Aula 05 Desgaste de Ferramentas

Aula 05

Tópicos

- Desgaste em ferramentas de usinagem
- · Conceito de usinabilidade
- · Conceito de vida da ferramenta
- Aspéctos econômicas da usinagem

- a Desgaste de Cratera
- b Desgaste de Flanco no Gume Principal
- c Desgaste de Flanco no Gume Secundário

- VB Largura média de desgaste de flanco.
- VB_{máx} Largura máxima de desgaste de flanco.
- SVα Deslocamento lateral do gume na direção do flanco.
- KB Largura de cratera.
- KF Largura do lábio no desgaste de cratera.
- KM Distância da borda
 da ferramenta ao
 centro da cratera.
- KT Profundidade de cratera.
- **SV**γ Deslocamento lateral do gume na direção da face.

Desgaste de cratera e de flanco (VB)

- VB Largura média de desgaste de flanco.
- VB_{máx} Largura máxima de desgaste de flanco.
- SVα Deslocamento lateral do gume na direção do flanco.
- **KB** Largura de cratera.
- KF Largura do lábio no desgaste de cratera.
- KM Distância da borda da ferramenta ao centro da cratera.
- KT Profundidade de cratera.
- SVγ Deslocamento lateral do gume na direção da face.

Desgaste de flanco (VB)

- VB Largura média de desgaste de flanco.
- VB_{máx} Largura máxima de desgaste de flanco.
- SVα Deslocamento lateral do gume na direção do flanco.
- KB Largura de cratera.
- KF Largura do lábio no desgaste de cratera.
- KM Distância da borda da ferramenta ao centro da cratera.
- KT Profundidade de cratera.
- SVγ Deslocamento lateral do gume na direção da face.

Exemplo de desgaste de flanco

Desgaste na face – desgaste de cratera

- VB Largura média de desgaste de flanco.
- VB_{máx} Largura máxima de desgaste de flanco.
- SVα Deslocamento lateral do gume na direção do flanco.
- KB Largura de cratera.
- KF Largura do lábio no desgaste de cratera.
- KM Distância da borda da ferramenta ao centro da cratera.
- KT Profundidade de cratera.
- SVγ Deslocamento lateral do gume na direção da face.

Exemplo de desgaste de cratera

Lascamento de gume

- Forças de corte excessivas;
- Corte interrompido;
- Material da peça com inclusões duras.

Exemplo de desgaste por adesão

Causas e mecanismos de desgaste

- Danos no gume devido a solicitações
- Adesão
- Abrasão mecânica
- Oxidação
- Difusão
- outros

(Velocidade de Corte; Avanço e outros fatores)

Mecanismos de desgaste

Formas de avaliação do desgaste

•

Medição direta

- inspeção visual com comparação de padrões (lupas)
- mecânica (paquimetros, micrômetros, outros)
- óptica (microscópios de ferramentaria)
- óptica/eletrônica (cameras CCD)

•

Medição indireta

- aumento das vibrações
- aumento do ruído
- piora da qualidade
- rejeição dimensional
- aumentos das forças
- outros

Conceito de usinabilidade

Conceito de usinabilidade

Usinabilidade

"Na usinagem com remoção de cavacos verifica-se que os diversos materiais se comportam de modo distinto, sendo que alguns podem ser trabalhados com grande facilidade, enquanto que outros oferecem uma série de problemas ao operador"

Usinabilidade

- Descreve todas as dificuldades que um material apresenta na sua usinagem.
- Compreende todas as propriedades de um material que têm influência sobre o processo de usinagem.

•

 Definição: Usinabilidade pode ser definida como sendo a capacidade dos materais de peça em se deixarem usinar

Conceito de usinabilidade

•

- •Os critérios de usinabilidade dependem:
 - do matrial da peça
 - grau de deformação
 - presença e tipos de elementos de liga
 - presença de impurezas
 - outros

•Fatores de influência na usinabilidade

Material da peça: composição química, microestrutura, dureza, propriedades mecânicas, rigidez, etc..

Aço 1020 Recozido - Estrutura Ferrítica-Perlítica Ferro Fundido Nodular - GGG70 Recuperação Estricção

•Fatores de influência na usinabilidade

Processo e condições de usinagem: material e geometria da ferramenta, condições de trabalho, fluido de corte, rigidez do sistema, tipo de operação, etc.

