whose value is random Random variable: variable unknown unpredictable trials no pattern distribution in:tial conditions effect independent/dependent probability mass function process flip a coin twice count # heads rv is \triangle heads h 0 $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{4}$ Expected value \(\neq \) average \(\neq \) mean $E(x) = E(x_i \cdot p(x_i)) = 6 \cdot p(0)$ 0. 4 + 1 . b(1) 1. 1 2 . 4 + 2. D(s) = [Experimend 1 HH 2 $avg = \frac{2+1+1}{3} = 1.33$ 1 TH

Variance tells us on average how much the rv's vary from the expected value

rv | pr |
$$\frac{1}{3}$$
 $(-1)^2$ 0 $\frac{1}{3}$ $(0)^2$ 0

$$Var(x) = E((x-E(x))^2)$$

$$= E\left(x^2 - 2xE(x) + E^2(x)\right)$$

$$= E(X^2) - E(2 \times E(X)) + E(E^2(X))$$

$$-2 \stackrel{(\times)}{=} \stackrel{\cdot}{=} \stackrel{(\times)}{=} + \stackrel{2}{=} \stackrel{(\times)}{=}$$

$$Var(x) = E(x^2) - E^2(x)$$

(F)	p(H) = 0.6
3	nf lips = 3
	h: # heads

24	0	LX	0.4	X	0.4
	V a		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		

P= = =

h	P(h)	h-E(h)	h
0	0.43	(0-1.8)2	0
1	3×0-6×0.42	(1-1.8)2	1
2	3× 0.62 × 0.4	(2-1.8)2	4
3	0.63	(3-18)2	9

Var (h) =
$$\xi(h^2) - \xi(h)$$

= 3.96 - (1.8)² = 0.72

		h	p(h)	h^2	(h-E)^2
р		0	0.064	0	3.24
0.6		1	0.288	1	0.64
		2	0.432	4	0.04
		3	0.216	9	1.44
	E(h)		1.8		
	E(h^2)		3.96		
	E((h-E)^2)		0.72		
	E(h^2)-E(h)^2	0.72		

1 coin flip

h pr

$$O(1-P) = P$$
 $O(1-P)$

Var $O(1-P)$

$$\frac{d}{dP} \text{ Var} = 3(1-P) - 3P = 0$$

$$3 - 3P - 3P = 0$$

$$6P = 3$$

$$P = \frac{1}{2}$$