

Chapter 1: Function and Graphs Department of Mathematics, FPT University

Chapter 1: Function and Graphs

Objectives

- Four ways to represent a function
- Basis functions and the transformations of functions

1.1 Review of Functions

FUNCTION

A **function** f is a rule that assigns to each element x in a set D <u>exactly one</u> element, called f(x), in a set E.

The set *D* is called the **domain** of the function *f*.

The **range** of **f** is the set of all possible values of **f**(x) as x varies throughout the domain.

GRAPH

The **graph** of f is the **set** of all points (x, y) in the coordinate plane such that y = f(x) and x is in the domain of f.

The graph of *f* also allows us to picture:

- The domain of f on the x-axis
- Its range on the y-axis

The graph of a function f is shown.

- a. Find the values of f(1) and f(5).
- b. What is the domain and range of *f*?

$$f(1) = 3$$

 $f(5) = -0.7$
 $D = [0, 7]$
Range(f) = [-2, 4]

Find the domain and region of the functions (if it is a function).

a.

 $f(n) = \sqrt{n}$ for all natural numbers n.

b.

g(x) is any real number such that larger than x

REPRESENTATIONS OF FUNCTIONS

There are four possible ways to represent a function:

- Algebraically (by an explicit <u>formula</u>)
- Visually (by a graph)
- Numerically (by a table of values)
- Verbally (by a description in words)

EXAMPLE

The human population of the world *P* depends on the time *t*.

- The table gives estimates of the world population P(t) at time t, for certain years.
- However, for each value of the time t, there is a corresponding value of P, and we say that P is a function of t.

Year	Population (millions)				
1900	1650				
1910	1750				
1920	1860				
1930	2070				
1940	2300				
1950	2560				
1960	3040				
1970	3710				
1980	4450				
1990	5280				
2000	6080				
© 2007 Thomson Higher Education					

REPRESENTATIONS

Example

"When you turn on a hot-water faucet, the temperature T of the water depends on how long the water has been running".

Draw a rough graph of *T* as a function of the time *t* that has elapsed since the faucet was turned on.

THE VERTICAL LINE TEST

A curve in the *xy*-plane is the graph of a function of *x* if and only if **no vertical line** intersects the curve **more than once**.

THE VERTICAL LINE TEST

The reason for the truth of the Vertical Line Test can be seen in the figure.

INCREASING AND DECREASING FUNCTIONS

A function f is called increasing on an interval I if:

$$f(x_1) < f(x_2)$$
 whenever $x_1 < x_2$ in I

It is called **decreasing on** *I* if:

$$f(x_1) > f(x_2)$$
 whenever $x_1 < x_2$ in I

INCREASING AND DECREASING FUNCTIONS

The function f is said to be increasing on the interval [a, b], decreasing on [b, c], and increasing again on [c, d].

SYMMETRY: EVEN FUNCTION

If a function f satisfies:

$$f(-x) = f(x)$$
, for all x in D

then f is called an even function.

 The geometric significance of an even function is that its graph is symmetric with respect to the y-axis.

SYMMETRY: ODD FUNCTION

If f satisfies:

$$f(-x) = -f(x)$$
, for all x in D

then f is called an odd function.

■The graph of an odd function is symmetric about the origin.

Example

Let f is an odd function. If (-3,5) is in the graph of f then which point is also in the graph of f?

a. (3,5)

b. (-3,-5) c. (3,-5)

d. All of the others

Answer: c

Example

Suppose f is an odd function and g is an even function.

What can we say about the function f.g defined by (f.g)(x)=f(x)g(x)?

Prove your result.

QUIZ QUESTIONS

- 1) If f is a function then f(x+2)=f(x)+f(2)
- a. True

- b. False
- 2) If f(s)=f(t) then s=t
- a. True

- b. False
- 3) Let f be a function.

 We can find s and t such that s=t and f(s) is not equal to f(t)
- a. True

b. False

COMBINATIONS OF FUNCTIONS

 Two functions f and g can be combined to form new functions:

$$(f+g)x = f(x) + g(x)$$

$$(f-g)x = f(x) - g(x)$$

$$(fg)(x) = f(x)g(x)$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

$$(f \circ g)(x) = f(g(x))$$

Let h(x)=f(g(x)).

1) If g(x)=x-1 and h(x)=3x+2 then f(x) is:

a. 3x+3

b. 3x+4

c. 3x+1

d. None of them

2) If h(x)=3x+2 and f(x)=x-1 then g(x) is:

a. 3x+3

b. 3x+4

c.3x+1

d. None of them

Answer: 1) d

2) a

QUIZ QUESTIONS

- 1) If f and g are functions, then $f \circ g = g \circ f$
- a. True

b. False

2)	X	1	2	3	4	5	6
	f(x)	3	2	1	0	1	2
	g(x)	6	5	2	3	4	6

$$(f \circ g)(2)$$
 is

a. 5

b.

c. 2

d. None of the others

FUNCTIONS AND GRAPHS

1.2 BASIC CLASSES OF FUNCTIONS

ALGEBRAIC FUNCTIONS LINEAR MODELS

When we say that *y* is a **linear function** of *x*, we mean that the graph of the function is a line.

 So, we can use the slope-intercept form of the equation of a line to write a formula for the function as

$$y = f(x) = mx + b$$

where *m* is the slope of the line and *b* is the *y*-intercept.

ALGEBRAIC FUNCTIONS POWER FUNCTIONS

A function of the form $f(x) = x^a$, where a is constant, is called a power function.

ALGEBRAIC FUNCTIONS POLYNOMIALS

A function P is called a polynomial if

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

where n is a nonnegative integer and the numbers $a_0, a_1, a_2, ..., a_n$ are constants called the coefficients of the

polynomial.

