华中科技大学研究生课程考试试卷

课程名称:	<u>应用高等工程数学</u> 课程类别 □5业课 考核形式 □闭卷
学生类别_	考试日期 2021-12-22学生所在院系
学号	
一、填空(每小题 3 分,共 24 分)	
1 ,	\mathbf{R}^4 中的两个子空间 $W_1 = \{(x_1, x_2, x_3, x_4)^{T} \mid x_1 = x_2 = 0\}$,
$W_2 = \{(x_1, x_2)\}$	$(x_3, x_4)^{\mathrm{T}} x_3 = x_4 \}$,则 W_1 的维数为, W_2 的维数为, $W_1 \cap W_2$ 的
维数为	o
2、设.	$A = \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix}$, $\mathbb{N} A^5 - 2A^4 - 3A^3 + A^2 - A - 4I = \underline{\qquad}$
3、方图	(1 1 0 0) (2 2 0 0) (0 0 3 1) (0 0 0 3) 的最小多项式为。
4、 在	计算机上求解方程 $x^2 + (10^{15} + 1)x + 10^{15} = 0$ 时,考虑以下两种算法: (A)
$x_1 = \frac{-b + \sqrt{a}}{2}$	$\frac{\overline{b^2 - 4ac}}{2a}, x_2 = \frac{c}{a \cdot x_1}$; (B) $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}, x_1 = \frac{c}{a \cdot x_2}$, \ddagger
a = 1, b = 10	$^{15}+1, c=10^{15}$,则两种算法中更好的算法是 <u>()</u> 。
5、对于	$-$ 区间[0, 1]上带权函数 $\rho=1$ 的两点 Gauss 型求积公式
I =	$\int_0^1 f(x) dx \approx A_1 f(x_1) + A_2 f(x_2) ,$
求积节点 x_1	=
6、对于	于初值问题 $\begin{cases} y'(x) = -10y \\ y(0) = y_0 \end{cases}$,考虑递推公式 $y_{n+1} = y_n + \frac{h}{2}[f(x_n, y_n) + y_n]$

 $f(x_{n+1},y_{n+1})$],步长取h=0.2 时算法是否收敛_____。

7、对线性方程组

$$\begin{cases} 3x_1 - ax_2 = 0 \\ -x_1 + 2x_2 = 1 \\ -2x_3 = 9 \end{cases}$$

使用 Jacobi 迭代法求解,当a=2 时是否收敛____,当a=-5 时是否收敛____,当a=7 时是否收敛____。

8、使用迭代公式 $x_{k+1} = x_k - 2\frac{f(x_k)}{f(x_k)}$ 求解方程 $f(x) = (x-1)^2\sin(\pi x) = 0$ 在 x = 1 处的根时,收敛阶数为____。

二、(8分)已知 R^3 中的两个基:

$$B_1 = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right. \, , \, \, \, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \, , \, \, \, \, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}, \quad B_2 = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \, , \, \, \, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \, , \, \, \, \, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}.$$

- (1)、求 B_1 到 B_2 的基变换矩阵;
- (2)、求在 B_1,B_2 下有相同坐标的所有向量。

三、(10 分)设
$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ -5 & 6 & 1 \end{pmatrix}$$
,求可逆矩阵 P 和 Jordan 矩阵 J ,使 $P^{-1}AP = J$ 。

四、(10分)

- (1) 、求二次多项式 f(x) 使得 f(0) = 1, f(1) = -1, f(2) = -1。
- (2) 、试说明存在无穷多个三次多项式g(x)使得g(0)=1, g(1)=-1, g(2)=-1。
- (3) 、求三次多项式 g(x) 使得 g(0) = 1, g(1) = -1, g(2) = -1, g'(0) = 1。

五、(8 分)求出不超过二次的多项式 $P_2(x)$ 使 $\int_{-1}^1 (x^3 - P_2(x))^2 dx$ 的值达到最小(即 $P_2(x)$ 为 x^3 在 (-1,1) 上的二次最佳平方逼近),并求出此最小值。

六、(10分)

- (1)、使用梯形公式计算积分 $\int_0^1 x^2 e^x dx$,并利用[a,b]区间上梯形公式的误差公式 $R[f] = -\frac{f''(\xi)}{12}(b-a)^3$ 估计截断误差绝对值的一个具体上界(结果中若含有e,可以保留不需算出);
- (2)、若使用复化梯形公式计算积分 $\int_0^1 x^2 e^x dx$,要求截断误差绝对值不超过 $\frac{7e}{3}$ * 10^{-4} ,需要取多少个节点?

七、(10 分)对于初值问题 $\begin{cases} y'(x) = f(x,y) \\ y(a) = y_0 \end{cases}$,考虑使用递推公式 $y_{n+1} = \frac{1}{2}y_n + \frac{1}{2}y_{n-1} + h[af(x_n,y_n)]$ 求解。

- (1)、若a=1, h=0.5, $x_0=0$, $x_n=x_0+nh$, f(x,y)=2xy, $y_0=2$, $y_1=4$, 利用此递推公式求出 y_2 与 y_3 的值。
 - (2)、若要使得此递推公式有尽可能高的局部截断误差精度,则a应取何值?

八、(10 分)对于线性方程组
$$\begin{cases} 2x_1 + 2x_2 + 2x_3 = 4\\ 2x_1 + 3x_2 + 3x_3 = 5\\ 2x_1 + 3x_2 + 4x_3 = 6 \end{cases}$$

- (1)、使用 LU 分解法求解方程组;
- (2)、若求解线性方程组代入系数时出现误差,变为实际

求解线性方程组 $\begin{cases} 2.002x_1 + 2.003x_2 + 2x_3 = 4 \\ 2.001x_1 + 3x_2 + 3.002x_3 = 5 \end{cases} , 已知解的相对误差有近似 \\ 2x_1 + 3.001x_2 + 4x_3 = 6$

估计 $\frac{\|\delta x\|_1}{\|x\|_1} \approx \operatorname{cond}_1(A) \frac{\|\delta A\|_1}{\|A\|_1}$,其中 $\operatorname{cond}_1(A)$ 为原系数矩阵在 1 范数下的条件

数,请估计此时解的相对误差 $\frac{\|\delta x\|_1}{\|x\|_1}$ 。

九、(10分)对于非线性方程 $f(x) = (e^x - 1)x^2(x - 1) = 0$,

- (1)、证明当初值 x_0 在根 $x^*=1$ 附近时,迭代公式 $x_{k+1}=\ln{(\frac{e^{x_k+x_k-1}}{x_k})}$ 所得数列将收敛到 $x^*=1$;
 - (2)、此方程的牛顿迭代公式在根 $x^* = 0$ 附近是否二阶收敛?若不是二阶收敛,试将牛顿迭代法进行改进使其在根 $x^* = 0$ 附近二阶收敛。