CS5340 - Uncertainty Modelling in AI (Semester 2 AY2018/19)

Time Allowed: 2 Hours

Instructions

- Write your Student Number below, and on every odd page. Do not write your name.
- The assessment contains 4 multi-part problems. You have 120 minutes to earn 120 points.
- The assessment contains 30 pages, including this cover page and 7 pages of scratch paper.
- The assessment is closed book. You may bring one double-sided sheet of A4 paper to the assessment. You may not use your mobile phone or a programmable calculator.
- Write your solutions in the space (box) provided. If you need more space, please use the scratch paper. Do not put part of the answer to one problem on a page for another problem.
- Read each question *carefully*. Don't get stuck on any one problem. The questions are *not* in any particular order of difficulty.
- Show your work. Partial credit will be given. Please be neat; we cannot grade unreadable solutions.
- Don't panic. The problems often look more difficult than they really are.
- · Good luck!

Student Number.:	

Problem #	Name	Possible Points	Achieved Points
1	Yes or No?	20	
2	Red or Blue?	30	
3	Happy or Sad?	45	
4	Fast or Slow?	25	
Total:		120	

Common Probability Distributions

Distribution (Parameters)	PDF/PMF
Normal (μ, σ^2) Bernoulli (r)	$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$ $r^x (1-r)^{(1-x)}$
Categorical (π)	$\prod_{k=1}^K \pi_k^{x_k}$
Binomial (μ, N) Poisson (λ)	$\binom{N}{x}\mu^x(1-\mu)^{N-x}$ $\frac{\lambda^x \exp[-\lambda]}{x!}$
Beta (α, β)	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$
Gamma (a, b)	$\frac{1}{\Gamma(a)}b^ax^{a-1}\exp[-bx]$
Dirichlet (α)	$\frac{\Gamma(\sum_{k=0}^{K} \alpha_{k})}{\Gamma(\alpha_{1})\Gamma(\alpha_{K})} \prod_{k=1}^{K} x_{k}^{\alpha_{k}-1}$
Multivariate Normal (μ, Σ)	$\left[rac{1}{(2\pi)^{D/2} \Sigma ^{1/2}} \exp\left[-rac{1}{2}(\mathbf{x}-oldsymbol{\mu})^{ op} oldsymbol{\Sigma}^{-1}(\mathbf{x}-oldsymbol{\mu}) ight]$
Uniform (a, b)	$\frac{1}{b-a}$

Note: $\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx$ is the Gamma function.

Problem 1. Yes or No? [20 points]

For each of the questions below, give a Yes or No answer and a brief explanation justifying your answer.

Problem 1.a. [5 points] Recall that we can fit a parameterized distribution q_{θ} to a given distribution p by minimizing the KL divergence between q_{θ} and p,

$$\mathbb{D}_{\mathrm{KL}}[q_{\theta} || p] = \int q_{\theta}(x) \log \frac{q_{\theta}(x)}{p(x)} dx.$$

Note that the "reversed" KL divergence,

$$\mathbb{D}_{\mathrm{KL}}[p||q_{\theta}] = \int p(x) \log \frac{p(x)}{q_{\theta}(x)} dx$$

takes on a different form (the expectation is taken with respect to p(x) instead of $q_{\theta}(x)$).

Assume that you are given an initial θ which is *not* the optimal θ^* . Is the following statement true: the solution q_{θ} obtained by minimizing $\mathbb{D}_{\mathrm{KL}}[q_{\theta}||p]$ can *never* be equivalent to the solution obtained by minimizing $\mathbb{D}_{\mathrm{KL}}[p||q_{\theta}]$?

Your Answer:			
Brief Explanation	:		

*			
Problem 1.b. [5 points] You are given an oracle that can tell you the treewidth of a Bayesian network (with discrete random variables) and the <i>optimal</i> elimination ordering in $O(1)$ time. Then, can you obtain the individual marginal distributions for all the random variables in polynomial time with respect to n (that is, $O(n^d)$) using variable elimination? Note: n is the number of discrete random variables and d is some constant.			
Your Answer:			
Brief Explanation:			
x			

Problem 1.c. [5 points] Consider the Gaussian Mixture Model (GMM) with observed variables \mathcal{X} and latent variables \mathcal{Z} . For independent and identically distributed (*iid*) data $\mathcal{D} = \mathcal{X}$ where $\mathcal{X} = (x_n)_{n=1}^N$, is it true that the posterior probability is decomposable, i.e.:

$$p(\mathcal{Z}|\mathcal{X}, \theta) = \prod_{n}^{N} p(z_{n}|x_{n}, \theta)$$
?

Your Answer:	
--------------	--

Brief Explanation: (if yes, provide a proof. If no, provide a counterexample)

	5	

Problem 1.d. [5 points] Consider the following transition matrix T for a Markov chain where

$$T = \begin{bmatrix} 0 & 0.5 & 0.5 \\ 0.1 & 0.2 & 0.7 \\ 0 & 0 & 1.0 \end{bmatrix} \tag{1}$$

Is the transition matrix T ergodic?

