

Email: kaivan.karimi@freescale.com

Blog: https://community.freescale.com/community/the-embedded-

beat/blog/authors/kaivankarimi

Creating The First Secure Service Delivery Infrastructure For The Internet of Things (IoT)

Kaivan A. Karimi

Executive Director, Global Strategy and Business Development

October 2013

Processes, the Processe logo, AltiMer. C-5. Code/RST, Code/Martin, Cold/Inc., Cold/Inc., C-Wen, the Invest Efficient Solutions Inpo-Kineto, mobile ST, PDS, PowerCUCC, Printestor Expert, Darlin, Crasivos Sale-Assam the SafeAssure logic Similars, Symphony and Vis VQs are trademarks of Prensule Servicembactor, Inc., Reg. U.S. Pat. & Tin. Off. Airfort, Breefit, ReeStack, CoveNet, Flexis, Layerscape, Magnik, MXC, Plotform in a Peckage: QuelQ Gorverge, QUEC Engine, Ready Plop, SMARTWES, Tower, Turbullink, Vybrid and Xirinaic are trademarks of Freescale Socioconductor, Inc. All other product or senere names are the property of their respective moners: © 2013 Exercise Semiconductor, Inc.

Typical Views of IoT: Generalized

Building Automation

Smart City

Smart Lighting

Smart Grid

Smart Health

Industrial Automation

ToT is More Than M2M

Machine to Machine

Machine to Infrastructure

Machine to Environment

Machine to Human

Cellular-Centric View

NP

Second View Pervasive Remote Monitoring and/or Control

New breed of heirarchical

gateways

connecting tiny sensing nodes to the Cloud using the most efficient ways to make the connection

Fundamental Difference

Existing ISP Providers Believe in this Model

Typical Views of IoT: Generalized

Today We Believe the Model Should Look Like

Typical Views of IoT: Generalized

In the Future We Believe the Model Will Look Like

We Sell Hammers, So Everything Looks Like a Nail to Us

Cellular "pipes" issues for IoT:

- Laws of Physics: frequency, range, BW, data rates, power, in-building penetration, etc.
- Spectrum cost
- Capacity
- Field deployment for battery operation (total cost of ownership)
- Cost of devices
- Others

Internet of Things
Different Services,
Different Technologies

Different Meanings for Everyone

And the Word "SMART" Is Everywhere!

Sensing Accelerometer

Magnetometer
Magnetometer
Gyroscope
Pressure
Altimeter
Temperature etc.

Embedded Processing

MCU MPU Hybrid MCU/MPU Network Processor Connectivity

NFC GPS 6LoWPAN BT/BTLE Sub-Gig Wi-Fi® ZigBee® RFID Cellular

Technology

infrastructure of the Internet of Things

Infrastructure of the Internet of Things The Challenge

Most parts of this infrastructure and, to the greatest extent, the edge nodes use different technology nodes, different tool sets, different development environments, different levels of security competence and resources, even different programming languages

Infrastructure of the Internet of Things The Solution

Java technology to embrace the entire system and unify the Internet of Things, even down to the tiniest and most resource-constrained edge/sensing nodes

Edge Nodes

Java to enable the developers of the edge nodes with the same solution categories as the rest of the network

Edge Nodes

There are as many types of edge nodes as there are applications, however all could/would include:

- An MCU
- Sensors (and actuators)
- Integrated connectivity
- Energy source

These nodes need to be:

- Very small
- Low cost
- Low power
- Low complexity
- Industrial-grade and robust

One Box: Connecting the Cloud to the Tiniest Sensing/Edge nodes

versity Of Service Providers For The Smart Home

one Box Means Integrating All "Boxes" Into One: Connecting the Cloud to the Tiniest Sensing Devices

