HIMatrix

Безопасная система управления

Руководство F2 DO 16 02

HIMA Paul Hildebrandt GmbH Системы автоматизации производства

(1541) HI 800 370 RU

Все названные в данном руководстве изделия компании HIMA защищены товарным знаком. То же самое распространяется, если не указано другое, на прочих упоминаемых изготовителей и их продукцию.

HIMax®, HIMatrix®, SILworX®, XMR® и FlexSILon® являются зарегистрированными торговыми марками компании HIMA Paul Hildebrandt GmbH.

Все технические характеристики и указания, представленные в данном руководстве, разработаны с особой тщательностью и с использованием эффективных мер проверки и контроля. При возникновении вопросов обращайтесь непосредственно в компанию HIMA. Компания HIMA будет благодарна за отзывы и пожелания, например, в отношении информации, которая должна быть дополнительно включена в руководство.

Право на внесение технических изменений сохраняется. Компания HIMA оставляет за собой также право обновлять письменные материалы без предварительного уведомления.

Более подробная информация представлена в документации на диске DVD HIMA и на наших вебсайтах http://www.hima.de и http://www.hima.com.

© Copyright 2015, HIMA Paul Hildebrandt GmbH Все права защищены.

Контакты

Адрес компании HIMA: HIMA Paul Hildebrandt GmbH Postfach 1261 68777 Brühl, Germany

Тел.: +49 6202 709 0 Факс: +49-6202-709-107

Эл. почта: info@hima.com

Оригинал на немецком языке	Описание
HI 800 138 D, Rev. 2.01 (1539)	Перевод на русский язык с немецкого оригинала

F2 DO 16 02 Содержание

Содержание

1	Введение	5
1.1	Структура и использование руководства	5
1.2	Целевая аудитория	6
1.3	Оформление текста	7
1.3.1	Указания по безопасности	7
1.3.2	Указания по применению	8
2	Безопасность	9
2.1	Применение по назначению	9
2.1.1 2.1.2	Условия окружающей среды Меры по защите от электростатического разряда	9
2.2	Остаточный риск	10
2.3	Меры безопасности	10
2.4	Информация об аварийных ситуациях	10
3	Описание продукта	11
3.1	Обеспечение безопасности	11
3.2	Оснащение и объем поставки	12
3.2.1	IP-адрес и ID системы (SRS)	12
3.3	Заводская табличка	13
3.4	Конструкция	14
3.4.1	Безопасные релейные выходы	15
3.4.1.1 3.4.1.2	Применение в системах управления горелок Применение в общих приложениях систем безопасности	15 16
3.4.2	Светодиодная индикация	17
3.4.2.1	Светодиод рабочего напряжения	17
3.4.2.2	Системные светодиоды	17
3.4.2.3 3.4.2.4	Светодиоды коммуникации Светодиоды входов/выходов	18 18
3.4.3	Коммуникация	19
3.4.3.1	Подключения для связи Ethernet	19
3.4.3.2	Используемые сетевые порты для связи Ethernet	19
3.4.4	Кнопка сброса	20
3.5	Данные о продукте	21
3.6	HIMatrix F2 DO 16 02, сертифицировано	23
4	Ввод в эксплуатацию	24
4.1	Установка и монтаж	24
4.1.1	Подключение цифровых выходов	24
4.1.2 4.1.3	Клеммный штекер Установка F2 DO 16 02 во взрывоопасной зоне класса 2	25 26
4.1.3 4.2	Установка Р2 DO 16 02 во взрывоопасной зоне класса 2 Конфигурация	20 27
4.4	ΚΝΠΙΔΟΥ ΙΝΜΠΟΛ	21

HI 800 370 RU (1541) Стр. 3 из 42

Содержание F2 DO 16 02

4.3	Конфигурация в SILworX	27
4.3.1	Параметры и коды ошибок выходов	27
4.3.2	Цифровые выходы F2 DO 16 02	27
4.3.2.1 4.3.2.2	Вкладка Module Вкладка DO 16: Channels	28 29
4.5.2.2 4.4	Конфигурация в ELOP II Factory	30
4.4.1	Конфигурация выходов	30
4.4.2	Сигналы и коды ошибок выходов	30
4.4.3	Цифровые выходы F2 DO 16 02	31
5	Эксплуатация	32
5.1	Обслуживание	32
5.2	Диагностика	32
6	Текущий ремонт	33
6.1	Ошибки	33
6.2	Мероприятия по текущему ремонту	33
6.2.1	Загрузка операционной системы	33
6.2.2	Повторная проверка	33
7	Вывод из эксплуатации	34
8	Транспортировка	35
9	Утилизация	36
	Приложение	37
	Глоссарий	37
	Перечень изображений	38
	Перечень таблиц	39
	Индекс	40

Стр. 4 из 42 HI 800 370 RU (1541)

F2 DO 16 02 1 Введение

1 Введение

В данном руководстве описаны технические характеристики устройства и его использование. Руководство содержит информацию об установке, вводе в эксплуатацию и конфигурации.

1.1 Структура и использование руководства

Содержание данного руководства является частью описания аппаратного обеспечения программируемой электронной системы HIMatrix.

Руководство включает в себя следующие основные главы:

- Введение
- Безопасность
- Описание продукта
- Ввод в эксплуатацию
- Эксплуатация
- Текущий ремонт
- Вывод из эксплуатации
- Транспортировка
- Утилизация

Устройства удаленного ввода/вывода HIMatrix доступны для таких инструментов программирования, как SILworX и ELOP II Factory. Выбор инструмента программирования, доступного для использования, зависит от операционной системы процессора устройства удаленного ввода/вывода HIMatrix, см. следующую таблицу:

Инструмент программирования	Операционная система процессора	
SILworX	CPU OS V7 и выше	
ELOP II Factory	До CPU BS V6.x	

Таблица 1: Инструменты программирования для устройств удаленного ввода/вывода HIMatrix

Различия описаны в руководстве:

- В отдельных подразделах
- В таблицах, с указанием различий версий
- Проекты, созданные с помощью ELOP II Factory, не могут обрабатываться в SILworX, и наоборот!
- Компактное управление и устройства удаленного ввода/вывода обозначаются как устройство.

HI 800 370 RU (1541) Стр. 5 из 42

1 Введение F2 DO 16 02

Дополнительно необходимо ознакомиться со следующими документами:

Название	Содержание	Номер документа
HIMatrix System Manual Compact Systems	Описание аппаратного обеспечения: компактные системы HIMatrix	HI 800 394 RU
HIMatrix System Manual Modular System F60	Описание аппаратного обеспечения: модульная система HIMatrix	HI 800 391 RU
HIMatrix Safety Manual	Функции обеспечения безопасности системы HIMatrix	HI 800 393 RU
HIMatrix Safety Manual for Railway Applications	Функции обеспечения безопасности системы HIMatrix для использования системы HIMatrix в железнодорожных приложениях	HI 800 437 E
SILworX Online Help	Управление SILworX	-
ELOP II Factory Online Help	Управление ELOP II Factory, протокол Ethernet IP	-
SILworX First Steps Manual	Введение в SILworX на примере системы HIMax	HI 801 301 RU
ELOP II Factory First Steps Manual	Введение в ELOP II Factory	HI 800 006 E

Таблица 2: Дополнительные документы

Актуальные версии руководств находятся на веб-сайте компании HIMA по адресу www.hima.com. По индексу версии, указанному в нижней строке, можно определить, насколько актуальны имеющиеся руководства по сравнению с версиями в Интернете.

