

MARWADI UNIVERSITY

Faculty of Technology

Department of Information & Communication Technology

B.Tech SEM: III WINTER:2018

Subject: - Signals & Systems (01CT0302)

Total Marks:-100

Time: - 03:00 hours

Instructions:

- 1. All Questions are Compulsory.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Question: 1. (a	a)	Answer the following:		[10]		
	(1) Discrete time signal is derived from continuous time signal by					
		process.				
		a) Addition	b) Multiplying			
		c) Sampling	d) Addition and multiplication			
	(2)	Odd signals are symmetric about the	e vertical axis.			
		a) True	b) False			
	(3)	When $x(t)$ is said to be non periodic				
		a) If the equation $x(t) = x(t + T)$ is satisfied for all values of T b) If the equation $x(t) = x(t + T)$ is satisfied for only one value of T				
		c) If the equation $x(t) = x(t + T)$ is				
	(4)	d) If the equation $x(t) = x(t + T)$ is				
	(4)	Graphical representation of signal in				
		a) Frequency Spectrum	b) Frequency			
	(5)	c) Wave form	d) None of the above			
	(5)	Y(t) = x(t/3) is	1) 5 1 1 1 1			
		a) Compressed signal	b) Expanded signal	,		
	(6)	c) Time shifted signal	d) Amplitude scaled signal by factor 1/3	5		
	(6)	What is the associative property of a a) $[x_1(n) * x_2(n)]*h(n) = x_1(n)* [x_2(n)]*h(n)$				
		b) $[x_1(n) * x_2(n)] + h(n) = x_1(n) + [x_2(n) * h(n)]$ c) $[x_1(n) + x_2(n)] * h(n) = x_1(n) * [x_2(n) + h(n)]$				
	(7)	d) $[x_1(n) * x_2(n)]h(n) = x_1(n) [x_2(n)*h(n)]$ t $\delta(t)=$				
	(7)	a) t	b) 0			
		c)1	d) u(t)			
	(0)	,	, , ,			
	(8)	Which of the following is an example of amplitude scaling?				
		a) Electronic amplifier	b) Electronic attenuator			
		c) Both amplifier and attenuator	d) Adder			
	(9)	A signal is power signal if				
		a) E=0, P=0	b) E= infinite, P=Finite			
		c) E= finite ,P=0	d) E = finite, P=infinite			
	(10)	A deterministic signal has	-, =,			
	(10)	a) No uncertainty	b) Uncertainty			
		c) Partial uncertainty	d) None of the above			
		c) I dividi dilecitality	a) Itohe of the doore			
(b)	Attempt the following: (Two marks each)			[10]		
(-)	(1)	Examine whether the following sign	als are periodic or not?	[]		
	· /	a) Sin $13\pi t$ b) $2 + \cos 2\pi$				

