Exercise 1

Let's first make up some arbitrarily chosen probabilities. We choose:

$$p(C=0) = 0.7$$
 , $p(C=1) = 0.3$
 $p(A=0|C=0) = 0.4$, $p(A=1|C=0) = 0.6$
 $p(b=0|C=0) = 0.17$, $p(b=1|C=0) = 0.13$
 $p(A=0|C=1) = 0.5$, $p(A=1|C=1) = 0.5$
 $p(b=0|C=1) = 0.2$, $p(b-1|C=1) = 0.8$

each line sums up to 1 as required by normalization

based on these probabilities, we can now create 2 tables for the conditional probability p(A, BIC) for C= 0 and C=d. Assuming Alb IC, we can use p(A, 61C) = p(AIC) · p(BIC)

to obtain

C=0

C=1

AB	PLAIC)	p(61C)	phole)					PLA, BIC)
0 0 1 1 1 1	0,4 0,4 0,6 0,6	017 013 017 013	0,28 0,12 0,42 0,18	0 0 1 1	0 1 0 1	0'2 6'2 6'2 6'2	012 08 012 018	0,1 0,4 0,1 0,4

Now, we can marginalize over C to compute

(analogously for plb)

*>	A B		P(A)	P(6)	PLA.B)	PLA). PLB)		
	0	0	0,43	0,55	0,26	4	0,2365	
	0	1	0,43	0,45	0,204	#	0,1335	
	1	0	0,57	0.55	0,324	#	013135	
	1	1	0,57	0,45	0,246	#	0,2565	

As one can see, p(A,B) > p(A) · p(B) in all 4 cases and thus An and b are not independent (A K B) although AIBIC holds

=> ALBIC does not imply ALC!