GPU-parallel Gibbs sampling of a hierarchical model of hybrid vigor in RNA-seq experiments

Will Landau

Iowa State University

October 10, 2013

Outline

Biological background

- Biological background
 - DNA and RNA
 - Central dogma
 - Examples of gene regulation
 - RNA-seq
 - Hybrid vigor
- The model
- The Gibbs sampler
 - Gibbs steps
 - Estimated heterosis probabilities
 - GPU parallelism
- The software

Outline

Biological background

- Biological background
 - DNA and RNA
 - Central dogma
 - Examples of gene regulation
 - RNA-seq
 - Hybrid vigor
- - Gibbs steps
 - Estimated heterosis probabilities
 - GPU parallelism

DNA

The Gibbs sampler

··· GTGCATCTGACTCCTGAGGAGAAG ··· CACGTAGACTGAGGACTCCTCTTC

RNA

Biological background

ooooooooooooo

GUGCAUCUGACUCCUGAGGAGAAG · · · ·

Proteins

Central dogma: how organisms make proteins

```
··· GTGCATCTGACTCCTGAGGAGAAG ··· CACGTAGACTGAGGACTCCTCTTC ···
                                                              DNA
```

Central dogma: how organisms make proteins

```
GTGCATCTGACTCCTGAGGAGAAG ··· CACGTAGACTGAGGACTCCTCTTC ···
                                               DNA
                                           (transcription)
                                               RNA
GUGCAUCUGACUCCUGAGGAGAAG · · ·
```

The Gibbs sampler

The Gibbs sampler

Central dogma of genetics

13700

Biological background

000000•0000000000

- HSP = heat shock protein.
- Prevent heat damage to other proteins.

Temperature spike triggers HSP60 production.

HSP60 Gene

Biological background

Temperature spike causes HSP60 expression.

Biological background

Temperature spike causes HSP60 expression.

Biological background

Biological background

- RNA sequencing: measure gene expression using relative abundance of RNA.
- Illumina Genome Analyzer:

RNA-seq data: counts of amplified RNA fragments

	Treatment I			Treatn	nent 2	Treatment 3	
Gene I	100	225	0	70	279	300	106
Gene 2	0	1	- 1	50	501	2	7
Gene 3	3	4	2	700	900	0	0
Gene 4	893	400	760	5	5	1000	513
Gene 34897	10	13	6	819	761	902	912

• Goal: use RNA-seq to study hybrid vigor (heterosis).

High-parent heterosis: child's trait surpasses both parents

The Gibbs sampler

Biological background

Low-parent heterosis: child's trait is weaker than in each parent

Mid-parent heterosis: child's trait is different than average of parents

The Gibbs sampler

The Gibbs sampler

High-parent heterosis in gene expression

	Parent I			Ch	nild	Parent 2	
Gene I	100	225	0	70	279	300	106
Gene 2	0	I	ı	50	501	2	7
Gene 3	3	4	2	700	900	0	0
Gene 4	893	400	760	5	5	1000	513
•••							
Gene 34897	10	13	6	819	761	902	912

Low-parent heterosis in gene expression

The model

	Parent I			Ch	nild	Parent 2	
Gene I	100	225	0	70	279	300	106
Gene 2	0	1	I	50	501	2	7
Gene 3	3	4	2	700	900	0	0
Gene 4	893	400	760	5	5	1000	513
Gene 34897	10	13	6	819	761	902	912

The Gibbs sampler

Mid-parent heterosis in gene expression

	Parent I			Ch	ild	Parent 2	
Gene I	100	225	0	70	279	300	106
Gene 2	0	1	- 1	50	501	2	7
Gene 3	3	4	2	700	900	0	0
Gene 4	893	400	760	5	5	1000	513
					•••		
Gene 34897	10	13	6	819	761	902	912

The Gibbs sampler

Outline

- - DNA and RNA
 - Central dogma
 - Examples of gene regulation
 - RNA-seq
 - Hybrid vigor
- The model
- - Gibbs steps
 - Estimated heterosis probabilities
 - GPU parallelism

