对称

- ▶ 目标函数求极大值时,所有约束条件为≤号;
- ▶ 目标函数求极小值时,所有约束条件为≥号;
- > 变量均取非负。

$$\max z = CX \qquad \min w = Y^{T}b$$

$$\begin{cases} AX \le b \\ X \ge 0 \end{cases} \qquad \begin{cases} A^{T}Y \ge C^{T} \\ Y \ge 0 \end{cases}$$

$$C = (c_1, c_2, ..., c_n) \qquad b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} \qquad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \qquad Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$

美西种核大学

原问题、对偶问题的关系:

	原问题	对偶问题
A	约束的系数矩阵	约束的系数矩阵的转置
b	约束条件右端项	目标函数中的价格系数
С	目标函数中的价格系数	约束条件右端项
目标函数	max z = CX	$min w = Y^Tb$
约束条件	$AX \le b$	$A^TY \ge C$
决策变量	$X \ge 0$	$Y \ge 0$

写出下面LP的对偶模型:

$$\max z = 2x_1 + 3x_2 \qquad \min w = 8y_1 + 16y_2 + 12y_3$$

$$\begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \end{cases} \qquad \begin{cases} y_1 + 4y_2 \ge 2 \\ 2y_1 + 4y_3 \ge 3 \\ y_1, y_2, y_3 \ge 0 \end{cases}$$

例2. 写出下面LP的对偶模型:

$$\min z = 2x_1 + 3x_2 - 5x_3 + x_4$$

$$\begin{cases} x_1 + x_2 - 3x_3 + x_4 \ge 5 \\ 2x_1 + 2x_3 - x_4 \le 4 \\ x_2 + x_3 + x_4 = 6 \\ x_1 \le 0, x_2, x_3 \ge 0, x_4 \pm 5$$

思路:

注意: 不是标准形式

先化为对称形式,再写出对偶模型。

$$\min z = 2x_1 + 3x_2 - 5x_3 + x_4$$

$$\begin{cases} x_1 + x_2 - 3x_3 + x_4 \ge 5 \\ 2x_1 + 2x_3 - x_4 \le 4 \\ x_2 + x_3 + x_4 = 6 \\ x_1 \le 0, x_2, x_3 \ge 0, x_4 \pm 5 \end{cases}$$

$$\min z = 2x_1 + 3x_2 - 5x_3 + x_4$$

$$\begin{cases} x_1 + x_2 - 3x_3 + x_4 \ge 5 \\ -2x_1 - 2x_3 + x_4 \ge -4 \\ x_2 + x_3 + x_4 \ge 6 \\ -x_2 - x_3 - x_4 \ge -6 \\ x_1 \le 0, x_2, x_3 \ge 0, x_4 \pm 6$$

再使变量满足非负

$$\min z = 2x_1 + 3x_2 - 5x_3 + x_4$$

$$\begin{cases} x_1 + x_2 - 3x_3 + x_4 \ge 5 \\ -2x_1 - 2x_3 + x_4 \ge -4 \\ x_2 + x_3 + x_4 \ge 6 \\ -x_2 - x_3 - x_4 \ge -6 \\ x_1 \le 0, x_2, x_3 \ge 0, x_4 \pm 5$$

只需令
$$x_1 = -x_1'$$
, $x_4 = x_4' - x_4''$

$$\min z = -2x'_1 + 3x_2 - 5x_3 + (x'_4 - x''_4)$$

$$| \exists x_1 = -x'_1,$$

$$| x_4 = x'_4 - x''_4 |$$

$$| \begin{cases} -x'_1 + x_2 - 3x_3 + (x'_4 - x''_4) \ge 5 \\ 2x'_1 - 2x_3 + (x'_4 - x''_4) \ge -4 \\ x_2 + x_3 + (x'_4 - x''_4) \ge 6 \\ -x_2 - x_3 - (x'_4 - x''_4) \ge -6 \\ x'_1, x_2, x_3, x'_4, x''_4 \ge 0$$

$$\min z = -2x'_1 + 3x_2 - 5x_3 + (x'_4 - x''_4)$$

$$\begin{cases}
-x'_1 + x_2 - 3x_3 + (x'_4 - x''_4) \ge 5 \\
2x'_1 - 2x_3 + (x'_4 - x''_4) \ge -4 \\
x_2 + x_3 + (x'_4 - x''_4) \ge 6 \\
-x_2 - x_3 - (x'_4 - x''_4) \ge -6 \\
x'_1, x_2, x_3, x'_4, x''_4 \ge 0
\end{cases}$$

$$\max w = 5y$$

$$\begin{cases}
-y_1 + 2y \\
-y_1 + 2y
\end{cases}$$

利用对称 形式可得

$$\max w = 5y_1 - 4y_2 + 6y_3 - 6y_4$$

$$\begin{cases}
-y_1 + 2y_2 & \leq -2 \\
y_1 & + y_3 - y_4 \leq 3 \\
-3y_1 - 2y_2 + y_3 - y_4 \leq -5 \\
y_1 + y_2 & + y_3 - y_4 \leq 1 \\
-y_1 - y_2 & -y_3 + y_4 \leq -1 \\
y_1, y_2, y_3, y_4 \geq 0 \end{cases}$$

