## Relations

Rosen Section 9.1, 9.3

Tom Michoel

MNF130V2020 - Week 14

### Definition

The **Cartesian product**  $A \times B$  is the set of ordered pairs

$$A\times B=\{(a,b)\mid a\in A,b\in B\}.$$

### Definition

The **Cartesian product**  $A \times B$  is the set of ordered pairs

$$A \times B = \{(a, b) \mid a \in A, b \in B\}.$$

### Definition

A (binary) **relation from** A **to** B is a subset R of  $A \times B$ .

### Definition

The **Cartesian product**  $A \times B$  is the set of ordered pairs

$$A \times B = \{(a, b) \mid a \in A, b \in B\}.$$

### Definition

A (binary) **relation from** A **to** B is a subset R of  $A \times B$ .

### Definition

A **relation on a set** A is a relation from A to A.

### Definition

The **Cartesian product**  $A \times B$  is the set of ordered pairs

$$A \times B = \{(a, b) \mid a \in A, b \in B\}.$$

### Definition

A (binary) **relation from** A **to** B is a subset R of  $A \times B$ .

### **Definition**

A **relation on a set** A is a relation from A to A.

### Example

 $\leq$  is a relation on  $\mathbb{R}$ . Formally, we can write

$$R_{\leq} = \{(a,b) \mid a,b \in \mathbb{R}, a \leq b\}$$

### Relations vs. functions

▶ A function f from A to B assigns exactly one element of B to each element of A. The graph of f is the set  $\{(a, f(a)) \mid a \in A\} \subset A \times B$ . Hence every function defines a binary relation.

## Relations vs. functions

- ▶ A function f from A to B assigns exactly one element of B to each element of A. The graph of f is the set  $\{(a, f(a)) \mid a \in A\} \subset A \times B$ . Hence every function defines a binary relation.
- ► Relations are a generalization of graphs of functions: **not every binary relation defines a function**.

### Relations vs. functions

- ▶ A function f from A to B assigns exactly one element of B to each element of A. The graph of f is the set  $\{(a, f(a)) \mid a \in A\} \subset A \times B$ . Hence every function defines a binary relation.
- Relations are a generalization of graphs of functions: not every binary relation defines a function.
- ▶ Main difference between relations and (graphs of) functions: relations can be **one-to-many** (assigning more than one element of B to an element of A.)

Example:  $R_{\leq} = \{(a,b) \mid a,b \in \mathbb{R}, a \leq b\}$ 

#### Definition

A directed graph, or digraph,  $\mathcal{G} = (V, E)$  consists of a set of *vertices* (or *nodes*) V together with a set E of ordered pairs of elements of V called *edges* (or *arcs*).



Figure 1: A directed graph and the relation is represents

#### Definition

A directed graph, or digraph,  $\mathcal{G} = (V, E)$  consists of a set of *vertices* (or *nodes*) V together with a set E of ordered pairs of elements of V called *edges* (or *arcs*).

ightharpoonup E is a relation on V, that is, a subset of  $V \times V$ .



Figure 1: A directed graph and the relation is represents

#### Definition

A directed graph, or digraph,  $\mathcal{G} = (V, E)$  consists of a set of *vertices* (or *nodes*) V together with a set E of ordered pairs of elements of V called *edges* (or *arcs*).

- ightharpoonup E is a relation on V, that is, a subset of  $V \times V$ .
- ▶ The vertex *a* is called the *initial* vertex of the edge (*a*, *b*) and the vertex *b* is called the *terminal* vertex of this edge. An edge of the form (*a*, *a*) is called a *loop*.



Figure 1: A directed graph and the relation is represents

#### Definition

A directed graph, or digraph,  $\mathcal{G} = (V, E)$  consists of a set of *vertices* (or *nodes*) V together with a set E of ordered pairs of elements of V called *edges* (or *arcs*).

- ightharpoonup E is a relation on V, that is, a subset of  $V \times V$ .
- ▶ The vertex a is called the *initial* vertex of the edge (a, b) and the vertex b is called the *terminal* vertex of this edge. An edge of the form (a, a) is called a *loop*.
- A relation R on a set A can be represented by the digraph  $\mathcal{G} = (A, R)$



Figure 1: A directed graph and the relation is represents

### Relations on a set: reflexive

### Definition

▶ A relation R on a set A is **reflexive** if  $(a, a) \in R$  for all  $a \in A$ .



Figure 2: A reflexive relation

### Relations on a set: reflexive

### Definition

- ▶ A relation R on a set A is **reflexive** if  $(a, a) \in R$  for all  $a \in A$ .
- A relation is reflexive if and only if its digraph representation has a loop at every vertex.



