Capítulo 1: Matrices y Sistemas de Ecuaciones Lineales.

Facultad de Cs. Exactas, Ingeniería y Agrimensura Universidad Nacional de Rosario

OUTLINE

- Introducción
- 2 Repasando algo de Matrices
- 3 SISTEMAS DE ECUACIONES LINEALES
 - Método de Eliminación de Gauss
 - Matrices elementales y de permutación
- 4 FACTORIZACIÓN LU
- MATRICES INVERSIBLES
- 6 MATRICES SIMÉTRICAS

Introducción

Álgebra Lineal ←→ Espacios vectoriales

Diferentes enfoques:

- más teórico/abstracto, más bonito, más matemático
- más práctico/aplicaciones y computabilidad, más ciencias de la computación

Trataremos de balancear ambos aspectos, con base en Álgebra Lineal y sus aplicaciones - Gilbert Strang

Disponible en:

- Aula Virtual (Comunidades- UNR)
- Y también en https://ocw.mit.edu/search/ocwsearch.htm?q=18.06 o https://web.mit.edu/18.06

INRODUCCIÓN

Espacios vectoriales $\stackrel{?}{\longleftrightarrow}$ Sistemas de ecuaciones

¿Qué palabras/conceptos asocian a:

- espacios vectoriales? \mathbb{R}^n , otro? Combinación lineal, bases, dimensión, independencia lineal...
- sistemas de ecuaciones? Matrices, determinantes, Cramer, Gauss...inversa, matriz singular, sistema singular...

Todo esto (y poco más) es Álgebra Lineal. Empecemos dando una segunda mirada a lo que sabemos.

A matriz $m \times n$, B matriz $n \times p$, entonces AB es matriz $m \times p$.

Caso p = 1: B es $n \times 1$, vector *columna*. A^j : vector columna j de A.

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = B$$

$$A = \begin{bmatrix} A^1 & A^2 & A^3 \end{bmatrix} \begin{bmatrix} ? \\ \end{bmatrix} = AB$$

AB es $m \times 1$, vector (columna). ¿Qué tipo de vector es?

$$AB = aA^1 + bA^2 + cA^3$$

AB es una combinación lineal de los vectores columna de A

El producto de una matriz por un vector columna es una combinación lineal de los vectores columna de la matriz

Caso m = 1: A es $1 \times n$., vector fila. B_j : vector fila j de B

$$\begin{bmatrix} & B_1 & \\ & B_2 & \\ & B_3 & \end{bmatrix} = B$$

$$A = \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} & ? & \end{bmatrix} = AB$$

AB es $1 \times p$, vector (fila). ¿Qué tipo de vector es AB? $AB = aB_1 + bB_2 + cB_3$. AB es una combinación lineal de los vectores fila de B

El producto de un vector fila por una matriz es una combinación lineal de las filas de la matriz

Caso general:

 Cada vector columna de AB es el producto de A por cada vector columna de B:

$$\begin{bmatrix} B^1 & B^2 & B^3 & B^4 \end{bmatrix} = B$$

$$\begin{bmatrix} A & \end{bmatrix} \begin{bmatrix} AB^1 & AB^2 & AB^3 & AB^4 \end{bmatrix} = AB$$

columna j de $AB = A \times$ columna j de B

Cada (vector) columna de AB es una combinación lineal de las (vectores) columnas de A.

Cada vector fila de AB es el producto de cada vector fila de A por B:

$$\begin{bmatrix} & B & \\ & A_1 & \\ & A_2 & \\ & A_3 & \end{bmatrix} \quad \begin{bmatrix} & A_1B & \\ & A_2B & \\ & & A_3B & \end{bmatrix} = AB$$

fila i de AB = (fila i de A) $\times B$.

Cada (vector) fila de AB es una combinación lineal de las (vectores) filas de B

 Cada entrada de AB es el producto escalar de un vector fila de A y un vector columna de B

$$\begin{bmatrix} B^1 & B^2 & B^3 & B^4 \end{bmatrix}$$

$$\begin{bmatrix} A_1B^1 & A_1B^2 & A_1B^3 & A_1B^4 \end{bmatrix}$$

$$A = \begin{bmatrix} A_1 \\ A_2 \\ A_3 \end{bmatrix} \begin{bmatrix} A_1B^1 & A_1B^2 & A_1B^3 & A_1B^4 \\ A_2B^1 & A_2B^2 & A_2B^3 & A_2B^4 \\ A_3B^1 & A_3B^2 & A_3B^3 & A_3B^4 \end{bmatrix} = AB$$

$$(AB)_{ij} = (\text{fila } i \text{ de } A) \times (\text{columna } j \text{ de } B) = A_i B^j$$

RECORDAR:

- El producto de una matriz por un vector columna es una combinación lineal de los vectores columna de la matriz
- ② El producto de un vector fila por una matriz es una combinación lineal de las filas de la matriz
- lacktriangle Cada columna de AB es una combinación lineal de las columnas de A
- $leftilde{f O}$ Cada fila de AB es una combinación lineal de las filas de B
- **②** Cada entrada de AB es el producto escalar de un vector fila de A y un vector columna de B

MÉTODOS DE RESOLUCIÓN

$$(n=2)$$

 $\begin{array}{rcl} x & + & 2y & = & 3 & (1) \\ 4x & + & 5y & = & 6 & (2) \end{array}$

¿Métodos de resolución? ¿Interpretación geométrica?

