I.	Régulation de température simple boucle (10 pts)					
	Donner le schéma électrique correspondant au cahier des charges.	1	Α		1	
:	Programmer votre T2550 afin de réaliser la régulation représentée ci-dessus.	1	В		0,75	Je veux voir la boucle de régulation.
:	Régler le système pour avoir un niveau de 50% pour une commande de la vanne FV1 de 50%.	1	Α		1	
4	Relever l'évolution de la mesure X en réponse à un échelon de commande Y. En déduire le sens de fonctionnement du régulateur (inverse ou direct).	1	Α		1	ı
	Régler la boucle de régulation, en utilisant une méthode par approches successives, en mode de régulation PI.	4	Α		4	1
•	Enregistrer l'influence d'une variation du débit de sortie sur le niveau.	2	В		1,5	C'est une courbe qui manque de commentaires.
II.	Régulation parallèle (10 pts)					
	Rappeler le fonctionnement d'une boucle de régulation parallèle.	1	В		0,75	La tournure de la phrase est à revoir.
:	Programmer le regulateur pour obtenir le fonctionnement en regulation parrailele conformement au schema 11 ci-	3	Α		3	3
***	Régler la boucle de niveau en utilisant la méthode de Ziegler & Nichols. On choisira un correcteur PI.	2	В		1,5	Attention aux saturations!
4	Enregistrer l'influence d'une variation du débit de sortie sur le niveau.	2	D		0,1	Rien à voir dans cette courbe!
ļ	Expliquez l'intérêt d'une régulation parallèle en vous aidant de vos enregistrements. Citez un autre exemple pratique.	2	В		1,5	

Note: 16,1/20

TP2 Debit

I. Régulation de débit simple boucle

1)

2) Entrée

Sortie

TagHame	02P01_0C		LIN Name	02P01_0C	
Туре	AO_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
			Sitello	2	
→ OP	0.0	%	Channel	1	
HR	100.0	%	OutType	mA	
LR	0.0	%	HR_out	20.00	mA
			LR_out	4.00	mA
Out	0.0	%	AO	0.00	mΑ
Track	0.0	%			
Trim	0.000	mA	Options	>0000	
			Status	>0000	

PID

TagName	Bidon		LIN Name	Bidon	
Туре	PID		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
Mode	AUTO		Alarms		
FallBack	AUTO				
			HAA	100.0	%
PV	0.0	%	LAA	0.0	%
SP	0.0	%	HDA	100.0	%
OP	0.0	%	LDA	100.0	%
SL	0.0	%			
TrimSP	0.0	%	TimeBase	Secs	
RemoteSP	0.0	%	XP	100.0	%
Track	0.0	%	TI	0.00	
			TD	0.00	
HR_SP	100.0	%			
LR_SP	0.0	%	Options	00101100	
HL_SP	100.0	%	SelMode	00000000	
LL_SP	0.0	%			
			ModeSel	00000000	
HR_OP	100.0	%	ModeAct	00000000	
LR_OP	0.0	%			
HL_OP	100.0	%	FF_PID	50.0	%
LL_OP	0.0	%	FB_OP	0.0	%

3)

TagName	Bidon		LIN Name	Bidon	
Туре	PID		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
Mode	MANUAL		Alarms		
FallBack	MANUAL				
			HAA	100.0	%
→ PV	50.1	%	LAA	0.0	%
SP	0.0	%	HDA	100.0	%
OP	50.0	%	LDA	100.0	%
SL	0.0	%			
TrimSP	0.0	%	TimeBase	Secs	
RemoteSP	0.0	%	XP	100.0	%
Track	0.0	%	TI	0.00	
			TD	0.00	
HR_SP	100.0	%			
LR_SP	0.0	%	Options	00101100	
HL_SP	100.0	%	SelMode	00000000	
LL_SP	0.0	%			
			ModeSel	00100000	
HR_OP	100.0	%	ModeAct	00100001	
LR_OP	0.0	%			
HL_OP	100.0	%	FF_PID	50.0	%
LL_OP	0.0	%	FB_OP	50.0	%

4)

Quand Y augmente X augmente, procède direct donc régulateur inverse.

