

www.preparadorinformatica.com

PRÁCTICA 1 CIRCUITOS LÓGICOS DIGITALES

EJERCICIOS DE CIRCUITOS LÓGICOS DIGITALES

EJERCICIO 1

1. Aplicar los teoremas de DeMorgan a cada una de las siguientes expresiones:

(a)
$$\overline{(A+B+C)D}$$
 (b) $\overline{ABC+DEF}$ (c) $\overline{A\overline{B}+\overline{C}D+EF}$

EJERCICIO 1. SOLUCIÓN PROPUESTA

b)
$$\overline{ABC} + \overline{DEF} = \overline{X} + \overline{Y} = \overline{X} \cdot \overline{Y}$$

Lea) $\overline{ABC} = X$) $\overline{DEF} = Y$)

Sea) $\overline{ABC} = X$) $\overline{DEF} = Y$)

Lea) $\overline{ABC} = X$) $\overline{DEF} = X \cdot \overline{Y}$ — Sea) $\overline{ABC} = X \cdot \overline{Y}$ — Sea) $\overline{ABC} = X \cdot \overline{Y}$ y where applicance de nuevo of \overline{TE} de Delluyon a code parte .

($\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{Y}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{Y}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{Y}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{Y}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{Y}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{Y}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{Y}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{Y}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{Y}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{Y}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{Y}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{Y}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{Y}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{Y}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{Y}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{Y}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{Y}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{Y}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{Y}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{Y}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{Y}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{Y}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{Y}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{Y}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{Y}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{TE} = X \cdot \overline{TE}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{TE} = X \cdot \overline{TE}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{TE}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{TE}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{TE}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{TE}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{TE}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{TE}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{TE}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{TE}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{TE}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{TE}$ — Sea) $\overline{ABC} = X \cdot \overline{TE} = X \cdot \overline{TE}$ — Sea) $\overline{ABC} = X \cdot \overline{TE}$ — Se

c)
$$\overline{AB} + \overline{CD} + \overline{EF} = \Rightarrow$$

$$\overline{X} + \overline{Y} + \overline{E} = \overline{X} \overline{Y} \overline{Z} \longrightarrow \uparrow$$

$$\rightarrow (\overline{AB}) \cdot (\overline{CD}) \cdot (\overline{EF}) \longrightarrow T^{\underline{c}} de \ delargan \longrightarrow \uparrow$$

$$\rightarrow (\overline{A+B}) \cdot (C+\overline{D}) \cdot (\overline{E+F})$$

2. La expresión booleana de una puerta OR-exclusiva es:

$$AB + \overline{A}B$$

Tomando esto como punto de partida, desarrollar una expresión para una puerta NOR-exclusiva, utilizando los teoremas de DeMorgan y aquellas leyes o reglas que puedan aplicarse.

EJERCICIO 2. SOLUCIÓN PROPUESTA

3. Simplificar la siguiente expresión booleana:

$$[A\overline{B}(C+BD)+\overline{AB}]C$$

EJERCICIO 3. SOLUCIÓN PROPUESTA

G
$$[AB(C+BD) + \overline{AB}]C =$$
 $dey \ distribution \Rightarrow [ABC + ABBD + \overline{AB}]C =$
 $Regla \ 8 = [ABC + A \cdot O \cdot D + \overline{AB}]C =$
 $(A \cdot \overline{A} = 0) = [ABC + O + \overline{AB}]C =$
 $= [ABC + \overline{AB}]C =$
 $= [ABC + \overline{AB}]C =$
 $dey \ distribution = ABCC + \overline{ABC} =$

4. Simplificar la siguiente expresión booleana:

$$\overline{ABC} + A\overline{BC} + \overline{ABC} + A\overline{BC} + ABC$$

EJERCICIO 4. SOLUCIÓN PROPUESTA

Factor commin =
$$BC (\overline{A} + A) + A\overline{B}\overline{C} + A\overline{B}\overline{C} + A\overline{B}C = BC$$

Regla 6 = $BC \cdot 1 + A\overline{B}\overline{C} + A\overline{B}\overline{C} + A\overline{B}C = BC$

Factor commin = $BC + A\overline{B}(\overline{C} + C) + \overline{A}\overline{B}\overline{C} = A\overline{B}C$

Regla 6 = $BC + A\overline{B} \cdot 1 + \overline{A}\overline{B}\overline{C} = BC$

Regla 6 = $BC + A\overline{B} \cdot 1 + \overline{A}\overline{B}\overline{C} = BC$

