

Photon self-identity problems.

QFT and the Shor-algorithm

Quantum Computers and its Applications (BMEVIHIAD00) Spring 2025

Prof. Sándor Imre, Dr. László Bacsárdi, Kitti Oláh

BME Department of Networked Systems and Services imre@hit.bme.hu

HÁLÓZATI RENDŞZEREK TODAY PROGRAM – MOUNT EVEREST

QUANTUM FOURIER TRANSFORM

Definition and decomposition

Base camp – 6100m

FOURIER Jean Baptiste Joseph (1768-1830)

CLASSICAL QUANTUM

Classical Discrete Fourier Transform (DFT)

$$\mathbf{x} = [x_0, x_1, ..., x_{N-1}]^T \quad x_i \in \mathbb{C}$$

 $\mathbf{y} = \mathrm{DFT}\{\mathbf{x}\}$

$$y_k \triangleq \frac{1}{\sqrt{N}} \sum_{i=0}^{N-1} x_i e^{j\frac{2\pi}{N}ik}$$

Quantum Discrete Fourier Transform (QFT)

$$|\varphi\rangle = \sum_{i=0}^{N-1} \varphi_i |i\rangle$$

$$|\psi\rangle = F|\varphi\rangle$$

$$\psi_k \triangleq \frac{1}{\sqrt{N}} \sum_{i=0}^{N-1} \varphi_i e^{j\frac{2\pi}{N}ik}$$

Exercise 6.1. Prove that operator F is unitary!

Exercise 6.2. Determine the matrix of QFT!

For computational basis states

$$F|i\rangle = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{j\frac{2\pi}{N}ik} |k\rangle$$

For arbitrary superposition

$$|\psi\rangle = \sum_{k=0}^{N-1} \psi_k |k\rangle = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \sum_{i=0}^{N-1} \varphi_i e^{j\frac{2\pi}{N}ik} |k\rangle$$

Inverse Fourier Transform (IQFT)

$$\varphi_i \triangleq \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \psi_k e^{-j\frac{2\pi}{N}ik}$$

$$\varphi_i \triangleq \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \psi_k e^{-j\frac{2\pi}{N}ik} \qquad F^{\dagger} |k\rangle = \frac{1}{\sqrt{N}} \sum_{i=0}^{N-1} e^{-j\frac{2\pi}{N}ik} |i\rangle$$

- The goal: to find an efficient circuit implementing QFT built from elementary quantum gates.
- The way: we prepare an equivalent tensor product representation of QFT which advises us what shall we do on each quantum wire separately.

Binary representation of integer and real numbers:

An integer number $k \in \{0, 1, ..., 2^n - 1\}$ can be represented in the binary form of $(k_1, k_2, ..., k_n) = k_1 2^{n-1} + k_2 2^{n-2} + ... + k_n 2^0$, where $k_l \in \{0, 1\}$. Let us introduce moreover for $h \ge 0$ the binary notation of

$$0.k_l k_{l+1}...k_{l+h} \triangleq \frac{k_l}{2^1} + \frac{k_{l+1}}{2^2} + ... + \frac{k_{l+h}}{2^{h+1}}; k_m \in \{0, 1\}.$$

Now, we start the reformulation from the original definition

$$F|i\rangle = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{j\frac{2\pi}{N}ik} |k\rangle = \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n-1} e^{j2\pi i \sum_{l=1}^n k_l \frac{2^{n-l}}{2^n}} |k\rangle$$

Recognizing that $\frac{2^{n-l}}{2^n} = 2^{-l}$ furthermore exploiting that $|k\rangle = |k_1, k_2, ..., k_n\rangle = |k_1\rangle \otimes |k_2\rangle \otimes ... \otimes |k_n\rangle$ and $e^{\alpha+\beta} \equiv e^{\alpha}e^{\beta}$

$$F|i\rangle = \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n - 1} \prod_{l=1}^n e^{j2\pi i k_l 2^{-l}} \bigotimes_{l=1}^n |k_l\rangle = \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n - 1} \bigotimes_{l=1}^n e^{j2\pi i k_l 2^{-l}} |k_l\rangle$$

