A DevOps Toolchain for Efficient Software Development

Ruiyang Ding

A DevOps Toolchain for Efficient Software Development

Master's Thesis in Cloud Computing and Services

Distributed Systems group
Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology

Ruiyang Ding

2nd June 2020

Author Ruiyang Ding

Title

A DevOps Toolchain for Efficient Software Development

MSc presentation

TODO GRADUATION DATE

Graduation Committee

TODO GRADUATION COMMITTEE Delft University of Technology

Abstract

TODO

Preface

TODO MOTIVATION FOR RESEARCH TOPIC

TODO ACKNOWLEDGEMENTS

// collect all information about your project at the company in the Preface Ruiyang Ding

Delft, The Netherlands 2nd June 2020

Contents

Pr	eface		V				
1	Introduction						
	1.1	Problem Statement	1 2				
	1.2	Research Method	3				
	1.3	Thesis Structure and Main Contributions	4				
2	Bacl	kground and Concepts	7				
	2.1	Agile software development	7				
	2.2	Continuous Integration & Continuous Delivery	8				
		2.2.1 Continuous Integration	8				
		2.2.2 Continuous Delivery and Continuous Deployment	9				
	2.3	DevOps	10				
		2.3.1 Elements	11				
		2.3.2 Toolchain	14				
	2.4						
		2.4.1 History	16				
		2.4.2 Characterises	17				
		2.4.3 Limitations	18				
3	Lite	rature Analysis of the Cloud Technologies	19				
4	Cloud Services That Could Help DevOps Toolchain						
	4.1	DevOps Toolchain Implementation	21				
	4.2	Cloud Services	21				
		4.2.1 Managed Container Services for Distributed Builds	22				
		4.2.2 Serverless computing	22				
		4.2.3	22				
	4.3	Setup for the Experiments	22				
		4.3.1 Managed container services	22				
5	Con	clusions and Future Work	25				
	5.1	Conclusions	25				
	5.2	Future Work	25				

Chapter 1

Introduction

The Agile Manifesto [1] drafted by Kent Beck etc. in 2001 created the Agile software development method. Since then, this new software development method has draw attention to the industry and more and more companies started to apply Agile in the production. The Agile method advocates the shorter development iteration, continuous development of software and continuous delivery of the software to the customer. The goal [1] of Agile is to satisfies customer with early and continuous delivery of the software. The Agile, which aims at the improvement of the process within the software development team and the communication between the development team and costumers [2] do makes the software development faster. However, it doesn't emphasis the cooperation and communication between the development team and other teams. In real life, the conflict and lack of communication between the development team and operation teams usually become the barrier for shortening the delivery time of the software project.

Thus, in answering to how to solve the gaps and flaws when applying Agile into the real-life software development, the concept of DevOps emerged. The term "DevOps" is created by Patrick Debois in 2009 [3], after he saw the presentation "10 deployments per day" by John Allspaw and Paul Hammond. While Agile fills the gap between software development and business requirement from the customer, the DevOps eliminates the gap between the development team and the operation team [4]. By eliminates the barrier we mentioned in the last paragraph, DevOps further fasten software delivery. In conclusion, DevOps means a combination of practices and culture which aims to combine separate departments(software development, quality assurance and the operation and others) in the same team, in order fasten the software delivery, maximizing delivered without risking high software quality [5][6].

In software engineering, the toolchain is a set of tools which combined for performing a specific objective. DevOps toolchain is the integration between tools that specialised in different aspect of the DevOps ecosystem, which support and coordinate the DevOps practices. The DevOps toolchain could assistant business in creating and maintain an efficient software delivery pipeline, simplify the task

and further achieve DevOps [7]. On the other hand, DevOps strongly rely on tools. There are specialised tools exist for helping teams adopt different DevOps practices [8].

At the same period that the tools for DevOps emerged and developed, the cloud technologies also developed rapidly. This leads to the emigrations of Serverless Computing. The Serverless Computing is a new cloud computing model which all user to build and run application on the cloud, without thinking about the servers [9]. It also allow developers to build application with less overhead [9] and more flexibility by eliminates infrastructure management tasks [10]. With serverless computing technologies, many new cloud technologies emerged, which gives developers an alternative way than traditional cloud servers or cloud virtual machines. For examples: Functional computing allows the application to be divided by functions and designed under event-driving paradigm with out managing the hardware infrastructures. The on-demand nature of the serverless computing cloud could be used to deploy certain component of a DevOps toolchain to ease the implementation difficulties and reduce the cost. Managed scalable container services in the cloud enable the user to run the container-based application directly on cloud, which help the toolchain become more scalable. DevOps tools as a service [11] allow the cloud provider deliver a DevOps tool directly on it's cloud platform.

Helping the customer do the DevOps transformation is one of the main business activities of Eficode, the company which I'm writing my thesis. This is done by the developing and deployment DevOps toolchain for costumers. As mentioned in the last paragraph, the new changes brought by cloud may further improve the performance and lower the cost of DevOps toolchain development – both in money and time. As part of thesis work at Eficode, We will investigate how could serverless computing could help improve the DevOps toolchain.

1.1 Problem Statement

As per last paragraph, serverless computing gives developers alternative ways to deploy DevOps tools with the new cloud technologies other than traditional cloud virtual machines. There are several cloud providers that utilise the serverless computing. Among them, Amazon Web Services(AWS)¹ has the largest market share is the first cloud provide which provides the serverless computing services. According to the report from Gartner [12], the market share of AWS was 47.8% in year 2018 which makes it the largest cloud provider in the world.

