Synthesising a type theory for cartesian closed bicategories

Marcelo Fiore[†] and Philip Saville[⋄]

[†]University of Cambridge Department of Computer Science and Technology

[⋄]University of Edinburgh
School of Informatics

A principled construction of a type theory for cartesian closed bicategories (= CCCs up-to-isomorphism)

A principled construction of a type theory for cartesian closed bicategories (= CCCs up-to-isomorphism)

Originally motivated by coherence but interesting in its right!

A principled construction of a type theory for cartesian closed bicategories (= CCCs up-to-isomorphism)

A principled construction of an internal language for cartesian closed bicategories (= CCCs up-to-isomorphism)

A principled construction of an internal language for cartesian closed bicategories (= CCCs up-to-isomorphism)

What is an internal language?

A principled construction of an internal language for cartesian closed bicategories (= CCCs up-to-isomorphism)

What is an internal language? generally an informal term

A principled construction of an internal language for cartesian closed bicategories (= CCCs up-to-isomorphism)

What is an internal language? generally an informal term

A syntax to describe some semantic structure

STLC <>>> CCCs

string diagrams +----> PROPs

MLTT ← LCCCs

A principled construction of an internal language for cartesian closed bicategories (= CCCs up-to-isomorphism)

What is an internal language? generally an informal term

A syntax to describe some semantic structure

Typically, a tool for reasoning (e.g. less coherence data)

A principled construction of an internal language for cartesian closed bicategories (= CCCs up-to-isomorphism)

What is an internal language? generally an informal term

A syntax to describe some semantic structure

Typically, a tool for reasoning (e.g. less coherence data)

Language should be sound and complete

A principled construction of an internal language for cartesian closed bicategories (= CCCs up-to-isomorphism)

What is an internal language? generally an informal term

A syntax to describe some semantic structure Typically, a tool for reasoning (e.g. less coherence data) Language should be sound and complete

What is principled?

No arbitrary choices

Based on analysis of algebraic structure

Parallel situation for cartesian closed categories

A principled construction of an internal language for cartesian closed bicategories (= CCCs up-to-isomorphism)

What is an internal language? generally an informal term

A syntax to describe some semantic structure Typically, a tool for reasoning (e.g. less coherence data) Language should be sound and complete

What is principled?

No arbitrary choices

Based on analysis of algebraic structure

Parallel situation for cartesian closed categories

Many benefits! makes life much easier

New information about cc-bicats, simpler proofs, new relationships, ...

1. cc-bicategories = CCCs up-to-isomorphism

- 1. cc-bicategories = CCCs up-to-isomorphism
- 2. STLC = internal language of cc-clones (c.f. Lambek)

- 1. cc-bicategories = CCCs up-to-isomorphism
- 2. STLC = internal language of cc-clones (c.f. Lambek)
- 3. bicategorify: get cc-biclones

- 1. cc-bicategories = CCCs up-to-isomorphism
- 2. STLC = internal language of cc-clones (c.f. Lambek)
- 3. bicategorify: get cc-biclones
- 4. $\Lambda_{\rm ps}^{\times,\rightarrow}=$ internal language of cc-biclones

- 1. cc-bicategories = CCCs up-to-isomorphism
- 2. STLC = internal language of cc-clones (c.f. Lambek)
- 3. bicategorify: get cc-biclones
- 4. $\Lambda_{\rm ps}^{\times,\rightarrow}=$ internal language of cc-biclones

Today: principles underlying the construction of $\Lambda_{ps}^{\times, \rightarrow}$ focus on STLC

cc-Bicategories

Categories with axioms 'up to isomorphism'. e.g. profunctors, $\mathrm{Span}(\mathbb{C})$, bicategories of relations, Cat, ...

6 / 47

Composition by universal property ⇒ bicategory

In a category \mathbb{C} with pullbacks:

- 1. objects: objects of \mathbb{C} ,
- 2. 1-cells $A \leadsto B$: spans $(A \leftarrow X \rightarrow B)$,
- 3. 2-cells: commutative squares $A
 \downarrow b B$

Composition defined by pullback:

Composition by universal property ⇒ bicategory

In a category \mathbb{C} with pullbacks:

- 1. objects: objects of \mathbb{C} ,
- 2. 1-cells $A \leadsto B$: spans $(A \leftarrow X \rightarrow B)$,
- 3. 2-cells: commutative squares $A
 \downarrow b B$

Composition defined by pullback: was associative up to iso

- Objects $X \in ob(\mathcal{B})$,

- Objects $X \in ob(\mathcal{B})$,
- Hom-categories $(\mathcal{B}(X,Y),ullet,\mathrm{id})$:

- Objects $X \in ob(\mathcal{B})$,
- Hom-categories $(\mathcal{B}(X,Y), \bullet, \mathrm{id})$:

1-cells
$$X \xrightarrow{f} Y$$
2-cells $X \xrightarrow{f} Y$

- Objects $X \in ob(\mathcal{B})$,
- Hom-categories $(\mathcal{B}(X,Y), \bullet, \mathrm{id})$:

1-cells
$$X \xrightarrow{f} Y$$
2-cells $X \xrightarrow{f} Y$

- Objects $X \in ob(\mathcal{B})$,
- Hom-categories $(\mathcal{B}(X,Y),\bullet,\mathrm{id})$:

1-cells
$$X \xrightarrow{f} Y$$
2-cells $X \xrightarrow{f} Y$

- Identities $\mathrm{Id}_X:X\to X$ and composition

$$\mathcal{B}(Y,Z) \times \mathcal{B}(X,Y) \xrightarrow{\circ_{X,Y,Z}} \mathcal{B}(X,Z)$$

- Objects $X \in ob(\mathcal{B})$,
- Hom-categories $(\mathcal{B}(X,Y),\bullet,\mathrm{id})$:

1-cells
$$X \xrightarrow{f} Y$$
2-cells $X \xrightarrow{f'} Y$

- Identities $\mathrm{Id}_X:X\to X$ and composition

$$\mathcal{B}(Y,Z) \times \mathcal{B}(X,Y) \xrightarrow{\circ_{X,Y,Z}} \mathcal{B}(X,Z)$$

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

- Objects $X \in ob(\mathcal{B})$,
- Hom-categories $(\mathcal{B}(X,Y),\bullet,\mathrm{id})$:

1-cells
$$X \xrightarrow{f} Y$$
2-cells $X \xrightarrow{f'} Y$

- Identities $\mathrm{Id}_X:X\to X$ and composition

$$\mathcal{B}(Y,Z) \times \mathcal{B}(X,Y) \xrightarrow{\circ_{X,Y,Z}} \mathcal{B}(X,Z)$$

- Invertible 2-cells

$$(h \circ g) \circ f \xrightarrow{\mathsf{a}_{h,g,f}} h \circ (g \circ f)$$
$$\mathrm{Id}_{X} \circ f \xrightarrow{\mathsf{l}_{f}} f$$
$$g \circ \mathrm{Id}_{X} \xrightarrow{\mathsf{r}_{g}} g$$

subject to a triangle law and pentagon law.

- Objects $X \in ob(\mathcal{B})$,
- Hom-categories $(\mathcal{B}(X,Y),\bullet,\mathrm{id})$:

1-cells
$$X \xrightarrow{f} Y$$
2-cells $X \xrightarrow{f'} Y$

- Identities $\mathrm{Id}_X:X\to X$ and composition

$$\mathcal{B}(Y,Z) \times \mathcal{B}(X,Y) \xrightarrow{\circ_{X,Y,Z}} \mathcal{B}(X,Z)$$

- Invertible 2-cells

$$(h \circ g) \circ f \xrightarrow{a_{h,g,f}} h \circ (g \circ f)$$

$$\operatorname{Id}_{X} \circ f \xrightarrow{f} f$$

$$g \circ \operatorname{Id}_{X} \xrightarrow{r_{g}} g$$

subject to a triangle law and pentagon law.

