Gabarito: Estrutura Molecular

Daniel Sahadi, Renan Romariz, e Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

Problemas

PROBLEMA 1. A

1F01

- BeH₂: Há 2 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do berílio de forma que a configuração de menor energia (repulsão) é a linear (maior afastamento das nuvens).
- ClF₂⁺: Há 2 nuvens eletrônicas ligantes e 2 nuvens eletrônicas não ligantes ao redor do cloro de forma que a configuração de menor energia (repulsão) é a angular (maior afastamento das nuvens).
- I₃⁻: Há 2 nuvens eletrônicas ligantes e 3 nuvens eletrônicas não ligantes ao redor do átomo central de forma que a configuração de menor energia (repulsão) é a linear (maior afastamento das nuvens).
- NO₂⁻: Há 2 nuvens eletrônicas ligantes e 1 nuvem eletrônica não ligante ao redor do nitrogênio de forma que a configuração de menor energia (repulsão) é a angular (maior afastamento das nuvens).

PROBLEMA 2. B

1F02

- NOF: Há 3 nuvens eletrônicas de forma que sua hibridização é sp².
- ${\rm ClF_2}^-$: Há 5 nuvens eletrônicas de forma que sua hibridização é ${\rm sp^3d}$.
- ${\rm ClO_2}^-$: Há 4 nuvens eletrônicas de forma que sua hibridização é ${\rm sp^3}.$
- N₃⁻: Há 2 nuvens eletrônicas de forma que sua hibridização é sp.

PROBLEMA 3. E

1F03

- N₂O: Há 2 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do átomo central de forma que a configuração de menor energia (repulsão) é a linear (180ř).
- O₃: Há 2 nuvens eletrônicas ligantes e 1 nuvem eletrônica não ligante ao redor do átomo central de forma que a configuração de menor energia (repulsão) é a angular. Menor comprimento de ligação dentre os que possuem forma angular o que gera uma maior repulsão entre as nuvens aumentando o ângulo da molécula (116,8ř).
- KrF₂: Há 2 nuvens eletrônicas ligantes e 3 nuvens eletrônicas não ligantes ao redor do átomo central de forma que a configuração de menor energia (repulsão) é a linear (180ř).
- OF₂: Há 2 nuvens eletrônicas ligantes e 2 nuvens eletrônicas não ligantes ao redor do átomo central de forma que a configuração de menor energia (repulsão) é a angular. Maior comprimento de ligação dentre os que possuem forma angular o que gera uma menor repulsão entre as nuvens diminuindo o ângulo da molécula (103,1ř).

PROBLEMA 4. A

1F04

- C₂H₂: Há 2 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do átomo de carbono de forma que as ligações C—C—H tem ângulo igual a 180ř.
- C₂O₃: Há 3 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do átomo de carbono de forma que as ligações O-C-O e C-C-O tem ângulo aproximadamente igual a 180ř.
- HNCO: Há 2 nuvens eletrônicas ligantes e 1 nuvem eletrônica não ligante ao redor do nitrogênio de forma que as ligações H-N=C tem ângulo igual a 120ř. Além disso, há 2 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do carbono de forma que as ligações N=C=O tem ângulo igual a 180ř.
- HOCN: Há 2 nuvens eletrônicas ligantes e 2 nuvens eletrônicas não ligants ao redor do oxigênio de forma que as ligações H−O−C tem ângulo igual a 109,5ř. Além disso, há 2 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do carbono de forma que as ligações O−C≡N tem ângulo igual a 180ř.

PROBLEMA 5. C

1F05

- 1. BeCl₂: Há 2 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do berílio de forma que a configuração de menor energia (repulsão) é a linear (maior afastamento das nuvens), assim o vetor dipolo magnético resultante é nulo e a molécula é apolar.
- 2. XeF₂: Há 2 nuvens eletrônicas ligantes e 3 nuvens eletrônicas não ligantes ao redor do xenônio de forma que a configuração de menor energia (repulsão) é a linear (maior afastamento das nuvens), assim o vetor dipolo magnético resultante é nulo e a molécula é apolar.
- 3. SO₂: Há 2 nuvens eletrônicas ligantes e 1 nuvem eletrônica não ligante ao redor do enxofre de forma que a configuração de menor energia (repulsão) é a angular (maior afastamento das nuvens), assim o vetor dipolo magnético resultante é não nulo e a molécula é polar.
- 4. H₂S : Há 2 nuvens eletrônicas ligantes e 2 nuvens eletrônicas não ligantes ao redor do enxofre de forma que a configuração de menor energia (repulsão) é a angular (maior afastamento das nuvens), assim o vetor dipolo magnético resultante é não nulo e a molécula é polar.

