

Universidade Federal do Paraná - UFPR Centro Politécnico Departamento de Matemática

Disciplina: CM303 - Introdução à Geometria Analítica e Álgebra Linear

Lista de Exercícios – Semana 6

- **1.** Encontre o ponto C no eixo y equidistante dos pontos A(1,1,4) e B(-6,6,4).
- **2.** Calcule a distância do ponto P(1,2) à reta r dada por y=x.
- 3. Calcule as seguintes distâncias ponto-reta:
 - (a) do ponto P(1,2) aos eixos $x \in y$;
- (b) do ponto P(1,2,3) aos eixos $x, y \in z$.
- 4. Encontre a equação da elipse com centro na origem nos seguintes casos:
 - (a) eixo maior de comprimento 10 e focos $(\pm 4,0)$
 - (b) um dos focos é $F_1(3/4,0)$ e um dos vértices é A(1,0)
 - (c) os focos estão no eixo x, a excentricidade é e=2/3, e passa pelo ponto P(2,-5/3)
- 5. Encontre os vértices, a excentricidade, e esboce o gráfico da hipérbole $9x^2 16y^2 = 144$
- 6. Encontre a equação da hipérbole com centro na origem, vértices $(\pm 4,0)$, e que passa pelo ponto P(8,2)
- 7. Determine a equação reduzida das parábolas da figura abaixo:

Respostas:

1.
$$C(0,7,0)$$
.

2.
$$d(P,r) = \sqrt{2}/2$$

3. (a) 2 e 1; (b)
$$\sqrt{13}$$
, $\sqrt{10}$ e $\sqrt{5}$.

4. (a)
$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$
 (b) $\frac{x^2}{1} + \frac{y^2}{7/16} = 1$ (c) $\frac{x^2}{9} + \frac{y^2}{5} = 1$

5. Vértices: $(\pm 4,0)$, excentricidade: e=5/4; Gráfico:

6.
$$\frac{x^2}{16} - \frac{y^2}{4/3} = 1$$

7. azul:
$$x^2 = \frac{1}{2}y$$
 e verde: $y^2 = -\frac{1}{2}x$