

Econometría II

Dr. Roy Herd Núñez Joyo

Análisis Econométrico del Indicador de Riesgo Embig México

Equipo 5

María Camila Altamirano González (171482) María José Rojas Campos (169906) Uri David Morales Montero (168553) Miguel Ángel Alcántara Demuner (173270)

Indicador de Bonos de Mercados Emergentes Global (EMBIG)

I. Presentación de la variable.

Los inversionistas interesados en adquirir instrumentos financieros en otro país podrían hacer un análisis para evaluar el riesgo soberano del país de interés y así decidir la viabilidad de la inversión. Este análisis se simplificó a partir de que se crearan indicadores que miden este riesgo, estos indicadores pueden ser en forma de una calificación -AA+, B- de S&P- o pueden ser en base a la actividad del mercado como el Indicador de Bonos de Mercados Emergentes (EMBI, por sus siglas en inglés) y sus variaciones EMBI+ y EMBI Global; este último el que es objeto de estudio de este trabajo.

Como se dijo anteriormente el EMBI Global es un indicador sobre el riesgo soberano de un país, este indicador emana de la actividad del mercado, relacionado con los diferenciales o spread de tasas de interés; esto se refiere a que se mide con respecto a la diferencia entre las tasas de interés ofrecidas por la deuda pública de dos países. En particular se ocupan los *Treasury Bills* como base de comparación con otras deudas públicas, esto se debe a que estos se les atribuyen como "deuda libre de riesgo".

El Indicador de Bonos de Mercados Emergentes Global (EMBI Global) surge en 1993 y posteriormente emitido en 1999 por el banco de inversión J.P. Morgan como sucesor del EMBI y del EMBI+, debido a la demanda y éxito que tuvieron sus antecesores. Sus antecesores tenían un problema, era reducido el número de países incluidos al igual que de instrumentos de deuda, la solución fue crear una variante -EMBI Global- con diferentes criterios de inclusión. La variable es medida por la calificadora que la creó y se evalúa de forma diaria exceptuando fines de semana (J.P. Morgan, 2021).

Una breve lectura sobre el riesgo soberano.

Desde hace tiempo que se hizo atractivo para inversionistas adquirir instrumentos financieros de países emergentes, entre las varias razones se encuentra obtener mayor pago de interés; pero esta razón, aunque atractiva conlleva un mayor riesgo. El riesgo unido a la inversión en un país emergente se le conoce como riesgo país, y es muy utilizado por inversionistas para monitorear peligros a los que están expuestos (Fuenzalida, 2005).

El concepto riesgo país empezó a tomar fuerza a principios de 1980 gracias a la crisis financiera de la deuda latinoamericana. A comienzos de los años 70, la mayoría de los países en desarrollo

obtenían financiación exterior de fuentes oficiales. Después del segundo shock petrolífero en 1979, muchos países que adquirieron deuda durante la década se enfrentaron con dificultades para pagar, debido a la crisis de pagos que se generó, muchos bancos en Estados Unidos quebraron. Posteriormente de esta crisis, la definición de riesgo país empezó a tomar importancia y se crearon varias metodologías para poder medirlo (Banco de España, 2008).

Ahora bien, como lo propone Jaime Acosta (2021), es importante explicar que, aunque el riesgo unido a la inversión de un país emergente se le llama riesgo país este término es bastante amplio ya que lleva implicaciones económicas, financieras, políticas, tipo de cambio, de transferencia y soberano; este último que será nuestra fuente de estudio. El riesgo soberano específicamente mide el riesgo de impago sobre la deuda pública de un país por razones económicas o financieras.

Debido a la rápida globalización que el mundo ha vivido desde 1960, el mundo de las finanzas se ha visto envuelto en la obligación de conocer los riesgos de la inversión extranjera, puesto que las diversas crisis ocurridas en algún país se han exportado a otros países, por lo relacionadas que están las economías. Es por esto que entre 1960 y 1970 empresas multinacionales se enfocaban a cómo medir este riesgo que envolvía la inversión extranjera, pero se enfocaban principalmente sobre el riesgo de acciones que podía tomar un gobierno extranjero y que estas acciones pudieran afectar las actividades económicas de empresas extranjeras (Clark, 2018).

Así que al principio al riesgo unido a la inversión extranjera se le conjugaba con riesgo político, luego se le agrego el término de clima de inversión, pero en realidad estos términos aún no estaban correctamente elaborados pues existían dudas sobre lo que medían. No fue hasta que empezaron a suceder varias crisis y se tuvo en perspectiva que, aunque los gobiernos de los países se comprometan a cumplir sus obligaciones de deuda cabe la posibilidad de que no puedan cumplir estas obligaciones. Así fue que comenzó a acuñarse el término de riesgo soberano como un indicador macroeconómico que media el riesgo de incumplimiento de deuda del gobierno de un país (Clark, 2018).

Criterios de composición.

Para esta variante J.P. Morgan decide suavizar las restricciones sobre la liquidez de los instrumentos incluidos, así como cambiar el modo en que se denominaba el término de país emergente, pues en el EMBI+, para que un país fuera parte del indicador debía cumplir con cierta calificación mínima -esta calificación emitida por calificadoras como S&P, Moody´s,

Fitch- es por esto que para el EMBI Global se tuvo en cuenta un promedio de últimos tres años del ingreso per capita —con datos del Banco Mundial-, más aparte datos históricos sobre la reestructuración de la deuda del país (Acosta, 2021).

Al hacer los cambios anteriores el indicador EMBI Global cambia su composición de países respecto a sus antecesores incrementando casi por diez la cantidad de países y casi por cinco la cantidad de instrumentos emitidos como se muestra en la siguiente tabla de comparación.

Tabla 1.1: Comparación EMBI+ y EMBI Global

	Comparación EMBI+ y EMBIG		
Indicador	EMBI +	EMBI Global	
Países incluidos	17	167	
Requerimiento para incluir el país	Calificación mínima de Baa1/ BBB+/BBB+ de acuerdo con Moody's/Standard & Poor's/Fitch Ratings	Ingreso <i>per cápita</i> del país por debajo de la referencia calculada por J.P. Morgan por al menos tres años consecutivos	
Emisiones incluidas	169	821	
Requerimientos para incluir las emisiones			
Tamaño de la emisión	500 millones		
Plaza inicial para inclusión	Al menos 2.5 años hasta el v	encimiento	
Plazo mínimo para mantenerse en el indicador	Al menos un año hasta el vencimiento		
Criterio de liquidez de la emisión	Niveles mínimos de liquidez reflejados en los diferenciales de compra- venta	Precios diarios disponibles	
Incluye cuasi soberano	No	Sí	

Fuente: Acosta, J (2021).

Igual se debe enfatizar que una de las principales diferencias entre EMBI+ y EMBI Global se debe al tipo de instrumentos de deuda que incluye, mientras que el indicador EMBI+ solo incluye instrumentos de deuda soberana, el EMBI Global es más flexible pues aparte de tener instrumentos de deuda soberana también incluye instrumentos de deuda cuasi-soberana (que tienen respaldo directo o indirecto por parte del gobierno del país).

En México el indicador se compone de 58 emisiones distribuidas entre deuda soberana y deuda cuasi-soberana, estos instrumentos se ponen al mercado por 5 emisores distintos. De las emisiones que destacan en el indicador son deuda emitida por el gobierno –cetes, udibonos, bondes d, entre otros- y también emisiones por parte de instituciones cuasi-sobereanas como

destacan la Comisión Federal de Electricidad (CFE) y Petróleos Mexicanos (PEMEX) (Acosta, 2021).

Para elaborar el indicador, se seleccionan diversos bonos emitidos por países emergentes, como se mencionó anteriormente, pueden ser bonos gubernamentales o cuasi-soberanos, y se mide la diferencia entre la tasa de rendimiento de estos bonos contra el rendimiento de los Bonos del Tesoro –emitidos por Estados Unidos—. Es importante mencionar que las tasas de rendimiento deben estar denominadas en la misma moneda –generalmente, dólares—, para evitar considerar como parte de este diferencial el riesgo cambiario y el riesgo de la inflación esperada de los países involucrado. Finalmente, se obtiene un promedio ponderado multiplicando los diferenciales en los rendimientos por el monto emitido de cada bono (Acosta, 2021).

Cálculo del Indicador de Bonos de Mercados Emergentes Global e interpretación.

EMBIG es un indicador de capitalización ponderada, esto quiere decir que a cada valor o emisión se le otorga un "peso" dependiendo de su capitalización bursátil. Capitalización bursátil hace referencia al número de instrumentos en el mercado multiplicado por su precio. Una vez que se obtiene la ponderación, se divide entre la ponderación de un año base, para obtener el cambio en el nivel del indicador (S&P Dow Jones, 2022).

$$Nivel\ del\ indice = rac{\sum_{i_i^p} Q_i}{Divisor}$$

El indicador está medido en puntos base (pbs), donde cada 100 puntos base equivalen a 1%. Por teoría económica, se sabe que, ante un mayor riesgo, mayor es la tasa de interés y, por tanto, mayor será la diferencia o *spread* entre ambas tasas. Es decir, un incremento en los valores del indicador, representan un aumento en el riesgo del país.

En perspectiva los inversionistas se ayudan de este indicador para evaluar si es justo el interés recibido, pues si van a invertir en un país donde hay alto riesgo soberano deben ser recompensados adecuadamente en proporción al riesgo de lo contrario estos bonos soberanos y cuasi-soberanos no serían atractivos para los inversionistas. Es por esto que los países con mayor riesgo soberano se ven obligados a poner una prima de riesgo —rendimiento de inversión proporcional al riesgo asumido- atractiva en orden para que su deuda sea atractiva (Acosta, 2021).

Evolución de la variable en el periodo de estudio.

Con respecto al análisis de la variación de los datos de nuestra variable a través del tiempo, esta ha tenido una evolución en los últimos años como se puede ver en la siguiente figura. En esta, se puede observar una evidente fluctuación con una pendiente positiva en el mediano plazo desde el segundo trimestre del 2008 específicamente en agosto hasta el último trimestre del noviembre de 2022.

Figura 1.1. Serie de tiempo EMBIG-México EMBIG-México

En nuestra figura 1 se pueden observar unos picos que van fuera de la variación normal que podrían presentar nuestros datos a través del tiempo. Estos son puntos en los cuales los bonos nacionales se han considerado más riesgosos para invertir en ellos, por lo que presentaban una mayor tasa de interés de rendimientos con respecto a los bonos libres de riesgo todo considerado en dólares estadounidenses.

Figura 1.2. Media a través del tiempo EMBIg México

Fuente: Banco Central de Reserva del Perú Data (2022).

Como se puede observar en la gráfica anterior, en los últimos años se observa un aumento en el nivel de los puntos base del EMBIG calificando México. Estas calificaciones han aumentado en los últimos años sobre la media de los datos emitidos por JP Morgan desde el 2008 hasta finales de 2022. El punto máximo mostrado después de sobrepasar por última vez la media en el año 2018 es de 673.5909 cuando la media a través del tiempo es 261.3904. Lo que representa un aumento de 412.2005 puntos; al igual, se puede observar que el punto mínimo del indicador de riesgo a través del tiempo es observado a mediados de 2007 con un valor de 97.4347 pbs una diferencia de 163.9557 con respecto a la media.

Nuestro periodo de referencia para realizar el análisis con respecto a la variación de la medición del riesgo de los bonos nacionales (EMBIg) será octubre de 2008, en el cual se observa un incremento de la variable notable. En ese mes la medición oscila los 436 puntos base, lo que significa un aumento del 245.22% con respecto al mismo mes del año anterior. Esto se debió a la crisis financiera del 2008, la cual estalló en Estados Unidos el 15 de septiembre de 2008. Ahora comparando con octubre de 2010 en el que podemos observar que el EMBIg para México fue de 183.5714 pb, esto después de la recuperación económica frente a la crisis anterior, esta disminución del EMBIg fue de -17.76%.

Figura 1.3. Cambio (%) anual EMBIG México con respecto al mismo periodo del año anterior

Fuente: Banco Central de Reserva del Perú Data (2022).

Sin embargo, en la siguiente gráfica se puede observar el cambio porcentual con respecto al periodo anterior, a muy corto plazo (mensual y no anual) se observa una volatilidad un poco más constante a través del tiempo, del 2006 a finales de 2022 comparando con los cambios anuales antes vistos. Sin embargo, también se pueden observar dos puntos los cuales resaltan en nuestra gráfica, estas salidas de la constancia se observan en el mes de octubre de 2008

alcanzando un nivel de 80.74 puntos porcentuales con respecto al periodo mensual anterior el cual fue de 21.12% lo que representa un cambio porcentual de 59.62%. El segundo punto atípico de la medición del riesgo es en el tercer mes de 2020 en donde se ve un cambio del 81.89% con respecto al mes anterior con un 2.95%, esto fue un cambio de 78.94%.

% Change EMBIG-México 100 80 60 40 -20 -402008 2010 2012 2014 2016 2018 2020 2022

Figura 1.4. Cambio (%) EMBIG México con respecto al periodo anterior

Fuente: Banco Central de Reserva del Perú Data (2022).

En la figura 5, podemos observar que México ha seguido las mismas tendencias en comparación con Latinoamérica: se puede notar un crecimiento de los valores en 2008-2009, dada la crisis financiera, un aumento alrededor de 2016, que se puede explicar por la contracción económica que tuvo América del Sur (CEPAL, 2016) y finalmente, un incremento en 2020, debido a la pandemia de COVID-19. En general, el índice para México presenta menores niveles, es decir, tiene niveles más bajos de riesgo soberano y quasi-soberano. La media para Latinoamérica es 164.2434 pbs mayor que la media para México.

Figura 1.5. Comparación de EMBIG LATAM con EMBIG

Fuente: Banco Central de Reserva del Perú Data (2022).

Momentos más críticos de EMBIG.

La crisis de 2008 fue un momento crítico de nuestra variable ya que se otorgaron hipotecas a personas de bajos ingresos y a su vez se ofrecieron fondos de inversión sobre estas hipotecas, debido a que los acreedores de las hipotecas no pudieron pagarlas los bancos no pudieron cumplir con sus obligaciones, es decir, no pudieron pagar a los inversionistas que adquirieron parte de la deuda del fondo hipotecario. La magnitud de la deuda era tan grande que se los bancos tuvieron problemas de liquidez, algunos se declararon en bancarrota, asimismo el sistema financiero colapsó, afectando a muchos países. Debido a las relaciones comerciales entre Estados Unidos y México, este último se vio entró en una crisis donde el PIB cayó debido a los despidos masivos, el desempleo, la desigualdad, entre otras consecuencias. (Maguey, 2018). Como se puede observar en la figura 6 la crisis tuvo como consecuencia que hubiera un aumento en el riesgo soberano, es decir la probabilidad de impago sobre la deuda aumentó.

Figura 1.6. Crisis financiera 2008

Fuente: Banco Central de Reserva del Perú Data (2022).

Entre los años de 2015 a 2017 muchos de los países de América Latina presencio una especie de recesión económica, esto afecto a la medición de riesgos soberanos de México. Una de las razones que propulsaron esta volatilidad en las economías latinoamericanas fueron debido a una incertidumbre debido a la desaceleración de la economía China, la caída de los precios de las materias primas y debido a políticas monetarias aplicadas por otras economías consideradas más avanzadas.

Figura 1.7. Recesión Latinoamérica

Fuente: Banco Central de Reserva del Perú Data (2022).

Como se puede observar en la figura 7, a partir del último trimestre de 2015 se comienza a observar un incremento en el riesgo soberano para México, esto se debió a que los precios de las materias primas disminuyo entre un 30% y un 50% del precio máximo en la región. (Werner, 2016). Junto con esto se presenciaba una disminución a los precios del petróleo que afectaba directamente a la economía mexicana, además se contaban con distintas políticas macroeconómicas y alteraciones microeconómicas, lo que ocasiono una disminución importante en la inversión privada en los países latinoamericanos los cuales provocaron un periodo de recesión regional.

Figura 1.8. Recesión Latinoamérica COVID 19 Ш Ш Fuente: Banco Central de Reserva del Perú Data (2022).

A principio de 2019 se detectó el primer caso de coronavirus en China, debido a la rápida propagación de la enfermedad, en marzo de 2020 se declaró una pandemia. Derivado de esta

declaración empezó el confinamiento en diversos países, en México esto trajo como consecuencia una rápida desaceleración económica y consigo un aumento en el riesgo soberano (Serrano et al. 2020). Esto se puede observar en la figura siguiente, a principios del 2020 el riesgo soberano fue aumentando hasta llegar a su punto máximo en el segundo trimestre de ese año, gracias a que le economía mexicana se paralizó y era más probable que el gobierno no pudiera pagar su deuda. En cuanto se empezaron a relajar las medidas del confinamiento este riesgo empezó a disminuir.

Expectativa de la variable para los siguientes periodos.

En los últimos periodos del 2022 e inicios del 2023 el sistema financiero mexicano se ha considerado en una posición más sólida y fortaleza que en periodos anteriores con respecto a los niveles de capital y liquidez mínimos necesarios (Banco de México, 2022). No obstante, también se ha observado un incremento en la inflación. Esto tiene repercusiones en el nivel de tasa de interés, que se espera sea ajustado al alza. Un aumento en la tasa de interés implicaría una disminución de la actividad económica del sector privado y, por tanto, menor recaudación de ingresos para el gobierno. A fin de mantener sus funciones, se espera que el gobierno se vea obligado a emitir deuda pública. La combinación de estos factores puede implicar que, en el corto plazo, el riesgo de los bonos soberanos aumente, así, se incrementaría la diferencia en las tasas de rendimiento de los bonos, que es la variable de interés (Patiño, 2022).

