MAC 0219/5742 – Introdução à Computação Concorrente, Paralela e Distribuída

Prof. DR. Alfredo Goldman, Guilherme Souza S.

1

1. Relatório Geral

Para esse trabalho implementou-se de forma simples a reprodução do conjunto de Mandelbrot como pedido no enunciado, podendo ser implementado de varias formas diferentes mas ao mesmo tempo parecidas. Em um primeiro momento realizou-se a implementação sequencia do mesmo, executando-o para diferentes dimensões de imagem iniciando em 500x480 logo passando para dimensão de imagem digital, D-VHS, HDV, 2k, 4k e por fim 8k. Como pode-se observar na Tabela 1.1 ao final do relatório, quando chegamos em uma imagem 8k, o tempo consumido para processamento é um tanto quanto alto se for compararmos com as maneiras paralelizáveis.

Dando seguimento ao trabalho, passou-se para implementação da versão paralelizada com *Opem MP*, onde visivelmente pelo calculo ocorrido se tem maneiras muito eficientes desta paralelização correr, onde ocorreu uma melhora em tempo de execução significante quando comparado a primeira implementação.

Como terceiro e último passo, implementou-se o mesmo trabalho em *Cuda*, onde comprar com a sequencia ficou injusto com tamanha melhora em tempo de execução conforme se aumenta o número de threads por bloco, ainda mais quando pegamos como parâmetro as imagens de dimensão 8k dos 3 testes, *Cuda* mostrou-se superior.

Todos os resultados podem ser visto ao fim do relatório, como tabelas de tempo de execução com os devidos parâmetros, ou seja, entradas dada para calculo do conjunto, dimensão da imagens e número de threads.

2. Relato Pessoal

No início do trabalho parecia que a parte mais complicada seria a parte de cuda, doce engano, particularmente tive dificuldade em desenvolver o trabalho, tendo um grande ajuda dos instrutores, os quais me explicarão inúmeras vezes até que eu conseguisse entender e programar. O trabalho em si era muito interessante, pela forma que ele funciona e o conhecimento adquirido em imagens fractais o sobre o conjunto em si abrindo portas para conhecimentos de outros conjuntos como o de Júlia e outros.

Primeiramente entendi o caculo com um bom exemplo dado na internet, onde consegui entender em si, toda essa parte foi desenvolvida no papel e não computacionalmente, fazendo uso de uma matriz 8x8. Logo depois passei a procurar alguns exemplos na internet de modo que conseguisse entender a forma correta para programar, porém implementando somente ela em ASCII, onde era possível se ter uma visão geral de como ficaria a imagem pelo terminal, porém tendo somente duas opções, ou seja diverge ou não ("*" ou "0") no caso da implementação que optei para entendimento do mesmo.

Logo após essa parte, passei para parte de usar a LIBPNG no caso para uso da png.h para formar a imagem. Olhando alguns Tutoriais observei que havia pouca diferença de uso entre para ela, sendo disponibilizado na própria pagina da lib um exemplo de como usá-la e o exemplo era justamente uma imagem fractal, onde foi de muita ajuda na parte de implementação da png, logo fiz o reaproveitamento da mesma para coloração da minha imagem, porém após alguns problemas com o calculo realizado para geração das cores, partindo da dica do monitor, deixei cores fixas para numero de iterações executadas, o que gerou um imagem razoavelmente bonita, nada comparada com a do exemplo, porém bela perante a dificuldade que tive.

Com a implementação em OPEN_MP inicialmente tive problemas em gerar a imagem corretamente, pelo fato da forma que estava tentando implementar o paralelismo, fazendo uso somente do *parallel for*, porém após observar um pouco entendi que muitas das variáveis as quais então executando não poderiam ser simplesmente acessada a qualquer momento, até pela dependência gerada pelas mesmas logo optei por privatizar elas para uso e, organizar os *for* para uso do *collapse*.

