Natural Language Processing A short tutorial

Suresh Manandhar

suresh@cs.york.ac.uk

Alex – The virtual assistant

Natural language processing

- Ultimate goal -- build machines that can "understand" human language
- Speech vs Language Processing

Why is it hard?

- Ambiguity
 - Phonetic

I scream Ice cream

Syntactic

I saw the man with a telescope Flying planes can be dangerous Intelligent men and women

- Semantic
 - I went to the bank
- Pragmatic

Typical Stages in a NLU + Virtual Agent system

Classical NLP pipeline

Classical NLP pipeline

Deep learning pipeline

Statistical learning example

Spelling correction

- spelling errors common in user queries
 - e.g. "Tell me about the benfits?"
- types of errors:
 - Insertions (beinifits)
 - Deletions (benfits)
 - Transpositions (bnefits)
 - Repetitions (bennifits)
 - Replacements (benifits)
- Simple technique is edit distance

Edit distance

possible corrections

Edit distance = 1

Statistical spelling correction

t is the typo and **c** is the correct word

$$p(c \mid t) = \frac{p(t|c)p(c)}{p(t)}$$

Choose correct **C** using:

$$c^* = \arg\max_{c} p(c|t) = \arg\max_{c} p(t|c) \times p(c)$$

- p(t|c) is too sparse
- Approximate with p(error_type | prev_char)
- Corrects only single char. errors [Church et.al., 90]
- Extended to multi-error case [Brill & Moore,02]

Statistical spelling correction

• error word: acress

С	p(c)	error type	p(t c)	p(t c)p(c)	nearest %
actress	.0000315	p(del(t) c)	.000117	3.69 x 10 ⁻⁹	37%
cress	.00000014	p(ins(a) ` `)	.00000144	2.02 x 10 ⁻¹⁴	0%
caress	.0000001	p(tr(c) a)	.00000164	1.64 x 10 ⁻¹³	0%
access	.000058	p(rep(c) r)	.000000209	1.21 x 10 ⁻¹¹	0%
across	.00019	p(rep(o) e)	.0000093	1.77 x 10 ⁻⁹	18%
acres	.000065	p(ins(s) e)	.0000321	2.09 x 10 ⁻⁹	21%
acres	.000065	p(ins(s) s)	.0000342	2.22 x 10 ⁻⁹	23%

- estimate probabilities from real data
- incorporate domain data automatically

Statistical spelling correction

• error word: acress

С	p(c)	error type	p(t c)	p(t c)p(c)	nearest %
actress	.0000315	p(del(t) c)	.000117	3.69 x 10 ⁻⁹	37%
cress	.00000014	p(ins(a) ` `)	.00000144	2.02 x 10 ⁻¹⁴	0%
caress	.0000001	p(tr(c) a)	.00000164	1.64 x 10 ⁻¹³	0%
access	.000058	p(rep(c) r)	.000000209	1.21 x 10 ⁻¹¹	0%
across	.00019	p(rep(o) e)	.0000093	1.77 x 10 ⁻⁹	18%
acres	.000065	p(ins(s) e)	.0000321	2.09 x 10 ⁻⁹	21%
acres	.000065	p(ins(s) s)	.0000342	2.22 x 10 ⁻⁹	23%

- estimate probabilities from real data
- incorporate domain data automatically
- Lab Implement above algorithm

Vector Space Models / Word Embeddings

Distributional Hypothesis

Distributional Hypothesis (Harris, 1954)

Words that occur in similar contexts tend to have similar meanings i.e. meaning of a word can be defined in terms of its context.