Factor commin = $BC + A\overline{B} \cdot 1 + \overline{A}\overline{B}\overline{C} = BC$

Factor commin = $BC + \overline{B}(A + \overline{A}\overline{C}) = \overline{B}C + \overline{B}(A + \overline{C}) = \overline{B}C + \overline{B}C + \overline{B}C + \overline{B}C = \overline{B}C + \overline{B}C = \overline{B}C + \overline{B}C + \overline{B}C = \overline{B}C = \overline{B}C + \overline{B}C = \overline{B}C = \overline{B}C + \overline{B}C = \overline{$

5. Convertir cada una de las siguientes expresiones booleanas a su forma suma de productos:

(a)
$$AB + B(CD + EF)$$

(a)
$$AB + B(CD + EF)$$
 (b) $(A + B)(B + C + D)$ (c) $(\overline{A + B}) + C$

(c)
$$\overline{(\overline{A+B})} + C$$

EJERCICIO 5. SOLUCIÓN PROPUESTA

(3)
$$AB + B$$
 ($CD + EF$) = $AB + BCD + BEF$
(4) $(A+B)(B+C+D) = AB + AC + AD + BB + BC + BD$
(A+B) + C = $(A+B) \cdot \overline{C} = (A+B) \cdot \overline{C} = A\overline{C} + B\overline{C}$

EJERCICIO 6

6. Convertir la siguiente expresión booleanas a suma de productos estándar:

$$A\overline{B}C + \overline{A}\overline{B} + AB\overline{C}D$$

Preparador Informática EJERCICIO 6. SOLUCIÓN PROPUESTA

$$\overline{AB} \longrightarrow Falta C g D \longrightarrow$$

$$\overline{AB} (C+\overline{C}) = \overline{ABC} + \overline{ABC} \longrightarrow$$

$$\longrightarrow (\overline{ABC} + \overline{ABC}) (D+\overline{D}) = |\overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$$

7. Convertir la siguiente expresión booleanas a producto de sumas estándar:

$$(A + \overline{B} + C)(\overline{B} + C + \overline{D})(A + \overline{B} + \overline{C} + D)$$

EJERCICIO 7. SOLUCIÓN PROPUESTA

8. Crear una tabla de verdad para la expresión suma de productos estándar siguiente: $\overline{A}B\overline{C} + A\overline{B}C$.

EJERCICIO 8. SOLUCIÓN PROPUESTA

Existen tres variables en el dominio, por lo que hay ocho posibles combinaciones de valores binarios de las variables.

	Salida		
Α	В	С	Х
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

9. Crear una tabla de verdad para la expresión producto de sumas estándar siguiente:

$$(A + \overline{B} + C)(A + B + \overline{C})(\overline{A} + \overline{B} + \overline{C})$$

EJERCICIO 9. SOLUCIÓN PROPUESTA

Existen tres variables en el dominio, por lo que hay ocho posibles combinaciones de valores binarios de las variables.

	Salida		
Α	В	С	Х
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
renar	adoi	· Info	0,

10. Dibujar el diagrama lógico correspondiente:

a)
$$(a + \overline{b})$$
. $(\overline{a} + b)$
b) $ab + \overline{ab}$

c) Demostrar que ambos son equivalentes.

EJERCICIO 10. SOLUCIÓN PROPUESTA

11. Verificar las siguientes ecuaciones:

a)
$$\left[\overline{ab}(\overline{d}+d\overline{c}) + (a+d\overline{ac})b = b\right]$$

 $b)\left[\overline{(a+\overline{b}+a\overline{b})} \cdot (ab+\overline{ac}+bc) = ab+\overline{abc}\right]$

EJERCICIO 11. SOLUCIÓN PROPUESTA

(1) a)
$$\begin{bmatrix} \overline{a}b(\overline{d}+d\overline{c}) + (a+d\overline{a}c)b = b \end{bmatrix}$$

 $\overline{a}b\overline{d} + \overline{a}b\overline{d} + ab + \overline{a}bc\overline{d} =$
 $\overline{a}b\overline{d} \cdot (\overline{c}+c) + \overline{a}b\overline{d} + ab =$
 $\overline{a}b\overline{d} + \overline{a}b\overline{d} + ab = \overline{a}b(\overline{d}+\overline{d}) + ab =$
 $\overline{a}b\overline{d} + \overline{a}b\overline{d} + ab = \overline{a}b(\overline{d}+\overline{d}) + ab =$
 $\overline{a}b + ab = b(\overline{a}+a) = \overline{b}$

b)
$$(a + \overline{b} + a\overline{b}) \cdot (ab + \overline{a}c + bc) = ab + \overline{a}bc$$
 $aab + aac + abc + \overline{a}bab + \overline{b}ac + \overline{b}bc + a\overline{b}ab + a\overline{b}ac + abbc = ab + abc + \overline{a}bc = ab + abc + \overline{a}bc = ab + abc + \overline{a}bc = ab + abc = ab +$

