19CSE 212: Data Structures and Algorithms

Lecture 7.2: Priority Queues Dr. Vidhya Balasubramanian

Priority Queues

Is an abstract data type which is a collection of items like other ADTs

Additionally there is a priority associated with each item

An element with high priority is served before an element

with lower priority

	Silver Card	Gold Card	Platinum Card
Priority Check-in	✓	*	· ·
Priority Boarding	*	*	*
Additional Baggage Allowance	10 kg	15 kg	20 kg
Lounge Access		1	1

A Priority A A C C C S S .

Src:airberlin.com

19CSE 212: Data Structures and Algorithms

Priority Queue ADT

- An item in a priority queue P is represented as follows
 - (key, element), key is the priority
- Operations
 - insertItem(k, o): inserts an item with key k and element o
 - removeMin(): removes the item with the smallest key
 - minKey(): returns, but does not remove, the smallest key of P
 - minElement(): returns, but does not remove, the element of an item with smallest key
 - size(), isEmpty()

Priority Queue Example

Operation	Output	Priority Queue
insertItem(5,A)	-	{(5,A)}
insertItem(9,C)	-	{(5,A), (9,C)}
insertItem(3,B)	-	{(3,B),(5,A), (9,C)}
insertItem(7,D)	-	{(3,B),(5,A),(7,D) (9,C)}
minElement()	В	{(3,B),(5,A),(7,D) (9,C)}
minKey()	3	{(3,B),(5,A),(7,D) (9,C)}
removeMin()	(3,B)	{(5,A),(7,D) (9,C)}
minElement()	Α	{(5,A),(7,D) (9,C)}
removeMin()	(5,A)	{(7,D) (9,C)}
removeMin()	(7,D)	{(9,C)}
size()	1	{(9,C)}

19CSE 212: Data Structures and Algorithms

Total Order Relation

- Keys in a priority queue follow a total ordered relation
 - Two distinct items in a priority queue can have the same key
- A relation <= is a total order on a set S ("<= totally orders S")
 if the following properties hold.
 - Reflexivity: a<=a for all a in S.
 - Antisymmetry: a<=b and b<=a implies a=b.
 - Transitivity: a<=b and b<=c implies a<=c.
 - Comparability: For any a,b in S, either a<=b or b<=a

Comparator ADT

- comparator encapsulates the action of comparing two objects according to a given total order relation
- A generic priority queue uses a comparator as a template argument, to define the comparison function (<,=,>)
- Function
 - comp(a,b)
 - Returns integer i, such that i<0, i=0 or i>0
 - Value of i depends on whether a<b, a=b or a>b respectively
 - When the priority queue needs to compare two keys, it uses its comparator

Sequence based Priority Queue

- Unsorted Sequence
 - Store items in a list based sequence in an arbitrary order
 - Performance
 - insertItem: O(1) time since it can be inserted anywhere
 - removeMin: O(n) to find the smallest key in the array
- Sorted Sequence
 - Store items sorted by key
 - insertItem: O(n) to find and insert item at right place
 - removeMin: O(1): element is at front of sequence

Heaps

- A heap implements a priority queue
- Stores elements in a binary tree
 - insertions and deletions logarithmic time

Src: Goodrich notes

http://upload.wikimedia.org/ wikipedia/commons/thumb/ 3/38/Max-Heap.svg/240px-Amrita Vishwa Vidyapeetham Max-Heap.svg.png

19CSE 212: Data Structures and Algorithms

Heap: Properties

- Heap-Order Property
 - For every node v other than the root, the key stored at v is greater than or equal to the key stored at v's parent
 - $key(v) \ge key(parent(v))$ (min-heap)
 - Or vice versa for a max-heap
- Complete Binary tree
 - A binary tree with height h is complete if the levels 0,1,2,...h-1 have the maximum number of nodes possible and
 - All internal nodes are to the left of the external nodes
 - Helps keep the height of the heap small

Insertion in a Heap

- Corresponds to insertion in a priority queue
 - Find the insertion node z (the new last node)
 - Store k at z and expand z into an internal node
 - Expanding means adding a child
 - Restore the heap-order property

19CSE 212: Data Structures and Algorithms

Upheap

- After the insertion of a new key k, the heap-order property may be violated
- Algorithm upheap restores the heap-order property by swapping k along an upward path from the insertion node
- Upheap terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k
- Since a heap has height O(log n), upheap runs in O(log n) time

Upheap

19CSE 212: Data Structures and Algorithms

Amrita Vishwa Vidyapeetham

Removal from a heap

- Removes root from the heap
- Replace the root key with the key of the last node w
- Compress w and its children into a leaf
- Restore the heap-order property using down-heap

19CSE 212: Data Structures and Algorithms

Downheap

- After replacing the root key with the key k of the last node, the heap-order property may be violated
- Algorithm downheap restores the heap-order property by swapping key k along a downward path from the root
- Downheap terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k
- Since a heap has height O(log n), downheap runs in O(log n) time

Downheap

19CSE 212: Data Structures and Algorithms

Exercise

- Create a heap by inserting the following elements in order
 - 2,5,16,4,10,23,39,18,26,15, 9, 8
 - What is the height of the heap
 - Demonstrate the deletion operation
 - Remove min element thrice and demonstrate how the heap changes
- Is there a heap T storing seven distinct elements such that the preorder traversal of T yields the elements in sorted order?
 - What about the other traversals

Heap Implementation

- Implemented using vector representation
- The last node is the rightmost node in the last level

19CSE 212: Data Structures and Algorithms

Analysis of Heaps

- Insertion
 - Element inserted in the last position
 - Up-heap restores the heap-order property by swapping inserted element along an upward path from the insertion node
 - Worst case O(log n)
- Deletion
 - Remove root and replace with last node
 - Down-heap restores the heap-order property by swapping key k along a downward path from the root
 - Worst case O(log n)

Merging heaps

- Given two heaps and a key k
 - Create a new heap with k as root, and the two heaps as subtrees
 - Down-heap to restore heap order property

19CSE 212: Data Structures and Algorithms

Building the heap

- Bottom up building of the heap takes O(n) time
 - Construct (n+1)/2 elementary heaps composed of one key each.
 - Construct (n+1)/4 heaps, each with 3 keys, by joining pairs of elementary heads and adding a new key as the root.
 - Swap if heap-order not satisfied
 - In phase i, pairs of heaps with 2ⁱ -1 keys are merged into heaps with 2ⁱ⁺¹-1 keys
 - i.e form (n+1)/2ⁱ heaps, each storing 2ⁱ-1 keys, by joining pairs of heaps storing (2ⁱ⁺¹-1) keys.

19CSE 212: Data Structures and Algorithms

Amrita Vishwa Vidyapeetham

http://www.apl.jhu.edu/Classes/605202/felikson/lectures/L8/

19CSE 212: Data Structures and Algorithms

Amrita Vishwa Vidyapeetham

http://www.apl.jhu.edu/Classes/605202/felikson/lectures/L8/19CSE 212: Data Structures
and Algorithms

Amrita Vishwa Vidyapeetham

- Atmost n nodes in the path of down-heap
- Hence cost of heap building is O(n)

Exercise

- Create a heap for the following data using the bottom-up approach
 - 2,5,16,4,10,23,39,18,26,15, 9, 8, 3, 22, 34
- Draw an example of a heap whose keys are all odd numbers from 1 to 59 (no repeat), such that the insertion of an item with key 32 causes up-heap bubbling to proceed all the way up to a child of the root
- Will the preorder traversal of a heap always yield the sorted order? Give an example to show it need not always be so.