Série 2 : Les ondes mécaniques progressives

EXERCICE1:

Dans un bassin d'essais, une source sonore S émet un bruit intense qui se propage dans l'air et dans

l'eau. Le bruit est reçu par deux récepteurs sonores : R_1 placé dans l'air et R_2 situé dans l'eau (Fig.3). **Données** : célérité du son

• Dans l'air: $v_{air} = 340 \text{ m} \cdot \text{s}^{-1}$.

• Dans l'eau: $v_{eau} = 1500 \text{ m} \cdot \text{s}^{-1}$

1- Quel est le récepteur qui, le premier, détecte le bruit produit par la source ?

2- On note Δt la durée séparant la détection du bruit par les récepteurs R_1 et R_2 . Exprimer la distance d séparant la source des récepteurs en fonction de la durée Δt et des célérités $v_{\rm air}$ et $v_{\rm eau}$.

3- Calculer la valeur de d pour $\Delta t = 0.50$ s

EXERCICE 2:

Une perturbation se propage le long d'une corde élastique de masse linéique $\mu = 6.4 \text{ g} \cdot \text{m}^{-1}$, soumise à une tension F = 1N.

S est l'extrémité de la corde, source de la perturbation. La fig. 1 représente, avec une échelle 1/50, l'aspect de la corde à un instant t_1

1- L'onde est-elle transversale ou longitudinale ? Justifie r votre réponse.

2- Calculer la célérité de l'onde.

3- Dessiner l'aspect de la corde à l'instant $t_2 = t_1 + 0.1$ (s).

4- Pendant quelle durée un point de la corde est-il affectée par le passage de la perturbation?

5- Calculer la durée Δt nécessaire pour que la perturbation parvienne au point M.

EXECUTE 3

On crée par vibreur à l'instant t=0 une déformation à l'extrémité S d'une corde élastique la figure cidessous représente l'allure de la corde à l'instant t=60 ms.

1-Quelle est la nature de cette onde ? (Longitudinale ou transversale).

2-Cette onde est-elle unidimensionnelle; bidimensionnelle ou tridimensionnelle?

3-Calculer la célérité de propagation le long de la corde. Quelle est la longueur de la perturbation ? Quelle est sa durée ?

4-Déterminer à l'instant t les points qui effectuent un mouvement vers le haut et les points qui effectuent un mouvement vers le bas.

5-Représenter l'allure de la corde à l'instant t' = 90 ms.

6-À quelle instant l'onde arrive au point M_4 qui se trouve à droite du point M_3 distant de $M_3M_4=40$ cm.

7-Determiner le retard temporel entre le point M_4 et S

8-Ecrire l'élongation du point M_4 en fonction de celle de la source S.

9- représenter l'allure de l'élongation de M₄ en fonction de temps Y_{M4}(t)

EXERCICE 4

On souhaite représenter le déplacement transversal u au point M et au point M'en fonction du temps t.

Une onde, de courte durée, se propage selon la direction x'x avec une célérité v=2.10³ m.s⁻¹. Elle provoque une perturbation.

Le graphique ci-contre représente la perturbation u provoquée en un point M d'abscisse x_1 = 5 m en fonction du temps.

- 1 Quel est l'instant t_1 qui correspond au début de la perturbation au point M ? Quel est l'instant t_2 qui Correspond à la fin de la perturbation ?
- 2 Déterminer à quel instant t₃ le début de la perturbation se trouvera au point M'd'abscisse x'= 9m.

- 3- En déduire l'instant t4 qui correspondra à la fin de la perturbation en M'.
- 4- En déduire la représentation graphique, en fonction du temps t, la perturbation u au point M'd'abscisse x'=9m.
- 5- Qualifier les états du point M et du point M'à l'instant t₅ =5ms.
- 6- Déterminer la longueur de la perturbation.
- 7- En déduire la représentation graphique de la perturbation u, en fonction de x, à l'instant t5 =5ms

EXERCICE 5:

Pour mesurer la propagation des ondes sonores dans l'air on réalise le montage expérimental représentant ci-dessous, la distance entre les deux microphones R_1 et R_2 est d=1,70m. La courbe ci-dessous représente la variation de la tension aux bornes de chaque microphone. Donnée : La sensibilité horizontale : 1ms/div; température d'air $25^{\circ}C$; célérité de la propagation du son dans l'eau $V_{eau}=1500$ m.s⁻¹.

- 1. Est que le son est une onde longitudinale ou transversale.
- 2. Déterminer la valeur du retard temporel τ entre les microphones R_1 et R_2 .
- 3. Déduire la valeur Vair célérité de la propagation des ondes sonores dans l'air.
- 4. Déterminer la valeur du retard temporel τ' quand on déplace le microphone vers la droite à partir de sa position initiale de L= 51cm.
- 5. Comparer Vair et Veau. Que peut-t-on déduire.

EXERCICE 6:

Lors d'une échographie d'un fœtus, la sonde posée sur le ventre de la mère (voir schéma ci-dessous) émet et reçoit des signaux ultrasonores. L'ordinateur calcule la durée Δt mis par le signal émis pour faire un aller jusqu'au fœtus et un retour jusqu'au récepteur. La vitesse v de propagation des ondes ultrasonores dans le corps humain est de $1500 \, \text{m.s}^{-1}$.

La sonde orientée vers la tête du fœtus reçoit un premier signal avec un décalage

 $\Delta t=3,0.10^{-5}$ s après l'émission, et un deuxième signal avec $\Delta t'=7,0.10^{-5}$ s.

- 1- Calculer la distance d_1 entre la sonde et la paroi la plus proche de la tête du fœtus.
- 2- Calculer la distance d₂ entre la sonde et la paroi la plus éloigné de la tête du fœtus.
- 3- Déduire le diamètre d de la tête du fœtus en cm.

