Differential Equations Assignment 1

Marker: Lebeko

Hewan Leul Abigail Priscilla M. Djossou Emmanuella Sandrata Rambeloson N'Dah Jean Kouagou

November 20, 2018

Exercise sheet 1

1. For the following differential equations, let's identify their order and classify them as *linear* or *non-linear*, and as *autonomous* or *non-autonomous*.

1.1
$$x'' + \omega^2 \sin x = 1$$

• Order:

The highest derivative is x''. So, the equation is a **second order** differential equation. Very Good!

• Linearity:

Let f_1 be the function defined by:

$$f_1: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mapsto z + \omega^2 \sin(x) - 1$$

We have
$$x'' + \omega^2 \sin(x) = 1 \Leftrightarrow f_1\left(\begin{pmatrix} x \\ x' \\ x'' \end{pmatrix}\right) = 0.$$

But f_1 is not linear cause $f_1\left(\begin{pmatrix} \pi \\ 0 \\ 1 \end{pmatrix}\right) = 0$, Very good work!

$$f_1\left(2\times \begin{pmatrix}\pi\\0\\1\end{pmatrix}\right) = f_1\left(\begin{pmatrix}2\pi\\0\\2\end{pmatrix}\right) = 1 \neq 2\times f_1\left(\begin{pmatrix}\pi\\0\\1\end{pmatrix}\right).$$

Therefore, the differential equation (E_1) is not linear.

• Autonomous/Non-autonomous:

The equation doesn't depend explicitly on the variable t (variable of the unknown function x). We conclude that the equation is **autonomous.** Very Good!

1.2
$$x'' + \omega^2 x = \cos(t)$$
 (E_2)

• Order:

The highest derivative is x''. So, the equation is a **second order** differential equation. Good!

• Linearity:

Let f_2 be the function defined by:

$$f_2: \left(t, \begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) \in \mathbb{R} \times \mathbb{R}^3 \mapsto z + \omega^2 x - \cos(t)$$

We have
$$x'' + \omega^2 x = \cos(t) \Leftrightarrow f_2\left(t, \begin{pmatrix} x \\ x' \\ x'' \end{pmatrix}\right) = 0.$$

We consider the function g defined by:

$$g: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mapsto z + \omega^2 x$$

We have:

$$g\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = f_2\left(t, \begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) - f_2\left(t, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}\right)$$
 and g is linear cause:

$$\forall \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} \in \mathbb{R}^3, \forall \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} \in \mathbb{R}^3 \text{ and } \forall \alpha \in \mathbb{R}, \text{ we have:}$$

$$g\left(\alpha \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} + \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}\right) = g\left(\begin{pmatrix} \alpha x_1 + x_2 \\ \alpha y_1 + y_2 \\ \alpha z_1 + z_2 \end{pmatrix}\right)$$

$$= \alpha z_1 + z_2 + \omega^2(\alpha x_1 + x_2)$$

$$= \alpha z_1 + \alpha \omega^2 x_1 + z_2 + \omega^2 x_2$$

$$= \alpha (z_1 + \omega^2 x_1) + z_2 + \omega^2 x_2$$

$$= \alpha g\left(\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}\right) + g\left(\begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}\right)$$

• Autonomous/Non-autonomous:

very good

The equation depends explicitly on t (cause of the term cos(t)). As a result, the differential equation is **not autonomous.**

• Solution of the equation:

The equation is linear, so we can first solve the homogeneous equation: $x'' + \omega^2 x = 0$

The characteristic equation of this differential equation is : $m^2 + w^2 = 0$ and has two complex solutions : $m_1 = -i\omega$, $m_2 = i\omega$

Then, the general solution of the homogeneous equation is: $x_h(t) = A\cos(\omega t) + B\sin(\omega t)$, where $A, B \in \mathbb{R}$ are constants.

Now, let's find a particular solution of the equation (E_2) The right hand side of (E_2) is $\cos(t)$.

* So, if $\omega^2 \neq 1$ (the particular solution of (E_2) should not look like the general solution of its homogeneous equation), we look for a particular solution of the form:

$$x_p(t) = a\cos(t) + b\sin(t), where \ a, \ b \in \mathbb{R} \ are \ constants.$$
 $x_p'(t) = -a\sin(t) + b\cos(t); \ x_p''(t) = -a\cos(t) - b\sin(t)$

 x_p satisfies (E_2) , then we have:

$$\begin{split} x_p''(t) + \omega^2 x_p(t) &= \cos(t) \ \forall \ t \\ \Leftrightarrow -a \cos(t) - b \sin(t) + a \omega^2 \cos(t) + b \omega^2 \sin(t) = \cos(t) \ \forall \ t \\ \Leftrightarrow (a \omega^2 - a) \cos(t) + (b \omega^2 - b) \sin(t) &= \cos(t) \ \forall \ t \\ a(\omega^2 - 1) \cos(t) + b(\omega^2 - 1) \sin(t) &= \cos(t) \ \forall \ t \end{split}$$

 $\omega^2 \neq 1$, then we have :

This is correct and okay. However, it was sufficient to only give the order and to show that it is linear or non-linear, autonomous or not autonomous

$$\begin{cases} a(\omega^2 - 1) = 1 \\ b = 0 \end{cases} \Leftrightarrow \begin{cases} a = \frac{1}{\omega^2 - 1} \\ b = 0 \end{cases}$$

The particular solution is : $x_p(t) = \frac{1}{\omega^2 - 1} \cos(t)$

Therefore the general solution of (E_2) with $\omega^2 \neq 1$ is

$$x(t) = A\cos(\omega t) + B\sin(\omega t) + \frac{1}{\omega^2 - 1}\cos(t) \ \forall \ t \in \mathbb{R}$$

where $A, B \in \mathbb{R}$ are constants.

