

Predviđanje

Python Data Access

Kombinacije

- Ukoliko redosled elemenata nema značenje, radi se o kombinacijama elemenata
- Na primer, brojevi 1 i 2, mogu dati uvek samo jednu dvocifrenu kombinaciju jer su i 12 i 21 brojevi 1 i 2
- Od brojeva 1,2 i 3, mogu se formirati tri dvocifrene kombinacije: (1,2),(1,3) i (2,3)

Permutacije

- Kod permutacija položaj elemenata ima značenje
- Na primer, brojevi 1 i 2, mogu dati dva različita dvocifrena broja, 12 i 21
- Od brojeva 1,2 i 3 možemo napraviti 6 dvocifrenih kombinacija: (1,2), (1,3),(2,1),(2,3),(3,1),(3,2)

Ponavljanje

- Kombinacije i permutacije se mogu pojavljivati sa ili bez ponavljanja vrednosti
- Ukoliko postoji ponavljanje, broj opcija se dodatno povećava
- Na primer, za brojeve 1,2 i 3, možemo dobiti sledeće dvocifrene kombinacije:

$$(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)$$

Verovatnoća

- Verovatnoća je šansa da će se nešto dogoditi, najčešće izražena u brojevima
- Verovatnoća se predstavlja postotkom, odnosno, brojem između nula i jedan
- U najosnovnijem obliku, verovatnoća da će se nešto dogoditi jeste jedan (ili broj pozitivnih opcija) podeljeno sa ukupnim brojem opcija
- Šansa da će prilikom bacanja novčića pasti pismo jeste 1/2

 Šansa da prilikom bacanja kockice dobijete određeni broj, jeste 1/6

Izračunavanje verovatnoće

- Iako znamo da je 0.5 šansa da će na novčiću pasti glava, najčešće nas interesuju šanse za određenu sekvencu događaja. Na primer, da dva puta padne glava, jednom pismo i slično
- Ukoliko bacimo novčić tri puta:
- Broj kombinacija

$$2^{3} = 8$$

Da tri puta bude pismo, šanse su:

•
$$1/8 = 0.125$$

Da jednom bude pismo, šanse su:

•
$$3/8 = 0.375$$

• Da dva puta bude pismo, šanse su:

•
$$3/8 = 0.375$$

Da ni jednom ne bude pismo, šanse su:

•
$$1/8 = 0.125$$

Predviđanje

- Na osnovu verovatnoće, možemo predvideti sledeći korak u nekoj sekvenci koraka
- Na primer, ako je novčić bačen dva od tri puta i dva puta je dobijeno pismo, imamo zapravo 50% šansi da dobijemo tri pisma
- Ako runda tek počinje, sistem zna da su šanse za dobitak tri pisma tek 0.125

Predviđanje iskustvom

- Za situacije u kojima postoje matematički predvidivi ishodi moguće je koristiti i matematičku verovatnoću
- Za situacije u kojima ne postoji matematička logika kombinacijama eksperimentalnih vrednosti i ishoda, možemo formirati linearnost na osnovu iskustva
- Predviđanja obavljena na ovaj način, spadaju u kategoriju mašinskog učenja

Varijante mašinskog učenja

• Nadzirano — Regresija Klasifikacija

• Nenadzirano — Klasterovanje

Ojačano
 Neuronska mreža

Regresija

 Na osnovu iskustava iz "prošlosti", predviđamo "budućnost"

Predviđanje može biti kontinualno i diskretno (kategoričko)

Bias i varijansa

- Bias Odstupanje od predviđenih i stvarnih podatka
 - Underfit Model nije dobar
- Variance Razlika u rezultatima predikcija nad različitim setovima podataka

• Overfit - Model je previše dobar za jedan set podataka, ali ne i za ostale

Unakrsna validacija

- Postoji mnogo algoritama mašinskog učenja i ne odgovara svaki od njih svakoj kolekciji podataka, čak i ukoliko je i sama kategorija algoritma odgovarajuća
- Kvalitet algoritma se može proveriti tehnikom unakrsne validacije
- Kod unakrsne validacije, podatke delimo na dva dela, od kojih je jedan veći i koristi se za treniranje, dok je drugi manji i koristi se za proveru dobijenih rezultata

Uspešnost klasifikacije

- Matrica zabune
- Tačnost
 - Koliko je često tačno predviđanje
- Preciznost
 - Koliko je tačno predviđanje za klasu
- Odziv
 - Koliko je puta on što je stvarno tačno bilo predviđeno tačno
- F rezultat
 - Balansirani prosek između odziva i preciznosti
- Površina ispod ROC (Receiver Operating Characteristics) krive

