## **SBML Model Report**

# Model name: "Olsen2003\_neutrophil-\_oscillatory\_metabolism"



May 6, 2016

## 1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by Harish Dharuri<sup>1</sup> at July 27<sup>th</sup> 2007 at 8:45 a.m. and last time modified at June third 2014 at 1:27 p.m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

| Element           | Quantity | Element              | Quantity |
|-------------------|----------|----------------------|----------|
| compartment types | 0        | compartments         | 2        |
| species types     | 0        | species              | 20       |
| events            | 0        | constraints          | 0        |
| reactions         | 20       | function definitions | 0        |
| global parameters | 24       | unit definitions     | 1        |
| rules             | 0        | initial assignments  | 0        |

#### **Model Notes**

Olsen2003\_neutrophil\_oscillatory\_metabolism

This model is described in the article: A model of the oscillatory metabolism of activated neutrophils. Olsen LF, Kummer U, Kindzelskii AL, Petty HR. Biophys. J. 2003 Jan; 84(1): 69-81

Abstract:

 $<sup>{}^{1}</sup>California\ Institute\ of\ Technology,\ {\tt hdharuri@cds.caltech.edu}$ 

We present a two-compartment model to explain the oscillatory behavior observed experimentally in activated neutrophils. Our model is based mainly on the peroxidase-oxidase reaction catalyzed by myeloperoxidase with melatonin as a cofactor and NADPH oxidase, a major protein in the phagosome membrane of the leukocyte. The model predicts that after activation of a neutrophil, an increase in the activity of the hexose monophosphate shunt and the delivery of myeloperoxidase into the phagosome results in oscillations in oxygen and NAD(P)H concentration. The period of oscillation changes from >200 s to 10-30 s. The model is consistent with previously reported oscillations in cell metabolism and oxidant production. Key features and predictions of the model were confirmed experimentally. The requirement of the hexose monophosphate pathway for 10 s oscillations was verified using 6-aminonicotinamide and dexamethasone, which are inhibitors of glucose-6-phosphate dehydrogenase. The role of the NADPH oxidase in promoting oscillations was confirmed by dose-response studies of the effect of diphenylene iodonium, an inhibitor of the NADPH oxidase. Moreover, the model predicted an increase in the amplitude of NADPH oscillations in the presence of melatonin, which was confirmed experimentally. Successful computer modeling of complex chemical dynamics within cells and their chemical perturbation will enhance our ability to identify new antiinflammatory compounds.

This model is hosted on BioModels Database and identified by: BIOMD0000000143.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

#### 2 Unit Definitions

This is an overview of five unit definitions of which four are predefined by SBML and not mentioned in the model.

## 2.1 Unit substance

Name micro mole

Definition µmol

#### 2.2 Unit volume

**Notes** Litre is the predefined SBML unit for volume.

**Definition** 1

#### 2.3 Unit area

**Notes** Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

#### **Definition** m<sup>2</sup>

## 2.4 Unit length

**Notes** Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

**Definition** m

## 2.5 Unit time

Notes Second is the predefined SBML unit for time.

**Definition** s

## 3 Compartments

This model contains two compartments.

Table 2: Properties of all compartments.

| Id        | Name      | SBO | Spatial    | Size | Unit  | Constant                  | Outside   |
|-----------|-----------|-----|------------|------|-------|---------------------------|-----------|
|           |           |     | Dimensions |      |       |                           |           |
| phagosome | phagosome |     | 3          | 1    | litre | $ \overline{\mathbf{Z}} $ | cytoplasm |
| cytoplasm | cytoplasm |     | 3          | 10   | 1     | $\overline{\mathbf{Z}}$   |           |

## 3.1 Compartment phagosome

This is a three dimensional compartment with a constant size of one litre, which is surrounded by cytoplasm (cytoplasm).

Name phagosome

## 3.2 Compartment cytoplasm

This is a three dimensional compartment with a constant size of ten litre.