Word Space Model (WSM)

Meaning of a word is represented as a co-occurrence vector built from a corpus

[I went to buy an] apartment [but the price was high]						(5 word context)		
		vector dimensions						
		animal	buy	apartment	price	rent	kill	
Hot	ıse	⟨ 30	60	90	55	45	10 >	
Hur	nting	⟨ 90	15	12	20	33	90 〉	

Typically replace counts with PMI or PPMI (positive PMI)

Instead of using counts we can use other measures

Conditional probability

$$p(y|x) = \frac{p(y,x)}{p(x)} = \frac{\#(y,x)}{N} \frac{N}{\#(x)} = \frac{\#(y,x)}{\#(x)}$$

- Conditional probability gives a measure of directional/asymmetric association
- For window based VSMs, frequent words will have a detrimental effect i.e. if y is frequent
- Pointwise mutual information (PMI) is a symmetric measure

$$pmi(x,y) = \log\left(\frac{p(x,y)}{p(x)p(y)}\right) = \log\left(\frac{\#(x,y)}{N} \frac{N}{\#(x)} \frac{N}{\#(y)}\right) = \log\left(\frac{\#(x,y)}{\#(x)\#(y)} N\right)$$

- Insensitive to frequent words but can give negative values
- Positively shifted PMI (PPMI) gives smoothed positive values:

$$ppmi(x, y) = \log\left(1 + \frac{p(x, y)}{p(x)p(y)}\right)$$

Vector Space Model (VSM) for words

So, we could represent the meaning of a word as a very long vector:

Vocabulary = < animal, buy, apartment, price, rent, kill, > (all words in dict)

```
House = < 0.1, 0.2, 0.3, 0.16, ..... >
Hunting = < 0.3, 0.07, 0.05, 0.02, ..... >
Apartment = ??
```

Vector Space Model (VSM) for words

So, we could represent the meaning of a word as a very long vector:

Vocabulary = < animal, buy, apartment, price, rent, kill, > (all words in dict)

Which one is more likely?

Vector Space Model (VSM) for words

So, we could represent the meaning of a word as a very long vector:

Vocabulary = < animal, buy, apartment, price, rent, kill, > (all words in dict)

House = < 0.1, 0.2, 0.3, 0.16, > Hunting = < 0.3, 0.07, 0.05, 0.02, >

Given the distributional hypothesis we expect that it is more likely:

Apartment = < 0.1, 0.18, 0.32, 0.10, > ---- 1

VSM as a meaning representation in vector space

- The VSM is an explicit representation that is high dimensional (~ vocabulary size > 30,000)
- It is also very sparse (with most entries 0). Why?

Similarity in meaning between two words

- VSMs can recover the similarity in meaning between words e.g. using cosine similarity or KL/JS divergence
- Can be used instead of WordNet
- Thus, we expect cos(book, novel) to be high

$$cos(A,B) = \frac{A.B}{|A||B|}$$

Issues with VSMs

- However, VSMs suffer from sparsity issues and generalise poorly
- Why?

Issues with VSMs

- However, VSMs suffer from sparsity issues and generalise poorly
- Why?
- To fill all the elements of a high dimensional vector, you will need a huge amount of data.
- So, using VSMs is not an ideal solution.
- What would be a better solution?

Issues with VSMs

- However, VSMs suffer from sparsity issues and generalise poorly
- Why?
- To fill all the elements of a high dimensional vector, you will need a huge amount of data.
- So, using VSMs is not an ideal solution.
- What would be a better solution?
- Ideally would want a lower dimensional representation
- that generalises better (i.e. can work with smaller datasets)

Word/Sentence Embeddings – General ideas

We can set the problem of learning word/sentence meanings as a machine learning task that requires some semantic interpretation:

– The dog ____ the cat?

(fill in the blank)

I went to the party wearing a nice _____

(predict the next word)

- {big, the, fat, my } dog { like, chases, bites, eats} (predict left/right context word)

I heated the food / The food got hot

(entails/contradicts/unrelated)

