Multipole Mermin-Wagner Constraints

Charles Stahl

University of Colorado Department of Physics

February 18, 2022

Outline

Ordinary Mermin-Wagner theorem

Multipole symmetries

Multipole field theories and Mermin-Wagner

Mermin-Wagner for partial breaking of multipole symmetries

Mermin-Wagner theorem

Consider a system with an internal U(1) symmetry

Assume the symmetry is broken \rightarrow Goldstone boson

$$\mathcal{L} = (\partial_t \phi)^2 + (\partial_i \phi)^2$$

Correlation functions go as

$$\langle \phi(x,t)\phi(0,0)\rangle = \int \frac{d\omega dk \, k^{d-1}}{\omega^2 + k^2}$$

= $\int \frac{dk}{k} k^{d-1}$,

which diverges (in the IR) when $d \leq 1$

Interpretation

When the correlation function does not diverge (d > 1), there can be a phase distinguished by symmetry properties

At the critical dimension (d=1), there can still be a phase distinguished by a non-vanishing compressibility Luttinger liquid Quasi-long-range order

Outline

Ordinary Mermin-Wagner theorem

Multipole symmetries

Multipole field theories and Mermin-Wagner

Mermin-Wagner for partial breaking of multipole symmetries

Multipole symmetries

Recall that an ordinary symmetry acts as $\phi(x) \to \phi(x) + c$

Gauge "symmetries" are not physical symmetries

Generalize to
$$\phi(x) \rightarrow \phi(x) + P(x)$$

$$P(x) = a_i x^i + b, \ c(x^2 + 1), \ \text{etc.}$$

Gauging these symmetries can lead to fractons [Pretko 2018]

Multipole groups

Choose an internal group G_{int} and a set of polynomials

The internal group has to be Abelian [Glorioso et. al. 2020], stick with $G_{\mathrm{int}}=U(1)$

There is a generator corresponding to each polynomial [Gromov 2019]

$$\mathcal{P}_0, \mathcal{P}_1^i, \mathcal{P}_2^{ij}$$
, etc.

$$\exp(c\mathcal{P}_0)\phi(x) = \phi(x) + c$$

$$\exp(a_{ij}\mathcal{P}_2^{ij})\phi(x) = \phi(x) + a_{ij}x^ix^j$$

(restriction to monomials makes indices simpler)

Multipole groups

Generators might not commute with space symmetries [Gromov 2019]

$$[T_j, \mathcal{P}_a^{i_1 \dots i_a}] = \delta_j^{i_m} \mathcal{P}_{a-1}^{i_1 \dots i_{m-1} i_{m+1} \dots i_a}$$
$$[R_{jk}, \mathcal{P}_a^{i_1 \dots i_a}] = \delta_{[j}^{(i_1} \mathcal{P}_a^{k]i_2) \dots i_a}$$

For example,
$$[T_1, \mathcal{P}_1^1] = \mathcal{P}_0$$
 and $[R_{12}, \mathcal{P}_1^1] = \mathcal{P}_1^2$

Include all resulting polynomials, or exclude some translations or rotations

Maximal multipole group

 $\mathcal{M}_{\rm max}^a$ contains all polynomials of degree < a Note: this is NOT the definition in the literature, but it makes formulas nicer

Any multipole group is therefore a subgroup of $\mathcal{M}_{\mathrm{max}}^a$ for some a

Also contains all translations and rotations

 $\mathcal{M}_{\mathrm{max}}^1$ is ordinary U(1), $\mathcal{M}_{\mathrm{max}}^0$ is the trivial group

Outline

Ordinary Mermin-Wagner theorem

Multipole symmetries

Multipole field theories and Mermin-Wagner

Mermin-Wagner for partial breaking of multipole symmetries

Multipole-invariant field theories

Example:
$$\mathcal{L}=(\partial_t\phi)^2+g(\partial_i\partial_j\phi)^2$$
 is invariant under \mathcal{M}^2_{\max}

For a generic multipole group, it is not possible to find such a theory [Gromov 2019]

Interesting examples do exist, and can lead to fracton phases after gauging [Pretko 2018; Gromov 2019]

A special example leads to Haah's code [Bulmash, Barkeshli 2018]

Multipole-invariant field theories

Stick with rotationally invariant theory

$$\mathcal{L} = (\partial_t \phi)^2 + g(\partial_{I_a} \phi)^2,$$

where $I_a = i_1 \dots i_a$ is a multi-index and

$$\partial_{I_a} = \partial_{i_1} \dots \partial_{i_a}$$

This is invariant under $\mathcal{M}_{\mathrm{max}}^a$

Interesting things to say about total derivatives and rotational invariance...

Mermin-Wagner for multipole theories

$$\mathcal{L} = (\partial_t \phi)^2 + g(\partial_{I_a} \phi)^2$$

Assume the ϕ field exists. Is long-range order possible?

$$\langle \phi(x,t)\phi(0)\rangle \sim \int \frac{d\omega dk \, k^{d-1}}{\omega^2 + k^{2a}}$$

$$= \int \frac{dk}{k} k^{d-a}$$

IR divergence for $d \leq a$ [Griffin 2015]

Critical dimension at T=0 is $d_{\rm c}=a$

Mermin-Wagner for multipole theories

What other possibilities are there?

