

AD-A102 674

NEW JERSEY DEPT OF ENVIRONMENTAL PROTECTION TRENTON
NATIOANL DAM SAFETY PROGRAM, EURE MILL DAM (NJ00791), WHIPPANY --ETC(U)

F/G 13/13

MAY 81 R J McDERMOTT, J E GRIBBIN

DACW61-79-C-0011

UNCLASSIFIED

DAEN/NAP-53842/NJ00791-81/ NL

[for]
S20007

END
DATE
FILED
9-81
DTIC

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

ATA102674

WHIPPANY RIVER BASIN
WHIPPANY RIVER, MORRIS COUNTY
NEW JERSEY

LEVEL II

EDEN MILL DAM

NJ 00791

DTIC
ELECTE
AUG 11 1981
S D

PHASE 1 INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

81 8 10 098

DEPARTMENT OF THE ARMY

Philadelphia District
Corps of Engineers
Philadelphia, Pennsylvania

REPT. NO: DAEN|NAP- 53842|NJ00791- 81/05

MAY 1981

DTIC FILE COPY

NOTICE

**THIS DOCUMENT HAS BEEN REPRODUCED
FROM THE BEST COPY FURNISHED US BY
THE SPONSORING AGENCY. ALTHOUGH IT
IS RECOGNIZED THAT CERTAIN PORTIONS
ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE
AS MUCH INFORMATION AS POSSIBLE.**

6 Feb 1 - 1A L-17 11
E/G Vb

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

1 REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER <i>(18)</i> DAEN/NAP-53842/NJ00791-81/05	2. GOVT ACCESSION NO. <i>(18) AD A102674</i>	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and subtitle) Phase I Inspection Report National Dam Safety Program Eden Mill Dam (NJ00791, W1), Morris County, NJ	5. TYPE OF REPORT & PERIOD COVERED <i>(14) FINAL Rep</i>	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) McDermott, Richard J., P.E. Gribbin, John E., P.E.	8. CONTRACT OR GRANT NUMBER(S) <i>(15) DACW61-79-C-0011</i>	9. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
9. PERFORMING ORGANIZATION NAME AND ADDRESS Storch Engineers 220 Ridgedale Ave. Florham Park, NJ 07932	10. REPORT DATE May 1981	
11. CONTROLLING OFFICE NAME AND ADDRESS NJ Department of Environmental Protection Division of Water Resources P.O. Box CN029 Trenton, NJ 08625	12. NUMBER OF PAGES 50	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) U.S. Army Engineer District, Philadelphia Custom House, 2d & Chestnut Streets Philadelphia, PA 19106	13. SECURITY CLASS. (of this report) Unclassified	
15. DECLASSIFICATION/DOWNGRADING SCHEDULE <i>(15) 94</i>		
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES Copies are obtainable from National Technical Information Service, Springfield, Virginia 22151.		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Dams National Dam Safety Program Seepage Embankments Eden Mill Dam, NJ Concrete Walls Visual Inspection Whippany River Basin Spillways Structural Analysis Whippany River, NJ		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report cites results of a technical investigation as to the dam's adequacy. The inspection and evaluation of the dam is as prescribed by the National Dam Inspection Act, Public Law 92-367. The technical investigation includes visual inspection, review of available design and construction records, and preliminary structural and hydraulic and hydrologic calculations, as applicable. An assessment of the dam's general condition is included in the report.		

REPLY REFER TO
NAPEN-N

DEPARTMENT OF THE ARMY
PHILADELPHIA DISTRICT, CORPS OF ENGINEERS
CUSTOM HOUSE - 2D & CHESTNUT STREETS
PHILADELPHIA, PENNSYLVANIA 19106

Honorable Brendan T. Byrne
Governor of New Jersey
Trenton, New Jersey 08621

Accession For	
NTIS GRA&I	X
DTIC TAB	[]
Unannounced	[]
Justification	
By _____	
Distribution/	
Availability Codes	
Avail any/ir	
Dist	Special
R	

Dear Governor Byrne:

Inclosed is the Phase I Inspection Report for Eden Mill Dam in Morris County, New Jersey which has been prepared under authorization of the Dam Inspection Act, Public Law 92-367. A brief assessment of the dam's condition is given in the front of the report.

Based on visual inspection, available records, calculations and past operational performance, Eden Mill Dam, a high hazard potential structure, is judged to be in poor overall condition. The dam's spillway is considered inadequate because a flow equivalent to 5 percent of the Spillway Design Flood - SDF - would cause the dam to be overtopped. (The SDF, in this instance, is one half of the Probable Maximum Flood). The decision to consider the spillway "inadequate" instead of "seriously inadequate" is based on the determination that dam failure resulting from overtopping would not significantly increase the hazard to loss of life downstream from the dam from that which would exist just before overtopping failure. To ensure adequacy of the structure, the following actions, as a minimum, are recommended:

a. The spillway's adequacy should be determined by a qualified professional consultant engaged by the owner using more sophisticated methods, procedures and studies within six months from the date of approval of this report. Within three months of the consultant's findings remedial measures to ensure spillway adequacy should be initiated. In the interim, a detailed emergency operation plan and warning system should be promptly developed. Also, during periods of unusually heavy precipitation, around the clock surveillance should be provided.

b. Within three months from the date of approval of this report, the owner should engage a qualified professional consultant to provide the following services:

DTIC
ELECTED
AUG 11 1981

cc: D. C. Hofman
Honorable Congresswoman Byrne

(1) With the impoundment drawn down to 100 feet, the entire concrete dam structure should be thoroughly inspected and evaluated for distress not observed during the Phase I inspection and the structure should be repaired accordingly. As part of the evaluation, structural stability analyses should be performed.

(2) The observed evidence of seepage should be monitored on a periodic basis to assess any changes in condition.

c. Within six months from the date of approval of this report the following remedial actions should be initiated:

(1) Repair spalled, eroded, and displaced concrete sections along the downstream face and apron of the dam.

(2) Repair spalled and cracked concrete on the left training wall.

(3) Repair spalled concrete training walls located on both sides of the outlet works.

(4) Repair chain link fence located along top of left training wall.

(5) Remove trees and adverse vegetation on the left embankment.

(6) Remove debris accumulated at the spillway crest and immediately downstream from the dam.

d. The owner of the dam should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam within one year from the date of approval of this report.

e. An emergency action plan and warning system should be developed which outlines actions to be taken by the owner to minimize the downstream effects of an emergency at the dam within six months from the date of approval of this report.

A copy of the report is being furnished to Mr. Dirk C. Hofman, New Jersey Department of Environmental Protection, the designated State Office contact for this program. Within five days of the date of this letter, a copy will also be sent to Congresswoman Fenwick of the Fifth District. Under the provision of the Freedom of Information Act, the inspection report will be subject to release by this office, upon request, five days after the date of this letter.

Additional copies of this report may be obtained from the National Technical Information Services (NTIS), Springfield, Virginia 22161 at a reasonable cost. Please allow four to six weeks from the date of this letter for NTIS to have copies of the report available.

KAP/NW

Honorable Brendan T. Byrne

An important aspect of the Dam Inspection Program will be the implementation of the recommendations made as a result of the inspection. We accordingly request that we be advised of proposed actions taken by the State to implement our recommendations.

Sincerely,

ROGER L. BALDWIN
Lieutenant Colonel, Corps of Engineers
Commander and District Engineer

Copies furnished:

Mr. Dirk C. Hofman, P.E., Deputy Director
Division of Water Resources
N.J. Dept. of Environmental Protection
P.O. Box CN029
Trenton, NJ 08625

Mr. John O'Dowd, Acting Chief
Bureau of Flood Plain Regulation
Division of Water Resources
N.J. Dept. of Environmental Protection
P.O. Box CN029
Trenton, NJ 08625

BEDN MILL DAM (Matter #)

COOPS OF ENGINEERS ASSESSMENT OF GENERAL CONDITIONS

The dam was inspected on 31 December 1980 by Strode Engineers, under contract to the State of New Jersey. The State, under agreement with the U.S. Army Engineer District, Philadelphia, had this inspection performed in accordance with the National Dam Inspection Act, Public Law 91-367.

