Описание предполагаемых результатов исследований, их научной и практической ценности, а также проекта образовательных программ

Проект: AIDA-T

(Agrobotic Intelligent Data Analyzer for Tomatoes)

АИДА-Т

(Агроробототехнический Интеллектуальный Анализатор Данных для Томатов)

Руководитель: Осиненко Павел Валерьевич

Сроки реализации: 2024-2026 гг. (24 месяца)

Бюджет проекта: 50 млн рублей

Содержание

1 Краткое описание проекта

Проект АИДА-Т направлен на создание передовой автономной робототехнической системы для интеллектуального мониторинга и диагностики томатов в промышленных теплицах. Основная цель проекта — разработка и создание функционирующего прототипа мобильного робота, оснащенного системой компьютерного зрения и искусственного интеллекта, способного автономно перемещаться по теплице, выявлять заболевания растений на ранних стадиях, оценивать урожайность и предоставлять агрономам точную аналитическую информацию для принятия обоснованных решений.

Актуальность и потребность рынка: Рынок роботизации в АПК России растет на 25-30% в год, достигнув 15 млрд рублей в 2024 году. Автоматизация позволяет снизить затраты на агрономический контроль до 70%, что критично в условиях дефицита квалифицированных агрономов и необходимости повышения урожайности для обеспечения продовольственной безопасности.

Ключевые особенности системы АИДА-Т:

- Уникальная гибридная система передвижения (меканум-колеса для бетонных покрытий + рельсовые колеса для движения между рядами)
- Телескопическая камерная мачта с активной стабилизацией (диапазон 0.1-3.0 м)
- Специализированные CNN-алгоритмы диагностики заболеваний с точностью 86- 87%
- Гибридный метод оценки урожайности (RANSAC + PointNet) с погрешностью не более 15%
- Полная автономность работы до 12 часов без участия человека
- Веб-интерфейс для удаленного мониторинга и управления
- Адаптация к российским условиям эксплуатации и полное импортозамещение

Целевые потребители:

- Крупные агрохолдинги и тепличные комплексы (площадью свыше 5 га) 150 предприятий в России
- Средние тепличные хозяйства (5-10 га) 300 предприятий
- Научно-исследовательские институты в области растениеводства 50 организаций
- Образовательные учреждения аграрного профиля 200 вузов и техникумов

Планируемые технические параметры:

- Точность диагностики заболеваний: 86-87% (превосходит существующие решения на 10-15%)
- Точность оценки объема плодов: погрешность не более 15%
- Точность позиционирования при съемке: ±1,5 мм на пиксель
- Время автономной работы: не менее 12 часов
- Стоимость системы: 15-20 млн рублей (период окупаемости 2.5-3 года)

2 Научно-техническая новизна и методы решения задач

2.1 Научно-техническая новизна проекта

Научно-техническая новизна проекта AIDA-Т заключается в комплексном решении задач автономного мониторинга растений в условиях промышленных теплиц через интеграцию инновационных аппаратных и программных решений.

2.1.1 Техническая новизна аппаратной части

- Гибридная ходовая система впервые предложена комбинация меканум-колес для движения по бетонному покрытию и специальных нейлоновых рельсовых колес для автономного взбирания и движения по рельсовым путям между рядами культур без использования дополнительных механических приспособлений
- Адаптивная амортизация с компенсацией вибраций разработанная система стабилизации обеспечивает точность позиционирования камерной мачты ± 1.5 мм на пиксель даже при движении по рельсам, что превосходит точность существующих мобильных систем мониторинга растений в 2-3 раза
- **Камерная мачта повышенной продольной жесткости** с регулировкой высоты в диапазоне 0.1-3.0 метра и системой слияния кадров с пересекающимися углами обзора для повышения точности получаемых данных

2.1.2 Программная новизна

• Гибридный подход к оценке объема плодов — впервые реализована параллельная обработка данных двумя независимыми методами (алгоритм RANSAC и нейросетевой подход PointNet) с последующим сравнительным анализом результатов, что повышает надежность оценки урожайности

- Специализированная CNN-архитектура для диагностики заболеваний томатов в условиях переменного освещения теплиц, достигающая точности 0.86-0.87 при детекции мучнистой росы против 0.70-0.80 у существующих решений
- **Алгоритм автономной навигации** в структурированной среде теплицы с динамическим переключением между режимами движения (бетон/рельсы) на основе компьютерного зрения

2.1.3 Системная новизна

Впервые предложена полностью автономная система круглосуточного мониторинга с возможностью работы без участия агрономов в течение всего цикла диагностики, что кардинально отличается от существующих решений, требующих постоянного присутствия оператора или работающих по заданным маршрутам.

