

Optimal Cislunar Trajectories with Continuous, High-Thrust Nuclear-Thermal Propulsion

Erik Payton, Colby Merrill, Mason Peck, and Dmitry Savransky Cornell University January 6th, 2025

Outline

- Background & Motivation
- Research Methods
- Case Study Results
- Conclusion

Outline

- Background & Motivation
 - Propulsion and Trajectories
 - Minimum Time Transfers
 - NTP Overview
- Research Methods
- Case Study Results
- Conclusion

Background

- Propulsion Systems
 - Chemical Propulsion: High Thrust, Low I_{sp}
 - Electric Propulsion: Low Thrust, High I_{sp}
- Cis-lunar Trajectories
 - Lunar Free Return Trajectory
 - Impulsive Maneuvers
 - ΔV efficient trajectories

Background: Minimum Time Trajectories

- "Turn and Burn" Trajectory
 - Minimize the Time-of-Flight Maneuver
 - Satisfies Hamilton-Jacobi-Bellman Time optimality
 - Continuous-High-Thrust Maneuver
 - Not feasible outright with current technologies

[1]

[2]

Background: NTP Technology

- Nuclear Thermal Propulsion
 - Expand a working fluid (e.g. Hydrogen) using a small fission reactor
 - 800s 1000s Isp
 - Two large pitfalls
 - Larger Engine Mass
 - Non-negligible ramp times

Specification	NTP	Chemical
Thrust Class	66,700 N	66,700 N
Isp	900 s	451 s
Total Engine Mass	4550 kg	510 kg
Total Engine Length	5.0 m	2.3 m
Total Engine Diameter	1.9 m	1.9 m

[3]

Motivation: NTP and Turn and Burn

No ramp time hinderance on efficiencies

Continuous Thrust would require less thrust magnitude so the engine would be smaller,

reducing mass

NASA Artemis System [4]

- 26.6 kN Thrust (Service Module)
- ~15,000 kg Mass (Service Module)
- Cont. Thrust
 - 300-400 N Thrust
 - 20,000 kg Spacecraft
 - 98% Decrease in thrust compared to Impulsive
 - 15-20% Increase in I_{sp} Compared to NTP impulsive

[3] Duchek, M. E., Nikitaeva, D., Harnack, C., Grella, E., and Greenhalge, S., "Parametric Modeling of NTP Engine Performance for a Crewed Mars Mission," ASCEND 2023, 2023.

[4] Bowman, A., Peters, E., "Orion Components", NASA 2024

Outline

- Background & Motivation
- Research Methods
 - Assumptions
 - Dynamics
 - Numerical Methods
- Case Study Results
- Conclusion

Assumptions

- Spacecraft considered in the Earth-Moon system
 - Spacecraft Parameters
 - Specific Impulse: 1000s
 - Wet Mass: 20,000 kg
 - Propellent Mass: 9,000 kg
 - Orbital Parameters
 - Starting Orbit: GEO
 - Target Lunar Orbit: LLO
 - 1 DU = $384,400 \text{ km } (a_{\text{moon}})$

Dynamics

- Gravitational interactions with Earth and Moon
- Ephemeris Model
- Force from propulsion system aligned with velocity vector

Earth Dynamics Lunar Dynamics Thrust
$$\frac{d^2}{dt^2} \boldsymbol{r_{s/e}} = -\frac{\mu_{earth}}{||\boldsymbol{r_{s/e}}||^3} \boldsymbol{r_{s/e}} - \frac{\mu_{moon}}{||\boldsymbol{r_{s/m}}||^3} \boldsymbol{r_{s/m}} + \frac{T}{m}$$

$$T = \begin{cases} T\left(\frac{V_{s/e}}{||V_{s/e}|| + 0.2}\right) & \text{if } 0 \le t \le \tau_m \\ T\left(\frac{-V_{s/e}}{||V_{s/e}|| + 0.2}\right) & \text{if } \tau_m \le t \le \tau \end{cases}$$

For Numerical Stability at Zero Velocity

Maneuver Flip time

Numerical Methods

- Adams-Bashforth-Moulton predictorevaluator-corrector-evaluator solver
 - Max/Min orders of 13 and 1
 - Tolerances of 1 x 10⁻¹¹
- Nelder-Mead simplex algorithms described in [5] Lagarias et al, 1998
 - Optimality achieved by minimizing the cost function

