

A Survey of Monte Carlo Tree Search Methods

Introduction

- Consider a game-playing agent
 - How to find good/best next move?
- Game represented as a game tree
 - Nodes represent (subset of) states
 - Still too large to check all actions
- Idea: Combine sampling and tentative rewards
 - refine "view" of the current game tree iteratively

- Don't overthink the term "game"
 - Generally applicable search algorithm

(4) Backpropagation

Basics: Setting

- s(v) state s represented by node v
- a(v) incoming action a of node v
- Q(v) total simulation reward of v
- N(v) number of times v has been visited
- Add. data structures possible
 - e.g. N(a)

• First Step: Selection

Controlled by the Tree Policy

• Transfer: Multi-Armed Bandit Problem

T-times: pick some action

- collect associated reward
- maximize total reward

Later: UCT

Second Step: Expansion

Controlled by Tree Policy

• Transfer: Multi-Armed Bandit Problem

- T-times: pick some action
- collect associated reward
- maximize total reward

Later: UCT

- Third Step: Simulation
- Play out a game
 - i.e. execute actions until a terminal state is reached
 - evaluate result

- Controlled by Default Policy
- Details to consider:
 - speed vs. quality
 - complexity of evaluation function

- Fourth Step: Backpropagation
- Update values of
 - Q(v)
 - N(v)
 - ...
- Can be modified by heuristics
 - later AMAF

- About iterations:
- While the computation budget is not exhausted
 - 1) execute the four steps as many times as possible
 - Increase tree size and number of evaluated states
 - 3) Finally, pick the best one
- Time-constraints are crucial
 - real-time, turn-based games

Basics: UCT

 "Upper Confidence Bound for Trees"

Exploitation: Follow discovered path deemed valuable

Exploration: Discover new paths

Heuristics: BFS-Tree Initialization

- Before MCTS: execute each available root-action
 - Information gained can guide algorithm

Heuristics: Loss Avoidance

- Ignore negative results when encountering new nodes
- If unvisited node represents a loss, generate neighbors
- Backpropagate only best-case scenario

 Similar (inverse) approach for overly optimistic evaluations

Heuristics: Novelty-based Pruning

- Problem: Many similar states and redundant paths
- Solution: Use a novelty measure nov(v), all nodes above a threshold are pruned
- Step 1: For node v, define a neighborhood of other nodes
- Step 2: Compare nodes in the neighbohood to v, giving us their similarity or novelty
- Step 3: Prune v if it is too similar to any other nodes

Heuristics: Novelty-based Pruning

- Step 1: the neighboorhood N(v) is the union of
 - the *left* siblings of v
 - the parent of v: p(v)
 - all siblings of p(v)

Heuristics: Novelty-based Pruning

- Step 2: Compare nodes in the neighbohood to v, giving us their similarity or novelty
- (Somewhat) more precisely: nov(v, N(v)) is
 - the size of the smallest set of predicates that are true for v and false for all other nodes in N(v)
- For example: if save(v) and $\neg save(v')$ where $v' \in N(v)$
 - we have nov(v, N(v)) = 1
- Step 3: Prune all nodes with novelty larger than T > 1

Heuristics: Knowledge-based Evaluations

- Terminal state s_T has same value as starting point s₀
 - Is it an improvement?
 - classify nearby objects: (state i, weight w_i)
 - A*-Algorithm: distance to objects d(i)
 - Add. value of $\sum w_i \cdot (d_0(i) d_{T(i)})$

Heuristics: All Moves As First

В

С

 Update more nodes per simulation 2 possible and actual choices 3 New value: AMAF-score C, 1B, 1C, 2C,3A, 1 $\Box_{C,3}$ A, 3C,3A, 1A, 3A, 3 $\blacksquare B, 1$ \square A, 3 B, 1

UCT

AMAF

wins

 \blacksquare C, 3

Heuristics: All Moves As First

- RAVE Combine UCT and AMAF
 - $AMAF(v) = \beta(v) \cdot Q(v) + (1 \beta(v)) \cdot AMAF(v')$
 - where $\beta(v) = \sqrt{\frac{K}{3 \cdot N(v) + K}}$

ancestor of v: which one?

- Equivalence Parameter K: number of simulations where UCT and AMAF have equal weight
- Generalization: GRAVE modify ancestor selection procedure

Extension: Tree Compression

- Control size and width of tree when there are many paths
 - Binary-search
- Inspired by: Deep Architect
 - (Hyper-)parameters for neural network architectures

Application: AlphaGo

- ML-System that beat some of the world's greatest players in the game of Go
- MCTS used to train a neural network
 - Lookahead search combines policy networks and value networks

Conclusion

- MCTS Search algorithm that combines
 - sampling
 - and simulations
- Addresses Exploration-Exploitation tradeoff
- Works well out of the box but can be extended and tailored to specifics of current domain
 - Heuristics
 - Transfer techniques from statistics and probability theory
- Most famous application: games
 - AlphaGo