INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4516B MSI Binary up/down counter

Product specification
File under Integrated Circuits, IC04

January 1995

HEF4516B MSI

DESCRIPTION

The HEF4516B is an edge-triggered synchronous up/down 4-bit binary counter with a clock input (CP), an up/down count control input (UP/ \overline{DN}), an active LOW count enable input (\overline{CE}), an asynchronous active HIGH parallel load input (PL), four parallel inputs (P $_0$ to P $_3$), four parallel outputs (O $_0$ to O $_3$), an active LOW terminal count output (\overline{TC}), and an overriding asynchronous master reset input (MR).

Information on P_0 to P_3 is loaded into the counter while PL is HIGH, independent of all other input conditions except MR which must be LOW. When PL and \overline{CE} are LOW, the counter changes on the LOW to HIGH transition of CP. Input UP/ \overline{DN} determines the direction of the count, HIGH for counting up, LOW for counting down. When counting up, \overline{TC} is LOW when O_0 and O_3 are HIGH and \overline{CE} is LOW. When counting down, \overline{TC} is LOW when O_0 to O_3 and \overline{CE} are LOW. A HIGH on MR resets the counter (O_0 to O_3 = LOW) independent of all other input conditions.

HEF4516BP(N): 16-lead DIL; plastic (SOT38-1)

HEF4516BD(F): 16-lead DIL; ceramic (cerdip) (SOT74)

HEF4516BT(D): 16-lead SO; plastic (SOT109-1)

(): Package Designator North America

PINNING

PL parallel load input (active HIGH)

P₀ to P₃ parallel inputs

CE count enable input (active LOW)
CP clock pulse input (LOW to HIGH,

edge triggered)

UP/DN up/down count control input

MR master reset input

TC terminal count output (active LOW)

O₀ to O₃ parallel outputs

FAMILY DATA, IDD LIMITS category MSI

See Family Specifications

HEF4516B MSI

HEF4516B MSI

HEF4516B MSI

FUNCTION TABLE

MR	PL	UP/DN	CE	СР	MODE
L	Н	Х	Х	Х	parallel load
L	L	X	Н	X	no change
L	L	L	L		count down
L	L	Н	L		count up
Н	X	X	X	X	reset

Notes

1. H = HIGH state (the more positive voltage)

L = LOW state (the less positive voltage)

X = state is immaterial

Logic equation for terminal count:

$$\overline{\mathsf{TC}} = \overline{\overline{\mathsf{CE}}} \cdot \{ (\mathsf{UP}/\overline{\mathsf{DN}}) \cdot \mathsf{O}_0 \cdot \mathsf{O}_1 \cdot \mathsf{O}_2 \cdot \mathsf{O}_3 + \left(\overline{\mathsf{UP}/\overline{\mathsf{DN}}} \right) \cdot \overline{\mathsf{O}}_0 \cdot \overline{\mathsf{O}}_1 \cdot \overline{\mathsf{O}}_2 \cdot \overline{\mathsf{O}}_3 \}$$

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD} V	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	$1000 f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	4500 $f_i + \sum (f_o C_L) \times V_{DD}^2$	$f_i = input freq. (MHz)$
package (P)	15	11 200 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_0C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

Philips Semiconductors Product specification

Binary up/down counter

HEF4516B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
$CP \rightarrow O_n$	5			145	290	ns	118 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		60	120	ns	49 ns + (0,23 ns/pF) C _L
	15			45	90	ns	37 ns + (0,16 ns/pF) C _L
	5			155	310	ns	128 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		65	130	ns	54 ns + (0,23 ns/pF) C _L
	15			45	90	ns	37 ns + (0,16 ns/pF) C _L
$CP \rightarrow \overline{TC}$	5			260	525	ns	233 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		105	210	ns	94 ns + (0,23 ns/pF) C _L
	15			75	150	ns	67 ns + (0,16 ns/pF) C _L
	5			180	360	ns	153 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		75	150	ns	64 ns + (0,23 ns/pF) C _L
	15			55	115	ns	47 ns + (0,16 ns/pF) C _L
$PL \rightarrow O_n$	5			125	255	ns	98 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		55	110	ns	44 ns + (0,23 ns/pF) C _L
	15			40	85	ns	32 ns + (0,16 ns/pF) C _L
	5			170	340	ns	143 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		70	140	ns	59 ns + (0,23 ns/pF) C _L
	15			50	105	ns	42 ns + (0,16 ns/pF) C _L
$PL \rightarrow \overline{TC}$	5			250	500	ns	223 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		110	220	ns	99 ns + (0,23 ns/pF) C _L
	15			80	160	ns	72 ns + (0,16 ns/pF) C _L
	5			250	500	ns	223 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		110	220	ns	99 ns + (0,23 ns/pF) C _L
	15			80	160	ns	72 ns + (0,16 ns/pF) C _L
$\overline{CE} \to \overline{TC}$	5			165	330	ns	138 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		65	135	ns	54 ns + (0,23 ns/pF) C _L
	15			50	100	ns	42 ns + (0,16 ns/pF) C _L
	5			145	290	ns	118 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		60	125	ns	49 ns + (0,23 ns/pF) C _L
	15			45	95	ns	37 ns + (0,16 ns/pF) C _L
$MR \rightarrow O_n, \overline{TC}$	5			205	405	ns	178 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		65	130	ns	54 ns + (0,23 ns/pF) C _L
	15			45	85	ns	37 ns $+$ (0,16 ns/pF) C_L
$MR \rightarrow \overline{TC}$	5			225	450	ns	198 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		75	150	ns	64 ns + (0,23 ns/pF) C _L
	15			50	100	ns	42 ns + (0,16 ns/pF) C _L

Philips Semiconductors Product specification

Binary up/down counter

HEF4516B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Output transition times	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L

Philips Semiconductors Product specification

Binary up/down counter

HEF4516B MSI

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.	TYPICAL EXTRAPOLATION FORMULA
Minimum clock	5		95	45	ns	
pulse width; LOW	10	t _{WCPL}	35	20	ns	
	15		25	15	ns	
Minimum PL	5		105	55	ns	
pulse width; HIGH	10	t _{WPLH}	45	25	ns	
	15		35	15	ns	
Minimum MR	5		120	60	ns	
pulse width; HIGH	10	t _{WMRH}	50	25	ns	
	15		40	20	ns	
Recovery time	5		130	65	ns	
for MR	10	t _{RMR}	45	20	ns	
	15		30	15	ns	
Recovery time	5		150	75	ns	
for PL	10	t _{RPL}	50	25	ns	
	15		30	15	ns	
Set-up times	5		100	50	ns	
$P_n \rightarrow PL$	10	t _{su}	50	25	ns	see also waveforms Figs 6 and 7
	15		40	20	ns	rigs o and r
	5		250	125	ns	
$UP/\overline{DN} \to CP$	10	t _{su}	100	50	ns	
	15		75	35	ns	
	5		120	60	ns	
$\overline{\sf CE} o {\sf CP}$	10	t _{su}	40	20	ns	
	15		25	10	ns	
Hold times	5		10	-40	ns	
$P_n \to PL$	10	t _{hold}	5	-20	ns	
	15		0	-20	ns	
	5		35	-90	ns	
$UP/\overline{DN} \to CP$	10	t _{hold}	15	-35	ns	
	15		15	-25	ns	
$\overline{CE} \to CP$	5		20	-40	ns	
	10	t _{hold}	5	-15	ns	
	15		5	-10	ns	
Maximum clock	5		3	6	MHz	
pulse frequency	10	f _{max}	7	14	MHz	
	15		9	18	MHz	

HEF4516B MSI

NSI

Product specification

Philips Semiconductors

- Package Options Include Plastic "Small Outline" Packages, Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

The '73, and 'H73, contain two independent J-K flip-flops with individual J-K, clock, and direct clear inputs. The '73, and 'H73, are positive pulse-triggered flip-flops. J-K input is loaded into the master while the clock is high and transferred to the slave on the high-to-low transition. For these devices the J and K inputs must be stable while the clock is high.

The 'LS73A contains two independent negative-edge-triggered flip-flops. The J and K inputs must be stable one setup time prior to the high-to-low clock transition for predictable operation. When the clear is low, it overrides the clock and data inputs forcing the Ω output low and the $\overline{\Omega}$ output high.

The SN5473, SN54H73, and the SN54LS73A are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN7473, and the SN74LS73A are characterized for operation from 0 °C to 70 °C.

SN5473, SN54LS73A . . . J OR W PACKAGE SN7473 . . . N PACKAGE SN74LS73A . . . D OR N PACKAGE (TOP VIEW)

73
FUNCTION TABLE

	INPUT	S		OUTPUTS			
CLR	CLK	J	K	Q	ā		
L	×	Х	Х	L	Н		
Н	Ţ	L	L	00	\bar{a}_0		
Н	工	Н	L	Н	L		
Н	ъ.	L	Н	L	Н		
Н	T	Н	Н	TOG	GLE		

'L\$73A FUNCTION TABLE

	INPUT	rs		OUTP	UTS
CLR	CLK	J	K	Q	₫
L	×	X	X	L	Н
н	1	L	L	αo	$\overline{\alpha}_{O}$
н	1	Н	L	н	L
н	1	L	Н	L	н
н	1	Н	Н	TOG	GLE
Н	Н	X	×	αo	\bar{a}_0

FOR CHIP CARRIER INFORMATION.
CONTACT THE FACTORY

logic symbols†

[†]These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

'73

'LS73

schematics of inputs and outputs

logic diagrams (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (See Note 1)	7 V
Input voltage: '73	5.5 V
LS73A	7 V
Operating free-air temperature range:	SN54'
opolating tree on temperature tanget	SN74' 0° C to 70°C
	-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

SN5473, SN54LS73A, SN7473, SN74LS73A **DUAL J-K FLIP-FLOPS WITH CLEAR**

SDLS118 - DECEMBER 1983 - REVISED MARCH 1988

recommended operating conditions

				SN5473			SN747	3	UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	UNII
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	٧
VIH	High-level input voltage		2			2			>
VIL	Low-level input voltage				8.0			0.8	٧
ЮН	High-level output current				-0.4			- 0.4	mA
loL	Low-level output current				16			16	mA
		CLK high	20			20			
tw	Pulse duration	CLK low	47			47			ns
	y Pulse duration	CLR low	25			25			
t _{su}	Input setup time before CLK f		0			0			ns
th	Input hold time data after CLK↓		0			0			ns
TA	Operating free-air temperature		- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

5.4.4				unt.		SN5473			SN7473		UNIT
PAI	RAMETER	11	EST CONDITION	181	MIN	TYP\$	MAX	MIN	TYP‡	MAX	UNIT
VIK		V _{CC} = MIN,	I _I = - 12 mA				- 1.5			- 1.5	V
Vон		V _{CC} = MIN, I _{OH} = - 0.4 mA	V _{IH} = 2 V,	V _{IL} = 0.8 V,	2.4	3.4		2.4	3.4		V
V _{OL}		V _{CC} = MIN, I _{OL} = 16 mA	V _{IH} = 2 V,	V _{IL} = 0.8 V,		0.2	0.4		0.2	0.4	٧
11		V _{CC} = MAX,	V _I = 5.5 V				1			1	mA
ЧН	J or K	V _{CC} = MAX,	V ₁ = 2.4 V				40 80			40 80	μА
	J or K						- 1.6			- 1.6	
ItL	CLR	V _{CC} = MAX,	V ₁ = 0.4 V				- 3,2			- 3.2	mA
	CLK		·				- 3.2			- 3.2	}
los§		V _{CC} = MAX			- 20		- 57	- 18		- 57	mA
Icc1		V _{CC} = MAX,	See Note 2			10	20	<u> </u>	10	20	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 2: With all outputs open, ICC is measured with the Q and \overline{Q} outputs high in turn. At the time of measurement, the clock input

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see note 3)

PARAMETER#	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max}				15	20		MHz
^t PLH	CLR	<u>a</u> .			16	25	ns
^t PHL	CLA	Q	$R_L = 400 \Omega$, $C_L = 15 pF$	=	25	40	กร
^t PLH	CLK	Q or Q			16	25	ns
^t PHL	CLK	4 67 4			25	40	ns

[#]fmax = maximum clock frequency: tpLH = propagation delay time, low-to-high-level output; tpHL = propagation delay time, high-tolow-level output.

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

 $^{^{\}ddagger}$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$.

[§] Not more than one output should be shorted at a time.

Average per flip-flop.

recommended operating conditions

			S	N54LS7	3A	SI	174LS7	3A		
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	V	
VIH	High-level input voltage		2			2			٧	
VIL	Low-level input voltage				0.7			8.0	V	
ЮН	High-level output current				- 0.4			- 0.4	mA	
lOL	Low-level output current				4			8	mA	
fclock	Clock frequency		0		30	0		30	MHz	
	Pulse duration	CLK high	20			20				
t _W	ruise duration	CLR low	25			20			ns	
	Con an almost had not Ol 161	data high or low	20			20				
t _{su}	Set up time-before CLK4	CLR inactive	20			20			ns	
th	Hold time-data after CLK↓		0			0			ns	
TA	Operating free-air temperature		- 55		125	0		70	°c	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	RAMETER		ST CONDITION	et	SI	N54LS73	3A	SI	N74LS7:	3A	UNIT
PA	ARAMETER		251 COMPITION	3.	MIN	TYP#	MAX	MIN	TYP#	MAX	UNIT
VIK		V _{CC} = MIN,	$t_1 = -18 \text{ mA}$				- 1.5			- 1.5	V
Voн		V _{CC} = MIN, I _{OH} = - 0.4 mA	V _{IH} = 2 V,	V _{IL} = MAX,	2.5	3.4		2.7	3.4		٧
\/ - ·		V _{CC} = MIN, I _{OL} = 4 mA	V _{IL} = MAX,	V _{IH} = 2 V,		0.25	0.4		0.25	0.4	V
VOL	loi	V _{CC} = MIN, I _{OL} = 8 mA	VIL = MAX,	V _{IH} = 2 V,					0.35	0.5	v
	J or K		V ₁ = 7 V				0.1			0.1	
l _l	CLR	V _{CC} = MAX,					0.3			0.3	mA
	CLK						0.4			0.4	
	J or K	-					20			20	
чн	CLR	V _{CC} = MAX,	V ₁ = 2.7 V				60			60_	μА
	CLK						80			80	
	J or K	V	V = 0.4.V				0.4			- 0,4	mA
11L	CLR or CLK	V _{CC} = MAX,	V = 0.4 V				- 0.8			- 0.8	IIIA
los\$		V _{CC} = MAX,	See Note 4		- 20		– 100	- 20		- 100	mA
ICC (T	otai)	V _{CC} = MAX,	See Note 2			4	6		4	6	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max}				30	45		MHz
tPLH	CLR or CLK	Q or Q	$R_L = 2 k\Omega$, $C_L = 15 pF$		15	20	ns
^t PHL	CER OF CER	Q or Q			15	20	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{C}$.

[§] Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

NOTE 2: With all outputs open, I_{CC} is measured with the Q and Q outputs high in turn. At the time of measurement, the clock input is grounded.

NOTE 4: For certain devices where state commutation can be caused by shorting an output to ground, an equivalent test may be performed with V_O = 2.25 V and 2.125 V for the 54 family and the 74 family, respectively, with the minimum and maximum limits reduced to one half of their stated values.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated

August 1986 Revised March 2000

DM74LS74A

Dual Positive-Edge-Triggered D Flip-Flops with Preset, Clear and Complementary Outputs

General Description

This device contains two independent positive-edge-triggered D flip-flops with complementary outputs. The information on the D input is accepted by the flip-flops on the positive going edge of the clock pulse. The triggering occurs at a voltage level and is not directly related to the transition time of the rising edge of the clock. The data on the D input may be changed while the clock is LOW or HIGH without affecting the outputs as long as the data setup and hold times are not violated. A low logic level on the preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs.

Ordering Code:

Order Number	Package Number	Package Description
DM74LS74AM	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow
DM74LS85ASJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
DM74LS74AN	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Function Table

	Inp	uts		Outputs				
PR	CLR	CLK	D	Q	Q			
L	Н	Х	Х	Н	L			
Н	L	X	X	L	Н			
L	L	X	X	H (Note 1)	H (Note 1)			
Н	Н	1	Н	Н	L			
Н	Н	1	L	L	Н			
Н	Н	L	X	Q_0	\overline{Q}_0			

- H = HIGH Logic Level
- X = Either LOW or HIGH Logic Level
- L = LOW Logic Level
- ↑ = Positive-going Transition

 \mathbf{Q}_0 = The output logic level of Q before the indicated input conditions were established.

Note 1: This configuration is nonstable; that is, it will not persist when either the preset and/or clear inputs return to their inactive (HIGH) level.

Absolute Maximum Ratings(Note 2)

Supply Voltage 7V Input Voltage 7V Operating Free Air Temperature Range $0^{\circ}\text{C to } +70^{\circ}\text{C}$ Storage Temperature Range $-65^{\circ}\text{C to } +150^{\circ}\text{C}$

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Paramete	r	Min	Nom	Max	Units
V _{CC}	Supply Voltage		4.75	5	5.25	V
V _{IH}	HIGH Level Input Voltage		2			V
V _{IL}	LOW Level Input Voltage				0.8	V
I _{ОН}	HIGH Level Output Current				-0.4	mA
I _{OL}	LOW Level Output Current				8	mA
f _{CLK}	Clock Frequency (Note 3)		0		25	MHz
f _{CLK}	Clock Frequency (Note 4)		0		20	MHz
t _W	Pulse Width	Clock HIGH	18			
	(Note 3)	Preset LOW	15			ns
		Clear LOW	15			
t _W	Pulse Width	Clock HIGH	25			
	(Note 4)	Preset LOW	20			ns
		Clear LOW	20			
t _{SU}	Setup Time (Note 3)(Note	5)	20↑			ns
t _{SU}	Setup Time (Note 4)(Note	5)	25↑			ns
t _H	Hold Time (Note 5)(Note 6)	0↑			ns
T _A	Free Air Operating Temper	rature	0		70	°C

Note 3: $C_L = 15$ pF, $R_L = 2$ k Ω , $T_A = 25$ °C, and $V_{CC} = 5V$.

Note 4: $C_L=50$ pF, $R_L=2$ $k\Omega,\, T_A=25^{\circ}C,$ and $V_{CC}=5V.$

Note 5: The symbol (\uparrow) indicates the rising edge of the clock pulse is used for reference.

Note 6: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Condition	s	Min	Typ (Note 7)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	HIGH Level	V _{CC} = Min, I _{OH} = Max		2.7	3.4		V
	Output Voltage	$V_{IL} = Max, V_{IH} = Min$		2.1	3.4		V
V _{OL}	LOW Level	V _{CC} = Min, I _{OL} = Max			0.35	0.5	
	Output Voltage	$V_{IL} = Max, V_{IH} = Min$			0.35	0.5	V
		I _{OL} = 4 mA, V _{CC} = Min			0.25	0.4	
II	Input Current @ Max	V _{CC} = Max	Data			0.1	
	Input Voltage	$V_I = 7V$	Clock			0.1	mA
			Preset			0.2	IIIA
			Clear			0.2	<u> </u>
I _{IH}	HIGH Level	V _{CC} = Max	Data			20	
	Input Current	$V_I = 2.7V$	Clock			20	
			Clear			40	μΑ
			Preset			40	
I _{IL}	LOW Level	V _{CC} = Max	Data			-0.4	
	Input Current	$V_I = 0.4V$	Clock			-0.4	mA
			Preset			-0.8	IIIA
			Clear			-0.8	
Ios	Short Circuit Output Current	V _{CC} = Max (Note 8)	,	-20		-100	mA
I _{CC}	Supply Current	V _{CC} = Max (Note 9)			4	8	mA

Note 7: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 8: Not more than one output should be shorted at a time, and the duration should not exceed one second. For devices, with feedback from the outputs, where shorting the outputs to ground may cause the outputs to change logic state an equivalent test may be performed where V_O = 2.125V with the minimum and maximum limits reduced by one half from their stated values. This is very useful when using automatic test equipment.