Critérios de Usinabilidade

• Formação de cavaco

• Forças de usinagem

Critérios de Usinabilidade

• Abrasividade – grau de desgaste da ferramenta

• Tipo de cavaco

Critérios de Usinabilidade

Qualidade superficial

→ Grau de tensão residual induzido na superfície

→ Grau de dano térmico induzido na superticie

→ Critérios de

→ Outros

Ações para minimizar os efeitos da má usinabilidade

- na ferramenta
 - → material
 - → geometria da ferramenta
 - → uso de revestimento
- no processo
 - → velocidade
 - → avanço
 - → profundidade de corte
 - → uso de meios lubri-refrigerantes
- no material da peça
 - → elementos de liga
 - → controle no processo de obtenção/fabricação anteriror usinagem
 - → alívio de tensões e tratamentos térmicos

Vida da ferramenta

Conceito de vida da ferramenta

Período no qual uma ferramenta pode ser mantida usinando de forma econômica

O critério econômico pode ser relacionado principalmente com:

- tolerâncias dimensionais
- tolerâncias geométricas
- qualidade superficial da peça
- nível de vibrações no processo
- nível de esforços no processo
- possibilidade de reafiação da ferramenta
- outros

Critério Vida da Ferramenta

Definição: Vida de ferramenta é o tempo que esta resiste do início do corte até a sua utilização total

 A vida é relacionada a um certo critério de fim de vida sob certas condições de usinagem

Determinação da vida

- Testes de longa duração
 - Resultados precisos
 - Tempo, quantidade de material e custo elevados
- Testes rápidos
 - Só trazem valores de comparação
 - Econômicos

Critérios de fim de vida

São critérios que são utilizados para determinar quando uma ferramenta deve ser substituida no processo.

Esses critérios é relacionado ao nível de desgaste na ferramenta, e suas consequências diretas :

- desvios nas tolerâncias dimensionais
- desvios nas tolerâncias geométricas
- perda de qualidade superficial da peça
- aumento no nível de vibrações no processo
- aumento no nível de esforços no processo
- aumento do custo de reafiação da ferramenta

Principais critérios de fim de vida

- → Falha completa da ferramenta
- → Falha preliminar da ferramenta
- → Desgaste de flanco (VB) ou de cratera (KT)
- → Vibrações (monitoramento)
- → Acabamento superficial ruim
- → Rebarbas
- → Alterações nos cavacos
- → Alterações nas dimensões de corte
- → Alterações nas forças de usinagem (monitoramento)
- → Aumento nas temperaturas

Testes de torneamento – temperatura

- Teste de longa duração utilizado quando o fator dominante na vida da ferramenta é a temperatura
- v_c e f constantes até a destruição total da ferramenta (desgaste hiperproporcional)
- Constar no relatório os instantes em que aparecem ruídos, modificações nos cavacos, marcas na peça e tempo total para destruição da ferramenta
- No torneamento longitudinal, escolher quatro velocidades de corte que proporcionam vidas entre 5 e 60 minutos
- Usualmente empregado aço rápido HS 10-4-3-10;

Testes de torneamento – curva de vida

- Em papel log-log são traçadas as curvas de T = f(v_c)
- A equação da melhor reta que representa o comportamento da curva da vida é a equação de Taylor:

$$T = v_c^k . C_v$$

T Vida v Velocidade de corte η Inclinação da curva v_c Material da peça Ck 45 Material da ferramenta S 10-4-3-10

Modificações da equação de Taylor

$$-\mathbf{v}_{c} = \mathbf{T}^{1/k} \cdot \mathbf{C}_{T}$$
 ou $\mathbf{v}_{c} \cdot \mathbf{T}^{-1/k} = \mathbf{C}_{T}$ onde $\mathbf{C}_{T} = \mathbf{C}_{v}^{-1/k}$

- Eixos de coordenadas
 - C_v (vida T para $v_c = 1$ m/min)
 - C_T (v_c para vida T= 1min)
- O fator k é a inclinação da reta (k = tan η_v)

Curvas de vida de ferramentas

Testes de torneamento – desgaste

- Executados quando o desgaste, e não a temperatura, é determinante no fim da vida da ferramenta
- Ferramentas de metal duro e aço rápido em altas velocidades de corte apresentam desgastes de flanco e cratera
- Mantendo-se v_c constante acompanha-se a evolução do desgaste no flanco e na face
- Medidas de desgaste
 - Marca de desgaste de flanco VB
 - Profundidade de cratera KT
 - Afastamento médio da cratera KM