PROBLEMA 6. D

1F06

- NH₂⁺: Há 2 nuvens eletrônicas ligantes e 1 nuvem eletrônica não ligante ao redor do nitrogênio de forma que a configuração de menor energia (repulsão) é a angular (maior afastamento das nuvens), assim o vetor dipolo magnético resultante é não nulo e a molécula é polar.
- 2. ClOF: Há 2 nuvens eletrônicas ligantes e 2 nuvens eletrônicas não ligantes ao redor do cloro de forma que a configuração

^{*}Contato: gabriel.braun@pensi.com.br, (21) 99848-4949

de menor energia (repulsão) é a angular (maior afastamento das nuvens), assim o vetor dipolo magnético resultante é não nulo e a molécula é polar.

- 3. Br₃⁻: Há 2 nuvens eletrônicas ligantes e 3 nuvens eletrônicas não ligantes ao redor do átomo central de forma que a configuração de menor energia (repulsão) é a linear (maior afastamento das nuvens), assim o vetor dipolo magnético resultante é nulo e a molécula é apolar.
- 4. OCS : Há 2 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do carbono de forma que a configuração de menor energia (repulsão) é a linear (maior afastamento das nuvens), segue que $\mu_{res}=\mu(O=C)-\mu(C=S)\neq 0$, assim o vetor dipolo magnético resultante é não nulo e a molécula é polar.

PROBLEMA 7. E

1F07

- CO₃²⁻: Há 3 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do carbono de forma que a configuração de menor energia (repulsão) é a trigonal planar.
- XeO₃: Há 3 nuvens eletrônicas ligantes e 1 nuvem eletrônica não ligante ao redor do xenônio de forma que a configuração de menor energia (repulsão) é a trigonal piramidal.
- SF₃⁻: Há 3 nuvens eletrônicas ligantes e 2 nuvens eletrônicas não ligantes ao redor do enxofre de forma que a configuração de menor energia (repulsão) é a com formato em T.
- H₃O⁺: Há 3 nuvens eletrônicas ligantes e 1 nuvem eletrônica não ligante ao redor do oxigênio de forma que a configuração de menor energia (repulsão) é a trigonal piramidal.

PROBLEMA 8. E

1F08

- PCl₃: Há 4 nuvens eletrônicas de forma que sua hibridização é sp³
- NO₃⁻: Há 3 nuvens eletrônicas de forma que sua hibridização é sp².
- XeOF₂: Há 5 nuvens eletrônicas de forma que sua hibridização é sp³d.
- ${
 m ClO_3}^-$: Há 4 nuvens eletrônicas de forma que sua hibridização é ${
 m sp^3}.$

PROBLEMA 9. D

1F09

- BH₃: Há 3 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do átomo de boro de forma que as ligações H—B—H tem ângulo igual a aproximadamente 120ř.
- NH₃: Há 3 nuvens eletrônicas ligantes e 1 nuvem eletrônica não ligante ao redor do átomo de nitrogênio de forma que as ligações H—N—H tem ângulo igual a aproximadamente 109,5ř.
- ClF₃: Há 3 nuvens eletrônicas ligantes e 2 nuvens eletrônicas não ligantes ao redor do átomo de cloro de forma que as ligações F—Cl—F tem ângulo igual a aproximadamente 90ř.
- COCl₂: Há 3 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do átomo de carbono de forma que as ligações Cl-C-Cl tem ângulo igual a aproximadamente 109,5ř e as ligações O=C-Cl tem ângulo aproximadamente igual a 120ř.

