Análisis Matemático II – Cuestionario del Final del 18/02/21

P1

El cuerpo H queda de finido por: $x^2+y^2\leq 4$ y , $y\geq x$, $z\leq y$, $x\geq 0$, $z\geq 0$

Si la densidad de masa e cada punto es $\delta(x,y,z)=k\,d(x,y,z)$ donde d(x,y,z) es la distancia desde cada punto de H al plano yz, con k>0 constante, entonces la masa del cuerpo resulta igual a:

Seleccione una:

- O a. Ninguna de las otras es correcta
- \bigcirc b. $\frac{28}{3}k$
- \bigcirc c. $\frac{8}{3}k$
- \bigcirc d. $\frac{32}{3}k$
- \bigcirc e. $\frac{4}{3}k$

P2

Sea S el trozo de superficie cónica de ecuación $x^2+y^2=3$ z^2 con $x^2+y^2\leq 4$ y, $z\geq 0$. Entonces el área de S es igual a:

Seleccione una:

- \bigcirc a. $\frac{10}{3}\pi\sqrt{3}$
- \bigcirc b. $\frac{1}{3}\pi\sqrt{3}$
- O c. Ninguna de las otras es correcta
- $\bigcirc \ d. \ \frac{8}{3} \pi \sqrt{3}$
- \bigcirc e. $\frac{4}{3}\pi\sqrt{3}$

P3

Dados $\overline{f}(x,y,z) = (-b \ y \ z \ , \ b \ y^2 \ , \ b \ x \ y \)$ con b constante y el trozo S de superficie de ecuación $x^2 + z^2 = 4$ incluido en el 1^g octante y orientado hacia z^+ , para que el flujo de $rot(\overline{f})$ a través de S resulte igual al área de S debe ser:

Seleccione una:

- a. b = 2
- b. b = -2
- O c. Ninguna de las otras es correcta
- \bigcirc d. b = -1/2
- \bigcirc e. b = 1/2

P4

En el esquema de la derecha la región D sombreada, tiene frontera ∂D formada por la unión de un segmento y dos trozos de circunferencias: C con centro en el origen y radio R, S con centro en el punto (R/2,0).

Dado $\overline{f}(x,y) = (x^3 + 2 x y - 4 y, x^2 + y^2)$ se verifica que:

$$\oint_{\partial D^+} \overline{f} \cdot d\overline{s} = \pi - 2$$

cuando el radio de la circunferencia con centro en (0,0) es:

Seleccione una:

- \bigcirc a. $R = \sqrt{2}$
- \bigcirc b. R=4
- \bigcirc c. R=1
- O d. Ninguna de las otras es correcta
- \bigcirc e. R=2

P5

Dadas las funciones f, \overline{g} definidas en sus dominios naturales, tales que:

$$f(u,v) = 8 u v + v \ln(u) \quad y \quad \overline{g}(x,y) = (\cos(x-y), \sqrt{x+3 y}),$$

el valor de la derivada direccional máxima de $h=f\circ \overline{g}$ en el punto (1,1) es:

Seleccione una:

- O a. Ninguna de la otras es correcta
- b. 2√10
- c. √5
- O d. 5
- O e. 20

P6

Sea H el cuerpo delimitado por las superficies de ecuaciones $z = x^2 + y^2$, z = 1 y z = 2, entonces el volumen de H es igual a:

Seleccione una:

- O a. Ninguna de las otras es correcta
- \bigcirc b. $\frac{3}{4}\pi$
- \bigcirc c. $\frac{1}{2}\pi$
- \odot d. π
- \bigcirc e. $\frac{3}{2}\pi$

Análisis Matemático II – Cuestionario del Final del 18/02/21

P7

Sea la región plana D limitada por las curvas de ecuaciones x+y=2, x=4 e y=f(x), siendo esta última la solución particular de la ecuación diferencial y''+y'-6 y=0 que en el punto $(0,y_0)$ tiene recta tangente de ecuación y=4 x+2. Entonces, el área de D resulta igual a:

Seleccione una:

a. e^8-1 b. 40c. $1-e^{-8}$ d. 24

P8

O e. Ninguna de las otras es correcta

Sean $\overline{f} \in C^1(\mathbb{R}^2)$ un campo de fuerzas tal que $\overline{f}(x,y) = (h(x) + 2 \ x \ y \ , \ 5 \ x + x^2)$ y la región D del plano xy definida por $x^2 + 4 \ y^2 \le 16$. Entonces, el trabajo realizado por \overline{f} a lo largo de la frontera de D, recorrida en sentido positivo, resulta igual a:

Seleccione una:

a. Ninguna de las otras es correcta

b. 16π c. 80π d. 40π e. 8π

P9

Considere la curva Γ , borde de la superficie abierta de ecuación $z=2-x^2-y^2$ con $z\geq 1$.

Si el campo vectorial $\overline{h}\in C^1(\mathbb{R}^3)$ es tal que $\operatorname{rot}(\overline{h})(x,y,z)=(-x,1,-z\,y^2)$, la circulación de \overline{h} a lo largo de Γ en el sentido dado por $(1,0,1)\to (0,1,1)\to \cdots \to (1,0,1)$ resulta igual a:

Seleccione una:

a. $\pi/4$ b. 0

c. Ninguna de las otras es correcta

d. $-\pi/4$ e. $-\pi$

P10

Sea π_0 el plano tangente a la superficie de ecuación z^2+3 $z-x^2-y^2-2=0$ en el punto (1,1,1) y sea π_1 el plano de ecuación x+3 y+z=3. Entonces, la recta definida por la intersección de π_0 con π_1 ...

Seleccione una:

a. ... interseca al plano xy en el punto (9/4,1/4,0)b. ... interseca al plano xy en el punto (6,-1,0)c. Ninguna de las otras es correcta

d. ... interseca al plano xy en el punto (-9/4,7/4,0)e. ... no Interseca al plano xy