Equilibria for Broadcast Range Assignment Games in Ad-Hoc Networks

P. Crescenzi¹ M. Di Janni² A. Lazzoni¹ P. Penna³ G Rossi² P. Vocca⁴

¹University of Florence

²University of Rome II

³University of Salerno

⁴University of Lecce

May 2005

Outline

- Introduction
 - Ad-Hoc Networks
 - Model and assumptions
 - Related works
- Our Contribution
 - Analytic Results
 - Experimental Results
- 3 Conclusion
 - Open Question

Ad-Hoc networks: main features

- Lack of fixed infrastructure: self-organized network with highly cooperative nodes
- Lack of central authority: altruistic behavior of the nodes cannot be assumed
- Transmission power:

$$P_{v} \geq d(v,t)^{\alpha} \times \gamma$$

where α is the distance-power gradient (usually, between 1 and 6) and $\gamma \geq$ 1 is transmission quality parameter

Social behavior

- Social cost: the overall power consumption
- Selfish behavior: each station prefers to reduce its own costs
- Cooperation via payments
 - Consider n stations equally spaced on a line and the leftmost station s willing to perform a broadcast operation
 - A single-hop transmission would cost $O(n^{\alpha})$ to s, while a multi-hop transmission would globally cost O(n) (O(1) to each station)
 - s may decide to "pay" the energy spent for forwarding the message

Managing the mobility

- Using traces
 - Advantages: realistic movement behavior
 - Disadvantages: confinement to a specific scenario, tracing of users is complicated
- Mobility models
 - Random way-point model, random walk, and Brownian motion: assume that each node moves freely and independently, and are based on rather simple assumptions regarding the movement behavior
 - Obstacle model: tries to take into account pathways and obstacles, and is based on the construction of the Voronoi diagram corresponding to the vertices of a set of polygonal obstacles

Broadcast Range Assignments

- Range assignment: function $r: S \to \mathbb{R}^+$, that specifies the *transmission range* of each station (that is, the maximum distance at which a station can transmit)
- Transmission graph: $G_r = (S, E_r)$, where $(v, t) \in E_r$ if and only if $d(v, t) \le r(v)$
- Broadcast range assignment: G_r contains a directed spanning tree rooted at source station
- Cost of BRA:

$$cost(r) = \sum_{u \in S} r(u)^{\alpha}$$

BRA games and Nash equilibria

- Station strategy: choosing its own transmission range
- Station benefit: due, for example, to the implementation of the required connectivity or to the payments from other stations
- Utility function:

$$u_{\nu}(r) = b_{\nu}(r) - r(\nu)^{\alpha}$$

(observe that it depends on the strategy of all stations)

Nash equilibrium:

$$u_{\nu}(r) \geq u_{\nu}(r')$$

for every v and every r' obtained from r by varying r(v)

• ϵ -approximate if $\epsilon \cdot u_v(r) \ge u_v(r')$

Payment policies

- Payment-free: no payments are allowed (clearly, a broadcast range assignment will be a Nash equilibrium if at least one station is penalized)
- Who is paid
 - Edge-payments: only the last station in the path
 - Path-payments: all the stations in the path
- How much is paid
 - No-profit: the cost of station u is shared among all the stations using u
 - Profit: each station using u pays the cost of u
- ullet Payment ϵ -approximate Nash equilibrium

$$p_{\nu}(r) \leq p_{\nu}(r')$$

for every v and every r' obtained from r by varying r(v)

Broadcast Range Assignment

- Complexity: NP-hard for all $\alpha > 1$ [Clementi et al., 2001] (trivially in P, if $\alpha = 1$)
- MST-based algorithm: 6-approximation algorithm, for $\alpha \geq 2$ (tight analysis) [Ambühl, 2005]
 - No approximation algorithm is known for 1 $< \alpha <$ 2
- Random instances: [Ephremides et al., 2000], [Klasing et al., 2004], [Penna and Ventre, 2004]
- Other range assignments problems: strongly connected communication graphs, bounded number of hops, stations located on the d-dimensional Euclidean space, for d > 2, more general settings considering non-geometric instances modeled by arbitrary weighted graphs, and symmetric wireless links

Nash equilibria and network design games

- Network design games: each station offers to pay an arbitrary fraction of the cost of building/maintaining a link of a network, and the corresponding link "exists" if and only if enough money is collected from all agents [Anshelevich et al., 2003-2004]
- NDG and wireless networks
 - Point-to-point and strong connectivity requirements [Eidenbenz et al., 2003]
 - Multicast games in general ad-hoc networks [Bilò et al., 2004]

Summary of the results

	Profit	No-profit
Edge-Payment	A P-time computable Nash equilibrium that is a 6-approximation of the optimum	
Path-Payment	A P-time computable payment ϵ -approximate Nash equilibrium that is a 6(1 + $\frac{2}{1-\epsilon}$)-approximation of the optimum	A P-time computable payment 6-approximated Nash equilibrium that is a 6-approximation of the optimum

