EF_TMR32

A 32-bit timer and PWM generator with the following features:

- · 32-bit prescaler.
- Up Counting, Down Counting and Up/Down Counting.
- One-shot and Periodic.
- Two independent PWM channels with two compare registers.
- Optional PWM signal inversion.
- Configurable PWM dead time/band to generate PWM signals such as those required by a half-H bridge driver.
- · Fault handling.

The wrapped IP

APB, AHBL, and Wishbone wrappers are provided. All wrappers provide the same programmer's interface as outlined in the following sections.

Wrapped IP System Integration

Based on your use case, use one of the provided wrappers or create a wrapper for your system bus type. For an example of how to integrate the wishbone wrapper:

```
EF_TMR32_WB INST (
       .clk_i(clk_i),
        .rst_i(rst_i),
        .adr_i(adr_i),
        .dat_i(dat_i),
        .dat_o(dat_o),
        .sel_i(sel_i),
        .cyc_i(cyc_i),
        .stb_i(stb_i),
        .ack_o(ack_o),
        .we_i(we_i),
        .IRQ(irq),
        .pwm0(pwm0),
        .pwm1(pwm1),
        .pwm_fault(pwm_fault)
);
```

Wrappers with DFT support

Wrappers in the directory /hdl/rtl/bus_wrappers/DFT have an extra input port sc_testmode to disable the clock gate whenever the scan chain testmode is enabled.

External IO interfaces

IO name	Direction	Width	Description
pwm0	output	1	Output of pwm0; this signal is a square wave where the width of the pulse (on time) is varied to control the power delivered to a load, often used for controlling motors, lights, and other devices.
pwm1	output	1	Output of pwm1; this signal is a square wave where the width of the pulse (on time) is varied to control the power delivered to a load, often used for controlling motors, lights, and other devices.

IO name	Direction	Width	Description
pwm_fault	input	1	This is a signal that indicates a fault or error condition in the PWM system, typically used for safety purposes to shut down or adjust the operation of the device in case of malfunction.

Interrupt Request Line (irq)

This IP generates interrupts on specific events, which are described in the Interrupt Flags section bellow. The IRQ port should be connected to the system interrupt controller.

Implementation example

The following table is the result for implementing the EF_TMR32 IP with different wrappers using Sky130 HD library and OpenLane2 flow.

Module	Number of cells	Max. freq
EF_TMR32	797	163
EF_TMR32_APB	1435	135
EF_TMR32_AHBL	1501	128
EF_TMR32_WB	1669	63

The Programmer's Interface

Registers

Name	Offset	Reset Value	Access Mode	Description
TMR	0000	0x00000000	r	The current value of the Timer.
RELOAD	0004	0x00000000	w	The timer reload value. In up counting it is used as the terminal count. For down counting it is used as the initial count.
PR	0008	0x00000000	w	The Prescaler. The timer counting frequency is $Clockfreq / (PR + 1)$
CMPX	000c	0x00000000	w	Compare Register X.
CMPY	0010	0x00000000	w	Compare Register Y.
CTRL	0014	0x00000000	w	Control Register.
CFG	0018	0x00000000	w	Configuration Register.
PWM0CFG	001c	0x00000000	w	PWM0 Configuration Register.
PWM1CFG	0020	0x00000000	w	PWM1 Configuration Register.
PWMDT	0024	0x00000000	W	PWM deadtime Register.
PWMFC	0028	0x00000000	w	PWM fault clear register.
IM	ff00	0x00000000	w	Interrupt Mask Register; write 1/0 to enable/disable interrupts; check the interrupt flags table for more details

Name	Offset	Reset Value	Access Mode	Description
RIS	ff08	0x00000000	w	Raw Interrupt Status; reflects the current interrupts status; check the interrupt flags table for more details
MIS	ff04	0x00000000	w	Masked Interrupt Status; On a read, this register gives the current masked status value of the corresponding interrupt. A write has no effect; check the interrupt flags table for more details
IC	ff0c	0x00000000	w	Interrupt Clear Register; On a write of 1, the corresponding interrupt (both raw interrupt and masked interrupt, if enabled) is cleared; check the interrupt flags table for more details
GCLK	ff10	0x00000000	w	Gated clock enable; 1: enable clock, 0: disable clock

TMR Register [Offset: 0x0, mode: r]

The current value of the Timer.

15										0
			•		TN	1R				
31	'			•				1	'	16
					TM	1R				

RELOAD Register [Offset: 0x4, mode: w]

The timer reload value. In up counting it is used as the terminal count. For down counting it is used as the initial count.