$$\max w = 5y_1 - 4y_2 + 6y_3 - 6y$$

$$\begin{cases}
-y_1 + 2y_2 & \leq -2 \\
y_1 & + y_3 - y_4 \leq 3 \\
-3y_1 - 2y_2 + y_3 - y_4 \leq -5 \\
y_1 + y_2 & + y_3 - y_4 \leq 1 \\
-y_1 - y_2 & -y_3 + y_4 \leq -1 \\
y_1, y_2, y_3, y_4 \geq 0
\end{cases}$$

max
$$w = 5y_1 - 4y_2 + 6y_3 - 6y_4$$
 min $z = 2x_1 + 3x_2 - 5x_3 + x_4$

$$\begin{cases}
-y_1 + 2y_2 & \leq -2 \\
y_1 & + y_3 - y_4 \leq 3 \\
-3y_1 - 2y_2 + y_3 - y_4 \leq -5 \\
y_1 + y_2 & + y_3 - y_4 \leq 1
\end{cases}$$

$$-y_1 - y_2 - y_3 + y_4 \leq -1$$

$$y_1, y_2, y_3, y_4 \geq 0$$

$$\Rightarrow y_2 = -y_2', y_3 - y_4 = y_3'$$

$$\Rightarrow y_3 - y_4 = y_3'$$

$$\Rightarrow y_1 + 2y_2 + 3y_3 - y_4 \leq 1$$

$$-y_1 - 2y_2 + 3y_3 - y_4 \leq 1$$

$$-y_1 - 2y_2 + 3y_3 - y_4 \leq 1$$

$$-y_1 - 2y_2 + 3y_3 - y_4 \leq 1$$

$$-y_1 - 2y_2 + y_3 \leq 3$$

$$-3y_1 + 2y_2' + y_3' \leq -5$$

$$y_1 - y_2' + y_3' \leq 1$$

$$y_1 \geq 0, y_2' \leq 0, y_3'$$

$$y_3 + y_4 \leq 5$$

$$\max w = 5y_1 - 4y_2 + 6y_3 - 6y_4 \quad \min z = 2x_1 + 3x_2 - 5x_3 + x_4$$

$$\begin{cases}
-y_1 + 2y_2 & \leq -2 \\
y_1 & + y_3 - y_4 \leq 3 \\
-3y_1 - 2y_2 + y_3 - y_4 \leq -5 \\
y_1 + y_2 & + y_3 - y_4 \leq 1 \\
-y_1 - y_2 & -y_3 + y_4 \leq -1 \\
y_1, y_2, y_3, y_4 \geq 0
\end{cases}$$

$$\begin{cases}
x_1 + x_2 - 3x_3 + x_4 \geq 5 \\
2x_1 & + 2x_3 - x_4 \leq 4 \\
x_2 + x_3 + x_4 = 6 \\
x_1 \leq 0, x_2, x_3 \geq 0, x_4 \pm 6 \\
x_1 \leq 0, x_2, x_3 \geq 0, x_4 \pm 6 \\
x_1 \leq 0, x_2, x_3 \geq 0
\end{cases}$$

可令
$$y_2 = -y_2'$$
, $y_3 - y_4 = y_3'$

$$\max w = 5y_1 - 4y_2 + 6y_3 - 6y_4 \qquad \min z = 2x_1 + 3x_2 - 5x_3 + x$$

$$\begin{cases}
-y_1 + 2y_2 & \leq -2 \\
y_1 & + y_3 - y_4 \leq 3 \\
-3y_1 - 2y_2 + y_3 - y_4 \leq -5 \\
y_1 + y_2 & + y_3 - y_4 \leq 1 \\
-y_1 - y_2 & -y_3 + y_4 \leq -1
\end{cases}$$

$$\begin{cases}
x_1 + x_2 - 3x_3 + x_4 \geq 5 \\
2x_1 & + 2x_3 - x_4 \leq 4 \\
x_2 + x_3 + x_4 = 6 \\
x_1 \leq 0, x_2, x_3 \geq 0, x_4 \pm 6y_3 \\
x_1 \leq 0, x_2, x_3 \geq 0, x_4 \pm 6y_3
\end{cases}$$

$$\max w = 5y_1 + 4y_2' + 6y_3'$$

$$y_{1}, y_{2}, y_{3}, y_{4} \ge 0$$

$$\begin{cases} y_{1} + 2y'_{2} & \ge 2 \\ y_{1} & + y'_{3} \le 3 \\ -3y_{1} + 2y'_{2} + y'_{3} \le -5 \\ y_{1} - y'_{2} & + y'_{3} = 1 \end{cases}$$

$$\begin{cases} y_{1} + 2y'_{2} & \ge 2 \\ y_{1} & + y'_{3} \le 3 \\ -3y_{1} + 2y'_{2} + y'_{3} \le -5 \end{cases}$$