Bedn Mill Dam, a high hazard potential structure, is judged to be in poor overall condition. The dam's spillway is considered inadequate because a flow equivalent to 5 percent of the Spillway Design Flood (SDF) would cause the dam to be overtopped. (The SDF, in this instance, is one-half of the Probable Maximum Flood). The decision to consider the spillway "inadequate" instead of "seriously inadequate" is based on the determination that dam failure resulting from overtopping would not significantly increase the hazard to loss of life downstream from the dam from that which would exist just before overtopping failure. To ensure adequacy of the structure, the following actions, as a minimum, are recommended:

a. The spillway's adequacy should be determined by a qualified professional consultant engaged by the owner using more sophisticated methods, procedures and studies within six months from the date of approval of this report. Within three months of the consultant's findings remedial measures to ensure spillway adequacy should be initiated. In the interim, a detailed emergency operation plan and warning system should be promptly developed. Also, during periods of unusually heavy precipitation, around-the-clock surveillance should be provided.

b. Within three months from the date of approval of this report, the owner should engage a qualified professional consultant to provide the following services:

(1) With the impoundment drawn down or diverted, the entire concrete dam structure should be thoroughly inspected and evaluated for distress not observed during the Phase I inspection and the structure should be repaired accordingly. As part of the evaluation, a structural stability analysis should be performed.

(2) The observed evidence of seepage should be monitored on a periodic basis to assess any changes in condition.

c. Within six months from the date of approval of this report the following remedial actions should be initiated:

(1) Repair spalled, eroded, and displaced concrete sections along the downstream face and apron of the dam.

(2) Repair spalled and cracked concrete on the left training wall.

(3) Repair spalled concrete training walls located on both sides of the outlet works.

(4) Repair chain link fence located along top of left training wall.

(5) Remove trees and adverse vegetation on the left embankment.

(6) Remove debris accumulated at the spillway crest area immediately downstream from the dam.

d. The owner of the dam should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam within one year from the date of approval of this report.

e. An emergency action plan and warning system should be developed which outlines actions to be taken by the owner to minimize the downstream effects of an emergency at the dam within six months from the date of approval of this report.

APPROVED:

ROGER L. BALDWIN

Lieutenant Colonel, Corps of Engineers
Commander and District Engineer

DATE:

PHASE I REPORT
NATIONAL DAM SAFETY PROGRAM

Name of Dam: Eden Mill Dam, NJ00791
State Located: New Jersey
County Located: Morris
Drainage Basin: Whippany River
Stream: Whippany River
Date of Inspection: December 31, 1980

Assessment of General Conditions of Dam

Based on visual inspection, past operational performance and Phase I engineering analyses, Eden Mill Dam, a high hazard potential structure, is assessed as being in poor overall condition.

Hydraulic and hydrologic analyses indicate that the spillway is inadequate. Discharge from the spillway is not sufficient to pass the designated spillway design flood (SDF) without an overtopping of the dam. (The SDF for Eden Mill Dam is equal to one-half the probable maximum flood.) The spillway is capable of passing approximately 2 percent of the probable maximum flood or 4 percent of the SDF. Therefore, the owner should engage a professional engineer experienced in the design and construction of dams in the near future to perform more accurate hydraulic and hydrologic analyses related to spillway capacity. Based on the findings of the analyses, the need for and type of remedial measures should be determined and then implemented.

In addition, it is recommended that the following remedial measures be undertaken by the owner in the near future.

- 1) Repair spalled, eroded, and displaced concrete sections along the downstream face and apron of the dam.

- 2) Repair spalled and cracked concrete on the left training wall.
- 3) Repair spalled concrete training walls located on both sides of the outlet works.
- 4) Repair chain link fence located along top of left training wall.
- 5) Remove trees and adverse vegetation on the left embankment.
- 6) Remove debris accumulated at the spillway crest and immediately downstream from the dam.

Also, with the impoundment drawn down or diverted, the entire concrete dam structure should be thoroughly inspected and evaluated for distress not observed during the Phase I inspection and the structure should be repaired accordingly. As part of the evaluation, the need for a structural stability analysis should be assessed.

The observed evidence of seepage should be monitored on a periodic basis by a professional engineer experienced in the design and construction of dams to assess any changes in condition.

In the future, the owner of the dam should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam.

Richard J. McDermott
Richard J. McDermott, P.E.

John E. Gribbin
John E. Gribbin, P.E.

OVERVIEW - EDEN MILL DAM
20 JANUARY 1981

TABLE OF CONTENTS

	<u>Page</u>
ASSESSMENT OF GENERAL CONDITION OF DAM	i
OVERVIEW PHOTO	iii
TABLE OF CONTENTS	iv
PREFACE	vi
SECTION 1 - PROJECT INFORMATION	1
1.1 General	
1.2 Description of Project	
1.3 Pertinent Data	
SECTION 2 - ENGINEERING DATA	7
2.1 Design	
2.2 Construction	
2.3 Operation	
2.4 Evaluation	
SECTION 3 - VISUAL INSPECTION	9
3.1 Findings	
SECTION 4 - OPERATIONAL PROCEDURES	12
4.1 Procedures	
4.2 Maintenance of Dam	
4.3 Maintenance of Operating Facilities	
4.4 Description of Warning System	
4.5 Evaluation	

TABLE OF CONTENTS (cont.)

	<u>Page</u>
SECTION 5 - HYDRAULIC/HYDROLOGIC	14
5.1 Evaluation of Features	
SECTION 6 - STRUCTURAL STABILITY	16
6.1 Evaluation of Structural Stability	
SECTION 7 - ASSESSMENT AND RECOMMENDATIONS	18
7.1 Dam Assessment	
7.2 Recommendations	
PLATES	
1 KEY MAP	
2 VICINTIY MAP	
3 SOIL MAP	
4 GENERAL PLAN	
5 SECTIONS	
6 PHOTO LOCATION PLAN	
APPENDICES	
1 Check List - Visual Inspection	
Check List - Engineering Data	
2 Photographs	
3 Engineering Data	
4 Hydraulic/Hydrologic Computations	
5 Bibliography	

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. It is important to note that the condition of dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that the unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydraulic and hydrologic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The test flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydraulic and hydrologic studies, considering the size of the dam, its general condition and the downstream damage potential.

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

EDEN MILL DAM, I.D. NJ00731

SECTION 1: PROJECT INFORMATION

1.1 General

- a. Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a National Program of Dam Inspection throughout the United States. The Division of Water Resources of the New Jersey Department of Environmental Protection (NJDEP) in cooperation with the Philadelphia District of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the State of New Jersey. Storch Engineers has been retained by the NJDEP to inspect and report on a selected group of these dams. The NJDEP is under agreement with the Philadelphia District of the Corps of Engineers.
- b. Purpose of Inspection

The visual inspection of Eden Mill Dam was made on December 31, 1980. The purpose of the inspection was to make a general assessment of the structural integrity and operational adequacy of the dam structure and its appurtenances.

1.2 Description of Project

a. Description

Eden Mill Dam is a concrete overflow dam with an ogee shape and an auxiliary spillway fitted with stoplogs at the right end of the dam. The auxiliary spillway also serves as the outlet works. A concrete apron is located along the toe of the dam and concrete training walls are located at each end of the dam.

The elevation of the spillway crest is 238.9, National Geodetic Vertical Datum (N.G.V.D.) while that of the crest of dam is 239.9. The elevation of the auxiliary spillway crest is 238.4. The downstream channel bed elevation is 228.3. The overall length of the dam is 178 feet and its height is 11.6 feet. The top width of the dam is 2 feet and the slope of the downstream face is approximately 2 horizontal to 1 vertical.

b. Location

Eden Mill Dam is located in the Township of Hanover, Morris County, New Jersey. Principal access to the dam is by Eden Mill Road which is entered from Whippanny Road approximately 3000 feet from its intersection with N.J. Route 10. The dam, a run of the river structure, impounds a reach of the Whippanny River.

c. Size and Hazard Classification

The dam is classified in accordance with criteria presented in "Recommended Guidelines for Safety Inspection of Dams" published by the U.S. Army Corps of Engineers. Size categories consist of Small, Intermediate and Large while hazard categories are designated as Low, Significant and High.

Size Classification: Eden Mill Dam is classified as "Small" size since its maximum storage volume is 56 acre-feet (which is less than 1000 acre-feet) and its height is 11.6 feet (which is less than 40 feet).

Hazard Classification: Visual inspection of the downstream flood plain of the dam together with breach analysis indicates that failure of the dam due to overtopping during a storm equivalent to the spillway design flood (SDF) could cause significant inundation and property damage to several industrial and residential structures and road bridges located within 1.5 miles of the dam. Loss of more than a few lives is possible. Accordingly, Eden Mill Dam is classified as "High" hazard.

d. Ownership

Eden Mill Dam is owned and operated by the Whippany Paper Board Company, 10 North Jefferson Road, Whippany, New Jersey 07981.

e. Purpose of Dam

The purpose of the dam is the impoundment of a lake used for water supply for the downstream mill owned by the Whippany Paper Board Company. Reportedly, the impoundment is not currently being used for any purpose.

f. Design and Construction History

It could not be determined when Eden Mill Dam was constructed by Whippany Paper Board Company but it was reported to have been constructed circa 1900.

g. Normal Operational Procedures

The dam and appurtenances are operated and maintained by the Whippany Paper Board Company. Repairs are made on an "as needed" basis. However, the dam is not presently in use and, reportedly, the Whippany Paper Board Company does not presently intend to make use of the dam in the future.

