Отчет по лабораторной работе №8

Модель конкуренции двух фирм

Горбунова Ярослава Михайловна

Содержание

1	Цель работы	6
2	Задание 2.1 Постановка задачи. Модель конкуренции двух фирм (Вариант 23)	7 7
3	Теоретическое введение	10
4	Выполнение лабораторной работы	20
5	Выводы	22
6	Список литературы	23

List of Tables

List of Figures

2.1	Условие 1
2.2	Условие 2
2.3	Условие 3
3.1	Формула (1)
3.2	Формула (2)
3.3	Формула (3)
3.4	Формула (4)
3.5	Формула (5)
3.6	Формула (6)
3.7	Формула (7)
3.8	Формула (8)
3.9	Формула (9)
3.10	Формула (10)
3.11	Формула (11)
3.12	Формула (12)
3.13	Формула (13)
	Формула (14)
	Формула (15)
	Формула (16)
3.17	Формула (17)
3.18	рис.1: График изменения оборотных средств фирмы 1 (синий) и
	фирмы 2 (зеленый). По оси ординат значения $M_{1,2}$, по оси абсцисс
	значения $ heta = rac{t}{c_1}$ (безразмерное время)
3.19	Формула (18)
3.20	рис.2: График изменения оборотных средств фирмы 1 (синий) и
	фирмы 2 (зеленый). По оси ординат значения M_1M_2 (оборотные t
	средства фирмы 1 и фирмы 2), по оси абсцисс значения $ heta=rac{\iota}{c_1}$
	(безразмерное время)
4.1 4.2	рис.3: Код программы для построения графиков модели 20 рис.4: Графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для
	случая 1

4.3	рис.5: Графики изменения оборотных средств фирмы 1 и фирмы	
	2 без учета постоянных издержек и с веденной нормировкой для	
	случая 2	2

1 Цель работы

- 1. Изучить задачу о конкуренции двух фирм
- 2. Построить графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1.
- 3. Построить графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2.

2 Задание

2.1 Постановка задачи. Модель конкуренции двух фирм (Вариант 23)

Случай 1 [2]. Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом). Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений (усл. 1):

$$\begin{split} \frac{dM_1}{d\theta} &= M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ &\qquad \qquad \frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{split},$$
 где
$$a_1 &= \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 N q}, \ a_2 = \frac{p_{cr}}{\tau_2^2 \tilde{p}_2^2 N q}, \ b = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 \tau_2^2 \tilde{p}_2^2 N q}, \ c_1 = \frac{p_{cr} - \tilde{p}_1}{\tau_1 \, \tilde{p}_1}, \ c_2 = \frac{p_{cr} - \tilde{p}_2}{\tau_2 \, \tilde{p}_2}. \end{split}$$

Figure 2.1: Условие 1

Также введена нормировка $t=c_1\theta$.

Случай 2. Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед $M_1 M_2$ будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений (усл. 2):

$$\frac{dM_1}{d\theta} = M_1 - \left(\frac{b}{c_1} + 0,00014\right) M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2$$

Figure 2.2: Условие 2

Для обоих случаев рассмотрим задачу со следующими начальными условиями и параметрами (усл. 3):

$$M_0^1 = 7.2, M_0^2 = 8.2,$$

 $p_{cr} = 43, N = 87, q = 1$
 $\tau_1 = 27, \tau_2 = 20,$
 $\tilde{p}_1 = 12, \tilde{p}_2 = 9.7$

Figure 2.3: Условие 3

Замечание: Значения $p_{cr}, \tilde{p}_{1,2}, N$ указаны в тысячах единиц, а значения $M_{1,2}$ указаны в млн. единиц.

Обозначения: N — число потребителей производимого продукта. au — длительность производственного цикла. p — рыночная цена товара. $ilde{p}$ - себестоимость продукта, то есть переменные издержки на производство единицы продукции. q — максимальная потребность одного человека в продукте в единицу времени. $heta = rac{t}{c_1}$ - безразмерное время.

- 1. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1
- 2. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2

3 Теоретическое введение

Модель одной фирмы Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют [1].

Обозначим: N – число потребителей производимого продукта.

S – доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения.

- M оборотные средства предприятия
- au длительность производственного цикла
- р рыночная цена товара
- \tilde{p} себестоимость продукта, то есть переменные издержки на производство единицы продукции.
 - δ доля оборотных средств, идущая на покрытие переменных издержек.
- κ постоянные издержки, которые не зависят от количества выпускаемой продукции.
- Q(S/p) функция спроса, зависящая от отношения дохода S к цене p. Она равна количеству продукта, потребляемого одним потребителем в единицу времени.

