"Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry" by Aghion et al. (2016)

Presenter: Shengyu Li

Env Reading Group

August 16, 2023

Research Question

- Examine whether firms redirect technical change away from dirty technologies and toward cleaner technologies in response to increase in fuel prices in the context of path dependency.
 - Open Does directed technical change exist in the auto industry?
 - ② Does path-dependent innovation exist in the auto industry?
 - 4 How important is path dependency in firms' directed innovation in response to increase in fuel prices?
- Main contribution: Compared to ealier work by Popp (2002), who uses aggregate data, the
 paper uses an international firm-level panel data to provide microeconomic evidence of
 directed technical change, of which the theory is developed by Acemoglu (2002).

- An increase in the price of the fossil fuel increases innovation in clean technologies, and decreases innovation in dirty technologies.
- ② Firms with an initially higher level of clean (dirty) technologies will tend to innovate more in clean (dirty) technologies.
- Firms are more likely to innovate in clean technologies when its inventors are located in countries where other firms have been undertaking more clean innovations.

Econometrics Model

- Dynamic fixed effect Poisson specification for count outcome data.
- Two main empirical equations: $z \in \{C, D\}$

$$\begin{aligned} \mathsf{PAT}_{z,it} &= \exp(\beta_{zp} \ln FP_{it-1} + \beta_{z1} \ln \mathsf{SPILL}_{C,it-1} + \beta_{z2} \ln \mathsf{SPILL}_{D,it-1} \\ &+ \beta_{z3} \ln K_{C,it-1} + \beta_{z4} \ln K_{D,it-1} + \beta_{z\omega} \omega_{it} + T_{z,t}) \eta_{z,i} + \mu_{z,it}, \end{aligned} \tag{1}$$

- Lagged independent variables are to avoid contemporaneous feedback effects.
 - **1** FP_{it}: the number of patents applied for in clean technologies by firm i in year t;
 - ② SPILL $_{z,it}$: other firms knowledge stock in z technologies;
 - \bullet $K_{z,it}$: firm's own stock of z technologies;
 - ω_{it} : other control variables;

Data: PATit

- Clean patents are those related to electric, hybrid, and hydrogen vehicles; dirty patents are those related to internal combustion engine.
- Only count "triadic" patents: patents have been taken out in all three of the world's major patent offices in the United States, Europe, and Japan. These are most valuable inventions.
- Each invention is only counted once, no matter in how many patent offices it has been filed.
- Sample: All applicants that applied for at least one of these clean or dirty auto patterns between 1978 and 2005.

Data: Firm-specific Price

- Although variation of fuel prices is country-level, the profile of car sales across countries
 differs between auto firms. Firms' R&D decision will be more influenced by fuel prices in
 some countries that they sale more cars.
- Firm-specific fuel price is constructed by

$$\ln FP_{it} = \sum_{c} w_{ic}^{FP} \ln FP_{ct}$$

where w_{ic}^{FP} is the fraction of firm i's patents taken out in country c.

Rationale: a firm will seek intellectual property protection in jurisdiction where it believes it
will need to sell in the future.

Data: Firm-specific Price

- In constructing wrights, we use all patent files from sample firms (not only "triadic" patents).
- Since patent location could be influenced by shocks to innovation, the weights are calculated using patents portfolio of each company over the 1965~1985 "pre-sample" period. → Regression period: 1986~2005
- If a patent is filed in several countries, this patent enters several times in the firm's patent portfolio.

Data: Firm's Patent Stocks and Spillovers

• Firm's patent stocks are calculated

$$K_{z,it} = \mathsf{PAT}_{z,it} + (1 - \delta)K_{z,it-1} \tag{2}$$

where δ is depreciation rate, to be 20 percent.

• Firm-specific spillover pools in z technology is constructed

$$SPILL_{z,it} = \sum_{c} w_{ic}^{S} SPILL_{z,ct}$$

where w_{ic}^{S} is the share of firm i's inventors in country c (i.e. the inventors worked when they discovered the invention) between 1965 and 1985.

Each invention in only counted once.

Data: Firm's Patent Stocks and Spillovers

- w_{ic}^{S} measures the relative importance of country c's knowledge stock to firm i's innovation.
- Country's spillover poll is constructed by

$$\mathsf{SPILL}_{z,ct} = \sum_{j \neq i} w_{jc}^{S} K_{z,jt}$$

Explanation: Firm j has $K_{z,jt}$ stock of z technology. A fraction w_{jc}^S of these knowledge are developed by inventors in country c. Hence, firm j contributes $w_{jc}^S K_{z,jt}$ knowledge to country c.

