

GCE AS MARKING SCHEME

SUMMER 2018

AS (NEW)
COMPUTER SCIENCE - UNIT 1
2500U10-1

INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCE AS Computer Science - Unit 1

Summer 2018 Mark Scheme

Q		Ans	wer		Marks	A01	AO2	AO3	Tot
1									4
	A OR C	B AND C	(A OR C) XOR (B AND C)	NOT ((A OR C) XOR (B AND C))					
	0	0	0	1					
	0	0	0	1					
	1	0	1	0					
	1	0	1	0					
	1	0	1	0					
	1	1	0	1					
	1	0	1	0					
	1	1	0	1					
	One mark fo		ich column:		1		2.1a		
	• B AND (1		2.1a		
) XOR (B A OR C) XOI		;))	1 1		2.1a 2.1a		
2a	Assigns dyn network.	amic IP add	dresses to d	levices on a	1	1.1b			1
2b	Internet star transmission		ectronic mai	l (email)	1	1.1b			1
2c	Transfers w		er a netwo	rk	1	1.1b			1

Q	Answer	Marks	A01	AO2	AO3	Tot
3a	Award one mark for each of the following up to	4	1.1b			4
	a maximum of four:					
	Hacking - gain unauthorised access to					
	data/to a computer system.					
	 Virus - a program which is capable of 					
	copying itself and typically has a					
	detrimental effect, such as corrupting the					
	system or destroying data.					
	Trojan - a program designed to breach the					
	security of a computer system while					
	ostensibly performing some innocuous					
	function.					
	Worm - a standalone malware computer					
	program that replicates itself in order to					
	spread to other computers.					
	 Spyware - software that enables a user to 					
	obtain information about another's					
	computer activities by transmitting data					
	from their hard drive.					
	Botnets - a network of private computers					
	infected with malicious software and					
	controlled as a group without the owners'					
	knowledge, e.g. to send spam.					
	Malware - software which is specifically					
	designed to disrupt or damage a computer					
	system.					
	Keylogger - a computer program that					
	records every keystroke made by a					
	computer user, especially in order to gain					
	fraudulent access to passwords and other					
	confidential information.					
	Malicious damage - when a person intentionally acts out to person					
	intentionally sets out to corrupt or delete					
	electronic files, data or software programs.					
	Accidental damage - when a person Accidental damage - when a person Accidental damage - when a person Accidental damage - when a person					
	unintentionally corrupts or deletes					
	electronic files, data or software programs.					
	Loss of data leading to damage to appropriate reputation.					
	company's reputation					
	 Loss of data leading to fines or prosecution / GDPR 					
	Hardware failure leading to a loss of data ID that leading to personal leader / fraud					
	ID theft leading to personal losses / fraud					

Q	Answer	Marks	AO1	AO2	AO3	Tot
3b	One mark for each of the following:	4	1.1b			4
	 Levels of permitted access – certain users 					
	would have different/restricted access to					
	certain data or parts of the system					
	Write-protect mechanisms – only certain					
	users will have permission to write/edit data					
	already stored on the system.					
	Strong secure password – the organisation					
	limits access to the network by ensuring					
	that all authorised users have a strong					
	secure password.					
	Access rights - access to confidential files					
	on the network is limited to authorised					
	users only by assigning access rights to					
	users that only allow certain users to					
	access specified area of the network and/or					
	specified files.					
	Encryption - hackers are prevented from					
	reading the confidential files even they gain					
	access to it by encrypting the files					
	 Encryption – an encryption key is used and 					
	known only by the organisation					
	Firewall - the servers would be protected					
	with firewall software blocking / checking all					
	network traffic entering or leaving specified					
	ports / stop programs accessing the					
	internet					
	 Antivirus software - file servers would be 					
	protected with antivirus software which					
	regularly scans all files stored on them for					
	possible infection by malware					
	 Antivirus software - email server would be 					
	protected with antivirus software and all					
	incoming emails would be scanned to see if					
	attached files are infected					
	 Antivirus software - workstations would be 					
	protected with antivirus software and all					
	files from external media would be scanned					
	before they're allowed to be accessed					
	 Backups – copies of data held in order to 					
	restore in the event of data loss					
	 Policies / Legislation – relevant 					
	descriptions based on current legislation or					
	company policies					
	 Accounting or auditing software – all files 					
	accessed by a user are recorded in an					
	activity log					

