Medios físicos para la Transmisión de datos

Miguel Ángel López Gordo Teoría de la Señal, Telemática y Comunicaciones UGR, Mayo 2018, malg@ugr.es

- Estándares de Ethernet
- Cable de cobre
 - Par trenzado
 - Terminaciones
 - Tipos
 - Características
 - Ejemplos
- Fibra optica
 - Detalles constructivos
 - Tipos
 - Dispersión modal en fibra multimodo
 - Características óptico-eléctricas
 - Ejemplos

- Límites a la velocidad de los datos
- Ejercicios
- Bibliografía

Estándares de Ethernet

Standard	Specification	Length (m)	Cable Type	Pairs Required
10Base5	802.3	500	50-Ohm thick coaxial cable	_
10Base2	802.3	185	50-Ohm thin coaxial cable	_
10BaseT	802.3	100	Category 3, 4, or 5 UTP	2
10BaseFL	802.3	2000	Fiber	1
100BaseTx	802.3u	100	Category 5 UTP	2
100BaseT4	802.3u	100	Category 3 UTP	4
100BaseT2	802.3u	100	Category 3, 4, or 5UTP	2
100BaseFx	802.3u	400/2000	MM fiber	1
100BaseFx	802.3u	10,000	SM fiber	1
1000BaseSx	802.3z	220-550	MM fiber	1
1000BaseLx	802.3z	3000	SM or MM fiber	1
1000BaseCx	802.3z	25	Shielded copper	2
1000BaseT	802.3ab	100	Category 5 UTP	4

Ethernet Standards

The Evolution of Ethernet Standards to Meet Higher Speeds								
Date	IEEE Std.	Name	Data Rate	Type of Cabling				
1990	802.3i	10BASE-T	10 Mb/s	Category 3 cabling				
1995	802.3u	100BASE-TX	100 Mb/s*	Category 5 cabling				
1998	802.3z	1000BASE-SX	1 Gb/s	Multimode fiber				
	802.3z	1000BASE-LX/EX		Single mode fiber				
1999	802.3ab	1000BASE-T	1 Gb/s*	Category 5e or higher Category				
2003	802.3ae	10GBASE-SR	10 Gb/s	Laser-Optimized MMF				
	802.3ae	10GBASE-LR/ER		Single mode fiber				
2006	802.3an	10GBASE-T	10 Gb/s*	Category 6A cabling				
2015	802.3bq	40GBASE-T	40 Gb/s*	Category 8 (Class I & II) Cabling				
2010	802.3ba	40GBASE-SR4/LR4	40 Gb/s	Laser-Optimized MMF or SMF				
	802.3ba	100GBASE-SR10/LR4/ER4	100 Gb/s	Laser-Optimized MMF or SMF				
2015	802.3bm	100GBASE-SR4	100 Gb/s	Laser-Optimized MMF				
2016	SG	Under development	400 Gb/s	Laser-Optimized MMF or SMF				
Note:	Note: *with auto negotiation							

Cable de cobre. Par trenzado Terminaciones

Estándar

- T568A
- T568B

Conector RJ45

Cable de cobre. Par trenzado. Tipos

U/UTP cable without any shielding

SF/UTP cable with over all foil shielding and braiding

F/UTP cable with over all foil shielding

S/FTPCable with pairs in metal foil, over all foil shielding and braiding

S/FTP:

overall braid screen (S), elements foil screened (FTP)

F/UTP:

overall foil screen (F), elements unscreened (UTP)

SF/UTP:

overall braid and foil screen (SF), elements unscreened (UTP)

U/UTP:

no overall screen (U), elements unscreened (UTP)

Cable de cobre. Par trenzado. Características

CAT5, CAT5e, and CAT6 UTP (Solid Cable) Specifications Comparison							
	Category 5	Category 5e	Category 6				
Frequency	100 MHz	100 MHz	250 MHz				
Return Loss (Min. at 100MHz)	16.0 dB	20.1 dB	20.1 dB				
Characteristic Impedance	100 ohms ± 15%	100 ohms ± 15%	100 ohms ± 15%				
Attenuation (Min. at 100 MHz)	22 dB	22 dB	19.8 dB				
Next (Min. at 100MHz)	32.3 dB	35.3 dB	44.3 dB				
PS-Next (Min. at 100MHz)	no specification	32.3 dB	42.3 dB				
ELFEXT (Min. at 100 MHz)	no specification	23.8 dB	27.8 dB				
PS-ELFEXT (Min. at 100 MHz)	no specification	20.8 dB	24.8 dB				
Delay Skew (Max. per 100 m)	no specification	45 ns	45 ns				

Cable de cobre. Par trenzado . Ejemplos

Fibra óptica.

