

SVEUČILIŠTE U ZAGREBU

Diplomski studij

Informacijska i komunikacijska tehnologija:

Telekomunikacije i informatika

Računarstvo:

Programsko inženjerstvo i informacijski sustavi

Računarska znanost

Raspodijeljeni sustavi

6. Sinkronizacija procesa u vremenu

Ak. god. 2020./2021.

Creative Commons

- dijeliti umnožavati, distribuirati i javnosti priopćavati djelo
- prerađivati djelo

- imenovanje: morate priznati i označiti autorstvo djela na način kako je specificirao autor ili davatelj licence (ali ne način koji bi sugerirao da Vi ili Vaše korištenje njegova djela imate njegovu izravnu podršku).
- **nekomercijalno:** ovo djelo ne smijete koristiti u komercijalne svrhe.
- dijeli pod istim uvjetima: ako ovo djelo izmijenite, preoblikujete ili stvarate koristeći ga, preradu možete distribuirati samo pod licencom koja je ista ili slična ovoj.

U slučaju daljnjeg korištenja ili distribuiranja morate drugima jasno dati do znanja licencne uvjete ovog djela. Od svakog od gornjih uvjeta moguće je odstupiti, ako dobijete dopuštenje nositelja autorskog prava. Ništa u ovoj licenci ne narušava ili ograničava autorova moralna prava. Tekst licence preuzet je s http://creativecommons.org/

Sadržaj predavanja

- Motivacija: potreba za sinkronizacijom procesa u raspodijeljenoj okolini
- Primjena sata u jednoprocesorskoj okolini
- Primjena sata u raspodijeljenoj okolini
- Sinkronizacija tijeka izvođenja procesa
- Međusobno isključivanje procesa

Potreba za sinkronizacijom procesa (1/4)

- Uporaba dijeljenog sredstva u raspodijeljenoj okolini
 - Procesi istodobno pristupaju dijeljenom sredstvu
 - Potrebno je ostvariti pristup dijeljenom sredstvu na međusobno isključiv način
 - Raspodijeljeni procesi moraju postići dogovor o redoslijedu pristupa sredstvu

Potreba za sinkronizacijom procesa (2/4)

- Usuglašavanje vremenskog redoslijeda izvođenja akcija
 - Potrebno je omogućiti vremenski tijek izvođenja akcija na procesima u raspodijeljenoj okolini ako postoji međuovisnost među procesima

Potreba za sinkronizacijom procesa (3/4)

- Nadgledanje i upravljanje nad izvođenjem poslova u raspodijeljenoj okolini
 - Odabir upravljačkog procesa (sjetite se primjera s prethodnog predavanja)
 - Upravljački proces nadzire i određuje aktivnosti radnih procesa u raspodijeljenoj okolini

Potreba za sinkronizacijom procesa (4/4)

- Uspostava suradnje skupa procesa u raspodijeljenoj okolini
 - Ostvarivanje vremenski i prostorno usklađenog raspodijeljenog tijeka izvođenja (proširenje 2. primjera)
 - Primjer: P2P sustav za dijeljenje datoteka

Sadržaj predavanja

- Motivacija: potreba za sinkronizacijom procesa u raspodijeljenoj okolini
- Primjena sata u jednoprocesorskoj okolini
- Primjena sata u raspodijeljenoj okolini
- Sinkronizacija tijeka izvođenja procesa
- Međusobno isključivanje procesa

Primjena sata u jednoprocesorskoj okolini

Podsjetimo se: satni mehanizam operacijskog sustava

 Izveden uporabom kristala kvarca, osciliraju pod naponom zbog piezoelektričkog efekta

Aplikacije

- Procesi koriste i upravljaju mehanizmom sata
- Primjena programskih knjižnica za uporabu satnog mehanizma

Zatvorena okolina

- Predvidiva vremena izvođenja procesa
- Jednostavnija sinkronizacija procesa u vremenu

