	⇔ Ly	A.S.: 2024/2025				
1	Matière: Mathématiques	Niveau: TS2	Date: 09/12/2024	Durée : 4 heures		
	Correction du devoir n° 2 Du 2 ^{er}					

Exercice 1 : (5 points) (BAC 2022)

Le plan complexe est muni d'un repère orthonormé $(O; \vec{u}, \vec{v})$, d'unité graphique 1cm.

- 1 On considère dans \mathbb{C} le polynôme $P(z) = z^3 5z^2 + 19z + 25$.
 - a Montrons que -1 est solution de l'équation P(z) = 0. -1 est solution ssi P(-1) = 0 $P(z) = (-1)^3 - 5(-1)^2 + 19(-1) + 25$ =-1-5-19+25= -25 + 25= 0

P(-1) = 0 donc -1 est bien solution

$$P(-1) = 0$$
 donc -1 est bien solution (0,25 pt)

b Déduisons-en les solutions dans \mathbb{C} de l'équation P(z) = 0.

	1	-5	19	25
-1		-1	6	-25
	1	-6	25	0

$$\begin{aligned} \operatorname{donc} P(z) &= (z+1)(z^2 - 6z + 25) \\ P(z) &= 0 \implies (z+1)(z^2 - 6z + 25) = 0 \\ &\implies (z+1) = 0 \text{ ou } (z^2 - 6z + 25) = 0 \\ &\implies \Delta' = (3)^2 - 25 \\ &\implies = (3)^2 - 25 \\ &\implies = -16 \\ &\implies z = -1 \text{ ou } z = 3 - 4i \text{ ou } z = 3 + 4i \end{aligned}$$

$$S = \{-1, 3 - 4i, 3 + 4i\}$$
 (1,25 pt)

- On considère les points A, B, C et D d'affixes respectives : $z_A = -1; z_B = 3 + 4i; z_C = 3 4i; z_D = -7z_A$.
 - a On note z_1 et z_2 les affixes respectives des vecteurs \overrightarrow{AB} et \overrightarrow{DC} . Montrons que \overrightarrow{AB} et \overrightarrow{DC} sont parallèles.

 \overrightarrow{AB} et \overrightarrow{DC} sont || ssi $\overrightarrow{AB} = k\overrightarrow{DC}$ avec $k \in \mathbb{R}^*$ en version complexe: $\frac{z_1}{z_2} = k \in \mathbb{R}^*$

$$\frac{z_1}{z_2} = \frac{z_B - z_A}{z_C - z_D}$$

$$= \frac{3 + 4i - (-1)}{3 - 4i - (-7(-1))}$$

$$= \frac{3 + 4i + 1}{3 - 4i - 7}$$

$$= \frac{4 + 4i}{-4 - 4i}$$

$$= -1 \in \mathbb{R}^*$$

Comme
$$\frac{\mathbf{z_B} - \mathbf{z_A}}{\mathbf{z_C} - \mathbf{z_D}} \in \mathbb{R}^* \text{ donc } \overrightarrow{AB} || \overrightarrow{DC}$$
 (01 pt)

b Calculons $|z_1|$ et $|z_2|$

$$|z_1| = |4 + 4i|$$
$$= 4|1 + i|$$
$$= 4\sqrt{2}$$

Par analogie

$$|z_2| = 4\sqrt{2}$$

$$|\mathbf{z}_1| = 4\sqrt{2} \text{ et } |\mathbf{z}_2| = 4\sqrt{2}$$
 (0,25 pt)

Interprétons géométriquement le résultat

(0,25 pt)

$$|z_1| = |z_B - z_A| = 4\sqrt{2} \text{ Donc } \|\overrightarrow{AB}\| = 4\sqrt{2}$$

 $|z_1| = |z_C - z_D| = 4\sqrt{2} \text{ Donc } \|\overrightarrow{DC}\| = 4\sqrt{2}$

$$\overrightarrow{AB}$$
 et \overrightarrow{DC} (0,25 pt)

C On note z_3 l'affixe du vecteur \overrightarrow{BD} .