II. Análisis Estadístico

Esta segunda parte del análisis de la variable consiste en someter la variable EMBIG a pruebas estadísticas para tener una mejor comprensión del comportamiento de la variable. Se utilizarán indicadores tales como la media, mediana, valor máximo, valor mínimo, asimetría estadística y curtosis. Para someter nuestra variable en estas pruebas estadísticas, se usa la serie de la variable y se le pide mostrar en una tabla los indicadores estadísticos descriptivos. El programa EViews nos muestra la figura 1.1 que contiene varios indicadores, entre ellos los que ocuparemos para realizar el análisis estadístico.

Figura 2.1. Tabla de indicadores estadísticos de EMBIG

	EMBIG
Median	261.390
Mean	240.079
Maximum	373.590
Minimum	97.434
Std. Dev.	103.278
Skewness	0.990
Kurtosis	3.974
Jarque-Bera	39.805
Probability	0.000
Sum	51,232.51
Sum Sq. Dev.	2,079,952
Observations	196

Fuente: Banco Central de Reserva del Perú Data (2022)

Como se puede observar en la figura 1.1 la cual elaboramos en EViews con datos del Banco Central; la media aritmética de la variable EMBIG es de 261.3904. Lo que nos indica el promedio del total de nuestras 196 observaciones y sus valores unitarios con todas sus fluctuaciones en punto bases a través del periodo agosto de 2006 hasta noviembre de 2022.

Se podría decir que la mayoría de los datos de la variable se deberían ver observados cercanosa este valor; sin embargo, esto no es del todo cierto ya que nuestra variable mide el riesgo del país el cual se ha visto afectado en algunos puntos en el tiempo en donde hay valores en puntos específicos que pueden modificar esta media. De igual forma podemos observar que en nuestra variable la media es mayor que la mediana esto nos indica que la distribución de nuestros datos estará acumulada a la izquierda causando un sesgo a la derecha, y se interpreta que nuestros datos son más cercanos a valores menores que a valores mayores (Mendenhall, 2006).

Mean EMBIG EMBIG -- MEAN

Figura 2.2. Media del EMBIG

Fuente: Banco Central de Reserva del Perú Data (2022)

Como se puede observar en la figura 1.2 la media estadística es consistente en ciertos puntos a lo largo del tiempo con algunos puntos de fluctuación en los cuales el medidor de riesgo tiene

puntos notablemente más altos, los cuales se ven compensados con valores menores no tan extremos, pero durante un tiempo más continuo lo que se podría decir que impulsa los valores más alejados a la media.

El segundo instrumento que se puede observar en nuestra tabla de estadísticos observada en la figura 1.1 es la mediana, el cual nos indica el punto central de nuestros valores, el punto en el que se divide el 50% de los valores de nuestros datos observados. Considerando que nuestra muestra cuenta con 196 datos, nuestros datos utilizados para la mediana son las observaciones 98 y 99. Los cuales pertenecen a los periodos de septiembre de 2017 en donde el EMBIG calculaba 241.25 puntos base y enero de 2015 con 241.3182 puntos porcentuales.

Figura 2.3. Mediana del EMBIG

Fuente: Banco Central de Reserva del Perú Data (2022)

Con dichos datos obtenemos una mediana de 240.0795, en cuyo punto, suponiendo que nuestra muestra fuera simétrica este valor debería encontrarse en el punto máximo de la distribución (punto en donde se encuentran la mayoría de las observaciones) de la muestra al igual que el dato máximo de las observaciones; sin embargo, como se puede observar en la Figura 1.3 la distribución de la muestra presenta un sesgo hacia la derecha. Con la mayoría de los datos encontrados a un lado de la mediana (Mendenhall, 2006).

El siguiente estadístico que analizaremos será el máximo absoluto, el cual se presentó en abril de 2020, alcanzando un valor de 673.5909 pbs. Esto sucedió un mes después de que el primer caso de COVID-19 fuera detectado en México. Aunado a la incertidumbre que existía en el panorama global, la economía mexicana se paralizó dadas las restricciones impuestas como prevención del coronavirus, por lo tanto, era más probable que el gobierno no pudiera pagar su deuda y México fuera visto como un país con alto riesgo soberano.

Figura 2.4. Máximo absoluto del EMBIG

Fuente: Banco Central de Reserva del Perú Data (2022)

Nuestro mínimo histórico ocurrió en mayo de 2007 con un valor de 97.43478 pbs. Esto se puede deber a que los mercados de Estados Unidos comenzaban a presentar inestabilidad, aumentando así sus tasas de rendimiento —dada la incertidumbre—. A la par, las tasas de rendimiento de México se mantuvieron relativamente constantes, de esta forma, la diferencia entre ambas tasas disminuyó. En otras palabras, México no disminuyó su riesgo soberano, pero el que aumento fue el riesgo soberano de Estados Unidos y por ello la variable disminuyó.

Figura 2.5. Mínimo absoluto del EMBIG

Fuente: Banco Central de Reserva del Perú Data (2022)

Para el caso de la asimetría estadística (skewness), esta dice que tan diferente es la distribución con respecto a una distribución normal, dado que nuestro valor es de 0.990400 sabemos que es mayor que 0. Esto significa que nuestra distribución presenta una cola derecha larga. Lo podemos observar en la figura 1.6. Esto se debe a que la mayoría de las observaciones tienen

valores de menor magnitud, sin embargo, debido a las crisis de los años del 2008, 2016 y 2020 los valores del medidor de riesgo aumentaron provocando que nuestra distribución tenga una cola derecha.

En lo que respecta a la curtosis, esta es una medida de altura o aplanamiento de la distribución. Se puede observar un valor de K = 3.974973. Dado que K > 3, se concluye que los datos presentan una distribución leptocúrtica. No obstante, dado que K es un valor cercano a 3, a pesar de que hay concentración de datos cerca de la media, las características de una distribución leptocúrtica -tiene colas largas, con campana delgada y puntiaguda alrededor de la media-, no son tan evidentes en la figura 1.6. Es importante mencionar que, para un pronóstico, es preferible una distribución leptocúrtica a una distribución platicúrtica (K < 3), dado que estaría cercano a los valores de la media (Gujarati, 2019).

Por último, tenemos al estadístico Jarque-Bera el cual es una combinación de asimetría estadística y la curtosis. Este plantea que nuestra hipótesis nula(H0) nos indica que los datos se distribuyen como una normal si nuestro p-value <0.05 y en consecuencia se rechaza la hipotesis nula H0. Si es mayor que 0.05 no se rechaza H0. En nuestra figura 1.1 podemos observar que nuestro valor fue igual a 0.0000 por lo tanto es menor a 0.05 esto quiere decir que rechazamos nuestra hipótesis nula, es decir, rechazamos que nuestros datos no se distribuyen como una normal.

EMBIG Distribution

.005

.004

.003

.002

.001

.000

0 100 200 300 400 500 600 700 800

Figura 2.6. Distribución tipo Densidad de Kernel del EMBIG

Fuente: Banco Central de Reserva del Perú Data (2022)

Tendencias a futuro

Lo que los indicadores estadísticos nos han dicho hasta ahora es que el comportamiento del riesgo soberano en México se ve altamente relacionado con crisis económicas que afectaron al país. Por ejemplo, si regresamos a la figura 1.2, donde se graficó la variable a través del tiempo y se delimitó la media, podemos observar que la variable tiene leves fluctuaciones en periodos

donde no hay crisis; de la misma forma la figura 1.3, donde se grafica la variable en una distribución de densidad de Kernel y se añade la mediana al gráfico, nos muestra que nuestros datos son arrastrados a valores altos. También observamos que, en relación con nuestros valores históricos de máximo y mínimo, la media está más cercana al mínimo (97.43478) que al máximo (673.5909), con base a estas observaciones sabemos que la variable tiende a estar cerca de la media, pero hay ciertos picos -en este caso crisis económicas- que alejan a nuestra variable de esta.

De acuerdo con las herramientas estadísticas, podemos esperar que la variable siga una tendencia alrededor de la media, ya que se puede observar que sigue un comportamiento estable a excepción de las crisis que se han mencionado previamente. Esto coincide con lo que muestra la asimetría estadística: la cola derecha se presenta debido a los datos atípicos al alza dadas estas mismas crisis, sin embargo, esto no implica que EMBIG vaya a aproximarse a ese nivel de valores.

Dicho lo anterior en periodos de crisis -como la crisis derivada del COVID-19 y la crisis financiera del 2008- la variable se ve influenciada altamente por estas, lo que ocasiona que se dispare al alza. Con base en esto, podemos decir que el comportamiento de la variable es como se pensaba en la sección anterior y se puede intuir que en siguientes periodos el riesgo soberano de México se acercará a la media pues la crisis de la pandemia está finalizando, pero la baja en pbs de la variable hacia la media será gradualmente debido a que la economía nacional continúa resintiendo las consecuencias de la pandemia, entre ellas una alta inflación como se comentó en la sección anterior.

III. Análisis econométrico

Análisis de estacionariedad

Todo el análisis realizado con anterioridad a la variable de riesgo soberano EMBIG México es con un fin específico: poder generar pronósticos impulsados por la serie de tiempo de la variable. Así que esta tercera parte del trabajo tendrá la finalidad de llegar a predecir el comportamiento de la variable a futuro, pero para poder llegar a la parte de pronósticos primero debemos tener varias consideraciones acerca del comportamiento que tiene nuestra variable en sus datos observados, entre estas consideraciones debemos contar con una serie estacionaria. Como vemos en la siguiente figura 1, observamos que la serie tiene un comportamiento con tendencias crecientes y decrecientes alrededor de la media por lo que a simple vista podemos saber que nuestra variable es no estacionaria.

Figura 3.1. Variable EMBIG en niveles.

Fuente: elaboración propia con datos del Banco Central de Reserva del Perú Data (2022)

Podemos comprobar un poco más a través del correlograma con 36 lags (véase anexo 1) podemos observar que se salen de las bandas de confianza las barras indicando de nuevo que es no estacionaria la serie. Ahora bien, las variables usadas en economía tienen comúnmente un comportamiento de integrado de orden 1 esto quiere decir que si volvemos a correr el correlograma ahora con la primera diferencia tendría que aparecer la serie ya estacionaria, y así es el caso para nuestra variable como se muestra en el (véase anexo 2) las barras se encuentran dentro de las bandas de confianza, es decir, la variable es integrada de orden 1 I(1).

Ahora bien, los análisis anteriores sobre la estacionariedad de la serie no son formales y pueden tener errores, por lo que continuaremos a los test formales de estacionariedad, como lo son los test de raíz unitaria (véase anexo 3) presentados a continuación.

Tabla 3.1. Test de raíz unitaria para la variable EMBIG. t-statistics.

H0: LEMBIG has unit root	t-statistic	t* 1%	t* 5%	t* 10%
Dickey-Fuller	0.657	-2.576	-1.942	-1.615
Dickey-Fuller con intercepto	-2.014	-3.463	-2.876	-2.574
Dickey-Fuller con intercepto y tendencia	y-2.773	-4.005	-3.433	-3.140
ADF	0.540	-2.577	-1.942	-1.615
ADF con intercepto	-2.512	-3.464	-2.876	-2.574
ADF con intercepto y tendencia	-3.530	-4.006	-3.433	-3.140
Phillips-Perron	0.570	-2.576	-1.942	-1.615
PP con intercepto	-2.218	-3.463	-2.876	-2.574
PP con intercepto y tendencia	-3.179	-4.005	-3.433	-3.140
H0: LEMBIG is stationary	LM	LM* 1%	LM* 5%	LM* 10%
KPSS con intercepto	1.192	0.739	0.463	0.347
KPSS con intercepto y tendencia	0.105	0.216	0.146	0.119

Fuente: elaboración propia con datos del Banco Central de Reserva del Perú Data (2022)

Tabla 3.2. Test de raíz unitaria para la variable EMBIG. Conclusiones.

H0: LEMBIG has unit			Estacionaria al 10%	Intercepto	Tendencia
Dickey-Fuller	NO	NO	NO	N/A	N/A
Dickey-Fuller con intercepto	NO	NO	NO	SÍ	N/A
Dickey-Fuller con intercepto y tendencia	NO	NO	NO	SÍ	NO
ADF	NO	NO	NO	N/A	N/A
ADF con intercepto	NO	NO	NO	SÍ	N/A
ADF con intercepto y tendencia	NO	SÍ	SÍ	SÍ	SÍ
Phillips-Perron	NO	NO	NO	N/A	N/A
PP con intercepto	NO	NO	NO	SÍ	N/A
PP con intercepto y tendencia	NO	NO	SÍ	SÍ	NO
H0: LEMBIG is	Estacionaria	Estacionaria	Estacionaria	Intercepto	Tendencia
stationary	al 1%	al 5%	al 10%		
KPSS con intercepto	NO	NO	NO	SÍ	N/A
KPSS con intercepto y tendencia	SÍ	SÍ	SÍ	SÍ	SÍ

Fuente: elaboración propia con datos del Banco Central de Reserva del Perú Data (2022)

Como se puede observar en las Tablas 3.1 y 3.2, la serie de tiempo LEMBIG –variable EMBIG en logaritmos– únicamente resulta estacionaria para el test de Dickey-Fuller aumentado (ADF) con intercepto y tendencia al 5% y 10%, el test de Philips-Perron con intercepto y tendencia al 10% y para el test de KPSS con intercepto y tendencia al 1%, 5% y 10%. Por lo tanto, podemos concluir que la variable en niveles no es estacionaria.

Quiebres estructurales y tendencia

Una vez que concluimos con los test anteriores y concluimos que nuestra variable es no estacionaria, debemos saber la razón por la que no es estacionaria y proceder a corregirlo. Entre las razones que pueden afectar la estacionariedad de nuestra variable son la tendencia y los quiebres estructurales, para verificar si nuestra variable era afectada por tendencia corrimos una regresión simple de la regresión con intercepto y tendencia (comando @trend en EViews), y resultó ser significativa, indicando así que nuestra variable en niveles era afectada por tendencia (véase anexo 4).

Para saber la existencia de algún quiebre en nuestra serie, con base en nuestro análisis estadístico anterior, apoyados del software EViews buscamos ciertos periodos en que se vieron datos históricos donde la variable tuvo su punto más alto o su punto más bajo o un punto donde crece o decrece y mantiene el comportamiento en dicho nivel.

Primero empezamos probando si las fechas que propusimos como quiebres teóricos en

realidad eran un quiebre o no. En este caso probamos con 2008m11, 2016m02, 2020m04 y ello lo comprobamos con el Test de Chow Simple con el cuál llegamos a la conclusión de que todas las fechas fueron un quiebre (véase anexo 5). Después generamos nuestras dummies para saber cuál corrige nuestro modelo, creamos 3 dummies para cada quiebre: outlier, quiebre en tendencia y quiebre en media y observando su significancia, así como el valor de Akaike y Schwarz, pudimos determinar qué dummy es la que corrige nuestro quiebre. Para 2008m11, obtuvimos un outlier y para 2020m04, se tuvo un quiebre en media –inicialmente eran significativos tanto quiebre en media, como quiebre en tendencia, pero se hizo uso de los valores de AIC y SIC para poder comparar y así poder determinar cuál dummy nos ayudaría a corregir dicho quiebre—. Es importante mencionar que a pesar de que el Test de Chow Simple marcaba que existía un quiebre en 2016m02, una vez que generamos las dummies y corrimos el modelo, ninguna de estas resultó significativa (véase anexo 6).

Una vez ya corregidos nuestros quiebres teóricos corrimos el Test de Chow Recursivo para encontrar otros quiebres. Dada la fecha que nos arrojó el Test creamos 3 dummies, comparamos qué dummy era mejor dada su significancia y valor de Akaike y Schwarz, corregimos el quiebre y volvimos a correr el programa de Chow para encontrar otro quiebre. Este proceso lo realizamos hasta que el programa nos arrojaba quiebres que ya habían sido corregidos (véase anexo 7). Posteriormente, hicimos uso de los test de CUSUM y Zivot & Andrew para encontrar otros quiebres, sin embargo, al analizar los resultados de estos test, no encontramos más quiebres (véase anexo 8).

En total el número de quiebres significativos encontrados y corregidos fueron 14 (véase la Tabla 3.3) y tenemos que todos ellos, a excepción del quiebre en 2008m11, se tratan de quiebres en media. Una vez que se encontraron y corrigieron los quiebres, se creó el "mejor modelo" utilizando la primera diferencia de la variable EMBIG en logaritmos —dado que ya sabemos que es integrada de orden uno— como variable dependiente y como variables exógenas: la constante, la tendencia y las dummies que resultaron significativas de los quiebres corregidos.

Tabla 3.3. Dummies.

Fecha	Dummies	t-statistic
2008m11	do_2008m11	3.893
2020m04	dm_2020m04	3.900
2010m02	dm_2010m02	4.744
2007m10	dm_2007m10	6.853
2009m10	dm_2009m10	3.974
2008m08	dm_2008m08	4.599
2009m07	dm_2009m07	3.668
2015m07	dm_2015m07	3.459
2020m12	dm_2020m12	3.116
2020m02	dm_2020m02	2.804
2012m06	dm_2012m06	3.180
2008m09	dm_2008m09	3.935
2009m07	dm_2009m07	2.908
2015m09	dm_2015m09	2.038

Fuente: elaboración propia con datos del Banco Central de Reserva del Perú Data (2022)

Después de corregir nuestros quiebres de forma individual realizamos una combinación de todos los quiebres antes mencionados en una misma ecuación en mínimos cuadrados, al hacer esta acción se observó que algunos de estas dummies hacían que fuera imposible correr esta ecuación de manera simultánea por lo que decidimos ir eliminando progresivamente los quiebres que de manera individual presentaban los valores de t-statistic menores. Por consiguiente, se logró realizar una ecuación de los quiebres con nuestras mejores ocho correcciones de quiebres; las cuales fueron: dm_2010m02, dm_2007m10, dm_2009m07, dm_2015m07, dm_2020m12, dm_2020m02, dm_2012m06 y dm_2008m09.

