CO-DESIGNING A NOVEL AND PERSONALISED SMARTPHONE APP TO REDUCE FALLS IN PARKINSON'S DISEASE

Conor Wall¹, Peter McMeekin², Victoria Hetherington³, Richard Walker⁴, Alan Godfrey¹

¹Department of Computer and Information Sciences, NE1 8ST, Northumbria University

²Department of Nursing and Midwifery, Northumbria University, NE1 8ST, Newcastle upon Tyne

³Cumbria, Northumberland Tyne and Wear NHS Foundation Trust, Wolfson Research Centre, Campus for Ageing and Vitality, Newcastle upon Tyne, UK

⁴Northumbria Healthcare NHS Foundation Trust, NE29 8NH, North Shields

BACKGROUND

- Parkinson's Disease (PD) causes gait abnormalities such as slow speed and stride shuffling, which increases fall risk and lowers quality of life [1-2].
- Auditory cueing, such as metronome cueing has shown effectiveness in reducing gait abnormalities [3-4].
- Personalised methods are underexplored and current one-size-fits-all approaches fail to help roughly 50% of patients [5].

OBJECTIVES

Stage 1:

- Develop an app within a proposed mobile smartphone-based system to retrain gait.
- I. The app must provide real-time gait analysis and personalized auditory cues for a tailored intervention.
- II. Validate the 1st version of the app in a group of younger adults

Stage 2:

- Conduct a focus group to:
 - I. Involve PwPD directly in the design process, ensuring the system meets their needs.
- II. Assess the acceptance of tempo-altered music (without pitch distortion) and metronome cues.
- III. To understand how well the system could fit in the daily lives and therapy routines of PwPD.

METHODOLOGY

TECHNOLOGY

Using

Using embedded sensors effectively as an Inertial Measurement Unit (IMU), to gather triaxial sensor data.

Developed

Developed a smartphone application that near real-time tracks gait characteristics using triaxial sensors.

Produces

Produces metronome that matches gait characteristics to deliver a more personalized approach to auditory cueing.

VALIDATION STUDY PROTOCOL

Participant Info

10 adults recruited (6F:4M, 27.4 ± 6.2 years, 79.6 ± 12.7kg, 174.7 ± 7.9cm)

Validation

Gait characteristics

from the smartphone
compared to a
reference standard IMU
system (Opal,
MobilityLab, APDM,
sampling rate: 128Hz)
attached to the talus
joint of each foot.

Data Collection

Participants wore smartphones on lower back during two walking tasks:

1. At a self-selected pace

2. With a personalised metronome cue set at10% faster than the first walk

Data Analysis

- 1. Clinically relevant gait characteristics measured via the smartphone app.
- Data processed on a Python-based cloud server.
- 3. Gait metrics compared from smartphone and reference.

FOCUS GROUP PROTOCOL

Participant Info

8 older adults (7 with PD and 1 PD caregiver).

Structure

Semi-structured discussion for 1 hour 30 minutes.

Participants were shown several video demonstrations of the app and asked for their feedback.

Participants were also invited to discuss their daily lives and exercise habits.

Venue and Recording

Focus group was held in room in
Coach Lane Campus,
Northumbria University,
Newcastle Upon-Tyne and
recorded using Dictaphone.
Recording was subsequently
transcribed verbatim.

Smartphone – 1 Minute Gait Analysis Cloud Server Cloud Storage Test Two Recording Disable Cueing Cloud Server Cloud Storage Cloud Storage

RESULTS

VALIDATION STUDY

• Excellent agreement between the smartphone app and gold-standard reference (Intraclass Correlation ≥0.911. Personalised cueing increased mean cadence by ~10%.

FOCUS GROUP

- Exercise in PD:
 - I. Walking is a key daily exercise for PwPD.
 - II. Music is integral to PD-specific exercises and rehabilitation.
- App Feedback:
- I. Positive response to the app's potential to improve walking.
- II. The +10% pace increase with enhanced music was favoured.
- III. Smartphone placement on the lower back was not ideal.
- IV. Pocket placement was favoured for accessibility.

DISCUSSION AND CONCLUSION

- Developed and validated a smartphone app for real-time gait assessment and personalised metronome cueing in young adults.
- PD-based focus group liked app and suggested demonstrated personalised cueing modalities (based on their own pace and mainstream music) is better than a traditional cue, but future work must reconsider wear location.

REFERENCES

1. Bryant, M.S., Rintala, D.H., Hou, J.G., Charness, A.L., Fernandez, A.L., Collins, R.L., Baker, J., Lai, E.C. and Protas, E.J., 2011. Gait variability in Parkinson's disease: influence of walking speed and dopaminergic treatment. Neurological research, 33(9), pp.959-964.

2. Schaafsma, J.D., Giladi, N., Balash, Y., Bartels, A.L., Gurevich, T. and Hausdorff, J.M., 2003. Gait dynamics in Parkinson's disease: relationship

to Parkinsonian features, falls and response to levodopa. Journal of the neurological sciences, 212(1-2), pp.47-53.

3. Ghai, S., Ghai, I., Schmitz, G. and Effenberg, A.O., 2018. Effect of rhythmic auditory cueing on parkinsonian gait: a systematic review and meta-analysis. Scientific reports, 8(1), pp.1-19.

4. Hausdorff, J.M., Lowenthal, J., Herman, T., Gruendlinger, L., Peretz, C. and Giladi, N., 2007. Rhythmic auditory stimulation modulates gait variability in Parkinson's disease. European Journal of Neuroscience, 26(8), pp.2369-2375.

5. V. Cochen De Cock et al., 'BeatWalk: Personalized Music-Based Gait Rehabilitation in Parkinson's Disease', Front. Psychol., vol. 12, p.

5. V. Cochen De Cock et al., 'BeatWalk: Personalized Music-Based Gait Rehabilitation in Parkinson's Disease', Front. Psychol., vol. 12, p. 655121, Apr. 2021, doi: 10.3389/fpsyg.2021.655121.

