Конспект к предмету «Линейная алгебра»

Хоружий Кирилл Примак Евгений 10.06.2020

Содержание

1	Век	торные пространства	•								
	1.1	Начальные понятия	:								
	1.2	Размерность и базис	9								
2	Дво	Двойственное пространство									
	2.1	Линейные функции	4								
	2.2	Двойственное пространство	4								
	2.3	Канонический изоморфизм	4								
	2.4	Критерий линейной независимости	4								
3	Бил	инейные и квадратичные форма	5								
	3.1	Билинейная форма									
	3.2	Симметричные и кососимметричные формы	6								
	3.3	Ортогональные и невырожденные	6								
	3.4	Квадратичные формы	6								
	3.5	Кососимметричные и полуторалинейные формы	8								
4	Лиі	нейные отображения	ç								
	4.1	Линейные отображения векторных пространств	Ć								
	4.2		10								
	4.3		11								
5	Структура линейного преобразования										
	5.1		11								
	5.2		11								
	5.3		12								
			12								
			13								
			13								
			13								
			14								
			14								
			14								
	5.4		15								
	0.1		15								
			15								
6	Пре	остранства со скалярным произведением	16								
U	6.1		16								
	0.1	6.1.1 Процесс ортогонализации									
		6.1.2 Х Изоморфизмы									
		• •	17 17								
		6.1.4 УСимплектические пространства	17								

7	Тен	зоры	
	7.1	Начал	а тензорного исчисления
		7.1.1	Понятие о тензорах
		7.1.2	Произведение тензоров
		7.1.3	Координаты тензора
		7.1.4	Переход к другому базису
		7.1.5	Тензорное произведение пространств
7.2	7.2	Свёрт	ка, симметризация и альтернирование тензоров
		7.2.1	Свёртка
		7.2.2	Симметричные тензоры
		7.2.3	Кососимметричные тензоры
	7.3	Внеш	няя алгебра

1 Векторные пространства

1.1 Начальные понятия

- **Def 1.1.** Пусть \mathbb{F} произвольное поле. **Векторным пространством** над \mathbb{F} называется множество V элементов (векторов), удовлетворяющее следующим аксиомам:
 - а) На V бинарная операция $V \times V \to V$:
- б) На $\mathbb{F} \times V$ операция $(\lambda, \mathbf{x} \to \lambda \mathbf{x})$:
- I. x + y = y + x (коммутативность);
- V. $1 \cdot \boldsymbol{x} = \boldsymbol{x}$ (унитарность);
- II. (x+y)+z=x+(y+z) (ассоциативность);
- VI. $(\alpha\beta)\boldsymbol{x} = \alpha(\beta\boldsymbol{x})$ (ассоциативность);
- III. x + 0 = x, $\forall x \in V$ (нулевой вектор);
- VII. $(\alpha + \beta)\mathbf{x} = \alpha\mathbf{x} + \beta\mathbf{x}$;
- IV. $\boldsymbol{x} + (-\boldsymbol{x}) = \boldsymbol{0}, \, \forall \boldsymbol{x} \in V \text{ (обратный вектор)};$
- VIII. $\lambda(x + y) = \lambda x + \lambda y$.
- **Def 1.2.** Пусть V векторное пространство над \mathbb{F} , $U \subset V$ его подмножество, аддитивна подгруппа и переходящая в себя при умножении на скаляры. Тогда ограничение на U операций в V делает U векторным пространством. U векторное подпространство V.
- **Def 1.3.** Векторы v_1, \ldots, v_n подпространства V **линейно зависимы**, если \exists их нетривиальная **ЛК** равная нулю. В противном случае линейно независимы.
- **Thr 1.1.** Если линейная система векторов линейно независима, то и всякая её подсистема также линейно независима.
- The 1.2. Ecau $g V \forall e_i \in (e_1, \dots, e_s)$ JK векторов из (f_1, \dots, f_t) , то $s \leq t$.
- Con 1.1. $\forall dee$ эквивалентные ЛHe3 системы векторов в V содержат одинаковое число векторов.

1.2 Размерность и базис

- **Def 1.4. Ранг** системы векторов число векторов в любой тах ЛНеЗ подсистеме.
- **Def 1.5.** V, содержащее n ЛНеЗ векторов, в котором не ЛНеЗ систем большего ранга, называется **n-мерным**. $\dim_{\mathbb{F}} V = n$.
- **Def 1.6.** $\dim_{\mathbb{F}} V = n$. Любая система и n независимых векторов называется **базисом** пространства V.
- Thr 1.3. $\dim_{\mathbb{F}} V = n$ c (e_1, \ldots, e_n) . Тогда: 1) $\forall v \in V \exists !$ ЛК из векторов базиса; 2) любую систем из s < n ЛНе3 векторов можно дополнить до базиса.
- **Def 1.7.** $\dim_{\mathbb{F}} V = n \ \mathrm{c} \ (e_1, \ldots, e_n)$. $\lambda_i \in \mathbb{F}$ называются **координатами вектор**а: $v = \lambda_1 e_1 + \ldots + \lambda e_n$.
- **Thr 1.4.** При переходе $(e_1, \ldots, e_n) \leadsto (e'_1, \ldots, e'_1)$, определяемом $A \in \mathcal{M}_{nn}$, координаты $v: \lambda_j^{nosue}$ выражаются через λ_i^{cmapue} при помощи обратимого линейного преобразования c A^{-1} .
- **Def 1.8.** V и W над \mathbb{F} изоморфны, если \exists биективное $f\colon V\to W: f(\alpha u+\beta v)=\alpha f(u)+\beta f(v).$
- **Thr 1.5.** Bce V одинаковой $\dim = n$ над \mathbb{F} изоморфны (координатному пространству \mathbb{F}^n).
- The 1.6. U, W конечномерные подпространства V. $Torda: \dim(U+W) = \dim U + \dim W \dim(U\cap W)$.
- **Def 1.9.** Если $\forall u \in U$ может быть однозначно представлен в виде $u = u_1 + \ldots + u_m$. То сумма называется **прямой**: $U = U_1 \oplus \ldots \oplus U_m$.
- The 1.7. $U=U_1\oplus\ldots\oplus U_m$ $npsmas\iff U_i\cap(U_1+\ldots+U_m)=0,\ \partial ss\ i=1,\ldots,m.$
- The 1.8. $U = U_1 \oplus \ldots \oplus U_m$ $npsmas \iff \dim U = \sum_{i=1}^m \dim U_i$.
- The 1.9. $\forall m$ -мерного $U \subset V$ $(\dim V = n) \exists W (\dim W = n m) : V = U \oplus W$.

2 Двойственное пространство

2.1 Линейные функции

 \mathbf{Def} 2.1. $f: V \to \varkappa: f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$ – линейная функция (форма/функционал) на V.

Выберем в $V(e_1, \ldots, e_n)$, тогда для $\mathbf{x} = \lambda_1 e_1 + \ldots + \lambda_n e_n$: $f(\mathbf{x}) = \lambda_1 \beta_1 + \ldots + \lambda_n \beta_n$, где $f(e_i) = \beta_i$. Базисные векторы и коэффициенты линейной формы при замене базиса меняются по одним и тем же формулам (согласовано aka когредиентно).

2.2 Двойственное пространство

Def 2.2. Относительно введенных + и \times (на скаляры) линейные функции составляют векторное пространство $V^* = \mathcal{L}(V, F)$, двойственное (сопряженное или дуальное) к V.

При одновременном рассмотрении пространства и дуального к нему, векторы из V^* называют ковариантными векторами, а элементы из V – контрвариантными векторами.

Thr 2.1. $\dim_{\mathbb{F}} V = n$, тогда $\dim V^* = n$. Для базисов в этих пространствах:

$$(oldsymbol{e}_1,\ldots,oldsymbol{e}_n)$$
 – базис $V,\,(oldsymbol{e}^1,\ldots,oldsymbol{e}^n)$ – линейные функции: $e^i(oldsymbol{e}_j)=\delta_{ij}=egin{cases} 1 & npu \ i=j, \ 0 & npu \ i
eq j, \end{cases}$

 \triangle . 1)В заданном базисе пространства V есть однозначное соответствие $\Phi \colon f \mapsto (\beta_1, \dots, \beta_n)$ – изоморфизм векторных пространств V^* и \mathbb{F}^n , dim $V^* = \dim \mathbb{F}^n = n$.

2)Задав $\beta_j=0$ для $j\neq i$, и $\beta_i=1$, и положив $e^i(e_j)=\delta_{ij}$, определим линейную функцию $e^i\in V^*:$ $e^i\left(\sum \lambda_j e_j\right)=\sum \lambda_j e^i(e_j)=\sum \lambda_j \beta_j=\lambda_i.$

 \mathbf{Def} 2.3. Базис (e^1,\ldots,e^n) пространства V^* – двойственный для данного (e_1,\ldots,e_n) в V.

Условимся писать $f(x) \rightsquigarrow (f, x)$, тем самым определяется отображение $V^* \times V \to \mathbb{F}$ линейное по каждому аргументу.

Отображения $V \times W \to \mathbb{F}$ с таким свойством принято называть **билинейным**, а также спариванием между пространствами V и W. Спаривание между V^* и V – **каноническое**.

2.3 Канонический изоморфизм

Thr 2.2. \exists канонический изоморфизм:

$$\varepsilon \colon V \to V^{**} \colon \varepsilon(\boldsymbol{x}) = \varepsilon_{\boldsymbol{x}}, \ \varepsilon_{\boldsymbol{x}}(f) = f(\boldsymbol{x}), \ \partial AB \ \boldsymbol{x} \in V, \ f \in V^*, \ \varepsilon_{\boldsymbol{x}} \in V^{**}$$

- \triangle . 1) Линейность: непосредственно $\varepsilon_{\alpha \boldsymbol{x} + \beta \boldsymbol{y}}(f) = f(\alpha \boldsymbol{x} + \beta \boldsymbol{y})$, то есть $\varepsilon(\alpha \boldsymbol{x} + \beta \boldsymbol{y}) = \alpha \varepsilon(\boldsymbol{x}) + \beta \varepsilon(\boldsymbol{y})$.
 - 2) Биективность: выберем $V = \langle e_1, \dots, e_n \rangle$ и $V^* = \langle e^1, \dots, e^n \rangle$. Тогда $\varepsilon_{\boldsymbol{e}_i}(e^i) = e^i(\boldsymbol{e}_j) = \delta_{ij}$.
- 3) Апеллируя к (2.1): $V^{**} = \langle \varepsilon_{\boldsymbol{e}_1}, \dots, \varepsilon_{\boldsymbol{e}_n} \rangle$, то есть двойственный к (e^i) . Сюръективность и инъективность ε очевидны. Каноничность заключена в определении.

Def 2.4. Наличие естественного изоморфизма V и V^{**} наделяет их свойством – **рефлексивность**.

Отождествив пространства V и V^{**} , можно считать V пространством линейных функций на V^* . Тогда формулы спаривания: x(f) = (f, x) = f(x). В частности, $\forall V^* : \exists !$ двойственный ему базис в V.

