Image Approximation via Semi-Transparent Shape Evolution

Matteo Liotta SM3800072 Optimization for Artificial Intelligence, 2025, UniTS - Final Project Problem Introduction

Problem Introduction

This project is a revisit of the "Genetic-lisa" Peter Braden's project, which aims to recreate images with genetic algorithms.

It had different implementations over time, from Python to C

The base concept is to evolve a series of overlapping shapes to reach a certain level of *similitude* with the original picture.

Problem Introduction

Similitude which is measured with defined objective function

$$\sum_{\substack{i=1,...,W\\j=1,...,H}} \left(r_{i,j}_{true} - \widehat{r_{i,j}} \right)^{2} + \left(g_{i,j}_{true} - \widehat{g_{i,j}} \right)^{2} + \left(b_{i,j}_{true} - \widehat{b_{i,j}} \right)^{2}$$

How are individuals defined?

How are individuals defined?

Color

How are individuals defined? Shape Definition

In the original code different shapes are proposed, but here we can focus on

- Ellipses
- Rectangle
- Triangles

defined as a dictionary of **name** and **coordinates** genetated at random

```
{'type': 'triangle', 'coords': [44, 213, 93, 148, 163, 220]}
```

Shape Geometry Definition

Shape Color Definition

Also color (A,R,G,B) tuples are generated at random

Individuals

Name	Dna	Fitness value
String	<pre>{shapes: {type, coordinates}, colors : color tuple}</pre>	Scalar

 Introduction
 Individuals
 Ev. Cycle
 Crossover
 Mutation
 Final Improvements
 Results

Evolutionary cycle

For fixed number of times

Individual Recap

Each individual has its own Dna, defined of atomic units: the genes

Individual Recap

Individual Recap

Individual dna

We start with a parent population

To generate a new individual we select randomly a parent dna and deepcopy it.

Then iterate on parents: change one random gene of in place of another of this offspring

After that, mutation will occur to each new offspring.

How is mutation defined?

Individuals

Three different actions:

- New random shape **appending** to offsprings DNA ————— len<500 and 25% probability
- Shape change and color **change** of a gene —————— *elif 75% probability*

But... the change function can now handle a new feature: we can change **not by deletion** and **random reinsertion** of a gene, but deletion and **conditionate re-generation**.

Shape Color "Prev" Modification

Using additional parameters we can *eventually* mutate the color avoiding random re-generation ⇒ We can eventually avoid knowledge discard and change in the around.

...Back to shape definition

This idea could be introduced in **shape mutation** too: it could avoid, eventually, random shape re-generation

...Back to shape definition

This idea could be introduced in **shape mutation** too: it could avoid, eventually, random shape re-generation

...Back to shape definition

This idea could be introduced in **shape mutation** too: it could avoid, eventually, random shape re-generation

...Back to shape definition

This idea could be introduced in **shape mutation** too: it could avoid, eventually, random shape re-generation

(modified*) Original way: performances and results

* ellipses, rectangles and triangles and shape mutation changed

Example on Notre Dame

The example picture is a Notre Dame colored image I took this year in Paris.

The population initial parameters were

• Image_size: 170 x 256

Generation_population: 10

Crossover_population: 5

Over 30000 epochs.

The result **isn't so good**:

- Big shapes
- **Computational time** is the main problem: 1h30m for 30000 epochs
- Lack in precision

Why don't we change the approach?

How can we speed up evolution?

Patches idea introduction

The main idea is to take advantage of multi-processing.

Notice this is related to the number of cores available

Also considering our **constraints**...

- The original reference should be big enough
- We cannot evolve the entire original image on different nodes

So the idea is to break and cut the image... into smaller pieces

Patches idea introduction

#processes=8

Patches idea introduction

... and evolve independently each piece.

We would have many advantages:

- Each core could handle evolution independently on a sub part of the image (patch)
- Since shape sizes are canvas related, more precision should be present
- We should notice a **speed increase** since fitness evaluations would be on smaller images, proportional to the number of cores
- Over same number of epochs we end up with core-number times more shapes
- **No assumptions** or reduced set of shapes and colors
- + Now we can measure shape sizes with a parameter

Fitness function revisited

+ we can define an alternative fitness which is the L1 norm:

```
def fitness(self):
        return self._fitness or self._fitness_func()

def _fitness_func(self):
    ref_img = self.reference_image.convert("RGBA")
    draw_img = np.array(self.draw().convert("RGBA"), dtype=np.int16)
    ref_img = np.array(ref_img, dtype=np.int16)
    diff = draw_img[:, :, :3] - ref_img[:, :, :3]
    fitness = np.sum(np.abs(diff))
    self._fitness = fitness
    return fitness
```

Modified way: (compared) performances and results

Time comparison

Original* Project

~30000 Epochs

Running Time: ~ 1h 30 min

Revisited Project

~ **40000** Epochs

Running Time: ~ **30 min**

Same parameters
8 processes on 8 core laptop
L1 approximated fitness

Reference

Revisited

Can we do something more?

^{*} w.r.t. image size

Reference

Small Shapes Evolution 1000 epochs

Big Shapes Evolution 1000 epochs

We see a great improvement with a **higher shape size reduction rate** on fixed same conditions

Small Shapes

Big Shapes

We can finally see results with:

- Patches and multiprocessing introduction
- More efficient **fitness**
- Random re-generation avoidance for shapes and colors
- Better shape random generation
- Shape size ratio introduction

Reference

Small Shapes Evolution 50000 epochs

Reference

Small Shapes Evolution 50000 epochs

Conclusion on Notre Dame visual comparison

Original*

Reference

Revisited

Original*

Reference Revisited

Small shape revisited

Project References

- [1] The evolution of a Smile, Peter Braden: https://github.com/peterbraden/genetic-lisa/
- [2] Mona Lisa Gif Evolution: https://github.com/peterbraden/genetic-lisa/blob/master/images/lisa-anim.gif
- [3] Vase with Twelve Sunflowers (Arles, August 1888), Van Gogh. Neue Pinakothek, Munich: https://commons.wikimedia.org/wiki/File:Vincent_Willem_van_Gogh_128.jpg
- [4] La persistenza della memoria, Dalì: https://www.analisidellopera.it/wp-content/uploads/2018/10/Dali La persistenza della memoria-1.jpg