Box(-counting) dimension.

A box is an interval in \mathbb{R} , a square in \mathbb{R}^2 , a cube in \mathbb{R}^3 , ...

How many boxes with side ϵ are needed to cover a bounded set X in \mathbb{R}^k ? Denote this number $N(\epsilon)$.

X = unit interval

X = unit square X = unit cube

In each case,

 $N(\epsilon) \approx (1/\epsilon)^1$ $N(\epsilon) \approx (1/\epsilon)^2$ $N(\epsilon) \approx (1/\epsilon)^3$ $d \approx \frac{\ln N(\epsilon)}{\ln(1/\epsilon)}$.

Def. The box(-counting) dimension of a bounded set X in \mathbb{R}^k is

$$\dim_B(X) = \lim_{\epsilon \to 0^+} \frac{\ln N(\epsilon)}{\ln(1/\epsilon)},$$

where $N(\epsilon)$ is the least number of boxed with side ϵ needed to cover X.

If the limit does not exist, we consider the upper and lower box dimensions, $\overline{\dim}_B(X)$ and $\underline{\dim}_B(X)$, defined as the corresponding \liminf and \limsup .

• If the limit along an exponentially decreasing sequence (ϵ_n) equals d, then $\dim_B(X) = d$

Example. C =the Cantor set.

At step n, the set C_n consists of 2^n intervals of length $1/3^n$.

So we take $\epsilon_n = 1/3^n$. Then $N(\epsilon_n) = 2^n$ and $\frac{\ln N(\epsilon_n)}{\ln(1/\epsilon_n)} = \frac{\ln 2^n}{\ln 3^n} = \frac{\ln 2}{\ln 3}$.

Hence $\dim_B(C) = \frac{\ln 2}{\ln 3} = d_{sim}(C)$.

- For the examples we considered, it also holds that $\dim_B = d_{sim}$.
- Box dimension: pluses and minuses.
 - (+) Relatively easy to define and to compute/estimate.
 - (-) The limit does not necessarily exist, and we may only get liminf and limsup.
 - (-) A countable set may have positive box dimension, and so adding countably many points to a set can change its box dimension.
- Hausdorff dimension, $\dim_H(X)$, does not have these drawbacks, but it is harder to define and compute or estimate.

The construction involves covering X by balls of diameter at most ϵ .

- For any bounded set $X \in \mathbb{R}^k$, $\dim_H(X) \leq \underline{\dim}_B(x) \leq \overline{\dim}_B(x) \leq k$.
- For the sets that we considered, $\dim_H(X) = \dim_B(x) = \dim_{sim}(X)$.