Topologia

 $\begin{array}{l} f(\bigcup_{i\in I}A_i)=\bigcup_{i\in I}f(A_i)\\ f(\bigcap_{i\in I}A_i)\subset\bigcap_{i\in I}f(A_i) \text{ igualtat si f injectiva.}\\ f^{-1}(\bigcup_{i\in I}A_i)=\bigcup_{i\in I}f^{-1}\\ f^{-1}(\bigcap_{i\in I}A_i)=\bigcap_{i\in I}f^{-1}\\ f^{-1}(B-Y)=A-f^{-1}(Y)\\ X\subset f^{-1}(f(X)) \text{ igualtat si f injectiva.}\\ f^{-1}(f(Y))\subset Y \text{ igualtat si f exhaustiva.} \end{array}$

Axiomàtica d'espai topològic

0 $0, X \in \mathcal{T}$ **2** $\bigcap_{i=1}^{n} A_i \in \mathcal{T}$ **3** $\bigcup_{i \in I} A_i \in \mathcal{T}$ Si $\mathcal{T} \subset \mathcal{T}'$ diem que \mathcal{T}' és mes fina que \mathcal{T}

Algunes topologies

0 Grollera: $\mathcal{T} = \{\emptyset, X\}$ **2** Discreta: $\mathcal{T} = \mathcal{P}(X)$ **3** Cofinita: $A \subset X$ obert $\Leftrightarrow A = \emptyset$ o X - A és finit

Propietat de Hausdorff. Donats dos punts $x \neq y$ existeixen oberts disjunts U, V tals que $x \in U, y \in V$.

Tot **espai mètric** és Hausdorff.

No són Hausdorff:

- (a) X amb més d'un punt amb la topologia grollera.
- (b) Un espai infinit amb la topologia cofinita
- (c) \mathbb{R} amb oberts $\emptyset, \mathbb{R}, (-\infty, x) \forall x \in \mathbb{R}$

Bases d'una topologia

 \mathcal{B} és una base d'una topologia si $\forall A$ obert d'X i tot punt $x \in A$, existeix un obert $B \in \mathcal{B}$ tal que $x \in B \subset A$. També és diu que \mathcal{B} és una base d'oberts de X

Proposició 2.2 Sigui X un conjunt $\mathcal{B} \subset \mathcal{P}(X)$. Si \mathcal{B} compleix $\mathbf{0} \cup \mathcal{B} = X \otimes \forall U, V \in \mathcal{B} \text{ i } \forall x \in U \cap V, \exists W \in \mathcal{B} \text{ tal que } x \in W \subset U \cap V.$ Aleshores $\exists !$ topologia τaX que compleix

- 1. \mathcal{B} és una base de la topologia \mathcal{T}
- 2. \mathcal{T} és la topologia més fina que conté \mathcal{B}

Entorns interior i adherència

A és un **entorn** de $x \in X$ si existeix un obert U tal que $x \in U \subset A$.

x és un punt interior de A si A és un entorn de x L'interior de A és el conjunt de tots els punts interiors.

- 1. Int(A) és obert.
- 2. Int(A) és la unió de tots els oberts continguts a A.
- 3. Int(A) és l'obert més gran contingut a A. $(B \subset A \text{ obert } \Longrightarrow B \subset Int(A)$
- 4. $A ext{ és obert } \Leftrightarrow A = \operatorname{Int}(A)$

xés un punt adherent a A si tot entorn de x talla A L'adherència de A és el conjunt de tots els punts adherents.

- 1. Cl(A) és tancat.
- 2. Cl(A) és intersecció de tots els tancats que contenen A.
- 3. Cl(A) és el tancat més petit que conté A $(A \subset T \text{ T tancat } \Longrightarrow Cl(A) \subset T)$

4. $A ext{ és tancat} \Leftrightarrow A = \operatorname{Cl}(A)$

proposició 2.5 $\operatorname{Cl}(A) = X - \operatorname{Int}(X - A)$ definició 2.6 $A \subset X$ és dens si $\operatorname{Cl}(A) = X$ definició 2.7 La frontera d'un conjunt $A \subset X$ és defineix com $\partial A := \operatorname{Cl}(A) \cap \operatorname{Cl}(X - A)$

Aplicacions contínues

f és **oberta** si la imatge de tot obert és obert. f és **tancada** si la imatge de tot tancat és tancat. f és **contínua** si la antiimatge de tot obert és obert.

Homeomorfísmes

 $f:X \to Y$ diem que es homeomorfísme si compleix: f és contínua, bijectiva $f^{-1}:Y \to X$ contínua (o f és oberta) **Teorema 3.3** Siguin $f:X \to Y$ i $g:Y \to Z$ aplicacions contínues. Suposem que es compleixen aquestes condicions:

- 1. f és exhaustiva i g és bijectiva
- 2. Z compleix la propietat de Hausdorff
- 3. X és homeomorf a un subesai tancat de $[0,1]^n,\, n>0$

Aleshores g és un homeomorfisme.