Outline

- Background & Motivation
- Research Methods
- Case Study Results
- Conclusion

Results

- Case Study I
 - Exhaust Propellent
 - Utilize all the propellent mass
 - 300 N to 410 N test range
 - Parameters of Interest
 - Flight time τ
 - Normalized flip time τ_m/τ
 - Final eccentricity
 - Continuation Analysis
 - Use optimal results from last thrust level as an initial guess for the next

- Case Study II
 - Halt Integration at threshold
 - Halt integration when eccentricity = 0.6
 - 300 N to 410 N test range
 - Eccentricity should be constant
 - Parameters of Interest
 - Flight time τ
 - Normalized flip time τ_m/τ
 - ΔV and Propellent exhausted
 - "Continuation Analysis"
 - Use corresponding result from case study
 I to inform guess for case study II

Trajectory Bounds

Case Study 1

Time of Flight

Case Study 1

Flip Time Percentage

Case Study 1

Maneuver ΔV

Case Study 1

Results

Key Results

- Trajectories
 - Max thrust from tested range achieves shorter TOF than Lunar free return
 - ΔV about twice lunar free return
 - Linear trends locally in $\frac{\tau_m}{\tau}$ for Case Study I
- Engine Mass
 - Linear Scaling says order 20 kg engine mass
 - Would not really be linear → motivates engine *would* be much smaller

Conclusion

- Turn and Burn offers a new operational paradigm for NTP technology
- The inherent benefits of running the reactor continuously could also include providing more power to the other systems of the spacecraft.
- Order of magnitude smaller NTP engine

Erik D. Payton edp48@cornell.edu

References

[1] Clark, A. C., 1986

[2] Harnack, C, 2023.

[3] Duchek, M. E., 2023.

[4] Bowman, A., 2024

[5] Lagarias et al, 1998

Final Eccentricity

Case Study 1

Propellent Mass Consumption

Case Study 1

Backup

Analytical Expressions for Turn and Burn Maneuver

$$a(t) = \begin{cases} \frac{\dot{m}gI_{sp}}{M_{tot} - \dot{m}t} & \text{if } 0 \le t \le \tau_m \\ -\frac{\dot{m}gI_{sp}}{M_{tot} - \dot{m}t} & \text{if } \tau_m \le t \le \tau \end{cases} \qquad \tau_m = \frac{1}{\dot{m}} (M_{tot} - \sqrt{(M_{tot}^2 - M_{tot}\dot{m}\tau)} e^{-\frac{V_f - V_0}{gI_{sp}}})$$

$$v(t) = \begin{cases} I_{sp}g \ln \frac{M_{tot}}{M_{tot} - \dot{m}t} + V_0 & \text{if } 0 \le t \le \tau_m \\ I_{sp}g \ln \frac{M_{tot}(M_{tot} - \dot{m}t)}{(M_{tot} - \dot{m}\tau_m)^2} + V_0 & \text{if } \tau_m \le t \le \tau \end{cases}$$

Backup

Backup: Engine Mass Scaling

$$F=\dot{m}U_{e}$$
 Constant of Specific Technology

Want half of this Must also be halved

$$\frac{p_e}{p_0} = (1 + \frac{\gamma - 1}{2} M_e^2)^{\frac{-\gamma}{\gamma - 1}}$$

Constants of these Equations:

- All Stagnation Properties
- Mach Number
- · γ

$$\frac{T_e}{T_0} = (1 + \frac{\gamma - 1}{2}M_e^2)^{-1}$$

RHS of all Equations is constant, given constant stagnation properties, p_e and T_e will be constant as well

$$\frac{A_e}{A^*} = \frac{1}{M_e} [\frac{2}{\gamma+1} (1 + \frac{\gamma-1}{2} M_e^2)]^{\frac{\gamma+1}{2(\gamma-1)}}$$
 Constant Ratio

Backup: Engine Mass Scaling

$$r^* \propto \sqrt{A^*} \qquad \frac{A^*}{2} \Rightarrow \frac{r^*}{\sqrt{2}}$$

Hoop Stress will be constant

$$\sigma_h = \frac{p_0 r}{t} \Rightarrow t \propto r^*$$

Backup: Engine Mass Scaling

Cylindrical Shell Volume formula

$$V = 2\pi r(r+t)l - 2\pi r^2 l = 2\pi t l r.$$

With both t and r^* scaling as $\frac{1}{\sqrt{2}}$ the whole volume and therefore mass is simply halved, thus implying a simple linear scaling

Backup

Final Conditions:

- a: 9.05e6 km
- e: 0.472
- Omega: 0 rad
- I: 0 rad
- omega: 0.5281 rad