프로젝트 보고서

Project Report

항목	내용		
개발 프로젝트명	AI 회귀 분석을 이용한 대한민국 인구 예측		
프로젝트팀	4조 (송봉환, 김윤준, 채수병)		
프로젝트 기획의도	본 프로젝트는 대한민국의 고령화와 저출산 문제를 분석하고 예측하기 위한 빅데이터 분석 서비스입니다. 현재 진행되고 있는 고령화 및 저출산으로 인한 심각한 문제를 인지하고, 미래 세대를 위하여 문제의 심각성을 인지하여야 합니다. 미래 인구 예측을 바탕으로 인구 피라미드를 생성하고, 지역 소멸 위험도를 예측하여 적절한 정책과 대응 방안을 마련하는 것을 목표로 합니다.		
개발 목표 및 계획 수립	 프로젝트 기간: 2024년 12월 30일~ 2025년 1월 24일 예측 목표: 2025년부터 2075년까지를 목표로 인구 예측을 시행합니다. 출생인구, 사망인구, 이주인구 데이터 등 여러 데이터를 활용. 데이터는 연도별로 제공되어야 하며, 과거 10년 이상의 데이터를 기본으로 합니다. 과거 데이터 분석을 통한 미래 인구를 예측합니다. 		
구현 가능 서비스	 1 지역별 미래 인구 예측 서비스 여러 데이터를 활용하여 지역별 출생아 및 사망 인구를 예측하여 지역별로 5년 단위의 미래 인구를 예측하는 서비스입니다. 2 인구 피라미드 생성 서비스 예측된 인구 데이터를 기반으로 인구 피라미드를 생성합니다. 사용자는 특정 연도를 선택하여 피라미드를 볼 수 있습니다. 피라미드는 시각적으로 보기 쉽고 이해하기 쉬운 형태로 제공됩니다. 3 지역 소멸 위험도 예측 서비스 지역별 인구 예측 데이터를 기반으로 지역별 인구 감소에 대한 지역 소멸 위험도를 예측합니다. 각 지역별로 위험도 등급을 수치 및 게이지 형식으로 구분하여 시각적으로 제공. 사용자는 5년 단위의 특정 연도를 선택하여 인구 소멸 위험도를 볼 수 있습니다. 		
시스템 아키텍처	 1 데이터 처리 및 예측 모델: ● Python을 사용하여 데이터 처리, 예측 모델을 구현. ● Pandas, NumPy를 활용한 데이터 처리. ● Script를 이용한 데이터 시각화. 2 프론트엔드 / 백엔드를 이용한 웹 제공 및 서비스 시각화 		

서비스 제공 방식 웹 기반 서비스로 제공되며, 사용자는 원하는 서비스 선택, 제공을 기반으로 미래 인구 예측을 피라미드로 제공하며,

지도에 지역별 표시를 구현하여 원하는 연도 선택 후 해당 지역에 대한 미래인구 및 지역 소멸 위험도 시각화 제공합니다.

데이터 수집 목록

데이터 이름	데이터 목적	데이터 전처리
가임 여성	출생 인구 input data	07~23년도 지역별 데이터
사교육비	출생 인구 input data	07~23년도 지역별 데이터
임금	출생 인구 input data	07~23년도 지역별 데이터
집 값	출생 인구 input data	07~23년도 지역별 데이터
혼인 건수	출생 인구 input data	07~23년도 지역별 데이터
출생아	출생 인구 타겟 값	07~23년도 지역별 데이터
노인 인구	사망 인구 input data	07~23년도 지역별 데이터
암 환자	사망 인구 input data	07~23년도 지역별 데이터
정신질환 환자	사망 인구 input data	07~23년도 지역별 데이터
순환계질환 환자	사망 인구 input data	07~23년도 지역별 데이터
사망 인구	사망 인구 타겟 값	07~23년도 지역별 데이터
5세별 인구	인구 피라미드 구현을 초기 데이터	23년도 5세별 인구 데이터
지역 인구	지역 소멸도 표현을 위한 데이터	23년도 지역별 인구 데이터

각 데이터를 도시별 년도별로 전처리하여 데이터 사용.

데이터 분석

GridSearchCV 및 PolynomialFeatures 사용 또는 미사용하여
Ridge와 Lasso를 사용하여 트레이닝 값과 테스트 값 비교하였더니
Ridge에서 GridSearchCV 및 PolynomialFeatures을 사용했을 떄의 값이 가장
이상적인 값이 확인됨.

구현한 머신 러닝으로 미래 지역별 인구수 예측 완료

시스템 구현	1. 인구 피라미드 생성 서비스
	● 5세별 인구를 10세별로 묶고, 예측된 출생인구를 피라미드 제일
	밑부분에 입력, 예측된 사망 인구를 기존 데이터에 빼는 형식으로
	10년 단위의 인구 피라미드 생성 완료
	2. 지역 소멸 위험도 예측 서비스
	● 년도마다 예측된 지역별 인구수를 5년 단위로 인구수 시각화 완료
	● 소멸도는 23년도 지역별 인구수를 기반으로
	지역 소멸 위험도 = 100 - {(예측된 인구수 / 23년도 인구수) x 100)으로
	계산하여 시각화 함.
	지역 소멸 위험도 표현하기 위해 게이지로 표현하여 제공함.
	목표한 기능을 전부 수행하였지만, 그 과정에서 많은 어려움과 시행착오를
	겪었습니다.
	GridSearchCV 및 PolynomialFeatures 사용 또는 미 사용하여
	Ridge와 Lasso를 사용하여 트레이닝 값과 테스트 값 비교시에도 원하는 값이
	정확하게 나오지 않아 어려움을 겪었습니다.
평가	이 부분에서 팀원과의 의사소통으로 문제점을 파악하고자 노력했으며,
	찾아낸 결과는 데이터의 부족으로 판단하여 데이터를 더 수집하여 활용하고,
	테스트 값을 높여서 어느 정도는 원하는 값을 얻을 수 있었습니다.
	계획을 세밀하게 짜고 시작하였지만, 프로젝트를 진행하다 보니 중간중간
	생각대로 진행되지 않아 딜레이가 되기도 했지만 기한내에 마무리가 되었으며,
	결과물도 만족스럽습니다.
	첫 머신 러닝으로 만든 결과물이다 보니 보았을 때 부실한 면이 보입니다.
	더 많은 데이터의 활용으로 보다 정확한 기능을 만들어보고,
	새로운 기능도 생각해 봐야 합니다.