

ulm university universität UUIM

2. Klausur Lineare Algebra I

18.10.2013

1. Sei
$$E = \left\{ x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \mid x_1 + 2x_2 + x_3 = 5 \right\}$$
. Bestimmen Sie eine Parameterdarstellung von E .

- 2. (a) Sei $F:V\longrightarrow W$ eine lineare Abbildung.
 - (i) Geben Sie die Definition von Injektivität und Surjektivität an. [2]
 - (ii) Geben Sie ein Kriterium an, mit dem man anhand des Kerns von F erkennen kann, ob F injektiv ist. [1]
 - (iii) Geben Sie ein Kriterium an, mit dem man anhand des Bildes von F erkennen kann, ob F surjektiv ist. [1]
 - (b) Sei $V = M_{2,2}(\mathbb{R}) := \left\{ \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \mid m_{11}, m_{12}, m_{21}, m_{22} \in \mathbb{R} \right\}$ und sei $F : M_{2,2}(\mathbb{R}) \longrightarrow \mathbb{R}, \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \longmapsto m_{11} + m_{22}.$
 - (i) Zeigen Sie, dass F eine lineare Abbildung ist. [4]

[2]

- (ii) Geben Sie an, ob F injektiv ist und ob F surjektiv ist.
- 3. Gegeben sei die Permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 1 & 6 & 2 & 4 \end{pmatrix}$.
 - (a) Schreiben Sie σ in Zykelschreibweise. [1]
 - (b) Schreiben Sie σ als Produkt von Transpositionen. [2]
 - (c) Bestimmen Sie die Inversionen von σ . [3]
 - (d) Bestimmen Sie inv σ und sgn σ . [2]

Bitte wenden!

ulm university universität

- 4. Für welche $\lambda \in \mathbb{R}$ sind die Vektoren $\begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 7 \\ 1 \end{pmatrix}$, $\begin{pmatrix} \lambda \\ 1 \\ 1 \end{pmatrix}$ linear unabhängig? [5]
- 5. Sei V ein endlich-dimensionaler Vektorraum und sei $\varphi:V\longrightarrow V$ eine lineare Abbildung mit $\varphi^2=0$. Zeigen Sie:
 - (a) $\operatorname{Im} \varphi \subset \operatorname{Ker} \varphi$. [5]
 - (b) $\dim \operatorname{Im} \varphi \leq \frac{1}{2} \dim V$. [3]
- 6. Sei $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 3 & -1 \\ 1 & 2 & 0 \end{pmatrix}$.
 - (a) Bestimmen Sie das charakteristische Polynom von A ohne Teilaufgabe b) zu benutzen. [3]
 - (b) Zeigen Sie, dass $\begin{pmatrix} -2\\1\\0 \end{pmatrix}$ und $\begin{pmatrix} 0\\1\\1 \end{pmatrix}$ Eigenvektoren von A sind und geben sie die zugehörigen Eigenwerte an. [4]
 - (c) Sei $F: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, $x \longmapsto Ax$. Finden Sie einen Vektor v, sodass $\mathbb{B} = \left\{ v, \begin{pmatrix} -2\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix} \right\}$
 - eine Basis von \mathbb{R}^3 ist und die Darstellungsmatix $M_{\mathbb{B}}^{\mathbb{B}}(F)$ eine Diagonalmatrix ist. Bestimmen Sie auch die Darstellungsmatix $M_{\mathbb{B}}^{\mathbb{B}}(F)$ und die Transformationsmatix $M_{\mathbb{E}}^{\mathbb{B}}(\mathrm{id})$. [8]

Viel Erfolg!