

# یادگیری عمیق

مدرس: محمدرضا محمدی بهار ۱۴۰۲

# مكانيزمهاي توجه

**Attention Mechanisms** 

#### Decoder Add & norm Positionwise **FFN** Encoder Add & norm Add & norm $I \times n$ Muti-head attention Positionwise FFN Add & norm $n \times$ Add & norm Masked Multi-head multi-head attention attention Positional Positional encoding encodina Embedding Embedding Sources **Targets**

- بر خلاف مدلهای ابتدایی توجه به خود که برای بازنمایی ورودی به RNNها متکی هستند، مدل مبدّل صرفاً مبتنی بر مکانیزمهای توجه (بدون هیچ لایه کانولوشنی یا بازگشتی)
- اگرچه در ابتدا برای تبدیل دنباله به دنباله روی دادههای متنی پیشنهاد شد، مبدّلها در طیف گستردهای از کاربردها مانند پردازش زبان، بینایی، گفتار و یادگیری تقویتی فراگیر شده است
- معماری کلّی مبدّل از ساختار encoder-decoder استفاده می کند

• برخلاف توجه Bahdanau، جانمایی ورودیها و خروجیها با decoder و encoder و encoder و وارد می شوند



Decoder



- سده است کدگذار از n لایه کدگذار مشابه تشکیل شده است  $\bullet$ 
  - هر لایه کدگذار شامل دو جزء سازنده اصلی است
    - توجه به خود چندسر
- keys ،queries و values همگی خروجی لایه کدگذار قبلی است
  - با الهام از ResNet، از اتصال باقیمانده استفاده میشود
    - از نرمالسازی لایهای هم استفاده میشود
      - شبکه پیشخور موقعیتی
    - با استفاده از یک MLP یکسان، بازنمایی در هر موقعیت تبدیل میشود
      - از Add & Norm هم استفاده می شود





#### Decoder FC Add & norm Positionwise FFN Encoder Add & norm Add & norm $1 \times n$ Muti-head attention Positionwise FFN Add & norm $n \times$ Add & norm Masked Multi-head multi-head attention attention Positional Positional encoding encodina Embedding Embedding Sources Targets

```
class PositionWiseFFN(nn.Module):
    """Positionwise feed-forward network."""
    def init (self, ffn num input, ffn num hiddens,
                 ffn num outputs, **kwarqs):
        super(PositionWiseFFN, self). init (**kwargs)
        self.densel = nn.Linear(ffn num input, ffn num hiddens)
        self.relu = nn.ReLU()
        self.dense2 = nn.Linear(ffn num hiddens, ffn num outputs)
    def forward(self, X):
        return self.dense2(self.relu(self.dense1(X)))
ffn = PositionWiseFFN(4, 4, 8)
ffn.eval()
ffn(torch.ones((2, 3, 4)))[0]
tensor([[-0.386, -0.249, -0.341, -0.025, 0.463, -0.432, -0.170, 0.202],
       [-0.386, -0.249, -0.341, -0.025, 0.463, -0.432, -0.170, 0.202],
       [-0.386, -0.249, -0.341, -0.025, 0.463, -0.432, -0.170, 0.202]],
      grad fn=<SelectBackward0>)
```

#### Decoder FC Add & norm Positionwise **FFN** Encoder Add & norm Add & norm $I \times n$ Muti-head attention Positionwise FFN Add & norm $n \times$ Add & norm Masked Multi-head multi-head attention attention Positional Positional encoding encoding Embedding Embedding Sources **Targets**

```
class AddNorm(nn.Module):
    """Residual connection followed by layer normalization."""
    def __init__(self, normalized_shape, dropout, **kwargs):
        super(AddNorm, self).__init__(**kwargs)
        self.dropout = nn.Dropout(dropout)
        self.ln = nn.LayerNorm(normalized_shape)

def forward(self, X, Y):
    return self.ln(self.dropout(Y) + X)
```

