### Geometrie

#### Victor Vuletescu

Universitatea București, Facultatea de Matematică și Informatică

23 Martie 2019

### Definiție

Se numește  $spațiu\ vectorial\ peste\ un\ corp\ K$  o mulțime V înzestrată cu două legi de compoziție:

#### Definiție

Se numește  $spațiu\ vectorial\ peste\ un\ corp\ K$  o mulțime V înzestrată cu două legi de compoziție:

$$+:V imes V o V\left( u,v
ight) \mapsto u+v$$
, și

#### Definiție

Se numește  $spațiu\ vectorial\ peste\ un\ corp\ K$  o mulțime V înzestrată cu două legi de compoziție:

$$+:V imes V o V\ (u,v)\mapsto u+v$$
, și

$$\cdot: K \times V \to V, \ (\alpha, v) \mapsto \alpha v$$

### Definiție

Se numește spațiu vectorial peste un corp K o mulțime V înzestrată cu două legi de compoziție:

$$+: V \times V \to V (u, v) \mapsto u + v$$
, şi  
 $\cdot: K \times V \to V, (\alpha, v) \mapsto \alpha v$ 

ce satisfac proprietățile:

 $\bullet$  (V, +) este grup abelian;

### Definiție

Se numește  $spațiu\ vectorial\ peste\ un\ corp\ K\ o\ mulțime\ V\ înzestrată\ cu două legi de compoziție:$ 

$$+: V \times V \rightarrow V (u, v) \mapsto u + v$$
, și

$$\cdot: K \times V \to V, \ (\alpha, v) \mapsto \alpha v$$

- (V,+) este grup abelian;
- $\alpha(u+v) = \alpha u + \alpha v, \ \forall \alpha \in K, \forall u, v \in V$

### Definiție

Se numește  $spațiu\ vectorial\ peste\ un\ corp\ K\ o\ mulțime\ V\ înzestrată\ cu două legi de compoziție:$ 

$$+:V imes V o V\left( u,v
ight) \mapsto u+v$$
, și

$$\cdot: K \times V \to V, \ (\alpha, v) \mapsto \alpha v$$

- (V,+) este grup abelian;
- $\alpha(u+v) = \alpha u + \alpha v, \ \forall \alpha \in K, \forall u, v \in V$
- $(\alpha + \beta)v = \alpha v + \beta v, \forall \alpha, \beta \in K, \forall v \in V;$

#### Definiție

Se numește  $spațiu\ vectorial\ peste\ un\ corp\ K\ o\ mulțime\ V\ înzestrată\ cu două legi de compoziție:$ 

$$+: V \times V \rightarrow V (u, v) \mapsto u + v$$
, și

$$\cdot: K \times V \to V, (\alpha, v) \mapsto \alpha v$$

- $\bullet$  (V, +) este grup abelian;
- $\alpha(u+v) = \alpha u + \alpha v, \ \forall \alpha \in K, \forall u, v \in V$
- $(\alpha + \beta)v = \alpha v + \beta v, \forall \alpha, \beta \in K, \forall v \in V;$
- $(\alpha\beta)v = \alpha(\beta v), \forall \alpha, \beta \in K, \forall v \in V;$

#### Definiție

Se numește  $spațiu\ vectorial\ peste\ un\ corp\ K$  o mulțime V înzestrată cu două legi de compoziție:

- $+: V \times V \rightarrow V (u, v) \mapsto u + v$ , și
- $\cdot: K \times V \to V, (\alpha, v) \mapsto \alpha v$

ce satisfac proprietățile:

- (V,+) este grup abelian;
  - $\alpha(u+v) = \alpha u + \alpha v, \ \forall \alpha \in K, \forall u, v \in V$
  - $(\alpha + \beta)v = \alpha v + \beta v, \forall \alpha, \beta \in K, \forall v \in V;$
  - $(\alpha\beta)v = \alpha(\beta v), \forall \alpha, \beta \in K, \forall v \in V;$
  - $1_{\kappa}v = v \ \forall v \in V$ .

#### **Terminologie**

Elementele lui V le vom numi vectori iar cele din K le vom numi scalari.  $_{2/2}$ 



### Exemple

• Multimea matricelor de un tip (m, n) fixat peste un un corp K;  $V = Mat_{m,n}(K)$ .

- Multimea matricelor de un tip (m, n) fixat peste un un corp K;  $V = Mat_{m,n}(K)$ .
- Mulţimea polinoamelor peste corpul K: V = K[X].

- Multimea matricelor de un tip (m, n) fixat peste un un corp K;  $V = Mat_{m,n}(K)$ .
- Mulţimea polinoamelor peste corpul K: V = K[X].
- "Spaţii numerice":  $V = K^n = \{(x_1, x_2, \dots, x_n) | x_1, x_2, \dots, x_n \in K\}.$

- Multimea matricelor de un tip (m, n) fixat peste un un corp K;  $V = Mat_{m,n}(K)$ .
- Mulţimea polinoamelor peste corpul K: V = K[X].
- "Spaţii numerice":  $V = K^n = \{(x_1, x_2, \dots, x_n) | x_1, x_2, \dots, x_n \in K\}$ . Elementele din V vor fi notate in calcule sub formă de vectori coloană

$$v = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

### Terminologie

O expresie de forma

$$w = \sum_{i=1}^n a_i v_i, \ a_i \in K, v_i \in V, i = 1, \dots, n$$

se numește *combinație liniară* (a vectorilor  $v_1, \ldots, v_n$ ).

### Terminologie

O expresie de forma

$$w = \sum_{i=1}^{n} a_i v_i, \ a_i \in K, v_i \in V, i = 1, ..., n$$

se numește *combinație liniară* (a vectorilor  $v_1, \ldots, v_n$ ).

#### Liniar independență, sistem de generatori

**Definiție.** Fie  $S = \{v_1, \dots, v_n\} \subset V$  un sistem de vectori. S se numește:

### Terminologie

O expresie de forma

$$w = \sum_{i=1}^{n} a_i v_i, \ a_i \in K, v_i \in V, i = 1, ..., n$$

se numește *combinație liniară* (a vectorilor  $v_1, \ldots, v_n$ ).

#### Liniar independență, sistem de generatori

**Definiție.** Fie  $S = \{v_1, \dots, v_n\} \subset V$  un sistem de vectori. S se numește:

• sistem liniar independent dacă nici un vector al sistemului S nu se poate exprima ca o combinație liniară de ceilalți;

### Terminologie

O expresie de forma

$$w = \sum_{i=1}^{n} a_i v_i, \ a_i \in K, v_i \in V, i = 1, \dots, n$$

se numește *combinație liniară* (a vectorilor  $v_1, \ldots, v_n$ ).

#### Liniar independență, sistem de generatori

**Definiție.** Fie  $S = \{v_1, \dots, v_n\} \subset V$  un sistem de vectori. S se numește:

- sistem liniar independent dacă nici un vector al sistemului S nu se poate exprima ca o combinație liniară de ceilalți;
- sistem de generatori dacă orice vector din V se poate exprima ca o combinație liniară de vectori din S.

### Exemple

• Sistemul  $S = \{v_1 = (1, 0, 0), v_2 = (0, -2, 0), v_3 = (0, 0, 3)\} \subset \mathbb{R}^3$  este liniar independent.

- Sistemul  $S = \{v_1 = (1,0,0), v_2 = (0,-2,0), v_3 = (0,0,3)\} \subset \mathbb{R}^3$  este liniar independent.
- Sistemul  $S = \{v_1 = (0, -2, 3), v_2 = (0, -2, 0), v_3 = (0, 0, 3)\} \subset \mathbb{R}^3$  nu este liniar independent, pentru că  $v_1 = v_2 + v_3$ .

