Huffman Coding

Problem 1)

Consider the Huffman tree below (we won't use an EOF sentinel in this worksheet).

Encode the following:

- train track
- rat attack

Decode the following:

- 110010011011000
- 010000011111001101000111

Problem 2) Construct an optimal Huffman tree for ogopogo. What is the length of the encoding of this text?
Do the same for $\underline{\text{the state mississippi}}$. Include the space character.
Challenge Problem) Suppose you were already given the list of characters with their frequencies and they were sorted in in-
creasing order of frequency (for example, [('p', 1), ('n', 2), ('o', 4)]). Describe how to construct an optimal Huffman tree in linear time.