

計量經済学

9. 回帰分析による統計的推測 II 仮説を検証する

ため 勇生

https://yukiyanai.github.io

yanai.yuki@kochi-tech.ac.jp

今日の目標

- ・回帰分析で「統計的検定」と「統計的推定」を行うため の準備を整える
 - ▶母集団における回帰直線と標本の回帰直線を区別する
 - ▶ 回帰分析の帰無仮説と対立仮説を理解する

母集団の回帰直線と標本の回帰直線

回帰分析による推定

- ・データから作った散布図への直線(平面)の当てはめ は、標本データの要約
- 興味があるのは母集団の特徴
- ★ どのような方法で、標本から母集団を推定する?

統計モデルをつくる

- 自分が観察しているデータが生み出される過程をモデル 化する
 - ▶ データ生成過程 (data generating process; DGP)
 - ▶ モデル:目的に応じた現象の単純化
 - 本質的に「正しくない」
 - 「正しいかどうか」ではなく、「役に立つかどうか」 で評価する

"All models are wrong, but some are useful."

-George E. P. Box

Cf. Box, George. 1976. "Science and Statistics." Journal of the American Statistical Association, 71(356): 791-799.

单回帰

• 母集団における単回帰

$$Y_i = \alpha + \beta X_i + \epsilon_i$$

 $-\alpha$, β :パラメタ, 母数(推定の対象)

- ϵ : 誤差 (error)

- 説明変数以外で応答変数に影響を与えるもの
- 平均すると0

誤差をモデル化する

- 誤差 ϵ の分布を以下のように**仮定**する
 - \bullet $\epsilon_i \sim \text{Normal}(0, \sigma)$
 - 誤差の平均は 0
 - 誤差は、1つの正規分布から生み出される
 - ◆ 標準偏差は、*i* によらず一定

単回帰モデル

- 単回帰モデル:単回帰が想定するDGP
 - \blacktriangleright まず、 X_i (i=1,2,...)の値が決まる
 - ightharpoonup次に、 Y_i (i = 1,2,...)の値が以下のように決まる

$$Y_i \sim \text{Normal}(\mu_i, \sigma)$$

 $\mu_i = \alpha + \beta X_i$

単回帰モデルの書き換え

- ・以下のような表記が使われることも多い(意味はどれも同じ)
 - ▶ 別表記 (1)

$$Y_i \sim \text{Normal}(\alpha + \beta X_i, \sigma)$$

▶ 別表記 (2)

$$Y_i = \alpha + \beta X_i + \epsilon_i$$

$$\epsilon_i \sim \text{Normal}(0, \sigma)$$

母集団の回帰直線

標本の回帰直線(1)

標本の回帰直線 (2)

標本の回帰直線 (3)

標本の回帰直線 (4)

標本の回帰直線 (5)

最小二乗法による母数の推定:単回帰の場合

- 標本データを使い、最小二乗法よって求めた回帰係数 a,b は、単回帰モデルに登場する α,β の点推定値
- 最小二乗推定量は以下の望ましい性質をもつ
 - ightharpoonup 不偏性 (unbiasedness): $\mathbb{E}[a] = \alpha$, $\mathbb{E}[b] = \beta$
 - ▶一致性 (consistency):標本サイズを無限大にすると、推 定値は母数に一致する

重回帰

• 母集団における重回帰

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \dots + \beta_{K}X_{iK} + \epsilon_{i}$$

• $β_k$: パラメタ, 母数(推定の対象)、k = 0,1,2,...,K

€: 誤差

 \bullet $\epsilon_i \sim \text{Normal}(0, \sigma)$

重回帰モデル

- 重回帰モデル: 重回帰が想定するDGP
 - \blacktriangleright まず、 X_{ik} (i=1,2,...; k=0,2,...,K)の値が決まる
 - ightharpoonup次に、 Y_i (i=1,2,...)の値が以下のように決まる

$$Y_i \sim \text{Normal}(\mu_i, \sigma)$$

 $\mu_i = \beta_0 + \beta_1 X_{i1} + \dots + \beta_K X_{iK}$

最小二乗法による母数の推定:重回帰の場合

・標本データを使い、最小二乗法によって求めた回帰係数 $b_0, b_1, ..., b_K$ は、 $\beta_0, \beta_1, ..., \beta_K$ の推定値である

ightharpoonup 不偏性: $\mathbb{E}[b_k] = \beta_k$ (k = 0,1,2,...,K)

▶ 一致性

回帰分析の 帰無仮説と対立仮説

何のために回帰分析を行うのか

- •目的:理論(理論仮説)を検証したい
 - ▶ そのために作業仮説を用意する
 - ▶ 回帰分析で検証可能な作業仮説を用意する
 - 1つの応答変数
 - 1つ以上の説明変数
 - 説明変数が応答変数に与える影響についての仮説
 - ◆ 例: 「*X* が *Y* を増加させる」

帰無仮説と対立仮説

- 帰無仮説: 「説明変数は応答変数に影響を与えない」
- 対立仮説: 「説明変数が応答変数に影響する」
 - ▶ 自分が「正しい」ことを示したい理論の作業仮説を対立仮説 にする
- 統計的検定(方法は次回説明する)で帰無仮説が棄却されたとき、 「作業仮説が統計的に正しい」と判断する
 - ▶ 作業仮説が正しいと考えられるので、操作化がうまくできて いれば、理論仮説の蓋然性が高まる
 - 操作化(作業仮説と理論仮説の類似度)が重要

23

単回帰の場合

・モデル: $Y_i \sim \text{Normal}(\alpha + \beta X_i, \sigma)$

• 検証する仮説

▶ 帰無仮説: $\beta = 0$

▶ 対立仮説: $\beta \neq 0$

重回帰の場合(1)包括的検定

- ・モデル: $Y_i \sim \text{Normal}(\beta_0 + \beta_1 X_{i1} + \dots + \beta_K X_{iK}, \sigma)$
- 検証する仮説のパタン1
 - \blacktriangleright 帰無仮説: $\beta_1 = \beta_2 = \cdots = \beta_K = 0$
 - ightharpoonup対立仮説:「 $eta_1,eta_2,...,eta_K$ のうち、少なくとも1つについて $eta_k
 eq 0$ 」

重回帰の場合(2)個別的検定

・モデル: $Y_i \sim \text{Normal}(\beta_0 + \beta_1 X_{i1} + \cdots + \beta_K X_{iK}, \sigma)$

・検証する仮説のパタン2

▶ 帰無仮説:

▶ 対立仮説:

 β_1 の仮説

 $\beta_1 = 0$

 $\beta_1 \neq 0$

βρの仮説

 $\beta_2 \neq 0$

 β_K の仮説

 $\beta_K \neq 0$

- 実際は、すべての k について仮説を立てて検証するわけでは なく、理論における「原因」とみなされるものについてのみ 個別に仮説を検証する

「影響がない」を検証する???

- 通常、「影響がない」は帰無仮説
 - ▶「影響がない」を対立仮説にすると、帰無仮説「影響がある」 は棄却できない(検証する対象が無限にある)
 - ▶「影響がない」という帰無仮説を棄却できなくても、それは 「影響がない」ことを意味しない
 - 「影響がある」という証拠が見つからないだけ
 - 「証拠の不在」は「不在の証拠」ではない!
 - ★「影響がない」ことを主張する理論は、(これまで勉強してきた)統計的分析では検証不可能

次回

仮説を検証する (2)