vous doit être capable de faire et d'expliquer les exercices d'applications

Cette activité de groupe doit être comprise et réalisée en autonomie. Chacun de

Encodage des nombres relatifs

1. Conversions entier relatif \leftrightarrow binaire

Dans cette activité, nous allons nous intéressé à la représentation réelle en machine des nombres entiers relatifs.

ſ ġŦIVITᢒA 🎾

MACHINES ___

Par exemple, le but est de comprendre comment est représenté dans l'ordinateur le nombre -65.

Spoil : sur 8 bits, $-65_{10} = 10111111_2$

Méthode d'encodage des entiers relatifs

- 1. la **longueur** en bits d'un binaire relatif est fixée à l'avance
- 2. le **signe** est représenté par le bit de poids fort (le premier bit à gauche) :
- lun uo nombre positif ou nul
- 1 pour un nombre négatif
- 3. un entier **positif** : codage classique des entiers naturels
- 4. un entier négatif : codage en complément à deux

Technique du Complément à deux pour déterminer l'opposé d'un entier relatif

- 1. inverser les bits
- 2. additionner 1 au résultat

Dosé :

- complément à deux :

7. IIII 1100 1010 1001 \rightarrow 0000 0011 0101 0110 \rightarrow 0000 \rightarrow 1111 1.10 1010 1010 \rightarrow 0000 \rightarrow 2.

- codage décimal de l'oposé (qui est positif) :

3. $0000\ 0011\ 01011\ 01011_2 = 512_{10} + 256_{10} + 64_{10} + 16_{10} + 4_{10} +$

Donc 1111 1100 1010 10012 est l'opposé de 855_{10} . Ainsi :

1111 1100 1010 1001 $_2 = -855_{10}$.

3. Exercice d'application

Convertir en binaire relatif sur un octet les nombres 42; -42; 0.

Convertir en décimal les binaires relatifs codés sur 1 octet : 0011 1010; 1111 1111.

Convertir en binaire relatif sur deux octet les nombres -1; -2022.

Convertir en décimal le binaire relatif codé sur 2 octet 0000 0111 1110.

mars 2022

CORRECTION

Comment encoder -65 sur 8 bits?

- (1) on se prépare à utiliser 8 bits donc -65 =
- (2) -65 est négatif et est l'**opposé de 65**. Appliquons la technique du *complément à deux* sur 65 pour passer du codage binaire de 65 au codage binaire de -65 :

$$\boxed{\texttt{codage_bin(65)}} \rightarrow \boxed{\texttt{complément à deux}} \rightarrow \boxed{\texttt{codage_bin(-65)}}$$

Ce qui donne:

On a donc la réponse attendue (et on peut vérifier avec le bit de poids fort que c'est bien un nombre négatif) :

$$-65_{10} = 10111111_2$$

2. Exemples

Voici quelques exemples à étudier.

Exemple

Sur **2 octets** : $2021_{10} = 0000\ 0111\ 1110\ 0101_2\ car...$

comme 2021 est positif, on utilise la conversion binaire classique :

$$2021 = 1024 + 512 + 256 + 128 + 64 + 32 + 4 + 1$$

REFR. DES DONNEES - ENTIERS RELATIFS

ce qui donne

$$1024 = 2^{10} + 2^9 + 2^8 + 2^7 + 2^6 + 2^2 + 2^0.$$

 $2021_{10} = 11111000101_2$ et donc sur 16 bits :

$$2021_{10} = 0000\ 0111\ 1100\ 0101_2$$

Exemple

Sur **2 octets** : $-15_{10} = 111111111111110001_2$ car...

comme -15 est négatif, on va appliquer le complément à deux sur le codage binaire du nombre positif 15 :

- codage binaire de 15 sur 16 bits :
 - **1.** $15_{10} = 1111_2 = 0000\ 0000\ 0000\ 1111_2$
- complément à deux :
 - **2.** 0000 0000 0000 1111 → 1111 1111 1111 0000

Ainsi le codage relatif sur 2 octets devient : -15 → 1111 1111 1111 0001

Exemple

Sur 2 octets : $1111\ 1100\ 1010\ 1001_2 = -855$ car...

1111 1100 1010 1001 est un nombre négatif puisque son bit de poids fort vaut 1. Utilisons le **complément à deux** pour déterminer son **op-**