

Report No.: ATE20140248

Page 1 of 92

APPLICATION CERTIFICATION On Behalf of New Tech Development Ltd

Speaker Model No.: FY-28

FCC ID: 2AB4AFY-28

Prepared for : New Tech Development Ltd

Address : Building 2, Yuanzheng Industry Park, Wuhe Avenue,

Bantian Town, Longgang District, Shenzhen China

Prepared by : ACCURATE TECHNOLOGY CO., LTD

Address : F1, Bldg. A, Chan Yuan New Material Port, Keyuan

Rd. Science & Industry Park, Nan Shan, Shenzhen,

Guangdong P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number : ATE20140248

Date of Test : Mar 07, 2014-Mar 25, 2014

Date of Report : Mar 25, 2014

Report No.: ATE20140248 Page 2 of 92

TABLE OF CONTENTS

Description Page

rt Certificati

1 est	Report Certification	
1. (GENERAL INFORMATION	5
1.1.		
1.2.	* * *	
1.3.	. Measurement Uncertainty	ϵ
2. N	MEASURING DEVICE AND TEST EQUIPMENT	7
3. (OPERATION OF EUT DURING TESTING	8
3.1.	. Operating Mode	8
3.2.	1 0	
4. T	TEST PROCEDURES AND RESULTS	
5. 2	20DB BANDWIDTH TEST	10
5.1.		
5.2.		
5.3.	•	
5.4.	· · · · · · · · · · · · · · · · · · ·	
5.5.		
5.6.	. Test Result	11
6. (CARRIER FREQUENCY SEPARATION TEST	
6.1.		
6.2.	*	
6.3.		
6.4.		
6.5.	. Test Procedure	17
6.6.	. Test Result	17
7. N	NUMBER OF HOPPING FREQUENCY TEST	23
7.1.		
7.2.	. The Requirement For Section 15.247(a)(1)(iii)	23
7.3.	. EUT Configuration on Measurement	23
7.4.	. Operating Condition of EUT	23
7.5.		
7.6.	. Test Result	24
8. I	DWELL TIME TEST	26
8.1.		
8.2.	1	
8.3.	$\boldsymbol{\varepsilon}$	
8.4.		
8.5.		
8.6.		
9. N	MAXIMUM PEAK OUTPUT POWER TEST	
9.1.		
9.2.	1	
9.3.	$\boldsymbol{\varepsilon}$	
9.4.		
9.5.		
9.6.	. Test Result	43

RADIATED EMISSION TEST	49
1. Block Diagram of Test Setup	49
2. The Limit For Section 15.247(d)	49
3. Restricted bands of operation	50
4. Configuration of EUT on Measurement	50
6. The Field Strength of Radiation Emission Measurement Results	51
BAND EDGE COMPLIANCE TEST	64
1. Block Diagram of Test Setup	64
4. Operating Condition of EUT	64
5. Test Procedure	65
6. Test Result	65
AC POWER LINE CONDUCTED EMISSION FOR FCC PART 15 SECT	ION 15.207(A)87
1. Block Diagram of Test Setup	87
· · · · · · · · · · · · · · · · · · ·	
3. The Emission Limit	87
4. Configuration of EUT on Measurement	88
5. Operating Condition of EUT	88
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
7. Power Line Conducted Emission Measurement Results	88
ANTENNA REQUIREMENT	92
1. The Requirement	92
2. Antenna Construction	92
	1. Block Diagram of Test Setup

Report No.: ATE20140248 Page 4 of 92

Test Report Certification

Applicant : New Tech Development Ltd

Manufacturer : New Tech Development Ltd

EUT Description: Speaker

(A) MODEL NO.: FY-28

(B) Trade Name.: /

(C) POWER SUPPLY: DC 7.4V(battery) & DC 5V(Powered by USB Port)

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.4- 2009

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test :	Mar 07, 2014-Mar 25, 2014
Prepared by :	7 in Zharg
	(Tim.zhang, Engineer)
Approved & Authorized Signer : _	Lemil
	(Sean Liu Manager)

Report No.: ATE20140248

Page 5 of 92

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : Speaker Model Number : FY-28

