

"ON THE STEADY-STATE CONTINUOUS CASTING STEFAN PROBLEM WITH NON-LINEAR COOLING"

M A113884

Ву

MICHEL CHIPOT and José-Francisco RODRIGUES

January 1982

ABSTRACT - A steady-state one phase Stefan problem corresponding to the solidification process of an ingot of pure metal by continuous casting with a non-linear lateral cooling is considered via the weak formulation introduced in [BKS] for the dam problem. Two existence results are obtained for a general non-linear flux and for a maximal monotone flux. Comparison results and the regularity of the free boundary are discussed. An uniqueness theorem is given for the monotone case.

CONTENTS

- O. Introduction
- 1. Mathematical Formulation
- 2. Existence of a Weak Solution
- 3. The Case of a Maximal Monotone Cooling
- 4. Comparison Results
- 5. Regularity of the Free Boundary
- 6. Uniqueness in the Monotone Case

Approved for public release; distribution unlimited.

В

DITE FILE COI

This research has been supported in part by the Air Force Office of Scientific Research under Contract —-AFOSR 81-0198 and in part by the U. S. Army Research Office under contract #ARO-DAAG-29-79-C-0161.

O. INTRODUCTION

In this paper we study the one phase model of the solidiffication of a pure metal in continuous casting submitted to a non-linear lateral cooling.

In the liquid phase we assume that the metal is at the melting temperature, which is zero after a normalization. In the solid phase the temperature Θ satisfies the heat equation. The ingot is extracted with constant velocity b, and the liquid - solid interface (the free boundary) is unknown but steady with respect to a fixed system of coordinates of \mathbb{R}^3 , in which our problem will be studied. Assuming that the free boundary Φ is representable by a surface $z=\phi(x,y)$, the steady Stefan condition is

(0.1)
$$\Theta_z - \Theta_x \Phi_x - \Theta_y \Phi_y = \lambda b$$
, for $z = \phi(x,y)$

where $\boldsymbol{\lambda}$ is a positive constant $% \boldsymbol{\lambda}$ representing the heat of melting.

In the lateral boundary one specifies a non-linear flux condition

$$(0.2) - \partial\Theta/\partial n = G(\Theta)$$

which expresses the law of cooling, and may be quite general. Namely, we shall consider a maximal monotone graph G, which may include a cooling process with climatization as in Chapter 1 of the book of Duvaut and Lions [DL] •

This model has been considered in a particular case by Rubinstein [Ru] and, with a linear flux condition of Newton type, by Brière [Br] and Rodrigues [R], via variational inequalities after a transformation of Baiocchi's type. However this approach doesn't work with a non linear cooling.

Since this problem has some similarities with the dam problem, we formulate it in section 1 using the method of Brezis, Kinderlehrer and Stampacchia [BKS]. In sections 2 and 3 we prove

the existence theorems, first using compactness arguments and next combining compacity and monotonicity tecniques for the maximal monotone case.

In section 4 we discuss comparison properties which show that when the extraction velocity b is small the ingot solidifies immediatly and there is no free boundary. For some type of cooling and for a high enough velocity b one can show the existence of a free boundary. In this case it is shown, in section 5, that the free boundary is an analytic surface and a weak solution is also a classic one, as in the linear case of $\lceil R \rceil$.

To conclude this paper we give an uniqueness theorem for the monotone case in section 6, using the technique of Carrillo--Chipot $\lceil CC \rceil$ •

1. MATHEMATICAL FORMULATION

Let Ω denote a cylindric domain in $|R^3$, in the form $\Omega=\Gamma x]0,H[$, where $\Gamma\subset |R^2|$ is a bounded domain with lipschitz boundary $\partial\Gamma$ representing a section of the ingot and H>O its height. We denote $\Gamma_i=\Gamma x\{i\}$, for i=0,H, the bottom and the top of the ingot respectively, and by $\Gamma_1=\partial\Gamma x]0,H[$ its lateral boundary. We have $\partial\Omega=\Gamma_0U\overline{\Gamma}_1U\Gamma_H$:

Considering \vec{z} the direction of extraction, we can formulate our problem in its classical form:

PROBLEM (C): Find a couple (Θ, ϕ) , such that

(1.1) $0 \ge 0$ in Ω and 0 = 0 for $0 \le z \le \phi(x,y) < H$

(1.2) $\Delta\Theta = b \Theta_z$ for $0 \le \phi(x,y) < z < H$

(1.3) $\Theta=0$ on Γ_0 , $\Theta=h(x,y)>0$ on Γ_H

(1.4) - $\partial \Theta / \partial n = g(\Theta)$ on Γ_{1}

Acto	ssion F	r	
NTIS	GRALI		M
DTIC TAB			
Unan	nounced		
Just	ificatio	n	
Ava	11ab1111		
	Avail	and/o	r
Dist	Special		
Λ			
H			
<i>[f</i>	1		

(1.5)
$$\theta_z - \theta_x \phi_x - \theta_y \phi_y = \lambda b$$
, if $z = \phi(x,y) > 0$

(1.5')
$$\Theta_z \geq \lambda b$$
, if $z=\phi(x,y)=0$.

In this formulation b and λ are positive constants, h is a given function, and g will be specified in the next two sections. The reader will note that the condition (1.5') is a degeneration of the Stefan condition (1.5) in the case when the free boundary Φ can touch the known boundary Γ_0 , where the melting condition $\Theta=0$ is assumed by (1.3).

Let us remark that by the maximum principle it must be $\Theta>0$ for $z>\phi(x,y)$. Denoting by χ^+ the characteristic function of the set $\Omega_+=\{\Theta>0\}$ and integrating formaly by parts, for every regular function ζ , such that $\zeta=0$ on Γ_H and $\zeta\ge0$ on Γ_O , from Problem (C) one has

$$\int_{\Omega} (\nabla \Theta \cdot \nabla \zeta + b \Theta_{z} \zeta - \lambda b \chi^{+} \zeta_{z}) = \int_{\Omega_{+}} (\nabla \Theta \cdot \nabla \zeta + b \Theta_{z} \zeta - \lambda b \zeta_{z})$$

$$= \int_{\Omega_{+}} (-\Delta \Theta + b \Theta_{z}) \zeta + \int_{\Gamma_{1}} \frac{\partial \Theta}{\partial n} \zeta + \lambda b \int_{\Phi} \ell \zeta$$

$$= - \int_{\Gamma_{1}} g(\Theta) \zeta + \int_{\Gamma_{0}} \ell \zeta (\lambda b - \Theta_{z}) + \int_{\Phi} \ell \zeta (\Theta_{x} \Phi_{x} + \Theta_{y} \Phi_{y} - \Theta_{z} + \lambda b)$$

$$\leq - \int_{\Gamma_{1}} g(\Theta) \zeta,$$

where $\ell^{-2} = \phi_x^2 + \phi_y^2 + 1$. Therefore, following [BKS], we introduce the weak formulation of Problem (C):

PROBLEM (P) : Find a couple (Θ,χ) \in $H^1(\Omega)xL^\infty(\Omega)$, such that,

- (1.6) $\Theta \ge 0$ a.e. in Ω , $\Theta = 0$ on Γ_0 and $\Theta = h$ on Γ_H ;
- (1.7) $0 \le \chi \le 1$ a.e. in Ω and $\chi = 1$ where $\Theta > 0$;

(1.8)
$$\int_{\Omega} (\nabla \Theta \cdot \nabla \zeta + b \Theta_{z} \zeta - \lambda b \chi \zeta_{z}) + \int_{\Gamma_{1}} g(\Theta) \zeta \leq 0, \text{ for every}$$

 $\zeta \in H^1(\Omega)$, such that $\zeta \ge 0$ on Γ_0 and $\zeta = 0$ on Γ_H .

If we consider a more restrictive class of test functions one can introduce a more general formulation, which we call Problem(P'), if we replace (1.8) by

(1.9)
$$\int_{\Omega} (\nabla \Theta \cdot \nabla \zeta + b \Theta_{z} \zeta - \lambda b \chi \zeta_{z}) + \int_{\Gamma_{1}} g(\Theta) \zeta = 0, \forall \zeta \in H^{1}(\Omega) : \zeta = 0 \text{ on } \Gamma_{0} U \Gamma_{H}.$$

It is clear that every solution of Problem (P) verifies (1.9), but the Problem (P') has more solutions than Problem (P). In particular, if

PROBLEM (P_1) : Find \odot verifying (1.6) and

(1.10)
$$\int_{\Omega} (\nabla \Theta \cdot \nabla \zeta + b \Theta_{z} \zeta) + \int_{\Gamma_{1}} g(\Theta) \zeta = 0, \quad \forall \zeta \in H^{1}(\Omega); \quad \zeta = 0 \quad \text{on } \Gamma_{0} U \Gamma_{H}$$

has a solution $\Theta>0$, by the maximum principle, one has $\Theta>0$ in Ω and $(\Theta,1)$ is a solution to Problem (P'), which may not satisfy (1.5') (see Proposition 4).

