

CLAIMS

1. A method of producing double low restorer lines of *Brassica napus* for Ogura cytoplasmic male sterility (cms) presenting radish introgression carrying the Rfo restorer gene deleted of the radish Pgi-2 allele and recombined with the Pgi-2 gene from *Brassica oleracea*, and having a good agronomic value characterised by female fertility, a good transmission rate of Rfo and a high vegetative vigour, said method including the step of:
 - a) crossing double low cms lines of spring *Brassica napus* comprising a deleted radish insertion with the double low line of spring Drakkar for forming heterozygous restored plants of *Brassica napus*,
 - b) irradiating before meiosis the heterozygous restored plants obtained in step a) with gamma ray irradiation,
 - c) crossing pollen from flowers obtained in step b) with the cms double low spring Wesroona line,
 - d) testing the progeny for vigour, female fertility and transmission rate of the cms gene,
 - e) selecting progeny lines.
- 20 2. A method according to claim 1, wherein the irradiation dose in step b) is 65 Gray during 6 mn.
3. A method according to claim 1 wherein the double low cms line of spring *Brassica napus* of step a) is R211.
- 25 4. A method according to claim 1 wherein the testing in step d) is performed with the combination of five markers selected from PG101, PG1UNT, PG1Int, BolJon and CP418.
- 30 5. Double low restorer lines of *Brassica napus* for Ogura cytoplasmic male sterility (cms) presenting a Rfo insertion deleted of the radish Pgi-2 allele and recombined with the Pgi-2 gene from *Brassica oleracea*, and having a

good agronomic value characterised by female fertility, a good transmission rate of Rfo and a high vegetative vigour.

6. Double low restorer lines of Brassica napus according to claim 5, wherein
5 they present a unique combination of five markers selected from PGIol,
PGIUNT, PGIint, BolJon and CP418.
7. Brassica napus hybrid plants and progeny thereof obtained through the
steps of:
 - 10 a) providing a restorer line produced according to claim 1 and bred to be homozygous,
 - b) using said restorer line in a hybrid production field as the pollinator,
 - c) using cms sterile plants in a hybrid production field as the hybrid seed producing plant, and
 - 15 d) harvesting the hybrid seed from the male sterile plant.
8. The seeds of Brassica plant developed from the Brassica line obtained in
claim 1.
- 20 9. The seeds of Brassica napus obtained in claim 7.
10. The seeds of Brassica napus obtained in claims 1 and 2 deposited in NCIMB
Limited, 23 St Machar Drive, Aberdeen, Scotland, AB24 3RY, UK, on
July 4 , 2003, under the reference number NCIMB41183.
25
11. Use of the combination of at least four markers PGIol, PGIint, BolJon and
CP418, or any portion of them comprising at least one polymorphic site, for
characterising recombined restorer lines of Brassica napus for Ogura cms
presenting a Rfo insertion deleted of the radish Pgi-2 allele and recombined
30 with the Pgi-2 gene from Brassica oleracea, and having a good agronomic
value characterised by female fertility, a good transmission rate of Rfo and a
high vegetative vigour.

12. Use according to claim 11 wherein the combination is of five markers PGIol, PGIUNT, PGInt, BolJon and CP418.
- 5 13. Use according to claim 12, wherein:
- The marker PGIol is amplified using the primers: PGIol U and PGIol L
(PGIol U: 5'TCATTTGATTGTTGCGCCTG3';
PGIol L: 5'TGTACATCAGACCCGGTAGAAAAA3')
 - The marker PGInt is amplified using the primers: PGInt U and PGInt L
(PGInt U: 5'CAGCACTAATCTTGCCTGATG3';
PGInt L: 5'CAATAACCCTAAAAGCACCTG3')
 - The marker PGIUNT is amplified using the primers: PGIol U and PGInt L:
(PGIol U: 5'TCATTTGATTGTTGCGCCTG3';
PGInt L: 5'CAATAACCCTAAAAGCACCTG3')
 - The marker BolJon is amplified using the primers: BolJon U and BolJon L:
(BolJon U: 5'GATCCGATTCTTCTCCTGTTG3';
BolJon L: 5'GCCTACTCCTCAAATCACTCT3')
 - The marker CP418 is amplified using the primers: SG129 U and pCP418 L:
(SG129 U: cf Giancola et al (5)
20 pCP418 L : 5'AATTCTCCATCACAAAGGACC3')