Método 1: Eliminación de Gauss:

Paso 1:

$$ec(2) - 4 \times ec(1) \longrightarrow -3y = -6 \longrightarrow y = 2$$

Paso 2:

Sustitución en
$$(1)$$
 o en (2) : $x = -1$

SISTEMAS DE ECUACIONES LINEALES

Método 2: Cramer

...toda la información necesaria está en los coeficientes de las ecuaciones... ¡tiene que haber una fórmula que nos dé la solución en función de esa información!

$$x + 2y = 3$$
 (1)
 $4x + 5y = 6$ (2)

$$y = \frac{\begin{vmatrix} 1 & 3 \\ 4 & 6 \end{vmatrix}}{\begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix}} = \frac{1 \times 6 - 3 \times 4}{1 \times 5 - 2 \times 4} = 2 \quad x = \frac{\begin{vmatrix} 3 & 2 \\ 6 & 5 \end{vmatrix}}{\begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix}} = \frac{3 \times 5 - 2 \times 6}{1 \times 5 - 2 \times 4} = -1$$

¿cuál es más sencillo?

Para n=2 el esfuerzo es más o menos similar

¿y cuando n es muy grande?

Obs: n = 1000 es un tamaño *moderado* en las aplicaciones.

- Cramer: 1000 determinantes que involucran 1000000 de números cada uno.
- Gauss: después haremos los cálculos, pero es muy bueno, es el que se usa.

Un primer indicio: aún en el ejemplo de n=2, una vez obtenido y por Cramer, claramente hubiera sido más sencillo obtener x por sustitución que utilizando la regla de Cramer con determinantes.

INTERPRETACIÓN GEOMÉTRICA

$$x + 2y = 3$$
 (1)
 $4x + 5y = 6$ (2)

Geometría por filas: x+2y=3 y 4x+5y=6

intersección de dos rectas en el plano \mathbb{R}^2

Geometría por columnas:

$$\begin{bmatrix} 1 \\ 4 \end{bmatrix} x + \begin{bmatrix} 2 \\ 5 \end{bmatrix} y = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$

Buscamos una *combinación lineal* de los vectores u = (1,4) y v = (2,5) que nos dé el vector (3,6).

combinación lineal de vectores en \mathbb{R}^2

INTERPRETACIÓN GEOMÉTRICA

¿En
$$n = 3$$
?

Geometría por filas:

buscamos la intersección de tres planos en el espacio \mathbb{R}^3

$$(\pi_1) x + y + z = 4$$
 $(\pi_2) x + y = 2$ $(\pi_3) x - y = 0$

Geometría por columnas:

entre todas las combinaciones lineales de los tres vectores en el espacio \mathbb{R}^3 $v_1=(1,1,1), \quad v_2=(1,1,-1), \quad \text{y} \quad v_3=(1,0,0),$ queremos conocer los coeficientes (si existen) de la combinación lineal que nos da w=(4,2,0).

INTERPRETACIÓN GEOMÉTRICA

¿En n = 10?

No es tan difícil abstraernos y pensar en espacios n-dimensionales!

Geometría por filas: intersección de planos 9-dimesionales en \mathbb{R}^{10} .

Geometría por columnas: combinaciones lineales de vectores de \mathbb{R}^{10} que den el vector lado derecho.

¿En $n = 159\dot{4}35$?

conceptualmente no cambia mucho, a nivel cálculos sí puede complicarse...

CASOS SINGULARES

En los ejemplos que vimos, siempre existe solución única. ¿Cuándo había solución única?

sistema no singular, determinante no nulo, existencia de matriz inversa....volveremos sobre esto...

Casos singulares:

$$u + v + w = 2$$
 (1)
 $2u + + 3w = 5$ (2)
 $3u + v + 4w = 6$ (3)

Algebraicamente:

$$ec(1) + ec(2) : 3u + v + 4w = 7$$
 $ec(3) : 3u + v + 4w = 6$

Sistema Inconsistente (no hay solución).

SISTEMA INCONSISTENTE

Geometría por filas: los tres planos no se intersectan.

¿Qué situaciones pueden darse?

- dos de los tres planos que no se intersecten (dos planos paralelos) o
- todos se intersecten dos a dos pero no se intersectan entre los tres.

Ejercicio: ¿Cuál es el caso en el ejemplo anterior?

Geometría por columnas:

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} u + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} v + \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} w = b = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$$

Los tres vectores son coplanares y b está fuera del plano.

CASOS SINGULARES

¿Qué pasaría si b estuviera en el mismo plano que los tres vectores columna? (por ejemplo, b'=(2,5,7)). Habría infinitas soluciones.

Qué estaría pasando en la geometría por filas?

Los tres planos pasan por una misma recta.

Volvemos a los métodos de resolución de sistemas.

$$2u + v + w = 5$$
 (1)
 $4u - 6v = -2$ (2)
 $-2u + 7v + 2w = 9$ (3)

Paso 1: Eliminar u de las ecuaciones (2) y (3).

Restar a las ecuaciones (2) y (3), múltiplos de la ecuación (1)

•
$$ec(2) - 2 \times ec(1) \longrightarrow ec(2') - 8v - 2w = -12$$

•
$$ec(3) - (-1) \times ec(1) \longrightarrow ec(3')8v + 3w = 14$$

Para obtener el múltiplicador ℓ de la ecuación (1) a restar en cada caso, dividimos el coeficiente de u en la ecuación a modificar por el coeficiente de u en ec(1)

coeficiente de u en $ec(1) = 2 \mapsto primer pivot$.

