The probability of observing the value $y_i \equiv y(t_i)$ when the expectation value is $\mu(t_i)$ and the error is gaussian is

$$f(y_i|\boldsymbol{\theta}) = \frac{1}{\sqrt{2\pi\nu}} \exp\left(-\frac{1}{2} \frac{(y_i - \mu(t_i))^2}{\nu}\right),$$

$$\boldsymbol{\theta} = (\nu, \omega, \phi),$$

$$\mu(t_i) = N_0 \left(1 + P \sin(\omega t_i + \phi)\right).$$

The likelihood of observing a set of observations $\mathbf{y} = (y_1, \dots, y_K)$, under the i.i.d. assumption, is the product of propabilities taken as a function of the parameters:

$$\mathcal{L}(\boldsymbol{\theta}|\mathbf{y}) = \prod_{i} f(y_i|\boldsymbol{\theta}),$$

and the log-likelihood

$$\ell(\boldsymbol{\theta}|\mathbf{y}) = -\frac{K}{2}\log 2\pi - \frac{K}{2}\log \nu - \frac{1}{2\nu}\sum_{i}\epsilon_{i}^{2}, \ \epsilon_{i} = y_{i} - \mu(t_{i}).$$

The usual assumptions for the error term are zero expectation and strict exogeneity

$$E[\epsilon_i | \boldsymbol{\theta}_0] = E[t_i \epsilon_i | \boldsymbol{\theta}_0] = 0,$$

and the relations between the mean's derivatives are

$$\mu'_{\phi} = N_0 P \cos(\omega t + \phi),$$

$$\mu'_{\omega} = t \cdot \mu'_{\phi}, \epsilon'_{\xi} = -\mu'_{\xi}.$$

The log-likelihood derivatives:

$$\begin{split} \ell'_{\nu} &= -\frac{K}{2\nu} + \frac{1}{2\nu^2} \sum_{i} \epsilon_{i}^{2}; \\ \ell'_{\omega} &= \frac{1}{\nu} \sum_{i} \mu'_{\phi}(t_{i}) t_{i} \epsilon_{i}; \\ \ell'_{\psi} &= \frac{1}{\nu} \sum_{i} \mu'_{\phi}(t_{i}) \epsilon_{i}; \\ \ell''_{\nu^2} &= \frac{K}{2\nu^2} - \frac{1}{\nu^3} \sum_{i} \epsilon_{i}^{2}, \\ \ell''_{\nu\omega} &= -\frac{1}{\nu^2} \sum_{i} \mu'_{\phi}(t_{i}) t_{i} \epsilon_{i}, \\ \ell''_{\nu\phi} &= -\frac{1}{\nu^2} \sum_{i} \mu'_{\phi}(t_{i}) t_{i} \epsilon_{i}, \\ \ell''_{\psi\phi} &= -\frac{1}{\nu^2} \sum_{i} \mu'_{\phi}(t_{i}) \epsilon_{i}, \\ \ell''_{\psi\phi} &= \frac{1}{\nu} \sum_{i} \left(\mu''_{\psi_{\phi}}(t_{i}) \epsilon_{i} - \left(\mu'_{\phi}(t_{i}) \right)^{2} \right), \\ \ell''_{\psi\phi} &= \frac{1}{\nu} \sum_{i} \left(\mu''_{\psi_{\phi}}(t_{i}) t_{i} \epsilon_{i} - \left(\mu'_{\phi}(t_{i}) \right)^{2} t_{i} \right), \\ \ell''_{\psi\omega} &= \frac{1}{\nu} \sum_{i} \left(\mu''_{\psi_{\phi}}(t_{i}) t_{i} \epsilon_{i} - \left(\mu'_{\phi}(t_{i}) \right)^{2} t_{i} \right), \\ - \mathbf{E} \left[\ell''_{\psi\omega} | \mathbf{\theta}_{0} \right] &= \frac{1}{\nu} \sum_{i} \left(t_{i} \left(\mu'_{\phi}(t_{i}) \right)^{2} - \mu''_{\phi^{2}}(t_{i}) \mathbf{E} \left[\epsilon_{i} | \mathbf{\theta}_{0} \right] \right) \\ \ell''_{\psi\omega} &= \frac{1}{\nu} \sum_{i} \left(\mu''_{\psi_{\phi}}(t_{i}) t_{i} \epsilon_{i} - \left(\mu'_{\phi}(t_{i}) \right)^{2} t_{i} \right), \\ - \mathbf{E} \left[\ell''_{\psi\omega} | \mathbf{\theta}_{0} \right] &= \frac{1}{\nu} \sum_{i} \left(t_{i} \left(\mu'_{\phi}(t_{i}) \right)^{2} - \mu''_{\phi^{2}}(t_{i}) \mathbf{E} \left[t_{i} \epsilon_{i} | \mathbf{\theta}_{0} \right] \right) \\ \ell'''_{\psi\omega} &= \frac{1}{\nu} \sum_{i} \left(\mu''_{\psi_{\phi}}(t_{i}) t_{i} \epsilon_{i} - \left(\mu'_{\phi}(t_{i}) t_{i} \right)^{2}, \\ - \mathbf{E} \left[\ell'''_{\psi\omega} | \mathbf{\theta}_{0} \right] &= \frac{1}{\nu} \sum_{i} \left(t_{i} \left(\mu'_{\phi}(t_{i}) \right)^{2} - \mu''_{\phi^{2}}(t_{i}) \mathbf{E} \left[t_{i} \epsilon_{i} | \mathbf{\theta}_{0} \right] \right) \\ \ell'''_{\psi\omega} &= \frac{1}{\nu} \sum_{i} \left(\mu''_{\psi_{\phi}}(t_{i}) t_{i} \epsilon_{i} - \left(\mu'_{\phi}(t_{i}) t_{i} \right)^{2}, \\ - \mathbf{E} \left[\ell'''_{\psi\omega} | \mathbf{\theta}_{0} \right] &= \frac{1}{\nu} \sum_{i} \left(t_{i} \left(\mu'_{\phi}(t_{i}) \right)^{2} - \mu''_{\phi^{2}}(t_{i}) \mathbf{E} \left[t_{i} \epsilon_{i} | \mathbf{\theta}_{0} \right] \right) \\ \ell'''_{\psi\omega} &= \frac{1}{\nu} \sum_{i} \left(\mu''_{\psi_{\phi}}(t_{i}) t_{i} \epsilon_{i} - \left(\mu'_{\phi}(t_{i}) t_{i} \right)^{2}, \\ - \mathbf{E} \left[\ell'''_{\psi\omega} | \mathbf{\theta}_{0} \right] &= \frac{1}{\nu} \sum_{i} \left(t_{i} \left(\mu'_{\phi}(t_{i}) \right)^{2} - \mu''_{\phi^{2}}(t_{i}) \mathbf{E} \left[t_{i} \epsilon_{i} | \mathbf{\theta}_{0} \right] \right) \\ \ell'''_{\psi\omega} &= \frac{1}{\nu} \sum_{i} \left(\mu''_{\psi\omega}(t_{i}) t_{i} \epsilon_{i} - \left(\mu'_{\psi\omega}(t_{i}) t_{i} \right)^{2}, \\ - \mathbf{E} \left[\ell'''_{\psi\omega} | \mathbf{\theta}_{0} \right] &= \frac{1}{\nu} \sum_{i} \left(t_{i} \left(\mu'_{\psi\omega}(t_{i}) \right)^{2} - \mu''_{\psi\omega}(t_{i}) \mathbf{E} \left[t_{i} \epsilon_{i} | \mathbf{\theta}_{0} \right] \right) \\ \ell'''_{\psi\omega} &= \frac{1}{\nu} \sum_{i} \left(\mu''_{\psi\omega}(t_{i}) t_{i}$$

