ЛЕКЦИЯ ЛП1. ПРЕДИКАТЫ, КВАНТОРЫ, ФОРМУЛЫ ЛОГИКИ ПРЕДИКАТОВ

Логика высказываний — очень узкая логическая система. Есть такие типы логических рассуждений, которые не могут быть осуществлены в рамках логики высказываний, например:

- 1. Всякий друг Ивана есть друг Петра. Сидор не есть друг Петра. Следовательно, Сидор не есть друг Ивана.
- 2. Простое число два четное. Следовательно, существуют простые четные числа.

Корректность этих умозаключений основана на внутренней структуре самих предложений и на смысле слов «всякий» и «существуют».

1.4.1. Предикаты, кванторы. Формулы логики предикатов

Рассмотрим предложения, зависящие от параметров, например: «x – четное число», «x меньше y», «x + y = z», «x – отец y», «x и y – братья» и т. п. Если x, y, z в первых трех предложениях заменить некоторыми числами, то получим определенные высказывания, Которые могут быть истинными или ложными. Например: «3 – четное число», «2 меньше 5», «3 + 2 = 7». Последние два предложения выражают родственные отношения между членами семьи и также превращаются в определенные высказывания, истинные или ложные, при замене x и y именами членов этой семьи: «Иван – отец Петра», «Иван и Олег — братья».

Предложения такого типа называются предикатами. Точнее, предикатом $P(x_1, \ldots, x_n)$ называется функция, переменные которой принимают значения из некоторого множества M, а сама она принимает два значения: И (истинное) или Л (ложное), т. е. $P(x_1, \ldots, x_n)$: $M^n \to \{ \Pi, \Pi \}$.

Предикат от n аргументов называют n-местным предикатом. Множество M значений переменных определяется обычно математическим контекстом. Например, основное соотношение элементарной геометрии на плоскости — точки x, y, z лежат на одной прямой — выражается предикатом L(x, y, z), где в качестве значений x, y и z рассматриваются конкретные точки.

Предикаты обозначаются большими буквами латинского, алфавита. Иногда бывает удобно указывать число переменных у предикатов. В таких случаях у символов предикатов пишут верхний индекс, который и указывает число аргументов, например: $P^{(n)}(x_1, \ldots, x_n) - n$ -местный предикат. Высказывания считаются нуль-местными предикатами.

Над предикатами можно производить обычные логические операции. В результате получаются новые предикаты.

Пример 1.26.

- 1. Пусть $P^{(1)}(x)$ означает предикат «x делится на два», $Q^{(1)}(x)$ предикат «x делится на три». Тогда выражение $P^{(1)}(x)$ & $Q^{(1)}(x)$ означает предикат «x делится на два и x делится на три», т. е. определяет предикат делимости на 6.
- 2. Пусть $S^{(2)}(x,y)$ означает предикат «x=y». Он принимает значение И тогда и только тогда, когда x=y. В этом случае выражение $\neg S^{(2)}(x,x) \supset S^{(2)}(x,y)$ определяет предикат, принимающий значение И при любых x и y.

Кроме операций логики высказываний будем применять еще операции связывания квантором.

Квантор общности. Пусть P(x) — некоторый предикат, принимающий значение И или Л для каждого элемента x множества М. Тогда под выражением $(\forall x)P(x)$ будем подразумевать высказывание истинное, когда P(x) истинно для каждого элемента x из множества М, и ложное — в противном случае. Читается это выражение так: «для всех x P(x)». Это высказывание уже не зависит от x. Символ $\forall x$ называется квантором общности.

Квантор существования. Пусть P(x) — некоторый предикат. Под в выражением $(\exists x)P(x)$ будем понимать высказывание истинное, когда существует элемент множества M, для которого P(x) истинно, и ложное — в противном случае. Читается это выражение так: «существует x такое, что P(x)» или «существует x, для которого P(x)». Символ $\exists x$ называется квантором существования.

Операцию связывания квантором можно применять и к предикатам от большого числа переменных (подробнее об этом будет сказано позже).

