Рассмотрим выбор рабочего режима по СМХ.

- 1. Выбираем линейный участок (на глаз).
- 2. Определяем E_{min} , E_{max} , I_{max} , I_{min} .
- 3. Выбираем рабочую точку в середине линейного участка Р.Т. (I₁₀; E_{P. T.})
- 4. Определяем максимальную амплитуду модулирующего сигнала для неискажённой модуляции:

$$V_{\text{max}} = \frac{E_{\text{max}} - E_{\text{min}}}{2}$$

5. Определяем максимальную глубину амплитудной модуляции для неискажённых АМ:

$$M_A = \frac{I_{1 \max} - I_{1 \min}}{I_{1 \max} + I_{1 \min}}$$

Далее рассмотрим спектры AM сигналов при более сложных модулирующих сигналах.

Для простейшего случая, когда модулирующий сигнал представляет собой моногармоническое колебание, спектр модулирующего сигнала показан на рис.3.3 и спектр АМ сигнала на рис.3.4.

Пусть модулирующий сигнал содержит две частоты Ω_1 и Ω_2 .

Если спектр модулирующего сигнала более сложный, то усложняется спектр АМ сигнала: он содержит спектр модулирующего сигнала, перенесённый на частоту ω_0 , несущую частоту ω_0 и зеркальное отражение спектра модулирующего сигнала относительно несущей.