Set Theory

Aritra Hazra

Department of Computer Science and Engineering, Indian Institute of Technology Kharagpur, Paschim Medinipur, West Bengal, India - 721302.

Email: aritrah@cse.iitkgp.ac.in

Autumn 2020

Sets and Subsets: Definitions and Properties

```
Set: Well-defined collection of distinct objects
               (Ex: S = \{4, 9, 16 \dots, 81, 100\} = \{x^2 \mid x \text{ is integer and } 1 < x \le 10\})

    Membership: Element belonging to (or a member of) a set

                       (Ex: 25, 64 \in S and 50, 72 \notin S)
                   • Cardinality: Number of elements in a set (Ex: |S| = 9)
                   • Finite Set: Set having finite cardinality (Ex: The set, S)
                   ■ Infinite Set: Set having infinite (∞) cardinality
                       (Ex: \mathcal{T} = \{1, 2, 4, 8, 16, \ldots\} = \{2^y \mid y \text{ is integer and } y \ge 0\})
 Subset: A set (A) is a subset of another set (B) iff each element of A is also a
               member of \mathcal{B}. Formally, \mathcal{A} \subseteq \mathcal{B} iff \forall x \ [x \in \mathcal{A} \Rightarrow x \in \mathcal{B}].
                  Hence, \mathcal{A} \not\subseteq \mathcal{B} iff \neg \forall x \ [x \in \mathcal{A} \Rightarrow x \in \mathcal{B}] \equiv \exists x \ [x \in \mathcal{A} \land x \notin \mathcal{B}].
               (Ex: Let \mathcal{R} = \{z \mid z \text{ is composite integer and } 2 \le z \le 100\}, so \mathcal{S} \subseteq \mathcal{R})
               Equal Sets: A = B iff [(A \subseteq B) \land (B \subseteq A)] \equiv \forall x [x \in A \Leftrightarrow x \in B]
               Proper Subset: A \subset B iff [\forall x \ (x \in A \Rightarrow x \in B) \land \exists y \ (y \in B \land y \notin A)]
Null Set: Set containing NO element, denoted using \phi or \{\}
               (Ex: Q = \{z \mid x + y = z \text{ and all } x, y, z \text{ are odd}\} = \phi)
               Note: |\phi| = 0, but \phi \neq \{0\} and \phi \neq \{\phi\} (since, |\{0\}| = |\{\phi\}| = 1)
```

Power Set and Set Properties

```
Power Set: Set of all possible subsets of a set (\mathcal{A}), denoted as \mathcal{P}(\mathcal{A}) or 2^{\mathcal{A}} (Ex: Let \mathcal{A} = \{1, 2, 3\}, Thus, \mathcal{P}(\mathcal{A}) = \{\phi, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}) Cardinality: |\mathcal{P}(\mathcal{A})| = 2^{|\mathcal{A}|} (Why?)
```

Proof. Let $|\mathcal{A}| = n$. There are $\binom{n}{k}$ subsets of size k possible (for any k, $0 \le k \le n$). So, the total number of subsets $= \sum_{i=0}^{n} \binom{n}{k} = 2^{n}$.

Properties: For sets A, B, C, we have the following:

- $A \subset B \Rightarrow A \subseteq B$, but $A \subseteq B \not\Rightarrow A \subset B$.
- $(A \subset B)$ if and only if $[(A \subseteq B) \land (A \neq B)]$.
- $(A \neq B)$ if and only if $(A \not\subseteq B) \lor (B \not\subseteq A)$.
- If $(A \subseteq B)$, then $|A| \le |B|$. If $(A \subset B)$, then |A| < |B|. If (A = B), then |A| = |B|.
- If $(A \subseteq \mathcal{B})$ and $(\mathcal{B} \subseteq \mathcal{C})$, then $(A \subseteq \mathcal{C})$. If $(A \subset \mathcal{B})$ and $(\mathcal{B} \subset \mathcal{C})$, then $(A \subset \mathcal{C})$. If $(A \subseteq \mathcal{B})$ and $(\mathcal{B} \subset \mathcal{C})$, then $(A \subset \mathcal{C})$. If $(A \subset \mathcal{B})$ and $(\mathcal{B} \subseteq \mathcal{C})$, then $(A \subset \mathcal{C})$.

