# Oppgaver for kapittel 0

### 0.1.1

Skriv som fullstendige kvadrat.

a) 
$$x^2 + 6x + 9$$

a) 
$$x^2 + 6x + 9$$
 b)  $b^2 + 14b + 49$  c)  $a^2 - 2a + 1$ 

c) 
$$a^2 - 2a + 1$$

d) 
$$k^2 - \frac{2}{3}k + \frac{1}{9}$$
 e)  $c^2 - \frac{1}{2}c + \frac{1}{16}$  f)  $y^2 + \frac{6}{7}y + \frac{9}{49}$ 

e) 
$$c^2 - \frac{1}{2}c + \frac{1}{16}$$

f) 
$$y^2 + \frac{6}{7}y + \frac{9}{49}$$

# 0.1.2

Skriv som fullstendige kvadrat.

a) 
$$25a^2 + 90a + 81$$
 b)  $9b^2 + 12a + 4$  c)  $64c^2 - 16c + 1$ 

b) 
$$9b^2 + 12a + 4$$

c) 
$$64c^2 - 16c + 1$$

d) 
$$\frac{1}{4}d^2 + \frac{3}{4}d + \frac{9}{16}$$

e) 
$$\frac{1}{25}e^2 + \frac{4}{35}e + \frac{4}{49}$$

d) 
$$\frac{1}{4}d^2 + \frac{3}{4}d + \frac{9}{16}$$
 e)  $\frac{1}{25}e^2 + \frac{4}{35}e + \frac{4}{49}$  f)  $\frac{81}{64}f^2 - \frac{15}{4}f + \frac{25}{9}$ 

# 0.1.3

- a) Gitt to heltall a og b. Forklar hvorfor  $(a+\sqrt{b})(a-\sqrt{b})$  er et heltall.
- b) Skriv om brøken  $\frac{5}{2-\sqrt{3}}$  til en brøk med heltalls nevner.

# 0.1.4

Skriv om til et uttrykk der x er et ledd i et fullstendig kvadrat.

a) 
$$x^2 + 6x - 7$$

b) 
$$x^2 - 8x - 20$$

a) 
$$x^2 + 6x - 7$$
 b)  $x^2 - 8x - 20$  c)  $x^2 + 12 - 45$ 

# 0.1.5

Hvorfor er det i  $a_1a_2$ -metoden lurte å starte med å finne tall som oppfyller kravet  $a_1a_2 = c$  (i motsetning til å finne tall som oppfyller kravet  $a_1 + a_2 = b$ ?

# 0.1.6

Faktoriser uttrykkene fra oppgave 0.1.4.

### 0.1.7

Faktoriser uttrykkene.

a) 
$$x^2 - 10kx + 25k^2$$

b) 
$$y^2 + 8yz + 16z^2$$

1

a) 
$$x^2 - 10kx + 25k^2$$
 b)  $y^2 + 8yz + 16z^2$  c)  $a^2 - 20aq + 100q^2$ 

d) 
$$x^2 + xy - 20y^2$$

e) 
$$a^2 - 9ab + 14b^2$$

d) 
$$x^2+xy-20y^2$$
 e)  $a^2-9ab+14b^2$  f)  $y^2-9k^5y-k^2y+9k^7$ 

#### 0.1.8

Gitt ulikheten

$$x^2 - 9x + 20 > x - 1$$

- a) Bruk figuren under til å løse ulikheten.
- b) Løs ulikheten ved hjelp av faktorisering.



#### 0.1.9

Gitt ulikheten

$$\frac{10}{x+3} - \frac{2}{x+5} > 0$$

- a) Forklar hvorfor det er problematisk å gange begge sider av ulikheten med en fellesnevner.
- b) Løs ulikheten.