Name cytoplasm

## 4 Species

This model contains 20 species. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

| Id                     | Name                   | Compartment      | Derived Unit                      | Constant | Boundary<br>Condi-<br>tion |
|------------------------|------------------------|------------------|-----------------------------------|----------|----------------------------|
| H202_p                 | H2O2                   | phagosome        | $\mu$ mol·l <sup>-1</sup>         |          |                            |
| per3_p                 | Ferric peroxidase      | phagosome        | $\mu mol \cdot l^{-1}$            |          | $\Box$                     |
| coI_p                  | compound I             | phagosome        | $\mu$ mol·l <sup>-1</sup>         |          | $\Box$                     |
| MLTH_p                 | Melatonin              | phagosome        | $\mu$ mol · l <sup>-1</sup>       |          | $\Box$                     |
| coII_p                 | compound II            | phagosome        | $\mu$ mol · l <sup>-1</sup>       |          | $\Box$                     |
| $MLT_p$                | Melatonin free radical | phagosome        | $\mu$ mol $\cdot$ l <sup>-1</sup> |          | $\Box$                     |
| $02minus_p$            | Superoxide             | phagosome        | $\mu mol \cdot l^{-1}$            |          | $\Box$                     |
| $H_p$                  | Hydrogen               | phagosome        | $\mu mol \cdot l^{-1}$            |          | $\Box$                     |
| 02_p                   | Oxygen                 | phagosome        | $\mu mol \cdot l^{-1}$            |          | $\Box$                     |
| $NADPH_c$              | NADPH                  | ${	t cytoplasm}$ | $\mu$ mol $\cdot$ l <sup>-1</sup> |          | $\Box$                     |
| 02_c                   | Oxygen                 | ${	t cytoplasm}$ | $\mu$ mol $\cdot$ l <sup>-1</sup> |          |                            |
| $\mathtt{NADPplus\_c}$ | NADP                   | ${	t cytoplasm}$ | $\mu$ mol $\cdot$ l <sup>-1</sup> |          |                            |
| H202_c                 | H2O2                   | ${	t cytoplasm}$ | $\mu$ mol $\cdot$ l <sup>-1</sup> |          |                            |
| $NADP_c$               | NADP                   | ${	t cytoplasm}$ | $\mu mol \cdot l^{-1}$            |          |                            |
| $02minus_c$            | Superoxide             | ${	t cytoplasm}$ | $\mu mol \cdot l^{-1}$            |          | $\Box$                     |
| H_c                    | Hydrogen               | ${	t cytoplasm}$ | $\mu mol \cdot l^{-1}$            |          | $\Box$                     |
| $MLT_c$                | Melatonin free radical | ${	t cytoplasm}$ | $\mu$ mol · l <sup>-1</sup>       |          | $\Box$                     |
| $MLTH_c$               | Melatonin              | ${	t cytoplasm}$ | $\mu$ mol $\cdot$ l <sup>-1</sup> |          | $\Box$                     |
| coIII_p                | compound III           | phagosome        | $\mu mol \cdot l^{-1}$            |          |                            |
| NADP2_c                | NADP2                  | cytoplasm        | $\mu$ mol · l <sup>-1</sup>       |          | $\Box$                     |

## **5 Parameters**

This model contains 24 global parameters.

Table 4: Properties of each parameter.

| Id       | Name | SBO | Value     | Unit | Constant                     |
|----------|------|-----|-----------|------|------------------------------|
| Knadph   |      |     | 60.000    |      |                              |
| k1       |      |     | 50.000    |      | $   \overline{\mathscr{L}} $ |
| kminus1  |      |     | 58.000    |      | $   \overline{\mathscr{L}} $ |
| k2       |      |     | 10.000    |      | $   \overline{\mathbf{Z}} $  |
| k3       |      |     | 0.004     |      | $\mathbf{Z}$                 |
| k4       |      |     | 20.000    |      | $\mathbf{Z}$                 |
| k5       |      |     | 10.000    |      |                              |
| k6       |      |     | 0.100     |      | $   \overline{\mathscr{L}} $ |
| k7       |      |     | $10^{-6}$ |      | $   \overline{\mathscr{L}} $ |
| k8       |      |     | 50.000    |      | $   \overline{\mathscr{L}} $ |
| k9       |      |     | 500.000   |      | $   \overline{\mathbf{Z}} $  |
| k10      |      |     | 10.000    |      | $\mathbf{Z}$                 |
| k11      |      |     | 60.000    |      | $\mathbf{Z}$                 |
| k12      |      |     | 25.000    |      | $\mathbf{Z}$                 |
| k13      |      |     | 12.500    |      | $\mathbf{Z}$                 |
| kminus13 |      |     | 0.045     |      | $\mathbf{Z}$                 |
| k14      |      |     | 30.000    |      | $\mathbf{Z}$                 |
| k15      |      |     | 30.000    |      | $\mathbf{Z}$                 |
| k16      |      |     | 10.000    |      | $\mathbf{Z}$                 |
| k17      |      |     | 10.000    |      | $\mathbf{Z}$                 |
| k18      |      |     | 2.000     |      | $\mathbf{Z}$                 |
| V        |      |     | 288.000   |      | $\mathbf{Z}$                 |
| L        |      |     | 550.000   |      | $\mathbf{Z}$                 |
| Ко       |      |     | 1.500     |      | $\square$                    |