* If $\omega^2 = 1$, then we have to look for a particular solution of the form: $x_p(t) = at\cos(t) + bt\sin(t)$, where $a, b \in \mathbb{R}$ are constants.

$$x'_p(t) = -at\sin(t) + a\cos(t) + b\sin(t) + bt\cos(t)$$

$$x''_p(t) = -a\sin(t) - at\cos(t) - a\sin(t) + b\cos(t) - bt\sin(t) + b\cos(t)$$

$$= (-2a - bt)\sin(t) + (2b - at)\cos(t)$$

3

 x_p is a solution of (E_2) thus:

$$\begin{aligned} x_p''(t) + \omega^2 x_p(t) &= \cos(t) \end{bmatrix} \,\forall \, t \\ &\Leftrightarrow (a\omega^2 t + 2b - at) \cos(t) + (b\omega^2 t - 2a - bt) \sin(t) = \cos(t) \,\forall \, t \\ &\Leftrightarrow (at + 2b - at) \cos(t) + (bt - 2a - bt) \sin(t) = \cos(t) \,\forall \, t \, cause \, \omega^2 = 1 \\ &\Leftrightarrow 2b \cos(t) - 2a \sin(t) = \cos(t) \,\forall \, t \end{aligned}$$

$$\Leftrightarrow \begin{cases} a = 0 \\ b = \frac{1}{2} \end{cases}$$

$$\Leftrightarrow x_p(t) = \frac{1}{2}t \sin(t).$$

It follows that for $\omega^2 = 1$, the general solution of (E_2) is

$$x(t) = A\cos(\omega t) + B\sin(\omega t) + \frac{1}{2}t\sin(t) \ \forall \ t \in \mathbb{R} \ , \text{where} A, \ B \in \mathbb{R} \text{ are constants}.$$

1.3
$$(x^T)' = Ax^T$$
 (E_3) , where A is a $n \times n$ real matrix

• Order

The highest derivative is $(x^T)'$. So, the equation is a **first order** differential equation. Very Good!

• Linearity

We consider the function f_3 defined by: $f_3:(x,y)\in\mathbb{R}^n\times\mathbb{R}^n\mapsto y^T-Ax^T$

We have :
$$(x^T)' = Ax^T \Leftrightarrow f_3(x, x') = 0$$

Let's show that f_3 is linear:

Let
$$(u_1, v_1), (u_2, v_2) \in \mathbb{R}^n \times \mathbb{R}^n$$
 and $\alpha \in \mathbb{R}$.

We have

Very Good!

$$f_3(\alpha(u_1, v_1) + (u_2, v_2)) = f_3(\alpha u_1 + u_2, \alpha v_1 + v_2)$$

$$= (\alpha v_1 + v_2)^T - A(\alpha u_1 + u_2)^T$$

$$= \alpha v_1^T + v_2^T - A[\alpha u_1^T + u_2^T]$$

$$= \alpha v_1^T + v_2^T - A\alpha u_1^T - Au_2^T$$

$$= \alpha v_1^T - A\alpha u_1^T + v_2^T - Au_2^T$$

$$= \alpha (v_1^T - Au_1^T) + v_2^T - Au_2^T$$

$$= \alpha f_3((u_1, v_1)) + f_3((u_2, v_2))$$

Then, f_3 is linear and we conclude that the equation (E_3) is linear.

• Autonomous/Non-autonomous

The equation doesn't depend explicitly on t, then it is an **autonomous** differential equation. Very Good!

• Solution of the differential equation :

The solution of the equation is:

$$x(t) = x_0 e^{tA} = \sum_{i=0}^{+\infty} \frac{t^i A^i}{i!}, x_0 \in \mathbb{R}^n \text{ is a constant row vector.}$$

2. Let's transform each of the differential equations into an equivalent system of first order differential equations, and write them in vector form.

2.1
$$x'' + \mu(t)x' + w^2x = \sin(t)$$

Transformation into an equivalent system of first order differential equations.

$$\begin{cases} x' = y \\ y' = -\mu(t)y - w^2x + \sin(t) \end{cases}$$

Vector form:

Very Good!

$$\begin{pmatrix} x \\ y \end{pmatrix}' = \begin{pmatrix} 0 & 1 \\ -w^2 & -\mu(t) \end{pmatrix} \quad \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 0 \\ \sin(t) \end{pmatrix}$$
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} y \\ -\omega^2 x - \mu(t)y + \sin(t) \end{pmatrix}$$

2.2
$$x^{(5)} + x^{(3)} - x' + x = \sin(2\pi t)$$

Transformation into an equivalent system of first order differential equations.

$$\begin{cases} x' = p \\ y' = -z + p - x + \sin(2\pi t) \\ z' = y \\ k' = z \\ p' = k \end{cases}$$
 Very good!