PROBLEMA 10. D

1F10

- N₂H₄: Há 3 nuvens eletrônicas ligantes e 1 nuvem eletrônica não ligante ao redor do átomo de nitrogênio de forma que as ligações N—N—H e H—N—H tem ângulo aproximadamente igual a 109,5ř.
- N₂O₄: Há 3 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do átomo de nitrogênio de forma que as ligações N—N=O e O=N=O tem ângulo aproximadamente igual a 120ř.
- C₂H₄: Há 3 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do átomo de carbono de forma que as ligações H—C—H e C=C—H tem ângulo aproximadamente igual a 120ř.
- CH₃NH₂: Há 4 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do átomo de carbono e 3 nuvens eletrônicas ligantes e 1 nuvem eletrônica não ligante ao redor do nitrogênio de forma que a hibridização de ambos é sp³ e seus ângulos de ligação são de aproximadamente 109,5*.

PROBLEMA 11. C

1F11

- BF₃: Há 3 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do boro de forma que a configuração de menor energia (repulsão) é a trigonal planar (maior afastamento das nuvens), assim o vetor dipolo magnético resultante é nulo e a molécula é apolar.
- 2. AsF₃: Há 3 nuvens eletrônicas ligantes e 1 nuvem eletrônica não ligante ao redor do arsênio de forma que a configuração de menor energia (repulsão) é a trigonal piramidal (maior afastamento das nuvens), assim o vetor dipolo magnético resultante é não nulo e a molécula é polar.
- 3. SO₃: Há 3 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do enxofre de forma que a configuração de menor energia (repulsão) é a trigonal planar (maior afastamento das nuvens), assim o vetor dipolo magnético resultante é nulo e a molécula é apolar.
- 4. IF₃: Há 3 nuvens eletrônicas ligantes e 2 nuvens eletrônicas não ligantes ao redor do iodo de forma que a configuração de menor energia (repulsão) é a em forma de T (maior afastamento das nuvens), assim o vetor dipolo magnético resultante é não nulo e a molécula é polar.

PROBLEMA 12. D

1F12

- CH₃⁻: Há 3 nuvens eletrônicas ligantes e 1 nuvem eletrônica não ligante ao redor do carbono de forma que a configuração de menor energia (repulsão) é a tetraédrica (maior afastamento das nuvens), assim o vetor dipolo magnético resultante é não nulo e a molécula é polar.
- 2. CH₃⁺: Há 3 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do carbono de forma que a configuração de menor energia (repulsão) é a trigonal planar (maior afastamento das nuvens), assim o vetor dipolo magnético resultante é nulo e a molécula é apolar.
- 3. CH_2O : Há 3 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do carbono de forma que a configuração de menor energia (repulsão) é a trigonal planar (maior afastamento das nuvens), segue que $\mu_{res} = \mu(O=C)+2\mu(C-H)cos(60ř) \neq 0$, assim o vetor dipolo magnético resultante é não nulo e a molécula é polar.

4. XeF₃⁺: Há 3 nuvens eletrônicas ligantes e 2 nuvens eletrônicas não ligantes ao redor do xenônio de forma que a configuração de menor energia (repulsão) é a em forma de T (maior afastamento das nuvens), assim o vetor dipolo magnético resultante é não nulo e a molécula é polar.

PROBLEMA 13. E

1F13

- SiF₄: Há 4 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do silício de forma que a configuração de menor energia (repulsão) é a tetraédrica.
- IF₄⁺: Há 4 nuvens eletrônicas ligantes e 1 nuvem eletrônica não ligante ao redor do iodo de forma que a configuração de menor energia (repulsão) é a em forma de gangorra.
- SO₂Cl₂: Há 4 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do enxofre de forma que a configuração de menor energia (repulsão) é a tetraédrica.
- ClF₄⁻: Há 4 nuvens eletrônicas ligantes e 2 nuvens eletrônicas não ligantes ao redor do cloro de forma que a configuração de menor energia (repulsão) é a quadrangular planar.

PROBLEMA 14. D

1F14

- IF₄⁻: Há 6 nuvens eletrônicas de forma que sua hibridização é sp³d².
- IO₂F₂⁻: Há 5 nuvens eletrônicas de forma que sua hibridização é sp³d.
- S₂O₃²⁻: Há 4 nuvens eletrônicas de forma que sua hibridização é sp³.
- ${\rm NSF_3}$: Há 4 nuvens eletrônicas de forma que sua hibridização é ${\rm sp^3}$.

