Grid computing for energy exploration and development

Dimitri Bevc, Sergio E. Zarantonello,

Neena Kaushik, Iulian Musat

3DGeo Development Inc.

www.3dgeo.com

Why Grids for Seismic Imaging?

- The construction of accurate 3-D images of the subsurface of the Earth is an extremely resourceintensive task. The most advanced technologies are not feasible in traditional environments.
- Harnessing remote resources effectively across different organizational domains is fundamentally important in the oil and gas industry.
- Globus middleware allows the sharing of resources in virtual organizations, enabling compute intensive seismic imaging services on the Grid. This addresses a critical need in a compute and resource intensive industry.

Outline

- Overview of seismic depth imaging
 The computational challenge.
- Parallelization Issues
 Cluster deployment of PSDM
 Grid deployment of PDSM
- Seismic imaging on the Grid
 The INSP client-server system.
 The Grid-enabled implementation.
- Operational procedures Scenarios

Issues

Benefits to the oil and gas industry

3-D Depth Imaging Methods

Wave-equation of mathematical physics

Kirchhoff Integral equation

Wave-equation PDE

Shot-Gather

Shot-Receiver

Shot profile

Common Azimuth migration

Narrow Azimuth migration

Kirchhoff Migration

The essence of 3-D prestack *Kirchhoff* migration can be expressed in the following integral equation:

$$\operatorname{Image}(\mathbf{x}) = \int \int_{\mathbf{x_s}} \int_{\mathbf{x_l}} G(\mathbf{x_s}, \mathbf{x}, \omega) G(\mathbf{x}, \mathbf{x_r}, \omega) \operatorname{Data}(\mathbf{x_s}, \mathbf{x_r}, \omega) d\mathbf{x_r} d\mathbf{x_s} d\omega,$$

If the Green's functions are completely specified, this solution is as accurate as any "wave-equation" implementation.

In computer implementations, we express the integral as a sum:

$$\operatorname{Image}(\mathbf{x}) = \sum_{\mathbf{x_s}} \sum_{\mathbf{x_r}} A_s A_r \operatorname{Input}(\mathbf{x_s}, \mathbf{x_r}, t_s + t_r)$$

Building a 3D seismic image through multiple iterations

Imaging comparison: Kirchhoff vs. Wave Equation

Imaging comparison: Kirchhoff vs. Wave Equation

Imaging comparison: Kirchhoff vs. Wave Equation

The computational challenge: Gulf of Mexico marine surveys

Runt	im	e	\mathbf{C}	lax	VS)
	7,000				

Blocks	Gbytes	Kirchhoff & ComAz	Narrow Azim.	Shot Profile
				1 101110
10	620	3	31	184
100	6,200	111	1,100	6,640
500	30,700	996	9,960	59,800
				164 yrs!

128 CPU Pentium 4 Cluster
(2.4 Ghz – 900 Mflops/cpu sustained)

PSDM cluster deployment

PSDM for Grid deployment

Distribute to additional compute resources:

- support distributed heterogeneous computing environments
- through Web Service Resource Framework (WSRF)

What is INSP?

Internet Seismic Processing – started in '97

- 3DGeo's graphical interface to our processing system.
- Job Setup and Progress Monitoring.
- Remote Quality Control.
- Interpretation and Velocity Model Building.
- Network Collaboration.

The Grid is a natural evolutionary step for INSP

INSP user interface

Grid status, resource monitoring

INSP architecture

Grid-enabling INSP

current design

INSP Client NETBEANS J2SE

remote invocation layer INSP Server
Database: Postgres
Application Server: Jboss

J2EE, EJB

target design

Today's operational scenario

Data acquisition

Preprocessing

Data bank

100's of TBytes

Drilling decision

Site a platform

Oil Company

Data analysis & Interpretation

Depth Imaging 1 −2 yr process

INSP operational scenario

Data acquisition

Preprocessing

Data bank

100's of TBytes

Drilling decision

Site a platform

Oil Company

Data analysis & Interpretation

Depth Imaging

1 yr process

Grid Operational scenario

Data bank

100's of TBytes

Drilling decision

Site a platform

Oil Company

Data analysis & Interpretation

Depth Imaging

Grid operational scenario

Site a platform

Data analysis & Interpretation

Depth Imaging

Grid operational scenario

Data acquisition

100's of TBytes

Preprocessing

Too s of TDytes

Drilling decision

Site a platform

Data analysis & Interpretation

Data banks

Depth Imaging

Algorithmic issues

- Dynamic optimization of workload
- Data partitioning
 - Kirchhoff: distribute input, velocity model, Green's functions, image volumes.
 - Wave-equation migration: frequency slices, distribute input, velocity model, image volumes
- Scaling across heterogeneous resources
- Modeling the application

Practical issues

- Proprietary data security
- Data volumes transfer rates, compression
- Data distributed in data banks access, & data transfer
- Authority delegation across organizational boundaries – change of business culture
- Computationally intense months of runtime
- Peak loads access to on-demand computing

What we're doing today

- INSP used today: client-server Internet app.
- Collaboration between 3DGeo's Houston and Santa Clara offices, and oil company client sites.
 - use facilities & personnel more efficiently.
- Access computers at SDSC for remote jobs.
- Outsource excess compute needs.
- Moving toward GT 4.0.

The future

- Seamless access to resources over the web
- Utility computing:
 - Companies based on IP shouldn't have to worry about buying computers or maintaining, and administrating computer hardware
- Ultimate goal is to tie in all stages from acquisition, to interpretation, to drilling decision into a "real time" process.

Benefits to the oil & gas industry

- Better results sooner shorten the time to making a drilling decision
- More flexible way of processing and interpreting data – increased productivity
- Process and interpret data as it is acquired the instrumented oil field
- Utility computing outsourcing model allows access to the latest hardware
- The *IntraGrid* within Oil Companies

