Bayesian Optimization of Antibodies with a Generative Model of Evolving Sequences

Alan N Amin, *Nate Gruver, *Yucen Lily L, *Yilun Kuang, Hunter Elliott, Calvin McCarter, Aniruddh Raghu, Peyton Greenside, Andrew G Wilson

To build antibody drugs, we need to optimize "hits" to be strong binders that are stable in the human body

Optimization by iterative design is hard because most of the many mutations we can test do not help

 X_0

QVQLRESGPGLVKPSQTLSLTCTVSGGSFNSGGYYWNRIRQHPGNGLEWIGYMYYSGSTYYNPFIRSRVIISGDTSVNHFSLKLSSVTAADTAVYFCARGYRQSGYSSSWVVDYWGQGTLVNVSS

- Goal: iteratively suggest and measure $X_1, X_2, \ldots, X_{100}$ to have no immunogenicity, have high affinity, or have high melting temperature, $F(X_N)$
- Possible strategies: random mutations, avoid mutations that don't often appear in humans
- Challenge: search space is huge

Ideally we could build a prior on the objectives F(X) of binding strength and stability

Optimal design strategy: suggest X_{N+1} based on $p(F | X_1, ..., X_N)$

But we don't have this data!

In principle, we can learn from how our body builds strong and stable binders

In principle, we can learn from massive data about human clonal families in the OAS database

Observed Antibody Space (OAS):

 2×10^9 heavy chains

 4×10^8 light chains

FastBCR (Wang K et al 2023)

Observed Clonal Space:

 9×10^5 heavy clonal families

 3×10^4 light clonal families

In theory, we can build a prior over ${\cal F}$ by looking at the abundance of sequences in each clone

Distribution of sequences in a clonal family:

Stronger, more stable binders are more abundant:

$$p(X | \text{clone}) = \text{Fitness}(X) =: F(X)$$
 (Like protein families!)