Vector form:

$$\begin{pmatrix} x \\ y \\ z \\ k \\ p \end{pmatrix}' = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ -1 & 0 & -1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \quad \begin{pmatrix} x \\ y \\ z \\ k \\ p \end{pmatrix} + \begin{pmatrix} 0 \\ \sin(2\pi t) \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \\ z' \\ k' \\ p' \end{pmatrix} = \begin{pmatrix} -x + p - z + \sin(2\pi t) \\ y \\ z \\ k \end{pmatrix}$$

Exercise sheet 2

- 3. Let's compute all solutions of the differential equations satisfying the given initial condition, and explicitly compute their maximal interval of definition I_{max} .
- **3.1** $x' = x \sin(t)$, satisfying x(0) = 1

 $x(t) = 0 \ \forall \ t \in \mathbb{R}$ is a solution of the differential equation. But that solution doesn't satisfy x(0) = 1. Then we reject it.

Suppose there is another solution x. Because of the fact that we must have $x \in C^1$, there exists an interval I such that $x(t) \neq 0 \ \forall \ t \in I$.

$$x'(t) = x(t) \, \sin(t) \Leftrightarrow \frac{\mathrm{d}x}{\mathrm{d}t} = x(t) \, \sin(t)$$

$$\Leftrightarrow \frac{\mathrm{d}x}{x} = \, \sin(t) \mathrm{d}t$$

$$\Leftrightarrow \int \frac{1}{x} \mathrm{d}x = \int \, \sin(t) \mathrm{d}t$$

$$\Leftrightarrow \int \frac{1}{x} \mathrm{d}x = \int \, \sin(t) \mathrm{d}t$$

$$\Leftrightarrow \ln |x| + a_1 = -\cos(t) + a_2$$

$$\Leftrightarrow \ln |x| = -\cos(t) + a_2 - a_1$$

$$\Leftrightarrow \ln |x| = -\cos(t) + a \quad \text{where} \quad a = a_2 - a_1$$

$$\Leftrightarrow e^{\ln |x|} = e^{-\cos(t) + a}$$

$$\Leftrightarrow |x| = e^{-\cos(t)} \times e^a$$

So, x is either positive or negative.

However, we can write:

$$x(t) = ce^{-\cos(t)}, c \in \mathbb{R} \text{ constant.}$$

Initial condition:
$$x(0) = 1 = ce^{-\cos(0)} \Rightarrow c = e$$

Therefore, the only solution satisfying the initial condition is :

 $x'(t) = x(t) \sin(t) \Leftrightarrow |x| = ce^{-\cos(t)}$ where $c = e^a$.

$$x(t) = e^{1 - \cos(t)}$$

This solution is defined for all real number t and is of class C^{∞} on \mathbb{R} . Hence, the greatest interval on which the solution is defined is: $I_{max} = \mathbb{R}$. This is correct!

3.2
$$x' = \frac{1}{tx}$$
, satisfying $x(1) = 1$

This differential equation has no constant solution because for x = constant, $x'(t) = 0 \neq \frac{1}{tx(t)}$.

We have:

$$x' = \frac{1}{tx} \Leftrightarrow \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{tx}$$

$$\Leftrightarrow x\mathrm{d}x = \frac{\mathrm{d}t}{t}$$

$$\Leftrightarrow \int x\mathrm{d}x = \int \frac{1}{t}\mathrm{d}t$$
 Again, we integrate both sides with respect to t.
$$\Leftrightarrow \frac{x^2}{2} + a_1 = \ln|t| + a_2$$

$$\Leftrightarrow x^2 = 2\ln|t| + 2(a_2 - a_1)$$

$$\Leftrightarrow x^2 = 2\ln|t| + a \quad \text{where } a = 2(a_2 - a_1)$$

$$\Leftrightarrow x(t) = \sqrt{2\ln|t| + a}, \ a \in \mathbb{R} \text{ constant.}$$

Initial condition: $x(1) = \sqrt{2 \ln |1| + a} = 1 \Rightarrow 2 \ln |1| + a = 1$ $\Rightarrow a = 1.$

$$x(t) = \sqrt{2\ln|t| + 1}.$$

x(t) is defined if

$$\begin{split} 2\ln|t|+1 &\geq 0\\ \ln|t| &\geq -\frac{1}{2}\\ |t| &\geq e^{-\frac{1}{2}}\\ t &\in \left]-\infty, e^{-\frac{1}{2}}\right[\cup \left]e^{-\frac{1}{2}}, +\infty\right[\end{split}$$

The initial condition value is contained in $e^{-\frac{1}{2}}$, $+\infty$, then:

$$x(t) = \sqrt{2 \ln|t| + 1}, \quad \forall \ t \in I_{max} = e^{-\frac{1}{2}}, +\infty$$

3.3
$$x' = x^{\frac{2}{3}}$$
, satisfying $x(0) = 0$

The null function $x(t) = 0 \ \forall \ t \in \mathbb{R}$ is a solution of that differential equation and it satisfies x(0) = 0. Its maximal interval of definition is \mathbb{R}

Let's find the other solutions if they exist.

Let x be one another solution of the differential equation.

The solution must be of class C^1 . So there exists an interval I such that $x(t) \neq 0 \ \forall \ t \in I$.

