

数制与编码

南京大学 计算机科学与技术系 袁春风

email: cfyuan@nju.edu.cn 2015.6

"转换"的概念在数据表示中的反映

信息的二进制编码

- 机器级数据分两大类
 - 数值数据:无符号整数、带符号整数、浮点数(实数)
 - 非数值数据:逻辑数(包括位串)、西文字符和汉字
- 计算机内部所有信息都用二进制(即:0和1)进行编码
- 用二进制编码的原因
 - 制造二个稳定态的物理器件容易(电位高/低,脉冲有/无,正/负极)
 - 二进制编码、计数、运算规则简单
 - 正好与逻辑命题真/假对应,便于逻辑运算
 - 可方便地用逻辑电路实现算术运算
- 真值和机器数(非常重要的概念!)
 - 机器数:用0和1编码的计算机内部的0/1序列
 - 真值:真正的值,即:现实中带正负号的数

例: unsigned short型变量x的真值是127, 其机器数是多少? 127=2⁷-1, 其机器数为0000 0000 0111 1111

数值数据的表示

- 数值数据表示的三要素
 - -进位计数制
 - -定、浮点表示
 - -如何用二进制编码

即:要确定一个数值数据的值必须先确定这三个要素。

例如,20137564的值是多少? 答案是:不知道!

- 进位计数制
 - 十进制、二进制、十六进制、八进制数及其相互转换
- 定/浮点表示(解决小数点问题)
 - 定点整数、定点小数
 - 浮点数(可用一个定点小数和一个定点整数来表示)
- 定点数的编码(解决正负号问题)
 - 原码、补码、反码、移码 (反码很少用)

十进制(Decimal)计数制

 十进制数,每个数位可用十个不同符号0,1,2,...,9来表示,每个符号 处在十进制数中不同位置时,所代表的数值不一样。

例如,2585.62代表的值是:

$$2585.62 = 2 \times 10^{3} + 5 \times 10^{2} + 8 \times 10^{1} + 5 \times 10^{0} + 6 \times 10^{-1} + 2 \times 10^{-2}$$

• 一般地,任意一个十进制数

• 其值可表示为如下形式:

$$V(D) = d_n \times 10^n + d_{n-1} \times 10^{n-1} + ... + d_1 \times 10^1 + d_0 \times 10^0 + d_{-1} \times 10^{-1} + d_{-2} \times 10^{-2} + ... + d_{-m} \times 10^{-m}$$

其中, d_i (i=n,n-1, ... ,1,0, -1, -2, ... -m) 可以是 0,1,2,3,4,5,6,7,8,9这10个数字符号中的任何一个;

"10" 称为基数(base),它代表每个数位上可以使用的不同数字符号个数。10ⁱ 称为第i位上的权。

运算时 , "逢十进一"。

二进制(Binary)计数制

二进制数,每个数位可用两个不同符号0和1来表示,每个符号处在不同位置时,所代表的数值不一样。

例如,100101.01代表的值是:

$$(100101.01)_2 = 1 \times 2^5 + 0 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2} = 37.25$$

• 一般地,任意一个二进制数

• 其值可表示为如下形式:

$$V(B) = b_n \times 2^n + b_{n-1} \times 2^{n-1} + ... + b_1 \times 2^1 + b_0 \times 2^0 + b_{-1} \times 2^{-1} + b_{-2} \times 2^{-2} + ... + b_{-m} \times 2^{-m}$$

其中, b_i (i=n,n-1, ...,1,0, -1, -2, ... -m)可以是0或1

"2" 称为基数(base),它代表每个数位上可以使用的不同数字符号个数。2ⁱ 称为第i位上的权。

运算时, "逢二进一"。

后缀"B"表示二进制数,如01011010B

R进位计数制

• 在R进制数字系统中,应采用R个基本符号(0,1,2,...,R-1)表示各位上的数字,采用"逢R进一"的运算规则,对于每一个数位i,该位上的权为Rⁱ。R被称为该数字系统的基。

-23=8,对应3位二进制

24号16,对应4位二进制

二进制:R=2,基本符号为0和1

八进制:R=8,基本符号为0,1,2,3,4,5,6,7

十六进制:R=16,基本符号为0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

十进制:R=10,基本符号为0,1,2,3,4,5,6,7,8,9

二进制	八进制	十进制	十六进制	二进制	八进制	十进制	十六进制
0000	0	0	0	1000	10	8	8
0001	1	1	1	1001	11	9	9
0010	2	2	2	1010	12	10	Α
0011	3	3	3	1011	13	11	В
0100	4	4	4	1100	14	12	C
0101	5	5	5	1101	15	13	D
0110	6	6	6	1110	16	14	E
0111	7	7	7	1111	17	15	F

八进制和十六进制

日常生活中用十进制表示数值,计算机中用二进制表示所有信息!那为什么还要引入,从进制/十六进制呢?

八进制 / 十六进制是二进制的简便表示。便于阅读和书写!

