

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 06203795 A

(43) Date of publication of application: 22 . 07 . 94

(21) Application number: 05015939

(22) Date of filing: 05 . 01 . 93

(71) Applicant: USHIO INC SHINETSU QUARTZ PROD CO LTD

(72) Inventor: OKUBO KEISUKE IKEUCHI MITSURU INAGI KYOICHI SHIMADA ATSUSHI

(54) METAL VAPOR DISCHARGE LAMP

(57) Abstract:

PURPOSE: To prevent life of an arc tube due to its deformation while delaying the life due to devitrification by forming an outer layer of natural quartz glass anhydride and an inner layer of synthetic quartz glass anhydride.

CONSTITUTION: An emitting space enclosed part 11 of almost spherical shape is formed in the center of an arc tube 1, and sealing tube parts 12 are formed in both sides of this emitting space enclosed part 11. The inside of the emitting space enclosed part 11 is sealed with argon serving as starting rare gas, metal halide and mercury. The arc tube 1 is formed into a 2-layer structure comprising an outer layer of natural quartz glass anhydride 1a and an inner layer of synthetic quartz glass anhydride 1b. In this way, life by devitrification can be markedly delayed and also even life of the arc tube due to its deformation can be prevented.

COPYRIGHT: (C)1994,JPO&Japio

(19)日本国特許庁(JP)

(12) 公開特許公報 (A) (11)特許出願公開番号

特開平6-203795

(43)公開日 平成6年(1994)7月22日

(51) Int. C1. 5

識別記号

庁内整理番号

技術表示箇所

HO1J 61/30

C 7135-5E

審査請求 未請求 請求項の数1

(全4頁)

(21)出願番号	特願平5-15939		(71)出願人	000102212	
				ウシオ電機株式会社	
(22)出願日	平成5年(1993)1月5日			東京都千代田区大手町2丁目6番1号	朝日
				東海ビル19階	
			(71)出願人	000190138	
				信越石英株式会社	
				東京都新宿区西新宿1丁目22番2号	·
			(72)発明者	大久保 啓介	
				兵庫県姫路市別所町佐土1194番地	ウシオ
		-		電機株式会社内	
			(72)発明者	池内 満	
				兵庫県姫路市別所町佐土1194番地	ウシオ
				電機株式会社内	
				最終頁	に続く

(54) 【発明の名称】金属蒸気放電ランプ

(57)【要約】

【目的】 高負荷で点灯しても発光管が失透する時間を 遅らせることができて、しかも発光管の変形が防止でき る金属蒸気放電ランプを提供する。

【構成】 発光管内に金属ハロゲン化物を封入してなる 金属蒸気放電ランプにおいて、前記発光管は、無水天然 石英ガラスを外層とし、無水合成石英ガラスを内層とす る2層構造であることを特徴とする。

【特許請求の範囲】

【請求項1】 発光管内に金属ハロゲン化物を封入してなる金属蒸気放電ランプにおいて、

前記発光管は、無水天然石英ガラスを外層とし、無水合成石英ガラスを内層とする2層構造であることを特徴とする金属蒸気放電ランプ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、金属蒸気放電ランプに 関し、詳しくは、高負荷入力にも耐えうる発光管を備え 10 た金属蒸気放電ランプに関する。

[0002]

【従来の技術】金属蒸気放電ランプは、点灯中に放電空間内に水が放出されると、ランプが短寿命になったり点灯不良をきたしたりする不具合が生ずる。この放電空間内に水が放出される原因は主に発光管内に介在するOH基が原因であると言われており、通常発光管としては、OH基の含有量が10重量ppm以下の無水天然石英ガラスが用いられている。

【0003】一方、投影型液晶テレビジョンのバックラ 20 イトとして用いられているショートアーク型の金属蒸気 放電ランプは、小型のミラーと組み合わせて用いられる ので、コンパクトに設計することが要請されており、よ り発光効率を高めるために管壁負荷も40W/cm²以上 にするとともに、外管を有しない単管タイプで設計され ている。この高管壁負荷のために、発光管の温度も80 0℃以上の過酷な条件で使用される。