MARWADI UNIVERSITY 1

Overting 2	 (2) Find even and odd component of following signal x(n)= {-2,5,1,3} (3) Define: (i)Impulse response (ii) Convolution. (4) Describe Commutative and Distributive property for Discrete time LTI system. (5) Check the following signal is energy signal or power signal. (i) x(t)= e^{-at} u(t), a<0 (ii) x(n)= (-0.5)ⁿ u(n) 	
Question: 2. (a)	Describe classification of systems in detail with example.	[08]
(b)	Sketch the following signals: (i) $2u(t+2)-2u(t-3)$ (ii) $-2r(t-2)$ (iii) $x[n] = \{2, 1, 1, 2, 1, -3, 1\}$ (a) $x[2n-1]$ (b) $x[-n+3]$	[02] [02] [04]
	<u>OR</u>	
(b)	For each of the following systems i) $y(t) = x(t-2) + x(2-t)$ ii) $y(t) = tx(t)$ Determine which of properties "Static/dynamic", "time invariant/Variant", "linear/Nonlinear", "casual/Non causal" holds and justify your answer.	[08]
	inical/ivoninical , casual/ivon causal holds and justify your answer.	
Question: 3.	State properties of LTI System. Prove a condition for a discrete time	[08]
(b)	LTI system to be Causal and Stable. Determine impulse response for the system given by the following differential equation. y(n)+3y(n-1)+2y(n-2) = 2x(n)-x(n-1)	[04]
(c)	Find a linear convolution for $x(n) = \{1,2,4\}, h(n) = \{1,2\}$	[04]
()	OR OR	F001
(a)	Compute convolution for the following (i) $x(n) = (1/5)^n u(n)$, $h(n) = (1/2)^n u(n)$	[08]
	(ii) $x(t) = u(t)$, $h(t) = e^{-t}u(t)$	
(b)	State and prove sampling theorem also mention Nyquist criteria.	[04]
(c)	Find linear convolution using graphical method for $x(n) = \{1,1,1\}, h(n) = \{1,2,1\}$	[04]
Question: 4 .	(ii) (1,1,1), ii(ii) (1,2,1)	
(a) (b)	Define ROC of Z- Transform. State and explain Properties of ROC. Find Z- Transform for the following also comment on ROC. (ii) $x(n) = u(n+2)$ (iii) $x(n) = 2^n u(n)$	[08] [04]
(c)	Proove that $x(n)^*\delta(n-n_0) = x(n-n_0)$ $x(n). \delta(n-n_0) = x(n_0)$	[04]
(a)	State and Prove following properties of Z- Transform. (i) Linearity (ii) Time Reversal (iii) Convolution (iv) Differentiation.	[08]
(b)	Find the z transform of signal $x(n) = \cos \omega_0 n \ u(n)$	[04]

MARWADI UNIVERSITY 2 |

	(c)	Find convolution of $x_1(n)$ and $x_2(n)$ using Z- Transform. $x_1(n) = \{1,2,1,2\}$ $x_2(n) = \{1,1,2,2\}$	[04]
Questi	on: <u>5</u> .	2() ())	
	(a)	Using the partial fraction expansion technique find the inverse z transform of	[08]
		$X(z) = \frac{z}{2z^2 - 3z + 1}, z < \frac{1}{2}$	
	(b)	Obtain Trigonometric Fourier series of the periodic rectangular waveform. $f(t) = A$, $-T/4 \le t T/4$ = 0, otherwise	[04]
	(c)	State and Prove time shifting property of Fourier transforms.	[04]
		<u>OR</u>	
	(a)	Find inverse Z- Transform by Partial Fraction Expansion for all possible $x(n)$ $X(z)=Z+1/2Z^2-7Z+3$	[80]
	(b)	Find Fourier transform of a rectangular pulse 2 seconds long with a magnitude of 10 volts.	[04]
	(c)	State Dirichlet condition for Fourier Transform representation.	[04]
Questi	on: 6.		
	(a)	Define Laplace transform. Prove linearity property of Laplace transform. State how ROC of Laplace transform is useful for in defining stability of system.	[08]
	(b)	Define convolution and its importance in analysis of Linear time invariant system.	[04]
	(c)	Define discrete Fourier transform and describe difference between DTFT and DFT.	[04]
		<u>OR</u>	
	(a)	Derive DFT of the sample data sequence $x(n) = \{1,1,2,2,3,1\}$.	[08]
	(b)	State application of signals and systems explain any one in detail.	[04]
	(c)	Define: The continuous time Fourier transforms. State and prove Duality properties of continuous time Fourier Transform	[04]

---Best of Luck---

MARWADI UNIVERSITY 3 |

Que. Paper weight-age as per Bloom's Taxonomy

No.	Que. Level	% of weight-age	
		% of	Que. No.
		weight -age	
1	Remember/Knowledge	20	Q:2(a)Q:6(b)Q:6(c)(OR)Q:4(a)Q:6(a)
			Q:3(a)
2	Understand	25	Q:1(a)Q:2(b)Q:2(b)(OR)Q:3(b)Q:4(c)
			Q:4(b)
3	Apply	25	Q:1(b)Q:3(c)(OR)Q:4(b)Q:4(C)(OR)
			Q:5(b)(OR)
4	Analyze	25	Q:3(a)(OR),Q:3(b)(OR)Q:4(a)(OR)
			Q:5(c)Q:3(c)
5	Evaluate	05	Q:6(b)Q:5(C)(OR)
6	Higher order Thinking		

GRAPH:

MARWADI UNIVERSITY 4