Fatty acid composition in four serum lipid fractions and the pathogenesis of diabetes

Luke Johnston

Grand Finale (4th) Oct. 27th, 2016

Physiology of serum lipid fractions

Glucose and fatty acid metabolism

Various fatty acid length and desaturation

- Range in length and number of double bonds
- Fatty acids either from diet or de novo lipogenesis (DNL)
- Physiological role dependent on molecule
- Eg: higher palmitic acid (16:0) lipotoxic to beta-cells in vivo and in vitro¹

¹Giacca et al. (2011); Xiao, Giacca, and Lewis (2009)

Few large cohorts on fatty acid composition, fraction, and diabetes

- One study (METSIM) had three fractions: TAG, PL, CE²
 - Multiple flaws
- Mainly cohorts report on PL and CE: CHS, EPIC, ARIC³
 - 16:0 and 18:0 higher risk for DM
 - 18:1n-7, 18:1n-9, 18:3n-3 lower risk for DM

²Lankinen et al. (2015)

³L. Wang et al. (2003); Forouhi et al. (2014); Kröger et al. (2011); Ma et al. (2015); Djoussé et al. (2011)

Explore associations of fatty acid composition of serum lipid fractions on diabetes pathogenesis:

 NEFA: Higher total NEFA, not individual fatty acids, contribute to lower beta-cell function

- NEFA: Higher total NEFA, not individual fatty acids, contribute to lower beta-cell function
- PL: Higher palmitic acid associates with declines in beta-cell function over time. Higher cis-vaccenic acid associated with higher insulin sensitivity and beta-cell function.

- NEFA: Higher total NEFA, not individual fatty acids, contribute to lower beta-cell function
- PL: Higher palmitic acid associates with declines in beta-cell function over time. Higher cis-vaccenic acid associated with higher insulin sensitivity and beta-cell function.
- CE: No strong associates with diabetes pathogenesis

- NEFA: Higher total NEFA, not individual fatty acids, contribute to lower beta-cell function
- PL: Higher palmitic acid associates with declines in beta-cell function over time. Higher cis-vaccenic acid associated with higher insulin sensitivity and beta-cell function.
- CE: No strong associates with diabetes pathogenesis
- TAG: . . .

Data source: The PROMISE cohort

PROspective Metabolism and ISlet cell Evaluation cohort.

- Recruited from London and Toronto centers
- Followed every ~3 years (3 time points completed)
- Demographics, lifestyle, anthropometrics, and blood

Variables of interest

Metabolic outcomes

Calculated from OGTT:

- Insulin sensitivity: 1/HOMA-IR, ISI
- Beta-cell function: IGI/HOMA-IR, ISSI-2

Variables of interest

Metabolic outcomes

Calculated from OGTT:

Insulin sensitivity: 1/HOMA-IR, ISI

• Beta-cell function: IGI/HOMA-IR, ISSI-2

Median declines of 14% to 27%

Variables of interest

Metabolic outcomes

Calculated from OGTT:

- Insulin sensitivity: 1/HOMA-IR, ISI
- Beta-cell function: IGI/HOMA-IR, ISSI-2

Median declines of 14% to 27%

TAG fatty acids

Thin layer chromatography to split the lipid fractions, gas chromatography for the fatty acids:

 22 TAG fatty acids, as concentration (nmol/mL) and percent of total (mol%)

TAG fatty acid composition within PROMISE

Statistical analysis

Statistical analysis

R code for these results:

https://github.com/lwjohnst86/seminar2016

Why scientists must share their research code

'Reproducibility editor' Victoria Stodden explains the growing movement to make code and data available to others.

Variables GFF model:

Visit number, waist size, baseline age, ethnicity, sex, ALT (marker of liver fat), physical activity (MET), and total NEFA.

Time-independent: TAG, NEFA, baseline age, ethnicity, sex

Variables GFF model:

Visit number, waist size, baseline age, ethnicity, sex, ALT (marker of liver fat), physical activity (MET), and total NEFA.

Time-independent: TAG, NEFA, baseline age, ethnicity, sex

· Concern: multiple models will be computed

Variables GEE model:

Visit number, waist size, baseline age, ethnicity, sex, ALT (marker of liver fat), physical activity (MET), and total NEFA.