Then, for all $t \in I$:

$$x' = x^{\frac{2}{3}} \Leftrightarrow \frac{\mathrm{d}x}{\mathrm{d}t} = x^{\frac{2}{3}}$$

$$\Leftrightarrow \int x^{-\frac{2}{3}} \mathrm{d}x = \int \mathrm{d}t$$

$$\Leftrightarrow 3x^{\frac{1}{3}} + a_1 = t + a_2$$

$$\Leftrightarrow 3x^{\frac{1}{3}} = t + a_2 - a_1$$

$$\Leftrightarrow 3x^{\frac{1}{3}} = t + a \quad \text{where} \quad a = a_2 - a_1$$

$$\Leftrightarrow x^{\frac{1}{3}} = \frac{1}{3}t + \frac{1}{3}a$$

$$\Leftrightarrow x^{\frac{1}{3}} = \frac{1}{3}t + c \quad \text{where} \quad c = \frac{1}{3}a$$

$$\Leftrightarrow \sqrt[3]{x} = \frac{1}{3}t + c$$

$$\Leftrightarrow x(t) = \left(\frac{1}{3}t + c\right)^3, \ c \in \mathbb{R} \text{ constant.}$$

4. Let's obtain the solution of the Cauchy problem and determine its interval of definition I_{max} .

$$\begin{cases} y' &= 5y + e^{-2t}y^{-2} \\ y(0) &= 2. \end{cases}$$

Let's consider the change of variables $y \mapsto x := y^3$.

$$x = y^3 \Leftrightarrow x' = 3y^2y'$$
$$\Leftrightarrow y' = \frac{x'}{3y^2}$$

Let's replace the value of y' in the main differential equation.

$$\frac{x'}{3y^2} = 5y + e^{-2t}y^{-2} \Leftrightarrow x' = 15y^3 + 3e^{-2t}$$
$$\Leftrightarrow x' = 15x + 3e^{-2t} \quad \text{where} \quad x = y^3$$

Let $\mu: t \mapsto \mu(t)$ be a C^1 function.

We have $\mu(t)x' - 15\mu(t)x = 3\mu(t)e^{-2t}$. We are looking for a function μ such that $\mu'(t) = -15\mu(t)$.

The general solution of the differential equation $\mu' = -15\mu$ is $t \mapsto ke^{-15t}$ where $k \in \mathbb{R}$ is a constant.

We can take $\mu(t) = e^{-15t}$.

Then:

$$\begin{split} \mu(t)x'(t) + \mu'(t)x(t) &= 3e^{-2t}\mu(t) \Leftrightarrow (\mu(t)x(t))' = 3e^{-2t}e^{15t} = 3e^{-2t}\mu(t) \\ &\Leftrightarrow \mu(t)x(t) + c_1 = \int 3e^{-2t}\mu(t)dt, \ c_1 \ \in \ \mathbb{R} \ constant \\ &\Leftrightarrow e^{-15t}x(t) + c_1 = \frac{-3}{17}e^{-17t} + c_2, c_1, \ c_2 \ \in \ \mathbb{R} \ constants \\ &\Leftrightarrow x(t) = \left(\frac{-3}{17}e^{-17t} + c\right)e^{15t}, \ c = c_2 - c_1 \ \in \ \mathbb{R} \ constant \end{split}$$

We have y(0) = 2, then x(0) = 8 and it follows that :

$$\begin{split} &\frac{-3}{17}+c=8 \Leftrightarrow c=\frac{139}{17}\\ &\text{Finally, } x(t)=\left(\frac{-3}{17}e^{-17t}+\frac{139}{17}\right)e^{15t} \text{ and} \end{split}$$

$$y(t) = \left(\frac{-3}{17}e^{-17t} + \frac{139}{17}\right)^{1/3}e^{5t}$$

The solution must be defined on an interval I such that $y(t) \neq 0$ for all $t \in I$.

We have:

$$y(t) = 0 \Leftrightarrow \frac{-3}{17}e^{-17t} + \frac{139}{17} = 0$$
$$\Leftrightarrow e^{-17t} = \frac{139}{3}$$
$$\Leftrightarrow -17t = \ln\left(\frac{139}{3}\right)$$
$$\Leftrightarrow t = \frac{-1}{17}\ln\left(\frac{139}{3}\right)$$

Then the maximal interval of definition of the solution is

5. Let's show that if all solutions of y'=ay are bounded when $t\to +\infty$, then the same is true for all solutions of z'=(a+b(t))z if $\int_0^{+\infty}|b(t)\mathrm{d}t|<+\infty$.

Let a be a constant real number, b(t) a continuous function defined in \mathbb{R}_0^+ and consider the two differential equations :

$$y' = ay \tag{1}$$

$$y' = ay$$

$$z' = (a + b(t))z$$
(2)

Suppose all the solutions of (1) are bounded when $t \to +\infty$ and $\int_0^{+\infty} |b(t)| dt < +\infty.$

We want to show that all the solutions of (2) are bounded when $t \to +\infty$. The differential equation (2) is linear and can be written as:

$$z' = az + b(t)z$$

Consider the differential equation:

$$u' = b(t)u$$

Then, a solution of (2) can be written as the sum of one solution of (1) and one solution of (3).

The general solution of (3) is:

 $u(t)=ce^{\int_{t_0}^t b(s)ds},\ c\in\mathbb{R}$ constant, $t_0\in\mathbb{R}_0^+$ cause b(t) is defined in \mathbb{R}_0^+ . Then, the general solution of (2) can be written as:

$$z(t) = y(t) + ce^{\int_{t_0}^t b(s)ds}$$
, where $c \in \mathbb{R}$ constant and $y(t)$ is a solution of (1)

All the solutions of (1) are bounded when $t \to +\infty$. This implies that there exists $l_1 \in \mathbb{R}$ such that $\lim_{t \to +\infty} y(t) = l_1$.

