Emulating LA-2A Optical Compressor

With a Feed-Forward Digital Compressor Using the Newton-Raphson Method

@DMRN+19

Chin-Yun Yu and György Fazekas

Queen Mary University of London

Our contribution: 4A-2A

- A free compressor plugin
 - https://github.com/aim-gmul/4a2a
- It emulates LA-2A
- Interpretable parameters
- "4" stands for

 - Feed-4ward

Limiter/Compressor mode switch

Output gain

Gain reduction

Target task

- A mapping between LA-2A and common compressor descriptor
 - Virtual analog modelling
 - Sound matching

Problem formulation

A feed-forward compressor

Make-up

The Newton-Raphson optimisation

$$egin{aligned} heta \leftarrow heta - [
abla^2 \mathcal{L}(heta)]^{-1}
abla \mathcal{L}(heta) \ \\
abla^2 \mathcal{L}(heta) \in \mathbb{R}^{5 imes 5} \end{aligned}$$

Assuming the criterion is convex. (looks like it is, empirically \rightleftharpoons)

Differentiable attack/release

Yu, C. Y., Mitcheltree, C., Carson, A., Bilbao, S., Reiss, J. D., & Fazekas, G. (2024). Differentiable All-pole Filters for Time-varying Audio Systems. DAFx 2024.

Training details

- SignalTrain dataset
 - peak reduction ∈ [0, 5, 10,..., 100]
 - o 20 minutes for each
 - o limiter/compressor mode
- Fast training on GPU with torchcomp
- slices into 12 seconds chunks
- parallel associative scan for backpropagation
- ~= 3 seconds per step on RTX 3060
- Rounly 10 steps per setting
 - finish training in 30 seconds

Initial values

threshold: -36 dB

o ratio: 4

attack: 1 ms

release: 200 ms

- Use results from peak reduction + 5 to initialise the parameters
- Stop at peak reduction = 40 due to
 negative curvature of the loss surface

Results

Interpolation errors

Comparison regarding Error-to-Signal Ratio (ESR)

Comparison to commercial plugins

Future plans

- Frequency-dependent metrics like LSD
- Compare to other neural effects emulators
- Try Newton's method for emulating other audio effects, or more complex signal chain