Frequency Band : 2402MHz-2480MHz

Number of Channels : 79

Modulation type : GFSK, $\Pi/4$ -DQPSK, 8DPSK

Antenna Gain : 0dBi

Bluetooth version : Bluetooth V3.0 Antenna type : PCB Antenna

Power Supply : DC7.4V(battery) & DC 5V(Powered by USB Port)

Applicant : New Tech Development Ltd

Address : Building 2, Yuanzheng Industry Park, Wuhe Avenue,

Bantian Town, Longgang District, Shenzhen China

Manufacturer : New Tech Development Ltd

Address : Building 2, Yuanzheng Industry Park, Wuhe Avenue,

Bantian Town, Longgang District, Shenzhen China

Date of sample received: Mar 07, 2014

Date of Test : Mar 07, 2014-Mar 25, 2014

Report No.: ATE20140248

Page 6 of 92

1.2.Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm : ACCURATE TECHNOLOGY CO. LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

1.3. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 11, 2014	Jan. 10, 2015
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 11, 2014	Jan. 10, 2015
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 11, 2014	Jan. 10, 2015
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 11, 2014	Jan. 10, 2015
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 15, 2014	Jan. 14, 2015
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 15, 2014	Jan. 14, 2015
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 15, 2014	Jan. 14, 2015
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1067	Jan. 15, 2014	Jan. 14, 2015
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 11, 2014	Jan. 10, 2015
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 11, 2014	Jan. 10, 2015
Highpass Filter	Wainwright Instruments	WHKX3.6/18 G-10SS	N/A	Jan. 11, 2014	Jan. 10, 2015
Band Reject Filter	Wainwright Instruments	WRCG2400/2 485-2375/2510 -60/11SS	N/A	Jan. 11, 2014	Jan. 10, 2015

Page 8 of 92

3. OPERATION OF EUT DURING TESTING

3.1. Operating Mode

The mode is used: Transmitting mode

Low Channel: 2402MHz Middle Channel: 2441MHz High Channel: 2480MHz

Hopping

3.2.Configuration and peripherals

EUT

(EUT: Speaker)

4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.207	Power Line Conducted Emission	Compliant
Section 15.247(a)(1)	20dB Bandwidth Test	Compliant
Section 15.247(a)(1)	Carrier Frequency Separation Test	Compliant
Section 15.247(a)(1)(iii)	Number Of Hopping Frequency Test	Compliant
Section 15.247(a)(1)(iii)	Dwell Time Test	Compliant
Section 15.247(b)(1)	Maximum Peak Output Power Test	Compliant
Section 15.247(d) Section 15.209	Radiated Emission Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.203	Antenna Requirement	Compliant

Report No.: ATE20140248 Page 10 of 92

5. 20DB BANDWIDTH TEST

5.1.Block Diagram of Test Setup

5.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

5.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

Report No.: ATE20140248 Page 11 of 92

5.5.Test Procedure

- 5.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 5.5.2.Set RBW of spectrum analyzer to 30 kHz and VBW to 100 kHz.
- 5.5.3.The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

5.6.Test Result

	Enganaga	GFSK	∏/4-DQPSK	8DPSK	
Channel	Frequency (MHz)	20dB Bandwidth	20dB Bandwidth	20dB Bandwidth	Result
		(MHz)	(MHz)	(MHz)	
Low	2402	0.975	1.285	1.256	Pass
Middle	2441	0.897	1.274	1.268	Pass
High	2480	0.929	1.274	1.256	Pass

The spectrum analyzer plots are attached as below.

Mode 1: GFSK Link Mode

Middle Channel: 2441MHz Spectrum Ref Level 20.00 dBm Offset 0.50 dB • RBW 30 kHz Att 30 dB SWT 63.1 µs 🁄 **VBW** 100 kHz Mode Auto FFT ●1Pk Max M1[1] 1.34 dBn 2.44097680 GHz 10 dBm ndB 20.00 dB 897.300000000 kHz Bw 0 dBm-Q factor 2720.5 10 dBm **T**1 -20 dBm -30 dBm 40 dBm -50 dBm--60 dBm -70 dBm 691 pts CF 2.441 GHz Span 2.0 MHz Marker Type | Ref | Trc Stimulus Response Function **Function Result** 2.4409768 GHz 2.440534 GHz M1 T1 1.34 dBm -18.53 dBm ndB down 897.3 kHz 20.00 dB ndB 2.4414313 GHz -18.54 dBm 4.03.2014 16:36:19

