Lecture 12

Friedman's Permanent Income Hypothesis

"The Permanent Income Hypothesis (PIH) says that the permanent consumption C_i^P of a individual i is a function of that individual's permanent income Y_i^P : $C_i^P = f\left(Y_i^P\right)$."

"For Friedman, the permanent income was the interest rate r times the individual's wealth W_i (human capital plus non-human wealth): $Y_i^P=rW_i$."

"Now, actual income Y_i is the sum of the permanent income Y_i^P and the temporary income Y_i^T (fluctuations at each period of time): $Y_i = Y_i^P + Y_i^T$. Actual consumption C_i is also given by the sum of the permanent consumption C_i^P and temporary consumption C_i^T : $C_i = C_i^P + C_i^T$."

"Actual income and consumption are what we, in fact, observe. Whereas an error in the LHS variable of the model C_i^P does not cause big problem, errors in the measurement of the RHS variable Y_i^P indeed does."

"Both C_i^T and Y_i^T are assumed to be uncorrelated random shocks to consumption and income, respectively, and, as such, random variables uncorrelated between themselves and also with C_i^P and Y_i^P ."

Under this hypothesis, the true model would be $C_i^P=\beta_1+\beta_2Y_i^P$, with $\beta_1=0$ (the consumption curve, in a consumption *versus* disposable income plane, should start from the origin).

To test, we would like to run $C_i^P=\beta_1+\beta_2Y_i^P+v_i$ (v_i is the stochastic error), under the hypotheses:

$$H_0: eta_1 = 0 \ H_1: eta_1
eq 0$$

Since what we truly observe is the actual consumption C_i^P and actual income Y_i^P , the model we are supposed to run is $C_i - C_i^P = \beta_1 + \beta_2 \left(Y_i - Y_i^P \right) + v_i$, which can be rewritten as:

$$C_i = \beta_1 + \beta_2 Y_i + u_i,$$

where $u_i = v_i + C_i^T - \beta_2 Y_i^T$.

Thus, there is correlation between two variables on the RHS: Y_i and Y_i^T . That will bias down the estimated coefficient $\hat{\beta}_2$.

- ullet We have seen that $\hat{eta}_2=eta_2+rac{\sum(Y_i-ar{Y})u_i}{\sum(Y_i-ar{Y})^2}.$
- ullet We have also seen that, as $N o\infty$, $ext{plim } \hat{eta}_2=eta_2+rac{ ext{Cov}(Y_i,u_i)}{ ext{Var}(Y_i)}.$
- $\bullet \ \ \mathsf{Thus, plim} \ \hat{\beta}_2 = \beta_2 + \frac{\mathrm{Cov}\Big(Y_i^P + Y_i^T, \ v_i + C_i^T \beta_2 Y_i^T\Big)}{\mathrm{Var}\big(Y_i^P + Y_i^T\big)}.$
 - $\text{o Since the only correlated term inside the covariance is } Y_i^T \text{ (with itself), then that probability limit can be rewritten as } \mathrm{plim} \ \hat{\beta}_2 = \beta_2 \beta_2 \frac{\mathrm{Var}(Y_i^T)}{\mathrm{Var}(Y_i^P) + \mathrm{Var}(Y_i^T)}.$

- Remember that Cov(Y, Y) = Var(Y).
- lacksquare And, since Y_i^P and Y_i^T are uncorrelated, $\mathrm{Var}(Y_i^P+Y_i^T)=\mathrm{Var}(Y_i^P)+\mathrm{Var}(Y_i^T).$

$$\circ$$
 Thus, plim $\hat{eta}_2 = eta_2 \Bigg(1 - rac{ ext{Var}(Y_i^T)}{ ext{Var}(Y_i^P) + ext{Var}(Y_i^T)} \Bigg).$

• Since the variances are always positive values, then plim $\hat{\beta}_2 < \beta_2$.

Having $\hat{\beta}_2$ to be biased downward causes $\hat{\beta}_1$ to be biased upward.

- From OLS, we know that $\hat{\beta}_1 = \bar{y} \hat{\beta}_2 \bar{x}$.
- ullet As $N o\infty$, $ar y o\mu_y$ and $ar x o\mu_x$.
 - o Thus, for an unbiased and consistent estimate \hat{eta}_2 , p $\lim \hat{eta}_1 = \mu_y eta_2 \mu_x = eta_1$.
- Suppose \hat{eta}_2 is biased down by a constant c>0 , so that $\mathrm{plim}~\hat{eta}_2=eta_2-c$.
 - Then, plim $\hat{\beta}_1 = \mu_y (\beta_2 c)\mu_x = \mu_y \beta_2\mu_x + c\mu_x$.
 - Given that $eta_1=\mu_y-eta_2\mu_x$, then plim $\hat{eta}_1=eta_1+c\mu_x.$
 - \circ For $\mu_x > 0$, plim $\hat{\beta}_1 > \beta_1$.

If the hypothesis is true, then, rather than a curve that starts from the origin, the measurement errors would cause the consumption function would to form a curve with too flat a slope (biased down $\hat{\beta}_2$) and a non-zero intercept (biased up $\hat{\beta}_1$).

More on the PIH here.

Measurement error example:

True model: $oldsymbol{Q} = eta_1 + eta_2 oldsymbol{Z} + oldsymbol{v}.$

Suppose there is a common measurement error ω :

$$y_i = Q_i + \omega_i$$

 $x_i = Z_i + \omega_i$

Substituting: $y_i - \omega_i = \beta_1 + \beta_2(x_i - \omega_i) + v_i$.

