五、自相关性

目录

- 自相关性及其产生的原因
- ② 自相关性的影响
- ③ 自相关性的检验
- 4 自相关性的解决方法
- 5 代码输出结果分析

自相关性及其产生的原因

- ▶ 自相关性及其产生的原因
 - 自相关性 (序列相关性): $Cov(u_t, u_s) \neq 0$
 - 一阶自相关性: $u_t = \rho u_{t-1} + v_t$; $\hat{\rho} = \frac{\sum u_t u_{t-1}}{\sum u_{t-1}^2}$
 - p 阶自相关: $u_t = \rho_1 u_{t-1} + \rho_2 u_{t-2} + \cdots + \rho_p u_{t-p} + v_t$
 - 产生原因:

经济变量惯性的作用;

经济行为的滞后性;

随机偶然因素的干扰:

模型设定误差;

观测数据处理不当

自相关性的影响

- ▶ 一元线性回归模型下自相关性的影响 (OLS)
 - \hat{b}_1, \hat{b}_0 是 b_1, b_0 的无偏估计量, 保持线性
 - \hat{b}_1 不再有最小方差, $Var(\hat{b}_1^*) = Var(\hat{b}_1) + 2\sum_{t \neq s} k_t k_s E(u_t u_s) > Var(\hat{b}_1)$
 - $E\left(\frac{\sum e_t^2}{n-2}\right) < \sigma^2$,低估了随机项的方差
 - RSS 虚假缩小, ESS 虚假增大, $F = \frac{ESS/k}{RSS/(n-k-1)}$ 虚假增大 (高估), 检验失效

- ▶ 自相关性的检验
 - 图示法:

绘制 tOe_t 图 (残差图) 与 $e_{t-1}Oe_t$ 散点图; 若存在有规律的变动或系统性变动,表明存在自相关性

• 德宾-沃森检验 (DW 检验): $H_0: \rho = 0$ (不存在一阶自相关性), $H_1: \rho \neq 0$ (存在一阶自相关性)

统计量 DW =
$$\frac{\sum\limits_{t=2}^{n}(e_{t}-e_{t-1})^{2}}{\sum\limits_{t=1}^{n}e_{t}^{2}}pprox2(1-\hat{
ho});$$

 $DW \in [0,4]$, 下极限分布 d_L 的上临界值为 $4-d_U$, 上极限分布 d_U 的下临界值为 $4-d_L$

- ▶ 自相关性的检验
 - 德宾-沃森检验 (DW 检验):

$$0 \le DW \le d_L$$
, 拒绝 H_0 , 认为存在一阶正自相关;

$$4-d_L \le DW \le 4$$
, 拒绝 H_0 , 认为存在一阶负自相关;

$$d_U \le DW \le 4 - d_U$$
,接受 H_0 ,认为不存在一阶自相关;

$$d_L < DW < d_U$$
 或 $4 - d_U < DW < 4 - d_L$, 不能确定;

只能用于判断一阶自相关性,有两个无法判定的区域,不能用于滞

后被解释变量 y_{t-i} , 要求 $n \ge 15$

• DW 检验的修正 (h 检验):

Durbin-h 统计量
$$h = \left(1 - \frac{\text{DW}}{2}\right)\sqrt{\frac{n}{1 - n\text{Var}(\hat{b}_2)}} \rightarrow N(0, 1)$$

- ▶ 自相关性的检验
 - 回归检验法:根据OLS法求e_t,对e_t建立回归模型
 - 高阶自相关性检验:

高阶自相关性检验:
$$\text{相关图检验:} \quad \text{相关图检验:} \quad \text{自相关系数} \ r_k = \frac{\sum\limits_{t=k+1}^n (y_t - \bar{y})(y_{t-k} - \bar{y})}{\sum\limits_{t=1}^n (y_t - \bar{y})^2} \in [-1,1], \text{ 偏自}$$

$$\text{相关系数} \ \varphi_{k,k} = \begin{cases} r_1, & k=1 \\ \frac{r_k - \sum\limits_{j=1}^{k-1} \varphi_{k-1,j} r_{k-j}}{1 - \sum\limits_{j=1}^{k-1} \varphi_{k-1,j} r_k}, & k=2,3,\cdots \end{cases} ,$$

$$\varphi_{k,j} = \varphi_{k-1,j} - \varphi_{k,k} \varphi_{k-1,k-j}, j=1,2,\cdots,k-1;$$

- ▶ 自相关性的检验
 - 高阶自相关性检验:

Q 统计量检验:
$$Q_{LB} = n(n+2) \sum_{j=1}^{p} \frac{r_{j}^{2}}{n-j} \sim \chi^{2}(n-p);$$
 $Q_{LB} < \chi_{\alpha}^{2}(n-p),$ 接受 H_{0} , 不存在 p 阶自相关; $Q_{LB} > \chi_{\alpha}^{2}(n-p),$ 接受 H_{0} , 存在 p 阶自相关;

LM 乘数检验:根据 OLS 法求 e_t ,对辅助回归模型

$$e_t = b_0 + b_1 x_{1t} + \dots + b_k x_{kt} + \rho_1 e_{t-1} + \rho_2 e_{t-2} + \dots + \rho_p e_{t-p} + \nu_t$$
 进行回归分析,计算决定系数 R^2 ,统计量 $LM(p) = nR^2 \sim \chi^2(p)$

▶广义差分法

• 一元一阶自相关:

广义差分变换
$$y_t^* = y_t - \rho y_{t-1}$$
, $x_t^* = x_t - \rho x_{t-1}$, $A = b_0(1-\rho)$, 则 $y_t^* = A + b_1 x_t^* + v_t$; $\hat{b}_0 = \frac{A}{1-\rho}$; 损失的观测值可以作变换 $y_1^* = y_1 \sqrt{1-\rho^2}, x_1^* = x_1 \sqrt{1-\rho^2}$; $\rho = 1$. 则此时是差分变换

▶广义差分法

• 多元一阶自相关:

广义差分变换
$$y_t^* = y_t - \rho y_{t-1}$$
, $x_{it}^* = x_{it} - \rho x_{i,t-1}$, $A = b_0(1-\rho)$, 则 $y_t^* = A + b_1 x_{1t}^* + b_2 x_{2t}^* + \dots + b_k x_{kt}^* + v_t$

一元 p 阶自相关:

广义差分变换
$$y_t^* = y_t - \rho_1 y_{t-1} - \rho_2 y_{t-2} - \dots - \rho_p y_{t-p}$$
,
$$x_t^* = x_t - \rho_1 x_{t-1} - \rho_2 x_{t-2} - \dots - \rho_p x_{t-p}, \quad \text{则 } y_t^* = A + b_1 x_t^* + v_t$$

- ▶自相关系数的估计方法
 - 广义差分法:

大样本:
$$\hat{\rho} = 1 - \frac{\mathrm{DW}}{2}$$
;
小样本: $\hat{\rho} = \frac{n^2(1 - \mathrm{DW}/2) + (k+1)^2}{n^2 - (k+1)^2} \xrightarrow{n \to \infty} 1 - \frac{\mathrm{DW}}{2}$;
也可以是 $\hat{\rho} = \frac{\sum e_t e_{t-1}}{\sum e_t^2}$

• Durbin 两步估计法:

第一步:对
$$y_t = a_0 + \rho y_{t-1} + a_1 x_t + a_2 x_{t-1} + v_t$$
 进行回归分析, y_{t-1} 的回归系数就是 ρ ;

第二步:用ρ=ρ进行广义差分变换,求得原模型

- ▶自相关系数的估计方法
 - 迭代估计:

利用 OLS 法进行回归分析得残差
$$e_t(1)$$
,根据 $\hat{\rho}(1) = \frac{\sum e_t(1)e_{t-1}(1)}{\sum e_t^2(1)}$,利用 $\hat{\rho}(1)$ 进行广义差分变换,求得 $e_t(2)$,重复上述步骤,直到 $|\hat{\rho}(n+1) - \hat{\rho}(n)| < \delta$

- 搜索估计法: 略
- ▶ 广义最小二乘法与广义差分法的关系
 - 对存在自相关性的模型,广义最小二乘法与广义差分法是等价的
 - $\hat{\mathbf{B}} = (\mathbf{X}^{\mathrm{T}} \mathbf{\Omega}^{-1} \mathbf{X})^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{\Omega}^{-1} \mathbf{Y}$ 是无偏、有效估计量

代码输出结果分析

▶ 回归分析结果

同第二章:

常数和解释变量	参数估计值	参数标准误差	t统计量	双侧概率
$C(b_0)$	331.5264	57.16954	5.799003	0.0000
$PI(b_1)$	0.692812	0.006279	110.3337	0.0000
决定系数	0.997297	被解释变量均值		4662.514
调整的决定系数	0.997215	被解释变量标准差		4659.100
回归标准误差	245.8925	赤池信息准则		13.90311
残差平方和	1995283.	施瓦兹信息准则		13.99199
对数似然函数	-241.3044	汉南准则		13.93379
F统计量	12173.53	DW统计量		0.180221
F统计量的概率	0.000000			

代码输出结果分析

▶ 各种检验的输出结果分析

同第四章:

英文	含义	英文	含义
Heterpskedasticity	检验方法	F-statistic	回归模型的 F 统计
Test			量
Obs*R-squared	F检验统计量	Prob.	F统计量对应的 p 值
		Chi-Square(2)	
Prob. F(a, b)	自由度为 a,b 的 F 分	Scaled explained	LM 统计量
	布临界值	SS	