LaCSR5: 基于 CSR5 的龙芯 3A5000 上的高效 SpMV

汇报人 项强

> 队伍名 这是一支队

队伍编号 202310246111082

20 级 人工智能 项强

队员 20 级 软件工程 钱逸云

20 级 人工智能 徐哲

指导老师 张凯

> 学校 复旦大学

背景介绍

LaCSR5 格式以及算法

基干龙芯 3A5000 的改讲和优化

性能测试

项目目标

• SpMV(Sparse Matrix-Vector Multiplication) :

$$y = Ax$$

- 稀疏矩阵可能具有各种稀疏结构,所以选择适当的算法来实现和优化 SpMV 是一个具有挑战性的问题。
- 本题要求在 CSR 格式上进行改进和优化 SpMV 算法,我们在龙芯 3A5000 上选用CSR5 格式及其 SpMV 算法 [11] 进行实现,原因以及对比分析如下。

CSR(Compressed Sparse Row) 格式 @ 復旦大学

- 为了提高 SpMV 操作的效率,稀疏矩阵的存储格式需要特 殊设计,以避免**不必要的零元素存储和运算**;
- 本文主要关注CSR(Compressed Sparse Row)格式的改进和 优化: CSR 格式的性能问题主要来源于由行长度不均匀导 致的稀疏矩阵的负载不均衡。

$$A = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 2 & 3 \\ 0 & 1 & 0 & 2 \end{bmatrix} \quad \begin{array}{c} \text{row_ptr[]} = \begin{bmatrix} 0 & 2 & 2 & 5 & 7 \end{bmatrix} \\ \text{col_idx[]} = \begin{bmatrix} 0 & 2 & 0 & 2 & 3 & 1 & 3 \end{bmatrix} \\ \text{val[]} = \begin{bmatrix} 1 & 2 & 1 & 2 & 3 & 1 & 2 \end{bmatrix}$$

Figure: CSR 格式示意图

CSR 格式目前改进策略

- 数据流式传输 [9]
- 内存合并^[8]
- 数据重新排序或重构 [10, 12, 16]
- 静态或动态分箱^[1, 9]
- 动态并行性^[1]

其他稀疏矩阵存储格式和 SpMV 优化 @ 《《***

- 具有块结构的稀疏矩阵 [2, 4-6, 12, 15] 为有块结构的矩阵设计特 殊的存储格式和 SpMV 算法; 但对于许多不具有块结构的 矩阵,试图提取块信息耗时较长且效果有限。且在没有块结 构的矩阵中,这种格式的性能并不理想。
- 分段求和方法 [14, 15] 用于加速求和操作,但需要将矩阵存储 在类 COO 的格式中才有效果;而在 CSR 格式上性能很差。
- 人工智能 [3,13] 训练模型自动选择给定稀疏矩阵的最佳格式; 但选择过程耗时较长,选项有限,而且训练需要大量不同的 稀疏矩阵训练集。