Figure 2: A reflexive relation

## Relations on a set: symmetric

### Definition

▶ A relation R on a set A is **symmetric** if  $(a, b) \in R \rightarrow (b, a) \in R$ , for all  $a, b \in A$ .



Figure 3: A symmetric relation

## Relations on a set: symmetric

### Definition

- ▶ A relation R on a set A is **symmetric** if  $(a, b) \in R \rightarrow (b, a) \in R$ , for all  $a, b \in A$ .
- ▶ A relation is symmetric if and only if for every edge between distinct vertices in its digraph there is also an edge in the opposite direction.



Figure 3: A symmetric relation

## Relations on a set: antisymmetric

#### Definition

A relation R on a set A is **antisymmetric** if  $((a,b) \in R \land (b,a) \in R) \rightarrow a = b$ , for all  $a,b \in A$ .



Figure 4: An antisymmetric relation

## Relations on a set: antisymmetric

### Definition

- ▶ A relation R on a set A is **antisymmetric** if  $((a,b) \in R \land (b,a) \in R) \rightarrow a = b$ , for all  $a,b \in A$ .
- ► A relation is antisymmetric if and only if there are never two edges in opposite direction between two distinct vertices.



Figure 4: An antisymmetric relation

## Relations on a set: antisymmetric

#### Definition

- A relation R on a set A is **antisymmetric** if  $((a,b) \in R \land (b,a) \in R) \rightarrow a = b$ , for all  $a,b \in A$ .
- ► A relation is antisymmetric if and only if there are never two edges in opposite direction between two distinct vertices.
- ▶ Relations on a set can be both symmetric and antisymmetric. Example: Let  $R = \{(a, a) \mid a \in A\}$ .



Figure 4: An antisymmetric relation

### Relations on a set: transitive

### Definition

A relation R on a set A is **transitive** if  $((a,b) \in R \land (b,c) \in R) \rightarrow (a,c) \in R$ , for all  $a,b,c \in A$ .



Figure 5: A transitive relation

### Relations on a set: transitive

### Definition

- A relation R on a set A is **transitive** if  $((a,b) \in R \land (b,c) \in R) \rightarrow (a,c) \in R$ , for all  $a,b,c \in A$ .
- ▶ A relation is transitive if and only if whenever there is an edge from vertex *x* to *y* and an edge from vertex *y* to *z*, there is an edge from *x* to *z* (completing triangles).



Figure 5: A transitive relation

| Relation | Refl | Symm | Antisymm | Trans |
|----------|------|------|----------|-------|
|          |      |      |          |       |

Table 1: Example relations on  $\mathbb{R}$ 

| Relation                        | Refl Symm |   | Antisymm | Trans    |
|---------------------------------|-----------|---|----------|----------|
| $R_1 = \{(a,b) \mid a \leq b\}$ | ✓         | - | ✓        | <b>√</b> |

Table 1: Example relations on  $\mathbb{R}$ 

| Relation                        | Refl | Symm | Antisymm     | Trans        |
|---------------------------------|------|------|--------------|--------------|
| $R_1 = \{(a,b) \mid a \leq b\}$ | ✓    | _    | <b>√</b>     | ✓            |
| $R_2 = \{(a,b) \mid a > b\}$    | -    | _    | $\checkmark$ | $\checkmark$ |

Table 1: Example relations on  $\mathbb R$ 

| Relation                         | Refl         | Symm         | Antisymm | Trans        |
|----------------------------------|--------------|--------------|----------|--------------|
| $R_1 = \{(a,b) \mid a \leq b\}$  | ✓            | _            | <b>√</b> | ✓            |
| $R_2 = \{(a, b) \mid a > b\}$    | _            | _            | ✓        | $\checkmark$ |
| $R_3 = \{(a,b) \mid a = \pm b\}$ | $\checkmark$ | $\checkmark$ | _        | $\checkmark$ |

Table 1: Example relations on  $\mathbb{R}$ 

| Refl         | Symm                   | Antisymm                                                                                                  | Trans                                                                                                                                                              |
|--------------|------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>√</b>     | _                      | <b>√</b>                                                                                                  | ✓                                                                                                                                                                  |
| _            | _                      | ✓                                                                                                         | $\checkmark$                                                                                                                                                       |
| $\checkmark$ | $\checkmark$           | _                                                                                                         | $\checkmark$                                                                                                                                                       |
| $\checkmark$ | $\checkmark$           | $\checkmark$                                                                                              | $\checkmark$                                                                                                                                                       |
|              | <b>Refl</b> ✓  –  ✓  ✓ | Refl         Symm           ✓         -           -         -           ✓         ✓           ✓         ✓ | Refl         Symm         Antisymm           √         -         √           -         -         √           √         √         -           √         √         √ |