$$F_{2}$$

$$F_{3}$$

$$F_{1}$$

$$F_{3}$$

$$F_{4}$$

$$F_{5}$$

$$F_{6}$$

$$F_{7}$$

$$F_{1}$$

$$F_{2}$$

$$F_{3}$$

$$F_{4}$$

$$F_{5}$$

$$F_{7}$$

$$F_{1}$$

$$F_{2}$$

$$F_{3}$$

$$F_{4}$$

$$F_{5}$$

$$F_{6}$$

$$F_{7}$$

$$F_{1}$$

$$F_{2}$$

$$F_{3}$$

$$F_{4}$$

$$F_{5}$$

$$F_{6}$$

$$F_{7}$$

$$F_{1}$$

$$F_{2}$$

$$F_{3}$$

$$F_{4}$$

$$F_{5}$$

$$F_{7}$$

$$F_{7}$$

$$F_{8}$$

$$F_{1}$$

$$F_{2}$$

$$F_{3}$$

$$F_{4}$$

$$F_{5}$$

$$F_{7}$$

$$F_{7}$$

$$F_{8}$$

$$F_{8}$$

$$F_{9}$$

$$F_{1}$$

$$F_{1}$$

$$F_{2}$$

$$F_{3}$$

$$F_{4}$$

$$F_{5}$$

$$F_{7}$$

$$F_{8}$$

$$F_{8}$$

$$F_{1}$$

$$F_{2}$$

$$F_{3}$$

$$F_{4}$$

$$F_{5}$$

$$F_{7}$$

$$F_{8}$$

$$F_{8}$$

$$F_{9}$$

$$F_{1}$$

$$F_{1}$$

$$F_{2}$$

$$F_{3}$$

$$F_{4}$$

$$F_{5}$$

$$F_{7}$$

$$F_{8}$$

$$F_{8}$$

$$F_{8}$$

$$F_{9}$$

$$F_{1}$$

$$F_{1}$$

$$F_{2}$$

$$F_{3}$$

$$F_{1}$$

$$F_{2}$$

$$F_{3}$$

$$F_{4}$$

$$F_{5}$$

$$F_{5}$$

$$F_{7}$$

$$F_{8}$$

$$F_{1}$$

$$F_{2}$$

$$F_{3}$$

$$F_{4}$$

$$F_{5}$$

$$F_{7}$$

$$F_{8}$$

$$F_{8}$$

$$F_{9}$$

$$F_{1}$$

$$F_{1}$$

$$F_{2}$$

$$F_{3}$$

$$F_{4}$$

$$F_{5}$$

$$F_{7}$$

$$F_{8}$$

$$F_{9}$$

$$F_{1}$$

$$F_{1}$$

$$F_{2}$$

$$F_{3}$$

$$F_{4}$$

$$F_{5}$$

$$F_{8}$$

$$F_{9}$$

$$F_{1}$$

$$F_{2}$$

$$F_{3}$$

$$F_{4}$$

$$F_{5}$$

$$F_{5}$$

$$F_{7}$$

$$F_{8}$$

$$F_{9}$$

$$F_{9}$$

$$F_{1}$$

$$F_{2}$$

$$F_{3}$$

$$F_{4}$$

$$F_{7}$$

$$F_{8}$$

$$F_{9}$$

$$F_{9}$$

$$F_{1}$$

$$F_{1}$$

$$F_{2}$$

$$F_{3}$$

$$F_{4}$$

$$F_{5}$$

$$F_{7}$$

$$F_{8}$$

$$F_{9}$$

$$F_{9$$

CloneLM learns the distribution of clonal families

CloneLM (400 M transformer) trained on:

seq1<separator>seq2<separator>seq3<separator>...

Clo	nal
fan	nily

QVQLRESGPGLVKPSQTLSLTCTVSGGSFNSGGYYWNRIRQHPGNGLEWIGYMYYSGSTYYNPFIRSRVIISGDTSVNHFSLKLSSVTAADTAVYFCARGYRQSGYSSSWVVDYWGQGTLVNVSS

QVQLRESGPGLVKPSQTLSLTCTVSGGSINSGGYYWNWIRQHPGKGLEWIGYMYYSGSTYYNPFLRSRVIISADTSENHFSRKLSYVTAADTAVYFCARGYRQSGNSSSWVFDYWGQGTLVNVSS QVQLRESGPGLVKPSQTLSLTCTVSGGSINSGGYYWNWIRQHPGKGLEWIGYMYYSGSTYYNPFLRSRVIILADTSENHFSRKLSSVTAADTAVYFCARGYRQSGYSRSWVFDYWGQGTLVNVSS QVQLRESGPGLVKPSQTLSLTCTVSGGSINSGGYYWNWIRQHPGKGLEWIGYMYYSGSTYYNPFLSSRLIISADTPENHFSRRLSSVTAADTAVYFCATGYPQSGYSSSWVFNYWGQGTLVNVSS