Пример 1.27. Для предикатов, приведенных в примере 1.26, имеем: $(\exists x)(P^{(1)}(x) \& Q^{(1)}(x))$ – истинное высказывание; $(\forall x)(P^{(1)}(x) \& Q^{(1)}(x))$ – ложное высказывание.

На языке предикатов можно составить гораздо более сложные предложения, чем на языке логики высказываний.

Определим понятие формулы логики предикатов. Алфавит логики предикатов содержит следующие символы:

- 1) символы предметных переменных: $x_1, x_2, ..., x_n, ...$;
- 2) символы предикатов: $A_1^{(t)}$, $A_2^{(t)}$, ... , $A_k^{(t)}$, ... , где t=0, 1, 2, ... ;
- 3) логические символы: ¬, &, V, \supset , \sim ;
- 4) символы кванторов: ∃, ∀;
- 5) скобки и запятую:), (...

Во избежание нагромождения индексов часто символы предметных переменных будем обозначать через x, y, z, а символы предикатов — через P, S, Q, R и т. д.

Слово в алфавите логики предикатов называется формулой, если оно удовлетворяет следующему индуктивному определению (одновременно определяется понятие свободной и связанной переменной формулы):

- 1. Если $A_j^{(t)}$ символ предиката, x_{i_1} , x_{i_2} ,..., x_{i_t} символы предметных переменных, не обязательно различные, то $A_j^{(t)}$ (x_{i_1} ,..., x_{i_t}) формула. Такая формула называется *атомарной*. Все предметные переменные атомарных формул свободные, связанных переменных нет.
- 2. Пусть A формула. Тогда ($\neg A$) тоже формула. Свободные и связанные переменные формулы ($\neg A$) это соответственно свободные и связанные переменные формулы A.
- 3. Пусть A и B формулы, причем нет таких предметных переменных, которые были бы связаны в одной формуле и свободны в другой. Тогда

$$(A \lor B), (A \& B), (A \supset B), (A \sim B)$$
 (1.4)

есть формулы, в которых свободные переменные формул A и B остаются свободными, а связанные переменные формул A и B остаются связанными.

4. Пусть A – формула, содержащая свободную переменную x. Тогда

$$(\forall x)A, (\exists x)A \tag{1.5}$$

тоже формулы. Переменная x в них связана. Остальные же переменные, которые в формуле A свободны, остаются свободными и в формулах (1.5). Переменные, которые в формуле A связаны, остаются связанными и в формулах (1.5). В первой из формул (1.5) формула A называется областью действия квантора $\forall x$, а во второй – областью действия квантора $\exists x$.

5. Слово в алфавите логики предикатов 1-5 является формулой только в том случае, если это следует из правил 1-4.

Заметим, что по определению формулы никакая переменная не может быть одновременно свободной и связанной.

Оставим в силе принятое в разд. 1.1.1 соглашение об опускании скобок. Кроме того, операции связывания кванторами будем считать более сильными, чем любые логические операции.

Пример 1.28.

- 1. Следующие выражения являются формулами логики предикатов: $A_5^{(3)}(x_1, x_5, x_7)$ атомарная формула, в которой x_1, x_5, x_7 свободные переменные; $(\forall x_1)(\exists x_2)\,A_1^{(3)}(x_1, x_2, x_3) \supset (\forall x_1)\,A_1^{(2)}(x_1, x_4)$ формула, в которой x_1, x_2 связанные, а x_3, x_4 свободные переменные.
- 2. Выражение $(\forall x_1)(\exists x_2)A_1^{(2)}(x_1, x_3)\&A_2^{(2)}(x_1, x_2)$ не является формулой.

Значение формулы определено лишь тогда, когда задана какая-ни-будь интерпретация входящих в нее символов.

Под интерпретацией понимают систему $\mathbf{M} = \langle \mathbf{M}, f \rangle$, состоящую из непустого множества \mathbf{M} и соответствия f, сопоставляющего каждому пре-

дикатному символу $A_j^{(t)}$ определенный t-местный предикат (будем обозначать предикаты, поставленные в соответствие предикатным символам, теми же символами).