文献调研

- [1] ASHARI, Arash; SEDAGHATI, Naser; EISENLOHR, John; PARTHASARATHY, S.; SADAYAPPAN, Ponnuswamy: Fast Sparse Matrix-Vector Multiplication on GPUs for Graph Applications. In: International Conference for High Performance Computing, Networking. Storage and Analysis, SC 2015 (2015), 01, S. 781–792
- [2] ASHARI, Arash; SEDAGHATI, Naser; EISENLOHR, John; SADAYAPPAN, P.: An Efficient Two-Dimensional Blocking Strategy for Sparse Matrix-Vector Multiplication on GPUs. In: Proceedings of the 28th ACM International Conference on Supercomputing. New York, NY, USA: Association for Computing Machinery, 2014 (ICS '14), S. 273–282. — URL https://doi.org/10.1145/2597652.2597678. — ISBN 9781450326421
- [3] ASHOURY, Mina; LONI, Mohammad; KHUNJUSH, Farshad; DANESHTALAB, Masoud: Auto-SpMV: Automated Optimizing SpMV Kernels on GPU. 2023
- [4] BULUÇ, Aydin; FINEMAN, Jeremy T.; FRIGO, Matteo; GILBERT, John R.; LEISERSON, Charles E.: Parallel Sparse Matrix-Vector and Matrix-Transpose-Vector Multiplication Using Compressed Sparse Blocks. In: Proceedings of the Twenty-First Annual Symposium on Parallelism in Algorithms and Architectures. New York, NY, USA: Association for Computing Machinery, 2009 (SPAA '09), S. 233–244. URL https://doi.org/10.1145/1583991.1584053. ISBN 9781605586069
- [5] BULUÇ, Aydin; WILLIAMS, Samuel; OLIKER, Leonid; DEMMEL, James: Reduced-Bandwidth Multithreaded Algorithms for Sparse Matrix-Vector Multiplication. In: 2011 IEEE International Parallel & Distributed Processing Symposium, 2011, S. 721–733
- [6] CHOI, Jee W.; SINGH, Amik; VUDUC, Richard W.: Model-Driven Autotuning of Sparse Matrix-Vector Multiply on GPUs. In: SIGPLAN Not. 45 (2010), jan, Nr. 5, S. 115–126. – URL https://doi.org/10.1145/1837853.1693471. – ISSN 0362-1340
- [7] DAVIS, Timothy A.; Hu, Yifan: The University of Florida Sparse Matrix Collection. In: ACM Trans. Math. Softw. 38 (2011). dec. Nr. 1. – URL https://doi.org/10.1145/2049662.2049663. – ISSN 0098-3500
- [8] DENG, Yangdong; WANG, Bo D.; Mu, Shuai: Taming irregular EDA applications on GPUs. In: 2009 IEEE/ACM International Conference on Computer-Aided Design - Digest of Technical Papers, 2009.
- S. 539–546
 [9] Greathouse, Joseph L.; Daga, Mayank: Efficient Sparse Matrix-Vector Multiplication on GPUs Using the CSR Storage Format. In: SC '14: Proceedings of the International Conference for High Performance
- Computing, Networking, Storage and Analysis, 2014, S. 769–780 [10] Guo, Dahai; Gropp, William: Adaptive Thread Distributions for SpMV on a GPU. In: Proceedings of the Extreme Scaling Workshop. USA: University of Illinois at Urbana-Champaign, 2012 (BW-XSEDE '12)
- Extreme Scaling workshop. USA: University of Illinois at Urbana-Champaign, 2012 (BW-XSEDE '12)
 [11] LIU, Weifeng; VINTER, Brian: CSR5: An Efficient Storage Format for Cross-Platform Sparse Matrix-Vector Multiplication. 2015

CSR5 格式的优点

- CSR5 格式是一种直接扩展 CSR 格式的新格式,仅添加两组额外的辅助信息,且通常比 CSR 格式中的原始三组信息要短得多;
- CSR5 格式对SIMD 友好:
- 可以同时为规则和不规则矩阵带来稳定的高性能。

贡献

- 经过对相关文献的深入调研和分析,我们选择在龙芯 3A5000 上使用 CSR5 格式和基于 CSR5 的 SpMV 算法;
- 我们设计和实现了LaCSR5-SpMV 算法, 一种面向龙芯处 理器体系结构的稀疏矩阵乘向量算法,其利用龙芯的 SIMD 指令优化了计算过程,同时充分利用了龙芯的多核心特性;
- 经过对龙芯 3A5000 芯片的分析,我们对 CSR5 格式的参数 讲行了调优,使其适配龙芯 3A5000 的硬件特性,以达到更 高的性能:
- 在 14 个规则稀疏矩阵和 10 个不规则稀疏矩阵上进行了 LaCSR5-SpMV 算法的性能测试,与 CSR-SpMV 算法相比, 我们的算法达到了最高 2.78 倍的性能提升。

