Project Autonomous and Adaptive Systems 2021-22

giovanni.minelli2@studio.unibo.it

Giovanni Minelli

Project objective: create a game environment parameterised by a difficulty value to enable the training of better autonomous player agents

Project objective: create a game environment parameterised by a difficulty value to enable the training of better autonomous player agents

- Interface with game score and difficulty
- Vertical scrolling environment
- 5 degrees of action for the player
- -20 score for touching a tree
- +10 score for touching a flag
- Maps generated on the fly

Two agents:

Solver: predict the player's action at every step Generator: generates a new map of obstacles on demand

Env observation

View resized, converted to grayscale, frame skipping 8 (max 6px), frame stacking 4

MLP: 64*64*3

Actor Generator

Layer (type)	Kernel	Output Shape	Param #	
input		224x224x1	0	
$input_aux$		1x1	0	
$input_positions$		1x100	0	
conv2d	8x8 s 4	55x55x32	2080	
$conv2d_{-}1$	4x4 s 2	26x26x64	32832	
$conv2d_2$	3x3 s 1	24x24x64	36928	
flatten+concat		36864 + 1	0	
dense		1x512	18875392	
prediction		1x100	51300	
filter_pred (Mult)		1x100	0	

Actor Solver

Layer (type)	Kernel	Output Shape	Param #	
input		224x224x4	0	
conv2d	8x8 s 4	55x55x32	8224	
$conv2d_1$	$4x4 ext{ s } 2$	26x26x64	32832	
$conv2d_2$	3x3 s 1	24x24x64	36928	
flatten		36864	0	
dense		1x512	18874880	
prediction		1x5	2565	

Networks

4 CNN networks for the estimation of a policy and a value function (solver and generator agent)

PPO Loss

$$L_t^{CLIP+VF+S}(\theta) = \hat{\mathbb{E}}_t \left[L_t^{CLIP}(\theta) - c_1 L_t^{VF}(\theta) + c_2 S[\pi_{\theta}](s_t) \right], \tag{9}$$

where c_1, c_2 are coefficients, and S denotes an entropy bonus, and L_t^{VF} is a squared-error loss $(A_t - V_{\theta}(s_t))^2$

Proximal Policy Optimization Algorithms

Results

Map	Difficulty	Game score		Total objects hit	
		Baseline	Expert	Baseline	Expert
Random map	Y	697.5	1032.5	2792	2693
	1 (easy)	-37.5	642.5	2718	2293
Generator agent	0 (medium)	-87.5	528.3	2662	2196
	-1 (hard)	-290.8	554.2	2862	2294

Thank you

A2C PPO framework

PPO is a family of first-order methods (unlike TRPO) that use a few tricks to keep new policies close to old.

- PPO is a policy gradient method on-policy belongs to the family of Actor-Critic algorithms
- PPO can be used for environments with either discrete or continuous action spaces.
- and as well with environments episodic or sequential dependently by the advantage function

Loss in three terms:

$$L_t^{CLIP+VF+S}(\theta) = \hat{\mathbb{E}}_t \left[L_t^{CLIP}(\theta) - c_1 L_t^{VF}(\theta) + c_2 S[\pi_{\theta}](s_t) \right], \tag{9}$$

where c_1, c_2 are coefficients, and S denotes an entropy bonus, and L_t^{VF} is a squared-error loss $(A_t - V_{\theta}(s_t))^2$

$$L^{CLIP}(\theta) = min(r_t(\theta)A_t, clip(r_t(\theta), 1 - \epsilon, 1 + \epsilon)A_t)$$

Advantage (note it's almost the same error of critic network)

$$A_t = r_{t+1} + V(s_{t+1}) + V(s_t)$$

Ratio for policy
$$r_t(heta) = rac{\pi_{ heta}(a_t|s_t)}{\pi_{ heta_k}(a_t|s_t)}$$