它们之间对应简单,转换容易。

在机器内部用二进制表示,在屏幕或其他设备上表示时,转换为八进制/十六进制数,可缩短长度。

八进制: Octal (用后缀 "O" 表示)

十六进制: Hexadecimal (用后缀 "H",或前缀 "0x"表示)

例:1010 1100 0100 0101 0001 0000 1000 1101B可写成

Oxac45108d OxAC45108D 或 ac45108dH AC45108DH

或 8进制:254212102150

010 101 100 010 001 010 001 000 010 001 101

现代计算机系统多用十六进制表示机器数

十进制数与R进制数之间的转换

(1) R进制数 => 十进制数

按"权"展开

例1: $(10101.01)_2 = 1 \times 2^4 + 1 \times 2^2 + 1 \times 2^0 + 1 \times 2^{-2} = (21.25)_{10}$

例2: $(307.6)_8 = 3x8^2 + 7x8^0 + 6x8^{-1} = (199.75)_{10}$

例1: $(3A. 1)_{16} = 3x16^{1} + 10x16^{0} + 1x16^{-1} = (58.0625)_{10}$

- (2)十进制数 => 二进制数 , 再将二进制转换为16或8进制 整数部分和小数部分分别转换
- ① 整数----"除基取余,上右下左"] ② 小数---- "乘基取整,上左下右" 理论上的做法

实际上,记住1、2、4、8、16、32、64、128、256、512、1024、2048、 4096、8192、16384、32768、65536,.....就可简单进行整数部分的转换

记住0.5、0.25、0.125、0.0625、...... 就可简单进行小数部分的转换

十进制数与二进制数之间的转换

例1: (835.6875)₁₀=(11 0100 0011.1011)₂

整数----"除基取余,上右下左"

小数---- "乘基取整 , 上左下右"

简便方法:835=512+256+64+2+1,故结果为 11 0100 0011

0.6875=0.5+0.125+0.0625, 故结果为 0.1011

结果为 11 0100 0011.1011

这里有一个问题:小数点在计算机中如何表示?

十进制数与8进制数之间的转换

例2:(835.63)₁₀=(1503.50243...)₈

整数----"除基取余,上右下左"

小数---- "乘基取整 , 上左下右"

可能小数部分总得不到0,此时得到一个近似值

说明:现实中的精确值可能在机器内部无法用0和1精确表示!

定点数和浮点数

- 计算机中只有0和1,数值数据中的小数点怎么表示呢?
 - 计算机中只能通过约定小数点的位置来表示
 - 小数点位置约定在固定位置的数称为定点数
 - 小数点位置约定为可浮动的数称为浮点数
- 定点小数用来表示浮点数的尾数部分
- 定点整数用来表示整数,分带符号整数和无符号整数
- 任何实数:X=(-1)^s ×M×R^E

其中,S取值为0或1,用来决定数X的符号;M是一个二进制定点小数,称为数X的尾数(mantissa);E是一个二进制定点整数,称为数X的阶或指数(exponent);R是基数(radix、base),可以为2、4和16等。 计算机中只要表示S、M和E三个信息,就能确定X的值,这称为浮点数

S E M

结论:要解决数值数据的表示问题, 只要解决定点数的编码问题!

定点数的编码表示

南京大学 计算机科学与技术系 袁春风

email: cfyuan@nju.edu.cn 2015.6

数值数据的表示

- 数值数据表示的三要素
 - -进位计数制
 - -定、浮点表示
 - -如何用二进制编码
- 进位计数制
 - 十进制、二进制、十六进制、八进制数及其相互转换
- 定/浮点表示 (解决小数点问题)
 - 定点整数、定点小数
 - 浮点数(可用一个定点小数和一个定点整数来表示)
- 定点数的编码(解决正负号问题)
 - -原码、补码、移码、反码 (很少用)

原码(Sign and Magnitude)表示

Decimal	Binary	Decimal	Binary	
0	0000	-0	1000	
1	0001	-1	1 001	"正"号用0表示
2	0010	-2	1010	"负"号用1表示
3	0011	-3	1 011	火 うわ・水小
4	0100	-4	1 100	数值部分不变!
5	0101	-5	1 101	
6	0 110	-6	1110	
7	0111	-7	1 111	

→ 容易理解,但是:

- ✓ 0 的表示不唯一, 故不利于程序员编程
- ✓ 加、减运算方式不统一
- ✓ 需额外对符号位进行处理,故不利于硬件设计
- √ 特别当 a < b时, 实现 a b比较困难

从 50年代开始,整数都采用补码来表示 但浮点数的尾数用原码定点小数表示

补码 - 模运算 (modular运算)

重要概念:在一个模运算系统中,一个数与它除以"模"后的余数等价。

时钟是一种模12系统 现实世界中的模运算系统

假定钟表时针指向10点,要将它拨向6点, 则有两种拨法:

① 倒拨4格: 10-4=6

② 顺拨8格: 10+8 = 18 ≡ 6 (mod 12)

模12系统中: 10-4 ≡ 10+8 (mod 12)

 $-4 \equiv 8 \pmod{12}$

则, 称8是-4对模12的补码 (即: -4的模12补码等于8)。

同样有 -3 ≡ 9 (mod 12)

-5 ≡ 7 (mod 12) 等

结论1:一个负数的补码等于模减该负数的绝对值。

结论2: 对于某一确定的模,某数减去小于模的另一数,总可

以用该数加上另一数负数的补码来代替。

补码 (modular运算) : + 和- 的统一

补码(2's complement)的表示

现实世界的模运算系统举例

例1: "钟表"模运算系统

假定时针只能顺拨,从10点倒拨4格后是几点?

$$10-4=10+(12-4)=10+8=6 \pmod{12}$$

假定算盘只有四档,且只能做加法,则在算盘上计算

9828-1928等于多少?

$$9828-1928=9828+(10^4-1928)$$

取模即只留余数,高位"1"被丢弃!