2. EXISTENCE OF A WEAK SOLUTION

In this section we assume the lateral cooling given by

(2.1)
$$-\frac{\partial\Theta}{\partial n}(X) = g(X,\rho(X),\Theta(X)), X \in \Gamma_1$$

where $\rho \ge 0$ is a given function representing the cooling temperature, and

(2.2) $g(X,\rho,\theta) \quad \text{is a bounded Caratheodory function,} \\ \text{i.e., is continuous in } \theta \in |R|, \text{ a.e. } (X,\rho) \in \Gamma_{\uparrow} \times |R_{\downarrow}|, \text{ measurable} \\ \text{in } (X,\rho) \quad \text{for all } \theta \text{ , and maps bounded sets of } \Gamma_{\uparrow} x |R_{\downarrow} x |R| \text{ in bounded sets of } |R|.$

Since the cooling process is determined by $\boldsymbol{\rho},$ we shall assume that

(2.3)
$$g(X,\rho,\theta) \leq 0$$
, a.e. $(X,\rho,\theta) \in \Gamma_1 x |R_+ x|R$

(2.4)
$$g(X,\rho,\theta)=0$$
 for $|\theta| \ge \rho$, a.e. $X \in \Gamma_1$.

Consider a parameterized family of functions $\chi_{\varepsilon} \in \text{C}^{\infty}(|R)$ such that

$$\chi_{\varepsilon}(t) = \begin{cases} 0, & \text{for } t \leq 0 \end{cases}$$

$$0 \leq \chi_{\varepsilon}(t) \leq 1, & \text{for } 0 \leq t \leq \varepsilon$$

$$1, & \text{for } t \geq \varepsilon$$

and so it approaches the Heaviside function when $\epsilon > 0$. Introduce now the following penalized problem, where for the sake of simplicity we denote $g(X, \rho(X), \Theta(X))$ by $g(\Theta)$:

PROBLEM
$$(P_{\varepsilon})$$
 Find $\Theta^{\varepsilon} \in H^{1}(\Omega) \cap C^{0}(\overline{\Omega})$, such that,

(2.6)
$$\theta^{\epsilon}=0$$
 on Γ_{0} , $\theta^{\epsilon}=h$ on Γ_{H} ,

$$(2.7) \int_{\Omega} \left[\nabla \Theta^{\varepsilon} \cdot \nabla \zeta + b \Theta_{z}^{\varepsilon} \zeta - \lambda b \gamma_{\varepsilon} (\Theta^{\varepsilon}) \zeta_{z} \right] + \int_{\Gamma_{1}} g(\Theta^{\varepsilon}) \zeta = 0, \quad \forall \zeta \in H^{1}(\Omega); \zeta = 0 \text{ on } \Gamma_{0} U \Gamma_{H}.$$

Assuming the functions h and p verify

(2.8)
$$0 < h(x,y) \leq M$$
, a.e. $(x,y) \in \Gamma_H$,

(2.9)
$$0 \le \rho(X) \le M$$
, a.e. $X \in \Gamma_1$,

one can prove the following "a priori" estimate:

LENIA 1 If Θ^{ϵ} is a solution to Problem (P_{\epsilon}) with assumptions (2.2-4) and (2.8-9), one has

$$(2.10) 0 \leq \Theta^{\varepsilon}(X) \leq M, \text{ for all } X \in \overline{\Omega} \text{ and } 0 < \varepsilon \leq M.$$

<u>Proof</u>: Let $\zeta = [\Theta^{\varepsilon}]^{-}$ in (2.7). One has

$$0 = \int_{\Omega} \{ \nabla \Theta^{\varepsilon} \cdot \nabla [\Theta^{\varepsilon}]^{-} + b \Theta_{z}^{\varepsilon} [\Theta^{\varepsilon}]^{-} - \lambda b \chi_{\varepsilon} (\Theta^{\varepsilon}) [\Theta^{\varepsilon}]_{z}^{-} \} + \int_{\Gamma} g(\Theta^{\varepsilon}) [\Theta^{\varepsilon}]^{-}$$

$$\leq - \int_{\Omega} \{ |\nabla [\Theta^{\varepsilon}]^{-}|^{2} + b [\Theta^{\varepsilon}]_{z}^{-} [\Theta^{\varepsilon}]^{-} \} = - \int_{\Omega} |\nabla [\Theta^{\varepsilon}]^{-}|^{2}$$

from which it follows $[\Theta^{\varepsilon}]^{-}=0$ and $\Theta^{\varepsilon}>0$.

From (2.4) (2.9) and (2.5), one has respectively

$$g(\Theta^{\epsilon})\left[\Theta^{\epsilon}-M\right]^{+}=0\quad\text{and}\quad\chi_{\epsilon}(\Theta^{\epsilon})\left[\Theta^{\epsilon}-M\right]_{z}^{+}=\left[\Theta^{\epsilon}-M\right]_{z}^{+}\quad\text{for }0<\underline{\epsilon}\underline{<}M.$$

Then $\zeta = [\Theta^{\varepsilon} - M]^{+}$ in (2.7) implies

$$0 = \int_{\Omega} \{ \nabla \Theta^{\varepsilon} \cdot \nabla \left[\Theta^{\varepsilon} - M \right]^{+} + b \Theta^{\varepsilon}_{z} \left[\Theta^{\varepsilon} - M \right]^{+} - \lambda b \left[\Theta^{\varepsilon} - M \right]^{+}_{z} \}$$

$$= \int_{\Omega} |\nabla [\Theta^{\varepsilon} - M]^{+}|^{2},$$

and therefore $\left[\Theta^{\varepsilon}-M\right]^{+}=0$. The lemma is proved.

We shall need the L^∞ and the Hölder estimates due to Stampacchia [S] for the following eliptic problem with mixed boundary conditions:

(2.11) -
$$\Delta u + bu_z = f$$
 in Ω , $\frac{\partial u}{\partial n} = g$ on Γ_1 and $u = h$ on $\Gamma_0 U \Gamma_H$.

LEMMA 2 [S] The unique solution of (2.11) verifies

$$(2.12) ||u||_{L^{\infty}(\Omega)} \leq c_{1}(||f||_{W^{-1},p(\Omega)} + ||g||_{L^{q}(\Gamma_{1})} + ||h||_{L^{\infty}(\Gamma_{0}U\Gamma_{H})})$$

$$(2.13) ||u|| c^{o,\alpha}(\overline{\Omega})^{\leq C_2} (||f||_{W^{-1},p(\Omega)} + ||g||_{L^q(\Gamma_1)} + ||h||_{C^{o,1}(\overline{\Gamma}_0 U \overline{\Gamma}_H)})$$

for all p>3 and q>2, and for some constants $C_1, C_2 > 0$ and $0 < \alpha < 1$ which are independent of f,g,h and u.

 $\underline{Prco6}$: See the results of §5 of [S] or a more explicit result extended to variational inequalities in Section 2 of [MS]

Now we can state an existence result for the penalized problem, from which we shall construct a sequence of functions converging to a solution of Problem (P).

