Paper 6 Question 10

ACN - Foundations of Func. Programming

9	Foundations of Functional Programming 2
Show	r how to use pure lambda terms to represent
— 7	truth values and the ability to make tests on them;
(10)	tuples; cons car cdr clanty
(8)	something like the effect of the ML datatype blist = empty node of bool*blist;
(d)) a fixed-point operator; The del, thom, Justify
(4)	code to reverse a list of boolean values.
[4 eac	ch]

9.1 Marking notes

Syllabus Part A section 3.

I will write these in ML/ISWIM style notation but can easily expand to lambda terms as needed!

- 1. fun true a b = a; fun false a b = b; fun if b p q = b p q;
- 2. fun pair a b f = f a b; fun first p = p true; fun second p = p false;
- 3. empty = pair false ¡anything¿; fun node a b = pair true (pair a b); The testing for empty and taking head and tail are all easy!
- 4. Y f = let g x = f(x x) in g g as per notes/lectures.
- 5. rev a = rev1 a empty; rev1 a b = if empty(a) then b else rev1 (tail a) (node (head a) b); now we have all the lambda terms needed to do this easily!

END