If $\lambda > \alpha + \|\mu\|$, then $\lambda - \alpha - \int_{-1}^{0} e^{\lambda x} d\mu(x) \neq 0$ and there exists exactly one $c \in \mathbb{R}$ satisfying (2.8). We have shown that $(\lambda - A)$ is bijective for $\lambda > \alpha + \|\mu\|$.

By Thm.1.13, it follows from a),b) and c) that A generates a positive semigroup.

Π

Let us mention in addition that it follows from a) in the proof that $(\alpha + \|\mu\|, \infty) \subset \rho(A)$, since A is closed. By Remark 1.7 we thus have

(2.9)
$$s(A) \leq \alpha + \|\mu\|$$
.

Example 1.23. Let $E = C([-1,0],\mathbb{R}^n)$. Then $u \in E$ is given by $u = (u_1,\ldots,u_n)$ where $u_i \in C[-1,0]$ $(i=1,\ldots,n)$. Let A be defined by $Au = u' = (u'_1,\ldots,u'_n)$ with domain $D(A) = \{u \in C^1([-1,0],\mathbb{R}^n) : u'(0) = Lu\}$.

Here L is defined by

$$Lu = \begin{pmatrix} L_{11}u_1 + \dots + L_{1n}u_n \\ \vdots \\ L_{n1}u_1 + \dots + L_{nn}u_n \end{pmatrix}$$

where $L_{ij} \in C[-1,0]$ ' $(1 \le i,j \le n)$. Let $L_{ii} = c_i \delta_0 + \mu_i$ with $\mu_i(\{0\}) = 0$ (i = 1,...,n). Then A generates a positive semigroup if and only if

$$L_{ij} \ge 0$$
 for $i \ne j$ and $\mu_i \ge 0$ (i,j = 1,...,n).

This can be proved in a similar way as the claim in Example 1.21 (see Arendt (1984a)).

Example 1.24. Let A on C[0,1] be given by Af = f" with domain $D(A) = \{f \in C^2[0,1] : f'(0) + \alpha f(0) = 0 , f'(1) + \beta f(1) = 0\}$, where $\alpha,\beta \in \mathbb{R}$. Then A is the generator of positive semigroup.

<u>Proof.</u> The operator A satisfies (P). In fact, let $0 \le f \in D(A)$ and f(a) = 0 where $a \in [0,1]$. If $a \in (0,1)$ then $f''(a) \ge 0$ since f has a minimum in a. If a = 0, then $f'(0) = f'(0) + \alpha f(0) = 0$ since $f \in D(A)$. Consequently, $f(x) = \int_0^x (x-y)f''(y)dy \ge 0$ for all $x \ge 0$. This implies $f''(0) \ge 0$. The argument for a = 1 is analoguous.