QUIZ II

Solve:

• $\int x \ln(x) dx$

Use integration by parts: $u = \ln(x)$, dv = x. Then find du = 1/x and $v = x^2/2$ and apply formula:

$$\frac{x^2 \ln(x)}{2} - \int \frac{x^2}{2x} dx = \frac{x^2 \ln(x)}{2} - \frac{x^2}{4} + C$$

 $\bullet \int \frac{x + 4x^2 + x^2 \cos(x)}{x^2} dx$

Just simplify and integrate:

$$\int \left(\frac{1}{x} + 4 + \cos(x)\right) dx = \ln(|x|) + 4x + \sin(x) + C$$

Use substitution $\cos^2(x) = 1 - \sin^2(x)$ and then *u*-substitution $u = \sin(x), du = \cos(x)dx$:

$$\int \cos(x)(\sin^2(x)-\sin^4(x))dx = \int (u^2-u^4)du = \frac{u^3}{3} - \frac{u^5}{5} + C = \frac{\sin^3(x)}{3} - \frac{\sin^5(x)}{5} + C$$

- $\int \frac{1}{1+x^2} dx = \arctan(x) + C$
- $\bullet \int \frac{1+x}{x^2-x} dx$

Use partial fraction decomposition: $x^2 - x = x(x - 1)$.

$$\int \frac{2}{x-1} - \frac{1}{x} dx = \left[2\ln|x-1| - \ln|x| \right]_2^3 = 2\ln 2 - \ln 3 - 2\ln 1 + \ln 2 = \ln(8/3)$$

$$\bullet \int_0^2 \sqrt{4-x^2} dx$$

Use substitution $x = 2\sin(u)$, $dx = 2\cos(u)du$ and half angle formula.

$$\int \sqrt{4 - 4\sin^2(u)} 2\cos(u) du = 4 \int \cos^2(u) du = 4 \int \frac{1 + \cos(2u)}{2} du$$

$$= 2u + \sin(2u) + C = 2u + 2\sin(u)\cos(u) + C = 2\arcsin(x/2) + x\sqrt{1 - \frac{x^2}{4}} + C$$

Now plug in limits of integration:

$$\int_0^2 \sqrt{4 - 4x^2} dx = 2\arcsin(1) + 0 - 2\arcsin(0) + 0 = 2\pi/2 = \pi$$

Alternatively you could just say it is one fourth of the area of the circle of radius 2!!!

$$\bullet \int x^2 \sqrt{1-x^2} dx$$

Use trigonometric substitution $x = \sin(\theta)$, $dx = \cos(\theta)d\theta$ and then u-substitution $u = \sin(\theta)$.

$$\int \sin^{2}(\theta) \sqrt{1 - \sin^{2}(\theta)} \cos(\theta) d\theta = \int \sin^{2}(\theta) \sqrt{\cos^{2}(\theta)} \cos(\theta) d\theta = \int \sin^{2}(\theta) \cos^{2}(\theta) d\theta$$

$$= \int \frac{1 - \cos(2\theta)}{2} \frac{1 + \cos(2\theta)}{2} d\theta = \int \frac{1 - \cos^{2}(2\theta)}{4} d\theta = \int \frac{1}{4} - \frac{1 + \cos(4\theta)}{8} d\theta$$

$$= \frac{\theta}{8} - \frac{\sin(4\theta)}{32} = \frac{\theta}{8} - \frac{\sin(2\theta) \cos(2\theta)}{16} = \frac{\theta}{8} - \frac{\sin(\theta) \cos(\theta) (\cos^{2}(\theta) - \sin^{2}(\theta))}{8} (\cos^{2}(\theta) + \cos^{2}(\theta) + \cos^{$$