Your Answer:			
Brief Explanatio	n:		

Problem 2. Red or Blue? [30 points] You are given the following Bayesian network:

Figure 1: Red-Blue Bayesian Network.

where each random variable $X_1, X_2, ... X_7$ takes on either one of two states: Red or Blue. The (conditional) probability tables associated with the Bayesian network are:

		x_1	x_2	$p(x_2 x_1)$		
x_1	$p(x_1)$	RED	RED	0.8	x_3	$p(x_3)$
RED	0.1	BLUE	RED	0.2	RED	0.8
BLUE	0.9	RED	BLUE	0.2	BLUE	0.2
		BLUE	BLUE	0.8	.At	

$\overline{x_1}$	x_4	$p(x_4 x_1)$
RED	RED	0.2
BLUE	RED	0.8
Red	BLUE	0.8
BLUE	BLUE	0.2

	x_1	x_5	x_6	$p(x_6 x_1,x_5)$
Ì	Red	Red	Red	0.1
1	Red	Red	BLUE	0.9
1	Red	BLUE	Red	0.9
I	RED	BLUE	BLUE	0.1
	BLUE	Red	Red	0.9
	BLUE	Red	BLUE	0.1
.1	BLUE	BLUE	Red	0.9
	BLUE	BLUE	BLUE	0.1

x_3	x_5	$p(x_5 x_3)$
RED	RED	0.8
BLUE	Red	0.2
RED	BLUE	0.2
BLUE	BLUE	0.8

x_4	x_7	$p(x_7 x_4)$
RED	RED	0.8
BLUE	Red	0.2
RED	BLUE	0.2
BLUE	BLUE	0.8

Problem 2.a. [8 points] Using the information provided, compute the probability
$p(X_1 = \operatorname{Red} X_2 = \operatorname{Red}, X_3 = \operatorname{BLUE}, X_4 = \operatorname{Red})$
Your Answer:
Brief Explanation: (provide your working/justification below. Use the scratch sheets if needed)

Problem 2.b. [12 points] Using the information provided, compute the maximum a posteriori (MAP) configuration for (X_1, X_5, X_6, X_7) given that we observe $X_2 = \text{Red}, X_3 = \text{Blue}$ and $X_4 = \text{Red}$?

Your Answer:

$$X_1 = \begin{bmatrix} x_1 & x_2 & x_3 \\ x_4 & x_4 \end{bmatrix}$$

$$X_5 =$$

$$X_6 =$$

$$X_7 =$$

Brief Explanation: (provide your working/justification below. Use the scratch sheets if needed)

		×	

Problem 2.c. [10 points] Derive the most efficient algorithm you can think of that returns T_{RUE} if each and every possible configuration (given the evidence) has probability that exceeds a given threshold t?

For example, the algorithm should return TRUE if for all possible configurations (X_1, X_5, X_6, X_7) ,

$$p(X_1 = \text{Red}, X_5 = \text{Red}, X_6 = \text{Red}, X_7 = \text{Red} | X_2 = \text{Red}, X_3 = \text{Blue}, X_4 = \text{Red}) > t$$

 $p(X_1 = \text{Red}, X_5 = \text{Red}, X_6 = \text{Red}, X_7 = \text{Blue} | X_2 = \text{Red}, X_3 = \text{Blue}, X_4 = \text{Red}) > t$

$$p(X_1 = \operatorname{BLUE}, X_5 = \operatorname{BLUE}, X_6 = \operatorname{BLUE}, X_7 = \operatorname{BLUE}|X_2 = \operatorname{RED}, X_3 = \operatorname{BLUE}, X_4 = \operatorname{RED}) > t$$

It should return False if the probability for any of the possible configurations is less than (or equal to) t. Give a general algorithm that could work on any valid Bayesian network and evidence set.

Your Answer:

(More space on next page...)

CS5340 Final Assessment	Student Num.:	11
(Continued for Problem 2.c.)		
		~

Problem 3. Happy or Sad? [45 points] Congratulations, you've just landed a new job at Foogle — the hottest AI startup in town! Your first task is to model data generated by Foogle's new EmoSense sensor. EmoSense is designed to detect whether a given person is HAPPY or SAD.

EmoSense selects a real-valued reading (Y) between either W or V, depending on the person's Happy/Sad state (Z). If a person is Happy, Emosense picks W, which follows a normal distribution with mean μ_w and variance σ_w^2 . If a person is Sad, Emosense picks V, which also follows a normal distribution, but with mean μ_v and variance σ_v^2 .

