Foreground/Background Image Segmentation

By Natalia Frumkin

Problem Statement

Segment an image into background and foreground

Techniques

1. Image Filtering

2. Max Flow Algorithms

Otsu's Method for Filtering

Big idea: automatic thresholding by minimizing intra-class variance

Results

Max-Flow Techniques

Energy Minimization

$$E(L) = \sum_{p \in \mathcal{P}} D_p(L_p) + \sum_{(p,q) \in \mathcal{N}} V_{p,q}(L_p, L_q)$$

Data Penalty Term

Individual pixel intensity

Interaction Potential Term

Promotes spatial coherence between neighboring pixels

Interaction Potential Term

Promotes spatial coherence between neighboring pixels

Data Penalty Term Individual pixel intensity

Graph Setup

source cut. (b) A cut on \mathcal{G}

Graph Weights

Intensity weights (Data Penalty)

distribution of individual pixels match src/sink labels

computed by:
$$exp\left(-\frac{(I_p-I_q)^2}{2\sigma^2}\right)$$

Interpixel weights (Interaction Potential)

distribution using intensity difference between neighboring pixels computed through closed-form gaussian estimation

Annotation: Supervised Method

Ford Fulkerson Algorithm

Growth Phase

Find path from source to sink using BFS

2. Augment Phase

Push flow from $s \rightarrow t$

Update residual graph and max-flow

Repeat until no paths can be found between source & sink

1. Growth Phase

Search trees S and T grow until they touch giving an s→ t path

2. Augment Phase

Augment s → t path by pushing flow

3. Adoption Phase

Restore single-tree structure of sets S and T

Repeat three phases until end conditions are satisfied:

- 1) S & T Trees can not grow (no active nodes)
- 2) Trees are separated by saturated edges

Issues: Parameter Fitting

Next Steps:

- Grid search for optimal lambda and sigma
- Use Gaussian Mixture Models for weights

Runtime

Otsu's Method

O(max(N_pixels, N_bins*N_bins)

real runtime: 0.0017 sec

Ford-Fulkerson Method

 $O(V^*E^2)$

real runtime: Too long :(

Boykov-Kolmogorov Method

 $O(V^2 * E * |C|)$

real runtime: 10.6+0.00088 sec

Demo!