Table 1: Example relations on  $\mathbb{R}$ 

| Relation                          | Refl         | Symm         | Antisymm     | Trans        |
|-----------------------------------|--------------|--------------|--------------|--------------|
| $R_1 = \{(a,b) \mid a \leq b\}$   | ✓            | _            | ✓            | <b>√</b>     |
| $R_2 = \{(a, b) \mid a > b\}$     | _            | _            | $\checkmark$ | $\checkmark$ |
| $R_3 = \{(a, b) \mid a = \pm b\}$ | $\checkmark$ | $\checkmark$ | _            | $\checkmark$ |
| $R_4 = \{(a, b) \mid a = b\}$     | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| $R_5 = \{(a,b) \mid b = a+1\}$    | _            | _            | ✓            | _            |
|                                   |              |              |              |              |

Table 1: Example relations on  $\mathbb{R}$ 

| Relation                                   | Refl         | Symm         | Antisymm     | Trans        |
|--------------------------------------------|--------------|--------------|--------------|--------------|
| $R_1 = \{(a,b) \mid a \leq b\}$            | ✓            | _            | ✓            | ✓            |
| $R_2 = \{(a, b) \mid a > b\}$              | _            | _            | $\checkmark$ | $\checkmark$ |
| $R_3 = \{(a,b) \mid a = \pm b\}$           | $\checkmark$ | $\checkmark$ | _            | $\checkmark$ |
| $R_4 = \{(a,b) \mid a = b\}$               | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| $R_5 = \{(a,b) \mid b = a+1\}$             | _            | _            | $\checkmark$ | _            |
| $R_6 = \{(a,b) \mid a \equiv b \pmod{3}\}$ | ✓            | ✓            | -            | ✓            |

Table 1: Example relations on  $\mathbb R$ 

#### Definition

The **composite**  $S \circ R$  of a relation R from A to B and a relation S from B to C is the relation consisting of ordered pairs (a, c), where



Figure 6: A composite relation

### Definition

The **composite**  $S \circ R$  of a relation R from A to B and a relation S from B to C is the relation consisting of ordered pairs (a, c), where

 $\triangleright$   $a \in A, c \in C$ 



Figure 6: A composite relation

#### Definition

The **composite**  $S \circ R$  of a relation R from A to B and a relation S from B to C is the relation consisting of ordered pairs (a, c), where

- $\triangleright$   $a \in A, c \in C$
- ▶ there exists  $b \in B$  such that  $(a, b) \in R$  and  $(b, c) \in S$ .



Figure 6: A composite relation

#### Definition

The **composite**  $S \circ R$  of a relation R from A to B and a relation S from B to C is the relation consisting of ordered pairs (a, c), where

- $\triangleright$   $a \in A, c \in C$
- ▶ there exists  $b \in B$  such that  $(a, b) \in R$  and  $(b, c) \in S$ .
- ► In one line:

$$S \circ R = \big\{ (a,c) \mid a \in A, c \in C, \exists b \in B \big( (a,b) \in R \land (b,c) \in S \big) \big\}$$



Figure 6: A composite relation

### Definition

The **powers**  $\mathbb{R}^n$ ,  $n=1,2,3,\ldots$ , of a relation  $\mathbb{R}$  on a set  $\mathbb{A}$  are defined recursively by

$$R^1 = R$$
 and  $R^{n+1} = R^n \circ R$ 

### Definition

The **powers**  $R^n$ , n = 1, 2, 3, ..., of a relation R on a set A are defined recursively by

$$R^1 = R$$
 and  $R^{n+1} = R^n \circ R$ 

### Example

▶ Let  $R = \{(a, b) \mid a, b \in \mathbb{N}, b - a = 1\} = \{(a, a + 1) \mid a \in \mathbb{N}\}.$ 

### Definition

The **powers**  $R^n$ , n = 1, 2, 3, ..., of a relation R on a set A are defined recursively by

$$R^1 = R$$
 and  $R^{n+1} = R^n \circ R$ 

- ▶ Let  $R = \{(a, b) \mid a, b \in \mathbb{N}, b a = 1\} = \{(a, a + 1) \mid a \in \mathbb{N}\}.$
- ► Then  $(a, c) \in R^2$  if and only if  $\exists b$  such that  $(a, b) \in R$  and  $(b, c) \in R$ , that is b = a + 1 and c = b + 1, or c = a + 2.

