PHYSICS AND TECHNICS OF SEMICONDUCTORS

том 30, вып. 7

vol. 30, N 7

## ОБ ИДЕНТИФИКАЦИИ ТОЧЕЧНЫХ ЛЕФЕКТОВ ВБЛИЗИ ГРАНИЦЫ РАЗДЕЛА ПОЛУПРОВОДНИКОВ посредством возмущения АКУСТИЧЕСКОЙ ВОЛНОЙ

© О.А.Коротченков

изучены методом нестащионарной спектроскопии глубоких уровней с возмущающим воздействием акустической волны в мегагерцовом диашазоне частот. Зарегистрировано существенное различие во влиянии акустической волны на уровни дефектов с энергией активации ~ 0.2 и 0.4 эВ. Обируженный эффект позволяет предположительно связать уровень с эжергией 0.4 эВ с точечными дефектами,

252022 Киев, Украина (Получена 4 октября 1995 г. Принята к печати 16 ноября 1995 г.)

Киевский университет им. Тараса Шевченко,

локализованными вблизи гражицы раздела.

Эпитаксиальные пленки SiGe, нанесенные на подложку Si с ориентацией (100).

Полупроводниковые гетероструктуры и сверхрешетки являются привлекательным объектом исследования благодаря ряду новых физических явлений, обнаруженных в этих системах, а также возможности их широкого практического использования. Изготовление указанных

структур включает несколько последовательных стадий, осуществляемых при температурах T, часто превышающих 1000°C. Как следствие, в выращиваемых структурах обнаруживаются дефекты, которые могут оказывать критическое влияние на работоспособность создаваемых устройств. Известные методы изучения дефектов в полупровод-

никах с успехом применяются в настоящее время и для исследования полупроводниковых структур [1]. Вместе с тем распределение точеч-

ных дефектов в выращиваемом слое полупроводника и, в частности, дефектов, локализованных вблизм границы раздела, является непростой проблемой экспериментального обнаружения. Настоящая работа является пошыткой использования ажустической волны (АВ) в мегагерцовом диапазоне частот для идентификации точечных дефектов

вблизи границы раздела. Учитывая механическую неоднородность системы подложка-(эпитаксиальный слой), можно ожидать избирательного воздействия «акустического возмущения» на дефекты, локализованные вблизи гражиты раздела.

ванием спектрометра DLS-83D. Измерения были проведены с барьерами Шоттки, образованными напылением золотых контактов на поверхность образца, а также  $p^+n$ -диодами. Прикладываемое к барьеру обратное смещение  $U_R$  выбиралось таким образом, чтобы тестируемая область содержала границу раздела. Энергия активации уровней определялась по **шаклон**у зависимости  $e/T^2$  от 1/T, где e — скорость испускания носителей. Производилась также проверка регистрирующей аппаратуры на отсутствие наводок от возбуждающего пьезопреобразователь напряжения V. Приложение V в температурном интервале, где сигнал НСГУ отсутствовал, не обнаруживало отклика спектрометра. Дополнительно исследовались спектры НСГУ в образдах Si: Se без эпитаксиального покрытия. В этом случае регистрировалось лишь слабое уменьшение амплитуды пиков НСГУ (не более 5%) с их смещением в сторону меньших Т, что является предметом отдельного исследования.

Указанные факты позволили связать представленные далее результа-

Спектры НСГУ образцов SiGe/Si приведены на рис. 1. Исходный спектр 1 содержит два пика А и В, соответствующие уровням с энергией активации  $E_a \simeq 0.2\,\mathrm{pB}$  (пик A) и  $0.4\,\mathrm{pB}$  (пик B). Следует отметить, что пики вблизи 0.2 и 0.4  $\Rightarrow$ B типичны для сплава SiGe [ $^{2-4}$ ]. Однако их природа однозначно не установлена к настоящему времени. с  $E_a = 0.18$   $\circ$ B связывался как с загрязнением SiGe при выращивании [3], так и с акцепторным уровнем бора [4]. Уровень вблизи  $0.4 \, \mathrm{pB}$  наблюдался в образцах, термически обработанных при T > 500°C [2], легированных примесями Cu [3], а также содержащих релаксированные слои SiGe с дислокациями [4]. Спектры фотолюминесценции исследуемых образцов не обнаружили характерных дислокационных линий.

ты только со свойствами исследуемых образцов.