Dando continuidade, quando foi para a parte de programar em *Cuda*, demorei para entender a questão de blocos mesmo tendo visto isso no trabalho anterior, porém agora "linkando" com a imagem parecia complicado de entender no meu caso. Novamente com a ajuda dos instrutores consegui ver isso acontecendo de fato, logo para um solução simples a qual encontrei, resolvi jogar o calculo para ser feito na placa de vídeo, onde de fato a paralelização fazia sentido para mim, assim que acabava bastava puxar o buffer para o host e realizar a "impressão da imagem", sendo ela finalizado no host como dito, um forma simples de se fazer o uso da placa de vídeo, havendo implementações melhores pelo que pude observar na internet, porém pelo tempo e pela minha dificuldade aceitei como uma boa solução.

3. Hardware

O computador no qual os testes foram rodados conta com as configurações apresentadas abaixo, sendo dividida em duas máquinas de execução, pelo fato da necessidade da placa de vídeo NVIDIA exigida pelo trabalho, tal diferença entre hardware foi desconsiderada nos testes. Tais informações foram obtidas com o comando *lscpu* em conjunto com *lshw* e *nvidia-smi*.

NVID	IA-SMI 39	90.87		Driver V	ersion:	390.	87	
GPU Fan	Name Temp Pe	Persi erf Pwr:U	stence-M sage/Cap					Uncorr. ECC Compute M.
Θ 22%		GTX TIT P8 14W		000000000:0 11778MiB			0%	N/A Default

Figure 1. Informações da Placa de Vídeo

```
x86_{-}64
  Arquitetura:
 Modo(s) operacional da CPU:32-bit, 64-bit
 Ordem dos bytes:
                          Little Endian
 CPU(s):
                          4
 Lista de CPU(s) on-line:0-3
  Thread(s) per n cleo: 2
  N cleo(s) por soquete:2
  Soquete(s):
 N (s) de NUMA:
11 ID de fornecedor:
                          GenuineIntel
12 Fam lia da CPU:
13 Modelo:
                          58
                          Intel(R) Core(TM) i3 -3217U CPU @ 1.80GHz
Nome do modelo:
15 Step:
16 CPU MHz:
                          1356.701
17 CPU MHz m x .:
                          1800,0000
 CPU MHz m n .:
                          800,0000
18
19 BogoMIPS:
                          3591.71
20 Virtualiza o:
                          VT-x
cache de L1d:
                          32K
22 cache de L1i:
                          32K
23 cache de L2:
                          256K
24 cache de L3:
                          3072K
25 CPU(s) de n 0 NUMA:
                          0 - 3
```

Listing 1. informações CPU (Sem placa de Video)

```
*-cache:0
                description: L1 cache
                physical id: 6
                slot: L1-Cache
                size: 32KiB
                capacity: 32KiB
                capabilities: internal write-through instruction
                configuration: level=1
          *-cache:1
10
                description: L2 cache
11
                physical id: 7
12
                slot: L2-Cache
13
                size: 256KiB
14
                capacity: 256KiB
15
                capabilities: internal write-through unified
16
                configuration: level=2
17
          *-cache:2
18
                description: L3 cache
19
                physical id: 8
20
                slot: L3-Cache
21
                size: 3MiB
                capacity: 3MiB
                capabilities: internal write-back unified
24
25
                configuration: level=3
```

Listing 2. Informacoes Cache (Sem placa de Video)

```
*-memory

description: System Memory
physical id: 29
slot: System board or motherboard
size: 4GiB
```

Listing 3. Informacoes Memoria (Sem placa de video)

```
Arquitetura:
                          x86_{-}64
 Modo(s) operacional da CPU:32-bit, 64-bit
 Ordem dos bytes:
                           Little Endian
 CPU(s):
  Lista de CPU(s) on-line:0-7
  Thread(s) per n cleo: 2
  N cleo(s) por soquete:4
  Soquete(s):
  N (s) de NUMA:
                          1
                           GenuineIntel
 ID de fornecedor:
 Fam lia da CPU:
11
 Modelo:
                          58
13
 Nome do modelo:
                           Intel(R) Xeon(R) CPU E3-1230 V2 @ 3.30GHz
14 Step:
15 CPU MHz:
                           1985.559
16 CPU MHz m x .:
                          3700,0000
17 CPU MHz m n . :
                           1600,0000
18 BogoMIPS:
                           6585.24
                          VT-x
 Virtualiza o:
20
 cache de L1d:
                          32K
21 cache de L1i:
                          32K
22 cache de L2:
                          256K
                          8192K
23 cache de L3:
^{24} CPU(s) de n 0 NUMA:
                          0 - 7
```

