Логическо програмиране

Лектор: Тинко Тинчев

Твърдения

Семантика на съждителните формули

Твърдение 1. Всяка съждителна интерпретация I_0 може по единствен начин да се разшири до изображение I от съвкупността на всички съждителни формули в $\{T, F\}$. Има единствено изображение $I: \{\varphi \mid \varphi \text{ е съждителна формула }\} \to \{T, F\}$

- за всяка съждителна променлива $P, I(P) = I_0(P);$
- за всяка съждителна формула $\varphi, I(\neg \varphi) = H_{\neg}(I(\varphi));$
- за всеки две съждителни формули φ и $\psi, I((\varphi \sigma \psi)) = H_{\sigma}(I(\varphi), I(\psi)), \sigma \in \{\&, \lor, \Rightarrow, \Leftrightarrow\}.$

Следва от еднозначния синтактичен анализ на съждителните функции.

Твърдение 2. Ако $\Gamma_1 \subseteq \Gamma_2$ и Γ_2 е изпълнимо, то Γ_1 също е изпълнимо.

Твърдение 3. Ако $\Gamma_1 \subseteq \Gamma_2$ и Γ_1 е неизпълнимо, то Γ_2 също е неизпълнимо.

Твърдение 4. φ е съждителна тавтология, т.е. всяка булева интерпретация е модел за φ , тогава и само тогава, когато $\neg \varphi$ е противоречие.

Твърдение 5. Нека φ е съждителна формула. Нека I_0 и J_0 са булеви интерпретации. Ако за всяка съждителна променлива P, участваща лингвистично във φ , т.е. $P \in Var(\varphi)$, $I_0(P) = J_0(P)$, то $I(\varphi) = J(\varphi)$.

Следствие 1. Проблемите за изпълнимост и тавтологичност на съждителни формули са разрешими, т.е. има алгоритъм, който по дадена произволна формула φ разпознават дали φ е изпълнима и съответно дали е тавтология.

Забележка. Пробелмът за изпълнимост на съждителна формула е NP-пълен.

Твърдение 6. Дизюнкция на две формули, които са конюнкции на елементарни дизюнкции е еквивалентна с конюнкция на елементарни дизюнкции.

Твърдение 7. Конюнкция на две формули, които са конюнкции на елементарни дизюнкции е еквивалентна с конюнкция на елементарни дизюнкции.

Булева еквивалентност на съждителни формули

Заместване на съждителни променливи със съждителни формули

Твърдение 8. Ако $\varphi[P_1, P_2, \dots, P_n], P_1, P_2, \dots, P_n$ – различни съждителни променливи и $\varphi_1, \varphi_2, \dots, \varphi_n$ са произволни съждителни формули, то $\varphi[P_1/\varphi_1, P_2/\varphi_2, \dots, P_n/\varphi_n]$ е също съждителна формула.

Твърдение 9. Нека $\varphi_1, \varphi_2, \dots, \varphi_n$ и $\psi_1, \psi_2, \dots, \psi_n$ са съждителни формули и $\alpha_0 \varphi_1 \alpha_1 \varphi_2 \dots \alpha_{n-1} \varphi_n \alpha_n$ е съждителна формула, то $\alpha_0 \psi_1 \alpha_1 \psi_2 \dots \alpha_{n-1} \psi_n \alpha_n$ също е съждителна формула.

Твърдение 10. Има алгоритъм, който по дадена съждителна формула φ дава винаги като резултат формула ψ , такава че:

- $\varphi \models \psi$
- в ψ няма срещания на \Rightarrow $u \Leftrightarrow$

Твърдение 11. Има алгоритъм, който по дадена съждителна формула φ дава винаги като резултат формула ψ , такава че:

- $\varphi \models \psi$
- в ψ няма срещания на $\Rightarrow u \Leftrightarrow$
- всяко срещане на \neg е от вида $\neg P, P \in PVar$.

Твърдение 12. Има алгоритъм, който на φ съпоставя $\psi = \psi_1 \& \psi_2 \& \dots \& \psi_n$, където $\psi_1, \psi_2, \dots \psi_n$ са елементарни дизюнкции.

Твърдение 13. Нека $\varphi_1, \varphi_2, \dots, \varphi_n$ са съждителни формули. Нека φ е съждителна формула, такава че $\varphi \models \alpha_0 \varphi_1 \alpha_1 \varphi_2 \dots \varphi_n \alpha_n$.