Comparons $|z_1|$ et $|z_3|$

$$|z_3| = |z_D - z_B|$$

= $|7 - (3 + 4i)|$
= $|4 - 4i|$
= $4\sqrt{2}$

Interprétons géométriquement le résultat

$$|z_3| = |z_D - z_B| = 4\sqrt{2} \text{ Donc } \|\overrightarrow{DB}\| = 4\sqrt{2}$$

Donc
$$|\mathbf{z}_1| = |\mathbf{z}_3|$$
 (0,25 pt)

d Calculons $\arg(\frac{z_1}{z_2})$

$$\arg\left(\frac{z_1}{z_3}\right) = \arg\left(\frac{4+4i}{4-4i}\right)$$

$$= \arg\left(\frac{1+i}{1-i}\right)$$

$$= \arg(1+i) - \arg(1-i)$$

$$= \frac{\pi}{4} - \left(-\frac{\pi}{4}\right)$$

$$= \frac{\pi}{2}$$

Donc
$$\arg\left(\frac{\mathbf{z_1}}{\mathbf{z_3}}\right) = \frac{\pi}{2}$$
 (0,25 pt)

Interprétons géométriquement le résultat

$$\arg\left(\frac{z_1}{z_3}\right) = \arg\left(\frac{z_B - z_A}{z_D - z_B}\right)$$
$$= (\overrightarrow{BD}, \overrightarrow{AB})$$

L'angle $(\overrightarrow{BD}, \overrightarrow{AB})$ mesure $\frac{\pi}{2}$

e Déduisons-en la nature précise du quadrilatère ABDC. AB=CD=BD et $(\overrightarrow{BD},\overrightarrow{AB})=\frac{\pi}{2}$ donc ABDC est un carré (1 pt)

Exercice 1 : 5,5 points (BAC 2008)

A)

Si la première boule tirée est verte, on la met dans U_2 . Dans ce cas, U_2 comporte maintenant 5 boules vertes V et 5 boules jaunes J. On a par conséquent :

 $p(V_2 \mid V_1) = \frac{5}{10} \Rightarrow p(V_2 \mid V_1) = \frac{1}{2}$ $p(V_2 \mid R_1) = \frac{1}{11}$

De même,

$$p(V_2 \mid R_1) = \frac{1}{11}$$

Dressons un arbre pondéré de la situation.

D'après la formule des probabilités totales,

$$p(V_2) = p(V_2 \mid V_1)p(V_1) + p(V_2 \mid R_1)p(R_1)$$

Soit:

$$p(V_2) = \frac{1}{2} \times \frac{3}{5} + \frac{1}{11} \times \frac{2}{5} \Rightarrow p(V_2) = \frac{37}{110}$$

4 De manière analogue,

$$p(J_2) = p(J_2 \mid V_1)p(V_1) + p(J_2 \mid R_1)p(R_1)$$
$$= \frac{1}{2} \times \frac{3}{5} + \frac{1}{11} \times \frac{2}{5}$$
$$= \frac{53}{110}$$

On trouve:

$$p(J_2) = \frac{53}{110}$$

5 De manière analogue à la question 3, on a :

$$p(R_2) = p(R_2 \mid V_1)p(V_1) + p(R_2 \mid R_1)p(R_1)$$

$$= 0 + \frac{5}{11} \times \frac{2}{5}$$
$$= \frac{2}{11}$$

On trouve:

$$p(R_2) = \frac{2}{11}$$

B)

1 La loi de probabilité de X est donnée par le tableau suivant :

X	1000	500	-500		
p(X)	$\frac{37}{110}$	$\frac{53}{110}$	$\frac{2}{11}$		
1 ()	11()	11()			

2

$$E(X) = \sum x_i p_i$$

$$E(X) = \left(1000 \times \frac{37}{110}\right) + \left(500 \times \frac{53}{110}\right) - \left(500 \times \frac{2}{11}\right)$$

$$E(X) = \frac{5350}{11}$$

Donc,

$$E(X) = \frac{5350}{11}$$

C)

1 On a affaire à un schéma de Bernoulli, la probabilité du succès étant $p(E) = \frac{37}{110}$ et le nombre d'épreuves étant 15.

