[86.03/66.25] Dispositivos Semiconductores 1er Cuatrimestre 2020

Diodo de Juntura PN

1. Modelo de Pequeña Señal: Transitorio en directa

Un diodo N⁺P con N_D = 10^{19} cm⁻³, A = 0.01 mm² y parámetros ϕ_B = 900 mV y τ_T = 18 ns conectado como se muestra en la figura donde R_1 = 4.7 k Ω , V_S = 8V y $v_s(t)$ es un escalón de 500 mV en t_0 = 1 ns.

• Encontrar la respuesta temporal del a tensión $v_{D}(t)$.

Recordemos el ejercicio de la semana pasada

Cambia solamente la conexión del diodo.

1. Polarización: Aplicamos el modelo de orden 0

Inversa:
$$I_D=0$$
 A; $V_R=-V_D=8$ V; $V_D=-8$ V

2. Parámetros de pequeña señal:

$$g_{m} = \frac{\partial i_{D}}{\partial v_{D}} \Big|_{(I_{D};V_{D})} = \frac{I_{D} + T_{0}}{V_{th}} = 0$$

$$C_{dif} = \frac{\partial q_{QNR}}{\partial v_{D}} \Big|_{(I_{D};V_{D})} = \frac{\tau_{T}}{V_{th}} (I_{D} + I_{0}) = \tau_{T} g_{m} = 0$$

$$C_{J} = \frac{\partial q_{SCR}}{\partial v_{D}} \Big|_{(I_{D};V_{D})} = A \sqrt{\frac{q \epsilon_{Si} N_{A} N_{D}}{2(\phi_{B} - V_{D})(N_{A} + N_{D})}} = 0.965 \text{ pF}$$

Recordemos el ejercicio de la semana pasada 3. Análisis del circuito de pequeña señal

El circuito de pequeña señal resulta un circuito RC serie (respuesta dinámica de la carga de un capacitor)

$$g_m = 0 \Rightarrow r_d \Rightarrow \infty$$
 $C_{dif} = 0$
 $C_J = 0.965 \text{ pF}$

$$\tau_{RC} = R_1 C_J = 4.54 \text{ ns}$$
 $v_r(0) = 0$
 $v_r(\infty) = v_s(t_0^+) = 500 \text{ mV}$

Recordemos el ejercicio de la semana pasada 3. Análisis del circuito de pequeña señal

El circuito de pequeña señal resulta un circuito RC serie (respuesta dinámica de la carga de un capacitor)

$$g_m = 0 \Rightarrow r_d \Rightarrow \infty$$

$$C_{dif} = 0$$

$$C_J = 0.965 \text{ pF}$$

$$\tau_{RC} = R_1 C_J = 4.54 \text{ ns}$$
 $v_r(0) = 0$
 $v_r(\infty) = v_s(t_0^+) = 500 \text{ mV}$

1. Polarización:

Suponer Directa

$$VD = VD(ON) = 0.7V$$

$$VS - VR1 - VD = 0$$

$$VR1 = ID \times R1 = VS - VD$$

$$ID = \frac{VR1}{R1} = \frac{VS - VD(ON)}{R1} = \frac{8V - 0.7V}{4.7 \text{ kOhm}}$$

DATOS

 $N^+P \to N_D >> N_A$ $N_D = 10^{19} \text{ cm}^{-3}$,

 $A = 0.01 \, \text{mm}^2$

 $\phi_B = 900 \text{ mV}$ $\tau_\tau = 18 \text{ ns}$

 $R_1 = 4.7 \text{ k}\Omega,$ $V_c = 8V$

 $v_c(t)$ 500 mV; $t_0 = 1$ ns.

1. Polarización:

Directa: V_D =0.7 V; I_D =1.55 mA

2. Parámetro de pequeña señal:

$$g_{m} = \frac{\partial i_{D}}{\partial v_{D}}\Big|_{(I_{D};V_{D})} = \frac{I_{D} + V_{D}}{V_{th}} = 60 \text{ mS}$$

$$C_{dif} = \frac{\partial q_{QNR}}{\partial v_D} \bigg|_{(I_D; V_D)} = \frac{\tau_T}{V_{th}} (I_D + I_D) = 1.08 \text{ nF}$$