## 6 Reactions

This model contains 20 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

| $N_{\bar{0}}$ | Id   | Name                                                      | Reaction Equation                                                                     | SBO |
|---------------|------|-----------------------------------------------------------|---------------------------------------------------------------------------------------|-----|
| 1             | R1   | Myeloperoxidase reaction                                  | $per3_p + H2O2_p \longrightarrow coI_p$                                               |     |
| 2             | R2   | Melatonin-compound I reaction                             | $MLTH_p + col_p \longrightarrow MLT_p + coll_p$                                       |     |
| 3             | R3   | Melatonin-compound II reaction                            | $MLTH_p + coII_p \longrightarrow MLT_p + per3_p$                                      |     |
| 4             | R4   | compound III formation                                    | $O2minus_p + per3_p \longrightarrow coIII_p$                                          |     |
| 5             | R5   | H2O2 formation                                            | $2 \text{ O2minus\_p} + 2 \text{ H\_p} \longrightarrow \text{O2\_p} + \text{H2O2\_p}$ |     |
| 6             | R6   | compound III-superoxide reaction                          | $O2minus_p + coIII_p \longrightarrow O2_p + coI_p$                                    |     |
| 7             | R7   | NADPH autooxidation                                       | $O2_c + NADPH_c \longrightarrow H2O2_c + NADPplus_c$                                  |     |
| 8             | R8   | NADP radical-Oxygen reaction                              | $O2_c + NADP_c \longrightarrow O2minus_c + NADPplus_c$                                |     |
| 9             | R9   | H2O2 formation                                            | $2 \text{ O2minus\_c} + 2 \text{ H\_c} \longrightarrow \text{O2\_c} + \text{H2O2\_c}$ |     |
| 10            | R10  | NADP free radical formation                               | $NADPH_c + MLT_c \longrightarrow NADP_c + MLTH_c$                                     |     |
| 11            | R11  | NADP dimer formation                                      | $2 \text{ NADP}_{-}c \longrightarrow \text{NADP2}_{-}c$                               |     |
| 12            | R12  | NADPH synthesis                                           | $\emptyset \longrightarrow NADPH_c$                                                   |     |
| 13            | R13a | Oxygen diffusion                                          | $\emptyset \longrightarrow \mathrm{O2}_{-}\mathrm{c}$                                 |     |
| 14            | R13b | Oxygen diffusion                                          | $O2_c \longrightarrow \emptyset$                                                      |     |
| 15            | R14  | Oxygen diffusion- phagosome/cytoplasm                     | $O2_p \longrightarrow O2_c$                                                           |     |
| 16            | R15  | H2O2 diffusion phagosome/cytoplasm                        | $H2O2_p \longrightarrow H2O2_c$                                                       |     |
| 17            | R16  | Melatonin diffusion phagosome/cytoplasm                   | $MLTH_p \longrightarrow MLTH_c$                                                       |     |
| 18            | R17  | Melatonin free radical diffusion phago-<br>some/cytoplasm | $MLT_{-}p \longrightarrow MLT_{-}c$                                                   |     |
| 19            | R18  | Superoxide diffusion phagosome/cytoplasm                  | $O2minus_p \longrightarrow O2minus_c$                                                 |     |
| 20            | R19  | NADPH oxidase activity                                    | 2 O2_p + NADPH_c → 2 O2minus_p + NADPplus_c                                           |     |

## **6.1 Reaction R1**

This is an irreversible reaction of two reactants forming one product.

Name Myeloperoxidase reaction

## **Reaction equation**

$$per3_p + H2O2_p \longrightarrow coI_p$$
 (1)

## **Reactants**

Table 6: Properties of each reactant.

| Id               | Name                      | SBO |
|------------------|---------------------------|-----|
| per3_p<br>H202_p | Ferric peroxidase<br>H2O2 |     |

## **Product**

Table 7: Properties of each product.

| Id    | Name       | SBO |
|-------|------------|-----|
| coI_p | compound I |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_1 = \text{vol}(\text{phagosome}) \cdot (\text{k1} \cdot [\text{H2O2\_p}] \cdot [\text{per3\_p}] - \text{kminus1} \cdot [\text{col\_p}])$$
 (2)

## **6.2 Reaction R2**

This is an irreversible reaction of two reactants forming two products.

