitu pada  $x = \mu$
- Kurva berbentuk simetri terhadap sumbu tegak pada  $x = \mu$
- Kurva mempunyai titik belok pada  $x = \mu \pm \sigma$ , cekung dari bawah bila  $\mu \sigma < x < \mu + \sigma$  dan cekung dari atas untuk nilai x lainnya
- Kedua ujung kurva normal mendekati sumbu datar secara asimptotik bila x bergerak menjauhi  $\mu$  baik dari kiri maupun dari kanan.
- Luas daerah di bawah kurva adalah 1

## Luas Daerah di bawah Kurva Normal

$$P(x_1 < X < x_2) = \int_{x_1}^{x_2} n(x; \mu, \sigma) dx = \frac{1}{\sigma \sqrt{2\pi}} \int_{x_1}^{x_2} e^{-(1/2)[(x-\mu)/\sigma]^2} dx$$



- Untuk mengatasi kesulitan dalam menghitung integral fungsi padat normal, maka dibuat tabel luas kurva normal.
- Tetapi, tidak mungkin membuat tabel berbeda untuk setiap nilai  $\mu$  dan  $\sigma$ .
- Untunglah seluruh pengamatan setiap peubah acak normal X dapat ditransformasikan menjadi himpunan pengamatan baru peubah acak normal Z dengan rataan 0 dan variansi 1.

**Definisi.** Distribusi peubah acak normal dengan rataan 0 dan variansi 1 disebut dengan **distribusi normal baku** (*standard normal distributiion*).

Cara transformasinya sebagai berikut:

$$Z = \frac{(X - \mu)}{\sigma}$$

• Bila X bernilai antara  $x = x_1$  dan  $x = x_2$  maka peubah acak Z bernilai antara  $z_1 = (x_1 - \mu)/\sigma$  dan  $z_2 = (x_2 - \mu)/\sigma$ 

$$P(x_{1} < X < x_{2}) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right) \int_{x_{1}}^{x_{2}} e^{-\frac{1}{2}\left[\frac{(x-\mu)}{\sigma}\right]^{2}} dx$$

$$= \left(\frac{1}{\sqrt{2\pi}}\right) \int_{z_{1}}^{z_{2}} e^{-\left(\frac{z^{2}}{2}\right)} dz$$

$$= \int_{z_{1}}^{z_{2}} n(z;0,1) dz$$

$$= P(z_{1} < Z < z_{2})$$



 Dengan transformasi tersebut, maka tabel luas kurva normal yang dibutuhkan cukup satu saja, yaitu distribusi normal baku.

 Sebagian tabel distribusi normal baku dapat dilihat pada halaman berikut ini.