BAN/PAN/LAN/HAN Side NAN/WAN Side **Display Superset of Standards Superset of Standards** (((Switching & **Bluetooth** Ethernet / Fiber Routing (() Wireless Zigbee, 802.15.4 Wired & Wireless Weightless **Protocol** WiFi, DASH7, Conversion (() 802.11ah **ISA100** Firew **Wired &** Secu all & (() Cellular Wireless HART. **VPN EnOcean** Sub Gig (() One Box Wireless MBus Satellite Gateway Ethernet, EtherCAT. PLM/PLC (G3, Collection of Profinet, Modbus, Cloud **Storage** Prime, etc.) edge/sensing **HPGP** Etc. node devices **UART. SPI. I2C. USB. X10.** Etc. RS-485, RS-422, RS-232, etc. What Devices to What Cloud **What Short-range Targeting CPE Monitor/ Control Device Access Link Access Link**

Optimize the communications, processing, and storage requirements of all stakeholders (i.e. telco providers, security, utility, energy, automation, control, and other future service providers), @Home, @Factory, @Hospital, or other target facilities / environments

Industry 4.0: Germany Leading Manufacturing IoT

The Four Stages of the Industrial Revolution

First production line, Cincinnati slaughterhouse 1870

2. Industrial revolution follows introduction of electricity-powered mass production based on the division of labor

First programmable logic controller (PLC), Modicon 084 1969

3. Industrial revolution uses electronics and IT to achieve further automation of manufacturing

4. Industrial revolution based on Cyber-Physical Systems

First mechanical loom 1784

1. Industrial revolution follows introduction of waterand steam-powered mechanical manufacturing facilities

Complexity and Productivity Growing

End of 18th century

Start of 20th century

Start of 1970s

Today

Time →

Source: Recommendations for implementing the strategic initiative INDUSTRIE 4.0, Germany's Forschungsunion, acatech, April 2013, Augmented with the red graphics

Complexity —

mdustrial Automation and Control Network Topology

mdustrial Ethernet Requirement: Determinism

- Speed
 - Sub-millisecond to over 100 milliseconds for message delivery, depending on the application type

Internet

- Determinism (repeatable message delivery)
 - Jitter from <1 microsecond to 10 milliseconds

BAN/PAN/LAN/HAN Wireless Connectivity

	LAN / BAN / PAN / HAN	Topology	Power	Modulation Scheme	Operatin g Band	# of nodes	Data Rate	Range	Application	Cost Adder	Standard
	Bluetooth	Star	Low	GFSK and 8DPSK	2.4-2.48G	8	700kbs	< 30m	Network for data exchange, headset	low	IEEE 802.15.1
ner	Bluetooth Low Energy (BTLE)	Star	Very Low	DSSS	2.4-2.5G	App specific	1Mbps	5-10m	Health and Fitness	low	Bluetooth v4.0
Consumer	Z-wave	Mesh	Very Low	GFSK	908M	up to 232	40Kbs	30m	Residential lighting and automation	low cost	NA
ŏ	DASH7	P2P - BLAST	Very low	GFSK or FSK	433MHz	up to 8	< 200kbps	< 2km	Wireless sensor; Building automation, Smart energy	medium	ISO/IEC 18000-7
	EnOcean	Mesh	Very low	Amplitude SK	315MHz, 868.3MHz	1000s	125kbps	30-300m	Energy harvesting applications	low	ISO/IEC 14543-3- 10
Consumer & Industrial	ZigBee	Mesh, Star, Tree	Very Low	DSSS and PSK	2.4G	up to 250	250kbs	10-300m	Sensor Networks, Building & Industrial Automation	medium	IEEE 802.15.4
Consu	Wi-Fi	Star, P2P (wifi direct)	Low-High	DSSS	2.4G-5.8G	32	11-100Mbs	4-200m	Internet, multimedia	medium	IEEE 802.11a, b, g, n, ah
le le	ISA100.11a	Mesh, star	Very low	TDMA, channel hopping, Configurable time slot	2.4GHz	Unlimited (IPv6 addresing)	250kbps	200m	Industrial wireless networks (process control, asset tracking, ID)	High	ANSI/ISA100.11a- 2011
Industrial	Wireless HART	Mesh, Star	Very Low	TDMA, channel hopping, Fixed time slot	2.4GHz	< 30,000 devices	250kbps	200m	Wireless communication for process control	High	IEC 62591-1
	Wireless Mbus	Linear, Star	Low	FSK	169MHz, 433MHz, 868Mhz	Up to 250	2.4kbps	300m-1km	Smart grid, smart metering	medium	EN13757-4:2005 and 2012