Казваме, че сме отбелязали някои конкретни участия на $\varphi_1, \varphi_2, \dots, \varphi_n$ във φ . Нека $\varphi_1', \varphi_2', \dots, \varphi_n'$ са съждителни формули.

Да разгледаме думата $\alpha_0 \varphi_1' \alpha_1 \varphi_2' \dots \varphi_n' \alpha_n$. Тази дума е съждителна формула.

Доказателствого използва еднозначен синтактичен анализ и индукция по построението на φ . Вземаме твърдението за истина на доверие.

Твърдение 14. Нека I е булева интерпретация, такава че $I(\varphi_1) = I(\varphi_1'), \ldots, I(\varphi_n) = I(\varphi_n')$. Тогава $I(\alpha_0 \varphi_1 \alpha_1 \ldots \varphi_n \alpha_n) = I(\alpha_0 \varphi_1' \alpha_1 \ldots \varphi_n' \alpha_n)$.

Твърдение 15. Нека φ е съждителна формула, в която не участват \Rightarrow $u \Leftrightarrow$. Тогава алгоритмично можем да намерим формула φ' , такава че $\varphi \models \varphi'$ $u \Rightarrow$, \Leftrightarrow не участват във φ' u във φ' отрицанието се среща само пред съждителни променливи.

 $Hanpumep: \varphi' \Rightarrow \alpha \neg \beta \rightarrow \beta = P\beta'.$

Предикатно смятане от първи ред

Твърдение 16. Нека \mathcal{L}_2 е разширение на \mathcal{L}_1 . Тогава всеки терм от \mathcal{L}_1 е терм от \mathcal{L}_2 .

Доказателство. С индукция по построението на термовете.

Твърдение 17. За всеки два терма τ и \varkappa е в сила еквивалентността: τ е подтерм на $\varkappa \longleftrightarrow \tau \in Subt(\varkappa)$.

Семантика на език от първи ред

Твърдение 18. Нека \mathcal{A} е крайна структура и са зададени интерпретации на нелогическите символи. Тогава има алгоритъм, който по дадена формула φ разпознава дали формулата е вярна или не.

Следствие 1. Има алгоритъм, който по дадена формула φ разпознава дали в крайна структура $\mathcal{A}, \mathcal{A} \models \varphi$.

Твърдение 19. Ако ν_1 и ν_2 са оценки в \mathcal{A} и за всяка индивидна променлива x, участваща във $\varphi, \nu_1(x) = \nu_2(x)$, то $\mathcal{A} \models \varphi$.

Твърдение 20. Нека \mathcal{A} е структура. Тогава за всяка формула φ е в сила следното: ако ν_1 и ν_2 са оценки в \mathcal{A} и $\nu_1|Var^{free}(\varphi) = \nu_2|Var^{free}(\varphi)$, то $\|\varphi\|^{\mathcal{A}}[\nu_1] = \|\varphi\|^{\mathcal{A}}[\nu_2]$.

Твърдение 21. Нека φ е формула, x е индивидна променлива, \mathcal{A} е структура за езика, в който е φ . Тогава $\mathcal{A} \models \varphi \longleftrightarrow \mathcal{A} \models \forall x \varphi$.

Следствие 2. Нека $Var^{free}(\varphi) \subseteq \{x_1, x_2, \dots, x_n\}$ и x_1, x_2, \dots, x_n са различни, т.е. $\varphi[x_1, x_2, \dots, x_n]$. Тогава $\forall x_1 \forall x_2 \dots \forall x_n \varphi$ е затворена формула. Следователно $\mathcal{A} \models \varphi \longleftrightarrow \mathcal{A} \models \forall x_1 \forall x_2 \dots \forall x_n \varphi$.

Твърдение 22. Нека $B \subseteq A^n$ е определимо. Нека $x_1, x_2, ..., x_n$ са различни индивидни променливи. Тогава има формула $\varphi[x_1, x_2, ..., x_n]$, която определя B.

Хомоморфизми и изоморфизми.

Твърдение 23. Нека h е хомоморфизъм на A в B. Нека τ е терм и $\tau[x_1, x_2, \ldots, x_n]$. Тогава за произволни $a_1, a_2, \ldots, a_n \in A$ е изпълнено

$$h(\tau^{\mathcal{A}}[a_1, a_2, \dots, a_n]) = \tau^{\mathcal{B}}[h(a_1), h(a_2), \dots, h(a_n)]$$

Твърдение 24. Нека h е хомоморфизъм на A към B. Нека φ е без формално равенство.

