

SEQUENCE LISTING

<110> Gurney et al.

<120> Alzheimer's Disease Secretase, APP Substrates Therefor and Uses
Therefor

<130> 29915/6280N3

<150> 09/794,925
<151> 2001-02-27

<150> 09/416,901
<151> 1999-10-13

<150> 60/155,493
<151> 1999-09-23

<150> 09/404,133
<151> 1999-09-23

<150> PCT/US99/20881
<151> 1999-09-23

<150> 60/101,594
<151> 1998-09-24

<160> 74

<170> PatentIn Ver. 2.0

<210> 1
<211> 1804
<212> DNA
<213> Homo sapiens

<400> 1	
atgggcgcac tggcccgccc gctgctgctg cctctgtctgg cccagtggct cctgcgcgcc	60
gccccggagc tggcccccgc gccccttacg ctgccccctcc gggtgtggccgc ggccacgaac	120
cgcgtagttg cgcacccaccc gggaccgggg acccctgccc agcgccacgc cgacggcttg	180
gcgcgtcgccc tggagcctgc cctggcgtcc cccgcggggcg ccgcacaactt cttggccatg	240
gtagacaacc tgcaggggga ctctggccgc ggctactacc tggagatgct gatcgggacc	300
cccccgccaga agctacagat tctcggttgc acttggaaagca gtaactttgc cgtggcagga	360
accccgcaact cctacataga cacgtacttt gacacagaga ggtcttagcac ataccgctcc	420
aagggctttg acgtcacagt gaagtacaca caagggaaact ggacgggctt cggtggggaa	480
gacctcgatca ccatccccaa aggcttcaat acttcttttc ttgtcaacat tgccactatt	540
tttgaatcag agaatttctt tttgcctggg attaaatgga atggaaatact tggcctagct	600
tatgccacac ttggccaagcc atcaagttct ctggagacct tcttcgactc cctggtgaca	660
caagcaaaca tcccccaacgt tttctccatg cagatgtgtg gagccggctt gcccgttgct	720
ggatctggga ccaacggagg tagtcttgtc ttgggtggaa ttgaaccaag tttgtataaa	780

ggagacatct ggtataccccc tattaaggaa gagtggtaact accagataga aattctgaaa	840
ttggaaattg gaggccaaag ccttaatctg gactgcagag agtataacgc agacaaggcc	900
atcgtggaca gtggcaccac gctgctgcgc ctgccccaga aggtgttga tgccgtggtg	960
gaagctgtgg cccgcgcatac tctgattcca gaattctctg atggtttctg gactgggtcc	1020
cagctggcgt gctggaccaa ttcggaaaca ccttggtctt acttccctaa aatctccatc	1080
tacctgagag atgagaactc cagcaggtca ttccgtatca caatcctgcc tcagctttac	1140
attcagccca tcatgggggc cggcctgaat tatgaatgtt accgattcgg catttccccca	1200
tccacaaatg cgctggtgat cgggccacg gtatggagg gcttctacgt catcttcgac	1260
agagcccaga agaggggtggg cttcgacg agccctgtg cagaaattgc aggtgctgca	1320
gtgtctgaaa ttccggggcc ttctcaaca gaggatgttag ccagcaactg tgtccccgct	1380
cagtcttga gcgagcccat ttgtggatt gtgcctatg cgctcatgag cgtctgtgga	1440
gccatcctcc ttgtcttaat cgccctgtg ctgctgccgt tccggtgtca gcgtcgcccc	1500
cgtgaccctg aggtcgtaa tcatgagtcc tctctggtca gacatcgctg gaaatgaata	1560
gccagggctg acctaagca accatgaact cagctattaa gaaaatcaca ttccagggc	1620
agcagccggg atcgatggtg gcgccttctc ctgtgcccac ccgtcttcaa tctctgttct	1680
gctcccgat gccttctaga ttcaactgtct ttgtattctt gatttcaag ctttcaaattc	1740
ctccctactt ccaagaaaaa taattaaaaa aaaaacttca ttctaaacca aaaaaaaaaa	1800
aaaaa	1804

<210> 2
<211> 518
<212> PRT
<213> Homo sapiens

<400> 2

Met Gly Ala Leu Ala Arg Ala Leu Leu Leu Pro Leu Leu Ala Gln Trp
1 5 10 15

Leu Leu Arg Ala Ala Pro Glu Leu Ala Pro Ala Pro Phe Thr Leu Pro
20 25 30

Leu Arg Val Ala Ala Ala Thr Asn Arg Val Val Ala Pro Thr Pro Gly
35 40 45

Pro Gly Thr Pro Ala Glu Arg His Ala Asp Gly Leu Ala Leu Ala Leu
50 55 60

Glu Pro Ala Leu Ala Ser Pro Ala Gly Ala Ala Asn Phe Leu Ala Met

65

70

75

80

Val Asp Asn Leu Gln Gly Asp Ser Gly Arg Gly Tyr Tyr Leu Glu Met
85 90 95

Leu Ile Gly Thr Pro Pro Gln Lys Leu Gln Ile Leu Val Asp Thr Gly
100 105 110

Ser Ser Asn Phe Ala Val Ala Gly Thr Pro His Ser Tyr Ile Asp Thr
115 120 125

Tyr Phe Asp Thr Glu Arg Ser Ser Thr Tyr Arg Ser Lys Gly Phe Asp
130 135 140

Val Thr Val Lys Tyr Thr Gln Gly Ser Trp Thr Gly Phe Val Gly Glu
145 150 155 160

Asp Leu Val Thr Ile Pro Lys Gly Phe Asn Thr Ser Phe Leu Val Asn
165 170 175

Ile Ala Thr Ile Phe Glu Ser Glu Asn Phe Phe Leu Pro Gly Ile Lys
180 185 190

Trp Asn Gly Ile Leu Gly Leu Ala Tyr Ala Thr Leu Ala Lys Pro Ser
195 200 205

Ser Ser Leu Glu Thr Phe Phe Asp Ser Leu Val Thr Gln Ala Asn Ile
210 215 220

Pro Asn Val Phe Ser Met Gln Met Cys Gly Ala Gly Leu Pro Val Ala
225 230 235 240

Gly Ser Gly Thr Asn Gly Gly Ser Leu Val Leu Gly Gly Ile Glu Pro
245 250 255

Ser Leu Tyr Lys Gly Asp Ile Trp Tyr Thr Pro Ile Lys Glu Glu Trp
260 265 270

Tyr Tyr Gln Ile Glu Ile Leu Lys Leu Glu Ile Gly Gly Gln Ser Leu
275 280 285

Asn Leu Asp Cys Arg Glu Tyr Asn Ala Asp Lys Ala Ile Val Asp Ser
290 295 300

Gly Thr Thr Leu Leu Arg Leu Pro Gln Lys Val Phe Asp Ala Val Val
305 310 315 320

Glu Ala Val Ala Arg Ala Ser Leu Ile Pro Glu Phe Ser Asp Gly Phe
325 330 335

Trp Thr Gly Ser Gln Leu Ala Cys Trp Thr Asn Ser Glu Thr Pro Trp
340 345 350

Ser Tyr Phe Pro Lys Ile Ser Ile Tyr Leu Arg Asp Glu Asn Ser Ser
355 360 365

Arg Ser Phe Arg Ile Thr Ile Leu Pro Gln Leu Tyr Ile Gln Pro Met
370 375 380

Met Gly Ala Gly Leu Asn Tyr Glu Cys Tyr Arg Phe Gly Ile Ser Pro
385 390 395 400

Ser Thr Asn Ala Leu Val Ile Gly Ala Thr Val Met Glu Gly Phe Tyr
405 410 415

Val Ile Phe Asp Arg Ala Gln Lys Arg Val Gly Phe Ala Ala Ser Pro
420 425 430

Cys Ala Glu Ile Ala Gly Ala Ala Val Ser Glu Ile Ser Gly Pro Phe
435 440 445

Ser Thr Glu Asp Val Ala Ser Asn Cys Val Pro Ala Gln Ser Leu Ser
450 455 460

Glu Pro Ile Leu Trp Ile Val Ser Tyr Ala Leu Met Ser Val Cys Gly
465 470 475 480

Ala Ile Leu Leu Val Leu Ile Val Leu Leu Leu Leu Pro Phe Arg Cys
485 490 495

Gln Arg Arg Pro Arg Asp Pro Glu Val Val Asn Asp Glu Ser Ser Leu
500 505 510

Val Arg His Arg Trp Lys
515

<210> 3
<211> 2070
<212> DNA
<213> Homo sapiens

<400> 3
atggcccaag ccctgccctg gtcctgctg tggatggcg cggagtgct gcctgcccac 60
ggcacccagc acggcatccg gctgccctg cgtagcgcc tggggggcgc cccccctgggg 120
ctgcggctgc cccgggagac cgacgaagag cccgaggagc ccggccggag gggcagctt 180

gtggagatgg tggacaacct gagggggcaag tcggggcagg gctactacgt ggagatgacc	240
gtgggcagcc ccccgccagac gctcaacatc ctggtgata caggcagcag taactttgca	300
gtgggtgctg cccccccaccc ctgcctgcat cgctactacc agaggcagct gtccagcaca	360
taccgggacc tccggaaggg tgtgtatgtg ccctacaccc agggcaagtg ggaaggggag	420
ctgggcaccc acctggtaag catccccat ggccccaaacg tcactgtgcg tgccaacatt	480
gctgccatca ctgaatcaga caagttcttc atcaacggct ccaactggga aggcatcctg	540
gggctggcct atgctgagat tgccaggcct gacgactccc tggagcctt cttgactct	600
ctggtaaagc agacccacgt tcccaacctc ttctccctgc agctttgtgg tgctggcttc	660
ccccctcaacc agtctgaagt gctggcctct gtcggagggg gcatgatcat tggaggtatc	720
gaccactcgc tgtacacagg cagtctctgg tatacaccca tccggcggga gtggatttat	780
gaggtcatca ttgtgcgggt ggagatcaat ggacaggatc tgaaaatggg ctgcaaggag	840
tacaactatg acaagagcat tgtggacagt ggcaccacca acttcggtt gccaagaaaa	900
gtgtttgaag ctgcagtcaa atccatcaag gcagcctct ccacggagaa gttccctgat	960
ggtttctggc taggagagca gctgggtgtc tggcaagcag gcaccacccc ttggaacatt	1020
ttcccagtca tctcactcta cctaattgggt gaggttacca accagtcctt ccgcatcacc	1080
atccttccgc agcaataacct gcccggcagtg gaagatgtgg ccacgtccca agacgactgt	1140
tacaagtttgc ccatctcaca gtcatccacg ggcactgtta tggagctgt tatcatggag	1200
ggcttctacg ttgtctttga tcgggcccga aaacgaattt gctttgtgt cagcgcttgc	1260
catgtgcacg atgagttcag gacggcagcg gtggaggcc ctttgcac cttggacatg	1320
gaagactgtg gtcataacat tccacagaca gatgagtcaa ccctcatgac catagcctat	1380
gtcatggctg ccatctgcgc cctcttcatg ctgccactct gcctcatggt gtgtcagtgg	1440
cgctgcctcc gctgcctgcg ccagcagcat gatgactttg ctgatgacat ctccctgctg	1500
aagtgaggag gcccattggc agaagataga gattccctg gaccacaccc cctgggttca	1560
ctttggtcac aagttaggaga cacagatggc acctgtggcc agagcaccc aggacccctcc	1620
ccacccacca aatgcctctg ctttgcacca gaaggaaaag gctggcaagg tgggttccag	1680
ggactgtacc tgttagaaac agaaaagaga agaaaagaagc actctgtgtt cggaaatact	1740
cttggtcacc tcaaatttaa gtcggaaat tctgtgtt gaaacttcag ccctgaacct	1800
ttgtccacca ttcccttaaa ttctccaacc caaagtattt ttcttttctt agtttcagaa	1860
gtactggcat cacacgcagg ttaccttggc gtgtgtccct gtggtaaccct ggcagagaag	1920
agaccaagct tgtttccctg ctggccaaag tcagtaggag agatgcaca gtttgctatt	1980
tgcttttagag acagggactg tataaacaag cctaacattt gtcggaaat tgcctttga	2040
attaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa	2070

<210> 4
<211> 501
<212> PRT
<213> Homo sapiens

<400> 4

Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val
1 5 10 15

Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser
20 25 30

Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
35 40 45

Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
50 55 60

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
65 70 75 80

Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
85 90 95

Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
100 105 110

Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
115 120 125

Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
130 135 140

Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile
145 150 155 160

Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175

Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp
180 185 190

Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro
195 200 205

Asn Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln
210 215 220

Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile
225 230 235 240

Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg
245 250 255

Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln
260 265 270

Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val
275 280 285

Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala
290 295 300

Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp
305 310 315 320

Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr
325 330 335

Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val
340 345 350

Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg
355 360 365

Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala
370 375 380

Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu
385 390 395 400

Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala
405 410 415

Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu
420 425 430

Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro
435 440 445

Gln Thr Asp Glu Ser Thr Leu Met Thr Ile Ala Tyr Val Met Ala Ala
450 455 460

Ile Cys Ala Leu Phe Met Leu Pro Leu Cys Leu Met Val Cys Gln Trp
465 470 475 480

Arg Cys Leu Arg Cys Leu Arg Gln Gln His Asp Asp Phe Ala Asp Asp
485 490 495

Ile Ser Leu Leu Lys
500

<210> 5
<211> 1977
<212> DNA
<213> Homo sapiens

<400> 5
atggcccaag ccctgccctg gctcctgctg tggatggcg cggagtgct gcctgcccac 60
ggcacccagc acggcatccg gctgcccctg cgacgcggcc tggggggcgc cccccctgggg 120
ctgcggctgc cccgggagac cgacgaagag cccgaggagc cggccggag gggcagcttt 180
gtggagatgg tggacaacct gaggggcaag tcggggcagg gctactacgt ggagatgacc 240
gtgggcagcc cccgcagac gctcaacatc ctggtgata caggcagcag taactttgca 300
gtgggtgctg ccccccaccc ctccctgcat cgctactacc agaggcagct gtccagcaca 360
taccgggacc tccggaaggg tgtgtatgtg ccctacaccc agggcaagtg ggaaggggag 420
ctgggcaccc acctggtaag catccccat ggccccaacg tcactgtgcg tgccaacatt 480
gctgccatca ctgaatcaga caagtttttc atcaacggct ccaactggga aggcatcctg 540
gggctggcct atgctgagat tgccaggctt tgtggtgctg gttccccct caaccagtct 600
gaagtgctgg cctctgtcgg agggagcatg atcattggag gtatcgacca ctcgctgtac 660
acaggcagtc tctggatac acccatccgg cggagtggt attatgaggt gatcattgtg 720
cgggtggaga tcaatggaca gatatgaaa atggactgca aggagtacaa ctatgacaag 780
agcattgtgg acagtggcac caccaacctt cgtttgcac agaaagtgtt tgaagctgca 840
gtcaaatcca tcaaggcagc ctccctccacg gagaagttcc ctgatggttt ctggcttagga 900
gagcagctgg tgtgctggca agcaggcacc accccttggaa acattttccc agtcatctca 960
ctctacctaa tgggtgaggt taccaccag tcctccgca tcaccatcct tccgcagcaa 1020
tacctgcggc cagtggaaaga tgtggccacg tcccaagacg actgttacaa gtttgcac 1080
tcacagtcat ccacgggcac tgttatggaa gctgttatca tggagggtt ctacggtgtc 1140
tttgcgtggg cccgaaaaacg aattggctt gctgtcagcg cttgccatgt gcacgatgag 1200
ttcaggacgg cagcgggtgga aggcctttt gtcacccctgg acatggaaga ctgtggctac 1260
aacattccac agacagatga gtcaaccctc atgaccatag cctatgtcat ggctgccatc 1320
tgccgcctct tcatgctgcc actctgcctc atgggtgtgc agtggcgctg cctccgctgc 1380
ctgcgccagc agcatgatga ctttgcgtat gacatctccc tgctgaagtg aggaggccca 1440
tgggcagaag atagagattc ccctggacca cacccctggctg gttcactttg gtcacaagta 1500

ggagacacag atggcacctg tggccagagc acctcaggac cctccccacc caccaaatgc	1560
ctctgccttg atggagaagg aaaaggctgg caaggtgggt tccagggact gtacctgtag	1620
gaaacagaaaa agagaagaaa gaagcactt gctggcgaaa atactttgg tcacctcaaa	1680
ttaaagtctgg gaaattctgc tgcttgaac ttccggcctg aaccccttgc caccatttc	1740
ttaaattctc caacccaaag tattttttt ttcttagttt cagaagtact ggcatcacac	1800
gcaggttacc ttggcgtgtg tccctgtgg accctggcag agaagagacc aagcttgtt	1860
ccctgctggc caaagtcagt aggagaggat gcacagttt ctatttgctt tagagacagg	1920
gactgtataa acaagcctaa cattggtgca aagattgcct cttgaaaaaaaaaaaaaaaa	1977