$$N_{A} = \frac{n_{i}^{2}}{N_{D}} \exp\left(\frac{\phi_{B}}{V_{th}}\right) = 10^{16} \text{ cm}^{-3} \quad C_{J} = \frac{\partial q_{SCR}}{\partial v_{D}}\Big|_{(I_{D};V_{D})} = A\sqrt{\frac{q \epsilon_{Si} N_{A} N_{D}}{2(\phi_{B} - V_{D})(N_{A} + N_{D})}} = C_{J} = \sqrt{2}C_{J0} = 4.5 \text{ pF}$$

$$C_{J} = \sqrt{2}C_{J0} = 4.5 \text{ pF}$$

$$C_{J0} = A\sqrt{\frac{q \epsilon_{Si} N_{A}}{2\phi_{B}}} = 3.2 \text{ pF}$$

DATOS

 $N^+P \to N_D >> N_A$ $N_D = 10^{19} \text{ cm}^{-3}$

 $A = 0.01 \, \text{mm}^2$

 $\phi_{B} = 900 \, \text{mV}$

 $\tau_{\tau} = 18 \text{ ns}$

 $R_1 = 4.7 \text{ k}\Omega$

 $V_c = 8V$

 $v_c(t)$ 500 mV; $t_0 = 1$ ns.

1. Polarización:

Directa: V_D =0.7 V; I_D =1.55 mA

2. Parámetro de pequeña señal:

$$g_m$$
=60 mS \Rightarrow r_d =16.7 Ω
 C_{dif} =1.08 nF >> CJ

$$C_J = \sqrt{2} C_{J0} = 4.5 \text{ pF}$$

3. Análisis del circuito de pequeña señal

El circuito de pequeña señal resulta otra vez un RC serie

DATOS

 $N^+P \to N_D >> N_A$ $N_D = 10^{19} \text{ cm}^{-3}$,

 $A = 0.01 \, \text{mm}^2$

 $\phi_{B} = 900 \, \text{mV}$

 τ_{τ} = 18 ns

 $R_1 = 4.7 \text{ k}\Omega$

 $V_c = 8V$

 $v_c(t)$ 500 mV; $t_0 = 1$ ns.

4. Respuesta total del circuito

$$v_{\scriptscriptstyle D}(t) = V_{\scriptscriptstyle D} + v_{\scriptscriptstyle d}(t)$$

$$\tau_{RC} \sim r_d C_{dif} = 18 \text{ ns}$$

$$v_r(0) = 0$$

$$v_r(\infty) = 1.77 \text{ mV}$$

Comparación de la respuesta de circuito en ambos regímenes

	<u>Directa</u>	<u>Inversa</u>
I_D	1.55 mA	~0
$V_{_D}$	0.7 V	-8 V
g_d/r_d	60 mS/16.5 Ω	0/∞
C_{J}	4.5 pF	0.965 pF
C_{dif}	1.08 nF	~0
$ au_{_{RC}}$	18 ns	4.54 ns
$V_d(\infty)$	1.77 mV	500 mV

DATOS

N⁺P $\rightarrow N_D >> N_A$ $N_D = 10^{19} \text{ cm}^{-3}$, A = 0.01 mm² $Φ_B = 900 \text{ mV}$ $τ_T = 18 \text{ ns}$ $R_1 = 4.7 \text{ k}Ω$, $V_S = 8V$ $V_S(t) 500 \text{ mV}$; $t_0 = 1 \text{ ns}$.

Diodo REAL: ¿Cómo cambia el modelo de pequeña señal?

$$i_D = I_{0R} \left(\exp \left(\frac{v_D}{n V_{th}} \right) - 1 \right)$$

Polarización: Seguimos usando el modelo de orden 0

Directa: $V_D = 0.7 \text{ V; } I_D = 1.55 \text{ mA}$

Parámetro de pequeña señal:

$$g_{m} = \frac{\partial i_{D}}{\partial v_{D}}\Big|_{(I_{D};V_{D})} = \frac{I_{D} + V_{0}}{nV_{th}} = rd = nID/Vth$$

$$C_{dif} = \frac{\partial q_{QNR}}{\partial v_D} \bigg|_{(I_D; V_D)} = \frac{\tau_T}{n V_{th}} (I_D + I_0) =$$

$$C_{J} = \frac{\partial q_{SCR}}{\partial v_{D}} \bigg|_{(I_{D};V_{D})} = \frac{C_{J0}}{\sqrt{1 - \frac{V_{D}}{I_{D}}}} = \sqrt{2}C_{J0} \quad NO \quad CAMBIA!!!$$