Sentiment analysis – Amazon reviews

Introduzione

L'obiettivo del progetto proposto è di creare un classificatore di sentiment analysis su un insieme di recensioni di Amazon. Partendo da una prima versione del classificatore, esso verrà gradualmente modificato con l'obiettivo di migliorarne l'accuratezza.

Requisiti

Questo progetto è stato realizzato con Python 3.11. E' necessaria l'installazione di MongoDB e dei seguenti pacchetti python:

```
In [1]: # !pip install happiestfuntokenizing xgboost spacy
# !python -m spacy download en_core_web_s
```

Operazioni iniziali

Uso il seguente script per collegarmi al database con le recensioni:

```
In [2]: from pymongo import MongoClient

client = MongoClient('localhost', 27017)

DATABASE = client.test
```

Creo una classe per nascondere le print di alcune funzioni:

```
import os, sys

class HiddenPrints:
    def __enter__(self):
        self._original_stdout = sys.stdout
        sys.stdout = open(os.devnull, 'w')

def __exit__(self, exc_type, exc_val, exc_tb):
        sys.stdout.close()
        sys.stdout = self._original_stdout
```

Creo due funzioni che verranno usate nel seguito per:

Recuperare le recensioni dal database

• Trovare il classificatore e la relativa accuracy media (facendo 50 run)

```
In [4]:
       import nltk, random
       from nltk.sentiment.util import mark_negation, extract_unigram_feats
       from nltk.sentiment.sentiment_analyzer import SentimentAnalyzer
       from nltk.classify import NaiveBayesClassifier
       NUM_RUN = 50
       REVIEWS_PER_CLASSE = 1000
       REVIEWS_PER_CLASSE_TEST = 100
       def getReviewData(lista_overall, field="reviewText", funzione_tokenize=None):
           Questa funzione ritorna una lista di tuple (rec, classe) dove rec è la
       recensione e classe è la classificazione (es. 1.0 o 5.0).

    lista_overall è la lista delle classi (campo overall delle review)

                - field è il campo della review che si vuole ottenere
               - funzione tokenize è la funzione usata per tokenizzare il testo della
       review. Se non dato, la lista ritornata conterra' il contenuto del campo field
           reviews = []
           for overall in lista_overall:
               for review in DATABASE.reviews.find({"overall":
       overall}).limit(REVIEWS_PER_CLASSE):
               # for review in DATABASE.reviews.aggregate([
                    { '$match' :{"overall": overall}},
                    { '$match': { '$expr': { '$lt': [0.5, {'$rand': {} } ] } }, #
       Prendo le reviews in modo random ogni volta
                    { '$limit' : REVIEWS_PER_CLASSE}]):
                   if funzione tokenize == None:
                       reviews.append((review[field],str(overall)))
                   else:
                       reviews.append(([str(i).lower() for i in
       funzione_tokenize(review[field])],str(overall)))
           random.shuffle(reviews)
           return reviews
       def get_classifier_and_mean_accuracy(lista_overall,
       funzione_filtra_reviews=lambda x:x, feat_extractor=None, **kwargs):
           Questa funzione ritorna il classifier e la relativa accuracy media.
```

```
- lista overall è la lista delle classi (campo overall delle review)
        - funzione filtra reviews è una funzione che viene chiamata per
cambiare le reviews da esaminare.
          funzione_filtra_reviews prende in ingresso le reviews estratte (lista
di tuple (rec, classe)).
          funzione_filtra_reviews può poi, ad esempio, selezionare solo alcune
parole (es. solo gli aggettivi) dai testi delle recensioni.
          Infine, essa deve ritornare le reviews modificate.
        - feat_extractor è una funzione che viene usata nell'add_feat_extractor
del sentiment analyzer.
          Se omessa, viene usata extract_unigram_feats.
          Altrimenti, feat_extractor deve essere una funzione che prende in
input i soli documenti
        - i restanti parametri opzionali saranno dati in input a getReviewData
    0.00
    # Run dei test e accuracy
   accuracy = []
   # Prendo Le reviews
    reviews = getReviewData(lista_overall, **kwargs)
    reviews = funzione_filtra_reviews(reviews)
    sentimAnalyzer = SentimentAnalyzer()
   # e le features
    if feat_extractor == None:
        allWordsNeg = sentimAnalyzer.all_words([mark_negation(doc) for doc in
reviews])
        unigramFeats = sentimAnalyzer.unigram word feats(allWordsNeg,
min freq=4)
        sentimAnalyzer.add feat extractor(extract unigram feats,
unigrams=unigramFeats)
    else:
        sentimAnalyzer.add_feat_extractor(feat_extractor)
   featureSets = list(sentimAnalyzer.apply_features(reviews))
   for i in range(NUM RUN):
        random.shuffle(featureSets)
        trainSet, testSet = featureSets[REVIEWS_PER_CLASSE_TEST:],
featureSets[:REVIEWS PER CLASSE TEST]
```

```
# Classificatore e accuracy
with HiddenPrints():
        classifier = sentimAnalyzer.train(NaiveBayesClassifier.train,
trainSet)
        evalu = sentimAnalyzer.evaluate(testSet)
        accuracy.append(evalu["Accuracy"])

return classifier, round(sum(accuracy)/len(accuracy), 4)
```

