SEOUL NATIONAL UNIVERSITY

LECTURE NOTE

Introduction to Stochastic Differential Equations

Lecture by Seo Insuk Notes taken by Lee Youngjae

Contents

0	Introduction		3
Ι	Stochastic calculus for finance		5
1	General Probability Theory		6
	1.1 Infinite Probability Spaces		6
	1.2 Random Variables and Distributions		9
	1.3 Expectations		10
	1.4 Convention of Integrals		13
	1.5 Computation of Expectations		14
2	Information and Conditioning		15
	2.1 Information and σ -algebras		15
	2.2 Independence		16
	2.3 Conditional Expectation		19
3	Brownian Motions		23
	3.1 Introduction		23
	3.2 Scaled Random Walks		23
II	I Introduction to stochastic integral		27
_			28
2			
	2.1 Definition of Brownian Motion	• •	28
3	Constuction of Brownian Motion		31
	3.1 Wiener Space		31
	3.2 Borel-Cantelli Lemma and Chebyshev Inequality		34
	3.3 Kolmogorov's Extension and Continuity Theorems		34

Appendices				
2.3	Wiener Integral	37		
3.4	Levy's Interpolation Method	36		

Chapter o

Introduction

E-mail: *insuk.seo@snu.ac.kr*, 27-212 Office Hour: Tuesday 15:00 - 16:00 Grading

- Mid-terms 1 (15%, 10/10 or 17)
- Mid-terms 2 (15%, 11/7)
- Fianl-term (40%)
- Assignment (20%, 8-10 times)
- Attendance (10%, absent: -2%, late: -1%)

Let X be a standard normal random variable in \mathbb{R} . i.e., $\mathbb{P}[X \in [a,b]] = \int_a^b \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$. (Central Limit Theorem) If $x_1, x_2, \dots, x_n \in X$, $E(x_i) = m$, $Var(x_i) = \sigma^2$, then

$$\frac{\frac{x_1-m}{\sigma} + \frac{x_2-m}{\sigma} + \dots + \frac{x_n-m}{\sigma}}{\sqrt{n}} \to X$$

In this class, we study dynamic version of this theorem. If $(W_t)_{t\geq 0}$ be a fluctuation, then $(W_t)_{t\geq 0}$ be a random variable in C[0,T]

Example.
$$\frac{dX_t}{dt} = rX_t; dX_1 = rX_t dt$$
. Then, $X_t = X_0 e^{rt}$ (unrisky assets, bank) $dX_t = rX_t dt + \sigma X_t dW_t$, σ : volatility (risky assets, stock)

We will study:

- 1. Probability Space
- 2. Random Variable
- 3. Expectation

Textbooks:

- 1. Stochastic Calculus for Finance II (Shreve), covering chapter 1-3 or 4
- 2. Introduction to Stochastic Integration (Hui-Hsiung Kuo)

Part I Stochastic calculus for finance

Chapter 1

General Probability Theory

1.1 Infinite Probability Spaces

There are three elements consisting probability space:

- *S*: Sample space
- \mathcal{E} : Family of events $\mathcal{E} \subseteq 2^S$ (σ -algebra in measure theory)
- \mathbb{P} : probability $\Rightarrow \mathbb{P}(E)$ is defined for all $E \in \mathcal{E}$ (μ with $\mu(S) = 1$)

Example.

- 1. Toss a coin twice (H for Head, T for Tail) Then, $S = \{HH, HT, TT, TT\}$
- 2. Uniform random variable in $[0,1]^3$ Then, $S=[0,1]^3$. If $E=[0,\frac{1}{2}]^3$, then $\mathbb{P}(E)=Vol(E)=\frac{1}{8}$

How to define \mathcal{E} ?

In example 2, let $\mathcal{E}=$ family of all subsets of $[0,1]^3$ naively. But Banach-Tarski Paradox says there are disjoint sets E,F with $\mathbb{P}(E\cup F)\neq \mathbb{P}(E)+\mathbb{P}(F)$ in this \mathcal{E} . Therefore we cannot naively set \mathcal{E} (Use measure theory)

In example 1, suppose that we cannot see the second flip. If $\{HH\} \notin \mathcal{E}$ and $\{HT, HH\} \in \mathcal{E}$, then $\mathcal{E} = \{\phi, \{HH, HT\}, \{TH, TT\}, \{HH, HT, TH, TT\}\}$

Definition 1.1.1 (Measure)

Let Ω be a non-empty set and \mathcal{F} be family of subsets of Ω with

1.
$$\phi \in \mathcal{F}$$

2.
$$A \in \mathcal{F} \Rightarrow A^{C} \in \mathcal{F}$$

3.
$$A_1, A_2, \dots \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$$
.

We say \mathcal{F} as σ -algebra or σ -field, $A \in \mathcal{F}$ as measurable, and Ω as measurable space.

Exercises.

- 1) $\Omega \in \mathcal{F}$
- 2) $A_1, A_2, \dots \in \mathcal{F}$, then $A_1 \cap A_2 \dots \in \mathcal{F}$
- 3) $A_1, A_2, \dots \in A_n \in \mathcal{F}$, then $A_1 \cup \dots \cup A_n, A_1 \cap \dots \cap A_n \in \mathcal{F}$.
- 4) $A, B \in \mathcal{F}$, then $A B \in \mathcal{F}$

Definition 1.1.2 (Topological Space)

(See Rudin: *Real and Complex Analysis, Chapter 1.*) Let Θ be non-empty set and τ be family of subsets of Θ with

- 1. $\phi,\Theta \in \tau$
- 2. $V_1, \dots V_n \in \tau \Rightarrow V_1 \cap \dots \cap V_n \in \tau$
- 3. $V_{\alpha} \in \tau \ \forall \alpha \in I \Rightarrow \bigcup_{\alpha \in I} V_{\alpha} \in \tau$.

We say $V \in \tau$ be an **open set**, and (Θ, τ) be a **topological space**.

Definition 1.1.3 (Measurable Function)

$$f:(\Omega,\mathcal{F}) o (\Theta, au)$$
 is measurable if $f^{-1}(V) \in \mathcal{F} \ \ orall V \in au$

Definition 1.1.4 (Positive Measure)

Let Ω be non-empty set and $\mathcal F$ be σ -algebra. Then $\mu:\mathcal F\to [0,\infty]$ is called **measurable** if

- 1. A_1, A_2, \cdots : disjoint members of $\mathcal{F} \Rightarrow \mu(A_1 \cup A_2 \cup \cdots) = \sum_{i=1}^{\infty} \mu(A_i)$
- 2. $\mu(A) < \infty$ for some $A \in \mathcal{F}$,

and $(\Omega, \mathcal{F}, \mu)$ is called a **measure space**.

Definition 1.1.5 (probability space, random variable)

- 1. $(\Omega, \mathcal{F}, \mathbb{P})$ is called a **probability space** if $\mathbb{P}(\Omega) = 1$.
- 2. *X* is called a **random variable** if it is a function from $(\Omega, \mathcal{F}, \mathbb{P})$ to \mathbb{R}

Next Class

- Borel sets on \mathbb{R} or \mathbb{R}^d
- · Lebesgue Measure
- Lebesgue Integral (Define Expectation of random variable)

Last class, we define a sample space Ω , a σ -algebra \mathcal{F} , and a (positive) measure $\mu : \mathcal{F} \to [0, \infty]$.

Exercises.

•
$$A_1 \subseteq A_2 \subseteq \cdots \Rightarrow \mu(\bigcup_{i=1}^{\infty} A_i) = \lim_{n \to \infty} \mu(A_n)$$

•
$$A_1 \supseteq A_2 \supseteq \cdots$$
, $\mu(A_1) < \infty \Rightarrow \mu(\bigcap_{i=1}^{\infty} A_i) = \lim_{n \to \infty} \mu(A_n)$

Theorem 1.1.6 (Rudin 1.10)

Let \mathcal{F}_0 be a collection of subset of Ω . Then, $\exists ! \mathcal{F}^*$ minimal σ -algebra containing \mathcal{F}_0 .

Proof. Let $\{\mathcal{F}_{\alpha}, \alpha \in I\}$ be a family of *σ*-algebra containing \mathcal{F}_0 . Then, $\mathcal{F}^* = \bigcap_{\alpha \in I} F_{\alpha}$ satisfies the three condition: 1) contain \mathcal{F}_0 2) *σ*-algebra 3) minimal (trivial, $\mathcal{F}^* \subseteq \mathcal{F}_{\alpha}$)

Definition 1.1.7 (Borel measurable)

 \mathcal{B} is a **Borel** σ -algebra on the topological space (Θ, τ) if \mathcal{B} is a minimal σ -algebra containing τ , and \mathcal{B} is a **Borel measurable** if $\mathcal{B} \in \mathcal{B}$.

Remark (Completion of measure space, Rudin 1.15).

Consider an extension $(\Omega, \mathcal{F}, \mu) \to (\Omega, \overline{\mathcal{F}}, \mu)$ where

1.
$$\overline{\mathcal{F}} = \{A \cup N : A \in \mathcal{F}, N \subseteq A_0 \in \mathcal{F}, \mu(A_0) = 0\}$$

$$\mathbf{2.}\ \mu(A\cup N)=\mu(A)$$

Then, (Check!)

1. (well-definedness)
$$A_1 \cup N_1 = A_2 \cup N_2 \Rightarrow \mu(A_1) = \mu(A_2)$$

2.
$$\mu : \overline{\mathcal{F}}$$
 is σ -algebra.

3.
$$\mu: \overline{\mathcal{F}} \to [0, \infty]$$
 is a measure

Example.

1) R

$$\mathcal{F}_0 = \tau \xrightarrow{\quad 1.10 \quad} \mathcal{B} \xrightarrow{\text{completion}} \overline{\mathcal{B}}$$

$$\mathcal{L} \xrightarrow{\text{Rudin CH 2}} \mathcal{L} \xrightarrow{\text{completion}} \mathcal{L}$$

2) $C[0,T] = \Omega = \{f; f : [0,T] \to \mathbb{R}, \text{continuous} \}.$ Define $\mathcal{F}_0 = \{\bigcup_{t_1,t_2,\cdots,t_k} (A_1,A_2,\cdots,A_k) : 0 \le t_1 < t_2 < \cdots < t_k \le T; A_1,\cdots A_k \in \overline{\mathcal{B}} \}.$ We call $\{f \in C[0,T] : f(t_1) \in A_1, f(t_2) \in A_2,\cdots,f(t_k) \in A_k \}$ as **cylindrical set**. Consider

$$\begin{array}{ccc} \mathcal{F}_0 \stackrel{1.10}{\longrightarrow} & \mathcal{B} \stackrel{completion}{\longrightarrow} & \overline{\mathcal{B}} \\ \\ \mathbb{P}_{BM} \stackrel{KET}{\longrightarrow} & \mathbb{P}_{BM} \stackrel{completion}{\longrightarrow} & \mathbb{P}_{BM}^* \end{array}$$

(KET refers Kolmogorov's Extension Thm)

1.2 Random Variables and Distributions

Definition 1.2.1

 $f: \Omega \to \mathbb{R}$ is measurable if $f^{-1}(V) \in \mathcal{F}$ for any open set $V \subseteq \mathbb{R}$.

Remark. $\mathcal{B}(\mathbb{R})$ = Borel σ -algebra in \mathbb{R} .

Remark. If f: measurable, then $f^{-1}(B) \in \mathcal{F}$ for any $B \in \mathcal{B}(\mathbb{R})$.

Proof. Let
$$G = \{A \subseteq \mathbb{R} : f^{-1}(A) \in \mathcal{F}\}$$
. Then, $\tau \subseteq G$, $G : \sigma$ -algebra (check!), hence $\mathcal{B}(\mathbb{R}) \subseteq G$.

Definition 1.2.2

- $(\Omega, \mathcal{F}, \mathbb{P})$ is a **probability space** if $(\mathbb{P}(\Omega) = 1$.
- *X* is a **random variable** if $X : \Omega \to \mathbb{R}$ is measurable.

Example.

