

Exercise 6A

Pure Mathematics 1

1 a

Using
$$c^2 = a^2 + b^2 - 2ab \cos C$$

 $AB^2 = 6.5^2 + 8.4^2 - 2 \times 6.5 \times 8.4 \times \cos 20^\circ$
 $AB^2 = 10.1955...$
 $AB = \sqrt{10.1955...} = 3.19 \text{ cm (3 s.f.)}$

b

Using
$$a^2 = b^2 + c^2 - 2bc \cos A$$

 $BC^2 = 1^2 + 2^2 - 2 \times 1 \times 2 \times \cos 60^\circ$
 $BC^2 = 3$
 $BC = \sqrt{3} = 1.73 \text{ cm (3 s.f.)}$

c

Using
$$b^2 = a^2 + c^2 - 2ac \cos B$$

 $AC^2 = 5.5^2 + 4.5^2 - 2 \times 5.5 \times 4.5 \times \cos 160^\circ$
 $AC^2 = 97.014...$
 $AC = \sqrt{97.014...3} = 9.85 \text{ cm (3 s.f.)}$

d

Using
$$a^2 = b^2 + c^2 - 2bc \cos A$$

d
$$BC^2 = 6^2 + 5^2 - 2 \times 6 \times 5 \times \cos 45^\circ$$

= 18.573...
 $BC = \sqrt{18.573...} = 4.31 \text{ cm} (3 \text{ s.f.})$

e

(This is an isosceles triangle so you could use right-angled triangle trigonometry.)
Using $b^2 = a^2 + c^2 - 2ac \cos B$ $AC^2 = 10^2 + 10^2 - 2 \times 10 \times 10 \times \cos 40^\circ$ = 46.791... $AC = \sqrt{46.791...} = 6.84 \text{cm} (3 \text{ s.f.})$

f

Using
$$c^2 = a^2 + b^2 - 2ab \cos C$$

 $AB^2 = 6.5^2 + 5.6^2 - 2 \times 6.5 \times 5.6 \times \cos 108^\circ$
 $= 96.106...$
 $AB = \sqrt{96.106...} = 9.80 \text{ cm (3 s.f.)}$

2 a

Using
$$\cos B = \frac{a^2 + c^2 - b^2}{2ac}$$

 $\cos B = \frac{8^2 + 4^2 - 10^2}{2x \cdot 8x \cdot 4}$

Pure Mathematics 1

2 **a** $\cos B = -\frac{20}{64}$ = $-\frac{5}{16}$ $B = \cos^{-1} \left(-\frac{5}{16} \right) = 108.2...^{\circ}$ = $108^{\circ} (3 \text{ s.f.})$

We can use a calculator to find directly an obtuse angle with a negative cosine value.

b

Using
$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

$$\cos C = \frac{7^2 + 24^2 - 25^2}{2 \times 7 \times 24}$$

$$= 0$$

$$C = \cos^{-1}(0) = 90^\circ$$

c

Using
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

 $\cos A = \frac{4^2 + 2.5^2 - 3.5^2}{2 \times 4 \times 2.5}$
 $= \frac{1}{2}$
 $A = \cos^{-1}(\frac{1}{2}) = 60^{\circ} A$

d

Using
$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

d
$$\cos C = \frac{7^2 + 10^2 - 8^2}{2 \times 7 \times 10} = 0.6071...$$

 $C = \cos^{-1}(0.6071...) = 52.6^{\circ} (3 \text{ s.f.})$

e

Using
$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

$$\cos C = \frac{9^2 + 6^2 - 14^2}{2 \times 9 \times 6} = -0.7314...$$

$$C = \cos^{-1}(-0.7314...) = 137^{\circ} (3 \text{ s.f.})$$

f

(This is an isosceles triangle so you could use right-angled triangle trigonometry.)

