Report

Topics: Sparsity (PCA and Compressive Sensing)

Assigned: Wednesday May 23

Due: Sunday June 10 by midnight

Part I: PCA

1. (a) d0 = 6 are the dominant singular values. After 6 the values are extremely low and effectively do not contribute a lot to the ddataset.

When we run a comparison for the standard deviation values. We see that when considering the 6 dominant values there is a minor error in

Reduced this Matrix from = (2000×100) to = (2000, 6)

SD-inp: 1.2395057807174528
SD-out: 1.235722754594632
SD-Err: 0.09679696927444671

6 dominant singular values from Matrix (2000 × 100) : [282.76080712 266.71486558 242.47285716 229.01120717 161.32588682 133.6358575 5.38798619]

1. (b) Performed PCA and implemented KMeans for the dominant d0 components. We can see the probabilities of various components based on the cluster center plot.

```
K= 2
comp= 1 -> Prob=0.00 -> Prob=1.00
comp= 2 -> Prob=0.80 -> Prob=0.20
comp= 3 -> Prob=0.00 -> Prob=1.00
K= 3
comp= 1 -> Prob=0.00 -> Prob=1.00 -> Prob=0.00
comp= 2 -> Prob=0.30 -> Prob=0.00 -> Prob=0.70
comp= 3 -> Prob=0.49 -> Prob=0.51 -> Prob=0.00
K=4
comp= 1 -> Prob=0.00 -> Prob=0.00 -> Prob=0.00 -> Prob=1.00
comp= 2 -> Prob=0.51 -> Prob=0.45 -> Prob=0.04 -> Prob=0.00
comp= 3 -> Prob=0.00 -> Prob=0.00 -> Prob=0.56 -> Prob=0.44
K=5
comp= 1 -> Prob=0.00 -> Prob=0.50 -> Prob=0.13 -> Prob=0.00 -> Prob=0.37
comp= 2 -> Prob=0.30 -> Prob=0.00 -> Prob=0.00 -> Prob=0.70 -> Prob=0.00
comp= 3 -> Prob=0.46 -> Prob=0.00 -> Prob=0.54 -> Prob=0.00 -> Prob=0.00
```


Observing the Cluster Centers

2. Insights into how the cluster centers found by K-means relate to the d0-dimensional projections of the vectors {uj} in the model

The mean of data points from component 1 is the projection of u1 into m = 6 dimension, and the mean data points from component u2 is the projection of $2 \times u4$ to the m = 6 dimension, and for the data points from component three, it is the projection of (2)u6 to the m = 6 dimension. Thus, for every cluster, the centers found by K-means is the weighted average of the means of each component in lower dimension, based on how many points of that component are in the cluster.

Part II: Random Projections & Compressed Sensing

3. Generated the dataset with the following variable shapes & values

```
N = 2000,
M = 20,
Y_xp : (2000, 20),
Labels: (2000, 3),
Phi : (20, 100),
B : (100, 7)
```

4. Find a sparse reconstruction of s based on y using Lasso. The minimum M is 11

5. normalized MSE over many draws, with reconstruction performance.

Fig: We can see the mean square error increases as the lambda value increase from 0 to 1

There was another case in which it did not perform any good irrespective of the lambda value and the plot of that is available in the code logs.

