

FPV Tutorübung

Woche 3
MiniJava 2.0, Loop Invariants

Manuel Lerchner

09.05.2023

<u>Quiz</u>

Passwort:

In the lecture, the weakest precondition operator has been defined for all statements of MiniJava. In this assignment, we consider an extension of the MiniJava language, which provides four new statements:

1. rand x:

Assigns a random value to variable x,

2. $x = either e_0, \ldots, e_k$:

Assigns one of the values of the expressions e_0, \ldots, e_k to variable \mathbf{x} non-deterministically,

3. x = e in a, b:

Assigns the value 1 to variable x, if the value of expression e is in the range [a,b] and 0 if e is not in the range or the range is empty (a>b),

4. stop:

Immediately stops the program.

Define the weakest precondition operator $\mathbf{WP}[\![\ldots]\!](B)$ for each of these statements. ($\mathsf{In} + \mathsf{RrMS} + \mathsf{In} +$

Beispiele zum Testen:

$$WP[rand x;](B) =$$

WP[x = either
$$e_0$$
, $e_1 \dots e_k$](B) =

$$WP[x e in a, b](B) =$$

$$WP[stop](B) =$$

- 1. Discuss the problem that arises when computing weakest preconditions to prove Z.
- 2. How can you use weakest preconditions to prove Z anyway?
- 3. Try proving Z using the the loop invariants $x\geq 0$ and $i=0 \land x=1 \land n=0$ at the end of the loop body and in particular discuss these questions:
 - \circ a) How has a useful loop invariant be related to Z?
 - o b) What happens if the loop invariant is chosen too strong?
 - o c) What happens if the loop invariant is chosen too weak?
 - d) Can you give a meaningful lower and upper bound for useful loop invariants?
- 4. Retry proving Z using the loop invariant x=i! (again at the end of the loop body) and improve this invariant until the proof succeeds.

3. Try proving Z using the the loop invariants $x \geq 0$ and $i = 0 \land x = 1 \land n = 0$ at the end of the loop body and in particular discuss these questions:

3. Try proving Z using the the loop invariants $x \geq 0$ and $i = 0 \land x = 1 \land n = 0$ at the end of the loop body and in particular discuss these questions:

4. Retry proving Z using the loop invariant x = i! (again at the end of the loop body) and improve this invariant until the proof succeeds.

T03: Two b, or Not Two b

Prove Z using weakest preconditions.

T03: Two b, or Not Two b

Tipps zum finden von Loop Invarianten:

https://ttt.in.tum.de/recordings/Info2 2017 11 24-1/Info2 2017 11 24-1.mp4

Beispieltrace: n=3							
Variable \ Schleifendurchgang	0	1	2	3	4	5	6
x	0	2	5	7	10	12	15
i	0	0	1	1	2	2	3
b	0	1	0	1	0	1	0

