Tangent Point Query

Time: 1 sec / Memory: 256 MB

Problem Statement

In this problem you are given an upper convex curve and a number of query points. Your goal is to report the tangent point of each query point at the convex curve.

The upper convex curve is represented by a sequence of n points $p_1=(x_1,y_1), p_2=(x_2,y_2),\ldots,p_n=(x_n,y_n)$ that starts and ends at the x-axis, i.e., $y_1=y_n=0$.

Furthermore, the convex curve is at the first quadrant.

The query point $q_1, \ldots q_m$ are at the second quardrant.

Please compute the tagent points of the query points at the convex curve.

Hint: You may want to use the **cross-product** of 2D-vectors to design a test for tangent points.

Input

The first line contains two integers n, m.

Then there are n lines, each of which contains two integers x_i and y_i , the coordinates of the p_i .

After that, there are m lines, one for each query point. Each of the m lines contains two integers x and y, the coordinate of the query points.

It is guaranteed that $p_1, \dots p_n$ form an upper convex curve that starts and ends at the x-axis.

You may also assume the following.

- $3 \le n \le 10^5$
- $1 \le m \le 10^5$
- $0 \le x_i, y_i, y \le 10^8$
- $-10^5 \le x < 0$
- x_1, x_2, \ldots, x_n is non-decreasing.
- $y_1 = y_n = 0$

Output

For each query point, print the index of the tangent points at the convex curveof the query points. If there are multiple solutions, print the one with the smallest index.

Constraints

- $3 \le n \le 10^5$
- $1 \le m \le 10^5$
- $0 \le x_i, y_i, y \le 10^8$
- $-10^5 \le x < 0$
- x_1, x_2, \ldots, x_n is non-decreasing.
- $y_1 = y_n = 0$

Example

Input1

- 3 4
- 0 0
- 0 10
- 10 0
- -1 0
- -1 5
- -1 11
- -1 12

Output1:

2

2

2

3

Input2:

4 7

0 0

0 10

100 10

100 0

-1 0

-10 0

-100000 0

-100000 100000

-10 10

-11 11

-1 11

Output2:

2

2

2

3

2

3