1. Toss a coin Twice.

$$\Omega = \{HH, HT, TH, TT\}, \mathcal{F} = 2^{\Omega} = \{\text{all subsets of } \Omega\}, \mathbb{P}(A) = \frac{1}{4}|A|, \ A \in \mathcal{F}.$$
 Then, $X = \text{the number of } H'\text{s is a random variable with } X(HH) = 2, X(HT) = X(TH) = 1, X(TT) = 1.$

2. Uniform random variable in [0,1]

$$\Omega = [0,1], \mathcal{F} = \{B \in \mathcal{B}(\mathbb{R}) : B \subseteq [0,1]\}, \mathbb{P}(B) = \mathcal{L}(B) \ (\mathbb{P}([0,1]) = \mathcal{L}([0,1]) = 1).$$

Then, $X : [0,1] \to \mathbb{R}$ with $X(x) = 1$ is a (uniform) random variable in $[0,1]$.

Remark.
$$\mathcal{L}$$
: Lebesgue measure on \mathbb{R} . i.e., $\mathcal{L}(a,b)=b-a$. Then, $\mathcal{L}(\{a\})=0$ $(\because \{a\}=\bigcap_{i=1}^{\infty}(a-\frac{1}{n},a+\frac{1}{n})\Rightarrow \mathcal{L}(\{a\})=\lim_{n\to\infty}\mathcal{L}((a-\frac{1}{n},a+\frac{1}{n}))=0)$ Similarly, $\mathcal{L}([a,b])=\mathcal{L}([a,b))=\mathcal{L}((a,b])=b-a$, $\mathcal{L}(\mathbb{Q})=\sum_{q\in\mathbb{Q}}\mathcal{L}(\{q\})=0$.

Return to uniform random variable,

$$\mathbb{P}[X \in (a,b)] = \mathbb{P}[\{x : X(x) \in (a,b)\}] = \mathbb{P}[(a,b)] = b - a.$$

Definition 1.2.3 (Distribution measure on *X*)

X is a random variable in $(\Omega, \mathcal{F}, \mathbb{P})$. μ_X is a **distribution measure** on *X* if μ_X is a probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that

$$\mu_X(B) = \mathbb{P}[X \in B] = \mathbb{P}[\{\omega : X(\omega) \in B\}] = \mathbb{P}[X^{-1}(B)] \ \forall B \in \mathcal{B}(\mathbb{R})$$

Definition 1.2.4 (Probability density function)

f is a **probability density function** of X if $\mu_X((a,b)) = \int_a^b f(x) dx$

Remark. There is a measure with no pdf: Dirac measure

Remark. Lebesgue-Radon-Nikodym decomposition implies that any measure can be decomposed as density part and singular part.

Example (Standard Normal random variable).

Let
$$\phi(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$
. Define $F: (0,1) \to \mathbb{R}$ by $F(x) = N^{-1}(x)$ for $N(X) = \int_{-\infty}^{x} \phi(y) dy$.
Let $\Omega = (0,1)$, $\mathcal{F} = \{B \in \mathcal{B}(\mathbb{R}) : B \subseteq (0,1)\}$, $\mathbb{P}(A) = \mathcal{L}(A) : A \in \mathcal{B}(\mathbb{R})$.

Then, $Y : \Omega \ni x \mapsto F(x) \in \mathbb{R}$ is a random variable with

$$\mathbb{P}[Y \in (a,b)] = \mathbb{P}[\{x : Y(x) \in (a,b)\}]
= \mathbb{P}[\{x \in (N(a), N(b))\}]
= N(b) - N(a) = \int_{a}^{b} \phi(x) dx,$$

and a density function is ϕ .

Previous Question: In the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and random variable $X : \Omega \to \mathbb{R}$, the random element or random realization $\omega \in \Omega$ is a element of events in sample space. For example, $\omega = HHTTH$ is a random element in tossing a coin five times, and $X(\omega) = 3$. $(X(\omega) = \# \text{ of Heads})$

In the previous example(Standard Normal random variable), define $(\Omega, \mathcal{F}, \mathbb{P}) = ((0,1), \mathcal{B}(0,1), \mathbb{P})$, $\mathbb{P}((a,b)) = b - a$, $F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy$, $X : (0,1) \ni \omega \mapsto F^{-1}(\omega) \in \mathbb{R}$. Then, X is called a standard normal random variable.

1.3 Expectations

In the following, let $\Omega = (\Omega, \mathcal{F}, \mathbb{P})$. Let $X : \Omega \to \mathbb{R}$. Then the expection $\mathbb{E}(X)$ is a mean of $X(\omega)$ with respect to the randomness of ω (given by \mathbb{P})

Definition 1.3.1 (Lebesgue Integration)

 $(\Omega, \mathcal{F}, \mu)$ is a measure space, and $f : \Omega \to \mathbb{R}$ is a measurable function.

(1)
$$f: \Omega \to [0, \infty)$$

Let $0 = y_0 < y_1 < y_2 < \cdots \to \mathbb{R}$ be a partition of $[0, \infty)$,
 $\Pi = \{y_0, y_1, y_2, \cdots\} : \|\Pi\| = \sup_{i \ge 1} |y_i - y_{i-1}|$, and
 $LS_{\pi} = \sum_{i=0}^{\infty} y_i \mu[f^{-1}([y_i, y_{i+1}))].$

In Rudin's book, $\lim_{\|\Pi\|\to 0} LS_{\Pi}$ converges to an element belonging to $[0, \infty]$. Now, $\int f d\mu := \lim_{\|\Pi\|\to 0} LS_{\Pi}$ is called a **Lebesgue Integral**.

(2)
$$f:\Omega\to\mathbb{R}$$
 Let $f^+=\max\{f,0\}\geq 0$, and $f^-=-\min\{f,0\}\geq 0$. Then, $f=f^+-f^-$, and $|f|=f^++f^-$. If $\int f^+d\mu<\infty$ and $\int f^-d\mu<\infty$, then we say f is Lebesgue integrable and $f\in L^1(\mu)$. The Lebesgue integral of $f=\int fd\mu$ is defined as $\int f^+d\mu-\int f^-d\mu$

Remark.

1.
$$\int f^+ d\mu < \infty$$
 and $\int f^- d\mu = \infty$, then $\int f d\mu = -\infty$. The others are defined similarly.

2.
$$f \in L^1(\mu) \Leftrightarrow \int |f| d\mu < \infty$$
.

Example (Riemann vs Lebesgue Integral (p19-22)).

- $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mathcal{L})$ Lebesgue measure where $\mathcal{L}((a, b)) = b a$.
- $f: \mathbb{R} \to \mathbb{R} \in L^1(\mathcal{L})$
- (Def) $A \subseteq \mathbb{R}$, $\int_A f d\mu := \int f \mathbb{1}_A d\mu$, where $\mathbb{1}_A(x) = 1$ if $x \in A$, and 0 otherwise.

If f is Riemann integrable, then $\int_{[a,b]} f d\mathcal{L} = \int_a^b f dx$.

Riemann integral is a limit of approximation by a partition of x-axis. On the other hand, Lebesgue integral is a limit of approximation by a partition of y-axis with preimage. Partition of x-axis is sensitive to fluctuation and restricted to Euclidean space, while partition of y-axis is not. For example, $f(x) = \mathbb{1}_{\mathbb{Q}}(x)$ is Lebesgue integrable, but it is not Riemann integrable since it is sensitive to fluctuation.

Definition 1.3.2 (Almost everywhere, 1.1.5 in Textbook)

P(x) is a property at $x \in \mathbb{R}$. We say P holds **almost everywhere** (or a.e.) in \mathbb{R} if and only if $\mathcal{L}(\{x : P(x) \text{ does not hold }\} = 0$.

Example. f(x) = [x] is continuous almost everywhere.

Theorem 1.3.3

f is Riemann integrable if and only if f is continuous a.e.

Exercises. f = g a.e. $\Rightarrow \int f d\mathcal{L} = \int g d\mathcal{L}$.

Definition 1.3.4 (Almost surely)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. The event $A \in \mathcal{F}$ occurs **almost surely** (a.s.) if $\mathbb{P}(A) = 1$.

Example. Let X be a uniform random variable in (0,1). Let $A = \{X(\omega) \neq \frac{1}{2}\}$; $\mathbb{P}(A) = 1$.

Definition 1.3.5 (Expectation, 1.3.3. in Textbook)

Expectation of $X : \Omega \to \mathbb{R}$ is defined by

$$\mathbb{E}(X) := \int_{\Omega} X d\mathbb{P} \quad \text{if} \quad \int_{\Omega} |X| d\mathbb{P} < \infty$$

Theorem 1.3.6 (1.3.4 in Textbook)

- 1. X takes finite number of values $\{x_1, x_2, \dots, x_n\} \Rightarrow \mathbb{E}(X) = \sum_{i=1}^n x_i \mathbb{P}(X = x_i)$
- 2. X, Y: random variables, $E(|X|), E(|Y|) < \infty$,

(i)
$$X \leq Y$$
 a.s. (i.e. $\mathbb{P}[\{X(\omega) \leq Y(\omega)\}] = 1$), then $\mathbb{E}(X) \leq \mathbb{E}(Y)$

(ii)
$$X = Y \text{ a.s.} \Rightarrow \mathbb{E}(X) = \mathbb{E}(Y)$$

- 3. $X, Y: random \ variables, \mathbb{E}(|X|), \mathbb{E}(|Y|) < \infty \Rightarrow \mathbb{E}(\alpha X + \beta Y) = \alpha \mathbb{E}(X) + \beta \mathbb{E}(Y).$
- 4. Jensen's Inequality: $\phi : \mathbb{R} \to \mathbb{R}$ is a convex function $\Rightarrow \phi(\mathbb{E}(X)) \leq \mathbb{E}(\phi(X))$ (cf. $\phi(t) = t^2$)

Proof of 4. Define $S_{\phi} = \{(a,b) \in \mathbb{R}^2 : a+bt \le \phi(t) \ \forall t\}$. Then $\forall t \in \mathbb{R}, \phi(t) = \sup_{(a,b) \in S_{\phi}} \{a+bt\}$. In fact, it is a equivalent condition. Now,

$$\begin{split} \phi(\mathbb{E}[X]) &= \sup_{a,b \in S_{\phi}} \{a + b\mathbb{E}[X]\} \\ &= \sup_{a,b \in S_{\phi}} \mathbb{E}[a + bX] \\ &\leq \mathbb{E}[\sup_{a,b \in S_{\phi}} (a + bX)] = \mathbb{E}[\phi(X)] \quad \text{(Check!)} \end{split}$$

Example (Dirac Measure in \mathbb{R}). $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \delta_y)$ $(y \in \mathbb{R})$ is a probability space with $\delta_y(A) = 1$ if $y \in A$, and 0 otherwise. Then, $\int_{\mathbb{R}} f d\delta_y = f(y)$ (Check!)

Consider modeling: X: random variable such that probability of $x_i = p_i$ with $\sum_{i=1}^n p_i = 1$. Then, $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu)$ with $\mu = \sum_{i=1}^n p_i \delta_{x_i}$ is a probability space, and $P(X = x_i) = p_i$ for $X : \mathbb{R} \ni \omega \mapsto \omega \in \mathbb{R}$: Example of thm 1.3.4.

Summary:

- Probability space: $(\Omega, \mathcal{F}, \mathbb{P})$
- Random variables: $X : \Omega \to \mathbb{R}$
- Expectation: $E(X) = \int X d\mathbb{P}$

1.4 Convention of Integrals

We will use this section when we define the Brownian motion.

Definition 1.4.1

(1) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, and f, f_1, f_2, \cdots be measurable $(\Omega \to \mathbb{R})$. Then, $f_n \to f$ almost everywhere (a.e.) if

$$\mu[\{\omega: (f_n(\omega))_{n=1}^{\infty} \text{ does not converge to } f(\omega)\}] = 0$$

(2) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, X, X_1, X_2, \cdots be random variables. Then, $X_n \to X$ almost surely (a.s.) if

$$\mathbb{P}[\{\omega: (X_n(\omega))_{n=1}^{\infty} \text{ does not converge to } X(\omega)\}] = 0$$

Question: $f_n \to \text{a.e.}$ Then, $\int f_n d\mu \to \int f d\mu$? $X_n \to X$ a.s. Then, $\mathbb{E}[X_n] \to \mathbb{E}[X]$?

