

Individual Studies in Medical Image Analysis

Image Classification with Covid-19

Reporter: Cheng-You Gao

Advisor : Dr. Wei-Yang Lin

Name: ID number:

Jia-Cheng, Syu 611410013

Yu-Ting, Liu 611410083

Wei-Chieh, Tseng 611410146

Cheng-You, Gao 611410166

- I. INTRODUCTION
- II. PROPOSED METHOD
- III. IMPLEMENTATION
- IV. EXPERIMENTAL RESULTS
- V. DISCUSSION AND FUTURE RESEARCH
- VI. CONCLUTION

- I. INTRODUCTION
- II. PROPOSED METHOD
- III. IMPLEMENTATION
- IV. EXPERIMENTAL RESULTS
- V. DISCUSSION AND FUTURE RESEARCH
- VI. CONCLUTION

I. INTRODUCTION

1. Dataset:

6,893 normal images and 7,593 COVID-19 images from Large COVID-19 CT scan slice dataset. Resizing the original image from 512x512 to 224x224.

2. Device:

Software: Python, PyTorch

Hardware: RTX2080 Ti

I. INTRODUCTION

Normal image: 6_Rahimzadeh_normal2_patient205_SR_4_IM00022.png Covid-19 image: 6_Rahimzadeh_137covid_patient63_SR_4_IM00025.png

- I. INTRODUCTION
- II. PROPOSED METHOD
- III. IMPLEMENTATION
- IV. EXPERIMENTAL RESULTS
- V. DISCUSSION AND FUTURE RESEARCH
- VI. CONCLUTION

1.1 Model Architecture

ResNet

VGG

1.1 Model Architecture

ResNet

VGG

1.1 Model Architecture

ResNet

VGG

1.1 Model Architecture

ResNet

VGG

1.2 Number of parameters

ResNet18:11 million

VGG11: 133 million

DenseNet121:7 million

2. Hyperparameter

Leaning rate

Epoch

Batch size

Data splitting(training/validation/testing)

3. Preprocessing

Data augmentation

- I. INTRODUCTION
- II. PROPOSED METHOD
- III. IMPLEMENTATION
- IV. EXPERIMENTAL RESULTS
- V. DISCUSSION AND FUTURE RESEARCH
- VI. CONCLUTION

III. IMPLEMENTATION

1. Model Comparation

Use hyperparameters(learning rate, epoch) to compare which is suitable model.

ResNet18 vs. ResNet

ResNet18 vs. VGG

ResNet18 vs. DenseNet

III. IMPLEMENTATION

2. Hyperparameter setting

Hyperparameter	Value
Learning rate	0.001
Epoch	30
Batch size	9, 16
Data splitting	(6:2:2), (7:1:2)

III. IMPLEMENTATION

3. Preprocessing

We flip images to horizontal and vertical, increasing data variability.

Original image

Horizontal image

Vertical image

- I. INTRODUCTION
- II. PROPOSED METHOD
- III. IMPLEMENTATION
- IV. EXPERIMENTAL RESULTS
- V. DISCUSSION AND FUTURE RESEARCH
- VI. CONCLUTION

1.1 First stage

Compare ResNet with different layer

Model	Learning Rate	Epoch	Batch Size	Split	Opti.	Loss Func.	Test Acc.
ResNet18	0.01	5	9	6:2:2	SGD	Cross Entropy	79.97%
ResNet18	0.001	30	9	6:2:2	SGD	Cross Entropy	83.07%
ResNet34	0.001	30	9	6:2:2	SGD	Cross Entropy	83.97%
ResNet50	0.001	30	9	6:2:2	SGD	Cross Entropy	84.64%
ResNet101	0.001	30	9	6:2:2	SGD	Cross Entropy	86.91%
ResNet152	0.001	30	9	6:2:2	SGD	Cross Entropy	87.49%

1.1 First stage

Compare ResNet with different layer

1.2 First stage

Compare VGG with different layer

Model	Learning Rate	Epoch	Batch Size	Split	Opti.	Loss Func.	Test Acc.
VGG11	0.001	30	9	6:2:2	SGD	Cross Entropy	87.52%
VGG13	0.001	30	9	6:2:2	SGD	Cross Entropy	83.36%
VGG16	0.001	30	9	6:2:2	SGD	Cross Entropy	85.24%
VGG19	0.001	30	9	6:2:2	SGD	Cross Entropy	91.23%

