Integração numérica pela regra do ponto médio, dos trapézios e de Simpson

Murillo Freitas Bouzon

Resumo—Uma alternativa para resolver integrais em problemas computacionais é o uso de integrais numéricas, também chamada de quadratura, onde é feita a aproximação da área sobre a curva de uma função. As regras de Newton-Cotes são um grupo fórmulas para integração numérica, aplicado em pontos igualmente espaçados, porém dependendo do número de pontos, o resultado pode apresenta um erro alto. Para melhorar a aproximação do valor calculado em relação ao valor real da integral, existe o método de quadratura adaptativa, onde o número de sub-intervalos é divido em dois enquanto o erro é maior do que uma tolerância desejada. Sendo assim, neste trabalho é implementado as regras de Newton-Cotes para integração numérica, utilizando quadratura adaptativa para melhorar a precisão do resultado final.

Index Terms—Integração numérica, Regra de Simpson, Regra do ponto médio, Regra do trapézio, Quadratura adaptativa

I. INTRODUÇÃO

Para resolver problemas de integração que possuem primitivas muito complexas ou a função a ser integrada não é conhecida, existe uma área em análise numérica chamada de integração numérica, onde é possível se aproximar do valor de uma integral definida de uma função através de métodos iterativos.

Alguns exemplos de métodos de integração numérica são as Regras de Newton-Cotes, sendo dividas em dois tipos: abertas e fechadas. A regra do ponto médio é um exemplo de Regra de Newton-Cotes aberta, pois não inclui os extremos do intervalo de integração. Exemplos de Regras de Newton-Cotes fechadas são a regra dos trapézios e a regra de Simpson, que incluem os extremos do intervalo de integração.

Geralmente, estes métodos decompõem o domínio em n intervalos e realizam a soma dos resultados da integração de cada pedaço dividido. É possível aumentar o valor de n de forma adaptativa para encontrar o valor aproximado mais similar com o valor real da integração. O método que realiza isso é chamado de quadratura adaptativa.

Com as ideias apresentadas acima, este trabalho tem como objetivo realizar a integração numérica de funções utilizando as Regras do ponto médio, dos trapézios e de Simpson, utilizando quadratura adaptativa.

II. FUNDAMENTAÇÃO TEÓRICA

Neste seção serão apresentados os conceitos a respeito das técnicas utilizadas na realização deste trabalho.

A. Regra do ponto médio

A regra do ponto médio ou dos retângulos é uma das fórmulas de Newton-Cotes aberta para integração numérica.

Pode ser descrita pela Equação (1). A Figura 1 mostra um exemplo da aplicação da regra do ponto médio.

$$\int_{a}^{b} f(x)dx \simeq (b-a)f(\frac{a+b}{2}) \tag{1}$$

Figura 1: Ilustração da integração numérica pela regra do ponto médio, utilizando n=3.

Para calcular o erro de aproximação para a fórmula do ponto médio, utiliza-se a Equação (2).

$$E = \frac{h^3}{24} f^{(2)}(x0), \tag{2}$$

sendo $h=\frac{(b-a)}{n},\,x0$ um valor entre a e b e n o número de intervalos em que a função foi dividida.

B. Regra dos Trapézios

A regra dos trapézios é uma das fórmulas de Newton-Cotes fechada para integração numérica, onde a integral é dada pela soma da área de n trapézios. Pode ser descrita pela Equação (3) [1]. A Figura 2 mostra um exemplo da aplicação da regra dos trapézios.

$$\int_{a}^{b} f(x)dx \simeq (b-a)\frac{f(a)+f(b)}{2} \tag{3}$$

Para calcular o erro de aproximação para a fórmula dos trapézios, utiliza-se a Equação (4) [1].

$$E = -\frac{h^3}{12}f^{(2)}(x0),\tag{4}$$

1

Figura 2: Ilustração da integração numérica pela regra dos trapézios, utilizando n = 1. Fonte: [1].

C. Regra de Simpson

A regra de Simpson é outra formula de Newton-Cotes fechada para integração numérica, onde a ideia é dividir f(x) em dois intervalos para ser aproximada por uma parábola neste intervalo. Pode ser descrita pela Equação (5) [1]. A Figura 3 mostra um exemplo da aplicação da regra de Simpson.

$$\int_{a}^{b} f(x)dx \simeq (b-a)\frac{f(a) + 4 * f(\frac{a+b}{2}) + f(b)}{6}$$
 (5)

Figura 3: Ilustração da integração numérica pela regra de Simpson, utilizando n=1. Fonte: [1]

Para calcular o erro de aproximação para a fórmula de Simpson, utiliza-se a Equação (6) [1].

$$E = -\frac{h^5}{90} f^{(4)}(x0), \tag{6}$$

D. Quadratura adaptativa

A ideia da quadratura adaptativa é: dada duas diferentes estimativas I1 e I2 da integral

$$I = \int_{a}^{b} f(x)dx \tag{7}$$

é feita a diferença entre I1 e I2 para estimar um erro. Caso esse erro seja menor que o erro tolerável ϵ , I1 é aceito como resposta. Senão, o intervalo [a,b] é dividido em dois sub-intervalos,

$$I = \int_{a}^{m} f(x)dx \int_{m}^{b} f(x)dx \quad m = \frac{a+b}{2}$$
 (8)

sendo calculados de forma independente e para cada novo valor de *I*1 e *I*2, calcula-se o erro e divide novamente em sub-intervalos enquanto o critério de parada não for atingido. Ideia mostrada em [2].

