Московский физико-технический институт

Лабораторная работа 5.4.2

Исследование энергетического спектра β -частиц и определение их максимальной энергии при помощи магнитного спектрометра

выполнил студент 924 группы ФОПФ Панферов Андрей **Цель работы:** с помощью магнитного спектрометра исследовать энергетический спектр β -частиц при распаде ядер $^{137}\mathrm{Cs}$ и определить их максимальную энергию.

Теоретическая часть

Бета-распад - самопроизвольное превращение ядер, при котором их массовое число не изменяется, а заряд увеличивается или уменьшается на единицу. В данной работе:

$$_{Z}^{A}X \rightarrow_{Z+1}^{A}X + e^{-} + \widetilde{\nu}.$$

Величина $W(p_e)$ является плотностью вероятности. Распределение электронов по энергии может быть вычислено теоретически. Для разрешенных переходов вероятность β -распада просто пропорциональна статистическому весу.

$$W(p_e)dp_e \propto p_e^2(E_m - E_e)^2 dp_e.$$

Кинетическая энергия электрона и его импульс связаны друг с другом обычной формулой:

$$E = \sqrt{(p_e c)^2 + (m_e c^2)^2} - m_e c^2$$

Выражение () приводит к спектру, имеющему вид широкого колокола. Кривая плавно отходит от нуля и столь же плавно, по параболе, касается оси абсцисс в области максимального импульса электронов.

Дочерние ядра, возникающие в результате β -распада, нередко оказываются возбужденными. Возбужденные ядра отдают свою энергию либо излучая γ -квант, либо передавая избыток энергии одному из электронов внутренних оболочек атома. Излучаемые в таком процессе электроны имеют строго определенную энергию и называются конверсионными.

Конверсия чаще всего происходит на оболочках К и L. Ширина конверсионной линии является чисто аппаратурной – по ней можно оценить разрешающую силу спектрометра.

Экспериментальная установка

Блок-схема установки для изучения β -спектров изображена на рис. ??. Радиоактивный источник ¹³⁷Cs помещен внутрь откачанной трубы. Электроны, сфокусированные магнитной линзой, попадают в счетчик. В газоразрядном счетчике они инициируют газовый разряд и тем самым приводят к появлению электрических импульсов на электродах, которые затем регистрируются счетным прибором.

Рис. 1: Схема установки

Рис. 2: Принцип работы

Энергию β -частиц определяют с помощью β -спектрометров (рис. $\ref{puc.}$). В работе используется магнитный спектрометр с «короткой линзой». Отметим, что в течение всего опыта

геометрия прибора остается неизменной, поэтому импульс сфокусированных электронов пропорционален величине тока:

$$p_e = kI. (\star)$$

Связь между числом частиц, регистрируемых установкой, и функцией $W(p_e)$ выражается формулой:

$$N(p_e) \propto W(p_e)p_e,$$

откуда

$$\frac{\sqrt{N}}{p_e^{3/2}} \propto E_m - E \tag{**}$$

Экспериментальные данные

Таблица 1: Результаты измерений

I, A	N, 1/c	σN , 1/c	E, кэ B
0	0.50	0.07	0
0.2	0.59	0.08	29
0.4	0.67	0.08	58
0.6	0.66	0.08	88
0.8	0.89	0.09	117
1	0.93	0.10	146
1.2	2.03	0.15	176
1.4	3.01	0.2	206
1.6	4.52	0.3	235
1.8	6.28	0.3	264
2	7.49	0.3	294
2.2	8.04	0.3	323
2.4	9.26	0.4	352
2.6	9.53	0.4	382
2.8	8.27	0.3	411
3	8.04	0.3	440
3.2	6.45	0.3	470
3.4	4.78	0.3	499
3.6	2.52	0.2	529
3.8	1.68	0.2	558
4	3.22	0.2	587
4.1	8.25	0.3	602
4.15	11.15	0.4	609
4.2	13.02	0.4	617
4.25	14.56	0.4	624
4.3	14.31	0.4	631
4.35	11.73	0.4	639
4.4	10.15	0.4	646
4.5	5.26	0.3	661
4.6	1.97	0.2	675
4.8	0.69	0.1	705
$\sigma I =$	0.02A	$\sigma E = 3$ кз	$_{ m B}$

Таблица 2: Результаты измерения фона.

I, A	t, c	N_{Φ}, c^{-1}	$\sigma_{N_{\Phi}}, c^{-1}$
0,00	100	1,3	0,1
4,10	100	0,54	0,07

Обработка результатов

По результатам измерений (табл. 1) построим график спектра β -распада атома ¹³⁷Сs и откалибруем его. Для этого пересчитаем значения силы тока в импульс по формуле (\star). Коэффициент k определим по известной конверсионной линии:

624 кэ
$$B = kcI_0$$
,

где c — скорость света, $I_0=4,25$ A — сила тока, при которой наблюдается конверсионный пик.

Определим максимальную энергию β -спектра. Анализ рис. \ref{puc} в таком случае даст достаточно грубый результат, так как нам придётся ограничиться исследованием точек у самой верхней границы спектра. Эти точки измерены с наименьшей статистической точностью. Однако мы можем уменьшить ошибку определения максимальной энергии посредством процедуры Ферми-Кюри. Для этого мы отложим по оси ординат величину $\sqrt{N}/p^{3/2}$, а по оси абсцисс энергию β -частиц (с учётом того, что энергия электронов внутренней конверсии 137 Cs равна 634 кэВ). В таком случае мы задействуем большинство экспериментальных точек, и прежде всего точки середины β -спектра, которые измерены с наилучшей точностью.

Получим максимальную энергию частиц:

$$E_m=612\pm7$$
кэВ

Обсуждение результатов и выводы

В ходе лабораторной работы с помощью магнитного спектрометра мы исследовали энергетический спектр β -частиц при распаде ядер $^{137}\mathrm{Cs}$. Калибровку спектрометра осуществили по энергии электронов внутренней конверсии.

Анализ графика (рис. ??) показывает, что точки купола достаточно хорошо приближаются параболой. Такой вид зависимости согласуется с теоретической.

Также мы определили максимальную энергию $E_m=612\pm7$ кэВ вылетающих электронов при β -распаде ядра $^{137}\mathrm{Cs}$ методом Ферми-Кюри.