Obtenemos el siguiente sistema equivalente:

$$2u + v + w = 5$$
 (1)
 $-8v - 2w = -12$ (2')
 $8v + 3w = 14$ (3')

Paso 2: Eliminar v de la ecuación (3').

Restar a la ecuación (3') un múltiplo de la ecuación (2')

•
$$ec(3') - (-1) \times ec(2') \longrightarrow ec(3'')w = 2$$

Para obtener el multiplicador ℓ de la ecuación (2') a restar, dividimos el coeficiente de v en la ec(3') por el *coeficiente de v en ec(2')*

coeficiente de v en $ec(2') = -8 \longmapsto$ segundo pivot.

Obtenemos

$$2u + v + w = 5$$
 (1)
 $-8v - 2w = -12$ (2')
 $1w = 2$ (3")

Sistema triangular: fácil de resolver vía sustitución para atrás:

$$ec(3''): w = 2 \longrightarrow ec(2'): v = 1 \longrightarrow ec(1): u = 1.$$

Gauss= eliminación para adelante + sustitución para atrás

¿Siempre funciona? Siempre que los pivots no sean nulos. ¿Y si aparece un pivot nulo?

Ejemplo 1:

Permutando las filas (2) y (3) llegamos al sistema triangular.

Observar que, independientemente del lado derecho, el sistema tendrá solución única. En estos casos se dice que el sistema es *no singular*. En correspondencia con esto decimos que la matriz de coeficientes del sistema es una *matriz no singular*.

SISTEMAS NO SINGULARES, MATRICES NO SINGULARES

Ejemplo 1:

A: matriz de coeficientes del sistema,

$$x = \left[egin{array}{c} u \\ v \\ w \end{array}
ight]$$
 : vector de variables, $b = \left[egin{array}{c} b_1 \\ b_2 \\ b_3 \end{array}
ight]$: vector *lado derecho (RHS)*.

$$u + v + w = b_1$$

 $2u + 2v + 5w = b_2 \longrightarrow Ax = b$
 $4u + 6v + 8w = b_3$

Definición: A matriz $n \times n$ es *no singular* si para todo $b \in \mathbb{R}^n$ el sistema Ax = b es no singular, i.e. el sistema Ax = b tiene solución única.

Ejemplo 2:

Ejemplo 2.1:

$$u + v + w = 3w = 6$$
$$4w = 7$$

No hay solución factible

Ejemplo 2.2:

$$u + v + w = 3w = 6$$
$$4w = 8$$

hay infinitas soluciones factibles

SISTEMAS SINGULARES

Ejemplo 2:

Ejercicio: Independientemente del lado derecho, el sistema NO tendrá solución única.

En estos casos se dice que el sistema es *singular*. En correspondencia con esto decimos que la matriz de coeficientes del sistema es una *matriz singular*.

Definición: A matriz $n \times n$ es singular si para todo $b \in \mathbb{R}^n$ el sistema Ax = b es singular, i.e. el sistema Ax = b no tiene solución única.

Observación: A es *no singular* si y solo si A no es *singular*.

COSTO COMPUTACIONAL

¿Cuántas operaciones aritméticas realizamos en un sistema de n ecuaciones y n incógnitas?

Operaciones que realizamos para aplicar el método:

- dividir por el pivot para obtener el multiplicador ℓ ,
- multiplicar cada coeficiente de una ecuación por ℓ y restarle los coeficientes de otra.

(Convenimos: multiplicar y restar = 1 operación)

Analizamos el caso no singular, e ignoramos las operaciones en el lado derecho.

Primer paso: por cada una de las n-1 ecuaciones a modificar, tenemos:

- ② n coeficientes que se multiplicar y restan $\longrightarrow n$ operaciones

$$(n-1)(n+1) = n^2 - 1$$
 operaciones

COSTO COMPUTACIONAL

Primer paso:

$$n^2 - 1$$
 operaciones

k-ésimo paso (nos quedan k ecuaciones a modificar):

$$k^2 - 1$$
 operaciones

Total (eliminación):

$$\sum_{k=1}^{n} (k^2 - 1) = O(n^3)$$

- $n = 1 \longrightarrow 0$ operaciones
- $n = 2 \longrightarrow 3$ operaciones
- $n = 100 \longrightarrow \approx 10^6$ operaciones

Costo sustitución:

$$1+2+\ldots+n=\frac{n(n-1)}{2}=O(n^2)$$

Costo total: $O(n^3) + O(n^2) = O(n^3)$

COSTO COMPUTACIONAL

¿Se puede resolver un sistema de orden $n \times n$ más rápido que $O(n^3)$?

Hace 30 años se suponía que no. Sin embargo, existe hoy un método que lo resuelve en $Cn^{log_27}\approx Cn^{2,8}$. ¿Más rápido? $Cn^{2,376}$

Esto métodos, no tienen interés práctico: C es muuuuy grande y el código es horrible: ¡seguimos con Gauss! (con mejoras)

Nuevo desafío: cuál es el costo computacional de resolver un sistema de orden $n \times n$ con varios procesadores en paralelo.

