

FOREWORD

THIS volume contains tables of performances that will enable engineers and architects to make fan selections to meet any demands met in ordinary heating and ventilating practice.

If you have special problems, not covered by this work do not hesitate to avail yourself of the services of our engineering department, who are at all times glad to be of assistance on heating and ventilating problems.

BUFFALO NIAGARA CONOIDAL FANS

CATALOG No. 421

Buffalo Forge Company

BUFFALO, N.Y., U.S.A.

New York

Boston

Philadelphia

Pittsburgh

Los Angeles

Cleveland

Detroit

Chicago

St. Louis

New Orleans

Atlanta

Minneapolis

Denver

Cincinnati

CANADIAN BLOWER & FORGE CO., Ltd.

Kitchener, Ont., Canada

Toronto

Montreal

Calgary

Vancouver

St. John

Buffalo Steam Pump Works North Tonawanda, New York

Buffalo Forge Company Buffalo, New York

Canadian Blower & Forge Co. Kitchener, Ontario

Niagara Conoidal

Type "N" Fans

IAGARA Conoidal fans are designed to operate at the speeds met with in ordinary heating and ventilating practice.

It is a fan of the multiblade type, having blades of single curvature, conforming to the surface of a cone.

In fact the Niagara Conoidal fan derives its name from the prevalence of conical shapes and surfaces in its design. There is a cone inlet in the housing, the individual blades are sections of a conical surface and both the inner and outer edges of the blades instead of being parallel to the shaft form frustums of cones.

The efficiency of any fan depends on the correct proportioning of the various parts, especially diameter and width of blast-wheel, size and position of outlet opening, size of inlet and proper design of housing. Multiblade fans have shorter and more blades than the older type of steel plate fans, and the static pressure due to the wheel, which depends on the radial depth of the blade, is small relative to the velocity pressure at the tip of the wheel. To convert this velocity pressure into static head greater care in design must be placed on the proper shape of the housing in order to obtain the best efficiencies of which this type of fan is capable.

In order to emphasize the advantages of compactness and reduction in head-

room, fans of the multiblade type have been built with restricted casings, which, though handling large air quantities, require more power than the ordinary steel plate fan. Circumstances may make space more important than horsepower but for the usual installation it is much more desirable to obtain the best possible efficiency by using a modified casing suitable for handling the large volumes dealt with even at a small increase in dimensions. Obviously the outlet of the housing should be 100% effective, i. e., the velocity should be as nearly uniform as possible at all points, and as mere size is no advantage, the increase of outlet area by dropping the inner edge nearer to the center of the fan housing is of little use. In the Niagara Conoidal fan the modified housing forms a cone corresponding to the

Three-quarter Housing, Niagara Conoidal Fan, Left-Hand Top Horizontal Discharge, for Overhung Pulley or Direct Connection.

evasé chimney of certain types of mine ventilating fans in which the air is brought to a comparatively low velocity and a large portion of the velocity pressure is made available, which with other types of fans is necessarily lost by shock and eddy currents at or immediately beyond the fan outlet. This peculiar form of housing produces velocities which are nearly uniform across the entire face of the outlet.

Many tests were made on various sizes of Niagara Conoidal fans with different designs of housings and it was found that the greatest possible conversion of velocity head at tip of blades into static pressure at fan outlet was obtained by making the inner edge of the outlet approximately tangent to the periphery of the wheel and the height of the outlet approximately equal to the wheel diameter. Our standard guarantee is that static pressure of air issuing from any part of the fan outlet as measured by a pitot tube is not more than 15% above or below the average static pressure.

The Niagara Conoidal fan is especially adapted to handle a large volume of air at a comparatively low pressure when running at a moderate speed. As will be seen from the following description this is the only fan which is designed and constructed with a thorough understanding of all of the factors contributing to the

high efficiency of this class of fans.

In multiblade fans a high suction is produced at the fan inlet and this tends to draw the air in at almost a right angle to the back or drive side. When the air strikes the back plate it is deflected toward the blades and outlet at almost 90° and naturally this sudden change of direction causes a loss of velocity and power. Also a large part of the air will be taken up by the rear part of the blade, the front part will not handle its proper proportion and an uneven pressure will be produced at the fan outlet, resulting in eddy currents which materially reduce the fan efficiency. The Niagara Conoidal Type "N" fan is so designed as to entirely overcome these difficulties.

The blades are narrow at the front and increase in width toward the back. This provides a large, unobstructed inlet. The hub, which is conical, deflects the air toward the blades without an abrupt change in direction and consequently

without loss of power.

Diagram showing advantages of Niagara Conoidal over other Multiblade Fans in handling air.

The inner or back edge of the blade extends from the base of the conical hub to the outside of the supporting disk to which the hub is riveted. The diameter of the wheel is smaller at the back than at the front and the blade wider so as to offset the slower speed, the design being so proportioned as to tend to equalize volume and pressure over the entire length of the blade.

However, the need of careful design does not end here. As the air is taken up and delivered at different speeds along the entire length of the blade, it is very important that the curvature of the blade should vary to meet the exact conditions existing at any point. On the inlet side the curve of the blade is sharpest nearest the intake where the velocity is the highest and this curve decreases toward the back, with the result that the air is scooped up noiselessly and without impact at an angle accurately proportioned to the actual speed of the blade. The curvature of the blade is such that at normal or rated capacity the air will leave the tip with a velocity pressure approximately twice the pressure corresponding to the peripheral velocity of the wheel in order to reduce the required speed of rotation. In the same way the outlet angle is sharpest at the intake where the diameter is the greatest and the static pressure is considerably increased at this point compared with any other multiblade fan.

The theoretical efficiency of multiblade fans is often materially reduced by deflection of the narrow blades when operated at a moderately high speed. This defect, which is very common, is entirely overcome by the peculiar shape of the Niagara Conoidal blade, which is strong and rigid without the use of excessively heavy material.

From this brief description it is evident that the success and high efficiency of the Niagara Conoidal fan depends to a great extent on correct proportioning of all the various parts. Extensive tests have been made on the entire line of Niagara Conoidal fans and this company guarantees that the capacity, speed and horsepower tables given in this catalog are accurate and reliable.

Dimension tables on pages 19 to 29 show standard positions of discharge openings but special position of openings can be furnished if desired and housing can be constructed with two outlets to discharge air in different directions.

As will be seen from the characteristic curve of Niagara Conoidal Type "N" fans on page 12, pressure does not build up as capacity falls off, which makes this fan especially adaptable for cases where an increased air quantity is wanted as pressure increases, or vice versa, as in the case of heating and ventilating where one wing of a building is closed off. In this case it may not be convenient to change the speed and this fan will show only a slight increase in velocity through the ducts which remain open, due to the increased resistance. Likewise these fans are very suitable for forced draft and similar work, they occupy comparatively small space and are used to advantage on boats or in places where space is limited.

In public building work in order to insure quietness of operation the velocity of air at fan outlet should be kept at about 1800 ft. per minute with a maximum allowable velocity of 2200 ft. For industrial installations or where quietness of operation is not essential outlet velocities as high as 4000 ft. per minute may be used.

Capacity tables for both total and static pressures are given on pages 30 to 51. The maximum efficiency ratings are shown in heavy type. It will be seen from these static pressure tables that the Niagara Conoidal Type "N" fan gives a wide range of capacities at constant static pressure with but little variation in speed and but slight change in total efficiency.

The tables will not be found confusing if it is borne in mind that the amount of air delivered by any fan at a given speed is governed absolutely and entirely by the frictional resistance of the system.

In the complete tables static pressures are used, since the resistances are estimated in terms of static pressure. The static pressure developed by a Niagara Conoidal fan is $77\frac{1}{2}\%$ of the total pressure at maximum efficiency rating, but since a portion of the velocity head is usually converted into static pressure and thereby made available, it should be included in estimating the efficiency of the system as a whole.

To illustrate the use of the static pressure tables we may assume a case where 17000 cu. ft. of air per minute is wanted against a static pressure of one inch. By referring to the tables we find that we can use a No. 6 at 419 R. P. M., 6.59 H. P., and 3200 ft. outlet velocity per minute; a No. 7 at 332 R. P. M., 5.19 H. P., and 2400 ft. outlet velocity per minute; or a No. 8 at 291 R. P. M., 4.86 H. P., and 1800 ft. outlet velocity per minute. Thus if quietness of operation is essential or power is an important factor the No. 8 fan should be used. If quietness of operation is not essential as in an industrial installation and first cost is an important consideration, the No. 7 or No. 6 fan may be used.

A point difficult of comprehension to those familiar with the characteristics of straight blade fans is that apparently the tables for static pressures show two capacities for each fan with the same speed and when discharging against the same pressure. For example a No. 5 Type "N" fan will deliver either 5470 cu. ft., or 10200cu. ft. per minute at 480 R. P. M. at one inch static pressure. This is due to the peculiar characteristic curve of Niagara Conoidal fans, which shows a static pressure increasing with the capacity up to a point which is a little below the normal rating and then falling off again. Since this is the case, the reverse is true, i. e., at a point either above or below the capacity which corresponds to the maximum static pressure, the revolutions per minute must be increased in order to develop the same amount of pressure. This does not mean that the No. 5 fan will deliver either 5470 or 10200 cu. ft. of air at 480 R. P. M. through the same system of ducts, for the resistance of the system varies according to the well known law, directly as the square of the velocity and the system offering a resistance of one inch against the flow of 5470 cu. ft. of air per minute would have a resistance of $(\frac{10200}{5470})^2 \times 1'' = 3.48''$, if the volume handled per minute were increased to 10200 cu. ft.

For each different pressure there is a certain air quantity which the fan will deliver with its best efficiency and there is a certain speed at which it should run; it will deliver more or less air against the same resistance but not with the same efficiency and not at the same speed. The steel plate fan with few blades will run slower for a reduced capacity but the multiblade type of fan, in which the maximum static pressure occurs at a point slightly below the capacity corresponding to the maximum efficiency, has to run faster in order to maintain the same static pressure whenever the volume delivered is either decreased or increased. This explains why there is a minimum speed in the capacity tables for each pressure, and since the maximum efficiency corresponds closely to this minimum speed, or, to speak more correctly, occurs at a capacity about 15% greater than that corresponding to the minimum speed, it aids greatly in the selection of the proper size of fan in cases where the volume to be handled is known and the frictional resistances of the system estimated by the usual methods.

NIAGARA CONOIDAL FANS

Buffalo

Niagara Considal Fan Wheel

DETAILS OF CONSTRUCTION Wheel

The blast-wheel has 32 forward curved blades which are riveted at the front or inlet end to a conical flange and at the back to an extra heavy boiler plate disk or back plate. The peculiar shape of the blades affords a large riveting surface and consequent rigid support.

The hub is a one-piece casting curved and sloping toward the inlet of the wheel to deflect the entering air to the blades with the least resistance and loss in power. It is attached to the shaft by key and set screws and at the back widens out into a disk which is hot-riveted to the back plate.

Four forged tie rods are screwed into the

hub and are attached to the conical flange at the inlet edge of the wheel. These rods are placed at an angle to the inlet which offers the least resistance to the entering air.

Housing

The housing is of modified shape as previously described, constructed of heavy steel plate with riveted lap seams and

Full Housing, Niagara Conoidal Fan

braced with vertical and horizontal angle

No. 3 to No. 6 Niagara Conoidal Fan, Right-Hand Up Discharge.

irons. It is supported on a heavy angle iron base frame drilled for holding-down bolts. The inlet is fitted with a cone in the space between the housing side-sheet and blast-wheel and has a minimum clearance with the inlet flange of the blast-wheel. The inner edge of the outlet opening is approximately tangent to periphery of wheel and height of outlet approximately equal to wheel diameter.

Shaft

Shaft is of open hearth steel, extra heavy, with a large factor of safety and accurately ground to size.

Balance

All fan wheels are given a standing balance by a special device which insures as accurate a degree of balance as is possible with any method of rotating balance. Wheel and shaft are assembled and mounted on a perfectly smooth surface, which is leveled on knife edge supports. The wheel is then balanced until it is absolutely stationary in whatever position it may be put.

All high speed blast-wheels are in addition given a running balance on a specially designed machine using a system similar to that employed for balancing automobile engines and high speed grinding wheels.

Balancing Machine

Great care is taken in the design of the entire fan to insure proper strength. weight and balance, so as to secure a practically vibrationless machine.

Buffalo Standard Bearing

Bearings

Bearings are dust proof and oil tight and consist of a split sleeve lined with babbitt and completely encased in the bearing housing. The two halves of the sleeve are mounted between spherical surfaces which allows the bearing to adjust itself in every direction and the housing provides a large oil reservoir in which two oil rings dip; overfilling of the bearing is prevented by the

position of the opening through which the oil is supplied and which also indicates the oil level.

In the interest of safety the thrust collar is placed inside the bearing housing,

running against a babbitted shoulder; grooves on the outside surface of the thrust collar throw off all oil and absolutely prevent it from creeping along the shaft and being drawn into the fan.

Most of the trouble experienced in fan practice can be laid directly to the lack of proper attention to the bearing design. The Buffalo Fan Bearing is acknowledged the best in the field.

Parts of Buffalo Standard Bearing

No. 7 to No. 13 Niagara Conoidal Fan Overhung Blast-Wheel, Left-Hand Top Horizontal Discharge

No. 3 to No. 6 Niagara Conoidal Fan, Overhung Blast-Wheel, Right-Hand Top Horizontal Discharge

Pulley Driven Fans

Pulley driven fans are built with either an overhung pulley or an overhung wheel as shown by the accompanying illustrations, the former being standard. With overhung pulley, the blast-wheel is mounted between bearings supported by the fan housing. The overhung wheel is used where a free and unobstructed inlet is desired; in this type, both bearings are on the same side of the fan: No. 6 and smaller fans have both bearings mounted on one pedestal, while No. 7 to No. 13 have two pedestals which are rigidly connected.

Page 12

Full Housing Niagara Conoidal Fan, Right-Hand Up Discharge and Electric Motor

Direct Connected Units

Niagara Conoidal Type "N" fans may be furnished either direct connected to a steam engine or to an electric motor. the engine drive conveniently permitting wide speed variation. This company has a completely equipped engine department, making no less than nine distinct types, many of which have been designed especially for fan service. When sufficient pressure is not available, or location is such that apparatus requiring minimum

attention is required, motor drive affords the solution.

For fans direct connected to either motors or engines, a steel plate base attached

to the fan housing may be used, or the fan and motor or engine mounted on separate concrete foundations.

Where separate foundations are not used the bases are rigidly attached to the fan housings and are of box construction, tapering to a broad base and finished off with heavy angle iron. The base is stiffened across the interior with steel ribs and is made with corners rounded so as to give a finished appearance.

Motor driven exhausters may have the fan wheel overhung on the motor shaft, which is extended for this purpose, or a coupling may be used, with an outboard bearing. Flexible couplings are supplied when conditions make it advisable and require two bearings for the

Full Housing Niagara Conoidal Fan, Right-Hand Top Horizontal Discharge and Class "A" Engine

fan shaft.

A direct connected unit is the most advisable, for in the greater number of installations the fan is operating when the rest of machinery in the plant is not running. This would necessitate running a whole length of line shafting in case of a belted unit.

Full Housing Niagara Conoidal Fan and Motor, Overhung Blast-Wheel, Left-Hand Up Discharge

Buffalo Baby Conoidal Fans

The Baby Conoidal fan is of the high efficiency multiblade type with blast wheel of the same design as the Niagara Conoidal (Type N) which has met with such marked success. Housing is cast iron and can be swung around to discharge in any desired direction. This fan furnishes a large volume of air at a relatively low pressure with moderate speed. The wheel is accurately balanced, assuring a smooth-running, noiseless machine.

It is unexcelled for all kinds of drying and cooling purposes, for supplying fresh, cool air to offices, homes, staterooms, telephone booths, etc., and for exhausting smoke, fumes and foul air from kitchens, restaurants, lavatories, etc.

Cord and plug are furnished with No. 3 and smaller; no expense for installing, simply attach to an electric light socket. Outfits are furnished with 110 or 220 Volt D. C. motors and 110 or 220 Volt single phase, 60 cycle, A. C. motors. Nos. 4, 5 and 6 are also furnished with 110 or 220 Volt, two or three phase, 60 cycle motors.

Tables of dimensions and performance on page 15.

No. 6. Baby Conoidal Fan

Buffalo Baby Conoidal Fans

Dimensions in Inches

Size	A	В	C	D	E	F	G	H	J
1	3	4	3	37/8	37/6	215/16	33/4	43/4	7/16
2	4	$5\frac{1}{2}$	$3\frac{21}{32}$	$4\frac{29}{32}$	$4\frac{9}{32}$	33/4	43/4	61/4	5/8
3	53/4	73/4	5 3/16	71/16	$6\frac{1}{8}$	57/16	$6\frac{1}{2}$	83/4	3/4
4	. 83/4	113/8	7%	107/16	9	75/8	10	13	2
5	107/8	141/4	93/8	127/8	111/8	93/8	11	16	2
6		$17\frac{1}{2}$	113/16	$15\frac{7}{16}$	135/16	$11\frac{3}{8}$	$11\frac{1}{2}$	19	2
Size	K	L	M	N	0	P	Q	R	S
1	113/16	3/8	27/8	615/16	5	71/2	3		
2	21/2	9/16	37/8	87/6	615/16	83/4	3		
3	35/16	11/16	51/4	$10\frac{1}{8}$	71/8	101/4	5		
4	6	2	8						
5	$7\frac{11}{32}$	23/8	915/16						
6	83/8	$2\frac{1}{2}$	113/4					115/8	123/8

Size No.	Cubic Feet Air per Minute	H. P. Motor	R. P. M.	Shipping Weight Lbs.
1	90	1/30	1740	40
2	250	1/8	1740	55
3	325	1/8	1140	110
3	500	1/4	1740	115
4	690	1/4	870	450
4	900	1/2	1140	475
4	1400	1½	1740	500
5	1100	1/2	690	625
5	1400	3/4	870	650
5	1800	1½	1140	675
6	1800	1	690	850
6	2400	2	870	875
6	3100	3 -	1140	900

*2 H. P. Motor is used.

Fans

Fans and blowers are designated by the position of the discharge opening and are classified as follows:

Top or bottom horizontal discharge, up or down blast, and special, the latter being described by giving the angle of discharge from the horizontal. The hand of a fan or blower is determined by the side on which the pulley or engine is located. When facing the discharge outlet, the fan is either left or right hand according to whether the pulley is on the left or right side as seen from this position.

Buffalo Steam Engines

During many years of constant service in the building of engines it has been possible to bring the Buffalo Engine to a high state of perfection. Those who have directed its growth have aimed at the development of a simple, economical and, above all, a substantial engine, built in several types, each suited to its individual work. The limitations of floor spaces and heights, together with different engineering practice in mills and power plants, have been met with appropriate designs which evince a careful consideration of all the requirements.

The design of a steam engine calls for a series of compromises. To make these compromises in favor of the most beneficial results is the evolution of the best engine design, and to carry out these plans in a shop is the evolution of the best engine. Thus it is that the Buffalo Engine has a piston valve and bored guides, that the connecting rod has a small angularity, that the eccentric strap and simple transmission of its motion are used.

The very great extent of the use of the high-speed automatic steam engine

makes it applicable to almost any service; and appreciating the fact that there is a demand for these engines of very compact design, giving great power in small space, the construction of the Buffalo Engine, which has been on the market for years, has been constantly improved, and now represents a perfected engine. They are designed to operate with the highest degree of economy. These engines will furnish under the most exacting conditions satisfactory and reliable power.

Standard Arrangements

No. 1. FOR BELT DRIVE

Single fan. Pulley overhung. Includes housing, wheel, shaft, two bearings and pulley.

No. 2. FOR BELT DRIVE

Single fan. Wheel overhung. Includes housing, wheel, shaft, two bearings, pedestal and pulley.

No. 3. FOR DIRECT CONNECTION

Single fan. Includes housing, wheel and base. Wheel is overhung on engine or motor shaft.

No. 4. FOR DIRECT CONNECTION

Single fan. Includes housing, wheel, shaft, bearing in fan inlet, flanged coupling and base.

No. 5. FOR DIRECT CONNECTION

Single fan. Includes housing, wheel, shaft, bearing on drive side of fan, flanged coupling and base.

No. 6. FOR DIRECT CONNECTION

Single fan. Includes housing, wheel, shaft, two bearings, flexible coupling and base.

Overhung Pulley Full Housing—Top Horizontal Discharge

Size	A	В	C	D	Е	G	н	I	J	K	L	M	X	Y
$\frac{3}{3\frac{1}{2}}$	12 14 16	$15\frac{3}{4}$ $18\frac{3}{8}$ 21	17½ 20 22¾	11 3/6 13 14 7/8	$\begin{array}{c} 15\frac{7}{8} \\ 18\frac{9}{16} \\ 21\frac{3}{16} \end{array}$	20 ¹³ / ₁₆ 24 ¹ / ₄ 27 ³ / ₄	$\begin{array}{c} 14 \\ 16\frac{1}{2} \\ 18\frac{1}{2} \end{array}$	16¼ 18¼ 20¼	13¼ 15 17	14 16 18	$\begin{array}{c} 27\frac{1}{2} \\ 29\frac{1}{2} \\ 31\frac{1}{2} \end{array}$	15 16 17	3½ 3½ 3½ 3½	8 9 10
$\frac{4\frac{1}{2}}{5}$ $\frac{5\frac{1}{2}}{2}$	18 20 22	$23\frac{5}{8}$ $26\frac{1}{4}$ $28\frac{7}{8}$	$\begin{array}{c} 25\frac{3}{4} \\ 28\frac{1}{2} \\ 31\frac{1}{2} \end{array}$	$\begin{array}{c} 16\frac{3}{4} \\ 18\frac{5}{8} \\ 20\frac{7}{16} \end{array}$	$23\frac{7}{8}$ $26\frac{1}{2}$ $29\frac{1}{8}$	31½ 34½ 38¾ 38¾	21 23 25	22½ 24½ 26¼	$\begin{array}{c} 18\frac{3}{4} \\ 19\frac{1}{2} \\ 21\frac{1}{4} \end{array}$	20 22 24	$33\frac{1}{2}$ 36 37	18 $19\frac{1}{2}$ $19\frac{1}{2}$	3½ 3½ 3½ 3½ 3½	11 12 14
6 7 8	24 28 32	$ \begin{array}{c} 31\frac{1}{2} \\ 36\frac{3}{4} \\ 42 \end{array} $	$34\frac{1}{4}$ $39\frac{3}{4}$ $45\frac{1}{2}$	225/16 26 293/4	$31\frac{13}{16}$ $37\frac{1}{8}$ $42\frac{3}{8}$	$41\frac{5}{8}$ $48\frac{9}{16}$ $55\frac{1}{2}$	$27\frac{1}{2}$ 32 $36\frac{1}{2}$	28½ 32¼ 36¼	23 $26\frac{1}{2}$ $28\frac{3}{4}$	26 30 34	$ \begin{array}{c} 41\frac{3}{4} \\ 50 \\ 56 \end{array} $	$\begin{array}{c} 22 \\ 25\frac{1}{2} \\ 29 \end{array}$	$4\frac{1}{2}$ $5\frac{1}{2}$ $6\frac{1}{2}$	16 18 20
9 10 11	36 40 44	$47\frac{1}{4}$ $52\frac{1}{2}$ $57\frac{3}{4}$	$51\frac{1}{4}$ $56\frac{3}{4}$ $62\frac{1}{2}$	33½ 37¾ 40½ 40½	47 ¹¹ / ₁₆ 53 58 ⁵ / ₁₆	$\begin{array}{c} 62\frac{7}{16} \\ 69\frac{3}{8} \\ 76\frac{5}{16} \end{array}$	41 $45\frac{1}{4}$ $50\frac{1}{8}$	40¼ 44¼ 49¼	$31\frac{3}{4}$ $34\frac{3}{4}$ $38\frac{3}{8}$	$\frac{38}{42}$ $\frac{461}{2}$	$\begin{array}{c} 63\frac{1}{2} \\ 67\frac{1}{2} \\ 75\frac{1}{2} \end{array}$	32 34 38	8½ 8½ 8½ 8½	24 26 28
12 13 14	48 52 56	63 68¼ 73½	68 73½ 79	$44\frac{5}{8}$ $48\frac{3}{8}$ $52\frac{1}{16}$	635/8 687/8 743/6	83½ 90¾ 97½	54 ³ ⁄ ₄ 59 63	$53\frac{1}{4}$ $58\frac{1}{4}$ $62\frac{1}{4}$	$\begin{array}{c} 41\frac{7}{8} \\ 45\frac{3}{8} \\ 47\frac{3}{8} \end{array}$	50½ 55 59	81 85½ 95½	41 43 48	10 11 13	30 34 36
5 6 7	60 64 68	78¾ 84 89¼	84 ³ ⁄ ₄ 90 ¹ ⁄ ₄ 96	$55\frac{3}{4}$ $59\frac{1}{2}$ $63\frac{1}{4}$	79½ 84¾ 90½	$104\frac{1}{16}$ 111 $117\frac{15}{16}$	$67\frac{1}{2}$ 72 76	$66\frac{1}{4}$ $71\frac{1}{4}$ $76\frac{1}{4}$	51 ³ / ₈ 54 ⁷ / ₈ 58 ³ / ₈	$63 \\ 67\frac{1}{2} \\ 72$	$100\frac{1}{2}$ 109 115	$50 \\ 54 \\ 56\frac{1}{2}$	50	38 40 44
8 9 0	72 76 80	$94\frac{1}{2}$ $99\frac{3}{4}$ 105	$101\frac{1}{2}$ 107 $112\frac{3}{4}$	$\begin{array}{c} 66^{15} & \\ 70^{11} & \\ 74^{3} & \\ \end{array}$	95 ³ / ₈ 100 ¹¹ / ₁₆ 106	$\begin{array}{c} 124\frac{7}{8} \\ 131\frac{13}{16} \\ 138\frac{3}{4} \end{array}$	80½ 85 89½	80½ 84¼ 88¼	$61\frac{3}{8}$ $64\frac{3}{8}$ $67\frac{3}{8}$	76 80 84	$122\frac{1}{2}$ 128 130	$61 \\ 63 \\ 63\frac{1}{2}$		46 48 50

