Theoretische Physik 3: Quanfenme drank

Inhalt

- 0) QM im täglichen Leben
- 1) Probleme der blassichen Physik
- 2) Wellenmechanik
- 3) Schrödinger Gleichung
- 4) Mathematisches Intermezzo
- 5) Klassische Mechanik: Hamilton
- 6) Operator-Formalismus und die Postulate der QM
- 7) Messungen
- 8) Das Korrespondent-Problem
- 9) Prehimpuls
- 10) Zonhalkiäfte
- M) Mahix-Darstellung
- 12) Spm
- 13) Transformationen zu ischen Darstellungen
- 19) Näherungsmethoden

Übungsgruppen: Freitag 13-16 Uhr oder 14-17 Uhr

Klausuren: 1) Dr, 22,7.
2) Do, 2.10. } 9-12 Uhr, WP

Zulassung: 50% wearbeitet haben

http://www.th.physik.uni-bonn.de/groups/drees/feaching.html

0) Quantenmedonik in tägliden Leben

QM ist essentiel, um die Welt quantitativ zu verstehen. Dies gilt nicht nur für sehr kleine Systeme:

- *) Sonne:
 - -> Spekham: überlagerung von Kontinaum ("schwarzer Shahler") Theo U.) and Linian (-> Alemphysik)
 - -> Energiequelle: Kernfusion, beaut auf Tunneln durch "Coulomb-Barriere" (-> Kop. 3)
- *) Himmel: Blauer Himmel: Streaung v. Photonen an Elekhonen (>QMZ)
- *) Leben: Genom, chemische Realtionen,

 Z.B. Photosynthese (-> Molekülphysik /

 theoretische Chemie)
- QM st essentiell für tedmische Anwendungen:
- *) Supaleitung: Für Magneten: Elekhonenpuar einen makusleopischen Quantenzastand
 (=> Fostlörpertheorie)
- *) Laser: Braucht System mit disketen (quantisketen)
 energie zuständen, and Quanten stakstik
 der Lizhtleilchen (-> QM2, Theo 4., Spezialvorlesungen)

Vohersagen der Rootenmechonik entspechen nicht immer unscrev Intuition. Sie künnen aber extrem genna sein! z.B. magnetisches Dipolmoment eines freien Elektrons:

$$\frac{9e^{-2}}{2} = (1.159.652.181,78\pm0,77)\cdot10^{-12}$$

Relative Genanigkeit: 0,7,10-3, dh. 0,7 ppb (>QED, QFT) Zun Vergleich:

Verhersage von Sattelifenbahn in niedlig an Erd-Orbit. Fehler nach 12h v 10m/40 000 km v 250 ppb

^{=&}gt; Quanten ist victit "esotovisch"; ist zentral in (fast) allen Feldern d. modernen Physik => 2 Vorlesungen

1) Problème der blessischen Physik

In der Newton's hen Mechanik:

- *) Alle Kerper sind unterscheidbar
- *) Jeder Körper hat zu jeder Zeit einen festen Ort und evnen festen Impuls (oder Geschandigkeit)
- *) Deterministisch: Aus $\hat{x}_i(t_0)$, $\hat{x}_i(t_0)$ können $\hat{x}_i(t)$, $\hat{x}_i(t)$ $\forall t$ berechnef werden

Keines dieser Prinzipien ist in QM giltig!

Beachle: Naturgesetze sind Hypothesen, die streng genommen nicht bewiesen werden könner, wohl aber widelegt.

Aber QM hat so viele Präzisionstest bestanden, dass QM "richtig" ist. ("FAPP")

i) Das klassische Hom

Ratherford's Stren-Experimente: Rkern < RAtom

Mkern ~ Matom > me

=> Elekronen umkeisen rahenden, punktfermigen Kern.

Dies ist eine beschlennigte Bewegung: Elektron

misste elm. Strahlung abgeben.

=> stürzt in den Kern

=>
$$\vec{p}(t) = -qero\left(\begin{array}{c} cos\omega t\\ sin\omega t\\ \end{array}\right)$$
 => $|\vec{p}| = |q_c|r_o\omega^2$

=> Energieverlast pro Umlauf:

$$\Delta E \simeq P_{ab} \tau = \frac{2\pi r_o}{V} \cdot \frac{\rho_o}{6\pi c} \cdot \frac{v^u}{r_o^u} q_c^2 r_o^2 = \frac{\rho_o}{3} \cdot \frac{v^3}{c} \cdot \frac{q_c^2}{r_o}$$

Fix
$$v_0 = 1 \text{ Å} : V = 10^{-2} \text{ c} \text{ (ans } \frac{q_e^2}{4\pi E_0 r^2} = \frac{\text{meV}^2}{r} \text{)}$$

Bohrische Lösung: Postuliere quantisierten Dehimpula

(1.3)

(1.2)

(1.1)

h: Planck'sches Wirlamgs quantum = 6,6.10-34 Js

$$m_{evn} \cdot \sqrt{\frac{q_{e}^{2}}{4\pi \varepsilon_{o} m_{e} r_{n}}} = n t \Rightarrow r_{n} = n^{2} \frac{t^{2} 4\pi \varepsilon_{o}}{q_{e}^{2} m_{e}^{2}}$$

$$(1.4)$$

=)
$$E_n = -\frac{q_e^2}{8\pi \epsilon_0 v_n} = -\frac{1}{2} \left(\frac{q_e^2}{4\pi \epsilon_0 h c} \right)^2 \cdot m_e c^2 \cdot \frac{1}{N^2} := -\frac{1}{2} m_e c^2 \alpha^2 \frac{1}{N^2}$$
 (1.5)

Mit Foinstaldhur Konstante
$$d := \frac{qe^2}{4\pi \epsilon_0 \pi c} = \frac{1}{137,036...}$$
 (1.6)

*) Photo- Elektrischer Effeld

hicht kann Elebhanan aus einem Körper freisetzern.
Renhaddung: Fe = F + mal v

Beobachtung: E^e_{max} = E_o + const. v malerial abh. Frequenz des Konstante lichtes

(1.7)

Emax hängt nicht von Intensität des Lichtes ab, die Klassisch die Energie des Lichtes festlegt.

Eddlarung (Einstein 1905): Licht besteht ous distraten

Quanten ("Photonen"), mit Energie Ez = h·v (1.8)

Mif (1.5). Home absorbieren oder emissieren Licht nur bei diskreten Wellenlängen! Für H-Atom: $hv = \frac{1}{2}\alpha^2 me^{-2}\left(\frac{1}{n^2} - \frac{1}{m^2}\right) m, n \in \mathbb{N}, m \ge n$ (1.9)