

Linsen Li Wei Yang

Outline

- Problem description
- Text classification part

- Text summarization part
 - Attention Seq to Seq
- Mid-stage conclusion
- Further study

Problem description

The data set and label proportion

	textID	text	selected_text	sentiment
0	a3d0a7d5ad	Spent the entire morning in a meeting w/ a ven	my boss was not happy w/ them. Lots of fun.	0
1	251b6a6766	Oh! Good idea about putting them on ice cream	Good	1
2	c9e8d1ef1c	says good (or should i say bad?) afternoon! h	says good (or should i say bad?) afternoon!	0
3	f14f087215	i dont think you can vote anymore! i tried	i dont think you can vote anymore!	2
4	bf7473b12d	haha better drunken tweeting you mean?	better	1
27481	3dbae74fcd	I want to go to VP, but no one is willing to c	I want to go to VP, but no one is willing to c	0
27482	63147b35cb	Wah, why are you sad?	Wah, why are you sad?	0
27483	bdb196a09f	playing sudoku while mommy makes me breakfast \dots	playing sudoku while mommy makes me breakfast \dots	0
27484	18c2a1e98e	see u bye see u! i love the hot30	i love	1
27485	1c1f3724db	ha ha, and what game is that? i like games	? i like	

27485 rows × 4 columns

```
replace_map = {'sentiment': {'neutral': 0, 'positive': 1, 'negative': 2}}
train.replace(replace_map, inplace=True)|
test.replace(replace_map, inplace=True)
```


Preprocessing & EDA

To reduce noise

- Website deleted
- Treat "?!" as single word (Important)

To improve efficiency

- 90% of MAX_NB_WORDS = 3014
 - 95% of MAX_NB_WORDS = 7834
- 95% of DOC_LEN = 27

1870

Text classification - RNNs

RNN for text classification

- Training set, validation set split
- Tokenization and text to sequence
- Set the length of input=100 for text column

```
Shape of x_train: (24736, 100)
Shape of y_train: (24736, 3)
Shape of x_validation: (2749, 100)
Shape of y_vallidation: (2749, 3)
```

Set the length of input=50 for selected_text column

```
Shape of x_train: (24736, 50)
Shape of y_train: (24736, 3)
Shape of x_validation: (2749, 50)
Shape of y_vallidation: (2749, 3)
```


RNN for text classification

- Use LSTM instead of Simple RNN
- Use stacked LSTM
- Use bidirectional LSTM
- Use pre-train word embedding

```
from keras.models import Sequential
from keras.layers import LSTM, Embedding, Dense, Bidirectional

state_dim =64
embedding_dim=100
model_lstm = Sequential()
model_lstm.add(Embedding(vocab_size, embedding_dim, weights=[embedding_matrix], trainable=False))
model_lstm.add(Bidirectional(LSTM(state_dim,return_sequences=True,dropout=0.5,recurrent_dropout=0.5)))
model_lstm.add(Bidirectional(LSTM(state_dim,return_sequences=True,dropout=0.5,recurrent_dropout=0.5)))
model_lstm.add(Bidirectional(LSTM(state_dim,return_sequences=False,dropout=0.5,recurrent_dropout=0.5)))
model_lstm.add(Dense(3,activation='softmax'))
```


Model: "sequential_14"						
Layer (type)	Output Shape	Param #				
embedding_15 (Embedding)	(None, None, 100)	2533400				
bidirectional_25 (Bidirectio	(None, None, 128)	84480				
bidirectional_26 (Bidirectio	(None, None, 128)	98816				
bidirectional_27 (Bidirectio	(None, 128)	98816				
dense_9 (Dense)	(None, 3)	387				
Total params: 2,815,899 Trainable params: 282,499 Non-trainable params: 2,533,400						

RNN result for text column


```
loss_and_acc = model_lstm.evaluate(x_test,y_test_c,verbose=0)
print('loss = ' + str(loss_and_acc[0]))
print('accuracy = ' + str(loss_and_acc[1]))
loss = 0.5693516473459651
accuracy = 0.7686431407928467
# Report the recall and precision for each category on the test set
from sklearn.metrics import classification report
y_pred_NN = model_lstm.predict([x_test], batch_size=16, verbose=0)
y_pred_bool = np.argmax(y_pred_NN, axis=1)
print(classification report(y test, y pred bool))
              precision
                           recall f1-score
                                               support
                                       0.80
           0
                   0.78
                             0.82
                                                  1133
                             0.74
                                       0.78
                   0.82
                                                   882
                   0.70
                             0.72
                                       0.71
                                                   734
                                       0.77
                                                  2749
    accuracy
                                                  2749
                                       0.76
   macro avg
                   0.77
                             0.76
weighted avg
                   0.77
                             0.77
                                       0.77
                                                  2749
```


