A Table of Spherical Harmonic Lore

	Property	Formula	Comments
1.	Laplacian in polar coordinates	$ abla^2 = rac{1}{r^2} abla_1^2 + rac{1}{r} rac{\partial^2 r}{\partial r^2}$	$\ensuremath{\nabla^2_1}$ is angular part of familiar Laplacian
2.	Eigenvalue	$ \nabla_1^2 Y_l^m = -l(l+1) Y_l^m, $ $ l = 0, 1, 2, \dots $	$ \begin{array}{lll} \hbox{There are } & 2l+1 & \hbox{lin-} \\ \hbox{early } & \hbox{independent} \\ \hbox{eigenfunctions per } l \end{array} $
3.	Orthogonality	$\int d^2\hat{\mathbf{s}} \; Y_l^m(\hat{\mathbf{s}}) Y_n^k(\hat{\mathbf{s}})^* = 0,$ unless $l = n$ and $m = k$	True for every normalization
4.	Theoretician's nor- malization	$\int d^2\hat{\mathbf{s}} Y_l^m(\hat{\mathbf{s}}) ^2 = 1$	Other choices: 4π or $4\pi/(2l+1)$
5.	Completeness	$f(\hat{\mathbf{s}}) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_{lm} Y_{l}^{m}(\hat{\mathbf{s}})$	Works for any reasonable function f on $S(1)$
6.	Expansion coefficients	$c_{lm} = \int d^2 \hat{\mathbf{s}} \ f(\hat{\mathbf{s}}) Y_l^m (\hat{\mathbf{s}})^*$	Requires property 4
7.	Addition Theorem	$egin{aligned} rac{2l+1}{4\pi} P_l(\hat{\mathbf{s}}\cdot\hat{\mathbf{r}}) = \ \sum_{m=-l}^l Y_l^m(\hat{\mathbf{s}}) \ Y_l^m(\hat{\mathbf{r}})^* \end{aligned}$	Requires property 4
8.	Wavelength of \boldsymbol{Y}_{l}^{m}	$\frac{2\pi}{l+\frac{1}{2}}$	Depends only on degree l , not on order m or $\hat{\mathbf{s}}$
9.	Appearance	Re Y_l^m vanishes on $2m$ meridians and $l-m$ parallels	Im Y_l^m the same but rotated about $\hat{\mathbf{z}}$
10.	Parseval's Theorem	$\int d^2 \hat{\mathbf{s}} f(\hat{\mathbf{s}}) ^2 =$ $\sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_{lm} ^2$	Requires property 4. Get RMS value of f by dividing by 4π and taking square root
11.	Generating function	$rac{1}{(1-2\mu r+r^2)^{1/2}}=\ \sum_{l=0}^{\infty}r^l\ P_l(\mu)$	Often used in conjunction with property 7
12.	Another orthogonality	$\int d^2\hat{\mathbf{s}} \ abla_1 Y_l^m(\hat{\mathbf{s}}) \cdot abla_1 Y_n^k(\hat{\mathbf{s}})^* = \ l(l+1) \delta_{ln} \delta_{mk}$	Requires property 4.