Ensemble learning, bias-variance decomposition

Victor Kitov

v v kit ov@yandex ru

Loss vs. model complexity

Comments:

- expected loss on test set is always higher than on train set.
- left to A: model too simple, underfitting, high bias
- right to A: model too complex, overfitting, high variance

Table of Contents

- Bias-variance decomposition
- 2 Ensemble learning
- 3 Fixed integration schemes for classification
- 4 Stacking
- 5 Train set sampling ensemble methods

Bias-variance decomposition

- True relationship $y = f(x) + \varepsilon$
- This relationship is estimated using random training set $(X, Y) = \{(x_n, y_n), n = 1, 2...N\}$
- Recovered relationship $\widehat{f}(x)$, x-some fixed constant
- Noise ε is independent of any $X,Y, \mathbb{E}\varepsilon = 0$

Bias-variance decomposition

$$\mathbb{E}_{X,Y,\varepsilon}\{[\widehat{f}(x) - y(x)]^2\} = \left(\mathbb{E}_{X,Y}\{\widehat{f}(x)\} - f(x)\right)^2 + \mathbb{E}_{X,Y}\left\{[\widehat{f}(x) - \mathbb{E}_{X,Y}\widehat{f}(x)]^2\right\} + \mathbb{E}\varepsilon^2$$

- Intuition: $MSE = bias^2 + variance + irreducible error$
 - darts intuition

Proof of bias-variance decomposition

Define for brevity of notation f = f(x), $\widehat{f} = \widehat{f}(x)$, $\mathbb{E} = \mathbb{E}_{X,Y,\varepsilon}$.

$$\mathbb{E}\left(\widehat{f} - f\right)^{2} = \mathbb{E}\left(\widehat{f} - \mathbb{E}\widehat{f} + \mathbb{E}\widehat{f} - f\right)^{2} = \mathbb{E}\left(\widehat{f} - \mathbb{E}\widehat{f}\right)^{2} + \left(\mathbb{E}\widehat{f} - f\right)^{2} + 2\mathbb{E}\left[\left(\widehat{f} - \mathbb{E}\widehat{f}\right)(\mathbb{E}\widehat{f} - f)\right]$$
$$= \mathbb{E}\left(\widehat{f} - \mathbb{E}\widehat{f}\right)^{2} + \left(\mathbb{E}\widehat{f} - f\right)^{2}$$

We used that $(\mathbb{E}\widehat{f} - f)$ is a constant w.r.t. X, Y and hence $\mathbb{E}\left[(\widehat{f} - \mathbb{E}\widehat{f})(\mathbb{E}\widehat{f} - f)\right] = (\mathbb{E}\widehat{f} - f)\mathbb{E}(\widehat{f} - \mathbb{E}\widehat{f}) = 0$.

$$\begin{split} \mathbb{E}\left(\widehat{f} - y\right)^2 &= \mathbb{E}\left(\widehat{f} - f - \varepsilon\right)^2 = \mathbb{E}\left(\widehat{f} - f\right)^2 + \mathbb{E}\varepsilon^2 - 2\mathbb{E}\left[(\widehat{f} - f)\varepsilon\right] \\ &= \mathbb{E}\left(\widehat{f} - \mathbb{E}\widehat{f}\right)^2 + \left(\mathbb{E}\widehat{f} - f\right)^2 + \Delta \end{split}$$

Here $\mathbb{E}\left[(\widehat{f}-f)\varepsilon\right]=\mathbb{E}\left[(\widehat{f}-f)\right]\mathbb{E}\varepsilon=0$ since ε is independent of X,Y.

Table of Contents

- Bias-variance decomposition
- Ensemble learningEnsemble learning use cases
- Fixed integration schemes for classification
- 4 Stacking
- 5 Train set sampling ensemble methods

Ensemble learning

- Ensemble model model using predictions of other models.
- Example: stacking
 - suppose we have base models $\hat{y}_1 = f_1(x), ... \hat{y}_M = f_M(x)$.
 - stacking: $\widehat{y}(x) = G(f_1(x), ...f_M(x))$
- Used in
 - supervised methods: regression, classification, collaborative filtering.
 - unsupervised methods: clustering, dimensionality reduction.

