

Exercice 1 – Soit $(X_t)_t$ la série temporelle définie pour tout $t \in \mathbb{Z}$ par

$$X_t = m_t + s_t + \epsilon_t$$

oú $(m_t)_t$ est une tendance affine, $(\epsilon_t)_t$ est une suite i.i.d suivant une loi $\mathcal{N}(0, \sigma^2)$ et $s_t = u_t + v_t$, avec

$$u_t = \cos\left(\frac{2\pi}{3}t\right)$$
 et $v_t = \cos\left(\frac{\pi}{3} + \frac{\pi}{2}t\right)$.

- 1. Déterminer les périodes de (u_t) , (v_t) et $(s_t)_t$.
- 2. Montrer que (u_t) , (v_t) et $(s_t)_t$ sont chacune de moyenne nulle sur une période.
- 3. Déterminer une moyenne mobile centrée et symétrique qui laisse invariante la suite $(m_t)_t$ et absorbe $(u_t)_t$ (resp. $(v_t)_t$ et $(s_t)_t$).

Exercice 2 – Considérons les moyennes mobiles suivantes

$$M = \frac{1}{3} (I + B + B^2), \qquad N = 2M - MM.$$

- 1. Montrer que N laisse invariantes les tendances linéaires.
- 2. Montrer que M et N absorbent la série $\left(\sin\left(\frac{2\pi}{3}t\right)\right)_t$.

Exercice 3 – Soit $(\epsilon_t)_{t\in\mathbb{Z}}$ un bruit blanc de variance $\sigma^2 > 0$. Étudier la stationnarité faible des processus suivants :

- 1. $Y_t = \epsilon_t \cos(\omega t) + \epsilon_{t-1} \sin(\omega t)$, où $0 \le \omega < 2\pi$;
- 2. $Z_t = at + b + \epsilon_t$ où $a, b \in \mathbb{R}$;
- 3. $W_t = Z_t Z_{t-1}$ (W est le processus différences premières du processus Z).

Exercice 4 – Soit $(\epsilon_t)_{t\in\mathbb{Z}}$ un bruit blanc de variance $\sigma^2 > 0$ et soit $(X_t)_{t\in\mathbb{Z}}$ le processus défini

$$X_t = \epsilon_t - \theta \epsilon_{t-1}, \quad t \in \mathbb{Z}, \quad \theta \in \mathbb{R}^*.$$

- 1. Calculer la fonction d'autocorrélation de $(X_t)_{t\in\mathbb{Z}}$ puis tracer son autocorrélogramme.
- 2. Soit $\eta \in \mathbb{R}^*$ tel que $|\eta| \le 1/2$ et soit $\rho : \mathbb{Z} \longrightarrow \mathbb{R}$ la fonction donnée par

$$\rho(h) = \begin{cases} 1 & \text{si } h = 0 \\ \eta & \text{si } |h| = 1 \\ 0 & \text{sinon.} \end{cases}$$

De quel processus stationnaire ρ est-elle la fonction d'autocorrélation?

Exercice 5 – Soit $(X_t)_{t\in\mathbb{Z}}$ un processus ayant la répresentation MA(1) :

$$X_t = \epsilon_t - 2\epsilon_{t-1}$$

où $(\epsilon_t)_{t\in\mathbb{Z}}$ est un bruit blanc fort de variance 1 avec $\mathbb{E}\left(|\epsilon_t|^3\right)<\infty$ et $\mathbb{E}\left(\epsilon_0^3\right)=\mu$ non nul. Soit $(Y_t)_{t\in\mathbb{Z}}$ le processus défini par

$$X_t = Y_t - \frac{1}{2}Y_{t-1}.$$

1. Montrer que le processus Y vérifie la rélation suivante :

$$Y_t = \sum_{i=0}^{+\infty} \frac{1}{2^i} X_{t-i}.$$

- 2. Vérifier que $(Y_t)_{t\in\mathbb{Z}}$ est un bruit blanc et calculer sa variance.
- 3. Déterminer la projection orthogonale de X_t sur $\overline{\mathrm{Vect}}(X_{t-1},X_{t-2},\ldots)$.
- 4. Montrer que le processus Y vérifie

$$Y_t = \epsilon_t - 3\sum_{i=1}^{+\infty} \frac{1}{2^i} \epsilon_{t-i}.$$

5. Calculer $\mathbb{E}\left(Y_1^2Y_2\right)$. Les variables Y_1 et Y_2 sont-elles indépendantes? Interpréter ces résultats.