 $\textbf{Note 9:} \ \ \textbf{With all outputs OPEN, I}_{CC} \ \ \textbf{is measured with CLOCK grounded after setting the Q and } \ \overline{\textbf{Q}} \ \ \textbf{outputs HIGH in turn}.$

Switching Characteristics

at $V_{CC} = 5V$ and $T_A = 25$ °C

		From (Input)		R _L =	2 k Ω		
Symbol	Parameter	To (Output)	C _L =	15 pF	C _L = 50 pF		Units
			Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency		25		20		MHz
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Clock to Q or Q		25		35	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Clock to Q or Q		30		35	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Preset to Q		25		35	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Preset to Q		30		35	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Clear to Q		25		35	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Clear to Q		30		35	ns

Physical Dimensions inches (millimeters) unless otherwise noted

14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow Package Number M14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 0.740 - 0.770 (18.80 - 19.56)0.090 (2.286) 14 13 12 14 13 12 11 10 9 8 INDEX AREA 0.250 ± 0.010 (6.350 ± 0.254) PIN NO. 1 PIN NO. 1 IDENT 1 2 3 4 5 6 7 1 2 3 $\frac{0.092}{(2.337)}$ DIA 0.030 MAX (0.762) DEPTH OPTION 1 OPTION 02 $\frac{0.135 \pm 0.005}{(3.429 \pm 0.127)}$ 0.300 - 0.320 $\frac{0.630 - 8.128}{(7.620 - 8.128)}$ $\frac{0.145 - 0.200}{(3.683 - 5.080)}$ 0.060 4° TYP Optional (1.651) $\frac{0.008 - 0.016}{(0.203 - 0.406)}$ TYP 0.020 (0.508) 0.125 - 0.150 0.075 ± 0.015 $\overline{(3.175 - 3.810)}$ (1.905 ± 0.381) (7.112) MIN 0.014 - 0.0230.100 ± 0.010 (2.540 ± 0.254) (0.356 - 0.584) $\frac{0.050 \pm 0.010}{(1.270 - 0.254)}$ TYP 0.325 ^{+0.040} -0.015 8.255 + 1.016

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N14A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

N144 (REV.F)

August 1986 Revised March 2000

DM74LS83A 4-Bit Binary Adder with Fast Carry

General Description

These full adders perform the addition of two 4-bit binary numbers. The sum (Σ) outputs are provided for each bit and the resultant carry (C4) is obtained from the fourth bit. These adders feature full internal look ahead across all four bits. This provides the system designer with partial lookahead performance at the economy and reduced package count of a ripple-carry implementation.

The adder logic, including the carry, is implemented in its true form meaning that the end-around carry can be accomplished without the need for logic or level inversion.

Features

- Full-carry look-ahead across the four bits
- Systems achieve partial look-ahead performance with the economy of ripple carry
- Typical add times

Two 8-bit words 25 ns Two 16-bit words 45 ns

■ Typical power dissipation per 4-bit adder 95 mW

Ordering Code:

Order Number	Package Number	Package Description
DM74LS83AN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Connection Diagram

Truth Table

						Out	puts		
	Inp	uts		When C0 =			When C0 =		
					WI	nen C2 = L		WH	en C2 = H
A1 /	B1 /	A2 /	B2 /	Σ1	Σ2	C2 /	Σ1	Σ2	C2 /
A3_	B3	A4	B4	Σ3	Σ4	C4	Σ3	Σ4	C4
L	L	L '	L	Ļ	L	L	Н	L	L
н	L	L	L	н	L	L	L	Н	L
L	н	L	L	н	Ł	L	L	Н	L
н	Н	L	L	L	н	L	н	н	L
L	L	Н	L	L	н	L	Н	[н	L
н	L	Н	L	н	н	L	L	L	н
L	Н	Н	L	Н	н	L	L	L	н
Н	Н	Н	L	L	L	н	Н	L	н
L	L	L	Н	L	Н	L	н	н	L
Н	L	L	Н	Н	Н	L	L	L	н
L	н	L	Н	Н	Н	L	L	L	н
Н	Н	L	Н	L	L	н	н	L	Н
L	L	н	Н	L	L	Н	н	L	н
н	L	н	Н	н	L	н	L	H	н
L	H	Н	Н	н	L	н	L	н	н
н	Н	Н	Н	L	Н	Н	н	н	н

H = HIGH Level, L = LOW Level

Input conditions at A1, B1, A2, B2, and C0 are used to determine outputs Σ 1 and Σ 2 and the value of the internal carry C2. The values at C2, A3, B3, A4, and B4 are then used to determine outputs Σ 3, Σ 4, and C4.

Logic Diagram

Absolute Maximum Ratings(Note 1)

Supply Voltage 7V Input Voltage 7V Operating Free Air Temperature Range $0^{\circ}\text{C to } +70^{\circ}\text{C}$ Storage Temperature Range $-65^{\circ}\text{C to } +150^{\circ}\text{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5	5.25	V
V _{IH}	HIGH Level Input Voltage	2			V
V _{IL}	LOW Level Input Voltage			0.8	V
I _{OH}	HIGH Level Output Current			-0.4	mA
I _{OL}	LOW Level Output Current			8	mA
T _A	Free Air Operating Temperature	0		70	°C

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 2)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	HIGH Level	V _{CC} = Min, I _{OH} = Max		2.7	3.4		V
	Output Voltage	$V_{IL} = Max, V_{IH} = Min$		2.1	3.4		V
V _{OL}	LOW Level	V _{CC} = Min, I _{OL} = Max			0.35	0.5	
	Output Voltage	$V_{IL} = Max, V_{IH} = Min$			0.33	0.5	V
		$I_{OL} = 4 \text{ mA}, V_{CC} = \text{Min}$			0.25	0.4	
I _I	Input Current @ Max	V _{CC} = Max	A or B			0.2	mA
	Input Voltage	$V_I = 7V$	C0			0.1	IIIA
I _{IH}	HIGH Level	V _{CC} = Max	A or B			40	
	Input Current	$V_I = 2.7V$	C0			20	μΑ
I _{IL}	LOW Level	V _{CC} = Max	A or B			-0.8	mA
	Input Current	$V_{I}=0.4V \\$	C0			-0.4	IIIA
Ios	Short Circuit Output Current	V _{CC} = Max (Note 3)	•	-20		-100	mA
I _{CC1}	Supply Current	V _{CC} = Max (Note 4)			19	34	mA
I _{CC2}	Supply Current	V _{CC} = Max (Note 5)			22	39	mA

Note 2: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 4: I_{CC1} is measured with all outputs open, all B inputs LOW and all other inputs at 4.5V, or all inputs at 4.5V.

Note 5: I_{CC2} is measured with all outputs OPEN and all inputs grounded.

	5V and T _A = 25°C	From (Input)		Г				
Symbol	Parameter	To (Output)	C ₁ =	R _L = C ₁ = 15 pF		50 pF	Units	
•		(,	Min	Max	Min	Max	-	
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	C0 to ∑1 or ∑2		24		28		
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	C0 to ∑1 or ∑2		24		30		
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	C0 to ∑3		24		28		
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	C0 to ∑3		24		30		
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	C0 to ∑4		24		28		
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	C0 to Σ4		24		30		
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	A_i , B_i to Σ_i		24		28		
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	A_i , B_i to Σ_i		24		30		
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	C0 to C4		17		24		
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	C0 to C4		17		25		
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	A _i , B _i to C4		17		24		
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	A _i , B _i to C4		17		26		

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

August 1986 Revised March 2000

DM74LS85 4-Bit Magnitude Comparator

General Description

These 4-bit magnitude comparators perform comparison of straight binary or BCD codes. Three fully-decoded decisions about two, 4-bit words (A, B) are made and are externally available at three outputs. These devices are fully expandable to any number of bits without external gates. Words of greater length may be compared by connecting comparators in cascade. The A > B, A < B, and A = B outputs of a stage handling less-significant bits are connected to the corresponding inputs of the next stage handling more-significant bits. The stage handling the least-significant bits must have a high-level voltage applied to the A = B input. The cascading path is implemented with only a two-gate-level delay to reduce overall comparison times for long words.

Features

- Typical power dissipation 52 mW
- Typical delay (4-bit words) 24 ns

Ordering Code:

Order Number	Package Number	Package Description
DM74LS85M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
DM74LS85N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Function Table

Comparing			(Cascading	9		Outputs		
Inputs				Inputs					
A3, B3	A2, B2	A1, B1	A0, B0	A > B	A < B	A = B	A > B	A < B	$\mathbf{A} = \mathbf{B}$
A3 > B3	Х	Х	Х	Х	Х	Х	Н	L	L
A3 < B3	Х	Х	Χ	Х	X	Χ	L	Н	L
A3 = B3	A2 > B2	X	Χ	Х	X	Χ	Н	L	L
A3 = B3	A2 < B2	X	Χ	Х	X	Χ	L	Н	L
A3 = B3	A2 = B2	A1 > B1	Х	Х	Χ	Χ	Н	L	L
A3 = B3	A2 = B2	A1 < B1	Χ	Χ	X	Χ	L	Н	L
A3 = B3	A2 = B2	A1 = B1	A0 > B0	Χ	X	Χ	Н	L	L
A3 = B3	A2 = B2	A1 = B1	A0 < B0	Χ	X	Χ	L	Н	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	Н	L	L	Н	L	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	Н	L	L	Н	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	L	Н	L	L	Н
A3 = B3	A2 = B2	A1 = B1	A0 = B0	X	X	Н	L	L	Н
A3 = B3	A2 = B2	A1 = B1	A0 = B0	Н	Н	L	L	L	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	L	L	Н	Н	L

H = HIGH Level, L = LOW Level, X = Don't Care

Logic Diagram

Absolute Maximum Ratings(Note 1)

Supply Voltage 7V Input Voltage 7V Operating Free Air Temperature Range 0° C to $+70^{\circ}$ C Storage Temperature Range -65° C to $+150^{\circ}$ C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5	5.25	V
V _{IH}	HIGH Level Input Voltage	2			V
V _{IL}	LOW Level Input Voltage			0.8	V
I _{OH}	HIGH Level Output Current			-0.4	mA
I _{OL}	LOW Level Output Current			8	mA
T _A	Free Air Operating Temperature	0		70	°C

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 2)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	HIGH Level Output Voltage	$V_{CC} = Min, I_{OH} = Max$ $V_{IL} = Max, V_{IH} = Min$		2.7	3.4		V
V _{OL}	LOW Level Output Voltage	$V_{CC} = Min, I_{OL} = Max$ $V_{IL} = Max, V_{IH} = Min$			0.35	0.5	V
		$I_{OL} = 4 \text{ mA}, V_{CC} = \text{Min}$			0.25	0.4	
I	Input Current @ Max	$V_{CC} = Max$	A < B			0.1	
	Input Voltage	$V_I = 7V$	A > B			0.1	mA
			Others			0.3	
I _{IH}	HIGH Level	V _{CC} = Max	A < B			20	
	Input Current	$V_I = 2.7V$	A > B			20	μΑ
			Others			60	
I _{IL}	LOW Level	V _{CC} = Max	A < B			-0.4	
	Input Current	$V_I = 0.4V$	A > B			-0.4	mA
			Others			-1.2	İ
Ios	Short Circuit Output Current	V _{CC} = Max (Note 3)	•	-20		-100	mA
I _{CC}	Supply Current	V _{CC} = Max (Note 4)			10	20	mA

Note 2: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 4: I_{CC} is measured with all outputs OPEN, A = B grounded and all other inputs at 4.5V.

Switching Characteristics at V_{CC} = 5V and T_A = 25 $^{\circ}$ C

		From	То	Number of		R _L =	2 k Ω		
Symbol	Parameter	Input	Output	Gate Levels	C _L =	15 pF	C _L =	50 pF	Units
					Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time	Any A or B	A < B,	3		36		42	
	LOW-to-HIGH Level Output	Data Input	A > B	3		30		42	ns
			A = B	4		40		40	
t _{PHL}	Propagation Delay Time	Any A or B	A < B,	3		30		40	
	HIGH-to-LOW Level Output	Data Input	A > B	3		30		40	ns
			A = B	4		30		40	
t _{PLH}	Propagation Delay Time	A < B or A = B	A > B	1		22		26	ns
	LOW-to-HIGH Level Output	A C B OI A = B	A > D	'		22		20	115
t _{PHL}	Propagation Delay Time	A < B or A = B	A > B	1		17		26	ns
	HIGH-to-LOW Level Output	A C B OI A - B	A/D			.,		20	113
t _{PLH}	Propagation Delay Time	A = B	A = B	2		20		25	ns
	LOW-to-HIGH Level Output	A - B	A - D			20		2.5	113
t _{PHL}	Propagation Delay Time	A = B	A = B	2		17		26	ns
	HIGH-to-LOW Level Output	A - B	X - D			.,		20	113
t _{PLH}	Propagation Delay Time	A > B or A = B	A < B	1		22		26	ns
	LOW-to-HIGH Level Output	//>Boin-B	7/0	'				20	113
t _{PHL}	Propagation Delay Time	A > B or A = B	A < B	1		17		26	ns
	HIGH-to-LOW Level Output	A > D OI A = D	7/0	'		''		20	113

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow Package Number M16A

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

August 1986 Revised March 2000

DM74LS90 Decade and Binary Counters

General Description

Each of these monolithic counters contains four masterslave flip-flops and additional gating to provide a divide-bytwo counter and a three-stage binary counter for which the count cycle length is divide-by-five for the DM74LS90.

All of these counters have a gated zero reset and the DM74LS90 also has gated set-to-nine inputs for use in BCD nine's complement applications.

To use their maximum count length (decade or four bit binary), the B input is connected to the Q_A output. The input count pulses are applied to input A and the outputs are as described in the appropriate truth table. A symmetrical divide-by-ten count can be obtained from the DM74LS90 counters by connecting the Q_D output to the A input and applying the input count to the B input which gives a divide-by-ten square wave at output Q_A .

Features

- Typical power dissipation 45 mW
- Count frequency 42 MHz

Ordering Code:

Order Number	Package Number	Package Description
DM74LS90M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow
DM74LS90N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Reset/Count Truth Table

Reset Inputs					Out	put		
R0(1)	R0(2)	R9(1)	R9(2)	Q_D	Q _C	QB	Q_A	
Н	Н	L	Х	L	L	L	L	
Н	Н	Χ	L	L	L	L	L	
Х	Χ	Н	Н	Н	L	L	Н	
Х	L	Χ	L		COL	JNT		
L	X	L	Х		COL	JNT		
L	X	X	L	COUNT				
Х	L	L	Χ		COI	JNT		

Function Tables

BCD Count Sequence (Note 1)

Count	Output						
	Q_D	Q _C	Q _B	Q _A			
0	L	L	L	L			
1	L	L	L	Н			
2	L	L	Н	L			
3	L	L	Н	Н			
4	L	Н	L	L			
5	L	Н	L	Н			
6	L	Н	Н	L			
7	L	Н	Н	Н			
8	Н	L	L	L			
9	Н	L	L	Н			

Bi-Quinary (5-2) (Note 2)

Count	Output							
	Q _A	Q _D	Q _C	Q _B				
0	L	L	L	L				
1	L	L	L	Н				
2	L	L	Н	L				
3	L	L	Н	Н				
4	L	Н	L	L				
5	Н	L	L	L				
6	Н	L	L	Н				
7	Н	L	Н	L				
8	Н	L	Н	Н				
9	Н	Н	L	L				

H = HIGH Level L = LOW Level X = Don't Care

Note 1: Output $\mathbf{Q}_{\mathbf{A}}$ is connected to input B for BCD count.

Note 2: Output Q_D is connected to input A for bi-quinary count.

Note 3: Output $\mathbf{Q}_{\mathbf{A}}$ is connected to input \mathbf{B} .

Logic Diagram

The J and K inputs shown without connection are for reference only and are functionally at a high level.

Absolute Maximum Ratings(Note 4)

Supply Voltage Input Voltage (Reset) 7V Input Voltage (A or B) Operating Free Air Temperature Range

Storage Temperature Range

Note 4: The "Absolute Maximum Ratings" are those values beyond which 7V the Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings.

The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	•	Min	Nom	Max	Units
V _{CC}	Supply Voltage		4.75	5	5.25	V
V _{IH}	HIGH Level Input Voltage		2			V
V _{IL}	LOW Level Input Voltage				0.8	V
I _{OH}	HIGH Level Output Current				-0.4	mA
I _{OL}	LOW Level Output Current				8	mA
f _{CLK}	Clock Frequency (Note 5)	A to Q _A	0		32	MHz
		B to Q _B	0		16	
f _{CLK}	Clock Frequency (Note 6)	A to Q _A	0		20	MHz
		B to Q _B	0		10	
t _W	Pulse Width (Note 5)	A	15			
		В	30			ns
		Reset	15			
t _W	Pulse Width (Note 6)	Α	25			
		В	50			ns
		Reset	25			
t _{REL}	Reset Release Time (Note 5)	•	25			ns
t _{REL}	Reset Release Time (Note 6)		35			ns
T _A	Free Air Operating Temperature	e	0		70	°C

-65°C to +150°C

Note 5: $C_L = 15$ pF, $R_L = 2$ k Ω , $T_A = 25$ °C and $V_{CC} = 5V$.

Note 6: C_L = 50 pF, R_L = 2 k $\Omega,~T_A$ = 25°C and V_{CC} = 5V.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Condition	s	Min	Typ (Note 7)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	HIGH Level Output Voltage	$V_{CC} = Min, I_{OH} = Max$ $V_{IL} = Max, V_{IH} = Min$		2.7	3.4		V
V _{OL}	LOW Level Output Voltage	$V_{CC} = Min, I_{OL} = Max$ $V_{IL} = Max, V_{IH} = Min$ $I_{OL} = 4 mA, V_{CC} = Min$	(Note 8)		0.35 0.25	0.5 0.4	V
I _I	Input Current @ Max	$V_{CC} = Max, V_I = 7V$	Reset			0.1	
	Input Voltage	V _{CC} = Max	Α			0.2	mA
		$V_I = 5.5V$	В			0.4	
I _{IH}	HIGH Level	$V_{CC} = Max, V_I = 2.7V$	Reset			20	
	Input Current		Α			40	μΑ
			В			80	
I _{IL}	LOW Level	$V_{CC} = Max, V_I = 0.4V$	Reset			-0.4	
	Input Current		Α			-2.4	mA
			В			-3.2	
Ios	Short Circuit Output Current	V _{CC} = Max (Note 9)	•	-20		-100	mA
I _{cc}	Supply Current	V _{CC} = Max (Note 7)			9	15	mA
Note 7: All t	typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.	•		1	1		

Note 9: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 10: I_{CC} is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5V and all other inputs grounded.

