Funções

José Antônio O. Freitas

MAT-UnB

Uma **função**

Uma **função** $f: A \rightarrow B$,

Uma **função** $f: A \rightarrow B$, de um conjunto A

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B,

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

i) Para todo $x \in A$,

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

i) Para todo $x \in A$, existe $y \in B$

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- *ii)* Se $x \in A$

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 ,

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$,

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de imagem

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

O conjunto A é chamado de domínio

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

O conjunto A é chamado de **domínio** de f

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

O conjunto A é chamado de **domínio** de f e será denotado por dom (f).

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

$$\operatorname{Im}(f) =$$

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

$$\mathrm{Im}(f)=\{f(x)$$

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

$$\operatorname{Im}(f) = \{f(x) \mid x \in A\}$$

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

$$\operatorname{Im}(f) = \{f(x) \mid x \in A\} \subseteq B$$

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

O conjunto A é chamado de **domínio** de f e será denotado por dom(f). O conjunto B é chamado de **contra-domínio** de f. O conjunto

$$\operatorname{Im}(f) = \{f(x) \mid x \in A\} \subseteq B$$

é chamado imagem de f.

Uma **função** $f: A \rightarrow B$, de um conjunto A em um conjunto B, é uma relação que associa os elementos de A com os elementos em B satisfazendo as seguintes condições:

- i) Para todo $x \in A$, existe $y \in B$ tal que f(x) = y.
- ii) Se $x \in A$ é tal que $f(x) = y_1$ e $f(x) = y_2$ com y_1 , $y_2 \in B$, então $y_1 = y_2$.

Nesse caso y é chamado de **imagem** de x segundo f.

O conjunto A é chamado de **domínio** de f e será denotado por dom(f). O conjunto B é chamado de **contra-domínio** de f. O conjunto

$$\operatorname{Im}(f) = \{f(x) \mid x \in A\} \subseteq B$$

é chamado imagem de f.

1) Sejam $A = \{0, 1, 2, 3\}$

1) Sejam $A = \{0, 1, 2, 3\}$ e $B = \{4, 5, 6, 7, 8\}$.

1) Sejam $A = \{0, 1, 2, 3\}$ e $B = \{4, 5, 6, 7, 8\}$. Quais das seguintes relações são funções?

- 1) Sejam $A = \{0, 1, 2, 3\}$ e $B = \{4, 5, 6, 7, 8\}$. Quais das seguintes relações são funções?
 - a) $R_1 = \{(0,5), (1,6), (2,7)\}$

b) $R_2 = \{(0,4), (1,5), (1,6), (2,7), (3,8)\}$

c) $R_3 = \{(0,4), (1,5), (2,7), (3,8)\}$

d) $R_4 = \{(0,5), (1,5), (2,6), (3,7)\}$

2)
$$R_5 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y^2 = x^2\}$$

3)
$$R_6 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x^2 + y^2 = 1\}$$

4)
$$R_7 = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = x^2\}$$

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora**

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados x_1 ,

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados $x_1, x_2 \in A$ tais que $f(x_1) =$

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$,

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$.

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente,

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora**

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados x_1 .

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados x_1 , $x_2 \in A$

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $x_1 \neq x_2$,

Seja $f: A \rightarrow B$ uma função.

i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.

- i) Dizemos que f é **injetora** se dados $x_1, x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados $x_1, x_2 \in A$ tais que $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.
- ii) Dizemos que f é sobrejetora

- i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.
- ii) Dizemos que f é **sobrejetora** se para todo $y \in B$,

- i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.
- ii) Dizemos que f é **sobrejetora** se para todo $y \in B$, existe $x \in A$

- i) Dizemos que f é **injetora** se dados $x_1, x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados $x_1, x_2 \in A$ tais que $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.
- ii) Dizemos que f é **sobrejetora** se para todo $y \in B$, existe $x \in A$ tal que f(x) = y.

- i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.
- ii) Dizemos que f é **sobrejetora** se para todo $y \in B$, existe $x \in A$ tal que f(x) = y.
- iii) Dizemos que f é bijetora

- i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.
- ii) Dizemos que f é **sobrejetora** se para todo $y \in B$, existe $x \in A$ tal que f(x) = y.
- iii) Dizemos que f é bijetora se f for injetora

- i) Dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados x_1 , $x_2 \in A$ tais que $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.
- ii) Dizemos que f é **sobrejetora** se para todo $y \in B$, existe $x \in A$ tal que f(x) = y.
- iii) Dizemos que f é bijetora se f for injetora e sobrejetora

- i) Dizemos que f é **injetora** se dados $x_1, x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados $x_1, x_2 \in A$ tais que $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.
- ii) Dizemos que f é **sobrejetora** se para todo $y \in B$, existe $x \in A$ tal que f(x) = y.
- iii) Dizemos que f é **bijetora** se f for **injetora** e **sobrejetora** simultaneamente.

- i) Dizemos que f é **injetora** se dados $x_1, x_2 \in A$ tais que $f(x_1) = f(x_2)$, então $x_1 = x_2$. De modo equivalente, dizemos que f é **injetora** se dados $x_1, x_2 \in A$ tais que $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.
- ii) Dizemos que f é **sobrejetora** se para todo $y \in B$, existe $x \in A$ tal que f(x) = y.
- iii) Dizemos que f é **bijetora** se f for **injetora** e **sobrejetora** simultaneamente.

Verifique se as seguintes funções são injetoras

Verifique se as seguintes funções são injetoras ou sobrejetoras:

Verifique se as seguintes funções são injetoras ou sobrejetoras:

1)
$$f: \mathbb{Z} \to \mathbb{Z}$$
 dada por $f(x) = 3x + 1$

2)
$$g: \mathbb{Z}_5 \times \mathbb{Z}_9 \to \mathbb{Z}_5 \times \mathbb{Z}_9$$
 tal que $g(\bar{x}, \bar{y}) = (\bar{2}\bar{x} + \bar{3}, \bar{4}\bar{y} + \bar{5})$

3) $h: \mathbb{R} \to \mathbb{R}$ dada por $h(x) = x^2$