Функцию спроса товаров долговременного использования часто представляют

в простейшей форме (1):

$$Q = q - k \frac{p}{S} = q \left(1 - \frac{p}{p_{cr}} \right) \tag{1}$$

Figure 3.1: Формула (1)

где q — максимальная потребность одного человека в продукте в единицу времени. Эта функция падает с ростом цены и при $p=p_{cr}$ (критическая стоимость продукта) потребители отказываются от приобретения товара. Величина $p_{cr}=Sq/k$. Параметр k — мера эластичности функции спроса по цене. Таким образом, функция спроса в форме (1) является пороговой (то есть, Q(S/p)=0 при $p\geq p_{cr}$) и обладаетсвойствами насыщения.

Уравнения динамики оборотных средств можно записать в виде (2)

$$\frac{dM}{dt} = -\frac{M\delta}{\tau} + NQp - \kappa = -\frac{M\delta}{\tau} + Nq\left(1 - \frac{p}{p_{cr}}\right)p - \kappa \tag{2}$$

Figure 3.2: Формула (2)

Уравнение для рыночной цены р представим в виде (3)

$$\frac{dp}{dt} = \gamma \left(-\frac{M\delta}{\tau \, \tilde{p}} + Nq \left(1 - \frac{p}{p_{cr}} \right) \right) \tag{3}$$

Figure 3.3: Формула (3)

Первый член соответствует количеству поставляемого на рынок товара (то есть, предложению), а второй член – спросу.

Параметр γ зависит от скорости оборота товаров на рынке. Как правило, время торгового оборота существенно меньше времени производственного цикла τ .

При заданном М уравнение (3) описывает быстрое стремление цены к равновесному значению цены, которое устойчиво.

В этом случае уравнение (3) можно заменить алгебраическим соотношением (4)

$$-\frac{M\delta}{\tau\tilde{p}} + Nq\left(1 - \frac{p}{p_{cr}}\right) = 0 \tag{4}$$

Figure 3.4: Формула (4)

Из (4) следует, что равновесное значение цены р равно (5)

$$p = p_{cr} \left(1 - \frac{M\delta}{\tau \, \tilde{p} N q} \right) \tag{5}$$

Figure 3.5: Формула (5)

Уравнение (2) с учетом (5) приобретает вид (6)

$$\frac{dM}{dt} = M \frac{\delta}{\tau} \left(\frac{p_{cr}}{\tilde{p}} - 1 \right) - M^2 \left(\frac{\delta}{\tau \tilde{p}} \right)^2 \frac{p_{cr}}{Nq} - \kappa \tag{6}$$

Figure 3.6: Формула (6)

Уравнение (6) имеет два стационарных решения, соответствующих условию dM/dt=0 (7):

$$\tilde{M}_{1,2} = \frac{1}{2}a \pm \sqrt{\frac{a^2}{4} - b} \tag{7}$$

Figure 3.7: Формула (7)

где (8)

$$a = Nq \left(1 - \frac{\tilde{p}}{p_{cr}} \right) \tilde{p} \frac{\tau}{\delta}, \ b = \kappa Nq \frac{\left(\tau \tilde{p}\right)^2}{p_{cr} \delta^2}$$
 (8)

Figure 3.8: Формула (8)

Из (7) следует, что при больших постоянных издержках (в случае $a^2 < 4b$) стационарных состояний нет. Это означает, что в этих условиях фирма не может функционировать стабильно, то есть, терпит банкротство. Однако, как правило, постоянные затраты малы по сравнению с переменными (то есть, $b \ll a^2$) и играют роль, только в случае, когда оборотные средства малы. При $b \ll a$ стационарные значения М равны (9)

$$\tilde{M}_{+} = Nq \frac{\tau}{\delta} \left(1 - \frac{\tilde{p}}{p_{cr}} \right) \tilde{p}, \ \tilde{M}_{-} = \kappa \tilde{p} \frac{\tau}{\delta \left(p_{cr} - \tilde{p} \right)}$$
 (9)

Figure 3.9: Формула (9)

Первое состояние \widetilde{M}_+ устойчиво и соответствует стабильному функционированию предприятия. Второе состояние \widetilde{M}_- неустойчиво, так, что при $M<\widetilde{M}_-$ оборотные средства падают (dM/dt<0), то есть, фирма идет к банкротству. По смыслу \widetilde{M}_- соответствует начальному капиталу, необходимому для входа в рынок.

В обсуждаемой модели параметр δ всюду входит в сочетании с τ Это значит, что уменьшение доли оборотных средств, вкладываемых в производство, эквивалентно удлинению производственного цикла. Поэтому мы в дальнейшем положим: $\delta=1$, а параметр τ будем считать временем цикла, с учётом сказанного.