TagName	Bidon		LIN Name	Bidon		
Туре	PID		DBase	<local></local>		
Task	3 (110ms)		Rate	0		
Idan	3 (1101115)		Rate			
Mode	AUTO		Alarms			
FallBack	AUTO					
			HAA	100.0	%	
→PV	49.5	%	LAA	0.0	%	
SP	50.0	%	HDA	100.0	%	
OP	64.6	%	LDA	100.0	%	
SL	50.0	%				
TrimSP	0.0	%	TimeBase	Secs		
RemoteSP	0.0	%	XP	150.0	%	
Track	0.0	%	TI	2.00		
			TD	0.00		
HR_SP	100.0	%				
LR_SP	0.0	%	Options	00101100		
HL_SP	100.0	%	SelMode	00000000		
LL_SP	0.0	%				
			ModeSel	00010001		
HR_OP	100.0	%	ModeAct	00010001		
LR_OP	0.0	%				
HL_OP	100.0	%	FF_PID	50.0	%	
LL_OP	0.0	%	FB_OP	64.6	%	

6) On observe qu'il n'y a pas de sécurité donc le niveau vas déborder

II. Régulation parallèle

1)La régulation parallèle permet d'avoir une sécurité par rapport au niveau en fonction du débit 2)

PID2

gName	PID2			LIN Name	PID2	
Гуре	PID			DBase	<local></local>	
Task	3 (110ms)			Rate	0	
	(1111117)					
Mode	AUTO			Alarms		
FallBack	AUTO					
				HAA	100.0	%
PV	0.0	%		LAA	0.0	%
SP	0.0	%		HDA	100.0	%
OP	0.0	%		LDA	100.0	%
SL	0.0	%				
TrimSP	0.0	%		TimeBase	Secs	
RemoteSP	0.0	%		XP	100.0	%
Track	0.0	%		TI	0.00	
				TD	0.00	
HR_SP	100.0	%				
LR_SP	0.0	%		Options	00101100	
HL_SP	100.0	%		SelMode	00000000	
LL_SP	0.0	%				
				ModeSel	00010001	
HR_OP	100.0	%		ModeAct	00010001	
LR_OP	0.0	%				
HL_OP	100.0	%		FF_PID	50.0	%
LL_OP	0.0	%	→	FB_OP	0.0	%

SELECT

TagName	SELECT		LIN Name	SELECT	
Туре	SELECT		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
Туре	LOWEST		Alarms		
NoOfIPs	2		OP	20.1	%
PV_1	21.5	%	PV_1_sel	FALSE	
PV_2	20.1	%	PV_2_sel	TRUE	
PV_3	0.0	%	PV_3_sel	FALSE	
PV_4	0.0	%	PV_4_sel	FALSE	
			HR_OP	100.0	
			LR_OP	0.0	

ENTREE

TagName	01M02_0C		LIN Name	01M02_0C	
Туре	AI_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
			SiteNo	1	
PV	0.0	%	Channel	2	
HR	100.0	%	InType	mA	
LR	0.0	%	HR_in	20.00	mA
			LR_in	4.00	mA
HiHi	100.0	%	Al	0.00	mA
Hi	100.0	%	Res	0.000	Ohms
Lo	0.0	%			
LoLo	0.0	%	CJ_type	Auto	
Hyst	0.5000	%	CJ_temp	0.000	
			LeadRes	0.000	Ohms
Filter	0.000	Secs	Emissiv	1.000	
Char	Linear		Delay	0.000	Secs
UserChar					
			SBreak	Up	
PVoffset	0.000	%	PVErrAct	Up	

Xpc=20% Tc=2s PI parallèle Xp=2,2*20 = 44%Ti=2*20/1,2=33,33secTd=0sec

5) L'intérêt de la régulation parallèle est d'avoir une sécurité grâce au débit qui sera régulé pour avoir un niveau qui ne dépasse pas. Comme dans le TP NIVEAU