Nowadays, the serverless computing services in AWS has already been expanded to a set of fully managed services called "AWS serverless platform" ². This platform include new AWS cloud products that leverage the serverless computing technologies. These products includes for instance, AMS Lambda³ for function

¹https://aws.amazon.com/

²https://aws.amazon.com/serverless/

³https://aws.amazon.com/lambda/

computing, AWS Fargate⁴ for managed container services and AWS CodePipeline provided a managed continuous delivery pipeline as service⁵ etc. AWS also gains the most popularity among the developers that using serverless technologies. The most recent survey report [13] from Cloud Native Computing Foundation (CNCF) shows that 51% of serverless users are using AWS Lambda, while 68% of developers who are not using Kubernetes are using AWS ECS to hosting their containers. As the Advanced AWS partner, AWS is being used as the main cloud providers in the customer projects by Eficode. And the company is keep looking for ways to leverage serverless computing services in AWS in order to benefit the DevOps toolchains it builds for costumers.

The second area we'd like to investigate in the project is related to the integrated toolchain which is powered by the tool-as-a-services in AWS. The integrated DevOps toolchain is delivered as a single platform that allows development teams to start using DevOps toolchain without the pain of having to choose, integrate, learn, and maintain a multitude of tools. While the traditional non-integrated toolchain is to have individual tools which are stand-alone and from different companies.

This newly emerged type of toolchain is one of the new changes that cloud technologies bring, but it also leaves a question to the development team who trying to build DevOps toolchain on AWS: which kind of toolchain should they select? Should they stick on the previous non-integrated toolchain or embracing the integrated one? The integrated DevOps toolchain provides an out-of-box integrated solution for the whole DevOps lifecycle, which is tempting, but apart from the advertisement from the vendors of these "DevOps" platforms, It is still unclear if it is better than the traditional standalone toolchain.

Based on the above, the research questions could be summarised as below:

- 1. **RQ1:** How serverless computing services in Amazon Web Services helps the DevOps toolchain?
- 2. **RQ2:** How does the newly emerged integrated toolchain compared with the stand-alone toolchain in Amazon Web Services?

1.2 Research Method

To answer the RQ 1 we will first build a DevOps toolchain with the popular tools used in the industry. The toolchain will be deployed on Amazon Web Services (AWS) which is the cloud services used by Eficode. So in the process of developing and deploy the toolchain, we will answer the RQ by research how could serverless computing in AWS benefit our toolchain. We will first conduct a literature review on new cloud technologies in chapter 3, in which we also introduce the implementation of these technologies by different cloud vendors. In this Chapter, we will also discuses which cloud technologies can benefit the DevOps toolchain.

⁴https://aws.amazon.com/fargate/

⁵https://aws.amazon.com/codepipeline/

In the next step (chapter 4), we will design and conduct experiments which evaluating the benefit that each cloud technologies we researched in chapter 3 can bring.

The evaluation will be done by comparing the metrics measured from the toolchain with and without using certain cloud technologies from AWS. The metrics cover different perspectives includes cost, performance and development difficulties. We will also have the demo implementations which shows the answer to this research question.

To answer RQ2, The standalone toolchain will be used to compare with the DevOps toolchain build by the DevOps tools provided by AWS as a services. We will conduct a case study on a comparison between an AWS based traditional toolchain and the out-of-box integrated DevOps toolchains also provided by AWS as services. The reason that we keep the comparison scope within AWS is that both 2 toolchain will be runs on the same hardware setup provided by AWS, this could eliminates the errors caused by the difference between vendors and focuses on the difference between toolchains.

In the comparison, we will simulate the same DevOps lifecycle of a demo Spring Boot web app on both toolchains. We will again measure the metrics in these 2 toolchains, the process will be similar to what we will do on RQ1. For software development teams, it could provide better insights on how to select the DevOps toolchains.

1.3 Thesis Structure and Main Contributions

In Chapter 2, we will introduce concepts within the scope of DevOps. We will also include the concepts in cloud computing which is related to our research. Chapter 3 is focusing on a survey on serverless computing technologies which the DevOps toolchain could make use of. Chapter 4 focuses on the designed and the implementation of our DevOps toolchains. Chapter 5 focuses on the experiments and evaluations, which show how does the serverless computing services introduced in CH3 could benefit DevOps toolchain, and how these 2 kinds of toolchains we mentioned earlier compared with each other. We will finally summarise our research and answer the research questions in Chapter 6.

The main contributions of this paper are:

- We provide a study on how could the DevOps tools leverage the cloud services to reduced development/deployment difficulties, lower the cost and improving the performance. This part of research could help the software team which is going to employ DevOps understand the practices needed. Besides, the research gives them a clearer scope of the tools needed for implementing the practices.
- We give the overview of 2 different types of DevOps toolchain. We also implement demo prototypes for each type of toolchain and conduct experiments with these prototypes. The experiment result shows a comparison between

different toolchains. It could help the team understand which toolchain cloud be selected based on the needs.

Chapter 2

Background and Concepts

In this chapter, we will introduce several main concepts related to our study.