Overhung Pulley Full Housing—Bottom Horizontal Discharge

Size	A	В	С	D	E	F	G	H	I	J	K	L	М	X	Y
3 3½ 4	12 14 16	$15\frac{3}{4}$ $18\frac{3}{8}$ 21	17¼ 20 22¾	11 3/6 13 14 7/8	157/8 189/16 213/16	$13\frac{1}{4}$ $15\frac{7}{16}$ $17\frac{5}{8}$	$20\frac{13}{16}$ $24\frac{1}{4}$ $27\frac{3}{4}$	$\begin{array}{c} 22 \\ 25\frac{1}{2} \\ 29 \end{array}$	16½ 18¼ 20¼	113/6 13 147/8	14 16 18	$27\frac{1}{2}$ $29\frac{1}{2}$ $31\frac{1}{2}$	15 16 17	$\frac{3\frac{1}{2}}{3\frac{1}{2}}$ $\frac{3\frac{1}{2}}{3\frac{1}{2}}$	10
4½ 5 5½	18 20 22	235/8 261/4 287/8	$25\frac{3}{4}$ $28\frac{1}{2}$ $31\frac{1}{2}$	$\begin{array}{c} 16 \frac{3}{4} \\ 18 \frac{5}{8} \\ 20 \frac{7}{16} \end{array}$	$23\frac{7}{8}$ $26\frac{1}{2}$ $29\frac{1}{8}$	$\begin{array}{c} 19\frac{7}{8} \\ 22\frac{1}{16} \\ 24\frac{1}{4} \end{array}$	$31\frac{1}{4}$ $34\frac{11}{16}$ $38\frac{3}{16}$	$32\frac{1}{2}$ 36 $39\frac{1}{2}$	$22\frac{1}{4}$ $24\frac{1}{4}$ $26\frac{1}{4}$	$\begin{array}{c} 16\frac{3}{4} \\ 18\frac{5}{8} \\ 20\frac{7}{16} \end{array}$	20 22 24	33½ 36 37	18 $19\frac{1}{2}$ $19\frac{1}{2}$	$\frac{3\frac{1}{2}}{3\frac{1}{2}}$ $\frac{3\frac{1}{2}}{3\frac{1}{2}}$	11 12 14
6 7 8	24 28 32	$ \begin{array}{r} 31\frac{1}{2} \\ 36\frac{3}{4} \\ 42 \end{array} $	$34\frac{1}{4}$ $39\frac{3}{4}$ $45\frac{1}{2}$	$22\frac{5}{6}$ 26 $29\frac{3}{4}$	$31\frac{13}{16}$ $37\frac{1}{8}$ $42\frac{3}{8}$	$26\frac{1}{2}$ $30\frac{7}{8}$ $35\frac{5}{16}$	$41\frac{5}{8}$ $48\frac{9}{6}$ $55\frac{1}{2}$	$\begin{array}{c} 43 \\ 50 \frac{3}{8} \\ 56 \frac{3}{4} \end{array}$	28¼ 32¼ 36¼	$22\frac{5}{16}$ 26 $29\frac{3}{4}$	26 30 34	41 ³ / ₄ 50 56	$\begin{array}{c} 22 \\ 25\frac{1}{2} \\ 29 \end{array}$	$\frac{4\frac{1}{2}}{5\frac{1}{2}}$ $\frac{6\frac{1}{2}}{2}$	1 2
9 10 11	36 40 44	$47\frac{1}{4}$ $52\frac{1}{2}$ $57\frac{3}{4}$	$51\frac{1}{4}$ $56\frac{3}{4}$ $62\frac{1}{2}$	$33\frac{1}{2}$ $37\frac{3}{6}$ $40\frac{5}{6}$	47 ¹¹ / ₁₆ 53 58 ⁵ / ₁₆	$39\frac{3}{4}$ $44\frac{1}{8}$ $48\frac{1}{2}$	$62\frac{7}{16}$ $69\frac{3}{8}$ $76\frac{5}{16}$	64 70 ³ ⁄ ₄ 78	40¼ 44¼ 49¼	33½ 37¾ 40⅙ 40⅙	$\frac{38}{42}$ $\frac{461}{2}$	$63\frac{1}{2}$ $67\frac{1}{2}$ $75\frac{1}{2}$	32 34 38	8½ 8½ 8½ 8½	2 2 2
12 13 14	48 52 56	63 68¼ 73½	$68 \\ 73\frac{1}{2} \\ 79$	$44\frac{5}{8}$ $48\frac{3}{8}$ $52\frac{1}{6}$	$\begin{array}{c} 63\frac{5}{8} \\ 68\frac{7}{8} \\ 74\frac{3}{16} \end{array}$	$52\frac{5}{16}$ $57\frac{3}{8}$ $61\frac{3}{4}$	$83\frac{1}{4}$ $90\frac{3}{6}$ $97\frac{1}{8}$	85 92 99	53½ 58¼ 62¼	445/8 483/8 521/16	50½ 55 59	81 85½ 95½	41 43 48	10 11 13	3 3
15 16 17	60 64 68	78¾ 84 89¼	84 ³ / ₄ 90 ¹ / ₄ 96	$55\frac{3}{4}$ $59\frac{1}{2}$ $63\frac{1}{4}$	$\begin{array}{c} 79\frac{1}{2} \\ 84\frac{3}{4} \\ 90\frac{1}{6} \end{array}$	$\begin{array}{c} 66 {}^{3}_{16} \\ 70 {}^{5}_{8} \\ 75 \end{array}$	$104\frac{1}{16}$ 111 $117\frac{15}{16}$	$\begin{array}{c} 106 \\ 112\frac{1}{2} \\ 119\frac{1}{2} \end{array}$	$66\frac{1}{4}$ $71\frac{1}{4}$ $76\frac{1}{4}$	$55\frac{3}{4}$ $59\frac{1}{2}$ $63\frac{1}{4}$	$63 \\ 67\frac{1}{2} \\ 72$	$100\frac{1}{2}$ 109 115	50 54 56½	15	3 4 4
18 19 20	72 76 80	$94\frac{1}{2}$ $99\frac{3}{4}$ 105	$101\frac{1}{2}$ 107 $112\frac{3}{4}$	$\begin{array}{c} 66^{15} _{16} \\ 70^{11} _{16} \\ 74^{3} _{8} \end{array}$	95 ³ / ₈ 100 ¹¹ / ₁₆ 106	79 7/6 83 13/6 88 1/4	$124\frac{7}{8}$ $131\frac{13}{16}$ $138\frac{3}{4}$	$126\frac{1}{2}$ $133\frac{1}{2}$ $140\frac{1}{2}$	80½ 84¼ 88¼	66 ¹⁵ / ₁₆ 70 ¹¹ / ₁₆ 74 ³ / ₈	76 80 84	$122\frac{1}{2}$ 128 130	61 63 63½		4 4 5

Overhung Pulley Full Housing—Up Discharge

Size	A	В	C	D	F	G	Н	I	J	K	L	M	X	Y
3 3½ 4	12 14 16	15¾ 18¾ 21	17¼ 20 22¾	113/6 13 147/8	$13\frac{1}{4}$ $15\frac{7}{6}$ $17\frac{5}{8}$	20 ¹³ / ₁₆ 24 ¹ / ₄ 27 ³ / ₄	17 19½ 22½	$16\frac{1}{4}$ $18\frac{1}{4}$ $20\frac{1}{4}$	13½ 15 17	17 $19\frac{1}{2}$ 22	$\begin{array}{c} 27\frac{1}{2} \\ 29\frac{1}{2} \\ 31\frac{1}{2} \end{array}$	15 16 17	3½ 3½ 3½ 3½	8 9 10
4½ 5 5½	18 20 22	$23\frac{5}{8}$ $26\frac{1}{4}$ $28\frac{7}{8}$	$\begin{array}{c} 25\frac{3}{4} \\ 28\frac{1}{2} \\ 31\frac{1}{2} \end{array}$	$\begin{array}{c} 16\frac{3}{4} \\ 18\frac{5}{8} \\ 20\frac{7}{16} \end{array}$	$19\frac{7}{8}$ $22\frac{1}{16}$ $24\frac{1}{4}$	$31\frac{1}{4}$ $34\frac{1}{16}$ $38\frac{3}{16}$	$\begin{array}{c} 25 \\ 27\frac{1}{2} \\ 30 \end{array}$	$22\frac{1}{4}$ $24\frac{1}{4}$ $26\frac{1}{4}$	$\begin{array}{c} 18\frac{3}{4} \\ 19\frac{1}{2} \\ 21\frac{1}{4} \end{array}$	$24\frac{1}{2}$ 27 $29\frac{1}{2}$	33½ 36 37	18 $19\frac{1}{2}$ $19\frac{1}{2}$	3½ 3½ 3½ 3½	11 12 14
6 7 8	24 28 32	$ \begin{array}{r} 31\frac{1}{2} \\ 36\frac{3}{4} \\ 42 \end{array} $	$34\frac{1}{4}$ $39\frac{3}{4}$ $45\frac{1}{2}$	$ \begin{array}{c} 225 \\ 26 \\ 293 \\ \hline 4 \end{array} $	$26\frac{1}{2}$ $30\frac{7}{8}$ $35\frac{5}{16}$	$\begin{array}{c} 41\frac{5}{8} \\ 48\frac{9}{16} \\ 55\frac{1}{2} \end{array}$	33 38½ 44	$28\frac{1}{4}$ $32\frac{1}{4}$ $36\frac{1}{4}$	$23 \\ 26\frac{1}{2} \\ 28\frac{3}{4}$	32 37 42	41 ³ / ₄ 50 56	$\begin{array}{c} 22 \\ 25 \frac{1}{2} \\ 29 \end{array}$	$4\frac{1}{2}$ $5\frac{1}{2}$ $6\frac{1}{2}$	16 18 20
9 10 11	36 40 44	$47\frac{1}{4}$ $52\frac{1}{2}$ $57\frac{3}{4}$	$51\frac{1}{4}$ $56\frac{3}{4}$ $62\frac{1}{2}$	$33\frac{1}{2}$ $37\frac{3}{16}$ $40\frac{15}{16}$.	$39\frac{3}{4}$ $44\frac{1}{8}$ $48\frac{1}{2}$	$\begin{array}{c} 62\frac{7}{16} \\ 69\frac{3}{8} \\ 76\frac{5}{16} \end{array}$	49 54 59½	40¼ 44¼ 49¼	$31\frac{3}{4}$ $34\frac{3}{4}$ $38\frac{3}{8}$	47 52 57½	$63\frac{1}{2}$ $67\frac{1}{2}$ $75\frac{1}{2}$	32 34 38	8½ 8½ 8½ 8½	24 26 28
12 13 14	48 52 56	63 68 ¹ / ₄ 73 ¹ / ₂	68 73½ 79	$44\frac{5}{8}$ $48\frac{3}{8}$ $52\frac{1}{16}$	$52\frac{15}{16}$ $57\frac{3}{8}$ $61\frac{3}{4}$	83 ³ / ₄ 90 ³ / ₁₆ 97 ¹ / ₈	$\begin{array}{c} 65\frac{1}{2} \\ 70 \\ 75\frac{1}{2} \end{array}$	$53\frac{1}{4}$ $58\frac{1}{4}$ $62\frac{1}{4}$	$\begin{array}{c} 41\frac{7}{8} \\ 45\frac{3}{8} \\ 47\frac{3}{8} \end{array}$	$62\frac{1}{2}$ 68 73	81 85½ 95½	41 43 48	10 11 13	30 34 36
15 16 17	60 64 68	78¾ 84 89¼	84 ³ / ₄ 90 ¹ / ₄ 96	$55\frac{3}{4}$ $59\frac{1}{2}$ $63\frac{1}{4}$	$\begin{array}{c} 66 {}^{3}_{16} \\ 70 {}^{5}_{8} \\ 75 \end{array}$	$104\frac{1}{16}$ 111 $117\frac{15}{16}$	80½ 86 91	$66\frac{1}{4}$ $71\frac{1}{4}$ $76\frac{1}{4}$	$51\frac{3}{8}$ $54\frac{7}{8}$ $58\frac{3}{8}$	78 83½ 89	$100\frac{1}{2}$ 109 115	50 54 56½	15	38 40 44
18 19 20	72 76 80	$94\frac{1}{2}$ $99\frac{3}{4}$ 105	$101\frac{1}{2}$ 107 $112\frac{3}{4}$	66 ¹⁵ 16 70 ¹¹ 16 74 ³ / ₄	$79\frac{7}{16}$ $83\frac{13}{16}$ $88\frac{1}{4}$	$124\frac{7}{8}$ $131\frac{13}{16}$ $138\frac{3}{4}$	$\begin{array}{c} 96\frac{1}{2} \\ 102 \\ 107 \end{array}$	80½ 84¼ 88¼	$\begin{array}{c} 61\frac{3}{8} \\ 64\frac{3}{8} \\ 67\frac{3}{8} \end{array}$	94 99 104	$122\frac{1}{2}$ 128 130	61 63 63½		46 48 50

Overhung Pulley Full Housing—Down Discharge

Size	A	В	C	E	F	G	Н	I	J	K	L	M	X	Y
3 3½ 4	12 14 16	$15\frac{3}{4}$ $18\frac{3}{8}$ 21	17¼ 20 22¾	157/8 189/6 213/6	$\begin{array}{c} 13\frac{1}{4} \\ 15\frac{7}{16} \\ 17\frac{5}{8} \end{array}$	20% 24¼ 27¾ 27¾	12 14 16	$16\frac{1}{4}$ $18\frac{1}{4}$ $20\frac{1}{4}$	13½ 15 17	22 ¹³ / ₁₆ 26 ¹ / ₄ 29 ³ / ₄	$\begin{array}{c} 27\frac{1}{2} \\ 29\frac{1}{2} \\ 31\frac{1}{2} \end{array}$	15 16 17	3½ 3½ 3½ 3½	8 9 10
4½ 5 5½	$\frac{18}{20}$ $\frac{22}{22}$	$23\frac{5}{8}$ $26\frac{1}{4}$ $28\frac{7}{8}$	$\begin{array}{c} 25\frac{3}{4} \\ 28\frac{1}{2} \\ 31\frac{1}{2} \end{array}$	$23\frac{7}{8}$ $26\frac{1}{2}$ $29\frac{1}{8}$	$19\frac{7}{8}$ $22\frac{1}{6}$ $24\frac{1}{4}$	$31\frac{1}{4}$ $34\frac{11}{16}$ $38\frac{3}{16}$	$^{18}_{20}_{21\frac{1}{2}}$	$22\frac{1}{4}$ $24\frac{1}{4}$ $26\frac{1}{4}$	$\begin{array}{c} 18\frac{3}{4} \\ 19\frac{1}{2} \\ 21\frac{1}{4} \end{array}$	33 1/4 36 11/6 40 3/6	$33\frac{1}{2}$ 36 37	$18 \\ 19\frac{1}{2} \\ 19\frac{1}{2}$	$\frac{3\frac{1}{2}}{3\frac{1}{2}}$ $\frac{3\frac{1}{2}}{3\frac{1}{2}}$	11 12 14
6 7 8	$\frac{24}{28}$ 32	$ \begin{array}{r} 31\frac{1}{2} \\ 36\frac{3}{4} \\ 42 \end{array} $	$34\frac{1}{4}$ $39\frac{3}{4}$ $45\frac{1}{2}$	$31\frac{13}{16}$ $37\frac{1}{8}$ $42\frac{3}{8}$	$26\frac{1}{2}$ $30\frac{7}{8}$ $35\frac{5}{16}$	$\begin{array}{c} 41\frac{5}{8} \\ 48\frac{9}{16} \\ 55\frac{1}{2} \end{array}$	$23\frac{1}{2}$ 27 32	$28\frac{1}{4}$ $32\frac{1}{4}$ $36\frac{1}{4}$	23 $26\frac{1}{2}$ $28\frac{3}{4}$	$\begin{array}{c} 43 \frac{5}{8} \\ 50 \frac{9}{16} \\ 57 \frac{1}{2} \end{array}$	$ \begin{array}{r} 41\frac{3}{4} \\ 50 \\ 56 \end{array} $	$\begin{array}{c} 22 \\ 25\frac{1}{2} \\ 29 \end{array}$	$\frac{4\frac{1}{2}}{5\frac{1}{2}}$ $\frac{6\frac{1}{2}}{2}$	16 18 20
9 10 11	36 40 44	$47\frac{1}{4}$ $52\frac{1}{2}$ $57\frac{3}{4}$	$51\frac{1}{4}$ $56\frac{3}{4}$ $62\frac{1}{2}$	47 ¹¹ / ₁₆ 53 58 ⁵ / ₁₆	$39\frac{3}{4}$ $44\frac{1}{8}$ $48\frac{1}{2}$	$\begin{array}{c} 62 \frac{7}{16} \\ 69 \frac{3}{8} \\ 76 \frac{5}{16} \end{array}$	$34\frac{3}{4}$ $38\frac{1}{2}$ 42	$40\frac{1}{4}$ $44\frac{1}{4}$ $49\frac{1}{4}$	$31\frac{3}{4}$ $34\frac{3}{4}$ $38\frac{3}{8}$	$\begin{array}{c} 64\frac{7}{16} \\ 71\frac{3}{8} \\ 78\frac{13}{16} \end{array}$	$\begin{array}{c} 63 \\ 67\frac{1}{2} \\ 75\frac{1}{2} \end{array}$	32 34 38	8½ 8½ 8½ 8½	24 26 28
12 13 14	48 52 56	63 68½ 73½	68 73½ 79	$\begin{array}{c} 63\frac{5}{8} \\ 68\frac{7}{8} \\ 74\frac{3}{16} \end{array}$	$52\frac{15}{16}$ $57\frac{3}{8}$ $61\frac{3}{4}$	83½ 90¾ 97½	$\frac{46}{491/2}$ 53	$53\frac{1}{4}$ $58\frac{1}{4}$ $62\frac{1}{4}$	$\begin{array}{c} 41\frac{7}{8} \\ 45\frac{3}{8} \\ 47\frac{3}{8} \end{array}$	85 ³ / ₄ 93 ³ / ₁₆ 100 ¹ / ₈	$\begin{array}{c} 81 \\ 85\frac{1}{2} \\ 95\frac{1}{2} \end{array}$	41 43 48	10 11 13	30 34 36
15 16 17	60 64 68	78¾ 84 89¼	84 ³ / ₄ 90 ¹ / ₄ 96	$\begin{array}{c} 79\frac{1}{2} \\ 84\frac{3}{4} \\ 90\frac{1}{16} \end{array}$	$\begin{array}{c} 66\frac{3}{16} \\ 70\frac{5}{8} \\ 75 \end{array}$	104½ 111 117½	$\begin{array}{c} 57 \\ 60\frac{1}{2} \\ 64\frac{1}{2} \end{array}$	$66\frac{1}{4}$ $71\frac{1}{4}$ $76\frac{1}{4}$	$51\frac{3}{8}$ $54\frac{7}{8}$ $58\frac{3}{8}$	$107\frac{1}{16} \\ 114\frac{1}{2} \\ 121\frac{15}{16}$	$100\frac{1}{2}$ 109 115	50 54 56½	15	38 40 44
18 19 20	72 76 80	$94\frac{1}{2}$ $99\frac{3}{4}$ 105	$\begin{array}{c} 101\frac{1}{2} \\ 107 \\ 112\frac{3}{4} \end{array}$	95 ³ / ₈ 100 ¹¹ / ₁₆ 106	$79\frac{7}{16}$ $83\frac{13}{16}$ $88\frac{1}{4}$	1247/8 131 ¹³ / ₁₆ 138 ³ / ₄	$68 \\ 72 \\ 75\frac{1}{2}$	80½ 84¼ 88¼	$\begin{array}{c} 61\frac{3}{8} \\ 64\frac{3}{8} \\ 67\frac{3}{8} \end{array}$	128 7/6 135 13/6 142 3/4	$122\frac{1}{2}$ 128 130	61 63 63½		46 48 50

Overhung Pulley
Three-quarter Housing—Bottom Horizontal Discharge

Size	A	В	C	D	Е	F	Н	I	J	K	L	M	X	Y
6 7 8	24 28 32	$ \begin{array}{r} 31\frac{1}{2} \\ 36\frac{3}{4} \\ 42 \end{array} $	$34\frac{1}{4}$ $39\frac{3}{4}$ $45\frac{1}{2}$	$23\frac{3}{8}$ $27\frac{5}{16}$ $31\frac{3}{16}$	33 ¹¹ / ₁₆ 39 ¹ / ₄ 44 ¹³ / ₁₆	277/8 327/6 371/8	$\begin{array}{c} 21 \\ 23 \frac{3}{4} \\ 27 \end{array}$	28¼ 32¼ 36¼	$\begin{array}{c} 25\frac{3}{8} \\ 29\frac{5}{16} \\ 33\frac{3}{16} \end{array}$	327/8 381/8 433/8	41 ³ ⁄ ₄ 50 56	$\begin{array}{c} 22 \\ 25\frac{1}{2} \\ 29 \end{array}$	$4\frac{1}{2}$ $5\frac{1}{2}$ $6\frac{1}{2}$	16 18 20
9 10 11	36 40 44	$ 47\frac{1}{4} $ $ 52\frac{1}{2} $ $ 57\frac{3}{4} $	$51\frac{1}{4}$ $56\frac{3}{4}$ $62\frac{1}{2}$	35½6 39 42½	50 7/16 56 1/16 61 11/16	$\begin{array}{c} 41\frac{3}{4} \\ 46\frac{3}{8} \\ 51 \end{array}$	30 32¾ 36	$40\frac{1}{4}$ $44\frac{1}{4}$ $49\frac{1}{4}$	37½6 41 45¾8	48 % 53 7/8 59 5/8	$\begin{array}{c} 63\frac{1}{2} \\ 67\frac{1}{2} \\ 75\frac{1}{2} \end{array}$	32 34 38	8½ 8½ 8½ 8½	24 26 28
12 13 14	48 52 56	$63 \\ 68\frac{1}{4} \\ 73\frac{1}{2}$	68 73½ 79	$\begin{array}{c} 46\frac{3}{4} \\ 50\frac{11}{16} \\ 54\frac{9}{16} \end{array}$	$\begin{array}{c} 675_{16} \\ 727_{8} \\ 781_{2} \end{array}$	$\begin{array}{c} 55^{11}_{16} \\ 60^{5}_{16} \\ 64^{15}_{16} \end{array}$	38¾ 42 44¾	53½ 58¼ 62¼	49 ¹ / ₄ 53 ¹ / ₁₆ 57 ⁹ / ₁₆	$\begin{array}{c} 64\frac{7}{8} \\ 70\frac{3}{4} \\ 75\frac{15}{16} \end{array}$	81 85½ 95½	41 43 48	10 11 13	36 34 36
15 16 17	60 64 68	78¾ 84 89¼	84¾ 90¼ 96	$58\frac{7}{6}$ $62\frac{3}{8}$ $66\frac{1}{4}$	841/16 8911/16 955/16	$\begin{array}{c} 69\% \\ 74\frac{1}{4} \\ 78\frac{7}{8} \end{array}$	$\begin{array}{c} 47\frac{3}{4} \\ 51\frac{1}{2} \\ 54\frac{1}{4} \end{array}$	$66\frac{1}{4}$ $71\frac{1}{4}$ $76\frac{1}{4}$	$\begin{array}{c} 61\frac{7}{16} \\ 65\frac{7}{8} \\ 70\frac{1}{4} \end{array}$	81½ 86⅙ 92⅙	$100\frac{1}{2}$ 109 115	$50 \\ 54 \\ 56\frac{1}{2}$	15	38 40 44
18 19 20	72 76 80	$94\frac{1}{2}$ $99\frac{3}{4}$ 105	$101\frac{1}{2}$ 107 $112\frac{3}{4}$	$70\frac{1}{8}$ $74\frac{1}{16}$ $77\frac{15}{16}$	$\begin{array}{c} 100^{15} \text{fs} \\ 106^{12} \\ 112^{18} \end{array}$	83½ 88½ 92⅓	57 59 ³ / ₄ 62 ³ / ₄	80½ 84½ 88¼	74½ 78½ 81½ 81½	97 ¹⁵ / ₁₆ 103 ¹ / ₄ 108 ³ / ₈	$122\frac{1}{2}$ 128 130	$61 \\ 63 \\ 63\frac{1}{2}$		46 48 50

