Algos - Reading

Assignment 1

Problem 1-1. a) The oder is $(f_5, f_3, f_4, f_1, f_2)$.

 f_2 grows faster than f_1 : suppose n > 4, then $\log(n) > 2$ so that $\log(n)^n > 2^n$, which grows faster than $n \log(n)$.

b) The order is $(f_1, f_2, f_5, f_4, f_3)$.

Note that f_4 grows faster than f_5 since it has an exponential growth in the exponent, whereas f_5 has polynomial growth.

 f_3 grows faster than f_4 since we can rewrite $f_4 = 6006^{(2^n)} = (2^{\log_2(6006)})^{2^n} = 2^{\log_2(6006)2^n}$, and 6006^n grows faster than 2^n .

c) The order is $(\{f_2, f_5\}, f_4, f_1, f_3)$.

To find the growth of $f_4 = \binom{n}{\frac{n}{6}}$ note that $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ and suppose that k < n - k. From this we have two bounds:

1.
$$\binom{n}{k} \ge \frac{1}{2} \frac{n!}{(n-k)!} \ge \frac{1}{2} (n-k)^k$$

and

2.
$$\binom{n}{k} \le \frac{1}{2} \frac{n!}{k!} \le \frac{1}{2} n^{n-k}$$

When $k = \frac{n}{6}$ we see from the latter inequality that f_4 grows slower than n^n .

$$(6n)! \sim \sqrt{12\pi n} \left(\frac{6n}{e}\right)^{6n}$$
 so that f_3 grows faster than f_1 .

d) The order is $(f_5, f_2, f_1, f_3, f_4)$.

Simplifying
$$f_3 = (2^2)^{3n \log(n)} = n^{6n}$$

Note that if $\log\left(\frac{f(x)}{g(x)}\right) \to \infty$ as $x \to \infty$ then $\frac{f(x)}{g(x)} \to \infty$ as well, and since $n^2 \log(7) - 6n \log(n) \to \infty$ as $n \to \infty$ we have that f_4 grows faster than f_3 .

```
Problem 1-2. (a)
D.exchange_at(i,j):
  set j to be the larger value
  right_at = D.delete_at(j)
  left_at = D.delete_at(i)
  D.insert_at(i, right_at)
  D.insert_at(j, left_at)
reverse(D,i,k):
  set n = floor(k/2)
  for j in 1 to n:
  D.exchange_at(i, i+k-j)
b)
move(D,\!i,\!k,\!j)\!:
  for n in 0..k-1:
    item = D.delete_at(i+n)
    D.insert_at(j+n-1, item)
Problem 1-4. (a)
```