Real-life reinforcement learning

Julien Simon Global Evangelist, AI & Machine Learning, AWS @julsimon

Types of Machine Learning

Supervised learning

- Run an algorithm on a labeled data set.
- The model learns how to correctly predict the right answer.
- Regression and classification are examples of supervised learning.

Unsupervised learning

- Run an algorithm on an unlabeled data set.
- The model learns patterns and organizes samples accordingly.
- Clustering and topic modeling are examples of unsupervised learning.

Building a dataset is not always an option

Large, complex problems

Uncertain, chaotic environments

Continuous learning

Supply chain management, HVAC systems, industrial robotics, autonomous vehicles, portfolio management, oil exploration, etc.

Types of Machine Learning

SOPHISTICATION OF ML MODELS Reinforcement learning (RL)

Supervised learning

Unsupervised learning

AMOUNT OF TRAINING DATA REQUIRED

Learning without any data: we've all done it!

Reinforcement Learning

An agent interacts with its environment.

The agent receives positive or negative rewards for its actions: rewards are computed by a user-defined function which outputs a numeric representation of the actions that should be incentivized.

By trying to maximize the accumulation of rewards, the agent learns an optimal strategy (aka policy) for decision making.

Learning to walk

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning/rl_roboschool_ray

The players

At first, the agent can't even stand up

Actions and observations

The model learns through actions and observations

Interactions generate training data

Training results in model updates

The agent learns to stand and step

Multiple training episodes improve learning

Making progress

RL agents try to maximize rewards

Eventually, the model learns how to walk and run

Evaluate and deploy trained models

Customers are using RL on AWS

GE Healthcare

SyntheticGestalt

Scientific Research by Artificially Intelligent Agents

Amazon SageMaker RL

Reinforcement learning for every developer and data scientist

Fully managed

Broad support for frameworks

Broad support for simulation environments including SimuLink and MatLab

KEY FEATURES

TensorFlow, Apachel MXNet, Intel Coach, and Ray RL support

2D & 3D physics environments and OpenAl Gym support Supports Amazon Sumerian and Amazon RoboMaker

Example notebooks and tutorials

Robotics

Financial portfolio management

REWINGRZhengsitiye ixing xureturniisupositiye
« A deep reinforcement learning framework for
the financial portfolio management problem. »
arXiv:1706.19531i(2017)hen return is negative

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning/rl_portfolio_management_coach_customEnv

Compressing deep learning models

Compress model without losing

Objective accuracy

STATE Lay

Layers

ACTION

Remove or shrink a layer

REWAR A combination of compression ratio and accuracy.

Bishok, Anubhav, Nicholas Rhinehart, Fares Beainy, and Kris M.

Bshok, Anubhav, Nicholas Rhinehart, Fares Beainy, and Kris M Kitani

"N2N learning: network to network compression via policy gradient reinforcement learning." arXiv:1709.06030 (2017).

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning/rl_network_compression_ray_custom

Vehicle routing

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning/rl_traveling_salesman_vehicle_routing_coach

Autonomous driving

AWS DeepRacer

1/18th scale autonomous vehicle

Amazon RoboMaker

Getting started

http://aws.amazon.com/free

https://ml.aws

https://aws.amazon.com/sagemaker

https://github.com/awslabs/amazon-sagemaker-examples

https://aws.amazon.com/blogs/aws/amazon-sagemaker-rl-managed-reinforcement-lea

rning-with-amazon-sagemaker/

https://aws.amazon.com/deepracer/

https://medium.com/@julsimon

Thank you!

Julien Simon Global Evangelist, AI & Machine Learning, AWS @julsimon