Overhung Pulley
Three-quarter Housing—Top Horizontal Discharge

Size	A	В	С	, D	E	G	Н	I	J	K	L	М	X	Y
6 7 8	24 28 32	31½ 36¾ 42	34½ 39¾ 45½	$22\frac{5}{16}$ 26 $29\frac{3}{4}$	31 ¹³ / ₁₆ 37 ¹ / ₈ 42 ³ / ₈	$\begin{array}{c} 41\frac{5}{8} \\ 48\frac{9}{16} \\ 55\frac{1}{2} \end{array}$	$21 \\ 23\frac{3}{4} \\ 27$	28½ 32¼ 36¼	23 $26\frac{1}{2}$ $28\frac{3}{4}$	$24\frac{11}{16}$ $28\frac{3}{4}$ $32\frac{7}{8}$	41 ³ ⁄ ₄ 50 56	$\begin{array}{c} 22 \\ 25\frac{1}{2} \\ 29 \end{array}$	$\frac{4\frac{1}{2}}{5\frac{1}{2}}$ $\frac{6\frac{1}{2}}{2}$	16 18 20
9 10 11	36 40 44	$\begin{array}{r} 47\frac{1}{4} \\ 52\frac{1}{2} \\ 57\frac{3}{4} \end{array}$	$51\frac{1}{4}$ $56\frac{3}{4}$ $62\frac{1}{2}$	$33\frac{1}{2}$ $37\frac{3}{6}$ $40\frac{15}{6}$	47 ¹¹ / ₁₆ 53 58 5/ ₁₆	$\begin{array}{c} 62\frac{7}{16} \\ 69\frac{3}{8} \\ 76\frac{5}{16} \end{array}$	$\frac{30}{32\frac{3}{4}}$ $\frac{36}{36}$	40¼ 44¼ 49¼	$31\frac{3}{4}$ $34\frac{3}{4}$ $38\frac{3}{8}$	$36\frac{11}{16}$ $40\frac{7}{8}$ $45\frac{1}{2}$	$\begin{array}{c} 63\frac{1}{2} \\ 67\frac{1}{2} \\ 75\frac{1}{2} \end{array}$	32 34 38	$8\frac{1}{2}$ $8\frac{1}{2}$ $8\frac{1}{2}$	24 26 28
12 13 14	48 52 56	$\begin{array}{c} 63 \\ 68\frac{1}{4} \\ 73\frac{1}{2} \end{array}$	$\begin{array}{c} 68 \\ 73\frac{1}{2} \\ 79 \end{array}$	$44\frac{5}{8}$ $48\frac{3}{8}$ $52\frac{1}{16}$	$\begin{array}{c} 63\frac{5}{8} \\ 68\frac{7}{8} \\ 74\frac{3}{16} \end{array}$	83½ 90¾ 97½ 97½	$38\frac{3}{4}$ 42 $44\frac{3}{4}$	53½ 58¼ 62¼	$\begin{array}{c} 41\frac{7}{8} \\ 45\frac{3}{8} \\ 47\frac{3}{8} \end{array}$	49½ 54¾ 58¼	$\begin{array}{c} 81 \\ 85\frac{1}{2} \\ 95\frac{1}{2} \end{array}$	41 43 48	10 11 13	36 34 36
15 16 17	60 64 68	78¾ 84 89¼	84¾ 90¼ 96	$55\frac{3}{4}$ $59\frac{1}{2}$ $63\frac{1}{4}$	$79\frac{1}{2}$ $84\frac{3}{4}$ $90\frac{1}{16}$	$104\frac{1}{16} \\ 111 \\ 117\frac{15}{16}$	$47\frac{3}{4}$ $51\frac{1}{2}$ $54\frac{1}{4}$	$\begin{array}{c} 66\frac{1}{4} \\ 71\frac{1}{4} \\ 76\frac{1}{4} \end{array}$	$\begin{array}{c} 51\frac{3}{8} \\ 54\frac{7}{8} \\ 58\frac{3}{8} \end{array}$	$62\frac{1}{8}$ $66\frac{3}{4}$ $71\frac{5}{6}$	$100\frac{1}{2}$ 109 115	$50 \\ 54 \\ 56\frac{1}{2}$	15	38 40 44
18 19 20	72 76 80	$94\frac{1}{2}$ $99\frac{3}{4}$ 105	$\begin{array}{c} 101\frac{1}{2} \\ 107 \\ 112\frac{3}{4} \end{array}$	66 ¹⁵ 16 70 ¹¹ 16 74 ³ / ₈	95 ¹⁵ / ₁₆ 100 ¹¹ / ₁₆ 106	$124\frac{7}{8}$ $131\frac{13}{16}$ $138\frac{3}{4}$	57 59 ³ / ₄ 62 ³ / ₄	80½ 84¼ 88¼	$\begin{array}{c} 61\frac{3}{8} \\ 64\frac{3}{8} \\ 67\frac{3}{8} \end{array}$	75 7/16 79 1/2 83 3/8	$^{122\frac{1}{2}}_{128}_{130}$	$61 \\ 63 \\ 63\frac{1}{2}$		46 48 50

Overhung Pulley Three-quarter Housing—Up Discharge

Size	A	В	С	D	F	G	Н	I	J	. к	L	M	X	Y
6 7 8	24 28 32	31½ 36¾ 42	$34\frac{1}{4}$ $39\frac{3}{4}$ $45\frac{1}{2}$	225/16 26 293/4	26½ 30½ 35½	415/8 489/6 551/2	21 23 ³ ⁄ ₄ 27	28½ 32¼ 36¼	$\begin{array}{c} 23\frac{3}{4} \\ 27\frac{5}{8} \\ 31\frac{1}{2} \end{array}$	33½ 385/8 44½	41 ³ ⁄ ₄ 50 56	22 25½ 29	$4\frac{1}{2}$ $5\frac{1}{2}$ $6\frac{1}{2}$	16 18 20
9 10 11	36 40 44	$47\frac{1}{4}$ $52\frac{1}{2}$ $57\frac{3}{4}$	$51\frac{1}{4}$ $56\frac{3}{4}$ $62\frac{1}{2}$	$33\frac{1}{2}$ $37\frac{3}{6}$ $40\frac{15}{6}$	$39\frac{3}{4}$ $44\frac{1}{8}$ $48\frac{1}{2}$	62 7/16 69 3/8 76 5/16	30 32¾ 36	40½ 44¼ 49¼	35½ 39 43½	$\begin{array}{c} 49\frac{3}{8} \\ 54\frac{7}{8} \\ 60\frac{3}{4} \end{array}$	$\begin{array}{c} 63\frac{1}{2} \\ 67\frac{1}{2} \\ 75\frac{1}{2} \end{array}$	32 34 38	8½ 8½ 8½ 8½	24 26 28
12 13 14	48 52 56	63 68¼ 73½	68 73½ 79	$44\frac{5}{8}$ $48\frac{3}{8}$ $52\frac{1}{16}$	$\begin{array}{c} 52\frac{15}{16} \\ 57\frac{3}{8} \\ 61\frac{3}{4} \end{array}$	83½ 90¾ 97½	38¾ 42 44¾	53½ 58¼ 62¼	$\begin{array}{c} 47\frac{1}{8} \\ 51\frac{1}{2} \\ 55\frac{1}{4} \end{array}$	66¼ 72¼ 775%	81 85½ 95½	41 43 48	10 11 13	30 34 36
15 16 17	60 64 68	78 ³ / ₄ 84 89 ¹ / ₄	84 ³ / ₄ 90 ¹ / ₄ 96	$55\frac{3}{4}$ $59\frac{1}{2}$ $63\frac{1}{4}$	$\begin{array}{c} 66\frac{3}{16} \\ 70\frac{5}{8} \\ 75 \end{array}$	$104\frac{1}{16}$ 111 $117\frac{15}{16}$	$47\frac{3}{4}$ $51\frac{1}{2}$ $54\frac{1}{4}$	$\begin{array}{c} 66\frac{1}{4} \\ 71\frac{1}{4} \\ 76\frac{1}{4} \end{array}$	59 63 5/6 67 5/8	827/8 887/8 94 ¹³ /6	$100\frac{1}{2}$ 109 115	50 54 56½	15	38 40 44
18 19 20	72 76 80	$94\frac{1}{2}$ $99\frac{3}{4}$ 105	$101\frac{1}{2}$ 107 $112\frac{3}{4}$	$\begin{array}{c} 66^{15} \\ 70^{11} \\ 6 \\ 74^{3} \\ 8 \end{array}$	79 7/6 83 13/6 88 1/4	1247/8 131 ¹³ /6 138 ³ / ₄	57 59 ³ / ₄ 62 ³ / ₄	80½ 84¼ 88¼	$71\frac{1}{2}$ $75\frac{1}{4}$ 79	$100\frac{1}{4}$ $105\frac{3}{4}$ 111	$122\frac{1}{2}$ 128 130	61 63 63½		46 48 50

Overhung Wheel Full Housing—Top Horizontal Discharge

Size	A	В	С	D	E	F	G	Н	I	J	K	L	M	X	Y
3 3½ 4	12 14 16	$\begin{array}{c} 15\frac{3}{4} \\ 18\frac{3}{8} \\ 21 \end{array}$	17¼ 20 22¾	$\begin{array}{c} 11\frac{3}{16} \\ 13 \\ 14\frac{7}{8} \end{array}$	157/8 189/6 213/6	13½ 15⅙ 175⁄8	$20\frac{13}{16}$ $24\frac{1}{4}$ $27\frac{3}{4}$	18 20 ³ / ₄ 24	32½ 36½ 40	$11\frac{3}{16}$ 13 $14\frac{7}{8}$	12 14 16	$\begin{array}{c} 14\frac{7}{8} \\ 16\frac{3}{8} \\ 18\frac{3}{8} \end{array}$	$31\frac{3}{8}$ $34\frac{1}{2}$ $38\frac{3}{4}$	$\frac{3\frac{1}{2}}{3\frac{1}{2}}$ $\frac{3\frac{1}{2}}{3\frac{1}{2}}$	8 9 10
$ \begin{array}{c c} 4\frac{1}{2} \\ 5 \\ 5\frac{1}{2} \end{array} $	18 20 22	$23\frac{5}{8}$ $26\frac{1}{4}$ $28\frac{7}{8}$	$25\frac{3}{4}$ $28\frac{1}{2}$ $31\frac{1}{2}$	$\begin{array}{c} 16\frac{3}{4} \\ 18\frac{5}{8} \\ 20\frac{7}{16} \end{array}$	$23\frac{7}{8}$ $26\frac{1}{2}$ $29\frac{1}{8}$	$\begin{array}{c} 19\frac{7}{8} \\ 22\frac{1}{16} \\ 24\frac{1}{4} \end{array}$	$\frac{31\frac{1}{4}}{34\frac{11}{16}}$ $\frac{38\frac{3}{16}}{38\frac{3}{16}}$	$ \begin{array}{r} 26\frac{5}{8} \\ 29\frac{1}{4} \\ 32 \end{array} $	$43\frac{3}{4}$ $47\frac{5}{6}$ $51\frac{1}{4}$	$\begin{array}{c} 16\frac{3}{4} \\ 17\frac{1}{2} \\ 19\frac{1}{4} \end{array}$	18 20 22	$20\frac{1}{2}$ 22 $24\frac{1}{8}$	$43\frac{1}{2}$ $46\frac{1}{2}$ $50\frac{3}{4}$	$\frac{3\frac{1}{2}}{3\frac{1}{2}}$ $\frac{3\frac{1}{2}}{3\frac{1}{2}}$	11 12 14
6 7 8	24 28 32	$ \begin{array}{r} 31\frac{1}{2} \\ 36\frac{3}{4} \\ 42 \end{array} $	$34\frac{1}{2}$ $39\frac{3}{4}$ $45\frac{1}{2}$	$22\frac{5}{16}$ 26 $29\frac{3}{4}$	$31\frac{13}{6}$ $37\frac{1}{8}$ $42\frac{3}{8}$	26½	$\begin{array}{c} 415/8 \\ 489/6 \\ 551/2 \end{array}$	$\begin{array}{c} 35 \\ 32 \\ 36 \frac{1}{2} \end{array}$	54½ 60 64	$21 \\ 26\frac{1}{2} \\ 28\frac{3}{4}$	24 30 34	$25\frac{5}{8}$ $28\frac{3}{8}$ $30\frac{3}{8}$	53¾ 60 64	$\frac{4\frac{1}{2}}{5\frac{1}{2}}$ $\frac{6\frac{1}{2}}{2}$	16 18 20
9 10 11	36 40 44	$\begin{array}{c} 47\frac{1}{4} \\ 52\frac{1}{2} \\ 57\frac{3}{4} \end{array}$	$51\frac{1}{4}$ $56\frac{3}{4}$ $62\frac{1}{2}$	$33\frac{1}{2}$ $37\frac{3}{16}$ $40\frac{5}{16}$	47 ¹¹ / ₁₆ 53 58 5/ ₁₆		$\begin{array}{c} 62\frac{7}{16} \\ 69\frac{3}{8} \\ 76\frac{5}{16} \end{array}$	41 451/4 501/8	68 85 ³ / ₄ 90 ¹ / ₄	$31\frac{3}{4}$ $34\frac{3}{4}$ $38\frac{3}{8}$	$\frac{38}{42}$ $\frac{461}{2}$	$32\frac{3}{8}$ $40\frac{5}{8}$ $42\frac{5}{8}$	$69 \\ 84\frac{1}{2} \\ 88\frac{1}{2}$	8½ 8½ 8½ 8½	24 26 28
2	48 52	63 68½	68 73½	44 ⁵ / ₈ 48 ³ / ₈	635/8 687/8		83½ 90¾	54 ³ ⁄ ₄ 59	94½ 98¾	417/8 453/8	$50\frac{1}{2}$ 55	$\frac{447}{8}$ $\frac{465}{8}$	$93\frac{1}{2}$ $97\frac{1}{2}$	10 11	30 34

Overhung Wheel Full Housing—Bottom Horizontal Discharge

Size	A	В	C	D	E	F	G	H	I	J	K	L	М	X	Y
$\frac{3}{3\frac{1}{2}}$	12 14 16	$\begin{array}{c} 15\frac{3}{4} \\ 18\frac{3}{8} \\ 21 \end{array}$	17¼ 20 22¾	$11\frac{3}{16}$ 13 $14\frac{7}{8}$	$\begin{array}{c} 15\frac{7}{8} \\ 18\frac{9}{16} \\ 21\frac{3}{16} \end{array}$	$\begin{array}{c} 13\frac{1}{4} \\ 15\frac{7}{16} \\ 17\frac{5}{8} \end{array}$	20^{13} /6 $24^{1/4}$ $27^{3/4}$	$23\frac{3}{8}$ $27\frac{1}{4}$ $30\frac{5}{8}$	32 36¾ 39¾	11 3/16 13 14 7/8	12 14 16	$\begin{array}{c} 14\frac{7}{8} \\ 16\frac{3}{8} \\ 18\frac{3}{8} \end{array}$	31 ³ / ₈ 34 ¹ / ₂ 38 ³ / ₄	$\frac{3\frac{1}{2}}{3\frac{1}{2}}$ $\frac{3\frac{1}{2}}{3\frac{1}{2}}$	8 9 10
4½ 5 5½	18 20 22	$23\frac{5}{8}$ $26\frac{1}{4}$ $28\frac{7}{8}$	$25\frac{3}{4}$ $28\frac{1}{2}$ $31\frac{1}{2}$	$\begin{array}{c} 16\frac{3}{4} \\ 18\frac{5}{8} \\ 20\frac{7}{16} \end{array}$	$23\frac{7}{8}$ $26\frac{1}{2}$ $29\frac{1}{8}$	$19\frac{7}{8}$ $22\frac{1}{6}$ $24\frac{1}{4}$	31½ 34½ 38¾ 38¾	$34\frac{1}{2}$ $38\frac{1}{2}$ $41\frac{7}{8}$	43¾ 48 51	$\begin{array}{c} 16\frac{3}{4} \\ 18\frac{5}{8} \\ 20\frac{7}{16} \end{array}$	18 20 22	$20\frac{1}{2}$ 22 $24\frac{1}{8}$	$43\frac{1}{2}$ $46\frac{1}{2}$ $50\frac{3}{4}$	$\frac{3\frac{1}{2}}{3\frac{1}{2}}$ $\frac{3\frac{1}{2}}{3\frac{1}{2}}$	11 12 14
6 7 8	24 28 32	$\begin{array}{c} 31\frac{1}{2} \\ 36\frac{3}{4} \\ 42 \end{array}$	$34\frac{1}{4}$ $39\frac{3}{4}$ $45\frac{1}{2}$	$22\frac{5}{16}$ 26 $29\frac{3}{4}$	$31\frac{13}{16}$ $37\frac{1}{8}$ $42\frac{3}{8}$	$26\frac{1}{2}$ $30\frac{7}{8}$ $35\frac{5}{6}$	$\begin{array}{c} 415 \\ 489 \\ 551 \\ 2 \end{array}$	$\begin{array}{c} 45\frac{3}{4} \\ 50\frac{3}{8} \\ 56\frac{3}{4} \end{array}$	$\begin{array}{c} 54 \\ 66\frac{3}{4} \\ 70\frac{3}{4} \end{array}$	225/16 28 313/4	24 30 34	$25\frac{5}{8}$ $31\frac{1}{8}$ $33\frac{1}{8}$	533/4 64 68	$4\frac{1}{2}$ $5\frac{1}{2}$ $6\frac{1}{2}$	16 18 20
9	36 40	$47\frac{1}{4}$ $52\frac{1}{2}$	$51\frac{1}{4}$ $56\frac{3}{4}$	33½ 37¾ 37¾	47 ¹¹ / ₁₆ 53	393/4 441/8	627/6 693/8	$\frac{64}{70\frac{3}{4}}$	773/4 853/4	35½ 39¾6	38 42	365/8 405/8	76 85½	8½ 8½ 8½	24 26

Overhung Wheel—Full Housing—Up Discharge $_{\rm Dimensions\ in\ Inches}$

Size	A	В	C	D	E	F	G	Н	I	J	K	L	M	X	Y
3 3½ 4	12 14 16	$\begin{array}{c} 15\frac{3}{4} \\ 18\frac{3}{8} \\ 21 \end{array}$	17¼ 20 22¾	$11\frac{3}{16}$ 13 $14\frac{7}{8}$	$\begin{array}{c} 15\frac{7}{8} \\ 18\frac{9}{16} \\ 21\frac{3}{16} \end{array}$	$13\frac{1}{4}$ $15\frac{7}{6}$ $17\frac{5}{8}$	$20\frac{13}{16}$ $24\frac{1}{4}$ $27\frac{3}{4}$	$18 \\ 20\frac{3}{4} \\ 24$	32½ 36½ 40	11¼ 13 15	$15 \\ 17\frac{1}{2} \\ 20$	$\begin{array}{c} 14\frac{7}{8} \\ 16\frac{3}{8} \\ 18\frac{3}{8} \end{array}$	$31\frac{3}{8}$ $34\frac{1}{2}$ $38\frac{3}{4}$	$\frac{3\frac{1}{2}}{3\frac{1}{2}}$ $\frac{3\frac{1}{2}}{3\frac{1}{2}}$	9
4½ 5 5½	18 20 22	235/8 261/4 287/8	$25\frac{3}{4}$ $28\frac{1}{2}$ $31\frac{1}{2}$	$\begin{array}{c} 16\frac{3}{4} \\ 18\frac{5}{8} \\ 20\frac{7}{16} \end{array}$	$23\frac{7}{8}$ $26\frac{1}{2}$ $29\frac{1}{8}$	$19\frac{7}{8}$ $22\frac{1}{16}$ $24\frac{1}{4}$	31½ 34½ 38¾ 38¾	$26\frac{5}{8}$ $29\frac{1}{4}$ 32	$43\frac{3}{4}$ $47\frac{5}{16}$ $51\frac{1}{4}$	$16\frac{3}{4}$ $17\frac{1}{2}$ $19\frac{1}{4}$	$\begin{array}{c} 22\frac{1}{2} \\ 25 \\ 27\frac{1}{2} \end{array}$	$20\frac{1}{2}$ 22 $24\frac{1}{8}$	$43\frac{1}{2}$ $46\frac{1}{2}$ $50\frac{3}{4}$	$\frac{3\frac{1}{2}}{3\frac{1}{2}}$ $\frac{3\frac{1}{2}}{3\frac{1}{2}}$	11 12 14
6 7 8	24 28 32	$ \begin{array}{r} 31\frac{1}{2} \\ 36\frac{3}{4} \\ 42 \end{array} $	$34\frac{1}{4}$ $39\frac{3}{4}$ $45\frac{1}{2}$	$ \begin{array}{c} 22 \frac{5}{16} \\ 26 \\ 29 \frac{3}{4} \end{array} $	$31\frac{13}{16}$ $37\frac{1}{8}$ $42\frac{3}{8}$	$\begin{array}{c} 26\frac{1}{2} \\ 30\frac{7}{8} \\ 35\frac{5}{16} \end{array}$	$\begin{array}{c} 41\frac{5}{8} \\ 48\frac{9}{16} \\ 55\frac{1}{2} \end{array}$	35 38½ 44	54½ 60 64	21 $26\frac{1}{2}$ $28\frac{3}{4}$	30 37 42	$\begin{array}{c} 25\frac{5}{8} \\ 28\frac{3}{8} \\ 30\frac{3}{8} \end{array}$	53¾ 60 64	$\frac{4\frac{1}{2}}{5\frac{1}{2}}$ $\frac{6\frac{1}{2}}{2}$	18 18 20
9 10 11	36 40 44	$\begin{array}{c} 47\frac{1}{4} \\ 52\frac{1}{2} \\ 57\frac{3}{4} \end{array}$	$51\frac{1}{4}$ $56\frac{3}{4}$ $62\frac{1}{2}$	$33\frac{1}{2}$ $37\frac{3}{16}$ $40\frac{15}{16}$	47 ¹¹ / ₁₆ 53 58 ⁵ / ₁₆	$39\frac{3}{4}$ $44\frac{1}{8}$ $48\frac{1}{2}$	$\begin{array}{c} 62\frac{7}{16} \\ 69\frac{3}{8} \\ 76\frac{5}{16} \end{array}$	49 54 59½	68 85 ³ / ₄ 90 ¹ / ₄	$31\frac{3}{4}$ $34\frac{3}{4}$ $38\frac{3}{8}$	47 52 57½	$32\frac{3}{8}$ $40\frac{5}{8}$ $42\frac{5}{8}$	69 84½ 88½	8½ 8½ 8½ 8½	24 26 28
12 13	48 52	63 68½	68 73½	44 ⁵ / ₈ 48 ³ / ₈	63 ⁵ / ₈ 68 ⁷ / ₈	52½6 57¾8	831/4 903/6	$\frac{651/2}{70}$	$94\frac{1}{4}$ $98\frac{3}{4}$	417/8 453/8	62½ 68	$44\frac{5}{8}$ $46\frac{5}{8}$	$93\frac{1}{2}$ $97\frac{1}{2}$	10 11	30

