Chapitre 4 : Probabilités conditionnelles

Cours 1 : Probabilité conditionnelle

R. KHODJAOUI

Lycée J.J. HENNER - Première D

Samedi 9 novembre 2019

Sommaire

Définition

2 Propriété

3 Exemple

On considère une expérience aléatoire d'univers Ω

Soient A et B deux événements d'un univers Ω tels que $P(A) \neq 0$ On appelle **probabilité de l'événement B sachant que A est réalisé** le nombre noté $P_A(B)$ défini par :

$$P_{A}(B) = \frac{P(A \cap B)}{P(A)}.$$

Samedi 9 novembre 2019

On considère une expérience aléatoire d'univers Ω

Soient A et B deux événements d'un univers Ω tels que $P(A) \neq 0$ On appelle **probabilité de l'événement B sachant que A est réalisé** le nombre noté $P_A(B)$ défini par :

$$P_{A}(B) = \frac{P(A \cap B)}{P(A)}.$$

- \rightarrow P_A (B) se lit « probabilité conditionnelle de B sachant A ».
- $\rightarrow P_A(A) = 1$
- \rightarrow Si A et B sont incompatibles alors $P_A(B) = 0$
- \rightarrow Si la probabilité conditionnelle P_A (B) est connue, la probabilité de l'événement $A \cap B$ peut être calculée :

$$p(A \cap B) = p(A) \times P_A (B)$$

On considère une expérience aléatoire d'univers Ω

Soient A et B deux événements d'un univers Ω tels que $P(A) \neq 0$ On appelle **probabilité de l'événement B sachant que A est réalisé** le nombre noté $P_A(B)$ défini par :

$$P_{A}(B) = \frac{P(A \cap B)}{P(A)}.$$

- → P_A (B) se lit « probabilité conditionnelle de B sachant A ».
- $\rightarrow P_A(A) = 1$
- \rightarrow Si A et B sont incompatibles alors $P_A(B) = 0$
- \rightarrow Si la probabilité conditionnelle P_A (B) est connue, la probabilité de l'événement $A \cap B$ peut être calculée :

$$p(A \cap B) = p(A) \times P_A (B)$$

On considère une expérience aléatoire d'univers Ω

Soient A et B deux événements d'un univers Ω tels que $P(A) \neq 0$ On appelle **probabilité de l'événement B sachant que A est réalisé** le nombre noté $P_A(B)$ défini par :

$$P_{A}(B) = \frac{P(A \cap B)}{P(A)}.$$

- \rightarrow P_A (B) se lit « probabilité conditionnelle de B sachant A ».
- $\rightarrow P_A(A) = 1$
- \rightarrow Si A et B sont incompatibles alors $P_A(B) = 0$
- \rightarrow Si la probabilité conditionnelle P_A (B) est connue, la probabilité de l'événement $A \cap B$ peut être calculée :

$$p(A \cap B) = p(A) \times P_A (B)$$

On considère une expérience aléatoire d'univers Ω

Soient A et B deux événements d'un univers Ω tels que $P(A) \neq 0$ On appelle **probabilité de l'événement B sachant que A est réalisé le nombre noté P_A(B) défini par :**

$$P_{A}(B) = \frac{P(A \cap B)}{P(A)}.$$

- → P_A (B) se lit « probabilité conditionnelle de B sachant A ».
- $\rightarrow P_A(A) = 1$
- \rightarrow Si A et B sont incompatibles alors $P_A(B) = 0$
- \rightarrow Si la probabilité conditionnelle P_A (B) est connue, la probabilité de l'événement $A\cap B$ peut être calculée :

$$p(A \cap B) = p(A) \times P_A(B)$$

On considère une expérience aléatoire d'univers Ω

Soient A et B deux événements d'un univers Ω tels que $P(A) \neq 0$ On appelle **probabilité de l'événement B sachant que A est réalisé** le nombre noté $P_A(B)$ défini par :

$$P_{A}(B) = \frac{P(A \cap B)}{P(A)}.$$

Exemple et exercice

 Reçu
 Non Reçu
 Total

 Filles
 18
 1
 19

 Garçons
 13
 3
 16

 Total
 31
 4
 35

On choisit un élève au hasard.

