1. Методом наименьших квадратов найти апроксимирующий полином первой и второй степени:

X	F(x)
3.0	4.0
3.2	2.0
3.4	6.0
3.6	6.0
3.8	3.0
4.0	5.0

Peшение: Для полинома первой степени ответ будем искать в виде $\varphi(x)=ax+b.$ В этом случае $\frac{\partial \varphi}{\partial a}=x$ и $\frac{\partial \varphi}{\partial b}=1.$ Получаем такую систему:

$$\begin{cases} \sum_{i=0}^{5} (ax_i + b - y_i)x_i = 0\\ \sum_{i=0}^{5} (ax_i + b - y_i) = 0 \end{cases} \Rightarrow$$

$$\begin{cases} a(9+10.24+11.56+12.96+14.44+16)+\\ +b(3.0+3.2+3.4+3.6+3.8+4.0)-\\ -(12+6.4+20.4+21.6+11.4+20)=0\\ a(3.0+3.2+3.4+3.6+3.8+4.0)+5b-\\ -(4.0+2.0+6.0+6.0+3.0+5.0)=0 \end{cases} \Rightarrow$$

$$\begin{cases} 74.2a + 21b - 91.8 = 0 \\ 21a + 5b - 26 = 0 \end{cases} \Rightarrow$$

$$\begin{cases} 74.2a + 21b = 91.8 \\ 21a + 5b = 26 \end{cases}$$

$$\Delta = \begin{vmatrix} 74.2 & 21 \\ 21 & 5 \end{vmatrix} = 74.2 \cdot 5 - 21 \cdot 21 = 371 - 441 = -70.$$

$$\Delta_a = \begin{vmatrix} 91.8 & 21 \\ 26 & 5 \end{vmatrix} = 91.8 \cdot 5 - 21 \cdot 26 = 459 - 546 = -87.$$

$$\Delta_b = \begin{vmatrix} 74.2 & 91.8 \\ 21 & 26 \end{vmatrix} = 74.2 \cdot 26 - 91.8 \cdot 21 = 1929.2 - 1927.8 = 1.4;$$

$$a = \frac{\Delta_a}{\Lambda} = \frac{-87}{-70} \approx 1.24;$$

$$b = \frac{\Delta_b}{\Delta} = \frac{1.4}{-70} \approx -0.02;$$

Omsem: $\varphi(x) = 1.24x - 0.02$.

Теперь найдём апроксимирующий полином второй степени. Ответ будем искать в виде $\varphi(x) = ax^2 + bx + c$.

$$\begin{cases} \sum_{i=0}^{5} (ax_i^2 + bx_i + c - y_i)x_i^2 = 0\\ \sum_{i=0}^{5} (ax_i^2 + bx_i + c - y_i)x_i = 0\\ \sum_{i=0}^{5} (ax_i^2 + bx_i + c - y_i) = 0 \end{cases} \Rightarrow$$

$$\begin{cases} 951.96a + 264.6b + 74.2c = 326.92 \\ 264.6a + 74.2b + 21c = 91.8 \\ 74.2a + 21b + 5c = 26 \end{cases}$$
;

$$\Delta = \begin{vmatrix} 951.96 & 264.6 & 74.2 \\ 264.6 & 74.2 & 21 \\ 74.2 & 21 & 5 \end{vmatrix} = -622.05;$$

$$\Delta_a = \begin{vmatrix} 326.92 & 264.6 & 74.2 \\ 91.8 & 74.2 & 21 \\ 26 & 21 & 5 \end{vmatrix} = 31.92;$$

$$\Delta_b = \begin{vmatrix} 951.96 & 326.92 & 74.2 \\ 264.6 & 91.8 & 21 \\ 74.2 & 26 & 5 \end{vmatrix} = -880.37;$$

$$\Delta_c = \begin{vmatrix} 951.96 & 264.6 & 326.92 \\ 264.6 & 74.2 & 91.8 \\ 74.2 & 21 & 26 \end{vmatrix} = -10.8;$$

$$a = \frac{\Delta_a}{\Delta} = \frac{31.92}{-622.05} \approx -0.05;$$

$$b = \frac{\Delta_b}{\Delta} = \frac{-880.37}{-622.05} \approx 1.42;$$

$$c = \frac{\Delta_c}{\Delta} = \frac{-10.8}{-622.05} \approx 0.02;$$

Omsem: $\varphi(x) = -0.05x^2 + 1.42x + 0.02$.