Word/Sentence Embeddings – General ideas

- We can set the problem of learning word/sentence meanings as a machine learning task that requires some semantic interpretation:
 - The dog ____ the cat? (fill in the blank)
 - I went to the party wearing a nice _____ (predict the next word)
 - {big, the, fat, my } dog { like, chases, bites, eats} (predict left/right context word)
 - I heated the food / The food got hot (entails/contradicts/unrelated)
- For each of these tasks we can generate a training dataset containing the correct and incorrect predictions.
- For example:
 - [the, dog] [the, cat] → chases (+ example) should give high probability
 - [the, dog] [the, cat] → bites (+ example) should give high probability
 - [the, dog] [the, cat] → buy
 (- example) should give low probability
- Think of the → as a machine learning model that we train using our training data

Word Embeddings – The setup

- Transfer learning using pre-trained embeddings (e.g. word2vec, GloVe)
- Domain specific learning
- Combination

Classwork – Lets design some word embedding models

For example:

```
- [the, dog] [the, cat] → chases (+ example) should give high probability
- [the, dog] [the, cat] → bites (+ example) should give high probability
- [the, dog] [the, cat] → buy (- example) should give low probability
```

Word2vec

- word2vec is a very popular word embedding learning toolkit
- It can generate several different variants of embeddings depending upon the settings

Skip-gram Embeddings

- Trained to learn the context word prediction task:
 - {big, the, fat, my } dog { like, chases, bites, eats} (predict left/right context word)
- Let the training data $D = \{\langle w, c, c_N \rangle\}_1^{|D|}$ where
 - w is the target word
 - c is a context work
 - $-c_N$ is a list of negative context words typically sampled randomly
- The context words can be arbitrary e.g. words within a window, words connected by a parse tree
- Each word w is associated with two embeddings word embeddings \overline{w} , and its context embedding $\overline{w_c}$
- Similarly, each context c is associated with two embeddings word embeddings $\overline{c_w}$, and its context embedding \overline{C}

Skip-gram Embeddings

The per training example likelihood becomes:

$$p(w, c, C_N) = p(\langle w, c \rangle) \prod_{c_i \in C_N} (1 - p(\langle w, c_i \rangle))$$

Per example, log likelihood can be written as:

$$log(p(w,c,C_N)) = log(p(w,c)) + \sum_{c_i \in C_N} log((1 - p(\langle w, c_i \rangle)))$$

$$= log(\sigma(\overline{w}.\overline{c})) + \sum_{c_i \in C_N} log((1 - \sigma(\overline{w}.\overline{c}_i)))$$

$$= log(\sigma(\overline{w}.\overline{c})) + \sum_{c_i \in C_N} log(\sigma(-\overline{w}.\overline{c}_i))$$

[Aside] Derivative of the log of sigmoid:

$$\frac{\delta}{\delta x} log(\sigma(x)) = \frac{\delta}{\delta x} log\left(\frac{1}{1+e^{-x}}\right) = \frac{\delta}{\delta x} [log(1) - log(1+e^{-x})]$$
$$= -\left(\frac{1}{1+e^{-x}}\right) (-e^{-x}) = \frac{e^{-x}}{1+e^{-x}} = \sigma(-x) = 1 - \sigma(x) = \sigma(-x)$$

Derivative with respect to the word embedding/vector:

$$\frac{\delta}{\delta \overline{w}} log(p(w, c, C_N)) = \frac{\delta}{\delta w} \left[log(\sigma(\overline{w}.\overline{c})) + \sum_{c_i \in C_N} log(\sigma(-\overline{w}.\overline{c}_i)) \right]$$

$$= \sigma(-\overline{w}.\overline{c})(\overline{c}) + \sum_{c_i \in C_N} \sigma(\overline{w}.\overline{c}_i)(-\overline{c}_i)$$

$$= \sigma(-\overline{w}.\overline{c})\overline{c} - \sum_{c_i \in C_N} \sigma(\overline{w}.\overline{c}_i)\overline{c}_i$$

Derivative with respect to the context embedding/vector:

$$\frac{\delta}{\delta \overline{c}} log(p(w, c, C_N)) = \frac{\delta}{\delta w} \left[log(\sigma(\overline{w}.\overline{c})) + \sum_{c_i \in C_N} log(\sigma(-\overline{w}.\overline{c}_i)) \right]$$
$$= \sigma(-\overline{w}.\overline{c})(\overline{w})$$