Versione 1 (originale): Word tokenizer di nltk con due classi

Per questa prima versione:

- recupero il campo "reviewText" delle recensioni positive (5 stelle) e negative (1 stella)
- uso la funzione word_tokenize fornita da nltk per tokenizzare il testo
- uso come feature la word occurrency
- calcolo il classificatore e l'accuracy media

```
In [5]: classifier1, accuracy1 = get_classifier_and_mean_accuracy([1.0, 5.0],
    funzione_tokenize=nltk.word_tokenize)
    print("Accuracy:", accuracy1)

dizionario_plot = {} # Dizionario usato alla fine per stampare i risultati
    graficamente
    dizionario_plot["1.Originale"] = accuracy1
```

Accuracy: 0.8551

Abbiamo ottenuto una buona accuracy. Proviamo a vedere quali parole sono state le più significative per il classificatore:

```
In [6]: classifier1.show_most_informative_features()
```

```
Most Informative Features
                                                       29.2 : 1.0
       contains(sucks) = True
                                       1.0 : 5.0 =
       contains(waste) = True
                                       1.0 : 5.0 =
                                                       22.5 : 1.0
    contains(computers) = True
                                      1.0 : 5.0 =
                                                      14.5 : 1.0
    contains(fantastic) = True
                                      5.0 : 1.0 =
                                                       12.9 : 1.0
                                      1.0 : 5.0 =
                                                       11.8 : 1.0
      contains(stopped) = True
                                       1.0 : 5.0 =
                                                       11.1 : 1.0
        contains(lame) = True
       contains(unable) = True
                                       1.0 : 5.0 =
                                                      11.1 : 1.0
       contains(wasted) = True
                                       1.0 : 5.0 =
                                                      10.4 : 1.0
                                       1.0 : 5.0 =
       contains(worst) = True
                                                      10.3 : 1.0
  contains(comfortable) = True
                                       5.0 : 1.0 = 10.2 : 1.0
```

Come facilmente intuibile, se una recensione contiene parole negative (es. waste, horrible) essa sarà probabilmente negativa.

Versione 2: Sentiment tokenizer di Christopher Potts con due classi

Provo ora a modificare la versione precedente usando la funzione tokenize di Christopher Potts al posto di nltk.word tokenize :

```
In [7]: from happiestfuntokenizing.happiestfuntokenizing import Tokenizer
    classifier2, accuracy2 = get_classifier_and_mean_accuracy([1.0, 5.0],
    funzione_tokenize=Tokenizer().tokenize)
    print("Accuracy:", accuracy2)
    dizionario_plot["2.ChrisPott"] = accuracy2
```