非星介绍

LaCSR5 格式以及算法

基干龙芯 3A5000 的改讲和优化

性能测试

基本数据排布

为了在具有任何稀疏结构的矩阵中实现接近最优的负载平衡,我们首先将所有非零元素均匀地分割成**多个相同大小的分块。** 因此,在执行并行 SpMV 操作时,计算核心可以计算一个或多个分块,核心的每个 SIMD 通道可以处理一个分块的一列。

分块指针信息 (Tile Pointer)

- 存储了**每个分块中第一个矩阵行的行索引**,指示了将其分段 和存储到向量 *y* 的起始位置;
- tile_ptr 数组的长度为 p+1, 其中 $p = \lceil nnz/(\omega\sigma) \rceil$ 为分 块的数量;
- 对于具有空行的分块,特殊处理。

分块描述符信息 bit flag

- 用于指示一个元素是否是矩阵行的第一个非零元素;
- 长度为 ω × σ;
- 每个分块的 bit_flag 的第一个元素设置为 TRUE, 以封闭 从顶部开始的第一个段,并使分块彼此独立。

分块描述符信息 y_offset

- 用于指示每一列存储其本地分段和的起始点位置;
- 长度为 ω;
- 对于第 tid 个分块中的第 i 列,通过计算 tile_ptr[tid] + y_offset[i],得到该列在 y 中的存储位置。

分块描述符信息

seg_offset

- 用于加速分块内的局部分段和操作;
- 长度为 ω;
- seg_offset[i] 表示与第 i 列最末一个分段为同一行的右邻 连续列的数量。

快速分段求和

Algorithm 1 利用 seg_offset 快速分段求和

```
1: function FAST_SEGMENTED_SUM(*in, *seg_offset)
2:
       length \leftarrow SIZEOF(*in)
       MALLOC(*tmp, length)
 3:
       MEMCPY(*tmp, *in)
4:
      INCLUSIVE_PREFIX_SUM_SCAN(*in)
 5:
       for i = 0 to length - 1 in parallel do
6:
          in[i] \leftarrow in[i+seg\_offset[i]] - in[i] + tmp[i]
7:
       end for
8.
       FREE(*tmp)
10: end function
```


分块描述符信息

empty_offset

- 用于分块中包含空行的情况下,指示分段和存储到 *y* 中正确的位置;
- 长度为分块中段的数量,不超过 $\omega \times \sigma$;
- 指示每个段真实的相对行所索引。

LaCSR5-SpMV 算法

- 绿色段的分段和可以直接保存到 y 中, 无需任何同步, 因为 可以使用 tile_ptr 和 y_offset 来计算得到其行索引。
- 红色段和蓝色段不是完整的段,需要讲一步将它们的分段和 与其他段相加。

基于龙芯 3A5000 的改进和优化

自适应参数调优 - 分块宽度 ω

$$\omega = \frac{\text{向量寄存器长度}}{\text{sizeof(VT)}}$$

我们为分块每一列分配一个核心上的 SIMD 通道,充分利用向量 指令。因此,分块的宽度 ω 应该等于**每个核心上的 SIMD 通道** 的数量。

对于龙芯 3A5000, 其扩展向量寄存器为 256 位, 所以对于单精 度和双精度 SpMV, 我们分别设置 $\omega = 8$ 和 $\omega = 4$;

单精度前缀和 SIMD 优化


```
// inclusive prefix-sum scan
inline m256 hscan lasx( m256 in256)
   m256 t0:
   //shift1 + add
   t0 = (m256) lasx xvbsll v(in256, 4);
   t0[4] = in256[3]:
   in256 = lasx xvfadd s(in256, t0);
   //shift2 + add
   t0 = ( m256) lasx xvbsll v(in256, 8);
   t0[4] = in256[2], t0[5] = in256[3];
   in256 = __lasx_xvfadd_s(in256, t0);
   //shift3 + add
   t0 = ( m256) lasx xvpermi q(in256, in256, 0b00101001);
    in256 = lasx xvfadd s(in256, t0);
    return in256;
```

