Sistemas de numeración

Álvaro González Sotillo

9 de septiembre de 2023

Índice

1.	El lenguaje de los ordenadores	1
2.	Números	1
3.	Otras bases numéricas	4
4.	Referencias	6

El lenguaje de los ordenadores 1.

- Desde el punto de vista del usuario
 - Interfaces de comandos
 - Interfaces gráficas
 - Comandos por voz
 - Lenguajes de programación
- Pero a bajo nivel
 - Solo hay números

2. Números

- Estamos acostrumbrados a un sistema de numeración decimal
 - \bullet Tenemos ${\bf 10}$ símbolos para los números
 - cuando llegamos al último, añadimos un acarreo

1

2.1. Contar con otras bases

- ¿Cuántos PIN distintos puede tener una tarjeta bancaria?
- \blacksquare ¿Cuántos números puedo expresar en un byte?
- Más difícil: ¿Cuántas matrículas de automóvil hay?

2.2. Binario

- ¿Cuántos símbolos podemos representar con el voltaje de los circuitos?
 - La mejor opción es 2: Sí hay corriente, no hay corriente
 - Es un sistema binario

2.3. Binario

Decimal	Binario	Decimal	Binario
0	0	8	1000
1	1	9	1001
2	10	10	1010
3	11	11	1011
4	100	12	1100
5	101	13	1101
6	110	14	1110
7	111	15	1111

Intenta completar esta tabla hasta $11111_{(2)}$

2.4. De binario a decimal

- \blacksquare Cada dígito binario tiene el valor de una potencia de 2
- Se suman sus valores

Dígitos binarios	0	1	0	0	1	1	0	1
Valor de la posición	128	64	32	16	8	4	2	1
Valor en este número	0	64	0	0	8	4	0	1
Suma total	77							

2.4.1. Ejercicios

- Calcula el valor decimal de:
 - 1100101₍₂
 - 01101101₍₂
 - 100100100₍₂
- Ampliación: Haz una hoja excel que permita hacer las cuentas anteriores

2.5. De decimal a binario

- 1. Se divide entre 2 el número
- 2. Apuntamos el resto
- 3. Si el cociente es mayor que 0, volvemos al paso 1
- 4. El número en binario son los restos en orden inverso

Créditos: WiKihow

2.6. Ejercicios

- Convierte a binario:
 - 154₍₁₀
 - 104₍₁₀
 - 54₍₁₀
 - 1054₍₁₀
 - 1045₍₁₀

2.7. Método rápido (restando en vez de dividiendo)

 \bullet Para convertir $185_{(10}$ a binario:

Por convertir	Potencia de dos	¿Puedo restar?	Para el siguiente paso
185	128	1	185-128=57
57	64	0	
57	32	1	57 - 32 = 25
25	16	1	25 - 16 = 9
9	8	1	9-8=1
1	4	0	
1	2	0	
1	1	1	

10111001₍₂

2.8. Ejercicios

- Convierte a binario por el método rápido:
 - 154₍₁₀
 - 104₍₁₀
 - 54₍₁₀
 - 1054₍₁₀
 - 1045₍₁₀

2.9. Ejercicios

- Consigue llegar a 1024
 - https://poweroftwo.nemoidstudio.com/1024
- Sigue en casa
 - https://play.google.com/store/apps/details?id=com.tpcstld.twozerogame&hl=es_419

3. Otras bases numéricas

- El número 10 y el número 2 no son más especiales que otros números
- Los procedimientos descritos para binario valen para otras bases

3.1. Teorema fundamental de la numeración

- Nuestros sistemas de numeración son posicionales
 - El valor de un dígito depende de su posición
 - Cada posición tiene un valor multiplicativo de la base elevada a la posición

$$(d_n, d_{n-1}, ..., d_2, d_1, d_0) = \sum_{i=0}^n d_i \cdot b^i$$

■ Más en la Wikipedia

3.2. Ejemplo: Base 3

Base	3							
Dígitos	0	1	0	0	1	2	0	1
Valor de la posición	2187	729	243	81	27	9	3	1
Valor en este número	0	729	0	0	27	18	0	1
Suma total	775							

3.3. Ejemplo: Base 5

Base	5							
Dígitos	0	0	0	0	1	2	0	1
Valor de la posición	78125	15625	3125	625	125	25	5	1
Valor en este número	0	0	0	0	125	50	0	1
Suma total	176							

3.4. Traducción entre bases distintas de 10

- Para traducir de base A a base B
 - Traducir de base A a decimal (con el teorema fundamental de la numeración)
 - Traducir de decimal a base B (con divisiones sucesivas)

3.5. Bases numéricas utilizadas en informática

- El binario es cómodo para los circuitos, pero no para las personas
- A medio camino entre el binario y el decimal, se encuentran:
 - Números octales (base 8)
 - Números hexadecimales (base 16)

3.6. Ejercicios

- Pasa a decimal (Ojo, uno tiene *trampa*):
 - $10F0_{(16)}$
 - 1070₍₈
 - ABCDEFG₍₁₆
 - 1080₍₈

3.7. ¿Por qué estas bases? (8, 16)

- \blacksquare Al ser 16 potencia de 2, puede cambiarse entre estas bases agrupando números
- \blacksquare Ejemplo: Pasar 1A4 $\!\!\!\! (16$ a binario

1 0001 A 1010 4 0100

 \blacksquare Por tanto, 1A4 $_{(16}$ es 0001 1010 0100 $_{(2}$

3.8. Resumen de cambios de base

3.9. Ejercicios

Binario	Decimal	Octal	Hexadecimal
10010001			
	876		
		2310	ATO
111			AF0
111	999		
		777	
			FFF

4. Referencias

- Formatos:
 - Transparencias
 - PDF
 - EPUB
- \blacksquare Creado con:
 - \bullet Emacs
 - org-re-reveal
 - Latex
- Alojado en Github