$$I^{G}(J^{PC}) = 1^{-}(2^{-+})$$

$\pi_2(1670)$ MASS

VALUE	(MeV)	EVTS	DOCUMENT ID		TECN CHG	COMMENT
1672.	2± 3.0 OUR A	WERAGE	Error includes sca	ale fac	ctor of 1.4. Se	ee the ideogram below.
1658	$\pm \ 3 \ \begin{array}{c} + \ 24 \\ - \ 8 \end{array}$	420k	ALEKSEEV	10	COMP	$190 \underset{\pi}{\pi^-} \overset{Pb}{\pi^-} \overset{\rightarrow}{\pi^+} \overset{Pb'}{Pb'}$
1749	± 10 ± 100	145k	LU	05	B852	$18 \frac{\pi^{-} p}{\pi^{-} \pi^{0} p}$ $\omega \pi^{-} \pi^{0} p$
1676	\pm 3 \pm 8		¹ CHUNG	02	B852	$18.3 \pi^{-} p \rightarrow \pi^{+} \pi^{-} \pi^{-} p$
1685	± 10 \pm 30		² BARBERIS	01		$450 pp \rightarrow p_f 3\pi^0 p_s$
1687	\pm 9 \pm 15		AMELIN	99	VES	$37 \frac{\pi^{-} A}{\omega \pi^{-} \pi^{0} A^{*}}$
1669 1670	± 4 ± 4		BARBERIS BARBERIS	98B 98B		$450 pp \rightarrow p_f \rho \pi p_s$ $450 pp \rightarrow$
1070						$p_f f_2(1270) \pi p_s$
1730	± 20		³ AMELIN	95 B	VES	$36 \begin{array}{c} \pi^- A \rightarrow \\ \pi^+ \pi^- \pi^- A \end{array}$
1690	± 14		⁴ BERDNIKOV	94	VES	$37 \begin{array}{c} \pi^- A \rightarrow \\ K^+ K^- \pi^- A \end{array}$
1710	± 20	700	ANTIPOV	87	SIGM –	50 π^- Cu \rightarrow $\mu^+\mu^-\pi^-$ Cu
1676	± 6		⁴ EVANGELIS	81	OMEG -	$12 \pi^- p \rightarrow 3\pi p$
1657	± 14	2	^{1,5} DAUM	80 D	SPEC -	63–94 $\pi p \rightarrow 3\pi X$
1662	± 10	2000	⁴ BALTAY	77	HBC +	$15 \pi^+ p \rightarrow p3\pi$
• • •	We do not use	the follow	ing data for avera	ges, f	its, limits, etc.	• • •
1742	$\pm 31 \pm 49$		ANTREASYAN	1 90	CBAL	$e^{+}e^{-}_{e^{+}e^{-}\pi^{0}\pi^{0}\pi^{0}}$
1624	± 21		¹ BELLINI	85	SPEC	$40 \begin{array}{c} \pi^- A \rightarrow \\ \pi^- \pi^+ \pi^- A \end{array}$
1622	± 35		⁶ BELLINI -	85	SPEC	$\begin{array}{c} 40 \ \pi^- A \rightarrow \\ \pi^- \pi^+ \pi^- A \end{array}$
1693	±28		⁷ BELLINI	85	SPEC	$\begin{array}{c} 40 \ \pi^- A \rightarrow \\ \pi^- \pi^+ \pi^- A \end{array}$
1710	± 20		⁸ DAUM	81 B	SPEC -	63,94 $\pi^- p$
1660	± 10		⁴ ASCOLI	73	HBC –	$5-25 \ \pi^- p \rightarrow p \pi_2$
1						

¹ From $f_2(1270)\pi$ decay.

² From a fit to the invariant mass distribution. ³ From a fit to $J^{PC}=2^{-}+f_2(1270)\pi$, $f_0(1370)\pi$ waves.

⁴ From a fit to $J^P=2^-S$ -wave $f_2(1270)\pi$ partial wave.