1.3 Pertinent Data

a. Drainage Area	31.8 square miles
b. Discharge at Damsite	
Maximum flood at damsite	2250 c.f.s. recorded by gage 2.1 mi. upstream
Outlet works at pool elevation	129 c.f.s.
Spillway capacity at top of dam	462 c.f.s.
c. Elevation (N.G.V.D.)	
Top of Dam	239.9
Maximum pool-design surcharge	245.8
Principal spillway crest	238.9
Auxiliary spillway crest	238.4
Stream bed at toe of dam	225.5
Maximum tailwater	235 (Estimated)
d. Reservoir	
Length of maximum pool	2500 feet (Estimated)
Length of recreation pool	2200 feet (Scaled)

e. Storage (Acre-feet)

Recreation pool	43 acre-feet
Design surcharge	208 acre-feet
Top of dam	56 acre-feet

f. Reservoir Surface (acres)

Top of dam	16.7 acres (Estimated)
Maximum pool - design surcharge	.8 acres (Estimated)
Recreation pool	12.9 acres

q. Dam

Type	Concrete Gravity
Length	178 feet
Height	11.6 feet
Sideslopes	
Overflow section	Ogee shape
Embankment - Upstream	3 horiz. to 1 vert.
- Downstream	2 horiz. to 1 vert.
Zoning (Emb.)	Unknown
Impervious core (Emb.)	Unknown
Cutoff (Emb.)	Unknown
Grout curtain (Emb.)	Unknown

h. Diversion and Regulating Tunnel

N.A.

i. Principal Spillway

Type	Free overflow Ogee Section
Length of weir	136 feet
Crest elevation	238.9
Approach channel	N.A.
Discharge channel	Natural Stream bed

j. Auxiliary Spillway

Type	Concrete Stoplogs
Length of weir	
Primary	4 feet
Secondary	8 feet
Crest elevation	
Primary	238.4
Secondary	239.2
Approach channel	N.A.
Discharge channel	Natural Stream bed

k. Regulating Outlet

Concrete stoplogs, 4 feet long, in auxiliary spillway structure.

SECTION 2: ENGINEERING DATA

2.1 Design

No plans or calculations pertaining to the original design of the dam could be obtained. Drawings prepared in 1938 in connection with a WPA project showing the Whippany River profile including the dam are on file with the Hanover Township Engineering Department.

2.2 Construction

No data or reports pertaining to the construction of the dam are available.

2.3 Operation

No data or reports pertaining to the operations of the dam are available.

2.4 Evaluation

a. Availability

Available engineering data is limited to that which is on file at the Hanover Township Engineering Department.

b. Adequacy

Available engineering data pertaining to Eden Mill Dam is not adequate to be of significant assistance to the performance of a Phase I evaluation. A list of absent information is included in paragraph 7.1.b.

c. Validity

The validity of engineering data cannot be assessed due to the absence of data.

SECTION 3: VISUAL INSPECTION

3.1 Findings

a. General

The inspection of Eden Mill Dam was performed on December 31, 1980 by staff members of Storch Engineers. A copy of the visual inspection check list is contained in Appendix 1. The following procedures were employed for the inspection:

- 1) The embankment of the dam, appurtenant structures and adjacent areas were examined.
- 2) The embankment and accessible appurtenant structures were measured and key elevations determined by surveyor's level.
- 3) The embankment, appurtenant structures and adjacent areas were photographed.
- 4) The downstream flood plain was toured to evaluate downstream development and restricting structures.

b. Dam

The apron running along the toe was severely spalled throughout its entire length and was almost entirely broken away for a 75-foot long section near the center of the dam.

The downstream surface of the dam was in deteriorated condition. The concrete was eroded and spalled and there were sections near the center that had broken away. The condition of the concrete at the crest, however, appeared to be satisfactory. A horizontal construction joint was observed about 3 feet below the crest. The joint divided the areas of poor concrete condition below and satisfactory condition above. The left training wall appeared to be sound. However, it was spalled

and cracked. A portion of the wall at its base was broken away and evidence of seepage emerging from the hole was observed. Orange colored deposits were observed in the vicinity of the hole.

A chain link fence at the top of the left training wall was in severely deteriorated condition, and had fallen onto the apron of the dam.

At one location on the downstream side of the dam approximately 30 feet from the outlet works there was a large hole where concrete had broken away. It measured approximately 3 feet in diameter and revealed the interior of the dam. It indicated that the downstream face was a slab of concrete approximately 4 to 6 inches thick overlying rock fill.

The surface of the training walls on each side of the outlet works were severely deteriorated by spalling. At the interface between the wall and the downstream side of the dam the spalling was about 6 inches deep revealing an interior resembling cyclopean masonry. The outlet works was discharging water at the time of the inspection and there was also a trickle of water coming over the main spillway section.

The earth embankment adjacent to the left end of the spillway was stabilized on its crest by boulders (12 inches to 30 inches in diameter). The boulders appeared to be hand-placed although they were obscured by vegetation. The upstream and downstream sides were overgrown with trees and briars.

The earth abutment at the right end of the dam was stabilized with boulders which appeared inadequate as slope protection.

c. Appurtenant Structures

The outlet works was composed of a steel I-beam framework which divides the opening into three sections, each fitted with concrete stoplogs. The stoplogs appeared to be intact and essentially sound. Also the steel framework appeared to be sound. A pile of rocks or boulders was observed on the apron of the dam at the downstream end of the training walls for the outlet works. The boulders appeared to be intended as an energy dissipator.

d. Reservoir Area

The impoundment of the dam, the Whippany River, is 2200 feet long with a width varying from 150 feet to 300 feet.

Along the left side of the reservoir was a grassy shore with a bank about 4 feet to 5 feet high and just beyond the bank was a paved road. The paved road extended around the upstream end of the reservoir and crossed the reservoir by a bridge. The left side of the reservoir consisted of a grassy bank with a slope of approximately 1 horizontal to 1 vertical and approximately 10 feet high. Beyond the bank, the terrain was flat and contained an industrial complex. The left portion of the impoundment extends downstream from the dam forming the upstream end of an abandoned raceway to the mill downstream.

e. Downstream Channel

The downstream channel in the vicinity of the dam consisted of a wide stream with banks approximately 12 feet high on each side. The bed was lined with boulders and contained a few islands covered with bushes and trees. On the right bank there was evidence of a significant amount of erosion which had exposed the roots of trees. A heavily travelled road was observed above the bank.

SECTION 4: OPERATIONAL PROCEDURES

4.1 Procedures

The level of water in the impoundment of the subject dam is regulated by discharge over the concrete ogee shaped spillway and the auxiliary spillway located at the right end of the dam. The dam is used to draw off water for the purpose of supplying the mill downstream. A raceway is located to the left of the dam. However, the dam and raceway reportedly are no longer in use.

4.2 Maintenance of the Dam

Reportedly, maintenance is performed on an "as needed" basis.

4.3 Maintenance of Operating Facilities

Reportedly, the outlet works is maintained on an "as needed" basis.

4.4 Description of Warning System

Reportedly, no warning system is currently in use for the dam.

4.5 Evaluation of Operational Adequacy

The operation of the dam has not been successful to the extent that the dam reportedly has been overtopped in the past.

Maintenance is inadequate and maintenance documentation is poor. Areas of maintenance that have not been adequately performed are:

- 1) Extensive deterioration of the concrete portions of the dam has not been corrected.
- 2) Debris at dam site has not been removed.

- 3) Chain link fence located along top of left training wall has not been repaired.
- 4) Trees and other adverse vegetation on left embankment and right abutment have not been removed.
- 5) Erosion on the right bank of the downstream channel has not been corrected.

SECTION 5: HYDRAULIC/HYDROLOGIC

5.1 Evaluation of Features

a. Design Data

The quantity of storm water runoff that the spillway should be able to handle is based on the size and hazard classification of the dam. This runoff quantity, called the spillway design flood (SDF) is described in terms of return frequency or probably maximum flood (PMF) depending on the extent of the dam's size and potential hazard. According to the "Recommended Guidelines for Safety Inspection of Dams" published by the U.S. Army Corps of Engineers, the SDF for Eden Mill Dam falls in a range of 1/2 PMF to PMF. In this case, the low end of the range, 1/2 PMF, is chosen since the factors used to select size and hazard classification are on the low side of their respective ranges.