6. Down projected the data to 6 dimensions with m =11

The projected distance are mentioned below in both the spaces. We can see that it did maintain some consistency across the values however not accurate.

```
projected dist matrix
                    37.45
                           56.36
                                  73.45
                                          23.64
         0.
                                                  46.821
                                         34.91
                                                 87.551
         [ 37.45
                    0.
                          66.91
                                  66.55
                   66.91
                                         59.64 114.45]
         [ 56.36
                           0.
                                 131.27
                                         70.18
          73.45
                   66.55 131.27
                                   0.
                                                 67.18]
         [ 23.64
                   34.91
                         59.64
                                  70.18
                                          0.
                                                 43.18]
         [ 46.82
                  87.55 114.45
                                  67.18
                                         43.18
                                                  0.]]
dist matrix
                         7.
                2.
                    2.
            0.
                             3.
                                  4.]
                   2.
          2.
               0.
                        3.
                            3.
                                 2.1
               2.
                    0.
                        7.
                            3.
                                 4.]
           7.
               3.
                    7.
                        0.10.
                                 7.]
               3.
                    3. 10.
           3.
                            0.
                                 7.]
                       7.
                    4.
         [ 4.
               2.
                            7.
                                 0.]]
```

7. K-means algorithm post-projection

Dataset Dimension: (2000, 11)

```
K= 2
comp= 1 -> Prob=0.69 -> Prob=0.31
comp= 2 -> Prob=0.63 -> Prob=0.37
comp= 3 -> Prob=0.27 -> Prob=0.73
K= 3
comp= 1 -> Prob=0.00 -> Prob=0.31 -> Prob=0.69
comp= 2 -> Prob=0.43 -> Prob=0.02 -> Prob=0.55
comp= 3 -> Prob=0.08 -> Prob=0.66 -> Prob=0.26
K=4
comp= 1 -> Prob=0.23 -> Prob=0.03 -> Prob=0.00 -> Prob=0.74
comp= 2 -> Prob=0.01 -> Prob=0.30 -> Prob=0.39 -> Prob=0.30
comp= 3 -> Prob=0.57 -> Prob=0.01 -> Prob=0.06 -> Prob=0.36
K= 5
comp= 1 -> Prob=0.00 -> Prob=0.00 -> Prob=0.47 -> Prob=0.43 -> Prob=0.10
comp= 2 -> Prob=0.25 -> Prob=0.37 -> Prob=0.28 -> Prob=0.10 -> Prob=0.00
comp= 3 -> Prob=0.01 -> Prob=0.05 -> Prob=0.13 -> Prob=0.41 -> Prob=0.40
```


Observing the Cluster Centers

8. geometric insight. cluster centers found by K-means relate to the m=11 dimensional projections of the vectors

K-means seeks to represent all n data vectors via small number of cluster centroids so K-means can be seen as a highly-sparse PCA.

The mean of data points from component 1 is the projection of u1 into m = 11 dimension, and the mean data points from component u2 is the projection of $2 \times u4$ to the m = 11 dimension, and for the data points from component three, it is the projection of (2)u6 to the m = 11 dimension. Thus, for every cluster, the centers found by K-means is the weighted average of the means of each component in lower dimension, based on how many points of that component are in the cluster.

h5-pca-cs

June 11, 2018

Topics: Sparsity (PCA and Compressive Sensing)

Assigned: Wednesday May 23

Due: Sunday June 10 by midnight

```
In [1]: # -*- coding: utf-8 -*-
    import numpy as np
    from math import *
    import matplotlib.pyplot as plt
    from matplotlib import cm
    from mpl_toolkits.mplot3d import Axes3D
    from scipy.stats import norm

# Params
N = 2000
dims = 100
ulength = 7
```

1 Code & Logs

1.1 Part I PCA

```
Generate a random vector u in d dimensions as follows: The components of u are i.i.d., with - P [u[i] = 0] = 2=3; P [u[i] = +1] = 1=6; P [u[i] = 1] = 1=6
```

```
u[i,j] = 0
                        elif(r<5/6):
                            u[i,j] = 1
                        else:
                            u[i,j] = -1
                if(u.any(axis=1).all()):
                    for i in range(ulength):
                        for j in range(i):
                            angles[i,j] = np.arccos( np.clip( np.dot(u[i,:]/np.linalg.norm(u[
                            angles[j,i] = angles[i,j]
            #print(angles)
            return u
        # Uj be i.i.d
        Uj = generateMultiDimGaussian(dims, ulength)
        print(Uj.shape)
(7, 100)
```