 $^{^5}$ Clear phase rotation seen in $2^-\tilde{S},\, 2^-P,\, 2^-D$ waves. We quote central value and spread of single-resonance fits to three channels.

 $^{^6\,\}mathrm{From}\stackrel{^-}{\rho\pi}\,\mathrm{decay}.$

⁷ From $\sigma\pi$ decay.

 $^{^8}$ From a two-resonance fit to four 2^-0^+ waves. This should not be averaged with all the single resonance fits.

π_2 (1670) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN CHG	COMMENT
260± 9 OUR AVERAGE Error includes scale factor of 1.2.					
$271 \pm 9^{+}_{-} \begin{array}{c} 22 \\ 24 \end{array}$	420k	ALEKSEEV	10	COMP	$\begin{array}{c} 190 \ \pi^- Pb \rightarrow \\ \pi^- \pi^- \pi^+ Pb' \end{array}$
$408 \pm 60 \pm 250$	145k	LU	05	B852	$18 \pi^{-} p \rightarrow \omega \pi^{-} \pi^{0} p$
$254\pm3\pm31$		⁹ CHUNG	02	B852	18.3 $\pi^- p \rightarrow$
265± 30± 40 168± 43± 53		¹⁰ BARBERIS AMELIN	01 99	VES	$\pi^{+}\pi^{-}\pi^{-}p$ $450 pp \rightarrow p_f 3\pi^0 p_s$ $37 \pi^{-}A \rightarrow$
268± 15 256± 15		BARBERIS BARBERIS	98B 98B		$37 \pi^{-} A \rightarrow \sigma_{A^*}$ $450 pp \rightarrow p_f \rho \pi p_s$ $450 pp \rightarrow p_f f_2(1270) \pi p_s$
310± 20		¹¹ AMELIN	95 B	VES	$ \begin{array}{c} 36 \pi^{-} A \rightarrow \\ \pi^{+} \pi^{-} \pi^{-} A \end{array} $
190± 50		¹² BERDNIKOV	94	VES	$ 37 \frac{\pi}{\pi} \stackrel{\pi}{A} \xrightarrow{A} \\ K \stackrel{+}{K} \stackrel{\pi}{\pi} \stackrel{\pi}{A} $
170± 80	700	ANTIPOV	87	SIGM –	$50 \frac{\pi^{-} \text{Cu}}{\mu^{+} \mu^{-} \pi^{-} \text{Cu}} \xrightarrow{\pi^{-} \text{Cu}}$
260± 20	10	12 EVANGELIS		OMEG -	$12 \pi^{-} p \rightarrow 3\pi p$
219 ± 20	12	,13 DAUM	80 D	SPEC -	$63-94 \pi p \rightarrow 3\pi X$
285 ± 60	2000	¹² BALTAY	77	HBC +	$15 \pi^+ \rho \rightarrow \rho 3\pi$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$236 \pm 49 \pm 36$	ANTREASYA	N 90	CBAL		$e^{+}e^{-}_{e^{+}e^{-}\pi^{0}\pi^{0}\pi^{0}}$
304± 22	⁹ BELLINI	85	SPEC		$40 \pi^{-} A \rightarrow \pi^{-} \pi^{+} \pi^{-} A$
404 ± 108	¹⁴ BELLINI	85	SPEC		$ \begin{array}{cccc} \pi & \pi & \pi & A \\ 40 & \pi^{-} & A \rightarrow & & \\ \pi^{-} & \pi^{+} & \pi^{-} & A \end{array} $
330± 90	¹⁵ BELLINI	85	SPEC		$ \begin{array}{cccc} \pi & \pi & \pi & A \\ 40 & \pi^{-} & A \rightarrow & & \\ \pi^{-} & \pi^{+} & \pi^{-} & A \end{array} $
312± 50	¹⁶ DAUM	81 B	SPEC	_	π π π π A 63,94 π p
270 ± 60	¹² ASCOLI	73	HBC	_	5-25 $\pi^- p \to p \pi_2$

⁹ From $f_2(1270)\pi$ decay.

