# ANALOG VO,LTMETER

Team HERTZ

EN 2091 LABORATORY PRACTICE AND PROJECTS

#### Introduction

#### Project Objective:

• Develop a high-precision voltmeter addressing common voltage drop and circuit loading issues.

#### Key Focus:

• Ensure accurate voltage measurements while minimizing impact on the tested circuit.

## **Functionality**

Achieve high input impedance to minimize impact on the measured circuit in our analog voltmeter project.









### System Model



Maintaining a high Input Impedance

Overload Protection

Variable Measurement Range

Analog Display Customization

## **Schematic Diagram**



### PCB Design



## **Enclosure Design**







#### **Simulation Results**





#### **Future Works**

#### **PCB** Implementation

Finalize the in-house power supply for the voltmeter by developing a printed circuit board (PCB) for the designed power supply

#### **Boost Converter Integration**

Implement a boost converter to elevate the DC voltage, enabling the use of rechargeable batteries.

This enhancement promotes increased mobility and compactness of the voltmeter

# Improved Measurement Parameters

Enhance the voltmeter's functionality by lowering the minimum voltage measurement to 50mV.

Achieve a tolerance level of +/-0.5% to ensure precision and accuracy in voltage readings.

# Conclusion and Discussion

Project fulfills most requirements, but faced some constraints.

Main challenge: Power supply for op-amps.

Solution: Designed custom power supply for direct wall and voltmeter connection.

PCB printing issues led to using a dual-channel power supply in the lab.

Overload protection circuit limitation: Cannot measure below 500mV.

Solution: Added a separate switch for ON/OFF control when measuring 100mV.

Transistor change required to fully overcome the limitation, but suitable model not found.

Achieved required accuracy of +/-1% and minimum measurement of 100mV.

Overall, successful project for a high-impedance analog voltmeter.

# Individual Contributions

210583B Sehara G.M.M.

- Enclosure Design and Assembling

210293K Kodikara U.S.S.

- Circuit Building, Breadboard

Implementation

210451U Pathirana R.P.S.

- PCB Design and Testing

210200C Gunawardhana E.R.N.H. - Power Management, Soldering



# Thank You

**Team HERTZ**