

<u>Help</u>

sandipan_dey >

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Calendar</u> <u>Discussion</u> <u>Notes</u>

☆ Course / Unit 4: Matrices and Linearization / Lecture 14: Solving Linear Systems

✓ Previous

 □ ✓ □ ✓ □ ✓ □ ✓ □ Next >

4. Practice elimination

☐ Bookmark this page

Lecture due Sep 15, 2021 20:30 IST

Practice

Practice elimination 1

7/7 points (graded)

Goal: Find
$$ec{x} = \left(egin{array}{c} x_1 \\ x_2 \end{array}
ight)$$
 such that

$$(1) x_1 + 2x_2 = 1$$

$$egin{array}{lll} (1) \; x_1 \, + \, 2 x_2 \; = 1 \ (2) \; x_1 \, - \; \; x_2 \; = 7 \end{array}$$

What equation is obtained by adding equations (1) and (2)? Let this equation be $ax_1+bx_2=c$. Fill in the blanks:

$$a = \boxed{2}$$
 Answer: 2

What equation is obtained by adding two of equation (2) to equation (1)? Let this equation be $ax_1+bx_2=c$. Fill in the blanks:

Now solve the problem.

(Enter a vector using notation such as [a,b].)

The unknown
$$\vec{x} = \boxed{ [5,-2] }$$

? INPUT HELP

Solution:

Adding equations (1) and (2) results in $2x_1 + x_2 = 8$. This equation is not helpful for elimination.

But adding two of equation (2) to equation (1) results in $3x_1=15$, which tells us the value of x_1 is 5.

Substituting $x_1=5$ into the second equation gives $5-x_2=7$ from which we obtain $x_2=-2$. So the answer is $ec{x} = inom{5}{-2}$. One can also substitute back into equation (1).

Submit

You have used 2 of 3 attempts

1 Answers are displayed within the problem

Practice elimination 2

4/4 points (graded)

Goal: Find
$$ec{x} = \left(egin{matrix} x_1 \ x_2 \end{array}
ight)$$
 such that

$$(1) \ 3x_1 - 3x_2 = 6$$

$$(2) \ 2x_1 + \ x_2 = 4$$

We start by eliminating x_2 because it will make the algebra easier. What constant multiple of equation (2) can be added to (1) in order to eliminate x_2 ?

Let the equation obtained by adding the above multiple of equation (2) to equation (1) be $ax_1=b$. Fill in the blanks:

Now solve the problem.

(Enter a vector using notation such as [a,b].)

The unknown
$$\vec{x} =$$
 [2,0] \checkmark Answer: [2,0]

? INPUT HELP

Solution:

Since there is a $-3x_2$ in equation (1), and a x_2 in equation (2), we need to add three of equation (2) to equation (1) to make the coefficient on x_2 equal 0.

The resulting equation is $9x_1 = 18$.

From this we see that $x_1=2$, and substituting into equation (1) we can solve to get $x_2=0$.

Submit

You have used 1 of 3 attempts

Answers are displayed within the problem

Practice elimination 3

1/1 point (graded)

Let
$$A=egin{pmatrix} 3 & -1 \ 2 & 1 \end{pmatrix}$$
 . Find $ec{x}$ such that $Aec{x}=egin{pmatrix} 7 \ 8 \end{pmatrix}$.

(Enter a vector using notation such as [a,b].)

$$\vec{x} =$$
 [3,2] \checkmark Answer: [3,2]

? INPUT HELP

Solution:

The system of equations is

$$3x_1 - x_2 = 7 (5.60)$$

$$2x_1 + x_2 = 8 (5.61)$$

Adding both equations together gives

$$5x_1 = 15. (5.62)$$

Thus $x_1=3$. Substituting into either equation and solving, we obtain $x_2=2$.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

4. Practice elimination

Topic: Unit 4: Matrices and Linearization / 4. Practice elimination

Add a Post

Hide Discussion

Show all posts by recent activity 🗸 There are no posts in this topic yet.

Previous

Next >

© All Rights Reserved

edX

About Affiliates edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>