Lokal Arama Algoritmaları

Mehmet Fatih AMASYALI Yanay Zeka Ders Notları

YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Lokal Arama Algoritmaları Local search algorithms

- Birçok optimizasyon probleminde, hedefe giden yol / uygulanan hareketler önemsizdir. Hedef durumun kendisi istenen çözümdür.
- Amaç arama uzayında istenen kısıtlara / özelliklere sahip / fayda fonksiyonunu maksimum yapan durumu bulmaktır. Örnek: nvezir, zirve bulmak
- Bu durumlarda lokal arama algoritmaları kullanılır.
- Hafızada sadece mevcut durumu tut. Onu düzeltmeye çalış.
- · Çok az hafıza gereksinimi

Mehmet Fatih AMASYALI Yapay Zeka Ders Notlar

n-vezir *n*-queens

- N veziri *n* × *n* lik bir satranç tahtasına hiçbiri birbirini tehdit etmeyecek şekilde yerleştir.
- Hiçbir satır sütun ve diyagonalde birden fazla vezir olmamalı.
- Bir durumdan başla onu iyileştirerek devam et.

Mehmet Fatih AMASYALI Yapay Zeka Ders Notları

YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Tepe Tirmanma Hill Climbing

- Yoğun bir siste, Everest Dağına tırmanmaya benzer. Sadece etkin durumun bilgisini tutar.
- Ana düşünce : Her zaman, şimdiki durumu en fazla geliştiren yönde adım at.
- · Best-first Search'e benzer.
- Öğrenme algoritmalarında (ör: YSA) popülerdir.
- Yaylada ve sıralı tepelerde şaşabilir.

Mehmet Fatih AMASYALI Yapay Zeka Ders Notlar

Çok nadiren

Genelde

Mehmet Fatih AMASYALI Yanay Zeka Ders Notlar

YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Tepe Tırmanma Algoritması*

 $\textit{current} \leftarrow \texttt{MAKE-NODE}(\texttt{INITIAL-STATE}[\textit{problem}]) \\ \textbf{loop do} \\$

 $neighbor \leftarrow$ a highest valued successor of current if VALUE $[neighbor] \leq VALUE[current]$ then return STATE[current] $current \leftarrow neighbor$

[*] https://github.com/aimacode/aima-pseudocode/blob/master/md/Hill-Climbing.md

Mehmet Fatih AMASYALI Yapay Zeka Ders Notları

Tepe Tırmanmanın Problemleri

- İlk duruma bağlı
- Lokal maksimum, plato ve sırtlara takılabilir

Mehmet Fatih AMASYALI Yapay Zeka Ders Notları

YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

8-Vezir problemini Tepe Tırmanma ile çözmek

- Herbir sütuna bir rasgele bir vezirle başla. Her bir adımda sadece bir veziri sadece aşağı ya da yukarı x adım hareket ettirerek çözümü ara
- h = birbirini tehdit eden vezir çifti sayısı
- Yukarıdaki tahta / durum için h = 17

Mehmet Fatih AMASYALI Yapay Zeka Ders Notları

8-vezir çözüm örneği

• h = 1

Mehmet Fatih AMASYALI Yanay Zeka Ders Notlar

YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

8-vezir'de Tepe Tırmanmanın performansı

- Rasgele başlangıç değerleriyle
- Denemelerin %14'ünde çözer
- %86'sında lokal bir maksimuma takılır
- $8^8 = 2^24 \sim 17$ milyon durum

Mehmet Fatih AMASYALI Yapay Zeka Ders Notları

Bazı Çözüm Alternatifleri

- Tepe tırmanmayı farklı başlangıçlarla tekrarlamak - Random-restart hill climbing
- Benzetimli Tavlama- Simulated annealing
- Paralel Tepe Tırmanma Local beam search

Mehmet Fatih AMASYALI Yapay Zeka Ders Notları

YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Benzetimli Tavlama- Simulated annealing

- Ana fikir : Yerel Maksimum'dan kaçmak için, istenmeyen hareketlere izin ver.
- Rasgele bir hareket üret. İyileşme varsa kabul et. Yoksa zamanla ve kötüleşme miktarıyla azalan bir olasılıkla kabul et.
- Zaman içinde rasgele hareketin boyutu (yeni noktanın uzaklığı bir dağılımdan üretilirse) ve kabul olasılığı azaltılır.

