

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Report No.: SZEM170100012801

Fax: +86 (0) 755 2671 0594 Page: 1 of 45

TEST REPORT

Application No.: SZEM1701000128CR

Applicant: Tektos Limited

Address of Applicant: Room F, 20/F, Kwong Ga factory Building, 64 Victoria Road, Kennedy Town,

Hong Kong

Manufacturer: Hong Kong Di Tuo Si (Shenzhen) Co., Ltd

Address of Manufacturer: Floor 5th, Building A, Gangzhilong Business Center Heping East Road, Longhua

District, shenzhen, Guangdong, China

Factory: Hong Kong Di Tuo Si (Shenzhen) Co., Ltd

Address of Factory: Floor 5th, Building A, Gangzhilong Business Center Heping East Road, Longhua

District, shenzhen, Guangdong, China

Equipment Under Test (EUT):

EUT Name: Bagitag
Model No.: LUGT
Trade mark: Tektos

FCC ID: 2AA23LUGT

Standards: 47 CFR Part 15, Subpart C 15.247

Date of Receipt: 2017-01-06

Date of Test: 2017-01-12 to 2017-01-18

Date of Issue: 2017-01-19

Test Result : Pass*

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-en-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: SZEM170100012801

Page: 2 of 45

Revision Record						
Version Chapter Date Modifier Remark						
01		2017-01-19		Original		

Authorized for issue by:			
Tested By	Edison li	2017-01-18	
	Edison Li /Project Engineer	Date	
Checked By	Eric Fu	2017-01-19	
	Eric Fu /Reviewer	Date	

Report No.: SZEM170100012801

Page: 3 of 45

2 Test Summary

Radio Spectrum Technical Requirement					
Item	Standard	Method	Requirement	Result	
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass	

Radio Spectrum Matter Part					
Item	Standard	Method	Requirement	Result	
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.9.1.1	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass	
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass	
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass	
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass	
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass	
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass	
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass	

Report No.: SZEM170100012801

Page: 4 of 45

3 Contents

			Page
1	COVER	PAGE	1
2	TEST SI	JMMARY	3
3	CONTE	NTS	4
4	GENER	AL INFORMATION	4
7			
		LS OF E.U.T.	
		IPTION OF SUPPORT UNITS	
		TION FREQUENCY EACH OF CHANNEL	
		INVIRONMENTUREMENT UNCERTAINTY	
		ARDS APPLICABLE FOR TESTING	
		OCATION	
		PACILITY	
		TION FROM STANDARDS	
		NORMALITIES FROM STANDARD CONDITIONS	
_			
5	EQUIPM	ENT LIST	10
6	RADIO S	SPECTRUM TECHNICAL REQUIREMENT	12
	6.1 ANTEN	INA REQUIREMENT	12
	6.1.1	Test Requirement:	12
	6.1.2	Conclusion	12
7	BADIO	SPECTRUM MATTER TEST RESULTS	12
•			
		JCTED PEAK OUTPUT POWER	
		E.U.T. Operation	
		Test Setup Diagram	
		Measurement Data	
		UM 6DB BANDWIDTH	
		E.U.T. Operation Test Setup Diagram	
		Measurement Data	
		R SPECTRUM DENSITY	
		E.U.T. Operation	
		Test Setup Diagram	
		Measurement Data	
		EDGE FOR CONDUCTED EMISSIONS	
		E.U.T. Operation	
		Test Setup Diagram	
	7.4.3 I	Measurement Data	16
	7.5 CONDU	JCTED SPURIOUS EMISSIONS	17
	7.5.1 E	E.U.T. Operation	17
		Test Setup Diagram	
		Measurement Data	
		TED SPURIOUS EMISSIONS	
		E.U.T. Operation	
		Test Setup Diagram	
		Measurement Data	
	7.7 Radia'	TED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	25

Report No.: SZEM170100012801

Page: 5 of 45

	7.7.1 E.U.T. Operation	25
	7.7.2 Test Setup Diagram	25
	7.7.3 Measurement Data	26
8	B PHOTOGRAPHS	31
	8.1 RADIATED SPURIOUS EMISSIONS TEST SETUP	
	8.2 EUT CONSTRUCTIONAL DETAILS	32
9	APPENDIX	33
	Appendix 15.247	

