Федеральное государственное	автономное образовательное	учреждение	высшего	образования	«Национальн	ый
	исследовательский унив	ерситет ИТМ	IO»			

Факультет программной инженерии и компьютерной техники

Лабораторная работа N6 Работа с системой компьютерной вёрстки T_{EX} Вариант: 83

Выполнил: Васильев Никита Алексеевич Группа: Р3108

Проверил: Балакшин П. В, доцент факультета ПИиКТ, кандидат технических наук имеем

$$\begin{aligned} |xy| &= \left| (ma + nc)\left(\frac{m}{a} - \frac{n}{c}\right) \right| = \left| m^2 + mn\left(\frac{c}{a} - \frac{a}{c}\right) - n^2 \right| = \\ &= \left| m^2 + mn - n^2 \right| \end{aligned}$$

Внутренность «креста» из гипербол $xy=\pm 1$ задается неравенством |xy| < 1. Но при целых m и n величина $|m^2 + mn - n^2|$ тоже целая. Единственным целым числом, которое по модулю меньше 1, является ноль.

Рис. 4

Значит, для лежавнутри креточки решетимеем откуда ma + nc = 0 или mc na = 0. Ввиду иррациональности отношения a/c это возможно лишь при m=n=0.

Значит, внутри «креста» из гиперрасположена

единственная точка рассматриваемой решетки - начало координат.

Для решетки, порожденной параллелограммом рисунка 3, решение аналогично, поэтому мы выпишем только формулы

$$\overrightarrow{OP} = m\overrightarrow{OA} + n\overrightarrow{OC} = (ma + nc; \frac{m}{a} + \frac{n}{c})$$

$$\begin{split} & |xy| = \left| (ma + nc)(\frac{m}{a} + \frac{n}{c}) \right| = |m^2 + mn(\frac{c}{a} + \frac{a}{c}) + +n^2| = \\ & = |xy| = \left| (ma + nc)(\frac{m}{a}) + \frac{n}{c} \right| = \\ & = \left| m^2 + mn(\frac{c}{a} + \frac{a}{c}) + n^2 \right| = \left| m^2 - 3mn + n^2 \right| = \\ & = \left| (m-n)^2 - (m-n)n - n^2 \right| \right| = \left| k^2 - kn - n^2 \right|, k = \\ & = m-n \end{split}$$

Итак, внутри «креста гипербол» нет ни одной точки решеток, кроме начала координат. А на самих гиперболах таких точек бесконечно много. Чтобы доказать это, в первом из рассмотренных нами случаев достаточно убедиться, что уравнение

$$m^2 + mn - n^2 = \pm 1$$

имеет бесконечно много решений в целых числах m, n, aво втором случае – сделать то же самое для уравнения

$$k^2 - kn - n^2 = \pm 1$$

Впрочем, первое из этих двух уравнений сводится ко второму заменой т на -k.

Уравнение:
$$x^2 - xy - y^2 = \pm 1$$

Это уравнение не имеет вида $x^2 - dy^2 = 1$. Но умножение на 4 приводит его к виду

$$4x^2 - 4xy - 4y^2 = \pm 4,$$

$$(2x - y)^2 - 5y^2 = \pm 4$$

что уже похоже на уравнение Пелля. Впрочем, мы воспользуемся этим преобразованием чуть позже, а здесь решим уравнение в его первоначальном виде.

Немного посчитав, можно составить таблицу:

x	0	1	1	2	3	5	8	13	21
y	1	0	1	1	2	3	5	8	13
$x^2 - xy - y^2$	-1	1	-1	1	-1	1	-1	1	-1

Всякий, кто знаком с числами Фибоначчи, уже узнал. А остальным скажем, что последовательность Фибоначчи задана своими двумя членами $\varphi_0 = 0, \ \varphi_1 = 1$ и рекуррентной формулой $\varphi_{n+2} = \varphi_n + \varphi_{n+1}$. Несколько следующих членов этой замечательной последовательности таковы: $\varphi_2 = 0 + 1 = 1$, $\varphi_3 = 1 + 1 = 2$, $\varphi_4 = 1 + 2 =$ $3, \ \varphi_5 = 2 + 3 = 5, \ \varphi_6 = 3 + 5 = 8, \ \varphi_7 = 5 + 8 = 13.$

Теорема 6. Если $x^2 - xy - y^2 = \pm 1$, то пара чисел (X;Y)=(x+y;x) удовлетворяет равенству $X^2-XY Y^2 = \mp 1.$

Доказательство.

$$(x+y)^2 - (x+y)x - x^2 = x^2 + 2xy + y^2 - x^2 - -xy - x^2 = -(x^2 - xy - y^2) = \mp 1.$$

Доказав теорему 6, мы наконец-то решили задачу M1775.

Как и не раз выше, сформулируем и не докажем еще одну теорему.

Теорема 7. Уравнение $x^2 - xy - y^2 = \pm 1$ не имеет решений в целых неотрицательных числах, кроме тех, что получаются из «тривиального» решения (0;1) при помощи правила $(x; y) \rightarrow (x + y; x)$.

Следствие. Все решения уравнения $z^2 - 5y^2 = \pm 4$ натуральных числах даются формулой $(z;y) = \varphi_{n+1} +$ $\varphi_{n-1}; \varphi_n.$

Доказательство. Каждой паре целых чисел (x; y), удовлетворяющей равенству $x^2 - xy - y^2 = \pm 1$, соответствует пара целых чисел (z; y) = (2x - y; y), удовлетворяющая равенству $z^2 - 5y^2 = \pm 4$, и наоборот (поскольку числа z и y одной четности). Осталось заметить, что если $x=arphi_{n+1}$ и $y=arphi_n$, то

$$z = 2x - y = 2\varphi_{n+1} - \varphi_n = \varphi_{n+1} + \varphi_{n-1}$$

Упражнение 20. Докажите тождества

a)
$$\varphi_n^2 = \varphi_{n-1}\varphi_{n+1} - (-1)^n$$
;

6)
$$\varphi_n^2 = \varphi_{n-2}\varphi_{n+2} + (-1)^n$$
.

(Продолжение следует)