Q	Answer	Marks	A01	AO2	AO3	Tot
4	$A.(\overline{A}+B)+\overline{C}.(A+B)+A.(\overline{B}+C)+\overline{B}.B$					8
	$A.(\overline{A}+B)+\overline{C}.(A+B)+A.(\overline{B}+C)$					
	$A.\overline{A} + A.B + \overline{C}.A + \overline{C}.B + A.\overline{B} + A.C$	1		2.1b		
		1		2.1b		
	$A.B + \overline{C}.A + \overline{C}.B + A.\overline{B} + A.C$	1		2.1b		
	$A.(B+\overline{B})+\overline{C}.A+\overline{C}.B+A.C$	1		2.1b		
	$A.(B+\overline{B})+A.(\overline{C}.+C)+\overline{C}.B$	1		2.1b		
	$A.(1) + A(1) + \overline{C}.B$	1		2.1b		
	$A + \overline{C}.B$	1		2.1b		
	$A + B.\overline{C}$	1		2.1b		
	To obtain full marks candidate must show some working out.					
	Do not accept truth tables					
5a	31 ₁₆ = 00110001 ₂	1		2.1a		3
	$6D_{16} = 01101101_2$	1		2.1a		
	001100012					
	01101101 ₂ 10011110 ₂	1		2.1a		
	No marks for answer only in the addition	'		2.14		
5bi	10000.001	1		2.1a		3
	Mantissa = 0.10000001000	1		2.1a		
	Exponent = 0101	1		2.1a		
	A control of the control of					
	Answer must be normalised					
5bii	Accept 16 bit number Mantissa = 0.1111_2 (0.9375 ₁₀)	1		2.1a		3
JUII	Exponent = 3			2.1a 2.1a		3
	Answer = $0.9375_{10} \times 2^3 = 7.5_{10}$	1		2.1a		
	Correct answer only					
6a	One mark for each of the following:	4		245		2
	Two-dimensional array As there is only one data type required.	1 1		2.1a 2.1b		
6b	As there is only one data type required Integer	1		2.1b		1
6c	One mark for each of the following:	l l		Z.1a		2
	Record	1		2.1a		-
	Can store more than one data type / all	1		2.1b		
	data relates to a single entity					

Q	Answer	Marks	AO1	AO2	AO3	Tot
Q 7	One mark for each of the following (MAX 3):	5	1.1b	7.02	7100	5
	Parallel processing is a form of					
	computation in which many calculations are					
	carried out simultaneously					
	 Parallel processing uses multiple cores 					
	 It operates on the principle that large 					
	problems can often be divided into smaller					
	ones, which are then solved concurrently					
	Parallel processing in computer programs					
	is more complex to design and to write than					
	sequential computer programsCommunication and synchronisation					
	between the different subtasks are typically					
	some of the greatest obstacles to getting					
	efficient parallel program performance					
	Accepted not expected:					
	The maximum possible speed-up of a					
	single program as a result of parallelisation					
	is known as Amdahl's law:					
	o $T(n) = T(1)(B + \frac{1}{n}(1 - B))$					
	o Where:					
	• $T(n) = time\ taken\ on\ n\ threads$					
	• $n = number of threads$					
	$\bullet B =$ fraction of algorithm that is acquire					
	 fraction of algorithm that is sequen Example: If a program has a runtime of 10 					
	hours when using a single core processor.					
	If 80% (8 hours) of this program can be					
	parallelised, then clearly a multi-core					
	processor will reduce the runtime required.					
	However, regardless of the number of					
	cores used to execute this program, the					
	minimum runtime cannot be less than the					
	time taken to execute the non-parallelised 20% (2 hour). The remaining 20% will still					
	be processed sequentially					
	 Using the formula above with one thread 					
	(n=1) we get:					
	$T(n) = T(1)(B + \frac{1}{n}(1 - B))$					
	$ T(1) = 10 \ hours \times (0.2 + \frac{1}{1}(1 - 0.2) = $					
	10 hours					
	T(1) = 10 hours					
	 The speedup of a program using multiple processors in parallel computing is limited 					
	by the time needed for the sequential					
	fraction of the program					
	Using the formula above with one thousand					
	threads (n=1000) we get:					
	o $T(n) = T(1)(B + \frac{1}{n}(1 - B))$					
	n \ 1					
	$T(1000) = 10 \ hours \times (0.2 + \frac{1}{1000})$					