Listing 4. informações CPU (Com placa de Video

4. Resultados

Em um primeiro momento executou-se 15 vezes cada algoritmo com dimensões variadas seguindo um padrão de imagem sendo a ultima execução com resolução 8k, as threads estão em ordem múltipla de 2 indo de 2 a 256 para que tais diferenças possam realmente observadas. Realizando a variação de numero de threads em mesma quantidade em cada algoritmo paralelizado, de forma que fosse possível avaliar o desempenho em numero de threads em questão de tamanho e forma de paralelização, usou-se o tempo real através do comando *time* do GNU, realizando algus ajustes na variável de forma a devolver somente o valor desejado. Para manipulação de tais dados usou-se o meio estatístico do intervalo de segurança de forma a ser possível criar gráficos com uma visibilidade e resultados mais demonstrativos, fazendo a escolha de 95% de confiança, seguindo o modelo padrão de cálculo do intervalo, como pode ser observado nos resultados ao final do relatório.

Quando observado os tempos de paralelização com *open MP* pode-se observar uma boa melhora no tempo, ainda mais quando se há o aumento das dimensões da imagem, porem pelos testes executados observes que a partir de 16 threads o tempo de fato não tem uma melhora considerável, creio que isso ocorra pelo método de implementação

realizado por mim, pelo fato de privatizar uma grande parte de variáveis, as threads tem que esperar um tempo para acessa lá e conforme o numero de threads aumenta o overhead da espera acaba não diluindo nas dimensões utilizadas no testes.

Table 1. Comparação entre os algoritmos em tempo de execução para imagem de dimensão 3840x2160

Algoritimo	Numero de Threads	Tempo de Execução
Sequêncial	-	5,896
Opem_MP	2	3,79
Cuda_NVIDIA	2	0,774

Quando passamos a observar os resultados obtidos com a paralelização na placa de vídeo, pode-se observar que os tempos baixaram bastante em consideração a implementação de *open MP* como pode ser visto na Tabela 0 onde comparamos o tempo de execução da imagem com dimensão de 3840x2160, e em comparação entre as execuções consigo mesmo e o aumento das dimensões e numero de threads por bloco, é possível notar que com 128 threads obteve-se o melhor resultado em muitos casos, em outros se equiparando com o de 64 e 256, independente do tamanhos (dentro dos selecionados para execução dos testes), logo podemos ver que a execução na placa de vídeo obteve um ganho de tempo realmente favorável.

Figure 2. Imagem gerada para testes, com entradas (0.0, -1,0)(0.0, -1.32)

	Tabela 1.1: Tempo de execução do codigo sequêncial											
Tamanho da Imagem	Média	Desvio Padrão	Limite Superior	Limite Inferior	Intervalo de Confiança	Primeiro Quartil	Terceiro Quatil					
500x480	0,17	0,006197541755	0,18	0,17	0,003136331235	0,172	0,18					
720x576	0,292	0,002390457219	0,2943904572	0,2896095428	0,001209716035	0,2905	0,293					
1280x720	0,686	0,03309898574	0,7190989857	0,6529010143	0,01675009011	0,647	0,708					
1440x1080	1,182	0,04959473858	1,231594739	1,132405261	0,02509793945	1,13	1,209					
2080x1080	1,543	0,02789128555	1,570891286	1,515108714	0,01411467861	1,537	1,563					
3840x2160	5,896	0,2641643067	6,160164307	5,631835693	0,1336831278	5,7435	6,133					
7680x4320	23,13	0,2203717638	23,35037176	22,90962824	0,1115214505	22,974	23,3345					