Generate d-dimensional data samples for a Gaussian mixture distribution with 3 equiprobable components 1. Zm : Standard Gaussian (N(0, 1)) distribution 2. N : noise vector" N N(0, 2Id) (default value 2 = 0:01) 3. Component 1: Generate X = u1 + Z1u2 + Z2u3 + N. 4. Component 2: Generate X = 2u4 + sqrt(2)Z1u5 + Z2u6 + N. 5. Component 3: Generate X = sqrt(2)u6 + Z1(u1 + u2) + (1/sqrt(2))Z2u5 + N

```
In [3]: """
        Generate the higher dimension dataset and sample equiprobable from components
        def generateDataset(u, num_data = 50, d = 30):
            sigma_sq = 0.01
            \#print('\nX(Nxd):',num\_data,"x",d,',\tUj:',Uj[0].shape)
            dataset = np.ndarray((num_data,d))
            labels = np.zeros((num_data,3)) # will be containing [0,1,0] one hot value
            # Assign the values based on the three component function
            for i in range(0, num_data):
                # Random numbers Zm {Z1, Z2} and N are drawn afresh
                Z1 = np.random.normal()
                Z2 = np.random.normal()
                noise = np.random.multivariate_normal(np.zeros(d), (sigma_sq)*np.eye(d))
                # choose which commponent to pick from
                idx_comp = np.random.choice([0, 1, 2],1,p=[0.333, 0.333, 0.334])
                if(idx_comp == 0): # Sample from component 1
                    dataset[i,:] = Uj[1,:] + Z1*Uj[2,:] + Z2*Uj[3,:] + noise
                elif(idx_comp == 1): # Sample from component 3
                    dataset[i,:] = 2*Uj[4,:] + np.sqrt(2)*Z1*Uj[5,:] + Z2*Uj[6,:] + noise
                elif(idx_comp == 2): # Sample from component 3
                    dataset[i,:] = np.sqrt(2)*Uj[6,:] + Z1*(Uj[1,:] + Uj[2,:]) + 1/np.sqrt(2)
```

```
# Assign a label
labels[i,idx_comp]=1
return dataset, labels

#X_data, Y_hot_labels = generateDataset(Uj, 50, 30)
#print("> X: Data Set:",X_data.shape,", Y: One hot :",Y_hot_labels.shape)
```