- Sistemul  $S = \{v_1 = (1,0,0), v_2 = (0,-2,0), v_3 = (0,0,3)\} \subset \mathbb{R}^3$  este liniar independent.
- Sistemul  $S = \{v_1 = (0, -2, 3), v_2 = (0, -2, 0), v_3 = (0, 0, 3)\} \subset \mathbb{R}^3$  nu este liniar independent, pentru că  $v_1 = v_2 + v_3$ .
- Sistemul  $S = \{v_1 = (1,0,0), v_2 = (0,-2,0)\} \subset \mathbb{R}^3$  nu este sistem de generatori (pentru că, de exemplu, nu putem exprima v = (0,0,7) ca o combinație liniară de  $v_1, v_2$ ).

- Sistemul  $S = \{v_1 = (1,0,0), v_2 = (0,-2,0), v_3 = (0,0,3)\} \subset \mathbb{R}^3$  este liniar independent.
- Sistemul  $S = \{v_1 = (0, -2, 3), v_2 = (0, -2, 0), v_3 = (0, 0, 3)\} \subset \mathbb{R}^3$  nu este liniar independent, pentru că  $v_1 = v_2 + v_3$ .
- Sistemul  $S = \{v_1 = (1,0,0), v_2 = (0,-2,0)\} \subset \mathbb{R}^3$  nu este sistem de generatori (pentru că, de exemplu, nu putem exprima v = (0,0,7) ca o combinație liniară de  $v_1, v_2$ ).
- Sistemul  $S = \{v_1 = (1,0,0), v_2 = (0,-2,0), v_3 = (0,0,3)\} \subset \mathbb{R}^3$  este sistem de generatori pentru că dacă  $v = (x_1,x_2,x_3) \in \mathbb{R}^3$  este arbitrar, avem

- Sistemul  $S = \{v_1 = (1,0,0), v_2 = (0,-2,0), v_3 = (0,0,3)\} \subset \mathbb{R}^3$  este liniar independent.
- Sistemul  $S = \{v_1 = (0, -2, 3), v_2 = (0, -2, 0), v_3 = (0, 0, 3)\} \subset \mathbb{R}^3$  nu este liniar independent, pentru că  $v_1 = v_2 + v_3$ .
- Sistemul  $S = \{v_1 = (1,0,0), v_2 = (0,-2,0)\} \subset \mathbb{R}^3$  nu este sistem de generatori (pentru că, de exemplu, nu putem exprima v = (0,0,7) ca o combinație liniară de  $v_1, v_2$ ).
- Sistemul  $S=\{v_1=(1,0,0),v_2=(0,-2,0),v_3=(0,0,3)\}\subset\mathbb{R}^3$  este sistem de generatori pentru că dacă  $v=(x_1,x_2,x_3)\in\mathbb{R}^3$  este arbitrar, avem

$$v = x_1(1,0,0) - \frac{x_2}{2}(0,-2,0) + \frac{x_3}{3}(0,0,3)$$

- Sistemul  $S = \{v_1 = (1, 0, 0), v_2 = (0, -2, 0), v_3 = (0, 0, 3)\} \subset \mathbb{R}^3$  este liniar independent.
- Sistemul  $S = \{v_1 = (0, -2, 3), v_2 = (0, -2, 0), v_3 = (0, 0, 3)\} \subset \mathbb{R}^3$  nu este liniar independent, pentru că  $v_1 = v_2 + v_3$ .
- Sistemul  $S = \{v_1 = (1,0,0), v_2 = (0,-2,0)\} \subset \mathbb{R}^3$  nu este sistem de generatori (pentru că, de exemplu, nu putem exprima v = (0,0,7) ca o combinație liniară de  $v_1, v_2$ ).
- Sistemul  $S=\{v_1=(1,0,0),v_2=(0,-2,0),v_3=(0,0,3)\}\subset\mathbb{R}^3$  este sistem de generatori pentru că dacă  $v=(x_1,x_2,x_3)\in\mathbb{R}^3$  este arbitrar, avem

$$v = x_1(1,0,0) - \frac{x_2}{2}(0,-2,0) + \frac{x_3}{3}(0,0,3)$$

i.e. 
$$v = x_1 v_1 - \frac{x_2}{2} v_2 + \frac{x_3}{3} v_3$$
.

### Test de liniar independență/sistem de generatori

Fie

$$S = \{v_1 = (v_{1,1}, \dots, v_{1,n}), v_1 = (v_{2,1}, \dots, v_{2,n}) \dots, v_m = (v_{m,1}, \dots, v_{m,n})\}$$

un sistem de m vectori în  $V = K^n$ .

#### Test de liniar independență/sistem de generatori

Fie

$$S = \{v_1 = (v_{1,1}, \dots, v_{1,n}), v_1 = (v_{2,1}, \dots, v_{2,n}) \dots, v_m = (v_{m,1}, \dots, v_{m,n})\}$$

un sistem de m vectori în  $V = K^n$ . Formăm matricea

$$A_{S} = \begin{pmatrix} v_{1,1} & v_{1,2} & \dots & v_{1,n} \\ v_{2,1} & v_{2,2} & \dots & v_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ v_{m,1} & v_{m,2} & \dots & v_{m,n} \end{pmatrix}$$

#### Test de liniar independență/sistem de generatori

Fie

$$S = \{v_1 = (v_{1,1}, \dots, v_{1,n}), v_1 = (v_{2,1}, \dots, v_{2,n}) \dots, v_m = (v_{m,1}, \dots, v_{m,n})\}$$

un sistem de m vectori în  $V = K^n$ . Formăm matricea

$$A_{S} = \begin{pmatrix} v_{1,1} & v_{1,2} & \dots & v_{1,n} \\ v_{2,1} & v_{2,2} & \dots & v_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ v_{m,1} & v_{m,2} & \dots & v_{m,n} \end{pmatrix}$$

Atunci:

#### Test de liniar independență/sistem de generatori

Fie

$$S = \{v_1 = (v_{1,1}, \dots, v_{1,n}), v_1 = (v_{2,1}, \dots, v_{2,n}) \dots, v_m = (v_{m,1}, \dots, v_{m,n})\}$$

un sistem de m vectori în  $V = K^n$ . Formăm matricea

$$A_{S} = \begin{pmatrix} v_{1,1} & v_{1,2} & \dots & v_{1,n} \\ v_{2,1} & v_{2,2} & \dots & v_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ v_{m,1} & v_{m,2} & \dots & v_{m,n} \end{pmatrix}$$

#### Atunci:

• S este sistem liniar independent dacă și numai dacă  $rang(A_S) = m$ .

#### Test de liniar independență/sistem de generatori

Fie

$$S = \{v_1 = (v_{1,1}, \dots, v_{1,n}), v_1 = (v_{2,1}, \dots, v_{2,n}) \dots, v_m = (v_{m,1}, \dots, v_{m,n})\}$$

un sistem de m vectori în  $V = K^n$ . Formăm matricea

$$A_{S} = \begin{pmatrix} v_{1,1} & v_{1,2} & \dots & v_{1,n} \\ v_{2,1} & v_{2,2} & \dots & v_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ v_{m,1} & v_{m,2} & \dots & v_{m,n} \end{pmatrix}$$

#### Atunci:

- S este sistem liniar independent dacă și numai dacă  $rang(A_S) = m$ .
- S este sistem de generatori dacă și numai dacă  $rang(A_S) = n$ .

#### Baze

**Definiție.** Fie V un spațiu vectorial. Un sistem  $B = \{v_1, \dots, v_n\} \subset V$  se numește bază a lui V dacă este *simultan* și sistem liniar independent și sistem de generatori.

#### Baze

**Definiție.** Fie V un spațiu vectorial. Un sistem  $B = \{v_1, \dots, v_n\} \subset V$  se numește bază a lui V dacă este *simultan* și sistem liniar independent și sistem de generatori.

#### Baze

**Definiție.** Fie V un spațiu vectorial. Un sistem  $B = \{v_1, \dots, v_n\} \subset V$  se numește bază a lui V dacă este *simultan* și sistem liniar independent și sistem de generatori.

#### Exemple

• Fie  $V = K^n$ ; atunci sistemul

$$\{e_1 = (1,0,0,\ldots,0), e_2 = (0,1,0,\ldots,0),\ldots,e_n = (0,0,0,\ldots,1)\}$$

este o bază, numită baza canonică a lui  $K^n$ .

#### Baze

**Definiție.** Fie V un spațiu vectorial. Un sistem  $B = \{v_1, \dots, v_n\} \subset V$  se numește bază a lui V dacă este *simultan* și sistem liniar independent și sistem de generatori.

#### Exemple

• Fie  $V = K^n$ ; atunci sistemul

$$\{e_1=(1,0,0,\ldots,0),e_2=(0,1,0,\ldots,0),\ldots,e_n=(0,0,0,\ldots,1)\}$$

este o bază, numită baza canonică a lui  $K^n$ .

• Sistemul  $S = \{v_1 = (1,0,0), v_2 = (0,-2,0), v_3 = (0,0,3)\} \subset \mathbb{R}^3$  este o bază a lui  $\mathbb{R}^3$ .

### Dimensiune

#### Teoremă

Fie  ${\it V}$  un spațiu vectorial care admite un sistem de generatori finit. Atunci:

### Dimensiune

#### Teoremă

Fie V un spațiu vectorial care admite un sistem de generatori finit. Atunci:

• Oricare ar fi  $G = \{v_1, \dots, v_m\}$  sistem de generatori există  $\{j_1, \dots, j_n\} \subset \{1, \dots, m\}$  astfel încât  $G' = \{v_{j_1}, \dots, v_{j_n}\}$  este o bază.

#### Teoremă

Fie V un spațiu vectorial care admite un sistem de generatori finit. Atunci:

- Oricare ar fi  $G = \{v_1, \ldots, v_m\}$  sistem de generatori există  $\{j_1, \ldots, j_n\} \subset \{1, \ldots, m\}$  astfel încât  $G' = \{v_{j_1}, \ldots, v_{j_n}\}$  este o bază.
- Oricare ar fi  $I = \{u_1, \dots, u_m\}$  sistem liniar independent există vectorii  $u_{m+1}, \dots, u_n$  astfel încât  $I = \{u_1, \dots, u_m, u_{m+1}, \dots, u_n\}$  este o bază.

#### Teoremă

Fie V un spațiu vectorial care admite un sistem de generatori finit. Atunci:

- Oricare ar fi  $G = \{v_1, \ldots, v_m\}$  sistem de generatori există  $\{j_1, \ldots, j_n\} \subset \{1, \ldots, m\}$  astfel încât  $G' = \{v_{j_1}, \ldots, v_{j_n}\}$  este o bază.
- Oricare ar fi  $I = \{u_1, \dots, u_m\}$  sistem liniar independent există vectorii  $u_{m+1}, \dots, u_n$  astfel încât  $I = \{u_1, \dots, u_m, u_{m+1}, \dots, u_n\}$  este o bază.
- Oricare ar fi  $G = \{v_1, \dots, v_m\}$  sistem de generatori și oricare ar fi  $I = \{u_1, \dots, u_i\}$  sistem liniar independent, avem  $j \leq m$ .

#### Teoremă

Fie V un spațiu vectorial care admite un sistem de generatori finit. Atunci:

- Oricare ar fi  $G = \{v_1, \dots, v_m\}$  sistem de generatori există  $\{j_1, \dots, j_n\} \subset \{1, \dots, m\}$  astfel încât  $G' = \{v_{j_1}, \dots, v_{j_n}\}$  este o bază.
- Oricare ar fi  $I = \{u_1, \ldots, u_m\}$  sistem liniar independent există vectorii  $u_{m+1}, \ldots, u_n$  astfel încât  $I = \{u_1, \ldots, u_m, u_{m+1}, \ldots, u_n\}$  este o bază.
- Oricare ar fi  $G = \{v_1, \dots, v_m\}$  sistem de generatori și oricare ar fi  $I = \{u_1, \dots, u_i\}$  sistem liniar independent, avem  $j \leq m$ .

#### Corolar

Fie V un spațiu vectorial și  $B_1 = \{v_1, \dots, v_n\}, B_2 = \{f_1, \dots, f_m\}$  două baze ale sale. Atunci

$$n=m$$
.

### Definiție

Fie V un spațiu vectorial peste un corp K care admite un sistem de generatori finit. Se numește  $dimensiunea\ lui\ V$  peste K numărul natural  $dim_K(V)$  definit prin:

 $dim_K(V) =$ cardinalul unei baze a lui V.

### Definiție

Fie V un spațiu vectorial peste un corp K care admite un sistem de generatori finit. Se numește dimensiunea lui V peste K numărul natural  $\dim_K(V)$  definit prin:

 $dim_K(V) =$ cardinalul unei baze a lui V.

### Definiție

Fie V un spațiu vectorial peste un corp K care admite un sistem de generatori finit. Se numește dimensiunea lui V peste K numărul natural  $\dim_K(V)$  definit prin:

 $dim_K(V) =$ cardinalul unei baze a lui V.

## Exemple

• Fie  $V = K^n$ ; decarece

$$\{e_1 = (1,0,0,\ldots,0), e_2 = (0,1,0,\ldots,0),\ldots, e_n = (0,0,0,\ldots,1)\}$$

este o bază, deducem  $dim_K(K^n) =$ 

### Definiție

Fie V un spațiu vectorial peste un corp K care admite un sistem de generatori finit. Se numește dimensiunea lui V peste K numărul natural  $\dim_K(V)$  definit prin:

 $dim_K(V) =$ cardinalul unei baze a lui V.

## Exemple

• Fie  $V = K^n$ ; decarece

$$\{e_1=(1,0,0,\ldots,0),e_2=(0,1,0,\ldots,0),\ldots,e_n=(0,0,0,\ldots,1)\}$$

este o bază, deducem  $dim_K(K^n) = n$ .

### Definiție

Fie V un spațiu vectorial peste un corp K care admite un sistem de generatori finit. Se numește dimensiunea lui V peste K numărul natural  $\dim_K(V)$  definit prin:

 $dim_K(V) =$ cardinalul unei baze a lui V.

### Exemple

• Fie  $V = K^n$ ; decarece

$$\{e_1 = (1,0,0,\ldots,0), e_2 = (0,1,0,\ldots,0),\ldots, e_n = (0,0,0,\ldots,1)\}$$

este o bază, deducem  $dim_K(K^n) = n$ .

ullet C este spațiu vectorial peste  ${\mathbb R}$  de dimensiune

### Definiție

Fie V un spațiu vectorial peste un corp K care admite un sistem de generatori finit. Se numește  $dimensiunea\ lui\ V$  peste K numărul natural  $dim_K(V)$  definit prin:

 $dim_K(V) =$ cardinalul unei baze a lui V.

## Exemple

• Fie  $V = K^n$ ; decarece

$$\{e_1=(1,0,0,\dots,0),e_2=(0,1,0,\dots,0),\dots,e_n=(0,0,0,\dots,1)\}$$

este o bază, deducem  $dim_K(K^n) = n$ .

ullet C este spațiu vectorial peste  ${\mathbb R}$  de dimensiune doi

### Definiție

Fie V un spațiu vectorial peste un corp K care admite un sistem de generatori finit. Se numește dimensiunea lui V peste K numărul natural  $\dim_K(V)$  definit prin:

 $dim_K(V) =$ cardinalul unei baze a lui V.

