Optimization

Optimization difficulties, Minibatch optimization, Momentum, Nesterov's Momentum, Parameter initialization, Algorithms (SGD, Adam, AdaGrad)

How learning is different from pure *optimization*?

While training the model

$$J(\boldsymbol{\theta}) = \mathbb{E}_{(\boldsymbol{x}, \mathbf{y}) \sim \hat{p}_{\text{data}}} L(f(\boldsymbol{x}; \boldsymbol{\theta}), y),$$

distribution of training data

Empirical risk minimization

$$\mathbb{E}_{\boldsymbol{x}, \mathbf{y} \sim \hat{p}_{\text{data}}(\boldsymbol{x}, y)}[L(f(\boldsymbol{x}; \boldsymbol{\theta}), y)] = \frac{1}{m} \sum_{i=1}^{m} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), y^{(i)})$$

What we actually want

$$J^*(\boldsymbol{\theta}) = \mathbb{E}_{(\boldsymbol{x}, \mathbf{y}) \sim p_{\text{data}}} L(f(\boldsymbol{x}; \boldsymbol{\theta}), y).$$

 P_{data} distribution of actual data

Batch and Minibatch algorithms

Loss function
$$J(m{ heta}) = \mathbb{E}_{(m{x}, \mathbf{y}) \sim \hat{p}_{\mathrm{data}}} L(f(m{x}; m{ heta}), y),$$

Training by backpropagation

$$\nabla_{\theta} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(x_i; \theta), y_i)$$

- Variance in the estimation with m samples - $\frac{\sigma}{2}$

 $\frac{J(\theta)}{\theta} = \frac{L(f(x^i; \theta), y^i)}{\theta_{i+1}}$ es vou to evaluate de vix len

It requires you to evaluate gradients w.r.t all the training examples for gradient estimation

100 = 0/m

std = 0/sm

Is this efficient?

 By calculating grads over all samples, we get only sub-linear performance

Batch and Minibatch algorithms

Loss function

$$J(\boldsymbol{\theta}) = \mathbb{E}_{(\boldsymbol{x}, y) \sim \hat{p}_{\text{data}}} L(f(\boldsymbol{x}; \boldsymbol{\theta}), y),$$

Training by backpropagation

$$\nabla_{\theta} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \nabla_{\theta} L(f(x_i; \theta), y_i)$$

By calculating grads over all samples, we get only **sub-linear** performance

What is the alternative?

- Simple solution, don't use all the samples for gradient estimation
- At each update iteration, randomly chose B samples and use them for estimating gradients Minibatch training
- Also, does as unbiased estimate of gradients

$$\nabla_{\theta} J(\theta) = \frac{1}{B} \sum_{i=1}^{B} \nabla_{\theta} L(f(x_i; \theta), y_i)$$

Stochastic Gradient Descent (SGD)

$$\theta = \theta - \epsilon \hat{g}$$

L(f(n;b),y)

Algorithm 8.1 Stochastic gradient descent (SGD) update at training iteration k

Require: Learning rate ϵ_k .

Require: Initial parameter θ

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \dots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient estimate: $\hat{\boldsymbol{g}} \leftarrow +\frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$

Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \underline{\epsilon \hat{\boldsymbol{g}}}$

end while

Stochastic Gradient Descent (SGD) with momentum

Parameter update step of SGD

Apply update:
$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \epsilon \hat{\boldsymbol{g}}$$

- Depending on ϵ , learning can be very slow or have drastic oscillations
- Momentum is designed to accelerate SGD
- The momentum algorithm accumulates a weighted avg.
 of past gradients and continues to move in their direction.

Figure showing effect of momentum ----- path with momentum

→ direction that SGD would take

$$\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \nabla \boldsymbol{\theta} \left(\frac{1}{m} \sum_{i=1}^{m} L(\boldsymbol{f}(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)}) \right),$$

Velocity v accumulates the past gradients

$$oldsymbol{ heta} \leftarrow oldsymbol{ heta} + oldsymbol{v}$$
.

The larger α is relative to ϵ , the effect of past gradients is more

Stochastic Gradient Descent (SGD) with momentum

Parameter update step now

$$v \leftarrow \alpha v - \epsilon \nabla \theta \left(\frac{1}{m} \sum_{i=1}^{m} L(f(x^{(i)}; \theta), y^{(i)}) \right), \quad \forall_0 = 0$$

$$\theta \leftarrow \theta + v. \quad \forall_i = \alpha \forall_0 - \epsilon \gamma.$$

- In SGD, update step size was ϵ ||g||
- With momentum, depends on how large and how aligned a sequence of gradients are
- Its largest, when successive gradients are same

If momentum repeatedly observes gradient as \underline{g} , it accelerates by a factor of $\underline{1}$, resulting in $\underline{\epsilon||g||}$.

For α = 0.9, the descent is 10 times normal SGD

Figure showing effect of momentum

---- path with momentum

→ direction that SGD would take

Stochastic Gradient Descent (SGD) with momentum

```
Algorithm 8.2 Stochastic gradient descent (SGD) with momentum Require: Learning rate \epsilon, momentum parameter \alpha.

Require: Initial parameter \boldsymbol{\theta}, initial velocity \boldsymbol{v}.

while stopping criterion not met do

Sample a minibatch of m examples from the training set \{\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(m)}\} with corresponding targets \boldsymbol{y}^{(i)}.

Compute gradient estimate: \boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)};\boldsymbol{\theta}),\boldsymbol{y}^{(i)})

Compute velocity update: \boldsymbol{v} \leftarrow \alpha \boldsymbol{v} - \epsilon \boldsymbol{g}

Apply update: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \boldsymbol{v}

end while
```

Nesterov momentum

Parameter update

$$\theta \leftarrow \theta + v$$
.