1.2 First stage

Compare VGG with different layer

1.3 First stage

Compare DenseNet with different layer

Model	Learning Rate	Epoch	Batch Size	Split	Opti.	Loss Func.	Test Acc.
DenseNet121	0.001	30	9	6:2:2	SGD	Cross Entropy	86.88%
DenseNet161	0.001	30	9	6:2:2	SGD	Cross Entropy	89.35%
DenseNet169	0.001	30	9	6:2:2	SGD	Cross Entropy	86.95%
DenseNet201	0.001	30	9	6:2:2	SGD	Cross Entropy	88.59%

1.3 First stage

Compare DenseNet with different layer

1.4 First stage

Compare different model architecture

Model	Learning Rate	Epoch	Batch Size	Split	Opti.	Loss Func.	Test Acc.
Res152	0.001	30	9	6:2:2	SGD	Cross Entropy	87.49%
VGG19	0.001	30	9	6:2:2	SGD	Cross Entropy	91.23%
DenseNet161	0.001	30	9	6:2:2	SGD	Cross Entropy	89.35%

2. Second Stage

Hyperparameters setting of VGG19

Model	Learning Rate	Epoch	Batch Size	Split	Opti.	Loss Func.	Test Acc.
VGG19	0.001	30	9	6:2:2	SGD	Cross Entropy	91.31%
VGG19	0.001	30	16	6:2:2	SGD	Cross Entropy	89.82%
VGG19	0.001	30	9	7:1:2	SGD	Cross Entropy	89.12%
VGG19	0.001	30	16	7:1:2	SGD	Cross Entropy	91.63%

3. Third stage

Data augmentation of data set

Model	Learning Rate	Epoch	Batch Size	Split	Opti.	Loss	Data Aug.	Test acc.
VGG19	0.001	30	16	7:1:2	SGD	Cross Entropy	-	91.63%
VGG19	0.001	30	16	7:1:2	SGD	Cross Entropy	Horizontal	89.03%
VGG19	0.001	30	16	7:1:2	SGD	Cross Entropy	Vertical	94.39%
VGG19	0.001	30	16	7:1:2	SGD	Cross Entropy	Horizontal +Vertical	92.47%

4.1 Default and Best

Model	Learning Rate	Epoch	Batch Size	Split	Opti.	Loss Func.	Data Aug.	Test Acc.
Default (ResNet18)	0.01	5	9	6:2:2	SGD	Cross Entropy	-	79.97%
Best (VGG19)	0.001	30	16	7:1:2	SGD	Cross Entropy	Vertical	94.39%

4.2 Training Accuracy and Loss Curve

Default (ResNet18)

Best (VGG19)

4.3 Confusion Matrix

Default Best

4.4 ROC Curve

Default

Best

4.5 Evaluation Metrics

Model	Precision	Recall	F1 Score	AUC	Test Acc.
Default (ResNet18)	0.9626	0.7429	0.8386	0.8377	79.97%
Best (VGG19)	0.9931	0.9263	0.9585	0.9556	94.39%

- I. INTRODUCTION
- II. PROPOSED METHOD
- III. IMPLEMENTATION
- IV. EXPERIMENTAL RESULTS
- V. DISCUSSION AND FUTURE RESEARCH
- VI. CONCLUTION

V. DISCUSSION AND FUTURE RESEARCH

In the future, we can increase the dataset (color, angle, deformation), train with different models, and adjust various hyperparameters to achieve 100% accuracy for our model.

- I. INTRODUCTION
- II. PROPOSED METHOD
- III. IMPLEMENTATION
- IV. EXPERIMENTAL RESULTS
- V. DISCUSSION AND FUTURE RESEARCH
- VI. CONCLUTION

VI. CONCLUSION

We used three different models and found that VGG19 was the most suitable one.

Afterward, we adjusted the hyperparameters, setting the learning rate to 0.001, epoch to 30, data splitting to 7:1:2 and batch size to 16.

Then we performed image preprocessing, including vertical flipping in order to increase data augmentation.

Finally, our accuracy reached 94.39%.