Differential Equations in Geophysical Fluid Dynamics

XII. Wind-driven circulation: Introduction and Sverdrup balance

Jang-Geun Choi

Center for Ocean Engineering University of New Hampshire

Apr, 2025

This seminar is supported by mathematics community EM (maintained by Prof. Gunhee Cho) and oceanography community COKOAA.

Introduction

Figure: Climatologial mean wind stress and sea surface height fields.

Governing equation

Let us consider steady, linear, and lateral inviscid shallow water equations (Stommel, 1948):

$$\frac{\partial \bar{u}}{\partial t} + \vec{u} \cdot \nabla \bar{u} - f \bar{v} = -g \frac{\partial \eta}{\partial x} + \nabla \cdot (A_h \nabla \bar{u}) + \frac{\tau_x^s}{\rho_0 h} - \frac{\gamma}{h} \bar{u}$$
 (1a)

$$\frac{\partial \bar{v}}{\partial t} + \vec{u} \cdot \nabla \bar{v} + f \bar{u} = -g \frac{\partial \eta}{\partial y} + \nabla \cdot (A_h \nabla \bar{v}) + \frac{\tau_y^s}{\rho_0 h} - \frac{\gamma}{h} \bar{v}$$
 (1b)

$$\frac{\partial \eta}{\partial t} + h \left(\frac{\partial \bar{u}}{\partial x} + \frac{\partial \bar{v}}{\partial y} \right) = 0.$$
 (1c)

We will use the vorticity equation. Taking curl of momentum equations yields $-(\gamma/h)\nabla \times \vec{u}$: Bottom stress curl

$$\frac{\partial f}{\partial y}\bar{v} = \frac{1}{\rho_0 h} \left(\frac{\partial \tau_y^s}{\partial x} - \frac{\partial \tau_x^s}{\partial y} \right) - \frac{\gamma}{h} \left(\frac{\partial \bar{v}}{\partial x} - \frac{\partial \bar{u}}{\partial y} \right)$$
(2)

Governing equation

Using stream functions, $\bar{v}=\partial\psi/\partial x$ and $\bar{u}=-\partial\psi/\partial y$, (2) can be written as

$$\beta \frac{\partial \psi}{\partial x} = \frac{1}{\rho_0 h} \nabla \times \vec{\tau}^s - \frac{\gamma}{h} \left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} \right)$$
(3)

where $\beta = \partial f/\partial y$.

Note that $f=2\Omega\sin\theta$ where θ is latitude. There are two approximation: "f-plane ($f\approx f_0$)" and " β -plane ($f\approx f_0+\beta_0 y$)" where f_0 and β_0 are constants.

This is based on the **Taylor expansion** (Pedlosky, 1987; Verkley, 1990).

f- and β -planes

Taylor expansion

Arbitrary function f(x) near x=a can be expressed as infinite sum of polynomials:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$
 (4)

where $f^{(n)} = \partial^n f/\partial x^n$, f differentiated n times.

f- and β -planes

Taylor expansion of the Coriolis frequency f near θ_0 yields

$$f = 2\Omega \sin \theta$$

$$\approx 2\Omega \left(\sin \theta_0 + (\cos \theta_0) (\theta - \theta_0) - (\sin \theta_0) (\theta - \theta_0)^2 \cdots \right)$$

$$= 2\Omega \left(\sin \theta_0 + (\cos \theta_0) \frac{y}{R} - (\sin \theta_0) \left(\frac{y}{R} \right)^2 \cdots \right)$$
(5)

If $\sin\theta_0 \approx \cos\theta_0$ (mid-latitude) and y/R < 1 (so smaller length scale than R), $$\beta_0$$

$$f \approx 2\Omega \sin \theta_0 + \frac{2\Omega \cos \theta_0}{R} y \tag{6}$$

Note that the second β -term $(\beta_0 y)$ still depends on y/R, so it can be negligible for "much smaller" length scale.

Wind-driven circulation over f-plane

$$\beta \frac{\partial \psi}{\partial x} = \frac{1}{\rho_0 h} \nabla \times \vec{\tau}^s - \frac{\gamma}{h} \left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} \right)$$

$$\therefore \quad \nabla \times \vec{u} = \frac{1}{\rho_0 \gamma} \nabla \times \vec{\tau}^s$$
(7)

The curl of ocean currents $(\nabla \times \vec{u})$ is proportional to the curl of wind stress $(\nabla \times \vec{\tau}^s)$ in the same direction.

Wind-driven circulation over β -plane

$$\frac{(\beta_0 U) \frac{\partial \psi^*}{\partial x^*}}{\beta_0 \frac{\partial \psi}{\partial x}} + \frac{\left(\frac{\gamma U}{hL}\right) \frac{\partial^2 \psi^*}{\partial x^{*2}}}{h\left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2}\right)} = \frac{1}{\rho_0 h} \nabla \times \vec{\tau}^s \tag{8}$$

For large scale ocean $(\gamma U/(hL) \ll \beta_0 U$ so $\gamma/(h\beta_0) \ll L$), the bottom stress curl becomes negligible.

$$\beta_0 \frac{\partial \psi}{\partial x} = \frac{1}{\rho_0 h} \nabla \times \vec{\tau}^s \tag{9}$$

that is referred to as Sverdrup balance equation (Sverdrup, 1947).

Sverdrup balance

Solution to (9) can be easily obtained by integrating (9) with respect to x over the domain:

$$\psi = \frac{1}{\rho_0 h \beta_0} \int_0^L \nabla \times \vec{\tau}^s \, dx \tag{10}$$

9/12

Below are the solution with idealized wind stress $(au_x^s, au_y^s)=(- au_0\cos(\pi y/L_y),0)$, and a boundary condition $\psi|_{x=L_x}=0$.

Summary

Governing equation to the Stommel's wind-driven circulation is

- 1. Based on the Taylor expansion, $f = 2\Omega \sin \theta$ can be approximated to $f \approx f_0 + \beta y$ (β -plane approximation).
- 2. For relatively small scale, β -term becomes negligible so $f \approx f_0$.
- 3. On the f-plane, wind stress curl is balanced by bottom stress curl.
- 4. On the β -plane at large length scales, it is dominantly balanced by the planetary β -term.

Assignment

Shows that the potential vorticity can be approximated to

$$q = \frac{\xi + f}{h + \eta} = \frac{\xi + f}{h} \frac{1}{1 + \eta/h} \approx \frac{1}{h} \left(\xi + f - \frac{f}{h} \eta \right)$$
 (12)

when $Ro=\xi/f\ll 1$ and $\eta/h\approx Ro\ll 1$. Ignore terms of order Ro^s and below. Use Taylor series $1/(1+x)=1-x+x^2-x^3\cdots$.

References I

- Pedlosky, Joseph (1987). *Geophysical fluid dynamics*. Springer New York.
- Stommel, Henry (1948). "The westward intensification of wind-driven ocean currents". In: *Eos, Transactions American Geophysical Union* 29.2, pp. 202–206.
- Sverdrup, Harald Ulrich (1947). "Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern Pacific". In: *Proceedings of the National Academy of Sciences* 33.11, pp. 318–326.
- Verkley, WTM (1990). "On the beta plane approximation". In: Journal of Atmospheric Sciences 47.20, pp. 2453–2460.