Bizonyítékokon alapuló állatorvoslás

Solymosi Norbert

Kvantitatív állatorvosi epidemiológia Járványtani és Mikrobiológiai Tanszék Állatorvostudományi Egyetem Klinikai tapasztalat

EBM

Páciensre vonatkozó információk

Elérhető legjobb bizonyított ismeretek "A bizonyítékokra alapozott orvoslás (Evidence Based Medicine, EBM) a jelenleg legjobb bizonyítottságú ismeretek lelkiismeretes. egyértelmű és megfontolt alkalmazása az egyes páciensekre vonatkozó egészségügyi döntések során. Az EBM gyakorlása során az orvos a saját klinikai tapasztalatát ötvözi az elérhető, tudományosan legmegalapozottabb ismeretekkel." (Sackett et al., 2000)

2/36

Klinikai tapasztalat

Elérhető legjobb bizonyított ismeretek

EBVM

Tulajdonosi és gazdasági szempontok

Páciensre vonatkozó információk bizonyítékokra alapozott állatorvoslás (Evidence Based Veterinary Medicine, EBVM) kiegészül a tulajdonosi/gazdasági szempontokkal is Klinikai tapasztalat

Elérhető legjobb bizonyított ismeretek

EBVM

Tulajdonosi és gazdasági szempontok

Páciensre vonatkozó információk

- az orvosi és állatorvosi irodalom folyamatosan gyarapszik
- az EBM és az EBVM között különbség, hogy kevesebb jól megalapozott ismeret érhető el utóbbihoz (Kastelic, 2006)

Klinikai tapasztalat Flérhető Tulajdonosi leg jobb és gazdasági **FBVM** bizonyított szempontok ismeretek Páciensre vonatkozó

információk

- a tulajdonosok szintén hozzáférnek az állatorvosi szakirodalom jelentős részéhez, anélkül, hogy klinikai tapasztalatuk lenne
- ez a klinikai tevékenység során több vitás helyzetet szül, amelyekben a tudományos megalapozottság és a klinikai tapasztalat segíthet a meggyőzésben

Az EBVM tulajdonképpen egy olyan ismeretfrissítési strukturált folyamat, amely szabályrendszerével segíti az állatorvost a legjobb döntések megalapozásában.

Kérdés

Első lépésként határozzuk meg a klinikai problémát, amit egy (remélhetőleg) megválaszolható kérdésként kell megfogalmaznunk.

a kérdés megválaszolásához legmegalapozottab ismeretek gyűjtése

az összegyűjtött releváns információk minőségének értékelése

http://www.ebvmlearning.org/

- 4 ロ ト 4 部 ト 4 注 ト 4 注 - り Q ()

amennyiben lehetséges az új ismeretek alkalmazása a klinikai gyakorlatban

http://www.ebvmlearning.org/

(ロ) (部) (注) (注) 注 り

az alkalmazás és a klinikai gyakorlatban észlelhető változások értékelése

http://www.ebvmlearning.org/

QEpi (2023) EBVM 10/36

QEpi (2023)

EBVM

Az EBVM-ben a kérdés megfogalmazásához különböző információ-szerkesztési megközelítéseket használnak.

Az egyik ilyen a PICO, amelynek szabályait követve olyan kérdéssé formálhatjuk érdeklődésünk tárgyát, hogy arra a lehető legszabatosabban választ kaphassuk (https://pico.vet/).

Páciens: populáció és/vagy probléma Intervenció: kezelés, prognosztikai tényező, kitettség Összehasonlítás (comparison) Kimenet (outcome) 0

Kezelés Ezek a kérdések a kívánt eredmény elérése érdekében választott kezelésekre vonatkoznak. Ezek gyógyszerre, műtéti megoldásra, diétára, stb. vonatkozó választások. A kezelésre vonatkozó kérdések megválaszolására a legjobb források az RCT-k, ha elérhetők.

Mely diéta a legjobb krónikus veseelégtelenségben szenvedő macskák takarmányozására?