Overhung Wheel Full Housing—Down Discharge

Size	A	В	С	D	Е	F	G	Н	I	J	K	L	M	X	Y
3 3½ 4	12 14 16	$15\frac{3}{4}$ $18\frac{3}{8}$ 21	17¼ 20 22¾	$11\frac{3}{16}$ 13 $14\frac{7}{8}$	$\begin{array}{c} 15\frac{7}{8} \\ 18\frac{9}{16} \\ 21\frac{3}{16} \end{array}$	$13\frac{1}{4}$ $15\frac{7}{16}$ $17\frac{5}{8}$	$\begin{array}{c} 20 \frac{13}{16} \\ 24 \frac{1}{4} \\ 27 \frac{3}{4} \end{array}$	18 20¾ 24	$32\frac{1}{4}$ $36\frac{9}{16}$ 40	11¼ 13 15	$\frac{3}{3\frac{3}{4}}$ $\frac{4\frac{3}{4}}{4}$	$14\frac{7}{8}$ $16\frac{3}{8}$ $18\frac{3}{8}$	$31\frac{3}{8}$ $34\frac{1}{2}$ $38\frac{3}{4}$	$\frac{3\frac{1}{2}}{3\frac{1}{2}}$ $\frac{3\frac{1}{2}}{3\frac{1}{2}}$	8 9 10
4½ 5 5½	$\frac{18}{20}$ $\frac{22}{22}$	$23\frac{5}{8}$ $26\frac{1}{4}$ $28\frac{7}{8}$	$\begin{array}{c} 25\frac{3}{4} \\ 28\frac{1}{2} \\ 31\frac{1}{2} \end{array}$	$\begin{array}{c} 16\frac{3}{4} \\ 18\frac{5}{8} \\ 20\frac{7}{16} \end{array}$	$23\frac{7}{8}$ $26\frac{1}{2}$ $29\frac{1}{8}$	$\begin{array}{c} 19 \frac{7}{8} \\ 22 \frac{1}{16} \\ 24 \frac{1}{4} \end{array}$	31½ 34½ 38¾ 38¾	$26\frac{5}{8}$ $29\frac{1}{4}$ 32	$43\frac{3}{4}$ $47\frac{5}{6}$ $51\frac{1}{4}$	$\begin{array}{c} 16\frac{3}{4} \\ 17\frac{1}{2} \\ 19\frac{1}{4} \end{array}$	$ \begin{array}{r} 5\frac{1}{2} \\ 6\frac{1}{4} \\ 7\frac{1}{4} \end{array} $	$20\frac{1}{2}$ 22 $24\frac{1}{8}$	$43\frac{1}{2}$ $46\frac{1}{2}$ $50\frac{3}{4}$	$\frac{3\frac{1}{2}}{3\frac{1}{2}}$ $\frac{3\frac{1}{2}}{3\frac{1}{2}}$	11 12 14
6 7 8	24 28 32	$ \begin{array}{r} 31\frac{1}{2} \\ 36\frac{3}{4} \\ 42 \end{array} $	$ \begin{array}{r} 34\frac{1}{4} \\ 39\frac{3}{4} \\ 45\frac{1}{2} \end{array} $	$ \begin{array}{r} 225 \\ 26 \\ 293 \\ 4 \end{array} $	$31\frac{13}{16}$ $37\frac{1}{8}$ $42\frac{3}{8}$	$26\frac{1}{2}$ $30\frac{7}{8}$ $35\frac{5}{16}$	$41\frac{5}{8}$ $48\frac{9}{16}$ $55\frac{1}{2}$	35 27 32	$ 54\frac{1}{4} $ $ 60 $ $ 64 $	$21 \\ 26\frac{1}{2} \\ 28\frac{3}{4}$	$\begin{array}{c} 8 \\ 50 \% \\ 57 \frac{1}{2} \end{array}$	$25\frac{3}{8}$ $28\frac{3}{8}$ $30\frac{3}{8}$	53¾ 60 64	$\frac{4\frac{1}{2}}{5\frac{1}{2}}$ $\frac{6\frac{1}{2}}{2}$	18 20
9 10 11	$\frac{36}{40}$ $\frac{44}{44}$	$47\frac{1}{4}$ $52\frac{1}{2}$ $57\frac{3}{4}$	$51\frac{1}{4}$ $56\frac{3}{4}$ $62\frac{1}{2}$	$33\frac{1}{2}$ $37\frac{3}{16}$ $40\frac{15}{16}$	47 ¹¹ / ₁₆ 53 58 ⁵ / ₁₆	$39\frac{3}{4}$ $44\frac{1}{8}$ $48\frac{1}{2}$	$\begin{array}{c} 62\frac{7}{16} \\ 69\frac{3}{8} \\ 76\frac{5}{16} \end{array}$	$ \begin{array}{r} 34\frac{3}{4} \\ 38\frac{1}{2} \\ 42 \end{array} $	$68 \\ 85\frac{3}{4} \\ 90\frac{1}{4}$	$31\frac{3}{4}$ $34\frac{3}{4}$ $38\frac{3}{8}$	$64\frac{7}{16}$ $71\frac{3}{8}$ $78\frac{13}{16}$	$32\frac{5}{8}$ $40\frac{5}{8}$ $42\frac{5}{8}$	$\frac{69}{84\frac{1}{2}}$ $88\frac{1}{2}$	$8\frac{1}{2}$ $8\frac{1}{2}$ $8\frac{1}{2}$	24 26 28
12 13	48 52	63 68½	68 73½	44 ⁵ / ₈ 48 ³ / ₈	635/8 687/8	52 ¹⁵ / ₁₆ 57 ³ / ₈	831/4 903/6	46 49½	94½ 98¾	417/8 453/8	85 ³ / ₄ 93 ³ / ₆	44 ⁵ / ₈ 46 ⁵ / ₈	93½ 97½	10 11	30

Capacities of Buffalo Niagara Conoidal Fans—(Type N) Under Average Working Conditions

70° F and 29.92" Barometer

~	Diameter of Blast	Area	1/2" =	Static Pres 0.288 Ound	ssure	3/4" =	Static Pres 0.433 Our	ssure		Static Pres 0.577 Oun		1½"	Static Pro 0.865 Our	essure
Size	Wheel	Outlet Square Ft.	R.P.M.	Volume Cubic Ft. per Min.	H.P.	R.P.M.	Volume Cubic Ft. per Min.	H.P.	R.P.M.	Volume Cubic Ft. per Min.	H.P.	R.P.M.	Volume Cubic Ft. per Min.	H.P.
$\frac{3}{31/2}$	155/8 181/8 201/2	1.31 1.79 2.33	544 465 408	1,945 2,642 3,459	0.28 0.38 0.50	668 572 500	2,380 3,240 4,230	0.51 0.69 0.90	770 660 577	2,750 3,740 4,895	0.78 1.06 1.39	943 809 709	3,365 4,580 5,980	1.4. 1.9 2.5
4½ 5 5½	$23\frac{1}{2}$ $26\frac{1}{8}$ $28\frac{3}{4}$	2.95 3.64 4.41	362 326 296	4,375 5,400 6,540	$0.63 \\ 0.77 \\ 0.94$	445 400 364	5,350 6,610 8,000	1.14 1.41 1.71	514 462 420	6,195 7,645 9,250	1.75 2.16 2.62	630 566 515	7,575 9,350 11,320	3.20 4.03 4.87
6 7 8	$31\frac{3}{6}$ $36\frac{1}{2}$ 42	5.25 7.14 9.33	272 233 204	7,780 10,590 13,820	1.11 1.52 1.98	334 286 250	9,525 12,950 16,910	2.03 2.77 3.61	386 330 289	11,000 14,980 19,550	3.12 4.24 5.54	472 405 354	13,450 18,330 23,950	5.80 7.90 10.30
9 10 11	47 52 58	11.81 14.58 17.64	181 163 148	17,500 21,600 26,150	2.51 3.09 3.74	222 200 182	21,400 26,450 32,000	4.57 5.65 6.85	256 231 210	24,750 30,550 37,000	7.01 8.65 10.48	314 283 257	30,300 37,400 45,250	13.05 16.10 19.48
12 13 14	63 68 73	21.00 24.65 28.68	136 125 116	31,100 36,500 42,350	4.45 5.22 6.06	167 154 143	38,100 44,700 51,900	$8.15 \\ 9.56 \\ 11.08$	193 178 165	44,050 51,650 60,000	$\begin{array}{c} 12.48 \\ 14.62 \\ 16.96 \end{array}$	236 217 202	53,900 63,200 73,200	23.20 27.20 31.55
15 16 17	78 84 89	32.80 37.32 42.14	109 102 96	48,550 55,300 62,500	6.95 7.91 8.95	133 125 118	59,500 67,750 76,500	$\begin{array}{c} 12.70 \\ 14.46 \\ 16.32 \end{array}$	154 144 136	68,850 78,300 88,400	$\begin{array}{c} 19.49 \\ 22.15 \\ 25.00 \end{array}$	189 177 167	84,100 95,750 108,000	36.25 41.20 46.50
18 19 20	94 99 105	47.24 52.63 58.32	91 86 82	70,000 78,000 86,450	$\begin{array}{c} 10.01 \\ 11.15 \\ 12.36 \end{array}$	111 105 100	85,600 95,500 105,850	$\begin{array}{c} 18.30 \\ 20.40 \\ 22.60 \end{array}$	128 122 116	99,100 110,200 122,200	$28.05 \\ 31.25 \\ 34.65$	157 149 142	121,200 135,000 149,500	52.18 58.08 64.48
	Diameter of Blast	Area		Static Press 1.154 Oun		2½″ = 1	Static Pres .442 Ounc	sure es	3" 8	Static Press 1.734 Oun	ure	3½"	Static Pre 2.019 Oun	essure
Size	Wheel	Outlet Square Ft.	R.P.M.	Volume Cubic Ft. per Min.	H.P.	R.P.M.	Volume Cubic Ft. per Min.	H.P.	R.P.M.	Volume Cubic Ft. per Min.	H.P.	R.P.M.	Volume Cubic Ft. per Min.	H.P.
3 3½ 4	$15\frac{5}{8}$ $18\frac{1}{8}$ $20\frac{1}{2}$	1.31 1.79 2.33	1088 934 817	3,890 5,300 6,920	2.21 3.01 3.93	1215 1010 912	4,350 5,930 7,730	3.08 4.19 5.47	1332 1141 1000	4,770 6,495 8,480	4.05 5.53 7.22	1443 1238 1082	5,150 7,010 9,160	5.13 6.98 9.12
4½ 5 5½	$23\frac{1}{2}$ $26\frac{1}{8}$ $28\frac{3}{4}$	2.95 3.64 4.41	726 655 595	8,750 10,820 13,100	4.97 6.15 7.43	810 730 664	9,795 12,070 14,600	6.93 8.55 10.35	890 800 728	10,740 13,250 16,030	9.14 11.26 13.62	964 868 789	11,590 14,300 17,300	11.55 14.25 17.25
6 7 8	$31\frac{3}{8}$ $36\frac{1}{2}$ 42	5.25 7.14 9.33	545 468 409	15,550 21,200 27,650	$\begin{array}{c} 8.85 \\ 12.02 \\ 15.70 \end{array}$	609 522 456	17,390 23,650 30,900	$\begin{array}{c} 12.30 \\ 16.75 \\ 21.90 \end{array}$	667 572 500	19,090 26,000 33,950	$\begin{array}{c} 16.22 \\ 22.10 \\ 28.85 \end{array}$	723 620 542	20,600 28,050 36,600	20.55 27.95 36.50
9 10 11	47 52 58	11.81 14.58 17.64	364 327 297	35,050 43,250 52,300	$\begin{array}{c} 19.90 \\ 24.55 \\ 29.70 \end{array}$	405 365 332	39,100 48,300 58,450	$\begin{array}{c} 27.70 \\ 34.20 \\ 41.45 \end{array}$	445 400 364	42,950 53,000 64,100	36.55 45.15 54.60	482 433 394	46,350 57,200 69,300	46.20 57.00 69.00
12 13 14	63 68 73	21.00 24.65 28.68	272 252 234	62,300 73,050 84,900	$35.50 \\ 41.50 \\ 48.15$	304 280 261	69,550 81,600 94,600	49.25 57.80 67.05	334 308 286	76,400 89,550 103,900	65.00 76.30 88.70	361 334 310	82,500 96,750 112,050	82.15 96.45 111.90
15 16 17	78 84 89	32.80 37.32 42.14	218 204 192	97,250 110,750 125,000	$\begin{array}{c} 55.25 \\ 62.85 \\ 71.00 \end{array}$	243 228 214	108,700 123,600 139,500	77.00 87.50 99.00	267 250 235	119,200 135,800 153,100	101.50 115.50 130.30	289 271 255	128,800 146,400 165,300	128.20 146.00 164.80
18 19 20	94 99 105	47.24 52.63 58.32	182 172 164	140,000 156,000 173,000	79.50 88.55 98.25	203 192 183	156,500 174,200 193,000	110.80 123.40 136.80	222 211 200	171,800 191,200 212,000	146.00 162.80 180.30	241 228 217	185,300 206,200 229,000	184.60 206.00 228.00

Total Pressure is 127.4 % of the Rated Static Pressure.

No. 3 Niagara Conoidal Fan-(Type N)

Capacities and Static Pressures at 70° F. and 29.92" Barom.

Outlet Velocity	Capacity Cu. Ft. Air	Add for Total	14"	S.P.	3/8"	S.P.	1/2"	S.P.	5/8"	S.P.	34"	S.P.	7/8"	S.P.
Ft./Min.	Per Min.	Press.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	н. Р.	R.P.M.	н. г
1000 1100 1200	1310 1440 1570	0.063 0.076 0.090	387 384 387	0.09 0.11 0.12	483 477 477	$0.15 \\ 0.16 \\ 0.17$	557	.23						
1300 1400 1500	1710 1840 1970	$0.106 \\ 0.122 \\ 0.141$	393 400 410	$0.14 \\ 0.16 \\ 0.18$	470 473 477	0.18 0.20 0.23	550 547 543	.25 .26 .28	623 617 613	.32 .33 .35	687 680	.42 .43	743	.53
1600 1700 1800	2100 2230 2360	$0.160 \\ 0.180 \\ 0.202$	420 430 443	$0.21 \\ 0.24 \\ 0.28$	480 490 500	$0.25 \\ 0.28 \\ 0.32$	547 550 553	.31 .34 .37	610 607 610	.37 .40 .43	673 670 667	.45 .48 .51	733 727 723	.5 .5
1900 2000 2100	2490 2630 2760	$0.225 \\ 0.250 \\ 0.275$	457 470 483	0.31 0.35 0.39	510 520 530	$0.35 \\ 0.40 \\ 0.45$	560 570 580	.41 .45 .50	613 617 623	.47 .52 .56	667 667 670	.54 .58 .63	720 720 720	.6 .6 .7
2200 2300 2400	2890 3020 3150	$0.302 \\ 0.330 \\ 0.360$	497 513 527	0.44 0.49 0.55	543 557 570	$0.50 \\ 0.55 \\ 0.61$	590 600 610	.55 .61 .67	633 643 650	.61 .67 .73	677 683 690	.68 .73 .80	723 727 733	.7 .8 .8
$\begin{array}{c} 2500 \\ 2600 \\ 2800 \end{array}$	3280 3410 3670	$0.390 \\ 0.422 \\ 0.489$	543 560 590	0.60 0.67 0.81	583 597 623	$0.67 \\ 0.74 \\ 0.89$	623 633 660	.74 .81 .96	660 673 693	.80 .88 1.04	700 710 730	.86 .94 1.10	740 747 767	.9 1.0 1.1
3000 3200 3400	3940 4190 4460	$0.560 \\ 0.638 \\ 0.721$	623	0.99	657	1.04	687 717	1.14 1.33	720 747	$\frac{1.22}{1.42}$	753 780 807	1.29 1.50 1.75	780 810 833	1.3 1.5 1.8
Outlet	Capacity	Add for	1" 8	S.P.	11/4"	S.P.	11/2"	S.P.	134"	S.P.	2" 8	S.P.	21/2"	S.P.
Velocity Ft./Min.	Cu. Ft. Air Per Min.	Total Press.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M	н. Р.	R.P.M.	н. Р.	R.P.M.	н. 1
1300 1400 1500	1710 1840 1970	0.106 0.122 0.141	820 810 800	.58 .59 .62	920 913	.80 .81	1027 1017	1.00 1.04	1110	1.25				
1600 1700 1800	2100 2230 2360	$0.160 \\ 0.180 \\ 0.202$	793 783 777	.64 .66 .68	903 893 883	.84 .86 .89	1007 997 983	1.06 1.09 1.12	1100 1087 1077	$1.29 \\ 1.32 \\ 1.35$	1190 1177 1167	$1.53 \\ 1.58 \\ 1.61$	1343 1330	2.1 2.1
$\begin{array}{c} 1900 \\ 2000 \\ 2100 \end{array}$	2490 2630 2760	$0.225 \\ 0.250 \\ 0.275$	773 770 770	.71 .75 .79	877 873 867	.92 .95 .99	977 970 960	1.14 1.17 1.22	1067 1057 1050	1.39 1.42 1.46	1157 1143 1133	1.65 1.68 1.73	1317 1303 1297	2.2 2.2 2.2
2200 2300 2400	2890 3020 3150	$0.302 \\ 0.330 \\ 0.360$	767 770 773	.84 .89 .95	863 860 860	1.03 1.08 1.13	953 950 947	1.25 1.30 1.35	1040 1033 1027	$1.50 \\ 1.54 \\ 1.59$	1127 1120 1107	1.76 1.81 1.85	1287 1270 1263	2.3 2.3 2.4
2500 2600 2800	3280 3410 3670	$0.390 \\ 0.422 \\ 0.489$	777 783 800	1.03 1.09 1.25	860 863 870	1.20 1.26 1.43	943 940 943	1.41 1.47 1.63	1023 1020 1013	1.64 1.70 1.84	1103 1097 1090	1.91 1.96 2.10	1253 1247 1233	2.4 2.5 2.6
3000 3200 3400	3940 4190 4460	$\begin{array}{c} 0.560 \\ 0.638 \\ 0.721 \end{array}$	820 837 863	1.44 1.65 1.90	883 900 920	1.61 1.83 2.06	950 960 980	1.81 2.02 2.26	1020 1023 1033	2.02 2.23 2.47	1087 1090 1093	2.25 2.47 2.69	1227 1217 1213	2.8 3.0 3.2
3600 3800 4000	4730 4990 5250	0.810 0.900 1.000	883	2.18	943	2.34	997 1017	2.53 2.84	1050 1067 1087	2.76 3.04 3.39	1107 1117 1133	2.96 3.28 3.60	1220 1227 1233	3.4 3.7 4.1

No. $3\frac{1}{2}$ Niagara Conoidal Fan—(Type N)

Capacities and Static Pressures at 70° F. and 29.92" Barom.

Outlet Velocity	Capacity Cu. Ft. Air	Add for Total	14" 8	8.P.	3/8"	S.P.	1/2"	S.P.	5/8"	S.P.	34"	S.P.	7/8"	S.P.
Ft. /Min.	Per Min.	Press.	R.P.M.	Н. Р.	R.P.M	Н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	RPM.	н. н
1000 1100 1200	1790 1970 2140	0.063 0.076 0.090	332 329 332	.13 .14 .16	414 409 409	.20 .21 .23	477	.32						
1300 1400 1500	2320 2500 2680	$0.106 \\ 0.122 \\ 0.141$	337 343 352	.18 .21 .24	403 406 409	.25 .28 .31	472 469 466	.33 .36 .38	534 529 526	.43 .45 .48	589 583	.57 .59	637	.7
1600 1700 1800	2860 3040 3210	$0.160 \\ 0.180 \\ 0.202$	360 369 380	.28 .32 .37	412 420 429	.34 .39 .43	469 472 474	.42 .46 .51	523 520 523	.51 .55 .59	577 574 572	.62 .65 .69	629 623 620	.7 .7 .8
1900 2000 2100	3390 3570 3750	$\begin{array}{c} 0.225 \\ 0.250 \\ 0.275 \end{array}$	392 403 414	.42 .48 .53	437 446 454	.48 .54 .61	480 489 497	.56 .62 .68	526 529 534	.64 .70 .76	572 572 574	.74 .79 .86	617 617 617	.8 .9
2200 2300 2400	3930 4110 4290	0.302 0.330 0.360	426 440 452	.59 .67 .74	466 477 489	.68 .75 .83	506 514 523	.75 .83 .91	543 552 557	.83 .91 .99	580 586 592	.92 1.00 1.09	620 623 629	1.0 1.1 1.1
2500 2600 2800	4470 4640 5000	$0.390 \\ 0.422 \\ 0.489$	466 480 506	.82 .91 1.10	500 512 534	.91 1.01 1.21	534 543 566	1.01 1.10 1.31	566 577 594	1.08 1.19 1.41	600 609 626	1.17 1.27 1.50	634 640 657	1.2 1.3 1.5
3000 3200 3400	5360 5720 6070	$\begin{array}{c} 0.560 \\ 0.638 \\ 0.721 \end{array}$	534	1.35	563	1.42	589 614	1.56 1.81	617 640	1.65 1.94	646 669 692	1.75 2.05 2.38	669 694 714	1.8 2.1 2.5
Outlet	Capacity	Add for	1" 8	S.P.	11/4"	S.P.	11/2"	S.P.	134"	S.P.	2" 8	S.P.	21/2"	S.P.
Velocty Ft./Min.	Cu. Ft. Air Per Min.	Total Press.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M	Н. Р	R.P.M.	н. Р.	R.P.M.	Н, Р.	R.P.M.	н.
1300 1400 1500	2320 2500 2680	0.106 0.122 0.141	703 694 686	.78 .81 .84	789 783	1.08 1.10	880 872	1.36 1.41	952	1.70				
1600 1700 1800	2860 3040 3210	$0.160 \\ 0.180 \\ 0.202$	680 672 666	.86 .89 .93	774 766 757	1.15 1.17 1.21	863 854 843	1.45 1.48 1.52	943 932 923	1.75 1.79 1.84	1020 1009 1000	2.08 2.14 2.19	1151 1140	2.8 2.9
1900 2000 2100	3390 3570 3750	$0.225 \\ 0.250 \\ 0.275$	663 660 660	.97 1.02 1.08	752 749 743	1.25 1.30 1.35	837 831 823	1.56 1.59 1.65	914 906 900	1.89 1.94 1.99	992 980 972	2.24 2.29 2.35	1129 1117 1111	2.9 3.0 3.1
2200 2300 2400	3930 4110 4290	0.302 0.330 0.360	657 660 663	1.14 1.22 1.30	740 737 737	1.40 1.47 1.53	817 814 812	1.70 1.77 1.84	892 886 880	2.03 2.10 2.17	966 960 949	$2.40 \\ 2.46 \\ 2.52$	1103 1089 1083	3.1 3.2 3.3
$\begin{array}{c} 2500 \\ 2600 \\ 2800 \end{array}$	4470 4640 5000	0.390 0.422 0.489	666 672 686	1.40 1.48 1.70	737 740 746	1.63 1.72 1.95	809 806 809	1.91 2.00 2.22	877 874 869	2.23 2.32 2.50	946 940 934	2.60 2.67 2.86	1074 1069 1057	3.3 3.4 3.6
3000 3200 3400	5360 5720 6070	$\begin{array}{c} 0.560 \\ 0.638 \\ 0.721 \end{array}$	703 717 740	1.96 2.24 2.59	757 772 789	2.19 2.49 2.81	814 823 840	2.46 2.75 3.08	874 877 886	2.74 3.04 3.36	932 934 937	3.06 3.36 3.66	1052 1043 1040	3.8 4.0 4.3
3600 3800 4000	6430 6790 7140	0.810 0.900 1.000	757	2.97	809	3.19	854 872	3.44 3.86	900 914 932	3.75 4.14 4.61	949 957 972	4.03 4.46 4.90	1046 1052 1057	4.7 5.1 5.5

No. 4 Niagara Conoidal Fan-(Type N)

Capacities and Static Pressures at 70°F and 29.92 Barom.