14. PGIol marker whose sequence follows:

25 TCATTTGATT GTTGCCTG TCGCCTTGT GTGTTATGAT GAATGAACAG CAGTCATT 60
ACATGTGGTT AACTAACAG GGCTCCGGCT GTTGCAAAAC ACATGGTTGC TGTCAGCACT 120
AATCTTGCCTG TATGAATTG TGATTAATT TGTTGTTG TGACTCTTC TTCATTGTT 180
GTTTCTGTA AATAAACCGA ATGTATAATC TTTTACAAA CTGAATTTC TACCGGGTCT 240
GATGTACA 248

15. PGIUNT marker whose sequence follows:

30 TCATTTGATT GTTGCCTG TCGCCTTGT GTGTTATGAT GAATGAACAG CAGTCATT 60
ACATGTGGTT AACTAACAG GGCTCCGGCT GTTGCAAAAC ACATGGTTGC TGTCAGCACT 120
AATCTTGCCTG TATGAATTG TGATTAATT TGTTGTTG TGACTCTTC TTCATTGTT 180
GTTTCTGTA AATAAACCGA ATGTATAATC TTTTACAAA CTGAATTTC TACCGGGTCT 240
ATGTACAATG CTAGTCTCCA TGTCTTGGG GATCATGATT 300
35 ACAGTACAGA AGAAAAGTGT CAAAACCTG GATGTTTAA TTTACAGTTA GTGGAGAAGT 360
TCGGCATTGA TCCGAACAAT GCATTTGCAT TTTGGGACTG GGTTGGTGA AGGTACAGTG 420
GTAAGTGCTT GTTATTGG TTGTATAAT TTCTCGTCCA TTTCCGCTTG CTTAGTGTAT 480
AACTGAAATT CTTTGCAGT TTGCAGTGCT GTGGAGTCT TACCATGTC TCTACAGTAT 540
GGCTTCTCTG TGGTTGAGAA GTACGGTACC TTCTACTTTA TCAGCCATCT CATAAAATGT 600

5 CTTAGGCATA TTCTTCTAT TTTATTCCTC TCTTAATGAT TTCTTCTTT TTTTATTGCA 660
 TCCCGTTT ATTTCAAAA GTGTTACTG TCTCTAAATC AAGAAGAAC CTTCTTAGTA 720
 GATCCAGCTG ATATTCAAGCC TTTTTAAAT TGGACTGCAG GTTTTAAAG GGGAGCTTC 780
 ACCATTGATA AGCATTTCCA GTCCACACCG TTTGAGAAGA ATATACCCGT GAGTTGCATT 840
 AGTTGTGTGA TTATACAGTT TTCTTGTCTT TTTGCTATGT CCATCAACAC TAGAGATTG 900
 TGAAGTTATT AGTGTAGTCA ACGCATAGGG AGAGGTGATT GGTGACTTT GGACGATTTC 960
 AGGTGCTTTA GGGTTATTG 979

16. PGIint marker whose sequence follows:

10 CAGCACTAAT CTTGCGGTAT GAATTTGTGA TTAAATTGTT TTGTTTGTA CTCTTCTTC 60
 ATTGTTCGTT TTCGTACAAT AAACCGAATG TATAATCTTT TACAAACTGA ATTTTCTACC 120
 GGGTCTGATG TACAATGCTA GTCTCCATGT TCTTGGGGAT CATGATTAT TTTCTACATG 180
 TATTCAAGACA GTACAGAAGA AAGTGTCAA AACTCTGGAT GTTTTAATT ACAGTTAGTG 240
 GAGAAGTTCG GCATTGATCC GAACAAATGCA TTTGCATT TTGACTGGGT TGTTGGAAGG 300
 15 TACAGTGGTA ACTGCTTGTG TATTGTTG TATAAATTTC TCGTCCATT CCGCTTGCTT 360
 AGTGTATAAC TGAAATTCTT TTGCAGTTG CAGTGTGTT GGAGTCTAC CATTGTCCT 420
 ACAGTATGGC TTCTCTGTGG TTGAGAAGTA CGGTACCTTC TACTTTATCA GCCATCTCAT 480
 AAAATGTCTT AGGCATATTTC TTCTTATTG ATTTCCCTCT TAATGATTTC TTCTTTTTT 540
 TATTGCAATT CCGTTTATT TTCAAAAGTT GTTACTGTCT CTAATCAAG AAGAAACCTT 600
 20 CTAGTAGAT CCAGCTGATA TTCAGCCTT TTAAATTGG ACTGCAGGTT TTAAAGGGG 660
 AGCTTCAAGC ATTGATAAGC ATTTCCAGTC CACACCGTTT GAGAAGATA TACCCGTGAG 720
 TTGCATTAGT TGTGTGATTA TACAGTTTC TTGTCTTTT GCTATGTCCA TCAACACTAG 780
 AGATTGCGTA AGTTATTAGT GTAGTCAACG CATAGGGAGA GGTGATTGGT GACTTTGGA 840
 CGATTCAGG TGCTTAGGG TTATTG 866

