TFE4101 KRETS- OG DIGITALTEKNIKK

Sekvensielle kretser

Gajski:

• Kap. 6: Sekvensielle kretser

• Kap. 6.1-6.3: Låser (latch)

Kap. 6.4-6-5: Vipper (flip-flop)

• Kap. 6.7: Tilstandsmaskinsmodell

Sekvensielle kretser

- Kombinatoriske kretser
 - utgangsverdiene gitt av nåværende inngangsverdier
 - endring på inngang gir tilhørende verdi på utgang etter forsinkelse Δ
- Sekvensielle kretser
 - inneholder minneelementer
 - utgangsverdier gitt av både nåværende og tidligere inngangsverdier (sekvens av inngangsverdier)
 - verdiene lagret i minneelementene angir tilstanden til kretsen
 - endring på inngang gir
 - tilhørende verdi i tilstand etter forsinkelse Δ1
 - tilhørende verdi på utgang etter forsinkelse Δ2

(A)synkron sekvensiell krets

- Asynkron sekvensiell krets
 - tilstand og utgangsverdi endres uansett når inngang endres
- Synkron sekvensiell krets
 - endring i tilstand og utgangsverdi styrt av fallende og stigende flanker på frittløpende klokkesignal

SR-lås

Styrt SR-lås R Q Q(next) O NTNU R -0 0 0 0 0 0 X X 0 5 X NA R S TFE4101 Q Digitaltekn. Forel. 8 15

TFE4101 Digitaltekn Forel. 8

16

Gruppeoppgave, to minutter

- Hva skjer dersom
 - D skifter fra 0 til 1 ved tid t₁
 - C skifter fra 1 til 0 ved tid t_1 + 0,5ns

O NTNU

Problem: skiftregister med D-lås

 Ønsker at data skal "skiftes" en posisjon til høyre for hver klokkepuls

"Herre - slave" vippe

TFE4101 Digitaltekn. Forel. 8

24

TFE4101 Digitaltekn. Forel. 8

27

Ulike vippetyper (SR-vippe)

TILSTANDSDIAGRAM

Ulike vippetyper (D-vippe)

0

0

Ulike vippetyper (JK-vippe)

Ulike vippetyper (T-vippe)

O NTNU

Asynkrone innganger

Implementasjon av tilstandsmaskin

Beregning av klokkehastighet

Beregning av klokkehastighet

$$\left. f_{\text{clk}} \right|_{\text{max}} = \frac{1}{\left. t_{\text{pd(max)}} + t_{\left(Q_i \to D_j\right)} \right|_{\text{max}} + t_{\text{setup}}}$$