### Definition

The **powers**  $R^n$ , n = 1, 2, 3, ..., of a relation R on a set A are defined recursively by

$$R^1 = R$$
 and  $R^{n+1} = R^n \circ R$ 

- ▶ Let  $R = \{(a, b) \mid a, b \in \mathbb{N}, b a = 1\} = \{(a, a + 1) \mid a \in \mathbb{N}\}.$
- ► Then  $(a, c) \in R^2$  if and only if  $\exists b$  such that  $(a, b) \in R$  and  $(b, c) \in R$ , that is b = a + 1 and c = b + 1, or c = a + 2.
- ► Hence  $R^2 = \{(a, b) \mid a, b \in \mathbb{N}, b a = 2\}.$

# Composing the parent relation with itself

#### Definition

The **powers**  $R^n$ , n = 1, 2, 3, ..., of a relation R on a set A are defined recursively by

$$R^1 = R$$
 and  $R^{n+1} = R^n \circ R$ 

### Example

- ▶ Let  $R = \{(a, b) \mid a, b \in \mathbb{N}, b a = 1\} = \{(a, a + 1) \mid a \in \mathbb{N}\}.$
- ► Then  $(a, c) \in R^2$  if and only if  $\exists b$  such that  $(a, b) \in R$  and  $(b, c) \in R$ , that is b = a + 1 and c = b + 1, or c = a + 2.
- ► Hence  $R^2 = \{(a, b) \mid a, b \in \mathbb{N}, b a = 2\}.$
- ▶ More generally,  $R^n = \{(a, b) \mid a, b \in \mathbb{N}, b a = n\}$  for all n.

A relation R on a set A is transitive if and only if  $R^n \subseteq R$  for  $n \ge 1$ .



A relation R on a set A is transitive if and only if  $R^n \subseteq R$  for  $n \ge 1$ .

#### Proof.

Let p = "R is transitive" and  $Q(n) = R^n \subseteq R$ . To prove the equivalence  $p \leftrightarrow \forall nQ(n)$ , we first prove  $p \to \forall nQ(n)$  and then  $\forall nQ(n) \to p$ .

A relation R on a set A is transitive if and only if  $R^n \subseteq R$  for  $n \ge 1$ .

- Let p = "R is transitive" and  $Q(n) = R^n \subseteq R$ . To prove the equivalence  $p \leftrightarrow \forall n Q(n)$ , we first prove  $p \to \forall n Q(n)$  and then  $\forall n Q(n) \to p$ .
- Assume p is true. We will show that this implies  $\forall nQ(n)$  using mathematical induction:

A relation R on a set A is transitive if and only if  $R^n \subseteq R$  for  $n \ge 1$ .

- Let p = "R is transitive" and  $Q(n) = R^n \subseteq R$ . To prove the equivalence  $p \leftrightarrow \forall n Q(n)$ , we first prove  $p \to \forall n Q(n)$  and then  $\forall n Q(n) \to p$ .
- Assume p is true. We will show that this implies  $\forall nQ(n)$  using mathematical induction:
  - ▶ Basis step: Q(1) is true because  $R^1 = R \subseteq R$ .

A relation R on a set A is transitive if and only if  $R^n \subseteq R$  for  $n \ge 1$ .

- Let p = "R is transitive" and  $Q(n) = R^n \subseteq R$ . To prove the equivalence  $p \leftrightarrow \forall n Q(n)$ , we first prove  $p \to \forall n Q(n)$  and then  $\forall n Q(n) \to p$ .
- Assume p is true. We will show that this implies  $\forall nQ(n)$  using mathematical induction:
  - ▶ Basis step: Q(1) is true because  $R^1 = R \subseteq R$ .
  - ▶ Induction hypothesis: Assume Q(k) is true for arbitrary  $k \ge 1$ .

A relation R on a set A is transitive if and only if  $R^n \subseteq R$  for  $n \ge 1$ .

- Let p = "R is transitive" and  $Q(n) = R^n \subseteq R$ . To prove the equivalence  $p \leftrightarrow \forall n Q(n)$ , we first prove  $p \to \forall n Q(n)$  and then  $\forall n Q(n) \to p$ .
- Assume p is true. We will show that this implies  $\forall nQ(n)$  using mathematical induction:
  - ▶ Basis step: Q(1) is true because  $R^1 = R \subseteq R$ .
  - ▶ Induction hypothesis: Assume Q(k) is true for arbitrary  $k \ge 1$ .
  - Induction step:

A relation R on a set A is transitive if and only if  $R^n \subseteq R$  for  $n \ge 1$ .

- Let p = "R is transitive" and  $Q(n) = R^n \subseteq R$ . To prove the equivalence  $p \leftrightarrow \forall n Q(n)$ , we first prove  $p \to \forall n Q(n)$  and then  $\forall n Q(n) \to p$ .
- Assume p is true. We will show that this implies  $\forall nQ(n)$  using mathematical induction:
  - ▶ Basis step: Q(1) is true because  $R^1 = R \subseteq R$ .
  - ▶ Induction hypothesis: Assume Q(k) is true for arbitrary  $k \ge 1$ .
  - Induction step:
    - ▶ Take  $(a, c) \in R^{k+1}$  arbitrarily.

