LAB 1: Exploratory Data Analysis and Data Visualization in Python

```
In [1]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
In [3]:
df = pd.read csv(r"D:\SO\Salary Data.csv")
In [4]:
df.head()
Out[4]:
   Age Gender Education Level
                                       Job Title Years of Experience
                                                                     Salary
                    Bachelor's Software Engineer
0 32.0
          Male
                                                               5.0
                                                                    90000.0
1 28.0 Female
                      Master's
                                    Data Analyst
                                                               3.0
                                                                    65000.0
                          PhD
                                  Senior Manager
2 45.0
                                                              15.0 150000.0
          Male
3 36.0 Female
                    Bachelor's
                                  Sales Associate
                                                               7.0
                                                                    60000.0
4 52.0
                                                              20.0 200000.0
          Male
                      Master's
                                        Director
In [5]:
df.tail()
Out[5]:
      Age Gender
                     Education Level
                                               Job Title Years of Experience
                                                                             Salary
                                                                      20.0 200000.0
6699 49.0 Female
                               PhD Director of Marketing
                                                                            50000.0
6700 32.0
             Male
                        High School
                                         Sales Associate
                                                                       3.0
6701 30.0 Female
                  Bachelor's Degree
                                       Financial Manager
                                                                       4.0
                                                                            55000.0
                                                                      14.0 140000.0
6702 46.0
             Male
                                      Marketing Manager
                    Master's Degree
6703 26.0 Female
                        High School
                                         Sales Executive
                                                                            35000.0
In [6]:
df.shape
Out[6]:
(6704, 6)
In [7]:
df.columns
Out[7]:
```

Index(['Age', 'Gender', 'Education Level', 'Job Title', 'Years of Experience',

In [8]:

'Salary'],
dtype='object')

```
Education Level
                     object
Job Title
                     object
Years of Experience
                    float64
                     float64
Salary
dtype: object
In [9]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6704 entries, 0 to 6703
Data columns (total 6 columns):
                       Non-Null Count Dtype
# Column
---
                        _____
   Age
                        6702 non-null float64
0
  Gender
                                     object
                       6702 non-null
1
   Education Level
                                     object
                       6701 non-null
                       6702 non-null object
    Job Title
    Years of Experience 6701 non-null
                                      float64
5 Salary
                        6699 non-null float64
dtypes: float64(3), object(3)
memory usage: 314.4+ KB
```

float64

object

Descriptive statastics

```
In [10]:
```

df.dtypes

Out[8]:

Age Gender

df.describe()

Out[10]:

	Age	Years of Experience	Salary
count	6702.000000	6701.000000	6699.000000
mean	33.620859	8.094687	115326.964771
std	7.614633	6.059003	52786.183911
min	21.000000	0.000000	350.000000
25%	28.000000	3.000000	70000.000000
50%	32.000000	7.000000	115000.000000
75%	38.000000	12.000000	160000.000000
max	62.000000	34.000000	250000.000000

```
In [11]:
```

df.describe(include = 'object')

Out[11]:

	Gender	Education Level	Job Title	
count	6702	6701	6702	
unique	3	7	193	
top	Male	Bachelor's Degree	Software Engineer	
freq	3674	2267	518	

In [12]:

```
df['Gender'].value_counts()
Out[12]:
Gender
Male
        3674
Female 3014
Other 14
Name: count, dtype: int64
In [13]:
df['Job Title'].value_counts()
Out[13]:
Job Title
                                 518
Software Engineer
Data Scientist
                                 453
Software Engineer Manager
                                 376
Data Analyst
                                 363
Senior Project Engineer
                                 318
Junior Social Media Specialist
Senior Software Architect
                                  1
Developer
                                   1
Social M
                                   1
Social Media Man
Name: count, Length: 193, dtype: int64
In [14]:
df['Gender'].value counts(normalize=True)*100
Out[14]:
Gender
        54.819457
Male
Female 44.971650
        0.208893
Other
Name: proportion, dtype: float64
```

In [15]:

df.iloc[0:15,0:4]

Out[15]:

	Age	Gender	Education Level	Job Title
0	32.0	Male	Bachelor's	Software Engineer
1	28.0	Female	Master's	Data Analyst
2	45.0	Male	PhD	Senior Manager
3	36.0	Female	Bachelor's	Sales Associate
4	52.0	Male	Master's	Director
5	29.0	Male	Bachelor's	Marketing Analyst
6	42.0	Female	Master's	Product Manager
7	31.0	Male	Bachelor's	Sales Manager
8	26.0	Female	Bachelor's	Marketing Coordinator
9	38.0	Male	PhD	Senior Scientist
10	29.0	Male	Master's	Software Developer
11	48.0	Female	Bachelor's	HR Manager
12	35.0	Male	Bachelor's	Financial Analyst
13	40.0	Female	Master's	Project Manager

```
14 Age Gender Education Level Customer Service Fitte
In [16]:
df.loc[0:14, ['Age', 'Gender', 'Education Level']]
Out[16]:
    Age Gender Education Level
 0 32.0
          Male
                    Bachelor's
 1 28.0 Female
                     Master's
 2 45.0
                         PhD
          Male
 3 36.0 Female
                    Bachelor's
 4 52.0
                     Master's
          Male
 5 29.0
          Male
                    Bachelor's
 6 42.0 Female
                     Master's
 7 31.0
          Male
                    Bachelor's
 8 26.0 Female
                    Bachelor's
 9 38.0
          Male
                         PhD
 10 29.0
          Male
                     Master's
 11 48.0 Female
                    Bachelor's
 12 35.0
          Male
                    Bachelor's
                     Master's
 13 40.0 Female
 14 27.0
          Male
                    Bachelor's
In [17]:
df[df['Age'] == df[df['Gender'] == 'Male']['Age'].max()]['Job Title']
Out[17]:
1225
         Software Engineer Manager
1236
         Software Engineer Manager
1258
         Software Engineer Manager
         Software Engineer Manager
1304
1305
         Software Engineer Manager
Name: Job Title, dtype: object
Sorting
In [18]:
```

```
df.sort values(by='Job Title').head()
```

Out[18]:

	Age	Gender	Education Level	Job Title	Years of Experience	Salary
46	32.0	Male	Bachelor's	Account Manager	5.0	75000.0
31	31.0	Female	Bachelor's	Accountant	4.0	55000.0
135	39.0	Female	Bachelor's	Administrative Assistant	10.0	55000.0
43	36.0	Female	Bachelor's	Administrative Assistant	8.0	45000.0
1933	34.0	Male	Master's Degree	Back end Developer	8.0	140000.0

```
In [19]:
```

```
df.sort values(by='Age', ascending=False).head()
```

```
Out[19]:
```

	Age	Gender	Education Level	Job Title	Years of Experience	Salary
1236	62.0	Male	PhD	Software Engineer Manager	20.0	200000.0
1305	62.0	Male	PhD	Software Engineer Manager	19.0	200000.0
1304	62.0	Male	PhD	Software Engineer Manager	20.0	200000.0
1258	62.0	Male	PhD	Software Engineer Manager	19.0	200000.0
1225	62.0	Male	PhD	Software Engineer Manager	19.0	200000.0

Replacing Values in columns

1.0

In [23]:

0.042470

0.136833

df.pivot table(['Age', 'Salary'], ['Gender'], aggfunc='mean')

```
In [20]:
d = {'Male': 0, 'Female': 1} # Create dictionary
print('Before replacement:')
print(df['Gender'].head())
df['Gender'] = df['Gender'].map(d)
print('After replacement:')
print(df['Gender'].head())
Before replacement:
0
      Male
1
     Female
2
       Male
3
     Female
       Male
Name: Gender, dtype: object
After replacement:
    0.0
1
     1.0
2
     0.0
3
    1.0
     0.0
Name: Gender, dtype: float64
In [21]:
df.groupby(by='Gender')['Age'].describe()
Out[21]:
        count
                 mean
                          std min 25% 50% 75% max
Gender
   0.0 3674.0 34.415895 7.977857 22.0 28.0
                                        32.0
                                            40.0 62.0
   1.0 3014.0 32.624088 6.976065 21.0 28.0 31.0 36.0 60.0
In [22]:
pd.crosstab(df['Gender'], df['Education Level'], normalize=True)
Out[22]:
Education Level Bachelor's Bachelor's Degree High School Master's Master's Degree
                                                                          PhD
                                                                                 phD
       Gender
          0.0
               0.070585
                              0.202183
                                         0.027666 0.013309
                                                               0.104980 0.130402 0.00015
```

0.037536 0.029759

0.129954 0.074174 0.00000

```
Out[23]:

Age Salary

Gender

0.0 34.415895 121389.870915
1.0 32.624088 107888.998672

In [24]:

df.pivot_table(['Age', 'Salary'], ['Gender'], aggfunc='max')

Out[24]:

Age Salary

Gender

0.0 62.0 250000.0
1.0 60.0 220000.0
```

Data Visualization

122500

```
In [25]:
sns.lineplot(x='Age', y='Salary', data=df)
Out[25]:
```

<Axes: xlabel='Age', ylabel='Salary'>


```
In [26]:
sns.lineplot(x='Gender', y='Salary', data=df)
Out[26]:
<Axes: xlabel='Gender', ylabel='Salary'>
```


In [27]:

sns.catplot(x='Gender', data=df, kind='count')

Out[27]:

<seaborn.axisgrid.FacetGrid at 0x1d3b0027d40>

In [28]:

sns.catplot(x='Gender', data=df, kind='count', hue='Education Level')

Out[28]:

<seaborn.axisgrid.FacetGrid at 0x1d3aff087d0>

1400 -

In [29]:

```
df['Age'].hist(bins=8)
plt.xlabel('Age')
plt.ylabel('Frequency')
plt.title('Age Distribution')
plt.show()
```


In [31]:

```
sizes = df["Gender"].value_counts()
fig1, ax1 = plt.subplots()
ax1.pie(sizes,
labels=sizes.index,
autopct='%1.2f%%',
shadow=True)
```