 \longrightarrow get a 2-category if a, l, r all id

Categories with axioms 'up to isomorphism'. e.g. profunctors, $\mathrm{Span}(\mathbb{C}),$ bicategories of relations, Cat, . . .

Categories with axioms 'up to isomorphism'. e.g. profunctors, $\mathrm{Span}(\mathbb{C})$, bicategories of relations, Cat, . . .

Cartesian closed bicategories

Cartesian closed categories 'up to isomorphism'.

Examples:

- Generalised species and cartesian distributors bicategorical models of LL, higher category theory (Fiore, Gambino, Hyland, Winskel), (Fiore & Joyal)
- Categorical algebra (operads) (Gambino & Joyal)
- Game semantics (concurrent games)
 (Yamada & Abramsky, Winskel et al., Paquet)

Cartesian closed bicategories = cc-bicategories

Bicategories \mathcal{B} equipped with families of equivalences

$$\mathcal{B}(X, \prod_{i=1}^n A_i) \simeq \prod_{i=1}^n \mathcal{B}(X, A_i)$$

$$\mathcal{B}(X, A \Rightarrow B) \simeq \mathcal{B}(X \times A, B)$$

Not related to Carboni & Walters' "cartesian bicategories"!

Cartesian closed bicategories = cc-bicategories

Bicategories \mathcal{B} equipped with families of equivalences

$$\mathcal{B}(X, \prod_{i=1}^{n} A_i) \underbrace{\perp \simeq \prod_{i=1}^{n} \mathcal{B}(X, A_i)}_{\text{(tupling)}}$$

$$\mathcal{B}(X,A \Rightarrow B) \xrightarrow{\text{eval}_{A,B} \circ (-\times A)} \mathcal{B}(X \times A,B)$$

$$\downarrow \sum_{A \text{ (currying)}} \mathcal{B}(X \times A,B)$$

Cartesian closed bicategories = cc-bicategories

Bicategories \mathcal{B} equipped with families of equivalences

$$\mathcal{B}(X,\prod_{i=1}^{n}A_{i})\underbrace{\perp \simeq \prod_{i=1}^{n}\mathcal{B}(X,A_{i})}_{\text{(tupling)}}$$

$$\mathcal{B}(X,A \Longrightarrow B) \underbrace{\downarrow \simeq}_{\lambda} \mathcal{B}(X \times A,B)$$
(currying)

Triangle laws:

Aim of this work:

A principled construction of an internal language for cartesian closed bicategories (= CCCs up-to-isomorphism)

Aim of this work:

A principled construction of an internal language for cartesian closed bicategories (= CCCs up-to-isomorphism)

Our starting point:

A principled construction of an internal language for cartesian closed categories

Aim of this work:

A principled construction of an internal language for cartesian closed bicategories (= CCCs up-to-isomorphism)

Our starting point: folklore(?), c.f. Lambek, Jacobs,...

A principled construction of an internal language for cartesian closed categories

An internal language for CCCs


```
simply-typed cartesian closed lambda calculus categories
```

For every graph [= choice of base types and constants] get $\Lambda^{x,\to}(G)$,

```
simply-typed cartesian closed categories categories

For every graph [= choice of base types and constants] get \Lambda^{\times, \to}(G), ... and a CCC \mathbb{F}^{\times, \to}[G]:

objects: \Lambda^{\times, \to}(G)-types, maps A \to B: terms (x : A \vdash t : B) \mod \alpha\beta\eta composition: substitution
```

For every graph [= choice of base types and constants] get $\Lambda^{x,\to}(G)$, ... and a CCC $\mathbb{F}^{x,\to}[G]$:

objects:
$$\Lambda^{x,\to}(G)$$
-types,
maps $A \to B$: terms $(x:A \vdash t:B) \mod \alpha\beta\eta$
composition: substitution

with a free property:

For every graph [= choice of base types and constants] get $\Lambda^{x,\to}(G)$, ... and a CCC $\mathbb{F}^{x,\to}[G]$:

objects:
$$\Lambda^{x,\rightarrow}(G)$$
-types,
maps $A \rightarrow B$: terms $(x:A \vdash t:B) \mod \alpha\beta\eta$
composition: substitution

with a free property:

$$\mathbb{F}^{\mathsf{x},\to}[\mathrm{G}] \xrightarrow{h} \mathbb{C}$$

$$t =_{\beta\eta} t' \iff \llbracket t \rrbracket = \llbracket t' \rrbracket \text{ for every } \mathbb{C}$$

For every graph [= choice of base types and constants] get $\Lambda^{x,\to}(\mathrm{G})$,

...and a CCC
$$\mathbb{F}^{x,\to}[G]$$
:

objects:
$$\Lambda^{x,\rightarrow}(G)$$
-types,
maps $A \rightarrow B$: terms $(x:A \vdash t:B) \mod \alpha\beta\eta$
composition: substitution

with a free property:

$$\mathbb{F}^{\times,\to}[G] \xrightarrow{h} \mathbb{C}$$

$$t =_{\beta \eta} t' \iff \llbracket t \rrbracket = \llbracket t' \rrbracket \text{ for every } \mathbb{C}$$

Categories: 1-input, 1-output

↔

Typed terms $(x_1: A_1, \dots, x_n: A_n \vdash t: B)$ have n inputs

Categories: Typed terms

1-input, 1-output $(x_1 : A_1, ..., x_n : A_n \vdash t : B)$ have n inputs

Forced to restrict to unary contexts

Categories: Typed terms

1-input, 1-output
$$(x_1 : A_1, ..., x_n : A_n \vdash t : B)$$

have n inputs

Forced to restrict to unary contexts

Relying on the fact

$$\llbracket x_1 : A_1, \dots, x_n : A_n \rrbracket \cong \llbracket p : \prod_n (A_1, \dots, A_n) \rrbracket$$

Categories: Typed terms

1-input, 1-output

$$(x_1 : A_1, ..., x_n : A_n \vdash t : B)$$

have n inputs

Forced to restrict to unary contexts

Relying on the fact

$$[[x_1:A_1,\ldots,x_n:A_n]] \cong [[p:\prod_n(A_1,\ldots,A_n)]]$$

$$\cong [[\prod_n(A_1,\ldots,A_n)]]$$

Categories: Typed terms

1-input, 1-output $(x_1 : A_1, ..., x_n : A_n \vdash t : B)$ have n inputs

Forced to restrict to unary contexts

Relying on the fact

$$[[x_1:A_1,\ldots,x_n:A_n]] \cong [[p:\prod_n(A_1,\ldots,A_n)]]$$

$$\cong [[\prod_n(A_1,\ldots,A_n)]]$$

was are these the same? Why?

Categories: Typed terms

1-input, 1-output

$$(x_1: A_1, \dots, x_n: A_n \vdash t: B)$$

have n inputs

Forced to restrict to unary contexts

Relying on the fact

$$[[x_1:A_1,\ldots,x_n:A_n]] \cong [[p:\prod_n(A_1,\ldots,A_n)]]$$

$$\cong [[\prod_n(A_1,\ldots,A_n)]]$$

was are these the same? Why?

Can have type-theoretic exponentials without products

Categories: Typed terms

1-input, 1-output

$$(x_1 : A_1, ..., x_n : A_n \vdash t : B)$$

have n inputs

Forced to restrict to unary contexts

Relying on the fact

$$[[x_1:A_1,\ldots,x_n:A_n]] \cong [[p:\prod_n(A_1,\ldots,A_n)]]$$

$$\cong [[\prod_n(A_1,\ldots,A_n)]]$$

was are these the same? Why?