PROPOSITION 1 Under assumptions of Lemma 1, and if

(2.14)
$$h \in \mathcal{C}^{0,1}(\overline{\Gamma}_{H})$$

then there exists a solution Θ^{ϵ} to Problem (P $_{\epsilon}$) for all 0< $\epsilon \leq M$ satisfying the estimate

where the constants C>0 $_{\sigma}and$ 0< $\alpha<1$ are independent of $\epsilon \cdot$

<u>Proof</u>: For $\tau \in B_R = \{\tau \in C^0(\overline{\Omega}) : ||\tau||_{C^0(\overline{\Omega})} \leq R\}$, (R>0), define

$$\Theta = S_{\epsilon}(\tau)$$

as the unique solution of the following mixed linear problem

$$\Theta = 0 \quad \text{on} \quad \Gamma_0 \quad , \quad \Theta = h \quad \text{on} \quad \Gamma_H$$

$$\int_{\Omega} (\nabla \Theta \cdot \nabla \zeta + b \Theta_z \zeta) = \lambda b \int_{\Omega} X_{\varepsilon}(\tau) \zeta_z - \int_{\Gamma_1} g(\tau) \zeta, \quad \forall \zeta \in H^1(\Omega) : \zeta = 0 \quad \text{on} \quad \Gamma_0 \cup \Gamma_H$$

Since, by definition, $0 \le \chi_{\varepsilon} \le 1$ and g is bounded independently of τ (for $|\tau(X)| \ge M \ge \rho(X)$ one has $g(X, \rho(X), \tau(X)) = 0$) by (2.4)) one can apply Stampacchia's estimate (2.13). Therefore, there exists C > 0 and $0 < \alpha < 1$, independent of τ and ε such that

$$\|\Theta\|_{C^{0,\alpha}(\overline{\Omega})} \le c_2(\lambda b + \|g\|_{L^{\infty}} + \|h\|_{C^{0,1}}) \le c$$

and for R \geq C one has $S_{\epsilon}(B_R) \subset B_R$.

From the compactness of the imbedding $C^{0,\alpha}(\overline{\Omega}) \hookrightarrow C^0(\overline{\Omega})$ one finds that S_{ϵ} is a continuous and compact mapping of B_R into itself. By the Schauder fixed point theorem there exists a function Θ^{ϵ} \in B_R satisfying $\Theta^{\epsilon} = S_{\epsilon}(\Theta^{\epsilon})$, which is clearly a solution to Problem (P_{ϵ}) .

The estimate in $H^1(\Omega)$ is classical, since χ^ϵ and $g(C^\epsilon)$ are bounded independently of ϵ .

THEOREM 1 Assuming (2.2,3,4) and (2.8,9,14) there exists a solution $(0,\chi) \in [H^1(\Omega) \cap C^{0,\alpha}(\overline{\Omega})] \times L^{\infty}(\Omega)$ to Problem (P).

<u>Proof</u>: By (2.15) one can consider a sequence of solutions Θ^{ϵ} of Problem (P_F), such that, when $\epsilon \!+\! 0$

(2.16)
$$\Theta^{\varepsilon} \longrightarrow \Theta \text{ in } H^{1}(\Omega)\text{-weak}$$

(2.17)
$$\Theta^{\varepsilon}(X) \rightarrow \Theta(X) \text{ uniformly in } X=(x,y,z) \in \overline{\Omega}$$

(2.18)
$$\chi_{\varepsilon}(\Theta^{\varepsilon}) \longrightarrow \chi \quad \text{in } L^{\infty}(\Omega) \text{-weak *,}$$

where Θ is some function belonging to $H^1(\Omega) \cap C^{0,\alpha}(\overline{\Omega})$ satisfying (2.10) and $0 \le \chi \le 1$. Moreover in the open set $\{\Theta>0\}$ one has $\chi_{\varepsilon}(\Theta^{\varepsilon}) \to 1$ and therefore $\chi=1$ a.e. in $\{\Theta>0\}$.

Let $\zeta \in H^1(\Omega)$, $\zeta \ge 0$ on Γ_0 and $\zeta = 0$ on Γ_H .

By the Green's formula and since $\partial \Theta^{\epsilon}/\partial n \leq 0$ on Γ_0 , one has

$$\int_{\Omega} \left[\nabla \Theta^{\varepsilon} \cdot \nabla \zeta + b \Theta_{z}^{\varepsilon} \zeta - \lambda b \chi_{\varepsilon} (\Theta^{\varepsilon}) \zeta_{z} \right] + \int_{\Gamma_{1}} g(\Theta^{\varepsilon}) \zeta = \int_{\Gamma_{0}} \frac{\partial \Theta^{\varepsilon}}{\partial n} \zeta \leq 0$$

and in the limit we obtain (1.8). The proof is complete.

3. THE CASE OF A MAXIMAL MONOTONE COOLING

In this section we consider the existence of a weak solution with a lateral cooling

(3.1)
$$-\frac{\partial O}{\partial n} \in G(\Theta) \quad \text{on} \quad \Gamma_1,$$

where G denotes a maximal monotone graph , that is, G is a multivalued function which graph is a continuous monotone increasing curve in $[R^2 \ (see \ [B])$. We shall assume

$$(3.2) G(0) \subset]-\infty,0]$$

$$[0,+\infty[\subset Dom (G) \equiv \{x \in \mathbb{R} | G(x) \neq \emptyset\}$$

The weak formulation of the corresponding problem takes now the following form:

PROBLEM (\tilde{P}) Find $(\Theta,\chi,g)\in H^1(\Omega)\times L^\infty(\Omega)\times L^2(\Gamma_1)$, such that

- (3.4) $\Theta \geq 0$ a.e. in Ω , $\Theta = 0$ on Γ_0 and $\Theta = h$ on Γ_H ;
- (3.5) $0 \le \chi \le 1$ a.e.in Ω , $\chi = 1$ if $\Theta > 0$;

(3.6)
$$\int_{\Omega} (\nabla \theta \cdot \nabla \zeta + b \theta_z \zeta - \lambda b \chi \zeta_z) + \int_{\Gamma_1} g \zeta \leq 0, \quad \forall \zeta \in H^1(\Omega) : \zeta \geq 0 \quad \text{on} \quad \Gamma_0, \zeta = 0 \quad \text{on} \quad \Gamma_H;$$

(3.7)
$$g(X) \in G(\Theta(X))$$
 a.e. $X \in \Gamma_1$.

We shall obtain a solution to Problem (P) as the limit of a sequence of solutions to Problem (P) with a non-linear cooling given by a function g satisfying:

(3.8) g is monotone increasing, lipschitz and such that g(0)<0.

THEOREM 2 Assume (3.8) and let $h \in H^{1/2}(\Gamma_H)$, h>0. Then Problem (P) has a solution.

<u>Proof</u>: The proof follows the lines of the one in theorem 1. by considering the penalized problem (P $_{\epsilon}$) with g satisfying (3.8). The fixed point is now constructed in $L^2(\Omega)$ by means of the mapping

$$L^2(\Omega)\ni\tau\mapsto\xi=T_\epsilon(\tau)\;\epsilon\;V.$$

where V={veH $^l(\Omega)$: v=0 on Γ_0 } and ξ is the unique solution of the following problem

$$\left\{ \begin{array}{c} \xi \in V \;, \quad \text{``} \; \xi = h \; \text{ on } \; \Gamma_H \\ \\ \int_{\Omega} (\nabla \xi \cdot \nabla \zeta + b \xi_Z \zeta) + \int_{\Gamma_1} g(\xi) \zeta = \lambda b \int_{\Omega} \chi_{\epsilon}(\tau) \zeta_Z \;, \; \forall \zeta \in V : \zeta = 0 \; \text{ on } \; \Gamma_H \cdot \xi_Z \zeta \right\}$$

which is a coercive and (strictly) monotone problem in V by assumption (3.8) (see [L]). Denoting by \tilde{h} some function in V, which trace on Γ_H is h, and letting $\zeta = \xi - \tilde{h}$ in (3.9) one easily finds

$$\|\xi\|_{H^{1}(\Omega)} \leq C = C(\tilde{h}),$$

where C is a constant independent of τ and $\epsilon \boldsymbol{\cdot}$

Since the imbedding $H^1(\Omega) \hookrightarrow L^2(\Omega)$ is compact, the Schauder fixed point Theorem assures the existence of a solution Θ^ε to Problem (P_ε) . As in Lemma 1 one finds that $\Theta^\varepsilon \geq 0$, since g is monotone increasing and $g(0) \leq 0$, and therefore one has $g(\Theta^\varepsilon) \cdot [\Theta^\varepsilon]^- \leq 0$.

The passage to the limit as $\varepsilon \downarrow 0$ is straightforward since $\Theta^{\varepsilon} \longrightarrow \Theta$ in $H^{1}(\Omega)$ -weak and g is a lipschitz function.

REMARK 1 Since g is lipschitz, by Sobolev imbeddings one has g(\odot) ε H^{1/2}(Γ_1) \hookrightarrow L⁴(Γ_1) (see [A, p. 218]) and therefore applying Lemma 2, it follows that

i) if
$$h \in L^{\infty}(\Gamma_{H})$$
, then $\Theta \in L^{\infty}(\Omega)$; and

ii) if
$$h \in C^{0,1}(\overline{\Gamma}_H)$$
, then $\Theta \in C^{0,\alpha}(\overline{\Omega})$, for some $0 < \alpha < 1$.

