https://books.google.com.hk/books?id=U9e0PjmaH90C&pg=PA86&Ipg=PA86&dq=why+is+regular+hexagon+a+universal+cover? &source=bl&ots=5T5__dyLml&sig=ACfU3U3ak75_09L2faYDJmlYb1mgFuh-Wg&hl=en&sa=X&ved=2ahUKEwiv1cjU7Y3pAhVLyIsBHf6SCs406AEwBnoECAg0AO#v=onepage&q&f=false

这个书的第12章.

Convex Sets and Their Applications

这个书的名字是上面这个.

/2.2 ン2、 _{根据6.5}

万有覆盖且是正方形,那么他的边长最小是1

2点的线性组合是平面,放射组合是直线

3点的线性组合是空间,放射组合是一个2维平面. 所以一般来说放射组合比线性组合少一维. 因为多一个约束条件.

放射独立:

2.17. Definition. A finite set of points x_1, \ldots, x_m is affinely dependent if there exist real numbers $\lambda_1, \ldots, \lambda_m$, not all zero, such that $\lambda_1 + \cdots + \lambda_m = 0$ and $\lambda_1 x_1 + \cdots + \lambda_m x_m = \theta$. Otherwise it is affinely independent.

这个概念等价干这个点击中的一个点可以被其他店放射表出,

$$x = \lambda_1 x_1 + \dots + \lambda_k x_k$$
 with $\sum_{i=1}^k \lambda_i = 1$

6.1. Theorem (Radon's Theorem). Let $S = \{x_1, x_2, ..., x_r\}$ be any finite set of points in E^n . If $r \ge n + 2$, then S can be partitioned into two disjoint subsets S_1 and S_2 such that $\operatorname{conv} S_1 \cap \operatorname{conv} S_2 \ne \emptyset$.

只要r>=n+2, 那么可以把S拆分成2个集合,里面的点互相没有重复的,但是他们的凸包的交不是空.

6.2. Theorem (Helly's Theorem). Let $\mathscr{F} \equiv \{B_1, \ldots, B_r\}$ be a family of r convex sets in \mathbb{F}^n with $r \ge n+1$. If every subfamily of n+1 sets in \mathscr{F} has a nonempty intersection, then $\bigcap_{i=1}^r B_i \ne \varnothing$.

例子: 4个元, 4>=2+1 且任意3个都有交, 所以4个元整体也有交.

- **6.3.** Theorem (Helly's Theorem). Let \mathcal{F} be a family of compact convex subsets of \mathbb{E}^n containing at least n+1 members. If every n+1 members of \mathcal{F} have a point in common, then all the members of \mathcal{F} have a point in common.
- **1.20.** Definition. A subset A of E^n is said to be compact if it is closed and bounded.
 - **6.4.** Theorem. Let $\mathfrak{F} = \{A_{\alpha} : \alpha \in \mathfrak{C}\}$ be a family of compact convex subsets of E^n containing at least n+1 members. Suppose K is a compact convex subset of E^n such that the following holds: For each subfamily of n+1 sets in \mathfrak{F} , there exists a translate of K that is contained in all n+1 of them. Then there exists a translate of K that is contained in all the members of \mathfrak{F} .

半移

说的是拿一个凸集组成的集合F. K也是一个凸集合. 假设. K经过一个平移之后得到的set可以放到任何他们的n+1个取定的子集中. 那么就存在一个k的平移后的set可以放到全部F的元素中.

1.16. Definition. If $A, B \subset E^n$ and $\lambda \in R$, we define

$$A + B \equiv \{x + y : x \in A \text{ and } y \in B\}$$

 $\lambda A \equiv \{\lambda x : x \in A\}.$

If A consists of a single point, $A \equiv \{x\}$, then we often write x + B for A + B. The set x + B is called a **translate** of B. The set λA is called a **scalar multiple** of A. If $\lambda \neq 0$, the set $x + \lambda A$ is said to be **homothetic** to A.

6.5. Theorem. Let \mathcal{F} be a family of compact convex subsets of \mathbb{E}^n containing at least n+1 members. Suppose K is a compact convex subset of \mathbb{E}^n such that for each subfamily of n+1 sets in \mathcal{F} , there exists a translate of K that contains all n+1 of them. Then there exists a translate of K that contains all the members of \mathcal{F} .

上个定理的反包含版本.

12.2. Theorem. The smallest square that is a universal cover in E^2 has sides of length one.

PROOF. Let S be a subset of E^2 having diameter 1 and let K be a square of side length 1. To prove that K is a universal cover, it suffices by Theorem 6.5 to show that given any three points, say x_1, x_2, x_3 , of S, there exists a translate of K that covers $\{x_1, x_2, x_3\}$. Now since the diameter of S is 1, it follows that $\{x_1, x_2, x_3\}$ is contained in a Reuleaux triangle T of width 1. But a Reuleaux triangle of width 1 can be rotated through 360° inside a square of side 1. Therefore, no matter what the orientation of T and K, there must be a translate of K that covers T and thus also covers $\{x_1, x_2, x_3\}$. Clearly, no smaller square can be a universal cover since it would not cover a circle of diameter 1.