[0004]

【発明が解決しようとする課題】このため、投影型液晶 テレビジョンに用いられるショートアーク型の金属蒸気 30 放電ランプでは、発光管として無水天然石英ガラスを使 用すると、高負荷のために発光管が失透し、光束維持率 が低下するなどの問題点がある。一方、無水天然石英ガラスに代えて、無水合成石英ガラスを使用すると、失透 が開始するまでの時間を遅らせることができることを本 発明者等は実験により確認したが、合成石英ガラスは天 然のものに比べて粘度が低く、高負荷で点灯すると発光 管の温度が上昇し、変形するという問題点がある。

【0005】本発明は以上のような課題を解決するために成されたものであり、その目的とするところは、高負 40 荷で点灯しても発光管が失透するまでの時間を遅らせることができて、しかも発光管の変形が防止できる金属蒸気放電ランプを提供することにある。

[0006]

【課題を解決するための手段】本発明の金属蒸気放電ランプは、発光管内に金属ハロゲン化物を封入してなる金属蒸気放電ランプにおいて、前記発光管は、無水天然石英ガラスを外層とし、無水合成石英ガラスを内層とする2層構造であることを特徴とする。

[0007]

【作用】発光管の失透は発光管の内面より起こるが、この失透し易い発光管の内面を無水合成石英ガラスとしているので、失透するまでの時間を遅らせることができ、また発光管の外層を無水天然石英ガラスとする2層構造であるので、発光管の温度が上昇しても発光管の変形を防止することができる。

[0008]

【実施例】以下本発明の実施例を図面を参照して詳細に 説明する。図1は本発明の一実施例である出力150W のショートアーク型メタルハライドランプの断面図を示 したものであり、1は発光管、2はタングステンよりな る電極である。発光管1の中央には外径が約11mmの 略球形状の発光空間囲繞部11が形成され、この発光空 間囲繞部11の両側にはピンチシールされた封止管部1 2が形成されている。そしてこの封止管部12内にはモ リブデンよりなる金属箔21が埋設されており、この金 属箔21のそれぞれの両端には前記した発光空間囲繞部 11内に伸びる電極2と封止管部12より外方に伸びる 外部リード22が溶接により接続されている。

【0009】発光空間囲繞部11内には始動用希ガスとして室温で100Torrのアルゴンと、0.2mgの沃化ディスプロシウム(DyIs)、0.15mgの沃化ネオジム(NdIs)、0.25mgの沃化セシウム(CsI)よりなる金属ハロゲン化物および13mgの水銀が封入されており、点灯とともにこれらの金属ハロゲン化物および水銀が蒸発して約20気圧の安定点灯状態となり、このときの発光空間囲繞部11の外表面温度は約2000程度にまで上昇する。尚、本実施例における発光空間囲繞部11は肉厚1.2mm、内表面積は2.5cm²であり、管壁負荷は62W/cm²である。

【0010】そして発光管1は、図2の部分拡大断面図に示すように、外層の無水天然石英ガラス1aと内層の無水合成石英ガラス1bよりなる2層構造となっている。この実施例においては、外層の無水天然石英ガラス1aの厚みは1mm、内層の無水合成石英ガラス1bの厚みは0.2mmとされている。またこの内層の無水合成石英ガラス1bはOH基の含有量が5重量ppm以下の材料を用いているので、点灯中に発光管1の内部に水が入り込む量も少なくすることができ、ランプの短寿命や点灯不良を来すこともない。尚、外層の無水天然石英ガラス1aもOH基の含有量が10重量ppm以下の材料を用いれば、より長寿命のランプとすることができる。

【0011】本発明の金属蒸気放電ランプに使用される発光管は、種々の方法で作ることができるが、その一例を示せば、特開平3-170340「半導体熱処理用複合石英ガラス管の製造方法」に示されている方法を用いることができる。すなわち、外層用の無水天然石英ガラス管内に、内層用の無水合成石英ガラス管を挿入重合

