TD 2. \mathbb{R}^n EUCLIDIEN

Exercice 1 (produits scalaires de \mathbb{R}^n)

Montrer que

$$(X|Y) = x_1y_1 + 2x_2y_2 + 3x_3y_3 + x_1y_2 + x_2y_1$$

définit bien un produit scalaire sur \mathbb{R}^3 mais pas

$$(X|Y) = 2x_1^2 + x_3^2 + 3x_1x_2 + 5x_2x_3$$

ni

$$(X|Y) = x_1^2 - x_2^2 + 2x_3^2.$$

Exercice 2 (norme et produits scalaires)

Montrer que si E est un espace euclidien, $\forall x, y \in E$,

$$||x + y||^2 = ||x||^2 + ||y||^2 + 2(x|y),$$

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

Exercice 3 Pour les trois normes classiques de \mathbb{R}^2 :

- $\overline{\mathbf{1}^{\circ}}$)Calculer la distance entre les vecteurs (1,2) et (4,-1).
- 2°)Dessiner l'ensemble des éléments de \mathbb{R}^2 à une distance 1 de (0,0).
- 3°) Calculer la distance entre les vecteurs (1,2) et la droite d'équation y=0.

Exercice 4 Dans $E = \mathbb{R}^3$. Soit P le plan d'équation x + y - z = 0.

Donner une base de $D = P^{\perp}$ puis ses équations cartésiennes.

Exercice 5 Dans $E = \mathbb{R}^4$. Soit $F = vect\{(1, 1, 0, 1), (0, 1, 2, 1)\}$

Donner les équations cartésiennes puis une base de F^{\perp} .

Exercice 6 Démontrer le théorème de Pythagore dans \mathbb{R}^n .

Exercice 7 Dans $E = \mathbb{R}^2$. On considère la droite D de E d'équation y = x.

- 1°)Quel est le point de D le plus proche de A.
- **2°)**Calculer la distance de A = (1,4) à la droite D.

Exercice 8 Dans $E = \mathbb{R}^3$. On considère le plan P de E d'équation x - 2y + z = 0.

- 1°)Donner un vecteur normal à P.
- 2°) Déterminer une base de P.
- 3°) Calculer le projeté orthogonal de A = (1,0,0) sur P et en déduire la distance de $A \ge P$.
- 4°)Déterminer la matrice de la projection orthogonale sur P.

Exercice 9 Dans $E = \mathbb{R}^3$.

- 1°)Calculer la distance de A = (1, 2, 1) au plan d'équation x + y + z = 0.
- 2°) Calculer la distance de A à la droite d'équations cartésiennes :

$$\begin{cases} 2x - y + z = 0 \\ x + y = 0 \end{cases}$$

Exercice 10 Dans $E = \mathbb{R}^3$. Déterminer les coordonnées du projeté orthogonal de M = (x, y, z) sur F dans les cas suivants :

- $\mathbf{1}^{\circ}$) F est la droite d'équations : x = y = z.
- 2°) F est la droite de vecteur directeur (2,1,-1) passant par A=(1,1,0).
- 3°) F est le plan d'équation 2x + y z = 2.

Exercice 11 Orthonormaliser par le procédé de Gram-Schmidt la base de $E = \mathbb{R}^3$:

$$u = {}^{t} (1, 0, 1), \quad v = {}^{t} (1, 1, 1), \quad w = {}^{t} (-1, -1, 0).$$

Exercice 12 Dans $E = \mathbb{R}^4$. Déterminer une base orthonormée du sous-espace vectoriel F de E engendré par les vecteurs :

$$v_1 = {}^{t} (1, 1, 0, 0), \quad v_2 = {}^{t} (1, 0, -1, 1), \quad v_3 = {}^{t} (0, 1, 1, 1).$$

Exercice 13 Déterminer une base orthonormée du plan de $E = \mathbb{R}^3$ d'équation x - y + z = 0.

Exercice 14 (Distance à un hyperplan dans \mathbb{R}^n affine)

1°) Soit H un hyperplan de \mathbb{R}^n , A un point quel conque de H et \vec{n} un vecteur normal à H. Montrer que

$$d(A, H) = \frac{|(\vec{n}|A\vec{M})|}{||\vec{n}||}$$

Exercice 15 Programmer en Sage le calcul du projeté orthogonal d'un vecteur X de \mathbb{R}^n . sur un sev F de \mathbb{R}^n donné par une base orthogonales.

Exercice 16 Programmer en Sage la méthode de Gram-Schmidt pour orthogonaliser une base B de \mathbb{R}^n .

Exercice 17 Programmer en Sage le calcul du projeté orthogonal d'un vecteur X de \mathbb{R}^n . sur un sev F de \mathbb{R}^n donné par une de ses bases (qcq).

Exercice 18 Programmer en Sage le calcul de la distance d'un vecteur X de \mathbb{R}^n à un sev F de \mathbb{R}^n donné par une de ses bases.