AES Documentation

Submitted by: Nada Ihab Ahmed Mohamed Abd El-Gawad

Submitted to: Prof. Ayman Wahba | Eng. Ahmed Allam

GP-2019/2020

Cairo, Egypt

Table of contents

Table of contents	2
AES Top Module	3
AES Round	4
Substitute Bytes	5
Shift Rows	6
Mix Column	7
Add Round Key	8
AES Last Round	9
Key Generation	10

AES Top Module

Inputs:

- 1. Plain text -128 bit wire- (which is sometimes referred to as State)
- 2. Key -128 bit wire-

Outputs:

- 1. Cipher text -128 bit register-
- 2. keyout -128 bit- the final key that have passed by all the shifts (used for testing in AES decryption)

Description:

- AES Top Module consists of an initial ADD Round Key, 9 similar rounds and a last round
- The output of each round (state and keyout) is the input of the next round

AES Round

Inputs:

- 1. in -128 bit wire- (State)
- 2. round_num -128 bit wire- (Round Number)
- 3. keyin -128 bit wire- (input key)

Output:

- 1. keyout -128 bit register- (output of this round and input to the next round)
- 2. out -128 bit register- (output of this round and input to the next round)

Description:

the input passes by these modules in order:
key generation, substitute bytes, shift rows, mix columns, add round key

Substitute Bytes

Inputs:

1. in -128 bit wire- (State)

Outputs:

1. out -128 bit register- (output)

Description:

• In this module, every byte from the input is substituted with another byte using the sbox

Shift Rows

Inputs:

1. in -128 bit wire- (state)

Outputs:

1. out -128 bit register- (output)

Description:

- Assume input is in the right order (consecutive 16 bytes -> 15, 14, 13, 12, 11, 10, 9, 8, 6, 5, 4, 3, 2, 1, 0) 4 by 4 matrix is as follows:
- Before shifting

After shifting

Input:

1. in -128 bit wire- (state)

Output:

1. out -128 bit register- (output)

Description:

The module consists of 7 functions, one in which it multiplies by 2, the 2nd one multiplies by 3 (using modular arithmetic), the 3rd one multiplies and adds with [02 03 01 01] over GF(2^8), the 4th one multiplies and adds with [01 02 03 01] over GF(2^8), the 5th one multiplies and adds with [01 01 02 03] over GF(2^8), the 6th one multiplies and adds with [03 01 01 02] over GF(2^8), the last one is the output matrix

Add Round Key

Inputs:

- 1. State -128 bit wire- (Plaintext after passing by n modules)
- 2. Subkey -128 bit wire- (specific key for each round)

Outputs:

1. Out -128 bit register- (output)

Description:

• In this module, the state is ored with the Subkey

AES Last Round

Inputs:

- 4. in -128 bit wire- (State)
- 5. round_num -128 bit wire- (Round Number)
- 6. keyin -128 bit wire- (input key)

Output:

- 3. keyout -128 bit register- (output of this round and input to the next round)
- 4. out -128 bit register- (output of this round and input to the next round)

Description:

the input passes by these modules in order:
key generation, substitute bytes, shift rows, add round key

Key Generation

Inputs:

- 1. Round_num -128 bit wire- (Round Number)
- 2. Keyin -128 bit wire- (Initial Key)

Outputs:

1. Keyout -128 bit register- output key for each round

Description:

- We divide the key into bytes to form a 4 by 4 matrix
- We pass block4 (the 4th word) by an sbox for substitution
- We XOR the output

