APPLICATION DES MATHEMATIQUES : Contrôle N° 4

Durée : 1 heures 45 minutes - Barème sur 20 points

NOM:		
	GROUPE	
PRENOM:		

Exercice I (4 pts)

Soit le programme linéaire suivant :

minimiser
$$Z_1(x_1, x_2) = 3x_1 + 8x_2$$
 assujetti à $C: \begin{cases} x_1 - 4x_2 \le 6 \\ x_1 + 2x_2 \ge 4 \\ x_2 - x_1 \le 3 \\ x_1 \ge 0 \ ; \ x_2 \ge 0 \end{cases}$

- 1. Dans le plan muni d'un système d'axes orthonormé (O, x_1, x_2) , représenter soigneusement le domaine admissible C (une unité = 1cm = 2 carraux), puis résoudre graphiquement ce P.L.
- 2. Sous les mêmes contraintes, la fonction objectif $Z_2(x_1, x_2) = 6x_2 x_1 10$ admet-elle un maximum ? si oui donner les solutions optimales.

Exercice II (6 pts)

Soit le programme linéaire : maximiser $Z(x_1, x_2, x_3) = 5x_1 + 4x_2 + x_3$

S.C. :
$$\begin{cases} x_1 + 3x_2 + 3x_3 \le 12 \\ x_1 + 2x_2 + x_3 \le 9 \\ x_1 - x_2 - x_3 \le 8 \\ x_1 \ge 0 \ ; \ x_2 \ge 0 \ ; \ x_3 \ge 0 \end{cases}$$

- 1. Ecrire ce P.L. sous forme standard, en introduisant les variables d'écart, puis en utilisant la méthode du simplexe (et la feuille ci-jointe), trouver une solution de base optimale de ce problème (on peut commencer par la solution de base réalisable associée au sommet O(0,0,0)).
- 2. Montrer qu'il existe une autre solution de base optimale.
- **3.** Donner la nature et une représentation paramétrique de l'ensemble de toutes les solutions optimales.

Tourner la page S. V. P.

Exercice III (4 pts)

En utilisant la méthode de Gauss, trouver, en fonction du paramètre k et en distinguant différents cas s'il y a lieu de le faire, la solution du système :

$$\begin{cases} (k+2)x + (3k+2)y + 5(k+2)z = 1\\ 4ky + (k-2)z = 2\\ 2ky + (k^2-4)z = k^2-3\\ (k+1)x + (3k+1)y + 5(k+1)z = 1 \end{cases}$$

Exercice IV (6 pts)

Soit l'équation différentielle linéaire du premier ordre :

$$x(x^2 - 1) y' + 2 y = x^2$$
 (E)

- 1. Déterminer la solution générale de cette équation sur chacun des intervalles : $I_1 =]-\infty, -1[, I_2 =]-1, 0[, I_3 =]0, 1[$ et $I_4 =]1, +\infty[.$ On note $y_i(x)$ la solution générale sur l'intervalle $I_i, i = 1, 2, 3, 4$.
- 2. Déterminer, en justifiant, les solutions définies sur l'intervalle $J=]0, +\infty[$. Il s'agit du problème de raccordement au point d'abscisse x=1.

Indication:

On peut utiliser les développements limités, au voisinage de 1, suivants :

$$\frac{x^2}{x+1} = \frac{1}{2} + \frac{3}{4}(x-1) + o[(x-1)]$$

$$\ln x = (x-1) - \frac{(x-1)^2}{2} + o[(x-1)^2].$$

- **3.** On admet que, si y(x) est une solution de (E) sur J =]0, $+\infty[$ alors z(x) = y(-x) est une solution de (E) sur $I =]-\infty$, 0[. Donner les solutions de (E) définies sur l'intervalle I.
- **4.** Déterminer, en justifiant, les solutions de (E) définies sur tout \mathbb{R} .

Question Bonus (1,5 pts)

Résoudre l'équation différentielle (à variables séparées) suivante :

$$y y' = \cos x \; ; \qquad y(0) = 1$$

Il s'agit de donner l'expression de la solution et son intervalle de définition.