2.4 Критерий линейной независимости

Lem 2.1. $(i - номер \ cmpoкu, j - номер \ cmoлбиа)$

$$egin{aligned} m{a}_1,\dots,m{a}_m & -$$
 линейно зависимые векторы из $V \\ f_1,\dots,f_m & -$ произвольные линейные функции на $V \end{aligned} \Rightarrow \det\left(f_i(m{a}_j)\right) = 0,\ 1\leqslant i,j\leqslant m.$

- \triangle . 1) В силу ЛЗ выберем из всех $a_m = \alpha_1 a_1 + \ldots + \alpha_{m-1} a_{m-1}$.
 - 2) В $\det(f_i(a_i))$ вычтем из последнего столбца первый $\cdot \alpha_1$, потом второй и т.д.
 - 3)Сам определитель не изменится, а на i-том месте последнего столбца будет стоять нуль по (1). \square

Lem 2.2. Если $\langle f_1,\ldots,f_n\rangle=V^*$, то $a_1,\ldots,a_n\in V$ – независими $\Longleftrightarrow\det(f_i(a_j))\neq 0,\ 1\leqslant i,j\leqslant n.$

- \triangle . 1) по предыдущей лемме \Rightarrow .
- 2) (a_i) ЛНе3, $V = \langle a_1, \dots, a_n \rangle$. Обозначим (e_i) базис в V, с двойственным из (f_i) , а через α_{ij} координаты a_i в этом базисе. Тогда получим матрицу перехода из таких α .
 - 3) Матрица перехода по (1.4) обратима, а значит и $\det(\alpha_{ij}) \neq 0$, но $\alpha_{ij} = f_i(\boldsymbol{a}_j)$, что и значит. \square

Thr 2.3. $(f_1, ..., f_n)$ – базис V^* . Тогда ранг системы $\mathbf{a}_1, ..., \mathbf{a}_k \in V$ равен наибольшему порядку отличного от нуля определителя вида $\det(f_i(\mathbf{a}_j)), 1 \leqslant i = i_1, ..., i_m \leqslant n; 1 \leqslant j = j_1, ..., j_m \leqslant k$.

- \triangle . 1) r ранг a_1, \ldots, a_k . Любые m > r векторов ЛЗ, по лемме выше $\det = 0$ порядка (m > r).
 - 2) Остаётся док-ть, что $\exists \det \neq 0$ порядка r, для этого обозначим $\overline{f_i} := f_1\big|_U (U = \langle \boldsymbol{a}_1, \dots, \boldsymbol{a}_n \rangle).$
 - 3) Докажем, что $\langle \overline{f_1}, \dots, \overline{f_n} \rangle = U^*$:
 - а) $\langle \overline{f_1}, \dots, \overline{f_n} \rangle \subseteq U^*$ очевидно;
 - б) $\tilde{f} \in U^*$, (e_1, \dots, e_r) базис в U, а $(e_1, \dots, e_r, e_r, \dots, e_n)$ его дополнение до V. Возьмём $f \in V^*$, которая $f(e_i) = \tilde{f}(e_i)$, $i = 1, \dots, r$, $f(e_i) = 0$, $i = r + 1, \dots, n$. Очевидно, что $\overline{f} = f|_U = \tilde{f}$, поскольку f и \tilde{f} принимают одинаковые значения на базисных векторах $U : \Rightarrow \tilde{f} \in \langle \overline{f}_1, \dots, \overline{f}_n \rangle$, то есть $U^* \subseteq \langle \overline{f}_1, \dots, \overline{f}_n \rangle$
- 4) Выберем r ЛНеЗ векторов среди a_1, \ldots, a_k и $\overline{f}_1, \ldots, \overline{f}_n$. Они составляют базисы в U, U^* , и по лемме выше: $\det\left(\overline{f}_i(a_j)\right) \neq 0, i = i_1, \ldots, i_r; j = j_1, \ldots, j_r$, и $\overline{f}_i(a_j) = f_i(a_j)$.

3 Билинейные и квадратичные форма

3.1 Билинейная форма

Def 3.1. Билинейная форма на линейном пространстве $V - b \colon V \times V \to \mathbb{F}$, линейное по \forall аргументу.

 $\mathbf{Def~3.2.}~b \in \mathcal{B}(V)^1,$ а $(\boldsymbol{e}_1,\ldots,\boldsymbol{e}_n)$ – базис в V. Матрица билинейной формы: $B=(b(\boldsymbol{e}_i,\boldsymbol{e}_j)),~b \overset{\longleftarrow}{\longleftarrow} B$ Для $\boldsymbol{v},\boldsymbol{u} \in V$: $\boldsymbol{u} \overset{\longleftarrow}{\longleftarrow} x$ и $\boldsymbol{v} \overset{\longleftarrow}{\longleftarrow} y - b(\boldsymbol{u},\boldsymbol{v}) = x^T B y.~(B=(b_{ij})).$

Thr 3.1. Пусть e – базис e V (dim V=n), тогда соответствие $\mathcal{B}(V) \to M_{n \times n}(\mathbb{F})$ осуществляет изоморфизм линейных пространств. Следствие: dim $\mathcal{B}(V)=n^2$.

 \triangle . Инъективность: $b_1(\boldsymbol{u},\boldsymbol{v}) = x^T B y = b_2(\boldsymbol{u},\boldsymbol{v}) \Rightarrow b_1 = b_2;$ Сюръективность: определяем $b(\boldsymbol{u},\boldsymbol{v}) = x^T B y$, тогда $b(\boldsymbol{e}_i,\boldsymbol{e}_j) = b_{ij}$, значит $b \longleftrightarrow B$.

Thr 3.2. $b \in \mathcal{B}(V)$, $e \ u \ e' - \textit{basucsu } e \ V, \ e' = eS, \ b \longleftrightarrow_{e} B \ u \ b \longleftrightarrow_{e'} B'$. Torda $B' = S^T B S$.

Def 3.3. Матрицы B и $B' = S^T F S$ с det $A \neq 0$ — конгруэнтны. Ранг B в каком-то базисе соответствующей b называется рангом билинейной формы. $\operatorname{rg} b$ инвариантен относительно изменения базиса.

 $^{{}^{1}\}mathcal{B}(V)$ — линейное пространство над \mathbb{F} .

3.2 Симметричные и кососимметричные формы

Симметричная билинейная форма.	Кососимметричная билинейная форма.	
$\forall \boldsymbol{u}, \boldsymbol{v} \in V: \ b(\boldsymbol{u}, \boldsymbol{v}) = b(\boldsymbol{v}, \boldsymbol{u})$	$\forall u, v \in V : b(u, v) = -b(v, u) \Leftarrow b(u, u) = 0$	
$\mathcal{B}^-(V)-$ симметричные формы на V	$\mathcal{B}^-(V)$ — кососимметричные формы на V	
$b \underset{e}{\longleftrightarrow} B, b \in \mathcal{B}^+(V) \Leftrightarrow B^T = B$	$b \underset{e}{\longleftrightarrow} B, b \in \mathcal{B}^{-}(V) \Leftrightarrow B^{T} = -B$	
$b^{+}(m{u}, m{v}) = rac{1}{2} \left[b(m{u}, m{v}) + b(m{v}, m{u}) ight]$	$b^{-}(m{u},m{v}) = rac{1}{2} \left[b(m{u},m{v}) - b(m{v},m{u}) ight]$	
	$orall oldsymbol{u}, oldsymbol{v} \in V: \ b(oldsymbol{u}, oldsymbol{v}) = b(oldsymbol{v}, oldsymbol{u})$ $\mathcal{B}^-(V) - \mathbf{c}$ имметричные формы на V $b \longleftrightarrow_e B, \ b \in \mathcal{B}^+(V) \Leftrightarrow B^T = B$	

Thr 3.3. $\Pi ycmb\ char(\mathbb{F}) \neq 2, \ \mathcal{B} = \mathcal{B}^+ \oplus \mathcal{B}^-.$

Def 3.5. Пусть $b \in \mathcal{B}^{\pm}(V)$. Тогда ядром формы b называется: Ker $b := \{v \in V : \forall u \in V \ b(u,v) = 0\} = 0$ $\{\boldsymbol{u} \in V : \forall \boldsymbol{v} \in V \ b(\boldsymbol{u}, \boldsymbol{v}) = 0\}$ (соответственно левое и правое ядра).

Thr 3.4. dim Ker $b = \dim V - \operatorname{rg} b$.

- \triangle . 1) Рассмотрим базис $e=({\boldsymbol e},\dots,{\boldsymbol e}_n),$ и $b\longleftrightarrow B.$ Пусть ${\boldsymbol v}\in V,$ ${\boldsymbol v}\longleftrightarrow x,$ ${\boldsymbol v}\in {\rm Ker}\, b\Leftrightarrow \forall {\boldsymbol u}\ b({\boldsymbol u},{\boldsymbol v})=0;$
- 2) Или равносильно: $\forall i \ b(\boldsymbol{e}_i, \boldsymbol{v}) = 0 \Leftrightarrow EBX = 0 \Leftrightarrow BX = 0$. Пространство решений это ОСЛУ имеет требуемое равенство: $\dim \operatorname{Ker} b = \dim V - \operatorname{rg} B$.

3.3 Ортогональные и невырожденные

- **Def 3.6.** Пусть $b \in \mathcal{B}^{\pm}(V)$, $u, v \in V$. u и v ортогональны относительно b, если b(u, v) = 0. Для $U \subseteq V$, ортогональное дополнение $U - U^{\perp} \{ v \in V : \forall u \in U \ b(u, v) = 0 \}$.
- **Def 3.7.** Пусть $b \in \mathcal{B}^{\pm}(V)$, форма b **невырожденная**, если $\operatorname{rg} b = \dim V$.
- Thr 3.5. $\dim U^{\perp} \geqslant \dim V \dim U$. А если форма b невырождена, то $\dim U^{\perp} = \dim V \dim U$
- \triangle . 1) Выберем в V базис $(\boldsymbol{e}_1,\dots,\boldsymbol{e}_n)$ так, чтобы первые k векторов были базисом U. 2) Тогда, если $\boldsymbol{v} \longleftrightarrow x$: $\boldsymbol{v} \in U^\perp \Leftrightarrow \forall i=1,\dots,k: \ b(\boldsymbol{e}_i,\boldsymbol{v})=0 \Leftrightarrow (E_k|0)\,Bx=0.$
 - 3) ОСЛУ (2) состоит из k строк матрицы B, значит её ранг $\leqslant k \Longrightarrow \dim U^{\perp} = n k$.
 - 4)Если b невырождена, то строчки B ЛНе3 \Longrightarrow ОСлу имеет ранг $k \Longrightarrow \dim U^{\perp} = n k$.

Def 3.8. $b \in \mathcal{B}^{\pm}(V), U \subseteq V. U$ — **невырожденное** относительно b, если $b|_{U} \in \mathcal{B}^{\pm}(U)$ — невырождена.

The 3.6. Пусть $b \in \mathcal{B}^{\pm}(V)$, $U \subseteq V$. Тогда U – невырожедено $<==>V=U\oplus U^{\perp}$.

- \triangle . 1) Базис как в теореме (3.5). Матрица $b|_{U}$ это подматрица B стоящая в верхнем левом углу.
 - 2) так как U невырождено: rg $B_U=k\Rightarrow$ первые k строк B_U ЛНеЗ, значит dim $U^\perp=n-k$.
- 3) Кроме того, $\operatorname{Ker} b\big|_U = 0$ так как $\dim \operatorname{Ker} b\big|_U = k k = 0$. То есть $\forall \boldsymbol{v} \in U, \, \boldsymbol{v} \neq 0 => \exists \boldsymbol{u} \in U:$ $b({m u},{m v})=0$, что означает, что $U\cap U^\perp={m 0}$. Итак, $U+U^\perp=U\oplus U^\perp$ и $\dim(U+U^\perp)=k+(n-k)=n$. \square

3.4 Квадратичные формы

Def 3.9. $h: V \to \mathbb{F}$ — квадратичная форма, $h(v) = b(v, v) \forall v \in V$, для некоторой $b \in \mathcal{B}(V)$.

The 3.7. Ecan char(\mathbb{F}) $\neq 2$. Torda $\forall h \in \mathcal{Q}(V) \exists ! b \in \mathcal{B}^+(V) : h(v) = b(v, v) \ (\mathcal{Q} \cong \mathcal{B}^+(V))$.