- 2 Ensemble learning
 - Ensemble learning use cases

Multiclass classification using binary classifiers

Multiclass classification with one-vs-rest, one-vs-one, error correcting codes schemes:

Solve underfitting

- Suppose $f_1(x),...f_M(x)$ are too simple and underfit.
- May increase complexity by applying $G(f_1(x),...f_M(x))$

Example

Feature 1

Example

Classifier 1

Feature 1

Example

Classifier 2

Feature 1

Example

Classifier 1 and classifier 2 combined using AND rule

Solve overfitting

- $f_1(x), ... f_M(x)$ overfit (have high variance)
 - decision trees on different training sets
 - neural networks estimasted with different initial conditions
- Regression: average their variability to get more robust estimate:

$$\widehat{y}(x) = \frac{1}{M} \sum_{m=1}^{M} f_m(x)$$

Classification: majority voting.

Regression: high variance

Regression: high variance

Regression: high variance

Regression 2.

Regression: high variance

Average of regression 1 and regression 2 gives better prediction.

Majority voting of classifiers

- Consider M classifiers $f_1(x), ... f_M(x)$, performing binary classification.
- Let probability of mistake be constant $p \in (0, \frac{1}{2})$: $p(f_m(x) = y) = p \forall m$
- Suppose all models make mistakes or correct guesses independently of each other.
- Let G(x) be majority voting combiner.
- Then $p(G(x) \neq y) \rightarrow 0$ as $m \rightarrow \infty$

Convex loss

Convex loss promotes the usage of averaged prediction instead of individual ones.

- Take convex loss $\mathcal{L}(\widehat{y} y)$, such as absolute or square.
- Take $f_1(x),...f_M(x)$ with weights $w_1,...w_M$.
- For any fixed x consider 2 prediction strategies:
- **1** sample $m \sim Categorical(\alpha_1, ... \alpha_M)$, $\widehat{y}(x) = f_m(x)$.
- $\widehat{y}(x) = \sum_{m=1}^{M} w_m f_m(x)$
 - Second strategy is better than first¹, averaged over different sample outcomes m.

¹Prove that.

Ambiguity decomposition

Ambiguity decomposition:

consider predicting fixed (x,y) with ensemble for $F(x)=\sum_{m=1}^M w_m f_m(x), \ w_m\geq 0, \ \sum_m w_m=1.$ Then

$$\underbrace{(F(x) - y)^{2}}_{\text{ensemble error}} = \underbrace{\sum_{m} w_{m} (f_{m}(x) - y)^{2}}_{\text{base learner error}} - \underbrace{\sum_{m} w_{m} (f_{m}(x) - F(x))^{2}}_{\text{ambiguity}}$$

Ensemble is accurate when:

- $f_m(x)$ are accurate
- and/or there is huge disagreement in base learners predictions.

Proof of ambiguity decomposition

Proof:

$$\sum_{m} w_{m} (f_{m}(x) - F(x))^{2} = \sum_{m} w_{m} (f_{m}(x) - y + y - F(x))^{2}$$

$$= \sum_{m} w_{m} (f_{m}(x) - y)^{2} + \sum_{m} w_{m} (y - F(x))^{2} + 2 \sum_{m} w_{m} (f_{m}(x) - y) (y - F(x))$$

$$= \sum_{m} w_{m} (f_{m}(x) - y)^{2} + (F(x) - y)^{2} + 2 (y - F(x)) \sum_{m} w_{m} (f_{m}(x) - y)$$

$$= \sum_{m} w_{m} (f_{m}(x) - y)^{2} + (F(x) - y)^{2} + 2 (y - F(x)) (F(x) - y)$$

$$= \sum_{m} w_{m} (f_{m}(x) - y)^{2} + (F(x) - y)^{2} - 2 (F(x) - y)^{2}$$

$$= \sum_{m} w_{m} (f_{m}(x) - y)^{2} - (F(x) - y)^{2}$$

Data promotes ensembles

Data may promote the use of ensembles when it is divided into separate groups with different regularities.