Accuracy: 0.8628

Questa volta abbiamo ottenuto una accuracy leggermente migliore. Di nuovo, stampo le features più significative nelle reviews:

```
In [8]: classifier2.show_most_informative_features()
```

```
Most Informative Features
       contains(sucks) = True
                                      1.0 : 5.0 =
                                                    31.9 : 1.0
27.7 : 1.0
       contains(waste) = True
                                      1.0 : 5.0 =
    contains(computers) = True
                                     1.0 : 5.0 = 14.4 : 1.0
       contains(worst) = True
                                     1.0 : 5.0 =
                                                     11.7 : 1.0
                                                     11.7 : 1.0
                                      1.0 : 5.0 =
      contains(stopped) = True
                                     5.0 : 1.0 =
  contains(comfortable) = True
                                                     11.6 : 1.0
        contains(ff7) = True
                                     1.0 : 5.0 =
                                                     11.1 : 1.0
        contains(lame) = True
                                      1.0 : 5.0 =
                                                     11.1 : 1.0
       contains(rings) = True
                                      1.0 : 5.0 =
                                                     11.1 : 1.0
        contains(grip) = True
                                      5.0 : 1.0 = 10.5 : 1.0
```

Notiamo subito che non c'è molta differenza tra le parole estratte in questa versione e nella precedente. In entrambi i casi, le features più significative sono le parole negative o positive. Questo è probabilmente il motivo per cui i due classificatori hanno un'accuracy molto simile.

Versione 3: Classificazione a cinque classi

Proverò questa volta ad aggiungere anche le recensioni con 2, 3 e 4 stelle:

```
In [9]: classifier3, accuracy3 = get_classifier_and_mean_accuracy([float(i) for i in
    range(1,6)], funzione_tokenize=Tokenizer().tokenize)
    print("Accuracy:", accuracy3)
    dizionario_plot["3.Cinque classi"] = accuracy3
Accuracy: 0.4322
```

Come ci si poteva aspettare, l'accuracy è drasticamente peggiorata. Infatti, il classificatore farà sicuramente più fatica a classificare una recensione con parole positive, perché essa potrebbe essere sia a 4 sia a 5 stelle. Vale lo stesso per una recensione con parole negative.

```
In [10]: classifier3.show_most_informative_features()
```

```
Most Informative Features
                                                    33.5 : 1.0
26.4 : 1.0
       contains(sucks) = True
                                      1.0 : 5.0 =
       contains(cloud) = True
                                      1.0 : 4.0 =
     contains(collect) = True
                                     4.0 : 1.0 =
                                                     25.0 : 1.0
       contains(waste) = True
                                     1.0 : 5.0 =
                                                     22.0 : 1.0
                                                     19.1 : 1.0
                                      3.0 : 4.0 =
       contains(roller) = True
                                                     19.0 : 1.0
     contains(superman) = True
                                      1.0 : 2.0 =
       contains(areas) = True
                                     2.0 : 1.0 =
                                                     18.4 : 1.0
        contains(bugs) = True
                                      2.0 : 5.0 =
                                                      18.3 : 1.0
                                      5.0 : 2.0 =
         contains(wii) = True
                                                       18.2 : 1.0
      contains(coaster) = True
                                    3.0 : 5.0 = 17.7 : 1.0
```

Stavolta tra le feature più significative sono presenti anche un po' più parole neutre (es. *collect* o *areas*), che non dovrebbero dare informazioni sul sentiment delle recensioni.

Non avendo migliorato l'accuracy, nel seguito continuerò ad usare le sole recensioni a cinque o a una stella.

Cambio delle feature

Finora ho sempre considerato come feature la presenza (word occurrency) di tutte le parole tokenizzate del field "reviewText" delle recensioni. Proverò in questo paragrafo a cambiare le features estratte, per cercare di aumentare l'accuracy del classificatore.

Versione 4: Uso del field "summary"

Nelle reviews è presente un campo "summary" contenente poche parole che riassumono il testo della recensione. Proverò quindi ad usare questo campo invece dell'intero testo:

```
Most Informative Features
                                       5.0 : 1.0 =
       contains(works) = True
                                                        41.2 : 1.0
       contains(don't) = True
                                       1.0 : 5.0 =
                                                        30.5 : 1.0
      contains(awesome) = True
                                       5.0 : 1.0 =
                                                        21.7 : 1.0
                                       5.0 : 1.0 =
       contains(great) = True
                                                        16.2 : 1.0
                                       1.0 : 5.0 =
         contains(did) = True
                                                       12.0 : 1.0
       contains(didn't) = True
                                       1.0 : 5.0 =
                                                       12.0 : 1.0
       contains(never) = True
                                       1.0 : 5.0 =
                                                       11.3 : 1.0
       contains(money) = True
                                       1.0 : 5.0 =
                                                        10.9 : 1.0
         contains(not) = True
                                       1.0 : 5.0 =
                                                        10.6 : 1.0
     contains(fighting) = True
                                       5.0 : 1.0 = 8.8 : 1.0
```

