Puntuación: Preguntas 1 a 5: 2 puntos cada una. Problema: 5 puntos.

1. a) Complete los valores de los bloques siguientes para convertir la señal x(t) en la señal y(t) de la figura 1 por medio de transformaciones de la variable independiente.

b) Escriba las relaciones entre las salidas de las distintas etapas y la señal de entrada x(t).

Figura 1

2. Sabiendo que en un sistema lineal e invariante (LI) T[f(t)]=g(t),

a) ¿cuál es la respuesta a $T[\sum a_i f(t-t_i)]$? Justifique la respuesta

b) Sabiendo que en un sistema LI $T[\Pi(t)]=\Delta(t)$, halle la respuesta a la señal de entrada de la figura 2.

Figura 2

3. La relación entrada-salida de un sistema es:

a) El sistema ¿es lineal?. Responda justificadamente

b) El sistema, ¿es invariante?. Responda justificadamente

c) Halle la salida cuando la entrada es $\delta(t)$

d) Halle la salida cuando la entrada es $\delta(t-\tau)$

4.a) Demuestre el teorema de Parseval para dos señales de energía finita

$$\int_{-\infty}^{\infty} x(t)y^*(t)dt = \int_{-\infty}^{\infty} X(f)Y^*(f)df$$

b) Sean x(t), y(t) dos señales complejas de energía finita. Usando el teorema de Parseval, exprese la siguiente integral en el dominio de la frecuencia. $\int x(t)y(t)dt$

c) Halle
$$\int_{-\infty}^{\infty} \operatorname{sinc}(t) \operatorname{sinc}(2t) dt$$

$$\mathbb{N}^{\circ}$$
 5. a) Sea la señal $x(t) = \sum_{n=0}^{\infty} x_n(t - nT)$. Exprese el DSF de $x(t)$ en función de $X_b(f)$ y T

b) Para las señales $x_1(t)$ y $x_2(t)$ de la figura 3, demuestre, sin realizar la TF de $x_1(t)$ ni $x_2(t)$ que $X_1(2m/3)=X_2(2m/3)$ $\forall m$ entero

Figura 3

Problema. Un sistema de control gestiona N alarmas diferentes. Cuando la alarma n-ésima se activa, transmite una señal $x_n(t)$ al centro de control. Para detectar cuál es la alarma activada se utiliza un sistema que consiste en

- 1. filtrar la señal recibida $x_n(t)$ por un conjunto de N filtros en paralelo cada uno de respuesta impulsional $h_k(t)=x_k(T_0-t)$, k=1,...N,
- 2. medir la salida $y_k(t)$ de cada filtro en el instante T_0 ,
- 3. comparar los valores $y_k(T_0)$ k=1,...N
- 4. buscar el filtro que da máximo valor a la salida en t=T₀
- 5. decidir que la alarma pulsada se corresponde con el número de filtro que proporciona el valor mayor de la salida en el instante T₀

$$x_{n}(t) = sen(2\pi n f_{0}t) \prod \left(\frac{t - (T_{0}/2)}{T_{0}} \right) \qquad y_{k}(T_{0}) = \left(x_{n}(t) * h_{k}(t) \right) \Big|_{t=T_{0}}$$

- a) Dibuje $x_1(t)$, $x_2(t)$ y $x_3(t)$
- b) Calcule la energía de x_n(t). Compruebe que todas las señales tienen la misma energía
- c) Transformada de Fourier de $x_n(t)$.
- d) Calcule $y_k(T_0)$, la salida del filtro k-ésimo en el instante T_0 cuando a su entrada se aplica $x_n(t)$, con $n \neq k$
- e) Calcule $y_k(T_0)$, la salida del filtro k-ésimo en el instante T_0 cuando a su entrada se aplica $x_n(t)$ con n=k

Nota:

$$\cos(x)\cos(y) = \frac{\cos(x+y) + \cos(x-y)}{2} \quad \sin(x)\sin(y) = \frac{\cos(x-y) - \cos(x+y)}{2}$$
$$\sin(x)\cos(y) = \frac{\sin(y+x) + \sin(y-x)}{2} \quad \cos(x)\sin(y) = \frac{\sin(x+y) - \sin(x-y)}{2}$$