From Feedforward-Designed Convolutional Neural Networks (FF-CNNs) to Successive Subspace Learning (SSL)

C.-C. Jay Kuo University of Southern California

Introduction

- Deep Learning provides an effective solution when training data is rich, yet
 - Lack of interpretability
 - Lack of reliability
 - Vulnerability to adversarial attacks
 - Training complexity
- An effort towards explainable machine learning

Evolution of CNNs

- Computational neuron and logic networks
 - McCulloch and Pitts (1943)
 - Why nonlinear activation?
- Multi-Layer Perceptron (MLP)
 - Rosenblatt (1957)
 - Used as "decision networks"
 - Why works?
- Convolutional Neural Networks (CNN)
 - Fukushima (1980) and LeCun et al. (1998)
 - AlexNet (2012)
 - Used as "feature extraction & decision networks"
 - Why works?

CNN Design via Backpropagation (BP)

- Three human design choices
 - CNN architecture (hyper-parameters)
 - Cost function at the output
 - Training dataset (input data and output label)
- Network parameters are determined by the end-to-end optimization algorithm -> backpropagation (BP)
 - Non-convex optimization
 - Few theoretical results
 - Universal approximation (one-hidden layer)
 - Local minima are as good as global minimum

Feedforward-Designed Convolutional Neural Networks (FF-CNNs)

Competitions and Limitations

- MLPs were hot in 80's and early 90's
 - Use the n-D feature vector as the input
 - One feature per input node (n nodes in total)
- Competitive solutions exist
 - SVM
 - Random Forest
- What happens if the input is the source data?
 (e.g. an image of size 32x32 = 1024)

Convolutional Neural Network (CNN)

LeNet-5

- Can handle a large image by partitioning it into small blocks
- Convolutional layers -> feature extraction module
- Fully connected layers -> decision module
- Two modules are back-to-back connected

CNN Design via Backpropagation (BP)

- Three human design choices
 - CNN architecture (hyper-parameters)
 - Cost function at the output
 - Training dataset (input data and output label)
- Network parameters are determined by the end-to-end optimization algorithm -> backpropagation (BP)
 - Non-convex optimization
 - Few theoretical results
 - Universal approximation (one-hidden layer)
 - Local minima are as good as global minimum

Feedforward-Designed Convolutional Neural Networks (FF-CNNs)

Feedforward (FF) Design

- Given a CNN architecture, how to design model parameters in a feedforward manner?
- New viewpoint:
 - Vectors in high-dimensional spaces
 - Example: Classification of CIFAR-10 color images of spatial size 32x32 to 10 classes
 - Input space of dimension 32x32x3=3,072
 - Output space of dimension 10
 - Intermediate layers: vector spaces of various dimensions
 - A unified framework of image representations, features and class labels

Selecting Parameters in Conv Layers

Exemplary network: LeNet-5

2 convolutional layers + 2 FC layers + 1 output layer

Convolutional Filter

Two challenges:

- Nonlinear activation difficult to analyze
- A multi-stage affine system is complex

Three Ideas in Parameters Selection

1st viewpoint (training process, BP)

- Parameters to optimize in large nonlinear networks
- Backpropagation SGD

2nd viewpoint (testing process)

- Filter weights are fixed (called anchor vectors)
- Inner product of input and filter weights -> matched filters
- k-means clustering

3rd viewpoint (testing process, FF)

- Bases (or kernels) for a linear space
- Subspace approximation

3rd Viewpoint: Subspace Approximation

Assumption: $b_k = 0$ for all k

- a_k is an anchor vector of unit length in a hypersphere
- x is an input vector of arbitrary length
- $y_k = \langle a_k, x \rangle$
- The space spanned by a_k , $1 \le k \le K$, is a subspace of the input space $x \in R^N$ (if K < N)
- What happens to negative correlation?

Nonlinear Activation (1)

Nonlinear Activation (2)

The sign confusion problem

• When two convolutional filters are in cascade, the system is not able to differentiate the following scenarios:

Confusing Case #1

- a. A positive correlation followed by a positive outgoing filter weight
- b. A negative correlation followed by a negative outgoing filter weight

Confusing Case #2

- a. A positive correlation followed by a negative outgoing filter weight
- b. A negative correlation followed by a positive outgoing filter weight

Solution

Nonlinear activation provides a constraint to block case (b) in above - a rectifier

Rubin Vase Illusion

Inverse RECOS Transform

How to reconstruct input f from its projected values?