Tabela	2: Tempo de e	execução do c	odigo Paraleliza	ado com CUD	A_NVIDIA com resoluç	ão de 500x480	
Numero de Threads	Média	Desvio Padrão	Limite Superior	Limite Inferior	Intervalo de Confiança	Primeiro Quartil	Terceiro Quatil
2	0,118	0,004272837799	0,1222728378	0,1137271622	0,002162314541	0,117	0,121
4	0,113	0,002789435854	0,1157894359	0,1102105641	0,001411623373	0,112	0,115
8	0,112	0,003376388603	0,1153763886	0,1086236114	0,00170865699	0,108	0,1135
16	0,11	0,002658320272	0,1126583203	0,1073416797	0,001345270953	0,11	0,112
32	0,11	0,002463060427	0,1124630604	0,1075369396	0,001246457653	0,109	0,1135
64	0,109	0,003363671463	0,1123636715	0,1056363285	0,001702221347	0,1075	0,1125
128	0,108	0,002971291206	0,1109712912	0,1050287088	0,001503653188	0,107	0,1115
256	0,112	0,009033271833	0,1210332718	0,1029667282	0,004571382287	0,109	0,114

Tabela	3: Tempo de o	execução do c	odigo Paraleliza	ado com CUD	A_NVIDIA com resoluç	ão de 720x576	
Numero de Threads	Média	Desvio Padrão	Limite Superior	Limite Inferior	Intervalo de Confiança	Primeiro Quartil	Terceiro Quatil
2	0,138	0,004257206775	0,1422572068	0,1337427932	0,002154404296	0,135	0,14
4	0,126	0,002478478796	0,1284784788	0,1235215212	0,001254260281	0,125	0,129
8	0,123	0,003754362542	0,1267543625	0,1192456375	0,00189993468	0,1205	0,1255
16	0,119	0,00402610529	0,1230261053	0,1149738947	0,002037452958	0,118	0,1245
32	0,12	0,004610546915	0,1246105469	0,1153894531	0,002333215793	0,118	0,1245
64	0,118	0,003811011614	0,1218110116	0,1141889884	0,001928602539	0,1175	0,121
128	0,119	0,002374467359	0,1213744674	0,1166255326	0,001201624199	0,118	0,122
256	0,121	0,003788453636	0,1247884536	0,1172115464	0,001917186837	0,1175	0,122

Tabela 4	l: Tempo de e	xecução do co	odigo Paraleliza	do com CUDA	_NVIDIA com resoluçã	ão de 1280x720	
Numero de Threads	Média	Desvio Padrão	Limite Superior	Limite Inferior	Intervalo de Confiança	Primeiro Quartil	Terceiro Quatil
2	0,177	0,003312314685	0,1803123147	0,1736876853	0,001676231709	0,176	0,181
4	0,16	0,004431489054	0,1644314891	0,1555685109	0,002242601678	0,1585	0,163
8	0,152	0,00511580185	0,1571158019	0,1468841981	0,002588905371	0,1505	0,1575
16	0,146	0,002725540575	0,1487255406	0,1432744594	0,001379288495	0,144	0,1475
32	0,143	0,003058166273	0,1460581663	0,1399418337	0,00154761723	0,143	0,146
64	0,143	0,002531703737	0,1455317037	0,1404682963	0,001281195322	0,143	0,146
128	0,144	0,004642454195	0,1486424542	0,1393575458	0,002349362808	0,142	0,1485
256	0,144	0,006419464449	0,1504194644	0,1375805356	0,00324863755	0,143	0,1485

