In the claims:

- 1. (Currently Amended) A method for use in producing epothilones and analogs and derivatives thereof, comprising:
- (a) performing an aldol condensation of a first compound selected from the formulas:

$$R_1$$
 R_2
 R_3
 R_3
 R_4
 R_4
 R_5
 R_5
 R_5
 R_5
 R_5
 R_6
 R_7
 R_8
 R_8
 R_8
 R_9
 R_9

and stereoisomers thereof, with a second compound selected from the formulas:

and stereoisomers thereof, thereby to form a third compound selected from the formulas:

and

and stereoisomers thereof, wherein Z is selected from OR₅ and

wherein R_1 , R_2 , R_3 and R_4 are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; wherein R_5 , R_6 , R_7 and R_8 are each selected from H and a protecting group; wherein R_{13} is H or a metal salt; and wherein M is an alkali metal salt or transition metal salt; and

(b) performing a macrolactonization of the third compound thereby to form a fourth compound selected from the formulas:

and stereoisomers thereof, wherein A is selected from

R₅O

and

:_wherein R₁, R₂, R₃ and R₄ are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; and wherein R₅, R₇ and R₈ are each selected from H and a protecting group.

- 2. (Original) A method according to claim 1 wherein R_1 , R_3 and R_4 are each methyl, and R_2 is H or methyl.
 - 3. (Original) A method according to claim 2 wherein R_2 is H.
 - 4. (Original) A method according to claim 2 wherein R₂ is methyl.
- 5. (Original) A method according to claim 2 wherein at least one of R_5 R_8 is TBS.

- 6. (Original) A method according to claim 2 wherein R_6 , R_7 and R_8 are each TBS.
 - 7. (Original) A method according to claim 2 wherein R_5 is PMB.
 - 8. (Original) A method according to claim 2 wherein R₆ is SEM.
- 9. (Original) A method according to claim 1 wherein R_5 is selected from PMB, DPS and TBS; wherein R_6 is selected from H, TBS, TMS, TIPS, PMBM and SEM; wherein R_7 is selected from H, TBS, TROC, $-CO(CH_2)_4CH_3$ and $-CO(CH_2)_3CH=CH_2$; and wherein R_8 is selected from H and TBS.
- 10. (Currently Amended) A method according to claim 1 wherein said fourth compound is of a formula selected from:

and stereoisomers thereof, wherein A is TBSO ; where R₂ is H or methyl; R₇ and R₈ are each selected from TBS, H, and a protecting group; and wherein said fourth compound is converted to a fifth compound of a formula selected from:

and stereoisomers thereof, wherein B is Hormethyl; and R₇ and R₈ are each selected from TBS, H, and a protecting group.

11. (Currently Amended) A method according to claim 10 wherein said fifth compound is converted to a sixth compound of a formula selected from:

and stereoisomers thereof, wherein D is R₉COO; where R₂ is H or methyl; R₇ and R₈ are each selected from TBS, H, and a protecting group, and wherein R₉ is selected from alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof.

12. (Currently Amended) A method according to claim 10 wherein said fifth compound is converted to a sixth compound of a formula selected from:

and stereoisomers thereof, wherein D is $\frac{13}{2}$; where R_2 is H or methyl; and R_7 and R_8 are each selected from TBS, H, and a protecting group.

13. (Currently Amended) A method according to claim 12 wherein said fifth compound is converted to a sixth compound of a formula selected from:

and stereoisomers thereof, wherein D is R_{10} ; where R_2 is H or methyl; R_7 and R_8 are each selected from TBS, H, and a protecting group; and wherein R_{10} is selected from alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof.

14. (Currently Amended) A method according to claim 13 wherein said sixth compound is of a formula selected from:

and stereoisomers thereof, wherein D is R_4 ; where R_2 is H or methyl; and R_7 and R_8 are each selected from TBS, H, and a protecting group.

15. (Currently Amended) A method according to claim 1 wherein said fourth compound is of a formula selected from:

and stereoisomers thereof, wherein A is R_4 ; where R_2 is H or methyl; R_7 is H or TBS; and R_8 is H, TBS, or TROC.

- 16. (Original) A method according to claim 15 wherein said fourth compound is further converted to Epothilone B.
 - 17. (Original) A method according to claim 15 wherein R_7 and R_8 each are H.
- 18. (Currently Amended) A method according to claim 17 wherein said fourth compound is further converted to a fifth compound of a formula selected from:

and stereoisomers thereof, wherein B is R₄ N ; R₇ is R₁₁ ; R₈ is H; and

R₁₁ is selected from alkyl, alkenyl, alkynyl, aryl, alkyl-aryl, alkyloxy, aryloxy, cycloalkyl, heterocyclo, amino, sulfo, and substitutions thereof.