Two regression equations are

$$PAT_{C,it} = \exp(\beta_{Cp} \ln FP_{it-1} + \beta_{C1} \ln SPILL_{C,it-1} + \beta_{C2} \ln SPILL_{D,it-1} + \beta_{C3} \ln K_{C,it-1} + \beta_{C4} \ln K_{D,it-1} + \beta_{C\omega} \omega_{it} + T_{C,t}) \eta_{C,i} + \mu_{C,it},$$
(3)

$$PAT_{D,it} = \exp(\beta_{Dp} \ln FP_{it-1} + \beta_{D1} \ln SPILL_{C,it-1} + \beta_{D2} \ln SPILL_{D,it-1} + \beta_{D3} \ln K_{C,it-1} + \beta_{D4} \ln K_{D,it-1} + \beta_{D\omega} \omega_{it} + T_{D,t}) \eta_{D,i} + \mu_{D,it},$$
(4)

Hypothesis 1

An increase in the price of the fossil fuel increases innovation in clean technology, and decreases innovation in dirty technologies. $\Leftrightarrow \beta_{Cp} > 0$ and $\beta_{Dp} < 0$

Two regression equations are

$$PAT_{C,it} = \exp(\beta_{Cp} \ln FP_{it-1} + \beta_{C1} \ln SPILL_{C,it-1} + \beta_{C2} \ln SPILL_{D,it-1} + \beta_{C3} \ln K_{C,it-1} + \beta_{C4} \ln K_{D,it-1} + \beta_{C\omega}\omega_{it} + T_{C,t})\eta_{C,i} + \mu_{C,it},$$
(5)

$$PAT_{D,it} = \exp(\beta_{Dp} \ln FP_{it-1} + \beta_{D1} \ln SPILL_{C,it-1} + \beta_{D2} \ln SPILL_{D,it-1} + \beta_{D3} \ln K_{C,it-1} + \beta_{D4} \ln K_{D,it-1} + \beta_{D\omega} \omega_{it} + T_{D,t}) \eta_{D,i} + \mu_{D,it},$$
(6)

Hypothesis 2

Firms with an initially higher level of clean (dirty) technologies will tend to innovate more in clean (dirty) technologies.

$$\Leftrightarrow \beta_{C3} > 0$$
, $\beta_{C3} > \beta_{D3}$, $\beta_{C3>\beta_{C4}}$ and $\beta_{D4} > 0$, $\beta_{D4} > \beta_{C4}$, $\beta_{D4} > \beta_{D3}$

Two regression equations are

$$PAT_{C,it} = \exp(\beta_{Cp} \ln FP_{it-1} + \beta_{C1} \ln SPILL_{C,it-1} + \beta_{C2} \ln SPILL_{D,it-1} + \beta_{C3} \ln K_{C,it-1} + \beta_{C4} \ln K_{D,it-1} + \beta_{C\omega}\omega_{it} + T_{C,t})\eta_{C,i} + \mu_{C,it},$$

$$(7)$$

$$PAT_{D,it} = \exp(\beta_{Dp} \ln FP_{it-1} + \beta_{D1} \ln SPILL_{C,it-1} + \beta_{D2} \ln SPILL_{D,it-1} + \beta_{D3} \ln K_{C,it-1} + \beta_{D4} \ln K_{D,it-1} + \beta_{D\omega}\omega_{it} + T_{D,t})\eta_{D,i} + \mu_{D,it},$$
(8)

Hypothesis 3

Firms are more likely to innovate in clean technologies when its inventors are located in countries where other firms have been undertaking more clean innovations.

$$\Leftrightarrow \beta_{C1} > 0$$
, $\beta_{C1} > \beta_{D1}$, $\beta_{C1>\beta_{C2}}$ and $\beta_{D2} > 0$, $\beta_{D2} > \beta_{C2}$, $\beta_{D2} > \beta_{D1}$