Name Melatonin-compound I reaction

## **Reaction equation**

$$MLTH_p + coI_p \longrightarrow MLT_p + coII_p$$
 (3)

## **Reactants**

Table 8: Properties of each reactant.

| Id      | Name       | SBO |
|---------|------------|-----|
| MLTH_p  | Melatonin  |     |
| $coI_p$ | compound I |     |

## **Products**

Table 9: Properties of each product.

| Id                     | Name                   | SBO |
|------------------------|------------------------|-----|
| MLT_p                  | Melatonin free radical |     |
| $\mathtt{coII}_{-}\!p$ | compound II            |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_2 = \text{vol}(\text{phagosome}) \cdot \text{k2} \cdot [\text{col}\_\text{p}] \cdot [\text{MLTH}\_\text{p}]$$
 (4)

## 6.3 Reaction R3

This is an irreversible reaction of two reactants forming two products.

Name Melatonin-compound II reaction

## **Reaction equation**

$$MLTH_p + coII_p \longrightarrow MLT_p + per3_p$$
 (5)

#### **Reactants**

Table 10: Properties of each reactant.

| Id     | Name        | SBO |
|--------|-------------|-----|
| MLTH_p | Melatonin   |     |
| coII_p | compound II |     |

#### **Products**

Table 11: Properties of each product.

|                 | · · · · · · · · · · · · · · · · · · ·       |     |
|-----------------|---------------------------------------------|-----|
| Id              | Name                                        | SBO |
| MLT_p<br>per3_p | Melatonin free radical<br>Ferric peroxidase |     |

**Derived unit** contains undeclared units

$$v_3 = \text{vol}(\text{phagosome}) \cdot \text{k3} \cdot [\text{coII}\_\text{p}] \cdot [\text{MLTH}\_\text{p}]$$
 (6)

## **6.4 Reaction R4**

This is an irreversible reaction of two reactants forming one product.

Name compound III formation

## **Reaction equation**

O2minus\_p + per3\_p 
$$\longrightarrow$$
 coIII\_p (7)

## **Reactants**

Table 12: Properties of each reactant.

| Id                  | Name                            | SBO |
|---------------------|---------------------------------|-----|
| 02minus_p<br>per3_p | Superoxide<br>Ferric peroxidase |     |

#### **Product**

Table 13: Properties of each product.

| Id      | Name         | SBO |
|---------|--------------|-----|
| coIII_p | compound III |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_4 = \text{vol}(\text{phagosome}) \cdot \text{k4} \cdot [\text{per3}\_\text{p}] \cdot [\text{O2minus}\_\text{p}]$$
 (8)

## 6.5 Reaction R5

This is an irreversible reaction of two reactants forming two products.

Name H2O2 formation

## **Reaction equation**

$$2 O2minus\_p + 2 H\_p \longrightarrow O2\_p + H2O2\_p$$
 (9)

## **Reactants**

Table 14: Properties of each reactant.

| Id        | Name       | SBO |
|-----------|------------|-----|
| 02minus_p | Superoxide |     |
| $H_{-}p$  | Hydrogen   |     |

## **Products**

Table 15: Properties of each product.

| Id     | Name   | SBO |
|--------|--------|-----|
| 02_p   | Oxygen |     |
| H202_p | H2O2   |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_5 = \text{vol}(\text{phagosome}) \cdot \text{k5} \cdot [\text{O2minus}_{-p}]^2$$
 (10)

#### 6.6 Reaction R6

This is an irreversible reaction of two reactants forming two products.

Name compound III-superoxide reaction

## **Reaction equation**

$$O2minus\_p + coIII\_p \longrightarrow O2\_p + coI\_p$$
 (11)

## **Reactants**

Table 16: Properties of each reactant.

| Id                   | Name                    | SBO |
|----------------------|-------------------------|-----|
| 02minus_p<br>coIII_p | Superoxide compound III |     |

## **Products**

Table 17: Properties of each product.

| Id    | Name       | SBO |
|-------|------------|-----|
| 02_p  | Oxygen     |     |
| coI_p | compound I |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_6 = \text{vol}(\text{phagosome}) \cdot \text{k6} \cdot [\text{coIII\_p}] \cdot [\text{O2minus\_p}]$$
 (12)

## **6.7 Reaction R7**

This is an irreversible reaction of two reactants forming two products.