2.1 Agile software development

The term "Agile" represents the fast adaptation and response to the changes [14]. Agile software development is a new method of software development that implements the ideology of "agile". Agile software development advocates the continuous development of software teams. The software development under this methodology will have shorter planning/development time before it delivers to the costumers and could better adapt to changes in the environment and requirements.

Iterative Software Development: Agile software development uses an iterative way in the development process. The traditional software development process, like the waterfall method, requires the long and complicated planning process, and a complicated document. Once one phase of the development is done, the teams shouldn't change the output (document and code) of this phase [15]. In contrast, the agile software development aims to satisfy the customer with early and continuous delivery of the software [1]. Early means the shorter time before software delivery. Continuous means the development does not end with the delivery. Delivery means the end an iteration, together with a demonstration to stakeholders. After delivery, the team continue to next iteration according to the feedback it gets from stakeholders. In each iteration, the team not aims to add major features to the software, rather their goal [16] is to have a working and deliverable release. In the ideology of agile, the best design the software product comes from the iterative development [1], rather than the tedious planning.

High Software Quality: The rapid development doesn't mean low software development quality. On the contrast, the quality of software design is highly appreciated in the agile software development. The automatic testing is widely used in Agile. The test cases will be defined and implements from the beginning of the

development process. The testing goes through the whole development iteration ensure the software has a high enough quality to be released or demonstrate to costumers at any point of an iteration [17].

Collaboration: The agile software development processes include collaboration across different groups, ie. bushiness development team, software development team, test team, and costumers. It values more face to face communications [18] and feedbacks. The goal for these communications is, firstly to let everyone in the multifunctional agile team understand the whole project, secondly, to receive feedback that helps the software in the right development track that aligns with the requirement of the stakeholders [1].

According to the Manifesto for Agile Software Development, compared with traditional software development, the agile software development value these aspects [1]:

- Individuals and interactions over processes and tools.
- Working software over comprehensive documentation.
- Customer collaboration over contract negotiation.
- Responding to change over following a plan.

2.2 Continuous Integration & Continuous Delivery

In the software development, CI/CD refers to continuous integration, continuous delivery and continuous deployment [19]. As we mentioned in 2.1, agile software development requires continuous software quality assurance and iterative development. Currently, CI/CD is one set of the necessary practices for the team to become agile by achieving the requirements above. Figure 2.1 shows the relationship between these 3 practices.

2.2.1 Continuous Integration

Continuous interaction is the base practice of all practices within CI/CD, and continuous delivery/deployment is based on the continuous interaction [19]. The continuous integration means the team integrate each team member's work into main codebase frequently(multiple times per day). "Integrate" means merge the code to the main codebase [20]. The continuous interaction rely on 2 practices: *Build Automation* and *Test Automation*. The definition of these 2 practices are:

• *Test Automation:* Test automation means using separate software to execute the software automated, without human intervention. It could help the team to test fast and test early [21].

Figure 2.1: The relationship between continuous integration, continuous delivery and continuous deployment [19]

• *Build Automation:* Automate the process of creating software build. This means to automate the dependency configuration, source code compiling, packaging and testing. It is viewed as the first step to continuous integration [22].

With the help of these 2 practices, for each developer in the team, the workflow [20] in continuous interaction as follows: In the development of each feature, the developer first pull the code from the main codebase. During the development, new test cases could also be added to the automated test. After the development is done, automated testing also runs on the code to maintain the code quality and minimize the number of bugs from the beginning. The build automation compiled the code locally in the development machine.

After the step above, the developer already has the executable and the high quality (passed the automated test) code in the development machine before submitting the change to the code base. This represents the principle of quality and automation in agile software development. In the next step, the developer commits changes to the repository, which is the main codebase, and the system check the conflict and do the test/build again, to make sure that there are not any bugs missed in the test on the development machine. If the code passes this build and test, it will be merged to the main codebase and the integration is done.

2.2.2 Continuous Delivery and Continuous Deployment

Continuous delivery is practices that software development team build a software that can be released at any time of the lifecycle.[23]This means the software always maintains a high quality and in a deployable state[24]. It is a subset of agile,

which focuses on the software delivery[25]. From the last section, we introduce the concept of continuous interaction. The continuous delivery is based on continuous interaction but further automate the software deployment pipeline. In the software deployment pipeline, the team divide build into several stages, first build the product and then push the product into the production-like environment for further testing. This ensures that the software could be pushed to production at any time. However, in continuous delivery, the deployment of software into production is done manually. The benefit [24][23] of continuous delivery includes:

- High code quality: The automate and continuous testing ensure the quality of the software.
- Low risk: The software could be related at any time, and it's easier to release and harder to make the mistake
- Short time before going to the market: The iteration of software development is much shorter. The automation in testing, deployment, environment confirmation included in the process, and the always read-to-deploy status shorten the time from development to market.

The continuous deployment is based on continuous delivery. The only difference is continuous deployment automates the deployment process. In continuous delivery, the software is deployable but not deploy without manual approval. In the continuous deployment, each change that passed automated build and testing will be deployed directly. The continuous deployment is a relatively new concept that most company not yet put the practice into production [26]. While continuous delivery is the required practice for the company to be DevOps and it is already being widely used.

2.3 DevOps

The fundamental goal of DevOps is to minimize the service overhead so that it can respond to change with minimal effort and deliver the maximum amount of value during its lifetime.

