CALCULATING DPIN BORDISM GROUPS

ARUN DEBRAY MARCH 31, 2020

The purpose of this document is to use the Adams spectral sequence to compute some low-dimensional dpin bordism groups. (We will explain what a dpin structure is below.) In dimensions 2 and 3, these bordism groups are computed a different way and used by Kaidi, Parra-Martinez, and Tachikawa [KPMT19a, KPMT19b] to classify certain invertible field theories which can appear on the worldsheet in type I superstring theory.

Theorem 0.1. The low-degree dpin bordism groups are: $\Omega_0^{\mathrm{DPin}} \cong \mathbb{Z}/2$, $\Omega_1^{\mathrm{DPin}} \cong \mathbb{Z}/2$, $\Omega_2^{\mathrm{DPin}} \cong \mathbb{Z}/2$, $\Omega_3^{\mathrm{DPin}} \cong \mathbb{Z}/8$, $\Omega_4^{\mathrm{DPin}} \cong \mathbb{Z}/2 \oplus \mathbb{Z}/2$, $\Omega_5^{\mathrm{DPin}} \cong 0$, and $\Omega_6^{\mathrm{DPin}} \cong \mathbb{Z}/2 \oplus \mathbb{Z}/2$.

A dpin structure on a smooth manifold M is the data of a spin structure on the orientation double cover of M.

Lemma 0.2 ([KPMT19b, §6.2]). A dpin structure is equivalent to a choice of two real line bundles $\ell_1, \ell_2 \to M$ and a spin structure on

$$(0.3) TM \oplus (\ell_1 \otimes \ell_2) \oplus (\ell_1)^{\oplus 3}.$$

One consequence of Lemma 0.2 is that if MTDPin denotes the Thom spectrum for dpin-structures, so that $\pi_k(MTDPin) \cong \Omega_k^{\mathrm{DPin}}$, then

(0.4)
$$MTDPin \simeq MTSpin \wedge (B\mathbb{Z}/2 \times B\mathbb{Z}/2)^{\ell_1 \ell_2 + 3\ell_2 - 4}.$$

Here the second summand, $(B\mathbb{Z}/2 \times B\mathbb{Z}/2)^{\ell_1\ell_2+3\ell_2-4}$ which we denote X to tame the notation, is the Thom spectrum of the virtual vector bundle

$$(0.5) V := (\ell_1 \otimes \ell_2) \oplus \ell_2^{\oplus 3} - \mathbb{R}^4 \longrightarrow B\mathbb{Z}/2 \times B\mathbb{Z}/2.$$

By (0.4), $\Omega_k^{\text{DPin}} \cong \widetilde{\Omega}_k^{\text{Spin}}(X)$. We will compute $\widetilde{\Omega}_k^{\text{Spin}}(X)$ for $0 \leq k \leq 6$ using the Adams spectral sequence, employing a standard trick to work over $\mathcal{A}(1) \coloneqq \langle \operatorname{Sq}^1, \operatorname{Sq}^2 \rangle$ rather than the entire Steenrod algebra. For details on how this works and many worked examples, see Beaudry-Campbell [BC18], who carefully explain and summarize how to use the Adams spectral sequence for these kinds of computations. The idea is that we must determine $\widetilde{H}^*(X; \mathbb{F}_2)$ as an $\mathcal{A}(1)$ -module. Then, the E_2 -page of this Adams spectral sequence is

(0.6)
$$E_2^{s,t} = \operatorname{Ext}_{\mathcal{A}(1)}^{s,t} (\widetilde{H}^*(X; \mathbb{F}_2), \mathbb{F}_2).$$

(Definitions and notation are as in [BC18].) The spectral sequence converges to something which in degrees $t-s \leq 7$ is isomorphic to $\widetilde{\Omega}_{t-s}^{\mathrm{Spin}}(X)$.

Proof of Theorem 0.1. First we argue $\widetilde{\Omega}_*^{\mathrm{Spin}}(X)$ has no p-torsion for odd primes p, justifying Footnote 1. In fact, we will show that if p is an odd prime, $\widetilde{\Omega}_*^{\mathrm{Spin}}(X) \otimes \mathbb{F}_p = 0$. For any finitely generated abelian group A, the p-torsion subgroup of A includes into the p-torsion subgroup of $A \otimes \mathbb{F}_p$, so this suffices.

