광자 및 광전자학

방사광의 밝기와 빔 품질

60201519 물리학과 이경훈

02

03

방사광원과 밝기

방사광가속기의 구성

방사광의 특성

• 광원의 밝기 / Coherence • 저장링 / emittance

• 방사광의 정의 / 밝기의 정의

방사광: 빛의 속도에 가까운 속도로 운동하는 전자가 곡선 궤도를 따라 이동할 때, 궤도의 접선 방향으로 방출되는 좁은 퍼짐의 빛

광속에 가까운 속도로 운동하는 전자는 커브를 돌 때 그 접선방향으로 좁은 퍼짐각(θ)의 강한 빛을 방사함.

방사광원: X – 선, 자외선, 가시광선, 적외선에 이르는 광범위한 파장역을 망라하는 강력한 빛을 마련하기 위한 전자 가속장치와 기타 시설

방사광원 = 우수한 질의 광원

- 1. 파장의 단색광을 선택할 수 있는 성질을 가진 빛
- 2. 물질과 생체의 미세구조를 규명하는데 매우 유용

방사광 = synchrotron light

Part 1 파장영역의 명칭

대역명칭	광자에너지	파장
경X-선 (hard X-ray)	6.2 keV ~ 124 keV	2Å ~ 0.1Å
연X-선 (soft X-ray)	413 eV ~ 6.2 keV	300Å ~ 2Å
진공자외선 (VUV: vacuum ultraviolet)	6.2 eV ~ 6.2 keV	2000Å ~ 2Å
극자외선 (EUV: extreme ultraviolet)	12.4 eV ~ 6.2 keV	1000Å ~ 2Å
가시광 (visible)	1.65 eV ~ 3.1 eV	7500Å ~ 4000Å
적외선 (infrared)	~1.24×10⁻³ eV ~ 1.65 eV	~ 1000µm ~ 0.75µm

단위 변환 : 1 nm = 10 Å = 10^{-7} cm / 1 Å = 0.1 nm = 10^{-8} cm / 1 μ m = 10^{4} Å = 10^{-4} cm

빛의 밝기를 나타내는 척도 – 휘도(Luminance), 밝기(brightness 또는 brilliance)

밝기(또는 휘도) =
$$\frac{\text{(방출되는 광자의 수)}}{\text{(단위시간)(단위면적)(단위입체각)}}$$
 • 단위 : $\frac{\text{(photons)}}{\text{(s)·(mm²)·(mrad²)}}$

빛띠밝기(분광휘도) =
$$\frac{(방출되는 광자의 수)}{(단위시간)(단위면적)(단위입체각)(빛띠너비 $\frac{4\lambda}{\lambda}=0.1\%)}$$$

BW(대역폭) :
$$\frac{\Delta\lambda}{\lambda} = 0.1\%$$

빛띠너비(spectral band width)당의 밝기 = 파장폭에 속하는 빛의 밝

Ex) $\lambda=100$ Å에서의 분광휘도를 말할 때, $\Delta\lambda=0.1$ Å의 빛띠너비당 휘도를 말한다.

특정 파장 범위(0.1% 대역폭) 내에서 방출된 광자의 밀도를 측정한

Part 2 방사광가속기의 구성

- 1. 전자입사장치(electron injector): 전자빔을 빛의 속도로 가속 -> 저장링에 입사
- 2. 저장링(storage ring): 정해진 궤도상에서 계속 회전 -> 커브를 돌 때마다 빛을 방출
- 3. 방사광관(beamline): 방출된 빛을 실험장치까지 이끌고 필요한 장치를 갖춤.

Part 2 저장링

휨자석 있는 곳 – 휨자석 방사광 방출

직선부위 삽입장치(undulator, wiggler) – 삽입장치 방사광 방출

휨자석과 삽입장치가 들어 있는 저장링의 폐궤도 간략도

Part 2 저장링

PLS 저장링의 한 cell(궤도 모서리 부분)에서 두 개의 휨자석(BM) 빔라인과 하나의 삽입장치(ID 빔라인이 차폐벽을 통해서 실험홀(experimental hall)로 나오고 있음을 보여주고 있다

Part 2 에미턴스

저장링의 가장 중요한 것. = 방사광의 밝기를 크게 하는 것.

방사광관이 나가는 휨자석 or 삽입장치 통과하는 곳에서 어떻게 해야 하나?

전자빔의 단면적과 전자빔의 퍼짐이 적어야 한다.

