Chi-square test

Grzegorz Karas

April 19, 2021

1 Definition [1, 2]

The Pearson's χ^2 -test is a test used for hypothesis concerning probabilities of multinomial random variables. It tests a null hypothesis stating that the frequency distribution of certain events observed in a sample is consistent with a particular theoretical distribution.

The test statistic is of following kind

$$\chi^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i} = N \sum_{i=1}^n \frac{(O_i/N - p_i)^2}{p_i}$$
 (1)

where

- χ^2 = Pearson's cumulative test statistic, which asymptotically approaches a χ^2 distribution.
- O_i = number of observation of type i
- N = total number of observations
- $E_i = Np_i$ = the expected (theoretical) count of type i
- n = the number of cells in the table $(rows \cdot columns)$

If the test is fasle, then the appropriate test statistic has approximately a noncentral χ^2 distribution with the same degrees of freedom df and a noncentrality parameter λ , which depends on alternative considered.

2 Test types [1]

Pearson's chi-squared test is used to assess three types of comparison: goodness of fit, homogeneity, and independence.

- A test of **goodness of fit** establishes whether an observed frequency distribution differs from a theoretical distribution. χ^2 test statistic with degrees of freedom df = n 1
- A test of **homogeneity** compares the distribution of counts for two or more groups using the same categorical variable. χ^2 test statistic with degrees of freedom $df = (rows 1) \cdot (columns 1)$
- A test of **independence** assesses whether observations consisting of measures on two variables, expressed in a contingency table, are independent of each other.

 χ^2 test statistic with degrees of freedom $df = (rows - 1) \cdot (columns - 1)$

2.1 Test of goodness of fit

2.2 Test of independence

2.3 Test of homogenity

2.4 Sample size

References

^[1] Chi-squared-test https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test.

[2]	Guenthe	r, W. (197	7). Power o	and Sample s	Size for Appro	oximate Chi-	$Square\ Tests.$	The America	n Statistician,	31(2), 83-85.
						2				