NUCL551 Winter, 2022 Homework #1

Due Date TBA

1. Derivation of Adjoint Equations

a. Write the expressions for the adjoint neutronics operators, M^* and F^*

b. For the 2 energy group diffusion equations, confirm the relation:

$$\sum_{i=1}^{2} \phi_{g}^{*} [F\phi]_{g} = \sum_{i=1}^{2} \phi_{g} [F^{*}\phi^{*}]_{g}$$

c. Demonstrate the equivalence of the eigenvalues of the real and adjoint equations (ie. show that $\lambda^* = \lambda$):

$$M\Phi = \lambda F\Phi$$

$$M^*\Phi^* = \lambda^* F^*\Phi^*$$

d. (Extra) Show that $\Sigma_s^*(E \to E') = \Sigma_s(E' \to E)$

2. Derive the following four formulas for exact perturbation reactivity

(see p. 47 of text Ott, <u>Dynamics</u>, Ch 4 and HW problem Homework 3, p. 53)

a)
$$\Delta \rho = \frac{\left(\Phi_0^*, \left[\lambda_0 \Delta F - \Delta M\right] \Phi\right)}{\left(\Phi_0^*, F \Phi\right)}$$
 b) $\Delta \rho = \frac{\left(\Phi_0^*, \left[\lambda \Delta F - \Delta M\right] \Phi\right)}{\left(\Phi_0^*, F_0 \Phi\right)}$

b)
$$\Delta \rho = \frac{\left(\Phi_0^*, \left[\lambda \Delta F - \Delta M\right]\Phi\right)}{\left(\Phi_0^*, F_0\Phi\right)}$$

c)
$$\Delta \rho = \frac{\left(\Phi^*, \left[\lambda_0 \Delta F - \Delta M\right] \Phi_0\right)}{\left(\Phi^*, F \Phi_0\right)}$$
 d) $\Delta \rho = \frac{\left(\Phi^*, \left[\lambda \Delta F - \Delta M\right] \Phi_0\right)}{\left(\Phi^*, F_0 \Phi_0\right)}$

d)
$$\Delta \rho = \frac{\left(\Phi^*, \left[\lambda \Delta F - \Delta M\right]\Phi_0\right)}{\left(\Phi^*, F_0 \Phi_0\right)}$$

where: $\Delta \rho \equiv \lambda_0 - \lambda$, $\Delta F \equiv F - F_0$, $\Delta M \equiv M - M_0$

and:

Perturbed balance equation
$$M\Phi = \lambda F\Phi$$
 (1)

Unperturbed adjoint equation
$$M_0^* \Phi_0^* = \lambda_0 F_0^* \Phi_0^*$$
 (2)

3. Perturbation Theory Application I: Energy

A point (infinite medium) reactor has 1 fuel nuclide (N1) and 1 poison nuclide (N2).

The neutron balance equation:

$$M\Phi = \lambda F\Phi \tag{1}$$

With the appropriate assumptions for a LWR (e.g. $\chi_1 = 1$) this can be written as:

$$\begin{bmatrix} N^{1}(\sigma_{c1}^{1} + \sigma_{f1}^{1} + \sigma_{12}^{1}) & 0 \\ -N^{1}\sigma_{12}^{1} & N^{1}(\sigma_{c2}^{1} + \sigma_{f2}^{1}) + N^{2}\sigma_{c2}^{2} \end{bmatrix} \begin{bmatrix} \Phi_{1} \\ \Phi_{2} \end{bmatrix} = \lambda \begin{bmatrix} N^{1}v\sigma_{f1}^{1} & N^{1}v\sigma_{f2}^{1} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \Phi_{1} \\ \Phi_{2} \end{bmatrix}$$
(2)

or:

$$\begin{bmatrix} \sigma_{c1}^{1} + \sigma_{f1}^{1} + \sigma_{12}^{1} & 0 \\ -\sigma_{12}^{1} & \sigma_{c2}^{1} + \sigma_{f2}^{1} + \alpha \sigma_{c2}^{2} \end{bmatrix} \begin{bmatrix} \Phi_{1} \\ \Phi_{2} \end{bmatrix} = \lambda \begin{bmatrix} v \sigma_{f1}^{1} & v \sigma_{f2}^{1} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \Phi_{1} \\ \Phi_{2} \end{bmatrix}$$

where: $\alpha = N^2 / N^1$

Using the two group data given below:

$$\sigma_{r1}^{1} = 9b$$
 $\sigma_{c1}^{1} = 3b$ $\sigma_{12}^{1} = 6b$ $\sigma_{f1}^{1} = 0b$ $N^{1} = 1.0E24$
 $\sigma_{c2}^{1} = 1b$ $\sigma_{f2}^{1} = 1b$ $v = 3$ $\sigma_{c2}^{2} = 10b$ $N^{2} = 0$

Evaluate first order and exact perturbation theory results for the following cases:

a)
$$\delta N^2 = 0.01E24$$

b)
$$\delta N^2 = 0.10E24$$

c)
$$\delta \sigma_{f2}^{1} = 0.01b$$

d)
$$\delta \sigma_{f2}^{1} = 0.50b$$

e)
$$\delta \sigma_{12}^1 = 1.00b$$

Summarize results in a Table and discuss the results:

Case	Direct Substraction	FOPT ¹	EPT ²	Relative Error of FOPT
a) $\delta N^2 = 0.01E24$	Substitution			011011
b) $\delta N^2 = 0.10E24$				
c) $\delta \sigma_{f2}^{1} = 0.01b$				
d) $\delta \sigma_{f2}^1 = 0.50b$				
e) $\delta \sigma_{12}^1 = 1.00b$				

¹First order perturbation theory

4. Perturbation Theory Application II: Space

(HW problems 4 and 5 a/b of Chapter 4 in Ott Dynamics, P53)

Consider a perturbation of $+\Delta\Sigma a$ for $r < r_a$ in a critical (**homogenous**) spherical reactor. Assume $r_a << R$, with R being the critical radius. Find the corresponding change in reactivity, using the unperturbed flux a) from reaction rate and b) from first order perturbation formulation for a one-group approximation.

Apply the formulas of previous problem to the following data: R=50cm;

$$\Sigma_t = 1.625 / cm$$
, $\Sigma_s = 1.5 / cm$, $\Sigma_a = 0.125 / cm$, $\Sigma_c = 0.073 / cm$, $\Sigma_f = 0.052, v \Sigma_f = 0.126, D = 0.25 cm$

Neglect the extrapolation length.

- a. find keff
- b. Introduce $\Delta\Sigma_c$, as a perturbation for $r < r_a = 5 cm$ as a fraction c% of Σ_c , find $\Delta \rho(c)$ between 0 and 100%.

²Exact perturbation theory