Logarithme népérien

Exercice 1

Exprimer en fonction de ln 3 chacun des nombres suivants

- 1. $\ln \frac{1}{9}$
- 2. $\ln 63 \ln 7$
- 3. $\ln \sqrt{27}$
- 4. $4 \ln 6 \ln 16$
- 5. $ln(3e^2)$

Exercice 2

Exprimer en fonction de ln 2 les nombres suivants.

- 1. ln32
- 2. $\ln \frac{1}{16}$
- 3. ln 40 ln 5
- 4. $\ln 4\sqrt{2}$
- 5. $4 \ln 2 \ln 8$
- 6. $\ln \frac{1}{1024}$

Exercice 3

Exprimer en fonction de ln 3 et ln 5 les nombres suivants.

- 1. $\ln \frac{27}{25}$
- 2. $4 \ln 15 + \ln 81$
- 3. $\ln 25 \ln 15$
- 4. $\ln 15\sqrt{25}$
- 5. $4 \ln 6 2 \ln 20$
- 6. ln 675

Exercice 4

Exprimer chacun des nombres suivants sous la forme $\ln A$ où A est un réel strictement positif.

- 1. $\ln 4 + \ln 5$
- 2. $4 \ln 6 \ln 7$

- 3. $\frac{1}{2} \ln 3 \ln 5$
- 4. $1 2 \ln 6$
- 5. $-\ln 2 + 1$
- 6. $3\ln 5 + 2\ln 3$
- 7. $-2\ln 3 + 2\ln 2$

Simplifier au maximum.

- 1. $\ln 8 \ln 2$
- 2. $4 \ln 6 + \ln 3$
- 3. $\ln 25 \ln 30 + \ln 10$
- 4. $\ln 50 + \ln 2 \ln 10$
- 5. $2 \ln 2 \ln 16 + \ln 128$
- 6. $3 \ln e + 2 \ln e^2$
- 7. $-2 \ln e^3 + \ln e^{-2} \ln e^2$
- 8. $3\ln(\frac{2}{e}) + \ln 2e^3 + 1$

Exercice 6

Résoudre dans \mathbb{R} les équations suivantes.

- 1. $\ln x = 5$
- 2. $\ln x + 4 = 0$
- 3. ln(3-2x) = 5
- 4. $2 \ln x 6 = 0$
- 5. $1 4 \ln x = \ln x 9$
- 6. $(\ln x)^2 = 1$

Exercice 7

Résoudre dans \mathbb{R} les équations suivantes.

- 1. $\ln(x+2) = \ln 2$
- 2. ln(2x-6) = 1
- 3. $4\ln(1-x) = 8$
- 4. $\ln(x+1) = \ln x$
- 5. ln(2x-3) = ln(x-2)
- 6. ln(2x) = ln(x+1)

Résoudre dans \mathbb{R} les équations suivantes.

- 1. $\ln(x+1) + \ln x = 0$
- 2. $\ln(3-x) = 3\ln 2$
- 3. $\ln(3-x) \times \ln(x+1) = 0$
- 4. $\ln(5x-6)-2\ln x=0$

Exercice 9

Résoudre dans \mathbb{R} les équations suivantes.

- 1. $\ln(x-2) \ln(x+1) = 2 \ln 2$
- 2. ln(x-2) + ln(x+3) = ln(5x-9)
- 3. ln(x-1) = ln(2-x)
- 4. $\ln(-x+1) + \ln(-x+2) = \ln(x+7)$
- 5. $2\ln(x+1) + \ln(x-1) = 3\ln x$
- 6. $\ln\left(\frac{x-1}{2x-1}\right) = 0$

Exercice 10

Résoudre dans \mathbb{R} les équations suivantes.

- 1. $(\ln x)^2 \ln x 2 = 0$
- 2. $(\ln(x-1))^2 \ln(x-1) 2 = 0$
- 3. $3(\ln x)^2 + \ln x 1 = 0$
- 4. $(\ln x)^2 6\ln x + 9 = 0$
- 5. $\ln x^2 6 \ln x + 4 = 0$

Exercice 11

Résoudre dans \mathbb{R} les équations suivantes.