Considering that $k_l \in \{0,1\}$ we collect the factors of the tensor product into two groups whit respect to $|0\rangle$ and $|1\rangle$

$$F|i\rangle = \frac{1}{\sqrt{2^n}} \bigotimes_{l=1}^n \left(e^{j2\pi i (k_l = 0)2^{-l}} |0\rangle + e^{j2\pi i (k_l = 1)2^{-l}} |1\rangle \right) = \frac{1}{\sqrt{2^n}} \bigotimes_{l=1}^n \left(|0\rangle + e^{j2\pi i 2^{-l}} |1\rangle \right)$$

$$|\mu_l\rangle \triangleq \frac{1}{\sqrt{2}} \left(|0\rangle + e^{j2\pi i 2^{-l}} |1\rangle \right)$$

$$i = \sum_{l=1}^{n} i_l 2^{n-l}$$

$$(2\pi i 2^{-l}) \mod 2\pi = 0.i_{l-n}i_{l-n+1}...i_n$$

$$F|i\rangle = \underbrace{\left(\frac{|0\rangle + e^{j2\pi 0.i_n}|1\rangle}{\sqrt{2}}\right)}_{|\mu_1\rangle} \otimes \underbrace{\left(\frac{|0\rangle + e^{j2\pi 0.i_{n-1}i_n}|1\rangle}{\sqrt{2}}\right)}_{|\mu_2\rangle} \otimes ... \otimes \underbrace{\left(\frac{|0\rangle + e^{j2\pi 0.i_1i_2...i_n}|1\rangle}{\sqrt{2}}\right)}_{|\mu_n\rangle} \otimes \underbrace{\left(\frac{|0\rangle + e^{j2\pi 0.i_1i_2...i_n}|1\rangle}{\sqrt{2}}\right)}_{|\mu_n\rangle} \otimes ... \otimes \underbrace{\left(\frac{|0\rangle + e^{j2\pi 0.i_1i_2...i_n}|1\rangle}{\sqrt{2}}\right)}_{|\mu_n\rangle} \otimes \underbrace{\left(\frac{|0\rangle + e^{j2\pi 0.i_1i_2...i_n}|1\rangle}{\sqrt{2}}\right)}_{|\mu_n\rangle} \otimes \underbrace{\left(\frac{|0\rangle + e^{j2\pi 0.i_1i_2...i_n}|1\rangle}{\sqrt{2}}\right)}_{|\mu_n\rangle} \otimes \underbrace{\left(\frac{|0\rangle + e^{j2\pi 0.i_1i_1i_2...i_n}|1\rangle}{\sqrt{2}}\right)}_{|\mu_n\rangle} \otimes \underbrace{\left(\frac{|0\rangle + e^{j2\pi 0.i_n}|1\rangle}{\sqrt{2}}\right)}_{|\mu_n\rangle} \otimes \underbrace{\left(\frac{|0\rangle + e^{j2\pi 0.i_n}|1\rangle}{\sqrt{2}}\right)}_$$

 Now, we have the tensor product representation in our hand. For the sake of easier implementation we apply a SWAP gate at the output of the QFT circuit, hence we are interested in

$$U_l: |i_l\rangle \rightarrow |\mu_{n-l+1}\rangle$$

• Let us investigate first U_n .

$$|i_1
angle \qquad |\mu_1
angle \ |i_2
angle \qquad |\mu_2
angle \ |\mu_2
angle \ |i_n
angle \qquad |\mu_n
angle \ |\mu_n
angle$$

$$U_n = H$$

$$\begin{cases} \frac{|0\rangle + |1\rangle}{\sqrt{2}} & \text{if } i_n = 0\\ \frac{|0\rangle - |1\rangle}{\sqrt{2}} & \text{if } i_n = 1. \end{cases}$$

• Next we turn to $U_{n-1}:|i_{n-1}\rangle \to |\mu_2\rangle$

$$\underbrace{\left(\frac{|0\rangle + e^{j2\pi 0.i_{n-1}i_n}|1\rangle}{\sqrt{2}}\right)}_{|\mu_2\rangle}$$

$$|\mu_2\rangle = \frac{1}{\sqrt{2}} \left[|0\rangle + e^{j2\pi 0.i_{n-1}} \cdot \left\{ \begin{array}{cc} P(2\pi \frac{1}{2^2})|1\rangle & \text{if } i_n = 1\\ 1|1\rangle & \text{if } i_n = 0 \end{array} \right\} \right]$$

Copyright © 2005 John Wiley & Sons Ltd.

$$R_{h,p} \triangleq \begin{cases} P(2\pi \frac{1}{2^h}) & \text{if } i_p = 1\\ 1 & \text{if } i_p = 0 \end{cases}$$

- Complexity: $O(n^2)$
- QFT is not for computing Fourier coefficients in a faster way since they are represented by probability amplitudes!