The model

$$\begin{split} \mu(n,\phi_g,\alpha_g,\delta_g) &= \begin{cases} \phi_g - \alpha_g & \text{sample } n \text{ from parent 1} \\ \phi_g + \delta_g & \text{sample } n \text{ from child} \\ \phi_g + \alpha_g & \text{sample } n \text{ from parent 2} \end{cases} \\ y_{g,n} \overset{\text{ind}}{\sim} \operatorname{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ c_n \overset{\text{ind}}{\sim} \operatorname{N}(0,\sigma_c^2) \\ \sigma_c &\sim \operatorname{U}(0,\sigma_{c0}) \\ \varepsilon_{g,n} \overset{\text{ind}}{\sim} \operatorname{N}(0,\eta_g^2) \\ \eta_g^2 \overset{\text{ind}}{\sim} \operatorname{Inv-Gamma}\left(\operatorname{shape} = \frac{d}{2} \;,\; \operatorname{rate} = \frac{d \cdot \tau^2}{2}\right) \\ d &\sim \operatorname{U}(0,d_0) \\ \tau^2 &\sim \operatorname{Gamma}(\operatorname{shape} = a_\tau,\operatorname{rate} = b_\tau) \end{split}$$

The model

$$\mu(n,\phi_g,\alpha_g,\delta_g) = \begin{cases} \phi_g - \alpha_g & \text{sample n from parent 1} \\ \phi_g + \delta_g & \text{sample n from child} \\ \phi_g + \alpha_g & \text{sample n from parent 2} \end{cases}$$

The model

$$\begin{split} \mathbf{y}_{\mathbf{g},n} & \overset{\text{ind}}{\sim} \mathsf{Poisson}(\exp(c_n + \varepsilon_{\mathbf{g},n} + \mu(n,\phi_{\mathbf{g}},\alpha_{\mathbf{g}},\delta_{\mathbf{g}}))) \\ \phi_{\mathbf{g}} & \overset{\text{ind}}{\sim} \mathsf{N}(\theta_{\phi},\sigma_{\phi}^2) \\ \theta_{\phi} & \sim \mathsf{N}(0,\gamma_{\phi}^2) \\ \sigma_{\phi} & \sim \mathsf{U}(0,\sigma_{\phi 0}) \\ \alpha_{\mathbf{g}} & \overset{\text{ind}}{\sim} \pi_{\alpha}^{1-l(\alpha_{\mathbf{g}})} [(1-\pi_{\alpha})\mathsf{N}(\theta_{\alpha},\sigma_{\alpha}^2)]^{l(\alpha_{\mathbf{g}})} \\ \theta_{\alpha} & \sim \mathsf{N}(0,\gamma_{\alpha}^2) \\ \sigma_{\alpha} & \sim \mathsf{U}(0,\sigma_{\alpha 0}) \\ \pi_{\alpha} & \sim \mathsf{Beta}(a_{\alpha},b_{\alpha}) \\ \delta_{\mathbf{g}} & \overset{\text{ind}}{\sim} \pi_{\delta}^{1-l(\delta_{\mathbf{g}})} [(1-\pi_{\delta})\mathsf{N}(\theta_{\delta},\sigma_{\delta}^2)]^{l(\delta_{\mathbf{g}})} \\ \theta_{\delta} & \sim \mathsf{N}(0,\gamma_{\delta}^2) \\ \sigma_{\delta} & \sim \mathsf{U}(0,\sigma_{\delta 0}) \\ \pi_{\delta} & \sim \mathsf{Beta}(a_{\delta},b_{\delta}) \end{split}$$

Outline

Biological background

- Biological background
 - DNA and RNA
 - Central dogma
 - Examples of gene regulation
 - RNA-seq
 - Hybrid vigor
- 2 The model
- The Gibbs sampler
 - Gibbs steps
 - Estimated heterosis probabilities
 - GPU parallelism
- 4 The software

Partition parameters by conditional independence.

