#### PROJECT REPORT

# Statistical Machine Learning Approach To Liver Disease Prediction

# Submitted by PNT2022TMID41146

K Kasiprasath

M Sathiyanathan

M Hemachandran

D Manikandan

#### TABLE OF CONTENTS

| 1. | INTRODUCTION                          | I  |
|----|---------------------------------------|----|
|    | 1.1 Project Overview                  | 4  |
|    | 1.2 Purpose                           | 4  |
| 2. | LITERATURE SURVEY                     | 5  |
|    | 2.1 Existing problem                  | 5  |
|    | 2.2References                         | 5  |
|    | 2.3Problem Statement Definition       | 7  |
| 3. | IDEATION & PROPOSED SOLUTION          | 9  |
|    | 3.1 Empathy Map Canvas                | 9  |
|    | 3.2 Ideation & Brainstorming          | 9  |
|    | 3.3 Proposed Solution                 | 12 |
|    | 3.4 Problem Solution fit              | 13 |
| 4. | REQUIREMENT ANALYSIS                  | 14 |
|    | 4.1 Functional requirement            | 14 |
|    | 4.2 Non-Functional requirements       | 15 |
| 5. | PROJECT DESIGN                        | 16 |
|    | 5.1 Data Flow Diagrams                | 16 |
|    | 5.2 Solution & Technical Architecture | 16 |
|    | 5.3 User Stories                      | 17 |
| 6. | PROJECT PLANNING & SCHEDULING         | 18 |
|    | 6.1 Sprint Planning & Estimation      | 18 |
|    | 6.2 Sprint Delivery Schedule          | 18 |
|    | 6.3 Reports from JIRA                 | 19 |

| 7. CODING & SOLUTIONING        | 20 |
|--------------------------------|----|
| 8. TESTING                     | 23 |
| 8.1 Test Cases                 | 23 |
| 8.2 User Acceptance Testing    | 23 |
| 8.1.1 Defect Analysis          | 26 |
| 8.1.2 Test case analysis       | 26 |
| 9. RESULTS                     | 27 |
| 9.1 Performance Metrics        | 27 |
| 10. ADVANTAGES & DISADVANTAGES | 29 |
| 11. CONCLUSION                 | 30 |
| 12. FUTURE SCOPE               | 31 |
| 13. APPENDIX                   | 32 |
| Source Code                    |    |
| GitHub                         |    |
| Project Demo Link              |    |

#### INTRODUCTION

#### 1.1 PROJECT OVERVIEW

Diseases related to the liver and heart are becoming more and more familiar with time. Future developments in technology will only lead to an increase in these. Even if more individuals are becoming health-conscious nowadays and are enrolling in dancing and yoga courses, the issue will persist for a long time due to sedentary lifestyles and extravagances that are always being introduced and improved. The ageing of the population and the rise in the incidence and prevalence of chronic diseases result in an increased risk of liver disease-related hospitalisation or death.

Early prediction of liver disease is very important to save human life and take proper steps to control the disease. The correct prediction of liver disease can prevent life threats, and incorrect prediction can prove to be fatal at the same time. Machine learning algorithms have been playing a vital role in solving complex, highly nonlinear classification and prediction problems. Further, different machine learning algorithms are ensembled in order to increase the classification and prediction accuracy. Here different machine learning techniques like

K-Nearest Neighbours (KNN), Decision Tree (DT) and Random Forest (RF) algorithms have been ensembled using the majority voting technique to predict Liver diseases.

#### 1.2 PURPOSE

The purpose of this project is to predict the presence of liver disease with high efficiency. Instead of using individual classifier algorithms, an ensemble model that combines KNN, DT, RF is used to increase accuracy. The main objective of this project is to make socially healthy living. Early prediction of liver disease using classification algorithms is an efficacious task that can help the doctors to diagnose the disease within a short duration of time. It is also helpful for the doctors to get patients treated at the earliest. It is cost effective and user-friendly.

#### LITERATURE SURVEY

#### 2.1 EXISTING PROBLEM

Today, everyone's health is a very essential concern, so it is necessary to offer medical services that are freely accessible to everyone. Discovering the existence of liver disease at an early stage is a complex task for the doctors. But early treatment may give the liver time to heal. Since there are pre-existing processes to analyze the patient data and the classifier data, the more important fact here is to predict the same with conclusive result with a higher rate of accuracy. Existing Models based on feature selection and classification raised some issues regarding with training dataset and Test dataset.

#### 2.2 REFERENCES

Title: Automated Prediction of Liver Disease using Machine Learning (ML) Algorithms Author: A. Srivastava, V. V. Kumar, M. T. R and V. Vivek

In this paper, Information systems and strategic tools have lately been offered as new strategies in medical research to improve the disease detection process. A variety of machine learning (ML) algorithms are being used to predict liver diseases. They recommend employing Logistics Regression (LR), Naive Bayes Model (NB), K-Nearest Neighbor (Knn) in the project. The data was separated into two categories: patients with liver disease and sicknesses the most accurate machine learning method was used to predict the final result. The different algorithms are compared against various performance metrics and the best one is identified.

Title: A Machine Learning Based Framework to Identify and Classify Non- alcoholic Fatty Liver Disease in a Large-Scale Population

Author: Weidong Ji, Mingyue Xue, Yushan Zhang, Hua Yao, Yushan Wang

Non-alcoholic fatty liver disease (NAFLD) is a common serious health problem worldwide, which lacks efficient medical treatment. They aimed to develop and validate the machine learning (ML) models which could be used to the accurate screening of large number of people. This paper included 304,145 adults who have joined in the national physical examination and used their questionnaire and physical measurement parameters as model's candidate covariates. Absolute shrinkage and selection operator (LASSO) was used to feature selection from candidate covariates, then four ML algorithms were used to build the screening model for NAFLD, used a classifier with the best performance to output the importance score of the covariate in NAFLD.

Title: Liver Disease Diagnosis Using Machine Learning

**Author: Manas Minnoor, Veeky Baths** 

This paper evaluates the performance of various supervised machine learning algorithms such as Logistic Regression, K-Nearest Neighbors (KNN), Extra Trees, LightGBM as well as a Multilayer Perceptron (MLP) neural network in the detection and diagnosis of liver disease. A total of 11 attributes are used to train the models. The usage of machine learning algorithms alongside human medical expertise may help drastically reduce errors in clinical diagnosis. This paper establishes the feasibility of applying machine learning in various medical fields including the diagnosis of other diseases.