Since G is a maximal monotone operator one can introduce the Yosida regularization, defined by

$$g_{\delta} = \frac{1}{\delta} (I - J_{\delta})$$
, for $\delta > 0$,

where $J_{\delta}=(I+\delta G)^{-1}$ is the resolvent of G. Consider $\tau=J_{\delta}(0)$, that is $0\in (I+\delta G)(\tau)$. From the monotonicity of $I+\delta G$ and using assumption (3.2) one finds $\tau\geq 0$. Therefore $g_{\delta}(0)=-J_{\delta}(0)/\delta \leq 0$, which means that, for each $\delta>0$, the Yosida regularization g_{δ} satisfies the condition (3.8) (see [B]). So we may apply Theorem 2 to conclude the existence of a solution $(\Theta^{\delta},\chi^{\delta})\in H^1(\Omega)\times L^{\infty}(\Omega)$ to Problem (P) with lateral cooling given by g_{δ} . We shall obtain a solution to Problem (\tilde{P}) by considering a subsequence $\delta+0$.

THEOREM 3 The Problem (\widetilde{P}) with a maximal monotone graph G satisfying (3.2) and (3.3) , and with h ϵ H $^{1/2}(\Gamma_H) \cap L^{\infty}(\Gamma_H)$ has a solution (Θ,χ,g) ϵ [H $^1(\Omega) \cap L^{\infty}(\Omega)] \times L^{\infty}(\Omega) \times L^{\infty}(\Gamma_1)$. Moreover, if h ϵ C $^{0,1}(\overline{\Gamma}_H)$ one has Θ ϵ C $^{0,\alpha}(\overline{\Omega})$, for some $0<\alpha<1$.

 $\underline{\textit{Proof}}$: Consider the (unique) solution Θ^0 of the following mixed problem.

$$\begin{cases} \Theta^0 \in H^1(\Omega), \quad \Theta^0 = 0 \quad \text{on} \quad \Gamma_0, \quad \Theta^0 = h \quad \text{on} \quad \Gamma_H \\ \vdots \\ \int_{\Omega} (\nabla \Theta^0 \cdot \nabla \zeta + b \Theta_Z^0 \zeta) + \int_{\Gamma_1} g^0(0) \zeta = 0, \quad \forall \zeta \in H^1(\Omega), \zeta = 0 \quad \text{on} \quad \Gamma_0 \cup \Gamma_H. \end{cases}$$

where $g^{0}(t)=\operatorname{Proj}_{G(t)}0$ is the smallest (in norm) number of G(t). Since $g^{0}(0)\leq 0$ it is easy to show that $\Theta^{0}\geq 0$. Since $h\in L^{\infty}(\Gamma_{H})$ one has $\Theta^{0}\in L^{\infty}(\Omega)$ by (2.12), and we assume that $\Theta^{0}\leq M^{0}=M^{0}(h,g^{0}(0))$.

Then, for every solution Θ^{δ} to Problem (P) with $\textbf{g}_{\delta},$ we have

$$0 \leq \Theta^{\delta} \leq \Theta^{\circ} \leq M^{\circ}.$$

Indeed (3.11) follows by a comparison argument: take $\zeta = \left[\Theta^{\delta} - \Theta^{\circ}\right]^+$ in (1-8) $_{\delta}$ and in (3.10); one has

$$(3.12) \qquad \int_{\Omega} |\nabla [\Theta^{\delta} - \Theta^{o}]^{+}|^{2} = \lambda b \int_{\Omega} \chi^{\delta} [\Theta^{\delta} - \Theta^{o}]_{z}^{+} + \int_{\Gamma_{1}} [g_{\delta}(\Theta^{\delta}) - g^{o}(O)] [\Theta^{\delta} - \Theta^{o}]^{+} \leq 0;$$

Since $0^{\circ} \ge 0$ and $\chi^{\delta} = 1$ in $\{0^{\delta} > 0\}$, the middle term in (3.12) vanishes; using $g_{\delta}(0) \le 0$, together with

(3.13)
$$|g_{\delta}(t)| \leq |g^{O}(t)|$$
 (see [B], p.28)

in order to deduce the chain

$$g_{\delta}(0^{\delta}) \ge g_{\delta}(0^{0}) \ge g_{\delta}(0) \ge g^{0}(0),$$

one finds that the last term in (3.12) is non-negative, which proves (3.11).

Using again (3.13), by (3.11) one has

$$|g_{\delta}(\Theta^{\delta})| \leq |g^{O}(\Theta^{\delta})| \leq \max [|g^{O}(O)|, |g^{O}(M^{O})|] \equiv \ell,$$

from where we easily conclude

$$||\Theta^{\delta}||_{H^{1}(\Omega)} \leq \varepsilon (=\text{const.independ. of } \delta).$$

. It follows that there exists a subsequence $\delta \! + \! 0$ such that

(3.15)
$$0^{\delta} \longrightarrow 0$$
 in $H^{1}(\Omega)$ -weak, and $0 \le 0 \le M^{0}$

(3.16)
$$\chi^{\delta} \longrightarrow \chi \text{ in } L^{\infty}(\Omega) \text{-weak } \star, 0 \le \chi \le 1$$

(3.17)
$$g_{\delta}(\Theta^{\delta}) \longrightarrow g \text{ in } L^{\infty}(\Gamma_{1})\text{-weak *, with } ||g||_{\infty} \leq \ell$$
.

Since one can also consider $0^{\delta} \rightarrow 0$ uniformly in each compact subset $K \subset \Omega$, one has $\chi=1$ in the open set $\{0>0\}$.

Using the compactness of the trace mapping, one can consider $\Theta^{\delta}+\Theta$ in $L^2(\Gamma_1)$ -strong and from (3.3) $J_{\delta}(\Theta^{\delta})+\Theta$ in $L^2(\Gamma_1)$. Since $g_{\delta}(\Theta^{\delta}) \in G(J_{\delta}(\Theta^{\delta}))$, it follows, by a classical argument

([B],p.27), that $g \in G(Q)$.

If we assume h ϵ C^{0,1}($\overline{\Gamma}_H$), by Lemma 2 one easily concludes that Θ ϵ C^{0, α}($\overline{\Omega}$) for some 0< α <1. The proof is complete.

REMARK 2 Assuming that there exists some $v \ge 0$ such that $0 \in G(v)$, one can find a more simple estimate in $L^{\infty}(\Omega)$ for every solution 0 to Problem (\tilde{P}) :

$$\Theta \leq M = \max (v, ||h||_{L^{\infty}(\Gamma_{H})})$$
.

Indeed, it is sufficient to consider $\zeta = [\Theta - M]^+$ in (3.6) and to recall that the monotonicity of G implies $g \ge 0$ if $\Theta > M$.

<u>REMARK 3</u> The results of this section can be easily extended to the case of a lateral boundary condition

$$-\frac{\partial O}{\partial n}$$
 (X) ϵ G(z,O(X)) , for X=(x,y,z) ϵ Γ_1 ,

where, for each $z \in]0,H[$, $G(z,\cdot)$ denotes a maximal monotone graph satisfying (3.2),(3.3) and ℓ in (3.14) being uniformly bounded in z.

An interesting case could be a lateral boundary submitted to N differents cooling zones, that is, when, for $i=1,\ldots,N$,

$$G(z,\cdot) = G_{i}(\cdot), \quad 0 = z_{0} < \ldots < z_{i-1} < z < z_{i} < \ldots z_{N} = H.$$

4. COMPARISON RESULTS

 $\hbox{ If the cooling is given by a monotone function one } \\ \hbox{ can adapt the technique of [BKS] to prove the }$

Proof:

Set
$$f_{\delta}(t) = [1-\delta/t]^+$$
, $t \in |R|$ and $\delta > 0$.

