

Master Thesis

Jian Wu - xcb479@alumni.ku.dk

Deep Contact

Accelerating Rigid Simulation With Convolutional Networks

Supervisor: Kenny Erleben

August 6th 2018

Abstract

This is a master theis from

Contents

1	Introduction		
	1.1	Motivation	1
	1.2	Thesis Overview	1
2	Rigid Body Dynamics Simulation		
	2.1	Rigid dynamics Simulation	2
	2.2	Contact Forces Solver	2
	2.3		2
3	Partcle-grid-particle		
	3.1	SPH	3
	3.2	Particle to grid	3
	3.3	Grid to particle	3
	3.4	Conclution	3
4	Deep Learning For Simulation		4
	4.1	Convolutional Neural Networks	4
	4.2	CNN Constructure	4
	4.3		4
	4.4	Simulation based on Trained model	

List of Figures

List of Tables

Introdustion

- 1.1 Motivation
- 1.2 Thesis Overview

Rigid Body Dynamics Simulation

This chapter mainly introduces rigid body simulation to help you understand how computer simulate rigid dynamics based on traditional newton-types methods. For more details, some contact forces solvers are decribed in this chapter. Afterwards, we will use one of solver to run some simulation and get the image data for the next step, grids-transfer.

- 2.1 Rigid dynamics Simulation
- 2.2 Contact Forces Solver
- 2.3 Simulation Results

Partcle-grid-particle

- 3.1 SPH
- 3.2 Particle to grid
- 3.3 Grid to particle
- 3.4 Conclution

Deep Learning For Simulation

- 4.1 Convolutional Neural Networks
- 4.2 CNN Constructure
- 4.3 Traing Results
- 4.4 Simulation based on Trained model

[texbook] references.bib