By definition, $\widetilde{\Omega}_k^{\mathrm{Spin}}(X) \cong \widetilde{H}_k(MTSpin \wedge X)$. Tensoring with \mathbb{F}_p , the map

$$(0.7) \widetilde{H}_k(MTSpin \wedge X) \otimes \mathbb{F}_p \longrightarrow \widetilde{H}_k(MTSpin \wedge X; \mathbb{F}_p)$$

is injective, by the universal coefficient theorem. The Künneth theorem computes $\widetilde{H}_*(MTSpin \wedge X; \mathbb{F}_p)$ as a sum of tensor products of the form $\widetilde{H}_i(MTSpin; \mathbb{F}_p) \otimes \widetilde{H}_j(X; \mathbb{F}_p)$, so it suffices to show $\widetilde{H}_j(X; \mathbb{F}_p)$ vanishes for all j. The twisted-coefficients Thom isomorphism tells us there is a (in this case nontrivial) $\mathbb{Z}[\mathbb{Z}/2 \times \mathbb{Z}/2]$ -module structure $\widetilde{\mathbb{F}}_p$ on \mathbb{F}_p such that

(0.8)
$$\widetilde{H}_j(X; \mathbb{F}_p) \cong H_j(\mathbb{Z}/2 \times \mathbb{Z}/2; \widetilde{\mathbb{F}}_p).$$

1

¹This is not a priori true; in general we get $\widetilde{\Omega}_{t-s}^{\mathrm{Spin}}(X) \otimes \mathbb{Z}_2$, where \mathbb{Z}_2 denotes the 2-adic integers. In our case, we will see that $\widetilde{\Omega}_*^{\mathrm{Spin}}(X)$ lacks torsion for odd primes, so tensoring it with \mathbb{Z}_2 does not lose any information. In general, information can be lost when tensoring with \mathbb{Z}_2 , but that information can be computed by other means.

Maschke's theorem implies that since $\#(\mathbb{Z}/2 \times \mathbb{Z}/2)$ and p are coprime, and since $\widetilde{\mathbb{F}}_p$ is p-torsion, $H_j(\mathbb{Z}/2 \times \mathbb{Z}/2; \widetilde{\mathbb{F}}_p)$ vanishes in degrees j > 0. Using that 0^{th} group homology is the abelian group of coinvariants, one can check directly that $H_0(\mathbb{Z}/2 \times \mathbb{Z}/2; \widetilde{\mathbb{F}}_p) = 0$ as well. Thus $\widetilde{\Omega}_*^{\text{Spin}}(X)$ has no p-torsion.

On to the Adams spectral sequence. First we determine $\widetilde{H}^*(X; \mathbb{F}_2)$. As a graded abelian group, this is characterized by the Thom isomorphism: if $U \in \widetilde{H}^0(X; \mathbb{F}_2)$ denotes the Thom class, cup product with U is an isomorphism

$$(0.9) (U\cdot): H^k(B\mathbb{Z}/2 \times B\mathbb{Z}/2; \mathbb{F}_2) \xrightarrow{\cong} \widetilde{H}^k(X; \mathbb{F}_2).$$

There is no degree shift because the virtual vector bundle $V \to B\mathbb{Z}/2 \times B\mathbb{Z}/2$ (from (0.5)) has rank zero. Let $a := w_1(\ell_1)$ and $b := w_1(\ell_2)$ in $H^1(B\mathbb{Z}/2 \times B\mathbb{Z}/2; \mathbb{F}_2)$; then

$$(0.10) H^*(B\mathbb{Z}/2 \times B\mathbb{Z}/2; \mathbb{F}_2) \cong \mathbb{F}_2[a, b].$$

The $\mathcal{A}(1)$ -module structure on $\widetilde{H}^*(X; \mathbb{F}_2)$ is determined by the following rules.

