Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Отчет по лабораторной работе №4 «Аппроксимация функции методом наименьших квадратов»

По дисциплине «Вычислительная математика»

Вариант 8

Выполнила: Иванова Мария Максимовна

Группа: Р3208

Преподаватель: Машина Екатерина Алексеевна

Санкт-Петербург

Вычислительная часть:

Вариант 8, Лабу y=3× 8 x E [-2;0] h= 92	2 -1,8 -1,6 -1,4 -1,2 -1 -0,8 -0,6 -0,4 -0,2 31 -0,25 -0,292 -0,32 +0,354 -0,357 -0,35 -0,285 -0,224 -0,183 -0,14 41, -0,45 -0,348 -0,32 -0,293 -0,266 -0,259 -0,212 -0,185 -0,187 -0,8 -0,2 0 E, 0,25 0,056 0 -0,061 -0,091 -0,091 -0,075 -0,036 0,018 0,01
У -0,15 -0,252 -0,32 -0,354 -0,357 -0,55-0,285-0,21 - 0,119 Линейное приблинение:	$\frac{c_{01}}{6_1} = \sqrt{\frac{\epsilon_1^n \epsilon_2}{\epsilon_1}} = \sqrt{\frac{c_1 c_6 q}{4 + 1}} \approx c_1 c_2 c_6$
BEVILLER RELU CUMUET: SX = -11 SXX = 15,4 SU = -2,628 SX = 3,2258 Flavore cumery mucinion yacre cum: y y y y y y y y y y y y y	Kbagpamierioc philomericie: 5x = -11
	Sxxxx = 40 5 328 Tomyraeic acmercy surreinorx ypabrieuci. f 11 ao + (-11) a1 + 15, 4 a2 = -2,628 -11 ao + 15,402 - 24,202 = 3,22568 > 01 = 0,643
$\begin{cases} 22,7a + 16 = 2,525 \\ 15,4a - 116 = 3,2258 \\ -11a + 116 = -2,628 \end{cases} \Rightarrow \begin{cases} a \approx 0,136 \\ 6 \approx -0,103 \end{cases}$	$\begin{cases} 15,490-24,201+40,5328012=-4,52625 & 01=0,254 \\ P_2(x)=0,254 \times 2+0,643 \times 4-0,049 & 049 \end{cases}$
4+(x) = 0,136x-0,103	

