ACT-11302 Cálculo Actuarial III

Primavera 2019 C.U.: 152037 Tarea 05 12/Mar/2019

Fecha de entrega: 19/Mar/2019

Consideren la clase del martes 12 de marzo de 2019.

1. Complementen con reflexiones propias las observaciones mencionadas en las secciones 2.3.4 y 3.1 del laboratorio.

Nombre: Augusto Brogno Corona

2.3.4

Se puede apreciar una tendencia a la baja de el ultimo estadístico de orden lo que hace que baje el rango general y el del 3er cuartil. Al mismo tiempo se puede observar que va a la alza el numero de suscripción mientras que el numero de siniestros fue bajando entonces se podría considerar un cambio a la baja en la frecuencia

3.1.4

Por lo comentado anteriormente seria necesario hacer inferencia sobre cada vector de parámetros anualmente

2. Respecto a la sección 3.3, grafiquen la verosimilitud (o logverosimilitud) para $(\theta, lambda)$ con base en los datos de 2005-2007. Grafiquen tambiéen las curvas de nivel de la verosimilitud e identifiquen clases de equivalencia estadística para los parámetros.

2.

```
max <- -100000000000000000
for(g in 1:G)
  loglik_grid[g] <-</pre>
loglikelihood(thetalambda_grid[g,1],thetalambda_grid[g,2],data_n,d
ata_J, data_xsum)
  if(max<loglik_grid[g]){</pre>
  max<-loglik_grid[g]
  k<-g
theta_sstar <- thetalambda_grid[k,1]</pre>
lambda_sstar <- thetalambda_grid[k,2]</pre>
theta_sstar
lambda_sstar
                                                               A X
 [1] -1493346
 [1] 0.01
 [1] 1
```

No logre instalar ggplot2 en mi computadora Mac

3. Respecto a la seccion 3.4, comenten acerca de los supuestos que propician que el EMV (extimador máximo verosímil) de (θ, λ) conjunto pueda calcularse por separado. Comenten qué condiciones harían que el cálculo no pueda hacerse por separado.

$$\begin{split} &L(\theta,\lambda) = f(\theta)g(\lambda) \\ &\Rightarrow \frac{\delta ln(L(\theta,\lambda))}{\delta \theta} = 0 \iff \frac{\delta ln(f(\theta))}{\delta \theta} = 0 \\ &\Rightarrow \frac{\delta ln(L(\theta,\lambda))}{\delta \lambda} = 0 \iff \frac{\delta ln(g(\lambda))}{\delta \lambda} = 0 \end{split}$$

Lo cual es equivalente a encontrar los puntos críticos de las funciones por separado

Si $L(\theta,\lambda)$ no se pudiera separar se tendrian que maximizar los parametros al mismo tiempo