Anche in questo caso l'accuracy è leggermente peggiorata rispetto alla versione originale. Questo probabilmente perché il summary potrebbe non essere significativo rispetto all'intero testo. Per esempio esiste una recensione con summary "Lana's opinion" e reviewText "[...] Money well spent-provides hours of amusement & education".

Versione 5: uso dei soli aggettivi

Accuracy: 0.6112

Provo questa volta a selezionare dai testi delle recensioni solo gli aggettivi. Partendo dalla lista di parole tokenizzate, seleziono gli aggettivi usando wordnet (nltk.corpus).

```
In [13]:
        from nltk.corpus import wordnet as wn
        def filtra_solo_aggettivi(reviews):
            new_reviews = []
            for (lista_parole,classe) in reviews:
                 solo_aggettivi = []
                 for par in lista_parole:
                     tmp = wn.synsets(par)
                     if len(tmp) > 0 and tmp[0].pos() == "a":
                         solo_aggettivi.append(par)
                 if solo_aggettivi != []:
                     new_reviews.append((solo_aggettivi,classe))
            return new reviews
        classifier5, accuracy5 = get_classifier_and_mean_accuracy([1.0, 5.0],
        funzione_tokenize=Tokenizer().tokenize,
        funzione_filtra_reviews=filtra_solo_aggettivi)
         print("Accuracy:", accuracy5)
        dizionario_plot["5.Solo aggettivi"] = accuracy5
```

```
In [14]: classifier5.show_most_informative_features()
```

```
Most Informative Features
                                      5.0 : 1.0 = 12.0 : 1.0
  contains(comfortable) = True
      contains(unable) = True
                                      1.0 : 5.0 =
                                                     11.3 : 1.0
    contains(addictive) = True
                                     5.0 : 1.0 =
                                                      7.2 : 1.0
      contains(intense) = True
                                     5.0 : 1.0 =
                                                      6.5 : 1.0
         contains(hot) = True
                                     5.0 : 1.0 =
                                                      5.8 : 1.0
  contains(inexpensive) = True
                                     5.0 : 1.0 =
                                                     5.1 : 1.0
        contains(wide) = True
                                     5.0 : 1.0 =
                                                     4.5 : 1.0
                                      1.0 : 5.0 =
   contains(compatible) = True
                                                       4.3 : 1.0
                                      5.0 : 1.0 =
      contains(harder) = True
                                                       3.9 : 1.0
   contains(protective) = True
                                      5.0 : 1.0 = 3.8 : 1.0
```

L'accuracy è peggiorata, quindi è necessaria anche l'inclusione di altre parole (sostantivi, verbi, ...) per ottenere una buona accuracy.

Versione 6: uso della word frequency

wfreq=[words.count(w) for w in words]

def conta_parole(words):

In [15]:

Proviamo questa volta ad usare come feature la frequenza delle parole, invece della sola presenza:

```
return dict(zip(words, wfreq))
        classifier6, accuracy6 = get_classifier_and_mean_accuracy([1.0, 5.0],
        funzione_tokenize=Tokenizer().tokenize, feat_extractor=conta_parole)
        print("Accuracy:", accuracy6)
        dizionario_plot["6.Frequency word"] = accuracy6
        Accuracy: 0.8594
In [16]:
        classifier6.show most informative features()
        Most Informative Features
                                                1.0 : 5.0 =
                         sucks = 1
                                                                  29.0 : 1.0
                         waste = 1
                                                1.0 : 5.0 =
                                                                 20.6 : 1.0
                          bad = 2
                                               1.0 : 5.0 =
                                                                19.7 : 1.0
                                                5.0 : 1.0 = 14.3 : 1.0
1.0 : 5.0 = 13.7 : 1.0
                          grip = 1
                      computers = 1
                    comfortable = 1
                                               5.0 : 1.0 =
                                                                11.7 : 1.0
                    recommended = 1
                                               5.0 : 1.0 =
                                                                11.0 : 1.0
                                                1.0 : 5.0 =
                         saved = 1
                                                                 11.0 : 1.0
                        unable = 1
                                                1.0:5.0=11.0:1.0
```

In questo caso l'accuracy è leggermente migliorata rispetto alla versione originale, ed è molto simile alla migliore ottenuta finora.