The Fisher matrix

$$I(\boldsymbol{\theta}_{0}) = \begin{bmatrix} K/2\nu & 0 & 0 \\ 0 & ^{1}/\nu \sum \left(t_{i}\mu'_{\phi}(t_{i})\right)^{2} & ^{1}/\nu \sum t_{i}\left(\mu'_{\phi}(t_{i})\right)^{2} \\ 0 & ^{1}/\nu \sum t_{i}\left(\mu'_{\phi}(t_{i})\right)^{2} & ^{1}/\nu \sum \left(\mu'_{\phi}(t_{i})\right)^{2} \end{bmatrix}.$$

The determinant

$$|I(\boldsymbol{\theta}_0)| = \frac{K}{2\nu^4} \underbrace{\left(\sum \left(t_i \mu_{\phi}'(t_i)\right)^2 \sum \left(\mu_{\phi}'(t_i)\right)^2 - \left(\sum t_i \left(\mu_{\phi}'(t_i)\right)^2\right)^2\right)}_{\Omega}.$$

The variance-covariance matrix

$$vcov = \begin{bmatrix} 2\nu^2/\mathbf{K} & 0 & 0 \\ 0 & \nu \frac{\sum \left(\mu_\phi'(t_i)\right)^2}{\Omega} & \nu \frac{\sum t_i \left(\mu_\phi'(t_i)\right)^2}{\Omega} \\ 0 & \nu \frac{\sum t_i \left(\mu_\phi'(t_i)\right)^2}{\Omega} & \nu \frac{\sum \left(t_i \mu_\phi'(t_i)\right)^2}{\Omega} \end{bmatrix}.$$

Variance of the frequency estimate

$$var(\hat{\omega}) = \nu \frac{\sum \left(\mu_{\phi}'(t_i)\right)^2}{\sum \left(t_i \mu_{\phi}'(t_i)\right)^2 \sum \left(\mu_{\phi}'(t_i)\right)^2 - \left(\sum t_i \left(\mu_{\phi}'(t_i)\right)^2\right)^2}.$$

Cross-check. Let $\mu(t_i) = \phi + \omega t_i$. In that case $\mu'_{\phi}(t_i) = 1$, $\mu'_{\omega}(t_i) = t_i = t_i \cdot \mu'_{\phi}(t_i)$, the determinant of the Fisher matrix simplifies to

$$\begin{split} |I(\boldsymbol{\theta}_0)| &= \frac{K}{2\nu^4} \left(K \sum_i t_i^2 - \left(\sum_i t_i \right)^2 \right) \\ &= \frac{K^3}{2\nu^4} \left(\frac{1}{K} \sum_i t_i^2 - \langle t \rangle^2 \right) \\ &= \frac{K}{2\nu^4} \cdot \underbrace{K \sum_i \left(t_i - \langle t \rangle \right)^2}_{\Omega} \end{split}$$

and the variance-covariance matrix becomes

$$vcov = \begin{bmatrix} 2^{\nu^2/K} & 0 & 0\\ 0 & \frac{\nu}{\sum (t_i - \langle t \rangle)^2} & \nu \frac{\sum t_i}{K \sum (t_i - \langle t \rangle)^2} \\ 0 & \nu \frac{\sum t_i}{K \sum (t_i - \langle t \rangle)^2} & \nu \frac{\sum t_i^2}{K \sum (t_i - \langle t \rangle)^2} \end{bmatrix},$$

with the well-known expression for the slope variance

$$var(\hat{\omega}) = \frac{\nu}{\sum (t_i - \langle t \rangle)^2}.$$