

武汉驿天诺科技有限公司 蔡衡 2024.07

- 01/硅光芯片市场
- 02/硅光芯片研发/生产体系
- 03 硅光芯片封测装备的重要性
- 04/硅光芯片封测面临的业务挑战
- 05 硅光测试及封装的技术和产品解决方案

1.硅光芯片市场

硅光技术三大应用领域: **连接、传感和计算**

光连接 数通&电信的光通信

- ① 数据中心
- ② 5G基础设施
- ③ Optical I/O

光传感 环境测量或识别

- ① 汽车激光雷达
- ② 可穿戴传感

光计算 新一代高性能计算

- ① 光子计算
- ② 量子通信

国际知名机构yole预测:

- 观点1: 2022年到2028年,全球硅光芯片市场规模年复合增长率预计高达44%,总市值高达6.13亿美金,其中数据中心的市值高达5.68亿美金
- ➢ 观点2:除数据中心之外,其他技术细分领域如光电共 封装(CPO)、光引擎(OIO)、激光雷达(SiPh FMCW)等, 年复合增长率预计也均会超过15%,整体增长潜力巨大

数据中心的市场规模占比**90**%以上, 人工智能技术(AI/ML)牵引硅光芯片从研发加速进入量产

● 硅光子市场规模与增长趋势预测

参考资料: https://www.yolegroup.com/strategy-insights/the-photonics-world-is-changing/

2.硅光芯片研发/生产体系: 简介

需求明确	方法成熟	关注与突破	重点整合
PR1 市场调研 PR2 可行性研究	PR3 产品设计	PR4 技术开发 PR5 系统验证	PR6 量产

封测技术: 唯一贯通研发全流程的产品级重要验证手段

优秀的封测体系不仅可以加速产品迭代、降低芯片入市周期,也可以降低研发和生产成本、提升芯片竞争力

2.硅光芯片研发/生产体系: 简介

作为芯片入市的最后一道门槛 测试与封装的具体工作职责包含哪些???

2.光芯片研发/生产体系:测试及封装的职责

PR1 市场调研 PR2 可行性研究 PR3 产品设计 PR4 技术开发

PR5 系统验证

量产

PR6

研发:

市场调研报告	技术方案确认	芯片设计	工艺开发	系统验证	量产
测试与封装:		可测试性设计DFT	全方位性能摸底	器件封装	持续性交付测试
		测试方案设计	POR工艺稳定性验证	模块性能测试	生产质量监控
		测试装备验证	芯片可靠性验证	系统可靠性验证	
		数据与分析	数据与分析	数据与分析	数据与分析
		设计可靠性验证	工艺可靠性验证	量产可靠性验证	持续可靠性验证
质	质量保障:	DFEMA落地	PFMEA落地	质量检查	产线稽查
		问题单闭环	问题单闭环	问题单闭环	问题单闭环

总结:测试及封装是以不良品筛选为目的,以数据收集和分析为核心职责,已经无疑是硅光技术竞争力提升的关键基础

3.硅光芯片封测及其设备的重要性

- 产品的数据收集和分析离不开测试及封装设备。
- 准确并且可重复的测试数据是设计和制程优化的关键参考依据,也是良率提升,成本优化的核心方向

4.硅光测试及封装的挑战

性能解嵌和标准缺失成为硅光测试及封装的最大挑战

5.解决方案: 硅光测试及封装技术

4标准缺失

- ▶ 偏振态遍历技术
- > 保偏光纤耦合技术
- > 建立测试算法库
- > 支持用户自定义算法
- ▶ 快捷仪表更换
- ▶ 标准完善

3异常处理

- ▶ 链路校准
- > 多传感器集成

- > 线性回归拟合
- > 多项式拟合
- 用于辅助数据分析的标记、存储、防呆

技术

难点

5.1解决方案: 硅光晶圆级的测试系统

晶圆测试是降本增效的第一选择

- 晶圆测试系统不仅具备高低温以及高精度的自动化测试能力
- ▶ 目前也拥有晶圆级端面耦合、RF测试以及单die的调测能力等, 测试范围覆盖OO/OE/EE/RF

产品特点

应用广泛	· 支持硅光、薄膜铌酸锂、III-V等领域
高精度与重复性	· pA级超低漏电以及fF级超低电容测量
	· 插损测试重复性优于0.3dB
高自动化 高自动化	· 高效的视觉算法 / 支持自动扎针、自动耦光、自动清针
同日初化	• 支持数据库定制
	• -60℃~300℃全场景测试,超低温不凝露
	· 支持DC、RF以及不同模斑的GC/EC光耦合
	· 支持光栅以及端面耦合方式
灵活性	·兼容单模光纤、透镜光纤、多通道FAU、多通道光探针等
	· WLR以及其他研发验证
	· 支持单芯片测试
	・晶圆尺寸最大支持12寸,向下兼容至2寸