Name NADPH autooxidation

## **Reaction equation**

$$O2_c + NADPH_c \longrightarrow H2O2_c + NADPplus_c$$
 (13)

#### **Reactants**

Table 18: Properties of each reactant.

| Id        | Name   | SBO |
|-----------|--------|-----|
| 02_c      | Oxygen |     |
| $NADPH_c$ | NADPH  |     |

#### **Products**

Table 19: Properties of each product.

| Id                  | Name | SBO |
|---------------------|------|-----|
| H202_c              | H2O2 |     |
| ${\tt NADPplus\_c}$ | NADP |     |

**Derived unit** contains undeclared units

$$v_7 = \text{vol}\left(\text{cytoplasm}\right) \cdot \text{k7} \cdot [\text{NADPH\_c}] \cdot [\text{O2\_c}]$$
 (14)

## 6.8 Reaction R8

This is an irreversible reaction of two reactants forming two products.

Name NADP radical-Oxygen reaction

## **Reaction equation**

$$O2_c + NADP_c \longrightarrow O2minus_c + NADPplus_c$$
 (15)

## **Reactants**

Table 20: Properties of each reactant.

| Id             | Name           | SBO |
|----------------|----------------|-----|
| O2_c<br>NADP_c | Oxygen<br>NADP |     |

#### **Products**

Table 21: Properties of each product.

| Id         | Name       | SBO |
|------------|------------|-----|
| 02minus_c  | Superoxide |     |
| NADPplus_c | NADP       |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_8 = \text{vol}(\text{cytoplasm}) \cdot \text{k8} \cdot [\text{NADP\_c}] \cdot [\text{O2\_c}]$$
 (16)

## 6.9 Reaction R9

This is an irreversible reaction of two reactants forming two products.

Name H2O2 formation

## **Reaction equation**

$$2 O2minus\_c + 2 H\_c \longrightarrow O2\_c + H2O2\_c$$
 (17)

## **Reactants**

Table 22: Properties of each reactant.

| Id        | Name       | SBO |
|-----------|------------|-----|
| 02minus_c | Superoxide |     |
| $H_{-}c$  | Hydrogen   |     |

## **Products**

Table 23: Properties of each product.

| Id           | Name   | SBO |
|--------------|--------|-----|
| 02_c         | Oxygen |     |
| $\rm H202_c$ | H2O2   |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_9 = \text{vol}(\text{cytoplasm}) \cdot \text{k9} \cdot [\text{O2minus\_c}]^2$$
 (18)

## 6.10 Reaction R10

This is an irreversible reaction of two reactants forming two products.

Name NADP free radical formation

## **Reaction equation**

$$NADPH_c + MLT_c \longrightarrow NADP_c + MLTH_c$$
 (19)

## **Reactants**

Table 24: Properties of each reactant.

| Id               | Name                            | SBO |
|------------------|---------------------------------|-----|
| NADPH_c<br>MLT_c | NADPH<br>Melatonin free radical |     |

## **Products**

Table 25: Properties of each product.

| Id       | Name      | SBO |
|----------|-----------|-----|
| NADP_c   | NADP      |     |
| $MLTH_c$ | Melatonin |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{10} = \text{vol}(\text{cytoplasm}) \cdot \text{k10} \cdot [\text{MLT\_c}] \cdot [\text{NADPH\_c}]$$
 (20)

## 6.11 Reaction R11

This is an irreversible reaction of one reactant forming one product.

Name NADP dimer formation

## **Reaction equation**

$$2 \text{NADP}_{-}c \longrightarrow \text{NADP2}_{-}c$$
 (21)

#### Reactant

Table 26: Properties of each reactant.

| Id       | Name | SBO |
|----------|------|-----|
| $NADP_c$ | NADP |     |

## **Product**

Table 27: Properties of each product.

| Id      | Name  | SBO |
|---------|-------|-----|
| NADP2_c | NADP2 |     |

**Derived unit** contains undeclared units

$$v_{11} = \text{vol}(\text{cytoplasm}) \cdot \text{k11} \cdot [\text{NADP}_{\text{-}}\text{c}]^2$$
 (22)

## 6.12 Reaction R12

This is an irreversible reaction of no reactant forming one product.

Name NADPH synthesis

## **Reaction equation**

$$\emptyset \longrightarrow NADPH_c$$
 (23)

#### **Product**

Table 28: Properties of each product.

| Id      | Name  | SBO |
|---------|-------|-----|
| NADPH_c | NADPH |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{12} = \text{vol}\left(\text{cytoplasm}\right) \cdot \text{k12}$$
 (24)

## 6.13 Reaction R13a

This is an irreversible reaction of no reactant forming one product.