Testes de torneamento – desgaste

 Os valores são plotados em gráficos log-log onde são traçadas as curvas de VB ou a relação de desgaste K = f(t_c)

$$T_{VB} = f(v_c)$$
 ou $T_K = f(v_c)$

- Destas curvas pode-se obter:
 - → A velocidade de corte para determinada vida
 - → As duas equações para as formas de desgaste, marca de desgaste ou profundidade de cratera
 - → Normalmente as curvas são mais inclinadas para desgastes de cratera do que para desgastes de flanco

Testes de torneamento – desgaste

$$T_{VB} = f(v_c)$$
 ou $T_K = f(v_c)$

Ensaios v_{cE} com variação contínua da velocidade de corte

Adequado para:

- Supervisão de fornecimento de materiais
- Determinação da usinabilidade de materiais tratados termicamente de maneira diferente

Testes de torneamento – critério de força

Medição de força de usinagem

Testes de torneamento – critério de força

Força específica de corte e propriedades mecânicas de aços carbono.

Critério de força – Equação de Kienzle

- Função das características do material;
- Função da seção de corte

$$F_c = b \cdot h^{(1-m_c)} \cdot k_{c1.1}$$

Onde:

 F_c = força de corte [N];

b = largura de usinagem [mm];

h = espessura de corte [mm];

 $k_{c1.1}$ = pressão específica de corte para um cavaco de 1x1 mm² [N/mm²];

(1-mc) = coeficiente angular da reta

Critério de força – Equação de Kienzle

$$F_c = b \cdot h^{(1-m_c)} \cdot k_{c1.1}$$

Critério de força – Qualidade superficial

Rugosidade cnemática teórica

- A rugosidade cinemática, é decorrente do raio de quina da ferramenta e do movimento relativo entre peça e ferramenta
- No torneamento, é influenciada principalmente pela forma do gume e pelo avanço

Influência da velocidade de corte sobre a rugosidade da peça:

Dependência entre a rugosidade média R_a e o tempo de corte

Aspéctos Econômicos da Usinagem

Otimização das condições de corte

- Procedimento cujo objetivo é tomar, da melhor maneira possível, o valor mais adequado à operação em curso, em função de outros valores que podem ser pré-determinados ou conhecidos
- Otimização exige conhecimento de leis de desgaste da ferramenta e de métodos de otimização
- Aumentos no grau de automatização levaram a aumentos nas velocidades de corte e diminuição das vidas das ferramentas

Evolução das vidas ótimas de ferramentas

- Causada pelo aumento nos custos de investimentos (máquinasferramentas mais caras)
 - 1940 T = 4 a 8 horas
 - -1960 T = 1h (aproximadamente)
 - -1990 T = 10 a 20 min

Custos de fabricação

- Máquina-ferramenta;
- > Ferramentas;
- Mão de obra;

velocidades de corte

- Maiores vidas de ferramentas
- Menos trocas de ferramentas
- Menor custo de ferramentas
- Maior custo de salários
- Maior custo de máquinas-ferramentas
- Maior tempo de usinagem

Custos de salário / máquinas

- Atualmente o custo de salário e máquinas é maior que o custo com ferramentas e trocas de ferramentas
- A tendência de menores custos ocorre para maiores velocidades de corte e menores vidas das ferramentas

 Otimização da usinagem é feita conforme processo de fabricação, e pode ser realizada com relação a custo, tempos, lucro, qualidade,...