- 1. ln(3x-4) = ln(2x+1)
- 2. ln(4-2x) = ln(x-1)
- 3. $(\ln x)^2 3\ln x + 2 = 0$
- 4. $2(\ln x)^2 5\ln x 3 = 0$
- 5. $ln(x^2 3x + 2) = 2ln(x + 4)$
- 6. $ln(2x^2 10x + 8) = ln(3x^2 3x 18)$

Résoudre dans \mathbb{R} les inéquations suivantes.

- 1. $\ln x \le 1$
- 2. $2 \ln x > \ln 3$
- 3. $4 \ln x + 6 \ge 0$
- 4. $3 \ln x 4 \le \ln x$
- 5. $(1,2)^n \ge 4 \quad n \in \mathbb{N}$
- 6. $(0,02)^n \ge 4 \quad n \in \mathbb{N}$
- 7. $(5,5)^n < 20 \quad n \in \mathbb{N}$
- 8. $(0,007)^n \le 0.001$ $n \in \mathbb{N}$

Exercice 13

Résoudre dans \mathbb{R} les inéquations suivantes.

- 1. $\ln(x+1) \le 0$
- 2. ln(x-6) > 1
- 3. $2\ln(3-x) < 1$
- 4. $\ln(x-2) > \ln x$
- 5. ln(x-2) > 1
- 6. $(1-3x) \ln x \ge 0$

Exercice 14

Résoudre dans \mathbb{R} les inéquations suivantes.

- 1. ln(5x + 20) > ln(3x 9)
- 2. $ln(8-2x) \le ln(5x-25)$
- 3. $ln(x^2-1) \le ln(2x+2)$
- 4. $ln(x^2 + 1) < ln(2x^2 + x + 2)$

Exercice 15

On considère le polynôme $P(x) = 2x^3 - 9x^2 + x + 12$.

- 1. Montrer que -1 est une racine de P(x).
- 2. En déduire une factorisation de P(x).
- 3. Résoudre dans \mathbb{R} l'équation P(x) = 0.
- 4. En déduire les solutions des équation et inéquation suivantes.
 - (a) $2(\ln(x))^3 9(\ln(x))^2 + \ln(x) + 12 = 0$.
 - (b) $2(\ln(2x+3))^3 9(\ln(2x+3))^2 + \ln(2x+3) + 12 = 0$.

(c)
$$2(\ln(x))^3 - 9(\ln(x))^2 + \ln(x) + 12 < 0$$
.

(d)
$$\ln(2x-3) + 2\ln(x-2) = \ln(-2x^2 + 19x - 24)$$

1. Résoudre dans \mathbb{R} l'équation $x^3 + 2x^2 - x - 2 = 0$ Exercice 16

- 2. En déduire la résolution des équations suivantes.
 - (a) $(\ln x)^3 + 2(\ln x)^2 \ln x 2 = 0$
 - (b) $(\ln(x-1))^3 + 2(\ln(x-1))^2 \ln(x-1) 2 = 0$
 - (c) $\ln(x^2 + 2x 1) = \ln 2 \ln x$

Exercice 17

Résoudre les systèmes d'équations suivants

1.
$$\begin{cases} -\ln x + 2\ln y = 1\\ 3\ln x - 5\ln y = -1 \end{cases}$$

2.
$$\begin{cases} 2\ln x - 3\ln y = 5 \\ \ln x + 2\ln y = -1 \end{cases}$$

3.
$$\begin{cases} x+y=2\\ \ln x - \ln y = \ln 3 \end{cases}$$

4.
$$\begin{cases} x + y = 3 \\ \ln x + \ln y = \ln 2 \end{cases}$$

1.
$$\begin{cases} -\ln x + 2\ln y = 1\\ 3\ln x - 5\ln y = -1 \end{cases}$$
2.
$$\begin{cases} 2\ln x - 3\ln y = 5\\ \ln x + 2\ln y = -1 \end{cases}$$
3.
$$\begin{cases} x + y = 2\\ \ln x - \ln y = \ln 3 \end{cases}$$
4.
$$\begin{cases} x + y = 3\\ \ln x + \ln y = \ln 2 \end{cases}$$
5.
$$\begin{cases} \ln(xy) = 4\\ (\ln x)(\ln y) = -12 \end{cases}$$

