Planche 1 (ENS)

Énoncé:

Soit $f:[0,1]\to\mathbb{R}$.

On définit la variation totale de f sur [0,1] par :

$$V(f) = \sup_{n \in \mathbb{N}} \sup_{0 \le t_0 \le t_1 \le \dots \le t_n \le 1} \sum_{i=1}^{n} |f(t_i) - f(t_{i-1})|$$

On appelle BV([0,1]) l'ensemble des fonctions à variation bornée, c'est-à-dire les fonctions $f:[0,1]\to\mathbb{R}$ telles que $V(f)<+\infty$.

- 1) Montrer que les fonctions monotones et lipschitziennes sont à variation bornée.
- 2) Les fonctions à variation bornée sont-elles bornées ?
- 3) Trouver une fonction continue qui n'est pas à variation bornée.
- 4) Montrer que $(BV, \|\cdot\|)$ est un \mathbb{R} -espace vectoriel normé avec

$$||f|| = |f(0)| + V(f)$$

- 5) Montrer que le produit de deux fonctions à variation bornée est à variation bornée.
- **6)** Soient $f:[0,1] \to \mathbb{R}$, $g:[0,1] \to [0,1]$ deux fonctions à variation bornée.
 - a) Si g est monotone, montrer que $f \circ g \in BV$.
 - **b)** Si f est monotone, $f \circ g \in BV$?

Indications

- Poser $f(x) = x \cos\left(\frac{\pi}{x}\right)$
- Poser $t_0 = 0, t_1 = x$
- Utiliser que $f \in BV \Rightarrow f$ est bornée
- $g(t_k)$ est une subdivision, $h \in [0,1]$

Corrigé:

1) a) Supposons f croissante (le cas décroissant est analogue). Soit

$$0 \le t_0 \le \dots \le t_n \le 1$$

une subdivision. Alors

$$\sum_{k=1}^{n} |f(t_k) - f(t_{k-1})| = f(t_n) - f(t_0) \le f(1) - f(0)$$

donc $f \in BV$.

b) Si f est K-lipschitzienne, alors :

$$\sum_{k=1}^{n} |f(t_k) - f(t_{k-1})| \le K \sum_{k=1}^{n} |t_k - t_{k-1}| \le K$$

donc $f \in BV$.

2) Oui. Soit f non bornée. Soit $t_0 = 0$. Soit $M \in \mathbb{R}$ et $t_1 \in [0,1]$ tel que $|f(t_1)| > M + |f(0)|$. Alors:

$$\sum_{k=1}^{1} |f(t_k) - f(t_{k-1})| = |f(t_1) - f(t_0)| > M$$

donc $f \notin BV$.

3) Soit $f: x \mapsto x \cos\left(\frac{\pi}{x}\right)$ si $x \neq 0$, et f(0) = 0. Soit $n \in \mathbb{N}^*$ et $t_k = \frac{1}{k+1}$. Alors:

$$\sum_{k=1}^{n} |f(t_k) - f(t_{k-1})| = \sum_{k=1}^{n} \frac{1}{k+1} + \frac{1}{k} \to +\infty$$

et pourtant f est continue sur [0,1]. Donc $f \notin BV$.

- 4) $-0 \in BV$, évident.
 - $\lambda f \in BV$ si $f \in BV$, facile.
 - Si $f, g \in BV$, alors $f + g \in BV$ avec :

$$V(f+g) \le V(f) + V(g)$$

Ainsi, BV est un sous-espace vectoriel de $\mathcal{F}([0,1],\mathbb{R})$.

- $||f|| \ge 0$, évident.
- $\|\lambda f\| = |\lambda| \cdot \|f\|$, facile.
- Si $f,g \in BV$, nous avons vu que $V(f+g) \leq V(f) + V(g)$, ce qui implique facilement que $||f+g|| \leq ||f|| + ||g||$.
- Si ||f|| = 0, alors f(0) = V(f) = 0. Soit $x \in [0, 1]$, posons $t_0 = 0, t_1 = x$. Alors:

$$0 \le \sum_{k=1}^{1} |f(t_k) - f(t_{k-1})| \le V(f) = 0$$

donc |f(x) - f(0)| = 0 et f(x) = f(0). Ainsi f est nulle.

Donc $\|\cdot\|$ est une norme.

5) Soient $f, g \in BV$, M un majorant de |f|, et N un majorant de |g|. Alors pour toute subdivision $0 \le t_0 \le \cdots \le t_n \le 1$, on a :

$$\sum_{k=1}^{n} |(fg)(t_k) - (fg)(t_{k-1})| = \sum_{k=1}^{n} |f(t_k)(g(t_k) - g(t_{k-1})) + g(t_{k-1})(f(t_k) - f(t_{k-1}))|$$

$$\leq M \sum_{k=1}^{n} |g(t_k) - g(t_{k-1})| + N \sum_{k=1}^{n} |f(t_k) - f(t_{k-1})|$$

$$= MV(g) + NV(f)$$

donc $fg \in BV$.

6) a) Dans le cas où g est croissante, si $0 \le t_0 \le t_1 \le \cdots \le t_n \le 1$ alors $0 \le g(t_0) \le g(t_1) \le \cdots \le g(t_n) \le 1$ donc :

$$\sum_{k=1}^{n} |f(g(t_k)) - f(g(t_{k-1}))| \le V(f)$$

ainsi $f \circ g \in BV$.

Si g est décroissante, $1 \ge g(t_0) \le g(t_1) \ge \cdots \ge g(t_n) \ge 0$ mais le raisonnement est le même.

b) Non.

Posons:

$$f(x) = \begin{cases} 0 & \text{si } x \le \frac{1}{2} \\ 1 & \text{si } x > \frac{1}{2} \end{cases}, \quad g(x) = \frac{1}{2} \left(1 + x^3 \cos \left(\frac{\pi}{x} \right) \right)$$

Soit $n \in \mathbb{N}^*$, et $t_k = \frac{1}{k+1}$. On remarque alors que :

$$f(g(t_k)) = \begin{cases} 0 & \text{si } g(t_k) < \frac{1}{2} \\ 1 & \text{si } g(t_k) > \frac{1}{2} \end{cases} \quad \text{donc } |f(g(t_k)) - f(g(t_{k-1}))| = 1.$$

Ainsi:

$$\sum_{k=1}^{n} |f(g(t_k)) - f(g(t_{k-1}))| = \sum_{k=1}^{n} 1 = n \to +\infty \text{ quand } n \to \infty$$

Donc $f \circ g \notin BV$.