N A B

Познакомимся с «географией» плоской Земли. Она напоминает обычную карту земного шара с северным полюсом в центре. Точка пересечения оси вращения планеты с поверхностью диска является северным полюсом N. Далее аналогично: любую радиальную прямую, выходящую из северного полюса будем

называть *меридианом*. Легко догадаться, что южного полюса S, как такового, на плоской планете нет — его роль играют все точки края диска. Соответственно, окружности, точки которых находятся на равном расстоянии от полюса, назовем *параллелями*. Движение по параллелям в направлении вращения Земли будет соответствовать движению на восток (E), а в противоположном направлении — на запад (W). Пусть Афины находятся в точке A, расположенной на расстоянии $r_0 = 4.0 \cdot 10^3 \, \text{км}$ от северного полюса N.

- **4.1** Какой должна быть толщина h этого диска, чтобы ускорение свободного падения на северном полюсе N было $g=9,8\frac{\rm M}{\rm c^2}$?
- **4.2** Для связи с жителями «другой стороны» плоской Земли вдоль оси ее вращения пробурена сквозная тонкая шахта. Если без начальной скорости в шахту опустить камешек, то он, пройдя сквозь шахту, окажется на другой стороне Земли. Найдите максимальную скорость υ_{\max} камешка при таком движении. Силой сопротивления воздуха пренебречь.
- **4.3** Для связи с жителями «своей стороны» плоской Земли из Афин с помощью суперкатапульты производится выстрел «снарядом» с начальной скоростью $\upsilon_0 = 100 \frac{\text{M}}{\text{c}}$ под углом $\alpha = 45 \,^{\circ}$ к горизонту. Силой сопротивления воздуха пренебречь.
- а) найдите величину и направление смещения ΔS снаряда от меридиана за время его полета при выстреле вдоль меридиана (рассмотрите два случая).
- б) найдите величину и направление смещения ΔS снаряда от параллели за время его полета при выстреле вдоль параллели (рассмотрите два случая).

Республиканская физическая олимпиада (III этап). 2005 год.

11 класс.

Задача 1. «Хорошо ли Вы знаете силу трения?»

1.0 Тонкостенный цилиндр радиуса R и массы m (которая равномерно распределена по боковой поверхности цилиндра) может вращаться без вокруг неподвижной оси. К боковой поверхности цилиндра прикладывают постоянную силу \vec{F} , направленную по касательной к поверхности. Покажите, что изменение угловой скорости ω вращения цилиндра подчиняется уравнению

$$mR^2 \frac{\Delta \omega}{\Delta t} = FR. \tag{1}$$

Даже если вы не можете доказать это уравнение, то никто не запрещает вам использовать его в дальнейшем. Кроме того, напоминаем, что плоскопараллельное движение твердого тела можно представить в виде суммы поступательного движения его центра масс и вращения, вокруг оси, проходящей через центр масс тела.

- **1.1** Тонкостенную цилиндрическую трубку радиуса R раскрутили до угловой скорости ω_0 и аккуратно положили на горизонтальную поверхность (без начальной поступательной скорости). Найдите скорость установившегося движения оси цилиндра. Трением качения пренебречь.
- **1.2** Небольшой прямоугольный брусок массы $m = 1,0\kappa$ г находится на горизонтальной поверхности. Коэффициент трения между бруском и поверхностью равен $\mu = 0,20$. К бруску прикладывают постоянную горизонтально направленную силу F. Постройте график зависимости модуля ускорения бруска от модуля приложенной силы.
- **1.3** На горизонтальной поверхности расположен брусок Коэффициент трения между бруском и поверхностью равен $\mu=0,20$. Рядом с бруском располагают сильно раскрученный тонкостенный цилиндр массы $m_1=1,0\kappa\varepsilon$, диаметр которого равен высоте бруска. Коэффициент трения между боковой поверхностью цилиндра и горизонтальной поверхностью, а также с поверхностью бруска равен $\mu=0,20$. При какой максимальной массе бруска цилиндр сможет сдвинуть его с места? Чему будет равно ускорение бруска, если его масса $m_2=0,10\kappa\varepsilon$?
- 1.4 На горизонтальной поверхности покоится тонкостенный цилиндр. Рядом с ним аккуратно кладут такой же цилиндр, но сильно раскрученный вокруг собственной оси. Коэффициенты трения между цилиндрами и поверхностью, а также между боковыми поверхностями цилиндров одинаковы и равны $\mu = 0,20$. С какими ускорениями начнут двигаться эти цилиндры?

Задача 2. «Хорошо ли Вы знаете закон преломления света?»

2.1 Показатель преломления воздуха зависит как от температуры, так и от давления. Будем считать, что в наших условиях показатель преломления зависит только от температуры, причем эта зависимость имеет вид

$$n = 1 + \frac{a}{T} \,, \tag{1}$$

Для воздуха при нормальном давлении постоянная $a \approx 8,6 \cdot 10^{-2} \, K$.

Воздух над дорогой под действием солнечных лучей разогревается, из-за чего сухой асфальт может казаться «мокрым». Пусть в достаточно тонком слое над дорогой температура воздуха превышает среднюю температуру $t_0=17^{\circ}C$ на величину Δt . На некотором минимальном расстоянии S от себя наблюдатель может видеть «лужи» на дороге.

Объясните появление «луж».

Постройте график зависимости $S(\Delta t)$.

Глаз наблюдателя находится на высоте h = 1,0 M от дороги