RSA*Conference2016

San Francisco | February 29 – March 4 | Moscone Center

How Poorly Managed Keys and Certificates Impact the Trust Model

Stephen Jordan

SVP/Technology Area Manager Wells Fargo & Co Enterprise Information Security Engineering & Services

Key and Certificate Trust Model

- Used for secure communications, authentication, and authorization
- But when poorly managed, they jeopardize the trust they are meant to establish

- SSL/TLS
- SSH
- Mobile devices
- WiFi &VPN access
- Etc.

Security Gaps

- Most security controls blindly trust keys and certificates
- Cyber criminals misuse keys and certificates to bypass security controls
- Do you trust all keys and certificates?

Foundation of Layered Security

When the Foundation Isn't Protected

Cyber Criminal Activity

Cyber Criminals Misuse Unmanaged / Unprotected Keys and Certificates:

- Abuse their trusted status
- Hide in encrypted traffic—e.g., transmit malware or steal data
- Eavesdrop using man-in-the-middle (MITM) attacks
- Code-sign malware
- Spoof websites in phishing attacks

Increasing Attacks

Source: Venafi

The Problem

23,922 KEYS & CERTIFICATES

On average per company

UP 34% FROM 2013

17,807

Ponemon

- Increased management complexity
- Lack of knowledge/management of the trust model
- Human error/lack of education

And It's Only Getting Worse...

4.9 Billion Connected "Things" in 2015 up to 25 Billion by 2020

Gartner

Real-world Case Study #1

As reported by Time, Bloomberg, and others, known Chinese cyber-espoinage operator, APT18, compromised a Fortune 200 American health services organization and stole data on 4.5 million patients.

Reconstructed by:

Attack Stage 1: Stole Private Keys

Attackers used

HEARTBLEED

To compromise private keys.

MANY STILL VULNERABLE

All those that did not replace all keys and certificates following Heartbleed

ATTACKERS BYPASSED SECURITY CONTROLS

In addition to Heartbleed, they could have used any of millions of malware variants that steal keys and certificates to bypass security controls.

Attack Stage 2: Gained Access

ATTACKERS BREACHED THE COMPANY

Using stolen private keys and VPN credentials. The private keys were used to decrypt live data.

ATTACKERS BYPASSED SECURITY CONTROLS

Circumventing firewalls, authentication, and other security controls.

Attack Stage 3: Expanded Foothold

ONCE IN, ATTACKERS WORKED TO ELEVATE PRIVILEGES AND EXPAND ACCESS

Stole or created new SSH keys and certificates for future backdoor access and exfiltration of data.

ATTACKERS BYPASSED SECURITY CONTROLS

Including firewall, authentication, VPN, and privileged access controls by using stolen keys and certificates to hide their activity.

Attack Stage 4: Exfiltrated Data

ATTACKERS EXFILTRATED DATA USING SSL

Most security controls do not conduct SSL inspection or have ALL of the keys necessary to decrypt ALL traffic, leaving a huge blind spot

ATTACKERS BYPASSED SECURITY CONTROLS

Used encrypted SSL/TLS communications to bypass security controls, including DLP, IDS/IPS, threat detection, sandboxing, etc.

Real-world Case Study #2

Russian hacking group stole an SSL private key to conduct an effective phishing campaign of a Fortune 100 bank.

The attack went undetected for months and led to the loss of account information for tens of millions of customers.

Reconstructed by:

Attack Stage 1: Getting a Private Key

PURCHASED ON THE UNDERGROUND

Attackers purchased an SSL private key for a wildcard certificate for a Fortune 100 bank

\$1000 PRICE TAG

For a stolen certificate in the underground marketplace

ABUSING TRUST

How did the private key wind up for sale on the underground marketplace? Most likely it was stolen by malware or it might have been sold by an employee.

Attack Stage 2: Gain Access to DNS

SSH BRUTE FORCE:

Conducted an SSH brute force attack to get a username & password.

PRIVATE KEY WITH ROOT

ACCESS: Searched the home directory tree and revealed a tarfile with a system backup, containing an SSH private key for root access.

MATCHING DOMAIN NAME

TO CERTIFICATE: Inserted a DNS entry into the system zone file and the IP Address of a hacked server into the production DNS system.

Attack Stage 3: Build a Phishing Website

A BELIEVABLE PHISHING WEBSITE

Attackers cloned a legitimate, reputable production website, but used the phishing URL.

ABUSING TRUST

Using the stolen SSL certificate enabled the phishing site to display a valid certificate— along with a valid domain name and SSL/TLS encryption, this made a convincing phishing site.

Attack Stage 4: Lure Victims

ROUTING USERS TO PHISHING SITE

Emails were sent to harvested email addresses for the bank's customers and employees.

ABUSING TRUST

When a user and password combination were entered, the fake site then redirected the end user to the legitimate site through a MITM approach.

What's Needed

Protect Your Business

- Establish visibility, awareness, and a centralized inventory of keys and certificates
- Get control with enforced policies & workflows for certificate management
- Automate certificate lifecycle actions
- Educate, educate, educate

Benefits of Better Management

- Increase operational efficiencies
 - Avoid outages—increase system uptime
 - Reduce certificate lifecycle timeline

Improve security

- Know what should and shouldn't be trusted
- Strengthen investment in other security controls
- Reduce attack vector with tighter control
- Leverage trust model → don't blindly trust everything

Apply What You Have Learned Today

Next week:

- Identify your current key and certificate management approaches
- Read the full Raxis attack reconstructions to better understand vulnerabilities

Within three months:

- Conduct a full inventory of all keys and certificates, including a vulnerability assessment
- Develop a management strategy, including policies and workflow
- Evaluate tools to help automate key and certificate management & security

Within six months:

- Implement management & security tools
- Begin phased approach to vulnerability remediation

Tips

- Don't boil the ocean, it is a journey, one step at a time
- Educate, educate, educate
- Rinse and repeat—this is not a one time event

Questions

Case Study #1

Real-world Attack Case Study: Misuse of Keys and Certificates Bypass Critical Security Controls

http://research.crn.com/content51270

Case Study #2

Real-world Attack Case Study: Private Keys and Digital Certificates Used for Phishing and Breach of a Global Bank

http://whitepapers.fiercecio.com/content50888