PICO: [**P:** krónikus veseelégtelenségben szenvedő macskáknál] a [**I:** "vesediétás" táp etetése] [**C:** összehasonlítva a nem "vesediétás" táppal való etetéssel] hatással van-e a [**O:** túlélési időre]?

http://www.ebvmlearning.org/

◆ロト ◆個 ト ◆ 差 ト ◆ 差 ・ 夕 Q ○

QEpi (2023) EBVM

Prognózis & Incidencia A betegség előfordulásának valószínűségére és lefolyására vonatkozó kérdések. A **kohorsz** vizsgálatokból származó adatok segíthetnek leginkább a megválaszolásukban.

Daganatos simaszőrű retrieverek túlélését befolyásolja az ivar?

PICO: [Cutan lymphomás simaszőrű retriever között] különbözik-e [a kanoknak] [nőstényekhez] hasonlítva [az átlagos várható élettartama]?

http://www.ebvmlearning.org/

←□▶←□▶←필▶←필 ♥ 약

Kóroktan & kockázat Ezek a kérdések az egészséggel kapcsolatos állapot, betegség okára, a kialakulását befolyásoló tényezőkre vonatkoznak. Megválaszolásukra leginkább a kohorsz, eset-kontrollos vagy keresztmetszeti vizsgálatok szolgálnak információval.

Milyen kockázatai vannak görények altatásának?

PICO: [Görényekben] [az intravénás altatás] összehasonlítva [az altatógéppel történő altatással] [nagyobb elhullási kockázattal] jár?

- 4 ロ ト 4 昼 ト 4 夏 ト - 夏 - 夕 Q C

15/36

QEpi (2023) EBVM

Diagnózis Ezek a kérdések arra vonatkoznak, hogy mely tünetek, információk alapján tudunk dönteni az állatok egészségi állapotáról. Megválaszolásukra leginkább a diagnosztikai (teszt) értékelési vizsgálatok alkalamasak.

Melyik diagnosztikai teszt a legmegbízhatóbb tehenek májmételykórjának diagnózisában?

PICO: [Tejelő szarvasmarhák között] [a tejmintából végzett ELISA] vagy [a szérumból végzett ELISA] rendelkezik [jobb szenzitivitás és specificitás értékekkel a májmételykór diagnosztikájában]?

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト 9 Q C

16/36

QEpi (2023) EBVM

Prevalencia Az egy adott időpontban a populációban jelenlévő betegek gyakoriságára vonatkozó kérdések leginkább **keresztmetszeti** vizsgálatokkal válaszolhatók meg.

Mekkora a szívbetegségek prevalenciája a Welsh mountain póni "A" változatában?

PICO: [A lovakon belül] [a Welsh mountain póni "A" változatában] összehasonlítva [egyéb fajtákkal] nagyobb [a szívbetegségek prevalenciája]?

http://www.ebvmlearning.org/

QEpi (2023) EBVM 17/36

Hol találunk bizonyítékokat?

Ideális helyzetben a klinikai döntéseink során a legfrissebb releváns tudományos eredményekre támaszkodhatunk. De hol keressük ezeket az állatorvosi evidenciákat?

Sajnos, nincsen egy olyan hely, ahol minden kérdésünkre választ kapunk, így különböző eszközöket, adatbázisokat kell használnunk.

- keressünk szintetizáló forrásokat (irodalmi áttekintések)
- keressünk a szakirodalmi adatbázisokban
- a releváns közlemények irodalomjegyzékét tanulmányozzuk
- olvassuk el teljes egészében a kulcsfontosságú közleményeket
- konzultáljunk kutatókkal és szakértőkkel
- használjunk még "nem közölt" adatokat

A kereséseinket átlátható módon dokumentáljuk: PRISMA http://prisma-statement.org/PRISMAStatement/

18/36

- A kérdés megválaszolására megfelelő vizsgálati elrendezést használtak?
- A közlemény minősége elég jó ahhoz, hogy a kérdésem megválaszolását segítse?
- A közleményben a PICO P-je megfeleltethető az én kérdésem P-jének?
- Nem minden igaz, amit leírnak! Hihetők az eredmények?
- A tudományos szakirodalom megkerülhetetlen, de az eredményei nem minden esetben érvényesek a gyakorlatban.
- A közleményben az evidencia milyen szintű megalapozottsággal rendelkezik?