- 1. Ако φ е безкванторна, то $\mathcal{A} \models \varphi[\![a_1, a_2, \dots, a_n]\!] \longleftrightarrow \mathcal{B} \models \varphi[\![h(a_1), h(a_2), \dots, h(a_n)]\!]$, за произволни $a_1, a_2, \dots, a_n \in A$.
- 2. Ако $\varphi = \exists y_1 \exists y_2 \dots \exists y_n \psi$, където ψ е безкванторна, то за произволни $a_1, a_2, \dots, a_n \in A$ е изпълнено $\mathcal{A} \models \exists y_1 \exists y_2 \dots \exists y_n \psi \llbracket a_1, a_2, \dots, a_n \rrbracket \longrightarrow \mathcal{B} \models \exists y_1 \exists y_2 \dots \exists y_n \psi \llbracket h(a_1), h(a_2), \dots, h(a_n) \rrbracket$.
- 3. Ако $\varphi = \forall y_1 \forall y_2 \dots \forall y_n \psi$, ψ е безкванторна. Нека $a_1, a_2, \dots, a_n \in A$. Тогава $\mathcal{B} \models \forall y_1 \forall y_2 \dots \forall y_n \psi \llbracket h(a_1), h(a_2), \dots, h(a_n) \rrbracket \longrightarrow \mathcal{A} \models \forall y_1 \forall y_2 \dots \forall y_n \psi \llbracket a_1, a_2, \dots, a_n \rrbracket$.

Твърдение 25. Нека h е изоморфно влагане на \mathcal{A} в \mathcal{B} . Нека φ е безкванторна формула, и $\varphi[x_1, x_2, \ldots, x_n]$ (т.е. свободните променливи на φ са измежду x_1, x_2, \ldots, x_n , но φ е безкванторна и значи, че всички променливи на $\varphi \in \{x_1, x_2, \ldots, x_n\}$).

Тогава за произволни $a_1, a_2, \dots, a_n \in A$ е изпълнено

$$\mathcal{A} \models \varphi[\![a_1, a_2, \dots, a_n]\!] \longleftrightarrow \mathcal{B} \models \varphi[\![h(a_1), h(a_2), \dots, h(a_n)]\!]$$

Следствие 1. Нека h е изоморфно влагане на A в B. Нека φ е формула и $\varphi[x_1, x_2, ..., x_n]$. Тогава за произволни $a_1, a_2, ..., a_n \in A$:

- 1. Ако φ е екзистенциална и $\mathcal{A} \models \varphi[\![a_1,a_2,\ldots,a_n]\!]$, то $\mathcal{B} \models \varphi[\![h(a_1),h(a_2),\ldots,h(a_n)]\!]$
- 2. Ако φ е универсална и $\mathcal{B} \models \varphi[\![h(a_1),h(a_2),\ldots,h(a_n)]\!]$, то $\mathcal{A} \models \varphi[\![a_1,a_2,\ldots,a_n]\!]$.

Твърдение 26. С помощта на $\varphi_1, \varphi_2, \dots, \varphi_n$ и използвайки $\neg, \&, \lor, \Rightarrow, \Leftrightarrow$ построяваме формула φ .

Hека $\varphi_1 \models \psi_1, \varphi_2 \models \psi_2, \dots, \varphi_n \models \psi_n$. Тогава използвайки същата конструкция получаваме формула ψ .

Tвърдим, че φ и ψ са логически еквивалентни.

Твърдение 27. Нека Θ е съждителна формула и $\Theta[p_1, p_2, \dots, p_n]$, където p_1, p_2, \dots, p_n съждителни променливи.

Hека $\varphi_1, \varphi_2, \dots, \varphi_n; \psi_1, \psi_2, \dots, \psi_n$ са nредикатни формули. Тогава, ако $\varphi_1 \models \psi_1, \varphi_2 \models \psi_2, \dots, \varphi_n \models \psi_n, mo \Theta[p_1/\varphi_1, p_2/\varphi_2, \dots, p_n/\varphi_n] \models \Theta[p_1/\psi_1, p_2/\psi_2, \dots, p_n/\psi_n].$

Твърдение 28. Нека A е структура, φ и ψ са предикатни формули. Нека φ е логически еквивалентна c ψ в структурата A.