12. Comprobar la siguiente igualdad mediante la tabla de verdad: (ab+ac) · (ab) = ab

EJERCICIO 12. SOLUCIÓN PROPUESTA

Entrada				Salida	
а	b	С	ab	ac	(ab+ac)·ab
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1 1	0	1	0
1	1	0	1	0	1
1	1	1	1	1	1

13. Simplificar las siguientes funciones usando las reglas del Álgebra de Boole:

b)
$$\overline{(\bar{a}+b)\cdot(\bar{c}+a)} =$$

EJERCICIO 13. SOLUCIÓN PROPUESTA

(13) a)
$$\bar{a}bcd + \bar{a}b\bar{c}\bar{d} + \bar{a}\bar{b}cd = \bar{a}$$
. $(bcd + b\bar{c}\bar{d} + \bar{b}cd) = \bar{a} \cdot [cd(b+\bar{b}) + b\bar{c}\bar{d}] = \bar{a} \cdot [cd + b\bar{c}\bar{d}]$

b)
$$\overline{(\bar{a}+b)\cdot(\bar{c}+a)} = \overline{(\bar{a}+b)} + \overline{(\bar{c}+a)} = \overline{\bar{a}\cdot\bar{b}} + \overline{\bar{c}}\bar{a} = \overline{(\bar{a}\bar{b}+\bar{a}c)}$$

ática

14. Dada la siguiente tabla, extraer la función mínima en forma de suma de productos y producto de sumas:

	Salida		
а	b	С	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

EJERCICIO 14. SOLUCIÓN PROPUESTA

$$= \overline{abc} + \overline{abc} + \overline{ac} + \overline{ab}$$

$$\overline{c} (\overline{ab} + \overline{ab})$$

$$\overline{c} (b + \overline{ab})$$

$$\overline{bc} + \overline{abc}$$

15. Dadas la tabla de verdad siguiente, realizar:

Entrada			Salida	
а	b	С	L ₁	L ₂
0	0	0	1	1
0	0	1	1	1
0	1	0	1	0
0	1	1	1	0
1	0	0	1	1
1	0	1	0	1
1	1	0	1	1
1	1	1	0	0

- a. Obtener la función L₁, simplifica y dibuja el diagrama lógico correspondiente.
- b. Obtener la función L2, simplifica y dibuja el diagrama lógico correspondiente.

EJERCICIO 15. SOLUCIÓN PROPUESTA

(15) a)
$$L_1 = \bar{a}b\bar{c} + \bar{a}bc + \bar{a}b\bar{c} + \bar{a}b\bar{c} + \bar{a}b\bar{c} = \bar{a}b(\bar{c}+\bar{c})$$
 $\bar{a}b(\bar{c}+\bar{c})$ $\bar{a}c(\bar{b}+\bar{b}) = \bar{a}b + \bar{a}b + \bar{a}c = \bar{a}(\bar{b}+\bar{b}) + \bar{a}c = \bar{a}+\bar{c}$

b)
$$dz = \overline{abc} + \overline{abc} + \overline{abc} + \overline{abc} + \overline{abc} = \overline{ab(c+c)} + \overline{abc} = \overline{ab(c+c)} + \overline{abc} = \overline{ab(a+ab)} = \overline$$

16. Utilizando las leyes de DeMorgan, obtener una expresión en forma de sumas de productos:

b) $F = \overline{(\overline{x} \cdot \overline{y} + xz)} \cdot \overline{(\overline{x} + \overline{y} \cdot z)}$

a)
$$F = \overline{(x+y)(xy+z)}$$

EJERCICIO 16. SOLUCIÓN PROPUESTA

(A)
$$F = (x+y), (x \neq \overline{y} + \overline{z}) =$$

$$= (x+y) + (x\overline{y} + \overline{z}) =$$

$$= (x+y) + (x\overline{y} + \overline{z}) =$$

$$= \overline{x} \cdot \overline{y} + x\overline{y} + \overline{z} =$$

$$= \overline{y} (\overline{x} + x) + \overline{z} =$$

$$= (\overline{y} + \overline{z})$$

b)
$$F = (\overline{x} \cdot \overline{y} + x\overline{\epsilon}) \cdot (\overline{x} + \overline{y}\overline{\epsilon}) =$$