● 图源: 电科思仪

● 图源: 驿天诺

● 图源: www.analogphotonics.com

5.2解决方案: 光芯片自动上下料测试系统

光芯片自动上下料是芯片级测试产能提升的关键手段之一:

- ▶ 光芯片自动上下料测试系统采用蓝膜/Gel-Pak等自动上下料技术
- ▶ 搭配高精度光纤自动耦合与位移平台以及高效的视觉定位算法
- ▶ 可以实现芯片全自动OO/OE/EE/RF测试,大大提高测试效率及精度

产品特点

应用广泛	•	支持硅光、薄膜铌酸锂、III-V等领域
高精度与重复性	•	插损测试重复性优于0.2dB
	•	高效的视觉算法,支持自动扎针、自动耦光、自动清针
高自动化		支持手动以及自动上下料
	•	支持数据库定制
	•	支持bar条、单die、蓝膜等
灵活性	•	可定制芯片分选、缺陷检查功能
	•	可定制测试算法、仪表选型等

5.3解决方案: 硅光全自动缺陷检测系统

缺陷检测是不良品筛选,产品可靠度提升的必备一环:

- ▶ AOI引入成熟的机器学习系统,识别多种不同类型的常见缺陷,可以满足深度学习的模型训练需求
- ▶ 支持12英寸及以下的晶圆,也可以定制基于蓝膜、芯片盒等多种不同载体下的芯片缺陷检测功能

产品特点

应用广泛	・支持硅光、薄膜铌酸锂、III-V、SiC、GaN等领域
高精度与重复性	· 最小检测缺陷为0.5µm · 最大误检率为1%
高自动化	・ 支持自动上下料・ 支持自动聚焦和微分干渉
灵活性	· 支持12寸及以下晶圆、蓝膜、芯片盒等多种形态检测 · 机器学习系统,支持有图形和无图形缺陷检测 · 支持明场和暗场检测 · 可检测污点、划痕、凹凸、断裂、异色、尺寸误差等

5.4解决方案: 光电耦合封装系统

封装耦合是器件生产及应用的关键工序:

- 光器件的应用场景众多, 封装形态不一, 不同产品的工序也是差异较大
- ▶ 总结光纤耦合、lens耦合、芯片互耦合等三大器件耦合方式
- ➤ 实现从手动到全自动点胶固化的定制化设备开发流程,耦合重复性一般 优于0.3dB

产品特点

应用广泛	· 支持硅光、薄膜铌酸锂、III-V等领域		
高精度与重复性	· 耦合重复性优于0.3dB		
高自动化	• 支持手动、半自动、全自动开发		
同日初化	• 支持自动点胶固化		
灵活性	· 支持管壳内 光纤耦合、Lens耦合、芯片互耦合等场景		
火泊任	· 支持SMF、PMF、FAU耦合		

5.5解决方案: 光电器件可靠性与老化测试系统

老化与可靠性是光芯片寿命的重要保障:

- ▶ 面向InP/GaAs等第二代化合物半导体的LD/SOA/EA/PD等
- ▶ 支持大功率定制和在线光功率监测

产品特点

应用广泛	・ 支持Laser、SOA、EA、PD等老化
高容量	・最高支持1280工位(根据样品形态定制)
灵活性	・ 支持大功率定制(直流和脉冲模式)・ 支持在线光功率测试・ 模块化设计,可扩展性强
标准符合性	· 符合GR468协议要求 · 符合JESD22协议要求

5.6总结: 硅光芯片测试及封装解决方案

▶ 硬件层面: 精准匹配硅光和第三代半导体的测试与封装设备需求

▶ 软件层面:自研自动化算法

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
工艺制造	缺陷检测	芯片分选	测试筛选	器件封装
检测需求√	检测需求√	检测需求√	检测需求√	检测需求√
Inline EE测试系统	自动晶圆缺陷检测系统	测试分选系统	晶圆测试系统	自动耦合系统
Inline OE测试系统	Elifa de con		芯片测试系统	
			激光器老化系统	
			高功率测试系统	
			可靠性服务	
	● 图源: 驿天诺	E m1200		

欢迎探讨

武汉驿天诺科技有限公司 蔡衡 2024.07