Switching Characteristics at V_{CC} = 5V and T_A = 25 $^{\circ}C$

		From (Input)		R _L =	$R_L = 2 k\Omega$		
Symbol	Parameter	To (Output)	To (Output) $C_L = 15 \text{ pF}$ $C_L = 50 \text{ pF}$		50 pF	Units	
			Min	Max	Min	Max	
f _{MAX}	Maximum Clock	A to Q _A	32		20		MHz
	Frequency	B to Q _B	16		10		IVITIZ
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	A to Q _A		16		20	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	A to Q _A		18		24	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	A to Q _D		48		52	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	A to Q _D		50		60	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	B to Q _B		16		23	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	B to Q _B		21		30	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	B to Q _C		32		37	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	B to Q _C		35		44	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	B to Q _D		32		36	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	B to Q _D		35		44	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	SET-9 to Q _A , Q _D		30		35	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	SET-9 to Q _B , Q _C		40		48	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	SET-0 to Any Q		40		52	ns

14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow Package Number M14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 0.740 - 0.770 (18.80 - 19.56)0.090 (2.286) 14 13 12 14 13 12 11 10 9 8 INDEX AREA 0.250 ± 0.010 (6.350 ± 0.254) PIN NO. 1 PIN NO. 1 IDENT 1 2 3 4 5 6 7 1 2 3 $\frac{0.092}{(2.337)}$ DIA $\frac{0.030}{(0.762)}$ MAX OPTION 1 OPTION 02 $\frac{0.135 \pm 0.005}{(3.429 \pm 0.127)}$ 0.300 - 0.320 $\frac{0.630 - 8.128}{(7.620 - 8.128)}$ 0.060 0.145 - 0.2004° TYP Optional (1.651) (3.683 - 5.080) $\frac{0.008 - 0.016}{(0.203 - 0.406)}$ TYP 0.020 (0.508) 0.125 - 0.150 0.075 ± 0.015 $\overline{(3.175 - 3.810)}$ (1.905 ± 0.381) (7.112) MIN 0.014 - 0.0230.100 ± 0.010 (2.540 ± 0.254) (0.356 - 0.584) $\frac{0.050 \pm 0.010}{(1.270 - 0.254)}$ TYP 0.325 ^{+0.040} -0.015

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N14A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

8.255 + 1.016

N144 (REV.F)

www.fairchildsemi.com

4-BIT SHIFT REGISTER

The SN54/74LS95B is a 4-Bit Shift Register with serial and parallel synchronous operating modes. The serial shift right and parallel load are activated by separate clock inputs which are selected by a mode control input. The data is transferred from the serial or parallel D inputs to the Q outputs synchronous with the HIGH to LOW transition of the appropriate clock input.

The LS95B is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Motorola TTL families.

- Synchronous, Expandable Shift Right
- Synchronous Shift Left Capability
- · Synchronous Parallel Load
- · Separate Shift and Load Clock Inputs
- Input Clamp Diodes Limit High Speed Termination Effects

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE:

The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

V_{CC} = PIN 14 GND = PIN 7

PIN NAMES

LOADING (Note a)

		HIGH	LOW
S	Mode Control Input	0.5 U.L.	0.25 U.L.
D_S	Serial Data Input	0.5 U.L.	0.25 U.L.
<u>Po</u> -P ₃	Parallel Data Inputs	0.5 U.L.	0.25 U.L.
CP ₁	Serial Clock (Active LOW Going Edge) Input	0.5 U.L.	0.25 U.L.
CP ₂	Parallel Clock (Active LOW Going Edge) Input	0.5 U.L.	0.25 U.L.
Q_0-Q_3	Parallel Outputs (Note b)	10 U.L.	5 (2.5) U.L.
			-

NOTES

- a. 1 TTL Unit Load (U.L.) = 40 μA HIGH/1.6 mA LOW.
- b. The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

SN54/74LS95B

4-BIT SHIFT REGISTER LOW POWER SCHOTTKY

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
TA	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
lOH	Output Current — High	54, 74			-0.4	mA
lOL	Output Current — Low	54 74			4.0 8.0	mA

SN54/74LS95B

LOGIC DIAGRAM

FUNCTIONAL DESCRIPTION

The LS95B is a 4-Bit Shift Register with serial and parallel synchronous operating modes. It has a Serial (D_S) and four Parallel (P₀-P₃) Data inputs and four Parallel Data outputs (Q₀-Q₃). The serial or parallel mode of operation is <u>con</u>trolled <u>by a Mode Control input</u> (S) and two Clock Inputs (CP₁) and (CP₂). The serial (right-shift) or parallel data transfers occur synchronous with the HIGH to LOW transition of the selected clock input.

When the Mode Control input (S) is HIGH, CP $_2$ is enabled. A HIGH to LOW transition on enabled CP $_2$ transfers parallel data from the P $_0$ -P $_3$ inputs to the Q $_0$ -Q $_3$ outputs.

When the Mode Control input (S) is LOW, CP1 is enabled. A

HIGH to LOW transition on enabled \overline{CP}_1 transfers the data from Serial input (DS) to Q₀ and shifts the data in Q₀ to Q₁, Q₁ to Q₂, and Q₂ to Q₃ respectively (right-shift). A left-shift is accomplished by externally connecting Q₃ to P₂, Q₂ to P₁, and Q₁ to P₀, and operating the LS95B in the parallel mode (S = HIGH).

For normal operation, S should only change states when both Clock inputs are LOW. However, changing S from LOW to HIGH while CP $_2$ is HIGH, or changing S from HIGH to LOW while CP $_1$ is HIGH and CP $_2$ is LOW will not cause any changes on the register outputs.

MODE SELECT — TRUTH TABLE

OPERATING MODE	INPUTS						OUTPUTS			
OPERATING MODE	S	CP ₁	CP ₂	DS	Pn	Q_0	Q ₁	Q_2	Q_3	
Shift	L L	卢卢	X X	l h	X X	L H	90 90	91 91	92 92	
Parallel Load	Н	Х	٦	Х	Pn	P ₀	P ₁	P ₂	P ₃	
Mode Change	7777777		H H H H	x x x x x x	X X X X X X	No Change No Change No Change Undetermined Undetermined No Change Undetermined				

L = LOW Voltage Level

H = HIGH Voltage Level

X = Don't Care

I = LOW Voltage Level one set-up time prior to the HIGH to LOW clock transition.

h = HIGH Voltage Level one set-up time prior to the HIGH to LOW clock transition.

P_n = Lower case letters indicate the state of the referenced input (or output) one set-up time prior to the HIGH to LOW clock transition.

SN54/74LS95B

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

			Limits		Limits				
Symbol	Parameter		Min	Тур	Max	Unit	Test Co	onditions	
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input All Inputs	HIGH Voltage for	
\/	Input LOW Voltage				0.7	V	Guaranteed Input	LOW Voltage for	
VIL					0.8	V	All Inputs		
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	$V_{CC} = MIN$, $I_{IN} = -18 \text{ mA}$		
V	Output HIGH Voltage	54	2.5	3.5		V	V _{CC} = MIN, I _{OH} :	= MAX, V _{IN} = V _{IH}	
VOH	Output HIGH Voltage	74	2.7	3.5		V	or V _{IL} per Truth Ta	able	
VOL	Output LOW Voltage	54, 74		0.25	0.4	V	I _{OL} = 4.0 mA	V _{CC} = V _{CC} MIN, V _{IN} = V _{IL} or V _{IH}	
VOL	Output LOVV Voltage	74		0.35	0.5	V	I _{OL} = 8.0 mA	per Truth Table	
1	Innut HCH Current				20	μΑ	$V_{CC} = MAX, V_{IN}$	= 2.7 V	
ΊΗ	Input HIGH Current				0.1	mA	V _{CC} = MAX, V _{IN}	= 7.0 V	
IIL	Input HIGH Current				-0.4	mA	V _{CC} = MAX, V _{IN} = 0.4 V		
los	Short Circuit Current (Note 1)		-20		-100	mA	V _{CC} = MAX		
ICC	Power Supply Current				21	mA	V _{CC} = MAX		

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS $(T_A = 25^{\circ}C, V_{CC} = 5.0 \text{ V})$

		Limits		Limits			
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
fMAX	Maximum Clock Frequency	25	36		MHz		
^t PLH	CP to Output		18	27	ns	$V_{CC} = 5.0 \text{ V}$ $C_{L} = 15 \text{ pF}$	
^t PHL	CP to Output		21	32	ns	Ε= 10 βι	

AC SETUP REQUIREMENTS ($T_A = 25$ °C, $V_{CC} = 5.0 \text{ V}$)

			Limits		Limits			
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions		
t _W	CP Pulse Width	20			ns			
t _S	Data Setup Time	20			ns			
t _h	Data Hold Time	20			ns	V _{CC} = 5.0 V		
t _S	Mode Control Setup Time	20			ns			
t _h	Mode Control Hold Time	20			ns			

SN54/74LS95B

DESCRIPTION OF TERMS

SETUP TIME(ts) —is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from HIGH to LOW in order to be recognized and transferred to the outputs.

HOLD TIME (th) — is defined as the minimum time following

the clock transition from HIGH to LOW that the logic level must be maintained at the input in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from HIGH to LOW and still be recognized.

AC WAVEFORMS

The shaded areas indicate when the input is permitted to change for predictable output performance.

Figure 1

Figure 2

INTEGRATED CIRCUITS

DATA SHEET

74ALS1518-input multiplexer

Product specification

1991 Feb 08

IC05 Data Handbook

8-input multiplexer

74ALS151

FEATURES

- 8-to-1 multiplexing
- On chip decoding
- Multi-function capability
- Complementary outputs
- See 74ALS251 for 3-State version

DESCRIPTION

The 74ALS151 is a logic implementation of a single 8-position switch with the switch position controlled by the state of three select (S0, S1, S2) inputs. True (Y) and complementary (\overline{Y}) outputs are both provided.

The enable (\overline{E}) is active-Low. When \overline{E} is High, Y output is Low and the \overline{Y} output is High regardless of all other inputs.

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74ALS151	8.0ns	8.0mA

PIN CONFIGURATION

ORDERING INFORMATION

	ORDER CODE		
DESCRIPTION	COMMERCIAL RANGE V_{CC} = 5V ±10%, T_{amb} = 0°C to +70°C	DRAWING NUMBER	
16-pin plastic DIP	74ALS151N	SOT38-4	
16-pin plastic SO	74ALS151D	SOT109-1	

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74ALS (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
10 – 17	Data inputs	1.0/1.0	20μA/0.1mA
S0 – S2	Select inputs	1.0/1.0	20μA/0.1mA
₽	Enable input (active-Low)	1.0/1.0	20μA/0.1mA
Y, \overline{Y}	Data outputs	130/240	2.6mA/24mA

 $\textbf{NOTE:} \quad \text{One (1.0) ALS unit load is defined as: } 20 \mu \text{A in the High state and 0.1mA in the Low state.}$

LOGIC SYMBOL

IEC/IEEE SYMBOL

8-input multiplexer

74ALS151

LOGIC DIAGRAM

FUNCTION TABLE

	INP	JTS		OUTF	PUTS
S2	S1	S0	Ē	Υ	Y
Х	Х	Х	Н	L	Н
L	L	L	L	10	Ī0
L	L	Н	L	I1	Ī1
L	Н	L	L	12	Ī2
L	Н	Н	L	13	Ī3
Н	L	L	L	14	Ī4
Н	L	Н	L	15	Ī5
Н	Н	L	L	16	Ī6
Н	Н	Н	Ĺ	17	Ī7

H = High voltage level
L = Low voltage level
X = Don't care

1991 Feb 08 3

8-input multiplexer

74ALS151

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limit set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	-0.5 to +7.0	V
V _{IN}	Input voltage	-0.5 to +7.0	V
I _{IN}	Input current	−30 to +5	mA
V _{OUT}	Voltage applied to output in High output state	−0.5 to V _{CC}	V
I _{OUT}	Current applied to output in Low output state	48	mA
T _{amb}	Operating free-air temperature range	0 to +70	°C
T _{stg}	Storage temperature range	-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS		UNIT
		MIN	NOM	MAX	
V _{CC}	Supply voltage	4.5	5.0	5.5	V
V _{IH}	High-level input voltage	2.0			V
V _{IL}	Low-level input voltage			0.8	V
I _{lk}	Input clamp current			-18	mA
I _{OH}	High-level output current			-2.6	mA
I _{OL}	Low-level output current			24	mA
T _{amb}	Operating free air temperature range	0		+70	°C

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

CVMDOL	DADAMETED	TEST CONDITIO	NC1	ı	LIMITS		UNIT
SYMBOL	PARAMETER	LEST CONDITIO	MIN	TYP ²	MAX	UNII	
Vall	High-level output voltage	$V_{CC} = \pm 10\%, V_{IL} = MAX,$	$I_{OH} = -0.4$ mA	V _{CC} – 2			V
V _{OH}	r iign-ievei output voitage	V _{IH} = MIN	I _{OH} = MAX	2.4	3.2		V
V	Low-level output voltage	V _{CC} = MIN, V _{IL} = MAX,	I _{OL} = 12mA		0.25	0.40	V
V _{OL}	Low-level output voltage	V _{IH} = MIN	I _{OL} = 24mA		0.35	0.50	V
V _{IK}	Input clamp voltage	$V_{CC} = MIN, I_I = I_{IK}$			-0.73	-1.5	V
lį	Input current at minimum input voltage	$V_{CC} = MAX, V_I = 7.0V$				0.1	mA
I _{IH}	High-level input current	$V_{CC} = MAX, V_I = 2.7V$				20	μΑ
I _{IL}	Low-level input current	$V_{CC} = MAX, V_I = 0.4V$				-0.1	mA
I _O	Output current ³	$V_{CC} = MAX, V_O = 2.25V$	-30		-112	mA	
Icc	Supply current (total)	$V_{CC} = MAX$			8.0	12	mA

NOTES:

- 1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
- 2. All typical values are at $V_{CC} = 5V$, $T_{amb} = 25$ °C.
- 3. The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

8-input multiplexer

74ALS151

AC ELECTRICAL CHARACTERISTICS

			LIM	ITS	
SYMBOL	PARAMETER	TEST CONDITION	T _{amb} = 0°C V _{CC} = +5. C _L = 50pF,	UNIT	
			MIN	MAX	
t _{PLH} t _{PHL}	Propagation delay In to Y	Waveform 1	3.0 5.0	12.0 12.0	ns
t _{PLH} t _{PHL}	Propagation delay In to \overline{Y}	Waveform 2	3.0 5.0	15.0 15.0	ns
t _{PLH} t _{PHL}	Propagation delay Sn to Y	Waveform 1, 2	5.0 7.0	15.0 16.0	ns
t _{PLH} t _{PHL}	Propagation delay Sn to Y	Waveform 1, 2	5.0 5.0	15.0 16.0	ns
t _{PLH} t _{PHL}	Propagation delay E to Y	Waveform 1	4.0 4.0	12.0 12.0	ns
t _{PLH} t _{PHL}	Propagation delay E to Y	Waveform 1	4.0 5.0	12.0 14.0	ns

AC WAVEFORMS

For all waveforms, $V_M = 1.3V$.

Waveform 1. Propagation Delay for Inverting Output

Waveform 2. Propagation Delay for Non-inverting Output

SC00005

TEST CIRCUIT AND WAVEFORMS

8-input multiplexer

74ALS151

DIP16: plastic dual in-line package; 16 leads (300 mil)

SOT38-4

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	b ₂	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	M _H	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	1.25 0.85	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	0.76
inches	0.17	0.020	0.13	0.068 0.051	0.021 0.015	0.049 0.033	0.014 0.009	0.77 0.73	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.030

scale

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	RENCES		EUROPEAN	ISSUE DATE	
VERSION	IEC JEDEC EIAJ				PROJECTION	1330E DATE	
SOT38-4					□ •	92-11-17 95-01-14	

8-input multiplexer

74ALS151

SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

							_											
UNIT	. A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	e	HE	L	Lp	Ø	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	10.0 9.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inche	s 0.069	0.0098 0.0039		0.01		0.0098 0.0075	0.39 0.38	0.16 0.15	0.050	0.24 0.23	0.041	0.039 0.016		0.01	0.01	0.004	0.028 0.012	0°

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT109-1	076E07S	MS-012AC				91-08-13 95-01-23

8-input multiplexer

74ALS151

	DEFINITIONS									
Data Sheet Identification	Product Status	Definition								
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.								
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.								
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.								

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1997 All rights reserved. Printed in U.S.A.

Let's make things better.

Dual 4-Input Multiplexer

The LSTTL/MSI SN74LS153 is a very high speed Dual 4-Input Multiplexer with common select inputs and individual enable inputs for each section. It can select two bits of data from four sources. The two buffered outputs present data in the true (non-inverted) form. In addition to multiplexer operation, the LS153 can generate any two functions of three variables. The LS153 is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all ON Semiconductor TTL families.

- Multifunction Capability
- Non-Inverting Outputs
- Separate Enable for Each Multiplexer
- Input Clamp Diodes Limit High Speed Termination Effects

GUARANTEED OPERATING RANGES

Symbol	Parameter	Min	Тур	Max	Unit
V _{CC}	Supply Voltage	4.75	5.0	5.25	V
T _A	Operating Ambient Temperature Range	0	25	70	°C
I _{OH}	Output Current – High			-0.4	mA
I _{OL}	Output Current – Low			8.0	mA

ON Semiconductor

Formerly a Division of Motorola

http://onsemi.com

LOW POWER SCHOTTKY

PLASTIC N SUFFIX CASE 648

SOIC D SUFFIX CASE 751B

ORDERING INFORMATION

Device	Package	Shipping
SN74LS153N	16 Pin DIP	2000 Units/Box
SN74LS153D	16 Pin	2500/Tape & Reel

1

CONNECTION DIAGRAM DIP (TOP VIEW)

DIN NAMES HIGH	
PIN NAMES HIGH	LOW
$ \begin{array}{cccc} S_0 & \text{Common Select Input} & 0.5 \text{ U.L.} \\ \overline{E} & \text{Enable (Active LOW) Input} & 0.5 \text{ U.L.} \\ I_0, I_1 & \text{Multiplexer Inputs} & 0.5 \text{ U.L.} \\ Z & \text{Multiplexer Output} & 10 \text{ U.L.} \\ \end{array} $	0.25 U.L. 0.25 U.L. 0.25 U.L. 5 U.L.

NOTES:

a) 1 TTL Unit Load (U.L.) = 40 μ A HIGH/1.6 mA LOW.

LOGIC SYMBOL

V_{CC} = PIN 16 GND = PIN 8

LOGIC DIAGRAM

FUNCTIONAL DESCRIPTION

The LS153 is a Dual 4-input Multiplexer fabricated with Low Power, Schottky barrier diode process for high speed. It can select two bits of data from up to four sources under the control of the common Select Inputs (S_0, S_1) . The two 4-input multiplexer circuits have individual active LOW Enables $(\overline{E}_a, \overline{E}_b)$ which can be used to strobe the outputs independently. When the Enables $(\overline{E}_a, \overline{E}_b)$ are HIGH, the corresponding outputs (Z_a, Z_b) are forced LOW.

The LS153 is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two Select Inputs. The logic equations for the outputs are shown below.

$$\begin{split} Z_a = \overline{E}_a \cdot (I_{0a} \cdot \overline{S}_1 \cdot \overline{S}_0 + I_{1a} \cdot \overline{S}_1 \cdot S_0 + I_{2a} \cdot S_1 \cdot \overline{S}_0 + \\ I_{3a} \cdot S_1 \cdot S_0) \end{split}$$

$$\begin{split} Z_b = \overline{E}_b \cdot (I_{0b} \cdot \overline{S}_1 \cdot \overline{S}_0 + I_{1b} \cdot \overline{S}_1 \cdot S_0 + I_{2b} \cdot S_1 \cdot \overline{S}_0 + \\ I_{3b} \cdot S_1 \cdot S_0) \end{split}$$

The LS153 can be used to move data from a group of registers to a common output bus. The particular register from which the data came would be determined by the state of the Select Inputs. A less obvious application is a function generator. The LS153 can generate two functions of three variables. This is useful for implementing highly irregular random logic.