Al obtener las ocho mejores dummies hasta el momento, nos emprendimos en la búsqueda de las combinaciones que tenían el mejor valor de Akaike y Schwarz (los menores posibles); observamos que al ir eliminando dummies el valor iba mejorando, hasta quedarnos con nuestra cinco mejores dummies: dm_2007m10, dm_2008m09, dm_2009m07, dm_2012m06 y dm_2015m07 (véase anexo 9).

ARIMAS

Antes de poder realizar el pronóstico de la variable es necesario conocer el grado de integración con el cual se hace estacionaria nuestra variable, así como los valores ARIMA. Para determinar los posibles ARIMAS, observamos el correlograma de nuestra variable en primeras diferencias (véase anexo 2) y en el número de rezago en que se salían de las bandas de confianza para la columna de *autocorrelation*, representarían los valores del proceso medias móviles (MA) y para la columna de *partial correlation*, representarían los valores del proceso autorregresivo (AR). A partir del correlograma, obtuvimos como posibles ARIMAS: (2,1,6) y (6,1,6).

Además de tener esas ARIMAS, utilizamos la función de EViews *Automatic arima forecasting* para encontrar cuales ARIMAS nos recomienda EViews tanto con Akaike como con Schwarz (véase anexo 10) y también tenerlos como opción para observar cuál de todos nuestros posibles ARIMAS son los mejores para nuestro modelo. A partir de esta función, obtuvimos como posibles ARIMAS: (5,1,4) y (1,1,0). Una vez que obtuvimos las posibles combinaciones de ARIMAS, procedimos a estimar los modelos teniendo como variable dependiente la primera diferencia de la variable EMBIG en logaritmos y como regresores: d(lembig) c @trend dm_2007m10 dm_2009m07 dm_2015m07 dm_2012m06 dm_2008m09 ar(1 to 2) ma(1 to 6), así para cada una de las 4 posibles opciones de ARIMA (véase anexo 11 y anexo 12).

Como se puede observar en la Tabla 3.4, al estimar las ecuaciones en LS, obtuvimos valores cruzados de AIC y SIC, con un valor de AIC menor para la ARIMA (6,1,6), pero un valor de SIC para la ARIMA (1,1,0). Por lo tanto, decidimos comparar el valor de R-squared, al observar este nuevo dato concluimos que nuestros tres mejores valores de ARIMAS que utilizaríamos para realizar las siguientes pruebas serían las: (2,1,6); (6,1,6); (5,1,4).

Tabla 3.4. Modelo ARIMA

ARIMA	AIC	SIC	R-squared
(2,1,6)	-1.776	-1.508	0.196
(6,1,6)	-1.860	-1.525	0.342
(5,1,4)	-1.799	-1.514	0.232
(1,1,0)	-1.706	-1.555	0.056

Fuente: elaboración propia con datos del Banco Central de Reserva del Perú Data (2022)

Después de escoger nuestros mejores ARIMAS, realizamos nuevamente regresiones de mínimos cuadrados con los datos de nuestra variable en logaritmos en primeras diferencias, el intercepto como variable dependiente y el intercepto, la tendencia, todas las dummies anteriormente seleccionadas y los valores de las ARMAS como regresores. Sin embargo, al correr estas nuevas regresiones, nos percatamos que algunas de las dummies que teníamos dejaron de ser significativas —esto lo observamos tanto en los valores del p-value como los de sus t-statistic values—. A partir de ello, comenzamos a hacer combinaciones de variables dummies, eliminando las que dejaban de ser significativas. Al hacer esto, observamos que los valores de AIC y SIC mejoraban (véase anexo 13).

Una vez que concluimos que las variables dummies finalmente significativas son dm_2012m06 y dm_2008m09, con estas corrimos el siguiente modelo corregido: ls d(lembig) c dm_2012m06 dm 2008m09. Es importante mencionar que, para poder elaborar un pronóstico, es necesario

que los errores sean estacionarios, por lo que una vez que obtuvimos la ecuación (véase anexo 14), se tomaron los residuales del modelo bajo el nombre: resid_dlembig_c_2dm_final.

Con esta nueva serie, nuevamente se hizo uso del gráfico y de los test de raíz unitaria (véase anexo 15) para determinar si éstos eran estacionarios.

Figura 3.2. Residual de la variable EMBIG en logaritmos corregida.

Fuente: elaboración propia con datos del Banco Central de Reserva del Perú Data (2022)

Tabla 3.5. Test de raíz unitaria para el residual de la variable EMBIG corregida. t-Statitics.

H0: RESID_DLEMBIG_C_2DM	t-Statistic	t* 1%	t* 5%	t* 10%
has unit root				
Dickey-Fuller	-10.746	-2.577	-1.942	-1.615
Dickey-Fuller con intercepto	-10.716	-3.466	-2.877	-2.575
Dickey-Fuller con intercepto y tendencia	7-10.686	-4.009	-3.434	-3.141
ADF	-5.8957	-2.578	-1.942	-1.615
ADF con intercepto	-5.8791	-3.467	-2.877	-2.575
ADF con intercepto y tendencia	-5.8626	-4.010	-3.435	-3.141
Phillips-Perron	-10.613	-2.577	-1.942	-1.615
PP con intercepto	-10.582	-3.466	-2.877	-2.575
PP con intercepto y tendencia	-10.550	-4.009	-3.434	-3.141
H0: RESID_DLEMBIG_C_2DM is	sLM	LM* 1%	LM* 5%	LM* 10%
stationary				
KPSS con intercepto	0.0252	0.739	0.463	0.347
KPSS con intercepto y tendencia	0.0248	0.216	0.146	0.119

Fuente: elaboración propia con datos del Banco Central de Reserva del Perú Data (2022)

Tabla 3.6. Test de raíz unitaria para el residual de la variable EMBIG corregida. Conclusiones.

H0: RESID_DLEMBIG_C_2DM	Estacionari	Estacionari	Estacionari	Intercept	Tendenci
has unit root	a al 1%	a al 5%	a al 10%	0	a
Dickey-Fuller	SÍ	SÍ	SÍ	N/A	N/A
Dickey-Fuller con intercepto	SÍ	SÍ	SÍ	NO	N/A
Dickey-Fuller con intercepto y tendencia	/SÍ	SÍ	SÍ	NO	NO
ADF	SÍ	SÍ	SÍ	N/A	N/A
ADF con intercepto	SÍ	SÍ	SÍ	NO	N/A
ADF con intercepto y tendencia	SÍ	SÍ	SÍ	NO	NO
Phillips-Perron	SÍ	SÍ	SÍ	N/A	N/A
PP con intercepto	SÍ	SÍ	SÍ	NO	N/A
PP con intercepto y tendencia	SÍ	SÍ	SÍ	NO	NO
H0: RESID_DLEMBIG_C_2DM	Estacionari	Estacionari	Estacionari	Intercept	Tendenci
is stationary	a al 1%	a al 5%	a al 10%	0	a
KPSS con intercepto	SÍ	SÍ	SÍ	NO	N/A
KPSS con intercepto y tendencia	SÍ	SÍ	SÍ	NO	NO

Fuente: elaboración propia con datos del Banco Central de Reserva del Perú Data (2022)

Como se puede observar en las tablas 3.5 y 3.6, nuestro residual de la variable una vez ya corregida, resulta estacionario para todos los test al 1%, 5% y 10%.

ARCH-GARCH

Es importante notar que nuestra variable es un índice de riesgo soberano y al tener la denominación de índice nuestra variable se denomina como financiera, que sea financiera puede significar que EMBIG México esté sujeto a tener volatilidad agrupada y si esto aplica se deberán hacer otras modificaciones al modelo, pues de igual forma sería un modelo Autoregresivo de Volatilidad Agrupada (ARCH, por sus siglas en inglés). En dado caso que sea ARCH es probable que también tenga una parte de modelo Autoregresivo Generalizado de Volatilidad Agrupada (GARCH, por sus siglas en inglés).

La manera en que verificamos la presencia de factores ARCH-GARCH fue la siguiente; primero se usó la variable original en logaritmos con su primera diferencia —con la que es estacionaria— esto debido a que se quiere constatar la existencia de volatilidad una vez es estacionaria la variable, se corrió una regresión sólo con el intercepto y se procedió a hacer un test de residuales de heterocedasticidad en donde se le indica un rezago—anexo 16-, en el test

nos encontramos que el ARCH(1) no es significativo y se procedió a probar hasta ARCH(3) arrojando el mismo resultado.

Realizado lo anterior se determinó que la variable no cuenta con un ARCH, y debido a esto no se procede a testear la existencia de GARCH. Concluyendo así que nuestra variable no cuenta con volatilidad agrupada y ahora sí podemos continuar con los pronósticos dentro de la muestra y fuera de la misma.

Forecast

Llegamos a la parte final del análisis econométrico de la variable, pronosticar. Para esta parte ya contamos con nuestros mejores tres modelos que son estacionarios en primera diferencia, tienen *dummies* significativas y son los modelos ARIMA con menores valores de Akaike y Schwarz.

En esta parte se armarán tres tipos de pronósticos diferentes para cada modelo ARIMA, estos tipos de pronósticos consisten en, un pronóstico dentro de la muestra de método dinámico, un pronóstico dentro de la muestra de método estático y, por último, se escogerán los dos modelos que en pronósticos dentro de la muestra tengan los menores valores de *mean absolute error* y *root mean square error*; y con estos modelos se realizarán pronósticos fuera de la muestra.

Nuestro primer tipo de pronóstico será un dentro de la muestra y se generará la regresión con una muestra modificada que consistirá en recortar los datos originales por un año -de 2006:08-2022:11 a 2006:08-2021:11-, una vez teniendo la regresión se creará un pronóstico para los datos cortados –2021:12 al 2022:11- y se seleccionará un método dinámico; una vez hecho el pronóstico se tomarán en cuenta los valores de *mean absolute error y root mean square error* - anexo 17- y se comparará con la variable original en logaritmos.

El segundo tipo de pronóstico será idéntico al anterior con la única diferencia de que en el método de pronóstico se cambiará a estático. De la misma forma se tomará en cuenta los valores de *mean absolute error y root mean square error* -anexo 18- y se comparará con la variable original en logaritmos.

En los resultados de las muestras dentro de la muestra nos encontramos que los pronósticos fueron mejores cuando se ocupó el método estático, pues como se muestra en la Tabla 3.7, en todas nuestras ARIMAS cuando se usó el método estático nuestros valores de *mean absolute* error y root mean square error son menores comparados a los mismos valores en método dinámico. También en la Tabla 3.7, podemos observar cuál será la ARIMA más apta para hacer pronósticos de la variable —la que tiene menores valores de *mean absolute error* y root mean square error- en el caso de nuestra variable es el ARIMA (5,1,4).

Tabla 3.7. Comparativa de *mean absolute error* y *root mean square error* de las ARIMAS.

ARIMA	(2,1,6)	(5,1,4)	(6,1,6)
Mean absolute error Dinámico	0.055	0.045	0.074
Root mean square error Dinámico	0.066	0.057	0.091
Mean absolute error Estático	0.054	0.052	0.074
Root mean square error Estático	0.063	0.062	0.091

Fuente: elaboración propia con datos del Banco Central de Reserva del Perú Data (2022)

Para el tercer tipo de pronóstico será una muestra fuera del modelo, en otras palabras, ahora si pronosticaremos valores futuros usando toda nuestra muestra. Para este tipo de pronóstico deberemos modificar la muestra del *workfile* para agregar datos en blanco –se agregarán 3 observaciones, de 2006:08-2022:11 a 2006:08-2023:02-, una vez modificada la muestra se procede a generar la regresión con cada ARIMA y se incluye toda la muestra que se tiene – 2006:08 a 2022:11-, luego procedemos al pronóstico y en muestra se pone los periodos a pronosticar que van de diciembre del 2022 a febrero del 2023, se selecciona método dinámico y se corre. Una vez obtenido el pronóstico creamos un grupo en el *workfile* con la variable LEMBIG y así observar el comportamiento que continúan los datos pronosticados -anexo 19-.

A la fecha ya contamos con datos verdaderos desde diciembre del 2022 hasta febrero del 2023, por lo que crearemos una nueva serie de EMBIG a la que se le agregaran estos datos reales, se le aplicará logaritmo y se llamará LEMBIG_2. Una vez teniendo esta nueva serie crearemos un grupo que contenga la nueva serie más las series de los pronósticos fuera de la muestra de nuestras tres ARIMAS, y se pondrá en cambio porcentual -anexo 20-; podemos observar que nuestros modelos ARIMA con menor *mean absolute error* y *root mean square error* –(2,1,6) y (5,1,4)- son los que pronosticaron datos con mayor similitud a los reales como se observa en la Tabla 3.8, así que tienen un comportamiento más parecido a la serie LEMBIG_2.

Tabla 3.8. Comparativa entre periodos pronosticados y periodos reales.

ARIMA	(2,1,6)	(5,1,4)	(6,1,6)	LEMBIG_2
2022M12	5.979	5.976	5.983	5.963
2023M01	5.988	6.006	6.071	5.919
2023M02	6.023	6.054	6.119	5.882

Fuente: elaboración propia con datos del Banco Central de Reserva del Perú Data (2022)

Conclusión

Después de analizar detenida y meticulosamente nuestra variable EMBIG México, primero usando la estadística descriptiva y posteriormente la econometría de series de tiempo, pudimos pronosticar tres periodos de EMBIG México a futuro con cada una de nuestras ARIMAS más relevantes. Es importante recordar que nuestra variable mide el riesgo soberano de México y que en los últimos periodos la variable ha registrado datos mayores comparados con la media, esto se le puede atribuir a factores como la inestabilidad política, la baja promoción a la inversión extranjera, cancelación de proyectos gubernamentales concesionados a empresas privadas e incluso la manera en cómo manejó el gobierno la pandemia derivada del COVID-19.

Nuestros tres pronósticos sobrestimaron los datos reales, como podemos observar en el anexo 20, esto se podría atribuir a que se tenían valores altos como se mencionó anteriormente por ende el programa usando estos datos estimó que tendría un comportamiento creciente. Sin embargo, esto no sucedió así, y probablemente se debe a que a finales del año pasado y principios de este año los gobiernos de la república optaron por reducir las medidas preventivas ante el COVID-19, así logrando un crecimiento en la economía, otra razón probable se pueda deber a que México reanudó proyectos que se tenían en pausa por la pandemia.

Pronosticar una variable como EMBIG México tiene un cierto grado de dificultad debido a que la naturaleza de nuestra variable puede cambiar por aspectos políticos, sociales o económicos. Aunque no se pudo predecir con exactitud el comportamiento de nuestra variable, se acercó bastante nuestro pronóstico y concluimos que nuestros pronósticos fueron satisfactorios al aproximarse al comportamiento verdadero de la variable.

Anexos

Anexo 1. Correlograma de la variable EMBIG en logaritmos en niveles.

Date: 05/01/23 Time: 12:39 Sample: 2006M08 2022M11 Included observations: 196
Autocorrelation Partial Correlation AC PAC Q-Stat Prob 0.953 0.953 180.89 0.000 0.890 -0.206 339.40 0.000 3 0.834 0.077 479.17 0.000 4 0.780 -0.039 602.04 0.000 5 0.719 -0.106 706.98 0.000 0.658 -0.005 795.30 0.000 6 0.609 0.000 0.087 871.39 0.568 0.014 938.00 0.000 0.526 -0.039 995.49 0.000 10 0.483 -0.027 1044.2 11 0.446 0.026 1085.8 0.000 12 0.409 -0.061 1121.0 0.000 13 0.378 0.078 0.000 1151.3 0.000 0.352 0.019 1177.6 14 15 0.322 -0.079 1199.9 0.000 16 0.293 0.004 1218.5 0.000 17 0.259 -0.094 1233.0 18 0.238 0.153 1245.4 0.000 19 0.228 0.053 1256.8 0.000 20 21 0.212 -0.080 1266.7 0.000 0.022 0.000 0.195 1275.2 22 0.181 -0.038 1282.5 0.000 23 0.168 -0.023 1288.8 0.000 24 25 26 27 28 0.155 0.031 1294.2 0.000 0.140 0.002 1298.7 0.000 0.133 0.077 1302.7 0.000 0.141 1307.3 0.000 0.117 0.155 0.000 0.027 1312.8 29 0.170 0.021 1319.5 0.000 Þ 30 0.186 0.024 1327.6 0.000 31 0.193 -0.106 1336.4 32 0.200 0.047 1345.8 0.000 33 34 0.212 0.093 1356.6 0.000 0.228 1369.1 0.000 0.027

35

36

0.236 -0.077

0.235 -0.005

1382.5

1395.9

0.000

0.000

Anexo 2. Correlograma de la variable EMBIG en logaritmos en primeras diferencias.