Листинг программы:

```
package org.example;
import javax.swing.*;
public class LinearApproximation {
    private final int number = 1;
    private final String NAME = "ЛИНЕЙНАЯ";
```

```
sx += x[i];
            sy += y[i];
            sxy += x[i] * y[i];
            epsilon[i] = result[i] - y[i];
y, result);
        functionDrawer.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
            midY += y[i];
```

```
chisl += (x[i] - midX) * (y[i] - midY);
                                                                                                   z_{nam} += (x[i] - midX) * (x[i] - midX) * (y[i] - midY) * (
midY);
                                public double getDeterminationCoefficient(double[] result, double y[],
                                                                                                   chisl += (y[i] - result[i]) * (y[i] - result[i]);
                                                                                                   znam += (y[i] - midPhi) * (y[i] - midPhi);
```

```
package org.example;
import javax.swing.*;
public class QuadraticApproximation {
    private final int number = 2;
    private final String NAME = "KBAJPATNYHAA";
    private double [] epsilon;
    double a0 = 0;
    double a1 = 0;
    double a2 = 0;
    double sko = 0;
    public double [] solve(double [] x, double[] y, int amount) {
        double sx = 0;
        double sxx = 0;
        double sxxx = 0;
```

```
sy+=y[i];
            sxy+=x[i]*y[i];
            sxxy+=x[i]*x[i]*y[i];
        a0 = (sy * sxx * sxxxx + sxxy*sx*sxxx + sxy*sxx*sxxx - sxxy * sxx *
sxx - sx*sxy*sxxxx - sy*sxxx*sxxx)/(amount*sxx*sxxxx+sx*sxx*sxxx+sxx*sxx*sxxx
- sxx*sxx*sxx - sx * sx * sxxxx- amount*sxxx*sxxx);
sx*sy*sxxxx - amount*sxxy*sxxx)/(amount*sxx*sxxxx+sx*sxxx*sxxx+sxx*sxxx -
sxx*sxx*sxx - sx * sx * sxxxx- amount*sxxx*sxxx);
sx * sx * sxxxx- amount*sxxx*sxxx);
            epsilon[i] = result[i] - y[i];
        FunctionDrawer functionDrawer = new FunctionDrawer(title, amount, x,
y, result);
        functionDrawer.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
        functionDrawer.pack();
        functionDrawer.setVisible(true);
```

```
int amount) {
            chisl += (y[i] - result[i]) * (y[i] - result[i]);
            znam += (y[i] - midPhi) * (y[i] - midPhi);
   public double getA2() {
```

```
) - matrix[0][1] * (
matrix[3][2]) -
matrix[2][3] * matrix[3][0]) +
matrix[2][2] * matrix[3][0])
matrix[3][1]) -
matrix[2][3] * matrix[3][0]) +
matrix[2][1] * matrix[3][0])
matrix[3][1]) -
matrix[2][2] * matrix[3][0]) +
matrix[2][1] * matrix[3][0])
        return determinant;
    public double[] solve(double[] x, double[] y, int amount) {
            sxy += x[i] * y[i];
sxxy += x[i] * x[i] * y[i];
             sxxxy += x[i] * x[i] * x[i] * y[i];
```

```
{sx, sxx, sxxx, sxy},
                {sxx, sxxx, sxxxx, sxxy},
                {sxxx, sxxxx, sxxxxx, sxxxy}
            a3 = findDeterminant(matrixA3) / determinantMatrix;
            epsilon[i] = result[i] - y[i];
y, result);
        functionDrawer.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
        functionDrawer.pack();
        functionDrawer.setVisible(true);
   public double getDeterminationCoefficient(double[] result, double y[],
       double midPhi = 0;
```

```
chisl += (y[i] - result[i]) * (y[i] - result[i]);