La probabilité d'avoir exactement 8 succès est :

$$P_8 = C_8^{15} \left(\frac{37}{110}\right)^8 \left(\frac{73}{110}\right)^7$$

2) C'est l'événement : <u>SSSSSSS</u> <u>EEEEEEE</u> (8 succès consécutifs suivis de 7 échecs consécutifs).

Sa probabilité est :

$$p(S)^8 \times p(E)^7 = \left(\frac{37}{110}\right)^8 \times \left(\frac{73}{110}\right)^7 \approx 9.310^{-6}$$

3) L'événement contraire est :

$$P_0 = C_0^{15} \left(\frac{37}{110}\right)^0 \left(\frac{73}{110}\right)^{15}$$

La probabilité cherchée est donc :

$$p = 1 - P_0$$

$$= 1 - \left(\frac{73}{110}\right)^{15}$$

$$\approx 0.997$$

Problème: 9,5 points (BAC 2007)

Partie A: 3 pts

Soit g la fonction définie sur $]0; +\infty[$ par :

$$g(x) = 1 + x + \ln x$$

 \bigcirc Dressons le tableau de variation de g.

Soit q' la fonction dérivée de q, alors on a :

$$g'(x) = 1 + \frac{1}{x}$$

Donc, $\forall x \in]0; +\infty[; g'(x) > 0.$

Par suite, g est strictement croissante sur $]0; +\infty[$.

Par ailleurs,

$$\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} (1 + x + \ln x)$$
$$= -\infty$$

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} (1 + x + \ln x)$$
$$= +\infty$$

D'où, le tableau de variations de g suivant :

x	($+\infty$
g'(x)		+
g		+∞
		$-\infty$

2 Montrons qu'il existe un unique réel α solution de l'équation g(x) = 0.

En effet, g est continue et strictement croissante sur $]0;+\infty[$.

Or, $0 \in]-\infty;+\infty[$ donc, d'après le théorème de la bijection, il existe un unique réel $\alpha \in]0;+\infty[$ tel que $g(\alpha)=0.$

5/9

Vérifions que α appartient à]0.2;0.3[.

Soit :
$$g(0.2) = 1 + 0.2 + \ln 0.2 = -0.40$$
 et $g(0.3) = 1 + 0.3 + \ln 0.3 = 0.09$.

Alors,
$$g(0.2) \times g(0.3) = -0.36 < 0$$
.

Prof:M. BA

Ainsi, *g* est continue sur]0.2; 0.3[et $g(0.2) \times g(0.3) < 0.$

Donc, d'après le corollaire du théorème des valeurs intermédiaires, il existe $\beta \in]0.2; 0.3[$ solution de l'équation q(x) = 0.

L'unique solution de cette équation est le réel α .

Par conséquent, $\alpha = \beta$. D'où, $\alpha \in]0.2; 0.3[$.

3 En déduisons le signe de g sur $]0; +\infty[$. D'après les questions précédentes, on peut alors écrire :

$$g([0;\alpha])=]-\infty;0]\quad \text{et}\quad g([\alpha;+\infty[)=[0;+\infty[$$

$$g(x)\leq 0 \text{ sur }]0;\alpha[\quad \text{et}\quad g(x)\geq 0 \text{ sur }[\alpha;+\infty[$$

Ainsi,

$$g(x) \le 0 \text{ sur }]0; \alpha[$$
 et $g(x) \ge 0 \text{ sur } [\alpha; +\infty[$

4 Établissons la relation $ln(\alpha) = -1 - \alpha$.

D'après la question 2), α est l'unique solution de l'équation g(x) = 0.

Ce qui signifie que $q(\alpha) = 0$.

Par suite,

$$g(\alpha) = 0 \iff 1 + \alpha + \ln \alpha = 0$$
$$\iff \ln \alpha = -1 - \alpha$$
$$\ln(\alpha) = -1 - \alpha$$

D'où, la relation:

$$\ln(\alpha) = -1 - \alpha$$

Partie B: 6,5 pts

On considère la fonction f définie par :

$$f(x) = \begin{cases} \frac{x \ln x}{1+x} & \text{si } x > 0\\ 0 & \text{si } x = 0 \end{cases}$$

1 Montrons que f est continue en 0 puis sur $[0; +\infty[$.

Calculons $\lim_{x\to 0^+} f(x)$.