Всеки път, когато $\alpha\varphi\beta$ е предикатна формула, е в сила $\alpha\varphi\beta \models_{\mathcal{A}} \alpha\psi\beta$ (конкретно участие на φ заместено c ψ).

Твърдение 29. Нека \mathcal{A} е структура, x е индивидна променлива, τ е терм, φ е предикатна формула. Нека замяната $\varphi^{[x/\tau]}$ е допустима замяна.

Всеки път, когато ν и ω са оценки в \mathcal{A} , удовлетворяващи условията:

- $\nu(x) = \tau^{\mathcal{A}}[\omega]$
- $\nu(y) = \omega(y), \forall y \in Var^{free}[\varphi] \setminus \{x\}$

e в сила $\|\varphi\|^{\mathcal{A}}[\nu] = \|\varphi[x/\tau]\|^{\mathcal{A}}[\omega].$

Хомоморфизми и изоморфизми.

Твърдение 30. Нека x_1, x_2, \ldots, x_n са различни индивидни променливи, $\varkappa_1, \varkappa_2, \ldots, \varkappa_n$ – термове. Нека \mathcal{A} е структура. Нека τ е терм от езика \mathcal{L} и оценките ν_1 и ν_2 в \mathcal{A} удовлетворяват следните условия:

- за всяка индивидна променлива $y, y \in Var(\tau) \setminus \{x_1, x_2, \dots, x_n\}, \nu_1(y) = \nu_2(y);$
- за всяко $i, 1 \le i \le n, \nu_1(x_i) = \varkappa^{\mathcal{A}}[\nu_2].$

Тогава $\tau^{\mathcal{A}}[\nu_1] = \tau[x_1/\varkappa_1, x_2/\varkappa_2, \dots, x_n/\varkappa_n]^{\mathcal{A}}[\nu_2].$

Следствие 1. Нека \mathcal{A} е структура, τ е терм. Нека ν_1 и ν_2 са оценки в \mathcal{A} , такива че $\nu_1(x) = \nu_2(x)$ за всяка индивидна променлива $x, x \in Var[\tau]$. Тогава $\tau^{\mathcal{A}}[\nu_1] = \tau^{\mathcal{A}}[\nu_2]$.

Следствие 2. Нека τ е затворен терм $(Var[\tau] = \varnothing)$. Нека \mathcal{A} е структура. Тогава за всеки две оценки ν_1 и ν_2 в \mathcal{A} , $\tau^{\mathcal{A}}[\nu_1] = \tau^{\mathcal{A}}[\nu_2]$, т.е. затворените термове в структура не зависят от нищо и имат една и съща стойност за коя да е оценка в структурата.

Нека x_1, x_2, \ldots, x_n са различни променливи, $Var[\tau] \subseteq \{x_1, x_2, \ldots, x_n\}$. Такъв терм означаваме с $\tau[x_1, x_2, \ldots, x_n]$ (променливите на τ са измежду x_1, x_2, \ldots, x_n).

Нека ν_1 и ν_2 са оценки в \mathcal{A} . Тогава $\tau^{\mathcal{A}}$ зависи само от $\nu_1(x_1), \nu_1(x_2), \ldots, \nu_1(x_n)$ и $\nu_2(x_1), \nu_2(x_2), \ldots, \nu_2(x_n), \nu_1[x_i] = \nu_2[x_i], 1 \leq i \leq n$. $\tau^{\mathcal{A}}[v_1] = \tau^{\mathcal{A}}[v_2] \longleftrightarrow \tau[\nu_1(x_1), \nu_1(x_2), \ldots, \nu_1(x_n)] = \tau[\nu_2(x_1), \nu_2(x_2), \ldots, \nu_2(x_n)].$ Такъв терм означаваме с $\tau[a_1, a_2, \ldots, a_n]$, където $a_i = \nu_j(x_i), j = 1, 2, 1 \leq i \leq n$. Всеки терм τ с фиксирана наредба от променливи $\tau[x_1, x_2, \ldots, x_n], \tau: A^n \longrightarrow A, \tau[a_1, a_2, \ldots, a_n]$. Всеки полином поражда функция.

Твърдение 31. Нека \mathcal{A} е структура за \mathcal{L} . Нека φ е предикатна формула. Нека ν_1 и ν_2 са оценки в \mathcal{A} , такива че за всяка свободна променлива $y \in Var^{free}[\varphi], \nu_1(y) = \nu_2(y)$. Тогава $\|\varphi\|^{\mathcal{A}}[\nu_1] = \|\varphi\|^{\mathcal{A}}[\nu_2]$.

