Quiz 3 Solution

$$x(t) = 2 \sin(400\pi t + \frac{\pi}{6})$$
. [u(t) - u(t - 0.01)]

a)
$$x[n] = x(n.T_s) = 2 \sin(400\pi.n.\frac{1}{200} + \frac{\pi}{6}) \cdot \left[u\left[\frac{n}{800}\right] - u\left[\frac{n}{800} - \frac{1}{100}\right]\right]$$

$$= 2 \sin(n.\frac{\pi}{2} + \frac{\pi}{6}) \cdot \left[u\left[\frac{n}{800}\right] - u\left[\frac{n-8}{800}\right]\right]$$

$$= 2 \sin(n.\frac{\pi}{2} + \frac{\pi}{6}) \cdot \left[u\left[\frac{n}{800}\right] - u\left[\frac{n-8}{800}\right]\right]$$
it will be 1 for $0 \le n \le 8$

* Therefore, you need to find x[n] for O (n <8.

$$x[n] = 2\sin\left(n\frac{\pi}{2} + \frac{\pi}{6}\right)$$
 for $0 \le n \le 8$

$$x(0) = 2 \sin(\frac{\pi}{6}) = 2 \sin 30 = 1$$

$$x(2) = 2 \sin(210) = -1$$

$$x[3] = 2 sin(300) = 63$$

$$x(4)=1$$

$$x[5] = \sqrt{3}$$

b) Let's call "A" the node after the summation operator.

$$A = 2 \times [n] - 0.5 y[n]$$

$$y(n) = 2x(n-1) - 0.5y(n-1)$$

n	x(n-1)	x[n]	y[n-1]	y[n]
0	0	, 1	0	0
1	1	13	0	2
2	13	-1	2	2(3-1
3	-1 €	-13	283 -1	-13-32
4	-13 2	1	-(3 - 3/2	$-\frac{313}{2} + \frac{3}{4}$
5	1	(3	$-\frac{313}{2} + \frac{3}{4}$	3 (3 + 13 8
6	13	, -1	3/3 + 13	1363 - 13
7	-1 2	-\3	13/3 - 13	$\frac{-13\sqrt{3}}{16} - \frac{51}{32}$
	10	10	↓③	16 32

13 column as well from the x(n)'s. (x(n-1) will

be zero ini-

tially.)

U Then, fill this First fill this Column from part a.

Later on, y(n-1) will be 0 initially as well and y(0) should be calculated as 0 from the equation above

4)
$$y[0] = 2 \times (-1) - 0.5 y[-1] = 0 - 0 = 0$$

 $y[1] = 2 \times [0] - 0.5 y[0] = 2 - 0 = 2$
 $y[2] = 2 \times [1] - 0.5 y[1] = 2 \cdot [3 - (0.5)(2) = 2 \cdot [3 - 1]$
:

d)
$$T(z) = \frac{Y(z)}{X(z)}$$

1 z transform

$$Y(z) = 2 \cdot X(z) \cdot z^{-1} - 0.5 \cdot Y(z) \cdot z^{-1}$$

$$Y(z) + Y(z). (0.5). z^{-1} = 2.z^{-1}. X(z)$$

$$Y(2)[1 + 0.5z^{-1}] = X(2).[2z^{-1}]$$

$$T(z) = \frac{Y(z)}{X(z)} = \frac{2z^{-1}}{1 + 0.5z^{-1}}$$