Fizički i logički sat

Svako računalo ima vlastiti satni mehanizam

- Satovi nisu usklađeni
- Satovi imaju različiti takt
- Satovi imaju različita odstupanja (pogrešku)

Usuglašavanje vremena

- Fizički sat u raspodijeljenoj okolini
- Logički sat u raspodijeljenoj okolini

Fizički sat u raspodijeljenoj okolini

Cristianov algoritam

- Razvio ga je F. Cristian (1989)
- Primjena poslužitelja s točnim vremenom, sinkronizacija prema vanjskom izvoru
- Dohvaćanje informacije o vremenu prema potrebi

Algoritam Berkeley

- Razvili su ga R. Gusella i S. Zatti na University of California, Berkeley (1989)
- Primjena upravitelja vremena, sinkronizacija unutar skupine procesa
- Periodičko odašiljanje informacije o vremenu

Cristianov algoritam (1/2)

- Primjena poslužitelja vremena
- Koraci algoritma
 - 1) Korisnički proces upućuje zahtjev za dohvat vremena (z)
 - 2) Poslužitelj vremena prima i obrađuje zahtjev te šalje trenutno vrijeme (o)

Cristianov algoritam (1/2)

- 3. Odgovor sadrži T_2 i T_3 na poslužitelju u trenutku slanja odgovora.
- 4. Klijent na osnovi vremenskih trenutaka koje je primio u poruci i izmjerenih vremenskih trenutaka T_1 i T_2 pomiče svoje lokalno vrijeme za

Algoritam Berkeley

- Primjena upravitelja vremena
- Koraci algoritma
 - 1) Upravljački proces *c* šalje vrijeme procesima *p*, *q*, *c*
 - 2) Procesi *p*, *q*, *c* šalju razliku vremena upravljačkom procesu *c*
 - 3) Upravljački proces *c* šalje pomak procesima *p*, *q*, *c*

Network Time Protocol (NTP)

- Definira arhitekturu usluge za sinkronizaciju satnih mehanizama u raspodijeljenoj okolini i protokol za isporuku informacija o vremenu u Internetu
- Hijerarhijska organizacija NTP servisa
 - *primary servers*: povezani direktno na izvor sinkroniziran na UTC (Coordinated Universal Time)
 - *secondary servers*: sinkroniziraju se u odnosu na *primary servers*, itd.
 - preciznost: ~10 ms za računala na javnom Internetu, ~1 ms za računala u LAN-u
- RFC 5905: Network Time Protocol Version 4: Protocol and Algorithms Specification, 2010
- Nedostatak fizičkog sata: fizički satni mehanizmi su potpuno neovisni, stoga samo primjenom fizičkih satnih mehanizama nije moguće odrediti odnos događaja u vremenu (npr. redoslijed aktivnosti)

Primjer nedostatka fizičkog sata

$$e_p^{\ 1} \rightarrow e_q^{\ 1} \quad e_q^{\ 2} \rightarrow e_r^{\ 1}$$
 $e_r^{\ 2} \rightarrow e_q^{\ 3} \quad e_q^{\ 4} \rightarrow e_p^{\ 2}$

$$e_r^2 \rightarrow e_q^3 \quad e_q^4 \rightarrow e_p^2$$

Logičke oznake vremena

- Usklađivanje globalnog tijeka vremena
 - Primjena logičkih oznaka vremena (timestamps)

- Vrste logičkih oznaka
 - Skalarne oznake vremena
 - Vektorske oznake vremena

Skalarne oznake vremena

Globalno logičko vrijeme

Sva računala na jednak način bilježe tijek globalnog logičkog vremena

Oznake logičkog vremena

- Svakoj akciji a koju provode procesi u raspodijeljenoj okolini pridružena je jedinstvena oznaka vremena T(a)
- Ako za događaj a i b vrijedi uzročna relacija $a \rightarrow b$ tada vrijedi da je akcija a ostvarena u vremenu prije akcije b [T(a) < T(b)]

Primjer uporabe skalarnih oznaka vremena

03.11.2020.

