

Artificial Intelligence

Raul Rojas and Christoph Benzmüller

Freie Universität Berlin

Lecture Course, SS 2015

First-order Logic: Unification

Substitution

Substitution:

- replacement of a variable by a (possibly complex) term
- ightharpoonup substitutions are functions σ that operate on variables, terms and formulas; instead of $\sigma(t)$ we will write $t\sigma$

Definition — Substitution

A substitution is a mapping σ : Variables \longrightarrow Terms from variables to terms.

Substitution

Substitution:

- replacement of a variable by a (possibly complex) term
- ightharpoonup substitutions are functions σ that operate on variables, terms and formulas; instead of $\sigma(t)$ we will write $t\sigma$

Definition — Substitution

1

A *substitution* is a mapping $\sigma: Variables \longrightarrow Terms$ from variables to terms.

Definition — Substitution lifted to Terms

2

Let σ be a substitution. We define:

- ▶ If c is a constant symbol, then $c\sigma = c$
- ▶ $[f(t_1,...,t_n)]\sigma = f(t_1\sigma,...,t_n\sigma)$ for any $f \in \mathbf{F}$ and $t_1,...,t_n \in \mathbf{T}$

Definition — Composition of Substitutions

3

Let σ and τ be substitutions. By the *composition* of σ and τ , denoted $\sigma\tau$, we mean that substitution such that for each variable x we have $x(\sigma\tau)=(x\sigma)\tau$.

Proposition — Substitution

4

For every term t we have: $t(\sigma\tau) = (t\sigma)\tau$

Proof: By structural induction on t

Proposition — Associativity

on 5

Proof: Let $v \in V$.

$$v(\sigma_1\sigma_2)\sigma_3 = [v(\sigma_1\sigma_2)]\sigma_3 = [(v\sigma_1)\sigma_2]\sigma_3 = (v\sigma_1)(\sigma_2\sigma_3) = v\sigma_1(\sigma_2\sigma_3)$$

Definition — Composition of Substitutions

3

Let σ and τ be substitutions. By the *composition* of σ and τ , denoted $\sigma\tau$, we mean that substitution such that for each variable x we have $x(\sigma\tau)=(x\sigma)\tau$.

Proposition — Substitution

4

For every term t we have: $t(\sigma \tau) = (t\sigma)\tau$

Proof: By structural induction on *t*

Proposition — Associativity of Substitution Composition 5 $(\sigma_1\sigma_2)\sigma_3 = \sigma_1(\sigma_2\sigma_3)$

Proof: Let $v \in V$.

$$v(\sigma_1\sigma_2)\sigma_3 = [v(\sigma_1\sigma_2)]\sigma_3 = [(v\sigma_1)\sigma_2]\sigma_3 = (v\sigma_1)(\sigma_2\sigma_3) = v\sigma_1(\sigma_2\sigma_3)$$

Definition — Composition of Substitutions

3

Let σ and τ be substitutions. By the *composition* of σ and τ , denoted $\sigma\tau$, we mean that substitution such that for each variable x we have $x(\sigma\tau)=(x\sigma)\tau$.

Proposition — Substitution

4

For every term t we have: $t(\sigma \tau) = (t\sigma)\tau$

Proof: By structural induction on t

Proposition — Associativity of Substitution Composition

5

 $(\sigma_1\sigma_2)\sigma_3=\sigma_1(\sigma_2\sigma_3)$

Proof: Let $v \in V$.

$$v(\sigma_1\sigma_2)\sigma_3 = [v(\sigma_1\sigma_2)]\sigma_3 = [(v\sigma_1)\sigma_2]\sigma_3 = (v\sigma_1)(\sigma_2\sigma_3) = v\sigma_1(\sigma_2\sigma_3)$$

6

The *support* of a substitution σ is the set of variables x for which $x\sigma \neq x$. A substitution has a *finite support* if its support set is finite.

Proposition

7

The composition of two substitutions with a finite support has again a finite support.

Proof: trivia

Remark: We are typically interested in substitutions with finite support.

Notation: Let $\{x_1,\ldots,x_n\}$ be the finite support of substitution σ Moreover, assume that $x_i\sigma=t_i$ (for $1\leq i\leq n$). Then, our notation for σ is: $\{x_1/t_1,\ldots,x_n/t_n\}$.

6

The *support* of a substitution σ is the set of variables x for which $x\sigma \neq x$. A substitution has a *finite support* if its support set is finite.

Proposition

7

The composition of two substitutions with a finite support has again a finite support.

Proof: trivial

Remark: We are typically interested in substitutions with finite support.

Notation: Let $\{x_1, \ldots, x_n\}$ be the finite support of substitution σ . Moreover, assume that $x_i\sigma=t_i$ (for $1\leq i\leq n$). Then, our notation for σ is: $\{x_1/t_1, \ldots, x_n/t_n\}$.

6

The *support* of a substitution σ is the set of variables x for which $x\sigma \neq x$. A substitution has a *finite support* if its support set is finite.

Proposition

7

The composition of two substitutions with a finite support has again a finite support.