1.2 Целевая аудитория

Данный документ предназначен для планировщиков, проектировщиков и программистов систем автоматизации, а также для лиц, допущенных ко вводу в эксплуатацию, к эксплуатации и техническому обслуживанию приборов, модулей и систем. Требуется наличие специальных знаний в области автоматизированных систем обеспечения безопасности.

Стр. 6 из 42 HI 800 370 RU (1541)

F2 DO 16 02 1 Введение

1.3 Оформление текста

В целях удобочитаемости и наглядности в данном документе используются следующие способы выделения и написания текста:

Полужирный Выделение важных частей текста.

шрифт Обозначения тех кнопок, опций меню и вкладок в интерфейсе

инструмента программирования, которые можно выбрать мышью

Курсив Параметры и системные переменные

Шрифт Courier Текст, вводимый пользователем

RUN Обозначения режимов работы заглавными буквами

Гл. 1.2.3 Сноски оформлены как гиперссылки, хотя могут и не иметь особой

маркировки. При наведении на них указателя мыши его форма

меняется. При щелчке по ссылке происходит переход к

соответствующему месту в документе.

Указания по безопасности и применению выделены особым образом.

1.3.1 Указания по безопасности

Указания по безопасности представлены в документе следующим образом. В целях максимального уменьшения риска требуется их неукоснительное соблюдение. Они имеют следующую структуру

- Сигнальное слово: предупреждение/осторожно/указание
- Вид и источник риска
- Последствия несоблюдения указаний
- Избежание риска

А СИГНАЛЬНОЕ СЛОВО

Вид и источник риска! Последствия несоблюдения указаний Избежание риска

Значение сигнальных слов

- Предупреждение: несоблюдение указаний по безопасности может привести к тяжким телесным повреждениям вплоть до летального исхода
- Осторожно: несоблюдение указаний по безопасности может привести к легким телесным повреждениям
- Указание: несоблюдение указаний по безопасности может привести к материальному ущербу

ПРИМЕЧАНИЯ

Вид и источник ущерба! Избежание ущерба

HI 800 370 RU (1541) Стр. 7 из 42

1 Введение F2 DO 16 02

1.3.2	Указания по применению Дополнительная информация представлена следующим образом:
i	В этом месте приводится дополнительная информация.
	Полезные советы и рекомендации представлены в следующей форме:

РЕКОМЕНДАЦИЯ В этом месте расположен текст рекомендации.

Стр. 8 из 42 HI 800 370 RU (1541)

F2 DO 16 02 2 Безопасность

2 Безопасность

Следует обязательно прочесть изложенную в настоящем документе информацию по безопасности, а также сопутствующие указания и инструкции. Использовать продукт только при соблюдении всех правил, в том числе правил техники безопасности.

Эксплуатация данного продукта осуществляется с БСНН или с ЗСНН. Сам по себе продукт не представляет никакого риска. Использование во взрывоопасной зоне разрешается только с соблюдением дополнительных мер безопасности.

2.1 Применение по назначению

Компоненты HIMatrix предназначены для построения безопасных систем управления.

При использовании компонентов системы HIMatrix необходимо соблюдать следующие условия.

2.1.1 Условия окружающей среды

Условия	Диапазон значений ¹⁾	
Класс защиты	Класс защиты III в соответствии с IEC/EN 61131-2	
Температура окружающей среды	0+60 °C	
Температура хранения	-40+85 °C	
Степень загрязнения	Степень загрязнения II в соответствии с IEC/EN 61131-2	
Высота установки	< 2000 M	
Корпус	Стандарт: IP20	
Питающее напряжение	24 В пост. тока	
3начения технических характеристик имеют критическое значение для устройств,		

эксплуатируемых в особых условиях окружающей среды.

Таблица 3: Условия окружающей среды

Эксплуатация в условиях окружающей среды, отличных от указанных в данном руководстве, может привести к возникновению неполадок в системе HIMatrix.

2.1.2 Меры по защите от электростатического разряда

Изменение и расширение системы, а также замена устройства может выполняться только персоналом, ознакомленным с защитными мерами от воздействия электростатического разряда.

ПРИМЕЧАНИЯ

Возможно повреждение устройства в результате электростатического разряда!

- Работы следует производить на рабочем месте с антистатической защитой и носить ленточный заземлитель.
- Хранить устройство с обеспечением антистатической защиты, например в упаковке.

HI 800 370 RU (1541) Стр. 9 из 42 2 Безопасность F2 DO 16 02

2.2 Остаточный риск

Непосредственно сама система HIMatrix не представляет никакого риска.

Остаточный риск может возникать в результате:

- Ошибок при проектировании
- Ошибок в прикладной программе
- Ошибок подключения

2.3 Меры безопасности

Необходимо соблюдать на месте эксплуатации действующие правила техники безопасности и использовать предписанное защитное снаряжение.

2.4 Информация об аварийных ситуациях

Система HIMatrix является частью системы безопасности установки. Отказ устройства или модуля приводит установку в безопасное состояние.

В аварийной ситуации запрещается любое вмешательство, препятствующее выполнению системами HIMatrix функции обеспечения безопасности.

Стр. 10 из 42 HI 800 370 RU (1541)

3 Описание продукта

Безопасный децентрализованный модуль ввода/вывода **F2 DO 16 02** представляет собой компактную систему в металлическом корпусе, имеющую 16 безопасных релейных выходов.

Устройство удаленного ввода/вывода в различных вариантах моделей доступно для инструментов программирования SILworX и ELOP II Factory, см. Таблица 4.

Устройства удаленного ввода/вывода соединяются с системой управления HIMax или HIMatrix через safeethernet. Устройства удаленного ввода/вывода служат для расширения уровня вводов/выводов и самостоятельно не выполняют никаких прикладных программ.

Устройство удаленного ввода/вывода пригодно для установки во взрывоопасной зоне класса 2, см. главу 4.1.3.

Устройство сертифицировано по стандарту TÜV для приложений по обеспечению безопасности до уровня SIL 3 (IEC 61508, IEC 61511 и IEC 62061), кат. 4 и PL е (EN ISO 13849-1), а также SIL 4 (EN 50126, EN 50128 и EN 50129). Дальнейшие нормы безопасности, стандарты использования и параметры испытаний можно узнать из сертификатов на веб-сайте компании HIMA.

3.1 Обеспечение безопасности

Функция обеспечения безопасности соответствует требованиям целостности, приведенным в соответствующих стандартах на условия испытаний.