NAN/WAN Wireless Communications

	WAN / NAN	Topology	Power	Modulation Scheme	Operatin g Band	# of nodes	Data Rate	Range	Application	Cost Adder	Standard
	Weightless (TV White Space)	Mesh	very low	Time-division Duplex (TDD)	Unused TVWS	96	0.1-16Mbs	up to 10Km	Smart machines to Internet	low	Weightless SIG
Industrial	ETSI-TV White Space	Mesh	very low	OFDM	Unused TVWS (470- 790MHz)	Many	1.6Mbps	up to 10Km	Smart machines to Internet	low	ETSI EN 301 598
	802.15.4m (TV White Space)	Peer-peer or Star	very low	FSK, OFDM, OFDM Narrow Band	Unused TVWS (54- 862MHz)	Many	50k-1.6Mbps	up to 10Km	Smart machines to Internet	low	IEEE 802.15.4m/D3
er and	Wi-Fi	Star, P2P (wifi direct)	Low-High	DSSS	2.4G-5.8G	32	11-100Mbs	4-200m	Internet, multimedia	medium	IEEE 802.11a, b, g, n, ah
Consumer	Wimax	Mesh	High	Scalable OFDM	2.3G, 2.5G, 3.5G	1000's	11-100Mbs	50km	Metro area broadband internet connectivity	high	IEEE 802.16
Cons	Sub Ghz & 2.4GHz	Star, Mesh	Very Low to Low	Varies	433/868/900 MHz; 2.4GHz	10-1000	250kbs	10-70m	point to point connectivity	medium	N/A
	Cellular	Star	High	CDMA, GMSK, OFDMA, MF-TDMA	800M-2.7GHz	Varies	28kbps (1G) to 100Mbps (LTEA)	up to 30km	Cellular communications - voice and data	high	1G, 2G, 3G, 4G LTE, LTEA

wired Connectivity (1)

	LAN / BAN / PAN / HAN	Topology	Power	Modulation Scheme	# of nodes	Data Rate	Range	Application	Cost Adder	Standard
	HomePlug Green PHY (HPGP)	Mesh	Medium (4W)	Repeating node/OFDM	up to 1155	4Mbps	100m (excellent)	Building control and automation, EV charging	high	IEEE 1901
mer	HomePlug AV	Mesh	High (15W)	Point-ponit OFDM	up to 1155	120Mbps	100m (excellent)	Multi-media	Very high	IEEE 1901
Consumer	UART (serial communication)	Simplex, full- duplex	Medium	Non-Return to Zero (NRZ)		< 3Mbps	1-10m	Periphery - computer	medium	EIA, RS-232, RS- 422, RS-485
	USB (serial communication)	Simplex, full- duplex	Medium	Spread Spectrum	< 128	480Mbps (USB 2.0) 5Gbps (USB 3.0)	2-5m	Periphery - computer	medium	USB Standard
ial	Ethernet	Line, Star, Tree	High	PAM or PWM	Many	10Mbps- 1Gbps (futrue: 10- 100Gbps)	< 100m (100, 1000Base-T), < 250m (10Base- T)	Factory, Home, Industrial	medium	IEEE 802.3
Industrial	BACnet (MS-TP) and BACnetIP (Ethernet)	Line, Star	low-high	PAM or PWM	Many	1-100Mbps	10-150m (data rate dependent)	Building Automation and Control	medium	ISO 16484-5
ner &	KNX	Line, Star	High	FSK	up to 64 on one bus	9.6Kbps	< 350m	Home automation and smart metering	medium	EN 50090, ISO/IEC 14543
Consumer	LONWorks (Local Operating Network)	Free	Medium	Differential Manchester Encoding FM	32,000 nodes/do main	3.6-5.4Kbps	< 130m	Building automation/ building management	medium	IEEE 1473-L
	DALI (Digital Addressable Lighting Interface)	Bus and/or Star	Low	Manchester Encoding	upto 64	1200bps	300-600m	Lighting control and building automation	low	IEC 60929

wired Connectivity (2)