Proof: trivial

Remark: We are typically interested in substitutions with finite support.

Notation: Let $\{x_1,\ldots,x_n\}$ be the finite support of substitution σ Moreover, assume that $x_i\sigma=t_i$ (for $1\leq i\leq n$). Then, our notation for σ is: $\{x_1/t_1,\ldots,x_n/t_n\}$.

6

The *support* of a substitution σ is the set of variables x for which $x\sigma \neq x$. A substitution has a *finite support* if its support set is finite.

Proposition

7

The composition of two substitutions with a finite support has again a finite support.

Proof: trivial

Remark: We are typically interested in substitutions with finite support.

Notation: Let $\{x_1, \ldots, x_n\}$ be the finite support of substitution σ . Moreover, assume that $x_i\sigma=t_i$ (for $1\leq i\leq n$). Then, our notation for σ is: $\{x_1/t_1, \ldots, x_n/t_n\}$.

Proposition

8

Let $\sigma_1 = \{x_1/t_1, \dots, x_n/t_n\}$ and $\sigma_2 = \{y_1/u_1, \dots, y_k/u_k\}$ be substitutions with finite support. The composition $\sigma_1\sigma_2$ has notation $\{x_1/(t_1\sigma_2), \dots, x_n/(t_n\sigma_2), z_1/(z_1\sigma_2), \dots, z_m/(z_m\sigma_2)\}$, where z_1, \ldots, z_m are those variables y_i that are not amongst the x_i . (Trivial entries x/x are always deleted).

$$\sigma_1 = \{x/f(x,y), y/h(a), z/g(c, h(x))\}\$$

$$\sigma_2 = \{x/b, y/g(a, x), w/z\}\$$

Proposition

8

Let $\sigma_1 = \{x_1/t_1, \ldots, x_n/t_n\}$ and $\sigma_2 = \{y_1/u_1, \ldots, y_k/u_k\}$ be substitutions with finite support. The composition $\sigma_1\sigma_2$ has notation $\{x_1/(t_1\sigma_2), \ldots, x_n/(t_n\sigma_2), z_1/(z_1\sigma_2), \ldots, z_m/(z_m\sigma_2)\}$, where z_1, \ldots, z_m are those variables y_i that are not amongst the x_j . (Trivial entries x/x are always deleted).

Example — Substitution

9

$$\sigma_1 = \{x/f(x,y), y/h(a), z/g(c,h(x))\}$$

$$\sigma_2 = \{x/b, y/g(a,x), w/z\}$$

Exercise

...implement substitutions and substitution composition yourself

Proposition

8

Let $\sigma_1 = \{x_1/t_1, \dots, x_n/t_n\}$ and $\sigma_2 = \{y_1/u_1, \dots, y_k/u_k\}$ be substitutions with finite support. The composition $\sigma_1\sigma_2$ has notation $\{x_1/(t_1\sigma_2), \dots, x_n/(t_n\sigma_2), z_1/(z_1\sigma_2), \dots, z_m/(z_m\sigma_2)\}$, where z_1, \dots, z_m are those variables y_i that are not amongst the x_j . (Trivial entries x/x are always deleted).

Example — Substitution

9

$$\sigma_1 = \{x/f(x,y), y/h(a), z/g(c,h(x))\}$$

$$\sigma_2 = \{x/b, y/g(a,x), w/z\}$$

Exercise:

...implement substitutions and substitution composition yourself

- Given two terms t_1 and t_2 of language; both terms may have free variable occurrences, let's say the free variables of t_1 are u_1, \ldots, u_n and the free variables of t_2 are v_1, \ldots, v_m .
- ▶ Can we instantiate u_1, \ldots, u_n and v_1, \ldots, v_m with terms in such a way that t_1 and t_2 become (syntactically) equal.
- ▶ Papers on unification:
 - Jacques Herbrand, Investigations in proof theory, 1930. (For an overview on Herbrand's work see: C.P. Wirth, J. Siekmann, C. Benzieller, and S. Autexier, Jacques Herbrand: Life, Logic,
 - and Automated Deduction. Handbook of the History of Logico Volume 5, 2009.)
 - J. A. Robinson, A machine-oriented logic based on the resolution principle, Journal of the ACM 12, 1965.
 - H.Baader and J.Siekmann. Unification theory, Handbook of Logic in Artificial Intelligence and Logic Programming, 1994
 - F.Baader and W.Snyder, Unification theory, Handbook of Automated Reasoning, 2001.

- ▶ Given two terms t_1 and t_2 of language; both terms may have free variable occurrences, let's say the free variables of t_1 are u_1, \ldots, u_n and the free variables of t_2 are v_1, \ldots, v_m .
- ▶ Can we instantiate $u_1, ..., u_n$ and $v_1, ..., v_m$ with terms in such a way that t_1 and t_2 become (syntactically) equal.
- ▶ Papers on unification:
 - Jacques Herbrand, Investigations in proof theory, 1930. (For an overview on Herbrand's work see: C.P. Wirth, J. Siekmann, C. Benzmüller, and S. Autexier, Jacques Herbrand: Life, Logic,
 - and Automated Deduction. Handbook of the History of Logicoval Volume 5, 2009.)
 - resolution principle, Journal of the ACM 12, 1965.
 - F.Baader and J.Siekmann. Unification theory, Handbook of Logic in Artificial Intelligence and Logic Programming, 1994
 - F.Baader and W.Snyder, Unification theory, Handbook of Automated Reasoning, 2001.