Subespais

Definició 4.1 Sigui X un espai topològic i $A\subset X.$ Direm que $U\subset A$ és un obert de A si existeix un obert W (de X) tal que $U=A\cap W$

Els oberts de A formen la topologia induïda per la inclusió $A\subset X$. Diem que A és subespai de X

- 1. $T \subset A$ és tancat de A \Leftrightarrow existeix un tancat $K \subset X$ tal que $T = A \cap K$.
- 2. Si A obert, llavors $U \subset A$ obert a $A \Leftrightarrow U$ obert a X.
- 3. Si A tancat, llavors $U \subset A$ tancat a $A \Leftrightarrow U$ tancat a X.
- 4. l'aplicació inclusió $i:A\hookrightarrow X$ és contínua.
- 5. la topologia induïda sobre A és la menys fina que fa que la inclusió $i:A\hookrightarrow X$ sigui contínua.
- 6. Si $f:X\to Y$ és contínua, aleshores $f|_A:A\to X$ també és contínua.
- 7. Si X espai mètric amb distància d
, $A \subset X$ La topologia donada per la distància d
 i la topologia induïda per la topologia de X coincideixen.
- f: A → X una aplicació, podem definir una topologia sobre A que tingui per oberts els conjunts f⁻¹(U) per a cada obert U de X.

Continuïtat de funcions definides a trossos Siguin $X = A \cup B, Y$ espais topològics i sigui $f: X \to Y$ una aplicació. Suposem que $f|_A, f|_B$ són contínues. Aleshores:

- 1. Si A,B són oberts, f és contínua.
- 2. Si A, B són tancats, f és contínua.

La topologia producte

la **topologia producte** a $X \times Y$ és la topologia que té per base els conjunts de la forma $U \times V$ on U és obert de X i V és obert de Y. Anomenem els oberts $X \times Y$ **oberts bàsics**

- 1. les projeccions $\pi_X: X \times Y \to X, \pi_Y: X \times Y \to Y$ són contínues
- una aplicació f: Z → X × Y és contínua si i només si els seus components són contínues, és a dir, si i només si π_X f i π_Y f són aplicacións contínues.
- 3. les projeccions π_X, π_Y són obertes. (En general no són tancades).
- 4. Si $f_i:X_i\to Y_i, i=1,2$ són aplicacions contínues, aleshores $f_1\times f_2:X_1\times X_2\to Y_1\times Y_2$ també és contínua.
- 5. si $X_1 \cong X_2$ i $Y_1 \cong Y_2$, aleshores $X_1 \times Y_1 \cong X_2 \times Y_2$
- 6. $X \times \{*\} \cong X$
- 7. $X \times Y \cong Y \times X$
- 8. si $A \subset X, B \subset Y$ i considerem $A \times B \subset X \times Y$. La topologia induïda sobre $A \times B$ com a subespai de $X \times Y$ i la topologia $A \times B$ considerant que A i B són espais topològics coincideixen.
- 9. \mathbb{R}^n amb la topologia induïda per la distància euclidiana i la topologia producte $\mathbb{R}^n = \mathbb{R} \times \cdots \times \mathbb{R}$ coincideixen.
- (a) El tor com a producte de circunferències. $T \cong S^1 \times S^1$
- (b) El cilindre. $\mathbb{R}^n \{0\} \cong S^{n-1} \times \mathbb{R}$

El producte infinit

La topologia producte a ΠX_i és la topologia que té com a base d'oberts els productes $\Pi_{i \in I} U_i$ tals que $\mathbf{0}$ Cada U_i és un obert de X_i . ② $U_i = X_i$ excepte per a un nombre finit de $i \in I$. El **conjunt de Cantor C** és homeomorf a $\Pi_{i=1}^{\infty} \{a, b\}$

La topologia quocient

Suposem que X és un espai topològic, Y és un conjunt i $p:X \to Y$ és una aplicació exhaustiva. La **topologia quocient** a Y és la topologia que té per oberts els subconjunts $U \subset Y$ que tenen la propietat que $p^{-1}(U)$ és un obert de X. Direm que «Y té la topologia quocient per p»

