CS480 – Introduction to Artificial Intelligence

TOPIC: LEARNING

http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

LEARNING

- What's learning?
- Intro to Chapter 18: "In which we describe agents that can improve their behavior through diligent study of their own experiences."
- We do not make any philosophical statements about whether the agent is *truly* learning
- "An agent is learning if it improves its performance on future tasks after making observations about the world."

WHY LEARN AND NOT PROGRAM DIRECTLY?

- We cannot anticipate all possible situations that the agent might find itself in
- Time/location/context changes knowledge and rules
- We might not know the solution crisp enough to program it
- We might not have time to encode all the knowledge

WHAT TO LEARN?

- Which action to take in a state (state \rightarrow action)
- \circ Outcomes of our actions (action \rightarrow state)
- Mapping percepts to world states (percept → state)
- Utility of the states (state \rightarrow utility)
- o and more...

4

FEEDBACK

- Unsupervised learning
 - No feedback; the agent discovers patterns in the data
 - E.g., clustering, dimensionality reduction, outlier detection
- Supervised learning
 - Feedback: input-output pairs
 - E.g., classification, regression, ranking
- Reinforcement learning
 - Feedback: rewards

EPISODIC VS SEQUENTIAL

- Supervised and unsupervised learning are often episodic
 - E.g., speech recognition, medical diagnosis, credit score prediction, ...
- Reinforcement learning is often sequential
 - E.g., game playing

MACHINE LEARNING

- ML is used to supplement several applications of AI
- Even though all the rage is now about deep learning, DL is a subfield of ML, and ML is a subfield of AI
- Example
 - Agents can combine the powers of search and ML to play games
 - Robots can use ML to make sense of their percepts and model the world, but they need to use search and planning to achieve goals

WE'LL COVER

- 1. Bayesian network parameter estimation
- 2. Supervised learning
- 3. Reinforcement learning

BAYESIAN NETWORK PARAMETER ESTIMATION

BAYESIAN NETWORK PARAMETER ESTIMATION

• Given:

- A set of random variables, V_i
 - E.g., age, gender, cholesterol level, etc.
- A Bayesian network structure over these variables
 - E.g., a doctor can point out the most important correlations and causations
- Data
 - ullet E.g., existing patient records, where some or all V_i are known

• Goal:

• Estimate the parameters needed for the Bayesian network, i.e., $P(V_i \mid parentsOf(V_i))$

KNOWN BAYESIAN NETWORK STRUCTURE

- o In this class, we assume the structure is given
- How reasonable is this assumption?
 - In some domains, the expert might provide a reasonable structure to start with
- There are many methods that learn the structure of the Bayesian network from data
 - Those topics are covered in the CS583 Probabilistic Graphical Models course in detail

PARAMETER ESTIMATION FOR BNS

- \circ Assume the network structure is given over variables V_i
- Let d_i be a fully observed instance
 - $d_j = \langle V_1 = t, V_2 = f, ..., V_n = t \rangle$
- \circ The data \mathcal{D} consists of fully observed instances
 - $\mathcal{D} = \{d_1, d_2, ..., d_m\}$
- Estimate the network parameters $P(V_i \mid parents(V_i))$
- Two approaches
 - 1. Maximum likelihood estimation
 - 2. Bayesian estimation

SIMPLEST CASE — ONE VARIABLE

- Imagine we have a thumbtack
- Flip it, and it comes as heads or tails

heads

tails

- $P(Heads) = \theta$, $P(Tails) = 1 \theta$
- Assume we flip it 100 times and it comes head 30 times
- What is θ ?