public double getA2() {
```

```
package org.example;
import javax.swing.*;
public class LogarithmicApproximation {
    private final int number = 5;
    private final String NAME = "ЛОГАРИФМИЧЕСКАЯ";
    private double[] epsilon;
    double a;
    double b;
    double sko = 0;
    public double[] solve(double[] x, double[] y, int amount) {
        epsilon = new double[amount];
        double sx = 0;
        double sxx = 0;
        double sy = 0;
        double sxy = 0;
        for (int i = 0; i < amount; i++) {
            sx += Math.log(x[i]);
```

```
sxx += Math.log(x[i]) * Math.log(x[i]);
             result[i] = a * Math.log(x[i]) + b;
             epsilon[i] = result[i] - y[i];
         sko = Math.sqrt(sko / amount);
y, result);
         functionDrawer.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
         functionDrawer.pack();
         functionDrawer.setVisible(true);
        double midPhi = 0;
             midPhi += result[i];
             chisl += (y[i] - result[i]) * (y[i] - result[i]);
znam += (y[i] - midPhi) * (y[i] - midPhi);
```

```
public class ExponentialApproximation {
    private final String NAME = "ЭКСПОНЕНЦИАЛЬНАЯ";
             sy += Math.log(y[i]);
             sxy += x[i] * Math.log(y[i]);
        b = (sxy * amount - sx * sy) / (sxx * amount - sx * sx);
a = Math.exp((sy - b * sx) / amount);
            epsilon[i] = result[i] - y[i];
        sko = Math.sqrt(sko / amount);
        FunctionDrawer functionDrawer = new FunctionDrawer(title, amount, x,
        functionDrawer.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
        functionDrawer.pack();
        functionDrawer.setVisible(true);
            midPhi += result[i];
```

```
midPhi = midPhi / amount;
double chisl = 0;
double znam = 0;
for (int i = 0; i < amount; i++) {
    chisl += (y[i] - result[i]) * (y[i] - result[i]);
    znam += (y[i] - midPhi) * (y[i] - midPhi);
}
r2 = 1 - chisl / znam;
return r2;
}

public double[] getEpsilon() {
    return epsilon;
}

public double getA() {
    return a;
}

public double getB() {
    return b;
}

public double getSko() {
    return sko;
}</pre>
```

```
package org.example;
import javax.swing.*;
public class PowerApproximation {
    private final int number = 6;
    private final String NAME = "CTEHEHHAR";
    private double[] epsilon;
    private double a;
    private double b;
    double sko = 0;
    public double[] solve(double[] x, double[] y, int amount) {
        epsilon = new double[amount];
        double sx = 0;
        double sx = 0;
        double sx = 0;
        double sy = 0;
        for (int i = 0; i < amount; i++) {
            sx += Math.log(x[i]);
            sxy += Math.log(x[i]) * Math.log(x[i]);
            sy += Math.log(x[i]) * Math.log(y[i]);
            sy += Math.log(x[i]) * Math.
```

```
y, result);
        functionDrawer.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
   public double getDeterminationCoefficient(double[] result, double y[],
        double midPhi = 0;
        midPhi = midPhi / amount;
        double chisl = 0;
            chisl += (y[i] - result[i]) * (y[i] - result[i]);
            znam += (y[i] - midPhi) * (y[i] - midPhi);
```

```
2
Количество точек: 8
1.1 3.5
2.3 4.1
3.7 5.2
4.5 6.3
5.4 8.9
6.8 14.8
7.5 21.2
8.8 25.1
Вывести ответ в консоль (1) или в файл (2)?
2
Ответ записан в файл оиtput.txt
```