Non-maximal groups, eg. Haah group

Partial breaking from $\mathcal{M}_{\max}^a o \mathcal{M}_{\max}^c$

Combine both?

Outline

Ordinary Mermin-Wagner theorem

Multipole symmetries

Multipole field theories and Mermin-Wagner

Mermin-Wagner for partial breaking of multipole symmetries

Mermin-Wagner for partial breaking, I

Naive method to break from \mathcal{M}_{\max}^a to \mathcal{M}_{\max}^c with c < a

Define field
$$\phi_{i_1...i_c} = \phi_{I_c}$$

$$\exp(\beta_{I_b} \mathcal{P}_b^{I_b}) \phi_{J_c}(x) = \phi_{J_c} + \beta_{J_c I_{b-c}} x^{I_{b-c}}$$
Invariant under polynomials of degree $< c$

$$\phi_{I_c} \text{ develops LRO: } \mathcal{M}_{\max}^a \to \mathcal{M}_{\max}^c$$

Example: ϕ_i would break the dipole group \mathcal{M}_{\max}^2 to the monopole group \mathcal{M}_{\max}^1

[CNS, Lake, Nandkishore]

Mermin-Wagner for partial breaking, I

Naive result: can ϕ_{I_c} develop LRO?

Consider $\mathcal{L} = (\partial_t \phi_{I_c})^2 + (\partial_{J_{a-c}} \phi_{I_c})^2$. Then

$$\langle \phi_{I_c}(x,t)\phi_{I_c}(0)\rangle \sim \int \frac{d\omega dk \, k^{d-1}}{\omega^2 + k^{2a-2c}}$$

$$= \int \frac{dk}{k} k^{d-a+c}$$

It looks like the critical dimension should be $d_{\rm c}=a-c.$. .

Mermin-Wagner for partial breaking, II

The operator $\partial_{I_{c-b}}\phi_{J_b}$ is breaks $\mathcal{M}^a_{\max} o \mathcal{M}^c_{\max}$

Let's look at the theory
$$\mathcal{L}=(\partial_t\phi_{J_b})^2+(\partial_{I_{a-b}}\phi_{J_b})^2$$

First b compressibilities are all $0\to$ specifies theory $\kappa_e\equiv \frac{d\langle n_e^{I_e}\rangle}{d\mu_e^{I_e}}=0$ for $e\le b$

Now the correlation function becomes

$$\langle \partial_{I_{c-b}} \phi_{J_b}(x,t) \partial_{I_{c-b}} \phi_{J_b}(0,0) \rangle = \int \frac{d\omega dk \, k^{d-1} \, k^{2(c-b)}}{\omega^2 + k^{2(a-b)}}$$
$$= \int \frac{dk}{k} k^{d-a-b+2c}$$

and $\partial_{I_{c-b}}\phi_{J_b}$ can only order if $d\geq a+b-2c$

Interpreting the critical dimension

 \boldsymbol{a} and \boldsymbol{b} define the theory, \boldsymbol{c} defines the preserved subgroup

At fixed a, b, c

In this theory, \mathcal{M}_{\max}^{c+1} can only be broken if d>a+b-2c Doesn't tell you what the preserved subgroup actually is

At fixed a, b, d: What is the preserved subgroup?

 \mathcal{M}_{\max}^c is broken for c > (a+b-d)/2Preserved subgroup is $\mathcal{M}_{\max}^{\lfloor (a+b-d)/2 \rfloor}$

At fixed a,c: When is this SSB possible? Critical dimension is $d=\min_b a+b-2c=a-2c$ Symmetry breaking is possible at d=1!

Bose-Hubbard model with dipole constraint imposed

$$H = -t \sum_{i,\mu,\nu} b_i^{\dagger} b_{i+\mu} b_{i+\mu+\nu}^{\dagger} b_{i+\nu} - \mu \sum_i n_i + \frac{U}{2} n_i (n_i - 1)$$

[Lake, Hermele, Senthil]

Dipole Condensate:
$$(\partial_t \phi_i)^2 + (\partial_j \phi_i)^2$$
 $(b=1)$

Bose-Einstein Insulator: $(\partial_t \phi)^2 + (\partial_j \phi)^2 \quad (b=0)$

Normal Bose-Hubard model

 $d \geq 2$: SF has SSB $\mathcal{M}_{\max}^1 \to \mathcal{M}_{\max}^0$

d=1: SF has no SSB, instead has QLRO

Dipolar Bose-Hubard model

 $\begin{array}{l} d \geq 3 \colon \operatorname{BEI}: \mathcal{M}_{\max}^2 \to \mathcal{M}_{\max}^0, \ \operatorname{DC}: \ \mathcal{M}_{\max}^2 \to \mathcal{M}_{\max}^1 \\ d = 2 \colon \operatorname{BEI}: \mathcal{M}_{\max}^2 \to \mathcal{M}_{\max}^1, \ \operatorname{DC}: \ \mathcal{M}_{\max}^2 \to \mathcal{M}_{\max}^1 \\ d = 1 \colon \operatorname{BEI}: \mathcal{M}_{\max}^2 \to \mathcal{M}_{\max}^1, \ \operatorname{DC}: \ \mathcal{M}_{\max}^2 \to \mathcal{M}_{\max}^2 \end{array}$