

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2003-123926
(43)Date of publication of application : 25.04.2003

(51)Int.Cl. H01R 33/76
H01L 23/32
H01L 23/467

(21)Application number : 2001-314399 (71)Applicant : YAMAICHI ELECTRONICS CO LTD
(22)Date of filing : 11.10.2001 (72)Inventor : MURAKOSHI OSAMU

(54) IC SOCKET

(57) Abstract:

PROBLEM TO BE SOLVED: To suitably cool an IC package by effectively introducing cooling air through an air intake.

SOLUTION: This IC socket has a socket body for arranging an IC package installing part in the center, a frame-shaped cover member vertically movably arranged to the socket body, and a heat sink placed on the IC package to cool the IC package installed in the IC package installing part, and has the air intake for introducing the cooling air to cool the IC package.

LEGAL STATUS

[Date of request for examination] 19.08.2002

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C) 1998,2003 Japan Patent Office

Office: **BEST AVAILABLE COPY**

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2003-123926

(P2003-123926A)

(43)公開日 平成15年4月25日(2003.4.25)

(51) Int.Cl. ⁷	識別記号	F I	マーク-ト(参考)
H 0 1 R 33/76	5 0 5	H 0 1 R 33/76	5 0 5 Z 5 E 0 2 4
			5 0 5 B 5 F 0 3 6
H 0 1 L 23/32		H 0 1 L 23/32	A
23/467		23/46	C

審査請求 有 請求項の数 8 OL (全 8 頁)

(21)出願番号	特願2001-314399(P2001-314399)	(71)出願人	000177690 山一電機株式会社 東京都大田区中馬込3丁目28番7号
(22)出願日	平成13年10月11日(2001.10.11)	(72)発明者	村越修 東京都大田区中馬込3丁目28番7号 山一 電機株式会社内
(74)代理人	100077481 弁理士 谷 義一 (外2名) Fターム(参考) 5E024 CA18 CA30 5F036 AA01 BA04 BA24 BB01 BB05		

(54) 【発明の名称】 ICソケット

(57) 【要約】

【課題】 エアーアインテークにより冷却エアーを良好に導入して ICパッケージを好適に冷却することができる。

【解決手段】 中央にICパッケージ装着部が設けられたソケット本体と、該ソケット本体に対して上下動可能に設けられた枠形のカバー部材と、前記ICパッケージ装着部に装着されたICパッケージを冷却するように該ICパッケージの上に載置されるヒートシンクとを有するICソケットにおいて、前記ICパッケージの冷却を行うように冷却エアーを導入するエアーアインテークを有する。

BEST AVAILABLE COPY

【特許請求の範囲】

【請求項1】 中央にICパッケージ装着部が設けられたソケット本体と、該ソケット本体に対して上下動可能に設けられた枠形のカバー部材と、前記ICパッケージ装着部に装着されたICパッケージを冷却するように該ICパッケージの上に載置されるヒートシンクとを有するICソケットにおいて、前記ICパッケージの冷却を行うように冷却エアーを導入するエアーアインテークを有することを特徴とするICソケット。

【請求項2】 前記エアーアインテークは、前記ヒートシンクに対して前記カバー部材の一側に設けられたことを特徴とする請求項1記載のICソケット。

【請求項3】 前記エアーアインテークは、前記カバー部材の冷却エアーの導入上流側に設けられることを特徴とする請求項1記載のICソケット。

【請求項4】 前記エアーアインテークが、前記ソケット本体のほぼ中央にて前記ヒートシンクの上に設けられることを特徴とする請求項1記載のICソケット。

【請求項5】 前記ヒートシンクは、前記ソケット本体上に開閉可能に、かつ回動可能に対向して枢支されている一対のヒートシンク部材を有することを特徴とする請求項1記載のICソケット。

【請求項6】 前記ヒートシンク部材は、導入される冷却エアーの流れ方向に平行に配列された複数個のフィンを有することを特徴とする請求項5記載のICソケット。

【請求項7】 前記カバー部材の他側に前記ICパッケージを押圧する押圧部材が枢支されていることを特徴とする請求項1記載のICソケット。

【請求項8】 前記押圧部材は、前記ヒートシンクとほぼ直交する方向に、前記ソケット本体上に開閉可能に、かつ回動可能に対向して枢支されている一対の押圧体を有することを特徴とする請求項1記載のICソケット。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は、ICパッケージ等の半導体装置が用いられるICソケットに関するもので、特に、ICパッケージが装着されるICソケットの冷却装置における放熱板、所謂ヒートシンクに対するエアーアインテークに関するものである。

