The Meta-Variational Quantum Eigensolver

Alba Cervera-Lierta, Jakob S. Kottmann, Alán Aspuru-Guzik SciML Webinar

May 6, 2021

Outlook

- 1. Tequila: a platform for rapid development of quantum algorithms
- 2. Variational Quantum Algorithms (VQA)
- VQA for Quantum Machine Learning (QML)
- 4. The Meta-VQE: a QML algorithm for Hamiltonian simulation

Tequila

Quantum Science and Technology

PAPER

TEQUILA: a platform for rapid development of quantum algorithms

Jakob S Kottmann^{12,1,2} (D), Sumner Alperin-Lea^{12,1} (D), Teresa Tamayo-Mendoza^{1,2,3},

Alba Cervera-Lierta^{1,2}, Cyrille Lavigne^{1,2}, Tzu-Ching Yen¹, Vladyslav Verteletskyi¹, Philipp Schleich⁴,

Abhinav Anand¹ (D), Matthias Degroote^{1,2,5} (D) + Show full author list

Published 9 March 2021 • © 2021 IOP Publishing Ltd

<u>Quantum Science and Technology</u>, <u>Volume 6</u>, <u>Number 2</u>

Citation Jakob S Kottmann et al 2021 Quantum Sci. Technol. 6 024009

The golden era of quantum languages...

The golden era of quantum languages... ...and quantum software tools...

The golden era of quantum languages...

...and quantum software tools...

...plus classical tools for the NISQ era

PYQUIL

GPyOpt

Orquestra

Phoenics Mitiq

Which language should I use?

What if I want to run the same code in different quantum computers?

What if the language doesn't contain the features that I need?

Unification, standarization, acceleration

A quantum language to simplify and accelerate implementation of new ideas for quantum algorithms.

Code

https://github.com/aspuru-guzik-group/tequila

Tutorials

https://github.com/aspuru-guzik-group/tequila-tutorials

Tequila API

Variational Quantum Algorithms

[Submitted on 21 Jan 2021]

Noisy intermediate-scale quantum (NISQ) algorithms

Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek, Alán Aspuru-Guzik

Comments: Review article, 82 pages, 7 figures, comments welcome

Subjects: Quantum Physics (quant-ph); Statistical Mechanics (cond-mat.stat-mech); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

Cite as: arXiv:2101.08448 [quant-ph]

Variational Quantum Algorithms

Objective function

It encodes the problem in a form of a quantum operator, e.g. a Hamiltonian

$$\langle H \rangle_{\mathcal{U}(\boldsymbol{\theta})} \equiv \langle 0 | \mathcal{U}^{\dagger}(\boldsymbol{\theta}) H \mathcal{U}(\boldsymbol{\theta}) | 0 \rangle$$

The objective is decomposed into Pauli strings which expectation value can be measured with the quantum computer.

$$H = \sum_{k=1}^{M} c_k \hat{P}_k \longrightarrow \langle H \rangle_{\mathcal{U}} = \sum_{k=1}^{M} c_k \langle \hat{P}_k \rangle_{\mathcal{U}}$$

An objective can also be the fidelity w.r.t. a particular target state that we are trying to match.

We can use projectors or SWAP test to obtain the value of that fidelity

$$F(\Psi, \Psi_{\mathcal{U}(\theta)}) \equiv |\langle \Psi | \Psi_{\mathcal{U}(\theta)} \rangle|^2$$

$$\max_{\boldsymbol{\theta}} F\left(\Psi, \Psi_{U(\boldsymbol{\theta})}\right) = \min_{\boldsymbol{\theta}} \left(-\langle \hat{\Pi}_{\Psi} \rangle_{\mathcal{U}(\boldsymbol{\theta})}\right)$$

Parameterized quantum circuits

It prepares what will eventually be the approximation of the g.s. of our Objective function.

It depends on a series of parameters that have to be finetunned to minimize the objective

They can be designed from a physical point of view (e.g. UCC, QAOA,...) or from a practical point of view (using a limited set of gates and circuit topology).

a Problem-inspired ansatz

b Hardware-efficient ansatz

Classical optimization

We need to navigate the quantum circuit parameter space, e.g. by using gradiend based methods

$$\theta_i^{(t+1)} = \theta_i^{(t)} - \eta \ \partial_i f(\boldsymbol{\theta})$$

The gradients are expectation values of the quantum circuit derivatives w.r.t. a parameter.