QUANTUM PHASE ESTIMATION –

Second camp- 6400m

QUANTUM ALGORITHM DESIGN

• Each unitary transform U having eigenvector $|u\rangle$ has eigenvalues in the form of $e^{j\alpha_u}$.

$$U = \sum_{u} \omega_{u} |u\rangle\langle u|$$

• Phase ratio: $\kappa_u \in [0,1): \alpha_u = 2\pi\kappa_u$

IDEALISTIC CASE

 $\kappa_u \in [0,1) : \alpha_u = 2\pi \kappa_u$

$$\kappa_u = i/2^n \text{ and } i \in \{0, 1, \dots, 2^n - 1\}$$

$$N=2^n$$
 $i/2^n=\kappa_u$ IQFT
$$F|i\rangle=\frac{1}{\sqrt{N}}\sum_{k=0}^{N-1}e^{j\frac{2\pi}{N}ik}|k\rangle.$$
 i (6.4)

Decomposition of QFT

$$|\mu_l\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{j2\pi 2^{n-l}\kappa_u} |1\rangle \right). \tag{6.12}$$

QUANTUM ALGORITHM DESIGN

QUANTUM PHASE ESTIMATOR

• How to initialize $|u\rangle$?

PRACTICAL CASE

we allow arbitrary $\kappa_u \in [0,1)$ $\kappa_u \not= i/2^n$

IQFT will not work correctly!

$$F^{\dagger}|\mu\rangle = \sum_{k=0}^{2^{n}-1} \frac{1}{\sqrt{2^{n}}} e^{j2\pi k \kappa_{u}} \underbrace{\frac{1}{\sqrt{2^{n}}} \sum_{i=0}^{2^{n}-1} e^{-j2\pi \frac{i}{2^{n}} k} |i\rangle}_{i=0}$$

$$= \frac{1}{2^{n}} \sum_{k=0}^{2^{n}-1} \sum_{i=0}^{2^{n}-1} e^{j2\pi k (\kappa_{u} - \frac{i}{2^{n}})} |i\rangle = \sum_{i=0}^{2^{n}-1} \underbrace{\sum_{k=0}^{2^{n}-1} \frac{1}{2^{n}} \left(e^{j2\pi (\kappa_{u} - \frac{i}{2^{n}})} \right)^{k}}_{i} |i\rangle.$$

HÁLÓZATI RENDSZEREK ÉS SZOLGÁLTATÁSOK TANSZI

www.hit.bme.hu

PROB. AMPLITUDES

$$\varphi_i = \frac{1}{2^n} \frac{1 - q^{2^n}}{1 - q} = \frac{1}{2^n} \frac{1 - e^{j2\pi(2^n \kappa_u - i)}}{1 - e^{j2\pi(\kappa_u - \frac{i}{2^n})}}$$

$$P_s = \frac{1}{2^{2c-2}} \frac{\sin^2(\pi 2^{c-1} 2^{-c})}{\sin^2(\pi 2^{-c})} = \frac{4}{2^{2c}} \frac{\sin^2(\pi/2)}{\sin^2(\pi 2^{-c})} = \frac{4}{2^{2c}} \frac{4}{\sin^2(\pi 2^{-c})}$$

ERROR ANALYSIS

$$n = c - 1 + p$$

$$2\varepsilon = 2^p \Rightarrow \varepsilon = 2^{p-1}$$

$$p \ge \operatorname{ld}\left(3 + \frac{1}{\breve{P}_{\varepsilon}}\right)$$

$$n = c - 1 + \left\lceil \operatorname{ld}\left(3 + \frac{1}{\breve{P}_{\varepsilon}}\right) \right\rceil$$

$$n = c - 1 + \left[\operatorname{ld}(2\pi) + \operatorname{ld}\left(3 + \frac{1}{\breve{P}_{\varepsilon}}\right) \right]$$

QUANTUM PHASE ESTIMATOR

ERROR ANALYSIS

Complexity in elementary gates:

THE RSA ALGORITHM

3rd camp – 7200m

PUBLIC KEY CRIPTOGRAPHY

- Secret de-ciphering key
- Key generation: multiplication of 2 large prime numbers
- Hacking: prime factorization
- To date, it has not been proven that there is no effective hacking algorithm. In any case, no such classical algorithm has been found so far.

