

PyTorch Tutorial

02. Linear Model

Machine learning

• Suppose that students would get **y** points in final exam, if they spent **x** hours in paper *PyTorch Tutorial*.

x (hours)	y (points)
1	2
2	4
3	6
4	?

The question is what would be the grade if I study 4 hours?

Machine Learning

Machine Learning

Model design

- What would be the best model for the data?
- Linear model?

x (hours)	y (points)
1	2
2	4
3	6
4	?

Linear Model

$$\hat{y} = x * \omega + b$$

Model design

- What would be the best model for the data?
- Linear model?

x (hours)	y (points)
1	2
2	4
3	6
4	?

Linear Model

$$\hat{y} = x * \omega$$

To simplify the model

Linear Regression

Linear Model

$$\hat{y} = x * \omega$$

x (hours)	y (points)
1	2
2	4
3	6

Linear Regression

Linear Model

$$\hat{y} = x * \omega$$

x (hours)	y (points)
1	2
2	4
3	6

The machine starts with **a random guess**, ω = random value

$$loss = (\hat{y} - y)^2 = (x * \omega - y)^2$$

x (Hours)	y (Points)	y_predict (w=3)	Loss (w=3)
1	2	3	1
2	4	6	4
3	6	9	9
			mean = 14/3

$$loss = (\hat{y} - y)^2 = (x * \omega - y)^2$$

x (Hours)	y (Points)	y_predict (w=4)	Loss (w=4)
1	2	4	4
2	4	8	16
3	6	12	36
			mean = 56/3

$$loss = (\hat{y} - y)^2 = (x * \omega - y)^2$$

x (Hours)	y (Points)	y_predict (w=0)	Loss (w=0)
1	2	0	4
2	4	0	16
3	6	0	36
			mean = 56/3

$$loss = (\hat{y} - y)^2 = (x * \omega - y)^2$$

x (Hours)	y (Points)	y_predict (w=1)	Loss (w=1)
1	2	1	1
2	4	2	4
3	6	3	9
			mean = 14/3

$$loss = (\hat{y} - y)^2 = (x * \omega - y)^2$$

x (Hours)	y (Points)	y_predict (w=2)	Loss (w=2)
1	2	2	0
2	4	4	0
3	6	6	0
			mean = 0

Loss function & Cost function

Training Loss (Error)

$$loss = (\hat{y} - y)^2 = (x * \omega - y)^2$$

Mean Square Error

$$cost = \frac{1}{N} \sum_{n=1}^{N} (\hat{y}_n - y_n)^2$$

Compute Cost

Mean Square Error

$$cost = \frac{1}{N} \sum_{n=1}^{N} (\hat{y}_n - y_n)^2$$

x (Hours)	Loss (w=0)	Loss (w=1)	Loss (w=2)	Loss (w=3)	Loss (w=4)
1	4	1	0	1	4
2	16	4	0	4	16
3	36	9	0	9	36
MSE	18.7	4.7	0	4.7	18.7

Linear Regression

It can be found that when $\omega = 2$, the cost will be minimal.

will be minimal


```
import numpy as np
import matplotlib.pyplot as plt
x data = [1.0, 2.0, 3.0]
y data = [2.0, 4.0, 6.0]
def forward(x):
    return x * w
def loss(x, y):
    y \text{ pred} = forward(x)
    return (y pred - y) * (y pred - y)
w list = []
mse 1ist = []
for w in np. arange (0.0, 4.1, 0.1):
    print('w=', w)
    1 \text{ sum} = 0
    for x val, y_val in zip(x_data, y_data):
        y pred val = forward(x val)
        loss val = loss(x val, y val)
        1 \text{ sum} += 1 \text{ oss val}
        print('\t', x_val, y_val, y_pred_val, loss_val)
    print('MSE=', 1 sum / 3)
    w_list.append(w)
    mse list.append(1 sum / 3)
```

```
import numpy as np
import matplotlib.pyplot as plt
```

Import necessary library to draw the graph.

```
import numpy as np
import matplotlib.pyplot as plt
x_{data} = [1.0, 2.0, 3.0]
y data = [2.0, 4.0, 6.0]
def forward(x):
    return x * w
def loss(x, y):
    y \text{ pred} = forward(x)
    return (y pred - y) * (y pred - y)
w list = []
mse 1ist = []
for w in np. arange (0.0, 4.1, 0.1):
    print('w=', w)
    1 \text{ sum} = 0
    for x_val, y_val in zip(x_data, y_data):
        y pred val = forward(x val)
        loss val = loss(x val, y val)
        1 \text{ sum} += 1 \text{ oss val}
        print('\t', x_val, y_val, y_pred_val, loss_val)
    print('MSE=', 1 sum / 3)
    w list.append(w)
    mse_list.append(1 sum / 3)
```

```
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
```