Theorem 1.4.2 (Monotone Convergence Theorem. 1.4.5 in Textbook)

 $0 \le f_1 \le f_2 \le \cdots$ (or decreasing), and $f_n \to f$ a.e. Then, $\int f_n d\mu \to \int f d\mu$.

Theorem 1.4.3 (Dominated Convergence Theorem. 1.4.9 in Textbook) $\exists g \in L^1(\mu)$ *such that* $|f_n| \leq g$ *for all* n, *and* $f_n \to f$ *a.e. Then,* $\int f_n d\mu \to \int f d\mu$.

Corollary 1.4.4

 $\exists Y \in L^1(\mathbb{P}) \text{ such that } |X_n| \leq Y \text{ for all } n, \text{ and } X_n \to X \text{ a.s. Then, } \mathbb{E}[X_n] \to \mathbb{E}[X].$

Example. Let
$$f_n(x) = \begin{cases} n^2x & \text{if } 0 \le x \le \frac{1}{n}, \\ -n^2x + n & \text{if } \frac{1}{n} < x \le \frac{2}{n}, \text{ Then, } f_n \to 0 \text{ a.e. and } \int f_n dx = 1. \\ 0 & \text{otherwise.} \end{cases}$$

1.5 Computation of Expectations

Notation: $(X : \Omega \ni \omega \mapsto X(\omega) \in \mathbb{R})$

- $\mathbb{E}[X] = \int X d\mathbb{P} = \int_{\Omega} X(\omega) d\mathbb{P}(\omega)$
- $\int_B X(\omega) d\mathbb{P}(\omega) := \int \mathbb{1}_B(\omega) X(\omega) d\mathbb{P}(\omega)$

Recall: *X*: random variable, μ_X : distribution measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, $\mu_X(B) = \mathbb{P}(X \in B)$.

Theorem 1.5.1

 $g \in L^1(\mu_X)$. Then, $\mathbb{E}[g(X)] = \int_{\mathbb{R}} g(x) d\mu_X(x) (:= \int g d\mu_X)$.

Example. g(x) = x. $\int |x| d\mu_X(x) < \infty \Rightarrow \mathbb{E}[X] = \int x d\mu_X(x)$.

Proof. First, prove the thm holds for $g \ge 0$, then prove for general g by $g = g^+ - g^-$.

- (1) $g = \mathbb{1}_B$ By thm 1.3.4. (1), $E[\mathbb{1}_B(X)] = 1 \cdot \mathbb{P}[\mathbb{1}_B(X) = 1] = \mathbb{P}(X \in B) = \mu_X(B) = \int \mathbb{1}_B(x) d\mu_X(x)$.
- (2) $g = \sum_{k=1}^{n} \alpha_k \mathbb{1}_{B_k}$ Trivial by linearity.
- (3) $g \ge 0$ By MCT. See *Rudin* chapter 1 for details.

Recall: X: random variable, X has density function f_X if

$$\mu_X((a,b)) = \int_a^b f_X(x)dx \ \forall a,b.$$

$$\mu_X(B) = \int_B f_X d\mathcal{L} = \int_B f_X(x)d\mathcal{L}(x) = \int_B f_X(x)dx.$$

Theorem 1.5.2

 $g \in L^1(\mu_X)$. Then, $E(g(X)) = \int_{\mathbb{R}} g(x) f_X(x) dx$.

Example. Let X be standard normal. i.e., $f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$ (regardless what X be). Then, $E(X^4) = \int_{\mathbb{R}} x^4 \frac{1}{\sqrt{2\pi}} e^{-x^2/2} = 3$.

Chapter 2

Information and Conditioning

2.1 Information and σ -algebras

Example. Toss a coin Three times. $\Omega = \{HHH, HHT, \cdots, TTT\}.$

 $A_H = \{HHH, HHT, HTH, HTT\}, A_T = \{THT, THT, TTH, TTT\}.$

Let $\mathcal{F}(1) = \{\phi, \Omega, A_H, A_T\}$ so that it is a σ -algebra containing the randomness up to time 1.

Similarly, define A_{HH} , A_{HT} , A_{TH} , A_{TT} .

Let $\mathcal{F}(2) = \{\phi, \Omega, A_{HH}, A_{HT}, A_{TH}, A_{TT}, A_{HH} \cup A_{HT}, \cdots, A_{TT}^{C}\}$ so that it is a σ -algebra containing the randomness up to time 2, and define $\mathcal{F}(0)$ similarly, and let $\mathcal{F}(0) = \{\phi, \Omega\}$.

Then, $\mathcal{F}(0) \subseteq \mathcal{F}(1) \subseteq \mathcal{F}(2) \subseteq \mathcal{F}(3)$. Let $X_t = \#$ of heads until time t. Then, X_t is $\mathcal{F}(t)$ -measurable for each t.

Now,
$$\{X_1 = 1\} = \{\omega : X_1(\omega) = 1\} = A_H$$
, and $\{X_1 = 0\} = \{\omega : X_1(\omega) = 0\} = A_T$.

Definition 2.1.1 (σ -algebra generated by X)

 Ω is a set, $X : \Omega \to \mathbb{R}$. $\sigma(X) = \{A \subseteq \Omega : A = X^{-1}(B) \text{ for some } B \in \mathcal{B}(\mathbb{R})\}$. Then, $\sigma(X)$ is a σ -algebra(exercise) and it is called a σ -algebra generated by X.

Remark. X is a random variable in $(\Omega, \sigma(X))$.

X is a random variable in (Ω, \mathcal{F}) , then $\sigma(X) \subseteq \mathcal{F}$ (exercise)

Definition 2.1.2 (\mathcal{F} -measurable)

 (Ω, \mathcal{F}) : measure space. $X : \Omega \to \mathbb{R}$. X is called \mathcal{F} -measurable if $\sigma(X) \subseteq \mathcal{F}$. i.e., X: measurable with respect to (Ω, \mathcal{F}) .

In example, X(t) is $\mathcal{F}(t)$ -measurable $\forall t$ (check!)

cf.
$$X(t): \Omega \to \mathbb{R}$$
. $(X(t))^{-1}(B) \in \mathcal{F}(t) \ \forall B \in \mathcal{B}(\mathbb{R})$.

Enough to check $(X(t))^{-1}(\{0\}), (X(t))^{-1}(\{1\}), \cdots, (X(t))^{-1}(\{t\}).$

 $\mathcal{F}(t)$ has enough information to determine X(t) in the sense that $\{\omega : (X(t))(\omega) \in B\} \in \mathcal{F}(t) \ \forall B \in \mathcal{B}(\mathbb{R}).$

Definition 2.1.3 (Filtration, Stochastic Process)

Ω: non-empty set, T > 0.

- 1. If $\mathcal{F}(t)$ is a σ -algebra $\forall t \in [0, T] \in T$ and $s < t \Rightarrow \mathcal{F}(s) \subseteq \mathcal{F}(t)$, then $(\mathcal{F}(t) : t \in [0, T])$ is called a **filtration**
- 2. If $X(t): \Omega \to \mathbb{R}$ is $\mathcal{F}(t)$ -measurable $\forall t \in [0, T]$, then $(X(t): t \in [0, T])$ is called **Stochastic Process adopted to the filtration** $\mathcal{F}(t)$.

2.2 Independence

 $X : \Omega \to \mathbb{R}$, \mathcal{F} : *σ*-algebra on Ω .

- 1. \mathcal{F} has full information to determine $X \Rightarrow X$ is \mathcal{F} -measurable. (2.1)
- 2. \mathcal{F} has no information to determine $X \Rightarrow X$ is independent to \mathcal{F} . (2.2)
- 3. \mathcal{F} has a partition information to determine $X \Rightarrow (2.3)$

Definition 2.2.1 (independent)

 $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space. $A, B \in \mathcal{F}$ is **independent** if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

Question: X, Y are random variables in $(\Omega, \mathcal{F}, \mathbb{P})$. If X, Y are independent, then $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$, but the converse does not hold.

Definition 2.2.2

 $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space. $\mathcal{G}, \mathcal{H} \subseteq \mathcal{F}$ are sub σ -algebras of $\mathcal{F}. X, Y : \Omega \to \mathbb{R}$ are random variables in $(\Omega, \mathcal{F}, \mathbb{P})$.

- 1. \mathcal{G}, \mathcal{H} : independent iff $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B) \ \forall A \in \mathcal{G}, B \in \mathcal{H}$.
- 2. X, Y: independent iff $\sigma(X), \sigma(Y)$ are independent.
- 3. X, G: independent iff $\sigma(X)$, G are independent.

Definition 2.2.3

 $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space.

 $\mathcal{G}_1, \mathcal{G}_2, \dots, \mathcal{G}_n, \dots$: sub σ -algebra of \mathcal{F} . $X_1, X_2, \dots, X_n, \dots$: random variable in $(\Omega, \mathcal{F}, \mathbb{P})$.

- 1. $\mathcal{G}_1, \dots, \mathcal{G}_2$ are independent iff $\mathbb{P}(A_1 \cap \dots \cap A_n) = \mathbb{P}(A_1) \dots \mathbb{P}(A_n)$ for $A_1 \in \mathcal{G}_1, \dots, A_n \in \mathcal{G}_n$.
- 2. X_1, \dots, X_n are independent iff $\sigma(X_1) \sim \sigma(X_n)$ are independent.
- 3. G_1, G_2, \cdots are independent iff $G_1 \sim G_n$ are independent $\forall n$.
- 4. X_1, X_2, \cdots are independent iff $X_1 \sim X_n$ are independent $\forall n$.

Example. Toss a coin three times.

- 1. X(2), X(3) are not independent. $\mathbb{P}(\{X(2) = 2\} \cap \{X(3) = 1\}) \neq \mathbb{P}(X(2) = 2)\mathbb{P}(X(3) = 1).$
- 2. X(2), X(3) X(2) are independent. Why: X(2) is an information at tossing first, second times, and X(3) is an information at tossing third time.

Definition 2.2.4 (Joint distribution)

 $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space. X, Y are random variables in Ω . $(X, Y) : \Omega \ni \omega \mapsto (X(\omega), Y(\omega)) \in \mathbb{R}^2$

1. Joint Distribution Measure in \mathbb{R}^2

$$\mu_{X,Y}(C) = \mathbb{P}((X,Y) \in C)$$
 for $C \in \mathcal{B}(\mathbb{R}^2)$.
(Note: We checked that $\{\omega : (X(\omega), Y(\omega)) \in C\} \in \mathcal{F}$ in real analysis.)

2. Joint Cumulative Distribution Function

$$F_{X,Y}(a,b) = \mathbb{P}(X \le a, Y \le b) = \mu_{X,Y}((-\infty, a] \times (-\infty, b])$$
 (check!)

3. Joint Probability Distribution Function If $f_{X,Y}: \mathbb{R}^2 \to \mathbb{R}$ is Borel-measurable and satisfies $\mu_{X,Y}(A \times B) = \int_B \int_A f_{X,Y}(x,y) dx dy$ for all $A, B \in \mathcal{B}(\mathbb{R})$, then $f_{X,Y}$ is called a joint probability density function (jpdf)

Theorem 2.2.5

 $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space, X, Y are random variables in Ω . Then, the followings are equivalent.

(i) X, Y are independent

(ii)
$$\mu_{X,Y}(A \times B) = \mu_X(A)\mu_Y(B) \ \forall A, B \in \mathcal{B}(\mathbb{R})$$

(iii)
$$F_{X,Y}(a,b) = F_X(a)F_Y(b) \ \forall a,b \in \mathbb{R}$$

(iv)
$$\mathbb{E}[e^{uX+vY}] = \mathbb{E}[e^{uX}]\mathbb{E}[e^{vY}]$$

Remark. If JPDF $f_{X,Y}$ exists, then (i) to (iv) $\Leftrightarrow f_{X,Y}(x,y) = f_X(x)f_Y(y)$ a.e.

