

CORSO DI ALGORITMI E STRUTTURE DATI

Prof. ROBERTO PIETRANTUONO

Indicazioni

Si consegni la prova cartacea indicando Nome Cognome e Matricola. Tempo: 1h e 30'.

Si riporti la soluzione al problema richiesto in pseudocodice, secondo le convenzioni descritte al corso; opzionalmente, se si ritiene necessario, si può commentare lo pseudocodice (o riga per riga o alla fine). Va infine riportata la complessità temporale dell'algoritmo (complessità nel caso peggiore, è sufficiente il limite superiore O(f(n))). Non occorre una dimostrazione, ma una semplice giustificazione per la complessità riportata. Se si utilizzano funzioni di libreria (ad esempio, sort, binary_search, ...) di cui non si conosce la complessità, lo si indichi nella spiegazione (ad esempio, "la complessità è O(log n) al netto della complessità della funzione di libreria x, che è non nota").

PROBLEMA 1

Dato un array non ordinato, si implementi un algoritmo con approccio DIVIDE ET IMPERA per trovare almeno un massimo locale.

Un elemento è un massimo locale se il suo valore è maggiore o uguale ai valori degli elementi adiacenti (se esistono). Possono esserci più massimi locali, nel qual caso è richiesto che l'algoritmo ne restituisca uno qualsiasi e termini.

Dalla definizione di massimo locale si evince che:

- Se l'array è ordinato in senso crescente, l'ultimo elemento è sempre un massimo locale.
- Se l'array è ordinato in senso decrescente, il primo elemento è sempre un elemento di picco.
- Se tutti gli elementi sono uguali, ogni elemento è un elemento di picco.

Sample Input Array = [3, 5, 9, 3] Array = [3, 5, 9, 11, 14] Array = [3, 3] Array = [3, 5, 4, 7, 6] Sample Output
Output = 9
Output = 14
Output = 3
Output = 5 oppure 7

PROBLEMA 2

Data una matrice di $m \times n$ pesi interi positivi, scrivere un programma che calcoli un percorso di peso minimo. Un percorso inizia ad una qualsiasi riga nella prima colonna e consiste in una sequenza di passi che termina nell'ultima colonna. Un passo consiste nel viaggiare dalla colonna i alla colonna i+1 sulla stessa riga o su una riga adiacente (in diagonale). La prima e l'ultima riga (righe 1 e m) di una matrice sono considerate adiacenti. I passi consentiti sono illustrati a destra. Il peso totale di un percorso è la somma dei numeri interi in ciascuna delle n celle della matrice che vengono visitate. Ad esempio, di seguito sono mostrate due matrici 5×6 .

-	જ	1	X	2	8	6				
	6	Y	8	2	7	4				
	5	9	3	9	9	5				
	8	4	1	3	À	6				
	3	7	2	X	2	F	ŀ			
•			$\overline{}$							

L'algoritmo stampi il percorso di peso minimo ed il relativo costo. Il percorso è stampato come una sequenza di interi (separati da spazio) che rappresentano le righe attraversate. Se c'è più di un percorso minimo, se ne stampi uno qualsiasi.

Sample Input 1	
56	
341286	
618274	
593995	
841326	
372864 .:	

Sample Input 2	
56	
341286	
618274	
593995	
841326	
372123	

Sample Ou 123445 16	tput	
121545		
11		