- 1. Bob selects randomly two large prime numbers p and q such that $p \neq q$.
- 2. He calculates $N = p \cdot q$.
- 3. Bob selects randomly a small odd number a such that $\gcd(\varphi(N), a) = 1$, where $\varphi(N)$ denotes the corresponding Euler function (see Section 12.3.2). Since N is a product of two prime numbers we can utilize Theorem 12.2 resulting in $\varphi(N) = (p-1) \cdot (q-1)$.
- 4. Next he calculates the <u>multiplicative inverse</u> (see Section 12.3.2) of a in modulo $\varphi(N)$ sense using Euclid's algorithm (see Section 12.3.3) and denotes it with \underline{b} : $(a \cdot b) \mod \varphi(N) = 1$. Moreover he knows that b always exists because of Theorem 12.3.
- 5. Bob announces the public key $K_B = (a, N)$ and
- 6. keeps secret the private key $L_B = (b, N)$.

Encryption and decryption are performed by means of the following special functions

$$E = e(P, K_B) = (P^a) \mod N,$$

$$P = d(E, L_B) = (E^b) \mod N.$$
(9.10)

Peter Shor (1959-)

ORDER FINDING – SHOR ALGORITHM

4th camp - 7950m

Let us assume two positive integers x < N that are co-primes, i.e. gcd(x, N) = 1. The *order* of x in modulo N sense is defined as the least natural number r such that

$$x^r \bmod N = 1 \tag{6.40}$$

and it is easy to see that 1 < r < N, too. The order of x is in close connection with the period of the function $f(z) = x^z \mod N$ since

$$f(z+r) = x^{z+r} \bmod N = ((x^z \bmod N) \cdot (\underbrace{x^r \bmod N})) \bmod N = f(z). \quad (6.41)$$

RENDSZEREK Factorize A=66! To find the order use exhaustive search.

Solution: Since 66 is even we divide it by 2. N=33 is a composite odd integer and it is easy to see that 33 does not prove to be a prime power. Therefore we cast a 32-faced dice and we get say x=5. Now we are seeking for the order r of 5 in modulo 33 sense using an exhaustive search, i.e. we try to determine $r: x^r \mod N = 1$

$$5^1 \mod 33 = 5$$
, $5^6 \mod 33 = 16$, $5^2 \mod 33 = 25$, $5^7 \mod 33 = 14$, $5^3 \mod 33 = 26$, $5^8 \mod 33 = 4$, $5^4 \mod 33 = 31$, $5^9 \mod 33 = 20$, $5^5 \mod 33 = 23$, $5^{10} \mod 33 = 1$.

So r=10 is even thus $y=x^{\frac{r}{2}}=5^5$. Next we have to calculate $b_{+1}=(y+1) \bmod N=24$ and $b_{-1}=(y-1) \bmod N=22$. Fortunately neither of them equals zero (i.e. $x^{\frac{r}{2}} \bmod N \neq \pm 1$), which enables us to compute nontrivial factors $c_{+1}=\gcd(24,33)=3$ and $c_{-1}=\gcd(22,33)=11$. In order to check the results it is worth calculating $3\cdot 11=33$.

HÁLÓZATI RENDSZERE QUANTUM ALGORITHM DESIGN

CONNECTION BETWEEN ORDER FINDING AND PHASE ESTIMATION

$$|\varphi_2\rangle = \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n - 1} |k\rangle |x^k \bmod N\rangle$$

$$x^{k} \bmod N = \prod_{l=1}^{2^{n}} \left(x^{k_{l} 2^{n-l}} \bmod N \right)$$

$$= \left(x^{k_{1} 2^{n-1}} \bmod N \right) \left(x^{k_{2} 2^{n-2}} \bmod N \right) \dots \left(x^{k_{n} 2^{0}} \bmod N \right)$$

• Eigenvalues and vectors of : U:|q
angle
ightarrow |(qx) mod N
angle

Phase estimation!

$$(\kappa_b = \frac{b}{r}) \quad |u_b\rangle = \sum_{s=0}^{r-1} \frac{e^{-j2\pi \frac{b}{r}s}}{\sqrt{r}} |x^s \bmod N\rangle$$

www.hit.bme.hu

$$\kappa_b = \frac{b}{r}, \quad |u_b\rangle = \sum_{s=0}^{r-1} \frac{e^{-j2\pi\frac{b}{r}s}}{\sqrt{r}} |x^s \bmod N\rangle$$