## Exemple

• Fie  $V = K^n$ ; decarece

$$\{e_1=(1,0,0,\dots,0),e_2=(0,1,0,\dots,0),\dots,e_n=(0,0,0,\dots,1)\}$$

este o bază, deducem  $dim_K(K^n) = n$ .

•  $\mathbb{C}$  este spațiu vectorial peste  $\mathbb{R}$  de dimensiune doi deoarece  $\{1,i\}$  este o bază:  $dim_{\mathbb{R}}(\mathbb{C})=2$ .

### Definiție

Fie V un spațiu vectorial peste un corp K care admite un sistem de generatori finit. Se numește dimensiunea lui V peste K numărul natural  $dim_K(V)$  definit prin:

 $dim_K(V) =$ cardinalul unei baze a lui V.

### Exemple

• Fie  $V = K^n$ ; deoarece

$$\{e_1=(1,0,0,\dots,0),e_2=(0,1,0,\dots,0),\dots,e_n=(0,0,0,\dots,1)\}$$

este o bază, deducem  $dim_K(K^n) = n$ .

- $\mathbb{C}$  este spațiu vectorial peste  $\mathbb{R}$  de dimensiune doi deoarece  $\{1,i\}$  este o bază:  $dim_{\mathbb{R}}(\mathbb{C}) = 2$ .
- $dim_K(Mat_{m,n}(K)) =$

### Definiție

Fie V un spațiu vectorial peste un corp K care admite un sistem de generatori finit. Se numește dimensiunea lui V peste K numărul natural  $\dim_K(V)$  definit prin:

 $dim_K(V) =$ cardinalul unei baze a lui V.

### Exemple

• Fie  $V = K^n$ ; decarece

$$\{e_1=(1,0,0,\dots,0),e_2=(0,1,0,\dots,0),\dots,e_n=(0,0,0,\dots,1)\}$$

este o bază, deducem  $dim_K(K^n) = n$ .

- $\mathbb{C}$  este spațiu vectorial peste  $\mathbb{R}$  de dimensiune doi deoarece  $\{1,i\}$  este o bază:  $dim_{\mathbb{R}}(\mathbb{C}) = 2$ .
- $dim_K(Mat_{m,n}(K)) = mn$ .

#### Definiție

Fie V un spațiu vectorial și  $B = \{e_1, \dots, e_n\}$  o bază a lui V. Fie  $v \in V$  arbitrar; deoarece B este bază a lui V deducem că există și sunt unici scalarii  $x_1, \dots, x_n \in K$  astfel încât

$$v = x_1 e_1 + \cdots + x_n e_n$$

Spunem prin definiție că  $(x_1, \ldots, x_n)$  sunt *coordonatele* lui v în raport cu baza B.

### Definiție

Fie V un spațiu vectorial și  $B=\{e_1,\ldots,e_n\}$  o bază a lui V. Fie  $v\in V$  arbitrar; deoarece B este bază a lui V deducem că există și sunt unici scalarii  $x_1,\ldots,x_n\in K$  astfel încât

$$v = x_1 e_1 + \cdots + x_n e_n$$

Spunem prin definiție că  $(x_1, \ldots, x_n)$  sunt *coordonatele* lui v în raport cu baza B.

### Definiție

Fie V un spațiu vectorial și  $B = \{e_1, \dots, e_n\}$  o bază a lui V. Fie  $v \in V$  arbitrar; deoarece B este bază a lui V deducem că există și sunt unici scalarii  $x_1, \dots, x_n \in K$  astfel încât

$$v = x_1 e_1 + \cdots + x_n e_n$$

Spunem prin definiție că  $(x_1, \ldots, x_n)$  sunt *coordonatele* lui v în raport cu baza B.

## Exemple

• Fie  $V = K^n$  în care considerăm baza canonică. Atunci coordonatele unui vector  $v = (x_1, \dots, x_n)$  sunt

### Definiție

Fie V un spațiu vectorial și  $B = \{e_1, \ldots, e_n\}$  o bază a lui V. Fie  $v \in V$  arbitrar; deoarece B este bază a lui V deducem că există și sunt unici scalarii  $x_1, \ldots, x_n \in K$  astfel încât

$$v = x_1 e_1 + \cdots + x_n e_n$$

Spunem prin definiție că  $(x_1, \ldots, x_n)$  sunt *coordonatele* lui v în raport cu baza B.

### Exemple

• Fie  $V = K^n$  în care considerăm baza canonică. Atunci coordonatele unui vector  $v = (x_1, \dots, x_n)$  sunt chiar componentele sale,  $x_1, \dots, x_n$ .

### Definiție

Fie V un spațiu vectorial și  $B = \{e_1, \ldots, e_n\}$  o bază a lui V. Fie  $v \in V$  arbitrar; deoarece B este bază a lui V deducem că există și sunt unici scalarii  $x_1, \ldots, x_n \in K$  astfel încât

$$v = x_1e_1 + \cdots + x_ne_n$$

Spunem prin definiție că  $(x_1, \ldots, x_n)$  sunt *coordonatele* lui v în raport cu baza B.

- Fie  $V = K^n$  în care considerăm baza canonică. Atunci coordonatele unui vector  $v = (x_1, \dots, x_n)$  sunt chiar componentele sale,  $x_1, \dots, x_n$ .
- $V = \mathbb{R}^3$  și baza  $B = \{v_1 = (1,0,0), v_2 = (0,-2,0), v_3 = (0,0,3)\}.$ În raport cu această bază, coordonatele vectorului v = (1,2,3) sunt

### Definiție

Fie V un spațiu vectorial și  $B = \{e_1, \ldots, e_n\}$  o bază a lui V. Fie  $v \in V$  arbitrar; deoarece B este bază a lui V deducem că există și sunt unici scalarii  $x_1, \ldots, x_n \in K$  astfel încât

$$v = x_1 e_1 + \cdots + x_n e_n$$

Spunem prin definiție că  $(x_1, \ldots, x_n)$  sunt *coordonatele* lui v în raport cu baza B.

- Fie  $V = K^n$  în care considerăm baza canonică. Atunci coordonatele unui vector  $v = (x_1, \dots, x_n)$  sunt chiar componentele sale,  $x_1, \dots, x_n$ .
- $V = \mathbb{R}^3$  și baza  $B = \{v_1 = (1,0,0), v_2 = (0,-2,0), v_3 = (0,0,3)\}$ .În raport cu această bază, coordonatele vectorului v = (1,2,3) sunt (1,-1,1), deoarece

### Definiție

Fie V un spațiu vectorial și  $B = \{e_1, \dots, e_n\}$  o bază a lui V. Fie  $v \in V$  arbitrar; deoarece B este bază a lui V deducem că există și sunt unici scalarii  $x_1, \dots, x_n \in K$  astfel încât

$$v = x_1e_1 + \cdots + x_ne_n$$

Spunem prin definiție că  $(x_1, ..., x_n)$  sunt coordonatele lui v în raport cu baza B.