Using
$$\cos B = \frac{a^2 + c^2 - b^2}{2ac}$$

$$\cos B = \frac{6.2^2 + 3.8^2 - 6.2^2}{2 \times 6.2 \times 3.8} = 0.3064...$$

$$B = \cos^{-1}(0.3064...) = 72.2^{\circ}(3 \text{ s.f.})$$

3 Use alternate angles to find angle of 40° and $180^{\circ}-130^{\circ}=50^{\circ}$. Adding, this gives 90°. At this point, you can use Pythagoras' theorem or the cosine rule.

$$c^{2} = a^{2} + b^{2} - 2ab \cos C$$

$$c^{2} = 120^{2} + 150^{2} - 2 \times 120 \times 150 \cos 90^{\circ}$$

$$= 14 \ 400 + 22 \ 500 - 0$$

$$= 36 \ 900$$

So c = 192.0937...

The distance of the plane from the airport is 192 km (3 s.f.).

Pure Mathematics 1

4

Using the cosine rule:

$$b^{2} = a^{2} + c^{2} - 2ac \cos B$$

$$AC^{2} = 10^{2} + 7^{2} - 2 \times 10 \times 7 \times \cos 80^{\circ}$$

$$= 124.689$$

$$AC = \sqrt{124.689...} = 11.2 \text{ km (3 s.f.)}$$

5

The bearing of C from B is not given so there are two possibilities for C, using known information.

The angle A will be the same in each $\triangle ABC$.

Using
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

$$\cos A = \frac{80^2 + 50^2 - 60^2}{2 \times 80 \times 50} = 0.6625$$

$$\Rightarrow A = 48.5^\circ$$

The bearing of C from A is $80^{\circ} \pm 48.5^{\circ} = 128.5^{\circ}$ or 031.5°

6

Using the cosine rule:

$$t^2 = f^2 + s^2 - 2fs\cos T$$

6
$$SF^2 = 220^2 + 494^2 - 2 \times 220 \times 494 \cos 22^\circ$$

= 90 903.317
 $SF = \sqrt{90 \ 903.317...} = 301.5... \text{ yards}$

$$SF = \sqrt{90.903.317...} = 301.5... \text{ yards}$$
$$= 302 \text{ yards}(3 \text{ s.f.})$$
$$7 \qquad \cos A = \frac{b^2 + c^2 - a^2}{2}$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

$$= \frac{5^2 + 4^2 - 6^2}{2(5)(4)}$$

$$= \frac{25 + 16 - 36}{40}$$

$$= \frac{5}{40}$$

$$= \frac{1}{8}$$

8
$$\cos P = \frac{q^2 + r^2 - p^2}{2qr}$$

$$= \frac{3^2 + 2^2 - 4^2}{2(3)(2)}$$

$$= \frac{9 + 4 - 16}{12}$$

$$= -\frac{3}{12}$$

$$= -\frac{1}{4}$$

9

The smallest angle is C as this is opposite AB, the shortest side.

Using
$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

$$\cos C = \frac{6^2 + 10^2 - 5^2}{2 \times 6 \times 10}$$

$$= 0.925$$

$$C = 22.3^{\circ} (3 \text{ s.f.})$$

10

The largest angle is B as it is opposite AC.

Using
$$\cos B = \frac{a^2 + c^2 - b^2}{2ac}$$

$$\cos B = \frac{6.2^2 + 9.3^2 - 12.7^2}{2 \times 6.2 \times 9.3} = -0.3152...$$

$$B = 108.37... = 108^{\circ}(3 \text{ s.f.})$$

11

The largest angle will be opposite the side of length 4k cm, the longest side.

Using
$$\cos B = \frac{a^2 + c^2 - b^2}{2ac}$$

$$\cos B = \frac{9k^2 + 4k^2 - 16k^2}{2 \times 3k \times 2k}$$

$$= -0.25$$

$$B = 104^{\circ} (3 \text{ s.f.})$$

12

Using
$$a^2 = b^2 + c^2 - 2bc \cos A$$

 $(x+3)^2 = (x-3)^2 + 8^2 - 2 \times 8 \times (x-3) \cos 60^\circ$
 $x^2 + 6x + 9 = x^2 - 6x + 9 + 64 - 8(x-3)$
 $x^2 + 6x + 9 = x^2 - 6x + 9 + 64 - 8x + 24$

