Interpreting a trained CNN

-- What did my convolutional network learn?

Columbus Machine Learners Meetup

Waylon Chen

June 5, 2019

Outline

Interpreting a trained CNN

Motivation and introduction to CNN

- 1. Neural network
- 2. Convolution
- 3. Convolutional network

II. The approaches

- 1. Visualize intermediate activations
- 2. My CNN encoder and interpreters some hybrid models
- 3. Did my CNN learn translational invariance?

III. Conclusion

I. Motivation and Introduction to CNN

- 1. Motivation
- 2. Neural network
- 3. Convolution
- 4. Convolutional network

Motivation

- My CNN classifier achieved 99.3% accuracy on MNIST hand-written digit dataset, but I cannot interpret it!
- 2. Knowing the information it did/did not learn can be the key to improvements.
- 3. Validation accuracy exceeds training accuracy after data augmentation!

Neural network

$$z_{[1]} = w_{[1,1]}x_{[1]} + w_{[1,2]}x_{[2]} + w_{[1,3]}x_{[3]} + b_{[1]} \cdot 1$$

 $a_{[1]} = \sigma(z_{[1]})$ $\sigma: nonlinear\ activation\ function$

TL;DR

- 1. Weigh
- 2. Bias
- 3. Activate

$$\vec{a} = \sigma \left(\overrightarrow{w} \cdot \vec{x} + \vec{b} \right)$$

$$\vec{a}^{(1)} = \sigma \left(\overleftrightarrow{w}^{(1)} \cdot \vec{x} + \vec{b}^{(1)} \right)$$
$$\vec{a}^{(2)} = \sigma \left(\overleftrightarrow{w}^{(2)} \cdot \vec{a}^{(1)} + \vec{b}^{(2)} \right)$$

$$\vec{a}^{(h)} = \sigma \left(\overrightarrow{w}^{(h)} \cdot \vec{a}^{(h-1)} + \vec{b}^{(h)} \right)$$

Neural Network – fully connected

hidden layer 1 hidden layer 2

Pixels

Convolution

$$y_{[0,0]} = \sum_{t=0}^{1} \sum_{s=0}^{1} w_{[s,t]} X_{[0+s,0+t]}$$

Convolution

 Convolution can do edge detection, blurring, sharpening and etc.

[-1, -1, -1]])

https://beckernick.github.io/convolutions/

Convolutional Network-L

input X

$$b_1 = 2$$

$$y = w * X$$

$$z_{1[0,0]} = y_{1[0,0]} + b_1 \cdot 1$$

$$a_{1[0,0]} = \sigma \left(z_{1[0,0]} \right)$$

TL;DR

Activation : eg.*ReLu*:

1. Convolve

- 2. Bias
- 3. Activate

$$\sigma(z) = z$$
, when $z \ge 0$
= 0, when $z < 0$

Convolutional hidden layer 1

Conv Net-II

- 1. Sparsely connected network
- 2. Locality is preserved with convolution

https://www.jeremyjordan.me/convolutional-neural-networks/2

The approaches

- 1. Visualize the intermediate activations
- 2. CNN encoder and interpreters
- 3. Did my CNN learn translational invariance?

Visualize the intermediate activations-I

h:hiddne layer index $^{\circ\circ\circ\circ^{2d}_{-1}}$ h=1

$$_{\text{conv2d}_{-1}} h = 1$$

 $_{\text{conv2d}_{2}} h = 2$

(28*28)*64=50,176

(28*28)*64=50,176

Visualize the intermediate activations-II

h:hiddne layer index onv2d_3 h = 5

$$_{\text{conv2d}_{-3}} h = 5$$

 $_{\text{conv2d}_{-4}} h = 6$

(14*14)*64=12,544

(14*14)*64=12,544

Visualize the intermediate activations-III

h:hiddne layer index dropout_2 h=8

h = 8dropout_2

(7*7)*64=3,136

(7*7)*64=3,136

CNN encoder and interpreters

the architecture

```
#The model structure
my_CNN_clf=Sequential([
   ############################### CNN-encoder
                                                                                         h = 1
   Conv2D(filters = 64, activation = 'relu', kernel_size=(5,5), padding='Same', input_shape = (28,28,1)),
   Conv2D(filters = 64, activation = 'relu', kernel_size=(5,5), padding='Same'),
                                                                                         h=2
   MaxPool2D(pool_size=(2,2), strides=(2,2)),
   Dropout(0.25),
   Conv2D(filters = 64, activation = 'relu', kernel_size=(3,3), padding='Same'),
                                                                                         h = 5
   Conv2D(filters = 64, activation = 'relu', kernel_size=(3,3), padding='Same'),
                                                                                         h = 6
   MaxPool2D(pool_size=(2,2), strides=(2,2)),
                                                                                         h = 8
   Dropout(0.25),
   Flatten(), # d=64*7*7=3136
                                      Encoder: input → 3,136-dimensional vector
   compressor
                                                                                         h = 10
   Dense(256, activation='relu'),
   Dropout(0.5), #d = 256
                                      Compressor: 3,136 \rightarrow 256 dimensional
   ####################
                            compressor
                                      The code vector
   ########################## interpretor
   Dense(10, activation='softmax'), #a normalized exponential functions for probability
```

CNN encoder and interpreters

the code vectors

- Consistent and self-similarity within a class
- 2. Different interpreters show similar accuracy=> Conv. encoder is the key

Interpreters	accuracy
1 Dense layer NN	99.44%
SVM	99.35%
Random Forests (100 trees)	99.32%
Gradient Boost (100 trees)	99.24%
Decision Tree	98.46%

Code vector, label =1 mean

Translational Invariance

Did my CNN learn translational invariance?

Did my CNN learn translational symmetry?

Conclusion

- Convolution reduces the neural network complexity and comprehend locality (relative positions) of the image (image pixels).
- The deep convolutional encoder is the key for the performance
- CNN encoding models learn translational invariance better than others, though not perfect.

Conclusion

- Code vectors in hidden layers of CNN reduce the dimensionality of images.
- Information learned in CNN is **position sensitive**. And convolution is the key for high accuracy performance.
- The predicted probabilities of CNN are not continuous with respect to translations.
- Translations deform CNN code vectors more softly.

