Classification Supervised Learning (Part1)

Outline

- K-Nearest Neighbor
- Decision Tree
 - CART
 - ID3

K-Nearest Neighbor

What's K-Nearest Neighbor

- A non-parametric method used for classification and regression
- Also called kNN
 - "k" mean how many neighbors should be considered to help classification/regression

kNN intuitive concept

K-Nearest Neighbor

0. Look at the data

Say you want to classify the grey point into a class. Here, there are three potential classes - lime green, green and orange.

1. Calculate distances

Start by calculating the distances between the grey point and all other points.

2. Find neighbours

Point Distance

O... 2.4 → 2nd NN

O... 3.1 → 3rd NN

O... 4.5 → 4th NN

Next, find the nearest neighbours by ranking points by increasing distance. The nearest neighbours (NNs) of the grey point are the ones closest in dataspace.

3. Vote on labels

Vote on the predicted class labels based on the classes of the k nearest neighbours. Here, the labels were predicted based on the k=3 nearest neighbours.

How to Define Distance

- L1 distance (Manhattan distance)
- L2 distance (Euclidean distance)

L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

L2 (Euclidean) distance

$$d_2(I_1,I_2)=\sqrt{\sum_pig(I_1^p-I_2^pig)^2}$$

K = 1

Example

Euclidean distance =
$$\sqrt{(5-1)^2 + (4-1)^2} = 5$$

Manhattan distance =
$$|5-1| + |4-1| = 7$$

How to choose K?

- K is small
 - sensitive to noise points
- K is large
 - neighborhood may include points from other classes
 - smoother boundary
 - If too large, machine always predict majority class

 http://vision.stanford.edu/teaching/cs231ndemos/knn/

1-NN

- Voronoi Diag

K-Nearest Neighbor

Don't use kNN on images (Distance between pixels are meaningless)

All 3 images have same L2 distance to the one on the left!

Problem in L2 Distance

counter-intuitive results

- Curse of dimensionality

Dimensions = 2 Points = 4^2

Dimensions = 3Points = 4^3

Curse of dimensionality

Feature 1

add features

add features

Curse of dimensionality

Linear separable in high dimensionality

Curse of dimensionality

- Increase dimensionality may obtain perfect classification
- However, extend too many dimensionality(features) lead to overfitting

Example and Practice

Example

- KNN
 - example/supervised learning

Practice

- Try to use knn to predict different varieties of wheat
 - dataset/seeds_dataset.csv
 - practice/supervised learning
- More information about the dataset
 - https://archive.ics.uci.edu/ml/datasets/seeds#

Decision Tree

What's Decision Tree

- A decision support tool that uses a treelike graph of decisions and their possible consequences
- Common method in decision tree
 - **ID3**
 - CART

What's Decision Tree

Terminology in Decision Tree

Note:- A is parent node of B and C.

How to split on each node?

How to define a good split

How to split on each node?

- Information/Gini gain
 - Index to decide how to split each node
 - Usually, we choose max information/gini gain as candidate to split

CART

 $Gini\ Gain = Gini(before\ splitting) - E[Gini(after\ splitting)]$

ID3

 $Information\ Gain = Entropy(before\ splitting) - E[Entropy(after\ splitting)]$

Decision Tree - CART

- Classification and Regression Trees(CART) model is a binary tree
- Split Based on One Variable
- Use Gini impurity to define attribute complexity under each feature
- Use Gini gain to split tree

Gini Impurity

J classes and each pi is probability of class i

$$\sum_{i=1}^{J} p_i (1-p_i) = \sum_{i=1}^{J} (p_i - {p_i}^2) = \sum_{i=1}^{J} p_i - \sum_{i=1}^{J} {p_i}^2 = 1 - \sum_{i=1}^{J} {p_i}^2$$