- Markus Suonto, Senior DevOps Consultant, Eficode

DevOps is a set of practices that aims to combine different, traditionally separated disciplines (eg. software development, operations, QA, and others) in cross-functional teams with the help of automation of work to speed up software delivery without risking high-quality [27].

DevOps is the extension and evolution [28][29] of Agile. DevOps and Agile both driven by the collaboration ideology and the adoption of DevOps needs Agile as the key factor [28]. DevOps has a different focus on agile. DevOps focus on the delivery while agile is focused on the development with the requirement and customer. Figure 2.2 shows the workflow and practices of a team working under DevOps.

Figure 2.2: DevOps Practices and Workflow [30]

2.3.1 Elements

In this section, we will introduce the necessary elements that an organization need to includes when employing DevOps. 4 necessary elements need to be considered.

Culture

In the pre-DevOps era, the Development and Operation are two different teams with a different goal. The interface between them is based on the ticket system which the operation team do the ticket management. As we mentioned at 2.1, the goal of Agile is to shorten the deliver life cycle and delivery software quickly to the costumers. So when practice agile development method under this scenario, the development try to deliver the code they develop earlier but the operation team usually will delay the process for quality control or other reasons. In practice, this causes the delay between the code change and the software delivery to the costumers [29]. The lack of communication and conflict between developers and the operation team slow down the software delivery process and also make it harder for the teams to be real Agile. Therefore the concept "DevOps" is being proposed at 2008, for eliminating of the boundary between developers (Dev) and operation team (Ops). According to Walls (2013), this is being done by promoting the culture with 4 characterises: open communication, incentive and responsibility alignment, respect and trust [31].

The open communication means openly discussion and debate. As mentioned above, the traditional communication method is through a very formal and regularized ticket system. In the DevOps, the communication is not limited within the formal ticket system. instead, the team will keep in the whole lifecycle of a product, from the requirement, schedule, and anything else. [31] The information sharing is also important [32]. The metrics and the project status is available for

everyone in the team, so each member could have a clear scope about what the team is doing.

The incentive and responsibility alignment mean the whole teams (combines Dev and Ops) shares the same goals and also takes the same responsibility. The shift from "Dev" and "Ops" to DevOps requires people who used charges in only development and operation starting sharing the responsibility from both side [32]. This means individuals or a certain part of the team will be not solely blamed if the product is failed. This "no blame" culture could help each engineer be willing to take the development responsibility for the whole system [33].

Respect means all employees should respect and recognize the contribution of other teams members. A DevOps team is not a single team without any division of jobs, there is still an operation part within a team [34]. However the people operation team will take development responsibility, and the developers will also put their hands-on operation and management[35]. To make people with different roles works in a team, trust and respect each other is critically important.

Organisation

In the organizational level, the DevOps emphasizes the collaboration between different part of an organization. This is strongly correlated with the "culture" part of this section. Inside a team, each member should be a generalist who could understand all aspect of a project. There will not be a dedicate QA, operation or security team within a team. Instead, these are the job that belongs to everyone [33][3]. The organization should provide the team member with opportunities to learn all skill needed for building the whole system.

The team size should be small. A small team could help to reduce the inter-team communication. The small team means the scope of the project is small. And it also means less bureaucracy in team management. There are four benefits [3] to have a small team:

- The smaller team allows each team member to easily understand the whole project.
- The smaller team could reduce the amount of communication needed. It could also limit the growth rate that the product could have.
- The smaller team could decentralize power. In DevOps, each team lead could define the metrics which become the overall criteria of the whole team's performance.
- In a smaller team, failure doesn't mean a disaster for the company. This allows the team to fail. Thus each employee could train their headship skill in the team without too much pressure.

Furthermore, another important organizational aspect for DevOps is to have a loosely-coupled architecture. The first benefit of this is the better safety. In the organisation with a tightly-coupled architecture, small changes could result in large

failure [3]. The second benefit is productive. In a traditional organisation, the result of each team will be merged, tested together and deploy together. This means it is time-costly to configure and manage the test environment requires dependencies. A loose organisation enable each team to finish the development of lifecycle (from planing to deployment) independently. Each team could update their products independently, which gives the team more flexibly to align the product with the change in the customer requirement. This means the update of each team's product won't affect other teams as well.

Automation

In the DevOps, automation means automation within the whole development and operation process. The organisations which employing DevOps aims for a high degree of automation[36]. With automation, people could be free from the repetitive work and reduce human error. It could help build the DevOps culture of collaboration, and it is seen as the cornerstone of the DevOps [37]. The main practices regarding Automation are the automated testing, continuous delivery and automated operation. Automated testing could be achieved by test automation. We already mentioned the benefit of this at 2.2.1.

The continuous delivery pipeline is the core of the DevOps [38]. As we discussed at 2.3.2. The continuous delivery will ultimately automate all steps between the developer to commit the code to the product in the production.

The automation of the operation part is usually done by using the concept of "Infrastructure as Code" [32]. The Infrastructure as Code (IasC) means to define everything in the software infrastructure level as code [39]. Because it is code, we could use the automation methodology used in the software development to manages and deploy these codes. According to Christof et. (2016), under IasC, infrastructure can be shared, tested, and version controlled [6]. This could help emphasizes the automation within the operation scope. With the automation in operation, the team could be free from the tedious environment configuration and shorten the product development lifecycle. Automating server configuration means the developers and operation staff can equally know the server configuration [37] which help build the culture of shared responsibility and trust.