The SDF peak computed for Eden Mill Dam is 14,649 c.f.s. This value is derived from the 1/2 PMF flood hydrograph computed by the use of the HEC-1-DAM Flood Hydrograph Computer Program using the Soil Conservation Service triangular unit hydrograph with curvilinear transformation. Hydrologic computations and computer output are contained in Appendix 4.

The spillway discharge rates were computed by the use of weir formulae appropriate for the spillway configurations. The combined principal and auxiliary spillway discharge with lake level equal to the top of the dam was computed to be 462 c.f.s. The SDF was routed through the dam by use of the HEC-1-DAM computer program using the modified Puls method. In routing the SDF, it was found that the dam crest would be overtopped by a depth of 5.9 feet.

A dam breach analysis was then performed using a trapezoidal breach section with bottom length of 71 feet and sideslopes of 1 horizontal to 1 vertical. The breach peak outflow was computed to be 14,627 c.f.s. Dam breach computations are contained in Appendix 4. The analysis indicated that dam failure due to overtopping would not significantly increase the potential for loss of life over that which would exist without failure. Accordingly, the subject spillway is assessed as being inadequate in accordance with criteria developed by the U.S. Army Corps of Engineers.

b. Experience Data

During past periods of heavy rainfall, flooding has been reported approximately 7500 feet downstream where the Whippany River crosses under Whippany Road. Estimates of extent of inundation and property damage could not be obtained.

c. Visual Observation

No evidence of overtopping of the earth embankment at the left end of the dam was observed. Severe erosion of the downstream channel bank, indicating high flows in the past, was observed.

d. Overtopping Potential

As indicated in paragraph 5.1.a. a storm of magnitude equal to the SDF would cause overtopping of the dam by a depth of 5.9 feet over the crest of the dam. The spillway is capable of passing approximately 2 percent of the PMF or 4 percent of the SDF with lake level equal to the top of dam.

e. Drawdown Data

Drawdown of the impoundment is accomplished by removing concrete stoplogs from the center section of the auxiliary spillway. Total drawdown time is estimated to be 10.6 hours (See Appendix 4).

SECTION 6: STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability

a. Visual Observations

The dam exhibited, at the time of inspection, significant deterioration. Although the observed deterioration does not indicate immediate instability, the dam could become unstable if repairs are not implemented.

b. Generalized Soils Description

The generalized soils description of the dam site consists of recent alluvium composed of stratified materials deposited by streams, overlying glacial ground moraine deposited during the Wisconsin glaciation. The glacial moraine is composed of silts and silty sands and overlies shale and sandstone.

c. Design and Construction Data

Analyses of structural stability and construction data for the dam are not available.

d. Operating Records

No operating records are available for the dam.

e. Post-Construction Changes

Reportedly, there have been no post-construction changes since the dam was constructed.

f. Seismic Stability

Eden Mill Dam is located in Seismic Zone 1 as defined in "Recommended Guidelines for Safety Inspection of Dams" which is a zone of very low seismic activity. Experience indicates that dams in Seismic Zone 1 will have adequate stability under seismic loading conditions if they have adequate stability under static loading conditions. Eden Mill Dam which exhibited extensive deterioration could be unstable under seismic loading conditions.

SECTION 7: ASSESSMENT AND RECOMMENDATIONS

7.1 Dam Assessment

a. Safety

Based on hydraulic and hydrologic analyses outlined in Section 5 and Appendix 4, the spillway of the subject dam is assessed as being inadequate. The spillway is not able to pass the SDF without an overtopping of the dam.

The dam exhibited, at the time of inspection, significant deterioration. Although the observed deterioration does not indicate immediate instability, the dam could become unstable if repairs are not implemented.

b. Adequacy of Information

Information sources for this report include 1) field inspections, 2) USGS quadrangle, 3) profile of portion of Whippany River on file with the Hanover Township Engineering Department, 4) consultation with personnel of the Hanover Township Engineering Department, 5) consultation with personnel of the Whippany Paper Board Company. The information obtained is sufficient to allow a Phase I assessment as outlined in "Recommended Guidelines for Safety Inspection of Dams."

Some of the absent data are as follows:

1. Construction and as-built drawings
2. Description of fill material for embankment.
3. Design computations and reports.
4. Maintenance documentation.
5. Soils report for the site.

c. Necessity for Additional Data/Evaluation

Although some data pertaining to Eden Mill Dam are not available, additional data are not considered imperative for this Phase I evaluation.

7.2 Recommendations

a. Remedial Measures

Based on hydraulic and hydrologic analyses outlined in paragraph 5.1.a, the spillway is considered to be inadequate. It is therefore recommended that a professional engineer experienced in the design and construction of dams be engaged in the near future to perform more accurate hydraulic and hydrologic analyses related to spillway capacity. Based on the findings of these analyses, the need for and type of remedial measures should be determined and then implemented.

In addition, it is recommended that the following remedial measures be undertaken by the owner in the near future.

- 1) Repair spalled, eroded, and displaced concrete sections along the downstream face and apron of the dam.
- 2) Repair spalled and cracked concrete on the left training wall.
- 3) Repair spalled concrete training walls located on both sides of the outlet works.
- 4) Repair chain link fence located along top of left training wall.

- 5) Remove trees and adverse vegetation on the left embankment.
- 6) Remove debris accumulated at the spillway crest and immediately downstream from the dam.

Also, with the impoundment drawn down or diverted, the entire concrete dam structure should be thoroughly inspected and evaluated for distress not observed during the Phase I inspection and the structure should be repaired accordingly. As part of the evaluation, the need for a structural stability analysis should be assessed.

b. Maintenance

In the future, the owner of the dam should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam.

c. Additional Studies

The observed evidence of seepage should be monitored on a periodic basis by a professional engineer experienced in the design and construction of dams to assess any changes in condition.

PLATES

PLATE I

STORCH ENGINEERS
FLORHAM PARK, NEW JERSEY

DIVISION OF WATER RESOURCES
N.J. DEPT. OF ENVIR. PROTECTION
TRENTON, NEW JERSEY

INSPECTION AND EVALUATION OF DAMS

KEY MAP
EDEN MILL DAM

SCALE: NONE

DATE: FEB. 1981

STORCH ENGINEERS
FLORHAM PARK, NEW JERSEY

INSPECTION AND EVALUATION OF DAMS
VICINITY MAP
EDEN MILL DAM

DIVISION OF WATER RESOURCES
N.J. DEPT. OF ENVIR. PROTECTION
TRENTON, NEW JERSEY

SCALE: AS SHOWN

DATE: FEB. 1981

Legend

AR Recent alluvium, composed of stratified materials deposited by streams.

GM-4 Glacial ground moraine; composed of unstratified material deposited during the Wisconsin glaciation.

Note: Information taken from: Rutgers University, Engineering Soil Survey of New Jersey, Report No. 9, Morris County, November 1953 and Geologic Map of New Jersey prepared by J. V. Lewis and H. Kummel 1910-1912, revised by H. B. Kummel 1931 and M. Johnson 1950.

PLATE 3

STORCH ENGINEERS
FLORHAM PARK, NEW JERSEY.

INSPECTION AND EVALUATION OF DAMS

SOIL MAP

EDEN MILL DAM

DIVISION OF WATER RESOURCES
N.J. DEPT. OF ENVIR. PROTECTION
TRENTON, NEW JERSEY.