			1							
	PRIME (Power Line	Mesh, dual- mesh	Low (2W)	Repeating node/OFDM	up to 65535	40-125Kbps	1km (good)	Industrial control and smart grid	medium	ITU T G.9904
	G3 (PLC)	Mesh, dual- mesh	Low (2W)	Repeating node/OFDM	up to 65535	40-125Kbps	1km (good)	Industrial control and smart grid	medium	ITU G.9955
	IEEE 1901.2 (PLC) Mesh, dualmesh		Low (2W)	Repeating node/OFDM	up to 65535	125Kbps	1km (very good)	Industrial control and smart grid	high	IEEE 1901.2
	PROFINET (PROcess Field NETwork)	Tree, Star, Ring, Bus	Medium	Ethernet IEEE 802.3	Many	10Mbps	10Mbps < 100m Office, Factory and automatio		high	IEC 61158 and IEC 61784
	EtherCAT (Control Automation	Line, Star, Tree	High	Ethernet IEEE 802.3	up to 65535	> 100Mbps	< 100m	Factory and process automation	medium	IEEE 802.3
Industrial	EtherNET/IP (Industrial Protocol)	Line, Star, Tree	High	Ethernet IEEE 802.3	Many	10M-1Gbps	100-250m	Industrial automation and commumnication		IEEE 802.3
	Ethernet POWERLINK	Line, Star, Tree, daisy chain	High	Ethernet IEEE 802.3	Many	10M-1Gbps	100-250m	Factory and process automation		IEEE 802.3
	IO-Link	Point-point	low	RS232	point to point	230Kbps	20m cable	industrial sensors and actuators		IO-Link
	PROFIBUS	Bus, Tree, point-point	low	RS485 differential	127	up to 12Mbps	100m-1.2Km (data rate dependent)	Factory and process automation	high	IEC61158
	CAN Open	Line	low	CAN bus	< 2000	1 Mbps	50m full speed andup	Factory and process automation	medium	CAN
_	AS-interface	Line, tree, star	high	Alternating Pulse Modulation	62	1.2 kbps	100m segments	Factory and process automation	high	IEC 364, etc
	HART	multidrop	low	4/20mA; 8PSK	up to 15	1.2kbps	up to 3 km (load dependent)	Factory and process automation	high	HART
	RS-485	Point-point, multi-drop	Medium	FSK, others possible	32	35Mbps	1.2km	Industrial controls, Building automation	low	ANSI/TIA/EIA- 485-A-1998

Communication Topologies Across Hierarchies

Scalability, Segment and Use Case Requirements

Processing Density Requirements

- Single dwelling vs. apartment building, enterprise campus or distributed factory automation
- · Position in the hierarchy of the gateway topology
- Application specific requirements (e.g., video surveillance vs. moisture monitoring sensors in the field)
- · Legacy technology support vs. green field

Vertical Market Requirements

- Low-latency for real-time control vs. delay tolerant applications
- Consumer and home vs. industrial and manufacturing environment
- Choice of standards for each, wired and wireless communication technologies
- Legacy standards support vs. new up-andcoming standards
- Memory management requirements

Use Case Requirements

- Inside home or office vs. in the field
- Consumer specifications vs. industrial, automotive, etc.
- Home and office vs. rail systems, inside oil tankers or extreme environmental conditions, etc.
- Associated specs related to environmental conditions related to the quality of service and longevity

Additional Considerations

Co-existence With Legacy Standards

- Almost all of the existing markets have entrenched legacy standards
- The evolutionary path in non-green-field markets means a transition period were existing and future standards both need to be supported
- Gateway box needs to support both, and have a "Protocol Conversion" function that supports various topologies, depending on use cases
- It also needs to have modularized HW and SW that can easily support a cost reduction path with only the newer targeted standards

Flexible memory scheme to offload some of data center functionalities

- Not just data aggregation, but local command and control processing based on pre-set conditions, and communication with the cloud in case of:
 - · Exception handling
 - Upload of data for history on an infrequent basis, and meta data for big Data Analytics
 - Added memory to support data collection