1.1.1 1. SVD of the A(N Œ d) data matrix

SD-Err: 3.4819962065686176e-15

A = U SIGMA VT

- 1. V must diagonalize ATA and vi are eigenvectors of ATA.
- 2. SIGMA where SIGMAii are singular values of A.
- 3. U must diagonalize AAT and ui are eigenvectors of AAT

```
In [4]: # input sample N=? from components
        def getSingularValues(N = 50, d=30):
            X_data, Y_hot_labels = generateDataset(Uj, N, d)
            print("> X: Data Set:",X_data.shape,", Y: One hot :",Y_hot_labels.shape)
            #Xt = X_data.T
           U, S, V = np.linalg.svd(X_data, full_matrices=False)
           X_a = np.dot(np.dot(U, np.diag(S)), V)
           print("> SD-inp:", np.std(X_data), "\nSD-out:", np.std(X_a), "\nSD-Err:",np.std(X_e
            print("Singular values ",N,"E",d," : ",S[0:7])
           return S
       plt.figure(figsize=(14,6))
       plt.title('Singular Values vs N')
       plt.xlabel('Singular value index')
       plt.ylabel('Singular Value magnitude')
        for Num in [50, 60, 80, 100, 120, 150, 200, 300]:
            S = getSingularValues(Num, dims)
            plt.plot(range(len(S)), S,label = str('N='+str(Num)))
        plt.legend()
       plt.show()
> X: Data Set: (50, 100) , Y: One hot : (50, 3)
> SD-inp: 1.2425699236269871
SD-out: 1.242569923626987
SD-Err: 3.048454173224238e-15
Singular values 50 E 100 : [48.39048927 43.11330642 41.06337937 33.16084801 21.96589821 15.
  1.5994595 ]
> X: Data Set: (60, 100) , Y: One hot : (60, 3)
> SD-inp: 1.3498319267986385
SD-out: 1.3498319267986376
```

```
Singular values 60 E 100 : [55.31684119 53.0200592 44.0650705 39.84964441 30.09112566 24.0
  1.69841237]
> X: Data Set: (80, 100) , Y: One hot : (80, 3)
> SD-inp: 1.1498704791356968
SD-out: 1.1498704791356964
SD-Err: 1.806028648889445e-15
Singular values 80 E 100 : [57.5893642 53.216893 40.83616548 33.89971405 28.80635373 27.
  1.76064902]
> X: Data Set: (100, 100) , Y: One hot : (100, 3)
> SD-inp: 1.2997668301927499
SD-out: 1.2997668301927496
SD-Err: 4.440394990401163e-15
Singular values 100 E 100 : [69.90863454 62.67001101 54.6252193 50.84244765 38.22080618 31
  1.90438301]
> X: Data Set: (120, 100) , Y: One hot : (120, 3)
> SD-inp: 1.3060641823925117
SD-out: 1.3060641823925123
SD-Err: 1.6985712333628717e-15
Singular values 120 E 100 : [71.74773111 67.46007854 66.34224228 60.79853815 40.5416491 31
  1.98174145]
> X: Data Set: (150, 100) , Y: One hot : (150, 3)
> SD-inp: 1.1982438899074066
SD-out: 1.198243889907406
SD-Err: 2.0649813402642227e-15
Singular values 150 E 100 : [79.06779613 70.36741234 65.26769035 51.45642124 44.6072953 37
  2.11513307]
> X: Data Set: (200, 100) , Y: One hot : (200, 3)
> SD-inp: 1.2448438513004056
SD-out: 1.2448438513004045
SD-Err: 1.9863919347571614e-15
Singular values 200 E 100 : [93.67871151 83.432265 76.45619056 68.60885691 49.28696661 46
 2.31861979]
> X: Data Set: (300, 100) , Y: One hot : (300, 3)
> SD-inp: 1.24972911012126
SD-out: 1.2497291101212598
SD-Err: 1.6247784093964919e-15
Singular values 300 E 100 : [117.56893054 104.47921109 95.45651027 86.14543701 58.243263
```

45.01554453 2.66531009]

1.1.2 1.(a) d0 = 6 are the dominant singular values

we can see this based on the variation for N = [50, 60, 80, 100, 120, 150, 200, 300]