Table A.3 Areas Under the Normal Curve

| 12   | .00    | .01      | .02    | .03    | .04    | .05    | .06    | .07    | .08    | .09    |
|------|--------|----------|--------|--------|--------|--------|--------|--------|--------|--------|
| -3.4 | 0.0003 | 0.0003   | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0003 |
| -3.3 | 0.0005 | 0.0005   | 0.0005 | 0.0004 | 0,0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0003 |
| -3.2 | 0.0007 | 0.0007   | 0.0006 | 0.0006 | 0.0006 | 0,0006 | 0.0006 | 0.0005 | 0.0005 | 0.0003 |
| -3.1 | 0.0010 | 0.0009   | 0.0009 | 0.0009 | 0.0008 | 0.0008 | 6.0008 | 0.0008 | 0.0007 | 0.0007 |
| 3.0  | 0.0013 | 0.0013   | 0.0013 | 0.0012 | 0.0012 | 0.0311 | 0.0011 | 0.0011 | 0.0010 | 0.0010 |
| -2.9 | 0.0019 | 0.0018   | 0.0017 | 0.0017 | 0.0016 | 0.0016 | 0.0015 | 0.0015 | 0.0014 | 0.0014 |
| -2.8 | 0.0026 | 0.0025   | 0.0024 | 0.0023 | 0.0023 | 0.0022 | 0.0021 | 0.0021 | 0.0020 | 0.0019 |
| -2.7 | 0.0035 | 0.0034   | 0.0033 | 0.0032 | 0.0031 | 0.0030 | 0.0029 | 0.0028 | 0.0027 | 0.002  |
| -2.6 | 0.0047 | 0.0045   | 0.0044 | 0.0043 | 0.0041 | 0.0040 | 0.0039 | 0.0038 | 0.0037 | 0.0036 |
| -2.5 | 0.0062 | 0.0060   | 0.0059 | 0.0057 | 0.0055 | 0.0054 | 0.0052 | 0.0051 | 0.0049 | 0.0048 |
| -2.4 | 0.0082 | (1.0080) | 0.0078 | 0.0075 | 0.0073 | 0.0071 | 0.0069 | 0.0068 | 0.0066 | 0.006- |
| -23  | 0.0107 | 0.0104   | 0.0102 | 0.0099 | 0.0096 | 0.0094 | 0.0091 | 0.0089 | 0.0087 | 0.008  |
| -2.2 | 0.0139 | 0.0136   | 0.0132 | 0.0129 | 0.0125 | 0.0122 | 0.0119 | 0.0116 | 0.0113 | 0.0110 |
| -2.1 | 0.0179 | 0.0174   | 0.0170 | 0.0166 | 0.0162 | 0.0158 | 0.0154 | 0.0150 | 0.0146 | 0.0143 |
| -2.0 | 0.0228 | 0.0222   | 0.0217 | 0.0212 | 0.0207 | 0.0202 | 0.0197 | 0.0192 | 0.0188 | 0.0183 |
| -1.9 | 0.0287 | 0.0281   | 0.0274 | 0.0268 | 0.0262 | 0.0256 | 0.0250 | 0.0244 | 0.0239 | 0.0233 |
| -1.8 | 0.0359 | 0.0352   | 0.0344 | 0.0336 | 0.0329 | 0.0322 | 0.0314 | 0.0307 | 0.0301 | 0.029  |
| -1.7 | 0.0446 | 0.0436   | 0.0427 | 0.6418 | 0.0409 | 0.0401 | 0.0392 | 0.0384 | 0.0375 | 0.0367 |
| -1.6 | 0.0548 | 0.0537   | 0.0526 | 0.0516 | 0.0505 | 0.0495 | 0.0485 | 0.0475 | 0.0465 | 0.0455 |
| -1.5 | 0.0668 | 0.0655   | 0.0643 | 0.0630 | 0.0618 | 0.0606 | 0.0594 | 0.0582 | 0.0571 | 0.0559 |
| -1.4 | 0.0808 | 0.0793   | 0.0778 | 0.0764 | 0.0749 | 0.0735 | 0.0722 | 0.0708 | 0.0694 | 0.0681 |
| -1.3 | 0.0968 | 0.0951   | 0.0934 | 0.0918 | 0.0901 | 0.0885 | 0.0869 | 0.0853 | 0.0838 | 0.0823 |
| -1.2 | 0.1151 | 0.1131   | 0.1112 | 0.1093 | 0.1075 | 0.1056 | 0.1038 | 0.1020 | 0.1003 |        |
| -1.1 | 0.1357 | 0.1335   | 0.1314 | 0.1292 | 0.1271 | 0.1251 | 0.1200 | 0.1210 | 0.1190 | 0.1170 |
| -1.0 | 0.1587 | 0.1562   | 0.1539 | 0.1515 | 0.1492 | 0.1469 | 0.1446 | 0.1423 | 0.1401 | 0.1379 |
| -0.9 | 0.1841 | 0.1814   | 0.1788 | 0.1762 | 0.1736 | 0.1711 | 0.1685 | 0.1660 | 0.1635 | 0.1611 |
| -0.8 | 0.2119 | 0.2090   | 0,2061 | 0.2033 | 0.2005 | 0.1977 | 0.1949 | 0.1922 | 0.1894 | 0.1867 |
| -0.7 | 0.2420 | 0.2389   | 0.2358 | 0.2327 | 0.2296 | 0.2266 | 0.2236 | 0.2206 | 0.2177 | 0.2148 |
| -0.6 | 0.2743 | 0.2709   | 0.2676 | 0.2643 | 0.2611 | 0.2578 | 0.2546 | 0.2514 | 0.2483 | 0.2451 |
| -0.5 | 0.3085 | 0.3050   | 0.3015 | 0.2981 | 0.2946 | 0.2912 | 0.2877 | 0.2843 | 0.2810 | 0.2776 |
| -0.4 | 0.3446 | 0,3409   | 0.3372 | 0.3336 | 0.3300 | 0.3264 | 0.3228 | 0.3192 | 0.3156 | 0.3121 |
| -0.3 | 0.3821 | 0.3783   | 0.3745 | 0.3707 | 0.3669 | 0.3632 | 0.3594 | 0.3557 | 0.3520 | 0.3483 |
| -0.2 | 0.4207 | 0.4168   | 0.4129 | 0.4090 | 0.4052 | 0.4013 | 0.3974 | 0.3936 | 0.3897 | 0.3859 |
| -0.1 | 0.4602 | 0.4562   | 0.4522 | 0.4483 | 0,4443 | 0.4404 | 0.4364 | 0.4325 | 0.4286 | 0.4247 |
| -0.0 | 0.5000 | 0.4960   | 0.4920 | 0.4880 | 0.4840 | 0.4801 | 0.4761 | 0.4721 | 0.4681 | 0.4641 |



