Lapped Nonlinear Interpolative Vector Quantization and Image Super-Resolution

David G. Sheppard, Kannan Panchapakesan, Ali Bilgin, Bobby R. Hunt, and Michael W. Marcellin

Abstract—This correspondence presents an improved version of an algorithm designed to perform image restoration via nonlinear interpolative vector quantization (NLIVQ). The improvement results from using lapped blocks during the decoding process. The algorithm is trained on original and diffraction-limited image pairs. The discrete cosine transform is again used in the codebook design process to control complexity. Simulation results are presented which demonstrate improvements over the nonlapped algorithm in both observed image quality and peak signal-to-noise ratio. In addition, the nonlinearity of the algorithm is shown to produce super-resolution in the restored images.

I. INTRODUCTION

Vector quantization (VQ) maps consecutive, usually nonoverlapping, segments of input data to their best matching entry in a codebook of reproduction vectors [1]. and 2In the context of image coding, VQ is generally considered a data compression technique. However, VQ algorithms have been presented which perform other signal processing tasks concurrently with compression. These span the range from speech processing tasks such as speaker recognition and noise suppression, to image processing tasks like half-toning, edge detection, enhancement, classification, reconstruction, and interpolation [2].

In earlier work [3], [4] the authors presented a novel algorithm for image super-resolution based on *nonlinear interpolative vector quantization* (NLIVQ) [5]. This algorithm addressed the classical problem of removing the blur caused by a diffraction-limited optical system [6]. Such a system acts as a low pass filter with an absolute spatial cutoff frequency proportional to its exit pupil diameter, and completely suppresses spatial frequency components of the original scene outside the system passband [7]. Image super-resolution encompasses correction of the filtering in the passband and some recovery of spatial frequency components outside it [8].

An improved version of the algorithm is presented in this work. As before, the algorithm is trained on original and diffraction-limited image pairs which are assumed to be representative of the class of images of interest. And the DCT is again used to process the image blocks in order to manage codebook complexity. The improvement results from lapping the blocks during decoding. This suppresses many of the artifacts present in images processed with earlier versions of the algorithm and produces super-resolved images which are qualitatively and quantitatively better. The following sections present a brief review of the algorithm design process, the improved lapped algorithm, and simulation results which demonstrate the improvements in image super-resolution as compared with earlier nonlapped versions of the algorithm.

Manuscript received August 11, 1997; revised May 20, 1999. This work was supported by the U.S. Air Force Maui Optical Station under Contract SC-92C-04-31. The associate editor coordinating the review of this paper and approving it for publication was Prof. Stephen E. Reichenbach.

The authors are with the Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ 85721 USA (e-mail: shep-pard@aries.tucson.saic.com).

Publisher Item Identifier S 1057-7149(00)01155-6.

II. NONLINEAR INTERPOLATIVE VQ IMAGE RESTORATION

In this section, the basic theory behind the algorithm and its design are discussed. The task at hand is to design an operator which takes as its input a blurred image block and produces the unblurred original block. This is done by training the algorithm with a large number of blurred and unblurred images. Let $\{F^i, G^i\}_{i=1}^n$ be a sequence of image pairs, where F^i and G^i are the original and diffraction-limited $N\times N$ images, respectively. Decompose each image pair of the sequence into $M\times M$ blocks which will serve as the VQ training data. Let f^{ik} and g^{ik} be block k from F^i and G^i , respectively. Assume that the encoder \mathbf{E} , decoder \mathbf{D} , and the associated codebook \mathbf{C} , are given for a VQ that minimizes the distortion

$$D = E[d(g^{ik}, \tilde{g}^{ik})]. \tag{1}$$

The process for choosing the quantized block $\tilde{\boldsymbol{g}}^{ik}$ can be written as

$$\tilde{g}^{ik} = \mathbf{D}(\mathbf{E}(g^{ik})) = \arg\min_{c_l \in \mathbf{C}} d(g^{ik}, c_l), \tag{2}$$

where c_l refers to entry l of \mathbf{C} . Define the nonlinear VQ restoration algorithm as a new decoder \mathbf{D}^* , and its associated codebook \mathbf{C}^* , which minimizes the conditional expectation