Устройство удаленного ввода/вывода оснащено безопасными релейными выходами. Выходы безопасно получают свои значения через safe**ethernet** от подключенной системы управления.

Устройство удаленного ввода/вывода создано для применения по принципу тока покоя. При системной ошибке все релейные выходы переключаются в обесточенное безопасное состояние (de-energized to trip). При ошибке канала только соответствующий канал переключается в обесточенное состояние.

В обоих случаях загорается светодиод *FAULT*. Кроме того, код ошибки может инициировать реакции в прикладной программе.

Устройство удаленного ввода/вывода может также применяться в приложениях согласно принципу рабочего тока. Кроме того, включается релейный выход для выполнения функции обеспечения безопасности (energize-to-trip).

При этом следует придерживаться указаний по применению устройства удаленного ввода/вывода, приведенных в руководстве по безопасности.

HI 800 370 RU (1541) Стр. 11 из 42

3 Описание продукта F2 DO 16 02

3.2 Оснащение и объем поставки

В следующей таблице приведены доступные варианты устройства удаленного ввода/вывода:

Обозначение	Описание
F2 DO 16 02	Устройство удаленного ввода/вывода (16 релейных выходов до 30 В перем. тока/60 В пост. тока) Рабочая температура 0+60 °C, для инструмента программирования ELOP II Factory
F2 DO 16 02 SILworX	Устройство удаленного ввода/вывода (16 релейных выходов до 30 В перем. тока/60 В пост. тока) Рабочая температура 0+60 °C, для инструмента программирования SILworX

Таблица 4: Доступные варианты

3.2.1 IP-адрес и ID системы (SRS)

Вместе с устройством поставляется прозрачная наклейка, на которой можно написать IPадрес и ID системы (SRS, System.Rack.Slot) после изменения.

ΙP		SRS	_	

Значение по умолчанию для IP-адреса: 192.168.0.99

Значение по умолчанию для SRS: 60000.200.0 (SILworX)

60000.0.0 (ELOP II Factory)

Запрещается закрывать наклейками вентиляционные щели на корпусе устройства.

Изменение IP-адреса и ID системы описано в руководстве первые шаги к инструменту программирования (ELOP II Factory First Steps Manual HI 800 006 E или SILworX First Steps Manual HI 801 301 RU).

Стр. 12 из 42 HI 800 370 RU (1541)

3.3 Заводская табличка

На заводской табличке указаны следующие данные:

- Названия изделия
- Штрихкод (штриховой код или 2D-код)
- Номер изделия
- Год выпуска
- Индекс проверки аппаратного обеспечения (HW-Rev.)
- Индекс проверки встроенного ПО (FW-Rev.)
- Рабочее напряжение
- Знаки технического контроля

Рис. 1: Образец заводской таблички

HI 800 370 RU (1541) Стр. 13 из 42

3.4 Конструкция

В главе «Конструкция» описан внешний вид и функции устройства удаленного ввода/вывода, а также коммуникация через safe**ethernet**.

Рис. 2: Вид спереди

Рис. 3: Блок-схема

Стр. 14 из 42 HI 800 370 RU (1541)

3.4.1 Безопасные релейные выходы

Устройство удаленного ввода/вывода оснащено 16 релейными выходами. Каждый релейный выход переключается тремя расположенными в ряд реле. Одно реле выполнено как стандартное, в то время как два других выполнены как безопасные реле с принудительным управлением контактами (EN 50205).

Все 16 релейных выходов безопасно электрически отделены друг от друга и от электропитания устройства. Воздушные зазоры и пути утечки тока рассчитаны в соответствии с IEC 61131-2 для категории перенапряжения II до 300 В для безопасного разделения.

Подключение релейных выходов осуществляется через нумерованные клеммные штекеры. Идентичная нумерация находится на передней панели устройства удаленного ввода/вывода, назначение отдельных релейных выходов легко определить, см. главу 4.1.1.

Клеммные подключения и корпус удовлетворяют требованиям согласно IP20. При повышенных требованиях для F2 DO 16 02 используйте корпус с подходящей степенью защиты.

При подключении напряжения за пределами БСНН и ЗСНН используйте кабель с соответствующей изоляцией.

Сигнал светодиода отображает состояние соответствующего релейного выхода, см. главу 3.4.2.

3.4.1.1 Применение в системах управления горелок

Для применения в системах управления горелок следует ограничить ток переключения релейных выходов с помощью внутренних предохранителей согласно EN 298 и EN 50156-1 (VDE 0116) до 60 % максимально допустимого значения (3,15 A). Таким образом, можно использовать релейные выходы для предохранительных отключений, а также для полного отключения подвода топлива.

Если для применения в системе управления горелок требуется уровень тока переключения AC/DC, не достигающий уровня ограничения (3,15 A), то в схему переключения должен быть добавлен внешний входной предохранитель.

Используемые реле соответствуют требованию к сроку службы контактов, используемых в системе управления горелок:

- Механически ≥ 3 x 10⁶ циклов переключения
- Электрически ≥ 250 000 циклов переключения

HI 800 370 RU (1541) Стр. 15 из 42

3.4.1.2 Применение в общих приложениях систем безопасности В общих приложениях систем безопасности следует учитывать данные диаграммы на Рис. 4 и в Таблица 13:

- Максимально допустимое количество циклов переключения.
- Максимально допустимый ток переключения (до 3,15 А), напряжение и мощность.

Рис. 4: Срок службы контактов перем. тока

Стр. 16 из 42 HI 800 370 RU (1541)

3.4.2 Светодиодная индикация

Светодиоды отображают рабочее состояние устройства удаленного ввода/вывода. Светодиодные индикаторы подразделяются следующим образом:

- Светодиод рабочего напряжения
- Системные светодиоды
- Светодиоды коммуникации
- Светодиоды входов/выходов

3.4.2.1 Светодиод рабочего напряжения

Светодиод	Цвет	Состояние	Значение
24 В пост. тока	Зеленый	На	Имеется рабочее напряжение 24 В пост. тока
		Off	Отсутствует рабочее напряжение

Таблица 5: Индикация рабочего напряжения

3.4.2.2 Системные светодиоды

При загрузке устройства одновременно загораются все светодиоды.

