Assignment #3

UW-Madison MATH 421

GEOFF YOERGER March 10, 2021

Exercise #1: Assuming that $f(x) = \sqrt{x}$ is continuous on $[0, \infty)$, prove using the limit definition that: if $\overline{g(x)} = \sqrt{x^2 + 1}$, then $g'(x) = \frac{x}{\sqrt{x^2 + 1}}$ when x > 0.

Proof. Notice that because $g(x) = f(x^2 + 1)$, and $\forall x : x^2 + 1 > 0$, both g(a) and g(a + h) are continuous, and so is $\frac{g(a+h)-g(a)}{h}$ when $h \neq 0$. Thus,

$$\begin{split} &\lim_{h \to 0} \frac{g(a+h) - g(a)}{h} \\ &= \lim_{h \to 0} \frac{\sqrt{a^2 + 2ah + h^2 + 1} - \sqrt{a^2 + 1}}{h} \\ &= \lim_{h \to 0} \frac{\sqrt{a^2 + 2ah + h^2 + 1} - \sqrt{a^2 + 1}}{h} * \frac{\sqrt{a^2 + 2ah + h^2 + 1} + \sqrt{a^2 + 1}}{\sqrt{a^2 + 2ah + h^2 + 1} + \sqrt{a^2 + 1}} \\ &= \lim_{h \to 0} \frac{a^2 + 2ah + h^2 + 1 - a^2 + 1}{h(\sqrt{a^2 + 2ah + h^2 + 1} + \sqrt{a^2 + 1})} \\ &= \lim_{h \to 0} \frac{2ah + h^2}{h(\sqrt{a^2 + 2ah + h^2 + 1} + \sqrt{a^2 + 1})} \\ &= \lim_{h \to 0} \frac{2a + h}{(\sqrt{a^2 + 2ah + h^2 + 1} + \sqrt{a^2 + 1})} \\ &= \frac{2a}{(\sqrt{a^2 + 1} + \sqrt{a^2 + 1})} \\ &= \frac{a}{\sqrt{a^2 + 1}} \end{split}$$

Thus, the limit exists, and $g'(a) = \frac{a}{\sqrt{a^2+1}}$.

Exercise #2: Suppose f and g are differentiable at x = a. If f(a) = g(a), f'(a) = g'(a), and

$$k(x) = \begin{cases} f(x) & \text{if } x \le a \\ g(x) & \text{if } x \ge a \end{cases},$$

then k is differentiable at x = a and k'(a) = f'(a) = g'(a).

 $\begin{array}{l} \textit{Proof.} \ \ \text{Notice that} \ f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0^-} \frac{f(a+h) - f(a)}{h}, \\ \ \text{and} \ g'(a) = \lim_{h \to 0} \frac{g(a+h) - g(a)}{h} = \lim_{h \to 0^+} \frac{g(a+h) - g(a)}{h}. \\ \ \text{Then,} \ \lim_{h \to 0^-} \frac{k(a+h) - k(a)}{h} = \lim_{h \to 0^-} \frac{f(a+h) - f(a)}{h} = f'(a). \\ \ \text{Then,} \ \lim_{h \to 0^+} \frac{k(a+h) - k(a)}{h} = \lim_{h \to 0^+} \frac{g(a+h) - g(a)}{h} = g'(a). \\ \ \text{Because} \ f'(a) = g'(a), \ \lim_{h \to 0} \frac{k(a+h) - k(a)}{h} = f'(a) = g'(a) \ \text{exists,} \ k \ \text{is differentiable at} \ a, \ \text{and} \ k'(a) = \lim_{h \to 0} \frac{k(a+h) - k(a)}{h}. \end{array}$

Exercise #3: Spivak, Chapter 9, Problem 15 (a)

Theorem. Let f be a function such that $\forall x : |f(x)| \leq x^2$. f is differentiable at 0.

Proof. Let a = 0.

Notice that $|f(0)| \le 0^2 \implies f(0) = 0$.

So, $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = \lim_{h\to 0} \frac{f(h)-f(0)}{h} = \lim_{h\to 0} \frac{f(h)-f(0)}{h} = \lim_{h\to 0} \frac{f(h)-f(0)}{h}$.

Notice that $|\frac{f(h)}{h}| \le \frac{h^2}{|h|} = |\frac{h^2}{h}| = |h|$.

Thus, $\lim_{h\to 0} \frac{f(h)}{h} \le \lim_{h\to 0} |h| = 0$, thus $\lim_{h\to 0} \frac{f(h)}{h} = 0$.

Thus, the limit exists, and f is differentiable at 0.

Exercise #4: | Spivak, Chapter 10, Problem 16 (a), (b)

Theorem. If f is differentiable at a and $f(a) \neq 0$, then |f| is differentiable at a.

4a. Because $f(a) \neq 0$, $\exists \delta : f(a)$ is either positive or negative on $(a - \delta, a + \delta)$.

By considering when $|h| \leq \delta$, f(a+h) and f(a) will either both be positive or both be negative.

If f(a) > 0, then $\lim_{h\to 0} \frac{|f(a+h)| - |f(a)|}{h} = \lim_{h\to 0} \frac{f(a+h) - f(a)}{h} = f'(a)$ exists. If f(a) < 0, then $\lim_{h\to 0} \frac{|f(a+h)| - |f(a)|}{h} = \lim_{h\to 0} \frac{-f(a+h) + f(a)}{h} = -f'(a)$ exists.

Thus, |f| is differentiable at a.

4b. Let f(x) = x.

Then $\lim_{h\to 0+} \frac{|f(a+h)|-|f(a)|}{h} \neq \lim_{h\to 0-} \frac{|f(a+h)|-|f(a)|}{h}$, because the f(a+h) terms differ in each limit. So $\lim_{h\to 0} \frac{|f(a+h)|-|f(a)|}{h}$ does not exist, and |x| is not differentiable at 0.

Exercise #5: Spivak, Chapter 10, Problem 22 (a)

Theorem. If $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$, then $\exists g, h : g' = h' = f$, and $g \neq h$.

Proof. Let $g(x) = \frac{a_n}{n+1}x^{n+1} + \frac{a_{n-1}}{n}x^n + \dots + \frac{a_0}{1}x + 1$. Let h(x) = g(x) + 1.

By applying theorems 10-1 through 10-6,

 $g'(x) = \frac{a_n(n+1)}{n+1}x^n + \frac{a_{n-1}(n)}{n}x^{n-1} + \dots + a_0 = a_nx^n + a_{n-1}x^{n-1} + \dots + a_0 = f(x).$

 $h'(x) = \frac{a_n(n+1)}{n+1}x^n + \frac{a_{n-1}(n)}{n}x^{n-1} + \dots + a_0 = a_nx^n + a_{n-1}x^{n-1} + \dots + a_0 = f(x).$