Department of Civil and Environmental Engineering 400 Snell Engineering 360 Huntington Ave. Boston, MA 02115

CIVE 7380 Problem Set #4 Due: March 12, 2025

1. Two vehicles pass over a double detector. Each detector has length of 6 ft and the distance between the upstream edges of the two detectors is 20 feet.

The time on, t_{on} , and time off, t_{off} , for each vehicle and each detector, in units of 1/30-second, are shown in the table below.

Vehicle	Detector	Time on, t _{on}	Time off, t _{off}
1	Α	16	27
	В	25	36
2	Α	141	154
	В	149	163

- a) Find the time headway between the two vehicles as measured by each detector
- b) Find the occupancy time (in seconds) of each detector (for each vehicle)
- c) Find the length of each vehicle
- d) Find the average speed of each vehicle (over the distance D)
- e) Find the speed of each vehicle as it is measured by each detector
- f) Find the acceleration of each vehicle between the two detectors
- 2. The speed density relationship for a highway segment is given by:

$$u = 44.4 - 0.234k$$

where.

u: space-mean speed in miles/hour (mph)

k: density in veh/lane-mile

- a. Find the flow-density (q = f(k)) and speed-flow (u=f(q)) relationships
- b. Find the optimum density, jam density, and capacity
- c. Find the average spacing (space headway) corresponding to the jam density
- d. Determine the speeds for
 - 1. flow near zero
 - 2. flow at capacity
- e. Comment on the reasonableness of the values of the parameters found in b), c) and d).
- 3. A section of the freeway has the following flow-density relationship:

$$q = 50k - 0.156k^2$$

What is the capacity of the highway section, the speed at capacity, and the density when the highway flow is at one-quarter of its capacity?

4. The following data represents observations on speed and corresponding density:

Speed (mph)	Density (veh/mile-lane)
46.0	22.2
56.0	29.3
48.0	30.1
42.0	40.7
22.9	90.0
56.6	29.2
9.2	113.3
17.9	88.2
14.5	103.1
29.5	60.2
25.0	67.4
32.0	70.6
35.5	41.1
36.5	49.6

- a. Plot the data (speed-density)
- b. Suggest an appropriate single regime model (speed-density) from the ones discussed in class that fits the data. Manually or using Excel, estimate the parameters of your model.
- c. Discuss the meaning of the various parameters and comment on how well they capture the data.