Cyber Physical Systems - Discrete Models Exercise Sheet 14 Solution

Alper Ari aa508@uni-freiburg.edu Onur Sahin os141@uni-freiburg.de

February 7, 2023

Exercise 1: Transition Systems, Program Graphs, Interleaving 45/8

the set (and (var) of a PG are conditions on the variables, in your PGs, cond (var) = {x==0, y==03 (your initial conditions). Don't use valuations as APs!

Exercise 2: From LTL to NBA and Back

Exercise 3: LT Properties for a Program

$$AP = \{x = 0, x > 1\}$$

Assuming that "x is equal to 0" doesn't hold for $AP = \{x = 0, x > 1\}$ and only holds for $AP = \{x = 0\}$. Similar assumption is made for "x differs from 0" as well.

Part A

• a)
$$\left\{A_{0}A_{1}...\in\left(2^{\mathrm{AP}}\right)^{\omega}\mid \mathrm{false}\right\}$$
• b) $\left\{A_{0}A_{1}...\in\left(2^{\mathrm{AP}}\right)^{\omega}\mid \{x=0\}=A_{0}\}\right\}$
• c) $\left\{A_{0}A_{1}...\in\left(2^{\mathrm{AP}}\right)^{\omega}\mid \{x>1\}=A_{0}\}\right\}$
• d) $\left\{A_{0}A_{1}...\in\left(2^{\mathrm{AP}}\right)^{\omega}\mid \{x=0\}=A_{0}\wedge\exists i\in\mathbb{N}_{1}.\{x=1\}=A_{i}\}\right\}$
• e) $\left\{A_{0}A_{1}...\in\left(2^{\mathrm{AP}}\right)^{\omega}\mid \forall i\in\mathbb{N}.\ \{x>1\}\neq A_{i}\right\}$
• f) $\left\{A_{0}A_{1}...\in\left(2^{\mathrm{AP}}\right)^{\omega}\mid \exists i\in\mathbb{N}.\ \{x>1\}=A_{i}\right\}$
• g) $\left\{A_{0}A_{1}...\in\left(2^{\mathrm{AP}}\right)^{\omega}\mid \exists i\in\mathbb{N}.\ \{x>1\}=A_{i}\right\}$
• g) $\left\{A_{0}A_{1}...\in\left(2^{\mathrm{AP}}\right)^{\omega}\mid \forall i\in\mathbb{N}.\ \{x>1\}=A_{i}\right\}$

Part B

- a) It's a safety property because it satisfies the condition that all traces that are not in the language has a bad prefix. Since there are no traces in the property, any finite trace is a bad prefix for this language.
- b) It's a safety property with $\operatorname{BadPref} = \left\{ A_0 A_1 ... A_n \in \left(2^{\operatorname{AP}}\right)^+ \mid \{x=0\} \neq A_0 \right\} \quad \checkmark$
- c) It's a safety property with $\mathrm{BadPref} = \left\{A_0A_1...A_n \in \left(2^{\mathrm{AP}}\right)^+ \mid \{x>0\} \neq A_0\right\}$
- d) It's not a safety property. One counter example is $\sigma = \{x = 0\}^{\omega}$. σ does not satisfy this It property, however all of it's finite prefixes can be extended to satisfy the property by appending $\{x > 1\}$ at some point. Therefore, this trace doesn't have any prefix that is a bad prefix of the language of this property.
- e) It's not a safety property because it's a liveness property. It's a liveness property because for any finite prefix we can extend it so that $\{x>1\}$ does not appear infinitely often.
- f) Similar to part e), this is also a liveness property because we can extend any finite prefix such that $\{x>1\}$ appears infinitely often. Therefore it's not a safety property.
- g) It's a safety property, because there are no traces that is not in the language of this property. Therefore it satisfies the safety property condition trivially.

6/6

If
$$\varphi_1 \equiv \varphi_2$$
 and $\psi_1 \equiv \psi_2$, then $(\varphi_1 \vee \psi_1) \equiv (\varphi_2 \vee \psi_2)$.

