

UFR-SATIC/ DEPARTEMENT DE PHYSIQUE/ MPCI 1

DUREE: 2HEURES

EXAMEN MECANIQUE DU POINT

EXERCICE 1 (6points)

Une échelle double est posée sur le sol, un des points d'appui restant constamment en contact avec le coin O d'un mur. La position de l'échelle à l'instant t est repérée par l'angle $\theta(t)$ formé par la portion OA de l'échelle avec le mur. L'extrémité B de l'échelle glisse sur le sol. L'échelle est telle que $OA = AB = \ell$.

1. 1. Déterminer les composantes des vecteurs vitesse $\vec{v}(A/R) = \frac{d\overrightarrow{OA}}{dt}$ et accélération

 $\vec{a}(A/R) = \frac{d^2 \overrightarrow{OA}}{dt^2}$ du point A dans la base cartésienne (\vec{e}_x, \vec{e}_y) et dans la base polaire $(\vec{e}_r, \vec{e}_\theta)$ en fonction de ℓ , θ , $\dot{\theta}$ et $\ddot{\theta}$. (2points)

1. 2. Exprimer dans la base cartésienne (\vec{e}_x, \vec{e}_y) et dans la base polaire $(\vec{e}_r, \vec{e}_\theta)$ les composantes des vecteurs vitesse $\vec{v}(B/R) = \frac{d\overrightarrow{OB}}{dt}$ et accélération $\vec{a}(B/R) = \frac{d^2\overrightarrow{OB}}{dt^2}$ du point B en fonction de ℓ , θ , $\dot{\theta}$ et $\ddot{\theta}$. (4points)

EXERCICE 2 (8points)

Le référentiel \Re est considéré comme galiléen ; il est rapporté au repère $(O, \vec{e}_x, \vec{e}_y, \vec{e}_z)$. Un point matériel M se déplace sur une courbe définie par les équations paramétriques suivantes :

UFR-SATIC/ DEPARTEMENT DE PHYSIQUE/ MPCI 1

DUREE: 2HEURES

EXAMEN MECANIQUE DU POINT

$$\begin{cases} x = 2Ae^{\alpha t} \sin(\alpha t) \\ y = 2Ae^{\alpha t} \cos(\alpha t) \\ z = Ae^{\alpha t} \end{cases}$$

où A et α sont des constantes, et x, y, z sont les coordonnées cartésiennes du point M à l'instant t.

On désigne par $(M, \vec{\tau}, \vec{n}, \vec{b})$ le repère de Frenet, $\vec{\tau}$ étant le vecteur unitaire tangent en M à la trajectoire, orienté dans le sens du mouvement, \vec{n} le vecteur unitaire normal en M à $\vec{\tau}$, dirigé vers le centre de courbure et \vec{b} complète le repère afin qu'il soit orthonormé direct. On note s l'abscisse curviligne du point M et R le rayon de courbure de la trajectoire au point M.

- **2.1.** Exprimer dans \Re la vitesse \overrightarrow{V} du point M ainsi que sa norme en fonction de A, α et t. *(2points)*
- **2.2.** En déduire l'expression de $\vec{\tau}$ dans le repère $(O, \vec{e}_x, \vec{e}_y, \vec{e}_z)$. (*1point*)
- **2.3.** Montrer que la vitesse \vec{V} du point M fait un angle θ constant avec l'axe (Oz). (*1point*)
- **2.4.** Exprimer dans \Re l'accélération \vec{a} du point M ainsi que sa norme en fonction de A, α et t. (*2points*)
- **2.5.** Déterminer la norme a_{τ} de l'accélération tangentielle du point M en fonction de A, α et t. (0,5point)
- **2.6.** En déduire la norme a_n de l'accélération normale du point M en fonction de A, α et t. (0,5point)
- **2.7.** En déduire le rayon de courbure R de la trajectoire au point M en fonction de A, α et t. Montrer que R est proportionnel à la coordonnée z du point M. *(1point)*

UFR-SATIC/ DEPARTEMENT DE PHYSIQUE/ MPCI 1

DUREE: 2HEURES

EXAMEN MECANIQUE DU POINT

EXERCICE 3 (6points)

Le référentiel d'étude (\mathcal{R}) , associé au repère $\left(O,\vec{e}_x,\vec{e}_y,\vec{e}_z\right)$, est supposé galiléen. On étudie un pendule, constitué d'un fil inextensible de longueur ℓ attaché au point C, au bout duquel se trouve un point matériel M de masse m. On supposera que le fil reste tendu en permanence et que les éventuels frottements sont négligeables.

On s'intéresse à la situation d'un pendule conique, pour lequel la trajectoire du fil dans (\mathcal{R}) est un cône d'angle au sommet α constant.

- **3.1.** En appliquant le principe fondamental de la dynamique, montrer que la vitesse angulaire ω de rotation de M est constante et l'exprimer en fonction de ℓ , g et α . (2points)
- **3.2.** Quelle valeur minimale peut prendre ω ? Cette valeur sera notée ω_{\min} (*1point*)
- **3.3.** Exprimer la norme T de la tension du fil en fonction de m, g et α . (0,5point)
- 3.4. Sachant que le fil cède lorsque la tension du fil dépasse une valeur limite T_{\max} , exprimer l'angle α_{\max} et la vitesse angulaire ω_{\max} que peut atteindre le pendule conique. (*1point*)
- **3.5.** Application numérique : m = 20g, $g = 9.8 \text{m.s}^{-2}$, $\ell = 50 \text{cm}$ et $T_{\text{max}} = 2N$.

Déterminer ω_{max} en tour par seconde (1,5point)

