I. Models

Actor

II. Agent Structure (DDPG - Deep Deterministic Policy Gradient)

actor_local - predict the current state using the Actor model actor_target - predict the target state using the Actor model actor_optimizer - Adam optimizer critic_local - predict the current state using the Critic model aritie target predict the target state using the Critic model

critic_target - predict the target state using the Critic model

critic_optimizer - Adam optimizer

noise - OUNoise

memory - array that holds past state, action, reward, next state, and done values

Parameters

n_episodes	400	Number of times the environment is run
BUFFER_SIZE	1e6	Replay (memory) buffer size
BATCH_SIZE	128	Minibatch size
GAMMA	0.99	Discount factor
TAU	1e-3	Soft update of target parameters
LR_ACTOR	2e-4	Learning rate of the actor
LR_CRITIC	2e-4	Learning rate of the critic

WEIGHT_DECAY	0	L2 weight decay
mu	0	Noise parameter
theta	0.15	Noise parameter
sigma	0.1	Noise parameter

Overview

For each episode:

- 1) Reset the environment
- 2) Get the state of the environment

While the environment is running:

- 1) Use the agent to **predict action** based on the environment's state
- 2) Pass the predict action into the environment
- 3) Retrieve the next state, reward, and done variable
- 4) Agent step. Record next state, reward, and done variable to memory in agent
- 5) Set the current state variable to next state
- 6) Add reward to score
- 7) Break out of while loop if done is true

Predict action

- 1) Use actor_local to predict action with state as input
- 2) Re-train actor local
- 3) Add noise to **action** and clip values between -1 and 1

Agent step

1) Add experience to memory

If number of past values is greater than BATCH_SIZE

- a) Randomly sample experiences from **memory**
- b) Use actor target to get the next action (actions next) with next state as input
- c) Use critic_target to get the next Q target (Q_targets_next) with next state (next_states) and next action (actions_next) as input
- d) Computes the Q target with the following formula

```
Q 	ext{ targets} = reward + (gamma * Q 	ext{ targets next} * (1 - dones))
```

- e) Get the expected Q values (**Q_expected**) from local model (**critic_local**) with state and action as input
- f) Use critic loss for Q expected and Q targets
- g) Predict actions (actions pred) using actor local with state as input
- h) actor_loss is the negated mean of output of critic_local
- Update the weights of the target network (critic_target) from the local network (critic_local) using the following formula

```
critic_target weights = tau * critic_local weights + (1 - tau) * critic_target weights
```

j) Update the weights of the target network (actor_target) from the local network (actor_local) using the following formula

$$actor_target_{weights} = tau * actor_local_{weights} + (1 - tau) * actor_target_{weights}$$

OUNoise

1) The noise is generated by

$$dx = theta * (mu - x) + sigma * rand(size)$$

 $x = x + dx$

Where

х	State of the noise
rand(size)	Size(4) number of random values

III. Results

Here's a graph of the episodes vs scores. As the episodes get closer to 400, we see the scores concentrate between 31 and 38.

IV. Ideas for Future work

Other improvements to the algorithm I would like to pursue:

1) Prioritized Experience Replay