= 1 7900

相当于只有低4位留在算盘上。

 $=7900 \pmod{10^4}$

计算机中的运算器是模运算系统


```
8位二进制加法器模运算系统 [-0100 0000]<sub>补</sub>=?
计算 0111 1111 - 0100 0000 = ?
0111 1111 - 0100 0000 = 0111 1111 + (28- 0100 0000)
=0111 1111 + 1100 0000 = 1 0011 1111 (mod 28)
= 0011 1111
```

结论1: 一个负数的补码等于将对应正数补码

各位取反、末位加一

运算器适合用补码表示和运算

运算器只有有限位,假设为n位,则运算结果只能保留低n位,故可看成是个只有n档的二进制算盘,因此,其模为2°。

当n=4时, 共有16个机器数:

0000 ~ 1111, 可看成是模为

24的钟表系统。真值的范围为

补码的定义 假定补码有n位,则:

 $[X]_{\frac{1}{2}} = 2^n + X \quad (-2^{n-1} \le X < 2^{n-1}, \mod 2^n)$

X是真值,[x]_补是机器数

真值和机器数的含义是什么?

求特殊数的补码

假定机器数有n位

①
$$[-2^{n-1}]_{k} = 2^n - 2^{n-1} = 10...0 (n-1 \uparrow 0) \pmod{2^n}$$

②
$$[-1]_{k} = 2^n - 0...01 = 11...1 (n^1) \pmod{2^n}$$

③
$$[+0]_{\frac{1}{2}}=[-0]_{\frac{1}{2}}=00...0$$
 (n\(\frac{1}{2}\)0)

32位机器中,int、short、char型数据的机器数各占几位?
32位、16位、8位

变形补码(4's comlement)的表示

补码定义: [X]_补= 2ⁿ + X (-2ⁿ ≤ X < 2ⁿ , mod 2ⁿ)

• 正数: 符号位 (sign bit) 为0, 数值部分不变

• 负数: 符号位为1, 数值部分"各位取反, 末位加1"

变形 (4's) 补码: 双符号, 用于存放可能溢出的中间结果。

				Bitwise		
Decimal	补码	变形补码	Decimal	Inverse	补码	变形补码
0	0000	00000	-0	1111	0000	00000
1	0001	00001	-1	1110	1 111	11111
2	0010	00010	-2	1101	1 110	11 110
3	0011	00011	-3	1100	1 101	11 101
4	0 100	00100	-4	1011	1 100	11 100
5	0 101	00 101	-5	1010	1 011	11 011
6	0 110	00110	-6	1001	1 010	11 010
7	0 111	00111	-7	1000	1 001	11001
8	1000	01000	-8	0111	1000	11000

值太大,用4位补码无法表示,故"溢出" 但用变形补码可保留符号位和最高数值位

+0和-0表示唯一

求真值的补码

例: 设机器数有8位, 求123和-123的补码表示。

如何快速得到123的二进制表示?

简便方法: 从右向左遇到第一个1的前面各位取反

当机器数为16位时, 结果怎样? mod = 2¹⁶

求补码的真值

$$\Rightarrow$$
: [A]_{*} = $a_{n-1}a_{n-2}$ ······ a_1a_0

则:
$$A = -a_{n-1} \cdot 2^{n-1} + a_{n-2} \cdot 2^{n-2} + \cdots \cdot a_1 \cdot 2^1 + a_0 \cdot 2^0$$

例如: 补码 "11010110" 的真值为

$$-2^{7}+2^{6}+2^{4}+2^{2}+2=-128+64+16+4+2=-42$$

补码 "01010110" 的真值为

$$-0.2^{7}+2^{6}+2^{4}+2^{2}+2=64+16+4+2=86$$

简便求法:

符号为0,则为正数,数值部分相同

符号为1,则为负数,数值各位取反,末位加1

例如: 补码 "01010110" 的真值为

例如: 补码 "11010110" 的真值为

理论上 的求法

移码表示Excess (biased) notion

[°] 什么是移码表示?

将每一个数值加上一个偏置常数 (Excess / bias)

。通常,当编码位数为n时,bias取 2ⁿ⁻¹或 2ⁿ⁻¹-1 (如 IEEE 754)

[°]为什么要用移码来表示指数(阶码)?

便于浮点数加减运算时的对阶操作(比较大小)

C语言中的整数

南京大学 计算机科学与技术系 袁春风

email: cfyuan@nju.edu.cn 2015.6

C语言支持的基本数据类型

C语言声明	操作数类型	存储长度(位)
(unsigned) char	整数 / 字节	8
(unsigned) short	整数 / 字	16
(unsigned) int	整数 / 双字	32
(unsigned) long int	整数 / 双字	32
(unsigned) long long int	-	2×32
char *	整数 / 双字	32
float	单精度浮点数	32
double	双精度浮点数	64
long double	扩展精度浮点数	80 / 96

整数类型分:无符号整数和带符号整数

无符号整数 (Unsigned integer)

- 机器中字的位排列顺序有两种方式: (例:32位字: 0...01011₂)
 - 高到低位从左到右:0000 0000 0000 0000 0000 0000 1011↓ SB