<210> 6
<211> 476
<212> PRT
<213> Homo sapiens

<400> 6

Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val
1 5 10 15

Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser
20 25 30

Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
35 40 45

Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
50 55 60

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
65 70 75 80

Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
85 90 95

Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
100 105 110

Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
115 120 125

Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
130 135 140

Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile
145 150 155 160

Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175

Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Leu Cys Gly
180 185 190

Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly
195 200 205

Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu
210 215 220

Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val
225 230 235 240

Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr
245 250 255

Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu
260 265 270

Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser
275 280 285

Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val
290 295 300

Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser
305 310 315 320

Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile
325 330 335

Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln
340 345 350

Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val
355 360 365

Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala
370 375 380

Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu
385 390 395 400

Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu
405 410 415

Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser Thr Leu Met Thr
420 425 430

Ile Ala Tyr Val Met Ala Ala Ile Cys Ala Leu Phe Met Leu Pro Leu
435 440 445

Cys Leu Met Val Cys Gln Trp Arg Cys Leu Arg Cys Leu Arg Gln Gln
450 455 460

His Asp Asp Phe Ala Asp Asp Ile Ser Leu Leu Lys
465 470 475

<210> 7
<211> 2043
<212> DNA
<213> Mus musculus

<400> 7
atggcccccag cgctgcactg gctcctgcta tgggtggct cggaatgct gcctgcccag 60
ggaaccatc tcggcatccg gctgcccctt cgacggcc tggcagggcc acccctggc 120
ctgaggctgc cccggagac tgacgaggaa tcggaggagc ctggccggag aggcagctt 180
gtggagatgg tggacaacct gagggaaag tccggccagg gctactatgt ggagatgacc 240
gtaggcagcc cccacagac gctcaacatc ctggtgaca cggcagtag taactttgca 300
gtggggctg cccacaccc ttccctgcat cgctactacc agaggcagct gtccagcaca 360
tatcgagacc tccgaaaggg tgtgtatgtg ccctacaccc agggcaagtgg 420
ctggcacccg acctggtgag catccctcat ggccccaaacg tcactgtgcg tgccaacatt 480
gctgccatca ctgaatcgga caagtttttc atcaatggtt ccaactggga gggcatccta 540
gggctggcct atgctgagat tgccaggccc gacgactctt tggagccctt ctttgactcc 600
ctggtaagc agacccacat tcccaacatc ttccctgc agctctgtgg cgctggcttc 660
cccctcaacc agaccgaggc actggcctcg gtgggaggga gcatgatcat tgggttatac 720
gaccactcgc tatacacggg cagtcttgg tacacaccca tccggcggga gtggattat 780
gaagtgtatca ttgtacgtgt ggaaatcaat ggtcaagatc tcaagatggaa ctgcaaggag 840
tacaactacg acaagagcat tgtggacagt gggaccacca accttcgtt gccaagaaa 900
gtatggatca ctggcgtaa gtccatcaag gcagcctctt cgacggagaa gttcccgat 960
ggctttggc tagggagca gctgggtgtc tggcaagcag gcacgacccc ttgaaacatt 1020
ttccctgc tttcaatcata cctcatgggt gaagtcacca atcagtcattt ccgcattacc 1080
atcccttc agcaataacct acggccggtg gaggacgtgg ccacgtccca agacgactgt 1140
tacaagttcg ctgtctcaca gtcatccacg ggcaactgtt tggagccgt catcatggaa 1200
ggtttctatg tcgtttcga tcgagcccgaa aagcgaattt gctttgtgt cagcgcttgc 1260

catgtgcacg atgagttcag gacggcgca gtgaaaggc cgtttgttac ggcagacatg	1320
gaagactgtg gctacaacat tccccagaca gatgagtcaa cacttatgac catagcstat	1380
gtcatggcg ccatctgcgc cctcttcatg ttgccactct gcctcatggt atgtcagtgg	1440
cgctgcctgc gttgcctgcg ccaccagcac gatgactttg ctgatgacat ctccctgctc	1500
aagtaaggag gctcgtggc agatgatgga gacgcccctg gaccacatct gggtggtcc	1560
ctttggtcac atgagttgga gctatggatg gtacctgtgg ccagagcacc tcaggaccct	1620
caccaacctg ccaatgcttc tggcgtgaca gaacagagaa atcaggcaag ctggattaca	1680
gggcttgcac ctgtaggaca caggagaggg aaggaagcag cgttctggtg gcaggaatat	1740
ccttaggcac cacaaacttg agttggaaat tttgctgctt gaagcttcag ccctgaccct	1800
ctgcccagca tccttttagag tctccaacct aaagtattct ttatgtcctt ccagaagttac	1860
tggcgtcata ctcaggctac ccggcatgtg tccctgtggt accctggcag agaaaaggcc	1920
aatctcattc cctgctggcc aaagtcagca gaagaaggta aagtttgcctt gttgttttag	1980
tgatagggac tgcagactca agcctacact ggtacaaaga ctgcgtctt agataaaacaa	2040
gaa	2043

<210> 8
<211> 501
<212> PRT
<213> Mus musculus

<400> 8

Met Ala Pro Ala Leu His Trp Leu Leu Leu Trp Val Gly Ser Gly Met
1 5 10 15

Leu Pro Ala Gln Gly Thr His Leu Gly Ile Arg Leu Pro Leu Arg Ser
20 25 30

Gly Leu Ala Gly Pro Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
35 40 45

Glu Glu Ser Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
50 55 60

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
65 70 75 80

Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
85 90 95

Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
100 105 110

Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
115 120 125

Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
130 135 140

Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile
145 150 155 160

Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175

Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp
180 185 190

Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Ile Pro
195 200 205

Asn Ile Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln
210 215 220

Thr Glu Ala Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile
225 230 235 240

Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg
245 250 255

Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln
260 265 270

Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val
275 280 285

Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala
290 295 300

Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp
305 310 315 320

Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr
325 330 335

Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val
340 345 350

Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg
355 360 365

Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala
370 375 380

Val Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu
385 390 395 400

Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala
405 410 415

Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu
420 425 430

Gly Pro Phe Val Thr Ala Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro
435 440 445

Gln Thr Asp Glu Ser Thr Leu Met Thr Ile Ala Tyr Val Met Ala Ala
450 455 460

Ile Cys Ala Leu Phe Met Leu Pro Leu Cys Leu Met Val Cys Gln Trp
465 470 475 480

Arg Cys Leu Arg Cys Leu Arg His Gln His Asp Asp Phe Ala Asp Asp
485 490 495

Ile Ser Leu Leu Lys
500

<210> 9
<211> 2088
<212> DNA
<213> Homo sapiens

<400> 9
atgctccccg gtttggcact gtcctgtctg gccgcctgga cggctcgccc gctggaggta 60
cccaactgatg gtaatgctgg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga 120
ctgaacatgc acatgaatgt ccagaatggg aagtggatt cagatccatc aggaccaaa 180
accgtcattt ataccaagga aggcattctg cagtattgcc aagaagtcta ccctgaactg 240
cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg 300
ggccgcaagc agtgcacagac ccattccac tttgtgattc cctaccgctg cttagtttgt 360
gagtttgtaa gtgatgccct tctcgccct gacaagtgc aattcttaca ccaggagagg 420
atggatgttt gcgaaactca tcttcactgg cacaccgtcg ccaaagagac atgcagttag 480
aagagtacca acttgcattga ctacggcatg ttgctgccct gcggaaattga caagttccga 540
ggggtagagt ttgtgtgtt cccactggct gaagaaagtgc acaatgtgga ttctgctgat 600
gcggaggagg atgactcgga tgtctggtgg ggccggagcag acacagacta tgcagatggg 660

agtgaagaca aagttagtaga agtagcagag gaggagaag tggctgaggt ggaagaagaa	720
gaagccgatg atgacgagga cgatgaggat ggtgatgagg tagaggaaga ggctgaggaa	780
ccctacgaag aagccacaga gagaaccacc agcattgcc ccaccaccac caccaccaca	840
gagtctgtgg aagaggtgg tcgagttcct acaacagcag ccagtacccc tcatgccgtt	900
gacaagtatc tcgagacacc tggggatgag aatgaacatg cccatttcca gaaagccaaa	960
gagaggcttg aggccaagca ccgagagaga atgtcccagg tcatgagaga atggaaagag	1020
gcagaacgtc aagcaaagaa ctgcctaaa gctgataaga aggcatatat ccagcatttc	1080
caggagaaag tggaatcttt ggaacaggaa gcagccaacg agagacagca gctgggtggag	1140
acacacatgg ccagagtggc agccatgctc aatgaccgac gccgcctggc cctggagaac	1200
tacatcaccg ctctgcaggc tgttcctcct cggcctcgct acgtgttcaa tatgctaaag	1260
aagtatgtcc gcgcagaaca gaaggacaga cagcacaccc taaagcattt cgagcatgtg	1320
cgcattgggg atccaaagaa agccgctcag atccggtccc aggttatgac acacccgt	1380
gtgatttatg agcgcattgaa tcagtctctc tccctgctct acaacgtgcc tgcagtggcc	1440
gaggagattc agatgaagt tcatgagctg cttcagaaag agcaaaacta ttcatgac	1500
gtcttgccca acatgattag tgaaccaagg atcagttacg gaaacgtgc tctcatgcca	1560
tctttgaccg aaacgaaaac caccgtggag ctccctcccg tgaatggaga gttcagcctg	1620
gacgatctcc agccgtggca ttctttggg gctgactctg tgccagccaa cacagaaaac	1680
gaagttgagc ctgttcatgac ccgcctgtc gccgaccgag gactgaccac tcgaccagg	1740
tctgggttga caaatatcaa gacggaggag atctctgaag tgaagatgga tgcagaattc	1800
cgacatgact caggatatga agttcatcat caaaaattgg tttttgtc agaagatgt	1860
ggttcaaaca aaggtaat cattggactc atggggcg gtgttgtcat agcgcacatg	1920
atcgatcatca cttgggtat gctgaagaag aaacagtaca catccattca tcatgggttg	1980
gtggaggtt acgcgcgtgt cacccagag gagccacc tgtccaagat gcagcagaac	2040
ggctacgaaa atccaaaccta caagttctt gaggatgc agaactag	2088

<210> 10
<211> 695
<212> PRT
<213> Homo sapiens

<400> 10

Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Trp Thr Ala Arg
1 5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro

20

25

30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
50 55 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
100 105 110

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
145 150 155 160

Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
165 170 175

Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
180 185 190

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val
195 200 205

Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys
210 215 220

Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu
225 230 235 240

Glu Ala Asp Asp Asp Glu Asp Asp Gly Asp Glu Val Glu Glu
245 250 255

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile
260 265 270

Ala Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg
275 280 285

Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu
290 295 300

Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys
305 310 315 320

Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg
325 330 335

Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp
340 345 350

Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu
355 360 365

Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala
370 375 380

Arg Val Glu Ala Met Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn
385 390 395 400

Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe
405 410 415

Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His
420 425 430

Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala
435 440 445

Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu
450 455 460

Arg Met Asn Gln Ser Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala
465 470 475 480

Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn
485 490 495

Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser
500 505 510

Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr
515 520 525

Val Glu Leu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln
530 535 540

Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn
545 550 555 560

Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr
565 570 575

Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser
580 585 590

Glu Val Lys Met Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val
595 600 605

His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys
610 615 620

Gly Ala Ile Ile Gly Leu Met Val Gly Val Val Ile Ala Thr Val
625 630 635 640

Ile Val Ile Thr Leu Val Met Leu Lys Lys Gln Tyr Thr Ser Ile
645 650 655

His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg
660 665 670

His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys
675 680 685

Phe Phe Glu Gln Met Gln Asn
690 695

<210> 11
<211> 2088
<212> DNA
<213> Homo sapiens

<400> 11
atgctccccg gtttggcact gtcctgctg gccgcctgga cggctcgccc gctggaggta 60
cccaactgatg gtaatgctgg cctgctggct gaacccccaga ttgccatgtt ctgtggcaga 120
ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa 180
acctgcattg ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg 240
cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg 300
ggccgcaagc agtgcaagac ccattccac tttgtgattc cctaccgctg ctttagttgg 360
gagtttgtaa gtgatgccct tctcgccct gacaagtgca aattcttaca ccaggagagg 420

atggatgtt	480
gcgaaactca	
tcttcactgg	
cacaccgtcg	
ccaaagagac	
atgcagttag	
aagagtacca	540
acttgcata	
ctacggcatg	
ttgctgccct	
gcggaattga	
caagttccga	
ggggtagagt	600
tttgtgttg	
cccactggct	
gaagaaaagt	
acaatgtgga	
ttctgctgat	
gcggaggagg	660
atgactcgga	
tgtctggtgg	
ggcggagcag	
acacagacta	
tgcagatggg	
agtgaagaca	720
aagttagtaga	
agtagcagag	
gaggaagaag	
tggctgaggt	
ggaagaagaa	
gaagccgatg	780
atgacgagga	
cgatgaggat	
ggtgatgagg	
tagaggaaga	
ggctgaggaa	
ccctacgaag	840
aagccacaga	
gagaaccacc	
agcattgcca	
ccaccaccac	
caccaccaca	
gagtcgttgg	900
aagaggtgg	
tcgagttcct	
acaacagcag	
ccagtacccc	
tgatgccgtt	
gacaagtatc	960
tcgagacacc	
tggggatgag	
aatgaacatg	
cccatttcca	
gaaagccaaa	
gagaggcttg	1020
aggccaagca	
ccgagagaga	
atgtcccagg	
tcatgagaga	
atgggaagag	
gcagaacgtc	1080
aagcaaagaa	
cttgcctaaa	
gctgataaga	
aggcagttat	
ccagcatttc	
caggagaaag	1140
tggaatcttt	
ggaacaggaa	
gcagccaacg	
agagacagca	
gctgggtggag	
acacacatgg	1200
ccagagtgg	
agccatgctc	
aatgaccgcc	
gccgcctggc	
cctggagaac	
tacatcacgg	1260
ctctgcaggc	
tgttcctcct	
cggcctcg	
acgtgttcaa	
tatgtctaaag	
aagtatgtcc	1320
gcgcagaaca	
gaaggacaga	
cagcacaccc	
taaagcattt	
cgagcatgtg	
cgcacatgg	1380
atcccaagaa	
agccgctcag	
atccggtccc	
agtttatgac	
acacctccgt	
gtgatttatg	1440
agcgcata	
tcagtctctc	
tccctgctct	
acaacgtgcc	
tgcagtggcc	
gaggagattc	1500
aggatgaagt	
tgatgagctg	
tttcagaaag	
agcaaaacta	
ttcagatgac	
gtcttggcca	1560
acatgattag	
tgaaccaagg	
atcagttacg	
gaaacgatgc	
tctcatgcca	
tctttgacgg	1620
aaacgaaaac	
caccgtggag	
ctccttcccg	
tgaatggaga	
gttcagcctg	
gacgatctcc	1680
agccgtggca	
ttctttggg	
gctgactctg	
tgccagccaa	
cacagaaaac	
gaagttgagc	1740
ctgttgatgc	
ccgcccctgct	
gccgaccgag	
gactgaccac	
tgcaccagg	
tctgggttga	1800
caaatatcaa	
gacggaggag	
atctctgaag	
tgaatctgga	
tgcagaattc	
cgacatgact	1860
caggatata	
agttcatcat	
caaaaattgg	
tggtcttgc	
agaagatgt	
ggttcaaaca	1920
aaggtgcaat	
cattggactc	
atggtggcg	
gtgttgcata	
agcgacagt	
atcgatcatca	1980
ccttgggtat	
gctgaagaag	
aaacagtaca	
catccattca	
tcatggtg	
gtggaggtt	2040
acgcccgtgt	
caccccaagag	
gagcgccacc	
tgtccaagat	
gcagcagaac	
ggctacgaaa	2088
atccaaccta	
caagttcttt	
gagcagatgc	
agaactag	

