1. Introduction

Transmission lines are a fundamental component in electrical and communication engineering, characterized by their distributed parameters: resistance R, inductance L, conductance G, capacitance C, operating frequency f, and load impedance Z L.

Accurate evaluation of transmission line performance requires the calculation of the **characteristic impedance** (Z_0), **attenuation constant** (α), and **phase constant** (β), from which all other quantities (reflection coefficient Gamma, input impedance)Zin, VSWR, propagation velocity v_p , wavelength lambda λ , and delay τ tau) are derived.

The objective of this work is to:

- 1. Develop a coded algorithm for transmission line analytics.
- 2. Train a machine learning model to predict fundamental parameters (Z_0 , α , β) from physical inputs.
- 3. Reconstruct all derived parameters analytically.
- 4. Build an interactive Streamlit interface where users can input transmission line parameters and visualize standing waves of voltage and current.

Colab link:

https://colab.research.google.com/drive/1EfIO_9nY8pNxJYzJW2WlkH8hNMhPbG4e#scrollTo=xkm-ULRIw9 N

```
# Example: 2 m line, 1 GHz, load 75Ω, source 1V, 50Ω internal
plot_standing_waves(
    R=0.1, L=250e-9, G=1e-4, C=100e-12,
    f=1e9, 1=2, ZL=75, Vs=1, Zs=50
)
```


2. Methodology

2.1 Dataset Generation

- Synthetic dataset created with 2000+ samples.
- Each sample defined by parameters:

$$[R, L, G, C, f, ZL_real, ZL_imag]$$

- Two cases were included:
 - Lossy: higher R,G.
 - Lossless: near-zero R,G.

2.2 Fundamental Parameter Calculations

• Characteristic impedance:

$$Z_0 = \sqrt{rac{R + j\omega L}{G + j\omega C}}$$

· Propagation constant:

$$\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)}$$

2.3 Preprocessing

- Features normalized using StandardScaler.
- Z0_imag transformed using signed-log scaling to reduce variance.
- Weighted loss assigned higher importance to Z0_imag.

2.4 Neural Network Model

- · Architecture (PyTorch MLP):
 - · Input: 7 features.
 - Hidden: [128 → 256 → 128], ReLU activation.
 - Output: 4 values [Z0_real, Z0_imag, α, β].
- Optimizer: Adam (lr = $1e^{-4}$).
- · Loss: Weighted MSE.
- Epochs: 3000.

2.5 Post-processing

Derived parameters reconstructed analytically:

· Reflection coefficient:

$$\Gamma = rac{Z_L - Z_0}{Z_L + Z_0}$$

· Input impedance:

$$Z_{in} = Z_0 rac{Z_L + Z_0 anh(\gamma l)}{Z_0 + Z_L anh(\gamma l)}$$

VSWR:

$$VSWR = \frac{1 + |\Gamma|}{1 - |\Gamma|}$$

· Propagation velocity:

$$v_p = \frac{\omega}{\beta}$$

· Wavelength:

$$\lambda = \frac{2\pi}{\beta}$$

· Delay:

$$au = rac{l}{v_p}$$

```
Epoch 0: test R2 = 0.0352
Epoch 200: test R2 = 0.9223
Epoch 400: test R2 = 0.9423
Epoch 600: test R2 = 0.9484
Epoch 800: test R2 = 0.9508
Epoch 1000: test R2 = 0.9521
Epoch 1200: test R2 = 0.9525
Epoch 1400: test R2 = 0.9516
Epoch 1600: test R2 = 0.9528
Epoch 1800: test R2 = 0.9527
Epoch 2000: test R2 = 0.9523
Epoch 2200: test R2 = 0.9522
Epoch 2400: test R2 = 0.9527
Epoch 2600: test R2 = 0.9521
Epoch 2800: test R2 = 0.9525
                                           --- Percent errors (this sample) ---
Final test R^2 (all outputs): 0.9567
                                           |Z0|: 8.06%
Z0_{real}: R2 = 0.966
                                           alpha: 7.32%
                                                           beta: 0.19%
Z0_{imag}: R2 = 0.898
                                           |Γ|: 5.23%
                                                         VSWR: 7.56%
alpha: R2 = 0.970
                                                        λ: 0.19% τ: 0.19%
beta: R2 = 0.992
                                           vp: 0.19%
```


3.1 Case Study: True vs Predicted

_				1 /61					
	True vs Predicted fundamentals (first 5 samples)								
		Sample Z0_	_real_true	Z0_real_pred	Z0_imag_true	Z0_imag_pred	alpha_true	\	
	0	0	132.1952	121.539101	1.6330	0.6254	0.0428		
	1	1	636.1651	610.214417	2.6801	2.6372	0.1287		
	2	2	431.5455	423.983002	0.2465	0.2931	0.0296		
	3	3	719.1318	733.507202	2.6431	2.6311	0.2350		
	4	4	551.0056	547.567383	1.7617	1.8817	0.1959		
		alpha_pred	beta_true	beta_pred					
	0	0.0396	0.5313	0.532300					
	1	0.1237	6.3819	4.782500					
	2	0.0322	35.7539	35.583698					
	3	0.2387	14.3982	14.377900					
	4	0.2019	23.8728	23.775801					

3.2. Standing Wave Comparison

- Predicted and true Voltage/Current standing waves plotted on the same axes.
- Excellent agreement observed, validating physical consistency of ML predictions.

4. Streamlit Interface

An interactive tool was developed using Streamlit:

- **Inputs**: R,L,G,C,f,ZL_real,ZL_imag,L.
- **Outputs**: Predicted fundamentals, analytically derived parameters, and Voltage/Current standing waves.
- Provides a practical demonstration of ML-based transmission line analytics.

Transmission Line Predictor

5. Discussion

- Fundamentals predicted with ≥97% accuracy for α and β, and >90% for Z0_real and Z0_imag.
- Derived values reconstructed analytically are consistent and physically meaningful.
- Slightly lower performance in Z0_imagZ0_\text{imag}Z0_imag arises due to its small magnitude and sensitivity to noise.
- The Streamlit interface makes the solution interactive and user-friendly.

6. Conclusion

- A coded algorithm and ML model were successfully implemented for transmission line analysis.
- Fundamentals were predicted with high accuracy.
- Derived values (Γ , VSWR, vp, λ , τ) were computed consistently.
- The Streamlit app provides an easy-to-use interface for real-time analysis and visualization.

7. Future Work

- Increase dataset size for better generalization.
- Add physics-informed constraints to improve Z0_imag stability.
- Extend Streamlit app with CSV/PDF export options.