	H ₀ true	H ₀ is NOT true
Do Not Reject H ₀	\odot	Type II Error
Reject H ₀	Type I Error	\odot

 α = significance level = P (Type I Error) = P (Reject H₀ | H₀ is true)

$$\beta = P \text{ (Type II Error)} = P \text{ (Do Not Reject H}_0 \mid H_0 \text{ is NOT true)}$$

Power =
$$1 - P$$
 (Type II Error) = P (Reject $H_0 \mid H_0$ is NOT true)

- 1. A car manufacturer claims that, when driven at a speed of 50 miles per hour on a highway, the mileage of a certain model follows a normal distribution with mean $\mu_0 = 30$ miles per gallon and standard deviation $\sigma = 4$ miles per gallon. A consumer advocate thinks that the manufacturer is overestimating average mileage. The advocate decides to test the null hypothesis $H_0: \mu = 30$ against the alternative hypothesis $H_1: \mu < 30$.
- Oa) Suppose the actual overall average mileage μ is indeed 30 miles per gallon. What is the probability that the sample mean is 29.4 miles per gallon or less, for a random sample of n = 25 cars?

$$P(\overline{X} \le 29.4) = P\left(Z \le \frac{29.4 - 30}{4\sqrt{25}}\right) = P(Z \le -0.75) = \Phi(-0.75) = \mathbf{0.2266}.$$

- Ob) A random sample of 25 cars yields $\overline{x} = 29.4$ miles per gallon. Based on the answer for part (a), is there a reason to believe that the actual overall average mileage is not 30 miles per gallon?
 - If $\mu = 30$, it is not unusual to see the values of the sample mean \bar{x} at 29.4 miles per gallon or even lower. It does not imply that $\mu = 30$, but we have no reason to doubt the manufacturer's claim.
- Oc) Suppose the actual overall average mileage μ is indeed 30 miles per gallon. What is the probability that the sample mean is 28 miles per gallon or less, for a random sample of n = 25 cars?

$$P(\overline{X} \le 28) = P\left(Z \le \frac{28 - 30}{4/\sqrt{25}}\right) = P(Z \le -2.50) = \Phi(-2.50) = \mathbf{0.0062}.$$

- Od) A random sample of 25 cars yields $\bar{x} = 28$ miles per gallon. Based on the answer for part (c), is there a reason to believe that the actual overall average mileage is not 30 miles per gallon?
 - If $\mu = 30$, it is very unusual to see the values of the sample mean \bar{x} at 28 miles per gallon or lower. It does not imply that $\mu < 30$, but we have a very good reason to doubt the manufacturer's claim.
- a) Suppose the consumer advocate tests a sample of n = 25 cars. What is the significance level associated with the rejection region "Reject H₀ if $\bar{x} < 28.6$ "?

$$\alpha = \text{significance level} = P(\text{Type I Error}) = P(\text{Reject } H_0 \mid H_0 \text{ true}).$$

Need P(
$$\overline{X}$$
 < 28.6 | μ = 30) = ?
$$\frac{\overline{X} - \mu}{\sigma \sqrt{n}} = Z.$$

$$P(\overline{X} < 28.6 \mid \mu = 30) = P\left(Z < \frac{28.6 - 30}{4/\sqrt{25}}\right) = P(Z < -1.75) = \Phi(-1.75) = \mathbf{0.0401}.$$

b) Suppose the consumer advocate tests a sample of n = 25 cars. Find the rejection region with the significance level $\alpha = 0.05$.

$$n = 25$$
. $\alpha = 0.05$.

Rejection Region:

Reject
$$H_0$$
 if
$$Z = \frac{\overline{X} - \mu_0}{\sigma \sqrt{n}} < -z_\alpha.$$

$$Z = \frac{\overline{X} - 30}{4 \sqrt{25}} < -1.645.$$

$$\overline{X} < 30 - 1.645 \cdot \frac{4}{\sqrt{25}} = 28.684.$$

Suppose the consumer advocate tests a sample of n = 25 cars and uses a 5% level of significance. Find the power of the test if the true mean is $\mu_1 = 29.5$.

d) Repeat part (c) for the case when the true value of the mean is $\mu_1 = 28.5$.

e) Repeat parts (b) - (d) using a 10% level of significance.

$$n = 25.$$
 $\alpha = 0.10.$

Rejection Region:

Reject
$$H_0$$
 if
$$Z = \frac{\overline{X} - \mu_0}{\sqrt[6]{n}} < -z_\alpha. \qquad Z = \frac{\overline{X} - 30}{\sqrt[4]{25}} < -1.282.$$

$$\overline{X} < 30 - 1.282 \cdot \frac{4}{\sqrt{25}} = 28.9744.$$

$$P(\ \overline{X} < 28.9744 \ | \ \mu_1 = 29.5) = P\left(Z < \frac{28.9744 - 29.5}{4 / \sqrt{25}}\right) = P(Z < -0.657) \approx \textbf{0.2546}.$$

$$P(\overline{X} < 28.9744 \mid \mu_1 = 28.5) = P\left(Z < \frac{28.9744 - 28.5}{4/\sqrt{25}}\right) = P(Z < 0.593) \approx \textbf{0.7224}.$$

f) Repeat parts (b) – (d) using a larger sample size of n = 49.

