

Version 5 Hands-On

January 21, 2011

David Roden - AECOM

Topics

- Three case study datasets
- Batch and configuration files
- Network conversion
- Demand conversion
- Router
- Plan processing
- Microsimulator
- Feedback
- Boost threads

Case Study Datasets

Network Name	Nodes	Links	Zones	Trips
Case1	15	13	5	4,600
TestNet	72	73	30	25,410
Alexandria	2,572	3,606	85	378,810

Batch Files

- Start with Case1\control directory
- Open the RunAll.bat with a text editor
 - Right click → Edit
- Set paths to executable programs and the configuration file
- Open the Config.txt file with a text editor to review or edit the configuration file

Configuration Files

- A configuration file can set global control keys
 - Set TRANSIMS_CONFIG_FILE=...

```
PROJECT_DIRECTORY .../

DEFAULT_FILE_FORMAT TAB_DELIMITED

TIME_OF_DAY_FORMAT HOUR_CLOCK

MODEL_START_TIME 0:00

MODEL_END_TIME 27:00

UNITS_OF_MEASURE ENGLISH

NUMBER_OF_THREADS 4

NOTES_AND_NAME_FIELDS TRUE
```

Program control keys override configuration keys

Network Conversion

NetPrep

Reformat network link and node data

TransimsNet

- Apply warrants/rules to synthesize TRANSIMS network details
- Pocket lanes, lane connectivity, activity locations, parking lots, access links, lane use, turn prohibitions, and signal and sign warrants

IntControl

- Synthesize traffic controls from signal and sign warrants
- Signal timing and phasing plans, detectors and phase offsets

Conversion Process

Review Control Files

- Go to the control folder and open
 - NetPrep.ctl
 - TransimsNet.ctl
 - IntControl.ctl
 - ArcNet.ctl
- Look for the input/output files and the program parameters
- Review the inputs\NetPrep_Script.txt

Demand Conversion

- Process distributes aggregate trip table data to individual travelers at specific locations and trip start times
 - Zones → activity locations within the zone
 - Daily/time period → second of the day
- Trip purpose and orientation used to allocate trips to activity locations and set travel schedules
 - Activity location distribution weights by trip type
 - Diurnal distribution curves by trip type

Demand Conversion Process

Review Demand Inputs

- Go to the input folder and open
 - Auto_Trips.txt
 - Transit_Trips.txt
 - HBW_PA.txt (Diurnal information)
 - Vehicle_Type.txt
 - LocationData_Script.txt
- Go to the control folder and open
 - LocationData.ctl
 - ConverTrips.ctl
- Look for the input/output files and the program parameters

Demand Conversion

 Converting the traditional zone based demand database to the activity based demand database

Chicago RTSTEP TRANSIMS Model

Router

- Create partitions using "RandomSelect"
 - Divides travelers to randomly selected partitions
- Build paths for all the trips using "Router"
 - Paths built with Free Flow Speeds or an input link delay file
- Go to the control folder and open
 - RandomSelect.ctl
 - Router.ctl
- Look for the input/output files and the program parameters

Router Process

Plan Processing

- Preparing the plans file to be read by Microsimulator
 - Plans are sorted based on their starting time
- Go to the control folder and open
 - PlanPrep.ctl
- Look for the input/output files and the Plan_Sort_Type key

Microsimulator

- A cell-based simulator that moves vehicles between link-lane-cells on a second-by-second basis
 - Cell length are equal to the length of the smallest vehicle in the Vehicle_Type file
 - Trucks occupy multiple cells
 - Includes traffic signals and stop signs, reaction time, required and discretionary lane changing, random slow downs, permissive merge probabilities, vehicle loading and parking, plan following, bus stop interactions, etc.
 - Actual travel time of each trip is calculated

1/21/2011

Microsimulator Process

Microsimulator Output

Feedback - Router Stabilization

1/21/2011