3/11

Frequently-Used Set Examples and Notations

Popular Set Examples:

- $\mathbb{N} = \text{ Set of Non-negative natural numbers} = \{0, 1, 2, \ldots\}$
- $\mathbb{Z} = \text{Set of Integers} = \{..., -2, -1, 0, 1, 2, ...\}$
- $\mathbb{Z}^+ =$ Set of Positive Integers $= \{x \in \mathbb{Z} \mid x > 0\}$
 - $\mathbb{Q} = \text{ Set of Rational Numbers} = \{ \frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0 \}$
- $\mathbb{Q}^+ =$ Set of Positive Rational Numbers $= \{r \in \mathbb{Q} \mid r > 0\}$
- $\mathbb{Q}^* = \text{Set of Non-zero Rational Numbers} = \{r \in \mathbb{Q} \mid r \neq 0\}$
 - $\mathbb{R} = \mathsf{Set} \mathsf{ of Real Numbers}$
- \mathbb{R}^+ = Set of Positive Real Numbers
- $\mathbb{R}^* =$ Set of Non-zero Real Numbers
- $\mathbb{C} = \text{Set of Complex Numbers} = \{a + ib \mid a, b \in \mathbb{R}, i^2 = -1\}$
- $\mathbb{C}^* = \text{Set of Non-zero Complex Numbers} = \{c \in \mathbb{C} \mid c \neq 0\}$

Frequently-Used Notations:

- For each $n \in \mathbb{Z}^+$, $\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$
- For real numbers, a, b with a < b, we define intervals as follows:

(Closed)
$$[a, b] = \{x \mid a \le x \le b\}$$
 (Open) $(a, b) = \{x \mid a < x < b\}$ (Half-Open) $(a, b] = \{x \mid a < x \le b\}$ and $[a, b) = \{x \mid a \le x < b\}$

Counting using Set Theory

Prove that, $\binom{n}{r+1} = \frac{n-r}{r+1} \binom{n}{r}$

Counting: Total number of (r+1)-element subsets, formed from all r-element subsets by adding an element from (n-r) remaining elements, is, $m=(n-r)\binom{n}{r}$. Ex: Let n=4 and $\mathcal{S}=\{1,2,3,4\}$. All 2-element subsets are, $\mathcal{A}_1=\{1,2\}$, $\mathcal{A}_2=\{1,3\}$, $\mathcal{A}_3=\{1,4\}$, $\mathcal{A}_4=\{2,3\}$, $\mathcal{A}_5=\{2,4\}$, $\mathcal{A}_6=\{3,4\}$. From each \mathcal{A}_i s, a 3-element subset can be formed in *two* ways. So, total possibilities $=2\times\binom{4}{2}=12$.

Repetition: Each (r+1) element subset can be formed from (r+1) different r-element subsets. So, the total choice reduces to, $\binom{n}{r+1} = \frac{m}{r+1} = \frac{n-r}{r+1} \binom{n}{r}$. Ex: 3-element subset $\{1,2,3\}$ can formed from $\mathcal{A}_1,\mathcal{A}_2,\mathcal{A}_4$ by adding an element to each. So, reduced number of possibilities $=\frac{12}{3}=4=\binom{4}{3}$

Prove that,
$$\binom{r}{r}+\binom{r+1}{r}+\cdots+\binom{n-1}{r}+\binom{n}{r}=\binom{n+1}{r+1}$$

Let the (n+1)-element set be $=\{1,2,\ldots,n,n+1\}$ From (n+1)-element set, choosing (r+1)-element subsets with smallest element i can be done in $\binom{n+1-i}{r}$ ways. So, all such possible choice leads to, $\sum_{i=1}^{(n+1)-(r+1)} \binom{n+1-i}{r} = \binom{n+1}{r+1}$, implying the proof.

Counting using Set Theory

Prove that,
$$\sum_{i=0}^{n} i \binom{n}{i} = n \cdot 2^{n-1}$$

From an *n*-element set, Size of a subset with *i* elements + Size of its complement subset = i + (n - i) = n and there are $\binom{n}{i}$ number of these each. Therefore, $2\sum_{i=0}^{n} i \binom{n}{i} = n\sum_{i=0}^{n} \binom{n}{i} = n.2^{n}$, implying the proof.

Prove that, Number of Summands of n is 2^{n-1} .

Consider, n = 4.