При заданной интерпретации считают, что предметные переменные пробегают множество M, а символы ¬, &, ∨, ⊃, ~ и символы кванторов имеют свой обычный смысл. Для данной интерпретации каждая формула без свободных переменных представляет собой высказывание, которое истинно или ложно, а всякая формула со свободными переменными выражает некоторый предикат на множестве M, который истинен при одних значениях переменных из этого множества и ложен при других.

Определим значение формулы в данной интерпретации, следуя индуктивным шагам определения формулы. Значение формулы F на наборе $\langle a_1,\ldots,a_n\rangle$, где $a_i\in M$, своих свободных переменных x_{i_1},\ldots,x_{i_n} обозначим символом $F|_{\langle a_1,\ldots,a_n\rangle}$.

- 1. Формула F атомарная формула $A_j^{(t)}(x_{i_1},...,x_{i_t})$. Пусть $x_{j_1},...,x_{j_s}$ все различные свободные переменные этой формулы, выписанные в определенном порядке. Значением формулы F на наборе $\langle a_1,...,a_s \rangle$, $a_j \in M$, называется значение t-местного предиката, сопоставленного символу $A_j^{(t)}$ при соответствующем замещении его переменных элементами $a_1,...,a_s$.
- 2. Формула F имеет вид $\neg A$. Пусть значение формулы A на наборе $< a_1, ..., a_n >, a_i \in M$, есть ε . Тогда $F|_{< a_1, ..., a_n >} = \neg \varepsilon$.
- 3. Формула F имеет вид $(A \lor B)$, (A & B), $(A \supset B)$ или $(A \sim B)$. Значение формулы F на наборе значений своих свободных переменных есть соответственно $\varepsilon_1 \lor \varepsilon_2$, $\varepsilon_1 \& \varepsilon_2$, $\varepsilon_1 \supset \varepsilon_2$, $\varepsilon_1 \sim \varepsilon_2$, где ε_1 значение формулы A, а ε_2 значение формулы B на этом наборе.
- 4. Формула F имеет вид ($\forall x$)A. Если x_{i_1},\ldots,x_{i_n} совокупность всех свободных переменных формулы F, то x,x_{i_1},\ldots,x_{i_n} все свободные переменные формулы A. Значение ($\forall x$) $A|_{\langle a_1,\ldots,a_n\rangle}=$ И тогда и только тогда, когда для любого $a\in M$ $A|_{\langle a,a_1,\ldots,a_n\rangle}=$ И.
- 5. Формула F имеет вид $(\exists x)A$. Если $x_{i_1},...,x_{i_n}$ совокупность всех свободных переменных формулы F, то $x, x_{i_1},...,x_{i_n}$ все свободные переменные формулы A. Значение $(\exists x)A|_{< a_1,...,a_n>}= \mathsf{И}$ тогда и только тогда, когда для некоторого $a\in \mathsf{M}$ $A|_{< a_1,...,a_n>}= \mathsf{U}$.

Пример 1.29. Рассмотрим три формулы:

- 1) $A_1^{(2)}(x_1, x_2);$
- 2) $(\forall x_2)A_1^{(2)}(x_1, x_2);$
- 3) $(\exists x_2)(\forall x_1)A_1^{(2)}(x_2, x_1)$.

Возьмем в качестве области интерпретации множество целых положительных чисел и интерпретируем $A_1^{(2)}(x,y)$ как $x\leq y$. Тогда первая формула — это предикат $x_1\leq x_2$, который принимает истинное значение для

всех пар a, b целых положительных чисел таких, что $a \le b$. Вторая формула выражает свойство: «для каждого целого положительного числа у $x \le y$ », которое выполняется только при x = 1. Наконец, третья формула — это истинное высказывание о существовании наименьшего целого положительного числа. Если бы в качестве области интерпретации мы рассматривали множество целых чисел, то третья формула была бы ложным высказыванием.

Пример 1.30. Пусть **M** = <N, f>, где N – множество натуральных чисел с добавлением числа 0, f – соответствие, сопоставляющее предикатным символам $S^{(3)}(x,y,z)$, $P^{(3)}(x,y,z)$ следующие предикаты: $S^{(3)}(x,y,z)$: x + y = z; $P^{(3)}(x,y,z)$: xy = z.

