Chapter 3: Finite Markov Decision Processes

Seungjae Ryan Lee

Markov Decision Process (MDP)

- Simplified, flexible reinforcement learning problem
- ullet Consists of States ${\mathcal S}$, Actions ${\mathcal A}$, Rewards ${\mathcal R}$

StatesInfo available to agent

Actions
Choice made by agent

RewardsBasis for evaluating choices

Agent

The learner
Takes action

Environment

Everything outside the agent
Returns state and reward

Agent-Environment Boundary

- Anything the agent cannot arbitrarily change is part of the environment
 - o Agent might still **know** everything about the environment
- Different boundaries for different purposes

Agent-Environment Interactions

- 1. Agent observes a state S_0
- 2. Agent takes action A_0
- 3. Agent receives reward R_1 and new state S_1
- 4. Agent takes another action A_1
- 5. Repeat

Transition Probability

- Probability of reaching state s' and reward r by taking action a on state s
- Fully describes the dynamics of a finite MDP

$$p(s', r \mid s, a) := \Pr\{S_t = s', R_t = r \mid S_{t-1} = s, A_t = a\}$$

Can deduce other properties of the environment

$$p(s' \mid s, a) := \Pr\{S_t = s' \mid S_{t-1} = s, A_t = a\} = \sum_{r \in \mathcal{R}} p(s', r \mid s, a)$$

Expected Rewards

ullet Expected reward of taking action a on state s

$$r(s, a) := \mathbb{E}[R_t \mid S_{t-1} = s, A_{t-1} = a] = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s', r \mid s, a)$$

• Expected reward of arriving in state s' by taking action a on state s

$$r(s, a, s') := \mathbb{E}[R_t \mid S_{t-1} = s, A_{t-1} = a, S_t = s'] = \sum_{r \in \mathcal{R}} r \frac{p(s', r \mid s, a)}{p(s' \mid s, a)}$$

Recycling Robot Example

- States: Battery status (high or low)
- Actions
 - Search: High reward. Battery status can be lowered or depleted.
 - Wait: Low reward. Battery status does not change.
 - Recharge: No reward. Battery status changed to high.
- If battery is depleted, -3 reward and battery status changed to high.

s	a	s'	p(s' s,a)	r(s, a, s')
high	search	high	α	$r_{\mathtt{search}}$
high	search	low	$1-\alpha$	$r_{\mathtt{search}} -3$
low	search	high	$1-\beta$	
low	search	low	β	$r_{\mathtt{search}}$
high	wait	high	1	$r_{ ext{wait}}$ $r_{ ext{wait}}$ $r_{ ext{wait}}$ $r_{ ext{wait}}$
high	wait	low	0	
low	wait	high	0	
low	wait	low	1	
low	recharge	high	1	0
low	recharge	low	0	0

Transition Graph

Graphical summary of MDP dynamics

Designing Rewards

- Reward hypothesis
 - o Goals and purposes can be represented by maximization of cumulative reward
- Tell what you want to achieve, not how

Episodic Tasks

- Interactions can be broken into episodes
- Episodes end in a special terminal state
- Each episode is independent

Finished when the agent is out of the maze

Return for Episodic Tasks

- Sum of rewards from time step t
- Time of termination: T

$$G_t = R_{t+1} + R_{t+2} + \dots R_T$$

$$G_t = \sum_{k=t+1}^{T} R_k$$

Continuing Tasks

- Cannot be naturally broken into episodes
- Goes on without limit

Stock Trading

Return for Continuing Tasks

- Sum of rewards is almost always infinite
- Need to *discount* future rewards by factor $0 \le \gamma < 1$
 - \circ If $\gamma = 0$, the return only considers immediate reward (*myopic*)

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} \dots$$

$$G_t = \sum_{k=t+1}^{\infty} \gamma^{k-t-1} R_k$$

Unified Notation for Return

- Cumulative reward
- *T* can be a finite number or infinity
- Future rewards can be *discounted* with factor γ
 - \circ If $T=\infty$, then γ must be less than 1.

$$G_t := \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$$

Policy

- Mapping from states to probabilities of selecting each possible action
- $\pi(a \mid s)$: Probability of selecting action a in state s

State-value function

ullet Expected return from state s and following policy π

$$v_{\pi} := \mathbb{E}_{\pi}[G_t \mid S_t = s]$$

$$:= \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s \right]$$

Action-value function

ullet Expected return from taking action a in state s and following policy π

$$q_{\pi} := \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a]$$

 $:= \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s, A_t = a \right]$

Bellman Equation

• Recursive relationship between $v_{\pi}(s)$ and $v_{\pi}(s')$

$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s' \mid \pi} p(s', r \mid s, a) \left[r + \gamma v_{\pi}(s') \right]$$

Optimal Policies π_* and Value Functions v_*, q_*

- For any policy π , $v_{\pi_*}(s) \geq v_{\pi}(s)$ for all states s
- There can be multiple optimal policies
- All optimal policies share same optimal value functions:

$$v_*(s) \doteq \max_{\pi} v_{\pi}(s)$$

$$q_*(s,a) \doteq \max_{\pi} q_{\pi}(s,a)$$

Bellman Optimality Equation

Bellman Equation for optimal policies

$$(v_*) \xrightarrow[]{\text{max}} s$$

$$a$$

$$r$$

$$s$$

$$s$$

$$v_*(s) = \max_{a} \sum_{s',r} p(s',r \mid s,a) \left[r + \gamma v_*(s')\right]$$

$$(q_*) \qquad s, a \qquad r \qquad r \qquad r \qquad s' \qquad a'$$

$$q_*(s,a) = \sum_{s',r} p(s',r \mid s,a) \left[r + \gamma \max_{a'} q_*(s',a') \right]$$

Solving Bellman Optimality Equation

- Linear system: $|\mathcal{S}|$ equations, $|\mathcal{S}|$ unknowns
- Possible to find the exact optimal policy
- Impractical in most environments
 - Need to know the dynamics of the environment
 - Need extreme computational power
 - Need Markov property

→ In most cases, approximation is the best possible solution.

Approximation

- Does not require complete knowledge of environment
- Less memory and computational power needed
- Can focus learning on frequently encountered states

Thank you!

Original content from

Reinforcement Learning: An Introduction by Sutton and Barto

You can find more content in

- github.com/seungjaeryanlee
- www.endtoend.ai