Tabela 5	: Tempo de ex	cecução do co	digo Paralelizad	do com CUDA	_NVIDIA com resoluçã	io de 1440x1080	
Numero de Threads	Média	Desvio Padrão	Limite Superior	Limite Inferior	Intervalo de Confiança	Primeiro Quartil	Terceiro Quatil
2	0,226	0,004778921974	0,230778922	0,221221078	0,002418423764	0,225	0,2285
4	0,2	0,005539468773	0,2055394688	0,1944605312	0,002803306476	0,1985	0,2025
8	0,185	0,003673586544	0,1886735865	0,1813264135	0,001859057136	0,183	0,1875
16	0,18	0,004549201918	0,1845492019	0,1754507981	0,002302171512	0,176	0,1835
32	0,174	0,003885259077	0,1778852591	0,1701147409	0,001966176249	0,173	0,177
64	0,175	0,004186144948	0,1791861449	0,1708138551	0,002118442711	0,174	0,178
128	0,175	0,0075561391	0,1825561391	0,1674438609	0,003823863721	0,173	0,178
256	0,175	0,004956957592	0,1799569576	0,1700430424	0,002508520562	0,173	0,1815

Tabela 6	: Tempo de ex	cecução do co	odigo Paralelizad	do com CUDA	_NVIDIA com resoluçã	io de 2048x1080	
Numero de Threads	Média	Desvio Padrão	Limite Superior	Limite Inferior	Intervalo de Confiança	Primeiro Quartil	Terceiro Quatil
2	0,279	0,004988558337	0,2839885583	0,2740114417	0,002524512452	0,278	0,283
4	0,24	0,002774029217	0,2427740292	0,2372259708	0,001403826682	0,2395	0,241
8	0,22	0,002737743249	0,2227377432	0,2172622568	0,001385463786	0,218	0,221
16	0,213	0,007971974721	0,2209719747	0,2050280253	0,004034301714	0,211	0,2245
32	0,207	0,005590808784	0,2125908088	0,2014091912	0,002829287629	0,205	0,2145
64	0,208	0,004511361319	0,2125113613	0,2034886387	0,002283021878	0,205	0,212
128	0,208	0,003997618339	0,2119976183	0,2040023817	0,002023036836	0,2065	0,21
256	0,209	0,01167333143	0,2206733314	0,1973266686	0,005907412234	0,207	0,2135

Tabela 7	: Tempo de ex	cecução do co	digo Paralelizad	do com CUDA	_NVIDIA com resoluçã	io de 3840x2160	
Numero de Threds	Média	Desvio Padrão	Limite Superior	Limite Inferior	Intervalo de Confiança	Primeiro Quartil	Terceiro Quatil
2	0,774	0,01356465997	0,78756466	0,76043534	0,006864538946	0,7705	0,778
4	0,629	0,00773489311	0,6367348931	0,6212651069	0,003914324069	0,6245	0,6315
8	0,56	0,007539104406	0,5675391044	0,5524608956	0,003815243135	0,5565	0,5615
16	0,52	0,01101081719	0,5310108172	0,5089891828	0,005572139931	0,5185	0,5245
32	0,507	0,01161772046	0,5186177205	0,4953822795	0,005879269715	0,4995	0,51
64	0,508	0,00959315232	0,5175931523	0,4984068477	0,004854715701	0,5035	0,51
128	0,507	0,01119948978	0,5181994898	0,4958005102	0,005667619682	0,505	0,512
256	0,506	0,01240199677	0,5184019968	0,4935980032	0,006276160997	0,503	0,5145

Tabela 8	: Tempo de ex	cecução do co	digo Paralelizad	do com CUDA	_NVIDIA com resoluçã	io de 7680x4320	
Numero de Threads	Média	Desvio Padrão	Limite Superior	Limite Inferior	Intervalo de Confiança	Primeiro Quartil	Terceiro Quatil
2	2,781	0,04131839208	2,822318392	2,739681608	0,02090960719	2,7725	2,798
4	2,205	0,0132064198	2,21820642	2,19179358	0,006683247737	2,1985	2,2135
8	1,913	0,007435436388	1,920435436	1,905564564	0,003762780844	1,909	1,9175
16	1,768	0,01189517709	1,779895177	1,756104823	0,006019679567	1,7555	1,7745
32	1,698	0,01374495578	1,711744956	1,684255044	0,006955779543	1,687	1,705
64	1,694	0,02387906036	1,71787906	1,67012094	0,01208424983	1,6875	1,7
128	1,69	0,01681326007	1,70681326	1,67318674	0,008508527222	1,6815	1,702
256	1,698	0,01759328876	1,715593289	1,680406711	0,008903268951	1,6885	1,705