TRUTH TABLE

SELECT	INPUTS		INPL	JTS (a	or b)		OUTPUT
S ₀	S ₁	E	I ₀	I ₁	l ₂	l ₃	Z
Х	Х	Н	Х	Х	Х	Χ	L
L	L	L	L	X	X	X	L
L	L	L	Н	X	X	X	Н
Н	L	L	Χ	L	X	X	L
Н	L	L	Χ	Н	X	X	Н
L	Н	L	Χ	X	L	X	L
L	Н	L	Χ	X	Н	X	Н
Н	Н	L	Χ	X	Χ	L	L
Н	Н	L	Χ	Χ	Χ	Н	Н

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

			Limits					
Symbol	Parameter	Min	Тур	Max	Unit	Tes	t Conditions	
V _{IH}	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs		
V _{IL}	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for All Inputs		
V _{IK}	Input Clamp Diode Voltage		-0.65	-1.5	V	V _{CC} = MIN, I _{IN} = -18 mA		
V _{OH}	Output HIGH Voltage	2.7	3.5		V	V_{CC} = MIN, I_{OH} = MAX, V_{IN} = V_{IH} or V_{IL} per Truth Table		
V	Output LOW/ Valtage		0.25	0.4	V	$I_{OL} = 4.0 \text{ mA}$ $V_{CC} = V_{CC} \text{ MIN},$		
V _{OL}	Output LOW Voltage		0.35	0.5	V	I _{OL} = 8.0 mA	$V_{IN} = V_{IL}$ or V_{IH} per Truth Table	
	Innut I II Cl I Coment			20	μΑ	V _{CC} = MAX, V _{IN}	= 2.7 V	
[†] ІН	Input HIGH Current			0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V		
I _{IL}	Input LOW Current			-0.4	mA	V _{CC} = MAX, V _{IN} = 0.4 V		
I _{OS}	Short Circuit Current (Note 1)	-20		-100	mA	V _{CC} = MAX		
Icc	Power Supply Current			10	mA	V _{CC} = MAX		

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS $(T_A = 25^{\circ}C)$

		Limits						
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions		
t _{PLH} t _{PHL}	Propagation Delay Data to Output		10 17	15 26	ns	Figure 2		
t _{PLH} t _{PHL}	Propagation Delay Select to Output		19 25	29 38	ns	Figure 1	$V_{CC} = 5.0 \text{ V}$ $C_L = 15 \text{ pF}$	
t _{PLH} t _{PHL}	Propagation Delay Enable to Output		16 21	24 32	ns	Figure 2		

AC WAVEFORMS

Figure 1.

Figure 2.

PACKAGE DIMENSIONS

N SUFFIX PLASTIC PACKAGE CASE 648-08 ISSUE R

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 5. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS		
DIM	MIN	MAX	MIN	MAX		
Α	0.740	0.770	18.80	19.55		
В	0.250	0.270	6.35	6.85		
С	0.145	0.175	3.69	4.44		
D	0.015	0.021	0.39	0.53		
F	0.040	0.70	1.02	1.77		
G	0.100	BSC	2.54	BSC		
Н	0.050	BSC	1.27 BSC			
J	0.008	0.015	0.21	0.38		
K	0.110	0.130	2.80	3.30		
L	0.295	0.305	7.50	7.74		
М	0°	10 °	0°	10 °		
S	0.020	0.040	0.51	1.01		

PACKAGE DIMENSIONS

D SUFFIX PLASTIC SOIC PACKAGE CASE 751B-05 **ISSUE J**

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.

 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050 BSC		
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0 °	7°	0 °	7°	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

Notes

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

German Phone: (+1) 303–308–7140 (M–F 2:30pm to 5:00pm Munich Time)
Email: ONlit–german@hibbertco.com

French Phone: (+1) 303–308–7141 (M–F 2:30pm to 5:00pm Toulouse Time)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (M–F 1:30pm to 5:00pm UK Time)

Email: ONlit@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong 800–4422–3781

Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549

Phone: 81–3–5487–8345 **Email**: r14153@onsemi.com

Fax Response Line: 303-675-2167

800-344-3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.

DUAL 1-OF-4 DECODER/ DEMULTIPLEXER

The SN54/74LS155 and SN54/74LS156 are high speed Dual 1-of-4 Decoder/Demultiplexers. These devices have two decoders with common 2-bit Address inputs and separate gated Enable inputs. Decoder "a" has an Enable gate with one active HIGH and one active LOW input. Decoder "b" has two active LOW Enable inputs. If the Enable functions are satisfied, one output of each decoder will be LOW as selected by the address inputs. The LS156 has open collector outputs for wired-OR (DOT-AND) decoding and function generator applications.

The LS155 and LS156 are fabricated with the Schottky barrier diode process for high speed and are completely compatible with all Motorola TTL families.

- · Schottky Process for High Speed
- · Multifunction Capability
- Common Address Inputs
- True or Complement Data Demultiplexing
- Input Clamp Diodes Limit High Speed Termination Effects
- ESD > 3500 Volts

CONNECTION DIAGRAM DIP (TOP VIEW) E_b O_{3b} O_{2b} O_{1b} **VCC** 16 15 14 13 11 10 9 12 NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package. 2 6 1 3 8 o_{3a} o_{2a} 0_{1a} 0_{0a}

PIN NAMES LOADING (Note a) HIGH LOW <u>A</u>₀, <u>A</u>₁ Address Inputs 0.5 U.L. 0.25 U.L. Enable (Active LOW) Inputs Ea, Eb 0.5 U.L. 0.25 U.L. 0.25 U.L. <u>E</u>a _ Enable (Active HIGH) Input 0.5 U.L. $O_0 - O_3$ Active LOW Outputs (Note b) 10 U.L. 5 (2.5) U.L.

NOTES:

- a) 1 TTL Unit Load (U.L.) = 40 μ A HIGH/1.6 mA LOW.
- b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges. The HIGH level drive for the LS156 must be established by an external resistor.

SN54/74LS155 SN54/74LS156

DUAL 1-OF-4 DECODER/ DEMULTIPLEXER

LS156-OPEN-COLLECTOR LOW POWER SCHOTTKY

LOGIC DIAGRAM

V_{CC} = PIN 16 GND = PIN 8 = PIN NUMBERS

FUNCTIONAL DESCRIPTION

The LS155 and LS156 are Dual 1-of-4 Decoder/Demultiplexers with common Address inputs and separate gated Enable inputs. When enabled, each decoder section accepts the binary weighted Address inputs (A_0 , A_1) and provides four mutually exclusive active LOW outputs (O_0 – O_3). If the Enable requirements of each decoder are not met, all outputs of that decoder are HIGH.

Each decoder section has a 2-input enable gate. The enable gate for Decoder "a" requires one active HIGH input and one active LOW input ($E_a \bullet E_a$). In demultiplexing applications, Decoder "a" can accept either true or complemented data by using the E_a or E_a inputs respectively. The enable gate for Decoder "b" requires two active LOW inputs ($E_b \bullet E_b$). The LS155 or LS156 can be used as a 1-of-8 Decoder/Demultiplexer by tying E_a to E_b and relabeling the common connection as (A2). The other E_b and E_a are connected together to form the common enable.

The LS155 and LS156 can be used to generate all four minterms of two variables. These four minterms are useful in some applications replacing multiple gate functions as shown in Fig. a. The LS156 has the further advantage of being able to

AND the minterm functions by tying outputs together. Any number of terms can be wired-AND as shown below.

$$f = (E_+ + A_0 + A_1) \cdot (E + A_0 + A_1) \cdot (E + A_0 + A_1) \cdot (E + A_0 + A_1)$$

$$(E + A_0 + A_1)$$
where $E = E_a + E_a$; $E = E_b + E_b$

Figure a

TRUTH TABLE

ADDF	RESS	ENAB	LE "a"	OUTPUT "a"		ENAB	ENABLE "b"		OUTPUT "b"				
A ₀	A ₁	Ea	Ea	00	01	02	03	E _b	E _b	00	0 ₁	02	03
Х	Х	L	Х	Н	Н	Н	Н	Н	Х	Н	Н	Н	Н
Х	Х	Х	Н	Н	Н	Н	Н	Х	Н	Н	Н	Н	Н
L	L	Н	L	L	Н	Н	Н	L	L	L	Н	Н	Н
Н	L	Н	L	Н	L	Н	Н	L	L	Н	L	Н	Н
L	Н	Н	L	Н	Н	L	Н	L	L	Н	Н	L	Н
Н	Н	Н	L	Н	Н	Н	L	L	L	Н	Н	Н	L

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

SN54/74LS155

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
TA	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
lOH	Output Current — High	54, 74			-0.4	mA
lOL	Output Current — Low	54 74			4.0 8.0	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

				Limits					
Symbol	Parameter		Min	Тур	Max	Unit	Tes	t Conditions	
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs		
\/	Input I OW Voltage	54			0.7	V	Guaranteed Input	LOW Voltage for	
V _{IL}	Input LOW Voltage	74			0.8	V	All Inputs	·	
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	V _{CC} = MIN, I _{IN} = -18 mA		
V	Outrot HCH Velters		2.5	3.5		V	V _{CC} = MIN, I _{OH} = MAX, V _{IN} = V _{IH}		
VOH	Output HIGH Voltage	74	2.7	3.5		V	or V _{IL} per Truth Table		
V	Output LOW Voltage	54, 74		0.25	0.4	V	I _{OL} = 4.0 mA	$V_{CC} = V_{CC} MIN,$ $V_{IN} = V_{II} \text{ or } V_{IH}$	
VOL	Output LOW Voltage	74		0.35	0.5	V	I _{OL} = 8.0 mA	per Truth Table	
1	Innut HICH Current				20	μА	V _{CC} = MAX, V _{IN}	= 2.7 V	
l IH	Input HIGH Current				0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V		
IIL	Input LOW Current				-0.4	mA	V _{CC} = MAX, V _{IN} = 0.4 V		
los	Short Circuit Current (Note 1)		-20		-100	mA	V _{CC} = MAX		
ICC	Power Supply Current				10	mA	VCC = MAX		

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS $(T_A = 25^{\circ}C)$

			Limits					
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions		
tPLH tPHL	Propagati <u>o</u> n De <u>la</u> y Address, E _a or E _b to Output		10 19	15 30	ns	Figure 1		
tPLH tPHL	Propagation Delay Address to Output		17 19	26 30	ns	Figure 2	$V_{CC} = 5.0 V$ $C_L = 15 pF$	
tPLH tPHL	Propagation Delay E _a to Output		18 18	27 27	ns	Figure 1		

AC WAVEFORMS

SN54/74LS156

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
TA	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
Vон	Output Voltage — High	54, 74			5.5	V
lOL	Output Current — Low	54 74			4.0 8.0	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

				Limits				
Symbol	Parameter		Min	Тур	Max	Unit	Tes	t Conditions
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input All Inputs	HIGH Voltage for
\/	Input LOW Voltage				0.7	V	Guaranteed Input	LOW Voltage for
VIL					0.8	V	All Inputs	
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	$V_{CC} = MIN, I_{IN} = -18 \text{ mA}$	
I _{ОН}	Output HIGH Current	54, 74			100	μΑ	V _{CC} = MIN, V _{OH} = MAX	
Voi	Output LOW Voltage	54, 74		0.25	0.4	V	I _{OL} = 4.0 mA	V _{CC} = V _{CC} MIN, V _{IN} = V _{II} or V _{IH}
VOL	Output LOW Voltage	74		0.35	0.5	V	I _{OL} = 8.0 mA	per Truth Table
1	Input HICH Current				20	μΑ	V _{CC} = MAX, V _{IN} = 2.7 V	
l liH	Input HIGH Current				0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V	
I _{IL}	Input LOW Current				-0.4	mA	V _{CC} = MAX, V _{IN} = 0.4 V	
Icc	Power Supply Current				10	mA	V _{CC} = MAX	

AC CHARACTERISTICS ($T_A = 25^{\circ}C$)

		Limits						
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions		
^t PLH ^t PHL	Propagati <u>o</u> n De <u>lay</u> Address, E _a or E _b to Output		25 34	40 51	ns	Figure 1		
^t PLH ^t PHL	Propagation Delay Address to Output		31 34	46 51	ns	Figure 2	$V_{CC} = 5.0 \text{ V}$ $C_{L} = 15 \text{ pF}$ $R_{L} = 2.0 \text{ k}\Omega$	
^t PLH ^t PHL	Propagation Delay E _a to Output		32 32	48 48	ns	Figure 1		

AC WAVEFORMS

FAST AND LS TTL DATA

PRESETTABLE BCD/DECADE UP/DOWN COUNTERS PRESETTABLE 4-BIT BINARY UP/DOWN COUNTERS

The SN54/74LS190 is a synchronous UP/DOWN BCD Decade (8421) Counter and the SN54/74LS191 is a synchronous UP/DOWN Modulo-16 Binary Counter. State changes of the counters are synchronous with the LOW-to-HIGH transition of the Clock Pulse input.

An asynchronous Parallel Load (PL) input overrides counting and loads the data present on the P_{Π} inputs into the flip-flops, which makes it possible to use the circuits as programmable counters. A Count Enable (CE) input serves as the carry/borrow input in multi-stage counters. An Up/Down Count Control (U/D) input determines whether a circuit counts up or down. A Terminal Count (TC) output and a Ripple Clock (RC) output provide overflow/underflow indication and make possible a variety of methods for generating carry/borrow signals in multistage counter applications.

- Low Power ... 90 mW Typical Dissipation
- High Speed . . . 25 MHz Typical Count Frequency
- Synchronous Counting
- · Asynchronous Parallel Load
- Individual Preset Inputs
- Count Enable and Up/Down Control Inputs
- Cascadable
- Input Clamp Diodes Limit High Speed Termination Effects

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

LOADING (Note a)

PIN NAMES

		HIGH	LOW
CE	Count Enable (Active LOW) Input	1.5 U.L.	0.7 U.L.
<u>C</u> P	Clock Pulse (Active HIGH going edge) Input	0.5 U.L.	0.25 U.L.
<u>U/</u> D	Up/Down Count Control Input	0.5 U.L.	0.25 U.L.
PL	Parallel Load Control (Active LOW) Input	0.5 U.L.	0.25 U.L.
P_n	Parallel Data Inputs	0.5 U.L.	0.25 U.L.
Q_n	Flip-Flop Outputs (Note b)	10 U.L.	5 (2.5) U.L.
RC	Ripple Clock Output (Note b)	10 U.L.	5 (2.5) U.L.
TC	Terminal Count Output (Note b)	10 U.L.	5 (2.5) U.L.
NOTES.			

NOTES:

- a. 1 TTL Unit Load (U.L.) = 40 μ A HIGH/1.6 mA LOW.
- b. The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

SN54/74LS190 SN54/74LS191

PRESETTABLE BCD/DECADE UP/DOWN COUNTERS PRESETTABLE 4-BIT BINARY UP/DOWN COUNTERS

LOW POWER SCHOTTKY

STATE DIAGRAMS

 $\begin{array}{ccc} & \textbf{LS190} \\ \text{UP:} & \text{TC} = \underline{Q_0} \cdot \underline{Q_3} \cdot (\underline{U/D}) \\ \text{DOWN:} & \text{TC} = Q_0 \cdot Q_1 \cdot Q_2 \cdot Q_3 \cdot (\underline{U/D}) \end{array}$

 $\begin{array}{ccc} & \textbf{LS191} \\ \text{UP:} & \text{TC} = \underline{Q_0} \cdot \underline{Q_1} \cdot \underline{Q_2} \cdot \underline{Q_3} \cdot (\underline{U/D}) \\ \text{DOWN:} & \text{TC} = Q_0 \cdot Q_1 \cdot Q_2 \cdot Q_3 \cdot (U/D) \end{array}$

COUNT UP COUNT DOWN ----

LS191

LOGIC DIAGRAMS

V_{CC} = PIN 16 GND = PIN 8

= PIN NUMBERS

DECADE COUNTER LS190

LOGIC DIAGRAMS (continued)

 $V_{CC} = PIN 16$ GND = PIN 8O = PIN NUMBERS

BINARY COUNTER LS191

FUNCTIONAL DESCRIPTION

The LS190 is a synchronous Up/Down BCD Decade Counter and the LS191 is a synchronous Up/Down 4-Bit Binary Counter. The operating modes of the LS190 decade counter and the LS191 binary counter are identical, with the only difference being the count sequences as noted in the state diagrams. Each circuit contains four master/slave flip-flops, with internal gating and steering logic to provide individual preset, count-up and count-down operations.

Each circuit has an asynchronous parallel load capability permitting the counter to be preset to any desired number. When the Parallel Load (PL) input is LOW, information present on the Parallel Data inputs (P_0-P_3) is loaded into the counter and appears on the Q outputs. This operation overrides the counting functions, as indicated in the Mode Select Table.

A HIGH signal on the CE input inhibits counting. When CE is LOW, internal state change are initiated synchronously by the LOW-to-HIGH transition of the clock input. The direction of counting is determined by the U/D input signal, as indicated in the Mode Select Table. When counting is to be enabled, the CE signal can be made LOW when the clock is in either state. However, when counting is to be inhibited, the LOW-to-HIGH CE transition_must occur only while the clock is HIGH. Similarly, the U/D signal should only be changed when either CE or the clock is HIGH.

Two types of outputs are provided as overflow/underflow indicators. The Terminal Count (TC) output is normally LOW and goes HIGH when a circuit reaches zero in the count-down mode or reaches maximum (9 for the LS190, 15 for the LS191) in the count-up mode. The TC output will then remain HIGH until a state change occurs, whether by counting or presetting or until U/D is changed. The TC output should not be used as a clock signal because it is subject to decoding spikes.

The TC signal is also used internally to enable the Ripple

Clock (RC) output. The RC output is normally HIGH. When CE is LOW and TC is HIGH, the RC output will go LOW when the clock next goes LOW and will stay LOW until the clock goes HIGH again. This feature simplifies the design of multi-stage counters, as indicated in Figures a and b. In Figure a, each RC output is used as the clock input for the next higher stage. This configuration is particularly advantageous when the clock source has a limited drive capability, since it drives only the first stage. To prevent counting in all stages it is only necessary to inhibit the first stage, since a HIGH signal on CE inhibits the RC output pulse, as indicated in the RC Truth Table. A disadvantage of this configuration, in some applications, is the timing skew between state changes in the first and last stages. This represents the cumulative delay of the clock as it ripples through the preceding stages.

A method of causing state changes to occur simultaneously in all stages is shown in Figure b. All clock inputs are driven in parallel and the RC outputs propagate the carry/borrow signals in ripple fashion. In this configuration the LOW state duration of the clock must be long enough to allow the negative-going edge of the carry/borrow signal to ripple through to the last stop before the clock goes HIGH. There is no such restriction on the HIGH state duration of the clock, since the RC output of any package goes HIGH shortly after its CP input goes HIGH.

The configuration shown in Figure c avoids ripple delays and their associated restrictions. The CE input signal for a given stage is formed by combining the TC signals from all the preceding stages. Note that in order to inhibit counting an enable signal must be included in each carry gate. The simple inhibit scheme of Figures a and b doesn't apply, because the TC output of a given stage is not affected by its own CE.

