Assignment 4

Due: October 25, 2012

- 1. {Goldberger 14.4} Show that every symmetric idempotent matrix is nonnegative definite.
- 2. What happens when you include an intercept? Consider the following models:

$$y_{i} = \beta_{1} + \beta_{2}x_{i} + \varepsilon_{i}, \qquad i = 1, \dots, n$$

$$y_{i} = \beta_{1} + \beta_{2}(x_{i} - \overline{x}) + \varepsilon_{i}, \qquad i = 1, \dots, n$$

$$y_{i} = \beta_{1}(x_{i} - \overline{x}) + \varepsilon_{i}, \qquad i = 1, \dots, n$$

- (a) Write each model in matrix form.
- (b) Show that $|\mathbf{X}'\mathbf{X}|$ is the same for the first two models.
- (c) Show that $\mathbf{X}\hat{\beta}$ is the same for the first two models, and explain how the estimates of $\hat{\beta}$ for those models are different from the estimate in the final model specification.
- (d) Interpret this result.
- 3. {Goldberger 17.3} Suppose that the $n \times k$ matrix $\mathbf{X} = (\mathbf{X_1}, \mathbf{X_2})$ has full column rank. Let $\mathbf{X_2^*} = \mathbf{M_1X_2}$ be the $n \times k_2$ matrix of residuals from the auxiliary regression of $\mathbf{X_2}$ on $\mathbf{X_1}$. Show that $\mathrm{rank}(\mathbf{X_2^*}) = k_2$. Hint: Use proof by contradiction.
- 4. {Goldberger 15.4} The Classical Regression model applies along with the usual notation. For each of the following statements, indicate whether it is true or false, and justify your answer.
 - (a) The random variable $t = \mathbf{b}'\mathbf{b}$ is an unbiased estimator of the parameter $\theta = \beta'\beta$.
 - (b) Since $\hat{\mathbf{y}} = \mathbf{N}\mathbf{y}$ where $\mathbf{N} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$, it follows that $\mathbf{y} = \mathbf{N}^{-1}\hat{\mathbf{y}}$.
 - (c) Since $E(\hat{\mathbf{y}}) = E(\mathbf{y})$, it follows that the sum of the residuals is zero.
 - (d) If b_1 and b_2 are the first two elements of \mathbf{b} , $t_1 = b_1 + b_2$, and $t_2 = b_1 b_2$, then $V(t_1) \geq V(t_2)$.

5. Suppose you are addressing the question of geographical effects on unemployment and have unemployment data on 50 different cities in each region of the US: Northeast, Midwest, South, and West.¹ In order to study your question, you set your explanatory variables as $x_1 = 1$ and the set $\{x_i\} = a$ binary variable that is equal to 1 if the city is in region i and 0 otherwise for $i \in \{Northeast, Midwest, South, West\}$. Will the **X** matrix have full column rank? Why?

¹Regions according to the U.S. Census Beuro: http://www.census.gov/geo/www/us_regdiv.pdf