

IOT Architecture

Overarching IOT Reference Architecture

Overarching IOT Reference Architecture

architectures

The Different Architectural Layers

Data Analytics Lifecycle

Next: The different architectural layers making up the barebones, minimum common considerations for any IOT deployment

Device Communication

Device Communication

Communication in IOT

Two Types of Communication

IOT Communication

Communication TYPE 1

TCP IP (PROTOCOL STACK)		
Lower Level Communication		
Wi-Fi		Typical nmunication protocols
Zigbee		
Cellular (2g, 3g, LTE)		
Bluetooth		
Higher Level Communication		
MQTT		
COAP		
XMPP		
HTTP (REST)		
		=

Examples

on other end

It can transfer large amounts of data and requires powerful devices to be able do so

ZigBee

Bluetooth

Communication TYPE 2

TCP IP (PROTOCOL STACK)		
Lower Level Communication		
Wi-Fi		
Zigbee		
Cellular (2g, 3g, LTE)		
Bluetooth	A new set of standards, that address the specific nuances of IOT devices has emerged	
Higher Level Communication		
MQTT		
COAP		
XMPP		
HTTP (REST)		
		•

Communication **TYPE 2**

TCP IP (PROTOCOL STACK)		
Lower Level Communication		
Wi-Fi		
Zigbee		
Cellular (2g, 3g, LTE)		
Bluetooth		
Higher Level Communication		
MQTT		
COAP	An older protocol , (basis for Zaber), now	
XMPP	being used by	-
HTTP (REST)	in the IOT ecosystem	

Newer IOT Communication Protocols

Newer IOT Communication Protocols

IOT Gateway

IOT Gateway Devices

IOT gateways are devices consisting of both hardware and software elements

Some of them are pure software

- **Example**: Eclipse Foundation has a new gateway software which enables you to
 - ☐ Work with multiple IOT elements
 - ☐ Create abstractions

IOT Gateway Devices

Acts like a firewall in an enterprise scenario which screens all output requests

Is able to do something like a protocol translation (between devices working with different protocols)

Is able to work with and translate to diverse protocols

Has software elements which can do some aggregation, and analytics

IOT Gateway Devices

In some cases, IOT gateway devices can block all but valid packets passing through at network level

They can channel requests to specific elements depending upon the nature of the request

There is no standard definition of gateways

Some have a software-only approach, others a hardware-only approach like Dell, Cisco, and Intel (even though they have very complex software inside)

IOT gateways have emerged as a way to

- Manage the complexity and variety of devices
- Lower the complexity of interaction between the <u>'outside world'</u> (the internet) and the <u>local deployment of devices</u>

Postscapes

IOT GATEWAY MARKET

Software / Edge Analytics 🔷

Hardware Vendors

Programmable APIs

Allows programs to work with the internal embedded system

IOT platforms provide abstractions that expose the underlying embedded system using a structured API

To make API output available to other programs, Universal Interfaces can be deployed

Universal Interfaces: Make APIs more programmable

REST-based interface

Produces an internet addressable URI to access, manipulate, and claim the output of the underlying device

Web of Things

- Relies on a protocol like REST to connect to the internet
- Produces far better generic abstractions when compared to proprietary APIs

Device interfaces

Device interfaces and data, in the form of **APIs** and **programming abstractions** enable productive programming with IOT

Universal Interfaces: Make APIs more programmable

Tool kits

Tool kits with standard APIs and programs to work with, are available from popular tool vendors like **Microsoft**, **Cisco**, and **Dell**

Achievement

To be able to write an end-to-end computer program with detailed logic, without worrying about the internals of the device, or its input/output

Adoption accelerator

This is an accelerator for the adoption of IOT in broader enterprise and analytics applications

End-To-End Life Cycle

- Programming is important, but so is data
- Device data has an end-to-end lifecycle

Streaming Data Management

Mechanisms for dealing with large data streams are needed

proprietary and standards-based tools

Open Source for data science lifecycle management

Non-Functional Requirements: Storage

Architecture covers the non-functional requirements of any system

Non-Functional Requirements: Storage

Architecture covers the non-functional requirements of any system

Storage

Storage Models

To work with the unreliable storage, place data in a programming abstraction...

Local, device-based storage

Gateway storage

Enterprise-level IOT
equipment like
gateways can also act
as storage devices

...caution customers about the ramifications of cloud-based storage

Intranet/Extranet/Internet

Storage Models

Access to **multiple devices** is no longer a necessity

Cheap storage has a multiplier effect on the IOT ecosystem

Lower number of parameters to be monitored in an application when space is no longer an issue

Reliability of Communication (Protocols)

Reliability of Communication (Protocols)

Reliability in IOT refers to reliable communication

<u>Data</u> from devices should not be **lost in transit** on their way...

Protocol must ensure that **delivery** is **guaranteed**

New protocols like
MQTT enable more
reliable messaging
from one source to
the other

...to an internet service/internet storage

Reliability of Communication (Software)

Appropriate Quality Control Measures

Reliability is crucial at the software level, the hardware level, and at the communication level

Certification of devices

is also important from security perspective

Appropriate quality control procedures in fabrication and deployment of hardware (critical)

Security of Devices

Security of Devices

Security of Software

Security software is important; each sensor requires one It protects the sensor from rogue software

Keying in a unique security code to enable updates, is critical

Shared keys
between
software
developers is a
good safety
measure

Security of Data

Data management must meet CIA standards of Confidentiality, Integrity, Availability

Only **authorised software**, or personnel with the <u>right</u> <u>credentials</u>, should be able to access it

Data should not be manipulated or tampered with

Confidentiality measures

such as <u>digital keys or</u> <u>signatures</u> protect critical sensor data

Security and Availability of Data

Availability

Ensuring that devices are not <u>flooded with too many requests</u> (or denial of service attacks/DoS)

Awareness of <u>expected throughput</u> from devices is critical

Throughput shouldn't be <u>overwhelmed with demands</u> for large amounts data at the same time

Authentication or Authorization

Authorized?

Authentication or Authorization

Authentication or Authorization

