Notas de Aula Eletrônica Analógica I:

Região Polarização Diodo de Junção:

Região Polarização Diodo de Junção e Curvas Id x Vd:

Retificador de Meia Onda:

Retificador de meia onda Vpico = 17V (Vmax) Vs TV 27 Vcc = ov (Valor média) Vo 137

o até T/2 1ª Etapai

T/2 até T 20 Etapa

Cálculo Tensão média (CC) e Efica? (RMS) Carga (R):

$$V_{0_MED} = \frac{\sqrt{p_{1}(0_{-})}}{11}$$
 $V_{0_EF} = \frac{\sqrt{p_{1}(0_{-})}}{2}$
 $Y_{1} = 3.14159$

 $V_{0_MED} = \frac{\sqrt{p_{1}c_{0_}v_{s}}}{11}$ $V_{0_MED} = \frac{1}{1} = \frac{1}{3,14159} = 5.41v$ $V_{0_EF} = \frac{\sqrt{p_{1}c_{0_}v_{s}}}{2}$ VOLEF = 17 = 8,50

Retificador de Meia Onda:

Retificador de Onda completa em ponte (4 diodos):

Cálculo Tensão média (CC) e Eficaz (RMS) Carga (R):

$$V_{0-ME0} = 2x \frac{\sqrt{pi(0-vs)}}{11}$$

$$V_{0-EF} = V_{pico-vs}$$

$$V_{0-EF} = 17V_{0}$$

Retificador de Onda completa em ponte (4 diodos):

Equações para retiricador de meia onda e onda completa em ponte:

Ret. Meia Onda: VO_MED = VS-Pico VOLEF = VS_PICO VD-PICO = - VS-PICO IO-MED = VO-MED R To-pico = Vs-pico ID-MED= IO-MED ID-pico = To-pico

Ret. Ondo Completa Ponte: , VO_MED = 2 x VS_PICO VoleF = Vs.pico VD_Pico = -Vs_pico IO_MED = VO_MED I JOLEF = VOLEF To-pico = Vs-pico ID-MED = IO-MED ID-pico = Io-pico

Legenda dos parâmetros elétricos:

Parâmetro elétrico	Legenda
Vs	Tensão Senoidal fonte de Entrada
Vs_pico	Tensão de Pico da fonte de Entrada
Vo	Tensão de Saída
R	Resistor ou Carga
Vo_med	Tensão Média na Carga
Vo_ef	Tensão Eficaz na Carga
Vd_pico	Tensão de Pico no Diodo
lo_med	Corrente Média na carga
lo_ef	Corrente Eficaz na carga
lo_pico	Corrente de Pico na Carga
Id_med	Corrente Média no Diodo
Id_pico	Corrente de Pico no Diodo

Tensão ou Corrente Média = Tensão ou Corrente CC

Tensão ou Corrente Eficaz = Tensão ou Corrente RMS

Tensão ou Corrente de Pico = Tensão ou Corrente Máxima

 π (Pi) = 3,14159

Exercicio retificador de meia onda:

$$V_{o-MED} = \frac{V_{pico}}{T_{0}} = \frac{311}{314159} = 98,85$$

Exercicio retificador de onda completa em ponte:

$$\sqrt{6-150} = \frac{2 \times 311}{7,14155} = 198 \frac{1}{2}$$

Carga e Descarga de um capacitor:

Retificador com filtro capacitivo:

Ret Onda Comp. c/ Filtro Cap:

Equação para calcular a Capacitância necessária no retificador de meia onda:

$$C_1 = 2 \cdot \frac{P_{in}}{f_r \cdot \left(V_{C1\max}^2 - V_{C1\min}^2\right)}$$

C é o valor da capacitância em Farad;

Pin é a potência processada pelo retificador;

fr é a frequência da rede elétrica;

Vcmax é o valor máximo da tensão sobre o capacitor;

Vcmin é o valor mínimo da tensão sobre o capacitor;

Equação para calcular a Capacitância necessária no retificador de onda completa:

$$C_1 = \frac{P_{in}}{f_r \cdot \left(V_{C1\max}^2 - V_{C1\min}^2\right)}$$

Onde:

C é o valor da capacitância em Farad;

Pin é a potência processada pelo retificador;

fr é a frequência da rede elétrica;

Vcmax é o valor máximo da tensão sobre o capacitor;

Vcmin é o valor mínimo da tensão sobre o capacitor;

Resumo dos tópicos estudados em eletrônica analógica I - Parte I

- Tensão Senoidal => Rede Elétrica
- Chave ON/OFF
- Fusível Proteção Contra Sobre corrente
- Varistor Proteção contra sobre tensão
- Transformador (Trafo) Rebaixador de Tensão
- Diodo de Junção PN;
- Retificadores de meia onda e onda completa Aplicação de Diodos
- Filtro Capacitivo;
- Sinalização com LED;

Regulação de tensão:

Cono Regular a tensão a partir de A-B:

Regulação de tensão com diodo zener:

R
$$\forall i \in \mathcal{V}$$
 $\forall i \in \mathcal{V}$
 \forall

Exemplo prático Regulação de tensão com diodo zener: