Глава 1

Гетероскедастичность

Задача 1.1.

Что такое гетероскедастичность? Гомоскедастичность?

Задача 1.2.

В модели $y=\hat{\beta}_1+\hat{\beta}_2x+\varepsilon$ присутствует гетероскедастичность вида $\mathrm{Var}(\varepsilon_i)=\sigma^2x_i^2$. Как надо преобразовать исходные регрессоры и зависимую переменную, чтобы устранить гетероскедастичность?

Задача 1.3.

В модели $y=\hat{\beta}_1+\hat{\beta}_2x+\varepsilon$ присутствует гетероскедастичность вида $\mathrm{Var}(\varepsilon_i)=\lambda|x_i|$. Как надо преобразовать исходные регрессоры и зависимую переменную, чтобы устранить гетероскедастичность?

Задача 1.4.

Известно, что после деления каждого уравнения регрессии $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ на x_i^2 гетероскедастичность ошибок была устранена. Какой вид имела дисперсия ошибок, $\text{Var}(\varepsilon_i)$?

Задача 1.5.

Известно, что после деления каждого уравнения регрессии $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ на $\sqrt{x_i}$ гетероскедастичность ошибок была устранена. Какой вид имела дисперсия ошибок, $\text{Var}(\varepsilon_i)$?

Задача 1.6.

Диаграмма рассеяния стоимости квартиры в Москве (в 1000\$) и общей площади квартиры имеет вид:

```
ggplot(flats,aes(x=totsp,y=price))+geom_point()+
labs(x="Общая площадь, кв. м.",
y="Цена квартиры, 1000$")
```


Какие подходы к оцениванию зависимости имеет смысл посоветовать исходя из данного графика?

Задача 1.7.

По наблюдениям $x=(1,2,3)',\ y=(2,-1,3)'$ оценивается модель $y=\beta_1+\beta_2x+\varepsilon$. Ошибки ε гетероскедастичны и известно, что $\mathrm{Var}(\varepsilon_i)=\sigma^2\cdot x_i^2$.

- 1. Найдите оценки $\hat{\beta}_{ols}$ с помощью МНК и их ковариационную матрицу
- 2. Найдите оценки $\hat{\beta}_{gls}$ с помощью обобщенного МНК и их ковариационную матрицу

Задача 1.8.

Для линейной регрессии $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$ была выполнена сортировка наблюдений по возрастанию переменной x. Исходная модель оценивалась по разным частям выборки:

Выборка				
$i=1,\ldots,30$	1.21	1.89	2.74	48.69
$i=1,\ldots,11$	1.39	2.27	2.36	10.28
i = 1,, 30 i = 1,, 11 i = 12,, 19	0.75	2.23	3.19	5.31
$i=20,\ldots,30$	1.56	1.06	2.29	14.51

Известно, что ошибки в модели являются независимыми нормальными случайными величинами с нулевым математическим ожиданием. Протестируйте ошибки на гетероскедастичность на уровне значимости 5%.

Задача 1.9.

Для линейной регрессии $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$ была выполнена сортировка наблюдений по возрастанию переменной x. Исходная модель оценивалась по разным частям выборки:

Выборка	\hat{eta}_1	\hat{eta}_2	\hat{eta}_3	RSS
$i=1,\ldots,50$	1.16	1.99	2.97	174.69
$i=1,\ldots,21$	0.76	2.25	3.18	20.41
$i=22,\ldots,29$				
$i = 30, \dots, 50$	1.72	1.41	2.49	130.74

Известно, что ошибки в модели являются независимыми нормальными случайными величинами с нулевым математическим ожиданием. Протестируйте ошибки на гетероскедастичность на уровне значимости 1%.

Задача 1.10.

Для линейной регрессии $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$ была выполнена сортировка наблюдений по возрастанию переменной x. Исходная модель оценивалась по разным частям выборки:

Выборка	\hat{eta}_1	\hat{eta}_2	\hat{eta}_3	RSS
$i=1,\ldots,30$	0.96	2.25	3.44	52.70
$i=1,\ldots,11$	1.07	2.46	2.40	5.55
$i=12,\ldots,19$	1.32	1.01	2.88	11.69
$i=20,\ldots,30$	1.04	2.56	4.12	16.00

Известно, что ошибки в модели являются независимыми нормальными случайными величинами с нулевым математическим ожиданием. Протестируйте ошибки на гетероскедастичность на уровне значимости 5%.

Задача 1.11.

Для линейной регрессии $y_i=\beta_1+\beta_2x_i+\beta_3z_i+\varepsilon_i$ была выполнена сортировка наблюдений по возрастанию переменной x. Исходная модель оценивалась по разным частям выборки:

Выборка	\hat{eta}_1	\hat{eta}_2	\hat{eta}_3	RSS
$i=1,\ldots,50$	0.93	2.02	3.38	145.85
$i=1,\ldots,21$				
$i = 22, \dots, 29$	0.29	2.07	2.24	1.94
$i = 30, \dots, 50$	0.87	1.84	3.66	117.46

Известно, что ошибки в модели являются независимыми нормальными случайными величинами с нулевым математическим ожиданием. Протестируйте ошибки на гетероскедастичность на уровне значимости 5%.

