

In addition, each cell has a different workstation and inventory as shown in the figure.

Simulation Model

▼ Product Type ▼

Station

▼ Scrap Used ▼

For example, in the processifigudattaetlotatdataecoenquidrededotobeletamendabydetireintatingishengnissingattatahe data having the run time To illustrate and improve the process in the transpire datagina exicultation missing, some given data had to be analyzed. overlapping the lunch break aimotet be tweeten having what o ab Provincial winder as utlasticated as a line on different days.

Start Time

▼ Fnd Time

BP CUT(2*4)

BP DRILL(2*2)

Cleansing Data

Total Processing Time

FALSE

FALSE

0.265317

0.768

Ho: The data follow the given distribution at $\alpha = 0.05$.

HA: The data doesn't follow the given distribution at $\alpha = 0.05$.

Conclusion: Fail to reject H₀ when p-value > α .

then the data will follow the distribution.

Process type Scrap Used P-Value Distribution ATTACH BP(2*2) **FALSE** N/A N/A ATTACH BP(2*3) N/A N/A **FALSE** ATTACH BP(2*4) **FALSE** 0.532 JohnsonSB(shape1 = 0, shape2 = 1.49855, min = 138, max = 185) BP CUT(2*2) **FALSE** 0.0575476 JohnsonSB(shape1 = -0.0757832, shape2 = 1.31405, min = 110, max = 144) BP CUT(2*3) **FALSE** 0.289 JohnsonSB(shape1 = 0.00841015, shape2 = 1.56198, min = 133, max = 181)

Goodness of Fit test at $\alpha = 0.05$

Minitab[®] 18

JohnsonSB(shape1 = 0.123689,shape2 = 1.33518,min = 134, max = 185)

JohnsonSB(shape1 = -0.126582,shape2 = 1.21011, min = 280, max = 394)

Cleansing Data

Total Processing Time

 $\underline{\text{H}_0:}$ The data follow the given distribution at $\alpha=0.05$.

 $\underline{\text{H}\textsc{a}\textsc{:}}$ The data doesn't follow the given distribution at $\alpha = 0.05$.

then the data will follow the distribution.

Conclusion: Fail to reject Ho when p-value > α ,

Goodness of Fit test at $\alpha = 0.05$

Minitab® 18

Process type	Scrap Used	P-Value	Distribution
BP DRILL(2*3)	FALSE	0.976666	JohnsonSB(shape1 = 0.0562581, shape2 = 1.12971, min = 417, max = 584)
BP DRILL(2*4)	FALSE	0.789464	JohnsonSB(shape1 = -0.0556740, shape2 = 1.22833, min = 547, max = 774)
BP PAINT(2*2)	FALSE	0.246229	JohnsonSB(shape1 = 0, shape2 = 1.37471, min = 124, max = 174)
BP PAINT(2*3)	FALSE	0.512682	JohnsonSB(shape1 = -0.0800787, shape2 = 1.41104, min = 174, max = 240)
BP PAINT(2*4)	FALSE	0.469	JohnsonSB(shape1 = 0.279609, shape2 = 1.44327, min = 222, max = 315)
BP SAND(2*2)	FALSE	0.376	JohnsonSB(shape1 = 0.0475184, shape2 = 1.26475, min = 162, max = 225)
BP SAND(2*3)	FALSE	0.584	JohnsonSB(shape1 = 0.0377856, shape2 = 1.28055, min = 230, max = 331)

Cleansing Data

Total Processing Time

 $\underline{\text{Ho:}}$ The data follow the given distribution at $\alpha=0.05$.

 $\underline{\text{Ha:}}$ The data doesn't follow the given distribution at $\alpha = 0.05$.

Conclusion: Fail to reject Ho when p-value > α ,

then the data will follow the distribution.

Goodness of Fit test at $\alpha = 0.05$

Process type	Scrap Used	P-Value	Distribution
BP SAND(2*4)	FALSE	0.45	JohnsonSB(shape1 = -0.156635, shape2 = 1.55232, min = 307, max = 438)
FA ASSEMBLY	FALSE	N/A	N/A
FA CUT(2*2)	FALSE	0.45	JohnsonSB(shape1 = -0.0956666, shape2 = 1.52679, min = 192, max = 263)
FA CUT(2*3)	FALSE	0.615	JohnsonSB(shape1 = 0.0825873, shape2 = 1.36419, min = 218, max = 300)
FA CUT(2*4)	FALSE	0.292205	JohnsonSB(shape1 = 0.0348239, shape2 = 1.48599, min = 222, max = 301)
FA DRILL(2*2)	FALSE	0.524	JohnsonSB(shape1 = 0, shape2 = 1.05873, min = 302, max = 426)
FA DRILL(2*3)	FALSE	0.887	JohnsonSB(shape1 = 0.124231, shape2 = 1.25349, min = 374, max = 523)

Cleansing Data

Total Processing Time

<u>Ha:</u> The data doesn't follow the given distribution at $\alpha = 0.05$.

