# MXB107 Week 1 Introduction



# Statistical Modelling

- What is statistics?
  - Statistics is the science of extracting meaning from data
  - This is often done through statistical modelling
- What is statistical modelling?
  - Description of a real process in mathematical terms
  - Often driven by the real questions we want to answer
- What is data?
  - Data are a collection of facts that describe some characteristic(s) that can be ranked, counted, or measured.
  - The way data are collected will often depend on the questions we want to answer.



#### Randomness and Probability

- Almost every variable is random
  - How long does it take you to get to campus?
  - Who will win the next game of football?
  - Even our measurements of constants are random
- Probability is a mathematical construct for dealing with randomness and uncertainty
  - Provides us a set of rules for calculating the uncertainty associated with our data

#### Experimental Units and Measurements

- An Experimental Unit is an individual that generates information for the data collection process. Must be made to ensure that it aligns with the questions of interest
- A measurement is the information we collect on experimental units
- Examples: What are the experimental units and measurements for these research Experimental Unit: plant Measurement: plant height, volume, etc questions?
  - How does fertilizer type affect plant growth?
  - How consistent is the measurement of temperature using different types of thermometers?

    [Experimental Unit: thermometers]

    Measurement: temperature using different types of thermometers.

#### Sample versus Population

- We might have questions about a very large collection of things called a population
  - It is usually not feasible to collect data from the entire population
- A sample is a subset of a population that we take measurements from to infer something about the population.
  - We would like our sample to be representative of the population
  - A random sample is one where the sample members are selected from the population by chance
  - Sometimes we might need a more sophisticated sampling strategy



# Data Types

- If we collect multiple measurements on experimental units, we can investigate relationships between measurements
  - Univariate data corresponds to a single measurement
  - Bivariate data corresponds to two measurements
  - Multivariate data corresponds to > two measurements
- Experimental data is data collected in a controlled manner. Designed with a specific question in mind
- Observational data have been collected and curated without any specific analyses or modelling in mind

# Examples – Experimental vs Observational

- Label these as experimental or observational studies:
  - A researcher gives one group of mice a new drug and another group a placebo, then measures how active they are over 24 hours.
  - Doctors review past medical records to compare recovery times between patients who took two different medications for the same illness.
  - A health researcher surveys people about how many hours of exercise they get per week and tracks their weight over six months.
  - In a clinical trial, participants are randomly assigned to receive either a vaccine or a placebo, and infection rates are compared.

# Data Types (Cont...)

- Quantitative data are things that are naturally represented numerically
  - Discrete are observations that occur as natural or whole numbers
  - Continuous are measurements on a continuum or measures that may be subdivided infinitely
  - Ordinal is data where the order or ranking of values (discrete or continuous) is important
- Qualitative or Categorical data where the variable of interest is membership in a group or category

# Examples – Data Types

- Label these data types as discrete/continuous/ordinal/categorical:
  - A survey asks students how many books they read last month discrete
  - A stopwatch is used to measure how long it takes runners to complete a 100-meter dash Continous
  - A teacher assigns letter grades (A, B, C, D, E, F) to students
  - Students are asked to select their favourite colour Cotegorical
  - Pain is rated on a scale from 1 (no pain) to 10 (worst pain imaginable)
  - The number of siblings each student has discrete
  - Students select their birth month Categorical

# Summarising Data - Table

- A common way to summarise a dataset is via **Tables**
  - Each row corresponds to a measurement unit
  - Each column corresponds to a measurement

| city | nwy | су | disp | drive                         | make          | model                  | trans     | year |
|------|-----|----|------|-------------------------------|---------------|------------------------|-----------|------|
| 19   | 25  | 4  | 2.0  | Rear-Wheel<br>Drive           | Alfa<br>Romeo | Spider Veloce<br>2000  | Manual    | 1985 |
| 9    | 14  | 12 | 4.9  | Rear-Wheel<br>Drive           | Ferrari       | Testarossa             | Manual    | 1985 |
| 23   | 33  | 4  | 2.2  | Front-Wheel<br>Drive          | Dodge         | Charger                | Manual    | 1985 |
| 10   | 12  | 8  | 1    | Rear-Wheel<br>Drive           | Dodge         | B150/B250<br>Wagon 2WD | Automatic | 1985 |
| 17   | 23  | 4  | 2.2  | 4-Wheel or All<br>Wheel Drive | Subaru        | Legacy AWD<br>Turbo    | Manual    | 1993 |

#### Summarising Data – Bar Chart

 A Bar Chart is most useful for visualising counts in categorical data



 A bar chart ordered is descending order is sometimes called a Pareto Plot



# Summarising Data – Line Chart

 A Line Chart illustrates trend based on two quantitative variables



# Summarising Data – Histogram

#### A Histogram

- Involves "binning" or grouping data into data ranges
- Gives us an idea about the shape or distribution of continuous data
- Gives us an idea about the centrality of the data –
  ie where the data are "centred"
- Gives us an idea of the <u>skew in the data</u> ie the deviation from symmetry about the centre of the data.
  - "right" skew means heavier tail to the right
  - "left" skew means heavier tail to the left



# Examples – Summarising data

- Choose the most appropriate graph for these scenarios:
  - A class survey asks students to choose their favourite fruit: apples, bananas, grapes, or watermelon.
  - A scientist records the daily temperature in a city for 30 days. Ine chart (histogram if needed)
  - · A researcher measures the ages of 100 people. Histogram (bar churt if needed)
  - A fitness tracker records a person's heart rate every minute during a 30-minute workout line chart
  - A film reviewer counts how many movies fall into each genre: action, drama, comedy, horror that.

