Intrusion Detection

Lesson Introduction

- Part of network defense-in-depth
- System architecture, algorithms, and deployment strategies of Intrusion detection
- Performance metrics
- Attacks on intrusion detection systems

Defense-in-Depth

Intrusion Examples

- Remote root compromise
- Web server defacement
 - Guessing/cracking passwords
 - Copying databases containing credit card numbers

Running a packet sniffer

- Impersonating an executive to get information
- Viewing sensitive data without authorization

- Distributing pirated software
- Using an unsecured modem to access internal network

 Using an unattended workstation

Intrusion Detection Systems (IDS)

Designed to Counter Threats:

Known, less sophisticated attacks
 Sophisticated targeted attacks
 New, Zero-day exploits

Intrusion Detection Systems (IDS)

Defense-In-Depth Strategies include:

- encryption ways of figuring out what's
- detailed audit trails going on
- strong authentication and authorization controls
- active management of operating systems
- application security

Also known as a cyber "kill chain"

Elements of Intrusion Detection

•Primary assumptions:

- •System activities are observable We can tell what's going on.
- Normal and intrusive activities have distinct evidence

Elements of Intrusion Detection

- Components of intrusion detection systems:
 - •From an algorithmic perspective:
 - Features capture intrusion evidences
 - Models piece evidences together
 - From a system architecture perspective:
 - Audit data processor, knowledge base, decision engine, alarm generation and responses

Components of Intrusion Detection Systems

Intrusion Detection Approaches

- Modeling and analysis
 - Misuse detection (a.k.a. signature-based)
 - Anomaly detection
- Deployment
 - Host-based
 - Network-based
- Development and maintenance
 - Hand-coding of "expert knowledge"
 - Learning based on data

Analysis Approaches

Anomaly Detection:

- Involves the collection of data relating to the behavior of legitimate users over a period of time
- •Current observed behavior is analyzed to determine whether this behavior is that of a legitimate user or that of an intruder

Analysis Approaches

Misuse/ Signature Detection

- Uses a set of known malicious data patterns or attack rules that are compared with current behavior
- Also known as misuse detection
- Can only identify known attacks for which it has patterns or rules

A Variety of Classification Approaches

Statistical: Analysis of the observed behavior using univariate, multivariate, or time-series models of observed metrics.

Knowledge Based: Approaches use an expert system that classifies observed behavior according to a set of rules that model legitimate behavior.

Machine Learning: Approaches automatically determine a suitable classification model from the training data using data mining techniques.

A Variety of Classification Approaches

Issues Affecting Performance:

Efficiency

Cost of Detection

Characteristics:

- Use captured sensor data
- Multivariate models using time of and order of the event

Advantages:

- their relative simplicity
- low computation cost
- lack of assumptions about expected behavior

- difficulty selecting suitable metrics
- not all behaviors can be modeled using these approaches.

Knowledge Based Approaches

 Developed during training to characterize data into distinct classes

Advantages:

- Robust
- Flexible

- The difficulty and time required to develop knowledge from the data
- Human experts must assist with the process

Machine Learning Approaches

 Use data mining techniques to develop a model that can classify data as normal or anomalous

Advantages:

- Flexibility
- Adaptability
- Ability to capture interdependencies between observed metrics

- Dependency on assumptions about accepted behavior
- High false alarm rate
- High resource cost
- Significant time and computational resources

Machine Learning Intruder Detection Approaches

- Neural networks: Simulate human brain operation with neurons and synapse between them
- •Clustering and outlier detection: Group the observed data into clusters then identify subsequent data as either belonging to a cluster or as an outlier.

Limitations of Anomaly Detection

They are generally trained on legitimate data

 This limits the effectiveness of some of the techniques discussed.

Misuse or Signature Detection

Detect intrusion by:

- observing events in the system
- applying a set of patterns or rules to the data
- determining if the is intrusive or normal

Signature Approaches

- Match a large collection of known patterns of malicious data against data stored on a system or in transit over a network
- The signatures need to be large enough to minimize the false alarm rate, while still detecting a sufficiently large fraction of malicious data
- Widely used in anti-virus products, network traffic scanning proxies, and in NIDS

Signature Approach Advantages & Disadvantages

Advantages:

- Low cost in time and resource use
- Wide Acceptance

- Significant effort to identify and review new malware to create signatures
- inability to detect zero-day attacks

Rule-Based Detection

 Involves the use of rules for identifying known penetrations or penetrations that would exploit known weaknesses

- Rules can also be defined that identify suspicious behavior
- Typically rules used are specific
- SNORT is an example of a rule-based NIDS

Misuse Signature Intruder Detection

Example: if (src_ip == dst_ip && src_prt == dst_prt) then "land attack" Hundreds of thousands of rules list. The application will loop over all the rules.