ſ		原问题	对偶问题			
-		目标函数 max	目标函数 min			
	约	m个	m^			
	束	≤	≥0	变		
	条	≥	≤0	量		
表	件	=	无约束			
表 3-4		n^	n↑	约		
	变	≥0	≥	束		
	量	≤0	<u>≤</u>	条		
		无约束	=	件		
	ь	约束条件右端项	目标函数变量的系数			
Ī	С	目标函数变量的系数	约束条件右端项 🐔	斜板大		

由 max问题写出min问题:

- ① \max 问题第i个约束取 " \leq ",则 \min 问题第i个变量 ≥ 0 ;
- ② \max 问题第i个约束取 " \geq ",则 \min 问题第i个变量 ≤ 0 ;
- ③ max问题第i个约束取 "=",则min问题第i个变量无约束;
- ④ \max 问题第j个变量 ≥ 0 ,则 \min 问题第j个约束取 " \geq ";
- ⑤ \max 问题第i个变量 ≤ 0 ,则 \min 问题第i个约束取" \le ";
- ⑥ max问题第j个变量无约束,则min问题第j个约束取 "="。 反之可以由 min问题写出 max问题。

例2. 写出下面LP的对偶模型:

$$\max z = x_1 + 4x_2 + 3x_3 \qquad \min w = 2y_1 + y_2 + 4y_3$$

$$\begin{cases} 2x_1 + 3x_2 - 5x_3 \le 2 \\ 3x_1 - x_2 + 6x_3 \ge 1 \end{cases} \qquad \begin{cases} 2y_1 + 3y_2 + y_3 \ge 1 \\ 3y_1 - y_2 + y_3 \le 4 \\ -5y_1 + 6y_2 + y_3 = 3 \\ y_1 \ge 0, y_2 \le 0, y_3$$
无约束

思路:

按照表3-4的对应规则,可以直接写出对偶模型。

练习. 写出下面LP的对偶模型

练习2.3.1

$$\min Z = 2x_1 + 2x_2 + 4x_3$$

$$\begin{cases} 2x_1 + 3x_2 + 5x_3 \ge 2\\ 3x_1 + x_2 + 7x_3 \le 3\\ x_1 + 4x_2 + 6x_3 \le 5\\ x_1, x_2, x_3 \ge 0 \end{cases}$$

答案:

$$\max W = 2y_1 + 3y_2 + 5y_3$$

$$\begin{cases} 2y_1 + 3y_2 + y_3 \le 2\\ 3y_1 + y_2 + 4y_3 \le 2\\ 5y_1 + 7y_2 + 6y_3 \le 4\\ y_1 \ge 0, y_2, y_3 \le 0 \end{cases}$$

作业: 写出下面LP的对偶模型

练习2.

$$\min Z = 3x_1 + 2x_2 - 3x_3 + 4x_4 \qquad \max W = 3y_1 - 5y_2 + 2x_1 - 2x_2 + 3x_3 + 4x_4 \le 3$$

$$x_2 + 3x_3 + 4x_4 \ge -5$$

$$2x_1 - 3x_2 - 7x_3 - 4x_4 = 2$$

$$x_1 \ge 0, \quad x_2 \le 0, \quad x_3, \quad x_4 \ne 5$$

$$x_1 \ge 0, \quad x_2 \le 0, \quad x_3, \quad x_4 \ne 5$$

$$x_1 \ge 0, \quad x_2 \le 0, \quad x_3 \le 0$$

$$x_1 \ge 0, \quad x_2 \le 0, \quad x_3 \le 0$$

$$x_1 \ge 0, \quad x_2 \le 0, \quad x_3 \le 0$$

答案

$$\max W = 3y_1 - 5y_2 + 2y_3$$

$$\begin{cases} y_1 + 2y_3 \le 3 \\ -2y_1 + y_2 - 3y_3 \ge 2 \\ 3y_1 + 3y_2 - 7y_3 = -3 \\ 4y_1 + 4y_2 - 4y_3 = 4 \\ y_1 \le 0, y_2 \ge 0, y_3$$
 ± 0 ± 0

单纯形法的矩阵描述

即

本节都先假定原问题及其对偶问题为对称形式,

初始表			非多	基变量	
C_{B}	基变量	取值	$X_{\mathbf{B}}$	$X_{ m N}$	X_{S}
0	$X_{\mathcal{S}}$	ь	В	N	E
	σ_{j}		$C_{\scriptscriptstyle B}$	C_N	0

迭代	若干步后	的表	基变量	非基变量		
$C_{\mathbf{B}}$	基变量	取值	X_{B}	$X_{\mathbf{N}}$	X_{S}	
C_B	$X_B = B^{-1}b$		Е	$B^{-1}N$	B^{-1}	
	σ_{j}		$C_B - C_B \mathbf{E} = 0$	$C_N - C_B \cdot B^{-1} N$	$-C_B \cdot B^{-1}$	

- (1)初始表中初始基矩阵为E, 迭代后为B⁻¹;
- (2)初始表中初始基变量为 X_S =b,迭代后为 $X_B = B^{-1}b$;
- (3)初始表中 x_i 的系数列向量为 P_i ,迭代后为 $B^{-1}P_i$;
- (4)初始表中系数矩阵为[A, E] = [B, N, E],