50 し、該重合管をほぼ水平に保ち、これを共通軸の周りに

同一速度で回転させながら、一端より他端に向けて外部 加熱区域を移動させ、その操作の間は、内層用管内を加 圧状態に保持し、該重合両管を延伸一体化後、内面に治 具が触れないようにして、内表面を清浄に保ったまま管 引きを行い、所定の寸法の管を得る。その後、モールド 加工により、発光管を形成することができる。

【0012】つぎに、本発明の効果を確認するために行 った実験結果について説明する。図3は点灯時間とスク リーン照度との関係を、発光管として肉厚1.2mmの 無水天然石英ガラスよりなる発光管を備えた従来ランプ 10 Aと、肉厚1.0mmの無水天然石英ガラス(外層)と 肉厚0. 2mmの無水合成石英ガラス(内層)よりなる 2層構造の発光管を備えた本発明ランプBとの関係を比 較したものである。尚、これらのランプAとBは発光管 が相違するほかは、出力155Wで管壁負荷は62W/ cm² に設計された同一規格品である。

【0013】図3に示すように、従来ランプAは点灯後 500時間で失透現象が観察され、点灯後1000時間 でスクリーン照度は50%にまで落ちたが、本発明ラン プBの場合は、点灯後1000時間までは失透が観察さ れず、点灯後2000時間まで50%の照度を維持する ことができた。従って、本発明のランプBは従来ランプ Aに比べて2倍の寿命とすることができることが確認さ れた。また、本発明ランプBにおいては、ランプ寿命と なる点灯後2000時間まで、発光管の変形は観察され なかった。

【0014】次に、発光管1の無水天然石英ガラス1a と無水合成石英ガラス1bの肉厚に関しては、内層の無 水合成石英ガラス1bの場合、極僅かでも形成されてい ればよく、ミクロンオーダーの膜厚でもよい。また外層 30 石英ガラス の無水天然石英ガラス1aに関しては、発光管の変形寿 命に影響するので、ある程度の厚みが必要である。例え ば、前記した150Wクラスの金属蒸気放電ランプで管 壁負荷が62W/cm2の場合は、約1mm程度で良い

が、1kW以上の高出力タイプになれば2mm程度が必 要である。尚、この無水天然石英ガラス1 a の厚みに関 しては、おおよそ次のような関係を満たせば、点灯後2 000時間まで発光管の変形は観察されなかった。 $t > 9. 2 m/D^2$

但し、 t は無水天然石英ガラスの肉厚 (mm)、Dは発 光管の最大径 (mm)、mは封入水銀量 (mg) であ る。

【0015】尚、本発明における石英ガラスの頭に付し た「無水」の意味は、OH基の含有量ができるだけ少な いことを意味し、このOH基の含有量は、20重量pp m以下、特に好ましくは10重量ppm以下であること を意味している。

[0016]

【発明の効果】以上詳細に説明したように、本発明の金 属蒸気放電ランプは、発光管として外層が無水天然石英 ガラスで、内層が無水合成石英ガラスである2層構造の ものを用いたので、失透による寿命を大幅に遅らせるこ とができるとともに、発光管の変形による寿命も防止す ることができ、高負荷にも十分に耐えうるランプとする ことができる。

【図面の簡単な説明】

【図1】 金属蒸気放電ランプの断面図である。

【図2】 発光管の部分拡大断面図である。

【図3】点灯時間とスクリーン照度との関係図である。 【符号の説明】

1…発光管

11…発光空間囲

繞部

12…封止管部

1 a …無水天然

1 b …無水合成石英ガラス

2…電極

21…金属箔

22…外部リー

۴

フロントページの続き

(72)発明者 稲木 恭一

福島県郡山市田村町金屋字川久保88 信越

石英株式会社石英技術研究所内

(72)発明者 嶋田 敦之

福島県郡山市田村町金屋字川久保88 信越

石英株式会社郡山工場内