Derivative with respect to the context embedding/vector for the negative sample:

$$\frac{\delta}{\delta \overline{c_i}} log(p(w, c, C_N)) = \frac{\delta}{\delta w} \left[log(\sigma(\overline{w}, \overline{c})) + \sum_{c_i \in C_N} log(\sigma(-\overline{w}, \overline{c_i})) \right] \\
= \sigma(\overline{w}, \overline{c_i})(-\overline{w})$$

Stochastic gradient descent algorithm

- For each input word w
- Sample k negative contexts C_N (e.g. sample from top k most frequent words)
- Repeat for each context word c of w:

$$ar{w} \coloneqq ar{w} + \eta \left(\sigma(-ar{w}.ar{c})ar{c} - \sum_{c_i \in C_N} \sigma(ar{w}.ar{c_i})ar{c_i} \right)$$
 $ar{c} \coloneqq ar{c} + \eta \left(\sigma(-ar{w}.ar{c})(ar{w}) \right)$

For each $c_i \in C_N$:

$$\overline{c_i} \coloneqq \overline{c_i} - \eta \big(\sigma(\overline{w}. \overline{c_i})(\overline{w}) \big)$$

- Move pointer to the next word
- Stop after a fixed number of iterations

Dependency Parsing

Dependency based word embeddings

Target - cup

Context words:

She, asked, for, a, of, coffee

Syntactic contexts (edges):

for:nmod⁻¹_asked, case_for, det_a, of:nmod_coffee

from [Komninos and Manandhar, 2016]

Analogy tasks

- Analogy between words:
 - woman man ≈ queen king
 - king man + woman ≈ queen

- England London + Baghdad = ? Iraq
- Equivalently:

$$arg \max_{B'} cos(B', England - London + Baghdad)$$

Directional similarity

Directional similarity example

Skipgram embeddings ~ Matrix factorization

■ The skipgram model learns a matrix factorization of the PMI matrix

Skipgram embeddings ~ Matrix factorization

The skipgram model learns a matrix factorization of the PMI matrix shifted by a global constant

Sequence Classification tasks in NLP

Typically want to classify a whole sentence or each word of a sentence.

- Named entity recognition
- Relation extraction
- Part of Speech tagging
- Sentiment analysis

Named entity recognition

Relation Extraction

Source: http://news.bbc.co.uk/1/hi/uk/222225.stm 30 September 2008: Norwich City [ORG.SPO] v Birmingham City [ORG.SPO]: Twenty Birmingham fans [PER.Group] sprayed rival supporters with CS gas [WEA] and attacked them with bar stools in a pub. Identified relations **Relation Extraction** R1: [Twenty Birmingham fans, Birmingham City FC] – Membership R2: [Twenty Birmingham fans, CS gas] – Chemical weapon possession R3: [Twenty Birmingham fans, bar stools] – Weapon possession

Sequence Classification tasks in NLP

Coarse grained sentiment analysis

Sentiment class labels:

Negative Positive

Examples:

The food was not that bad: Positive

The food was great: Positive

The food was OK : Positive

I hated the curry : Negative

Embeddings as latent features

- We can replace words with their corresponding embeddings.
- But how can be encode a variable length sentence into a fixed length vector

Computing Sentence Representations

- There are multiple possibilities.
- Sum the vectors and compute average

$$\mathbf{s} = egin{bmatrix} \mathbf{w}_1 & \dots & \mathbf{w}_s \end{bmatrix}$$

Compute row wise max

$$\mathbf{c}_{max} = egin{bmatrix} \max(\mathbf{c}_{1,:}) \ & \vdots \ \max(\mathbf{c}_{d,:}) \end{bmatrix}$$

Task specific representation CNN architecture

The cat sat on the red mat

CNN example

The convolution and pooling layers learn the correct syntactic structure and how these need to be combined (from [Kalchbrenner et. al. 2014])