The Gibbs sampler

Use these partitions as Gibbs steps.

$$y_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\mathsf{exp}(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- From the appropriate full conditional distributions, sample the following:
- \bigcirc C_1, \ldots, C_N

Biological background

- \bullet τ , π_{α} , π_{δ}
- \bullet d, θ_{ϕ} , θ_{α} , θ_{δ}
- \bullet σ_c , σ_ϕ , σ_α , σ_δ , η_1^2 , ..., η_c^2
- \bullet $\varepsilon_{1,1}, \ \varepsilon_{1,2}, \ \ldots, \ \varepsilon_{1,N}, \ \varepsilon_{2,N}, \ \ldots, \ \varepsilon_{G,N}$
- $\mathbf{0}$ ϕ_1, \ldots, ϕ_G
- $\alpha_1, \ldots, \alpha_G$
- $\delta_1, \ldots, \delta_G$
 - and then repeat.

Estimated heterosis probabilities

$$\mu(\textit{n}, \phi_{\textit{g}}, \alpha_{\textit{g}}, \delta_{\textit{g}}) = \begin{cases} \phi_{\textit{g}} - \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent } 1 \\ \phi_{\textit{g}} + \delta_{\textit{g}} & \text{sample } \textit{n} \text{ from child} \\ \phi_{\textit{g}} + \alpha_{\textit{g}} & \text{sample } \textit{n} \text{ from parent } 2 \end{cases}$$

$$y_{g,n} \stackrel{\text{ind}}{\sim} \text{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

Consider one chain with M iterations.

$$P(\text{high-parent heterosis in gene } g) \approx \frac{1}{M} \sum_{i=1}^{M} I(\delta_g^{(i)} > |\alpha_g^{(i)}|)$$

$$P(ext{low-parent heterosis in gene } g \) pprox rac{1}{M} \sum_{i=1}^{M} I(\delta_{g}^{(i)} < -|lpha_{g}^{(i)}|)$$

$$P(\text{mid-parent heterosis in gene } g) \approx \frac{1}{M} \sum_{i=1}^{M} I(|\delta_g^{(i)}| < |\alpha_g^{(i)}|)$$

Tons of opportunity for GPU parallelism across genes!

The Gibbs sampler

•0000000000000

$$y_{g,n} \stackrel{\text{ind}}{\sim} \text{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- Sample in parallel:
 - ϕ_{ε} 's
 - α_g's
 - δ_{g} 's
 - $\varepsilon_{g,n}$'s
 - η_g's

Example: ϕ_g 's

$$y_{g,n} \stackrel{\text{ind}}{\sim} \text{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

$$\phi_g \stackrel{\text{ind}}{\sim} \text{N}(\theta_{\phi}, \sigma_{\phi}^2)$$

$$\theta_{\phi} \sim \text{N}(0, \gamma_{\phi}^2)$$

$$\sigma_{\phi} \sim \text{U}(0, \sigma_{\phi 0})$$

• Using parallel random walk Metropolis steps, sample the $\phi_{\rm g}$'s from their full conditional distributions,

$$p(\phi_g \mid \cdots) \propto \exp\left(\sum_{n=1}^{N} \left[y_{g,n} \cdot \mu(n, \phi_g, \alpha_g, \delta_g)\right] - \exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g))\right] - \frac{(\phi_g - \theta_\phi)^2}{2\sigma_\phi^2}$$

Tons of opportunity for GPU parallelism across genes!

$$y_{g,n} \stackrel{\text{ind}}{\sim} \text{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(n, \phi_g, \alpha_g, \delta_g)))$$

- Use parallel reductions to calculate sufficient statistics for:
 - C_n's

Biological background

- τ. d
- θ_{ϕ} , θ_{α} , θ_{δ}
- σ_{ϕ} , σ_{α} , σ_{δ} , σ_{ϵ}
- π_{α} , π_{δ}

• Let's take the pairwise sum of the vector,

$$(5, 2, -3, 1, 1, 8, 2, 6)$$

The Gibbs sampler

using 1 block of 4 threads.