We also have:

Very Good!

$$\begin{split} &\int_{t_0}^{+\infty} b(t)dt \leq |\int_{t_0}^{+\infty} b(t)dt| \leq \int_{t_0}^{+\infty} |b(t)|dt \leq \int_{0}^{+\infty} |b(t)|dt < +\infty \\ &\Rightarrow ce^{\int_{t_0}^{+\infty} b(s)ds} < +\infty \end{split}$$

It follows that:

$$\lim_{t \to +\infty} z(t) = l_1 + ce^{\int_{t_0}^{+\infty} b(s)ds} < +\infty$$

Exercise sheet 3

6. For the Cauchy problems below, let's construct the sequence of iterates defined by $x_{n+1}(t) = x_0 + \int_{t_0}^t f(s, x_n(s)) ds$ and verify if it is convergent then, check that the limit is a solution of Cauchy problem.

6.1*
$$\begin{cases} x' = tx \\ x(0) = 1 \end{cases}$$

Let's consider the function $x_1: t \mapsto 1$

 x_1 is not a solution of the problem but at least we have : $x_1(0) = 1$. We begin constructing the sequence $(x_n(t))_n$:

•
$$x_2(t) = x_0 + \int_0^t f(s, x_1(s)) ds$$

= $1 + \int_0^t s ds$
 $x_2(t) = 1 + \frac{1}{2}t^2$

•
$$x_3(t) = x_0 + \int_0^t f(s, x_2(s))ds$$

= $1 + \int_0^t s(1 + \frac{1}{2}s^2)ds$
= $1 + \int_0^t (s + \frac{1}{2}s^3)ds$
= $1 + \int_0^t sds + \int_0^t \frac{1}{2}s^3ds$
= $x_2(t) + \int_0^t \frac{1}{2}s^3ds$
= $1 + \frac{1}{2}t^2 + \left[\frac{1}{8}s^4\right]_0^t$
 $x_3(t) = 1 + \frac{1}{2}t^2 + \frac{1}{8}t^4$

Very Good!

•
$$x_4(t) = x_0 + \int_0^t f(s, x_3(s))ds$$

$$= 1 + \int_0^t s(1 + \frac{1}{2}s^2 + \frac{1}{8}s^4)ds$$

$$= 1 + \int_0^t s(1 + \frac{1}{2}s^2)ds + \int_0^t \frac{1}{8}s^5ds$$

$$x_4(t) = x_3(t) + \int_0^t \frac{1}{8}s^5ds$$

We can see that $\forall n \in \mathbb{N}^*$, $x_{n+1}(t) = x_n(t) + \int_0^t sR_n(s)ds$ where $R_n(t)$ is the last term of $x_n(t)$ (that is the one with the highest degree on t).

Let's find $R_n(t)$ for all n. We have :

Good Work!

$$R_{1}(t) = 1$$

$$R_{2}(t) = \frac{1}{2}t^{2}$$

$$R_{3}(t) = \frac{1}{8}t^{4}$$

$$= \frac{1}{2!}\left(\frac{1}{2}t^{2}\right)^{2}$$

$$R_{4}(t) = \frac{1}{48}t^{6}$$

$$= \frac{1}{3!}\left(\frac{1}{2}t^{2}\right)^{3}$$

Then $R_n(t) = \frac{1}{(n-1)!} \left(\frac{1}{2}t^2\right)^{n-1}$ and we can integrate $\int_0^t s R_n(s) ds$:

$$\int_0^t sR_n(s)ds = \int_0^t \frac{s}{(n-1)!} \left(\frac{1}{2}s^2\right)^{n-1} ds$$

$$= \left[\frac{1}{n(n-1)!} \left(\frac{s^2}{2}\right)^n\right]_0^t$$

$$= \left[\frac{1}{n!} \left(\frac{s^2}{2}\right)^n\right]_0^t$$

$$= \frac{1}{n!} \left(\frac{t^2}{2}\right)^n$$

It follows that $x_{n+1}(t) = x_n(t) + S_n(t)$, where $S_n(t) = \frac{1}{n!} \left(\frac{t^2}{2}\right)^n$ Moreover,

$$x_1(t) = 1$$

 $x_2(t) = x_1(t) + S_1(t)$
 $= 1 + S_1(t)$

Veery Good!

$$x_3(t) = x_2(t) + S_2(t)$$

= 1 + S₁(t) + S₂(t)

$$x_4(t) = x_3(t) + S_3(t)$$

= 1 + S_1(t) + S_2(t) + S_3(t)

$$x_n(t) = 1 + \sum_{k=1}^{n-1} S_k(t)$$
$$= 1 + \sum_{k=1}^{n-1} \frac{1}{k!} \left(\frac{t^2}{2}\right)^k$$

As a result, for all $t \in \mathbb{R}$, the sequence $(x_n(t))_n$ converges to :

$$1 + \sum_{k=1}^{+\infty} \frac{1}{k!} \left(\frac{t^2}{2}\right)^k = \sum_{k=0}^{+\infty} \frac{1}{k!} \left(\frac{t^2}{2}\right)^k$$
$$= e^{\frac{t^2}{2}}$$

The sequence converges to the function $x:t\in\mathbb{R}\mapsto e^{\frac{t^2}{2}}$ which is the solution of the problem because :

$$\begin{cases} x'(t) = te^{\frac{t^2}{2}} = tx(t) \\ x(0) = 1 \end{cases}$$

6.2*
$$\begin{cases} x' = x + 1 \\ x(0) = 1 \end{cases}$$

Here we consider again the function $x_1: t \mapsto 1$

 x_1 is not a solution of the problem but at least we have : $x_1(0) = 1$.

