Intro to Modern Algebra Homework 3

Sam Cook

October 19th, 2017

1 Section 3.3 #8

Problem Let $\mathbb{Q}(\sqrt{2})$ be as in Exercise 39 of Section 3.1 Prove that the function $f: \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{2})$ given by $f(a+b\sqrt{2})=a-b\sqrt{2}$ is an isomorphism.

Solution In order for f to be an isomorphism, it must be a bijective homomorphism.

First, to be bijective, it must be both injective and surjective. Take $f(a), f(b) \in \mathbb{Q}(\sqrt{2})$ such that f(a) = f(b). Then, for some $k, l, m, n \in \mathbb{Q}$, $f(k + l\sqrt{2}) = f(m + n\sqrt{2})$. This implies that $k - l\sqrt{2} = m - n\sqrt{2}$, by the definition of f. We can group the rational and irrational parts together to get $k - l\sqrt{2} = m - n\sqrt{2} \Rightarrow (k - m) = (l - n)\sqrt{2}$. But (k - m) is rational, and $(l - n)\sqrt{2}$ is irrational. The only way this could be possible is if (k - m) = 0 and (l - n) = 0, since $(0 - 0) = (0 - 0)\sqrt{2}$. This implies that k = m and l = n. Therefore, $k + l\sqrt{2} = m + n\sqrt{2}$, or a = b and f is an injective function.

Now, consider $c - d\sqrt{2}\epsilon \mathbb{Q}(\sqrt{2})$ for any $c, d\epsilon \mathbb{Q}$. $c - d\sqrt{2}$ is mapped to from $c + d\sqrt{2}$, since $f(c + d\sqrt{2}) = c - d\sqrt{2}$. Therefore, f is surjective, and as a result of that, bijective.

Now, we must prove that f is a homomorphism. Consider $f((k+l\sqrt{2})*(m+n\sqrt{2}))$ with $(k+l\sqrt{2}), (m+n\sqrt{2}) \in \mathbb{Q}(\sqrt{2})$. We can multiply the terms to get $f(km+kn\sqrt{2}+ml\sqrt{2}+nl)$, which simplifies to $f((km+nl)+(kn+ml)\sqrt{2})$. By applying the function f and distributive laws, $f((km+nl)+(kn+ml)\sqrt{2})=(km+nl)-(kn+ml)\sqrt{2}$. Now consider $f(k+l\sqrt{2})*f(m+n\sqrt{2})$. By applying f, we get $(k-l\sqrt{2})*(m-n\sqrt{2})$. We can use distributive laws to get $km-kn\sqrt{2}-ml\sqrt{2}+2nl=(km+2nl)-(kn+ml)\sqrt{2}=f((k+l\sqrt{2})*(m+l\sqrt{2}))$. Therefore, f preserves multiplication

Now consider $f((k+l\sqrt{2})+(m+n\sqrt{2}))$ This simplifies to $f((k+m)+(n+l)\sqrt{2})$. Applying f, $f((k+m)+(n+l)\sqrt{2})=(k+m)-(n+l)\sqrt{2}$. Next consider $f(k+l\sqrt{2})+f(m+n\sqrt{2})$. Applying f, $f(k+l\sqrt{2})+f(m+n\sqrt{2})=(k-l\sqrt{2})+(m-\sqrt{2})=(k+m)-(n+l)\sqrt{2}$, by associativity. But $(k+m)-(n+l)\sqrt{2}=f((k+l\sqrt{2})+(m+n\sqrt{2}))$ and therefore f preserves addition. Since f preserves addition and multiplication, it is a homomorphism, and since it is a bijective homomorphism, it is an isomorphism.

2 Section 3.3# 12e

Problem Is the following function a homeomorphism or not?

$$f: \mathbb{Z}_{12} \to \mathbb{Z}_4 \tag{1}$$

defined by $f([x]_{12}) = [x]_4$, where $[u]_4$ denotes the class of the integer u in \mathbb{Z}_n

Solution First, we need to prove that this function is well defined. To do this, consider $[a]_{12}$ and $[a+12]_{12}$ such that a, a+12 $epsilon\mathbb{Z}_{12}$. It is clear that $[a]_{12}=[a+12]_{12}$, since these are equivalence classes in \mathbb{Z}_{12} . Now consider $f([a]_{12})$ and $f([a+12]_{12})$. Then applying f, $f([a]_{12})=[a]_4$ and $f([a+12]_{12})=[a+12]_4$. But $[a+12]_4=[a]_4+[12]_4=[a]_4+[0]_4=[a]_4$, since it is an equivalence class. Then $f([a]_{12})=f([a+12]_{12})$, and f is well defined.