A relation R on a set A is transitive if and only if  $R^n \subseteq R$  for  $n \ge 1$ .

- Let p = "R is transitive" and  $Q(n) = R^n \subseteq R$ . To prove the equivalence  $p \leftrightarrow \forall n Q(n)$ , we first prove  $p \to \forall n Q(n)$  and then  $\forall n Q(n) \to p$ .
- Assume p is true. We will show that this implies  $\forall nQ(n)$  using mathematical induction:
  - ▶ Basis step: Q(1) is true because  $R^1 = R \subseteq R$ .
  - ▶ Induction hypothesis: Assume Q(k) is true for arbitrary  $k \ge 1$ .
  - Induction step:
    - ► Take  $(a, c) \in R^{k+1}$  arbitrarily.
    - ▶ Because  $R^{k+1} = R^k \circ R$ , there must exist  $b \in R$  such that  $(a,b) \in R \land (b,c) \in R^k$ .

A relation R on a set A is transitive if and only if  $R^n \subseteq R$  for  $n \ge 1$ .

- Let p = "R is transitive" and  $Q(n) = R^n \subseteq R$ . To prove the equivalence  $p \leftrightarrow \forall n Q(n)$ , we first prove  $p \to \forall n Q(n)$  and then  $\forall n Q(n) \to p$ .
- Assume p is true. We will show that this implies  $\forall nQ(n)$  using mathematical induction:
  - ▶ Basis step: Q(1) is true because  $R^1 = R \subseteq R$ .
  - ▶ Induction hypothesis: Assume Q(k) is true for arbitrary  $k \ge 1$ .
  - Induction step:
    - ▶ Take  $(a, c) \in R^{k+1}$  arbitrarily.
    - ▶ Because  $R^{k+1} = R^k \circ R$ , there must exist  $b \in R$  such that  $(a,b) \in R \land (b,c) \in R^k$ .
    - ▶ By the inductive hypothesis  $R^k \subseteq R$  and hence  $(b, c) \in R$ .

A relation R on a set A is transitive if and only if  $R^n \subseteq R$  for  $n \ge 1$ .

- Let p = "R is transitive" and  $Q(n) = R^n \subseteq R$ . To prove the equivalence  $p \leftrightarrow \forall n Q(n)$ , we first prove  $p \to \forall n Q(n)$  and then  $\forall n Q(n) \to p$ .
- Assume p is true. We will show that this implies  $\forall nQ(n)$  using mathematical induction:
  - ▶ Basis step: Q(1) is true because  $R^1 = R \subseteq R$ .
  - ▶ Induction hypothesis: Assume Q(k) is true for arbitrary  $k \ge 1$ .
  - Induction step:
    - ▶ Take  $(a, c) \in R^{k+1}$  arbitrarily.
    - ▶ Because  $R^{k+1} = R^k \circ R$ , there must exist  $b \in R$  such that  $(a,b) \in R \land (b,c) \in R^k$ .
    - ▶ By the inductive hypothesis  $R^k \subseteq R$  and hence  $(b, c) \in R$ .
    - ▶ By the assumption that R is transitive it follows that  $(a, c) \in R$ .

A relation R on a set A is transitive if and only if  $R^n \subseteq R$  for  $n \ge 1$ .

- Let p = "R is transitive" and  $Q(n) = R^n \subseteq R$ . To prove the equivalence  $p \leftrightarrow \forall n Q(n)$ , we first prove  $p \to \forall n Q(n)$  and then  $\forall n Q(n) \to p$ .
- Assume p is true. We will show that this implies  $\forall nQ(n)$  using mathematical induction:
  - ▶ Basis step: Q(1) is true because  $R^1 = R \subseteq R$ .
  - ▶ Induction hypothesis: Assume Q(k) is true for arbitrary  $k \ge 1$ .
  - Induction step:
    - ▶ Take  $(a, c) \in R^{k+1}$  arbitrarily.
    - ▶ Because  $R^{k+1} = R^k \circ R$ , there must exist  $b \in R$  such that  $(a,b) \in R \land (b,c) \in R^k$ .
    - ▶ By the inductive hypothesis  $R^k \subseteq R$  and hence  $(b, c) \in R$ .
    - ▶ By the assumption that R is transitive it follows that  $(a, c) \in R$ .
    - ▶ Hence  $\forall (a,c) ((a,c) \in R^{k+1} \rightarrow (a,c) \in R)$ , or  $R^{k+1} \subseteq R$ .