Theorem 2.2.6

X, Y are independent if and only if $f, g : \mathbb{R} \to \mathbb{R}$ Borel-measurable, $\mathbb{E}[|f(X)g(Y)|] < \infty$ implies that $\mathbb{E}[f(X)g(Y)] = \mathbb{E}[f(X)]\mathbb{E}[g(Y)]$.

Remark. $f(x) = g(x) = x : \mathbb{E}[|XY|] < \infty \Rightarrow \mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$

Proof. Details are exercises.

- (1) $f = \mathbb{1}_A, g = \mathbb{1}_B$
- (2) f, g are simple functions
- (3) $f, g \ge 0$
- (4) f, g are general.

Review

 \mathcal{G} , \mathcal{H} are independent if $\forall A \in \mathcal{G}$, $B \in \mathcal{H} \Rightarrow \mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

X, Y are independent if $\sigma(X), \sigma(Y)$ are independent.

* $\sigma(X) = \{ A \in \Omega : A = X^{-1}(B) \text{ for some } B \in \mathcal{B}(\mathbb{R}) \}.$

* $\mu_{X,Y}(C) = \mathbb{P}((X,Y) \in C) \ \forall C \in \mathcal{B}(\mathbb{R}^2).$

Thm. T.F.A.E.C:

- 1. X, Y are independent
- 2. $\mu_{X,Y}(A \times B) = \mu_X(A)\mu_Y(B)$
- 3. $\mathcal{F}_{X,Y}(x,y) = \mathcal{F}_X(x)\mathcal{F}_Y(y)$
- 4. (If JPDF $f_{X,Y}$ exists) $f_{X,Y}(x,y) = f_X(x)f_Y(y)$

Theorem 2.2.7

 $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space. X, Y are independent random variables, $f, g : \mathbb{R} \to \mathbb{R}$ are Borel measurable. Then, f(X), g(Y) are independent.

Proof.
$$A ∈ \sigma(f(X))$$
; $A = (f ∘ X)^{-1}(B)$ for some $B ∈ \mathbb{R} = X^{-1}(f^{-1}(B)) ∈ \sigma(X)$.
∴ $\sigma(f(X)) ⊆ \sigma(X)$, $\sigma(g(Y)) ⊆ \sigma(Y) ⇒ \sigma(f(X))$, $\sigma(g(Y))$ are independent. \Box

Corollary 2.2.8

 $\mathbb{E}[f(X)g(Y)] = \mathbb{E}[f(X))\mathbb{E}(g(Y)].$

Definition 2.2.9

X, Y are random variables in $(\Omega, \mathcal{F}, \mathbb{P})$.

1.
$$Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

2.
$$std(X) = \sqrt{Var(X)}$$

3.
$$Cov(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

4.
$$corr(X,Y) = cov(X,Y)/(std(X)std(Y))$$

Example.
• X: standard normal random variable $(N(0, 1^2))$

•
$$\mathbb{P}(Z=1) = \mathbb{P}(Z=-1) = \frac{1}{2}$$
 (X, Z are independent)

- Y = XZ. Then
 - 1) Y is standard normal,
 - 2) corr(X, Y) = 0.
 - 3) *X*, *Y* are not independent.

Definition 2.2.10 (Jointly normal)

X, Y are **jointly normal** with mean $m = (m_X, m_Y)$, $Var(C) = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$ if

$$f_{X,Y}(z) = \frac{1}{\sqrt{(2\pi)^2 \det C}} e^{-\frac{1}{2}(z-m)C^{-1}(z-m)^{\mathsf{T}}}$$

Theorem 2.2.11

X, Y are jointly normal and uncorrelated $(C_{12} = C_{21} = 0)$. Then, they are independent.

Conditional Expectation

 $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space. $\int_A X d\mathbb{P} := \int \mathbb{1}_A X d\mathbb{P} = \int \mathbb{1}_A (\omega) X(\omega) d\mathbb{P}(\omega)$.

Lemma. $\int_A X d\mathbb{P} = \int_A Y d\mathbb{P}$ for all $A \in \mathcal{F}$ if and only if X = Y a.s.

Proof. $A_n = \{\omega : X(\omega) - Y(\omega) > \frac{1}{n}\}, B_n = \{\omega : X(\omega) - Y(\omega) < -\frac{1}{n}\}.$ Then,

$$0 = \int_{A_n} (X - Y) d\mathbb{P} \ge \int_{A_n} \frac{1}{n} d\mathbb{P} = \frac{1}{n} \int \mathbb{1}_{A_n} d\mathbb{P} = \frac{1}{n} \mathbb{P}(A_n)$$

Thus, $\mathbb{P}(A_n)=0 \ \forall n$. Similarly, $\mathbb{P}(B_n)=0$. Now, $\{\omega: X(\omega)\neq Y(\omega)\}=(\bigcup_{n=1}^\infty A_n)\cup A_n$ $(\bigcup_{n=1}^{\infty} B_n) \Rightarrow \text{measure } 0.$

Intuition. $(\Omega, \mathcal{F}, \mathbb{P})$ is given, $X : \mathcal{F}$ -measurable random variable, $\mathcal{G} \subseteq \mathcal{F}$ is a sub σ -algebra. If we know nothing, then we expect X as $\mathbb{E}[X]$. If we know \mathcal{F} , then we expect X as X. Now, if we know \mathcal{G} , then we expect X as $\mathbb{E}[X|\mathcal{G}]$ (what is it?)

Definition 2.3.1 (Conditional Expectation)

 $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space. $X \in L^1(\mathbb{P})$ is a random variable. \mathcal{G} is a sub σ -algebra of \mathcal{F} . We define $\mathbb{E}[X|\mathcal{G}]$ as

- 1. G-measurable random variable
- 2. $\int_A \mathbb{E}[X|\mathcal{G}](\omega)d\mathbb{P}(\omega) = \int_A X(\omega)d\mathbb{P}(\omega)$.

Question. $\mathbb{E}[X|\mathcal{G}]$ exists? (Yes! proof skip). unique? (Yes! up to a.s.)

Remark. Lemma implies determine X (a.s.) is equivalent to know $\int_A Xd\mathbb{P} \ \forall A \in \mathcal{F}$. In this sense, conditional expectation $Y = \mathbb{E}[X|\mathcal{G}]$ is knowing $\int_A Yd\mathbb{P} = \int_A Xd\mathbb{P} \ \forall A \in \mathcal{G}$. *Example.* Toss a coin three times.

 $\mathcal{F}(0) \subseteq \mathcal{F}(1) \subseteq \mathcal{F}(2) \subseteq \mathcal{F}(3)$. X(t) is a number of heads until t times; X(t) is $\mathcal{F}(t)$ -measurable. If $\mathcal{F}(1) = \{\phi, \Omega, A_H, A_T\}$, then $\mathbb{E}[X(2)|\mathcal{F}(1)] = X(1) + \frac{1}{2}$, since we know the information of 1st flip.

Proof. Want:
$$\int_A (X(1) + \frac{1}{2}) d\mathbb{P} = \int_A X(2) d\mathbb{P}$$
 for all $A \in \mathcal{F}(1)$ (c.f. $\mathbb{P}(\omega) = \frac{1}{8} \ \forall \omega \in \Omega$). For $A = A_H$, $\int \mathbb{1}_{A_H}(\omega)(X(1)(\omega) + \frac{1}{2}) d\mathbb{P}(\omega) = \frac{3}{2}\mathbb{P}(A_H) = \frac{3}{4}$.
$$\int \mathbb{1}_{A_H}(\omega)(X(2))(\omega) d\mathbb{P}(\omega) = \sum_{\omega \in A_H} (X(2))(\omega)\mathbb{P}(\omega) = \frac{1}{8}(2 + 2 + 1 + 1) = \frac{3}{4}.$$

Remark. $\mathcal{G} = \sigma(Y)$; $\mathbb{E}[X|\mathcal{G}] = \mathbb{E}[X|\sigma(Y)] := \mathbb{E}[X|Y]$

Theorem 2.3.2

X, Y are independent random variable in $(\Omega, \mathcal{F}, \mathbb{P}), \mathcal{G}$ is a sub σ -algebra of \mathcal{F} .

- 1. $\mathbb{E}[aX + bY|\mathcal{G}] = a\mathbb{E}[X|\mathcal{G}] + b\mathbb{E}[Y|\mathcal{G}]$
- 2. X is G-measurable. Then, $\mathbb{E}[XY|G] = X\mathbb{E}[Y|G]$.
- 3. \mathcal{H} is a sub σ -algebra of \mathcal{G} . Then, $\mathbb{E}[\mathbb{E}[X|\mathcal{G}]|\mathcal{H}] = \mathbb{E}[X|\mathcal{H}]$.
- 4. X, \mathcal{G} are independent, then $\mathbb{E}[X|\mathcal{G}] = \mathbb{E}[X]$.

Proof. 1. Exercise

2. We only need to show that $X \ge 0$, $Y \ge 0$ implies 2.

- (a) $X = \mathbb{1}_B$ Want: $\mathbb{E}[\mathbb{1}_B Y | \mathcal{G}] = \mathbb{1}_B \mathbb{E}[Y | \mathcal{G}]$ for $B \in \mathcal{G}$.
- (b) $X = \sum_{i=1}^{n} \alpha_i \mathbb{1}_{B_i}$ Use linearity.
- (c) $X \ge 0$ Use MCT
- 3. Want: $\mathbb{E}[\mathbb{E}[X|\mathcal{G}]|\mathcal{H}] = \mathbb{E}[X|\mathcal{H}]$ Let $A \in \mathcal{H}$. Then, $\int_A \mathbb{E}[\mathbb{E}[X|\mathcal{G}]|\mathcal{H}](\omega)d\mathbb{P}(\omega) = \int_A \mathbb{E}[X|\mathcal{G}]d\mathbb{P} = \int_A Xd\mathbb{P} = \int_A \mathbb{E}[X|\mathcal{H}]d\mathbb{P}$

4. Can be shown similarly as in 2. Check $X = \mathbb{1}_B$ case. (Hint: $A \in \mathcal{G} \Rightarrow A, B$ are independent.)

Example (Revisit).

$$\mathbb{E}[X(2)|\mathcal{F}(1)] = \mathbb{E}[X(2) - X(1) + X(1)|\mathcal{F}(1)]$$

$$= \mathbb{E}[X(2) - X(1)|\mathcal{F}(1)] + X(1)$$

$$= \mathbb{E}[X(2) - X(1)] + X(1)$$

$$= \frac{1}{2} + X(1)$$

Review

- $(\Omega, \mathcal{F}, \mathbb{P})$: probability space, $\mathcal{G} \subseteq \mathcal{F}$.
- $X : \mathcal{F}$ -measurable random variable.
- $Y = \mathbb{E}[X|\mathcal{G}]$ if Y is \mathcal{G} -measurable.
- $\int_A Y(\omega) d\mathbb{P}(\omega) = \int_A X(\omega) d\mathbb{P}(\omega) \ \forall A \in \mathcal{G}.$

Remark. $\mathbb{E}[X|\mathcal{G}]$ is an expectation of X when we know \mathcal{G} .

Remark. Y = Z a.s. and Z is \mathcal{G} -measurable, then $Z = \mathbb{E}[X|\mathcal{G}]$.

Remark. $(X(t))_{t \in [0,T]}$ is stochastic process adapted to $(\mathcal{F}(t))_{t \in [0,T]}$. In this, $(X(t))_{t \in [0,T]}$ is a random variable in $(\Omega, \mathcal{F}, \mathbb{P})$ and X(t) is $\mathcal{F}(t)$ -measurable. $\mathcal{F}(s) \subseteq \mathcal{F}(t)$ for all s < t and $\mathcal{F}(0) = \{\phi, \Omega\}$.

Remark. We can define \mathcal{F} as $\mathcal{F}(t) = \bigcup_{s:s \leq t} \sigma(X(s))$

Definition 2.3.3 (Martingale, Markov Process)

1. Martingale X(t) $\mathbb{E}[X(t)|\mathcal{F}(s)] = X(s) \text{ for all } s < t.$

2. Markov Process X(t)

For any borel measurable f, there exists some borel measurable g such that $\mathbb{E}[f(X(t))|\mathcal{F}(s)] = g(X(s))$

Remark. In Martingale, if we know all the previous value, then the expectation of the future is as same as the expectation of the present.