 - Leftmost 和 rightmost 这 两 个 词 有 歧 义 , 故 用 LSB(Least Significant Bit)来表示最低有效位,用MSB来表示最高有效位
 - 高位到低位多采用从左往右排列
- 一般在全部是正数运算且不出现负值结果的场合下,可使用无符号数表示。例如,地址运算,编号表示,等等
- 无符号整数的编码中没有符号位
- · 能表示的最大值大于位数相同的带符号整数的最大值(Why?)
 - 例如,8位无符号整数最大是255(1111 1111)而8位带符号整数最大为127(0111 1111)
- 总是整数,所以很多时候就简称为"无符号数"

带符号整数(Signed integer)

- 计算机必须能处理正数(positive) 和负数(negative),用
 MSB表示数符(0--正数,1--负数)
- 有三种定点编码方式
 - Signed and magnitude (原码) 定点小数,用来表示浮点数的尾数
 - Excess (biased) notion (移码)定点整数,用于表示浮点数的阶(指数)
 - Two's complement (补码)
 50年代以来,所有计算机都用补码来表示带符号整数
- 为什么用补码表示带符号整数?
 - 补码运算系统是模运算系统,加、减运算统一
 - 数0的表示唯一,方便使用
 - 比原码多表示一个最小负数

无符号数:unsigned int (short / long);带符号整数:int(short / long)

常在一个数的后面加一个 "u" 或 "U" 表示无符号数

若同时有无符号和带符号整数,则C编译器将带符号整数强制转换为无符号数

假定以下关系表达式在32位用补码表示的机器上执行,结果是什么?

关系表达式	运算类型	结果	说明
0 == 0U			
-1 < 0			
-1 < 0U			
2147483647 > -2147483647-1			
2147483647U > -2147483647-1			
2147483647 > (int) 2147483648U			
-1 > -2			
(unsigned) -1 > -2			

关系 表达式	类型	结果	说明
$0 = 0\mathbf{U}$	无	1	000B = 000B
-1 < 0	带	1	111B (-1) < 000B (0)
-1 < 0U	无	0*	$111B(2^{32}-1) > 000B(0)$
2147483647 > -2147483647 - 1	带	1	$0111B (2^{31}-1) > 1000B (-2^{31})$
2147483647U > -2147483647 - 1	无	0*	$0111B(2^{31}-1) < 1000B(2^{31})$
2147483647 > (int) 2147483648U	带	1*	$0111B (2^{31}-1) > 1000B (-2^{31})$
-1 > -2	带	1	111B (-1) > 1110B (-2)
(unsigned) -1 > -2	无	1	$111B (2^{32}-1) > 1110B (2^{32}-2)$

带*的结果与常规预想的相反!

```
例如,考虑以下C代码:
1 int x = -1;
2 unsigned u = 2147483648;
3
4 printf ( "x = %u = %d\n", x, x);
5 printf ( "u = %u = %d\n", u, u);
在32位机器上运行上述代码时,它的输出结果是什么?为什么?
x = 4294967295 = -1
u = 2147483648 = -2147483648
```

- ◆ 因为-1的补码整数表示为 "11…1" , 作为32位无符号数解释 时 , 其值为2³²-1 = 4 294 967 296-1 = 4 294 967 295。
- ◆ 2³¹的无符号数表示为"100…0",被解释为32位带符号整数时,其值为最小负数:-2³²⁻¹ = -2³¹ = -2 147 483 648。

编译器处理常量时默认的类型

• C90

范围	类型
0~2 ³¹ -1	int
2 ³¹ ~2 ³² -1	unsigned int
2 ³² ~2 ⁶³ -1	long long
2 ⁶³ ~2 ⁶⁴ -1	unsigned long long

2147483648=2³¹

C99

范围	类型		
0~2 ³¹ -1	int		
2 ³¹ ~2 ⁶³ -1	long long		
2 ⁶³ ~2 ⁶⁴ -1	unsigned long long		

- 1)在有些32位系统上, C表达式-2147483648 < 2147483647的执行结果为false。Why?
- 2)若定义变量 "int i=-2147483648;",则 "i < 2147483647"的执行 结果为true。Why?
- 3)如果将表达式写成"-2147483647-1 < 2147483647",则结果会怎样呢?Why?
- 1)在ISO C90标准下, 2147483648为unsigned int型, 因此

"-2147483648 < 2147483647"按无符号数比较 ✓

由C语言中的 ' "Integer

10......0B比01......1B大,结果为false。

在ISO C99标准下 , 2147483648为long long型 , 因此 ,

Promotion" 规则决定的。

"-2147483648 < 2147483647" 按带符号整数比较

- 10......0B比01......1B小,结果为true。
- 2) i < 2147483647 按int型数比较,结果为true。
- 3)-2147483647-1 < 2147483647 按int型比较,结果为true。

```
#include <stdio.h>
void main()
    int x=-1:
                                         请大家试试在C99上
   unsigned u=2147483648;
                                         的运行结果。
   printf("x = u = d\n'', x, x);
   printf("u = %u = %d\n", u, u);
   if(-2147483648 < 2147483647)
       printf("-2147483648 < 2147483647 is true\n");
   else
       printf("-2147483648 < 2147483647 is false\n");
   if(-2147483648-1 < 2147483647)
       printf("-2147483648-1 < 2147483647\n");
   else if (-2147483648-1 == 2147483647)
       printf("-2147483648-1 == 2147483647 \cdot n");
   else
       printf("-2147483648-1 > 2147483647\n");
                      x = 4294967295 = -1
                      u = 2147483648 = -2147483648
    C90上的运行结
                      -2147483648 < 2147483647 is false
    果是什么?
                       -2147483648-1 == 2147483647
```