Conclusion: Fail to reject Ho when p-value > α ,

then the data will follow the distribution.

Goodness of Fit test at $\alpha = 0.05$

Minitab® 18

Process type	Scrap Used	P-Value	Distribution
FA DRILL(2*4)	FALSE	0.947	JohnsonSB(shape1 = 0.0281529, shape2 = 1.12484, min = 440, max = 622)
FINAL ASSEMBLY(2*2)	FALSE	0.675	JohnsonSB(shape1 = -0.0924023, shape2 = 1.15336, min = 220, max = 300)
FINAL ASSEMBLY(2*3)	FALSE	0.503528	JohnsonSB(shape1 = -0.111232, shape2 = 1.27658, min = 319, max = 457)
FINAL ASSEMBLY(2*4)	FALSE	0.211	JohnsonSB(shape1 = -0.181040, shape2 = 1.87452, min = 426, max = 604)
FINAL PAINT(2*2)	FALSE	0.696	JohnsonSB(shape1 = 0.116041, shape2 = 1.28538, min = 272, max = 386)
FINAL PAINT(2*3)	FALSE	0.477	JohnsonSB(shape1 = -0.0922465, shape2 = 1.33624, min = 391, max = 564)
FINAL PAINT(2*4)	FALSE	0.617157	JohnsonSB(shape1 = -0.00078952, shape2 = 1.11534, min = 525, max = 741)

Cleansing Data

Total Processing Time

 $\underline{\text{H}\textsc{a}\textsc{:}}$ The data doesn't follow the given distribution at α = 0.05.

Conclusion: Fail to reject Ho when p-value > α ,

then the data will follow the distribution.

Goodness of Fit test at $\alpha = 0.05$

Minitab® 18

Process type	Scrap Used	P-Value	Distribution
FINAL SAND(2*2)	FALSE	0.896	JohnsonSB(shape1 = 0.123742, shape2 = 1.21653, min = 352, max = 508)
FINAL SAND(2*3)	FALSE	0.99493	JohnsonSB(shape1 = -0.138971, shape2 = 1.29666, min = 523, max = 754)
FINAL SAND(2*4)	FALSE	0.797847	JohnsonSB(shape1 = 0.217413, shape2 = 1.35326, min = 700, max = 1013)
SA ASSEMBLY(2*2)	FALSE	0.144	JohnsonSB(shape1 = -0.0266874, shape2 = 1.21059, min = 113, max = 156)
SA ASSEMBLY(2*3)	FALSE	0.197	JohnsonSB(shape1 = 0, shape2 = 1.17053, min = 208, max = 287)
SA ASSEMBLY(2*4)	FALSE	0.426	JohnsonSB(shape1 = 0.0370604, shape2 = 1.26423, min = 294, max = 420)
SA CUT(2*2)	FALSE	0.15	JohnsonSB(shape1 = -0.169636, shape2 = 1.20951, min = 116, max = 149)

Cleansing Data

Total Processing Time

 $\underline{\text{Ho:}}$ The data follow the given distribution at $\alpha = 0.05$.

<u>Ha:</u> The data doesn't follow the given distribution at $\alpha = 0.05$.

then the data will follow the distribution.

 $\underline{\text{Conclusion:}} \text{ Fail to reject H}_0 \text{ when p-value > } \alpha,$

Goodness of Fit test at $\alpha = 0.05$

Process type	Scrap Used	P-Value	Distribution
SA CUT(2*2)	TRUE	0.07	Normal(mean = 103.605948, stdDev = 5.51937918423538)
SA CUT(2*3)	FALSE	0.139	JohnsonSB(shape1 = 0.0723778, shape2 = 1.42571, min = 164, max = 224)
SA CUT(2*4)	FALSE	0.438	JohnsonSB(shape1 = 0.0424019, shape2 = 1.61045, min = 219, max = 298)
SA DRILL(2*2)	FALSE	0.267	JohnsonSB(shape1 = -0.0723096, shape2 = 1.22951, min = 285, max = 397)
SA DRILL(2*3)	FALSE	0.581	JohnsonSB(shape1 = -0.102668, shape2 = 1.43298, min = 480, max = 675)
SA DRILL(2*4)	FALSE	0.988	JohnsonSB(shape1 = -0.0200903, shape2 = 1.18170, min = 675, max = 971)
SA ROUTING(2*2)	FALSE	N/A	N/A

given current state inventory policy while the initial number of products in raw material inventory for MAT008&MAT009 equal to zero.