Outlet	Capacity	Add for	1/4" 8	8.P.	3/8" 8	8.P.	1/2" 8	S.P.	5/8" 8	S.P.	3/4"	S.P.	7/8"	S.P.
Velocity Ft. Min.	Cu. Ft. Air Per Min.	Total Press.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р
1000 1100 1200	2330 2570 2800	0.063 0.076 0.090	290 288 290	.17 .19 .21	. 363 358 358	.26 .28 .30	418	.41						
1300 1400 1500	3030 3270 3500	$0.106 \\ 0.122 \\ 0.141$	295 300 308	.24 .28 .32	353 355 358	.33 .36 .40	413 410 408	.44 .47 .50	468 463 460	.56 .59 .62	515 510	.74 .77	558	.92
1600 1700 1800	3730 3970 4220	0.160 0.180 0.202	315 323 333	.37 .42 .49	360 368 375	.45 .50 .56	410 413 415	.55 .60 .66	458 455 458	.66 .71 .77	505 503 500	.80 .85 .90	550 545 543	1.00 1.00
1900 2000 2100	4430 4670 4900	$\begin{array}{c} 0.225 \\ 0.250 \\ 0.275 \end{array}$	343 353 363	.55 .62 .70	383 390 398	.63 .71 .80	420 428 435	.73 .81 .89	460 463 468	.84 .92 1.00	500 500 503	.96 1.04 1.12	540 540 540	1.1 1.1 1.2
2200 2300 2400	5130 5370 5600	0.302 0.330 0.360	373 385 395	.78 .87 • .97	408 418 428	.88 .98 1.09	443 450 458	.98 1.08 1.19	475 483 488	1.08 1.19 1.30	508 513 518	1.21 1.31 1.42	543 545 550	1.3 1.4 1.5
2500 2600 2800	5830 6070 6530	0.390 0.422 0.489	408 420 443	1.07 1.19 1.44	438 448 468	1.19 1.32 1.58	468 475 495	1.32 1.43 1.71	495 505 520	1.41 1.56 1.84	525 533 548	1.53 1.67 1.95	555 560 575	1.6 1.8 2.0
3000 3200 3400	7000 7460 7930	0.560 0.638 0.721	468	1.76	493	1.86	515 538	2.03 2.37	540 560	2.16 2.53	565 585 605	2.29 2.67 3.11	585 608 625	2.4 2.8 3.2
Outlet	Capacity Cu. Ft. Air	Add for Total	1" 8	8.P.	11/4"	S.P.	1½"	S.P.	134"	S.P.	2"	S.P.	21/2"	S.P.
Ft. Min.	Per Min.	Press.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н.
1300 1400 1500	3030 3270 3500	0.106 0.122 0.141	615 608 600	1.03 1.06 1.09	690 685	1.41 1.44	770 763	1.78 1.84	833	2.23				
1600 1700 1800	3730 3970 4220	0.160 0.180 0.202	595 588 583	1.13 1.17 1.22	678 670 663	1.50 1.53 1.58	755 748 738	1.89 1.94 1.99	825 815 808	2.29 2.34 2.40	893 883 875	2.72 2.80 2.87	1008 998	3.7
1900 2000 2100	4430 4670 4900	$0.225 \\ 0.250 \\ 0.275$	580 578 578	1.27 1.33 1.40	658 655 650	1.63 1.70 1.76	733 728 720	2.03 2.08 2.16	800 793 788	2.47 2.53 2.59	868 858 850	2.93 2.99 3.07	988 978 973	3.9 3.9 4.0
2200 2300 2400	5130 5370 5600	0.302 0.330 0.360	575 578 580	1.49 1.59 1.70	648 645 645	#1.83 1.92 2.00	715 713 710	2.23 2.31 2.40	780 775 770	2.66 2.74 2.83	845 840 830	3.14 3.22 3.30	965 953 948	4. 4. 4.
2500 2600 2800	5830 6070 6530	0.390 0.422 0.489	583 588 600	1.83 1.94 2.23	645 648 653	2.13 2.24 2.55	708 705 708	2.50 2.61 2.90	768 765 760	2.91 3.03 3.27	828 823 818	3.39 3.49 3.73	940 935 925	4.4.4.
3000 3200 3400	7000 7460 7930	0.560 0.638 0.721	615 628 648	2.56 2.93 3.38	663 675 690	2.87 3.25 3.67	713 720 735	3.22 3.59 4.02	765 768 775	3.59 3.97 4.39	815 818 820	4.00 4.39 4.79	920 913 910	5. 5. 5.
3600 3800 4000	8400 8860 9330	0.810 0.900 1.000	663	3.87	708	4.16	748 763	4.50 5.04	788 800 815	4.90 5.41 6.02	830 838 850	5.27 5.83 6.40	915 920 925	6. 6. 7.

No. $4\frac{1}{2}$ Niagara Conoidal Fan—(Type N) Capacities and Static Pressures at 70°F and 29.92″ Barom.

Outlet Velocity	Capacity Cu. Ft. Air	Add for Total	1/4"	S.P.	3/8"	S.P.	1/2"	S.P.	5/8"	S.P.	34"	S.P.	7/8"	S.P.
Ft./Min.	Per Min.	Press.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	н. Р.	R.P.M.	н. 1
1000 1100 1200	2950 3250 3540	$\begin{array}{c} 0.063 \\ 0.076 \\ 0.090 \end{array}$	258 256 258	0.21 0.23 0.27	322 318 318	0.33 0.35 0.38	371	0.52						
1300 1400 1500	3840 4130 4430	$0.106 \\ 0.122 \\ 0.141$	262 267 273	$0.30 \\ 0.35 \\ 0.40$	313 316 318	0.41 0.46 0.51	367 365 362	0.55 0.59 0.63	416 411 409	0.71 0.75 0.79	458 453	0.93 0.97	496	1.13
1600 1700 1800	4720 5020 5310	$0.160 \\ 0.180 \\ 0.202$	280 287 296	$0.46 \\ 0.53 \\ 0.61$	320 327 333	$0.57 \\ 0.64 \\ 0.71$	365 367 369	0.69 0.76 0.84	407 405 407	0.84 0.90 0.97	449 447 445	1.02 1.07 1.14	489 485 482	1.2 1.2 1.3
1900 2000 2100	5610 5900 6200	$\begin{array}{c} 0.225 \\ 0.250 \\ 0.275 \end{array}$	305 313 322	0.69 0.79 0.88	340 347 353	0.80 0.89 1.01	373 380 387	$0.92 \\ 1.02 \\ 1.13$	409 411 416	1.06 1.16 1.26	445 445 447	1.22 1.31 1.42	480 480 480	1.40 1.48 1.59
2200 2300 2400	6500 6790 7090	$0.302 \\ 0.330 \\ 0.360$	331 342 351	0.98 1.10 1.23	362 371 380	1.12 1.24 1.38	393 400 407	1.24 1.37 1.51	422 429 433	1.37 1.50 1.64	451 456 460	1.53 1.65 1.80	482 485 489	1.71 1.82 1.96
2500 2600 2800	7380 7680 8270	$0.390 \\ 0.422 \\ 0.489$	362 373 393	1.35 1.51 1.82	389 398 416	1.50 1.67 2.00	416 422 440	1.67 1.81 2.17	440 449 462	1.79 1.97 2.33	467 473 487	1.94 2.11 2.47	493 498 511	2.17 2.29 2.63
3000 3200 3400	8860 9450 10040	$0.560 \\ 0.638 \\ 0.721$	416	2.23	438	2.35	458 478	2.57 3.00	480 498	$\frac{2.73}{3.20}$	502 520 538	2.90 3.38 3.93	520 540 556	3.0 3.5 4.1
Outlet Velocity	Capacity Cu. Ft. Air	Add for Total	1" 8	S.P.	1¼"	S.P.	1½"	S.P.	134"	S.P.	2" 8	S.P.	2½"	S.P.
Ft./Min.	Per Min.	Press.	R.P.M.	Н. Р.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. і
1300 1400 1500	3840 4130 4430	$0.106 \\ 0.122 \\ 0.141$	547 540 533	1.30 1.34 1.38	613 609	1.79 1.82	685 678	2.25 2.33	740	2.82				
1600 1700 1800	4720 5020 5310	$0.160 \\ 0.180 \\ 0.202$	529 522 518	1.43 1.48 1.54	602 596 589	1.89 1.93 2.00	671 665 656	2.39 2.45 2.51	733 725 718	2.90 2.96 3.04	793 785 778	$3.44 \\ 3.54 \\ 3.63$	896 887	4.78
1900 2000 2100	5610 5900 6200	$0.225 \\ 0.250 \\ 0.275$	516 513 513	$1.60 \\ 1.69 \\ 1.78$	585 582 578	2.07 2.15 2.23	651 647 640	2.57 2.63 2.74	711 704 700	3.12 3.20 3.28	771 762 756	3.71 3.79 3.89	878 869 865	4.94 5.04 5.14
2200 2300 2400	6500 6790 7090	$0.302 \\ 0.330 \\ 0.360$	511 513 516	1.89 2.01 2.15	576 573 573	2.31 2.43 2.53	636 633 631	2.82 2.92 3.04	696 689 685	3.36 3.46 3.59	751 747 738	$3.97 \\ 4.07 \\ 4.17$	858 847 842	5.25 5.35 5.47
2500 2600 2800	7380 7680 8270	$0.390 \\ 0.422 \\ 0.489$	518 522 533	2.31 2.45 2.82	573 576 580	2.69 2.84 3.22	629 627 629	3.16 3.30 3.67	682 680 676	3.69 3.83 4.13	736 731 727	4.29 4.42 4.72	836 831 822	5.59 5.71 5.99
3000 3200 3400	8860 9450 10040	$0.560 \\ 0.638 \\ 0.721$	547 558 576	3.24 3.71 4.27	589 600 613	3.63 4.11 4.64	633 640 653	4.07 4.54 5.08	680 682 689	4.54 5.02 5.55	725 727 729	5.06 5.55 6.06	818 811 809	6.34 6.74 7.21
3600 3800 4000	10630 11220 11810	0.810 0.900 1.000	589	4.90	629	5.27	665 678	5.69 6.38	700 711 725	6.20 6.85 7.61	738 745 756	6.66 7.37 8.10	813 818, 822	7.82 8.46 9.23

No. 5 Niagara Conoidal Fan $-(Type\ N)$

Capacities and Static Pressures at 70° F. and 29.92" Barom.

Outlet Velocity	Capacity Cu. Ft. Air	Add for Total	1/4"	S.P.	3/8"	S.P.	1/2"	S.P.	5/8" S	S.P.	34"	S.P.	7/8"	S.P.
Ft./Min.	Per Min.	Press.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	н. н
1000 1100 1200	3640 4010 4370	0.063 0.076 0.090	232 230 232	.26 .29 .33	290 286 286	.41 .44 .47	334	.65						
1300 1400 1500	4740 5100 5470	0.106 0.122 0.141	236 240 246	.38 .43 .50	282 284 286	.51 .56 . 63	330 328 326	.68 .73 .78	374 370 368	.88 .92 .98	412 408	1.15 1.20	446	1.44
1600 1700 1800	5830 6190 6560	$0.160 \\ 0.180 \\ 0.202$	252 258 266	.57 .66 .76	288 294 300	.70 .79 .88	328 330 332	.86 .94 1.03	366 364 366	1.04 1.11 1.20	404 402 400	1.26 1.33 1.40	440 436 434	1.49 1.5 1.64
1900 2000 2100	6930 7290 7660	$0.225 \\ 0.250 \\ 0.275$	274 282 290	.86 .97 1.09	306 312 318	.99 1.11 1.24	336 342 348	1.14 1.26 1.39	368 370 374	1.31 1.43 1.56	400 400 402	1.50 1.62 1.75	432 432 432	1.73 1.83 1.96
2200 2300 2400	8010 8380 8750	0.302 0.330 0.360	298 308 316	1.21 1.36 1.51	326 334 342	1.38 1.55 1.70	354 360 366	1.53 1.69 1.86	380 386 390	1.69 1.85 2.03	406 410 414	1.89 2.04 2.22	434 436 440	2.11 2.25 2.41
2500 2600 2800	9100 9480 10200	$0.390 \\ 0.422 \\ 0.489$	326 336 354	1.67 1.86 2.25	350 . 358 374	$\frac{1.86}{2.06}$ $\frac{2.46}{2.46}$	374 380 396	2.06 2.24 2.68	396 404 416	2.21 2.43 2.88	420 426 438	2.40 2.60 3.05	444 448 460	2.60 2.83 3.25
3000 3200 3400	10940 11660 12390	$0.560 \\ 0.638 \\ 0.721$	374	2.75	394	2.90	412 430	3.18 3.70	432 448	3.38 3.95	452 468 484	3.58 4.18 4.85	468 486 500	3.78 4.40 5.10
Outlet Velocity	Capacity Cu. Ft. Air	Add for Total	1" 8	S.P.	11/4"	S.P.	1½"	S.P.	134"	S.P.	2" 8	.P.	2½"	S.P.
Ft./Min.	Per Min.	Press.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	н. 1
1300 1400 1500	4740 5100 5470	$0.106 \\ 0.122 \\ 0.141$	492 486 480	1.60 1.65 1.71	552 548	2.21 2.25	616 610	2.78 2.88	666	3.48				
1600 1700 1800	5830 6190 6560	0.160 0.180 0.202	476 470 466	1.76 1.82 1.90	542 536 530	2.34 2.39 2.47	604 598 590	2.95 3.03 3.10	660 652 646	3.58 3.65 3.75	714 706 700	4.25 4.38 4.48	806 798	5.90 6.00
1900 2000 2100	6930 7290 7660	$0.225 \\ 0.250 \\ 0.275$	464 462 462	1.98 2.08 2.19	526 524 520	2.55 2.65 2.75	586 582 576	3.18 3.25 3.38	640 634 630	3.85 3.95 4.05	694 686 680	4.58 4.68 4.80	790 782 778	6.10 6.23 6.35
2200 2300 2400	8018 8380 8750	$0.302 \\ 0.330 \\ 0.360$	460 462 464	2.33 2.48 2.65	518 516 516	2.85 3.00 3.13	572 570 568	3.48 3.60 3.75	624 620 616	4.15 4.28 4.44	676 672 664	4.90 5.03 5.15	772 762 758	6.48 6.60 6.75
2500 2600 2800	9100 9480 10200	$0.390 \\ 0.422 \\ 0.489$	466 470 480	2.85 3.03 3.48	516 518 522	3.33 3.50 3.98	566 564 566	3.90 4.08 4.53	614 612 608	4.55 4.73 5.10	662 658 654	5.30 5.45 5.83	752 748 740	6.90 7.05 7.40
3000 3200 3400	10940 11660 12390	$0.560 \\ 0.638 \\ 0.721$	492 502 518	4.00 4.57 5.27	530 540 552	4.48 5.08 5.73	570 576 588	5.03 5.60 6.28	612 614 620	5.60 6.20 6.85	652 654 656	6.25 6.85 7.48	736 730 728	7.83 8.32 8.90
3600 3800 4000	13120 13850 14580	0.810 0.900 1.000	530	6.05	566	6.50	598 610	7.03 7.88	630 640 652	7.65 8.46 9.40	664 670 680	8.22 9.10 10.00	732 736 740	9.65 10.5 11.4

No. 5½ Niagara Conoidal Fan-(Type N)

Capacities and Static Pressures at 70° F. and 29.92'' Barom.

Outlet Velocity	Capacity Cu. Ft. Air	Add for Total	14"	S.P.	3/8"	S.P.	1/2"	S.P.	5/8"	S.P.	34"	S.P.	7/8"	S.P.
Ft./Min.	Per Min.	Press.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	н. Р.	R.P.M.	н. г
1000 1100 1200	4410 4850 5290	0.063 0.076 0.090	211 209 211	.32 .35 .40	264 260 260	.49 .53 .57	304	.78						
1300 1400 1500	5730 6170 6620	$0.106 \\ 0.122 \\ 0.141$	215 218 224	.45 .52 .60	257 258 260	.62 .68 .76	300 298 296	.83 88 .95	340 336 335	1.06 1.12 1.18	375 371	1.40 1.45	406	1.75
1600 1700 1800	7060 7500 7940	$0.160 \\ 0.180 \\ 0.202$	229 235 242	.69 .80 .92	262 267 273	.85 .95 1.06	298 300 302	1.04 1.13 1.25	333 331 333	1.26 1.35 1.46	367 366 364	1.52 1.60 1.70	400 397 395	1.81 1.89 1.98
1900 2000 2100	8380 8820 9260	$0.225 \\ 0.250 \\ 0.275$	249 256 264	$1.04 \\ 1.17 \\ 1.32$	278 284 289	1.19 1.34 1.50	306 311 316	1.38 1.53 1.68	335 336 340	1.59 1.73 1.88	364 364 366	1.82 1.96 2.12	393 393 393	2.09 2.21 2.37
2200 2300 2400	9700 10140 10590	0.302 0.330 0.360	271 280 287	1.47 1.65 1.83	296 304 311	1.67 1.86 2.05	322 327 333	1.85 2.05 2.25	346 351 355	2.05 2.24 2.45	369 373 377	2.28 2.47 2.68	395 397 400	2.55 2.72 2.92
2500 2600 2800	11030 11470 12350	$0.390 \\ 0.422 \\ 0.489$	297 306 322	$2.02 \\ 2.25 \\ 2.72$	318 326 340	2.25 2.49 2.98	340 346 360	2.49 2.71 3.24	360 367 378	2.67 2.94 3.48	382 387 398	$2.90 \\ 3.15 \\ 3.69$	404 407 418	3.13 3.43 3.93
3000 3200 3400	13230 14110 15000	$0.560 \\ 0.638 \\ 0.721$	340	3.33	358	3.51	375 391	3.84 4.48	393 407	4.08 4.78	411 426 440	4.33 5.05 5.87	426 442 455	4.5° 5.3° 6.1°
Outlet Velocity	Capacity Cu. Ft. Air	Add for Total	1" 8	S.P.	11/4"	S.P.	1½"	S.P.	134"	S.P.	2" 8	s.P.	2½"	S.P.
Ft./Min.	Per Min.	Press.	R.P.M.	Н. Р.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. 1
1300 1400 1500	5730 6170 6620	0.106 0 122 0.141	447 442 437	1.94 1.99 2.07	502 498	2.67 2.72	560 555	3.36 3.48	606	4.21				
1600 1700 1800	7060 7500 7940	$0.160 \\ 0.180 \\ 0.202$	433 427 424	2.13 2.20 2.30	493 487 482	2.83 2.89 2.99	549 544 537	3.57 3.66 3.75	600 593 587	$4.33 \\ 4.42 \\ 4.54$	649 642 636	5.14 5.29 5.42	733 726	7.1 7.2
1900 2000 2100	8380 8820 9260	$\begin{array}{c} 0.225 \\ 0.250 \\ 0.275 \end{array}$	422 420 420	2.39 2.52 2.65	478 476 473	$3.09 \\ 3.21 \\ 3.33$	533 529 524	3.84 3.93 4.08	582 576 573	4.66 4.78 4.90	631 624 618	5.54 5.66 5.81	718 711 707	7.3 7.5 7.6
2200 2300 2400	9700 10140 10590	$0.302 \\ 0.330 \\ 0.360$	418 420 422	2.82 3.00 3.21	471 469 469	$\frac{3.45}{3.63}$ $\frac{3.78}{3.78}$	520 518 517	$4.21 \\ 4.36 \\ 4.54$	567 564 560	5.02 5.17 5.35	615 611 604	5.93 6.08 6.23	702 693 689	7.8 7.9 8.1
2500 2600 2800	11030 11470 12350	$0.390 \\ 0.422 \\ 0.489$	424 427 437	$3.45 \\ 3.66 \\ 4.21$	469 471 475	4.02 4.24 4.81	515 513 515	4.72 4.93 5.48	558 557 553	5.51 5.72 6.17	602 598 595	$6.41 \\ 6.59 \\ 7.05$	684 680 673	8.3 8.5 8.9
3000 3200 3400	13230 14110 15000	$\begin{array}{c} 0.560 \\ 0.638 \\ 0.721 \end{array}$	447 456 471	4.84 5.54 6.38	482 491 502	$5.42 \\ 6.14 \\ 6.93$	518 524 535	6.08 6.78 7.59	557 558 564	6.78 7.50 8.29	593 595 596	7.56 8.29 9.04	669 664 662	9.4 10.1 10.8
3600 3800 4000	15880 16760 17640	0.810 0.900 1.000	482	7.32	515	7.87	544 555	8.50 9.53	573 582 593	9.26 10.2 11.4	604 609 618	$9.95 \\ 11.0 \\ 12.1$	666 669 673	11.7 12.7 13.8

No. 6 Niagara Conoidal Fan-(Type N)

Outlet Velocity	Capacity Cu. Ft. Air	Add for Total	14"	S.P.	3/8"	S.P.	1/2"	S.P.	5/8"	S.P.	34"	S.P.	7/8"	S.P.
Ft./Min.	Per Min.	Press.	R.P.M.	Н. Р.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	н. 1
1000 1100 1200	5250 5770 6300	0.063 0.076 0.090	193 192 193	.37 .42 .48	242 238 238	.59 .63 .67	278	.93						
1300 1400 1500	6820 7350 7870	$0.106 \\ 0.122 \\ 0.141$	197 200 205	.54 .62 .72	235 237 238	.73 .81 .91	275 274 272	.98 1.05 1.13	312 308 307	1.27 1.33 1.41	344 340	1.66 1.72	372	2.08
1600 = 1700 1800	8400 8920 9450	$0.160 \\ 0.180 \\ 0.202$	210 215 222	.82 .95 1.09	240 245 250	1.01 1.13 1.26	274 275 277	1.23 1.35 1.49	305 304 305	1.49 1.60 1.73	337 335 334	1.81 1.91 2.02	367 363 362	2.13 2.23 2.36
1900 2000 2100	9970 10500 11030	$0.225 \\ 0.250 \\ 0.275$	228 235 242	1.24 1.40 1.57	255 260 265	1.42 1.59 1.79	280 285 290	1.64 1.82 2.00	307 309 312	1.88 2.06 2.24	334 334 335	2.16 2.33 2.52	360 360 360	2.49 2.63 2.82
2200 2300 2400	11550 12070 12600	$0.302 \\ 0.330 \\ 0.360$	248 257 263	1.75 1.96 2.18	272 279 285	1.98 2.21 2.45	295 300 305	2.20 2.43 2.68	317 322 325	2.43 2.66 2.92	339 342 345	2.72 2.94 3.19	362 363 367	3.04 3.23 3.48
2500 2600 2800	13120 13650 14700	$0.390 \\ 0.422 \\ 0.489$	272 280 295	$2.41 \\ 2.68 \\ 3.24$	291 299 312	2.67 2.96 3.55	312 317 330	2.96 3.22 3.85	330 337 347	3.18 3.50 4.14	350 355 365	3.45 3.74 4.39	370 374 384	3.74 4.07 4.68
3000 3200 3400	15750 16790 17850	$0.560 \\ 0.638 \\ 0.721$	312	3.96	329	4.18	344 359	4.57 5.33	360 373	4.86 5.69	377 390 403	5.15 6.01 6.98	390 405 417	5.44 6.34 7.35
Outlet Velocity	Capacity Cu. Ft. Air	Add for Total	1" S	.P.	11/4"	S.P.	1½"	S.P.	13/4"	S.P.	2" 8	S.P.	21/2"	S.P.
Ft./Min.	Per Min.	Press.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. г
1300 1400 1500	6820 7350 7870	$0.106 \\ 0.122 \\ 0.141$	410 405 400	2.31 2.37 2.46	460 457	3.18 3.24	513 509	4.00 4.14	555	5.00				
1600 1700 1800	8400 8920 9450	$0.160 \\ 0.180 \\ 0.202$	397 392 389	2.54 2.62 2.73	452 447 442	$3.36 \\ 3.44 \\ 3.56$	504 499 492	$\begin{array}{c} 4.25 \\ 4.36 \\ 4.47 \end{array}$	550 544 539	5.15 5.26 5.40	595 589 584	$6.12 \\ 6.30 \\ 6.45$	672 665	8.50 8.64
1900 2000 2100	9970 10500 11030	$0.225 \\ 0.250 \\ 0.275$	387 385 385	2.85 3.00 3.16	439 437 434	3.67 3.82 3.96	489 485 480	4.57 4.68 4.86	534 529 525	5.55 5.69 5.83	579 572 567	$6.59 \\ 6.73 \\ 6.91$	659 652 649	8.78 8.96 9.14
2200 2300 2400	11550 12070 12600	$0.302 \\ 0.330 \\ 0.360$	384 385 387	3.35 3.57 3.82	432 430 430	4.11 4.32 4.50	477 475 474	$5.00 \\ 5.18 \\ 5.40$	520 517 514	5.98 6.16 6.37	564 560 554	7.06 7.24 7.42	644 635 632	9.32 9.50 9.72
2500 2600 2800	13120 13650 14700	$0.390 \\ 0.422 \\ 0.489$	389 392 400	4.10 4.36 5.00	430 432 435	4.79 5.04 5.73	472 470 472	5.62 5.87 6.52	512 510 507	6.55 6.81 7.34	552 549 545	7.63 7.85 8.39	627 624 617	9.94 10.2 10.7
3000 3200 3400	15750 16790 17850	$0.560 \\ 0.638 \\ 0.721$	410 419 432	5.76 6.59 7.60	442 450 460	6.45 7.31 8.24	475 480 490	7.24 8.06 9.04	510 512 517	8.06 8.93 9.86	544 545 547	9.00 9.86 10.8	614 609 607	11.3 12.0 12.8
3600 3800 4000	18900 19950 21000	0.810 0.900 1.000	442	8.71	472	9.36	499 509	10.1 11.3	525 534 544	11.0 12.2 13.5	559	11.9 13.1 14.4	610 614 617	13.9 15.1 16.4

No. 7 Niagara Conoidal Fan—(Type N) Capacities and Static Pressures at 70° F. and 29.92″ Barom.