Светодиод	Цвет	Состояние	Значение		
RUN	Зеленый	На	Устройство в режиме RUN, нормальный режим		
		Мигание	Устройство в состоянии STOP		
			Загружается новая операционная система.		
		Off	Устройство не в состоянии RUN.		
Error	Красный	На	Устройство в состоянии ERROR STOP.		
			Внутренняя ошибка, обнаруженная в результате самодиагностики, например, неисправность аппаратного обеспечения или превышение времени цикла.		
			Повторный запуск процессорной системы возможен только посредством команды PADT (перезагрузка).		
		Мигание	Если мигает ERROR и одновременно горят все остальные светодиоды, значит, BootLoader обнаружил ошибку операционной системы во флэшпамяти и ожидает загрузки новой операционной системы.		
		Off	Ошибки не обнаружены.		
PROG	<mark>Желтый</mark>	На	В устройство загружается новая конфигурация.		
		Мигание	Устройство переходит из состояния INIT в состояние STOP.		
			Во флэш-память загружается новая операционная система.		
		Off	Загрузка конфигурации или операционной системы не производится.		
FORCE	Желтый	Off	В удаленном устройстве ввода/вывода светодиод FORCE не имеет функции. Инициализация удаленного устройства ввода/вывода отображается светодиодом FORCE соответствующей системы управления.		
FAULT	<mark>Желтый</mark>	На	Ошибка в загруженной конфигурации.		
			Новая операционная система искажена (после загрузки операционной системы).		
		Мигание	Ошибка при загрузке новой операционной системы.		
			Возникла одна или несколько ошибок ввода/вывода.		
		Off	Не произошла ни одна из описанных ошибок.		
OSL	Желтый	Мигание	Активен аварийный загрузчик операционной системы.		
		Off	Аварийный загрузчик операционной системы неактивен.		
BL	Желтый	Мигание	OS и OSL Binary неисправны, либо ошибка аппаратного обеспечения INIT_FAIL.		
		Off	Не произошла ни одна из описанных ошибок.		

Таблица 6: Индикация светодиодов системы

HI 800 370 RU (1541) Стр. 17 из 42

3 Описание продукта F2 DO 16 02

3.4.2.3 Светодиоды коммуникации

Все гнезда подключения RJ-45 оснащены зеленым и желтым светодиодом. Светодиоды сигнализируют следующие состояния:

Светодиод	Состояние	Значение	
Зеленый	На	Полнодуплексный режим	
	Мигание	Конфликт	
	Off	Полудуплексный режим, конфликта нет	
<mark>Желтый</mark>	На	Имеется соединение	
	Мигание	Активность интерфейса	
	Off	Отсутствует соединение	

Таблица 7: Индикация Ethernet

3.4.2.4 Светодиоды входов/выходов

Светодиод	Цвет	Состояние	Значение
DO 116	<mark>Желтый</mark>	На	Уровень High
		Off	Уровень Low

Таблица 8: Индикация светодиодов входа/выхода

Стр. 18 из 42 HI 800 370 RU (1541)

3.4.3 Коммуникация

Устройство удаленного ввода/вывода взаимодействует с соответствующей системой управления через safe**ethernet**.

3.4.3.1 Подключения для связи Ethernet

Свойство	Описание		
Port	2 x RJ-45		
Стандарт передачи	10BASE-T/100BASE-Tx, полу- и полнодуплексный режим		
Auto Negotiation	да		
Функция автоматического определени я типа кабеля	да		
IP Address	Конфигурируется свободно ¹⁾		
Маска подсети	Конфигурируется свободно ¹⁾		
Поддерживаемые протоколы	 Безопасный: safeethernet Стандартные протоколы: программирующее устройство (PADT), SNTP 		
1)1) При назначении IP-адресов и масок подсети должны соблюдаться общепринятые правила.			

Таблица 9: Свойства интерфейсов Ethernet

Два подключения RJ-45 со встроенными светодиодами расположены с нижней стороны корпуса слева. Значение светодиодов описывается в главе 3.4.2.3.

Считывание параметров соединения основано на применении MAC-адреса (Media Access Control), задаваемом при изготовлении.

MAC-адрес устройства удаленного ввода/вывода указан на наклейке над обоими нижними подключениями RJ-45 (1 и 2).

MAC 00:E0:A1:00:06:C0

Рис. 5: Образец наклейки с адресом МАС

Устройство удаленного ввода/вывода имеет встроенный сетевой коммутатор для безопасной связи Ethernet. Дальнейшие подробности по темам «сетевой коммутатор» и «safe**ethernet**» можно найти в руководстве по компактным системам (HIMatrix System Manual Compact Systems HI 800 394 RU).

3.4.3.2 Используемые сетевые порты для связи Ethernet

Порты UDP	Использование
8000	Программирование и управление при помощи инструментов программирования
8001	Конфигурация удаленного устройства ввода/вывода посредством ПЭС (ELOP II Factory)
8004	Конфигурация удаленного устройства ввода/вывода посредством ПЭС (SILworX)
6010	safeethernet
123	SNTP (синхронизация по времени между программируемой электронной системой и устройством удаленного ввода/вывода, а также внешними устройствами)

Таблица 10: Используемые сетевые порты

HI 800 370 RU (1541) Стр. 19 из 42

3 Описание продукта F2 DO 16 02

3.4.4 Кнопка сброса

Устройство удаленного ввода/вывода оснащено кнопкой сброса. Потребность в ее использовании возникает только в том случае, если неизвестны имя пользователя или пароль для доступа администратора. Если к PADT (ПК) не подходит только настроенный IP-адрес устройства удаленного ввода/вывода, то установить соединение позволяет запись Route add в ПК.

Доступ к кнопке возможен через небольшое круглое отверстие на верхней стороне корпуса, прибл. в 5 см от левого края. Нажимать на кнопку следует при помощи стержня из изоляционного материала, чтобы избежать коротких замыканий внутри устройства удаленного ввода/вывода.

Сброс осуществляется только в том случае, если происходит перезагрузка устройства удаленного ввода/вывода (выключение, включение) и одновременно минимум 20 секунд удерживается нажатой кнопка сброса. Нажатие кнопки во время эксплуатации не оказывает никакого результата.

Свойства и поведение устройства удаленного ввода/вывода после перезагрузки с нажатой кнопкой сброса:

- Для параметров соединения IP Address (IP-адрес) и System ID (ID системы) устанавливаются значения по умолчанию.
- Деактивируются все зарегистрированные ранее доступы пользователей, кроме встроенного заводского доступа Administrator с отсутствующим паролем.

После повторной перезагрузки без нажатия кнопки сброса становятся действительными параметры соединения (IP-адрес и ID системы) и доступы пользователя:

- Параметры которых были заданы пользователем.
- Введенные перед перезагрузкой с нажатием кнопки сброса, если не выполнялось никаких изменений.

