Linear Regression

Geena Kim

price	bedrooms	bathrooms	sqft_living	sqft_lot	floors
221900	3	1.00	1180	5650	1.0
538000	3	2.25	2570	7242	2.0
180000	2	1.00	770	10000	1.0
604000	4	3.00	1960	5000	1.0
510000	3	2.00	1680	8080	1.0

Data columns	(total 21	columns):	
id	21613	non-null i	int64
date	21613	non-null o	object
price	21613	non-null i	int64
bedrooms	21613	non-null i	int64
bathrooms	21613	non-null f	float64
sqft_living	21613	non-null i	int64
sqft_lot	21613	non-null i	int64
floors	21613	non-null f	float64
waterfront	21613	non-null i	int64
view	21613	non-null i	int64
condition	21613	non-null i	int64
grade	21613	non-null i	int64
sqft_above	21613	non-null i	int64
sqft_basement	21613	non-null i	int64
yr_built	21613	non-null i	int64
<pre>yr_renovated</pre>	21613	non-null i	int64
zipcode	21613	non-null i	int64
lat	21613	non-null i	float64
long	21613	non-null i	float64
sqft_living15	21613	non-null i	int64
sqft_lot15	21613	non-null i	int64

Simple Linear Regression

Model
$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$
 Estimated values

```
import statsmodels.formula.api as smf
model = smf.ols(formula='price~sqft_living',data=sub).fit()
model.summary()
```


OLS Regression Results

Dep. Va	riable:	p	rice	e R-squared:		0.436		
Model:		C	DLS	Adj. R-squared:		0.436		
М	ethod:	Least Squa	ires		F-sta	tistic:	1	.651e+04
	Date: Tu	ıe, 14 Jan 20	020	Prob	(F-stat	istic):		0.00
	Time:	19:04	:13	Lo	g-Likeli	hood:	-2.9	9523e+05
No. Observa	ations:	21	402			AIC:	5	.905e+05
Df Res	iduals:	21	400			BIC:	5	.905e+05
Df	Model:		1					
Covariance	туре:	nonrob	oust					
	coef	std err		t	P> t	[0.	025	0.975]
Intercept	1.24e+04	4305.280	2	.881	0.004	3964.	466	2.08e+04
sqft_living	251.0967	1.954	128	.505	0.000	247.	267	254.927

R-squared

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
$$TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

$$R^2 = 1 - \frac{RSS}{TSS}$$

p-value

Null hypothesis

$$H_0: \beta_1 = 0$$

Alternative hypothesis

$$H_A:\beta_1\neq 0$$

t-statistics

$$t = \frac{\hat{\beta}_1 - 0}{\text{SE}(\hat{\beta}_1)}$$

p-value

Accuracy of the coefficient estimates

```
import seaborn as sns
plt.figure(figsize=(10,6))
sns.regplot(x="sqft_living", y = "price", data=x_sample, ci=95)
```


95% Confidence Interval

$$\left[\hat{\beta}_1 - 2 \cdot \text{SE}(\hat{\beta}_1), \ \hat{\beta}_1 + 2 \cdot \text{SE}(\hat{\beta}_1)\right]$$

Under the hood...

OLS Regression Results

6	0.436	R-squared:	price	Dep. Variable:
6	0.436	Adj. R-squared:	OLS	Model:
1	1.651e+04	F-statistic:	Least Squares	Method:
)	0.00	Prob (F-statistic):	Tue, 14 Jan 2020	Date:
5	-2.9523e+05	Log-Likelihood:	19:04:13	Time:
5	5.905e+05	AIC:	21402	No. Observations:
5	5.905e+05	BIC:	21400	Df Residuals:
	-/-		1	Df Model:
1,	$L(b_0,b_1$		nonrobust	Covariance Type:

$$\prod_{i=1}^{n} p(y_i|x_i;b_0,b_1,s^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi s^2}} e^{-\frac{(y_i - (b_0 + b_1 x_i))^2}{2s^2}}$$

$$s^{2}) = \log \prod_{i=1}^{n} p(y_{i}|x_{i}; b_{0}, b_{1}, s^{2})$$

$$= \sum_{i=1}^{n} \log p(y_{i}|x_{i}; b_{0}, b_{1}, s^{2})$$

$$= -\frac{n}{2} \log 2\pi - n \log s - \frac{1}{2s^{2}} \sum_{i=1}^{n} (y_{i} - (b_{0} + b_{1}x_{i}))^{2}$$

Polynomial Regression

Where to stop?

Bias-Variance Trade-off

Multi-linear Regression

Multilinear regression model

All predictors(variables) X₁~X_p are linear to Y

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

Multilinear regression model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

 β_j Average effect of X_j to Y when all other predictors fixed

Caution: In general, predictors might be correlated

Collinearity

Caution: In general, predictors might be correlated

• When predictors are correlated, the coefficients estimates become inaccurate.

Then it's called (multi-)collinear.

 The interpretation of the coefficient as the variable's contribution to the response becomes inaccurate.

Model selection

Do I include all predictors or just a subset?

```
Forward Selection
                                    Backward Selection
     y=b0
step 1
                                          y0=b0+b1*X1+b2*X2+...+bN*XN
                                    step 1
step 2  p=[]
                                    for i=1,...,N
            y=b0+bi*Xi
                                          y=y0-bi*Xi
            p.append(p value(y))
                                             p.append(p_value(y))
      k = argmin(p)
                                          k = argmax(p)
y = y0-bk*Xk
      y = b0+bk*Xk
step 3
     keep adding a predictor
                                    step 3
                                         keep removing a predictor
     that gives the lowest p-value
                                         that gives the largest p-value
     until it's satisfactory
                                         until it's satisfactory
```