Biological background

10

Biological background

Synchronize threads

Biological background

Biological background

5 2 -3 1 1 8 2

6 10 -1 7

5 17

Synchronize Threads

10

Biological background

Example: τ^2

Biological background

$$\begin{aligned} y_{g,n} & \overset{\text{ind}}{\sim} \mathsf{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ & \varepsilon_{g,n} \overset{\text{ind}}{\sim} \mathsf{N}(0,\eta_g^2) \\ & \eta_g^2 & \overset{\text{ind}}{\sim} \mathsf{Inv\text{-}Gamma}\left(\mathsf{shape} = \frac{d}{2} \;,\; \mathsf{rate} = \frac{d \cdot \tau^2}{2}\right) \\ & d \sim \mathsf{U}(0,d_0) \\ & \tau^2 \sim \mathsf{Gamma}(\mathsf{shape} = a_\tau,\mathsf{rate} = b_\tau) \\ p(\tau^2 \mid \cdots) \\ & = \mathsf{Gamma}\left(\mathsf{shape} = a_\tau + \frac{Gd}{2} \;,\; \mathsf{rate} = b_\tau + \frac{d}{2} \sum_{g=1}^G \frac{1}{\eta_g^2}\right) \end{aligned}$$

Using a parallel reduction (NVIDIA's CUDA C/C++ Thrust library), calculate the sufficient statistic:

$$\sum_{g=1}^{G} \frac{1}{\eta_g^2}$$

Use an efficient rejection sampler to sample τ^2 .

Example: d

$$\begin{split} y_{g,n} &\stackrel{\text{ind}}{\sim} \mathsf{Poisson}(\exp(c_n + \varepsilon_{g,n} + \mu(n,\phi_g,\alpha_g,\delta_g))) \\ &\varepsilon_{g,n} \stackrel{\text{ind}}{\sim} \mathsf{N}(0,\eta_g^2) \\ &\eta_g^2 \stackrel{\text{ind}}{\sim} \mathsf{Inv\text{-}Gamma}\left(\mathsf{shape} = \frac{d}{2} \;,\; \mathsf{rate} = \frac{d \cdot \tau^2}{2}\right) \\ &d \sim \mathsf{U}(0,d_0) \\ &\tau^2 \sim \mathsf{Gamma}(\mathsf{shape} = a_\tau,\mathsf{rate} = b_\tau) \\ &p(d \mid \cdots) \propto \Gamma(d/2)^{-G} \left(\frac{d \cdot \tau^2}{2}\right)^{Gd/2} \left(\prod_{g=1}^G \eta_g^2\right)^{-(d/2+1)} \exp\left(-\frac{d \cdot \tau^2}{2}\sum_{g=1}^G \frac{1}{\eta_g^2}\right) I(0 < d < d_0) \end{split}$$

The Gibbs sampler

00000000000000000

 Using parallel reductions (NVIDIA's CUDA C/C++ Thrust library), calculate the sufficient statistics:

$$\prod_{g=1}^{G} \eta_g^2 \qquad \qquad \sum_{g=1}^{G} \frac{1}{\eta_g^2}$$

• Use a random-walk metropolis step to sample d.

Outline

Biological background

- - DNA and RNA
 - Central dogma
 - Examples of gene regulation
 - RNA-seq
 - Hybrid vigor
- - Gibbs steps
 - Estimated heterosis probabilities
 - GPU parallelism
- The software

The software

• In progress...

The Gibbs sampler

Thanks for coming.

 Slides and video will be available at http://will-landau.com/research.html.

Sources

- A. Gelman, J. B. Carlin, H. S. Stern, and D. S. Rubin. Bayesian Data Analysis. Chapman & Hall/CRC, 2 edition, 2004.
- Prof. Jarad Niemi's STAT 544 lecture notes.
- J. Sanders and E. Kandrot. CUDA by Example. Addison-Wesley, 2010.
- http://www.astrochem.org/sci/Nucleobases.php
- 5. http://www.biologycorner.com/bio1/DNA.html
- http://www.qualitysilks.com/images/products/ artificial-corn-stalk.jpg
- http://en.wikipedia.org/wiki/dna
- 8. http://en.wikipedia.org/wiki/rna
- http://en.wikipedia.org/wiki/HSP60