Übung zur Vorlesung Berechenbarkeit und Komplexität

Blatt 10

Tutoriumsaufgabe 10.1

Ziegen sie für das BIN PACKING PROBLEM (BPP), dass falls die Entscheidungsvariante in P ist, so kann auch die Optimierungsvariante in polynomialer Zeit gelöst werden.

Tutoriumsaufgabe 10.2

Betrachten Sie folgendes Entscheidungsproblem:

INDEPENDENT SET

Eingabe: Ein Graph G = (V, E) und eine Zahl $k \in \mathbb{N}$.

Frage: Gibt es unabhänige Knotenmenge $I\subseteq V$ mit $|I|\geq k,$ d.h. für alle $u,v\in I$

gilt $\{u, v\} \notin E$.

Zeigen Sie, dass Independent Set NP-vollständig ist.

Tutoriumsaufgabe 10.3

Betrachten Sie folgendes Entscheidungsproblem:

Double Sat

Eingabe: Eine aussagenlogische Formel φ in KNF.

Frage: Gibt es mindestens **zwei** erfüllende Belegungen für φ ?

Zeigen Sie, dass DOUBLE SAT NP-vollständig ist.

Hausaufgabe 10.1 (5 Punkte)

Ziegen sie für das Traveling Salesman Problem (TSP), dass falls die Entscheidungsvariante in P ist, so kann auch die Optimierungsvariante in polynomialer Zeit gelöst werden.

Hausaufgabe 10.2 (5 Punkte)

Wir betrachten die folgenden beiden Entscheidungsprobleme ODD PATH und EVEN PATH.

EVEN PATH

Eingabe: Ein ungerichteter Graph $G_1 = (V_1, E_1)$; zwei Knoten $s_1, t_1 \in V_1$

Frage: Gibt es einen Pfad von s_1 nach t_1 , der eine **gerade** Anzahl von Kanten verwendet?

Odd Path

Eingabe: Ein ungerichteter Graph $G_2 = (V_2, E_2)$; zwei Knoten $s_2, t_2 \in V_2$

Frage: Gibt es einen Pfad von s_1 nach t_1 , der eine **ungerade** Anzahl von Kanten verwendet?

Beweisen Sie: Even Path \leq_p Odd Path und Odd Path \leq_p Even Path.

Hausaufgabe 10.3 (5 Punkte)

Beweisen Sie, dass das Problem $\{0,1\}$ RESTRICTED INTEGER PROGRAMING NP-vollständig ist.

{0,1} RESTRICTED INTEGER PROGRAMING

Eingabe: Eine Matrix $A \in \{-1, 0, 1\}^{n \times m}$ und ein Vektor $b \in \{0, 1\}^m$.

Frage: Gibt es einen Vektor $x \in \{0,1\}^n$ mit Ax = b?

Hinweis: Es ist hilfreich sich zunächst eine Reduktion auf dieses Problem zu überlegen, wobei auch Ungleichungen, etwa der Form $x+y+z\geq 1$ oder $x+y+z\leq 1$, erlaubt sind. Daraufhin kann man sich überlegen, wie man eine solche Ungleichung in eine Gleichung übersetzten kann.