Analogové elektronické obvody Ústav mikroelektroniky FEKT VUT v Brně			Jméno Jakub Charvot		ID 240844
			Ročník	Obor	Skupina
			2.	MET	MET/4
Spolupracoval	Měřeno dne	Odevzdáno dne		Hodnocení	
Radek Kučera	1. 12. 2022	15. 12. 2022			
AKO a generátory signálů s OZ					Č. úlohy 5

Teoretický úvod

Obr. 1: Schémata zapojení – a) AKO s jedním OZ a tranzostorovým převodníkem úrovně, b) generátor pilových kmitů

Funkce jednotlivých zapojení

Astabilní klopný obvod

Základním blokem tohoto zapojení je Schmittův klopný obvod s hysterezí, ten v principu umí na výstupu zobrazovat pouze kladné a zápoorné saturační napětí. Nepřeklápí se v obou směrech stejně, ale až po překročení jisté prahové hodnoty napětí, vzniká tak hysterezní smyčka, viz Obr. 2.

Obr. 2: Hysterezní smyčka Schmittova klopného obvodu.

Pokud uvažujeme obvod s vybitým kondenzátorem, objeví se na vstupu po chvíli kladné saturační napětí a kondenzátor se začne nabíjet přes odpory R_1 a R_p . Až se nabije na hodnotu napětí, která je na odporovém děliči R_2 R_3 , obvod se překlopí a kondenzátor se začne vybíjet, překlopením se změní taky referenční hodnota napětí na děliči, tím vzniká zmíněná hysterezní smyčka. kondenzátor s odpory R_1 a R_p tvoří RC čánku, jehož časová konstanta nám určuje frekvenci překlápění, neboli frekvenci našich vzniklých obdélníkových pulsů, $F = \frac{0.455}{RC}$.

Generátor pilových kmitů

Jako základí blok nám opět poslouží komparátor s hysterezí – situace je podobná jako v minulém zapojení a na výstupu prvního OZ je opět obdélníkový průběh, k tomu je připojen invertující integrátor, který z obdélníkových kmitů tvoří pilový signál.