Monitoring and Measurement

Monitoring is to continuously collect the matrices from the running system for helping the team find the problems in the system. To do the monitoring, the monitoring system need to do measurement, which is to collect data properly from the system. The measurement be defined as reducing the uncertainty through observation, which producing quantitative result [40]. The result (metrics) should be properly used by the organisation.

In the DevOps way of development, the testing is the key to maintain the quality of the software continuously. However, when the product enters the production, we cannot test the software any more. So, we need monitoring to keep track the status of the product [41]. According to State of DevOps report from Google, the good monitoring structure and the wisely usage of the data from monitoring for making bushiness decision could improve the software delivery performance [42]. Thus, Monitoring is an important component of DevOps.

With monitoring, the software team could keep tracking the status, and maintain the quality of deployed production. The monitoring has also enabled the team to collect the data from costumers' usage behaviour. This helps the agile development team to make an improvement in the next iteration of the product [32].

For develop a high-quality monitoring system, the development of monitoring could be in parallel with the main product, and the monitoring system can be already be used against the "staging deployment" (see Figure 2.1) at the early stage of the iteration. By this, the development team can improve the monitoring system continuously together with the main software system. The parallel development of the monitoring system and the main system helps the team to find the gap in the monitoring earlier [41].

As we mentioned in the "Culture" section, the collaboration is an important part of the DevOps culture. collaboration needs the communication and information sharing between the development(Dev) and operation(Ops) team. The monitoring could be one of the channels between the Dev and Ops since it can expose the information of the whole system which helps team members to understand the system as a whole. This helps the team achieving the point we mentioned at 2.3.1 (Culture) that the project status and matrices should available to every team members.

2.3.2 Toolchain

A DevOps toolchain is a set of tools that integrated together to aid the software development, deployment and management through the whole software development lifecycle, which helps the software development to fit the DevOps principles [7][43][4]. Each tool in the toolchain supports on specific activities in DevOps, for example, version control, build, testing.

According to [4], Google Cloud state of DevOps reports [42][44][45] and our previous definition of the DevOps, we summarize the essential component of a DevOps toolchain as below.

Project Management & Planning

Planning software development project, track the tickets and the issues, communication between and within the teams. The project management tools help to implement the DevOps culture, which enhances collaboration and knowledge sharing. **Tools:** Slack, Jira, Trello, Asana

Configuration Management

Provided a central platform to manage the configuration across the assets. This usually done by defining the desired state of the assets in a configure file and automate the configuration process which reaching the assets to the defined status.

Tools: Puppet, Chef, Ansible

Continuous Integration

Continuous integration (in short: CI) is the top practice for improving the Deployment Frequency [44]. It is one of the most important parts of DevOps toolchain. As we introduced at 2.3.2, CI allows the developers to integrate their work more frequently to the production products, it shortens the time to the market of the product. The automatic testing and code analysis integrated into the CI continuously maintain the quality of the product. CI tools also automated the most parts of the software development pipeline, In conclusion, CI helps the system fulfil the DevOps definition (2.3) by speed up the delivery by automation, maintain the quality by continuous quality assurance. So CI is the core part of the whole DevOps toolchain.

Tools: Jenkins, Drone CI, Teamcity, GitLab CI/CD

Version Control

Version control is the key component of DevOps toolchain. It is a system that could record and track the changes in a set of file overtime. Version control simplifies the collaboration between team members. and allow the simultaneous development on the different part of a software system According to [46] and [44], version control is the top practices when comes to improve the multiple metrics in DevOps. Version control becomes the indicator of the software system performance [46] Infrastructure as code, an important DevOps practise we mentioned at 2.3.1 also relies on the version control.

Tools: GitHub, Gitlab, Bitbucket

Monitoring

The monitoring system is one of the basic practices in a DevOps toolchain[45]. It is also one of 4 basic elements of DevOps as we mentioned at 2.3.1. In the DevOps toolchain, the monitoring system detect the failure in the whole system and helps the software team finds the problems earlier. The log taking by the monitoring system can also record the system activity history which allows the further analysis.

Tools: Zabbix, Promethus

Automated Testing

The automated testing tool could verify the code before it being build. Due the common practise of continuous integration which we mentioned at , the automated testing usually integrated in the continuous integration pipeline. The integration of testing in CI pipeline makes it easy for organisation to implement the quality gate in the software development [41].

Tools: Robot Framework, Selenium, JMeter

2.4 Serverless Computing

In this section we focus on the concepts of Serverless Computing. We will have more discussion regarding to new cloud service based on Serverless Computing in the next chapter.

Serverless Computing (in short: Serverless) is a cloud execution model which the sever and resources allocation is managed by the cloud provider. The popularity of serverless is precipitated by the development of microservices and container technologies [47]. A survey from Cloud Native Computing Foundation (CNCF) shows that, in 2019, 41% of respondents are using serverless technologies in the production, the number was 32% in 2018[13]. The report of this survey also shows that serverless architectures and cloud functions is being used by 3.3 million developers [13] in 2019.

In the traditional cloud computing service, the user rents the fixed number of cloud servers from the cloud providers, and the cloud providers charge user according to the renting length and the server type (pay-as-you-go model). While in the serverless computing services, the developer only pays according to the execution time of the program. Another difference between serverless computing and traditional computing method is that, in serverless computing, although the task is still runs on the physical cloud severs, the cloud servers is fully managed by the cloud providers. The means the user leave all server provisioning and administration tasks to the cloud providers [48] when using serverless.