THUMBTACK TOSSES

- Assume we have a set of thumbtack tosses
 - $\mathcal{D} = \{d_1, d_2, ..., d_{100}\}$
- Assume we have 30 heads and 70 tails
- $P(Heads) = \theta$, $P(Tails) = 1 \theta$
- \circ θ can be any number between 0 and 1
- We have an infinite number of choices
 - θ =0, ..., θ =0.3, ..., θ =0.5, ..., θ =1
- We want to formulate an objective function $f(\theta: D)$, where, given 30 heads and 70 tails, $f(\theta: D)$ achieves its maximum when $\theta=0.3$
 - Any ideas?

LIKELIHOOD

- What is the probability, or *likelihood*, of seeing the sequence H, T, T, H, H?
 - $\theta * (1 \theta) * (1 \theta) * \theta * \theta = \theta^3 (1 \theta)^2$

When is $L(\theta:\mathcal{D})$ maximum?

15

LIKELIHOOD/LOG-LIKELIHOOD

- Number of heads = k, number of tails = m-k
- Likelihood: $L(\theta:\mathcal{D}) = \theta^k (1-\theta)^{m-k}$
- Log-likelihood: $l(\theta:\mathcal{D}) = k\log\theta + (m-k)\log(1-\theta)$
- Note that $L(\theta; \mathcal{D})$ achieves its maximum for θ that maximizes $l(\theta; \mathcal{D})$
- \circ Find θ that maximizes the log-likelihood
- Take derivate of $l(\theta;\mathcal{D})$ w.r.t. θ and set it to zero

Maximum likelihood for a multinomial

- Domain of *X* is {A, B, C}
- We see A a times, B b times, and C c times.
- P(X=A) is p, P(X=B) is q, and P(C) = 1 p q
- \circ What are p and q?
- o Proof?

LET'S SEE A FEW EXAMPLES

- Simple structure
 - $\bullet X \rightarrow Y$
- General structure
 - The key is that the parameters for each variable can be optimized independently
 - Examples

BAYESIAN ESTIMATION

- Assume we flip a coin 10 times and we get 4 Heads, 6 Tails
 - What is P(C=H)?
- What if we repeat the flips 10M times and we get 4M Heads and 6M Tails?
- Bayesian estimation will let us encode our prior knowledge

TO CUT IT SHORT, (I MEAN REALLY SHORT)

- We'll encode our prior knowledge as a set of "imaginary" counts
- For example, we will assume that we have already seen α heads and β tails
- Assume we flip a coin 10 times and we get 4 Heads, 6 Tails
 - $P(C=heads) = (4 + \alpha) / (10 + \alpha + \beta)$
 - $\alpha = 0$, $\beta = 0$; P(C=h) = 4/10 = 0.4
 - $\alpha = 1$, $\beta = 1$; P(C=h) = 5/12 = 0.417
 - $\alpha = 10$, $\beta = 10$; P(C=h) = 14/30 = 0.467
 - $\alpha = 100$, $\beta = 100$; P(C=h) = 104/210 = 0.495
- Assume we flip a coin 1000 times and we get 400 Heads, 600 Tails
 - $P(C=heads) = (400 + \alpha) / (1000 + \alpha + \beta)$
 - $\alpha = 0$, $\beta = 0$; P(C=h) = 400/1000 = 0.4
 - $\alpha = 1$, $\beta = 1$; P(C=h) = 401/1002 = 0.4002
 - $\alpha = 10$, $\beta = 10$; P(C=h) = 410/1020 = 0.402
 - $\alpha = 100$, $\beta = 100$; P(C=h) = 500/1200 = 0.417

IMAGINARY COUNTS

- Note that imaginary counts can be applied to any categorical variable, not necessarily just binary variables
- Also helps with dealing zero probabilities
- When all imaginary counts are 1, this is called Laplace smoothing
 - E.g, $\alpha = 1$, $\beta = 1$
- Let's see some examples

SUPERVISED LEARNING

FEEDBACK

- Unsupervised learning
 - No feedback; the agent discovers patterns in the data
 - E.g., clustering, dimensionality reduction, outlier detection
- Supervised learning
 - Feedback: input-output pairs
 - E.g., classification, regression, ranking
- Reinforcement learning
 - Feedback: rewards

SUPERVISED LEARNING

- Given objects with their labels, <X,Y>
- Learn a function f that maps objects, X, to labels, Y
- We want f to perform well on unseen objects
- Several applications
 - Face recognition, speech recognition, medical diagnosis, fraud detection, credit scoring, home value prediction, temperature prediction, ...
- If Y is
 - Discrete, the task is called classification
 - Continuous, the task is called regression

FUNCTION FITTING?