Raspodijeljeni sustavi

Obilježja skalarne oznake vremena

Prednosti primjene skalarnih oznaka

- Tijek vremena zasnovan je na jednostavnom modelu
- Svi procesi usklađeni su s globalnim tijekom vremena
- Usuglašeni su vremenski trenutci nastupanja akcija u raspodijeljenoj okolini

Nedostatci primjene skalarnih oznaka

- Ako za događaje a i b vrijedi da je vremenska oznaka od a manja od vremenske oznake od b, to ne povlači nužno da je događaj a nastupio u vremenu prije događaja b
- T(a) < T(b) ne povlači $a \rightarrow b$

Primjer nedostatka skalarnih oznaka

$$T(e_a^2) = 48$$
, $T(e_r^1) = 60$?

Vektorske oznake vremena (1/2)

- Vektorska oznaka opisuje uzročno-posljedične veze između događaja u vremenu
 - Polje elemenata V[N] opisuje broj akcija (unutarnja akcija, slanje poruke, prijam poruke) provedenih od N procesa u raspodijeljenoj okolini
 - Procesi razmjenjuju vektorske oznake tijekom razmjene poruka
- Vektorska oznaka
 - $V_p[p]$ broj akcija koje je ostvario proces P_p
 - $V_p[m]$ broj akcija za koje proces P_p zna da su ostvarene od strane procesa P_m

Vektorske oznake vremena (2/2)

Primjena vektorskih oznaka

• Ako za događaje a i b vrijedi V(a) < V(b) tada vrijedi da je događaj a nastupio u vremenu prije događaja b, $a \rightarrow b$

• Za dvije vektorske oznake V_i i V_j vrijedi $V_i < V_j$ ako:

- postoji barem jedan k za koji vrijedi $V_i[k] < V_i[k]$,
- za sve ostale $l \neq k$ vrijedi $V_i[l] \leq V_i[l]$,
- $i, j, k, l \in [0, N-1]$ i
- broj procesa u raspodijeljenoj okolini je N

Primjer uporabe vektorskih oznaka

Vektorske oznake vremena

Koraci algoritma za održavanje vektorskih oznaka:

- 1) Početne vrijednosti svih vektorskih oznaka su postavljene na 0.
- 2) Za svaku unutarnju akciju procesa p uvećaj vremensku oznaku na procesu p pridijeljenu tome procesu za 1, tj. $V_p[p]+1$.
- 3) Prije slanja poruke na procesu p uvećaj oznaku $V_p[p]$ za 1 i poslanoj poruci pridruži izgrađeni vektor V_p .
- **4)** Nakon primitka poruke od procesa p na procesu k uvećaj oznaku $V_k[k]$ za 1. Za ostale oznake $i \neq k$ postavi $V_k[i] = V_p[i]$ ako je $V_k[i] < V_p[i]$.

Primjena sata u raspodijeljenoj okolini

Uređena razmjena poruka

 Primjena skalarnih logičkih oznaka vremena

 Svi procesi na isti način vide redoslijed događaja

Održavanje konzistentnosti

 Bez vremenskih oznaka nije moguće odrediti pravilni redoslijed akcija u vremenu

Replika baze podataka

03.11.2020. Raspodijeljeni sustavi 26 od 57

Baza podataka

Sadržaj predavanja

- Potreba za sinkronizacijom procesa
- Primjena sata u jednoprocesorskoj okolini
- Primjena sata raspodijeljenoj okolini
- Sinkronizacija tijeka izvođenja procesa
 - Primjena semafora u raspodijeljenoj okolini
 - Sinkronizacija zasnovana na razmjeni obavijesti
- Međusobno isključivanje procesa

27 od 57

Primjena semafora u raspodijeljenoj okolini

Semafor

- Proces koji u spremniku čuva N znački (token)
- Rep čekanja zasnovan na posluživanju zahtjeva prema redoslijedu prispijeća (FIFO)