- Given two terms t_1 and t_2 of language; both terms may have free variable occurrences, let's say the free variables of t_1 are u_1, \ldots, u_n and the free variables of t_2 are v_1, \ldots, v_m .
- ▶ Can we instantiate $u_1, ..., u_n$ and $v_1, ..., v_m$ with terms in such a way that t_1 and t_2 become (syntactically) equal.
- Papers on unification:
 - Jacques Herbrand, Investigations in proof theory, 1930. (For an overview on Herbrand's work see: C.P. Wirth, J. Siekmann, C. Benzmüller, and S. Autexier, Jacques Herbrand: Life, Logic, and Automated Deduction. Handbook of the History of Logic, Volume 5, 2009.)
 - ▶ J. A. Robinson, A machine-oriented logic based on the resolution principle, Journal of the ACM 12, 1965.
 - F.Baader and J.Siekmann. Unification theory, Handbook of Logic in Artificial Intelligence and Logic Programming, 1994.
 - ► F.Baader and W.Snyder, Unification theory, Handbook of Automated Reasoning, 2001.

- ▶ Given two terms t_1 and t_2 of language; both terms may have free variable occurrences, let's say the free variables of t_1 are u_1, \ldots, u_n and the free variables of t_2 are v_1, \ldots, v_m .
- ▶ Can we instantiate $u_1, ..., u_n$ and $v_1, ..., v_m$ with terms in such a way that t_1 and t_2 become (syntactically) equal.
- ▶ Papers on unification:
 - Jacques Herbrand, Investigations in proof theory, 1930. (For an overview on Herbrand's work see: C.P. Wirth, J. Siekmann, C. Benzmüller, and S. Autexier, Jacques Herbrand: Life, Logic, and Automated Deduction. Handbook of the History of Logic, Volume 5, 2009.)
 - ▶ J. A. Robinson, A machine-oriented logic based on the resolution principle, Journal of the ACM 12, 1965.
 - F.Baader and J.Siekmann. Unification theory, Handbook of Logic in Artificial Intelligence and Logic Programming, 1994.
 - ► F.Baader and W.Snyder, Unification theory, Handbook of Automated Reasoning, 2001.

- Given two terms t_1 and t_2 of language; both terms may have free variable occurrences, let's say the free variables of t_1 are u_1, \ldots, u_n and the free variables of t_2 are v_1, \ldots, v_m .
- ▶ Can we instantiate $u_1, ..., u_n$ and $v_1, ..., v_m$ with terms in such a way that t_1 and t_2 become (syntactically) equal.
- Papers on unification:
 - ▶ Jacques Herbrand, Investigations in proof theory, 1930. (For an overview on Herbrand's work see: C.P. Wirth, J. Siekmann, C. Benzmüller, and S. Autexier, Jacques Herbrand: Life, Logic, and Automated Deduction. Handbook of the History of Logic, Volume 5, 2009.)
 - ▶ J. A. Robinson, A machine-oriented logic based on the resolution principle, Journal of the ACM 12, 1965.
 - F.Baader and J.Siekmann. Unification theory, Handbook of Logic in Artificial Intelligence and Logic Programming, 1994.
 - ► F.Baader and W.Snyder, Unification theory, Handbook of Automated Reasoning, 2001.

- Given two terms t_1 and t_2 of language; both terms may have free variable occurrences, let's say the free variables of t_1 are u_1, \ldots, u_n and the free variables of t_2 are v_1, \ldots, v_m .
- ▶ Can we instantiate $u_1, ..., u_n$ and $v_1, ..., v_m$ with terms in such a way that t_1 and t_2 become (syntactically) equal.
- Papers on unification:
 - ▶ Jacques Herbrand, Investigations in proof theory, 1930. (For an overview on Herbrand's work see: C.P. Wirth, J. Siekmann, C. Benzmüller, and S. Autexier, Jacques Herbrand: Life, Logic, and Automated Deduction. Handbook of the History of Logic, Volume 5, 2009.)
 - ▶ J. A. Robinson, A machine-oriented logic based on the resolution principle, Journal of the ACM 12, 1965.
 - F.Baader and J.Siekmann. Unification theory, Handbook of Logic in Artificial Intelligence and Logic Programming, 1994.
 - ► F.Baader and W.Snyder, Unification theory, Handbook of Automated Reasoning, 2001.