Q	Answer	Marks	A01	AO2	AO3	Tot
	 (1 - 0.2) T(1) = 2.008 hours Note that even with an infinite amount of threads, the runtime of executing the program cannot be less than 2 hours. One mark for each of the following (MAX 3) 					
	 Cache memory is similar to RAM, except it resides on or close to the CPU is faster than RAM and is also volatile used to store frequently used data from main memory used by the processor to avoid having to slow down to the speed of the RAM all the time used to store intermediate results to calculations Different levels of cache memory which denote speed and characteristics Von Neumann bottleneck solution Award a further mark for detailed descriptions of cache levels.					

8	Declare Subroutine ConvertCurrency			3.1b	8
	amount is real				
	output "Please enter the amount you wish to purchase in pounds"				
	input amount				
	if amount = val(amount) then				
	for i = -5 to 5				
	output "£", amount + i; output "=", (amount + i) *1.14; output "€"				
	next i				
	else				
	"The value entered must be a number"				
	end if				
	End Subroutine				
	 One mark for each of the following: Declare or initialise variable Input amount Validation and message for amount input Loop catering for numbers below amount Loop catering for numbers above amount Correct conversion Output conversion Correct formatting on outputs, i.e. "£", "=" and ""€"" 	1 1 1 1 1 1 1			
9a	One mark for each of the following: Accept a well annotated diagram Binary search Starting with middle element of the array If search item is not found, search lower or upper half - idea of comparison, "if bigger" or "if smaller" Repeat until found (/ not present) Linear search Starting at the beginning of the array	6	1.1b		6
	 Search item is compared to every consecutive item in the array Until either the item is found or the end of the array is reached. 				

				ı	
9b	 One mark for each of the following: Binary search requires the input data to be sorted; linear search doesn't Binary search requires an ordering comparison; linear search only requires equality comparisons Binary search requires random access to the data; linear search only requires sequential access (this can be very important - it means a linear search can stream data of arbitrary size) Linear search would be slower than a binary search on a larger list. Linear search is appropriate for data that cannot be sorted. Accepted not expected Binary search has complexity O(log n) linear search has complexity O(n) as discussed earlier 	3	1.1b		3
10a	One mark for each of the following up to a	3		2.1b	3
	maximum of 3:				
	45 32 5 32 19 62 (duplicated number)5 19 32 35 45 62 (ascending order)				
	• 62 45 35 32 19 5 (descending order)				
	• 32 45 19 62 -35 5 (negative number)				
	2 4 3 7 9 11 (unsorted list)Very large numbers e.g. >65537				
	Do not accept tests for invalid data i.e. non-				
40:	integer values		4 4 .		
10b	One mark for each of the following: • A pass is made through the data,	2	1.1b		2
	comparing each value with the following				
	one and swapping them if necessary.				
	A number of passes is made until the data is in order.				
10c	One mark for each of the following:	2		2.1b	2
	swapped will become TRUE after one swap				
	swapLoop will terminate too soon				
	OR .				
	If the array is in ascending order then swapped will stay FALSE				
	Loop will not terminate				
10d	One mark for each of the following:	1		2.1b	 1
	Change the terminating condition for the loop such that it terminates when swapped becomes TRUE				
	Accept				
	• Line 17: until (swapped = FALSE)				

10e				3
Insertion sort	1	1.1b		3
One mark for each of the following up to a maximum of two Comparisons are made Data placed in the right position Move other items along	2	1.1b		
Accept other sort algorithms				
11a One mark for each of the following up to a maximum of 5:	5	1.1b		5
Indicative Content Defragmentation is the process where files are physically rearranged on disk so that they are no longer fragmented and the parts of each file are stored together. Compression software reduces file sizes using less space Task management can see how much disk % a given program is using, can shut it down if dominating. Disk scanning and repair fixes problems on disk. Anti-virus software to scan for viruses which could be causing issues with the disc access speed / damaging data Firewall Prevents unauthorised network access Backup software allows users to archive files and delete files on the hard disk to free up space				

