Practice Final Exam - MTH 5111 - Real Analysis 2 - Dr. Kanishka Perera - Spring 2025

Name:			

Each problem is worth 25 points. Books, notes, and formula sheets are not allowed.

 (X, \mathcal{M}, μ) denotes a measure space throughout the test.

- 1. Show that if $p \in [1, \infty)$, $f_n \to f$ in $L^p(\mu)$, $g_n(x) \to g(x)$ for all $x \in X$, and g_n is bounded in $L^{\infty}(\mu)$, then $f_n g_n \to fg$ in $L^p(\mu)$.
- 2. Show that if $1 \le r and <math>f \in L^r(\mu) \cap L^s(\mu)$, then $f \in L^p(\mu)$ and $||f||_p \le \max\{||f||_r, ||f||_s\}$.
- 3. Show that if $\mu(X)=1$ and $f,g:X\to (0,\infty)$ are measurable functions such that $fg\geq 1$, then

$$\left(\int_X f \, d\mu\right) \left(\int_X g \, d\mu\right) \ge 1.$$

4. Show that if $\varphi : \mathbb{R} \to \mathbb{R}$ is such that

$$\varphi\left(\int_0^1 f(x) dx\right) \le \int_0^1 \varphi(f(x)) dx$$

for every bounded measurable function $f: \mathbb{R} \to \mathbb{R}$, then φ is convex.