Unrectified responses:

$$p_k = \mathbf{a}_k^T \mathbf{f}, \quad k = 0, 1, \dots K.$$

Rectified responses:

$$g_k = \begin{cases} p_k, & \text{if } p_k > 0, \\ 0, & \text{if } p_k \leqslant 0. \end{cases}$$

Subspace Approximation

If the no. of anchor vectors is less than the dimension of input \mathbf{f} , there is an approximation error

$$\mathbf{f} \approx \hat{\mathbf{f}} = \sum_{k=0}^{K} \alpha_k \mathbf{a}_k.$$

Filter weights as spanning vectors for a linear space

$$p_k \approx \mathbf{a}_k^T \hat{\mathbf{f}} = \mathbf{a}_k^T \left(\sum_{k'=0}^K \alpha_{k'} \mathbf{a}_{k'} \right)$$

Approximation Loss

- Controlled by the no. of anchor filters
- Find optimal anchor filters
 - Truncated Karhunen Loeve Transform (or PCA)
 - Orthogonal eigenvectors

$$\mathbf{a}_i^T \mathbf{a}_j = <\mathbf{a}_i, \mathbf{a}_j> = \delta_{i,j}$$

Easy to invert

$$\hat{\mathbf{f}} = \sum_{k=0}^{K} p_k \mathbf{a}_k,$$

Rectification Loss

- Due to Nonlinear Activation
 - Needed to resolve the sign confusion problem

Recovering Rectification Loss – Saak Transform

- Augment anchor vectors by their negatives
- Subspace approximation with augmented kernels (Saak) transform

- Both $oldsymbol{a}_k$ and $oldsymbol{-a}_k$ are selected as anchor vectors
- Cost: double the output dimension

C.-C. Jay Kuo and Yueru Chen, "On data-driven Saak transform," the Journal of Visual Communications and Image Representation, Vol. 50, pp. 237-246, January 2018

Recovering Rectification Loss – Saab Transform

- Subspace approximation with adjusted bias (Saab)
 - Subspace decomposition

$$S = S_{DC} \oplus S_{AC}$$

- DC subspace is spanned by constant-element vector d(1, ..., 1)
- AC subspace is its orthogonal complement
- Relaxing the assumption --- b_k =0 for all k
 - The bias vector resides in the DC subspace
 - The PCA analysis holds for the AC subspace

Bias Terms Selection (1)

Two requirements

(B1) Nonlinear activation automatically holds

$$y_k = \sum_{n=0}^{N-1} a_{k,n} x_n + b_k = \mathbf{a}_k^T \mathbf{x} + b_k \ge 0$$

(B2) All bias terms are equal

$$b_0 = b_1 = \dots = b_{K-1}$$

Bias Terms Selection (2)

- b = d(1, ..., 1) \longrightarrow b is in the DC subspace
- How to choose bias parameter d?

$$y_{d,k} = \mathbf{a}_k^T \mathbf{x} + b_k \qquad ||\mathbf{a}_k^T|| = 1$$

$$-\max ||\mathbf{x}|| \leq \max_{\mathbf{x}} ||\mathbf{a}_k^T \mathbf{x}|| \leq \max ||\mathbf{x}||$$

$$b_k \ge \max_{\mathbf{x}} ||\mathbf{x}||$$

 x_{max}

Selecting Parameters in FC Layers

2 FC layers (120D, 84D) + 1 output layer (10D)

Two Ideas in Parameters Selection

1st viewpoint (BP)

- Parameters to optimize in large nonlinear networks
- Backpropagation SGD

2nd viewpoint (FF)

- Parameters of linear least-squared regression (LSR) models
- Label-assisted linear LSR
 - True label used in the output layer
 - Pseudo label used in intermediate FC layers

LSR Problem Setup

Hard Pseudo-Labels

- Training phase (use 375D-to-120D FC layer as an example)
 - K-mean clustering
 - Cluster samples of each object class into 12 sub-clusters
 - Assign a pseudo label to samples in each sub-cluster
 Ex. 0-i, 0-ii, ..., 0-xii, 1-i, 1-i, ..., 1-xii, ..., 9-i, 9-ii, ..., 9-xii

- Least squared regression (LSR)
 - Set up an LSR model (one sub-cluster -> one equation)
 - Inputs of 375D
 - Outputs of 120D (one-hot vectors)

Filter Weights Determination via LSR

- Intermedia FC Layer: using pseudo labels with c=120 or 84
- Output layer using true labels with c=10

Why Pseudo-Labels?

Intra-class variability: example #1

Why Pseudo-Labels?