#### **Title: Statistical Machine Learning Approaches to Liver Disease Prediction**

Author: Fahad Mostafa, Easin Hasan, Morgan Williamson, Hafiz khan

The study compared binary classifier machine learning algorithms (i.e., artificial neural network, random forest (RF), and support vector machine), which were utilized on a published liver disease data set to classify individuals with liver diseases, which will allow health professionals to make a better diagnosis. The synthetic minority oversampling technique was applied to oversample the minority class to regulate overfitting problems. The purpose of this study was to extract significant predictors for liver disease from the medical analysis of 615 humans using ML algorithms. Thus, this suggests that ML methods predict liver disease by incorporating the risk factors, which may improve the inference-based diagnosis of patients.

# Title: Diagnosis of Liver Disease using Machine Learning Models Author: A. Sivasangari; Baddigam Jaya Krishna Reddy; Annamareddy Kiran; P. Ajitha

Liver-related disease poses more problems for people living and is more important nowadays to recognize the causes, and identification phase. So, for early detection of liver disease, an automated program is needed to build with more accuracy and reliability. Specific machine learning models are developed for this purpose to predict the disease. In this paper,

6

the methods of Support Vector Machines (SVM), Decision Tree (DT) and Random Forest (RF) is proposed to predict liver disease with better precision, accuracy and reliability.

#### 2.3 PROBLEM STATEMENT DEFINITION

#### **Customer Problem Statement Template:**

Create a problem statement to understand your customer's point of view. The Customer Problem Statement template helps you focus on what matters to create experiences people will love.

A well-articulated customer problem statement allows you and your team to find the

| Problem<br>Statement<br>(PS) | I am<br>(Customer) | I'm trying to                     | But                                                        | Because                                                | Which<br>makes me<br>feel |
|------------------------------|--------------------|-----------------------------------|------------------------------------------------------------|--------------------------------------------------------|---------------------------|
| PS-1                         | Customer           | To find the type of liver disease | I can't find the type<br>of liver disease I'am<br>affected | There is no facility to find the type of liver disease | :41- 41                   |

ideal solution for the challenges your customers face. Throughout the process, you'll also be able to empathize with your customers, which helps you better understand how they perceive your product or service.



|     |    |          | Find    | the   | best | There   | is    | no     | better   | There  | is no f  | acility | to  | Disappo  | inted |
|-----|----|----------|---------|-------|------|---------|-------|--------|----------|--------|----------|---------|-----|----------|-------|
|     |    |          | sugge   | stion |      | sugges  | tion/ | treatn | nent for | find   | the      | bet     | ter | with     | the   |
| PS- | -2 | Customer | /treatr | nent  | in   | patient |       |        |          | sugge  | stion/mo | dule    | in  | applicat | ion   |
|     |    |          | applic  | ation |      |         |       |        |          | applic | ation mo | dule    |     | module   |       |
|     |    |          | modu    | le    |      |         |       |        |          |        |          |         |     |          |       |

#### **IDEATION AND PROPOSED SOLUTION**

#### 3.1 EMPATHY MAP CANVAS

#### **Empathy map**



#### **IDEATION & BRAINSTORMING**

#### **Brainstorm & Idea Prioritization Template:**

Brainstorming provides a free and open environment that encourages everyone within a team to participate in the creative thinking process that leads to problem solving. Prioritizing volume over value, out-of-the-box ideas are welcome and built upon, and all participants are encouraged to collaborate, helping each other develop a rich amount of creative solutions.

Use this template in your own brainstorming sessions so your team can unleash their imagination and start shaping concepts even if you're not sitting in the same room.

Step-1: Team Gathering, Collaboration and Select the Problem Statement



Step-2: Brainstorm, Idea Listing and Grouping



**Step-3: Idea Prioritization** 



#### 3.3 PROPOSED SOLUTION

| S.No. | Parameter                   | Description                                                                                                                                                                                      |
|-------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                             | The number of patients with liver disease has                                                                                                                                                    |
| 1.    | Problem Statement           | been steadily rising as a result of heavy alcohol                                                                                                                                                |
|       | (Problem to be solved)      | usage, exposure to dangerous gases, and use of<br>contaminated food. Health Care Professionals<br>need to obtain patient samples to identify the<br>liver disease, which could be expensive both |
|       |                             | money and time. The key problem is doctor cannot provide a diagnosis based on test variation results.                                                                                            |
| 2.    | Idea / Solution description | The application will accurately and quickly identify which individuals have liver disease                                                                                                        |
|       |                             | and which ones do not by using patient records that include blood test report results.                                                                                                           |

| 3. | Novelty / Uniqueness                     | To predict the presence of Liver disease with high efficiency. Instead of using individual classifier algorithms, an ensemble model that combines KNN, DT, RF is used to increase accuracy. Model is deployed using Heroku cloud platform. |
|----|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4. | Social Impact / Customer<br>Satisfaction | The proposed system will make socially healthy living by decreasing mortality rate. It is also helpful for the doctors to get patients treated at the earliest.                                                                            |
| 5. | Business Model (Revenue Model)           | <ul> <li>Health Care Sector (Hospitals).</li> <li>Can generate revenue through direct customers.</li> <li>Can collaborate with health care sector and generate revenue from their customers.</li> </ul>                                    |
| 6. | Scalability of the Solution              | It is cost effective and user friendly.                                                                                                                                                                                                    |

#### PROBLEM SOLUTION FIT

| Pr                      | oblem-Solution fit canvas 2.0                                                                                                                                                         | To understand the solution proposed in coherence to the pro-                                                                                                                                                                         | oie:n statement                                                                                                                                                                  |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D⊶fine CS, fit into CC  | 1. CUSTOMER SEGMENT(S)  People (patients/doctors) who wants to know whether he/she has liver disease or not                                                                           | should not consume alcohol, drugs, tobacco etc.     Avoid smoking     Maintain a balan ed diet and do exercise.     Keep track of blood sugar level                                                                                  | 5. AVAILABLE SOLUTIONS  • Liver Biopsy • Liver transplant • Biood testing/ Imaging Festing • Bioonarkers.                                                                        |
|                         | 2. JOBS-TO-BE-DONE / PROBLEMS  • T.oss of appetite • Skin and eyes that appear yellowish (Jaundice). • Abdominal pain and swellin g. • Swelling in the legs and ankles. • Itchy skin. | 9. PROBLEM ROOT CAUSE  • Family history of Liver disease  • Heavy consumption of alcohols/drugs.  • Fat accumulation in the liver  • Due to obesity.  • Increase in blood sugar level (Type 2 diabetes)                              | Make an appointment with your doctor if he/she has any persistent signs or symptoms     Consult local medical authority for advice.     Follow the proper diet                   |
| Identify strong TR & EM | 3. TRIGGERS Pain in the joints and apper right part of the belly triggers patients to consult a doctor.  4. EMOTIONS: BEFORE / AFTER                                                  | 10. YOUR SOLUTION  An application which uses ensemble machine learning model by combining K-Nearest Neighbours, Decision Tree, Random Forest to quickly identify whether the patient is having liver disease or not more accurately. | 8. CHANNELS of BEHAVIOUR 8.1 ONLINE Patients can get their results as per their input data in online.  8.2 OFFLINE Designate can appeal the top about a standard as the popular. |
| Identify                | <ul> <li>Before: Doubt, ambiguous, stressed, disoriented.</li> <li>After accurate prediction: Happiness, determined, explicit calmness.</li> </ul>                                    |                                                                                                                                                                                                                                      | Patients can consult doctor based on the results.                                                                                                                                |