Tak	oela 10: Temp	o de execução	do codigo Para	alelizado com	OPEN_MP resolução o	de 500x480	
Threads	Média	Desvio Padrão	Limite Superior	Limite Inferior	Intervalo de Confiança	Primeiro Quartil	Terceiro Quatil
2	0,11	0,008164965809	0,1181649658	0,1018350342	0,004131966885	0,11	0,12
4	0,1	0,007988086367	0,1079880864	0,09201191363	0,004042455182	0,09	0,105
8	0,1	0,01099783528	0,1109978353	0,08900216472	0,0055655703	0,095	0,11
16	0,09	0,03104528183	0,1210452818	0,05895471817	0,01571079163	0,09	0,095
32	0,09	0,005070925528	0,09507092553	0,08492907447	0,002566195236	0,09	0,1
64	0,1	0,006172133998	0,106172134	0,093827866	0,003123473373	0,09	0,1
128	0,1	0,009411239481	0,1094112395	0,09058876052	0,004762656794	0,095	0,11
256	0,1	0,004879500365	0,1048795004	0,09512049964	0,002469322517	0,1	0,11

Tabel	a 11: Tempo c	le execução d	o codigo Parale	lizado com OF	PEN_MP com resoluçã	o de 720x576	
Tamanho da Imagem	Média	Desvio Padrão	Limite Superior	Limite Inferior	Intervalo de Confiança	Primeiro Quartil	Terceiro Quatil
2	0,19	0,005936168397	0,1959361684	0,1840638316	0,003004060496	0,19	0,2
4	0,16	0,006172133998	0,166172134	0,153827866	0,003123473373	0,16	0,165
8	0,16	0,004140393356	0,1641403934	0,1558596066	0,002095289636	0,16	0,16
16	0,16	0,01099783528	0,1709978353	0,1490021647	0,0055655703	0,16	0,165
32	0,17	0,01302013093	0,1830201309	0,1569798691	0,006588974298	0,16	0,19
64	0,18	0,01447493729	0,1944749373	0,1655250627	0,007325194366	0,165	0,18
128	0,17	0,01032795559	0,1803279556	0,1596720444	0,00522657063	0,17	0,18
256	0,18	0,01780850519	0,1978085052	0,1621914948	0,009012181489	0,175	0,195

Tabela 12: Tempo de execução do codigo Paralelizado com OPEN_MP com resolução de 1280x720								
Tamanho da Imagem	Média	Desvio Padrão	Limite Superior	Limite Inferior	Intervalo de Confiança	Primeiro Quartil	Terceiro Quatil	
2	0,42	0,006399404734	0,4263994047	0,4136005953	0,003238486121	0,42	0,43	
4	0,38	0,02250925735	0,4025092574	0,3574907426	0,0113910466	0,35	0,385	
8	0,35	0,01187233679	0,3618723368	0,3381276632	0,006008120993	0,35	0,36	
16	0,35	0,012344268	0,362344268	0,337655732	0,006246946745	0,35	0,36	
32	0,36	0,01764733893	0,3776473389	0,3423526611	0,008930621608	0,355	0,37	
64	0,36	0,03326659987	0,3932665999	0,3267334001	0,016834913	0,35	0,375	
128	0,36	0,026367368	0,386367368	0,333632632	0,0133434841	0,36	0,38	
256	0,36	0,01624221425	0,3762422143	0,3437577857	0,008219543474	0,35	0,37	