Report No.: SZEM170100012801

Page: 6 of 45

4 General Information

4.1 Details of E.U.T.

Power supply: DC 3.0V Lithium battery

RF power ≤10mw Modulated / Un-Modulated GFSK

Frequency range 2402MHz-2480MHz

Antenna type Integral
Antenna gain 5dBi
Bluetooth version V4.0 BLE

Number of channels 40

Sample type Portable product

4.2 Description of Support Units

The EUT has been tested as an independent unit.

4.3 Operation Frequency each of channel

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

Report No.: SZEM170100012801

Page: 7 of 45

4.4 Test Environment

Operating Environment:

Temperature:	25.0 °C
Humidity:	53 % RH
Atmospheric Pressure:	1010mbar

4.5 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.25 x 10-8
2	Duty cycle	0.37%
3	Occupied Bandwidth	3%
4	RF conducted power	0.75dB
5	RF power density	2.84dB
6	Conducted Spurious emissions	0.75dB
7	DE Dadista de la compansión de la compan	4.5dB (below 1GHz)
8	RF Radiated power	4.8dB (above 1GHz)
	Dadiated Couriers amission test	4.5dB (30MHz-1GHz)
9	Radiated Spurious emission test	4.8dB (1GHz-18GHz)
	Temperature test	1℃
10	Humidity test	3%
11	Supply voltages	1.5%
12 Time		3%

Report No.: SZEM170100012801

Page: 8 of 45

4.6 Standards Applicable for Testing

Table 1: Tests Carried Out Under 47 CFR Part 15, Subpart C 15.247

Item	Status
Conducted Disturbance at AC Power Line(150kHz-30MHz)	×
20dB Bandwidth	×
Conducted Peak Output Power	√
Carrier Frequencies Separation	×
Hopping Channel Number	×
Dwell Time	×
Minimum 6dB Bandwidth	√
Power Spectrum Density	√
Conducted Spurious Emissions	√
Radiated Spurious Emissions	√
Radiated Emissions which fall in the restricted bands	√
Conducted Band Edges Measurement	√
Antenna Requirement	√
Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence	×

- × Indicates that the test is not applicable
- $\sqrt{}$ Indicates that the test is applicable

Report No.: SZEM170100012801

Page: 9 of 45

4.7 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

4.8 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

· CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

• FCC - Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

4.9 Deviation from Standards

None

4.10 Abnormalities from Standard Conditions

None

Report No.: SZEM170100012801

Page: 10 of 45

5 Equipment List

RF Conducted Test						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09	
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-09	2017-10-09	
Signal Generator	Rohde & Schwarz	SML03	SEM006-02	2016-04-25	2017-04-25	
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2016-10-09	2017-10-09	

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2016-05-13	2017-05-13
2	EMI Test Receiver	Agilent Technologies	N9038A	SEM004-05	2016-10-09	2017-10-09
3	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2014-11-01	2017-11-01
4	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEM003-11	2015-10-17	2018-10-17
5	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEM003-12	2014-11-24	2017-11-24
6	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2016-04-25	2017-04-25
7	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2016-10-09	2017-10-09
9	Loop Antenna	Beijing Daze	ZN30401	SEM003-09	2015-05-13	2018-05-13

Report No.: SZEM170100012801

Page: 11 of 45

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2016-05-13	2017-05-13
2	EXA Spectrum Analyzer	Agilent Technologies Inc	N9010A	SEM004-09	2016-07-19	2017-07-19
3	BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2014-11-15	2017-11-15
4	Amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2016-10-09	2017-10-09
5	Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015-06-14	2018-06-14
6	Horn Antenna (18-26GHz)	ETS-Lindgren	3160	SEM003-12	2014-11-24	2017-11-24
7	Horn Antenna(26GHz- 40GHz)	A.H.Systems, inc.	SAS-573	SEM003-13	2015-02-12	2018-02-12
8	Low Noise Amplifier	Black Diamond Series	BDLNA-0118- 352810	SEM005-05	2016-10-09	2017-10-09
9	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A

General used equipment					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-03	2016-10-12	2017-10-12
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-04	2016-10-12	2017-10-12
Humidity/ Temperature Indicator	Mingle	N/A	SEM002-08	2016-10-12	2017-10-12
Barometer	Changchun Meteorological Industry Factory	DYM3	SEM002-01	2016-05-18	2017-05-18

Report No.: SZEM170100012801

Page: 12 of 45

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.247

6.1.2 Conclusion

Standard Requirment:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 5dBi.

