单片机复位电路的可靠性设计

一、概述

影响单片机系统运行稳定性的因素可大体分为外因和内因两部分:

1. 外因

- 射频干扰,它是以空间电磁场的形式传递,在机器内部的导体(引线或零件引脚)感生出相应的干扰。可通过电磁屏蔽和合理的布线/器件布局衰减该类干扰:
- 电源线或电源内部产生的干扰,它是通过电源线或电源内的部件耦合或直接传导。可通过电源 滤波,隔离等措施来衰减该类干扰。

2. 内因

- 振荡源的稳定性,主要由起振时间,频率稳定度和占空比稳定度决定,起振时间可由电路参数 整定,稳定度受振荡器类型,温度和电压等参数影响;
- 复位电路的可靠性。

二、复位电路的可靠性设计

1. 基本复位电路

复位电路的基本功能是:系统上电时提供复位信号,直至系统电源稳定后,撤销复位信号。为可靠起见,电源稳定后还要经一定的延时才撤销复位信号,以防电源开关或电源插头分-合过程中引起的抖动而影响复位。图 1 所示的 RC 复位电路可以实现上述基本功能,图 3 为其输入-输出特性。但解决不了电源毛刺(A 点)和电源缓慢下降(电池电压不足)等问题。而且调整 RC 常数改变延时会令驱动能力变差。左边的电路为高电平复位有效, 右边为低电平,Sm 为手动复位开关, Ch 可避免高频谐波对电路的干扰。

图 1 RC 复位电路

图 2 所示的复位电路增加了二极管,在电源电压瞬间下降时使电容迅速放电,一定宽度的电源毛刺也可令系统可靠复位。图 3 所示复位电路输入输出特性图的下半部分是其特性,可与上半部比较增加放电回路的效果。

图 2 增加放电回路的 RC 复位电路

使用比较电路,不但可以解决电源毛刺造成系统不稳定,而且电源缓慢下降也能可靠复位。图 4 是一个实例,当 VCC x (R1/(R1+R2))=0.7V 时,Q1 截止使系统复位 。Q1 的放大作用也能改善电路的负载特性。但跳变门槛电压(Vt)受 VCC 影响是该电路的突出缺点。使用稳压二极管可使 Vt 基本不受 VCC 影响,见图 5。当 VCC 低于 Vt(Vz+0.7V)时电路令系统复位。

图 3 RC 复位电路输入-输出特性

图 4 带电压监控功能的复位电路

图 5 稳定门槛电压

图 6 实用的复位监控电路

在此基础上,增加延时电容和放电二极管构成性能优良的复位电路,如图 6 所示。调节 C1 可调整延时时间,调节 R1 可调整负载特性。如图 7 所示上半部分是图 5 电路的特性,下半部分对应图 6。

图 7 带电压监控功能的复位电路的输入-输出特性

2. 电源监控电路

上述的带电压监控的复位电路又叫电源监控电路。监控电路必须具备如下功能:

● 上电复位:保障上电时能正确地启动系统;

● 掉电复位: 当电源失效或电压降到某一电压值以下时,复位系统;

市面上有类似的集成产品,如PHILIPS半导体公司生产的MAX809,MAX810。此类产品体积小,功耗低,而且可选门槛电压。可保障系统在不同的异常条件下可靠地复位,防止系统失控。图8中的Rm和Sm实现手动复位,无需该功能时可把Reset端(或/Reset端)直接与单片机的RST端(或/RST端)相连,最大限度地简化外围电路。也可选择PHILIPS半导体公司带手动复位功能的产品MAX708。

图8 集成复位监控电路

此外,MAX708还可以监视第二个电源信号,为处理器提供电压跌落的预警功能,利用此功能,系统可在电源跌落时到复位前执行某些安全操作。保存参数,发送警报信号或切换后备电池等。图9电表的应用实例:利用MAX708,电表可在电源毛刺或停电前把当前电度数保存到E²PROM中,再配合保存多个电度数备份算法,可有效解决令工程师头疼E²PROM中的电度数掉失问题!

使用该电路必须选择适当的预警电压点,以保证靠电源的储能供电情况下,VCC电压从预警电压跌到复位电压的维持时间(t_B)必须足够长, E^2PROM 的写周期约为 $10\sim20ms$,一般取 $t_B>200ms$ 就可确保数据稳定写入。预警电压调整方法:当 V_Dc 等于预警电压时调整R1和R2使PFI的电压为1.25V,此时可检测/PFO来确认内部的电压比较器是否动作。调整时必须注意此比较器是窗口比较器! 图10是该应用的程序流程图。

图 9 MAX708 的典型应用

图 10. 电表应用中 E²PROM 数据保护程序流程图

3. 多功能电源监控电路

除上电复位和掉电复位外,很多监控电路集成了系统所需的功能,如:

- 电源测控:供电电压出现异常时提供预警指示或中断请求信号,方便系统实现异常处理;
- 数据保护: 当电源或系统工作异常时,对数据进行必要的保护,如写保护、数据备份或切换后备电池:
- 看门狗定时器: 当系统程序"跑飞"或 死锁"时,复位系统;
- 其它的功能:如温度测控、短路测试等等。

我们把其称作多功能电源监控电路。下面介绍两款特别适合在工控,安防,金融行业中广泛应用多功能的监控电路:

Catalyst 公司的 CAT1161 是一个集成了开门狗,电压监控和复位电路的 16K 位 E^2PROM (I^2C 接口)。不但集成度高,功耗低 (E^2PROM 部分静态时真正实现零功耗!),而且清看门狗是通过改变 SDA 的电平实现的,节省系统 I/O 资源。其门槛电压可通过编程器修改,该修改范围覆盖绝大多数应用。**当电源下降到门槛电压以下时,硬件禁止访问** E^2PROM 。确保数据安全!

