BANK CUSTOMER CHURN PREDICTION

GROUP 15

Anjali Yamdagni Aparna Raghavendra Rao Arvind Kanhirampara Ravi Charishma Jaladi Nishanthi Ravichandran Sai Arjun Madikonda

ABC Multistate Bank - About the Dataset

Customer Id	Customer's unique identifier
Credit Score	Credit score of the customer
Country	Country of residence
Gender	Gender defined as Male, Female
Age	Age of the member
Tenure	No. of years the customer had a bank acc. with ABC

Balance	Account Balance						
Products Number	Number of Products from Bank						
Credit Card	Card Binary variable - if customer has a credit card						
active_me mber	Binary variable - if the customer is an active member						
estimated_ Estimated salary of the customer salary							
churn	Used as the target 1 if the client has left the bank during some period 0 if he/she has not left the bank						

What is customer churn?

Introduction

- Customer Churn: the customers that stopped using the bank's service or products
- Customer Retention is an imperative metric for bank's repeated and continued business with bank

Objectives

- Predict bank's customer churn
- Analyze the bank's demographic information

Data Visualization - Churn with Demographics

The dataset is sliced into the following subset, to further analyze Churn with respect to Demographics

```
Bank_Demographics_Data = bank_data[['country','gender','age','age group','churn']]
print("The below subset of the original dataset is to be used from here on to analyze Churn with respect to Demographics")
Bank_Demographics_Data
```

The below subset of the original dataset is to be used from here on to analyze Churn with respect to Demographics

	country	gender	age	age group	churn
customer_id					
15634602	France	Female	42	Middle-Age Adult	1
15647311	Spain	Female	41	Middle-Age Adult	0
15619304	France	Female	42	Middle-Age Adult	1
15701354	France	Female	39	Adult	0
15737888	Spain	Female	43	Middle-Age Adult	0
15606229	France	Male	39	Adult	0
15569892	France	Male	35	Adult	0
15584532	France	Female	36	Adult	1
15682355	Germany	Male	42	Middle-Age Adult	1
15628319	France	Female	28	Adult	0

Churn Vs Country

```
#Churn Vs Country
Churn_Vs_Country = Bank_Demographics_Data.groupby(['country', 'churn'])['churn'].count()
Churn_Vs_Country
```

country	churn	
France	0	4204
	1	810
Germany	0	1695
	1	814
Spain	0	2064
	1	413

Name: churn, dtype: int64

Churn Vs Gender

#Churn Vs Gender

Churn_Vs_Gender = Bank_Demographics_Data.groupby(['gender', 'churn'])['churn'].count()
Churn_Vs_Gender

gender	r churi	n	
Female	9 0	340	94
	1	113	39
Male	0	455	59
	1	89	98
Name:	churn,	dtype:	int64

Churn vs Age

```
#Churn Vs Age
Churn_Vs_Age = Bank_Demographics_Data.groupby(['age', 'churn'])['churn'].count()
Churn_Vs_Age
```

```
#Churn Vs Age Groups
Churn_Vs_Age_Group = Bank_Demographics_Data.groupby(['age group', 'churn'])['churn'].count()
Churn Vs Age Group
```

age	churn				
18	0	20			
	1	2			
19	0	26			
	1	1			
20	0	38			
84	0	1			
	1	1			
85	0	1			
88	0	1			
92	0	2			
Name	: churn,	Length:	128,	dtype:	int64

age group	churn	
Adult	0	5344
	1	594
Middle-Age Adult	0	2194
	1	1293
Senior Adults	0	379
	1	147
Teenager	0	46
	1	3
Name: churn, dtyp	e: int64	

Churn vs Age Group Plot

Churn vs Country and Gender

#Pivot table of Churn Vs Country and Gender
print("Below is a pivot table representing the distribution of Churn with respect to Country")
Bank Demographics Data.pivot table(index = 'country', columns = 'gender', values = 'churn', aggfunc='sum')

gender	Female	Male
country		
France	460	350
Germany	448	366
Spain	231	182

Correlation Matrix

```
corr=bank_data.corr()
corr.style.background_gradient(cmap='coolwarm')
```