1.1.3 Now, project the data down to the dominant d0 components to obtain an N Œ d0 data matrix.

```
In [5]: X_data, Y_hot_labels = generateDataset(Uj, N, dims)
        print("> X: Data Set:",X_data.shape,", Y: One hot :",Y_hot_labels.shape)
       U, S, V = np.linalg.svd(X_data, full_matrices=False)
       X_a = np.dot(np.dot(U, np.diag(S)), V)
        print(">\nSD-inp:", np.std(X_data), "\nSD-out:", np.std(X_a), "\nSD-Err:",np.std(X_data)
        print("Singular values ",N,"E",dims," : ",S[0:7])
       d0 = 6 \# Dominant vectors d0 = 6
        print("Singular: ", np.diag(S[:d0]).shape)
        reconst_matrix = np.dot(U[:,:d0],np.dot(np.diag(S[:d0]),V[:d0,:]))
        print(">\nSD-inp:", np.std(X_data), "\nSD-out:", np.std(reconst_matrix), "\nSD-Err:",n
        # Using eigen vector V as the basis for projecting the data
        evecs = V[:, :d0]
        X_reduced_matrix = np.dot(X_data, evecs)
        print("Reduced Matrix[From =",N,"E",dims,"]:" ," To =",X_reduced_matrix.shape)
        #print(X reduced matrix)
> X: Data Set: (2000, 100) , Y: One hot : (2000, 3)
SD-inp: 1.2395057807174528
```

```
SD-out: 1.2395057807174528
SD-Err: 1.7785550318342964e-15
Singular values 2000 E 100 : [282.76080712 266.71486558 242.47285716 229.01120717 161.32588
133.6358575
               5.38798619]
Singular: (6, 6)
SD-inp: 1.2395057807174528
SD-out: 1.235722754594632
SD-Err: 0.09679696927444671
Reduced Matrix[From = 2000 @ 100 ]: To = (2000, 6)
In [47]: def runKmeansCluster(data, labels, d):
             class_means_dict=dict()
             preds_dict=dict()
             fig = plt.figure(figsize=(8,8))
             subplot_id = 221
             print("Data Dims: ",N,"x",d)
             print("Dataset : ", data.shape)
             # Kmeans trial
             for K in range (2,6):
                 pred = np.zeros((N, K))
                 class_means = np.ndarray((K, d))
                 initial_indices = np.random.choice(N,K)
                 for k in range(K):
                     class_means[k,:] = data[initial_indices[k],:]
                 old_class_means = np.zeros((K,d))
                 print("\n-----")
                 while np.linalg.norm(old_class_means-class_means)/np.linalg.norm(class_means)
                     norm_mse = np.linalg.norm(old_class_means-class_means)
                     norm_mu = np.linalg.norm(class_means)
                     \textit{\#print(">",norm\_mse,"/",norm\_mu,"} \ \ \textit{$t=$\ $t$ ",norm\_mse/norm\_mu)$}
                     old_class_means = np.array(class_means)
                     for i in range(N):
                         distance_to_means = np.zeros(K)
                         for k in range(K):
                             distance_to_means[k] = np.linalg.norm(class_means[k] - data[i])
                         #print("Distance: ", distance_to_means)
                         nearest_mean = np.argmin(distance_to_means)
                         #print("Nearest : ",nearest_mean)
                         # labels as the min dist
                         pred[i,:] = np.zeros(K)
                         pred[i, nearest_mean] = 1 # one hot encoding
                     # new mean
```

```
for k in range(K):
                        class_means[k] = np.mean(data[np.where(pred[:,k]==1)], axis=0)
                    \#print("Class\ MU : ",class_means)
                ax = fig.add_subplot(subplot_id)
                subplot_id = subplot_id +1
                for k in range(K):
                    colors = ('#fc0d1b','#041ca2','#162214','#fd8008','#c41bb6')
                    ax.scatter(data[np.where(pred[:k] == 1),0], data[np.where(pred[:k] == 1),
                    ax.scatter(class_means[k,0], class_means[k,1], s=200, marker='+', color =
                \#plt.savefig('dim_{d_q1_{d_means.png'}}\%(d,K), dpi=600)
                #plt.show
                # save means
                class_means_dict[K] = class_means
                preds_dict[K] = pred
                probabilities = np.ndarray((3,K))
                for predicted in range(K):
                    print('_____\n')
                    for true_label in range(3):
                        interssect = np.intersect1d(np.where(labels[:, true_label] == 1), np.
                        tots = np.where(labels[:, true_label] == 1)[0]
                        \#print('K=',predicted,'',idx='',true\_label,''\setminus P->'',interssect,''\setminus T-
                        probabilities[true_label, predicted] = len(interssect) / len(tots)
                        print('K=',predicted,", idx=",true_label,' -> Prob=%.2f' % probabili
            fig.show
        print("Run on the reduced dimensions data with d0 = ", d0)
        runKmeansCluster(X_reduced_matrix, Y_hot_labels, d0)
Run on the reduced dimensions data with d0 = 6
Data Dims: 2000 x 6
Dataset : (2000, 6)
----- K= 2 -----
_____
K= 0, idx= 0 -> Prob=0.00
K= 0, idx= 1 -> Prob=0.80
K=0, idx=2 -> Prob=0.00
_____
K= 1, idx= 0 -> Prob=1.00
K= 1, idx= 1 -> Prob=0.20
K= 1, idx= 2 -> Prob=1.00
```

```
----- K= 3 -----
```