Name Oxygen diffusion

## **Reaction equation**

$$\emptyset \longrightarrow O2_c$$
 (25)

#### **Product**

Table 29: Properties of each product.

| Id   | Name   | SBO |
|------|--------|-----|
| 02_c | Oxygen |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{13} = \text{vol}\left(\text{cytoplasm}\right) \cdot \text{k13}$$
 (26)

## **6.14 Reaction R13b**

This is an irreversible reaction of one reactant forming no product.

Name Oxygen diffusion

## **Reaction equation**

$$O2_c \longrightarrow \emptyset$$
 (27)

#### Reactant

Table 30: Properties of each reactant.

| Id   | Name   | SBO |
|------|--------|-----|
| 02_c | Oxygen |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{14} = \text{vol}(\text{cytoplasm}) \cdot \text{kminus} 13 \cdot [\text{O2\_c}]$$
 (28)

#### 6.15 Reaction R14

This is an irreversible reaction of one reactant forming one product.

Name Oxygen diffusion- phagosome/cytoplasm

## **Reaction equation**

$$O2_p \longrightarrow O2_c$$
 (29)

## Reactant

Table 31: Properties of each reactant.

| Id   | Name   | SBO |
|------|--------|-----|
| 02_p | Oxygen |     |

## **Product**

Table 32: Properties of each product.

| Id   | Name   | SBO |
|------|--------|-----|
| 02_c | Oxygen |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{15} = \text{vol}(\text{phagosome}) \cdot (\text{k}14 \cdot [\text{O2\_p}] - \text{k}14 \cdot [\text{O2\_c}])$$
(30)

## 6.16 Reaction R15

This is an irreversible reaction of one reactant forming one product.

Name H2O2 diffusion phagosome/cytoplasm

## **Reaction equation**

$$H2O2_p \longrightarrow H2O2_c$$
 (31)

## Reactant

Table 33: Properties of each reactant.

| Id     | Name | SBO |
|--------|------|-----|
| H202_p | H2O2 |     |

## **Product**

Table 34: Properties of each product.

| Id     | Name | SBO |
|--------|------|-----|
| H202_c | H2O2 |     |

Derived unit contains undeclared units

$$v_{16} = \text{vol}(\text{phagosome}) \cdot (\text{k15} \cdot [\text{H2O2\_p}] - \text{k15} \cdot [\text{H2O2\_c}])$$
(32)

## 6.17 Reaction R16

This is an irreversible reaction of one reactant forming one product.

Name Melatonin diffusion phagosome/cytoplasm

## **Reaction equation**

$$MLTH_p \longrightarrow MLTH_c$$
 (33)

#### Reactant

Table 35: Properties of each reactant.

| Id     | Name      | SBO |
|--------|-----------|-----|
| MLTH_p | Melatonin |     |

## **Product**

Table 36: Properties of each product.

| Id     | Name      | SBO |
|--------|-----------|-----|
| MLTH_c | Melatonin |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{17} = \text{vol}(\text{phagosome}) \cdot (\text{k16} \cdot [\text{MLTH\_p}] - \text{k16} \cdot [\text{MLTH\_c}])$$
 (34)

## 6.18 Reaction R17

This is an irreversible reaction of one reactant forming one product.

Name Melatonin free radical diffusion phagosome/cytoplasm

## **Reaction equation**

$$MLT_-p \longrightarrow MLT_-c$$
 (35)

## Reactant

Table 37: Properties of each reactant.

| Id    | Name                   | SBO |
|-------|------------------------|-----|
| MLT_p | Melatonin free radical |     |

## **Product**

Table 38: Properties of each product.

| Id    | Name                   | SBO |
|-------|------------------------|-----|
| MLT_c | Melatonin free radical |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{18} = \text{vol}(\text{phagosome}) \cdot (\text{k17} \cdot [\text{MLT}_{-}\text{p}] - \text{k17} \cdot [\text{MLT}_{-}\text{c}])$$
(36)

## 6.19 Reaction R18

This is an irreversible reaction of one reactant forming one product.