5.0 : 1.0 = 10.3 : 1.0

Lemmatize invece di tokenize

length = 1

Analizzando le precedenti feature significative, si può notare che alcune parole come *worst* e *worse* derivino entrambe da *bad*. Se quindi la presenza di *worst* è una feature significativa per le recensioni della classe negativa (1 stella), allora probabilmente anche la presenza di *bad* lo sarà.

Per implementare ciò, ho usato le funzioni per lemmatizzare il testo, invece che tokenizzarlo. Ho inoltre rimosso le stop words perchè la loro presenza è inutile nel feature set.

Versione 7: WordNetLemmatizer

Testo inizialmente il lemmatizer WordNetLemmatizer di nltk.stem:

```
In [17]:
        from nltk.stem import WordNetLemmatizer
        from nltk.corpus import stopwords
        import re
        stop_words = sorted(stopwords.words('english'))
        wnl = WordNetLemmatizer()
        def filtra_non_stop_words(reviews):
            reviews = [([wnl.lemmatize(parola) for parola in rec if parola not in
        stop_words], classe) for (rec,classe) in reviews]
            return reviews
        classifier7, accuracy7 = get_classifier_and_mean_accuracy([1.0, 5.0],
        funzione tokenize=Tokenizer().tokenize,
        funzione_filtra_reviews=filtra_non_stop_words)
         print("Accuracy:", accuracy7)
        dizionario_plot["7.WordNetLemmatizer"] = accuracy7
        Accuracy: 0.8614
In [18]: classifier7.show_most_informative_features()
        Most Informative Features
                contains(waste) = True
                                                1.0 : 5.0 =
                                                                 28.7 : 1.0
                contains(cloud) = True
                                                1.0 : 5.0 =
                                                                 24.1 : 1.0
             contains(wireless) = True
                                                5.0 : 1.0 =
                                                                 11.8 : 1.0
                 contains(lame) = True
                                                1.0 : 5.0 =
                                                                11.3 : 1.0
              contains(stopped) = True
                                                1.0 : 5.0 =
                                                                10.9 : 1.0
               contains(stupid) = True
                                                1.0 : 5.0 =
                                                                10.9 : 1.0
                 contains(suck) = True
                                                1.0 : 5.0 =
                                                                10.9 : 1.0
               contains(unable) = True
                                                1.0 : 5.0 =
                                                                10.9 : 1.0
                                                5.0 : 1.0 =
                                                                 10.4 : 1.0
           contains(comfortable) = True
           contains(recommended) = True
                                                5.0 : 1.0 = 10.4 : 1.0
```

Versione 8: Spacy

Provo adesso il lemmatizer di spacy.

```
import spacy

nlp = spacy.load("en_core_web_sm")
```

```
def spacy_lemmatizer(reviews):
    new_reviews = []
    for (testo, classe) in reviews:
        doc = nlp(testo.lower())
        lemmas = [token.lemma_ for token in doc if token.lemma_ not in
stop_words]
        new_reviews.append((lemmas, classe))
    return new_reviews

classifier8, accuracy8 = get_classifier_and_mean_accuracy([1.0, 5.0],funzione_filtra_reviews=spacy_lemmatizer)
print("Accuracy:", accuracy8)
dizionario_plot["8.Spacy"] = accuracy8

Accuracy: 0.8692
```

```
In [20]: classifier8.show_most_informative_features()
```

```
Most Informative Features
                                     1.0 : 5.0 = 25.7 : 1.0
1.0 : 5.0 = 24.4 : 1.0
       contains(waste) = True
                                      1.0 : 5.0 =
       contains(cloud) = True
       contains(lame) = True
                                     1.0 : 5.0 = 17.7 : 1.0
        contains(lara) = True
                                     5.0 : 1.0 = 15.0 : 1.0
                                                     14.4 : 1.0
      contains(freeze) = True
                                      1.0 : 5.0 =
                                      1.0 : 5.0 =
                                                      14.2 : 1.0
 contains(disappointed) = True
                                     1.0 : 5.0 =
     contains(excited) = True
                                                      13.0 : 1.0
     contains(horrible) = True
                                      1.0 : 5.0 =
                                                      11.9 : 1.0
    contains(fantastic) = True
                                      5.0 : 1.0 = 11.6 : 1.0
          contains(ff) = True
                                   1.0 : 5.0 = 11.0 : 1.0
```