- K= 0, idx= 0 -> Prob=0.00
- K= 0, $idx= 1 \rightarrow Prob=0.30$
- K= 0, idx= 2 -> Prob=0.49

- K= 1, idx= 0 -> Prob=1.00
- K= 1, idx= 1 -> Prob=0.00
- K= 1, idx= 2 -> Prob=0.51

- K= 2, idx= 0 -> Prob=0.00
- K= 2, $idx= 1 \rightarrow Prob=0.70$
- K= 2 , idx= 2 -> Prob=0.00

----- K= 4 -----

- K= 0 , idx= 0 -> Prob=0.00
- K= 0, idx= 1 -> Prob=0.51
- K= 0, idx= 2 -> Prob=0.00

- K= 1, idx= 0 -> Prob=0.00
- K= 1, $idx= 1 \rightarrow Prob=0.45$
- K= 1, idx= 2 -> Prob=0.00

- K= 2 , idx= 0 -> Prob=0.00
- K= 2 , idx= 1 -> Prob=0.04
- K= 2, idx= 2 -> Prob=0.56

- K= 3, idx= 0 -> Prob=1.00
- K= 3 , idx= 1 -> Prob=0.00
- K= 3 , idx= 2 -> Prob=0.44

----- K= 5 -----

- K= 0, idx= 0 -> Prob=0.00
- K= 0, $idx= 1 \rightarrow Prob=0.30$
- K= 0 , idx= 2 -> Prob=0.46

K= 1 , idx= 0 -> Prob=0.50

```
K= 1 , idx= 1 -> Prob=0.00
```

K= 1 , idx= 2 -> Prob=0.00

K= 2, idx= 0 -> Prob=0.13

K= 2 , idx= 1 -> Prob=0.00

K= 2, idx= 2 -> Prob=0.54

K= 3 , idx= 0 -> Prob=0.00

K= 3, $idx= 1 \rightarrow Prob=0.70$

K= 3 , idx= 2 -> Prob=0.00

K= 4, idx= 0 -> Prob=0.37

K= 4 , idx= 1 -> Prob=0.00

K=4 , idx=2 -> Prob=0.00

1.2 Part II: Random Projections and Compressed Sensing

- 1.3 3.
 - (a.) Generate m x d matrix, IID drawn such as P[ij = +1] = 1/2; P[ij = 1] = 1/2
 - (b.) Compressive Projection, y = 1/sqrt(m) * (x) with sparse reconstruction of s based on y

```
In [7]: def generatePhiMatrix(m, d):
           u = np.ndarray((m,d))
            for i in range(m):
                for j in range(d):
                    r = np.random.rand()
                    if(r<1/2):
                        u[i,j] = 1
                    else:
                        u[i,j] = -1
            #print("(mxd):",u.shape)
            return u
        def getCompressedProjection(m, d, log=False):
            # Keeping dimensions as dimensions d = 30 and number of data N = 50
            Xp_data, Zp_hot_labels = generateDataset(Uj, N, d)
            # Generate Phi
           phi = generatePhiMatrix(m,d)
            \# Compressive Projection (m-dim projection of the d-dim matrix x)
            Y_xp = (1/np.sqrt(m)) * np.matmul(Xp_data, phi.T)
            B = np.transpose(Uj)
            if(log == True):
                print("> N =",N,", M =",m,", Y_xp:", Y_xp.shape, ", Labels:",Zp_hot_labels.shape
            return Xp_data, Y_xp, Zp_hot_labels, phi, B
        X, Y_xp, labels, phi, B_evecs = getCompressedProjection(M, dims, True)
> N = 2000, M = 20, Y_xp: (2000, 20), Labels: (2000, 3), Phi : (20, 100), B : (100, 7)
```

