DATA CLEANSING & PRE-PROCESSING

1. LIBRARIES & DATA IMPORT

Only two packages are required for data cleansing at first. The next step is to import the file.

2. INSPECT DATA SET

Draw a random sample of rows in order to get an idea of the content of the data frame.

```
>>> a = pd.DataFrame({
          'C0': ['1', '2', '3', '4'],
          'C1': [.321, .654, .987, .741],
          'C2': ['abc', 'def', 'ghi', 'jkl']},
          index=['obj0', 'obj1', 'obj2', 'obj3'])
>>> a.sample(n=2)
        C0
                C1
                        C2
obj3
             0.741
                        ik1
         2
             0.654
                        def
obj1
>>> a. describe(include='all')
        C0
                C1
                        C2
         4
             4.000
count
unique
        4
               NaN
         3
               NaN
                       jkl
               NaN
                         1
         1
freq
```

3. DATA TYPES

If columns are not correctly recognized as numeric data types, this must be corrected.

```
>>> a.dtypes # C0 should be int64 but is object
C0    object
C1    float64
C2    object
dtype: object
>>> a['C0'] = pd.to_numeric(a['C0'])
```

4. MISSINGS

```
>>> b = pd.DataFrame(
... {'Name': ['Anna', 'Bill', 'Charly', 'Diana'],
... 'Job': ['Data Scientist',
... 'DATA SCIENTIST',
... 'Data Engineer ',
... 'Age': [26, np.nan, 30, 32],
... 'CompCar': [np.nan, np.nan, np.nan, 'BMW']},
... index=['emp01', 'emp02', 'emp03', 'emp04'])
```

4.1 Missing Statistics

How much columns contain missing values (% of columns)? How much missing data is in the data frame (% of cells)?

```
>>> len(b.columns[b.isna().any()])/len(b.columns)
0.5
>>> b.isnull().sum().sum()/np.product(b.shape)
0.25
```

4.2 Missing Types

It must be considered which origin missing values (probably) have. A distinction must be made between (a) non-existent and (b) non-recorded values. The processing is different here.

```
(a) Non-existent
Example: Employee has no company car, so no
manufacturer is recorded.
Handling: Keep NaN; maybe replaced by specific value,
e.g. (0, 'nothing')
(b) Non-recorded
Example: No information about age of employee
Handling: Imputation
```

4.3 Imputation

1) Use mean/median of column (numerical features only)

```
>>> b['Age'] = b['Age'].fillna(b['Age'].mean())
```

2) Use most frequent value in column (numerical and categorical features)

```
>>> b['Age'] = b['Age'].fillna(b['Age'].mode()[0])
```

3) Hot-deck imputation; use a random value of one of the other objects (numerical and categorical features)

More sophisticated approachs are among others:

- 4) Regression and stochastic regression imputation
- 5) Imputation via k-NN
- 6) Deep Learning imputation
- 7) Multivariate Imputation by Chained Equations (MICE) Some methods (e.g. stochastic regression, hot-deck, MICE) can be used with multiple imputation. Here, the uncertainty is incorporated by using not only a single but multiple imputation values.

5. INCONSISTENCIES

The meaning of categorical data can be corrupted by incorrect spelling or useless characters. These irregularities must be removed.

5.1 Upper and lower cases

```
>>> b['Job'] = b['Job'].str.lower()
```

5.2 Leading and trailing white spaces

```
>>> b['Job'] = b['Job'].str.strip()
```

5.3 Notation similarities

The meaning of expressions can be the same despite different spellings. Here it is possible to make a quantitative comparison of strings and to visualize the permutations. Then it must be decided whether and if so how certain values are adapted/overwritten.

```
>>> from fuzzywuzzy import process
>>> import seaborn as sns; sns.set();
>>> def SpellCheck(df, col):
       instances=np.unique(df[col])
       dt=[(col, object),('score', int)]
       result=np.zeros(shape=(len(instances),
. . .
                               len(instances)))
. . .
       for i, inst in enumerate(instances):
           result[i]=np.sort(np.array(
. . .
                process.extract(inst,instances),
. . .
                dtype = dt),
. . .
                              order = col)['score']
. . .
       result=pd.DataFrame(result,
                            index=instances.
. . .
                            columns=instances)
. . .
       return result
>>> # Adjust vmin and vmax to accepted similarities
>>> ax = sns.heatmap(mapping, vmin=60, vmax=100,
                     annot=True, fmt=".0f",
                     cmap="Reds")
. . .
```

