MOS Differential Amplifier/Pair

- Source Coupled Circuit:
 - Two matched MOS-FET (Same K and V_T)
 - Their Sources are connected together
 - The input signals are connected to the M's Gates
 - A Constant DC biasing Current 'I' is used to set the DC operating point.

- Source Coupled Circuit Large Signal Analysis (Saturation Mode)
 - If Gate 1 and 2 are connected together (Common mode signal), then the two drain currents will be equal

$$v_{GS1} = v_{GS2} = v_{CM}$$

$$i_{D1}=i_{D2}=\frac{\mathrm{I}}{2}$$

$$v_{D1} = v_{D2} = V_{DD} - \frac{I}{2} R_{D}$$

- Differential Amplifier Large Signal Analysis (Cont.):
 - Changing the value of the common mode signal will not change the transistors currents

$$v_{GS1} = v_{GS2} = v_{CM}$$

$$v_{D1} = v_{D2} = V_{DD} - \frac{I}{2} R_D$$

The DA rejects the common mode Signal

MOS Differential Amplifier/Pair

- Source Coupled Circuit Large Signal Analysis:
 - If Gate 1 and 2 are not connected together (Differential signal), then the two drain currents won't be equal

$$v_{GS1} - v_{GS2} = v_{ID}$$

$$i_{D1} \neq i_{D2}$$

If v_{ID} >>0 such that M1 is Linear and M2 is Off

$$i_{D1} = I \& i_{D2} = 0$$

If v_{ID} <<0 such that M1 is OFF and M2 is Linear

$$i_{D1} = 0 \& i_{D2} = I$$

MOS Differential Amplifier/Pair

- Source Coupled Circuit Large Signal Analysis:
 - M1 and M2 are Saturated and matched

$$i_{D1} = \frac{K}{2}(v_{GS1} - V_t)^2$$
 $i_{D2} = \frac{K}{2}(v_{GS2} - V_t)^2$

$$i_{D1} + i_{D2} = I$$

$$\sqrt{i_{D1}} = \sqrt{\frac{K}{2}}(v_{GS1} - V_t) \sqrt{i_{D2}} = \sqrt{\frac{K}{2}}(v_{GS2} - V_t)$$

$$\sqrt{i_{D1}} - \sqrt{i_{D2}} = \sqrt{\frac{K}{2}} v_{ID}$$
 $2\sqrt{i_{D1}i_{D2}} = I - \frac{K}{2} v_{ID}^2$

$$2\sqrt{i_{D1}i_{D2}} = I - \frac{K}{2}v_{ID}^2$$

$$i_{D1} = \frac{I}{2} + \sqrt{KI} \left(\frac{v_{ID}}{2} \right) \sqrt{1 - \frac{\left(\frac{v_{ID}}{2} \right)^2}{I/K}}$$

$$i_{D2} = \frac{I}{2} - \sqrt{KI} \left(\frac{v_{ID}}{2} \right) \sqrt{1 - \frac{\left(\frac{v_{ID}}{2} \right)^2}{I/K}}$$

Summary of MOSFET Differential Amplifier Analysis

Example(1)

Analyze the MOS-differential amplifier circuit shown in Figure if M1 and M2 are matched with K = 2mA/V^2 , V_T = 1V and r_{ds} is neglected.M3 and M4 are matched with K = 1mA/V^2 , V_T = 1V and r_{ds} = $100\text{K}\ \Omega$. Calculate:

- (a) ALL DC Drain currents.
- (b) The differential mode gain (Adm(
- c) The common mode gain (Ac.
- (d) The CMRR in dB.

Solution:

(a) DC Analysis

For M3
$$VGS2=VDS3$$

$$VGS2=VDS3$$

$$M3 is Saturation$$

$$VU.1 | 0 = 10 \text{ Tos} + VDS3$$

$$| 0 = 10 \text{ Tos} + VGJ3$$

$$ID3 = \frac{10 - VGS3}{10}$$

$$ID3 = 1 - 0.1 VGS3$$

$$ID3 = \frac{1}{2}(VGS-VT)$$

$$1 - 0.1 VGJ2 = \frac{1}{2}(VGS-VT)$$

$$2 - 0.2 VGS3 = VGS3-2 VGS3-1$$

:.
$$ID_1 = ID_2 = \frac{ISS}{2}$$

$$ID_1 = ID_2 = 0.7877mA$$

$$ym = \sqrt{2} K ID$$

 $ym = 9mz = 9m = \sqrt{2} X 2 X 0.7877$
 $ym = 1.2454 m D = 1.2454 m AIV$

*
$$IdS_1 = IdS_2 = \frac{VA_1}{ID_1} = \frac{\infty}{ID_1} = \infty$$

(b) AC Anaysis

4 Common Mode Rejection Ratio

Example(2)

Repeat the last example if $V_{A1} = V_{A2} = 100V$ (rds of M1 and M2 are not neglected)

.Solution:(1) DC Drain currents will not changed

$$\frac{1}{4}$$
 $\frac{1}{4}$ $\frac{1}$

3 Common Mude sam (ACM) Un = Vic , Viz = Vic V5≠° Using half- Circuit concept G Vic €2Rss Amplication factor M= 9m rds = 32123

Example(3)

Analyze the MOS-differential amplifier circuit shown in Figure if M1 and M2 are matched with $g_m = 2mA/V$ and r_{ds} is neglected. Calculate:

- (a) The differential mode gain (A_{dm}).
- (b) The common mode gain (A_{cm}).
- (c) The CMRR in dB.

Solution:

(a) The differential mode gain (A_{dm}).

Using the half-Circuit Concept

$$v_{i2} = v_{ic} - \frac{v_{id}}{2}$$

 $v_{i1} = v_{ic} + \frac{v_{id}}{2}$, $v_{i2} = v_{ic} - \frac{v_{id}}{2}$ $v_{i1} = v_{ic} + \frac{v_{id}}{2}$, $v_{i2} = v_{ic} - \frac{v_{id}}{2}$; $v_{i5} = 0$

$$Adm = \frac{V \cdot od}{V \cdot id} = \frac{V \cdot od/2}{V \cdot id/2} \qquad \frac{V \cdot id}{2} \qquad \frac{G}{2}$$

$$Adm = \frac{-9m V \cdot g \cdot s}{V \cdot g \cdot s} \qquad \frac{G}{2}$$

(b) The common mode gain (
$$A_{cm}$$
).

 $Vij = Vic$, $Viz = Vic$
 $Vic = Vgs + gmVgs(2Rss)$
 $Vic = Vgs + gmVgs(2Rss)$
 $Vic = [1 + 2gmRss]Vs]$
 V

$$Acm = \frac{-9m(\frac{R}{2}|/RD)}{[1+29mRss]}$$

$$Acm = \frac{-2[10/110]}{1 + 2 \times 2 \times 10^{\circ}} = \frac{-10}{1 + 40^{\circ}}$$

*
$$CMRR = \frac{Adm}{Acm} = \frac{10}{0.02494} = 401$$