Detalles constructivos

Ventanas de comunicaciones

Fibra óptica. Tipos

Multimodo (50-62.5/125 μm)

^{*}El escalonado provoca pérdidas adicionales por refracción, dando lugar a peores prestaciones que el gradual

Fibra óptica. Dispersión modal en fibra multimodo

- Este fenómeno sólo ocurre en F.O. multimodo
- Afecta al pulso digital a la salida de la fibra
 - Lo ensancha, haciendo que los bits se solapen
 - Lo deforma, provocando errores de bits en recepción
- Causa limitación en la distancia y tasa de bit máximas del enlace
- Es un parámetro de calidad de la F.O. Se suele expresar en unidades de MhzKm. Cuanto más mejor
- Diseño: En un enlace, se puede intercambiar distancia (Km) por ancho de banda (MHz),
 siempre que su producto no sobrepase el parámetro dado por el fabricante

Fibra óptica. Características óptico-eléctricas

Núcleo/revestimiento (cladding)	Atenuación	Ancho de banda	Aplicaciones/Notas	
Monomodo	@1310/1550 nm	@1310/1550 nm		
9/125 micrones (OS1, B1.1, o G.652)	0.4/0.25 dB/km	~100 Terahertz	Fibra estándar monomodo, telecomunicaciones /TV por cable, redes LAN de larga distancia y alta velocidad	
9/125 micrones (OS2, B1.3, o G.652)	0.4/0.25 dB/km	~100 Terahertz	Fibra de "pico de agua reducido" (LWP)	
9/125 micrones (B2, o G.653)	0.4/0.25 dB/km	~100 Terahertz	Fibra con dispersión desplazada (DSF)	
9/125 micrones (B1.2, o G.654)	0.4/0.25 dB/km	~100 Terahertz	Fibra con corte desplazado (CSF)	
9/125 micrones (B4, o G.654)	0.4/0.25 dB/km	~100 Terahertz	Fibra con dispersión desplazada no nula (NZ-DSF)	
Multimodo de índice gradual	@850/1300 nm	@850/1300 nm		
50/125 micrones (OM2)	3/1 dB/km	500/500 MHz-km	Para láser para redes LAN GbE	
50/125 micrones (OM3)	3/1 dB/km	2000/500 MHz-km	Optimizada para VCSEL de 850 nm	
50/125 micrones (OM4)	3/1 dB/km	4700/500 MHz-km	Optimizada para VCSEL de 850 nm >10Gb/s	
62.5/125 micrones (OM1)	3/1 dB/km	160-200/500 MHz-km	Fibra para red LAN (FDDI)	
De índice escalonado	@850 nm	@850 nm		
200/240 micrones	4-6 dB/km	50 MHz-km	Núcleo de vidrio con revestimiento (cladding) de plástico	

Fibra óptica. Ejemplos

 $Table\ 11\text{--}5.\ Optical\ specifications\ for\ 10GBASE\text{--}S$

Fiber type	Minimum modal bandwidth at 850 nm (MHz-km)	Channel insertion loss (dB)	Operating range (m)	
62.5 µm ММF	160	1.6	2 to 26	
62.5 µm ММF (ОМ1)	200	1.6	2 to 33	
50 μm MMF	400	1.7	2 to 66	
50 μm MMF (OM2)	500	1.8	2 to 82	
50 μm MMF (OM3)	2,000	2.6	2 to 300	
50 μm MMF (OM4)	4,700	2.9	2 to 400	

Table 11-6. Optical specifications for 10GBASE-LX4

Optical type	Modal bandwidth (MHz-km)	Channel insertion loss (dB)	Operating distance
62.5 µm MMF	500	2.0	300 m
50 μm MMF	400	1.9	240 m
50 μm MMF	500	2.0	300 m
10 μm SMF	n/a	6.2	10 km