我们利用 xvbsll.v, xvfadd.s, xvpermi.q 等指令, 实现了高效的单精度前缀和。

快速分段求和 SIMD 优化


```
Algorithm 2 利用 seg_offset 快速分段求和

1: function FAST_SEGMENTED_SUM(*in,*seg_offset)
2: length < SIZEOF(*in)
4: MEMCPY(*tmp, length)
4: MEMCPY(*tmp, *in)
5: INCLUSIVE_PREFIX_SUM_SCAN(*in)
6: for i = 0 to length - 1 in parallel do
7: in[i] ← in[i+seg_offset[i]] - in[i] + tmp[i]
8: end for
9: FREE(*tmp)
10: end function
```

$in[i] \leftarrow in[i+seg_offset[i]] - in[i] + tmp[i]$

```
// fast segmented sum

tmp_sum256 = sum256;
sum256 = hscan_lasx(sum256);

i+seg_offset[]

scansum_offset256i = _lasx_xvadd_w(scansum_offset256i, (_m256i)(v8i32{0, 1, 2, 3, 4, 5, 6, 7}));

sum256 = _lasx_xvfsub_s((_m256)(_lasx_xvperm_w((_m256i)(sum256), scansum_offset256i)), sum256);

sum256 = _lasx_xvfadd_s(sum256, tmp_sum256);

- in[]

+ tmp[]
```

自适应参数调优 - 分块高度 σ

$$\begin{cases} \lceil \log_2{(\omega\sigma)} \rceil + \lceil \log_2{(\omega)} \rceil + \sigma \leq \textit{sizeof}(\textit{VT}) \\ 16 \cdot \omega\sigma \cdot \textit{sizeof}(\textit{VT}) + 8 \times 32\omega \leq 64K \end{cases}$$
 其中 \textit{VT} 为矩阵元素值存储的数据类型。

val tile desc $\lceil \log_2(\omega\sigma) \rceil$ $\lceil \log_2(\omega) \rceil$

考虑两点:

- 保证足够的位数存储辅助信息 tile_desc
 - y offset[i] $< \omega \sigma$, 故需 $\lceil \log_2(\omega \sigma) \rceil$ 位;
 - seg_offset[i] $\leq \omega$, 故需 $\lceil \log_2(\omega) \rceil$ 位;
 - bit flag 为分块的每个列存储了 σ 个 1 位标志, 故需 σ 位。
- 充分利用龙芯 3A5000 的cache 容量

所以在龙芯 3A5000 上,对于单精度和双精度 SpMV,我们分别 设置 $\sigma = 21$ 和 $\sigma = 16$ 。

LaCSR5-SpMV 算法并行细节

- 总共划分成 $p = \lceil nnz/(\omega\sigma) \rceil$ 个分块;
- 利用 OpenMP 并行化每个分块的计算;
- 龙芯 3A5000 上有 4 个核心,每个核心 1 个线程,共 4 个线 程, 所有分块均匀分到 4 个线程上。