- \triangle . (\exists) . Пусть $b \in \mathcal{B}(V)$: $b = b^+ + b^- \rightsquigarrow h(v) = b(v, v) = b^+(v, v) + b^-(v, v)$. h задаётся b^+ .
 - ①. Пусть $h(\mathbf{v}) = b(\mathbf{v}, \mathbf{v}), b \in \mathcal{B}^+(V)$. Восстановим b по h. Для $\mathbf{u}, \mathbf{v} \in V$:
- $h(\boldsymbol{u}+\boldsymbol{v}) = b(\boldsymbol{u}+\boldsymbol{v},\boldsymbol{u}+\boldsymbol{v}) = b(\boldsymbol{u},\boldsymbol{u}) + b(\boldsymbol{v},\boldsymbol{v}) + 2b(\boldsymbol{u},\boldsymbol{v}) \leadsto b(\boldsymbol{u},\boldsymbol{v}) = \left[h(\boldsymbol{u}+\boldsymbol{v}) h(\boldsymbol{u}) h(\boldsymbol{v})\right]/2$ Полученная симметричная форма — **билинейная форма полярная к** h.

Пусть $b \longleftrightarrow_e B$, $u \longleftrightarrow_e x$, $v \longleftrightarrow_e y$. Имеем $b(u,v) = x^T B y = \sum_{i=1}^n \sum_{j=1}^n b_{ij} x_i, y_j$. Тогда квадратичная форма $h(\boldsymbol{v}) = y^T B y = \sum_{i=1}^n \sum_{j=1}^n b_{ij} y_i y_j$. Если b – симметричная, то $b_{ij} = b_{ji}$, а $h(\boldsymbol{v}) = \sum_{i=1}^n b_{ii} y_i^2 + 2 \sum_{i < i}^n b_{ij} y_i y_j$. Отныне характеристика нашего поля ни в коем виде не двойка.

- **Def 3.10.** $h \in \mathcal{Q}(V)$ с полярной $b \in \mathcal{B}(V)$, e базис. Тогда матрица h это матрица b в базисе e. Матрица $h \in \mathcal{Q}(V)$ всегда симметрична. Если $h \longleftrightarrow B$, $\mathbf{v} \longleftrightarrow x$, то $h(\mathbf{v}) = b(\mathbf{v}, \mathbf{v}) = x^T B x$.
- **Thr 3.8.** Пусть $h \in \mathcal{Q}(V)$. Тогда $\exists e$ базис в V: h в этом базисе имеет диагональную матрицу.
- \triangle . 1) Индукция по $n=\dim V$. Для n=1 доказывать нечего. Для h=0 тоже.
 - $(2) \ n > 1$: $\exists e_1: \ h(e_1) \neq 0$. Тогда $\langle e_1 \rangle$ невырождена относительно полярной к h-b.

 - 3) То есть $V = \langle \boldsymbol{e}_1 \rangle \oplus \langle \boldsymbol{e}_1 \rangle^{\perp}$. По индукции, в $U = \langle \boldsymbol{e}_1 \rangle^{\perp}$ есть базис $(\boldsymbol{e}_2, \dots, \boldsymbol{e}_n)$, где $h\big|_U$ диагональна. 4) Матрица(3) B', тогда $h \longleftrightarrow B$ в $(\boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_n)$ состоит из B' и $h(\boldsymbol{e}_1)$ в верхнем левом углу. \square
- Con 3.1. Пусть $\mathbb{F} = \mathbb{R} \Rightarrow \forall h \in \mathcal{Q}(V), \ \exists e \in V: \ h \longleftrightarrow B \in e \ -$ диагональна $c \ 0, \ \pm 1$ на диагонали.
- $\mathbf{Def 3.11.}\ \mathrm{Hag}\ \mathbb{R}\ h\in\mathcal{Q}(V).$ Базис, в котором $h\overset{\longleftarrow}{\underset{e}{\longleftrightarrow}} B$ диагональна с $0,\pm 1$ нормальный базис. Матрица B — **нормальная форма** для h.
- **Def 3.12.** Пусть $h \in \mathcal{Q}(V)$ над \mathbb{R} (далее всегда $\mathbb{F} = \mathbb{R}$). Тогда h называется: положительно полуопределенной, если $\forall v \in V \ h(v) \ge 0 \Leftrightarrow$ на диагонали B только 0, +1. положительно определенной, если $\forall o \neq v \in V \ h(v) > 0 \Leftrightarrow$ на диагонали B только +1. отрицательно определенной или полуопределенной.

 ${\bf B}$ этих случаях полярная к h билинейная форма приобретает те же названия.

- **Def 3.13.** Пусть $h \in \mathcal{Q}(V)$. Её **положительный индекс инерции** $\sigma_+(h)$ наибольшая размерность подпространства $U\subseteq V,$ на которой $h\big|_U$ – положительно определена. (Отрицательный индекс инерции
- **Thr 3.9.** $\mathcal{Q}(V) \ni h \longleftrightarrow B e\ddot{e}$ нормальный вид в e. Тогда на диагонали B стоит ровно $\sigma_+(h)$ единиц $u \sigma_{-}(h)$ минус единиц.
- \triangle . 1) Пусть $B=egin{pmatrix} E_k & O \\ O & -E_m \end{pmatrix}$. Тогда, если $U=\langle {m e}_1,\dots,{m e}_k \rangle$, то матрица $hig|_U$ единичная, то есть
- $hig|_U$ положительно определена. Для $W=\langle m{e}_{k+1},\dots,m{e}_n
 angle$ получаем $hig|_U$ отрицательно полуопределена. 2) Пусть $U' \subseteq V: h|_{U'}$ – положительно определена $\Rightarrow \forall (\mathbf{0} \neq) \mathbf{v} \in U' \cap W: 0 < h(\mathbf{v}) \leqslant 0$ – невозможно. **Итак**, $U' \cap W = 0 \Rightarrow \dim U' \leqslant \dim V - \dim W = k$, в итоге $\sigma_+(h) = k$. Аналогично $\sigma_-(h) = m$.
- Con 3.2 (Закон инерции). Нормальный вид матрицы $h \in \mathcal{Q}(V)$ определён однозначно с точностью до перестановки элементов диагонали.
- **Def 3.14.** B симметричная матрица над \mathbb{R} Она обретает такие же названия, как у квадратичной формы, если она её матрица.
 - B положительно определена $\Leftrightarrow \exists$ невырожденная $A: B = A^T A$
- \triangle . \Longrightarrow . У соответствующей h нормальный вид $E=S^TBS$. Тогда $B=(S^T)^{-1}S^{-1}=(S^{-1})^TS^{-1}$. \Longleftrightarrow . Если $B=A^TA\Rightarrow \forall (\mathbf{0}\neq)\mathbf{v}\in V,\,\mathbf{v}\Longleftrightarrow_e x,\,h(\mathbf{v})=x^TBx=x^TA^TAx=(Ax)^TAx>0$.

Note: и также для B – полуопределенной $\Leftrightarrow \exists A: B = A^T A$.

Def 3.15. B – симметричная матрица. Её **главный минор** i-порядка $\Delta_i(B)$ — это определитель матрицы $i \times i$ в левом верхнем углу.

Thr 3.10 (Метод Якоби). $\mathcal{Q}(V) \ni h \stackrel{\longleftarrow}{\longleftrightarrow} B$, причём $\Delta_i(B) \neq 0$, $i = 1, \ldots, n (= \dim V)$. Тогда $\exists e' = eS$, где S – верхнетреугольная матрица c единицами на диагонали такой,

$$umo\ h \underset{e'}{\longleftrightarrow} \begin{pmatrix} d_1 & O \\ & \ddots & \\ O & & d_n \end{pmatrix}, \ \textit{ede}\ d_i = \frac{\Delta_i(B)}{\Delta_{i-1}(B)} \ (\Delta_0(B) = 1).$$

- \triangle . 1) Индукция по n. При n=1 доказывать нечего. Для n>1 имеем $\langle e_1,\dots,e_{n-1}\rangle$ невырожденный относительно билинейной формы, полярной к h (так как $\Delta_{n-1}(B) \neq 0$)).
- 2) Значит $V = U \oplus U^{\perp}$. Разложим $e_n = u + e'_n \ (u \in U, \ o \neq e'_n \in U^{\perp})$. Тогда по предположению индукции: найдётся замена базиса в $U: (e'_1, \dots, e'_{n-1}) = (e_1, \dots, e_{n-1})S$, приводящая $h|_U$ к диагональ-

3) Тогда
$$e_n' \in \langle e_1', \dots, e_{n-1}' \rangle^{\perp} = U^{\perp}$$
. Получаем $h \underset{e'}{\longleftrightarrow} B' = \begin{pmatrix} d_1 & & & \\ & \ddots & & \\ & & d_{n-1} & \\ \hline & O & & d_n \end{pmatrix}$ $S = \begin{pmatrix} S' & O \\ \hline O & 1 \end{pmatrix}$.

- 4) Доказав переход индукции осталось вычислить d_i . Заметим, что: $e_i' \in \langle e_1, \dots, e_i \rangle (= \langle e_1', \dots, e_i' \rangle)$.
- 5) Пусть $B_i(')$ подматрица в B(') в левом верхнем углу ($\Delta_i(B)=|B_i|$). Тогда $B_i'=S_i^TB_iS_i$

$$(e_i' = e_i S_i \text{ и } S_i - \text{верхнетреугольная с единицами на диагонали}).$$

$$6) Значит $\Delta_i(B') = |B_i'| = |S_i^T B_i S_i| = |B_i| |S_i|^2 = |B_i| = \Delta_i(B) (= d_1 \dots d_i) \rightsquigarrow d_i = \frac{|B_i'|}{|B_{i-1}'|} = \frac{\Delta_i(B)}{\Delta_{i-1}(B)}.$$$

Thr 3.11 (Критерий Сильвестра). $\mathcal{Q}(V) \ni h \longleftrightarrow_{e} B$.

h – положительно определена $\iff \forall i=1,\ldots,n (=\dim(V)) \ \Delta_i(B)>0.$

- \triangle . \Longrightarrow). h положительно определена $\Leftrightarrow B = A^T A, A$ невырождена. Тогда $\Delta_n(B) = |B| = |A|^2 > 0$.
 - $\stackrel{\longleftarrow}{(=)}$. Из метода Якоби, на диагонали: $\Delta_1,\,\Delta_2/\Delta_1\dots$ все $>0\Rightarrow h$ положительно определена.

Con 3.3. Если $\forall i=1,\ldots,n: \Delta_i(B)\neq 0 \Rightarrow \sigma_-(h)$ – число перемен знака в $1,\Delta_1(B),\ldots,\Delta_n(B)$

Кососимметричные и полуторалинейные формы 3.5

Thr 3.12. Teneps
$$u$$
 danee \mathbb{F} – noboe. Π ycms $b \in \mathcal{B}^-(V)$. Torda s $V \exists e$, s romopom $b \iff 0$

- \triangle . 1) Индукция по $n = \dim V$. Если $\operatorname{rg} b = 0$, то доказывать нечего.
 - 2) Иначе $\exists {m e}_1, {m e}_2: \ b({m e}_1, {m e}_2) \neq 0 \Rightarrow {m e}_1, {m e}_2$ Л НеЗ и, можно считать, $b({m e}_1, {m e}_2) = 1.$
 - 3) Далее, $U = \langle \boldsymbol{e}_1, \boldsymbol{e}_2 \rangle$ невырождено относительно b и $b \big|_U \longleftrightarrow_{(\boldsymbol{e}_1, \boldsymbol{e}_2)} B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.
 - 4) Значит, $V=U\oplus U^\perp$. По предположению индукции к $b\big|_U^\perp$ получаем B_1 в базисе $({\boldsymbol e}_3,\dots,{\boldsymbol e}_n)$.