使用时注意的是 RST,/RST 引脚是 I/O 脚,CAT1161 检测到两引脚中任何一个电压异常都会产生复位信号。与 RST,/RST 引脚相连的下拉电阻 R2 和上拉电阻 R1 必须同时连接,否则 CAT1161 将不断产生复位! 同样不需要手动复位功能时可节省 Rm 和 Sm 两个元件。

图 11. 内置 WDT+RESET+/RESET+E²PROM 监控器件接口电路

PHILIPS 公司的 SA56600-42 被设计用在电源电压降低或断电时作保护微电脑系统中 SRAM 的数据。当电源电压下降到通常值 4.2V 时,输出 CS 变为逻辑低电平,把 CE 也拉低,从而禁止对 SRAM 的操作。同时,产生一个低电平有效的复位信号,供系统使用。如果电源电压继续下降,到达通常值 3.3V 或更低时,SA56600-42 切换系统操作,从主电源供电切换到后备锂电池供电。当主电源恢复正常,电压上升至 3.3V 或更高时,将 SRAM 的供电电源将由后备锂电池切换回主电源。当主电源上升至大于典型值 4.2V 时,输出 CS 变为逻辑高电平,使 CE 变为高电平,使能 SRAM 的操作。复位信号一直持续到系统恢复正常操作为止。在系统电源电压不足或突然断电的时候,这个器件能可靠地保护系统在 SRAM 内的数据。

图 12. 内置 SRAM 数据保护电路的监控器件 SA56600-42 的典型应用

4. ARM 单片机的复位电路设计

无论在移动电话,高端手持仪器还是嵌入式系统,32 位单片机 ARM 占据越来越多的份额, ARM 已成为事实的高端产品工业标准。由于 ARM 高速、低功耗、低工作电压导致其噪声容限低,这是对数字电路极限的挑战,对电源的纹波、瞬态响应性能,时钟源的稳定度,电源监控可靠性等诸多方面也提出了更高的要求。ARM 监控技术是复杂并且非常重要的。

分立元件实现的监控电路,受温度、湿度、压力等外界的影响大而且对不同元件影响不一致,较大板面积、过多过长的引脚容易引入射频干扰,功耗大也是很多应用难以接受。而集成电路能很好的解决此类问题。目前也有不少微处理器中集成监控电路,处于制造成本和工艺技术原因,此类监控电路大多数是用低电压 CMOS 工艺实现的。比起用高电压、高线性度的双极工艺制造的专用监控电路,性能还有一段差距。

结论是:使用 ARM 而不用专用监控电路,可能导致得不偿失! 经验也告诉我们使用专用监控电路可以避免很多离奇古怪的问题。ARM 的应用工程师,切记少走弯路!

图 13. 用 PHILIPS MAX708 实现的 ARM 复位电路

图 13 是实用可靠的 ARM 复位电路,ARM 内核的工作电压较低,R1 可保证电压低于 MAX708 的工作电源还能可靠复位。其中 TRST 信号是给 JTAG 接口用的,使用 HC125 可实现多种复位源对 ARM 复位,如通过 PC 机串口或 JTAG 接口复位 ARM。

三、电源监控器件的选型

型号	电平	手动复	典型复	复位输	复位门限(V)	电压	看门狗超	备用电池	写保护	E ² P	最大工	封装	参考
	复位	位输入	位脉宽	出方式		预警	时周期(S)	切换电压	输出	ROM	作电流		零售价
			(ms)										
SA56600-42	低			开集	4.2			3.3V	高和低		2.2mA	S08	5.50
NE56604-42	高和低	有	100	弱上拉	默认 4.2,外部可调		0.1				1mA	S08	7.50
NE56604-42	高和低	有	100	弱上拉	默认 4.2, 外部可调		0.01				1mA	S08	7.50
CAT1161	高和低		210	开漏	数 字 可 调		1.6		内部	16	50uA	DIP8,SO8	5.50
					2.2/2.8/3/4.2/4.8				保护	Kbit			
MAX708R	高和低	有	200	开集	2.63/2.93/3.08	有					500uA	S08,	5.50
/S/T												TSSOP8	
MAX809Z	低		240	推挽	2.32/2.93/3.08/4.						100uA	SOT23	2.30
/R/S/T/J/M/L					00						50uA		
					4.38/4.63								
MAX810Z	高		240	推挽	2.32/2.93/3.08/4.						100uA	SOT23	2.30
/R/S/T/J/M/L					00						50uA		
					4.38/4.63								
IMP809R	低		240	推挽	2.93/3.08/4.00						25uA	SOT23	2.30
/S/T/J/M/L					4.38/4.63						10uA		
MAX810Z	高		240	推挽	2.32/2.93/3.08/4.						25uA	SOT23	2.30
/R/S/T/J/M/L					00						10uA		
					4.38/4.63								
HT70XX	低			开漏	2.2/2.4/2.7/3.3						7uA	TO92,	1.30
					/3.9/4.4/5.0							SOT89	

器件期间的详细资料请访问 http://www.zlgmcu.com/philips/philips-power.asp,市场价请查阅 PHILIPS 半导体栏目下的邮购价。