Summand	Subset Correspondence
1+1+1+1=1+1+1+1	ϕ
2+1+1=(1+1)+1+1	{1}
$1 + \frac{2}{2} + 1 = 1 + (1 + 1) + 1$	{2}
$1+1+\frac{2}{2}=1+1+(1+1)$	{3}
3+1=(1+1+1)+1	$\{1, 2\}$
2+2=(1+1)+(1+1)	$\{1, 3\}$
1 + 3 = 1 + (1 + 1 + 1)	$\{2,3\}$
4 = (1+1+1+1)	{1, 2, 3}

 \therefore Number of summands of $n = \text{Number of subsets of an } (n-1)\text{-element set} = 2^{n-1}$.

Set Operations

For two sets, $A, B \in \mathcal{U}$ (universal set), the following operations are defined:

(Ex: Let,
$$A = \{1, 2, 3\}$$
 and $B = \{2, 3, 4\}$)

Union:
$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

(Ex:
$$A \cup B = \{1, 2, 3, 4\}$$
)

Intersection:
$$A \cap B = \{x \mid x \in A \land x \in B\}$$

(Ex:
$$A \cap B = \{2,3\}$$
)

Complement: $\overline{A} = \{x \mid x \in \mathcal{U} \land x \notin A\}$

Relative Complement:
$$A - B = \{x \mid x \in A \land x \notin B\} = A \cap \overline{B}$$
 (Ex: $A - B = \{1\}$)

Symmetric Difference:

$$\mathcal{A} \Delta \mathcal{B} = \{x \mid (x \in \mathcal{A} \lor x \in \mathcal{B}) \land x \notin \mathcal{A} \cap \mathcal{B}\}$$

$$= \{x \mid x \in \mathcal{A} \cup \mathcal{B} \land x \notin \mathcal{A} \cap \mathcal{B}\} = (\mathcal{A} \cup \mathcal{B}) - (\mathcal{A} \cap \mathcal{B})$$

$$= \{x \mid x \in \mathcal{A} \cap \overline{\mathcal{B}} \land x \in \overline{\mathcal{A}} \cap \mathcal{B}\} = (\mathcal{A} \cap \overline{\mathcal{B}}) \cup (\overline{\mathcal{A}} \cap \mathcal{B})$$

$$= (\mathcal{A} - \mathcal{B}) \cup (\mathcal{B} - \mathcal{A}) = \mathcal{B} \Delta \mathcal{A} \qquad (Ex: \mathcal{A} \Delta \mathcal{B} = \{1, 4\})$$

Mutual Disjoint: Sets, \mathcal{A} and \mathcal{B} , are mutually disjoint (or disjoint), when $\mathcal{A} \cap \mathcal{B} = \phi$. In such a case, $\mathcal{A} \Delta \mathcal{B} = \mathcal{A} \cup \mathcal{B}$, $\mathcal{A} \cap \overline{\mathcal{B}} = \mathcal{A}$ and $\overline{\mathcal{A}} \cap \mathcal{B} = \mathcal{B}$.

The following statements are equivalent:

(Proof Left as an Exercise!)

(a)
$$\mathcal{A} \subseteq \mathcal{B}$$

(b)
$$A \sqcup B = B$$

(a)
$$A \subseteq \mathcal{B}$$
, (b) $A \cup \mathcal{B} = \mathcal{B}$, (c) $A \cap \mathcal{B} = A$, (d) $\overline{\mathcal{B}} \subseteq \overline{A}$

Laws of Set Theory

For three sets, $\mathcal{A},\mathcal{B},\mathcal{C}\in\mathcal{U}$, the rules given as follows:

Name of the Law	Mathematical Expressions
Double Complement:	$\overline{\overline{\mathcal{A}}} = \mathcal{A}$
DeMorgan's Laws:	$\overline{\mathcal{A} \cup \mathcal{B}} = \overline{\mathcal{A}} \cap \overline{\mathcal{B}}, \overline{\mathcal{A} \cap \mathcal{B}} = \overline{\mathcal{A}} \cup \overline{\mathcal{B}}$
Commutative Laws:	$A \cup B = B \cup A$, $A \cap B = B \cap A$
Associative Laws:	$\mathcal{A} \cup (\mathcal{B} \cup \mathcal{C}) = (\mathcal{A} \cup \mathcal{B}) \cup \mathcal{C}, \mathcal{A} \cap (\mathcal{B} \cap \mathcal{C}) = (\mathcal{A} \cap \mathcal{B}) \cap \mathcal{C}$
Distributive Laws:	$\mathcal{A} \cup (\mathcal{B} \cap \mathcal{C}) = (\mathcal{A} \cup \mathcal{B}) \cap (\mathcal{A} \cup \mathcal{C}), \ \mathcal{A} \cap (\mathcal{B} \cup \mathcal{C}) = (\mathcal{A} \cap \mathcal{B}) \cup (\mathcal{A} \cap \mathcal{C})$
Idempotent Laws:	$A \cup A = A$, $A \cap A = A$
Identity Laws:	$A \cup \phi = A$, $A \cap \mathcal{U} = A$
Inverse Laws:	$\mathcal{A} \cup \overline{\mathcal{A}} = \mathcal{U}, \mathcal{A} \cap \overline{\mathcal{A}} = \phi$
Domination Laws:	$A \cup \mathcal{U} = \mathcal{U}, A \cap \phi = \phi$
Absorption Laws:	$\mathcal{A} \cup (\mathcal{A} \cap \mathcal{B}) = \mathcal{A}, \mathcal{A} \cap (\mathcal{A} \cup \mathcal{B}) = \mathcal{A}$