Outlet Velocity	Capacity Cu. Ft. Air	Add for Total	1/4"	S.P.	3/8"	S.P.	1/2"	S.P.	5/8"	S.P.	34"	S.P.	7/8"	S.P.
Ft./Min.	Per Min.	Press.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	н. Р.	R.P.M.	н. 1
1000 1100 1200	7140 7860 8570	0.063 0.076 0.090	166 164 166	0.51 0.57 0.65	207 204 204	0.80 0.85 0.92	239	1.26						
1300 1400 1500	9290 10000 10720	$0.106 \\ 0.122 \\ 0.141$	169 172 176	0.74 0.85 0.98	202 203 204	1.00 1.10 1.24	236 234 233	1.34 1.43 1.53	267 264 263	1.73 1.81 1.91	294 292	2.26 2.34	319	2.8
1600 1700 1800	11430 12150 12860	$0.160 \\ 0.180 \\ 0.202$	180 184 190	1.12 1.29 1.49	206 210 214	1.37 1.54 1.72	234 236 237	1.68 1.83 2.02	262 260 262	2.03 2.18 2.36	289 287 286	$2.46 \\ 2.60 \\ 2.75$	314 312 310	2.9 3.0 3.2
1900 2000 2100	13570 14290 15000	$0.225 \\ 0.250 \\ 0.275$	196 202 207	1.68 1.90 2.13	219 223 227	1.93 2.17 2.44	240 244 249	2.23 2.47 2.73	263 264 267	2.56 2.80 3.05	286 286 287	2.95 3.18 3.43	309 309 309	3.3 3.5 3.8
2200 2300 2400	15720 16430 17150	$0.302 \\ 0.330 \\ 0.360$	213 220 226	2.38 2.67 2.97	233 239 244	2.70 3.01 3.33	253 257 262	3.00 3.31 3.64	272 276 279	$3.31 \\ 3.63 \\ 3.97$	290 293 296	3.70 4.00 4.34	310 312 314	4.1 4.4 4.7
2500 2600 2800	17860 18580 20000	$0.390 \\ 0.422 \\ 0.489$	233 240 253	$3.27 \\ 3.64 \\ 4.41$	250 256 267	3.64 4.03 4.83	267 272 283	4.03 4.39 5.24	283 289 297	4.33 4.77 5.64	300 304 313	4.70 5.10 5.98	317 320 329	5.1 5.5 6.3
3000 3200 3400	21430 22860 24290	$0.560 \\ 0.638 \\ 0.721$	267	5.39	282	5.68	294 307	6.22 7.25	309 320	6.62 7.74	323 334 346	7.01 8.18 9.51	334 347 357	7.4 8.6 10.0
Outlet	Capacity	Add for	1" 8	S.P.	11/4"	S.P.	1½"	S.P.	134"	S.P.	2" 8	S.P.	2½"	S.P.
Velocity Ft./Min.	Cu. Ft. Air Per Min.	Total Press.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	н. Р.	R.P.M.	н.
1300 1400 1500	9290 10000 10720	0.106 0.122 0.141	352 347 343	3.14 3.23 3.35	394 392	4.33 4.41	440 436	5.44 5.64	476	6.81				
1600 1700 1800	11430 12150 12860	$0.160 \\ 0.180 \\ 0.202$	340 336 333	3.46 3.57 3.72	387 383 379	4.58 4.68 4.85	432 427 422	5.78 5.93 6.08	472 466 462	7.01 7.15 7.35	510 504 500	8.33 8.58 8.77	576 570	11.6 11.8
$1900 \\ 2000 \\ 2100$	13570 14290 15000	$0.225 \\ 0.250 \\ 0.275$	332 330 330	3.88 4.08 4.30	376 374 372	5.00 5.19 5.39	419 416 412	6.22 6.37 6.62	457 453 450	7.55 7.74 7.94	496 490 486	$8.97 \\ 9.16 \\ 9.41$	564 559 556	12.0 12.2 12.5
$2200 \\ 2300 \\ 2400$	15720 16430 17150	$0.302 \\ 0.330 \\ 0.360$	329 330 332	4.56 4.86 5.19	370 369 369	5.59 5.88 6.13	409 407 406	6.81 7.06 7.35	446 443 440	8.13 8.38 8.67	483 480 474	9.60 9.85 10.1	552 544 542	12.7 12.9 13.2
2500 2600 2800	17860 18580 20000	$0.390 \\ 0.422 \\ 0.489$	333 336 343	5.59 5.93 6.81	369 370 373	6.52 6.86 7.79	404 403 404	7.64 7.99 8.87	439 437 434	8.92 9.26 10.0	473 470 467	10.4 10.7 11.4	537 534 529	13.5 13.8 14.5
3000 3200 3400	21430 22860 24290	$\begin{array}{c} 0.560 \\ 0.638 \\ 0.721 \end{array}$	352 359 370	7.84 8.97 10.3	379 386 394	8.77 9.95 11.2	407 412 420	9.85 11.0 12.3	437 439 443	11.0 12.2 13.4	466 467 469	12.3 13.4 14.7	526 522 520	15.3 16.3 17.4
3600 3800 4000	25720 27150 28580	0.810 0.900 1.000	379	11.9	404	12.7	427 436	13.8 15.4	450 457 466	15.0 16.6 18.4	474 479 486	16.1 17.8 19.6	523 526 529	18.9 20.5 22.4

No. 8 Niagara Conoidal Fan-(Type N)

Capacities and Static Pressures at 70 $^{\circ}$ F. and 29.92 $^{\prime\prime}$ Barom.

Outlet Velocity	Capacity Cu. Ft. Air	Add for Total	1/4"	S.P.	3/8"	S.P.	1/2"	S.P.	5/8"	S.P.	34"	S.P.	7/8"	S.P.
Ft./Min.	Per Min.	Press.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	н. 1
1000 1100 1200	9330 10270 11200	0.063 0.076 0.090	145 144 145	0.67 0.74 0.85	181 179 179	1.04 1.11 1.20	209	1.65						
1300 1400 1500	12130 13060 14000	$0.106 \\ 0.122 \\ 0.141$	148 150 154	$0.96 \\ 1.11 \\ 1.27$	176 178 179	1.31 1.44 1.61	206 205 204	1.75 1.87 2.00	234 231 230	2.25 2.36 2.50	258 255	2.95 3.06	279	3.69
1600 1700 1800	14930 15860 16800	$0.160 \\ 0.180 \\ 0.202$	158 161 166	1.47 1.69 1.94	180 184 188	1.79 2.01 2.25	205 206 208	2.19 2.39 2.64	229 228 229	2.66 2.85 3.08	253 251 250	3.21 3.39 3.59	275 273 271	3.82 4.01 4.19
1900 2000 2100	17730 18660 19600	$\begin{array}{c} 0.225 \\ 0.250 \\ 0.275 \end{array}$	171 176 181	2.20 2.48 2.79	191 195 199	2.52 2.83 3.18	210 214 218	2.91 3.23 3.56	230 231 234	3.34 3.66 3.98	250 250 251	3.85 4.15 4.48	270 270 270	4.42 4.68 5.02
2200 2300 2400	20530 21460 22400	$0.302 \\ 0.330 \\ 0.360$	186 193 198	3.11 3.48 3.87	204 209 214	3.53 3.93 4.35	221 225 229	3.92 4.33 4.76	238 241 244	4.33 4.74 5.19	254 256 259	4.83 5.22 5.67	271 273 275	5.40 5.75 6.18
2500 2600 2800	23330 24260 26130	$0.390 \\ 0.422 \\ 0.489$	204 210 221	4.28 4.76 5.76	219 224 234	4.75 5.26 6.31	234 238 248	5.26 5.73 6.85	248 253 260	5.65 6.23 7.36	263 266 274	6.13 6.66 7.81	278 280 288	6.66 7.23 8.32
3000 3200 3400	28000 29860 31720	$0.560 \\ 0.638 \\ 0.721$	234	7.04	246	7.42	258 269	8.13 9.47	270 280	8.64 10.1	283 293 303	9.15 10.7 12.4	293 304 313	9.60 11.3 13.1
Outlet Velocity	Capacity Cu. Ft. Air	Add for Total	1" 8	S.P.	11/4"	S.P.	1½"	S.P.	13/4"	S.P.	2" 8	S.P.	2½"	
Ft./Min.	Per Min.	Press.	R.P.M.	Н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	н. н
1300 1400 1500	12130 13060 14000	$0.106 \\ 0.122 \\ 0.141$	308 304 300	4.10 4.22 4.37	345 343	5.65 5.76	385 381	7.10 7.36	416	8.90				
1600 1700 1800	14930 15860 16800	$0.160 \\ 0.180 \\ 0.202$	298 294 291	4.51 4.66 4.86	339 335 331	$5.98 \\ 6.11 \\ 6.33$	378 374 369	7.55 7.74 7.94	413 408 404	9.15 9.34 9.60	446 441 438	10.9 11.2 11.5	504 499	15.1 15.4
1900 2000 2100	17730 18660 19600	$0.225 \\ 0.250 \\ 0.275$	290 289 289	5.06 5.33 5.61	329 328 325	6.53 6.78 7.04	366 364 360	8.13 8.32 8.64	400 396 394	9.86 10.1 10.4	434 429 425	11.7 12.0 12.3	494 489 486	15.6 15.9 16.3
2200 2300 2400	20530 21460 22400	0.302 0.330 0.360	288 289 290	5.96 6.35 6.78	324 323 323	7.30 7.68 8.00	358 356 355	8.90 9.22 9.60	390 388 385	10.6 11.0 11.3	423 420 415	12.6 12.9 13.2	483 476 474	16.6 16.9 17.3
2500 2600 2800	23330 24260 26130	$0.390 \\ 0.422 \\ 0.489$	291 294 300	7.30 7.74 8.90	323 324 326	8.51 8.96 10.2	354 353 354	9.98 10.4 11.6	384 383 380	11.7 12.1 13.1	414 411 409	13.6 14.0 14.9	470 468 463	17.7 18.1 19.0
3000 3200 3400	28000 29860 31720	$0.560 \\ 0.638 \\ 0.721$	308 314 324	10.2 11.7 13.5	331 338 345	11.5 13.0 14.7	356 360 368	12.9 14.3 16.1	383 384 388	14.3 15.9 17.5	408 409 410	16.0 17.5 19.1	460 456 455	20.0 21.3 22.8
3600 3800 4000	33590 35460 37330	0.810 0.900 1.000	331	15.5	354	16.6	374 381	18.0 20.2	394 400 408	19.6 21.6 24.1	415 419 425	21.1 23.3 25.6	458 460 463	24.7 26.8 29.2

No. 9 Niagara Conoidal Fan-(Type N)

Outlet Velocity	Capacity Cu. Ft. Air	Add for Total	1/4"	S.P.	3/8"	S.P.	1/2"	S.P.	5/8"	S.P.	34"	S.P.	7/8"	S.P.
Ft./Min.	Per Min.	Press.	R.P.M.	Н. Р.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. 1
1000 1100 1200	11810 12990 14170	0.063 0.076 0.090	129 128 129	0.84 0.94 1.07	161 159 159	1.32 1.41 1.52	186	2.09					*	
1300 1400 1500	15360 16530 17720	$0.106 \\ 0.122 \\ 0.141$	131 133 137	1.22 1 40 1.61	157 158 159	1.65 1.82 2.04	183 182 181	$2.21 \\ 2.37 \\ 2.54$	208 206 205	2.85 2.99 3.16	229 227	3.74 3.87	248	4.6
1600 1700 1800	18900 20080 21250	$0.160 \\ 0.180 \\ 0.202$	140 143 148	1.86 2.14 2.45	160 163 167	2.27 2.54 2.84	182 183 185	2.77 3.03 3.35	203 202 203	3.36 3.60 3.90	225 223 222	4.07 4.29 4.55	244 242 241	4.8 5.0 5.3
1900 2000 2100	22440 23620 24800	$0.225 \\ 0.250 \\ 0.275$	152 157 161	2.78 3.14 3.52	170 173 177	$3.19 \\ 3.58 \\ 4.03$	187 190 193	$3.69 \\ 4.08 \\ 4.51$	205 206 208	4.23 4.64 5.04	222 222 223	4.87 5.25 5.67	240 240 240	5.6 5.9 6.8
2200 2300 2400	25980 27160 28340	0.302 0.330 0.360	166 171 176	3.93 4.41 4.90	181 186 190	4.47 4.97 5.50	197 200 203	4.96 5.48 6.02	211 215 217	$5.47 \\ 6.00 \\ 6.56$	226 228 230	6.10 6.61 7.18	241 242 244	6.8 7.2 7.8
2500 2600 2800	29520 30710 33070	$0.390 \\ 0.422 \\ 0.489$	181 187 197	5.41 6.02 7.28	195 199 208	6.01 6.66 7.98	208 211 220	6.66 7.25 8.67	220 224 231	7.15 7.88 9.30	233 237 243	7.76 8.42 9.88	247 249 256	8.4 9.1 10.4
3000 3200 3400	35430 37790 40150	$\begin{array}{c} 0.560 \\ 0.638 \\ 0.721 \end{array}$	208	8.91	219	9.40	229 239	10.3 12.0	240 249	10.9 12.8	251 260 269	11.6 13.5 15.7	260 270 278	12.: 14.: 16.:
Outlet Velocity	Capacity Cu. Ft. Air	Add for Total	1" 8	S.P.	11/4"	S.P.	1½"	S.P.	134"	S.P.	2" 8	3.P.	21/2"	S.P.
Ft./Min.	Per Min.	Press.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	Н.
1300 1400 1500	15360 16530 17720	$0.106 \\ 0.122 \\ 0.141$	273 270 267	5.18 5.34 5.53	307 304	7.15 7.29	342 339	8.99 9.31	370	11.3				
1600 1700 1800	18900 20080 21250	0.160 0.180 0.202	264 261 259	5.71 5.90 6.15	301 298 294	7.57 7.73 8.01	336 332 328	9.56 9.80 10.0	367 362 359	$^{11.6}_{11.8}_{12.2}$	397 392 389	13.8 14.2 14.5	448 443	19. 19.
1900 2000 2100	22440 23620 24800	$\begin{array}{c} 0.225 \\ 0.250 \\ 0.275 \end{array}$	258 257 257	6.41 6.74 7.10	292 291 289	8.26 8.59 8.91	326 323 320	10.3 10.5 10.9	356 352 350	12.5 12.8 13.1	386 381 378	14.8 15.2 15.6 *	439 435 432	19. 20. 20.
2200 2300 2400	25980 27160 28340	$\begin{array}{c} 0.302 \\ 0.330 \\ 0.360 \end{array}$	256 257 258	7.54 8.04 8.59	288 287 287	$9.23 \\ 9.72 \\ 10.1$	318 317 316	11.3 11.7 12.2	347 344 342	13.4 13.7 14.3	376 373 369	15.9 16.3 16.7	429 423 421	21. 21. 21.
2500 2600 2800	29520 30710 33070	$0.390 \\ 0.422 \\ 0.489$	259 261 267	9.23 9.80 11.3	287 288 290	10.8 11.3 12.9	314 313 314	12.6 13.2 14.7	341 340 338	14.8 15.3 16.5	368 366 363	17.2 17.7 18.9	418 416 411	22. 22. 24.
3000 3200 3400	35430 37790 40150	$0.560 \\ 0.638 \\ 0.721$	273 279 288	13.0 14.8 17.1	294 300 307	14.5 16.4 18.6	317 320 327	16.3 18.1 20.3	340 341 344	18.2 20.1 22.2	362 363 364	20.3 22.2 24.2	409 406 405	25. 27. 28.
3600 3800 4000	42510 44880 47240	0.810 0.900 1.000	294	19.6	314	21.1	332 339	22.8 25.5	350 356 362	24.8 27.4 30.5	369 372 378	26.7 29.5 32.4	407 409 411	31. 33. 36.

No. 10 Niagara Conoidal Fan-(Type N)

Outlet Velocity	Capacity Cu. Ft. Air	Add for Total	1/4"	S.P.	3/8"	S.P.	1/2"	S.P.	5/8"	S.P.	3/4"	S.P.	7/8"	S.P.
Ft./Min.	Per Min.	Press.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	н.
1000 1100 1200	14580 16040 17500	0.063 0.076 0.090	116 115 116	1.04 1.16 1.32	145 143 143	1.63 1.74 1.87	167	2.58						
1300 1400 1500	18960 20410 21870	$0.106 \\ 0.122 \\ 0.141$	118 120 123	1.50 1.73 1.99	141 142 143	2.04 2.25 2.52	165 164 163	2.73 2.92 3.13	187 185 184	3.52 3.69 3.90	206 204	4.61 4.78	223	5.3
1600 1700 1800	23330 24790 26240	$0.160 \\ 0.180 \\ 0.202$	126 129 133	2.29 2.64 3.03	144 147 150	2.80 3.14 3.51	164 165 166	3.42 3.74 4.13	183 182 183	4.15 4.45 4.81	202 201 200	5.02 5.30 5.61	220 218 217	5.9 6.5 6.6
1900 2000 2100	27700 29160 30620	$0.225 \\ 0.250 \\ 0.275$	137 141 145	3.43 3.88 4.35	153 156 159	3.94 4.42 4.97	168 171 174	4.55 5.04 5.56	184 185 187	5.22 5.72 6.22	200 200 201	6.01 6.48 7.00	216 216 216	6.9 7.3 7.8
2200 2300 2400	32080 33540 34990	$0.302 \\ 0.330 \\ 0.360$	149 154 158	$4.85 \\ 5.44 \\ 6.05$	163 167 171	5.51 6.14 6.79	177 180 183	6.12 6.76 7.43	190 193 195	6.76 7.40 8.10	203 205 207	7.54 8.16 8.86	217 218 220	8.4 8.5 9.6
2500 2600 2800	36450 37910 40830	$0.390 \\ 0.422 \\ 0.489$	163 168 177	6.68 7.43 8.99	175 179 187	7.42 8.22 9.85	187 190 198	8.22 8.95 10.7	198 202 208	8.83 9.73 11.5	210 213 219	9.58 10.4 12.2	222 224 230	10.4 11.3 13.6
3000 3200 3400	43740 46660 49570	$0.560 \\ 0.638 \\ 0.721$	187	11.0	197	11.6	206 215	12.7 14.8	216 224	13.5 15.8	226 234 242	14.3 16.7 19.4	234 243 250	15. 17. 20.
Outlet	Capacity Cu. Ft. Air	Add for Total	1" 8	S.P.	11/4"	S.P.	1½"	S.P.	134"	S.P.	2" 8	3.P.	2½"	S.P.
t./Min.	Per Min.	Press.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н.
1300 1400 1500	18960 20410 21870	0.106 0.122 0.141	246 243 240	6.40 6.59 6.83	276 274	8.83 9.00	308 305	11.1 11.5	333	13.9				
1600 1700 1800	23330 24790 26240	$0.160 \\ 0.180 \\ 0.202$	238 235 233	7.05 7.28 7.59	271 268 265	$9.34 \\ 9.54 \\ 9.89$	302 299 295	11.8 12.1 12.4	330 326 323	14.3 14.6 15.0	357 353 350	17.0 17.5 17.9	403 399	23.0 24.0
1900 2000 2100	27700 29160 30620	$0.225 \\ 0.250 \\ 0.275$	232 231 231	7.91 8.32 8.77	263 262 260	10.2 10.6 11.0	293 291 288	12.7 13.0 13.5	320 317 315	15.4 15.8 16.2	347 343 340	18.3 18.7 19.2	395 391 389	24.9 24.9 25.4
2200 2300 2400	32080 33540 34990	$0.302 \\ 0.330 \\ 0.360$	230 231 232	9.31 9.92 10.6	259 258 258	$\begin{array}{c} 11.4 \\ 12.0 \\ 12.5 \end{array}$	286 285 284	13.9 14.4 15.0	312 310 308	16.6 17.1 17.7	338 336 332	19.6 20.1 20.6	386 381 379	25.9 26.4 27.0
2500 2600 2800	36450 37910 40830	$\begin{array}{c} 0.390 \\ 0.422 \\ 0.489 \end{array}$	233 235 240	11.4 12.1 13.9	258 259 261	13.3 14.0 15.9	283 282 283	15.6 16.3 18.1	307 306 304	18.2 18.9 20.4	331 329 327	21.2 21.8 23.3	376 374 370	27. 28. 29.
3000 3200 3400	43740 46660 49570	$\begin{array}{c} 0.560 \\ 0.638 \\ 0.721 \end{array}$	246 251 259	16.0 18.3 21.1	265 270 276	17.9 20.3 22.9	285 288 294	20.1 22.4 25.1	306 307 310	22.4 24.8 27 4	326 327 328	25.0 27.4 29.9	368 365 364	31.3 33.3 35.6
3600 3800 4000	52490 55400 58320	0.810 0.900 1.000	265	24.2	283	26.0	299 305	$\frac{28.1}{31.5}$	315 320 326	30.6 33.8 37.6	332 335 340	32.9 36.4 40.0	366 368 370	38.6 41.8 45.6

No. 11 Niagara Conoidal Fan—(Type N) Capacities and Static Pressures at 70 $^{\circ}$ F. and 29.92 Barom.

Outlet Velocity	Capacity Cu. Ft. Air	Add for Total	14"	S.P.	3/8"	S.P.	1/2"	S.P.	5/8"	S.P.	34"	S.P.	7/8"	S.P.
Ft./Min.	Per Min.	Press.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	н. н
1000 1100 1200	$\begin{array}{c} 17640 \\ 19410 \\ 21170 \end{array}$	0.063 0.076 0.090	106 105 106	1.26 1.40 1.60	132 130 130	1.97 2.11 2.26	152	3.12						
1300 1400 1500	$\begin{array}{c} 22930 \\ 24700 \\ 26460 \end{array}$	$0.106 \\ 0.122 \\ 0.141$	107 109 112	1.82 2.09 2.41	128 129 130	2.47 2.72 3.05	150 149 148	3.30 3.53 3.79	170 168 167	4.26 4.47 4.72	187 186	5.58 5.78	203	6.9
1600 1700 1800	28230 29990 31750	0.160 0.180 0.202	115 117 121	2.77 3.20 3.67	131 134 136	3.39 3.80 4.25	149 150 151	4.14 4.53 5.00	166 166 166	5.02 5.39 5.82	184 183 182	6.08 6.41 6.79	200 198 197	7.2 7.5 7.9
1900 2000 2100	33520 35280 37050	$0.225 \\ 0.250 \\ 0.275$	125 128 132	$4.15 \\ 4.70 \\ 5.26$	139 142 145	4.77 5.35 6.01	153 156 158	5.51 6.10 6.73	167 168 170	6.32 6.92 7.53	182 182 183	7.27 7.84 8.87	196 196 196	8.3 8.8 9.4
2200 2300 2400	38810 40580 42340	0.302 0.330 0.360	136 140 144	5.87 6.58 7.32	148 152 156	6.67 7.43 8.22	161 164 166	7.41 8.18 8.99	173 176 177	8.18 8.95 9.80	185 186 188	9.12 9.87 10.7	197 198 200	10.2 10.9 11.7
$2500 \\ 2600 \\ 2800$	44100 45870 49400	0.390 0.422 0.489	148 153 161	8.08 8.99 10.9	159 163 170	8.98 9.95 11.9	170 173 180	9.95 10.8 13.0	180 184 189	10.7 11.8 13.9	191 194 199	11.6 12.6 14.8	202 204 209	12.6 13.7 15.7
3000 3200 3400	52910 56450 59980	0.560 0.638 0.721	170	13.3	179	14.0	187 196	15.4 17.9	196 204	16.3 19.1	206 213 220	$\begin{array}{c} 17.3 \\ 20.2 \\ 23.5 \end{array}$	213 221 227	18.3 21.3 24.7
Outlet Velocity	Capacity Cu. Ft. Air	Add for Total	1" 8	3.P.	11/4"	S.P.	1½"	S.P.	134"	S.P.	2" 8	S.P.	2½"	S.P.
Ft./Min.	Per Min.	Press.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	н. Р.	R.P.M.	н. 1
1300 1400 1500	22930 24700 26460	0.106 0.122 0.141	224 221 218	7.74 7.97 8.26	251 249	10.7 10.9	280 277	13.4 13.9	303	16.8		:		
1600 1700 1800	28230 29990 31750	0.160 0.180 0.202	216 214 212	8.53 8.81 9.18	246 244 241	11.3 11.6 12.0	275 272 268	14.3 14.7 15.0	300 296 294	17.3 17.7 18.2	325 321 318	20.6 21.2 21.7	366 363	28.6 29.0
1900 2000 2100	33520 35280 37050	0.225 0.250 0.275	211 210 210	9.57 10.1 10.6	239 238 236	$12.4 \\ 12.8 \\ 13.3$	266 265 262	15.4 15.7 16.3	291 288 286	18.6 19.1 19.6	316 312 309	$22.2 \\ 22.6 \\ 23.2$	359 356 354	29.5 30.1 30.7
2200 2300 2400	38810 40580 42340	0.302 0.330 0.360	209 210 211	11.3 12.0 12.8	236 235 235	13.8 14.5 15.1	260 259 258	16.8 17.4 18.2	284 282 280	$20.1 \\ 20.7 \\ 21.4$	307 306 302	23.7 24.3 24.9	351 346 345	31.3 32.0 32.7
2500 2600 2800	44100 45870 49400	$0.390 \\ 0.422 \\ 0.489$	212 214 218	13.8 14.6 16.8	235 236 237	16.1 17.0 19.2	257 256 257	18.9 19.7 21.9	279 278 276	22.0 22.9 24.7	301 299 297	25.7 26.4 28.2	342 340 336	33.4 34.1 35.8
3000 3200 3400	52910 56450 59980	0.560 0.638 0.721	224 228 236	$\begin{array}{c} 19.4 \\ 22.1 \\ 25.5 \end{array}$	241 246 251	21.7 24 6 27.	259 262 267	24.3 27.1 30.4	278 279 282	27.1 30.0 33.2	296 297 298	30.3 33.2 36.2	335 332 331	37.9 40.3 43.1
3600 3800 4000	63510 67030 70560	0.810 0.900 1.000	241	29.3	257	31.5	272 277	34.0 38.1	286 291 296	37.0 40.9 45.5	302 305 309	39.8 44.1 48.4	333 335 336	46.3 50.6 55.3

No. 12 Niagara Conoidal Fan— $(Type\ N)$ Capacities and Static Pressures at 70° F. and 29.92″ Barom.

