Aufgabe 1 Machine Learning for Visual Computing

Philipp Omenitsch, $\mathbf{x}\mathbf{x}$ and $\mathbf{x}\mathbf{x}$

December 7, 2015

Abstract

Datengenerierung, einfacher Klassifikator, Perzeptron

Contents

1	Dat	engenerierung	1
2	Einfacher Klassifikator		2
3	Perceptron		3
	3.1	Untersuchen sie den Trainingsalgorithmus: Welche Eigenschaften	
		der Daten beeinflussen die durchschnittliche Anzahl an Iteratio-	
		nen bis eine Lsung w* gefunden wurde?	3
	3.2	Welchen Einufluss hat die Schrittweite?	3
	3.3	Plotten Sie Daten und Entscheidungsgrenze (analog zu Punkt 1.1).	3
	3.4	Vergleichen Sie das Perzeptron mit der Funktion memory. Worin	
		liegt der Unterschied?	3
	3.5	Wie ist das Verhalten bei nicht linear separierbaren Daten?	3

1 Datengenerierung

2 Einfacher Klassifikator

3 Perceptron

Das Perceptron ist eine einfache Variante eines neuronalen Netzes. Das Prinzip wurde erstmals im Jahre 1958 von Frank Rosenblatt veröffentlicht[Ros58]. Es handelt sich dabei um eine lineare Diskriminantenfunktion. Während des Lernvorganges wird ein Vektor mit Gewichten erstellt, welcher dann anschließend eine Klassifikation vornimmt. Das Ergebnis wird anschließend durch eine Signum-Funktion dargstellt.

- 3.1 Untersuchen sie den Trainingsalgorithmus: Welche Eigenschaften der Daten beeinflussen die durchschnittliche Anzahl an Iterationen bis eine Lsung w* gefunden wurde?
- 3.2 Welchen Einufluss hat die Schrittweite?
- 3.3 Plotten Sie Daten und Entscheidungsgrenze (analog zu Punkt 1.1).
- 3.4 Vergleichen Sie das Perzeptron mit der Funktion memory. Worin liegt der Unterschied?
- 3.5 Wie ist das Verhalten bei nicht linear separierbaren Daten?

Figure 1: Verschiedene plots der Perceptron Klassifier nach 10 Epochen

References

[Ros58] Frank Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. *Psychological Review*, $65(6):386-408,\ 1958.$