- Given two terms t_1 and t_2 of language; both terms may have free variable occurrences, let's say the free variables of t_1 are u_1, \ldots, u_n and the free variables of t_2 are v_1, \ldots, v_m .
- ▶ Can we instantiate $u_1, ..., u_n$ and $v_1, ..., v_m$ with terms in such a way that t_1 and t_2 become (syntactically) equal.
- Papers on unification:
 - ▶ Jacques Herbrand, Investigations in proof theory, 1930. (For an overview on Herbrand's work see: C.P. Wirth, J. Siekmann, C. Benzmüller, and S. Autexier, Jacques Herbrand: Life, Logic, and Automated Deduction. Handbook of the History of Logic, Volume 5, 2009.)
 - ▶ J. A. Robinson, A machine-oriented logic based on the resolution principle, Journal of the ACM 12, 1965.
 - F.Baader and J.Siekmann. Unification theory, Handbook of Logic in Artificial Intelligence and Logic Programming, 1994.
 - ► F.Baader and W.Snyder, Unification theory, Handbook of Automated Reasoning, 2001.

Definition — More General Substitution

10

Let σ_1 and σ_2 be substitutions. We say σ_2 is more general than σ_1 if, for some substitution τ , $\sigma_1 = \sigma_2 \tau$.

Example

11

- 1. Show that $\sigma_2 = \{x/f(g(x,y)), y/g(z,b)\}$ is more general than $\sigma_1 = \{x/f(g(a,h(z))), y/g(h(x),b), x/h(x)\}$.
- **2.** Is σ_1 more general than σ_1 ?

Definition — More General Substitution

10

Let σ_1 and σ_2 be substitutions. We say σ_2 is more general than σ_1 if, for some substitution τ , $\sigma_1 = \sigma_2 \tau$.

Example

11

- 1. Show that $\sigma_2 = \{x/f(g(x,y)), y/g(z,b)\}$ is more general than $\sigma_1 = \{x/f(g(a,h(z))), y/g(h(x),b), x/h(x)\}$.
- **2.** Is σ_1 more general than σ_1 ?

12

If σ_3 is more general than σ_2 and σ_2 is more general than σ_1 , then σ_3 is more general than σ_1 .

Proof: We know $\sigma_1 = \sigma_2 \tau$ and $\sigma_2 = \sigma_3 \theta$. But then $\sigma_1 = \sigma_2 \tau = (\sigma_3 \theta) \tau = \sigma_3 (\theta \tau)$.

Definition — Unifier/Most General Unifier (MGU)

12

If σ_3 is more general than σ_2 and σ_2 is more general than σ_1 , then σ_3 is more general than σ_1 .

Proof: We know $\sigma_1 = \sigma_2 \tau$ and $\sigma_2 = \sigma_3 \theta$.

But then $\sigma_1 = \sigma_2 \tau = (\sigma_3 \theta) \tau = \sigma_3 (\theta \tau)$.

Definition — Unifier/Most General Unifier (MGU)

13

12

If σ_3 is more general than σ_2 and σ_2 is more general than σ_1 , then σ_3 is more general than σ_1 .

Proof: We know $\sigma_1 = \sigma_2 \tau$ and $\sigma_2 = \sigma_3 \theta$. But then $\sigma_1 = \sigma_2 \tau = (\sigma_3 \theta) \tau = \sigma_3 (\theta \tau)$.

Definition — Unifier/Most General Unifier (MGU)

LJ

12

If σ_3 is more general than σ_2 and σ_2 is more general than σ_1 , then σ_3 is more general than σ_1 .

Proof: We know $\sigma_1 = \sigma_2 \tau$ and $\sigma_2 = \sigma_3 \theta$. But then $\sigma_1 = \sigma_2 \tau = (\sigma_3 \theta) \tau = \sigma_3 (\theta \tau)$.

Definition — Unifier/Most General Unifier (MGU)

13

Example

14

- f(y, h(a)) and f(h(x), h(z)) unifiable with
 - 1. $\{y/h(x), z/a\}$.
 - **2.** $\{x/k(w), y/h(k(w)), z/a\}.$

Which one is more general?

Note: Technically, two terms t_1 and t_2 may have more than just one most general unifier (consider g(x,x) and g(y,z)), but if so then they are the same up to a variable renaming.

Example 14

f(y, h(a)) and f(h(x), h(z)) unifiable with

- 1. $\{y/h(x), z/a\}$.
- **2.** $\{x/k(w), y/h(k(w)), z/a\}.$

Which one is more general?

Note: Technically, two terms t_1 and t_2 may have more than just one most general unifier (consider g(x,x) and g(y,z)), but if so then they are the same up to a variable renaming.

Definition — Variable Renaming

15

A substitution η is a *variable renaming* for a set V of variables if

- **1.** For each $x \in V$, $x\eta$ is a variable.
- **2.** For $x, y \in V$ with $x \neq y$, $x\eta$ and $y\eta$ are distinct.

Definition — Variable Range

L6

The *variable range* for a substitution σ is the set of variables that occur in terms of the forms $x\sigma$, where x is a variable.

Proposition — Most General Unifiers

17

Suppose both σ_1 and σ_2 are most general unifiers of t_1 and t_2 . Then there is a variable renaming η for the variable range of σ such that $\sigma_1 \eta = \sigma_2$.

Proof: ... straightforward, not here ...