Remark. Markov process is a generalization of Markov chain. We only have to know the present value.

Chapter 3

Brownian Motions

3.1 Introduction

To study Brownian Motions, we will study:

- 1. Random Walks
- 2. Definition of Brownian Motions and its basic property (We will change the text-book!)
- 3. Constuction of Brownian Motions

3.2 Scaled Random Walks

Definition 3.2.1 (Random Walk)

- Let $X_i = \begin{cases} 1 & \text{prob } \frac{1}{2} \\ -1 & \text{prob } \frac{1}{2} \end{cases}$; X_1, X_2, \cdots independent.
- $M_n = X_1 + \cdots + X_n$ is called **random walk**
- $W_n(t) = \frac{1}{\sqrt{n}} M_{nt} (:= \frac{1}{\sqrt{n}} M_{[nt]})^v$, $t \in \{\frac{1}{n}k, k \in \mathbb{Z}_+\}$ is called **scaled random walk**

Proposition 3.2.2

Random walk holds the following properties:

- 1. Independent Increament
- 2. Martingale

3. Quadratic Variation

Proof.

- 1. See Def 3.2.3
- 2. Let $\mathcal{F}(n) = \sigma(X_1, X_2, \dots, X_n) = \text{smallest } \sigma\text{-algebra making } X_1 \sim X_n \text{ measurable.}$ Then,
 - $M_n = X_1 + \cdots \times X_n$ is $\mathcal{F}(n)$ -measurable
 - $(M_n)_{n\in\mathbb{N}}$ is stochastic process adapted to $(\mathcal{F}(n))_{n=0}^{\infty}$
 - $k < l \Rightarrow \mathbb{E}[M_l | \mathcal{F}(k)] = \mathbb{E}[M_l M_k | \mathcal{F}(k)] + \mathbb{E}[M_k | \mathcal{F}(k)] = \mathbb{E}[M_l M_k] + M_k = \mathbb{E}[X_{k+1} + \dots + X_l] + M_k = \mathbb{E}[X_{k+1}] + \dots + \mathbb{E}[X_l] + M_k = M_k.$
- 3. $\sum_{i=1}^{n} (M_i M_{i-1})^2 = n$

Definition 3.2.3 (Independent increament)

 M_n is **independent increament** if M_{k_1} , $M_{k_2} - M_{k_1}$, \cdots , $M_{k_m - k_{m-1}}$ are independent for any $k_1 < k_2 < \cdots < k_m$. Here, $M_{k_l} - M_{k_{l-1}}$ is called increament. If M_n is a random walk, then $M_{k_1} = \sum_{i=1}^{k_1} X_i$, $M_{k_2 - k_1} = \sum_{i=k_1}^{k_2} X_i$, \cdots are independent.

Remark. Proposition 3.2.2 holds for scaled random variable $W_n(t) = \frac{1}{n} M_{nt}$ $(t \in \frac{1}{n} \mathbb{Z}_+)$. *Proof.*

1. Independent Increament

For $t_1 < t_2 < \cdots < t_m$, $W_n(t_1) - W_n(0)$, $W_n(t_2) - W_n(t_1)$, \cdots , $W_n(t_m) - W_n(t_{m-1})$ are independent, since its increaments $W_n(t_{n+1}) - W_n(t_l) = \frac{1}{n}(M_{nt_{l+1}} - M_{nt_l})$ are independent by independent increament property of M_n .

2. Martingale

Let $\mathcal{F}_n(t) = \sigma(X_1, X_2, \dots, X_{nt})$. Then, $W_n(t) = \frac{1}{n}(X_1 + X_2 + \dots + X_{nt})$ is $\mathcal{F}_n(t)$ -measurable. Therefore, $(W_n(t))$ is stochastic process adapted to $(\mathcal{F}_n(t))$. With some computations as before, $\mathbb{E}[W_n(t)|\mathcal{F}_n(s)] = \dots = W_n(s)$ for s < t.

3. Quadratic Variation

$$\sum_{i=1}^{nt} \left(W_n(\frac{i}{n}) - W_n(\frac{i-1}{n}) \right)^2 = \sum_{i=1}^{nt} \left[\frac{1}{\sqrt{n}} (M_i - M_{i-1}) \right]^2 = \sum_{i=1}^{nt} \frac{1}{n} \cdot 1 = t$$

Example. Let $f \in C^1([0,t])$. Then,

$$\sum_{i=1}^{nt} \left(f(\frac{i}{n}) - f(\frac{i-1}{n}) \right)^2 = \sum_{i=1}^{nt} \left[\frac{1}{n} f'(\frac{x_i}{n}) \right]^2$$

$$= \frac{1}{n} \frac{1}{n} \sum_{i=1}^{nt} \left(f'(\frac{x_i}{n})^2 \right) \quad (\to \int_0^t [f'(x)]^2 dx)$$

$$\le \frac{c}{n} \quad (\to 0)$$

It is the most different property between random process and deterministic function: Q.V. of random variable is constant but Q.V. of C^1 function is zero.

Theorem 3.2.4 (Central Limit Theorem)

Let Y_1, Y_2, \cdots are independent and identically distributed (called i.i.d.) with mean 0 and variation 1 ($\mathbb{E}(Y_i) = 0$, $Var(Y_i) = \mathbb{E}(Y_i^2) = 1$). Then,

$$\frac{1}{\sqrt{n}}\left[Y_1 + \cdots Y_n\right] \to N(0, 1^2) \tag{\bigstar}$$

Remark. Meaning of \bigstar :

$$\mathbb{P}\left[\frac{1}{n}(Y_1+\cdots+Y_n)\in[a,b]\right]\to\int_a^b\frac{1}{\sqrt{2\pi}}e^{-x^2/2}dx.$$

 $W_n(t) = \frac{1}{n} M_{nt} = \frac{1}{n} (X_1 + \dots + X_{nt}) = \sqrt{t} \frac{1}{\sqrt{nt}} (X_1 + \dots + X_{nt}) \sim N(0, t)$ cf. $N(\mu, \sigma^2)$ is a normal random variable with mean μ and variation σ^2 . Using the above,

$$\lim_{n\to\infty} \mathbb{P}\left[W_n(t)\in [a,b]\right] = \int_a^b \frac{1}{\sqrt{2\pi t}} e^{-x^2/2t} dx.$$

$$W_n(t) = rac{1}{n^{rac{1}{2}+lpha}} M_{nt} egin{cases} lpha < 0 & |W_n(t)|
ightarrow \infty \ lpha > 0 & |W_n(t)|
ightarrow 0 \end{cases}$$

Remark. $\frac{1}{\sqrt{2\pi t}}e^{-x^2/2t}$ is a heat kernel in PDE.

Summary

- 1. Independent Increament
- 2. Martingale
- 3. Markov Process

4.
$$W_n(t) \sim N(0,t)$$

 $W_n(t) - W_n(s) \sim N(0,t-s)$

5. Q.V. in [0, t] = t.

Review

$$X_1, X_2, \cdots$$
 are i.i.d. and $X_i = \begin{cases} \pm 1 & 1/2 \\ -1 & 1/2 \end{cases}$.

Random walk: $\mu_n = X_1 + \cdots + X_n$.

Scaled random walk: $W_n(t) = \frac{1}{\sqrt{n}} M_{nt}$. Then,

1.
$$W_n(0) = 0$$

2. Independent Increament

 $t_1 < t_2 < \cdots < t_n$, then $W_n(t_1), W_n(t_2) - W_n(t_1), \cdots, W_n(t_n) - W_n(t_{n-1})$ are independent.

3. Asymptotic Normal

$$W_n(t) - W_n(s) \sim N(0, t - s)$$
 as $n \to \infty$.

Part II Introduction to stochastic integral

Chapter 2

Brownian Motion

2.1 Definition of Brownian Motion

Definition 2.1.1 (Stochastic Process)

- Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.
- $[0, \infty)$ with Borel σ -algebra
- $X : [0, \infty) \times \Omega \to \mathbb{R}$, measurable.

Then, *X* is a **stochastic process** if

- 1. $X(t, \cdot) : \Omega \to \mathbb{R}$ is random variable
- 2. $X(\cdot,\omega):[0,\infty)\to\mathbb{R}$ is measurable.

Remark. $X(t,\cdot) \Rightarrow X(t)$: random variable in Ω . $X(t): \omega \mapsto [X(t)](\omega) = X(t,\omega)$.

For each $t \in [0, \infty)$ there exists random variable $X(t) : \Omega \to \mathbb{R}$. If we pick $\omega \in \Omega$, then each $X(t_i)$ is determined simultaneously by $X(t_i)(\omega)$.

Remark. We can work in [0, T] instead of $[0, \infty)$. In fact, we can define in [0, T] and extend to $[0, \infty)$, but it is extremly difficult.

Definition 2.1.2 (Brownian Motion in $[0, \infty)$)

- $t \in [0, \infty)$, $\omega \in \Omega((\Omega, \mathcal{F}, \mathbb{P})$: probability space)
- Stoch. Process $B(t, \omega)$

B is called **Brownian Motion** if

1.
$$B(0,\omega) = 0$$
 a.s. (i.e., $\mathbb{P}[\{\omega : B(0,\omega) = 0\}] = 1$)

2. $B(\cdot, \omega) : [0, \infty) \to \mathbb{R}$ is a continuous function a.s.

3.
$$\forall 0 \le s \le t, B(t) - B(s) \sim N(0, t - s)$$

4. Independent Increament

Remark. $B(0, \omega)$ is a measurable function.

Remark. $B(t) \sim N(0, t)$ by 3 with s = 0.

Remark. $(B(t))_{t\geq 0}: \Omega \to \mathbb{R}$

- B(t) itself is a normal distribution
- $B(t) B(s) : \Omega \to \mathbb{R}$ is normal distribution with variance t s.

Remark. Brownian motion is a continuous version of random walk: random walk has property 1,4 and has property 3 with $n \to \infty$.

Theorem 2.1.3

1.
$$s < t : \mathbb{E}[B(s)B(t)] = s$$

2.
$$t_1 < t_2 < \cdots < t_n \Rightarrow (B(t_1), B(t_2), \cdots, B(t_n))$$
 is jointly normal with $\mu = (0, 0, \cdots, 0]$ and $Var = C$. $(C_{ij} = t_{\min(i,j)} \ \forall i, j)$.

Proof.

1.
$$\mathbb{E}[B(s)B(t)] = \mathbb{E}[B(s)(B(t) - B(s))] + \mathbb{E}[B(s)^2] = \mathbb{E}(B(s))\mathbb{E}(B(t) - B(s)) + s = s.$$

2. Let
$$\vec{v} = (B(t_1), B(t_2) - B(t_1), \dots, B(t_m) - B(t_{m-1}))$$
. Then,

PDF of
$$\vec{v} = \frac{1}{\sqrt{2\pi t_1}} e^{-\frac{x_1^2}{2t_1}} \cdot \frac{1}{\sqrt{2\pi (t_2 - t_1)}} e^{-\frac{x_2^2}{2(t_2 - t_1)}} \cdot \cdot \cdot \frac{1}{\sqrt{2\pi (t_m - t_{m-1})}} e^{-\frac{x_m^2}{2(t_m - t_{m-1})}}.$$

Therefore, \vec{v} is jointly normal with $\mu = 0$ and $Var = \text{diag}(t_1, t_2 - t_1, \dots, t_n - t_{n-1}) = D$, and,

$$ec{W}=(B(t_1),\cdots,B(t_m))=ec{v}egin{bmatrix}1&1&\cdots&1\0&1&\cdots&1\dots&dots&dots&dots\0&0&\cdots&1\end{bmatrix}=ec{v}E.$$

Thus, \vec{W} is jointly normal with $\mu = (0, 0, \dots, 0)$ and $Var = EDE^T = C$.

Definition 2.1.4 (Filtration for Brownian Motion)

$$\mathcal{F}_t = \sigma(B(s) : s \le t)$$

= smallest σ -algebra containing $\{\omega : (B(s))(\omega) \in A\} \ \forall s \in [0, t], A : Borel$

= smallest σ -algebra making $\forall B_s, s \in [0, t]$ measurable

Remark.