Report No.: SZEM170100012801

Page: 13 of 45

7 Radio Spectrum Matter Test Results

7.1 Conducted Peak Output Power

Test Requirement: 47 CFR Part 15, Subpart C 15.247 (b)(1)
Test Method: ANSI C63.10 (2013) Section 11.9.1.1

Limit:

Frequency range(MHz)	Output power of the intentional radiator(watt)			
	1W for ≥50 hopping channels			
902-928	0.25W for <50 hopping channels			
	1W for digital modulation			
	1W for ≥75 non-overlapping hopping channels			
2400-2483.5	0.125W for all other frequency hopping systems			
	1W for digital modulation			
5725-5850	1W for frequency hopping systems and digital modulation			

7.1.1 E.U.T. Operation

Operating Environment:

Temperature: 23.0 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar

Test mode: a:TX mode, Keep the EUT in transmitting mode with GFSK modulation.

7.1.2 Test Setup Diagram

Ground Reference Plane

7.1.3 Measurement Data

The detailed test data see: Appendix 15.247

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM170100012801

Page: 14 of 45

7.2 Minimum 6dB Bandwidth

Test Requirement: 47 CFR Part 15, Subpart C 15.247(a)(2)
Test Method: ANSI C63.10 (2013) Section 11.8.1

Limit: ≥500 kHz

7.2.1 E.U.T. Operation

Operating Environment:

Temperature: 23.0 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar

Test mode: a:TX mode, Keep the EUT in transmitting mode with GFSK modulation.

7.2.2 Test Setup Diagram

Ground Reference Plane

7.2.3 Measurement Data

Report No.: SZEM170100012801

Page: 15 of 45

7.3 Power Spectrum Density

Test Requirement: 47 CFR Part 15, Subpart C 15.247(e)
Test Method: ANSI C63.10 (2013) Section 11.10.2

Limit: ≤8dBm in any 3 kHz band during any time interval of continuous

transmission

7.3.1 E.U.T. Operation

Operating Environment:

Temperature: 23.0 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar

Test mode: a:TX mode, Keep the EUT in transmitting mode with GFSK modulation.

7.3.2 Test Setup Diagram

Ground Reference Plane

7.3.3 Measurement Data

Report No.: SZEM170100012801

Page: 16 of 45

7.4 Band-edge for Conducted Emissions

Test Requirement: 47 CFR Part 15, Subpart C 15.247 (d)
Test Method: ANSI C63.10 (2013) Section 11.13

Limit: In any 100 kHz bandwidth outside the frequency band in which the spread

spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

7.4.1 E.U.T. Operation

Operating Environment:

Temperature: 23.0 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar

Test mode: a:TX mode, Keep the EUT in transmitting mode with GFSK modulation.

7.4.2 Test Setup Diagram

Ground Reference Plane

7.4.3 Measurement Data

Report No.: SZEM170100012801

Page: 17 of 45

7.5 Conducted Spurious Emissions

Test Requirement: 47 CFR Part 15, Subpart C 15.247 (d)
Test Method: ANSI C63.10 (2013) Section 11.11

Limit: In any 100 kHz bandwidth outside the frequency band in which the spread

spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

7.5.1 E.U.T. Operation

Operating Environment:

Temperature: 23.0 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar

Test mode: a:TX mode, Keep the EUT in transmitting mode with GFSK modulation.