# REQUIREMENT ANALYSIS

#### **4.1 FUNCTIONAL REQUIREMEN**

| FR<br>No. | Functional<br>Requirement (Epic)                  | Sub Requirement<br>(Story / Sub-Task)                                                                                          |
|-----------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| FR-1      | Patients with symptoms of<br>Liver disease        | Patient having liver disease dataset contains age of the patient, gender, Alkaline Phosphotase, Total Bilirubin etc.           |
| FR-2      | Predicting the liver disease using Ensemble model | Machine Learning                                                                                                               |
| FR-3      | Pre-processing of liver disease dataset           | Principal Component Analysis (PCA)                                                                                             |
| FR-4      | Ensemble Model Training                           | K-Nearest Neighbours, Decision Tree,<br>Random Forest                                                                          |
| FR-5      | Model Evaluation                                  | Predicting the accuracy of our ensemble model and comparing it with other algorithms such as Support Vector Machine (SVM) etc. |
| FR-6      | Model Deployment                                  | Deploying the Machine learning model in cloud platform.                                                                        |

#### **4.2 NON-FUNCTIONAL REQUIREMENTS**

| FR    | Non-Functional |                                                                                                                                                             |
|-------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.   | Requirement    | Description                                                                                                                                                 |
| NFR-1 | Usability      | The system provides a natural interaction with the users. It is user-friendly.                                                                              |
| NFR-2 | Security       | The model enables with the high security system, as the user's data won't be shared to the other sources. Only the authorised person can access the system. |

| NFR-3 | Reliability  | As the system is build using a rich Ensemble model, mostly all the user input can be processed without failure in 95 per cent of use cases and since all the processing are done on cloud, the system is consider to be highly reliable. |
|-------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NFR-4 | Performance  | Our system should run on 32 bit (x86) or 64 bit (x64) Dual-core 2.66-GHZ or faster processor.                                                                                                                                            |
| NFR-5 | Availability | The system should be available for the duration of the user access, until the user terminate the access. The system response to request of the user in less time and the recovery is done is less time.                                  |
| NFR-6 | Scalability  | It provides an efficient outcome and has the ability to increase or decrease the performance of the system based on the datasets. It is cost effective and user friendly.                                                                |

#### **PROJECT DESIGN**

#### 5.1 DATA FLOW DIAGRAM



#### **5.2 SOLUTION & TECHNICAL ARCHITECTURE**

# SYSTEM ARCHITECTURE



#### **5.3 USER STORIES**

Use the below template to list all the user stories for the product.

| User<br>Type                  | Functional<br>Requirement<br>(Epic) | User<br>Story<br>Number | User Story / Task                                                                                             | Acceptance<br>criteria                                                                                                  | Priority | Release  |
|-------------------------------|-------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------|----------|
| Customer<br>(Mobile<br>user)  | Registration                        | USN-1                   | As a user, I can register for the application by entering my email, password, and confirming my password.     | I can access<br>my account /<br>dashboard                                                                               | High     | Sprint-1 |
|                               |                                     | USN-2                   | As a user, I will receive confirmation email once I have registered for the application                       | I can receive<br>confirmation<br>email & click<br>confirm                                                               | High     | Sprint-1 |
|                               |                                     | USN-3                   | As a user, I can register for the application through website                                                 | I can register the website                                                                                              | Low      | Sprint-1 |
|                               | Login                               | USN-4                   | As a user, I can log into the application by entering email & password                                        | I can login into the website                                                                                            | Medium   | Sprint-2 |
|                               | Dashboard                           | USN-5                   | As a user, I can access dashboard                                                                             | I can get into the dashboard                                                                                            | High     | Sprint-2 |
| Customer<br>(web user)        |                                     | USN-6                   | As a user, I can predict accurate presence of liver disease based on liver enzymes, proteins, age and gender. | I can predict<br>accurate<br>presence of<br>liver disease<br>based on liver<br>enzymes,<br>proteins, age<br>and gender. | High     | Sprint-1 |
| Customer<br>Care<br>Executive |                                     | USN-7                   | As a user, I can get support from admin in case of any issues and also some recommendations.                  | I can get<br>support from<br>admin in case<br>of any issues<br>and also some<br>recommendati<br>ons.                    | High     | Sprint-3 |
| Administr<br>ator             |                                     | USN-8                   | Get all issues solved whatever the issue is.                                                                  | I can get all<br>issues solved<br>whatever the<br>issue is mostly<br>regarding<br>prediction.                           | High     | Sprint-4 |

#### PROJECT PLANNING AND SCHEDULING

#### **6.1 SPRINT PLANNING AND ESTIMATION**

| Sprint                                         | Function<br>al<br>Require<br>ment<br>(Epic) | User<br>Story<br>Number | User Story / Task                                                                                                  | Story<br>Points | P r i o r t                          | Team<br>Members                    |
|------------------------------------------------|---------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------|------------------------------------|
| Sprint-1                                       | Registrat<br>ion                            | USN-1                   | As a user, I can register for<br>the application by entering<br>my email, password, and<br>confirming my password. | 5               | y<br>High                            | Kasiprasath<br>K                   |
| Sprint-1                                       |                                             | USN-2                   | As a user, I will receive confirmation email once I have registered for the application                            | 5               | High                                 | Sathiyanatha<br>n M                |
| Sprint-1                                       | Login                                       | USN-3                   | As a user, I can log into the application by entering email & password                                             | 10              | High                                 | Sathiyanatha<br>n M                |
| Sprint-2                                       | Input<br>Necessa<br>ry<br>Details           | USN-4                   | As a user, I can give Input Details to Predict Likeliness of Liver Disease.                                        | 15              | High                                 | Sathiyanatha<br>n M                |
| Sprint-2                                       | Data preproc essing                         | USN-5                   | Transform raw data into suitable format for prediction.                                                            | 5               | High                                 | Hemachandr<br>an M                 |
| Sprint-3                                       | Predicti<br>on of<br>Liver<br>Disease       | USN-6                   | As a user, I can predict<br>Liver Disease using<br>machine learning model.                                         | 15              | High                                 | Kasiprasath<br>K                   |
| Sprint-3                                       |                                             | USN-7                   | As a user, I can get accurate prediction of liver disease.                                                         |                 | Mediu<br>m                           | Manikandan<br>D                    |
| Sprint-4                                       | Review                                      | USN-8                   | As a user, I can give feedback of the application.                                                                 | 20              | High                                 | Kasiprasath<br>K                   |
| Project<br>Fracker,<br>Velocity &<br>Burn down | Total<br>Story<br>Points                    | Duration                | Sprint Start Date                                                                                                  | Sprint<br>End   | Story<br>Points<br>Comple<br>ted (as | Sprint<br>Release<br>Date (Actual) |

