Name:	
Roll Number:	

(Odd Semester 2022/23, IIT Kanpur)

INSTRUCTIONS

- 1. Write your \mathbf{Name} and \mathbf{Roll} \mathbf{number} above.
- 2. This exam contains $\mathbf{4}\,+\,\mathbf{1}$ questions and is worth $\mathbf{40\%}$ of your grade.
- 3. Answer \mathbf{ALL} questions.

Page 2 MTH302A

Question 1. $[5 \times 2 \text{ Points}]$

For each of the following statements, determine whether it is true or false. No justification required.

- (i) For every infinite limit ordinal $\alpha < \omega_1$, there is an ordinal β such that $\alpha = \beta + \omega$.
- (ii) The set of irrationals numbers has the same cardinality as the set of real numbers.
- (iii) For every function $f: \mathbb{R} \to \mathbb{R}$, there are injective functions $g, h: \mathbb{R} \to \mathbb{R}$ such that f = g h.
- (iv) There exists a sequence $\langle X_n : n < \omega \rangle$ such that $|X_{n+1}| < |X_n|$ for every $n < \omega$.
- (v) If ϕ and $(\phi \implies (\phi \implies \psi))$ are tautologies, then ψ is also a tautology.

Solution

- (i) **False**. Take $\alpha = \omega \cdot \omega$ and note that for every $x \in \alpha$, there exists $y \in \alpha$ such that x < y and the interval [x, y] is infinite. It is clear that this fails for $\beta + \omega$ (Take $x = \beta$, then for every $y \in \beta + \omega$, [x, y] is finite). Hence $\alpha \neq \beta + \omega$ for any ordinal β .
- (ii) True.
- (iii) **True**. By HW problem 19, there are injective functions g, h such that f = g + h = g (-h). Since h is injective, -h is also injective.
- (iv) False. Otherwise, $\{|X_n|: n < \omega\}$ is a nonempty set of ordinals with no least member (See Theorem (e) on slide 32).
- (v) True.

Page 3 MTH302A

Question 2. [10 Points]

- (a) [4 Points] Let \mathcal{F} be the set of all functions from ω to ω . Show that $|\mathcal{F}| = \mathfrak{c}$.
- (b) [4 Points] Let \mathcal{B} be the set of all bijections from ω to ω . Show that $|\mathcal{B}| = \mathfrak{c}$.
- (c) [2 Points] State the continuum hypothesis.

Solution

- (a) Note that $\mathcal{F} = \omega^{\omega}$. Since $2^{\omega} \subseteq \omega^{\omega}$, we get $\mathfrak{c} = |2^{\omega}| \leq |\omega^{\omega}|$. Since every function $f: \omega \to \omega$ is a subset of $\omega \times \omega$, we get $\omega^{\omega} \subseteq \mathcal{P}(\omega \times \omega)$ which implies that $|\omega^{\omega}| \leq |\mathcal{P}(\omega \times \omega)|$. Since $|\omega \times \omega| = \omega$, we get $|\mathcal{P}(\omega \times \omega)| = |\mathcal{P}(\omega)| = \mathfrak{c}$. Hence $|\omega^{\omega}| \leq \mathfrak{c}$. It follows that $|\mathcal{F}| = \mathfrak{c}$.
- (b) Since $\mathcal{B} \subseteq \mathcal{F}$, we get $|\mathcal{B}| \leq |\mathcal{F}| = \mathfrak{c}$. So it suffices to show that $|\mathcal{B}| \geq \mathfrak{c}$. For this, we will construct an injection $H : \mathcal{P}(E) \to \mathcal{B}$ where $E = \{2n : n < \omega\}$ is the set of all even natural numbers.

Observe that for every infinite $X \subseteq \omega$, there is a bijection $f : \omega \to \omega$ such that for every $n < \omega$,

$$f(n) = n \iff n \in (\omega \setminus X)$$

To see why this is true, let $X = \{n_0, n_1, n_2, \cdots\}$ list X in increasing order and define

$$f(n) = \begin{cases} n & \text{if } n \in \omega \setminus X \\ n_{2k+1} & \text{if } n = n_{2k} \\ n_{2k} & \text{if } n = n_{2k+1} \end{cases}$$
 (1)

For each $Y \subseteq E$, define H(Y) = f where $f : \omega \to \omega$ is a bijection satisfying

$$(\forall n < \omega)(f(n) = n \iff n \in Y)$$

It is easy to see that H is an injection from $\mathcal{P}(E)$ to \mathcal{B} .

