Name: Syed Mohammad Scadaan Hassan
Roll No: 5P22-BCS-003
Jak: 04-06-2023
Jak: 04-06-2023
ASSIGNMENT- 4
CANIGNAT- 4
Question 1
Chiven:
Eigenvalue = $\lambda = 1, -2, -2$ And Eigenvectors => $v_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $v_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$, $v_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$
Therefore $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$
and $P = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$
To find P-1 [1 -1 -1] 1 0 0] 5
[PII] = -1 1 0 0 1 0
10 0 D2 P
= 0 0 -1 1 0 1

[PI] = [1 -1 -1	100
0 1 2	-1 0 1 R23
0 0 -1	110
$\int \int $	10017
$(\beta J) = 0 1 2$	-1 0 1 R1+R2
[00-1	110
$\int I \circ 1$	10017
= 0 1 2	-1 0 1 R3
1001	1-1-10)-1
[100	
= 0 1 0	121 R2-2R3
001	-1 -1 0
P= 1 2 1	
1-1-10.	

$$A = PDP^{-1}$$

$$A = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 0 & 0 \\ 0 & -2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 2 & 2 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -3 & -3 \\ 3 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 3 \\ 3 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & 3 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$

We know
$$A \times = \lambda \times \text{ where } X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

$$= 7(A - \lambda I)X = 0 \longrightarrow 0$$

$$1-\lambda \begin{vmatrix} -5-\lambda & -3 & | -$$

$$\frac{(1-\lambda)[(-5-\lambda)(1-\lambda)+9)-3(-3+3\lambda+9)+3(-9+15+3\lambda)=0}{(1-\lambda)(-5+5\lambda-\lambda+\lambda^2+9)-9\lambda-18+18+9\lambda=0}$$

$$\begin{array}{c|c}
1-\lambda=0 & ; & \lambda^{2}+4\lambda+4=0 \\
\hline
[\lambda=1] & ; & \lambda^{2}+2\lambda+2\lambda+4=0 \\
\hline
(\lambda+2)(\lambda+2)=0 \\
\hline
[\lambda=-2] & ; & \lambda=-2
\end{array}$$

-2 are eigen values of A (XI) Then (becomes XL 0 χ_1 0 X3 0 \mathcal{O} Ó Ri+R3 0 0 0 RI R31 0 3 0 0 0 10 Rz Ri-Re _ව 3 R3-3K5 +0 0 Ra +3 0

 $X_1 + Y_2 = 0$ $x_1 + x_3 = 0$ X2 is a free rariable X1=r where r∈R X1=-r X3=-1 So for k=1 Eigen vector is [Yi] = X, For $\lambda = -2$ put in ① A= 0 0 0 Ratk, Here we have I free variables XX = r and X3 = S where r. S E PR X1 = - Y - S