Example: parameter-shift rule

$$\mathcal{U}(\boldsymbol{\theta}) = V(\boldsymbol{\theta}_{\neg i})G(\theta_i)W(\boldsymbol{\theta}_{\neg i}) \qquad G = e^{-i\theta_i g}$$

Eigenvalues of g are $\pm \lambda$

$$\partial_i \langle f(\boldsymbol{\theta}) \rangle = \lambda \left(\langle f(\boldsymbol{\theta}_+) \rangle - \langle f(\boldsymbol{\theta}_-) \rangle \right)$$
 $\theta_{\pm} = \theta \pm (\pi/4\lambda) e_i$

Gradient-free: genetic algorithms, reinforcement learning, ...

Example: the Variational Quantum Eigensolver

Bond dissociation curve of the He-H⁺ molecule.

 $\underline{\mathsf{GOAL}}$: find $| oldsymbol{\psi} \rangle$ that minimizes

$$\frac{\langle \psi \mid \mathcal{H} \mid \psi \rangle}{\langle \psi \mid \psi \rangle}$$
.

Electronic structure Hamiltonian decomposed into Pauli strings

$$\langle \mathcal{H} \rangle = \sum_{i\alpha} h^i_{\alpha} \langle \sigma^i_{\alpha} \rangle + \sum_{ij\alpha\beta} h^{ij}_{\alpha\beta} \langle \sigma^i_{\alpha} \sigma^j_{\beta} \rangle + \dots$$

Quantum circuit that generates the ground state of that Hamiltonian (Unitary Couple-Cluster ansatz)

Unitary operation (Cluster operator) Hartree-Fock
$$|\Psi(\boldsymbol{\theta})\rangle = e^{T(\boldsymbol{\theta})-T(\boldsymbol{\theta})^{\dagger}}|\Psi_{\mathrm{HF}}\rangle$$
 Excitations Hartree-Fock orbitals

Transform the fermionic operators to Pauli strings (e.g. Jordan Wigner) and they become the generators of the quantum gates.

$$T(\boldsymbol{\theta}) = T_1(\boldsymbol{\theta}) + T_2(\boldsymbol{\theta}) + \cdots$$

$$T_1(\boldsymbol{\theta}) = \sum_{\substack{i \in \text{occ} \\ j \in \text{virt}}} \theta_i^j \hat{a}_j^{\dagger} \hat{a}_i$$

$$T_2(\boldsymbol{\theta}) = \sum_{\substack{i_1, i_2 \in \text{occ} \\ j_1, j_2 \in \text{virt}}} \theta_{i_1, i_2}^{j_1, j_2} \hat{a}_{j_2}^{\dagger} \hat{a}_{i_2} \hat{a}_{j_1}^{\dagger} \hat{a}_{i_1}$$

The barren-plateaux problem

Compute the gradients with the quantum circuit and use these values to run a classical minimizer, e.g. Nelder-Mead, Adam, ...

With no prior knowledge about the solution, $\vec{\theta}$ parameters are initialized at random.

Consequence: barren-plateaux

The expected value of the gradient is zero!

The expected value of the variance is also zero!

Solutions

- Use parameters close to the solution.
- Use local cost functions instead of global ones.
- Introduce correlations between parameters.

Ref.: M. Cerezo et. al. arXiv:2001.00550v2 [quant-ph]

VQA for Quantum Machine Learning

From classical to quantum NN

Quantum (circuit centric)

K Mitarai, M Negoro, M Kitagawa, K Fujii Phys. Revs A 98 (3), 032309 (2018)

E. Farhi and H.Neven, arXiv:1802.06002 (2018)

M. Schuld and N. Killoran, Phys. Rev. Lett. 122, 040504 (2019)

The minimal QNN

What is the most simple (but universal) NN?

Single hidden layer NN

What is the most simple (but universal) QNN?

Single-qubit QNN

Encoding the data

• • •

A product of unitaries can be written with a single unitary

$$U(\vec{\phi}_1) \dots U(\vec{\phi}_N) \equiv U(\vec{\varphi})$$

If we add some fixed parameter dependency (the data), the operation becomes flexible and data-depedent.

Data re-uploading

$$\mathcal{U}(\vec{\phi}, \vec{x}) \equiv U(\vec{\phi}_N)U(\vec{x}) \dots U(\vec{\phi}_1)U(\vec{x})$$

Quantum Feature Maps

Universal Approximation Theorem

Any continous function f(x) can be approximated with ϵ accuracy by the function $h(\vec{x}) = \sum_{i=1}^{N} \alpha_i \varphi(\vec{w_i}) \cdot \vec{x} + b_i \qquad \qquad \vec{w_i} \in \mathbb{R}^m$ weigths where φ is a nonconstant, bounded and continuous function.