2.2 Методы и способы решения поставленных задач

2.2.1 Задача 1: Создание гибридной мобильной платформы

Метод решения: Разработка и интеграция двухрежимной ходовой системы на базе:

- Меканум-колес с бесщеточными мотор-редукторами для всенаправленного движения по бетонным дорожкам
- Нейлоновых рельсовых колес для движения по технологическим рельсам между рядами растений
- Системы адаптивной амортизации на базе колесного модуля с элементами амортизации

Новизна подхода: В отличие от существующих систем с фиксированным типом передвижения, предлагаемое решение обеспечивает адаптивность к различным участкам теплицы без необходимости модификации инфраструктуры.

2.2.2 Задача 2: Обеспечение высокоточного позиционирования

Метод решения:

- Проектирование камерной мачты с повышенной продольной жесткостью из композитных материалов
- Применение промышленных Ethernet-камер с глобальным затвором для исключения эффекта "rolling shutter"
- Реализация системы слияния кадров (image stitching) с пересекающимися углами обзора

2.2.3 Задача 3: Создание алгоритмов компьютерного зрения

Метод решения диагностики заболеваний:

- Разработка специализированной CNN-архитектуры на базе модифицированной ResNet с дополнительными блоками внимания (attention mechanism)
- Создание расширенного датасета изображений томатов с различными стадиями заболеваний
- Применение техник аугментации данных для моделирования различных условий освещения

Метод решения оценки объема плодов:

- Параллельная обработка стереоизображений двумя независимыми алгоритмами:
 - 1. Классический геометрический подход на основе RANSAC для выделения контуров
 - 2. Нейросетевой подход PointNet для прямой оценки объема по облаку точек
- Сравнительный анализ результатов двух методов для повышения надежности оценки

3 Имеющийся научно-технический задел

3.1 Теоретический задел

Команда проекта обладает глубокими компетенциями в области:

- **Компьютерного зрения и машинного обучения:** 5-детний опыт разработки CNN-архитектур для задач детекции и классификации в агропромышленности
- **Робототехники:** 5-летний опыт создания автономных мобильных платформ для промышленного применения
- **Агротехнологий:** экспертиза в области выращивания томатов в защищенном грунте

3.2 Экспериментальный задел

• Предварительные исследования CNN: создан базовый датасет из 15,000 изображений томатов с разметкой заболеваний, достигнута точность детекции мучнистой росы 0.83 на лабораторных образцах

- **Тестирование алгоритмов оценки объема:** реализованы и протестированы базовые версии RANSAC и PointNet алгоритмов, достигнута ошибка оценки объема 12% на тестовых образцах
- **Прототипирование ходовой системы:** изготовлен и испытан макет меканумплатформы грузоподъемностью до 100 кг

3.3 Технический задел

- Аппаратная база: определены и протестированы основные компоненты системы
- **Программная архитектура:** спроектирована модульная архитектура системы на базе ROS2
- **3D-моделирование:** создана 3D-модель будущего прототипа с проработкой основных узлов

4 Конкурентный анализ и преимущества

4.1 Анализ конкурентов

Прямые конкуренты:

- Bosch DeepField Robotics (Германия) мобильные роботы для теплиц
- Iron Ox (США) автономные системы мониторинга растений
- Harvest CROO Robotics (США) роботизированные системы для сельского хозяйства
- ООО "Агроробот" (Россия) системы автоматизации теплиц

Косвенные конкуренты:

- Стационарные системы видеоаналитики (Netafim, Philips GrowWise)
- Ручной мониторинг агрономами
- Дроны для мониторинга теплиц (Sentera, DroneDeploy)

4.2 Сравнительный анализ технических характеристик

4.3 Ключевые конкурентные преимущества AIDA-T

• Высокая точность диагностики: 86-87% против 70-80% у конкурентов

Параметр	AIDA-T	Bosch	Iron Ox	Агроробот
		DeepField		
Точность диагности-	86-87%	75-80%	70-75%	65-70%
ки заболеваний				
Ошибка оценки объ-	15%	15-20%	12-15%	Не заявлена
ема плодов				
Точность позициони-	±1.5 мм на	±5 мм на	±3 мм на	±10 мм на
рования	пиксель	пиксель	пиксель	пиксель
Тип ходовой системы	Гибридная Колесная		Рельсовая	Стационарная
	(коле-	коле- стандартная		
	са+рельсы)		ная	
Стоимость системы	15-20 млн	\$150-200 тыс	\$120-180 тыс	1.5-2.0 млн
	руб			руб

