UNIVERSIDADE FEDERAL DO RIO GRANDE - FURG ENGENHARIA DE COMPUTAÇÃO

BRUNO MACHADO LÖBELL 124846

Terceiro Trabalho

Trabalho 3 – Cálculo Numérico Computacional

Curso: Eng. Computação Prof.: Sebastião Cicero P. Gomes

1 - Um moto-redutor do tipo Harmonic-Drive possui torque máximo equivalente a $\tau max = 1.65 \ Nm$. Com o objetivo de identificar os parâmetros relativos ao torque de atrito do atuador, aplicamos torques constantes $(Tm = k\tau max)$ e medimos as respectivas velocidades do rotor (θ) em regime estacionário (velocidades constantes, conforme a tabela abaixo). Identifique os coeficientes de atrito, sabendo que o torque de atrito possui a seguinte equação:

$$\tau_a = f_s + f_v \dot{\theta} + f_c \dot{\theta}^2$$

	0.11	0.56	1.31	2.04	2.85	3.64	4.6	5.38	6.32
K	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9

$$g_1(x) = 1$$
; $g_2(x) = \dot{\theta} = x$; $g_3(x) = \dot{\theta}^2 = x^2$; $a_1 = f_s$; $a_2 = f_v$; $a_3 = f_c$

Utilizando o algoritmo que foi demonstrado nas aulas, obtive, conforme e figura 1, os seguintes valores: $a_1 = 0.1007$; $a_2 = 0.1532$; $a_3 = -0.0044$.

0.1007

0.1532

-0.0044

Figura 1 Resultado do Código

Substituindo os valores obtidos na equação inicial $f(x) = a_1 + a_2 x + a_3 x^2$, obtemos $f(x) = 0.1007 + 0.1532x - 0.0044x^2$. Na figura 2 é mostrado o gráfico contendo os pontos juntamente com a equação encontrada.

Figura 2 Gráfico da Função

Nome: Bruno Machado Löbell Matrícula: 124846

Trabalho 3 – Cálculo Numérico Computacional

Curso: Eng. Computação Prof.

Prof.: Sebastião Cicero P. Gomes

2 – As funções $y_1(x) = -x^2 + 0.4sen(5x) + 3$ e $y_2(x) = x^2 + 0.8cos(3x)$ se interceptam em dois pontos, conforme mostra a figura a seguir:

Determine a área formada entre as curvas (entre os pontos de intersecção):

Utilizando os intervalos [-2,-1] e [1,2] no método da bissecção (aprendido em aulas anteriores), utilizando a precisão de 1e⁻⁴, obtive as intersecções com valor igual a -1.3129 e 1.3549.

a) Solução Analítica:

$$y_{1}(x) = -x^{2} + 0.4sen(5x) + 3$$

$$\int_{-1.3129}^{1.3549} (-x^{2} + \frac{2}{5}sen(5x) + 3)dx = \left[-\frac{x^{3}}{3} - \frac{2}{25}cos(5x) + 3x \right]_{-1.3129}^{1.3549}$$

$$= \left[-\frac{1}{3}(1.3549)^{3} - \frac{2}{25}cos(5*1.3549) + 3*1.3549 \right]$$

$$- \left[-\frac{1}{3}(-1.3129)^{3} - \frac{2}{25}cos(5*(-1.3129)) + 3*(-1.3129) \right]$$

$$= 6.4264$$

$$y_{2}(x) = x^{2} + 0.8cos(3x)$$

$$\int_{-1.3129}^{1.3549} (x^{2} + \frac{4}{5}cos(3x))dx = \left[\frac{x^{3}}{3} + \frac{4}{15}sen(3x) \right]_{-1.3129}^{1.3549}$$

$$= \left[\frac{1}{3}(1.3549)^{3} + \frac{4}{15}sen(3*1.3549) \right]$$

$$- \left[\frac{1}{3}(-1.3129)^{3} + \frac{4}{15}sen(3*(-1.3129)) \right]$$

$$= 1.1802$$

A área entre as funções é: 6.4264 - 1.1802 = 5.2462

Nome: Bruno Machado Löbell Matrícula: 124846

Trabalho 3 – Cálculo Numérico Computacional

Curso: Eng. Computação Prof.: Sebastião Cicero P. Gomes

b) Aproximação por Simpson:

Para a resolução deste problema foi utilizada a função Simpson mostrada na aula. A área real alcançada foi 6.4265 – 1.1791 = **5.2474**

c) Aproximação por trapézios:

A área real obtida por este método, teve resultado com a função trapézio (demonstrada em aula). O valor da saída foi 6.3938 – 1.2336 = **5.1620**

Comparando os três métodos, a solução analítica e aproximação de Simpson contêm valores semelhantes, e a aproximação por trapézios obteve um valor menor (em relação ao outros 2).

Nome: Bruno Machado Löbell Matrícula: 124846