Содержимое файла output.txt:

```
Коэффициенты аппроксимирующих функций:
Линейная аппроксимация: a = 2.943332560595528, b = -3.6159544599850837
x = 1.1, y = 3.5, phi(x) = -0.37828864333000256, eps = -3.8782886433300026
x = 2.3, y = 4.1, phi(x) = 3.1537104293846308, eps = -0.9462895706153689

x = 3.7, y = 5.2, phi(x) = 7.274376014218371, eps = 2.0743760142183705

x = 4.5, y = 6.3, phi(x) = 9.629042062694793, eps = 3.3290420626947936
  = 6.8, y = 14.8, phi(x) = 16.398706952064508, eps = 1.5987069520645072
  = 8.8, y = 25.1, phi(x) = 22.285372073255566, eps = -2.8146279267444356
Коэффициент корреляции Пирсона: 0.029813848737087454
Коэффициент детерминации: 0.8737907421889473
Удовлетворительная аппроксимация
Квадратичная аппроксимация: a0 = 4.711910722550093, a1 = 0.45354363854168156,
a2 = 0.45354363854168156
 = 5.4, y = 8.9, phi(x) = 9.619353908440367, eps = 0.7193539084403664
 = 6.8, y = 14.8, phi(x) = 15.209389432587983, eps = 0.4093894325879823
x = 8.8, y = 25.1, phi(x) = 26.279251209168027, eps = 1.1792512091680258
Коэффициент детерминации: 0.9808783698309397
Высокая точность аппроксимации
Кубическая аппроксимация: a0 = 6.793068553969159, a1 = -3.536405553716257, a2
x = 1.1, y = 3.5, phi(x) = 3.9870759313960376, eps = 0.48707593139603755
x = 2.3, y = 4.1, phi(x) = 3.1938369666897786, eps = -0.9061630333102211
x = 3.7, y = 5.2, phi(x) = 4.824654512171385, eps = -0.3753454878286151
x = 4.5, y = 6.3, phi(x) = 6.799420013476562, eps = 0.49942001347656184
x = 5.4, y = 8.9, phi(x) = 9.774542912221822, eps = 0.8745429122218216
x = 6.8, y = 14.8, phi(x) = 15.666178294303558, eps = 0.8661782943035572
x = 7.5, y = 21.2, phi(x) = 19.046560372548164, eps = -2.153439627451835
x = 8.8, y = 25.1, phi(x) = 25.80773099719792, eps = 0.7077309971979169
Коэффициент детерминации: 0.9831608771330677
Высокая точность аппроксимации
Экспоненциальная аппроксимация: a = 2.129412697210215, b =
0.28089117169525846
x = 1.1, y = 3.5, phi(x) = 2.9003357366689193, eps = -0.5996642633310807
x = 2.3, y = 4.1, phi(x) = 4.062895543990902, eps = -0.0371044560090974
x = 3.7, y = 5.2, phi(x) = 6.020338867171206, eps = 0.8203388671712055
  = 4.5, y = 6.3, phi(x) = 7.537243151002621, eps = 1.2372431510026214
```

```
5.4, y = 8.9, phi(x) = 9.70516812335712, eps = 0.8051681233571202
x = 7.5, y = 21.2, phi(x) = 17.50576053874445, eps = -3.694239461255549
x = 8.8, y = 25.1, phi(x) = 25.22129112235696, eps = 0.12129112235695771
Коэффициент детерминации: 0.9645904836695585
Высокая точность аппроксимации
Логарифмическая аппроксимация: а = 9.60869764363095, b = -2.7153663914913446
x = 1.1, y = 3.5, phi(x) = -1.7995596913914853, eps = -5.299559691391485
 = 2.3, y = 4.1, phi(x) = 5.28780553541391, eps = 1.1878055354139105
 = 3.7, y = 5.2, phi(x) = 9.856008089766366, eps = 4.656008089766366
 = 4.5, y = 6.3, phi(x) = 11.736858546751414, eps = 5.436858546751414
 = 5.4, y = 8.9, phi(x) = 13.488731259900614, eps = 4.588731259900614
 = 6.8, y = 14.8, phi(x) = 15.703763395205314, eps = 0.9037633952053135
x = 7.5, y = 21.2, phi(x) = 16.645227514138, eps = -4.554772485861999
x = 8.8, y = 25.1, phi(x) = 18.181165350215867, eps = -6.918834649784134
Коэффициент детерминации: 0.644128590222558
Слабая аппроксимация
Степенная аппроксимация: a = 2.129412697210215, b = 0.28089117169525846
 = 1.1, y = 3.5, phi(x) = 2.8534861122389255, eps = -0.6465138877610745
  = 2.3, y = 4.1, phi(x) = 4.98371640596542, eps = 0.8837164059654201
 = 3.7, y = 5.2, phi(x) = 7.1392119797937275, eps = 1.9392119797937273
  = 4.5, y = 6.3, phi(x) = 8.277887973920237, eps = 1.9778879739202369
 = 5.4, y = 8.9, phi(x) = 9.501268713852795, eps = 0.6012687138527948
x = 6.8, y = 14.8, phi(x) = 11.310191651931994, eps = -3.4898083480680064
x = 7.5, y = 21.2, phi(x) = 12.179798319314084, eps = -9.020201680685915
x = 8.8, y = 25.1, phi(x) = 13.744330468529979, eps = -11.355669531470022
Коэффициент детерминации: 0.5601134597008319Слабая аппроксимация
Среднеквадратичное отклонение:
Линейная аппроксимация: 2.8182987621930433
Квадратичная аппроксимация: 1.1367094324143496
Кубическая аппроксимация: 1.0707909133337803
Экспоненциальная аппроксимация: 1.4599098644232136
Логарифмическая аппроксимация: 4.68925338737997
Степенная аппроксимация: 5.444859195486482
Минимальное среднеквадратичное отклонение: 1.0707909133337803
Наилучшая аппроксимирующая функция: кубическая
```

Linear Approximation

Quadratic Approximation

Qubic Approximation

Exponential Approximation

Logarithmic Approximation

Power Approximation

Вывод:

Во время выполнения работы мне удалось изучить различные виды аппроксимации: линейную, квадратичную, кубическую, логарифмическую, экспоненциальную и степенную.

Нельзя однозначно сказать, какая аппроксимирующая функция лучше, так как это зависит от самих экспериментальных данных.