Задача 1.12.

Рассмотрим линейную регрессию $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$. При оценивании с помощью МНК были получены результаты: $\hat{\beta}_1 = 1.21, \ \hat{\beta}_2 = 1.11, \ \hat{\beta}_3 = 3.15, \ R^2 = 0.72$.

Оценена также вспомогательная регрессия: $\hat{\varepsilon}_i = \delta_1 + \delta_2 x_i + \delta_3 z_i + \delta_4 x_i^2 + \delta_5 z_i^2 + \delta_6 x_i z_i + u_i$. Результаты оценивания следующие: $\hat{\delta}_1 = 1.50, \ \hat{\delta}_2 = -2.18, \ \hat{\delta}_3 = 0.23, \ \hat{\delta}_4 = 1.87, \ \hat{\delta}_5 = -0.56, \ \hat{\delta}_6 = -0.09, \ R_{aux}^2 = 0.36$

Известно, что ошибки в модели являются независимыми нормальными случайными величинами с нулевым математическим ожиданием. Протестируйте ошибки на гетероскедастичность на уровне значимости 5%.

Задача 1.13.

Объясните, с какой целью используются стандартные ошибки в форме Уайта. Приведите развернутый ответ. Верно ли, что стандартные ошибки в форме Уайта позволяют

- 1. устранить гетероскедастичность?
- 2. корректно тестировать гипотезы относительно коэффициентов регрессии в условиях гетероскедастичности?

Задача 1.14.

Объясните, с какой целью используются стандартные ошибки в форме Невье–Веста. Приведите развернутый ответ. Верно ли, что стандартные ошибки в форме Невье–Веста позволяют

- 1. устранить гетероскедастичность?
- 2. корректно тестировать гипотезы относительно коэффициентов регрессии в условиях гетероскедастичности?

Задача 1.15.

Рассматривается модель $y_t = \beta_1 + \varepsilon_t$, где ошибки ε_t — независимые случайные величины с $\mathbb{E}(\varepsilon_t) = 0$ и $\mathrm{Var}(\varepsilon_t) = t$. Найдите наиболее эффективную оценку неизвестного параметра β_1 в классе линейных по y и несмещенных оценок.

Задача 1.16.

Рассматривается модель $y_t = \beta_1 + \varepsilon_t$, где ошибки ε_t — независимые случайные величины с $\mathbb{E}(\varepsilon_t) = 0$ и $\mathrm{Var}(\varepsilon_t) = t^2$. Найдите наиболее эффективную оценку неизвестного параметра β_1 в классе линейных по y и несмещенных оценок.

Задача 1.17.

Рассматривается модель $y_t = \beta_1 x_t + \varepsilon_t$, где ошибки ε_t — независимые случайные величины с $\mathbb{E}(\varepsilon_t) = 0$ и $\mathrm{Var}(\varepsilon_t) = t$. Найдите наиболее эффективную оценку неизвестного параметра β_1 в классе линейных по y и несмещенных оценок.

Задача 1.18.

Рассматривается модель $y_t = \beta_1 x_t + \varepsilon_t$, где ошибки ε_t — независимые случайные величины с $\mathbb{E}(\varepsilon_t) = 0$ и $\mathrm{Var}(\varepsilon_t) = t^2$. Найдите наиболее эффективную оценку неизвестного параметра β_1 в классе линейных по y и несмещенных оценок.

Задача 1.19.

Докажите, что в условиях гетероскедастичности МНК- оценки остаются несмещенными.

Задача 1.20.

Оценка коэффициентов обобщенного МНК имеет вид $\hat{\beta}_{GLS} = (X'V^{-1}X)^{-1}X'V^{-1}y$, где $V = \text{Var}(\varepsilon)$. Совпадает ли оценка $\hat{\beta}_{GLS}$ с оценкой обычным МНК в условиях гомоскедастичности?

Задача 1.21.

Модель $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ оценивается по трём наблюдениям, y = (9,3,6), x = (1,2,4). Имеется гетероскедастичность вида $\operatorname{Var}(\varepsilon_i) = \sigma^2 x_i^2$, ошибки ε_i нормально распределены.

- 1. Оцените $\hat{\beta}$ с помощью МНК проигнорировав гетероскедастичность. Постройте 95% доверительный интервал для каждого коэффициента, проигнорировав гетероскедастичность
- 2. Оцените $\hat{\beta}$ с помощью обобщенного МНК учтя гетероскедастичность. Постройте 95% доверительный интервал для каждого коэффициента с учётом гетероскедастичности

Задача 1.22.