¿Cómo podemos obtener U y b' a partir de A y b?

$$[A|b] = \begin{bmatrix} 2 & 1 & 1| & 5 \\ 4 & -6 & 0| & -2 \\ -2 & 7 & 2| & 9 \end{bmatrix} \xrightarrow{?} [U|b'] = \begin{bmatrix} 2 & 1 & 1| & 5 \\ 0 & -8 & -2| & -12 \\ 0 & 0 & 1| & 2 \end{bmatrix}$$

Repasemos qué hace Gauss:

Paso 1/1:

(nueva fila 2) = (fila 2 de
$$[A|b]$$
) $-2 \times$ (fila 1 de $[A|b]$)

...es el trabajo de las matrices elementales...

Definición: La *matriz elemental* $E_{ij}(\alpha)$ (con $1 \le i \ne j \le n$, $\alpha \in \mathbb{R}$) es la que se obtiene sustituyendo la entrada ij de la matriz identidad por α .

Ejemplo: n = 3

$$E_{21}(-2) = \left[\begin{array}{rrr} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

Teníamos:

$$\begin{bmatrix} 2 & 1 & 1 & 5 \\ 4 & -6 & 0 & -2 \\ -2 & 7 & 2 & 9 \end{bmatrix} \xrightarrow{?} \begin{bmatrix} 2 & 1 & 1 & 5 \\ 0 & -8 & -2 & -12 \\ -2 & 7 & 2 & 9 \end{bmatrix}$$

(nueva fila 2) = (fila 2 de [A|b]) $-2\times$ (fila 1 de [A|b])

$$\begin{bmatrix} 2 & 1 & 1 & 5 \\ 4 & -6 & 0 & -2 \\ -2 & 7 & 2 & 9 \end{bmatrix}$$

$$E_{21} \xrightarrow{(-2)} \times$$

$$\begin{bmatrix} 2 & 1 & 1 & 5 \\ 4 & -6 & 0 & -2 \\ -2 & 7 & 2 & 9 \end{bmatrix} \xrightarrow{E_{21}(-2)\times} \begin{bmatrix} 2 & 1 & 1 & 5 \\ 0 & -8 & -2 & -12 \\ -2 & 7 & 2 & 9 \end{bmatrix}$$

Ejercicio: Sea A una matriz $n \times p$, $E_{ij}(\alpha)$ de orden n y $B = E_{ij}(\alpha)A$. Entonces, $B_k = A_k$ si $k \neq i$ y $B_i = A_i + \alpha A_i$.

Recordemos

$$egin{bmatrix} A \ & egin{bmatrix} E_{ij}(lpha) = & egin{bmatrix} [E_{ij}(lpha)]_1 \ & dots \ dots \ & dots$$

fila k de B = (fila k de $E_{ii}(\alpha)$) $\times A$.

Entonces, para todo k,

$$B_k = [E_{ij}(\alpha)]_k \times A$$
 (Obs: $[E_{ij}(\alpha)]_k$, vector $1 \times n$)

Recordemos:

el producto de un vector $1 \times n$ por A es una combinación lineal de las filas de A, donde los coeficientes de la combinación lineal son las entradas del vector.

Entonces:

Si $k \neq i$, $[E_{ij}(\alpha)]_k$ tiene todas entradas nulas excepto su entrada k, igual a 1. Por lo tanto,

$$B_k = [E_{ij}(\alpha)]_k \times A = 0A_1 + \ldots + 0A_{k-1} + 1A_k + 0A_{k+1} + \ldots + 0A_n = A_k.$$

Si k=i, $[E_{ij}(\alpha)]_i$ tiene todas sus entradas nulas excepto su entrada i, igual a 1, y su entrada j, igual a α . Por lo tanto,

$$B_i = [E_{ij}(\alpha)]_i \times A = 1 A_i + \alpha A_j = A_i + \alpha A_j.$$

• Paso 1: $ec(2) - 2 \times ec(1) \longrightarrow -8v - 2w = -12$ (nueva fila 2) = (fila 2 de A) + $(-2) \times$ (fila 1 de A)

$$\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A = EA$$

$$ec(3) - (-1) \times ec(1) \longrightarrow 8v + 3w = 14$$

(nueva fila 3) = (fila 3 de A) + 1× (fila 1 de A) = =(fila 3 de EA) + 1× (fila 1 de EA)

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} EA = FEA$$

$$FEA = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} A$$

Ejercicio: El producto de matrices elementales $E_{ij}(\alpha)$ y $E_{kj}(\beta)$, $i \neq k$, conmuta.

$$(FE)A = \left[\begin{array}{ccc} 2 & 1 & 1 \\ 0 & -8 & -2 \\ 0 & 8 & 3 \end{array} \right].$$

Paso 2: (nueva fila 3) = (fila 3 de FEA) + 1× (fila 2 de FEA)

$$G(\textit{FEA}) = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{array} \right] \textit{FEA} = \left[\begin{array}{ccc} 2 & 1 & 1 \\ 0 & -8 & -2 \\ 0 & 0 & 1 \end{array} \right] = U$$

(GFE)A = U, donde

$$GFE = \left[\begin{array}{rrr} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 1 & 1 \end{array} \right]$$

¿Cómo reconstruyo A a partir de U? Debo desarmar cada paso...

Ejercicio: Probar que $E_{ii}(\alpha)E_{ii}(-\alpha) = I$.

