6.852: Distributed Algorithms Fall, 2009

Distributed algorithms

- Algorithms that are supposed to work in distributed networks, or on multiprocessors.
- Accomplish tasks like:
 - Communication
 - Data management
 - Resource management
 - Synchronization
 - Consensus
- Must work in difficult settings:
 - Concurrent activity at many locations
 - Uncertainty of timing, order of events, inputs
 - Failure and recovery of machines/processors, of communication channels.
- So the algorithms can be complicated:
 - Hard to design
 - Hard to prove correct, analyze.

Synchronous network model

- Processes (or processors) at nodes of a network digraph communicate using messages.
- Digraph: G = (V,E), n = |V|
 - out-nbrs, in-nbrs
 - distance(i,j), number of hops on shortest path
 - diam = max_{i,i} distance(i,j)
- wi: Message alphabet, plus ⊥ placeholder
- For each i in V. a process consisting of :
 - states_i, a nonempty, not necessarily finite, set of states
 - start, a nonempty subset of states;
 - $\mathsf{msgs}_{\mathsf{i}} : \mathsf{states}_{\mathsf{i}} \times \mathsf{out} \cdot \mathsf{nbrs}_{\mathsf{i}} \to \mathsf{M} \cup \{\bot\}$
 - trans: states: \times vectors (indexed by in-nbrs) of M \cup { \bot } \rightarrow states
- Executes in rounds:
- Apply msgs_i to determine messages to send,
- Send and collect messages,
- Apply trans, to determine new state.

Remarks

- No restriction on amount of local computation.
- Deterministic (a simplification).
- Can define "halting states", but not used as accepting states as in traditional automata theory.
- Later, we will consider some complications:
 - Variable start times
 - Failures
 - Random choices
- Inputs and outputs: Can encode in the states, e.g., in special input and output variables.

Executions

- An execution is a mathematical object used to describe how an algorithm operates.
- Definition (p. 20):
 - State assignment: Mapping from process indices to states.
 - Message assignment: Mapping from ordered pairs of process indices to M \cup { \bot }.
 - Execution: C_0 , M_1 , N_1 , C_1 , M_2 , N_2 , C_2 ,...
 - C's are state assignments.
 - M's are messages sent.
 - N's are messages received.

 Message assignments
 - Infinite sequence (but could consider finite prefixes)

Leader election

- Merwork of processes.
- Want to distinguish exactly one, as the "leader".
- Eventually, exactly one process should output "leader" (set special status variable to "leader").

- Motivation: Leader can take charge of:
 - Communication
 - Coordinating data processing (e.g., in commit protocols)
 - Allocating resources
 - Scheduling tasks
 - Coordinating consensus protocols

– ...

Simple case: Ring network

- Variations:
 - Unidirectional or bidirectional
 - Ring size n known or unknown
- Numbered clockwise
- Processes don't know the numbers; know neighbors as "clockwise" and "counterclockwise".
- Theorem 1: Suppose all processes are identical (same sets of states, transition functions, etc.).

Then it's impossible to elect a leader, even under the best assumptions (bidirectional communication, ring size n known to all).

Proof of Theorem 1

- Contradiction Assume an algorithm that solves the problem.
- Assume WLOG that each process has exactly one start state (could choose same one for all).
- Then there is exactly one execution C_0 , M_1 , N_1 , C_1 , M_2 , N_2 , C_2 ,...
 - Prove by induction on the number r of completed rounds that all processes are in identical states after r rounds.
 - Cenerate same messages, to corresponding neighbors.
 - Receive same messages.
 - Make the same state changes.
 - Since the algorithm solves the leader election problem, someone eventually gets elected.
 - Then everyone gets elected, contradiction.

So we need something more...

- To solve the problem at all, we need something more---some way of distinguishing the processes.
- E.g., assume processes have unique identifiers (UIDs), which they "know".
 - Formally, each process starts with its own UID in a special state variable.
- UIDs are elements of some data type, with specified operations, e.g.:
 - Arbitrary totally-ordered set with just (<, =, >) comparisons.
 - Integers with full arithmetic.
- but each can appear only once.

A basic algorithm [LeLann] [Chang, Roberts]

Assumes:

- -Unidirectional communication (clockwise)
- Processes don't know n
- **UIDs**, comparisons only

- Each process sends its UID in a msg, to be relayed step-by-step around the ring.
- When process receives a UID, compares with its own.
- If incoming is:
 - Bigger, pass it on. pass the bigger UID for next process comparison
 - Smaller, discard. and returns null
 - Equal, process declares itself the leader.
 - Elects process with the largest UID.

therms of our formal model:

- M, the message alphabet: Set of UIDs
- states_i: Consists of values for state variables:
 - u, holds its own UID
 - send, a UID or ⊥, initially its own UID
 - status, one of {?, leader}, initially ?
- start_i: Defined by the initializations.
- msgs_i: Send contents of send variable, to clockwise nbr.
- trans_i:
 - Defined by pseudocode (p. 28): if incoming = v, a UID, then case v > u: send := v v = u: status := leader v < u: no-op endcase

Entire block of code is treated as atomic.

Correctness proof

- Prove exactly one process ever gets elected leader.
- More strongly:
 - Let i_{max} be the process with the max UID, u_{max}.
 - Prove:
 - i_{max} outputs "leader" by end of round n.
 - No other process ever outputs "leader".

i_{max} outputs "leader" after n rounds

- Prove by induction on number of rounds.
- But need to strengthen, to say what happens after r rounds, $0 \le r \le n$.
- Lemma 2: For $0 \le r \le n-1$, after r rounds, send at process $(i_{max} + r)$ mod n contains u_{max} .
- That is, u_{max} is making its way around the ring.