<210> 12
<211> 695
<212> PRT
<213> Homo sapiens

<400> 12

Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Trp Thr Ala Arg
1 5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
50 55 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
100 105 110

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
145 150 155 160

Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
165 170 175

Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
180 185 190

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val
195 200 205

Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys
210 215 220

Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu
225 230 235 240

Glu Ala Asp Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu
245 250 255

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile
260 265 270

Ala Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg
275 280 285

Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu
290 295 300

Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys
305 310 315 320

Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg
325 330 335

Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp
340 345 350

Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu
355 360 365

Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala
370 375 380

Arg Val Glu Ala Met Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn
385 390 395 400

Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe
405 410 415

Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His
420 425 430

Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala
435 440 445

Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu
450 455 460

Arg Met Asn Gln Ser Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala
465 470 475 480

Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn
485 490 495

Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser
500 505 510

Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr
515 520 525

Val Glu Leu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln
530 535 540

Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn
545 550 555 560

Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr
565 570 575

Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser
580 585 590

Glu Val Asn Leu Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val
595 600 605

His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys
610 615 620

Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val
625 630 635 640

Ile Val Ile Thr Leu Val Met Leu Lys Lys Lys Gln Tyr Thr Ser Ile
645 650 655

His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg
660 665 670

His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys
675 680 685

Phe Phe Glu Gln Met Gln Asn
690 695

<210> 13

<211> 2088

<212> DNA

<213> Homo sapiens

<400> 13

atgctggcccg gttggcaact gtcctgtctg gcccctggaa cggctgggc gctggaggta 60
ccccactgtatg gtaatgttgg cctgttgttggct gaaccccaga ttgccatgtt ctgtggcaga 120
ctgaacatgc acatgaatgt ccagaatggg aagtggatt cagatccatc agggaccaaa 180
acctgcattt ataccaagga aggcatcctg cagattgcc aagaagtcta ccctgaactg 240
cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg 300

ggccgcaagc agtgcaagac ccattccccac tttgtgattc cctaccgctg cttagttgg 360
gagttttaa gtgatgccct ttcgttccct gacaagtgc aattcttaca ccaggagagg 420
atggatgtt gcgaaaactca tcttcactgg cacaccgtcg ccaaagagac atgcagttag 480
aagagtacca acttgcata ctacggcatg ttgctgccct gcggaattga caagttccga 540
ggggtagagt ttgtgtgttgc cccactggct gaagaaagtgc acaatgtgg a ttctgctgat 600
gcggaggagg atgactcgga tgtctggtgg ggccggacag acacagacta tgcagatggg 660
agtgaagaca aagttagtgc agtagcagag gaggagaag tggctgaggt ggaagaagaa 720
gaagccgatg atgacgagga cgatgaggat ggtgatgagg tagaggaaga ggctgaggaa 780
ccctacgaag aagccacaga gagaaccacc agcattgcca ccaccaccac caccaccaca 840
gagtctgtgg aagaggtgg tcgagttccct acaacagcag ccagtacccc tgatgccgtt 900
gacaagtatc tcgagacacc tggggatgag aatgaacatg cccatttcca gaaagccaaa 960
gagaggcttgc aggccaagca ccgagagaga atgtcccagg tcatgagaga atggaaagag 1020
gcagaacgatc aagcaaagaa cttgcctaaa gctgataaga aggcagttat ccagcatttc 1080
caggagaaag tggaatcttt ggaacaggaa gcagccaacg agagacagca gctgggtgg 1140
acacacatgg ccagagtggc agccatgctc aatgaccgccc gccgcctggc cctggagaac 1200
tacatcacccg ctctgcaggc ttttcctcct cggcctcgat acgtgttcaa tatgctaaag 1260
aagtatgtcc ggcgcagaaca gaaggacaga cagcacaccc taaagcattt cgagcatgtg 1320
cgcatggtgg atcccaagaa agccgctcag atccggtccc agtttatgac acacccgt 1380
gtgatttatg agcgcataa tcagtcttc tccctgctt cacaacgtgcc tgcagtggcc 1440
gaggagattc agatgaagt tcatgagctg ttccagaaag agcaaaacta ttccatgac 1500
gtcttggcca acatgatttgc tgaaccaagg atcagttacg gaaacgatgc tctcatgcca 1560
tctttgaccg aaacgaaaac caccgtggag ctccctcccg tgaatggaga gttcagcctg 1620
gacgatctcc agccgtggca ttctttggg gctgactctg tgccagccaa cacagaaaac 1680
gaagttgagc ctgttgc tccctgctt gccgaccggag gactgaccac tcgaccagg 1740
tctgggttga caaatatcaa gacggaggag atctctgaag tgaagatggc tgcagaattc 1800
cgacatgact caggatatga agttcatcat caaaaattgg ttttttgc agaagatgtg 1860
ggttcaaaaca aaggtaat cattggactc atggggcg gtgttgc tcatgggttg 1920
atcttcatca ctttgttgc tcatgggttgat gctgaagaag aaacagtaca catccattca tcatgggttg 1980
gtggagggttgc acggcgtgtt caccggcagag gagccacc tgcgttgc tcatgggttg 2040
ggctacgaaa atccaaaccta caagttttt gggcggatgc agaacttag 2088

<210> 14
<211> 695
<212> PRT
<213> Homo sapiens

<400> 14

Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Trp Thr Ala Arg
1 5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
50 55 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
100 105 110

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
145 150 155 160

Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
165 170 175

Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
180 185 190

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val
195 200 205

Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys
210 215 220

Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu
225 230 235 240

Glu Ala Asp Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu

245

250

255

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile
260 265 270

Ala Thr Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg
275 280 285

Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu
290 295 300

Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys
305 310 315 320

Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg
325 330 335

Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp
340 345 350

Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu
355 360 365

Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala
370 375 380

Arg Val Glu Ala Met Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn
385 390 395 400

Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe
405 410 415

Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His
420 425 430

Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala
435 440 445

Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu
450 455 460

Arg Met Asn Gln Ser Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala
465 470 475 480

Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn
485 490 495

Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser
500 505 510

Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr
515 520 525

Val Glu Leu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln
530 535 540

Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn
545 550 555 560

Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr
565 570 575

Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser
580 585 590

Glu Val Lys Met Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val
595 600 605

His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys
610 615 620

Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val
625 630 635 640

Ile Phe Ile Thr Leu Val Met Leu Lys Lys Lys Gln Tyr Thr Ser Ile
645 650 655

His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg
660 665 670

His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys
675 680 685

Phe Phe Glu Gln Met Gln Asn
690 695

<210> 15

<211> 2094

<212> DNA

<213> Homo sapiens

<400> 15

atgctggcccg gtttggact gtcctgctg gccgcctgga cggctcgggc gctggaggta 60

ccccactgatg gtaatgctgg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga 120

ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa 180

acctgcattg ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg	240
cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg	300
ggccgcaagc agtgcaagac ccatccccac tttgtgattc cctaccgctg cttagtttgt	360
gagtttgtaa gtgatgccct tctcggtcct gacaagtgc aattcttaca ccaggagagg	420
atggatgttt gcgaaactca tcttcactgg cacaccgtcg ccaaagagac atgcagttag	480
aagagtacca acttgcata gatactggatg ttgctgccct gcggaaattga caagttccga	540
ggggtagagt ttgtgttgtt cccactggct gaagaaagtg acaatgtgaa ttctgctgat	600
gcggaggagg atgactcgga tgtctgggtt ggcggagcag acacagacta tgcagatggg	660
agtgaagaca aagtagttaga agtagcagag gaggagaag tggctgaggt ggaagaagaa	720
gaagccgatg atgacgagga cgatgaggat ggtgatgagg tagaggaaga ggctgaggaa	780
ccctacgaag aagccacaga gagaaccacc agcattgcca ccaccaccac caccaccaca	840
gagtctgtgg aagaggttgt tcgagttcct acaacagcag ccagtacccc tgatgccgtt	900
gacaagtatc tcgagacacc tggggatgag aatgaacatg cccatttcca gaaagccaaa	960
gagaggcttg aggccaagca ccgagagaga atgtcccagg tcatgagaga atggaaagag	1020
gcagaacgtc aagcaaagaa cttgcctaaa gctgataaga aggcatgttat ccagcatttc	1080
caggagaaag tggaatcttt ggaacagggaa gcagccaacg agagacagca gctgggtggag	1140
acacacatgg ccagagtggaa agccatgctc aatgaccgccc gccgcctggc cctggagaac	1200
tacatcaccc ctctgcaggc tggatccctt cggcctcgat acgtgttcaa tatgtctaaag	1260
aagtatgtcc ggcagaaca gaaggacaga cagcacaccc taaagcattt cgagcatgtg	1320
cgcattgtgg atcccaagaa agccgctcag atccggtccc aggttatgac acacccctcg	1380
gtgatttatg agcgcatgaa tcagtctctc tccctgctct acaacgtgcc tgcagtgcc	1440
gaggagattc agatgaagt tggatgagctg cttcagaaag agcaaaacta ttcagatgac	1500
gtcttgccca acatgattag tgaaccaagg atcagttacg gaaacgtgc tctcatgcca	1560
tctttgaccg aaacgaaaac caccgtggag ctccttcccg tgaatggaga gttcagcctg	1620
gacgatctcc agccgtggca ttctttggg gctgactctg tgccagccaa cacagaaaac	1680
gaagttgagc ctgttgatgc ccgcctcgat gccgaccggag gactgaccac tcgaccaggt	1740
tctgggttga caaatatcaa gacggaggag atctctgaag tgaagatgga tgcagaattc	1800
cgacatgact caggatatga agttcatcat caaaaattgg tggatgttgc agaagatgtg	1860
ggttcaaaca aaggtgcaat cattggactc atggtggcg gtgttgc tgcacatgt	1920
atcgatcatca cttgggtgat gctgaagaag aaacagtaca catccattca tcatgggtgt	1980
gtggaggttgc acggccgtgtt caccggcagag gagcggccacc tgcgttgc tgcacatgt	2040
ggctacgaaa atccaaaccta caagttcttt gagcagatgc agaacaagaa gtag	2094

<210> 16
<211> 697
<212> PRT
<213> Homo sapines

<400> 16
Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Trp Thr Ala Arg
1 5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
50 55 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
100 105 110

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
145 150 155 160

Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
165 170 175

Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
180 185 190

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val
195 200 205

Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys
210 215 220

Val Val Glu Val Ala Glu Glu Glu Glu Val Ala Glu Val Glu Glu Glu
225 230 235 240

Glu Ala Asp Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu
245 250 255

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile
260 265 270

Ala Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg
275 280 285

Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu
290 295 300

Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys
305 310 315 320

Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg
325 330 335

Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp
340 345 350

Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu
355 360 365

Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala
370 375 380

Arg Val Glu Ala Met Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn
385 390 395 400

Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe
405 410 415

Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His
420 425 430

Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala
435 440 445

Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu
450 455 460

Arg Met Asn Gln Ser Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala
465 470 475 480

Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn
485 490 495

Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser
500 505 510

Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr
515 520 525

Val Glu Leu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln
530 535 540

Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn
545 550 555 560

Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr
565 570 575

Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser
580 585 590

Glu Val Lys Met Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val
595 600 605

His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys
610 615 620

Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val
625 630 635 640

Ile Val Ile Thr Leu Val Met Leu Lys Lys Lys Gln Tyr Thr Ser Ile
645 650 655

His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg
660 665 670

His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys
675 680 685

Phe Phe Glu Gln Met Gln Asn Lys Lys
690 695

<210> 17

<211> 2094

<212> DNA

<213> Homo sapiens

<400> 17

atgctgcccg gttggcact gtcctgctg gccgcctgga cggctcgccc gctggaggta

60

cccaactgatg gtaatgctgg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga	120
ctgaacatgc acatgaatgt ccagaatggg aagtggatt cagatccatc agggaccaaa	180
acctgcattg ataccaagga aggcacatctg cagatattgcc aagaagtcta ccctgaactg	240
cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg	300
ggccgcaagc agtgcacagac ccatccccac tttgtgattc cctaccgctg cttagttgg	360
gagtttgtaa gtgatgccct tctcgccct gacaagtgc aattcttaca ccaggagagg	420
atggatgttt gcgaaaactca tcttcactgg cacaccgtcg ccaaagagac atgcagttag	480
aagagtagcca acttgcacatga ctacggcatg ttgctgccct gcggaaattga caagttccga	540
ggggtagagt ttgtgtgttg cccactggct gaagaaagtg acaatgtgga ttctgctgat	600
gcggaggagg atgactcgga tgtctgggt ggccggagcag acacagacta tgcatgtgg	660
agtgaagaca aagtagtaga agtagcagag gaggaagaag tggctgaggt ggaagaagaa	720
gaagccgatg atgacgagga cgatgaggat ggtgatgagg tagaggaaga ggctgaggaa	780
ccctacgaag aagccacaga gagaaccacc agcattgcca ccaccaccac caccaccaca	840
gagtctgtgg aagaggttgt tcgagttcct acaacagcag ccagtacccc tgatgccgtt	900
gacaagtatc tcgagacacc tggggatgag aatgaacatg cccatttcca gaaagccaaa	960
gagaggcttgg aggccaagca ccgagagaga atgtcccagg tcatgagaga atggaaagag	1020
gcagaacgtc aagcaaagaa cttgcctaaa gctgataaga aggcagttat ccagcatttc	1080
caggagaaag tggaatctt ggaacaggaa gcagccaacg agagacagca gctgggtggag	1140
acacacatgg ccagagtggaa agccatgctc aatgaccgccc gccgcctggc cttggagaac	1200
tacatcaccc ctctgcaggc tggatccctt cggcctcgct acgtgttcaa tatgctaaag	1260
aagtatgtcc ggcgcagaaca gaaggacaga cagcacaccc taaagcattt cgagcatgt	1320
cgcacatggg atcccaagaa agccgctcag atccggctcc aggttatgac acacccgt	1380
gtgatttatg agcgcacatgaa tcagtcttc tccctgctct acaacgtgcc tgcaatggcc	1440
gaggagattc agatgaagt tcatgagctg ctccagaaag agcaaaacta ttcatgac	1500
gtcttgccca acatgattttag tgaaccaagg atcagttacg gaaacgtgc tctcatgcca	1560
tctttgaccg aaacgaaaac caccgtggag ctccctcccg tgaatggaga gttcagcctg	1620
gacgatctcc agccgtggca ttctttggg gctgactctg tgccagccaa cacagaaaac	1680
gaagttgagc ctgttgatgc ccgcctgct gccgaccggag gactgaccac tcgaccaggt	1740
tctgggttga caaatatcaa gacggaggag atctctgaag tgaatctggta tgcaatattc	1800
cgacatgact caggatatga agttcatcat caaaaattgg tggatcttgc agaagatgt	1860
gttcaaaaca aaggtgcaat cattggactc atggtggcg gtgttgcat agcgacagtg	1920
atcgatcatca cttgggtgat gctgaagaag aaacagtaca catccattca tcatgggttg	1980

gtggagggttg acggccgtgt caccccagag gagcgccacc tgtccaagat gcagcagaac 2040
ggctacgaaa atccaaccta caagttctt gagcagatgc agaacaagaa gtag 2094