Desbaste

Mínimo custo Mínimo tempo de fabricação Máximo lucro

Acabamento Qualidade da superfície
 Outros

Tolerâncias

Custos de Fabricação

- Custos de fabricação por peça (K_F) [\$/peça]
 - 1 Custos de preparação e secundários (custo fixo);
 - 2 Custos de máquina e operador (principal);
 - 3 Custos de ferramenta

Otimização – Custos da Fabricação

$$K_{F} = K_{ML} \left(\frac{t_{r}}{m} + t_{n} \right) + K_{ML} \cdot t_{h} + \underbrace{\frac{t_{h}}{T} \cdot \left(K_{ML} \cdot t_{W} + K_{WT} \right)}_{\mathbf{3}}$$

- \checkmark K_F custo de fabricação por peça [\$/peça]
- ✓ K_{ML} custo de máquina e operador por hora [\$/min]
- ✓ **K**_{wr} custo de ferramenta por vida [\$]
- ✓ t_r tempo de preparação [min]
- ✓ m tamanho do lote
- ✓ t_n tempos secundários [min]
- ✓ t_h tempo principal [min]
- ✓ t_w tempo de troca da ferramenta [min]
- ✓ T vida da ferramenta [min]

- 1 Custos de preparação e secundários (custo fixo)
- 2 Custos de máquina e operador (principal)
- 3 Custos de ferramenta

Otimização – Tempo de Fabricação por Peça

$$t_e = \frac{t_r}{m} + t_n + t_h + \frac{t_h}{T} \cdot t_w$$
 [min/peça]

- 1 tempo de preparação e secundário
- 2 tempo principal
- 3 tempo de troca de ferramenta

O tempo de fabricação tem um comportamento análogo aos dos custos de fabricação por peça, apresentando um valor ótimo (mínimo) para uma determinada condição de trabalho

Otimização - Tempo de fabricação

- Custos de fabricação por peça (t_e) [min/peça]
 - 1 tempo de preparação e secundário
 - 2 tempo principal

3 - tempo de troca de ferramenta

Otimização – Custo de Fabricação por Peça

$$K_F = K_{ML} \left(\frac{t_r}{m} + t_n \right) + K_{ML} \cdot t_h + \frac{t_h}{T} \cdot \left(K_{ML} \cdot t_W + K_{WT} \right)$$

$$t_h = \frac{d \cdot \pi \cdot l_f}{f \cdot v_c} \quad [\text{min}] \qquad \qquad t_h = \frac{V_z}{a_p \cdot f \cdot v_c} \quad [\text{min}] \qquad \qquad \mathbf{V_z} = \text{volume usinado por peça}$$

→ Equação do Custo de Fabricação por Peça:

$$K_F = K_{ML} \left(\frac{t_r}{m} + t_n \right) + \frac{K_{ML} \cdot V_Z}{a_p \cdot f \cdot v_c} + \frac{V_Z}{a_p \cdot f \cdot C_V \cdot v_c^{k+1}} \cdot \left(K_{ML} \cdot t_W + K_{WT} \right)$$

→ Equação do Tempo de Fabricação por Peça:

$$t_e = \frac{t_r}{m} + t_n + \frac{V_Z}{a_p \cdot f \cdot v_c} + \frac{V_Z}{a_p \cdot f \cdot C_V \cdot v_c^{k+1}} \cdot t_w$$

Otimização – Custo de Fabricação por Peça

> Para determinar a velocidade de corte de mínimo custo:

$$\frac{dK_F}{dv_c} = 0 \implies v_{cok} = \sqrt[k]{-(k+1) \cdot \frac{\left(t_w + \frac{K_{WT}}{K_{ML}}\right)}{C_V}}$$

> Para determinar a velocidade de corte de mínimo tempo:

$$\frac{dt_e}{dv_c} = 0 \qquad \Longrightarrow \qquad v_{coz} = \sqrt[k]{-(k+1) \cdot \frac{t_w}{C_V}}$$

OBS: O mesmo deve ser considerado para equacionamento da vida para ótimo custo e vida para ótimo tempo

Otimização

- Otimização dos dados de entrada de usinagem;
 - Otimização da profundidade de corte (a_p)

Otimização

- Otimização dos dados de entrada de usinagem;
 - Otimização do avanço (f)

Maximização do avanço

Otimização

- Na escolha dos parâmetros é indispensável observar:
 - Limites ferramenta-peça-máquina;
 - Potência da máquina-ferramenta;
 - Tamanho do inserto (largura máxima de usinagem);
 - Forças de corte;

		_
Forma do	Compr. do gume	Carga Adm.
inserto	(mm)	(N)
TP	11	4000
	16	9000
\wedge	22	17000
	27	24000
TN	11	4500
	16	10000
	22	19000
	27	27000
SP	9	6000
	12	10000
	15	20000
	19	26000
	25	49000
SN	9	6500
	12	12000
	15	22000
	19	28000
	. 25	55000