Definition — Variable Renaming

15

A substitution η is a *variable renaming* for a set V of variables if

- **1.** For each $x \in V$, $x\eta$ is a variable.
- **2.** For $x, y \in V$ with $x \neq y$, $x\eta$ and $y\eta$ are distinct.

Definition — Variable Range

16

The *variable range* for a substitution σ is the set of variables that occur in terms of the forms $x\sigma$, where x is a variable.

Proposition — Most General Unifiers

17

Suppose both σ_1 and σ_2 are most general unifiers of t_1 and t_2 . Then there is a variable renaming η for the variable range of σ such that $\sigma_1 \eta = \sigma_2$.

Proof: ... straightforward, not here ...

Definition — Variable Renaming

15

A substitution η is a *variable renaming* for a set V of variables if

- **1.** For each $x \in V$, $x\eta$ is a variable.
- **2.** For $x, y \in V$ with $x \neq y$, $x\eta$ and $y\eta$ are distinct.

Definition — Variable Range

16

The *variable range* for a substitution σ is the set of variables that occur in terms of the forms $x\sigma$, where x is a variable.

Proposition — Most General Unifiers

17

Suppose both σ_1 and σ_2 are most general unifiers of t_1 and t_2 . Then there is a variable renaming η for the variable range of σ such that $\sigma_1 \eta = \sigma_2$.

Proof: . . . straightforward, not here . . .

Unification (Robinson)

Augmented Tree Representation for: f(g(x, y, h(a, k(b)))).

Allows us to talk about paths trough a term, e.g. $\langle f,0\rangle,\langle g,1\rangle,\langle h,3\rangle,\langle k,2\rangle$

Definition — Disagreement Pair

18

A disagreement pair for terms t_1 and t_2 is a pair of terms $[d_1, d_2]$, such that

- ▶ d_1 is a subterm of t_1 and d_2 is a subterm of t_2 , and
- ▶ thinking of terms as augmented trees, d_1 and d_2 have distinct labels at their roots,
- while the path from the root of t_1 down to the root of d_1 and the path from the root of t_2 down to the root of d_2 are the same.

Definition — Disagreement Pair

18

A disagreement pair for terms t_1 and t_2 is a pair of terms $[d_1, d_2]$, such that

- ▶ d_1 is a subterm of t_1 and d_2 is a subterm of t_2 , and
- ▶ thinking of terms as augmented trees, d_1 and d_2 have distinct labels at their roots,
- while the path from the root of t_1 down to the root of d_1 and the path from the root of t_2 down to the root of d_2 are the same.

Definition — Disagreement Pair

18

A disagreement pair for terms t_1 and t_2 is a pair of terms $[d_1, d_2]$, such that

- ▶ d_1 is a subterm of t_1 and d_2 is a subterm of t_2 , and
- ▶ thinking of terms as augmented trees, d_1 and d_2 have distinct labels at their roots,
- while the path from the root of t_1 down to the root of d_1 and the path from the root of t_2 down to the root of d_2 are the same.

Disagreement Pair for terms

$$f(g(x, y, h(a, k(b))))$$
 and $f(g(x, y, h(a, l(k(y)))))$.

Unification Algorithm (Robinson)

```
Let \sigma := \epsilon;
While t_1\sigma \neq t_2\sigma do
  begin
  choose a disagreement pair [d_1, d_2] for t_1\sigma and t_2\sigma;
  if neither d_1 nor d_2 is a variable then FAIL;
  let x be whichever of d_1 and d_2 is a variable
     (if both are, choose one)
     and let t be the other one of d_1, d_2;
  if x occurs in t then FAIL;
  let \sigma := \sigma\{x/t\};
  end.
```


Theorem — Unification Theorem

19

Given two terms t_1 and t_2 .

- ▶ If t_1 and t_2 are not unifiable, then the Unification Algorithm will FAIL.
- ▶ If t_1 and t_2 are unifiable, then the Unification Algorithm will terminate without FAILure and the final value of σ will be a most general unifier of t_1 and t_2 .

Proof: ... not here ...

Definition — Idempotent Substitution

20

A substitution σ is called *idempotent* if $\sigma = \sigma \sigma$

Corollary

21

Theorem — Unification Theorem

19

Given two terms t_1 and t_2 .

- ▶ If t_1 and t_2 are not unifiable, then the Unification Algorithm will FAIL.
- ▶ If t_1 and t_2 are unifiable, then the Unification Algorithm will terminate without FAILure and the final value of σ will be a most general unifier of t_1 and t_2 .

Proof: ... not here ...

Definition — Idempotent Substitution

20

A substitution σ is called *idempotent* if $\sigma = \sigma \sigma$

Corollary

21

Theorem — Unification Theorem

19

Given two terms t_1 and t_2 .

- ▶ If t_1 and t_2 are not unifiable, then the Unification Algorithm will FAIL.
- ▶ If t_1 and t_2 are unifiable, then the Unification Algorithm will terminate without FAILure and the final value of σ will be a most general unifier of t_1 and t_2 .

Proof: ... not here ...

Definition — Idempotent Substitution

20

A substitution σ is called *idempotent* if $\sigma = \sigma \sigma$

Corollary

21

Theorem — Unification Theorem

19

Given two terms t_1 and t_2 .