- 1. $p: X \to Y$ és continua.
- 2. La topologia quocient és la topologia més fina sobre Y que fa que $p:X\to Y$ sigui continua.
- 3. $T \subset Y$ és tancat si i només si $p^{-1}(T)$ és tancat de X.
- 4. Sigui $f:Y\to Z$ una aplicació. Es compleix qe f és continua si i només si f_p és continua.
- (a) $[0,1] \cong S^1$
- (b) $(0,t) \sim (1,t) \,\forall t \in [0,1]. \, I^2 / \sim \cong S^1 \times [0,1]$
- (c) $(0,t) \sim (1,t)$ i $(s,0) \sim (s,1) \forall s,t \in [0,1]$. $I^2/\sim \cong T^2$
- (d) $(0,t) \sim (1,1-t) \, \forall t \in [0,1]$. Banda de Moebius.
- (e) El disc $D^2:=\{x\in\mathbb{R}^2:||x||\leq 1\}$ quocient per la relació $(x,y)\sim (x,-y) \forall (x,y)\in S^1$ és l'esfera $S^2.$

- (f) $(0,t) \sim (1,t)$ i $(s,0 \sim (1-s,1) \, \forall s,t \in [0,1].$ $I^2/\sim \cong$ Ampolla de Klein.
- (g) El disc $D^2 := \{x \in \mathbb{R}^2 : ||x|| \le 1\}$ quocient per la relació $(x,y) \sim (-x,-y) \forall (x,y) \in S^1$ és el pla projectiu $\mathbb{R}P^2$.

L'espai projectiu

L'espai projectiu de dimensió n $\mathbb{R}P^n$ és el conjunt de rectes de \mathbb{R}^{n+1} que passen per l'origen de coordenades. $\mathbb{R}P^2 \cong D^2/\{(x,y) \sim (-x,-y) \forall (x,y) \in S^1 \subset D^2\}$ $\mathbb{R}P^n \cong S^n/\{-v \sim v\}$ $(M \sqcup D^2)/\sim \cong \mathbb{R}P^2$ on \sim és la identificació natural entre $S^1 \subset D^2$ i $S^1 \sim \partial M$

Acció d'un grup sobre un espai

Una acció d'un grup G sobre un espai topològic X consisteix en tenir, per cada $g \in G$, una aplicació continua $\theta_g: X \to X$ de manera que $\mathbf{0}$ θ_1 és la identitat $I: X \to X$. $\mathbf{2}$ $\theta_a \theta_b = \theta_{ab} \forall q, h \in G$

- (a) Hi ha una acció de \mathbb{Z} sobre \mathbb{R} donada per $k \cdot x := k + x$. Un domini fonamental és D = [0, 1).
- (b) Hi ha una acció de \mathbb{Z}^n sobre \mathbb{R}^n donada per $(k_1,\ldots,k_n)\cdot(x_1,\ldots,x_n):=(k_1+x_1,\ldots,k_n+x_n)$. Un domini fonamental és el cub $D=[0,1)^n$.

Quocient d'un espai per l'acció d'un grup

 $x\sim y$ si i només si existeix $g\in G$ tal que gx=y. La aplicació de pas al quocient $\pi:X\to X/G:=X/\sim$ és oberta.

- (a) $\mathbb{R}/\mathbb{Z} \cong S^1$ amb l'acció $k \cdot x := k + x$
- (b) $\mathbb{R}^n/\mathbb{Z}^n \cong T^n = S^1 \times \cdots \times S^1$ amb l'acció producte.
- (c) el quocient de S^n per la acció antipodal és $\mathbb{R}P^2$.
- (d) $R^2/\langle S,R\rangle\cong K$ amb l'acció S(x,y):=(x,y+1), T(x,y)=(x+1,-y)
- (e) $[0,1] \times \frac{[0,1/2]}{\{(x,0)\sim(1-x,1/2),(0,y)\sim(1,y):x,y\in[0,1]\}} \cong K$

Espais compactes

recobriments

- $\{U_i\}_{i\in I}$ és un recobriment d'un espai X si $X=\cup U_i$
- Si U_i són oberts, $\{U_i\}$ és un recobriment obert.

Un espai topològic X direm que és **compacte** si tot recobriment obert de X té algun subrecobriment finit.

- La imatge d'un compacte per una aplicació continua és un compacte.
- 2. Un subespai tancat d'un espai compacte és compacte.
- El producte d'una família d'espais compactes no buits és compacte si i només si cada espai ho és.

Compactes de \mathbb{R}^n

Teorema de Heine-Borel Un subespai de \mathbb{R}^n - topologia ordinària- és compacte si i només si és tancat i acotat.

Compactificació per un punt

Sigui X un espai topològic i definim $\tilde{X} = X \sqcup \{*\}$. Direm que $U \subset \tilde{X}$ és un obert si es compleix una de les següents condicions: $\mathbf{0} \ U \subset X$ i U és un obert de X. $\mathbf{0} \ U = U' \sqcup \{*\}$, U' és un obert de X i X - U' és un compacte. L'espai X té la topologia induïda per la inclusió $X \subset \tilde{X}$.

L'espai X té la topologia induïda per la inclusió $X \subset X$. L'espai \tilde{X} és comacte.

