Analysis I, II

Contents

1	Logic, Sets, and Functions				
	1.1	Mathematical Induction & The Naturals	2		
	1.2	Extensions: Integers, Rationals, Reals	4		
2	App	pendix	5		

Logic, Sets, and Functions 1

Mathematical Induction & The Naturals 1.1

The **natural numbers**, $\mathbb{N} = \{1, 2, 3, \dots\}$, are specified by the 5 **Peano Axioms**:

- (1) $1 \in \mathbb{N}^{1}$
- (2) every natural number has a successor in \mathbb{N}
- (3) 1 is not the successor of any natural number
- (4) if the successor of x is equal to the successor of y, then x is equal to y^2
- (5) the axiom of induction

The **Axiom of Induction** (AI), can be stated in a number of ways.

Axiom 1.1 (*AI.i*)

Let $S \subseteq \mathbb{N}$ with the properties:

(a)
$$1 \in S$$

(a)
$$1 \in S$$

 (b) if $n \in S$, then $n+1 \in S^3$
 then $S = \mathbb{N}$.

Example 1.1. Prove that, for every $n \in \mathbb{N}$, $1 + 2 + \cdots + n = \frac{n(n+1)}{2} (\equiv (1))$

Proof (via AI.i): Let S be the subset of \mathbb{N} for which (1) holds; thus, our goal is to show $S = \mathbb{N}$, and we must prove (a) and (b) of AI.i.

- by inspection, $1 \in S$ since $1 = \frac{1(1+1)}{2} = 1$, proving (a)
- assume $n \in S$; then, $1+2+\cdots+n=\frac{n(n+1)}{2}$ by definition of S. Adding n+1 to both sides yields:

$$1 + 2 + \dots + n + (n+1) = \frac{n(n+1)}{2} + (n+1)$$
 (1)

$$= (n+1)(\frac{n}{2}+1) \tag{2}$$

$$=\frac{(n+1)(n+2)}{2}$$
 (3)

$$=\frac{(n+1)((n+1)+1)}{2} \tag{4}$$

¹using 0 instead of 1 is also valid, but we will use 1 here.

²axioms (2)-(4) can be equivalently stated in terms of a successor function s(n) more rigorously, but won't here

³(a) is called the **inductive base**; (b) the **inductive step**. All AI restatements are equivalent in having both of these, and only differentiate on their specific values.

Line (4) is equivalent to statement (1) (substituting n for n+1), and thus if $n \in S$, then $n+1 \in S$ and (b) holds. Thus, by AI.i, $S = \mathbb{N}$ and $1+2+\cdots+n=\frac{n(n+1)}{2}$ holds $\forall n \in \mathbb{N}$.

Exercise 1.1. Prove (by induction), that for every $n \in \mathbb{N}$, $1^3 + 2^3 + \cdots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$.

(Solution)

Example 1.1 can also be proven directly (Gauss' method).

Proof: Let $A(n) = 1 + 2 + 3 + \dots + n$. We can write $2 \cdot A(n) = 1 + 2 + 3 + \dots + n + 1 + 2 + 3 + \dots + n$. Rearranging terms (1 with n, 2 with n - 1, etc.), we can say $2 \cdot A(n) = (n + 1) + (n + 1) + \dots$, where (n + 1) is repeated n = 1 times; thus, $2 \cdot A(n) = n(n + 1)$, and $A(n) = \frac{n(n + 1)}{2}$.

Axiom 1.2 (AI.ii)

Let
$$S \subseteq \mathbb{N}$$
 s.t.
(a) $m \in S$
(b) $n \in S \implies n+1 \in S$
then $\{m, m+1, m+2, \dots\} \subseteq S$.

Exercise 1.2. Using AI.ii, prove that for $n \ge 2$, $n^2 > n + 1$

(Solution)

Axiom 1.3 (Principle of Complete Induction, AI.iii)

Let
$$S \subseteq \mathbb{N}$$
 s.t.
(a) $1 \in S$
(b) if $1, 2, ..., n - 1 \in S$, then $n \in S$
then $S = \mathbb{N}$.

Finally, combing AI.ii and AI.iii;

Axiom 1.4 (AI.iv)

Let
$$S \subseteq \mathbb{N}$$
 s.t.:
(a) $m \in S$
(b) if $m, m+1, \ldots, m+n \in S$, then $m+n+1 \in S$
then $\{m, m+1, m+2, \ldots\} \subseteq S$.