Class I	0
Class 2	6

Class I	I
Class 2	5

$$p(class 1) = \frac{0}{6}, \quad p(class 2) = \frac{6}{6}$$

$$Gini = 1 - (\frac{0}{6})^2 - (\frac{6}{6})^2 = 0$$

$$p(class 1) = \frac{1}{6}, \quad p(class 2) = \frac{5}{6}$$

$$Gini = 1 - (\frac{1}{6})^2 - (\frac{5}{6})^2 = 0.278$$

$$p(class 1) = \frac{2}{6}, \quad p(class 2) = \frac{4}{6}$$

$$Gini = 1 - (\frac{2}{6})^2 - (\frac{4}{6})^2 = 0.444$$

Example

Gini Large Less Purity

Gini Small More Purity

CART use Gini Gain to Split node

before splitting

Class I	6
Class 2	6

Gini(before splitting) = 0.5

after splitting

Gini = 0.489

suppose there are two ways (A or B) to split the data

E[Gini(after splitting)]
=
$$\frac{7}{12} * 0.489 + \frac{5}{12} * 0.48 = 0.4852$$

Gini = 0.48

Gini = 0.32

Gini = 0.408

E[Gini(after splitting)]
=
$$\frac{5}{12} * 0.32 + \frac{7}{12} * 0.408 = 0.37$$

CART use Gini Gain to Split node

before splitting

Class I	6
Class 2	6

Gini(before splitting) = 0.5

after splitting

```
Gini Gain on A way

=Gini(before splitting) -E[Gini(after splitting)]

=0.015
```

Split on B way is better

CART use Gini Gain to Split node

before splitting

Class I	6
Class 2	6

Gini(before splitting) = 0.5

after splitting

suppose there are two ways (A or B) to split the data

Split on B way is better

BribaMe Decision Tree – CART Example

How to deal with continuous attributes

- There are many different way to deal with continuous attributes when building decision tree
 - The most simple way is to split by average of continuous attributes

Balling Street Decision Tree – CART Example

Decision Tree – ID3

- Iterative Dichotomiser 3(ID3) is a famous algorithm to generate decision tree
- Use information gain as index to split each node

Note that ID3 can split multiple branch at each

node

Decision Tree – ID3

Entropy

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Class I	0
Class 2	6

$$p(class 1) = \frac{0}{6}, \quad p(class 2) = \frac{6}{6}$$

 $Entropy = -0 * log(0) - 1 * log(1) = 0$

$$p(class 1) = \frac{1}{6}, p(class 2) = \frac{5}{6}$$

$$Entropy = -\frac{1}{6} * \log\left(\frac{1}{6}\right) - \frac{5}{6} * \log\left(\frac{5}{6}\right) = 0.65$$

$$p(class 1) = \frac{2}{6}, p(class 2) = \frac{4}{6}$$

$$Entropy = -\frac{2}{6} * \log\left(\frac{2}{6}\right) - \frac{4}{6} * \log\left(\frac{4}{6}\right) = 0.91$$
15-33

Decision Tree – ID3

$$Entropy = -x * \log(x) - (1-x) * \log(1-x)$$

ID3 use Entropy to Split node

before splitting

Class I	6
Class 2	6

Entropy(before splitting) = 0.301

after splitting

suppose there are two ways (A or B) to split the data

Entropy = 0.297

Entropy = 0.292

E[Gini(after splitting)]
=
$$\frac{7}{12} * 0.297 + \frac{5}{12} * 0.292 = 0.294$$

Entropy = 0.217 Entropy = 0.259

E[Gini(after splitting)]
=
$$\frac{5}{12} * 0.217 + \frac{7}{12} * 0.259 = 0.242$$

ID3 use Entropy to Split node

before splitting

Class I	6
Class 2	6

Entropy(before splitting) = 0.5

after splitting

```
Information Gain on A way
=Entropy(before splitting) -E[Entropy(after splitting)]
=0.007
```

```
Information Gain on B way
= Entropy (before splitting) -E[Entropy(after splitting)]
=0.069
```