- Isn't classification/regression simply "function fitting?"
- Yes and No
- The purpose is to generalize and perform well on unseen data
- We don't want to underfit or overfit to the training data

So, which function is the "right" one?

SOME CLASSIFICATION MODELS

- 1. Naïve Bayes
- 2. Logistic regression

Note: it's called regression, but it is a classification model

- 3. Decision trees
- 4. Support vector machines
- 5. Neural networks

Naïve Bayes

TASK

- Classify emails as spam (s) / not-spam (~s) based on the words they contain
- You look at 100 random emails; 40 of them are spam, 60 of them are not-spam
- What is P(s) for a new email?

FEATURES

• Assume you'll look into the emails' contents; you've decided that the word Nigeria¹ seems to correlate well with spam. You group the 100 emails as follows

Nigeria	Spam	Count
t	S	30
f	S	10
t	~s	10
f	~s	50

If the word Nigeria appears in the new email, then what is $P(s \mid Nigeria=t)$?

1. Why "Nigeria?" https://www.google.com/search?q=nigeria+scam+emails

NIGERIA=T

Nigeria	Spam	Count	
t	S	30	
f	S	10	
t	~s	10	
f	~s	50	

If the word Nigeria appears in the new email, then what is $P(s \mid Nigeria=t)$?

$$P(s \mid N=t) = \frac{P(s, N=t)}{P(N=t)} = \frac{30/100}{(30+10)/100} = \frac{30}{40}$$

ADD ADMISSION INTO YOUR VOCABULARY

Nigeria	Adm.	Spam	Count
t	t	S	10
t	f	S	20
f	t	S	3
f	f	S	7
t	t	~s	8
t	f	~s	2
f	t	~s	40
f	f	~s	10

What is $P(s \mid N=t, A=f)$? What about $P(s \mid N=t, A=t)$?

ADD ADMISSION INTO YOUR VOCABULARY

Nigeria	Adm.	Spam	Count	
t	t	S	10	
t	f	S	20	
f	t	S	3	
f	f	S	7	
t	t	~s	8	
t	f	~s	2	
f	t	~s	40	
f	f	~s	10	

What is $P(s \mid N=t, A=f)$? What about $P(s \mid N=t, A=t)$?

$$P(s \mid N = t, A = f) = \frac{P(s, N = t, A = f)}{P(N = t, A = f)} = \frac{\frac{20}{100}}{\frac{20}{100}} = \frac{20}{22}$$

 $P(s \mid N=t)$ was 0.75. $P(s \mid N=t, A=f)$ is 0.91

ADD ADMISSION INTO YOUR VOCABULARY

Nigeria	Adm.	Spam	Count	
t	t	S	10	
t	f	S	20	
f	t	S	3	
f	f	S	7	
t	t	~s	8	
t	f	~\$	2	
f	t	~s	40	
f	f	~s	10	

What is $P(s \mid N=t, A=f)$? What about $P(s \mid N=t, A=t)$?

$$P(s \mid N = t, A = t) = \frac{P(s, N = t, A = f)}{P(N = t, A = f)} = \frac{10/100}{(10+8)/100} = \frac{10}{18}$$

 $P(s \mid N=t)$ was 0.75. $P(s \mid N=t, A=f)$ is 0.91. $P(s \mid N=t, A=t) = 0.56$.