Забележка. Формулите без свободна променлива говорят за света като цяло.

Заместване на подформули с формули

Твърдение 32. Нека φ е съждителна формула и $\varphi[P_1, P_2, \dots, P_n]$. Нека $\varphi_1, \varphi_2, \dots, \varphi_n$ са предикатни формули.

 $C \ \varphi[P_1/\varphi_1, P_2/\varphi_2, \dots, P_n/\varphi_n]$ означаваме резултата от едновременната замяна на $P_1 \ c \ \varphi_1, P_2 \ c \ \varphi_2, \dots, P_n \ c \ \varphi_n$. Думата $\varphi[P_1/\varphi_1, P_2/\varphi_2, \dots, P_n/\varphi_n]$ е предикатна формула.

Твърдение 33. Нека $\varphi[P_1, P_2, \dots, P_n]$ е съждителна формула и нека $\varphi_1, \varphi_2, \dots, \varphi_n$ са предикатни формули.

Нека I_0 е булева интерпретация, а \mathcal{A} е структура над \mathcal{L} и ν е оценка. Ако $I_0(P_1) = \|\varphi_1\|^{\mathcal{A}}[\nu], I_0(P_2) = \|\varphi_2\|^{\mathcal{A}}[\nu], \dots, I_0(P_n) = \|\varphi_n\|^{\mathcal{A}}[\nu],$ то $I(\varphi) = \|\varphi[P_1/\varphi_1, P_2/\varphi_2, \dots, P_n/\varphi_n]\|^{\mathcal{A}}[\nu]$

Следствие 1. Ако φ е тавтология, то $\models \varphi[P_1/\varphi_1, P_2/\varphi_2, \dots, P_n/\varphi_n]$. Казваме, че φ е тавтология по съждителни причини.

Следствие 2. Нека φ' и φ'' са съждителни формули и $\varphi' \models \varphi''$.

Нека $\varphi'[P_1, P_2, \dots, P_n], \varphi''[P_1, P_2, \dots, P_n]$. Нека $\varphi_1, \varphi_2, \dots, \varphi_n$ са произволни предикатни формули от \mathcal{L} . Тогава $\varphi'[P_1/\varphi_1, P_2/\varphi_2, \dots, P_n/\varphi_n] \models \varphi''[P_1/\varphi_1, P_2/\varphi_2, \dots, P_n/\varphi_n]$

Твърдение 34. Нека $\varphi[P_1, P_2, \dots, P_n]$. Нека $\varphi_1, \varphi_2, \dots, \varphi_n$ и $\psi_1, \psi_2, \dots, \psi_n$ са произволни съждителни формули и I_0 е булева интерпретация, такава че $I(\varphi_1) = I(\psi_i), i = 1, \dots, n$. Тогава $I(\varphi[P_1/\varphi_1, P_2/\varphi_2, \dots, P_n/\varphi_n]) = I(\varphi[P_1/\psi_1, P_2/\psi_2, \dots, P_n/\psi_n])$.

Твърдение 35. Нека φ е предикатна формула от вида $\varphi = \alpha \varphi' \beta$, където φ' е предикатна формула от същия език. Нека A е структура. Нека φ'' е предикатна формула, такава че $\varphi' \stackrel{\mathcal{A}}{\models} \varphi''$. Torasa $\alpha \varphi' \beta \stackrel{\mathcal{A}}{\models} \alpha \varphi'' \beta$.

Твърдение 36. Нека $\varphi = \alpha_0 \varphi_1 \alpha_1 \varphi_2 \dots \alpha_{n-1} \varphi_n \alpha_n$ и $\psi_1, \psi_2, \dots, \psi_n$ са предикатни формули. Нека \mathcal{A} е структура $u \varphi_1 \stackrel{\mathcal{A}}{\models} \psi_1, \varphi_2 \stackrel{\mathcal{A}}{\models} \psi_2, \dots, \varphi_n \stackrel{\mathcal{A}}{\models} \psi_n.$

Toraga $\alpha_0 \varphi_1 \alpha_1 \varphi_2 \dots \alpha_{n-1} \varphi_n \alpha_n \stackrel{\mathcal{A}}{\models} \alpha_0 \psi_1 \alpha_1 \psi_2 \dots \alpha_{n-1} \psi_n \alpha_n$.