Mode 2: $\pi/4$ DQPSK Link Mode

Mode 3: 8DPSK Link Mode

Report No.: ATE20140248

Page 16 of 92

6. CARRIER FREQUENCY SEPARATION TEST

6.1.Block Diagram of Test Setup

6.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

6.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

Report No.: ATE20140248
Page 17 of 92

6.5. Test Procedure

- 6.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- $6.5.2. Set\ RBW$ of spectrum analyzer to $100\ kHz$ and VBW to $300\ kHz.$ Adjust Span to $3\ MHz.$
- 6.5.3.Set the adjacent channel of the EUT maxhold another trace.
- 6.5.4. Measurement the channel separation

6.6.Test Result

GFSK

Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2402 2403	1.0058	25KHz or 20dB bandwidth	PASS
Middle	2440 2441	1.0029	25KHz or20dB bandwidth	PASS
High	2479 2480	1.0029	25KHz or 20dB bandwidth	PASS

∏/4-DQPSK

Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2402	1.0029	25KHz or 2/3*20dB	PASS
Low	2403	1.0027	bandwidth	17100
Middle	2440	1.0029	25KHz or 2/3*20dB	PASS
	2441		bandwidth	LASS
High	2479	1.0029	25KHz or 2/3*20dB	PASS
	2480		bandwidth	PASS

8DPSK

Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2402 2403	1.0029	25KHz or 2/3*20dB bandwidth	PASS
Middle	2440 2441	1.0029	25KHz or 2/3*20dB bandwidth	PASS
High	2479 2480	1.0029	25KHz or 2/3*20dB bandwidth	PASS

The spectrum analyzer plots are attached as below.

Mode 1: GFSK Link Mode

Mode 2: π /4 DQPSK Link Mode

Mode 3: 8DPSK Link Mode

Page 22 of 92

7. NUMBER OF HOPPING FREQUENCY TEST

7.1.Block Diagram of Test Setup

7.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

7.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2. Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX (Hopping on) modes measure it.

Report No.: ATE20140248 Page 24 of 92

7.5.Test Procedure

- 7.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Set the spectrum analyzer as Span=83.5MHz, RBW=100 kHz, VBW=300 kHz.
- 7.5.3.Max hold, view and count how many channel in the band.

7.6.Test Result

Total number of	Measurement result(CH)	Limit(CH)
hopping channel	79	≥15

The spectrum analyzer plots are attached as below.

Number of hopping channels(GFSK)

Number of hopping channels ($\Pi/4$ -DQPSK)

Number of hopping channels(8DPSK)

Report No.: ATE20140248

Page 26 of 92

8. DWELL TIME TEST

8.1.Block Diagram of Test Setup

8.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

8.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

8.5. Test Procedure

- 8.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2.Set center frequency of spectrum analyzer = operating frequency.
- 8.5.3.Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Span=0Hz, Adjust Sweep=5ms, 10ms, 15ms. Get the pulse time.

8.5.4.Repeat above procedures until all frequency measured were complete.

8.6.Test Result

GFSK Mode

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)	
	2402	0.5362	171.58	400	
DH1	2441	0.5290	169.28	400	
	2480	0.5362	171.58	400	
A period to	ransmit time = $0.4 \times 79 =$	31.6 Dwell time = pv	alse time \times (1600/(2*)	79))×31.6	
	2402	1.8261	292.18	400	
DH3	2441	1.8116	289.86	400	
	2480	1.8116	289.86	400	
A period to	ransmit time = $0.4 \times 79 =$	31.6 Dwell time = pt	alse time \times (1600/(4*)	79))×31.6	
	2402	3.0725	327.73	400	
DH5	2441	3.0725	327.73	400	
	2480	3.0725	327.73	400	
A period transr	A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$				

$\Pi/4$ -DQPSK

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)	
	2402	0.5507	176.22	400	
DH1	2441	0.5507	176.22	400	
	2480	0.5435	173.92	400	
A period to	ransmit time = $0.4 \times 79 =$	31.6 Dwell time = pt	alse time \times (1600/(2*)	79))×31.6	
	2402	1.8261	292.18	400	
DH3	2441	1.8261	292.18	400	
	2480	1.8043	288.69	400	
A period to	ransmit time = 0.4×79 =	31.6 Dwell time = pt	alse time \times (1600/(4*)	79))×31.6	
	2402	3.0435	324.64	400	
DH5	2441	3.0652	326.95	400	
	2480	2.9783	317.69	400	
A period transr	A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$				