A single-layer neural network can approximate any continous function (providing enough neurons in the hidden layer)

Universal Quantum Circuit approximation

Single-qubit quantum gate = SU(2) operator:

$$U(\vec{\phi}) = e^{i\vec{\omega}(\vec{\phi})} \xrightarrow{\text{Linear encoding}} \vec{\phi}(\vec{x}) = (\phi_1(\vec{x}), \phi_2(\vec{x}), \phi_3(\vec{x})) = \vec{\theta} + \vec{w} \circ \vec{x}.$$
 generators

Multiple products of SU(2) operators are also a SU(2) operator

erator
$$\mathcal{U}(\vec{x}) = U_N(\vec{x})U_{N-1}(\vec{x})\cdots U_1(\vec{x}) = \prod_{i=1}^N e^{i\vec{\omega}(\vec{\phi}_i(\vec{x}))\cdot\vec{\sigma}}$$
 Circuit layers

Continous, bounded, nonconstant

$$\omega_1(\vec{\phi}) = d \mathcal{N} \sin((\phi_2 - \phi_3)/2) \sin(\phi_1/2)$$

$$(\sqrt{1 - \cos^2 d})^{-1}$$

$$\cos d = \cos((\phi_2 + \phi_3)/2) \cos(\phi_1/2)$$

$$\mathcal{U}(\vec{x}) = \exp\left[i\sum_{i=1}^{N} \vec{\omega}(\vec{\phi_i}(\vec{x})) \cdot \vec{\sigma} + \mathcal{O}_{corr}\right] = e^{i\vec{f}(\vec{x}) \cdot \vec{\sigma} + i\vec{\varrho}(\vec{x}) \cdot \vec{\sigma}}$$

$$\left(\omega_1(\vec{\theta_i} + \vec{w_i} \circ \vec{x}), \omega_2(\vec{\theta_i} + \vec{w_i} \circ \vec{x}), \omega_3(\vec{\theta_i} + \vec{w_i} \circ \vec{x})\right)$$

$$= (f_1(\vec{x}), f_2(\vec{x}), f_3(\vec{x}))$$
Continous functions

The Meta-Variational Quantum Eigensolver

The Meta-Variational Quantum Eigensolver (Meta-VQE): Learning energy profiles of parameterized Hamiltonians for quantum simulation

Alba Cervera-Lierta, Jakob S. Kottmann, Alán Aspuru-Guzik

Comments: 9 pages, 5 figures, code available

Subjects: Quantum Physics (quant-ph) Accepted in PRX Quantum

Cite as: arXiv:2009.13545 [quant-ph]

(or arXiv:2009.13545v2 [quant-ph] for this version)

What's the true goal of VQE?

GOAL: find $|\psi\rangle$ that minimizes $\frac{\langle\psi\mid\mathcal{H}\mid\psi\rangle}{\langle\psi\mid\psi\rangle}$.

Find the atomic separation that minimizes the energy

 $\min\langle H(R)\rangle$

A. Peruzzo, J. McClean, P. Shadbolt, M.-H.Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, J. L. O'Brien, Nature Comm. 5, 4213 (2014)

What's the true goal of VQE?

To obtain this you need to scan from 0 to 300.

Each blue point is a VQE, that is, you have to **prepare, run and optimize** the quantum circuit.

Can we avoid to compute the uninteresting points?

A. Peruzzo, J. McClean, P. Shadbolt, M.-H.Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, J. L. O'Brien, Nature Comm. 5, 4213 (2014)

Exact simulation

• • • • •

If the model can be solved analytically, we can find the quantum circuit that diagonalizes the Hamiltonian (therefore, no need for any VQE)

Example: Ising model

By finding the transformations that:

- 1. Jordan-Wigner
- 2. Fourier Transform
- 3. Bogoliubov transformation

Computational basis state (easy to prepare)

$$U_{dis} = U_{JW}U_{FT}U_{Bog}.$$

Hamiltonian parameters

They naturally appear in the rotational gates from the Bogoliubov transformation!

$$\theta_k = 2 \arctan \left(\frac{J\gamma \sin\left(\frac{2\pi k}{n}\right)}{J\cos\left(\frac{2\pi k}{n}\right) + \lambda} \right)$$

