MAP55672 (2024-25) — Case studies 4

The Multigrid method

(Lecturer: P. Fritzsch, mailto:fritzscp@tcd.ie)

Instructions

- Complete all parts of the assignment by **midnight on Monday 5th May 2025**. Create a git repository with your solutions and submit the link to me by e-mail.
- The git repository should include all source files and a summary pdf containing a description of solutions (incl. tables and plots, if necessary). The summary report should reflect your understanding of the material and contain a short description of your submitted code. As such it should contain all necessary information to (compile and) run your code for validation purposes.
- It is strictly forbidden to use code generating tools such as LLM's. Their use will result in 0 marks for this case study.

4 The MG method

The goal of this case study is to implement the Multigrid (MG) algorithm for the solution of a square linear system Ax = b for positive definite, symmetric regular matrices A and right hand sides $b \neq 0$.

4.1 Basics: The Poisson problem, again.

Consider the Poisson problem on a unit square $x = (x_1, x_2) \in \Omega = (0, 1)^2$ with function $f: \Omega \to \mathbb{R}$,

$$-\Delta u(x) = f(x)$$
, on interior of Ω
$$\Delta u(x) \equiv \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2}\right) u(x)$$
 $u(x) = 0$, on the boundary $\partial \Omega$,

and unknown solution function $u(x): \Omega \to \mathbb{R}$.

Use symmetric finite difference approximations to the partial derivatives appearing in the Laplacian Δ , to express above's partial differential equation with specified boundary conditions as a linear system Ay = b where y is a vector containing the solution function u(x) at discrete values of x = (ih, jh), $0 \le i, j \le N$ on a regular 2D grid.

You can take over your notation (introduction) from case study 3 and adopt details wherever necessary.

4.2 Serial implementation of a recursive V-cycle multigrid.

Implement a serial variant of the recursive V-cycle MG algorithm using the prescription:

Algorithm 1 x = Vcycle(Al, xl, bl, omega, nu, lmax)

```
1: xl = smooth(Al, xl, bl, omega, nu)

2: r_l = b_l - A_l x_l

3: b_{l+1} = R_{l+1}^l r_l

4: if (1+1) == 1 max then

5: |Solve: A_{l_{max}} x_{l_{max}} = b_{l_{max}}

6: else

7: |X_{l+1}| = Vcycle(Al, xl, bl, omega, nu, 1max)

8: x_l = x_l + P_l^{l+1} x_{l+1}

9: xl = smooth(Al, xl, bl, omega, nu)
```

where

- each step reduces the multigrid size by factor 2 in each dimension,
- $l \in \{1, ..., 1 \text{max}\}$ are consecutive multigrid levels with 1 max being the coarsest,
- smooth() implements ν iterations of weighted Jacobi (with parameter ω),
- A_l is the problem matrix discretisation at level l,
- R_{l+1}^l is the restriction matrix/mapping from level l to l+1, and
- P_l^{l+1} is the prolongation matrix/mapping from level l+1 to l.

Your implementation should

- 1. be able to run more than a single complete V-cycle,
- 2. contain necessary safety measures to avoid excessive values for algorithmic param.s,
- 3. have a known solver for the coarsest level solve,
- 4. have break point(s) where considered necessary to stop MG if converged,
- 5. be able to stop if divergent or too slow to reach target precision,
- 6. be efficient.

It is allowed to modify/adapt above's algorithm for your convenience and efficiency purposes. **Explain your implementation and the reasoning behind all your choices.**

4.3 Convergence of MG.

Solve the linear system defined in section 4.1 using the function $f(x) = 2\pi^2 \sin(\pi x_1) \sin(\pi x_2)$.

- 1. Try to solve the system in double precision arithmetic for fixed number of grid points $N = N_x = N_y = 128$ and varying numbers of $1 \text{max} \ge 2$ up to a fixed residual $r = 10^{-7}$. Monitor the total runtime, total no. of coarse level solves, and consecutive residuals r_l of your program.
- 2. Compare the performance of your program (iteration count, runtime, smallest residual) using N=16,32,64,128,256 with a 2-level MG setup in contrast to a max-level MG setup for which the coarsest level has N=8.

Present, interpret and discuss all your findings in an appropriate format. What do you consider as best practice for this particular problem?