- Fie  $V = K^n$  în care considerăm baza canonică. Atunci coordonatele unui vector  $v = (x_1, \dots, x_n)$  sunt chiar componentele sale,  $x_1, \dots, x_n$ .
- $V = \mathbb{R}^3$  și baza  $B = \{v_1 = (1,0,0), v_2 = (0,-2,0), v_3 = (0,0,3)\}$ .În raport cu această bază, coordonatele vectorului v = (1,2,3) sunt (1,-1,1), deoarece  $v = 1 \cdot v_1 + (-1) \cdot v_2 + 1 \cdot v_3$

## Definiție

Fie V un spațiu vectorial peste un corp K. O submulțime  $V'\subset V$  se numește subspațiu vectorial dacă

$$\forall \alpha, \beta \in K, \forall u, v \in V' \Rightarrow \alpha u + \beta v \in V'.$$

## Definiție

Fie V un spațiu vectorial peste un corp K. O submulțime  $V'\subset V$  se numește subspațiu vectorial dacă

$$\forall \alpha, \beta \in K, \forall u, v \in V' \Rightarrow \alpha u + \beta v \in V'.$$

## Definiție

Fie V un spațiu vectorial peste un corp K. O submulțime  $V' \subset V$  se numește subspațiu vectorial dacă

$$\forall \alpha, \beta \in K, \forall u, v \in V' \Rightarrow \alpha u + \beta v \in V'.$$

## Exemple

• Fie  $V=\mathbb{R}^3$  și  $V'=\{(x,y,0)|x,y\in\mathbb{R}\}$ . Atunci V' este subspațiu vectorial deoarece  $\forall \alpha,\beta\in\mathbb{R}$  și

## Definiție

Fie V un spațiu vectorial peste un corp K. O submulțime  $V'\subset V$  se numește subspațiu vectorial dacă

$$\forall \alpha, \beta \in K, \forall u, v \in V' \Rightarrow \alpha u + \beta v \in V'.$$

## Exemple

• Fie  $V=\mathbb{R}^3$  și  $V'=\{(x,y,0)|x,y\in\mathbb{R}\}$ . Atunci V' este subspațiu vectorial deoarece  $\forall \alpha,\beta\in\mathbb{R}$  și  $\forall u=(x_1,y_1,0),v=(x_2,y_2,0)\in V'$ 

## Definiție

Fie V un spațiu vectorial peste un corp K. O submulțime  $V'\subset V$  se numește subspațiu vectorial dacă

$$\forall \alpha, \beta \in K, \forall u, v \in V' \Rightarrow \alpha u + \beta v \in V'.$$

## Exemple

• Fie  $V=\mathbb{R}^3$  și  $V'=\{(x,y,0)|x,y\in\mathbb{R}\}$ . Atunci V' este subspațiu vectorial deoarece  $\forall \alpha,\beta\in\mathbb{R}$  și  $\forall u=(x_1,y_1,0),v=(x_2,y_2,0)\in V'$  avem

$$\alpha \mathbf{u} + \beta \mathbf{v} =$$

## Definiție

Fie V un spațiu vectorial peste un corp K. O submulțime  $V' \subset V$  se numește subspațiu vectorial dacă

$$\forall \alpha, \beta \in K, \forall u, v \in V' \Rightarrow \alpha u + \beta v \in V'.$$

## Exemple

• Fie  $V=\mathbb{R}^3$  și  $V'=\{(x,y,0)|x,y\in\mathbb{R}\}$ . Atunci V' este subspațiu vectorial deoarece  $\forall \alpha,\beta\in\mathbb{R}$  și  $\forall u=(x_1,y_1,0),v=(x_2,y_2,0)\in V'$  avem

$$\alpha u + \beta v = (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, 0) \in V'.$$

## Definiție

Fie V un spațiu vectorial peste un corp K. O submulțime  $V' \subset V$  se numește subspațiu vectorial dacă

$$\forall \alpha, \beta \in K, \forall u, v \in V' \Rightarrow \alpha u + \beta v \in V'.$$

## Exemple

• Fie  $V=\mathbb{R}^3$  și  $V'=\{(x,y,0)|x,y\in\mathbb{R}\}$ . Atunci V' este subspațiu vectorial deoarece  $\forall \alpha,\beta\in\mathbb{R}$  și  $\forall u=(x_1,y_1,0),v=(x_2,y_2,0)\in V'$  avem

$$\alpha u + \beta v = (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, 0) \in V'.$$

• Fie  $V=\mathbb{R}^2$  și  $V'=\{(x,y)|x,y\in\mathbb{Z}\}$ . Atunci V'

## Definiție

Fie V un spațiu vectorial peste un corp K. O submulțime  $V'\subset V$  se numește subspațiu vectorial dacă

$$\forall \alpha, \beta \in K, \forall u, v \in V' \Rightarrow \alpha u + \beta v \in V'.$$

## Exemple

• Fie  $V=\mathbb{R}^3$  și  $V'=\{(x,y,0)|x,y\in\mathbb{R}\}$ . Atunci V' este subspațiu vectorial deoarece  $\forall \alpha,\beta\in\mathbb{R}$  și  $\forall u=(x_1,y_1,0),v=(x_2,y_2,0)\in V'$  avem

$$\alpha u + \beta v = (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, 0) \in V'.$$

• Fie  $V = \mathbb{R}^2$  și  $V' = \{(x,y)|x,y \in \mathbb{Z}\}$ . Atunci V' nu este subspațiu vectorial, deoarece,

## Definiție

Fie V un spațiu vectorial peste un corp K. O submulțime  $V' \subset V$  se numește subspațiu vectorial dacă

$$\forall \alpha, \beta \in K, \forall u, v \in V' \Rightarrow \alpha u + \beta v \in V'.$$

### Exemple

• Fie  $V=\mathbb{R}^3$  și  $V'=\{(x,y,0)|x,y\in\mathbb{R}\}$ . Atunci V' este subspațiu vectorial deoarece  $\forall \alpha,\beta\in\mathbb{R}$  și  $\forall u=(x_1,y_1,0),v=(x_2,y_2,0)\in V'$  avem

$$\alpha u + \beta v = (\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, 0) \in V'.$$

• Fie  $V=\mathbb{R}^2$  și  $V'=\{(x,y)|x,y\in\mathbb{Z}\}$ . Atunci V' nu este subspațiu vectorial, deoarece, de exemplu

$$\sqrt{2}(1,1) = (\sqrt{2},\sqrt{2}) \not\in V'$$

# Operații cu subspații vectoriale

## Observație

Fie V un spațiu vectorial și  $V_1, V_2 \subset V$  două subspații ale sale. Atunci  $V_1 \cap V_2$  este un subspațiu vectorial al lui V.

# Operații cu subspații vectoriale

#### Observatie

Fie V un spațiu vectorial și  $V_1, V_2 \subset V$  două subspații ale sale. Atunci  $V_1 \cap V_2$  este un subspațiu vectorial al lui V.

### **Definitie**

Fie V un spațiu vectorial și  $V_1, V_2 \subset V$  două subspații ale sale. Definim

$$V_1 + V_2 = \{v_1 + v_2 | v_1 \in V_1, v_2 \in V_2\}$$

Remarcă. Similar, putem defini suma unei familii arbitrare de subspații  $V_1,\ldots,V_n\subset V$ :

$$V_1 + \cdots + V_2 = \{v_1 + v_2 + \cdots + v_n | v_i \in V_i, i = 1, 2, \dots, n\}$$

# Operații cu subspații vectoriale

### Observatie

Fie V un spațiu vectorial și  $V_1, V_2 \subset V$  două subspații ale sale. Atunci  $V_1 \cap V_2$  este un subspațiu vectorial al lui V.

### **Definitie**

Fie V un spațiu vectorial și  $V_1, V_2 \subset V$  două subspații ale sale. Definim

$$V_1 + V_2 = \{v_1 + v_2 | v_1 \in V_1, v_2 \in V_2\}$$

Remarcă. Similar, putem defini suma unei familii arbitrare de subspații  $V_1,\ldots,V_n\subset V$ :

$$V_1 + \cdots + V_2 = \{v_1 + v_2 + \cdots + v_n | v_i \in V_i, i = 1, 2, \dots, n\}$$

#### Teoremă

Fie V un spațiu vectorial și  $V_1, V_2 \subset V$  două subspații ale sale. Atunci  $V_1 + V_2 \subset V$  este un subspațiu vectorial.

