### 64-040 Modul IP7: Rechnerstrukturen

http://tams.informatik.uni-hamburg.de/ lectures/2012ws/vorlesung/rs

- Kapitel 4 -

#### Andreas Mäder



Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich Informatik

Technische Aspekte Multimodaler Systeme

卣

Wintersemester 2012/2013

## Kapitel 4

#### Information

Definitionen und Begriffe Informationsübertragung Zeichen

Literatur



## Information

- **Information**  $\sim$  abstrakter Gehalt einer Aussage
- ▶ Die Aussage selbst, mit der die Information dargestellt bzw. übertragen wird, ist eine Repräsentation der Information
- im Kontext der Informationsverarbeitung / -übertragung: Nachricht
- ► Das Ermitteln der Information aus einer Repräsentation heißt Interpretation
- Das Verbinden einer Information mit ihrer Bedeutung in der realen Welt heißt Verstehen

# Repräsentation: Beispiele

Beispiel: Mit der Information "25" sei die abstrakte Zahl gemeint, die sich aber nur durch eine Repräsentation angeben lässt:

► Text deutsch: fünfundzwanzig

► Text englisch: twentyfive

. . .

► Zahl römisch: XXV

► Zahl dezimal: 25

► Zahl binär: 11001

► Zahl Dreiersystem: 221

. . .

► Morse-Code: ..---

## Interpretation: Information vs. Repräsentation

► Wo auch immer Repräsentationen auftreten, meinen wir eigentlich die Information, z.B.:

$$5 \cdot (2+3) = 25$$

- ▶ Die Information selbst kann man überhaupt nicht notieren (!)
- ► Es muss immer Absprachen geben über die verwendete Repräsentation. Im obigen Beispiel ist implizit die Dezimaldarstellung gemeint, man muss also die Dezimalziffern und das Stellenwertsystem kennen.
- Repräsentation ist häufig mehrstufig, z.B.

Zahl: Dezimalzahl 347

Ziffer: 4-bit binär 0011 0100 0111 (BCD)

Bit: elektrische Spannung 0,1V 0,1V 3,3V 3,3V ...

# Repräsentation: Ebenen

In jeder (Abstraktions-) Ebene gibt es beliebig viele Alternativen der Repräsentation

- Auswahl der jeweils effizientesten Repräsentation
- unterschiedliche Repräsentationen je nach Ebene
- ▶ Beispiel: Repräsentation der Zahl  $\pi = 3,1415...$  im
  - x86 Prozessor
  - Hauptspeicher
  - Festplatte
  - ► CD-ROM
  - Papier

- 80-bit Binärdaten, Spannungen
- 64-bit Binärdaten, Spannungen
- codierte Zahl, magnetische Bereiche
- codierte Zahl, Land/Pits-Bereiche
- Text, "3,14159265..."

## Repräsentation: digitale und analoge Welt



Beispiel: Binärwerte in 5 V CMOS-Technologie

K. von der Heide [Hei05] Interaktives Skript T1, demobitrep

- Spannungsverlauf des Signals ist kontinuierlich
- Abtastung zu bestimmten Zeitpunkten
- Quantisierung über abgegrenzte Wertebereiche:
  - ▶  $0.0 V \le a(t) \le 1.2 V$ : Interpretation als 0
  - ▶ 3.3  $V \le a(t) \le 5.0 V$ : Interpretation als 1
  - außerhalb und innerhalb: ungültige Werte

## Information vs. Nachricht

- Aussagen
  - N1 Er besucht General Motors
  - N2 Unwetter am Alpenostrand
  - N3 Sie nimmt ihren Hut
- ► Alle Aussagen sind aber doppel/mehrdeutig:
  - N1 Firma? Militär?
  - N2 Alpen-Ostrand? Alpeno-Strand?
  - N3 tatsächlich oder im übertragenen Sinn?
- ⇒ Interpretation: Es handelt sich um drei Nachrichten, die jeweils zwei verschiedene Informationen enthalten



- ► Information: Wissen um oder Kenntnis über Sachverhalte und Vorgänge – als Begriff nicht informationstheoretisch abgestützt, sondern an umgangssprachlicher Bedeutung orientiert.
- Nachricht: Zeichen oder Funktionen, die Informationen zum Zweck der Weitergabe aufgrund bekannter oder unterstellter Abmachungen darstellen (DIN 44 300).
- Beispiel für eine Nachricht:
   Temperaturangabe in Grad Celsius oder Fahrenheit
- ► Die Nachricht ist also eine Darstellung von Informationen und nicht der Übermittlungsvorgang

## Modell der Informationsübertragung



#### Beschreibung der Informationsübermittlung:

- $\blacktriangleright$  Abbildung  $\alpha$  erzeugt Nachricht  $N_1$  aus Information  $I_1$
- Übertragung der Nachricht an den Zielort
- ▶ Umkehrabbildung  $\alpha^{-1}$  aus der Nachricht  $N_2$  liefert die Information  $I_2$

## Modell der Informationsübertragung (cont.)

#### Nachrichtentechnisches Modell: Störungen bei der Übertragung



#### Beispiele

- ► Bitfehler beim Speichern
- Störungen beim Funkverkehr
- Schmutz oder Kratzer auf einer CD/DVD
- usw.