Using the previous method $(x_{n+1}(t) = x_n(t) + \int_0^t R_n(s)ds)$, we begin constructing the sequence easily :

•
$$x_2(t) = x_0 + \int_0^t f(s, x_1(s)) ds$$

= $1 + \int_0^t 2 ds$
 $x_2(t) = 1 + 2t$

•
$$x_3(t) = 1 + 2t + \int_0^t 2s ds$$

= $1 + 2t + t^2$

•
$$x_4(t) = 1 + 2t + t^2 + \int_0^t s^2 ds$$

= $1 + 2t + t^2 + \frac{1}{3}t^3$

•
$$x_5(t) = 1 + 2t + t^2 + \frac{1}{3}t^3 + \int_0^t \frac{1}{3}s^3 ds$$

= $1 + 2t + t^2 + \frac{1}{3}t^3 + \frac{1}{12}t^4$
= $-1 + 2 + 2t + t^2 + \frac{1}{3}t^3 + \frac{1}{12}t^4$
= $-1 + 2\left(1 + t + \frac{1}{2}t^2 + \frac{1}{6}t^3 + \frac{1}{24}t^4\right)$
= $-1 + 2\left(1 + t + \frac{1}{2!}t^2 + \frac{1}{3!}t^3 + \frac{1}{4!}t^4\right)$

•
$$x_6(t) = 1 + 2t + t^2 + \frac{1}{3}t^3 + \frac{1}{12}t^4 + \int_0^t \frac{1}{12}s^4ds$$

= $1 + 2t + t^2 + \frac{1}{3}t^3 + \frac{1}{12}t^4 + \frac{1}{60}t^5$
- $1 + 2 + 2t + t^2 + \frac{1}{3}t^3 + \frac{1}{12}t^4 + \frac{1}{60}t^5$
= $-1 + 2\left(1 + t + \frac{1}{2}t^2 + \frac{1}{6}t^3 + \frac{1}{24}t^4 + \frac{1}{120}t^5\right)$
= $-1 + 2\left(1 + t + \frac{1}{2!}t^2 + \frac{1}{3!}t^3 + \frac{1}{4!}t^4 + \frac{1}{5!}t^5\right)$

Then for all $n \in \mathbb{N}^*$,

$$x_n(t) = -1 + 2\left(\sum_{k=0}^{n-1} \frac{t^k}{k!}\right)$$

For all $t \in \mathbb{R}$, the sequence $(x_n(t))_n$ converges to :

$$-1 + 2\sum_{k=0}^{+\infty} \frac{t^k}{k!}$$
$$= -1 + 2e^t$$

Good Work!

The sequence converges to the function $x:t\in\mathbb{R}\mapsto -1+2e^t$ which is the solution of the problem because :

$$\begin{cases} x'(t) = 2e^t = 1 + x(t) \\ x(0) = 1 \end{cases}$$

7. Metric

Let's show that d defined in the book by Barreira & Valls is a distance in X = C(I), the set of all bounded continuous functions in $I \subset \mathbb{R}^k$.

For all $x, y \in X$, we have : $d(x,y) = Sup_{t \in I}||x(t) - y(t)||$. Then d is a positive function.

• Symmetry

Let $x, y \in X$. We have :

$$\forall t \in I, ||x(t) - y(t)|| = ||y(t) - x(t)||$$
 because $||.||$ is a norm in \mathbb{R}^n .

Hence
$$\sup_{t \in I} ||x(t) - y(t)|| = \sup_{t \in I} ||y(t) - x(t)|| \Leftrightarrow d(x, y) = d(y, x)$$

 $\bullet \ Separation$

Let $x, y \in X$, we have :

Very good work!

$$\begin{split} d(x,y) &= 0 \Leftrightarrow \sup_{t \in I} ||x(t) - y(t)|| = 0 \\ &\Leftrightarrow ||x(t) - y(t)|| = 0 \; \forall \; t \in I \\ &\Leftrightarrow x(t) - y(t) = 0 \; \forall \; t \in I \; \text{cause} \; ||.|| \; \text{is a norm in} \; \mathbb{R}^n \\ &\Leftrightarrow x(t) = y(t) \; \forall \; t \in I \\ &\Leftrightarrow x = y \end{split}$$

$\bullet \ Triangular \ inequality$

Let $x, y, z \in X$, we have :

$$||x(t)-z(t)||\leq ||x(t)-y(t)||+||y(t)-z(t)||\ \forall\ t\in I,\ \text{because}\ ||.||\ \text{is a norm in}\ \mathbb{R}^n.$$

$$\Rightarrow ||x(t)-z(t)|| \leq \sup_{s \in I} ||x(s)-y(s)|| + \sup_{s \in I} ||y(s)-z(s)|| \ \forall \ t \in I$$

$$\Rightarrow \sup_{s \in I} ||x(s) - z(s)|| \leq \sup_{s \in I} ||x(s) - y(s)|| + \sup_{s \in I} ||y(s) - z(s)||$$

$$\Rightarrow d(x,z) \leq d(x,y) + d(y,z). \hspace{1cm} \text{Very Good!}$$

We conclude that d is a distance in X.