Date: 05/01/23 Time: 12:42 Sample (adjusted): 2006M09 2022M11 Included observations: 195 after adjustments

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		1 0.216	0.216	9.2303	0.002
(d)	i □ .	2 -0.105		11.426	0.003
1 1	j , j j,	3 -0.019	0.045	11.497	0.009
, j ja	j , j i,	4 0.049	0.028	11.984	0.017
1 1	1 1/1	5 0.004	-0.015	11.987	0.035
= '	 	6 -0.152	-0.148	16.667	0.011
· d ·		7 -0.082	-0.012	18.049	0.012
- III -	' ['	8 -0.044	-0.067	18.449	0.018
1 1		9 -0.014	0.000	18.489	0.030
- □	<u> </u>	10 -0.077	-0.084	19.718	0.032
· j i		11 0.047	0.099	20.181	0.043
- (('	12 -0.035	-0.122	20.431	0.059
· I I ·	' ['	13 -0.091		22.176	0.053
· 🌓 ·	ļ ' ļ '	14 0.032	0.040	22.392	0.071
· 🏚 ·	' '	15 0.060	0.018	23.159	0.081
' []'	' -	16 0.088	0.059	24.825	0.073
□ '	ļ □ !	17 -0.140		29.029	0.034
□ '	' [] '	18 -0.151		33.971	0.013
' ji i	' in '	19 0.075	0.083	35.195	0.013
· ()	q	20 -0.031		35.408	0.018
' Щ''		21 -0.069	0.018	36.458	0.019
1 1	' '	22 -0.016	0.001	36.515	0.027
1 ji 1	' '	23 0.049	0.000	37.045	0.032
1 1	' ['	24 -0.010		37.070	0.043
- 1	' ['	25 -0.061		37.905	0.047
- (' '	26 -0.043		38.324	0.056
- Щ	<u> </u>	27 -0.056	-0.103	39.046	0.063
- () ('['	28 -0.029	-0.017	39.243	0.077
- Щ	' '	29 -0.057	-0.039	39.989	0.084
· 🛅	 	30 0.111	0.060	42.842	0.061
- 14 -	(-		-0.122	43.001	0.074
i	' ['	32 -0.101	-0.064	45.390	0.059
1 j i	 	33 0.034	0.042	45.665	0.070
· 🖭	ļ , þ ,	34 0.099	0.032	48.024	0.056
· 🖭	'()	:	-0.009	50.113	0.047
· d ·	'('	36 -0.068	-0.046	51.222	0.048

Anexo 3. Test de raíz unitaria de la variable EMBIG en logaritmos.

Null Hypothesis: LEMBIG has a unit root Exogenous: Constant, Linear Trend Lag Length: 4 (Fixed)

	t-Statistic	Prob.*
ler test statistic	-3.530402	0.0390
1% level	-4.006824	
5% level	-3.433525	
10% level	-3.140623	
	5% level	ler test statistic

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LEMBIG) Method: Least Squares Date: 05/01/23 Time: 13:17 Sample (adjusted): 2007M01 2022M11 Included observations: 191 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LEMBIG(-1) D(LEMBIG(-1)) D(LEMBIG(-2)) D(LEMBIG(-3)) D(LEMBIG(-4)) C @TREND("2006M08")	-0.104169 0.304490 -0.107130 0.080753 0.090791 0.530077 0.000470	0.029506 0.072495 0.075789 0.074720 0.073685 0.148471 0.000191	-3.530402 4.200172 -1.413543 1.080747 1.232153 3.570245 2.459092	0.0005 0.0000 0.1592 0.2812 0.2195 0.0005 0.0149
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.134385 0.106158 0.096892 1.727407 178.3725 4.760938 0.000155	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.006121 0.102484 -1.794476 -1.675283 -1.746198 2.007258

Null Hypothesis: LEMBIG has a unit root Exogenous: Constant

Lag Length: 4 (Fixed)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.512558	0.1140
Test critical values:	1% level 5% level	-3.464643 -2.876515	
	10% level	-2.574831	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LEMBIG)

Method: Least Squares Date: 05/01/23 Time: 13:17

Sample (adjusted): 2007M01 2022M11 Included observations: 191 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LEMBIG(-1)	-0.050044 0.281370	0.019918 0.072856	-2.512558 3.861979	0.0128 0.0002
D(LEMBIG(-1)) D(LEMBIG(-2))	-0.139443	0.075652	-1.843208	0.0669
D(LEMBIG(-3)) D(LEMBIG(-4))	0.058669 0.059857	0.075183 0.073587	0.780345 0.813423	0.4362 0.4170
С	0.279866	0.109588	2.553796	0.0115
R-squared	0.105937	Mean depend		0.006121
Adjusted R-squared S.E. of regression	0.081773 0.098205	S.D. depende Akaike info cri		0.102484 -1.772611
Sum squared resid	1.784178	Schwarz criter		-1.670446
Log likelihood F-statistic	175.2844 4.384093	Hannan-Quin Durbin-Watso		-1.731229 2.002903
Prob(F-statistic)	0.000853			

Null Hypothesis: LEMBIG has a unit root

Exogenous: None Lag Length: 4 (Fixed)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level	0.540438 -2.577125 -1.942499 -1.615594	0.8319

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LEMBIG)

Method: Least Squares Date: 05/01/23 Time: 13:16

Sample (adjusted): 2007M01 2022M11 Included observations: 191 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LEMBIG(-1) D(LEMBIG(-1)) D(LEMBIG(-2)) D(LEMBIG(-3)) D(LEMBIG(-4))	0.000713 0.260633 -0.169177 0.039522 0.030584	0.001319 0.073469 0.075852 0.075911 0.073760	0.540438 3.547509 -2.230350 0.520646 0.414639	0.5895 0.0005 0.0269 0.6032 0.6789
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.074418 0.054513 0.099652 1.847077 171.9757 1.994122	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin	nt var iterion rion	0.006121 0.102484 -1.748436 -1.663298 -1.713951

Null Hypothesis: LEMBIG has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Fixed)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.773407	0.2090
Test critical values:	1% level	-4.005809	
	5% level	-3.433036	
	10% level	-3.140335	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LEMBIG)

Method: Least Squares Date: 05/01/23 Time: 13:15

Sample (adjusted): 2006M09 2022M11 Included observations: 195 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LEMBIG(-1) C @TREND("2006M08")	-0.076115 0.389141 0.000353	0.027445 0.138196 0.000186	-2.773407 2.815860 1.899545	0.0061 0.0054 0.0590
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.038661 0.028647 0.100130 1.925011 173.5686 3.860687 0.022707	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.005805 0.101596 -1.749422 -1.699068 -1.729034 1.506244

Null Hypothesis: LEMBIG has a unit root

Exogenous: Constant Lag Length: 0 (Fixed)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level	-2.014512 -3.463924 -2.876200 -2.574663	0.2805

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LEMBIG) Method: Least Squares Date: 05/01/23 Time: 13:14

Sample (adjusted): 2006M09 2022M11 Included observations: 195 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LEMBIG(-1) C	-0.038191 0.215483	0.018958 0.104334	-2.014512 2.065322	0.0453 0.0402
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.020594 0.015520 0.100805 1.961187 171.7533 4.058258 0.045344	Mean depend S.D. depende Akaike info cri Schwarz critei Hannan-Quin Durbin-Wats c	nt var iterion rion n criter.	0.005805 0.101596 -1.741060 -1.707490 -1.727468 1.534213

Null Hypothesis: LEMBIG has a unit root

Exogenous: None Lag Length: 0 (Fixed)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ller test statistic 1% level 5% level 10% level	0.657322 -2.576875 -1.942465 -1.615617	0.8572

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LEMBIG)

Method: Least Squares Date: 05/01/23 Time: 13:13

Sample (adjusted): 2006M09 2022M11 Included observations: 195 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LEMBIG(-1)	0.000869	0.001323	0.657322	0.5118
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.001052 -0.001052 0.101650 2.004532 169.6219 1.560247	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin	nt var terion rion	0.005805 0.101596 -1.729455 -1.712671 -1.722659

Null Hypothesis: LEMBIG is stationary Exogenous: Constant, Linear Trend

Bandwidth: 10 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	in test statistic	0.105703
Asymptotic critical values*:	1% level	0.216000
	5% level	0.146000
	10% level	0.119000
*Kwiatkowski-Phillips-Schmidt-S	hin (1992, Table 1)	
Residual variance (no correction))	0.067915
HAC corrected variance (Bartlett k		0.501776

KPSS Test Equation Dependent Variable: LEMBIG Method: Least Squares Date: 05/01/23 Time: 13:27 Sample: 2006M08 2022M11 Included observations: 196

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("2006M08")	5.012784 0.004924	0.037278 0.000331	134.4702 14.88898	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.533297 0.530891 0.261945 13.31139 -14.54149 221.6816 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion ion n criter.	5.492841 0.382449 0.168791 0.202241 0.182333 0.150441

Null Hypothesis: LEMBIG is stationary

Exogenous: Constant

Bandwidth: 10 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	nin test statistic	1.192376
Asymptotic critical values*:	1% level	0.739000
	5% level	0.463000
	10% level	0.347000
*Kwiatkowski-Phillips-Schmidt-S	hin (1992, Table 1)	
Residual variance (no correction)	,	0.145521
HAC corrected variance (Bartlett I	kernel)	1.281839

KPSS Test Equation Dependent Variable: LEMBIG Method: Least Squares Date: 05/01/23 Time: 13:25 Sample: 2006M08 2022M11 Included observations: 196

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	5.492841	0.027318	201.0718	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 0.382449 28.52216 -89.22350 0.070436	Mean depend S.D. depende Akaike info cri Schwarz critel Hannan-Quin	nt var terion rion	5.492841 0.382449 0.920648 0.937373 0.927419

Null Hypothesis: LEMBIG has a unit root

Exogenous: Constant, Linear Trend
Bandwidth: 4 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*		
Phillips-Perron test sta	atistic	-3.179685	0.0916		
Test critical values:	1% level	-4.005809			
	5% level	-3.433036			
	10% level	-3.140335			
*MacKinnon (1996) one-sided p-values.					
Residual variance (no HAC corrected variance	•		0.009872 0.013263		

Phillips-Perron Test Equation Dependent Variable: D(LEMBIG) Method: Least Squares Date: 05/01/23 Time: 13:30

Sample (adjusted): 2006M09 2022M11 Included observations: 195 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LEMBIG(-1) C @TREND("2006M08")	-0.076115 0.389141 0.000353	0.027445 0.138196 0.000186	-2.773407 2.815860 1.899545	0.0061 0.0054 0.0590
R-squared Adjusted R-squared	0.038661 0.028647	Mean depend	lent var ent var	0.005805 0.101596
S.E. of regression Sum squared resid Log likelihood	0.100130 1.925011 173.5686	Akaike info cr Schwarz crite Hannan-Quin	rion n criter.	-1.749422 -1.699068 -1.729034
F-statistic Prob(F-statistic)	3.860687 0.022707	Durbin-Watso	on stat	1.506244

Null Hypothesis: LEMBIG has a unit root

Exogenous: Constant

Bandwidth: 3 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*	
Phillips-Perron test statistic		-2.218955	0.2003	
Test critical values:	1% level	-3.463924		
	5% level	-2.876200		
	10% level	-2.574663		
*MacKinnon (1996) one-sided p-values.				
Residual variance (no HAC corrected variance	*		0.010057 0.012650	

Phillips-Perron Test Equation Dependent Variable: D(LEMBIG) Method: Least Squares Date: 05/01/23 Time: 13:29

Sample (adjusted): 2006M09 2022M11 Included observations: 195 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LEMBIG(-1) C	-0.038191 0.215483	0.018958 0.104334	-2.014512 2.065322	0.0453 0.0402
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.020594 0.015520 0.100805 1.961187 171.7533 4.058258 0.045344	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	0.005805 0.101596 -1.741060 -1.707490 -1.727468 1.534213

Null Hypothesis: LEMBIG has a unit root

Exogenous: None

Bandwidth: 2 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test sta	atistic	0.570120	0.8386
Test critical values:	1% level	-2.576875	
	5% level	-1.942465	
	10% level	-1.615617	

Residual variance (no correction)	0.010280
HAC corrected variance (Bartlett kernel)	0.012523

Phillips-Perron Test Equation Dependent Variable: D(LEMBIG) Method: Least Squares Date: 05/01/23 Time: 13:29

Sample (adjusted): 2006M09 2022M11 Included observations: 195 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LEMBIG(-1)	0.000869	0.001323	0.657322	0.5118
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.001052 -0.001052 0.101650 2.004532 169.6219 1.560247	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quini	nt var terion ion	0.005805 0.101596 -1.729455 -1.712671 -1.722659

Dependent Variable: LEMBIG Method: Least Squares Date: 05/02/23 Time: 17:12 Sample: 2006M08 2022M11 Included observations: 196

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND	5.012784 0.004924	0.037278 0.000331	134.4702 14.88898	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.533297 0.530891 0.261945 13.31139 -14.54149 221.6816 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion ion n criter.	5.492841 0.382449 0.168791 0.202241 0.182333 0.150441

Anexo 5. Test de Chow Simple con quiebres teóricos.

Chow Breakpoint Test: 2008M11

Null Hypothesis: No breaks at specified breakpoints

Varying regressors: All equation variables Equation Sample: 2006M08 2022M11

F-statistic	9.710910	Prob. F(2,192)	0.0001
Log likelihood ratio	18.88654	Prob. Chi-Square(2)	0.0001
Wald Statistic	19.42182	Prob. Chi-Square(2)	0.0001

Chow Breakpoint Test: 2016M02

Null Hypothesis: No breaks at specified breakpoints

Varying regressors: All equation variables Equation Sample: 2006M08 2022M11

F-statistic	6.354688	Prob. F(2,192)	0.0021
Log likelihood ratio	12.56280	Prob. Chi-Square(2)	0.0019
Wald Statistic	12.70938	Prob. Chi-Square(2)	0.0017

Chow Breakpoint Test: 2020M04

Null Hypothesis: No breaks at specified breakpoints

Varying regressors: All equation variables Equation Sample: 2006M08 2022M11

F-statistic	9.613830	Prob. F(2,192)	0.0001
Log likelihood ratio	18.70646	Prob. Chi-Square(2)	0.0001
Wald Statistic	19.22766	Prob. Chi-Square(2)	0.0001

Dependent Variable: LEMBIG_T Method: Least Squares Date: 04/13/23 Time: 10:51 Sample: 2006M08 2022M11 Included observations: 196

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C DO_2008M11 DM_2008M11 DT_2008M11	-0.062227 0.949339 0.093036 -0.000312	0.048523 0.255142 0.062522 0.000401	-1.282440 3.720826 1.488049 -0.776783	0.2012 0.0003 0.1384 0.4382
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.083080 0.068753 0.252131 12.20549 -6.041495 5.798860 0.000816	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-2.39E-16 0.261273 0.102464 0.169365 0.129549 0.320253

Dependent Variable: LEMBIG_T Method: Least Squares Date: 04/13/23 Time: 10:52 Sample: 2006M08 2022M11 Included observations: 196

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C DO_2008M11	-0.005025 0.984860	0.018066 0.252918	-0.278142 3.893988	0.7812 0.0001
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.072494 0.067713 0.252272 12.34639 -7.166361 15.16314 0.000136	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-2.39E-16 0.261273 0.093534 0.126984 0.107077 0.313179

2016m02

2020m04

Dependent Variable: LEMBIG_TDO

Method: Least Squares Date: 04/13/23 Time: 12:14 Sample: 2006M08 2022M11 Included observations: 196

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C DM_2020M04 DT_2020M04	-0.028164 0.350588 -0.012658	0.018954 0.089892 0.004647	-1.485882 3.900109 -2.723755	0.1389 0.0001 0.0070
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.078965 0.069421 0.242733 11.37145 0.894896 8.273485 0.000357	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-0.005025 0.251624 0.021481 0.071656 0.041794 0.338035

Anexo 7. Determinación de tipos de quiebres con Chow recursivo

2010m02

Período	Fecha	F_Stat	F_Prob	
43	2010M02	23.08098	3.10E-06	

Dependent Variable: LEMBIG_TDOM

Method: Least Squares Date: 04/13/23 Time: 13:06 Sample: 2006M08 2022M11 Included observations: 196

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C DM_2010M02	0.123392 -0.192890	0.036036 0.040654	3.424173 -4.744700	0.0008 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.103977 0.099358 0.233538 10.58075 7.957701 22.51218 0.000004	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	-0.028164 0.246083 -0.060793 -0.027343 -0.047251 0.367393

2007m10

Período	Fecha	F_Stat	F_Prob
15	2007M10	50 45430	2 26F-11

2009m10

_	Período	Fecha	F_Stat	F_Prob
_	39	2009M10	15.89302	9.49E-05

Method: Least Squares Date: 04/13/23 Time: 13:50 Sample: 2006M08 2022M11 Included observations: 196

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C DM_2009M10	-0.126495 -0.144983	0.032754 0.036481	-3.861980 -3.974233	0.0002 0.0001
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.075286 0.070519 0.201908 7.908806 36.48156 15.79453 0.000100	Mean depende S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	-0.243369 0.209428 -0.351853 -0.318403 -0.338310 0.516814

2008m08

	Período	Fecha	F_Stat	F_Prob
-	25	2008M08	21.53352	6.39E-06

Dependent Variable: LEMBIG_TR3

Method: Least Squares Date: 04/13/23 Time: 14:02 Sample: 2006M08 2022M11 Included observations: 196

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C DM_2008M08	-0.295128 0.192163	0.039136 0.041777	-7.541178 4.599764	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.098336 0.093689 0.191724 7.131083 46.62590 21.15783 0.000008	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	-0.126495 0.201390 -0.455366 -0.421916 -0.441824 0.578295