- 1. $(B(t))_{t>0}$: Stochastic process adapted to the filtration (\mathcal{F}_t) .
- 2. $(B(t), \mathcal{F}(t))$: Martingale.

Lemma. B(t) - B(s) is independent of \mathcal{F}_s (s < t).

Proof of lemma.

- 1. B(t) B(s) is independent of $\sigma(B(s_1), B(s_2), \dots, B(s_n))$ for $0 < s_1 < \dots < s_n \le s$, and check that $\sigma(B(s_1), B(s_2), \dots, B(s_n)) = \sigma(B(s_1), B(s_2) B(s_1), \dots, B(s_n) B(s_{n-1}))$
- 2. Let $\mathcal{H} = \bigcup_{m=1}^{\infty} \bigcup_{0 < s_1 < \dots < s_n \le s} \sigma(B(s_1), \dots, B(s_n))$. Then, \mathcal{H} is a closed under finite intersection. i.e., $A_1, A_2, \dots, A_n \in \mathcal{H} \Rightarrow A_1 \cap A_2 \cap \dots \cap A_n \in \mathcal{H}$.
- 3. B(t) B(s) is independent of \mathcal{H} by 1. Then, B(t) B(s) is independent of $\overline{\mathcal{H}} = \mathcal{F}_t$: smallest σ -algebra containing \mathcal{H} . (Midterm 1 problem 2)

Proof. 1. By construction

2.
$$s < t \Rightarrow \mathbb{E}[B(t)|\mathcal{F}_s] = \mathbb{E}[B(t) - B(s)|\mathcal{F}_s] + \mathbb{E}[B(s)|\mathcal{F}_s] = \mathbb{E}[B(t) - B(s)] + B(s)$$
.

30

Chapter 3

Constuction of Brownian Motion

There are three ways to construct Brownian motion. One is by Wiener, one is by Kolmogorov, and one is by Leby. Wiener's method gives the existence of Brownian motion in natural way. Kolmogorov's method gives the property of Brownian motion with sample path with awful ω . Levy's method gives an instruction for Brownian motion with wierd ω .

3.1 Wiener Space

Let $C = C_0[0,1] = \{f : f \text{ is continuous on } [0,1] \text{ and } f(0) = 0\}$. We give a norm to C by $||f|| = \sup_{0 \le x \le 1} |f(x)| = \max_{0 \le x \le 1} |f(x)|$, and distance d(f,g) = ||f - g||. Thus, there is an open ball $B_r(x) = \{y : d(x,y) < r\}$ and topology(open set) of C. Now, there is Borel σ -algebra = smallest σ -algebra containing all open sets.

Notation

From now, let $\mathcal{B}(C)$ be Borel σ -algebra in C.

Definition 3.1.1 (Cylindrical Sets)

A cylindrical sets \mathcal{R} is a collection of subsets of \mathcal{C} of the form

$$A = \{ f \in C : (f(t_1), f(t_2), \dots, f(t_m)) \in U, 0 < t_1 < t_2 < \dots < t_m \le 1, U \in \mathcal{B}(\mathbb{R}^n) \} ,$$

and *A* is called **cylindrical set**.

cf. For
$$m = 1$$
, $\{f : f(t_1) \in U_k\} = A_k \in \mathcal{R}$, then $\bigcup_{k=1}^{\infty} A_k = \{f : f(t_1) \in \bigcup_{k=1}^{\infty} U_k\} \in \mathcal{R}$.

Remark. \mathcal{R} is not a σ -algebra.

Example.
$$\{(f(t_1), f(t_2)) \in (-1, 1) \times (2, 3)\} = \{f : f(t_1) \in (-1, 1), f(t_2) \in (2, 3)\}.$$

Definition 3.1.2

Let $\mu : \mathcal{R} \to [0,1]$ such that

$$\mu(A) = \iint \cdots \int \frac{1}{\sqrt{2\pi t_1}} e^{-\frac{x_1^2}{2t_1}} \frac{1}{\sqrt{2\pi (t_2 - t_1)}} e^{-\frac{(x_2 - x_1)^2}{2(t_2 - t_1)}} \cdots \frac{1}{\sqrt{2\pi (t_m t_{m-1})}} e^{-\frac{(x_m - x_{m-1})^2}{2(t_m - t_{m-1})}} dx_1 \cdots dx_m,$$

and it is a natural definition since $B(t_i)$'s are jointly normal.

Theorem 3.1.3 (Wiener)

 μ is a countably additive(σ -additive) function on \mathcal{R} . In other words, A_1, A_2, \cdots are disjoint members of \mathbb{R} and $\bigcup_{k=1}^{\infty} A_k \in \mathcal{R}$, then $\mu(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} \mu(A_k)$.

Summary

- $C = C_0[0,1] \Rightarrow \mathcal{B}(C)$ is Borel σ -algebra
- \mathcal{R} : collection of subsets of C
- $\mu : \mathcal{R} \to [0,1]$ is σ -additive (Wiener)

Fact: R is a **Ring** in the sense that

- 1. $\phi \in \mathcal{R}$
- 2. $A, B \in \mathcal{R} \Rightarrow A \cup B \in \mathcal{R}$
- 3. $A, B \in \mathcal{R} \Rightarrow A \backslash B \in \mathcal{R}$

Theorem 3.1.4 (Caratheodory Extension Theorem)

- 1. $\mu:\mathcal{R} \to [0,1]$ is σ -additive
- 2. R is a ring
- 3. $\overline{\mathcal{R}}$ is a smallest σ -algebra containing \mathcal{R} .

Then, there exists unique extension of μ to $\overline{\mathcal{R}}$ which is a measure.

Remark. μ : $\overline{\mathcal{R}}$ is a probability measure called Wiener measure.

Remark. We can check that $\mathcal{B}(C) \subseteq \overline{\mathcal{R}}$. (it suffices to check that $B \in \overline{\mathcal{R}}$ for all open ball B), and $\mathcal{B}(C) = \overline{\mathcal{R}}$.

Conclusion: (C, \overline{R}, μ) is a probability space and says **Wiener space**.

Theorem 3.1.5

 $B:[0,1]\times C\to \mathbb{R}$, and let $B(t,\omega)=\omega(t)$. Then, B is a Brownian motion.

Proof. To prove that *B* is a Brownian motion, we have to check

1.
$$B(0, \omega) = \omega(0) = 0$$
 (obvious : $\omega \in C = C_0[0, 1]$).

- 2. $B(\cdot, \omega) = \omega(\cdot)$ is continuous (obvious by construction)
- 3. s < t: B(t) B(s) = N(0, t s).
- 4. Independent increament i.e., $t_1 < \cdots < t_n \Rightarrow B(t_1), B(t_2) B(t_1), \cdots, B(t_n) B(t_{n-1})$ are independent.

Proof of 3, 4.

$$\mu\left(B(t_{1}) \in A, B(t_{2} - B_{1}) \in A_{2}, \cdots, B(t_{m}) - B(t_{n-1}) \in A_{m}\right)$$

$$= \mu\left[\left\{\omega : (B(t_{1}))(\omega) \in A_{1}, \cdots, (B(t_{m}))(\omega) - (B(t_{m-1}))(\omega) \in A_{m}\right\}\right]$$

$$= \mu\left[\left\{\omega : \omega(t_{1}) \in A_{1}, \omega(t_{2}) - \omega(t_{1}) \in A_{2}, \cdots, \omega(t_{m}) - \omega(t_{m-1}) \in A_{m}\right\}\right]$$

$$= \mu\left[A_{m,t_{1},\cdots,t_{m},U} \mid \text{By def } \mu\right] \quad U = \left\{(x_{1},\cdots,x_{m}) \in \mathbb{R}^{m} : x_{1} \in A_{1},\cdots,x_{m} - x_{m-1} \in A_{m}\right\}$$

$$= \iint \cdots \int \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi(t_{i} - t_{i-1})}} e^{-\frac{y_{i}^{2}}{2(t_{i} - t_{i-1})}} dy_{n} \cdots dy_{1}$$

$$= \prod_{i=1}^{m} \left[\int_{A_{i}} \frac{1}{\sqrt{2\pi(t_{i} - t_{i-1})}} e^{-\frac{y_{i}^{2}}{2(t_{i} - t_{i-1})}} dy_{i}\right].$$

Therefore,

(i)
$$A_1, A_3, \dots, A_m = \mathbb{R} \Rightarrow \mu(B(t_2) - B(t_1) \in A_2) = \int_{A_2} \frac{1}{\sqrt{2\pi(t_2 - t_1)}} e^{-\frac{y_2^2}{2(t_2 - t_1)}} dy_2$$
: Proof of 3.

(ii) By (i),
$$\mu(B(t_1) \in A_1, \dots, B(t_m) - B(t_{m-1}) \in A_m) = \mu(B(t_1) \in A_1) \dots \mu(B(t_m) - B(t_{m-1}) \in A_m)$$
: Proof of 4.

Remark (Invariance Principle (Donsker, 1952)).

In random walk, for X_1, X_2, \cdots be i.i.d. and $\mathbb{P}(X_i = 1) = \mathbb{P}(X_1 = -1) = \frac{1}{2}$, we defined $S_0 = X_1 \cdots + X_n$ as random walk, $W_n(t) = \frac{1}{\sqrt{n}} S_{nt}$ $(t = 0, \frac{1}{n}, \cdots, \frac{n-1}{n}, 1)$ as scaled random walk.

Define $\widehat{W}_n(t) = \frac{1}{\sqrt{n}}S_{[nt]} + \frac{1}{\sqrt{n}}(nt - [nt])(S_{[nt]+1} - S_{[nt]}) \in C[0,1]$. Then, we can define probability measure μ_n in $(C, \mathcal{B}(c))$ by

$$\mu_n(A) := \mathbb{P}\left[\widehat{W}_n(\cdot) \in A\right] \quad \forall A \in \mathcal{B}(C)$$

Theorem 3.1.6

 $\widehat{W}_n(\cdot)$ converges to Brownian motion in the sense that $\mu_n \to \mu$ weakly.

Definition 3.1.7 (Weakly Convergence)

Let Ω be topological space, $\mathcal{B}(\Omega)$ be Borel σ -algebra. For each $n \in \mathbb{N}$ let \mathbb{P}_n , \mathbb{P} be probability measure in $(\Omega, \mathcal{B}(\Omega))$. We say $\mathbb{P}_n \to \mathbb{P}$ weakly if $\int f d\mathbb{P}_n \to \int f d\mathbb{P}$ for every continuous and bounded function $f: \Omega \to \mathbb{R}$.

Remark. We defined a Brownian motion B in $B: [0,1] \times C \to \mathbb{R}$. To extend to $[0,\infty) \times C \to \mathbb{R}$

$$\mathbb{R}, \text{ define } B(t) = \begin{cases} B_1(t) & t \in [0,1] \\ B_1(1) + B_2(t-1) & t \in [1,2] \\ B_1(1) + B_2(1) + B_3(t-2) & t \in [2,3] \\ \dots \end{cases}$$

Borel-Cantelli Lemma and Chebyshev Inequality

To Be Later...

.3 Kolmogorov's Extension and Continuity Theorems

- $\Omega = \mathbb{R}^{[0,\infty)} = \{ f : \text{ s.t. } f : [0,\infty) \to \mathbb{R}, f(0) = 0 \}$
- $\mathcal{R} = \{A_{m,t_1,t_2,\cdots,t_m,U} : m \in \mathbb{N}, 0 \le t_1 < \cdots < t_m, U \in B(\mathbb{R}^m)\}$
- $\mathcal{F} = \overline{\mathcal{R}}$ (Cylindrical σ -algebra)
- μ_{t_1,t_2,\cdots,t_m} : probability measure in $\mathcal{B}(\mathbb{R}^m)$ by

$$\mu_{t_1,t_2,\cdots,t_m}(A) = \iint \cdots \int_A \prod_{i=1}^m \frac{1}{\sqrt{2\pi(t_i - t_{i-1})}} e^{-\frac{(u_i - u_{i-1})^2}{2(t_i - t_{i-1})}} du_1 \cdots du_m$$

(Note: In section 3.1 we define $0 < t_1 < t_2 < \cdots$ since Brownian motion is fixed at 0, but in this section we define $0 \le t_1 < t_2 < \cdots$.)

