Определение 1. Множество R называется кольцом, если на нём заданы операции сложения и умножения (отображения $+: R \times R \to R$ и $\cdot: R \times R \to R$ соответственно), удовлетворяющие следующим условиям (аксиомам кольца):

- (A1) $\forall a, b \in R$: a+b=b+a (коммутативность сложения).
- (A2) $\forall a, b, c \in \mathbb{R}$: (a+b)+c=a+(b+c) (ассоциативность сложения).
- (A3) В R существует такой элемент 0, что $\forall a \in R : a + 0 = a$ (существование нуля).
- (A4) $\forall a \in R \ \exists b \in R : \ a+b=0$ (существование противоположного элемента). Элемент b называется противоположным к a и обозначается -a.
- $(M1) \ \forall a,b,c \in C : \ (a \cdot b) \cdot c = a \cdot (b \cdot c) \ (accould mue ность умножения).$
- (AM) $\forall a, b, c \in R : a \cdot (b+c) = a \cdot b + a \cdot c$ (дистрибутивность умножения относительно сложения).

Кольцо R называется коммутативным, если дополнительно выполнена аксиома

 $(M2) \ \forall a,b \in R : \quad a \cdot b = b \cdot a \ (коммутативность умножения).$

Кольцо R называется кольцом c единицей, если дополнительно выполнена аксиома

(M3) В $R \setminus \{0\}$ существует такой элемент 1, что $\forall a \in R : a \cdot 1 = 1 \cdot a = a$ (существование единицы).

Всюду в дальнейшем под словом «кольцо» будет подразумеваться коммутативное кольцо с единицей.

Задача 1. Какие из следующих множеств (с естественными операциями сложения и умножения) являются кольцами?

a) \mathbb{N} ; б) \mathbb{Z} ; в) \mathbb{Q} ; г) \mathbb{R} ; д) $\mathbb{Q}[x]$.

Задача 2. Приведите пример кольца, состоящего в точности из $n \in \mathbb{N}$ элементов.

Определение 2. Кольцо R называется esknudosum, если на нём определена esknudosa норма — функция $N\colon R\to\mathbb{N}\cup\{0\}$ такая, что N(a)=0 тогда и только тогда, когда a=0, и возможно деление с остатком, то есть для любых $a,b\in R,\ b\neq 0$ существуют $q,r\in R$ такие, что a=bq+r и N(r)< N(b).

Замечание 1. Мы ещё будем дополнительно требовать, чтобы функция N была *мультипликативной*, то есть $N(a \cdot b) = N(a) \cdot N(b)$ для любых $a, b \in R$.

Задача 3. Какие из колец задачи 1 можно сделать евклидовыми, введя подходящую норму?

Задача 4. Существует ли евклидово кольцо из конечного числа элементов?

Определение 3. Множество $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$, где i — мнимая единица, с естественными операциями сложения и умножения называется кольцом гауссовых чисел.

Задача 5. Пусть $z \in \mathbb{Z}[i]$. Нарисуйте на комплексной плоскости все гауссовы числа, кратные z.

Задача 6. Пусть $N(a + bi) = a^2 + b^2$.

- **a)** Проверьте, что N удовлетворяет всем свойствам евклидовой нормы.
- **б)** Докажите, что $\mathbb{Z}[i]$ евклидово кольцо.

Задача 7. По аналогии с $\mathbb{Z}[i]$ рассмотрим кольцо $\mathbb{Z}[i\sqrt{n}]$ и определим $N(a+bi\sqrt{n})=a^2+nb^2$. Будет ли это кольцо евклидовым, если **a)** n=2; **b)** n=3; **в)** n=5?

Определение 4. Элемент $a \in R$ называется *обратимым*, если существует элемент $b \in R$, такой что ab = ba = 1. В этом случае b называется *обратным* к a и обозначается a^{-1} .

Задача 8. Перечислите все обратимые элементы в $\mathbb{Z}[i]$ и $\mathbb{Z}[i\sqrt{2}]$.

Определение 5. Необратимый элемент $a \in R \setminus \{0\}$ называется *неприводимым*, если его нельзя представить в виде произведения двух необратимых элементов из \mathbb{R} .