迭代后为[$B^{-1}A, B^{-1}E$] = [$B^{-1}B, B^{-1}N, B^{-1}E$];

$$C_{B} - C_{B} \to B = 0 \qquad C_{N} - C_{B} \cdot B^{-1}N \qquad -C_{B} \cdot B^{-1}$$

$$C_{B} - C_{B} \cdot B^{-1}B = 0$$

$$C_{N} - C_{B} \cdot B^{-1}N \leq 0$$

$$-C_{B} \cdot B^{-1}N \leq 0$$

$$-C_{B} \cdot B^{-1} \leq 0$$

$$\Leftrightarrow Y^{T} = C_{B}B^{-1}, \text{则有如下}$$

$$C - C_B B^{-1} A \le 0$$

$$- C_B B^{-1} \le 0$$

$$= C_B B^{-1} b$$

$$= C_B X_B = z$$

$$\begin{cases} A^T Y \ge C \\ Y \ge 0 \end{cases}$$

$\max z =$	$2x_1 + 3x$
$\int x_1 + 2x$	$x_2 \le 8$
$\begin{cases} 4x_1 \\ 4x_2 \end{cases}$	≤16
4.	$x_2 \le 12$
$\left(x_1, x_2\right)$	≥ 0

原LP的最终表			2	3	0	0	0
C_{B}	基变量	b	x_1	x_2	x_3	<i>x</i> ₄	x_5
2	x_1	4	1	0	0	1/4	0
0	x_5	4	0	0	-2	1/2	1
3	x_2	2	0	1	1/2	- 1/8	0
$\sigma_{_j}$		0	0	- 3/2	- 1/8	0	
			<i>y</i> ₄	<i>y</i> ₅	y_1	y_2	<i>y</i> ₃

 $\min w = 8y_1 + 16y_2 + 12y_3$

$$\begin{cases} y_1 + 4y_2 \ge 2 \\ 2y_1 + 4y_3 \ge 3 \\ y_1, y_2, y_3 \ge 0 \end{cases}$$

对偶LP的最终表			- 8	-16	-12	0	0
C_B	基变量	b	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	<i>y</i> ₅
-16	<i>y</i> ₂	1/8	0	1	- 1/2	-1/4	1/8
-8	<i>y</i> ₁	3/2	1	0	2	0	- 1/2
σ_{j}			0	0	- 4	-4	-2
			x_3	x_4	x_5	x_1	x_2

对偶问题的基本性质(Duality Theory)

1. 对称性 对偶问题的对偶为原问题。

$$\max z = CX$$
 $\min w = Yb$ $\begin{cases} AX \le b \\ X \ge 0 \end{cases}$ $\forall AX \ge C$ $\begin{cases} YA \ge C \\ Y \ge 0 \end{cases}$ 要

$$\min Z = -CX \qquad \max W = -Yb$$

$$\begin{cases} -AX \ge -b \\ X \ge 0 \end{cases} \qquad \forall \mathbb{R}$$

$$\begin{cases} -YA \le -C \\ Y \ge 0 \end{cases}$$

2. 弱对偶性

设 \overline{X} 为原问题的可行解, \overline{Y} 为对偶问题的可行解,

则
$$C\overline{X} \leq \overline{Y}b$$

证明: 设
$$\max z = CX$$
 $\min w = Yb$
$$\begin{cases} AX \le b \\ X > 0 \end{cases} \qquad \begin{cases} YA \ge C \\ Y \ge 0 \end{cases}$$

设 \bar{X},\bar{Y} 分别为原问题和对问题的可行解.

$$AX \leq b \Rightarrow A\overline{X} \leq b \Rightarrow \overline{Y}A\overline{X} \leq \overline{Y}b \qquad C\overline{X} \leq \overline{Y}A\overline{X} \leq \overline{Y}b$$

$$YA \geq C \Rightarrow \overline{Y}A \geq C \Rightarrow \overline{Y}A\overline{X} \geq C\overline{X} \qquad \therefore \qquad C\overline{X} \leq \overline{Y}b$$

2. 弱对偶性

设 \bar{X} 为原问题的可行解, \bar{Y} 为对偶问题的可行解,则 $C\bar{X} \leq \bar{Y}b$

推论:

- (1)max问题任一可行解的目标值为min问题目标值的一个下界;
- (2)min问题任一可行解的目标值为max问题目标值的一个上界。

3. 无界性

若原问题(对偶问题)为无界解,则对偶问题(原问题)为无可行解。

证明:由弱对偶性显然得。

注: 此性质的逆不成立。

逆命题正确叙述如下

若原问题(对偶问题)为无可行解,

则对偶问题(原问题)或为无界解,或为无可行解。

4、最优性

设 \hat{X} 为原问题的可行解, \hat{Y} 为对偶问题的可行解, 当 $\hat{CX} = \hat{Y}b$ 时, \hat{X} 和 \hat{Y} 是最优解。

证明:

设 X^*, Y^* 分别为原问题和对偶问题的最优解,由弱对偶性可知

因为 $CX^* \leq Y^*b$ 又 $C\hat{X} \leq CX^* \leq Y^*b \leq \hat{Y}b = C\hat{X}$ $\therefore C\hat{X} = CX^*, Y^*b = \hat{Y}b$ $\therefore \hat{X}, \hat{Y}$ 为最优解