#### Decoder FC Add & norm Positionwise **FFN** Encoder Add & norm Add & norm $1 \times n$ Muti-head attention Positionwise FFN $n \times$ Add & norm Add & norm Masked Multi-head multi-head attention attention Positional Positional encoding encoding Embedding Embedding Sources Targets

```
class EncoderBlock(nn.Module):
    """Transformer encoder block."""
   def init (self, key size, query size, value size,
                 num hiddens, norm shape, ffn num input,
                 ffn num hiddens, num heads, dropout,
                 use bias=False, **kwarqs):
        super(EncoderBlock, self). init (**kwargs)
        self.attention = d21.MultiHeadAttention(
            key_size, query_size, value_size, num hiddens,
           num heads, dropout, use bias)
        self.addnorm1 = AddNorm(norm shape, dropout)
        self.ffn = PositionWiseFFN(
            ffn num input, ffn num hiddens, num hiddens)
        self.addnorm2 = AddNorm(norm shape, dropout)
   def forward(self, X, valid lens):
        Y = self.addnorm1(X, self.attention(X, X, X, valid_lens))
        return self.addnorm2(Y, self.ffn(Y))
```

#### Decoder FC Add & norm Positionwise **FFN** Encoder Add & norm Add & norm $1 \times n$ Muti-head attention Positionwise FFN $n \times$ Add & norm Add & norm Masked Multi-head multi-head attention attention Positional Positional encoding encoding Embedding Embedding Sources Targets

```
class TransformerEncoder(d21.Encoder):
    """Transformer encoder."""
    def init (self, vocab size, key size, query size, value size,
                num hiddens, norm shape, ffn num input, ffn num hiddens,
                num heads, num layers, dropout, use bias=False, **kwargs):
        super(TransformerEncoder, self). init (**kwargs)
        self.num hiddens = num hiddens
        self.embedding = nn.Embedding(vocab size, num hiddens)
        self.pos encoding = d21.PositionalEncoding(num hiddens, dropout)
        self.blks = nn.Sequential()
        for i in range(num layers):
            self.blks.add module("block"+str(i),
                EncoderBlock(key size, query size, value size, num hiddens,
                             norm shape, ffn num input, ffn num hiddens,
                             num heads, dropout, use bias))
    def forward(self, X, valid lens, *args):
        # Since positional encoding values are between -1 and 1, the embedding
        # values are multiplied by the square root of the embedding dimension
        # to rescale before they are summed up
        X = self.pos encoding(self.embedding(X) * math.sqrt(self.num hiddens))
        self.attention weights = [None] * len(self.blks)
        for i, blk in enumerate(self.blks):
            X = blk(X, valid lens)
            self.attention weights[
                i] = blk.attention.attention.attention weights
        return X
```

#### Decoder Add & norm Positionwise FFN Encoder Add & norm Add & norm $I \times n$ Muti-head attention Positionwise FFN $n \times$ Add & norm Add & norm Masked Multi-head multi-head attention attention Positional Positional encoding encodina Embedding Embedding Sources **Targets**

- کدگشا از n لایه کدگشا مشابه تشکیل شده است ullet
- هر لایه کدگشا شامل سه جزء سازنده اصلی است
  - توجه به خود چندسر
- keys ،queries و values همگی خروجی لایه کدگشای قبلی است
- از آنجائیکه خروجی یکی یکی تولید میشود، فقط به خروجیهای قبلی توجه میکند
  - توجه کدگذار-کدگشا
- queries خروجی لایه کدگشای قبل، keys و values خروجی کدگذار هستند
  - شبکه پیشخور موقعیتی

#### Decoder FC Add & norm Positionwise **FFN** Encoder Add & norm Add & norm $1 \times n$ Muti-head attention Positionwise FFN Add & norm $n \times$ Add & norm Masked Multi-head multi-head attention attention Positional Positional encoding encodina Embedding Embedding Sources Targets

```
class DecoderBlock(nn.Module):
    # The `i`-th block in the decoder
   def init ( ... ):
        self.attention1 = d21.MultiHeadAttention( ... )
        self.addnorm1 = AddNorm(norm shape, dropout)
        self.attention2 = d21.MultiHeadAttention( ... )
        self.addnorm2 = AddNorm(norm shape, dropout)
        self.ffn = PositionWiseFFN( ... )
        self.addnorm3 = AddNorm(norm shape, dropout)
   def forward(self, X, state):
       key values = torch.cat((state[2][self.i], X), axis=1)
       X2 = self.attention1(X, key values, key values,
                             dec valid lens)
       Y = self.addnorm1(X, X2)
        Y2 = self.attention2(Y, enc outputs, enc outputs,
                             enc valid lens)
        Z = self.addnorm2(Y, Y2)
        return self.addnorm3(Z, self.ffn(Z)), state
```

