

Table des matières

1 Introduction: Pourquoi la Topologie des Données

2 Complexes simpliciaux

Table of Contents

1 Introduction: Pourquoi la Topologie des Données

2 Complexes simpliciaux

"Data has shape"

- La forme d'un jeu de données porte des informations cruciales sur le jeu en lui même.
- Il est difficile d'approcher visuellement la forme des données en dimensions élevées.
- Une croyance: les données sont portées par une variété lisse (ou non).

Exemple 1

Comment caractériser la différence entre ces 3 échantillons:

Le manifold learning

N'est ce pas le but du manifold learning?

Le manifold learning

N'est ce pas le but du manifold learning?

Non. Le manifold learning regroupe des techniques de réduction de dimension en se restreignant à une structure de variété. Le but ici est autre:

Quantifier des invariants de forme au travers des dimensions successives.

Deux exemples motivés

Pour trouver des exemples dans lequel la TDA est utile il suffit de trouver des exemples de données ou la forme est importante de manière évidente:

Classification des morphologies neuronales.

Deux exemples motivés

Classification des cristaux nanoporeux.

Table of Contents

Introduction: Pourquoi la Topologie des Données

2 Complexes simpliciaux

Les simplexes

Définition

Un k-simplexe est l'enveloppe convexe de k+1-points.

gure 1: 0-simplex

Figure 2: 1-simplex

Figure 3: 2-simplex

Figure 4: 3-simplex

Cette définition n'est valable que dans un **espace vectoriel** : une enveloppe convexe nécessite l'existence d'un principe de segment.

Pour les autres cas, on privilégieras une version ensembliste.

Complexe simplicial

On considère un ensemble de "sommets" (généralement des données) $V = \{v_1, ..., v_N\}$. Un **complexe simplicial** sur V est une collection de simplexes dont les sommets sont des éléments de V.

De même, l'intersection de deux simplexes doit être un sous-simplexe.

Exemple:

Un complexe simplicial de dimension 3.

Complexe de Vietoris-Rips / Čech

Soit $V=\{v_1,...,v_n\}$ un ensemble de sommets. Un complexe de **Vietoris-Rips** à hauteur d' ϵ est un complexe simplicial tel que

$$[v_{i_1}v_{i_2}...v_{i_k}] \subset \mathcal{C} \iff B(v_{i_j},\epsilon) \cap B(v_{i_l},\epsilon) \neq \emptyset \quad \forall 1 \leq j \neq l \leq k$$

Complexe de Vietoris-Rips / Čech

Soit $V = \{v_1, ..., v_n\}$ un ensemble de sommets. Un complexe de **Čech** à hauteur d' ϵ est un complexe simplicial tel que

$$[v_{i_1}v_{i_2}...v_{i_k}] \subset \mathcal{C} \iff B(v_{i_1},\epsilon) \cap B(v_{i_2},\epsilon) \cap \cdots \cap B(v_{i_k},\epsilon) \neq \emptyset$$

Exemple Vietoris-Rips

Figure 5: Complexe de Vietoris-Rips au niveau alpha

Exemple de Čech

Figure 6: Complexe de Čech au niveau alpha

Nerf d'un recouvrement

On considère $\mathcal{U}=\{U_i\}$ un recouvrement d'ouvert d'une variété \mathbb{M} . Le **nerf de ce recouvrement** est le complexe simplicial tel que:

- ullet Tout sommet v_i du nerf est un ouvert U_i
- Le simplexe $[v_1...v_k]$ est dans le complexe ssi $U_{i_1} \cap \cdots \cap U_{i_k} \varnothing$