Prepare the train set.

```
import numpy as np
import matplotlib.pyplot as plt
x data = [1.0, 2.0, 3.0]
y data = [2.0, 4.0, 6.0]
def forward(x):
    return x * w
def loss(x, y):
    y \text{ pred} = forward(x)
    return (y pred - y) * (y pred - y)
w list = []
mse list = []
for w in np. arange (0.0, 4.1, 0.1):
    print('w=', w)
    1 \text{ sum} = 0
    for x val, y_val in zip(x_data, y_data):
        y pred val = forward(x val)
        loss val = loss(x val, y val)
        1 \text{ sum} += 1 \text{ oss val}
        print('\t', x_val, y_val, y_pred_val, loss_val)
    print('MSE=', 1 sum / 3)
    w list.append(w)
    mse list.append(1 sum / 3)
```

```
def forward(x):
    return x * w
```

Define the model:

Linear Model

$$\hat{y} = x * \omega$$

```
import numpy as np
import matplotlib.pyplot as plt
x data = [1.0, 2.0, 3.0]
y data = [2.0, 4.0, 6.0]
def forward(x):
    return x * w
def loss(x, y):
    y \text{ pred} = forward(x)
    return (y pred - y) * (y pred - y)
w list = []
mse 1ist = []
for w in np. arange (0.0, 4.1, 0.1):
    print('w=', w)
    1 \text{ sum} = 0
    for x val, y val in zip(x data, y data):
        y_pred_val = forward(x val)
        loss val = loss(x val, y val)
        1 sum += loss val
        print('\t', x_val, y_val, y_pred_val, loss_val)
    print('MSE=', 1 sum / 3)
    w list.append(w)
    mse list.append(1 sum / 3)
```

```
def loss(x, y):
    y_pred = forward(x)
    return (y_pred - y) * (y_pred - y)
```

Define the loss function:

Loss Function

$$loss = (\hat{y} - y)^2 = (x * \omega - y)^2$$

```
import numpy as np
import matplotlib.pyplot as plt
x_{data} = [1.0, 2.0, 3.0]
y data = [2.0, 4.0, 6.0]
def forward(x):
    return x * w
def loss(x, y):
    y \text{ pred} = forward(x)
    return (y pred - y) * (y pred - y)
w list = []
mse 1ist = []
for w in np. arange (\hat{0}, \hat{0}, 4, \hat{1}, \hat{0}, \hat{1}):
    print('w=', w)
    1 \text{ sum} = 0
    for x_val, y_val in zip(x_data, y_data):
         y pred val = forward(x val)
         loss val = loss(x val, y val)
        1 \text{ sum} += 1 \text{ oss val}
         print('\t', x_val, y_val, y_pred_val, loss_val)
    print('MSE=', 1 sum / 3)
    w_list.append(w)
    mse list.append(1 sum / 3)
```

```
w_list = []
mse_list = []
```

List w_l ist save the weights ω . List mse_l ist save the cost values of each ω .

```
import numpy as np
import matplotlib.pyplot as plt
x data = [1.0, 2.0, 3.0]
y data = [2.0, 4.0, 6.0]
def forward(x):
    return x * w
def loss(x, y):
    y \text{ pred} = forward(x)
    return (y pred - y) * (y pred - y)
w list = []
mse list = []
for w in np. arange (0.0, 4.1, 0.1):
    print('w=', w)
    1 \text{ sum} = 0
    for x val, y_val in zip(x_data, y_data):
        y pred val = forward(x val)
        loss val = loss(x val, y val)
        1 sum += loss val
        print('\t', x_val, y_val, y_pred_val, loss_val)
    print('MSE=', 1 sum / 3)
    w_list.append(w)
    mse list.append(1 sum / 3)
```

```
for w in np. arange (0.0, 4.1, 0.1):
```