Local Data Analytics

overlapping Services/Functions

Smart Home

Focus on home automation, but includes energy management

Smart Car

Charging electric vehicles (EV) can be done in the home garage, making the car a part of the grid

Smart Energy

Focus on reducing energy consumption at a variety of facilities, including at home

Smart Grid

Focus on optimizing grid utilization

IoT services will tie some of the overlapping functions together:

- · The Smart Car will use the home garage charging station to charge up overnight
- Home Automation service provider becomes aware of this, based on the home gateway communication, and
 passes on the message to the Smart Grid service provider to ensure enough capacity in the neighborhood (in
 case of multi-vehicle charging)
- Home Energy Management (HEM) service provider logs the energy usage and works with the Smart Car
 gateway to coordinate with other appliances at home, as well as potentially available energy from solar or wind
 harvesting at home

Smart Phone: 120,000+ Apps Now

The Need for a Secure Service Delivery Infrastructure

World's first IoT secure service delivery infrastructure based on open platforms

Service Layer **MCUs** Energy Connectivity Sensors Edge Nodes PAN/LAN WAN Gateway Cloud Connectivity Connectivity Application/ Big Data Action

need for Security, as Stakes are Very High

Best-in-Class Security

Freescale's extensive portfolio of secure, scalable embedded processing solutions +

Java's industry-leading security +

System-level security optimizations +

Use-case based best practices =

Secure Service Delivery Infrastructure

dge/Sensing Node Software/Hardware Platform

ORACLE"

Freescale Solutions

Freescale MPU Linux® OS

Phy Interface

Inside Box Modules

Freescale MPU
Board Design

one Box Software/Hardware Platform

Oracle Event Processing Embedded for Java Embedded

JAVA SE Aggregator Local & Comp Events		SE Apps ipper	Local Directory		J	JAVA Embedded Suite (JES)		Sensor Data							
VLAN, DNS,I		ted Data SL, DTLS		Remote isioning		JAVA VM (SE)		ZigBee Data Wi-Fi Data							
			P-WLAN way Plat				(OL)		Bluetooth LE Data						
	FSL N	IPU Linu	ıx-SDK B	SP So	ftware C	Privers			JAVA						
ZigBee 1.0	ZigBee 1.0 ZigBee 2.0			Gb Enet Blueto			Wi-Fi		Database						
USB2		USB2	G		SB2 GMI		GMI SDIO		SDIO		SDIO		SDIO		FLASH
USB2 Think-Eco		USB2 02.15.4		Gb Phy		SI	DIO Silex - Module		On-board 8 GB Flash						

scale IoT Offerings

Xtrinsic Sensing Intelligent Contextual Sensing.

The right combination of intelligent integration, logic and customizable software on the platform to deliver smarter, more differentiated applications.

For IoT it provides Context: Identity, Activity, Location, & Time

Edge products:

- · Very small
- Low cost
- Low power
- · Low complexity
- Industrial grade & robust

Connectivity BAN/PAN/LAN

Fully integrated Short Range radios with best in class power performance, and Powerline Communications

Kinetis Microcontrollers

Design Potential. Realized.

Industry's most scalable ultra-low-power, mixed-signal MCU solutions based on the ARM®

Cortex™-M and Cortex™-M0+ architectures.

Vybrid Controller Solutions

Rich Apps in Real Time.

Real-time, highly integrated solutions with best-in-class 2D graphics to enable your system to control, interface, connect, secure and scale.

i.MX Applications Processors

Your Interface to the World.

Industry's most versatile solutions for multimedia and display applications, with multicore scalability and market-leading power, performance & integration.

Accelerating the Network's IQ.

Architecture

Industry's first softwareaware, core-agnostic networking system architecture for the smarter more capable networks of tomorrow – end to end.

Scalable Industry Standard Solutions, Software and Development Ecosystem

A balanced approach is needed to establish the right infrastructure for IoT

Freescale + Oracle Introducing
The World's First Secure Service
Delivery Infrastructure
Based on Open Platforms

Making the World a Smarter Place.