Can have type-theoretic exponentials without products

free CCC on $\operatorname{G}_{\ \parallel \wr}$

 $\begin{array}{c} \text{free cc-clone on } G \\ \text{and restricting to one input} \end{array}$

giving a syntax for CCCs

giving a syntax for cc-clones and restricting to unary contexts

1. Observe clones [Hall, '81] factor the adjunction:

1. Observe clones [Hall, '81] factor the adjunction:

2. Define internal language of a clone,

1. Observe clones [Hall, '81] factor the adjunction:

- 2. Define internal language of a clone,
- 3. Internal language of categories

 def. internal language of free clone,
 restricted to unary contexts

- Sorts 5,

- Sorts 5,
- Hom-sets $\mathbb{C}(X_1,\ldots,X_n;Y)$ of operations $X_1,\ldots,X_n\xrightarrow{t} Y$,

- Sorts 5,
- Hom-sets $\mathbb{C}(X_1,\ldots,X_n;Y)$ of operations $X_1,\ldots,X_n\xrightarrow{t} Y$,
- Projections $X_1, \ldots, X_n \xrightarrow{\mathsf{p}_{X_1, \ldots, X_n}^{(i)}} X_i \ (1 \leqslant i \leqslant n),$

- Sorts 5,
- Hom-sets $\mathbb{C}(X_1,\ldots,X_n;Y)$ of operations $X_1,\ldots,X_n\xrightarrow{t} Y$,
- Projections $X_1, \ldots, X_n \xrightarrow{\mathsf{p}_{X_1, \ldots, X_n}^{(i)}} X_i \ (1 \le i \le n),$
- Substitution mappings

$$\mathbb{C}(X_1,\ldots,X_n;Y)\times\prod_{i=1}^n\mathbb{C}(\Gamma;X_i)\to\mathbb{C}(\Gamma;Y)$$

$$t,(u_1,\ldots,u_n)\mapsto t[u_1,\ldots,u_n]$$

- Sorts 5.
- Hom-sets $\mathbb{C}(X_1,\ldots,X_n;Y)$ of operations $X_1,\ldots,X_n \xrightarrow{t} Y$,
- Projections $X_1, \ldots, X_n \xrightarrow{\mathsf{p}_{X_1, \ldots, X_n}^{(i)}} X_i \ (1 \le i \le n),$
- Substitution mappings

$$\mathbb{C}(X_1,\ldots,X_n;Y)\times\prod_{i=1}^n\mathbb{C}(\Gamma;X_i)\to\mathbb{C}(\Gamma;Y)$$

$$t,(u_1,\ldots,u_n)\mapsto t[u_1,\ldots,u_n]$$

such that

$$p^{(k)}[u_1, \dots, u_n] = u_k \qquad (1 \le k \le n)$$

$$t[p^{(1)}, \dots, p^{(n)}] = t$$

$$t[u_{\bullet}][v_{\bullet}] = t[u_{\bullet}[v_{\bullet}]]$$

- Sorts 5,
- Hom-sets $\mathbb{C}(X_1,\ldots,X_n;Y)$ of operations $X_1,\ldots,X_n \xrightarrow{t} Y$,
- Projections $X_1, \ldots, X_n \xrightarrow{\mathsf{p}_{X_1, \ldots, X_n}^{(i)}} X_i \ (1 \leqslant i \leqslant n),$
- Substitution mappings

$$\mathbb{C}(X_1,\ldots,X_n;Y)\times\prod_{i=1}^n\mathbb{C}(\Gamma;X_i)\to\mathbb{C}(\Gamma;Y)$$

$$t,(u_1,\ldots,u_n)\mapsto t[u_1,\ldots,u_n]$$

such that

$$p^{(k)}[u_1, \dots, u_n] = u_k \qquad (1 \le k \le n)$$

$$t[p^{(1)}, \dots, p^{(n)}] = t$$

$$t[u_{\bullet}][v_{\bullet}] = t[u_{\bullet}[v_{\bullet}]]$$

Every clone (S,\mathbb{C}) defines a category $\bar{\mathbb{C}}$ and a multicategory $M\mathbb{C}$

Every clone (S, \mathbb{C}) has an internal language [c.f. Lambek]:

$$(x_1:A_1,\ldots,x_n:A_n\vdash t:B)\iff t:A_1,\ldots,A_n\to B$$

Every clone (S, \mathbb{C}) has an internal language [c.f. Lambek]:

$$(x_1:A_1,\ldots,x_n:A_n\vdash t:B)\iff t:A_1,\ldots,A_n\to B$$

$$(x_1:A_1,\ldots,x_n:A_n\vdash x_i:A_i)\iff \mathfrak{p}^{(i)}:A_1,\ldots,A_n\to A_i$$

$$t[x_i\mapsto u_i]\iff t[u_1,\ldots,u_n]$$

Every clone (S, \mathbb{C}) has an internal language [c.f. Lambek]:

$$(x_1:A_1,\ldots,x_n:A_n\vdash t:B)\iff t:A_1,\ldots,A_n\to B$$

$$(x_1:A_1,\ldots,x_n:A_n\vdash x_i:A_i)\iff \mathfrak{p}^{(i)}:A_1,\ldots,A_n\to A_i$$

$$t[x_i\mapsto u_i]\iff t[u_1,\ldots,u_n]$$

The clone axioms become:

$$x_{k}[x_{i} \mapsto u_{i}] = u_{k} \qquad (1 \leq k \leq n)$$

$$t[x_{i} \mapsto x_{i}] = t$$

$$t[x_{i} \mapsto u_{i}][y_{j} \mapsto v_{j}] = t[x_{i} \mapsto u_{i}[y_{j} \mapsto v_{j}]]$$

Every clone (S, \mathbb{C}) has an internal language [c.f. Lambek]:

$$(x_1:A_1,\ldots,x_n:A_n\vdash t:B)\iff t:A_1,\ldots,A_n\to B$$

$$(x_1:A_1,\ldots,x_n:A_n\vdash x_i:A_i)\iff p^{(i)}:A_1,\ldots,A_n\to A_i$$

$$t[x_i\mapsto u_i]\iff t[u_1,\ldots,u_n]$$

Free clone on a graph G:

$$\frac{c \in G(A, B)}{c : A \to B} \qquad \frac{}{p^{(i)} : A_1, \dots, A_n \to A_i}$$
$$\frac{t : A_1, \dots, A_n \to B}{t[u_1, \dots, u_n] : \Delta \to B}$$

Every clone (S, \mathbb{C}) has an internal language [c.f. Lambek]:

$$(x_1: A_1, \dots, x_n: A_n \vdash t: B) \iff t: A_1, \dots, A_n \to B$$

$$(x_1: A_1, \dots, x_n: A_n \vdash x_i: A_i) \iff p^{(i)}: A_1, \dots, A_n \to A_i$$

$$t[x_i \mapsto u_i] \iff t[u_1, \dots, u_n]$$

Free clone on a graph G:

$$\frac{c \in G(A, B)}{x : A \vdash c : B} \xrightarrow{\text{const}} \frac{1}{x_1 : A_1, \dots, x_n : A_n \vdash x_i : A_i} \text{var}$$

$$\frac{x_1:A_1,\ldots,x_n:A_n\vdash t:B \qquad (\Delta\vdash u_i:A_i)_{i=1,\ldots,n}}{\Delta\vdash t[x_i\mapsto u_i]:B}$$
 subst

free category on G $\cong \mbox{free clone on } G \mbox{, restricted to unary maps}$

free category on G

 \cong free clone on G, restricted to unary maps

giving a syntax for categories

||
giving a syntax for clones
and restricting to unary contexts

giving a syntax for categories

Il

giving a syntax for clones
and restricting to unary contexts

'internal language of categories' [informal] ||
internal language [formal] of the free clone

1. Define fp-clones,	

- 1. Define fp-clones,
- 2. Observe that:

3. Internal language of cartesian categories

def. internal language of free fp-clone,
restricted to unary contexts

1. for every A_1, \ldots, A_n , an object $\prod_n (A_1, \ldots, A_n)$,

- 1. for every A_1, \ldots, A_n , an object $\prod_n (A_1, \ldots, A_n)$,
- 2. maps $\pi_i: \prod_n (A_1, \ldots, A_n) \to A_i$ inducing isomorphisms

$$\mathbb{C}(\Gamma; \prod_{n} (A_{1}, \dots, \overbrace{A_{n})) \cong \prod_{i=1}^{n} \mathbb{C}(\Gamma; A_{i})$$