Now, for f to be a homomorphism, it must preserve addition and multiplication. Consider $f([x]_{12} + [y]_{12})$, $x, y \in \mathbb{Z}_{12}$. Then $f([x]_{12} + [y]_{12}) = f([x+y]_{12}) = [x+y]_4$, by the definitions of equivalence classes and f. Now consider $f([x]_{12}) + f([y]_{12}) = [x]_4 + [y]_4 = [x+y]_4 = f([x]_{12} + [y]_{12})$, by the same properties of equivalence classes. Since $f([x]_{12} + [y]_{12}) = f([x]_{12}) + f([y]_{12})$, f preserves addition.

To check if f preserves multiplication, consider $f([x]_{12}*[y]_{12})$. We can use rules of equivalence classes and apply the function f to get $f([x]_{12}*[y]_{12})=f([xy]_{12})=[xy]_4$. Now consider $f([x]_{12})*f([y]_{12})$. By applying f, we get $f([x]_{12})*f([y]_{12})=[x]_4*[y]_4=[xy]_4=f([x]_{12}*[y]_{12})$, and therefore f preserves multiplication.

Since f is well-defined and preserves multiplication and addition, it is homomorphism.

3 Section 3.3#30

Problem Let $f: R \to S$ be a homomorphism of rings and let $K = \{r \in R | f(r) = 0_S\}$. Prove that K is a subring of R.

Solution Since f is a homomorphism of rings, $0_R \epsilon R$, $0_S \epsilon S$, and $f(0_R) = 0_S$. Therefore, $0_R \epsilon K$, and $K \neq \emptyset$.

Now take $a, b \in K$. By the definition of K, $f(a) = 0_S$ and $f(b) = 0_S$. Subtracting one from the other, $f(a) - f(b) = 0_S - 0_S = 0_S$. Since f is a ring homomorphism, it preserves subtraction, and $f(a) - f(b) = f(a - b) = 0_S$. This implies that $a - b \in K$, and therefore K is closed under subtraction.

To proved that K is closed under multiplication, consider the same a, b from above. Then $f(a) * f(b) = 0_S * 0_S = 0_S$. Again, since f is a ring homomorphism, it preserves multiplication and $f(a) * f(b) = f(a * b) = 0_S$. Therefore, $ab \in K$ and K is closed under multiplication.

Since K is a nonempty subset closed under subtraction and multiplication, it is a subring of R.

4 Section 3.3 #38

Problem Let F be a field and $f: F \to R$ a homomorphism of rings.

- (a) If there is a nonzero element c of F such that $f(c) = 0_R$, prove that f is the zero homomorphism (that is, $f(x) = 0_R$ for every $x \in F$). [Hint: c^{-1} exists (Why?). If $x \in F$, consider $F(xcc^{-1})$.]
- (b) Prove that f is either injective or the zero homomorphism. [Hint: If f is not the zero homomorphism and f(a) = f(b), then $f(a b) = 0_R$.]

Solution

(a) Take $c\epsilon F, c \neq 0, f(c) = 0_R$ and take any $x\epsilon F$. Note that since F is a field, c^{-1} exists. Now consider the product $f(x) * f(c) * f(c^{-1}) = 0_R$. We know that the solution is 0_R , since $f(c) = 0_R$, and 0_R multiplied by anything is 0_R . Since f is a ring homomorphism,

 $f(x) * f(c) * f(c^{-1}) = f(xcc^{-1}) = f(x*1) = f(x) = 0_R$. This implies that for any element $x \in F$, $f(x) = 0_R$, and therefore f is the zero homomorphism.