La compactificació per un punt de \mathbb{R}^n és homeomorf a S^n

Espais de Hausdorff

- Espais T_0 o de Kolmologrov. Donats dos punts diferents, hi ha un obert que conté un d'ells i no l'altre.
- Espais T₁ o de Fréchet. Donats x ≠ y, hi ha oberts U, V tals que x ∈ U − V. Aquest axioma és equivalent a que els punts siguin tancats.
- Els espais T_2 són els espais Hausdorff.
- Espais T₃ o regulars. Es compleix l'axioma T₁ i a més donats un tancat F i punt x ∉ F, existeixen oberts disjunts U, V tals que x ∈ U, F ⊂ V.
- Espais T₄ o normals. Es compleix l'axioma T₁ i a més donats tancats disjunts A, B, existeixen oberts disjunts U, V tals que A ⊂ U, B ⊂ V.
- 1. Si X és un espai de Hausdorff i $A\subset X$ és compacte, aleshores A és tancat a X.
- 2. Un producte d'espais no buits és Hausdorff si i només si ho són cada un dels factors.
- 3. Sigui $f:X\to Y$ una aplicació contínua i bijectiva. Suposem que X és un espai compacte i Y és un espai Hausdorff. Aleshores, f és un homeomorfisme.
- 4. Tot espai compacte Hausdorff és normal.
- 5. Sigui X un espai compacte Hausdorff i $A\subset X$ un subespai tancat. X/A és compacte Hausdorff.
- 6. Sigui X un espai compacte Hausdorff i G un grup finit que actua sobre X. X/G és compacte Hausdorff.

Connexió

Un espai topològic és connex si compleix

- No és unió disconnexa de dos espais-p.
- No és unió de dos oberts-p/tancats-p disjunts
- Si $A \subset Z$ és obert i tancat, aleshores $A = \emptyset, Z$.
- 1. Siguin $Y_i \subset X, i \in I$, subespais connexos d'un espai X, tals que $\bigcap_i Y_i \neq \emptyset$. Aleshores $\bigcup_i Y_i$ és un espai connex.
- 2. Siguin $Y_i \subset X, i=0,1,2,\ldots$, subespais connexos d'un espai X, tals que $\forall i,Y_i \cap Y_{i+1} \neq \emptyset$. Aleshores $\bigcup_i Y_i$ és un espai connex
- 3. Si $f:X\to Y$ és contínua i $A\subset X$ és connex, aleshores f(A) és connex.
- 4. Un producte d'espais-p és connex si i només si ho és cada factor.
- 5. $A \subset B \subset Cl(A) \subset X$ i suposem que A és connex. Aleshores B també ho és.

connexió per camins

Un espai X és **connex per camins o arcconnex** si $\forall x,y \in X$ existeix un camí ω amb $\omega(0)=x,\omega(1)=y$. Tot espai connex per camis és connex.

Components connexos d'un espai

Teorema de la corba de Jordan Una corba tancada simple al pla \mathbb{R}^2 divideix el pla en dos components connexos. Un d'aquests components és acotat i l'altre no. La corba és la seva frontera.

Varietats topològiques

Un espai topològic $X \neq \emptyset$ és una varietat de dimensió n si tot punt té un entorn homeomorf a \mathbb{R}^n , si X és Hausdorff i si té una base d'oberts numerable.

Varietats connexes

Si M és una varietat de dimensió n i $M_i, i \in I$ els seus components connexos.

- 1. Els M_i són oberts de M
- 2. I és numerable, si M és compacta I és finit.
- 3. M_i és una varietat de dimensió n.
- 4. M és unió disconnexa dels seus components connexos: $M = \sqcup_{i \in I} M_i$.

Orientacions

Direm que una varietat M és **orientable** si admet un atles on totes les funcions de transició conserven l'orientació.

El producte de dues varietats orientables és orientable. $\mathbb{R}P^n$ és orientable si i només si n és senar. S+R és orientable si i només si S i R són orientables.

$$S_g := S^2 + T + \dots^g + T \ N_h := \mathbb{R}P^2 + \dots^h + \mathbb{R}P^2$$

$$K \cong \mathbb{R}P^2 + \mathbb{R}P^2$$

$$T+\mathbb{R}P^2\cong\mathbb{R}P^2+\mathbb{R}P^2+\mathbb{R}P^2$$
 per tant, $S_g+N_h\cong N_k$ amb $k=h+2g$

Tota superfície és triangulable.

$$\chi(S) = v - a + c$$

 $\chi(S + S') = \chi(S) + \chi(S') - 2$
 $\chi(S_a) = 2 - 2g$

 $\chi(\tilde{N}_h) = 2 - h$ Tota superfície compacta i connexa és homeomorfa a S_a o N_h

Dues superfícies (compactes i connexes) són homeomorfes si i només si $\chi(S)=\chi(S')$ i tenen la mateixa orientablilitat.

Eloi Torrents 2018