Algorithmics	Student information	Date	Number of session
	UO: 299874	31/03/2025	9
	Surname: Puebla	Escuela de Ingeniería Informática	
	Name: Álvaro		

Activity 1. Backtracking with graphs

n	t Backtracking (ms)	
20	0.080467	
25	0.178919	
30	0.32252	
35	0.41224	
40	0.899015	
45	2.014633	
50	9.117259	
55	2.94463	
60	47.619499	
65	11.25175	
70	70 17.012901	
75	110.366254	
80	162.678025	

The theoretical complexity of the NullPath algorithm is O(n!), since in the worst case, the backtracking explores all possible permutations of paths. However, several factors significantly reduce the actual growth in practical scenarios:

- Random Graph Generation (Luck Factor):
 - o As we generate several random graphs in some of them, there is no easy path, so we need to check more paths in order to get the exact solution.
- Pruning Heuristic:
 - o The pruning step reduces the number of branches explored by eliminating paths that **cannot** reach a valid solution within the given constraints.

Finally, this **NullPath algorithm** is O(n!) but improved, to reduce the time in each iteration. And with it the average case.