Заместване на индивидни променливи с термове

Твърдение 37. Нека ν, ω са оценки в \mathcal{A} и е изпълнено $\nu(x_1) = \tau_i^{\mathcal{A}}[\omega], 1 \leq i \leq n$. Тогава $\tau^{\mathcal{A}}[\nu] = \tau[x_1/\tau_1, x_2/\tau_2, \dots, x_n/\tau_n]^{\mathcal{A}}[\nu]$

Твърдение 38. Нека A е структура, φ е формула, x е индивидна променлива, τ е терм и $\varphi[^x/_{\tau}]$ е допустима замяна.

 $He\kappa a \nu u \omega ca оценки в A. A\kappa o$

$$\begin{split} \nu(x) &= \tau^{\mathcal{A}}[\omega] \\ \nu(y) &= \omega(y), \forall y \in Var^{free}[\varphi] \setminus \{x\} \end{split}$$

Тогава $\|\varphi\|^{\mathcal{A}}[\nu] = \|\varphi[x/\tau]\|^{\mathcal{A}}[\omega], m.e. \mathcal{A} \models_{\nu} \varphi \longleftrightarrow \mathcal{A} \models_{\omega} \varphi[x/\tau].$

Твърдение 39. Нека φ е предикатна формула и замяната $\varphi[x/\tau]$ е допустима. Тогава

$$\models \forall x \varphi \Rightarrow \varphi[x/\tau]$$
$$\models \varphi[x/\tau] \Rightarrow \exists x \varphi$$

Преименуване на свързани променливи

Логическо следване

Твърдение 40. Нека $\Gamma \models \psi$. За всяко $\varphi \in \Gamma$, х $\mathscr{E}Var^{free}[\varphi]$. Тогава $\Gamma \models \forall x\psi$.

Твърдение 41. $A\kappa o \Gamma \models \psi$, $mo \Gamma \models^g \psi$.

Твърдение 42. Нека Γ е множество от затворени формули. Ако $\Gamma \models^g \psi$, то $\Gamma \models \psi$. Значи, ако Γ е множество от затворени формули, то $\Gamma \models \psi \longleftrightarrow \Gamma \models^g \psi$.

Скулемизация

Твърдение 43. Нека φ е затворена формула в пренексна нормална форма.

Тогава $\models \varphi_S \Rightarrow \varphi$. Следователно $\models \varphi^S \Rightarrow \varphi$.

Твърдение 44. Нека φ е затворена формула в пренексна нормална форма, $\mathcal A$ е структура за езика $\mathcal L$ и в $\mathcal A$ е вярна arphi . Тогава има обогатяване $\mathcal A_S$ на $\mathcal A$ до структура в разширения език, такова че $\mathcal{A}_S \models \varphi_S$. Следователно $\mathcal{A} \models \varphi$ влече, че има обогатяване \mathcal{A}_S на $\mathcal{A}, \mathcal{A}^S \models \varphi^S$.

Затворени универсални формули

Твърдение 45. Нека Γ е множество от затворени универсални формули. Нека \mathcal{A} е структура, такава че за всяко $a \in A$ съществува затворен терм τ_a , за който $\tau_a^{\mathcal{A}} = a$. Тогава $\mathcal{A} \models \Gamma \longleftrightarrow CSI(\Gamma)$.

Твърдение 46. Нека \mathcal{A} е структура. За всяко $a \in \mathcal{A}$ има затворен терм τ_a , такъв че $\tau_a^{\mathcal{A}} = a$. Тогава $\mathcal{A} \models CSI(\Gamma) \longrightarrow \mathcal{A} \models \Gamma$.

Така, ако \mathcal{A} има горното свойство, то $\mathcal{A} \models \Gamma \longleftrightarrow \mathcal{A} \models CSI(\Gamma)$.

Ербранови структури

Твърдение 47. За всеки затворен терм τ и за всяка ербранова структура $\mathcal{H}, \tau^{\mathcal{H}} = \tau$.

Твърдение 48. Един език \mathcal{L} има ербранова структура $\longleftrightarrow \mathrm{T}^{cl}_{\mathcal{L}} \neq \varnothing \longleftrightarrow \mathbb{C}onst_{\mathcal{L}} \neq \varnothing$.

Твърдение 49. За всеки затворен терм τ е изпълнено, че $\tau^{\mathcal{H}} = \tau$.