- Sample 1
- QVQLQESGPRLVKPSQTLSLTCTVSGGSLNSGGYYWSWFRQPPGKRLEWIGYMYHTGNTYYNPSLKCRVTISGDTSKSHFPLRLTAVTAADTAAYYCARGYRQGGYSSSWLADYGGQGTLGADSS QVQLQESGPRLVKPSQTLSLTCTVSGGSLNSGGYYWGWIRQPPGKGLEWIGYMYHTGNTYYNPSLKSRVTISGDTSKNHFSLRLTSVTAADTAVYYCARGYRQGSYSSSWLADYWGQGTLVTVSS QVQLRESGPGLVKPSQTLSLTCTVSGGSFNSGGYYWNWIRQHPGKGLEWIGYMYYSGSTYYNPSLRSRVTISGGTSVNPFSLKLSSVTAADTAVYFCARGYRHSGYSSSLLVDYWAEETVVNVSS
- Sample 2
- QVQLRESGPGLVKPSQTLSLTCTVSGGSFNSGGYYWNWIRQHPGKGLEWIGYMYYSGSTYYNPYLRSRVIISGDTSENQFSLKLSSVTAADTAVYLCPRGYRQSCYSSSWVFDYWGQGTLVTVSS QVQLRESGPGLVKPSQTLSLTCTVSGGSFNSGGYYWNWIRQHPGKGLEWIGYMYYSGSTYYNPSLRSRVIISGDTSENHFSLKLSSVTAADTAVYFCARGYRQSGYSSSWVLDYWGQGTLVTVSS QVQLRESGPGLVKPSQTLSLTCTVSGGSFNSGGYYWNWIRQHPGKGLEWIGYMYYSGSTYYNPSLRSRVIISGDTSENHFSLKLSSVTAADTAVYFCARGYRQSGYSASWVFDYWGQGTLVTVSS
- Sample 3
- QVQLRESGPGLVKPSQTLSLTCTVSGGSFNSGGYYWNWIRQHPGNGLEWIGYMYYSGSTYYNPFLKSRVIISGDTSVTHFSLKLSSVTAADTAVYFCARGYRQSGSSSSWVIDYWGQGTLVTVSS QVQLRESGPGLVKPSQTLSLTCTVSGGSFNSGGYYWNWIRQHPGNGLEWIGYMYYSGSTYYNPFLMSRVIIRGETSVKHFSLKLSSVTAADTAVYFCARGYSQSSSSWVIDYWGQGTLVTVSS QVQLRESGPGLVKPSQTLSLTCTVSGGSFNSGGYYWNWIRQHQGDGLEWIGYLYYSGSTYYNPFVKRRVIISGDKSVNHFSLKLSSVTAADTDVYFCARGYGQSGYSSAWVIDYWGQGTLVTVSS

In theory, CloneLM performs approximate Bayesian inference over evolutionary landscapes

Predictions should integrate over F:

Predictions should converge to F:

$$X_{0}$$

$$X_{1}$$

$$\vdots$$

$$X_{N+1} \sim \int p(X_{N+1} | \text{clone}) dp(\text{clone} | X_{1:N})$$

$$\approx p(X_{N+1} | \text{clone})$$

Given more sequences from a clonal family, CloneLM predictions converge to p(X | clone)

Predictions converge:

Predictions approach p(X | clone):

The CloneLM prior over fitness functions optimizes antibodies to become more human-like

Sample possible fitness landscapes F:

Optimize over three mutations with respect to F:

To update our belief in F, we assume measurements in the lab are proportional to fitness

Experiment:

Posterior:

$$p(F|X_0, (X_n, Y_n)_n) \propto p(F|X_0) \prod_n p(Y_n|F(X_n))$$

Likelihood:

$$p(Y|F(X)) \sim \mathcal{N}(\beta F(X) + C, \sigma^2)$$

Uniform prior on β , C

How do we sample from the posterior?

Importance sample (naive):

1. Sample many F from prior $F \sim p(F | X_0)$

2. Resample based on likelihood

$$\prod_{n} p(Y_n | F(X_n))$$

We inform our sampling with twisted stochastic Monte Carlo

tSMC efficiently samples from the posterior

Condition on real T_m measurements

CloneBO efficiently optimizes a function from its prior

CloneBO efficiently optimizes for binding and stability in silico

$$F(X) =$$
 neural network trained on thousands of sequences from iterative design experiment

Ablations demonstrate that CloneBO efficiently optimizes sequences by doing accurate inference

CloneBO efficiently optimizes for binding and stability in vitro

Given X_0, \ldots, X_{1000} , measurements for binding and stability, design X_{1001}

Designs are predicted to express:

Designs improve stability:

Designs outperform in binding:

Future directions

More realistic prior Learn direction of evolution

Build a prior on structure Structure from clonal families

Acknowledgments

NEW YORK UNIVERSITY

Nate Gruver

Yilun Kuang

Lily Li

Andrew G Wilson

Calvin McCarter

Hunter Elliott

Aniruddh Raghu

Peyton Greenside