From (2.7) and denoting $\eta = 0^{\varepsilon} - \bar{0}^{\varepsilon}$, one has

$$\int_{\Omega} \nabla \eta \cdot \nabla \zeta = b \int_{\Omega} \{ \eta + \lambda \left[\chi_{\varepsilon} (\Theta^{\varepsilon}) - \chi_{\varepsilon} (\bar{\Theta}^{\varepsilon}) \right] \} \zeta_{z} - \int_{\Gamma_{1}} \left[g(\Theta^{\varepsilon}) - \bar{g}(\bar{\Theta}^{\varepsilon}) \right] \zeta_{z}$$

for every $\zeta \in H^1(\Omega)$, $\zeta=0$ on $\Gamma_0U\Gamma_H$. In particular, for $\zeta=f_{\delta}(\eta)$, which is different from zero if $\Theta^{\varepsilon} \ge \widehat{\mathbb{O}}^{\varepsilon}$ where $g(\Theta^{\varepsilon}) \ge g(\widehat{\mathbb{O}}^{\varepsilon}) \ge \widehat{g}(\widehat{\mathbb{O}}^{\varepsilon})$, it follows

$$(4.1) \qquad \left| \int_{\Omega} \nabla \eta \cdot \nabla f_{\delta}(\eta) \right|^{2} \leq b L_{\varepsilon} \int_{\Omega} |\eta| \cdot |[f_{\delta}(\eta)]_{z}|,$$

being L the Lipschiz constant of t \mapsto t+ λ $\chi_{\rm F}$ (t).

As in [BKS], (4.1) implies, for any $\delta > 0$,

$$\int_{\Omega} |\log \left(1 + \frac{\left[\eta - \delta\right]^{+}}{\delta}\right)|^{2} \le C(=\text{const.independ.of } \delta)$$

from which it follows $\Theta^{\varepsilon} - \bar{\Theta}^{\varepsilon} = \eta \leq 0$.

<u>REMARK 4.</u> This argument also proves the uniqueness of the solution of the Problem (P_{ϵ}) when g is monotone. Of course if $\Theta(\text{resp.}\bar{0})$ is a solution of (P) which is the limit of the subsequence Θ^{ϵ} (resp. $\bar{0}^{\epsilon}$) the above proposition implies that $\bar{0} \geq 0$.

Next we shall prove comparison results with respect

to the extraction velocity b.

$$(4.2) 0 < \mu \le h(x,y) \le M, a.a.(x,y) \in \Gamma_{\mu}.$$

and that the function g verifies (3.8) with

(4.3)
$$\{t : g(t)=0\} \subset [M,+\infty[,$$

or else that g verifies (2.2,3,4,9). Then if $b \le \frac{1}{H} \log(1 + \frac{\mu}{\lambda})$ a solution Θ to Problem (P₁) is also a solution to Problem (P) with $\chi=1$.

<u>Proof</u>: If g satisfies (3.8), then the Problem (P₁) has a unique solution (let $\chi_{\varepsilon} \equiv 0$ in (3.9)). Moreover by (4.3) one has $g(\Theta) \leq 0$ (see Lemma 1).

Under assumptions (2.2,3,4,9) the existence of Θ may be shown essentialy as in Proposition 1, being also $g(\Theta) \leq 0$, by hypothesis.

Consider now the function $\Theta_{\mu}(z) = \mu(e^{bz} - 1)(e^{bH} - 1)^{-1}$. Taking $\zeta = (\Theta_{\mu} - \Theta)^+$ in (1.10) and since $g(\Theta) \leq 0$ in both cases, one easily finds that $\Theta \geq \Theta_{\mu}$. Therefore, if follows

$$\frac{\partial \Theta}{\partial \mathbf{n}} \leq \frac{\partial \Theta}{\partial \mathbf{n}} = -\mu \mathbf{b} (e^{\mathbf{b}H} - 1)^{-1} \text{ on } \Gamma_0.$$

Using the Green's formula with a smooth function ζ such that $\zeta \! \geq \! 0$ on Γ_0 and $\zeta \! = \! 0$ on Γ_H , one has

$$\int_{\Omega} (\nabla \Theta \cdot \nabla \zeta + b \Theta_{z} \zeta - \lambda b \zeta_{z}) + \int_{\Gamma_{1}} g(\Theta) \zeta = \int_{\Gamma_{0}} (\frac{\partial \Theta}{\partial n} + \lambda b) \zeta \leq 0$$

for $\lambda b \le \mu b (e^{bH} - 1)^{-1}$. This means that, for all $bH \le \log(1 + \mu/\lambda)$, (0,1) is also a solution to Problem (P).

This proposition suggests that, for small velocities b, the whole region Ω is occupied by solid metal, since if the Problem (P) admits only one solution Θ , one has $\Theta>0$ in Ω for $0< b \le \frac{1}{H} \log(1+\mu/\lambda)$. Conversely the next proposition suggests that for big velocities the free boundary exists, since we will show that the volume of the set $\{\Theta>0\}$ vanishes when $b \uparrow \infty$.

PROPOSITION 4. Under assumptions of the Theorem 1 or Theorem 3

and denoting by $|\Omega_+|$ the Lebesque measure of the set $\Omega_+ = \{X \mid \Theta(X) > 0\}$, one has

$$|\Omega_{+}| \leq \frac{C}{\lambda b},$$

where C is a positive constant independent of λ and b. Moreover, for b big enough, one has $\chi \not\equiv 1$.

Proof. Let $\zeta=H-z$ in (1.8) and in (3.6). One has

$$(4.5) - \int_{\Omega} \Theta_{z} + b \int_{\Omega} \Theta_{z} (H-z) + \lambda b \int_{\Omega} \chi + \int_{\Gamma_{1}} g(H-z) \leq 0,$$

where $g=g(\Theta)$ and $g\in G(\Theta)$, respectively. In the first case, g is a bounded function and from $0\leq\Theta\leq M$ (see Theorem 1 and Lemma 1), we may assume $-\ell_1\leq g\leq 0$, with ℓ_1 independent of b and λ . In the second one, by (3.17) and (3.14) we have $||g||_{\infty}\leq \ell$ and ℓ is also independent of b and λ .

Denoting L= max (ℓ , ℓ) from (4.5) it follows that

$$\lambda b \int_{\Omega} x \leq \int_{\Gamma_{H}} h + L \int_{\Gamma_{1}} (H-z),$$

since one has

$$\int_{\Omega} \Theta_{z} = \int_{\Gamma_{H}} h \quad \text{and} \quad \int_{\Omega} \Theta_{z} (H-z) = \int_{\Omega} \Theta \geq 0 .$$

Recalling that $0 \le \chi \le 1$ and $\chi = 1$ in Ω_+ , one has

$$|\Omega_{+}| \leq \int_{\Omega} \chi \leq |\Gamma| (M+LH^2/2) / \lambda b,$$

which completes the proof of the proposition . \blacksquare

Now we assume the existence of d, O<d<H, such that

(4.6)
$$g(X,\rho,\theta) = 0$$
 for $0 < z < d$, $\forall (X,\rho,\theta) \in \Gamma_T x | R_+ x | R_$

or, for the monotone case (see Remark 3),

(4.7)
$$G(z,.) \equiv 0$$
 for $0 < z < d < H$.

THEOREM 4. Let (Θ,χ) (resp. (Θ,χ,g)) a solution to Problem (P) (resp. (\tilde{P})) under assumptions of Theorem 1 with (4.6) (resp. Theorem 3 with (4.7)). Then there exists $\delta,0<5< d$, such that

$$(4.8) \qquad \Theta(x,y,z) \leq \lambda b[z-\delta]^+, \quad \forall (x,y,z) \in \overline{\Omega}$$

$$(4.9) \qquad \Theta = \chi = 0 \quad \text{for} \quad 0 < z < \delta,$$

for all b>M/ λ d, where M $\stackrel{\Delta}{=}$ |0|| $_{\infty}$ is a constant independent of b (see (2.10) and (3.15)). The proof of this theorem uses the following lemma.

LEIMA 3. Under assumptions of Theorem 4, one has

$$(4.10) \qquad \int_{Z_{\delta}} \chi(\lambda b \chi - \Theta_{z}) \leq \int_{Z_{\delta}} (b\Theta + \lambda b \chi - \Theta_{z}) \leq 0$$

for $0<\delta \le d$ and $Z_{\delta} = \{(x,y,z) \in \Omega \mid 0 < z < \delta\}$.

