

Model Optimization and Tuning Phase Template

Date	12 July 2024
Team ID	xxxxxx
Project Title	Human Resource Management Predicting Employee Promotions Using Machine Learning
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
DecisionTreeCl assifier	<pre>param_grid = { 'criterion': ['gini', 'entropy'], 'max_depth': [None, 10, 20, 30, 40, 50], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4] }</pre>	{'criterion': 'gini', 'max_depth': None, 'min_samples_leaf': 1, 'min_samples_split': 5} Accuracy Score: 0.941

RandomForest Classifier	<pre>param_grid = { 'n_estimators': [10, 50, 100, 200], 'criterion': ['gini', 'entropy'], 'max_depth': [None, 10, 20, 30, 40, 50], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4] }</pre>	{'criterion': 'entropy', 'max_depth': 40, 'min_samples_leaf': 1, 'min_samples_split': 5, 'n_estimators': 200} Accuracy Score: 0.958
KNeighborsCla ssifier	<pre>param_grid = { 'n_neighbors': [3, 5, 7, 9, 11], 'weights': ['uniform', 'distance'], 'algorithm': ['auto', 'ball_tree', 'kd_tree', 'brute'], 'p': [1, 2] }</pre>	{'algorithm': 'ball_tree', 'n_neighbors': 3, 'p': 1, 'weights': 'distance'} Accuracy Score: 0.928
GradientBoosti ngClassifier	<pre>param_grid = { 'n_estimators': [50, 100, 200], 'max_depth': [3, 6, 9], 'learning_rate': [0.01, 0.1, 0.2], 'subsample': [0.8, 1.0], 'colsample_bytree': [0.8, 1.0] }</pre>	{'colsample_bytree': 1.0, 'learning_rate': 0.2, 'max_depth': 9, 'n_estimators': 200, 'subsample': 0.8} Accuracy Score: 0.945

Performance Metrics Comparison Report (2 Marks):

Model	Baseline Metric	Optimized Metric
DecisionTreeClassi fier	precision recall f1-score support 0 0.95 0.93 0.94 15065 1 0.93 0.95 0.94 15019 accuracy 0.94 30084 macro avg 0.94 0.94 30084 weighted avg 0.94 0.94 0.94 30084	Classification Report:
RandomForestClass	precision recall f1-score support 0 0.96 0.95 0.96 15065 1 0.95 0.96 0.96 15019 accuracy 0.96 30084 macro avg 0.96 0.96 0.96 30084 weighted avg 0.96 0.96 0.96 30084	Classification Report:
KNeighborsClassifi er	precision recall f1-score support 0 0.98 0.83 0.90 15065 1 0.85 0.98 0.91 15019 accuracy 0.91 30084 macro avg 0.91 0.91 0.91 30084 weighted avg 0.91 0.91 0.91 30084	Classification Report:
GradientBoostingCl assifier	precision recall f1-score support 0 0.90 0.81 0.85 15065 1 0.82 0.91 0.87 15019 accuracy 0.86 30084 macro avg 0.86 0.86 0.86 30084 weighted avg 0.86 0.86 0.86 30084	Classification Report:

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
	The RandomForestClassifier was chosen as the final optimized model due to
	its impressive performance, achieving 95.8% accuracy. Its robustness to
	overfitting, ability to handle large datasets, and high accuracy make it ideal for
	the task. The ensemble approach, which involves averaging multiple decision
	trees, enhances stability and generalization to unseen data. Additionally,
	random forests efficiently manage datasets with numerous features and
	provide insights into feature importance. This model's balance of accuracy,
RandomForestCla	robustness, and interpretability, along with its versatility, confirms its
ssifier	suitability for the problem at hand.