An Example Proof Sketch: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

```
x \in \mathcal{A} \cup (\mathcal{B} \cap \mathcal{C}) \quad \Leftrightarrow \quad (x \in \mathcal{A}) \vee (x \in \mathcal{B} \cap \mathcal{C}) \quad \Leftrightarrow \quad (x \in \mathcal{A}) \vee ((x \in \mathcal{B}) \wedge (x \in \mathcal{C}))
```

- $\Leftrightarrow \quad ((x \in \mathcal{A}) \lor (x \in \mathcal{B})) \land ((x \in \mathcal{A}) \lor (x \in \mathcal{C}))$
- $\Leftrightarrow (x \in \mathcal{A} \cup \mathcal{B}) \land (x \in \mathcal{A} \cup \mathcal{C}) \Leftrightarrow x \in (\mathcal{A} \cup \mathcal{B}) \cap (\mathcal{A} \cup \mathcal{C})$

Some Derived Laws and Observations

$$\begin{split} \mathcal{A}_1 &= \mathcal{A}_1 \cup (\mathcal{A}_1 \cap \mathcal{A}_2) \cup (\mathcal{A}_1 \cap \mathcal{A}_2 \cap \mathcal{A}_3) \cup (\mathcal{A}_1 \cap \mathcal{A}_2 \cap \mathcal{A}_3 \cap \mathcal{A}_4) \cup \cdots & (\forall i, \ \mathcal{A}_i \in \mathcal{U}) \\ \textit{Proof:} \ \mathcal{A}_1 \cup (\mathcal{A}_1 \cap \mathcal{A}_2) &= \mathcal{A}_1, \quad (\mathcal{A}_1 \cap \mathcal{A}_2) \cup (\mathcal{A}_1 \cap \mathcal{A}_2 \cap \mathcal{A}_3) = (\mathcal{A}_1 \cap \mathcal{A}_2), \\ & (\mathcal{A}_1 \cap \mathcal{A}_2 \cap \mathcal{A}_3) \cup (\mathcal{A}_1 \cap \mathcal{A}_2 \cap \mathcal{A}_3 \cap \mathcal{A}_4) = (\mathcal{A}_1 \cap \mathcal{A}_2 \cap \mathcal{A}_3), \ \textit{and so on } \dots \\ \textit{Similarly, } \mathcal{A}_1 &= \mathcal{A}_1 \cap (\mathcal{A}_1 \cup \mathcal{A}_2) \cap (\mathcal{A}_1 \cup \mathcal{A}_2 \cup \mathcal{A}_3) \cap (\mathcal{A}_1 \cup \mathcal{A}_2 \cup \mathcal{A}_3 \cup \mathcal{A}_4) \cap \dots \end{split}$$

$$\overline{\mathcal{A} \Delta \mathcal{B}} = \mathcal{A} \Delta \overline{\mathcal{B}} = \overline{\mathcal{A}} \Delta \mathcal{B}$$

$$Proof: As, \ \mathcal{A} \Delta \mathcal{B} = (\mathcal{A} \cup \mathcal{B}) - (\mathcal{A} \cap \mathcal{B}) \text{ and } \mathcal{A} \Delta \mathcal{B} = (\mathcal{A} \cap \overline{\mathcal{B}}) \cup (\overline{\mathcal{A}} \cap \mathcal{B}), \text{ so}$$

