

Outline

- Introduction
 - Proteins and protein drugs
 - Biotechnological production
 - Gene technology and protein engineering
 - Monoclonal antibodies
- Classification of protein drugs
- Differences between protein- and small molecular drugs
- Important aspects and opportunities for protein drugs
 - Example 1. EPO
 - Example 2. TNF blockers

Biotechnological production

sobi

- Most protein drugs are produced using recombinant DNA technology
 - Cloning of gene and/or cDNA
 - DNA is introduced into host cells (cell line)
 - Heterologous protein expression
- Frequently used expression systems:
 - Microorganisms: bacteria (eg. E.coli) and yeast
 - Eukaryotic cells: insect cells, mammalian cells (eg. CHO)
 - Transgenic animals and plants
- Protein/process characterization
 - Complex structures, patterns of posttranslational modifications
 - Product- and/or process-specific impurities
 - Important to be able to show:
 - Identity, Purity, Stability and Consistency of manufacture

.

sobi

Formula Mol. mass **C**₂₂₂₄**H**₃₄₇₅**N**₆₂₁**O**₆₉₈**S**₃₆ 51 235 g/mol*

* Dimer + glycosylation = 150 kDa

Gene technology and protein engineering

sobi

- "Cut-and-paste" DNA
- Design and modification of proteins
- Fusions and chimeric molecules
- Production by biotechnological processes

11

sobi

Formula Mol. mass **C**₆₄₁₆**H**₉₈₇₄**N**₁₆₈₈**O**₁₉₈₇**S**₄₄ 143 860 g/mol

143 860 g/moi

Monoclonal antibodies (mAbs)

- Antibodies as drugs
 - Targeting
 - Variable regions (CDRs)
 - Stability and effector functions
 - Fc region
 - mAbs are usually produced by immunizations in mice
 - Immunogenicity
 - Humanization
 - Fully-human mAbs
 - Transgenic mice
 - In vitro selection
 - Either full-length antibodies or antibody fragments (and fusions) can be used
 - Antibody engineering

Isaacs JD, Arthritis Research & Therapy, 2009

13

Platforms	Main applications	Major advantages	Key disadvantages	FDA approved therapeutic antibodies
Hybridoma	Generate hits and research reagents	Mature technology and cost effective	Potential immunogenicity	Orthoclone, Zevalin, Bexxar
Humanization	Generate therapeutic candidates	Well established and low cost	Not fully human antibodies	ReoPro, Rituxan, Simulect, Remicade, Erbitux, Adcetris, Zenapax, Synagis, Herceptin, Mylotarg, Mabcampath, Xolair, Actemra, Avastin, Tysabri, Lucentis, Soliris, Cimzia, Perjeta
Phage display	Generate hits and therapeutic candidates	Large library size (> 10E10) and robust screening; fully human antibodies	Not all antibodies express well in Escherichia coli and require engineering	Humira and Benlysta
Yeast display	Improve affinity and stability	Eukaryotic host; targeted sorting by FACS	Relatively small library size	None
Transgenic Rodents	Generate therapeutic candidates	High affinity fully human antibodies	Technology accessibility	Vectibis, Ilaris, Simponi, Stelara, Arzerra, Prolia, Yervoy

FDA: Food and Drug Administration; FACS: Fluorescence activated cell sorting.

Lu et al. World J Biol Chem 2012 December 26; 3(12): 187-196

Classification of biopharmaceuticals

sobi

• Substitution therapy:

- Replacement of defective/absent protein
- Augmentation of signaling pathway
 - Insulin, growth hormone, coagulation factors, enzyme replacement
 - Haematopoiesis (Epo), Stimulation of white blood cells (G-CSF), fertility hormone treatment (FSH), immune regulation (interferon)

Targeting

- Antibodies or related molecules/scaffolds
- Natural receptors or regulatory molecules
 - Cancer targeting
 - · Immuno inflammation, autoimmunity
 - Immuno oncology
 - Etc.

