

When Do We Need to Consider Transport Barriers?

- How do we deliver cells and molecules to the body successfully?
- How do we deliver molecules and cells in the lab to 3D constructs?

Molecular Delivery Across a Cell Membrane

Molecular Delivery Across a Cell Membrane Cont.

Simple Diffusion using Fick's Law

$$\frac{dn}{dt} = P \cdot A \cdot \left(\frac{dC}{dx}\right) \qquad \frac{dt}{dt} \qquad \text{diffusion}$$

$$P \quad \text{Permeability}$$

$$\frac{dn}{dt}$$
 Rate of diffusion

Area of membrane

$$\left(\frac{dC}{dx}\right)$$
 Concentration Gradient

$$\left(\frac{dC}{dx}\right) = \frac{C_{out} - C_{in}}{dx}$$

Simple Diffusion using Fick's Law Cont.

$$\frac{dn}{dt} = P \cdot A \cdot \left(\frac{dC}{dx}\right)$$

Facilitated Transport Uses Carrier Proteins

$$\frac{dn}{dt} = \frac{v_{\text{max}}}{1 + \frac{k}{\frac{dC}{dx}}}$$

$$\frac{dn}{dt}$$
 Rate of diffusion

Constant determining Speed of saturation

$$\left(\frac{dC}{dx}\right)$$
 Concentration Gradient

$$\left(\frac{dC}{dx}\right) = \frac{C_{out} - C_{in}}{dx}$$

Facilitated Transport Uses Carrier Proteins Cont.

$$\frac{dn}{dt} = \frac{v_{\text{max}}}{1 + \frac{k}{\frac{dC}{dx}}}$$

Active Transport Requires Energy

Primary Active Transport

Carrier protein hydrolyzes ATP

Secondary Active Transport

Energy from electrochemical gradients

Active Transport Requires Energy Cont.

Primary Active Transport

Carrier protein hydrolyzes ATP

Secondary Active Transport

Energy from electrochemical gradients

Molecular Delivery to a Tissue Construct

