

Short Read Sequencing Practical - 2025

Next Generation Sequencing methodologies

- Next Generation Sequencing
 - Catch all term
 - High throughput sequencing
 - Massively parallel sequencing
 - Terabytes of data
- Differing sequencing chemistries and engineering principles
- Sequencing of spatially separated, clonally amplified DNA.

Patient sample pathways

- HCAI practical sessions:
 - Illumina short read sequencing (today)
 - Oxford Nanopore technologies long read sequencing (tomorrow)

Preparation of Genomic DNA

Genomic DNA

Library preparation

Sequencing

- Purification of nucleic acid (genomic DNA and extra chromosomal)
- Extraction methods vary
 - One solution may not fit all
 - Often require pre-extraction preparation
- To name a few suppliers:
 - Qiagen Qiasymphony or EZ1
 - Thermo Kingfisher
 - Perkin Elmer Chemagic
 - Roche MagnaPure
- Which platforms is best?
 - Batch size
 - Sensitivity
 - Pre-extraction preparation
 - Cost
 - Run time
 - Spatial requirements
 - Established gold standard

Library preparation

Library Preparation (short read sequencing)

Genomic DNA

Library preparation

Sequencing

- Preparing the nucleic acid for sequencing
- DNA or RNA starting material
 - RNA needs to be reverse transcribed in cDNA
- Library preparation process
 - Fragmentation
 - End repair
 - dA-tailing 3'overhang
 - Ligation of adapter
 - PCR enrichment
 - Clean-up
 - Normalise
- Many commercially available kits for this process

Tagmentation (Section 2.0)

- Starting material: Diluted Genomic or PCR amplified DNA (0.2ng/uL)
- Modification of DNA using transposomes enzymes
- Fragments DNA through enzymatic cleavage with addition of short adapter sequences that correspond to the sequencing primer sites
- Mix transposome, buffer and DNA and incubate for 5mins at 55°C
 - Reaction stopped by adding stopping buffer

PCR Amplification (Section 3.0)

- PCR amplification of library
 - Incorporates terminal modification library with the incorporation of additional sequencer
- PCR primers are tripartite sequence structure
 - Complimentary adapter sequence: correspond to sequence primer binding site
 - Index: Adds a unique genetic tag onto the library for each samples eg.
 - UDP0001
 - i7 CGCTCAGTTC
 - i5 TCGTGGAGCG
 - Capture sequences: Perform PCR o modified DNA to include indices and P5 and P7 sequences

PCR purification (Section 4.0)

- Purification of dsDNA using AMPure XP bead-based reagent
- Negatively charge DNA binds beads
- Purification of beads using magnet
- Wash impuritites
- Low salt elution buffer dissociates DNA

Normalisation (Section 5.0)

- Bringing all individual libraries in plate to same molarity prior to sequencing
- 4 main methods
 - Bead based:
 - Illumina library preparation (Nextera XT and Illumina DNA preparation) _ _ _ _
 - Manual
 - Determine molarity using concentration of library and library size
 - Real time PCR
 - KAPA real time SYBR green method
 - Technically challenging
 - Enzymatic Normalase
 - Enzymatic method
 - 2-step normalase procedure
 - · Rapid, simple method

Normalisation method

Nextera XT library preparation method

SPRI beads

Illumina Sequencing

NGS sequencing technologies

Genomic DNA Library preparation Sequencing

Illumina Sequencers

Genomic DNA Library preparation Sequencing

 MiniSeq, MiSeq, NextSeq (550/1000), HiSeq 2500, NovaSeq 6000

- Related methods of sequencing
 - Subtle difference in clustering and sequencing chemistries
 - Vary in amount of data and run time considerably

Which sequencer or kit?

Genomic DNA Library preparation Sequencing

- Overwhelming amount of Illumina sequencers and kits available
- Key questions:
 - What are you trying to do?
 - How big is your organism?
 - What coverage is required?
 - What's my budget?

Cluster Generation

Genomic DNA

Library preparation

Sequencing

- Flow cell has P5 and P7 oligonucleotide lawn
 - Flow cell has single stranded complementary sequences
- P5 and P7 sequences on library termini bind to complementary sequences on flow cell
- Immobilised to discreet locations on flow cell

Cluster generation

- Bridge amplification Amplification of these single stranded fragments allows immobilised cluster generation
- Cluster generation can be random or more organised (patterned)
- Cluster generation ~1000 clonal library copies per cluster

Sequencing By Synthesis

- Sequencing by synthesis
- All 4 nucleotides are included
- Labelled with a different fluorophore
- Contains a block on 3' carbon
- Each base incorporation = 1 cycle

Sequence determination

- During sequencing emission of light to indicate which base has been incorporated
- Sequencer camera records the fluorescence emission from the flow cell
- Each cluster appears as pin-prick of light
- Cluster generation allows:
 - Amplification of library which improves signal acquisition
 - Reduces impact of phasing

Illumina