Rejection Region:

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} < -z_\alpha. \qquad Z = \frac{\overline{X} - 30}{4 / \sqrt{49}} < -1.645. \qquad \overline{X} < 30 - 1.645 \cdot \frac{4}{\sqrt{49}} = 29.06.$$

$$P(\overline{X} < 29.06 \mid \mu_1 = 29.5) = P\left(Z < \frac{29.06 - 29.5}{4/\sqrt{49}}\right) = P(Z < -0.77) = \textbf{0.2206}.$$

$$P(\overline{X} < 29.06 \mid \mu_1 = 28.5) = P\left(Z < \frac{29.06 - 28.5}{4/\sqrt{49}}\right) = P(Z < 0.98) = 0.8365.$$

g) What is the minimum sample size required if we want to have the power of at least 0.80 at $\mu_1 = 29.5$ for the test with a 5% level of significance?

Rejection Region:

$$\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} < -z_{\alpha}. \qquad \overline{X} < 30 - 1.645 \cdot \frac{4}{\sqrt{n}}.$$

Want
$$P\left(|\overline{X} < 30 - 1.645 \cdot \frac{4}{\sqrt{n}} | \mu = 29.5 \right) \ge 0.80.$$

$$P\left(\overline{X} < 30 - 1.645 \cdot \frac{4}{\sqrt{n}} \mid \mu = 29.5\right) = P\left(Z < \frac{30 - 29.5}{4/\sqrt{n}} - 1.645\right)$$
$$= P\left(Z < \frac{\sqrt{n}}{8} - 1.645\right)$$

Then, since P(Z < 0.84)
$$\approx 0.80$$
, $\frac{\sqrt{n}}{8} - 1.645 \ge 0.84$.

$$\Rightarrow \sqrt{n} \ge 8 \cdot (0.84 + 1.645) = 19.88.$$

$$\Rightarrow$$
 $n \ge 19.88^2 = 395.2144$. Round up. $n \ge 396$.

1. (continued)

Suppose that the sample mean is $\bar{x} = 29$ miles per gallon for a sample of n = 25 cars.

h) Find the p-value of the appropriate test.

$$H_0$$
: $\mu \ge 30$ vs. H_1 : $\mu < 30$. Left – tailed.

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} = \frac{29 - 30}{4 / \sqrt{25}} = -1.25.$$

$$P(Z \le -1.25) = \Phi(-1.25) = 0.1056.$$

State your decision (Accept H_0 or Reject H_0) for the significance level $\alpha = 0.05$. i)

P-value $> \alpha \implies \text{Accept H}_0$

P-value $< \alpha \implies \text{Reject H}_0$

Since 0.1056 > 0.05, **Do NOT Reject H**₀ at $\alpha = 0.05$.

i) Construct a 95% confidence interval for the overall average miles-per-gallon rating for this model, μ .

 $\sigma = 4$ is known. n = 25. The confidence interval : $\overline{X} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$.

95% confidence level, $\alpha = 0.05$, $\alpha/2 = 0.025$, $z_{\alpha/2} = 1.96$.

 $29 \pm 1.96 \cdot \frac{4}{\sqrt{25}}$

 29 ± 1.568 (27.432; 30.568)

What is the minimum sample size required if we want to estimate μ to within 0.5 miles k) per gallon with 95% confidence?

 $\varepsilon = 0.5$

 $\sigma = 4$

95% confidence level, $\alpha = 0.05$, $\alpha/2 = 0.025$, $z_{\alpha/2} = 1.96$.

$$n = \left\lceil \frac{z_{\alpha/2} \cdot \sigma}{\varepsilon} \right\rceil^2 = \left[\frac{1.96 \cdot 4}{0.5} \right]^2 = \mathbf{245.8624}.$$

Round <u>up</u>. n = 246.

Construct a 95% confidence upper bound for μ . 1)

The confidence upper bound for $\mu : \overline{X} + z_{\alpha} \cdot \frac{\sigma}{\sqrt{n}}$.

95% confidence level, $\alpha = 0.05$,

 $z_{\alpha} = 1.645$.

29+1.645
$$\cdot \frac{4}{\sqrt{25}}$$
 29 + 1.316 (0; 30.316)

Note that $\mu_0 = 30$ is covered. Recall part (i).