Outlet Velocity	Capacity Cu. Ft. Air	Add for Total	14"	S.P.	3/8"	S.P.	1/2"	S _e P.	5/8"	S.P.	3/4"	S.P.	7/8"	S.P.
Ft./Min.	Per Min.	Press.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	н. Р.	R.P.M	н. Р.	R.P.M.	Н.
1000 1100 1200	21000 23090 25190	0.063 0.076 0.090	97 96 97	1.50 1.67 1.90	121 119 119	2.35 2.51 2.69	139	3.72					1	
1300 1400 1500	27290 29390 31490	$0.106 \\ 0.122 \\ 0.141$	98 100 103	2.16 2.49 2.87	118 118 119	2.94 3.24 3.63	138 137 136	3.93 4.21 4.51	156 154 153	5.07 5.31 5.62	172 170	6.64 6.88	186	8.3
1600 1700 1800	33600 35690 37790	$0.160 \\ 0.180 \\ 0.202$	105 108 111	$3.30 \\ 3.80 \\ 4.36$	120 123 125	4.03 4.52 5.06	137 138 138	4.93 5.39 5.95	153 152 153	5.98 6.41 6.93	168 168 167	7.23 7.63 8.08	183 182 181	8.6 9.6 9.4
1900 2000 2100	39890 41990 44090	$\begin{array}{c} 0.225 \\ 0.250 \\ 0.275 \end{array}$	114 118 121	$\frac{4.94}{5.59}$ $\frac{6.27}{6}$	128 130 133	5.67 6.37 7.16	140 143 145	6.55 7.26 8.01	153 154 156	7.52 8.24 8.96	167 167 168	8.66 9.33 10.1	180 180 180	9.9 10.2 11.3
2200 2300 2400	46190 48290 50390	$0.302 \\ 0.330 \\ 0.360$	124 128 132	6.99 7.83 8.71	136 139 143	7.94 8.84 9.78	148 150 153	8.81 9.74 10.7	158 161 163	9.74 10.7 11.7	169 171 173	10.9 11.8 12.8	181 182 183	12.5 12.5 13.5
2500 2600 2800	52490 54590 58790	$0.390 \\ 0.422 \\ 0.489$	136 140 148	9.62 10.7 13.0	146 149 156	10.7 11.8 14.2	156 158 165	$11.8 \\ 12.9 \\ 15.4$	165 168 173	12.7 14.0 16.6	175 178 183	13.8 15.0 17.6	185 187 192	15.0 16.3 18.
3000 3200 3400	62980 67180 71380	$0.560 \\ 0.638 \\ 0.721$	156	15.9	164	16.7	172 179	18.3 21.3	180 187	19.5 22.8	188 195 202	20.6 24.1 27.9	195 203 208	21. 25. 29.
Outlet Velocity	Capacity Cu. Ft. Air	Add for Total	1" 8	S.P.	11/4"	S.P.	11/2"	S.P.	134"	S.P.	2" 8	S.P.	21/2"	
Ft./Min.	Per Min.	Press.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	н.
1300 1400 1500	27290 29390 31490	$0.106 \\ 0.122 \\ 0.141$	205 203 200	9.22 9.49 9.84	230 228	12.7 13.0	257 254	16.0 16.6	278	20.0				
1600 1700 1800	33600 35690 37790	$0.160 \\ 0.180 \\ 0.202$	198 196 194	$10.2 \\ 10.5 \\ 10.9$	226 223 221	13.5 13.7 14.3	252 249 246	17.0 17.4 17.9	275 272 269	20.6 21.0 21.6	298 294 292	24.5 25.2 25.8	336 333	34.6 34.6
1900 2000 2100	39890 41990 44090	$0.225 \\ 0.250 \\ 0.275$	193 193 193	11.4 12.0 12.6	219 218 217	14.7 15.3 15.8	244 243 240	18.3 18.7 19.5	267 264 263	22.2 22.8 23.3	289 286 283	26.4 26.9 27.7	329 326 324	35.1 35.9 36.6
2200 2300 2400	46190 48290 50390	$0.302 \\ 0.330 \\ 0.360$	192 193 193	13.4 14.3 15.3	216 215 215	$16.4 \\ 17.3 \\ 18.0$	238 238 237	$20.0 \\ 20.7 \\ 21.6$	260 258 257	23.9 24.6 25.5	282 280 277	28.2 29.0 29.7	322 318 316	37.3 38.0 38.9
2500 2600 2800	52490 54590 58790	$0.390 \\ 0.422 \\ 0.489$	194 196 200	16.4 17.4 20.0	215 216 218	19.2 20.2 22.9	236 235 236	22.5 23.5 26.1	256 255 253	26.2 27.2 29.4	276 274 273	30.5 31.4 33.6	313 312 308	39.8 40.6 42.6
3000 3200 3400	62980 67180 71380	$0.560 \\ 0.638 \\ 0.721$	205 209 216	23.0 26.4 30.4	221 225 230	25.8 29.2 33.0	238 240 245	29.0 32.3 36.2	255 256 258	32.3 35.7 39.5	272 273 273	36.0 39.5 43.1	307 304 303	45.1 48.0 51.3
3600 3800 4000	75580 79780 83980	0.810 0.900 1.000	221	34.9	236	37.5	249 254	40.5 45.4	263 267 272	44.1 48.7 54.2	277 279 283	47.4 52.4 57.6	305 307 308	55.6 60.2 65.7

No. 13 Niagara Conoidal Fan—(Type N)

Outlet	Capacity	Add for	14"	S.P.	3/8"	S.P.	1/2"	S.P.	5/8"	S.P.	3/4"	S.P.	7/8"	S.P.
Velocity Ft./Min.	Cu. Ft. Air Per Min.	Total Press.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. І
1000 1100 1200	$\begin{array}{c} 24650 \\ 27110 \\ 29570 \end{array}$	0.063 0.076 0.090	89 89 89	1.76 1.96 2.23	112 110 110	2.76 2.94 3.16	129	4.36						
1300 1400 1500	32040 34500 36960	$0.106 \\ 0.122 \\ 0.141$	91 92 95	2.54 2.92 3.36	109 109 110	3.45 3.80 4.26	127 126 125	4.61 4.94 5.29	144 142 142	$5.95 \\ 6.24 \\ 6.59$	159 157	7.79 8.08	172	9.7
1600 1700 1800	39430 41900 44350	$0.160 \\ 0.180 \\ 0.202$	97 99 102	3.87 4.46 5.12	111 113 115	$4.73 \\ 5.31 \\ 5.93$	126 127 128	5.78 6.32 6.98	141 140 141	7.01 7.52 8.13	156 155 154	8.48 8.96 9.48	169 168 167	10.1 10.6 11.1
1900 2000 2100	46810 49280 51740	$0.225 \\ 0.250 \\ 0.275$	105 109 112	5.80 6.56 7.35	118 120 122	$6.66 \\ 7.47 \\ 8.40$	129 132 134	7.69 8.52 9.40	142 142 144	8.82 9.67 10.5	154 154 155	10.2 11.0 11.8	166 166 166	11.7 12.4 13.3
2200 2300 2400	54210 56680 59130	0.302 0.330 0.360	115 119 122	8.20 9.19 10.2	125 129 132	9.31 10.4 11.5	136 139 141	10.4 11.4 12.6	146 149 150	11.4 12.5 13.7	156 158 159	12.8 13.8 15.0	167 168 169	14.3 15.2 16.3
2500 2600 2800	61600 64060 69000	$0.390 \\ 0.422 \\ 0.489$	125 129 136	11.3 12.6 15.2	135 138 144	12.6 13.9 16.7	144 146 152	13.9 15.1 18.1	152 156 160	14.9 16.5 19.4	162 164 169	16.2 17.6 20.6	171 172 177	17.6 19.1 22.0
3000 3200 3400	73920 78850 83770	$\begin{array}{c} 0.560 \\ 0.638 \\ 0.721 \end{array}$	144	18.6	152	19.6	159 166	21.5 25.0	166 172	22.8 26.7	174 180 186	$24.2 \\ 28.2 \\ 32.8$	180 187 192	25.5 29.8 34.5
Outlet Velocity	Capacity Cu. Ft. Air	Add for Total	1" 8	3.P.	11/4"	S.P.	11/2"	S.P.	134"	S.P.	2" 8	S.P.	2" 8	S.P.
Ft./Min.	Per Min.	Press.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. 1
1300 1400 1500	32040 34500 36960	$0.106 \\ 0.122 \\ 0.141$	189 187 185	10.8 11.1 11.6	212 211	14.9 15.2	237 235	18.8 19.4	256	23.5				
1600 1700 1800	39430 41900 44350	$0.160 \\ 0.180 \\ 0.202$	183 181 179	11.9 12.3 12.8	209 206 204	$^{15.8}_{16.1}_{16.7}$	232 230 227	$20.0 \\ 20.5 \\ 21.0$	251 251 249	24.2 24.7 25.4	275 272 269	28.7 29.6 30.3	310 307	39.9 40.6
1900 2000 2100	46810 49280 51740	$0.225 \\ 0.250 \\ 0.275$	179 178 178	13.4 14.1 14.8	202 202 200	17.2 17.9 18.6	225 224 222	21.5 22.0 22.8	246 244 242	$26.0 \\ 26.7 \\ 27.4$	267 264 262	$30.9 \\ 31.6 \\ 32.5$	304 301 299	41.2 42.1 42.9
2200 2300 2400 ₁	54210 56680 59130	$0.302 \\ 0.330 \\ 0.360$	177 178 179	15.7 16.8 17.9	199 199 199	$19.3 \\ 20.3 \\ 21.1$	220 219 219	23.5 24.3 25.4	240 239 237	28.1 28.9 29.9	260 259 255	$33.1 \\ 34.0 \\ 34.8$	297 293 292	43.8 44.6 45.6
2500 2600 2800	61600 64060 69000	$0.390 \\ 0.422 \\ 0.489$	179 181 185	19.3 20.5 23.5	199 199 201	22.5 23.7 26.9	218 217 218	26.4 27.6 30.6	236 235 234	$30.8 \\ 31.9 \\ 34.5$	255 253 252	35.8 36.8 39.4	289 288 285	46.7 47.7 50.0
3000 3200 3400	73920 78850 83770	$\begin{array}{c} 0.560 \\ 0.638 \\ 0.721 \end{array}$	189 193 199	27.0 30.9 35.7	204 208 212	30.3 34.3 38.7	219 222 226	34.0 37.9 42.4	235 236 239	37.9 41.9 46.3	251 252 252	42.3 46.3 50.5	283 281 280	52.9 56.3 60.2
3600 3800 4000	88700 93620 98560	0.810 0.900 1.000	204	40.9	218	44.0	230 235	47.5 53.2	242 246 251	51.7 57.1 63.5	255 258 262	55.6 61.5 67.6	282 283 285	65.2 70.6 77.1

No. 14 Niagara Conoidal Fan-(Type N)

Outlet Velocity	Capacity Cu. Ft. Air	Add for Total	1/4"	S.P.	3/8"	S.P.	1/2"	S.P.	5/8"	S.P.	3/4"	S.P.	7/8"	S.P.
Ft./Min.	Per Min.	Press.	RP.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	н.
1000 1100 1200	28680 31440 34290	0.063 0.076 0.090	83 82 83	2.04 2.27 2.59	104 102 102	3.20 3.41 3.67	119	5.06						
1300 1400 1500	37150 40000 42860	$0.106 \\ 0.122 \\ 0.141$	84 86 88	2.94 3.39 3.90	101 102 102	4.00 4.41 4.94	118 117 117	5.35 5.72 6.14	134 132 132	6.90 7.23 7.65	147 146	9.04 9.37	159	11.
1600 1700 1800	45720 48580 51420	$0.160 \\ 0.180 \\ 0.202$	90 92 95	4.49 5.18 5.94	103 105 107	5.49 6.16 6.88	117 118 119	6.70 7.33 8.10	131 130 131	8.14 8.72 9.43	144 144 143	9.84 10.4 11.0	157 156 155	11. 12. 12.
1900 2000 2100	54290 57150 60010	$0.225 \\ 0.250 \\ 0.275$	98 101 104	6.72 7.61 8.53	109 112 114	7.72 8.66 9.74	120 122 124	8.92 9.88 10.9	132 132 134	10.2 11.2 12.2	143 143 144	11.8 12.7 13.7	154 154 154	13. 14. 15.
2200 2300 2400	62880 65720 68580	0.302 0.330 0.360	107 110 113	9.51 10.7 11.9	117 119 122	10.8 12.0 13.3	127 129 131	$12.0 \\ 13.3 \\ 14.6$	136 138 139	13.3 14.5 15.9	145 147 148	14.8 16.0 17.4	155 156 157	16. 17. 18.
2500 2600 2800	71430 74290 80010	$0.390 \\ 0.432 \\ 0.489$	117 120 127	13.1 14.6 17.6	125 128 134	14.6 16.1 19.3	134 136 142	16.1 17.6 21.0	142 144 149	17.3 19.1 22.6	150 152 157	18.8 20.4 23.9	159 160 164	20. 22. 25.
3000 3200 3400	85730 91440 97150	$\begin{array}{c} 0.560 \\ 0.638 \\ 0.721 \end{array}$	134	21.6	141	22.7	147 154	24.9 29.0	154 160	26.5 31.0	162 167 173	28.0 32.7 38.0	167 174 179	29. 34. 40.
Outlet	Capacity Cu. Ft. Air	Add for Total	1" 8	S.P.	11/4"	S.P.	1½"	S.P.	13/4"	S.P.	2" 8	8.P.	21/2"	S.P.
t./Min.	Per Min.	Press.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M	Н. Р.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	н.
1300 1400 1500	37150 40000 42860	$0.106 \\ 0.122 \\ 0.141$	176 174 172	12.6 12.9 13.4	197 196	17.3 17.7	220 218	21.8 22.6	238	27.3				
1600 1700 1800	45720 48580 51420	$0.160 \\ 0.180 \\ 0.202$	170 168 167	13.8 14.3 14.9	194 192 189	18.3 18.7 19.4	216 214 211	$23.1 \\ 23.7 \\ 24.3$	236 233 231	28.0 28.6 29.4	255 252 250	33.3 34.3 35.1	288 285	46. 47.
1900 2000 2100	54290 57150 60010	$0.225 \\ 0.250 \\ 0.275$	166 165 165	$\begin{array}{c} 15.5 \\ 16.3 \\ 17.2 \end{array}$	188 187 186	20.0 20.8 21.6	209 208 206	24.9 25.5 26.5	229 227 225	30.2 31.0 31.8	248 245 243	35.9 36.7 37.6	282 279 278	47. 48. 49.
2200 2300 2400	62880 65720 68580	$0.302 \\ 0.330 \\ 0.360$	164 165 166	18.3 19.5 20.8	185 184 184	$22.4 \\ 23.5 \\ 24.5$	204 204 203	27.3 28.2 29.4	223 222 220	$32.5 \\ 33.5 \\ 34.7$	242 240 237	38.4 39.4 40.4	276 272 271	50. 51. 52.
2500 2600 2800	71430 74290 80010	$0.390 \\ 0.432 \\ 0.489$	167 168 172	22.4 23.7 27.3	184 185 187	26.1 27.5 31.2	202 202 202	30.6 32.0 35.5	219 219 217	35.7 37.1 40.0	237 235 234	41.6 42.7 45.7	269 267 264	54. 55. 58.
3000 3200 3400	85730 91440 97150	$0.560 \\ 0.638 \\ 0.721$	176 179 185	31.4 35.9 41.4	189 193 197	$35.1 \\ 39.8 \\ 44.9$	204 206 210	39.4 43.9 49.2	219 219 222	43.9 48.6 53.7	233 234 234	49.0 53.7 58.6	263 261 260	61. 65. 69.
3600 3800 4000	102870 108580 114290	0.810 0.900 1.000	189	47.4	202	51.0	214 218	55.1 61.8	225 229 233	60.0 66.3 73.7	237 239 243	64.5 71.4 78.4	262 263 264	75. 81. 89.

No. 15 Niagara Conoidal Fan-(Type N)

Outlet	Capacity Cu. Ft. Air	Add for Total	14"	S.P.	3/8"	S.P.	1/2"	S.P.	5/8" 5	S.P.	34"	S.P.	7/8"	S.P.
Velocity Ft./Min.	Per Min.	Press.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. н
1000 1100 1200	32800 36080 39360	0.063 0.076 0.090	77 77 77	2.34 2.61 2.97	97 95 95	3.67 3.92 4.21	111	5.81						
1300 1400 1500	42650 45920 49210	$0.106 \\ 0.122 \\ 0.141$	79 80 82	3.38 3.89 4.48	94 95 95	4.59 5.06 5.67	110 109 109	6.14 6.57 7.04	125 123 123	7.92 8.30 8.78	137 136	10.4 10.8	149	13.0
1600 1700 1800	52490 55760 59040	$0.160 \\ 0.180 \\ 0.202$	84 86 89	5.15 5.94 6.82	96 98 100	6.30 7.07 7.90	109 110 111	7.70 8.42 9.29	122 121 122	9.34 10.0 10.8	135 134 133	$11.3 \\ 11.9 \\ 12.6$	147 145 145	13.4 14.1 14.7
1900 2000 2100	62320 65610 68900	$0.225 \\ 0.250 \\ 0.275$	91 94 97	7.72 8.73 9.79	102 104 106	8.87 9.95 11.2	112 114 116	$10.2 \\ 11.4 \\ 12.5$	123 123 125	11.8 12.9 14.0	133 133 134	13.5 14.6 15.8	144 144 144	15.6 16.5 17.7
2200 2300 2400	72160 75450 78720	$0.302 \\ 0.330 \\ 0.360$	99 103 105	10.9 12.2 13.6	109 111 114	12.4 13.8 15.3	118 120 122	13.8 15.2 16.7	127 129 130	$\begin{array}{c} 15.2 \\ 16.7 \\ 18.2 \end{array}$	135 137 138	17.0 18.4 19.9	145 145 147	19.0 20.2 21.3
2500 2600 2800	82010 85300 91850	$0.390 \\ 0.432 \\ 0.489$	109 112 118	15.0 16.7 20.2	117 119 125	16.7 18.5 22.2	125 127 132	18.5 20.1 24.1	132 135 139	$19.9 \\ 21.9 \\ 25.9$	140 142 146	21.6 23.4 27.5	148 149 153	23. 25. 29.
3000 3200 3400	98420 104970 111520	$\begin{array}{c} 0.560 \\ 0.638 \\ 0.721 \end{array}$	125	24.8	131	26.1	137 143	28.6 33.3	144 149	30.4 35.6	151 156 161	32.2 37.6 43.7	156 162 167	34. 39. 45.
Outlet	Capacity	Add for	1" 8	S.P.	11/4"	S.P.	11/2"	S.P.	134"	S.P.	2" 8	S.P.	21/2"	S.P.
Velocity Ft./Min.	Cu. Ft. Air Per Min.	Total Press.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н.
1300 1400 1500	42650 45920 49210	0.106 0.122 0.141	164 162 160	14.4 14.8 15.4	184 183	19.9 20.3	205 203	25.0 25.9	222	31.3	1			
1600 1700 1800	52490 55760 59040	$0.160 \\ 0.180 \\ 0.202$	159 157 155	15.9 16.4 17.1	181 179 177	21.0 21.5 22.3	201 199 197	26.6 27.2 27.9	220 217 215	32.2 32.9 33.8	238 235 233	38.3 39.4 40.3	269 266	53. 54.
1900 2000 2100	62320 65610 68900	$0.225 \\ 0.250 \\ 0.275$	155 154 154	17.8 18.7 19.7	175 175 173	23.0 23.9 24.8	195 194 192	28.6 29.3 30.4	213 211 210	$34.7 \\ 35.6 \\ 36.5$	231 229 227	$\begin{array}{c} 41.2 \\ 42.1 \\ 43.2 \end{array}$	263 261 259	54. 56. 57.
2200 2300 2400	72160 75450 78720	0.302 0.330 0.360	153 154 155	21.0 22.3 23.8	173 172 172	25.7 27.0 28.1	191 190 189	31.3 32.4 33.8	208 207 205	37.4 38.5 39.8	225 224 221	44.1 45.2 46.4	257 254 253	58. 59. 60.
2500 2600 2800	82010 85300 91850	$0.390 \\ 0.422 \\ 0.489$	155 157 160	25.7 27.2 31.3	172 173 174	29.9 31.5 35.8	189 188 189	35.1 36.7 40.7	205 204 203	41.0 42.5 45.9	221 219 218	47.7 49.1 52.4	251 249 247	62. 63. 66.
3000 3200 3400	98420 104970 111520	$0.560 \\ 0.638 \\ 0.721$	164 167 173	36.0 41.2 47.5	177 180 184	40.3 45.7 51.5	190 192 196	45.2 50.4 56.5	204 205 207	50.4 55.8 61.7	217 218 219	56.3 61.7 67.3	245 243 243	70. 74. 80.
3600 3800 4000	118100 124650 131210	0.810 0.900 1.000	177	54.5	189	58.5	199 203	63.2 70.9	210 213 217	68.9 76.1 84.6	221 223 227	74.0 81.9 90.0	244 245 247	86. 94. 102.