11b	One mark for each of the following up to a	1.1b	6		6
	maximum of six:				
	 Communicates with and sends data output 				
	to a printer / monitor / other valid output				
	device				
	 Communicates with and receives data 				
	input to a keyboard / mouse / other valid				
	input device				
	 Manages network communication 				
	 In spooling, data is stored on hard disk / in 				
	memory / stored in a queue / in a buffer				
	 Manages backing store by ensuring that 				
	data is stored and can be retrieved				
	correctly from any disk drive				
	O/S creates and maintains a filing system				
	such as FAT or NTFS				
	Organise files in a hierarchical directory				
	structure				
	O/S offers compression which can be used to save dick space.				
	to save disk spaceThe O/S manages memory (RAM) by				
	Ine O/S manages memory (RAM) by ensuring all programs and data including				
	itself is stored in correct memory				
	locations/do not try to occupy the same				
	memory location				
	The O/S manages memory (RAM) by				
	ensuring all programs and data have				
	enough memory allocated				
	The O/S can utilise virtual memory when				
	not enough memory (RAM) is available to				
	run a program				
	Ensures different processes can utilise the				
	CPU and do not interfere with each other or				
	crash				
	 On a multi-tasking O/S, the O/S ensures 				
	that all tasks appear to run simultaneously				

12	One mark for each of the following:	8	1.1b	8
	 Off-the-shelf (MAX 5) Cheaper. The development costs are spread across a large number of users, so you pay much less than it would cost to build the same software from scratch. Available immediately. The development work has already been done, so all you need to do is set up the software and start using it. Lower training costs. If it is a commonly used package, users and I.T. staff may already be familiar with it, saving on learning time and training costs. Or, there may be pre-existing training materials and 			
	 courses that you can leverage. Community support. If the software is popular, there may be books, articles, forums and online communities offering support and advice to help you learn or 			
	 resolve any issues. More functionality. Off-the-shelf software often has more functionality, because the developers try to meet the requirements of as many users as possible. (There may even be functionality you didn't realise you need!) 			
	Upgrades. The vendor will continue to develop the software, so you will likely get upgrades for free or at a reduced cost, whereas in bespoke software you don't get anything new unless you pay for it to be built.			
	Compromise. You may have to compromise on your requirements – it is unlikely you will find ready-made software that does everything you need it to, exactly how you want it to.			
	May be overly complicated. The software may include functionality that you don't need, as it is trying to meet the different requirements of a number of users. This can make it more difficult to learn and use.			
	You are not in control. The vendor's plans for the future may not always fit with your own. As a single customer amongst many, you may not be able to get the features you want implemented.			
	May be general e.g. Word Processing or specific e.g. Stock Control			

Ве	espoke (MAX 5)
•	Tailored to you. The software is developed
	and built to meet your specific
	requirements, ensuring that you get
	software that works exactly how you need it
	to and delivers the results you want.

- More flexible. A bespoke system can evolve over time to match your changing requirements.
- No per-user fees. If you own the software, you won't have to extra per-user fees as your business grows.
- Not tied in. You own the intellectual property, so you are not tied to a specific vendor that could potentially disappear at any time.
- Competitive advantage. As your competitors won't have the same software, it could give you a competitive edge. An effective software package can make a company work more efficiently, improve their performance and have a positive impact on customer satisfaction levels.
- Higher initial costs. It will cost more at the beginning, as you have to pay the development costs.
- Takes longer. Depending on the size and complexity of the software, it may take months or even years to develop.

13	Indicative Content	11	1.1b	11
	Feasibility study			
	 A feasibility study establishes whether or 			
	not the project can be done, given the			
	scope laid out during the problem definition			
	phase.			
	 it considers whether it is desirable for the 			
	developing company to proceed with the			
	project. When embarking on a software			
	project there must be confidence on both			
	sides that the project can be delivered on			
	time and within budget.			
	Economic feasibility			
	 A project has a specific budget, 			
	which must include all the costs of			
	the project, including:			
	■ software licences			
	■ hardware			
	human resources/wages			
	 the development company's 			
	running costs.			
	 Profit is also an important consideration. 			
	The hardware and software costs are fairly			
	straightforward and are unlikely to change			
	over the course of the project. Human			
	costs are the most variable and account			
	 Staffing costs are based on the number of 			
	people on the project, the amount they			
	earn and the length of the project.			
	Economic feasibility			
	considers the overall budget and			
	the overall costs. It then decides if			
	enough profit can be made to make			
	the project worth doing.			
	Time feasibility			
	Late projects result in going over			
	budget because of the cost of			
	developers' wages. It is critically			
	important that projects are delivered			
	on time, as the developing company			
	will make a negative impression if			
	they cannot deliver when they said			
	they could.			
	 In order to decide on how long a 			
	project will take, the project			
	manager will have to estimate how			
	long their developers will take to do			
	the project.			
	• •			