전자빔의 품질을 나타내는 피라미터

에미턴스(emittance)

Part 2 저장링

에미턴스(emittance): 전자빔의 크기와 퍼짐을 곱한 것으로 정의

│ 궤도면에 수직인 방향 (z-축)

궤도면에 있는 축방향 (x-축)

※ 빔의 폭과 퍼짐각도 달라, 에미턴스를 구별하기 위한 방식

$$\varepsilon_{\chi} = \sigma_{\chi} \cdot \sigma_{\chi}^{'} \qquad \varepsilon_{Z} = \sigma_{Z} \cdot \sigma_{Z}^{'}$$

 $\sigma_x = x$ 방향의 빔 폭, $\sigma_x^{'} = x$ 방향의 퍼짐각 $\sigma_z = z$ 방향의 빔 폭, $\sigma_z = z$ 방향의 퍼짐각

(a) bending magnet radiation

(b) wiggler radiation

(c) undulator radiation

Part 3 방사광원의 특성

제 2세대 방사광가속기	제 3세대 방사광가속기
상대적으로 낮은 빛띠밝기	상대적으로 큰 값의 빛띠밝기

일차원적 – 강한 세기의 광자다발 + 결맞음(Coherence)과 직결됨.

큰 광원으로부터 전파되는 광원은 고르지 못한 전면파를 가 짐. 매우 작은 광원으로부터 작은 퍼짐으로 전파할 경우 비교적 고른 구면파를 가짐.

 $d \cdot \theta = \lambda/2\pi$ (광원의 크기 d, 퍼짐각 θ)

밝기(또는 휘도) = $\frac{(방출되는 광자의 수)}{(단위시간)(단위면적)(단위입체각)}$

관계가 성립하면 그 광원은 공간 결맞음(spatial coherence)이 있다고 한다.

= 횡적 결맞음(transverse coherence)

위 식은 주어진 파장 λ로 식별 가능한 <u>최소 광원의 크기</u>를 말한다.
= 회절에 의해 제한된 크기(diffraction limited)

- 1. 작은 값의 $d \cdot \theta$ (상-공간 곱하기 : phase space product) 을 얻기 위해서? <mark>큰 값의 밝기가 필요!</mark>
- 2. 큰 값의 밝기를 얻기 위해서? <mark>작은 전자빔의 (emiitance)에미턴스가 필요!</mark>

에미턴스 ε 이 회절에 의해 제한된 방사광의 최단의 파장 λ_{min} 을 결정짓는다.

관계식) $\lambda_{min} = (4\pi)\varepsilon$

 λ_{min} 보다 짧은 파장영역에서는 결맞음의 정도가 급격히 나빠지는 ($\propto 1/\lambda^2$) 부분적 결맞음을 갖는다.

결맞음은 수직, 수평 방향으로 나누어 다룬다.

시간 결맞음 (temporal coherence) = 종적 결맞음 (longitudinal coherence)

공간 결맞음(spatial coherence) = 횡적 결맞음(transverse coherence)

종적 결맞음은 두 광파의 위상 상관관계를 말해준다.

간섭계(interferometer)

- 1. 한 광원에서 나오는 광파를 두 경로로 나눈다.
- 2. 각각 다른 통로로 보낸 다음 다시 합친다.
- 3. 두 광파에 의한 간섭무늬 관찰한다.

빛의 경로차(path difference)가 너무 크면 두 광파의 위상 상관관계 X -> 간섭무늬 관찰 X

간섭무늬를 볼 수 있는 최대의 경로차 = 시간적 결맞음 길이(temporal coherence length)

이것을
$$\iota_c$$
 라고 하자. $\iota_c = \frac{\lambda^2}{\Delta \lambda}$ 로 표현 가능하다.

빛 띠너비 (⊿λ/λ) 가 작을수록 시간적 결맞음의 길이가 길어진다.

제 3세대 가속기의 언듈레이터로부터의 방사광은 **결맞음의 정도**(degree of coherence) 가 비교적 높은 빛, 부분적인 결맞음을 갖는 빛에 해당.

결맞음의 정도를 말하는 척도) 횡적 결맞음(또는 공간 결맞음)의 경우, 상- 공간 곱하기

 $d \cdot \theta = \lambda/2\pi$ 으로 정의된 회절에 의해 제한된 크기

의 몇배가 되느냐로 나타낸다.

or

횡적 결맞음 길이 ι_t 로 나타냄. $\iota_t = \frac{\lambda R}{d}$

- •λ: 빛의 파장
- •R: 광원으로부터 관찰 지점까지의 거리
- •d: 광원의 크기

Part 3 Coherence 요약 정리

구분	종적 결맞음 (Longitudinal Coherence)	횡적 결맞음 (Transverse Coherence)
정의	시간적 위상 결맞음	공간적 위상 결맞음
주요 영향 인자	빛의 단색성 (Δλ)	광원 크기 (d) 및 각도 분포 (θ)
밝기 관계	Δλ ↓ → 밝기 ↑	d ↓, θ ↓ → 밝기 ↑
공식	$\iota_c = \frac{\lambda^2}{\Delta \lambda}$	$\iota_t = \frac{\lambda R}{d}$

출처

- [1] 방사광과학 입문 1장 1-1, 1-2,1-5.
- [2] 한국핵융합·가속기기술진흥협회 – 가속기 이해.
- [3] Figs. 5.1-5.3 in [Attwood, 1999] and 2 from [Clarke, 2004]..
- [4] https://www.ansto.gov.au/education/nuclear-facts/what-is-synchrotron-light

Fin.