5. 对偶定理(强对偶性) 若原问题有最优解,那么对偶问题也有最优解, 且目标函数值相等。

证明: 设原问题有最优解为X,则对应的检验数必满足

$$C-C_{\scriptscriptstyle B}B^{-1}\cdot A\leq 0$$
,
记做 $YA\geq C$,则 Y 可行
其中 $Y=C_{\scriptscriptstyle B}B^{-1}$,代入目标函数 ,有
 $w=Yb=C_{\scriptscriptstyle B}B^{-1}\cdot b=C_{\scriptscriptstyle B}\cdot B^{-1}b=CX=z$

得证。

6. 互补松弛性

若 \hat{X} , \hat{Y} 分别为原问题及对偶问题的可行解,则 $\hat{Y}X_s=0$ 和 $Y_s\hat{X}=0$,当且仅当 \hat{X} , \hat{Y} 分别为最优解。

若 X, Y分别为原问题及对偶问题的可行解, 则 $\hat{Y}X_s = 0$ 和 $Y_s\hat{X} = 0$, 当且仅当 \hat{X} , \hat{Y} 分别为最优解。

证明:
$$\max z = CX + 0X_S$$
 $\min w = Yb + Y_S 0$
$$\begin{cases} AX + X_S = b \\ X, X_S \ge 0 \end{cases} \qquad \begin{cases} YA - Y_S = C \\ Y, Y_S \ge 0 \end{cases}$$

将b.C分别代入目标函数:

$$z = CX = (YA - Y_S)X = YAX - Y_SX$$
$$w = Yb = Y(AX + X_S) = YAX + YX_S$$

若 \hat{X},\hat{Y} 为可行解,

若 \hat{X} . \hat{Y} 分别为最优解、

当
$$\hat{Y}X_S = 0$$
 , $Y_S\hat{X} = 0$ 时, 则 $w = z$

有
$$w = z$$

$$\therefore \hat{Y}X_s = 0, Y_s\hat{X} = 0$$

:. *Ŷ*, *Ŷ*为最优解;

若 X, Y 分别为原问题及对偶问题的可行解, 则 $\hat{Y}X_s = 0$ 和 $Y_s\hat{X} = 0$, 当且仅当 \hat{X} , \hat{Y} 分别为最优解。

互补松弛性也可以表述为

在LP的最优解中,若对应某一约束条件的对偶变量值为 非零,则该约束取严格等式;

反之, 若某一约束取严格不等式, 则其对应的对偶变量 必为零。

若
$$\hat{y}_i > 0$$
,则有 $\sum_{j=1}^n a_{ij} \hat{x}_j = b_i$,即 $\hat{x}_{si} = 0$

若
$$\sum_{j=1}^{n} a_{ij} \hat{x}_{j} \langle b_{i}, \quad \hat{y}_{si} \rangle 0, \quad \text则有 $\hat{y}_{i} = 0$$$

$$\max z = 2x_1 + 3x_2$$

$$\begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

原LP的最终表			2	3	0	0	0
C_{B}	基变量	b	x_1	x_2	x_3	<i>x</i> ₄	x_5
2	x_1	4	1	0	0	1/4	0
0	x_5	4	0	0	-2	1/2	1
3	x_2	2	0	1	1/2	- 1/8	0
$\sigma_{_j}$		0	0	- 3/2	- 1/8	0	
			<i>y</i> ₄	<i>y</i> ₅	y_1	y_2	<i>y</i> ₃

 $\min w = 8y_1 + 16y_2 + 12y_3$

$$\begin{cases} y_1 + 4y_2 \ge 2 \\ 2y_1 + 4y_3 \ge 3 \\ y_1, y_2, y_3 \ge 0 \end{cases}$$

	1.75						
对偶	对偶LP的最终表			-16	-12	0	0
C_{B}	基变量	b	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	<i>y</i> ₅
-16	<i>y</i> ₂	1/8	0	1	- 1/2	-1/4	1/8
-8	<i>y</i> ₁	3/2	1	0	2	0	- 1/2
	$\sigma_{_j}$		0	0	-4	-4	-2
			<i>x</i> ₃	x_4	<i>x</i> ₅	x_1	x_2

7. 检验数与解的关系

- (1)原问题非最优检验数的负值为对偶问题的 一个基解。
- (2)原问题最优检验数的负值为对偶问题的最优解。

例4. 试用对偶理论证明下面LP问题无最优解。

$$\max z = x_1 + x_2$$
 注: 无最优解即无界解
$$\begin{cases} -x_1 + x_2 + x_3 \le 2 & \text{对偶: } \min W = 2y_1 + y_2 \\ -2x_1 + x_2 - x_3 \le 1 & \begin{cases} -y_1 - 2y_2 \ge 1 \\ y_1 + y_2 \ge 1 \end{cases} \end{cases}$$

$$\begin{cases} -x_1 + x_2 + x_3 \le 2 & 対偶: \min W = 2y_1 + y_2 \\ -2x_1 + x_2 - x_3 \le 1 & \begin{cases} -y_1 - 2y_2 \ge 1 \\ y_1 + y_2 \ge 1 \end{cases} \\ y_1 - y_2 \ge 0 \\ y_1, y_2 \ge 0 \end{cases}$$