RNN result for selected_text column


```
loss_and_acc = model_lstm1.evaluate(x_test,y_test_c)
print('loss = ' + str(loss and acc[0]))
print('accuracy = ' + str(loss and acc[1]))
loss = 0.4104320356285585
accuracy = 0.8410331010818481
# Report the recall and precision for each category on the test:
from sklearn.metrics import classification report
y pred NN = model lstm1.predict([x test], batch size=16, verbose
y_pred_bool = np.argmax(y_pred_NN, axis=1)
print(classification_report(y_test, y_pred_bool))
2749/2749 [============ ] - 4s 1ms/step
                        recall f1-score
            precision
                                          support
                 0.85
                          0.85
          0
                                    0.85
                                             1133
                 0.86
                          0.84
                                   0.85
          1
                                              882
                 0.80
                                   0.81
                          0.82
                                              734
                                    0.84
                                             2749
   accuracy
  macro avg
                 0.84
                          0.84
                                   0.84
                                             2749
                 0.84
weighted avg
                          0.84
                                    0.84
                                             2749
```

Text classification - RNNs

RNN result conclusion

- For both text column and selected_text column, the negative label prediction has the worst behavior
- The selected_text absolutely behaves better than text in sentiment classification

Text classification - CNNs

- Local features extraction
 - Multi-channels text CNNs
 - Adjustable channels (Like N-gram + key words extraction)
- Classification task
 - Dense (Filter size) x (Number of filter)
 - Dropout (0.4)
 - Half Dense
 - Softmax

Grid Search conclusion

mean_fit_time	param_EMB	param_FS	param_NF	param_optimizer	mean_test_score	std_test_score	rank_test_	mean_train_score	std_train_score
159.6531413	100	(2, 3, 4, 5)	32	<keras.optimizers.adam< td=""><td>0.826860106</td><td>0.001163336</td><td>1</td><td>0.931507714</td><td>0.011877416</td></keras.optimizers.adam<>	0.826860106	0.001163336	1	0.931507714	0.011877416
113.4938084	100	(2, 3, 4, 5)	32	Adadelta	0.824722576	0.000750092	2	0.978442799	0.000589024
218.0452211	100	(2, 3, 4, 5)	32	Adamax	0.822585046	0.001611405	3	0.973349003	0.003029481
105.1464674	100	(2, 3, 4, 5)	32	Adagrad	0.815899582	0.001710644	4	0.978783856	0.000843584
104.1326965	100	(2, 3, 4, 5)	32	RMSprop	0.813489176	0.003711631	5	0.983104401	0.000834658
101.6873125	100	(2, 3, 4, 5)	32	<keras.optimizers.rmspro< td=""><td>0.811169729</td><td>0.002640678</td><td>6</td><td>0.850782242</td><td>0.000701435</td></keras.optimizers.rmspro<>	0.811169729	0.002640678	6	0.850782242	0.000701435
123.3534462	100	(2, 3, 4, 5)	32	Adam	0.806667273	0.002336764	7	0.986151536	5.61E-05
247.9763242	100	(2, 3, 4, 5)	32	Nadam	0.798799345	0.011473961	8	0.972507975	0.017012146
99.13591552	100	(2, 3, 4, 5)	32	<keras.optimizers.sgd ob<="" td=""><td>0.790431144</td><td>0.027579446</td><td>9</td><td>0.889984287</td><td>0.037769107</td></keras.optimizers.sgd>	0.790431144	0.027579446	9	0.889984287	0.037769107
97.97679551	100	(2, 3, 4, 5)	32	SGD	0.589821721	0.00430279	10	0.591572634	0.002328828