Can't detect new attacks

Monitoring Networks and Hosts

An IDS performs passive monitoring:

- It records and analyzes data about system and network activity
- If the IDS sends out an alert AND the response policy dictates intervention, then activities are affected

Network Based IDS (NIDS)

- Monitors traffic at selected points on a network in real or close to real time
- May examine network, transport, and/or application-level protocol activity
- Comprised of a number of sensors, one or more servers for NIDS management functions, and one or more management consoles for the human interface
- Analysis of traffic patterns may be done at the sensor, the management server or a combination of the two

Inline Sensors

Can be achieved by:

- Combining NIDS sensor logic with a firewall or LAN switch. This has the advantage of no additional hardware is needed
- Using a stand-alone inline NIDS sensor

Passive Sensors

- A passive sensor monitors a copy of network traffic; the actual traffic does not pass through the device
- Passive sensors are more efficient

Passive Sensors

Network traffic

Firewall Versus Network IDS

Firewall

- Active filtering
- Fail-close

Network IDS

- Passive monitoring
- Fail-open

NIDS Sensor Deployment

Honeypots

Honeypots are decoy systems designed to lure attackers away from critical systems.

Honeypots are designed to:

- divert an attacker
- collect information about an attacker
- encourage an attacker to stay long enough for administrators to respond

Honeypots

- Honeypots are filled with fabricated information
- Any accesses to a honeypot trigger monitors and event loggers
- An attack against a honeypot is made to seem successful

Honeypots

- There is no legitimate reason to access a honeypot
- Any attempt to communicate with a honeypot is most likely a probe, scan, or attack
- •If a honeypot initiates outbound traffic, the system is most likely compromised

Honeypot Classification

•Low interaction honeypot:

- Emulates particular IT services or systems well enough to provide a realistic initial interaction, but does not execute a full version of those services or systems
- Provides a less realistic target
- Often sufficient for use as a component of a distributed IDS to warn of imminent attack

Honeypot Classification

- A real system, with a full operating system, services and applications, which are instrumented and deployed where they can be accessed by attackers
- More realistic target that may occupy an attacker for an extended period
- However, it requires significantly more resources

Honeypot Deployment

Evaluating IDS

Detection rate or True Positive(TP) rate:

given that there is an intrusion, how likely will the IDS correct output an alert.

False Negative Rate: FN = 1 - TP

Evaluating IDS

False alarm or False Positive (FP) rate:

given that there is no intrusion, how likely is the IDS to falsely output an alert.

True Negative Rate: TN = 1 - FP

Evaluating IDS

Bayesian detection rate: given that the IDS produces an alert, how likely is it that an intrusion actually occurs?

Architecture of Network IDS

- Packet data volume can be huge
- Base rate at the packet level is typically low
- Applying detection algorithms at this level may result in a low bayesian detection rate

Architecture of Network IDS

Eluding Network IDS

- What the IDS sees may not be what the end system gets
 - Ambiguities in protocols lead different implementations in operating systems:
 - ●E.G. TTL, fragments

DoS Attacks on Network IDS

- Resource exhaustion
 - •CPU resources
 - Memory
 - Network bandwidth
- Abusing reactive IDS
 - False positives
 - Nuisance attacks or "error" packets/connections

Intrusion Prevention Systems (IPS)

- Also known as Intrusion Detection and Prevention System (IDPS)
- Is an extension of an IDS that includes the capability to attempt to block or prevent detected malicious activity
- Can be host-based, network-based, or distributed/hybrid
- Can use anomaly detection to identify behavior that is not that of legitimate users, or signature/heuristic detection to identify known malicious behavior can block traffic as a firewall does, but makes use of the types of algorithms developed for IDSs to determine when to do so

making a system looks more secure and stronger, to discourage the attacker

Intrusion Detection

Lesson Summary

- Anomaly detection and misuse/signature detection
- Network IDS, IPS, and honeypots
- True positive, false positive, and the base-rate fallacy