■ La probabilité que l'élève soit reçu (R), sachant que c'est une fille (F) est :

$$P_{F}(R) = \frac{P(R \cap F)}{P(F)} = \frac{18}{19}$$

■ Calculer la probabilité P_R (F)

De nombreuses situations peuvent être modélisées par un arbre à 2 niveaux : A et B sont deux événements de Ω avec $p(A) \neq 0$

De nombreuses situations peuvent être modélisées par un arbre à 2 niveaux : A et B sont deux événements de Ω avec $p(A) \neq 0$

- → La somme des probabilités inscrites au départ d'un même noeud vaut 1.

 Ainsi $\mathbb{P}(A) = \mathbb{I} \mathbb{P}(A)$
- $\blacksquare \text{ Et } P_{\overline{\Lambda}}(B) = 1 P_{\overline{\Lambda}}(B)$
- \rightarrow Le chemin complet A suivi de B représente l'événement $A \cap B$.

Samedi 9 novembre 2019

De nombreuses situations peuvent être modélisées par un arbre à 2 niveaux : A et B sont deux événements de Ω avec $p(A) \neq 0$

- → La somme des probabilités inscrites au départ d'un même noeud vaut 1.

 - $\blacksquare \text{ Et } P_{\overline{A}}(B) = 1 P_{\overline{A}}(\overline{B})$
- \rightarrow Le chemin complet A suivi de B représente l'événement $A \cap B$

De nombreuses situations peuvent être modélisées par un arbre à 2 niveaux : A et B sont deux événements de Ω avec $p(A) \neq 0$

- ightarrow La somme des probabilités inscrites au départ d'un même noeud vaut 1.

 - $\blacksquare \text{ Et } P_{\overline{A}}(B) = 1 P_{\overline{A}}(\overline{B})$
- \rightarrow Le chemin complet A suivi de B représente l'événement $A \cap B$.

De nombreuses situations peuvent être modélisées par un arbre à 2 niveaux : A et B sont deux événements de Ω avec $p(A) \neq 0$

Propriété

La probabilité d'un chemin complet est égale au produit des probabilités inscrites sur chaque branche du chemin : c'est le principe multiplicatif. En effet, nous savons que pour tous événements A et B,

$$P(A \cap B) = P(A) \times P_A(B)$$

Un exemple complet

Exemple de situation avec un arbre pondéré à deux niveaux

Dans une maison de retraite, 95% des pensionnaires sont vaccinés contre la grippe. On observe que 25% des personnes vaccinées ont été atteintes par la maladie.

- La probabilité qu'une personne soit vaccinée est P(V) = 0,95.
- Parmi les personnes vaccinées (V), 25% ont été malades (M).

Ainsi, $P_V(M) = 0, 25$.

Un exemple complet

Exemple de situation avec un arbre pondéré à deux niveaux

Dans une maison de retraite, 95% des pensionnaires sont vaccinés contre la grippe. On observe que 25% des personnes vaccinées ont été atteintes par la maladie.

- La probabilité qu'une personne soit vaccinée est P(V) = 0,95.
- Parmi les personnes vaccinées (V), 25% ont été malades (M).

Ainsi, $P_V(M) = 0, 25$.

La situation peut être représentée par l'arbre ci-dessous :

Un exemple complet

Exemple de situation avec un arbre pondéré à deux niveaux

Dans une maison de retraite, 95% des pensionnaires sont vaccinés contre la grippe. On observe que 25% des personnes vaccinées ont été atteintes par la maladie.

- La probabilité qu'une personne soit vaccinée est P(V) = 0,95.
- Parmi les personnes vaccinées (V), 25% ont été malades (M).

Ainsi, $P_V(M) = 0, 25$.

La situation peut être représentée par l'arbre ci-dessous :

La probabilité qu'un pensionnaire soit vacciné (V) et malade (M) est :

$$\begin{split} P\left(V\cap M\right) &= P\left(V\right) \times P_{V}\left(M\right) \\ &= 0,95 \times 0,25 \\ &= 0,2375 \end{split}$$

FIN

Revenir au début