SCALE: NONE

DATE: FEB. 1981

Federal Road (Paved)

Note:

Information taken from Field
Inspection December 31, 1980

Overall length of Dam = 178'

- Length of Spillway = 136'

way
Elev = 238.4
Elev = 239.2
Training

Principal Spillway

Crest Elev. = 238.9

Concrete Apron

Elev. = 228.0

{ ~ Debris ~ }

Concrete Wingwall

Earth Embankment

Concrete Abutment

6' High Chain
Link Fence

Wooded Area

Deteriorated and
Displaced Concrete

WHIPPANY RIVER

FLOW

PLATE 4

STORCH ENGINEERS
FLORHAM PARK, NEW JERSEY

DIVISION OF WATER RESOURCES
N.J. DEPT. OF ENVIR. PROTECTION
TRENTON, NEW JERSEY

INSPECTION AND EVALUATION OF DAMS

GENERAL PLAN
EDEN MILL DAM

I.D. N.J. 00791

SCALE: NOT TO SCALE

DATE: FEB. 1981

PRINCIPAL SPILLWAY SECTION

OUTLET WORKS SECTION

Note:
Information taken from field
inspection December 31, 1980

PLATE 5

1

STORCH ENGINEERS
FLORHAM PARK, NEW JERSEY

DIVISION OF WATER RESOURCES
N.J. DEPT. OF ENVIR. PROTECTION
TRENTON, NEW JERSEY

INSPECTION AND EVALUATION OF DAMS
SECTIONS

EDEN MILL DAM

I.D. N.J. 00791

SCALE: NONE

DATE: FEB. 1981

Overall Length of Dam = 178'

- Length of Spillway = 136'

Spillway
Elev = 238.4
Elev = 239.2
Joining

Principal Spillway
Crest Elev. = 238.9

Concrete Apron
Elev. = 228.0

{ ~ Debris ~ }

2

Concrete Wingwall

Concrete Abutment
6' High Chain Link Fence

Wooded Area

Deteriorated and Displaced Concrete

WHIPPANY RIVER

FLOW

2

PLATE 6

STORCH ENGINEERS
FLORHAM PARK, NEW JERSEY

DIVISION OF WATER RESOURCES
N.J. DEPT. OF ENVIR. PROTECTION
TRENTON, NEW JERSEY

INSPECTION AND EVALUATION OF DAMS
PHOTO LOCATION PLAN
EDEN MILL DAM

I.D. N.J. 00791

SCALE: NOT TO SCALE

DATE: FEB. 1981

APPENDIX 1

Check List - Visual Inspection

Check List - Engineering Data

Check List

Visual Inspection

Phase I

Name of Dam Eden Mill Dam County Morris State N.J. Coordinators NJDEP

Date(s) Inspection 12/31/80 Weather P. Sunny Temperature 250F

Pool Elevation at time of Inspection 239.0 M.S.L. Tailwater at Time of Inspection 227.0 M.S.L.

Inspection Personnel:

John Gribbin Richard McDermott
Daniel Buckleew
Mark Brady

John Gribbin Recorder

Owner Not Present

CONCRETE/MASONRY DAMS

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
GENERAL	Concrete surfaces generally in deteriorated condition. Training walls spalled and cracked. Spalls at some locations approx. 6" deep revealing cyclopean type material beneath the concrete surface. Interior rocks 4" to 16" in size.	Concrete portion of dam should be thoroughly inspected with impoundment drawn down.
STRUCTURE TO ABUTMENT/EMBANKMENT JUNCTIONS	Appeared generally sound. Soil adjacent to right abutment was not protected against erosion.	Soil adjacent to right abutment should be properly stabilized.
DRAINS	None observed	
WATER PASSAGES	None observed	
APRON	Severely deteriorated with cracks and spalls noted. Section approx. 75' long near center of spillway section broken away.	
VERTICAL AND HORIZONTAL ALIGNMENT	Vertical: level Horizontal: straight	

CONCRETE/MASONRY DAMS		
VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SURFACE CRACKS CONCRETE SURFACES	Most surfaces of the training walls, apron and downstream side of spillway section exhibited extensive cracking.	All concrete surfaces exhibiting cracking should be repaired.
STRUCTURAL CRACKING	Hole observed in downstream side of spillway section about 30' from outlet works. Large vertical crack above and below hole. Within hole, rock-fill interior of dam was observed. Exterior concrete slab appeared 4" to 6" thick.	Areas of displaced concrete should be repaired.
CONSTRUCTION JOINTS	Horizontal construction joint observed in spillway section about 3' below crest extending for entire length. Condition of concrete above joint satisfactory. Concrete below joint eroded, spalled, cracked and broken.	Concrete below joint should be repaired.
MONOLITH JOINTS	N.A.	
LEAKAGE	None observed	
SEEPAGE		Seepage should be monitored on a periodic basis. Orange colored stains in stream bed about 10' downstream from dam could be due to seepage. Standing water with orange colored deposits observed at broken area at base of left training wall.

VISUAL EXAMINATION OF		OBSERVATIONS	REMARKS OR RECOMMENDATIONS
EMBANKMENT			
GENERAL		Overgrown with briars and trees	Embankment at left end of spillway section about 20' long. Trees and adverse vegetation should be removed.
JUNCTION OF EMBANKMENT AND ABUTMENT , SPILLWAY AND DAM		Appeared to be sound.	
ANY NOTICEABLE SEEPAGE		None observed.	
STAFF GAGE AND RECORDER		None observed.	
DRAINS		None observed.	

EMBANKMENT		REMARKS OR RECOMMENDATIONS
VISUAL EXAMINATION	OBSERVATIONS	
SURFACE CRACKS	None observed.	
UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE	None observed.	
SLOUGHING OR EROSION OF EMBANKMENT AND ABUTMENT SLOPES	None observed.	
VERTICAL AND HORIZONTAL ALIGNMENT OF THE CREST	Vertical: generally level Horizontal: generally straight, slightly irregular.	
RIPRAP	Crest stabilized by boulders about 12" to 30" in size. Stabilization appeared adequate although boulders were obscured by vegetation.	

OUTLET WORKS		REMARKS OR RECOMMENDATIONS
VISUAL EXAMINATION OF	OBSERVATIONS	
CONCRETE SURFACES IN OUTLET CONDUIT	Concrete training walls and apron severely deteriorated by spalling and cracking.	Deteriorated concrete should be repaired.
INTAKE STRUCTURE	N.A.	
OUTLET STRUCTURE	N.A.	
OUTLET CHANNEL	Outlet works discharge directly into downstream channel.	
GATE AND GATE HOUSING	Concrete and timber stoplogs appeared to be in satisfactory condition. Structural steel frame in which stoplogs were fitted was rusted but appeared sound.	

SPILLWAY

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
WEIR	Spillway section comprises concrete gravity portion of dam. See "Concrete/Masonry Dams."	
APPROACH CHANNEL	N.A.	
DISCHARGE CHANNEL	Spillway discharges directly into downstream channel (Whippiany River)	
APRON	See "Concrete/Masonry Dams."	

INSTRUMENTATION		REMARKS OR RECOMMENDATIONS
VISUAL EXAMINATION OF	OBSERVATIONS	
MONUMENTATION/SURVEYS	None observed.	
OBSERVATION WELLS	None observed.	
WEIRS	None observed.	
PIEZOMETERS	None observed.	
OTHER	River gaging station located on Whippany River about 2.1 miles upstream from dam.	

VISUAL EXAMINATION OF		RESERVOIR	REMARKS OR RECOMMENDATIONS
		OBSERVATIONS	
SLOPES		Bank 4' to 5' high along right side. Shore slope along left side about 1 horiz. to 1 vert. and about 10' high.	
SEDIMENTATION		Unknown.	
STRUCTURES ALONG BANKS		Road bridge at upstream end. Industrial building and yard along left shore. Left portion of reservoir extends downstream from dam forming upstream end of abandoned raceway to downstream mill.	

DOWNSTREAM CHANNEL		
VISUAL EXAMINATION OF CONDITION (OBSTRUCTION, DEBRIS, ETC.)	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
	Natural river with rocky bed and high grassy banks. Right bank was significantly eroded with tree roots exposed. Debris observed along spillway crest and in area immediately downstream from dam. A few islands containing bushes and trees were observed in the river within 100' of the dam.	Debris should be removed. River bank should be properly stabilized.
SLOPES	Banks are steep and approx. 10' to 12' high.	
STRUCTURES ALONG BANKS	Paved road is located along right bank for about 1500' downstream. Mill complex located about 2000' from dam. Road bridges located 4000' and 5700' from the dam. Several dwellings, commercial buildings and industrial buildings located along river from 4000' to 8000' from dam. Heights above river invert range from 5' to 10'.	