- ▶ If t₁ and t₂ are not unifiable, then the Unification Algorithm will FAIL.
- ▶ If t_1 and t_2 are unifiable, then the Unification Algorithm will terminate without FAILure and the final value of σ will be a most general unifier of t_1 and t_2 .

Proof: ... not here ...

Definition — **Idempotent Substitution**

20

A substitution σ is called *idempotent* if $\sigma = \sigma \sigma$

Corollary

21

Idempotent most general unifiers have some nice features, e.g.:

Proposition 22

Suppose σ is an idempotent most general unifier for t_1 and t_2 , and τ is any unifier. Then $\tau=\sigma\tau$.

Multiple Unification as a sequence of binary unifications:

Given: set of terms $\{t_0, t_1, t_2, \dots, t_n\}$

Unifier: substitution σ such that $t_0\sigma=t_1\sigma=t_2\sigma=\ldots=t_n\sigma$ Most general unifier: one that is more general than any other unifier

Suppose $\{t_0, t_1, t_2, \dots, t_n\}$ has a unifier. Then the computation of a most general unifier for this set of terms can be reduced to a sequence of binary unification problems as follows:

- σ_1 : idempotent most general unifier of t_o and t_1
- σ_2 : idempotent most general unifier of $t_o\sigma_1$ and $t_2\sigma_1$
- σ_3 : idempotent most general unifier of $t_o\sigma_2$ and $t_3\sigma_2$

. . .

- σ_n : idempotent most general unifier of $t_o\sigma_{n-1}$ and $t_n\sigma_{n-1}$

Multiple Unification as a sequence of binary unifications:

Given: set of terms $\{t_0, t_1, t_2, \dots, t_n\}$

Unifier: substitution σ such that $t_0\sigma=t_1\sigma=t_2\sigma=\ldots=t_n\sigma$ Most general unifier: one that is more general than any other unifier

Suppose $\{t_0, t_1, t_2, \dots, t_n\}$ has a unifier. Then the computation of a most general unifier for this set of terms can be reduced to a sequence of binary unification problems as follows:

- σ_1 : idempotent most general unifier of t_o and t_1
- σ_2 : idempotent most general unifier of $t_o\sigma_1$ and $t_2\sigma_1$
- σ_3 : idempotent most general unifier of $t_o\sigma_2$ and $t_3\sigma_2$

. . .

 σ_n : idempotent most general unifier of $t_o\sigma_{n-1}$ and $t_n\sigma_{n-1}$

Multiple Unification as a sequence of binary unifications:

Given: set of terms $\{t_0, t_1, t_2, \dots, t_n\}$

Unifier: substitution σ such that $t_0\sigma=t_1\sigma=t_2\sigma=\ldots=t_n\sigma$ Most general unifier: one that is more general than any other unifier

Suppose $\{t_0, t_1, t_2, \dots, t_n\}$ has a unifier. Then the computation of a most general unifier for this set of terms can be reduced to a sequence of binary unification problems as follows:

- σ_1 : idempotent most general unifier of t_o and t_1
- σ_2 : idempotent most general unifier of $t_o\sigma_1$ and $t_2\sigma_1$
- σ_3 : idempotent most general unifier of $t_0\sigma_2$ and $t_3\sigma_2$

- σ_n : idempotent most general unifier of $t_0\sigma_{n-1}$ and $t_n\sigma_{n-1}$

Multiple Unification as a sequence of binary unifications:

Given: set of terms $\{t_0, t_1, t_2, \dots, t_n\}$

Unifier: substitution σ such that $t_0\sigma=t_1\sigma=t_2\sigma=\ldots=t_n\sigma$ Most general unifier: one that is more general than any other unifier

Suppose $\{t_0, t_1, t_2, \dots, t_n\}$ has a unifier. Then the computation of a most general unifier for this set of terms can be reduced to a sequence of binary unification problems as follows:

- σ_1 : idempotent most general unifier of t_o and t_1
- σ_2 : idempotent most general unifier of $t_o\sigma_1$ and $t_2\sigma_1$
- σ_3 : idempotent most general unifier of $t_o\sigma_2$ and $t_3\sigma_2$...
- σ_n : idempotent most general unifier of $t_o \sigma_{n-1}$ and $t_n \sigma_{n-1}$

Multiple Unification as a sequence of binary unifications:

Given: set of terms $\{t_0, t_1, t_2, \dots, t_n\}$

Unifier: substitution σ such that $t_0\sigma=t_1\sigma=t_2\sigma=\ldots=t_n\sigma$ Most general unifier: one that is more general than any other unifier

Suppose $\{t_0, t_1, t_2, \dots, t_n\}$ has a unifier. Then the computation of a most general unifier for this set of terms can be reduced to a sequence of binary unification problems as follows:

- σ_1 : idempotent most general unifier of t_o and t_1
- σ_2 : idempotent most general unifier of $t_o\sigma_1$ and $t_2\sigma_1$
- σ_3 : idempotent most general unifier of $t_o\sigma_2$ and $t_3\sigma_2$

. . .

