

planetmath.org

Math for the people, by the people.

commensurable subgroups

Canonical name CommensurableSubgroups

Date of creation 2013-03-22 18:34:14

Last modified on 2013-03-22 18:34:14

Owner asteroid (17536)

Last modified by asteroid (17536)

Numerical id 4

Author asteroid (17536)

Entry type Definition Classification msc 20C08

Related topic CommensurableNumbers

Defines commensurable

0.1 Definition

Definition - Let G be a group. Two subgroups $S_1, S_2 \subseteq G$ are said to be **commensurable**, in which case we write $S_1 \sim S_2$, if $S_1 \cap S_2$ has finite index both in S_1 and in S_2 , i.e. if $[S_1 : S_1 \cap S_2]$ and $[S_2 : S_1 \cap S_2]$ are both finite.

This can be interpreted informally in the following: S_1 and S_2 are commensurable if their intersection $S_1 \cap S_2$ is "big" in both S_1 and S_2 .

0.2 Commensurability is an equivalence relation

- of subgroups is an equivalence relation. In particular, if $S_1 \sim S_2$ and $S_2 \sim S_3$, then $S_1 \sim S_3$.
 - : Let S_1 , S_2 and S_3 be subgroups of a group G.
 - Reflexivity: we have that $S_1 \sim S_1$, since $[S_1 : S_1] = 1$.
 - Symmetry: is clear from the definition.
 - Transitivity: if $S_1 \sim S_2$ and $S_2 \sim S_3$, then one has

$$[S_1: S_1 \cap S_3] \leq [S_1: S_1 \cap S_2 \cap S_3]$$

$$= [S_1: S_1 \cap S_2][S_1 \cap S_2: S_1 \cap S_2 \cap S_3]$$

$$\leq [S_1: S_1 \cap S_2][S_2: S_2 \cap S_3]$$

$$< \infty.$$

Similarly, we can prove that $[S_3: S_1 \cap S_3] < \infty$ and therefore $S_1 \sim S_3$.

0.3 Examples:

- All non-zero subgroups of \mathbb{Z} are commensurable with each other.
- All conjugacy classes of the general linear group $GL(n; \mathbb{Z})$, seen as a subgroup of $GL(n; \mathbb{Q})$, are commensurable with each other.

References

[1] A. Krieg, , Mem. Amer. Math. Soc., no. 435, vol. 87, 1990.