CHECK LIST
ENGINEERING DATA
DESIGN, CONSTRUCTION, OPERATION

ITEM	REMARKS	
DAM	-	PLAN Not available
SPILLWAY	-	SECTIONS Not available SECTIONS Undetailed section of spillway shown on profile of Whipppany River prepared in 1938 for W.P.A. project available at Hanover Township Engineering Department. P.O. Box 250, Whipppany, N.J. 07981.
OPERATING EQUIPMENT PLANS & DETAILS		DETAILS Not available
OUTLETS	-	PLAN Not available DETAILS CONSTRAINTS DISCHARGE RATINGS
HYDRAULIC/HYDROLOGIC DATA RAINFALL/RESERVOIR RECORDS		Gaging data available from NJDEP for USGS gage located approx. 2.1 miles upstream from dam. NJDEP, Division of Water Resources, P.O. Box CN-029, Trenton, New Jersey 08625 Not available
CONSTRUCTION HISTORY		Not available
LOCATION MAP		Not available

ITEM	REMARKS
DESIGN REPORTS	Not available
GEOLOGY REPORTS	Not available
DESIGN COMPUTATIONS HYDROLOGY & HYDRAULICS DAM INSTABILITY SEEPAGE STUDIES	Not available
MATERIALS INVESTIGATIONS BORING RECORDS LABORATORY FIELD	Not available
POST-CONSTRUCTION SURVEYS OF DAM	Not available
BORROW SOURCES	Not available

ITEM	REMARKS
MONITORING SYSTEMS	U.S.G.S. gaging station located 2.1 miles upstream from dam.
MODIFICATIONS	Not available
HIGH POOL RECORDS	Not available
POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS	Not available
PRIOR ACCIDENTS OR FAILURE OF DAM DESCRIPTION REPORTS	Not available
MAINTENANCE OPERATION RECORDS	Not available

APPENDIX 2

Photographs

PHOTO 1
CREST AND DOWNSTREAM FACE OF SPILLWAY

PHOTO 2
DETAIL OF DETERIORATION ON DOWNSTREAM FACE OF SPILLWAY

EDEN MILL DAM
31 DECEMBER 1980

PHOTO 3

DOWNSTREAM VIEW OF OUTLET WORKS

PHOTO 4

STRUCTURAL STEEL FRAME OVER OUTLET WORKS

EDEN MILL DAM

31 DECEMBER 1980

PHOTO 5
HOLE IN DOWNSTREAM FACE OF SPILLWAY

PHOTO 6
DETAIL OF HOLE SHOWING ROCK INTERIOR OF SPILLWAY STRUCTURE

EDEN MILL DAM
31 DECEMBER 1980

PHOTO 7

DETERIORATED TRAINING WALL BETWEEN SPILLWAY AND OUTLET WORKS

PHOTO 8

DETERIORATED SPILLWAY APRON

EDEN MILL DAM
31 DECEMBER 1980

PHOTO 9 31 DECEMBER 1980
DOWNSTREAM CHANNEL AT DAM SITE

20 JANUARY 1981

EDEN MILL DAM

APPENDIX 3

Engineering Data

CHECK LIST
HYDROLOGIC AND HYDRAULIC DATA
ENGINEERING DATA

DRAINAGE AREA CHARACTERISTICS: Wooded, residential, and swampy areas

ELEVATION TOP NORMAL POOL (STORAGE CAPACITY): 238.9 (43 acre-feet)

ELEVATION TOP FLOOD CONTROL POOL (STORAGE CAPACITY): N/A

ELEVATION MAXIMUM DESIGN POOL: 245.8

ELEVATION TOP DAM: 239.9

PRINCIPAL SPILLWAY CREST: Uncontrolled Concrete Weir

- a. Elevation 238.9
- b. Type Ogee Shaped Concrete Weir
- c. Width 2.0 feet
- d. Length 136 feet
- e. Location Spillover Center of dam
- f. Number and Type of Gates None

AUXILIARY SPILLWAY CREST: Controlled Weir (Stoplogs)

- a. Elevation 238.4 (primary), 239.2 (secondary)
- b. Type Sharp Crested Weirs
- c. Width 0.8 feet (primary), 0.5 feet (secondary)
- d. Length 4 feet (primary), 8 feet (secondary)
- e. Location Spillover Right end of dam
- f. Number and Type of Gates Three sets of concrete stoplogs

OUTLET WORKS: (Auxiliary Spillway)

- a. Type Removeable concrete stoplogs
- b. Location Right end of dam
- c. Entrance Invert 228.3
- d. Exit Invert 228.3
- e. Emergency Draindown Facilities: Remove stoplogs (not currently operable)

HYDROMETEOROLOGICAL GAGES: U.S.G.S. gaging station

- a. Type Recording water level
- b. Location 2.1 miles upstream
- c. Records River stage and flow available from NJDEP

MAXIMUM NON-DAMAGING DISCHARGE:

(Lake Stage Equal to Top of Dam) 462 c.f.s.

APPENDIX 4

Hydraulic/Hydrologic Computations

STORCH ENGINEERS

Project 1132-05

EDEN HILL DAM

Sheet 1 of 14

Made By JH Date 3-11-81

Chkd By JG Date 3/17/81

HYDROLOGY:

HYDROLOGIC ANALYSIS:

THE RUNOFF HYDROGRAPH WILL BE DEVELOPED
BY THE HEC-1-DAM COMPUTER PROGRAM
USING SNYDERS SYNTHETIC UNIT HYDROGRAPH.

DRAINAGE AREA = 31.8 [SQ. MI]

INFILTRATION DATA:

INITIAL INFILTRATION = 1.5 in / Hr.

CONSTANT INFILTRATION = 0.15 in / Hr.

STORCH ENGINEERS

Project 1132-05

EDEN MILL DAM

Sheet 2 of 14

Made By J. H. Date 3-11-81

Chkd By JG Date 3/17/81

TIME OF CONCENTRATION:

["Introduction to hydrology" Pg 124
by Vassman, Knopp, Lewis, Harbaugh]

$$1. \quad t_c = C_f (L L_{CA})^{0.3}$$

t_c = Lag time [Hr]

$$t_c = 2.0 (13.25 \times 6.63)^{0.3} \quad C_f = \text{Coefficient for slopes } f' \text{ storage}$$

$$t_c = \underline{7.66 \text{ Hr}}$$

L = Length of stream channel from outlet to divide [MI]

L_{CA} = Length of main channel to watershed centroid [MI]

$C_f = 2.0$ (Supplied by Corps of Engineers)

$$L = 70.000' = 13.25 \text{ Mi}$$

$$L_{CA} = 35.000' = 6.63 \text{ Mi}$$

COMPUTER INPUT

LAG TIME = 7.7 Hr.

$C_p = 0.62$ (Supplied by Corps of Engineers)

STORCH ENGINEERS

Project 1132-06

EDEN MILL DAM

Sheet 3 of 14

Made By Jitta Date 3-11-81

Chkd By JG Date 3/17/81

PRECIPITATION :

[U.S. Dept. of Commerce - Rpt. 40 Weather
bureau Pg. 57]

Probable Maximum Precipitation = 25.5 inches
for 6 hr. duration and 31.8 SQ MI. area

<u>DURATION [Hr]</u>	<u>% PMP</u>
6	90
12	98
24	107

STORCH ENGINEERS

Project 1132-05

EDEN MILL DAM

Sheet 4 of 14

Made By J.Ha Date 3-11-81

Chkd By JG Date 3/17/81

LAKE STORAGE VOLUME:

Water surface elev. [Ft] Area [Acres]

229.0	0
239.0	12.9
250.0	59.7
260.0	163.00

HEC - I - DAM COMPUTER PROGRAM

WILL DEVELOP STORAGE CAPACITY

FROM SURFACE AREAS & ELEVATIONS

INFORMATION TAKEN FROM U.S.G.S. QUA-

DRANGLE Morristown, Mendham, N.J.

STORCH ENGINEERS

Project 1132-05

EDEN MILL DAM

Sheet 5 of 14

Made By JHG Date 3-11-81

Chkd By JG Date 3/17/81

HYDRAULICS:

THE SPILLWAY AT THE EDEN MILL DAM CONSISTS OF A CONCRETE OGEE SHAPED FREE OVERFLOW PRINCIPAL SPILLWAY AND A CONCRETE STOPLOG CONTROLLED AUXILIARY SPILLWAY WITH PRIMARY AND SECONDARY CRESTS

STORCH ENGINEERS

Project 1132-05

EDEN MILL DAM

Sheet 6 of 14

Made By J.Ha Date 3-11-81

Chkd By JG Date 3/17/81

SECTION A-ASECTION B-BDISCHARGE CALCULATION:

[Handbook of hydraulics 5-40]

PRINCIPAL SPILLWAY : (OGEE CREST SPILLWAY)

ELEV. 238.9 [FT]
Length 136 [FT]

AUXILIARY SPILLWAY - (SHARP CRESTED WEIR)

primary crest - ELEV.	238.4	[FT]
Length	4	[FT]
Width	0.8	[FT]
secondary crest - ELEV.	239.2	[FT]
Length	8	[FT]
Width	0.5	[FT]

USING FORMULA :

$$Q = CLH^{3/2}$$

Q - discharge [cfs]
L - Length of spillway [FT]
C - discharge coefficient
H - head on spillway [FT]

STURCH ENGINEERS

Project 1132-05 EDEN MILL DAM

Sheet 1 of 14

Made By J.Ha Date 3-11-81

Chkd By JG Date 3/17/81

SPILLWAY STAGE DISCHARGE TABULATION

H. S. ELEV. [FT]	Principal spillway L = 136'			Auxiliary spillway Primary L = 4'			Secondary L = 8'			ΣQ [cfs]
	H [ft]	C	Q [cfs]	H [ft]	C	Q [cfs]	H [ft]	C	Q [cfs]	
238.4	0	0	0	0	0	0	0	0	0	0
238.9	0	0	0	0.5	2.85	4.0	0	0	0	4.0
239.2	0.3	3.09	69.0	0.8	3.04	8.7	0	0	0	77.0
239.9	1.0	3.11	423.0	1.5	3.27	24.0	0.7	3.24	15.2	462.0
241.0	2.1	3.33	1378.0	2.6	3.31	55.5	1.8	3.32	64.2	1497.0
244.0	5.1	3.33	5216.0	5.6	3.32	176.0	4.8	3.32	279.0	5671.0
246.0	7.1	3.33	8569.0	7.6	3.32	278.0	6.8	3.32	471.0	9347.0
248.0	9.1	3.33	12432.0	9.6	3.32	395.0	8.8	3.32	693.0	13520.0

DAM BEGINS TO OVERTOP AT ELEV. 239.9

TOTAL LENGTH OF DAM = 178.0 FEET

For dam overtopping analysis, overall length of dam taken to be 298 feet to account for overflow adjacent to dam.