8DPSK Mode

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)
DH1	2402	0.5435	173.92	400
	2441	0.5435	173.92	400
	2480	0.5435	173.92	400
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(2*79)) \times 31.6$				
DH3	2402	1.8188	291.01	400
	2441	1.8188	291.01	400
	2480	1.8188	291.01	400
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(4*79)) \times 31.6$				
DH5	2402	3.0797	328.50	400
	2441	3.0580	326.19	400
	2480	3.0797	328.50	400
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$				

The spectrum analyzer plots are attached as below.

DH1 Middle channel

DH3 Low channel

DH5 Middle channel

Page 33 of 92

4.03.2014 17:26:58

Ready

1.5 ms/ 14.03.2014 17:36:20

CF 2.441 GHz

3DH5 Middle channel Spectrum Offset 0.50 dB @ RBW 1 MHz Ref Level 20.00 dBm 30 dB 🅌 SWT 15 ms 🅌 **VBW** 3 MHz Att SGL ●1AP Clrw D2[1] -1.10 dB 3.0580 ms -54.30 dBm 10 dBm M1[1] 5.2246 ms 40 d<mark>B</mark>m -50 d**B**m -60 d -70 di

691 pts

Ready

Report No.: ATE20140248

Page 42 of 92

9. MAXIMUM PEAK OUTPUT POWER TEST

9.1.Block Diagram of Test Setup

9.2. The Requirement For Section 15.247(b)(1)

Section 15.247(b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

9.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

- 9.4.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2. Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

9.5.Test Procedure

- 9.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 9.5.2.Set RBW of spectrum analyzer to 1MHz and VBW to 3MHz for GFSK mode
- 9.5.3.Set RBW of spectrum analyzer to 3MHz and VBW to 3MHz for other mode
- 9.5.4. Measurement the maximum peak output power.

9.6.Test Result

GFSK Mode

Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits dBm / W
Low	2402	2.31/0.0017	30 / 1.0
Middle	2441	1.65/0.0015	30 / 1.0
High	2480	-1.02/0.0008	30 / 1.0

Π /4-DQPSK Mode

Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits dBm / W
Low	2402	1.98/0.0016	21 / 0.125
Middle	2441	1.23/0.0013	21 / 0.125
High	2480	-0.45/0.0009	21 / 0.125

8DPSK Mode

Channel	Frequency (MHz)	Peak Output Power (dBm/W)	Limits dBm / W
Low	2402	2.11/0.0016	21 / 0.125
Middle	2441	1.42/0.0014	21 / 0.125
High	2480	-0.24/0.0009	21 / 0.125

The spectrum analyzer plots are attached as below.

GFSK Mode

Low channel

Middle channel

High channel

∏/4-DQPSK Mode

Low channel

Middle channel

High channel

8DPSK Mode

Low channel

Middle channel

High channel

10. RADIATED EMISSION TEST

10.1.Block Diagram of Test Setup

10.1.1.Block diagram of connection between the EUT and simulators

(EUT: Speaker)

10.1.2. Anechoic Chamber Test Setup Diagram

10.2. The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

Report No.: ATE20140248 Page 50 of 92

10.3.Restricted bands of operation

10.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$(^2)$
13.36-13.41			

Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

10.4. Configuration of EUT on Measurement

The equipment is installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

²Above 38.6

Report No.: ATE20140248

Page 51 of 92

10.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4- 2009 on radiated emission measurement.

The bandwidth of test receiver (R&S ESI26) is set at 120 KHz in 30-1000MHz. and set at 1MHz in above 1000MHz.

The frequency range from 30MHz to 25000MHz is checked.

The final measurement in band 9-90 kHz, 110-490 kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

The field strength is calculated by adding the antenna factor, and cable loss, and subtracting the amplifier gain from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

10.6. The Field Strength of Radiation Emission Measurement Results

Note: 1.We tested GFSK mode, $\Pi/4$ -DQPSK Mode & 8DPSK mode and recorded the worst case data (GFSK mode) for all test mode.