$$= (\overline{x} \cdot \overline{y} + x\overline{\epsilon}) + (\overline{x} + \overline{y}\overline{\epsilon}) =$$

$$= \overline{x} \cdot \overline{y} + x\overline{\epsilon} + \overline{x} + \overline{y}\overline{\epsilon} =$$

$$= \overline{x} (\overline{y} + x\overline{\epsilon}) + x\overline{\epsilon} + \overline{y}\overline{\epsilon} =$$

$$= \overline{x} + x\overline{\epsilon} + \overline{y}\overline{\epsilon} =$$

$$= \overline{x} + 2 (\cancel{x} + y) =$$

$$= \overline{x} + 2 (\cancel{x} + y) =$$

$$= \overline{x} + 2 (\cancel{x} + y) =$$

17. Verifica la siguiente igualdad:

a)
$$(x + y + xy)(x + y)xy = 0$$

EJERCICIO 17. SOLUCIÓN PROPUESTA

(3)
$$(x+\overline{y}+xy) \cdot (x+\overline{y}) \cdot \overline{x}y = 0$$

 $(x+\overline{y}) \cdot (x+\overline{y}) \cdot (\overline{x}y) = 0$
 $(x+\overline{y}) \cdot (\overline{x}y) = 0$
 $(x+\overline{y}) \cdot (\overline{x}y) = 0$
 $(x+\overline{y}) \cdot (\overline{x}y) = 0$

18. Obtener la tabla de verdad que corresponde a las siguientes funciones:

a)
$$F = xy + xz + yz$$

b)
$$G = (x + z)(y + z)$$

EJERCICIO 18. SOLUCIÓN PROPUESTA

a)

	Salida		
х	У	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	_ 1	0	1
1	1	1	1

b)

repar	Entrada	Salida	ca	
x	У	z	F	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	1	
1	0	0	0	
1	0	1	0	
1	1	0	1	
1	1	1	0	

19. Sean las funciones:

$$F_1 = \left(A + \overline{B}\right) \cdot \left(A \cdot B\right) \text{ y } F_2 = A \cdot B + \overline{B} .$$

Construye la tabla de verdad de:

- a) F₁
- b) F₂.
- c) Tabla de verdad de la función F₁+F₂.
- d) Tabla de verdad de la función $F_1 \cdot F_2$.
- e) Dibujar el diagrama lógico correspondiente a F1.
- f) Dibujar el diagrama lógico correspondiente a F2.

EJERCICIO 19. SOLUCIÓN PROPUESTA

a)
$$F_1 = (A + \overline{B})(\underline{A \cdot B})$$

А	В	\overline{B}	$(A + \overline{B})$	(A·B)	F_1
0	0	1	1	0	0
0	1	0	0	0	0
1	0	_11	1	0	0
1	1	0	1 Info	1	1
	repa	II auo		Hillau	Cal

$$F_2 = A \cdot B + \overline{B} \ .$$

А	В	\overline{B}	$(A \cdot B)$	$\overline{F_2}$
0	0	1	0	1
0	1	0	0	0
1	0	1	0	1
1	1	0	1	1

- c) Tabla de verdad de la función F₁+F₂.
- d) Tabla de verdad de la función F₁·F₂.

F_1	F_2	F ₁ +F ₂	F ₁ · F ₂
0	1	1	0
0	0	0	0
0	1	1	0
1	1	1	1

e) Dibujar el diagrama lógico correspondiente a F1.

f) Dibujar el diagrama lógico correspondiente a F₂.

20. Dada el siguiente diagrama lógico, obtener la función y simplificar:

EJERCICIO 20. SOLUCIÓN PROPUESTA

21. Se han instalado dos rótulos luminosos en la puerta de una consulta médica, uno con la leyenda "PASE", y otro con la leyenda "ESPERE". El primero debe encenderse sólo si está el médico y no hay un paciente en el interior de la consulta. El segundo, cuando haya pasado un paciente. Se pide: a) tabla de verdad de la función "P", que nos indica el estado del cartel de "PASE"; b) ídem para el rótulo "ESPERE"; c) expresión algebraica de la función P; d) ídem para la función "E".

EJERCICIO 21. SOLUCIÓN PROPUESTA

