1A - Théorie des Probabilités. 2023-2024 Prof. Brunel

EXAMEN FINAL (SESSION PRINCIPALE)

- 1. Durée de l'examen: 2 heures.
- 2. Feuille recto-verso A4 manuscrite autorisée. Appareils électroniques interdits.
- 3. L'examen ne comprend qu'un seul exercice, sur 32 points. Votre note sera le minimum entre le nombre de points obtenus et 20.
- 4. Il est impératif que les questions soient traitées dans l'ordre, quitte à laisser de l'espace entre chaque question. Les copies ne respectant pas cette règle ne seront pas corrigées (et recevront donc automatiquement la note 0).
- 5. Rappel : les copies mal présentées et/ou illisibles ne seront pas corrigées (et recevront donc automatiquement la note 0).
- 6. L'accent sera mis sur la rigueur et la précision de vos réponses. Les réponses non justifiées ne seront pas prises en compte.
- 7. Bon courage!

Exercice 1 (32 points)

- 1. (3 pts) Les assertions suivantes sont-elles vraies ? Justifiez votre réponse à l'aide d'une preuve ou d'un contre-exemple.
 - a) Soit (Ω, \mathcal{A}, P) un espace de probabilité et X et Y deux variables aléatoires réelles intégrables définies sur Ω . Alors X et Y sont indépendantes si et seulement si pour toute sous-tribu \mathcal{B} de \mathcal{A} , $\mathbb{E}[X|\mathcal{B}]$ et $\mathbb{E}[Y|\mathcal{B}]$ sont indépendantes.
 - b) Soit X une variable aléatoire réelle de loi exponentielle de paramètre 1 et Y une variable aléatoire de loi de Bernoulli de paramètre 1/2, indépendante de X. Alors $\max(X,Y)$ admet une densité par rapport à la mesure de Lebesgue.
 - c) Soit X une variable aléatoire réelle de loi exponentielle de paramètre 1 et Y une variable aléatoire de loi de Bernoulli de paramètre 1/2, indépendante de X. Alors X+Y admet une densité par rapport à la mesure de Lebesgue.
- 2. (1 pt) Soit (X,Y) un vecteur aléatoire réel gaussien admettant une densité par rapport à la mesure de Lebesgue (sur \mathbb{R}^2). Donner une condition nécessaire et suffisante sur le réel a garantissant que le vecteur aléatoire (X+2Y,2X+aY) admette une densité par rapport à la mesure de Lebesgue.
- 3. (2 pts) Soit $(\lambda_n)_{n\geq 1}$ une suite de réels strictement positifs. Pour tout $n\geq 1$, soit X_n une variable aléatoire de loi exponentielle de paramètre λ_n . Montrer que la suite $(X_n)_{n\geq 1}$ converge en distribution si et seulement si la suite $(\lambda_n)_{n\geq 1}$ est convergente. Dans ce cas, déterminer les limites de ces deux suites.
- 4. (1 pt) Soient X et Y deux variables aléatoires i.i.d de loi uniforme sur [0, 1]. Montrer que XY admet une densité par rapport à la mesure de Lebesgue, et la déterminer.
- 5. (2 pts) Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles i.i.d de carré intégrable. Pour tout $n\geq 1$, on note $\bar{X}_n=\frac{1}{n}\sum_{i=1}^n X_i$ la moyenne empirique de X_1,\ldots,X_n . Déterminer un nombre réel a tel que $\sqrt{n}\left((\bar{X}_n)^2-\mathbb{E}[X_1]^2\right)\xrightarrow[n\to\infty]{(d)}\mathcal{N}(0,a)$.
- 6. (2 pts) Soit $(X_n)_{n\geq 1}$ une suite de vecteurs aléatoires réels i.i.d intégrables. Montrer que $\frac{1}{n}\sum_{i=1}^{2n}(-1)^iX_i$ converge en probabilité vers une limite qu'on déterminera.
- 7. (2 pts) Soient X_1, X_2, \ldots des variables aléatoires réelles i.i.d de loi uniforme sur [0,1]. Montrer que $n(1 \max(X_1, \ldots, X_n))$ converge en distribution vers une loi exponentielle.
- 8. (2 pts) Démontrer l'inégalité de Cauchy-Schwarz conditionnelle : si X et Y sont deux variables aléatoires réelles de carré intégrable sur un espace de probabilité (Ω, \mathcal{A}, P) et \mathcal{B} est une sous-tribu de \mathcal{A} , alors $\mathbb{E}[|XY||\mathcal{B}] \leq \sqrt{\mathbb{E}[X^2|\mathcal{B}]\mathbb{E}[Y^2|\mathcal{B}]}$ presque sûrement.
- 9. (6 pts) Soient X et Y deux variables aléatoires réelles i.i.d de loi exponentielle de paramètre $\lambda > 0$. On pose $U = \min(X, Y)$ et $V = \max(X, Y)$.
 - a) Soit $h: \mathbb{R}^2 \to \mathbb{R}$ une fonction mesurable et positive quelconque. Vérifier que $\mathbb{E}[h(U,V)] = 2\mathbb{E}[h(X,Y)\mathbb{1}_{X < Y}].$

- b) En déduire que le couple (U, V) admet une densité par rapport à la mesure de Lebesgue, et la déterminer.
- c) Les variables U et V sont-elles indépendantes ?
- d) Vérifier que V est intégrable et déterminer $\mathbb{E}[V|X]$.
- 10. (2 pts) Soient $(X_n)_{n\geq 1}$ et $(Y_n)_{n\geq 1}$ deux suites de vecteurs aléatoires réels de taille $d\geq 1$. On suppose que pour tout $n\geq 1$, X_n et Y_n sont indépendants, et que $X_n\xrightarrow[n\to\infty]{(d)} X$ et $Y_n\xrightarrow[n\to\infty]{(d)} Y$, où X et Y sont deux vecteurs aléatoires indépendants. Montrer que $X_n^\top Y_n\xrightarrow[n\to\infty]{(d)} X^\top Y$.
- 11. (6 pts) Soient $(\lambda_n)_{n\geq 1}$ une suite de réels strictement positifs et $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes, telle que pour chaque $n\geq 1$, X_n suit la loi exponentielle de paramètre λ_n . On cherche à déterminer la loi de $Z=\inf_{n\geq 1}X_n$.
 - a) Justifier que Z est bien une variable aléatoire et que $Z \geq 0$ presque sûrement.
 - b) Pour tout $n \ge 1$, soit $Z_n = \min(X_1, \dots, X_n)$. Montrer que $Z_n \xrightarrow[n \to \infty]{\text{p.s}} Z$.
 - c) Déterminer la fonction de répartition de Z_n , pour chaque $n \geq 1$.
 - d) En déduire la loi de Z, selon si la série de terme général λ_n est convergente ou divergente.
- 12. (1 pt) Soient X_1, X_2, \ldots des variables aléatoires réelles i.i.d de carré intégrable. Pour tout $n \geq 1$, on pose $V_n = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X}_n)^2$ la variance empirique de X_1, \ldots, X_n . Montrer que V_n converge presque sûrement vers la variance de X_1 .
- 13. (2 pts) Pour tout entier $n \geq 1$, soit X_n une variable aléatoire de loi $\mathcal{N}(0, n)$. Montrer que X_n ne converge pas en distribution.