- (1) $\operatorname{Sq}^{i}(U) = Uw_{i}(V)$, where w_{i} denotes the i^{th} Stiefel-Whitney class. In this case, $w_{1}(V) = a$ and $w_{2}(V) = ab$.
- (2) The Cartan formula determines the Steenrod squares of a product. We only need Sq¹ and Sq², for which the Cartan formula specializes to

(0.11a)
$$\operatorname{Sq}^{1}(xy) = \operatorname{Sq}^{1}(x)y + x\operatorname{Sq}^{1}(y)$$

(0.11b)
$$\operatorname{Sq}^{2}(xy) = \operatorname{Sq}^{2}(x)y + \operatorname{Sq}^{1}(x)\operatorname{Sq}^{1}(y) + x\operatorname{Sq}^{2}(y).$$

(3) From the axiomatic properties of Steenrod squares, $\operatorname{Sq}^1(a) = a^2$, $\operatorname{Sq}^1(b) = b^2$, and $\operatorname{Sq}^2(a) = \operatorname{Sq}^2(b) = 0$. Using these three rules one can determine the action of Sq^1 and Sq^2 on any cohomology class of X, as it is a sum of products of U, a, and b. This is routine, and indeed we used a computer program to make these calculations. The answer is displayed in Figure 1.

FIGURE 1. $\widetilde{H}^*(X; \mathbb{F}_2)$ as an $\mathcal{A}(1)$ -module in degrees 8 and below. Each dot represents an \mathbb{F}_2 summand, with its cohomological degree given by its height. The connecting lines, resp. curves, indicate an action by Sq^1 , resp. Sq^2 , carrying the lower dot to the upper dot. This $\mathcal{A}(1)$ -module factors as several different summands; we give each summand a different color.

From this figure, we see that, as an $\mathcal{A}(1)$ -module, $\widetilde{H}^*(X; \mathbb{F}_2)$ splits into several summands. All of them except the orange summand look like shifts of $\mathcal{A}(1)$, though because we haven't gone above degree 8, some of them look truncated. The orange summand, which is generated by Ua, is isomorphic to the mod 2 cohomology of the spectrum MO_1 , the Thom spectrum of the tautological line bundle $\sigma \to BO_1$ (see [BC18, Figure 4]); therefore we denote that summand by $\widetilde{H}^*(MO_1)$.

Remark 0.12. We have not fully determined the structure of these summands above degree 8, so it is possible that, for example, the green summands aren't actually isomorphic to $\Sigma^4 \mathcal{A}(1)$. Any such discrepancy would only appear above degree 8, so the minimal resolutions for computing the E_2 -page would only differ in degrees $t-s \geq 8$, so such a discrepancy would not change the E_2 -page we draw in (0.14).

Specifically, up to degree 7,

$$(0.13) \qquad \widetilde{H}^*(X; \mathbb{F}_2) \cong \mathcal{A}(1) \oplus \widetilde{H}^*(MO_1) \oplus \Sigma^2 \mathcal{A}(1) \oplus \Sigma^4 \mathcal{A}(1) \oplus \Sigma^4 \mathcal{A}(1) \oplus \Sigma^6 \mathcal{A}(1) \oplus \Sigma^6 \mathcal{A}(1).$$

The E_2 -page of the Adams spectral sequence (0.6) is the direct sum of the E_2 -pages of these summands, and these have all been calculated. For $\Sigma^k \mathcal{A}(1)$, there is a single \mathbb{F}_2 summand in bidegree s = 0, t = k; for $\widetilde{H}^*(MO_1)$, see [Cam17, Example 6.3]. Putting these together, the E_2 -page for this spectral sequence is

In this diagram, the x-axis is t-s and the y-axis is s. Therefore a differential d_r moves one degree to the left and r-1 degrees upwards. Each dot represents an \mathbb{F}_2 summand of the E_2 -page; the different colors indicate which summands of $\widetilde{H}^1(X;\mathbb{F}_2)$ are responsible for which data on the E_2 -page.

