

Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра интеллектуальных информационных технологий

Отчет о выполнении задания №2 по курсу «Суперкомпьютерное моделирование и технологии»

Выполнил:

Вешкин Артемий Сергеевич студент 622 группы вариант №5

Оглавление

1	Описание задания					
	1.1	Описание численной схемы	3			
	1.2	Оптимизация работы алгоритма с помощью директив OpenMP	4			
2	Про	граммная реализация	5			
3	Визуализация рассчетов					
4	Ана	лиз параллельных свойств программы	7			

1. Описание задания

В задании требуется реализовать решение трехмерного гиперболического уравнения в прямоугольной области:

$$\frac{\partial^2 u}{\partial t^2} = a^2 \Delta u$$

$$u|_{t=0} = \varphi(x, y, z)$$

$$\frac{\partial u}{\partial t}\Big|_{t=0} = 0$$

$$u(0, y, z, t) = u\left(L_{x'}, y, z, t\right) \quad u_x(0, y, z, t) = u_x\left(L_{x'}, y, z, t\right)$$

$$u(x, 0, z, t) = 0 \quad u\left(x, L_y, z, t\right) = 0$$

$$u(x, y, 0, t) = 0 \quad u\left(x, y, L_z, t\right) = 0$$

1.1. Описание численной схемы

Для численного решения данного уравнение предлагается использовать двухшаговую явную разностную схему. В ней значения на n+1 шаге по времени вычисляются с использованием значений на шагах n-1 и n. Схема выглядит следующим образом:

$$\frac{u_{ijk}^{n+1} - 2u_{ijk}^n + u_{ijk}^{n-1}}{\tau^2} = a^2 \Delta_h u^n \Leftrightarrow u_{ijk}^{n+1} = \tau^2 a^2 \Delta_h u^n + 2u_{ijk}^n - u_{ijk}$$

где $\Delta_h u^n$ - семиточечный оператор Лапласса:

$$\Delta_h u^n = \frac{u_{i-1,j,k}^n - 2u_{i,j,k}^n + u_{i+1,j,k}^n}{h^2} + \frac{u_{i,j-1,k}^n - 2u_{i,j,k}^n + u_{i,j+1,k}^n}{h^2} + \frac{u_{i,j,k-1}^n - 2u_{i,j,k}^n + u_{i,j,k+1}^n}{h^2}$$

Для начала вычислений требуется знать $u^0_{i,j,k}$ и $u^1_{i,j,k}$. $u^0_{i,j,k}$ задается из начального условия, $u^1_{i,j,k}$ вычисляется следующим образом:

$$u_{ijk}^{1} = u_{ijk}^{0} + a^{2} \frac{\tau^{2}}{2} \Delta_{h} \varphi (x_{i}, y_{j}, z_{k})$$

Для оценки погрешности схемы и инициализации первого временного слоя в задании дано аналитическое решение:

$$\begin{split} u_{analytical} &= \sin\left(\frac{2\pi}{L_x}x\right) \cdot \sin\left(\frac{\pi}{L_y}y\right) \cdot \sin\left(\frac{\pi}{L_z}z\right) \cdot \cos\left(a_t \cdot t + 2\pi\right), \\ a_t &= \frac{1}{2}\sqrt{\frac{4}{L_x^2} + \frac{1}{L_y^2} + \frac{1}{L_z^2}}, a^2 = \frac{1}{4\pi^2} \end{split}$$

1.2. Оптимизация работы алгоритма с помощью директив ОрепМР

Явная схема вычисления следующего шага по времени позволяет эффективно распараллеливать вычисления. В данном задании предлагается для оптимизации вычислений использовать директивы OpenMP. Требуется исследовать эффекты от ускорения программы для разных размеров задач и для разного числа нитей. Для вычислений и замеров используется суперкомпьютер IBM Polus.

2. Программная реализация

Программа, реализующая описанную выше разностную схему реализована на языке C++ и выложена на GitHub (https://github.com/ArtemVeshkin/MSU_OpenMP_Task). Для компиляции и запуска использовались подобные команды:

```
g++ -o main.out main.cpp -std=c++11 -fopenmp
mpisubmit.pl -t 8 main.out --stdout std.out --stderr std.err -- 128 20 1. 1. 1. 0.01
```

Верхнеуровнево код выглядит следующим образом:

- 1. Обрабатываются аргументы командной строки
- 2. Создаются сетки u^0 и u^1
- 3. С помощью аналитического решения инициализируется u^0 и границы u^1
- 4. Вычисляются значения в узлах u^1 с помощью значений в узлах u^0
- 5. Далее вычисляются значения в узлах u^{n+1} с использованием значений в u^n и u^{n-1} начиная с n=2
- 6. Выводится время работы программы и значения ошибок

Также в процессе работы программы имеется возможность залогировать в текстовом виде значения ошибок на всех шагах и содержимое узлов сеток. Для этого используются аргументы командной строки **log grids** и **log errors**.

В некоторых местах программы используется директива **#pragma omp parallel for**. Она позволяет выполнять цикл for параллельно с использованием заданного при старте программы числа нитей. С помощью этой директивы ускорены следующие фрагменты программы:

- Очистка узлов пространственной сетки
- Перенос значений узлов с одной сетки на другую
- Инициализация сеток u^0 и u^1
- Вычисление значений в узлах u^1
- Вычисление значений в узлах u^{n+1}

3. Визуализация рассчетов

Для визуализации работы программы был произведен рассчет на сетке $L_x=1, L_y=1, L_z=1, T=1,$ с 128 пространственными и 256 временными шагами. Сетка на каждом временном шаге сохранена и визуализированна при помощи языка python и его пакета matplotlib.

Для визуализации в трехмерном пространстве были отрисованы значения узлов сетки а также степень их отклонения от эталонных для каждого момента времени. GIF-анимации визуализаций находятся в GitHub репозитории (https://github.com/ArtemVeshkin/MSU OpenMP Task).

Ниже прикладываю поведение значений ошибок для описанной выше сетки.

Рис. 1. Значения средней и максимальной ошибок для сетки $L_x=1, L_y=1, L_z=1, T=1,$ с 128 пространственными и 256 временными шагами

4. Анализ параллельных свойств программы

Для разных пространственных сеток и разного числа OpenMP нитей были проведены замеры эффективности работы программы. Результаты приведены в таблице ниже:

Число	Число	Время решения	Ускорение	Средняя	Максимальная
OpenMP	точек			ошибка	ошибка
нитей	$cem \kappa u N^3$				
1	128^{3}	2894ms	1	0.000016	0.00086
2	128^{3}	1896ms	1.52	0.000016	0.00086
4	128^{3}	1492ms	1.94	0.000016	0.00086
8	128^{3}	1443ms	2.01	0.000016	0.00086
16	128^{3}	1559ms	1.86	0.000016	0.00086
32	128^{3}	1813ms	1.59	0.000016	0.00086
1	256^{3}	22184ms	1	0.000008	0.00017
2	256^{3}	14017ms	1.58	0.000008	0.00017
4	256^{3}	11952ms	1.86	0.000008	0.00017
8	256^{3}	9177ms	2.42	0.000008	0.00017
16	256^{3}	11231ms	1.98	0.000008	0.00017
32	256^{3}	13559ms	1.64	0.000008	0.00017

Из проведенных экспериментов видно, что после определенного числа нитей программа перестает ускоряться и даже начинает работать немного медленнее чем при меньшем числе нитей. Скорее всего это связано с тем, что накладные расходы начинают доминировать над выигрышем от параллелизма.