http://www.ebvmlearning.org/

イロト 4回ト 4 直 ト 4 直 ト 9 年 9 9 0 0

21/36

Az evidenciák hierarchiája

több RCT

randomizált klinikai vizsgálatok

nem randomizált klinikai vizsgálatok

megfigyeléses vizsgálatok (keresztmetszeti, eset-kontroll, kohorsz)

esettanulmányok, esetsorozatok, anekdoták, személyes vélemények

Hierarchiaszint: anekdota

- az akut hasmenés esetenként magától gyógyuló gyakori kórkép, amivel állatorvoshoz fordulnak, azonban az általánosan alkalmazott kezelésekre vonatkozóan kevés hatékonysági ismeretünk van
- kettő anekdotikusan javasolt kezelés: probiotikum és a metronidazol
- 60 egyéb konkurens betegségektől mentes kutyát véletlenszerűen három kezelési csoportba soroltak (placebo, probiotikum, metronidazol)
- az akut hasmenés tüneteit mutató kutyákat kezelték
- a bélsár elfogadható állaga jelentette a gyógyulást, ennek bekövetkezte a probiotikummal kezeltek között 3.5 ± 2.2 nap, a metronidazollal kezelteknél 4.6 ± 2.4 nap, míg a placebo csoportban 4.8 ± 2.9 nap volt
- p = 0.17

4 D > 4 A > 4 B > 4 B > B = 90 Q A

Shmalberg et al. (2019)

QEpi (2023)

Hierarchiaszint: nem véletlen besorolású vizsgálatok

 a valódi randomizáció során az egyedek véletlenszerűen sorolódnak az egyik vagy másik kezelési ágba, így az önkényes besorolás okozta torzítás elkerülhető

- az önkényes besorolás eredményeként azonban elkerülhető zavaró tényezők (ún. confounder) jelennek meg a vizsgálatban, pl.
 - eltérő eseteket válogatnak be a kezelésekhez
 - a hét különböző napjain különböző kezeléseket alkalmaznak

 a valódi randomizáció kivitelezése egyáltalán nem bonyolult, elhanyagolása csak lustaságból vagy tudatlanságból származhat

SIGN-féle evidenciaosztályozás

- 1++ RCT-k magas szintű metaanalízise, szisztematikus áttekintése, vagy kis torzítási kockázatú RCT-k
 - 1+ jól kivitelezett metaanalízisek, szisztematikus áttekintések, vagy kis torzítási kockázatú RCT-k
 - 1- metaanalízisek, szisztematikus áttekintések, vagy nagyobb torzítási kockázatú RCT-k
- 2++ Magas szintű szisztematikus áttekintés eset-kontrollos vagy kohorsz vizsgálatokból. Magas minőségű eset-kontrollos vagy kohorsz vizsgálatok, amelyekben nagyon alacsony a torzítási kockázat, illetve nagy a valószínűsége annak, a kapcsolat ok-okozati
 - 2+ Jól kivitelezett eset-kontrollos vagy kohorsz vizsgálatok, amelyekben alacsony a torzítási kockázat, illetve mérsékelt a valószínűsége annak, a kapcsolat ok-okozati
 - 2- eset-kontrollos vagy kohorsz vizsgálatok, amelyekben nagy a torzítási kockázat és jelentős esélye van annak, hogy a kapcsolat nem ok-okozati
 - 3 nem analitikus vizsgálatok: esettanulmányok, esetsorozatok
 - 4 szakértői vélemény

SIGN: Scottish Intercollegiate Guidelines Network

QEpi (2023)

EBVM

25 / 36

Az evidenciák gyakorlati alkalmazása

- Mennyire releváns az evidencia?
- Jó másokkal is megosztani az evidenciát és véleményeztetni
- Előkészületek a gyakorlat megváltoztatására:
 - Kinek?
 - Mikor?
 - Mit?

QEpi (2023)

- Hogyan?
- Ha még továbbra is bizonytalanok vagyunk abban, hogy a mi kérdésünknek, helyzetünknek megfelelő választ kaptunk-e, akkor érdemes "kipróbálni" egy pilot keretében.

26 / 36

http://www.ebvmlearning.org/ **EBVM** Az egyetlen lehetőség arra vonatkozóan, hogy az evidencia alkalmazása jelent-e javulást a betegellátásban, az ha valahogy mérjük az alkalmazása során a hatását.

