Deep-dive into Tableau Part 1 Ashwini Hambarde

Contents

- 1. Steps involved for creation of Tableau Report
- 2. Tableau Connections (Live, Extract)
- 3. Dimension and Measure

Steps involved for creation of Tableau Report

There are three basic steps involved in creating any Tableau data analysis report.

1 Connect to a data source

2 Choose dimensions and measures

3 Apply visualization technique

Step 1 : Connect to a data source

Tableau can connect to all the popular data sources which are widely used. Some examples include:

- File Systems such as CSV, Excel, etc.
- Relational Systems such as Oracle, Sql Server, DB2, etc.
- Cloud Systems such as Windows Azure, Google BigQuery, etc.
- Other Sources using ODBC

Connect

Search for Data

Tableau Server

To a File

Microsoft Excel

Text file

JSON file

Microsoft Access

PDF file

Spatial file

Statistical file

More...

To a Server

MySQL

Oracle

Amazon Redshift

Microsoft SQL Server

More.

Sample - Superstore

World Indicators

Open

Superstore

Sample Dashboard - F ...

Sample Dashboard - S...

Test

Open a Workbook

Advanced Spatial Files...

Hexbin Map Starter

Hexbin Map Starter

Oregon_Starter

Context Filters and Da...

Sheet Swapping and C ...

Student Survey Starter

Annual Cohort Purcha...

Slope Chart Starter

Bump_Chart_Starter

Control Chart Starter

Sample Workbooks

Superstore

Regional

World Indicators

More Samples

Google Analytics

Installed Connectors (76)	Google BigQuery	Pivotal Greenplum Database
Actian Matrix	Google Cloud SQL	PostgreSQL
Actian Vector	Google Drive	Presto
Alibaba AnalyticDB for MySQL	Google Sheets	Progress OpenEdge
Alibaba Data Lake Analytics	Hortonworks Hadoop Hive	Qubole Presto
Alibaba MaxCompute	IBM BigInsights	Salesforce
Amazon Athena	IBM DB2	SAP HANA
Amazon Aurora for MySQL	IBM PDA (Netezza)	SAP NetWeaver Business Warehouse
Amazon EMR Hadoop Hive	Impala	SAP Sybase ASE
Amazon Redshift	Intuit QuickBooks Online	SAP Sybase IQ
Anaplan	Kognitio	ServiceNow ITSM
Apache Drill	Kyvos	SharePoint Lists
Aster Database	LinkedIn Sales Navigator	SingleStore
Azure Data Lake Storage Gen2	MapR Hadoop Hive	Snowflake
Azure SQL Database	MariaDB	Spark SQL
Azure Synapse Analytics	Marketo	Splunk
Box	MarkLogic	Teradata
Cloudera Hadoop	Microsoft Analysis Services	Teradata OLAP Connector
Databricks	Microsoft PowerPivot	TIBCO Data Virtualization
Datorama	Microsoft SQL Server	Vertica
Denodo	MonetDB	Web Data Connector
Dremio	MongoDB BI Connector	
Dropbox	MySQL	Other Databases (JDBC)
Esri ArcGIS Server	OData	Other Databases (ODBC)
Exasol	OneDrive	
Firebird 3	Oracle	
Google Ads	Oracle Eloqua	Additional Connectors (14) ①

Actian ODBC by Actian

Oracle Essbase

Elasticsearch by Elastic Incorta Connector by Incorta Kyligence Connector by Kyligence MarkLogic by MarkLogic Ocient JDBC by Ocient Oracle NetSuite by Tableau Qubole Hive by Qubole Salesforce CDP by Salesforce SAP SuccessFactors by Tableau SQream DB by SQream Technologies Starburst Enterprise by Starburst Stratio Crossdata by Stratio BD Yellowbrick by Yellowbrick Data

Connection to Excel file

Live vs. Extract connection

Live

- Allows real time data
- Not preferable for bulky data
- Slower than Extract due to live updating of data
- Rely on database queries
- E.g. Newly coming patient data at hospital

Cloud Databases Tableau Online Live connections Redshift MySQL PostgreSQL SQLServer BigQuery

Extract

- Batched data need to be updated time to time
- Preferred for bulky data
- Much faster than Live
- Not always depend on database queries
- E.g. daily or weekly trends of patient data at hospital

Connection to CSV file

Connection to Web Data Connector

Connection to SQL

Step 2 : Choose Dimensions and Measures

- When data gets imported for the first time,
 Tableau automatically classifies fields into dimension and measure.
- We can change the default classification done by
 Tableau with simple drag and drop operations
- What are dimensions and measures?

Dimensions & Measures

- **Dimensions** are fields that can be considered as independent variable
- Usually fields that cannot be aggregated and are row or column headings

Qualitative Regions

In Tableau, Dimensions (marked in **BLUE**) are the categories of things in your data that you want to compare

- **Measures** are dependent variable i.e., their values are functions of one or more dimensions
- Usually fields that can be measured, aggregated, or used for mathematical operation

• Examples: Sales

In Tableau, Measures (marked in **GREEN**) are the different metrics you want to use to compare those things

Step 3: Apply Visualization Technique

There are different forms of graphs, charts, maps and other visualization techniques available as per selected dimension and measure

Let's try ourselves

CEO of the Supermarket chain wants to view:

- 1. Category-wise Sales and Profit in a single sheet
- 2. State-wise Sales in UK region
- 3. Monthly sales trends from Jan to Dec for 2015, 2016, 2017 and 2018

Thank you