1.3.1 4. Lasso problem (using sklearn.linear_model.Lasso)

- (phi) = projection matrix also called A in examples
- x =latent data variables with gaussian noise
- y = observed results (projection matrix is applied on latent data variables and the result has been reduced in dimensions)

```
In [11]: from sklearn import linear_model
         def normalizedME(s, s_hat):
              return np.linalg.norm(s_hat - s)/np.linalg.norm(s)
         def findMinimumM():
             mses = []
             # Keeping dimension fixed and varying M for this
             rng = range(1,15)
             for m in rng:
                 s, Y_xp, labels, phi, B = getCompressedProjection(m, dims, False)
                 matrix = (1/np.sqrt(m)) * np.matmul(phi, B)
                 clf = linear_model.Lasso(alpha = 1.0) # Set lambda ( called alpha here )
                 clf.fit(matrix, Y_xp.T) # Fit the reduced Y to the one hot
                 a_hat = clf.coef_ # Get a_hat
                 s_hat = np.matmul(a_hat, B.T) # this is the output
                 #print("Mat:",matrix.shape, ",\ts_hat:",s_hat.shape, ",\ts:",s.shape)
                 mses.append(normalizedME(s, s_hat))
             plt.plot(list(rng), mses)
             plt.show()
             return np.argmin(mses)+1
         minM = findMinimumM()
         print("The minimum M is ", minM)
```


1.3.2 5. Normalized MSE vs Lambda

```
In [37]: def normalize(lst):
             s = sum(1st)
             return map(lambda x: float(x)/s, lst)
         def mean(lst):
             return sum(lst)/float(len(lst))
         def normalizedMSE(s, s_hat):
              return (np.linalg.norm(s_hat - s)/np.linalg.norm(s))**2
         def computeMSELambda(N, m, d):
             mse_ = []
             mse\_comp1_ = []
             mse\_comp2_ = []
             mse\_comp3_ = []
             s, Y_xp, labels, phi, B = getCompressedProjection(m, d, False)
             matrix = (1/np.sqrt(m)) * np.matmul(phi, B)
             clf = linear_model.Lasso(alpha = 1.0) # Set lambda ( called alpha here )
             clf.fit(matrix, Y_xp.T) # Fit the reduced Y to the one hot
             a_hat = clf.coef_ # Get a_hat
             s_hat = np.matmul(a_hat, B.T) # this is the output
             for i in range(N):
                 mse = normalizedMSE(s[i],s_hat[i])
                 index = np.where(labels[i] == 1)[0]
                 if index == 0: #component 1
                     mse_comp1_.append(mse)
                 if index == 1:
                     mse_comp2_.append(mse)
                 if index == 2:
                     mse_comp3_.append(mse)
                 mse_.append(mse)
             return mean(mse), mean(mse comp1), mean(mse comp2), mean(mse comp3)
         mse_list=[]
         mse_comp1_list = []
         mse_comp2_list = []
         mse_comp3_list = []
         lambda_list = [0.05, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
         for l in lambda list:
             me, me1, me2, me3 = computeMSELambda(N, minM, dims)
             mse_list.append(me)
             mse_comp1_list.append(me1)
```

```
mse_comp2_list.append(me2)
mse_comp3_list.append(me3)
```