Az eredményességét értékelendő, a kérdések sorozatát érdemes őszintén megválaszolni, pl:

- A megoldandó problémákat megfelelően azonosítom és fontosságuk szerint kezelem?
- Megfelelő és teljes vizsgálatot végzek minden egyes állatnál, abból a szempontból, hogy az alternatív diagnózisoknak is esélyt adjak?
- Megfelelő ismeretekkel rendelkezem a betegségek kialakulásával, a vizsgált klinikai tünetek szenzitivitásával és specificitásával, illetve a különböző klinikai tünetek együttes előfordulásának gyakoriságával kapcsolatban?
- Gyűjtök ismereteket, amikor tudom, hogy nem vagyok birtokukban?
- Értékelem az információkat tudományos érvényességük szempontjából?
- Értem a fogalmakat (pl. Se, Sp), amelyek a mindennapi gyakorlatban szükségesek az információk értelmezéshez?
- Megfontolom, hogy a hozzám eljutott információk tudományosan igazoltak-e és észszerű-e az alkalmazásuk?
- Elmagyarázom a tulajdonosnak a különböző megközelítések előnyeit és hátrányait annak érdekében, hogy érthetővé váljon számára az alkalmazhatósága?

http://www.ebvmlearning.org/

27/36

Narratív irodalmi áttekintések:

- Hajlamosak vagyunk arra, hogy a témában fellelhető összes ismeretnek csak egy részét vonjuk be a szintézisbe.
- Ezáltal előállhat egy beválogatási torzulás.

Szisztematikus irodalmi áttekintések:

- Standardizált és szigorú módszertant alkalmazva végzünk tudományos irodalmi áttekintést, minimalizálva a torzulás lehetőségét.
- Átfogó irodalmi kutatást végzünk abból a célból, hogy azonosítsuk, értékeljük és szintetizáljuk az adott témában releváns tanulmányokat.
- Formalizálva és teljesen nyilvánosan mutatjuk be, hogy mely forrásokat használtuk fel, azokat milyen keresési stratégiával gyűjtöttük. Ez lehetővé teszi a szakértői véleményezést és a megismételhetőséget.
- Evidenciák szintézise:

metaszintézis: a kvalitív adatok szisztematikus összegzése metaanalízis: egységes metodikával végzett kvantitatív elemzés

http://www.ebvmlearning.org/

"Technikák gyűjteménye, amelyekkel két vagy több független vizsgálat eredményeit statisztikailag kombináljuk, abból a célból, hogy a kérdésünkre átfogóbb választ kapjunk."

- Fix-hatás (FE) modell:
 - azt feltételezzük, hogy minden egyes vizsgálat egy nem ismert általános hatást becsül
 - a kutatási kérdés, hogy a kezelésnek van-e egy átlagos hatása, a szintézisbe bevont vizsgálatokban
 - nem célja, hogy általánosítsa az eredményeket más vizsgálatokra
- Random-hatás (RE) modell:
 - azt feltételezzük, hogy minden egyes vizsgálat a saját ismeretlen hatását becsli
 - megengedi a vizsgálatokon belüli és vizsgálatok közötti heterogenitást
 - eredménye kiterjeszthető a jövőre vonatkozóan is

Hothorn and Everitt (2014)

QEpi (2023) EBVM 29 / 36

- a leptospirózis zoonózis, aminek a dolgozók kitettek a haszonállattartásban, megelőzhető vakcinázással
- számos vizsgálatot végeztek a vakcina hatékonyságára vonatkozóan, de ezek együttesen még nem voltak értékelve
- szisztematikus áttekintést és metaanalízist végeztek vakcináknak szarvamarhák Leptospira serovar Hardjo (Hardjo) vizelettel való ürítésére gyakorolt hatásának értékelése céljából