<210> 18
<211> 697
<212> PRT
<213> Homo sapiens

<400> 18

Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Trp Thr Ala Arg
1 5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
50 55 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
100 105 110

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
145 150 155 160

Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
165 170 175

Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
180 185 190

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val
195 200 205

Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys
210 215 220

Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu
225 230 235 240

Glu Ala Asp Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu
245 250 255

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile
260 265 270

Ala Thr Thr Thr Thr Thr Glu Ser Val Glu Val Val Arg
275 280 285

Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu
290 295 300

Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys
305 310 315 320

Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg
325 330 335

Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp
340 345 350

Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu
355 360 365

Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala
370 375 380

Arg Val Glu Ala Met Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn
385 390 395 400

Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe
405 410 415

Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His
420 425 430

Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala
435 440 445

Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu
450 455 460

Arg Met Asn Gln Ser Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala
465 470 475 480

Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn
485 490 495

Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser
500 505 510

Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr
515 520 525

Val Glu Leu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln
530 535 540

Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn
545 550 555 560

Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr
565 570 575

Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser
580 585 590

Glu Val Asn Leu Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val
595 600 605

His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys
610 615 620

Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val
625 630 635 640

Ile Val Ile Thr Leu Val Met Leu Lys Lys Lys Gln Tyr Thr Ser Ile
645 650 655

His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg
660 665 670

His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys
675 680 685

Phe Phe Glu Gln Met Gln Asn Lys Lys
690 695

<210> 19
<211> 2094
<212> DNA

<213> Homo sapiens

<400>	19					
atgctgcccg	gtttggact	gctcctgctg	gccgcctgga	cggctcgccc	gctggaggta	60
cccaactgatg	gtaatgctgg	cctgctggct	gaaccccaga	ttgccatgtt	ctgtggcaga	120
ctgaacatgc	acatgaatgt	ccagaatggg	aagtgggatt	cagatccatc	agggaccaaa	180
acctgcattg	ataccaagga	aggcatcctg	cagtattgcc	aagaagtcta	ccctgaactg	240
cagatcacca	atgtggtaga	agccaaccaa	ccagtgacca	tccagaactg	gtgcaagcgg	300
ggccgcaagc	agtcaagac	ccatccccac	tttgtgattc	cctaccgctg	cttagttgg	360
gagttttaa	gtgatgcct	tctcgccct	gacaagtgc	aattcttaca	ccaggagagg	420
atggatgtt	gcgaaactca	tcttcactgg	cacaccgtcg	ccaaagagac	atgcagttag	480
aagagtacca	acttgcata	ctacggcatg	ttgctgcct	gcggaattga	caagttccga	540
ggggtagagt	ttgtgtgttg	cccactggct	gaagaaagtg	acaatgtgga	ttctgctgat	600
gcggaggagg	atgactcgga	tgtctgggt	ggcggagcag	acacagacta	tgcagatgg	660
agtgaagaca	aagttagtata	atgacgagag	gaggaagaag	tggctgaggt	ggaagaagaa	720
gaagccgatg	atgacgagga	cgtgaggat	ggtgatgagg	tagaggaaga	ggctgaggaa	780
ccctacgaag	aagccacaga	gagaaccacc	agcattgcca	ccaccaccac	caccaccaca	840
gagtctgtgg	aagaggtgg	tcgagttcc	acaacagcag	ccagtacccc	tgtgccgtt	900
gacaagtatc	tcgagacacc	tggggatgag	aatgaacatg	cccatttcca	gaaagccaaa	960
gagaggctt	aggccaagca	ccgagagaga	atgtcccagg	tcatgagaga	atggaaagag	1020
gcagaacg	aagcaaagaa	cttgccctaa	gctgataaga	aggcagttat	ccagcatttc	1080
caggagaaag	tggaatctt	ggaacaggaa	gcagccaacg	agagacagca	gctgggtgg	1140
acacacatgg	ccagagtgg	agccatgctc	aatgaccgccc	gccgcctggc	cctggagaac	1200
tacatcaccg	ctctgcaggc	tgttccct	cggcctcg	acgtgttcaa	tatgctaaag	1260
aagtatgtcc	gcgcagaaca	gaaggacaga	cagcacaccc	taaagcattt	cgagcatgt	1320
cgcatggtgg	atcccaagaa	agccgctcag	atccggtccc	agtttatgac	acacctccgt	1380
gtgatttatg	agcgcata	tcagtctctc	tccctgctct	acaacgtgcc	tgcagtggcc	1440
gaggagattc	aggatgaagt	tgtgagctg	tttcagaaag	agcaaaacta	ttcagatgac	1500
gtcttggcca	acatgattag	tgaaccaagg	atcagttacg	gaaacgtgc	tctcatgcca	1560
tctttgaccg	aaacgaaaac	caccgtggag	ctcctcccg	tgaatggaga	gttcagcctg	1620
gacgatctcc	agccgtggca	ttcttttggg	gctgactctg	tgccagccaa	cacagaaaac	1680
gaagttgagc	ctgttgcata	ccgcctgct	gccgaccgag	gactgaccac	tcgaccaggt	1740
tctgggttga	caaatatcaa	gacggaggag	atctctgaa	tgaagatgga	tgcagaattc	1800

cgacatgact caggatatga agttcatcat caaaaattgg tggctttgc agaagatgtg	1860
ggttcaaaca aaggtgcaat cattggactc atggtggcg gtgttgtcat agcagactg	1920
atcttcatca ccttgggtat gctgaagaag aaacagtaca catccattca tcattggtg	1980
gtggagggtt acgcccgtgt cacccccagag gagcgccacc tgtccaagat gcagcagaac	2040
ggctacgaaa atccaacdta caagttctt gaggagatgc agaacaagaa gtag	2094

<210> 20
<211> 697
<212> PRT
<213> Homo sapiens

<400> 20

Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Trp Thr Ala Arg
1 5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
50 55 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
100 105 110

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
145 150 155 160

Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
165 170 175

Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu

180	185	190
Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val		
195	200	205
Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys		
210	215	220
Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu		
225	230	235
Glu Ala Asp Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu		
245	250	255
Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile		
260	265	270
Ala Thr Thr Thr Thr Thr Glu Ser Val Glu Val Val Arg		
275	280	285
Val Pro Thr Thr Ala Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu		
290	295	300
Glu Thr Pro Gly Asp Glu Asn Glu His Ala His Phe Gln Lys Ala Lys		
305	310	315
Glu Arg Leu Glu Ala Lys His Arg Glu Arg Met Ser Gln Val Met Arg		
325	330	335
Glu Trp Glu Glu Ala Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp		
340	345	350
Lys Lys Ala Val Ile Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu		
355	360	365
Gln Glu Ala Ala Asn Glu Arg Gln Gln Leu Val Glu Thr His Met Ala		
370	375	380
Arg Val Glu Ala Met Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn		
385	390	395
Tyr Ile Thr Ala Leu Gln Ala Val Pro Pro Arg Pro Arg His Val Phe		
405	410	415
Asn Met Leu Lys Lys Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His		
420	425	430

Thr Leu Lys His Phe Glu His Val Arg Met Val Asp Pro Lys Lys Ala
435 440 445

Ala Gln Ile Arg Ser Gln Val Met Thr His Leu Arg Val Ile Tyr Glu
450 455 460

Arg Met Asn Gln Ser Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala
465 470 475 480

Glu Glu Ile Gln Asp Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn
485 490 495

Tyr Ser Asp Asp Val Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser
500 505 510

Tyr Gly Asn Asp Ala Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr
515 520 525

Val Glu Leu Leu Pro Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln
530 535 540

Pro Trp His Ser Phe Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn
545 550 555 560

Glu Val Glu Pro Val Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr
565 570 575

Thr Arg Pro Gly Ser Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser
580 585 590

Glu Val Lys Met Asp Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val
595 600 605

His His Gln Lys Leu Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys
610 615 620

Gly Ala Ile Ile Gly Leu Met Val Gly Gly Val Val Ile Ala Thr Val
625 630 635 640

Ile Phe Ile Thr Leu Val Met Leu Lys Lys Lys Gln Tyr Thr Ser Ile
645 650 655

His His Gly Val Val Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg
660 665 670

His Leu Ser Lys Met Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys
675 680 685

Phe Phe Glu Gln Met Gln Asn Lys Lys
690 695

<210> 21
<211> 1341
<212> DNA
<213> Homo sapiens

<400> 21
atggctagca tgactggtgg acagcaaatg ggtcgccggat ccacccagca cggcatccgg 60
ctgccccctgc gcagcggcct gggggggcgcc cccctggggc tgcggctgcc ccgggagacc
gacgaagagc ccgaggagcc cggccggagg ggcagcttg tggagatggt ggacaacctg 120
aggggcaagt cggggcaggg ctactacgtg gagatgaccg tggcagcccc cccgcagacg
ctcaacatcc tggtgatac aggcaagcagt aactttgcag tgggtgctgc cccccacccc 180
ttcctgcattc gctactacca gaggcagctg tccagcacat accgggaccc cggaaagggt
gtgtatgtgc cttacaccca gggcaagtgg gaaggggagc tgggcaccga cctggtaagc 240
atcccccatg gccccaaacgt cactgtgcgt gccaacatttgc tggccatcac tgaatcagac
aagttcttca tcaacggctc caactggaa ggcattctgg ggctggccta tgctgagatt 300
gccaggcctg acgactccct ggagccttgc ttgtactctc tggtaaagca gaccacggt
cccaacccctt tctccctgca ctttgcgtt gctggcttcc ccctcaacca gtctgaagtg 360
ctggcctctg tcggagggag catgatcatttgc ggaggtatcg accactcgct gtacacaggc
agtctcttgtt atacacccat cggcggggag tggattatcg aggtcatcat tgtgcgggtg
gagatcaatg gacaggatct gaaaatggac tgcaaggagt acaactatga caagagcatt 420
gtggacagtgc accacccaa ctttcgttgc cccaaagaag tggtaaaggc tgcaacttgc
tccatcaagg cagcctctc cacggagaag ttccctgtatg gtttctggct aggagagcag
ctggtgtgttgc ggcaagcagg caccacccct tggaaacattt tcccaactcat ctcaacttac
ctaatgggttgc aggttaccaa ccagtccttc cgcatcacca tccttcggca gcaataacctg
cgcccaactgg aagatgtggc cacgtcccaa gacgactgtt acaagttgc catctcacag
tcatccacgg gcactgttat gggagctgtt atcatggagg gcttctacgt tgtctttgtat
cgggcccgaa aacgaattgg ctttgcgttc agcgcttgc atgtgcacga tgagttcagg
acggcagcgg tggaaaggccc ttttgcacc ttggacatgg aagactgtgg ctacaacatt
ccacagacag atgagtcatg a 1341

<210> 22
<211> 446

<212> PRT

<213> Homo sapiens

<400> 22

Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg Gly Ser Thr Gln
1 5 10 15

His Gly Ile Arg Leu Pro Leu Arg Ser Gly Leu Gly Gly Ala Pro Leu
20 25 30

Gly Leu Arg Leu Pro Arg Glu Thr Asp Glu Glu Pro Glu Glu Pro Gly
35 40 45

Arg Arg Gly Ser Phe Val Glu Met Val Asp Asn Leu Arg Gly Lys Ser
50 55 60

Gly Gln Gly Tyr Tyr Val Glu Met Thr Val Gly Ser Pro Pro Gln Thr
65 70 75 80

Leu Asn Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala Val Gly Ala
85 90 95

Ala Pro His Pro Phe Leu His Arg Tyr Tyr Gln Arg Gln Leu Ser Ser
100 105 110

Thr Tyr Arg Asp Leu Arg Lys Gly Val Tyr Val Pro Tyr Thr Gln Gly
115 120 125

Lys Trp Glu Gly Glu Leu Gly Thr Asp Leu Val Ser Ile Pro His Gly
130 135 140

Pro Asn Val Thr Val Arg Ala Asn Ile Ala Ala Ile Thr Glu Ser Asp
145 150 155 160

Lys Phe Phe Ile Asn Gly Ser Asn Trp Glu Gly Ile Leu Gly Leu Ala
165 170 175

Tyr Ala Glu Ile Ala Arg Pro Asp Asp Ser Leu Glu Pro Phe Phe Asp
180 185 190

Ser Leu Val Lys Gln Thr His Val Pro Asn Leu Phe Ser Leu His Leu
195 200 205

Cys Gly Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val
210 215 220

Gly Gly Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly
225 230 235 240

Ser Leu Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile
245 250 255

Ile Val Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys
260 265 270

Glu Tyr Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu
275 280 285

Arg Leu Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala
290 295 300

Ala Ser Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln
305 310 315 320

Leu Val Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val
325 330 335

Ile Ser Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile
340 345 350

Thr Ile Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr
355 360 365

Ser Gln Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly
370 375 380

Thr Val Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp
385 390 395 400

Arg Ala Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His
405 410 415

Asp Glu Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp
420 425 430

Met Glu Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser
435 440 445

<210> 23
<211> 1380
<212> DNA
<213> Homo sapiens

<400> 23
atggctagca tgactggtgg acagcaaatg ggtcgccgat cgatgactat ctctgactct 60
ccgcgtgaac aggacggatc cacccagcac ggcattccggc tgccccctgcg cagcggcctg 120

ggggggcgccc ccctggggct gcggctgccc cgggagaccc acgaagagcc cgaggagccc	180
ggccggaggg gcagctttgt ggagatggtg gacaacctga gggcaagtc gggcagggc	240
tactacgtgg agatgaccgt gggcagcccc cccgacgc tcaacatcct gttggataca	300
ggcagcagta actttgcagt gggtgctgcc ccccacccct tcctgcacatcg ctactaccag	360
aggcagctgt ccagcacata cccggaccc cgaaagggtg tgtatgtgcc ctacacccag	420
ggcaagtggg aaggggagct gggcaccgac ctggtaagca tccccatgg ccccaacgtc	480
actgtgcgtg ccaacattgc tgccatcaact gaatcagaca agttttcat caacggctcc	540
aactggaaag gcatcctggg gctggccat gctgagattt ccaggcctga cgactccctg	600
gagcctttct ttgactctct ggtaaagcag acccacgttc ccaaccttctt ctccctgcac	660
ctttgtggtg ctggcttccc cctcaaccag tctgaagtgc tggcctctgt cggagggagc	720
atgatcattt gaggatcga ccactcgctg tacacaggca gtctctggta tacacccatc	780
cggcgggagt ggtattatga ggtcatcatt gtgcgggtgg agatcaatgg acaggatctg	840
aaaatggact gcaaggagta caactatgac aagacattt tggacagtgg caccaccaac	900
cttcgtttgc ccaagaaagt gtttgaagct gcagtcaaattt ccatcaaggc agcctccctcc	960
acggagaagt tccctgatgg tttctggcta ggagagcagc tgggtgtgctg gcaagcaggc	1020
accacccctt ggaacatttt cccagtcattc tcactctacc taatgggtga gttaccaac	1080
cagtccttcc gcatcaccat cttccgcag caatacctgc ggccagtgga agatgtggcc	1140
acgtcccaag acgactgtta caagttgcc atctcacagt catccacggg cactgttatg	1200
ggagctgtta tcatggaggg cttctacgtt gtcttgatc gggcccgaaa acgaattggc	1260
tttgtgtca ggcgttgcca tgtgcacat gagttcagga cggcagcggg ggaaggccct	1320
tttgtcacct tggacatggaa agactgtggc tacaacattc cacagacaga tgagtcatga	1380