Next assumption, in practice, the demand volume of INVMAT006_1 is supposed to be more than in INVMAT006_2 but their given

As a result, an assumption was made that these two data had to be switched,
data of both reorder point and order-up-to-level don't make sense as INVMAT006_1 is lower while INVMAT006_2 is higher.

Last assumption, the total inspection time was used instead of the inspection time per unit In addition, the total inspection time didn't vary by material since the given data might be insufficient in some material. due to no relationship between the inspected unit and its inspection time.

To understand the logic of current simulation model, the flowchart of current MRP process is illustrated as the following.

Current Simulation Model

Result of the Current Simulation Model

			Material	Inventory Cost[\$]
KPIs	Current		MAT001	7,973.82
Throughput [units]	550.75	7	MAT002	6,241.76
Average unit time in system [units]	9.49		MAT003	1,430.55
Workstation utilization	65.83%	4 0000000	MAT004	1,265.98
Average inventory cost [\$]	43,766.49	*	MAT005	1,569.30
Number of stockouts [units]	35		MAT006	967.69
Unmet demand	78.37%		MAT007	16,324.26
	>6	DDMR	P Model	

Assumptions for Alternative Simulation Model

Lead time = 46 hour = 1.92 days

Buffer capacity = ∞

To understand the logic of alternative simulation model, the flowchart of DDMRP process is illustrated as the following.

Alternative Simulation Model

This model can be simply modified into DDMRP model by changing the reorder point After modifying the current MRP model, the DDMRP simulation is displayed as the following. and order-up-to-level of the current policy according to the concern of DDMRP.

Design of experiment

Guidelines for LTF and VF

KPIs		В	С	D	Е	F	KPI's weight
Throughput	Α	B – 2	A – 1	D – 4	E - 5	F – 5	A = 1
Average unit time in system	В		B – 3	D – 4	E – 4	F –4	B = 5
Workstation utilization	С			D – 2	E - 5	F – 5	C = 0
Average inventory cost	D				E – 4	F – 3	D = 10
Number of stockouts	Е					F – 3	E = 18
Unmet daily demand	F						F = 20

LTF		
20% – 40%		
41% - 60%		
61% - 100%		
VF		
61% - 100%		
41% - 60%		

	Optimization							
4	LTF Description							
A	OptQuest for Simio - Parameters							
	Include in Optimizati Minimum Value	ves 0						
	Maximum Value	1						
	Increment	0.25						

	LTF	VF	AvgUnitTimeInSys	WeeklyThroughput	No.Stockout	InventoryCost	UnmetDamand
	0.5	0.5	9.01557	681.167	25	147679	19.0461
-	0.25	0.5	8.7459	657.5	31	128628	21.1363
	0.75	0.75	22.9647	672.583	32.3333	188206	34.8423
	:	:	:	:	:	:	:

Given: \bar{x} is the average for each KPI calculated from Simio

Objective of KPI: to minimize to maximize

S is the standard deviation for each KPI calculated from Simio

KPIs	Score = 1	Score = 2	Score = 3	Score = 4	Score = 5
Throughput	[0 , x̄ - 1S)	$(\bar{\mathbf{x}}$ - 1S, $\bar{\mathbf{x}}$ - 0.5S)	$(\bar{\chi}$ -0.5S, $\bar{\chi}$ + 0.5S)	$(\bar{\mathbf{X}} + 0.5S, \bar{\mathbf{X}} + 1S)$	(x + 1S, ∞)
Average unit time in system	(x + 1S, ∞)	$(\bar{\chi} + 0.5S, \bar{\chi} + 1S)$	$(\bar{\chi} - 0.5S, \bar{\chi} + 0.5S)$	$(\bar{\chi} - 1S, \bar{\chi} - 0.5S)$	[0 , $\bar{\chi}$ - 1S)
Workstation utilization		Neglect ∵ wei	ight of workstation	utilization = 0	
Average inventory cost	(x + 1S, ∞)	$(\bar{\chi} + 0.5S, \bar{\chi} + 1S)$	$(\bar{\chi} - 0.5S, \bar{\chi} + 0.5S)$	(x - 1S, x - 0.5S)	[0 , $\bar{\chi}$ - 1S)
Number of stockouts	(x + 1S, ∞)	$(\bar{\chi} + 0.5S, \bar{\chi} + 1S)$	$(\bar{\chi} - 0.5S, \bar{\chi} + 0.5S)$	$(\bar{X} - 1S, \bar{X} - 0.5S)$	[0 , $\bar{\chi}$ - 1S)
Unmet daily demand	(x + 1S, ∞)	$(\bar{\chi} + 0.5S, \bar{\chi} + 1S)$	(x - 0.5S, x + 0.5S)	(x - 1S, x - 0.5S)	[0 , $\bar{\chi}$ - 1S)

After that, the critieria fibe exacterik Reist swaser were revitable to coninstant a sinttre rice local to the calculate at the buffeight average score.