	credit_score	age	tenure	balance	products_number	credit_card	active_member	estimated_salary	churn
credit_score	1.000000	-0.003965	0.000842	0.006268	0.012238	-0.005458	0.025651	-0.001384	-0.027094
age	-0.003965	1.000000	-0.009997	0.028308	-0.030680	-0.011721	0.085472	-0.007201	0.285323
tenure	0.000842	-0.009997	1.000000	-0.012254	0.013444	0.022583	-0.028362	0.007784	-0.014001
balance	0.006268	0.028308	-0.012254	1.000000	-0.304180	-0.014858	-0.010084	0.012797	0.118533
products_number	0.012238	-0.030680	0.013444	-0.304180	1.000000	0.003183	0.009612	0.014204	-0.047820
credit_card	-0.005458	-0.011721	0.022583	-0.014858	0.003183	1.000000	-0.011866	-0.009933	-0.007138
active_member	0.025651	0.085472	-0.028362	-0.010084	0.009612	-0.011866	1.000000	-0.011421	-0.156128
estimated_salary	-0.001384	-0.007201	0.007784	0.012797	0.014204	-0.009933	-0.011421	1.000000	0.012097
churn	-0.027094	0.285323	-0.014001	0.118533	-0.047820	-0.007138	-0.156128	0.012097	1.000000

Distribution of all Columns

```
import matplotlib.pyplot as plt
color = '#00FFFF'
bank_data.hist(bins=10,figsize=(25,15),color=color)
plt.rcParams['font.size'] = 17
plt.show()
```


Majority of customers are still with the bank

```
import matplotlib.pyplot as plt
plt.figure(figsize=(12,8))
bank_data['churn'].value_counts().plot.pie(autopct='%1.1f%%',shadow=True);
plt.title('churn');
plt.ylabel('');
plt.legend(['0-Member of Bank','1-Left Bank'],prop={'size': 8})
```


Adding a new metric 'return member'

	credit_score	country	gender	age	tenure	balance	products_number	credit_card	active_member	estimated_salary	churn	return_member
customer_id												
15634602	619	France	Female	42	2	0.00	1	1	1	101348.88	1	1
15647311	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0	0
15619304	502	France	Female	42	8	159660.80	3	1	0	113931.57	1	0
15701354	699	France	Female	39	1	0.00	2	0	0	93826.63	0	0
15737888	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	0	0

The bank is only able to re-attract a small percentage of old customers

```
import matplotlib.pyplot as plt
plt.figure(figsize=(10,8))
bank_data['return_member'].value_counts().plot.pie(autopct='%1.1f%%',shadow=True);
plt.title('Return Members');
plt.ylabel('');
plt.legend(['0-Members who did not return','1-members who returned'],prop={'size': 8})
```


Members who returned are defined as customers who left the bank(churn = 1) & returned(active_member = 1)

Creating a new column 'iso code' for plots

	customer_id	credit_score	country	gender	age	tenure	balance	products_number	credit_card	active_member	estimated_salary	churn	iso_code
0	15634602	619	France	Female	42	2	0.00	1	1	1	101348.88	1	FRA
1	15647311	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0	ESP
2	15619304	502	France	Female	42	8	159660.80	3	1	0	113931.57	1	FRA
3	15701354	699	France	Female	39	1	0.00	2	0	0	93826.63	0	FRA
4	15737888	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	0	ESP

Calculating the number of customers for each country only for churned customers

```
map_data1 = bank_data[bank_data['churn']== 1]
map_data = pd.DataFrame()
map_data['count_customers'] = map_data1.groupby('iso_code')['customer_id'].count()
map_data.reset_index(inplace=True,level = ['iso_code'])
print(map_data)
```

```
iso_code count_customers
0 DEU 814
1 ESP 413
2 FRA 810
```