We know that $(\varphi_1 \vee \psi_1) \equiv (\varphi_2 \vee \psi_2)$ is equivalent to $\text{fair} \to (\varphi_1 \vee \psi_1) \equiv \text{fair} \to (\varphi_2 \vee \psi_2)$.

We need to show that:

- 1. Words(fair $\rightarrow (\varphi_1 \lor \psi_1)) \subseteq Words(fair \rightarrow (\varphi_2 \lor \psi_2))$
- 2. Words(fair $\rightarrow (\varphi_2 \lor \psi_2)) \subseteq \text{Words}(\text{fair} \rightarrow (\varphi_1 \lor \psi_1))$

Then the equivalence holds.

Without loss of generality, we can prove just the lemma 1. Lemma 2. can be proven in the same fashion.

Let $\sigma \vDash \operatorname{Words}(\operatorname{fair} \to (\varphi_1 \lor \psi_1))$. Then:

- 1. $\sigma \nvDash \text{fair}$: Then $\sigma \vDash \text{fair} \to (\varphi_2 \lor \psi_2)$ holds trivially.
- 2. $\sigma \vDash$ fair: Then we also know that $\sigma \vDash (\varphi_1 \lor \psi_1)$. Then we have the following cases:
 - 1. $\sigma \vDash \varphi_1$: Then from $\varphi_1 \equiv \varphi_2$ we can claim $\sigma \vDash \varphi_2$ as well. And therefore $\sigma \vDash (\varphi_2 \lor \psi_2)$. Hence, $\sigma \vDash \text{fair} \to (\varphi_2 \lor \psi_2)$.
 - 2. $\sigma \vDash \psi_1$: Then from $\psi_1 \equiv \psi_2$ we can claim $\sigma \vDash \psi_2$ as well. And therefore $\sigma \vDash (\psi_2 \lor \psi_2)$. Hence, $\sigma \vDash \text{fair} \to (\varphi_2 \lor \psi_2)$.

Since $\forall \sigma \in \operatorname{Words}(\operatorname{fair} \to (\varphi_1 \vee \psi_1))$. $\sigma \in \operatorname{Words}(\operatorname{fair} \to (\varphi_2 \vee \psi_2))$, $\operatorname{Words}(\operatorname{fair} \to (\varphi_1 \vee \psi_1)) \subseteq \operatorname{Words}(\operatorname{fair} \to (\varphi_2 \vee \psi_2))$. Applying the same steps for the other direction we can conclude that $(\varphi_1 \vee \psi_1) \equiv (\varphi_2 \vee \psi_2) \blacksquare$

b)

If
$$\varphi_1 \equiv \varphi_2$$
, then $(\bigcirc \varphi_1) \equiv (\bigcirc \varphi_2)$.

We know that $(\bigcirc \varphi_1) \equiv (\bigcirc \varphi_2)$ is equivalent to $\operatorname{fair} \to (\bigcirc \varphi_1) \equiv \operatorname{fair} \to (\bigcirc \varphi_2)$.

We need to show that:

- 1. Words(fair $\rightarrow (\bigcirc \varphi_1)$) \subseteq Words(fair $\rightarrow (\bigcirc \varphi_2)$)
- 2. Words(fair $\rightarrow (\bigcirc \varphi_2)$) \subseteq Words(fair $\rightarrow (\bigcirc \varphi_1)$)

Then the equivalence holds.

Without loss of generality, we can prove just the lemma 1. Lemma 2. can be proven in the same fashion.