2.4.1 History

In the early days of the cloud computing, the consideration behind the design of cloud computing is that, the developer simply move their deployment environment from local server to the server on cloud. Therefore, the cloud virtual machine, for example, Amazon Web Service EC2 is the main form of the cloud service providing. After Amazon Web Service started offering the service with virtual machine, Google entered this field for competing with AWS, but in another direction. In year 2008, Google released Google App Engine (GAE) ¹[49]. The platform allows developers run their code without managing the cloud virtual machine. This

¹https://cloud.google.com/appengine

makes Google the first in the main cloud providers to allow the developer runs code on it's cloud without provisioning and managing the cloud servers. However, the GAE only allows developer run python code that are programmed with Google's own framework, rather than running arbitrary python code. Amazon Web Service (AWS) introduces AWS Lambda in 2014, make Amazon the first public cloud provider that provides serverless computing platform[50]. Since then the serverless computing starts it's rapid commercial development. Following AWS, other providers also introduced their own serverless computing platforms. Only in year 2016, Google ², Microsoft ³, and IBM ⁴ released their serverless computing platform respectively.

2.4.2 Characterises

We summarise 4 main characterises of serverless computing.

Event Driven

Event Driven means the serverless applications is usually triggered and start running due to a event. There are different event that could be the trigger. The first one is the HTTP request. When a HTTP request reach the server, the serverless application could be triggered to reads the context of this request, execute the code, return the HTTP response to the frontend. This kind of pattern matched the nature of web application which allows the developer easily build serverless API for web/mobile applications on top of serverless cloud functions. The serverless application could also be triggered by changes in the database and object storage. This allow the serverless computing be used as background task such as data processing. A good example is the serverless computing use case of Thomson Reuters in their social media data analysis project[51]. Thomson Reuters uses AWS Lambda to hosting serverless application that triggered when new data is stored. The application processes the data real-time, extract the hash tag trend data and store it in Amazon DynamoDB, an database solution by AWS, which is also serverless.

Managed Resources Allocation

The managed resources allocation means the developer only need to deploy the code but leaving the operation task to the cloud. As we mentioned before The developer doesn't need provisioning or managing any server besides, the developer is not required to install any software or runtime [52] when deploying his/her own application.

The managed resources allocation also means the the cloud provider will manage the scaling of the infrastructure which the developers are running code on. In the

²https://cloud.google.com/functions

³https://azure.microsoft.com/en-us/overview/serverless-computing/

⁴https://www.ibm.com/cloud/functions

traditional virtual machine, although some cloud providers for example AWS and Azure support auto scaling, however, the scaling policy has to be defined by the user. And the user need to set up the cloud infrastructure for using autoscaling. On the contrast, in Serverless computing, the cloud provider will handle everything related to auto scaling. Furthermore, the availability and security issues are being taken care by the cloud provider as well.

Pay-per-use

Pay-per-use is the significant characteristic of serverless computing form non-technical perspective. The traditional cloud server using pay-as-you-go mode. The billing is done based on the type of VM and the rental time of this VM. This is not economy flexibly for the user since they have to pay even there is nothing running on the VM they are using, they still pay as the same as when their VM is fully loaded. On the contrast, in serverless computing, the users don't need to pay pay the idle time, they only pay for time that the application is running. In many scenario, such payment mode could lower the cost [48].

Extensive Application Scenarios

The serverless computing has extensive application. The serverless runtime that what we discussed the most above. But beside deploy runtime on the cloud, serverless computing also gives you more possibilities which cover all backend services that we could be possibly used when build a modern application. According to the definition of Amazon Web Service, it's serverless offering not only include serverless functions (AWS Lambda) but also include serverless database, container runtime services, data analysis and Kubernetes cluster, which we already mentioned in the Chapter 1. Google cloud also advocates "full-stack serverless" [53]. Same with AWS, Google Cloud also provides, all kinds of serverless solutions, from compute, DevOps storage, to AI and data analysis. Furthermore, Azure's serverless offering also covers wide range of the backend component, include computing, storage, ai, monitoring and analysis [54].

2.4.3 Limitations

The serverless computing is not the perfect solution. In some aspects, it is still has it's limitations compared with traditional VMs.

Performance

This is mainly the problem within the compute In the current serverless offering from cloud providers, the computation power of serverless computing

Chapter 3

Literature Analysis of the Cloud Technologies

In this Chapter, we will do an literature review on the new cloud technologies which emerged in recent years.

Chapter 4

Cloud Services That Could Help DevOps Toolchain

In the chapter we introduce the implementation of our DevOps toolchain which act as the basic environment of our experiments. Then we introduce the experiment that for answering RQ1: **How could DevOps toolchain make use of current cloud services and how these services improves the DevOps toolchain.** In section 4.1 we introduce the implementation of our testing DevOps toolchain which is according to the DevOps definitions and DevOps practices we introduced at Chapter 2. In section 4.2 we discuss the cloud services selection consideration for the experiment. In section 4.3 we introduce the implementation of our experiments. Section 4.4 focuses on the experiment result.

4.1 DevOps Toolchain Implementation

Our DevOps toolchain is used to conduct experiment that could answering 2 research questions. As we mentions above, it include DevOps elements we introduced at CH2. In this section we will first introduce the composition of our DevOps toolchain, and secondly, which elements of DevOps does each components belongs to.