#### 0.2.1

Gitt likningen

$$ax^2 + bx = 0$$

Vis, uten å bruke abc-formelen, at

$$x = 0$$
  $\forall$   $x = -\frac{b}{a}$ 

#### 0.2.2

Løs likningene.

a) 
$$2x^2 - 4x = 0$$

a) 
$$2x^2 - 4x = 0$$
 b)  $3x^2 + 27x = 0$ 

c) 
$$7x^2 + 2x = 0$$
 d)  $8x - 9x^2 = 0$ 

d) 
$$8x - 9x^2 = 0$$

2

# 0.2.3

Løs likningene.

a) 
$$x^2 - 4x - 4 = 0$$

b) 
$$x^2 + 2x - 15$$

a) 
$$x^2 - 4x - 4 = 0$$
 b)  $x^2 + 2x - 15$  c)  $x^2 + 3x - 70 = 0$ 

d) 
$$x^2 + 5x - 7 = 0$$
 e)  $x^2 - x - 1 = 0$  f)  $x^2 - 2x - 9 = 0$ 

e) 
$$x^2 - x - 1 = 0$$

f) 
$$x^2 - 2x - 9 = 0$$

g) 
$$5x^2 + 2x - 7 = 0$$

g) 
$$5x^2+2x-7=0$$
 h)  $8x^2-2x^2-9=0$  i)  $3x^2-12x+1=0$ 

i) 
$$3x^2 - 12x + 1 = 0$$

# 0.2.4

Grafen til  $f(x) = x^2 + 2x - 8$  er symmetrisk om vertikallinja som går gjennom bunnpunktet. Finn x-verdien til dette punktet.



# 0.3.1

Utfør polynomdivisjon på uttrykkene

a) 
$$\frac{x^4 - 3x^2 + 5}{x^3 + x}$$

b) 
$$\frac{-7x^3-9x^2+x}{-4x^2+3}$$

a) 
$$\frac{x^4 - 3x^2 + 5}{x^3 + x}$$
 b)  $\frac{-7x^3 - 9x^2 + x}{-4x^2 + 3}$  c)  $\frac{2x^3 - 6x^2 + 9x - 27}{2x^2 + 9}$ 

### 0.4.1

P(x) = 0 for én av  $x \in \{-1, 2, 3\}$ . Faktoriser P når

a) 
$$P = x^3 - 37x + 84$$

b) 
$$P = x^3 + 10x^2 + 17x + 18$$

c) 
$$P = 2x^3 + 21x^2 + 61x + 42$$

### 0.5.1

Løs likningen.

a) 
$$7 \cdot 5^x = 14$$

b) 
$$3 \cdot 8^x = 27$$

a) 
$$7 \cdot 5^x = 14$$
 b)  $3 \cdot 8^x = 27$  c)  $10 \cdot 2^x = 19$ 

### 0.5.2

Vis at likningen

$$b \cdot a^x = c$$

har løsningen

$$x = \log_a \frac{c}{b}$$

# 0.5.3

Løs likningen. (Hint; se vedlegg??)

a) 
$$(\ln x)^2 - 5 \ln x + 6 = 0$$

a) 
$$(\ln x)^2 - 5 \ln x + 6 = 0$$
 b)  $(\log x)^2 - 3 \ln x - 70 = 0$ 

c) 
$$e^{2x} - 2x - 3 = 0$$

d) 
$$e^{2x} + 7x - 18 = 0$$

# Gruble 0.1

For en trekant med sidelengder a, b og c er arealet A gitt ved Herons formel:

$$A = \frac{1}{4}\sqrt{(a+b+c)(a+b-c)(a-b+c)(b+c-a)}$$

Bevis formelen.

# Gruble 0.2

Gitt funksjonen  $f(x) = ax^2 + bx + c$ .

- a) Vis at grafen til f er symmetrisk om vertikallinja som går gjennom punktet  $\left(-\frac{b}{2a},0\right)$ .
- b) Vis at  $-\frac{b}{2a}$  er x-verdien til toppunktet/bunnpunktet til f.