A relation R on a set A is transitive if and only if  $R^n \subseteq R$  for  $n \ge 1$ .

- Let p = "R is transitive" and  $Q(n) = R^n \subseteq R$ . To prove the equivalence  $p \leftrightarrow \forall n Q(n)$ , we first prove  $p \to \forall n Q(n)$  and then  $\forall n Q(n) \to p$ .
- Assume p is true. We will show that this implies  $\forall nQ(n)$  using mathematical induction:
  - ▶ Basis step: Q(1) is true because  $R^1 = R \subseteq R$ .
  - ▶ Induction hypothesis: Assume Q(k) is true for arbitrary  $k \ge 1$ .
  - Induction step:
    - ▶ Take  $(a, c) \in R^{k+1}$  arbitrarily.
    - ▶ Because  $R^{k+1} = R^k \circ R$ , there must exist  $b \in R$  such that  $(a,b) \in R \land (b,c) \in R^k$ .
    - ▶ By the inductive hypothesis  $R^k \subseteq R$  and hence  $(b, c) \in R$ .
    - ▶ By the assumption that R is transitive it follows that  $(a, c) \in R$ .
    - ► Hence  $\forall (a,c) ((a,c) \in R^{k+1} \rightarrow (a,c) \in R)$ , or  $R^{k+1} \subseteq R$ .
    - ▶ Hence  $Q(k) \rightarrow Q(k+1)$  is true for arbitrary k.

A relation R on a set A is transitive if and only if  $R^n \subseteq R$  for  $n \ge 1$ .

- Let p = "R is transitive" and  $Q(n) = R^n \subseteq R$ . To prove the equivalence  $p \leftrightarrow \forall n Q(n)$ , we first prove  $p \to \forall n Q(n)$  and then  $\forall n Q(n) \to p$ .
- ▶ Assume p is true. We will show that this implies  $\forall nQ(n)$  using mathematical induction:
  - ▶ Basis step: Q(1) is true because  $R^1 = R \subseteq R$ .
  - ▶ Induction hypothesis: Assume Q(k) is true for arbitrary  $k \ge 1$ .
  - Induction step:
    - ▶ Take  $(a, c) \in R^{k+1}$  arbitrarily.
    - ▶ Because  $R^{k+1} = R^k \circ R$ , there must exist  $b \in R$  such that  $(a,b) \in R \land (b,c) \in R^k$ .
    - ▶ By the inductive hypothesis  $R^k \subseteq R$  and hence  $(b, c) \in R$ .
    - ▶ By the assumption that R is transitive it follows that  $(a, c) \in R$ .
    - ► Hence  $\forall (a,c) ((a,c) \in R^{k+1} \rightarrow (a,c) \in R)$ , or  $R^{k+1} \subseteq R$ .
    - ▶ Hence  $Q(k) \rightarrow Q(k+1)$  is true for arbitrary k.
  - ▶ By the principle of induction  $\forall nQ(n)$  is true.

A relation R on a set A is transitive if and only if  $R^n \subseteq R$  for  $n \ge 1$ .

- Let p = "R is transitive" and  $Q(n) = R^n \subseteq R$ . To prove the equivalence  $p \leftrightarrow \forall n Q(n)$ , we first prove  $p \to \forall n Q(n)$  and then  $\forall n Q(n) \to p$ .
- Assume p is true. We will show that this implies  $\forall nQ(n)$  using mathematical induction:
  - ▶ Basis step: Q(1) is true because  $R^1 = R \subseteq R$ .
  - ▶ Induction hypothesis: Assume Q(k) is true for arbitrary  $k \ge 1$ .
  - Induction step:
    - ▶ Take  $(a, c) \in R^{k+1}$  arbitrarily.
    - ▶ Because  $R^{k+1} = R^k \circ R$ , there must exist  $b \in R$  such that  $(a,b) \in R \land (b,c) \in R^k$ .
    - ▶ By the inductive hypothesis  $R^k \subseteq R$  and hence  $(b, c) \in R$ .
    - ▶ By the assumption that R is transitive it follows that  $(a, c) \in R$ .
    - ▶ Hence  $\forall (a,c) ((a,c) \in R^{k+1} \rightarrow (a,c) \in R)$ , or  $R^{k+1} \subseteq R$ .
    - ▶ Hence  $Q(k) \rightarrow Q(k+1)$  is true for arbitrary k.
  - ▶ By the principle of induction  $\forall nQ(n)$  is true.
- Next, assume  $\forall nQ(n)$  is true:

A relation R on a set A is transitive if and only if  $R^n \subseteq R$  for  $n \ge 1$ .