#### Observație

Fie V un spațiu vectorial peste un corp K și  $U\subset V$  un subspațiu. Atunci

$$dim_K(U) \leq dim_K(V)$$

### Observație

Fie V un spațiu vectorial peste un corp K și  $U\subset V$  un subspațiu. Atunci

$$dim_K(U) \leq dim_K(V)$$

și egalitatea are loc dacă și numai dacă U=V.

#### Observație

Fie V un spațiu vectorial peste un corp K și  $U\subset V$  un subspațiu. Atunci

$$dim_K(U) \leq dim_K(V)$$

și egalitatea are loc dacă și numai dacă U=V.

### Teorema dimensiunii sumei a două subspații (Grassmann)

Fie V un spațiu vectorial peste un corp K și  $U_1,U_2\subset V$  subspații vectoriale. Atunci

#### Observație

Fie V un spațiu vectorial peste un corp K și  $U \subset V$  un subspațiu. Atunci

$$dim_K(U) \leq dim_K(V)$$

și egalitatea are loc dacă și numai dacă U=V.

## Teorema dimensiunii sumei a două subspații (Grassmann)

Fie V un spațiu vectorial peste un corp K și  $U_1, U_2 \subset V$  subspații vectoriale. Atunci

$$dim_K(U_1 + U_2) = dim_K(U_1) + dim_K(U_2) - dim_K(U_1 \cap U_2)$$

### Definitie

Fie V un spațiu vectorial,  $U_1, U_2 \subset V$  două subspații vectoriale. Spunem că  $U_1$  și  $U_2$  se sumează direct (sau că sunt sumanzi direcți) dacă pentru orice  $v \in U_1 + U_2$  există şi sunt unici  $u_1 \in U_1$ ,  $u_2 \in U_2$  astfel încât  $v = u_1 + u_2$ . În acest caz notăm suma subspațiilor astfel:  $U_1 \oplus U_2$ .

## Definiție

Fie V un spațiu vectorial,  $U_1, U_2 \subset V$  două subspații vectoriale. Spunem că  $U_1$  și  $U_2$  se sumează direct (sau că sunt sumanzi direcți) dacă pentru orice  $v \in U_1 + U_2$  există și sunt unici  $u_1 \in U_1, u_2 \in U_2$  astfel încât  $v = u_1 + u_2$ . În acest caz notăm suma subspațiilor astfel:  $U_1 \oplus U_2$ .

#### **Teoremă**

Fie V un spațiu vectorial,  $U_1,U_2\subset V$  două subspații vectoriale. Atunci  $U_1$  și  $U_2$  sunt sumanzi direcți dacă și numai dacă

$$U_1 \cap U_2 = \{0\}.$$

#### Definiție

Fie V un spațiu vectorial,  $U_1, U_2 \subset V$  două subspații vectoriale. Spunem că  $U_1$  și  $U_2$  se sumează direct (sau că sunt sumanzi direcți) dacă pentru orice  $v \in U_1 + U_2$  există și sunt unici  $u_1 \in U_1, u_2 \in U_2$  astfel încât  $v = u_1 + u_2$ . În acest caz notăm suma subspațiilor astfel:  $U_1 \oplus U_2$ .

#### Teoremă

Fie V un spațiu vectorial,  $U_1,U_2\subset V$  două subspații vectoriale. Atunci  $U_1$  și  $U_2$  sunt sumanzi direcți dacă și numai dacă

$$U_1 \cap U_2 = \{0\}.$$

#### Corolar

Fie V un spațiu vectorial,  $U_1,U_2\subset V$  două subspații vectoriale. Dacă  $U_1,U_2$  se sumează direct, atunci

$$dim_K(U_1 \oplus U_2) =$$

#### Definiție

Fie V un spațiu vectorial,  $U_1, U_2 \subset V$  două subspații vectoriale. Spunem că  $U_1$  și  $U_2$  se sumează direct (sau că sunt sumanzi direcți) dacă pentru orice  $v \in U_1 + U_2$  există și sunt unici  $u_1 \in U_1, u_2 \in U_2$  astfel încât  $v = u_1 + u_2$ . În acest caz notăm suma subspațiilor astfel:  $U_1 \oplus U_2$ .

#### Teoremă

Fie V un spațiu vectorial,  $U_1,U_2\subset V$  două subspații vectoriale. Atunci  $U_1$  și  $U_2$  sunt sumanzi direcți dacă și numai dacă

$$U_1 \cap U_2 = \{0\}.$$

#### Corolar

Fie V un spațiu vectorial,  $U_1,U_2\subset V$  două subspații vectoriale. Dacă  $U_1,U_2$  se sumează direct, atunci

$$dim_K(U_1 \oplus U_2) = dim_K(U_1) + dim_K(U_2).$$

#### Teoremă

Fie V un spațiu vectorial,  $B=\{e_1,\ldots,e_n\}\subset V$  o bază fixată. Fie  $U\subset V$  o submulțime. Atunci U este subspațiu vectorial dacă și numai dacă

#### Teoremă

Fie V un spațiu vectorial,  $B=\{e_1,\ldots,e_n\}\subset V$  o bază fixată. Fie  $U\subset V$  o submulțime. Atunci U este subspațiu vectorial dacă și numai dacă există o matrice  $A=(a_{ij})\in Mat_{n,m}(K)$  astfel încât U este mulțimea tuturor vectorilor v de coordonate  $X=(x_1,\ldots,x_n)$  (în raport cu baza B) pentru care

#### Teoremă

Fie V un spațiu vectorial,  $B=\{e_1,\ldots,e_n\}\subset V$  o bază fixată. Fie  $U\subset V$  o submulțime. Atunci U este subspațiu vectorial dacă și numai dacă există o matrice  $A=(a_{ij})\in Mat_{n,m}(K)$  astfel încât U este mulțimea tuturor vectorilor v de coordonate  $X=(x_1,\ldots,x_n)$  (în raport cu baza B) pentru care

$$A \begin{pmatrix} x_1 \\ x_2 \\ \cdot \\ \cdot \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \cdot \\ \cdot \\ 0 \end{pmatrix}$$

#### Teoremă

Fie V un spațiu vectorial,  $B=\{e_1,\ldots,e_n\}\subset V$  o bază fixată. Fie  $U\subset V$  o submulțime. Atunci U este subspațiu vectorial dacă și numai dacă există o matrice  $A=(a_{ij})\in Mat_{n,m}(K)$  astfel încât U este mulțimea tuturor vectorilor v de coordonate  $X=(x_1,\ldots,x_n)$  (în raport cu baza B) pentru care

$$A\begin{pmatrix} x_1 \\ x_2 \\ \cdot \\ \cdot \\ \cdot \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \cdot \\ \cdot \\ 0 \end{pmatrix}$$

#### Remarcă importantă.

În condițiile de mai sus avem  $dim_K(U) = dim_K(V) - rang(A)$ .

#### Definitie

Fie U, V spații vectoriale peste același corp K. O funcție  $f: U \to V$  se numește aplicație liniară (sau morfism de spații vectoriale) dacă pentru orice doi vectori  $u_1, u_2 \in U$  și orice doi scalari  $\alpha, \beta \in K$  avem

$$f(\alpha u_1 + \beta u_2) = \alpha f(u_1) + \beta f(u_2).$$

## Definitie

Fie U, V spații vectoriale peste același corp K. O funcție  $f: U \to V$  se numește aplicație liniară (sau morfism de spații vectoriale) dacă pentru orice doi vectori  $u_1, u_2 \in U$  și orice doi scalari  $\alpha, \beta \in K$  avem

$$f(\alpha u_1 + \beta u_2) = \alpha f(u_1) + \beta f(u_2).$$

## Exemple

## Definiție

Fie U,V spații vectoriale peste același corp K. O funcție  $f:U\to V$  se numește aplicație liniară (sau morfism de spații vectoriale) dacă pentru orice doi vectori  $u_1,u_2\in U$  și orice doi scalari  $\alpha,\beta\in K$  avem

$$f(\alpha u_1 + \beta u_2) = \alpha f(u_1) + \beta f(u_2).$$

## Exemple

• Fie 
$$U = V = \mathbb{R}^2$$
 și  $f : U \to V$ ,  $f(x_1, x_2) = 3(x_1, x_2)$ .

