Allocation optimale au sein d'un portefeuille d'actifs financiers

A. Description

Ce projet a pour objectif le développement d'une méthode d'allocation optimale au sein d'un portefeuille de produits financiers.

On dispose d'un budget B à investir dans différents produits financiers. Chacun de ces produits (numérotés par un indice i compris entre 1 et n) est caractérisé par un rendement moyen R_i (il s'agit de l'espérance de gain pour chaque euro investi). On suppose également connue la variance V_i de chaque rendement. Enfin, on souhaite tenir compte du fait que les variations de ces rendements ne sont pas indépendantes les unes des autres : à cette fin, on estime la covariance $C_{i,j}$ du rendement pour chaque paire de produits (i,j).

L'objectif de ce projet est d'étudier des méthodes d'allocation de portefeuille, c'est-à-dire de répartition de budget disponible entre les différents produits. Une fois le budget réparti, on observe l'évolution du portefeuille à la fin d'une période de temps déterminée. Les méthodes d'allocation poursuivent alors deux buts distincts : maximiser d'une part le rendement moyen espéré pour le portefeuille à la fin de la période, et minimiser d'autre part le risque associé à ces investissements. Ce risque est quantifié au travers de la variance associée au rendement global du portefeuille.

B. Questions

Il est important de justifier soigneusement chacun de vos affirmations (y compris à l'aide de démonstrations lorsque c'est nécessaire).

1. Caractérisation des produits financiers

- Q1.1 Pour rendre les définitions rigoureuses, on suppose que le rendement (=gain espéré après la période étudiée, par euro investi) du produit financier i est une variable aléatoire ρ_i . Les informations caractérisant les n produits financiers peuvent être résumées dans un vecteur de \mathbb{R}^n et une matrice de $\mathbb{R}^{n \times n}$. Quels sont ce vecteur et cette matrice? Définissez les en fonction des variables aléatoires ρ_i .
- Q1.2 Que pouvez-vous dire en particulier de la matrice (symétrie, caractère défini)?
- Q1.3 Supposez que vous disposiez d'une base de données historique couvrant une suite de T jours consécutifs. Cette base reprend, pour chaque produit financier i, la valeur en fin de journée pour chacun des T jours ; appelons cette valeur $H_i^{(t)}$ (où t est compris entre 1 et T). Sur base de ces données, comment estimer le vecteur et la matrice du point Q1.1 ? Quelles sont les propriétés de votre estimation (en particulier de la matrice, cf. point précédent) ?

2. Éléments du modèle

Q2.1 Choisissez les variables de votre modèle, et expliquez leur signification. Quelle contrainte ces variables doivent-elle nécessairement satisfaire?

- Q2.2 Il est naturel que supposer que les variables de votre modèle doivent être positives ou nulles. Cependant il n'est pas absurde d'aussi considérer des valeurs négatives pour une variable : comment interpréter l'investissement correspondant dans ce cas ? Sauf mention contraire, dans la suite, on considère uniquement des variables positives ou nulles.
- Q2.3 Exprimez en fonction des variables choisies le rendement moyen espéré pour le portefeuille. Que pouvez-vous dire de cette fonction ?
- Q2.4 Exprimez en fonction des variables choisies la variance du rendement du portefeuille. Que pouvez-vous dire de cette fonction ?

3. Formulation d'un compromis rendement-risque

Le problème considéré comporte deux objectifs distincts, et a priori contradictoires : maximiser le rendement et minimiser le risque.

- Q3.1 On considère tout d'abord uniquement la maximisation du rendement. Expliquez comment trouver facilement la solution optimale du problème dans cette situation. Est-elle unique ? Quel est l'inconvénient d'une telle solution ?
- Q3.2 On considère ensuite uniquement la minimisation du risque. Expliquez comment trouver facilement la solution optimale du problème dans ce cas. Est-elle unique? Quel est l'inconvénient d'une telle solution?
- Q3.3 Pour les raisons évoquées plus haut, on souhaite à présent considérer les deux objectifs simultanément. Pour ce faire, on peut faire appel à trois formulations différentes :
 - 1. Optimiser le rendement tout en gardant le risque sous contrôle à l'aide d'une contrainte.
 - 2. Optimiser le risque tout en gardant le rendement sous contrôle à l'aide d'une contrainte.
 - 3. Optimiser une combinaison du rendement et du risque : cela signifie qu'on utilisera une fonction objectif (à minimiser) pour réaliser cette combinaison. Cette fonction objectif comportera un paramètre positif μ qui caractérisa le poids relatif du critère de risque par rapport au rendement (μ grand \Leftrightarrow plus d'importance à l'optimisation du risque, mu proche de zéro \Leftrightarrow plus d'importance à l'optimisation du rendement).

Décrivez sous forme d'un problème d'optimisation chacune de ces trois formulations ci-dessous (en précisant tout paramètre associé). Commentez.

- Q3.4 Que pouvez-vous dire de la convexité de chacune de ces trois formulations?
- Q3.5 Supposons qu'on décide de définir le risque à l'aide de l'écart-type du rendement, plutôt que sa variance. Quelle serait l'effet sur les trois formulations? En particulier, caractérisez l'impact sur la fonction objectif de la troisième formulation et ses propriétés; cela présente-t-il un inconvénient potentiel?