Описание системы

Общий вид представлен на рисунке.

Рис. 1 Общее представление системы.

Система состоит из четырех компонент, о которых пойдет речь далее.

1) Подсистема позиционирования

Данная компонента отвечает за определение местоположения сотрудников на предприятии. На текущий момент есть 3 возможных способа ее реализации:

1) С использованием смартфона

Данный метод подразумевает, что смартфон сотрудника будет непрерывно мониторить сигнал от близ лежащих маячков. Схема показана на рисунке.

Рис.2 Позиционирование с помощью смартфона. Маячки отмечены символами a, b, c.

Смартфон измеряет расстояния от bluetooth-маячков L_1 , L_2 и L_3 . Поскольку начальные координаты маячков нам известны, математическими методами можно определить позицию сотрудника. Полученный результат отправляется в подсистему планирования.

+Плюсы:

- 1. Сравнительная простота реализации: можно использовать готовые компоненты, например Google Beacon Platform или.
- 2. Не требует дополнительных приемников bluetooth сигнала.

-Минусы

- 1. Предположительно низкая устойчивость к помехам в условиях завода. На пути от источника к приемнику сигнала могут находиться металлические "предметы": многотонные станки и прочее оборудование, которое может давать сильнейшие наводки.
- 2. Нужно достаточно много маячков для определения точной позиции.

2) С использованием цифровых отпечатков.

В отличии от предыдущей методики, bluetooth-маячки не расположены статически, а закреплены за сотрудниками. Для данного подхода необходимы отдельные bluetooth-приемники, установленные на стенах или потолках здания. Они непрерывно измеряют уровень сигнала, исходящего от маячков, определяют значение расстояния и отправляют его по сети в главный узел подсистемы. Тот в свою очередь хранит виртуальную сетку - цифровые отпечатки или RSSI карты Bluetooth.

Рис.3 Позиционирование с помощью цифровых отпечатков. Приемника blutooth-сигнала помечены как c, d.

Для каждой точки сетки определены ее координаты, массив уровней сигналов для каждого bluetooth-приемника. Эта информация занесена с систему заранее. Позиция маячка сотрудника определяется по алгоритму ближайших соседей, как показано на рисунке. Так для маячка $\bf a$ координаты определяются по точкам $\bf A_{1...4}$, а для маячка $\bf b$ по $\bf B_{1...3}$. Для более точного определения позиции маячка внутри клетки сетки можно применить функции сглаживания.

Нетрудно заметить, что для приемника ${\bf c}$ уровень сигнала маячка в точках ${\bf A}_1$ и ${\bf A}_4$ будет одинаково, что плохо влияет на определение точного местоположения. Для борьбы с неоднозначностью необходимо как минимум 3 приемника.

Приведенная выше схема подходит не только для blutooth-сигнала, но и для Wi-fi.

+Плюсы:

1. Хорошая устойчивость к постоянным помехам.

-Минусы

- 1. Требует трудоемкой предварительной настройки создание виртуальной сетки.
- 2. Необходимы отдельные приемники сигнала.

3) С использованием геометрии.

Как с предыдущем методе, маячки переносятся сотрудниками. Для построения такой системы необходимо 3 bluetooth-приемника, два из которых работают в режиме slave, а один в master. Логика работы этих режима немного различается. Режим slave:

- 1. измеряет расстояние до всех доступных маячков
- 2. передает массив расстояний в master-приемник.

- 1. измеряет расстояние до всех доступных маячков
- 2. принимает массив данных от двух slave-приемников
- 3. рассчитывает позиции доступных маячков (координаты x, y)
- 4. передает измеренные координаты в систему планирования

Рис.4 Позиционирование с помощью виртуальной сетки. Приемника bluetooth-сигнала помечены как c, d.

На рисунке приемники \mathbf{b} , \mathbf{c} работают в режиме slave, а приемник \mathbf{a} как master. При настройке системы требуется измерить расстояния \mathbf{L}_1 и \mathbf{L}_2 . Зная стороны треугольников \mathbf{U}_1 , \mathbf{U}_2 , \mathbf{L}_1 и \mathbf{U}_3 , \mathbf{U}_2 , \mathbf{L}_2 можно определить координаты маячка \mathbf{x} и \mathbf{y} .

- +Плюсы
 - 1. Не требует серьезной настройки (по сравнению с предыдущим методом)
- -Минусы
 - 1. Необходимы отдельные приемники сигнала.

Резюме

На данный момент наиболее выгодной будет первый метод, поскольку уже существуют проверенные библиотеки для реализации. Не факт, что другие два способа решат проблему сильных шумов.

Взаимодействовать с другими подсистемами будет только главный узел. Так же он будет пытаться решать некоторые проблемы устранения шумов. Работа с подсистемой позиционирования происходит с помощью REST API.

2) Подсистема планирования и распределения заданий

Данная подсистема распределяет задания работникам в зависимости от составленного заранее расписания и расположения первых.

Данный модуль будет реализован в виде отдельного микросервиса.

3) Подсистема взаимодействия с пользователями (UI)

Подсистема отвечает за представления вывода базы данных и системы планирования в удобно читаемом для пользователей виде.

Предполагается разный UI для работников, управленцев и системных администраторов. Последним предоставляется гораздо больше возможностей воздействия на систему.

В плане реализации представляет собой веб-сервер, взаимодействующий с мобильным клиентом на смартфоне и/или браузером на десктопе.