- σ_n : idempotent most general unifier of $t_o \sigma_{n-1}$ and $t_n \sigma_{n-1}$

Multiple Unification as a sequence of binary unifications:

Given: set of terms $\{t_0, t_1, t_2, \dots, t_n\}$

Unifier: substitution σ such that $t_0\sigma=t_1\sigma=t_2\sigma=\ldots=t_n\sigma$ Most general unifier: one that is more general than any other unifier

Suppose $\{t_0, t_1, t_2, \dots, t_n\}$ has a unifier. Then the computation of a most general unifier for this set of terms can be reduced to a sequence of binary unification problems as follows:

- σ_1 : idempotent most general unifier of t_o and t_1
- σ_2 : idempotent most general unifier of $t_o\sigma_1$ and $t_2\sigma_1$
- σ_3 : idempotent most general unifier of $t_o\sigma_2$ and $t_3\sigma_2$

. . .

- σ_n : idempotent most general unifier of $t_o \sigma_{n-1}$ and $t_n \sigma_{n-1}$

Given: multi-set $E:=\{s_1=t_1,\ldots,s_n=t_n\}$ Unifier of E: substitution σ such that $s_i\sigma=t_i\sigma$ (for all $1\leq i\leq n$)

$$t = t, E \longrightarrow_{mm} E$$

$$f(s_1, \dots, s_n) = f(t_1, \dots, t_n), E \longrightarrow_{mm} s_1 = t_1, \dots, s_n = t_n, E$$

$$f(\dots) = g(\dots) \longrightarrow_{mm} FAIL$$

$$x = t, E \longrightarrow_{mm} x = t, E\{x/t\} \quad \text{(if } x \text{ does not occur free in } t\text{)}$$

$$x = t, E \longrightarrow_{mm} FAIL \quad \text{(if } x \text{ occurs free in } t\text{)}$$

$$t = x, E \longrightarrow_{mm} x = t, E \quad \text{(if } t \text{ is not a variable)}$$

Given: multi-set $E:=\{s_1=t_1,\ldots,s_n=t_n\}$ Unifier of E: substitution σ such that $s_i\sigma=t_i\sigma$ (for all $1\leq i\leq n$)

Unification after Martinelli/Montanari

$$t = t, E \longrightarrow_{mm} E$$

$$f(s_1, ..., s_n) = f(t_1, ..., t_n), E \longrightarrow_{mm} s_1 = t_1, ..., s_n = t_n, E$$

$$f(...) = g(...) \longrightarrow_{mm} FAIL$$

 $x = t, E \longrightarrow_{mm} x = t, E\{x/t\}$ (if x does not occur free in t) $x = t, E \longrightarrow_{mm} FAIL$ (if x occurs free in t)

 $t = x, E \longrightarrow_{mm} x = t, E$ (if t is not a variable)

Given: multi-set $E:=\{s_1=t_1,\ldots,s_n=t_n\}$ Unifier of E: substitution σ such that $s_i\sigma=t_i\sigma$ (for all $1\leq i\leq n$)

$$t = t, E \longrightarrow_{mm} E$$

$$f(s_1, \dots, s_n) = f(t_1, \dots, t_n), E \longrightarrow_{mm} s_1 = t_1, \dots, s_n = t_n, E$$

$$f(\dots) = g(\dots) \longrightarrow_{mm} FAIL$$

$$x = t, E \longrightarrow_{mm} x = t, E\{x/t\} \quad (\text{if } x \text{ does not occur free in } t)$$

$$x = t, E \longrightarrow_{mm} FAIL \quad (\text{if } x \text{ occurs free in } t)$$

$$t = x, E \longrightarrow_{mm} x = t, E \quad (\text{if } t \text{ is not a variable})$$

Given: multi-set $E:=\{s_1=t_1,\ldots,s_n=t_n\}$ Unifier of E: substitution σ such that $s_i\sigma=t_i\sigma$ (for all $1\leq i\leq n$)

$$t = t, E \longrightarrow_{mm} E$$

$$f(s_1, \dots, s_n) = f(t_1, \dots, t_n), E \longrightarrow_{mm} s_1 = t_1, \dots, s_n = t_n, E$$

$$f(\dots) = g(\dots) \longrightarrow_{mm} FAIL$$

$$x = t, E \longrightarrow_{mm} x = t, E\{x/t\} \quad (\text{if } x \text{ does not occur free in } t)$$

$$x = t, E \longrightarrow_{mm} FAIL \quad (\text{if } x \text{ occurs free in } t)$$

$$t = x, E \longrightarrow_{mm} x = t, E \quad (\text{if } t \text{ is not a variable})$$