【0002】

【従来の技術】 近年、CPUの小型化に伴い、CPUクーラー等の冷却装置も同様な小型化の傾向にあり、ヒートシンクの形状や材質の検討が求められている。

【0003】 従来におけるこのような電気部品としてのICパッケージ等の半導体装置が装着されるICソケットにおいては、ICパッケージによって発生される熱を放散して冷却するように冷却装置としてヒートシンクが設けられている。このようなヒートシンクは、良好な熱

伝導性の部材から作られ、放熱効果を高めるように多数のフィンが並列して配置されることによって構成されている。

【0004】

【発明が解決しようとする課題】 従来のこのようなICパッケージ等が用いられるICソケットにおいては、ICパッケージによって発生される熱の放散を良好にして冷却効果を高めることが求められている。

【0005】 しかしながら、上記のような従来のICソケットの冷却装置においては、ヒートシンクにフィンが設けられるだけでは冷却エアーによる冷却が十分でなく、冷却不足が認められる等の問題が見られる。

【0006】 従って、本発明の目的は、このような従来における問題点を解決するために、ソケット本体のICパッケージ装着部に装着されたICパッケージを良好に冷却して熱の放散を好適に図るためにしたICソケットを提供することにある。

【0007】

【課題を解決するための手段】 上述の目的を達成するために、本発明のICソケットは、中央にICパッケージ装着部が設けられたソケット本体と、該ソケット本体に対して上下動可能に設けられた枠形のカバー部材と、前記ICパッケージ装着部に装着されたICパッケージを冷却するように該ICパッケージの上に載置されるヒートシンクとを有するICソケットにおいて、前記ICパッケージの冷却を行うように冷却エアーを導入するエアーアインテークを有することを特徴とする。

【0008】 また、本発明のICソケットは、前記エアーアインテークが、前記ヒートシンクに対して前記カバー部材の一側に設けられたことを特徴とする。

【0009】 さらに、本発明のICソケットは、前記エアーアインテークが、前記カバー部材の冷却エアーの導入上流側に設けられることを特徴とする。

【0010】 さらにまた、本発明のICソケットは、前記エアーアインテークが、前記ソケット本体のほぼ中央にて前記ヒートシンクの上に設けられることを特徴とする。

【0011】 本発明のICソケットは、前記ヒートシンクが、前記ソケット本体上に開閉可能に、かつ回動可能に対向して枢支されている一対のヒートシンク部材を有することを特徴とする。

【0012】 また、本発明のICソケットは、前記ヒートシンク部材が、導入される冷却エアーの流れ方向に平行に配列された複数個のフィンを有することを特徴とする。

【0013】 さらに、本発明のICソケットは、前記カバー部材の他側に前記ICパッケージを押圧する押圧部材が枢支されていることを特徴とする。

【0014】 さらにまた、本発明のICソケットは、前記押圧部材が、前記ヒートシンクとほぼ直交する方向

に、前記ソケット本体上に開閉可能に、かつ回動可能に對向して枢支されている一対の押圧部材を有することを特徴とする。

【0015】本発明のその他の目的や特徴および利点は、添付図面に示される本発明の実施形態についての以下の詳細な説明から明らかである。

【0016】

【発明の実施の形態】(実施例1) 図1乃至図4は、本発明のICソケットの実施例1を示す図で、図1は本発明のICソケットを示す斜視図、図2は図1のICソケットの平面図で、図3は図2のIII-III線に沿った中央縦断面図、図4はカバー部材を押圧して、ヒートシンクと押圧部材を開いた時の斜視図である。