浮点数的编码表示

南京大学 计算机科学与技术系 袁春风

email: cfyuan@nju.edu.cn 2015.6

C语言支持的基本数据类型

C语言声明	操作数类型	存储长度(位)
(unsigned) char	整数 / 字节	8
(unsigned) short	整数 / 字	16
(unsigned) int	整数 / 双字	32
(unsigned) long int	整数 / 双字	32
(unsigned) long long int	-	2×32
char *	整数 / 双字	32
float	单精度浮点数	32
double	双精度浮点数	64
long double	扩展精度浮点数	80 / 96

实数类型分:单精度浮点、浮点双精度和扩展精度浮点

科学计数法(Scientific Notation)与浮点数

对于科学计数法(十进制数):

- ° Normalized form (规格化形式): 小数点前只有一位非0数
- ° 同一个数有多种表示形式。例:对于数 1/1,000,000,000
 - Normalized (规格化形式): 1.0 x 10⁻⁹ 唯一
 - Unnormalized (非规格化形式): 0.1 x 10⁻⁸, 10.0 x 10⁻¹⁰

不唯一

对于二进制数实数

只要对尾数和指数分别编码,就可表示一个浮点数(即:实数)

浮点数(Floating Point)的表示范围

例:画出下述32位浮点数格式的规格化数的表示范围。

第0位数符S;第1~8位为8位移码表示阶码E(偏置常数为128);第9~31位为24位二进制原码小数表示的尾数M。规格化尾数的小数点后第一位总是1,故规定第一位默认的"1"不明显表示出来。这样可用23个

数位表示24位尾数。

最大正数: 0.11...1 x 2^{11...1} = (1-2⁻²⁴) x 2¹²⁷

因为原码对称,故其表示范围关于原点对称。

最小正数: 0.10...0 x 2^{00...0} = (1/2) x 2⁻¹²⁸

机器0:尾数为0或落在下溢区中的数

浮点数范围比定点数大,但数的个数没变多,故数之间更稀疏,且不均匀

浮点数的表示

[°] Normal format(规格化数形式): 为了能表示更多有效数 字,通常规定规格化数 +/-1.xxxxxxxxx × R^{Exponent} 的小数点前为1! °32-bit 规格化数: 31 0 **Significand Exponent** 1 bit ? bits ? bits S 是符号位 (Sign) Exponent用移码(增码)来表示 (基可以是 2/4/8/16,约定信息,无需显式表示) °早期的计算机,各自定义自己的浮点数格式

问题:浮点数表示不统一会带来什么问题?

"Father" of the IEEE 754 standard

直到80年代初,各个机器内部的浮点数表示格式还没有统一 因而相互不兼容,机器之间传送数据时,带来麻烦

1970年代后期,IEEE成立委员会着手制定浮点数标准

1985年完成浮点数标准IEEE 754的制定

现在所有通用计算机都采用IEEE 754来表示浮点数

This standard was primarily the work of one person, UC Berkeley math professor William Kahan.

www.cs.berkeley.edu/~wkahan/ieee754status/754story.html

Prof. William Kahan

IEEE 754 标准

Single Precision(单精度):

S Exponent Significand

1 bit 8 bits 23 bits

- Sign bit: 1 表示negative; 0表示 positive
- [°] Exponent (阶码): 全0和全1用来表示特殊值!
 - •SP规格化阶码范围为0000 0001 (-126) ~ 1111 1110 (127)
 - •bias为127 (single), 1023 (double) 为什么用127?若用128, 则阶码范围为多少?
- [°] Significand (部分尾数):
 - 规格化尾数最高位总是1,所以隐含表示,省1位
 - 1 + 23 bits (single) , 1 + 52 bits (double)

SP: $(-1)^S$ x (1 + Significand) x $2^{(Exponent-127)}$ 0000 0001 (-127) 1111 1110 (126)

DP: $(-1)^{5}$ x (1 + Significand) x $2^{(Exponent-1023)}$

举例: 机器数转换为真值

已知float型变量x的机器数为BEE00000H,求x的值是多少?

1 011 11101 110 0000 0000 0000 0000 0000

$$(-1)^S \times (1 + Significand) \times 2^{(Exponent-127)}$$

- [°] 数符:1 (负数)
- ° 阶(指数):
 - 阶码: 0111 1101B = 125
 - 阶码的值: 125 127 = -2

为避免混淆,用<mark>阶码</mark>表示阶的编码,用阶 或指数表示阶码的值

[°] 尾数数值部分:

$$1 + 1x2^{-1} + 1x2^{-2} + 0x2^{-3} + 0x2^{-4} + 0x2^{-5} + ...$$

= $1 + 2^{-1} + 2^{-2} = 1 + 0.5 + 0.25 = 1.75$

° 真值: -1.75×2⁻² = - 0.4375

举例: 真值转换为机器数

已知float型变量x的值为-12.75,求x的机器数是多少?

因此 , 符号 S=1

显式表示的部分尾数 Significant

= 100 1100 0000 0000 0000 0000

x 的机器数表示为:

1 1000 0010 100 1100 0000 0000 0000 0000

转换为十六进制表示为:C14C0000H

规格化数(Normalized numbers)

前面的定义是针对规格化形式(normalized form)的数

那么,其他形式的机器数表示什么样的信息呢?