Таблица 1: Сравнение AIDA-T с основными конкурентами

- Уникальная гибридная ходовая система: единственное решение, способное работать как на бетонном покрытии, так и на рельсовых путях
- Передовые алгоритмы оценки урожайности: параллельное использование методов RANSAC и PointNet
- Импортозамещение: полностью российская разработка с локализацией производства
- **Адаптация к российским условиям:** специально разработано для российских теплиц

5 Анализ рынка и экономическое обоснование

5.1 Объем и динамика рынка

Российский рынок защищенного грунта:

• Объем рынка в 2024 году: 280 млрд рублей

• Среднегодовой рост: 12-15%

• Прогноз на 2030 год: 450-500 млрд рублей

Рынок роботизации в АПК России:

• Объем в 2024 году: 15 млрд рублей

• Среднегодовой рост: 25-30%

• Прогноз на 2030 год: 65-75 млрд рублей

Доступный рынок для AIDA-Т (SAM):

• 2025 год: 2.1 млрд рублей

• 2030 год: 4.8 млрд рублей

Целевая доля рынка к 2030 году: 3-5% (150-250 млн рублей)

5.2 Экономическое обоснование

Экономические преимущества для потребителя:

- Снижение трудозатрат на визуальный контроль растений до 70%
- Повышение урожайности за счет раннего выявления заболеваний на 15-20%
- Снижение расхода средств защиты растений на 30-40%
- Период окупаемости системы: 2.5-3 года

Финансовая модель проекта:

Год	2025	2026	2027	2028	2029
Количество систем	3	8	15	25	40
Выручка (млн руб)	53	140	263	438	700
Валовая прибыль (млн руб)	18	49	92	153	245
Рентабельность (%)	34%	35%	35%	35%	35%

Таблица 2: Прогноз финансовых показателей

6 Бизнес-модель и стратегия коммерциализации

6.1 Бизнес-модель

Основная модель монетизации: В2В продажи комплексных решений с сервисным обслуживанием

Структура доходов:

- Продажа оборудования (70% выручки): стоимость системы AIDA-T 15-20 млн рублей, маржинальность 40-45%
- Сервисное обслуживание (25% выручки): годовое обслуживание 1.2-1.6 млн рублей, маржинальность 60-70%
- Дополнительные услуги (5% выручки): обучение персонала, консалтинг, маржинальность 70-80%

6.2 Стратегия продвижения на рынок

Этап 1 (2025-2026): Выход на рынок

- Пилотные проекты с 3-5 ведущими агрохолдингами
- Участие в профильных выставках (Агрорусс, ГолденОсень, Агропродмаш)
- Публикации в отраслевых изданиях и научных журналах
- Создание демонстрационной площадки

Этап 2 (2026-2028): Масштабирование

- Расширение линейки продуктов (адаптация для огурцов, перца)
- Развитие дилерской сети в регионах
- Партнерства с системными интеграторами
- Выход на рынки СНГ

Каналы продаж:

- Прямые продажи (60%): работа с топ-20 агрохолдингами России
- Партнерская сеть (30%): дилеры в регионах (15-20 компаний к 2028 году)
- Интернет-маркетинг (10%): корпоративный сайт, контент-маркетинг

7 Предполагаемые результаты исследований

7.1 Аппаратная платформа

- Гибридная мобильная платформа с возможностью движения по бетонным покрытиям и рельсовым путям
- Система технического зрения с телескопической камерной мачтой (0.1–3.0 м) и активной стабилизацией
- Интегрированный вычислительный блок промышленного класса для обработки данных в реальном времени
- **Система энергоснабжения** на базе Li-ion аккумуляторов с автономностью 12+ часов

7.2 Программный комплекс

- СNN для диагностики заболеваний томатов с точностью 86-87%
- Гибридный метод оценки урожайности (RANSAC + PointNet) с погрешностью не более 15%
- Система автономной навигации на базе ROS2 с динамическим переключением режимов
- Веб-интерфейс для удаленного мониторинга и управления