- Contoh 2. Diberikan distribusi normal baku,
   hitunglah daerah di bawah kurva yang dibatasi:
  - (a) sebelah kanan z = 1.84
  - (b) antara z = -1.97 dan z = 0.86

#### Jawaban:

- (a) Luas sebelah kanan = 1 luas sebelah kiri z = 1.84 (lihat gambar di halaman berikut ini). Dari tabel luas sebelah kiri = 0.9671, jadi Luas sebelah kanan = 1 0.9671 = 0.0329
- (b) Luas daerah antar batas tersebut adalah luas di sebelah kiri z = 0.86 dikurangi dengan luas di sebelah kiri z = -1.97. Dari tabel diperoleh 0.8051 0.0244 = 0.7807





• Contoh 3. Diberikan distribusi normal dengan  $\mu$  = 50 dan  $\sigma$  = 10, hitunglah peluang x terletak antara 45 dan 62.

Jawaban: (lihat gambar di halaman berikut ini)

Nilai z yang bersesuaian dengan x tersebut adalah:

$$z_1 = \frac{(45-50)}{10} = -0.5 \text{ dan } z_2 = \frac{(62-50)}{10} = 1.2$$

sehingga

$$P(45 < X < 62) = P(-0.5 < Z < 1.2)$$
$$= P(Z < 1.2) - P(Z < -0.5)$$
$$= 0.8849 - 0.3085 = 0.5764$$



-05 0 1.2

Z

- Contoh 4. Diketahui suatu distribusi normal dengan  $\mu$  = 40 dan  $\sigma$  = 6, carilah x sehingga:
  - (a) luas di sebelah kirinya 45%
  - (b) luas di sebelah kanannya 14%

#### Jawaban:



Diinginkan nilai x sehingga luas kirinya 0.45

Dari tabel normal baku diperoleh

$$P(Z < -0.13) = 0.45,$$

jadi nilai z yang dicari adalah -0.13. Oleh karena itu

$$x = (6)(-0.13) + 40 = 39.22$$

(b) Dengan cara yang sama, diinginkan luas di sebelah kanan nilai yang dicari adalah 0.14, ini berarti luas di sebelah kirinya adalah 1-0.14=0.86. Dari tabel normal baku diperoleh

$$P(Z > 1.08) = 0.86$$

jadi nilai z yang dicari adalah 1.08. Oleh karena itu

$$x = (6)(1.08) + 40 = 46.48$$

**Contoh 5**. Sebuah mesin pembuat resistor dapat memproduksi resistor dengan ukuran rata-rata 40 ohm dengan standard deviasi 2 ohm. Misalkan ukuran tersebut mempunyai distribusi normal, tentukan peluang resistor mempunyai ukuran lebih dari 43 ohm.

Jawaban: Lakukan transformasi terlebih dulu:

$$Z = \frac{(43 - 40)}{2} = 1.5$$

sehingga dapat dihitung:

$$P(X > 43) = P(Z > 1.5) = 1 - P(Z < 1.5)$$
  
= 1 - 0.9332 = 0.0668

• Latihan 1. Suatu jenis batere mobil rata-rata berumur 3,0 tahun dengan simpangan baku 0.5 tahun. Bila dianggap umur bater berdistribusi normal, carilah peluang suatu batere berumur kurang dari 2.3 tahun.

(jawaban sesudah lembar ini)

#### • Jawaban:



Untuk menghitung P(X < 2.3), hitunglah luas di bawah kurva normal sebelah kiri titik 2.3. Ini sama saja menghitung luas daerah sebelah kiri z padanannya: z = (2.3 - 3.0)/0.5 = -1.4 dan dari tabel normal baku diperoleh:

$$P(X < 2.3) = P(Z < -1.4) = 0.0808$$

 Latihan 2. Suatu perusahaan listrik menghasilkan bola lampu yang umurnya berdistribusi normal dengan rataan 800 jam dan simpangan baku 40 jam, Hitunglah peluang suatu bola lampu dapat menyala antara 778 dan 834 jam.