$\pi_2(1670)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Confidence level
$\overline{\Gamma_1}$	3π	(95.8±1.4) %	_
	$\pi^+\pi^-\pi^0$		
Γ_3	$\pi^{0} \pi^{0} \pi^{0}$		
Γ_4	$f_2(1270)\pi$	(56.3 ± 3.2) %	
Γ_5	$ ho\pi$	(31 ± 4)%	
U	$\sigma\pi$	$(10.9 \pm 3.4) \%$	
	$\pi(\pi\pi)_{\mathcal{S}}$ -wave	$(8.7\pm3.4)\%$	
Γ ₈	$K\overline{K}^*(892)+$ c.c.	$(4.2\pm1.4)\%$	
•	ωho	$(2.7\pm1.1)\%$	
Γ_{10}	$\pi^{\pm}\gamma$	$(7.0\pm1.1)\times10^{-1}$	_
Γ_{11}	$\gamma\gamma$	$< 2.8 \times 10^{-}$	-7 90%
Γ_{12}	$\eta\pi$		
	$\pi^{\pm}2\pi^{+}2\pi^{-}$		
	$ ho$ (1450) π	< 3.6 × 10 ⁻	
Γ_{15}	$b_1(1235)\pi$	$< 1.9 \times 10^{-}$	97.7%
	$\eta 3\pi$		
	$f_1(1285)\pi$	possibly seen	
Γ ₁₈	$a_2(1320)\pi$	not seen	_

 $^{^{10}}$ From a fit to the invariant mass distribution. 11 From a fit to $J^{PC}=2^{-}+f_2(1270)\pi$, $f_0(1370)\pi$ waves. 12 From a fit to $J^P=2^ f_2(1270)\pi$ partial wave.

 $^{^{13}}$ Clear phase rotation seen in $^{2-}$ S, $^{2-}$ P, $^{2-}$ D waves. We quote central value and spread of single-resonance fits to three channels.

 $^{^{14}\,\}mathrm{From}\;
ho\pi\;\mathrm{decay}.$

¹⁵ From $\sigma\pi$ decay.

 $^{^{16}}$ From a two-resonance fit to four $2^{-}0^{+}$ waves. This should not be averaged with all the single resonance fits.

CONSTRAINED FIT INFORMATION

An overall fit to 4 branching ratios uses 6 measurements and one constraint to determine 4 parameters. The overall fit has a $\chi^2=1.9$ for 3 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

π_2 (1670) PARTIAL WIDTHS

• • • We do not use the following data for averages, fits, limits, etc. • • •

<0.19 90	¹⁸ ALBRECHT	97 B	ARG		$e^{+}e^{-}_{e^{+}e^{-}\pi^{+}\pi^{-}\pi^{0}}$
$1.41\ \pm0.23\!\pm\!0.28$	ANTREASYAN	90	CBAL	0	$e^{+}e^{-} _{e^{+}e^{-}\pi^{0}\pi^{0}\pi^{0}}$
$0.8 \pm 0.3 \pm 0.12$	¹⁹ BEHREND	90 C	CELL	0	$e^{+}e^{-}\xrightarrow{e^{+}e^{-}}\pi^{+}\pi^{-}\pi^{0}$
$1.3 \pm 0.3 \pm 0.2$	²⁰ BEHREND	90 C	CELL		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

¹⁸ Decaying into $f_2(1270)\pi$ and $\rho\pi$.

$\pi_2(1670) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

 $^{^{17}}$ Primakoff reaction. Assumes incoherent $\mathit{f}_{2}(1270)\pi$ contribution to 3π final state and uses B($\pi_{2}(1670)\rightarrow\ \mathit{f}_{2}\pi)=56\%.$

 $^{^{19}}$ Constructive interference between $f_2(1270)\pi$, $\rho\pi$ and background.