Proof of Lemma 2:

- Induction on r.
- Base: Check the initialization.
- Inductive step: Key fact: Everyone else lets u_{max} pass through.
- Use Lemma 2 for r = n-1, and a little argument about the nth round to show the correct output happens.
- Key fact: i_{max} uses arrival of u_{max} as signal to set its status to leader.

Uniqueness

- No one except i_{max} ever outputs "leader".
- Again, strengthen claim:
- Lemma 3: For any r ≥ 0, after r rounds, if i ≠ i_{max} and j is any process in the interval [i_{max},i), then j's send doesn't contain u_i.
- Thus, u_i doesn't get past i_{max} when moving around the ring.
- Proof:
 - Induction on r.
 - Key fact: i_{max} discards u_i (if no one has already).
- Use Lemma 3 to show that no one except i_{max} ever receives its own UID, so never elects itself.

Invariant proofs

- Lemmas 2 and 3 are examples of invariants---properties that are true in all reachable states.
- Another invariant: If r = n then the status variable of i_{max} = leader.
- Invariants are usually proved by induction on the number of steps in an execution.
 - May need to strengthen, to prove by induction.
 - Inductive step requires case analysis.
- In this class:
 - We'll outline key steps of invariant proofs, not present all details.
 - We'll assume you could fill in the details if you had to.
 - Try some examples in detail.
- Invariant proofs may seem like overkill here, but:
 - Similar proofs work for much harder synchronous algorithms.
 - Also for asynchronous algorithms, and partially synchronous algorithms.
 - The properties, and proofs, are more subtle in those settings.
- Invariants provide the main method for proving properties of distributed algorithms.

Complexity bounds

What to measure? Time = number of rounds until "leader": n Communication = number of single-hop messages: Variations: Mon-leaders announce "non-leader": Any process announces "non-leader" as soon as it sees a UID higher than its own. No extra costs. Everyone announces who the leader is: At end of n rounds, everyone knows the max. Relies on synchrony and knowledge of n. Or, leader sends a special "report" message around the ring. Time: ≤2n Communication: $\leq n^2 + n$

Deesn't rely on synchrony or knowledge of n.

- Add halt states, special "looping" states from which all transitions leave the state unchanged, and that generate no messages.
 - For all problem variations:
 - Can halt after n rounds.
 - Depends on synchrony and knowledge of n.
 - Or, halt after receiving leader's "report" message.
 - Does not depend on synchrony or knowledge of n
 - Q: Can a process just halt (in basic problem) after it sees and relays some UID larger than its own?
 - A: No---it still has to stay alive to relay messages.

Reducing the communication complexity [Hirschberg, Sinclair]

- O(n log n), rather than O(n2)
- Assumptions:
 - Bidirectional communication
 - Ring size not known.
 - UIDs with comparisons only
 - idea:
 - Successive doubling strategy
 - · Used in many distributed algorithms where network size is unknown.
 - Each process sends a UID token in both directions, to successively greater distances (double each time).
 - Going outbound: Token is discarded if it reaches a node whose UID is bigger.
 - Going inbound: Everyone passes the token back.
- Process begins next phase only if/when it gets both its tokens back.
 - Process that gets its own token in outbound direction, elects itself the leader.

In terms of formal model:

- Needs local process description.
- Involves bookkeeping, with hop counts.
- LTTR (p. 33)

Complexity bounds

- · Time.
 - Worse than [LCR] but still O(n).
 - Time for each phase is twice the previous, so total time is dominated by last complete phase (geometric series).
 - Last phase is O(n), so total is also.

Communication bound: O(n log n)

- 1 + \[\log n \] phases: 0,1,2,...
- Phase 0: All send messages both ways, ≤ 4n messages.
- Phase k > 0:
 - Within any block of 2^{k-1} + 1 consecutive processes, at most one is still alive at the start of phase k.
 - Others' tokens are discarded in earlier phases, stop participating.
 - So at most \[n / (2^{k-1} + 1) \] start phase k.
 - lotal number of messages at phase k is at most 4 (2^k ln / (2^{k-1} + 1) 1) ≤ 8n

Out and back, both directions

New distance

Se total communication is as most
 8 n (1 + \[\log n \]) = O(n log n)

Non-comparison-based algorithms

- Q: Can we improve on worst-case O(n log n) messages to elect a leader in a ring, if UIDs can be manipulated using arithmetic?
- A: Yes, easily!
- Consider case where:
 - n is known
 - Ring is unidirectional
 - UIDs are positive integers, allowing arithmetic.
- Algorithm:
 - Phases 1,2,3,...each consisting of n rounds
 - Phase k
 - Devoted to UID k.
 - If process has UID k, circulates it at beginning of phase k.
 - Others who receive it pass it on, then become passive (or halt).
 - Elects min

Complexity bounds

- Communication:
 - Just n (one-hop) messages
- Time:
 - u_{min} n
 - Not practical, unless the UIDs are small integers.

- Q: What if n is unknown?
- A: Can still get O(n) messages, though now the time is even worse: O(2^{umin} n).
 - VariableSpeeds algorithm, Section 3.5.2
 - Different UIDs travel around the ring at different speeds, smaller UIDs traveling faster
 - UID u moves 1 hop every 2^u rounds.
 - Smallest UID gets all the way around before next smallest has gone half-way, etc.