

上机3: Python数值分析 1. 开电脑 2. 打开PyCharm

授课老师:

胡晓敏 (xmhu@ieee.org)

龚怡 (2167570874@qq.com)

明俊峰(34940530@qq.com)

课程资料下载

■课件

https://pan.baidu.com/s/1FuQaIoLmT1OnL1hAoBlk VQ

密码: she6

■ Pycharm(或在Jetbrains官网下载,选择Community版本)

https://pan.baidu.com/s/liXhXryPJG-YNYF-

■ 理论教学: Python插值

- 实验: 物体运动轨迹的插值预测

- <u>插值</u>是离散函数逼近的重要方法
- 通过函数在有限个点处的取值状况,估算出函数 在其他点处的近似值。
- 换句话说,插值法"模拟产生"一些新的但又比较靠谱的值来满足需求,这就是插值的作用。

- 应用
 - □ 在人力资源管理中,应用插值法来设计一些考核规则。
 - 某公司的高管绩效考核规则:对其任务达成率进行考核。达成率大于150%时,其绩效得分为150分;达成率小于70%时,其绩效得分为0;达成率为70%~150%(包含70%与150%)时,按照实际达成率在60分至120分之间(包含60分与120分)利用线性插值法计算得分。

- 应用
 - □ 图像处理中,用来填充图像变换时像素之间的空隙。
 - 插值(Interpolation),有时也称为"重置样本",是在不生成像素的情况下增加图像像素大小的一种方法,在周围像素色彩的基础上用数学公式计算丢失像素的色彩。简单地点,插值是根据中心像素点的颜色参数模拟出周边像素值的方法,是数码相机特有的放大数码照片的软件手段。

(M)

- ■应用
 - □ 无人驾驶中的油门开度插值。
 - 在无人驾驶应用中,需要对车的驱动性能进行标定,需要标 定出稳态下车速与油门踏板的对应关系。
 - 用线性插值就可以计算任何一个期望速度对应的问题期望油 门踏板开度。油门开度

3.2 拉格朗日多项式插值

■ 对给定的(x, y)数据data计算差商

```
from matplotlib import pyplot as plt
def Lg(data,testdata):
    predict=0
    data_x=[data[i][0] for i in range(len(data))]
    data_y=[data[i][1] for i in range(len(data))]
    if testdata in data x:
        #print "testdata is already known"
        return data_y[data_x.index(testdata)]
    for i in range(len(data x)):
        af=1
                                                基函数
        for j in range(len(data x)):
            if j!=i:
                af*=(1.0*(testdata-data_x[j])/(data_x[i]-data_x[j]))
        predict+=data y[i]*af
    return predict
```


3.2 拉格朗日多项式插值

■ 定义画曲线图的函数

```
def plot(data, nums):
    data_x=[data[i][0] for i in range(len(data))]
    data y=[data[i][1] for i in range(len(data))]
   Area=[min(data_x),max(data_x)]
   X=[Area[0]+1.0*i*(Area[1]-Area[0])/nums for i in range(nums)]
   X[len(X)-1]=Area[1]
   Y=[Lg(data,x) for x in X]
    plt.plot(X,Y,label='result')
    for i in range(len(data_x)):
        plt.plot(data x[i],data y[i],'ro',label="point")
    plt.savefig('Lg.jpg')
    plt.show()
```


3.2 拉格朗日多项式插值

■ 给定 n+1 个点,得到次数不大于 n 次的多项式

```
#线性插值
data=[[0,0],[1,2]]
print(Lg(data,1.5))
plot(data, 100)
#二次多项式插值
data=[[0,0],[1,2],[2,3]]
print(Lg(data,1.5))
plot(data, 100)
#四次多项式插值
data=[[0,0],[1,2],[2,3],[3,8]]
print(Lg(data,1.5))
plot(data, 100)
#五次多项式插值
data=[[0,0],[1,2],[2,3],[3,8],[4,2]]
print(Lg(data,1.5))
plot(data, 100)
#六次多项式插值
data=[[0,0],[1,2],[2,3],[3,8],[4,2],[5,7]]
print(Lg(data,1.5))
plot(data, 100)
#七次多项式插值
data=[[0,0],[1,2],[2,3],[3,8],[4,2],[5,7],[6,8]]
print(Lg(data,1.5))
plot(data, 100)
```


- 1. 用表格比较不同次数的多项式对x = 1.5时得到的预测值
- 2. 画图整理插值曲线, 分析它们的特点
- 3. 发现龙格现象吗?

3.3 牛顿多项式插值

■ 对给定的(x, y)数据data计算差商

```
def calF(data):
   #差商计算 n个数据 0-(n-1)阶个差商 n个数据
   data_x=[data[i][0] for i in range(len(data))]
   data y=[data[i][1] for i in range(len(data))]
   F= [1 for i in range(len(data))]
   FM=[]
   for i in range(len(data)):
       FME=[]
        if i==0:
           FME=data y
       else:
           for j in range(len(FM[len(FM)-1])-1):
                delta=data x[i+j]-data x[j]
                value=1.0*(FM[len(FM)-1][j+1]-FM[len(FM)-1][j])/delta
                FME.append(value)
       FM.append(FME)
   F=[fme[0] for fme in FM]
    print(FM)
    return F
```


3.3 牛顿多项式插值

 \blacksquare 对给定的(x, y)数据,给定的预测位置,和差商F

```
def NT(data, testdata, F):
   #差商之类的计算
    predict=0
    data_x=[data[i][0] for i in range(len(data))]
    data_y=[data[i][1] for i in range(len(data))]
    if testdata in data x:
        return data y[data x.index(testdata)]
    else:
        for i in range(len(data_x)):
            Eq=1
            if i!=0:
                for j in range(i):
                    Eq=Eq*(testdata-data x[j])
                predict+=(F[i]*Eq)
    return predict
```


