	C	.5	5	17	Mi	11	S. M	. 1			
	(Tein	رم	Mi	1 1	n L	a m	6	•		
	À	25	00	23	71						
			л I			5					
	•			,							

Problem 1 1 Show $(P \rightarrow Q) \vee (Q \rightarrow P)$ is a tentology. A toutology is a wiff whose truth values are always true Q -> P (P->Q) V (Q->P) PQPO (P-)a) V (a-)P) is always true it is a tantology

Problem 1 @ Prove that P-2 and -1PVQ are logically equivalent PQP-Q -P -PVQ The Inth tables of P-O + 7PVQ are identical, so logically equivalent

CH = 1 SM = 1 Sation (TCH	Cal Bo	lvin onzo Later / B	is is men	+ (a		ment,		Drae	m's	la	(a.)
SH = 13 M = 13 M = 1 C	Cal Bo	lvin onzo Later / B	is is men	+ (a		ment,		Diac	m's	la	(a.)
iginal TC sation T(T	5- 	lates / B	men Bm	+ (a		ment,		Drae	m's	la	L
iginal TC sation T(T	5- 	lates / B	men Bm	+ (a		ment,		Diac	m's	la	(a.)
iginal TC sation T(T	5- 	lates / B	men Bm	+ (a		ment,		Diac	m's	la	(a.)
iginal TC sation T(T	5- 	lates / B	men Bm	+ (a		ment,		Drae	w 's	la	(a.)
iginal TC sation T(T	5- 	lates / B	men Bm	+ (a		ment,		Dige	× 2 m	la	(a.)
7 (7 (7 (/ B	Bm 1 Bp)	ergu	De		Drae	m's	la	(a.)
7 (7 (7 (/ B	Bm 1 Bp)	2791	De		Drae	× 2 m	la	(a.)
n (1	ے ، د _ا	، ∨ ۸ -	В _м)			M.	orac	z m	la	(a.)
n (1	ے ، د _ا	، ∨ ۸ -	В _м)			M.	Drac	z m	la	les
(7 C _H	,)	人 -	1 B,	1			M	Drac	w s	la	lu
(7 C _H	,)	人 -	1 B,	1			M.	Dra e	zo S	la	w
(7 C _H	,)	人 -	1 B,	1			M	Drac	z oz	la	(L)
(7 C _H	,)	人 -	1 B,	1			M.	Drac	~ 'S	la	w
(7 C _H	,) A	Д - пВ	1 B,	1			M	Prae	~ \	la	w
(7 C _H	,) ,	Д - пВ	1 B,	1			M	Drg c	× 5	la	w
c_{H}	, ,	7 B						- C		_	
CH	/\	ער	M								
			1.1			neg	Lti	~			
ot((<i>o</i> .1	ر د مان	S 10	LI			_	2.	245	. c	. 4
1	the	m	wic	(د	is	ta	ato l	310	Llly	equ	اعداء
	10										
1	, 0										
alvia	n is	, hz	me	a	nd	Bonz	o i	5 n	.+		
	at	1	ne	Mb	vics						
	`alvi	to Calvin is	to Lalvin is he	to Lalvin is home	Lalvin is home a	Lalvin is home and	Lalvin is home and Bonz	Lalvin is home and Bonzo i	to	Lalvin is home and Bonzo is not	Calvin is home and Bonzo is not

Problem 2 [10+10]

Define
$$\sum_{i=0}^{n} z = \frac{n(n+1)(2n+1)}{6}$$
 for $n \ge 1$

The assume $|P+2^{2}+3^{2}+...+k^{2}| = \frac{k(k+1)(2k+1)}{6}$

Is: show: $|P+2^{2}+3^{2}+...+(k+1)|^{2} = \frac{(k+1)(k+1+1)(2(k+1)k+1)}{6}$
 $= \frac{(k+1)(k+2)(2k+3)}{6}$
 $= \frac{(k+1)(k+2)(2k+3)}{6}$
 $= \frac{(k+1)(2k+1)}{6} + \frac{(k+1)^{2}}{6}$
 $= \frac{(k+1)(2k+1)}{6} + \frac{(k+1)^{2}}{6}$
 $= \frac{(k+1)(2k+1)}{6} + \frac{(k+1)^{2}}{6}$
 $= \frac{(k+1)(2k+1)}{6} + \frac{(k+1)}{6}$
 $= \frac{(k+1)(2k+1)}{6} + \frac{(k+1)(2k+1)}{6}$
 $= \frac{(k+1)(2k+1)}{6$

Problem 2 [10+10]

$$n-1$$
 $2^{1} = 2^{n} - 1$

For $n \in \mathbb{N}$

Pasis: $n = 1$, $2^{1} - 1 = 1$
 TH_{1} assume: $2^{1} + 2^{2} + 2^{3} + \dots + 2^{k} = 2^{(k+1)} - 1$
 TS_{1} , show: $2^{1} + 2^{2} + 2^{3} + \dots + 2^{k} = 2^{(k+1)} - 1$
 $= 2^{1} + 2^{2} + 2^{3} + \dots + 2^{k} = 2^{(k+1)} + 2^{k}$
 $= 2^{1} + 2^{2} + 2^{3} + \dots + 2^{(k-1)} + 2^{k}$
 $= 2^{k} - 1 + 2^{k}$
 $= 2^{k} - 1 + 2^{k}$
 $= 2(2^{k}) - 1$
 $= 2^{k+1} - 1$

law of experients

 \therefore by induction $2^{2} = 2^{n} - 1$ for $n \in \mathbb{N}$


```
Problem 5
   T(1)=100
   T(n) = 2T(n/2) + n 	 (for n \ge 2, n = 2^m)
           n=2^k
  assume
              k = login
 Sequence T:
T(1) = 100
                                     Basis
T(n) = 2T(n/2) + n
                                   recurrence relation
T(n) = 2T(1/2) +n
                                  expension 1
      = 2 (2 T(2/2)+2)+n
                                  expansion 2
      = 2 T(==)+ 3 +n
                                 simplify
      = 22T(21) + 2n
                                  Simplify
      -2^{2}\left(2+\left(\frac{n/i^{2}}{2}\right)+\frac{n}{2^{2}}\right)+2n
                                  expension 3
      = 23T(23)+ 22n +2n
                                  simp lify
      = Z3T (2:) + 3n
                                   s.mpl. Sy
      = 2k+(完)+ kn
                                  expansion k
      = n T(\frac{n}{n}) + n \log_{1} n
                                 expansion n=Zk
      = n (T(1) + log_n)
                                  by basis
      = n (100 + log, n)
                                  closed form
                                     Solution
 Theorem
   T(n) = n(100 + \log_2 n) \text{ for } n \ge 1, n = 2^m
 Proof
   Basis: T(1) = |(100 + log_2(1))
                  = 100 + 00 = 100
IH, assume: T(K) = k (140 + loge k)
IS, show: T(2k) = Zk (100 + 103 z Zk)
T(2k) = 2T(k) + 2k
                                 recurrence relation
      =2(k(100+102k))+2k
                                  inductive hypothesis
      = 2k(100 +lozk) +2k
                                  distributive
                                 Ector
      = 24(100 + logzh +1)
      = 2k (100 + logz k + logz 2)
                                10922=1
      = 2k (160 + 10322k)
                                   property of los
thus T(n) = n(100 + \log_2 n) for n \ge 1, n = 2^m
where m \in \mathbb{N}
                              where m EN
```