$$D = E[d(f^{ik}, \tilde{f}^{ik})^2 | \mathbf{E}(g^{ik}) = l], \tag{3}$$

where \mathbf{E} returns the index of the matching codebook entry. For a given set of training data, let $B_l = \{f^{ik} \colon \mathbf{E}(g^{ik}) = l\}$. Define entry l of \mathbf{C}^* as the centroid of B_l , or

$$c_l^* = \left(\frac{1}{|B_l|}\right) \sum_{f^{ik} \in B_I} f^{ik}. \tag{4}$$

Finally, the nonlinear VQ restoration algorithm is given by

$$\tilde{f}^{ik} = \mathbf{D}^*(\mathbf{E}(g^{ik})) = c^*_{\mathbf{E}(q^{ik})},\tag{5}$$

where \tilde{f}^{ik} is the restored image block.

It is important to note that the blurred imagery must be oversampled sufficiently to avoid aliasing if the algorithm achieves super-resolution.

III. CODEBOOK DESIGN AND LAPPED DECODING

The encoder codebook C is designed using a technique based on the discrete cosine transform (DCT). The DCT-based scheme, which is noniterative, allows much larger codebooks than are practical with the Lloyd algorithm. The procedure for designing the DCT-based encoder is summarized for $M \times M$ blocks in the following steps:

- 1) Compute the DCT \hat{g}^{ik} of each input block, g^{ik} .
- 2) For an encoding rate of R bits/pixel, allocate $L=RM^2$ bits among the transform coefficients to minimize the mean-squared error distortion of the quantized DCT blocks.
- 3) If l_{mn} is the number of bits allocated to the (m,n) DCT coefficient, design the (scalar) Lloyd-Max quantizer having $2^{l_{mn}}$ levels for that coefficient. The coefficient is assumed to be Laplacian distributed.
- 4) Define the fixed-length vector quantizer encoder E as the concatenation of the binary codes for the (scalar quantized) transform coefficients. This concatenation (or its decimal equivalent) is the codeword index.

Fig. 1. Nonlapped decoder for 3×3 blocks.

Fig. 2. Lapped decoder for 3×3 blocks.

Fig. 3. Crop from the original test image.

Fig. 4. Crop from the blurred test image (PSNR = 22.49 dB).

The next step is to compute the codebook \mathbf{C}^* for the nonlinear VQ decoder. This follows directly from the encoder design in deterministic fashion and can be summarized in the following steps

1) For each input block g^{ik} derived from the set of N diffraction-limited images, as defined above, compute the index produced by the encoder $\mathbf{E}(g^{ik})=q$.

Fig. 5. Crop from the nonlapped restoration (PSNR = 25.03 dB).

Fig. 6. Crop from the lapped restoration (PSNR = 26.33 dB).

Fig. 7. Crop from the nonlapped restoration from 30 dB SNR blurred image (PSNR = 25.02 dB).

- 2) Add the block f^{ik} , as defined above, to the running sum for codeword c_q^* and increment the counter s_q^* for that codeword.
- 3) After all blocks in the training set have been processed according to steps (1) and (2), compute each codeword in C^* as the average of each running sum according to $c_q^{*'} = (c_q^*/s_q^*)$.

Fig. 8. Crop from the lapped restoration from 30 dB SNR blurred image (PSNR = 26.31 dB).

Fig. 9. Original image Fourier spectrum magnitude (log range-compressed).

Fig. 10. Blurred image Fourier spectrum magnitude (log range-compressed).

Restoration of one image block requires the calculation of the DCT, the scalar quantization of the DCT coefficients, and a table lookup. The computational complexity of these calculations grows linearly with the number of pixels in the image block (M^2) and is roughly independent of the encoding rate (R). The lapped decoding used in the improved algorithm does not require a new codebook design procedure.

Fig. 11. Nonlapped restoration Fourier spectrum magnitude (log range-compressed).

Fig. 12. Lapped restoration Fourier spectrum magnitude (log range-compressed).

Fig. 13. Nonlapped restoration from 30 dB SNR Fourier spectrum magnitude (log range-compressed).