• بعد از آموزش مدل، می توان به صورت زیر از آن استفاده کرد:

```
engs = ['go .', "i lost .", 'he\'s calm .', 'i\'m home .']
fras = ['va !', 'j\'ai perdu .', 'il est calme .', 'je suis chez moi .']
for eng, fra in zip(engs, fras):
    translation, dec_attention_weight_seq = d2l.predict_seq2seq(
        net, eng, src_vocab, tgt_vocab, num_steps, device, True)
    print(f'{eng} => {translation}, ',
        f'bleu {d2l.bleu(translation, fra, k=2):.3f}')

go . => va !, bleu 1.000
i lost . => j'ai perdu ., bleu 1.000
he's calm . => il est calme ., bleu 1.000
i'm home . => je suis chez moi ., bleu 1.000
```

• می توان وزنهای توجه را هم نمایش داد - برای جمله آخر این کار را انجام می دهیم

i'm home . => je suis chez moi .



- در توجهبهخود، queries و keys یکسان هستند
  - طول دنباله با padding به ۱۰ رسیده است
  - توجه به توکنهای padding را ماسک میکنیم

- 0.6

0.4

- 0.2

0.0

• نمایش وزنهای دو لایه توجه کدگذار:



i'm home . => je suis chez moi .

• وزنهای توجهبهخود کدگشا





i'm home . => je suis chez moi .

• وزنهای توجه کدگذار-کدگشا





- در مبدل، توجهبهخود چندسر برای بازنمایی دنباله ورودی و دنباله خروجی استفاده میشود
  - رمزگشا باید خاصیت Autoregressive را از طریق ماسک حفظ کند
- اتصالات باقیمانده و نرمالسازی لایهای برای آموزش یک مدل بسیار عمیق مهم هستند
- شبکه پیشخور، بازنمایی را در تمام موقعیتهای دنباله با استفاده از یک MLP یکسان تبدیل میکند



## مبدُل بینایی (Vision-Transformer)

n=50,176 یک تصویر رنگی با ابعاد  $224 \times 224$  پیکسل را میتوان به عنوان یک دنباله با طول n=50,176 در نظر گرفت

- هزینه محاسباتی و حافظه مورد نیاز خیلی زیاد خواهد بود و به خصوص برای تصاویر بزرگ اصلا قابل استفاده نیست

• می توان تصویر را به بخشهای کوچکی تقسیم کرد و برای هر کدام یک بازنمایی استخراج کرد





# مبدل بینایی (Vision-Transformer)



# مبدّل بینایی (Vision-Transformer)





# مبدل بینایی (Vision-Transformer)

- تصویر به تکههای با اندازه ثابت تقسیم میشود
- هر تکه به صورت خطی جانمایی میشود (patch embeddings)
  - جانمایی موقعیت به آن افزوده میشود
- دنباله بردارهای حاصل به یک کدگذار مبدل استاندارد وارد میشود
  - با GAP ترکیب میشوند
  - توسط MLP دستهبندی انجام میشود



#### × جانمایی تکهها

- یک تصویر با ابعاد 3 × 224 × 224 به 196 = 14 × 14 تکه با ابعاد 16 × 16 تقسیم می شود
  - نتیجه یک بردار 768 × 196 خواهد بود
  - با یک لایه خطی به فضای جدید تبدیل میشوند



# جانمایی تکهها

```
x = torch.randn(1, 3, 224, 224)
# 2D conv
conv = nn.Conv2d(3, 768, 16, 16)
conv(x).reshape(-1, 196).transpose(0,1).shape
>> torch.Size([196, 768])
```



## مبدل بینایی (Vision-Transformer)

- برای جانمایی موقعیت از روشهای قابل یادگیری استفاده شده است
  - مجموع این دو جانمایی وارد کدگذار مبدّل میشود
  - خروجی کدگذار وارد یک MLP برای دستهبندی میشود