Fig. 6.16 $\log_{10}(P(i))$ assuming n = 11, N = 33, x = 5, r = 10

USING SHOR'S ORDER FINDING ALGORITHM TO BREAK RSA

Before the peak – 8790m

www.hit.bi

- 1. Bob selects randomly two large prime numbers p and q such that $p \neq q$.
- 2. He calculates $N = p \cdot q$.
- 3. Bob selects randomly a small odd number a such that $\gcd(\varphi(N), a) = 1$, where $\varphi(N)$ denotes the corresponding Euler function (see Section 12.3.2). Since N is a product of two prime numbers we can utilize Theorem 12.2 resulting in $\varphi(N) = (p-1) \cdot (q-1)$.
- 4. Next he calculates the multiplicative inverse (see Section 12.3.2) of a in modulo $\varphi(N)$ sense using Euclid's algorithm (see Section 12.3.3) and denotes it with b: $(a \cdot b) \mod \varphi(N) = 1$. Moreover he knows that b always exists because of Theorem 12.3.
- 5. Bob announces the public key $K_B = (a, N)$ and
- 6. keeps secret the private key $L_B = (b, N)$.

Encryption and decryption are performed by means of the following special functions

$$E = e(P, K_B) = (P^a) \bmod N,$$

$$P = d(E, L_B) = (E^b) \bmod N.$$
(9.10)

És me

Eve – our evil character in this story – downloads Bob's public key $K_B = (a, N)$ from the free database and launches the following process:

- 1. First she calculates the order of E in modulo N sense using the Shor algorithm and denotes it with r that is $((P^a)^r) \mod N = 1$. This step requires that E and N are relative primes. If not Eve can apply Euclid's algorithm (see Section 12.3.3) to eliminate the common factors, which provides p and q.
- 2. Next she computes the modulo r multiplicative inverse of a. The existence of this inverse b^{\sharp} requires that a is co-prime to r. Since $(E^r) \mod N = 1$ and Euler's theorem (see Section 12.5) states that $(E^{\varphi(N)}) \mod N = 1$ thus $\varphi(N) = k \cdot r$ for certain integer k, that is prime factors of r form a subset of those of $\varphi(N)$. Keeping in view that $\gcd(\varphi(N), a) = 1$, a and $\varphi(N)$ are relative primes, because of the operation of RSA algorithm, we can conclude that a is co-prime to r, too.
- 3. Furthermore Eve recalls from the RSA algorithm that $(a \cdot b) \mod \varphi(N) = 1$ while she obtained in Point 2 that $(a \cdot b^{\sharp}) \mod r = 1$ and $\varphi(N) = k \cdot r$ hence $b^{\sharp} = b + k \cdot r$.
- 4. Now, in possession of b^{\sharp} Eve replaces in her decipher the unknown b with it. Hence

$$\left((P^a)^{b^{\sharp}} \right) \bmod N = \left(P^{ab+akr} \right) \bmod N = \left(P^{ab} \cdot (P^{ar})^k \right) \bmod N = P,$$

- Although the Grover algorithm is dedicated to find items efficiently in an unsorted data base it can be used to crack the RSA.
- The space of the potential prime factors of N can be regarded as a database and we need to find one prime number p which divides N = p x q without remainder.
- Since it is enough to search for p below \sqrt{N} therefore the computational complexity becomes $\sqrt{\sqrt{N}} = 2^{\frac{n}{4}}$.

Table 9.1 Code-breaking methods and related complexity

Method	n = 128	n = 128	n = 1024	n = 1024	1s barrier
		0.58 year			80 bit
BC	$6 \cdot 10^{-4} \text{ s}$	$1.9 \cdot 10^{-11} \text{ year}$	$3.5 \cdot 10^{8} \text{ s}$	11.29 year	273 bit
G	$4 \cdot 10^{-3} \text{ s}$	$1.3 \cdot 10^{-10} \text{ year}$	$1.1 \cdot 10^{65} \text{ s}$	$3.7 \cdot 10^{57} \; { m year}$	159 bit
S	$2 \cdot 10^{-5} \text{ s}$	$6.6 \cdot 10^{-14} \text{ year}$	0.01 s	$3.4 \cdot 10^{-11} \text{ year}$	10000 bit

- BF: brute force classical method which scans the integer numbers from 2 to $\lceil \sqrt{N} \rceil$ with complexity $O(\sqrt{N})$,
- BC: best classical method requiring $O(\exp[c \cdot ld^{\frac{1}{3}}(N)ld^{\frac{2}{3}}(ld(N))])$ steps,
- G: Grover search based scheme with $O(N^{\frac{1}{4}})$,
- S: Shor factorization with $O(\operatorname{ld}(N)^3)$.

Extreme!

WE REACHED THE PEAK! - 8850M