Definition 3.3.1 (Marginal distribution of $0 \le t_1 < \cdots < t_n$) $\mu_{t_1,t_2,\cdots,t_n} = \mathbb{P}((X(t_1),\cdots,X(t_n)) \in U) \ (:= \mathbb{P}[\{\omega: (X(t_1,\omega),\cdots,X(t_n,\omega)) \in U\}])$ is called **marginal distribution of** $0 \le t_1 < \cdots < t_n$.

Question: Can we construct a probability measure \mathbb{P} on (Ω, \mathcal{F}) such that

$$\mathbb{P}[A_{n,t_1,\cdots,t_n,U}] = \mu_{t_1,\cdots,t_n}(U) ?$$

If it is possible, then $Y : [0, \infty) \times \Omega \to \mathbb{R}$ has marginal μ_{t_1, \dots, t_n} . (Why?)

$$\mathbb{P}[\{\omega : (Y(t_1,\omega), Y(t_2,\omega), \cdots, Y(t_n,\omega)) \in U\}]$$

$$= \mathbb{P}[\{\omega : (\omega(t_1), \cdots, \omega(t_n)) \in U\}]$$

$$= \mathbb{P}[A_{n,t_1,\cdots,t_n,U}] = \mu_{t_1,\cdots,t_n}(U)$$

Observation (Consistency condition)

$$\mu_{t_1,\dots,t_n}$$
: marginal distribution of $X(t,\omega)$

$$\Rightarrow \mu_{t_1,\dots,t_n}(A_1 \times \dots \times A_{i-1} \times \mathbb{R} \times A_{i+1} \times \dots \times A_n)$$

$$= \mu_{t_1,\dots,t_{i-1},t_{i+1},\dots,t_n}(A_1 \times \dots \times A_{i-1} \times A_{i+1} \times \dots \times A_n)$$

Theorem 3.3.2 (Kolmogorov's Extension Theorem)

- 1. μ_{t_1,\dots,t_n} : Borel probability measure in \mathbb{R}^2
- 2. $\{\mu_{t_1}, \dots, t_n : 0 \le t_1 < \dots < t_n\}$ satisfies the consistency condition

Then, $\exists \mathbb{P}$ *on* (Ω, \mathcal{F}) *such that*

$$\mathbb{P}[A_{n,t_1,\cdots,t_n,U}] = \mu_{t_1,\cdots,t_n}(U)$$

Kolmogorov's method is easy to construct Brownian motion with definition 1,3,4, but it is hard to probe definition 2: $B(\cdot, \omega)$ is continuous a.s.

Kolmogorov's extension theorem can be applied to every stochastic process.

Example. $0 \le t_1 < t_2 < \cdots t_n$.

$$\mu_{t_1,t_2,\cdots,t_n}(U) = \begin{cases} \iint \cdots \iint_U \prod_{i=1}^n \frac{1}{\sqrt{2\pi(t_i-t_{i-1})}} e^{-\frac{(u_i-u_{i-1})^2}{2(t_i-t_{i-1})}} du_1 \cdots du_n & \text{if } t_1 = 0\\ \iint \cdots \iint_U \prod_{i=2}^n \frac{1}{\sqrt{2\pi(t_i-t_{i-1})}} e^{-\frac{(u_i-u_{i-1})^2}{2(t_i-t_{i-1})}} \delta_0(u_1) du_1 \cdots du_n & \text{if } t_1 \neq 0, \end{cases}$$

and it is easy to show that μ_{t_1,\dots,t_n} satisfies consistency condition. By Kolmogorov's extension theorem, we have $(\Omega,\mathcal{F},\mathbb{P})$ associates to the above. Let $B:[0,t]\times\Omega\ni (t,\omega)\mapsto\omega(t)\in\mathbb{R}$ (coordinate mapping process).

Question: Is B the Brownian motion? We have to check

1.
$$B(0) = 0$$

- 2. $B(\cdots,\omega)$ is continuous a.s.
- 3. B(t) B(s) : N(0, t s)
- 4. Independent increament,

and 1, 3, 4 are easy. To prove 2, we need the following theorem

Theorem 3.3.3 (Kolmogorov's Continuity Theorem)

 $X:[0,1]\times\Omega\to\mathbb{R}$ is a stochastic process satisfying KET. We say (X(t)) is separable if

1.
$$\forall t \in [0,1], \epsilon > 0$$
 $\lim_{s \to t} \mathbb{P}[|X(s) - X(t)| > \epsilon] = 0$

2.
$$\exists \alpha, \beta, C > 0$$
 such that $\mathbb{E}[|X(t) - X(s)|^{1+\alpha}] \leq C|t - s|^{\beta}$ for all $s, t \in [0, 1]$.

Then, there exists stochastic process $\widetilde{X}(t,\omega)$ *such that*

- 1. $\widetilde{X}(\cdot,\omega)$ is continuous $\forall \omega \in \Omega$
- 2. $\Omega_0 = \{\omega : X(t,\omega) = \widetilde{X}(t,\omega) \ \forall t \in [0,1] \ , \mathbb{P}(\Omega) = 1\}$

Return to example, by KCT, there exists $\widetilde{B}(t,\omega)$ such that \widetilde{B} satisfies condition 2 of Brownian motion. Condition 3 and 4 are obvious, and condition 1 is also true since $\widetilde{B}(0,\omega)=0$ on Ω_0 , hence a.s.

We will skip the proof of KET and KCT (see Google)

Note: Kolmogorov's method is more general than Wiener's method since Kolmogorov's mtehod can be applied to any stochastic process. However, the space in Wiener's method (Banach space) and Kolmogorov's method are different, hence Kolmogorov's construction does not contain Wiener's construction.

3.4 Levy's Interpolation Method

Let $D_n = \{\frac{k}{2^{n-1}} : k = 0, 1, \dots, 2^{n-1}\}$. We will construct $X_1(t), X_2(t), \dots, X_n(t), \dots$ such that $X_n(t) \to BM$.

Definition 3.4.1

Let ϕ_1, \dots be i.i.d of N(0,1). Define $X_n(0) = 0, X_1(1) = \phi_1$ and

$$X_{n+1}(t) = \begin{cases} X_n(t) & \text{if } t \in D_n \\ X_n(t) + \frac{1}{2^{\frac{n+1}{2}}} \phi_i & \text{if } t \in D_{n+1} - D_n, \end{cases}$$

and interpolate by the line. Then, for each $t \in [0,1]$, $(X_n(t))_{n=1}^{\infty}$ is a Cauchy sequence in $L^2(\Omega) = \{X : \Omega \to \mathbb{R}; \int X^2 d\mathbb{P} < \infty\}$ with distance $d(X_m(t), X_n(t)) = \sqrt{\mathbb{E}[|X_m(t) - X_n(t)|^2]}$. Since $L^2(\Omega)$ is complete, $X_n(t) \to X(t)$ for some random variable X(t).

Wiener Integral

Review: L^2 space

$$(\Omega, \mathcal{F}, \mathbb{P}) = ([a, b], \mathcal{B}([a, b]), m).$$

- $L^2(\Omega) := \{X : \text{ random variable in } \Omega, \int X^2 d\mathbb{P} < \infty \}$
- $L^2([a,b]) := \{ f : [a,b] \to \mathbb{R}, \int f^2 dx < \infty \}$
- 1. Convergence in L^2
 - $(X_n)_{n=1}^{\infty} \in L^2(\Omega); X_n \to X \text{ in } L^2(\Omega) \text{ if } \int |X_n X|^2 d\mathbb{P} \to 0$
 - $(f_n)_{n=1}^{\infty} \in L^2([a,b]); f_n \to f \text{ in } L^2([a,b]) \text{ if } \int |f_n f|^2 dx \to 0$
 - $d(X,Y) = \sqrt{\int |X-Y|^2 d\mathbb{P}}$: distance \Rightarrow metric space
- 2. L^2 : complete:
 - $(X_n)_{n=1}^{\infty}$: Cauchy in $L^2(\Omega) \Longrightarrow \exists X \in L^2(\Omega)$ such that $X_n \to X$ in $L^2(\Omega)$
 - $(f_n)_{n=1}^{\infty}$: Cauchy in $L^2([a,b]) \Longrightarrow \exists f \in L^2([a,b])$ such that $f_n \to f$ in $L^2([a,b])$
- 3. Simple functions are dense in $L^2(\Omega)$
 - $X \in L^2(\Omega) \Rightarrow \exists$ simple functions $(X_n)_{n=1}^{\infty}$ such that $X_n \to X$ in $L^2(\Omega)$
 - $f \in L^2([a,b]) \Rightarrow \exists$ simple functions $(f_n)_{n=1}^{\infty}$ such that $f_n \to f$ in $L^2([a,b])$
- 4. $X_n \to X$ in $L^2(\Omega) \cdots (\bigstar)$
 - $X_n \to X$ a.s. if $\mathbb{P}\{\omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)\} = 1 \cdots (\spadesuit)$
- $(\bigstar) \not\Rightarrow (\spadesuit)$ and $(\spadesuit) \not\Rightarrow (\bigstar)$. But if (\bigstar) there exists a subsequence such that (\spadesuit) .

Question 1. What is $\int_a^b f(t)dB(t)$? Question 2. What is $\int_a^b f(B(t))dB(t)$?

Review: Stieltjes Integral

Let $a = t_0 < t_1 < \cdots < t_n = b$, $t_i = a + \frac{b-a}{n}i$.

 $\lim_{n \to \infty} \sum_{k=1}^{n} f(t_k) (g(t_k) - g(t_{k-1})) =: \int_a^b f^k dg$ if exists.

Remark.

- 1. $g \in C^1 \Rightarrow \int_a^b f dg = \int_a^b f g' dx$
- 2. Well-defined if *g* is absolutely continuous

3. (Summation by parts) $\sum_{k=1}^{n} f(t_k)(g(t_k) - g(t_{k-1})) = \sum_{k=0}^{n-1} g(t_k)(f(t_k) - f(t_{k+1})) + f(b)g(b) - f(a)g(a)$. If f is absolutely continuous, then it converges to $-\int gdf + f(b)g(b) - f(a)g(a)$. Therefore, if f is absolutely continuous, then $\int fdg = f(b)g(b) - f(a)g(a) - \int gdf$

Example (Example to Questions).

- If f is absolutely continous, then $\int_0^1 f df = \int_0^1 f f' dx = \frac{f(1)^2 f(0)^2}{2}$
- However, $\int_0^1 B(t)dB(t) = \frac{B(1)^2 B(0)^2}{2} \frac{1}{2}$ (by quadratic variation)

Consider a random variable $B(t): \omega \mapsto B(t, \omega)$. Then,

$$\int_{a}^{b} f(t)dB(t): \Omega \ni \omega \mapsto \int_{a}^{b} f(t)dB(t,\omega) \in \mathbb{R}$$

is well-defined if f is absolutely continuous. However, what if $f \in L^2([a,b])$?

Step 1 f is simple, $f(x) = \sum_{i=1}^k \alpha_i \mathbb{1}_{[a_i,b_i]}(x) \in L^2([a,b])$ Let $I(f) = \sum_{i=1}^k \alpha_i (B(b_i) - B(a_i)) \in L^2(\Omega)$. W.L.O.G. let $[a_i,b_i]$ be disjoint. Note that

(a)
$$\int \mathbb{1}_{[a_i,b_i]} dB(t) = \int_{a_i}^{b_i} dB(t) = B(b_i) - B(a_i)$$
, hence $I(f) = \int_a^b f dB(t)$

(b)
$$I(f): N(0, \int_a^b f^2 dx)$$
, since $\mathbb{E}[I(f)^2] = \sum_i \alpha_i^2 (b_i - a_i) = \int_a^b f^2 dx$

(c) *I* is linear map. i.e.
$$f$$
, g are simple $\Rightarrow I(f+g) = I(f) + I(g)$ and $I(cf) = cI(f)$

Step 2 Recall (3: simple functions are dense in L^2)

- $f \in L^2([a,b]) \Rightarrow \exists$ simple functions $(f_n)_{n=1}^{\infty}$ such that $f_n \to f$ in L^2 .
- If $I(f_m)$, $I(f_n) \in L^2(\Omega)$, then

$$\int_{a}^{b} |I(f_m) - I(f_n)|^2 d\mathbb{P} = \int I(f_m - f_n)^2 d\mathbb{P} = \mathbb{E}[I(f_m - f_n)^2] = \int_{a}^{b} (f_m - f_n)^2 dx.$$

Therefore (f_n) is a Cauchy sequence in $L^2([a,b]) \Rightarrow (I(f_n))_{n=1}^{\infty}$ is a Cauchy sequence in $L^2(\Omega)$. Let $Z \in L^2(\Omega)$ be $I(f_n) \to Z$, and define I(f) := Z.

