Chapter 1 - Abstract Integration

Salvador Castagnino scastagnino@itba.edu.ar

Exercise Solutions

Useful Properties

Theorem 1.1 (Reverse Fatou's Lemma) Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequences of measurable functions with $f_n:X\to[0,\infty]$, if there exsits $g\in L^1(\mu)$ such that $f_n\leq g$ for all $n\geq 1$ then

$$\limsup_{n \to \infty} \int_X f_n \, d\mu \le \int_X \limsup_{n \to \infty} f_n \, d\mu$$

Proof. As $f_n \leq g$ for all $n \geq 1$ the functions $h_n = g - f_n$ are both measurable and nonnegative, thus applying Fatou's Lemma to h_n we get,

$$\int_{X} \liminf_{n \to \infty} (g - f_n) \ d\mu \le \liminf_{n \to \infty} \int_{X} g - f_n \ d\mu$$

rearranging both sides we get,

$$\int_X g \, d\mu - \int_X \limsup_{n \to \infty} f_n \, d\mu \le \int_X g \, d\mu - \limsup_{n \to \infty} \int_X f_n \, d\mu$$

Finally, as $\int_X g\,d\mu < \infty$ we can cancel on both sides and multiply by -1 getting the desired result.