Time-independent: TAG, NEFA, baseline age, ethnicity, sex

- Concern: multiple models will be computed
- P-values: generally unreliable, especially with more tests⁴

⁴See the American Statistical Association statement on it

Variables GEE model:

Visit number, waist size, baseline age, ethnicity, sex, ALT (marker of liver fat), physical activity (MET), and total NEFA.

Time-independent: TAG, NEFA, baseline age, ethnicity, sex

- · Concern: multiple models will be computed
- P-values: generally unreliable, especially with more tests⁴
- Adjust using BH False Discovery Rate (FDR) correction

⁴See the American Statistical Association statement on it

As conc, strong negative association with IS (96 non-FDR vs 77 FDR of 184 models)

Percent difference with 95% CI in the outcomes for each SD increase in fatty acid

As mol%, very different story — different FA have positive or negative roles

Percent difference with 95% CI in the outcomes for each SD increase in fatty acid

But... GEE modeling is limited

TAG fatty acid composition in inherently multivariate

But... GEE modeling is limited

TAG fatty acid composition in inherently multivariate

Correlation between TAG fatty acids

Takes:

$$ISI = 140 + 141n7 + ... + 225n3$$

$$ISI = Comp1 + Comp2$$

Takes:

$$ISI = 140 + 141n7 + ... + 225n3$$

Converts to:

$$ISI = Comp1 + Comp2$$

PLS: No p-value, no p-value problem

Takes:

$$ISI = 140 + 141n7 + ... + 225n3$$

$$ISI = Comp1 + Comp2$$

- PLS: No p-value, no p-value problem
- Cross-validation (CV) determines predictability

Takes:

$$ISI = 140 + 141n7 + ... + 225n3$$

$$ISI = Comp1 + Comp2$$

- PLS: No p-value, no p-value problem
- Cross-validation (CV) determines predictability
- CV randomly splits data into training and test sets

Takes:

$$ISI = 140 + 141n7 + ... + 225n3$$

$$ISI = Comp1 + Comp2$$

- PLS: No p-value, no p-value problem
- Cross-validation (CV) determines predictability
- CV randomly splits data into training and test sets
- Limitation: Can only use one time point (cross-sectional) and no covariates

Four long chain fatty acids (14:0, 14:1n-7, 16:0, 16:1n-7) cluster and strongly explain the variance in metabolic function

FA involved in DNL from higher carb intake associate with lower metabolic functioning

- Upregulated DNL, increased 14 and 16 chain fatty acids⁵
 - 16:1n-7 shown to be highly related to directly measured DNL
 - Shown to be lipotoxic

⁵Lee et al. (2015); Wilke et al. (2009)

⁶Rhee et al. (2011); Lankinen et al. (2015)

FA involved in DNL from higher carb intake associate with lower metabolic functioning

- Upregulated DNL, increased 14 and 16 chain fatty acids⁵
 - 16:1n-7 shown to be highly related to directly measured DNL
 - Shown to be lipotoxic
- Two other cohort studies⁶ had similar findings for diabetes and HOMA-IR.

⁵Lee et al. (2015); Wilke et al. (2009)

⁶Rhee et al. (2011); Lankinen et al. (2015)

Overall conclusions of PhD research

- Each lipid fraction behaves slightly differently on metabolic functioning
- Fatty acids from DNL may contribute to metabolic dysfunction
- Potential biomarker of DNL fatty acids for clinical use

Overall conclusions of PhD research

- Each lipid fraction behaves slightly differently on metabolic functioning
- Fatty acids from DNL may contribute to metabolic dysfunction
- Potential biomarker of DNL fatty acids for clinical use
- ... Make use of statistical and analytical advances

Acknowledgements

- Supervisor: Dr. Anthony Hanley
- Co-Supervisor: Dr. Richard Bazinet
- Committee Member: Dr. Adria Giacca
- Hanley Lab: Ingrid Santaren, Zhila Semnani-Azad, Windy Wang
- Research Nurses: Jan Neuman, Paula Van Nostrand, Stella Kink, Annette Barnie, Sheila Porter, Mauricio Marin
- Funding: CDA, CIHR, BBDC

Code: https://github.com/lwjohnst86/seminar2016

References

Djoussé, Luc, Mary L Biggs, Rozenn N Lemaitre, Irena B King, Xiaoling Song, Joachim H Ix, Kenneth J Mukamal, David S Siscovick, and Dariush Mozaffarian. 2011. "Plasma Omega-3 Fathy Acids and Incident Diabetes in Older Adults." Am J Clin Nutr 94 (2): 527-33. doi:10.3945/ajcn.11.013334.