Let
$$\sigma \vDash \text{fair} \to (\bigcirc \varphi_1)$$
. Then:

- 1. $\sigma \nvDash \text{fair}$: Then $\sigma \vDash \text{fair} \to (\bigcirc \varphi_2)$ holds trivially.
- 2. $\sigma \vDash \text{fair}$: Then we also know that $\sigma \vDash (\bigcirc \varphi_1)$. Let $\sigma' = \sigma[1..]$. We know that $\sigma' \vDash \varphi_1$. Also $\sigma' \vDash \text{fair}$ because σ' is a suffix of σ . So $\sigma' \vDash \text{fair} \to \varphi_1$. From $\varphi_1 \equiv \varphi_2$, we can conclude that $\sigma' \vDash \text{fair} \to \varphi_2$. And because $\sigma' \vDash \text{fair}$, $\sigma' \vDash \varphi_2$ also holds. Thus $\sigma \vDash (\bigcirc \varphi_2)$. Hence we conclude $\sigma \vDash \text{fair} \to (\bigcirc \varphi_2)$.

Since $\forall \sigma \in \operatorname{Words}(\operatorname{fair} \to (\bigcirc \varphi_1))$. $\sigma \in \operatorname{Words}(\operatorname{fair} \to (\bigcirc \varphi_2))$, $\operatorname{Words}(\operatorname{fair} \to (\bigcirc \varphi_1)) \subseteq \operatorname{Words}(\operatorname{fair} \to (\bigcirc \varphi_2))$. Applying the same steps for the other direction we can conclude that $(\bigcirc \varphi_1) \equiv (\bigcirc \varphi_2) \blacksquare$

c)

If
$$\varphi_1 \equiv \varphi_2 \psi_1 \equiv \psi_2$$
, then $(\varphi_1 U \psi_1) \equiv (\varphi_2 U \psi_2)$.

We know that $(\varphi_1 U \psi_1) \equiv (\varphi_2 U \psi_2)$ is equivalent to fair $\to (\varphi_1 U \psi_1) \equiv \text{fair} \to (\varphi_2 U \psi_2)$.

We need to show that:

- 1. Words(fair $\rightarrow (\varphi_1 U \psi_1)$) \subseteq Words(fair $\rightarrow (\varphi_2 U \psi_2)$)
- 2. Words(fair $\rightarrow (\varphi_2 U \psi_2)$) \subseteq Words(fair $\rightarrow (\varphi_1 U \psi_1)$)

Then the equivalence holds.

Without loss of generality, we can prove just the lemma 1. Lemma 2. can be proven in the same fashion.

Let $\sigma \vDash \text{fair} \to (\varphi_1 U \psi_1)$. Then:

- 1. $\sigma \nvDash \text{fair: Then } \sigma \vDash \text{fair} \to (\varphi_2 \lor \psi_2) \text{ holds trivially.}$
- 2. $\sigma \vDash \text{fair}$: Then it must follow that $\sigma \vDash \varphi_1 U \psi_1$. There exists an $i \in \mathbb{N}$ such that $\sigma[i..] \vDash \psi_1$ and $\forall j \in \mathbb{N}$. $j < i \to \sigma[j..] \vDash \varphi_1$.

Since every suffix of σ is also fair, from $\varphi_1 \equiv \varphi_2$ we can conclude $\forall j \in \mathbb{N}. \ j < i \to \sigma[j..] \vDash \varphi_2$. And similarly from $\psi_1 \equiv \psi_2$ we can conclude $\sigma[i..] \vDash \psi_2$. Therefore $\sigma \vDash \varphi_2 U \psi_2$ where the break point is i. Then $\sigma \vDash \text{fair} \to \varphi_2 U \psi_2$.

Since $\forall \sigma \in \operatorname{Words}(\operatorname{fair} \to (\varphi_1 U \psi_1))$. $\sigma \in \operatorname{Words}(\operatorname{fair} \to (\varphi_2 U \psi_2))$, $\operatorname{Words}(\operatorname{fair} \to (\varphi_1 U \psi_1)) \subseteq \operatorname{Words}(\operatorname{fair} \to (\varphi_2 U \psi_2))$. Applying the same steps for the other direction we can conclude that $(\varphi_1 U \psi_1) \equiv (\varphi_2 U \psi_2) \blacksquare$