PROBLEMA 15. E

1F15

- POCl₃: Há 4 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do átomo de fósforo de forma que as ligações O=P—Cl tem ângulo aproximadamente igual a 120ře as ligações Cl—P—Cl tem ângulo aproximadamente igual a 109,5ř.
- SF₄: Há 4 nuvens eletrônicas ligantes e 1 nuvem eletrônica não ligante ao redor do átomo de enxofre de forma que as ligações F—S—F contendo um flúor em posição axial e outro em posição equatorial tem ângulo aproximadamente igual a 90ře as ligações F—S—F contendo 2 átomos de flúor em posição axial ou 2 átomos de flúor em posição equatorial tem ângulo aproximadamente igual a 180ř.
- BH₄⁻: Há 4 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do átomo de boro de forma que as ligações H–B–H tem ângulo aproximadamente igual a 109,5ř.
- XeF₄: Há 4 nuvens eletrônicas ligantes e 2 nuvens eletrônicas não ligantes ao redor do átomo de xenônio de forma que as ligações F—Xe—F tem ângulo aproximadamente igual a 90ř.

PROBLEMA 16. D

1F16

 CH₃OCH₃: Há 4 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor dos átomos de carbono e 2 nuvens eletrônicas ligantes e 2 nuvens eletrônicas não ligantes ao redor do oxigênio de forma que a hibridização de ambos é sp³ e seus ângulos de ligação são de aproximadamente 109,5ř.

- Be(CH₃)₂: Há 2 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do átomo de berílio de forma que as ligações C—Be—C tem ângulo aproximadamente igual a 180ř. Além disso, há 4 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor dos átomos de carbono de forma que as ligações H—C—H e H—C—Be tem ângulo aproximadamente igual a 109,5ř.
- $S_2O_8^{2-}$: Há 4 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor dos átomos de enxofre e 2 nuvens eletrônicas ligantes e 2 nuvens eletrônicas não ligantes ao redor de 2 átomos de oxigênio de forma que a hibridização de ambos é $\rm sp^3$ e seus ângulos de ligação são de aproximadamente $109,5 \rm \check{r}$.
- FSSF₃: Há 4 nuvens eletrônicas ligantes e 1 nuvem eletrônica não ligantes ao redor de um dos átomos de enxofre e 2 nuvens eletrônicas ligantes e 2 nuvens eletrônicas não ligantes ao redor do outro átomo de enxofre de forma que as ligações F-S-F tem ângulo aproximadamente igual a 120ř e as ligações S-S-F tem ângulo aproximadamente igual a 109,5ř.

PROBLEMA 17. B

1F17

- CH₄: Há 4 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do carbono de forma que a configuração de menor energia (repulsão) é a tetraédrica (maior afastamento das nuvens), assim o vetor dipolo magnético resultante é nulo e a molécula é apolar.
- 2. XeO₄: Há 4 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do xenônio de forma que a configuração de menor energia (repulsão) é a tetraédrica (maior afastamento das nuvens), assim o vetor dipolo magnético resultante é nulo e a molécula é apolar.
- 3. TeF₄: Há 4 nuvens eletrônicas ligantes e 1 nuvem eletrônica não ligante ao redor do telúrio de forma que a configuração de menor energia (repulsão) é a em forma de gangorra (maior afastamento das nuvens), assim o vetor dipolo magnético resultante é não nulo e a molécula é polar.
- 4. KrF₄: Há 4 nuvens eletrônicas ligantes e 2 nuvens eletrônicas não ligantes ao redor do criptônio de forma que a configuração de menor energia (repulsão) é a quadrangular planar (maior afastamento das nuvens), assim o vetor dipolo magnético resultante é nulo e a molécula é apolar.

PROBLEMA 18. C

1F18

- 1. PF₄⁻: Há 4 nuvens eletrônicas ligantes e 1 nuvem eletrônica não ligante ao redor do fósforo de forma que a configuração de menor energia (repulsão) é a em forma de gangorra (maior afastamento das nuvens), assim o vetor dipolo magnético resultante é não nulo e a molécula é polar.
- 2. CH_2F_2 : Há 4 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do carbono de forma que a configuração de menor energia (repulsão) é a tetraédrica (maior afastamento das nuvens), segue que $\mu_{res} = (2\mu(C-F) + 2\mu(C-H))\cos(54,75\check{r}) \neq 0$, assim o vetor dipolo magnético resultante é não nulo e a molécula é polar.
- 3. BrF₄⁻ : Há 4 nuvens eletrônicas ligantes e 2 nuvens eletrônicas não ligantes ao redor do bromo de forma que a configuração de menor energia (repulsão) é a quadrangular planar (maior afastamento das nuvens), assim o vetor dipolo magnético resultante é nulo e a molécula é apolar.