【0017】図1乃至図4に示されるように、本発明のICソケット1は、例えば、電気的に絶縁性の合成樹脂材料から作られて中央にICパッケージ装着部7が設けられたほぼ方形のソケット本体2と、このソケット本体2に対して上下動可能に設けられた絶縁性の合成樹脂材料で作られた枠形のカバー部材3と、中央に向って外側から内側に開閉可能に、かつソケット本体2の両側辺部分に回動可能に対向するように枢支された一対のヒートシンク4と、これらヒートシンク4に対してほぼ直交する方向にソケット本体2上に開閉可能に、かつソケット本体2の他方の側辺部分に回動可能に対向するように枢支された一対の押圧部材5と、ヒートシンク4に対して導入される冷却空気の流れの上流側に設けられたエアインテーク6とから主に構成されている。

【0018】本発明のこのようなICソケット1において、ソケット本体2は、ICパッケージ10を装着するためのICパッケージ装着部7を中央部分に形成する台座8を有しており、この台座8の4隅にICパッケージ10を案内して正確に位置決めするための直立した柱状の、コーナー部材のような位置決め部材9がそれぞれ設けられている。また、ソケット本体2には、ICパッケージ10の半田ボールのような外部端子との接続をなすための多数のコンタクト11が設けられている。

【0019】このようなコンタクト11は、上端が台座8に固着されて台座8の上面とほぼ同一面をなす端子部11aを形成しており、ICパッケージ10の外部端子が上に載せられて接触されるようになっていて、この端子部11aから下方に彎曲した弾性変形可能な可撓部分11bを有すると共に、この可撓部分11bから下方に延びてソケット本体2に固着され、かつ下方に突出した、基板(図示しない)の接続端子に対する差込形のコンタクト端子11cを有するように形成されている。

【0020】また、本実施例においては、ICパッケージ10にボール・グリッド・タイプのものが用いられるようになっているが、これに限定されるものではなく、他のタイプのICパッケージ等が使用できることは勿論である。

【0021】カバー部材3は、枠形をなしていない、中央にほぼ方形の開口部12が形成されており、この開口部12を通ってICパッケージ10を位置決め部材9に沿って台座8の上面のICパッケージ装着部7に装着できるようになっている。また、カバー部材3の内側の中央部分には、後述するように、ヒートシンク4や押圧部材5がそれぞれの支持アーム機構18、31を介して回動するように設けられており、さらに、4隅にコイルスプリングのようなばね部材13が設けられていて、カバー部材3をソケット本体2に対して弹性支持している。従って、カバー部材3の押圧によって支持アーム機構18、31を介してヒートシンク4や押圧部材5の支持アーム機構18、31を回動することができるようになっており、ヒートシンク4と押圧部材5をほぼ直立した開放位置に回動することができる。

【0022】ヒートシンク4は、熱を放散して冷却するためのヒートシンクブロックとしてのヒートシンク部材15と、このヒートシンク部材15を回動可能に支持する支持アーム機構18とを有しており、ヒートシンク部材15がソケット本体2上に冷却エアーの流れ方向に沿って対向して配設され、かつ支持アーム機構18によってヒートシンク部材15が、ソケット本体2の中央に向って両側から回動してICパッケージ装着部7に装着されたICパッケージ10の上に位置されるように形成されている。また、ヒートシンク部材15は、熱の放散を良好にして冷却効果を高めるために多数のフィン16が冷却エアーの流れ方向に平行に延びるように整列して設けられており、支持アーム機構18の一対の支持アーム部材19がヒートシンク部材15の両側に沿って外方に向って平行に延びるように設けられており、本実施例では、ヒートシンク部材15の両側の外側から2列目のフィン16の内側にプラケット17を介してねじまたはピン21、22によってそれぞれ連結されている。

【0023】さらに、ヒートシンク部材15の支持アーム機構18は、一対の支持アーム部材19のほぼ中間で、別の短いアーム部材20を介してピン23によってそれぞれ枢着および連結されており、さらに、このアーム部材20の他端がソケット本体2にピン24によって枢着されていて、ヒートシンク部材15を、支持アーム部材19とアーム部材20とによってソケット本体2に対して回動可能に支持している。また、支持アーム部材19の他端はピン25によって互いにカバー部材3に連結されている。

【0024】従って、ヒートシンク4のヒートシンク部材15は、カバー部材3を下方に押圧した時に、カバー部材3によって支持アーム機構18の支持アーム部材19の端部が一緒に下方に移動されると共に、アーム部材20がピン22を中心にして外方に回動されて、ヒートシンク部材15がほぼ垂直になるように起立され、これによって図4に示されるような開放状態に押圧部材5と