L'accuracy dei due lemmatizer è molto simile. In quest'ultimo caso, l'accuracy è leggermente aumentata rispetto a quella ottenuta finora.

Versione 9: lemmatize e opinion_lexicon

Infine, ho integrato le due librerie nItk e Spacy. Ho deciso di:

- rimuovere la punteggiatura dal testo delle recensioni e rimpiazzarla con uno spazio. Analizzando le feature estratte nelle versioni precedenti, infatti, ho notato che alcune parole non venivano correttamente tokenizzate/lemmatizzate. Ad esempio "game.l" non veniva divisa in ["game", "l"]. Ho quindi implementato questa modifica per risolvere il problema.
- memorizzare come documento la lista di parole più importanti (verbi, nomi, avverbi, aggettivi) ed escludendo quindi le stop word
- selezionare solo le parole positive o negative. Per fare ciò, ho usato le funzioni negative() e positive() fornite da opinion_lexicon (nltk.corpus). In questo modo vado ad eliminare le parole neutre che potrebbero non dirmi niente di utile sulle recensioni.

```
In [21]: from string import punctuation
from nltk.corpus import opinion_lexicon
```

```
nlp = spacy.load("en_core_web_sm")
        neg_words = sorted(opinion_lexicon.negative())
        pos_word = sorted(opinion_lexicon.positive())
        pos_tag = {'VERB','NOUN','ADV', 'ADJ'}
        def get keywords in text(text):
            for punteggiatura in punctuation:
                text = text.replace(punteggiatura, " ", -1)
            doc = nlp(text.lower())
            result = [token.lemma_ for token in doc if (not token.text in stop_words )
        and (token.pos_ in pos_tag)]
            result = [token for token in result if (token in neg_words or token in
        pos_word)]
            return result
        def seleziona_keyword(reviews):
            # reviews = [(get keyword in text(rec), classe) for (rec, classe) in
        reviews]
            for i in range(len(reviews)):
                # print(i, end=" ")
                reviews[i] = (get_keywords_in_text(reviews[i][0]), reviews[i][1])
            return reviews
        classifier9, accuracy9 = get_classifier_and_mean_accuracy([1.0, 5.0],
        funzione_filtra_reviews=seleziona_keyword)
        print("Accuracy:", accuracy9)
        dizionario_plot["9.lemmatize,opinion_lexicon"] = accuracy9
        Accuracy: 0.8346
In [22]: classifier9.show_most_informative_features()
        Most Informative Features
                                               1.0 : 5.0 =
                contains(cloud) = True
                                                                20.8 : 1.0
                contains(waste) = True
                                               1.0 : 5.0 =
                                                               20.5 : 1.0
                                               1.0 : 5.0 =
                                                               14.9 : 1.0
               contains(freeze) = True
          contains(disappointed) = True
                                               1.0:5.0=12.5:1.0
                 contains(lame) = True
                                               1.0 : 5.0 =
                                                               12.5 : 1.0
                 contains(suck) = True
                                              1.0 : 5.0 =
                                                               11.5 : 1.0
                                                               11.1 : 1.0
                                               5.0 : 1.0 =
           contains(comfortable) = True
                                                               10.9 : 1.0
               contains(unable) = True
                                               1.0 : 5.0 =
                contains(trash) = True
                                               1.0 : 5.0 =
                                                               10.2 : 1.0
                                            1.0 : 5.0 = 9.6 : 1.0
              contains(garbage) = True
```

L'accuracy, però, è leggermente peggiorata.