| Chart: (4     |    |        |             | Date   | on      |             |
|---------------|----|--------|-------------|--------|---------|-------------|
| Marks) Sprint |    |        |             | (Plann | Planned |             |
|               |    |        |             | ed)    | End     |             |
|               |    |        |             |        | Date)   |             |
| Sprint-1      | 20 | 6 Days | 24 Oct 2022 | 29 Oct | 18      | 29 Oct 2022 |
|               |    |        |             | 2022   |         |             |
| Sprint-2      | 20 | 6 Days | 31 Oct 2022 | 05     | 17      | 05 Nov 2022 |
|               |    |        |             | Nov    |         |             |
|               |    |        |             | 2022   |         |             |
| Sprint-3      | 20 | 6 Days | 07 Nov 2022 | 12     | 18      | 12 Nov 2022 |
|               |    |        |             | Nov    |         |             |
|               |    |        |             | 2022   |         |             |
| Sprint-4      | 20 | 6 Days | 14 Nov 2022 | 16     | 17      | 16 Nov 2022 |
|               |    |        |             | Nov    |         |             |
|               |    |        |             | 2022   |         |             |

#### **Velocity:**

Imagine we have a 6-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

#### **AV=Sprint duration/velocity = 6/20=0.3**

#### **Burn down Chart:**

#### **BURNDOWN CHART**



#### **CODING & SOLUTIONING**

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pickle
from sklearn.model_selection import train_test_split, StratifiedKFold, GridSearchCV
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, confusion_matrix,classification_report
```

```
data=pd.read_csv('/content/indian_liver_patient.csv')

data.info()

def partition(x):
    if x=='Male':
        return 1
    return 0
    data['Gender']=data['Gender'].map(partition)

def partition(x):
    if x==2:
        return 0
    return 1
```

```
data['Dataset']
```

data['Dataset']=data['Dataset'].map(partition)

```
x=data.drop(columns='Dataset',axis=1)
y=data['Dataset']
from sklearn.model_selection import train_test_split
x\_train,x\_test,y\_train,y\_test=train\_test\_split(x,y,test\_size=0.3,stratify=y,random\_state=42)
print(x.shape,x_train.shape,x_test.shape)
(1636, 10) (1145, 10) (491, 10)
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
xtrain=sc.fit_transform(x_train)
xtest=sc.transform(x_test)
\label{lem:def-my_confusion_matrix} \mbox{\tt def-my\_confusion\_matrix} (\mbox{\tt y\_test, y\_pred, plt\_title, accuracy\_title}) :
     cm=confusion_matrix(y_test, y_pred)
     print(f'{accuracy_title} accuracy score:', '{:.2%}'.format(accuracy_score(y_test, y_pred)))
     print(classification_report(y_test, y_pred))
     sns.heatmap(cm, annot=True, fmt='g', cbar=False, cmap='BuPu')
     plt.xlabel('Predicted Values')
     plt.ylabel('Actual Values')
     plt.title(plt_title)
     plt.show()
     return cm
 "n_estimators":[100,300],
"criterion":["gini"])
classifier_param = [knn_param_grid,
                 dt param grid,
                rf_param_grid,
 cv_result = []
 best_estimators = []
 Desc_eathmetors = []
for i in range(len(classifier)):
    clf = GridSearchCV(classifier[i], param_grid=classifier_param[i], cv = StratifiedKFold(n_splits = 10), scoring = "accuracy", n_jobs = -1, verbose
    clf.fit(x_train,y_train)
    cv_result.append(clf.best_score_ * 100)
    best_estimators.append(clf.best_estimator_)
print(cv_result[i])
cv_results = pd.DataFrame({"Cross Validation Means":cv_result, "ML Models":[ "KNeighborsClassifier", "Decision Tree Classifier",
            "Random Forest Classifier",
           1})
g = sns.barplot("Cross Validation Means", "ML Models", data = cv_results)
g.set_xlabel("Mean Accuracy")
g.set_title("Cross Validation Scores")
```

21

```
knn = KNeighborsClassifier(n_neighbors = 9)
knn.fit(x_train, y_train)
y_head_knn = knn.predict(x_test)

dt=DecisionTreeClassifier()
dt.fit(x_train,y_train)
y_head_dt = dt.predict(x_test)

