Analysis of temporal sequences

Classes of problems

Change detection

Motion tracking

Object tracking

Change detection

- Image subtraction
- May require image registration prior to subtraction
- Affected by non-significant changes in the background

Motion tracking

Example: left heart ventricle tracking

Motion tracking

Object tracking

Object tracking – key processes

- Object detection
- Assigning a unique label to each object (labelling)
- Trajectory linking

Trajectory linking - problems

Trajectory linking - heuristics

Maximum velocity

Common motion

Consistent match

Model

Model

Trajectory linking - probabilistic models

- Distribution, for example Gaussian with a given mean and standard deviation, to characterise
 - Velocity
 - Angular change of direction
 - Motion model (linear, brownian, expansion, contraction)
 - Change in brightness (e.g. bleaching)
 - Change in size or shape
 - Transition probability from one model to another
 - **—**
- Markov models

Trajectory linking via optimisation

- Trajectory linking amounts to finding the most likely match between the detected objects in two or more frames
- Probabilistic methods using motion and object models are most successful but quite complex
- In simpler scenarios the use of association matrix can work well.

Association matrix

Characterising motion

 Once tracking is completed motion can be characterised, for example using vector flow fields

Tracking via registration

(elastic matching)

Examples

Examples

Example

Matlab demo