Exercise: Well-definedness

i.e.,
$$f_n, g_n \to f$$
, $I(f_n) \to Z$, $I(g_n) \to Z'$, then $Z = Z'$ a.s.?

Exercise:
$$(Z_n: N(\mu_n, \sigma_n^2), Z_n \to Z \text{ in } L^2)$$
 Then, 1) $\mu_n \to mu, \sigma_n \to sigam, Z: N(\mu, \sigma^2)$.

Theorem 2.3.1

1.
$$I(f): N(0, \int_a^b f^2 dx) \quad (f \in L^2([a, b]))$$

2.
$$\mathbb{E}[I(f)I(g)] = \int_a^b fg dx \quad (f,g \in L^2([a,b]))$$

3. If f is absolutely continous (or $f \in C^1([a,b])$), then $I(f) = \int_a^b f(t)dB(t) (= f(b)B(b) - f(b)B(b)$ $f(a)B(a) - \int_a^b B(t)df$

Definition 2.3.2 $(\int_a^b f(t)dB(t))$ Let $f \in L^2([a,b])$. $\int_a^b f(t)dB(t) := I(f) \in L^2(\Omega)$. Then,

- $I(f): \omega \mapsto \int_a^b f(t)dB(t,\omega)$
- $I: L^2([a,b]) \to L^2(\Omega)$ isometry

Proof of thm.

- 1. Let $f_n \to f$ in $L^2([a,b])$ $(f_n: simple)$ and $I(f_n) \to I(f)$ in $L^2(\Omega)$. Since $I(f_n) \sim$ $N(0, \int_a^b f_n^2 dx)$, it converges to $N(0, \int_a^b f^2(x) dx)$. Therefore, $\int_a^b f_n^2 dx \to \int_a^b f^2 dx$.
- 2. By 1. $\mathbb{E}[I(f)^2] = \int_a^b f^2 dx$. Moreover, $\mathbb{E}[I(f+g)^2] = \int_a^b (f+g)^2 dx$, $\mathbb{E}[I(f)^2] = \int_a^b f^2 dx$, $\mathbb{E}[I(g)^2] = \int_a^b g^2 dx$. Check that I(f+g) = I(f) + I(g).
- 3. Let $a = t_0 < t_1 < \dots < t_n = b$ and $t_i = a + \frac{b-a}{n}i$. Let $f_n(t) = \sum_{i=1}^n \mathbb{1}_{[t_{i-1},t_i)}(t)f(t_{i-1})$. Then, $f_n \to f$ in L^2 if f_n 's are absolutely continuous. Therefore, $I(f) = \lim_{n \to \infty} I(f_n) = \lim_{n \to \infty} I(f_n)$ $\lim_{n\to\infty}\sum_{k=1}^n f(t_{i-1})(B(t_i)-B(t_{i-1}))$ (= Definition of Stieltjes integral $\int_a^b dB(t)$)

Appendix A

TA Session

Example (1.2.2). Let $(\Omega_{\infty}, \mathcal{F}_{\infty}, \mathbb{P})$ be the independent, infinite coin-toss space. Define stock price by

$$S_0(\omega) = 4$$
 for all $\omega \in \Omega_\infty$
 $S_1(\omega) = \begin{cases} 8 & \text{if } \omega_1 = H \\ 2 & \text{if } \omega_1 = T \end{cases}$
 $S_2(\omega) = \begin{cases} 16 & \text{if } \omega_1 = \omega_2 = H \\ 4 & \text{if } \omega_1 \neq \omega_2 \\ 1 & \text{if } \omega_1 = \omega_2 = T \end{cases}$

and in general

$$S_{n+1}(\omega) = \begin{cases} 2S_n(\omega) & \text{if } \omega_{n+1} = H\\ \frac{1}{2}S_n(\omega) & \text{if } \omega_{n+1} = T \end{cases}$$

Then, S_0, S_1, \cdots , are random variable.

For example, $\mathbb{P}(S_2 = 4) = \mathbb{P}(A_{HT} \cup A_{TH}) = 2pq$

Example (2.2.2). Let Ω be a three independent coin-toss space. Stock price random variables S_0, S_1, \cdots , are the same as the previous example. Let the probability measure \mathbb{P} be given by

$$\mathbb{P}(HHH) = p^3, \mathbb{P}(HHT) = p^2q, \cdots, \mathbb{P}(TTT) = q^3.$$

Assume $0 . Then, the random variables <math>S_2$ and S_3 are not independent.

: Consider the sets $\{S_3 = 32\} = \{HHH\}$ and $\{S_2 = 16\} = \{HHH, HHT\}$ whose probabilities are $\mathbb{P}(S_3 = 32) = p^3$ and $\mathbb{P}(S_2 = 16) = p^2$. In order to have Independence, $p^3 = \mathbb{P}(S_3 = 32) = \mathbb{P}(S_2 = 16 \text{ and } S_3 = 32) = \mathbb{P}(S_2 = 16)\mathbb{P}(S_3 = 32) = p^5 \Longrightarrow \Leftarrow$.

The random variables S_2 and S_3/S_2 are independent. The σ -algebra generated by S_2 comprises ϕ , Ω , the atoms

 ${S_2 = 16} = {HHH, HHT}, {S_2 = 4} = {HTH, HTT, THH, THT}, {S_2 = 1} = {TTH, TTH}, and their unions.$

The σ -algebra generated by S_3/S_2 comprises ϕ , Ω and

$${S_3/S_2 = 2} = {HHH, HTH, THH, TTH}, {S_3/S_2 = \frac{1}{2}} = {HHT, HTT, THT, TTT}$$

For
$$A \in \sigma(S_2)$$
, $B \in \sigma(S_3/S_2)$, $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.
ex) $p^3 = \mathbb{P}(S_2 = 16 \text{ and } S_3/S_2 = 2) = \mathbb{P}(S_2 = 16)\mathbb{P}(S_3/S_2 = 2)) = p^2p = p^3$

Example (2.2.10 Uncorrelated, dependent normal random variables).

Let *X*, *Z* be random variable satisfying

X : standard normal random variable

$$Z$$
: independent of X , $\mathbb{P}(Z=1)=\frac{1}{2}$, $\mathbb{P}(Z=-1)=\frac{1}{2}$

Define Y = ZX. Show

- 1. Y is standard normal random variable
- 2. *X* and *Y* are uncorrelated but they are dependent.

Proof.

1.

$$F_Y(b) = \mathbb{P}(Y \le b)$$

$$= \mathbb{P}(Y \le b \text{ and } Z = 1) + \mathbb{P}(Y \le b \text{ and } Z = -1)$$

$$= \mathbb{P}(X \le b \text{ and } Z = 1) + \mathbb{P}(X \ge -b \text{ and } Z = -1)$$

$$= \mathbb{P}(X \le b)\mathbb{P}(Z = 1) + \mathbb{P}(X \ge -b)\mathbb{P}(Z = -1)$$

$$= \frac{1}{2}N(b) + \frac{1}{2}N(b)$$

$$= N(b)$$

2. Since $\mathbb{E}X = \mathbb{E}Y = 0$,

$$Cov(X,Y) = \mathbb{E}[XY] = \mathbb{E}[ZX^2] = \mathbb{E}[Z]\mathbb{E}[X^2] = 0$$

 \therefore X and Y are uncorrelated.

If X and Y are independent, |X| and |Y| are independent. But $\mathbb{P}(|X| \leq 1, |Y| \leq$

1) =
$$\mathbb{P}(|X| \le 1) = N(1) - N(-1)$$
, and $\mathbb{P}(|X| \le 1, |Y| \le 1) = \mathbb{P}(|X| \le 1)\mathbb{P}(|Y| \le 1)$

$$1) = (N(1) - N(-1))^2 \implies$$

Let $\mu_{X,Y}$ be a joint distribution measure of (X,Y). Since |X|=|Y|, (X,Y) takes values only in the set $C=\{(x,y): x=\pm y\}$.

It follows that for any measurable function f,

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbb{1}_{C}(x,y) f_{X,Y}(x,y) dy dx = 0$$

 \therefore There is no joint density $f_{X,Y}$ for (X,Y).

$$\begin{split} F_{X,Y}(a,b) &= \mathbb{P}(X \le a, Y \le b) \\ &= \mathbb{P}(X \le a, X \le b, Z = 1) + \mathbb{P}(X \le a, -X \le b, Z = -1) \\ &= \frac{1}{2} \mathbb{P}(X \le a \land b) + \frac{1}{2} \mathbb{P}(-b \le X \le a) \\ &= \frac{1}{2} N(a \land b) + \frac{1}{2} ((N(a) - N(-b)) \lor 0) \end{split}$$

Example (2.2.12). Let (X,Y) be jointly normal with the density

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right] \right)$$

Define $W = Y - \frac{\rho \sigma_2}{\sigma_1} X$. Then, X and W are independent.

Note that linear combination of jointly normal random variables are jointly normal (i.e., (X, W) is jointly normal).

Thus it suffices to show that Cov(X, W) = 0 (by Thm 2.2.9)

$$\begin{aligned} Cov(X, W) &= \mathbb{E}[(X - \mathbb{E}X)(W - \mathbb{E}W)] \\ &= \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)] - \mathbb{E}[\frac{\rho\sigma_2}{\sigma_1}(X - \mathbb{E}X)^2] \\ &= Cov(X, Y) - \frac{\rho\sigma_2}{\sigma_1}\sigma_1^2 \\ &= 0 \end{aligned}$$

Let $f_{X,W}$ be joint density of X and W.

$$\begin{split} \mathbb{E}[W] &= \mu_2 - \frac{\rho \sigma_2 \mu_1}{\sigma_1} =: \mu_3 \\ \mathbb{E}[(W - \mathbb{E}W)^2] &= \mathbb{E}[(Y - \mathbb{E}Y)^2] - \frac{2\rho \sigma_2}{\sigma_1} \mathbb{E}[(X - \mathbb{E}X)(Y - \mathbb{E}Y)] + \frac{\rho^2 \sigma_2^2}{\sigma_1^2} \mathbb{E}[(X - \mathbb{E}X)^2] \\ &= \sigma^2 - \frac{2\rho \sigma_2}{\sigma_1} \rho \sigma_1 \sigma_2 + \frac{\rho^2 \sigma_2^2}{\sigma_1^2} \sigma_1^2 \\ &= (1 - \rho^2) \sigma_2^2 =: \sigma_3^2 \end{split}$$

$$\therefore f_{X,W}(x,w) = \frac{1}{2\pi\sigma_1\sigma_3} \exp\left(-\frac{(x-\mu_1)^2}{2\sigma_1^2} - \frac{(w-\mu_3)^2}{2\sigma_3^2}\right).$$

Note that we have decomposed Y into the linear combination $Y = \frac{\rho \sigma_2}{\sigma_1} X + W$ of a pair of independent normal random variables X and W.

Example (2.3.3). Let $\mathcal{G} = \sigma(X)$. Observe estimate Y based on X and error.

$$\begin{split} \mathbb{E}[Y|X] &= \frac{\rho \sigma_2}{\sigma_1} + \mathbb{E}[W] = \frac{\rho \sigma_2}{\sigma_1} (X - \mu_1) + \mu_2. \\ Y - \mathbb{E}[Y|X] &= W - \mathbb{E}[W] \end{split}$$

Note that the error is random variable with expected value zero and independent of the estimation $\mathbb{E}[Y|X]$.