<u>Proof</u>: Let $\zeta = [\delta - z]^+$ in (1.8) or in (3.6). One has

$$\int_{Z_{\delta}} \left[-\Theta_{z} + b\Theta_{z} (\delta - z) + \lambda b\chi \right] \leq 0,$$

because (4.6) or (4.7) imply $g[\delta-z]^+=0$. Since

$$\int_{Z_{\delta}} \Theta_{z}(\delta - z) = \int_{Z_{\delta}} \Theta \ge 0 \quad \text{and} \quad 0 \le \chi \le 1$$

it follows

$$\int_{Z_{\delta}} \chi(\lambda b \chi - \Theta_{z}) \leq \int_{Z_{\delta}} (\lambda b \chi - \Theta_{z}) \leq \int_{Z_{\delta}} (b \Theta + \lambda b \chi - \Theta_{z}) \leq 0.$$

PROOF OF THEOREM 4.; Consider $\mu=\mu(z)=\lambda b\left[z-\delta\right]^+$ with δ fixed such that $0<\delta \le d-M/\lambda b$. The function $\zeta=\left[\Theta-\mu\right]^+$ vanishes on z=0 and for $z\ge d$. Therefore $g\left[\Theta-\mu\right]^+=0$ and from (1.8) or from (3.6), one has

$$\int_{\Omega} \nabla \Theta \cdot \nabla \left[\Theta - \mu\right]^{+} + b \int_{\Omega} \Theta_{z} \left[\Theta - \mu\right]^{+} - \lambda b \int_{\Omega} \left[\Theta - \mu\right]^{+}_{z} \leq 0$$

or

$$\int_{Z_{\delta}} (|\nabla\Theta|^{2} - \lambda b \chi \Theta_{z}) + \int {\{\nabla\Theta \cdot \nabla [\Theta - \mu]^{+} - \lambda b [\Theta - \mu]_{z}^{+}\}} + b \int_{\Omega} \Theta_{z} [\Theta - \mu]^{+} \leq 0 .$$

$$(\Omega \setminus Z_{\delta}) \cap {\{\Theta > 0\}}$$

Adding the quantity

$$\lambda b \left[\chi(\lambda b \chi - \Theta_{z}) - b \int_{\Omega \setminus Z_{\delta}} \lambda b \left[\Theta - \mu \right]^{+} \right]$$

which is non-positive by Lemma 3, one obtains

$$\int_{Z_{\delta}} \{\Theta_{x}^{2} + \Theta_{y}^{2} + (\Theta_{z} - \lambda b_{X})^{2}\} + \int_{\Omega \setminus Z_{\delta}} |\nabla [\Theta - \mu]^{+}|^{2} + b \int_{\Omega} (\Theta - \mu)_{z} [\Theta - \mu]^{+} \leq 0.$$

Since the last term is zero, if follows that $\Theta \leq \mu$ in $\Omega \setminus Z_{\delta} = \{z \geq \delta\}$ and $\Theta_{\mathbf{x}} = \Theta_{\mathbf{y}} = 0$, $\Theta_{\mathbf{z}} = \lambda b \chi$ in $Z_{\delta} = \{z < \delta\} \cdot \text{Since } \Theta = 0$ for z = 0 and $z = \delta$, one has $\Theta = 0$ for $z \leq \delta$ and consequently also $\chi = 0$ for $z \leq \delta$.

5. REGULARITY OF THE FREE BOUNDARY

The goal of Theorem 4 is to provide sufficient conditions in order to assume the global existence of a free boundary. In this case we shall prove that the free boundary is an analytic surface.

We begin with the following

<u>PROPOSITION</u> 5. A solution (Θ, χ) (resp. (Θ, χ, g)) to Problem (P) (resp. (\tilde{P})) satisfies

(5.1)
$$-\Delta\Theta + b\Theta_z + \lambda b \chi_z = 0 \quad \text{in} \quad 25'(\Omega) ,$$

$$\chi_{z} \geq 0 \quad \text{in} \quad \Omega$$

<u>Proof:</u> The equation (5.1) follows immediatly by taking $\zeta \in \mathcal{B}(\Omega)$ in (1.8) or in (3.6)

Choosing as a test function in (1.8) or in

(3.6) $\zeta = \min (\Theta, \varepsilon \eta)$, where $\varepsilon > 0$ and $\eta \in \mathcal{D}(\Omega), \eta \ge 0$ one has

$$I = \int_{\Omega} \nabla \Theta \cdot \nabla \min (\Theta, \varepsilon \eta) + b \int_{\Omega} \Theta_{z} \min (\Theta, \varepsilon \eta) - \lambda b \int_{\Omega} [\min (\Theta, \varepsilon \eta)]_{z \leq 0}$$

since $\chi=1$ in $\{0>0\}$. Since min $(0,\epsilon\eta)=0$ on $\partial\Omega$, the last integral is zero and it follows

$$I = \int |\nabla \Theta|^2 + \varepsilon \int \nabla \Theta \cdot \nabla \eta + b \int \{\varepsilon \eta \Theta_z + \Theta_z \quad [\min \quad (\Theta, \varepsilon \eta) - \varepsilon \eta] \}$$

$$\{\Theta \le \varepsilon \eta\} \quad \{\Theta > \varepsilon \eta\}$$

$$\geq \varepsilon \int_{\Omega} \nabla \theta \cdot \nabla \eta + \varepsilon b \int_{\Omega} \theta_{z} \eta - b \int_{\Omega} \theta_{z} [\varepsilon \eta - \theta]^{+} ,$$

from which one concludes

$$\int_{\Omega} \!\! \chi_{\{\Theta > \epsilon \eta\}} \ \nabla \Theta \cdot \nabla \eta + b \! \int_{\Omega} \!\! \Theta_{\mathbf{Z}} \eta \ \leq \ b \ \int_{\Omega} \!\! \Theta_{\mathbf{Z}} \left[\eta \! - \! \frac{\Theta}{\epsilon} \right]^{+} \ .$$

Passing to the limit $\varepsilon > 0$, one obtains

$$\int_{\Omega} (\nabla \Theta \cdot \nabla \eta + b \Theta_{\mathbf{z}} \eta) \leq 0, \quad \forall \eta \in \mathcal{D}(\Omega) : \eta \geq 0$$

and using (5.1), one deduces (5.2).

From (5.1) it follows that the function Θ is locally

Hölder continuous. Therefore the set

$$\Omega_{\perp} \equiv \{X \in \Omega \mid \Theta(X) > 0\}$$

is an open set. Since $\boldsymbol{\chi}$ is monotonous increasing in the z-coordinate one can introduce

$$\phi(x,y) = \inf \{z : \Theta(x,y,z) > 0, (x,y,z) \in \Omega\}$$

where ϕ is an upper semi-continuous function, by the continuity of Θ . Then we can state.

THEOREM 5. For any solution of Problem (P) or (\tilde{P}) one has

(5.5)
$$\Omega_{+} \equiv \{\Theta > 0\} = \{X \in \Omega : Z > \phi(X, y)\}$$

where ϕ is an upper semi-continuous function given by (5.4)

COROLLARY 1. Under conditions of Theorem 4, for all $b>M/\lambda d$, one has

H > $\phi(x,y) \ge d-M/\lambda d$ > 0, for all $(x,y) \in \Gamma$, which, in particular, assures the existence of a free boundary.

Consider now the function

(5.6)
$$u(x,y,z) = \int_0^z \Theta(x,y,t) dt, \text{ for } (x,y,z) \in \overline{\Omega},$$

which is a Baiocchi type transformation (see [BC] for instance).

<u>THEOREM 6.</u> Let (Θ,χ) (resp. (Θ,χ,g)) be a solution to Problem (P) (resp. (\tilde{P})) under the assumptions of Theorem 4. Then the function u defined by (5.6) satisfies the following variational inequality in Ω

(5.7)
$$u \ge 0$$
, $(-\Delta u + bu_z + \lambda b) \ge 0$, $u \cdot (-\Delta u + bu_z + \lambda b) = 0$,

and χ is a characteristic function, being

(5.8)
$$\chi = \chi(\Theta) = \chi(u)$$
 a.e. in Ω

where $\chi(\mathbf{v})$ denotes the characteristic function of the set $\{\mathbf{v}>0\}$.

<u>Proof</u>: From definition (5.6) and recalling 0>0 it is obvious that $u\ge 0$. Since $0=u_7$ and 0 satisfies (5.1) one has

$$(-\Delta u + b u_z + \lambda b \chi)_z = -\Delta \Theta + b \Theta_z + \lambda b \lambda_z = 0$$

which, together with (4.9) and $0 \le \chi \le 1$, imply

$$(5.9) 0 = -\Delta u + bu_z + \lambda b\chi \leq -\Delta u + bu_z + \lambda b.$$

Recalling (5.5) it is clear that

$$\{0>0\} = \{u>0\}$$

from which one deduces $\chi=1$ if u>0, and the third condition of (5.7) follows by (5.9).

From the classical regularity to solutions of variational inequalities one has

(5.11)
$$u \in W_{loc}^{2,\infty}(\Omega)$$
 (see [KS], for instance) and (5.8)

follows easily from (5.9) and (5.10).