19. (Currently Amended) A method according to claim 18 wherein said fifth compound is further converted to a sixth compound of a formula selected from:

and stereoisomers thereof, wherein \underline{D} is R_4 N R_7 is R_{11}

R₈ is R₁₂, and R₁₁ and R₁₂ are each selected from alkyl, alkenyl, alkynyl, aryl, alkylaryl, alkyloxy, aryloxy, cycloalkyl, heterocyclo, amino, sulfo, and substitutions thereof.

20. (Currently Amended) A method according to claim 17 wherein said fourth compound is further converted to a fifth compound of a formula selected from:

and stereoisomers thereof wherein B is R₄ ; R₇ is TMS; and R₈ is H.

21. (Currently Amended) A method according to claim 20 wherein said fifth compound is further converted to a sixth compound of a formula selected from:

and stereoisomers thereof, wherein \underline{D} is R_4 R_7 is H; R_8 is R_{12} ; and

R₁₂ is selected from alkyl, alkenyl, alkynyl, aryl, alkyl-aryl, alkyloxy, aryloxy, cycloalkyl, heterocyclo, amino, sulfo, and substitutions thereof.

- 22. (Original) A method according to claim 15 wherein R_7 is TBS and R_8 is TROC.
- 23. (Currently Amended) A method according to claim 22 wherein said fourth compound is further converted to a fifth compound of a formula selected from:

and stereoisomers thereof wherein B is
$$\frac{R_2}{R_4}$$
, $\frac{R_7}{R_7}$ is TBS and $\frac{R_8}{R_8}$ is H.

24. (Currently Amended) A method according to claim 23 wherein said fifth compound is further converted to a sixth compound of a formula selected from:

and stereoisomers thereof, wherein \underline{D} is R_4 is R_7 is TBS; R_8 is R_8

25. (Currently Amended) A method according to claim 24 wherein said sixth compound is further converted to a seventh compound of a formula selected from:

$$S \rightarrow R_3$$

and stereoisomers thereof, wherein E is R₄ N; R₇ is H; R₈ is COR₁₂; and

R₁₂ is selected from alkyl, alkenyl, alkynyl, aryl, alkyl-aryl, alkyloxy, aryloxy, cycloalkyl, heterocyclo, amino, sulfo, and substitutions thereof.

26. (Currently Amended) A method according to claim 25 wherein said seventh compound is further converted to an eighth compound of a formula selected from:

and stereoisomers thereof, wherein \underline{G} is $\underline{R_4}$ is $\underline{COR_{11}}$; $\underline{R_8}$ is $\underline{COR_{12}}$; $\underline{AR_5}$ and $\underline{AR_{11}}$ and $\underline{AR_{12}}$ are each selected from alkyl, alkenyl, alkynyl, aryl, alkyl-aryl, alkyloxy, aryloxy, cycloalkyl, heterocyclo, amino, sulfo, and substitutions thereof.

27. (Currently Amended) A method according to claim 22 wherein said fourth compound is further converted to a fifth compound of a formula selected from:

and stereoisomers thereof wherein B is R₄ N ; R₇ is H; and R₈ is TROC.

28. (Currently Amended) A method according to claim 27 wherein said fifth compound is further converted to a sixth compound of a formula selected from:

and stereoisomers thereof wherein D is R₄ N and R₇ and R₈ are each H.

29. (Original) A method according to claim 28 wherein said sixth compound is further converted to Epothilone B.

30. (Currently Amended) A method according to claim 27 wherein said fifth compound is further converted to a sixth compound of a formula selected from:

and stereoisomers thereof, wherein \underline{D} is R_4 ; R_7 is COR_{11} ; R_8 is TROC; and R_{11} is selected from alkyl, alkenyl, alkynyl, aryl, alkyl-aryl, alkyloxy, aryloxy, cycloalkyl, heterocyclo, amino, sulfo, and substitutions thereof.

31. (Currently Amended) A method according to claim 30 wherein said sixth compound is further converted to a seventh compound of a formula selected from:

and stereoisomers thereof, wherein \underline{E} is R_4 is R_7 is R_7 is R_8 is R_7 is R

32. (Currently Amended) A method according to claim 31 wherein said seventh compound is further converted to an eighth compound of a formula selected from:

and stereoisomers thereof, wherein \underline{G} is $\underline{R_4}$ is $\underline{COR_{11}}$; $\underline{R_7}$ is $\underline{COR_{11}}$; $\underline{R_8}$ is $\underline{COR_{12}}$; $\underline{Alkyloxy}$, and $\underline{Alkyloxy}$, aryloxy, cycloalkyl, heterocyclo, amino, sulfo, and substitutions thereof.

