	Rapidez de convergencia	Limitaciones	Ventajas
	Convergencia lineal	-El número máximo de divisiones	-Mientras se tenga un intervalo
	ε_n 1	depende de la capacidad de	que contenga una raíz, él
Bisección	$\alpha = \frac{\varepsilon_n}{\varepsilon_{n-1}} = \frac{1}{2}$	almacenamiento de la máquina.	siempre converge.
	En cada iteración el error se reduce a la	-Generalmente es más lento.	-Es útil cuando no se sabe nada
	mitad.	-Solo sirve para raíces simples.	acerca de la función
Regla falsa		-Debe preguntar por un intervalo	-Entre $f(x)$ se asemeje más a
		donde la función cambie de signo.	una recta, el método funciona
	Convergencia lineal	-Solo sirve para raíces simples.	mejor.
	ϵ_n 1	-Hay funciones que no tiene punto	
	$\alpha = \frac{\varepsilon_n}{\varepsilon_{n-1}} < \frac{1}{2}$	fijo como <i>ln, y exp</i> .	
	Más rápido que bisección	-Hay funciones que tienen infinitos	
	ó	puntos fijos como	-Es útil para verificar la
Punto fijo	ε _n 1	Tan y valor absoluto.	convergencia de una serie o
	$\alpha = \frac{\varepsilon_n}{\varepsilon_{n-1}} > \frac{1}{2}$	-La función $g(x)$ se obtiene a ensayo	sucesión.
		y error, en ocasiones la solución	
	Más lento que bisección	diverge.	
		-Solo sirve para raíces simples.	
		La sucesión no converge si la	
		primera derivada se hace cero. Por lo	
Newton-Raphson	Convergencia cuadrática	tanto, no es recomendable aplicar	La velocidad de convergencia
	$\alpha = \frac{\varepsilon_n}{\varepsilon_{n-1}^2}$	este método para funciones con	es alta.
	ε_{n-1}^{2}	muchos máximos, mínimos y picos.	Tiene menos operaciones que
	Son los métodos más rápidos	-Solo sirve para raíces simples.	Newton modificado.
		-Se requiere derivar.	
		-No siempre converge.	

Newton modificado	Convergencia cuad r ática $lpha=rac{arepsilon_n}{arepsilon_{n-1}{}^2}$ Son los métodos más rápidos	-Hay que derivar dos veces. $\operatorname{Cuando} f^{\prime\prime}(x) = 0$	-Es recomendable para funciones con muchos valores críticos (máximos, mínimos y puntos de inflexión), dado que converge aún si $f'(x) = 0$ Sirve para raíces múltiplesLa velocidad de convergencia es alta
Secante	$\alpha = \frac{\varepsilon_n}{(\varepsilon_{n-1})^{\frac{1+\sqrt{5}}{2}}}$ Es mejor que la convergencia lineal, pero no tanto como la convergencia cuadrática.	 -No hay que derivar. Sólo se debe ingresar la función f(x). -No debe preguntar por un intervalo donde la función cambie de signo. -No siempre converge. Solo sirve para raíces simples. 	-No es necesario un intervalo que contenga la raízEntre más se parezca la función a una recta, mejor funciona este método.

Tabla 1. Análisis de rapidez de convergencia, limitaciones y ventajas.