Plotting the number of customers for each country only for churned customers

Number of churned customers for Germany

Churned customers

Number of churned customers for Spain

Churned customers

Number of churned customers for France

Churned customers

Data Preprocessing

```
#Convert 'gender' and 'country' to categorical
bank_data['gender_new']=bank_data.gender.map({'Female':0,'Male':1})
bank data['country new'] = bank data.country.map({'France':1,'Spain':2,'Germany':3})
bank data.head(5)
   customer id credit score country gender age tenure
                                                       balance products number credit card active member estimated salary churn ge
     15634602
                            France Female
                                                                                                                101348.88
     15647311
                                                      83807.86
                                                                                                               112542.58
                            Spain Female
     15619304
                            France Female 42
                                                   8 159660.80
                                                                                                      0
                                                                                                               113931.57
                                                                                                      0
     15701354
                                                           0.00
                                                                                                                93826.63
                            France Female
     15737888
                            Spain Female 43
                                                   2 125510.82
                                                                                                                79084.10
bank data new = bank data.drop(['country', 'gender'], axis=1)
bank data new.head()
   customer id credit score age tenure
                                        balance products number credit card active member estimated salary churn gender new country
     15634602
                      619 42
                                           0.00
                                                                                                101348.88
                                                                                                                        0
     15647311
                      608 41
                                    1 83807.86
                                                                                                112542.58
                                                                                                             0
                                                                                                                        0
     15619304
                      502 42
                                   8 159660.80
                                                                                       0
                                                                                                113931.57
                                                                                                             1
                                                                                                                        0
     15701354
                      699 39
                                           0.00
                                                                                      0
                                                                                                93826.63
                                                                                                             0
                                                                                                                        0
     15737888
                      850 43
                                   2 125510.82
                                                                                                79084.10
                                                                                                             0
                                                                                                                        0
```

STEP 1

Update Categorical column values

Data Preprocessing

```
#Standardize the data
scaling cols = ['tenure', 'balance', 'estimated salary']
# Import the StandardScaler
from sklearn.preprocessing import StandardScaler
# Scale the features and set the values to a new variable
scaler = StandardScaler()
bank_data_new[scaling_cols] = scaler.fit_transform(bank_data_new[scaling_cols])
bank data new.head(2)
                                      balance products_number credit_card active_member estimated_salary churn gender_new country_
            credit score age
customer id
  15634602
                       42 -1.041760 -1.225848
                                                                                              0.021886
                                                                                                                      0
                                                                                              0.216534
  15647311
                   608 41 -1.387538 0.117350
```

STEP 2

Standardizing the data

Logistic Regression

```
y = bank data new['churn']
X = bank data new.drop(['churn'],axis=1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state=42)
logreg model = LogisticRegression(solver='liblinear')
logreg_model.fit(X_train,y_train)
y_pred = logreg_model.predict(X_test)
print(confusion matrix(y test, y pred))
print(classification report(y test, y pred))
#Accuracy score
from sklearn.metrics import accuracy score
print("Accuracy:", accuracy_score(y_test, y_pred))
[[1543
         641
         83]]
 [ 310
              precision
                           recall f1-score
                                              support
                             0.96
                                       0.89
           0
                   0.83
                                                 1607
                   0.56
                             0.21
                                       0.31
                                                  393
                                       0.81
                                                 2000
    accuracy
                   0.70
                             0.59
                                       0.60
                                                 2000
   macro avg
weighted avg
                   0.78
                             0.81
                                       0.78
                                                 2000
Accuracy: 0.813
```

- Train 80%
- Test 20%

K-Nearest Neighbors

n_neighbors = 5

```
v = bank data new['churn']
X = bank_data_new.drop(['churn'],axis=1)
knn_model = KNeighborsClassifier(n_neighbors=5)
X_train_knn,X_test_knn,y_train_knn,y_test_knn = train_test_split(X,y,test_size=0.2,random_state=42)
#Fit
knn_model.fit(X_train_knn,y_train_knn)
#predict LabeLs
predicted y 5 = knn model.predict(X test knn)
#Print confusion matrix & classification report
print(confusion_matrix(y_test_knn,predicted_y_5))
print(classification_report(y_test_knn,predicted_y_5))
print("Accuracy score when k=5", accuracy score(y_test_knn,predicted y_5))
[[1492 115]
[ 284 109]]
              precision
                           recall f1-score
                                             support
                   0.84
                             0.93
                                       0.88
                                                 1607
                   0.49
                             0.28
                                       0.35
                                                  393
                                                 2000
                                       0.80
    accuracy
   macro avg
                   0.66
                             0.60
                                       0.62
                                                 2000
weighted avg
                   0.77
                             0.80
                                       0.78
                                                 2000
Accuracy score when k=5 0.8005
```

Probability of Churn

```
bank_data_new['Churn_Probability_logreg'] = logreg_model.predict_proba(bank_data_new[X_test.columns])[:,1]
bank_data_new['Churn_Probability_knn'] = knn_model.predict_proba(bank_data_new[X_test_knn.columns])[:,1]
prob = pd.DataFrame(bank_data_new, columns = ['churn','Churn_Probability_logreg','Churn_Probability_knn'])
prob = prob.sample(n=10)
print(prob)
```

	churn	Churn_Probability_logreg	Churn_Probability_knn
customer_id			
15717995	0	0.020444	0.0
15634218	0	0.174211	0.0
15591047	1	0.552893	0.8
15582276	0	0.061163	0.0
15790678	0	0.225681	0.2
15809777	0	0.512526	0.8
15808228	0	0.181978	0.4
15664881	0	0.135619	0.0
15622585	0	0.039266	0.0
15753332	1	0.544070	0.6