The E_2 -page carries an action by $\operatorname{Ext}_{\mathcal{A}(1)}^{*,*}(\mathbb{F}_2, \mathbb{F}_2)$. The vertical lines indicate action by an element $h_0 \in \operatorname{Ext}_{\mathcal{A}(1)}^{1,1}(\mathbb{F}_2, \mathbb{F}_2)$, and the diagonal lines indicate action by $h_1 \in \operatorname{Ext}_{\mathcal{A}(1)}^{2,1}(\mathbb{F}_2, \mathbb{F}_2)$; see [BC18, Example 4.1.1] for more on h_0 and h_1 . Crucially, all differentials are h_0 - and h_1 -linear, i.e. $d_r(h_i x) = h_i d_r(x)$ (i = 0, 1). In particular, if $h_i x = 0$ and $h_i y \neq 0$, then $d_r(x) \neq y$. This forces all differentials in the range shown to vanish.

There is still a question of extension problems: the line t-s=k is the associated graded of a filtration, possibly nontrivial, on $\widetilde{\Omega}_k^{\mathrm{Spin}}(X)$. Let $\overline{x}, \overline{y}$ be elements on the E_{∞} -page, i.e. elements of this associated graded; if $h_0\overline{x}=\overline{y}$, then there are preimages $x,y\in\widetilde{\Omega}_*^{\mathrm{Spin}}(X)$ of \overline{x} , resp. \overline{y} , such that 2x=y. Thus, for example, $\widetilde{\Omega}_3^{\mathrm{Spin}}(X)$, which a priori could be an arbitrary abelian group of order 8, has two nonzero elements x_1,x_2 with $x_2=4x_1$, and therefore $\widetilde{\Omega}_3^{\mathrm{Spin}}(X)\cong \mathbb{Z}/8$.

Similarly, if $h_1\overline{x} = \overline{y}$, one can choose preimages x and y in $\widetilde{\Omega}_*^{\mathrm{Spin}}(X)$ such that $\eta \cdot x = y$, where η is the generator of $\pi_1 \mathbb{S} \cong \mathbb{Z}/2$. (Concretely, if x is the dpin bordism class of some manifold M, then $\eta \cdot x$ is the bordism class of $S^1 \times M$, where S^1 has the dpin structure induced from the nonbounding framing.)

However, not all extensions arise in this way: $hidden\ extensions$ are nontrivial extensions that are not detected by the action of $\operatorname{Ext}_{\mathcal{A}(1)}^{*,*}(\mathbb{F}_2,\mathbb{F}_2)$ on the E_2 -page. A priori, there could be a hidden extension by 2 in bidegree t-s=2, in which case $\widetilde{\Omega}_2^{\operatorname{Spin}}(X)$ would be $\mathbb{Z}/4$ rather than $\mathbb{Z}/2 \oplus \mathbb{Z}/2$. However, we can rule this out: suppose it were $\mathbb{Z}/4$, and let x be a generator. Then the image of x in the associated graded of $\widetilde{\Omega}_2^{\operatorname{Spin}}(X)$ (i.e. the t-s=2 line of the Adams E_{∞} -page) is the nontrivial element of the yellow $\mathbb{Z}/2$ summand in bidegree (2,0), and the image of 2x is the nonzero element of the orange $\mathbb{Z}/2$ summand in bidegree (2,1). The h_1 -action carries this to the nonzero element of the orange $\mathbb{Z}/2$ summand in bidegree (3,2), so $\eta \cdot 2x \neq 0$. Since $2\eta = 0$, however, this is a contradiction, forcing $\widetilde{\Omega}_2^{\operatorname{Spin}}(X) \cong \mathbb{Z}/2 \oplus \mathbb{Z}/2$.

REFERENCES

[BC18] Agnès Beaudry and Jonathan A. Campbell. A guide for computing stable homotopy groups. In *Topology and quantum theory in interaction*, volume 718 of *Contemp. Math.*, pages 89–136. Amer. Math. Soc., Providence, RI, 2018. https://arxiv.org/abs/1801.07530. 1, 2, 3

[Cam17] Jonathan A. Campbell. Homotopy theoretic classification of symmetry protected phases. 2017. http://arxiv.org/abs/1708.04264. 3

[KPMT19a] Justin Kaidi, Julio Parra-Martinez, and Yuji Tachikawa. GSO projections via SPT phases. 2019. https://arxiv.org/abs/1908.04805.

[KPMT19b] Justin Kaidi, Julio Parra-Martinez, and Yuji Tachikawa. Topological superconductors on superstring worldsheets. 2019. https://arxiv.org/abs/1911.11780.