Given: multi-set $E:=\{s_1=t_1,\ldots,s_n=t_n\}$ Unifier of E: substitution σ such that $s_i\sigma=t_i\sigma$ (for all $1\leq i\leq n$)

$$t = t, E \longrightarrow_{mm} E$$

$$f(s_1, \dots, s_n) = f(t_1, \dots, t_n), E \longrightarrow_{mm} s_1 = t_1, \dots, s_n = t_n, E$$

$$f(\dots) = g(\dots) \longrightarrow_{mm} FAIL$$

$$x = t, E \longrightarrow_{mm} x = t, E\{x/t\} \quad \text{(if } x \text{ does not occur free in } t\text{)}$$

$$x = t, E \longrightarrow_{mm} FAIL \quad \text{(if } x \text{ occurs free in } t\text{)}$$

$$t = x, E \longrightarrow_{mm} x = t, E \quad \text{(if } t \text{ is not a variable)}$$

Given: multi-set $E:=\{s_1=t_1,\ldots,s_n=t_n\}$ Unifier of E: substitution σ such that $s_i\sigma=t_i\sigma$ (for all $1\leq i\leq n$)

$$t = t, E \longrightarrow_{mm} E$$

$$f(s_1, \dots, s_n) = f(t_1, \dots, t_n), E \longrightarrow_{mm} s_1 = t_1, \dots, s_n = t_n, E$$

$$f(\dots) = g(\dots) \longrightarrow_{mm} FAIL$$

$$x = t, E \longrightarrow_{mm} x = t, E\{x/t\} \quad \text{(if } x \text{ does not occur free in } t\text{)}$$

$$x = t, E \longrightarrow_{mm} FAIL \quad \text{(if } x \text{ occurs free in } t\text{)}$$

$$t = x, E \longrightarrow_{mm} x = t, E \quad \text{(if } t \text{ is not a variable)}$$

Given: multi-set $E:=\{s_1=t_1,\ldots,s_n=t_n\}$ Unifier of E: substitution σ such that $s_i\sigma=t_i\sigma$ (for all $1\leq i\leq n$)

$$t = t, E \longrightarrow_{mm} E$$

$$f(s_1, \dots, s_n) = f(t_1, \dots, t_n), E \longrightarrow_{mm} s_1 = t_1, \dots, s_n = t_n, E$$

$$f(\dots) = g(\dots) \longrightarrow_{mm} FAIL$$

$$x = t, E \longrightarrow_{mm} x = t, E\{x/t\} \quad \text{(if x does not occur free in t)}$$

$$x = t, E \longrightarrow_{mm} FAIL \quad \text{(if x occurs free in t)}$$

$$t = x, E \longrightarrow_{mm} x = t, E \quad \text{(if t is not a variable)}$$

Definition — Solved Form

23

If $E := \{x_1 = t_1, \dots, x_n = t_n\}$, with x_i being pairwise distinct variables and where x_i does not occur in the free variables of t_i , then E is called in *solved form* representing a solution $\sigma_E = \{x_1/t_1, \dots, x_n/t_n\}$.

Theorem

24

If E is in solved form then σ_E is a most general unifier of E.

Theorem

25

- **1.** If $E \longrightarrow_{mm} E'$ then σ is a unifier of E iff σ is a unifier of E'
- **2.** If $E \longrightarrow_{mm}^* FAIL$ then E is not unifiable.
- 3. If $E \longrightarrow_{mm}^* E'$ with E' in solved form, then σ_E is a MGU of E

Definition — Solved Form

23

If $E := \{x_1 = t_1, \dots, x_n = t_n\}$, with x_i being pairwise distinct variables and where x_i does not occur in the free variables of t_i , then E is called in *solved form* representing a solution $\sigma_E = \{x_1/t_1, \dots, x_n/t_n\}$.

Theorem

24

If E is in solved form then σ_E is a most general unifier of E.

Theorem

25

- **1.** If $E \longrightarrow_{mm} E'$ then σ is a unifier of E iff σ is a unifier of E'
- **2.** If $E \longrightarrow_{mm}^* FAIL$ then E is not unifiable.
- 3. If $E \longrightarrow_{mm}^* E'$ with E' in solved form, then σ_E is a MGU of E

Definition — **Solved Form**

23

If $E := \{x_1 = t_1, \dots, x_n = t_n\}$, with x_i being pairwise distinct variables and where x_i does not occur in the free variables of t_i , then E is called in *solved form* representing a solution $\sigma_E = \{x_1/t_1, \dots, x_n/t_n\}$.

Theorem

24

If E is in solved form then σ_E is a most general unifier of E.

Theorem

25

- **1.** If $E \longrightarrow_{mm} E'$ then σ is a unifier of E iff σ is a unifier of E'
- **2.** If $E \longrightarrow_{mm}^{*} FAIL$ then E is not unifiable.
- 3. If $E \longrightarrow_{mm}^* E'$ with E' in solved form, then σ_E is a MGU of E

Complexity of Unification

Some Literature

- Paterson, Wegman: Linear Unification, JCSS 17, 1978 Unifiability is decidable in linear time. A most general unifier can be computed in linear time.
- Dwork, Kanellakis, Mitchell: On the sequential nature of unification, J.Log.Progr. 1, 1984 Unifiability is log-space complete for P, that is, every problem in P can be reduced in log-space to a unifiability problem. Thus, most likely, unifiability cannot be efficiently paralllized.
- ► Baader, Nipkow: Term rewriting and all that. 1998. A very good introduction and overview.