// Introduce our initial design of Devops toolchain

// Point out the problem, and point out the improvement can be done in the toolchain.

4.2 Cloud Services

In this section, we will introduce several could services from CH3 that could be helpful to the DevOps toolchain. // Using services in AWS as example, Introduces how cloud services could improve. describe on services in one section

4.2.1 Managed Container Services for Distributed Builds

// Describe how AWS Fargate could Help

4.2.2 Serverless computing

// Describe how AWS lambda could Help and why do we chose it

4.2.3 ...

4.3 Setup for the Experiments

4.3.1 Managed container services

Test task and System Description

// This is just a draft

In this experiment we simulate the continues delivery process of a Spring Boot web application. From the experiments, we could verify our assumption in 4.2. The continues delivery pipeline includes following steps:

- 1. *Pull from version control*: Pull the most recent change from Github repository
- 2. Build: Build the application with Gradle
- 3. Test: Automate testing with JUnit integrated in Gradle
- 4. Artefact store: Push the build artifacts to Artifactory

Figure 4.1: Architecture diagram of the test Jenkins cluster with agents running in traditional virtual machine (left) and on ECS with AWS Fargate (right)

To evaluate our assumption in 4.2, we have 2 different setups. The first setup Figure 4.1 (left) is a Jenkins server with traditional virtual machine as worker agents. In the second setup Figure 4.1 (right), we use the same Jenkins server but the worker nodes is dynamically provisioned in the AWS Fargate managed cloud service.

// here write some more detail about the setup which includes IAM and hardware configuration, and also include the graph which shows the topological structure of 2 setups,

Performance Properties and Evaluation

We run the pipeline through 2 different setups, we will get the result of following properties:

- Runtime describes the total time for finishing all the tasks.
- Cost Structure describes the daily cost of 2 setups under the same workload
- Resource Utilization describes the average CPU/RAM usage for each instance during a single run of the pipeline.

To shows how does the 2 setups performance within the teams with different sizes, we run by run different number of tasks parallel through the pipeline. This simulates the different team size, besides, it could also shows the scalability when comes to the need of task parallelization in bigger organizations.

Chapter 5

Conclusions and Future Work

5.1 Conclusions

TODO CONCLUSIONS

5.2 Future Work

TODO FUTURE WORK

Bibliography

- [1] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, et al. Manifesto for agile software development. 2001.
- [2] Marco Miglierina. Application deployment and management in the cloud. In 2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, pages 422–428. IEEE, 2014.
- [3] Gene Kim, Jez Humble, Patrick Debois, and John Willis. *The DevOps Handbook:: How to Create World-Class Agility, Reliability, and Security in Technology Organizations*. IT Revolution, 2016.
- [4] What is a devops toolchain? bmc blogs. https://www.bmc.com/blogs/devops-toolchain/. (Accessed on 03/13/2020).
- [5] Devops wikipedia. https://en.wikipedia.org/wiki/DevOps. (Accessed on 02/24/2020).
- [6] Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolas Serrano. Devops. *Ieee Software*, 33(3):94–100, 2016.
- [7] Devops toolchain wikipedia. https://en.wikipedia.org/wiki/ DevOps_toolchain. (Accessed on 03/11/2020).
- [8] Liming Zhu, Len Bass, and George Champlin-Scharff. Devops and its practices. *IEEE Software*, 33(3):32–34, 2016.
- [9] Serverless computing amazon web services. https://aws.amazon.com/serverless/. (Accessed on 05/25/2020).
- [10] Serverless computing vs. containers how to choose cloudflare. https://www.cloudflare.com/learning/serverless/serverless-vs-containers/. (Accessed on 05/25/2020).
- [11] Devops as a service: Automation in the cloud sumo logic. https://www.sumologic.com/insight/devops-as-a-service/. (Accessed on 05/25/2020).

- [12] Gartner worldwide public cloud services says iaas 31.3% 2018. market grew in https://www. gartner.com/en/newsroom/press-releases/ 2019-07-29-gartner-says-worldwide-iaas-public-cloud-services-market-c (Accessed on 05/21/2020).
- [13] Kim McMahon. The state of cloud native development. *KEY INSIGHTS FOR THE CLOUD NATIVE COMPUTING FOUNDATION STATE OF DE-VELOPER NATION Q2 2019*, 05 2020.
- [14] Jim Highsmith. What is agile software development? *crosstalk*, 15(10):4–10, 2002.
- [15] Michael A Cusumano and Stanley A Smith. Beyond the waterfall: Software development at microsoft. 1995.
- [16] Kent Beck. Embracing change with extreme programming. *Computer*, 32(10):70–77, 1999.
- [17] Agile software development wikipedia. https://en.wikipedia. org/wiki/Agile_software_development#Iterative, _incremental_and_evolutionary. (Accessed on 03/18/2020).
- [18] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, et al. Principles behind the agile manifesto. *Agile Alliance*, pages 1–2, 2001.
- [19] Sten Pittet. Continuous integration vs. continuous delivery vs. continuous deployment. Web-article. Atlassian.; https://www.atlassian.com/continuous-delivery/ci-vs-ci-vs-cd;. Fetched, 24:2018, 2018.
- [20] Martin Fowler and Matthew Foemmel. Continuous integration, 2006.
- [21] Test automation in a ci/cd pipeline sprite-cloud. https://www.spritecloud.com/test-automation-with-ci-cd-pipeline/. (Accessed on 03/19/2020).
- [22] Build automation wikipedia. https://en.wikipedia.org/wiki/Build_automation. (Accessed on 03/19/2020).
- [23] M Fowler. Continuous delivery. may 30, 2013, 2013.
- [24] What is continuous delivery? continuous delivery. https://continuousdelivery.com/. (Accessed on 03/23/2020).