STORCH ENGINEERS

Project 1132-05

EDEN MILL DAM

Sheet B of 14Made By Ji Ha Date 3-11-81Chkd By JG Date 3/17/81SPILLWAY STAGE DISCHARGE CURVE

STORCH ENGINEERS

Project 113 - 05

EDEN MILL DAM

Sheet 9 of 14

Made By JH/G Date 3-11-81

Chkd By JG Date 3/17/81

OVERTOPPING POTENTIAL

OVERTOPPING OF DAM OCCURS AT F/EV. 239.9 FEET

WITH A DISCHARGE $Q = .462 \text{ cfs}$

DAM CAN PASS APPROX. 2% PMF

STORCH ENGINEERS

Project 1132-05 EDEN MILL DAM

Sheet 10 of 14

Made By JHG Date 3-11-81

Chkd By JG Date 3/17/81

DRAWDOWN

DRAWDOWN CALCULATION PERFORMED ASSUMING THE
REMOVAL OF CONCRETE STOPLOGS FROM CENTER
SECTION OF AUX. SPILLWAY.

etk. 248.3

$$Q = CLH^{\frac{3}{2}}$$

$$Q = 2.85 \times 4.0 \times \left(\frac{10.1}{2}\right)^{1.5} = \underline{129.4 \text{ cfs}}$$

TIME OF DRAWDOWN

$$T_{dr} = \frac{\text{Storage [Acft]}}{\text{Ave discharge - Inflow}} = \frac{43 \times 43,560}{129.4 - 80.0} \times \frac{1}{3600} = \underline{10.6 \text{ hr.}}$$

Assume Inflow 80.0 [cfs]

STORCH ENGINEERS

Project 1132-05

EDEN MILL DAM

Sheet 11 of 14

Made By JTG Date 3-11-81

Chkd By JG Date 3/17/81

BREACH ANALYSIS:

A BREACH HYDROGRAPH WILL BE COMPUTED
BY THE HEC-1-DAM PROGRAM AND ROUTED
THROUGH THREE DOWNSTREAM REACHES BY
THE MODIFIED PLUS METHOD

$$\text{Bottom of breach elev.} = 228.5 \text{ [ft]}$$

$$\text{Length of bottom of breach } 178' \times 0.4 = 71.0 \text{ [ft]}$$

$$\text{Side slope of breach} = 1:1$$

$$\text{Time to develop breach max. size} = 2.0 \text{ [hr]}$$

$$\text{Water surface elev.} = 239.0 \text{ [ft]}$$

$$\text{H.S. E.L.F. which will cause dam to fail} = 239.9 \text{ [ft]}$$

STORCH ENGINEERS

Project 1132-05

EDEN MILL DAM

Sheet 12 of 14

Made By J.H. Date 3-11-81

Chkd By JG Date 3/17/81

PLAN:

STORCH ENGINEERS

Project 1132-05

EDEN MILL DAM

Sheet 13 of 14

Made By JHG Date 3-11-81

Chkd By JG Date 3/17/81

DOWNSHIFT CHANNEL

Typical cross sections

Reach 1 (STA 300)

Reach 2 (STA. 1200)

Reach 3 (STA. 4700)

STORCH ENGINEERS

Project 1132-05

EDEN HILL DAM

Sheet 14 of 14

Made By TJS Date 3-11-81

Chkd By JG Date 3/17/81

BREACH RESULTS:

1. Peak outflow With Breach = 14,627 cfs
Without Breach = 14,695 cfs.

2. Max. channel stage

Reach 1 inv. elev. = 225.0 [ft]
With Breach max. stage elev. = 232.3
Without Breach max stage elev. = 232.3

Reach 2 inv. elev. = 218.0 [ft]
With Breach max. stage elev. = 232.2
Without Breach max stage elev. = 232.2

Reach 3 inv. elev. = 198.0 [ft]
With Breach max. stage elev. = 209.8
Without Breach max stage elev. = 209.8

HEC - 1 - DAM PRINTOUT

Overtopping Analysis

NATIONAL DAM SAFETY PROGRAM
EVEN-MICH-NEW-JERSEY
MULTI RATIO ROUTING

NO		NHR		NMIN		ITAY		JHR-SPECIFICATION		IMIN		METRC		IPLT		IPRT		NSTAN	
100	1	0	0	0	0	0	0	JPER	NMT	0	0	0	0	0	0	4	0	0	
								LROPT	TRPT	0	0	0	0	0	0	0	0	0	0

MULTI-PLAN ANALYSES TO BE PERFORMED
NIFLAN= 1 NRTIO= 5 LRTIO= 1
R110B= -50 -40 -30 -20 -10

SUB-AREA-RUNOFF COMPUTATION									
INFLOW HYDROGRAPH TO EDEN MILL DAM									
IBAD	ICOMP	IECON	ITAFN	JPLT	JFRT	IAME	ISAGE	IAUTO	ILAKE
1	-1	0	0	0	0	0	1.	0	0

HYDROGRAPH DATA									
IHYD	IUNG	TAREA	SNAF	TRSDA	TRSFC	RATIO	ISNOW	ISAME	LOCAL
1	-1	-31-80	0-00	-31-00	0-0-0	0-0-0	0	-1	0

PRECIP DATA									
SPFE	PMS	R6	R12	R24	R48	R72	R96		
0.00	25.50	90.00	98.00	107.00	0.00	0.00	0.00		

TRSFC COMPUTED BY THE PROGRAM IS .837

LOSS DATA									
LROPT	STRKR	DLTK	RT10K	ERAIN	STRKS	RT10K	STR1L	CNSTL	ALSMX
0	0-00	0-00	1-00	0-00	0-00	1-00	1-50	15	0-00

UNIT HYDROGRAPH DATA									
TP	7-70	EP	-62	NIA	-0				

RECESSION DATA									
STRTR	1-00	ORGSN	-05	RT10R	-2-00				

UNIT HYDROGRAPH 43 END-OF-PERIOD ORDINATES, LAG= 7.71 HOURS, CF= .62 VOL= 1.00									
73	271	544	853	1170	1436	1602	1681	1656	
1267.	1103.	960.	836.	728.	634.	552.	481.	423.	
317.	276.	240.	209.	182.	159.	138.	120.	118.	
77.	67.	66.	52.	46.	40.	36.	30.	26.	
20.	17.	15.							

0 HR.MN PERIOD RAIN EXCS LOSS COMP Q MO.DA HR.MN PERIOD RAIN EXCS LOSS COMP Q

SUM 22.84 19.02 3.81 400714.
(580.) (483.) (97.) (11346.96)

HYDROGRAPH ROUTING

ROUTE DISCHARGE THROUGH DAM							
ISIAQ	ICOMR	IECON	IIARE	JALI	JERI	JNAME	ISIADE
DAM	1	0	0	0	1	1	0
LOSS	CLOSS	AUG	IIRES	ISAME	JORT	JNAME	LSIR
0.0	0.000	0.00	1	1	0	0	0
NSIPS	NSTRL	LAG	ANSHK	X	X	SIDRA ISRAI	
1	0	0	0.000	0.000	0.000	-239.	-1
STAGE	239.40	239.20	239.90	241.00	244.00	246.00	248.00
FLOW	0.00	4.00	77.70	462.20	1497.70	5671.20	9316.90
SURFACE AREA=	0.	13.	60.	163.			
CAPACITY=	0.	43.	410.	1481.			
ELEVATION=	229.	239.	250.	260.			
CREL	SFWID	COAW	EXFW	ELEV	COOL	CAREA	EXFL
238.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DAM DATA							
TOPEL	COOD	EXFD	DAMWID				
239.8	2.4	1.5	150.				