Now assume we add 998 more words

W_1	W_2	 W ₁₀₀₀	Spam	Count
t	t	 t	S	
t	t	 f	S	
f	f	 f	~s	

Q: How many entries are there in this table?

 $A: 2^{1001} \approx 2 \times 10^{301}$

We have 100 emails. If all emails are distinct, 100 entries will be 1; The rest will be 0.

Q: What is $P(s \mid W_1=t, W_2=f, ..., W_{1000}=t)$?

A: Either 1 or 0 if it is in D, otherwise, it is NaN

Q: How big of a training data do we need?

Naïve Bayes

- o Given $X_1, X_2, ..., X_n$, and class Y
- Assume $X_i \perp X_j \mid Y$

$$X_2, \dots, X_n | Y \rangle P(Y) \qquad P(Y) \prod_{i=1}^n P(X_i | Y)$$

$$P(Y|X_1, X_2, \dots, X_n) = \frac{P(X_1, X_2, \dots, X_n | Y)P(Y)}{P(X_1, X_2, \dots, X_n)} = \frac{P(Y) \prod_{i=1}^n P(X_i | Y)}{P(X_1, X_2, \dots, X_n)}$$

We need to estimate P(Y) and $P(X_i | Y)$

Naïve Bayes

Nigeria	Adm.	Spam	Count
t	t	S	10
t	f	S	20
f	t	S	3
f	f	S	7
t	t	~s	8
t	f	~s	2
f	t	~s	40
f	f	~s	10

What is P(S)?

What is P(N|S)?

What is P(A|S)?

Naïve Bayes

Nigeria	Adm.	Spam	Count
t	t	S	10
t	f	S	20
f	t	S	3
f	f	S	7
t	t	~s	8
t	f	~s	2
f	t	~s	40
f	f	~s	10

What is P(5)?

Spam	P(S)	
S	40/100	
~s	60/100	

What is P(N|S)?

Nigeria	Spam	P(N,S)	P(N S)
t	S	30/100	30/40
f	S	10/100	10/40
t	~s	10/100	10/60
f	~s	50/100	50/60

What is P(A|S)?

				_
Adm.	Spam	P(A,S)	P(A S)	
t	S	13/100	13/40	
f	S	27/100	27/40	
t	~s	48/100	48/60	43
f	~s	12/100	12/60	

$$P(s|t,f)=\frac{8}{89}$$
INFERENCE IN NAÏVE BAYES

• What is $P(s|N=t, A=f)$? $P(s) P(N-t|s) P(A-f)$

• What is P(s|N=t, A=f)?
$$\propto P(s) P(N-t/s)P(A-f/s)$$

ZERO PROBABILITIES

- We have *n* features, X_1 through X_n
- If $P(X_i|C)$ is zero for any feature and class combination, we would be in trouble
- Example
 - Assume that X_{592} is a weird feature that is rarely *true* in the world. Assume that X_{592} is always *false* in our training data, no matter what the class is
 - $P(X_{592} = f \mid C = t) = 1; P(X_{592} = t \mid C = t) = 0$
 - $P(X_{592} = f \mid C = f) = 1; P(X_{592} = t \mid C = f) = 0$
 - In one of the objects in our test data, X_{592} is *true*.
 - What is $P(C \mid X_1, X_2, ..., X_{592} = t, ... X_n)$?

OTHER CLASSIFIERS - OVERVIEW

SOME CLASSIFICATION MODELS

- 1. Naïve Bayes
- 2. Logistic regression

Note: it's called regression, but it is a classification model

- 3. Decision trees
- 4. Support vector machines
- 5. Neural networks

LOGISTIC REGRESSION

- Learns P(Y|X) directly, without going through P(X|Y) and P(Y)
- Assumes P(Y|X) follows the logistic function

$$P(Y = false \mid X_1, X_2, \dots, X_n) = \frac{1}{1 + e^{w_0 + \sum_{i=1}^n w_i X_i}}$$

$$P(Y = true \mid X_1, X_2, \dots, X_n) = \frac{e^{w_0 + \sum_{i=1}^n w_i X_i}}{1 + e^{w_0 + \sum_{i=1}^n w_i X_i}}$$