rf = RandomForestClassifier(n_estimators = 250, random_state = 1)
rf.fit(x_train,y_train)
y_head_rf = rf.predict(x_test)
```

#### **TESTING**

#### 8.1 TEST CASES



#### **8.2** User Acceptance Testing

|                         |              |                      | ***************************************                                                               |                                                                                                                                                                                                                                                         | 200       | 1                                                                                                                                                                                                                    |                           |        |
|-------------------------|--------------|----------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------|
| Test Case ID            | Feature Type | Component            | Test Scenario                                                                                         | Steps To Execute                                                                                                                                                                                                                                        | Test Data | Expected Result                                                                                                                                                                                                      | Actual Result             | Status |
| HomePage_<br>TC_OO1     | Functional   | Home Page            | Verify user is able to<br>see the Login/Signup<br>popup when user<br>clicked on User<br>accountbutton | 1. Click on User<br>Account icon<br>2. Verify<br>login/Signuppopup<br>displayed or<br>not                                                                                                                                                               | ¥         | Login/Signup<br>popupshould<br>display                                                                                                                                                                               | Working<br>as<br>expected | Pass   |
| RegisterPage<br>_TC_OO1 | UI           | Registration<br>Page | Verify the UI elements<br>in Register/Signup page                                                     | 1.Enter URL and clickgo 2.Click on User Account dropdown button 3.Verify Register/Signup popup with below UI elements: a.name text box b. email text box c. phone number text box d. password text box e.occupation text box f. Already a member? login |           | Application should<br>show below UI<br>elements:<br>a.name text box<br>b.email text box<br>c.phone number<br>textbox<br>d.password text box<br>e.occupation text<br>box<br>f.Already have an<br>account? Click login | Working<br>as<br>expected | Pass   |

| RegisterPage<br>_TC_OO2 | Functional | Registration<br>Page | Verify the users<br>entering the unique<br>email                               | 1.Click on User<br>Account dropdown<br>button<br>2.Verify<br>Register/Signup page<br>accepts only unique<br>email                                                                                              | -                                              | Application should<br>allow only unique<br>email address                                                                                                                | Working<br>as<br>expected | Pass |
|-------------------------|------------|----------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------|
| RegisterPage<br>_TC_OO2 | Functional | Registration<br>Page | Verify that the user can<br>able to register with<br>valid credentials         | 1.Click on User<br>Account dropdown<br>button<br>2.Click<br>Register/Signuppopup<br>a.Enter name<br>b.Enter email<br>c.Enter phone number<br>d.Enter password<br>e.Enter occupation<br>f.Click Register button | -                                              | User should navigate to sign in page                                                                                                                                    | Working<br>as<br>expected | Pass |
| LoginPage_<br>TC_OOI    | UI         | Login page           | Verify the UI elements<br>in Login/Sign in page                                | 1. Click on User Accountdropdown button 2. Verify login/Signup popup with below UI elements: a.email text box b.password text box c.Login button d.Not a member? Create account                                | -                                              | Application should<br>show below UI<br>elements:<br>a.email text box<br>b.password text<br>boxe.Login button<br>with orange color<br>d. Not a member?<br>Create account | Working<br>as<br>expected | Pass |
| LoginPage_<br>TC_002    | Functional | Login page           | Verify user is able to<br>loginto application with<br>Valid credentials        | 1.Click on User Account dropdown button andclick on sign in/login pop up 2.Enter Valid email in Email text box 3.Enter valid password in password text box 4.Click on login button                             | Email:<br>123@gmail.com<br>password:<br>123456 | User should navigate to Prediction page                                                                                                                                 | Working<br>as<br>expected | Pass |
| LoginPage_<br>TC_OO3    | Functional | Login page           | Verify user is not able<br>to log into application<br>with Invalid credentials | 1.Click on User<br>Accountdropdown<br>button andclick on<br>sign in/login pop up<br>2.Enter Invalid email<br>in Email text box<br>3.Enter valid password                                                       | Email:<br>12@gmail.com<br>password:<br>123456  | User will be at the<br>same page without<br>navigating                                                                                                                  | Working<br>as<br>expected | Pass |

|                                |            |                    |                                                                                        | in password text box<br>4.Click on login<br>button                                                                                                                                                                         |                                            |                                                                                                                                            |                           |      |
|--------------------------------|------------|--------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------|
| LoginPage_<br>TC_OO4           | Functional | Login page         | Verify user is not able<br>to log into application<br>with Invalid credentials         | 1.Click on User Account dropdown button and click on sign in/login pop up 2.Enter Valid username/email in Email text box 3.EnterInvalid password in password text box 4.Click on login button                              | Email:123@gmai<br>l.com<br>password: 12345 | User will be at the<br>same page without<br>navigating                                                                                     | Working<br>as<br>expected | Pass |
| Prediction_P<br>age_TC_OO<br>1 | UI         | Prediction page    | Verify user is able to<br>see the prediction form,<br>prediction and go back<br>button | 1.Click on User<br>Account dropdown<br>button<br>2.Enter Valid email in<br>Email text box<br>3.Enter valid password<br>in password text box<br>4.Click on login button                                                     |                                            | Application should<br>navigate to<br>Prediction page and<br>user can able to view<br>the prediction form,<br>predict and go back<br>button | Working<br>as<br>expected | Pass |
| Prediction_Pag<br>e_TC_OO2     | UI         | Prediction page    |                                                                                        | 1.Click on User Account dropdown button Linter Valid email in Email text box 3.Enter valid password in password in password text box 4.Click on login button 5. Verify Prediction form popup with below UI elements: a.Age |                                            | User can able to enter<br>the details in<br>prediction form                                                                                | Working as<br>expected    | Pass |