5) Тогда, для
$$e = (e_1, \dots, e_n)$$
 имеем: $b \longleftrightarrow \begin{pmatrix} 0 & 1 & O \\ -1 & 0 & O \\ \hline O & B_1 \end{pmatrix}$.

Пусть отныне $\mathbb{F} = \mathbb{C}$, V – линейное пространство над \mathbb{F} .

Def 3.16. $b: V \times V \to \mathbb{F}$ — полуторалинейная форма, если она:

- 1) Линейная по первому аргументу: $\begin{cases} b(\boldsymbol{u}_1+\boldsymbol{u}_2,\boldsymbol{v})=b(\boldsymbol{u}_1,\boldsymbol{v})+(\boldsymbol{u}_2,\boldsymbol{v})\\ \forall \lambda\in\mathbb{C}:\ b(\lambda\boldsymbol{u},\boldsymbol{v})=\lambda b(\boldsymbol{u},\boldsymbol{v})\\ \end{cases}$ 2) Сопряженно линейная по второму аргументу: $\begin{cases} b(\boldsymbol{u},\boldsymbol{v}_1+\boldsymbol{v}_2)=b(\boldsymbol{u},\boldsymbol{v}_1)+(\boldsymbol{u},\boldsymbol{v}_2)\\ \forall \lambda\in\mathbb{C}:\ b(\boldsymbol{u},\lambda\boldsymbol{v})=\overline{\lambda}b(\boldsymbol{u},\boldsymbol{v}) \end{cases}$

 ${f Def~3.17.~Matpuцa}$ полуторалинейной формы в базисе $({m e}_1,\ldots,{m e}_n)$ — это $b<\mathop{---}_e>B=(b({m e}_i,{m e}_j)).$ Если ${m u} \stackrel{\longleftarrow}{\longleftarrow} x,\,{m v} \stackrel{\longleftarrow}{\longleftarrow} y,$ то $b({m u},{m v})=x^TB\overline{y}.$

Thr 3.13. Пространство полуторалинейных форм $S(V) \cong M_{n \times n}(\mathbb{C})$). Переход: e' = eS, $B' = S^T B \overline{S}$.

Доказательство.
$$|B'| = |S^T| \cdot |B| \cdot |\overline{S}| = |B| \cdot |\det S|^2$$

Con 3.4. $\operatorname{rg} B(=\operatorname{rg} b)$ u $\operatorname{arg} \det B$ не зависят от выбора базиса.

Def 3.18. Пусть $b \in S(V)$. b называется эрмитовой формой, если $b(\boldsymbol{u}, \boldsymbol{v}) = \overline{b(\boldsymbol{v}, \boldsymbol{u})}$.

Lem 3.1. Пусть $S(V)\ni b \longleftrightarrow B$. Тогда b – эрмитова $\Longleftrightarrow B^T=\overline{B}$.

 ${f Def 3.19.}\ B\in M_{n imes n}({\Bbb C})$ — эрмитова, если $B=\overline{B^T}.\ B^*=\overline{B^T}$ — эрмитово сопряженной к B.

Def 3.20. Пусть b – эрмитова форма на V. Тогда $h\colon V\to \mathbb{C},\ h(\boldsymbol{v})=b(\boldsymbol{v},\boldsymbol{v})$ — эрмитова квадратичная форма соответствующая $b.\ (b$ полярна к h)

Lem 3.2. Если b – эрмитова форм, то 1) $b(\boldsymbol{v},\boldsymbol{v}) \in \mathbb{R}$; 2) $b \underset{e}{\longleftrightarrow} B : |B| \in \mathbb{R}$. Следствие: h принимает значения лишь из \mathbb{R} .

Lem 3.3. Если $b_1 \neq b_2$ – эрмитовы формы, то соответствующие $h_1 \neq h_2$.

$$\triangle$$
. Восстановим b по h : $h(\boldsymbol{u}+\boldsymbol{v})=h(\boldsymbol{u})+h(\boldsymbol{v})+b(\boldsymbol{u},\boldsymbol{v})+b(\boldsymbol{v},\boldsymbol{u})=h(\boldsymbol{u})+h(\boldsymbol{v})+2\operatorname{Re}(b(\boldsymbol{u},\boldsymbol{v}))\Rightarrow$ $\operatorname{Re}(b(\boldsymbol{u},\boldsymbol{v}))=[h(\boldsymbol{u},+\boldsymbol{v})-h(\boldsymbol{u})-h(\boldsymbol{v})]/2,$ $b(\boldsymbol{u},i\boldsymbol{v})=-ib(\boldsymbol{u},\boldsymbol{v})\Rightarrow\operatorname{Im}(b(\boldsymbol{u},\boldsymbol{v}))=\operatorname{Re}(-ib(\boldsymbol{u},\boldsymbol{v}))=\operatorname{Re}(b(\boldsymbol{u},i\boldsymbol{v}))=[h(\boldsymbol{u},+i\boldsymbol{v})-h(\boldsymbol{u})-h(i\boldsymbol{v})]/2$ Следствие: Соответствие между эрмитовыми и квадратичными эрмитовыми формами биеткивно и \mathbb{R} -линейно

Значит линейные вещественные пространства эрмитовых и эрмитовых квадратичных форм изоморфны.

Пусть b – эрмитова форма. $\operatorname{Ker} b = \{ \boldsymbol{u} \colon \forall \boldsymbol{v} \in V \ b(\boldsymbol{u}, \boldsymbol{v}) = 0 \} = \{ \boldsymbol{v} \colon \forall \boldsymbol{u} \in V \ b(\boldsymbol{u}, \boldsymbol{v}) = 0 \}.$ $\dim U^{\perp} \geqslant \dim V - \dim U$, если b – невырождена $\Longrightarrow \dim U^{\perp} = \dim V - \dim U$. $V = U \oplus U^{\perp} \Longleftrightarrow U$ – невырождено относительно b (то есть $b|_{U}$ – невырождена).

Thr 3.14. Пусть h – эрмитова квадратичная форма, тогда $\exists e: h \overset{\longleftarrow}{\longleftarrow} B$ – диагональна c $\{0,\pm 1\}$

 \triangle . 1)Приведём к диагональному виду индукцией: $h(e_1) \neq 0$: $\langle e_1 \rangle$ – невырождена относительно $b \Longrightarrow$ 2) $V = \langle e_1 \rangle \oplus \langle e_1 \rangle^{\perp}$ применим индукцию: $h \longleftrightarrow \operatorname{diag}(\alpha_i)$.

3) Нормируем векторы:
$$e_i = \frac{e_i}{\sqrt{|h(\boldsymbol{e}_i)|}},$$
 если $h(\boldsymbol{e}_1) \neq 0.$

Def 3.21. Пусть h – эрмитова квадратичная форма. h — **положительно (полу)определена**, если $\forall v: h(v) > 0 (\geqslant)$. Аналогично с **отрицательной** (полу)определенностью.

Def 3.22. Положительный/отрицательный индекс инерции $\sigma_+(h), \sigma_-(h)$ — как и раньше. **Закон инерции**: В нормальном виде формы b ровно $\sigma_+(h)$ единиц и $\sigma_-(h)$ минус единиц.

Thr 3.15 (Метод Якоби и Критерий Сильвестра). АНАЛОГИЧНО

4 Линейные отображения

4.1 Линейные отображения векторных пространств

Def 4.1. Отображение $f: V \to W$ называется линейным, если

$$f(x + y) = f(x) + f(y), \quad f(\lambda x) = \lambda f(x).$$

С любым линейным отображением $f\colon V\to W$ ассоциируются два подпространства:

ядро:
$$\text{Ker } f = \{ v \in V \mid f(v) = 0 \},$$
 образ: $\text{Im } f = \{ w \in W \mid w = f(v), v \in V \}.$

Thr 4.1. Пусть V над \mathbb{F} , $f \colon V \to W$. Тогда $\operatorname{Ker} f$, $\operatorname{Im} f$ конечномеры u

$$\dim \operatorname{Ker} f + \dim \operatorname{Im} f = \dim V.$$

 \triangle . Так как $\operatorname{Ker} f \subset V$, то $\dim \operatorname{Ker} f \leqslant \dim V \leqslant \infty$. Любой вектор из $\operatorname{Im} f$ имеет вид

$$f\left(\sum_{i=1}^{n} \alpha_i e_i\right) = \sum_{i=k+1}^{n} \alpha_i f(e_i), \quad \alpha_i \in \mathbb{F}.$$

т.е. векторы $f(e_{k+1}), \ldots, f(e_n)$ порождают Im f.

Они линейно независимы. Действительно, пусть $\sum_{i=k+1}^{n} \lambda_i f(e_i) = 0$. Тогда $f(\sum_{i=k+1}^{n} \lambda e_i) = 0$. Это значит, что $\sum_{i=k+1}^{n} \lambda_i e_i \in \operatorname{Ker} f$. Но всякая линейная зависимость между базисными элементами должна быть тривиальной.

4.2 Аффинные (точечные) пространства

Во-первых в этом параграфе введем множество $movek\ \dot{p},\dot{q},\dot{r},\ldots$ Назовём его \mathbb{A} . Пусть V – векторное пространство над \mathbb{F} . Пара (\mathbb{A},V) называется $a\phi\phi$ инным пространством, ассоциированным (или связанным) с V, если задано отображение $(\dot{p}, \boldsymbol{v}) \to \dot{p} + \boldsymbol{v}$, такое, что:

- 1) $\dot{p} + \mathbf{0} = \dot{p}$, $(\dot{p} + \boldsymbol{u}) + \boldsymbol{v} = \dot{p} + (\boldsymbol{u} + \boldsymbol{v})$ для $\forall p \in \mathbb{A}$ и $\forall \boldsymbol{u}, \boldsymbol{v} \in V$;
- 2) $\forall \dot{p}, \dot{q} \in \mathbb{A}, \exists ! \mathbf{v} \in V : \dot{p} + \mathbf{v} = \dot{q}.$

Def 4.2. Пусть \mathbb{A} , \mathbb{A}' – аффинные пространства, ассоциированные с векторными пространствами V, V' над одним и тем же \mathbb{F} . Отображение $f \colon \mathbb{A} \to \mathbb{A}'$ называется аффинным (или аффинно-линейным), если $\forall \dot{p} \in \mathbb{A}$, $\mathbf{v} \in V$ выполнено соотношение

$$f(\dot{p} + \mathbf{v}) = f(\dot{p}) + Df \cdot \mathbf{v},\tag{1}$$

где $Df: V \to V'$ — линейное отображение векторных пространств. Отображение Df называют иногда линейной частью (или дифференциалом) отображения f. Для биективного аффинно-линейного отображения f линейная часть Df тоже биективна. В этом случае говорят об изоморфизме между \mathbb{A} и \mathbb{A}' , а при $\mathbb{A}' = \mathbb{A}$ — об аффинном автоморфизме пространства \mathbb{A} , реализованном посредством невырожденного аффинного преобразования f.

Из такого определения становится очевидным такой ряд свойств, как сохранение параллельности, отношения между отрезками и т.д. связанного с биективностью отображения. Примером таких преобразований служит поворот, растяжение/сжатие, отражение, перенос.

Def 4.3. Системой координат в n-мерном аффинном пространстве (\mathbb{A}, V) называется совокупность $\{\dot{o}; e_1, \ldots, e_n\}$ точки $\dot{o} \in \mathbb{A}$ и базиса (e_1, \ldots, e_n) в V. Координатами x_1, \ldots, x_n точки \dot{p} считаются координаты вектора \overline{op} в базисе (e_1, \ldots, e_n) : $\overline{op} = x_1e_1 + \ldots + x_ne_n$.

