Practice for Solving by Direct Integration

Why?

Exercise 1 Solve
$$\frac{dy}{dx} = x^2 + x$$
 with $y(1) = 3$.

Exercise 2 Solve
$$\frac{dy}{dx} = \sin(5x)$$
 with $y(0) = 2$.

Exercise 3 Solve
$$\frac{dy}{dx} = e^x + x$$
 with $y(0) = 10$.

Exercise 4 Solve
$$\frac{dy}{dx} = 2xe^{3x}$$
 with $y(0) = 1$.

Exercise 5 Solve
$$\frac{dx}{dt} = e^t \cos(2t) + t$$
 with $x(0) = 3$.

Exercise 6 Solve
$$\frac{dy}{dx} = \frac{1}{x^2+1} + 3e^{2x}$$
 with $y(0) = 2$.

Exercise 7 Solve
$$\frac{dy}{dx} = \frac{1}{x^2 - 1}$$
 for $y(0) = 0$. (This requires partial fractions or hyperbolic trigonometric functions.)

Exercise 8 Solve
$$y'' = \sin x$$
 for $y(0) = 0$, $y'(0) = 2$.

Exercise 9 A spaceship is traveling at the speed $2t^2 + 1 \text{ km/s}$ (t is time in seconds). It is pointing directly away from earth and at time t = 0 it is 1000 kilometers from earth. How far from earth is it at one minute from time t = 0?

Exercise 10 Sid is in a car traveling at speed 10t + 70 miles per hour away from Las Vegas, where t is in hours. At t = 0, Sid is 10 miles away from Vegas. How far from Vegas is Sid 2 hours later?

Exercise 11 Solve
$$\frac{dx}{dt} = \sin(t^2) + t$$
, $x(0) = 20$. It is OK to leave your answer as a definite integral.

Exercise 12 Solve
$$\frac{dy}{dt} = e^{t^2} + \sin(t)$$
, $y(0) = 4$. The answer can be left as a definite integral.

Learning outcomes:

Exercise 13 A dropped ball accelerates downwards at a constant rate 9.8 meters per second squared. Set up the differential equation for the height above ground h in meters. Then supposing h(0) = 100 meters, how long does it take for the ball to hit the ground.

Exercise 14 The rate of change of the volume of a snowball that is melting is proportional to the surface area of the snowball. Suppose the snowball is perfectly spherical. The volume (in centimeters cubed) of a ball of radius r centimeters is $(4/3)\pi r^3$. The surface area is $4\pi r^2$. Set up the differential equation for how the radius r is changing. Then, suppose that at time t=0 minutes, the radius is 10 centimeters. After 5 minutes, the radius is 8 centimeters. At what time t will the snowball be completely melted?

Exercise 15 Find the general solution to y'''' = 0. How many distinct constants do you need?