由第一个约束可知对偶问题无解, 而原问题显然有可行解, 因此由无界性可得。

例5. 已知原问题如下。

其对偶问题的最优解为 $y_1^* = \frac{4}{5}, y_2^* = \frac{3}{5}, z^* = 5$ 试用对偶理论求出原问题的最优解。

$$\min w = 2x_1 + 3x_2 + 5x_3 + 2x_4 + 3x_5$$

$$\begin{cases} x_1 + x_2 + 2x_3 + x_4 + 3x_5 \ge 4\\ 2x_1 - x_2 + 3x_3 + x_4 + x_5 \ge 3\\ x_1, \dots, x_5 \ge 0 \end{cases}$$

练习1. 已知原问题最优解为 $X^*=(2, 2, 4, 0)^T$, 试用对偶理论求出其对偶问题的最优解。

$$\max z = 2x_1 + 4x_2 + x_3 + x_4$$

$$\begin{cases} x_1 + 3x_2 & +x_4 \le 8 \\ 2x_1 + x_2 & \le 6 \\ x_2 + x_3 + x_4 \le 6 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 & \le 9 \\ x_1 + x_2 + x_3 & \le 9 \end{cases}$$

练习2. 已知原问题如下。

- (1) 写出其对偶问题;
- (2) 用图解法求解对偶问题;
- (3) 试用对偶理论求出原问题的最优解。

$$\min w = 2x_1 + 3x_2 + 5x_3 + 6x_4$$

$$\begin{cases} x_1 + 2x_2 + 3x_3 + x_4 \ge 2 \\ -2x_1 + x_2 - x_3 + 3x_4 \le -3 \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

对偶问题的经济解释一影子价格

由对偶问题性质知
$$z^* = \sum_{j=1}^n c_j x_j^* = \sum_{i=1}^m b_i y_i^* = w^*$$

于是有
$$\frac{\partial z^*}{\partial b_i} = y_i^*$$

[定义]对偶变量 y_i^* 称为第i 种资源的影子价格:

它表示当原问题约束条件的右端项 b_i 增加一个单位时, 所引起目标函数最优值的改变量。

因此,影子价格是一种边际价格。

根据对偶理论的互补松弛性定理可以看出:

生产过程中如果某种资源*bi*未得到充分利用时,该种资源的影子价格为0;

若当资源资源的影子价格不为0时, 表明该种资源 在生产中已耗费完。

互补松弛性:

若
$$\sum_{j=1}^{n} a_{ij} \hat{x}_{j} \langle b_{i}, \quad \hat{x}_{si} \rangle 0$$
,则有 $\hat{y}_{i} = 0$

若
$$\hat{y}_{i}>0$$
,则有 $\sum_{j=1}^{n}a_{ij}\hat{x}_{j}=b_{i}$,即 $\hat{x}_{si}=0$

影子价格对单纯形表计算的解释

单纯形表中的检验数

$$\sigma_{j} = c_{j} - C_{B}B^{-1}P_{j} = c_{j} - \sum_{i=1}^{m} a_{ij}y_{i}$$

其中 c_i 表示第j种产品的价格或产值;

 $\sum_{i=1}^{m} a_{ij} y_i$ 表示生产第j种产品所消耗的各项资源的影子价格的总和,即产品的隐含成本。

当产值大于隐含成本时,表明生产该项产品有利,可在计划中安排;否则不安排生产该产品。

对偶单纯形法

在单纯形表迭代过程中, 检验数行得到的恰好是对 偶问题的基解。当迭代至基解成为基可行解时,由 性质知其必为最优解。

若保持对偶问题的解是基可行解,即 $\sigma_{j} \leq 0$,而原问题在非可行解的基础上,通过迭代达到基可行解,这样也可以得到最优解一这就是对偶单纯形法。这一方法的优点是:原问题的初始解不一定是基可

这一方法的优点是:原问题的初始解不一定是基可行解。

例6. 用对偶单纯形法求解:

$$\min w = 2x_1 + 3x_2 + 4x_3$$

$$\begin{cases} x_1 + 2x_2 + x_3 \ge 3\\ 2x_1 - x_2 + 3x_3 \ge 4\\ x_1, x_2, x_3 \ge 0 \end{cases}$$

 $\min w = 2x_1 + 3x_2 + 4x_3$ 解: 将模型转化为求 最大化问题,约束方 程化为等式求出一组 基本解。

$$\max z = -2x_1 - 3x_2 - 4x_3 \qquad \max z = -2x_1 - 3x_2 - 4x_3$$

$$\begin{cases} x_1 + 2x_2 + x_3 - x_4 &= 3\\ 2x_1 - x_2 + 3x_3 & -x_5 = 4\\ x_1, \dots, x_5 \ge 0 \end{cases} \qquad \begin{cases} -x_1 - 2x_2 - x_3 + x_4\\ -2x_1 + x_2 - 3x_3 & + x_5 \ge 0 \end{cases}$$

对偶单纯形法换入、换出变量的确定

1.确定换出变量

记 $b_r = \min\{b_i < 0\}$,则 x_r 为换出变量.