Período	Fecha	F_Stat	F_Prob
36	2009M07	13.90370	0.000252

Method: Least Squares Date: 04/14/23 Time: 15:07 Sample: 2006M08 2022M11 Included observations: 196

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C DM_2009M07	-0.190924 -0.126857	0.031338 0.034577	-6.092348 -3.668779	0.0000 0.0003
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.064880 0.060059 0.185400 6.668420 53.19975 13.45994 0.000315	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	-0.295128 0.191232 -0.522446 -0.488996 -0.508904 0.619445

2015m07

Período	Fecha	F_Stat	F_Prob
108	2015M07	12.00644	0.000653

Dependent Variable: LEMBIG_TR5

Method: Least Squares Date: 04/14/23 Time: 15:19 Sample: 2006M08 2022M11 Included observations: 196

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C DM_2015M07	-0.231472 0.089297	0.017395 0.025814	-13.30693 3.459252	0.0000 0.0007
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.058099 0.053244 0.179934 6.280992 59.06554 11.96642 0.000666	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-0.190924 0.184924 -0.582301 -0.548851 -0.568759 0.658246

Período	Fecha	F_Stat	F_Prob
173	2020M12	10.01281	0.001805

Method: Least Squares Date: 04/14/23 Time: 15:29 Sample: 2006M08 2022M11 Included observations: 196

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C DM_2020M12	-0.216869 -0.119260	0.013389 0.038261	-16.19795 -3.116974	0.0000 0.0021
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.047692 0.042783 0.175591 5.981441 63.85445 9.715528 0.002105	Mean depende S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	-0.231472 0.179472 -0.631168 -0.597718 -0.617626 0.689487

2020m02

Período	Fecha	F_Stat	F_Prob
163	2020M02	8.596667	0.003773

Dependent Variable: LEMBIG_TR7

Method: Least Squares Date: 04/14/23 Time: 15:45 Sample: 2006M08 2022M11 Included observations: 196

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C DM_2020M02	-0.232665 0.091056	0.013524 0.032472	-17.20337 2.804156	0.0000 0.0056
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.038954 0.034000 0.172137 5.748443 67.74824 7.863289 0.005558	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	-0.216869 0.175140 -0.670900 -0.637450 -0.657358 0.718110

Período	Fecha	F_Stat	F_Prob
71	2012M06	10.92972	0.001127

Method: Least Squares Date: 04/14/23 Time: 16:07 Sample: 2006M08 2022M11 Included observations: 196

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C DM_2012M06	-0.181514 -0.079568	0.020058 0.025017	-9.049452 -3.180591	0.0000 0.0017
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.049561 0.044662 0.167817 5.463546 72.72968 10.11616 0.001711	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	-0.232665 0.171695 -0.721731 -0.688281 -0.708189 0.757661

2008m09

Período	Fecha	F_Stat	F_Prob
26	2008M09	15.53897	0.000113

Dependent Variable: LEMBIG_TR9

Method: Least Squares Date: 04/14/23 Time: 16:21 Sample: 2006M08 2022M11 Included observations: 196

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C DM_2008M09	-0.300238 0.136081	0.032299 0.034580	-9.295574 3.935313	0.0000 0.0001
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.073927 0.069153 0.161495 5.059643 80.25628 15.48669 0.000116	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	-0.181514 0.167386 -0.798533 -0.765083 -0.784991 0.811759

_	Período	Fecha	F_Stat	F_Prob
	36	2009M07	8.927006	0.003173

Method: Least Squares Date: 04/14/23 Time: 16:32 Sample: 2006M08 2022M11 Included observations: 196

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C DM_2009M07	-0.229805 -0.085745	0.026721 0.029483	-8.600039 -2.908259	0.0000 0.0041
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.041776 0.036837 0.158086 4.848269 84.43835 8.457973 0.004058	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		-0.300238 0.161080 -0.841208 -0.807757 -0.827665 0.851865

Anexo 8. Determinación de tipos de quiebres con pruebas Cusum y Z&A

Cusum test: 2009m02 y 2011m01

Anexo 9. Combinación para mejor modelo.

Sample (adjusted): 2006M09 2022M11 Included observations: 195 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.002844	0.028913	0.098364	0.9218
@TREND	-4.43E-05	0.000700	-0.063337	0.9496
DM_2010M02	0.051288	0.045110	1.136959	0.2570
DM_2007M10	0.034770	0.042919	0.810137	0.4189
DM_2009M07	-0.078167	0.050978	-1.533336	0.1269
DM_2015M07	0.004403	0.038911	0.113162	0.9100
DM_2020M12	-0.039930	0.040459	-0.986915	0.3250
DM_2020M02	0.034152	0.042012	0.812897	0.4173
DM_2012M06	0.000770	0.034349	0.022423	0.9821
DM_2008M09	-0.005315	0.045487	-0.116843	0.9071
R-squared	0.024829	Mean depend	lent var	0.005805
Adjusted R-squared	-0.022612	S.D. depende	nt var	0.101596
S.E. of regression	0.102738	Akaike info cri	iterion	-1.663341
Sum squared resid	1.952708	Schwarz criterion		-1.495495
Log likelihood	172.1758	Hannan-Quinn criter.		-1.595382
F-statistic	0.523359	Durbin-Watson stat		1.606084
Prob(F-statistic)	0.856469			

Sample: 2006M08 2022M11 Included observations: 196

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	4.766641	0.043375	109.8948	0.0000
@TREND	0.005351	0.000624	8.567997	0.0000
DM_2007M10	0.277858	0.065569	4.237642	0.0000
DM_2009M07	-0.776278	0.059617	-13.02104	0.0000
DM_2015M07	0.207876	0.050466	4.119134	0.0001
DM_2012M06	-0.220259	0.044238	-4.978970	0.0000
DM_2008M09	0.723673	0.070904	10.20645	0.0000
R-squared	0.826995	Mean depend	lent var	5.492841
Adjusted R-squared	0.821503	S.D. depende	nt var	0.382449
S.E. of regression	0.161581	Akaike info cr	iterion	-0.772564
Sum squared resid	4.934470	Schwarz criterion		-0.655488
Log likelihood	82.71125	Hannan-Quinn criter.		-0.725166
F-statistic	150.5759	Durbin-Watson stat		0.609298
Prob(F-statistic)	0.000000			

Series: RESID_LEMBIG_C_T_DUM5 Workfile: LEMBIG_ARCH_GARCH::Ut | View | Proc | Object | Properties | | Print | Name | Freeze | | Sample | Genr | Sheet

Automatic ARIMA Forecasting

Selected dependent variable: RESID_LEMBIG_C_T_DUM5

Date: 04/26/23 Time: 14:19 Sample: 2006M08 2022M11 Included observations: 196

Forecast length: 0

Model maximums: (12,12)1(0,0)

Regressors:

Number of estimated ARMA models: 169 Number of non-converged estimations: 0 Selected ARMA model: (5,4)(0,0)

AIC value: -1.51541657694

Series: RESID_LEMBIG_C_T_DUM5 Workfile: LEMBIG_ARCH_GARCH::Untitle... View | Proc | Object | Properties | | Print | Name | Freeze | | Sample | Genr | Sheet | Graph

Automatic ARIMA Forecasting

Selected dependent variable: RESID_LEMBIG_C_T_DUM5

Date: 04/26/23 Time: 14:20 Sample: 2006M08 2022M11 Included observations: 196

Forecast length: 0

Model maximums: (12,12)1(0,0)

Regressors: C

Number of estimated ARMA models: 169 Number of non-converged estimations: 0 Selected ARMA model: (1,0)(0,0)

SIC value: -1.41977967478

ARIMA (2,1,6)

Dependent Variable: D(LEMBIG) Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 04/27/23 Time: 07:23 Sample: 2006M09 2022M11 Included observations: 195

Failure to improve objective (non-zero gradients) after 61 iterations Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.007238	0.021196	0.341487	0.7331
@TREND	8.26E-06	0.000208	0.039767	0.9683
DM_2007M10	0.051958	0.037313	1.392508	0.1655
DM_2009M07	-0.016883	0.027828	-0.606700	0.5448
DM_2015M07	-0.004305	0.016650	-0.258531	0.7963
DM_2012M06	0.023682	0.011496	2.060022	0.0408
DM_2008M09	-0.056376	0.037795	-1.491627	0.1376
AR(1)	0.557367	0.482238	1.155792	
AR(2)	-0.017142	0.420795	-0.040738	0.9676
MA(1)	-0.414053	108.4195	-0.003819	0.9970
MA(2)	-0.318983	189.3949	-0.001684	0.9987
MA(3)	-0.003829	2.620433	-0.001461	0.9988
MA(4)	-0.036407	40.23872	-0.000905	0.9993
MA(5)	-0.001450	3.007403	-0.000482	
MA(6)	-0.225278	425.3825	-0.000530	0.9996
SIGMASQ	0.008295	0.194897	0.042561	0.9661
R-squared	0.192213	Mean depend	dent var	0.005805
Adjusted R-squared	0.124521	S.D. depende	ent var	0.101596
S.E. of regression	0.095061	Akaike info cr	iterion	-1.771365
Sum squared resid	1.617534	Schwarz crite	rion	-1.502811
Log likelihood	188.7081	Hannan-Quin	ın criter.	-1.662631
F-statistic	2.839538	Durbin-Watso	on stat	1.993445
Prob(F-statistic)	0.000528			
Inverted AR Roots	.52	.03		
Inverted MA Roots	1.00	.4559i	.45+.59i	3562i
	35+.62i	79		

Dependent Variable: D(LEMBIG)

Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 04/27/23 Time: 07:34 Sample: 2006M09 2022M11 Included observations: 195

Failure to improve objective (non-zero gradients) after 63 iterations Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.035885	0.008767	4.093143	0.0001
DM_2012M06	0.015011	0.005343	2.809784	0.0055
DM_2008M09	-0.043713	0.011493	-3.803401	0.0002
AR(1)	0.555971	0.506087	1.098569	0.2734
AR(2)	0.046090	0.448160	0.102842	0.9182
MA(1)	-0.390698	195.5321	-0.001998	0.9984
MA(2)	-0.371131	403.3845	-0.000920	0.9993
MA(3)	-0.001725	2.986109	-0.000578	0.9995
MA(4)	-0.024566	49.57271	-0.000496	0.9996
MA(5)	0.010913	36.00979	0.000303	0.9998
MA(6)	-0.222793	748.3049	-0.000298	0.9998
SIGMASQ	0.008427	0.208817	0.040354	0.9679
R-squared	0.179404	Mean depend	dent var	0.005805
Adjusted R-squared	0.130079	S.D. depende		0.101596
S.E. of regression	0.094758	Akaike info cr		-1.797195
Sum squared resid	1.643182	Schwarz crite	rion	-1.595780
Log likelihood	187.2265	Hannan-Quin	in criter.	-1.715644
F-statistic	3.637157	Durbin-Watso	on stat	1.992504
Prob(F-statistic)	0.000113			
Inverted AR Roots	.63	07		
Inverted MA Roots	1.00	.46+.57i	.4657i	3662i
	36+.62i	80		

Dependent Variable: D(LEMBIG)
Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 04/27/23 Time: 07:42
Sample: 2006M09 2022M11
Included observations: 195 Convergence not achieved after 500 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.038742	0.023588	1.642433	0.1023
@TREND	2.22E-05	0.000110	0.201563	0.8405
DM_2007M10	-0.011442	0.045635	-0.250737	0.8023
DM_2009M07	-0.025309	0.026342	-0.960772	0.3380
DM_2015M07	-0.004689	0.008345	-0.561920	0.5749
DM_2012M06	0.022894	0.005553	4.122906	0.0001
DM_2008M09	-0.016470	0.045408	-0.362716	0.7173
AR(1)	-0.206301	0.087837	-2.348677	0.0200
AR(2)	0.701475	0.082969	8.454716	0.0000
AR(3)	0.318074	0.060034	5.298192	0.0000
AR(4)	0.862059	0.049021	17.58562	0.0000
AR(5)	-0.220399	0.079531	-2.771237	0.0062
AR(6)	-0.722966	0.087147	-8.295963	0.0000
MA(1)	0.293439	3.225916	0.090963	0.9276
MA(2)	-0.985253	3.053293	-0.322685	0.7473
MA(3)	-0.606459	0.897413	-0.675786	0.5001
MA(4)	-0.986417	4.774323	-0.206609	0.8366
MA(5)	0.291678	2.938733	0.099253	0.9211
MA(6)	0.997943	2.927638	0.340870	0.7336
SIGMASQ	0.006834	0.020132	0.339454	0.7347
R-squared	0.334495	Mean depen	dent var	0.005805
Adjusted R-squared	0.262240	S.D. depend	ent var	0.101596
S.E. of regression	0.087264	Akaike info c	riterion	-1.848792
Sum squared resid	1.332625	Schwarz crite	rion	-1.513099
Log likelihood	200.2572	Hannan-Quir	nn criter.	-1.712874
F-statistic	4.629370	Durbin-Wats	on stat	1.914431
Prob(F-statistic)	0.000000			
Inverted AR Roots	.92+.17i	.9217i	11+.98i	1198i
	92+.03i	9203i		
Inverted MA Roots	1.0002i	1.00+.02i	15+.99i	1599i
	-1.0008i	-1.00+.08i		

Dependent Variable: D(LEMBIG) Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 04/27/23 Time: 07:46 Sample: 2006M09 2022M11 Included observations: 195

Convergence not achieved after 500 iterations Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.041702	0.006370	6.546297	0.0000
@TREND	-2.57E-05	3.27E-05	-0.785024	0.4335
DM_2012M06	0.019701	0.003997	4.929119	0.0000
DM_2008M09	-0.050509	0.007175	-7.039647	0.0000
AR(1)	-0.206066	0.085551	-2.408687	0.0170
AR(2)	0.696795	0.085562	8.143693	0.0000
AR(3)	0.315464	0.059385	5.312170	0.0000
AR(4)	0.862117	0.048805	17.66442	0.0000
AR(5)	-0.218959	0.078531	-2.788171	0.0059
AR(6)	-0.718914	0.086872	-8.275579	0.0000
MA(1)	0.291186	3.586589	0.081188	0.9354
MA(2)	-0.985416	5.147713	-0.191428	0.8484
MA(3)	-0.605739	1.291418	-0.469050	0.6396
MA(4)	-0.986053	6.749719	-0.146088	0.8840
MA(5)	0.292834	4.293782	0.068200	0.9457
MA(6)	0.997822	4.186020	0.238370	0.8119
SIGMASQ	0.006872	0.029107	0.236110	0.8136
R-squared	0.330755	Mean depend	dent var	0.005805
Adjusted R-squared	0.270598	S.D. depende	ent var	0.101596
S.E. of regression	0.086768	Akaike info cr	riterion	-1.873558
Sum squared resid	1.340114	Schwarz crite	rion	-1.588220
Log likelihood	199.6720	Hannan-Quir	nn criter.	-1.758028
F-statistic	5.498205	Durbin-Wats	on stat	1.906040
Prob(F-statistic)	0.000000			
Inverted AR Roots	.9217i	.92+.17i	1198i	11+.98i
	92+.03i	9203i		
Inverted MA Roots	1.0002i	1.00+.02i	15+.99i	1599i
	-1.0008i	-1.00+.08i		

ARIMA (5,1,4)

Dependent Variable: D(LEMBIG)
Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 04/27/23 Time: 07:52
Sample: 2006M09 2022M11
Included observations: 195

Convergence not achieved after 500 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.010810	0.021154	0.511022	0.6100
@TREND	1.10E-05	0.000229	0.047856	0.9619
DM_2007M10	0.043541	0.037664	1.156024	0.2492
DM_2009M07	-0.020015	0.028613	-0.699530	0.4851
DM_2015M07	-0.004335	0.018211	-0.238041	0.8121
DM_2012M06	0.023468	0.012535	1.872204	0.0628
DM_2008M09	-0.048524	0.038922	-1.246716	0.2141
AR(1)	-0.019348	0.204666	-0.094537	0.9248
AR(2)	-0.269835	0.181891	-1.483500	0.1397
AR(3)	0.182160	0.234283	0.777522	0.4379
AR(4)	0.600329	0.196903	3.048849	0.0026
AR(5)	-0.166388	0.124101	-1.340743	0.1817
MA(1)	0.199799	27.50867	0.007263	0.9942
MA(2)	0.065458	28.08221	0.002331	0.9981
MA(3)	-0.360427	35.52121	-0.010147	0.9919
MA(4)	-0.904757	175.0605	-0.005168	0.9959
SIGMASQ	0.007864	0.124949	0.062934	0.9499
R-squared	0.234233	Mean depend	dent var	0.005805
Adjusted R-squared	0.165400	S.D. depende	ent var	0.101596
S.E. of regression	0.092815	Akaike info cr	iterion	-1.793965
Sum squared resid	1.533391	Schwarz crite	rion	-1.508627
Log likelihood	191.9116	Hannan-Quin	ın criter.	-1.678435
F-statistic	3.402923	Durbin-Watso	on stat	2.017342
Prob(F-statistic)	0.000029			
Inverted AR Roots	.77	.27	11+.98i	1198i
Investor d MA Donate	83	45.00:	45.00	04
Inverted MA Roots	1.00	1599i	15+.99i	91

Dependent Variable: D(LEMBIG)

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 04/27/23 Time: 07:55 Sample: 2006M09 2022M11 Included observations: 195