4. AlCl₄⁻: Há 4 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do alumínio de forma que a configuração de menor energia (repulsão) é a tetraédrica (maior afastamento das nuvens), assim o vetor dipolo magnético resultante é nulo e a molécula é apolar.

PROBLEMA 19. E

1F19

- SeF₆: Há 6 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do selênio de forma que a configuração de menor energia (repulsão) é a octaédrica.
- SF₅⁺: Há 5 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do enxofre de forma que a configuração de menor energia (repulsão) é a bipiramidal triangular.
- XeOF₄: Há 5 nuvens eletrônicas ligantes e 1 nuvem eletrônica não ligante ao redor do xenônio de forma que a configuração de menor energia (repulsão) é a piramidal quadrangular.
- SnF₆⁻: Há 6 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do silício de forma que a configuração de menor energia (repulsão) é a octaédrica.

PROBLEMA 20. A

1F20

- XeO₃F₂: Há 5 nuvens eletrônicas de forma que sua hibridização é sp³d.
- SOF₄: Há 5 nuvens eletrônicas de forma que sua hibridização é sp³d.
- XeF₅⁺: Há 6 nuvens eletrônicas de forma que sua hibridização é sp³d².
- XeO₆⁴⁻: Há 6 nuvens eletrônicas de forma que sua hibridização é sp³d².

PROBLEMA 21. A

1F2:

- PCl₆ : Há 6 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do átomo de fósforo de forma que as ligações Cl—P—Cl tem ângulo aproximadamente igual a 90ř.
- AsF₅: Há 5 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do átomo de arsênio de forma que as ligações F—As—F contendo um flúor em posição axial e outro em posição equatorial tem ângulo aproximadamente igual a 90ře as ligações F—As—F contendo 2 átomos de flúor em posição axial ou 2 átomos de flúor em posição equatorial tem ângulo aproximadamente igual a 120ř.
- IF₇: Há 7 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do átomo de iodo de forma que as ligações F—I—F contendo um flúor em posição axial e outro em posição equatorial tem ângulo aproximadamente igual a 90ře as ligações F—I—F contendo 2 átomos de flúor em posição axial ou 2 átomos de flúor em posição equatorial tem ângulo aproximadamente igual a 72ř.
- IF₅: Há 5 nuvens eletrônicas ligantes e 1 nuvem eletrônica não ligante ao redor do átomo de iodo de forma que as ligações F—I—F tem ângulo aproximadamente igual a 90ř.

PROBLEMA 22. C

1F22

 PF₄⁻: Há 4 nuvens eletrônicas ligantes e 1 nuvem eletrônica não ligante ao redor do fósforo de forma que a configuração de menor energia (repulsão) é a em forma de gangorra (maior afastamento das nuvens), assim o vetor dipolo magnético resultante é não nulo e a molécula é polar.

- 2. CH_2F_2 : Há 4 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do carbono de forma que a configuração de menor energia (repulsão) é a tetraédrica (maior afastamento das nuvens), segue que $\mu_{res} = (2\mu(C-F) + 2\mu(C-H))\cos(54,75\check{r}) \neq 0$, assim o vetor dipolo magnético resultante é não nulo e a molécula é polar.
- 3. BrF₄⁻: Há 4 nuvens eletrônicas ligantes e 2 nuvens eletrônicas não ligantes ao redor do bromo de forma que a configuração de menor energia (repulsão) é a quadrangular planar (maior afastamento das nuvens), assim o vetor dipolo magnético resultante é nulo e a molécula é apolar.
- 4. AlCl₄⁻: Há 4 nuvens eletrônicas ligantes e nenhuma nuvem eletrônica não ligante ao redor do alumínio de forma que a configuração de menor energia (repulsão) é a tetraédrica (maior afastamento das nuvens), assim o vetor dipolo magnético resultante é nulo e a molécula é apolar.