(jawaban sesudah lembar ini)

#### • Jawaban:



$$z_1 = (778 - 800)/40 = -0.55$$
  
 $z_2 = (834 - 800)/40 = 0.85$ 

dan dari tabel normal baku diperoleh:

$$P(778 < X < 834) = P(-0.55 < Z < 0.85) =$$

$$= P(Z < 0.85) - P(Z < -0.55) =$$

$$= 0.8023 - 0.2912 = 0.5111$$

- Latihan 3. dari 200 orang mahasiswa yang mengikuti ujian Kalkulus di sebuah Prodi, diperoleh bahwa nilai rata-rata adalah 60 dan simpangan baku (standard devisasi) adalah 10. Bila distribusi nilai menyebar secara normal, berapa:
  - (a) persen yang mendapat A, jika nilai A  $\geq$  80;
  - (b) persen yang mendapat nilai C, jika nilai C terletak pada interval  $56 \le C \le 68$ ;
  - (c) persen yang mendapat nilai E jika nilai E < 45

(jawaban pada halaman berikut)

 Jawaban: Misalkan X adalah peubah acak yang menyatakan nilai ujian Kalkulus.

$$Z = \frac{X - 60}{10}$$

(a) 
$$z = (80 - 60)/10 = 2$$
  
  $P(X \ge 80) = P(Z \ge 2) = 1 - 0.9772 = 0.0288 = 2.28\%$ 

(b) 
$$z_1 = (56 - 60)/10 = -0.4 \text{ dan } z_2 = (68 - 60)/10 = 0.8$$
  
 $P(56 \le X \le 68) = P(-0.4 \le Z \le 0.8) = P(Z < 0.8) - P(Z < -0.4)$   
 $= 0.4435 = 44.35\%$ 

(c 
$$z = (45 - 60)/10 = -1.5$$
  
  $P(X \le 45) = P(Z \le -1.5) = 0.0688 = 6.68\%$ 

# **Aproksimasi Normal untuk Binomial**

- Dalam bahan kuliah sebelumnya sudah dijelaskan bahwa distribusi Poisson dapat digunakan untuk menghampiri distribusi binomial ketika n membesar dan p sangat dekat ke 0 atau 1. Kedua distribusi tersebut adalah diskrit.
- Distribusi normal juga dapat digunakan untuk menghampiri distribusi binomial bilamana n cukup besar.
- Distribusi normal sering merupakan hampiran yang baik terhadap distribusi diskrit bila yang terakhir ini berbentuk lonceng setangkup.

Jika X adalah peubah acak binomial dengan rataan  $\mu = np$  dan variansi  $\sigma^2 = npq$ , maka bentuk limit dari distribusi:

$$Z = \frac{(X - np)}{\sqrt{npq}}$$

bila  $n \rightarrow \infty$  adalah distribusi normal standard n(z; 0, 1)

Misalkan dari distribusi binomial diketahui n = 15 dan p = 0.4.
 Untuk menghitun P(X = 4), maka dengan tabel binomial mudah dihitung,

$$P(X = 4) = b(4; 15, 0.4) = 0.1268$$

 Sekarang nilai peluang itu akan dihampiri dengan distribusi normal. Hitunglah

$$\mu = np = (15)(0.4) = 6$$
  
 $\sigma^2 = npq = (15)(0.4().6) = 3.6 \rightarrow \sigma = \sqrt{3.6} = 1.897$ 

Dari perhitungan binomial, telah diketahui P(X = 4) = 0.1268. Nilai ini sama dengan luas daerah di bawah kurva normal antara  $x_1 = 3.5$  dan  $x_2 = 4.5$  (dimana x = 4 adalah titik tengah).



Jika diubah ke nilai z, maka

$$z_1 = (3.5 - 6) / 1.897 = -1.32$$
  
 $z_2 = (4.5 - 6) / 1.897 = -0.79$ 

Bila X peubah acak binomial dan Z peubah normal baku,

$$P(X = 4) = b(4; 15, 0.4)$$

$$= P(-1.32 < Z < -0.79)$$

$$= P(Z < -0.79) - P(Z < -1.32)$$

$$= 0.2148 - 0.0934$$

$$= 0.1214$$

Hasil ini cukup dekat dengan nilai sesungguhnya yaitu 0.1268. Hampiran normal akan berguna untuk menghitung jumlah binomial untuk nilai n yang besar.

