Advanced Gaseous Detectors - Theory and Practice (E) - physics722

Degree - M.Sc. in Physics (PO von 2014)

\overline{Module}	Elective Advanced Lectures: Experimental Physics
Module No.	physics70a

Course	Advanced Gaseous Detectors - Theory and Practice (E)
Course No.	physics722

		Teach	Teaching		
Category	Type	Language hours	\mathbf{CP}	Semester	
Elective	Lecture with laboratory	English 3+1	6	ST	

Requirements for Participation:

Preparation: Completed B.Sc. in physics, with experience in electrodynamics, quantum mechanics, nuclear and particle physics, physics618 (Physics of Particle Detectors)

Form of Testing and Examination: Requirements for the examination (written or oral): submission of report

Length of Course: 1 semester

Aims of the Course:

- Design, construction, commissioning and characterization of a modern gaseous particle detector
- Simulations: GARFIELD, GEANT, FE-Methods, etc.
- Signals, Readout electronics and Data Acquisition
- Data analysis: pattern recognition methods, track fitting
- Scientific writing: report

Contents of the Course:

- Signal formation in detectors
- Microscopic processes in gaseous detectors
- Readout electronics
- Tools for detector design and simulation
- Performance criteria
- Laboratory course: commissioning of detector with sources, beam test at accelerator
- Track reconstruction

Recommended Literature:

http://root.cern.ch

http://garfieldpp.web.cern.ch/garfieldpp/

Blum, Rolandi, Riegler: Particle Detection with Drift Chambers

Spieler: Semiconductor Detector Systems