(b) If there is a nonzero element c of F such that $f(c) = 0_R$, then f is the zero homomorphism, from part (a) above. Assume that there there is no such element c of F. Now assume that for $a, b \in F$, f(a) = f(b). Then $f(a) - f(b) = f(a - b) = 0_R$, since f is a ring homomorphism. Since F is a field and f is a ring homomorphism, $f(a - b) = 0_R$ implies that $a - b = 0_F$, which can be simplified to $a - b = 0_F \Rightarrow a = b + 0_F \Rightarrow a = b$. Therefore, f is injective.

Now, if there is a nonzero element c of F such that $f(c) = 0_R$, then f is the zero homomorphism, and if there is not, f is injective.

5 Extra Problem

Problem Define an equivalence relation on the set of all rings by defining a ring R to be equivalent to a ring S if there is a ring isomorphism $f: R \to S$, i.e. R is isomorphic to S, $R \simeq S$. Show that this is an equivalence relation by showing

- $\bullet R \simeq R$ for all rings R
- If $R \simeq S$ for rings R and S, then $S \simeq R$
- If $R \simeq S$ and $S \simeq T$ for rings R, S, and T, then $R \simeq T$ (See problem #27)

Solution

• Let $f: R \to R$ be defined for $a \in R$ as f(a) = a, the identity function.

The identity function is bijective, but this is easy to prove. To prove injectivity, assume that f(x) = f(y) for some $x, y \in R$. By the definition of f, $f(x) = f(y) \Rightarrow x = y$, and therefore f is injective. To prove surjectivity, take $f(z) \in R$. f(z) is mapped to by $z \in R$, and thus f is surjective. Since f is surjective and injective, it is bijective.

Now to prove that f is a homomorphism, we must prove that it preserves addition and multiplication.

Consider f(x+y) such that $x, y \in \mathbb{R}$. Then f(x+y) = x+y. Now consider f(x) and f(y). Well f(x) = x and f(y) = y, so f(x+y) = x+y = f(x)+f(y). Therefore f preserves addition.

Next, consider f(xy) = xy, f(x) = x, and f(y) = y. Then f(xy) = xy = f(x)f(y), and therefore f preserves multiplication.

Thus, $f: R \to R$ is an isomorphism for all rings R.

• Assume there is some function $f: R \to S$ such that f is an isomorphism. Consider $g: S \to R$ such that g is the inverse of f, f^{-1} . We know that the inverse of a bijective function is bijective, so this means that g is bijective.

Now, we need to prove that g is bijective. By the definition of inverse functions, g is f^{-1} , g(f(x)) = x, for some $x \in R$.

Consider g(f(x) + f(y)) for some $x, y \in \mathbb{R}$ and $f(x), f(y) \in \mathbb{S}$. Since f is isomorphic, f preserves addition and g(f(x) + f(y)) = g(f(x+y)). Applying g, g(f(x+y)) = x + y. Now consider g(f(x)) + g(f(y)) We can apply g to get g(f(x)) + g(f(y)) = x + y = g(f(x) + f(y)) Therefore g preserves addition.

Next, consider g(f(x) * f(y)). Again, since f is isomorphic, it preserves multiplication and g(f(x) * f(y)) = g(f(xy)) = xy, by applying g. Now consider g(f(x)) * g(f(y)). Applying g, g(f(x)) * g(f(y)) = xy = g(f(x)f(y)). Thus, g preserves multiplication.

Since g is a bijection that preserves addition and multiplication, $g:S\to R$ is an isomorphism.

• Assume that $f: R \to S$ and $g: S \to T$ are isomorphisms. Then f and g are bijective, as is $g \circ f$, the composition of the funtions.

Now, we must prove that $g \circ f$ is an homomorphism. Consider g(f(x) + f(y)), for some $x, y \in R$ and $f(x), f(y) \in S$. Since f and g are isomorphisms, g(f(x) + f(y)) = g(f(x)) + g(f(y)), so $g \circ f$ respects addition.

Now consider g(f(x) * f(y)). Again, since f and g are isomorphisms, they respect multiplication, g(f(x) * f(y)) = g(f(x)) * g(f(y)), and $g \circ f$ respects multiplication.

Therefore, since $g \circ f$ preserves multiplication and addition, and is a bijection from $R \to T$, R and T are isomorphic.