Exercise sheet 4

8.

We define φ on \mathbb{R} by $\varphi(x) = x^2$

Let's show that φ is locally Lipschitz.

Let K be a compact of \mathbb{R} . Then there exists $a, b \in \mathbb{R}$ such that K = [a, b]

Let $x, y \in K$, we have :

$$|\varphi(x,y)| = |x^2 - y^2|$$

= $|(x-y)||(x+y)|$

But:

$$\begin{cases} a \le x \le b \\ a \le y \le b \end{cases}$$

$$\Rightarrow 2a \le x + y \le 2b$$

$$\Rightarrow |x + y| \le \max\{2|a|, 2|b|\}$$

Then we take $L = max\{2|a|, 2|b|\}$ and : Very Good!

$$|\varphi(x,y)| \le L|x-y|$$
 for all x, y in $K = [a, b]$

Therefore φ is locally Lipschitz.

- Let's check if φ is globally Lipschitz.

Let's assume there exists $L \in \mathbb{R}^+$ such that for all compact $K = [a, b], \ \forall \ x, \ y \in K$,

$$|\varphi(x,y)| \le L|x-y|$$

We have:

$$\begin{split} |\varphi(x,y)| &= |x^2 - y^2| = |x - y||x + y| \quad \text{then :} \\ &\varphi(x,y) \leq L|x - y| \text{ for all compact } K, \\ &\forall \ x, \ y \ \in \ K \\ &\Rightarrow |x - y||x + y| \leq L|x - y| \text{ for all compact } K \ \forall \ x, \ y \ \in \ K \\ &\Rightarrow |x + y| \leq L \text{ for all compact } K, \text{ for all } x, \ y \ \in \ K : \ x \neq y \\ &\Rightarrow |(L) + (L+1)| \leq L \quad \text{for } K = [L-2, \ L+2], \ x = L, \ y = L+1, \\ &\Rightarrow 2L+1 \leq L \qquad \qquad \text{Well Done! Good Work.} \\ &\Rightarrow L \leq -1 \quad \text{impossible because } L > 0 \end{split}$$

Conclusion : φ is not globally Lipschitz

9. Barreira & Valls

Let $f: \mathbb{R} \to \mathbb{R}$ be a Lipschitz function and $g: \mathbb{R} \to \mathbb{R}$ be continuous.

Let $(x_0, x_0, y_0,) \in \mathbb{R}^3$ be fixed arbitrarily.

We want to show that:

$$\begin{cases} x' = f(x) \\ y' = g(x)y \end{cases} \quad x(t_0) = x_0, y(t_0) = y_0$$
 has a unique solution.

f is locally Lipschitz so the Cauchy problem $\begin{cases} x' = f(x) \\ x(t_0) = x_0 \end{cases}$ has a unique solution x_* defined on an interval I_* .

Is the Picard Londelöf Theorem applicable to this problem?

Now we consider $\begin{cases} y' = g(x_*)y \\ y(t_0) = y_0 \end{cases}$ and the function h defined by : $h(t,y) = g(x_*)y, \ t \in I \text{ where } I = [a,b] \text{ is a compact of } I_*.$

We are going to show that h is locally Lipschitz in y.

Let $y_1, y_2 \in \mathbb{R}$ and $t \in I$. We have :

$$\begin{split} |h(t,y_1)-h(t,y_2)| &= |g(x_*)y_1-g(x_*)y_2| \\ &= |g(x_*)||y_1-y_2| & \text{Good!} \\ &\leq Sup_{s\in I} \ g(x_*(s))|y_1-y_2| \ \text{cause} \ g \ \text{and} \ x_* \ \text{are continuous on respectively} \ \mathbb{R} \ \text{and} \ I. \end{split}$$

Thus h is locally Lipschitz in y.

Therefore, $\begin{cases} y'=g(x_*)y\\y(t_0)=y_0 \end{cases}$ has a unique solution y^* and we conclude that the initial problem of Cauchy :

$$\begin{cases} x' = f(x) \\ y' = g(x)y \end{cases} \quad x(t_0) = x_0, y(t_0) = y_0 \end{cases} \text{ has a unique solution.}$$

Exercise sheet 5

Exercise 10.

Let u,v,w be $[a,\ b]\mapsto \mathbb{R}$ with w>0 and such that for all $t\in [a,\ b],$ $u(t)\leq v(t)+\int_a^t w(s)u(s)ds.$

Let's show that for all $t \in [a, b]$,

$$u(t) \le v(t) + \int_a^t w(s)v(s)e^{\int_s^t w(\theta)d\theta} ds.$$

Let's define the function R by $R(t)=\int_a^t w(s)u(s)ds$ for all $t\in [a,\ b]$ We have :

$$R'(t) = w(t)u(t) \le w(t) \left(v(t) + \int_a^t w(s)u(s)ds \right) \ \forall \ t \in [a, \ b]$$
$$= w(t)v(t) + w(t)R(t)$$
$$\Rightarrow R'(t) - w(t)R(t) \le w(t)v(t) \ \forall \ t \in [a, \ b]$$

Let μ be a positive function defined on [a, b].

