

PYEXPO25 Genius innovation leaves behind a legacy...

Team ID: T053

Team Name: Data Mavericks___

PS Number: PY088

PS Title: Smart Energy Meter for Energy Consumption

Domain: IoT

Category: Hardware

Problem Statement:

What Are We Solving?

Conventional energy meters provide only total consumption, and user optimization of electricity is not feasible.

Main issues are:

- i) No real-time consumption monitoring and appliance-level information.
- ii) Excessive bills because of inefficient consumption.
- iii) Environmental degradation because of excessive consumption.

Solution:

A smart energy meter that tracks real-time consumption, informs users of excessive consumption, and recommends savings.

Target Audience:

- i) Residential homeowners and renters who wish to save bills.
- ii) Environmentally conscious individuals.
- iii) Utility companies that need increased energy intelligence.
- iv) Smart home enthusiasts.

Proposed Solution:

Purpose:

The IoT system aims to:

Collect real-time data on energy usage by household appliances.

Send the data to a cloud platform to analyze.

Present users with recommendations and insights through a mobile application.

System Overview:

The system includes:

Sensors: Capture current, voltage, and power usage.

Microcontroller: Sends sensor data for processing and transmission to the cloud.

Communication Protocols: Zigbee for data transmission.

Cloud Platform: Stores, analyzes data, and creates insights.

Mobile App: Presents users with real-time data, reminders, and suggestions.

Architecture & Hardware-Software:

HARDWARE

Current sensor = SCT-013 Voltage sensor = ZMPT101B

microcontrollers = Arduino

Communication Modules = Zigbee Modules

power supply = AC-DC adapter

SOFTWARE

Data Transmission Protocols:

MQTT

HTTP/HTTPS

Zigbee

Cloud Platforms:

AWS IoT/Google Cloud IoT

Mobile App Development:

Flutter/React Native

Demo:

Impact and Future Scope:

• How does our solution improve efficiency or solve a real problem?

i)Real-Time Monitoring

ii)Appliance-Level Insights

iii)Cost Reduction

iv)Eco-Friendly

v)Scalable & Secure.

It can be scaled to larger systems by,

Modular Design: Add sensors/microcontrollers for more appliances/buildings. Cloud Scalability: Use AWS IoT/Google Cloud IoT for large-scale data handling.

Mesh Networking: Implement Zigbee/LoRaWAN for wide-area, low-power communication. Data Analytics: Use ML for community-wide energy insights.

Additional Features:

Energy Forecasting: Predict usage with ML. Smart Home Integration: Voice control via Google Home/Alexa.

Gamification: Earn rewards for saving energy. Solar Integration: Monitor solar output for optimization.

Theft Detection: Detect unusual usage patterns.

Research and References:

Smart Grid Technologies: "Smart Grid Technologies" by James Momoh: This book provides a comprehensive overview of smart grid technologies, including smart meters, communication infrastructure, and data management. It's a good starting point for understanding the broader context of smart meters.

"The Smart Grid: Enabling Energy Efficiency and Demand Response" by Ahmad Faruqui and Mohammad Abid Khan: This book focuses on the role of smart grids in improving energy efficiency and enabling demand response programs. It includes discussions on smart meters and their role in these applications.

Team Member Details:

Name		Roll No	-	Dept
1. SUDA	RSHAN . S(TL)	24UCB155		B.TECH-CSBS
2. ASHV	ATTHAA . J	24UCB107		B.TECH-CSBS
3. AKILE	SH . B	24UCS105		B.E-CSE(A)
4. JEREI	MIAH JEFRY . G	24UCS143	10% 10%	B.E-CSE(A)
5. AKSH	AYA VARUNI . N	24UAD106	nology .	B.TECH-AIDS(A)
6. DEVA	DHARSHINI . S	24UAD122		B.TECH-AIDS(A)