15										0
		•	'	•	REL	OAD			'	
31										16
				•	REL	OAD			'	
						0, 10				

PR Register [Offset: 0x8, mode: w]

The Prescaler. The timer counting frequency is Clockfreq / (PR + 1)

15	,ooa.or.		 99	 	-4, (,				0
					Р	R				
31	1	-								16

CMPX Register [Offset: 0xc, mode: w]

Compare Register X.

15									0
				CM	PX				
31									16
				CM	РX				

CMPY Register [Offset: 0x10, mode: w]

Compare Register Y.

15									0
				СМ	PY				
31		•							16
				СМ	PY				

CTRL Register [Offset: 0x14, mode: w]

Control Register.

15	ŭ				7	6	5	4	3	2	1	0
						PI1	PI0	DTE	P1E	P0E	TS	TE
31											-	16

bit	field name	width	description
0	TE	1	Timer enable
1	TS	1	Timer re-start; used in the one-shot mode to restart the timer. Write 1 then 0 to re-start the timer.
2	P0E	1	PWM 0 enable
3	P1E	1	PWM 1 enable
4	DTE	1	PWM deadtime enable
5	PI0	1	Invert PWM0 output.
6	PI1	1	Invert PWM1 output.

CFG Register [Offset: 0x18, mode: w]

Configuration Register.

bit	field name	width	description
0	DIR	2	Count direction; 10: Up, 01: Down, 11: Up/Down
2	Р	1	1: Periodic, 0: One Shot

PWM0CFG Register [Offset: 0x1c, mode: w]

PWM0 Configuration Register.

	3 -	- 3												
15		12	11	10	9	8	7	6	5	4	3	2	1	0
			Е	5	E	4	E	3	Е	2	E	1	Е	0
31		•	•	•			•	•			•		•	16
	'	'			'		•	'	'		'	'	'	'

bit	field name	width	description
0	E0	2	PWM0 action for matching zero. 00: No Action, 01: Low, 10: High, 11: Invert
2	E1	2	PWM0 action for matching CMPX (going up). 00: No Action, 01: Low, 10: High, 11: Invert
4	E2	2	PWM0 action for matching CMPY (going up). 00: No Action, 01: Low, 10: High, 11: Invert
6	E3	2	PWM0 action for matching RELOAD. 00: No Action, 01: Low, 10: High, 11: Invert
8	E4	2	PWM0 action for matching CMPY (going down). 00: No Action, 01: Low, 10: High, 11: Invert

bit	field name	width	description
10	E5	2	PWM0 action for matching CMPX (going down). 00: No Action, 01: Low, 10: High, 11: Invert

PWM1CFG Register [Offset: 0x20, mode: w]

PWM1 Configuration Register.

bit	field name	width	description
0	E0	2	PWM1 action for matching zero. 00: No Action, 01: Low, 10: High, 11: Invert
2	E1	2	PWM1 action for matching CMPX (going up). 00: No Action, 01: Low, 10: High, 11: Invert
4	E2	2	PWM1 action for matching CMPY (going up). 00: No Action, 01: Low, 10: High, 11: Invert
6	E3	2	PWM1 action for matching RELOAD. 00: No Action, 01: Low, 10: High, 11: Invert
8	E4	2	PWM1 action for matching CMPY (going down). 00: No Action, 01: Low, 10: High, 11: Invert
10	E5	2	PWM1 action for matching CMPX (going down). 00: No Action, 01: Low, 10: High, 11: Invert

PWMDT Register [Offset: 0x24, mode: w]

PWM deadtime Register.

15	oaaamo	rtogiote					8	7					0
										PWN	1DT		
31													16
	'	'	•	•	•	'	•	•	•	'			

PWMFC Register [Offset: 0x28, mode: w]

PWM fault clear register.

15											0
	1	1	1		PWI	ИFC	•	1		'	
31										· · · · · · · · · · · · · · · · · · ·	16
								1		,	
	1							1	1		

GCLK Register [Offset: 0xff10, mode: w]

Gated clock enable register

15												1	0
		'	'	'	'	'	'	'	'	'	'	ge	clk_enable
31													16
					'	'	,						

bit	field name	width	description
0	gclk_enable	1	Gated clock enable; 1: enable clock, 0: disable clock

Interrupt Flags

The wrapped IP provides four registers to deal with interrupts: IM, RIS, MIS and IC. These registers exist for all wrapper types.

