Tob
$$12$$
 $m(t_0) = M_0$
 $m'(t_0) = a M(t) - b m^2(t) \Rightarrow M \equiv 0$

Ale upmarchemia $M = M(t)$
 $\frac{dM}{dt} = a M - b M^2$
 $\frac{dM}{d$

$$y' = 2y'' \rightarrow y = 0$$

$$\frac{dy}{dt} = 2Ty$$

$$\frac{dy}{2Ty} = dt$$

$$Ty = t + C$$

$$y = t^{2} + 2ct + c^{2}$$

200
$$N^2$$
 $M(t_0) = M_0$
 $M'(t_0) = 0$
 $M(t_0) = 0$

 $\frac{\partial x}{\partial t} = \alpha x - b$ $\frac{\partial x}{\partial t} + \alpha x$ $\frac{\partial x}{\partial t} + \alpha$

28 AB

(1)
$$(t-x \log \frac{x}{t}) dt + t \log \frac{x}{t} dx > 0$$

(2) $(t-x \log \frac{x}{t}) dt + t \log \frac{x}{t} dx > 0$

(2) $(t-x \log \frac{x}{t}) dt + t \log \frac{x}{t} dx > 0$

(3) $(t-x \log \frac{x}{t}) dt + t \log \frac{x}{t} dt = dx$

(4) $(t-x \log \frac{x}{t}) dt + t \log \frac{x}{t} dt = 0$

(5) $(t-x \log \frac{x}{t}) dt = -t dt$

(6) $(t-x \log \frac{x}{t}) dt = -t dt$

(7) $(t-x \log \frac{x}{t}) dt = -t dt$

(8) $(t-x \log \frac{x}{t}) dt = -t dt$

(9) $(t-x \log \frac{x}{t}) dt = -t dt$

(9) $(t-x \log \frac{x}{t}) dt = -t dt$

(10) $(t-x \log \frac{x}{t}) dt = -t dt$

(11) $(t-x \log \frac{x}{t}) dt = -t dt$

(12) $(t-x \log \frac{x}{t}) dt = -t dt$

(13) $(t-x \log \frac{x}{t}) dt = -t dt$

(14) $(t-x \log \frac{x}{t}) dt = -t dt$

(15) $(t-x \log \frac{x}{t}) dt = -t dt$

(16) $(t-x \log \frac{x}{t}) dt = -t dt$

(17) $(t-x \log \frac{x}{t}) dt = -t dt$

(18) $(t-x \log \frac{x}{t}) dt = -t dt$

(19) $(t-x \log \frac{x}{t}) d$

Scanned with CamScanner

X A = (++1) (ancient(++1) =]+2) -2