Resolución: Sean $B = E_{ij}(\alpha) E_{ij}(-\alpha)$ y $A = E_{ij}(-\alpha)$. O sea, $B = E_{ij}(\alpha) A$. Por el ejercicio anterior sabemos que $B_k = A_k$ si $k \neq i$ y $B_i = A_i + \alpha A_i$.

Si e^k denota el k-ésimo vector canónico, debemos probar que $B_k=e_k$, para todo k.

Si $k \neq i$, $B_k = A_k = [E_{ij}(-\alpha)]_k$ y $[E_{ij}(-\alpha)]_k$ coincide con la k-ésima fila de I. Por lo tanto, $B_k = A_k = e^k$.

Finalmente, si k = i, como $A_i = -\alpha e^j + e^i$, tenemos:

$$B_i = A_i + \alpha A_j = [E_{ij}(-\alpha)]_i + \alpha [E_{ij}(-\alpha)]_j = (-\alpha e^j + e^i) + \alpha e^j = e^i.$$

$$E_{ij}(-\alpha) E_{ij}(\alpha) = I \longrightarrow E_{ij}(-\alpha)$$
 desarma lo que hizo $E_{ij}(\alpha)$

$$E_{ii}(-\alpha) = (E_{ij}(\alpha))^{-1} \longrightarrow matriz inversa$$

Volvamos al ejemplo:

$$G(F(EA)) = U \longrightarrow A = E^{-1}(F^{-1}(G^{-1}U)) = (E^{-1}F^{-1}G^{-1})U$$

Recordemos: Si
$$E = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 entonces $E^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

Así,

$$E^{-1}F^{-1}G^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix} = L$$

$$A = LU$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & -8 & -2 \\ 0 & 0 & 1 \end{bmatrix} = LU$$

Observación:

- L es una matriz triangular inferior con 1's en la diagonal y abajo de la diagonal aparecen los multiplicadores usados en la eliminación,
- U es una matriz triangular superior con los pivots en la diagonal.

Siempre que no aparezcan pivots nulos, podremos reconstruir ${\cal A}$ de esta manera.

Veamos un ejercicio

FACTORIZACIÓN LU

Propiedad: Dada una matriz cuadradra A, si en el método de Eliminación de Gauss no aparece ningún pivot nulo, A admite una factorización LU. Esto es, A = LU donde:

- L es una matriz triangular inferior con 1's en la diagonal y abajo de la diagonal aparecen los multiplicadores usados en la eliminación,
- U es una matriz triangular superior con los pivotes en la diagonal.

Teorema(unicidad de la descomposición LU) Sea $A=L_1U_1$ y $A=L_2U_2$ donde, para $i=1,2,L_i$ es triangular inferior con 1's en la diagonal, U_i es triangular superior sin ceros en la diagonal. Entonces $L_1=L_2$ y $U_1=U_2$.

Prueba: Ejercicio con ayuda.

- Probar que inversa de triangular superior (resp. inferior) es triangular superior (resp. inferior).
- Probar que producto de triangulares superiores (resp. inferiores) es triangular superior (resp. inferior).
- Usar $L_1U_1 = L_2U_2 \Longrightarrow U_1(U_2)^{-1} = (L_1)^{-1}L_2$.

FACTORIZACIÓN LU

$A = LU \operatorname{con}$

- *L* triangular inferior con 1's en la diagonal, abajo de la diagonal aparecen los multiplicadores usados en la eliminación.
- ullet U es triangular superior con los pivotes en la diagonal.

Ejemplos:

- 2 $A = \begin{bmatrix} 0 & 2 \\ 3 & 4 \end{bmatrix}$ No tiene factorización LU (primer pivot nulo)

FACTORIZACIÓN LU

Ejemplos: (continuación)

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}; L = \begin{bmatrix} 1 & 0 & 0 \\ ? & 1 & 0 \\ ? & ? & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

FACTORIZACIÓN LU Y RESOLUCIÓN DE SISTEMAS

¿Cómo resuelven los códigos?

$$Ax = b \stackrel{\text{fact. } LU}{\longleftrightarrow} L(Ux) = b$$

- Resuelvo Lc=b, sistema triangular \longrightarrow obtengo la solución \tilde{c} en $\frac{n^2}{2}$ operaciones
- ② Resuelvo $Ux = \tilde{c}$, sistema triangular \longrightarrow obtengo la solución \hat{x} en $\frac{n^2}{2}$ operaciones

Tenemos $A\hat{x} = L(U\hat{x}) = L\tilde{c} = b$

Costo de la resolución:

- Factorizar $A \longrightarrow O(n^3)$ operaciones
- ② Resolver los sistemas triangulares $\longrightarrow n^2$ operaciones

Observación: Si tengo la factorizacion LU, puedo resolver varios sistemas, con diferentes lados derechos, al costo de n^2 operaciones.

Veamos un ejercicio

FACTORIZACIÓN LDV

Ejercicio: Sean D y A matrices $n \times n$, con D una matriz diagonal, y sea B = DA.

Entonces la fila k-ésima de B es la igual a la k-ésima fila de A por la entrada k-ésima de la diagonal de D. Esto es, $B_k = D_k^k A_k$, para $k = 1, \ldots, n$.