<210> 24
<211> 459
<212> PRT
<213> Homo sapiens

<400> 24

Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg Gly Ser Met Thr
1 5 10 15

Ile Ser Asp Ser Pro Arg Glu Gln Asp Gly Ser Thr Gln His Gly Ile
20 25 30

Arg Leu Pro Leu Arg Ser Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg
35 40 45

Leu Pro Arg Glu Thr Asp Glu Glu Pro Glu Pro Gly Arg Arg Gly

50

55

60

Ser Phe Val Glu Met Val Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly
65 70 75 80

Tyr Tyr Val Glu Met Thr Val Gly Ser Pro Pro Gln Thr Leu Asn Ile
85 90 95

Leu Val Asp Thr Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro His
100 105 110

Pro Phe Leu His Arg Tyr Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg
115 120 125

Asp Leu Arg Lys Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu
130 135 140

Gly Glu Leu Gly Thr Asp Leu Val Ser Ile Pro His Gly Pro Asn Val
145 150 155 160

Thr Val Arg Ala Asn Ile Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe
165 170 175

Ile Asn Gly Ser Asn Trp Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu
180 185 190

Ile Ala Arg Pro Asp Asp Ser Leu Glu Pro Phe Phe Asp Ser Leu Val
195 200 205

Lys Gln Thr His Val Pro Asn Leu Phe Ser Leu His Leu Cys Gly Ala
210 215 220

Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Ser
225 230 235 240

Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu Trp
245 250 255

Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg
260 265 270

Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn
275 280 285

Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro
290 295 300

Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser Ser
305 310 315 320

Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val Cys
325 330 335

Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser Leu
340 345 350

Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu
355 360 365

Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln Asp
370 375 380

Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val Met
385 390 395 400

Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala Arg
405 410 415

Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu Phe
420 425 430

Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu Asp
435 440 445

Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser
450 455

<210> 25
<211> 1302
<212> DNA
<213> Homo sapiens

<400> 25
atgactcagc atggatttcg tctgccactg cgtacggtc tgggtggtgc tccactgggt 60
ctgcgtctgc cccgggagac cgacgaagag cccgaggagc ccggccggag gggcagcttt 120
gtggagatgg tggacaacct gaggggcaag tcggggcagg gctactacgt ggagatgacc 180
gtgggcagcc ccccgagac gctcaacatc ctggtgata caggcagcag taactttca 240
gtgggtgctg ccccccaccc cttcctgcat cgctactacc agaggcagct gtccagcaca 300
taccgggacc tccggaaggg ttgttatgtg ccctacaccc agggcaagt ggaaggggag 360
ctgggcaccc acctggtaag catccccat ggccccaaacg tcactgtgcg tgccaacatt 420
gctgccatca ctgaatcaga caagttttc atcaacggct ccaactggga aggcatcctg 480
gggctggcct atgctgagat tgccaggcct gacgactccc tggagccttt ctttgactct 540

ctggtaaacgc agaccacgt tcccaaccc tcctccctgc acctttgtgg tgctggcttc	600
ccccctcaacc agtctgaagt gctggcctct gtcggaggaa gcatgatcat tggaggtatc	660
gaccactcgc tgtacacagg cagtctctgg tatacaccca tccggcgaaa gtggtattat	720
gaggtcatca ttgtgcgggt ggagatcaat ggacaggatc tgaaaaatgga ctgcaaggag	780
tacaactatg acaagagcat tgtggacagt ggcaccacca accttcgttt gcccaagaaa	840
gtgtttgaag ctgcagtcaa atccatcaag gcagcctcct ccacggagaa gttccctgat	900
ggtttctggc taggagagca gctggtgtgc tggcaagcag gcaccacccc ttggaacatt	960
ttcccagtca tctcaactcta cctaatgggt gaggttacca accagtcctt ccgcacacc	1020
atccttccgc agcaataacct gcggccagtg gaagatgtgg ccacgtccca agacgactgt	1080
tacaagtttgc ccatctcaca gtcatccacg ggcactgtta tggagctgt tatcatggag	1140
ggcttctacg ttgtcttga tcgggcccga aaacgaattt gctttgtgt cagcgcttgc	1200
catgtgcacg atgagtttag gacggcagcg gtggaaaggcc ctttgcac cttggacatg	1260
gaagactgtg gctacaacat tccacagaca gatgagtcata ga	1302

<210> 26
<211> 433
<212> PRT
<213> Homo sapiens

<400> 26

Met Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser Gly Leu Gly Gly
1 5 10 15

Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp Glu Glu Pro Glu
20 25 30

Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val Asp Asn Leu Arg
35 40 45

Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr Val Gly Ser Pro
50 55 60

Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala
65 70 75 80

Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr Tyr Gln Arg Gln
85 90 95

Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val Tyr Val Pro Tyr
100 105 110

Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp Leu Val Ser Ile

115

120

125

Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile Ala Ala Ile Thr
130 135 140

Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp Glu Gly Ile Leu
145 150 155 160

Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp Ser Leu Glu Pro
165 170 175

Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro Asn Leu Phe Ser
180 185 190

Leu His Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu
195 200 205

Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu
210 215 220

Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr
225 230 235 240

Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met
245 250 255

Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr
260 265 270

Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser
275 280 285

Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu
290 295 300

Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile
305 310 315 320

Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser
325 330 335

Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp
340 345 350

Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser
355 360 365

Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val
370 375 380

Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys
385 390 395 400

His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val
405 410 415

Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu
420 425 430

Ser

<210> 27
<211> 1278
<212> DNA
<213> Homo sapiens

<400> 27
atggctagca tgactggtgg acagcaaatg ggtcgccggat cgatgactat ctctgactct 60
ccgctggact ctggtatcga aaccgacgga tcctttgtgg agatggtgga caacctgagg 120
ggcaagtccgg ggcagggcta ctacgtggag atgaccgtgg gcagcccccc gcagacgctc 180
aacatcctgg tggatacagg cagcagtaac tttgcagtgg gtgctgccccc ccaccccttc 240
ctgcatcgct actaccagag gcagctgtcc agcacatacc gggacctccg gaagggtgtg 300
tatgtccctt acacccaggg caagtggaa gggagctgg gcaccgaccc ggttaagcatc 360
ccccatggcc ccaacgtcac tgtcgtgcc aacattgctg ccatcactga atcagacaag 420
ttcttcatca acggctccaa ctggaaaggc atcctggggc tggcctatgc tgagattgcc 480
aggcctgacg actccctggc gcctttcttt gactctctgg taaagcagac ccacgttccc 540
aacctcttctt ccctgcaccc ttgtgggtct ggcttcccccc tcaaccagtc tgaagtgctg 600
gcctctgtcg gagggagcat gatcattggc ggtatcgacc actcgctgtc cacaggcagt 660
ctctggata cacccatccg gcgggagtg tattatgagg tcatcattgt gcgggtggag 720
atcaatggac aggatctgaa aatggactgc aaggagttaca actatgacaa gagcattgtg 780
gacagtggca ccaccaaccc tcgtttgccccc aagaaaagtgt ttgaagctgc agtcaaatcc 840
atcaaggcag cctccctccac ggagaagttc cctgatggtt tctggctagg agagcagctg 900
gtgtgctggc aagcaggcac caccccttgg aacattttcc cagtcatctc actctaccta 960
atgggtgagg ttaccaacca gtccctccgc atcaccatcc ttccgcagca atacctgcgg 1020
ccagtggaaag atgtggccac gtcccaagac gactgttaca agtttgcctt ctcacagtc 1080
tccacgggca ctgttatggg agctgttatac atggagggtct tctacgttgc 1140

gccccaaaac gaattggctt tgctgtcagc gctgccatg tgcacgatga gttcaggacg 1200
gcagcggtgg aaggcccttt tgtcaccttg gacatggaag actgtggcta caacattcca 1260
cagacagatg agtcatga 1278

<210> 28
<211> 425
<212> PRT
<213> Homo sapiens

<400> 28

Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg Gly Ser Met Thr
1 5 10 15

Ile Ser Asp Ser Pro Leu Asp Ser Gly Ile Glu Thr Asp Gly Ser Phe
20 25 30

Val Glu Met Val Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr
35 40 45

Val Glu Met Thr Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val
50 55 60

Asp Thr Gly Ser Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe
65 70 75 80

Leu His Arg Tyr Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu
85 90 95

Arg Lys Gly Val Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu
100 105 110

Leu Gly Thr Asp Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val
115 120 125

Arg Ala Asn Ile Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn
130 135 140

Gly Ser Asn Trp Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala
145 150 155 160

Arg Pro Asp Asp Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln
165 170 175

Thr His Val Pro Asn Leu Phe Ser Leu His Leu Cys Gly Ala Gly Phe
180 185 190

Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile

195	200	205
Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr		
210	215	220
Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu		
225	230	240
Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp		
245	250	255
Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys		
260	265	270
Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu		
275	280	285
Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln		
290	295	300
Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu		
305	310	320
Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln		
325	330	335
Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys		
340	345	350
Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala		
355	360	365
Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg		
370	375	380
Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr		
385	390	400
Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly		
405	410	415
Tyr Asn Ile Pro Gln Thr Asp Glu Ser		
420	425	

<210> 29
<211> 1362
<212> DNA

<213> Homo sapiens

<400> 29
atggcccaag ccctgccctg gctcctgctg tggatggcg cggagtgct gcctgccac 60
ggcacccagc acggcatccg gctgccctg cgacgcggcc tggggggcgc ccccctgggg 120
ctgcggctgc cccgggagac cgacgaagag cccgaggagc cggccggag gggcagctt 180
gtggagatgg tggacaacct gagggcaag tcggggcagg gctactacgt ggagatgacc 240
gtggcagcc ccccgagac gctcaacatc ctggtgata caggcagcag taactttgca 300
gtgggtctg cccccccaccc cttcctgcat cgctactacc agaggcagct gtccagcaca 360
taccgggacc tccggaaggg tgtgtatgtg ccctacaccc agggcaagtg ggaagggag 420
ctgggcaccc acctggtaag catccccat ggccccaacg tcactgtgcg tgccaacatt 480
gctgccatca ctgaatcaga caagtttttc atcaacggct ccaactggga aggcatcctg 540
gggctggcct atgctgagat tgccaggcct gacgactccc tggagccctt ctttgactct 600
ctggtaaagc agacccacgt tcccaacctc ttctccctgc acctttgtgg tgctggcttc 660
ccccctcaacc agtctgaagt gctggctct gtccggaggga gcatgatcat tggaggtatc 720
gaccactcgc tgtacacagg cagtctctgg tatacaccca tccggcgggaa gtggatttat 780
gaggtcatca ttgtgcgggt ggagatcaat ggacaggatc tgaaaatgga ctgcaaggag 840
tacaactatg acaagagcat tgtggacagt ggcaccacca accttcgtt gccaagaaa 900
gtgtttgaag ctgcagtcaa atccatcaag gcagcctcct ccacggagaa gttccctgat 960
ggtttctggc taggagagca gctgggtgtgc tggcaagcag gcaccacccc ttggaacatt 1020
ttccccagtca tctcactcta cctaatgggt gaggttacca accagtcctt cccatcacc 1080
atcctccgc agcaataacct gcggccagtg gaagatgtgg ccacgtccca agacgactgt 1140
tacaagtttgc ccatctcaca gtcatccacg ggcactgtta tggagctgt tatcatggag 1200
ggcttctacg ttgtcttga tcggggccga aaacgaattt gctttgtgt cagcgcttgc 1260
catgtgcacg atgagttcag gacggcagcg gtggaaggcc cttttgtcac cttggacatg 1320
gaagactgtg gctacaacat tccacagaca gatgagtcat ga 1362

<210> 30

<211> 453

<212> PRT

<213> Homo sapiens

<400> 30

Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val
1 5 10 15

Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser
20 25 30

Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
35 40 45

Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
50 55 60

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
65 70 75 80

Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
85 90 95

Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
100 105 110

Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
115 120 125

Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
130 135 140

Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile
145 150 155 160

Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175

Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp
180 185 190

Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro
195 200 205

Asn Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln
210 215 220

Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile
225 230 235 240

Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg
245 250 255

Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln
260 265 270

Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val
275 280 285

Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala
290 295 300

Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp
305 310 315 320

Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr
325 330 335

Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val
340 345 350

Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg
355 360 365

Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala
370 375 380

Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu
385 390 395 400

Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala
405 410 415

Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu
420 425 430

Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro
435 440 445

Gln Thr Asp Glu Ser
450

<210> 31
<211> 1380
<212> DNA
<213> Homo sapiens

<400> 31
atggcccaag ccctgccctg gtcctgctg tggatggcg cggagtgct gcctgcccac 60
ggcacccagc acggcatccg gctgcccctg cgacgcggcc tggggggcgc cccctgggg 120
ctgcggctgc cccgggagac cgacgaagag cccgaggagc cccgcggag gggcagcttt 180
gtggagatgg tggacaacct gaggggcaag tcggggcagg gctactacgt ggagatgacc 240
gtgggcagcc cccgcagac gctcaacatc ctggtgata caggcagcag taactttgca 300
gtgggtgctg cccccaccc cttcctgcat cgctactacc agaggcagct gtccagcaca 360
taccgggacc tccggaaggg tgtgtatgtg ccctacaccc agggcaagtg ggaaggggag 420

ctgggcacccg acctggtaag catccccat ggccccaacg tcactgtgcg tgccaacatt	480
gctgccatca ctgaatcaga caagttcttc atcaacggct ccaactggga aggcatcctg	540
gggctggcct atgctgagat tgccaggcct gacgactccc tggagccttt ctttgactct	600
ctggtaaagc agacccacgt tcccaacctc ttctccctgc acctttgtgg tgctggcttc	660
ccctctaacc agtctgaagt gctggctct gtccggaggga gcatgatcat tggaggtatc	720
gaccactcgc tgtacacagg cagtctctgg tatacaccca tccggcgggg gtggattat	780
gaggtcatca ttgtgcgggt ggagatcaat ggacaggatc tgaaaatgga ctgcaaggag	840
tacaactatg acaagagcat tgtggacagt ggcaccacca accttcgttt gcccaagaaa	900
gtgttgaag ctgcagtcaa atccatcaag gcagcctct ccacggagaa gttccctgat	960
ggtttctggc taggagagca gctgggtgtc tggcaagcag gcaccacccc ttggaacatt	1020
ttcccagtca tctcactcta cctaatgggt gaggttacca accagtcctt ccgcatcacc	1080
atccttcgcg agcaataacct gcggccagtg gaagatgtgg ccacgtccca agacgactgt	1140
tacaagtttgc ccatctcaca gtcatccacg ggcactgtta tggagctgt tatcatggag	1200
ggcttctacg ttgtcttga tcgggcccga aaacgaattg gctttgtgt cagcgcttgc	1260
catgtgcacg atgagttcag gacggcagcg gtggaaggcc cttttgtcac cttggacatg	1320
gaagactgtg gctacaacat tccacagaca gatgagtcac agcagcagca gcagcagtga	1380

<210> 32
<211> 459
<212> PRT
<213> Homo sapiens

<400> 32

Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val
1 5 10 15

Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser
20 25 30

Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
35 40 45

Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
50 55 60

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
65 70 75 80

Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
85 90 95

Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
100 105 110

Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
115 120 125

Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
130 135 140

Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile
145 150 155 160

Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175

Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp
180 185 190

Ser Leu Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro
195 200 205

Asn Leu Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln
210 215 220

Ser Glu Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile
225 230 235 240

Asp His Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg
245 250 255

Glu Trp Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln
260 265 270

Asp Leu Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val
275 280 285

Asp Ser Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala
290 295 300

Ala Val Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp
305 310 315 320

Gly Phe Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr
325 330 335

Pro Trp Asn Ile Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val
340 345 350