Coarse grained sentiment analysis

Embeddings	SVM	CNN	LSTM	
Win5 Words	80.1	83.5	76.1	
Win5 AvgE	79.5	83.2	76.9	
Win5 ConcE	80.3	82.9	77.6	
LG Words	78.5	84.5	77.2	
LG Dep	76.0	76.8	69.1	
LG Wavg	78.9	82.0	78.6	
LG Conc	79.8	82.7	79.7	
EXT Words	80.5	84.1	77.6	
EXT Dep	77.7	77.2	69.6	
EXT Wavg	80.6	84.6	75.7	
EXT Conc	80.6	83.5	79.8	
CNN-multichannel	88.1			

Compositional Semantics – Long distance dependencies

- Lord of the Rings, I read.
- Lord of the Rings, I managed to read.
- Lord of the Rings, I believe John managed to read.
- I believe Lord of the Rings, John managed to read.
- [Lord of the Rings]_i, I read ___i.
- [Lord of the Rings]_i, I managed to read ___i.
- [Lord of the Rings]; I believe John managed to read ___i.
- I believe [Lord of the Rings]_i, John managed to read ___i.
- Doing deep compositional semantics is still a challenge for current machine learning methods

Constraints on gaps

Gaps must be strictly subcategorised

- *Kim_i, Sandy loves Bill ___i.
- Sandy loves the man in the grey suit.
- *[in the grey suit]; Sandy loves the man ___;

Syntactic barriers on gaps

- Mary ordered cake and soda.
- *What; did Mary order cake and ___; (co-ordinate structure)
- John saw Mary's brother.
- *Whose; did John see ___; brother ? (possesive NP)
- That John liked Mary surprised everyone.
- *Who; did that John like __; surprise everyone? (sentential subject NP)

Sequence models

Recurrent nets (RNNs)

- Tremendously popular for many tasks
- Model of choice within NLP for sequence modelling tasks:
- Shared parameter (single cell)
- Cell is <u>unrolled</u> to feed a sequence input
- Each cell can remember some information
- Pass this to the next cell

Issues with standard RNNs

- As the item to remember becomes too far
- Standard RNNs have problem keeping this information
- e.g. Language modelling problem 'I grew up in Nepal, I speak fluent ...'

- A LSTM consists of two internal states
 - Cell state (memory to carry forward)
 - Hidden state (current state to output)
- And a number of gates
 - Input gate (decides how much of previous cell state to carry forward)
 - Forget gate (how much of the current hidden state to mix with the previous cell state)
- Output gate (how much of the new cell state to output as the new hidden state)

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Hidden state h

- A LSTM has more precise control of:
 - how much of previous memory (cell state) to keep
 - how much of previous hidden state + current input to store into memory (cell state)
 - how much of the new cell state and combined input + previous hidden state to output as the new hidden state

Using LSTM networks in NLP applications

- A GRU has fewer parameters (2 sigmoid, 1 tanh vs 2 sig, 2 tanh):
 - Input gate is same as before
- Amount to forget from previous hidden state = 1 amount to add from new hidden state
- No cell state. Just hidden state
- Simpler equations

Using LSTM networks in sequence labelling applications

Source: Nils Reimers and Iryna Gurevych. Optimal Hyperparameters for Deep LSTM-Networks for Sequence Labeling Tasks

Using LSTM networks in sequence labelling tasks

- ■The BiLSTM architecture is a popular architecture for sequence labelling problems such as:
 - PoS tagging, NER (Named Entity Recognition), sentiment analysis tasks

Source: Nils Reimers and Iryna Gurevych. Optimal Hyperparameters for Deep LSTM-Networks for Sequence Labeling Tasks

Reimers and Gurevych BiLSTM results

Task	Dataset	Training sentences	Test sentences	#tags
POS	WSJ	500	5459	45
Chunking	ConLL 2000 (WSJ)	8926	2009	23
NER	CoNLL 2003 (Reuters)	13862	3420	9
Entities	ACE 2005	15185	674	15
Events	TempEval3	4090	279	3