MODE SELECT TABLE

	INPL	JTS		MODE
PL	CE	U/D	СР	WIODE
Н	L	L	7	Count Up
H	L	Н	J	Count Down
L	Х	Х	Х	Preset (Asyn.)
Н	Н	Χ	Х	No Change (Hold)

RC TRUTH TABLE

ı	NPUTS	RC		
CE	TC*	СР	OUTPUT	
L	Н	딕	7	
Н	Х	Х	Н	
Х	L	Χ	Н	

^{*} TC is generated internally

L = LOW Voltage Level

H = HIGH Voltage Level

X = Don't Care

= LOW Pulse

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
T _A	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
IOH	Output Current — High	54, 74			-0.4	mA
lOL	Output Current — Low	54 74			4.0 8.0	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

			Limits					
Symbol	Parameter		Min	Тур	Max	Unit	Tes	t Conditions
VIH	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs	
\/	Largest I QNAVA-Ita-ara				0.7	V	Guaranteed Input	LOW Voltage for
V _{IL}	Input LOW Voltage	74			0.8	V	All Inputs	
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	V _{CC} = MIN, I _{IN} = -18 mA	
Vou	Outrat HIOLIVelle as	54	2.5	3.5		V	V _{CC} = MIN, I _{OH} = MAX, V _{IN} = V _{IH}	
VOH	Output HIGH Voltage	74	2.7	3.5		V	or V _{IL} per Truth T	able
Var	Output LOW Voltage	54, 74		0.25	0.4	V	$I_{OL} = 4.0 \text{ mA}$ $V_{CC} = V_{CC} \text{ MIN},$	$V_{CC} = V_{CC} MIN,$ $V_{IN} = V_{IL} \text{ or } V_{IH}$
VOL		74		0.35	0.5	V	I _{OL} = 8.0 mA	per Truth Table
Iн	Input HIGH Current Other Inputs CE				20 60	μА	$V_{CC} = MAX, V_{IN} = 2.7 V$	
	Other Inputs CE				0.1 0.3	mA	V _{CC} = MAX, V _{IN} = 7.0 V	
IIL	Input LOW Current Other Inputs CE				-0.4 -1.2	mA	V _{CC} = MAX, V _{IN} = 0.4 V	
los	Short Circuit Current (Note 1)		-20		-100	mA	V _{CC} = MAX	
ICC	Power Supply Current				35	mA	V _{CC} = MAX	

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS (T_A = 25°C)

			Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
fMAX	Maximum Clock Frequency	20	25		MHz		
^t PLH ^t PHL	<u>Propagation Delay,</u> PL to Output Q		22 33	33 50	ns		
^t PLH ^t PHL	Data to Output Q		20 27	32 40	ns		
^t PLH ^t PHL	Clock to RC		13 16	20 24	ns		
^t PLH ^t PHL	Clock to Output Q		16 24	24 36	ns	V _{CC} = 5.0 V C _L = 15 pF	
^t PLH ^t PHL	Clock to TC		28 37	42 52	ns	- '	
^t PLH ^t PHL	U/D to RC		30 30	45 45	ns		
^t PLH ^t PHL	U/D to TC		21 22	33 33	ns		
tPLH tPHL	CE to RC		21 22	33 33	ns		

AC SETUP REQUIREMENTS $(T_A = 25^{\circ}C)$

			Limits			
Symbol	Parameter	Min	Min Typ Max		Unit	Test Conditions
t _W	CP Pulse Width	25			ns	
tw	PL Pulse Width	35			ns	
t _S	Data Setup Time	20			ns	V _{CC} = 5.0 V
th	Data Hold Time	5.0			ns	
t _{rec}	Recovery Time	40			ns	

DEFINITIONS OF TERMS

SETUP TIME (t_S) is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from LOW-to-HIGH in order to be recognized and transferred to the outputs.

HOLD TIME (t_h) is defined as the minimum time following the clock transition from LOW-to-HIGH that the logic level must be maintained at the input in order to ensure continued recogni-

tion. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from LOW-to-HIGH and still be recognized.

RECOVERY TIME (t_{rec}) is defined as the minimum time required between the end of the reset pulse and the clock transition from LOW-to-HIGH in order to recognize and transfer HIGH data to the Q outputs.

Figure a. n-Stage Counter Using Ripple Clock

Figure b. Synchronous n-Stage Counter Using Ripple Carry/Borrow

Figure c. Synchronous n-Stage Counter with Parallel Gated Carry/Borrow

AC WAVEFORMS

Figure 1

Figure 2

NOTE: PL = LOW

Figure 3

Figure 4

Figure 5

* The shaded areas indicate when the input is permitted to change for predictable output performance

Figure 6

Figure 8

PRESETTABLE BCD/DECADE UP/DOWN COUNTER PRESETTABLE 4-BIT BINARY UP/DOWN COUNTER

The SN54/74LS192 is an UP/DOWN BCD Decade (8421) Counter and the SN54/74LS193 is an UP/DOWN MODULO-16 Binary Counter. Separate Count Up and Count Down Clocks are used and in either counting mode the circuits operate synchronously. The outputs change state synchronous with the LOW-to-HIGH transitions on the clock inputs.

Separate Terminal Count Up and Terminal Count Down outputs are provided which are used as the clocks for a subsequent stages without extra logic, thus simplifying multistage counter designs. Individual preset inputs allow the circuits to be used as programmable counters. Both the Parallel Load (PL) and the Master Reset (MR) inputs asynchronously override the clocks.

- Low Power . . . 95 mW Typical Dissipation
- High Speed . . . 40 MHz Typical Count Frequency
- Synchronous Counting
- · Asynchronous Master Reset and Parallel Load
- Individual Preset Inputs
- · Cascading Circuitry Internally Provided
- Input Clamp Diodes Limit High Speed Termination Effects

CONNECTION DIAGRAM DIP (TOP VIEW)

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

LOADING (Note a)

PIN NAMES

		HIGH	LOW
CPU	Count Up Clock Pulse Input	0.5 U.L.	0.25 U.L.
CPD	Count Down Clock Pulse Input	0.5 U.L.	0.25 U.L.
<u>MR</u>	Asynchronous Master Reset (Clear) Input	0.5 U.L.	0.25 U.L.
PL	Asynchronous Parallel Load (Active LOW) Input	0.5 U.L.	0.25 U.L.
Pn	Parallel Data Inputs	0.5 U.L.	0.25 U.L.
Q _n	Flip-Flop Outputs (Note b)	10 U.L.	5 (2.5) U.L.
<u>TC</u> D	Terminal Count Down (Borrow) Output (Note b)	10 U.L.	5 (2.5) U.L.
TCU	Terminal Count Up (Carry) Output (Note b)	10 U.L.	5 (2.5) U.L.

a. 1 TTL Unit Load (U.L.) = 40 μ A HIGH/1.6 mA LOW.

b. The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges.

SN54/74LS192 SN54/74LS193

PRESETTABLE BCD/DECADE UP/DOWN COUNTER

PRESETTABLE 4-BIT BINARY UP/DOWN COUNTER

LOW POWER SCHOTTKY

STATE DIAGRAMS

LS192 LOGIC EQUATIONS FOR TERMINAL COUNT

$$\begin{array}{l} \overline{\underline{TC}}_U = \underline{Q}_0 \cdot \underline{Q}_3 \cdot \underline{\underline{CP}_U} \\ TC_D = \underline{Q}_0 \cdot \underline{Q}_1 \cdot \underline{Q}_2 \cdot \underline{Q}_3 \cdot \underline{\underline{CP}_D} \end{array}$$

LS193 LOGIC EQUATIONS FOR TERMINAL COUNT

$$\begin{array}{c} \overline{TC}_U = \underline{Q_0} \cdot \underline{Q_1} \cdot \underline{Q_2} \cdot \underline{Q_3} \cdot \overline{CP_U} \\ TC_D = \underline{Q_0} \cdot \underline{Q_1} \cdot \underline{Q_2} \cdot \underline{Q_3} \cdot \overline{CP_D} \end{array}$$

LS193

LOGIC DIAGRAMS

LS192

V_{CC} = PIN 16 GND = PIN 8

= PIN NUMBERS

LOGIC DIAGRAMS (continued)

V_{CC} = PIN 16 GND = PIN 8 = PIN NUMBERS

FUNCTIONAL DESCRIPTION

The LS192 and LS193 are Asynchronously Presettable Decade and 4-Bit Binary Synchronous UP/DOWN (Reversable) Counters. The operating modes of the LS192 decade counter and the LS193 binary counter are identical, with the only difference being the count sequences as noted in the State Diagrams. Each circuit contains four master/slave flip-flops, with internal gating and steering logic to provide master reset, individual preset, count up and count down operations.

Each flip-flop contains JK feedback from slave to master such that a LOW-to-HIGH transition on its T input causes the slave, and thus the Q output to change state. Synchronous switching, as opposed to ripple counting, is achieved by driving the steering gates of all stages from a common Count Up line and a common Count Down line, thereby causing all state changes to be initiated simultaneously. A LOW-to-HIGH transition on the Count Up input will advance the count by one; a similar transition on the Count Down input will decrease the count by one. While counting with one clock input, the other should be held HIGH. Otherwise, the circuit will either count by twos or not at all, depending on the state of the first flip-flop, which cannot toggle as long as either Clock input is LOW.

<u>The Terminal Count Up (TC_U) and Terminal Count Down (TC_D) outputs are normally HIGH. When a circuit has reached the maximum count state (9 for the LS192, 15 for the LS193), the next HIGH-to-LOW transition of the Count Up Clock will cause TC_U to go LOW. TC_U will stay LOW until CP_U goes HIGH again, thus effectively repeating the Count Up Clock, but delayed by two gate delays. Similarly, the TC_D output will go LOW when the circuit is in the zero state and the Count Down Clock goes LOW. Since the TC outputs repeat the clock waveforms, they can be used as the clock input signals to the next higher order circuit in a multistage counter.</u>

Each circuit has an asynchronous parallel load capability <u>per</u>mitting the counter to be preset. When the Parallel Load (PL) and the Master Reset (MR) inputs are LOW, information present on the Parallel Data inputs (P_0 , P_3) is loaded into the counter and appears on the outputs regardless of the conditions of the clock inputs. A HIGH signal on the Master Reset input will disable the preset gates, override both Clock inputs, and latch each Q output in the LOW state. If one of the Clock inputs is LOW during and after a reset or load operation, the next LOW-to-HIGH transition of that Clock will be interpreted as a legitimate signal and will be counted.

MODE SELECT TABLE

MR	PL	CPU	CPD	MODE
Н	Х	Х	Х	Reset (Asyn.)
L	L	Χ	Х	Preset (Asyn.)
L	Н	Н	Н	No Change
L	Н	ſ	Н	Count Up
L	Н	Н		Count Down

L = LOW Voltage Level

H = HIGH Voltage Level

X = Don't Care

 \int = LOW-to-HIGH Clock Transition

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Тур	Max	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
T _A	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
loh	Output Current — High	54, 74			-0.4	mA
lOL	Output Current — Low	54 74			4.0 8.0	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

				Limits					
Symbol	Parameter		Min	Тур	Max	Unit	Tes	st Conditions	
ViH	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage for All Inputs		
V	Innut I OW Voltage	54			0.7	V	Guaranteed Input	LOW Voltage for	
V _{IL}	Input LOW Voltage	74			0.8	ľ	All Inputs		
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	V _{CC} = MIN, I _{IN} = -18 mA		
Vari	0		2.5	3.5		V	V _{CC} = MIN, I _{OH} = MAX, V _{IN} = V _{IH}		
VOH	Output HIGH Voltage	74	2.7	3.5		V	or V _{IL} per Truth Table		
Mar.	Outrot I OW Valence	54, 74		0.25	0.4	V	I _{OL} = 4.0 mA	V _{CC} = V _{CC} MIN, V _{IN} = V _{IL} or V _{IH}	
VOL	Output LOW Voltage	74		0.35	0.5	V	I _{OL} = 8.0 mA	per Truth Table	
1	Innut HCH Current				20	μΑ	V _{CC} = MAX, V _{IN}	= 2.7 V	
l 'IH	Input HIGH Current				0.1	mA	V _{CC} = MAX, V _{IN}	= 7.0 V	
I _I L	Input LOW Current				-0.4	mA	V _{CC} = MAX, V _{IN} = 0.4 V		
Ios	Short Circuit Current (Note 1)		-20		-100	mA	V _{CC} = MAX		
Icc	Power Supply Current				34	mA	V _{CC} = MAX		

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS $(T_A = 25^{\circ}C)$

			Limits			
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
f _{MAX}	Maximum Clock Frequency	25	32		MHz	
tPLH tPHL	CPU Input to TCU Output		17 18	26 24	ns	
^t PLH ^t PHL	CPD Input to TCD Output		16 15	24 24	ns	V _{CC} = 5.0 V C _L = 15 pF
^t PLH ^t PHL	Clock to Q		27 30	38 47	ns	C _L = 15 pF
^t PLH ^t PHL	PL to Q		24 25	40 40	ns	
tphl	MR Input to Any Output		23	35	ns	

AC SETUP REQUIREMENTS $(T_A = 25^{\circ}C)$

		Limits						
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions		
tW	Any Pulse Width	20			ns			
t _S	Data Setup Time	20			ns	V 50V		
t _h	Data Hold Time	5.0			ns	V _{CC} = 5.0 V		
t _{rec}	Recovery Time	40			ns	1		

DEFINITIONS OF TERMS

SETUP TIME (t_s) is defined as the minimum time required for the correct logic level to be present at the logic input prior to the PL transition from LOW-to-HIGH in order to be recognized and transferred to the outputs.

<u>HQLD TIME</u> (th) is defined as the minimum time following the PL transition from LOW-to-HIGH that the logic level must be maintained at the input in order to ensure continued recogni-

tion. A negative HOLD TIME indicates that the correct logic level may be released prior to the PL transition from LOW-to-HIGH and still be recognized.

RECOVERY TIME (t_{rec}) is defined as the minimum time required between the end of the reset pulse and the clock transition from LOW-to-HIGH in order to recognize and transfer HIGH data to the Q outputs.

AC WAVEFORMS

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

* The shaded areas indicate when the input is permitted to change for predictable output performance

Figure 6

Figure 7

August 1986 Revised March 2000

DM74LS194A 4-Bit Bidirectional Universal Shift Register

General Description

This bidirectional shift register is designed to incorporate virtually all of the features a system designer may want in a shift register; they feature parallel inputs, parallel outputs, right-shift and left-shift serial inputs, operating-mode-control inputs, and a direct overriding clear line. The register has four distinct modes of operation, namely:

Parallel (broadside) load

Shift right (in the direction Q_A toward Q_D)

Shift left (in the direction Q_D toward Q_A)

Inhibit clock (do nothing)

Synchronous parallel loading is accomplished by applying the four bits of data and taking both mode control inputs, S0 and S1, HIGH. The data is loaded into the associated flip-flops and appear at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.

Shift right is accomplished synchronously with the rising edge of the clock pulse when S0 is HIGH and S1 is LOW. Serial data for this mode is entered at the shift-right data input. When S0 is LOW and S1 is HIGH, data shifts left synchronously and new data is entered at the shift-left serial input.

Clocking of the flip-flop is inhibited when both mode control inputs are LOW.

Features

- Parallel inputs and outputs
- Four operating modes:

Synchronous parallel load

■ Positive edge-triggered clocking

Right shift

Left shift

- Do nothing
- Direct overriding clear

Ordering Code:

Order Number	Package Number	Package Description
DM74LS194AM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
DM74LS194AN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Function Table

	Inputs									Out	puts		
Clear	Мо	ode	Clock	Se	erial		Par	allel		Q _A	Q _B	Q _C	Q _D
Clear	S1	S0	CIOCK	Left	Right	Α	В	С	D	₩ A	∝B	~ C	∝ D
L	Х	Χ	Х	Х	Х	Х	Χ	Χ	Х	L	L	L	L
Н	Х	X	L	Х	X	Χ	Χ	Χ	Χ	Q_{A0}	Q_{B0}	Q_{C0}	Q_{D0}
Н	Н	Н	↑	Х	X	а	b	С	d	а	b	C	d
Н	L	Н	↑	Х	Н	Х	Χ	Χ	Χ	Н	Q_{An}	Q_{Bn}	Q_{Cn}
Н	L	Н	1	Х	L	Χ	Χ	Χ	Χ	L	Q_{An}	Q_Bn	Q_Cn
Н	Н	L	↑	Н	X	Х	Χ	Χ	Χ	Q_{Bn}	Q_{Cn}	Q_Dn	Н
Н	Н	L	1	L	Χ	Х	Χ	X	Χ	Q_{Bn}	Q_{Cn}	Q_{Dn}	L
Н	L	L	X	Х	X	Х	Х	Χ	Χ	Q_{A0}	Q_{B0}	Q_{C0}	Q_{D0}

- $$\begin{split} &H = HIGH \ Level \ (steady \ state) \\ &L = LOW \ Level \ (steady \ state) \\ &X = Don't \ Care \ (any \ input, including \ transitions) \\ &\uparrow = Transition \ from \ LOW-to-HIGH \ level \ a, b, c, d = The \ level \ of \ steady \ state \ input \ at \ input \ at \ input \ at, B, C \ or \ D, \ respectively. \\ &Q_{A0}, \ Q_{B0}, \ Q_{C0}, \ Q_{D0} = The \ level \ of \ Q_A, \ Q_B, \ Q_C, \ or \ Q_D, \ respectively, before \ the \ indicated \ steady \ state \ input \ conditions \ were \ established. \\ &Q_{An}, \ Q_{Bn}, \ Q_{Cn}, \ Q_{Dn} = The \ level \ of \ Q_A, \ Q_B, \ Q_C, \ respectively, before \ the \ most-recent \ \uparrow \ transition \ of \ the \ clock. \end{split}$$

Logic Diagram

Absolute Maximum Ratings(Note 1)

Supply Voltage 7V Input Voltage 7V Operating Free Air Temperature Range $0^{\circ}\text{C to } + 70^{\circ}\text{C}$ Storage Temperature Range $-65^{\circ}\text{C to } + 150^{\circ}\text{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Paramet	er	Min	Nom	Max	Units	
V _{CC}	Supply Voltage		4.75	5	5.25	V	
V _{IH}	HIGH Level Input Voltage		2			V	
V _{IL}	LOW Level Input Voltage	LOW Level Input Voltage			0.8	V	
I _{OH}	HIGH Level Output Currer	nt			-0.4	mA	
I _{OL}	LOW Level Output Current				8	mA	
f _{CLK}	Clock Frequency (Note 2)		0		25	MHz	
	Clock Frequency (Note 3)	0		20	IVITIZ		
t _W	Pulse Width	Clock	20				
	(Note 4)	Clear	20			ns	
t _{SU}	Setup Time	Mode	30				
	(Note 4)	Data	20			ns	
t _H	Hold Time (Note 4)		0			ns	
t _{REL}	Clear Release Time (Note 4)		25			ns	
T _A	Free Air Operating Tempe	rature	0		70	°C	

Note 2: $C_L = 15 \text{ pF}, T_A = 25^{\circ}\text{C} \text{ and } V_{CC} = 5\text{V}.$

Note 3: C_L = 50 pF, R_L = 2 $k\Omega,\,T_A$ = 25°C and V_{CC} = 5V.

Note 4: $T_A = 25^{\circ}C$ and $V_{CC} = 5V$.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 5)	Max	Units	
V _I	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$			-1.5	V	
V _{OH}	HIGH Level	V _{CC} = Min, I _{OH} = Max	2.7	3.4		V	
	Output Voltage	$V_{IL} = Max, V_{IH} = Min$	2.7	5.4		V	
V _{OL}	LOW Level	V _{CC} = Min, I _{OL} = Max		0.35	0.5		
	Output Voltage	$V_{IL} = Max, V_{IH} = Min$	0.35		0.5	V	
		I _{OL} = 4 mA, V _{CC} = Min			0.4		
I _I	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$			0.1	mA	
I _{IH}	HIGH Level Input Current	$V_{CC} = Max, V_I = 2.7V$			20	μΑ	
I _{IL}	LOW Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-0.4	mA	
Ios	Short Circuit Output Current	V _{CC} = Max (Note 6)	-20		-100	mA	
I _{CC}	Supply Current	V _{CC} = Max (Note 7)		15	23	mA	

Note 5: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 6: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 7: With all outputs open, inputs A through D grounded, and 4.5V applied to S0, S1, CLEAR, and the serial inputs, I_{CC} is tested with momentary ground, then 4.5V applied to CLOCK.