Observación: si U es (matriz) triangular superior sin ceros en la diagonal y D es la matriz diagonal cuya diagonal coincide con la diagonal U (i.e. $D_i^i = U_i^i$, para todo i) entonces U = DV con

$$V_i^j = rac{U_i^j}{U_i^i} \;\; ext{ para todo } i,j.$$

Observar que V es una matriz triangular superior con 1's en la diagonal.

$$A = LU \longleftrightarrow A = LDV$$

FACTORIZACIÓN LDV

Propiedad: Dada una matriz cuadradra A, si en el método de eliminación de Gauss no aparece ningún pivot nulo, A admite una factorización LDV. Esto es, A = LDV donde:

- L es una matriz triangular inferior con 1's en la diagonal y abajo de la diagonal aparecen los multiplicadores usados en la eliminación.
- D es una matriz diagonal con los pivotes en la diagonal.
- ullet V es una matriz triangular superior con 1's en la diagonal.

Teorema (unicidad de la descomposición LDV)

Para i=1,2, sea $A=L_iD_iV_i$ donde L_i es triangular inferior con 1's en la diagonal, U_i es triangular superior con 1's en la diagonal y D_i es matriz diagonal sin ceros en la diagonal. Entonces, $L_1=L_2$, $V_1=V_2$ y $D_1=D_2$.

Prueba. Para i=1,2, sea $U_i=D_iV_i$. Entonces, para i=1,2, $A=L_iU_i$ es una factorización LU de A (justificar). Como la factorización LU de una matriz es única, tenemos que $L_1=L_2$ y $U_1=U_2$. Falta verificar que si $U_1=U_2$ entonces $V_1=V_2$ y $D_1=D_2$ (ejercicio).

Si A es una matriz no singular y en el proceso de eliminación de Gauss aparece algún pivot nulo, podemos intercambiar filas.

¿Qué matrices intercambian filas?

Ejemplo 1:

$$\begin{bmatrix} 0 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 & 4 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} b_2 \\ b_1 \end{bmatrix}$$

Buscamos P tal que

$$P\begin{bmatrix} 0 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 0 & 2 \end{bmatrix} \quad \text{y} \quad P\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} b_2 \\ b_1 \end{bmatrix}.$$

$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Definición:

Llamamos matriz de permutación (de orden n) a toda matriz que se obtiene permutando las filas de la matriz identidad.

Una matriz de permutación es *elemental* si solo dos filas de la matriz identidad han sido intercambiadas. Notamos con P_{ij} a la matriz de permutación elemental que se obtiene intercambiando las filas i y j de la identidad.

Ejercicio: Para toda A matriz, la matriz $P_{ij}A$ se obtiene intercambiando las filas i y j de A.

Resolución: Sea $B=P_{ij}A$. Probar que B_k , la fila k-ésima de B, coindice con A_k si $k \neq i$ y $k \neq j$ y $B_i = A_j$ y $B_j = A_i$.(Ejercicio)

Ejemplo 2:

$$A = \left[\begin{array}{ccc} 0 & a & b \\ 0 & 0 & c \\ d & e & f \end{array} \right]$$

- Si d = 0 entonces A es singular.
- Si $d \neq 0$:

$$P_{13} = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right]$$

$$P_{13}A = \left[\begin{array}{ccc} d & e & f \\ 0 & 0 & c \\ 0 & a & b \end{array} \right].$$

• Si $a \neq 0$:

$$A \stackrel{P_{13}\times}{\longrightarrow} \left[\begin{array}{ccc} d & e & f \\ 0 & 0 & c \\ 0 & a & b \end{array} \right] \stackrel{P_{23}\times}{\longrightarrow} \left[\begin{array}{ccc} d & e & f \\ 0 & a & b \\ 0 & 0 & c \end{array} \right] = U.$$

$$P_{23}P_{13}A = \left[\begin{array}{ccc} d & e & f \\ 0 & a & b \\ 0 & 0 & c \end{array} \right] = U$$

$$P = P_{23}P_{13} = \left[egin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right] \quad {
m matriz \ de \ permutación.}$$

$$PA = U$$
.

Ejemplo 3:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 3 \\ 2 & 5 & 8 \end{bmatrix} \xrightarrow{E \times} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 3 & 6 \end{bmatrix} \xrightarrow{P_{23} \times} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 3 & 6 \\ 0 & 0 & 2 \end{bmatrix}$$

$$P_{23}A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 5 & 8 \\ 1 & 1 & 3 \end{bmatrix} \xrightarrow{E' \times} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 3 & 6 \\ 0 & 0 & 2 \end{bmatrix} = U$$

$$E'(P_{23}A) = U \longrightarrow P_{23}A = LU$$

con

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} = (E')^{-1}$$

PRODUCTO DE MATRICES ELEMENTALES Y DE PERMUTACIÓN

Lema: Sean P_{ij} y $E_{k\ell}(\alpha)$ matrices de permutación elemental y elemental, respectivamente, del mismo orden. Entonces,

$$P_{ij}\,E_{k\ell}(\alpha) = \left\{ \begin{array}{lll} E_{k\ell}(\alpha)\,P_{ij} & \mathrm{si} & \{i,j\} \cap \{k,\ell\} = \emptyset \\ E_{j\ell}(\alpha)\,P_{ij} & \mathrm{si} & i = k,j \neq \ell \\ E_{kj}(\alpha)\,P_{ij} & \mathrm{si} & i = \ell,j \neq k \\ E_{ik}(\alpha)\,P_{ij} & \mathrm{si} & i \neq \ell,j = k \\ E_{ki}(\alpha)\,P_{ij} & \mathrm{si} & i \neq k,j = \ell \\ E_{ji}(\alpha)\,P_{ij} & \mathrm{si} & i = k,j = \ell \\ E_{ij}(\alpha)\,P_{ij} & \mathrm{si} & i = \ell,j = k. \end{array} \right.$$

Prueba:

En todos los ítems, debemos probar que existe una matriz elemental $E_{rs}(\alpha)$ tal que $P_{ij}E_{kl}(\alpha) = E_{rs}(\alpha)P_{ij}$.