Algorithm for no-profit models

Computes a directed minimum spanning tree of S rooted at s. Then, every station, in turn, tries to decrease the amount of its payments

```
procedure findNE(S, s)
T_0 \leftarrow \text{mst}(S);
compute T by rooting T_0 at s and by orienting all its edges towards the leaves;
for v \in S - \{s\} do
          p_T(v) \leftarrow the sum of all payments due by v according to T and to the payment model;
while T does not represent a Nash equilibrium do {
          choose v \in S - \{s\};
          m \leftarrow p_T(v);
          T_2 \leftarrow T;
          for x \in S - \{s\} and x not belonging to the subtree of T rooted at v \in S
                    let u be the father of v in T:
                    T_1 \leftarrow E(T) - \{(u, v)\} \cup \{(x, v)\}
                    if p_{T_1}(v) < m then
                             m \leftarrow p_{T_1}(v);
                             T_2 \leftarrow T_1;
          if p_T(v) < m then
                    T \leftarrow T_2:
return T:
```

Convergence speed results: random instances

For each n, 1000 instances have been randomly generated according to the uniform distribution.

	1		2		3		4		5		6		
n	е	р	е	р	е	р	е	р	е	р	е	р	
10	40.9	12.0	50.9	69.5	7.5	16.8	0.6	1.5	0.0	0.1	0	0	
100	0	0	46.4	5.2	48.9	65.9	4.6	25.4	0.1	3.3	0	0.2	
200	0	0	24.1	0.1	67.9	50.5	7.8	40.8	0.2	7.2	0	1.3	
300	0	0	10	0	77.2	33.9	12.3	54	0.4	9.6	0.1	1.7	
400	0	0	4.4	0	79.6	23.8	15.5	55.4	0.5	16.5	0	3.7	
500	0	0	3.1	0	76.9	15.5	19.1	61.6	0.9	17.8	0	3.5	
1000	0	0	0.1	0	62.4	2.6	34.7	58.1	2.7	30.3	0.1	6.9	
1500	0	0	0	0	50.9	1.3	46.3	41.8	2.7	45.3	0.1	10.4	
2000	0	0	0	0	41.3	0.2	54	33.4	4.3	45.7	0.4	14.9	

For a negligible number of instances the required rounds are in the interval 7 - 12. No instance require more than 13 rounds.

The two scenarios of the obstacle mobility model

Convergence speed results: mobility model instances

For each *n*, 100 instances have been generated according to the obstacle mobility model.

		1		2 3		4		5		6		7		8			
n		e	р	e	р	е	р	e	р	e	р	е	р	е	р	е	p
10	Scen. 1	45	15	50	66	5	19	0	0	0	0	0	0	0	0	0	0
	Scen. 2	44	12	50	72	5	15	1	1	0	0	0	0	0	0	0	0
100	Scen. 1	1	0	75	42	20	50	4	8	0	0	0	0	0	0	0	0
	Scen. 2	1	0	72	8	26	67	1	20	0	4	0	1	0	0	0	0
200	Scen. 1	0	0	65	39	28	55	6	5	1	1	0	0	0	0	0	0
	Scen. 2	1	0	61	4	33	65	5	27	0	3	0	1	0	0	0	0
300	Scen. 1	0	0	70	37	25	58	3	5	2	0	0	0	0	0	0	0
	Scen. 2	0	0	65	4	28	64	6	25	1	7	0	0	0	0	0	0
400	Scen. 1	0	0	67	29	27	56	6	14	0	1	0	0	0	0	0	0
	Scen. 2	0	0	60	1	35	55	4	39	1	4	0	1	0	0	0	0
500	Scen. 1	0	0	93	22	7	64	0	13	0	1	0	0	0	0	0	0
	Scen. 2	0	0	53	1	46	57	1	35	0	7	0	0	0	0	0	0
1000	Scen. 1	0	0	69	28	23	66	8	5	0	0	0	1	0	0	0	0
	Scen. 2	0	0	88	0	12	51	0	39	0	9	0	0	0	0	0	1
1500	Scen. 1	0	0	91	20	7	76	1	4	1	0	0	0	0	0	0	0
	Scen. 2	0	0	66	1	33	45	1	41	0	13	0	0	0	0	0	0
2000	Scen. 1	0	0	68	69	22	26	8	5	2	0	0	0	0	0	0	0
	Scen. 2	0	0	3	0	56	1	41	70	0	25	0	3	0	1	0	0

Quality of the solution: random instances

Quality of the solution: mobility model instances

No-profit edge-payment model

There exists a polynomial time computable (approximated) Nash equilibrium that is an approximation of the optimal solution