Задача 9. Верно ли, что неприводимые элементы в \mathbb{Z} — это в точности простые числа?

Определение 6. Пусть R — евклидово кольцо и $a = p_1 p_2 \dots p_m = q_1 q_2 \dots q_n$ — два разложения некоторого его элемента a в произведение неприводимых множителей. Эти разложения эквивалентны, если

- \bullet m=n.
- Существует перестановка $\sigma \in S_n$ и набор обратимых элементов $o_1, o_2, \ldots, o_n \in R$ такие, что $\forall i = 1, 2, \ldots, n: p_i = o_i q_{\sigma(i)}$.

Пример: $6 = 2 \cdot 3 = (-3) \cdot (-2)$ — два эквивалентных разложения целого числа 6 на неприводимые множители.

Определение 7. Пусть R — кольцо, такое что для любого необратимого элемента $a \in \mathbb{R} \setminus \{0\}$ существует разложение на неприводимые множители, причём оно единственно с точностью до эквивалентности. Тогда кольцо R называется ϕ акториальным.

Задача 10. Какие из колец задачи 1 факториальны?

Задача 11. Приведите пример нефакториального кольца.

Задача 12. (*Основная теорема арифметики для евклидовых колец*) Докажите, что любое евклидово кольцо является факториальным.

Указание. Вспомните, как доказывалась основная теорема арифметики для целых чисел.

Задача 13. Рассмотрим равенство $c^2 = a^2 + b^2 = (a + bi)(a - bi)$. Примените к нему основную теорему арифметики и получите явное описание всех Пифагоровых троек.

Задача 14. (Описание неприводимых гауссовых чисел)

- а) Докажите, что если $z \in \mathbb{Z}[i]$ приводимо и $\operatorname{Im} z = 0$, то либо число $\operatorname{Re} z$ составное, либо найдётся $w \in \mathbb{Z}[i]$, такое что $z = w\overline{w}$.
- **б)** Докажите, что если $z \in \mathbb{Z}[i]$ неприводимо, то \overline{z} тоже неприводимо.
- в) Докажите, что если $z \in \mathbb{Z}[i]$ неприводимо, то существует ровно одно простое число p, делящееся на z.
- г) Докажите, что если $z \in \mathbb{Z}[i]$ неприводимо, то N(z) = p или $N(z) = p^2$, где p простое число.
- д) Докажите, что простое число вида p = 4k + 3 является неприводимым гауссовым числом.
- **e)** (Лемма Вильсона) Пусть p простое. Докажите, что $((p-1)!+1) \vdots p$.
- ж) Пусть p = 4k + 1 простое. Докажите, что найдётся $a \in \mathbb{Z}$, такое что $(a^2 + 1)$: p.
- 3) Докажите, что простое число вида p = 4k + 1 является приводимым гауссовым числом.
- **и)** Пусть p=2 или p=4k+1 простое. Докажите, что найдётся неприводимое число $z\in\mathbb{Z}[i]$, такое что $p=z\overline{z}$, причём такое z единственно с точностью до сопряжения и умножения на обратимые элементы.
- **к)** Докажите, что никаких других (с точностью до умножения на обратимые элементы) неприводимых гауссовых чисел кроме упомянутых в пунктах **д** и **и** нет.

Задача 15. ($\mathcal{A}uo\phi ahm$) Докажите, что число 15 не представимо в виде суммы квадратов двух рациональных чисел.

Задача 16. Сформулируйте и докажите теорему о том, как по разложению натурального числа на простые множители понять, представимо ли это число в виде суммы двух квадратов целых чисел.

Задача 17. а) Найдите натуральное число, которое представимо ровно 57-ю способами в виде суммы квадратов двух натуральных чисел. б)* Найдите наименьшее такое число.

$\begin{array}{ c c }\hline 1 \\ a \end{array}$	1 б	1 B	1 Г	1 Д	2	3	4	5	6 a	6 6	7 a	7 6	7 B	8	9	10	11	12	13	$\begin{vmatrix} 14 \\ a \end{vmatrix}$	14 б	14 B	14 Г	14 Д	14 e	14 ж	14 и	14 K	15	16	17 a	17 6