Split on B way is better

ID3 use Entropy to Split node

before splitting

Class I	6
Class 2	6

Gini(before splitting) = 0.5

after splitting

suppose there are two ways (A or B) to split the data

Split on B way is better

Predict if playing golf or not

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overcast	Hot	High	False	Yes
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Rainy	Mild	High	False	No
Rainy	Cool	Normal	False	Yes
Sunny	Mild	Normal	False	Yes
Rainy	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Sunny	Mild	High	True	No

Outlook	Temp	Humidity	Windy	Play Golf
Rainy	Hot	High	False	No
Rainy	Hot	High	True	No
Overcast	Hot	High	False	Yes
Sunny	Mild	High	False	Yes
Sunny	Cool	Normal	False	Yes
Sunny	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Rainy	Mild	High	False	No
Rainy	Cool	Normal	False	Yes
Sunny	Mild	Normal	False	Yes
Rainy	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Sunny	Mild	High	True	No

$$Entropy(before \, split) = -\frac{5}{14} * \log\left(\frac{5}{14}\right) - \frac{9}{14} * \log\left(\frac{9}{14}\right) = 0.94$$

$$15-39$$

calculate entropy if splitting on outlook column

		Play	Golf	
		Yes	No	
Outlook	Sunny	3	2	5
	Overcast	4	0	4
	Rainy	2	3	5
				14

$$E[Entropy(after splitting)]$$
= $P(sunny) * E(3,2) + P(overcast) * E(4,0) + P(rainy) * E(2,3)$
= $\left(\frac{5}{14}\right) * 0.971 + \left(\frac{4}{14}\right) * 0 + \left(\frac{5}{14}\right) * 0.971 = 0.693$

		Play Golf	
		Yes	No
Outlook	Sunny	3	2
	Overcast	4	0
	Rainy	2	3
Information Gain = 0.247			

		Play Golf		
		Yes	No	
	Hot	2	2	
Temp	Mild	4	2	
	Cool	3	I	
Information Gain = 0.029				

Max Gain

		Play Golf	
		Yes	No
	High	3	4
Humidity	Normal	6	I
Information Gain = 0.152			

		Play Golf Yes No	
\ A / ·	False	6	2
Windy	True	3	3
Information Gain = 0.048			

After first splitting, decision tree look like the following

No need to further split overcast because all of target are "Yes"

Temp.	Humidity	Windy	Play Golf
Hot	High	FALSE	Yes
Cool	Normal	TRUE	Yes
Mild	High	TRUE	Yes
Hot	Normal	FALSE	Yes

Page Decision Tree - ID3 Example

Continue split nodes on same method

R₁: IF (Outlook=Sunny) AND (Windy=FALSE) THEN Play=Yes

R₂: IF (Outlook=Sunny) AND (Windy=TRUE) THEN Play=No

R₃: IF (Outlook=Overcast) THEN Play=Yes

R₄: IF (Outlook=Rainy) AND (Humidity=High) THEN Play=No

R_s: IF (Outlook=Rain) AND (Humidity=Normal) THEN Play=Yes

http://www.saedsayad.com/decision_tree.ht

<u>m</u>

Decision Tree – ID3

- Calculate target Entropy
- Find the information gain on each attribute
- Split tree on an attribute which information gain is max
- Repeat

Pruning

- Pruning is a technique that reduces the size of decision trees
 - Reduce model complexity and overfitting

Stopping Condition

Pre-pruning

- Stop the algorithm before it becomes a fully-grown tree
 - Stop if all instances belong to the same class
 - Stop if number of instances is less than some user-specified threshold
 - Stop if expanding the current node does not improve impurity measures
 -

Post-pruning

- Grow decision tree to its entirety and trim the nodes of the decision tree in a bottom-up
- If generalization error improves after trimming, replace sub-tree by a leaf node

Example and Practice

- Example
 - Decision Tree (CART)
 - example/supervised learning
- Practice
 - Try to use decision tree to predict if abalone is old or young
 - dataset/abalone.csv
 - practice/supervised learning
 - we assume age > 8 is old and other is young
 - More information about the dataset
 - https://archive.ics.uci.edu/ml/datasets/abalone