Results

Table 1 Regressions of Clean and Dirty Patents

	Dependent Variable: Clean Patents			DEPENDENT VARIABLE: DIRTY PATENTS		
	(1)	(2)	(3)	(4)	(5)	(6)
Fuel price (ln FP)	.970*** (.374)	.962** (.379)	.843** (.366)	565*** (.146)	553*** (.205)	551*** (.194)
R&D subsidies (ln R&D)	, ,	005 $(.025)$	006 (.024)	, ,	006 (.021)	005 $(.020)$
Emission regulation		, ,	008 (.149)		,	.04 (.120)
Clean spillover			, ,			
$(\ln \hat{SPILL}_C)$.268***	.301***	.266***	093*	078	089
	(.076)	(.087)	(.088)	(.048)	(.067)	(.063)
Dirty spillover	, ,	, ,	, ,	` ′	` ,	` ′
$(\ln \text{SPILL}_D)$	168**	207**	165*	.151**	.132	.138*
,	(.085)	(.098)	(.098)	(.064)	(.082)	(.077)
Own stock clean ($\ln K_c$)	.306***	.320***	.293***	002	004	.021
, ,	(.026)	(.027)	(.025)	(.022)	(.022)	(.020)
Own stock dirty ($\ln K_D$)	.139***	.135***	.138***	.557***	.549***	.539***
, (-,	(.017)	(.017)	(.017)	(.031)	(.022)	(.017)
Observations	68,240	68,240	68,240	68,240	68,240	68,240
Firms	3,412	3,412	3,412	3,412	3,412	3,412

Simulation Methods

• Knowledge stocks evolve according three equations:

$$\begin{cases} \mathsf{P}\hat{\mathsf{A}}\mathsf{T}_{z,it} &= \exp(\hat{\beta}_{zp} \ln FP_{it-1} + \hat{\beta}_{z1} \ln \mathsf{SPILL}_{C,it-1} + \hat{\beta}_{z2} \ln \mathsf{SPILL}_{D,it-1} \\ &+ \hat{\beta}_{z3} \ln K_{C,it-1} + \hat{\beta}_{z4} \ln K_{D,it-1} + \hat{\beta}_{z\omega} y_{it} + T_{z,t}) \eta_{z,i} \\ K_{z,it} &= \mathsf{P}\hat{\mathsf{A}}\mathsf{T}_{z,it} + (1-\delta)K_{z,it-1} \\ \mathsf{SPILL}_{z,it} &= \sum_{c} w_{ic}^{S} \sum_{j\neq i} w_{jc}^{S} K_{z,jt} \end{cases}$$

- Recursively compute values of expected patenting under different scenarios and use those to update the knowledge stock variables (i.e $K_{z,it}$ and $SPILL_{z,it}$)
- We do this for every sample firm and then aggregate across the world economy in each period

Experiments

- Experiment 1: the effect of fuel prices under path dependence
 - Meep fuel prices at 2005 values;
 - Increase worldwide fuel prices in 2006 (and fixed at this level therefore) by 10%, 20%, 30%, 40% and 50%;
- Experiment 2: the important of path dependency in firms' response to the increase in fuel prices
 - **1** Fixing innovation stock variables (i.e $K_{z,it}$ and $SPILL_{z,it}$) at their 2005 level
- In each scenario, GDP per capita grows at 1.5% per year

Experiment 1 Results: Effect of Fuel Prices

(a) Price Increase of 0%

(c) Price Increase of 20%

(b) Price Increase of 10%

(d) Price Increase of 30%

Experiment 2 Results: The Effect of Path Dependency

(c) Price Increase of 0% without PD

(b) Price Increase of 40% with PD

(d) Price Increase of 40% without PD

Conclusion

- Clean innovation is simulated by increase in the fuel prices whereas dirty innovation is depressed.
- There is strong evidence for "path-dependency":
 - Firms more exposed to clean (dirty) innovation from other firms are more likely to direct their research to clean (dirty) innovation;
 - Firms with a history of clean (dirty) innovation in the past are more likely to focus on clean (dirty) innovation in the future;
- Path-dependency increases the response of innovation trends to tax policy:
 - Since the stock of dirty innovation is greater than that of clean, the path dependency effect tend to lock economies into high carbon emissions;
 - 2 With effective policies, path dependency can help reinforce the growth of clean innovation;

References

- Acemoglu, D. (2002). Directed technical change. *The review of economic studies*, 69(4):781–809.
- Aghion, P., Dechezleprêtre, A., Hemous, D., Martin, R., and Van Reenen, J. (2016). Carbon taxes, path dependency, and directed technical change: Evidence from the auto industry. *Journal of Political Economy*, 124(1):1–51.
- Popp, D. (2002). Induced innovation and energy prices. *American economic review*, 92(1):160–180.