Abstract

This is a project in the course Computational Life Sciences at the Baden-Wuerttemberg Cooperative State University Stuttgart (DHBW Stuttgart). Inspired by the rise of the novel corona-variant ,Omikron', the main research question was: How do two similar variants behave when they are initially put in the same environment. Do they coexist or compete? An SEIRD-model is used, which was created with NetLogo. The stochastic exploration of data using R shows that the chance of emerging competition between two similar variants is very high.

Simulation Bioinformatik I Konkurrierende Viren

Bioinformatik bei Werner Kriechbaum | 13.12.2021 | Ferdinand König | Matr.-Nr.: 9591527 |

www.dhbw-stuttgart.de

Motivation und Fragestellung

- SARS-Cov-2 und seine neue Variante Omikron.
- Wie verhalten sich 2 gleiche Varianten eines Virus zueinander?
 - Konkurrierend
 - Koexistierend

Vorexperiment

- Notwendig f
 ür Vergleichswert
- Aufbauend auf Modell 'Virus' (SIRD)
- Erweitert auf SEIRD, Exposed mit 4 Tage
- Angepasst, sodass Wellen auftreten
- Limitiert auf 720 Tage ≈ 2 Jahre, später dann als Koexistenz gewertet
 - Vergleichbar mit Pandemie
- Initiale Werte 10 Personen Exposed
 - Ansteckungsrate 9%
- Auswertung mithilfe R

S -> E (gets exposed with a certain chance if in contact with sick person)

S,E,I,R -> D (dies of old age)

I -> R | D (gets healthy and immune or dies)

E -> I (from exposed to infectous after 4 days)

R -> S (immunity is limited)

Vorexperiment

Vorexperiment

Vorexperiment – Dauer der Epidemie

23% stirbt Virus aus

Zwei gleiche Varianten

- → Annahmen: Kreuzimmunität, Man kann nur an einer Variante zeitgleich erkranken (E und I)
- → Variante 0 = Variante 1
- → Initial 5 Personen exposed von Variante 0; 5 Personen exposed von Variante 1
- → Zunächst stoppte Simulation wenn ein Virus gestorben war.
 - → Sterben beide Viren oder erholt sich das andere?
 - → Verdrängt ein Virus das andere? Oder überlebt ein Virus, wenn Ressourcen (S) knapp wurden?
- → 1000 mal (Noise war zu groß bei 100)

Gleiche Varianten

S -> E0, E1 (gets exposed with a certain chance if in contact with sick person) S,E0,E1,I0,I1,R -> D (dies of old age)

I0, I1 -> R | D (gets healthy and immune or dies)

E0 -> I0 (from exposed to infectous after 4 days)

E1 -> I1 (from exposed to infectous after 4 days)

R -> S (immunity is limited)

Gleiche Varianten

Gleiche Varianten – Dauer der Epidemie

24,3%, dass beide Varianten aussterben (Im Vergleich 23%)

Der Versuchsaufbau ist in 76% der Fälle 'epidemiefreundlich'

Gleiche Varianten – Dauer der Epidemie für ein Virus (Variante 0)

33,6%, dass Variante 0 stirbt während Variante 1 überlebt

Gleiche Varianten – Dauer der Epidemie für ein Virus (Variante 1)

33,5%, dass Variante 1 stirbt während Variante 0 überlebt

Gleiche Varianten – Wie erfolgreich ist die andere Variante? Verdrängung oder Überlebenskampf?

Andere Variante ist geschwächt oder nicht mehr vorhanden

Stochastik / Auswertung

P(0) := "Variante 0 überlebt (720 Tage)"

 $P(\neg 0) := "Variante 0 stirbt vorher aus"$

	P(0)	P(¬0)	
P(1)	0,086	0,336	0,422
P(¬1)	0,335	0,243	0,578
	0,421	0,579	1

Gesamt:

- → P("Eine Variante dominant") = ~ 2/3
- → P("Koexistenz") = 8,6%

Aus Sicht einer Variante:

→ P(0) = 42,1 % (Im Vergleich zu 77% bei nur einer Variante)

Abhängigkeit:

→ $P(0 \cap 1) = 8,6\%$

- \rightarrow P(0) * P(1) = 0,421 * 0,422 = ~17,8%
- → Beeinflussen sich tatsächlich
- → Negativ

Quelle und Projektlink

Wilensky, U. (1998). NetLogo Virus model. http://ccl.northwestern.edu/netlogo/models/Virus. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL

https://github.com/ferdinand-dhbw/covid-variant-simulation

Future Work

- Immunitätslevel untersuchen
- An verschiedenen Zeitpunkten zweite Variante in die Population bringen
- Zweite Variante variieren (Andere Ansteckungsrate, ...)

Vielen Dank

Ferdinand König

Matr.-Nr.: 9591527

inf19211@lehre.dhbw-stuttgart.de