7.3 Документация и ИС

- Конструкторская и программная документация
- Программы и методики испытаний
- 2 заявки на полезные модели
- 1 регистрация программы для ЭВМ

8 Научная и практическая ценность

8.1 Научная ценность

Научная новизна проекта заключается в решении междисциплинарных задач на стыке робототехники, компьютерного зрения и агротехнологий:

- **Робототехника:** Концепция гибридной ходовой системы для адаптации к различным поверхностям в теплице
- **Компьютерное зрение:** Специализированная CNN-архитектура для диагностики заболеваний в сложных условиях освещения
- Системы управления: Алгоритм автономной навигации с динамическим переключением моделей управления

Результаты могут быть опубликованы в журналах Q1/Q2 и представлены на конференциях IEEE IROS, ICRA, AAAI.

8.2 Практическая ценность

8.2.1 Экономический эффект:

- Снижение трудозатрат до 70%
- Повышение урожайности на 15-20% за счет раннего обнаружения заболеваний
- Снижение расхода средств защиты растений на 30-40%
- Период окупаемости 2.5-3 года

8.2.2 Дополнительные преимущества:

- Полностью российская разработка, превосходящая зарубежные аналоги
- Решение проблемы дефицита квалифицированных агрономов
- Повышение качества продукции
- Масштабируемость для других культур и операций

8.3 Команда проекта

8.3.1 Научный руководитель

Осиненко Павел Валерьевич — доктор технических наук, доцент кафедры инженерных систем Сколковского института науки и технологий

Квалификация и опыт:

- Доктор технических наук в области систем управления и робототехники
- Научный руководитель PhD программы по инженерным системам Сколтеха
- Руководитель множественных исследовательских проектов в области автономных систем
- Автор научных публикаций в области оптимального управления и робототехники
- Эксперт в области математического моделирования и оптимизации

8.3.2 Ключевые участники проекта

8.3.3 Опыт команды в реализации подобных проектов

• Успешная реализация проекта "Мобильный логистический робот с интеллектуальным управлением" (грант УМНИК-2021)

ФИО	Роль	Квалификация	Опыт
Давиденко Сергей	Руководитель	Аспирант Сколте-	Победитель гранта
Александрович	проекта, техни-	xa, Chief Robotics	УМНИК-2021, 10+
	ческий дирек-	Engineer Сбербанк	лет в робототехнике,
	тор		публикации в IEEE
Рякин Илья Сер-	Главный разра-	Аспирант, 6 лет опы-	Руководство CV компо-
геевич	ботчик CV	та в компьютерном	нентов в предыдущих
		зрении	проектах, научные пуб-
			ликации
Осокин Илья Оле-	Научный кон-	Аспирант, препода-	6 лет преподавания
гович	сультант	ватель МФТИ	робототехники, 5+
			международных публи-
			каций
Гунявой Влади-	Математический	Математический ин-	Разработка алгоритмов
мир	инженер	женер, Skoltech	для робототехники, ра-
			бота в Topcon Lab

Таблица 3: Состав команды проекта

- Руководство модернизацией платформы Cobot Magic в Сбербанк
- 6 лет практического опыта разработки алгоритмов компьютерного зрения
- Регистрация 2 программ для ЭВМ, подача материалов на международные конференции (IEEE SMC, IROS)

8.3.4 Партнеры проекта

- **Научные партнеры:** Сколковский институт науки и технологий, Московский физико-технический институт
- **Промышленные партнеры:** Ведущие тепличные комплексы России для тестирования и валидации
- Технологические партнеры: Компании по металлообработке, производители компонентов

9 Планируемая интеллектуальная собственность

9.1 Объекты интеллектуальной собственности

Планируемые полезные модели:

• "Гибридная ходовая система мобильного робота для теплиц" — подача заявки до 6 месяца проекта

 "Камерная мачта с адаптивной стабилизацией для мобильных роботов" — подача заявки до 8 месяца проекта

Программы для ЭВМ:

- "Программный комплекс диагностики заболеваний растений на основе CNN" регистрация до 10 месяца проекта
- "Система автономной навигации мобильного робота в теплице" регистрация до 11 месяца проекта

Перспективные патенты на изобретения:

- "Способ оценки объема плодов с использованием гибридных алгоритмов" подача заявки в течение 6 месяцев после завершения НИОКР
- "Система мониторинга растений с многоракурсным сканированием" подача заявки в течение 12 месяцев после завершения НИОКР

9.2 Мероприятия по патентным исследованиям

- Проведение патентного поиска по тематике робототехники для сельского хозяйства до 3 месяца проекта
- Анализ патентной чистоты разрабатываемых технических решений до 6 месяца проекта
- Мониторинг патентной активности конкурентов в течение всего периода НИОКР

10 Анализ рисков проекта

10.1 Технические риски

10.2 Рыночные и коммерческие риски

10.3 Регуляторные риски

- Изменение требований к робототехнике в АПК: мониторинг законодательства, участие в отраслевых ассоциациях
- Сложности с сертификацией: работа с профильными организациями с начала проекта
- Импортные ограничения на компоненты: поиск российских поставщиков, создание запасов

Риск	ВероятностВлияние		Меры по снижению
Невыполнение заяв-	Средняя	Высокое	Дополнительные испытания,
ленных характери-			привлечение экспертов, ис-
стик точности			пользование предобученных
			моделей
Проблемы интегра-	Низкая	Среднее	Поэтапное тестирование, мо-
ции аппаратной и			дульная архитектура
программной частей			
Сложности с адап-	Средняя	Среднее	Тестирование в различных
тацией к различным			условиях, гибкая настройка
типам теплиц			параметров

Таблица 4: Технические риски проекта

Риск	ВероятностВлияние		Меры по снижению
Снижение спроса	Низкая	Высокое	Диверсификация на другие
на автоматизацию в			культуры и отрасли
АПК			
Появление сильных	Средняя	Среднее	Защита ИС, постоянные инно-
конкурентов			вации
Превышение бюдже-	Средняя	Среднее	Детальное планирование, ре-
та НИОКР			зерв 15%
Задержка привлече-	Высокая	Высокое	Множественные источники фи-
ния инвестиций			нансирования

Таблица 5: Рыночные и коммерческие риски

11 Проект образовательных программ

11.1 Магистерская программа

Название: "Интеллектуальная робототехника в агропромышленном комплексе" **Ключевые курсы:**

- Мобильная робототехника и навигационные системы в сельском хозяйстве
- Компьютерное зрение и машинное обучение для агромониторинга
- Проектирование и эксплуатация агророботов (на примере AIDA-T)
- Анализ данных и принятие решений в точном земледелии

11.2 Программы ДПО

Курс: "Современные методы автоматизации и роботизации в тепличном хозяйстве" **Формат:** 72 ак. часа, включая практические занятия на симуляторе и демонстрацию работы робота

11.3 Открытая образовательная платформа

- Открытый датасет изображений с размеченными заболеваниями томатов
- Симулятор теплицы и робота AIDA-Т в Gazebo/ROS
- МООК по основам агроробототехники

12 Детальный план реализации проекта

12.1 Общая структура проекта

Проект AIDA-Т рассчитан на 24 месяца и разделен на 4 основных этапа по 6 месяцев каждый. Каждый этап имеет четкие цели, задачи и критерии завершения.

12.2 Этап 1 (месяцы 1-6): Концептуальное проектирование и разработка алгоритмов

Основные задачи:

- Детальное техническое задание на систему AIDA-T
- Разработка архитектуры программно-аппаратного комплекса
- Создание и обучение прототипов алгоритмов машинного обучения
- Подготовка и расширение датасета для обучения CNN
- Проектирование механических узлов (3D-модели, чертежи)
- Проведение патентного поиска и анализа конкурентов

Ожидаемые результаты:

- Техническое задание и спецификации всех подсистем
- Архитектура программной системы на базе ROS2
- Обученная CNN-модель с точностью диагностики не менее 83%
- Расширенный датасет (25,000+ изображений с разметкой)
- Комплект 3D-моделей и эскизной конструкторской документации
- Отчет о патентной чистоте разрабатываемых решений

Критерии завершения этапа:

- Успешная валидация CNN-модели на тестовом наборе данных
- Завершение 3D-моделирования всех основных узлов
- Подача заявки на первую полезную модель
- Утверждение технического задания научным руководителем

12.3 Этап 2 (месяцы 7-12): Разработка аппаратной платформы

Основные задачи:

- Проектирование и изготовление гибридной ходовой системы
- Разработка камерной мачты с системой активной стабилизации
- Интеграция вычислительного оборудования и систем связи
- Создание системы энергоснабжения с контроллером заряда
- Сборка и первичная настройка аппаратной платформы
- Тестирование механических узлов и систем управления

Ожидаемые результаты:

- Функционирующая мобильная платформа с гибридной ходовой системой
- \bullet Камерная мачта с регулировкой высоты 0.1-3.0 м и стабилизацией ± 1.5 мм
- Интегрированная система управления на базе промышленного компьютера
- Автономная система энергоснабжения на 12+ часов работы
- Протоколы испытаний механических узлов
- Подача заявки на вторую полезную модель

Критерии завершения этапа:

- Успешные испытания ходовой системы на тестовом полигоне
- Подтверждение точности позиционирования камерной системы
- Проверка автономности работы в течение 12 часов
- Интеграция всех аппаратных компонентов в единую систему

12.4 Этап 3 (месяцы 13-18): Разработка программного обеспечения

Основные задачи:

- Реализация алгоритмов диагностики заболеваний (CNN)
- Создание гибридной системы оценки урожайности (RANSAC + PointNet)
- Разработка системы автономной навигации и планирования маршрутов
- Создание веб-интерфейса для мониторинга и управления
- Интеграция всех программных модулей в единую систему
- Оптимизация производительности и отладка

Ожидаемые результаты:

- Программный комплекс диагностики с точностью 86-87%
- Система оценки урожайности с погрешностью не более 15%
- Автономная навигационная система с поддержкой двух режимов движения
- Веб-интерфейс с функциями мониторинга и формирования отчетов
- Полная программная документация и инструкции пользователя
- Регистрация двух программ для ЭВМ

Критерии завершения этапа:

- Достижение заявленной точности диагностики заболеваний
- Валидация алгоритмов оценки урожайности на тестовых данных
- Успешное выполнение автономного цикла мониторинга
- Завершение интеграционного тестирования всех подсистем

12.5 Этап 4 (месяцы 19-24): Тестирование и валидация в реальных условиях

Основные задачи:

- Лабораторные испытания полного прототипа системы
- Полевые испытания в реальных условиях промышленных теплиц

- Оптимизация и доработка системы по результатам испытаний
- Подготовка полного комплекта технической документации
- Подача заявок на патенты и регистрация результатов ИС
- Подготовка к коммерциализации и демонстрации инвесторам

Ожидаемые результаты:

- Полностью функционирующий прототип системы AIDA-T
- Протоколы лабораторных и полевых испытаний
- Подтверждение всех заявленных технических характеристик
- Полный комплект технической и программной документации
- Заявки на 2 патента на изобретения
- Готовность к началу серийного производства

Критерии завершения этапа:

- Успешная работа системы в реальных условиях теплицы
- Подтверждение заявленных характеристик точности и автономности
- Получение положительных отзывов от тестовых площадок
- Завершение подготовки всей отчетной документации

12.6 Контрольные точки и управление рисками

Ключевые контрольные точки:

- Месяц 6: Защита технического задания и демонстрация алгоритмов
- Месяц 12: Демонстрация работы аппаратной платформы
- Месяц 18: Демонстрация интегрированной системы в лабораторных условиях
- Месяц 24: Финальная демонстрация работы в реальных условиях

Система управления рисками:

- Еженедельные совещания команды проекта
- Ежемесячные отчеты о ходе выполнения работ
- Резерв времени 15% на каждом этапе для устранения технических проблем
- Параллельная разработка критически важных компонентов
- Постоянный мониторинг технологических и рыночных изменений

12.7 Ресурсное обеспечение

Человеческие ресурсы:

- Постоянная команда: 4 специалиста (руководитель проекта, CV-разработчик, консультант, математический инженер)
- Привлекаемые специалисты: механический инженер, агроном-консультант (по мере необходимости)
- Научное руководство: Осиненко П.В. (Сколтех)

Материально-техническое обеспечение:

- Лабораторная база Сколковского института науки и технологий
- Доступ к тепличному комплексу для полевых испытаний
- Производственные мощности для изготовления прототипа
- Вычислительные ресурсы для обучения нейронных сетей

Итоговый результат проекта: Полностью функционирующий прототип системы AIDA-Т уровня TRL 7-8, готовый к демонстрации потенциальным заказчикам и инвесторам, с подтвержденными техническими характеристиками и полным комплектом документации для последующей коммерциализации.