- 1. for every A_1, \ldots, A_n , an object $\prod_n (A_1, \ldots, A_n)$,
- 2. maps $\pi_i : \prod_n (A_1, \dots, A_n) \to A_i$ inducing isomorphisms

$$\mathbb{C}(\Gamma; \prod_{n}(A_{1}, \dots, A_{n})) \cong \prod_{i=1}^{n} \mathbb{C}(\Gamma; A_{i})$$

- 1. for every A_1, \ldots, A_n , an object $\prod_n (A_1, \ldots, A_n)$,
- 2. maps $\pi_i: \prod_n (A_1, \dots, A_n) \to A_i$ inducing isomorphisms

$$\mathbb{C}(\Gamma; \prod_{n} (A_{1}, \dots, A_{n})) \cong \prod_{i=1}^{n} \mathbb{C}(\Gamma; A_{i})$$

$$A_1, \ldots, A_n$$
 type $\prod_n (A_1, \ldots, A_n)$ type

- 1. for every A_1, \ldots, A_n , an object $\prod_n (A_1, \ldots, A_n)$,
- 2. maps $\pi_i : \prod_n (A_1, \dots, A_n) \to A_i$ inducing isomorphisms

$$\mathbb{C}(\Gamma; \prod_{n}(A_{1}, \dots, A_{n})) \cong \prod_{i=1}^{n} \mathbb{C}(\Gamma; A_{i})$$

$$\frac{1}{p:\prod_{n}(A_{1},\ldots,A_{n})\vdash\pi_{i}(p):A_{i}}(1\leqslant i\leqslant n)$$

- 1. for every A_1, \ldots, A_n , an object $\prod_n (A_1, \ldots, A_n)$,
- 2. maps $\pi_i : \prod_n (A_1, \dots, A_n) \to A_i$ inducing isomorphisms

$$\mathbb{C}(\Gamma; \prod_{n}(A_{1}, \dots, A_{n})) \cong \prod_{i=1}^{n} \mathbb{C}(\Gamma; A_{i})$$

$$\frac{\rho: \prod_{n}(A_{1}, \dots, A_{n}) \vdash \pi_{i}(p) : A_{i}}{(\Gamma \vdash u_{i} : A_{i})_{i=1,\dots,n}} \stackrel{(1 \leqslant i \leqslant n)}{}{\frac{(\Gamma \vdash \langle u_{1}, \dots, u_{n} \rangle : \prod_{n}(A_{1}, \dots, A_{n})}{(\Gamma \vdash \langle u_{1}, \dots, u_{n} \rangle : \prod_{n}(A_{1}, \dots, A_{n})}}$$

- 1. for every A_1, \ldots, A_n , an object $\prod_n (A_1, \ldots, A_n)$,
- 2. maps $\pi_i : \prod_n (A_1, \dots, A_n) \to A_i$ inducing isomorphisms

$$\mathbb{C}(\Gamma; \prod_{n}(A_{1}, \dots, A_{n})) \cong \prod_{i=1}^{n} \mathbb{C}(\Gamma; A_{i})$$

$$\frac{p: \prod_{n}(A_{1}, \dots, A_{n}) \vdash \pi_{i}(p) : A_{i}}{(\Gamma \vdash u_{i} : A_{i})_{i=1,\dots,n}} \frac{(\Gamma \vdash u_{i} : A_{i})_{i=1,\dots,n}}{\Gamma \vdash \langle u_{1}, \dots, u_{n} \rangle : \prod_{n}(A_{1}, \dots, A_{n})}$$

$$\pi_{i}(p)[p \mapsto \langle u_{1}, \dots, u_{n} \rangle] = u_{i} \qquad (\beta)$$

$$\langle \pi_{1}(p)[p \mapsto u], \dots, \pi_{n}(p)[p \mapsto u] \rangle = u \qquad (\eta)$$

- 1. for every A_1, \ldots, A_n , an object $\prod_n (A_1, \ldots, A_n)$,
- 2. maps $\pi_i : \prod_n (A_1, \dots, A_n) \to A_i$ inducing isomorphisms

$$\mathbb{C}(\Gamma; \prod_{n}(A_{1}, \dots, A_{n})) \cong \prod_{i=1}^{n} \mathbb{C}(\Gamma; A_{i})$$

$$\frac{\Gamma \vdash t : \prod_{n} (A_{1}, \dots, A_{n})}{\Gamma \vdash \pi_{i}(t) : A_{i}} (1 \leq i \leq n)$$

$$\frac{(\Gamma \vdash u_{i} : A_{i})_{i=1,\dots,n}}{\Gamma \vdash \langle u_{1}, \dots, u_{n} \rangle : \prod_{n} (A_{1}, \dots, A_{n})}$$

$$\pi_{i}(\langle u_{1}, \dots, u_{n} \rangle) = u_{i} \qquad (\beta)$$

$$\langle \pi_{1}(t), \dots, \pi_{n}(t) \rangle = t \qquad (\eta)$$

```
An fp-clone [fp = finite-product] is a clone (S, \mathbb{C}) with

1. for every A_1, \ldots, A_n, an object \prod_n (A_1, \ldots, A_n),

2. maps \pi_i : \prod_n (A_1, \ldots, A_n) \to A_i inducing isomorphisms
\mathbb{C}(\Gamma; \prod_n (A_1, \ldots, A_n)) \cong \prod_{i=1}^n \mathbb{C}(\Gamma; A_i)
```

Internal language of free fp-clone was products in STLC

- 1. for every A_1, \ldots, A_n , an object $\prod_n (A_1, \ldots, A_n)$,
- 2. maps $\pi_i : \prod_n (A_1, \dots, A_n) \to A_i$ inducing isomorphisms

$$\mathbb{C}(\Gamma; \prod_{n}(A_{1}, \dots, A_{n})) \cong \prod_{i=1}^{n} \mathbb{C}(\Gamma; A_{i})$$

Internal language of free fp-clone was products in STLC

free cartesian category on G \cong free fp-clone on G, restricted to unary contexts

```
An fp-clone [fp = finite-product] is a clone (S, \mathbb{C}) with

1. for every A_1, \ldots, A_n, an object \prod_n (A_1, \ldots, A_n),

2. maps \pi_i : \prod_n (A_1, \ldots, A_n) \to A_i inducing isomorphisms

\begin{array}{c}
(\pi_1[-], \ldots, \pi_n[-]) \\
(\Gamma; \prod_n (A_1, \ldots, A_n)) \cong \prod_{i=1}^n \mathbb{C}(\Gamma; A_i)
\end{array}
```

Internal language of free fp-clone was products in STLC

```
An fp-clone [fp = finite-product] is a clone (S, \mathbb{C}) with

1. for every A_1, \ldots, A_n, an object \prod_n (A_1, \ldots, A_n),

2. maps \pi_i : \prod_n (A_1, \ldots, A_n) \to A_i inducing isomorphisms \mathbb{C}(\Gamma; \prod_n (A_1, \ldots, A_n)) \cong \prod_{i=1}^n \mathbb{C}(\Gamma; A_i)
```

 \longrightarrow Equivalent to requiring MC is representable

- 1. for every A_1, \ldots, A_n , an object $\prod_n (A_1, \ldots, A_n)$,
- 2. maps $\pi_i: \prod_n (A_1, \dots, A_n) \to A_i$ inducing isomorphisms

$$\mathbb{C}(\Gamma; \prod_{n} (A_{1}, \dots, \overbrace{A_{n})) \cong \prod_{i=1}^{n} \mathbb{C}(\Gamma; A_{i})$$

In an fp-clone, contexts and products coincide.