Nesterov momentum

```
Algorithm 8.3 Stochastic gradient descent (SGD) with Nesterov momentum
Require: Learning rate \epsilon, momentum parameter \alpha.
Require: Initial parameter \theta, initial velocity v.
    while stopping criterion not met do
       Sample a minibatch of m examples from the training set \{x^{(1)}, \dots, x^{(m)}\} with
       corresponding labels y^{(i)}.
       Apply interim update: \tilde{\boldsymbol{\theta}} \leftarrow \boldsymbol{\theta} + \alpha \boldsymbol{v} Look ahead step Compute gradient (at interim point): \boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\tilde{\boldsymbol{\theta}}} \sum_{i} L(f(\boldsymbol{x}^{(i)}(\tilde{\boldsymbol{\theta}}), \boldsymbol{y}^{(i)})
       Compute velocity update: \mathbf{v} \leftarrow \alpha \mathbf{v} - \epsilon \mathbf{g}
       Apply update: \theta \leftarrow \theta + v
    end while
```


Why learning can be slow

- If the ellipse is very elongated, the direction of steepest descent is almost perpendicular to the direction towards the minimum!
 - The red gradient vector has a large component along the short axis of the ellipse and a small component along the long axis of the ellipse.
 - This is just the opposite of what we want.

Algorithms for optimization - adaptive learning rate

AdaGrad (Duchi et al., 2011)

Parameter update

Scales the learning rate with square root of sum of past gradients

 Larger partial derivatives reduced learning rates (viceversa)

$$J = \begin{pmatrix} 31 \\ 3n \end{pmatrix} \qquad go_{3} = \begin{pmatrix} 31 \\ 32 \\ 3n \end{pmatrix}$$

$$S(3) \longrightarrow 0 \longleftarrow 0 + D0 \qquad D0 = -6g_{2}$$

Algorithm 8.4 The AdaGrad algorithm

Require: Global learning rate ϵ Require: Initial parameter θ

Require: Small constant δ , perhaps 10^{-7} , for numerical stability

Initialize gradient accumulation variable r=0

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient: $\mathbf{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\mathbf{x}^{(i)}; \boldsymbol{\theta}), \mathbf{y}^{(i)})$

Accumulate squared gradient: $r \leftarrow r + g \odot g$

Compute update: $\Delta \theta \leftarrow -\frac{\partial}{\delta + \sqrt{r}} \odot g$. (Division and square root applied element-wise)

Apply update: $\theta \leftarrow \theta + \Delta \theta$ leaving rate

end while

Algorithms for optimization - adaptive learning rate

RMSProp(Hinton et al., 2012)

Parameter update

Scales the learning rate with weighted average of square of past gradients

Algorithm 8.5 The RMSProp algorithm

Require: Global learning rate ϵ , decay rate ρ .

Require: Initial parameter θ

Require: Small constant δ , usually 10^{-6} , used to stabilize division by small numbers.

Initialize accumulation variables r=0

while stopping criterion not met do

Sample a minibatch of m examples from the training set $\{\boldsymbol{x}^{(1)},\dots,\boldsymbol{x}^{(m)}\}$ with corresponding targets $\boldsymbol{v}^{(i)}$.

Compute gradient: $\mathbf{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\mathbf{x}^{(i)}; \boldsymbol{\theta}), \mathbf{y}^{(i)})$

Accumulate squared gradient: $\mathbf{r} \leftarrow \rho \mathbf{r} + (1 - \rho) \mathbf{g} \odot \mathbf{g}$ Compute parameter update: $\Delta \boldsymbol{\theta} = -\frac{\epsilon}{\sqrt{\delta + r}} \odot \mathbf{g}$. $(\frac{1}{\sqrt{\delta + r}} \text{ applied element-wise})$

Apply update: $\theta \leftarrow \theta + \Delta \theta$

end while

Algorithms for optimization - adaptive learning rate

Adam (Kingma et al., 2014)

Parameter update

Combines RMSProp and momentum methods

$$g = \frac{1}{2} \sum_{i=1}^{N} g_{i}$$

$$\lim_{x \to \infty} \frac{1}{x} \sum_{i=1}^{N} g_{i}$$

Algorithm 8.7 The Adam algorithm

Require: Step size ϵ (Suggested default: 0.001)

Require: Exponential decay rates for moment estimates, ρ_1 and ρ_2 in [0,1). (Suggested defaults: 0.9 and 0.999 respectively)

Require: Small constant δ used for numerical stabilization. (Suggested default: 10^{-8}

Require: Initial parameters θ

Initialize 1st and 2nd moment variables s = 0, r = 0

Initialize time step t = 0

while stopping criterion not met do

Sample a minibatch of \underline{m} examples from the training set $\{\boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(m)}\}$ with corresponding targets $y^{(i)}$.

Compute gradient: $\underline{g} \leftarrow \frac{1}{m} \nabla_{\theta} \sum_{i} \underline{L(f(x^{(i)}; \theta), y^{(i)})}$

Update biased first moment estimate: $\mathbf{s} \leftarrow \rho_1 \mathbf{s} + (1 - \rho_1) \mathbf{g}$

Update biased second moment estimate: $r \leftarrow \rho_2 r + (1 - \rho_2) g \odot g$

Correct bias in first moment: $\hat{s} \leftarrow \frac{s}{1-\rho_1^t}$ Correct bias in second moment: $\hat{r} \leftarrow \frac{s}{1-\rho_2^t}$ Compute update: $\Delta\theta = -\epsilon \frac{\hat{s}}{\sqrt{\hat{r}}+\delta}$ (operations applied element-wise)
Apply update: $\theta \leftarrow \theta + \Delta\theta$

end while

*Slide courtesy, Ian Goodfellow et al., deep learning book

END