ESI	DE	CΙ	\mathcal{C}^{N}	C١	\cap	V١	EC
LJ		CI.	CH	u	U	N	LJ

ESPECIFICACIONES							
Fibra óptica							
G.652D G.657A1 G.657A2 OM1, OM2, OM3							
Total de fibras							
	6-12						
Tipo d	Tipo de la fibra						
			Multimo	do	Mo	onomodo	
			62.5/12	5			
			50/125	5		9/125	
			50/125 C	M3			
Diáme	etro del ca	ble					
5.2 mm ±0.3 (6 fibers)							
			6.5	mm ±0).3 (1)	2 fibers)	
Protec	cción						
				LS	ZH		
				ibras (de vidr	io	
Códig	o de color	es del buffer aj	justado				
			1. Azul			7. Rojo	
			2. Naranj	a	(B. Negro	
			3. Verde		(9. Amarillo	
			4. Marrói	n	1	0. Morado	
			5. Gris		11. Rosa		
			6. Blanco)	1	2. Aqua	
Total Fibras	Peso (kg/km)	Ø del bufer (mm)	Longitud Máx. (m)		oportada N)	Rango de Temperatura (°C)	
6	40	0.85 ± 0.05	4000	12	00	-60°C +85°C	
12	40	0.85 ± 0.05	4000	1500 -60°C +85°C			

Fibra óptica. Ejemplos

Tipo de fibra	Buffer (µm)	C	oeficiente d (db/		Ancho de banda (MhzKm)			
		850nm	1300nm	1310nm	1550nm	850nm	1300nm	
62.5/125	250	≤ 2.7	≤ 0.6	-	-	200	600	
50/125	250	≤ 2.3	≤ 0.6	-	-	500	500	
9/125	250		-	≤0.34	≤0.20	-	-	
Cable			6			12		
Fibras		6 or 12, 250μm multimodo o monomodo com fibras ajustadas en 900μm, individualmente indentificadas por color [OD 0.9 ±0.05mm].						
Hilos de fibra de vidrio		4X1200te aplicado	istente al ag ex o equival longitudina na helicoidal	ente, Imente	5X1200te aplicado	istente al ag ex o equivale longitudinal na helicoidal.	ente, mente	
Jacket		Ø externo nominal de 5.2mm y Ø interno 3.2mm (±0.3mm),				Ø externo nominal de 6.5mm y Ø interno 4.5mm (±0.3mm),		
		con cubierta LSZH impresa en			con cubie	con cubierta LSZH impresa en		
		color neg	ıro.		color neg	color negro.		

Límites a la velocidad de los datos

La velocidad de los datos (bps) depende de tres factores

- -BW disponible (Hz)
- -Niveles de las señales que se usan (tipo de modulación/codificación)
- -Calidad del canal de transmisión (SNR)
- Fórmula de Nyquist: En el caso de un canal de transmisión sin ruido, donde L es El número de niveles usados para codificar cada símbolo

 Capacidad de canal de Shannon: En el caso de un canal con ruido, entonces la capacidad máxima del canal para transmitir información es

$$C(bps)=BW(Hz)*log_2(1+SNR(u.n.))$$

La capacidad de canal de Shannon nos da el límite superior al que podemos aspirar, la fórmula de Nyquist nos dice el número de niveles necesarios para alcanzarla

Límites de la velocidad de los datos

Ejemplo: Las gráficas muestran la capacidad máxima teórica de transmisión según Shannon para un canal de SNR=7 y para otro de BW=10Mhz. El cómo se alcanza el máximo teórico dependerá de aspectos como la modulación usada.

Ejercicios

• Dado un canal sin ruido con un BW de 3KHz que transmite una señal con dos niveles. ¿Cuál es la velocidad máxima que puede alcanzar?

• Se necesitar enviar 1Gbps por un canal con ruido (SNR=15) y con un BW de 250 MHz. ¿Es esto posible? ¿Cuántos niveles de señal son necesarios?

• Una F.O. multimodo tiene una dispersión modal de 2000MHzKm. Se quiere usarla para unir la ETSIIT con el CITIC-UGR, que está a unos 100m usando una fuente de luz en la primera ventana (850 nm). ¿Cuál sería el máximo ancho de banda (MHz) que puede transmitir? ¿En ausencia de ruido, cuántos niveles habría que usar para alcanzar 40Gbps? ¿Qué estándares habría que utilizar?

• De cara a recibir la máxima potencia posible de señal, a partir de qué distancia compensaría usar F.O., monomodo si las pérdidas de inserción son 6.2 y 2.9 dB y la atenunación son 0.2 y 1.2 dB/Km respectivamente para monomodo y multimodo?

Bibliografía

• Transmisión de datos y redes de comunicaciones, 4º Edición. Behrouz A. Forouzan. Mc Graw Hill, 2007, ISBN 978-07-296775-3