Def 4.4. Пусть \dot{p} — фиксированная точка n-мерного аффинного пространства (\mathbb{A}, V) и U — векторное подпространства в V. Тогда множество

$$\Pi = \dot{p} + U = \{ \dot{p} + \boldsymbol{u} \mid \boldsymbol{u} \in U \}$$

называется nлоскостью (или $a\phi$ инным nодnространством) в $\mathbb A$ размерности $m=\dim U$. Считается, что Π проходит через точку $\dot p$ в направлении U.

Проведём некоторое рассуждения, для понимания необходимости этого языка. Пусть $\dot{q} = \dot{p} + \boldsymbol{u}$, $\dot{r} = \dot{p} + \boldsymbol{v}, \quad \boldsymbol{u}, \boldsymbol{v} \in U$, то

$$\dot{q} + (v - u) = \dot{p} + u + (v - u) = \dot{p} + v = \dot{r}.$$

Тогда $\overline{qr} = \boldsymbol{v} - \boldsymbol{u}$, соответственно из $\dot{q}, \dot{r} \in \Pi \Longrightarrow \overline{qr} \in U$.

Thr 4.2. Всякая плоскость $\Pi = \dot{p} + U$ в аффинном пространстве сама является афинным пространством, ассоциированным c U.

Thr 4.3. Подмножество $\Pi \subset \mathbb{A}$ тогда, и только тогда является подпространством, когда оно целиком содержит прямую, проходящую через любые две его различные точки.

 ${f Def}$ 4.5. Любае две плоскости в направлении одного и того же подпространства U называют параллельными.

Аналогично можно определить аффинный функционал. Отображение $f \colon \mathbb{A} \to \mathbb{F}$ называется аффиннолинейной функцией, если

$$f(\dot{p} + \mathbf{v}) = f(\dot{p}) + Df \cdot \mathbf{v} \quad \forall \dot{p} \in \mathbb{A}, \mathbf{v} \in V.$$

Выбрав систему координат $\{\dot{o}; e_1, \ldots, e_n\}$, выразим значение f в виде

$$f(\dot{p}) = f(\dot{o} + \overline{op}) = \sum_{i=1}^{n} \alpha_i x_i + \alpha_0,$$

где $\alpha_0 = f(\dot{o}), \alpha_i = Df \cdot e_i, \overline{op} = x_1 e_1 + \ldots + x_n e_n.$

Thr 4.4. Пусть \mathbb{A} – аффинное пространство размерности n. Множество точек из \mathbb{A} , координаты которых удовлетворяют совместной системе линейных уравнений ранга r, образуют (n-r)-мерную плоскость $\Pi \subset \mathbb{A}$. Любая плоскость \mathfrak{b} \mathbb{A} может быть так получена.

Def 4.6. Пусть $\Pi' = \dot{p} + U'$, $\Pi'' = \dot{q} + U''$ (U', U'' — векторные подпространства в V размерностей k, l). Говорят, что плоскость Π' парамельна Π'' , если $U'' \subseteq U'$.

4.3 Евклидовы (точечные) пространства

Def 4.7. Аффинное пространство (\mathbb{E} , V) называется евклидовым (точечным) пространством, если V – евклидово векторное пространство. Или, тройка (\mathbb{E} , V, ρ).

Аналогично раннему, можем посмотреть на расстояния между объектами (см. стр. 191, К).

Thr 4.5. Определитель Грама системы векторов e_1, \ldots, e_m , отличен от нуля в точности тогда, когда векторы системы линейно независимы. Всегда выполнено неравенство $G(e_1, \ldots e_m) \geqslant 0$.

Thr 4.6. При аффинном преобразовании п-мерного евклидова пространства объём параллелепипеда, построенного на п векторах, умножается на модуль определителя преобразования. Другими словами, отношение объёмов параллелепипедов сохраняется.

Thr 4.7. Всякое невырожденное аффинное преобразование f n-мерного евклидова пространства (\mathbb{E}, V) есть произведение:

- 1) сдвига на некоторый вектор;
- 2) движения, оставляющего неподвижной некоторую точку о;
- 3) аффинного преобразования h, являющегося композицией n сжатий вдоль взаимно перпендикулярных осей, пересекающихся в точке \dot{o} .

5 Структура линейного преобразования

5.1 Алгебра линейный операторов

При V=W элемент векторного пространства $\mathcal{L}(V)$ называют линейным оператором или линейным преобразованием.

Примерами являются: нулевой оператор \mathcal{O} (переводит любой вектор $v \in V$ в нулевой), оператор проектирования ($\mathcal{P}^2 = \mathcal{P}$), оператор подобия, дифференцирования, ...

5.2 Алгебра операторов

Отдельный интерес представляет **алгебра операторов**. Понятно, что $\mathcal{L}(V)$ – векторное пространство размерности dim $\mathcal{L}(V) = (\dim V)^2$. Можно по аксиомам проверить, что $\mathcal{L}(V)$ является одновременно векторным пространством над \mathbb{F} .

Def 5.1. Кольцо K является одновременно векторным пространством над \mathbb{F} таким, что $\lambda(ab) = (\lambda a)b = a(\lambda b)$ для всех $\lambda \in \mathbb{F}$, $a,b \in K$, называется алгеброй над \mathbb{F} . Размерность K как векторного пространства называется размерностью алгебры K над \mathbb{F} . Всякое векторное подпространство $L \subset K$, замкнутое относительно операции умножения в $K(L \cdot L \subseteq L)$, называется подалгеброй алгебры K.

Нам интересна алгебра $\mathbb{F}[\mathcal{A}]$ – наименьшая алгебра, содержащая \mathcal{A} . Какова её размерность? Далее докажем, что

$$\dim \mathbb{F}[\mathcal{A}] \leqslant \dim V.$$

Def 5.2. Многочлен f(t) аннулирует линейный оператор \mathcal{A} , если $f(\mathcal{A}) = \mathcal{O}$. Нормализованный многочлен минимальной степени, аннулирующий \mathcal{A} , называется минимальным многочленом оператора \mathcal{A} .

Thr 5.1. Для всякого линейного оператора \mathcal{A} существует $\mu_{\mathcal{A}}(t)$. Оператор \mathcal{A} обратим тогда, и только тогда, когда свободный слен μ_m отличен от нуля.

△. Эксплуатируем тот факт, что делители нуля необратимы.

Thr 5.2. Любой аннулирующий многочлен f(t) оператора $\mathcal A$ делится без остатка на $\mu_{\mathcal A}(t)$.

Def 5.3. Линейный оператор \mathcal{A} называется *нильпотентным*, если $\mathcal{A}^m = \mathcal{O}$ для некоторого m > 0; наименьшее такое натуральное число m называется $u n \partial e \kappa com$ нильпотентности.

5.3 Инвариантные подпространства и собственные векторы

5.3.1 Проекторы

Пусть $V = W_1 \oplus \ldots \oplus W_m$, тогда $\boldsymbol{x} \in V$:

$$x = x_1 + \ldots + x_m, \quad x_i \in W_i,$$

а отображение $\mathcal{P}_i \colon \boldsymbol{x} \mapsto \boldsymbol{x}_i \in \mathcal{L}(V)$. Наконец,

$$W_i = \mathcal{P}_i V = \{ \boldsymbol{x} \in V \mid \mathcal{P}_i \boldsymbol{x} = \boldsymbol{x} \},$$

$$K_i = \operatorname{Ker} \mathcal{P}_i = W_1 + \ldots + W_m$$

и \mathcal{P}_i по сути оператор проектирования V на W_i вдоль K_i .

Thr 5.3. $\mathcal{P}_1,\ldots,\mathcal{P}_m\colon V\to V$ – конечное множество линейных операторов таких, что

$$\sum_{i=1}^{m} \mathcal{P}_{i} = \mathcal{E}; \quad \mathcal{P}_{i}^{2} = \mathcal{P}_{i}, \ 1 \leqslant i \leqslant m; \quad \mathcal{P}_{i}\mathcal{P}_{j} = \mathcal{O}, \ i \neq j.$$

Tог ∂a

$$V = W_1 \oplus \ldots \oplus W_m$$
, $\epsilon \partial e_i = \operatorname{Im} \mathcal{P}_i$.

 \triangle . Через разбиение $\forall x \in V$ получим

$$x = \mathcal{E}x = \sum \mathcal{P}_i x = x_i + \ldots + x_m, \quad x_i \in W_i,$$

тоесть $V=W_1+\ldots+W_m$. Докажем, что сумма прямая. Пусть ${\boldsymbol x}\in W_j\cap\left(\sum_{i\neq j}W_i\right)$. Но, $\exists {\boldsymbol x}_1,\ldots,{\boldsymbol x}_m$:

$$x = \mathcal{P}_j(\boldsymbol{x}_j) = \sum_{i \neq j} \mathcal{P}_i(\boldsymbol{x}_i).$$

Применим \mathcal{P}_j , получим

$$oldsymbol{x} = \mathcal{P}_j^2(oldsymbol{x}_j) = \sum_{i
eq j} \mathcal{P}_j \mathcal{P}_i(oldsymbol{x}_i) = oldsymbol{0}.$$

5.3.2 Инвариантные подпространства

Def 5.4. Подпространство $U \subset V$ инвариантно относительно $A: V \to V$, если $AU \subset U$.

Thr 5.4. Пространство V является прямой суммой двух подпространств U, W, инвариантных относительно $A: V \to V$, тогда, и только тогда, когда \exists базис такой, что A принимает блочно диагональный вид.

5.3.3 Собственные векторы. Характеристический многочлен.

Def 5.5. Любой ненулевой вектор из одномерного подпространства, инвариантного относительно \mathcal{A} , называется собственным вектором оператора \mathcal{A} . Если x – собственный вектор, то $\mathcal{A}x = \lambda x$, $\lambda \in \mathbb{F}$ называется собственным значением \mathcal{A} .

Очевидная импликация $\mathcal{A}x = \lambda x$, $\mathcal{A}y = \lambda y \Longrightarrow \mathcal{A}(\alpha x + \beta y) = \lambda(\alpha x + \beta y)$ даёт основание называть V^{λ} собственным подпространством оператора \mathcal{A} , ассоциированным с λ . Его размерность dim V^{λ} называется геометрической кратностью λ .

Уместно ввести понятие характеристического многочлена, ассоциированного с \mathcal{A} . Кратность λ как корня характеристического многочлена $\xi_{\mathcal{A}}(t)$ называется алгебраической кратностью λ оператора \mathcal{A} .

Thr 5.5. Геометрическая кратность λ не превосходит его алгебраической кратности.

 \triangle . Действительно, пусть \mathcal{A}' – ограничение \mathcal{A} на V^{λ} , тогда $\det(t\mathcal{E}'-\mathcal{A}')=(t-\lambda)^m$, причём $\xi_{\mathcal{A}}(t)=(t-\lambda)^mq(t)$. Пусть λ – корень кратности k многочлена q(t). Тогда алгебраической кратностью λ будет m+k.

5.3.4 Критерий диагонализируемости

Def 5.6. Множество всех собственных значений линейного оператора \mathcal{A} называют $cne\kappa mpo_{\mathcal{M}}$ – Spec \mathcal{A} . Еси все точки спектра простые, то и спектр называется $npocm_{\mathcal{M}}$.

Lem 5.1. Собственные векторы, принадлежащие к различным собственным значениям, линейно независимы. Сумма $\sum_{\lambda \in \operatorname{Spec} A} V^{\lambda}$ прямая.

 \triangle . По индукции докажем ЛНеЗ набора $e_i \in V^{\lambda_i} \ \forall i$.

$$\alpha_1 e_1 + \ldots + \alpha e_m = \mathbf{0} \quad \mapsto \quad \alpha_1 \lambda_1 e_1 + \ldots + \alpha_m \lambda_m e_m = 0.$$

Умножая на λ_m первое соотношение и вычитая из него второе, приходим к линейной зависимости первых m-1 векторов:

$$\alpha_1(\lambda_m - \lambda_1)e_1 + \ldots + \alpha_{m-1}(\lambda_m - \lambda_{m-1})e_{m-1} = 0.$$

Но $\alpha_1(\lambda_m-\lambda_1)\neq 0$. По доказанному $V^{\lambda_i}\cap \sum_{j\neq i}V^{\lambda_j}={f 0}.$

Def 5.7. Линейный оператор \mathcal{A} на n-мерном пространстве V называют $\partial uaronaлизируемым,$ если существует базис (e_i) , относительно которого матрица оператора принимает диагональный вид.