- Let p = "R is transitive" and  $Q(n) = R^n \subseteq R$ . To prove the equivalence  $p \leftrightarrow \forall n Q(n)$ , we first prove  $p \to \forall n Q(n)$  and then  $\forall n Q(n) \to p$ .
- Assume p is true. We will show that this implies  $\forall nQ(n)$  using mathematical induction:
  - ▶ Basis step: Q(1) is true because  $R^1 = R \subseteq R$ .
  - ▶ Induction hypothesis: Assume Q(k) is true for arbitrary  $k \ge 1$ .
  - Induction step:
    - ▶ Take  $(a, c) \in R^{k+1}$  arbitrarily.
    - ▶ Because  $R^{k+1} = R^k \circ R$ , there must exist  $b \in R$  such that  $(a,b) \in R \land (b,c) \in R^k$ .
    - ▶ By the inductive hypothesis  $R^k \subseteq R$  and hence  $(b, c) \in R$ .
    - ▶ By the assumption that R is transitive it follows that  $(a, c) \in R$ .
    - ► Hence  $\forall (a,c) ((a,c) \in R^{k+1} \rightarrow (a,c) \in R)$ , or  $R^{k+1} \subseteq R$ .
    - ► Hence  $Q(k) \rightarrow Q(k+1)$  is true for arbitrary k.
  - ▶ By the principle of induction  $\forall nQ(n)$  is true.
- Next, assume  $\forall nQ(n)$  is true:
  - ▶ Take any  $a, b, c \in A$  such that  $(a, b) \in R$  and  $(b, c) \in R$ .

A relation R on a set A is transitive if and only if  $R^n \subseteq R$  for  $n \ge 1$ .

- Let p = "R is transitive" and  $Q(n) = R^n \subseteq R$ . To prove the equivalence  $p \leftrightarrow \forall n Q(n)$ , we first prove  $p \to \forall n Q(n)$  and then  $\forall n Q(n) \to p$ .
- Assume p is true. We will show that this implies  $\forall nQ(n)$  using mathematical induction:
  - ▶ Basis step: Q(1) is true because  $R^1 = R \subseteq R$ .
  - Induction hypothesis: Assume Q(k) is true for arbitrary  $k \ge 1$ .
  - Induction step:
    - ▶ Take  $(a, c) \in R^{k+1}$  arbitrarily.
    - ▶ Because  $R^{k+1} = R^k \circ R$ , there must exist  $b \in R$  such that  $(a,b) \in R \land (b,c) \in R^k$ .
    - ▶ By the inductive hypothesis  $R^k \subseteq R$  and hence  $(b, c) \in R$ .
    - ▶ By the assumption that R is transitive it follows that  $(a, c) \in R$ .
    - ▶ Hence  $\forall (a,c) ((a,c) \in R^{k+1} \rightarrow (a,c) \in R)$ , or  $R^{k+1} \subseteq R$ .
    - ▶ Hence  $Q(k) \rightarrow Q(k+1)$  is true for arbitrary k.
  - ▶ By the principle of induction  $\forall nQ(n)$  is true.
- Next, assume  $\forall nQ(n)$  is true:
  - ▶ Take any  $a, b, c \in A$  such that  $(a, b) \in R$  and  $(b, c) \in R$ .
  - ▶ Then  $(a, c) \in R^2 \subseteq R$  and hence  $(a, c) \in R$ .

A relation R on a set A is transitive if and only if  $R^n \subseteq R$  for  $n \ge 1$ .

- Let p = "R is transitive" and  $Q(n) = R^n \subseteq R$ . To prove the equivalence  $p \leftrightarrow \forall n Q(n)$ , we first prove  $p \to \forall n Q(n)$  and then  $\forall n Q(n) \to p$ .
- Assume p is true. We will show that this implies  $\forall nQ(n)$  using mathematical induction:
  - ▶ Basis step: Q(1) is true because  $R^1 = R \subseteq R$ .
  - Induction hypothesis: Assume Q(k) is true for arbitrary  $k \ge 1$ .
  - Induction step:
    - ▶ Take  $(a, c) \in R^{k+1}$  arbitrarily.
    - ▶ Because  $R^{k+1} = R^k \circ R$ , there must exist  $b \in R$  such that  $(a,b) \in R \land (b,c) \in R^k$ .
    - ▶ By the inductive hypothesis  $R^k \subseteq R$  and hence  $(b, c) \in R$ .
    - ▶ By the assumption that R is transitive it follows that  $(a, c) \in R$ .
    - ▶ Hence  $\forall (a,c) ((a,c) \in R^{k+1} \rightarrow (a,c) \in R)$ , or  $R^{k+1} \subseteq R$ .
    - ► Hence  $Q(k) \rightarrow Q(k+1)$  is true for arbitrary k.
  - ▶ By the principle of induction  $\forall nQ(n)$  is true.
- Next, assume  $\forall nQ(n)$  is true:
  - ▶ Take any  $a, b, c \in A$  such that  $(a, b) \in R$  and  $(b, c) \in R$ .
  - ▶ Then  $(a, c) \in R^2 \subseteq R$  and hence  $(a, c) \in R$ .
  - ► Hence *p* is true.