- Flat price prediction:
 - purpose-for living: model depending on comfort, living tastes, etc.
 - purpose-for investment: another model depending on exchange rates, interest rates, stock growth, etc.
- Face detection on images:
 - one model detects face with frontal view
 - another model detects face with profile view
- Person identification using diverse information:
 - by voice, by face, by behaviour patterns, etc.

Table of Contents

- Bias-variance decomposition
- 2 Ensemble learning
- 3 Fixed integration schemes for classification
- 4 Stacking
- 5 Train set sampling ensemble methods

Classifiers output labels

- Binary classification: output +1 <=>
 - all classifiers predict +1 (AND rule)
 - at least one classifier predicts +1 (OR rule)
 - at least k classifiers predict +1 (k-out-of-N)
- Multiclass classification:
 - predict most popular class (majority vote)
- Extension weighted account for classifiers:
 - weighted majority vote
 - weighted k-out-of-N

Classifiers output **scores**

- Let $g_v^m(x)$ be score of class y by model m.
- Problem: scores are incomparable across models.
- Solution:
 - **1** define ranking score: $s_{\nu}^{m}(x) = \sum_{c \neq \nu} \mathbb{I}[g_{\nu}^{m}(x) > g_{c}^{m}(x)]$
 - 2 since $s_y^m(x)$ are comparable, assign

$$\widehat{y}(x) = \arg\max_{y} \sum_{m=1}^{M} s_{y}^{m}(x)$$

Allows weighted account of classifiers.

Classifiers output probabilities

- Let $p_v^m(x)$ be probability of class y by classifier m.
- Possible final predictions:

$$p_y(x) = \frac{1}{M} \sum_{m=1}^{M} p_y^m(x)$$

$$p_y(x) = \text{median}_m p_y^m(x)$$

Allows weighted account of classifiers.

Table of Contents

- Bias-variance decomposition
- 2 Ensemble learning
- 3 Fixed integration schemes for classification
- 4 Stacking
- 5 Train set sampling ensemble methods

- original training set $T = \{(x_n, y_n)\}_{n=1}^N$
- base learners $f_1(x), ... f_M(x)$ and $G(\cdot)$.

- original training set $T = \{(x_n, y_n)\}_{n=1}^N$
- base learners $f_1(x), ... f_M(x)$ and $G(\cdot)$.
- Set generated training set $T' = \{\}$
- ② Split training set into K folds: $T_1, T_2, ... T_K$.

- original training set $T = \{(x_n, y_n)\}_{n=1}^N$
- base learners $f_1(x), ... f_M(x)$ and $G(\cdot)$.
- Set generated training set $T' = \{\}$
- ② Split training set into K folds: $T_1, T_2, ... T_K$.
- \bullet for k in 1,2,...K: train $f_1(x),...f_M(x)$ on $T \setminus T_k$ for (x,y) in T_k : augment T' with sample $([f_1(x),...f_M(x)],y)$

- original training set $T = \{(x_n, y_n)\}_{n=1}^N$
- base learners $f_1(x), ... f_M(x)$ and $G(\cdot)$.
- Set generated training set $T' = \{\}$
- ② Split training set into K folds: $T_1, T_2, ... T_K$.
- $\text{for } k \text{ in } 1,2,...K: \\ \text{train } f_1(x),...f_M(x) \text{ on } T \backslash T_k \\ \text{for } (x,y) \text{ in } T_k: \\ \text{augment } T' \text{ with sample } ([f_1(x),...f_M(x)],y)$
- Train $G(\cdot)$ on T'

Input:

- original training set $T = \{(x_n, y_n)\}_{n=1}^N$
- base learners $f_1(x), ... f_M(x)$ and $G(\cdot)$.
- Set generated training set $T' = \{\}$
- ② Split training set into K folds: $T_1, T_2, ... T_K$.
- for k in 1,2,...K: train $f_1(x),...f_M(x)$ on $T \setminus T_k$ for (x,y) in T_k : augment T' with sample $([f_1(x),...f_M(x)],y)$
- Train $G(\cdot)$ on T'
- **5** Retrain $f_1(x), ... f_M(x)$ on T.

Output: ensemble $G(f_1(x), ... f_M(x))$.