Theorem 1.1 (Fundamental Theorem of Arithmetic)

Every natural number n can be written as a product of one or more primes. 4

Proof: Let S be the set of all natural numbers that can be written as a product of one or more primes. We will use ALiv to show $S = \{2, 3, \dots\}$.

- (a) holds; 2 is prime and thus $2 \in S$
- suppose that $2, 3, \ldots, 2+n \in S$. Consider 2+(n+1):

⁴1 is not a prime number

- if 2 + (n+1) is *prime*, then $2 + (n+1) \in S$, as all primes are products of 1 and themselves and are thus in S by definition.
- if 2+(n+1) is *not prime*, then it can be written as $2+(n+1)=a\cdot b$ where $a,b\in\mathbb{N}$, and 1< a< 2+(n+1) and 1< b< 2+(n+1). By the definition of $S,a,b\in S$, and can thus be written as the product of primes. Let $a=p_1\cdot\dots\cdot p_l$ and $b=q_1\cdot\dots\cdot q_j$, where the p's and q's are prime and $l,j\geq 1$. Then, $a\cdot b$ is a product of primes, and thus so is 2+(n+1). Thus, $2+(n+1)\in S$, and by AI.iv, $S=\{2,3,4,\dots\}$

1.2 Extensions: Integers, Rationals, Reals

Consider the set of naturals $\mathbb{N} = \{1, 2, 3, \dots\}$. Adding 0 to \mathbb{N} defines $\mathbb{N}_0 = \{0, 1, 2, \dots\}$. We define the **integers** as the set $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$, or the set of all positive and negative whole numbers.

Within \mathbb{Z} , we can define multiplication, addition and subtraction, with the neturals of 1 and 0, respectively. However, we cannnot define division, as we are not guaranteed a quotient in \mathbb{Z} . This necessitates the **rationals**, \mathbb{Q} . We define

$$\mathbb{Q} = \{ \frac{p}{q}, p \in \mathbb{Z}, q \in \mathbb{Z}, q \neq 0 \}.$$

On \mathbb{Q} , we have the familiar operations of multiplication, addition, subtraction and properties of associativity, distributivity, etc. We can also define division, as $\frac{p}{q'} = \frac{pq'}{qp'}$.

We can also define a relation < between fractions, such that

- x < y and $y < z \implies x < z$
- $x < y \implies x + z < y + z$

Q, together with its operations and relations above, is called an **ordered field**.

Appendix 2

Axiom 1.1 (AI.i)

Let $S \subseteq \mathbb{N}$ with the properties:

- (a) $1 \in S$
- (b) if $n \in S$, then $n + 1 \in S^5$

then $S = \mathbb{N}$.

Exercise 1.1. Prove (by induction), that for every $n \in \mathbb{N}$, $1^3 + 2^3 + \cdots + n^3 = \left\lceil \frac{n(n+1)}{2} \right\rceil^2$.

Proof of Exercise 1.1: Follows a similar structure to the previous example. Let S be the subse4t of \mathbb{N} for which the statement holds. $1 \in S$ by inspection ((a) holds), and we prove (b) by assuming $n \in S$ and showing $n + 1 \in S$ (algebraically). Thus, by AI.i, $S = \mathbb{N}$ and the statement holds $\forall n \in \mathbb{N}$.

Axiom 1.2 (AI.ii)

Let $S \subseteq \mathbb{N}$ s.t.

(b) $n \in S \implies n+1 \in S$ then $\{m, m+1, m+2, \dots\} \subseteq S$.

Exercise 1.2. Using AI.ii, prove that for $n \ge 2$, $n^2 > n + 1$

Proof of Exercise 1.2: Again, very similar to the previous induction examples. Take S to be the subset of $\mathbb N$ for which the statement holds. (a) of AI.ii holds by inspection (where m=2), and (b) holds by assuming $n \in S$ and showing that $n+1 \in S$. Thus, $S = \{2, 3, 4, \dots\}$, and the statement holds $\forall n \geq 2$.

Axiom 1.3 (Principle of Complete Induction, AI.iii)

Let $S \subseteq \mathbb{N}$ s.t.

- (a) $1 \in S$
- (b) if $1, 2, ..., n 1 \in S$, then $n \in S$

then $S = \mathbb{N}$.

Axiom 1.4 (AI.iv)

Let $S \subseteq \mathbb{N}$ s.t.:

- (a) $m \in S$
- (b) if $m, m + 1, ..., m + n \in S$, then $m + n + 1 \in S$ then $\{m, m + 1, m + 2, ...\} \subseteq S$.

ery natural number n $oldsymbol{c}$	an be written as a prod	duct of one or mor	e primes. ⁶	