一緒に動かされる。

【0025】押圧部材5も同様に押圧体30の両側に支持アーム機構31の一対の支持アーム部材32の先端部分が枢着され、この支持アーム部材32のはば中程にアーム部材33がピン34によって連結して設けられており、カバー部材3の下方への押圧によってヒートシンク4と同様にアーム部材33の他端のピン35を中心にして外方に回動されて開かれるように形成されている。従って、このような押圧部材5は、常時には、ICパッケージ装着部7に装着されたICパッケージ10の側辺部分に押圧体30の下面が当接されて、ICパッケージ10の外部端子をコンタクト11の端子部11aに接触させて接続するように形成されている。

【0026】従って、開放時には、カバー部材3を下方に押すことによって、上述したようにヒートシンク4と押圧部材5とが外方に回動されて開かれるので、手動またはロボット操作によってICパッケージ10を、ソケット本体2のICパッケージ装着部7に対して装着したり、あるいは取り出しを行うことができるようになっている。

【0027】このように構成された本発明のICソケット1において、エアーアインテーク6は、適宜な板材から成り、図2に示されるような形状に形成され、支持アーム機構18の支持アーム部材19とアーム部材20のための切込み14が設けられていて、支持アーム機構18が回動する際に邪魔にならないように形成されている。また、このようなエアーアインテーク6は、図示の矢印方向に流れる冷却エアーの流路に対して上流側において、カバー部材3の一方の側辺部の切欠き3a部分に嵌め込んで挟持させたり、接着すること等によって図示のように取付けられている。

【0028】さらによると、このようなエアーアインテーク6は、冷却エラーをヒートシンク4部分に対して良好に導き入れるように適宜な形状に形成したり、あるいは折り曲げる等して製作するのが好適である。従って、冷却エラーは、図1乃至図4に示されるように、矢印で示される方向にエアーアインテーク6の上面側に沿って流れ、ヒートシンク4部分に流入してヒートシンク部材15のフィン16の間を通って流れ、フィン16を介してヒートシンク部材15を良好に冷却し、さらに、隣り合う他方のヒートシンク部材15をも冷却した後に、これらヒートシンク部材15、15を経てソケット本体3から流出する。このように、冷却エラーがエアーアインテーク6によって、ICソケット1の上面部分を良好に冷却して流れ出るようになり、ヒートシンク4、4の下に位置されているICパッケージ10の発生する熱を良好に放散して冷却することができる。

【0029】このように、エアーアインテーク6を介して本発明のICソケット1内に導入されて流通する冷却エラーの流れ方向に対して、ヒートシンク部材15のフィ

ン16が同じ方向に平行して位置するように配列されているために、冷却エラーが何等邪魔されること無くスムーズにフィン16の間を流れることができるので、冷却エラーによる冷却効果も一層効果的に増大されて、能率良く本発明におけるICソケット1のヒートシンク4のヒートシンク部材15や付近の他の部材等も良好に冷却されるようになる。なお、上述のように構成される本発明の実施例1におけるICソケット1の基本的な構成は、後述の実施例2のもとエアーアインテーク6を除いては実質的に同じであり、図5に拡大して詳細に図示される同図の構成を参照することによって明確に理解することができるものである。

【0030】(実施例2) 図5は、本発明のICソケットの実施例2を示す中央縦断面図である。本実施例においては、エアーアインテーク6'がICソケット1'のほぼ中央に設けられていて、冷却エラーの流れ方向の上流側におけるヒートシンク4の1つに取付けられていることが、先の実施例1のものと異なっている。

【0031】図示されるように、本発明の実施例2におけるICソケット1'は、中央にICパッケージ装着部7を有するほぼ方形のソケット本体2と、このソケット本体2に対して上下動可能に設けられた枠形のカバー部材3と、中央に向って外側から内側に開閉可能に、かつソケット本体2の両側辺部分に回動可能に対向するように枢支された一対のヒートシンク4、4と、これらヒートシンク4、4に対してほぼ直交する方向にソケット本体2上に開閉可能に、かつソケット本体2の他方の側辺部分に回動可能に対向するように枢支された一対の押圧部材5、5と、冷却空気の流れ方向に対して上流側のヒートシンク4に、ヒートシンク4を、例えば弾性力で挟み込むように嵌め込まれたエアーアインテーク6'とから主に構成されている。