Конкуренция двух фирм

Случай 1

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинако-

вого качества и находящиеся в одной рыночной нише. Последнее означает, что у потребителей в этой нише нет априорных предпочтений, и они приобретут тот или иной товар, не обращая внимания на знак фирмы. В этом случае, на рынке устанавливается единая цена, которая определяется балансом суммарного предложения и спроса. Иными словами, в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким- либо иным способом.) Уравнения динамики оборотных средств запишем по аналогии с (2) в виде (10)

$$\frac{dM_{1}}{dt} = -\frac{M_{1}}{\tau_{1}} + N_{1}q \left(1 - \frac{p}{p_{cr}}\right) p - \kappa_{1}$$

$$\frac{dM_{2}}{dt} = -\frac{M_{2}}{\tau_{2}} + N_{2}q \left(1 - \frac{p}{p_{cr}}\right) p - \kappa_{2}$$
(10)

Figure 3.10: Формула (10)

где использованы те же обозначения, а индексы 1 и 2 относятся к первой и второй фирме, соответственно. Величины N_1 и N_2 – числа потребителей, приобретших товар первой и второй фирмы.

Учтем, что товарный баланс устанавливается быстро, то есть, произведенный каждой фирмой товар не накапливается, а реализуется по цене р. Тогда (11)

$$\frac{M_{1}}{\tau_{1}\tilde{p}_{1}} = N_{1}q \left(1 - \frac{p}{p_{cr}}\right)
\frac{M_{2}}{\tau_{2}\tilde{p}_{2}} = N_{2}q \left(1 - \frac{p}{p_{cr}}\right)$$
(11)

Figure 3.11: Формула (11)

где \tilde{p}_1 и \tilde{p}_2 – себестоимости товаров в первой и второй фирме. С учетом (10) представим (11) в виде (12)

$$\frac{dM_1}{dt} = -\frac{M_1}{\tau_1} \left(1 - \frac{p}{\tilde{p}_1} \right) - \kappa_1$$

$$\frac{dM_2}{dt} = -\frac{M_2}{\tau_2} \left(1 - \frac{p}{\tilde{p}_2} \right) - \kappa_2$$
(12)

Figure 3.12: Формула (12)

Уравнение для цены, по аналогии с (3), (13)

$$\frac{dp}{dt} = -\gamma \left(\frac{M_1}{\tau_1 \tilde{p}_1} + \frac{M_2}{\tau_2 \tilde{p}_2} - Nq \left(1 - \frac{p}{p_{cr}} \right) \right) \tag{13}$$

Figure 3.13: Формула (13)

Считая, как и выше, что ценовое равновесие устанавливается быстро, получим (14):

$$p = p_{cr} \left(1 - \frac{1}{Nq} \left(\frac{M_1}{\tau_1 \tilde{p}_1} + \frac{M_2}{\tau_2 \tilde{p}_2} \right) \right)$$
 (14)

Figure 3.14: Формула (14)

Подставив (14) в (12) имеем (15):

$$\frac{dM_1}{dt} = c_1 M_1 - b M_1 M_2 - a_1 M_1^2 - \kappa_1
\frac{dM_2}{dt} = c_2 M_2 - b M_1 M_2 - a_2 M_2^2 - \kappa_2$$
(15)

Figure 3.15: Формула (15)

где (16)

$$a_{1} = \frac{p_{cr}}{\tau_{1}^{2} \tilde{p}_{1}^{2} N q}, \ a_{2} = \frac{p_{cr}}{\tau_{2}^{2} \tilde{p}_{2}^{2} N q}, \ b = \frac{p_{cr}}{\tau_{1}^{2} \tilde{p}_{1}^{2} \tau_{2}^{2} \tilde{p}_{2}^{2} N q}, \ c_{1} = \frac{p_{cr} - \tilde{p}_{1}}{\tau_{1} \tilde{p}_{1}}, \ c_{2} = \frac{p_{cr} - \tilde{p}_{2}}{\tau_{2} \tilde{p}_{2}}$$
(16)

Figure 3.16: Формула (16)

$$\frac{dM_1}{d\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2$$
(17)

Figure 3.17: Формула (17)

Чтобы решить систему (17) необходимо знать начальные условия. Зададим начальные значения $M_0^1=2, M_0^2=1$ и известные параметры: $p_{cr}=20, au_1=10, au_2=16, ilde p_1=9, ilde p_2=7, N=10, q=1.$

Замечание: Необходимо учесть, что значения $p_{cr}, \tilde{p}_{1,2}, N$ указаны в тысячах единиц (например N=10 - означает 10 000 потенциальных потребителей), а значения $M_{1,2}$ указаны в млн. единиц.

