Лабораторная работа 2.1 Приближение табличных функций

- 1. Дана функция (по вариантам).
- 2. Выбрать интервал непрерывности. Запрограммировать функцию, которая по заданным границам отрезка, количеству точек и аналитической функции получает сетку и сеточную функцию

$$[x_h, y_h] = nodes(a,b,n,f)$$

Предусмотреть выбор между равномерной и Чебышевской сетками

- 3. Запрограммировать вычисление значений полинома (по вариантам) для приближения функции в заданных точках
 - а. Полином Лагранжа
 - б. Полином Ньютона слева-направо (вперед)
 - в. Полином Ньютона справа-налево (назад)
 - г. Полином Эрмита по формуле
 - д. Полином Эрмита через разделенные разности

Замечание 1. Для варинтов б), в) и г) разделенные разности вычислять в отдельной функции

- 4. Проверить совпадение значений построенного полинома и заданной функции в узлах сетки
- 5. При проведении контрольных тестов построить
 - а. Графики на отрезке
 - функции и
 - полинома с отмеченными узлами для фиксированного числа узлов (не больше 8)
 - б. Зависимость фактической ошибки разности функции и полинома на отрезке для этого же числа узлов
 - в. Зависимость максимальной фактической ошибки от числа узлов (максимум берется по средним точкам между узлами)

Замечание 2. Ошибку на отрезке строить без логарифмического масштаба

Замечание 3. Для п.в ошибка для максимального числа узлов должна быть того же порядка, что и для минимального

- 6. * Исследование сходимости полинома
 - а. Ошибка в фиксированной точке (дополнение графика п.5в)
 - б. Чебышевская и равномерная сетки на примере построенных графиков
 - в. Теоретическая ошибка (дополнение графика п.5б)
 - г. Негладкая функция на примере построенных графиков
 - д. Полином на примере построенных графиков

Варианты функции

1.
$$f(x) = x - \sin x - 0.25$$
;

2.
$$f(x) = x^3 - e^x + 1$$
;

3.
$$f(x) = \sqrt{x} + \cos x;$$

4.
$$f(x) = x^2 + 1 - \arccos x$$
;

5.
$$f(x) = \lg x + \frac{7}{2x+6}$$
;

6.
$$f(x) = tg(0.5x + 0.2) - x^2;$$
 18. $f(x) = x^2 - 1 - \ln x;$

7.
$$f(x) = 3x - \cos x - 1$$
;

8.
$$f(x) = x + \lg x + 0.5$$
;

9.
$$f(x) = x^2 - \arcsin(x - 0.2);$$

10.
$$f(x) = x^2 + 4\sin x - 2$$
;

11.
$$f(x) = \operatorname{ctg} x + x^2$$
;

12.
$$f(x) = \operatorname{tg} x - \cos x + 0.1;$$

13.
$$f(x) = x \ln(x+1);$$

14.
$$f(x) = x^2 - \sin 10x$$
;

15.
$$f(x) = \operatorname{ctg} x - x;$$

16.
$$f(x) = \operatorname{tg} 3x + 0.4 - x^2$$
;

17.
$$f(x) = x^2 + 1 - \operatorname{tg} x;$$

18.
$$f(x) = x^2 - 1 - \ln x$$

19.
$$f(x) = 0.5^x + 1 - (x - 2)^2$$
;

20.
$$f(x) = (x+3)\cos x - 1;$$

21.
$$f(x) = x^2 \cos 2x + 1;$$

22.
$$f(x) = \cos(x + 0.3) - x^2$$
;

23.
$$f(x) = 2^x(x-1)^2 - 2$$
;

24.
$$f(x) = x \ln(x+1) - 0.5$$
.

Указания к работе 2.1.

1. Постановка задачи. Дан набор точек (x_0, y_0) , (x_1, y_1) , ..., (x_n, y_n) . Задача алгебраической интерполяции. Найти такой полином **P** (**x**), который проходит через заданную систему точек $P(x_i) = y_i$, $i = \overline{0, n}$

Условия на точки. Чтобы полином был единственным, его степень должна быть на единицу меньше количества точек (или условий, что одно и тоже) ($\mathbf{n+1}$ — число точек, \mathbf{n} — степень) и все точки должны быть попарно различны

1.2. Постановка для построения полинома Эрмита. Дан набор точек $(x_0, y_0, y_0'), (x_1, y_1, y_1'), \dots, (x_n, y_n, y_n')$, в который дополнительно входят значения производных в узлах. Задача найти такой полином $\mathbf{P}(\mathbf{x})$, который проходит через заданную систему точек $P(x_i) = y_i, i = \overline{0,n}$, и имеет в узлах заданные наклоны $P'(x_i) = y_i', i = \overline{0,n}$

Здесь единственный полином будет степени на единицу меньше количества условий (не точек!) (2n+2 — условия, 2n+1 — степень). Попарное различие так же является необходимым