Switching Characteristics

at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$

Symbol	Parameter	From (Input)	C _L = 50 pF	$C_L = 50 \text{ pF}, R_L = 2 \text{ k}\Omega$		
Oymbo.	i didiletei	To (Output)	Min	Max	Units	
f _{MAX}	Maximum Clock Frequency		20		MHz	
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	Clock to Any Q		26	ns	
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	Clock to Any Q		35	ns	
t _{PHL}	Propagation Delay Time HIGH-to-LOW Output	Clear to Any Q		38	ns	

Note 8: All typicals are at $V_{CC} = 5V$, $T_A = 25$ °C.

Note 9: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 10: With all outputs open, inputs A through D grounded, and 4.5V applied to S0, S1, CLEAR, and the serial inputs, I_{CC} is tested with momentary ground, then 4.5V applied to CLOCK.

Timing Diagram

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow Package Number M16A

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT4511BCD to 7-segment latch/decoder/driver

Product specification
File under Integrated Circuits, IC06

December 1990

BCD to 7-segment latch/decoder/driver

74HC/HCT4511

FEATURES

- · Latch storage of BCD inputs
- · Blanking input
- · Lamp test input
- Driving common cathode LED displays
- Guaranteed 10 mA drive capability per output
- Output capability: non-standard
- · I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT4511 are high-speed Si-gate CMOS devices and are pin compatible with "4511" of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4511 are BCD to 7-segment latch/decoder/drivers with four address inputs (D_1 to D_4), an active LOW latch enable input (\overline{LE}), an active LOW

ripple blanking input (\overline{BI}) , an active LOW lamp test input (\overline{LT}) , and seven active HIGH segment outputs $(Q_a$ to $Q_q)$.

When \overline{LE} is LOW, the state of the segment outputs (Q_a to Q_a) is determined by the data on D_1 to D_4 .

When $\overline{\text{LE}}$ goes HIGH, the last data present on D₁ to D₄ are stored in the latches and the segment outputs remain stable.

When LT is LOW, all the segment outputs are HIGH independent of all other input conditions. With LT HIGH, a LOW on BI forces all segment outputs LOW. The inputs LT and BI do not affect the latch circuit.

APPLICATIONS

- Driving LED displays
- · Driving incandescent displays
- · Driving fluorescent displays
- Driving LCD displays
- · Driving gas discharge displays

QUICK REFERENCE DATA

 $GND = 0 \text{ V}; T_{amb} = 25 \,^{\circ}\text{C}; t_r = t_f = 6 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT	
STIVIBUL	PARAMETER	CONDITIONS	НС	нст	UNII
t _{PHL} / t _{PLH}	propagation delay	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$			
	D _n to Q _n		24	24	ns
	LE to Q _n		23	24	ns
	BI to Q _n		19	20	ns
	LT to Q _n		12	13	ns
C _I	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per latch	notes 1 and 2	64	64	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_1 \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

f_o = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC}

For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$

BCD to 7-segment latch/decoder/driver

74HC/HCT4511

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
3	ĪĪ	lamp test input (active LOW)
4	BI	ripple blanking input (active LOW)
5	<u>LE</u>	latch enable input (active LOW)
7, 1, 2, 6	D ₁ to D ₄	BCD address inputs
8	GND	ground (0 V)
13, 12, 11, 10, 9, 15, 14	Q _a to Q _g	segments outputs
16	V _{CC}	positive supply voltage

BCD to 7-segment latch/decoder/driver

74HC/HCT4511

FUNCTION TABLE

	INPUTS							OUTPUTS						
LE	BI	LT	D ₄	D ₃	D ₂	D ₁	Qa	Q _b	Q _c	Q _d	Q _e	Qf	Qg	DISPLAY
Х	Х	L	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	8
X	L	Н	X	X	X	X	L	L	L	L	L	L	L	blank
L	Н	Н	L	L	L	L	Н	Н	Н	Н	Н	Н	L	0
L	Н	Н	L	L	L	Н	L	Н	Н	L	L	L	L	1
L	Н	Н	L	L	Н	L	Н	Н	L	H	Н	L	H	2
L	Н	Н	L	L	Н	Н	Н	Н	Н	Н	L	L	Н	3
L	Н	Н	L	Н	L	L	L	Н	Н	L	L	Н	Н	4
L	Н	Н	L	Н	L	Н	Н	L	Н	Н	L	Н	Н	5
L	Н	Н	L	Н	Н	L	L	L	Н	Н	Н	Н	Н	6
L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	L	L	L	7
L	Н	Н	Н	L	L	L	Н	Н	Н	Н	Н	Н	Н	8
L	Н	Н	Н	L	L	Н	Н	Н	Н	L	L	Н	Н	9
L	Н	Н	Н	L	Н	L	L	L	L	L	L	L	L	blank
L	Н	Н	Н	L	Н	Н	L	L	L	L	L	L	L	blank
L	Н	Н	Н	Н	L	L	L	L	L	L	L	L	L	blank
L	Н	Н	Н	Н	L	Н	L	L	L	L	L	L	L	blank
L	Н	Н	Н	Н	Н	L	L	L	L	L	L	L	L	blank
L	Н	Н	Н	Н	Н	Н	L	L	L	L	L	L	L	blank
Н	Н	Н	Х	Х	Х	Х				(1)				(1)

Note

1. Depends upon the BCD-code applied during the LOW-to-HIGH transition of $\overline{\text{LE}}$.

H = HIGH voltage level

L = LOW voltage level

X = don't care

BCD to 7-segment latch/decoder/driver

74HC/HCT4511

BCD to 7-segment latch/decoder/driver

74HC/HCT4511

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard, excepting V_{OH} which is given below

I_{CC} category: MSI

Non-standard DC characteristics for 74HC

Voltages are referenced to GND (ground = 0 V)

				T _{amb} (°C)								ONS
SYMBOL	PARAMETER		74HC +25		UNIT	V	.,					
						V _{CC} (V)	VI	−l _O (mA)				
		min.	typ.	max.	min.	max.	min.	max.				
V _{OH}	HIGH level output voltage	3.98 3.60			3.84 3.35		3.70 3.10		V	4.5	V _{IH} or V _{IL}	7.5 10.0
V _{OH}	HIGH level output voltage	5.60 5.48 4.80			5.45 5.34 4.50		5.35 5.20 4.20		V	6.0	V _{IH} or V _{IL}	7.5 10.0 15.0

BCD to 7-segment latch/decoder/driver

74HC/HCT4511

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

					T _{amb} (°C)				TES	T CONDITIONS
0)/4504	D.D.M.ETED	74HC									WAVEFORMS
SYMBOL	PARAMETER	+25			-40	-40 to +85		-40 to +125		V _{CC}	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.	1	(*)	
t _{PHL} / t _{PLH}	propagation delay D _n to Q _n		77 28 22	300 60 51		375 75 64		450 90 77	ns	2.0 4.5 6.0	Fig.8
t _{PHL} / t _{PLH}	propagation delay LE to Q _n		74 27 22	270 54 46		330 68 58		405 81 69	ns	2.0 4.5 6.0	Fig.9
t _{PHL} / t _{PLH}	propagation delay BI to Q _n		61 22 18	220 44 37		275 55 47		330 66 56	ns	2.0 4.5 6.0	Fig.10
t _{PHL} / t _{PLH}	propagation delay LT to Q _n		41 15 12	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.8
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Figs 8, 9 and 10
t _W	latch enable pulse width LOW	80 16 14	11 4 3		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.9
t _{su}	set-up time D _n to LE	60 12 10	14 5 4		75 15 13		90 18 15		ns	2.0 4.5 6.0	Fig.11
t _h	hold time D _n to LE	0 0 0	-11 -4 -3		0 0 0		0 0 0		ns	2.0 4.5 6.0	Fig.11

BCD to 7-segment latch/decoder/driver

74HC/HCT4511

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard, excepting VOH which is given below

I_{CC} category: MSI

Non-standard DC characteristics for 74HCT

Voltages are referenced to GND (ground = 0 V)

				7	amb (°	C)				TEST CONDITIONS		
SYMBOL	PARAMETER		74HCT				UNIT			_		
			+25					V _{CC} (V)	V _I	–l _O (mA)		
		min.	typ.	max.	min.	max.	min.	max.				,
V _{OH}	HIGH level output voltage	3.98			3.84		3.70		V	4.5	V _{IH} or	7.5
		3.60			3.35		3.10				V_{IL}	10.0

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications.

To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
ĪT, ĪĒ	1.50
BI, D _n	0.30

BCD to 7-segment latch/decoder/driver

74HC/HCT4511

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

					T _{amb} (°C)				TES	T CONDITIONS	
SYMBOL	PARAMETER		74HCT								WAVEFORMS	
STWIBOL	PARAWETER	+25			-40	-40 to +85		-40 to +125		V _{CC} (V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		()		
t _{PHL} / t _{PLH}	propagation delay D _n to Q _n		28	60		75		90	ns	4.5	Fig.8	
t _{PHL} / t _{PLH}	propagation delay LE to Q _n		27	54		68		81	ns	4.5	Fig.9	
t _{PHL} / t _{PLH}	propagation delay Bl to Q _n		23	44		55		66	ns	4.5	Fig.10	
t _{PHL} / t _{PLH}	propagation delay LT to Q _n		16	30		38		45	ns	4.5	Fig.8	
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Figs 8, 9 and 10	
t _W	latch enable pulse width LOW	16	5		20		24		ns	4.5	Fig.9	
t _{su}	set-up time D _n to LE	12	5		15		18		ns	4.5	Fig.11	
t _h	hold time D _n to LE	0	-4		0		0		ns	4.5	Fig.11	

BCD to 7-segment latch/decoder/driver

74HC/HCT4511

AC WAVEFORMS

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.8 Waveforms showing the input (D_n, \overline{LT}) to output (Q_n) propagation delays and the output transition times.

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.9 Waveforms showing the input (\overline{LE}) to output (Q_n) propagation delays and the latch enable pulse width.

BCD to 7-segment latch/decoder/driver

74HC/HCT4511

APPLICATION DIAGRAMS

display readout.

Fig.13 Connection to common anode LED display readout.

Fig.14 Connection to incandescent display readout.

Fig.16 Connection to gas discharge display readout.

Fig.17 Connection to LCD display readout. (Direct DC drive is not recommended as it can shorten the life of LCD displays).

BCD to 7-segment latch/decoder/driver

74HC/HCT4511

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4001B gates Quadruple 2-input NOR gate

Product specification
File under Integrated Circuits, IC04

January 1995

Quadruple 2-input NOR gate

HEF4001B gates

DESCRIPTION

The HEF4001B provides the positive quadruple 2-input NOR function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

Fig.1 Functional diagram.

HEF4001BP(N): 14-lead DIL; plastic

(SOT27-1)

HEF4001BD(F): 14-lead DIL; ceramic (cerdip)

(SOT73)

HEF4001BT(D): 14-lead SO; plastic

(SOT108-1)

(): Package Designator North America

FAMILY DATA, IDD LIMITS category GATES

See Family Specifications

Quadruple 2-input NOR gate

HEF4001B gates

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	TYP	MAX		TYPICAL EXTRAPOLATION FORMULA
Propagation delays						
$I_n \rightarrow O_n$	5		60	120	ns	33 ns $+$ (0,55 ns/pF) C_L
HIGH to LOW	10	t _{PHL}	25	50	ns	14 ns + (0,23 ns/pF) C _L
	15		20	40	ns	12 ns + (0,16 ns/pF) C_L
	5		50	100	ns	23 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	25	45	ns	14 ns + (0,23 ns/pF) C _L
	15		20	35	ns	12 ns + (0,16 ns/pF) C _L
Output transition times	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}	30	60	ns	9 ns $+$ (0,42 ns/pF) C_L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L
	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L

	V _{DD}	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	1100 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	5000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	14 200 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_o C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4011B gates Quadruple 2-input NAND gate

Product specification
File under Integrated Circuits, IC04

January 1995

Quadruple 2-input NAND gate

HEF4011B gates

DESCRIPTION

The HEF4011B provides the positive quadruple 2-input NAND function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

FAMILY DATA, IDD LIMITS category GATES

See Family Specifications

HEF4011BP(N): 14-lead DIL; plastic

(SOT27-1)

HEF4011BD(F): 14-lead DIL; ceramic (cerdip)

(SOT73)

HEF4011BT(D): 14-lead SO; plastic

(SOT108-1)

(): Package Designator North America

Quadruple 2-input NAND gate

HEF4011B gates

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	TYP	MAX		TYPICAL EXTRAPOLATION FORMULA
Propagation delays	5		55	110	ns	28 ns + (0,55 ns/pF) C _L
$I_n \rightarrow O_n$	10	t _{PHL} ; t _{PLH}	25	45	ns	14 ns + (0,23 ns/pF) C _L
	15		20	35	ns	12 ns + (0,16 ns/pF) C _L
Output transition times	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}	30	60	ns	9 ns $+$ (0,42 ns/pF) C_L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L
	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L

	V _{DD}	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	1300 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	$6000 \; f_i + \sum \left(f_o C_L \right) \times V_{DD}{}^2$	f_i = input freq. (MHz)
package (P)	15	20 100 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_0C_L)$ = sum of outputs
			V _{DD} = supply voltage (V)

INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4023B gates Triple 3-input NAND gate

Product specification
File under Integrated Circuits, IC04

January 1995

Triple 3-input NAND gate

HEF4023B gates

DESCRIPTION

The HEF4023B provides the positive triple 3-input NAND function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

HEF4023BP(N): 14-lead DIL; plastic

(SOT27-1)

HEF4023BD(F): 14-lead DIL; ceramic (cerdip)

(SOT73)

HEF4023BT(D): 14-lead SO; plastic

(SOT108-1)

(): Package Designator North America

FAMILY DATA, I_{DD} LIMITS category GATES

See Family Specifications

Triple 3-input NAND gate

HEF4023B gates

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays						
$I_n \rightarrow O_n$	5		65	135	ns	38 ns + (0,55 ns/pF) C_L
HIGH to LOW	10	t _{PHL}	25	50	ns	14 ns + (0,23 ns/pF) C_L
	15		15	30	ns	7 ns + (0,16 ns/pF) C_L
	5		65	130	ns	38 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	30	60	ns	19 ns + (0,23 ns/pF) C_L
	15		25	45	ns	17 ns + (0,16 ns/pF) C_L
Output transition times	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}	30	60	ns	9 ns $+$ (0,42 ns/pF) C_L
	15		20	40	ns	6 ns + (0,28 ns/pF) C_L
	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	30	60	ns	9 ns $+$ (0,42 ns/pF) C_L
	15		20	40	ns	6 ns $+$ (0,28 ns/pF) C_L

	V _{DD}	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	$1200 \; f_i + \sum \; (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	5500 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	16 400 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_o C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4027B flip-flops Dual JK flip-flop

Product specification
File under Integrated Circuits, IC04

January 1995

Dual JK flip-flop

HEF4027B flip-flops

DESCRIPTION

The HEF4027B is a dual JK flip-flop which is edge-triggered and features independent set direct (S_D) , clear direct (C_D) , clock (CP) inputs and outputs (O,\overline{O}) . Data is accepted when CP is LOW, and transferred to the output on the positive-going edge of the clock. The active HIGH asynchronous clear-direct (C_D) and set-direct (S_D) are independent and override the J, K, and CP inputs. The outputs are buffered for best system performance. Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

FUNCTION TABLES

INPUTS					OUTPUTS		
S _D	CD	СР	J	K	0	0	
Н	L	Х	Х	Х	Н	L	
L	Н	Х	Х	X	L	Н	
Н	Н	Х	Х	Х	Н	Н	

INPUTS					OUTPUTS		
S _D	C _D	СР	J	K	O _{n + 1}	\overline{O}_{n+1}	
L	L		L	L	no change		
L	L		Н	L	Н	L	
L	L		L	Н	L	Н	
L	L		Н	Н	\overline{O}_n	O _n	

Notes

1. H = HIGH state (the more positive voltage)

L = LOW state (the less positive voltage)

X = state is immaterial

 O_{n+1} = state after clock positive transition

PINNING

J,K synchronous inputs

CP clock input (L to H edge-triggered)

 $S_{D} \quad \ \ \text{asynchronous set-direct input (active HIGH)}$

C_D asynchronous clear-direct input (active HIGH)

O true output

O complement output

HEF4027BP(N): 16-lead DIL; plastic (SOT38-1)

HEF4027BD(F): 16-lead DIL; ceramic (cerdip) (SOT74)

HEF4027BT(D): 16-lead SO; plastic (SOT109-1)

(): Package Designator North America

FAMILY DATA, I_{DD} LIMITS category FLIP-FLOPS

See Family Specifications

Dual JK flip-flop

HEF4027B flip-flops

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
$CP \rightarrow O, \overline{O}$	5			105	210	ns	78 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		40	80	ns	29 ns + (0,23 ns/pF) C _L
	15			30	60	ns	22 ns + (0,16 ns/pF) C _L
	5			85	170	ns	58 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		35	70	ns	27 ns $+$ (0,23 ns/pF) C_L
	15			30	60	ns	22 ns + (0,16 ns/pF) C_L
$S_D \to O$	5			70	140	ns	43 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		30	60	ns	19 ns + (0,23 ns/pF) C _L
	15			25	50	ns	17 ns + (0,16 ns/pF) C _L
$C_D \rightarrow O$	5			120	240	ns	93 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		45	90	ns	33 ns + (0,23 ns/pF) C _L
	15			35	70	ns	27 ns + (0,16 ns/pF) C _L
$S_D \to \overline{O}$	5			140	280	ns	113 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		55	110	ns	44 ns + (0,23 ns/pF) C _L
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L

Dual JK flip-flop

HEF4027B flip-flops

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
$C_D o \overline{O}$	5			75	150	ns	48 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		35	70	ns	24 ns $+$ (0,23 ns/pF) C_L
	15			25	50	ns	17 ns + (0,16 ns/pF) C_L
Output transition times	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}		30	60	ns	9 ns $+$ (0,42 ns/pF) C_L
	15			20	40	ns	6 ns $+$ (0,28 ns/pF) C_L
	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns $+$ (0,42 ns/pF) C_L
	15			20	40	ns	6 ns $+$ (0,28 ns/pF) C_L
Set-up time	5		50	25		ns	
$J,\!K\toCP$	10	t _{su}	30	10		ns	
	15		20	5		ns	
Hold time	5		25	0		ns	
$J,\!K\toCP$	10	t _{hold}	20	0		ns	
	15		15	5		ns	
Minimum clock	5		80	40		ns	
pulse width; LOW	10	t _{WCPL}	30	15		ns	see also waveforms Figs 4 and 5
	15		24	12		ns	rigs + and 5
Minimum S _D , C _D	5		90	45		ns	
pulse width; HIGH	10	twspH,	40	20		ns	
	15	t _{WCDH}	30	15		ns	
Recovery time	5		20	-15		ns	
for S_D , C_D	10	t _{RSD} ,	15	-10		ns	
	15	t _{RCD}	10	-5		ns	
Maximum clock	5		4	8		MHz	
pulse frequency	10	f _{max}	12	25		MHz	see also waveforms Fig.4
J = K = HIGH	15		15	30		MHz	ı ıg. -ı

	V _{DD} V	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	900 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	4 500 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	13 200 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_0C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

Dual JK flip-flop

HEF4027B flip-flops

Fig.4 Waveforms showing set-up times, hold times and minimum clock pulse width. Set-up and hold times are shown as positive values but may be specified as negative values.

APPLICATION INFORMATION

Some examples of applications for the HEF4027B are:

- Registers
- Counters
- · Control circuits

INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4047B MSI

Monostable/astable multivibrator

Product specification
File under Integrated Circuits, IC04

January 1995

Monostable/astable multivibrator

HEF4047B MSI

DESCRIPTION

The HEF4047B consists of a gatable astable multivibrator with logic techniques incorporated to permit positive or negative edge-triggered monostable multivibrator action with retriggering and external counting options.

