1. Vector aleatorio

- 1. La distribución de probabilidad conjunta del vector (X,Y) está dada por $p(x,y)=\frac{x+y}{30}$ con x=0,1,2,3 e y=0,1,2.
 - a) Determine:
 - 1) $P(X \le 2, Y = 1)$.
 - 2) $P(X > 2, Y \le 1)$.
 - 3) P(X Y > 0).
 - 4) P(X + Y = 4).
 - b) Obtenga las distribuciones marginales de X e Y respectivamente...
 - c) ¿Son X e Y variables aleatorias independientes?
 - d) Calcule el coeficiente de correlación entre X e Y.
 - e) Obtenga las distribuciones condicionales.

Soluciones

- a) COMPLETAR.
- b) COMPLETAR.
- c) COMPLETAR.
- d) COMPLETAR.
- e) COMPLETAR.
- 2. El ejemplo siguiente ilustra que $\rho = 0$ no implica independencia. Suponiendo que una variable aleatoria bidimensional (X,Y) tiene una distribución conjunta dada por

Y/X	-1	0	1
-1	d	c	d
0	c	0	c
1	d	c	d

donde c > 0, d > 0, 4c + 4d = 1, demuestre que:

- a) $\rho = 0$.
- b) X e Y no son independientes.

Soluciones

- a) COMPLETAR.
- b) COMPLETAR.
- 3. Se debe seleccionar un comité de tres personas elegidas al azar de un grupo constituido por cuatro docentes y cinco estudiantes. Sea X_1 : "número de docentes en el comité" y X_2 : "número de estudiantes en el comité".
 - a) Determine la distribución de probabilidad conjunta de X_1 y X_2 .
 - b) Determine las distribuciones marginales de X_1 y X_2 .
 - c) ¿Son X_1 y X_2 independientes?
 - d) Calcule $P(X_1 = 1 | X_2 \ge 1)$.

Soluciones

- a) COMPLETAR.
- b) COMPLETAR.
- c) COMPLETAR.
- d) COMPLETAR.
- 4. Sea f la función densidad de probabilidad conjunta del vector aleatorio (X,Y), dada por:

$$f(x,y) = \begin{cases} kx(x-y) & 0 < x < 2, -x < y < x \\ 0 & \text{en otro caso} \end{cases}$$

- a) Determine el valor de k.
- b) Obtenga las distribuciones marginales de Xe Y respectivamente.
- c) Calcule el coeficiente de correlación entre X e Y.

Soluciones

- a) COMPLETAR.
- b) COMPLETAR.
- c) COMPLETAR.
- 5. Sea f la función densidad de probabilidad conjunta del vector aleatorio (X,Y), dada por:

$$f(x,y) = \begin{cases} k & 0 < x < 1, x < y < x + 1 \\ 0 & \text{en otro caso} \end{cases}$$

- a) Determine el valor de k.
- b) Obtenga las distribuciones marginales de Xe Y respectivamente.
- c) Calcule el coeficiente de correlación entre X e Y.

Soluciones

- a) COMPLETAR.
- b) COMPLETAR.
- c) COMPLETAR.
- 6. Un sistema electrónico opera con dos tipos de componentes. Sean T_1 y T_2 las variables aleatorias tiempo de duración (en horas) de las componentes de tipo 1 y 2 respectivamente. La función densidad de probabilidad conjunta del vector (T_1, T_2) es:

$$f(t_1, t_2) = \begin{cases} \frac{t_1}{8} e^{-\left(\frac{t_1 + t_2}{2}\right)} & 0 < t_1, 0 < t_2\\ 0 & \text{en otro caso} \end{cases}$$

- a) Determine $P(T_1 \ge 1, T_2 \ge 1)$.
- b) Calcule la probabilidad de que una componente de tipo 2 tenga una duración mayor que 2 horas.

Soluciones

- a) COMPLETAR.
- b) COMPLETAR.
- 7. Los tiempos en horas T_A y T_B que dos estudiantes A y B demoran en resolver un problema son variables aleatorias independientes con distribución exponencial y esperanza 0,5 hs. Calcule la probabilidad de que el estudiante A demore a lo sumo una hora y el estudiante B demore como máximo 45 minutos.

Solución COMPLETAR.

- 8. Se escoge al azar un punto de coordenadas reales en el triángulo limitado por y = 0, x = 0, y = 2n x.
 - a) Determine la distribución conjunta de las coordenadas (X, Y).
 - b) Determine las distribuciones marginales de X e Y.
 - c) Determine la distribución condicional de X dado Y.

Soluciones

- a) COMPLETAR.
- b) COMPLETAR.
- c) COMPLETAR.
- 9. Sean X_1 y X_2 variables aleatorias cuya distribución conjunta es uniforme en el triángulo de vértices (-1,0), (0,1) y (1,0).

Solución COMPLETAR.

2. Suma de variables aleatorias

10. Un aparato de televisión puede tener dos tipos de roturas: debido a falla de transistores o debido a la falla de condensadores. Ambas fuentes de rotura son independientes. El número de roturas debido a falla de transistores durante los dos primeros años de utilización del aparato es una v. a. que sigue una ley de Poisson con promedio 1. El número de roturas debido a la falla de condensadores, durante el mismo período, sigue una ley de Poisson con promedio 2. Calcule la probabilidad de que en el primer año de utilización del aparato, éste tenga exactamente 2 roturas.

Solución COMPLETAR.

11. Ciertos elementos de un circuito eléctrico se protegen contra el exceso de voltaje por medio de dos relevadores R_1 y R_2 que se ajustan para ser descargados en períodos X_1 y X_2 respectivamente, después que comienza el exceso de voltaje. Estos períodos de descarga varían debido a pequeños factores incontrolables, por lo que se puede suponer que X_1 y X_2 son v. a. normales independientes con tiempos medios de descarga $\mu_1 = 1s$ y μ_2 , y varianzas $\sigma_{12} = \sigma_{22} = \frac{1}{10}s^2$. Determine μ_2 de manera tal que la probabilidad de que R_2 sea descargada antes que R_1 sea a lo sumo 0,001.

Solución COMPLETAR.

12. Sean X_1, \ldots, X_n ; n variables aleatorias independientes distribuidas uniformemente en el intervalo (0,1). Encuentre la función de densidad de probabilidad de la variable aleatoria $Z = X_1 + \ldots + X_{60}$.

Solución COMPLETAR.

- 13. COMPLETAR.
- 14. COMPLETAR.
- 15. COMPLETAR.
- 16. COMPLETAR.
- 17. COMPLETAR.
- 18. COMPLETAR.

- 19. COMPLETAR.
- 20. COMPLETAR.