The Emosense model is partially summarized by the following graphical model for N iid data points:

Figure 2: EmoSense Bayesian Network.

along with the distributions:

$$p(z_n|r) = Bern(r)$$
 (2)

$$p(w_n|\mu_w, \sigma_w^2) = \mathcal{N}(w_n|\mu_w, \sigma_w^2) \tag{3}$$

$$p(v_n|\mu_v, \sigma_v^2) = \mathcal{N}(v_n|\mu_v, \sigma_v^2) \tag{4}$$

The parameters of the model are $\theta = \{r, \mu_w, \sigma_w^2, \mu_v, \sigma_v^2\}$.

Problem 3.a. [2 points] Given the description of how EmoSense works, derive the conditional distribution $p(y_n|z_n, w_n, v_n, \theta)$. You may introduce new parameter definitions if it makes your model description more succinct.

Your Answer:			
Problem 3.b.	[5 points]	Derive the joint distribution $p(y, z, w, v \theta) = \prod_{n=1}^{N} p(y_n, z_n, w_n, v_n \theta)$).
Your Answer:	_		

Problem 3.c. [8 points] Only y_n 's are observed and you want to learn the unknown parameters θ using Expectation-Maximization (EM). Given the information provided, write down the function $Q(\theta, \theta_t)$ that is maximized during the M step.

Note: Be precise; an acceptable solution is specific to this subproblem. Expectations can be left unresolved $only\ if$ the expectation is for one of the distributions listed on page 2.

Your Answer (the	Q Function):	
Brief Explanation:	(provide your working/justification below. Use the scrat	tch sheets if needed)
	19	

(More space on next page...)

Problem 3.d. [7 points] Your boss at Foogle thinks your EM estimates may overfit the data. She wants you to infer the latent parameters using *Variational Bayes* instead. For this sub-problem, assume that σ_w^2 and σ_v^2 are *known*, i.e., you do not have to infer them.

Introduce random variables for each of the remaining parameters in θ and state the *conjugate* prior distributions. Draw out the resulting graphical model.

Your	our Answer: (draw the graphical model and write down each of the prior distributions)				
				185	

Problem 3.e. [15 points] Assume a mean-field variational distribution. Write down the resulting evidence lower bound (ELBO). For this sub-problem, assume that σ_w^2 and σ_v^2 are *known*, i.e., you do not have to infer them. You are free to select a desired q or derive it from the independence assumptions. Again, you may re-parameterize the model if re-parameterization makes the model more succinct.

Note: Be precise; an acceptable solution is specific to this subproblem. If you have an expectation $\mathbb{E}[p(x)]$ or $\mathbb{E}[\log p(x)]$, and p(x) is one of distributions on Page 2, you can leave the expectation unresolved.

Your Answer	(the	ELBO):
-------------	------	------	----

e E		
		2

(More space on next page...)

Continued for Probl	em 3.e.)			
			2	
		590		

Problem 3.f. [8 points] For this sub-problem assume that r, σ_w^2 and σ_w^2 are known. Your colleague Dlorah decides to infer the remaining parameters using the following variational distribution:

$$q(\mu_w, \mu_v) = \mathcal{N}(\mu_w|m, s)\mathcal{N}(\mu_v|m, s)$$

Both $q(\mu_w)$ and $q(\mu_v)$ are parameterized with the *same* distribution $\mathcal{N}(\mu_w|m,s)$. Describe briefly the potential problems (if any) that may occur when using this variational distribution.

Your Answer (brief explanation):	
w.	
	25
9	

Problem 4. Fast or Slow? [25 points]

Figure 3: A Lattice Markov Random Field (MRF).

You are given the above Markov random field (MRF). Assume each random variable A, B, ..., I is discrete with K possible states. The MRF is completely parameterized with only pairwise potential functions $\phi(\cdot, \cdot)$ between neighboring nodes.

Problem 4.a. [5 points] Given the elimination ordering O = (I, H, G, F, E, D, C, B, A), draw out the reconstituted graph.

Your Answer: (Draw out the reconstituted graph.)

		×	
*			

Problem 4.b.	[10 points]	Using your reconstituted graph, draw out the junction tree.
Your Answer: (use the scrat	ch sheets if you need more space for your intermediate steps)
		A:
		**/

Problem 4.c. [5 points] We can "grow" the graph structure in Fig. 3 to larger sizes by increasing the number of nodes n in the lattice structure; we can add a row and column of nodes. Do you expect inference (via the junction tree algorithm) on graphs with this type of lattice structure to be **fast** (polynomial in the number of nodes n) or **slow** (exponential in n)? Provide a brief justification.

Hint: How does the computation time depend on the properties of the junction tree? Consider the given elimination ordering; is it a good one?

Your Answer: (Fast or Slow)	
Brief Explanation:	e e e e e e e e e e e e e e e e e e e
	g .
8	

Problem 4.d. [5 points] We can perform inference on the lattice MRF (Fig. 3 and shown below) using Gibbs sampling. For each of the nodes below, state the *minimal* set of nodes that have to be conditioned upon in the Gibbs sampling step, i.e., for a given node X, what nodes must constitute X_E for $p(X|X_E)$ that we sample from?

Node A	
Node B	
Node E	
Node F	
Node H	