On a:

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{x \ln x}{1 + x}$$

$$= \lim_{x \to 0^{+}} \frac{0}{1}$$

$$= 0$$

Donc, $\lim_{x \to 0^+} f(x) = f(0)$.

D'où, f est continue en 0. Par ailleurs, $\forall x_0 \in]0; +\infty[$, f est continue en x_0 .

Par conséquent, f est continue sur $]0; +\infty[$.

2 Étudions la dérivabilité de f en 0.

Calculons

$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0}$$

On a:

$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{+}} \frac{x \ln x}{(1+x)x}$$

$$= \lim_{x \to 0^{+}} \frac{x \ln x}{x(1+x)}$$

$$= \lim_{x \to 0^{+}} \frac{\ln x}{1+x}$$

$$= \lim_{x \to 0^{+}} \frac{-\infty}{1}$$

$$= -\infty$$

Donc,

Ainsi, la fonction
$$f$$
 n'est pas dérivable en 0 .

Interprétons graphiquement ce résultat.

Comme

$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = -\infty,$$

alors la courbe représentative de f admet une demi-tangente verticale au point d'abscisse 0.

3 Déterminons la limite de f en $+\infty$.

On a:

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x \ln x}{1+x}$$

$$= \lim_{x \to +\infty} \frac{x}{x} \times \frac{\ln x}{\frac{1+x}{x}}$$

$$= \lim_{x \to +\infty} \frac{\ln x}{\frac{1}{x}+1}$$

$$= \lim_{x \to +\infty} \frac{\infty}{0+1}$$

$$= +\infty$$

4 Montrons que, quel que soit x élément de $]0; +\infty[$. $f'(x) = \frac{g(x)}{(1+x)^2}$

On a:
$$\forall x \in]0; +\infty[; f(x) = \frac{x \ln x}{1+x}.$$

Par suite,

$$f'(x) = \frac{(1+\ln x)(1+x) - x\ln x}{(1+x)^2}$$

$$= \frac{1+x+\ln x + x\ln x - x\ln x}{(1+x)^2}$$

$$= \frac{1+x+\ln x}{(1+x)^2}$$

$$= \frac{g(x)}{(1+x)^2}$$

Ainsi,

$$f'(x) = \frac{g(x)}{(1+x)^2}$$

En déduisons le signe de f'(x) sur $]0; +\infty[$.

Comme $(1+x)^2 > 0$ alors, le signe de f'(x) dépend uniquement du signe de g(x).

Or, g(x) est négatif sur $]0; \alpha[$ et positif sur $[\alpha; +\infty[$.

Par conséquent,

•
$$f'(x) \leq 0 \text{ sur }]0; \alpha[$$

•
$$f'(x) \ge 0 \operatorname{sur} \left[\alpha; +\infty\right[$$

5 Montrons que $f(\alpha) = -\alpha$.

Soit :
$$f(\alpha) = \frac{\alpha \ln \alpha}{1 + \alpha}$$

Or, dans la première partie, à la question 4), on avait : $\ln \alpha = -1 - \alpha$.

Donc, en remplaçant $\ln \alpha$ par son expression, on obtient :

$$f(\alpha) = \frac{\alpha \ln \alpha}{1 + \alpha}$$

$$= \frac{\alpha(-1 - \alpha)}{1 + \alpha}$$

$$= \frac{-\alpha(1 + \alpha)}{1 + \alpha}$$

$$= -\alpha$$

Ainsi,
$$f(\alpha) = -\alpha$$

6 Dressons le tableau de variations de la fonction f.

x	0		α		$+\infty$
f'(x)		_	0	+	
f	0 、		$-\alpha$	/	$+\infty$

7 Représentons la courbe de f dans le plan muni du repère orthonormal $(O; \vec{i}, \vec{j})$. Unité graphique : 5 cm. Prendre $\alpha \approx 0.3$.