背景介经

LaCSR5 格式以及算法

基干龙芯 3A5000 的改讲和优化

性能测试

ld	Name	Dimensions	nnz	nnz per row
				(min, avg, max)
r1	Dense	2K×2K	4.0M	2K, 2K, 2K
r2	Uniform	10K×10K	10M	1K, 1K, 1K
r3	FEM/Spheres	83K×83K	6.0M	1, 72, 81
r4	FEM/Cantilever	62K×62K	4.0M	1, 64, 78
r5	Wind Tunnel	218K×218K	11.6M	2, 53, 180
r6	Protein	36K×36K	4.3M	18, 119, 204
r7	Epidemiology	526K×526K	2.1M	2, 3, 4
r8	FEM/Harbor	47K×47K	2.4M	4, 50, 145
r9	FEM/Ship	141K×141K	7.8M	24, 55, 102
r10	Economics	207K×207K	1.3M	1, 6, 44
r11	FEM/Accelerator	121K×121K	2.6M	0, 21, 81
r12	Circuit	171K×171K	959K	1, 5, 353
r13	Ga41As41H72	268K×268K	18.5M	18, 68, 702
r14	Si41Ge41H72	186K×186K	15.0M	13, 80, 662
i1	Webbase	1M×1M	3.1M	1, 3, 4.7K
i2	LP	4K×1.1M	11.3M	1, 2.6K, 56.2K
i3	Circuit5M	5.6M×5.6M	59.5M	1, 10, 1.29M
i4	eu-2005	863K×863K	19.2M	0, 22, 6.9K
i5	in-2004	1.4M×1.4M	16.9M	0, 12, 7.8K
i6	mip1	66K×66K	10.4M	4, 155, 66.4K
i7	ASIC_680k	683K×683K	3.9M	1, 6, 395K
i8	dc2	117K×117K	766K	1, 7, 114K
i9	FullChip	2.9M×2.9M	26.6M	1, 9, 2.3M
i10	ins2	309K×309K	2.8M	5, 9, 309K

除了 r1 和 r2 矩阵,其他矩阵均来自 the University of Florida Sparse Matrix Collection [7]。

不同稀疏特征的测试矩阵

SpMV 测试结果

对于除 r1 (稠密矩阵) 之外的 23 个稀疏矩阵, 单精度和双精度 LaCSR5-SpMV 的加速比均值分别为1.80x和1.95x。

SpMV 测试结果

GFlops of double

对于 13 个规则的稀疏矩阵,单精度和双精度 LaCSR5-SpMV 的 加速比平均值分别为1.84x和1.96x。 对于 10 个不规则的稀疏矩阵,单精度和双精度 LaCSR5-SpMV

的加速比平均值分别为1.75x和1.92x。

格式转换时间的迭代分析

Precision	float			double		
Metrics	Preprocess	Speedup	Speedup	Preprocess	Speedup	Speedup
	ratio	of #iter=50	of #iter=500	ratio	of #iter=50	of #iter=500
regular	3.37×	1.73×	1.83x	3.20×	1.84x	1.95×
irregular	3.09×	1.65x	1.74×	2.31×	1.83x	1.91×

Table: 格式转换时间的迭代加速比

迭代加速比 =
$$\frac{n \cdot T_{spmv}^{csr}}{T_{pre}^{new} + n \cdot T_{spmv}^{new}}$$

其中 $T_{spm_v}^{csr}$ 是一个单次 CSR-SpMV 操作的执行时间, T_{pre}^{new} 是预 处理时间,Tnew 是使用新格式的单次 SpMV 时间。 在 n = 50 时,加速比已接近单独 SpMV 的加速比; 在 n = 500 时,格式转换时间已经可以**忽略不计**。

消融实验:分块高度 σ 的影响

Figure: 控制 ω 不变,改变 σ 的值,采用双精度值,在 r8、r12、i8 和 i10 矩阵上分别进行 3 次实验,观察 LaCSR5-SpMV 的性能变化。柱状 图每一簇从左到右分别代表 σ 的值为 8、12、16、20、24 时的 GFlops。

由图可见, $\sigma = 16$ 是最优的选择 (黄色柱)。

- 当 σ 过小时,不能充分利用 cache 的容量;
- 当 σ 过大时, tile desc 数组的长度会过长, 导致额外的 存储开销,且过大的分块会造成过多的片外访存。

LaCSR5: 基于 CSR5 的龙芯 3A5000 上的高效 SpMV

感谢专家评委的聆听和指导!

汇报人 项强