Thr Asn Gln Ser Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg
355 360 365

Pro Val Glu Asp Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala
370 375 380

Ile Ser Gln Ser Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu
385 390 395 400

Gly Phe Tyr Val Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala
405 410 415

Val Ser Ala Cys His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu
420 425 430

Gly Pro Phe Val Thr Leu Asp Met Glu Asp Cys Gly Tyr Asn Ile Pro
435 440 445

Gln Thr Asp Glu Ser His His His His His His
450 455

<210> 33
<211> 25
<212> PRT
<213> Homo sapiens

<400> 33

Ser Glu Gln Gln Arg Arg Pro Arg Asp Pro Glu Val Val Asn Asp Glu
1 5 10 15

Ser Ser Leu Val Arg His Arg Trp Lys
20 25

<210> 34
<211> 19
<212> PRT
<213> Homo sapiens

<400> 34

Ser Glu Gln Leu Arg Gln Gln His Asp Asp Phe Ala Asp Asp Ile Ser
1 5 10 15

Leu Leu Lys

<210> 35
<211> 29
<212> DNA
<213> Homo sapiens

<400> 35

gtggatccac ccagcacggc atccggctg	29
<210> 36	
<211> 36	
<212> DNA	
<213> Homo sapiens	
<400> 36	
gaaagctttc atgactcatc tgtctgtgga atgttg	36
<210> 37	
<211> 39	
<212> DNA	
<213> Homo sapiens	
<400> 37	
gatcgatgac tatctctgac tctccgcgtg aacaggacg	39
<210> 38	
<211> 39	
<212> DNA	
<213> Homo sapiens	
<400> 38	
gatccgtcct gttcacgcgg agagtcagag atagtcattc	39
<210> 39	
<211> 77	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Hu-Asp2	
<400> 39	
cggcatccgg ctgccccctgc gtagcggtct gggtggtgct ccactgggtc tgcgctgtcc	60
ccggggagacc gacgaag	77
<210> 40	
<211> 77	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Hu-Asp2	
<400> 40	
cttcgtcggt ctccccgggc agacgcagac ccagtggagc accaccaga ccgctacgca	60
ggggcagccg gatgccg	77
<210> 41	
<211> 51	
<212> DNA	
<213> Caspase-8 Cleavage Site	

<400> 41
gatcgatgac tatctctgac tctccgctgg actctggtat cgaaaccgac g 51

<210> 42
<211> 51
<212> DNA
<213> Caspase-8 Cleavage Site

<400> 42
gatccgtcgg tttcgatacc agagtccagc ggagagtcag agatagtcac c 51

<210> 43
<211> 32
<212> DNA
<213> Homo sapiens

<400> 43
aaggatcctt tgtggagatg gtggacaacc tg 32

<210> 44
<211> 36
<212> DNA
<213> Homo sapiens

<400> 44
gaaaagcttgc atgactcatc tgtctgtgga atgttg 36

<210> 45
<211> 24
<212> DNA
<213> 6-His tag

<400> 45
gatcgcatca tcaccatcac catg 24

<210> 46
<211> 24
<212> DNA
<213> 6-His tag

<400> 46
gatccatggat gatgggtatg atgc 24

<210> 47
<211> 22
<212> DNA
<213> Artificial sequence

<220>
<223> Primer

<400> 47
gactgaccac tcgaccaggat tc 22

<210> 48

<211> 51
<212> DNA
<213> Artificial sequence

<220>
<223> Primer

<400> 48
cgaattaaat tccagcacac tggctacttc ttgttctgca tctcaaagaa c 51

<210> 49
<211> 26
<212> DNA
<213> Artificial sequence

<220>
<223> Primer

<400> 49
cgaattaaat tccagcacac tggcta 26

<210> 50
<211> 1287
<212> DNA
<213> Artificial sequence

<220>
<223> Hu-Asp2(b) delta TM

<400> 50
atggcccaag ccctgccctg gctcctgctg tggatggcg cgggagtgct gcctgcccac 60
ggcacccagc acggcatccg gctgccctg cgacgcggcc tggggggcgc cccccctgggg 120
ctgcggctgc cccgggagac cgacgaagag cccgaggagc ccggccggag gggcagctt 180
gtggagatgg tggacaacct gaggggcaag tcggggcagg gctactacgt ggagatgacc 240
gtgggcagcc cccgcagac gctcaacatc ctggtgata caggcagcag taactttgca 300
gtgggtgctg ccccccaccc ctgcctgcat cgctactacc agaggcagct gtccagcaca 360
taccgggacc tccggaaggg tgtgtatgtc ccctacaccc agggcaagtg ggaaggggag 420
ctgggcaccc acctggtaag catccccat ggccccaacg tcactgtgcg tgccaacatt 480
gctgccatca ctgaatcaga caagtttttc atcaacggct ccaactggga aggcatcctg 540
gggctggcct atgctgagat tgccaggctt tgtggtgctg gcttccccct caaccagtct 600
gaagtgctgg cctctgtcgg agggagcatg atcattggag gtatcgacca ctcgctgtac 660
acaggcagtc tctggtatac acccatccgg cgggagtggt attatgaggt catcattgtg 720
cgggtggaga tcaatggaca ggatctgaaa atggactgca aggagtacaa ctatgacaag 780
agcattgtgg acagtggcac caccaacctt cgtttgcac agaaagtgtt tgaagctgca 840
gtcaaatcca tcaaggcagc ctccctccacg gagaagttcc ctgatggttt ctggcttagga 900
gagcagctgg tgtgctggca agcaggcacc accccttggaa acatttcccc agtcatctca 960

ctctacctaa tgggtgaggt taccaaccag tccttccgca tcaccatcct tccgcagcaa 1020
tacctgcggc cagtggaga tgtggccacg tcccaagacg actgttacaa gttgccatc 1080
tcacagtcat ccacgggcac tggttatggg gctgttatca tggagggctt ctacgttgc 1140
tttgatcgaa cccgaaaacg aattggctt gctgtcagcg cttgccatgt gcacgatgag 1200
ttcaggacgg cagcggtgga aggcctttt gtcaccttgg acatggaaga ctgtggctac 1260
aacattccac agacagatga gtcatga 1287

<210> 51
<211> 428
<212> PRT
<213> Artificial sequence

<220>
<223> Hu-Asp2(b) delta TM

<400> 51

Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val
1 5 10 15

Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser
20 25 30

Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
35 40 45

Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
50 55 60

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
65 70 75 80

Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
85 90 95

Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
100 105 110

Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
115 120 125

Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
130 135 140

Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile
145 150 155 160

Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175

Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Leu Cys Gly
180 185 190

Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly
195 200 205

Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu
210 215 220

Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val
225 230 235 240

Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr
245 250 255

Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu
260 265 270

Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser
275 280 285

Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val
290 295 300

Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser
305 310 315 320

Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile
325 330 335

Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln
340 345 350

Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val
355 360 365

Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala
370 375 380

Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu
385 390 395 400

Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu
405 410 415

Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser
420 425

<210> 52
<211> 1305
<212> DNA
<213> Artificial sequence

<220>
<223> Hu-Asp2(b) delta TM

<400> 52
atggcccaag ccctgccctg gtcctgctg tggatggcg cggagtgct gcctgccac 60
ggcacccagg acggcatccg gctgcccctg cgacgcggcc tggggggcgc cccctgggg 120
ctgcggctgc cccggagac cgacgaagag cccgaggagc cggccggag gggcagcttt 180
gtggagatgg tggacaacct gagggcaag tcggggcagg gctactacgt ggagatgacc 240
gtgggcagcc ccccgagac gctaacaatc ctggtgata caggcagcag taactttgca 300
gtgggtgctg ccccccaccc cttcctgcat cgctactacc agaggcagct gtccagcaca 360
taccgggacc tccggaaggg tgttatgtg ccctacaccc agggcaagtg ggaagggag 420
ctgggcaccc acctggtaag catccccat ggccccaacg tcactgtgcg tgccaacatt 480
gctgccatca ctgaatcaga caagttttc atcaacggct ccaactggga aggcatcctg 540
gggctggcct atgctgagat tgccaggctt tgttgtgctg gcttccccct caaccagtct 600
gaagtgtgg cctctgtcgg agggagcatg atcattggag gtatcgacca ctgcgtgtac 660
acaggcagtc tctggatac acccatccgg cggagtggt attatgaggt catcattgtg 720
cggtggaga tcaatggaca ggatctgaaa atggactgca aggactaca ctatgacaag 780
agcattgtgg acagtggcac caccaacctt cgtttgcac agaaagtgtt tgaagctgca 840
gtcaaatcca tcaaggcagc ctccctccacg gagaagttcc ctgatggtt ctggcttagga 900
gagcagctgg tgtgtggca agcaggcacc accccttggaa acattttccc agtcatctca 960
ctctaccaa tgggtgaggt tbeccaaccag tccttccgca tcaccatctt tccgcagcaa 1020
tacctgcggc cagtggaaaga tgtggccacg tcccaagacg actgttacaa gtttgcac 1080
tcacagtcac ccacgggcac tgttatggga gctgttatca tggagggctt ctacgttg 1140
tttgcgtggg cccgaaaacg aattggctt gctgtcagcg cttgcccgtt gcacgtgag 1200
ttcaggacgg cagcggtgga aggcctttt gtcacacccatgg acatggaaaga ctgtggctac 1260
aacattccac agacagatga gtcacagcag cagcagcagc agtga 1305

<210> 53
<211> 434
<212> PRT

<213> Artificial sequence

<220>

<223> Hu-Asp2(b) delta TM

<400> 53

Met Ala Gln Ala Leu Pro Trp Leu Leu Leu Trp Met Gly Ala Gly Val
1 5 10 15

Leu Pro Ala His Gly Thr Gln His Gly Ile Arg Leu Pro Leu Arg Ser
20 25 30

Gly Leu Gly Gly Ala Pro Leu Gly Leu Arg Leu Pro Arg Glu Thr Asp
35 40 45

Glu Glu Pro Glu Glu Pro Gly Arg Arg Gly Ser Phe Val Glu Met Val
50 55 60

Asp Asn Leu Arg Gly Lys Ser Gly Gln Gly Tyr Tyr Val Glu Met Thr
65 70 75 80

Val Gly Ser Pro Pro Gln Thr Leu Asn Ile Leu Val Asp Thr Gly Ser
85 90 95

Ser Asn Phe Ala Val Gly Ala Ala Pro His Pro Phe Leu His Arg Tyr
100 105 110

Tyr Gln Arg Gln Leu Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val
115 120 125

Tyr Val Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp
130 135 140

Leu Val Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile
145 150 155 160

Ala Ala Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp
165 170 175

Glu Gly Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Leu Cys Gly
180 185 190

Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu Ala Ser Val Gly Gly
195 200 205

Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu Tyr Thr Gly Ser Leu
210 215 220

Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr Glu Val Ile Ile Val
225 230 235 240

Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met Asp Cys Lys Glu Tyr
245 250 255

Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr Thr Asn Leu Arg Leu
260 265 270

Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser Ile Lys Ala Ala Ser
275 280 285

Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu Gly Glu Gln Leu Val
290 295 300

Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile Phe Pro Val Ile Ser
305 310 315 320

Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser Phe Arg Ile Thr Ile
325 330 335

Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp Val Ala Thr Ser Gln
340 345 350

Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser Ser Thr Gly Thr Val
355 360 365

Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val Val Phe Asp Arg Ala
370 375 380

Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys His Val His Asp Glu
385 390 395 400

Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Val Thr Leu Asp Met Glu
405 410 415

Asp Cys Gly Tyr Asn Ile Pro Gln Thr Asp Glu Ser His His His His
420 425 430

His His

<210> 54
<211> 2310
<212> DNA
<213> Homo sapiens

<400> 54
atgctgcccc gtttggcact gtcctgctg gccgcctgga cggctcgccc gctggaggta 60

cccaactgatg gtaatgctgg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga 120
ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa 180
acctgcattg ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg 240
cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg 300
ggccgcaagc agtgcacagac ccattccccac tttgtgattc cctaccgctg cttagtttgt 360
gagtttgtaa gtgatgccct ttcgttccct gacaagtgc aattcttaca ccaggagagg 420
atggatgttt gcgaaaactca ttttcaactgg cacaccgtcg ccaaagagac atgcagttag 480
aagagtagcca acttgcacatga ctacggcatg ttgtgcctt gcggattga caagttccga 540
ggggtagagt ttgtgtgtt cccactggct gaagaaagtg acaatgtgga ttctgctgat 600
gcggaggagg atgactcgga tgtctggtgg ggccggagcag acacagacta tgcagatggg 660
agtgaagaca aagtagtaga agtagcagag gaggaagaag tggctgaggt ggaagaagaa 720
gaagccgatg atgacgagga cgatgaggat ggtgatgagg tagaggaaga ggctgaggaa 780
ccctacgaag aagccacaga gagaaccacc accattgcac ccaccaccac caccaccaca 840
gagtctgtgg aagagggtgt tcgagagggt tgctctgaac aagccgagac gggccgtgc 900
cgagcaatga tctcccgctg gtactttgat gtgactgaag ggaagtgtgc cccattcttt 960
tacggcgat gtggcggcaa ccggAACAC tttgacacag aagagtactg catggccgtg 1020
tgtggcagcg ccatgtccca aagtttactc aagactaccc aggaacctct tggccgagat 1080
cctgttaaac ttccataac acgagccagt acccctgatg ccgttgacaa gtatctcgag 1140
acacctgggg atgagaatga acatgccat ttccagaaag ccaaagagag gcttgaggcc 1200
aagcaccgag agagaatgtc ccaggtcatg agagaatggg aagaggcaga acgtcaagca 1260
aagaacttgc ctaaagctga taagaaggca gttatccagc atttccagga gaaagtggaa 1320
tctttgaaac aggaagcagc caacgagaga cagcagctgg tggagacaca catggccaga 1380
gtggaagcca tgctcaatga ccggccgcgc ctggccctgg agaactacat caccgctctg 1440
caggctgttc ctccctggcc tcgtcacgtg ttcaatatgc taaagaagta tgtcccgcc 1500
gaacagaagg acagacagca caccctaaag catttcgagc atgtgcgcac ggtggatccc 1560
aagaaagccg ctcagatccg gtcccaggtt atgacacaccc tccgtgtgat ttatgagcgc 1620
atgaatcagt ctctccct gctctacaac gtgcctgcag tggccgagga gattcaggat 1680
gaagttgatg agctgcttca gaaagagcaa aactattcag atgacgtctt ggccaacatg 1740
attagtgaac caaggatcag ttacggaaac gatgctctca tgccatctt gaccgaaacg 1800
aaaaccaccg tggagctcct tcccgtgaat ggagagttca gcctggacga tctccagccg 1860
tggcattctt ttggggctga ctctgtgccca gccaacacag aaaacgaagt tgagcctgtt 1920
gatgcccggcc ctgctgccga ccgaggactg accactcgac caggttctgg gttgacaaat 1980

atcaagacgg aggagatctc tgaagtgaag atggatgcag aattccgaca tgactcagga 2040
tatgaagttc atcatcaaaa attgggtttc tttcagaag atgtgggttc aaacaaaggt 2100
gcaatcattt gactcatggt gggcggtgtt gtcatagcga cagtgatcgt catcaccttg 2160
gtgatgctga agaagaaaca gtacacatcc attcatcatg gtgtggtgaa gggtgacgcc 2220
gctgtcaccc cagaggagcg ccacctgtcc aagatgcagc agaacggcta cgaaaatcca 2280
acctacaagt tcttgagca gatgcagaac 2310

