

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

		Отчёт			
	по лабо	раторной ра	боте №2		
Название	«Определение фун	нкций пользова	«REJE		
Дисциплина	«Функциональное и логическое программирование»				
Студент	ИУ7-65Б			Бугаенко А.П.	
			(подпись, дата)	<u>(</u> Фамилия И.О.)	
Преподователь				Толпинская Н.Б.	
			(подпись, дата)	(Фамилия И.О.)	

1 Цели и задачи работы

Цель работы — приобрести навыки создания и использования функций пользователя в Lisp. Задачи работы — изучить работу интерпретатора Lisp, алгоритм работы функции eval, структуру и порядок обработки программы в Lisp.

2 Теоретические вопросы

2.1 Базис Lisp

Базис Lisp составляют атомы, структуры, базовые функции и встроенные и спецальные функционалы.

2.2 Классификация функций

Функция - однозначное отображение множества значений аргументов в значение функции.

Функциональный язык - тот, который базируется на понятии функции.

Функциональность системы - предоставляемые пользователю возможности.

Классификация функций по аргументам и поведению.

- чистые функции (математические функции) имеют фиксированное число аргументов, для определённого набора аргументов один фиксированный результат
- формы (специальные функции) функции, принимающие на вход произвольное количество аргументов, или по-разному обрабатывающее аргументы.
- псевдо-функции функции, обладающие побочным эффектом. Побочный эффект событие, изменяющее сознание системы. Пример setf, связывающее атом и значение и format, выводящее значение на экран.
- функционалы принимают функции в качестве параметров либо в качестве возвращаемого значения выступает функция.

Классификация функций по именованию.

- именованные есть имя, определяется через defun. Специальные символы (T, Nil) и самоопределимые атомы (натуральные, вещественные числа, строки) не могут выступать в роли функции.
 - неименованные нет имени, через lambda.

2.3 Способы создания функций

Создание именованной функции - синтаксис: (defun имя список_аргументов лямбда-выражение)

Создание неименованной функции - синтаксис: (lambda список_аргументов лямбда-выражение) (lambda $(x_1, ..., x_k)$ форма)

2.4 Функции car и cdr

саг и cdr - базовые функции доступа к данным, хранящихся в формате списка. car - принимает точечную пару или список в качестве аргумента и возвращает первый элемент (голову, значение по саг-указателю) или nil, если на вход был подан пустой список.

cdr - принимает точечную пару или список и возвращает хвост (значение по cdr-указателю). Если список, поданный на вход непустой, то возвращается список из всех элементов, кроме первого. Если пустой, возвращается Nil.

2.5 Назначение и отличия в работе cons и list

cons - создаёт списковую ячейку и ставит указатели на два аргумента, таким образом объединяя свои аргументы в точечную пару. list - создаёт список из значений поданных на вход аргументов, причём количество аргументов может быть произвольным.

- 3 Практические задания
- 3.1 Задание 1

Составить диаграмму вычисления следующих выражений:

3.2 Задание 2

Написать функцию, вычисляющую гипотенузу прямоугольного треугольника по заданным катетам и составить диаграмму её вычисления.

$$(\text{defun hypot (a b) (sqrt (+ (* a a) (* b b)))})$$

3.3 Задание 3

Написать функцию, вычисляющую объем параллелепипеда по 3-м его сторонам, и составить диаграмму ее вычисления.

(defun volume (a b c) (* a b c))

3.4 Задание 4

Каковы результаты вычисления следующих выражений? (объяснить возможную ошибку и варианты ее устранения)

 $(list 'a c) \to ошибка, атом с не связан ни с каким значением$

 $(\cos 'a (b c)) \to \text{ошибка}, \text{список не передаётся через quote, и атомы b, c не связаны ни c каким значением}$

$$(\cos 'a '(b c)) \rightarrow (a b c)$$

(caddy (1 2 3 4 5) \rightarrow ошибка, некорректный вызов функции, атом caddy не связан ни с каким лямбда-выражением

 $(\cos 'a 'b 'c) \to \text{ошибка}, \cos принимает на вход только два аргумента$

(list 'a (b c)) \to ошибка, список не передаётся через quote, и атомы b, с не связаны ни с каким значением

(list a '(b c)) → ошибка, атом а не связан ни с каким значением

 $(list (+ 1 '(length '(1 2 3)))) \rightarrow ошибка, выражение '(length '(1 2 3)) не является числом$

3.5 Задание 5

Hаписать функцию longer_then от двух списков-аргументов, которая возвращает Т, если первый аргумент имеет большую длину.

```
(defun longer_then (a b) (> (length a) (length b)))
```

3.6 Задание 6

Каковы результаты вычисления следующих выражений?

```
(\cos 3 \ (\text{list } 5 \ 6)) \rightarrow (3 \ 5 \ 6) (\cos 3 \ '(\text{list } 5 \ 6)) \rightarrow (3 \ \text{list } 5 \ 6) (\text{list } 3 \ '\text{from } 9 \ '\text{lives } (-9 \ 3)) \rightarrow (\text{list } 3 \ '\text{from } 9 \ '\text{lives } (-9 \ 3)) (+ \ (\text{length for } 2 \ \text{too})) \ (\text{car } '(21 \ 22 \ 23))) \rightarrow \text{ошибка, атомы for и too не связаны ни с какими значениями} (\text{cdr '(cons is short for ans})) \rightarrow (\text{cdr '(cons is short for ans})) (\text{car (list one two})) \rightarrow \text{ошибка, атомы one и too не связаны ни с какими значениями} (\text{car (list 'one 'two})) \rightarrow \text{one}
```

3.7 Задание 7

Дана функция (defun mystery (x) (list (second x) (first x))). Какие результаты вычисления следующих выражений?

(mystery (one two)) \rightarrow ошибка, атомы one и two не связаны ни с какими значениями (mystery one 'two)) \rightarrow ошибка, функция принимает на вход только один аргумент (mystery (last one two)) \rightarrow ошика, на вход функции last должен подаваться список (mystery free) \rightarrow ошибка, атом free не связан ни с каким значением

3.8 Задание 8

Написать функцию, которая переводит температуру в системе Фаренгейта температуру по Цельсию (defum f-to-c (temp)...). Формулы: c = 5/9*(f-320); f = 9/5*c+32.0. Как бы назывался роман Р.Брэдбери "+451 по Фаренгейту"в системе по Цельсию?

```
(defun f-to-c (temp) (* (/ 5 9) (- temp 32.0))) "+451 по Фаренгейту" \rightarrow "+232.77779 градус по Цельсию"
```

3.9 Задание 9

```
Что получится при вычисления каждого из выражений? (list 'cons t NIL) \rightarrow (cons t Nil) (eval (list 'cons t NIL)) \rightarrow (t) (eval (eval (list 'cons t NIL))) \rightarrow ошибка, t - не функция (apply #cons "(t NIL)) \rightarrow ошибка, возможно имелось ввиду (apply #'cons '(t NIL)), в этом случае (t) (eval NIL) \rightarrow Nil (list 'eval NIL) \rightarrow (eval Nil) (eval (list 'eval NIL)) \rightarrow Nil
```