Differences between small molecules and biopharmaceuticals

	Small molecules	Protein drugs
Targets	Intra- and extracellular (entire body)	Extracellular (limited distribution)
Specificity	Often broad with activity in several species	Often limited to human and monkey
Preclinical studies	Generic (guidelines)	Alternative, case-by-case (surrogate molecules etc.)
Safety and tox	Off-target toxicity and reactive metabolites	On-target / off-pathology, immunogenicity
Administration	Oral (same throughout development)	Injection (i.v. infusion or s.c.)
DMPK	Short duration, drug metabolism	Long half-life desirable (less injections), catabolism
Manufacturing (process, scale)	Chemical synthesis, often same process (upscaling)	Biotechnological process, common to change process/scale, costly
Purity and stability	High purity (absence of toxic impurities) and high stability	Structural heterogeneity, sensitivity to high temperature and long-term storage

Important properties, considerations, and opportunities for biopharmaceuticals

Sobi

- Manufacturing costs
 - Expression systems
 - Expressions levels
 - Process (upstream, downstream, analysis, formulation)
- Immunogenicity
 - Efficacy, safety, pharmacokinetics, pharmacodynamics
 - Humanization, glycosylation, host cell
- · Dosage and pharmacokinetics
 - Route of administration: i.v., i.m., s.c.
 - Pharmacokinetics: plasma half-life, bioavailability, ADME
 - Dose regimen
 - "Convenience"
- · Intellectual property rights
 - Freedom-to-operate and product protection
 - Biosimilars

1

Important properties, considerations, and opportunities for biopharmaceuticals

§ sobi

- Manufacturing costs
 - Expression systems
 - Expressions levels
 - Process (upstream, downstream, analysis, formulation)
- Immunogenicity
 - Efficacy, safety, pharmacokinetics, pharmacodynamics
 - Humanization, glycosylation, host cell
- Dosage and pharmacokinetics
 - Route of administration: i.v., i.m., s.c
 - Pharmacokinetics: plasma half-life, bioavailability, ADME
 - Dose regimen
 - "Convenience"
- Intellectual property rights
 - Freedom-to-operate and product protection
 - Biosimilars

Important properties, considerations, and opportunities for biopharmaceuticals

sobi

- Manufacturing costs
 - Expression systems
 - Expressions levels
 - Process (upstream, downstream, analysis, formulation)
- · Immunogenicity
 - Efficacy, safety, pharmacokinetics, pharmacodynamics
 - Humanization, glycosylation, host cell
- Dosage and pharmacokinetics
 - Route of administration: i.v., i.m., s.c.
 - Pharmacokinetics: plasma half-life, bioavailability, ADME
 - Dose regimen
 - "Convenience"
- Intellectual property rights
 - Freedom-to-operate and product protection
 - Biosimilars

2

Important properties, considerations, and opportunities for biopharmaceuticals

- Manufacturing costs
 - Expression systems
 - Expressions levels
 - Process (upstream, downstream, analysis, formulation)
- Immunogenicity
 - Efficacy, safety, pharmacokinetics, pharmacodynamics
 - Humanization, glycosylation, host cell
- Dosage and pharmacokinetics
 - Route of administration: i.v., i.m., s.c.
 - Pharmacokinetics: plasma half-life, bioavailability, ADME
 - Dose regimen
 - "Convenience"
- Intellectual property rights
 - Freedom-to-operate and product protection
 - Biosimilars

Measures to extend the plasma half-life are important for improving drug-like properties of biopharmaceuticals

- Clearance of protein drugs from circulation
 - Blood mediated elimination by proteolysis
 - Renal filtration and degradation
 - Hepatic elimination
 - Elimination by receptor-mediated endocytosis
- Molecules with a small size or low molecular mass are rapidly cleared by renal filtration
 - Threshold in the range of 40-50 kDa
 - Hydrodynamic radius and physicochemical properties
- Protein engineering techniques can dramatically decrease clearance
 - Genetic fusions
 - Chemical conjugation and modification
 - Site-specific mutagenesis
- · Recycling through neonatal Fc receptor (FcRn)

Kontermann RE Current Opinion in Biotechnology 2011

23

Important properties, considerations, and opportunities for a protein drug

- Manufacturing costs
 - Expression systems
 - Expressions levels
 - Process (upstream, downstream, analysis, formulation
- Immunogenicity
 - Efficacy, safety, pharmacokinetics, pharmacodynamics
 - Humanization, glycosylation, host cell
- Dosage and pharmacokinetics
 - Route of administration: i.v., i.m., s.c.
 - Pharmacokinetics: plasma half-life, bioavailability, ADME
 - Dose regimen
 - "Convenience"
- · Intellectual property rights
 - Freedom-to-operate and product protection
 - Biosimilars

Example 1. Erythropoietin (Epo)

sobi

- Glycoprotein hormone (growth factor) that regulates the production of erythrocytes
- · Naturally secreted from the kidneys
- Recombinant Epo has been in use for more than 25 years
 - Improved novel Epo-variants now available
 - Epo-doping
- Epo is used to treat anemia as a result of renal failure (or e.g. cancer treatment)

• 1989: the first Epo drug was approved

- Recombinant protein based on the human Epo sequence
 - 165 aa (3 glycosylations), 30 kDa
- Produced in CHO cells (hamster origin)
- Short plasma half-life (~ 8 h)
 - Three doses / week

Use of Epo has been associated with Pure Red Cell Aplasia (PRCA) – a rare type of severe anemia.