<210> 55
<211> 770
<212> PRT
<213> Homo sapiens

<400> 55

Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Trp Thr Ala Arg
1 5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
50 55 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
100 105 110

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
145 150 155 160

Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
165 170 175

Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
180 185 190

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val
195 200 205

Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys
210 215 220

Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu
225 230 235 240

Glu Ala Asp Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu
245 250 255

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile
260 265 270

Ala Thr Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg
275 280 285

Glu Val Cys Ser Glu Gln Ala Glu Thr Gly Pro Cys Arg Ala Met Ile
290 295 300

Ser Arg Trp Tyr Phe Asp Val Thr Glu Gly Lys Cys Ala Pro Phe Phe
305 310 315 320

Tyr Gly Gly Cys Gly Gly Asn Arg Asn Asn Phe Asp Thr Glu Glu Tyr
325 330 335

Cys Met Ala Val Cys Gly Ser Ala Met Ser Gln Ser Leu Leu Lys Thr
340 345 350

Thr Gln Glu Pro Leu Ala Arg Asp Pro Val Lys Leu Pro Thr Thr Ala
355 360 365

Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu Glu Thr Pro Gly Asp
370 375 380

Glu Asn Glu His Ala His Phe Gln Lys Ala Lys Glu Arg Leu Glu Ala
385 390 395 400

Lys His Arg Glu Arg Met Ser Gln Val Met Arg Glu Trp Glu Glu Ala
405 410 415

Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp Lys Lys Ala Val Ile
420 425 430

Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu Gln Glu Ala Ala Asn
435 440 445

Glu Arg Gln Gln Leu Val Glu Thr His Met Ala Arg Val Glu Ala Met
450 455 460

Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn Tyr Ile Thr Ala Leu
465 470 475 480

Gln Ala Val Pro Pro Arg Pro Arg His Val Phe Asn Met Leu Lys Lys
485 490 495

Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His Thr Leu Lys His Phe
500 505 510

Glu His Val Arg Met Val Asp Pro Lys Lys Ala Ala Gln Ile Arg Ser
515 520 525

Gln Val Met Thr His Leu Arg Val Ile Tyr Glu Arg Met Asn Gln Ser
530 535 540

Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala Glu Glu Ile Gln Asp
545 550 555 560

Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn Tyr Ser Asp Asp Val
565 570 575

Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser Tyr Gly Asn Asp Ala
580 585 590

Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr Val Glu Leu Leu Pro
595 600 605

Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln Pro Trp His Ser Phe
610 615 620

Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn Glu Val Glu Pro Val
625 630 635 640

Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser
645 650 655

Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Lys Met Asp
660 665 670

Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys Leu
675 680 685

Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile Gly
690 695 700

Leu Met Val Gly Gly Val Val Ile Ala Thr Val Ile Val Ile Thr Leu
705 710 715 720

Val Met Leu Lys Lys Lys Gln Tyr Thr Ser Ile His His Gly Val Val
725 730 735

Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg His Leu Ser Lys Met
740 745 750

Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys Phe Phe Glu Gln Met
755 760 765

Gln Asn
770

<210> 56
<211> 2253
<212> DNA
<213> Homo sapiens

<400> 56
atgctgcccg gttggcaact gtcctgctg gccgcctgga cggctcgggc gctggaggta 60
cccactgatg gtaatgctgg cctgctggct gaacccaga ttgccatgtt ctgtggcaga 120
ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa 180
acctgcattg ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg 240
cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg 300
ggccgcaagc agtgcacagac ccattccccac tttgtgattc cctaccgctg cttagtttgt 360
gagttttaa gtgatgccct tctcgttcct gacaagtgc aattcttaca ccaggagagg 420
atggatgttt gcgaaactca tcttcactgg cacaccgtcg ccaaagagac atgcagttag 480
aagagtacca acttgcacatga ctacggcatg ttgctgccct gcggaaattga caagttccga 540
ggggtagagt ttgtgtgttg cccactggct gaagaaaagtg acaatgtgga ttctgctgat 600
gcggaggagg atgactcgga tgtctgggtt ggcggagcag acacagacta tgcagatggg 660
agtgaagaca aagtagtaga agtagcagag gaggaagaag tggctgaggt ggaagaagaa 720
gaagccgatg atgacgagga cgatgaggat ggtgatgagg tagaggaaga ggctgaggaa 780
ccctacgaag aagccacaga gagaaccacc agcattgcca ccaccaccac caccaccaca 840
gagtctgtgg aagaggttgt tcgagaggtg tgctctgaac aagccgagac gggccgtgc 900
cgagcaatga tctcccgctg gtactttgat gtgactgaag ggaagtgtgc cccattctt 960
tacggcggat gtggcggcaa ccggaacaac tttgacacag aagagtactg catggccgtg 1020

tgtggcageg ccattcctac aacagcagcc agtaccctg atgccgttga caagtatctc	1080
gagacacacctg gggatgagaa tgaacatgcc cattccaga aagccaaaga gaggctttag	1140
gccaaggcacc gagagagaat gtcccaggtc atgagagaat ggaaagaggc agaacgtcaa	1200
gcaaagaact tgccctaaagc tgataagaag gcagtttatcc agcatttcca ggagaaaatg	1260
gaatctttgg aacaggaagc agccaacgag agacagcagc tgggtggagac acacatggcc	1320
agagtggaaag ccatgctcaa tgaccgcgc cgccctggccc tggagaacta catcaccgct	1380
ctgcaggctg ttccctcctcg gcctcgtaac gtgttcaata tgctaaagaa gtatgtccgc	1440
gcagaacaga aggacagaca gcacacccta aagcattcg agcatgtgcg catggtgat	1500
cccaagaaaag ccgctcagat ccgggtcccag gttatgacac acctccgtgt gatttatgag	1560
cgcattgaatc agtctctctc cctgctctac aacgtgcctg cagtggccga ggagattcag	1620
gatgaagttg atgagctgct tcagaaagag caaaaactatt cagatgacgt ctggccaac	1680
atgatttagtg aaccaaggat cagttacgga aacgatgctc tcatgccatc tttgaccgaa	1740
acgaaaaacca ccgtggagct ctttccgtg aatggagagt tcagcctgga cgatctccag	1800
ccgtggcatt cttttgggc tgactctgtg ccagccaaca cagaaaaacga agttgaggcct	1860
gttcatgcccc gccctgctgc cgaccgagga ctgaccactc gaccaggttc tgggttgaca	1920
aatatcaaga cggaggagat ctctgaagtg aagatggatg cagaattccg acatgactca	1980
ggatatgaag ttcatcatca aaaattggtg ttctttgcag aagatgtggg ttcaaacaaa	2040
ggtgcaatca ttggactcat ggtggggcggt gttgtcatag cgacagtgtat cgtcatcacc	2100
ttgggtgatgc tgaagaagaa acagtacaca tccattcatc atgggtgtggg ggagggttgac	2160
gccgctgtca cccccagagga gcgccacctg tccaaagatgc agcagaacgg ctacgaaaat	2220
ccaaacctaca agttctttga gcagatgcag aac	2253

<210> 57
<211> 751
<212> PRT
<213> Homo sapiens

<400> 57

Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Trp Thr Ala Arg
1 5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp

50

55

60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
100 105 110

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
145 150 155 160

Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
165 170 175

Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
180 185 190

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val
195 200 205

Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys
210 215 220

Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu
225 230 235 240

Glu Ala Asp Asp Asp Glu Asp Asp Gly Asp Glu Val Glu Glu
245 250 255

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile
260 265 270

Ala Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg
275 280 285

Glu Val Cys Ser Glu Gln Ala Glu Thr Gly Pro Cys Arg Ala Met Ile
290 295 300

Ser Arg Trp Tyr Phe Asp Val Thr Glu Gly Lys Cys Ala Pro Phe Phe
305 310 315 320

Tyr Gly Gly Cys Gly Gly Asn Arg Asn Asn Phe Asp Thr Glu Glu Tyr
325 330 335

Cys Met Ala Val Cys Gly Ser Ala Ile Pro Thr Thr Ala Ala Ser Thr
340 345 350

Pro Asp Ala Val Asp Lys Tyr Leu Glu Thr Pro Gly Asp Glu Asn Glu
355 360 365

His Ala His Phe Gln Lys Ala Lys Glu Arg Leu Glu Ala Lys His Arg
370 375 380

Glu Arg Met Ser Gln Val Met Arg Glu Trp Glu Glu Ala Glu Arg Gln
385 390 395 400

Ala Lys Asn Leu Pro Lys Ala Asp Lys Lys Ala Val Ile Gln His Phe
405 410 415

Gln Glu Lys Val Glu Ser Leu Glu Gln Glu Ala Ala Asn Glu Arg Gln
420 425 430

Gln Leu Val Glu Thr His Met Ala Arg Val Glu Ala Met Leu Asn Asp
435 440 445

Arg Arg Arg Leu Ala Leu Glu Asn Tyr Ile Thr Ala Leu Gln Ala Val
450 455 460

Pro Pro Arg Pro Arg His Val Phe Asn Met Leu Lys Lys Tyr Val Arg
465 470 475 480

Ala Glu Gln Lys Asp Arg Gln His Thr Leu Lys His Phe Glu His Val
485 490 495

Arg Met Val Asp Pro Lys Lys Ala Ala Gln Ile Arg Ser Gln Val Met
500 505 510

Thr His Leu Arg Val Ile Tyr Glu Arg Met Asn Gln Ser Leu Ser Leu
515 520 525

Leu Tyr Asn Val Pro Ala Val Ala Glu Glu Ile Gln Asp Glu Val Asp
530 535 540

Glu Leu Leu Gln Lys Glu Gln Asn Tyr Ser Asp Asp Val Leu Ala Asn
545 550 555 560

Met Ile Ser Glu Pro Arg Ile Ser Tyr Gly Asn Asp Ala Leu Met Pro
565 570 575

Ser Leu Thr Glu Thr Lys Thr Val Glu Leu Leu Pro Val Asn Gly
580 585 590

Glu Phe Ser Leu Asp Asp Leu Gln Pro Trp His Ser Phe Gly Ala Asp
595 600 605

Ser Val Pro Ala Asn Thr Glu Asn Glu Val Glu Pro Val Asp Ala Arg
610 615 620

Pro Ala Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser Gly Leu Thr
625 630 635 640

Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Lys Met Asp Ala Glu Phe
645 650 655

Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys Leu Val Phe Phe
660 665 670

Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile Gly Leu Met Val
675 680 685

Gly Gly Val Val Ile Ala Thr Val Ile Val Ile Thr Leu Val Met Leu
690 695 700

Lys Lys Lys Gln Tyr Thr Ser Ile His His Gly Val Val Glu Val Asp
705 710 715 720

Ala Ala Val Thr Pro Glu Glu Arg His Leu Ser Lys Met Gln Gln Asn
725 730 735

Gly Tyr Glu Asn Pro Thr Tyr Lys Phe Phe Glu Gln Met Gln Asn
740 745 750

<210> 58
<211> 2316
<212> DNA
<213> Homo sapiens

<400> 58
atgctccccg gttggcaact gtcctgctg gccgcctgga cggctcgggc gctggaggtta 60
cccaactgatg gtaatgctgg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga 120
ctgaacatgc acatgaatgt ccagaatggg aagtggatt cagatccatc agggaccaaa 180
acctgcattg ataccaagga aggcattcctg cagtattgcc aagaagtcta ccctgaactg 240

cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg	300
ggccgcaagc agtgcacagac ccatccccac tttgtgattc cctaccgctg cttagtttgt	360
gagttttaa gtgtatgcct ttcgttccct gacaagtgc aattcttaca ccaggagagg	420
atggatgttt gcgaaactca tcttcactgg cacaccgtcg ccaaagagac atgcagttag	480
aagagtacca acttgcacatga ctacggcatg ttgtctgcct gcggaattga caagttccga	540
ggggtagagt ttgtgttgtt cccactggct gaagaaagtg acaatgtgga ttctgctgat	600
gcggaggagg atgactcgga tgtctggtgg ggccggacag acacagacta tgcagatggg	660
agtgaagaca aagtagttaga agtagcagag gaggagaag tggctgaggt ggaagaagaa	720
gaagccgatg atgacgagga cgatgaggat ggtgatgagg tagaggaaga ggctgaggaa	780
ccctacgaag aagccacaga gagaaccacc accattgcca ccaccaccac caccaccaca	840
gagtctgtgg aagaggttgt tcgagaggatg tgctctgaac aagccgagac gggccgtgc	900
cgagcaatga tctcccgctg gtactttgat gtgactgaag ggaagtgtgc cccattctt	960
tacggcggat gtggcggcaa ccggaaacaac tttgacacag aagagtactg catggccgtg	1020
tgtggcagcg ccatgtccca aagtttactc aagactaccc aggaacctct tggccgagat	1080
cctgttaaac ttccatacaac agcagccagt acccctgatg ccgttgacaa gtatctcgag	1140
acacctgggg atgagaatga acatgccat ttccagaaag ccaaagagag gcttgaggcc	1200
aagcaccgag agagaatgtc ccaggtcatg agagaatggg aagaggcaga acgtcaagca	1260
aagaacttgc cttaagctga taagaaggca gttatccagc atttccagga gaaagtggaa	1320
tctttggAAC aggaagcagc caacgagaga cagcagctgg tggagacaca catggccaga	1380
gtggaaGCCA tgctcaatga ccggccccc ctggccctgg agaactacat caccgctctg	1440
caggctgttc ctccctggcc tcgtcacgtg ttcaatatgc taaagaagta tgtccgcga	1500
gaacagaagg acagacagca caccctaaag catttcgagc atgtgcgcac ggtggatccc	1560
aagaaagccg ctcagatccg gtcccaggtt atgacacacc tccgtgtgat ttatgagcgc	1620
atgaatcagt ctctctccct gctctacaac gtgcctgcag tggccgagga gattcaggat	1680
gaagttgatg agctgcttca gaaagagcaa aactattcag atgacgtctt ggccaacatg	1740
attagtgaac caaggatcag ttacggaaac gatgctctca tgccatctt gaccgaaacg	1800
aaaaccaccc tggagctcct tcccgtgaat ggagagttca gcctggacga tctccagccg	1860
tggcattctt ttggggctga ctctgtgccca gccaaacacag aaaacgaaatg tgagcctgtt	1920
gatgcccgcct ctgtgtccga ccgaggactg accactcgac caggttctgg gttgacaaat	1980
atcaagacgg aggagatctc tgaagtgaag atggatgcag aattccgaca tgactcagga	2040
tatgaagttc atcataaaa attgggtgttc tttgcagaag atgtgggttc aaacaaaggt	2100
gcaatcattg gactcatggt gggcggtgtt gtcatacgca cagtgatcgt catcaccttg	2160

gtgatgctga agaagaaaca gtacacatcc attcatcatg gtgtggtgg a ggtgacgcc 2220
gctgtcaccc cagaggagcg ccacctgtcc aagatgcagc agaacggcta cgaaaatcca 2280
acctacaagt tcttgagca gatgcagaac aagaag 2316

<210> 59
<211> 772
<212> PRT
<213> Homo sapiens

<400> 59

Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Trp Thr Ala Arg
1 5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
50 55 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
100 105 110

