	A SIMPLE END. GROWTH MODEL.
*	Soual Planner's Problem:
	Ept u(ct, (1-nt)ht) ht >> human capital t=0 pt u(ct, (1-nt)ht) "quality adjusted leisune" "quality adjusted leisune"
	F(ke, ne he)
	$c_{t} + x_{kt} + x_{nt} = F(k_{t}, n_{t}, h_{t})$ no death shere.
	$k_{t+1} = (1 - \delta_k) k_t + x_{kt}$
	$h_{t+1} = (1 - \delta_h) h_t + x_{nt}$
	depreciation on human capital (people forget things) Capital Involved on human capital (people forget things)
	An alternative: $h_{it+1} = (1-\delta_h)h_{it} + G(X_{int}, \int_{I} X_{i'nt} di') Capital Investment made by peers$
*	helastic labor supply nt=1

) kt-

o If
$$F(k,h) = k^{\alpha}h^{1-\alpha}$$

$$kF'_{k} = \alpha F(k,h)$$

$$hF'_{h} = (1-\alpha) F(k,h)$$

$$\Rightarrow \left(\frac{r}{r}\right)_{x} = \frac{\alpha}{1-\alpha} = \phi$$

This equality needs to hold in every time pd. It is not a steady state.

law of motion for h:-

$$k = \emptyset h$$

$$\Rightarrow \lim_{\phi \to 0} k_{t+1} = (1 - \delta_h) \lim_{\phi \to 0} k_{t} + x_{ht}$$

•	$\frac{1}{\sqrt{k_{1}}} \left(\frac{k_{1}}{\sqrt{k_{1}}} - \left(\frac{1-\delta_{1}}{\sqrt{k_{1}}} \right) \right) = x_{1}$
	$\frac{1}{\phi} \left(k_{t+1} - \left(1 - \delta_{h} \right) k_{t} \right) = x_{ht}$
<u></u>	$\frac{1}{\varphi}\left(k_{+1}-\left(1-S_{k}\right)k_{t}\right)=\chi_{ht}$
7	X kt = ϕ Xht if his is not made, then
	I won't be equal to ret
	night?
	SPP becomes.
	S t=0 Pt
	t=0 Pt

	leavine tornuletion
	V(ke, ht) = Max [u(ct) + Bv(ke, 1 htr)] Ct, Yke, Xhe, ken, hen
	$C_{\xi} + x_{\xi} \left(1 + \frac{1}{\varphi} \right) = F(k_{\xi}, h_{\xi})$
	ker = (1-8k) ke + xet
	$k_0, h_0 \rightarrow given.$
	$F(k_{\ell},h_{\ell}) = k_{\ell} F(1,\frac{h_{\ell}}{k_{\ell}})$
	$= F\left(1, 1/p'\right) k_{t}$
	- Akt
	Assumption: ho = 1
⇒	We can drop the second state variable.

2 nd claso.	Ak-model 3
	Consider CRRA utility $u(c_t) = \frac{c_t^{-\sigma}}{1-\sigma}$
	epp max & pt ct
	$c_{\xi} + (1 + \varphi) x_{\xi \xi} = A k_{\xi}, \varphi = \frac{k_{\xi}}{h_{\xi}}$
	$K_{t+1} = (1-S_K)K_t + X_t$ ko, ho given.
	Remark: Inada condh do not hold. Rypically we had
	$\lim_{k\to 0} F'_k = \infty \text{and} $
	lin Fk=0 k=0
	Feasibility correspondence us $HD-1$ $\Gamma(\lambda k_0) = \lambda \Gamma(k_0)$
	Lemank: u(·) is HD (1-1-)
	⇒ ≿ are homothetic ⇒ co*, x*o, k*, c*, x*, k* is optimal starting from ko, then
	=> ACD*, AX*, AK*, AC,*, AX*, AK* is optimal starting from Ako.

	Popof:
	Suppose $\{c_t^*\}$ is optimal starting from to and suppose that $\{Ac_t^*\}$ is not optimal if you start from (Ako) $\Rightarrow \exists \{c_t^*\} \text{ s.t. } \underbrace{\exists k^*, c_t^{**}} > \underbrace{\exists k^*, c_t^{**}$
<u> </u>	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$
3	Implication for value function:
	$V(\lambda k) = \sum_{t=0}^{\infty} \frac{1}{t} \left(\lambda c_{t} \right)^{1-\sigma} = \lambda \sum_{t=0}^{\infty} \frac{1}{t} \left(\lambda c_{t} \right)^{1-\sigma} = \lambda V(k)$ $\Rightarrow decision rules are HD-1$
Consumption decision give crapital	$g_{c}(k_{t}) = k_{t}g_{c}(1)$ $g_{k}(k_{t}) = k_{t}g_{k}(1)$

$$\frac{1}{2} \left(\frac{1}{2} \right) = RHS$$

$$\frac{1$$

	?cint
	Growth rate of capital
	$\gamma_{t, ter} = \frac{k_{ter}}{k_t} = g_k(1) = \left[\beta\left(\frac{A}{1+\phi} + 1-\delta\right)\right]^{1/\sigma}$
	$k_{t+1} = k_t q_t (1)$
	$k_{\ell} = \left[g_{k}(l)\right]^{\ell} k_{0}$
	Economy grows if gk(1) >1
	If $\beta \uparrow \Rightarrow$ economy grows faster
	$\log k_{t} = \log k_{0} + t \log (g_{k}(1))$
l	ogky 1 24 parametus are
	the same
	ko t
	Contrast; in the exog. growth model
	lyke p
	Ko
	k's
	k.
	t

Adding Fiscal Policy:

Government,
$$\begin{cases} q_t y_{tro} \\ \xi y_t \end{cases}$$
 access to capital $g_t = g_t = g_t$