Запишем формулы, истинные в **M** тогда и только тогда, когда выполнены следующие условия:

а) x = 0; б) x = 1; в) x – четное число; г) x – простое число; д) x = y; е) $x \le y$; ж) x делит y; з) коммутативность сложения.

Ответы: а) $F_1(x) = (\forall y)S^{(3)}(x, y, y)$; так как x + y = y для любого y тогда и только тогда, когда x = 0; б) $F_2(x) = (\forall y)P^{(3)}(x, y, y)$; в) $F_3(x) = (\exists y)S^{(3)}(y, y, x)$; г) $F_4(x) = \neg F_2(x)\&(\forall y)(\forall z)(P^{(3)}(y, z, x) \supset (F_2(y) \lor F_2(z)))$, где: F_1 , F_2 — формулы, определенные в пп. «а» и «б»; д) $F_5(x) = (\forall z)(\forall u)(S^{(3)}(x, z, u) \supset (S^{(3)}(y, z, u))$; е) $F_6(x, y) = (\exists z)S^{(3)}(x, z, y)$; ж) $F_7(x, y) = (\exists z)P^{(3)}(x, z, y)$; 3) $(\forall x)(\forall y)(\forall z)(S^{(3)}(x, y, z) \supset S^{(3)}(y, x, z))$

Пример 1.31. Пусть f(x) – произвольная фиксированная функция, заданная на отрезке [a, b].

1. Рассмотрим интерпретацию $\mathbf{M} = \langle \mathbf{M}, f_1 \rangle$, где \mathbf{M} - множество действительных чисел; f — соответствие, сопоставляющее предикатным символам $P(x,\delta)$, $Q(x,\varepsilon)$ и $R(\varepsilon)$ предикаты $P(x,\delta): |x-x_0| < \delta$; $Q(x,\varepsilon): |f(x)-A| < \varepsilon$; $R(\varepsilon): \varepsilon > 0$. Здесь x_0 — фиксированный элемент отрезка [a,b]; \mathbf{A} — некоторое фиксированное действительное число. Тогда утверждение о том, что число \mathbf{A} — предел функции f(x) при $x \to x_0$, записывается формулой

$$(\forall \varepsilon)(\exists \delta)(\forall x)((R(\varepsilon)\&P(x, \delta))\supset Q(x, \varepsilon)).$$

2. Рассмотрим интерпретацию $\mathbf{M} = <\mathbf{M}, f_2>$, где \mathbf{M} — множество действительны чисел; f_2 — соответствие, сопоставляющее предикатным символам $P(x,\delta), R(\varepsilon)$ и $S(x,\varepsilon)$ предикаты $P(x,\delta): |x-x_0|<\delta, R(\varepsilon): \varepsilon>0,$ $S(x,\varepsilon): |f(x)-f(x_0)|<\varepsilon.$ Здесь. x_0 — произвольный фиксированный элемент отрезка [a,b]. Тогда утверждение о том, что функция f(x) непрерывна в точке x_0 записывается формулой

$$(\forall \varepsilon)(\exists \delta)(\forall x)((R(\varepsilon)\&P(x,\ \delta))\supset S(x,\ \varepsilon)).$$

3. Рассмотрим интерпретацию $\mathbf{M} = \langle \mathbf{M}, f_3 \rangle$, где \mathbf{M} - множество действительных чисел; f_3 - соответствие, сопоставляющее предикатным символам $P_1(x, x_1, \delta)$, $R(\varepsilon)$, $S_1(x, x_1, \delta)$, D(x) предикаты $P_1(x, x_1, \delta): |x - x_1| < \delta$; $R(\varepsilon): \varepsilon > 0$; $S_1(x, x_1, \delta): |f(x) - f(x_1)| < \varepsilon$; $D(x): x \in [a, b]$. Тогда

утверждение о том, что функция f(x) непрерывна на отрезке [a, b], записывается формулой

 $(\forall x_1) \ (\forall \varepsilon) (\exists \delta) (\forall x) ((D(x_1) \& R(\varepsilon) \& P_1(x, x_1, \delta)) \supset S_1(x, x_1, \delta))$ является общезначимой.