6.
$$\begin{cases} \ln(xy) = -2 \\ (\ln x)(\ln y) = -15 \end{cases}$$

7.
$$\begin{cases} \ln x + \ln y = 2\\ (\ln x)(\ln y) = -24 \end{cases}$$

6.
$$\begin{cases} \ln(xy) = -2 \\ (\ln x)(\ln y) = -15 \end{cases}$$
7.
$$\begin{cases} \ln x + \ln y = 2 \\ (\ln x)(\ln y) = -24 \end{cases}$$
8.
$$\begin{cases} 2\ln(x+3) + 3\ln(4-y) = 4 \\ 5\ln(x+3) - 3\ln(4-y) = -11 \end{cases}$$

9.
$$\begin{cases} \ln x^3 - \ln y^2 = -4 \\ \ln x + \ln y^4 = 1 \end{cases}$$

Exercice 18

Dans chaque cas déterminer l'ensemble de définition de la fonction f.

1.
$$f(x) = x + \ln(x+3)$$

2.
$$f(x) = \ln x + \ln(x+3)$$

3.
$$f(x) = \ln(-x^2 + 2x + 3)$$

4.
$$f(x) = \ln(x^2 - 1)$$

5.
$$f(x) = \frac{4}{\ln(x-2)}$$

6.
$$f(x) = \frac{1}{\ln x - 1}$$

7.
$$f(x) = \frac{\ln(1-x)}{x+2}$$

Calculer la dérivée de f dans chaque cas.

1.
$$f(x) = \ln x - x - 1$$

2.
$$f(x) = 2x + \ln(3x - 1)$$

3.
$$f(x) = x \ln x$$

4.
$$f(x) = \ln x \ln(2 - x)$$

$$5. \ f(x) = \frac{1}{\ln x}$$

$$6. \ f(x) = \frac{x+1}{\ln x}$$

7.
$$f(x) = (\ln x)^2$$

8.
$$f(x) = \ln(2x^2 + 3x)$$

9.
$$f(x) = \ln\left(\frac{2x+3}{3x-6}\right)$$

Exercice 20

Etudier et représenter graphiquement f dans chaque cas.

1.
$$f(x) = \ln x$$

2.
$$f(x) = \ln x^2$$

3.
$$f(x) = (\ln x)^2$$

4.
$$f(x) = x \ln x$$

5.
$$f(x) = x^2 \ln x$$

$$6. \ f(x) = x \ln|x|$$

$$7. \ f(x) = \frac{x}{\ln x}$$

$$8. \ f(x) = \frac{\ln x}{x}$$

$$9. \ f(x) = \ln(x-2)$$

10.
$$f(x) = \ln(4-2x)$$

Soit la fonction f définie par : $f(x) = \ln(-2x^2 + x + 1)$ et de représentation \mathscr{C} .

- 1. Montrer que le domaine de définition de f est $D = \left] -\frac{1}{2} \right.$, 1[.
- 2. Calculer les limites aux bornes de *D*.
- 3. Démontrer que pour tout $x \in D$, $f'(x) = \frac{-4x+1}{-2x^2+x+1}$
- 4. Dresser le tableau de variation de f.
- 5. Déterminer les points d'intersection de $\mathscr C$ avec l'axe des abscisses.
- 6. Déterminer l'équation de la tangente au point d'abscisse 0.

Exercice 22

Soit la fonction f définie par :

$$f(x) = \ln\left(\frac{3x - 6}{x}\right)$$
, de représentation \mathscr{C} .

- 1. Montrer que le domaine de définition de f est $D=]-\infty$, $0[\ \cup\]2$, $+\infty[$.
- 2. Calculer les limites aux bornes de D. Préciser les asymptotes à \mathscr{C} .
- 3. Démontrer que pour tout $x \in D$, $f'(x) = \frac{6}{x(3x-6)}$
- 4. Etudier le signe de f'(x) puis dresser le tableau de variation de f.
- 5. Déterminer le point A intersection de $\mathscr C$ avec l'axe des abscisses.
- 6. Déterminer l'équation de la tangente au point d'abscisse 3.
- 7. Montrer que le point I(1, ln 3) est un centre de symétrie de \mathscr{C} .
- 8. Construire \mathscr{C} .

Exercice 23

Soit la fonction f définie par : $f(x) = \frac{1}{x} + 2\ln(x+1)$, de représentation \mathscr{C} .