**Contoh 6**. Dalam soal ujian terdapat 200 pertanyaan *multiple choice*, setiap soal terdiri dar 4 jawaban dan hanya satu jawaban yang benar. Bila seorang siswa hanya menerka saja, berapakah peluang siawa menebak dengan benar sebanyak 25 sampai 30 dari 80 soal?

#### Jawaban:

Peluang jawaban yang benar untuk tiap soal adalah p = 1/4. Jika X adalah peubah acak yang menyatakan banyaknya jawaban yang benar dengan menerka, maka

$$P(25 \le X \le 30) = \sum_{x=25}^{30} b(x;80,\frac{1}{4})$$

Dengan menggunakan hampiran kurva normal dengan

$$\mu = np = (80)(1/4) = 20$$

dan

$$\sigma = \sqrt{npq} = \sqrt{(80)(1/4)(3/4)} = 3.873$$

Diperlukan luas antara  $x_1$  = 24.5 dan  $x_2$  = 30.5. Nilai peubah z yang bersesuaian adalah:

$$z_1 = (24,5 - 20) / 3,873 = 1,16$$

dan

$$z_2 = (30,5 - 20) / 3,873 = 2,71$$

#### Sehingga dapat dihitung:

$$P(25 \le X \le 30) = \sum_{x=25}^{30} b(x;80,1/4)$$

$$\approx P(1.16 < Z < 2.71)$$

$$= P(X < 2.71) - P(X < 1.16)$$

$$= 0.9966 - 0.8770$$

$$= 0.1196$$

• Latihan 4. Peluang seorang penderita sembuh dari suatu penyakit adalah 0.4. Bila ada 100 orang yang terkena penyakit tersebut, berapa peluang bahwa kurang dari 30 orang yang sembuh?

(jawaban sesudah lembar ini)

Jawaban: Misalkan X peubah binomial yang menyatakan banyaknya penderita yang sembuh. Karena n = 100, maka penggunaan hampiran kurva normal seharusnya memberikan hasil yang cukup tepat dengan

$$\mu = np = (100)(0.4) = 40$$

$$\sigma = \sqrt{(npq)} = \sqrt{(100)(0.4)(0.6)} = 4.899$$

Untuk mendapatkan peluang yang diminta, harus dicari luas di sebelah kiri x = 29.5. Nilai z yang berpadanan adalah

$$z = (29.5 - 40)/4.899 = -2.14$$

Jadi, peluang 30 orang sembuh dari 100 penderita adalah

$$P(X < 30) = P(Z < -2.14) = 0.0162$$

- Latihan 5. Di suatu daerah sebanyak 10% dari penduduknya buta huruf. Suatus ampel acak terdiri atas 400 penduduk telah diambil. Tentukan peluang akan mendapat:
  - (a) paling banyak 30 orang buta huruf
  - (b) antara 30 sampai 50 orang buta huruf
  - (c) 55 orang atau lebih buta huruf

# **Distribusi Gamma**

Fungsi gamma adalah fungsi berbentuk:

$$\Gamma(\propto) = \int_0^\infty x^{\alpha - 1} e^{-x} dx \quad \text{untuk } \alpha > 0$$

• Peubah acak kontinu X mempunyai distribusi **gamma**, dengan parameter  $\alpha$  dan $\beta$ , jika fungsi padat peluangnya diberikan oleh:

$$f(x) \begin{cases} \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-x/\beta}, x \ge 0 \\ 0, \text{ untuk } x \text{ yang lain} \end{cases}$$

dengan  $\alpha > 0$  dan  $\beta > 0$ 

Grafik fungsi gamma:



# Distribusi Eksponensial

- Distribusi gamma yang khusus dengan  $\alpha$  = 1 disebut distribusi eksponensial.
- Peubah acak kontinu X mempunyai distribusi **eksponensial** dengan parameter  $\beta$ , jika fungsi padat peluangnya berbentuk:

$$f(x) = \begin{cases} \frac{1}{\beta} e^{-x/\beta}, x \ge 0\\ 0, \text{ untuk } x \text{ yang lain} \end{cases}$$

dengan  $\beta > 0$ 

Rataan dan variansi dari distribusi gamma adalah

$$\mu = \alpha \beta \operatorname{dan} \sigma^2 = \alpha \beta^2$$

Akibatnya, rataan dan variansi distribusi eksponensial adalah:

$$\mu = \beta \operatorname{dan} \sigma^2 = \beta^2$$

#### Aplikasi distribusi eksponensial:

- Dalam teori antrian, jarak antar kedatangan pelanggan di fasilitas pelayanan (seperti bank, loket kereta api, tukang cukur, dsb) memenuhi distribusi eksponensial.
- 2. Lama waktu mulai dipakai sampai rusaknya suatu suku cadang dan alat listrik memenuhi distribusi eksponensial.