- Technical feasibility
 - Can the project be done with the technical resources available?
 Some things are not possible or feasible with current technology.
 - For example, accurate speech recognition is not possible, nor is being able to do facial recognition in dark environments. This means that projects that have these requirements are not technically feasible.
- Political feasibility
 - Projects can sometimes have issues that are politically motivated or may go against the beliefs of certain groups of people. Systems such as the NHS, tax credits,
 - Olympic computer systems and animal testing come under the direct scrutiny of the general public and media. When these projects go wrong, the media will
 - undoubtedly report on it and show the development company in a negative light. The development company needs to decide whether the potential positives
 - outweigh the possible negative publicity.
- Legal feasibility
 - Legal feasibility helps decide whether the project will be able to comply with all the laws that may affect it in the countries where it will be released.
 - File sharing software, although legal in essence, has fallen foul of the law; companies producing or facilitating it have been sued.

ands of weather stations oons, ships etc / from I area / whole world essing of a huge amount son with huge amounts of applex calculations complex programs be done very quickly as are no use if out-of-date					
redict					
iii n, os eo	er systems cands of weather stations lloons, ships etc / from al area / whole world cessing of a huge amount ison with huge amounts of mplex calculations , complex programs o be done very quickly as s are no use if out-of-date extremely unstable / predict good graphics for visual	sands of weather stations lloons, ships etc / from al area / whole world cessing of a huge amount ison with huge amounts of mplex calculations , complex programs o be done very quickly as are no use if out-of-date extremely unstable / predict	sands of weather stations lloons, ships etc / from al area / whole world cessing of a huge amount ison with huge amounts of mplex calculations , complex programs o be done very quickly as a are no use if out-of-date extremely unstable / oredict	sands of weather stations lloons, ships etc / from al area / whole world cessing of a huge amount ison with huge amounts of mplex calculations , complex programs o be done very quickly as as are no use if out-of-date extremely unstable / predict	sands of weather stations lloons, ships etc / from al area / whole world cessing of a huge amount ison with huge amounts of mplex calculations , complex programs o be done very quickly as as are no use if out-of-date extremely unstable / predict

Band	AO1.1b							
	Max 11 marks							
	9 - 11 marks							
	The candidate has:							
	written an extended response that has a sustained line of reasoning which is							
	coherent, relevant, and logically structured							
	shown clear understanding of the requirements of the question and a clear							
	knowledge of the indicative content. Clear knowledge is defined as a response							
•	that provides nine to eleven relevant detailed points, which relate to an							
3	extensive amount of the indicative content in relation to both feasibility study							
	and weather forecasting							
	addressed the question appropriately with minimal repetition and no irrelevant							
	material							
	has presented a balanced discussion and justified their answer with examples							
	used appropriate technical terminology referring to the indicative content							
	confidently and accurately.							
	4 - 8 marks							
	The candidate has:							
	written a response that has an adequate line of reasoning with elements of							
	coherence, relevance, and logical structure							
2	shown adequate understanding of the requirements of the question and a							
	satisfactory knowledge as specified in the indicative content. Satisfactory							
	knowledge is defined as a response that provides four to eight points as							
	signalled in the indicative content							
	has presented a discussion with limited examples							
	used appropriate technical terminology referring to the indicative content.							
	1 - 3 marks							
	The candidate has:							
	written a response that that lacks sufficient reasoning and structure							
	produced a discussion which is not well developed							
1	attempted to address the question but has demonstrated superficial knowledge							
	of the topics specified in the indicative content. Superficial knowledge is							
	defined as a response that provides one to three points as signalled in the							
	indicative content							
	used limited technical terminology referring to the indicative content.							
0	0 marks							
	Response not credit worthy or not attempted.							
	Total 100 60 32 8 100							