- Early stopping to avoid overfit
 - Monitor validation accuracy, mode=max
 - Patience = 8
- Grid Search + 3 fold Cross Validation
 - Optimizers = adam (Ir=0.0001)
 - Filter size = [2,3,4,5] Four channels FS = [(2,3,4,5)]
 - Number of Filters = 24 or 32
 - Embedding dimension = 200
 - Pretrained embedding
 - CBOW
 - Glove

```
# define the grid search parameters
BestModel_Name = 'GS_model'
EMB = [100]
NF = [32]
MDL= [MAX_DOC_LEN
MNW= [MAX_NB_WORDS]
PWV = [None]
trainable_switch = [True]
sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
adam = optinizers.adam(lr=1e-4)
rmsprop = ptimizers.rmsprop(lr=1e-4)
optimizer = [sgd, 'SGD', rmsprop, 'RMSprop', 'Adagrad', 'Adadelta', adam, 'Adam', 'Adamax', 'Nadam']
earlyStopping = EarlyStopping(monitor='acc', patience=patience, verbose=2, mode='max') # patience: number of epochs with n
callbacks=[earlyStopping]
model = KerasClassifier(build_fn=model_Create, epochs=epoch, batch_size, verbose=0)# , callbacks=earlyStopping)
param_grid =dict(EMB=EMB, NF=NF, FS=FS, MDL=MDL, MNW=MNW, PWV=PWV, trainable_switch=trainable_switch, optimizer=optimizer)
grid = GridSearchCV(estimator=model, param_grid=param_grid, n_jobs=n_jobs, cv=3, return_train_score=True, verbose=3)
grid_result = grid.fit(x_train, y_train, callbacks=callbacks)
```


Text classification - CNNs

CNN result - Checkpoint to load back the best model

```
def train_model(model, x_train, y_train, x_test, y_test, BATCH_SIZE, NUM_EPOCHES, BestModel_Name="best_model" ):
    #### Best model load back
    patience=10

BEST_MODEL_FILEPATH = BestModel_Name
    earlyStopping = EarlyStopping(monitor='val_loss', patience=patience, verbose=1, mode='min') # patience: number of epochs with no improvement on monitor : val_loss
    checkpoint = ModelCheckpoint(BEST_MODEL_FILEPATH, monitor='val_loss', verbose=0, save_best_only=True, mode='min')
    history = model.fit(x_train, y_train, validation_split=0.2, batch_size=BATCH_SIZE, epochs=NUM_EPOCHES, callbacks=[earlyStopping, checkpoint], verbose=2)
    model.load_weights(BestModel_Name)
```

Selected Text → sentiment

		precision	recall	f1-score	support
	0	0.88	0.79	0.83	857
	1	0.82	0.83	0.83	1112
	2	0.79	0.80	0.79	780
micro	avg	0.83	0.81	0.82	2749
macro	avg	0.83	0.80	0.82	2749
weighted	avg	0.83	0.81	0.82	2749
samples	avg	0.81	0.81	0.81	2749
acc: 82.	18%				

Text → sentiment

		precision	recall	f1-score	support
	9	0.83	0.74	0.78	857
	1	0.69	0.68	0.68	1112
	2	0.74	0.63	0.68	780
micro	avg	0.74	0.69	0.71	2749
macro	avg	0.75	0.69	0.72	2749
weighted	avg	0.75	0.69	0.71	2749
samples	avg	0.69	0.69	0.69	2749
acc: 72.0	33%				

Classification Target

1870

Text summarization

Little Difference Hyper-parameters

- Preprocessing
 - keep the "."
 - Only 85% of DOC_LEN = 17 (Decoder Input)

- Training Model Setting
 - Latent dimension = 64
 - Embedding = 200
 - Attention score layer:
 - Activity Regularize = L1 Norm (0.005)
 - Focus on local word as context to do the summarization

Text summarization

Summarization result

- S2S BELU score
 - 0.045
 - 0.104 (Additive Attention)

Summary from seq2seq + Attention model: tired

Result Comparation

val loss loss

3.0

2.5

loss 105

1.5

1.0

val lossv.s. training loss

To be done

- Tune the parameters for Attention S2S Model
 - Evaluate based on BLEU score
 - Bidirectional LSTM will be added
- Feature combination Concatenate / Summation
 - Combined original input 'text' embedding
 - The output from Decoder features (contextual embedding)
- Classification
 - Dense

BERT pretrained Embedding + Dense

stevens.edu