Relazione di Controlli Automatici - Traccia 3

Descrizione del problema

Si considera il sistema rappresentante una tavola rotante motorizzata, in cui l'accoppiamento tra motore e tavola avviene tramite un giunto cardanico. La dinamica del sistema è descritta dall'equazione differenziale:

$$J\dot{\omega} = \tau(\theta)C_m - \beta\omega - k\theta,\tag{1}$$

dove:

- $\tau(\theta) = \frac{\cos(\alpha)}{1 (\sin(\alpha)\cos(\theta))^2}$ è il rapporto di trasmissione del giunto cardanico;
- *J* è il momento d'inerzia della tavola;
- C_m è la coppia generata dal motore elettrico;
- β è il coefficiente di attrito viscoso;
- $\bullet \; k$ è il coefficiente di elasticità della tavola.

Si suppone di poter misurare la posizione angolare θ della tavola.

1 Punto 1: Forma di stato e linearizzazione

Forma di stato

Per portare il sistema nella forma di stato, definiamo:

- Variabile di stato: $\mathbf{x} = \begin{bmatrix} \theta \\ \omega \end{bmatrix}$;
- Variabile d'ingresso: $u = C_m$;
- Variabile d'uscita: $y = \theta$.

La forma di stato è quindi:

$$\dot{\mathbf{x}} = \begin{bmatrix} \dot{\theta} \\ \dot{\omega} \end{bmatrix} = \begin{bmatrix} \omega \\ \frac{1}{J} \left(\tau(\theta) u - \beta \omega - k \theta \right) \end{bmatrix}. \tag{2}$$

La funzione $h(\mathbf{x}, u)$ per la variabile d'uscita è:

$$y = h(\mathbf{x}, u) = \theta. \tag{3}$$

Linearizzazione del sistema

Il punto di equilibrio è dato da $\mathbf{x}_e = \begin{bmatrix} \theta_e \\ \omega_e \end{bmatrix}$ e u_e , calcolato imponendo $\dot{\theta} = 0$ e $\dot{\omega} = 0$. Con i parametri forniti:

$$\omega_e = 0, \quad \tau(\theta_e)u_e = k\theta_e. \tag{4}$$

Linearizzando attorno al punto di equilibrio otteniamo:

$$\delta \dot{\mathbf{x}} = A \delta \mathbf{x} + B \delta u, \tag{5}$$

$$\delta y = C\delta \mathbf{x} + D\delta u,\tag{6}$$

con:

$$A = \begin{bmatrix} 0 & 1 \\ -\frac{k}{J} - \frac{\partial \tau}{\partial \theta} u_e & -\frac{\beta}{J} \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ \frac{\tau(\theta_e)}{J} \end{bmatrix}, \tag{7}$$

$$C = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad D = \begin{bmatrix} 0 \end{bmatrix}. \tag{8}$$

2 Punto 2: Funzione di trasferimento

La funzione di trasferimento del sistema linearizzato è:

$$G(s) = C(sI - A)^{-1}B + D. (9)$$

Sostituendo le matrici A, B, C, D, si ottiene:

$$G(s) = \frac{\frac{\tau(\theta_e)}{J}}{s^2 + \frac{\beta}{J}s + \frac{k}{J}}.$$
 (10)

3 Punto 3: Progetto del regolatore

Sulla base delle specifiche richieste:

- Errore a regime: $|e_{\infty}| \leq 0.01$;
- Margine di fase: $M_f \ge 33^\circ$;
- Sovraelongazione: $S\% \le 16\%$;
- Tempo di assestamento: $T_{a,\epsilon} < 0.003$ s;
- Abbattimento disturbo: ≥ 50 dB per $\omega \in [0, 0.8]$;
- Abbattimento rumore: ≥ 72 dB per $\omega \in [1.2 \cdot 10^5, 5 \cdot 10^6]$.

Un regolatore PID adeguato sarà progettato, e i parametri saranno sintonizzati tramite tecniche come il luogo delle radici o la risposta in frequenza.

4 Punti 4 e 5: Test del sistema

Test sul sistema linearizzato

Implementato in ambiente Matlab, utilizzando w(t), d(t) e n(t) forniti nella traccia.

Test sul sistema non lineare

Simulazioni effettuate considerando d(t) e n(t) come nella traccia, confrontando le prestazioni con il modello linearizzato.

Conclusioni

Sintesi dei risultati e considerazioni finali sull'efficacia del controllo implementato.