Compute cost value at [0.0, 0.1, 0.2, ..., 4.0]

```
import numpy as np
import matplotlib.pyplot as plt
x data = [1.0, 2.0, 3.0]
y_{data} = [2.0, 4.0, 6.0]
def forward(x):
    return x * w
def loss(x, y):
    y \text{ pred} = forward(x)
    return (y pred - y) * (y pred - y)
w 1 ist = []
mse 1ist = []
for w in np. arange (0.0, 4.1, 0.
    print ('w=', w)
    for x val, y val in zip(x data, y data):
        y_pred_val = forward(x val)
        loss val = loss(x val, y val)
        1 \text{ sum } += 1 \text{ oss val}
        print('\t', x_val, y_val, y_pred_val, loss_val)
    print('MSE=', 1 sum / 3)
    w list.append(w)
    mse list.append(1 sum / 3)
```

```
for x_val, y_val in zip(x_data, y_data):
    y_pred_val = forward(x_val)
    loss_val = loss(x_val, y_val)
    l_sum += loss_val
    print('\t', x_val, y_val, y_pred_val, loss_val)
```

For each sample in train set, the loss function values were computed.

ATTENTION:

Value of cost function is the sum of loss function.

```
import numpy as np
import matplotlib.pyplot as plt
x_{data} = [1.0, 2.0, 3.0]
y data = [2.0, 4.0, 6.0]
def forward(x):
    return x * w
def loss(x, y):
    y \text{ pred} = forward(x)
    return (y pred - y) * (y pred - y)
w 1 ist = []
mse 1ist = []
for w in np. arange (0.0, 4.1, 0.1):
    print('w=', w)
    1 \text{ sum} = 0
    for x_val, y_val in zip(x_data, /y_data):
        y pred val = forward(x val)
        loss val = loss(x val, y val)
        1 \text{ sum} += 1 \text{oss val}
        print('\t', x_val, y_al, y_pred_val, loss_val)
    print('MSE=', 1 sum / 3)
    w_list.append(w)
    mse_list.append(1 sum / 3)
```

```
w_list.append(w)
mse_list.append(l_sum / 3)
```

Save ω and correspondence **MSE**.

```
import numpy as np
import matplotlib.pyplot as plt
x data = [1.0, 2.0, 3.0]
y data = [2.0, 4.0, 6.0]
def forward(x):
    return x * w
def loss(x, y):
    y \text{ pred} = forward(x)
    return (y pred - y) * (y pred - y)
w list = []
mse 1ist = []
for w in np. arange (0.0, 4.1, 0.1):
    print ('w=', w)
    1 \text{ sum} = 0
    for x val, y val in zip(x data, y data):
        y pred val = forward(x val)
        loss val = loss(x val, y val)
        1 \text{ sum } += 1 \text{ oss val}
        print('\t', x_val, y_val, y_pred_val, loss_val)
    print('MSE=', 1 sum / 3)
    w list.append(w)
    mse list.append(1 sum / 3)
```

Part of result

```
w = 0.0
        1.00 2.00 0.00 4.00
        2.00 4.00 0.00 16.00
        3.00 6.00 0.00 36.00
MSE= 18.6666666666668
w = 0.1
        1.00 2.00 0.10 3.61
        2.00 4.00 0.20 14.44
        3.00 6.00 0.30 32.49
MSE= 16.8466666666668
w = 0.2
        1.00 2.00 0.20 3.24
        2.00 4.00 0.40 12.96
        3.00 6.00 0.60 29.16
MSE= 15.1200000000000003
w= 0.30000000000000004
        1.00 2.00 0.30 2.89
        2.00 4.00 0.60 11.56
        3.00 6.00 0.90 26.01
MSE= 13.48666666666665
w = 0.4
        1.00 2.00 0.40 2.56
        2.00 4.00 0.80 10.24
        3.00 6.00 1.20 23.04
MSE= 11.946666666666667
w = 0.5
        1.00 2.00 0.50 2.25
        2.00 4.00 1.00 9.00
        3.00 6.00 1.50 20.25
MSE= 10.5
```

Draw the graph

```
plt.plot(w_list, mse_list)
plt.ylabel('Loss')
plt.xlabel('w')
plt.show()
```


Exercise

• Try to use the model in right-side, and draw the cost graph.

• Tips:

- You can read the material of how to draw 3d graph. [link]
- Function *np.meshgrid()* is very popular for drawing 3d graph, read the [docs] and utilize vectorization calculation.

Linear Model

$$\hat{y} = x * \omega + b$$

PyTorch Tutorial

02. Linear Model