Comunicaciones Post-Desastre Tecnologías, Arquitecturas y Desafíos

José Javier Gutiérrez Gil

all.

24 de octubre de 2025

Introducción Capa Física **Tecnologías** Capa Red **Futuro**

Estadísticas Clave

- \$\bigsep\$ 100M personas afectadas (2021)
- \$\frac{1}{84}\$ 70% infraestructura vulnerable
- • 72h ventana crítica de rescate
- \$ \$280B pérdidas anuales

G Casos Reales

- G Project Loon (Puerto Rico, globos LTE)
- Starlink (Ucrania, Tonga)
- 🛠 ITU en Haití (telefonía

Impacto en la Sociedad

- Infraestructura destruida por catástrofes
- Dependencia de redes para salud, logística y seguridad
- Coordinación de rescate limitada sin conectividad

♥ Necesidad de Soluciones

- Redes resilientes y rápidas de desplegar
- Capacidad de recuperación en emergencias extremas
- Conexión ubicua
- Integración terrestre-aéreo-espacial (SAGIN)

Evolución de Tecnologías en Situaciones de Desastre

Problemas más críticos:

- Infraestructura física insuficiente (35 %): soluciones descentralizadas: MANETs, D2D, NIB [27],[30],[32],[38].
- **Gestión y coordinación (28 %)**: SDN/NFV, Edge/Fog Computing [26],[33],[34],[35].
 - Optimización y movilidad (22 %): UAVs, VANETs, IA (PSO, GA)

Tecnologías más versátiles:

- UAVs/Drones (23 %): despliegue rápido, comunicación, vigilancia.
- Redes Ad-Hoc (19%): conectividad básica, bajo costo.
- PSN/LMR/LTE (15%): interoperabilidad crítica, acceso LTE.
- D2D/DWNs (11%): comunicación directa masiva.

Jerarquía de implementación y cobertura:

- Nivel 1 Inmediato: D2D, MANETs básicas (0–6h), cobertura local
- Nivel 2 Táctico: NIB, UAVs, VANETs (6–24h), cobertura regional
- Nivel 3 Estratégico: HAPs, Satélites LEO/MEO (24+h), cobertura global, LTE-backhaul

Patrones de integración tecnológica:

- Vertical: Terrestre + Aéreo + Espacial (D2D + UAV + Satélite)
- Horizontal: MANETs + VANETs + D2D
- Gestión: SDN + NFV + 5G/LTE Slicing

Brechas:

- Escalabilidad limitada
- Interoperabilidad multi-vendor insuficiente
- Consumo energético poco optimizado

Tendencias:

- 2015–2018: Redes Ad-Hoc
- 2019–2021: UAVs y soluciones aéreas
- 2022-Presente: SAGIN híbrido, LTE-satélite, IA/Big Data

Recomendaciones:

- Sinergias UAVs + D2D + Edge/Fog Computing
- Desarrollo de estándares de interoperabilidad
- Soluciones escalables y de rápido despliegue
- Integración del factor humano y priorización de tráfico
- Uso de IA para optimizar rutas de rescate y análisis de conectividad

Arquitecturas híbridas e inteligentes (SAGIN + IA + SDN/NFV + LTE/Satélite) son clave para resiliencia post-desastre.

♠ MDRU/NIB

- Pospliegue en minutos
- 器 Mesh networking
- **1** Alta resiliencia

D2D / MANETs

- 🏖 Comunicación peer-to-peer
- 🖪 Bajo consumo
- 🖸 Cobertura extendida
- Optimización automática

Infraestructura Terrestre

MDRU • NIB • D2D • MANETs • LTE/Backhaul Sat

LTE / Backhaul Satelital

♣ Acceso LTE vía MEO/LEO

Parámetro	LAPs ₹	HAPs 🌥	Tipo de Enlace
Altitud	0.2-2 km	20-50 km	A
Autonomía	Horas	Meses	0
Capacidad	Media	Alta	
Despliegue	Minutos	Horas-Días	4
Cobertura	Local	Regional/Global	(
Costo	\$	\$\$	

Aplicaciones LAPs

- Obertura localizada
- Retransmisión D2D
- Q Localización víctimas
- Vigilancia

Aplicaciones HAPs

- Gobertura amplia
- 'A' Backhaul
- Monitoreo
- 器 Conectividad persistente
- JII Soporte LTE/5G a usuarios y equipos

	Terrestre	Propagación afectada por edificios, árboles y escomb	
		limitada; vital para que las víctimas puedan enviar ubi	
		ayuda.	
	Aéreo (UAV/HAP)	UAVs a baja altitud mejoran cobertura local; HAP	
		plias con menos infraestructura. Reto: localizar usuar	
		y difracción.	
	Espacial (Satélites)	Cobertura global incluso en lugares inaccesibles. M	
		pérdida de señal. Dependencia de energía solar y	
	locá Javier Cutiérrez Cil	Comunicaciones Post Desartro 24 de estubre de 2025 0 / 17	

Características

Medio

□ Problemas Específicos

- Escombros y obstáculos
- Humo y condiciones adversas
- A Propagación en exteriores
- A Propagación en interiores
- Condiciones atmosféricas

🗱 Soluciones

- 🌄 Modelos F y Rician
- **?** Winner II + Two-ray
- Modelos 3D complejos
- **!** Mediciones reales

Figura: Pathloss en entornos urbanos

11 / 17

Protocolos de Routing گوه

- 🚓 LADTR (Location-Aided)
- 🎛 Intercontact Routing
- P SSA (Squirrel Search)
- SDN + DTN Híbridos

Métricas Clave

- 🔁 Packet Delivery Ratio
- **Q** Retardo Promedio
- Eficiencia Energética
- Overhead Ratio

⇄ DTNs Avanzados

- **BIBR-DTN**
- M DTN MapEx
- 🔀 Health Data Delivery
- 📢 Message Triage

🎎 Parámetros Principales

- \$\mathbb{P}\$ 20,000 realizaciones
- Partorno urbano
- Bistribución uniforme
- Radio: $r_d + 3$ km
- 🛱 Geometría estocástica

쁘 Métricas

- III Coverage Probability
- U Time-Weighted Coverage
- Throughput
- F Energy Efficiency

Figura: Transmit Power por tecnología

- ψ $r_d < 1$ km: MDRUs innecesarias
- $ightharpoonup r_d \sim 10 ext{km:} +100 ext{ MDRUs}$ óptimas
- \times LAP reduce n_M^* para r_d pequeños
- 7 Backhaul como cuello de botella

- Arquitectura simple efectiva
- Optimización crítica en bordes
- Balance cobertura/capacidad

Figura: Cobertura vs Radio del desastre

▲ Recomendación: Incrementar redundancia + Planes de emergencia + Pruebas de campo

🔼 Investigación

- 🎞 IRS (Intelligent Surfaces)
- AI/ML Integration
- Fenergy Harvesting
- Security Enhancements
- **2** Real-time Optimization

Desarrollo

- X Standardization
- Interoperability
- 🛘 Edge Computing
- **B**ig Data Analytics

™ Tendencias

- 器 6G Integration
- **X** LEO Proliferation
- 🔁 Autonomous Swarms
- Architectures
- 🏜 Human-Centric Design

☑ jogugi@upv.edu.es