При таких условиях получаем следующие динамики изменения объемов продаж (рис.1):

Figure 3.18: рис.1: График изменения оборотных средств фирмы 1 (синий) и фирмы 2 (зеленый). По оси ординат значения $M_{1,2}$, по оси абсцисс значения $\theta=\frac{t}{c_1}$ (безразмерное время)

По графику видно, что рост оборотных средств предприятий идет независимо друг от друга. В математической модели (17) этот факт отражается в коэффици-

енте, стоящим перед членом M_1M_2 : в рассматриваемой задаче он одинаковый в обоих уравнениях ($\frac{b}{c_1}$. Это было обозначено в условиях задачи. Каждая фирма достигает свое максимальное значение объема продаж и остается на рынке с этим значением, то есть каждая фирма захватывает свою часть рынка потребителей, которая не изменяется.

Случай 2

Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед M_1M_2 будет отличаться.

Рассмотрим следующую модель (18):

$$\frac{dM_1}{d\theta} = M_1 - \left(\frac{b}{c_1} + 0{,}002\right) M_1 M_2 - \frac{a_1}{c_1} M_1^2$$

$$\frac{dM_2}{d\theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2$$
(18)

Figure 3.19: Формула (18)

Начальные условия и известные параметры остаются прежними. В этом случаем получим следующее решение (рис.2):

$$\frac{dM}{dt} = -\frac{M\delta}{\tau} + NQp - \kappa = -\frac{M\delta}{\tau} + Nq\left(1 - \frac{p}{p_{cr}}\right)p - \kappa \tag{2}$$

Figure 3.20: рис.2: График изменения оборотных средств фирмы 1 (синий) и фирмы 2 (зеленый). По оси ординат значения M_1M_2 (оборотные средства фирмы 1 и фирмы 2), по оси абсцисс значения $\theta=\frac{t}{c_1}$ (безразмерное время)

По графику видно, что первая фирма, несмотря на начальный рост, достигнув своего максимального объема продаж, начитает нести убытки и, в итоге, терпит банкротство. Динамика роста объемов оборотных средств второй фирмы остается без изменения: достигнув максимального значения, остается на этом уровне.

Замечание: Стоит отметить, что рассматривается упрощенная модель, которая дает модельное решение. В реальности факторов, влияющих на динамику изменения оборотных средств предприятий, больше.

4 Выполнение лабораторной работы

Выполнение работы будем проводить, используя OpenModelica.

Напишем программу для построения графиков (рис.3).

```
1 model lab08
           parameter Real p_cr = 43; // критическая стоимость продукта
          рагамеter Real p_cr = 43; // критическая стоимость продукта
parameter Real tau_1 = 27; // длительность производственного цикла фирмы 1
parameter Real tau_2 = 20; // длительность производственного цикла фирмы 2
parameter Real p_1 = 12; // себестоимость продукта фирмы 1
parameter Real p_2 = 9.7; // себестоимость продукта фирмы 2
parameter Real N = 87; // число потребителей производимого продукта
parameter Real q = 1; // максимальная потребность одного человека в продукте в единицу времени
           parameter Real b = p_cr/(tau_1*tau_1*p_1*p_1*tau_2*tau_2*p_2*p_2*N*q);
          parameter Real c = (p_cr - p_1)/(tau_1*p_1);
parameter Real c = (p_cr - p_2)/(tau_2*p_2);
parameter Real a = p_cr/(tau_1*tau_1*p_1*p_1*N*q);
parameter Real a = p_cr/(tau_2*tau_1*p_1*p_1*N*q);
14
15
           parameter Real a 2 = p_cr/(tau_2*tau_2*p_2*p_2*N*q);
           Real M_1(start = 7.2); // оборотные средства фирмы 1 Real M_2(start = 8.2); // оборотные средства фирмы 2 Real theta; // безразмерное время
18
19
         equation
            time = c_1*theta;
            //1 случай
            //der(M 1) = M 1 - b/c 1*M 1*M 2 - a 1/c 1*M 1*M 1;
            //der(M 2) = c 2/c 1*M 2 - b/c 1*M 1*M 2 - a 2/c 1*M 2*M 2;
             \frac{\text{der}(M_1)}{\text{der}(M_2)} = \frac{M_1 - (b/c_1 + 0.00014) * M_1 * M_2 - a_1/c_1 * M_1 * M_1; }{\text{der}(M_2)} = \frac{c_2/c_1 * M_2 - b/c_1 * M_1 * M_2 - a_2/c_1 * M_2 * M_2; }
```

Figure 4.1: рис.3: Код программы для построения графиков модели

Смоделируем графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1 (рис.4).

Figure 4.2: рис.4: Графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1

Смоделируем графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2 (рис.5).

Figure 4.3: рис.5: Графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2

5 Выводы

- 1. Изучена задача о конкуренции двух фирм
- 2. Построены графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1
- 3. Построены графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2

6 Список литературы

- 1. Методические материалы курса
- 2. Задания к лабораторной работе N^{o} 8 (по вариантам)