Matrica zabune

Predvidjeno

Strand Ne Da Ne TP FN Ne FP TN

TP = True positive FP = False positive

TN = True Negative

FN = False negative

Ako smo za **15** slučajeva predvideli **8** slučajeva **da**, a **7** slučajeva **ne** i pri tom, pogodili **3** slučaja za **da** i **4** slučaja za **ne**

n=15	Da	Ne
Da	3	3
Ne	5	4

Upotreba matrice zabune

n=15	Da	Ne
Da	3	3
Ne	5	4
	8	7

```
• Tačnost: TP+TN / n
```

- Preciznost (za P): TP / (TP+FP)
- Preciznost (za N): TN / (TN+FN)
- Odziv (za P): TP / (TP+FN) 3 / (3+3) = 0.5
- Odziv (za N): TN / (TN+FP) 4 / (4+5) = 0.44
- F rezultat (za P):(2 * ((odziv * preciznost) / (odziv + preciznost))

$$(3+4) / 15 = 0.47$$

 $3 / 8 = 0.38$
 $4 / 7 = 0.57$
 $3 / (3+3) = 0.5$
 $4 / (4+5) = 0.44$
 $2 * ((0.5 * 0.38) /$

(0.5 + 0.38))

= 0.43

Linearna regresija

(pdap-ex01 linregression.py)

Na osnovu prethodnih ulaza i izlaza predviđamo buduće izlaze Na primer, ako tridesetogodišnjaci ulažu po 30, četrdesetogodišnjaci po 40, a pedesetogodišnjaci po 50, korisnik od 60 godina će verovatno uložiti 60

$$a = \frac{1}{(\sum y \sum x^2) - (\sum x \sum xy)}$$

$$b = \frac{n(\sum x^2) - (\sum x)^2}{n(\sum xy) - (\sum x \sum y)}$$

$$y = a + n(2bx^2) + x(\sum x)^2$$

Regresija

Logistička regresija

(pdap-ex01 logregression.py)

- Kod ovog modela izlazna vrednost je binarna dok su ulazne vrednosti kontinualne
- Sigmoid funkcija se primenjuje na a i b dobijene u formuli za linearnu regresiju

$$y = a + (b * x)$$

 $sig = 1 / 1 + exp(-y)$
 $y = log(sig / 1 - sig)$

Decision tree

age

gender

platform

game

Decision tree klasifikacija

LINKgroup

K-Nearest Neighbours

(pdap-ex01 knn)

Naive Bayes

(pdap-ex01 naivebayes)

P(A B) =	$P(B \mid A)P(A)$
	P(B)

Play tank	Play with premade	Win
1	1	1
0	1	1
0	1	0
0	0	0
1	0	1
0	1	1
1	0	1
1	1	1
0	0	0
1	0	0
0	0	0
	1 0 0 0 1 0 1 1 0	Tay talk premade

Pobede

6 / 11

Porazi

5 / 11

Ulaz:

1:6/6|2/5

1:4/6|1/5 0:2/6|4/5

1:4/6|1/5

Pobeda: (6/6)*(2/6)*(4/6)*(6/11) = 0.121

Poraz: (2/5)*(4/5)*(1/5)*(5/11) = 0.0288

px: (8 / 11) * (6 / 11) * (5 / 11) = 0.180

Pobeda: (0.121 / 0.180) > (0.0288 / 0.180) 0.67 0.16

Support vector machine

K-means

Veštačka neuronska mreža

- Veštačka neuronska mreža je skup uzajamno povezanih čvorova koji imaju različite, najčešće numerički predstavljene, karakteristike
- Veštačka neuronska mreža se može realizovati u različitim oblicima (Feed Forward, Radial, Reccurent, Convolutional, Modular...)

Struktura veštačke mreže

- Najmanji sastojak neuronske mreže jeste jedan čvor (neuron)
- Čvor može imati različitu strukturu u zavisnosti od svoje pozicije u mreži
- Pozicije u mreži mogu biti: ulazne, skrivene i izlazne
- Mreža ima jedan sloj ulaznih čvorova i jedan sloj izlaznih čvorova, dok može biti više slojeva sa skrivenim čvorovima

Credits

https://www.flaticon.com/authors/freepik

https://www.flaticon.com/authors/nikita-golubev

https://www.flaticon.com/authors/flat-icons

https://www.flaticon.com/authors/becris

https://www.flaticon.com/authors/catkuro

LINKgroup