Comments

- Training $f_1(x), ... f_M(x), G(\cdot)$ on the same data causes overfitting.
- Besides $f_1(x), ... f_M(x)$ $G(\cdot)$ may also depend on
 - original features x
 - ullet internal representations inside f_m such as class scores, probabilities.

Linear stacking (blending)

Linear stacking:

$$f(x) = \sum_{m=1}^{M} w_m f_m(x)$$

$$\left(\sum_{m=1}^{M} w_m f_m(x_n) - y_n\right)^2 \to \min_{\mathbf{w}}$$

- $f_1(x), ... f_M(x)$ are correlated (predict the same y) => estimate unstable.
- For more robust estimate solve:

$$\begin{cases} \left(\sum_{m=1}^{M} w_m f_m(x_n) - y_n\right)^2 + \lambda \sum_{m=1}^{M} \left(w_m - \frac{1}{M}\right)^2 \to \min_{\mathbf{w}} \\ w_1 \ge 0, \dots w_M \ge 0 \end{cases}$$

Table of Contents

- Bias-variance decomposition
- 2 Ensemble learning
- 3 Fixed integration schemes for classification
- 4 Stacking
- 5 Train set sampling ensemble methods

Bagging & random subspaces

When model overfits to particular training set T, it is useful to generate many training sets $T_1, ... T_M$, estimate model on each of them and average.

- Bagging:
 - random selection of samples (with replacement)²³
- Random subspace method:
 - random selection of features (without replacement)
- May apply both methods jointly.

² what is the probability that observation will not belong to bootstrap sample?

³ what is the limit of this probability with $N \to \infty$?

Bagged trees

In CART trees we solve

$$\widehat{f}, \widehat{h} = \underset{f,h \in S(t)}{\operatorname{arg min}} \Delta I(t)$$

S(t) for standard decision trees:

```
S = \{\} for each f in \{1,...,D\} for each h in unique \{x_n^f\}_{n:x_n \in t} S := S \cup (f,h)
```

Bagged decision trees - bagging applied to standard decision trees.

Random forest & extra random trees

- Random forest & extra random trees are bagged decision trees with restricted search through (f, h), controlled by $\alpha \in (0, 1]$.
 - restricted search=>higher bias, smaller variance.

S(t) for random forest:

```
S=\{\}, K=\alpha D sample d_1,...d_K randomly from \{1,...,D\} without replacement. for each f in d_1,...d_K for each h in unique\left\{x_n^f\right\}_{n:x_{n\in t}} S:=S\cup(f,h)
```

S(t) for extra random trees:

$$S=\{\}$$
, $K=\alpha D$ sample $d_1,...d_K$ randomly from $\{1,...,D\}$ without replacement. for each f in $d_1,...d_K$ sample h randomly from $unique\left\{x_n^f\right\}_{n:x_{n\in t}}$ $S:=S\cup (f,h)$

Out-of-bag estimate

Out-of-bag estimate - estimate of expected loss by bagged algorithms.

- from above (pessimistic)
- without need for separate validation set

$$OOB = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L} \left(\frac{1}{|I_n|} \sum_{m \in I_n} f_m(x_n), y_n \right)$$

For each (x_n, y_n) we make prediction using only those models $I_n = \{m : (x_n, y_n) \notin T_m\}$ for which (x_n, y_n) is new.

Comments

- Bagged decision trees, RF, ERT:
 - have straighforward parallel implementation
 - but trees are not targeted to correct mistakes of each other
- Trees in RF, ERT may be built on the same training set T
 - ullet due to stochastic S(t) they will be different anyway

Comments

- Let M=# of base learners.
- ERT trains faster than RF, but on average requires higher M.
- Typical dependency between loss of bagging/RF/ERT depending on M:

- We average variability of tree to training set, what is more efficient for higher M.
- To find optimal hyperparameters set small M, find other parameters, then set high M back.

Conclusion

- Bias-variance decomposition gives 2 sources for poor accuracy:
 - bias: for underfitted models
 - variance: for overfitted models
- Stacking with complex aggregating model decreases bias.
 - may add variance
- Stacking with simple aggregating model (averaging, majority vote) decreases variance.