nhalt		1
nnait		1
		-

ı	n	h	a	l+
ı	n	"	a	ιτ

Abbildungsverzeichnis	3
-----------------------	---

Tabellenverzeichnis 5

Abbildungsverzeichnis

Tabellenverzeichnis 5

Tabellenverzeichnis

- Netzwerkaufbau
 - Edge Computing (zentrale Verwaltung)
 - * "a form of distributed computing in which processing and storage takes place on a set of networked machines which are near the edge, where the nearness is defined by the system's requirements" (ISO/IEC: Tr 30164:2020 internet of things (iot) -edge computing. Tech. rep., ISO/IEC (2020))
 - * Motivation: Latenzreduzierung, unbenutzte Resourcen verwenden
 - * Fahrzeuge sind Edge Server
 - * kann mit fest installierten Edge Server kombiniert werden
 - Basissatation zuständig für Verbindung zwischen lokale Edge server und Cloud Netzwerk
 - Fog Computing (lokale Fahrzeuge schließen sich zu Rehchenknoten zusammen)
 - "a horizontal system-level architecture that distributes computing, storage, and networking functions closer to the user along a cloud-to-thing continuum"
 OpenFog Consortium (Group, O.C.A.W., et al.: Openfog reference architecture for fog computing. OPFRA001 20817, 162 (2017))
 - Mist Computing
 - Herausforderungen:
 - * allgemeine Rechenaufgaben auf spezialisierte Hardware
 - * Erkennung von Edge nodes
 - Task auslagerung und Verteilung
 - * Keine Beeinträchtigumg der Funktionalität des Edge Gerätes (z.b. Überlastung)
 - * Sicherheit
- Kommunikation

6 Tabellenverzeichnis

- Zertifikate (Public/Private Key)
- identitätsverschlüsselung
- Belohnung für bereitgestellte Rechenleistung
- Resourcenverteilung
 - Bestimmung der verfügbaren Rechenleistung
 - Optimierungsalgorythmen
 - Stackelberg Model
- Softwarearchitektur in Fahrzeugen
 - RTOS
 - Moddle Layer (ROS, keine automotive alternative stand 2019)
 - Cloud