## Verarbeitung von Information / Repräsentation

# Repräsentation Information 0010 T



K. von der Heide [Hei05] Interaktives Skript T1,











#### Informationstreue

Ergibt  $\alpha$  gefolgt von  $\sigma$  dasselbe wie  $\nu$  gefolgt von  $\alpha'$ , dann heißt  $\nu$  informationstreu.

- lacktriangleright mit lpha' als der Interpretation des Resultats der Operation u
- $\blacktriangleright$  häufig sind  $\alpha$  und  $\alpha'$  gleich, aber nicht immer
- σ injektiv: Umschlüsselung
- ν injektiv: Umcodierung
- ▶  $\sigma$  innere Verknüpfung der Menge  $\mathcal{J}$  und  $\nu$  innere Verknüpfung der Menge  $\mathcal{R}$ : dann ist  $\alpha$  ein Homomorphismus der algebraischen Strukturen  $(\mathcal{J}, \sigma)$  und  $(\mathcal{R}, \nu)$ .
- $ightharpoonup \sigma$  bijektiv: Isomorphismus

# Informationstreue (cont.)

Welche mathematischen Eigenschaften gelten bei der Informationsverarbeitung, in der gewählten Repräsentation?

#### Beispiele

▶ Gilt  $x^2 > 0$ ?

▶ float: ja

► signed integer: nein

• Gilt (x + y) + z = x + (y + z)?

▶ integer: ja

► float: nein

1.0E20 + (-1.0E20 + 3.14) = 0

Details folgen später

Information - Zeichen

## Beschreibung von Information durch Zeichen

- ► Zeichen: engl. character
  Element z aus einer zur Darstellung von Information
  vereinbarten, einer Abmachung unterliegenden, endlichen
  Menge Z von Elementen.
- ▶ Die Menge Z heißt Zeichensatz oder Zeichenvorrat engl. character set
- Beispiele

A. Mäder

- $ightharpoonup Z_1 = \{0,1\}$
- $\triangleright$   $\mathcal{Z}_2 = \{0, 1, 2, \dots, 9, A, B, C, D, E, F\}$
- $\triangleright \ \mathcal{Z}_3 = \{\alpha, \beta, \gamma, \dots, \omega\}$
- $\triangleright \mathcal{Z}_4 = \{CR, LF\}$

Universität Hamburg

## Beschreibung von Information durch Zeichen (cont.)

- ► Numerischer Zeichensatz: Zeichenvorrat aus Ziffern und/oder Sonderzeichen zur Darstellung von Zahlen
- ► Alphanumerischer Zeichensatz: Zeichensatz aus (mindestens) den Dezimalziffern und den Buchstaben des gewöhnlichen Alphabets, meistens auch mit Sonderzeichen (Leerzeichen, Punkt, Komma usw.)

## Binärzeichen

Universität Hamburg

- ► Binärzeichen: engl. binary element, binary digit, bit Jedes der Zeichen aus einem Vorrat / aus einer Menge von zwei Symbolen.
- Beispiele

$$ightharpoonup Z_1 = \{0, 1\}$$

• 
$$\mathcal{Z}_2 = \{ high, low \}$$

• 
$$\mathcal{Z}_3 = \{\text{rot, gr\"un}\}$$

• 
$$\mathcal{Z}_4 = \{+, -\}$$



## **Alphabet**

- ▶ Alphabet: engl. alphabet Ein in vereinbarter Reihenfolge geordneter Zeichenvorrat A = Z
- Beispiele

$$\rightarrow$$
  $A_1 = \{0,1,2,\ldots, 9\}$ 

$$\blacktriangleright \ \mathcal{A}_2 = \{\mathsf{So}, \mathsf{Mo}, \mathsf{Di}, \mathsf{Mi}, \mathsf{Do}, \mathsf{Fr}, \mathsf{Sa}\}$$

$$\blacktriangleright \ \mathcal{A}_3 = \{\text{'A', 'B', } \ldots, \text{ 'Z'}\}$$

## Zeichenkette

Zeichenkette: engl. string Eine Folge von Zeichen

Wort: engl. word Eine Folge von Zeichen, die in einem gegebenen Zusammenhang als Einheit bezeichnet wird.

- Worte mit 8 bit werden als Byte bezeichnet.
- Stelle: engl. position Die Lage/Position eines Zeichens innerhalb einer Zeichenkette.
- Beispiel
  - $\triangleright$  s = H e l l o , w o r l d !

Information - Zeichen

# Darstellung von Zahlen und Zeichen in . . .

Natürliche Zahlen Festkommazahlen Gleitkommazahlen engl. integer numbers engl. fixed point numbers engl. floating point numbers

- 6. Arithmetik
- 7. Aspekte der Textcodierung Ad-hoc Codierungen ASCII und ISO-8859-1 Unicode
- Pointer (Referenzen, Maschinenadressen)







#### Literatur

[Hei05] K. von der Heide: Vorlesung: Technische Informatik 1 interaktives Skript. Universität Hamburg, FB Informatik, 2005. tams.informatik.uni-hamburg.de/lectures/2004ws/vorlesung/t1