- Can enter details of a customer and compare the model's prediction of the probability of the customer leaving the bank under two different models
- Logistic regression = 81.30%
 accurate
 KNN model = 80.05% accurate
- Provides information but decision ultimately is based on management's experience & other qualitative factors

Churn Prediction using Mock Data

```
##PREDICT
predicted_churn = logreg_model.predict(mock_data)
#print(predicted_churn)
mock_data['predicted_churn']=predicted_churn
mock_data.head(10)
```

	credit_score	age	tenure	balance	$products_number$	${\sf credit_card}$	active_member	estimated_salary	gender_new	country_new	predicted_churn
customer_id											
1	420	42	-1.573994	-0.831751	3	0	0	-0.851690	1	2	0
2	634	76	0.861990	1.715164	4	0	0	-0.660701	1	3	1
3	712	67	1.209988	-0.407173	3	1	0	-0.275257	1	3	1
4	842	78	0.861990	-1.145727	2	1	1	0.938087	0	2	1
5	796	57	-0.877998	1.286579	1	0	1	-0.482644	0	3	1
6	491	42	-0.877998	-0.008866	4	1	0	0.630363	0	3	0
7	411	58	-0.182003	0.501233	3	0	1	0.434174	1	2	0
8	844	89	1.557986	-0.711814	2	0	0	1.148677	0	2	1
9	383	28	1.557986	1.458033	4	1	1	1.192671	1	2	0
10	350	91	-0.877998	-0.385284	1	1	0	-1.159887	0	3	1

Decision Tree Classifier

```
from sklearn.tree import DecisionTreeClassifier

# Create Decision Tree classifer object
dt = DecisionTreeClassifier(criterion='entropy', max_depth=4)

# Train Decision Tree Classifer
dt = dt.fit(X, y)

#Predict the response for test dataset
y_pred = dt.predict(X)

# print out the accuracy of the classifier using `accuracy_score` function
print("Accuracy:", accuracy_score(y, y_pred))
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 0)

tree_clf = DecisionTreeClassifier(random_state = 0)
tree_clf.fit(X_train, y_train)

DecisionTreeClassifier(random_state=0)

class_rep = classification_report(y_test,y_pred[:2500])
print(class_rep)
```

Accuracy: 0.8468

	precision	recall	f1-score	support
0 1	0.80 0.22	0.94 0.07	0.86 0.11	1991 509
accuracy macro avg weighted avg	0.51 0.68	0.50 0.76	0.76 0.48 0.71	2500 2500 2500

PCA

```
from sklearn.pipeline import make_pipeline
# Import PCA
from sklearn.decomposition import PCA
# Create a PCA instance: pca
pca = PCA()
# Create pipeline: pipeline
pipeline = make_pipeline(scaler, pca)
samples = bank data new.values
# Fit the pipeline to 'samples'
pipeline.fit(samples)
# Plot the explained variances
features = range(1, 1 + pca.n_components_)
plt.bar(features, pca.explained_variance_)
plt.xlabel('PCA feature')
plt.ylabel('variance')
plt.xticks(features)
plt.show()
```


Conclusion

From our exploratory data analysis and data visualisation, we got good findings and insights.

Based on the models, we decided to pick the logistic regression model as it gives an accuracy score of 81.30% and is apt for the data since the dependent variable is categorical.

Since the model can calculate the probability of a customer leaving the bank, this information can be used by the management to target customers based on their churn probability to retain them.

Conclusion

- Detailed insights and analysis on bank's customers
- Based on the various transformations applied for analytics, the *logistic regression model* seems most apt to achieve our objective. This can be explained by accuracy score of 81.30% of the model along with the presence of categorical variables in the data
- The model predicts the probability of a customer no longer using the services of the bank, which can be used by the executives to come up with appropriate strategies to retain them

References

Dataset -

https://www.kaggle.com/datasets/gauravtopre/bank-customer-churn-dataset

Code Syntax -

https://www.ritchieng.com/machine-learning-k-nearest-neighbors-knn/

https://datatofish.com/random-rows-pandas-dataframe/

Class Slides (ELMS CANVAS)

Mock Data -

https://www.mockaroo.com/