Exponent	Significand	
1-254	任意 小数点前隐含1	规格化形式
0 (全0)	0	?
0 (全0)	nonzero	?
255(全1)	0	?
255 (全1)	nonzero	?

0的机器数表示

How to represent 0?

exponent: all zeros

significand: all zeros

What about sign? Both cases valid.

Single Precision(单精度):

S Exponent Significand

1 bit 8 bits 23 bits

+∞/-∞的机器数表示

浮点数除0的结果是 +/-∞, 而不是溢出异常.(整数除0为异常)

为什么要这样处理?

• 可以利用+∞/-∞作比较。 例如: X/0>Y可作为有效比较

∞: infinity

How to represent $+\infty/-\infty$?

- **Exponent** : all ones (11111111B = 255)
- Significand: all zeros

相关操作:

$$5.0 / 0 = +\infty$$
, $-5.0 / 0 = -\infty$
 $5+(+\infty) = +\infty$, $(+\infty)+(+\infty) = +\infty$
 $5-(+\infty) = -\infty$, $(-\infty)-(+\infty) = -\infty$ etc

"非数"的表示

How to represent NaN

Exponent = 255

Significand: nonzero

NaNs 可以帮助调试程序

相关操作:

$$sqrt (-4.0) = NaN \qquad 0/0 = NaN$$

$$op (NaN,x) = NaN \qquad +\infty+(-\infty) = NaN$$

$$+\infty-(+\infty) = NaN \qquad \infty/\infty = NaN$$
etc.

非规格化数(Denorms)的表示

对于单精度FP,还有一种情况没有定义

Exponent	Significand	用来表示
0	0	+/-0 非规格化数
0	nonzero	Denorms
1-254 小	任意 数点前隐含1	Norms
255	0	+/- infinity
255	nonzero	NaN

非规格化数(Denorms)的表示

关于浮点数精度的一个例子

```
#include <iostream>
                                      运行结果:
using namespace std;
int main()
                                      Please enter a number: 61.419997
                                      ัศ1. 419998
   float heads:
                                      Please enter a number: 61.419998
   cout.setf(ios::fixed,ios::floatfield);
                                      ัศ1. 419998
   while (1)
                                      Please enter a number: 61.419999
                                      61.419998
   cout << "Please enter a number: ":
                                      Please enter a number: 61.42
   cin>> heads:
                                      ัศน์ 419998
   61.419998和61.420002是两
                                      Please enter a number: 61.420001
   个可表示数,两者之间相差
                                      ัศ1. 420002
   0.000004。当输入数据是一
                                      Please enter a number:
   个不可表示数时,机器将其转
```

换为最邻近的可表示数。

非数值数据的编码表示

南京大学 计算机科学与技术系 袁春风

email: cfyuan@nju.edu.cn 2015.6

逻辑数据的编码表示

- 计算机中何时会用到逻辑数据?
 - -表示逻辑(关系)表达式中的逻辑值:真/假

例如,对于关系表达式:(x>0)并且(y<=0)

"x>0"、"y<=0"、"(x>0) 并且(y<=0)"都是逻辑值

・表示

- ·用一位表示。N位二进制数(位串)可表示N个逻辑数据
- 运算
 - -按位进行。如,按位与/按位或/逻辑左移/逻辑右移等
- 识别
 - -逻辑数据和数值数据在形式上并无差别,也是一串0/1序列, 计算机靠指令来识别。

西文字符的编码表示

特点

- -是一种拼音文字,用有限几个字母可拼写出所有单词
- --只需对有限个字母和数学符号、标点符号等辅助字符编码
- 所有字符总数不超过256个,使用7或8个二进位可表示
- ・表示(常用编码为7位ASCII码)
 - -十进制数字: 0/1/2.../9

 - 专用符号:+/-/%/*/&/......
 - -控制字符(不可打印或显示)
- 操作
 - -字符串操作,如:传送/比较 等

 $b_6b_5b_4b_3b_2b_1b_0$

ASCII码表

	$b_6b_5b_4 = 000$	$b_6b_5b_4 = 001$	$b_6b_5b_4$ =010	$b_6b_5b_4 = 011$	$b_6b_5b_4 = 100$	$b_6b_5b_4 = 101$	$b_6b_5b_4 = 110$	$b_6b_5b_4$ =111
$b_3b_2b_1b_0=0000$	NUL	DLE	SP	0	@	P	,	р
$b_3b_2b_1b_0=0001$	SOH	DC1	!	1	A	Q	a	q
$b_3b_2b_1b_0=0010$	STX	DC2	cc.	2	В	R	ъ	r
$b_3b_2b_1b_0=0011$	ETX	DC3	#	3	С	S	С	s
$b_3b_2b_1b_0=0100$	EOT	DC4	S	4	D	Т	d	t
$b_3b_2b_1b_0=0101$	ENQ	NAK	%	5	E	U	e	u
$b_3b_2b_1b_0=0110$	ACK	SYN	&	6	F	V	f	v
$b_3b_2b_1b_0=0111$	BEL	ETB	•	7	G	W	g	w
$b_3b_2b_1b_0=1000$	BS	CAN	(8	Н	X	h	x
$b_3b_2b_1b_0=1001$	HT	EM)	9	I	Y	i	у
$b_3b_2b_1b_0=1010$	LF	SUB	*	:	J	Z	j	z
$b_3b_2b_1b_0=1011$	VT	ESC	+	;	K]	k	{
$b_3b_2b_1b_0=1100$	FF	FS	,	<	L	\	1	
$b_3b_2b_1b_0=1101$	CR	GS	_	=	M]	m	}
$b_3b_2b_1b_0=1110$	so	RS	·	>	N	^	n	~
$b_3b_2b_1b_0=1111$	SI	US	/	?	0		o	DEL