An fp-clone [fp = finite-product] is a clone
$$(S, \mathbb{C})$$
 with 1. for every A_1, \ldots, A_n , an object $\prod_n (A_1, \ldots, A_n)$, 2. maps $\pi_i : \prod_n (A_1, \ldots, A_n) \to A_i$ inducing isomorphisms
$$\mathbb{C}(\Gamma; \prod_n (A_1, \ldots, A_n)) \cong \prod_{i=1}^n \mathbb{C}(\Gamma; A_i)$$

$$\mathbb{C}(\Gamma;\prod_n(A_1,\ldots,A_n))\cong\prod_{i=1}^n\mathbb{C}(\Gamma;A_i)$$
In an fp-clone, contexts and products coincide.

There exist maps
$$(u_i:\prod_n(A_1,\ldots,A_n)\to A_i)_{i=1,\ldots,n}$$

$$t:A_1,\ldots,A_n\to\prod_n(A_1,\ldots,A_n)$$
such that

 $u_i[t] = \mathbf{p}_{\Delta_i}^{(i)} \quad \text{i} = 1,...,n$

such that $t[u_1,\ldots,u_n]=\mathsf{p}_{\prod_{i=1}^{n}(A_1,\ldots,A_n)}^{(1)}$

Defining an internal language for cc-structure

Defining an internal language for cc-structure

Defining an internal language for cc-structure

- 1. Define cc-clones,
- 2. Internal language of CCCs

def. internal language of free cc-clone, restricted to unary contexts

A clone (\mathcal{S},\mathbb{C}) has exponentials if $\mathrm{M}\mathbb{C}$ has exponentials.

A clone (S, \mathbb{C}) with exponentials has

1. for every A, B, an object $A \Rightarrow B$,

- 1. for every A, B, an object $A \Rightarrow B$,
- 2. maps $\operatorname{eval}_{A,B}: A \Rightarrow B, A \rightarrow B$ inducing isomorphisms

- 1. for every A, B, an object $A \Rightarrow B$,
- 2. maps $\operatorname{eval}_{A,B}: A \Rightarrow B, A \rightarrow B$ inducing isomorphisms

$$\mathbb{C}(X_1,\ldots,X_n;A \Longrightarrow B) \cong \mathbb{C}(X_1,\ldots,X_n,A;B)$$

for
$$n = 1$$
:

if
$$t: X, A \to B$$
 then eval $[t[p^{(1)}], p^{(2)}]: X \to (A \Rightarrow B)$

- 1. for every A, B, an object $A \Rightarrow B$,
- 2. maps $\operatorname{eval}_{A,B}: A \Rightarrow B, A \to B$ inducing isomorphisms

$$\mathbb{C}(X_1,\ldots,X_n;A\Longrightarrow B) \cong \mathbb{C}(X_1,\ldots,X_n,A;B)$$

for
$$n=1$$
:
 if $t:X,A\to B$ then $\mathrm{eval}\left[t[p^{(1)}],p^{(2)}\right]:X\to (A\Longrightarrow B)$

$$\sim c.f. \text{ eval } \circ \langle f \circ \pi_1, \pi_2 \rangle = \text{eval } \circ (f \times A)$$

An fp-clone is a clone (S, \mathbb{C}) with

- 1. for every A_1, \ldots, A_n , an object $\prod_n (A_1, \ldots, A_n)$,
- 2. maps $\pi_i : \prod_n (A_1, \dots, A_n) \to A_i$ inducing isomorphisms

$$\mathbb{C}(\Gamma; \prod_{n} (A_{1}, \dots, \overbrace{A_{n})) \cong \prod_{i=1}^{n} \mathbb{C}(\Gamma; A_{i})$$

- 1. for every A, B, an object $A \Rightarrow B$,
- 2. maps $\operatorname{eval}_{A,B}: A \Rightarrow B, A \rightarrow B$ inducing isomorphisms

$$\mathbb{C}(X_1,\ldots,X_n;A\Rightarrow \overbrace{B)}^{\mathrm{eval}[(-)[p^{(1)},\ldots,p^{(n)}],p^{(n+1)}]} \cong \mathbb{C}(X_1,\ldots,X_n,A;B)$$

An fp-clone is a clone (S, \mathbb{C}) with

- 1. for every A_1, \ldots, A_n , an object $\prod_n (A_1, \ldots, A_n)$,
- 2. maps $\pi_i : \prod_n (A_1, \dots, A_n) \to A_i$ inducing isomorphisms

$$\mathbb{C}(\Gamma; \prod_{n}(A_{1}, \dots, A_{n})) \cong \prod_{i=1}^{n} \mathbb{C}(\Gamma; A_{i})$$

A clone (S, \mathbb{C}) with exponentials has

- 1. for every A, B, an object $A \Rightarrow B$,
- 2. maps $\operatorname{eval}_{A,B}: A \Rightarrow B, A \rightarrow B$ inducing isomorphisms

$$\mathbb{C}(X_1,\ldots,X_n;A\Longrightarrow \overbrace{B)}^{\mathrm{eval}[(-)[p^{(1)},\ldots,p^{(n)}],p^{(n+1)}]}\cong \mathbb{C}(X_1,\ldots,X_n,A;B)$$

A clone is cartesian closed [cc-] if it is an fp-clone with exponentials.

internal language of free cc-clone || simply-typed lambda calculus

internal language of free cc-clone

Il

simply-typed lambda calculus

'internal language of cartesian closed categories' [informal]

ll internal language [formal] of the free cc-clone

ll simply-typed lambda calculus

 $\Lambda_{\mathrm{ps}}^{\times,\rightarrow}\colon$ an internal language for cc-bicategories

A recipe for $\Lambda_{\mathrm{ps}}^{\times, \rightarrow}$, modulo technicalities

- 1. Define cc-biclones,
- 2. Define internal language of a biclone,

Internal language of cc-bicategories
 def. internal language of free cc-biclone,
 restricted to unary contexts

A recipe for $\Lambda_{\rm ps}^{\times,\rightarrow}$, modulo technicalities

- 1. Define cc-biclones,
- 2. Define internal language of a biclone,

3. Internal language of cc-bicategories

def. internal language of free cc-biclone,
restricted to unary contexts

A recipe for $\Lambda_{\mathrm{ps}}^{\times,\rightarrow}$, modulo technicalities

- 1. Define cc-biclones,
- 2. Define internal language of a biclone,
- Internal language of cc-bicategories
 def. internal language of free cc-biclone,
 restricted to unary contexts

A recipe for an internal language for bicategories

- 1. Define biclones,
- 2. Define notion of internal language,
- Internal language of bicategories
 def. internal language of free biclone,
 restricted to unary contexts

- Sorts S,

- Sorts S,
- Hom-categories $(C(X_1,\ldots,X_n;Y),\bullet,\mathrm{id})$,

- Sorts S,
- Hom-categories $(\mathcal{C}(X_1,\ldots,X_n;Y),\bullet,\mathrm{id})$,

- Sorts S,
- Hom-categories $(C(X_1, \ldots, X_n; Y), \bullet, id)$,
- Projection 1-cells $p_{X_{\bullet}}^{(i)}: X_1, \dots, X_n \to X_i \ (1 \leq i \leq n)$,

- Sorts S,
- Hom-categories $(C(X_1,\ldots,X_n;Y),\bullet,\mathrm{id})$,
- Projection 1-cells $p_{X_n}^{(i)}: X_1, \ldots, X_n \to X_i \ (1 \le i \le n),$
- Substitution functors

$$C(X_1, ..., X_n; Y) \times \prod_{i=1}^n C(\Gamma; X_i) \to C(\Gamma; Y)$$

$$t, (u_1, ..., u_n) \mapsto t[u_1, ..., u_n]$$

$$\tau, (\sigma_1, ..., \sigma_n) \mapsto \tau[\sigma_1, ..., \sigma_n]$$

- Sorts S,
- Hom-categories $(C(X_1,\ldots,X_n;Y),\bullet,\mathrm{id})$,
- Projection 1-cells $p_{X_{\bullet}}^{(i)}: X_1, \ldots, X_n \to X_i \ (1 \le i \le n)$,
- Substitution functors

$$C(X_1, ..., X_n; Y) \times \prod_{i=1}^n C(\Gamma; X_i) \to C(\Gamma; Y)$$

$$t, (u_1, ..., u_n) \mapsto t[u_1, ..., u_n]$$

$$\tau, (\sigma_1, ..., \sigma_n) \mapsto \tau[\sigma_1, ..., \sigma_n]$$

- Structural isomorphisms

$$p^{(k)}[u_1, \dots, u_n] \xrightarrow{\varrho_{\bullet \bullet}^{(k)}} u_k \qquad (1 \leq k \leq n)$$

$$t[p^{(1)}, \dots, p^{(n)}] \xrightarrow{\iota_t} t$$

$$t[u_{\bullet}][v_{\bullet}] \xrightarrow{\operatorname{assoc}_{t;u_{\bullet};v_{\bullet}}} t[u_{\bullet}[v_{\bullet}]]$$