2. The 18-25GHz emissions are not reported, because the levels are too low against the limit.

Report No.: ATE20140248 Page 52 of 92

Site: 1# Chamber Tel:+86-0755-26503290

Fax:+86-0755-26503396

Below 1GHz

Job No.: alen #3721

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Polarization: Horizontal Standard: FCC Class B 3M Radiated Power Source: DC 7.4V

Test item: Radiation Test Date: 14/03/11/ Temp.(C)/Hum.(%) 25 C / 55 % Time: 9/25/16

EUT: Speaker Engineer Signature: Mode: TX 2402MHz Distance: Model: FY-28

Manufacturer: New Tech

Note: Report No:ATE20140248

	No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	(dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
,	1	256.5210	41.70	-19.36	22.34	46.00	-23.66	QP			
2	2	312.1792	46.87	-17.61	29.26	46.00	-16.74	QP			
(3	903.3093	28.25	-6.05	22.20	46.00	-23.80	QP			

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20140248

Page 53 of 92

Job No.: alen #3720 Polarization: Vertical
Standard: FCC Class B 3M Radiated Power Source: DC 7.4V

Standard: FCC Class B 3M Radiated Power Source: DC 7.4'

Test item: Radiation Test Date: 14/03/11/

 Test item:
 Radiation Test
 Date: 14/03/11/

 Temp.(C)/Hum.(%)
 25 C / 55 %
 Time: 9/24/21

 EUT:
 Speaker
 Engineer Signature:

Mode: TX 2402MHz Distance: 3m

Model: FY-28

Manufacturer: New Tech

Note: Report No:ATE20140248

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	202.1005	38.65	-20.16	18.49	43.50	-25.01	QP			
2	372.0045	42.32	-15.84	26.48	46.00	-19.52	QP			
3	737.0714	33.45	-8.92	24.53	46.00	-21.47	QP			

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20140248

Page 54 of 92

Job No.: alen #3718 Polarization: Horizontal Standard: FCC Class B 3M Radiated Power Source: DC 7.4V

Standard: FCC Class B 3M Radiated Power Source: DC 7.4\
Test item: Radiation Test Date: 14/03/11/

 Temp.(C)/Hum.(%)
 25 C / 55 %
 Time: 9/22/46

 EUT:
 Speaker
 Engineer Signature:

 Mode:
 TX 2441MHz
 Distance: 3m

Model: FY-28
Manufacturer: New Tech

Note: Report No:ATE20140248

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20140248

Page 55 of 92

Job No.: alen #3719

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Speaker

Mode: TX 2441MHz

Model: FY-28

Manufacturer: New Tech

Note: Report No:ATE20140248

Polarization: Vertical
Power Source: DC 7.4V

Date: 14/03/11/ Time: 9/23/32

Engineer Signature:

Distance: 3m

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20140248

Page 56 of 92

Job No.: alen #3717 Polarization
Standard: FCC Class B 3M Radiated Power So

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Speaker

Mode: TX 2480MHz

Model: FY-28

Manufacturer: New Tech

Note: Report No:ATE20140248

Polarization: Horizontal

Power Source: DC 7.4V

Date: 14/03/11/ Time: 9/22/06

Engineer Signature:

Distance: 3m

						- :	· ·		limit	1: —
60										
50										
40										
30						1	N			
20	hom. ks. m				Wash Mark Mark	Mul		Whiteha	agendade Alberta	A STANKE
0.0	ATTACA PORTA	War Kray	i kortonir graniga ja	goloogh Million was a band	My A					
	80.000 40	50 60	70 80			30	0 40	0 500	600	700 1000.0 MHz
	From:	Reading		Result	Limit	Margin	Detector	Height (cm)	Degree (deg.)	Remark
	Freq. (MHz)	(dBuV/m) (dB)	(dBuV/m)	(dBuV/m)	(dB)		(CIII)	(ueg.)	

