

Introduction to Robotics CSE 461

Chapter 2: Lecture 5 (Kinematics)

Md Toki Tahmid Lecturer, Dept. of Computer Science and Engineering BRAC University

Today

Kinematics

Joints

D-H Parameters

Kinematics

Robot arm kinematics deals with the analytical study of the geometry of motion of a robot arm with respect to a fixed reference coordinate system as a function of time without regard to the force/moments that cause the motion.

There are two problems related with robot arm kinematics.

- 1. Direct Kinematics
- 2. Inverse Kinematics

Degrees of Freedom

Degrees of Freedom (DoF)

General purpose robots: Possesses 6 dof.

Redundant robot: Possesses more than 6 dof.

Deficient robot: Possesses less than 6 dof.

Types of Joints

Prismatic Joint, P: Permits two paired elements to rotate with respect to each other about an axis that is defined by the geometry of the joint. It is sometimes called a sliding pair. It has 1-dof.

Revolute Joint, R: Permits two paired elements to rotate with respect to each other about an axis that is defined by the geometry of the joint. It is sometimes called a turning pair, a hinge or a pin point. It has 1-dof.

Revolute joint

Prismatic joint

Types of Joints

Cylindrical Joint, C: Permits rotation about, and independent translation along an axis, that is defined by the geometry of the joint. I has 2-dof.

Helical Joint, H: Allowed two paired elements to rotate about, and translation along, an axis defined by the geometry of the joint. However, the translation is related to the rotation by the pitch of a screw. It has 1-dof.

Spherical Joint, S: Allows one element to rotate freely with respect to the other about the center of the sphere in all possible orientations. It has 3-dof.

Link parameters and joint variables

- Joint angle θ: the angle of rotation from the X_{i-1} axis to the X_i axis about the Z_{i-1} axis. It is the joint variable if joint is is rotary.
- Joint distance d_i: the distance from the origin of the (i-1) coordinate system to the intersection of the Z_{i-1} axis and the X_i axis along the Z_{i-1} axis. It is the joint variable if joint is prismatic.
- Link length a_i: the distance from the intersection of the Z_{i-1} axis and the X_i axis to the origin of the ith coordinate system along the X_i axis.
- Link twist angle α_i : the angle of rotation from the Z_{i-1} axis to the Z_i axis about the X_i axis.

Link Parameters and Joint Variables example

 d_i : distance from origin of (i-1) coordinate to intersection of Z_{i-1} & X_i along Z_{i-1}

 θ_i : rotation angle from X_{i-1} to X_i about Z_{i-1}

Parameters of a simply 3 DOF Manipulator

TABLE 2.1. D-H Parameters of a 3-DOF Manipulator

Joint i	α_i	a _i	di	θ_{i}
1	0	a_1	0	θ_1
2	0	a_2	0	θ_2
3	0	a_3	0	θ_3

 α_i : rotation angle from Z_{i-1} to Z_i about X_i

 a_i : distance from intersection of Z_{i-1} & X_i to origin of i coordinate along X_i

2	-90	aı	0	θ_2
3	0	0	d ₂	θ3

 d_i : distance from origin of (i-1) coordinate to intersection of Z_{i-1} & X_i along Z_{i-1}

 θ_i : rotation angle from X_{i-1} to X_i about Z_{i-1}

Parameters of SCARA Arm

TABLE 2.2. D-H Parameters of the SCARA Arm

Joint i	α_i	a_i	d_i	θ_i
1	0	aı	d_1	θ_1
2	π	a_2	ó	θ_2
3	0	0	d_3	0
4	0	0	d_4	θ_4

 α_i : rotation angle from Z_{i-1} to Z_i about X_i

 a_i : distance from intersection of Z_{i-1} & X_i to origin of i coordinate along X_i

2	-90	aı	0	θ_2
3	0	0	d ₂	θ3

 d_i : distance from origin of (i-1) coordinate to intersection of Z_{i-1} & X_i along Z_{i-1}

 θ_i : rotation angle from X_{i-1} to X_i about Z_{i-1}

SCORBOT Robot (5 DOF Manipulator)

Thank You