A result of Anti-Epo antibodies (immunogenicity)

Elliott S et al. *Nature Biotechnology* 2003

• 2001: a new Epo drug with improved pharmacokinetics was launched - Darbepoetin (Aranesp) - Hyperglycosylated • 5 glykosylations, 37 kDa - Prolonged half-life (25 h) • One dose / week B Darbepoietin alfa Additional carbohydrate side chains Receptor 1 Receptor 2 Elliott S et al. Nature Biotechnology 2003

- 2002: Shire tried to launch an Epo product produced in human cells (not hamster)
 - Epoeitin delta (Dynepo)
 - Human glycosylation pattern, less immunogenic?
 - Still short half-life, three doses / week
 - · Not marketed anymore
- 2007: PEGylerated Epo with much longer half-life is launched
 - PEG-epoetin beta (Mircera)
 - Total mol. weight 60 kDa
 - 30 kDa PEG conjugated to Lysine
 - One dose / month (T_{1/2} 130 h)
 - Patent disputes with Amgen
 - · Not sold in the US

http://www.roche.com/products/product-details.htm?type=product&id=83

PEGylation

- Covalent coupled polyethylene glycol
- Improved pharmacokinetic properties

Branched PEG₂

Fig. 5. Schematic representation of linear polyethylene glycol (PEG) and the branched form (PEG₂). The circles around the PEG chain represent the bound water and X represents the protein reactive groups.

Veronese FM 2008

- 2012: approval of a product that addressed both potential problems with pharmacokinetics and immunogenicity
 - Peginesatide (Omontys® Affymax)
 - Synthetic, pegylated dimeric peptide (not biotech)
 - 5 kDa peptide plus 40 kDa PEG
 - Peginesatide binds the erythropoietin receptor but does not share the Epo sequence
 - · No risk of cross-reactive immunogenicity (and PRCA)
 - Half-life ~50 h, 1 dose / month

Figure 1: Structure of peginesatide acetate

• But in February 2013 Omontys was recalled

Sobi

Example 2. TNF blockers

sobi

- Tumour necrosis factor (TNF) is a proinflammatory protein (cytokine) that signals by binding to TNF receptors
 - Involved in many inflammatory and autoimmune diseases
 - Reumatoid Arthritis (RA): chronic inflammation in joints
- Anti-TNF treatment with protein drugs since 1998
- Antibodies and antibody derived/related molecules

• Infliximab (Remicade, Centocor 1998)

- Chimeric IgG1 monoclonal antibody
 - Human constant (70%) och murine variable regions (30%)
- Produced in mouse myeloma cells (SP2/0)
- Dosage: 3 mg/kg i.v. infusion every 6-8 week

• Etanercept (Enbrel, Amgen 1998)

- Fusion protein: extracellular parts of the TNF receptor (p75, TNFR2) and the Fc part of human IgG1.
- Produced in CHO cells
- Dosage: 50 mg s.c. / 1 week (or 2x /week)

Summary: EPO and TNF examples

- Manufacturing costs
 - E.coli production (Certolizumab pegol)
- Immunogenicity
 - Fully human mAb (Adalimumab)
 - Allergic reactions (Peginesatide)
- · Dosage and pharmacokinetics
 - Epo normal dosage 3 injections / week
 - Hyperglycosylated: 1 dose /week; PEGylated: 1 dose /month
 - Anti-TNF
 - Golimumab: subcutaneous injection, 1 dose / month
- Intellectual property rights
 - Mircera (PEGylated Epo) infringed on Amgen patents
- Convenience
 - A subcutaneous injection that can be self-administered by the patient (e.g. on a monthly basis) using a pre-filled syringe, designed to fit a reumatic person, and that can be stored at room temperture

Thank you for listening

patrik.stromberg@sobi.com