### مبدل بینایی (Vision-Transformer)





```
class ViT(pl.LightningModule):
    def init (self, num transformer layers, num classes=1000):
        super(). init ()
        self.criterion = nn.CrossEntropyLoss()
        self.conv embedding = nn.Conv2d(3, 768, 16, 16)
        self.cls token = nn.Parameter(torch.zeros(1, 1, embed dim))
        encoder layer = nn.TransformerEncoderLayer(d_model=768, nhead=8)
        self.transformer encoder = nn.TransformerEncoder(encoder layer, num layers=num transformer layers)
        self.mlp head = nn.Linear(768, num classes)
        self.position embedding layer = nn.Embedding(197, 768)
    def training step(self, batch, batch idx):
        x, y = batch
        logits = self.forward(x)
        loss = self.criterion(logits, y)
       return loss
```

```
class ViT(pl.LightningModule):
    def forward(self, x):
        batch size = x.shape[0]
        cls tokens = self.cls token.expand(batch size, -1, -1)
        #(batch size, 196, 768)
        patches embedding = self.conv embedding(x).reshape(-1, 196).transpose(0,1)
        #(batch size, 197, 768)
        patches embedding = torch.cat((cls tokens, patches embedding), dim=1)
        #(batch size, 197); 0, 0, ... 196, 196
        positions = self. assign positions to patches(
        #(batch size, 197, 768)
        position embedding = position embedding layer(positions)
        #(batch size, 197, 768)
        final embedding = patches embedding + position embedding
        #(batch size, 197, 768)
        embedding output = self.transformer encoder(final embedding)
        #(batch size, 768)
        cls vector = embedding output[:, 0, :]
        #(batch size, num classes)
        return mlp head(cls vector)
```

# (Vision-Transformer) مبدل بینایی

- اگر با وزنهای تصادفی روی ImageNet آموزش ببیند عملکرد ضعیفتری از ResNet دارد
- هنگامیکه بر روی مجموعه داده عمومی ImageNet-21k پیش آموزش ببیند هم عملکرد ضعیف تری دارد

| Model     | Layers | Hidden size $D$ | MLP size | Heads | Params |
|-----------|--------|-----------------|----------|-------|--------|
| ViT-Base  | 12     | 768             | 3072     | 12    | 86M    |
| ViT-Large | 24     | 1024            | 4096     | 16    | 307M   |
| ViT-Huge  | 32     | 1280            | 5120     | 16    | 632M   |

|                    | Ours-JFT<br>(ViT-H/14) | Ours-JFT<br>(ViT-L/16) | Ours-I21k<br>(ViT-L/16) | BiT-L<br>(ResNet152x4) |
|--------------------|------------------------|------------------------|-------------------------|------------------------|
| ImageNet           | $88.55 \pm 0.04$       | $87.76 \pm 0.03$       | $85.30 \pm 0.02$        | $87.54 \pm 0.02$       |
| ImageNet ReaL      | $90.72 \pm 0.05$       | $90.54 \pm 0.03$       | $88.62 \pm 0.05$        | 90.54                  |
| CIFAR-10           | $99.50 \pm 0.06$       | $99.42 \pm 0.03$       | $99.15 \pm 0.03$        | $99.37 \pm 0.06$       |
| CIFAR-100          | $94.55 \pm 0.04$       | $93.90 \pm 0.05$       | $93.25 \pm 0.05$        | $93.51 \pm 0.08$       |
| Oxford-IIIT Pets   | $97.56 \pm 0.03$       | $97.32 \pm 0.11$       | $94.67 \pm 0.15$        | $96.62 \pm 0.23$       |
| Oxford Flowers-102 | $99.68 \pm 0.02$       | $99.74 \pm 0.00$       | $99.61 \pm 0.02$        | $99.63 \pm 0.03$       |
| VTAB (19 tasks)    | $77.63 \pm 0.23$       | $76.28 \pm 0.46$       | $72.72 \pm 0.21$        | $76.29 \pm 1.70$       |
| TPUv3-core-days    | 2.5k                   | 0.68k                  | 0.23k                   | 9.9k                   |

• اما هنگامیکه بر روی مجموعه داده بزرگ <u>JFT-300M</u> پیشآموزش ببیند، عملکرد بهتری دارد

- پیش آموزش ViT بسیار پر هزینه است
  - در حد ۳۰ هزار دلار!
- برخی وزنهای پیشآموخته از این <u>لینک</u> قابل دانلود است