12.3. Theorem. The smallest circle that is a universal cover in E^2 has radius $1/\sqrt{3}$.

PROOF. The proof that a circle of radius $1/\sqrt{3}$ is a universal cover in E^2 is similar to that of Theorem 12.2 and is left to the reader (Exercise 12.2). No smaller circle can be a universal cover since it would not cover an equilateral triangle of side 1.

12.4. Theorem. The smallest regular hexagon which is a universal cover in E^2 has sides of length $1/\sqrt{3}$.

PROOF. Let S be a set of diameter 1. We begin by circumscribing a rhombus, say abcd, about S so that the angle at a is 60° . (See Figure 12.1.)

Figure 12.1.

The two support lines perpendicular to the diagonal \overline{ac} of the rhombus cut off two triangles, say aef and cgh, from abcd. If \overline{ef} has the same length as \overline{gh} , then the hexagon efbhgd is regular and circumscribes S. If not, then we claim that some rotation of the rhombus about S will yield the desired regular hexagon.

If a'b'c'd' is another circumscribed rhombus about S, let α be the counterclockwise angle betteen the diagonal \overline{ac} and the diagonal $\overline{a'c'}$. Let $m(\alpha)$ denote the length of the support line $\overline{e'f'}$ and $n(\alpha)$ the length of the support line $\overline{g'h'}$. Then $m(\alpha)$ and $n(\alpha)$ are continuous functions of α .

If \overline{ef} and \overline{gh} are not the same length, then $m(0) \neq n(0)$, and we may assume without loss of generality that m(0) - n(0) > 0. But the rhombus corresponding to $\alpha = \pi$ will yield the same hexagon as efbhgd, except that the sides \overline{ef} and \overline{gh} will be interchanged. Thus $m(\pi) - n(\pi) < 0$. Since the difference $m(\alpha) - n(\alpha)$ is a continuous function of α , it follows from the Intermediate Value Theorem that there exists an α between 0 and π such that $m(\alpha) - n(\alpha) = 0$. For this α , the corresponding circumscribing hexagon will be regular.

Since S has diameter 1, its maximum width is 1 (Theorem 11.3), and so the regular hexagon circumscribed about S will have sides of length at most $1/\sqrt{3}$. No smaller regular hexagon can be a universal cover since it would not cover a circle of diameter 1.

文个定理,正六边形,因为可以包含路罗三角形,所以他就是一个万有覆盖,但是路罗三角形不能包含单位园,所以只能是外接四边形,5变形,6变形,而5变形很难把三角形放进去,因为角度问题,所以最小的是正6变形.

- 11.1. **Definition.** Let S be a nonempty compact subset of E^2 and let ℓ be a line (or line segment) in E^2 . The width of S in the direction of ℓ is the distance between the two parallel lines of support to S that are perpendicular to ℓ and that contain S between them. (See Figure 11.1.)
 - 11.2. Definition. Let S be a nonempty bounded subset of E^2 . The diameter d of S is defined to be the number

$$d \equiv \sup_{\substack{x \in S \\ y \in S}} ||x - y||.$$

- 11.3. Theorem. The diameter of a nonempty compact set S in E^2 is equal to the maximum width of S.
- **5.1.** Definition. A hyperplane H is said to support a set S at a point $x \in S$ if $x \in H$ and if H bounds S.

12.5. Theorem. The smallest equilateral triangle that is a universal cover in E^2 has sides of length $\sqrt{3}$.

PROOF. An equilateral triangle with sides of length $\sqrt{3}$ is a universal cover in E^2 since it can cover a regular hexagon of side length $1/\sqrt{3}$, and such a hexagon is itself a universal cover by Theorem 12.4. That no smaller such triangle is a universal cover again follows from the circle of diameter 1.

Having found several "smallest" universal covers in E^2 , we are led to pose the following question: For each fixed integer k, what is the smallest regular k-gon that is a universal cover in E^2 ? We have shown that for k = 3, 4, and 6 the answer is the k-gon circumscribed about a circle of diameter 1. The answer for k other than these is not known at this time (1982). We might be tempted to conjecture that any regular k-gon circumscribed about a circle of diameter 1

EXERCISES 87

would be a universal cover in E^2 . This, however, is not true for any k > 6. (See Exercise 12.3.) Indeed, as k increases, the circumscribed k-gons approach the circle, and the smallest circular universal cover was found to have diameter $2/\sqrt{3}$.