2.确定换入变量

则 a_n 为主元素,x。为换入变量.

这一方法的优点是:

原问题的初始解不一定是基可行解,可以从非基可行解开始迭代。

可以不加入人工变量, 因此计算简单。

这一方法的局限性是:

要确定一个初始解,保证所有 $\sigma_j \leq 0$ 是很困难的。因此,此方法较少单独使用。

但是在灵敏度分析中, 有时要用到对偶单纯形法。

灵敏度分析

灵敏度分析的步骤

1. 将参数的改变反映到最终单纯形表中

$$\Delta b' = B^{-1} \cdot \Delta b$$

$$\Delta P'_j = B^{-1} \cdot \Delta P_j$$

$$\sigma'_j = (c_j - z_j)' = c_j - \sum_{i=1}^m a_{ij} y_i^*$$

- 2. 检查原问题是否为可行解;
- 3. 检查对偶问题是否为可行解;
- 4. 按照下表给出结论,并确定继续计算的步骤。

原问题	对偶问题	结论或继续计算的步骤
可行解	可行解	最优解不变
可行解	非可行解	用单纯形法继续迭代计算
非可行解	可行解	用对偶单纯形法迭代计算
非可行解	非可行解	引入人工变量, 迭代计算

-、分析 b_i 的变化

由 $\Delta b' = B^{-1} \cdot \Delta b$ 可以看出 b_i 的变化反映到最终表中,将会引起 b 列数字的变化,会出现表中第一、第三两种结论。

原问题	对偶问题	结论或继续计算的步骤
可行解	可行解	最优解不变
非可行解	可行解	用对偶单纯形法迭代计算

一、分析b_i的变化

例7. max
$$z = 2x_1 + 3x_2$$

$$s.t. \begin{cases} x_1 + 2x_2 \le 8 & \cdots & \text{设备}A \\ 4x_1 & \le 16 \cdots & \text{原料}B \\ 4x_2 \le 12 \cdots & \text{原料}C \\ x_1, x_2 \ge 0 \end{cases}$$

- (1)设备4每天增加4台时,最优解如何变化?
- (2)B、C不变, A在什么范围变化时, 最优解不变?
- (3) A、C不变, B在什么范围变化时, 最优解不变?

例1的最终单纯形表如下

				3	0	0	0
C_B	基 X_B	b	x_1	x_2	x_3	x_4	x_5
2	x_1	4	1	0	0	1/4	0
0	x_5	4	0	0	-2	1/2	1
3	x_2	2	0	1	1/2	- 1/8	0
σ_{j}			0	0	- 3/2	- 1/8	0

表中蓝色区域为 B^{-1} ,想想为什么?

				3	0	0	0
C_B	基 X_B	b	x_1	x_2	x_3	x_4	x_5
2	x_1	4	1	0	0	1/4	0
0	x_5	4	0	0	-2	1/2	1
3	x_2	2	0	1	1/2	- 1/8	0
	$\sigma_{_{j}}$		0	0	- 3/2	- 1/8	0

(1)设备4每天增加4台时,最优解如何变化?

例1的最终单纯形表如下

				3	0	0	0
C_B	基XB	b	x_1	x_2	x_3	x_4	x_5
2	x_1	4	1	0	0	1/4	0
0	x_5	4	0	0	-2	1/2	1
3	x_2	2	0	1	1/2	- 1/8	0
	σ_{j}			0	- 3/2	- 1/8	0

(2)B、C不变, A在什么范围变化时, 最优解不变?

				3	0	0	0
C_B	基 X_B	b	x_1	x_2	x_3	x_4	x_5
2	x_1	4	1	0	0	1/4	0
0	x_5	4	0	0	-2	1/2	1
3	x_2	2	0	1	1/2	- 1/8	0
	$\sigma_{_{j}}$		0	0	- 3/2	- 1/8	0

(3)A、C不变, B在什么范围变化时, 最优解不变?

二、分析cj的变化

 c_j 的变化只影响到检验数 σ_j 的变化,因此会出现第一、第二两种结论,即

原问题	对偶问题	结论或继续计算的步骤
可行解	可行解	最优解不变
可行解	非可行解	用单纯形法继续迭代计算

				3	0	0	0
C_B	基 X_B	b	x_1	x_2	x_3	x_4	x_5
2	x_1	4	1	0	0	1/4	0
0	x_5	4	0	0	-2	1/2	1
3	x_2	2	0	1	1/2	- 1/8	0
	$\sigma_{_j}$		0	0	- 3/2	- 1/8	0

例8. (1) 两种产品的利润分别变为1元/件和4元/件,最优生产计划如何变化? (2) c_1 不变, c_2 在什么范围变化时,最优解不变?