【0032】エアーアインテーク6'は、図5に示されるように、冷却エラーの流れる方向から見て、板状材料を折り曲げて断面形状がほぼ「コ」の字形になるように作られており、その両側における側辺部6a、6aの間に上流側のヒートシンク4の外側部分が抱え込まれるように挟み込まれて保持されている。従って、冷却エラーは、直接的にヒートシンク4内に向って導入されるようになるので、これによってヒートシンク4、4が効果的に、かつ直接的に冷却されるようになり、このような強制的なヒートシンク4、4の冷却によって良好にヒートシンク4、4とその下のICパッケージ10等とを冷却することができ、冷却効果を一層高めることができるようにならっている。

【0033】また、本発明のICソケット1'のこの実施例2におけるエアーアインテーク6'は、図示されるようにヒートシンク4に対する取付角度を段階的に調節して冷却エラーの取込み量を段階的に調整することができるようになっている。すなわち、図5に鎖線で示される

持ち上げ位置にまで、エアーインテーク6'を上方に段階的に枢動して位置することによって、上流側から流入して取り込まれる冷却エアーの導入量を、エアーインテーク6'によって段階的に順次増大することができ、これによって冷却効果を所要するように高めることができる。

【0034】(試験結果)図6は、本発明のICソケットにおける熱分布曲線図、図7は熱抵抗測定値を示すグラフで、図8は、図7の熱測定値を温度に換算した同様なグラフであり、冷却エアーの流れ方向に沿って5箇所の側定点において、エアーインテークの無い場合のヒートシンクのみの時と、2種類のエアーインテークをそれぞれ用いた時とに就いて測定したものである。

【0035】特に、図6の熱分布曲線図から理解されるように、本発明のICソケットにおける如くエアーインテークを用いることによって、エアーインテークを用いない場合よりも、温度を約2~5°C程低下させることができ、所定の冷却効果を達成することができる。

【0036】このように構成された本発明のICソケットにおいては、エアーインテークをソケット本体の一側または中央部分に配設することによって、冷却エアーがエアーインテークによりヒートシンク部分に良好に導かれるようになり、これによってヒートシンク部分とその周辺部分、並びにICパッケージ等を良好に冷却することができ、しかも、ヒートシンクにおけるフィンの配列方向が冷却エアーの流れ方向と平行な方向にあるために、冷却エアーの流れを何等妨げるようなことが全くなく、ICパッケージによって発生された熱が良好に吸収されて消散することができ、所要の冷却効果を好適に達成することができる。

【0037】

【発明の効果】本発明の請求項1記載のICソケットは、中央にICパッケージ装着部が設けられたソケット本体と、該ソケット本体に対して上下動可能に設けられた枠形のカバー部材と、前記ICパッケージ装着部に装着されたICパッケージを冷却するように該ICパッケージの上に載置されるヒートシンクとを有するICソケットにおいて、前記ICパッケージの冷却を行うように冷却エアーを導入するエアーインテークを有するので、冷却エアーを良好に導入してICパッケージを好適に冷却することができる。

【0038】本発明の請求項2記載のICソケットは、前記エアーインテークが、前記ヒートシンクに対して前記カバー部材の一側に設けられるので、冷却エアーを良好に導入して冷却することができる。

【0039】本発明の請求項3記載のICソケットは、前記エアーインテークが、前記カバー部材の冷却エアーの導入上流側に設けられるので、冷却エアーを良好に導入して効果的に冷却することができる。

【0040】本発明の請求項4記載のICソケットは、

前記エアーインテークが、前記ソケット本体のほぼ中央にて前記ヒートシンクの上に設けられるので、ヒートシンク部分と、その付近の部材を良好に冷却することができる。

【0041】本発明の請求項5記載のICソケットは、前記ヒートシンクが、前記ソケット本体上に開閉可能に、かつ対向して枢支されている一対のヒートシンク部材を有するので、ICパッケージを良好に冷却できると共に、開放時に容易にICパッケージを装着し、取出すことができる。