Korisnici

- Procesi šalju poruke zahtjev za dohvat (D) n znački
- Ako u spremniku postoji traženi broj znački, prosljeđuje se potvrda za predaju (P)
- Ako u spremniku ne postoji traženi broj znački, zahtjev se stavlja u rep čekanja
- Nakon završetka obrade, procesi vraćaju preuzete značke slanjem poruke vrati (V)

Semafor u raspodijeljenoj okolini

29

Primjer sinkronizacije tijeka izvođenja

D – Dohvati

V – Vrati

P – Predaj

Složeni obrasci sinkronizacije

- Semafor je osnovni element za ostvarivanje složenih obrazaca sinkronizacije
- Graf raspodijeljenog tijeka izvođenja procesa
 - Grananje tijeka izvođenja
 - Spajanje tijeka izvođenja
 - Ponavljanje tijeka izvođenja

Graf raspodijeljenog tijeka izvođenja

D – Dohvati

V – Vrati

P – Predaj

Sinkronizacija razmjenom obavijesti

Posrednik

- Sadrži spremnik s obavijestima i spremnik pretplata na obavijesti
- Ostvaruje postupak usporedbe obavijesti i pretplata prema modelu objavi pretplati

Korisnici

- Procesi šalju posredniku pretplate (S)
- Procesi šalju posredniku obavijesti (P)
- Ako posrednik ima aktivnu pretplatu na obavijest, ona se prosljeđuje procesu pretplatniku u poruci dojave (N)

Okolina posrednika obavijesti

Npr:

Proces P2 se pretplatio (subscribe) na obavijesti tipa A
Proces P0 objavljuje (publish)
obavijest a posredniku
Posrednik prosljeđuje obavijest
(notify) a procesu P2

Primjer sinkronizacije razmjenom obavijesti

S (x) – pretplata na obavijesti tipa x P(x) – objavi obavijest tipa x, N(x) – dojava, tj. proslijedi obavijest x

35

Sadržaj predavanja

- Potreba za sinkronizacijom procesa
- Primjena sata u jednoprocesorskoj okolini
- Primjena sata raspodijeljenoj okolini
- Sinkronizacija tijeka izvođenja procesa
- Međusobno isključivanje procesa
 - Središnji upravljač s repom čekanja
 - Raspodijeljeno međusobno isključivanje
 - Isključivanje zasnovano na primjeni prstena

Međusobno isključivanje procesa

Središnji upravljač s repom čekanja

- Proces koji čuva stanje repa čekanja
- Rep čekanja zasnovan na posluživanju zahtjeva prema redoslijedu prispijeća (FIFO)

Korisnici

- Procesi šalju poruke sa zahtjevom za zauzimanje (Z) tj. pristup sredstvu
- Procesi ostvaruju pristup sredstvu nakon primitka poruke potvrde (P), te dohvaćaju (R) i/ili spremaju (S) podatke na dijeljeno sredstvo
- Nakon završetka obrade, procesi otpuštaju zauzeto sredstvo slanjem poruke oslobodi (O)

Središnji upravljač s repom čekanja

Isključivanje putem središnjeg upravljača

R – Dohvati

S – Spremi

Z – Zauzmi

P – Potvrda

O – Oslobodi

Raspodijeljeno međusobno isključivanje

Raspodijeljeni rep čekanja

- Svaki proces ima lokalni rep čekanja
- Procesi razmjenjuju informacije potrebne za usklađivanje stanja svih repova čekanja u sustavu

Pretpostavke

- Svaki proces ima lokalni satni mehanizam koji je usklađen s ostalim procesima
- Svaki zahtjev za pristup sredstvu uključuje oznaku trenutka u kojem je proces uputio zahtjev
- Procesi ostvaruju pristup u skladu s vremenskim oznakama upućivanja zahtjeva

Elementi raspodijeljenog isključivanja

Raspodijeljeno isključivanje (1/4)

Z(t=x) – Zauzmi, vremenska oznaka x

Raspodijeljeno isključivanje (2/4)

P – Potvrda

Raspodijeljeno isključivanje (3/4)

Pristup dijeljenom sredstvu!

