Граф — абстрактная математическая структура, в которой хранится некоторое множество объектов (вершин), которые могут быть попарно связаны между собой. Связи называются ребрами (дугами).

Таким образом, граф — это упорядоченная пара множеств (V,E), где V - непустое множество вершин а E — множество пар вершин, принадлежащих множеству V.

Если Е содержит упорядоченные пары, то граф называется ориентированным (или орграфом), иначе — неориентированным.

Вершины и ребра называются элементами графа. Число вершин в графе называют <u>порядком</u> графа, число ребер — <u>размером</u> графа

- Если две вершины **v** и **w** соединены ребром е, они называются <u>смежными</u> (или <u>соседними</u>). Также они являются <u>концами</u> (или <u>концевыми вершинами</u>) ребра **e**
- Ребро, соединяющее вершины v и w называется <u>инцидентным</u> каждой из этих вершин
- ullet Количество ребер, инцидентных вершине $oldsymbol{v}$ называется степенью вершины $oldsymbol{v}$
- Ребро называется петлей, если его концы совпадают
- Два ребра называются кратными, если множества их концевых вершин совпадают
- Граф, не содержащий петель и кратных ребер называется простым.
- Вершина называется изолированной, если она не является концевой ни для одного ребра.
- Вершина степени 1 называется висячей или листом.

<u>Маршрутом</u> в графе называют конечную последовательность вершин, в которой каждая вершина (кроме последней) соединена со следующей в последовательности вершиной ребром. <u>Цепью</u> называется маршрут без повторяющихся рёбер. <u>Простой цепью</u> называется маршрут без повторяющихся вершин (откуда следует, что в простой цепи нет повторяющихся рёбер)

Граф называется <u>связным</u>, если для любых $\{v,w\} \in V$ существует маршрут из v в w.

Граф называется взвешенным, если каждому ребру поставлено в соответствие число, называемое весом ребра.

В цикле наших задач на графах мы будем рассматривать простые графы.

Основными целями решения этого цикла задач на графах являются

- а) умение задавать простые графы
- б) модифицировать простые графы, добавляя или удаляя вершины и ребра
- в) выполнять поиск маршрутов на графе

При реализации этих алгоритмов мы будем использовать граф, заданный матрицей смежности. Это квадратная матрица G, размерности NxN, где N — порядок графа. Номера строк и номера столбцов в этой матрице являются номерами вершин. Если вершины v и w являются смежными, то G[v,w] = G[w,v] = 1 в случае неориентированного графа. В случае орграфа, где пара $\langle v,w \rangle$ является упорядоченной, G[v,w]=1, а G[w,v]=0. Матрица смежности неориентированного графа симметрична относительно главной диагонали.

Простой взвешенный граф также допустимо задавать матрицей смежности. В этом случае вместо единиц она будет содержать вес соответствующего ребра.

Примеры матрицы смежности.

Покажем графически, что из себя представляет, содержимое матрицы смежности для графа G=(V,E), где множество вершин

```
V = \{1,2,3,4,5,6,7,8,9,10\},
```

}

Взвешенный граф:

	1	2	3	4	5	6	7	8	9	10
1	0	6	0	0	3	0	0	0	0	9
2	6	0	9	0	4	2	0	0	0	0
3	0	9	0	4	0	9	5	0	7	0
4	0	0	4	0	0	0	1	4	0	0
5	3	4	0	0	0	2	0	0	9	9
6	0	2	9	0	2	0	0	0	8	0
7	0	0	5	1	0	0	0	3	9	0
8	0	0	0	4	0	0	3	0	10	18
9	0	0	7	0	9	8	0)	10	0	8
10	9	0	0	0	9	0	0	18	8	0

Невзвешенный граф:

	1	2	3	4	5	6	7	8	9	10
1	0	1	0	0	1	0	0	0	0	1
2	1	0	1	0	1	1	0	0	0	0
3	0	1	0	1	0	1	1	0	1	0
4	0	0	1	0	0	0	1	1	0	0
5	1	1	0	0	0	1	0	0	1	1
6	0	1	1	0	1	0	0	0	1	0
7	0	0	1	1	0	0	0	1	1	0
8	0	0	0	1	0	0	1	0	1	1
9	0	0	1	0	1	1	1	1	0	1
10	1	0	0	0	1	0	0	1	1	0