²⁰ Incoherent Ansatz.

π_2 (1670) BRANCHING RATIOS

VALUEDOCUMENT IDCOMMENT0.29 \pm 0.03 \pm 0.0522 BARBERIS01 450 $pp \rightarrow p_f 3\pi^0 p_s$	3/Γ ₂
VALUEDOCUMENT IDCOMMENT0.29 \pm 0.03 \pm 0.0522 BARBERIS01450 $pp \rightarrow p_f 3\pi^0 p_s$	
0.29±0.03±0.05 22 BARBERIS 01 450 $pp \rightarrow p_f 3\pi^0 p_s$	65Γ ₄
	65Г4
$\Gamma(\rho\pi)/0.565\Gamma(f_2(1270)\pi)$ $\Gamma_5/0.5$ (With $f_2(1270) \rightarrow \pi^+\pi^-$.) <u>VALUE</u> DOCUMENT ID TECN COMMENT 0.97 ± 0.09 OUR AVERAGE Error includes scale factor of 1.9.	
0.76 \pm 0.07 \pm 0.10 CHUNG 02 B852 18.3 $\pi^- p \to \pi^+ \pi^- \pi^-$ 1.01 \pm 0.05 BARBERIS 98B 450 $pp \to p_f \pi^+ \pi^- \pi^0$	•
$\Gamma(\sigma\pi)/\Gamma(f_2(1270)\pi)$ VALUE DOCUMENT ID TECN COMMENT	₆ /Γ ₄
0.19±0.06 OUR AVERAGE 0.17±0.02±0.07 CHUNG 02 B852 18.3 $\pi^- p \rightarrow \pi^+ \pi^- \pi^- p$ 0.24±0.10 23,24 BAKER 99 SPEC 1.94 $\overline{p}p \rightarrow 4\pi^0$	
$\frac{1}{2}\Gamma(\rho\pi)/\Gamma(\pi^{\pm}\pi^{+}\pi^{-})$ VALUE DOCUMENT ID TECN CHG COMMENT DOCUMENT ID TECN CHG COMMENT	4Γ ₇)
0.29 \pm 0.04 OUR FIT 0.29 \pm 0.05 25 DAUM 81B SPEC 63,94 $\pi^- p$ • • We do not use the following data for averages, fits, limits, etc. • •	
<0.3 BARTSCH 68 HBC + 8 $\pi^+ p \rightarrow 3$	3π <i>p</i>
0.565Γ $(f_2(1270)\pi)$ /Γ $(\pi^{\pm}\pi^{+}\pi^{-})$ 0.565Γ $_4$ /(0.565Γ $_4$ + $\frac{1}{2}$ Γ $_5$ +0.62 (With $f_2(1270) \rightarrow \pi^{+}\pi^{-}$.) VALUE DOCUMENT ID TECN CHG COMMENT 0.604±0.035 OUR FIT 0.60 ±0.05 OUR AVERAGE Error includes scale factor of 1.3. 0.61 ±0.04 25 DAUM 81B SPEC 63,94 $\pi^{-}p$ 0.76 +0.24 ARMENISE 69 DBC + 5.1 $\pi^{+}d \rightarrow d3$ 0.35 ±0.20 BALTAY 68 HBC + 7-8.5 $\pi^{+}p$ • • • We do not use the following data for averages, fits, limits, etc. • •	
0.59 BARTSCH 68 HBC + $8 \pi^+ p \rightarrow 3\pi p$	
0.624 $\Gamma(\pi(\pi\pi)_{S-\text{WaVe}})/\Gamma(\pi^{\pm}\pi^{+}\pi^{-})$ 0.624 $\Gamma_{7}/(0.565\Gamma_{4}+\frac{1}{2}\Gamma_{5}+0.62)$ (With $(\pi\pi)_{S-\text{WaVe}} \to \pi^{+}\pi^{-}$.) VALUE DOCUMENT ID TECN COMMENT 0.10±0.04 OUR FIT 0.10±0.05 25 DAUM 81B SPEC 63,94 $\pi^{-}p$	4Γ ₇)

```
\Gamma(K\overline{K}^*(892) + \text{c.c.})/\Gamma(f_2(1270)\pi)
                                                                TECN CHG COMMENT
0.075 ± 0.025 OUR FIT
                                 <sup>26</sup> ARMSTRONG 82B OMEG -
0.075 \pm 0.025
                                                                                  16 \pi^{-} p \rightarrow K^{+} K^{-} \pi^{-} p
\Gamma(\omega \rho)/\Gamma_{\text{total}}
                                                                                                             ٦/و٦
                                                                           TECN COMMENT
0.027 \pm 0.004 \pm 0.010
                                                                       \Gamma_{12}/(0.565\Gamma_4 + \frac{1}{2}\Gamma_5 + 0.624\Gamma_7)
\Gamma(\eta\pi)/\Gamma(\pi^{\pm}\pi^{+}\pi^{-})
        (All \dot{\eta} decays.)
VALUE
                                          DOCUMENT ID
                                                                      TECN CHG COMMENT
 < 0.09
                                                                     HBC
                                          BALTAY
                                                              68
• • • We do not use the following data for averages, fits, limits, etc. • • •
< 0.10
                                          CRENNELL
                                                                     HBC
                                                                                        6 \pi^{-} p \rightarrow f_{2} \pi^{-} N
\Gamma(\pi^{\pm}2\pi^{+}2\pi^{-})/\Gamma(\pi^{\pm}\pi^{+}\pi^{-})
                                                                       \Gamma_{13}/(0.565\Gamma_4+\frac{1}{2}\Gamma_5+0.624\Gamma_7)
                                               DOCUMENT ID
                                                                           TECN CHG COMMENT