Name Superoxide diffusion phagosome/cytoplasm

## **Reaction equation**

$$O2minus\_p \longrightarrow O2minus\_c \tag{37}$$

#### Reactant

Table 39: Properties of each reactant.

| Id        | Name       | SBO |
|-----------|------------|-----|
| 02minus_p | Superoxide |     |

## **Product**

Table 40: Properties of each product.

| Id        | Name       | SBO |
|-----------|------------|-----|
| 02minus_c | Superoxide |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{19} = \text{vol}(\text{phagosome}) \cdot (\text{k18} \cdot [\text{O2minus\_p}] - \text{k18} \cdot [\text{O2minus\_c}])$$
 (38)

## 6.20 Reaction R19

This is an irreversible reaction of two reactants forming two products.

Name NADPH oxidase activity

## **Reaction equation**

$$2O2\_p + NADPH\_c \longrightarrow 2O2minus\_p + NADPplus\_c$$
 (39)

## **Reactants**

Table 41: Properties of each reactant.

| Id              | Name            | SBO |
|-----------------|-----------------|-----|
| 02_p<br>NADPH_c | Oxygen<br>NADPH |     |

## **Products**

Table 42: Properties of each product.

| Id        | Name       | SBO |
|-----------|------------|-----|
| 02minus_p | Superoxide |     |

| Id         | Name | SBO |
|------------|------|-----|
| NADPplus_c | NADP |     |

Derived unit contains undeclared units

$$v_{20} = \text{vol (phagosome)} \cdot \frac{\frac{\text{V} \cdot [\text{NADPH\_c}]}{\text{Knadph}} \cdot \left(1 + \frac{[\text{NADPH\_c}]}{\text{Knadph}}\right) \cdot [\text{O2\_p}]}{\left(L + \left(1 + \frac{[\text{NADPH\_c}]}{\text{Knadph}}\right)^{2}\right) \cdot (\text{Ko} + [\text{O2\_p}])}$$
(40)

## 7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

## **7.1 Species H202\_p**

Name H2O2

Initial concentration  $0 \, \mu mol \cdot l^{-1}$ 

This species takes part in three reactions (as a reactant in R1, R15 and as a product in R5).

$$\frac{d}{dt}H2O2_p = |v_5| - |v_1| - |v_{16}| \tag{41}$$

## **7.2 Species** per3\_p

Name Ferric peroxidase

Initial concentration  $300 \, \mu mol \cdot l^{-1}$ 

This species takes part in three reactions (as a reactant in R1, R4 and as a product in R3).

$$\frac{d}{dt}per3_p = |v_3| - |v_1| - |v_4| \tag{42}$$

## 7.3 Species col\_p

Name compound I

Initial concentration  $0 \ \mu mol \cdot l^{-1}$ 

This species takes part in three reactions (as a reactant in R2 and as a product in R1, R6).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{coLp} = |v_1| + |v_6| - |v_2| \tag{43}$$

## 7.4 Species MLTH\_p

Name Melatonin

Initial concentration  $300 \ \mu mol \cdot l^{-1}$ 

This species takes part in three reactions (as a reactant in R2, R3, R16).

$$\frac{d}{dt}MLTH_p = -|v_2| - |v_3| - |v_{17}| \tag{44}$$

## 7.5 Species coII\_p

Name compound II

Initial concentration  $0 \ \mu mol \cdot l^{-1}$ 

This species takes part in two reactions (as a reactant in R3 and as a product in R2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{coII}_{-p} = v_2 - v_3 \tag{45}$$

## 7.6 Species MLT\_p

Name Melatonin free radical

Initial concentration  $0 \mu mol \cdot l^{-1}$ 

This species takes part in three reactions (as a reactant in R17 and as a product in R2, R3).

$$\frac{d}{dt}MLT_{p} = |v_{2}| + |v_{3}| - |v_{18}| \tag{46}$$

## 7.7 Species O2minus\_p

Name Superoxide

Initial concentration  $0 \ \mu mol \cdot l^{-1}$ 

This species takes part in five reactions (as a reactant in R4, R5, R6, R18 and as a product in R19).

$$\frac{d}{dt}O2minus_p = 2 v_{20} - v_4 - 2 v_5 - v_6 - v_{19}$$
(47)

22

## 7.8 Species H\_p

Name Hydrogen

Initial concentration  $0 \ \mu mol \cdot l^{-1}$ 

This species takes part in one reaction (as a reactant in R5).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{H}_{-}\mathbf{p} = -2\ v_{5} \tag{48}$$

## **7.9 Species** 02\_p

Name Oxygen

Initial concentration  $0 \mu mol \cdot l^{-1}$ 

This species takes part in four reactions (as a reactant in R14, R19 and as a product in R5, R6).