3.3 牛顿多项式插值

■ 利用画曲线图的函数,计算插值函数和估计值

```
def plot(data, nums):
    data x=[data[i][0] for i in range(len(data))]
    data y=[data[i][1] for i in range(len(data))]
   Area=[min(data x),max(data x)]
   X=[Area[0]+1.0*i*(Area[1]-Area[0])/nums for i in range(nums)]
   X[len(X)-1]=Area[1]
   F=calF(data) #计算差商
   Y=[NT(data,x,F) for x in X] #牛顿插值
    plt.plot(X,Y,label='result')
   for i in range(len(data x)):
        plt.plot(data x[i],data y[i],'ro',label="point")
    plt.savefig('Newton.jpg')
    plt.show()
data=[[0,0],[1,2],[2,3],[3,8],[4,2]]
plot(data,100)
```


3.4 分段线性插值

■ 找出预测点所在的分段, 计算插值函数和估计值

3.4 分段线性插值

画图

```
def plot(data, nums):
    data x=[data[i][0] for i in range(len(data))]
    data y=[data[i][1] for i in range(len(data))]
    Area=[min(data x),max(data x)]
   X=[Area[0]+1.0*i*(Area[1]-Area[0])/nums for i in range(nums)]
   X[len(X)-1]=Area[1]
   Y=[DivideLine(data,x) for x in X]
    plt.plot(X,Y,label='result')
    for i in range(len(data x)):
        plt.plot(data x[i],data_y[i],'ro',label="point")
    plt.savefig('DivLine.jpg')
    plt.show()
data=[[0,0],[1,2],[2,3],[3,8],[4,2]]
print(DivideLine(data, 1.5))
plot(data, 100)
```

如何修改为分段高次多项式插值?

3.5 分段插值的Python包

```
import numpy as np
from scipy import interpolate
import pylab as pl
data=[[0,0],[1,2],[2,3],[3,8],[4,2],[5,7],[6,8]]
x=[data[i][0] for i in range(len(data))]
y=[data[i][1] for i in range(len(data))]
xnew = np.linspace(0, 6, 101) #用于画出插值曲线
pl.plot(x, y, "ro")
for kind in ["linear", "quadratic", "cubic"]: # 插值方式1,2,3次多项式插值
   # Linear 线性插值
   # quadratic 二次多项式插值
   # cubic 三次多项式插值
   f = interpolate.interp1d(x, y, kind=kind) #选择对应方式的分段插值
   ynew = f(xnew) #把 x 值代入插值函数,得到 y 坐标用于画出插值曲线
   pl.plot(xnew, ynew, label=str(kind)) # Label用来显示图例
f4 = interpolate.splrep(x, y) # 3次样条插值
ynew4 = interpolate.splev(xnew,f4,der=0)
pl.plot(xnew, ynew4, label=str("cubic spline")) # Label用来显示图例
pl.legend(loc="lower right") # 显示图例的位置
pl.show()
```


比较不同插值方法的插值曲线

这个例子中,基于三次多项式的分段插值和三次样条插值曲线重合了拓展:试一下用自己实现的分段高次多项式插值,看看曲线效果?

■ 理论教学2: Python编程基础

- 实验: 物体运动轨迹的插值预测

实验: 物体运动轨迹的插值预测

■ 实验目的:

比较不同插值方法的预测精度。

■ 实验背景:

在实际应用中,一般不能确知物体的运动轨迹方程,只能通过测量一些 x 坐标的值,通过数据插值的方法来求其他未知点的函数值。

实验: 物体运动轨迹的插值预测

■ 已知测量的不同点的函数值如下:

	表 1	不同 x	点出物体	的函数值。	J

.4.											
	X_{φ}	-5.0₽	-4 .5¢	-4 .0	-3.5₽	-3.0	-2.5₽	-2.0 0	-1 .5¢	-1.0 0	-0.5₽
	物体 1(y1)。	-0.1923₽	-0.2118	-0.2353	-0.2642	-0.3₽	-0.3448₽	- 0.4000₽	- 0.4615	-0.5000 _e	-0.4000 ¢
	物体 2(у₂)。	0.0016	0.002₽	0.0025	0.0033	0.0044	0.0064	0.0099	0.0175	0.0385	0.1379

Χ÷	0₽	0.5₽	1.0₽	1.5₽	2.0	2.5₽	3.0₽	3.5₽	4.0₽	4.5₽	5.0₽
物体 1(y1)。	0₽	0.4000	0.5000	0.4615	0.4000	0.3448	0.3000	0.2642	0.2353	0.2118	0.1923
物体 2(у₂)。	1.0000	0.1379₽	0.0385	0.0175	0.0099	0.0064₽	0.0044	0.0033	0.0025₽	0.0020	0.0016

■ 实验要求:

采用拉格朗日插值、分段线性插值、样条 插值等方法进行插值,并绘制插值函数的图形, 根据结果,确定一种最好的插值方法。

实验: 物体运动轨迹的插值预测

观察同一方案、不同插值节点数的计算结果的变化形态,不同方案结果的精度比较,有无龙格现象发生。

以上实验数据来源:

这个两个物体的移动满足

物体1: $y_1 = x/(1+x^2)$, $x \in [-5,5]$

物体2: $y_2 = 1/(1+25x^2), x \in [-5,5]$ 你插值的结果类似吗?

上机课任务

完成实验内容,整理添加到课程报告内。

并通过email发送给老师

word报告重命名为"专业班级学号姓名课程报告(含上机3). docx"

Email标题为"专业班级学号姓名课程报告(含上机3)"