Inputs include + TRIGGER, – TRIGGER, ASTABLE, ASTABLE, RETRIGGER and MR (Master Reset). Buffered outputs are O, \overline{O} and OSCILLATOR OUTPUT. In all modes of operation an external capacitor (C_t) must be connected between C_{TC} and RC_{TC} , and an external resistor (R_t) must be connected between R_{TC} and RC_{TC} (continued on next page).

FAMILY DATA, I_{DD} LIMITS category MSI

See Family Specifications

Monostable/astable multivibrator

HEF4047B MSI

Astable operation is enabled by a HIGH level on the ASTABLE input. The period of the square wave at O and \overline{O} outputs is a function of the external components employed. 'True' input pulses on the ASTABLE or 'complement' pulses on the $\overline{ASTABLE}$ input, allow the circuit to be used as a gatable multivibrator. The OSCILLATOR OUTPUT period will be half of the O output in the astable mode. However, a 50% duty factor is not guaranteed at this output.

In the monostable mode, positive edge-triggering is accomplished by applying a leading-edge pulse to the + TRIGGER input and a LOW level to the – TRIGGER input. For negative edge-triggering, a trailing-edge pulse is applied to the – TRIGGER and a HIGH level to the + TRIGGER. Input pulses may be of any duration relative to the output pulse. The multivibrator can be retriggered (on the leading-edge only) by applying a common pulse to both the RETRIGGER and + TRIGGER inputs. In this mode the output pulse remains HIGH as long as the input pulse period is shorter than the period determined by the RC components.

An external count down option can be implemented by coupling O to an external 'N' counter and resetting the counter with the trigger pulse. The counter output pulse is fed back to the $\overline{\text{ASTABLE}}$ input and has a duration equal to N times the period of the multivibrator. A HIGH level on the MR input assures no output pulse during an ON-power condition. This input can also be activated to terminate the output pulse at any time. In the monostable mode, a HIGH level or power-ON reset pulse must be applied to MR, whenever V_{DD} is applied.

HEF4047BP(N): 14-lead DIL; plastic

(SOT27-1)

HEF4047BD(F): 14-lead DIL; ceramic (cerdip)

(SOT73)

HEF4047BT(D): 14-lead SO; plastic

(SOT108-1)

(): Package Designator North America

 \overline{SN}

4

Monostable/astable multivibrator

HEF4047B MSI

FUNCTIONAL CONNECTIONS

	PINS	CONNECTED TO		OUTPUT	ОИТРИТ
FUNCTION	V _{DD}	V _{SS}	INPUT PULSE	PULSE FROM PINS	PERIOD OR PULSE WIDTH
astable multivibrator					
free running	4, 5, 6, 14	7, 8, 9, 12	_	10, 11, 13	at pins 10, 11:
true gating	4, 6, 14	7, 8, 9, 12	5	10, 11, 13	$t_A = 4,40 R_t C_t$
complement gating	6, 14	5, 7, 8, 9, 12	4	10, 11, 13	at pin 13: $t_A = 2,20 R_t C_t$
monostable multivibrator					
pos. edge-triggering	4, 14	5, 6, 7, 9, 12	8	10, 11	
neg. edge-triggering	4, 8, 14	5, 7, 9, 12	6	10, 11	at pins 10, 11:
retriggerable	4, 14	5, 6, 7, 9	8, 12	10, 11	$t_{M} = 2,48 R_{t}C_{t}$
external count down ⁽¹⁾	14	5, 6, 7, 8, 9, 12	_	10, 11	

Notes

- 1. Input pulse to RESET of external counting chip; external counting chip output to pin 4.
- 2. In all cases, external resistor between pins 2 and 3, external capacitor between pins 1 and 3.

DC CHARACTERISTICS

 V_{SS} = 0 V; inputs at V_{SS} or V_{DD}

					T _{amb} (°C)		
	V _{DD} V	SYMBOL	-40	+	25	+ 85		
	-		MAX.	MIN.	MAX.	MAX.		
Leakage current								nin 2 ot
pin 3; output	15	l ₃	0,3	_	0,3	1	μΑ	pin 3 at V _{DD} or V _{SS}
transistor OFF								אוס מים יי

Monostable/astable multivibrator

HEF4047B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	MIN. TY	P. MAX.	TYPICAL EXTRAPOLATION FORMULA
Propagation delays					
ASTABLE, $\overline{ASTABLE} \to OSC$. OUTPUT	5		,	95 190	68 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	4	45 90	43 ns + (0,23 ns/pF) C _L
	15		;	30 60	22 ns + (0,16 ns/pF) C _L
	5		3	35 170	58 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	4	40 80	29 ns + (0,23 ns/pF) C _L
	15		;	30 60	22 ns + (0,16 ns/pF) C _L
ASTABLE, $\overline{ASTABLE} \to O, \overline{O}$	5		15	50 300	123 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	(65 130	54 ns + (0,23 ns/pF) C _L
	15			50 100	42 ns + (0,16 ns/pF) C _L
	5		1:	30 260	103 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	(60 120	49 ns + (0,23 ns/pF) C _L
	15		4	45 90	37 ns + (0,16 ns/pF) C _L
+/− TRIGGER \rightarrow O, \overline{O}	5		16	60 320	133 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	(65 130	54 ns + (0,23 ns/pF) C _L
	15			50 100	42 ns + (0,16 ns/pF) C _L
	5		15	55 310	128 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	(65 130	54 ns + (0,23 ns/pF) C _L
	15			50 100	42 ns + (0,16 ns/pF) C _L
+ TRIGGER, RETRIGGER $\rightarrow \overline{O}$	5		(55 130	38 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	;	30 60	19 ns + (0,23 ns/pF) C _L
	15		2	25 50	17 ns + (0,16 ns/pF) C _L
+ TRIGGER, RETRIGGER \rightarrow O	5		9	95 190	68 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	4	40 80	29 ns + (0,23 ns/pF) C _L
	15		;	30 60	22 ns + (0,16 ns/pF) C _L
$MR \rightarrow O$	5		10	00 200	83 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	4	45 90	34 ns + (0,23 ns/pF) C _L
	15		;	35 70	27 ns + (0,16 ns/pF) C _L
$MR \rightarrow \overline{O}$	5		10	00 200	83 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	4	45 90	34 ns + (0,23 ns/pF) C _L
	15		;	35 70	27 ns + (0,16 ns/pF) C _L
Output transition times	5		(50 120	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}	;	30 60	9 ns + (0,42 ns/pF) C _L
	15		:	20 40	6 ns + (0,28 ns/pF) C _L
	5		(50 120	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	;	30 60	9 ns + (0,42 ns/pF) C _L
	15			20 40	6 ns + (0,28 ns/pF) C _L

Monostable/astable multivibrator

HEF4047B MSI

	V _{DD}	SYMBOL	MIN.	TYP.	MAX.	TYPICAL EXTRAPOLATION FORMULA
Minimum MR pulse	5		60	30		
width; HIGH	10	t _{WMRH}	30	15		
	15		20	10		
Minimum input						
pulse width; any	5		220	110		
input exept MR	10	t _W	100	50		
	15		70	35		

APPLICATION INFORMATION

General features:

- Monostable (one-shot) or astable (free-running) operation
- True and complemented buffered outputs
- Only one external R and C required

Monostable multivibrator features:

- Positive- or negative-edge triggering
- Output pulse width independent of trigger pulse duration
- Retriggerable option for pulse-width expansion
- Long pulse width possible using small RC components by means of external counter provision
- Fast recovery time essentially independent of pulse width
- Pulse-width accuracy maintained at duty cycles approaching 100%

Astable multivibrator features:

- Free-running or gatable operating modes
- 50% duty cycle
- · Oscillator output available

Monostable/astable multivibrator

HEF4047B MSI

1. Astable mode design information

a. Unit-to-unit transfer-voltage variations

The following analysis presents worst-case variations from unit-to-unit as a function of transfer-voltage (V_{TR}) shift for free running (astable) operation.

$$t_1 = -R_t C_t \ In \frac{V_{TR}}{V_{DD} + V_{TR}}$$

$$t_2 = -R_t C_t \ln \frac{V_{DD} - V_{TR}}{2V_{DD} - V_{TR}}$$

$$t_{A} \, = \, 2 \, (t_{1} + t_{2}) \, = - 2 R_{t} C_{t} \, \, In \frac{(V_{TR}) \, \, (V_{DD} - V_{TR})}{(V_{DD} + V_{TR}) \, \, (2V_{DD} - V_{TR})} \, , \, \text{where} \, t_{A} = \text{Astable mode pulse width}.$$

Values for t_A are:

	typ. : $V_{TR} = 0.5 V_{DD}$;	$t_A = 4,40 R_t C_t$
V _{DD} = 5 or 10 V	min. : $V_{TR} = 0.3 V_{DD}$;	$t_A = 4,71 R_t C_t$
	max.: $V_{TR} = 0.7 V_{DD}$;	$t_A = 4,71 R_t C_t$
V _{DD} = 15 V	min. : $V_{TR} = 4 V$;	$t_A = 4,84 R_t C_t$
	max.: $V_{TR} = 11 V$;	$t_A = 4,84 R_t C_t$

thus if t_A = 4,40 R_tC_t is used, the maximum variation will be (+ 7,0%; -0,0%) at 10 V.

Monostable/astable multivibrator

HEF4047B MSI

b. Variations due to changes in V_{DD}

In addition to variations from unit-to-unit, the astable period may vary as a function of frequency with respect to V_{DD}. Typical variations are presented graphically in Figs 5 and 6 with 10 V as a reference.

CURVE $\mathbf{C}_{\mathbf{t}}$ R_{t} f_{O} kHz рF $\mathbf{k}\Omega$ Α 100 220 10 В 5 470

1

100

1000

220

С

Monostable/astable multivibrator

HEF4047B MSI

CURVE	f _O kHz	C _t pF	$oldsymbol{R_t}{oldsymbol{k}\Omega}$
A	500	10	47
В	225	100	10
С	100	100	22
D	50	100	47

Monostable/astable multivibrator

HEF4047B MSI

2. Monostable mode design information

The following analysis presents worst case variations from unit-to-unit as a function of transfer-voltage (V_{TR}) shift for one-shot (monostalbe) operation.

$$t_1' = -R_t C_t \ln \frac{V_{TR}}{2V_{DD}}$$

$$t_{M} = (t_{1}' + t_{2})$$

$$t_{M} \,=\, -R_{t}C_{t}\,\,In\frac{(V_{TR})\,\,(V_{DD}-V_{TR})}{(2V_{DD}-V_{TR})\,\,(2V_{DD})}\,,\, where\,\,t_{M} = Monostable\,\,\,mode\,\,pulse\,\,width.$$

Values for t_M are:

	typ. :	$V_{TR} = 0.5 V_{DD};$	$t_{M} = 2,48 R_{t}C_{t}$
V _{DD} = 5 to10 V	min.:	$V_{TR} = 0.3 V_{DD};$	$t_{M} = 2,78 R_{t}C_{t}$
	max.:	$V_{TR} = 0.7 V_{DD};$	$t_M = 2,52 R_t C_t$
V _{DD} = 15 V	min.:	$V_{TR} = 4 V;$	$t_{M} = 2,88 R_{t}C_{t}$
	max.:	$V_{TR} = 11 V;$	$t_M = 2,56 R_t C_t$

Note

1. In the astable mode, the first positive half cycle has a duration of t_M ; succeeding durations are $\frac{1}{2}t_A$.

thus if $t_M = 2,48 R_t C_t$ is used, the maximum variation will be (+ 12%; -0,0%) at 10 V.

Monostable/astable multivibrator

HEF4047B MSI

3. Retrigger mode operation

The HEF4047B can be used in the retrigger mode to extend the output pulse duration, or to compare the frequency of an input signal with that of the internal oscillator. In the retrigger mode the input pulse is applied to pins 8 and 12, and the output is taken from pin 10 or 11. Normal monostable action is obtained when one retrigger pulse is applied (Fig.8). Extended pulse duration is obtained when more than one pulse is applied. For two input pulses, $t_{RE} = t_1' + t_1 + 2t_2$. For more than two pulses, t_{RE} (output O), terminates at some variable time, t_D , after the termination of the last retrigger pulse; t_D is variable because t_{RE} (output O) terminates after the second positive edge of the oscillator output appears at flip-flop 4.

4. External counter option

Time t_M can be extended by any amount with the use of external counting circuitry. Advantages include digitally controlled pulse duration, small timing capacitors for long time periods, and extremely fast recovery time. A typical implementation is shown in Fig.9.

The pulse duration at the output is: $t_{ext} = (N-1)(t_A) + (t_M + 1/2 t_A)$

Where t_{ext} = pulse duration of the circuitry, and N is the number of counts used.

Monostable/astable multivibrator

HEF4047B MSI

5. Timing component limitations

The capacitor used in the circuit should be non-polarized and have low leakage (i.e. the parallel resistance of the capacitor should be an order of magnitude greater than the external resistor used).

There is no upper or lower limit for either R_t or C_t value to maintain oscillation.

However, in consideration of accuracy, C_t must be much larger than the inherent stray capacitance in the system (unless this capacitance can be measured and taken into account).

Rt must be much larger than the LOCMOS 'ON' resistance in series with it, which typically is hundreds of ohms.

The recommended values for R_t and C_t to maintain agreement with previously calculated formulae without trimming should be:

 $C_t \ge 100$ pF, up to any practical value, $10 \text{ k}\Omega \le R_t \le 1 \text{ M}\Omega.$

6. Power consumption

In the standby mode (monostable or astable), power dissipation will be a function of leakage current in the circuit. For dynamic operation, the power needed to charge the external timing capacitor C_t is given by the following formulae:

Astable mode: $P = 2 C_t V^2 f$ (f at output pin 13) $P = 4 C_t V^2 f$ (f at output pins 10 and 11)

Monostable mode: $P = \frac{\left(2, 9 C_t V^2\right) (duty \ cycle)}{T}$ (f at output pins 10 and 11)

Because the power dissipation does not depend on R_t , a design for minimum power dissipation would be a small value of C_t . The value of R would depend on the desired period (within the limitations discussed previously). Typical power consumption in a stable mode is shown in Figs 10, 11 and 12.

Monostable/astable multivibrator

HEF4047B MSI

Monostable/astable multivibrator

HEF4047B MSI

INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4069UB gates Hex inverter

Product specification
File under Integrated Circuits, IC04

January 1995

Hex inverter HEF4069UB gates

DESCRIPTION

The HEF4069UB is a general purpose hex inverter. Each of the six inverters is a single stage.

Fig.1 Functional diagram.

HEF4069UBP(N): 14-lead DIL; plastic

(SOT27-1)

HEF4069UBD(F): 14-lead DIL; ceramic (cerdip)

(SOT73)

HEF4069UBT(D): 14-lead SO; plastic

(SOT108-1)

(): Package Designator North America

FAMILY DATA, I_{DD} LIMITS category GATES

See Family Specifications for $V_{\text{IH}}/V_{\text{IL}}$ unbuffered stages

Hex inverter

HEF4069UB gates

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	TYP.	MAX.	TYPICAL EXTRAPOLATION FORMULA
Propagation delays	5		45	90 ns	18 ns + (0,55 ns/pF) C _L
$I_n \rightarrow O_n$	10	t _{PHL}	20	40 ns	9 ns + (0,23 ns/pF) C _L
HIGH to LOW	15		15	25 ns	7 ns + (0,16 ns/pF) C _L
	5		40	80 ns	13 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	20	40 ns	9 ns + (0,23 ns/pF) C _L
	15		15	30 ns	7 ns + (0,16 ns/pF) C _L
Output transition times	5		60	120 ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}	30	60 ns	9 ns + (0,42 ns/pF) C _L
	15		20	40 ns	6 ns + (0,28 ns/pF) C _L
	5		60	120 ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	30	60 ns	9 ns + (0,42 ns/pF) C _L
	15		20	40 ns	6 ns + (0,28 ns/pF) C _L

	V _{DD}	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	$600 \text{ f}_{\text{i}} + \sum (f_{\text{o}}C_{\text{L}}) \times V_{\text{DD}}^{2}$	where
dissipation per	10	$4~000~f_i + \sum (f_o C_L) \times V_{DD}^2$	f_i = input freq. (MHz)
package (P)	15	22 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_o C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

Hex inverter

HEF4069UB gates

Hex inverter

HEF4069UB gates

APPLICATION INFORMATION

Some examples of applications for the HEF4069UB are shown below.

In Fig.7 an astable relaxation oscillator is given. The oscillation frequency is mainly determined by R1C1, provided R1 << R2 and R2C2 << R1C1.

The function of R2 is to minimize the influence of the forward voltage across the protection diodes on the frequency; C2 is a stray (parasitic) capacitance. The period T_p is given by $T_p = T_1 + T_2$, in which

$$T_1 = R1C1 In \frac{V_{DD} + V_{ST}}{V_{ST}} \text{ and } T_2 = R1C1 In \frac{2 V_{DD} - V_{ST}}{V_{DD} - V_{ST}} \text{ where}$$

 V_{ST} is the signal threshold level of the inverter. The period is fairly independent of V_{DD} , V_{ST} and temperature. The duty factor, however, is influenced by V_{ST} .

Fig.7 (a) Astable relaxation oscillator using two HEF4069UB inverters; the diodes may be BAW62; C2 is a parasitic capacitance. (b) Waveforms at the points marked A, B, C and D in the circuit diagram.

Hex inverter

HEF4069UB gates

Fig.10 Supply current as a function of supply voltage.

Hex inverter

HEF4069UB gates

Fig.12 Test set-up for measuring forward transconductance $g_{fs} = di_o/dv_i$ at v_o is constant (see also graph Fig.13).

's' is the observed standard

Fig.13 Typical forward transconductance g_{fs} as a function of the supply voltage at T_{amb} = 25 °C.

INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4070B gates Quadruple exclusive-OR gate

Product specification
File under Integrated Circuits, IC04

January 1995

Quadruple exclusive-OR gate

HEF4070B gates

DESCRIPTION

The HEF4070B provides the positive quadruple exclusive-OR function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

HEF4070BP(N): 14-lead DIL; plastic

(SOT27-1)

HEF4070BD(F): 14-lead DIL; ceramic (cerdip)

(SOT73)

HEF4070BT(D): 14-lead SO; plastic

(SOT108-1)

(): Package Designator North America

APPLICATION INFORMATION

Some examples of applications for the HEF4070B are:

- Logical comparators
- · Parity checkers and generators

FAMILY DATA, I_{DD} LIMITS category GATES

See Family Specifications

TRUTH TABLE

I ₁	l ₂	O ₁
L	L	L
Н	L	Н
L	Н	Н
Н	Н	L

Note

H = HIGH state (the more positive voltage)
 L = LOW state (the less positive voltage)

Quadruple exclusive-OR gate

HEF4070B gates

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA		
Propagation delays								
$I_n \rightarrow O_n$	5		85	175	ns	58 ns $+$ (0,55 ns/pF) C_L		
HIGH to LOW	10	t _{PHL}	35	75	ns	24 ns $+$ (0,23 ns/pF) C_L		
	15		30	55	ns	21 ns + (0,16 ns/pF) C _L		
	5		75	150	ns	48 ns + (0,55 ns/pF) C _L		
LOW to HIGH	10	t _{PLH}	30	65	ns	19 ns + (0,23 ns/pF) C _L		
	15		25	50	ns	17 ns $+$ (0,16 ns/pF) C_L		
Output transition times	5		60	120	ns	10 ns + (1,0 ns/pF) C _L		
HIGH to LOW	10	t _{THL}	30	60	ns	9 ns $+$ (0,42 ns/pF) C_L		
	15		20	40	ns	6 ns $+$ (0,28 ns/pF) C_L		
	5		60	120	ns	10 ns + (1,0 ns/pF) C _L		
LOW to HIGH	10	t _{TLH}	30	60	ns	9 ns $+$ (0,42 ns/pF) C_L		
	15		20	40	ns	6 ns $+$ (0,28 ns/pF) C_L		

	V _{DD}	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	1100 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	4900 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f_i = input freq. (MHz)
package (P)	15	14 400 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_0C_L)$ = sum of outputs
			V _{DD} = supply voltage (V)

INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4071B gates Quadruple 2-input OR gate

Product specification
File under Integrated Circuits, IC04

January 1995

Quadruple 2-input OR gate

HEF4071B gates

DESCRIPTION

The HEF4071B is a positive logic quadruple 2-input OR gate. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

Fig.1 Functional diagram.