Mehmet Fatih AMASYALI Yapay Zeka Ders Notlar

Benzetimli Tavlama Algoritması*

function SIMULATED-ANNEALING(*problem,schedule*) **returns** a solution state

inputs: problem, a problem

schedule, a mapping from time to "temperature"

current ← MAKE-NODE(*problem*.INITIAL-STATE)

for t = 1 to ∞ do

 $T \leftarrow schedule(t)$

if T = 0 then return current

next ← a randomly selected successor of current

 $\Delta E \leftarrow next.VALUE - current.VALUE$

if $\Delta E > 0$ then current \leftarrow next (iyileşme varsa kesin kabul)

else *current* ← *next* only with probability e^{ΔE/T} (iyileşme yoksa belki)

Schedule: T=T₀*0.95^t

Belki, kötüleşme miktarına (ΔE) ve geçen zamana bağlı

t] https://github.com/aimacode/aima-pseudocode/blob/master/md/Simulated-Annealing.md

Mehmet Fatih AMASYALI Yanay Zeka Ders Notları

VII DIZ TEKNÍK ÜNÍVEDSÍTESÍ BÍLGÍSAVAD MÜHENDÍSLÍĞÍ BÖLÜMÜ

Paralel Tepe Tirmanma - Local beam search

- Ana Fikir: Tek bir durumu izlemek yerine K taneyi izle
- K adet rasgele üretilmiş durumla başla
- Her bir iterasyonda k durumun hepsiden gidilebilecek tüm durumları üret.
- Bu durumlardan biri hedefse dur. Değilse, en iyi k tanesini mevcut durumlar olarak ata ve bir önceki adıma dön.

Mehmet Fatih AMASYALI Yapay Zeka Ders Notlar

Bozuk TV

- Televizyonunuzun görüntüsü bozuk.
- Görüntü ayarı için 4 kontrol düğmesi var.
- Her bir düğmenin 100 farklı pozisyonu var.
- Nasıl bir yol izlersiniz?
- Peki ya kasa açsanız 😊

Mehmet Fatih AMASYALI Yapay Zeka Ders Notları

YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Ayrık / sürekli uzaylar

- Ayrık uzayda lokal arama: Bir noktadan gidilebilecek noktaların sayısı sınırlı. Hepsi denenebilir © (8 vezir, labirent, çizge).
- Sürekli uzayda lokal arama: Bir noktadan sonsuz noktaya gidilebilir. Hepsi denenemez
 Hangi yöne, ne kadar? Eğim bize yol gösterir
 (gradient descent, konveks opt., YSA opt.)

$$f(x_1, x_2) = x_1^2 + 2x_2^2$$

Mehmet Fatih AMASYALI Yapay Zeka Ders Notları

Uygulama: bir alanı tarama

- Amaç: N*N lik bir alanda 8 yöne hareket, N*N-1 adet hareket, minimum açıda dönüşle maksimum alanı gez
- Hareketler arası açı miktarı az olsun, yumuşak dönüşler yapsın.
- İyilik fonksiyonu 2 bileşene sahip: min(açı) ve max(alan)
- Temsil: (N*N-1) adet 0-8 arası yönleri belirten sayılar

Mehmet Fatih AMASYALI Yapay Zeka Ders Notlar

YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Tepe Tırmanma ile

tepe tirmanma tarama 1robot.m

- Rasgele bir çözümle başla
- G kez:
 - Çözümden (%mu kadar) rasgele değişiklerle P adet yeni çözüm üret
 - Üretilen çözümlerin iyilik değerlerini hesapla
 - · Dönüş açılarını topla, gidilen farklı nokta sayısını topla
 - Üretilenlerden en iyisi mevcuttan iyi ise çözüme ata, mu oranını azalt, kötü ise mu oranını arttır
 - tk_max kez daha iyisi üretilmediyse çözümü rasgele başlat

Mehmet Fatih AMASYALI Yapay Zeka Ders Notları

Kaynaklar

http://aima.cs.berkeley.edu/figures.pdf

Mehmet Fatih AMASYALI Yapay Zeka Ders Notları