 <0.10
                                               CRENNELL
                                                                    70
                                                                           HBC
                                                                                                 f_2\pi^-N
                                                                                             7,8.5 \pi^+ p
< 0.1
                                               BALTAY
                                                                           HBC
\Gamma(\rho(1450)\pi)/\Gamma_{\text{total}}
                                                                                                           \Gamma_{14}/\Gamma
VALUE
                                                                           TECN
                                                                                     COMMENT
                                                                                     37 \begin{array}{c} \pi^- A \rightarrow \\ \omega \pi^- \pi^0 A^* \end{array}
 < 0.0036
                                 97.7
                                                                           VES
                                               AMELIN
\Gamma(b_1(1235)\pi)/\Gamma_{\text{total}}
                                                                                                           \Gamma_{15}/\Gamma
                                                                                     <u>COMME</u>NT
VALUE
                                 CL%
                                               DOCUMENT ID
                                                                           TECN
 < 0.0019
                                 97.7
                                                                           VES
                                               AMELIN
                                                                    99
\Gamma(f_1(1285)\pi)/\Gamma_{\text{total}}
                                                                                                           \Gamma_{17}/\Gamma
                                                                        TECN
                              EVTS
                                             DOCUMENT ID
                               69k
                                                                 04
                                                                        B852
possibly seen
                                             KUHN
\Gamma(a_2(1320)\pi)/\Gamma_{\text{total}}
                                                                                                           \Gamma_{18}/\Gamma
VALUE
                              EVTS
                                                                        TECN
                                                                                  COMMENT
                                             DOCUMENT ID
                               69k
                                             KUHN
                                                                 04
                                                                        B852
not seen
D-wave/S-wave RATIO FOR \pi_2(1670) \rightarrow f_2(1270)\pi
<u>VALUE</u>
                                               DOCUMENT ID
                                                                          TECN COMMENT
                                            <sup>23</sup> BAKER
                                                                          SPEC 1.94 \overline{p}p \rightarrow 4\pi^0
-0.18 \pm 0.06
                                                                    99
• • We do not use the following data for averages, fits, limits, etc. • •
                                            <sup>25</sup> DAUM
                                                                    81B SPEC 63,94 \pi^- p
  0.22 \pm 0.10
```