【0042】本発明の請求項6記載のICソケットは、前記ヒートシンク部材が、導入される冷却エアーの流れ方向に平行に配列された複数個のフィンを有するので、冷却エアーを良好に導入して効果的に冷却することができる。

【0043】本発明の請求項7記載のICソケットは、前記カバー部材の他側に前記ICパッケージを押圧する押圧部材が枢支されているので、ICパッケージ装着部に装着されたICパッケージを良好に押圧して保持することができ、開放時に容易にICパッケージを取出すことができる。

【0044】本発明の請求項8記載のICソケットは、前記押圧部材が、前記ヒートシンクとほぼ直交する方向に、前記ソケット本体上に開閉可能に、かつ対向して枢支されている一対の押圧部材を有するので、装着されたICパッケージを押圧部材によって押圧してしっかりと保持することができ、かつ開放時にはヒートシンクに対して何等邪魔すること無く、ICパッケージを容易に取出すことができる。

30 【図面の簡単な説明】

【図1】本発明のICソケットの実施例1を示す斜視図である。

【図2】図1の本発明のICソケットの平面図である。

【図3】図2のIII-III線に沿った中央縦断面図である。

【図4】図1の本発明のICソケットのカバー部材を押圧して、ヒートシンクと押圧部材とを開いた時の斜視図である。

【図5】本発明のICソケットの実施例2を示す中央縦断面図である。

【図6】本発明のICソケットにおける熱分布曲線図である。

【図7】本発明のICソケットにおける熱抵抗測定値を示すグラフである。

【図8】図7の熱測定値を温度に換算した同様なグラフである。

【符号の説明】

1 ICソケット

1' ICソケット

50 2 ソケット本体

9

10

3	カバー部材	* 17	プラケット
4	ヒートシンク	18	支持アーム機構
5	押圧部材	19	支持アーム部材
6	エアーインテーク	20	アーム部材
6'	エアーインテーク	21	ピン
7	I Cパッケージ装着部	22	ピン
8	台座	23	ピン
9	位置決め部材	24	ピン
10	I Cパッケージ	30	押圧体
11	コンタクト	10 31	支持アーム機構
12	開口部	32	支持アーム部材
13	ばね部材	33	アーム部材
14	切込み	34	ピン
15	ヒートシンク部材	35	ピン
16	フィン	* 36	ピン

【図1】

【図3】

〔図2〕

[図4]

(図7)

鼎极新制

LFM	V	A	W	周囲温度	TS1	TS2	TS3	TS4	TS5	
ヒートシンクのみ	800	0.000	0.000	0.000	24.20	657.4	662.2	668.1	658.9	663.7
ヒートシンクのみ	800	15.967	0.410	6.546	24.20	769.9	771.3	774.3	770.2	779.0
エアーアインテーク	800	0.000	0.000	0.000	24.30	657.4	662.2	668.1	658.9	663.7
エアーアインテーク	800	16.054	0.410	6.582	24.30	761.4	762.2	764.7	766.2	771.0
エアーアインテーク	800	0.000	0.000	0.000	24.20	657.4	662.2	668.1	658.9	663.7
エアーアインテーク	800	15.864	0.410	6.504	24.30	760.0	764.2	762.2	762.5	771.0

BEST AVAILABLE COPY

【図5】

【図6】

【図8】

絶対湿度換算値												
	LFM	V	A	W	周囲温度	TS1	TS2	TS3	TS4	TSS	TS MAX	jCW
ヒートシンクのみ	800	0.000	0.000	0.000	24.20	23.914	23.693	23.078	23.985	23.895	24.078	
ヒートシンクのみ	800	15.967	0.410	6.546	24.20	70.185	68.380	66.940	69.648	70.794	70.794	7.136
エアーアイフター	800	0.000	0.000	0.000	24.30	23.914	23.965	24.078	23.985	23.895	24.078	
エアーアイフター	800	16.054	0.410	6.582	24.30	66.689	64.676	63.065	68.007	67.540	68.007	6.674
エアーアイントーク	800	0.000	0.000	0.000	24.20	23.914	23.965	24.078	23.985	23.895	24.078	
エアーアイントーク	800	15.864	0.410	6.504	24.30	66.113	65.571	62.056	66.489	67.540	67.540	6.682

BEST AVAILABLE COPY