ΘΕΜΑ 4

Δίνεται κανονικό πεντάγωνο ΑΒΓΔΕ και σημείο M στο εσωτερικό του. Έστω M_1 , M_2 , M_3 , M_4 , M_5 οι προβολές του σημείου M στις πλευρές AB, BΓ, ΓΔ, ΔΕ, ΕΑ αντίστοιχα.

α) Να αποδείξετε ότι:

i. (ABM) =
$$\frac{1}{2} \cdot \lambda_5 \cdot \text{MM}_1$$
, όπου λ_5 είναι η πλευρά του κανονικού πενταγώνου.

(Μονάδες 6)

ii. (ABΓΔE) =
$$\frac{1}{2} \cdot \lambda_5 \cdot (MM_1 + MM_2 + MM_3 + MM_4 + MM_5)$$
. (Μονάδες 7)

- iii. ${\rm MM_1+MM_2+MM_3+MM_4+MM_5}=5\alpha_5$, όπου α_5 είναι το απόστημα του κανονικού πενταγώνου. (Μονάδες 7)
- β) Ένας μαθητής διατύπωσε τον ισχυρισμό: «Αν Μ είναι ένα εσωτερικό σημείο ενός κανονικού ν-γώνου $A_1A_2...A_v$ και M_1 , M_2 ,..., M_v είναι οι προβολές του σημείου Μ στις πλευρές A_1A_2 , A_2A_3 ,..., A_vA_1 αντίστοιχα, τότε

$$MM_1 + MM_2 + \cdots + MM_v = v\alpha_v$$

όπου α_v είναι το απόστημα του κανονικού ν-γώνου». Να αποδείξετε ότι ο ισχυρισμός του μαθητή είναι σωστός. (Μονάδες 5)