- $y_i = \beta_1 + \beta_2 x_i + u_i$, where $u_i = (v_i + \omega_i \beta_2 \omega_i)$.
- ullet We have seen that $\mathrm{plim}\ \hat{eta}_2 = eta_2 + rac{\mathrm{Cov}(x_i,u_i)}{\mathrm{Var}(x_i)}.$

$$ullet ext{ plim } \hat{eta}_2 = eta_2 + rac{ ext{Cov} \Big(\omega_i, \omega_i (1-eta_2) \Big)}{ ext{Var}(Z_i) + ext{Var}(\omega_i)}.$$

$$\circ ext{ plim } \hat{eta}_2 = eta_2 + (1-eta_2) rac{ ext{Var}(\omega_i)}{ ext{Var}(Z_i) + ext{Var}(\omega_i)}.$$

- $lacksquare eta_2 > 1
 ightarrow \mathrm{plim} \ \hat{eta}_2 < eta_2.$

Solution: Instrumental variables

The model: $y_i = \beta_1 + \beta_2 x_i + u_i$.

Now, suppose that x_i and u_i are somehow correlated.

Measurement errors induce correlation between the error and the RHS variable. However, not every correlation between those terms stems, necessarily, from a measurement error. That being so, the following solution is more general than the issue of errors of measurement.

Suppose we have another variable z with three properties:

- 1. z is correlated with x;
- 2. z is uncorrelated with the error;
- 3. z is no one of the x's (multiple RHS variables).

From OLS, we know
$$\hat{eta}_2^{OLS} = rac{\sum (x_i - ar{x})(y_i - ar{y})}{\sum (x_i - ar{x})^2}.$$

- ullet We know \hat{eta}_2^{OLS} is inconsistent if $m{x}$ and $m{u}$ are correlated.
- We will introduce a new estimator $\hat{eta}_2^{IV} = rac{\sum (z_i \overline{z})(y_i \overline{y})}{\sum (z_i \overline{z})(x_i \overline{x})}.$

$$egin{aligned} & \hat{eta}_2^{IV} = rac{\sum (z_i - ar{z}) \Big[(eta_1 + eta_2 x_i + u_i) - (eta_1 + eta_2 ar{x} + ar{u}) \Big]}{\sum (z_i - ar{z}) (x_i - ar{x})}. \end{aligned}$$

lacktriangle \bar{u} , as always, is assumed to be zero.

$$ullet \quad \hat{eta}_2^{IV} = rac{\sum (z_i - ar{z})(eta_2 x_i - eta_2 ar{x} + u_i) \Big]}{\sum (z_i - ar{z})(x_i - ar{x})}.$$

$$\blacksquare \quad \text{This can be rewritten as } \hat{\beta}_2^{IV} = \beta_2 \frac{\sum (z_i - \overline{z})(x_i - \overline{x})}{\sum (z_i - \overline{z})(x_i - \overline{x})} + \frac{\sum (z_i - \overline{z})u_i}{\sum (z_i - \overline{z})(x_i - \overline{x})}.$$

$$\hat{eta}_2^{IV} = eta_2 + rac{\sum (z_i - ar{z})u_i}{\sum (z_i - ar{z})(x_i - ar{x})}.$$

$$ullet$$
 As $N o\infty$, plim $\hat{eta}_2^{IV}=eta_2+rac{\mathrm{Cov}(z_i,u_i)}{\mathrm{Cov}(z_i,x_i)}.$

- Since we assumed z_i and u_i are uncorrelated, $Cov(z_i, u_i) = 0$.
- Given that z_i and x_i were assumed to be correlated, $\mathrm{Cov}(z_i,x_i) \neq 0$.
- $\circ \;\;$ Then, $\mathrm{plim}\; \hat{eta}_2^{IV} = eta_2.$

Usually, the variance of the estimator $\hat{\beta}_2^{OLS}$ is given by: $\operatorname{Var}\left(\hat{\beta}_2^{OLS}\right) = \left(\frac{\operatorname{Var}(u_i)}{\sum (x_i - \overline{x})}\right)$.

- $\bullet \ \ \text{When using an instrumental variable, } \operatorname{Var} \bigg(\hat{\beta}_2^{IV} \bigg) = \Bigg(\frac{\operatorname{Var}(u_i)}{\sum (x_i \overline{x})} \Bigg) \bigg(\frac{1}{r_{xz}^2} \bigg).$
 - $\circ r_{xz}$ is the <u>Pearson correlation coefficient</u> between $m{x}$ and $m{z}$.

$$lacksquare -1 \leq r_{xz} \leq 1 o 0 \leq r_{xz}^2 \leq 1$$
. Thus, $\mathrm{Var}igg(\hat{eta}_2^{IV}igg) \geq \mathrm{Var}igg(\hat{eta}_2^{OLS}igg)$.

- That means that using an instrumental variable comes with a price: the estimated coefficient for the instrumental variable, while consistent, has a higher variance. Hence, the model loses precision.
- $\circ~$ The lower the correlation between ${\pmb x}$ and ${\pmb z}$, the higher the variance of $\hat{\beta}_2^{IV}.$

Example:

In macroeconomics, when modeling consumption ${m C}$ as a function of income ${m Y}$: $C_t=a+bY_t+u_t.$

- If we worry that Y_t and u_t are correlated, Y_{t-1} is a good choice for an instrumental variable.
 - \circ Y_t and Y_{t-1} are most likely closely correlated.
 - $\circ Y_{t-1}$ cannot be correlated with a posterior random error u_t .
- However, we must beware of serial correlation between u_{t-1} and u_t .

More on instrumental variables estimation <u>here</u>.