l'Ingénieur

Activation

Activation

Patrick Dupas, http://patrick.dupas.chez-alice.fr/.

Savoirs et compétences :

- Res2.C6: stabilité des SLCI: position des pôles dans le plan complexe
- Res2.C7: stabilité des SLCI: marges de stabilité (de gain et de phase)

Exercice 1 - Réponse impulsionnelle (entrée Dirac)

Pour chaque cas déterminer si la réponse est celle d'un système stable, instable ou juste (quasi) stable.

Exercice 2 - Pôles de la FTBF

On donne les pôles des FTBF de plusieurs systèmes :

1.
$$-1$$
, -2 ;
2. -3 , -2 , 0;
3. $-2 + i$, $-2 - i$, $2i$,

5.
$$-j$$
, j , -1 , 1;

6.
$$-1, +1$$
;

2.
$$-3, -2, 0,$$

3. $-2 + j, -2 - j, 2j,$
 $-2i$
6. $-1, +1,$
7. $-1+j, -1-j;$
8. $2-1, -3$

7.
$$-1+j$$
, $-1-$
8. 2, -1 , -3 ;

4.
$$-2+3j$$
, $-2-3j$, -2 ;

Pour chaque cas déterminer si la réponse est celle d'un système stable, instable ou juste (quasi) stable.

On donne ci-dessous les lieux de transferts de plusieurs FTBO. Déterminer, à l'aide du critère du Revers si les systèmes sont stables en BF.

Question Pour les systèmes stables déterminer les marges de gain et de phase.

Exercice 4 – Étude de la stabilité

Objectif • Caractériser la stabilité d'un système à partir de la FTBO.

• La marge de gain est supérieure à 10 dB et que la marge de phase est supérieure à 45°.

On donne le schéma bloc suivant :

1

On a K = 1, $\tau = 0$, 1 et G = 20.

Question 1 Déterminer l'erreur statique et l'erreur de traînage.

Question 2 Effectuer les tracés des diagrammes de Bode de la FTBO.

Question 3 Déterminer graphiquement les marges de gains et de phase.

Question 4 Confirmer ces résultats par le calcul.

Question 5 Conclure par rapport au cahier des charges.