We have :

$$R'(t) - w(t)R(t) \le w(t)v(t) \ \forall \ t \ \in \ [a, \ b] \Leftrightarrow R'(t)\mu(t) - \mu(t)w(t)R(t) \le w(t)v(t)\mu(t) \ \forall \ t \ \in \ [a, \ b]$$

We require μ to satisfy: $\mu'(t) = -w(t)\mu(t) \ \forall \ t \in [a, b]$

Then we can take $\mu(t) = e^{-\int_a^t w(s)ds}$ and find :

Very good! Well-presented solution.

$$R'(t)\mu(t) - w(t)R(t)\mu(t) \leq w(t)v(t)\mu(t) \ \forall \ t \in [a, \ b]$$

$$\Rightarrow (R(t)\mu(t))' \leq w(t)v(t)\mu(t) \ \forall \ t \in [a, \ b]$$

$$\Rightarrow \int_a^t (R(s)\mu(s))' \ ds \leq \int_a^t w(s)v(s)\mu(s)ds \ \forall \ t \in [a, \ b]$$

$$\Rightarrow R(t)e^{-\int_a^t w(s)ds} \leq \int_a^t w(s)v(s)e^{-\int_a^s w(\theta)d\theta} \ ds \ \forall \ t \in [a, \ b], \quad \text{because} \ R(a) = 0$$

$$\Rightarrow R(t) \leq e^{\int_a^t w(s)ds} \int_a^t w(s)v(s)e^{-\int_a^s w(\theta)d\theta} \ ds \ \forall \ t \in [a, \ b]$$

$$\Rightarrow R(t) \leq \int_a^t w(s)v(s)e^{\int_a^t w(\theta)d\theta} e^{\int_s^s w(\theta)d\theta} \ ds \ \forall \ t \in [a, \ b]$$

$$\Rightarrow R(t) \leq \int_a^t w(s)v(s)e^{\int_s^t w(\theta)d\theta} \ ds \ \forall \ t \in [a, \ b]$$

$$\Rightarrow v(t) + \int_a^t w(s)u(s)ds \leq v(t) + \int_a^t w(s)v(s)e^{\int_s^t w(\theta)d\theta} \ ds \ \forall \ t \in [a, \ b]$$

$$\Rightarrow v(t) + \int_a^t w(s)u(s)ds \leq v(t) + \int_a^t w(s)v(s)e^{\int_s^t w(\theta)d\theta} \ ds \ \forall \ t \in [a, \ b]$$

$$\Rightarrow u(t) \leq v(t) + \int_a^t w(s)v(s)e^{\int_s^t w(\theta)d\theta} \ ds \ \forall \ t \in [a, \ b]$$
using the hypothesis: $u(t) \leq v(t) + \int_a^t w(s)u(s)ds \ \forall \ t \in [a, \ b]$.

Exercise 11.

Let $f~:~D\subset \mathbb{R}\times\mathbb{R}^n\times\mathbb{R}^p\mapsto\mathbb{R}^n$ have all its first partial derivatives continuous.

Let $x(t, t_0, x_0, \lambda)$ be the solution of the Cauchy problem :

$$\begin{cases} x' = f(t, x, \lambda) \\ x(t_0) = x_0 \end{cases}$$

We want to prove that the Jacobian matrix $\frac{\partial x}{\partial \lambda}$ is a solution of Cauchy problem.

$$\begin{cases} y' = \frac{\partial f}{\partial x}(t, x(t), \lambda)y + \frac{\partial f}{\partial \lambda}(t, x(t), \lambda) \\ y(t_0) = O \end{cases}$$

Very Good!

We have:

$$\frac{dx}{dt} = f$$

$$\implies \frac{\partial}{\partial \lambda} \left(\frac{dx}{dt} \right) = \frac{\partial f}{\partial \lambda}$$

 $\frac{\partial f}{\partial \lambda}$ is continuous then the second derivatives of x are continuous and we have :

$$\begin{split} \frac{\partial}{\partial \lambda} \left(\frac{dx}{dt} \right) &= \frac{d}{dt} \left(\frac{\partial x}{\partial \lambda} \right) \\ \Longrightarrow \frac{d}{dt} \left(\frac{\partial x}{\partial \lambda} \right) &= \frac{\partial f}{\partial \lambda} (t, x(t, t_0, x_0, \lambda), \lambda) \\ &= \frac{\partial f}{\partial x} (t, x(t), \lambda) \frac{\partial x}{\partial \lambda} + \frac{\partial f}{\partial t} (t, x(t), \lambda) \frac{\partial t}{\partial \lambda} + \frac{\partial f}{\partial \lambda} \frac{\partial \lambda}{\partial \lambda} \\ & \text{where} \quad \frac{\partial t}{\partial \lambda} &= O \\ &= \frac{\partial f}{\partial x} (t, x(t), \lambda) \frac{\partial x}{\partial \lambda} + \frac{\partial f}{\partial \lambda} (t, x(t), \lambda) \end{split}$$

$$\boxed{\frac{d}{dt}\left(\frac{\partial x}{\partial \lambda}\right) = \frac{\partial f}{\partial x}(t, x(t), \lambda)\frac{\partial x}{\partial \lambda} + \frac{\partial f}{\partial \lambda}(t, x(t), \lambda)}$$

At $t = t_0$, $x(t) = x_0$ and we have $\frac{\partial x}{\partial \lambda}(t_0) = O$.

We conclude that $\frac{\partial x}{\partial \lambda}$ is a solution of the Cauchy problem :

$$\begin{cases} y' = \frac{\partial f}{\partial x}(t, x(t), \lambda)y + \frac{\partial f}{\partial \lambda}(t, x(t), \lambda) \\ y(t_0) = O \end{cases}$$