7.5.2 Test Setup Diagram

Ground Reference Plane

7.5.3 Measurement Data

Report No.: SZEM170100012801

Page: 18 of 45

7.6 Radiated Spurious Emissions

Test Requirement: 47 CFR Part 15C Section 15.209 and 15.205

Test Method: ANSI C63.10 :2013 Section 11.12

Measurement Distance: 3m

Limit:

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasipeak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
Above IGHZ	Peak	1MHz	10Hz	Average

Report No.: SZEM170100012801

Page: 19 of 45

7.6.1 E.U.T. Operation

Operating Environment:

Temperature: 23.0 °C Humidity: 54 % RH Atmospheric Pressure: 1010 mbar

Test mode: a:TX mode, Keep the EUT in transmitting mode with GFSK modulation.

7.6.2 Test Setup Diagram

Report No.: SZEM170100012801

Page: 20 of 45

7.6.3 Measurement Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the Y axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Report No.: SZEM170100012801

Page: 21 of 45

Mode:a;Polarization:Vertical

Condition: 3m VERTICAL

Job No. : 0128CR

Test mode: TX

	Freq			Preamp Factor			Limit Line	Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	31.95	0.60	17.61	27.35	23.65	14.51	40.00	-25.49
2	104.54	1.21	8.87	27.17	24.42	7.33	43.50	-36.17
3	263.82	1.74	12.58	26.50	25.64	13.46	46.00	-32.54
4	580.70	2.68	19.26	27.57	25.31	19.68	46.00	-26.32
5 pp	872.18	3.49	22.93	26.92	24.54	24.04	46.00	-21.96
6	982.62	3.68	23.60	26.40	23.34	24.22	54.00	-29.78

Report No.: SZEM170100012801

Page: 22 of 45

Mode:a;Polarization:Horizontal

Condition: 3m HORIZONTAL

Job No. : 0128CR

Test mode: TX

	Freq	Cable Loss		Preamp Factor	Read Level		Limit Line	Over Limit
_	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 pp	30.00	0.60	18.70	27.36	23.70	15.64	40.00	-24.36
2	104.54	1.21	8.87	27.17	23.87	6.78	43.50	-36.72
3	216.02	1.49	11.03	26.64	25.19	11.07	46.00	-34.93
4	419.11	2.28	16.38	27.25	24.84	16.25	46.00	-29.75
5	675.21	2.85	21.40	27.44	24.48	21.29	46.00	-24.71
6	996.50	3.70	24.16	26.33	22.74	24.27	54.00	-29.73

Report No.: SZEM170100012801

Page: 23 of 45

	Transmitter Emission above 1GHz									
Test mod	de:	GFSK	T	est channel:	Lowes	t	Remark:		Peak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preample Factor (dB)		Level (dBuV/m)		t Line ıV/m)	Over Limit (dB)	Polarization	
3641.878	32.62	7.68	37.96	43.93	46.27	7	' 4	-27.73	Vertical	
4804.000	34.16	8.87	38.4	47.77	52.4	7	' 4	-21.6	Vertical	
5811.590	34.59	10.03	38.34	43.99	50.27	7	' 4	-23.73	Vertical	
7206.000	36.42	10.68	37.11	41.09	51.08	7	' 4	-22.92	Vertical	
9608.000	37.52	12.5	35.1	37.17	52.09	7	' 4	-21.91	Vertical	
12102.870	38.66	14.47	35.85	35.89	53.17	7	7 4	-20.83	Vertical	
3641.878	32.62	7.68	37.96	44.24	46.58	7	7 4	-27.42	Horizontal	
4804.000	34.16	8.87	38.4	45.48	50.11	7	7 4	-23.89	Horizontal	
5990.888	34.69	10.53	38.3	44.24	51.16	7	7 4	-22.84	Horizontal	
7206.000	36.42	10.68	37.11	41.92	51.91	7	7 4	-22.09	Horizontal	
9608.000	37.52	12.5	35.1	37.2	52.12	7	7 4	-21.88	Horizontal	
12226.070	38.74	14.37	36.14	36.29	53.26	7	' 4	-20.74	Horizontal	