Optimization

Optimal (LTF,VF) = (0.5,0.5); for all buffers

Result of Alternative Simulation Models

Optimal (LTF,VF) = (0.5,0.5); for all buffers

KPIs	Alternative
Throughput [units]	681.17
Average unit time in system [units]	9.02
Workstation utilization	70.67%
Average inventory cost [\$]	72,619.73
Number of stockouts [units]	25
Unmet daily demand	19.05%

Material	Inventory Cost[\$]
MAT001	19,720.41
MAT002	15,893.84
MAT003	1,914.63
MAT004	1,167.67
MAT005	2,901.36
MAT006	829.79
MAT007	11,696.20

Compare with KPIs

KPIs	Current	Alternative
Throughput [units]	550.75	681.17
Average unit time in system [units]	9.49	9.02
Workstation utilization	65.83%	70.67%
Average inventory cost [\$]	43,766.49	72,619.73
Number of stockouts [units]	35	25
Unmet daily demand	78.37%	19.05%

Compare with KPIs

KPIs	Current	Alternative	Percent change
Throughput [units]	550.75	681.17	+23.68%
Average unit time in system [units]	9.49	9.02	-4.95%
Workstation utilization	65.83%	70.67%	+7.00%
Average inventory cost [\$]	43,766.49	72,619.73	+65.92%
Number of stockouts [units]	35	25	-28.57%
Unmet daily demand	78.37%	19.05%	-76%

Compare with inventory cost for each material

Material	Current	Alternative	Amount Difference
MAT001	\$ 7,973.82	\$ 19,720.41	\$ 11,746.59
MAT002	\$ 6,241.76	\$ 15,893.84	\$ 9,652.08
MAT003	\$ 1,430.55	\$ 1,914.63	\$ 484.08
MAT004	\$ 1,265.98	\$ 1,167.67	- \$98.31
MAT005	\$ 1,569.30	\$ 2,901.36	\$ 1,332.06
MAT006	\$ 967.69	\$ 829.79	- \$ 137.9
MAT007	\$ 16,324.26	\$ 11,696.20	- \$ 4,628.06

<u>Top 3 highest inventory cost:</u> MAT001 > MAT002 > MAT007

-Top 3 highest inventory cost: MAT007 > MAT001 > MAT002

Project success from buffer plots

Evaluating the project success from buffer plots, the risk of the inventory being out-of-stock in the alternative model is less than the current model significantly.

Top 5 highest inventory cost: invMAT001

According to the alternative model, five buffers invMATDDIMRP model which has the highest inventory are

Top 5 highest inventory cost: invMAT001 > invMAT002

Top 5 highest inventory cost: invMAT001 > invMAT002 > invMAT001_BP

<u>Top 5 highest inventory cost:</u> invMAT001 > invMAT002 > invMAT001_BP > invMAT007_SA

<u>Top 5 highest inventory cost:</u> invMAT001 > invMAT002 > invMAT001_BP > invMAT007_SA > invMAT007

Predicted Change on Order Fill Rate

B22 36.36% 100% +63.64% B23 29.03% 99.6% +70.57% B24 24.62% 91.02% +66.40% O22 25.24% 80.87% +55.63% O23 8.35% 74.89% +66.54% O24 6.15% 65.36% +59.21%	Order	Current	Alternative	Percent difference
B24 24.62% 91.02% +66.40% O22 25.24% 80.87% +55.63% O23 8.35% 74.89% +66.54%	B22	36.36%	100%	+63.64%
O22 25.24% 80.87% +55.63% O23 8.35% 74.89% +66.54%	B23	29.03%	99.6%	+70.57%
O23 8.35% 74.89% +66.54%	B24	24.62%	91.02%	+66.40%
7,1007	O22	25.24%	80.87%	+55.63%
O24 6.15% 65.36% +59.21%	O23	8.35%	74.89%	+66.54%
	O24	6.15%	65.36%	+59.21%
Average 21.63% 85.29% +63.66%	Average	21.63%	85.29%	+63.66%

Compared with predicted change in order fill rate, it can be concluded that the order fill rate can be increased in the alternative rather than the current model.

Aucthiergabjervacious toodesigntidheseesvosium Tifationd Model leacipply lifer twelve mad procedure is sign as ine order calle initiatives the weeken with the transition and interpretable in the calle in the calle