Intra-class variability: example #2

CIFAR-10: Modified LeNet-5 Architecture

Architecture	Original LeNet-5	Modified LeNet-5
1 st Conv Layer Kernel Size	5x5x1	5x5x3
1 st Conv Layer Filter No.	6	32
2 nd Conv Layer Kernel Size	5x5x6	5x5x32
2 nd Conv Layer Filter No.	16	64
1 st FC Layer Filter No.	120	200
2 nd FC Layer Filter No.	84	100
Output Node No.	10	10

Classification Performance

Testing Accuracy

Dataset	MNIST	CIFAR-10	
FF	97.2%	62%	Decision Quality
Hybrid	98.4%	64%	Facture Ovelity
ВР	99.1%	68%	Feature Quality

Hybrid: Convolutional layers (FF) + FC layers (BP-optimized MLP)

Adversarial Attacks

Case 1: Attacking BP-CNN using Deepfool

	Clean	Attacked	Clean	Attacked
	MNIST	MNIST	CIFAR-10	CIFAR-10
ВР	99.9%	1.7%	68%	14.6%
FF	97.2%	95.7%	62%	58.8%

Case 2: Attacking FF-CNN using Deepfool

	Clean	Attacked	Clean	Attacked
	MNIST	MNIST	CIFAR-10	CIFAR-10
ВР	99.9%	97%	68%	68%
FF	97.2%	2%	62%	16%

Limitations of FF-CNN

Lower classification accuracy

- Can we use FF-CNN to initialize BP-CNN? -> no advantage
- The label information is used after the convolutional layers
- How to introduce the label information earlier?

Vulnerability to adversarial attacks

 BP-CNN and FF-CNN are both vulnerable to adversarial attacks since there exists a direct path from the output (or decision) layer to the input (or source image) layer

Multi-tasking

One network for one specific task

One solution

We need to abandon the network architecture

Successive Subspace Learning (SSL)

PixelHop: An SSL Method for Image Classification

PixelHop System (No More A Network)

PixelHop Unit

Convergence of Saab Filters (1)

Convergence of Saab Filters (2)

Experiment Set-up

- Datasets:
 - MNIST
 - Handwritten digits 0-9
 - Gray-scale images with size 32x32
 - Training set: 60k, Testing set: 10k
 - Fashion-MNIST
 - Gray-scale fashion images with size 32 × 32
 - Training set: 60k, Testing set: 10k
 - > CIFAR-10
 - 10 classes of tiny RGB images with size 32 × 32
 - Training set: 50k, Testing set: 10k
- Evaluation:
 - Top-1 classification accuracy

MNIST

Fashion-MNIST

CIFAR-10

Performance Comparison

Method	MNIST	Fashion MNIST	CIFAR-10
LeNet-5	99.04	91.08	68.72
FF-CNN	97.2	_	62
PixelHop	98.90	91.30	71.37
PixelHop+	99.09	91.68	72.66

Weakly-Supervised Learning

Conclusion: Similarities of SSL and DL

	SSL	DL
Information collection	Successively growing neighborhoods	Gradually enlarged receptive fields
Information processing	Trade spatial dimension for spectral dimension	Trade spatial dimension for spectral dimension
Spatial information reduction	Spatial pooling	Spatial pooling

Conclusion: Differences of SSL and DL

	SSL	DL
Model expandability	Non-parametric model	Parametric model
Incremental learning	Easy	Difficult
Model architecture	Flexible	Networks
Model interpretability	Easy	Difficult
Model parameter search	Feedforward design	Backpropagation
Training/testing complexity	Low	High
Spectral dim. reduction	Subspace approximation	Number of filters
Task-independent features	Yes	No
Multi-tasking	Easy	Difficult
Incorporation of priors and constraints	Easy	Difficult
Weak supervision	Easy	Difficult
Adversarial Attacks	Difficult	Easy

Conclusion

- Era of data science and engineering has arrived
 - Seamless integration of knowledge-based and data-driven approaches will be more powerful
- Data-driven (rather than feature-driven) machine learning is on the rise
 - Deep learning is a brute-force black-box approach
 - SSL provides an alternative solution
 - Easier for integration with the knowledge-based priors since no hidden layers/variables in SSL
 - Need a feedforward "attention" mechanism

References

- 1. C.-C. Jay Kuo, "Understanding convolutional neural networks with a mathematical model," the Journal of Visual Communications and Image Representation, Vol. 41, pp. 406-413, November 2016.
- 2. C.-C. Jay Kuo and Yueru Chen, "On data-driven Saak transform," the Journal of Visual Communications and Image Representation, Vol. 50, pp. 237-246, January 2018.
- 3. C.-C. Jay Kuo, Min Zhang, Siyang Li, Jiali Duan and Yueru Chen, "Interpretable Convolutional Neural Networks via Feedforward Design," the Journal of Visual Communications and Image Representation, Vol. 60, pp. 346-359, 2019.
- 4. Yueru Chen and C.-C. Jay Kuo, "PixelHop: a successive subspace learning (SSL) method for object classification," the Journal of Visual Communications and Image Representation, Vol. 70, pp. 1-12, 2020.