25

17. BolJon marker whose sequence follows:

30 GATCCGATTTC TTCTCCTGTT GAGATCAGCT CCAAACATCA AACAACTTGT ACACAAATAT 60
 CTTTACTTGC TAAATGGAAC ATGACAAGAG ATAGAAAATC TTGCTCATAG TATTGTACAA 120
 GGGATAACAG TGTAGAAAAC AAACCGTCTG TAAGATTTTC TCCCTGATCC TCTCACTTAA 180
 CCAGTAGGCG TTTTCACAT TGAAGCGCAT ATCTACTTTG GTATTCACTG AATAAAAAAA 240
 GAAAGCTGGT AACATGTGAA GGATATACAA GCATTGATAC ACCAAGTAGT CACAAACTAC 300
 ATTATAAAGG TCAGACCTTT GTTCACATTC TGGCCTCCAG GACCACCGCT TCTAGCAAAG 360
 TTAAGCGTAA CATGGTCTGC ACGTATACAA ATGAAAATGT TTCTATCAA ATCCTATAAA 420
 ATAGAGCTCT ATAACATTGT CGATACATAG TTTCACTAAC TCTGCAGTA CTAACACAT 480
 35 ATACAAACAA AACTATGCGA ACAGATCAAA ACTACTACAG AACACAGTTC TATGACACTG 540
 TCGATAGTAA CATCCTCTGC AAGTACCAAA GAGATAGCAA ATGAAACTAT GTAAACAAAT 600
 CAAAATTCTA AATTCTCCA TCACAAGGAC CTACAGAATA GAGTTATCAT AACATTTCCT 660
 GTAAATATT CCATCAAAT GACTAGAGAA CAGAGTTCTT ATAACATTAT ATAACATTAT CTGTAATGT 720
 40 TCCAACAAAA CCACTACATA GCAGAGTTCT TATAACATTG TCTGTAAATG TCCAATCAA 780
 ACCACTACAG AACAAAGCTC CTATAACATT GTTATACAA AGTTCACTA AATCTACAAA 840
 CTTTCCCCGT AAATGAGCTT AATATCACCC AAAGATGTTT CAATCAGATA AAATCAGATA AAGAGTACGA 900
 CATCGTTTG AGATTAGAAC AAACTGAAAC TTACGTAGAG TGATTGAGG AGTAGG 957

18. CP418 marker whose sequence follows:

45 AATTCTCCA TCACAAGGAC CTACAGAATA GAGTTATCAT AACATTTCCT GTAAATATT 60
 CCATCAAAAT GACTAGAGAA CAGAGTTCTT ATAACATTAT CTGTAATGT TCCAACAAAA 120
 CCACTACATA GCAGAGTTCT TATAACATTG TCTGTAAATG TCCAATCAA ACCACTACAG 180
 AACAAAGCTC CTATAACATT GTTATACAA AGTTCACTA AATCTACAAA CTTTCCCCGT 240
 AAATGAGCTT AAATCACCC AAAGATGTTT CAATCAGATA AAGAGTAACG ACATCGTTT 300
 50 GAGATTAGAA CAAACTGAAA CTTACGTAGA GTGATTGAG GAGTAGGCTC GTGCCAGCA 360
 GAGCTAGCTC TCTCCTCCGC CTATGAAGC ATCTGTTGCA CCTGAGACAA CGTGACGAA 420
 ACTTTCCGAT CACGCCACC AGAATTGAC GCGCGCATC GGAAGGATCC GAATCGGGAA 480
 CTGAGTGAAC CCGAGCGATC CCGGGAGTGC GACGGAGCGA TGGGAAAAGA GAGTGGCAGC 540
 ATTCGACGA AGAGTGGAAAG AGGAGAGGGT GGTGGATAAA CTCGCGTATG ATCAAGTTG 600
 55 TCATCGTCCT GATTGCCGCC ATTTTTTG TCAGGGCGCT CTGTGGCTTA GAAGTTCCG 660
 atgtcaatga ac 672