F-wave/*P*-wave RATIO FOR $\pi_2(1670) \rightarrow \rho \pi$

<u>VALUE</u>	DOCUMENT ID		<u>TECN</u>	COMMENT
$-0.72\pm0.07\pm0.14$	CHUNG	02	B852	18.3 $\pi^- p \to \pi^+ \pi^- \pi^- p$

π_2 (1670) REFERENCES

ADOLPH ALEKSEEV SCHEGELSKY	14 10 06	EPJ A50 79 PRL 104 241803 EPJ A27 199	C. Adolph <i>et al.</i> M.G. Alekseev <i>et al.</i> V.A. Schegelsky <i>et al.</i>	(COMPASS Collab.) (COMPASS Collab.)
LU	05	PRL 94 032002	M. Lu et al.	(BNL E852 Collab.)
KUHN	04	PL B595 109	J. Kuhn <i>et al.</i>	(BNL E852 Collab.)
CHUNG	02	PR D65 072001	S.U. Chung et al.	(BNL E852 Collab.)
BARBERIS	01	PL B507 14	D. Barberis <i>et al.</i>	,
AMELIN	99	PAN 62 445	D.V. Amelin et al.	(VES Collab.)
		Translated from YAF 62		,
BAKER	99	PL B449 114	C.A. Baker et al.	
BARBERIS	98B	PL B422 399	D. Barberis <i>et al.</i>	(WA 102 Collab.)
ACCIARRI	97T	PL B413 147	M. Acciarri et al.	(L3 Collab.)
ALBRECHT	97B	ZPHY C74 469	H. Albrecht et al.	(ARGUS Collab.)
AMELIN	95B	PL B356 595	D.V. Amelin et al.	(SERP, TBIL)
BERDNIKOV	94	PL B337 219	E.B. Berdnikov et al.	(SERP, TBIL)
ANTREASYAN	90	ZPHY C48 561	D. Antreasyan et al.	(Crystal Ball Collab.)
BEHREND	90C	ZPHY C46 583	H.J. Behrend et al.	(CELLO Collab.)
ANTIPOV	87	EPL 4 403	Y.M. Antipov et al.	(SERP, JINR, INRM+)
BELLINI	85	SJNP 41 781	D. Bellini et al.	,
		Translated from YAF 41		
ARMSTRONG	82B	NP B202 1		(AACH3, BARI, BONN+)
DAUM	81B	NP B182 269	C. Daum et al. (AN	IST, CERN, CRAC, MPIM+)
EVANGELIS	81	NP B178 197	C. Evangelista et al.	(BARI, BONN, CERN+)
Also		NP B186 594	C. Evangelista	
DAUM	80D	PL 89B 285	C. Daum et al. (AN	IST, CERN, CRAC, MPIM+) JP
BALTAY	77	PRL 39 591	C. Baltay, C.V. Cautis, M.	Kalelkar (COLU) JP
ASCOLI	73	PR D7 669	G. Ascoli (ILL, TN	TO, GENO, HAMB, MILA+) JP
CRENNELL	70	PRL 24 781	D.J. Crennell et al.	(BNL)
ARMENISE	69	LNC 2 501	N. Armenise et al.	(BARI, BGNA, FIRZ)
BALTAY	68	PRL 20 887	C. Baltay et al. (0	COLU, ROCH, RUTG, YALE) I
BARTSCH	68	NP B7 345	J. Bartsch et al.	(AACH, BERL, CERN) JP
				,

²² Using BARBERIS 98B.
23 Using preliminary CBAR data.
24 With the $\sigma\pi$ in L=2 and the $f_2(1270)\pi$ in L=0.
25 From a two-resonance fit to four 2^-0^+ waves.
26 From a partial-wave analysis of $K^+K^-\pi^-$ system.
27 Normalized to the B($\pi_2(1670) \rightarrow f_2\pi$).