$$\frac{d}{dt}O2_{-}p = |v_5| + |v_6| - |v_{15}| - 2|v_{20}| \tag{49}$$

## 7.10 Species NADPH\_c

Name NADPH

Initial concentration  $0 \ \mu mol \cdot l^{-1}$ 

This species takes part in four reactions (as a reactant in R7, R10, R19 and as a product in R12).

$$\frac{d}{dt}NADPH_c = |v_{12}| - |v_7| - |v_{10}| - |v_{20}|$$
(50)

#### **7.11 Species** 02\_c

Name Oxygen

Initial concentration  $0 \mu mol \cdot l^{-1}$ 

This species takes part in six reactions (as a reactant in R7, R8, R13b and as a product in R9, R13a, R14).

$$\frac{d}{dt}O2_{-}c = v_9 + v_{13} + v_{15} - v_7 - v_8 - v_{14}$$
 (51)

## 7.12 Species NADPplus\_c

Name NADP

Initial concentration  $0 \mu mol \cdot l^{-1}$ 

This species takes part in three reactions (as a product in R7, R8, R19).

$$\frac{\mathrm{d}}{\mathrm{d}t} \text{NADPplus}_{c} = |v_7| + |v_8| + |v_{20}| \tag{52}$$

## **7.13 Species H202**\_c

Name H2O2

Initial concentration  $0 \mu mol \cdot l^{-1}$ 

This species takes part in three reactions (as a product in R7, R9, R15).

$$\frac{d}{dt}H2O2_c = |v_7| + |v_9| + |v_{16}| \tag{53}$$

## 7.14 Species NADP\_c

Name NADP

Initial concentration  $0 \ \mu mol \cdot l^{-1}$ 

This species takes part in three reactions (as a reactant in R8, R11 and as a product in R10).

$$\frac{d}{dt}NADP_{c}c = v_{10} - |v_{8}| - 2v_{11}$$
 (54)

## 7.15 Species O2minus\_c

Name Superoxide

Initial concentration  $0 \ \mu mol \cdot l^{-1}$ 

This species takes part in three reactions (as a reactant in R9 and as a product in R8, R18).

$$\frac{d}{dt}O2minus_c = v_8 + v_{19} - 2v_9$$
 (55)

## 7.16 Species H\_c

Name Hydrogen

Initial concentration  $0 \mu mol \cdot l^{-1}$ 

This species takes part in one reaction (as a reactant in R9).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{H}_{-}\mathrm{c} = -2\,\nu_9\tag{56}$$

## 7.17 Species MLT\_c

Name Melatonin free radical

Initial concentration  $0 \ \mu mol \cdot l^{-1}$ 

This species takes part in two reactions (as a reactant in R10 and as a product in R17).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{MLT}_{\mathbf{c}} = |v_{18}| - |v_{10}| \tag{57}$$

## 7.18 Species MLTH\_c

Name Melatonin

Initial concentration  $300 \ \mu mol \cdot l^{-1}$ 

This species takes part in two reactions (as a product in R10, R16).

$$\frac{d}{dt}MLTH_{c} = v_{10} + v_{17}$$
 (58)

#### 7.19 Species coIII\_p

Name compound III

Initial concentration  $0 \mu mol \cdot l^{-1}$ 

This species takes part in two reactions (as a reactant in R6 and as a product in R4).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{coIII}_{-p} = |v_4| - |v_6| \tag{59}$$

## 7.20 Species NADP2\_c

Name NADP2

Initial concentration  $0 \mu mol \cdot l^{-1}$ 

This species takes part in one reaction (as a product in R11).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NADP2\_c} = v_{11} \tag{60}$$

SML2ATEX was developed by Andreas Dräger<sup>a</sup>, Hannes Planatscher<sup>a</sup>, Dieudonné M Wouamba<sup>a</sup>, Adrian Schröder<sup>a</sup>, Michael Hucka<sup>b</sup>, Lukas Endler<sup>c</sup>, Martin Golebiewski<sup>d</sup> and Andreas Zell<sup>a</sup>. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

<sup>&</sup>lt;sup>a</sup>Center for Bioinformatics Tübingen (ZBIT), Germany

<sup>&</sup>lt;sup>b</sup>California Institute of Technology, Beckman Institute BNMC, Pasadena, United States

<sup>&</sup>lt;sup>c</sup>European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

<sup>&</sup>lt;sup>d</sup>EML Research gGmbH, Heidelberg, Germany