• Learning: estimate the weights $w_0, w_1, ..., w_n$

Learning – Parameter Estimation

Maximize (conditional) log-likelihood

$$W \leftarrow \underset{W}{\operatorname{argmax}} \prod P(Y^{(d)}|\boldsymbol{X}^{(d)})$$

$$W \leftarrow \underset{W}{\operatorname{argmax}} \sum \ln P(Y^{(d)}|\boldsymbol{X}^{(d)})$$

DECISION TREES

Learning: how do you learn a small tree that generalizes to unseen data?

SUPPORT VECTOR MACHINES

Image credit: Ethem Alpaydin. Introduction to Machine Learning. 3rd Edition. http://www.cmpe.boun.edu.tr/~ethem/i2ml3e CS480 – Introduction to Artificial Intelligence – Illinois Institute of Technology

NEURON

By Quasar Jarosz at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7616130

WHAT AN ARTIFICIAL NEURON DOES

- Takes a weighted sum of its inputs
 - $w_0 + \sum_{i=1}^k w_i x_i$
 - Assume that there is always a constant input 1, that is, $x_0 = 1$. Then,
 - $\sum_{i=0}^k w_i x_i$
- Passes this sum through its activation function
 - $f(\sum_{i=0}^k w_i x_i)$

MULTILAYER NEURAL NETWORKS

- An input layer
- One or more hidden layers
- An output layer

• Learning: estimate the weights

Two Common NN Types

- Feedforward NNs
 - E.g., Convolutional neural networks (CNNs)
 - E.g., image data
- Recurrent neural networks
 - E.g., Long Short-Term Memory (LSTM)
 - E.g., text data

SCIKIT-LEARN CODE EXAMPLES

- https://scikit-learn.org/stable/
- Naïve Bayes
 - https://scikit-learn.org/stable/modules/naive_bayes.html
- Logistic regression
 - https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
- Decision Trees
 - https://scikit-learn.org/stable/modules/tree.html
- Support vector machines
 - https://scikit-learn.org/stable/modules/svm.html
- Neural networks
 - https://scikit-learn.org/stable/modules/neural_networks_supervised.html

REINFORCEMENT LEARNING

REINFORCEMENT LEARNING

- Let's first refresh our memory with Chapter 17 –
 sequential decision making
- In Ch17, we assumed we knew the transition model P(s'|s,a) and the reward function R(s)
- Reinforcement learning makes no such assumption

Passive Reinforcement Learning

- The agent has a fixed policy π
- The goal is to learn how good policy π is
 - That is, compute $U^{\pi}(s)$ for each state s
- This was straightforward in chapter 17, because we assumed we knew P(s'|s,a) and R(s)
 - Here, RL makes no such assumptions
- An example approach
 - Carry out experiments / trials, following the policy π
 - Use **temporal-difference learning** algorithm to compute the utilities

ACTIVE REINFORCEMENT LEARNING

- \circ In passive RL, we evaluate a fixed policy π
- o In active RL, no such policy is given
- The agent needs to learn an optimal policy
 - Again, P(s'|s,a) and R(s) are not given

Exploration versus exploitation trade-off

- The agent needs to explore various actions, even if they are suboptimal
- The agent needs to exploit what it knows and choose what it thinks is the optimal action
- A typical example: multi-armed bandit problems

DEEP REINFORCEMENT LEARNING

- Combine the power of DL and RL
- Example
 - AlphaGo
- DeepMind Blog on deep reinforcement learning
 - https://deepmind.com/blog/article/deep-reinforcement-learning

WE'LL COVERED

- 1. Bayesian network parameter estimation
- 2. Supervised learning
- 3. Reinforcement learning