Tabela 13: Tempo de execução do codigo Paralelizado com OPEN_MP com resolução de 1440x1080								
Tamanho da Imagem	Média	Desvio Padrão	Limite Superior	Limite Inferior	Intervalo de Confiança	Primeiro Quartil	Terceiro Quatil	
2	0,71	0,008837151017	0,718837151	0,701162849	0,004472133285	0,7	0,71	
4	0,59	0,02416215065	0,6141621506	0,5658378494	0,01222751064	0,57	0,605	
8	0,58	0,01505545305	0,5950554531	0,5649445469	0,007618970479	0,58	0,59	
16	0,59	0,02016597795	0,6101659779	0,5698340221	0,01020520539	0,58	0,61	
32	0,61	0,02350278606	0,6335027861	0,5864972139	0,01189383225	0,6	0,64	
64	0,59	0,01533747356	0,6053374736	0,5746625264	0,007761689925	0,58	0,6	
128	0,59	0,01502379066	0,6050237907	0,5749762093	0,00760294739	0,59	0,605	
256	0,6	0,02138089935	0,6213808994	0,5786191006	0,01082002915	0,595	0,625	

Tabela 14: Tempo de execução do codigo Paralelizado com OPEN_MP com resolução de 2048x1080								
Tamanho da Imagem	Média	Desvio Padrão	Limite Superior	Limite Inferior	Intervalo de Confiança	Primeiro Quartil	Terceiro Quatil	
2	1,03	0,0486190243	1,078619024	0,9813809757	0,02460416897	1,01	1,045	
4	0,94	0,08603985787	1,026039858	0,8539601421	0,04354137566	0,855	0,995	
8	0,93	0,07433514839	1,004335148	0,8556648516	0,03761808423	0,895	0,985	
16	0,92	0,04955035918	0,9695503592	0,8704496408	0,02507548079	0,885	0,93	
32	0,89	0,01897366596	0,908973666	0,871026334	0,00960182336	0,88	0,89	
64	0,9	0,02873524466	0,9287352447	0,8712647553	0,014541773	0,885	0,93	
128	0,89	0,0324844285	0,9224844285	0,8575155715	0,01643908695	0,87	0,91	
256	0,89	0,04700557211	0,9370055721	0,8429944279	0,02378766451	0,88	0,95	

Tabela 15: Tempo de execução do codigo Paralelizado com OPEN_MP com resolução de 3840x2160								
Tamanho da Imagem	Média	Desvio Padrão	Limite Superior	Limite Inferior	Intervalo de Confiança	Primeiro Quartil	Terceiro Quatil	
2	3,79	0,04945416348	3,839454163	3,740545837	0,02502679994	3,755	3,815	
4	3,19	0,100985619	3,290985619	3,089014381	0,05110483537	3,1	3,235	
8	3,15	0,1074687108	3,257468711	3,042531289	0,05438567225	3,12	3,25	
16	3,15	0,08251983888	3,232519839	3,067480161	0,041760033	3,115	3,245	
32	3,21	0,08373427358	3,293734274	3,126265726	0,04237461046	3,19	3,28	
64	3,22	0,04876571786	3,268765718	3,171234282	0,02467840479	3,19	3,255	
128	3,22	0,05897537824	3,278975378	3,161024622	0,02984511088	3,16	3,27	
256	3,19	0,06776710819	3,257767108	3,122232892	0,03429425836	3,17	3,215	

Tabela 16: Tempo de execução do codigo Paralelizado com OPEN_MP com rsolução de 7680x4320								
Tamanho da Imagem	Média	Desvio Padrão	Limite Superior	Limite Inferior	Intervalo de Confiança	Primeiro Quartil	Terceiro Quatil	
2	15,16	0,6156738469	15,77567385	14,54432615	0,3115682303	15,045	15,97	
4	13,98	1,279152621	15,25915262	12,70084738	0,6473286473	12,625	14,825	
8	14,11	0,6943390142	14,80433901	13,41566099	0,3513775662	13,69	14,52	
16	13,76	0,6468149069	14,40681491	13,11318509	0,3273274915	13,39	14,09	
32	13,1	0,2124841731	13,31248417	12,88751583	0,1075298522	12,92	13,2	
64	12,95	0,1806522574	13,13065226	12,76934774	0,09142097624	12,795	13,055	
128	12,85	0,1609702723	13,01097027	12,68902973	0,08146070055	12,68	12,91	
256	12,9	0,2017943319	13,10179433	12,69820567	0,1021201456	12,86	13,175	