Важно! Полином единственный, а методов построения может быть несколько

- 2. Методы построения
- 2.1. Интерполяционный полином Лагранжа

$$L_n(x) = \sum_{k=0}^{n} y_k \prod_{i \neq k} \frac{(x - x_i)}{(x_k - x_i)}$$

2.2. Формула Ньютона для интерполирования вперед

$$P_n(x) = y(x_0) + (x - x_0)y(x_0, x_1) + (x - x_0)(x - x_1)y(x_0, x_1, x_2) + \dots$$

...+
$$(x-x_0)(x-x_1)...(x-x_{n-1})y(x_0,x_1,...,x_n) = \sum_{i=0}^n y(x_0,x_1,...,x_i) \prod_{k=0}^{i-1} (x-x_k)$$

2.3. Формула Ньютона для интерполирования назад

$$P_n(x) = y(x_n) + (x - x_n)y(x_n, x_{n-1}) + (x - x_n)(x - x_{n-1})y(x_n, x_{n-1}, x_{n-2}) + \dots$$

$$\dots + (x - x_n)(x - x_{n-1})\dots(x - x_1)y(x_0, x_1, \dots, x_n) = \sum_{i=0}^n y(x_{n-i}, x_{n-i+1}, \dots, x_n) \prod_{k=n-i+1}^n (x - x_k)$$

Разделенной разностью первого порядка называется величина $y(x_i, x_j) = \frac{y_j - y_i}{x_i - x_i}$.

Разделенные разности второго и третьего порядка определяются аналогично

$$y(x_i, x_j, x_k) = \frac{y(x_j, x_k) - y(x_i, x_j)}{x_k - x_i}, \quad y(x_i, x_j, x_k, x_l) = \frac{y(x_j, x_k, x_l) - y(x_i, x_j, x_k)}{x_l - x_i}$$

Приведенные формулы НЕ РАСЧЕТНЫЕ – это определение

Tiphibodomible dopmytibitie Title Tible Total onpodestation									
		1пор	2пор	Зпор	4пор	5пор			
2	7 0	$y(x_0,x_1)$	$\mathbf{y}(\mathbf{x}_0,\mathbf{x}_1,\mathbf{x}_2)$	$\mathbf{y}(\mathbf{x}_0,\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3)$	$y(x_0, x_1, x_2, x_3, x_4)$	$y(x_0,x_1,x_2,x_3,x_4,x_5)$			
2	71	$y(x_1,x_2)$	$y(x_1,x_2,x_3)$	$y(x_1,x_2,x_3,x_4)$	$y(x_1, x_2, x_3, x_4, x_5)$				
7	7 2	$\mathbf{y}(\mathbf{x}_2,\mathbf{x}_3)$	$y(x_2,x_3,x_4)$	$y(x_2,x_3,x_4,x_5)$					
7	7 3	$y(x_3,x_4)$	$y(x_3,x_4,x_5)$						
7	7 4	$y(x_4,x_5)$							
7	7 5								

Для полинома вперед необходимо вычислить все разности в первой строке. Для полинома назад – все разности на диагонали (красные клетки таблицы). Всего для вычисления полинома нужно (n+1) разность (включая значение функции). Разности вычисляются по столбцам, слева направо, Т.к. в разности не входит координата, в которой вычисляется значение полинома, все разности вычисляются заранее в отдельной функции, и запоминается только необходимый массив.

2.4. Полином Эрмита (по формуле)

$$H_{2n+1}(x) = \sum_{j=0}^{n} \left\{ (x - x_j) y_j' + \left(1 - 2 \sum_{\substack{k=0 \ k \neq j}}^{n} \frac{x - x_j}{x_j - x_k} \right) y_j \right\} \prod_{\substack{i=0 \ i \neq j}}^{n} \left(\frac{x - x_i}{x_j - x_i} \right)^2$$

Степень полинома Эрмита почти в 2 раза выше, чем степень полиномов Лагранжа и Ньютона, если все они построены на сетках с одинаковым числом узлов (т.к. увеличилось количество условий)

2.4. Полином Эрмита (через разделенные разности)

$$\begin{split} H_5(x) &= y(x_0) + (x - x_0)y_0' + (x - x_0)^2 y(x_0, x_0, x_1) + (x - x_0)^2 (x - x_1)y(x_0, x_0, x_1, x_1) + \\ &+ (x - x_0)^2 (x - x_1)^2 y(x_0, x_0, x_1, x_1, x_2) + (x - x_0)^2 (x - x_1)^2 (x - x_2)y(x_0, x_0, x_1, x_1, x_2, x_2) \end{split}$$