- Sorts S,
- Hom-categories $(C(X_1,\ldots,X_n;Y),\bullet,\mathrm{id}),$
- Projection 1-cells $p_{X_i}^{(i)}: X_1, \ldots, X_n \to X_i \ (1 \le i \le n)$,
- Substitution functors

$$C(X_1, ..., X_n; Y) \times \prod_{i=1}^n C(\Gamma; X_i) \to C(\Gamma; Y)$$

$$t, (u_1, ..., u_n) \mapsto t[u_1, ..., u_n]$$

$$\tau, (\sigma_1, ..., \sigma_n) \mapsto \tau[\sigma_1, ..., \sigma_n]$$

- Structural isomorphisms

$$p^{(k)}[u_{1}, \dots, u_{n}] \xrightarrow{\varrho_{u_{\bullet}}^{(k)}} u_{k} \qquad (1 \leq k \leq n)$$

$$t[p^{(1)}, \dots, p^{(n)}] \xrightarrow{\iota_{t}} t$$

$$t[u_{\bullet}][v_{\bullet}] \xrightarrow{\operatorname{assoc}_{t;u_{\bullet};v_{\bullet}}} t[u_{\bullet}[v_{\bullet}]]$$

subject to a triangle law and pentagon law.

- Sorts S, Every biclone defines a bicategory and a bi-multicategory
- Hom-categories $(C(X_1,\ldots,X_n;Y),\bullet,\mathrm{id})$,
- Projection 1-cells $p_{X_n}^{(i)}: X_1, \ldots, X_n \to X_i \ (1 \le i \le n),$
- Substitution functors

$$C(X_1, ..., X_n; Y) \times \prod_{i=1}^n C(\Gamma; X_i) \to C(\Gamma; Y)$$

$$t, (u_1, ..., u_n) \mapsto t[u_1, ..., u_n]$$

$$\tau, (\sigma_1, ..., \sigma_n) \mapsto \tau[\sigma_1, ..., \sigma_n]$$

- Structural isomorphisms

$$p^{(k)}[u_1, \dots, u_n] \xrightarrow{\varrho_{\bullet \bullet}^{(k)}} u_k \qquad (1 \leq k \leq n)$$

$$t[p^{(1)}, \dots, p^{(n)}] \xrightarrow{\iota_t} t$$

$$t[u_{\bullet}][v_{\bullet}] \xrightarrow{\operatorname{assoc}_{t;u_{\bullet};v_{\bullet}}} t[u_{\bullet}[v_{\bullet}]]$$

subject to a triangle law and pentagon law.

terms:

terms:

rewrites:

$$(x_1:A_1,\ldots,x_n:A_n\vdash\tau:t\Rightarrow t':B)$$

$$\updownarrow$$

$$\tau:t\Rightarrow t':A_1,\ldots,A_n\to B$$

terms:

rewrites:

$$(x_1:A_1,\ldots,x_n:A_n\vdash\tau:t\Rightarrow t':B)$$

$$\uparrow$$

$$\tau:t\Rightarrow t':A_1,\ldots,A_n\to B$$

what is the internal language of the free biclone on G?

Hom-categories $(C(X_1, \ldots, X_n; Y), \bullet, id)$ Judgements:

Hom-categories $(C(X_1,\ldots,X_n;Y),\bullet,\mathrm{id})$

Judgements:

- Relating *terms*: $\Gamma \vdash t : B$

Hom-categories $(C(X_1,\ldots,X_n;Y),\bullet,\mathrm{id})$

Judgements:

- Relating *terms*: $\Gamma \vdash t : B$
- Relating rewrites: $\Gamma \vdash \tau : t \Rightarrow t' : B$

Hom-categories $(C(X_1, \ldots, X_n; Y), \bullet, id)$

Judgements:

- Relating *terms*: $\Gamma \vdash t : B$
- Relating *rewrites*: $\Gamma \vdash \tau : t \Rightarrow t' : B$
- Equational theory $\Gamma \vdash \tau \equiv \tau' : t \Rightarrow t' : B$

Hom-categories
$$(C(X_1, \ldots, X_n; Y), \bullet, id)$$

Judgements:

- Relating *terms*: $\Gamma \vdash t : B$
- Relating *rewrites*: $\Gamma \vdash \tau : t \Rightarrow t' : B$
- Equational theory $\Gamma \vdash \tau \equiv \tau' : t \Rightarrow t' : B$

Vertical composition:
$$\frac{\Gamma \vdash \tau' : t' \Rightarrow t'' : B \qquad \Gamma \vdash \tau : t \Rightarrow t' : B}{\Gamma \vdash \tau' \bullet \tau : t \Rightarrow t'' : B}$$

Identities:
$$\frac{\Gamma \vdash t : B}{\Gamma \vdash \mathrm{id}_t : t \Rightarrow t : B}$$

A substitution functor
$$C(X_1, \dots, X_n; Y) \times \prod_{i=1}^n C(\Gamma; X_i) \to C(\Gamma; Y)$$

$$t, (u_1, \dots, u_n) \mapsto t[u_1, \dots, u_n]$$

$$\tau, (\sigma_1, \dots, \sigma_n) \mapsto \tau[\sigma_1, \dots, \sigma_n]$$

A substitution functor

$$C(X_1, ..., X_n; Y) \times \prod_{i=1}^n C(\Gamma; X_i) \to C(\Gamma; Y)$$

$$t, (u_1, ..., u_n) \mapsto t[u_1, ..., u_n]$$

$$\tau, (\sigma_1, ..., \sigma_n) \mapsto \tau[\sigma_1, ..., \sigma_n]$$

Explicit substitution:

$$\frac{x_1: A_1, \dots, x_n: A_n \vdash t: B \quad (\Delta \vdash u_i: A_i)_{i=1.,n}}{\Delta \vdash t \{x_i \mapsto u_i\}: B}$$

$$\frac{x_1: A_1, \dots, x_n: A_n \vdash \tau: t \Rightarrow t': B \qquad (\Delta \vdash \sigma_i: u_i \Rightarrow u_i': A_i)_{i=1,\dots,n}}{\Delta \vdash \tau \{x_i \mapsto \sigma_i\}: t \{x_i \mapsto u_i\} \Rightarrow t' \{x_i \mapsto u_i'\}: B}$$

 \rightsquigarrow binds the variables x_1, \ldots, x_n

A type theory for biclones

Structural isomorphisms $arrho^{(k)},\iota,$ assoc	

A type theory for biclones

Structural isomorphisms $\varrho^{(k)}$, ι , assoc

Distinguished invertible rewrites e.g.:

$$\frac{(\Delta \vdash u_i : A_i)_{i=1,\dots,n}}{x_1 : A_1,\dots,x_n : A_n \vdash \varrho_{u_{\bullet}}^{(k)} : x_k \{x_i \mapsto u_i\} \stackrel{\cong}{\Longrightarrow} u_k : A_k} (1 \leqslant k \leqslant n)$$

the free bicategory on G

 \simeq free biclone on G, restricted to unary maps

the free bicategory on \boldsymbol{G}

 \simeq free biclone on G, restricted to unary maps

syntax for bicategories

II

syntax for free biclone, restricted to unary contexts

the free bicategory on G \simeq free biclone on G, restricted to unary maps

syntax for bicategories

Ш

syntax for free biclone, restricted to unary contexts

'internal language of bicategories' [informal]

Ш

internal language [formal] of the free biclone

- 1. Define fp-biclones,
- 2. Extract internal language $\Lambda^{\!\scriptscriptstyle X}_{\rm ps}$ of free fp-biclone,
- 3. Restrict to unary contexts

way get internal language of fp-bicategories.