Test mo	de:	GFSK	Te	st channel:	Middl	le	F	Remark:	Peak
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit L (dBuV		Over Limit (dB)	Polarization
3842.163	33.18	7.76	37.98	46.52	49.48	74		-24.52	Vertical
4880.000	34.29	8.97	38.44	45.51	50.33	74		-23.67	Vertical
6025.661	34.72	10.53	38.27	44.83	51.81	74		-22.19	Vertical
7320.000	36.37	10.72	37.01	42.32	52.4	74		-21.6	Vertical
9760.000	37.55	12.58	35.02	37.55	52.66	74		-21.34	Vertical
12190.740	38.72	14.4	36.06	36.75	53.81	74		-20.19	Vertical
3792.453	33.04	7.74	37.98	44.61	47.41	74		-26.59	Horizontal
4880.000	34.29	8.97	38.44	44.51	49.33	74		-24.67	Horizontal
6025.661	34.72	10.53	38.27	44.04	51.02	74		-22.98	Horizontal
7320.000	36.37	10.72	37.01	42.84	52.92	74		-21.08	Horizontal
9760.000	37.55	12.58	35.02	37.54	52.65	74		-21.35	Horizontal
12173.120	38.71	14.42	36.02	36.36	53.47	74		-20.53	Horizontal

Report No.: SZEM170100012801

Page: 24 of 45

Test mo	ode:	GFSK	Te	st channel:	Highe	st	F	Remark:	Peak
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit I (dBuV		Over Limit (dB)	Polarization
3663.017	32.68	7.69	37.97	44.54	46.94	74		-27.06	Vertical
4960.000	34.43	9.09	38.48	44.58	49.62	74		-24.38	Vertical
6025.661	34.72	10.53	38.27	44.17	51.15	74		-22.85	Vertical
7440.000	36.32	10.77	36.9	41.27	51.46	74		-22.54	Vertical
9920.000	37.58	12.67	34.94	37.09	52.4	74		-21.6	Vertical
12226.07	38.74	14.37	36.14	36.44	53.41	74		-20.59	Vertical
3579.190	32.43	7.66	37.96	44.84	46.97	74		-27.03	Horizontal
4960.000	34.43	9.09	38.48	44.07	49.11	74		-24.89	Horizontal
6069.413	34.76	10.47	38.23	44.79	51.79	74		-22.21	Horizontal
7440.000	36.32	10.77	36.9	41.88	52.07	74		-21.93	Horizontal
9920.000	37.58	12.67	34.94	37.54	52.85	74		-21.15	Horizontal
12085.370	38.65	14.49	35.8	35.89	53.23	74	•	-20.77	Horizontal

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Report No.: SZEM170100012801

Page: 25 of 45

7.7 Radiated Emissions which fall in the restricted bands

Test Requirement: 47 CFR Part 15C Section 15.209 and 15.205

Test Method: ANSI C63.10: 2013 Section 11.12

7.7.1 E.U.T. Operation

Operating Environment:

Temperature: 23.0 °C Humidity: 54 % RH Atmospheric Pressure: 1010 mbar

Test mode: a:TX mode, Keep the EUT in transmitting mode with GFSK modulation.

7.7.2 Test Setup Diagram

Report No.: SZEM170100012801

Page: 26 of 45

7.7.3 Measurement Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the Y axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Report No.: SZEM170100012801

Page: 27 of 45

Test plot as follows:

Test channel:	Lowest	Remark:	Peak	Vertical
i est chamilei.	LUWESI	nemaik.	i can	V GI LICAI

Condition: 3m Vertical Job No: : 00128CR

Mode: : 2402 Bandedge

: BLE

	Cable	Ant Prea	amp Read		Limit	0ver	
Freq	Loss Fa	actor Fact	or Level	Level	Line	Limit	Remark
MHz	dB	dB/m	dB dBuV	dBuV/m	dBuV/m	dB	
1 2310.685	5.28	28.84 37.	97 51.60	47.75	74.00	-26.25	
2 2390.000	5.34	29.08 37.	96 44.78	41.24	74.00	-32.76	
3 pp 2402.250	5.35	29.11 37.	96 92.76	89.26	74.00	15.26	

Report No.: SZEM170100012801

28 of 45 Page:

Remark: Peak Test channel: Lowest Horizontal

Condition: 3m HORIZONTAL

Job No: : 00128CR

: 2402 Bandedge Mode:

: BLE

		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 2 3 pp	2328.577 2390.000 2402.352	5.34	29.08	37.96	46.19	42.65	74.00	-31.35	

Report No.: SZEM170100012801

Page: 29 of 45

Test channel: Highest Remark: Peak Vertical

Condition: 3m VERTICAL Job No: : 00128CR Mode: : 2480 Bandedge

BI F

		Freq			Preamp Factor					Remark	
	-	MHz	dB	dB/m	d B	dBuV	dBuV/m	dBuV/m	——dB		-
		2479.781									
2		2483.500	5.41	29.35	37.95	46.77	43.58	74.00	-30.42		
3		2483.672	5.41	29.35	37.95	48.51	45.32	74.00	-28.68		

Report No.: SZEM170100012801

Page: 30 of 45

Test channel: Highest Remark: Peak Horizontal

Condition: 3m HORIZONTAL

Job No: : 00128CR

Mode: : 2480 Bandedge

BLE

Freq			Preamp Factor					Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
 2479.805 2483.500								

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Report No.: SZEM170100012801

Page: 31 of 45

8 Photographs

8.1 Radiated Spurious Emissions Test Setup

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-end-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only.

Report No.: SZEM170100012801

Page: 32 of 45

8.2 EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1701000128CR.

Report No.: SZEM170100012801

Page: 33 of 45

9 Appendix

Appendix 15.247

1.6dB Bandwidth

mode Dana.				
Test Mode	Test Channel	EBW[MHz]	Limit	Verdict
BLE	2402	0.540	>=0.5	PASS
BLE	2440	0.537	>=0.5	PASS
BLE	2480	0.537	>=0.5	PASS

Report No.: SZEM170100012801

Page: 34 of 45

Report No.: SZEM170100012801

Page: 35 of 45

3.Maximum peak conducted output power

Test Mode	Test Channel	Power[dBm]	Limit[dBm]	Verdict
BLE	2402	2.61	<30	PASS
BLE	2440	1.75	<30	PASS
BLE	2480	0.83	<30	PASS

Report No.: SZEM170100012801

Page: 36 of 45

Report No.: SZEM170100012801

Page: 37 of 45

4. Maximum Peak power spectral density

Test Mode	Test Channel	PSD[dBm/MHz]	Limit[dBm/MHz]	Verdict
BLE	2402	-16.73	<8.00	PASS
BLE	2440	-17.49	<8.00	PASS
BLE	2480	-18.41	<8.00	PASS

Report No.: SZEM170100012801

Page: 38 of 45

Report No.: SZEM170100012801

Page: 39 of 45

5.Band-edge for RF Conducted Emissions

one of the contraction of the co										
Test Mode	Carrier Power[dBm]		Max. Spurious Level [dBm]	Limit[dBm]	Verdict					
BLE	2402	1.590	-44.723	<-18.41	PASS					
BLE	2480	-0.370	-63.186	<-20.37	PASS					

Report No.: SZEM170100012801

Page: 40 of 45

Report No.: SZEM170100012801

Page: 41 of 45

6.RF Conducted Spurious Emissions

Test Mode	Test Channel	StartFre [MHz]	StopFre [MHz]	RBW [kHz]	VBW [kHz]	Pref[dBm]	Max. Level [dBm]	Limit [dBm]	Verdict
BLE	2402	30	10000	1000	3000	1.69	-49.240	<-18.31	PASS
BLE	2402	10000	25000	1000	3000	1.69	-64.340	<-18.31	PASS
BLE	2440	30	10000	1000	3000	0.72	-51.030	<-19.28	PASS
BLE	2440	10000	25000	1000	3000	0.72	-65.020	<-19.28	PASS
BLE	2480	30	10000	1000	3000	-0.31	-52.680	<-20.31	PASS
BLE	2480	10000	25000	1000	3000	-0.31	-65.140	<-20.31	PASS

Report No.: SZEM170100012801 Page: 42 of 45

Report No.: SZEM170100012801

Page: 43 of 45

Report No.: SZEM170100012801 Page: 44 of 45

Report No.: SZEM170100012801 Page: 45 of 45