OPERATION	STATION	AREA	PLAN	RATIOS APPLIED TO FLOWS				
				RATIO 1	RATIO 2	RATIO 3	RATIO 4	RATIO 5
				.50	.40	.30	.20	.10
HYDROGRAPH AT	LAKE	31.80 (82.36)	1 (414.80)	14649. (331.84)	11719. (248.88)	8789. (165.92)	5859. (82.96)	2930.
ROUTED TO	DAM	31.80 (82.36)	1 (414.70)	14645. (332.01)	11725. (248.83)	8787. (165.91)	5860. (82.97)	2930.
ROUTED TO	1	31.80 (82.36)	1 (414.77)	14647. (332.03)	11726. (248.93)	8791. (166.08)	5865. (82.92)	2928.
ROUTED TO	2	31.80 (82.36)	1 (414.35)	14633. (331.13)	11694. (249.29)	8804. (165.90)	5859. (82.79)	2924.
ROUTED TO	3	31.80 (82.36)	1 (414.57)	14641. (331.49)	11706. (248.63)	8780. (165.64)	5850. (82.90)	2928.

SUMMARY OF DAM SAFETY ANALYSIS

PLAN 1	INITIAL ELEVATION	239.00	SPILLWAY CREST	TOP OF DAM
ELEVATION	239.00	238.40	239.90	
STORAGE	42.	36.	56.	
OUTFLOW	29.	0.	462.	

RATIO OF RESERVOIR PMF	MAXIMUM W.G.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC FT	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
.50	245.81	5.91	208.	14645.	38.00	23.00	0.00
.40	244.90	5.00	175.	11725.	35.00	23.00	0.00
.30	243.94	4.04	145.	8787.	31.00	23.00	0.00
.20	242.76	2.86	113.	5860.	27.00	23.00	0.00
.10	241.47	1.57	84.	2930.	21.00	23.00	0.00

PLAN 1 STATION 1

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.50	14647.	232.3	23.00
.40	11724.	231.4	23.00
.30	8791.	230.4	23.00
.20	5865.	229.2	23.00
.10	2928.	227.7	23.00

PLAN 1 STATION 2

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.50	14633.	232.2	23.00
.40	11704.	231.4	23.00
.30	8804.	230.4	23.00
.20	5859.	228.8	23.00
.10	2924.	226.1	23.00

PLAN 1 STATION 3

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.50	14641.	209.8	23.00
.40	11704.	209.7	23.00
.30	8780.	207.5	23.00
.20	5850.	206.2	23.00
.10	2928.	204.5	23.00

HEC - 1 - DAM PRINTOUT

Breach Analysis

1A1 NATIONAL DAM SAFETY PROGRAM
 A2 EDEN MILL DAM, NEW JERSEY
 43 MULTI-RATIO ROUTING

B	100	1	0					4
B1	5							
J	1	5	1					
J1	0.5	0.4	0.3	0.2	0.1			
K	0	LAKE						
K1								
M	1	1	31.8	31.8				
P	25.5	.90	98	107				
T								
W	7.7	.62						
X	-1.0	-0.05	2.0					
K	1	DAM						
K1								
Y								
Y1	1							
Y4	238.4	238.9	239.2	239.9	241.0	244.0	246.0	248.0
Y5	0	4.0	77.7	462.2	1497.7	5671.2	9316.9	13520.4
Y6	0	12.05	67.67	163.0				
SE	229.0	239.0	250.0	260.0				
SS	238.4							
SB	239.9	246.2	1.5	150				
SB	71.0	1	228.5	2.0	239.0	239.9		
K	1	1						
K1								
Y								
Y1	1							
Y6	0.06	0.035	0.06	225.0	246.0	300	0.01	
Y7	0	246.0	3.5	242.5	47.5	241.5	53	225
Y7	197.5	241.0	200	242	200	246		181
K	1	2						225
K1								
Y								
Y1	1							
Y6	0.06	0.03	0.06	218.0	243.0	900	0.007	
Y7	0	243	24	243	50	230	52	218
Y7	91	230	451	220	451	230		82
K	1	3						218
K1								
Y								
Y1	1							
Y6	0.06	0.03	0.06	198.0	208.0	3500	0.005	
Y7	0	264	26	203	150	262	154	190
Y7	180	202	230	203	250	208		176
K	99							190

OPERATION	STATION	AREA	PLAN	RATIOS AFFILIATED TO FLOWS				
				RATIO 1	RATIO 2	RATIO 3	RATIO 4	RATIO 5
				.50	.40	.30	.20	.10
HYDROGRAPH AT LAKE	71.80	1	14449	11719	8789	5859	3930	
	(82.36)		(414.80)	(331.84)	(248.88)	(165.92)	(82.96)	
ROUTED TO DAM	71.80	1	14427	11737	8783	5841	3931	
	(82.36)		(414.19)	(332.06)	(249.00)	(165.95)	(82.99)	
ROUTED TO 1	71.80	1	14437	11736	8810	5857	3944	
	(82.36)		(414.47)	(332.33)	(249.48)	(165.74)	(83.36)	
ROUTED TO 2	71.80	1	14445	11706	8879	5841	3960	
	(82.36)		(414.69)	(331.47)	(250.02)	(165.39)	(83.83)	
ROUTED TO 3	71.80	1	14659	11714	8784	5855	3934	
	(82.36)		(415.09)	(331.71)	(218.75)	(165.79)	(83.08)	

SUMMARY OF DAM SAFETY ANALYSIS

	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM
ELEVATION	239.00	239.40	239.90
STORAGE	43.	36.	36.
OUTFLOW	29.	0	463

RATIO OF PHF	MAXIMUM RESERVOIR W.S.ELEV	MAXIMUM DEPTH OVER DAM	MAXIMUM STORAGE AC-FY	MAXIMUM OUTFLOW CFS	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW HOURS	TIME OF FAILURE HOURS
.50	241.47	1.57	84.	14627.	9.68	23.00	15.00
.40	240.57	.67	67.	11727.	6.52	23.00	15.00
.30	240.04	.14	59.	8792.	1.36	23.00	15.00
.20	240.21	.31	61.	5861.	1.48	23.00	16.00
.10	240.15	.25	59.	2931.	1.40	23.00	17.00

PLAN 1 STATION 1

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.50	14637.	232.3	23.00
.40	11736.	231.4	23.00
.30	8810.	230.4	23.00
.20	5853.	229.2	23.00
.10	2944.	227.7	23.00

PLAN 1 STATION 2

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.50	14645.	232.2	23.00
.40	11706.	231.4	23.00
.30	8829.	230.4	23.00
.20	5841.	228.8	23.00
.10	2960.	225.1	23.00

PLAN 1 STATION 3

RATIO	MAXIMUM FLOW,CFS	MAXIMUM STAGE,FT	TIME HOURS
.50	14659.	209.8	23.00
.40	11714.	208.7	23.00
.30	8784.	207.5	23.00
.20	5855.	206.2	23.00
.10	2934.	204.5	23.00

APPENDIX 5

Bibliography

1. "Recommended Guidelines for Safety Inspection of Dams," Department of the Army, Office of the Chief of Engineers, Washington, D.C. 20314.
2. Design of Small Dams, Second Edition, United States Department of the Interior, Bureau of Reclamation, United States Government Printing Office, Washington, D.C., 1973.
3. Holman, William W. and Jumikis, Alfreds R., Engineering Soil Survey of New Jersey, Report No. 9, Morris County, Rutgers University, New Brunswick, N.J. 1953.
4. "Geologic Map of New Jersey," prepared by J. Volney Lewis and Henry B. Kummel, Dated 1910-1912, revised by H.B. Kummel, 1931 and M. Johnson, 1950.
5. Chow, Ven Te., Ed., Handbook of Applied Hydrology, McGraw-Hill Book Company, 1964.
6. Herr, Lester A., Hydraulic Charts for the Selection of Highway Culverts, U.S. Department of Transportation, Federal Highway Administration, 1965.
7. Safety of Small Dams, Proceedings of the Engineering Foundation Conference, American Society of Civil Engineers, 1974.
8. King, Horace Williams and Brater, Ernest F., Handbook of Hydraulics, Fifth Edition, McGraw-Hill Book Company, 1963.
9. Urban Hydrology for Small Watersheds, Technical Release No. 55, Engineering Division, Soil Conservation Service, U.S. Department of Agriculture, January 1975.

END

DATE
FILMED

9 - 81

DTIC