|                                |            |                    |                                                                                        | b.Gender<br>c.Total Bilirubin                                                                                                                                                                                              |                                            |                                                                                                                                            |                           |      |
|                                |            |                    |                                                                                        | d.Direct Bilirubin e.Alkalin Phosphate f.Alamine Amino Transferase g.Aspartate Amino Trandferase h.Total proteins i.Albumin j.Albumin Globulin Ratio                                                                       |                                            |                                                                                                                                            |                           |      |
| Prediction_Page_TC_OO3         | Functional | Prediction<br>Page | Verify user is able to click<br>the predict button                                     | 1. Click on User Accountdropdown button 2. Enter Valid email in Email text box 3. Enter valid password in password text box 4. Click on login button 5. Enter details in Prediction form 6. Click on predict button        |                                            | User Should navigate<br>to Predicted result<br>page                                                                                        | Working as expected       | Pass |
| Prediction_Pag<br>e2_TC_OO1    | Functional | Prediction<br>page | Verify user is able to click<br>the Home and Predict<br>Again button                   |                                                                                                                                                                                                                            |                                            | User should navigate<br>to login page after<br>clicking on Home<br>button and prediction<br>page after clicking on<br>Predict Again button | Working as<br>expected    | Pass |

#### **8.2.1 DEFECT ANALYSIS**

| Resolution        | Severity 1 | Severity 2 | Severity 3 | Severity 4 | Total |
|-------------------|------------|------------|------------|------------|-------|
| By Design         | 1          | 0          | 1          | 0          | 2     |
| Duplicate         | 0          | 0          | 0          | 0          | 0     |
| External          | 0          | 0          | 2          | 0          | 2     |
| Fixed             | 4          | 1          | 0          | 1          | 6     |
| Not<br>Reproduced | 0          | 0          | 0          | 1          | 1     |
| Skipped           | 0          | 0          | 0          | 1          | 1     |
| Won't Fix         | 1          | 0          | 1          | 0          | 2     |
| Total             | 6          | 1          | 4          | 3          | 14    |

#### **8.2.2 TEST CASE ANALYSIS**

| Section             | Total<br>Cases | Not<br>Tested | Fail | Pass |
|---------------------|----------------|---------------|------|------|
| Client Application  | 10             | 0             | 3    | 7    |
| Security            | 2              | 0             | 1    | 1    |
| Performance         | 3              | 0             | 1    | 2    |
| Exception Reporting | 2              | 0             | 0    | 2    |

# CHAPTER 9 RESULTS

#### **9.1 PERFORMANCE METRICS**



83]: best\_estimators

| Ensemble | Mode | l accuracy | score: 95. | 93%      |         |
|----------|------|------------|------------|----------|---------|
|          |      | precision  | recall     | f1-score | support |
|          | 0    | 0.92       | 0.94       | 0.93     | 142     |
|          | 1    | 0.98       | 0.97       | 0.97     | 349     |
| accur    | acy  |            |            | 0.96     | 491     |
| macro    | avg  | 0.95       | 0.95       | 0.95     | 491     |
| weighted | avg  | 0.96       | 0.96       | 0.96     | 491     |



#### **OUTPUT SCREENSHOT FOR LIVER DISEASE**

#### Login



#### Register



#### **Database Code**



#### **Prediction**



Result : No Chance Page



### **Chance Page**



# CHAPTER 10 ADVANTAGES & DISADVANTAGES

#### **ADVANTAGES**

- Results are projected in a matter of seconds after entering the information. In contrast to the conventional procedure, you don't need to wait for a doctor to arrive.
- The application will accurately and quickly identify which individuals have liver disease.
- The performance classification of liver based diseases is further improved in our proposed ensemble model.
- Risky factors can be predicted early by machine learning models.

#### **DISADVANTAGES**

- Some approaches are not adoptable for real time collection of database implementation.
- Certain approaches being applicable only for small data.
- Certain combination of classifier over fit with data set while others are under fit.

# CHAPTER 11 CONCLUSION

The ageing of the population and the rise in the incidence and prevalence of chronic diseases result in an increased risk of liver disease-related hospitalisation or death. This is notably high for people who have several diseases, which results in large resource consumption. Finding potential high-risk patients is the biggest difficulty in order to increase the quality of medical care and cut expenditures. The main goal of the research is to put ensemble algorithms, such as K-Nearest Neighbours, Random Forest, and Decision Tree, into practise in order to forecast the likelihood of hospitalisation or mortality starting from administrative and socioeconomic information. Our goal is to get prediction on the basis of given datasets of people whether the person is having the chronic disease or liver disease symptoms or not. This system will be very useful for many hospitals and even professional doctors to easily detect the disease. Also, general user can use this system for their finding out the disease. This system will change the way and can be early as possible as it will lead to save the person's life. This whole work is focused on how we can predict the disease by given datasets so that will help in preventing and curing the disease of the patients.

# CHAPTER 12 FUTURE SCOPE

This project can be further developed by establishing an alarm system for the patient's relatives and doctor according to the risk level. Deep learning algorithms can be used to enhance the performance. However, in future we are planning to collect the very recent data from various regions across the world for liver disease prediction.

#### **APPENDIX**

#### **SOURCE CODE**

#### **MODEL CREATION**

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pickle
from sklearn.model_selection import train_test_split, StratifiedKFold, GridSearchCV
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, confusion_matrix,classification_report
```

```
dataset = pd.read_csv("C:/Users/ADMIN/Desktop/Sprint 1/indian_liver_patient.csv")
```

```
data.info()
```

```
def partition(x):
    if x=='Male':
        return 1
    return 0
data['Gender']=data['Gender'].map(partition)
```

```
def partition(x):
    if x==2:
        return 0
    return 1
data['Dataset']=data['Dataset'].map(partition)
```

```
data['Dataset']
```

```
x=data.drop(columns='Dataset',axis=1)
y=data['Dataset']
from sklearn.model_selection import train_test_split
x\_train, x\_test, y\_train, y\_test=train\_test\_split(x, y, test\_size=0.3, stratify=y, random\_state=42)
print(x.shape,x train.shape,x test.shape)
(1636, 10) (1145, 10) (491, 10)
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
xtrain=sc.fit_transform(x_train)
xtest=sc.transform(x_test)
def my_confusion_matrix(y_test, y_pred, plt_title, accuracy_title):
     cm=confusion_matrix(y_test, y_pred)
     print(f'{accuracy_title} accuracy score:', '{:.2%}'.format(accuracy_score(y_test, y_pred)))
     print(classification_report(y_test, y_pred))
     sns.heatmap(cm, annot=True, fmt='g', cbar=False, cmap='BuPu')
     plt.xlabel('Predicted Values')
     plt.ylabel('Actual Values')
     plt.title(plt_title)
     plt.show()
     return cm
 best estimators = []
 Desc_estimators = []
for in range(len(classifier)):
    clf = GridSearchCV(classifier[i], param_grid=classifier_param[i], cv = StratifiedKFold(n_splits = 10), scoring = "accuracy", n_jobs = -1,verbose
    clf.fit(x_train,y_train)
    cv_result.append(clf.best_score_ * 100)
    best_estimators.append(clf.best_estimator_)
    print(cv_result[i])
cv_results = pd.DataFrame({"Cross Validation Means":cv_result, "ML Models":[ "KNeighborsClassifier", "Decision Tree Classifier",
           "Random Forest Classifier",
g = sns.barplot("Cross Validation Means", "ML Models", data = cv_results)
g.set_xlabel("Mean Accuracy")
g.set_title("Cross Validation Scores")
```