Llamemos ε_{rs} a la matriz con todas sus entradas nulas excepto la entrada (r,s), cuyo valor es 1. Observemos entonces que toda matriz elemental $E_{rs}(\alpha)$ verifica $E_{rs}(\alpha) = I + \alpha \varepsilon_{rs}$.

PRODUCTO DE MATRICES ELEMENTALES Y DE PERMUTACIÓN

Con la observación anterior, $P_{ij}E_{k\ell}(\alpha) = P_{ij}(I + \alpha \varepsilon_{k\ell}) = P_{ij} + \alpha P_{ij}\varepsilon_{k\ell}$ y $E_{rs}(\alpha)P_{ij} = (I + \alpha \varepsilon_{rs})P_{ij} = P_{ij} + \alpha \varepsilon_{rs}P_{ij}$.

Por lo tanto, debemos probar que, en todos los posibles valores de i,j,k,ℓ , existen r y s tales que $P_{ij}\varepsilon_{k\ell}=\varepsilon_{rs}P_{ij}$. Para ello basta tomar $\varepsilon_{rs}=P_{ij}\varepsilon_{k\ell}P_{ij}$. De esta manera, solo resta probar:

$$P_{ij} \; \varepsilon_{k\ell} \; P_{ij} = \begin{cases} \quad \varepsilon_{k\ell} \quad \text{si} \quad \{i,j\} \cap \{k,\ell\} = \emptyset \\ \quad \varepsilon_{j\ell} \quad \text{si} \quad \quad i = k, j \neq \ell \\ \quad \varepsilon_{kj} \quad \text{si} \quad \quad i = \ell, j \neq k \\ \quad \varepsilon_{i\ell} \quad \text{si} \quad \quad i \neq \ell, j = k \\ \quad \varepsilon_{ki} \quad \text{si} \quad \quad i \neq k, j = \ell \\ \quad \varepsilon_{ji} \quad \text{si} \quad \quad i = k, j = \ell. \\ \quad \varepsilon_{ij} \quad \text{si} \quad \quad i = \ell, j = k \end{cases}$$

FACTORIZACIÓN LU (Y LDV): CASO NO SINGULAR

Utilizando el resultado anterior, podemos probar:

Ejercicio: Si A es no singular, existe una matriz P de permutación y una matriz E producto de matrices elementales tales que E P A es triangular superior sin ceros en la diagonal.

Propiedad: Sea A una matriz cuadrada no singular (el Método de Elimación de Gauss termina con U matriz triangular superior sin ceros en la diagonal). Entonces, existe una matriz de permutación P tal que PA tiene factorización LU (y factorización LDV). Justificar.

Veamos algunos ejercicios

Hasta ahora...

A es no singular si existe una permutación de sus filas que evita los ceros en las posiciones de pivot cuando se aplica el método de Gauss.

Equivalentemente...

A es no singular si existe matriz de permutación P tal que PA admite descomposición LU (y LDV).

Equivalentemente...

A es no singular si Ax = b tienen solución única para todo b.

¿Qué otras formas de identificar "A no singular" recuerdan?

 $det(A) \neq 0$, A tiene inversa, otras...

Vamos a concentrarnos en "A tiene inversa", o sea, A inversible.

Definición: B es la inversa de A si BA = AB = I. Decimos que A es inversible si existe B inversa de A.

Observación: No toda matriz es inversible. Por ejemplo:

- la matriz nula $(A = \mathbf{0})$
- toda matriz no cuadrada. ¿Por qué?

3
$$A = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 0 & 4 \\ 0 & 0 & 3 \end{bmatrix}$$
. ¿Por qué?

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = B$$

$$A = \left[\begin{array}{ccc} 1 & 3 & 2 \\ 0 & 0 & 4 \\ 0 & 0 & 3 \end{array} \right] \quad \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 4h & 0 \\ 0 & 3h & 1 \end{array} \right] = I$$

Lema: Toda matriz tiene a lo sumo una matriz inversa.

Prueba: Sean B y C inversas de A. Entonces, BA = I y AC = I. Así,

$$B = BI = B(AC) = (BA)C = IC = C.$$

Notamos con A^{-1} a la (única) inversa de A.

Lema: Si A y B son matrices inversibles entonces A^{-1} y AB son inversibles

con $(A^{-1})^{-1} = A$ y $(AB)^{-1} = B^{-1}A^{-1}$.

Prueba: Ejercicio.

Pregunta: Si A es inversible y B no es inversible, ¿puede ser AB inversible? Ejercicio.

Observaciones:

• Si A es inversible, Ax = b tiene una única solución para todo b:

$$Ax = b \Longrightarrow A^{-1}(Ax) = A^{-1}b \Longrightarrow x = A^{-1}b.$$

• Si existe $x \neq 0$ tal que Ax = 0, A no es inversible. ¿Por qué?

