Credit Card Lead Prediction Problem

Presented by: Ashutosh Kumar

Exploratory Data Analysis

- 1. Shape and data types in train and test datasets
- 2. Checked given problem is balanced or imbalanced problem
- 3. Treated it as balanced problem given enough responders
- 4. Corelation and summary statistics for numeric features
- 5. Distinct categories across train and test datasets for object features
- 6. Found missing values in Credit_Product feature
- 7. Did 80:20 startify split of train dataset for feature engineering

Feature Enginnering

- 1. Checked distribution of numerical features
- 2. Avg_Account_Balance was highly rightly (+ve) skewed so took the log transformation
- 3. Region_code coulmn had multiple categories so replaced the value using frequency encoding
- 4. Scaled all the numerical features using Standard Scaler (Also tried out Min max scaler but it didn't add any incremental value so deleted this step)
- 5. Missing values in Credit_Product feature were treated as a separate category for dummy encoding (Also tried out mode imputation which was deleted in later step)
- 6. Label encoding was performed on Gender, Is_Active and, Credit_Product features
- 7. Duumy encoding was performed on Occupation, Channel_Code, Credit_Product and Credit_Product_mode_impute features
- 8. Co-relation across all the columns were checked, if any two columns had +/- 0.7 corelations coefficients then one of those features were deleted after checking the corelation with target variables
- 9. All the preprocessing steps were performed X_test and test dataframes

Feature Selection

- 1. Logistic model was built using all the features
- 2. On the basis of p values, features were selected

Model Building

Used 2 methods

- Logistic Regression
 This was more of baseline model which gave 0.85504 score
- 2. XGBoost Model

 This was champion model which was trained using same set of features but with hyperparameter tuning and 3 fold cross validation technique which gave much better score
 (0.87096)

THANKS