Plot of Lambda vs MSE

1.3.3 6. Compare the Euclidean distances squared vs the corresponding quantity in projected space

```
dist_matrix = np.zeros(shape=(J,J))
        for i in range(J):
           for j in range(J):
               dist = np.linalg.norm(Uj[:,i]-Uj[:,j])**2
               dist_matrix[i][j] = dist
        print("dist_matrix\n",dist_matrix)
projected_dist_matrix
 [[ 0.
         37.45 56.36 73.45 23.64 46.82]
 Γ 37.45
          0.
               66.91 66.55 34.91 87.55]
 [ 56.36 66.91 0. 131.27 59.64 114.45]
 [ 73.45 66.55 131.27
                            70.18 67.18]
                     0.
 [ 23.64 34.91 59.64 70.18
                            0.
                                  43.18]
 [ 46.82 87.55 114.45 67.18 43.18
                                   0. ]]
dist_matrix
 [[ 0. 2. 2. 7. 3. 4.]
 [2. 0. 2. 3. 3. 2.]
 [2. 2. 0. 7. 3. 4.]
 [7. 3. 7. 0. 10. 7.]
 [3. 3. 3. 10. 0. 7.]
 [4. 2. 4. 7. 7. 0.]]
1.3.4 7. K-means algorithm post-projection
In [48]: x, labels = generateDataset(Uj, N, dims)
        phi = generatePhiMatrix(minM,dims)
        Y = np.matmul(phi,np.transpose(x))/(np.sqrt(minM))
        Z = np.transpose(Y)
        runKmeansCluster(Z,labels, minM)
Data Dims: 2000 x 11
Dataset : (2000, 11)
----- K= 2 -----
-----
K= 0, idx= 0 -> Prob=0.69
K= 0, idx= 1 \rightarrow Prob=0.63
K= 0, idx= 2 -> Prob=0.27
_____
K= 1, idx= 0 -> Prob=0.31
K= 1, idx= 1 \rightarrow Prob=0.37
K= 1, idx= 2 -> Prob=0.73
----- K= 3 -----
```

```
K= 0 , idx= 0 -> Prob=0.00
```

$$K= 0$$
, $idx= 1 \rightarrow Prob=0.43$

K= 0, idx= 2 -> Prob=0.08

- K= 1, idx= 0 -> Prob=0.31
- K= 1, idx= 1 -> Prob=0.02
- K= 1, idx= 2 -> Prob=0.66

- K= 2 , idx= 0 -> Prob=0.69
- K= 2 , idx= 1 -> Prob=0.55
- K= 2, idx= 2 -> Prob=0.26

----- K= 4 -----

- K= 0 , idx= 0 -> Prob=0.23
- K= 0, $idx= 1 \rightarrow Prob=0.01$
- K= 0, idx= 2 -> Prob=0.57

- K= 1, idx= 0 -> Prob=0.03
- K= 1, $idx= 1 \rightarrow Prob=0.30$
- K= 1, idx= 2 -> Prob=0.01

- K= 2, idx= 0 -> Prob=0.00
- K= 2 , idx= 1 -> Prob=0.39
- K= 2, idx= 2 -> Prob=0.06

- K= 3, idx= 0 -> Prob=0.74
- K= 3, $idx= 1 \rightarrow Prob=0.30$
- K= 3, idx= 2 -> Prob=0.36

----- K= 5 -----

- K= 0, idx= 0 -> Prob=0.00
- K= 0, $idx= 1 \rightarrow Prob=0.25$
- K= 0, idx= 2 -> Prob=0.01

- K= 1, idx= 0 -> Prob=0.00
- K= 1, idx= 1 -> Prob=0.37
- K= 1, idx= 2 -> Prob=0.05

```
K= 2 , idx= 0 -> Prob=0.47
```

K= 2 , idx= 1 -> Prob=0.28

K= 2, idx= 2 -> Prob=0.13

K= 3 , idx= 0 -> Prob=0.43

K= 3 , idx= 1 -> Prob=0.10

K= 3 , idx= 2 -> Prob=0.41

K=4 , idx=0 -> Prob=0.10

K=4 , idx=1 -> Prob=0.00

K=4 , idx=2 -> Prob=0.40

- 1.3.5 8. Geometric insights
- 1.3.6 END