36

```
knn = KNeighborsClassifier(n_neighbors = 9)
knn.fit(x_train, y_train)
y_head_knn = knn.predict(x_test)
dt=DecisionTreeClassifier()
dt.fit(x_train,y_train)
y_head_dt = dt.predict(x_test)
rf = RandomForestClassifier(n_estimators = 250, random_state = 1)
rf.fit(x_train,y_train)
y_head_rf = rf.predict(x_test)
votingC = VotingClassifier(estimators = [("knn",best_estimators[0]),
                                        ("dt",best_estimators[1]),
                                        ("rf",best_estimators[2])],
                                        voting = "hard", n_jobs = -1)
votingC = votingC.fit(x_train, y_train)
y_pred=votingC.predict(x_test)
my_confusion_matrix(y_test, y_pred, 'Ensemble Model CM', 'Ensemble Model')
```

# FLASK APP

```
from flask import Flask, render_template, request, redirect, session, url_for
from flask mail import Mail, Message
       from itsdangerous import URLSafeTimedSerializer, SignatureExpired
      import mysql.connector
       from flask import url_for
      from flask login import UserMixin, login_user, LoginManager, login_required, logout_user, current_user
      from flask_mysqldb import MySQL
11
      app = Flask(__name__)
      app.secret_key=os.urandom(24)
app.config[MYSQL_HOST'] = 'localhost'
app.config['MYSQL_USER'] = 'root'
app.config['MYSQL_PASSWORD'] = 'Sathi@251'
13
15
17
       app.config['MYSQL_DB'] = 'liver'
18
      mysql = MySQL(app)
20
22
      def login():
    return render_template('login.html')
24
      @app.route('/register/')
25
          return render_template('register.html')
27
       @app.route('/home')
29
       def home():
            if 'Email' in session:
31
                return render_template('form.html')
32
33
                return redirect('/')
34
      @app.route('/login_validation',methods=['POST'])
def login_validation():
36
37
38
           Email=request.form.get('Email')
          Password=request.form.get('Password')
           if mysql:
    print("Connection Successful!")
42
                cursor = mysql.connection.cursor()
               Cursor.eventhe/ (variable) cursor: Any where `Email` LIKE '{}' and `Password` LIKE '{}'""".format(Email, Password))
               users = cursor.fetchall()
45
                cursor.close()
47
          else:
              print("Connection Failed!")
          if len(users)>0:
    session['Email'] = users[0][1]
    return redirect('/home')
53
54
55
56
              return redirect('/')
      @app.route('/liver',methods=['POST'])
58
      def liver():
    username=request.form.get('Username')
59
60
61
          email = request.form.get('Email')
password = request.form.get('Password')
phone = request.form.get('Phonenumber')
62
63
64
           if mvsal:
               print("Connection Successful!")
                cursor = mysql.connection.cursor()
67
               cursor.execute(
    """INSERT INTO `accounts` (`Username`, `Email`, `Phonenumber`, `Password`) VALUES ('{}','{}','{}','{}','','','''"".format(username,email, phone,password))
                mysql.connection.commit()
69
               cursor.close()
              print("Connection Failed!")
72
          return "User Registered Successfully."
75
76
```

```
@app.route('/logout')
8
    def logout():
9
       session.pop('Email')
       return redirect('/')
0
   @app.route('/form',methods=['POST'])
    def form():
2
       print("HOME")
3
4
       return redirect('/home')
5
    @app.route('/predict', methods=['POST'])
6
    def predict():
        age = request.form['age']
8
        gender = request.form['gender']
9
0
        tb = request.form['tb']
        dbi = request.form['dbi']
1
2
        ap = request.form['ap']
        aa1 = request.form['aa1']
3
4
        aa2 = request.form['aa2']
5
        tp = request.form['tp']
        a = request.form['a']
7
        agr = request.form['agr']
8
        if gender == "Male":
9
           gender = 1
0
        else:
1
          gender = 0
        data = [[float(age),
2
3
                float(gender),
4
                float(tb),
5
                float(dbi),
6
                float(ap),
                float(aa1),
                float(aa2),
8
9
                float(tp),
0
                float(a),
               float(agr)]]
1
2
        model = pickle.load(open('liver1.pkl', 'rb'))
       prediction = model.predict(data)
      if (prediction == 1):
           return render_template('noChance.html',
                      prediction='You don\'t have disease.')
       else:
           return render_template('chance.html',
              prediction='Oops.You have Liver Disease.')
```

if \_\_name\_\_=="\_\_main\_\_":
 app.run(debug=True)

### Login (HTML)

</html>

```
<!doctype html>
<html lang="en">
                 chead>
<!-- Required meta tags -->
cmeta charset="utf-8">
cmeta charset="utf-8">
cmeta name="viewport" content="width-device-width, initial-scale=1, shrink-to-fit=no">
cmeta name="viewport" content="width-device-width, initial-scale=1, shrink-to-fit=no"
cmeta name="viewport" content="width-device-width, initi
            .row{
margin-top:20px;
               card-body{
background-color: ■black;
color: □cyan;
border-radius: 20px;
             </style>
  <!-- Bootstrap CSS -->
  <!-- Bootstrap CSS -->
  <!i k rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@4.3.1/dist/css/bootstrap.min.css" integrity="sha384-ggoyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhckr7x9Jv0RXTZMC
</pre>
                     <title>Liver Disease predictor</title>
             39
                                             <div class="col-md-8">
                                                  <h1 class="text-light display-15 mt" style="font-size:80px"> Liver Disease Predictor.</h1>
       40
                                            </div>
      41
                                            <div class="col-md-4">
      42
                                                       <div class="card">
       43
                                                            <div class="card-body">
       45
                                                                  <form class="form" method="post" action="/login_validation">
       46
                                                                        <label>Email</label><br>
       47
                                                                        <input type = "email" class="form-control" name="Email"><br>
                                                                        <label>Password</label><br>
       48
                                                                        <input type="password" class="form-control" name="Password"><br><br>
       49
                                                                      <input type="submit" class="btn btn-primary btn-block btn-lg" value="Login" >
       50
       51
                                                                 </form>
       52
                                                                        Not a member? <a href="/register/">Create Account</a>
       53
                                                             </div>
                                                       </div>
                                            </div>
       56
                                      </div>
       57
                                </div>
                      </div>
       58
       59
      60
                           </body>
      61
```

### **Register (HTML)**

```
| floctype html>
| change | ch
```

```
</div>
      <div class="col-md-4">
          <div class="card" style="margin-top: 10px">
           <div class="card-body">
  <form method="post" action="/liver">
               <label>Username</label><br>
               <input type = "text" class="form-control" name="Username" required><br>
               <label>Email</label><br>
               <input type = "email" class="form-control" name="Email" required><br>
               <label>Phone Number</label><br>>
               <input type = "number" class="form-control" name="Phonenumber" required><br>
               <label>Password</label><br>
               <input type="password" class="form-control" name="Password" required ><br><br>
               <input type="submit" class="btn btn-primary btn-block btn-lg" value="Register" required>
               Already a member? <a href="http://127.0.0.1:5000/">Login</a>
            </div>
          </div>
      </div>
     </div>
   </div>
</div>
 </body>
</html>
```