汉字及国际字符的编码表示

• 汉字特点

- -汉字是表意文字,一个字就是一个方块图形。
- -汉字数量巨大,总数超过6万字,给汉字在计算机内部的表示、 汉字的传输与交换、汉字的输入和输出等带来了一系列问题。

・编码形式

- -有以下几种汉字代码:
- · 输入码:对汉字用相应按键进行编码表示,用于输入
- · 内码:用于在系统中进行存储、查找、传送等处理
- · 字模点阵或轮廓描述: 描述汉字字模点阵或轮廓, 用于显示/打印

问题:西文字符有没有输入码?有没有内码?

有没有字模点阵或轮廓描述?

GB2312-80字符集

・由三部分组成

- ① 字母、数字和各种符号,包括英文、俄文、日文平假名与片假名、罗马字母、汉语拼音等共687个
- ② 一级常用汉字,共3755个,按汉语拼音排列
- ③ 二级常用汉字,共3008个,不太常用,按偏旁部首排列

• 汉字的区位码

- -码表由94行、94列组成,行号为区号,列号为位号,各占7位
- --指出汉字在码表中的位置,共14位,区号在左、位号在右

• 汉字的国标码

- -每个汉字的区号和位号各自加上32(20H),得到其"国标码"
- 国标码中区号和位号各占7位。在计算机内部,为方便处理与存储,前面添一个0,构成一个字节

汉字内码

- •至少需2个字节才能表示一个汉字内码。为什么?
 - -由汉字的总数(超过6万字)决定! 2¹⁶=65536
- ·可在GB2312国标码的基础上产生汉字内码

-为与ASCII码区别,将国标码的两个字节的第一位置"1"后得到一种汉字内码(可以有不同的编码方案)

例:汉字"大"在码表中位于第20行、第83列。因此区位码为0010100 1010011,在区、位码上各加32得到两个字节编码,即00110100 01110011B=3473H。前面的34H和字符"4"的ACSII码相同,后面的73H和字符"s"的ACSII码相同,但是,将每个字节的最高位各设为"1"后,就得到其内码:B4F3H (10110100111110011B),因而不会和ASCII码混淆。

多媒体信息的表示

- 图形、图像、音频、视频等信息在机器内部也用0和1表示
 - 图形用构建图形的直线或曲线的坐标点及控制点来描述,而这些 坐标点或控制点则用数值数据描述
 - 图像用构成图像的点(像素)的亮度、颜色或灰度等信息来描述,这些亮度或颜色等值则用数值数据描述
 - 音频信息通过对模拟声音进行采样、量化(用二进制编码)来获得,因此量化后得到的是一个数值数据序列(随时间变化)
 - 视频信息描述的是随时间变化的图像(每一幅图像称为一帧)
 - 音乐信息(MIDI)通过对演奏的乐器、乐谱等相关的各类信息用 0和1进行编码来描述

_

多媒体信息用一个复杂的数据结构来描述,其中的基本数据或者是数值数据,或者是用0/1编码的非数值数据

数据宽度和存储容量的单位

南京大学 计算机科学与技术系 袁春风

email: cfyuan@nju.edu.cn 2015.6

数据的基本宽度

- ·比特(bit,位)是计算机中处理、存储、传输信息的最小单位
- •二进制信息最基本的计量单位是"字节"(Byte)
 - -现代计算机中,存储器按字节编址
 - -字节是最小可寻址单位 (addressable unit)
 - 如果以字节为一个排列单位,则LSB表示最低有效字节,MSB 表示最高有效字节
- ·除比特(位)和字节外,还经常使用"字"(word)作为单位
 - "字"和 "字长"的概念不同

IA-32中的"字"有多少位? 16位 字长多少位呢? 32位

DWORD: 32位

QWORD:64位

数据的基本宽度

- "字"和 "字长"的概念不同
 - "字长"指数据通路的宽度。
 - "字长"等于CPU内部总线的宽度、运算器的位数、通用寄存器的宽度(这些部件的宽度都是一样的)
 - "字"表示被处理信息的单位,用来度量数据类型的宽度
 - -字和字长的宽度可以一样,也可不同

例1:对于x86体系结构,不管字长多少,定义"字"的宽

度都为16位,而从386开始字长就是32位了。

例2:对于MIPS 32体系结构,其字和字长都是32位。

SKIP

数据通路的宽度

 数据通路指CPU内部数据流经的路径以及路径上的部件,主要是 CPU内部进行数据运算、存储和传送的部件,这些部件的宽度基 本上要一致,才能相互匹配。

BACK

数据量的度量单位

- 存储二进制信息时的度量单位要比字节或字大得多
- 容量经常使用的单位有:
 - "干字节"(KB), 1KB=2¹⁰字节=1024B
 - "兆字节" (MB) , 1MB=2²⁰字节=1024KB
 - "干兆字节"(GB), 1GB=2³⁰字节=1024MB
 - "兆兆字节"(TB), 1TB=2⁴⁰字节=1024GB
- 通信中的带宽使用的单位有:
 - "干比特/秒" (kb/s), 1kbps=10³ b/s=1000 bps
 - "兆比特/秒" (Mb/s) , 1Mbps=10⁶ b/s =1000 kbps
 - "干兆比特/秒" (Gb/s) , 1Gbps=10⁹ b/s =1000 Mbps
 - "兆兆比特/秒" (Tb/s) , 1Tbps=10¹² b/s =1000 Gbps