PRISMA Flow Diagram

Trial	Vaccir Shed(+)		Con Shed(+)				Relative Risk [95% CI]
Cortese et al., 2014	0	41	10	11	◄		0.014 [0.001, 0.216]
Zimmerman et al., 2013	4	18	18	18	⊢ ■		0.243 [0.108, 0.547]
Rinehart et al., 2012b	0	21	11	11			0.024 [0.002, 0.368]
Zuerner et al., 2011	0	8	7	7	4		0.059 [0.004, 0.881]
Bolin et al., 1989a	1	15	5	5			0.102 [0.022, 0.478]
Broughton et al., 1984_Calves	0	9	6	10	•	—	0.085 [0.005, 1.318]
Broughton et al., 1984_Heifers	2	8	9	10	⊢		0.278 [0.082, 0.939]
Allen et al., 1982	2	39	13	42			0.166 [0.040, 0.688]
Mackintosh et al., 1980	2	8	9	10	ı——•		0.278 [0.082, 0.939]
Mantel-Haenszel fixed effects	model				•		0.113 [0.068, 0.190]
Bayesian random effects mod	el				-		0.101 [0.051, 0.194]
					0.010 0.200 1.0	100	

Sanhueza et al. (2018)

4 ロ ト 4 回 ト 4 亘 ト 4 亘 ・ り Q (や)

QEpi (2023) EBVM

Virus seroty _l	oe Study	RR	Lower limit	Upper limit	R	R and 9	5% (CI	
A A A A PRR A Asia 1 PRR Asia O O O O O O O O O O O O O O O O O O O	Aggarwal, 2002 Cox, 2005 Cox, 2006 Cox, 2007 Doel, 1994 Donaldson, 1989 Goris, 2007 Orsel, 2005	0.051 0.123 0.075 0.225 0.126 0.124 0.124 0.124 0.026 0.026 0.026 0.0294 0.019 0.190 0.190 0.100	0.003 0.071 0.016 0.069 0.079 0.052 0.007 0.002 0.177 0.001 0.089 0.037 0.015	0.770 0.214 0.352 0.737 0.202 0.295 0.295 1.490 0.406 0.406 0.488 0.297 0.361 0.219 0.664 0.236 0.178	0.01	0.1		10	100
					ravo	rs vacci	ne I	ravors n	o vaccine

ragadós száj- és körömfájás: különböző vizsgálatok egyedi és összesített preventív hatása relatív kockázattal kifejezve

Halasa et al. (2011)

←□ ト ←□ ト ← 亘 ト ← 亘 ・ 夕 へ ○

QEpi (2023) EBVM

- az endoszkópos retrográd kolangiopankreatográfiában (ERCP) a post-ERCP pancreatitis (PEP) megelőzése
- a nem-szteroid gyulladáscsökkentők PEP-megelőzésben hatása ismert
- a PEP-megelőzésben a diclofenac és az indomethacin a két legtöbbet tanulmányozott hatóanyag
- vizsgálatunk célja az volt, hogy az összes megjelent prospektív vizsgálat adatait egységes módon kezelve a hatóanyagok preventiv hatását együttesen értékelhessük

Author (Year)	Trea Events	ted Total	Con Events	trol Total		Weight	Risk Ratio [95% CI]
Diclofenac							
Abu-Safieh et al. (2014)	6	89	12	93	├	5.18%	0.52 [0.20, 1.33]
Cheon et al. (2007)	17	105	17	102	_ _	8.13%	0.97 [0.53, 1.80]
Khoshbaten et al. (2008)	2	50	13	50	├ ───┤	2.78%	0.15 [0.04, 0.65]
Lua et al. (2015)	7	69	4	75	<u> </u>	→ 3.75%	1.90 [0.58, 6.22]
Murray et al. (2003)	7	110	17	110	├-	5.92%	0.41 [0.18, 0.95]
Otsuka et al. (2012)	2	51	10	53	├- ───┤┊	2.68%	0.21 [0.05, 0.90]
Park et al. (2015)	22	173	20	170		8.68%	1.08 [0.61, 1.91]
Senol et al. (2009)	3	40	7	40	├		0.43 [0.12, 1.54]
Zhao et al. (2014)	4	60	12	60	├-	4.31%	0.33 [0.11, 0.98]
RE model for subgroup	70	747	112	753	-		0.57 [0.36, 0.92]
Heterogeneity: $I^2 = 54.29\%$, C Test for overall effect: $p = 0.0$	208 1208	= 17.24, [0 = 0.0277				
Andrade-Dávila et al. (2015)	4	82	17	84	L :	1 17%	0.24 [0.08, 0.69]
Döbrönte et al. (2012)	11	130	11	98			0.75 [0.34, 1.67]
Döbrönte et al. (2014)	20	347	22	318	' <u>-</u> '		0.83 [0.46, 1.50]
Elmunzer et al. (2012)	27	295	52	307			0.54 [0.35, 0.84]
Levenick et al. (2016)	16	223	11	226	' - ' : -		1.47 [0.70, 3.11]
Montaño Loza et al. (2007)	4	75	12	75	i		0.33 [0.11, 0.99]
Patai et al. (2015)	18	270	37	269	` 		0.48 [0.28, 0.83]
Sotoudehmanesh et al. (2007		221	15	221	<u> </u>		0.47 [0.19, 1.12]
RE model for subgroup	107	1643	177	1598	_		0.60 [0.43, 0.82]
Heterogeneity: $I^2 = 40.73\%$, C Test for overall effect: $p = 0.0$	Q(df = 7) 0017	= 12.3, p	= 0.091				[,]
RE model for all studies	177	2390	289	2351	•	100.00%	0.60 [0.46, 0.78]
Heterogeneity: $I^2 = 45.52\%$, C	Q(df = 16)	= 29.93,	p = 0.0184			0/1/ 1/	
Test for overall effect: p = 0.00	UU1				Test for subgroup diff	erences: Q(at = 1)	= 0.0005, p = 0.98
						I	
					0 1 2	3	
						-	

