

Exercise Sheet 2

1 CCD Camera

Let a CCD camera chip have a resolution of 1024×1024 pixels. A 20×20 cm area featuring a regular pattern of black and white vertical lines is then captured by the camera.

- 1. What is the maximum number of vertical lines that can be captured by the camera?
- 2. What is the minimum line with up to which the pattern can be captured correctly?

2 Neighbourhoods

Figure 1 shows a yellow and a red area. Depending on the definition of adjacency we are looking at either one or two objects.

Figure 1: Two objects.

- Are the two areas 4-adjacent?
- Are they 8-adjacent?
- Are they *m*-adjacent?

3 Diagonal Path Length

Figure 2 depicts a red triangle on a white background.

Figure 2: Diagonal path.

- 1. Sketch a unique m-connected path that connects all pixels of the triangle?
- 2. Compute the Euclidean length U_m of the path you just drew.
- 3. Remove some of the red pixels in such way that all neighbourhoods are now 8-connected. Sketch your result in the blank area of Figure 2.
- 4. What is the Euclidean length U_r of the 8-connected path?

4 Distance Metrics

Given are two points x = (3, 8) and y = (15, 5). Compute their Euclidean, Manhattan and Chessboard distance.

5 Image Statistics

Given are two grayscale images

For each of the images compute both mean μ and standard deviation σ .

Solutions

Exercise 1

1. Number of lines: 512

2. Minimum distance: $195 \,\mu\mathrm{m}$

Exercise 2

No, yes, yes

Exercise 3

1.

 $\label{eq:Figure 3: Triangle} Figure \ 3: \ Triangle — solution.$

2.
$$U_m = \frac{12\sqrt{2}}{2} + 17 = 24.845$$

3. See Figure 3.

4.
$$U_r = 9\sqrt{2} + 10 \cdot 1 = 22.73$$

Exercise 4

 \bullet Euclidean: 12.37 pixels

 \bullet Manhattan: 15 pixels

• Chessboard: 12 pixels

Exercise 5

•
$$\mu_x = 60.0, \sigma_x = 27.38$$

•
$$\mu_y = 13.3, \sigma_y = 7.07$$