Dataset	Le. Dep.	Le. BoW	GloVe1	GloVe2	GloVe3	Komn.	G. News	FastText
POS	6.5%	0.0%	0.0%	0.0%	0.0%	93.5%	0.0%	0.0%
$\Delta Acc.$	-0.39%	-2.52%	-4.14%	-4.97%	-2.60%		-1.95%	-2.28%
Chunking	60.8%	0.0%	0.0%	0.0%	0.0%	37.1%	2.1%	0.0%
ΔF_1		-0.52%	-1.09%	-1.50%	-0.93%	-0.10%	-0.48%	-0.75%
NER	4.5%	0.0%	22.7%	0.0%	43.6%	27.3%	1.8%	0.0%
ΔF_1	-0.85%	-1.17%	-0.15%	-0.73%		-0.08%	-0.75%	-0.89%
Entities	4.2%	7.6%	0.8%	0.0%	6.7%	57.1%	21.8%	1.7%
ΔF_1	-0.92%	-0.89%	-1.50%	-2.24%	-0.80%		-0.33%	-1.13%
Events	12.9%	4.8%	0.0%	0.0%	0.0%	71.8%	9.7%	0.8%
ΔF_1	-0.55%	-0.78%	-2.77%	-3.55%	-2.55%		-0.67%	-1.36%
Average	17.8%	2.5%	4.7%	0.0%	10.1%	57.4%	7.1%	0.5%

Training data sizes: GloVe3 840B Komn. 2B

- Nils Reimers and Iryna Gurevych (2017), see arxiv:
 - Optimal Hyperparameters for Deep LSTM-Networks for Sequence Labeling Tasks
 - Reporting Score Distributions Makes a Difference: Performance Study of LSTM-networks for Sequence Tagging

Classwork – Design LSTM word embedding model

For example:

```
- [the, dog] [the, cat] → chases (+ example) should give high probability
- [the, dog] [the, cat] → bites (+ example) should give high probability
- [the, dog] [the, cat] → buy (- example) should give low probability
```

Encoder-Decoder Architectures

- The encodes the whole sentence into a compressed representation w
- The decoder starts decoding w
- At each step the decoder is fed the previous word to generate the next word
- The decoding stops once the *End of Sentence* (**EOS**) token is generated.
- This simple architecture does a good job for *machine translation*.
- By training the decoder to generate the input sentence itself this architecture can be used to learn a sentence representations

Source: Sutskever, Vinyals and Le. Sequence to Sequence Learning with Neural Networks

Attention based models

- **Network B** is your output network (here a RNN)
- **Network A** is the input network
- The input to B is now a weighted combination of the output from A

Attention based models

- At each step, *similarity* between the <u>hidden output from B</u> and the output from A is computed
- The similarity scores are fed to a softmax unit to find the most similar items from A
- Multiply gate is used to generate a linear combination of most relevant outputs from A Source: Olah and Carter https://distill.pub/2016/augmented-rnns/

Attention based models

Diagram derived from Fig. 3 of Bahdanau, et al. 2014

- ■The attention mechanism generates a simpler architecture compared to the encoder-decoder setup
- ■In the encoder-decoder setup, the encoder has to summarise the whole sentence into a single vector
- ■In the above architecture, there is a closer connection between the input and the output
- ■This results in better gradient flow and hence better performance on machine translation tasks

Slides Credits [some slides are from]:

Kalchbrenner N., Grefenstette E., Blunsom P. A Convolutional Neural Network for Modelling Sentences. ACL 2014.

Alexandros Komninos and Suresh Manandhar. Dependency based embeddings for sentence classification tasks. NAACL 2016.

Omer Levy and Yoav Goldberg. Neural word embeddings as implicit matrix factorization. NIPS 2014.

Omer Levy

Christopher Olah https://colah.github.io/posts/2015-08-Understanding-LSTMs Olah and Carter https://distill.pub/2016