The difference is that lapped blocks in the blurred image are mapped to a sub-block in the restored image. For example, 3×3 blocks in the blurred image may map to a single pixel (the center pixel of the restored block) in the output image. The blocks have a two column overlap in

Fig. 14. Lapped restoration from 30 dB SNR Fourier spectrum magnitude (log range-compressed).

this case. For 4×4 blocks, the output may be a 2×2 or 1×1 sub-block from the output block produced by the decoder codebook. This is depicted graphically in Fig. 1. Only the 3×3 block size was used in this work. The improved results indicate that the larger errors in the output blocks are near the block edges, the source of the blocking artifacts seen in the nonlapped algorithm output.

IV. SIMULATION RESULTS

The simulation results described below are the results of applying the algorithm to mean-removed image blocks. Estimation of the mean of the restored block is dealt with as a separate problem using a Wiener filtering process. The block means could also be restored using an NLIVQ process trained on block means. Separating the two problems offers the advantage that all of the bits available are used for representing the AC information of the blocks. This results in better performance. The parameters for the results below are

- 1) 3×3 blocks;
- 11 bits/mean-removed block, yielding a codebook consisting of 2048 codewords;
- 3) a training set of 53 (512 \times 512) image pairs of aerial views of urban areas;
- 4) OTF optical cutoff frequency equal to half the folding frequency;
- two cases: noise-free and 30 dB blurred image signal-to-noise ratio.

Figs. 3-8 display crops of an "original" test image (outside the training set), the blurred image produced from the original, and nonlapped and lapped restorations for the two noise cases. This image is similar in edge content to many of the images in the training set. Note that near the edge of the lapped restoration the pixels for which there is insufficient support for the mask have been set to zero. In general, peak signal to noise ratio (PSNR) values of images processed by the algorithm improved by 1.5 to 2.5 dB in the nonlapped case. The lapped algorithm produces improvements in the 2.5 to 4.5 dB range. This quantitative improvement in the images is matched by a significant improvement in visual quality. This is true for images both in and out of the training set. Super-resolution is usually defined in terms of the recovery of spatial frequency components and the improved performance in this regard is shown in Figs. 9–14, where the \log_{10} of the Fourier transform magnitudes of the images from Fig. 2 are displayed. It is evident that the stronger features in the original spectrum have reappeared in the nonlapped and lapped restoration spectra. The effect is more pronounced in the lapped case. Performance in the presence of noise is encouraging, with noticable recovery of object spatial frequency information outside the optical passband.

V. CONCLUSION

An improved algorithm for image super-resolution based on non-linear interpolative vector quantization was presented. The NLIVQ training process determines the important statistical properties of the data and accomplishes the design of a nonlinear restoration algorithm. A DCT encoder was employed to manage the codebook complexity and avoid iterative training. The improvements resulting from using lapped blocks in the decoder can be seen in the suppression of artifacts present in earlier results. Both quantitative and qualitative improvements were obtained in addition to a increased super-resolution of the processed images.

REFERENCES

- A. Gersho, Vector Quantization and Signal Compression. Norwell, MA: Kluwer, 1992.
- [2] P. C. Cosman, K. L. Oehler, E. A. Riskin, and R. M. Gray, "Using vector quantization for image processing," *Proc. IEEE*, vol. 81, pp. 1325–1341, Sept. 1993.
- [3] D. G. Sheppard, A. Bilgin, M. S. Nadar, B. R. Hunt, and M. W. Marcellin, "A vector quantizer for image restoration," in *Proc.* 1996 IEEE Int. Conf. Image Processing, Lausanne, Switzerland.
- [4] —, "A vector quantizer for image restoration," IEEE Trans. Image Processing, to be published.
- [5] A. Gersho, "Optimal nonlinear interpolative vector quantization," *IEEE Trans. Commun.*, vol. 38, pp. 1285–1287, Sept. 1990.
- [6] H. C. Andrews and B. R. Hunt, *Digital Image Restoration*. Englewood Cliffs, NJ: Prentice-Hall, 1977.
- [7] J. W. Goodman, Introduction to Fourier Optics. New York: McGraw-Hill, 1968.
- [8] B. R. Hunt, "Super-resolution of images: Algorithms, principles, performance," Int. J. Imag. Syst. Tech., vol. 6, pp. 297–304, Winter 1995.