Each register has a group of bits for the interrupt sources/flags.

- IM [offset: 0xff00]: is used to enable/disable interrupt sources.
- RIS [offset: 0xff08]: has the current interrupt status (interrupt flags) whether they are enabled or disabled.
- MIS [offset: 0xff04]: is the result of masking (ANDing) RIS by IM.
- IC [offset: 0xff0c]: is used to clear an interrupt flag.

The following are the bit definitions for the interrupt registers:

Bit	Flag	Width	Description
0	то	1	Timeout; TMR matches 0 (down counting) or RELOAD (up counting).
1	MX	1	TMR matches CMPX register.
2	MY	1	TMR matches CMPY register.

Clock Gating

The IP includes a clock gating feature that allows selective activation and deactivation of the clock using the GCLK register. This capability is implemented through the ef_util_gating_cell module, which is part of the common modules library, ef_util_lib.v. By default, the clock gating is disabled. To enable behavioral implmentation clock gating, only for simulation purposes, you should define the CLKG_GENERIC macro. Alternatively, define the CLKG_SKY130_HD macro if you wish to use the SKY130 HD library clock gating cell, sky130_fd_sc_hd_dlclkp_4.

Note: If you choose the OpenLane2 flow for implementation and would like to enable the clock gating feature, you need to add CLKG_SKY130_HD macro to the VERILOG_DEFINES configuration variable. Update OpenLane2 YAML configuration file as follows:

VERILOG_DEFINES:

- CLKG SKY130 HD

Firmware Drivers:

Firmware drivers for EF_TMR32 can be found in the <u>Drivers</u> directory in the <u>EFIS</u> (Efabless Firmware Interface Standard) repo. EF_TMR32 driver documentation is available <u>here</u>. You can also find an example C application using the EF_TMR32 drivers here.

Installation:

You can install the IP either by cloning this repository or by using IPM.

1. Using IPM:

- [Optional] If you do not have IPM installed, follow the installation guide here
- After installing IPM, execute the following command ipm install EF_TMR32.

Note: This method is recommended as it automatically installs EF_IP_UTIL as a dependency.

2. Cloning this repo:

- Clone <u>EF_IP_UTIL</u> repository, which includes the required modules from the common modules library, <u>ef_util_lib.v.</u> git clone https://github.com/efabless/EF_IP_UTIL.git
- Clone the IP repository git clone github.com/efabless/EF_TMR32/tree/main

The Wrapped IP Interface

NOTE: This section is intended for advanced users who wish to gain more information about the interface of the wrapped IP, in case they want to create their own wrappers.

Module Parameters

Parameter	Description	Default Value
PRW	Number of bits for the prescaler register	16

Ports

Port	Direction	Width	Description
pwm0	output	1	Output of pwm0; this signal is a square wave where the width of the pulse (on time) is varied to control the power delivered to a load, often used for controlling motors, lights, and other devices.
pwm1	output	1	Output of pwm1; this signal is a square wave where the width of the pulse (on time) is varied to control the power delivered to a load, often used for controlling motors, lights, and other devices.
pwm_fault	input	1	This is a signal that indicates a fault or error condition in the PWM system, typically used for safety purposes to shut down or adjust the operation of the device in case of malfunction.

Port	Direction	Width	Description
tmr_en	input	1	Flag to enable timer
tmr_start	input	1	Flag to make tmr start in one shot mode
pwm0_en	input	1	Enable signal for PWM0 generation
pwm1_en	input	1	Enable signal for PWM1 generation
tmr_reload	input	32	The reload value which the counter will reach or start from
cmpx	input	32	The compare value X
cmpy	input	32	The compare value Y
prescaler	input	PRW	Prescaler value; Timer frequency = clock frequency / (prescaler + 1)
tmr_cfg	input	3	Timer configuration value; periodic or one shot and counting direction
pwm0_cfg	input	12	Actions configuration for pwm0
pwm1_cfg	input	12	Actions configuration for pwm1
pwm0_inv	input	1	Invert pwm0 signal
pwm1_inv	input	1	Invert pwm1 signal
pwm_dt	input	8	Deadtime for pwm
pwm_fault_clr	input	16	PWM fault input
pwm_dt_en	input	1	PWM deadtime enable
tmr	output	32	The actual value for the timer
matchx_flag	output	1	Flag raised when matching compare value x
matchy_flag	output	1	Flag raised when matching compare value x
timeout_flag	output	1	Flag raised when timeout happen