HEF4071BP(N): 14-lead DIL; plastic

(SOT27-1)

HEF4071BD(F): 14-lead DIL; ceramic (cerdip)

(SOT73)

HEF4071BT(D): 14-lead SO; plastic

(SOT108-1)

(): Package Designator North America

FAMILY DATA, I_{DD} LIMITS category GATES

See Family Specifications

Quadruple 2-input OR gate

HEF4071B gates

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA		
Propagation delays								
$I_n \to O_n$	5		55	115	ns	28 ns +	(0,55 ns/pF) C _L	
HIGH to LOW	10	t _{PHL}	25	50	ns	15 ns +	(0,23 ns/pF) C _L	
	15		20	35	ns	12 ns +	(0,16 ns/pF) C _L	
	5		45	90	ns	18 ns +	(0,55 ns/pF) C _L	
LOW to HIGH	10	t _{PLH}	20	45	ns	9 ns +	(0,23 ns/pF) C _L	
	15		15	30	ns	7 ns +	(0,16 ns/pF) C _L	
Output transition times	5		60	120	ns	10 ns +	(1,0 ns/pF) C _L	
HIGH to LOW	10	t _{THL}	30	60	ns	9 ns +	(0,42 ns/pF) C _L	
	15		20	40	ns	6 ns +	(0,28 ns/pF) C _L	
	5		60	120	ns	10 ns +	(1,0 ns/pF) C _L	
LOW to HIGH	10	t _{TLH}	30	60	ns	9 ns +	(0,42 ns/pF) C _L	
	15		20	40	ns	6 ns +	(0,28 ns/pF) C _L	

	V _{DD} V	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	1150 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	4800 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	19 700 $f_i + \sum (f_o C_L) \times V_{DD}^2$	fo = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_oC_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4081B gates Quadruple 2-input AND gate

Product specification
File under Integrated Circuits, IC04

January 1995

Quadruple 2-input AND gate

HEF4081B gates

DESCRIPTION

The HEF4081B provides the positive quadruple 2-input AND function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

HEF4081BP(N): 14-lead DIL; plastic

(SOT27-1)

HEF4081BD(F): 14-lead DIL; ceramic (cerdip)

(SOT73)

HEF4081BT(D): 14-lead SO; plastic

(SOT108-1)

(): Package Designator North America

FAMILY DATA, I_{DD} LIMITS category GATES

See Family Specifications

Quadruple 2-input AND gate

HEF4081B gates

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays						
$I_n \rightarrow O_n$	5		55	110	ns	28 ns $+$ (0,55 ns/pF) C_L
HIGH to LOW	10	t _{PHL}	25	50	ns	14 ns + (0,23 ns/pF) C _L
	15		20	40	ns	12 ns $+$ (0,16 ns/pF) C_L
	5		45	90	ns	18 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	20	40	ns	9 ns $+$ (0,23 ns/pF) C_L
	15		15	30	ns	7 ns $+$ (0,16 ns/pF) C_L
Output transition times	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}	30	60	ns	9 ns $+$ (0,42 ns/pF) C_L
	15		20	40	ns	6 ns $+$ (0,28 ns/pF) C_L
	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	30	60	ns	9 ns $+$ (0,42 ns/pF) C_L
	15		20	40	ns	6 ns $+$ (0,28 ns/pF) C_L

	V _{DD}	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	450 $f_i + \sum (f_oCL) \times V_{DD}^2$	where
dissipation per	10	2 900 $f_i + \sum (f_oCL) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	11 700 $f_i + \sum (f_oCL) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_oC_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

INTEGRATED CIRCUITS

DATA SHEET

LM124/224/324/324A/ SA534/LM2902

Low power quad op amps

Product data Supersedes data of 2002 Jul 12

Philips Semiconductors Product data

Low power quad op amps

LM124/224/324/324A/ SA534/LM2902

DESCRIPTION

The LM124/SA534/LM2902 series consists of four independent, high-gain, internally frequency-compensated operational amplifiers designed specifically to operate from a single power supply over a wide range of voltages.

UNIQUE FEATURES

In the linear mode, the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage.

The unity gain crossover frequency and the input bias current are temperature-compensated.

FEATURES

- Internally frequency-compensated for unity gain
- Large DC voltage gain: 100 dB
- Wide bandwidth (unity gain): 1 MHz (temperature-compensated)
- Wide power supply range Single supply: 3 V_{DC} to 30 V_{DC} or dual supplies: ±1.5 V_{DC} to ±15 V_{DC}
- Very low supply current drain: essentially independent of supply voltage (1 mW/op amp at +5 V_{DC})
- Low input biasing current: 45 nA_{DC} (temperature-compensated)
- Low input offset voltage: 2 mV_{DC} and offset current: 5 nA_{DC}
- Differential input voltage range equal to the power supply voltage
- Large output voltage: 0V_{DC} to V_{CC}-1.5 V_{DC} swing

PIN CONFIGURATION

Figure 1. Pin configuration.

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG #
14-Pin Plastic Dual In-Line Package (DIP)	−55° C to +125 °C	LM124N	SOT27-1
14-Pin Plastic Small Outline (SO) Package	−25 °C to +85 °C	LM224D	SOT108-1
14-Pin Plastic Dual In-Line Package (DIP)	−25 °C to +85 °C	LM224N	SOT27-1
14-Pin Plastic Small Outline (SO) Package	0 °C to +70 °C	LM324AD	SOT108-1
14-Pin Plastic Dual In-Line Package (DIP)	0 °C to +70 °C	LM324AN	SOT27-1
14-Pin Plastic Small Outline (SO) Package	0 °C to +70 °C	LM324D	SOT108-1
14-Pin Plastic Thin Shrink Small Outline Package (TSSOP)	0 °C to +70 °C	LM324DH	SOT402-1
14-Pin Plastic Dual In-Line Package (DIP)	0 °C to +70 °C	LM324N	SOT27-1
14-Pin Plastic Small Outline (SO) Package	−40 °C to +85 °C	SA534D	SOT108-1
14-Pin Plastic Dual In-Line Package (DIP)	−40 °C to +85 °C	SA534N	SOT27-1
14-Pin Plastic Small Outline (SO) Package	-40 °C to +125 °C	LM2902D	SOT108-1
14-Pin Plastic Thin Shrink Small Outline Package (TSSOP)	-40 °C to +125 °C	LM2902DH	SOT402-1
14-Pin Plastic Dual In-Line Package (DIP)	-40 °C to +125 °C	LM2902N	SOT27-1

Product data Philips Semiconductors

Low power quad op amps

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	32 or ±16	V _{DC}
V _{IN}	Differential input voltage	32	V _{DC}
V _{IN}	Input voltage	-0.3 to +32	V _{DC}
P_D	Maximum power dissipation, T _{amb} = 25 °C (still-air) ¹ N package D package DH package	1420 1040 762	mW mW mW
	Output short-circuit to GND one amplifier ² V_{CC} < 15 V_{DC} and T_{amb} = 25 °C	Continuous	
I _{IN}	Input current (V _{IN} < -0.3 V) ³	50	mA
T _{amb}	Operating ambient temperature range LM324/324A LM224 SA534 LM2902 LM124	0 to +70 -25 to +85 -40 to +85 -40 to +125 -55 to +125	ပ္ ဂ ဂ ဂ ဂ ဂ
T _{stg}	Storage temperature range	-65 to +150	°C
T _{sld}	Lead soldering temperature (10 sec max)	230	°C

NOTES:

1. Derate above 25 $^{\circ}\text{C}$ at the following rates:

N package at 11.4 mW/°C

D package at 8.3 mW/°C

DH package at 6.1mW/°C

Short-circuits from the output to V_{CC}+ can cause excessive heating and eventual destruction. The maximum output current is approximately 40 mA, independent of the magnitude of V_{CC}. At values of supply voltage in excess of +15 V_{DC} continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction.
 This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input bias clamps. In addition, there is also lateral NPN parasitic

transistor action on the IC chip. This action can cause the output voltages of the op amps to go to the V+ rail (or to ground for a large overdrive) during the time that the input is driven negative.

Low power quad op amps

LM124/224/324/324A/ SA534/LM2902

DC ELECTRICAL CHARACTERISTICS

 V_{CC} = 5 V; T_{amb} = 25 $^{\circ}C,$ unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	[_M124/LI	M224	LM32	24/SA534	I/LM2902	UNIT	
STWIBUL	PARAMETER	TEST CONDITIONS	Min	Тур	Max	Min	Тур	Max	UNIT	
\/	Offset voltage ¹	$R_S = 0 \Omega$		±2	±5		±2	±7	mV	
V _{OS}	Offset voltage	$R_S = 0 \Omega$, over temp.			±7			±9	IIIV	
ΔV _{OS} /ΔT	Temperature drift	$R_S = 0 \Omega$, over temp.		7			7		μV/°C	
I	Input current ²	I _{IN} (+) or I _{IN} (–)		45	150		45	250	nA	
I _{BIAS}	Input current-	$I_{IN}(+)$ or $I_{IN}(-)$, over temp.		40	300		40	500	IIA	
ΔI _{BIAS} /ΔΤ	Temperature drift	Over temp.		50			50		pA/°C	
1	Offset current	I _{IN} (+)-I _{IN} (-)		±3	±30		±5	±50	nA	
los	Onset current	$I_{IN}(+)-I_{IN}(-)$, over temp.			±100			±150	IIA	
ΔI _{OS} /ΔT	Temperature drift	Over temp.		10			10		pA/°C	
V	Common-mode voltage	V _{CC} ≤ 30 V	0		V _{CC} -1.5	0		V _{CC} -1.5	V	
V _{CM}	range ³	$V_{CC} \le 30 \text{ V}$; over temp.	0		V _{CC} -2	0		V _{CC} -2	V	
CMRR	Common-mode rejection ratio	V _{CC} = 30 V	70	85		65	70		dB	
V _{OUT}	Output voltage swing	$R_L = 2 \text{ k}\Omega, V_{CC} = 30 \text{ V},$ over temp.	26			26			V	
V _{OH}	Output voltage high	$R_L \le 10 \text{ k}\Omega, V_{CC} = 30 \text{ V},$ over temp.		28		27	28		V	
V _{OL}	Output voltage low	$R_L \le 10 \text{ k}\Omega$; over temp.		5	20		5	20	mV	
I _{CC} Supply cur	Commissioner	$R_L = \infty$, $V_{CC} = 30 \text{ V}$; over temp.		1.5	3		1.5	3	A	
	Supply current	R _L = ∞; over temp.		0.7	1.2		0.7	1.2	mA	
		V_{CC} = 15 V (for large V_O swing); $R_L \ge 2 \text{ k}\Omega$		100		25	100		V/mV	
A _{VOL}	Large-signal voltage gain	V_{CC} = 15 V (for large V_O swing); $R_L \ge 2k \Omega$; over temp.	25			15			V/111V	
	Amplifier-to-amplifier coupling ⁵	f = 1 kHz to 20 kHz, input referred		-120			-120		dB	
PSRR	Power supply rejection ratio	$R_S \le 0 \Omega$	65	100		65	100		dB	
		V_{IN} + = +1 V, V_{IN} - = 0 V, V_{CC} = 15 V	20	40		20	40			
	Output current source	V_{IN} + = +1 V, V_{IN} - = 0 V, V_{CC} = 15 V, over temp.	10	20		10	20		4	
I _{OUT}		$V_{IN}- = +1 \text{ V}, V_{IN}+ = 0 \text{ V},$ $V_{CC} = 15 \text{ V}$	10	20		10	20		mA	
	Output current sink	$V_{IN}-=+1 \text{ V}, V_{IN}+=0 \text{ V}, V_{CC}=15 \text{ V}, \text{ over temp.}$	5	8		5	8			
		$V_{IN}-=+1 \text{ V}, V_{IN}+=0 \text{ V}, V_{O}=200 \text{ mV}$	12	50		12	50		μΑ	
I _{SC}	Short-circuit current ⁴		10	40	60	10	40	60	mA	
GBW	Unity gain bandwidth			1			1		MHz	
SR	Slew rate			0.3			0.3		V/μs	
V _{NOISE}	Input noise voltage	f = 1 kHz		40			40		nV/√Hz	
V_{DIFF}	Differential input voltage ³				V _{CC}			V _{CC}	V	

Low power quad op amps

LM124/224/324/324A/ SA534/LM2902

DC ELECTRICAL CHARACTERISTICS (Continued)

V_{CC} = 5 V, T_{amb} = 25 °C unless otherwise specified.

OVMDOL	DADAMETED	TEST COMPITIONS				
SYMBOL	PARAMETER	TEST CONDITIONS	Min	Тур	Max	UNIT
\ /	Office trustee and 1	$R_S = 0 \Omega$		±2	±3	\/
V _{OS}	Offset voltage ¹	$R_S = 0 \Omega$, over temp.		±		mV
ΔV _{OS} /ΔT	Temperature drift	$R_S = 0 \Omega$, over temp.		7	30	μV/°C
	lament annuant?	l _{IN} (+) or l _{IN} (–)		45	100	- ^
BIAS	Input current ²	I _{IN} (+) or I _{IN} (-), over temp.		40	200	nA
ΔI _{BIAS} /ΔT	Temperature drift	Over temp.		50		pA/°C
	Officet current	I _{IN} (+)–I _{IN} (–)		±5	±30	Λ
los	Offset current	$I_{IN}(+)-I_{IN}(-)$, over temp.			±75	nA
ΔI _{OS} /ΔT	Temperature drift	Over temp.		10	300	pA/°C
\ /	Common mode with me man and	V _{CC} ≤ 30 V	0		V _{CC} -1.5	V
V_{CM}	Common-mode voltage range ³	$V_{CC} \le 30 \text{ V, over temp.}$	0		V _{CC} -2	V
CMRR	Common-mode rejection ratio	V _{CC} = 30 V	65	85		dB
V _{OUT}	Output voltage swing	$R_L = 2 \text{ k}\Omega$, $V_{CC} = 30 \text{ V}$; over temp.	26			V
V _{OH}	Output voltage high	$R_L \le 10$ kΩ, $V_{CC} = 30$ V; over temp.	27	28		V
V _{OL}	Output voltage low	$R_L \le 10 \text{ k}\Omega,$ over temp.		5	20	mV
Icc		$R_L = \infty$, $V_{CC} = 30$ V, over temp.		1.5	3	mA
	Supply current	R _L = ∞, over temp.		0.7	1.2	mA
		V_{CC} = 15 V (for large V_O swing), $R_L \ge 2 \text{ k}\Omega$	25	100		V/mV
A _{VOL}	Large-signal voltage gain	V_{CC} = 15 V (for large V_O swing), $R_L \ge 2k \Omega$, over temp.	15			V/mV
	Amplifier-to-amplifier coupling ⁵	f = 1 kHz to 20 kHz, input referred		-120		dB
PSRR	Power supply rejection ratio	$R_S \le 0 \Omega$	65	100		dB
		V _{IN} + = +1 V, V _{IN} - = 0 V, V _{CC} = 15 V	20	40		mA
	Output current source	V_{IN} + = +1 V, V_{IN} - = 0 V, V_{CC} = 15 V, over temp.	10	20		mA
I _{OUT}		V _{IN} -= +1 V, V _{IN} += 0 V, V _{CC} = 15 V	10	20		mA
	Output current sink	V_{IN} -= +1 V, V_{IN} + = 0 V, V_{CC} = 15 V, over temp.	5	8		mA
		V _{IN} -= +1 V, V _{IN} + = 0 V, V _O = 200 mV	12	50		μΑ
I _{SC}	Short-circuit current ⁴		10	40	60	mA
V _{DIFF}	Differential input voltage ³			1	V _{CC}	V
GBW	Unity gain bandwidth			1		MHz
SR	Slew rate			0.3		V/μs
V _{NOISE}	Input noise voltage	f = 1 kHz		40		nV/√Hz

- 1. $V_O \approx 1.4 \ V_{DC}$, $R_S = 0 \ \Omega$ with V_{CC} from 5 V to 30 V and over full input common-mode range (0 V_{DC} + to V_{CC} –1.5 V). 2. The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.
- 3. The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of
- the common-mode voltage range is V_{CC} –1.5, but either or both inputs can go to +32 V without damage.

 4. Short-circuits from the output to V_{CC} can cause excessive heating and eventual destruction. The maximum output current is approximately 40 mA independent of the magnitude of V_{CC}. At values of supply voltage in excess of +15 V_{DC}, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.
- 5. Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of coupling increases at higher frequencies.

EQUIVALENT CIRCUIT

Figure 2. Equivalent circuit.

Philips Semiconductors Product data

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. Typical Performance Characteristics

Low power quad op amps

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

Figure 4. Typical Performance Characteristics (cont.)

TYPICAL APPLICATIONS

Figure 5. Typical Applications

DIP14: plastic dual in-line package; 14 leads (300 mil)

SOT27-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	Мн	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.13	0.53 0.38	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.2
inches	0.17	0.02	0.13	0.068 0.044	0.021 0.015	0.014 0.009	0.77 0.73	0.26 0.24	0.1	0.3	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE		REFER		EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT27-1	050G04	MO-001	SC-501-14			99-12-27 03-02-13	

SO14: plastic small outline package; 14 leads; body width 3.9 mm

SOT108-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	8.75 8.55	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01	1	0.0100 0.0075	0.35 0.34	0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016	0.028 0.024	0.01	0.01	0.004	0.028 0.012	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	IEC JEDEC JEITA				ISSUE DATE	
SOT108-1	076E06	MS-012				99-12-27 03-02-19	

Philips Semiconductors Product data

Low power quad op amps

LM124/224/324/324A/ SA534/LM2902

TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm

SOT402-1

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A ₁	A ₂	А3	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	٧	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.72 0.38	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA	JEITA		ISSUE DATE	
SOT402-1		MO-153				-99-12-27- 03-02-18	

Philips Semiconductors Product data

Low power quad op amps

LM124/224/324/324A/ SA534/LM2902

REVISION HISTORY

Rev	Date	Description
_5	20030919	Product data (9397 750 12078). ECN 853-0929 30369 of 19 September 2003.
		Modifications:
		Modified Figure 2; Q10 and Q13 changed from NPN to PNP.
_4	20020712	Product data (9397 750 10172). ECN 853-0929 28616 of 12 July 2002.

Data sheet status

Level	Data sheet status [1]	Product status ^[2] [3]	Definitions
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Phillips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

^[1] Please consult the most recently issued data sheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products—including circuits, standard cells, and/or software—described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit

http://www.semiconductors.philips.com. Fax: +31 40 27 24825

For sales offices addresses send e-mail to:

sales.addresses@www.semiconductors.philips.com

© Koninklijke Philips Electronics N.V. 2003 All rights reserved. Printed in U.S.A.

Date of release: 09-03

Document order number: 9397 750 12078

Let's make things better.

Philips Semiconductors

^[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

^[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.