Exercício do Capítulo 38 – Efeito Fotoelétrico

21) Uma placa de alumínio é iluminada por luz com um comprimento de onda de $200 \, nm$. No alumínio uma energia de $4,2 \, eV$ é necessária para que um elétron seja ejetado. Qual é a energia cinética (a) do elétron mais rápido? (b) do elétron ejetado mais lento? (c) Qual é o potencial de corte? (d) Qual é o comprimento de onda de corte do alumínio?

Dicas: (a)
$$K_{m\acute{a}x} = hf - \Phi e \lambda f = c$$
. (b) $K_{m\acute{i}n} = 0$ (por que?); (c) $eV_{corte} = K_{m\acute{a}x}$; (d) quando $K_{m\acute{a}x} = 0 \Rightarrow \lambda = \lambda_{corte}$.

Respostas: (a) $K_{m\acute{a}x} = 2,02 \ eV$. (b) $K_{m\acute{i}n} = 0$; (c) $V_{corte} = 2,02 \ V$; (d) $\lambda_{corte} = 296 \ nm$.

Exercício do Capítulo 38 – Elétrons e Ondas de Matéria

50) Elétrons com uma energia cinética de $50~GeV~(=50\times10^9~eV)$ tem um comprimento de onda de de Broglie λ tão pequeno que podem ser usados para estudar detalhes da estrutura do núcleo atômico através de colisões. Essa energia é tão grande que a relação relativística extrema $E\approx pc$ entre o momento p e a energia total E pode ser usada. (Nessa situação extrema e energia cinética de um elétron é muito maior que a energia de repouso, $E_0=mc^2=0.511~MeV$). (a) Qual é o valor de λ ? (b) Se os núcleos do alvo têm um raio $R=5.0~fm=5.0~\times 10^{-15}~m$, qual é o valor da razão R/λ ?

Dicas:
$$(a) E^2 = (pc)^2 + (mc^2)^2 \Rightarrow E \approx pc$$
 (por que?) $E = K + mc^2 \approx K$; $\lambda = h/p$.

Respostas: (a)
$$\lambda = 2,49 \times 10^{-17} \ m.$$
 (b) $\frac{R}{\lambda} = 201$.

Exercício do Capítulo 38 – O Princípio de Indeterminação de Heisenberg

63) A indeterminação da posição de um elétron situado sobre o eixo $x \in 50 \ pm$, ou seja, um valor aproximadamente igual ao raio do átomo de hidrogênio. Qual é a menor indeterminação possível da componente p_x do momento do elétron?

Dicas:
$$\Delta x \, \Delta p_x \ge \frac{\hbar}{2}$$

Respostas:
$$(a)\Delta p_x \Big|_{min} = 1.06 \times kg \ m/s$$
.