Стр. 20 из 42 HI 800 370 RU (1541)

3.5 Данные о продукте

Общая информация	Общая информация			
Время реакции	≥ 10 mc			
Интерфейсы Ethernet	2 x RJ-45, 10BASE-T/100BASE-Tx со встроенным сетевым коммутатором			
Рабочее напряжение	24 В пост. тока, -15+20 %, w _{ss} ≤ 15 %, от блока питания с безопасным разделением согласно требованиям IEC 61131-2			
Расход тока	макс. 0,6 А			
Предохранитель (внешний)	10 А инерционный (Т)			
Гальваническая развязка каналов	да			
Буферная батарея	Отсутствует			
Рабочая температура	0+60 °C			
Температура хранения	-40+85 °C			
Вид защиты	IP20			
макс. размеры (без штекера)	Ширина: Высота: Глубина:	255 мм (с винтами корпуса) 114 мм (с крепежным запором) 113 мм (с заземляющей шиной)		
Macca	2 кг			

Таблица 11: Данные о продукте

HI 800 370 RU (1541) Стр. 21 из 42

Релейные выходы		
Исполнения реле для каждого канала	2 безопасных реле с принудительным управлением контактами, 1 стандартное реле	
Количество выходов	16 беспотенциальных замыкающих контактов	
Напряжения переключения	≥ 5В, ≤ 30 В перем. тока / 60 В пост. тока	
Ток переключения	≥ 10 мA, ≤ 3 A, с внутренним защитным предохранителем 3,15 A отключающая способность предохранителя: 100 A	
Контактный материал	Серебряный сплав (AgNi)	
Время переключения	Ок. 30 мс	
Время возврата	Ок. 10 мс	
Время вибрации контактов	Ок. 15 мс	
Срок службы контактов: мех. устройств электрических элементов	≥ 10 x 10 ⁶ циклов переключения Рис. 4	

Таблица 12: Технические данные релейных выходов

Коммутационная способность релейных выходов (общие приложения систем безопасности)				
Коммутационная способность пост. тока безындукционно ¹⁾	≤ 30 В пост. тока	макс. 90 Вт (3,15 А)		
безындукционно 1)	≤ 60 В пост. тока	макс. 24 Вт (0,4 А)		
Коммутационная способность перем. тока, безындукционно ¹⁾	≤ 30 В перем. тока	макс. 90 ВА		
Коммутационная способность перем. тока cos φ > 0,5	≤ 30 В перем. тока	макс. 50 ВА		
Коммутационная способность пост. тока, UL 508	24 В пост. тока при 1 А,	резистивный ¹⁾		
Коммутационная способность перем. тока, UL 508	30 В перем. тока при 3 A, GP			

¹⁾ Переключение: безындуктивная нагрузка

- Гасящий диод
- С использованием соответствующего блока схемной защиты, например резистивно-емкостных цепей, стабилитронов или варисторов

Таблица 13: Коммутационная способность релейных выходов

Стр. 22 из 42 HI 800 370 RU (1541)

3.6 HIMatrix F2 DO 16 02, сертифицировано

HIMatrix F2 DO 16 02			
CE	EMC, ATEX Zone 2		
ΤÜV	IEC 61508 1-7:2000 до SIL 3		
	IEC 61511:2004		
	EN ISO 13849-1:2008 до Cat. 4 и PL e		
UL Underwriters Laboratories	ANSI/UL 508, NFPA 70 – Industrial Control Equipment		
Inc.	CSA C22.2 No. 142		
	UL 1998 Software Programmable Components		
	NFPA 79 Electrical Standard for Industrial Machinery		
	IEC 61508		
FM Approvals	ClassI, DIV 2, Groups A, B, C and D		
	Class 3600, 1998		
	Class 3611, 1999		
	Class 3810, 1989		
	Including Supplement #1, 1995		
	CSA C22.2 No.142		
	CSA C22.2 No.213		
TÜV CENELEC	Применение на железных дорогах		
	EN 50126:1999 до SIL 4		
	EN 50128:2001 до SIL 4		
	EN 50129:2003 до SIL 4		

Таблица 14: Сертификаты

HI 800 370 RU (1541) Стр. 23 из 42

4 Ввод в эксплуатацию

Ввод в эксплуатацию устройства удаленного ввода/вывода включает установку и подключение, а также настройку с помощью инструмента программирования.

4.1 Установка и монтаж

Монтаж устройства дистанционного ввода/вывода выполняется на монтажной шине 35 мм (DIN), как описано в руководстве системы для компактных систем HIMatrix (HIMatrix System Manual Compact Systems HI 800 394 RU).

При подключении следует позаботиться о противопомеховой прокладке особенно длинных проводов, например, с помощью раздельной прокладки сигнальных и питающих линий.

При выборе размеров кабеля следует следить за тем, чтобы электрические свойства кабеля не оказывали отрицательного воздействия на измерительную цепь.

1 При подключении напряжения кроме БСНН и ЗСНН необходимо использовать пригодные для этого кабели с двойной или усиленной изоляцией (напр., сетевой провод).

4.1.1 Подключение цифровых выходов

Цифровые выходы подключаются при помощи следующих клемм:

Клемма	Обозначение	Функция (релейный выход 1)	
1	DO1	Контакт 1, подключение А	
2	DO1	Контакт 1, подключение В	
Клемма	Обозначение	Функция (релейный выход 2)	
3	DO2	Контакт 2, подключение А	
4	DO2	Контакт 2, подключение В	
Клемма	Обозначение	Функция (релейный выход 3)	
5	DO3	Контакт 3, подключение А	
6	DO3	Контакт 3, подключение В	
Клемма	Обозначение	Функция (релейный выход 4)	
7	DO4	Контакт 4, подключение А	
8	DO4	Контакт 4, подключение В	
Клемма	Обозначение	Функция (релейный выход 5)	
9	DO5	Контакт 5, подключение А	
10	DO5	Контакт 5, подключение В	
Клемма	Обозначение	Функция (релейный выход 6)	
11	DO6	Контакт 6, подключение А	
12	DO6	Контакт 6, подключение В	
Клемма	Обозначение	Функция (релейный выход 7)	
13	DO7	Контакт 7, подключение А	
14	DO7	Контакт 7, подключение В	
Клемма	Обозначение	Функция (релейный выход 8)	
15	DO8	Контакт 8, подключение А	
16	DO8	Контакт 8, подключение В	
Клемма	Обозначение	Функция (релейный выход 9)	
17	DO9	Контакт 9, подключение А	
18	DO9	Контакт 9, подключение В	
Клемма	Обозначение	Функция (релейный выход 10)	
19	DO10	Контакт 10, подключение А	
20	DO10	Контакт 10, подключение В	

Стр. 24 из 42 HI 800 370 RU (1541)

Клемма	Обозначение	Функция (релейный выход 11)	
21	DO11	Контакт 11, подключение А	
22	DO11	Контакт 11, подключение В	
Клемма	Обозначение	Функция (релейный выход 12)	
23	DO12	Контакт 12, подключение А	
24	DO12	Контакт 12, подключение В	
Клемма	Обозначение	Функция (релейный выход 13)	
25	DO13	Контакт 13, подключение А	
26	DO13	Контакт 13, подключение В	
Клемма	Обозначение	Функция (релейный выход 14)	
27	DO14	Контакт 14, подключение А	
28	DO14	Контакт 14, подключение В	
Клемма	Обозначение	Функция (релейный выход 15)	
29	DO15	Контакт 15, подключение А	
30	DO15	Контакт 15, подключение В	
Клемма	Обозначение	Функция (релейный выход 16)	
31	DO16	Контакт 16, подключение А	
32	DO16	Контакт 16, подключение В	

Таблица 15: Назначение клемм релейных выходов

4.1.2 Клеммный штекер

Подсоединение электропитания и панели осуществляется при помощи клеммных штекеров, устанавливаемых на разъемах устройств. Клеммные штекеры входят в объем поставки устройств и модулей HIMatrix.