### Form (HTML)

```
k!DOCTYPE html>
<html lang="en">
      <head>
          <meta charset="UTF-8">
          10
11
12
13
14
15
16
           <style>
               .form-control
19
20
                    width: 350px;
                    height: 30px;
                   border-radius: 40px;
border: 2px solid □cyan;
text-align: center;
22
23
24
25
26
27
28
29
               .form-control1
                    width: 350px;
                   width: 350px;
height: 30px;
border-radius: 20px;
border: 2px solid  cyan;
text-align: center;
31
32
33
34
35
               .gender_selection
37
38
```

```
background-color: □white;
           color: ■black;
       .male
           margin: 10px;
       .female
           margin: 20px;
       .container {
   height: 95%;
   width: 100%;
   margin: 20px auto;
   background-color: ■black;
   border: 3px solid □white;
   padding: 10px;
   border-radius: 10px;
   color: □ cyan;
.formfields {
   margin: 0%;
   padding: 0%;
   list-style-type: none;
   height: 100%;
   width: 100%;
   display: flex;
   flex-direction: column;
   justify-content: space-around;
   align-items: center;
```

```
77
  78
  79
                 .fields {
  80
  81
                          height: 100%;
                         width: 100%;
  82
                          display: flex;
  83
  84
                          justify-content: space-between;
                          align-items: center;
  85
  86
                         font-size: x-large;
  87
  88
  89
                 .gender_selection{
  90
                          display: block;
  91
                          justify-content: space-between;
  92
  93
                 .fields input {
  94
                         margin: 0%;
  95
                          padding: 0%;
                          font-size: large;
  96
  97
                          border-radius: 5px;
  98
 99
100
                .buttons {
                          display: flex;
101
102
                          align-self: flex-end;
103
                          margin: 20px 0px 20px 20px;
104
105
106
107
                         margin-left: 120px;
108
                          font-size: large;
109
                          display: block;
110
                          width: 150px;
                          height: 45px;
111
                          border-radius: 10px;
112
                         background-color: ■black;
113
             border-bottom: 2px solid □cyan;
              </style>
      </head>
              <div class="content">
                       <h1 style="color: ■black;"> Liver Disease Prediction</h1>
                      <form class="container" action="/predict" method="post">

      class="fields">
                                              <label for="age">Age:</label></br>
<input type="text" id="age" name="age" placeholder=" Age" class="form-control" required>
                                        <br>
                                       </div>
                                        <br>
                                       <input type="text" id="tb" name="tb" placeholder="Total Bilirubin" class="form-control"required>
                                        <br>

<
                                        <br>
                                        class= Tells /
dalabel for="ap">
clabel for="ap">
clabel for="ap">
clabel for="ap">
clabel for="ap">
clabel for="ap"
class="form-control" required>
cl
                                       <br> class="fields">
                                                <label for="aa1">Alamine AminoTransferase:</label><br>
```

```
<label for="aa1">Alamine AminoTransferase:</label><br><input type="text" id="aa1" name="aa1" placeholder="Alamine AminoTransferase" class="form-control" required>
                  <br>

<
                  <br>
                 class="fields">
</label for="tp">Total Proteins:</label><bre>
                      <input type="text" id="tp" name="tp" placeholder="Total Proteins" class="form-control" required>
                  <input type="text" id="a" name="a" placeholder="Albumin" class="form-control" required>

                  <br>
             <div class="buttons">
                 <form action="/">
                     <button class="button"> Go Back </putton>
                 </form>
                 .
<input type="submit" class="button" value="Predict">
             </div>
         </form>
    </div>
</body>
</html>
```

### **Chance (HTML)**

```
clockType html>
chtml lang="en">

chtml lang="en">

chead>

cmeta charset="UTF-8">
cmeta charset="UTF-8">
cmeta http-equiv="X_UA_Compatible" content="IE=edge">
cmeta nane="visport" content="width-device-width, initial-scale=1.0">
citile>bocoumentc/fitle>
clink rel="preconnect" href="https://fonts.googleapis.com">
clink rel="preconnect" href="https://fonts.gotatic.com" crossorigin>
clink href="https://fonts.googleapis.com/css2?family=ubuntukdisplay=swap" rel="stylesheet">

cstyle>

body

f background-color: RGB(6, 206, 251);

button {

margin: 20xp auto;
}

button {

font-size: large;
display: block;
width: 150xx;
height: 45xx;
height: 45xx;
border-radius: 10px;
border-radius: 10px;
border-radius: 10px;
border-radius: 20xp auto;

border-bottom: 2px solid @cyan;

button!

angin: 20xp auto;
}

button!

button!

angin: 20xp auto;
}

button!

button!

button!

angin: 20xp auto;

button!

button!

button!

button!

angin: 20xp auto;

button!

b
```

```
font-size: large;
   display: block;
   width: 150px;
   height: 45px;
   border-radius: 10px;
   background-color: ■black;
   color: □ cyan;
   border-bottom:2px solid □cyan;
   float: right;
   margin-top: -60px;
  .buttons {
   display: flex;
   align-self: flex-end;
   margin: 20px 0px 20px 20px;
  h1
   text-align: center;
 .img {
 display: block;
 margin-left: auto;
 margin-right: auto;
   </style>
</head>
<body>
   <h1 style="color: □white;">You have disease</h1>
   <form action="/home">
       <button class="button"> Home</button>
   </form></br>
   <form action="http://127.0.0.1:5000/home?">
       <button class="button1"> Predict Again
        <button class="button1"> Predict Again
    </form>
    <div class="container">
        <img src="{{url_for('static', filename='Images/sad.jpg')}}" class="img" />
    </div>
</body>
</html>
```

## **No Chance (HTML)**

```
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Document</title>
    rel="preconnect" href="https://fonts.googleapis.com">
k rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
    <link href="https://fonts.googleapis.com/css2?family=Ubuntu&display=swap" rel="stylesheet">
    <style>
        body
            background-color: RGB(6, 206, 251);
    .button {
    margin: 20xp auto;
    .button {
    font-size: large;
    display: block;
    width: 150px;
    height: 45px;
    border-radius: 10px;
    background-color: ■black;
    color: □cyan;
    border-bottom:2px solid □cyan;
    margin: 20xp auto;
    .button1 {
```

```
font-size: large;
       display: block;
       width: 150px;
       height: 45px;
       border-radius: 10px;
       background-color: ■black;
       color: □cyan;
       border-bottom:2px solid □cyan;
       float: right;
       margin-top: -60px;
      .buttons {
       display: flex;
       align-self: flex-end;
       margin: 20px 0px 20px 20px;
      h1
       text-align: center;
     .img {
     display: block;
     margin-left: auto;
     margin-right: auto;
       </style>
   </head>
   <body>
       <h1 style="color: □white;">You don't have disease</h1>
       <form action="/home">
          <button class="button"> Home</button>
       </form></br>
       <form action="http://127.0.0.1:5000/home?">
         <button class="button1"> Predict Again
7
        </form>
8
        <div class="container">
9
        <img src="{{url_for('static', filename='Images/happy.jpg')}}" class="img" />
0
        </div>
    </body>
1
2
    </html>
```

