Polars Descriptive Statistics Script

Data Loading

```
In []: import polars as pl
    marketing_data = pl.read_csv("mydata/ifood_df.csv")
```

Data Manipulation

```
In [ ]: marketing data = marketing data.with columns(
            TotalSpending =
            pl.col("MntWines")
            + pl.col("MntFruits")
            + pl.col("MntMeatProducts")
            + pl.col("MntFishProducts")
            + pl.col("MntSweetProducts")
        marketing data = marketing data.with columns(
            AcceptedOffer =
            pl.col("AcceptedCmp1")
            + pl.col("AcceptedCmp2")
            + pl.col("AcceptedCmp3")
            + pl.col("AcceptedCmp4")
            + pl.col("AcceptedCmp5")
        marketing_data = marketing_data.select([
             "Income",
             "TotalSpending",
             "AcceptedOffer",
             "MntWines",
             "MntFruits",
             "MntMeatProducts",
             "MntFishProducts",
             "MntSweetProducts",
        ])
```

Data Summary

```
In [ ]: marketing_data.describe()
```

Out[]: shape: (9, 9)

describe	Income	TotalSpending	AcceptedOffer	MntWines	MntFruits	MntMeatProducts	MntFishProducts	MntSweetProc
str	f64	f64	f64	f64	f64	f64	f64	
"count"	2205.0	2205.0	2205.0	2205.0	2205.0	2205.0	2205.0	2:
"null_count"	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
"mean"	51622.094785	562.764626	0.29932	306.164626	26.403175	165.312018	37.756463	27.12
"std"	20713.063826	575.936911	0.68044	337.493839	39.784484	217.784507	54.824635	41.13
"min"	1730.0	4.0	0.0	0.0	0.0	0.0	0.0	
"25%"	35196.0	56.0	0.0	24.0	2.0	16.0	3.0	
"50%"	51287.0	343.0	0.0	178.0	8.0	68.0	12.0	
"75%"	68281.0	964.0	0.0	507.0	33.0	232.0	50.0	
"max"	113734.0	2491.0	4.0	1493.0	199.0	1725.0	259.0	4

Data Visualization

```
In []: import seaborn as sns
sns.scatterplot(data=marketing_data, x="Income", y="TotalSpending", hue="AcceptedOffer")
```

Out[]: <Axes: xlabel='Income', ylabel='TotalSpending'>


```
In [ ]: sns.scatterplot(data=marketing_data, x="Income", y="TotalSpending", hue="AcceptedOffer")

Out[ ]: <Axes: xlabel='Income', ylabel='TotalSpending'>
```



```
In [ ]: sns.scatterplot(data=marketing_data, x="Income", y="MntMeatProducts", hue="AcceptedOffer")
Out[ ]: <Axes: xlabel='Income', ylabel='MntMeatProducts'>
```