- 1. Define fp-biclones,
- 2. Extract internal language Λ_{DS}^{x} of free fp-biclone,
- 3. Restrict to unary contexts

yet internal language of fp-bicategories.

An fp-clone is a clone (S,\mathbb{C}) with

- 1. for every A_1, \ldots, A_n , an object $\prod_n (A_1, \ldots, A_n)$,
- 2. maps $\pi_i : \prod_n (A_1, \dots, A_n) \to A_i$ inducing isomorphisms

$$\mathbb{C}(\Gamma; \prod_{n}(A_{1}, \dots, \overbrace{A_{n})) \cong \prod_{i=1}^{n} \mathbb{C}(\Gamma; A_{i})$$

 \rightsquigarrow equivalent to asking that $M\mathbb{C}$ is representable.

- 1. Define fp-biclones,
- 2. Extract internal language $\Lambda_{\rm ps}^{\rm x}$ of free fp-biclone,
- 3. Restrict to unary contexts

yet internal language of fp-bicategories.

An fp-biclone is a biclone (S, C) with

- 1. for every A_1, \ldots, A_n , an object $\prod_n (A_1, \ldots, A_n)$,
- 2. maps $\pi_i : \prod_n (A_1, \dots, A_n) \to A_i$ inducing adjoint equivalences

$$C(\Gamma; \prod_{n}(A_{1}, \dots, \overbrace{A_{n})) \xrightarrow{\perp \simeq} \prod_{i=1}^{n} C(\Gamma; A_{i})$$

 \longrightarrow equivalent to asking that MC is representable.

1-cells
$$\pi_i:\prod_n(A_1,\ldots,A_n)\to A_i$$
 $(1\leqslant i\leqslant n)$

1-cells
$$\pi_i: \prod_n (A_1, \dots, A_n) \to A_i$$
 $(1 \le i \le n)$
Projections $p: \prod_n (A_1, \dots, A_n) \vdash \pi_i(p) : A_i$ $(1 \le i \le n)$

Equivalences $\mathcal{B}(\Gamma, \prod_n (A_1, \dots, A_n)) \perp \simeq \prod_{i=1}^n \mathcal{B}(\Gamma, A_i)$

- Mapping on objects $\langle -, \dots, = \rangle$.
- Counit $\varpi_{\mathbf{t_{0}}}^{(i)}:\pi_{i}[\langle t_{1},\ldots,t_{n}\rangle]\stackrel{\cong}{\Longrightarrow}t_{i}$

Equivalences
$$\mathcal{B}(\Gamma, \prod_{n}(A_{1}, \dots, A_{n})) \perp \simeq \prod_{i=1}^{n} \mathcal{B}(\Gamma, A_{i})$$

$$(\Gamma \vdash t_{i} : A_{i})_{i=1,\dots,n}$$

$$\Gamma \vdash \text{tup}(t_{1} \dots, t_{n}) : \prod_{n}(A_{1}, \dots, A_{n})$$

$$(\Gamma \vdash t_{i} : A_{i})_{i=1,\dots,n}$$

$$(\Gamma \vdash t_{i} : A_{i})_{i=1,\dots,n}$$

$$\Gamma \vdash \varpi_{t_{\bullet}}^{(k)} : \pi_{k} \{ \text{tup}(t_{1} \dots, t_{n}) \} \stackrel{\cong}{\Longrightarrow} t_{k} : A_{k}$$

$$(1 \leqslant k \leqslant n)$$

Equivalences
$$\mathcal{B}(\Gamma,\prod_n(A_1,\ldots,\overbrace{A_n}))$$
 $\perp \simeq \prod_{i=1}^n \mathcal{B}(\Gamma,A_i)$

Tupling map
$$\frac{(\Gamma \vdash t_i:A_i)_{i=1,\ldots,n}}{\Gamma \vdash \operatorname{tup}(t_1\ldots,t_n):\prod_n(A_1,\ldots,A_n)}$$

Counit $(\beta$ -law)
$$\frac{(\Gamma \vdash t_i:A_i)_{i=1,\ldots,n}}{\Gamma \vdash \varpi_{t_{\bullet}}^{(k)}:\pi_k\left\{\operatorname{tup}(t_1\ldots,t_n)\right\} \stackrel{\cong}{\Longrightarrow} t_k:A_k} (1 \leqslant k \leqslant n)}$$

Mediating 2-cell
$$\frac{(\Gamma \vdash \alpha_i:\pi_i\left\{u\right\} \Rightarrow t_i:A_i)_{i=1,\ldots,n}}{\Gamma \vdash \operatorname{p}^{\dagger}(\alpha_1,\ldots,\alpha_n):u\Rightarrow \operatorname{tup}(t_1,\ldots,t_n):\prod_n(A_1,\ldots,A_n)}$$

$$+ \operatorname{three} \text{ equational rules.} \qquad \qquad \sim \sim \eta\text{-law is derivable}$$

the free fp-bicategory on \boldsymbol{G}

 \simeq free fp-biclone on $G\mbox{,}$ restricted to unary maps

the free fp-bicategory on G \simeq free fp-biclone on G, restricted to unary maps

syntax for fp-bicategories

 \parallel

syntax for free fp-biclone, restricted to unary contexts

the free fp-bicategory on G \simeq free fp-biclone on G, restricted to unary maps

syntax for fp-bicategories

syntax for free fp-biclone, restricted to unary contexts

'internal language of fp-bicategories' [informal] ||

internal language [formal] of the free fp-biclone

The recipe for $\Lambda_{\mathrm{ps}}^{\times, \rightarrow}$

- 1. Define cc-biclones,
- 2. Extract internal language $\Lambda_{ps}^{\times,\rightarrow}$ of free cc-biclone,
- 3. Restrict to unary contexts

www get internal language of cc-bicategories.

The recipe for $\Lambda_{\mathrm{ps}}^{\times, \rightarrow}$

- 1. Define cc-biclones,
- 2. Extract internal language $\Lambda_{ps}^{\times,\rightarrow}$ of free cc-biclone,
- 3. Restrict to unary contexts

www get internal language of cc-bicategories.

'internal language for cc-bicategories' [informal]

Il

internal language [formal] of free cc-biclone

$\Lambda_{\mathrm{ps}}^{\times,\to}$ as STLC up-to-isomorphism

$\Lambda_{\mathrm{ps}}^{\times, o}$ as STLC up-to-isomorphism

Rewrites in $\Lambda_{\rm ps}^{\times, \rightarrow}$ witness $\beta\eta$ -equalities

$\Lambda_{\mathrm{ps}}^{\times,\to}$ as STLC up-to-isomorphism

```
Rewrites in \Lambda_{\mathrm{ps}}^{\times, \to} witness \beta\eta-equalities STLC-terms embed into \Lambda_{\mathrm{ps}}^{\times, \to}
\Lambda_{\mathrm{ps}}^{\times, \to}\text{-terms evaluate to STLC-terms} \qquad \overline{t\{x\mapsto u\}}:=\overline{t}[x\mapsto \overline{u}]
```

$\Lambda_{\rm ps}^{\times,\rightarrow}$ as STLC up-to-isomorphism

Rewrites in $\Lambda_{\rm DS}^{\times, \rightarrow}$ witness $\beta \eta$ -equalities