A relation between finite sets  $A = \{a_1, a_2, \dots, a_m\}$  and  $B = \{b_1, b_2, \dots, b_m\}$  can also be represented using the  $m \times n$  zero-one or Boolean matrix  $\mathbf{M}_R = (M_{ij})$  where

$$M_{ij} = \begin{cases} 1 & \text{if } (a_i, b_j) \in R \\ 0 & \text{otherwise} \end{cases}$$

Example

A relation between finite sets  $A = \{a_1, a_2, \dots, a_m\}$  and  $B = \{b_1, b_2, \dots, b_m\}$  can also be represented using the  $m \times n$  **zero-one** or **Boolean matrix M**<sub>R</sub> =  $(M_{ij})$  where

$$M_{ij} = \begin{cases} 1 & \text{if } (a_i, b_j) \in R \\ 0 & \text{otherwise} \end{cases}$$

## Example

► Suppose that  $A = \{1, 2, 3\}$  and  $B = \{1, 2\}$ .

A relation between finite sets  $A = \{a_1, a_2, \dots, a_m\}$  and  $B = \{b_1, b_2, \dots, b_m\}$  can also be represented using the  $m \times n$  zero-one or Boolean matrix  $\mathbf{M}_R = (M_{ij})$  where

$$M_{ij} = egin{cases} 1 & ext{if } (a_i, b_j) \in R \\ 0 & ext{otherwise} \end{cases}$$

## Example

- ► Suppose that  $A = \{1, 2, 3\}$  and  $B = \{1, 2\}$ .
- Let R be the relation from A to B containing (a, b) if a > b.

A relation between finite sets  $A = \{a_1, a_2, \dots, a_m\}$  and  $B = \{b_1, b_2, \dots, b_m\}$  can also be represented using the  $m \times n$  zero-one or Boolean matrix  $\mathbf{M}_R = (M_{ij})$  where

$$M_{ij} = egin{cases} 1 & ext{if } (a_i, b_j) \in R \\ 0 & ext{otherwise} \end{cases}$$

## Example

- Suppose that  $A = \{1, 2, 3\}$  and  $B = \{1, 2\}$ .
- ▶ Let R be the relation from A to B containing (a, b) if a > b.
- ► Then

$$\mathbf{M}_R = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{pmatrix}$$

If R is a relation on a set A (that is, A = B), then R is:



Figure 7: Zero-one matrices for symmetric and antisymmetric relations

If R is a relation on a set A (that is, A = B), then R is:

**reflexive** if and only if diag( $\mathbf{M}_R$ ) = (1, 1, ..., 1).



Figure 7: Zero-one matrices for symmetric and antisymmetric relations

If R is a relation on a set A (that is, A = B), then R is:

- **reflexive** if and only if  $diag(\mathbf{M}_R) = (1, 1, ..., 1)$ .
- **symmetric** if and only if  $(\mathbf{M}_R)^t = \mathbf{M}_R$ .



Figure 7: Zero-one matrices for symmetric and antisymmetric relations

If R is a relation on a set A (that is, A = B), then R is:

- **reflexive** if and only if  $diag(\mathbf{M}_R) = (1, 1, ..., 1)$ .
- **symmetric** if and only if  $(\mathbf{M}_R)^t = \mathbf{M}_R$ .
- ▶ antisymmetric if  $M_{ij} = 0 \lor M_{ji} = 0$  for all  $i \neq j$ .



Figure 7: Zero-one matrices for symmetric and antisymmetric relations



## What to do next?

▶ Read Section 9.1 and 9.3, especially all the extra examples.

## What to do next?

- ▶ Read Section 9.1 and 9.3, especially all the extra examples.
- Solve exercises. Some recommended exercises are in the assignment for week 16:

https://mitt.uib.no/courses/21678/assignments/26393

## What to do next?

- ▶ Read Section 9.1 and 9.3, especially all the extra examples.
- ➤ Solve exercises. Some recommended exercises are in the assignment for week 16:

https://mitt.uib.no/courses/21678/assignments/26393

► Post questions on the discussion forum and participate in the discussion:

https://mitt.uib.no/courses/21678/discussion\_topics/159090