如果把b换成B,则表示字节而不是比特(位) 例如,10MBps表示 10兆字节/秒

程序中数据类型的宽度

- · 高级语言支持多种不同类型和 不同长度的数据
 - 例如, C语言中char类型的宽度为1个字节,可表示一个字符(非数值数据),也可表示一个8位的整数(数值数据)
 - 不同机器上表示的同一种类型 的数据可能宽度不同
- 必须确定相应的机器级数据表示方式和相应的处理指令

C语言中数据类型的宽度 (单位:字节)

C声明	典型32位 机器	典型64位 机器
char	1	1
short int	2	2
int	4 4	4
long int	4	8
char*	4	8
float	4	4
double	8	8

从表中看出:同类型数据并不是所有机器都采用相同的宽度,分配的字节数 随ISA、机器字长和编译器的不同而不同。

例如,ANSI C标准未规定long double的确切精度,所以对于不同平台有不同的实现。有的是8字节,有的是10字节,有的是12字节或16字节。

数据存储时的字节排列

南京大学 计算机科学与技术系 袁春风

email: cfyuan@nju.edu.cn 2015.6

数据的存储和排列顺序

- •80年代开始,几乎所有通用计算机都采用字节编址
- 在高级语言中声明的基本数据类型有char、short、int、long、 long long、float、double、long double等各种不同长度数据
- 一个基本数据可能会占用多个存储单元
 - -例如,若int型变量x=-10 , x的存放地址为100 , 其机器数为 FFFFFF6H , 占4个单元 _{-10=-1010B}
- 需要考虑以下问题: [-10]_补=FFFFFF6H
 - 变量的地址是其最大地址还是最小地址?

最小地址,即x存放在100#~103#!

-多个字节在存储单元中存放的顺序如何? 大端方式/小端方式

103#	FF	100#
102#	FF	101#
101#	FF	102#
100#	F6	103#

数据的存储和排列顺序

若 int i = -65535, 存放在100号单元(占 100~103),则用"取数"指令访问100号单元取出 i 时,必须清楚 i 的4个字节是如何存放的。

65535=2¹⁶-1 [-65535]_{*}=FFFF0001H

变量i

FF 103	FF 102	00 101	01 100
MSB			LSB
100	101	102	103

小端 (little endian)

大端 (big endian)

大端方式(Big Endian): MSB所在的地址是数的地址

e.g. IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

小端方式(Little Endian): LSB所在的地址是数的地址

e.g. Intel 80x86, DEC VAX

有些机器两种方式都支持,可通过特定控制位来设定采用哪种方式。

检测系统的字节顺序

union的存放顺序是所有成员从低地址开始,利用该特性可测试CPU的大/小端方式。

```
a 和 b 共用同一个空间
#include <stdio.h>
void main()
                              100
                                   101
                                        102
                                             103
                                                 大端
                               12
                                    34
                                        56
                                             78
    union NUM
                                                 小端
                                             12
                               78
                                   56
                                        34
        int a:
        char b:
                                          猜测在IA-32
    } num;
                                          上的打印结果
    num.a = 0x12345678;
    if(num.b == 0x12)
        printf("Big Endian\n");
                                       Little Endian
    else
                                       num.b = 0x78
        printf("Little Endian\n");
    printf("num.b = 0x%X\n", num.b);
}
```

大端/小端方式举例

假定小端方式机器中某条指令的地址为1000

该指令的汇编形式为: mov AX, 0x12345(BX)

其中操作码mov为40H,寄存器AX和BX的编号分别为0001B和0010B,立即数占32位,则存放顺序为:

只需要考虑指令中立即数的顺序!

大端/小端方式举例

• 以下是一个由反汇编器生成的一行针对IA-32处理器的机器级代码表示文本:

80483d2: 89 85 a0 fe ff ff mov %eax, 0xfffffea0(%ebp)

其中,80483d2是十六进制表示的指令地址

89 85 a0 fe ff ff 是机器指令

mov %eax, 0xfffffea0(%ebp) 是对应的汇编指令

0xfffffea0是立即数

请问:立即数0xfffffea0的值和所存放地址分别是多少?

IA-32是大端还是小端方式?

- ➤ 立即数0xfffffea0所存放的地址为0x80483d4;
- ➤ 立即数0xfffffea0的值为-10110000B=-176;
- ➤ IA-32采用的是小端方式!

字节交换问题

上述存放在0号单元的数据(字)是什么?

存放方式不同的机器间程序移植或数据通信时,会发生什么问题?

- ◆每个系统内部是一致的,但在系统间通信时可能会发生问题!
- ◆ 因为顺序不同,需要进行顺序转换
- 音、视频和图像等文件格式或处理程序都涉及到字节顺序问题 ex. Little endian: GIF, PC Paintbrush, Microsoft RTF,etc Big endian: Adobe Photoshop, JPEG, MacPaint, etc