REMARK 5 If one considers a linear flux

(5.12)
$$g(X,\rho(X),\theta(X)) = \alpha(z) [\theta(X)-\rho(X)]$$

with $\rho \ge 0$ and $\alpha(z) = 0$ for 0 < z < d and $\alpha(z) = \alpha = const. > 0$ for d < z < H, then we have that u is the unique solution of the following variational inequality with mixed boundary conditions (see [Br] and [R]):

$$\begin{aligned} \mathbf{u} & \in |\mathbf{K} = \{\mathbf{v} \in \mathbf{H}^{1}(\Omega) \mid \mathbf{v} \geq \mathbf{0} \text{ in } \Omega, \mathbf{v} = \mathbf{0} \text{ on } \Gamma_{0}\} \\ & \int_{\Omega} \nabla \mathbf{u} \cdot \nabla (\mathbf{v} - \mathbf{u}) + \mathbf{b} \int_{\Omega} \mathbf{u}_{\mathbf{Z}} (\mathbf{v} - \mathbf{u}) + \alpha \int_{\Gamma_{1}} \mathbf{h} (\mathbf{v} - \mathbf{u}) - \lambda \mathbf{b} \int_{\Omega} (\mathbf{v} - \mathbf{u}) + \alpha \int_{\Gamma_{1}} \widetilde{\rho} (\mathbf{v} - \mathbf{u}), \\ \mathbf{v} & \mathbf{v} & \in |\mathbf{K}, \end{aligned}$$

where
$$\tilde{\rho}(z) = \int_{d}^{z} \rho(t) dt$$
 for $z \ge d$.

In particular, this implies the uniqueness of the solution of Problem (P) for a linear cooling given by (5.12).

The transformation (5.6) and its consequence (5.8) allow us to include the study of the free boundary

$$\Phi = \Omega \cup 90^{T}$$

in the known results of Caffarelli [C] Kinderlehrer and Nirenberg [KN]. In order to apply these results we must show that Φ has not singular points. This may be done by using a technique due to Alt [Al] for the dam problem.

<u>LEMMA 4.</u> Let $X_0 \in \Phi$ and $B_r(X_0) \subset \Omega$. Then there is a cone $\Lambda_r \subset \{X \in |R^3| \ z < 0\}$. such that

(5.13)
$$\frac{\partial u}{\partial n}(X) = \nabla u(X) \cdot n \le 0$$
 for $X \in B_{r/2}(X_0)$, whenever $n \in \Lambda_r \cap S^2$.

<u>Proof</u>: Recalling (5.11) and that $u_z = 0 > 0$ in Ω , the proof of this lemma is a simple adaptation of Lemma 6.9 of [KS], page 255, and therefore we omit it.

THEOREM 7. Let $(0,\chi)$ (resp. $(0,\chi,g)$) be a solution to Problem (P) (resp. (\tilde{P})) under conditions of Theorem 4. Then the free boundary Φ is an analytic surface given by

$$Φ$$
: $z = φ(x,y)$ for $(x,y) ∈ Γ$,

and Θ is also a classical solution of Problem (C).

<u>Proof:</u> By (5.13) the function ϕ defined by (5.4) is a lipschitz function in Γ and we can apply Theorem 3 of [C] to conclude that (5.14) ϕ is C^1 and $u_{\epsilon}C^2(\Omega_+U\Phi)$. Therefore from equation (5.1) and Green's formula one finds that condition (1.5) is verified in every point of the free boundary $z=\phi(x,y)$, for all $(x,y)\in\Gamma$, by Corollary 1.

To conclude that Φ is an analytic surface it is sufficient to apply Theorem 1 of [KN], using (5.14) and recalling that the equation satisfied by u in Ω_{\perp} has constant coefficients.

6. UNICITY IN THE MONOTONE CASE

In Remark 5 we have already stated the uniqueness of the solution of Problem (P) with a particular linear cooling.

Adapting to our problem the technique of Carrillo and Chipot ([CC]) we shall prove an uniqueness result for the maximal monotone case assuming that χ is a characteristic function, that is, assuming

$$\chi = \chi(\Theta),$$

to which we have already stated sufficient conditions in Theorems

4 and 6.

Denote by (Θ_i, χ_i, g_i) , with $\chi_i = \chi(\Theta_i)$ and $g_i \in G(\Theta_i)$, for i=1,2, two solutions of the Problem (\tilde{P}) and set

$$\Theta_0$$
=min (Θ_1,Θ_2) , χ_0 =min (χ_1,χ_2) , ϕ_0 =sup (ϕ_1,ϕ_2) .

LENIA 5. Assuming (6.1), one has

$$(6.2) \int_{\Omega} \{ \nabla(\Theta_{i} - \Theta_{o}) \cdot \nabla \eta + b(\Theta_{i} - \Theta_{o})_{z} \eta - \lambda b(\chi_{i} - \chi_{o}) \eta_{z} \} dx dy dz$$

$$\leq \lambda b \int_{D_{i}} \eta(x, y, \phi_{i}(x, y)) dx dy$$

for any $\eta \in H^{1}(\Omega) \cap C^{0}(\overline{\Omega}), \eta \geq 0$, where

$$D_{i} = \{(x,y) \in \Gamma \mid \phi_{i}(x,y) < \phi_{0}(x,y)\}, i=1,2.$$

<u>Proof:</u> Choosing the test functions $\pm \zeta = \pm \min(\Theta_i - \Theta_0, \epsilon \eta)$, $\epsilon > 0$, from (3.6) one obtains for $i \neq j$ (i, j=1,2)

$$\int_{\Omega} \{ \nabla (\Theta_{\mathbf{i}} - \Theta_{\mathbf{j}}) \cdot \nabla \zeta + b (\Theta_{\mathbf{i}} - \Theta_{\mathbf{j}})_z \zeta - \lambda b (\chi_{\mathbf{i}} - \chi_{\mathbf{j}}) \zeta_z \} + \int_{\Gamma_1} (g_{\mathbf{i}} - g_{\mathbf{j}}) \zeta = 0.$$

By the monotonicity of G, one has

$$\int_{\Gamma_{j}} (g_{j} - g_{j}) \min (\Theta_{j} - \Theta_{0}, \varepsilon \eta) \geq 0$$

since it is sufficient to integrate in $\{\Theta_i > \Theta_o\}$ where $\Theta_j = \Theta_o$.

Then it follows

$$\int_{\infty} \{ \nabla (\Theta_i - \Theta_o) \cdot \nabla \min(\Theta_i - \Theta_o, \varepsilon \eta) + b(\Theta_i - \Theta_o) \sum_{z \in S} \min(\Theta_i - \Theta_o, \varepsilon \eta) \}$$

-
$$\lambda b(\chi_i - \chi_0)$$
 [min $(\Theta_i - \Theta_0, \varepsilon \eta)]_z$ } ≤ 0

or, using min $(u,v)=v-[v-u]^+$,

$$\begin{split} & \int \nabla (\Theta_{i} - \Theta_{o}) \cdot \nabla \eta + b \int_{\Omega} (\Theta_{i} - \Theta_{o})_{z} \eta + \lambda b (\chi_{i} - \chi_{o}) \eta_{z} \\ & \{\Theta_{i} - \Theta_{o} > \varepsilon \eta\} \\ & \leq b \int_{\Omega} \{\Theta_{i} - \Theta_{o}\}_{z} \left[\eta - \frac{\Theta_{i} - \Theta_{o}}{\varepsilon} \right]^{+} - \lambda (\chi_{i} - \chi_{o}) \left[\eta - \frac{\Theta_{i} - \Theta_{o}}{\varepsilon} \right]^{+}_{z} \} . \end{split}$$

Since the $\chi_{\hat{\textbf{i}}}$ are characteristic functions, integrating in z, one has

$$-\int_{\Omega} (x_{i} - x_{0}) \left[\eta - \frac{\Theta_{i} - \Theta_{0}}{\varepsilon} \right]_{z}^{+} = -\int_{\zeta} \left[\eta - \frac{\Theta_{i} - \Theta_{0}}{\varepsilon} \right]_{z}^{+} \leq \int_{\zeta} \left[\eta - \frac{\Theta_{i}}{\varepsilon} \right]_{z}^{+} (x, y, \phi_{i}) \leq \int_{\zeta} \eta (x, y, \phi_{i}) dy$$

and (6.2) follows by passing to the limite $\varepsilon \searrow 0$ in

$$\int \nabla (\Theta_{i} - \Theta_{o}) \cdot \nabla \eta + b \int_{\Omega} \left[(\Theta_{i} - \Theta_{o})_{z} \eta - \lambda (\chi_{i} - \chi_{o}) \eta_{z} \right] \leq$$

$$\{ \Theta_{i} - \Theta_{o} > \varepsilon \eta \}$$

$$\leq b \int_{\Omega} (\Theta_{i} - \Theta_{o})_{z} \left[\eta - \frac{\Theta_{i} - \Theta_{o}}{\tilde{\varepsilon}} \right]^{+} + \lambda b \int_{D_{i}} \eta(x, y, \phi_{i}) . \quad \blacksquare$$

THEOREM 8. Assuming (6.1) , the Problem (\tilde{P}) has at most one solution.

