Fixed-phase mesochronous CDC

Eduardo M.

- Requirements:
 - (1) Dn = Dn* (n=0,1,2,3,...)
 - (2) ΔT does not changes with resets

- Requirements:
 - (1) Dn = Dn* (n=0,1,2,3,...)

- Requirements:
 - (2) ΔT does not changes with resets: measure phase between strobe_a strobe_b

- Requirements:
 - (2) ΔT does not changes with resets: measure phase between strobe_a strobe_b
 - Sampling xor_phase and accumulating xor with an asynchronous clock leads to a phase measurement (0-N)

<u>ALGORITHM</u>

- Capture phase for first reset: phase0
- For further resets:
 - If phase > phase0+clk_b_period/2
 - Retard strobe
 - If phase < phase0-clk_b_period/2
 - Advance strobe

- Summary
 - This technique ensures reliable data-transfer (appropriate max_delay constraint is recommended)
 - It does not require fine phase-shifting capability which is very inconvenient for designs featuring hundreds of links in a single FPGA
 - It can ensure fixed-phase operation ('memory' required)
 - Extensively verified in simulation for different cases

cdc_rx (uplink)

- Slightly different scheme (simplified) supporting also fixed-phase operation
 - Why different?
 - strobe_b is an input (fixed to 1 for 40MHz)