Подключения электропитания устройств имеют следующие характеристики:

Подключение электропитания			
Клеммный штекер	4-полюсные, с винтовыми клеммами		
Поперечное сечение провода	0,22,5 мм ² (одножильный) 0,22,5 мм ² (тонкожильный) 0,22,5 мм ² (с кабельным зажимом)		
Длина снятия изоляции	10 мм		
Отвертка	Шлиц 0,6 x 3,5 мм		
Начальный пусковой момент	0,40,5 Нм		

Таблица 16: Характеристики клеммных штекеров электропитания

Подсоединение со стороны панели			
Количество клеммных штекеров	4 шт., 8-полюсные, с винтовыми клеммами		
Поперечное сечение провода	0,21,5 мм ² (одножильный)		
	0,21,5 мм ² (тонкожильный)		
	0,21,5 мм ² (с кабельным зажимом)		
Длина снятия изоляции	6 мм		
Отвертка	Шлиц 0,4 x 2,5 мм		
Начальный пусковой момент	0,20,25 Нм		

Таблица 17: Характеристики клеммных штекеров входов и выходов

HI 800 370 RU (1541) Стр. 25 из 42

4.1.3 Установка F2 DO 16 02 во взрывоопасной зоне класса 2

(EC Directive 94/9/EC, ATEX)

Устройство удаленного ввода/вывода пригодно для установки в зоне класса 2. Декларация изготовителя о соответствии приведена на веб-сайте компании HIMA.

При установке необходимо соблюдать указанные ниже особые условия.

Особые условия Х

1. Устройство удаленного ввода/вывода должно устанавливаться в специальный корпус, который удовлетворяет требованиям стандарта EN 60079-15 и имеет минимальную степень защиты IP54 согласно EN 60529. Корпус снабжен наклейкой:

Work is only permitted in the de-energized state Открывать и работать только при отсутствии напряжения

Исключение:

Если в месте нахождения корпуса гарантировано отсутствие взрывоопасной атмосферы, то можно работать и под напряжением.

- 2. Используемый корпус должен безопасно отводить выделяемое при работе тепло. Мощность потерь HIMatrix F2 DO 16 02 составляет от 18 Вт до 74 Вт в зависимости от нагрузки на выходе и питающего напряжения.
- 3. Устройство HIMatrix F2 DO 16 02 должно быть защищено при помощи инерционного предохранителя 10 A.

Питание 24 В пост. тока должно подаваться к устройству от блока питания с безопасным разделением. Разрешается использовать только блоки питания в исполнениях для 3СНН или БСНН.

4. Применяемые нормы:

VDE 0170/0171 ч. 16, DIN EN 60079-15: 2004-5 VDE 0165 ч. 1, DIN EN 60079-14: 1998-08

В особенности обратите внимание на разделы:

DIN EN 60079-15:

Глава 5 Конструкция

Глава 6 Соединительные детали и кабельная разводка Глава 7 Воздушные зазоры, пути утечки тока и расстояния Глава 14 Штекерные разъемы и штекерные соединители

DIN EN 60079-14:

Глава 5.2.3 Рабочие средства для взрывоопасной зоны класса 2 Глава 9.3 Кабели и провода для взрывоопасных зон классов 1 и 2

Глава 12.2 Установки для взрывоопасных зон классов 1 и 2

Устройство удаленного ввода/вывода дополнительно снабжено следующей табличкой:

HIMA

Paul Hildebrandt GmbH

A.-Bassermann-Straße

A.-Bassermann-Straße 28, D-68782 Brühl

HIMatrix $\langle \varepsilon_x \rangle$ II 3 G Ex nC IIC T4 X

F2 DO 16 02 0 °C ≤ Ta ≤ 60 °C

Besondere Bedingungen X beachten!

Рис. 6: Табличка условий эксплуатации во взрывоопасной зоне

Стр. 26 из 42 HI 800 370 RU (1541)

4.2 Конфигурация

Конфигурация устройства удаленного ввода/вывода осуществляется с помощью таких инструментов программирования, как SILworX или ELOP II Factory. Выбор инструмента программирования зависит от версии операционной системы (встроенного ПО):

- Для операционных систем процессорного модуля, начиная с версии V7, требуется использовать SILworX.
- Для операционных систем процессорного модуля до версии V6.х требуется использовать ELOP II Factory.
- 1 Процесс смены операционной системы описан в руководстве по модульным системам (HIMatrix System Manual Compact Systems HI 800 394 RU).

4.3 Конфигурация в SILworX

В редакторе аппаратного обеспечения Hardware Editor отображается устройство удаленного ввода/вывода аналогично несущему каркасу со следующими модулями:

- Процессорный модуль (CPU)
- Модуль вывода (DO 16)

Двойным щелчком по модулю открывается окно подробного представления с вкладками. Во вкладках можно присвоить системным переменным соответствующего модуля глобальные переменные, заданные в прикладной программе.

4.3.1 Параметры и коды ошибок выходов

В следующих таблицах приведены считываемые и настраиваемые системные параметры выходов, включая коды ошибок.

Коды ошибок могут в рамках прикладной программы считываться с помощью соответствующих логических переменных.

Возможно также отображение кодов ошибок в SILworX.

4.3.2 Цифровые выходы F2 DO 16 02

В таблицах ниже указаны состояния и параметры модуля выхода (DO 16) в такой же последовательности, как и в редакторе аппаратного обеспечения Hardware Editor.

HI 800 370 RU (1541) Стр. 27 из 42

4.3.2.1 Вкладка **Module**

Вкладка Module содержит следующие системные параметры:

Системные параметры	Тип данных	R/W	Описание		
DO.Error Code	WORD	R	Коды ошибок всех цифровых выходов		
			Кодирование	Описание	
			0x0001	Ошибка модуля	
			0x0002	Ключ безопасности 1 неисправен	
			0x0004	Ключ безопасности 2 неисправен	
			0x0008	Ошибка теста FTT образца тестирования	
			0x0010	Неисправность канала обратного считывания	
			0x0020	Ошибка активного отключения	
			0x0040	Ошибка при инициализации: реле	
			0x0080	Проверка FTT: неисправность при эхосчитывании напряжения в реле	
			0x0100	Проверка FTT: ошибка сигнала входа CS (Chip select)	
			0x0400	Тест FTT: порог температуры 1 превышен	
			0x0800	Тест FTT: порог температуры 2 превышен	
			0x1000	Состояние ключа безопасности 1	
			0x2000	Состояние ключей безопасности	
			0x4000	Ошибка активного отключения посредством сторожевого устройства	
			0x8000	Проверка напряжения в реле выдает ошибку	
Module Error Code	WORD	R	Коды ошибок модуля		
			Кодирование	Описание	
			0x0000	Ошибки обработки ввода/вывода, см. дальнейшие коды ошибок	
			0x0001	отсутствует обработка ввода/вывода (CPU не в режиме RUN)	
			0x0002	отсутствует обработка ввода/вывода при загрузочном тесте	
			0x0004	Работает интерфейс производителя	
			0x0010	отсутствует обработка ввода/вывода: неверное параметрирование	
			0x0020	отсутствует обработка ввода/вывода: превышено допустимое количество ошибок	
			0x0040/ 0x0080	отсутствует обработка ввода/вывода: не вставлен конфигурированный модуль	
Module SRS	UDINT	R	Номер слота (System.Rack.Slot)		
Module Type	UINT	R	Тип модуля, заданное значение: 0x00F1 [241 _{dec}]		