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
145 150 155 160

Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
165 170 175

Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
180 185 190

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val

195	200	205
Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys		
210	215	220
Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu		
225	230	235
Glu Ala Asp Asp Asp Glu Asp Asp Glu Asp Gly Asp Glu Val Glu Glu		
245	250	255
Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile		
260	265	270
Ala Thr Thr Thr Thr Thr Thr Glu Ser Val Glu Val Val Val Arg		
275	280	285
Glu Val Cys Ser Glu Gln Ala Glu Thr Gly Pro Cys Arg Ala Met Ile		
290	295	300
Ser Arg Trp Tyr Phe Asp Val Thr Glu Gly Lys Cys Ala Pro Phe Phe		
305	310	315
Tyr Gly Gly Cys Gly Gly Asn Arg Asn Asn Phe Asp Thr Glu Glu Tyr		
325	330	335
Cys Met Ala Val Cys Gly Ser Ala Met Ser Gln Ser Leu Leu Lys Thr		
340	345	350
Thr Gln Glu Pro Leu Ala Arg Asp Pro Val Lys Leu Pro Thr Thr Ala		
355	360	365
Ala Ser Thr Pro Asp Ala Val Asp Lys Tyr Leu Glu Thr Pro Gly Asp		
370	375	380
Glu Asn Glu His Ala His Phe Gln Lys Ala Lys Glu Arg Leu Glu Ala		
385	390	395
Lys His Arg Glu Arg Met Ser Gln Val Met Arg Glu Trp Glu Glu Ala		
405	410	415
Glu Arg Gln Ala Lys Asn Leu Pro Lys Ala Asp Lys Lys Ala Val Ile		
420	425	430
Gln His Phe Gln Glu Lys Val Glu Ser Leu Glu Gln Glu Ala Ala Asn		
435	440	445

Glu Arg Gln Gln Leu Val Glu Thr His Met Ala Arg Val Glu Ala Met
450 455 460

Leu Asn Asp Arg Arg Arg Leu Ala Leu Glu Asn Tyr Ile Thr Ala Leu
465 470 475 480

Gln Ala Val Pro Pro Arg Pro Arg His Val Phe Asn Met Leu Lys Lys
485 490 495

Tyr Val Arg Ala Glu Gln Lys Asp Arg Gln His Thr Leu Lys His Phe
500 505 510

Glu His Val Arg Met Val Asp Pro Lys Lys Ala Ala Gln Ile Arg Ser
515 520 525

Gln Val Met Thr His Leu Arg Val Ile Tyr Glu Arg Met Asn Gln Ser
530 535 540

Leu Ser Leu Leu Tyr Asn Val Pro Ala Val Ala Glu Glu Ile Gln Asp
545 550 555 560

Glu Val Asp Glu Leu Leu Gln Lys Glu Gln Asn Tyr Ser Asp Asp Val
565 570 575

Leu Ala Asn Met Ile Ser Glu Pro Arg Ile Ser Tyr Gly Asn Asp Ala
580 585 590

Leu Met Pro Ser Leu Thr Glu Thr Lys Thr Thr Val Glu Leu Leu Pro
595 600 605

Val Asn Gly Glu Phe Ser Leu Asp Asp Leu Gln Pro Trp His Ser Phe
610 615 620

Gly Ala Asp Ser Val Pro Ala Asn Thr Glu Asn Glu Val Glu Pro Val
625 630 635 640

Asp Ala Arg Pro Ala Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser
645 650 655

Gly Leu Thr Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Lys Met Asp
660 665 670

Ala Glu Phe Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys Leu
675 680 685

Val Phe Phe Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile Gly
690 695 700

Leu Met Val Gly Gly Val Val Ile Ala Thr Val Ile Val Ile Thr Leu
705 710 715 720

Val Met Leu Lys Lys Gln Tyr Thr Ser Ile His His Gly Val Val
725 730 735

Glu Val Asp Ala Ala Val Thr Pro Glu Glu Arg His Leu Ser Lys Met
740 745 750

Gln Gln Asn Gly Tyr Glu Asn Pro Thr Tyr Lys Phe Phe Glu Gln Met
755 760 765

Gln Asn Lys Lys
770

<210> 60
<211> 2259
<212> DNA
<213> Homo sapiens

<400> 60	
atgctgcccc gtttggcaact gtcctgctg gccgcctgga cggctcgccc gctggaggta	60
cccaactgatg gtaatgctgg cctgctggct gaaccccaga ttgccatgtt ctgtggcaga	120
ctgaacatgc acatgaatgt ccagaatggg aagtggatt cagatccatc agggaccaaa	180
acctgcattg ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg	240
cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg	300
ggccgcaagc agtgcacagac ccattccac tttgtgattc cctaccgctg cttagtttgt	360
gagtttgtaa gtgatgccct ttcgtttccct gacaagtgc aattcttaca ccaggagagg	420
atggatgttt gcgaaactca tcttcactgg cacaccgtcg ccaaagagac atgcagtgag	480
aagagtacca acttgcacatga ctacggcatg ttgctgccct gcggatttgc caagttccga	540
ggggtagagt ttgtgtgttg cccactggct gaagaaagtgc acaatgtgg ttctgctgat	600
gcggaggagg atgactcgga tgtctgggtt ggccggacgac acacagacta tgcagatggg	660
agtgaagaca aagtagtaga agtagcagag gaggaagaag tggctgaggt ggaagaagaa	720
gaagccgatg atgacgagga cgatgaggat ggtgatgagg tagaggaaga ggctgaggaa	780
ccctacgaag aagccacaga gagaaccacc agcattgcca ccaccaccac caccaccaca	840
gagtctgtgg aagaggttgt tcgagaggtg tgctctgaac aagccgagac gggccgtgc	900
cgagcaatga tctcccgctg gtactttgtat gtgactgaag ggaagtgtgc cccattttt	960
tacggcggat gtggcggcaa ccggaacaac tttgacacag aagagtactg catggccgtg	1020
tgtggcagcg ccattcctac aacagcagcc agtaccctg atgcgttga caagtatctc	1080
gagacacctg gggatgagaa tgaacatgcc catttccaga aagccaaaga gaggcttgag	1140

gccaaggcacc gagagagaat gtcccaggc atgagagaat gggaaagaggc agaacgtcaa	1200
gcaaagaact tgccctaaagc tgataagaag gcagttatcc agcatttcca ggagaaaagtg	1260
gaatcttgg aacaggaagc agccaacgag agacagcagc tggtgagac acacatggcc	1320
agagtggaaag ccatgctcaa tgaccgcccgc cgccctggccc tggagaacta catcaccgct	1380
ctgcaggctg ttccctctcg gcctcgtcac gtgttcaata tgctaaagaa gtatgtccgc	1440
gcagaacaga aggacagaca gcacacccta aagcattcg agcatgtgcg catggtgat	1500
cccaagaaag ccgctcagat ccggtcccag gttatgacac acctccgtgt gatttatgag	1560
cgcattgaatc agtctctctc cctgctctac aacgtgcctg cagtggccga ggagattcag	1620
gatgaagttg atgagctgct tcagaaagag caaaaactatt cagatgacgt ctggccaac	1680
atgattatgt aaccaaggat cagttacgga aacgatgctc tcatgccatc tttgaccgaa	1740
acgaaaacca ccgtggagct cttccctgtg aatggagagt tcagcctgga cgatctccag	1800
ccgtggcatt ctttggggc tgactctgtg ccagccaaca cagaaaacga agttgagcct	1860
tttgcatttgc cccctgtgc cgaccgagga ctgaccactc gaccagggttc tgggttgaca	1920
aatatcaaga cggaggagat ctctgaagt aagatggatg cagaattccg acatgactca	1980
ggatatgaag ttcatcatca aaaattggtg ttcttgcag aagatgtggg ttcaaacaaa	2040
ggatcatca ttggactcat ggtgggggt gttgtcatag cgacagtgtat cgatcatcacc	2100
tttgtatgc tgaagaagaa acagtacaca tccattcatc atgggtgtgttggg ggaggttgac	2160
ggccgtgtca ccccagagga ggcacactg tccaaatgc agcagaacgg ctacgaaaat	2220
ccaacctaca agttcttga gcagatgcag aacaagaag	2259

<210> 61
<211> 753
<212> PRT
<213> Homo sapiens

<400> 61

Met Leu Pro Gly Leu Ala Leu Leu Leu Ala Ala Ala Trp Thr Ala Arg
1 5 10 15

Ala Leu Glu Val Pro Thr Asp Gly Asn Ala Gly Leu Leu Ala Glu Pro
20 25 30

Gln Ile Ala Met Phe Cys Gly Arg Leu Asn Met His Met Asn Val Gln
35 40 45

Asn Gly Lys Trp Asp Ser Asp Pro Ser Gly Thr Lys Thr Cys Ile Asp
50 55 60

Thr Lys Glu Gly Ile Leu Gln Tyr Cys Gln Glu Val Tyr Pro Glu Leu
65 70 75 80

Gln Ile Thr Asn Val Val Glu Ala Asn Gln Pro Val Thr Ile Gln Asn
85 90 95

Trp Cys Lys Arg Gly Arg Lys Gln Cys Lys Thr His Pro His Phe Val
100 105 110

Ile Pro Tyr Arg Cys Leu Val Gly Glu Phe Val Ser Asp Ala Leu Leu
115 120 125

Val Pro Asp Lys Cys Lys Phe Leu His Gln Glu Arg Met Asp Val Cys
130 135 140

Glu Thr His Leu His Trp His Thr Val Ala Lys Glu Thr Cys Ser Glu
145 150 155 160

Lys Ser Thr Asn Leu His Asp Tyr Gly Met Leu Leu Pro Cys Gly Ile
165 170 175

Asp Lys Phe Arg Gly Val Glu Phe Val Cys Cys Pro Leu Ala Glu Glu
180 185 190

Ser Asp Asn Val Asp Ser Ala Asp Ala Glu Glu Asp Asp Ser Asp Val
195 200 205

Trp Trp Gly Gly Ala Asp Thr Asp Tyr Ala Asp Gly Ser Glu Asp Lys
210 215 220

Val Val Glu Val Ala Glu Glu Glu Val Ala Glu Val Glu Glu Glu
225 230 235 240

Glu Ala Asp Asp Asp Glu Asp Asp Gly Asp Glu Val Glu Glu
245 250 255

Glu Ala Glu Glu Pro Tyr Glu Glu Ala Thr Glu Arg Thr Thr Ser Ile
260 265 270

Ala Thr Thr Thr Thr Thr Glu Ser Val Glu Glu Val Val Arg
275 280 285

Glu Val Cys Ser Glu Gln Ala Glu Thr Gly Pro Cys Arg Ala Met Ile
290 295 300

Ser Arg Trp Tyr Phe Asp Val Thr Glu Gly Lys Cys Ala Pro Phe Phe
305 310 315 320

Tyr Gly Gly Cys Gly Gly Asn Arg Asn Asn Phe Asp Thr Glu Glu Tyr
325 330 335

Cys Met Ala Val Cys Gly Ser Ala Ile Pro Thr Thr Ala Ala Ser Thr
340 345 350

Pro Asp Ala Val Asp Lys Tyr Leu Glu Thr Pro Gly Asp Glu Asn Glu
355 360 365

His Ala His Phe Gln Lys Ala Lys Glu Arg Leu Glu Ala Lys His Arg
370 375 380

Glu Arg Met Ser Gln Val Met Arg Glu Trp Glu Glu Ala Glu Arg Gln
385 390 395 400

Ala Lys Asn Leu Pro Lys Ala Asp Lys Lys Ala Val Ile Gln His Phe
405 410 415

Gln Glu Lys Val Glu Ser Leu Glu Gln Glu Ala Ala Asn Glu Arg Gln
420 425 430

Gln Leu Val Glu Thr His Met Ala Arg Val Glu Ala Met Leu Asn Asp
435 440 445

Arg Arg Arg Leu Ala Leu Glu Asn Tyr Ile Thr Ala Leu Gln Ala Val
450 455 460

Pro Pro Arg Pro Arg His Val Phe Asn Met Leu Lys Lys Tyr Val Arg
465 470 475 480

Ala Glu Gln Lys Asp Arg Gln His Thr Leu Lys His Phe Glu His Val
485 490 495

Arg Met Val Asp Pro Lys Lys Ala Ala Gln Ile Arg Ser Gln Val Met
500 505 510

Thr His Leu Arg Val Ile Tyr Glu Arg Met Asn Gln Ser Leu Ser Leu
515 520 525

Leu Tyr Asn Val Pro Ala Val Ala Glu Glu Ile Gln Asp Glu Val Asp
530 535 540

Glu Leu Leu Gln Lys Glu Gln Asn Tyr Ser Asp Asp Val Leu Ala Asn
545 550 555 560

Met Ile Ser Glu Pro Arg Ile Ser Tyr Gly Asn Asp Ala Leu Met Pro
565 570 575

Ser Leu Thr Glu Thr Lys Thr Thr Val Glu Leu Leu Pro Val Asn Gly
580 585 590

Glu Phe Ser Leu Asp Asp Leu Gln Pro Trp His Ser Phe Gly Ala Asp
595 600 605

Ser Val Pro Ala Asn Thr Glu Asn Glu Val Glu Pro Val Asp Ala Arg
610 615 620

Pro Ala Ala Asp Arg Gly Leu Thr Thr Arg Pro Gly Ser Gly Leu Thr
625 630 635 640

Asn Ile Lys Thr Glu Glu Ile Ser Glu Val Lys Met Asp Ala Glu Phe
645 650 655

Arg His Asp Ser Gly Tyr Glu Val His His Gln Lys Leu Val Phe Phe
660 665 670

Ala Glu Asp Val Gly Ser Asn Lys Gly Ala Ile Ile Gly Leu Met Val
675 680 685

Gly Gly Val Val Ile Ala Thr Val Ile Val Ile Thr Leu Val Met Leu
690 695 700

Lys Lys Lys Gln Tyr Thr Ser Ile His His Gly Val Val Glu Val Asp
705 710 715 720

Ala Ala Val Thr Pro Glu Glu Arg His Leu Ser Lys Met Gln Gln Asn
725 730 735

Gly Tyr Glu Asn Pro Thr Tyr Lys Phe Phe Glu Gln Met Gln Asn Lys
740 745 750

Lys

<210> 62

<211> 8

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic peptide

<400> 62

Leu Glu Val Leu Phe Gln Gly Pro
1 5

<210> 63

<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 63

Ser Glu Val Asn Leu Asp Ala Glu Phe Arg
1 5 10

<210> 64
<211> 10
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 64

Ser Glu Val Lys Met Asp Ala Glu Phe Arg
1 5 10

<210> 65
<211> 15
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 65

Arg Arg Gly Gly Val Val Ile Ala Thr Val Ile Val Gly Glu Arg
1 5 10 15

<210> 66
<211> 4
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 66

Asn Leu Asp Ala
1

<210> 67
<211> 8
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 67

Glu Val Lys Met Asp Ala Glu Phe
1 5

<210> 68
<211> 5
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 68

Gly Arg Arg Gly Ser
1 5

<210> 69
<211> 6
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 69

Thr Gln His Gly Ile Arg
1 5

<210> 70
<211> 6
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 70

Glu Thr Asp Glu Glu Pro
1 5

<210> 71
<211> 15
<212> PRT
<213> Artificial sequence

<220>
<223> Synthetic peptide

<400> 71

Met Cys Ala Glu Val Lys Met Asp Ala Glu Phe Lys Asp Asn Pro
1 5 10 15

<210> 72

```
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide

<400> 72

Asp Ala Glu Phe Arg
 1           5

<210> 73
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic peptide

<400> 73

Ser Glu Val Asn Leu
 1           5

<210> 74
<211> 4
<212> PRT
<213> Artificial sequence

<220>
<223> Synthesized Peptide

<220>
<221> misc_feature
<222> (1)
<223> Xaa = Lys or Asn

<220>
<221> misc_feature
<222> (2)
<223> Xaa = Met or Leu

<220>
<221> misc_feature
<222> (3)
<223> Xaa = Asp

<220>
<221> misc_feature
<222> (4)
<223> Xaa = Asp

<400> 74
Xaa Xaa Xaa Xaa
1
```