### **Hubungan dengan proses Poisson**

- Hubungan antara distribusi eksponensial dan proses Poisson cukup sederhana.
- Misalkan distribusi Poisson dengan parameter  $\lambda$ , dimana  $\lambda$  adalah banyaknya kejadian dalam satu satuan waktu. Misalkan X adalah peubah acak yang menyatakan panjang selang waktu yang diperlukan agar kejadian pertama terjadi. Dengan distribusi Poisson, peluang tidak ada kejadian yang muncul sampai selang waktu t adalah

$$p(0; \lambda t) = \frac{e^{-\lambda t}(\lambda t)^0}{0!} = e^{-\lambda t}$$

 Peluang panjang selang waktu kejadian pertama terjadi sampai melewati X sama dengan peluang tidak ada kejadian.
 Fungsi distribusi kumulatif dari X adalah:

$$P(0 \le X \le x) = 1 - P(X \ge x) = 1 - e^{-\lambda x}$$

Fungsi densitas adalah turunan fungsi diatas:

$$f(x) = \lambda e^{-\lambda x}$$

yang merupakan fungsi padat peluang distribusi eksponesial dengan  $\lambda = 1/\beta$ 

- Hal yang perlu diperhatikan adalah parameter  $\lambda$  dan  $\beta$ . Rataan dari distribusi eksponensial adalah  $\beta$  yang sama dengan  $1/\lambda$ .  $\beta$  adalah rataan antara dua kejadian yang berturutan.
- Teori keandalan ( $\it reliability$ ) yang menyangkut kegagalan peralatan sering memenuhi proses Poisson, di sini  $\beta$  dapat merepresentasikan waktu rata-rata antara kegagalan.
- Banyak kerusakan peralatan memenuhi proses Poisson, dan karena itu distribusi eksponensial dapat diterapkan di situ.

• Contoh 7. (aplikasi Distribusi eksponensial) Suatu sistem mengandung sejenis komponen yang daya tahannya dalam tahun dinyatakan oleh peubah acak T. Peubah acak T berdistribusi eksponensial dengan parameter waktu rataan sampai gagal  $\beta$ = 5. Jika terdapat 5 buah komponen dipasang pada sistem yang berlainan, tentukan peluang sekurang-kurangnya 2 komponen masih berfungsi sampai akhir tahun ke-8.

Jawaban: Peluang komponen masih berfungsi hingga akhir tahun ke 8 adalah

$$P(T > 8) = \frac{1}{5} \int_{8}^{\infty} e^{-t/5} dt = e^{-8/5} \approx 0.2$$

Misalkan X adalah jumlah komponen yang masih berfungsi hingga akhir tahun ke-8, maka dengan distribusi binomial

$$P(X \ge 2) = \sum_{x=2}^{5} b(x; 5, 0.2)$$
$$= 1 - \sum_{x=0}^{1} b(x; 5, 0.2) = 1 - 0.7373 = 0.2627$$

 Contoh 8. (aplikasi distribusi gamma) Suatu panggilan telepon datang pada papan switching mengikuti proses Poisson, dengan rata-rata 5 sambungan datang tiap menit. Tentukan peluang hingga 1 menit berlalu baru 2 sambungan yang datang.

Jawaban: Proses Poisson dapat diterapkan dengan menunggu 2 kejadian Poisson terjadi mempunyai distribusi Gamma dengan  $\beta$  = 1/5 dan  $\alpha$  = 2. Misalkan X adalah selang waktu sebelum 2 panggilan telpon datang. Peluangnya adalah

$$P(X \le x) = \int_0^x \frac{1}{\beta^2} x e^{-x/\beta} dx$$

$$P(X \le 1) = 25 \int_0^1 x e^{-5x} dx$$

$$= \left[1 - e^{-5(1)}(1+5)\right] = 0.96$$

## Distribusi Khi-Kuadrat

- Kasus khusus yang lain dari distribusi gamma adalah dengan mengambil  $\alpha$  = v/2 dan  $\beta$  = 2, untuk v bilangan bulat positif. Hasilnya disebut **distribusi khi-kuadrat** (*chi-squared*). Parameter v disebut derajat kebebasan.
- Peubah acak kontinu X mempunyai distribusi khi-kuadrat dengan derajat kebebasan v, bila fungsi padat peluangnya diberikan oleh:

$$f(x) \begin{cases} \frac{1}{2^{v/2}\Gamma(v/2)} x^{v/2-1} e^{-x/2}, x > 0 \\ 0, \text{ untuk } x \text{ yang lain} \end{cases}$$