Thr 5.6. Линейный оператор A с простым спектром диагонализируем.

Thr 5.7. Пусть \mathcal{A} – линейный оператор на конечномерном векторном пространстве V над полем \mathbb{F} . Для диагонализируемости \mathcal{A} необходимо и достаточно, чтобы все корни $\xi_{\mathcal{A}}(t)$ лежат в \mathbb{F} и геометрическая кратность каждого собственного значения λ совпадает с его алгебраической кратностью.

 \triangle_{\Leftarrow} . Если $\lambda_1,\dots,\lambda_m$ – различные корни многочлена $\xi_{\mathcal{A}}(t)$, а k_1,\dots,k_m – их кратности, то dim $V^{\lambda_i}=k_i$ и $k_1+k_2+\dots+k_m=n$. По лемме 5.1 любая совокупность $\boldsymbol{v}_i\in V^{\lambda_i}$ линейно независима, так что

$$V^{\lambda_i} \cap \left(V^{\lambda_1} + \ldots + V^{\lambda_i} + \ldots + V^{\lambda_m} \right) = \mathbf{0}. \tag{2}$$

Значит сумма прямая. Взяв за базис объединение базисов в V^{λ_i} , мы придём к co6cm6enhomy basiconstance

 \triangle_{\Rightarrow} . Пусть $\mathcal A$ диагонализируем. Положим $l_i=\dim V^{\lambda_i}$. Из 2 верно, V имеет собственный базис из элементов V^{λ_i} , соотвественно $V^{\lambda_1},\ldots,V^{\lambda_m}$ порождают V. Из равенства для $\xi_{\mathcal A}(t)$ вытекает, что все корни многочлена принадлежат $\mathbb F$, т.е. выполнено первое условие. Также l_i совпадает с алгебраической кратностью λ_i .

5.3.5 Существование инвариантных подпространств

Thr 5.8. Всякий комплексный \mathcal{A} имеет одномерное инвариантное подпространство. Всякий вещественный \mathcal{A} имеет одномерное или двумерное инвариантное подпространство.

 \triangle . Так как $\xi_{\mathcal{A}}$ имеет в $\mathbb C$ хотя бы один корень.

Для $\mathbb R$ рассмотрим $\mu_{\mathcal A}$. Его коэффициенты лежат в $\mathbb R$. Если $\mu_{\mathcal A}$ имеет вещественный корень, то

$$\mu_{\mathcal{A}} = (t - \alpha)g(t), \quad g(t) \in \mathbb{R}[t].$$

Так как $g(A) \neq \mathcal{O}$ в силу минимальности μ_A , то $g(A)u \neq 0$ для некоторого $u \in V$. Но

$$(\mathcal{A} - \alpha \mathcal{E}) = (\mathcal{A} - \alpha \mathcal{E})g(\mathcal{A})\boldsymbol{u} = \mu_{\mathcal{A}}(\mathcal{A})\boldsymbol{u} = \boldsymbol{0},$$

откуда $Av = \alpha v$, т.е. v – собственный вектор.

Если у \mathcal{A} нет собственных векторов, то у $\mu_{\mathcal{A}}$ нет вещественных корней. Однако

$$\mu_{\mathcal{A}}(t) = (t^2 - \alpha t - \beta t)h(t), \quad \alpha, \beta \in \mathbb{R}, \quad h(t) \in \mathbb{R}[t].$$

Снова ${m v}=h({\mathcal A}){m u} \neq 0$ для некоторого ${m u} \in V$ и

$$\mathcal{A}^2 \boldsymbol{v} - \alpha \mathcal{A} \boldsymbol{v} - \beta \boldsymbol{v} = \mathbf{0}$$

Получается, что $\mathcal{A}^2 \mathbf{v} = \alpha \mathcal{A} \mathbf{v} + \beta \mathbf{v}$. Так как $\mathcal{A} \mathbf{v} \neq \lambda \mathbf{v}$, то $L = \langle \mathbf{v}, \mathcal{A} \mathbf{v} \rangle$ – двумерное инвариантное подпространство.

5.3.6 Сопряженный линейный оператор

Посмотрим на связь оператора и сопряженного пространства. При любом фиксированном элементе $f \in V^*$ отображение $x \mapsto (f, \mathcal{A}x) := f(\mathcal{A}x)$ снова является элементом из V^* , т.е. линейной функцией. Раз это так, то можем положить

$$(\mathcal{A}^* f, x) := (f, \mathcal{A}x). \tag{3}$$

Def 5.8. Линейный оператор \mathcal{A}^* на V^* , заданный соотношением (3), называют оператором, *сопряженным* к $\mathcal{A} \in \mathcal{L}(V)$.

Thr 5.9. Если в базисе (e_i) пространства V линейный оператор \mathcal{A} имеет матрицу $A = (a_{ij})$, то в дуальном базисе (e^i) пространства V^* сопряженный к \mathcal{A} оператор \mathcal{A}^* имеет транспонированную матрицу A^T : $A^* = (a_{ij}^*) = A^T$.

Одновременное рассмотрение пар (V, \mathcal{A}) и (V^*, \mathcal{A}^*) часто приводит к практическим результатам. Одним из содержательных примеров является доказательство следующей теоремы.

 ${f Thr}$ 5.10. Всякий комплексный линейный оператор на V обладает инвариантной гиперплоскостью.

 \triangle . Пусть dim V=n. Как мы знаем, dim Ker f=n-1 для любой линейной функции $f\neq 0$ на V. Возьмём в качетсве f собственный вектор линейного оператора \mathcal{A}^* на V^* . Тогда $\mathbf{x}\in \operatorname{Ker} f\Rightarrow 0=\lambda(f,\mathbf{x})=(\lambda f,\mathbf{x})=(\mathcal{A}^*f,\mathbf{x})=(f,\mathcal{A}\mathbf{x})\Rightarrow \mathcal{A}\mathbf{x}\in \operatorname{Ker} f$. Собственно, $\operatorname{Ker} f$ – искомая гиперплоскость. \square

5.3.7 Фактороператор

Пусть L – подпространство, инвариантное относительно линейного оператора \mathcal{A} , действующего на V. Считая V и L фиксированными, будем обозначать факторпространство V/L, символом \overline{V} , а любой его элемент x+L через \overline{x} .

факторпространство – это ..?

Def 5.9. Соотношением $\overline{\mathcal{A}} \cdot \overline{x} = \overline{\mathcal{A}x}$ на \overline{V} фактороператор. Другими словами, $\overline{\mathcal{A}}(x+L) = \mathcal{A}x + L$.

$$v - \infty + \frac{1}{2} + \frac{1}{2} + x_3 - y_7 - y +$$

5.4 Жорданова нормальная форма

5.4.1 ЖНФ: формулировка и следствие

Thr 5.11. Каждая квадратная матрица A порядка n над алгебраически замкнутым полем \mathbb{F} (достаточно, чтобы ξ_A раскладывался на линейные сомножители) приводится κ жордановой нормальной форме. Именно, $\exists C(\det C \neq 0) \colon C^{-1}AC = J(A) = J$. C точностью до перестановки клеток жорданова нормальная форма матрицы единственна.

5.4.2 Случай нильпотентного оператора

Далее, положив $\mathcal{N}=\mathcal{A}-\lambda\mathcal{E}$, мы получим нильпотентный оператор индекса нильпотентности m с нильпотентной матрицей N.

Def 5.10. Линейная оболочка

$$\mathbb{F}[\mathcal{N}]\boldsymbol{v} = \langle \boldsymbol{v}, \mathcal{N}\boldsymbol{v}, \dots, \mathcal{N}^{m'-1}\boldsymbol{v} \rangle$$

называется *циклическим подпространством*, ассоциированным с оператором \mathcal{N} индекса нильпотентности m и вектором \boldsymbol{v} . Предполагается, что $m' \leqslant m$ – наименьшее натуральное число, для которого $\mathcal{N}^{m'}\boldsymbol{v} = \boldsymbol{0}$.

Thr 5.12. ЖН Φ нильпотентной матрицы N существует (над произвольным \mathbb{F}).

 \triangle . Достаточно показать, что V , на котором действует оператор \mathcal{N} , разлагается в прямую сумму циклических подпространств.

По теореме 1 матрица N приводится к верхнему треугольному виду с 0 по диагонали. Это значит, что линейная оболочка U первых n-1 базисных векторов инвариантна относительно \mathcal{N} . По определению $\mathcal{N}V\subset U$, а по предположению индукции а U можно выбрать жорданов базис для \mathcal{N} , или, что то же самое,

$$U = \mathbb{F}[\mathcal{N}] e_1 \oplus \ldots \oplus \mathbb{F}[\mathcal{N}] e_s,$$

 $\mathbb{F}[\mathcal{N}] e_i = \langle e_i, \mathcal{N} e_i, \ldots, \mathcal{N}^{m_i - 1} e_i \rangle, \quad B^{m_i} e_i = \mathbf{0}.$

Далее, $V=\langle {m v}, U \rangle$, $\mathcal{N}{m v} \in U$ для любого вектора ${m v}$, не содержащегося в U, так что $\mathcal{N}{m v} = \sum_i \alpha {m e}_i + \mathcal{N}{m v}, {m u} \in U$. Заменяя ${m v}$ на ${m v}'={m v}-{m u}$, будем иметь

$$V = \langle \boldsymbol{v}', U \rangle, \quad \mathcal{N}\boldsymbol{v}' = \sum_{i=1}^{s} \alpha_{i}\boldsymbol{e}_{i}.$$

Если $\alpha_i = 0, 1 \leqslant i \leqslant s$, то к клеткам Жордана добавится $J_1(0)$, отвечающее циклическому подпространству $\langle \boldsymbol{v}' \rangle$, т.е.

$$N \sim J(N) = \operatorname{diag}(J_{m_1}(0), \dots, J_{m_s}(0), J_1(0))$$

Остаётся рассмотреть случай, когда

$$\alpha_1 = \ldots = \alpha_{r-1} = 0, \quad \mathcal{N} \mathbf{v}' = \sum_{i=r}^s \alpha_i \mathbf{e}_i, \quad \alpha_r \neq 0$$

для некоторого $r \geqslant 1$. Положим

$$e'_i = e_i, \quad i \neq r, \quad e'_r = \frac{1}{\alpha_r} v', \quad \beta_i = \frac{\alpha_i}{\alpha_r}.$$

Тогда

$$\mathcal{N}oldsymbol{e}_r' = oldsymbol{e}_r + \sum_{i=r+q}^s eta_i oldsymbol{e}_i := oldsymbol{f}_r$$

Считая $m_1\geqslant\ldots\geqslant m_n$: $\mathcal{N}^{m_r}\boldsymbol{f}_r=\boldsymbol{0}$. Верно, что $\mathcal{N}^{m_{r-1}}\boldsymbol{f}_r\neq\boldsymbol{0}$, $\forall\beta$. Кроме того, сумма

$$\sum_{i
eq r} \mathbb{F}[\mathcal{N}] oldsymbol{e}_i' + \mathbb{F}[\mathcal{N}] oldsymbol{f}_r$$

также является прямой и совпадает с U .

