Introduction to Machine Leaning I

Dihui Lai

dlai@wustl.edu

March 24, 2019

CONTENT

- Supervised Learning v.s. Unsupervised Learning
- k-Nearest Neighbors
- Naive Bayes Classifier
- Overfitting & Corss-validation

Supervised Learning v.s. Unsupervised Learning

- Supervised Leaning: a model/algorithm that is built on a dataset that contains both input data and desired outcome. For example, logistic regression; linear regression.
- Unsupervised Leaning: a model/algorithm that is built on a dataset that contains both input data but no desired outcome. For example, K-mean clustering

Distance Metrics and Geometrics of Data

The distance between two data points \vec{x}^i and \vec{x}^j could be measured using different metrics:

Euclidean distance

$$d_{ij} = \sqrt{\sum_{k=1}^{n} \left(x_k^i - x_k^j\right)^2}$$

Manhattan distance:

$$d_{ij} = \sum_{k=1}^{n} | (x_k^i - x_k^j) |$$

Winkowski distance:

$$d_{ij} = \left(\sum_{k=1}^{n} (x_k^i - x_k^j)^q\right)^{1/q}$$

k-Nearest Neighbors

- Non-parametric classification/regression machine learning algorithm.
- Very easy to implement but can be useful.
- A decision is made based on the k closest-points in the training dataset. If k is too small (k = 1), the decision will be very noisy. If k is too large, neighbor includes too many data from other classes.

k-Nearest Neighbors Algorithm

Load the training and test data

Set the value of k to a reasonable value

For each point in test data:

- Calculate its distance (pick an appropriate metric like Euclidean, Manhattan etc.) to all training data points
- Sort the distances from low to high
- Choose the first k points in the training data
- Assign a class based on the majority of classes present in the chosen points (or take the weighted average for regression)

Joint Probability Distribution and Chain Rule

The joint probability distrution of two events can be discribed as

$$P(A,B) = P(A \mid B)P(B) = P(B \mid A)P(A)$$

If A and B are two indpendent events, then we have $P(B) = P(B \mid A)$ and $P(A) = P(A \mid B)$

• Chain Rule: Considering n random events X_1 , X_2 , X_3 ... X_n , their joint probability distribution can be described as

$$P(X_{n},...,X_{1})$$

$$= P(X_{n}|X_{n-1},...,X_{1})P(X_{n-1},...,X_{1})$$

$$= P(X_{n}|X_{n-1},...,X_{1})P(X_{n-1}|X_{n-2},...,X_{1})P(X_{n-2},...,X_{1})$$

$$= ...$$

Bayes' Theorem

Bayes' Theorem: given two random variables X and Y, the conditional probability of X given Y is expressed as:

$$P(Y \mid X) = \frac{P(X \mid Y)P(Y)}{P(X)}$$

Useful terminologies to interpret the equations: P(Y) is called prior, which is the belif in Y without any other knowledge. $P(Y \mid X)$ is the posterior taking into consideration of X. $P(X \mid Y)$ is the likelihood.

In a discrete case, the probability distribution of X can be calculated as $P(X) = \sum_i P(X \mid Y_i) P(Y_i)$

Baye's Theorem Example

Rain in California

You are planning a trip to california tomorrow. Unfortunately, the weatherman has predicted rain for tomorrow. You know in southern california, it only rains 5 days each year and there is a chance the weather man makes false predictions. You searched on line and find that when it rains, the weatherman correctly forecasts rain of 90% of the time. When it doesn't rain, he incorrectly forecasts rain 10% of the time. What is the probability that it will rain tomorrow.

Baye's Theorem Example

Solution: Denote the event that the weatherman forcast a raining day as F. The probability of rain given weatherman's forcast is

$$P(1 \mid F) = \frac{P(1)P(F \mid 1)}{P(F)}$$

Given that we have $P(F \mid 1) = 0.9$, $P(F \mid 0) = 0.1$, $P(1) = \frac{5}{365}$ and $P(0) = 1 - P(1) = \frac{360}{265}$. P(F) = P(F|1)P(1) + P(F|0)P(0), Therefore,

$$P(1 \mid F) = \frac{P(1)P(F \mid 1)}{P(F)} = \frac{\frac{5}{365} \cdot 0.9}{0.1109} = 0.111$$

Naive Bayes Classifier

The joint probability distribution of predictor \vec{x} and target variable y can be written as

$$p(x_1, x_2, ...x_n, y)$$

$$= p(x_1|x_2, x_3, ..., y)p(x_2, x_3, ..., y)$$

$$= p(x_1|x_2, x_3, ..., y)p(x_2|x_3, x_4, ..., y)p(x_3, x_4, ..., y)$$

$$= p(x_1|x_2, x_3, ..., y)p(x_2|x_3, x_4, ..., y)...p(x_{n-1}|x_n, y)p(x_n|y)p(y)$$

Assuming features are indepedent of each other but only dpendent on the target variable, then we have

$$p(x_1, x_2, ...x_n, y) = p(y) \prod_{i=1}^{N} p(x_i|y)$$

Naive Bayes Classifier

Using Bayes' theorem, we can get the conditional probability distribution of the target variable as

$$p(Y|X) = \frac{p(X,Y)}{p(X)}$$

Therefore, we have

$$p(Y|X) = \frac{p(y) \prod_{i=1}^{N} p(x_i|y)}{\sum_{y} p(y) \prod_{i=1}^{N} p(x_i|y)}$$

The denominator is constant if the features are know. p(y) and $p(x_i \mid y)$ can be calculated from the data. We need to find the y that maximize the $p(Y \mid X)$, i.e.

$$\hat{y} = \underset{y}{\operatorname{argmax}} p(y) \prod_{i=1}^{N} p(x_i|y)$$