- 33. (Original) A chemical compound formed according to the method of claim

 1.
- 34. (Currently Amended) A chemical compound according to claim 33 wherein said compound is selected from the formulas:

and stereoisomers thereof, wherein W is selected from

$$R_{5}O$$
 $R_{9}COO$
 R_{10}
 R_{10}
 R_{3}
 R_{4}
 R_{4}
 R_{4}
 R_{4}
 R_{5}
 R_{5}

wherein R_1 , R_2 , R_3 and R_4 are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; wherein R_5 and R_6 are each selected from H and a protecting group; wherein R_7 is selected from H, a protecting group and COR_{11} ; wherein R_8 is selected from H, a protecting group and COR_{12} ; wherein R_9 is selected from alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; wherein R_{10} is selected from alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; and wherein R_{11} and R_{12} are each selected from alkyl, alkenyl, alkynyl, aryl, alkyl-aryl, alkyloxy, aryloxy, cycloalkyl, heterocyclo, amino, sulfo, and substitutions thereof.

- 35. Cancelled.
- 36. Cancelled.
- 37. Cancelled.
- 38. Cancelled.
- 39. Cancelled.
- 40. Cancelled.

- 41. Cancelled.
- 42. Cancelled.
- 43. Cancelled.
- 44. Cancelled.
- 45. Cancelled.
- 46. Cancelled.
- 47. Cancelled.
- 48. Cancelled.
- 49. Cancelled.
- 50. Cancelled.
- 51. Cancelled.
- 52. Cancelled.
- 53. Cancelled.
- 54. Cancelled.
- 55. Cancelled.
- 56. Cancelled.
- 57. Cancelled.
- 58. Cancelled.
- 59. Cancelled.
- 60. Cancelled.
- 61. Cancelled.
- 62. Cancelled.
- 63. Cancelled.

64. Cancelled.

65. Cancelled.

66. Cancelled.

67. Cancelled.

68. Cancelled.

69. (Currently Amended) A chemical compound having a formula selected from:

and stereoisomers thereof, wherein W is selected from

wherein R_1 , R_2 , R_3 and R_4 are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; wherein R_5 , R_6 , R_7 and R_8 are each selected from H and a protecting group; wherein R_9 is selected from alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; wherein R_{10} is selected from alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; and wherein R_{11} and R_{12} are each selected from alkyl, alkenyl, alkynyl, aryl, alkyl-aryl, alkyloxy, aryloxy, cycloalkyl, heterocyclo, amino, sulfo, and substitutions thereof.

- 70. (Original) A chemical compound according to claim 69 wherein at least one of R_{11} and R_{12} is selected from -(CH₂)_xCH₃ and -(CH₂)_yCH=CH₂, where x and y are integers.
- 71. (Currently Amended) A chemical compound according to claim 69-70 wherein x and y are selected from the integers 3 and 4.
- 72. (Original) A chemical compound according to claim 70 wherein x is 4 and y is 3.
 - 73. Cancelled.
 - 74. (New) A chemical compound according to claim 69 wherein W is

 R_4 , R_2 is H or methyl, R_7 is H or COR_{11} , R_8 is H or COR_{12} , and wherein

75. (New) A chemical compound having a formula

R₁₁ and R₁₂ are each selected from -(CH₂)₄CH₃ and-(CH₂)₃CH=CH₂.

and stereoisomers thereof, wherein W is R₄; wherein R₁, R₂, R₃ and R₄ are each selected from H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocyclo, and substitutions thereof; wherein R₇ is selected from H, a protecting group, and COR₁₁; wherein R₈ is selected from H, a protecting group, and COR₁₂, and wherein R₁₁ and R₁₂ are each selected from alkyl, alkenyl, alkynyl, aryl, alkyl-aryl, alkyloxy, aryloxy, cycloalkyl, heterocyclo, amino, sulfo, and substitutions thereof.

- 76. (New) A chemical compound according to claim 75 wherein at least one of R_{11} and R_{12} is selected from -(CH₂)_xCH₃ and -(CH₂)_yCH=CH₂, where x and y are integers.
- 77. (New) A chemical compound according to claim 76 wherein x and y are selected from the integers 3 and 4.
- 78. (New) A chemical compound according to claim 76 wherein x is 4 and y is 3.