PURDUE UNIVERSITY

Department of Mathematics

GALOIS THEORY HONORS, MA 45401

Homework 5 (Feb 21 – Feb 28)

- 1 (5+5+5+10+15) Which of the following field extensions are normal? Justify your answers.
 - 1) $\mathbb{Q}(i):\mathbb{Q}$
 - 2) $\mathbb{Q}(2^{1/4}):\mathbb{Q}$
 - 3) $\mathbb{Q}(2^{1/4},i):\mathbb{Q}$
 - 4) $\mathbb{Q}(2^{1/4}, i, \sqrt{5}) : \mathbb{Q}$
 - 5) $\mathbb{Q}(3^{1/3}, i, \sqrt{3}) : \mathbb{Q}.$
- **2** (15) Let $\psi: L \to M$ be a homomorphism, suppose that L is algebraically closed. Prove that $\psi(L)$ is algebraically closed.
- **3** (20) Let L:K be an algebraic field extension. Then \overline{K} is isomorphic to \overline{L} . In addition, if $K \subset L \subseteq \overline{L}$, then one may take $\overline{K} = \overline{L}$.
- 4 (15) Let K-L be a normal extension, $K\subseteq L\subseteq \overline{K}$. Then for any K-homomorphism $\tau:L\to \overline{K}$ one has $\tau(L)=L$.
- **5** (25) Put $K = \mathbb{F}_2(t)$ and consider $L = K(t^{1/3})$. Prove that the extension L: K is algebraic but not normal.

Solutions

General remark. If there is a typo in any task, then the maximum score will be awarded for that task.

- 1 (5+5+5+10+15) Which of the following field extensions are normal? Justify your answers.
 - 1) $\mathbb{Q}(i):\mathbb{Q}$
 - 2) $\mathbb{Q}(2^{1/4}):\mathbb{Q}$
 - 3) $\mathbb{Q}(2^{1/4},i):\mathbb{Q}$
 - 4) $\mathbb{Q}(2^{1/4}, i, \sqrt{5}) : \mathbb{Q}$
 - 5) $\mathbb{Q}(3^{1/3}, i, \sqrt{3}) : \mathbb{Q}.$

Solution. 1) Normal: $\pm i \in \mathbb{Q}(i)$.

- 2) Not normal: $i \notin \mathbb{Q}(2^{1/4})$.
- 3) Normal: all roots of $t^4 2$ belong to $\mathbb{Q}(2^{1/4}, i)$.
- 4) Normal. Consider the polynomial $(t^2 5)(t^4 2)$. Then its splitting field is exactly $\mathbb{Q}(2^{1/4}, i, \sqrt{5})$ and all splitting fields are normal.
- 5) Normal. Consider the polynomial $(t^3-3)(t^2-3)(t^2+1)$. Then all roots of this polynomial are $\pm i, \pm \sqrt{3}, 3^{1/3} \varepsilon_3^k$, where k=0,1,2. We have $\varepsilon_3=(1+i\sqrt{3})/2\in\mathbb{Q}(i,\sqrt{3})$. Hence the splitting field of this polynomial is $\mathbb{Q}(3^{1/3},i,\sqrt{3})$ and all splitting fields are normal.
- **2** (15) Let $\psi: L \to M$ be a homomorphism, suppose that L is algebraically closed. Prove that $\psi(L)$ is algebraically closed.

Solution. We need to show that any irreducible $f \in \psi(L)[t]$ has degree 1. If not, then f = gh, where $f = \psi(f_0)$, $g = \psi(g_0)$, $h = \psi(h_0)$ and $f_0, g_0, h_0 \in L[t]$. We have $\deg(f_0) = \deg(f) > 1$ and therefore f_0 is reducible since L is algebraically closed. But then $f_0 = g'h'$ for some $g', h' \in L[t]$ and hence $f = \psi(f_0) = \psi(g')\psi(h')$. Thus f is not irreducible and this is a contradiction.

3 (20) Let L:K be an algebraic field extension. Then \overline{K} is isomorphic to \overline{L} . In addition, if $K \subset L \subseteq \overline{L}$, then one may take $\overline{K} = \overline{L}$.

Solution. We have $K - L - \overline{L}$ and hence \overline{L} is an algebraic closure of K. But we know (see lectures) that two algebraic closures are isomorphic. Thus \overline{K} is isomorphic to \overline{L} .

Now let $K \subset L \subseteq \overline{L}$. Then the previous argument shows that \overline{L} is an algebraic closure of K and both \overline{K} , \overline{L} contain K. The inclusion mapping $\varphi: K \to \overline{L}$ can be extended to a homomorphism from \overline{K} to \overline{L} (see lectures). If $\overline{K} = \overline{L}$, then we are done, if not then $[\overline{L}:\overline{K}] > 1$ but this is a contradiction with the assumption that \overline{K} is algebraically closed.

Remark. The second part of Exercise 3 was not formulated correctly, so to get a full mark it is enough to solve only the the first part.

- 4 (15) Let K-L be a normal extension, $K \subseteq L \subseteq \overline{K}$. Then for any K-homomorphism $\tau: L \to \overline{K}$ one has $\tau(L) = L$. Solution. Take any $\alpha \in L$. Then $0 = \mu_{\alpha}^{K}(\alpha) = \mu_{\alpha}^{K}(\tau(\alpha))$ and since L: K is a normal extension, we see that $\tau(\alpha) \in L$. Thus $\tau(L) \subseteq L$ and hence τ is K-homomorphism of L. By the first theorem of Lecture 11 τ is an automorphism.
- 5 (25) Put $K = \mathbb{F}_2(t)$ and consider $L = K(t^{1/3})$. Prove that the extension L : K is algebraic but not normal.

Solution. Clearly, $t^{1/3}$ is an algebraic number (in \overline{K} , say) as it is a root of $F(X) = X^3 - t \in K[X]$. Thus L:K is algebraic extension. To obtain that L:K is not normal it is enough to show that F(X) has no other linear factors than $X - t^{1/3}$ over L (notice that $F(X) \neq (X - t^{1/3})^3$). Let $F(\alpha) = 0$, where $\alpha \in L$ and $\alpha \neq t^{1/3}$. Writing α as $\beta t^{1/3}$, where

 $\beta \in L$ one has $\beta^3 = 1$ and $\beta \neq 1$. Thus $\beta^2 + \beta + 1 = 0$ and hence either $\beta \in \mathbb{F}_2$ (it is easy to check that this is impossible) or $\beta \in L \setminus \mathbb{F}_2$. In the last case we can write $\beta = h(t^{1/3})$, where $h \in \mathbb{F}_2[X]$ and therefore $h^2(t^{1/3}) + h(t^{1/3}) + 1 = 0$. In other words, $t^{1/3}$ satisfies an algebraic equation over \mathbb{F}_2 . But then t is also algebraic over \mathbb{F}_2 and this a contradiction (recall that t is transcendental over \mathbb{F}_2).