ALGEBRAIC FUNCTIONS RATIONAL FUNCTIONS

A rational function *f* is a ratio of two polynomials

$$f(x) = \frac{P(x)}{Q(x)}$$

where P and Q are polynomials.

■ The domain consists of all values of x such that $Q(x) \neq 0$.

TRANSCENDENTAL FUNCTIONS

TRIGONOMETRIC FUNCTIONS

$$f(x) = \sin x$$

$$D = (-\infty, \infty)$$

$$g(x) = \cos x$$

$$R = [-1, 1]$$

$$\sin(x + k2\pi) = \sin x$$

$$cos(x+k2\pi) = cos x; k \in \mathbb{Z}$$

(a) $f(x) = \sin x$

(b) $g(x) = \cos x$

© Thomson Higher Education

TRANSCENDENTAL FUNCTIONS TRIGONOMETRIC FUNCTIONS

$$\tan x = \frac{\sin x}{\cos x} \qquad x \neq \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \dots$$

$$R = (-\infty, \infty)$$

$$\tan(x + k\pi) = \tan x; \quad k \in \mathbb{Z}$$

TRANSCENDENTAL FUNCTIONS TRIGONOMETRIC FUNCTIONS

The reciprocals of the sine, cosine, and tangent functions are

$$\cos ecx = \frac{1}{\sin x}$$

$$\sec x = \frac{1}{\cos x}$$

$$\cot anx = \frac{1}{\tan x}$$

TRANSCENDENTAL FUNCTIONS EXPONENTIAL FUNCTIONS

The **exponential functions** are the functions of the form $f(x) = a^x$, where the base a is a positive constant.

- The graphs of $y = 2^x$ and $y = (0.5)^x$ are shown.
- In both cases, the domain is $(-\infty, \infty)$ and the range is $(0, \infty)$.

TRANSCENDENTAL FUNCTIONS

LOGARITHMIC FUNCTIONS

The logarithmic functions $f(x) = \log_a x$,

where the base *a* is a positive constant, are the inverse functions of the exponential functions.

The figure shows the graphs of four logarithmic functions with various bases.

PIECEWISE-DEFINED FUNCTIONS

Example:

$$f(x) = \begin{cases} x+3, & x < 1 \\ (x-2)^2, & x \ge 1 \end{cases}.$$

TRANSFORMATIONS OF FUNCTION

■Label the following graph from the graph of the function y=f(x) shown in the part (a) y=f(x)-2, y=f(x-2), y=-f(x), y=2f(x), y=f(-x)?

SHIFTING

- Suppose c > 0. Why don't we consider the case c<0?
 - To obtain the graph of y = f(x) + c, shift the graph of y = f(x) a distance c units upward.
 - To obtain the graph of y = f(x) c, shift the graph of y = f(x) a distance c units downward.

SHIFTING

- To obtain the graph of y = f(x c), shift the graph of y = f(x) a distance c units to the right.
- To obtain the graph of y = f(x + c), shift the graph of y = f(x) a distance c units to the left.

NEW FUNCTIONS FROM OLD FUNCTIONS

■Label the following graph from the graph of the function y=f(x) shown in the part (a) y=f(x)-2, y=f(x-2), y=-f(x), y=2f(x), y=f(-x)?

NEW FUNCTIONS FROM OLD FUNCTIONS

Label the following graph from the graph of the function $y = \sqrt{x}$ shown in the part (a): y=f(x)-2, y=f(x-2), y=-f(x), y=2f(x), y=f(-x)?

by shifting 2 units downward.

by shifting 2 units to the right.

- •Suppose c > 1.
 - To obtain the graph of y = cf(x), stretch the graph of y = f(x) vertically by a factor of c.
 - To obtain the graph
 of y = (1/c)f(x),
 compress the graph
 of y = f(x) vertically by
 a factor of c.

How about the case c<1?

- In order to obtain the graph of y = f(cx), compress the graph of y = f(x) horizontally by a factor of c.
- To obtain the graph
 of y = f(x/c), stretch
 the graph of y = f(x)
 horizontally by a factor
 of c.

- In order to obtain the graph of y = -f(x), reflect the graph of y = f(x) about the x-axis.
- To obtain the graph of y = f(-x), reflect the graph of y = f(x) about the y-axis.

NEW FUNCTIONS FROM OLD FUNCTIONS

Label the following graph from the graph of the function $y = \sqrt{x}$ shown in the part (a): y=f(x)-2, y=f(x-2), y=-f(x), y=2f(x), y=f(-x)?

NEW FUNCTIONS FROM OLD FUNCTIONS

Label the following graph from the graph of the function $y = \sqrt{x}$ shown in the part (a):

$$y=f(x)-2$$
, $y=f(x-2)$, $y=-f(x)$, $y=2f(x)$, $y=f(-x)$?

$$y = -\sqrt{x}$$

by reflecting about the x-axis.

$$y = 2\sqrt{x}$$

by stretching vertically by a factor of 2.

$$y = \sqrt{-x}$$

by reflecting about the y-axis

- The figure illustrates these stretching
- transformations when applied to the cosine
- function with c = 2.

Example

Suppose that the graph of f is given.

Describe how the graph of the function f(x-2)+2 can be obtained from the graph of f.

Select the correct answer.

- a. Shift the graph 2 units to the left and 2 units down.
- b. Shift the graph 2 units to the right and 2 units down.
- c. Shift the graph 2 units to the right and 2 units up.
- d. Shift the graph 2 units to the left and 2 units up.
- e. none of these

Answer: c

QUIZ QUESTIONS

Label the following graphs: f(x), $\frac{1}{2}f(x)$, $f(\frac{1}{2}x)$.

Answer: $\frac{1}{2} f(x)$, $f(\frac{1}{2} x)$, f(x)

Thanks