Matemática Discreta y Lógica Matemática

Doble Grado Ingeniería Informática - Ciencias Matemáticas Primer parcial - Enero 2019

 \sim \sim	-	-	_
() N	ЛΒ	ĸ	н:•

		instrucciones:

- Escribe tu nombre y grupo en el lugar indicado en esta hoja.
- NO puedes usar calculadora. Desconecta el teléfono móvil (si lo tienes contigo).
- El examen dura 3 horas.
- Cada una de las seis primeras preguntas es tipo test y tiene una única respuesta correcta. Cada pregunta respondida correctamente puntuará 0,5 puntos. Cada pregunta respondida incorrectamente puntuará -0,15 puntos. Las preguntas sin contestar puntuarán 0 puntos. La puntuación total del test será como mínimo 0, nunca negativa.

■ En cada una de las preguntas a desarrollar aparece la puntuación máxima que puede obtenerse al responderlas. La mínima puntuación que puede obtenerse en estas preguntas es 0 .
1. El conjunto resultado de evaluar la expresión conjuntista $(\emptyset \cup \{ \{\emptyset\}, \{ \{\emptyset\}, \emptyset \} \}) \cap (\{\emptyset\} \cup \{ \{\emptyset\} \})$ es
\square \emptyset \square $\{\emptyset\}$
$\bigsqcup_{-} \{\emptyset, \{\emptyset\}\}$
ninguno de las anteriores
2. Sea A un conjunto con $ A =10$ y R una relación de equivalencia sobre A . Sean $a,b,c\in A$, con $\Big [a]\Big =3,\Big [b]\Big =5$ y $\Big [c]\Big =1$. Entonces el número de clases de equivalencia determinadas por R es
$ \begin{array}{cccc} & 4 \\ & 3 \\ & 2 \\ & 5 \end{array} $
3. La función definida por $f(0)=0, f(1)=1, f(2)=2$; $f(n)=f(n-3),$ para $n\geq 3,$ cumple que para todo $n\in\mathbb{N}$
$oxedsymbol{\Box}$ f no está bien definida
4. Si $a \ y \ b$ son enteros positivos tales que $3a-5b=27$, entonces
\square el mcd (a,b) no puede ser 27
\bigsqcup el mcd (a,b) no puede ser 13
\bigsqcup el mcd (a,b) puede ser 14
ninguna de las afirmaciones anteriores es cierta

5. La relación R definida sobre $\mathbb N$ como:

$$xRy \iff (x = y) \lor (x + y \text{ es impar})$$

es

relación de orden parcial

relación de orden estricto

no es ni relación de orden ni relación de equivalencia

relación de equivalencia

6. Consideramos los tres conjuntos siguientes: $(\mathbb{N} \longrightarrow \{0,1\}), \ \mathcal{P}(\mathbb{N}) \ y \ \mathbb{Q} \times \{0,1\}$.

Los tres conjuntos son no numerables.

El segundo es el único no numerable.

El primero y el tercero son no numerables.

El tercero es el único numerable.

7. (1,5 puntos) Considera la función $f: \mathbb{N} \to \mathbb{N}_1$, definida recursivamente como sigue:

$$f(0) = 1, f(1) = 3,$$

$$f(n) = 6 * f(n-1) - 9 * f(n-2) + 3^n \qquad (n \ge 2)$$

Razonando por inducción, demuestra que $f(n) = \frac{3^n}{2}(n^2 - n + 2)$, para todo $n \ge 0$. Indica qué tipo de inducción utilizas y justifica los pasos de tu demostración, en especial indica cuándo aplicas la hipótesis de inducción y por qué puedes aplicarla.

8. (1 punto) Sean $a, b, c \in \mathbb{N}_1$. Demuestra que

$$c|a \wedge c|b \iff c \mid \operatorname{mcd}(a,b)$$

Idea: En uno de los sentidos conviene usar el teorema de Bézout.

9. (0,5 puntos) Demuestra que **no siempre** es cierto que

$$(A \oplus B) \setminus B = B \setminus (A \oplus B)$$

(Recuerda que dados dos conjuntos C y D, $C \oplus D = (C \setminus D) \cup (D \setminus C)$.)

- 10. (1,5 puntos) Dado el conjunto $A = \{1, 2, 3\}$.
 - a) Define sobre él **dos** relaciones de equivalencia **distintas** que **no sean** ni la identidad $id_A = \{(a, a) / a \in A\}$, ni la relación total $A \times A$.
 - b) Estudia si es verdadero o falso que la unión de dos relaciones de equivalencia **siempre** sigue siendo una relación de equivalencia.
- 11. (1 punto) Sea $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ definida por $f(x) = 6 + \frac{2}{x}$. Estudia si f es inyectiva y/o suprayectiva.
- 12. (1,5 puntos) Sea la relación R definida sobre \mathbb{N}_1 como:

$$xRy \iff \exists k \in \mathbb{N} \text{ tal que } 5^k \cdot x = y$$

- a) Demuestra que R es una relación de orden parcial.
- b) Dado $S = \{1, 2, 4, 5, 10, 20, 25, 50\}$, dibuja un diagrama de Hasse que represente el orden parcial R restringido a S.
- c) Determina los elementos extremos y extremales de R restringido a S.