Predicting the cross-population portability of human expression quantitative trait loci (eQTLs)

Isobel Beasley, Christina B Azodi and Irene Gallego Romero
The University of Melbourne / St Vincent's Institute of Medical Research

EAPS 2021

Martin et al., 2019, Nature Genetics

Outline

1. eQTLs

2. Building machine learning models

3. Findings (expected and puzzling)

eQTLs (expression Quantitative Trait Loci)

Outline

1. eQTLs

2. Building machine learning models

Azodi, Tang and Shiu, 2020, *Trends in Genetics*

The training data

European (n = 471, Lepik et al. 2017)

European (n = 379, GTEx. 2020)

European (n = 195, TwinsUK 2015)

Indonesian (n = 115, Natri et al. 2020)

eQTLs

Population-specific

"Labels"

Populationshared

eQTLs

Populationspecific

Properties

Populationshared

Populationspecific

Populationshared

Evolutionary, regulatory, and functional properties

"Features"

- eQTL effect size
- Allele frequency
- Conservation
- Gene Expression
- SNP Genomic location
- % Nucleotide
- Gene Ontology

Populationspecific

Evolutionary, regulatory, and functional properties

Populationshared

Outline

1. eQTLs

2. Building machine learning models

3. Findings (expected and puzzling)

Pairwise Sharing of Effect Size (within a factor of 0.5)

Prediction Performance

Prediction Performance

Test set: Chromosomes 8,16

Features ranked by scaled mean importance

Population-specific eQTLs have higher effect sizes in their discovery population

Population-specific eQTLs have different allele frequencies across populations

Population-specific eGenes are more highly conserved

Gene Conservation Feature Importance rank: 4

Population-specific eGenes are more highly conserved ... but not eSNPs

SNP Conservation Feature Importance rank: 132

Indonesian-specific eGenes are more commonly immune related

11.30% (shared) vs 16.10% (Indonesian-specific) are annotated with GO:0002376 (immune system process)

Feature Importance rank: 125

Conclusions

 Eurocentric biases prevent equitable research translation

Conclusions

- Eurocentric biases prevent equitable research translation
- Some properties are different between shared and specific eQTLs

Conclusions

- Eurocentric biases prevent equitable research translation
- Some properties are different between shared and specific eQTLs
- Machine learning models could improve the transferability of eQTLs from Europeans to underrepresented populations