Рассмотрим модель $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$, где ошибки ε_i некоррелированы, $\mathbb{E}(\varepsilon_i) = 0$, $\mathrm{Var}(\varepsilon_i) = \sigma_i^2$. Предлагается два способа оценить коэффициенты модели:

- WLS. Взвешенный метод наименьших квадратов. Поделим каждое уравнение $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ на σ_i . Затем обычным методом наименьших квадратов в преобразованной модели $y_i/\sigma_i = \beta_1 \cdot 1/\sigma_i + \beta_2 x_i/\sigma_i + \varepsilon_i/\sigma_i$ найдем оценки $\hat{\beta}_{WLS}$.
- GLS. Обобщенный метод наименьших квадратов. Оценки $\hat{\beta}_{GLS}$ находим по формуле $\hat{\beta}_{GLS}=(X'V^{-1}X)^{-1}X'V^{-1}y$, где

$$V = \operatorname{Var}(\varepsilon) = \begin{pmatrix} \sigma_1^2 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \sigma_n^2 \end{pmatrix}$$

- 1. Докажите, что в матричном виде преобразование взвешенного МНК записывается как $V^{-1/2}y = V^{-1/2}X\beta + V^{-1/2}\varepsilon$.
- 2. Верно ли, что $\hat{\beta}_{WLS} = \hat{\beta}_{GLS}$?
- 3. Найдите $\mathbb{E}(\hat{\beta}_{WLS})$, $Var(\hat{\beta}_{WLGS})$
- 4. В явном виде выпишите $\hat{\beta}_{2,WLS}$

Задача 1.23.

Рассмотрим модель регрессии $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$, в которой ошибки ε_i независимы и имеют нормальное распределение $N(0, \sigma^2)$. Для n = 200 наблюдений найдите

- 1. вероятность того, что статистика Уайта окажется больше 10,
- 2. ожидаемое значение статистики Уайта,
- 3. дисперсию статистики Уайта.

Задача 1.24.

Найдите число коэффициентов во вспомогательной регрессии, необходимой для выполнения теста Уайта, если число коэффициентов в исходной регрессии равно k, включая свободный член.

Задача 1.25.

(Кирилл Фурманов) По 35 наблюдениям сотрудники НИИ оценили уравнение регрессии $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ и рассчитали остатки ε_i . После того они приступили к диагностике возможных недостатков модели, обнаружили гетероскедастичность и решили её побороть.

- (а) Самый младший научный сотрудник выдвинул предположение, что стандартное отклонение случайной составляющей может быть выражено так: $\sigma_{\varepsilon,i}=ax_i$, где a— неизвестный коэффициент. Каким образом нужно преобразовать исходное уравнение регрессии, чтобы избавиться от гетероскедастичности?
- (b) Профессор решил перепроверить результаты и оценил регрессию:

$$\hat{e}_i^2 = -0.3 + 0.08x_i - 0.01x_i^2, R^2 = 0.15$$

Свидетельствует ли полученный профессором результат о наличии гетероскедастичности?

Задача 1.26.

Пусть $y_t = \beta x_t + \varepsilon$ где $\mathbb{E}(\varepsilon_t) = 0$ и известно, что оценки для параметров $\tilde{\beta} = \left(\sum_{t=1}^n y_t\right) / \left(\sum_{t=1}^n x_t\right)$ являются наилучшими (в смысле минимума дисперсии) среди линейных несмещенных оценок параметра β . Чему равна в этом случае матрица ковариаций вектора ε с точностью до пропорциональности?

Задача 1.27.

Для регрессии $y=X\beta+\varepsilon$ с $\mathbb{E}(\varepsilon)=0$, $\mathrm{Var}(\varepsilon)=\Sigma\neq\sigma^2I$, оцененной с помощью обобщённого метода наименьших квадратов, найдите ковариационную матрицу $\mathrm{Cov}(\hat{\beta}_{GLS},\varepsilon)$

Задача 1.28.

Найдите наиболее эффективную оценку коэффициента β_1 для модели $y_i = \beta_1 + \varepsilon$, $\mathbb{E}(\varepsilon_i) = 0$, $\mathbb{E}(\varepsilon_i \varepsilon_j) = 0$, $\mathrm{Var}(\varepsilon_i) = \sigma_\varepsilon^2/x_i$, $x_i > 0$ в классе линейных несмещенных оценок

Задача 1.29.

Фурманов Кирилл. Исследователь оценил регрессионную модель $y_i=\beta_1+\beta_2x_{i2}+\beta_3x_{i3}+\beta_4x_{i4}+\varepsilon_i$ и провёл диагностику различных проблемных явлений. Результаты его стараний приведены ниже:

Также
$$VIF_2 = 1.06$$
, $VIF_3 = 1.07$, $VIF_4 = 1.02$

- (а) Определите, какие проблемные явления обнаружил исследователь. Обоснуйте свой ответ.
- (b) Найдите коэффициент детерминации для регрессии: $x_{i2} = \gamma_1 + \gamma_2 x_{i3} + \gamma_3 x_{i4} + u_i$

Задача 1.30.

В модели $y_i = \beta x_i + \varepsilon_i$ предполагается гетероскедастичность вида $Var(\varepsilon_i) = \exp(\gamma_1 + \gamma_2 x_i)$.

- 1. Сформулируйте гипотезу о гомоскедастичности с помощью коэффициентов
- 2. Выведите в явном виде оценку максимального правдоподобия при предположении о гомоскедастичности
- 3. Выпишите условия первого порядка для оценки максимального правдоподобия без предположения о гомоскедастичности
- 4. Выведите в явном виде формулу для LM теста множителей Лагранжа