III. METODOLOGIA

Para realizar este trabalho, foram implementadas 4 classes ao todo. A Figura 4 apresenta o diagrama de classes deste trabalho.

Figura 4: Diagrama UML das classes implementadas neste trabalho.

A primeira classe é a classe Function que representa uma função qualquer para ser integrada, possuindo como atributos:

- · a: extremo inferior da integral
- · b: extremo superior da integral

Para poder calcular a derivada de ordem N de f(x), foi implementado o método derivativeNthOrder(), que recebe x e a ordem n. O resultado do método é dado pela Equação (9).

$$f^{n}(x) = \frac{1}{h^{n}} \sum_{i=0}^{n} (-1)^{k+n} \binom{n}{k} f(x+kh)$$
 (9)

Para os métodos Midpoint(), Trapezoidal() e Simpson() foram utilizadas as suas respectivas fórmulas apresentadas na Seção II. O mesmo foi feito para os métodos MidpointError(), TrapezoidalError() e SimpsonError().

Os métodos de quadratura adaptativa podem ser descritos pelo Algoritmo 1, que recebe uma tolerância de erro E e retorna o número de intervalos ideal n. o método ruleError(n) pode ser qualquer um dos métodos implementados para encontrar o erro de cada uma das 3 regras apresentadas.

Algorithm 1: AdaptiveQuadrature(E)

```
n = 1 error1 = ruleError(n)
error2 = 0
while abs(error1 - error2) > E do
n = n*2
error2 = error1
error1 = ruleError(n)
end
return n
```

A classe Function_A representa a função $f(x)=e^x$. A classe Function_B representa a função $f(x)=\sqrt{1-x^2}$. A classe Function_C representa a função $f(x)=e^{-x^2}$.

IV. EXPERIMENTOS E RESULTADOS

Para validar os métodos implementados neste trabalho, foram realizados dois experimentos diferentes. O primeiro experimento foi aplicar as três regras implementadas para integrar as três funções apresentadas na Seção III, utilizando o número de sub-intervalos n=2.

A Tabela I apresenta os resultados do primeiro experimento, onde cada célula mostra o resultado de cada regra aplicado em cada uma das funções. Observando os resultados, é possível afirmar que o método que melhor se aproximou do resultado real é a regra de Simpson, obtendo um valor de erro baixo comparado com o resultado real.

Resultado da integração	Função A	Função B	Função C
Ponto médio	1.7005	0.8148	0.7545
Trapézio	1.7539	0.6830	0.7313
Simpson	1.7183	0.7708	0.7468
Real	1.7182	0.7851	0.7468

Tabela I: Tabela de resultados do experimento 1.

No segundo experimento foi aplicado o método de quadratura adaptativa para cada uma das regras para encontrar o melhor valor de n que possua um erro tolerável para resolver as três funções do experimento anterior. Foi adotada uma tolerância de erro E=0.000001. A Tabela II mostra o número de sub-intervalos encontrados para cada um dos métodos aplicados em cada uma das funções.

Número de sub-intervalos	Função A	Função B	Função C
Ponto médio	128	128	128
Trapézio	128	128	128
Simpson	16	32	32

Tabela II: Tabela com o número de sub-intervalos n encontrado pelo método de quadratura adaptativa do experimento 2.

Nota-se que para a regra do ponto médio e dos trapézios, o valor de n=128 se manteve o mesmo para as três funções,

porém, para a regra de Simpson o valor de n foi bem menor em comparação com as outras duas regras. Após encontrado o valor de n, foi as funções foram integradas utilizando este valor para as três regras, obtendo os resultados mostrados na Tabela III, mostrando que foi possível encontrar o valor da integral das três funções bem próximo da integral real. No entanto, o método de Simpson mostrou-se sair superior em comparação com as outras duas regras, precisando de um valor de n bem menor para encontrar o resultado mais próximo da integral real.

Resultado da integração	Função A	Função B	Função C
Ponto médio	1.71827	0.78545	0.74682
Trapézio	1.71829	0.78519	0.74682
Simpson	1.71828	0.78517	0.74682

Tabela III: Tabela com o resultado obtido por cada regra utilizando *n* sub-intervalos encontrados pela quadratura adaptativa no experimento 2.

V. CONCLUSÃO

Neste trabalho foi feita a implementação da regra do ponto médio, dos trapézios e de Simpson para integração numérica, utilizando o método de quadratura adaptativa para aprimorar os resultados.

Os resultados mostraram que foi possível realizar a integração numérica com as três regras, sendo que a regra de Simpson chegou o mais próximo do resultado real. Além disso, com o método de quadratura adaptativa, foi possível se aproximar melhor do valor real da integral, dividindo as funções a serem integradas em 128 sub-intervalos para a regra do ponto médio e dos trapézios. Porém, a regra de Simpson conseguiu o resultado mais próximo da integral real utilizando o menor número de sub-intervalos entre as três regras.

REFERÊNCIAS

- Richard L. Burden and John Douglas Faires. Numerical analysis, 9th edition. Brooks/Cole, Cengage Learning.
- [2] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical recipes: the art of scientific computing, 3rd edition. In SOEN, 2007.