Таблица 18: SILworX — системные параметры цифровых выходов, вкладка **Module**

Стр. 28 из 42 HI 800 370 RU (1541)

4.3.2.2 Вкладка **DO 16: Channels**

Вкладка **DO 16: Channels** содержит следующие системные переменные:

Системные параметры	Тип данных	R/W	Описание		
-> Error Code [BYTE]	BYTE	R	Коды ошибок цифровых выходных каналов		
			Кодирование	Описание	
			0x01	Ошибка модуля цифрового вывода	
			0x04	Ошибка при обратном считывании цифровых выходов	
			0x10	Ошибка при обратном считывании состояния реле 1 (Relay [x].1) (канал обесточен в течение долгого времени)	
			0x20	Ошибка при обратном считывании состояния реле 2 (Relay [x].2) (канал обесточен в течение долгого времени)	
			0x80	После выключения (например, через прикладную программу), инициализации, неисправности канала или неисправности модуля не удается включить канал.	
Value [BOOL] ->	BOOL	W	Выходное значение для каналов DO: 1 = выход активируется 0 = выход обесточен		

Таблица 19: SILworX — системные параметры цифровых выходов, вкладка **DO 16: Channels**

HI 800 370 RU (1541) Стр. 29 из 42

4.4 Конфигурация в ELOP II Factory

4.4.1 Конфигурация выходов

При помощи программного обеспечения ELOP II Factory сигналы, предварительно определенные в редакторе сигналов (Hardware Management), присваиваются отдельным имеющимся каналам (выходам), см. руководство по компактным системам (HIMatrix System Manual Compate Systems HI 800 394 RU) или онлайн-справку.

В следующем разделе описаны системные сигналы, доступные для назначения сигналам в устройстве удаленного ввода/вывода.

4.4.2 Сигналы и коды ошибок выходов

В следующих таблицах приведены считываемые и настраиваемые системные сигналы выходов, включая коды ошибок.

Коды ошибок могут в рамках прикладной программы считываться с помощью сигналов, описанных логическими переменными.

Возможно также отображение кодов ошибок в ELOP II Factory.

Стр. 30 из 42 HI 800 370 RU (1541)

4.4.3 Цифровые выходы F2 DO 16 02

Системный сигнал	R/W	Описание			
Mod.SRS [UDINT]	R	Номер слота (System.Rack.Slot)			
Mod.Type [UINT]	R	Тип модуля, заданное значение: 0x00F1 [241 _{dec}]			
Mod.Error Code	R	Коды ошибок модуля			
[WORD]		Кодирование Описание			
		0x0000	Ошибки обработки ввода/вывода, см. дальнейшие коды ошибок		
		0x0001	отсутствует обработка ввода/вывода (CPU не в режиме RUN)		
		0x0002	отсутствует обработка ввода/вывода при загрузочном тесте		
		0x0004	Работает интерфейс производителя		
		0x0010	отсутствует обработка ввода/вывода: неверное параметрирование		
		0x0020	отсутствует обработка ввода/вывода: превышено допустимое количество ошибок		
		0x0040/ 0x0080	отсутствует обработка ввода/вывода: не вставлен конфигурированный модуль		
DOy.Error Code	R	Коды ошибок все	ех цифровых выходов		
[WORD]		Кодирование	Описание		
		0x0001	Ошибка модуля		
		0x0002	Ключ безопасности 1 неисправен		
		0x0004	Ключ безопасности 2 неисправен		
		0x0008	Ошибка теста FTT образца тестирования		
		0x0010	Неисправность канала обратного считывания		
		0x0020	Ошибка активного отключения		
		0x0040	Ошибка при инициализации: реле		
		0x0080	Проверка FTT: неисправность при эхосчитывании напряжения в реле		
		0x0100	Проверка FTT: ошибка сигнала входа CS (Chip select)		
		0x0400	Тест FTT: порог температуры 1 превышен		
		0x0800	Тест FTT: порог температуры 2 превышен		
		0x1000	Состояние ключа безопасности 1		
		0x2000	Состояние ключей безопасности		
		0x4000	Ошибка активного отключения посредством сторожевого устройства		
		0x8000	Проверка напряжения в реле выдает ошибку		
DOy[xx].Error Code	R	Коды ошибок ци	фровых выходных каналов		
[BYTE]		Кодирование	Описание		
		0x01	Ошибка модуля цифрового вывода		
		0x04	Ошибка при обратном считывании цифровых выходов		
		0x10	Ошибка при обратном считывании состояния реле 1 <i>(Relay [x].1)</i> (канал обесточен в течение долгого времени)		
		0x20	Ошибка при обратном считывании состояния реле 2 <i>(Relay [x].2)</i> (канал обесточен в течение долгого времени)		
		0x80	После выключения (например, через прикладную программу), инициализации, неисправности канала или неисправности модуля не удается включить канал.		
DOy[xx]> Value	W	Выходное значение для каналов DO:			
[BOOL]		1 = выход активируется			
		0 = выход обесто	рчен		

Таблица 20: Системные сигналы цифровых выходов ELOP II Factory

HI 800 370 RU (1541) Стр. 31 из 42

5 Эксплуатация F2 DO 16 02

5 Эксплуатация

Устройство удаленного ввода/вывода может работать только вместе с системой управления. Особый контроль устройства удаленного ввода/вывода не требуется.

5.1 Обслуживание

Обслуживание устройства удаленного ввода/вывода во время эксплуатации не требуется.

5.2 Диагностика

Первичная диагностика выполняется путем анализа светодиодов на передней панели — см. главу 3.4.2.

Считывание протокола диагностики устройства может выполняться дополнительно с помощью инструмента программирования.

Стр. 32 из 42 HI 800 370 RU (1541)

F2 DO 16 02 6 Текущий ремонт

6 Текущий ремонт

В режиме обычной эксплуатации не требует мероприятий по текущему ремонту.

При возникновении неисправностей замените устройство или модуль идентичным либо вариантом замены, одобренным HIMA.

Ремонт устройства или модуля может производиться только поставщиком.

6.1 Ошибки

Если контрольные устройства обнаруживают критичные для безопасности ошибки, устройство переходит в состояние STOP_INVALID и остается в этом состоянии. Это означает, что устройство больше не обрабатывает входные сигналы и выходы переходят в безопасное, обесточенное состояние. Оценка диагностики дает указания на причину.

6.2 Мероприятия по текущему ремонту

Для устройства изредка требуются следующие меры:

- Загрузка операционной системы, если требуется новая версия
- Выполнение повторной проверки

6.2.1 Загрузка операционной системы

В рамках ухода за продуктом компания HIMA совершенствует операционную систему устройства.