(c) $\mathfrak{c} = \omega_1$.

Page 4 MTH302A

Question 3. [10 Points]

Suppose $f: \mathbb{R} \to \mathbb{R}$ satisfies: For every $x, y \in \mathbb{R}$,

$$f(x+y) = f(x) + f(y) + f(x)f(y)$$
 (2)

- (a) [2 Points] Define h = 1 + f. Show that h(x + y) = h(x)h(y).
- (b) [5 Points] Suppose f is continuous and not identically equal to -1. Show that $f(x) = a^x 1$ for some a > 0.
- (c) [3 Points] Show that there is a discontinuous f satisfying Equation (2).

Solution

- (a) h(x+y) = 1 + f(x+y) = 1 + f(x) + f(y) + f(x)f(y) = (1+f(x))(1+f(y)) = h(x)h(y).
- (b) By HW problem 17, $h(x) = a^x$ for some a > 0. So $f(x) = a^x 1$.
- (c) Let $g: \mathbb{R} \to \mathbb{R}$ be a discontinuous additive function. Define $f(x) = 2^{g(x)} 1$.

Page 5 MTH302A

Question 4. [10 Points]

- (a) [2 Points] State Zorn's lemma.
- (b) [4 Points] Use Zorn's lemma to show the following. For any two sets X and Y, either there exists an injective function $f: X \to Y$ or there exists an injective function $g: Y \to X$.
- (c) [4 Points] Show that there is a function $f: \mathbb{R} \to \mathbb{R}$ satisfying (i)-(iii) below.
 - (i) For every $x, y \in \mathbb{R}$, f(x+y) = f(x) + f(y).
 - (ii) For every $x \in \mathbb{R}$, f(x+1) = f(x).
 - (iii) f is not identically zero.

Solution

- (a) Suppose (P, \preceq) is a partial ordering such that every chain in P has an upper bound in P. Then P has a maximal element.
- (b) See Lecture notes Slide 59.
- (c) Let H be a Hamel basis for \mathbb{R} over \mathbb{Q} with $1 \in H$. Define $h: H \to \mathbb{R}$ by h(1) = 0 and h(x) = 1 for every $x \in H \setminus \{1\}$. Let $f: \mathbb{R} \to \mathbb{R}$ be the unique additive extension of h.

Page 6 MTH302A

Bonus Question [5 Points]

Show that there is a subset of plane that meets every line at exactly 10 points.

Solution

Let \mathcal{L} be the family of all lines in plane. Note that $|\mathcal{L}| = |\mathbb{R}^2 \times \mathbb{R}^2| = |\mathbb{R}^2| = \mathfrak{c}$. Let $\langle \ell_\alpha : \alpha < \mathfrak{c} \rangle$ be an injective sequence with range \mathcal{L} . Using transfinite recursion, construct a sequence $\langle S_\alpha : \alpha < \mathfrak{c} \rangle$ of subsets of \mathbb{R}^2 such that the following hold.

- 1. $S_0 = 0$ and if γ is limit, then $S_{\gamma} = \bigcup_{\alpha < \gamma} S_{\alpha}$.
- 2. $|S_{\alpha}| \leq |\alpha + \omega| < \mathfrak{c}$.
- 3. No 11 points in S_{α} are collinear.
- 4. $\beta < \alpha \implies |S_{\alpha} \cap \ell_{\beta}| = 10$.

Having constructed S_{α} , $S_{\alpha+1}$ is obtained as follows. Let \mathcal{T} be the set of all lines that pass through at least 2 points in S_{α} . Let B be the set of points of intersection of ℓ_{α} with the lines in \mathcal{T} . Note that $|B| \leq |\alpha + \omega| < \mathfrak{c}$. By clause 3, $|S_{\alpha} \cap \ell_{\alpha}| \leq 10$ so we can add $10 - |S_{\alpha} \cap \ell_{\alpha}|$ points from $\ell_{\alpha} \setminus B$ to S_{α} to get $S_{\alpha+1}$. Having completed the construction, put $S = \bigcup_{\alpha < \mathfrak{c}} S_{\alpha}$. Then S is as required.