Uso della libreria Scikit-learn

Proverò ora ad usare la libreria Scikit-learn.

Creo innanzitutto una funzione che ritorni i dati e i target del train set e del test set:

```
In [23]:
        def get_train_test_data_target(reviews):
            Questa funzione ritorna: train data, train target, test data e test target
        delle reviews in input.
                - train_data, test_data sono i "documenti" del trainset e testset
        rispettivamente
                - train_target, test_target sono le classi del trainset e testset
        rispettivamente
            0.00
            classi = list(set(list({x[1] for x in reviews})))
            testSet= reviews[:REVIEWS_PER_CLASSE]
            trainSet = reviews[REVIEWS_PER_CLASSE:]
            # classi_count = {str(c):0 for c in classi}
            # for (feat, classe) in trainSet:
            # classi_count[classe] +=1
            # print("trainset:", classi_count)
            # classi_count = {str(c):0 for c in classi}
            # for (feat, classe) in testSet:
            # classi count[classe] +=1
            # print("testSet:", classi_count)
            train_data, train_target = list(map(list, zip(*trainSet)))
            test_data, test_target = list(map(list, zip(*testSet)))
            return train_data, train_target, test_data, test_target
```

Versione 10: Classificatore Support Vector Machines (SVM)

Nelle versioni viste finora, ho sempre fatto uso del classificatore Naive Bayes di nltk. Andrò ora a modificarlo, usando il Support Vector Machines (SVM) di Scikit-learn. Uso inoltre la pipeline, per:

- effettuare la pre-elaborazione del testo, il tokenizing e l'eliminazione delle stopwords (mediante il CountVectorizer)
- contare le TF-IDF frequencies (usando TfidfTransformer)

• fare il train del classificatore

Inoltre, stavolta uso cross_val_score per effettuare direttamente 50 run.

```
In [24]:
        from sklearn.model_selection import ShuffleSplit, cross_val_score
        from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
        from sklearn.naive bayes import MultinomialNB
        from sklearn import svm
        from sklearn.pipeline import Pipeline
        # Creo il train e test set
        reviews10 = getReviewData([1.0, 5.0])
        train_data, train_target, test_data, test_target =
        get_train_test_data_target(reviews10)
        # Classificatore
        text_clf = Pipeline([('vect', CountVectorizer()), ('tfidf',
        TfidfTransformer()),('clf', svm.SVC()),])
        text_clf.fit(train_data, train_target)
        predicted = text_clf.predict(test_data)
        # Cross-validation
        cv = ShuffleSplit(n_splits=NUM_RUN, test_size=0.2, random_state=0)
        scores = cross_val_score(text_clf, test_data, test_target, cv=cv)
        accuracy10 = round(sum(scores)/len(scores), 4)
        print("Accuracy:", accuracy10)
        dizionario_plot["10.SVM"] = accuracy10
```

Accuracy: 0.8785

L'accuracy è leggeremente migliorata. Proviamo a usare altri classificatori per cercare di migliorarla ancora.

Versione 11: SGDClassifier

Effettuo gli stessi passaggi di prima, ma stavolta uso il classificatore SGDClassifier.

```
from sklearn.linear_model import SGDClassifier

# Creo il train e test set
reviews11 = getReviewData([1.0, 5.0])
train_data, train_target, test_data, test_target =
get_train_test_data_target(reviews11)

# Classificatore
```

```
text_clf = Pipeline([('vect', CountVectorizer()), ('tfidf',
    TfidfTransformer()), ('clf', SGDClassifier(loss='hinge', penalty='l2',
    alpha=1e-3, random_state=42, max_iter=5, tol=None)),])
text_clf.fit(train_data, train_target)
predicted = text_clf.predict(test_data)

# Cross-validation
cv = ShuffleSplit(n_splits=NUM_RUN, test_size=0.2, random_state=0)
scores = cross_val_score(text_clf, test_data, test_target, cv=cv)
accuracy11 = round(sum(scores)/len(scores), 4)
print("Accuracy:", accuracy11)
dizionario_plot["11.SGDClassifier"] = accuracy11
```