Report No.: ATE20140248

Page 57 of 92

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China Tel:+86-0755-26503290 Fax:+86-0755-26503396

Site: 1# Chamber

Job No.: alen #3716

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Speaker

Mode: TX 2480MHz

Model: FY-28

Manufacturer: New Tech

Polarization: Vertical

Power Source: DC 7.4V

Date: 14/03/11/ Time: 9/21/13 Engineer Signature:

Distance: 3m

Report No.: ATE20140248 Page 58 of 92

Site: 1# Chamber

Tel:+86-0755-26503290

Fax:+86-0755-26503396

Above 1GHz

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Job No.: alen #3722 Polarization: Horizontal Power Source: DC 7.4V Standard: FCC Class B 3M Radiated

Date: 14/03/11/ Test item: Radiation Test Temp.(C)/Hum.(%) 25 C / 55 % Time: 9/28/00 EUT: Speaker

Mode: TX 2402MHz Model: FY-28

Manufacturer: New Tech

Report No:ATE20140248 Note:

Engineer Signature: Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	4804.110	50.96	-1.59	49.37	74.00	-24.63	peak			
2	10698.514	43.10	5.32	48.42	74.00	-25.58	peak			
3	15443.405	37.77	11.33	49.10	74.00	-24.90	peak			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20140248

Page 59 of 92

Job No.: alen #3723 Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Speaker

Mode: TX 2402MHz

Model: FY-28

Manufacturer: New Tech

Note: Report No:ATE20140248

Polarization: Vertical Power Source: DC 7.4V

Date: 14/03/11/ Time: 9/29/29

Engineer Signature: Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20140248

Page 60 of 92

Job No.: alen #3725 Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Speaker

Mode: TX 2441MHz

Model: FY-28

Manufacturer: New Tech

Note: Report No:ATE20140248

Polarization: Horizontal Power Source: DC 7.4V

Date: 14/03/11/ Time: 9/31/20

Engineer Signature: Distance: 3m

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20140248

Page 61 of 92

Job No.: alen #3724 Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Speaker

Mode: TX 2441MHz

Model: **FY-28**

Manufacturer: New Tech

Report No:ATE20140248

Polarization: Vertical

Power Source: DC 7.4V

Date: 14/03/11/ Time: 9/30/27

Engineer Signature:

Distance: 3m

Report No.: ATE20140248 Page 62 of 92

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: alen #3726

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Speaker

Mode: TX 2480MHz

Model: FY-28

Manufacturer: New Tech

Note: Report No:ATE20140248

Polarization: Horizontal Power Source: DC 7.4V

Date: 14/03/11/ Time: 9/32/37

Engineer Signature: Distance: 3m

Site: 1# Chamber Tel:+86-0755-26503290

Fax:+86-0755-26503396

Report No.: ATE20140248

Page 63 of 92

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Polarization: Vertical Power Source: DC 7.4V

Date: 14/03/11/ Time: 9/33/48

Engineer Signature:

Distance: 3m

Job No.: alen #3727

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

EUT: Speaker Mode: TX 2480MHz

iviode: 1 X 2480IVIHZ

Model: FY-28

Manufacturer: New Tech

Note: Report No:ATE20140248

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	4959.307	51.05	-1.12	49.93	74.00	-24.07	peak			
2	10514.577	43.47	5.20	48.67	74.00	-25.33	peak			
3	12219.853	42.61	6.79	49.40	74.00	-24.60	peak			

Report No.: ATE20140248

Page 64 of 92

11.BAND EDGE COMPLIANCE TEST

11.1.Block Diagram of Test Setup

11.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

11.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

11.4. Operating Condition of EUT

- 11.4.1. Setup the EUT and simulator as shown as Section 11.1.
- 11.4.2. Turn on the power of all equipment.
- 11.4.3.Let the EUT work in TX (Hopping off, Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2480MHz TX frequency to transmit.

11.5.Test Procedure

- 11.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 11.5.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz with convenient frequency span including 100 kHz bandwidth from band edge.
- 11.5.3. The band edges was measured and recorded.

11.6.Test Result

Frequency	Result of Band Edge	Limit of Band Edge
(MHz)	(dBc)	(dBc)
	GFSK	
2399.942	37.61	> 20dBc
2484.600	55.76	> 20dBc
	∏/4-DQPSK Mode	
2399.520	39.75	> 20dBc
2490.400	55.79	> 20dBc
	8DPSK	
2398.920	39.62	> 20dBc
2485.300	55.29	> 20dBc