三、增加一个变量x_i的分析

增加一个变量相当于增加一种新产品,分析步骤如下:

1. 计算
$$\sigma'_j = c_j - z_j = c_j - \sum_{i=1}^m a_{ij} y_i^*$$

- 2. 计算 $P'_i = B^{-1} \cdot P_i$
- 3. 若 $\sigma'_{i} \leq 0$,则原最优解不变,只需将 σ'_{i} 与P'写入最终表;若 $\sigma'_{i} > 0$,则按单纯形法继续迭代寻找最优解。

			2	3	0	0	0
C_B	基XB	b	x_1	x_2	x_3	x_4	x_5
2	x_1	4	1	0	0	1/4	0
0	x_5	4	0	0	-2	1/2	1
3	x_2	2	0	1	1/2	- 1/8	0
	$\sigma_{_{j}}$		0	0	- 3/2	- 1/8	0

例9. 新增产品III, 生产一件需消耗2台时设备A, 6kg 原料B, 3kg原料C, 获利5元,最优生产计划如何变化?

四、分析a_{ii}的变化

 a_{ii} 的变化会使约束系数矩阵A发生变化。

若变量 x_j 在最终表中为非基变量,可仿照'增加变量'处理;

若变量 x_j 在最终表中为基变量,则 a_{ij} 的变化会使 B, B^{-1} 发生变化,因此可能出现两个问题均为非可行解的情况,此时,需引进人工变量,将原问题转化为可行解,再用单纯形法求解。

例10. 设产品I的工艺改进为 P_1 = $(2,5,2)^T$, c_1 =4, 最优生产计划如何变化?

			2	3	0	0	0
C_B	基XB	b	x_1	x_2	x_3	x_4	x_5
2	x_1	4	1	0	0	1/4	0
0	x_5	4	0	0	-2	1/2	1
3	x_2	2	0	1	1/2	- 1/8	0
	σ_{j}			0	- 3/2	- 1/8	0

€ 陕西科技志学

例11. 设产品I的工艺改进为 P_1 = $(4,5,2)^T$, c_1 =4,最优生产计划又将如何变化?

			2	3	0	0	0
C_B	基 X_B	b	x_1	x_2	x_3	x_4	x_5
2	x_1	4	1	0	0	1/4	0
0	x_5	4	0	0	-2	1/2	1
3	x_2	2	0	1	1/2	- 1/8	0
	$\sigma_{_{j}}$		0	0	- 3/2	- 1/8	0

五、增加一个约束条件的分析

增加一个约束条件在实际问题中相当于增加一道工序。 分析的方法是:

将原问题的最优解代入新增的约束条件,若满足,说 明新增约束未起到限制作用,则最优解不变;

否则,将新增约束反映到最终表中进一步分析。

例12. 设生产过程新增加一道环境检验工序,产品I需3小时,产品II需2小时,该工序每天生产能力为12小时,问最优生产计划如何变化?

				3	0	0	0
C_B	基XB	b	x_1	x_2	x_3	x_4	<i>x</i> ₅
2	x_1	4	1	0	0	1/4	0
0	x_5	4	0	0	-2	1/2	1
3	x_2	2	0	1	1/2	- 1/8	0
	$\sigma_{_{j}}$		0	0	- 3/2	- 1/8	0

练习

1.已知LP问题 $\max z = 2x_1 - x_2 + x_3$

$$\begin{cases} x_1 + x_2 + x_3 \le 6 \\ -x_1 + 2x_2 \le 4 \\ x_1, \dots, x_3 \ge 0 \end{cases}$$

先用单纯形法求出最优解,再分析下列条件下最优解的变化:

- (1) 目标函数变为 $\max z = 2x_1 + 3x_2 + x_3$
- (2)约束条件右端项由 $\begin{pmatrix} 6 \\ 4 \end{pmatrix}$ 变为 $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$
- (3)增加一个约束 $-x_1 + 2x_3 \ge 2$

2.已知LP问题

$$\max z = 2x_1 + 3x_2 + x_3$$

(1)目标函数变为
$$\max z = 2x_1 + 3x_2 + 6x_3$$

$$\begin{cases} x_1 + x_2 + x_3 \le 3 \\ x_1 + 4x_2 + 7x_3 \le 9 \end{cases}$$

$$\begin{cases} x_1 + 4x_2 + 7x_3 \le 9 \\ x + x_1 > 0 \end{cases}$$

(3) 增加一个新产品
$$x_6$$
, $P_6 = (3,3)^T$, $c_6 = 7$

 $\begin{cases} x_1 + x_2 + x_3 \le 3 \\ x_1 + 4x_2 + 7x_3 \le 9 \\ x_1, x_2, x_3 \ge 0 \end{cases} (2) 约束条件右端项由 (3,9)^T 变为 (6,9)^T (3) 增加一个新产品 <math>x_6, P_6 = (3,3)^T, c_6 = 7$ (4) 确定 c_1 在什么范围变化时,最优解不变。

用单纯形法求解的最终单纯形表如下,试做灵敏度分析:

			2	3	1	0	0	
C_B	基XB	ь	x_1	x_2	x_3	x_4	<i>x</i> ₅	
2	x_1	1	1	0	-1	4/3	- 1/3	
3	x_2	2	0	1	2	- 1/3	1/3	
	$\sigma_{_j}$		0	0	-3	- 5/3	-1/3	申核志