Convergence not achieved after 500 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.035778	0.009012	3.970088	0.0001
@TREND	-2.29E-05	0.000116	-0.197475	0.8437
DM_2012M06	0.017298	0.012919	1.339013	0.1822
DM_2008M09	-0.042927	0.012193	-3.520690	0.0005
AR(1)	-0.001405	0.192760	-0.007290	0.9942
AR(2)	-0.250108	0.177229	-1.411210	0.1599
AR(3)	0.201598	0.218392	0.923101	0.3572
AR(4)	0.616893	0.190571	3.237069	0.0014
AR(5)	-0.165556	0.124287	-1.332046	0.1845
MA(1)	0.203098	3.250143	0.062489	0.9502
MA(2)	0.062458	3.876842	0.016111	0.9872
MA(3)	-0.357341	4.112910	-0.086883	0.9309
MA(4)	-0.907119	2.974553	-0.304960	0.7607
SIGMASQ	0.007970	0.026198	0.304230	0.7613
R-squared	0.223844	Mean depend	dent var	0.005805
Adjusted R-squared	0.168098	S.D. depende	ent var	0.101596
S.E. of regression	0.092665	Akaike info cr	iterion	-1.812522
Sum squared resid	1.554195	Schwarz crite	rion	-1.577537
Log likelihood	190.7209	Hannan-Quir	nn criter.	-1.717379
F-statistic	4.015426	Durbin-Wats	on stat	2.016962
Prob(F-statistic)	0.000009			
Inverted AR Roots	.80 83	.26	1198i	11+.98i
Inverted MA Roots	1.00	1 599i	15+.99i	91

Dependent Variable: D(LEMBIG)

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 05/03/23 Time: 18:59 Sample: 2006M09 2022M11 Included observations: 195

Convergence achieved after 6 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.003515	0.038888	0.090394	0.9281
@TREND	2.56E-05	0.000655	0.039072	0.9689
DM_2007M10	0.026734	0.051456	0.519547	0.6040
DM_2009M07	-0.040011	0.034456	-1.161215	0.2470
DM_2015M07	0.002184	0.054419	0.040138	0.9680
DM_2012M06	0.006539	0.041524	0.157478	0.8750
DM_2008M09	0.002878	0.039903	0.072118	0.9426
AR(1)	0.205721	0.074973	2.743930	0.0067
SIGMASQ	0.009721	0.000575	16.89511	0.0000
R-squared	0.053348	Mean depend	ent var	0.005805
Adjusted R-squared	0.012632	S.D. depende	nt var	0.101596
S.E. of regression	0.100952	Akaike info cri	terion	-1.703058
Sum squared resid	1.895600	Schwarz criter	rion	-1.551996
Log likelihood	175.0481	Hannan-Quin	n criter.	-1.641895
F-statistic	1.310250	Durbin-Watso	n stat	1.919255
Prob(F-statistic)	0.240643			
Inverted AR Roots	.21			

Dependent Variable: D(LEMBIG)

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 05/03/23 Time: 19:00 Sample: 2006M09 2022M11 Included observations: 195

Convergence achieved after 7 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.015415	0.026211	0.588131	0.5571
@TREND	1.47E-05	0.000361	0.040734	0.9676
DM_2012M06	-6.16E-05	0.041518	-0.001484	0.9988
DM_2008M09	-0.012717	0.030659	-0.414775	0.6788
AR(1)	0.213577	0.075677	2.822215	0.0053
SIGMASQ	0.009778	0.000563	17.36092	0.0000
R-squared	0.047845	Mean depend	lent var	0.005805
Adjusted R-squared	0.022655	S.D. depende	ent var	0.101596
S.E. of regression	0.100439	Akaike info cr	iterion	-1.728012
Sum squared resid	1.906620	Schwarz crite	rion	-1.627305
Log likelihood	174.4812	Hannan-Quin	n criter.	-1.687237
F-statistic	1.899410	Durbin-Watso	on stat	1.919755
Prob(F-statistic)	0.096277			
Inverted AR Roots	.21			

ARIMA (2,1,6)

Dependent Variable: D(LEMBIG)

Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 04/27/23 Time: 07:34

Sample: 2006M09 2022M11 Included observations: 195

Failure to improve objective (non-zero gradients) after 63 iterations Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.035885	0.008767	4.093143	0.0001
DM_2012M06	0.015011	0.005343	2.809784	0.0055
DM_2008M09	-0.043713	0.011493	-3.803401	0.0002
AR(1)	0.555971	0.506087	1.098569	0.2734
AR(2)	0.046090	0.448160	0.102842	0.9182
MA(1)	-0.390698	195.5321	-0.001998	0.9984
MA(2)	-0.371131	403.3845	-0.000920	0.9993
MA(3)	-0.001725	2.986109	-0.000578	0.9995
MA(4)	-0.024566	49.57271	-0.000496	0.9996
MA(5)	0.010913	36.00979	0.000303	0.9998
MA(6)	-0.222793	748.3049	-0.000298	0.9998
SIGMASQ	0.008427	0.208817	0.040354	0.9679
R-squared	0.179404	Mean depend	dent var	0.005805
Adjusted R-squared	0.130079	S.D. depende		0.101596
S.E. of regression	0.094758	Akaike info cr	iterion	-1.797195
Sum squared resid	1.643182	Schwarz crite	rion	-1.595780
Log likelihood	187.2265	Hannan-Quir	ın criter.	-1.715644
F-statistic	3.637157	Durbin-Wats	on stat	1.992504
Prob(F-statistic)	0.000113			
Inverted AR Roots	.63	07		
Inverted MA Roots	1.00	.46+.57i	.4657i	3662i
	36+.62i	80		

Dependent Variable: D(LEMBIG)

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 04/27/23 Time: 07:33 Sample: 2006M09 2022M11 Included observations: 195

Failure to improve objective (non-zero gradients) after 53 iterations Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.036550	0.008869	4.121003	0.0001
@TREND	-2.63E-05	0.000104	-0.253055	0.8005
DM_2012M06	0.017931	0.011666	1.537097	0.1260
DM_2008M09	-0.043863	0.011448	-3.831649	0.0002
AR(1)	0.558022	0.506874	1.100908	0.2724
AR(2)	0.040833	0.450065	0.090728	0.9278
MA(1)	-0.393275	304.0671	-0.001293	0.9990
MA(2)	-0.366697	598.9272	-0.000612	0.9995
MA(3)	-0.001124	3.283531	-0.000342	0.9997
MA(4)	-0.025421	79.13677	-0.000321	0.9997
MA(5)	0.010080	47.64909	0.000212	0.9998
MA(6)	-0.223564	1118.163	-0.000200	0.9998
SIGMASQ	0.008420	0.214193	0.039312	0.9687
R-squared	0.180004	Mean depend	dent var	0.005805
Adjusted R-squared	0.125939	S.D. depende		0.101596
S.E. of regression	0.094984	Akaike info cr	iterion	-1.787631
Sum squared resid	1.641981	Schwarz crite	rion	-1.569431
Log likelihood	187.2940	Hannan-Quin	in criter.	-1.699284
F-statistic	3.329365	Durbin-Watso	on stat	1.993181
Prob(F-statistic)	0.000216			
Inverted AR Roots	.62	07		
Inverted MA Roots	1.00	.46+.58i	.4658i	3662i
	36+.62i	80		

Dependent Variable: D(LEMBIG) Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 04/27/23 Time: 07:34 Sample: 2006M09 2022M11 Included observations: 195

Convergence achieved after 63 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.006803	0.021204	0.320820	0.7487
DM_2007M10	0.058995	0.035690	1.652994	0.1001
DM_2012M06	0.017349	0.004911	3.532579	0.0005
DM_2008M09	-0.075778	0.019588	-3.868488	0.0002
AR(1)	0.568747	0.506562	1.122761	0.2630
AR(2)	-0.028567	0.441396	-0.064719	0.9485
MA(1)	-0.424103	27.07086	-0.015666	0.9875
MA(2)	-0.310084	13.52142	-0.022933	0.9817
MA(3)	0.000340	7.838689	4.33E-05	1.0000
MA(4)	-0.039137	6.927545	-0.005649	0.9955
MA(5)	-0.003149	6.590544	-0.000478	0.9996
MA(6)	-0.223867	1.432621	-0.156264	0.8760
SIGMASQ	0.008325	0.245335	0.033935	0.9730
R-squared	0.189252	Mean depend	dent var	0.005805
Adjusted R-squared	0.135796	S.D. depende		0.101596
S.E. of regression	0.094446	Akaike info cr	iterion	-1.798452
Sum squared resid	1.623463	Schwarz crite	rion	-1.580252
Log likelihood	188.3491	Hannan-Quin	in criter.	-1.710106
F-statistic	3.540337	Durbin-Watso	on stat	1.992953
Prob(F-statistic)	0.000097			
Inverted AR Roots	.51	.06		
Inverted MA Roots	1.00	.4659i	.46+.59i	3562i
	35+.62i	79		

Dependent Variable: D(LEMBIG) Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 04/27/23 Time: 07:32 Sample: 2006M09 2022M11

Included observations: 195
Failure to improve objective (non-zero gradients) after 64 iterations Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.006715	0.021039	0.319155	0.7500
@TREND	-3.38E-05	8.86E-05	-0.382011	0.7029
DM_2007M10	0.060830	0.035456	1.715649	0.0879
DM_2012M06	0.021157	0.010017	2.112056	0.0361
DM_2008M09	-0.076923	0.019324	-3.980619	0.0001
AR(1)	0.572355	0.505600	1.132032	0.2591
AR(2)	-0.039194	0.441431	-0.088788	0.9293
MA(1)	-0.429191	195.7872	-0.002192	0.9983
MA(2)	-0.300972	293.3912	-0.001026	0.9992
MA(3)	0.001329	8.164036	0.000163	0.9999
MA(4)	-0.041066	77.48945	-0.000530	0.9996
MA(5)	-0.005191	7.993846	-0.000649	0.9995
MA(6)	-0.224908	681.9453	-0.000330	0.9997
SIGMASQ	0.008313	0.188995	0.043984	0.9650
R-squared	0.190492	Mean depend	dent var	0.005805
Adjusted R-squared	0.132351	S.D. depende	ent var	0.101596
S.E. of regression	0.094634	Akaike info cr	iterion	-1.789659
Sum squared resid	1.620979	Schwarz crite	rion	-1.554674
Log likelihood	188.4917	Hannan-Quir	n criter.	-1.694516
F-statistic	3.276359	Durbin-Watso	on stat	1.994027
Prob(F-statistic)	0.000174			
Inverted AR Roots	.49	.08		
Inverted MA Roots	1.00	.4660i	.46+.60i	3562i
	35+.62i	78		

Dependent Variable: D(LEMBIG) Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 04/27/23 Time: 07:30

Sample: 2006M09 2022M11 Included observations: 195

Failure to improve objective (non-zero gradients) after 59 iterations Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.007668	0.021227	0.361241	0.7183
@TREND	-3.79E-05	8.99E-05	-0.421551	0.6739
DM_2007M10	0.052159	0.037279	1.399143	0.1635
DM_2009M07	-0.014552	0.026399	-0.551239	0.5822
DM_2012M06	0.023490	0.011549	2.033912	0.0434
DM_2008M09	-0.056347	0.037847	-1.488821	0.1383
AR(1)	0.558835	0.485626	1.150750	0.2514
AR(2)	-0.013480	0.421241	-0.032001	0.9745
MA(1)	-0.414767	280.0056	-0.001481	0.9988
MA(2)	-0.321813	456.6334	-0.000705	0.9994
MA(3)	-0.003773	2.232618	-0.001690	0.9987
MA(4)	-0.034891	96.00726	-0.000363	0.9997
MA(5)	-0.000471	3.433966	-0.000137	0.9999
MA(6)	-0.224286	977.9006	-0.000229	0.9998
SIGMASQ	0.008301	0.190665	0.043536	0.9653
R-squared	0.191660	Mean depend	dent var	0.005805
Adjusted R-squared	0.128789	S.D. depende	ent var	0.101596
S.E. of regression	0.094829	Akaike info cr	iterion	-1.780983
Sum squared resid	1.618641	Schwarz crite	rion	-1.529214
Log likelihood	188.6458	Hannan-Quin	ın criter.	-1.679045
F-statistic	3.048465	Durbin-Watso	on stat	1.993943
Prob(F-statistic)	0.000300			
Inverted AR Roots	.53	.03		
Inverted MA Roots	1.00	.4659i	.46+.59i	3562i
	35+.62i	79		

ARIMA (6,1,6)

Dependent Variable: D(LEMBIG) Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 04/27/23 Time: 07:42 Sample: 2006M09 2022M11

Included observations: 195

Convergence not achieved after 500 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.038742	0.023588	1.642433	0.1023
@TREND	2.22E-05	0.000110	0.201563	0.8405
DM_2007M10	-0.011442	0.045635	-0.250737	0.8023
DM_2009M07	-0.025309	0.026342	-0.960772	0.3380
DM_2015M07	-0.004689	0.008345	-0.561920	0.5749
DM_2012M06	0.022894	0.005553	4.122906	0.0001
DM_2008M09	-0.016470	0.045408	-0.362716	0.7173
AR(1)	-0.206301	0.087837	-2.348677	0.0200
AR(2)	0.701475	0.082969	8.454716	0.0000
AR(3)	0.318074	0.060034	5.298192	0.0000
AR(4)	0.862059	0.049021	17.58562	0.0000
AR(5)	-0.220399	0.079531	-2.771237	0.0062
AR(6)	-0.722966	0.087147	-8.295963	
MA(1)	0.293439	3.225916	0.090963	0.9276
MA(2)	-0.985253	3.053293	-0.322685	
MA(3)	-0.606459	0.897413	-0.675786	0.5001
MA(4)	-0.986417	4.774323	-0.206609	0.8366
MA(5)	0.291678	2.938733	0.099253	
MA(6)	0.997943	2.927638	0.340870	
SIGMASQ	0.006834	0.020132	0.339454	0.7347
R-squared	0.334495	Mean depend	lent var	0.005805
Adjusted R-squared	0.262240	S.D. depende	nt var	0.101596
S.E. of regression	0.087264	Akaike info cri	iterion	-1.848792
Sum squared resid	1.332625	Schwarz criter	rion	-1.513099
Log likelihood	200.2572	Hannan-Quin	n criter.	-1.712874
F-statistic	4.629370	Durbin-Watso	n stat	1.914431
Prob(F-statistic)	0.000000			
Inverted AR Roots	.92+.17i	.9217i -	.11+.98i	1198i
	92+.03i	9203i		
Inverted MA Roots	1.0002i	1.00+.02i -	.15+.99i	1599i
	-1.0008i	-1.00+.08i		

Dependent Variable: D(LEMBIG) Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 04/27/23 Time: 07:46

Sample: 2006M09 2022M11 Included observations: 195

Convergence not achieved after 500 iterations
Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.038590	0.006372	6.056425	0.0000
DM_2012M06	0.016454	0.001794	9.171700	0.0000
DM_2008M09	-0.047398	0.007468	-6.346768	0.0000
AR(1)	-0.203225	0.085980	-2.363640	0.0192
AR(2)	0.701106	0.078252	8.959557	0.0000
AR(3)	0.319914	0.055582	5.755753	0.0000
AR(4)	0.865792	0.047704	18.14923	0.0000
AR(5)	-0.218611	0.077859	-2.807766	0.0055
AR(6)	-0.719804	0.085674	-8.401645	0.0000
MA(1)	0.290837	6.103276	0.047653	0.9620
MA(2)	-0.985721	7.547896	-0.130595	0.8962
MA(3)	-0.605609	1.673145	-0.361959	0.7178
MA(4)	-0.985922	5.009795	-0.196799	0.8442
MA(5)	0.292765	7.534857	0.038855	0.9690
MA(6)	0.997721	5.448531	0.183117	0.8549
SIGMASQ	0.006919	0.038030	0.181942	0.8558
R-squared	0.326192	Mean depen	dent var	0.005805
Adjusted R-squared	0.269728	S.D. depend	ent var	0.101596
S.E. of regression	0.086820	Akaike info ci	riterion	-1.877198
Sum squared resid	1.349250	Schwarz crite	rion	-1.608645
Log likelihood	199.0269	Hannan-Quir	nn criter.	-1.768464
F-statistic	5.776962	Durbin-Wats	on stat	1.899309
Prob(F-statistic)	0.000000			
Inverted AR Roots	.9216i	.92+.16i	1198i	11+.98i
	92+.03i	9203i		
Inverted MA Roots	1.0002i	1.00+.02i	15+.99i	1599i
	-1.0008i	-1.00+.08i		