Accuracy: 0.8845

Accuracy: 0.8855

Versione 12: Grid-search

Proverò stavolta a usare la grid search (GridSearchCV) di sklearn.

```
In [26]: from sklearn.model_selection import GridSearchCV
        reviews12 = getReviewData([1.0, 5.0])
        train_data, train_target, test_data, test_target =
        get_train_test_data_target(reviews12)
        text_clf = Pipeline([('vect', CountVectorizer()), ('tfidf',
        TfidfTransformer()), ('clf', MultinomialNB())])
        text_clf.fit(train_data, train_target)
        parameters = {'vect__ngram_range': [(1, 1), (1, 2)], 'tfidf__use_idf': (True,
        False), 'clf__alpha': (1e-2, 1e-3),}
        cv = ShuffleSplit(n_splits=NUM_RUN, test_size=0.2, random_state=0)
        gs_clf = GridSearchCV(text_clf, parameters, cv=cv, n_jobs=-1)
        gs_clf.fit(train_data, train_target)
        predicted = gs_clf.predict(test_data)
        scores = cross_val_score(text_clf, test_data, test_target, cv=cv)
        accuracy12 = round(sum(scores)/len(scores), 4)
        print("Accuracy: ", accuracy12)
        dizionario_plot["12.Grid-search"] = accuracy12
```

Si può quindi notare che la libreria Skilearn migliora l'accuracy. La versione migliore è quella con la grid search.

Versione 13: Uso di XGBoost

Proverò infine a usare la libreria XGBoost

```
In [27]:
        import xgboost as xgb
        import numpy as np
        from sklearn.metrics import accuracy_score
        accuracy13 = []
        for _ in range(NUM_RUN):
            reviews13 = getReviewData([1.0, 5.0])
            train_data, train_target, test_data, test_target =
        get_train_test_data_target(reviews13)
            cv = CountVectorizer(binary = True)
            cv.fit(train_data, train_target)
            train_transform = cv.transform(train_data)
            test_transform = cv.transform(test_data)
            # Trasformo i target del trainset e testset in un formato adatto a xgboost
            train_target = [0 if target=="1.0" else 1 for target in train_target]
            test_target = [0 if target=="1.0" else 1 for target in test_target]
            # Training and Predicting
            train_matrix = xgb.DMatrix(train_transform, train_target)
            test_matrix = xgb.DMatrix(test_transform, test_target)
            param = {'objective': 'binary:hinge'} # Mette in predicted_test solo
        valori 0 o 1
            classifier13 = xgb.train(param, train_matrix, num_boost_round = 30)
            predicted_test = classifier13.predict(test_matrix).tolist()
            # Accuracy
            accuracy13 += [accuracy_score(test_target, predicted_test)]
        accuracy13 = round(sum(accuracy13)/len(accuracy13), 4)
        print("Accuracy:", accuracy13)
        dizionario_plot["13.Xgboost"] = accuracy13
```

Accuracy: 0.7874

Purtroppo in questo caso l'accuracy è peggiorata.

Risultati e conclusioni

Andiamo ora ad analizzare le accuracy ottenute:

```
import matplotlib.pyplot as plt

x_titoli , y_accuracy = list(dizionario_plot.keys()),
list(dizionario_plot.values())
plt.rcParams["figure.figsize"] = (24,7)

plt.plot(x_titoli, y_accuracy)
for i in range(len(x_titoli)):
    if y_accuracy[i] == max(y_accuracy):
        plt.text(x_titoli[i], y_accuracy[i], str(y_accuracy[i]), color="red",
    weight='bold')
    else:
        plt.text(x_titoli[i], y_accuracy[i], str(y_accuracy[i]))

plt.title('Accuracy delle versioni')
plt.grid()
```


In conclusione, sono riuscita a migliorare leggermente l'accuracy del classificatore. I classificatori che hanno restituito i migliori risultati sono il grid-search e il SGDClassifier di sklearn.

I peggiori classificatori sono invece quelli con classi e quello che usa i soli aggettivi.