Но $\mathbb{F}[\mathcal{N}]\mathbf{f}_r$ расширяется за счёт вектора $\mathbf{e}'_r \not\in U \colon \mathbb{F}[\mathcal{N}]\mathbf{f}_r \subset \mathbb{F}[\mathcal{N}]\mathbf{e}'_r$, и получается прямая сумма

$$V = \bigoplus_{i=1}^{s} \mathbb{F}[\mathcal{N}] \boldsymbol{e}'_{i},$$

 $V=\bigoplus_{i=1}^s\mathbb{F}[\mathcal{N}]e_i',$ отвечающую набору индексов m_1',\dots,m_s' , где $m_i'=m_i,\,i\neq r,\,m_r'=m_r+1.$ Тогда $B \sim \text{diag} (J'_{m_1}(0), \dots, J_{m'_s}(0)).$

Таким образом, существование базиса для нильпотентного $\mathcal N$ доказано.

Пространства со скалярным произведением

6.1Евклидово пространство

Def 6.1 (Скалярное произведение). Любое евклидово пространство содержит:

Отображение $V \times V \to \mathbb{R}$:

норма
$$||oldsymbol{v}||=\sqrt{(oldsymbol{v},oldsymbol{v})}$$

$$i) \mid (\mathbf{x}, \mathbf{u}) = (\mathbf{u}, \mathbf{x})$$

$$\forall \boldsymbol{x}, \boldsymbol{y} \in V;$$

yeon
$$\cos \alpha_x^y = (x,y)/||x||/||y||$$

$$\begin{array}{lll} \text{i)} & \left[\begin{array}{ccc} (\boldsymbol{x},\boldsymbol{y}) = (\boldsymbol{y},\boldsymbol{x}) & \forall \boldsymbol{x},\boldsymbol{y} \in V; & y \text{ for } \cos \alpha_x^y = (\boldsymbol{x},\boldsymbol{y})/||\boldsymbol{x}| \\ \text{ii)} & \left[(\alpha \boldsymbol{x} + \beta \boldsymbol{y},\boldsymbol{z}) = \alpha(\boldsymbol{x},\boldsymbol{z}) + \beta(\boldsymbol{y},\boldsymbol{z}) & \forall \alpha,\beta \in \mathbb{R}; & \text{\textit{H-BO Kouu-Byhak.}} & |(\boldsymbol{x},\boldsymbol{y})| \leqslant \|\boldsymbol{x}\| \cdot \|\boldsymbol{y}\| \end{array} \right]$$

$$|(\boldsymbol{x}, \boldsymbol{y})| \leqslant \|\boldsymbol{x}\| \cdot \|\boldsymbol{y}\|$$

iii)
$$(\boldsymbol{x}, \boldsymbol{x}) > 0$$

$$\forall \boldsymbol{x} \neq 0.$$

н-во треугольника
$$||x\pm y||\leqslant \|x\|+\|y\|$$

$$||oldsymbol{x}\pmoldsymbol{y}||\leqslant \|oldsymbol{x}\|+\|oldsymbol{y}\|$$

Def 6.2. Евклидовым векторным пространством называется вещественное векторное пространство V с выделенной на нём симметричной билинейной формой $(x,y)\mapsto (x|y)$ такой, что соответствующая квадратичная форма $x \mapsto (x|x)$ положительна определена.

6.1.1 Процесс ортогонализации

Def 6.3. Базис (e_1, \ldots, e_n) евклидова векторного пространства V называется *ортогональным*, если $(e_i|e_j)=0$ при $i\neq f;\, i,j=1,2,\ldots,n$. Если, кроме того, $(e_i|e_i)=1$, то базис называется *ортонормиро*-

Факт: любые ненулевые взаимно ортогональные векторы $e_1, \dots, e_m \in V$ линейно независимы. Другой факт: во всяком n-мерном V существуют ортонормированные базисы.

Def 6.4. Скалярное произведение (x|e), где ||e||=1, называют проекцией вектора x на прямую $\langle e \rangle_{\mathbb{R}}$.

Def 6.5. Множество всех векторов $x \in V$, ортогональных $U \subset V$, есть подпространство U^{\perp} , которое называется ортогональным дополнением κU .

Thr 6.1 (процесс Грама – Шмидта). Пусть e_1, \ldots, e_m – ЛНе3 система $\subset V_m(\mathbb{R})$. Тогда \exists ортонормированная система векторов e_1',\ldots,e_m' такая, что $L_i=\langle e_1,\ldots,e_i \rangle$ и $L_i'=\langle e_1',\ldots,e_i' \rangle$ совпадают $npu \ i = 1, 2, \ldots, m \leqslant n.$

 \triangle . Пусть построена система для k векторов. Найдём e_{k+1} . Верно, что $L_{k+1} = \langle e_1, \dots, e_k, v \rangle$, где

$$oldsymbol{v} = oldsymbol{e}_{k+1} - \sum \lambda_i oldsymbol{e}_i'$$

с произвольными λ . Подберём их так, чтобы $v \perp L_k'$. Для этого необходимо и достаточно условий

$$0 = (m{v}|m{e}_j') = (m{e}_{k+1}|m{e}_j') - \left(\sum_{i=1}^k \lambda_i m{e}_i'|m{e}_j
ight) = (m{e}_{k+1}|m{e}_j') - \lambda_j, ~~j = 1, \dots, k.$$

Таким образом, при $\lambda_j=(m{e}_{k+1}|m{e}_j')$ получаем вектор $m{v}
eq m{0}$, ортогональный к L_k' . Полагая $m{e}_{k+1}'=\mu m{v}$ придём к ортонормированной системе.

Kак следствие, всякая ортонормированная система векторов V дополняема до ортонормированного

Thr 6.2. Π усть L – подпространство конечномерного евклидова пространства V, L^{\perp} – его ортогональное дополнение. Тогда

$$V = L \oplus L^{\perp}, \qquad L^{\perp \perp} = L. \tag{4}$$

 \triangle . Возьмем в L какой-нибудь ортонормированный базис (e_1,\ldots,e_m) . Пусть $w\in V$. Рассмотрим вектор

$$oldsymbol{v} = oldsymbol{w} - \sum_{i=1}^m (oldsymbol{w} | oldsymbol{e}_i) oldsymbol{e}_i.$$

Так как $(\boldsymbol{v}|\boldsymbol{e}_j) = (\boldsymbol{w}\mid\boldsymbol{e}_j) - \sum_{i=1}^m (\boldsymbol{w}|\boldsymbol{e}_i)(\boldsymbol{e}_i|\boldsymbol{e}_j) = (\boldsymbol{w}|\boldsymbol{e}_j) - (\boldsymbol{w}|\boldsymbol{e}_j) \cdot 1 = 0 \ \forall j \leqslant n$. Получается \boldsymbol{v} ортогонален L. Это значит, что $\boldsymbol{w} = \boldsymbol{u} + \boldsymbol{v}$, где $\boldsymbol{u} = \sum_{i=1}^m (\boldsymbol{w}|\boldsymbol{e}_i)\boldsymbol{e}_i \in L$ и $\boldsymbol{v} \in L^\perp$. Итак, $V = L + L^\perp$. Пусть $\boldsymbol{x} \in L \cap L^\perp$. Так как $\boldsymbol{x} \in L$, то $(\boldsymbol{x}|L^\perp) = 0$. Но и $\boldsymbol{x} \in L^\perp$, так что $(\boldsymbol{x}|\boldsymbol{x}) = 0$.

Бонус. Из разложения $\boldsymbol{w} = \boldsymbol{u} + \boldsymbol{v}$ легко получить, что $L^{\perp \perp} = L$.

6.1.2 ХИзоморфизмы

 ${f Thr}$ 6.3. Любые евклидовы пространства $V,\,V'$ одинаковой конечной размерности изоморфны. Существует изоморфизма $f: V \to V'$, сохраняющий скалярное произведение, т.е.

$$(\mathbf{x}, \mathbf{y}) = (f(\mathbf{x}), f(\mathbf{y}))' \tag{5}$$

Thr 6.4. Отображение $\Phi: v \to (v,*) \equiv \Phi_v$ – естественный изоморфизм V и V^* . При этом Φ ОНБ V отождествляется с **дуальным** к нему базисом f_1, \ldots, f_n пространства V^* .

6.1.3 ХОртогональные матрицы

Для любой ортогональной матрицы:

$$A^{\mathrm{T}} \cdot A = E \tag{6}$$

6.1.4 ХСимплектические пространства

Тензоры

Начала тензорного исчисления

7.1.1 Понятие о тензорах

Def 7.1 (Понятие тензора). Пусть \mathbb{F} – поле, $V(\mathbb{F})$ - векторное пространство, V^* – сопряженное к V, pи q – целые числа $\geqslant 0$. Всякое (p+q)-линейное отображение

$$f \colon V^p \times (V^*)^q \to \mathbb{F} \tag{7}$$

называется **тензором на** V **типа** (p,q) и валентности (или ранга) p+q.

7.1.2 Произведение тензоров

Def 7.2. Пусть $f: V_1 \times \cdots \times V_r \to \mathbb{F}, g: W_1 \times \cdots \times W_s \to \mathbb{F}$. Под тензорным произведением f и gпонимают отображение

$$f \otimes g \colon V_1 \times \dots \times V_r \times W_1 \times \dots \times W_s \to \mathbb{F},$$
 (8)

определенное формулой

$$(f \otimes g)(\boldsymbol{v}_1, \dots, \boldsymbol{v}_r; \boldsymbol{w}_1, \dots, \boldsymbol{w}_s) = f(\boldsymbol{v}_1, \dots, \boldsymbol{v}_r) \cdot g(\boldsymbol{w}_1, \dots, \boldsymbol{w}_s)$$
(9)

Некоторые свойства тензорного произведения:

p/q	0	1	2
0	const	$f \\ L \in \mathcal{L}(V)$	$b(\boldsymbol{x},\boldsymbol{y})$
$\frac{1}{2}$	$egin{array}{c} oldsymbol{x} \ b^*(f,g) \end{array}$	$L \in \mathcal{L}(V)$	

$$\begin{array}{ll} 1) & \otimes \colon \mathbb{T}_q^p \times \mathbb{T}_{q'}^{p'} \to \mathbb{T}_{q+q'}^{p+p'}; \\ 2) & \text{ассоциативность} \end{array}$$

дистрибутивность коммутативность

Базис в V и V^* выбирается:

$$(\boldsymbol{e}_{i}, e^{j}) = \delta_{i}^{j} = \begin{cases} 0, \text{ если } i \neq j, \\ 1, \text{ если } i = j, \end{cases}$$

$$f(\boldsymbol{x}) = (f, \boldsymbol{x}) = \sum_{i} \alpha^{i} \beta_{i} = \alpha^{i} \beta_{i}.$$

$$(10)$$

7.1.3 Координаты тензора

Def 7.3 (Компоненты тензора). Значения тензора обозначаются в виде:

$$T_{i_1,\ldots,i_p}^{j_1,\ldots,j_p} := T(\boldsymbol{e}_{i_1},\ldots,\boldsymbol{e}_{i_p},e^{j_1},\ldots,e^{j_q}).$$
 (11)

Числа $T^{j_1,\dots,j_p}_{i_1,\dots,i_p}$ называются **координатами** тензора T в базисе $({m e}_1,\dots,{m e}_n)$

Thr 7.1. Тензоры типа (p,q) на V составляют $\mathbb{T}_p^q(V)$ размерности n^{p+q} с базисными векторами

$$e^{i_1} \otimes \cdots \otimes e^{i_p} \otimes e_{j_1} \otimes \cdots \otimes e_{j_q},$$
 (12)

При том $\exists ! T$ с координатами $T^{j_1,\ldots,j_p}_{i_1,\ldots,i_p}$.