Dependent Variable: D(LEMBIG)
Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 04/27/23 Time: 07:44
Sample: 2006M09 2022M11
Included observations: 195
Convergence not achieved after 500 iterations
Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.033650	0.010233	3.288306	0.0012
@TREND	2.17E-05	0.000110	0.197921	0.8433
DM_2009M07	-0.022071	0.023904	-0.923328	0.3571
DM_2015M07	-0.004650	0.008301	-0.560176	0.5761
DM_2012M06	0.022808	0.005519	4.132947	0.0001
DM_2008M09	-0.025940	0.028355	-0.914840	0.3615
AR(1)	-0.209984	0.089087	-2.357058	0.0195
AR(2)	0.696270	0.084293	8.260127	0.0000
AR(3)	0.317057	0.060500	5.240590	0.0000
AR(4)	0.862824	0.049306	17.49942	0.0000
AR(5)	-0.216022	0.080322	-2.689446	0.0078
AR(6)	-0.718500	0.087270	-8.233105	
MA(1)	0.292181	2.530481	0.115465	0.9082
MA(2)	-0.986019	2.325423	-0.424017	0.6721
MA(3)	-0.606152	0.530272	-1.143096	
MA(4)	-0.984359	1.492536	-0.659521	0.5104
MA(5)	0.292545	2.855084	0.102464	
MA(6)	0.996679	1.678906	0.593648	
SIGMASQ	0.006845	0.011611	0.589569	0.5562
R-squared	0.333379	Mean depend	dent var	0.005805
Adjusted R-squared	0.265202	S.D. depende	ent var	0.101596
S.E. of regression	0.087089	Akaike info cr	riterion	-1.858819
Sum squared resid	1.334858	Schwarz crite	rion	-1.539911
Log likelihood	200.2348	Hannan-Quir	nn criter.	-1.729697
F-statistic	4.889902	Durbin-Wats	on stat	1.910111
Prob(F-statistic)	0.000000			
Inverted AR Roots	.9217i	.92+.17i	1198i	11+.98i
	92+.03i	9203i		
Inverted MA Roots	1.0002i	1.00+.02i	15+.99i	1599i
	-1.0008i	-1.00+.08i		

Dependent Variable: D(LEMBIG)
Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 04/27/23 Time: 07:45
Sample: 2006M09 2022M11
Included observations: 195
Convergence not achieved after 500 iterations
Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.034652	0.010016	3.459580	0.0007
@TREND	-3.27E-05	3.81E-05	-0.857545	0.3923
DM_2009M07	-0.015758	0.021921	-0.718876	0.4732
DM_2012M06	0.022030	0.005847	3.767697	0.0002
DM_2008M09	-0.029064	0.028364	-1.024685	0.3069
AR(1)	-0.208202	0.086988	-2.393462	0.0177
AR(2)	0.698244	0.084506	8.262681	0.0000
AR(3)	0.319410	0.059965	5.326565	0.0000
AR(4)	0.864798	0.049132	17.60140	0.0000
AR(5)	-0.215571	0.078926	-2.731308	0.0069
AR(6)	-0.717882	0.086232	-8.325043	0.0000
MA(1)	0.292004	2.474776	0.117992	0.9062
MA(2)	-0.985284	3.324338	-0.296385	0.7673
MA(3)	-0.606402	0.837018	-0.724479	
MA(4)	-0.986083	4.662872	-0.211476	
MA(5)	0.292722	2.798112	0.104614	
MA(6)	0.997537	2.687570	0.371167	
SIGMASQ	0.006861	0.018774	0.365462	0.7152
R-squared	0.331854	Mean depend	dent var	0.005805
Adjusted R-squared	0.267681	S.D. depende	ent var	0.101596
S.E. of regression	0.086942	Akaike info cr		-1.866034
Sum squared resid	1.337914	Schwarz crite	rion	-1.563911
Log likelihood	199.9383	Hannan-Quir	ın criter.	-1.743708
F-statistic	5.171295	Durbin-Wats	on stat	1.907279
Prob(F-statistic)	0.000000			
Inverted AR Roots	.9216i	.92+.16i	1198i	11+.98i
	92+.03i	9203i		
Inverted MA Roots	1.0002i	1.00+.02i	15+.99i	1599i
	-1.0008i	-1.00+.08i		

Dependent Variable: D(LEMBIG)

Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 04/27/23 Time: 07:46 Sample: 2006M09 2022M11 Included observations: 195

Convergence not achieved after 500 iterations Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.041702	0.006370	6.546297	0.0000
@TREND	-2.57E-05	3.27E-05	-0.785024	0.4335
DM_2012M06	0.019701	0.003997	4.929119	0.0000
DM_2008M09	-0.050509	0.007175	-7.039647	0.0000
AR(1)	-0.206066	0.085551	-2.408687	0.0170
AR(2)	0.696795	0.085562	8.143693	0.0000
AR(3)	0.315464	0.059385	5.312170	0.0000
AR(4)	0.862117	0.048805	17.66442	0.0000
AR(5)	-0.218959	0.078531	-2.788171	0.0059
AR(6)	-0.718914	0.086872	-8.275579	0.0000
MA(1)	0.291186	3.586589	0.081188	0.9354
MA(2)	-0.985416	5.147713	-0.191428	0.8484
MA(3)	-0.605739	1.291418	-0.469050	0.6396
MA(4)	-0.986053	6.749719	-0.146088	0.8840
MA(5)	0.292834	4.293782	0.068200	0.9457
MA(6)	0.997822	4.186020	0.238370	0.8119
SIGMASQ	0.006872	0.029107	0.236110	0.8136
R-squared	0.330755	Mean depend	dent var	0.005805
Adjusted R-squared	0.270598	S.D. depende	ent var	0.101596
S.E. of regression	0.086768	Akaike info cr	iterion	-1.873558
Sum squared resid	1.340114	Schwarz crite	rion	-1.588220
Log likelihood	199.6720	Hannan-Quin	in criter.	-1.758028
F-statistic	5.498205	Durbin-Watso	on stat	1.906040
Prob(F-statistic)	0.000000			
Inverted AR Roots	.9217i	.92+.17i	1198i	11+.98i
	92+.03i	9203i		
Inverted MA Roots	1.0002i	1.00+.02i	15+.99i	1599i
	-1.0008i	-1.00+.08i		

ARIMA (5,1,4)

Dependent Variable: D(LEMBIG)
Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 04/27/23 Time: 07:56
Sample: 2006M09 2022M11
Included observations: 195
Convergence not achieved after 500 iterations
Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.035221	0.008938	3.940560	0.0001
DM_2012M06	0.014754	0.006205	2.377715	0.0185
DM_2008M09	-0.042819	0.012190	-3.512583	0.0006
AR(1)	-0.000734	0.193068	-0.003804	0.9970
AR(2)	-0.249810	0.177154	-1.410128	0.1602
AR(3)	0.203477	0.218628	0.930699	0.3532
AR(4)	0.617509	0.190587	3.240041	0.0014
AR(5)	-0.164460	0.124584	-1.320072	0.1885
MA(1)	0.202827	2.336176	0.086820	0.9309
MA(2)	0.062721	2.792809	0.022458	0.9821
MA(3)	-0.357513	2.945868	-0.121361	0.9035
MA(4)	-0.906571	2.122418	-0.427141	0.6698
SIGMASQ	0.007975	0.018685	0.426828	0.6700
R-squared	0.223364	Mean depen	dent var	0.005805
Adjusted R-squared	0.172157	S.D. depend	ent var	0.101596
S.E. of regression	0.092438	Akaike info c	riterion	-1.822334
Sum squared resid	1.555156	Schwarz crite	erion	-1.604134
Log likelihood	190.6776	Hannan-Quir	nn criter.	-1.733988
F-statistic	4.361996	Durbin-Wats	on stat	2.016463
Prob(F-statistic)	0.000004			
Inverted AR Roots	.80 83	.25	11+.98i	1198i
Inverted MA Roots	1.00	15+.99i	1599i	91

Dependent Variable: D(LEMBIG)

Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 04/27/23 Time: 07:55

Sample: 2006M09 2022M11 Included observations: 195

Convergence not achieved after 500 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.035778	0.009012	3.970088	0.0001
@TREND	-2.29E-05	0.000116	-0.197475	0.8437
DM_2012M06	0.017298	0.012919	1.339013	0.1822
DM_2008M09	-0.042927	0.012193	-3.520690	0.0005
AR(1)	-0.001405	0.192760	-0.007290	0.9942
AR(2)	-0.250108	0.177229	-1.411210	0.1599
AR(3)	0.201598	0.218392	0.923101	0.3572
AR(4)	0.616893	0.190571	3.237069	0.0014
AR(5)	-0.165556	0.124287	-1.332046	0.1845
MA(1)	0.203098	3.250143	0.062489	0.9502
MA(2)	0.062458	3.876842	0.016111	0.9872
MA(3)	-0.357341	4.112910	-0.086883	0.9309
MA(4)	-0.907119	2.974553	-0.304960	0.7607
SIGMASQ	0.007970	0.026198	0.304230	0.7613
R-squared	0.223844	Mean depen	dent var	0.005805
Adjusted R-squared	0.168098	S.D. depende	ent var	0.101596
S.E. of regression	0.092665	Akaike info ci	riterion	-1.812522
Sum squared resid	1.554195	Schwarz crite	rion	-1.577537
Log likelihood	190.7209	Hannan-Quir	nn criter.	-1.717379
F-statistic	4.015426	Durbin-Watson stat		2.016962
Prob(F-statistic)	0.000009			
Inverted AR Roots	.80 83	.26	1198i	11+.98i
Inverted MA Roots	1.00	1599i	15+.99i	91

Dependent Variable: D(LEMBIG)
Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 04/27/23 Time: 07:55
Sample: 200600095202401 Included observations: 195

Convergence not achieved after 500 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.010861	0.020951	0.518392	0.6048
@TREND	-3.04E-05	9.91E-05	-0.306451	0.7596
DM_2007M10	0.052387	0.035781	1.464094	0.1449
DM_2012M06	0.020312	0.011208	1.812322	0.0716
DM_2008M09	-0.072268	0.020144	-3.587579	0.0004
AR(1)	-0.016481	0.201893	-0.081633	0.9350
AR(2)	-0.273584	0.180357	-1.516903	0.1310
AR(3)	0.178668	0.226938	0.787297	0.4321
AR(4)	0.595854	0.194950	3.056443	0.0026
AR(5)	-0.171778	0.121571	-1.412976	0.1594
MA(1)	0.198170	5.222874	0.037943	0.9698
MA(2)	0.066270	6.235580	0.010628	0.9915
MA(3)	-0.360236	6.608717	-0.054509	0.9566
MA(4)	-0.903584	4.768224	-0.189501	0.8499
SIGMASQ	0.007887	0.041711	0.189078	0.8502
R-squared	0.231980	Mean depend	dent var	0.005805
Adjusted R-squared	0.172245	S.D. depende	ent var	0.101596
S.E. of regression	0.092433	Akaike info cr	iterion	-1.811606
Sum squared resid	1.537904	Schwarz crite	rion	-1.559837
Log likelihood	191.6316	Hannan-Quir	in criter.	-1.709668
F-statistic	3.883482	Durbin-Watson stat		2.019244
Prob(F-statistic)	0.000009			
Inverted AR Roots	.76 83	.28	11+.98i	1198i
Inverted MA Roots	1.00	1599i	15+.99i	90

Dependent Variable: D(LEMBIG)

Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 04/27/23 Time: 07:54

Sample: 2006M09 2022M11

Included observations: 195
Convergence not achieved after 500 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.011224	0.021138	0.530964	0.5961
@TREND	-3.50E-05	0.000100	-0.348715	0.7277
DM_2007M10	0.043695	0.037606	1.161925	0.2468
DM_2009M07	-0.017853	0.027010	-0.660981	0.5095
DM_2012M06	0.023271	0.012590	1.848358	0.0662
DM_2008M09	-0.048290	0.038971	-1.239136	0.2169
AR(1)	-0.018580	0.203744	-0.091191	0.9274
AR(2)	-0.268296	0.182660	-1.468824	0.1436
AR(3)	0.183529	0.231318	0.793405	0.4286
AR(4)	0.601883	0.197638	3.045372	0.0027
AR(5)	-0.166026	0.123204	-1.347569	0.1795
MA(1)	0.199739	27.06651	0.007380	0.9941
MA(2)	0.065322	29.31339	0.002228	0.9982
MA(3)	-0.360333	11.43288	-0.031517	0.9749
MA(4)	-0.904632	105.4376	-0.008580	0.9932
SIGMASQ	0.007869	0.153044	0.051418	0.9590
R-squared	0.233681	Mean depen	dent var	0.005805
Adjusted R-squared	0.169464	S.D. depend	ent var	0.101596
S.E. of regression	0.092588	Akaike info ci	riterion	-1.803672
Sum squared resid	1.534498	Schwarz crite	rion	-1.535118
Log likelihood	191.8580	Hannan-Quir	nn criter.	-1.694938
F-statistic	3.638936	Durbin-Wats	on stat	2.017714
Prob(F-statistic)	0.000016			
Inverted AR Roots	.77	.27	11+.98i	1198i
	83			
Inverted MA Roots	1.00	15+.99i	1599i	91

Dependent Variable: D(LEMBIG)

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 04/27/23 Time: 07:52 Sample: 2006M09 2022M11 Included observations: 195

Convergence not achieved after 500 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.010810	0.021154	0.511022	0.6100
@TREND	1.10E-05	0.000229	0.047856	0.9619
DM_2007M10	0.043541	0.037664	1.156024	0.2492
DM_2009M07	-0.020015	0.028613	-0.699530	0.4851
DM_2015M07	-0.004335	0.018211	-0.238041	0.8121
DM_2012M06	0.023468	0.012535	1.872204	0.0628
DM_2008M09	-0.048524	0.038922	-1.246716	0.2141
AR(1)	-0.019348	0.204666	-0.094537	0.9248
AR(2)	-0.269835	0.181891	-1.483500	0.1397
AR(3)	0.182160	0.234283	0.777522	0.4379
AR(4)	0.600329	0.196903	3.048849	0.0026
AR(5)	-0.166388	0.124101	-1.340743	0.1817
MA(1)	0.199799	27.50867	0.007263	0.9942
MA(2)	0.065458	28.08221	0.002331	0.9981
MA(3)	-0.360427	35.52121	-0.010147	0.9919
MA(4)	-0.904757	175.0605	-0.005168	0.9959
SIGMASQ	0.007864	0.124949	0.062934	0.9499
R-squared	0.234233	Mean depen	dent var	0.005805
Adjusted R-squared	0.165400	S.D. depend	ent var	0.101596
S.E. of regression	0.092815	Akaike info c	riterion	-1.793965
Sum squared resid	1.533391	Schwarz crite		-1.508627
Log likelihood	191.9116	Hannan-Quir	nn criter.	-1.678435
F-statistic	3.402923	Durbin-Wats	on stat	2.017342
Prob(F-statistic)	0.000029			
Inverted AR Roots	.77 83	.27	11+.98i	1198i
Inverted MA Roots	1.00	1599i	15+.99i	91

Anexo 14. LS de variable corregida usando dm $_2012m06$ y dm $_2008m09$.

Dependent Variable: D(LEMBIG) Method: Least Squares Date: 05/02/23 Time: 20:43

Sample (adjusted): 2006M09 2022M11 Included observations: 195 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.018226	0.020822	0.875351	0.3825
DM_2012M06	0.003705	0.017714	0.209133	0.8346
DM_2008M09	-0.016894	0.025783	-0.655255	0.5131
R-squared	0.002336	Mean dependent var		0.005805
Adjusted R-squared	-0.008056	S.D. depende	entvar	0.101596
S.E. of regression	0.102005	Akaike info cr	iterion	-1.712333
Sum squared resid	1.997748	Schwarz crite	rion	-1.661979
Log likelihood	169.9524	Hannan-Quir	ın criter.	-1.691945
F-statistic	0.224783	Durbin-Wats	on stat	1.567738
Prob(F-statistic)	0.798899			

Anexo 15. Test de raíz unitaria de los residuales de la variable EMBIG en logaritmos corregida.