Forouhi, Nita G., Albert Koulman, Stephen J. Sharp, Fumiaki Imamura, Janine Kröger, Matthias B. Schulze, Francesca L. Crowe, et al. 2014. "Differences in the Prospective Association Between Individual Plasma Phospholipid Saturated Fatty Acids and Incident Type 2 Diabetes: The EPIC-InterAct Case-Cohort Study." Lancet Diabetes Endocrinol 2 (10): 810–18. doi:10.1016/S2213-8587(14)70146-9.

Giacca, Adria, Changting Xiao, Andrei I. Oprescu, Andre C. Carpentier, and Gary F. Lewis. 2011. "Lipid-Induced Pancreatic Beta-Cell Dysfunction: Focus on in Vivo Studies." Am J Physiol Endocrinol Metab 300 (2): E255–E262. doi:10.1152/ajpendo.00416.2010.

Kröger, Janine, Vera Zietemann, Cornelia Enzenbach, Cornelia Weikert, Eugène Hjm Jansen, Frank Döring, Hans-Georg Joost, Heiner Boeing, and Matthias 8 Schulze. 2011. "Erythrocyte Membrane Phospholipid Fatty Acids, Desaturase Activity, and Dietary Fatty Acids in Relation to Risk of Type 2 Diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study." Am J Clin Nutr 93 (1): 127-42. doi:10.3945/aicn.110.005447.

Lankinen, Maria A., Alena Stančáková, Matti Uusitupa, Jyrki Ágren, Jussi Pihlajamäki, Johanna Kuusisto, Ursula Schwab, and Markku Laakso. 2015. "Plasma Fatty Acids as Predictors of Glycaemia and Type 2 Diabetes." Diabetología, (Epub ahead of print). doi: 10.1007/s00125-015-3730-5.

Lee, Joseph J., Jennifer E. Lambert, Yelena Hovhannisyan, Maria A. Ramos-Roman, Justin R. Trombold, David A. Wagner, and Elizabeth J. Pariks. 2015. "Polimitoleic Acid Elevated in Fatty Liver Disease and Reflects Hepatic Lipogenesis." Am J Clin Nutr 101 (1): 34–43. doi:10.3945/jacin.114.092262.

Ma, Wenjie, Jason H. Y. Wu, Qianyi Wang, Rozenn N. Lemaitre, Kenneth J. Mukamal, Luc Djoussé, Irena B. King, et al. 2015. "Prospective Association of Fatty Acids in the de Novo Upogenesis Pathway with Risk of Type 2 Diabetes: The Cardiovascular Health Study." Am J Clin Nutr. 101 (1): 153–63. doi:10.3945/aian.114.092601.

Rhee, Eugene P., Susan Cheng, Martin G. Larson, Geoffrey A. Walford, Gregory D. Lewis, Elizabeth McCabe, Elaine Yang, et al. 2011. "Lipid Profiling Identifies a Triacylglycerol Signature of Insulin Resistance and Improves Diabetes Prediction in Humans." J Clin Invest 121 (4): 1402-11. doi:10.1172/JCI44442.

Wang, Lu, Aaron R Folsom, Zhi-Jie Zheng, James S Pankow, John H Eckfeldt, and ARIC Study Investigators. 2003. "Plasma Fatty Acid Composition and Incidence of Diabetes in Middle-Aged Adults: The Atherosclerosis Risk in Communities (ARIC) Study." Am J Clin Nutr 78 (1): 91–98. http://www.ajcn.org/cgi/pmidlookup?view=long&pmid=12816776.

Wilke, M. S., M. A. French, Y. K. Goh, E. A. Ryan, P. J. Jones, and M. T. Clandinin. 2009. "Synthesis of Specific Fatty Acids Contributes to VLDLTriacy/glycerol Composition in Humans with and Without Type 2 Diabetes." Diabetologia 52 (8): 1628–37. doi:10.1007/s00125-009-1405-9.