Компания НІМА рекомендует использовать запланированное время простоя установки для загрузки в устройства актуальной версии операционной системы.

Предварительно следует проверить воздействие версии операционной системы на систему на основании списка версий!

Операционная система загружается с помощью инструмента программирования.

До начала загрузки устройство должно находиться в состоянии STOP (см. сообщение в инструменте программирования). В противном случае следует остановить устройство.

Более подробная информация представлена в документации инструмента программирования.

6.2.2 Повторная проверка

Релейные модули и релейные структуры HIMatrix подлежат повторной проверке (proof test) каждые 3 года. Более подробную информацию можно найти в руководстве по безопасности (HIMatrix Safety Manual HI 801 393 RU).

HI 800 370 RU (1541) Стр. 33 из 42

7 Вывод из эксплуатации

Устройство выводится из эксплуатации посредством отключения от питающего напряжения. Затем можно отсоединить вставные винтовые клеммы для входов и выходов и кабель Ethernet.

Стр. 34 из 42 HI 800 370 RU (1541)

F2 DO 16 02 8 Транспортировка

8 Транспортировка

Для защиты от механических повреждений производить транспортировку компонентов HIMatrix в упаковке.

Хранить компоненты HIMatrix всегда в оригинальной упаковке. Она одновременно является защитой от электростатического разряда. Только упаковки продукта недостаточно для осуществления транспортировки.

HI 800 370 RU (1541) Стр. 35 из 42

9 Утилизация F2 DO 16 02

9 Утилизация

Промышленные предприятия несут ответственность за утилизацию своего аппаратного обеспечения HIMatrix, вышедшего из строя. По желанию возможно заключить с компанией HIMA соглашение об утилизации.

Все материалы подлежат экологически чистой утилизации.

Стр. 36 из 42 HI 800 370 RU (1541)

F2 DO 16 02 Приложение

Приложение

Глоссарий

Обозначение	Описание
Al	Analog input, аналоговый вход
AO	Analog output, аналоговый выход
ARP	Address resolution protocol: сетевой протокол для присвоения сетевых адресов
	аппаратным адресам
COM	Коммуникационный модуль
CRC	Cyclic redundancy check, контрольная сумма
DI	Digital input, цифровой вход
DO	Digital output, цифровой выход
ELOP II Factory	Инструмент программирования для систем HIMatrix
EN	Европейские нормы
ESD	Electrostatic discharge, электростатическая разгрузка
FB	Fieldbus, полевая шина
FBD	Function block diagrams, язык функциональных модулей
FTT	Fault tolerance time, время допустимой погрешности
ICMP	Internet control message protocol, сетевой протокол для сообщений о статусе и
	неисправностях
IEC	Международные нормы по электротехнике
PADT	Programming and Debugging Tool, инструмент программирования и отладки (согласно IEC 61131-3), ПК с SILworX или ELOP II Factory
PE	Protective Earth: защитное заземление
R	Read: системная переменная/сигнал посылает значение, например, в пользовательскую программу
R/W	Read/Write, чтение/запись (заголовок столбца для типа системной переменной/сигнала)
Rack ID	Идентификация основного носителя (номер)
SFF	Safe failure fraction, доля безопасных сбоев
SIL	Safety integrity level, уровень совокупной безопасности (согл. IEC 61508)
SILworX	Инструмент программирования для систем HIMatrix
SNTP	Simple network time protocol, простой сетевой протокол времени (RFC 1769)
SRS	System.Rack.Slot: адресация модуля
SW	Software, программное обеспечение
TMO	Timeout, время ожидания
W	Write: системная переменная/сигнал получает значение, например, от прикладной программы
Watchdog (WD)	Контроль времени для модулей или программ. При превышении показателя контрольного времени модуль или программа выполняют контрольную остановку.
WDT	Watchdog time, время сторожевого устройства
W _{SS}	Значение от пика до пика (Peak-to-peak value) общих составляющих переменного напряжения
Адрес МАС	Адрес аппаратного обеспечения сетевого подключения (media access control)
без обратного воздействия на источник	Предположим, к одному и тому же источнику (например, трансмиттеру) подключены два входных контура. В этом случае входной контур обозначается как контур без обратного воздействия на источник, если он не искажает сигналы другого входного контура.
БСНН	Safety extra low voltage, защитное пониженное напряжение
3CHH	Protective extra low voltage, пониженное напряжение с безопасным размыканием
ПЭС	Programmable electronic system, программируемая электронная система
ЭМС	Electromagnetic compatibility, электромагнитная совместимость

HI 800 370 RU (1541) Стр. 37 из 42

Приложение F2 DO 16 02

Перече	нь изображений	
Рис. 1:	Образец заводской таблички	13
Рис. 2:	Вид спереди	14
Рис. 3:	Блок-схема	14
Рис. 4:	Срок службы контактов перем. тока	16
Рис. 5:	Образец наклейки с адресом МАС	19
Рис. 6:	Табличка условий эксплуатации во взрывоопасной зоне	26

Стр. 38 из 42 HI 800 370 RU (1541)

F2 DO 16 02 Приложение

Перечень таблиц

Таблица 1:	Инструменты программирования для устройств удаленного ввода/вывода HIMatrix	5
Таблица 2:	Дополнительные документы	6
Таблица 3:	Условия окружающей среды	9
Таблица 4:	Доступные варианты	12
Таблица 5:	Индикация рабочего напряжения	17
Таблица 6:	Индикация светодиодов системы	17
Таблица 7:	Индикация Ethernet	18
Таблица 8:	Индикация светодиодов входа/выхода	18
Таблица 9:	Свойства интерфейсов Ethernet	19
Таблица 10:	Используемые сетевые порты	19
Таблица 11:	Данные о продукте	21
Таблица 12:	Технические данные релейных выходов	22
Таблица 13:	Коммутационная способность релейных выходов	22
Таблица 14:	Сертификаты	23
Таблица 15:	Назначение клемм релейных выходов	25
Таблица 16:	Характеристики клеммных штекеров электропитания	25
Таблица 17:	Характеристики клеммных штекеров входов и выходов	25
Таблица 18:	SILworX — системные параметры цифровых выходов, вкладка Module	28
Таблица 19:	SILworX — системные параметры цифровых выходов, вкладка DO 16: Channels	29
Таблица 20:	Системные сигналы цифровых выходов ELOP II Factory	31

HI 800 370 RU (1541) Стр. 39 из 42

Приложение F2 DO 16 02

Индекс

safeethernet19	Диагностика	32
SRS12	• •	
Блок-схема14	Обеспечение безопасности	11
Вид спереди14	Технические данные	21

Стр. 40 из 42 HI 800 370 RU (1541)

HIMA Paul Hildebrandt GmbH Postfach 1261 68777 Brühl, Germany

Тел.: +49 6202 709 0

Факс: +49-6202-709-107

Эл. почта: info@hima.com · Веб-сайт: www.hima.com