ECE380 Digital Logic

Optimized Implementation of Logic Functions: Multiple Output Circuits, NAND and NOR Logic Networks

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 9-1

Multiple output circuits

- In all previous examples we have considered only single output functions
- In practice, these functions may be part of some larger circuit that has many such functions
- Circuits that implement these functions may be combined into a less costly single circuit with multiple outputs by sharing some gates needed in the implementation of the single functions

Electrical & Computer Engineering

Multiple output circuit example

cost=4 gates+10 inputs

 $f_1(a,b,c,d) = ac' + a'c + bc'd$ $f_2(a,b,c,d) = ac' + a'c + bcd$ cost=4 gates+10 inputs

NOTE: cost ignores NOT gates

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 9-3

Multiple output circuit example

Electrical & Computer Engineering

Multiple output circuit example

- In this case, the minimum combined circuit was derived from the minimum circuit for each function (f₁ and f₂)
- This will not always be the case.
- Consider two functions f₃ and f₄.

Optimal realization of f₃

Optimal realization of f₄

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 9-5

Multiple output circuit example

Optimal realization of f₃ and f₄ together

Electrical & Computer Engineering

NAND and **NOR** logic networks

- A NAND gate is a functional combination of an AND gate followed by a NOT gate
- A NOR gate is a functional combination of an OR gate followed by a NOT gate

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 9-7

Electrical & Computer Engineering

AND-OR and NAND-NAND networks

• If we have a network in AND-OR (SOP) form, we can convert it to a NAND-NAND network

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 9-9

OR-AND and NOR-NOR networks

• If we have a network in OR-AND (POS) form, we can convert it to a NOR-NOR network

Electrical & Computer Engineering