No. 16 Niagara Conoidal Fan $-(Type\ N)$

Outlet Velocity	Capacity Cu.Ft. Air	Add for	1/4"	S.P.	3/8"	S.P.	1/2"	S.P.	5/8"	S.P.	3/4"	S.P.	7/8"	S.P.
Ft./Min.	Per Min.	Total Press.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	н. і
1000 1100 1200	37320 41060 44790	0.063 0.076 0.090	73 72 73	2.66 2.97 3.38	91 89 89	4.17 4.46 4.79	104	6.61						
1300 1400 1500	48520 52250 55980	0.106 0.122 0.141	74 75 77	3.84 4.43 5.10	88 89 89	5.22 5.76 6.45	103 103 102	6.99 7.48 8.01	117 116 115	9.01 9.45 9.98	129 128	11.8 12.2	139	14.8
1600 1700 1800	59720 63450 67170	$\begin{array}{c} 0.160 \\ 0.180 \\ 0.202 \end{array}$	79 81 83	5.86 6.76 7.76	90 92 94	7.17 8.04 8.99	103 103 104	8.76 9.58 10.6	114 114 114	10.6 11.4 12.3	126 126 125	12.9 13.6 14.4	138 136 136	15.3 16.0 16.8
1900 2000 2100	70910 74640 78380	$0.225 \\ 0.250 \\ 0.275$	86 88 91	$8.78 \\ 9.93 \\ 11.1$	96 98 99	10.1 11.3 12.7	105 107 109	$\begin{array}{c} 11.7 \\ 12.9 \\ 14.2 \end{array}$	115 116 117	13.4 14.7 15.9	125 125 126	15.4 16.6 17.9	135 135 135	17.7 18.7 20.1
2200 2300 2400	82110 85840 89570	0.302 0.330 0.360	93 96 99	$\begin{array}{c} 12.4 \\ 13.9 \\ 15.5 \end{array}$	102 104 107	14.1 15.7 17.4	111 113 114	15.7 17.3 19.0	119 121 122	17.3 19.0 20.7	127 128 129	19.3 20.9 22.7	136 136 138	21.6 23.0 24.7
2500 2600 2800	93300 97040 104500	$0.390 \\ 0.422 \\ 0.489$	102 105 111	$\begin{array}{c} 17.1 \\ 19.0 \\ 23.0 \end{array}$	109 112 117	19.0 21.1 25.2	117 119 124	21.1 22.9 27.4	124 126 130	22.6 24.9 29.5	131 133 137	24.5 26.6 31.2	139 140 144	26.6 28.9 33.3
3000 3200 3400	111970 119430 126900	0.560 0.638 0.721	117	28.2	123	29.7	128 134	32.5 37.9	135 140	34.6 40.5	141 146 151	36.6 42.8 49.7	146 152 156	38.7 45.1 52.2
Outlet Velocity	Capacity Cu. Ft. Air	Add for	1" 8	S.P.	11/4"	S.P.	1½"	S.P.	134"	S.P.	2" 8	S.P.	2½"	S.P.
Ft./Min.	Per Min.	Total Press.	R.P.M.	Н. Р.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	Н. 1
1300 1400 1500	48520 52250 55980	0.106 0.122 0.141	154 152 150	16.4 16.9 17.5	173 171	22.6 23.0	193 191	28.4 29.4	208	35.6				
1600 1700 1800	59720 63450 67170	$0.160 \\ 0.180 \\ 0.202$	149 147 146	18.1 18.6 19.4	169 168 166	23.9 24.4 25.3	189 187 184	$30.2 \\ 31.0 \\ 31.8$	206 204 202	36.6 37.4 38.4	223 221 219	43.5 44.8 45.8	252 249	60.4 61.4
1900 2000 2100	70910 74640 78380	$0.225 \\ 0.250 \\ 0.275$	145 144 144	$20.3 \\ 21.3 \\ 22.5$	164 164 163	$26.1 \\ 27.1 \\ 28.2$	183 182 180	32.5 33.3 34.6	200 198 197	39.4 40.5 41.5	217 214 213	46.9 47.9 49.2	247 244 243	62.5 63.8 65.0
2200 2300 2400	82110 85840 89570	$0.302 \\ 0.330 \\ 0.360$	144 144 145	23.8 25.4 27.1	162 161 161	$29.2 \\ 30.7 \\ 32.0$	179 178 178	35.6 36.9 38.4	195 194 193	42.5 43.8 45.3	211 210 208	50.2 51.5 52.7	241 238 237	66.3 67.6 69.1
2500 2600 2800	93300 97040 104500	$0.390 \\ 0.422 \\ 0.489$	146 147 150	29.2 31.0 35.6	161 162 163	34.1 35.9 40.7	177 176 177	39.9 41.7 46.3	192 191 190	46.6 48.4 52.2	207 206 204	54.3 55.8 59.7	235 234 231	70.7 72.2 75.8
3000 3200 3400	111970 119430 126900	$0.560 \\ 0.638 \\ 0.721$	154 157 162	$41.0 \\ 46.9 \\ 54.0$	166 169 173	45.8 52.0 58.6	178 180 184	51.5 57.4 64.3	191 192 194	57.4 63.5 70.2	204 204 205	64.0 70.2 76.6	230 228 228	80.1 85.3 91.1
3600 3800 4000	134380 141810 149300	0.810 0.900 1.000	166	62.0	177	66.6	187 191	71.9 80.7	197 200 204	78.3 86.5 96.3	208 209 213	84.2 93.2 102.4	229 230 231	98.8 107.0 116.7

No. 17 Niagara Conoidal Fan—(Type N)

Capacities and Static Pressures at $70^{\circ}\,\text{F.}$ and 29.92'' Barom.

Outlet	Capacity	Add for	1/4"	S.P.	3/8"	S.P.	1/2"	S.P.	5/8"	S.P.	3/4"	S.P.	7/8"	S.P.
Velocity Ft./Min.	Cu. Ft. Air Per Min.	Total Press.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р	R.P.M.	н. 1
1000 1100 1200	42140 46350 50560	0.063 0.076 0.090	68 68 68	3.01 3.35 3.82	85 84 84	4.71 5.03 5.41	98	7.46						
1300 1400 1500	54780 58980 63200	$0.106 \\ 0.122 \\ 0.141$	69 71 72	4.34 5.00 5.75	83 84 84	5.90 6.50 7.28	97 97 96	7.89 8.44 9.05	· 110 · 109 108	10.2 10.7 11.3	121 120	13.3 13.8	131	16.7
1600 1700 1800	67430 71630 75840	$0.160 \\ 0.180 \\ 0.202$	74 76 78	6.62 7.63 8.76	85 87 88	8.09 9.08 10.2	97 97 98	9.88 10.8 11.9	108 107 108	12.0 12.9 13.9	119 118 118	14.5 15.3 16.2	130 128 128	17.3 18.1 18.9
1900 2000 2100	80050 84270 88490	$0.225 \\ 0.250 \\ 0.275$	81 83 85	9.91 11.2 12.6	90 92 94	11.4 12.8 14.4	99 101 102	13.2 14.6 16.1	108 109 110	15.1 16.5 18.0	118 118 118	17.4 18.7 20.2	127 127 127	20.0 21.1 22.7
2200 2300 2400	92690 96900 101130	0.302 0.330 0.360	88 91 93	14.0 15.7 17.5	96 98 101	15.9 17.8 19.6	104 106 108	17.7 19.5 21.5	112 114 115	19.5 21.4 23.4	120 121 122	21.8 23.6 25.6	128 128 130	24.4 26.0 27.9
2500 2600 2800	105340 109560 117990	$0.390 \\ 0.422 \\ 0.489$	96 99 104	19.3 21.5 26.0	103 105 110	21.5 23.8 28.5	110 112 117	23.8 25.9 30.9	117 119 122	25.5 28.1 33.2	124 125 129	27.7 30.1 35.3	131 132 135	30.1 32.7 37.6
3000 3200 3400	126410 134820 143260	$0.560 \\ 0.638 \\ 0.721$	110	31.8	116	33.5	121 127	36.7 42.8	127 132	39.0 45.7	133 138 142	41.3 48.3 56.1	138 143 147	43.6 50.9 59.0
Outlet	Capacity	Add for	1" 8	S.P.	11/4"	S P.	11/2"	S.P.	13/4"	S.P.	2" 8	S.P.	21/2"	S.P.
Velocity Ft./Min.	Cu. Ft. Air Per Min.	Total Press.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н.
1300 1400 1500	54780 58980 63200	0.106 0.122 0.141	145 143 141	18.5 19.1 19.7	162 161	25.5 26.0	181 180	32.1 33.2	196	40.2				
1600 1700 1800	67430 71630 75840	$0.160 \\ 0.180 \\ 0.202$	140 138 137	20.4 21.0 21.9	160 158 156	27.0 27.6 28.6	178 176 174	34.1 35.0 35.8	194 192 190	41.3 42.2 43.4	210 208 206	$49.1 \\ 50.6 \\ 51.7$	237 235	68.5 69.4
1900 2000 2100	80050 84270 88490	$0.225 \\ 0.220 \\ 0.275$	137 136 136	$22.9 \\ 24.1 \\ 25.4$	155 154 153	29.5 30.6 31.8	172 171 170	36.7 37.6 39.0	188 187 185	44.5 45.7 46.8	204 202 200	52.9 54.1 55.5	232 230 229	70.8 72.0 73.4
2200 2300 2400	92690 96900 101130	$0.302 \\ 0.330 \\ 0.360$	135 136 137	26.9 28.7 30.6	152 152 152	33.0 34.7 36.1	168 168 167	$40.2 \\ 41.6 \\ 43.4$	184 182 181	$48.0 \\ 49.4 \\ 51.2$	199 198 195	56.7 58.1 59.5	227 224 223	74.9 76.2 78.0
2500 2600 2800	105340 109560 117990	$0.390 \\ 0.432 \\ 0.489$	137 138 141	33.0 35.0 40.2	152 152 154	38.4 40.5 46.0	167 166 167	$\begin{array}{c} 45.1 \\ 47.1 \\ 52.3 \end{array}$	181 180 179	52.6 54.6 59.0	195 194 192	61.3 63.0 67.3	221 220 218	79.8 81.8 85.6
3000 3200 3400	126410 134820 143260	0.560 0.638 0.721	145 148 152	$\frac{46.2}{52.9}$ 61.0	156 159 162	51.7 58.7 66.2	168 170 173	58.1 64.7 72.5	180 181 182	64.7 71.7 79.2	192 192 193	72.3 79.2 86.4	217 215 214	90.5 96.2 102.9
3600 3800 4000	151700 160100 168550	0.810 0.900 1.000	156	69.9	167	75.1	176 180	81.2 91.0	185 188 192	88.4 97.7 108.7	195 197 200	95.1 105.2 115.6	215 217 218	111.6 120.8 131.8

No. 18 Niagara Conoidal Fan—(Type N)

Outlet	Outlet Capacity Velocity Cu. Ft. Air		¼″ S.P.		3/8" S.P.		½″ S.P.		5%" S.P.		¾″ S.P.		7∕8″ S.P.	
Ft./Min.	Per Min.	Total Press.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M	Н. Р.	R.P.M.	н. 1
1000 1100 1200	47240 51960 56680	0.063 0.076 0.090	65 64 65	3.37 3.76 4.28	81 80 80	5.28 5.64 6.06	93	8.36						
1300 1400 1500	61420 66130 70860	$0.106 \\ 0.122 \\ 0.141$	66 67 68	4.86 5.61 6.45	78 79 80	6.61 7.29 8.17	92 91 91	8.85 9.46 10.2	104 103 102	11.4 12.0 12.6	115 113	14.9 15.5	124	18.7
1600 1700 1800	75590 80300 85010	$0.160 \\ 0.180 \\ 0.202$	70 72 74	7.42 8.55 9.82	80 82 83	9.07 10.2 11.4	91 92 92	11.1 12.1 13.4	102 101 102	13.5 14.4 15.6	112 112 111	16.3 17.2 18.2	122 121 121	19.4 20.3 21.2
1900 2000 2100	89750 94480 99200	$0.225 \\ 0.250 \\ 0.275$	76 78 81	11.1 12.6 14.1	85 87 88	12.8 14.3 16.1	93 95 97	14.8 16.3 18.0	102 103 104	16.9 18.5 20.2	111 111 112	19.5 21.0 22.7	120 120 120	22.4 23.7 25.4
2200 2300 2400	103910 108650 113370	$0.302 \\ 0.330 \\ 0.360$	83 86 88	15.7 17.6 19.6	91 93 95	17.9 19.9 22.0	98 100 102	19.8 21.9 24.1	106 107 108	21.9 24.0 26.3	113 114 115	24.4 26.4 28.7	121 121 122	27.3 29.1 31.3
2500 2600 2800	118100 122820 132260	$0.390 \\ 0.422 \\ 0.489$	91 93 98	$21.7 \\ 24.1 \\ 29.1$	97 100 104	24.1 26.6 31.9	104 106 110	26.6 29.0 34.7	110 112 116	28.6 31.5 37.3	117 118 122	31.2 33.7 39.5	123 125 128	33.7 36.6 42.1
3000 3200 3400	141710 151160 160600	$0.560 \\ 0.638 \\ 0.721$	104	35.7	110	37.6	115 120	$\frac{41.2}{48.0}$	120 125	43.8 51.2	126 130 135	46.3 54.1 62.9	130 135 139	48.9 57.0 66.1
Outlet Velocity	Capacity Cu. Ft. Air	Add for Total	1" S.P.		1¼" S.P.		1½" S.P		1¾" S.P.		2" S.P.		2½" S.P.	
t./Min.	Per Min.	Press.	R.P.M.	Н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	н. 1
1300 1400 1500	61420 66130 70860	$0.106 \\ 0.122 \\ 0.141$	137 135 133	20.7 21.4 22.1	153 152	28.6 29.2	171 170	36.0 37.3	185	45.0				
1600 1700 1800	75590 80300 85010	$0.160 \\ 0.180 \\ 0.202$	132 131 130	22.9 23.6 24.6	151 149 147	30.3 30.9 32.1	168 166 164	38.2 39.2 40.2	183 181 180	46.3 47.3 48.6	198 196 195	55.1 56.7 58.0	224 222	76.5 77.8
1900** 2000 2100	89750 94480 99200	$0.225 \\ 0.250 \\ 0.275$	129 128 128	$\begin{array}{c} 25.6 \\ 27.0 \\ 28.4 \end{array}$	146 146 145	$33.1 \\ 34.4 \\ 35.7$	163 162 160	41.2 42.1 43.8	178 176 175	49.9 51.2 52.5	193 191 189	59.3 60.6 62.2	220 -217 216	79.1 80.7 82.3
2200 2300 2400	103910 108650 113370	$0.302 \\ 0.330 \\ 0.360$	128 128 129	30.2 32.2 34.4	144 143 143	36.9 38.9 40.5	159 158 158	45.0 46.7 48.6	173 172 171	53.8 55.4 57.4	188 187 185	63.5 65.1 66.8	215 212 211	83.9 85.5 87.5
2500 2600 2800	118100 122820 132260	$0.390 \\ 0.432 \\ 0.489$	130 131 133	36.9 39.7 45.0	143 144 145	43.1 45.4 51.5	157 157 157	50.6 52.8 58.7	171 170 169	59.0 61.2 66.1	184 183 182	68.7 70.6 75.5	209 208 206	89.4 91.4 95.9
3000 3200 3400	141710 151160 160600	$\begin{array}{c} 0.560 \\ 0.638 \\ 0.721 \end{array}$	137 140 144	51.8 59.3 68.4	147 150 153	58.0 65.8 74.2	158 160 163	65.1 72.6 81.3	170 171 172	72.6 80.3 88.8	181 182 182	81.0 88.8 96.9	203	101.4 107.9 115.3
3600 3800 4000	170070 179500 188950	0.810 0.900 1.000	-147	78.4	157	84.2	166 170	91.0 102.1		99.2 109.5 121.8	186	106.6 117.9 129.6	205	125.1 135.4 147.7

No. 19 Niagara Conoidal Fan-(Type N)

Capacities and Static Pressures at $70^{\circ}\,\mathrm{F}$ and 29.92'' Barem.

Outlet	Capacity	Add for	¼" S.P.		3⁄8″ S.P.		½″ S.P.		5/8" S.P.		3/4" S.P.		₹%" S.P.	
Velocity Ft./Min.	Cu. Ft. Air Per Min.	Total Press.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р
1000 1100 1200	52630 57900 63150	0.063 0.076 0.090	61 61 61	3.76 4.19 4.77	76 75 75	5.88 6.28 6.75	88	9.31						
1300 1400 1500	68430 73680 78950	0.106 0.122 0.141	62 63 65	5.42 6.25 7.18	74 75 75	7.36 8.12 9.10	87 86 86	9.86 10.6 11.3	98 97 97	12.7 13.3 14.1	109 107	16.7 17.3	117	20.8
1600 1700 1800	84220 89470 94720	0.160 0.180 0.202	66 68 70	8.27 9.53 10.9	76 77 79	10.1 11.3 12.7	86 87 87	12.4 13.5 14.9	96 96 96	15.0 16.1 17.4	106 106 105	18.1 19.1 20.3	116 115 114	21.6 22.6 23.7
1900 2000 2100	99990 105270 110520	0.225 0.250 0.275	72 74 76	$12.4 \\ 14.0 \\ 15.7$	81 82 84	14.2 16.0 18.0	89 90 92	16.4 18.2 20.1	97 97 98	18.9 20.7 22.5	105 105 106	21.7 23.4 25.3	114 114 114	25.0 26.4 28.3
2200 2300 2400	115780 121050 126310	0.302 0.330 0.360	79 81 83	17.5 19.6 21.8	86 88 90	19.9 22.2 24.5	93 95 96	22.1 24.4 26.8	100 102 103	$24.4 \\ 26.7 \\ 29.2$	107 108 109	$\begin{array}{c} 27.2 \\ 29.5 \\ 32.0 \end{array}$	114 115 116	30.4 32.4 34.8
2500 2600 2800	131580 136840 147390	0.390 0.422 0.489	86 89 93	24.1 26.8 32.5	92 94 98	26.8 29.7 35.6	99 100 104	29.7 32.3 38.6	104 106 110	$31.9 \\ 35.1 \\ 41.5$	111 112 115	$34.6 \\ 37.6 \\ 44.1$	117 118 121	37.6 40.8 46.9
3000 3200 3400	157890 168420 178950	$0.560 \\ 0.638 \\ 0.721$	99	39.7	104	41.9	109 113	45.9 53.4	114 118	48.7 57.0	119 123 127	51.6 60.3 70.0	123 128 132	54.5 63.5 73.6
Outlet	Capacity	Add for	1" S.P.		1¼" S.P.		1½" S.P.		1¾″ S.P.		2" S.P.		2½" S.P.	
Velocity Ft./Min.	Cu. Ft. Air Per Min.	Total Press.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	н. 1
1300 1400 1500	68430 73680 78950	0.106 0.122 0.141	130 128 126	23.1 23.8 24.7	145 144	31.9 32.5	162 161	40.1 41.5	175	50.2		V		
1600 1700 1800	84220 89470 94720	0.160 0.180 0.202	125 124 123	25.5 26.3 27.4	143 141 140	33.7 34.4 35.7	159 157 155	42.6 43.7 44.8	174 172 170	51.6 52.7 54.2	188 186 184	61.4 63.2 64.6	212 210	85.2 86.6
1900 2000 2100	99990 105270 110520	0.225 0.250 0.275	122 122 122	28.6 30.0 31.7	139 138 137	36.8 38.3 39.7	154 153 152	45.9 46.9 48.7	169 167 166	55.6 57.0 58.5	183 181 179	66.1 67.5 69.3	208 206 205	88.1 89.9 91.7
2200 2300 2400	115780 121050 126310	0.302 0.330 0.360	121 122 122	33.6 35.8 38.3	136 136 136	41.2 43.3 45.1	151 150 150	50.2 52.0 54.2	164 163 162	59.9 61.7 63.9	178 177 175	70.8 72.6 74.4	203 201 200	93. 95. 97.
2500 2600 2800	131580 136840 147390	0.390 0.422 0.489	123 124 126	41.2 43.7 50.2	136 136 137	48.0 50.5 57.4	149 149 149	56.3 58.8 65.3	162 161 160	65.7 68.2 73.6	174 173 172	76.5 78.7 84.1	198 197 195	99. 101. 106.
3000 3200 3400	157890 168420 178950	0.560 0.638 0.721	130 132 136	57.8 66.1 76.2	140 142 145	64.6 73.3 82.7	150 152 155	72.6 80.9 90.6	161 162 163	80.9 89.5 98.9	172 172 173	90.3 98.9 107.9	194 192 192	113. 120. 128.
3600 3800 4000	189490 199990 210530	0.810 0.900 1.000	140	87.4	149	93.9	157 161	101.4 113.7	166 168 172	$^{110.5}_{122.0}_{135.7}$	175 176 179	118.8 131.4 144.4	193 194 195	139. 150. 164.

No. 20 Niagara Conoidal Fan-(Type N)

Outlet Velocity	Capacity Cu. Ft. Air	Add for Total	¼" S.P.		3/8" S.P.		½″ S.P.		5%" S.P.		3/4" S.P.		7∕8″ S.P.	
Ft./Min.	Per Min.	Press.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	н.
1000 1100 1200	58320 64150 69980	0.063 0.076 0.090	58 58 58	4.16 4.64 5.28	73 72 72	6.52 6.96 7.48	84	10.3						
1300 1400 1500	75820 81640 87480	$0.106 \\ 0.122 \\ 0.141$	59 60 62	6.00 6.92 7.96	71 71 72	8.16 9.00 10.1	83 82 82	10.9 11.7 12.5	94 93 92	14.1 14.8 15.6	103 102	18.5 19.1	112	23.1
1600 1700 1800	93320 99140 104960	$0.160 \\ 0.180 \\ 0.202$	63 65 67	9.16 10.6 12.1	72 74 75	11.2 12.6 14.1	82 83 83	13.7 15.0 16.5	92 91 92	16.6 17.8 19.3	101 101 100	20.1 21.2 22.5	110 109 109	23.9 25.1 26.2
1900 2000 2100	110800 116640 122480	$\begin{array}{c} 0.225 \\ 0.250 \\ 0.275 \end{array}$	69 71 73	13.7 15.5 17.4	77 78 80	15.8 17.7 19.9	84 86 87	18.2 20.2 22.3	92 93 94	20.9 22.9 24.9	100 100 101	24.1 25.9 28.0	108 108 108	27.7 29.3 31.4
2200 2300 2400	128300 134140 139960	$0.302 \\ 0.330 \\ 0.360$	75 77 79	19.4 21.8 24.2	82 84 86	22.1 24.6 27.2	89 90 92	24.5 27.1 29.7	95 97 98	27.1 29.6 32.4	102 103 104	30.2 32.7 35.5	109 109 110	33.7 35.9 38.6
2500 2600 2800	145800 151650 163300	$0.390 \\ 0.422 \\ 0.489$	82 84 89	26.7 29.7 36.0	88 90 94	29.7 32.9 39.4	94 95 99	32.9 35.8 42.8	99 101 104	35.3 38.9 46.0	105 107 110	38.3 41.6 48.8	111 112 115	41.6 45.2 52.0
3000 3200 3400	174960 186620 198300	$0.560 \\ 0.638 \\ 0.721$	94	44.0	99	46.4	103 108	50.8 59.2	108 112	54.0 63.2	113 117 121	57.2 66.8 77.6	117 122 125	60.4 70.4 81.6
Outlet Velocity	Capacity Cu. Ft. Air	Add for Total	1" 8	S.P.	1¼" S.P.		1½" S.P.		1¾″ S.P.		2" S.P.		2½" S.P	
Ft./Min.	Per Min.	Press.	R.P.M.	н. Р.	R.P.M.	н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	Н. Р.	R.P.M.	н. 1
1300 1400 1500	75820 81640 87480	$0.106 \\ 0.122 \\ 0.141$	123 122 120	25.6 26.4 27.3	138 137	35.3 36.0	154 153	44.4 46.0	167	55.6				
1600 1700 1800	93320 99140 104960	$0.160 \\ 0.180 \\ 0.202$	119 118 117	$28.2 \\ 29.1 \\ 30.4$	136 134 133	37.4 38.2 39.5	151 150 148	47.2 48.4 49.6	165 163 162	57.2 58.4 60.0	179 177 175	68.0 70.0 71.6	202 200	94.4 96.0
1900 2000 2100	110800 116640 122480	$0.225 \\ 0.250 \\ 0.275$	116 116 116	31.6 33.3 35.1	132 131 130	40.8 42.4 44.0	147 146 144	$50.8 \\ 52.0 \\ 54.0$	160 159 158	$61.6 \\ 63.2 \\ 64.8$	174 172 170	73.2 74.8 76.8	198 196 195	97.6 99.6 101.6
2200 2300 2400	128300 134140 139960	0.302 0.330 0.360	115 116 116	37.3 39.7 42.4	130 129 129	45.6 48.0 50.0	143 143 142	55.6 57.6 60.0	156 155 154	66.4 68.4 70.8	169 168 166	78.4 80.4 82.4	193 191 190	103.6 105.6 108.0
2500 2600 2800	145800 151650 163300	$0.390 \\ 0.422 \\ 0.489$	117 118 120	45.6 48.4 55.6	129 130 131	53.2 56.0 63.6	142 141 142	62.4 65.2 72.4	154 153 152	72.8 75.6 81.6	166 165 164	84.8 87.2 93.2	188 187 185	110.4 112.8 118.4
3000 3200 3400	174960 186620 198300	$0.560 \\ 0.638 \\ 0.721$	123 126 130	64.0 73.2 84.4	133 135 138	71.6 81.2 91.6	143 144 147	80.4 89.6 100.4	153 154 155	89.6 99.2 109.6	163 164 164	100.0 109.6 119.6	184 183 182	125.2 133.2 142.4
3600 3800 4000	209960 221600 233300	0.810 0.900 1.000	133	96.8	142	104.0	150 153	112.4 126.0	158 160 163	122.4 135.2 150.4	166 167 170	131.6 145.6 160.0	184	154.4 167.2 182.4

SCANNED BY: AEM OF LOCKPORT NY USA

POSTED ON: SEPTEMBER 26, 2016

EDITED BY: BRIAN D. SZAFRANSKI

ELMA, NEW YORK USA

COURTESY OF: WESTERN NY GAS & STEAM ENGINE ASSOCIATION

ALEXANDER NEW YORK USA

www.ALEXANDERSTEAMSHOW.COM

NOTE: ORIGINAL DOCUMENT HAD WATER DAMAGE

