List of objects

Fredrik Meyer

October 12, 2016

Contents

1	Not	ation	1
2	List	of objects	1
	2.1	Stanley-Reisner sphere X_{00}	1
	2.2	Stanley-Reisner ball Y_{00}	2
	2.3	Toric variety Y_0	2
	2.4	Singular Calabi-Yau X_0	2
	2.5	Cone over del Pezzo	2
	2.6	Smoother toric Y	2
	2.7	Smooth Calabi-Yau X	3

1 Notation

We will use the following notation.

• If X_0 is a degeneration of X, we write $X \rightsquigarrow X_0$.

2 List of objects

2.1 Stanley-Reisner sphere X_{00}

Let E_6 be a hexagon, and let S be the join of two hexagons. This is a simplicial 3-sphere with 12 vertices. The variables are named x_1, \ldots, x_6 and z_1, \ldots, z_6 .

2.2 Stanley-Reisner ball Y_{00}

Let S be the Stanley-Reisner sphere from Section 2.1. Add two variables y_0 and y_1 to get a 5-dimensional variety. This is the join of two (filled) hexagons.

2.3 Toric variety Y_0

The Stanley-Reisner scheme Y_{00} deforms to the toric variety with polytope P, where P is the polytope with vertices

The toric variety is a deformation of Y_{00} in Section 2.2, by a result of Sturmfels, since the simplicial complex associated to it is a triangulation of the corresponding polytope.

The polytope P is reflexive.

2.4 Singular Calabi-Yau X_0

This is a complete intersection of two anticanonical hypersurfaces in Y_0 . By general results, it is a Calabi-Yau. It has 12 singular points, each looking like $C(dP_6)$.

2.5 Cone over del Pezzo

The cone over the del Pezzo surface of degree 6 has two smoothings.

2.6 Smoother toric Y

The toric variety 2.3 deforms to a variety with one-dimensional singularities.

Remark. I suspect that it actually smooths, but I haven't been able to prove it yet. Should be feasible.

2.7 Smooth Calabi-Yau X

Since Y have low-dimensional singularities, two applications of Bertini shows that X_0 smooths. I have computed it to have Euler characteristic -72.

Problem: find which deformation is induced on the singularities of X_0 .