STLC-terms embed into $\Lambda_{DS}^{\times,\rightarrow}$

 $\Lambda_{\rm ps}^{\times, \rightarrow}$ -terms evaluate to STLC-terms $\overline{t\{x\mapsto u\}}:=\overline{t}[x\mapsto \overline{u}]$

$$\overline{t\{x\mapsto u\}}:=\overline{t}[x\mapsto \overline{u}]$$

$$t \cong_{B}^{\Gamma} t' \stackrel{\text{def.}}{\iff} \Gamma \vdash \tau : t \stackrel{\cong}{\implies} t' : B \text{ for some invertible } \tau$$

$\Lambda_{\mathrm{ps}}^{\times,\rightarrow}$ as STLC up-to-isomorphism

Rewrites in $\Lambda_{\mathrm{ps}}^{\times, \to}$ witness $\beta\eta$ -equalities STLC-terms embed into $\Lambda_{\mathrm{ps}}^{\times, \to}$ $\Lambda_{\mathrm{ps}}^{\times, \to}$ -terms evaluate to STLC-terms $\overline{t\{x\mapsto u\}}:=\overline{t}[x\mapsto \overline{u}]$

$$(\mathsf{STLC\text{-}terms}\ \Gamma \vdash t : B)/_{\beta\eta} \cong (\Lambda_{\mathsf{ps}}^{\times,\to}\text{-}\mathsf{terms}\ \Gamma \vdash t : B)/_{\cong_B^\Gamma}$$

$$(\Gamma \vdash t =_{\beta\eta} t' : B) \iff (\Gamma \vdash \tau : (\!(t\,)\!) \stackrel{\cong}{\Rightarrow} (\!(t'\,)\!) : B)$$

 $t \cong_{R}^{\Gamma} t' \stackrel{\text{def.}}{\iff} \Gamma \vdash \tau : t \stackrel{\cong}{\implies} t' : B \text{ for some invertible } \tau$

$\Lambda_{\rm ps}^{\times, \to}$ as a logic of program transformations

$$(\mathsf{STLC\text{-}terms}\ \Gamma \vdash t : B)/_{\beta\eta} \cong (\Lambda_{\mathsf{ps}}^{\times, \to}\text{-}terms}\ \Gamma \vdash t : B)/_{\cong_B^\Gamma}$$

$$(\Gamma \vdash t =_{\beta\eta}\ t' : B) \iff (\Gamma \vdash \tau : (\!(t\,)\!) \stackrel{\cong}{\Longrightarrow} (\!(t'\,)\!) : B)$$

$\Lambda_{\rm ps}^{\times, \to}$ as a logic of program transformations

$$(\mathsf{STLC\text{-}terms}\ \Gamma \vdash t : B)/_{\beta\eta} \cong (\Lambda_{\mathsf{ps}}^{\times, \to}\text{-}terms}\ \Gamma \vdash t : B)/_{\cong_B^\Gamma}$$

$$(\Gamma \vdash t =_{\beta\eta}\ t' : B) \iff (\Gamma \vdash \tau : (\!(t\,)\!) \stackrel{\cong}{\Longrightarrow} (\!(t'\,)\!) : B)$$

$\Lambda_{\mathrm{ps}}^{\times,\rightarrow}$ as a logic of program transformations

$$(\mathsf{STLC\text{-}terms}\ \Gamma \vdash t : B)/_{\beta\eta} \cong (\Lambda_{\mathsf{ps}}^{\times, \to \mathsf{-}terms}\ \Gamma \vdash t : B)/_{\cong_B^\Gamma}$$

$$(\Gamma \vdash t =_{\beta\eta} t' : B) \iff (\Gamma \vdash \tau : (\!(t\,)\!) \stackrel{\cong}{\Longrightarrow} (\!(t'\,)\!) : B)$$

Solution Equational theory = quotient out **loops** in rewriting:

$$\begin{array}{c}
\pi_{i} \{\langle \pi_{1} \circ t, \dots, \pi_{n} \circ t \rangle\} \\
\pi_{i}(p) \{p \mapsto \eta\} \\
\pi_{i} \{t\}
\end{array}$$

$$\pi_{i} \{t\}$$

$\Lambda_{\mathrm{ps}}^{\times, o}$ as a logic of program transformations

$$(\mathsf{STLC\text{-}terms}\ \Gamma \vdash t : B)/_{\beta\eta} \cong (\Lambda_{\mathsf{ps}}^{\times, \to \mathsf{-}terms}\ \Gamma \vdash t : B)/_{\cong_B^\Gamma}$$

$$(\Gamma \vdash t =_{\beta\eta} t' : B) \iff (\Gamma \vdash \tau : (\!(t\,)\!) \stackrel{\cong}{\Longrightarrow} (\!(t'\,)\!) : B)$$

Solution Equational theory = quotient out **loops** in rewriting:

$$\begin{array}{c}
\pi_{i} \{\langle \pi_{1} \circ t, \dots, \pi_{n} \circ t \rangle\} \\
\pi_{i}(p)\{p \mapsto \eta\} \\
\pi_{i} \{t\}
\end{array}$$

$$\pi_{i} \{t\}$$

With coherence: rewrites unique mod ≡

Using $\Lambda_{\rm ps}^{\times,\to}$ to prove coherence [LICS'20, thesis]

Coherence à la Mac-Lane: 'all diagrams commute'

Using $\Lambda_{\rm ps}^{\times,\to}$ to prove coherence [LICS'20, thesis]

Coherence à la Mac-Lane: if
$$\sigma, \tau : t \Rightarrow t'$$
 then $\sigma \equiv \tau$

Using $\Lambda_{\rm DS}^{\times,\rightarrow}$ to prove coherence [LICS'20, thesis]

Coherence à la Mac-Lane: if
$$\sigma, \tau : t \Rightarrow t'$$
 then $\sigma \equiv \tau$

Two proofs for cc-bicategories:

- 1. via the Yoneda embedding,
- 2. prove coherence of $\Lambda_{\rm DS}^{\times, \rightarrow}$

Using $\Lambda_{\rm DS}^{\times,\rightarrow}$ to prove coherence [LICS'20, thesis]

Coherence à la Mac-Lane: if
$$\sigma, \tau : t \Rightarrow t'$$
 then $\sigma \equiv \tau$

Two proofs for cc-bicategories:

- 1. via the Yoneda embedding,
- 2. prove coherence of $\Lambda_{\rm DS}^{\times, \rightarrow}$

Strategy:

bicategorify Fiore's semantic normalisation-by-evaluation for STLC

- STLC is the internal language of the free cc-clone.

- STLC is the internal language of the free cc-clone.
- To construct an internal language for cc-bicategories:
 - 1. Define cc-biclones,
 - 2. The internal language of cc-bicategories $\Lambda_{\rm ps}^{\times, \to}$ is the internal language of the free cc-biclone.

- STLC is the internal language of the free cc-clone.
- To construct an internal language for cc-bicategories:
 - 1. Define cc-biclones,
 - 2. The internal language of cc-bicategories $\Lambda_{\rm ps}^{\times,\to}$ is the internal language of the free cc-biclone.
- $\Lambda_{\rm ps}^{\times, op}$ is a calculus for $\beta\eta$ -rewriting modulo a specific equational theory.

- STLC is the internal language of the free cc-clone.
- To construct an internal language for cc-bicategories:
 - 1. Define cc-biclones,
 - 2. The internal language of cc-bicategories $\Lambda_{\rm ps}^{\times,\to}$ is the internal language of the free cc-biclone.
- $\Lambda_{\rm ps}^{\times, op}$ is a calculus for $\beta\eta$ -rewriting modulo a specific equational theory.

- Refine NbE argument to extract canonical normal forms.
- Does a similar argument work for the linear case?
- What does this say about bicategorical models of LL?
- What denotational meaning can we give to rewrites?
- Proof-theoretic implications?

cc-Bicategories

1-cells

$$\operatorname{eval}_{A,B}:(A \Longrightarrow B) \times A \to B$$

Adjoint equivalences

$$\mathcal{B}(X,A \Rightarrow B) \xrightarrow{\lambda} \mathcal{B}(X \times A,B)$$

Rules for exponentials