- [25] Continuous delivery vs. traditional agile dzone devops. https://dzone.com/articles/continuous-delivery-vs. (Accessed on 03/24/2020).
- [26] Marko Leppänen, Simo Mäkinen, Max Pagels, Veli-Pekka Eloranta, Juha Itkonen, Mika V Mäntylä, and Tomi Männistö. The highways and country roads to continuous deployment. *Ieee software*, 32(2):64–72, 2015.
- [27] Len Bass, Ingo Weber, and Liming Zhu. *DevOps: A software architect's perspective*. Addison-Wesley Professional, 2015.
- [28] Lucy Ellen Lwakatare, Pasi Kuvaja, and Markku Oivo. Relationship of devops to agile, lean and continuous deployment. In *International conference on product-focused software process improvement*, pages 399–415. Springer, 2016.
- [29] Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Milojicic, and Paulo Meirelles. A survey of devops concepts and challenges. *ACM Computing Surveys (CSUR)*, 52(6):1–35, 2019.
- [30] Devops in a scaling environment tajawal medium. https://medium.com/tech-tajawal/devops-in-a-scaling-environment-9d5416ecb928. (Accessed on 03/27/2020).
- [31] Mandi Walls. Building a DevOps culture. "O'Reilly Media, Inc.", 2013.
- [32] Lucy Ellen Lwakatare, Pasi Kuvaja, and Markku Oivo. Dimensions of devops. In *International conference on agile software development*, pages 212–217. Springer, 2015.
- [33] Dror G Feitelson, Eitan Frachtenberg, and Kent L Beck. Development and deployment at facebook. *IEEE Internet Computing*, 17(4):8–17, 2013.
- [34] There's no such thing as a "devops team" continuous delivery. https://continuousdelivery.com/2012/10/theres-no-such-thing-as-a-devops-team/. (Accessed on 03/26/2020).
- [35] Jordan Shropshire, Philip Menard, and Bob Sweeney. Uncertainty, personality, and attitudes toward devops. 2017.
- [36] FMA Erich, Chintan Amrit, and Maya Daneva. A qualitative study of devops usage in practice. *Journal of software: Evolution and Process*, 29(6):e1885, 2017.
- [37] Devopsculture. https://martinfowler.com/bliki/DevOpsCulture.html. (Accessed on 03/27/2020).

- [38] Asif Qumer Gill, Abhishek Loumish, Isha Riyat, and Sungyoup Han. Devops for information management systems. *VINE Journal of Information and Knowledge Management Systems*, 2018.
- [39] Matej Artac, Tadej Borovssak, Elisabetta Di Nitto, Michele Guerriero, and Damian Andrew Tamburri. Devops: introducing infrastructure-as-code. In 2017 IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C), pages 497–498. IEEE, 2017.
- [40] M HERING, D DeGrandis, and N Forsgren. Measure efficiency effectiveness, and culture to optimize devops transformation. devops enterprise forum, 2015.
- [41] Michael Hüttermann. DevOps for developers. Apress, 2012.
- [42] N Forsgren, J Humble, and G Kim. Accelerate: state of devops report: Strategies for a new economy. dora (devops research and assessment) and google cloud, 2018.
- [43] Toolchain wikipedia. https://en.wikipedia.org/wiki/ Toolchain. (Accessed on 03/11/2020).
- [44] Nicole Forsgren Velasquez, Gene Kim, Nigel Kersten, and Jez Humble. State of devops report, 2014.
- [45] Nicole Forsgren, Dustin Smith, Jez Humble, and Jessie Frazelle. 2019 accelerate state of devops report. 2019.
- [46] Source and version control in devops bmc blogs. https://www.bmc.com/blogs/devops-source-version-control/. (Accessed on 05/09/2020).
- [47] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, Aleksander Slominski, et al. Serverless computing: Current trends and open problems. In *Research Advances in Cloud Computing*, pages 1–20. Springer, 2017.
- [48] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja Yadwadkar, et al. Cloud programming simplified: A berkeley view on serverless computing. *arXiv preprint arXiv:1902.03383*, 2019.
- [49] Alexander Zahariev. Google app engine. *Helsinki University of Technology*, pages 1–5, 2009.
- [50] Serverless computing wikipedia. https://en.wikipedia.org/wiki/Serverless_computing. (Accessed on 06/01/2020).

- [51] Thomson reuters case study. https://aws.amazon.com/solutions/case-studies/thomson-reuters/. (Accessed on 06/01/2020).
- [52] Serverless computing amazon web services. https://aws.amazon.com/serverless/#Serverless_application_use_cases. (Accessed on 06/02/2020).
- [53] Serverless computing google cloud. https://cloud.google.com/serverless. (Accessed on 06/02/2020).
- [54] Azure serverless microsoft azure. https://azure.microsoft.com/en-us/solutions/serverless/#solutions. (Accessed on 06/02/2020).