Стротся таблица разделенных разностей, каждая точка повторяется столько раз, сколько условий в ней задано. Формула для вычисления разностей не меняется. В тех клетках, где нельзя вычислить отношение (из-за деления на 0) пишется соответствующая производная с коэффициентом

ocorbororby location in position of the opposition of the control										
	1пор	2пор	Зпор	4пор	5пор					
Y 0	У'0	$y(x_0,x_0,x_1)$	$\mathbf{y}(\mathbf{x}_0,\mathbf{x}_0,\mathbf{x}_1,\mathbf{x}_1)$	$y(x_0,x_0,x_1,x_1,x_2)$	$y(x_0,x_0,x_1,x_1,x_2,x_2)$					
Υo	$y(x_0,x_1)$	$\mathbf{y}(\mathbf{x}_0,\mathbf{x}_1,\mathbf{x}_1)$	$y(x_0,x_1,x_1,x_2)$	$y(x_0, x_1, x_1, x_2, x_2)$						
Y 1	Y'1	$\mathbf{y}(\mathbf{x}_1,\mathbf{x}_1,\mathbf{x}_2)$	$y(x_1,x_1,x_2,x_2)$							
Y 1	$y(x_1,x_2)$	$y(x_1,x_2,x_2)$								
Y 2	Y 2									
Y 2										
	y'/1!	y''/2!	y'''/3!							

См. книгу «Березин И.С, Жидков Н.П. - Методы вычислений - 1 (1962)» параграф 11 п.4 и п.5. В книге полином имеет название: обобщенный полином Ньютона для кратных узлов

3. Сетки

Равномерная
$$x_i \in [a,b]$$
 $x_i = a + \frac{b-a}{n}i$, $i = \overline{0,n}$

Чебышевская
$$t_k \in [-1,1]$$
 $t_k = \cos \frac{\pi(2k+1)}{2(n+1)}, \quad k = \overline{0,n}$ и $x_k \in [a,b]$ $x_k = \frac{a+b}{2} + \frac{b-a}{2}t_k, \quad k = \overline{0,n}$

Границы отрезка являются узлами равномерной сетки и НЕ принадлежат сетке Чебышева. Сетка Чебышева (как и равномерная) является симметричной.

4. Исследование зависимости **ошибки от количества узлов**. Ошибка зависит от значений производной исходной функции на отрезке, количества узлов и их расположения

$$|f(x) - P(x)| = |f^{(n+1)}(\eta)| \frac{\left| \prod_{i=0}^{n} (x - x_i) \right|}{(n+1)!} = |f^{(n+1)}(\eta)| \frac{|\omega_{n+1}(x)|}{(n+1)!}$$

На равномерных сетках при увеличении количества узлов дробь сначала уменьшается, но после некоторого количества узлов начинает увеличиваться.

На сетке Чебышева дробь с увеличением количества узлов уменьшается, поэтому поведение ошибки зависит только от значения производной

По построенному графику должно быть видно поведение ошибки:

- уменьшается до машинной точности и продолжает колебаться около эти значений
- уменьшается до определенных значений, потом с той же скоростью начинает увеличиваться, и в какой-то момент становится больше первоначальной ошибки
- уменьшается до машинной точности, колеблется около этих значений и медленно начинает расти (рост много медленней, чем убывание)

Схема отчета по работам 2.1

- **0. Титульный лист:** Номер и название работы, номер группы, фамилия студента, фамилия преподавателя. Можно один на все работы, можно на каждую свой
- 1. (+1балл) Формулировка задачи и ее формализация.
 - а) формулировка задачи: задание, которое написано в работе (кратко)
 - б) формализация: в общем виде сказать, что будем решать. Ввести некоторые обозначения (сетка, сеточная функция, полином)
- 2. (+1балл) Алгоритм метода и условия его применимости (с формулами).
 - а) алгоритм метода по пунктам создание сетки и сеточной функции НЕ входит в алгоритм
 - б) условия применимости метода
- 3. (+1балл) Предварительный анализ задачи
 - а) Когда существует решение
 - б) Кратко рассказать на каком основании построен полином
 - в) Выбор отрезка, способ создания сетки
- **4. (+1балл) Тестовый пример.** Получить кубический полином в каноническом виде (по степеням **x**), вычислить ошибку в узлах и серединах между узлами
- **5. (+1балл) Подготовка контрольных тестов.** Какие опыты будут проводится и с какой целью:
 - а) выбранный отрезок, число узлов, для которого строятся графики на отрезке 5а и 5б
 - б) до какого числа узлов строится график 5в, как вычисляется максимальная ошибка
 - в) что ожидаем увидеть на графике 5в и почему
- 6. (+1балл) Модульная структура программы

Для варинтов б), в) и г) функция вычисления разделенных разностей обязательна

Функция (название), входные и выходные параметры (обозначение и смысловая характеристика словами), описание действия функции

- 7. (+2балла) Численный анализ решения задачи. Ответить на вопросы по графикам с числовой аргументацией (таблица с результатами не нужна):
 - а) для чего построены зависимости, что по ним можно увидеть
 - б) По графикам 5а и 5б: поведение ошибки в узлах, между узлами, на отрезке в целом
 - в) По графику 5в: почему получился такой вид графика
 - г) Что будет происходить, если еще увеличивать количество узлов
- **8. (+1балл) Краткие выводы.** По результатам проделанных опытов сделать выводы о том, какие свойства задачи (функция, отрезок, число точек) влияют на точность алгебраической интерполяции