R – Dohvati, S – Spremi

Raspodijeljeno isključivanje (4/4)

Međusobno isključivanje primjenom prstena

Struktura prstena procesa

- Procesi su povezani u logičku mrežu zasnovanu na prstenu
- Primjenjuju se identifikatori procesa za formiranje prstena
- Duž prstena ostvaruje se razmjena jedne značke

Pristup dijeljenom sredstvu

- Pristup ima samo proces koji u određenom trenutku ima značku
- Nakon završetka pristupa, proces prosljeđuje značku susjednom procesu u prstenu

Akcije procesa u prstenu (1)

Proces n prima značku

- 1) Čitanje podataka iz spremnika
- 2) Pisanje podataka u spremnik
- 3) Prosljeđivanje značke procesu (n-1)

Proces (n-1) prima značku

- 4) Proces ne zahtjeva pristup spremniku
- 5) Prosljeđivanje značke procesu (n-2)

Proces (n-2) prima značku

6) ...

Akcije procesa u prstenu (2)

Akcije procesa u prstenu (3)

T – Prijenos tokena,

S – Spremi,

R – Dohvati

Primjeri sustava za sinkronizaciju

Usluga ZooKeeper

- Usluga za pouzdanu koordinaciju tijeka izvođenja skupa procesa u raspodijeljenoj okolini
- Dodatne informacije: http://zookeeper.apache.org

Okružje Hadoop

- Programsko okružje za provođenje paralelne obrade velike količine podataka (Big Data)
- Postoji potreba za sinkronizacijom procesa *map* i *reduce*
- Dodatne informacije: http://hadoop.apache.org

Usluga ZooKeeper (1)

Usluga opće namjene za koordiniranje skupa procesa u raspodijeljenoj okolini

Imenovanje, sinkronizacija, upravljanje grupama, repovi, donošenje odluka, zaključavanje sredstava

Usluga ZooKeeper (2)

Primjer: Sinkronizacija procesa

Procesi P2 i P3 započinju s izvođenjem tek nakon što je proces P1 završio s izvođenjem

Usluga ZooKeeper (3)

P0 je upravljački proces koji stvara sinkronizacijski čvor SyncNode

Usluga ZooKeeper (4)

Procesi P2 i P3 ispituju postoji li sinkronizacijski čvor SyncNode

- Ako čvor postoji, čekaju na dojavu o brisanju čvora
- jer kada se čvor izbriše, oni započinju izvođenje

Usluga ZooKeeper (5)

Proces P1 završava s izvođenjem

- Briše sinkronizacijski čvor SyncNode
- Usluga ZooKeeper dojavljuje brisanje čvora i stoga

Okružje Hadoop

MapReduce: analiza i obrada velikih skupova podataka

- Ulazni skup podataka dijeli se na blokove koje paralelno obrađuju nezavisni procesi
- Rezultati obrade grupiraju se u odredišni skup podataka

Literatura

• S. Tanenbaum, M. van Steen: "Distributed Systems: Principles and Paradigms" second edition, Prentice Hall, 2007. (Poglavlje: Synchronization)

• H. Attya, J. Welch: "Distributed Computing: Fundamentals, Simulations, and Advanced Topics", Wiley, 2004. (Poglavlje: Causality and Time)

• N. A. Lynch: "Distributed Algorithms", Morgan Kaufmann, 1997. (Poglavlje: Logical Time)

Dodatne informacije

- Kolegij na FER-u
 - Raspodijeljena obrada velike količine podataka, 2. semestar
 - http://www.fer.unizg.hr/predmet/rovkp
 - Sadržaj kolegija
 - Obrada velike količine podataka: MapReduce
 - Obrada nestrukturiranog teksta
 - Obrada toka podataka

