# TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer Shareable

The TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS characteristics are:

## **Purpose**

If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

- The entry is a 64-bit stage 2 only translation table entry, from any level of the translation table walk up to the level indicated in the TTL hint.
  - Or if FEAT\_D128 is implemented, and the entry is a 128-bit stage 2 only translation table entry, from any level of the translation table walk, if TTL is 0b00.
- If FEAT RME is implemented, one of the following applies:
  - SCR\_EL3.{NSE, NS} is {0, 0} and the entry would be required to translate any IPA in the specified address range using the Secure EL1&0 translation regime.
  - SCR\_EL3. {NSE, NS} is {0, 1} and the entry would be required to translate any IPA in the specified address range using the Non-secure EL1&0 translation regime.
  - <u>SCR\_EL3</u>.{NSE, NS} is {1, 1} and the entry would be required to translate any IPA in the specified address range using the Realm EL1&0 translation regime.
- If FEAT\_RME is not implemented, one of the following applies:
  - <u>SCR\_EL3</u>.NS is 0 and the entry would be required to translate any IPA in the specified address range using the Secure EL1&0 translation regime.
  - <u>SCR\_EL3</u>.NS is 1 and the entry would be required to translate any IPA in the specified address range using the Non-secure EL1&0 translation regime.
- The entry would be used with the current VMID.

The entry is within the address range determined by the formula

BaseADDR <= VA < BaseADDR + ((NUM +1)\*2<sup>(5\*SCALE +1)</sup> \* Translation Granule Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table entries.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this System instruction.

For 64-bit translation table entry, the range of addresses invalidated is unpredictable when:

- For the 4K translation granule:

  - $\circ$  If TTL==10 and BaseADDR[20:12] is not equal to 000000000.
- For the 16K translation granule:
  - $\circ$  If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.
- For the 64K translation granule:

  - $\circ$  If TTL==10 and BaseADDR[28:16] is not equal to 00000000000000.

For more information about the architectural requirements for this System instruction, see 'Invalidation of TLB entries from stage 2 translations'.

If FEAT\_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses with XS attribute set to 0 are complete.

## Configuration

This instruction is present only when FEAT\_TLBIRANGE is implemented and FEAT\_TLBIOS is implemented. Otherwise, direct accesses to TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS are undefined.

#### **Attributes**

TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS is a 64-bit System instruction.

### Field descriptions

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

NS RESO TG SCALE NUM TTL BaseADDR

BaseADDR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

# NS, bit [63] When FEAT RME is implemented:

When the instruction is executed and  $\underline{SCR\_EL3}$ .{NSE, NS} == {0, 0}, NS selects the IPA space.

| NS  | Meaning                             |
|-----|-------------------------------------|
| 0b0 | IPA is in the Secure IPA space.     |
| 0b1 | IPA is in the Non-secure IPA space. |

When the instruction is executed and SCR\_EL3.{NSE, NS} == {1, 1}, this field is res0, and the instruction applies only to the Realm IPA space.

When the instruction is executed and SCR\_EL3.{NSE, NS} == {0, 1}, this field is res0, and the instruction applies only to the Nonsecure IPA space.

#### When FEAT SEL2 is implemented and FEAT RME is not implemented:

Not Secure. Specifies the IPA space.

| NS  | Meaning                             |
|-----|-------------------------------------|
| 0b0 | IPA is in the Secure IPA space.     |
| 0b1 | IPA is in the Non-secure IPA space. |

When the instruction is executed in Non-secure state, this field is res0, and the instruction applies only to the Non-secure IPA space.

When FEAT\_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field is res0.

#### Otherwise:

Reserved, res0.

#### Bits [62:48]

Reserved, res0.

#### **TG**, bits [47:46]

Translation granule size.

| TG   | Meaning                  |
|------|--------------------------|
| 0b00 | Reserved.                |
| 0b01 | 4K translation granule.  |
| 0b10 | 16K translation granule. |
| 0b11 | 64K translation granule. |

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used a different translation granule size than the one being specified, then the architecture does not require that the instruction invalidates any entries.

### **SCALE, bits [45:44]**

The exponent element of the calculation that is used to produce the upper range.

#### NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

#### TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate:

- Non-leaf-level entries in the range up to but not including the level described by the TTL hint.
- Leaf-level entries in the range that match the level described by the TTL hint.

| TTL  | Meaning                             |
|------|-------------------------------------|
| 0b00 | The entries in the range can be     |
|      | using any level for the translation |
|      | table entries.                      |
| 0b01 | The TTL hint indicates level 1.     |
|      | If FEAT LPA2 is not implemented,    |
|      | when using a 16KB translation       |
|      | granule, this value is reserved and |
|      | hardware should treat this field as |
|      | 0b00.                               |

| 0b10 | The TTL hint indicates level 2. |
|------|---------------------------------|
| 0b11 | The TTL hint indicates level 3. |

# BaseADDR, bits [36:0] When FEAT LPA2 is implemented and TCR EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all translation granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

#### Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

## **Executing TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS**

Accesses to this instruction use the following encodings in the System instruction encoding space:

# TLBI RIPAS2E10S{, <Xt>}

| op0  | op1   | CRn    | CRm    | op2   |
|------|-------|--------|--------|-------|
| 0b01 | 0b100 | 0b1000 | 0b0100 | 0b011 |

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        Aarch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
        AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1),
Regime_EL10, VMID[], Shareability_OSH,
```

```
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
elsif PSTATE.EL == EL3 then
   if !EL2Enabled() then
      return;
else
      AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1),
Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_AllAttr, X[t, 64]);
```

# TLBI RIPAS2E10SNXS{, <Xt>}

| op0  | op1   | CRn    | CRm    | op2   |
|------|-------|--------|--------|-------|
| 0b01 | 0b100 | 0b1001 | 0b0100 | 0b011 |

```
if !IsFeatureImplemented(FEAT_XS) then
    UNDEFINED;
elsif PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    AArch64.TLBI_RIPAS2 (SecurityStateAtEL (EL1),
Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
elsif PSTATE.EL == EL3 then
    if !EL2Enabled() then
        return;
    else
        AArch64.TLBI_RIPAS2(SecurityStateAtEL(EL1),
Regime_EL10, VMID[], Shareability_OSH,
TLBILevel_Any, TLBI_ExcludeXS, X[t, 64]);
```

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.