Pipeline file

The pipeline file is a text file listing all the preprocessing steps in the pipeline. Each step should be entered in a separate line with no empty lines in between. The steps are listed in order.

The available steps are listed in the following table:

using AFNI's 3dretroicor -threshold < Ti R-wave peaks -order <order -cardphase:="" -respphase:="" 3dautomask="" a="" afni's="" brainextractafni="" brainextractfsl="" expansion="2:" fsl's<="" ha="" in="" phase="" skull="" strip="" text="" th="" using=""><th>tial frames to ignore = 0> hreshold for detection of in input> of Fourier series andle to save cardiac : file andle to save respiratory</th></order>	tial frames to ignore = 0> hreshold for detection of in input> of Fourier series andle to save cardiac : file andle to save respiratory
mcflirt FSL's mcflirt motion correction ssmooth Spatial smoothing using AFNI's 3dmerge retroicor RETROICOR correction using AFNI's 3dretroicor -threshold < TildeR-wave peaks -order <order <ol="" <order=""></order>	n=5>] tial frames to ignore = 0> hreshold for detection of in input> of Fourier series > andle to save cardiac : file andle to save respiratory
AFNI's 3dmerge retroicor RETROICOR correction using AFNI's 3dretroicor R-wave peaks -order <order -cardphase:="" -respphase:="" 3dautomask="" a="" afni's="" brainextractfsl="" expansion="2:" fsl's<="" ha="" in="" phase="" skull="" strip="" td="" text="" using=""><td>tial frames to ignore = 0> hreshold for detection of in input> of Fourier series andle to save cardiac : file andle to save respiratory</td></order>	tial frames to ignore = 0> hreshold for detection of in input> of Fourier series andle to save cardiac : file andle to save respiratory
using AFNI's 3dretroicor -threshold < Ti R-wave peaks -order <order -cardphase:="" -respphase:="" 3dautomask="" a="" afni's="" brainextractafni="" brainextractfsl="" expansion="2:" fsl's<="" ha="" in="" phase="" skull="" strip="" td="" text="" using=""><td>the subjects file. in input> of Fourier series > andle to save cardiac : file andle to save respiratory</td></order>	the subjects file. in input> of Fourier series > andle to save cardiac : file andle to save respiratory
3dAutomask brainExtractFSL Skull strip using FSL's	,
	Updates brainmask field in the subjects data
bet2	Updatesbrainmask field in the subjects data
3dFourier Temporal filtering using AFNI's 3dFourier argu	
motreg Regression of motion parameters	Requires themotpar field of the subjects data to be non-empty, or this step must be preceded by mcflirt.
slicetimer Slice timing correction slicetimer argu	ments Refer to FSL slicetimer documentation
tcompcor tCompCor using Nipype [-ignore <# initial impelementation [-ignore [-ignore	tial frames to ignore = 0>] Saves components in a text file with suffixcomponents.txt
impelementaion csf, wm, csfwr	one from the following: Parcellates the input image if needed. Saves components in a text file with suffix components.txt.
to reference v metric)dvars: use D\refmse: Mearefrms (used fsl_motion_oufd: use FD (fr as metricfdrms: use FI calculation as	D with RMS matrix
hpf High-pass filtering < f _{stop} >	
bpf Band-pass filtering $\langle f_{stop1} \rangle \langle f_{stop2} \rangle$	
globalsigreg Global signal regression	Requires thebrainmask field of the subjects data to be non-empty, or this step must be preceded by brain extraction.
csfreg Mean CSF signal regression	If mean CSF time-series not available, it will be calculated
wmreg Mean WM signal regression	If mean WM time-series not available, it will be calculated
csfwmreg Mean CSF and WM signal regression	If mean CSF and/or WM time-series not available, it will be calculated
3dDetrend AFNI's 3dDetrend 3dDetrend arg	guments Refer to AFNI 3dDetrend documentation

3dBlurToFWHM	AFNI's 3dBlurToFWHM	3dBlurToFWHM arguments	Refer to AFNI 3dBlurToFWHM
			documentation
regress-out	Regress out various	motpar	At least one regressor from the available
	regressors	motpar_derivatives	regressors (listed under arguments) must be
			provided. Can include as many regressors as
			desired.
			Updatesgml field of the data.

List of the available preprocessing steps. Default values shown following the equal sign '='. Optional arguments are denoted by square brackets '[]'.

Example

myPipeline.txt

```
slicetimer --odd
mcflirt
brainExtractAFNI
ssmooth -fwhm 5
3dFourier -highpass 0.01 -ignore 0
retroicor -ignore 10
```

Subjects file

The pipeline file is a text file listing all the data for every subject to be processed. Each subject should be entered in a separate line with no empty lines in between. The following table lists the available data fields for the subjects file.

Depending on the given preprocessing pipeline, different fields may be required. Some of the data field can be assigned a value or updated during the preprocessing. For example, --brainmask will assigned a value or updated if the pipeline includes a brain extraction step.

Field	Description	
subjectID	Subject ID	
sessionID	Session ID	
sequence	Sequence name	
bold	BOLD file in NIFTI format	
structural	Structural file in NIFTI format	
structuralbrainmask	Structural brain mask in NIFTI format	
card	1D cardiac file used for RETROICOR	
resp	1D respiratory file used for RETROICOR	
opath	Output path- where all pipeline output will be saved	
connseed	Connectivity seed- should be a binary mask in NIFTI format	
motpar	Motion parameters- text file	
brainmask	Functional brain mask in NIFTI format	
motglm	GLM parameter estimates (GLM betas) for motion regression- text file	
fsrecondir	Freesurfer recon directory	
aseg	Freesurfer aseg file (used for segmentation)	
regintermed		
func2struct	Functional to structural transformation matrix (FSL FLIRT)	
struct2func	Structural to functional transformation matrix (FSL FLIRT)	
struct2mni	Structural to template transformation matrix (FSL FLIRT)	
mni2struct	Template to structural transformation matrix (FSL FLIRT)	
func2mni	Functional to template transformation matrix (FSL FLIRT)	
mni2func	Template to functional transformation matrix (FSL FLIRT)	
structuralcsf	Structural image CSF segmentation- binary mask in NIFTI format	
structuralgm	Structural image GM segmentation- binary mask in NIFTI format	
structuralwm	Structural image WM segmentation- binary mask in NIFTI format	
boldgm	Functional image GM segmentation- binary mask in NIFTI format	
boldwm	Functional image WM segmentation- binary mask in NIFTI format	
boldcsf	Functional image CSF segmentation- binary mask in NIFTI format	

boldcsfwm	Functional image CSF and WM segmentation- binary mask in NIFTI format	
meants	Global mean time series- text file	
meantsgm	GM mean time series- text file	
meantswm	WM mean time series- text file	
meantscsf	CSF mean time series- text file	
meantscsfwm	CSF and WM mean time series- text file	
slicetiming	Slice acquisition order used for slice timing correction, e.g., 'descending interleaved'.	

Example

mySubjects.txt

- --bold '/data/experiment1/nii/subject1_bold.nii.gz' --structural
 '/data/experiment1/nii/subject1_struct.nii.gz' --structuralbrainmask
 '/data/experiment1/nii/subject1_struct_brainmask.nii.gz' --opath '/data/experiment1/processed'
- --bold 'data/experiment1/nii/subject2_bold.nii.gz' --structural
- '/data/experiment1/nii/subject2_struct.nii.gz' --structuralbrainmask
 '/data/experiment1/nii/subject2_struct_brainmask.nii.gz' --opath '/data/experiment1/processed'