- 1. Déterminer le domaine de définition D de f.
- 2. Calculer les limites aux bornes de ce domaine. Préciser les asymptotes à \mathscr{C} .
- 3. Démontrer que pour tout $x \in D$, $2x^2 x 1$

$$f'(x) = \frac{2x^2 - x - 1}{x^2(x+1)}$$

- 4. Dresser le tableau de variation de f.
- 5. Construire \mathscr{C} .

Soit la fonction f définie par : $f(x) = (\ln x - 2) \ln x$, de représentation \mathscr{C} .

- 1. Déterminer le domaine de définition D de f.
- 2. Calculer les limites aux bornes de ce domaine.
- 3. Déterminer f'(x).
- 4. Dresser le tableau de variation de f.
- 5. Montrer que \mathscr{C} . coupe l'axe des abscisses en deux points A et B dont on précisera les coordonnées.
- 6. Déterminer les équations des tangentes en A et B.

Exercice 25 1. Soit la fonction f définie par : $f(x) = (\ln ax + b)$ où a et b sont des réels et \mathscr{C} sa représentation graphique.

- (a) Déterminer f'(x) en fonction de a et b.
- (b) Calculer les réels a et b pour que \mathscr{C} passe par le point I(1, 0) et admette en ce point une tangente (T) parallèle à la droite (D): y = -x.
- 2. Dans la suite on prend a = -1 et b = 2 et donc $f(x) = \ln(-x + 2)$
 - (a) Dresser le tableau de variation de f.
 - (b) Ecrire une équation de la tangente (T).
 - (c) Caluler $\lim_{x \to +\infty} \frac{f(x)}{x}$.

En déduire la nature de la branche infinie à \mathscr{C} .

- (d) Déterminer les coordonnées du point J intersection de $\mathscr C$ avec l'axe des ordonnées.
- (e) Tracer la courbe \mathscr{C} .

Exercice 26

Soit la fonction f définie par : $f(x) = x - 2 + \ln\left(\frac{x-2}{x+2}\right)$, de représentation \mathscr{C} .

- 1. Etudier le signe de $\frac{x-2}{x+2}$ en déduire le domaine de définition de f.
- 2. Calculer les limites aux bornes du domaine de définition et préciser les asymptotes à \mathscr{C} .
- 3. Calculer f'(x).
- 4. Dresser le tableau de variation de f.
- 5. Montrer que la droite d'équation y = x 2 est une asymptote à \mathscr{C}
- 6. Montrer que le point I(0, 2) est un centre de symétrie de \mathscr{C} .
- 7. Construire \mathscr{C} .

Soit la fonction f définie par : $f(x) = -\frac{1}{2}x + \ln\left(\frac{x-1}{x}\right)$, de représentation \mathscr{C} .

- 1. Résoudre l'inéquation $\frac{x-1}{x} > 0$
- 2. En déduire le domaine de définition D de f.
- 3. Calculer les limites aux bornes du domaine de définition.
- 4. Montrer que $f'(x) = \frac{-x^2 + x + 2}{2x(x-1)}$ pour $x \in D$.
- 5. Dresser le tableau de variation de f.
- 6. Montrer que la droite d'équation (Δ): $y = -\frac{1}{2}x$ est une asymptote oblique à \mathscr{C} .
- 7. Etudier la position de $\mathscr C$ par rapport à (Δ) sur les intervalles $]-\infty$, 0[et]0, $+\infty[$.
- 8. Montrer que le point $I\left(\frac{1}{2}, -\frac{1}{4}\right)$ est un centre de symétrie de \mathscr{C} .
- 9. Construire \mathscr{C} .

Exercice 28

Soit la fonction f définie par : $f(x) = \frac{1 + 2 \ln x}{2x}$, de représentation \mathscr{C} .

- 1. Déterminer le domaine de définition D de f.
- 2. Calculer les limites aux bornes du domaine de définition. On précisera les asymptotes éventuelles.
- 3. Calculer f'(x) pour $x \in D$.
- 4. Dresser le tableau de variation de f.
- 5. Déterminer le point A intersection de $\mathscr C$ avec l'axe des abscisses.
- 6. Déterminer l'équation de la tangente au point A.
- 7. Construire les tangentes, les asymptote et la courbe \mathscr{C} .