12
$$6x + 6x + 8x = 64 + 24$$

 $20x = 88$
 $x = \frac{88}{20}$

$$= 4.4 \,\mathrm{cm}$$

13

Using
$$a^2 = b^2 + c^2 - 2bc \cos A$$

 $(x-4)^2 = 10^2 + x^2 - 2 \times 10 \times x \cos 60^\circ$
 $x^2 - 8x + 16 = 100 + x^2 - 10x$
 $10x - 8x = 100 - 16$
 $2x = 84$
 $x = 42$ cm

14 a

Using
$$b^2 = a^2 + c^2 - 2ac \cos B$$

 $y^2 = (4+x)^2 + (5-x)^2$
 $-2(4+x)(5-x) \cos 120^\circ$
 $y^2 = 16 + 8x + x^2 + 25 - 10x + x^2$
 $+ (4+x)(5-x)$
(Note: $2 \cos 120^\circ = -1$)
 $y^2 = 16 + 8x + x^2 + 25 - 10x + x^2$
 $+ 20 + x - x^2$
 $= x^2 - x + 61$

b Completing the square:

$$y^{2} = (x - \frac{1}{2})^{2} + 61 - \frac{1}{4}$$
$$\Rightarrow y^{2} = (x - \frac{1}{2})^{2} + 60\frac{3}{4}$$

The minimum value of y^2 occurs when $(x-\frac{1}{2})^2 = 0$, i.e. when $x = \frac{1}{2}$.

So the minimum value of y^2 is 60.75.

Pure Mathematics 1

15 a

$$\cos B = \frac{5^2 + x^2 - (10 - x)^2}{2 \times 5 \times x}$$

$$= \frac{25 + x^2 - (100 - 20x + x^2)}{10x}$$

$$= \frac{25 + x^2 - 100 + 20x - x^2}{10x}$$

$$= \frac{20x - 75}{10x}$$

$$= \frac{4x - 15}{2x}$$

b As
$$\cos B = -\frac{1}{7}$$

$$\frac{4x-15}{2x} = -\frac{1}{7}$$

$$7(4x-15) = -2x$$

$$28x-105 = -2x$$

$$30x = 105$$

$$x = \frac{105}{30}$$

$$= 3\frac{1}{2}$$

16 First find the length of the diagonal *BD*. $a^{2} = b^{2} + c^{2} - 2bc \cos A$ $= 120^{2} + 75^{2} - 2 \times 120 \times 75 \cos 74^{\circ}$ = 14400 + 5625 - 4961.4724 = 15063.5276So a = 122.73356...

So the length of the diagonal *BD* is 122.733 56... m.

Note that in this question you do not have to find the value of a since you only need a^2 in the next part of the calculation.

To find the angle between fences *BC* and *CD*:

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

$$= \frac{135^2 + 60^2 - 122.73356^2}{2(135)(60)}$$

$$= \frac{18225 + 3600 - 15063.5276}{16200}$$

$$= 0.41737...$$

$$C = \cos^{-1}(0.41737...)$$

$$= 65.33...^{\circ}$$

So the angle between fences BC and CD is 65.3° (3 s.f.).

17 a
$$a^2 = b^2 + c^2 - 2bc \cos A$$

= $70^2 + 50^2 - 2 \times 70 \times 50 \cos 20^\circ$
= $4900 + 2500 - 6577.848...$
= $822.15165...$
So $a = 28.673...$

The distance between ships B and C is 28.7 km (3 s.f.).

b
$$\cos B = \frac{a^2 + c^2 - b^2}{2ac}$$

 $\cos B = \frac{28.673^2 + 50^2 - 70^2}{2(28.673)(50)}$
 $= \frac{822.15165 + 2500 - 4900}{2867.3187}$
 $= -0.55028...$
 $B = \cos^{-1}(0.55028...)$
 $= 123.3867...°$

The bearing is $180^{\circ} - 123.3867^{\circ} = 56.6^{\circ}$. The bearing of ship *C* from ship *B* is 056.6° .