Null Hypothesis: RESID_DLEMBIG_C_2DM_FINAL has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 4 (Fixed)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-5.862621	0.0000
Test critical values:	1% level	-4.010440	
	5% level	-3.435269	
	10% level	-3.141649	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(RESID_DLEMBIG_C_2DM_FINAL)
Method: Least Squares
Date: 05/02/23 Time: 16:24
Sample (adjusted): 2007M02 2021M11
Included observations: 178 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID_DLEMBIG_C_2DM_FINAL(-1)	-0.876433	0.149495	-5.862621	0.0000
D(RESID_DLEMBIG_C_2DM_FINAL(-1))	0.140295	0.134769	1.041000	0.2993
D(RESID_DLEMBIG_C_2DM_FINAL(-2))	-0.037242	0.117325	-0.317428	0.7513
D(RESID_DLEMBIG_C_2DM_FINAL(-3))	-0.007198	0.094649	-0.076045	0.9395
D(RESID_DLEMBIG_C_2DM_FINAL(-4))	0.018672	0.076273	0.244806	0.8069
C	0.003013	0.016021	0.188078	0.8510
@TREND("2006M08")	-2.34E-05	0.000149	-0.157013	0.8754
R-squared	0.410241	Mean depend	lent var	0.000372
Adjusted R-squared	0.389548	S.D. depende	ent var	0.130672
S.E. of regression	0.102096	Akaike info cr	iterion	-1.687271
Sum squared resid	1.782442	Schwarz crite	rion	-1.562144
Log likelihood	157.1671	Hannan-Quin	n criter.	-1.636528
F-statistic	19.82486	Durbin-Watso	on stat	2.005476
Prob(F-statistic)	0.000000			

Null Hypothesis: RESID_DLEMBIG_C_2DM_FINAL has a unit root Exogenous: Constant

Lag Length: 4 (Fixed)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test st	atistic	-5.879116	0.0000
Test critical values:	1% level	-3.467205	
	5% level	-2.877636	
	10% level	-2.575430	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation
Dependent Variable: D(RESID_DLEMBIG_C_2DM_FINAL)
Method: Least Squares
Date: 05/02/23 Time: 16:22

Date: 05/02/23 Time: 16:22 Sample (adjusted): 2007M02 2021M11 Included observations: 178 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID_DLEMBIG_C_2DM_FINAL(-1)	-0.876403	0.149070	-5.879116	0.0000
D(RESID_DLEMBIG_C_2DM_FINAL(-1))	0.140356	0.134386	1.044428	0.2978
D(RESID_DLEMBIG_C_2DM_FINAL(-2))	-0.037196	0.116991	-0.317934	0.7509
D(RESID_DLEMBIG_C_2DM_FINAL(-3))	-0.007152	0.094380	-0.075784	0.9397
D(RESID_DLEMBIG_C_2DM_FINAL(-4))	0.018653	0.076056	0.245258	0.8065
C	0.000803	0.007631	0.105258	0.9163
R-squared	0.410156	Mean depend	lent var	0.000372
Adjusted R-squared	0.393010	S.D. depende	ent var	0.130672
S.E. of regression	0.101806	Akaike info cr	iterion	-1.698362
Sum squared resid	1.782699	Schwarz crite	rion	-1.591111
Log likelihood	157.1542	Hannan-Quin	n criter.	-1.654869
F-statistic	23.92055	Durbin-Watso	on stat	2.005366
Prob(F-statistic)	0.000000			

Null Hypothesis: RESID_DLEMBIG_C_2DM_FINAL has a unit root

Exogenous: None Lag Length: 4 (Fixed)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test stati	stic	-5.895735	0.0000
Test critical values:	1% level	-2.578018	
	5% level	-1.942624	
	10% level	-1.615515	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(RESID_DLEMBIG_C_2DM_FINAL)

Method: Least Squares Date: 05/02/23 Time: 16:21

Sample (adjusted): 2007M02 2021M11 Included observations: 178 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID_DLEMBIG_C_2DM_FINAL(-1) D(RESID_DLEMBIG_C_2DM_FINAL(-1)) D(RESID_DLEMBIG_C_2DM_FINAL(-2)) D(RESID_DLEMBIG_C_2DM_FINAL(-3)) D(RESID_DLEMBIG_C_2DM_FINAL(-4))	-0.876361 0.140365 -0.037201 -0.007132 0.018668	0.148643 0.134001 0.116656 0.094110 0.075838	-5.895735 1.047490 -0.318893 -0.075780 0.246153	0.0000 0.2963 0.7502 0.9397 0.8059
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.410118 0.396480 0.101515 1.782814 157.1485 2.005340	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin	ent var iterion rion	0.000372 0.130672 -1.709534 -1.620158 -1.673290

Null Hypothesis: RESID_DLEMBIG_C_2DM_FINAL has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 0 (Fixed)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test s	statistic	-10.68684	0.0000
Test critical values:	1% level	-4.009271	
	5% level	-3.434706	
	10% level	-3.141318	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(RESID_DLEMBIG_C_2DM_FINAL)

Method: Least Squares Date: 05/02/23 Time: 16:19

Sample (adjusted): 2006M10 2021M11 Included observations: 182 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID_DLEMBIG_C_2DM_FINAL(-1)	-0.778951	0.072889	-10.68684	0.0000
C @TREND("2006M08")	-0.000801 7.71E-06	0.015267 0.000144	-0.052465 0.053750	0.9582 0.9572
R-squared	0.389515	Mean depend	dent var	-6.26E-05
Adjusted R-squared	0.382694	S.D. depende	ent var	0.129467
S.E. of regression	0.101720	Akaike info cr	iterion	-1.716832
Sum squared resid	1.852119	Schwarz crite	rion	-1.664019
Log likelihood	159.2317	Hannan-Quir	ın criter.	-1.695422
F-statistic	57.10466	Durbin-Watso	on stat	1.923008
Prob(F-statistic)	0.000000			

Null Hypothesis: RESID_DLEMBIG_C_2DM_FINAL has a unit root

Exogenous: Constant Lag Length: 0 (Fixed)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test sta	tistic	-10.71646	0.0000
Test critical values:	1% level	-3.466377	
	5% level	-2.877274	
	10% level	-2.575236	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(RESID_DLEMBIG_C_2DM_FINAL)

Method: Least Squares Date: 05/02/23 Time: 16:10

Sample (adjusted): 2006M10 2021M11 Included observations: 182 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID_DLEMBIG_C_2DM_FINAL(-1) C	-0.778942 -8.74E-05	0.072686 0.007519	-10.71646 -0.011628	0.0000 0.9907
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.389505 0.386113 0.101438 1.852149 159.2303 114.8426 0.000000	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	-6.26E-05 0.129467 -1.727805 -1.692596 -1.713532 1.922993

Null Hypothesis: RESID_DLEMBIG_C_2DM_FINAL has a unit root

Exogenous: None Lag Length: 0 (Fixed)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test st	atistic	-10.74618	0.0000
Test critical values:	1% level	-2.577730	
	5% level	-1.942584	
	10% level	-1.615541	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(RESID_DLEMBIG_C_2DM_FINAL)

Method: Least Squares Date: 05/02/23 Time: 16:19

Sample (adjusted): 2006M10 2021M11 Included observations: 182 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID_DLEMBIG_C_2DM_FINAL(-1)	-0.778942	0.072485	-10.74618	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.389504 0.389504 0.101158 1.852150 159.2302 1.922992	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quir	ent var iterion rion	-6.26E-05 0.129467 -1.738793 -1.721189 -1.731657

Null Hypothesis: RESID_DLEMBIG_C_2DM_FINAL is stationary

Exogenous: Constant, Linear Trend

Bandwidth: 1 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	nin test statistic	0.024811
Asymptotic critical values*:	1% level	0.216000
	5% level	0.146000
	10% level	0.119000
*Kwiatkowski-Phillips-Schmidt-S	hin (1992, Table 1)	
Residual variance (no correction)	•	0.010643 0.012995

KPSS Test Equation

 ${\tt Dependent\,Variable:}\, {\tt RESID_DLEMBIG_C_2DM_FINAL}$

Method: Least Squares Date: 05/02/23 Time: 16:29

Sample (adjusted): 2006M09 2021M11 Included observations: 183 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND("2006M08")	-0.000505 5.49E-06	0.015399 0.000145	-0.032809 0.037833	0.9739 0.9699
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.000008 -0.005517 0.103732 1.947603 156.0084 0.001431 0.969862	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	-5.60E-18 0.103447 -1.683152 -1.648075 -1.668934 1.557734

 $\hbox{Null Hypothesis: RESID_DLEMBIG_C_2DM_FINAL is stationary}$

Exogenous: Constant

Bandwidth: 1 (Newey-West automatic) using Bartlett kernel

		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	nin test statistic	0.025244
Asymptotic critical values*:	1% level	0.739000
	5% level	0.463000
	10% level	0.347000

*Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)

Residual variance (no correction)	0.010643
HAC corrected variance (Bartlett kernel)	0.012995

KPSS Test Equation
Dependent Variable: RESID_DLEMBIG_C_2DM_FINAL
Method: Least Squares
Date: 05/02/23 Time: 16:28
Sample (adjusted): 2006M09 2021M11

Sample (adjusted): 2006M09 2021M11 Included observations: 183 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-6.37E-18	0.007647	-8.33E-16	1.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 0.103447 1.947618 156.0077 1.557722	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin	ent var iterion rion	-5.60E-18 0.103447 -1.694073 -1.676535 -1.686964

Null Hypothesis: RESID_DLEMBIG_C_2DM_FINAL has a unit root Exogenous: Constant Bandwidth: 3 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test statistic		-10.58232	0.0000
Test critical values:	1% level	-3.466377	
	5% level	-2.877274	
	10% level	-2.575236	
*MacKinnon (1996) one-sided	p-values.		
Residual variance (no correction	•		0.010177
HAC corrected variance (Bartle	tt kernel)		0.008955

Phillips-Perron Test Equation

Dependent Variable: D(RESID_DLEMBIG_C_2DM_FINAL)

Method: Least Squares
Date: 05/02/23 Time: 16:26
Sample (adjusted): 2006M10 2021M11
Included observations: 182 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID_DLEMBIG_C_2DM_FINAL(-1) C	-0.778942 -8.74E-05	0.072686 0.007519	-10.71646 -0.011628	0.0000 0.9907
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.389505 0.386113 0.101438 1.852149 159.2303 114.8426 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	ent var iterion rion in criter.	-6.26E-05 0.129467 -1.727805 -1.692596 -1.713532 1.922993

Null Hypothesis: RESID_DLEMBIG_C_2DM_FINAL has a unit root

Exogenous: Constant, Linear Trend

Bandwidth: 3 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test statistic		-10.55077	0.0000
Test critical values:	1% level	-4.009271	
	5% level	-3.434706	
	10% level	-3.141318	
*MacKinnon (1996) one-sided	p-values.		
Residual variance (no correction	on)		0.010176
HAC corrected variance (Bartle	tt kernel)		0.008956

Phillips-Perron Test Equation Dependent Variable: D(RESID_DLEMBIG_C_2DM_FINAL) Method: Least Squares Date: 05/02/23 Time: 16:28 Sample (adjusted): 2006M10 2021M11 Included observations: 182 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID_DLEMBIG_C_2DM_FINAL(-1)	-0.778951	0.072889	-10.68684	0.0000
C @TREND("2006M08")	-0.000801 7.71E-06	0.015267 0.000144	-0.052465 0.053750	0.9582 0.9572
R-squared	0.389515	Mean depend	dent var	-6.26E-05
Adjusted R-squared	0.382694	S.D. depende		0.129467
S.E. of regression	0.101720	Akaike info cr	iterion	-1.716832
Sum squared resid	1.852119	Schwarz crite	rion	-1.664019
Log likelihood	159.2317	Hannan-Quin	ın criter.	-1.695422
F-statistic	57.10466	Durbin-Watso	on stat	1.923008
Prob(F-statistic)	0.000000			

Null Hypothesis: RESID_DLEMBIG_C_2DM_FINAL has a unit root

Bandwidth: 3 (Newey-West automatic) using Bartlett kernel

		Adj. t-Stat	Prob.*
Phillips-Perron test statistic		-10.61399	0.0000
Test critical values:	1% level	-2.577730	
	5% level	-1.942584	
	10% level	-1.615541	
*MacKinnon (1996) one-sided	p-values.		
Residual variance (no correcti	on)		0.010177
HAC corrected variance (Bartle	,		0.008955

Phillips-Perron Test Equation Dependent Variable: D(RESID_DLEMBIG_C_2DM_FINAL) Method: Least Squares Date: 05/02/23 Time: 16:25 Sample (adjusted): 2006M10 2021M11

Included observations: 182 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID_DLEMBIG_C_2DM_FINAL(-1)	-0.778942	0.072485	-10.74618	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.389504 0.389504 0.101158 1.852150 159.2302 1.922992	Mean depend S.D. depende Akaike info cri Schwarz crite Hannan-Quin	nt var iterion rion	-6.26E-05 0.129467 -1.738793 -1.721189 -1.731657

Anexo 16. Regresión en primera diferencia y constante para comprobar presencia ARCH.

Dependent Variable: D(LEMBIG) Method: Least Squares Date: 04/27/23 Time: 10:13

Sample (adjusted): 2006M09 2022M11 Included observations: 195 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.005805	0.007275	0.797877	0.4259
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 0.101596 2.002426 169.7244 1.560536	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin	nt var terion ion	0.005805 0.101596 -1.730507 -1.713722 -1.723711

Test de heteroscedasticidad

Heteroskedasticity Test: ARCH

		Prob. F(1,192) Prob. Chi-Square(1)	0.4472 0.4446
--	--	---------------------------------------	------------------

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 04/27/23 Time: 10:15

Sample (adjusted): 2006M10 2022M11 Included observations: 194 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RESID^2(-1)	0.009755 0.054875	0.002714 0.072050	3.594482 0.761622	0.0004 0.4472
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.003012 -0.002181 0.036374 0.254030 368.6276 0.580068 0.447220	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		0.010317 0.036334 -3.779666 -3.745976 -3.766024 1.998539

Anexo 17. Pronósticos dentro de la muestra dinámico quitando 12 observaciones con ARIMAS significativas.

Forecast: LEMBIG_ARIMA216_F Actual: LEMBIG Forecast sample: 2021M12 2022M11 Included observations: 12 Root Mean Squared Error 0.055308 Mean Absolute Error Mean Abs. Percent Error 0.928188 Theil Inequality Coef. 0.005546 0.323704 Bias Proportion Variance Proportion 0.244839 0.431457 **Covariance Proportion** Theil U2 Coefficient 1.020918 Symmetric MAPE 0.923279

LEMBIG_ARIMA216_F
Actuals
LEMBIG_ARIMA216_F
Actuals

ARIMA (5, 1, 4)

Forecast: LEMBIG_ARIMA514_F Actual: LEMBIG Forecast sample: 2021M12 2022M11 Included observations: 12 Root Mean Squared Error 0.057130 Mean Absolute Error 0.045206 Mean Abs. Percent Error 0.756596 Theil Inequality Coef. 0.004760 **Bias Proportion** 0.122713 Variance Proportion 0.319521 Covariance Proportion 0.557765 Theil U2 Coefficient 0.880511 Symmetric MAPE 0.754396

LEMBIG_ARIMA514_F
Actuals
L 2 S.E.

ARIMA (6, 1, 6)

Forecast: LEMBIG_ARIMA616_F Actual: LEMBIG Forecast sample: 2021M12 2022M11 Included observations: 12 Root Mean Squared Error 0.091334 0.074559 Mean Absolute Error Mean Abs. Percent Error 1.246040 Theil Inequality Coef. 0.007576 **Bias Proportion** 0.646918 Variance Proportion 0.010328 0.342755 **Covariance Proportion** 1.403425 Theil U2 Coefficient Symmetric MAPE 1.234528

Anexo 18. Pronósticos dentro de la muestra estático quitando 12 observaciones con ARIMAS significativas.

ARIMA (6, 1, 6)

Forecast: LEMBIGFOUT_616_FINAL Actual: LEMBIG Forecast sample: 2021M12 2022M11 Included observations: 12 Root Mean Squared Error 0.056057 Mean Absolute Error 0.041472 Mean Abs. Percent Error 0.691591 Theil Inequality Coef. 0.004667 Bias Proportion 0.290984 0.009919 Variance Proportion 0.699098 Covariance Proportion Theil U2 Coefficient 0.853780 Symmetric MAPE 0.687743

Anexo 19. Pronóstico con tres periodos fuera de la muestra con ARIMAS significativas.

Anexo 20. Gráfica de grupo: LEMBIG_2, LEMBIGFOUT_216_FINAL, LEMBIGFOUT_514_FINAL Y LEMBIGFOUT_616_FINAL.

Referencias:

- Acosta, J. (2021). Riesgo país: Indicadores de riesgo soberano. https://www.banxico.org.mx/publicaciones-y-prensa/e-library/d/%7B778B9232-2BE2-5A44-1477-C1C0978A88E5%7D.pdf
- Banco Central de Reserva del Perú. (2022). Latin EMBIG Países Latinoamericanos. https://estadisticas.bcrp.gob.pe/estadisticas/series/mensuales/indicadores-de-riesgo-para-paises-emergentes-embig
- Banco de España. (2008). Introducción al Riesgo-País. https://www.bde.es/f/webbde/SES/Secciones/Publicaciones/PublicacionesSeriada/s/DocumentosOcasionales/08/Fic/do0802.pdf
- Banco de México. (2022). Reporte de estabilidad financiera Segundo semestre 2022. https://www.banxico.org.mx/publicaciones-y-prensa/reportes-sobre-el-sistema-financiero/%7BC91285A1-2305-6839-FCD2-D310D5D70749%7D.pdf
- Banco de México. (2022). Informe trimestral Julio Septiembre 2022. https://www.banxico.org.mx/publicaciones-y-prensa/informes-trimestrales/%7B10531B9E-DC1D-FD1D-82DA-A528B35041C5%7D.pdf
- Clark, E. (2018). Evaluating country risk for international investments. Tools, techniques and applications. https://doi.org/10.1142/10568
- Fuerzalida, D. (2008). Riesgo país y riesgo soberano: Concepto y medición. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1264455
- Gujarati, D; D. Porter and M. Pal (2019). Basic Econometrics Mc Graw-Hill International Edition
- J.P. Morgan. (2021). J.P. Morgan emerging markets bond index global core. https://www.jpmorgan.com/content/dam/jpm/cib/complex/content/markets/composition-docs/pdf-22.pdf
- Maguey, H. (2018). 2008. la segunda mayor crisis financiera a nivel mundial. https://unamglobal.unam.mx/hace-diez-anos-en-2008-se-vivio-la-segunda-mayor-crisis-financiera-a-nivel-mundial-despues-de-la-gran-depresion-de-1929/

- Mendenhall, W. (2006). Introducción a la probabilidad y estadística. https://www.fcfm.buap.mx/jzacarias/cursos/estad2/libros/book5e2.pdf
- Naciones Unidas CEPAL. (2016). Balance preliminar de las economías de América Latina y el Caribe. https://repositorio.cepal.org/bitstream/handle/11362/40825/106/S1601333_es.pdf
- Patiño, D. (2022). 3 riesgos para la economía en México y del mundo en 2023. https://expansion.mx/economia/2022/12/21/economia-mexico-2023-riesgos
- Serrano, A., García, A., et al. (2020). COVID-19. La historia se repite y seguimos tropezando con la misma piedra. 10.1016/j.semerg.2020.06.008
- S&P Dow Jones Índices. (2022). Matemáticas de los índices, Metodología.
 - https://www.spglobal.com/spdji/es/documents/methodologies/methodologymath-spanish.pdf
- Werner, A. (2016). América Latina y el Caribe en 2016: Ajustándose a una realidad más dura. https://www.imf.org/es/Blogs/Articles/2016/01/22/latin-america-and-the-2016-adjusting-to-a-harsher-reality