Tutorat – sélection d'exercices *Méthodologie en Sciences pour l'Ingénieur* Licence SPI, UFR SITEC, 2023-2024

Exercice 1 Mettre les nombres suivants sous forme algébrique et exponentielle.

a)
$$(2+5i)+(2-9i)$$
 b) $(i-3)(3+i)$ c) $(1-i)\overline{(1+i)}$ d) $(1+i)^3$

b)
$$(i-3)(3+i)$$

c)
$$(1-i)\overline{(1+i)}$$

d)
$$(1+i)^3$$

$$\mathbf{e)} \quad -\frac{i\sqrt{2}}{1+i}$$

f)
$$-\frac{4}{1+i\sqrt{3}}$$

e)
$$-\frac{i\sqrt{2}}{1+i}$$
 f) $-\frac{4}{1+i\sqrt{3}}$ g) $\left(\frac{1+i}{2-i}\right)^2 - \frac{6}{25}i$ h) $\frac{(1+i\sqrt{3})^3}{(1-i)^5}$

h)
$$\frac{(1+i\sqrt{3})^3}{(1-i)^5}$$

i)
$$z_1 = 4e^{i\frac{\pi}{4}}$$

i)
$$z_1 = 4e^{i\frac{\pi}{4}}$$
 j) $z_2 = -2e^{i\frac{2\pi}{3}}$ k) $z_3 = 3ie^{i\frac{\pi}{6}}$ l) $\frac{z_1 z_2}{z_3}$

k)
$$z_3 = 3ie^{i\frac{\pi}{6}}$$

1)
$$\frac{z_1 z_2}{z_3}$$

Résoudre l'équation $z^4 = 1$. Représenter graphiquement les solutions. **Exercice 2**

Exercice 3

Soit A, B et C trois points du plan d'affixes respectives a = 2 + 3i, b = 4 - i et c = 10 + 2i.

- a) Représenter le triangle ABC.
- **b)** Calculer b-a, c-b et a-c puis leur module.
- c) En déduire que le triangle ABC est rectangle en B.

Répondre aux questions suivantes pour les transformations du plan proposées :

$$f_1(z) = \overline{-z}$$
 $f_2(z) = iz$ $f_3(z) = (1+i)z$

- d) Construire l'image du triangle ABC par la transformation f.
- Déterminer le module et l'argument de f(z) en fonction de ceux de z. De quelle similitude s'agit-il? Si ce n'est pas une similitude élémentaire, la décrire géométriquement.

Re

Exercice 4 Montrer les identités suivantes :

a)
$$\cos^2(x) + \sin^2(x) = 1$$

b)
$$\cos(2x) = 2\cos^2(x) - 1$$

c)
$$\cos(2x) = 1 - 2\sin^2(x)$$

$$\mathbf{d)} \quad \sin(2x) = 2\sin(x)\cos(x)$$

Sur le modèle, exprimer $\sin(3x)$ en fonction de $\sin(x)$ et $\cos(2x)$.

Exercice 5 La tangente en M au cercle trigonométrique coupe l'axe horizontal au point S d'abscisse $x = \sec \theta$ (sécante de θ).

Elle coupe l'axe vertical au point C d'ordonnée $y = \csc \theta$ (cosécante de θ).

Enfin, on définit $\cot \theta$ par la longueur MC.

a) Exprimer le sinus de θ dans les triangles OMS et OAT.

En déduire la valeur de $\sec \theta$.

b) Montrer que $(\overrightarrow{CO}, \overrightarrow{CS}) = \theta$. En déduire la valeur de $\csc \theta$ et $\cot \theta$.

Exercice 6

Soit \vec{u} et \vec{v} deux vecteurs non nuls du plan. Soit $\vec{A} = (1,4,8)$ et $\vec{B} = (2,6,3)$.

a) \vec{u} et \vec{v} sont orthogonaux lorsque

$$\Box \vec{u} \cdot \vec{v} = 1$$

$$\square \vec{u} \cdot \vec{v} = \vec{0}$$

$$\square$$
 l'angle $(\overrightarrow{u}, \overrightarrow{v})$ est aigu

$$\square \vec{u} \cdot \vec{v} = 0$$

$$\square$$
 l'angle $(\overrightarrow{u}, \overrightarrow{v})$ est obtus

b) Le produit scalaire de \overrightarrow{A} et \overrightarrow{B} vaut

$$\Box$$
 -25

$$\square$$
 25

$$\Box \sqrt{50}$$

$$\Box$$
 68

$$\Box$$
 50

c) L'angle (\vec{A}, \vec{B}) vaut

$$\Box \sin(50^\circ)$$

$$\square$$
 0.56 rad

$$\square$$
 arccos(50/63)

$$\square$$
 arcsin(50/63)

$$\Box$$
 π

d) Soit $(\vec{i}, \vec{j}, \vec{k})$ une base orthonormée directe. Le produit vectoriel $\vec{j} \wedge \vec{k}$ vaut

$$\Box \overrightarrow{i}$$

$$\Box$$
 0

$$\Box -\vec{i}$$

$$\Box \overrightarrow{j}$$

e) Le produit vectoriel de \overrightarrow{A} et \overrightarrow{B} vaut

$$\Box$$
 (-36, 13, -2)

$$\Box$$
 $(-2, -36, -13)$

$$\Box$$
 (2, 24, 24)

$$\Box$$
 $(-36, -13, -2)$

$$\Box$$
 50

f) Le vecteur unitaire porté par \overrightarrow{B} est :

$$\Box$$
 (1, 3, 3/2)

$$\Box$$
 (2/3, 2, 1)

$$\Box$$
 (2/7, 6/7, 2/7)

$$\Box$$
 (1/3, 1, 1/2)

$$\square \ 2/7\overrightarrow{i} + 6/7\overrightarrow{j} + 3/7\overrightarrow{k}$$