Proof: For $\varepsilon>0$, consider a smooth function α_ε , such that, $0{\le}\alpha_\varepsilon{\le}1$, and

 $\begin{array}{lll} \alpha_{\varepsilon}=1 & \text{in} & A_{o}=\{\Theta_{o}>0\} \text{UF}_{1} & \text{and} & \alpha_{\varepsilon}(X)=0 & \text{if} & d(X,A_{o})>\varepsilon\,. \\ \\ \text{Since 1-α_{ε}=0 on } \{\Theta_{o}>0\} & \text{, for all } \eta \epsilon \text{H}^{1}(\Omega) \text{, one has} \end{array}$

$$\int_{\Omega} \{ \nabla \Theta_{\mathbf{o}} \cdot \nabla (1 - \alpha_{\varepsilon}) \eta + b \Theta_{\mathbf{o} z} (1 - \alpha_{\varepsilon}) \eta - \lambda b \chi_{\mathbf{o}} \left[(1 - \alpha_{\varepsilon}) \eta \right]_{z} \} = 0.$$

For $\eta \in H^1(\Omega) \cap C^0(\overline{\Omega})$, $\eta \geq 0$, $\zeta = (1-\alpha_{\varepsilon})\eta$ is a test function in (3.6), and it follows (since $1-\alpha_{\varepsilon}=0$ on Γ_1)

$$\int_{\Omega} \{ \nabla (\Theta_{i} - \Theta_{o}) \cdot \nabla (1 - \alpha_{\varepsilon}) \eta + b(\Theta_{i} - \Theta_{o})_{z} (1 - \alpha_{\varepsilon}) \eta - \lambda b(\chi_{i} - \chi_{o}) [(1 - \alpha_{\varepsilon}) \eta]_{z} \}$$

$$\leq 0 \qquad (i=1,2).$$

Using (6.2), we obtain

$$\int_{\Omega} \{ \nabla (\Theta_{\mathbf{i}} - \Theta_{\mathbf{o}}) \cdot \nabla \eta + b (\Theta_{\mathbf{i}} - \Theta_{\mathbf{o}})_z \eta - \lambda b (\chi_{\mathbf{i}} - \chi_{\mathbf{o}}) \eta_z \} \leq \lim_{\epsilon \to \mathbf{o}} \lambda b \int_{D_{\mathbf{i}}} (\alpha_{\epsilon} \eta) (x, y, \phi(x, y)) = 0.$$

Choosing in this inequality $\,\eta\!=\!z$ and $\,\eta\!=\!H\!-\!z\,,$ after a simples calculation one obtains

$$\int_{\Omega} (\Theta_{i} - \Theta_{o}) + \lambda \int_{\Omega} (\chi_{i} - \chi_{o}) = 0,$$

from where one deduces $\theta_i = \theta_0$ and $\chi_i = \chi_0$, for i=1,2, which proves the uniqueness of the solution.

REFERENCES

- [A] <u>ADAMS, R.A.</u> "Sobolev Spaces", Academic Press, New York (1975)
- [AL] ALT, H. "The fluid flow through porous media: regularity of the free surface", Manus.Math 21,(1977), 255-272.
- [BC] BAIOCCHI, C., & CAPELO, A. "Disequazioni variazionali e quasi variazional. Applicazioni a problemi di frontiera libera", I, II, Quarderni dell'U.M.I., Pitagora Ed. Bologna (1978).

- [B] BREZIS, H. "Opérateurs maximaux monotones et semigrou pes de contractions dans les espaces de Hilbert" Math.Studes, <u>5</u>,North Holland (1973)
- [BKS] BRÉZIS,H.,D.KINDERLEHRER & G.STAMPACCHIA "Sur une nouvelle formulation du problème de l'écoulement à travers une digne", C.R.Acad. Sc.Paris 287-A (1978), 711-714.
- [BA] BRIERE, T. "Application des Méthodes Variationnelles à la cristallisation d'un métal par passage dans une gaîne de reproidissement". Ann. Fac. Sc. Toulouse, 2(1980), 219-247.
- [C] <u>CAFFARELLI, L.A.</u> The regularity of free boundaries in higher dimensions", Acta Math. <u>139</u>(1978), 155-184.
- [CC] CARRILLO, J. & M.CHIPOT. -"On the Dam Problem" (to appear)-cf.also Note in C.R.Acad.Sc.Paris, 292-I, (1981), 191-194.
- [91] <u>DUVAUT, G. & J. L. LIONS</u> -"Les inéquations en mécanique et en physique" Dunod, Paris, (1972).
- [KN] KINDERLEHRER, D.& L.NIRENBERG "Regularity in free boundary value problems". Ann. Scuola Norm. Sup. Pisa Ser. IV 4, (1977), 373-391.
- [KS] KINDERLEHRER, D. & G. STAMPACCHIA "An Introduction to Variational Inequalities and their Applications". Academic Press, New York (1980).
- [L] LIONS, J.L. "Quelques Methodes de résolution des Problèmes aux limites non-linéaires". Dunod, Paris (1969).
- [MS] MURTHY, M.K.V. & G.STAMPACCHIA "A variational inequality with mixed boundary conditions" -Israel J.Math. 13(1972), 188-224.
- [S] STAMPACCHIA, G. "Problemi al contorno ellitici con datti discontinui dotati di soluzioni hölderiane".

 Ann. di Mat. Pura Appl. 51(1960), 1-32.

- [R] RODRIGUES, J.F. "Sur un problème à frontière libre stationnaire traduisant la cristallisation d'un métal", C.R.Acad.Sc.Paris, 290-A (1980), 823-825.
- [Ru] RUBINSTEIN, L. "The Stefan Problem" A.M.S.Transl.
 Monograph 27, (1971).

Author's address:

M.C.: Université de Nancy I-UER Sciences Mathématiques E.R.A.

Nº 839 - Case Officielle 140

54037 - Nancy Cedex (FRANCE)

and

Brown University - L.C.D.S. (BoxF), Providence R.I. 02912 (U.S.A.)

J.F.R.: C.M.A.F., 2 - Av.Prof. Gama Pinto
1699 LISBOA CODEX (PORTUGAL)

REPORT DOCUMENTATION PAGE	BLAD P. 1822 Cost BLI OR COMELLING LORS	
AFOSR-TR- 82-0277 AD-A113	884	
TITLE (and Subtitle) ON THE STEADY-STATE CONTINUOUS CASTING STEFAN PROBLEM WITH NONLINEAR COOLING	5 TYPE OF REPORT 5 DOM: DOM: DOM: DOM: DOM: DOM: DOM: DOM:	
7 AUTHOR(s) Michel Chipot and Jose-Francisco Rodrigues	AFOSR 81-0198	
PERFORMING ORGANIZATION NAME AND ADDRESS Lefschetz Center for Dynamical Systems Div. of Applied Math., Brown University Providence, R. I. 02912	10. PROGRAM ELEMENT DRO : 174 GAREA & MORK UNIT NOMBERS 61102 F 2304/A4	
AFOSR, Bolling AFB, Washington, D.C. 20332/NM	January 1982 13 NUMBER OF PAGES 31	
14 MONITORING AGENCY NAME & ADDRESS(il different from Controlling Office)	Unclassified	
	15# EE TOATSIFICATION DOWN HAT NO	
17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, if different fro	m Repart	
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number		
A steady-state one phase Stefan problem correspond process of an ingot of pure metal by continuous carcooling is considered via the weak formulation into problem. Two existence results are obtained for a and for a maximal monotone flux. Comparison results free boundary are discussed. An uniqueness the monotone case.	ding to the solidification asting with a non-linear lateral croduced in (BKS) for the dam a general non-linear flux lts and the regularity of	

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAUL II ON DATA LATER IS