$$\overline{\mathcal{A} \Delta \mathcal{B}} = (\overline{\mathcal{A}} \cap \overline{\mathcal{B}}) \cup (\overline{\mathcal{A}} \cap \mathcal{B}) = (\overline{\mathcal{A}} \cup \mathcal{B}) \cap (\overline{\overline{\mathcal{A}} \cap \mathcal{B}}) = (\overline{\mathcal{A}} \cup \mathcal{B}) - (\overline{\mathcal{A}} \cap \mathcal{B}) = \overline{\mathcal{A}} \Delta \mathcal{B} \text{ and}$$

$$\overline{\mathcal{A} \Delta \mathcal{B}} = (\overline{\overline{\mathcal{A}} \cap \mathcal{B}}) \cup (\mathcal{A} \cap \overline{\overline{\mathcal{B}}}) = (\mathcal{A} \cup \overline{\mathcal{B}}) \cap (\mathcal{A} \cap \overline{\mathcal{B}}) = (\mathcal{A} \cup \overline{\mathcal{B}}) - (\mathcal{A} \cap \overline{\mathcal{B}}) = \mathcal{A} \Delta \overline{\mathcal{B}}$$

$$\overline{\mathcal{A}} \ \Delta \ \overline{\mathcal{B}} = \mathcal{A} \ \Delta \ \mathcal{B} = \mathcal{B} \ \Delta \ \mathcal{A} = \overline{\mathcal{B}} \ \Delta \ \overline{\mathcal{A}}$$
$$\mathcal{A} \ \Delta \ (\mathcal{B} \ \Delta \ \mathcal{C}) = (\mathcal{A} \ \Delta \ \mathcal{B}) \ \Delta \ \mathcal{C} \qquad \qquad \mathcal{A} \cap (\mathcal{B} \ \Delta \ \mathcal{C}) = (\mathcal{A} \cap \mathcal{B}) \ \Delta \ (\mathcal{A} \cap \mathcal{C})$$

Aritra Hazra (CSE, IITKGP) CS21001 : Discrete Structures

Index Set and Partitions

Index Set

Definition: Let $\mathcal{I} \neq \phi$ and $\forall i \in \mathcal{I}$, let $\mathcal{A}_i \subseteq \mathcal{U}$ (universal set). Then, \mathcal{I} is called an

index set, and each $i \in \mathcal{I}$ is an index.

Set Operations: (Union) $\bigcup_{i \in \mathcal{I}} A_i = \{x \mid \exists i \in \mathcal{I}, x \in A_i\}$

(Intersection) $\bigcap_{i\in\mathcal{I}} A_i = \{x \mid \forall i\in\mathcal{I}, \ x\in\mathcal{A}_i\}$

Generalized DeMorgan's Law: $\overline{\bigcup_{i\in\mathcal{I}}\mathcal{A}_i}=\bigcap_{i\in\mathcal{I}}\overline{\mathcal{A}_i}$ and $\overline{\bigcap_{i\in\mathcal{I}}\mathcal{A}_i}=\bigcup_{i\in\mathcal{I}}\overline{\mathcal{A}_i}$

Partition of a Set

Definition: Let $\mathcal S$ be a non-empty set. A family of non-empty subsets, $\{\mathcal S_i\mid i\in\mathcal I\}$ $(\mathcal I$ being the index set) is said to form a partition of $\mathcal S$ if the following two condition holds:

- $\bigcup_{i \in \mathcal{I}} S_i = S$ (Complete Set Cover), and
- $S_i \cap S_j = \phi, \forall i, j \in \mathcal{I}$ and $i \neq j$ (Pairwise Disjoint).

Example: Let $\mathcal{Z}_0 = \{3m \mid m \text{ is an integer}\} = \{0, \pm 3, \pm 6, \ldots\},\$ $\mathcal{Z}_1 = \{3m+1 \mid m \text{ is an integer}\} = \{\ldots, -8, -5, -2, +1, +4, +7, \ldots\}$ $\mathcal{Z}_2 = \{3m+2 \mid m \text{ is an integer}\} = \{\ldots, -7, -4, -1, +2, +5, +8, \ldots\}$ Now, $\mathcal{Z}_0 \cup \mathcal{Z}_1 \cup \mathcal{Z}_2 = \mathbb{Z}$ and $\mathcal{Z}_0 \cap \mathcal{Z}_1 = \mathcal{Z}_1 \cap \mathcal{Z}_2 = \mathcal{Z}_2 \cap \mathcal{Z}_0 = \phi$

Thank You!