Meta-VQE outlook

• • • •

Parameterized Hamiltonian $H(\vec{\lambda})$

<u>Goal:</u> to find the quantum circut that **encodes** the ground state of the Hamiltonian for any value of $\vec{\lambda}$

See also: K. Mitarai, T. Yan, K. Fujii, Phys. Rev. Applied 11, 044087 (2019)

The Meta-VQE

Parameterized Hamiltonian $H(\vec{\lambda})$

Training points: $\vec{\lambda}_i$ for i = 1, ..., M

Loss function with all $\langle H(\vec{\lambda}_i) \rangle$

Goal: to find the quantum circut that encodes the ground state of the Hamiltonian for any value of $\vec{\lambda}$

Output: $\overrightarrow{\Phi}_{opt}$ and $\overrightarrow{\Theta}_{opt}$

See also: K. Mitarai, T. Yan, K. Fujii, Phys. Rev. Applied 11, 044087 (2019)

The Meta-VQE output

Output: $\overrightarrow{\Phi}_{opt}$ and $\overrightarrow{\Theta}_{opt}$

Option 1: run the circuit with test $\vec{\lambda}$ and obtain the g.s. energy profile.

Option 2: use $\overrightarrow{\Phi}_{opt}$ and $\overrightarrow{\Theta}_{opt}$ as starting point of a standard VQE optimization (<u>opt-meta-VQE</u>)

1D XXZ spin chain

$$H = \sum_{i=1}^{n} \sigma_i^x \, \sigma_{i+1}^x + \sigma_i^y \sigma_{i+1}^y + \Delta \sigma_i^z \sigma_{i+1}^z + \lambda \sigma_i^z$$

For $\lambda = 0$, two QPT: $\Delta = -1$, $\Delta = 1$

Analytical solution of the model: using the Bethe ansatz (no known quantum circuit)

Good worse-case-scenario model

- We do not know which circuit ansatz will work
- The ground state is highly entangled (that's why we need quantum computers!)
- The energy profile is not trivial: it presents a peak in the region $\Delta > -1$

1D XXZ spin chain

• • • •

14 qubits simulation, $\lambda = 0.75$

Linear encoding: $R_z(w_1 \triangle + \phi_1)R_y(w_2 \triangle + \phi_2) \otimes {}^{Alternating}_{CNOT}$

Processing layer: $R_z(\theta_1)R_y(\theta_2) \otimes \frac{\text{Alternating}}{\text{CNOT}}$

Results 2 encoding + 2 processing layers

$$H = \sum_{i=1}^{n} \sigma_i^x \, \sigma_{i+1}^x + \sigma_i^y \sigma_{i+1}^y + \Delta \sigma_i^z \sigma_{i+1}^z + \lambda \sigma_i^z$$

H_4 molecule

 H_4 molecule in 8 spin-orbitals (STO-3G basis set)

Ansatz: k-UpCCGSD (k=2 for these results)

Linear encoding: $\theta = \alpha + d\beta$

_ Hamiltonian Parameter (intermolecular distance)

Non-linear encoding: $\theta = \alpha e^{\beta(\gamma - d)} + \delta$ (floating Gaussians)

Single transmon

Single transmon simulation using QCAD mapping

Ansatz: 1 encoding + 1 processing layers + 1 final layer of $R_x R_z$

Layer: $R_x R_z$ + all connected XX gates

Parameters of XX gates are the same in all layers (same entanglement gate)

Linear encoding: $R_x(w_1 f + \phi_1) R_z(w_2 f + \phi_2)$

Hamiltonian Parameter (flux)

Conclusions

- Meta-VQE can be used to scan over Hamiltonian parameteres to find the interesting energy regions.
 - Reduction in the total computatational cost (less number of objective evaluations)
- We can use its parameter solution to run a more precise minimization (opt-meta-VQE)
 - Faster convergence, potentially avoiding barren plateaus and local minima
- The encoding strategy in VQE-type algorithms might be useful to guide the optimization towards the solution.
 - Avoiding barren plateaus (T. Volkoff, P. J. Coles, Quantum Sci. Technol. 6, 025008 (2021))

Code and demo (notebooks)

https://github.com/aspuru-guzik-group/Meta-VQE

Using Tequila quantum package

https://github.com/aspuru-guzik-group/tequila

Alán Aspuru-Guzik

Jakob Kottmani

Questions?

Special thanks to

Tequila developers

NISQ review collaboration:

Leong-Chuan Kwek

Thi Ha Kvaw

Tobias Hat

Sumner Alperi

Matthias Degroote

Hermanni Heimone

Sukin (Hannah) Sim