• Rataan dan variansi distribusinya adalah  $\mu$  = v dan  $\sigma^2$  = 2v

#### Chi-Square Distribution Table



The shaded area is equal to  $\alpha$  for  $\chi^2 = \chi^2_{\alpha}$ .

| df | $\chi^{2}_{.995}$ | $\chi^{2}_{.990}$ | $\chi^{2}_{.975}$ | X.950 | $\chi^{2}_{.900}$ | $\chi^{2}_{.100}$ | X.050  | X.025  | $\chi^{2}_{.010}$ | X.005  |
|----|-------------------|-------------------|-------------------|-------|-------------------|-------------------|--------|--------|-------------------|--------|
| 1  | 0.000             | 0.000             | 0.001             | 0.004 | 0.016             | 2.706             | 3.841  | 5.024  | 6.635             | 7.879  |
| 2  | 0.010             | 0.020             | 0.051             | 0.103 | 0.211             | 4.605             | 5.991  | 7.378  | 9.210             | 10.597 |
| 3  | 0.072             | 0.115             | 0.216             | 0.352 | 0.584             | 6.251             | 7.815  | 9.348  | 11.345            | 12.838 |
| 4  | 0.207             | 0.297             | 0.484             | 0.711 | 1.064             | 7.779             | 9.488  | 11.143 | 13.277            | 14.860 |
| 5  | 0.412             | 0.554             | 0.831             | 1.145 | 1.610             | 9.236             | 11.070 | 12.833 | 15.086            | 16.750 |
| 6  | 0.676             | 0.872             | 1.237             | 1.635 | 2.204             | 10.645            | 12.592 | 14.449 | 16.812            | 18.548 |
| 7  | 0.989             | 1.239             | 1.690             | 2.167 | 2.833             | 12.017            | 14.067 | 16.013 | 18.475            | 20.278 |
| 8  | 1.344             | 1.646             | 2.180             | 2.733 | 3.490             | 13.362            | 15.507 | 17.535 | 20.090            | 21.955 |
| 9  | 1.735             | 2.088             | 2.700             | 3.325 | 4.168             | 14.684            | 16.919 | 19.023 | 21.666            | 23.589 |
| 10 | 2.156             | 2.558             | 3.247             | 3.940 | 4.865             | 15.987            | 18.307 | 20.483 | 23.209            | 25.188 |
| 11 | 2.603             | 3.053             | 3.816             | 4.575 | 5.578             | 17.275            | 19.675 | 21.920 | 24.725            | 26.757 |
| 12 | 3.074             | 3.571             | 4.404             | 5.226 | 6.304             | 18.549            | 21.026 | 23.337 | 26.217            | 28.300 |
| 13 | 3.565             | 4.107             | 5.009             | 5.892 | 7.042             | 19.812            | 22.362 | 24.736 | 27.688            | 29.819 |
| 14 | 4.075             | 4.660             | 5.629             | 6.571 | 7.790             | 21.064            | 23.685 | 26.119 | 29.141            | 31.319 |
| 15 | 4.601             | 5.229             | 6.262             | 7.261 | 8.547             | 22.307            | 24.996 | 27.488 | 30.578            | 32.801 |