△. Достаточно построить разложимый тензор. Далее воспользуемся равенством:

$$(e^{i_1} \otimes \ldots e^{i_p} \otimes e_{j_1} \otimes \ldots \otimes e_{j_q})(e_{i'_1}, \ldots, e_{i'_p}, e^{j'_1}, \ldots, e^{j'_q}) = \delta^{i_1}_{i'_1} \ldots \delta^{i_p}_{i'_p} \delta^{j_1}_{j'_1} \ldots \delta^{j_q}_{j'_q}.$$

Построим тензор

$$T_1 = \sum_{i,j} T^{j_1...j_q}_{i_1...i_p}(e^{i_1} \otimes ... e^{i_p} \otimes e_{j_1} \otimes ... \otimes e_{j_q}),$$

просто линейную комбинацию с некоторой индексацией. Теперь получим

$$T_1(\mathbf{e}_{i_1},\ldots,\mathbf{e}_{i_p},e^{j_1},\ldots,e^{j_p})=T_{i_1,\ldots,i_p}^{j_1,\ldots,j_p},$$

и воспользуемся тем, что тензор T полностью определяется своими координатами. Почему?

В силу полилинейности для произвольных векторов

$$m{x}_1 = \sum_{i_1} \xi^{i_1} m{e}_{i_1}, \;\; \dots, \;\; m{x}_p = \sum_{i_p}
ho^{i_p} m{e}_{i_p}$$

и линейных форм

$$u^1 = \sum_{j_1} \sigma_{j_1} e^{j_1}, \dots, u^p = \sum_{j_p} \tau_{j_q} e^{j_q}$$

имеем

$$T(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_p,u^1,\ldots,u^p) = \sum_{i,j} T_{i_1,\ldots,i_p}^{j_1,\ldots,j_p} \xi^{i_1} \ldots \rho^{i_p} \sigma_{j_1} \ldots \tau_{j_q}.$$

Далее остается показать, что разложимые тензоры, отвечающие различным наборам индексов линейно независимы. Это следует из правила вычисления их значений. Пусть они ЛЗ

$$\sum_{i_1,\ldots,i_p} \lambda_{i_1,\ldots,i_p}^{j_1,\ldots,j_p} \xi^{i_1} e^{i_1} \otimes \ldots e^{i_p} \otimes \boldsymbol{e}_{j_1} \otimes \ldots \otimes \boldsymbol{e}_{j_q} = 0,$$

где $\lambda_{i_1,\dots,i_p}^{j_1,\dots,j_p}\in\mathbb{F}$. Аналогично с T_1 можем подставить элемент базиса, свести к работе с символами Кронекера.

7.1.4 Переход к другому базису

Thr 7.2. При переходе от дуальных базисов (e_i) , (e^i) пространств V и V^* κ новым дуальным базисам тех же пространств:

$$e'_k = a_k^i e_i, \qquad e^{'k} = b_i^k e^i, \ \epsilon \partial e (a_{ij})^{-1} = (b_{ij}),$$
 (13)

координаты тензора Т преобразуются по формулам

$$T_{i_1,\dots,i_p}^{j_1,\dots,j_p} = \sum_{i',j'} b_{i'_1,\dots,i'_p}^{i_1,\dots,i_p} \cdot T'_{i_1,\dots,i_p}^{j_1,\dots,j_p} \cdot a_{j'_1\dots j'_p}^{j_1,\dots,j_p}$$
(14)

Тензорное произведение пространств

Thr 7.3. Пусть V,W — векторные пространства над полем $\mathbb F$. Тогда существует векторное пространство T над $\mathbb F$ и билинейное отображение $b\colon V\times W\to T$, удовлетворяющее условиям:

- $(T1) \mid ecлu \ \boldsymbol{v}_1, \dots, \boldsymbol{v}_k \in V \ \textit{ЛНe3} \ u \ \boldsymbol{w}_1, \dots, \boldsymbol{w}_k \in W, \quad mo \ \sum_{i=1}^k b(\boldsymbol{v}_i, \boldsymbol{w}_i) = 0 \Longrightarrow \boldsymbol{w}_1 = \dots = \boldsymbol{w}_k = 0;$ $(T2) \mid ecлu \ \boldsymbol{w}_1, \dots, \boldsymbol{w}_k \in W \ \textit{ЛHe3} \ u \ \boldsymbol{v}_1, \dots, \boldsymbol{v}_k \in V, \quad mo \ \sum_{i=1}^k b(\boldsymbol{v}_i, \boldsymbol{w}_i) = 0 \Longrightarrow \boldsymbol{v}_1 = \dots = \boldsymbol{v}_k = 0;$ $(T3) \mid b coppsekmusho, m.e. \quad T = \langle b(\boldsymbol{v}, \boldsymbol{w}) \mid \boldsymbol{v} \in V, \ \boldsymbol{w} \in W \rangle_{\mathbb{F}}.$

Кроме того, пара (b,T) универсальна в том смысле, что какова ни была пара (b',T'), состоящая из векторного пространства T' и билинейного отображения $b': V \times W \to T'$, найдётся единственное линейное отображение $\sigma: T \to T'$, для которого $b'(\boldsymbol{v}, \boldsymbol{w}) = \sigma(b(\boldsymbol{v}, \boldsymbol{w})), \ \boldsymbol{v} \in V, \ \boldsymbol{w} \in W.$

Def 7.4. Пару (b,T), однозначно определенную с точностью до изоморфизма по заданным векторным пространствам V, W, называют тензорным произведением этих пространств.

Def 7.5. Пусть $A: V \to V, \mathcal{B}: W \to W$ – линейный операторы. Их *тензорным произведением* называется линейный оператор

$$\mathcal{A} \otimes \mathcal{B} \colon V \otimes W \to V \otimes W$$

действующий по правилу

$$(\mathcal{A} \otimes \mathcal{B}) (\boldsymbol{v} \otimes \boldsymbol{w}) = \mathcal{A} \boldsymbol{v} \otimes \mathcal{B} \boldsymbol{w}$$

(далее по линейности $(\mathcal{A} \otimes \mathcal{B}) (\sum (v_i \otimes w_i)) = \sum \mathcal{A} v_i \otimes \mathcal{B} w_i).$

7.2Свёртка, симметризация и альтернирование тензоров

7.2.1 Свёртка

Def 7.6 (свёртка). Зафиксировав все переменные кроме x_r и u_s , получим билинейную форму:

$$f(\boldsymbol{x}_r, u_s) := T(\dots, \boldsymbol{x}_r, \dots, u_s, \dots). \tag{15}$$

Тогда **инвариантная** сумма вида $\overline{T} = f(e_k, e^k)$ называется **свёрткой тензора** T по r-му ковариантному и s-му контрвариантному индексу.

Если обозначить свёртку по индексам r, s символом $\operatorname{tr}_r^s,$ то tr_r^s – линейное отображение:

$$\operatorname{tr}_{r}^{s}: \mathbb{T}_{p}^{q}(V) \to \mathbb{T}_{p-1}^{q-1}(V). \tag{16}$$

Thr 7.4. Свёртка вида tr^s_r тензора $T\in\mathbb{T}^q_p$ является тензор $\overline{T}\in\mathbb{T}^{q-1}_{p-1}$ с координатами

$$\overline{T}_{i_1,\dots,i_{r-1},i_{r+1},\dots,i_p}^{j_1,\dots,j_{s-1},i_{s+1},\dots,j_q} = \sum_k T_{i_1,\dots,i_{r-1},k,i_{r+1},\dots,i_p}^{j_1,\dots,j_{s-1},k,j_{s+1},\dots,j_q}$$

$$\tag{17}$$

7.2.2Симметричные тензоры

 $S\mathbb{T}^p(V)$

Для любой перестановки $\pi \in S_p$ положим

$$f_{\pi}(T)(\boldsymbol{x}_{1},\ldots,\boldsymbol{x}_{n}) = T(\boldsymbol{x}_{\pi(1)},\ldots,\boldsymbol{x}_{\pi(n)})$$
 (18)

Def 7.7. Тензор T типа (p,0) называется симметричным, если $\forall \pi \in S_p$ $f_{\pi}(T) = T$. Симметризацией $T \in \mathbb{T}_n^0(V)$ называется отображение

$$S(T) = \frac{1}{p!} \sum_{\pi \in S_p} f_{\pi}(T) \colon \mathbb{T}_p^0(V) \to \mathbb{T}_p^0(V).$$
 (19)

 $\Im\Phi$: Подпространство сим. тензоров типа $\mathbb{T}^0_p(V)$ обозначим $\mathbb{T}^+_p(V)$. Действие S: 1) $S^2=S$, $\mathrm{Im}\,S=$ $\mathbb{T}_p^+(V)$. Пространства $\mathbb{F}[X_1,\ldots,X_n]_p$ и $\mathbb{T}_p^+(V)$ биективны. Тогда

$$\dim \mathbb{F}[X_1, \dots, X_n]_p = \dim \mathbb{T}_p^+(V) = \binom{n+p-1}{p}$$
 (20)

Def 7.8. Ассоциативная и коммутативная **симметрическая алгебра** пространства V:

$$S(V) = \bigoplus_{p=0}^{\infty} S\mathbb{T}^p(V), \tag{21}$$

где ∨ выступает в качестве умножения.

7.2.3 Кососимметричные тензоры

Def 7.9. Назовём тензор T кососимметричным, если

$$f_{\pi}(T) = \operatorname{sign}(\pi) \cdot T \qquad \forall \pi \in S_{p}.$$
 (22)

Def 7.10. Альтерированием называется отображение

$$A(T) = \frac{1}{p!} \sum_{\pi \in S_p} \operatorname{sign}(\pi) \cdot f_{\pi}(T) \colon \mathbb{T}_p^0(V) \to \mathbb{T}_p^0(V).$$
 (23)

Действие A: 1) $A^2=A$, 2) $\operatorname{Im} A=\Lambda_p^+(V)$, 3) $A(f_\sigma(T))=\operatorname{sign}(\sigma)A(T)$.

7.3 Внешняя алгебра

Def 7.11. Зададим операцию внешнего умножения

$$\wedge : \Lambda(V) \times \Lambda(V) \to \Lambda(V), \tag{24}$$

полагая $Q \wedge R = A(Q \otimes R)$ для любого q-вектора Q и любого r-вектора R.

Def 7.12 (алгебра Грассмана). Алгебра $\Lambda(V)$ над $\mathbb F$ называется внешней алгеброй пространства V:

$$\Lambda(V) = \bigoplus_{p}^{n} \Lambda^{p}(V) \tag{25}$$

Thr 7.5. Внешняя алгебра ассоциативна.

 \Longrightarrow . Пусть x_1, x_2, \ldots, x_p – произвольные векторы из V. Тогда 2

$$x_1 \wedge x_2 \wedge \cdots \wedge x_p = A(x_1 \otimes x_2 \otimes \cdots \otimes x_p).$$
 (26)

 ${f Thr}$ 7.6. Пусть $({m e}_1,\ldots,{m e}_p)$ – базис V. Тогда

$$e_1 \wedge e_2 \wedge \cdots \wedge e_p, \qquad 1 \leqslant i_1 < \cdots < i_p \leqslant n$$
 (27)

образуют базис пространства $\Lambda^p(V)$.

 \Rightarrow . Внешняя алгебра $\Lambda(V)$ пространства V имеет размерность 2^n . При этом

$$\dim \Lambda^p(V) = \binom{n}{p}. \tag{28}$$

Базис пространства $\Lambda^n(V)$ состоит из одного n-вектора

$$e_1 \wedge e_2 \wedge \cdots \wedge e_p$$
.

Внешняя алгебра V антикоммутативна:

$$Q \in \Lambda^{q}(V), R \in \Lambda^{r}(V) \Rightarrow Q \land R = (-1)^{qr} R \land Q. \tag{29}$$

- # связь с определителями
- # векторные подпространства и p-векторы
- # условия разложимости р-векторов

 $^{^2}$ с. 287, Кострикин.