Patai et al. (2017)

◆ロト ◆部 ▶ ◆ 恵 ▶ ◆ 恵 ▶ りへ(

- Cochrane Library □
- Joanna Briggs Institute □
- Campbell Collaboration □
- Centre for Evidence-Based Medicine □
- NHS Centre for Reviews and Dissemination □
- Bandolier □
- PubMed Clinical Queries: Find Systematic Reviews ☑

- RCVS Knowledge ☑
- The Centre for Evidence-based Veterinary Medicine at the University of Nottingham ☐
- Veterinary Evidence ☑

Ajánlott irodalom

- Cockcroft, P. D. and M. A. Holmes (2003). Handbook of evidence-based veterinary medicine. Blackwell Publishing Ltd.
- Cuzick, J. (2005). Forest plots and the interpretation of subgroups. The Lancet 365 (9467), 1308.
- Greenhalgh, T. (2010). How to read a paper: The basics of evidence-based medicine. John Wiley & Sons.
- Halasa, T., A. Boklund, S. Cox, and C. Enge (2011). Meta-analysis on the efficacy of foot-and-mouth disease emergency vaccination. Preventive veterinary medicine 98(1), 1–9.
- Heneghan, C. and D. Badenoch (2006). Evidence-based medicine toolkit. Wiley Online Library.
- Hothorn, T. and B. S. Everitt (2014). A handbook of statistical analyses using R. Chapman and Hall/CRC.
- Kastelic, J. (2006). Critical evaluation of scientific articles and other sources of information: an introduction to evidence-based veterinary medicine. Theriogenology 66(3), 534–542.
- Patai, Á., N. Solymosi, L. Mohácsi, and Á. V. Patai (2017). Indomethacin and diclofenac in the prevention of post-ERCP pancreatitis: a systematic review and meta-analysis of controlled trials. Gastrointestinal Endoscopy 85(6), 1144–1156.
- Sackett, D. L., W. S. Strauss, Sharon E Richardson, , W. Rosenberg, and R. B. Haynes (2000). Evidence-based Medicine: How to Practice and Teach EBM. Churchill Livingstone.
- Sanhueza, J., P. Wilson, J. Benschop, J. Collins-Emerson, and C. Heuer (2018). Meta-analysis of the efficacy of leptospira serovar hardjo vaccines to prevent urinary shedding in cattle. *Preventive veterinary medicine* 153, 71–76.
- Shmalberg, J., C. Montalbano, G. Morelli, and G. J. Buckley (2019). A randomized double blinded placebo-controlled clinical trial of a probiotic or metronidazole for acute canine diarrhea. Frontiers in Veterinary Science 6, 163.
- Thrusfield, M., R. Christley, H. Brown, P. J. Diggle, N. French, K. Howe, L. Kelly, A. O'Connor, J. Sargeant, and H. Wood (2018). Veterinary Epidemiology (4th ed.). Oxford, UK: Wiley.