Представленные результаты были получены на пластинах (100)Si с нанесенным CVD-методом эпитаксиальным слоем сплава Si<sub>0.83</sub> Ge<sub>0.17</sub>, а также легированных примесями Se (концентрация  $9 \cdot 10^{15} \, \text{cm}^{-3}$ ) в контрольных опытах. Толщина эпитаксиальной пленки составляла

поверхность образца пьезокерамического преобразователя с резонансной частотой f вблизи  $8\,\mathrm{M}\Gamma$ ц. Это позволяло возбуждать нижайшие моды волн Лэмба в области  $f < 4\,\mathrm{M}\,\Gamma$ ц в пластинах толщиной порядка 300 мкм. Амплитуда акустической волны  $A_0 \sim V$ , где V — прикладываемое к пьезопреобразователю электрическое напряжение. Ввиду сложного характера распределения механических напряжений внутри пластины, а также механической неоднородности системы подложка-(эпитаксиальная пленка), в настоящей работе не оценивается величина  $A_0$ . Полученные результаты представлены в единицах V. Обнаружение дефектов структуры осуществлялось методом нестационарной спектроскопии глубоких уровней (НСГУ) с использо-

Акустические волны Лэмба возбуждались при помещении на

Это свидетельствует о том, что наблюдаемые нами уровни можно связать с точечными дефектами. Изменение спектра НСГУ при возмущении образца акустической волной демонстрирует спектр 2 на рис. 1. Амплитуда пиков A и B как функция амплитуды АВ представлена на рис. 2. Видно, что акустиче-

ская волна оказывает существенно различное воздействие на пики Aи B спектра НСГУ. Амплитуда пика B быстро падает с ростом  $A_0$ 



Рис. 1. Спектр НСГУ  ${\rm Si_{0.83}Ge_{0.17}/Si}$  при амплитуде акустической волны  $A_0$ , B: I=0, Z=2.  $U_R=-2$  B, e=628 c $^{-1}$ , f=3.47 М $\Gamma$ ц.



Рис. 2. Изменение амплитуды пиков A(1) и B(2), показанных на рис. 1, с

увеличением амплитуды акустической волны.

уменьшению количества дефектов в данном зарядовом состоянии. Воздействие АВ не вызывало появления новых пиков НСГУ. Это позволяет связать уменьшение сигнала НСГУ с опустошением формирующих его центров при возмущении акустической волной. Впрочем, этот эффект, как и сам механизм взаимодействия АВ с содержащей дефекты границей раздела, требует дальнейшего изучения. Таким образом, обнаружено существенное различие во влиянии акустической волны на пики спектра НСГУ образца SiGe/Si. Оно пред-

положительно связыается с различным распределением точечных дефектов по толщине пленки SiGe. Как следствие, обнаруженный эффект может позволить производить идентификацию дефектов, сосре-

Список литературы [1] Ф. Бехштедт, Р. Эндерлайн. Поверхности и границы раздела полупроводников

[2] V. Nagesh, E.-L. Hellqvist, H.G. Grimmeiss, K.L. Ljutovich, A.S. Ljutovich. Sol. St.

[3] H.B. Erzgraber, G. Kissinger, D. Kruger, T. Morgenstern, K. Schmalz, J. Schilz,

[4] G. Bremond, A. Souifi, P. Degroodt, P. Warren, D. Dutartre, G. Guillot. Mater. Sci.

M. Kurten, A. Osinsky. Mater. Sci. Forum, 143-147, 489 (1994).

(см. кривую 2 на рис. 2). Он становится практически неразличимым в спектре НСГУ. Пик А характеризуется некоторым первоначальным ростом с амплитудой AB. При дальнейшем повышении  $A_0$  его амплитуда также падает (см. кривую I на рис. 2). Отметим при этом, что в отличие от пика B пик A всегда оставался хорошо различимым в

Лля анализа обнаруженных закономерностей существенно, что пик  $HC\Gamma Y$  вблизи  $0.2\,$   $\ni B$  предположительно связывается с объемом сплава SiGe [2,3]. Пик с  $E_a \simeq 0.4$  эВ либо непосредственно связывается с границей раздела [4], либо допускает такую трактовку [2]. Эти результаты в пелом объясняют представленные в настоящей работе данные. Различие во влиянии AB на пики A и B спектра  $HC\Gamma Y$  могут быть связаны с неравномерным распределением соответствующих центров по толщине пленки SiGe. Учитывая большое (около 4%) несоответствие решеток Si и Ge. а также неоднозначность электрических полей вблизи границы раздела, можно ожидать существенного влияния акустических волн на точечные дефекты, локализованные вблизи такой границы. Это и позволяет связать пик НСГУ с энергией 0.4 эВ с центрами, расположенными вблизи границы раздела SiGe/Si. Влиянием границы раздела можно, по-видимому, объяснить и уменьшение амплитуды пика A на рис. 2. Увеличение его амплитуды при малых  $A_0$  требует дальнейшего изучения. Сигнал НСГУ в максимуме пропорционален концентрации дефектов данного типа. Следовательно, его уменьшение соответствует

Редактор Т.А. Полянская

доточенных вблизи границы раздела.

(М., Мир, 1990).

Commun., 75, 151 (1990).

Forum, 143-147 495 (1994).

спектре НСГУ.

## On an identification of point defects localized near the semiconductor interface by acoustic wave perturbation

## O.A. Korotchenkov

Kiew University, 252022 Kiev, the Ukraine

Epitaxial layers of SiGe deposited on a (100)Si surface were investigated by DLTS method with perturbation by acoustic wave (AW) in a MHz-frequency range. A considerable difference in AW action on levels with activation energies of  $\sim 0.2$  and  $0.4\,\mathrm{eV}$  was registered. Effect observed allows to tentatively attribute the 0.4 eV level to point defects localized near the interface.