

Hieroglifi

Pētnieku komanda pēta līdzības starp hieroglifu virknēm, kur katrs hieroglifs tiek apzīmēts ar veselu nenegatīvu skaitli. Lai veiktu savu pētījumu, viņi izmanto zemāk dotās definīcijas.

Fiksētai virknei A, virkni S sauc par A **apakšvirkni** tad un tikai tad, ja S var iegūt no A, izmetot no tās dažus (iespējams, nevienu) elementus.

Tālāk esošajā tabulā ir parādīti daži virknes A = [3, 2, 1, 2] apakšvirkņu piemēri.

Virkne	Kā to var iegūt no ${\cal A}$
[3, 2, 1, 2]	Neviens elements netiek izmests.
[2, 1, 2]	[3 , 2, 1, 2]
[3, 2, 2]	[3, 2, 1 , 2]
[3, 2]	[3, 2 , 1 , 2] vai [3, 2, 1 , 2]
[3]	[3, 2 , 1 , 2]
[]	[3 , 2 , 1 , 2]

No otras puses, [3,3] vai [1,3] nav A apakšvirknes.

Aplūkosim divas hieroglifu virknes A un B.

Virkni S sauc par A un B **kopīgu apakšvirkni** tad un tikai tad, ja S ir gan A, gan B apakšvirkne.

Virkni U sauc par A un B **universālu kopīgu apakšvirkni** tad un tikai tad, ja ir izpildīti šādi divi nosacījumi:

- U ir A un B kopīga apakšvirkne.
- Katra A un B kopīga apakšvirkne ir arī U apakšvirkne.

Var pierādīt, ka jebkurām divām virknēm A un B ir ne vairāk kā viena universāla kopīga apakšvirkne.

Pētnieki ir atraduši divas hieroglifu A un B virknes. Virkne A sastāv no N hieroglifiem un virkne B sastāv no M hieroglifiem. Palīdziet pētniekiem aprēķināt virkņu A un B universālo kopīgo apakšvirkni, vai noteikt, ka šāda virkne neeksistē.

Implementēšanas detaļas

Jums jāimplementē šāda procedūra:

std::vector<int> ucs(std::vector<int> A, std::vector<int> B)

- ullet A: masīvs garumā N, kas apraksta pirmo virkni.
- B: masīvs garumā M, kas apraksta otro virkni.
- Ja pastāv universāla kopīga A un B apakšvirkne, procedūrai ir jāatgriež masīvs, kas satur šo virkni. Pretējā gadījumā procedūrai ir jāatgriež [-1] (masīvs garumā 1, kura vienīgais elements ir -1).
- Šī procedūra tiek izsaukta tieši vienreiz katram testam.

Ierobežojumi

- $1 \le N \le 100\,000$
- $1 \le M \le 100\,000$
- $0 \leq A[i] \leq 200\,000$ visiem i, kur $0 \leq i < N$
- $0 \leq B[j] \leq 200\,000$ visiem j, kur $0 \leq j < M$

Apakšuzdevumi

Apakšuzdevums	Punkti	Papildu ierobežojumi
1	3	$N=M;\;\;A\;\;{ m un}\;\;B\;\;{ m katra}\;\;{ m sast}$ āv no $N\;\;$ atšķirīgiem veseliem skaitļiem starp $0\;{ m un}\;N-1$ (ieskaitot)
2	15	Jebkuram veselam skaitlim k to A elementu skaits, kas vienāds ar k , plus to B elementu skaits, kas vienāds ar k , ir ne vairāk kā 3 .
3	10	$A[i] \leq 1$ katram i , kur $0 \leq i < N$; $B[j] \leq 1$ katram j , kur $0 \leq j < M$
4	16	Pastāv universāla kopīga A un B apakšvirkne.
5	14	$N \leq$ 3000; $M \leq$ 3000
6	42	Nav papildu ierobežojumu.

Piemēri

1. piemērs

Aplūkosim šādu izsaukumu:

```
ucs([0, 0, 1, 0, 1, 2], [2, 0, 1, 0, 2])
```

Šajā gadījumā kopīgās A un B apakšvirknes ir: $[\]$, [0], [1], [2], [0,0], [0,1], [0,2], [1,0], [1,2], [0,0,2], [0,1,0], [0,1,2], [1,0,2] un [0,1,0,2].

Tā kā [0,1,0,2] ir A un B kopīga apakšvirkne, un visas A un B kopīgās apakšvirknes ir [0,1,0,2] apakšvirknes, procedūrai jāatgriež [0,1,0,2].

2. piemērs

Aplūkosim šādu izsaukumu:

```
ucs([0, 0, 2], [1, 1])
```

Šajā gadījumā vienīgā A un B kopīgā apakšvirkne ir tukšā apakšvirkne $[\,]$. Tāpēc procedūrai jāatgriež tušs masīvs $[\,]$.

3. piemērs

Aplūkosim šādu izsaukumu:

```
ucs([0, 1, 0], [1, 0, 1])
```

Šajā gadījumā kopīgās A un B apakšvirknes ir: $[\],[0],[1],[0,1]$ un [1,0]. Var pierādīt, ka šajā gadījumā universāla kopīga apakšvirkne neeksistē. Tādējādi, procedūrai jāatgriež [-1].

Paraugvērtētājs

Ievaddatu formāts:

```
N M
A[0] A[1] ... A[N-1]
B[0] B[1] ... B[M-1]
```

Izvaddatu formāts:

```
T
R[0] R[1] ... R[T-1]
```

Šeit R ir ucs atgrieztais masīvs garumā T.