| 16  | 5.142  | 5.812  | 6.908  | 7.962  | 9.312  | 23.542  | 26.296  | 28.845  | 32.000  | 34.267  |
|-----|--------|--------|--------|--------|--------|---------|---------|---------|---------|---------|
| 17  | 5.697  | 6.408  | 7.564  | 8.672  | 10.085 | 24.769  | 27.587  | 30.191  | 33.409  | 35.718  |
| 18  | 6.265  | 7.015  | 8.231  | 9.390  | 10.865 | 25.989  | 28.869  | 31.526  | 34.805  | 37.156  |
| 19  | 6.844  | 7.633  | 8.907  | 10.117 | 11.651 | 27.204  | 30.144  | 32.852  | 36.191  | 38.582  |
| 20  | 7.434  | 8.260  | 9.591  | 10.851 | 12.443 | 28.412  | 31.410  | 34.170  | 37.566  | 39.997  |
| 21  | 8.034  | 8.897  | 10.283 | 11.591 | 13.240 | 29.615  | 32.671  | 35.479  | 38.932  | 41.401  |
| 22  | 8.643  | 9.542  | 10.982 | 12.338 | 14.041 | 30.813  | 33.924  | 36.781  | 40.289  | 42.796  |
| 23  | 9.260  | 10.196 | 11.689 | 13.091 | 14.848 | 32.007  | 35.172  | 38.076  | 41.638  | 44.181  |
| 24  | 9.886  | 10.856 | 12.401 | 13.848 | 15.659 | 33.196  | 36.415  | 39.364  | 42.980  | 45.559  |
| 25  | 10.520 | 11.524 | 13.120 | 14.611 | 16.473 | 34.382  | 37.652  | 40.646  | 44.314  | 46.928  |
| 26  | 11.160 | 12.198 | 13.844 | 15.379 | 17.292 | 35.563  | 38.885  | 41.923  | 45.642  | 48.290  |
| 27  | 11.808 | 12.879 | 14.573 | 16.151 | 18.114 | 36.741  | 40.113  | 43.195  | 46.963  | 49.645  |
| 28  | 12.461 | 13.565 | 15.308 | 16.928 | 18.939 | 37.916  | 41.337  | 44.461  | 48.278  | 50.993  |
| 29  | 13.121 | 14.256 | 16.047 | 17.708 | 19.768 | 39.087  | 42.557  | 45.722  | 49.588  | 52.336  |
| 30  | 13.787 | 14.953 | 16.791 | 18.493 | 20.599 | 40.256  | 43.773  | 46.979  | 50.892  | 53.672  |
| 40  | 20.707 | 22.164 | 24.433 | 26.509 | 29.051 | 51.805  | 55.758  | 59.342  | 63.691  | 66.766  |
| 50  | 27.991 | 29.707 | 32.357 | 34.764 | 37.689 | 63.167  | 67.505  | 71.420  | 76.154  | 79.490  |
| 60  | 35.534 | 37.485 | 40.482 | 43.188 | 46.459 | 74.397  | 79.082  | 83.298  | 88.379  | 91.952  |
| 70  | 43.275 | 45.442 | 48.758 | 51.739 | 55.329 | 85.527  | 90.531  | 95.023  | 100.425 | 104.215 |
| 80  | 51.172 | 53.540 | 57.153 | 60.391 | 64.278 | 96.578  | 101.879 | 106.629 | 112.329 | 116.321 |
| 90  | 59.196 | 61.754 | 65.647 | 69.126 | 73.291 | 107.565 | 113.145 | 118.136 | 124.116 | 128.299 |
| 100 | 67.328 | 70.065 | 74.222 | 77.929 | 82.358 | 118.498 | 124.342 | 129.561 | 135.807 | 140.169 |

## Distribusi Weibull

• Peubah acak kontinu X mempunyai distribusi **Weibull**, dengan parameter  $\alpha$  dan  $\beta$ , bila fungsi padatnya berbentuk:

$$f(x) = \begin{cases} \alpha \beta x^{\beta - 1} e^{-\alpha x^{\beta}}, x > 0 \\ 0, \text{ untuk } x \text{ yang lain} \end{cases}$$

dengan  $\alpha > 0$  dan  $\beta > 0$ .

Rataan dan variansi dari distribusi Weibull adalah

$$\mu = \alpha^{1/\beta} \Gamma \left( 1 + \frac{1}{\beta} \right) \, \mathrm{dan}$$
 
$$\sigma^2 = \alpha^{-2/\beta} \left\{ \Gamma \left( 1 + \frac{2}{\beta} \right) - \left[ \Gamma \left( 1 + \frac{1}{\beta} \right) \right]^2 \right\}$$

# **Distribusi Lognormal**

• Peubah acak kontinu X mempunyai distribusi **lognormal**, jika peubah acak Y = In(X) mempunyai distribusi normal dengan rataan  $\mu$  dan simpangan baku  $\sigma$  dan fungsi padat peluangnya diberikan sebagai berikut:

$$f(x) \begin{cases} \frac{1}{\sqrt{2\pi}\sigma x} e^{-[\ln(x)-\mu]^2/(2\sigma^2)}, x \ge 0\\ 0, \text{ jika } x < 0 \end{cases}$$

Rataan dan variansi dari distribusi lognormal adalah

$$E(x) = e^{\mu + \frac{\sigma^2}{2}} \operatorname{dan} Var(X) = e^{2\mu + \sigma^2} \cdot (e^{\sigma^2} - 1)$$