

How to get a safer and cozier kitchen by using AloT

Contents

Introduction	Structure	Function	Experiment	Conclusion
What is it about?	What exactly is it?	What does it do?	How does It do	Summary and outlook

01 Introduction

Members

Chen Zihan

Tang Ningzhi

Fig. 1, Fig. 2 Cooking in Chinese restaurants

- *Real time monitoring*: monitor environment around from sensors
- Intelligent classification:

invoke machine learning model to classify the state of environment

• *Automatic Control*:

automatically control the actuator by judging the state

02 Structure

Fig. 3 Structure of devices

Fig. 4 Message flow controlled by scripts

Function

Smart Kitchen

Environmental Parameters

Parameter	Data			
Temperature	29.11			
Pressure	99720.0			
Humidity	56.0			
Smoke	283.0			
Flame	795.0			
Assessment	Uncomfortable!			

Control Options

Manual Mode

LED: $\underline{\text{ON}} \mid \underline{\text{OFF}}$ Buzzer: $\underline{\text{ON}} \mid \underline{\text{OFF}}$ Fan: $\underline{\text{ON}} \mid \underline{\text{OFF}}$ Water Pump: $\underline{\text{ON}} \mid \underline{\text{OFF}}$

GET Real Time Information

Detect Mode

START | END

We define it into three categories:

Comfortable

Not operate all the actuators.

UnComfortable

Do something to improve the kitchen environment.

Take prompt actions to prevent fire, suffocation and other safety accidents.

Assessment	LED	Buzzer	Fan	Water Pump
Comfortable	OFF	OFF	OFF	OFF
Uncomfortable	ON	OFF	ON	OFF
Dangerous	ON	ON	ON	ON

Fig. 5 Flow chart of the Detect process

04 Experiment

The Composition of Our Data Set:

How we collect data for our training:

Fig. 6 The equipment and electrical conditions involved

Machine Learning Model

- Step 1: KMeans Cluster: split data into 3 categories;
- Step 2: Adding label, label each cluster from daily experiences;
- Step 3: We use Random Forest to classify labeled data;
- Step 4: Model Assessment:
- 1. Silhouette score of Cluster: 0.564;
- 2. Accuracy of Classification: 98.61% on train set; 97.22% on test set.

Conclusion

Technology makes the world a better place.

Reference

[1] Liu Xuhua. Study on risk analysis and preventive measures of kitchen fire in catering industry [D]. South China University of Technology, 2013.

[2] Juliqin. Study on evaluation of Students' achievement based on random forest algorithm [D]. Anhui University of Technology, 2017.

Contact to us: cesarchen616@outlook.com 11912521@mail.sustech.edu.cn