Твърдение 50. Нека Γ е множество от затворени формули в език с $\mathbb{C}onst_{\mathcal{L}} \neq \emptyset$. Тогава за всяка ербранова структура \mathcal{H} на $\mathcal{L}, \mathcal{H} \models \Gamma \longleftrightarrow \mathcal{H} \models CSI(\Gamma)$.

Безкванторни формули

Твърдение 51. Нека \mathcal{A} е структура и ν е оценка в \mathcal{A} . Тогава дефинираме булева интерпретация $I_{\mathcal{A},\nu}:I_{\mathcal{A},\nu}(\Theta) \leftrightharpoons \|\Theta\|^{\mathcal{A}}[\nu]$ за всяка атомарна формула Θ .

За всяка безкванторна $\varphi: \|\varphi\|^A[\nu] = I_{\mathcal{A},\nu}(\varphi), \ m.e. \ \mathcal{A} \models_{\nu} \varphi \longleftrightarrow I_{\mathcal{A},\nu} \models \varphi. \ Taka, \ ako \ \Delta \ e$ множество от безкванторни формули, $\mathcal{A} \models_{\nu} \Delta \longleftrightarrow I_{\mathcal{A},\nu} \models \Delta. \ Ako \ \Delta \ e$ изпълнимо, то $\Delta \ e$ булево изпълнимо.

Твърдение 52. Нека Γ е множество от безкванторни формули от езика \mathcal{L} . Нека \mathcal{A} е структура, ν е оценка и всички формули от Γ са верни в \mathcal{A} при ν , т.е. $\mathcal{A} \models_{\nu} \Gamma$.

Да разгледаме булевите интерпретации $I_{A,\nu}$ на атомарните формули, дефинирани така за φ – атомарна, $I_{A,\nu}[\varphi] = \|\varphi\|^A[\nu]$.

Тогава $I_{\mathcal{A},\nu} \models \Gamma$ (булев модел за Γ).

Следствие 1. Нека Γ е множество от безкванторни формули. Ако Γ е изпълнимо, то Γ има булев модел, т.е. е булево изпълнимо.

Твърдение 53. Нека Δ е множество от безкванторни формули в език без формално равенство. Тогава Δ е изпълнимо $\longleftrightarrow \Delta$ е булево изпълнимо.

Забележка. Интерпретацията на формалното равенство в ербранова структура е "графичното" равенство на термове.

Tака, ако Δ е множество от затворени формули без формално равенство. Δ е булево изпълнимо $\longleftrightarrow \Delta$ има ербранов модел.

Твърдение 54. Γ има модел $\longleftrightarrow CSI(\Gamma)$ е булево изпълнимо, следователно Γ е неизпълнимо $\longleftrightarrow CSI(\Gamma)$ е булево неизпълнимо.

Следствие 1.

- 1. Нека Γ е множество от затворени универсални формули в език с поне една индивидна константа и без формално равенство. Тогава има алгоритъм, който спира работа точно тогава, когато Γ е неизпълнимо и работи до безкрай, когато Γ е изпълнимо.
- 2. Ако допълнително в езика няма функционални символи, то има алгоритъм, който винаги завършва работа за краен брой стъпки и разпознава дали Γ е изпълнимо.

Забележка. Тъй като в езика няма функционални символи, затворените термове са само индивидните константи. Но Γ е крайно множество, следователно индивидните константи, които имат значение, са краен брой. Следователно $CSI(\Gamma)$ е крайно.

Свободни ербранови структури

Твърдение 55. Нека \mathcal{H} е свободна ербранова структура за езика \mathcal{L} и ν е оценка в \mathcal{H} . Тогава за всеки терм τ , $\tau^{\mathcal{H}}[\nu] = \tau[x_1/\nu(x_1), x_2/\nu(x_2), \dots, x_n/\nu(x_n)]$, където $Var[\tau] \subseteq \{x_1, x_2, \dots, x_n\}$.

Следствие 1. Нека \mathcal{H} е свободна ербранова структура и разгледаме оценките Id_{Var} . За всеки терм $\tau, \tau^{\mathcal{H}}[Id_{Var}] = \tau$.

Следствие 2. Нека \mathcal{H} е свободна ербранова структура и ν е оценка в \mathcal{H} .

За всеки затворен терм τ (терм, в който няма променливи), $\tau^{\mathcal{H}} = \tau$.

