- Funções de decisão
 - Determinar uma função que fundamente a decisão de atribuir um padrão a uma das classes do problema.

- Questões
 - As características permitem boa separabilidade das classes?
 - As classes são linearmente separáveis?
 - A distribuição das classes é Normal?
 - As distribuições têm covariâncias semelhantes?
 - O tamanho da amostra é maior que o número de variáveis?
 - As matrizes de covariância são singulares?

Relação entre os descritores

Ideal: Médias afastadas com desvio padrão pequeno.

característica

Funções discriminantes

Vizinho mais próximo

Classificação Supervisionada

Etapas:

- Escolher um conjunto de treinamento. Cada elemento do conjunto tem sua classe determinada.
- Escolher características discriminantes.
- Escolher um método/função de decisão.
- Determinar os parâmetros a partir do conjunto de treino.
- Testar com objetos fora do conjunto de treinamento.

- Avaliação de resultados
 - Falso positivo: Sistema que detecta quadrados diz que uma imagem de uma bola é um quadrado.
 - Falso negativo: Sistema que detecta quadrados diz que uma imagem de um quadrado não é um quadrado.
 - Matriz de confusão

Obj \ Classe	Círculo	Quadrado	Triângulo
Círculo	10	2	1
Quadrado	5	20	2
Triângulo	0	0	10

Árvores de decisão

Distância Euclideana

Dados dois vetores P e Q

$$P = (p_1, p_2, \dots, p_n)$$

$$Q = (q_1, q_2, \dots, q_n)$$

a distância euclidiana entre eles é de

$$\sqrt{(p_1-q_1)^2+(p_2-q_2)^2+\cdots+(p_n-q_n)^2}=\sqrt{\sum_{i=1}^n(p_i-q_i)^2}.$$

Distância Euclideana

Função de decisão:

O padrão \mathbf{x} pertence a classe c_i com média \mathbf{m}_i se

$$\sqrt{(\mathbf{x} - \mathbf{m}_i)^T (\mathbf{x} - \mathbf{m}_i)} < \sqrt{(\mathbf{x} - \mathbf{m}_j)^T (\mathbf{x} - \mathbf{m}_j)}, \forall i \neq j$$

Exemplo: suponha um sistema que tenha resultado na seguinte tabela.

azul	
lasse	
O	

Classe amarela

obj	Caract.A	Caract B	Caract.C	Caract.D	Caract.E
1	4	10	8	50	3
2	5	12	7	55	1
3	4	9	8	48	2
4	6	10	9	54	3
5	5	20	7	21	35
6	3	21	8	19	30
7	4	22	9	25	30
8	5	21	6	15	25
9	4	20	8	20	30

Baseado nesses valores, trace e reflita:

- a) Gráfico de característica A x C
- b) Gráfico de característica B x D
- c) Gráfico de característica B x E
- d) Verifique em que classe um objeto, detecado por esse sistema, está, sendo seus valores: (7,12,7, 60, 3)
 - Obs. Faça uma nova coluna com os resultados de todas as comparações para melhor observar.
- e) Alguma das características, sozinha, poderia reconhecer um objeto como classe azul ou classe amarela?

Distância de Mahalanobis

$$D_i(\mathbf{x}) = (\mathbf{x} - \mathbf{m}_i)^T \mathbf{C}_i^{-1} (\mathbf{x} - \mathbf{m}_i)$$

$$C_i[j,k] = \sum_{s=1}^{N} \frac{(\mathbf{x}_s[j] - \mathbf{m}_i[j])(\mathbf{x}_s[k] - \mathbf{m}_i[k])}{N-1}$$

Amostra com N objetos

Função de decisão: O padrão \mathbf{x} pertence a classe c_i com média \mathbf{m}_i e matrix de covariância \mathbf{C}_i se

$$D_i(\mathbf{x}) < D_j(\mathbf{x}), \forall i \neq j$$

Distingue-se da distância euclidiana já que leva em conta as correlações entre as características e diferenças de unidades

Ex: classificar um peixe baseado no seu comprimento e altura

- -Vetor (x1, x2), sendo x1 comprimento e x2 altura
- -Comprimento varia entre 50 e 100cm, altura entre 10 e 20cm
- Caso 1: Calcular a distância euclidiana entre o peixe e a média de cada classe
- -Ruim, pois dá a mesma importância para o comprimento e para altura mas o comprimento varia muito mais que a altura

$$d_e(\vec{x_1}\vec{x_2}) = \sqrt{(x_{11} - x_{12})^2 + (x_{21} - x_{22})^2}$$

Caso 2: Incluir a media de dispersão de cada variável (comprimento e altura), e a variância para cada característica

$$d_2(\vec{x_1}\vec{x_2}) = \sqrt{\left(\frac{(x_{11}-x_{12})}{\sigma_1}\right)^2 + \left(\frac{(x_{21}-x_{22})}{\sigma_2}\right)^2}$$

 Ruim, pois existe uma correlação entre altura e comprimento: um salmão mais comprido sofre também uma mudança na sua altura

Caso 3: Incluir a covariância entre x₁ e x₂: covariância

$$d_m(\vec{x_1}\vec{x_2}) = \sqrt{(\vec{x}_1 - \vec{x}_2)^T \Sigma^{-1}(\vec{x}_1 - \vec{x}_2)}$$

Exemplo: suponha que há dois grupos de dados, cada um dos quais consiste em duas variáveis (x, y). Verifique a que classe pertence o vetor (6,4)

Amostras	x 1	y1	x2	y2
1	5	3	9	1
2	1	5	7	3
3	4	6	8	2
4	5	7	7	1
5	2	5	8	1
6	3	5	7	3
7	4	4	9	2
8	5	5	8	1
9	3	4	7	2
10	1	3	8	1

Passos:

- Calcular a média aritmética de cada grupo
- Centrar os dados na média aritmética de cada grupo
- Calcular as matrizes de covariância dos grupos
- Calcular as matrizes inversas: A.A⁻¹ = I
- Calcular as distâncias

Classificador de Bayes

$$d_i(\mathbf{x}) = \ln P(c_i) - \frac{1}{2} \ln |\mathbf{C}_i| - \frac{1}{2} (\mathbf{x} - \mathbf{m}_i)^T \mathbf{C}_i^{-1} (\mathbf{x} - \mathbf{m}_i)$$

Inclui a probabilidade a priori de cada classe.

Logistic regression

We model the log of the odds ratio as a linear function, from which we get the sigmoid ativation function:

$$\ln \frac{P(y=1)}{1 - P(y=1)} = b + \mathbf{w}^T \mathbf{x}$$

The Perceptron (Rosenblatt 1958)

PROCESSAMENTO DE IMAGENS DIGITAIS

Gradient descent

- 1. Initialize parameters / Define hyperparameters
- 2. Loop for num_iterations:
 - a. Forward propagation
 - b. Compute cost function
 - c. Backward propagation
 - d. Update parameters (using parameters, and grads from backprop)
- 4. Use trained parameters to predict labels

MLP Hyperparameters

- Learning rate
- Number of iterations
- Number of Layers
- Number of units per layer
- Activation functions

MLP Visualization

https://playground.tensorflow.org

