Доверительные интервалы.

Сгенерируйте выборку $X_1,...,X_{100}$ из распределения P_{θ} в теоретических задачах 6.1, 6.3, 6.4 и 6.5. В задачах 6.1, 6.3 и 6.4 возьмите $\theta=10$, в задаче 6.5 возьмите $(\theta,\lambda)=(10,3)$. Для уровня доверия $\alpha=0.95$ для всех $n\leq 100$ постройте доверительные интервалы, полученные в теоретических задачах. Изобразите их на графиках в координатах (n,θ) , используя matplotlib.pyplot.fill between.

Для n=100 оцените вероятность попадания истинного значения θ в интервал (в каждой задаче). Для этого сгенерируйте достаточно много выборок (предложите, сколько нужно выборок), постройте по каждой из них интервалы и определите, сколько раз в интервалы попадает истинное значение θ . Таким способом будет построена бернуллиевская выборка, по ней оцените вероятность.