GAUSS-JORDAN

Problema: *A* matriz inversible. Resolver Ax = b.

Solución: $x = A^{-1}b$.

¿Esto hace más fácil la resolución de sistemas de ecuaciones? ¿Cómo encontramos A^{-1} ?

Buscamos una matriz X tal que AX=I. Equivalentemente, buscamos n vectores columna X^i tales que $AX^i=e^i,\,i=1,\ldots,n$. ¿Cómo usamos Gauss para resolver estos n sistemas?

Recordemos el método de eliminación (sin pivots nulos):

$$Ax = b \longleftrightarrow L^{-1}(Ax) = L^{-1}b \longleftrightarrow Ux = \tilde{b}$$

Podemos pensar que L^{-1} actúa sobre la matriz extendida [A,b]:

$$[A,b] \stackrel{L^{-1} \times}{\to} [L^{-1}A, L^{-1}b] = [U, \tilde{b}]$$

GAUSS-JORDAN

Para resolver por Gauss los n sistemas $AX^i = e^i$, i = 1, ..., n:

- ullet Eliminación: $[A,e^1,\ldots,e^n] \overset{L^{-1} imes}{\to} [U,L^{-1}e^1,\ldots,L^{-1}e^n] = [U,L^{-1}]$
- Sustitución para atrás: *n* procesos de sustitución.

Gauss-Jordan lo mejora.

Ejemplo:

$$[A,I] = \begin{bmatrix} 2 & 1 & 1 & 1 & 0 & 0 \\ 4 & -6 & 0 & 0 & 1 & 0 \\ -2 & 7 & 2 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{L^{-1} \times} \begin{bmatrix} 2 & 1 & 1 & 1 & 0 & 0 \\ 0 & -8 & -2 & -2 & 1 & 0 \\ 0 & 0 & 1 & -1 & 1 & 1 \end{bmatrix} =$$

$$= \begin{bmatrix} U,L^{-1} \end{bmatrix} \xrightarrow{\text{0's s/pivots}} \begin{bmatrix} 2 & \mathbf{0} & \mathbf{0} & \frac{12}{8} & \frac{-5}{8} & \frac{-6}{8} \\ 0 & -8 & \mathbf{0} & -4 & 3 & 2 \\ 0 & 0 & 1 & -1 & 1 & 1 \end{bmatrix} \div \text{por pivots}$$

GAUSS-JORDAN

$$[A, e_1, \dots, e_n] = [A, I] \stackrel{L^{-1} \times}{\to} [U, L^{-1}] \stackrel{U^{-1} \times}{\to} [I, U^{-1}L^{-1}] = [I, A^{-1}]$$

(En caso de necesitar permutar, la idea es la misma)

Gauss-Jordan es muy eficiente para calcular inversas , ¡pero sólo lo usamos si, por alguna razón, queremos encontrar a A^{-1} !

Para resolver sistemas, NO calculamos A^{-1}

Observación: Gauss-Jordan en realidad encuentra X tal que AX = I. ¿Cómo sabemos que XA = I?

¿Cómo encuentra Gauss- Jordan a X?

$$[A,I] \xrightarrow{M \times} [I,X]$$

donde ${\it M}$ es producto de matrices elementales y de permutación.

Entonces, MA = I y MI = X. Esto es, M = X y por lo tanto XA = I.

Recordar:

A invertible $\Longleftrightarrow A$ no singular \Longleftrightarrow Gauss encuentra n pivots no nulos (tal vez permutando) $\Longleftrightarrow \ldots$

veremos varias otras caracterizaciones....

MATRICES SIMÉTRICAS

Definición: Dada una matriz A de tamaño $m \times n$, la *transpuesta de* A, A^T , es la matriz $n \times m$ tal que, para todo $i = 1, \ldots, n$ y todo $j = 1, \ldots, m$, $(A^T)_{ij} = A_{ji}$. Equivalentemente, para todo $i = 1, \ldots, n$, $(A^T)_i = (A^i)^T$ y para todo $i = 1, \ldots, m$, $(A^T)^i = (A_i)^T$.

Propiedades: $(A^T)^T = A y (AB)^T = B^T A^T$

Lema: Si A es inversible, A^T también lo es y $(A^T)^{-1} = (A^{-1})^T$.

Prueba:

$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = I \text{ y } (A^{-1})^{T}A^{T} = (AA^{-1})^{T} = I.$$

Definición: A es simétrica si $A = A^T$.

Observación: A simétrica $\Longrightarrow A$ cuadrada.

Lema: A simétrica e inversible, entonces A^{-1} es simétrica.

Prueba: $(A^{-1})^T = (A^T)^{-1} = A^{-1}$.

MATRICES SIMÉTRICAS

Propiedad: Para toda matriz $R m \times n$, RR^T y R^TR son simétricas.

Prueba: ejercicio.

Propiedad: Si A es simétrica y no singular admite una descomposición LDL^T , donde L es triangular inferior con 1's en la diagonal y D matriz diagonal sin ceros en la diagonal.

Prueba: $A = LDV \Longrightarrow A^T = V^TD^TL^T = A$. Por unicidad de la descomposición resulta $V = L^T$.

Comentario: Si A es simétrica, el proceso de Eliminación de Gauss se puede hacer en $\frac{n^3}{6}$ (en vez de $\frac{n^3}{3}$).