#### Definiție

Fie U,V spații vectoriale peste același corp K. O funcție  $f:U\to V$  se numește aplicație liniară (sau morfism de spații vectoriale) dacă pentru orice doi vectori  $u_1,u_2\in U$  și orice doi scalari  $\alpha,\beta\in K$  avem

$$f(\alpha u_1 + \beta u_2) = \alpha f(u_1) + \beta f(u_2).$$

## Exemple

- Fie  $U = V = \mathbb{R}^2$  și  $f : U \to V$ ,  $f(x_1, x_2) = 3(x_1, x_2)$ .
- Putem extinde exemplul anterior astfel. Fie  $A \in Mat_{22}(\mathbb{R})$  o matrice arbitrară,

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

Definim  $f_A: \mathbb{R}^2 \to \mathbb{R}^2$  prin

### Definiție

Fie U, V spații vectoriale peste același corp K. O funcție  $f: U \to V$  se numește aplicație liniară (sau morfism de spații vectoriale) dacă pentru orice doi vectori  $u_1, u_2 \in U$  și orice doi scalari  $\alpha, \beta \in K$  avem

$$f(\alpha u_1 + \beta u_2) = \alpha f(u_1) + \beta f(u_2).$$

#### Exemple

- Fie  $U = V = \mathbb{R}^2$  și  $f : U \to V$ ,  $f(x_1, x_2) = 3(x_1, x_2)$ .
- Putem extinde exemplul anterior astfel. Fie  $A \in Mat_{22}(\mathbb{R})$  o matrice arbitrară,

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

Definim  $f_A: \mathbb{R}^2 \to \mathbb{R}^2$  prin

$$f_A(x_1,x_2) = (ax_1 + bx_2, cx_1 + dx_2)$$

## Definiții

Fie  $f: U \rightarrow V$  o aplicație liniară. Definim:

• Imaginea lui f, Im(f), prin:

## Definiții

Fie  $f: U \rightarrow V$  o aplicație liniară. Definim:

• Imaginea lui f, Im(f), prin:

$$Im(f) = \{v \in V | \exists u \in U, f(u) = v\}.$$

## Definiții

Fie  $f: U \to V$  o aplicație liniară. Definim:

• Imaginea lui f, Im(f), prin:

$$Im(f) = \{v \in V | \exists u \in U, f(u) = v\}.$$

Nucleul lui f, Ker(f), prin:

## Definiții

Fie  $f: U \to V$  o aplicație liniară. Definim:

Imaginea lui f, Im(f), prin:

$$Im(f) = \{ v \in V | \exists u \in U, f(u) = v \}.$$

• *Nucleul* lui f, *Ker*(f), prin:

$$Ker(f) = \{u \in U | f(u) = 0\}.$$

## Definiții

Fie  $f: U \to V$  o aplicație liniară. Definim:

• Imaginea lui f, Im(f), prin:

$$Im(f) = \{v \in V | \exists u \in U, f(u) = v\}.$$

• Nucleul lui f, Ker(f), prin:

$$Ker(f) = \{u \in U | f(u) = 0\}.$$

#### Teoremă

Fie  $f: U \rightarrow V$  o aplicație liniară. Atunci:

## Definiții

Fie  $f: U \to V$  o aplicație liniară. Definim:

• Imaginea lui f, Im(f), prin:

$$Im(f) = \{v \in V | \exists u \in U, f(u) = v\}.$$

• Nucleul lui f, Ker(f), prin:

$$Ker(f) = \{u \in U | f(u) = 0\}.$$

#### Teoremă

Fie  $f: U \rightarrow V$  o aplicație liniară. Atunci:

•  $Ker(f) \subset U$  și  $Im(f) \subset V$  sunt subspații vectoriale;

## Definiții

Fie  $f: U \rightarrow V$  o aplicație liniară. Definim:

• Imaginea lui f, Im(f), prin:

$$Im(f) = \{v \in V | \exists u \in U, f(u) = v\}.$$

• Nucleul lui f, Ker(f), prin:

$$Ker(f) = \{u \in U | f(u) = 0\}.$$

#### Teoremă

Fie  $f: U \rightarrow V$  o aplicație liniară. Atunci:

- $Ker(f) \subset U$  și  $Im(f) \subset V$  sunt subspații vectoriale;
- f este surjectivă dacă și numai dacă Im(f) = V;

## Definiții

Fie  $f: U \to V$  o aplicație liniară. Definim:

• Imaginea lui f, Im(f), prin:

$$Im(f) = \{ v \in V | \exists u \in U, f(u) = v \}.$$

• Nucleul lui f, Ker(f), prin:

$$Ker(f) = \{u \in U | f(u) = 0\}.$$

#### Teoremă

Fie  $f: U \to V$  o aplicație liniară. Atunci:

- $Ker(f) \subset U$  și  $Im(f) \subset V$  sunt subspații vectoriale;
- f este surjectivă dacă și numai dacă Im(f) = V;
- f este injectivă dacă și numai dacă  $Ker(f) = \{0_U\}.$

Teoremă ("teorema dimensiunii pentru aplicații liniare")

Fie  $f: U \rightarrow V$  o aplicație liniară. Atunci:

## Teoremă ("teorema dimensiunii pentru aplicații liniare")

Fie  $f: U \rightarrow V$  o aplicație liniară. Atunci:

$$dim_K(Ker(f)) + dim_K(Im(f)) = dim_K(U).$$

## Teoremă ("teorema dimensiunii pentru aplicații liniare")

Fie  $f: U \rightarrow V$  o aplicație liniară. Atunci:

$$dim_K(Ker(f)) + dim_K(Im(f)) = dim_K(U).$$

#### Corolar

Fie U, V două spații vectoriale (peste același corp K). Dacă:

## Teoremă ("teorema dimensiunii pentru aplicații liniare")

Fie  $f: U \rightarrow V$  o aplicație liniară. Atunci:

$$dim_K(Ker(f)) + dim_K(Im(f)) = dim_K(U).$$

#### Corolar

Fie U, V două spații vectoriale (peste același corp K). Dacă:

•  $dim_K(U) < dim_K(V)$  atunci

## Teoremă ("teorema dimensiunii pentru aplicații liniare")

Fie  $f: U \to V$  o aplicație liniară. Atunci:

$$dim_K(Ker(f)) + dim_K(Im(f)) = dim_K(U).$$

#### Corolar

Fie U, V două spații vectoriale (peste același corp K). Dacă:

•  $dim_K(U) < dim_K(V)$  atunci nu există nici o aplicație surjectivă liniară  $f: U \to V$ ;

## Teoremă ("teorema dimensiunii pentru aplicații liniare")

Fie  $f: U \rightarrow V$  o aplicație liniară. Atunci:

$$dim_K(Ker(f)) + dim_K(Im(f)) = dim_K(U).$$

#### Corolar

Fie U, V două spații vectoriale (peste același corp K). Dacă:

- $dim_K(U) < dim_K(V)$  atunci nu există nici o aplicație surjectivă liniară  $f: U \to V$ :
- $dim_K(U) > dim_K(V)$  atunci

## Teoremă ("teorema dimensiunii pentru aplicații liniare")

Fie  $f: U \rightarrow V$  o aplicație liniară. Atunci:

$$dim_K(Ker(f)) + dim_K(Im(f)) = dim_K(U).$$

#### Corolar

Fie U, V două spații vectoriale (peste același corp K). Dacă:

- $dim_K(U) < dim_K(V)$  atunci nu există nici o aplicație surjectivă liniară  $f: U \to V$ :
- $dim_K(U) > dim_K(V)$  atunci nu există nici o aplicație injectivă liniară  $f: U \to V$ ;

### Definiție

Fie U, V două spații vectoriale,  $f: U \to V$  o aplicație liniară și  $B_U = \{e_1, \dots, e_n\} \subset U, \ B_V = \{f_1, \dots, f_m\} \subset V$  baze fixate. Se numește matricea asociată lui f în raport cu bazele date matricea  $A = (a_{ii})$  definită prin

$$f(e_j) = \sum_{i=1}^m a_{ij} f_i$$

## Definiție

Fie U, V două spații vectoriale,  $f: U \to V$  o aplicație liniară și  $B_U = \{e_1, \dots, e_n\} \subset U, B_V = \{f_1, \dots, f_m\} \subset V$  baze fixate. Se numește matricea asociată lui f în raport cu bazele date matricea  $A = (a_{ii})$  definită prin

$$f(e_j) = \sum_{i=1}^m a_{ij} f_i$$

Fie 
$$U = V = \mathbb{R}^2$$
,  $B_U = B_V = \{e_1 = (1,1), e_2 = (0,2)\}$  și  $f: U \to V$ ,  $f(x_1, x_2) = (2x_1 - x_2, 3x_2)$ . Avem:

## Definiție

Fie U, V două spații vectoriale,  $f: U \to V$  o aplicație liniară și  $B_U = \{e_1, \dots, e_n\} \subset U, B_V = \{f_1, \dots, f_m\} \subset V$  baze fixate. Se numește matricea asociată lui f în raport cu bazele date matricea  $A = (a_{ii})$  definită prin

$$f(e_j) = \sum_{i=1}^m a_{ij} f_i$$

Fie 
$$U = V = \mathbb{R}^2$$
,  $B_U = B_V = \{e_1 = (1,1), e_2 = (0,2)\}$  și  $f: U \to V$ ,  $f(x_1, x_2) = (2x_1 - x_2, 3x_2)$ . Avem:  $f(e_1) = (1,3) =$ 

## Definiție

Fie U,V două spații vectoriale,  $f:U\to V$  o aplicație liniară și  $B_U=\{e_1,\ldots,e_n\}\subset U,\ B_V=\{f_1,\ldots,f_m\}\subset V$  baze fixate. Se numește matricea asociată lui f în raport cu bazele date matricea  $A=(a_{ij})$  definită prin

$$f(e_j) = \sum_{i=1}^m a_{ij} f_i$$

Fie 
$$U=V=\mathbb{R}^2,\, B_U=B_V=\{e_1=(1,1),e_2=(0,2)\}$$
 și  $f:U\to V, f(x_1,x_2)=(2x_1-x_2,3x_2).$  Avem:  $f(e_1)=(1,3)=e_1+e_2,$ 

## Definiție

Fie U, V două spații vectoriale,  $f: U \to V$  o aplicație liniară și  $B_U = \{e_1, \dots, e_n\} \subset U, B_V = \{f_1, \dots, f_m\} \subset V$  baze fixate. Se numește matricea asociată lui f în raport cu bazele date matricea  $A = (a_{ii})$  definită prin

$$f(e_j) = \sum_{i=1}^m a_{ij} f_i$$

Fie 
$$U = V = \mathbb{R}^2$$
,  $B_U = B_V = \{e_1 = (1,1), e_2 = (0,2)\}$  și  $f: U \to V$ ,  $f(x_1, x_2) = (2x_1 - x_2, 3x_2)$ . Avem:  $f(e_1) = (1,3) = e_1 + e_2$ ,  $f(e_2) = (-2,6) =$ 

## Definiție

Fie U, V două spații vectoriale,  $f: U \to V$  o aplicație liniară și  $B_U = \{e_1, \dots, e_n\} \subset U, B_V = \{f_1, \dots, f_m\} \subset V$  baze fixate. Se numește matricea asociată lui f în raport cu bazele date matricea  $A = (a_{ii})$  definită prin

$$f(e_j) = \sum_{i=1}^m a_{ij} f_i$$

Fie 
$$U = V = \mathbb{R}^2$$
,  $B_U = B_V = \{e_1 = (1,1), e_2 = (0,2)\}$  și  $f: U \to V$ ,  $f(x_1, x_2) = (2x_1 - x_2, 3x_2)$ . Avem:  $f(e_1) = (1,3) = e_1 + e_2$ ,  $f(e_2) = (-2,6) = -2e_1 + 4e_2$ ,

#### Definiție

Fie U, V două spații vectoriale,  $f: U \to V$  o aplicație liniară și  $B_U = \{e_1, \dots, e_n\} \subset U, B_V = \{f_1, \dots, f_m\} \subset V$  baze fixate. Se numește matricea asociată lui f în raport cu bazele date matricea  $A = (a_{ii})$  definită prin

$$f(e_j) = \sum_{i=1}^m a_{ij} f_i$$

#### Exemplu

Fie  $U = V = \mathbb{R}^2$ ,  $B_{II} = B_V = \{e_1 = (1,1), e_2 = (0,2)\}$  și  $f: U \to V, f(x_1, x_2) = (2x_1 - x_2, 3x_2)$ . Avem:  $f(e_1) = (1,3) = e_1 + e_2$ ,  $f(e_2) = (-2,6) = -2e_1 + 4e_2$ , deci matricea lui f va fi

$$A = \left(\begin{array}{cc} 1 & -2 \\ 1 & 4 \end{array}\right)$$

# Caracterizarea în coordonate a unei aplicații liniare

#### Teoremă

Fie U, V două spații vectoriale,  $f: U \to V$  o funcție, și  $B_U = \{e_1, \dots, e_n\} \subset U, B_V = \{f_1, \dots, f_m\} \subset V$  baze fixate. Atunci f este aplicație liniară dacă și numai dacă există o matrice A astfel încât, pentru orice  $u \in U$  avem

$$Y = AX$$

unde

## Caracterizarea în coordonate a unei aplicații liniare

#### Teoremă

Fie U, V două spații vectoriale,  $f: U \to V$  o funcție, și  $B_U = \{e_1, \dots, e_n\} \subset U, B_V = \{f_1, \dots, f_m\} \subset V$  baze fixate. Atunci f este aplicație liniară dacă și numai dacă există o matrice A astfel încât, pentru orice  $u \in U$  avem

$$Y = AX$$
unde  $X = \begin{pmatrix} x_1 \\ x_2 \\ \cdot \\ \cdot \\ x_n \end{pmatrix}$  respectiv  $Y = \begin{pmatrix} y_1 \\ y_2 \\ \cdot \\ \cdot \\ y_m \end{pmatrix}$ 

sunt cordonatele lui

# Caracterizarea în coordonate a unei aplicații liniare

#### Teoremă

Fie U, V două spații vectoriale,  $f: U \to V$  o funcție, și  $B_U = \{e_1, \dots, e_n\} \subset U, B_V = \{f_1, \dots, f_m\} \subset V$  baze fixate. Atunci f este aplicație liniară dacă și numai dacă există o matrice A astfel încât, pentru orice  $u \in U$  avem

$$Y = AX$$
unde  $X = \begin{pmatrix} x_1 \\ x_2 \\ \cdot \\ \cdot \\ x_n \end{pmatrix}$  respectiv  $Y = \begin{pmatrix} y_1 \\ y_2 \\ \cdot \\ \cdot \\ y_m \end{pmatrix}$ 

sunt cordonatele lui  $u : u = \sum_{i=1}^{n} x_i e_i$  respectiv  $f(u) : f(u) = \sum_{i=1}^{m} y_j f_j$ .