§ 6.5.2 集成寄存器 74194 IC Register 74194

多功能寄存器: 四位并行存取双向移位寄存器

 D_{SR} 在 Q_0 一侧, D_{SL} 在 Q_3 一侧

 $Q_3Q_2Q_1Q_0$ 数据输出

 $D_3D_2D_1D_0$ 数据输入

 $D_{\rm SR}$ $D_{\rm SL}$ 串入

- → shift right
- ← shift left

实现前面、种功能

②。②12223只有排列顺序,没有高、低位

 $D_0 D_1 D_2 D_3$

74194逻辑电路图

(1) 并入/并出

(2) 左移串入/串出

(3) 左移串入 / 并出

串入 shift left

(4) 左移环形

$$Q_0 \rightarrow D_{\rm SL}$$

先置 $M_1=1$, $M_0=1$, 在 CLK 上升沿并入,

$$Q_0Q_1Q_2Q_3 = D_0D_1D_2D_3 = 0001$$

再置 M_0 =0, CLK 迩 沿到来 \rightarrow 左移 M-4 计数

接彩灯

左移环形的其他置 -个1为主循环 $Q_0Q_1Q_2Q_3$ 数方式: 0010 000 保持 0100 1000 001 1001 101 M-4环形计数器 M-4环形计数器 0101 1010

(5) 左移扭环寄存器

 $D_0D_1D_2D_3$ 接 Φ ,都可以构成扭环

(6) 右移串入/串出 寄存器

(7) 右移串入/計出寄存器

(8) 右移环形寄存器

模 4 计数器

(9) 右移扭环寄存器

$$\overline{Q}_3$$
 接 D_{SR}
 $M_0 = 1$,
 $M_1 = \begin{cases} 1, + \lambda \\ Q_0 Q_1 Q_2 Q_3 = D_0 D_1 D_2 D_3 \\ 0, + H + \lambda \end{cases}$

都可以构成扭环

只有两种状态图

从并入的 $D_0D_1D_2D_3$ 开始循环 模 8 计数器

例1. 用74194 设计模 6 环形计数器

例2. 用74194设计模6 扭环计数器, 画出状态图

例3. 分析如图所示的芯片功能,画出状态图

§6.6 序列信号发生器

Series Signal Generator

序列信号: 一组特定的循环数字信号

序列信号发生器:产生--组序列信号的时序电路

类型 Shift-type 移位型

§ 6.6.1 计数型序列信号发生器

Counter-type Series Signal Generator

例1. 设计一个产生7位序列信号 1010110 的序列信号 发生器 (时间顺序: 从左到流)

结构:

```
8-1 MUX — 选择 1010110 — 74151
M-7 计数器 — 7位 — 74161
```


波形

实现步骤:

- · 根据序列码的长度M,设计一个模M计数器
- 选择适当的数据选择器,把待产生的序列按规定的顺序放在数据选择器的数据输入端,把地址端与计数器的输出端连接在一起

在用计数器产生序列信号时,触发器的数目k符合

$$2^{k-1} < M < 2^k$$

例2. 用序列信号发生器实现数据并/串转换

Counter and MUX

例3.分析下图电路

计数器从000 到100 循环, 相应 的输出为 01010. 74161: M-5 计数器

(000)~(100) (101) 毛刺

$$Z = Q_0 \cdot \overline{Q}_2$$

输出为原状态的输出

状态表

	Q_2^n	Q_1^n	Q_0^n	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	Z
	0	0	0	0	0	1	0
	0	0	1	0	1	0	1
	0	1	0	0	1	1	0
	0	1	1	1	0	0	1
	1	0	0	0	0	0	0

电路功能:产生01010序列信号的序列信号发生器

例4. 用74LS194组成节日彩灯控制电路

本章总结

- 掌握时序逻辑电路的基本概念
- ·掌握时序逻辑电路的分析方法
- 掌握时序逻辑电路的常规设计方法
- · 掌握计数器74161、160、163、290
- · 掌握寄存器的功能和应用,以及集成IC74194
- ・掌握序列信号发生器