 $(\tau_1 \doteq \tau_2)^{\mathcal{H}}[Id_{Var}] = T \longleftrightarrow \tau_1^{\mathcal{H}}[Id_{Var}] = \tau_2^{\mathcal{H}}[Id_{Var}] \longleftrightarrow \tau_1 = \tau_2$ (ще разглеждаме езици без формално равенство).

Твърдение 56. Нека \mathcal{L} е предикатен език без формално равенство. Нека Γ е множество от безкванторни формули от \mathcal{L} .

Ако Γ е булево изпълнимо, то Γ е изпълнимо.

Твърдение 57. Нека \mathcal{L} е предикатен език без формално равенство. Нека Γ е множество от безкванторни формули от \mathcal{L} .

Тогава Γ е булево изпълнимо \longleftrightarrow Γ е изпълнимо \longleftrightarrow Γ е изпълнимо в свободна ербранова структура.

Съждителна резолюция

Твърдение 58. Нека $\mathbb D$ е дизюнкт. $\mathbb D$ е тавтология, ако има два дуални литерали $L, L^\partial \in \mathbb D$.

Твърдение 59. Нека \mathbb{D} е дизюнкт. \mathbb{D} е изпълним $\longleftrightarrow \mathbb{D} \neq \blacksquare$.

Правило на съждителната резолюция

Твърдение 60. Нека I е булева интерпретация, \mathbb{D}_1 и \mathbb{D}_2 са дизюнкти, а L е литерал и $!\mathcal{R}_L(\mathbb{D}_1,\mathbb{D}_2)$.

$$A\kappa o\ I \models \{\mathbb{D}_1, \mathbb{D}_2\}, \ mo\ I \models \{\mathbb{D}_1, \mathbb{D}_2, \mathcal{R}_L(\mathbb{D}_1, \mathbb{D}_2)\}.$$

Твърдение 61. Ако дизюнктот $\mathbb{D} = \mathcal{R}_L(\mathbb{D}_1, \mathbb{D}_2)\}, I \models \mathbb{D}_1 \ u \ I \models \mathbb{D}_2, \ mo \ I \models \mathbb{D}.$

Трансверзали за фамилии от множества

Твърдение 62. Нека A е фамилия от множества и Y е трансверзала за A. Тогава следните са еквивалентни:

- 1. Y е минимална трансверзала;
- 2. Всеки път, когато $Y_0 \subset Y$, то е в сила, че Y_0 не е трансверзала;
- 3. За всяко $a \in Y, Y \setminus \{a\}$ не е трансверзала за A;
- 4. За всеки елемент $a \in Y$ съществува $x \in A$, такова че $Y \cap x = \{a\}$.

Твърдение 63. Ако A е фамилия от непразни множества, то не винаги A има минимална трансверзала.

Твърдение 64. Нека S е множество от дизюнкти, което е затворено относно правилото за резолюцията, т.е. $\mathbb{D}_1, \mathbb{D}_2 \in S$ и \mathbb{D} е резолвента на \mathbb{D}_1 и $\mathbb{D}_2 \longrightarrow \mathbb{D} \in S$.

Ако $\blacksquare \not\in S$, то S е изпълнимо.

Твърдение 65. Γ е изпълнимо $\longleftrightarrow CSI(\Gamma)$ е булево изпълнимо.

Хорнови дизюнкти

Твърдение 66. Нека S е множество от хорнови дизюнкти. Нека M е непразно множество от модели на S.

Тогава има модел $I_M \models S$, такъв че за всяка $I \in M, I_M \preccurlyeq I$.

Следствие 1. Нека S е множество от правила и факти. Тогава S има най-малък модел I_m , т.е. $I_m \models S$ и за всеки модел I на $S, I_m \preccurlyeq I$.

Твърдение 67. Нека S е множество от правила и факти и C – множество от цели, S и C са непразни, $S \cup C$ е неизпълнимо.

Тогава съществува крайно $S_0 \subseteq S$ и цел $G \in C$, такива че $S_0 \cup \{G\}$ е неизпълнимо.

Твърдение 68. Ако \mathcal{L} е език без формално равенство, Γ е множество от затворени формули. Γ е неизпълнимо \longleftrightarrow съществува крайно $\Gamma_0 \subseteq \Gamma$ – неизпълнимо.

Твърдение 69. Γ е изпълнимо \longleftrightarrow всяко крайно $\Gamma_0 \subseteq \Gamma$ е изпълнимо.