Name: Meetraj Desai

Roll Number: CE070

ID: 20CEUOG107

LAB 04

Practice Assignment

- 1. Study and Analyze given instructions
- a. DAA

The DAA (**Decimal Adjust after Addition**) instruction allows addition of numbers represented in 8-bit packed BCD code. It is used immediately after normal addition instruction operating on BCD codes. This instruction assumes the AL register as the source and the destination, and hence it requires no operand.

b. Branching Instruction JMP (Unconditional and Conditional)

Jump unconditionally

IMP 16-bit address

The program sequence is transferred to the memory location specified by the 16-bit address given in the operand.

Jump conditionally

Operand: 16-bit address

The program sequence is transferred to the memory location specified by the 16-bit address given in the operand based on the specified flag of the PSW as described below.

Example: JZ 2034H or JZ XYZ.

2. HEX to BCD Conversion

- a. (93F)16 =(0010001101100111)BCD
- b. (1D)16 = (00101001)BCD

3. BCD to HEX Conversion

- a. (1011001) BCD =(3B)16
- b. (101100111) BCD = (A7)16

4. BCD to Binary Conversion

- a. (1011001) BCD = (111011)2
- b. (101100111) BCD =(10100111)2

5. Binary to BCD Conversion

- a. (10110) 2 = (00100010)BCD
- b. (10011) 2 = (00011001)BCD

Assignment:

1. WAP for HEX to BCD conversion of a byte.

Input: (2201H) = 1CH

Output: (2202H) = 02H

(2203H) = 08H

LXI H,2201 MVI D,00 XRA A

MOV C,M

LOOP2: ADI 01

DAA

JNC LOOP1

INR D

LOOP1: DCR C

JNZ LOOP2 STA 2202 MOV A,D

STA 2203

HLT

Memory Address	Value
000E	0D
000F	C2
0010	07
0012	32
0013	02
0014	22
0015	7A
0016	32
0017	03
0018	22
0019	76
2202	08
2203	02

*	Address	Label	Mnemonics		Нехс	ode	By	tes	M-	-Cycl	es	T-States
\checkmark	0000		LXI H,2201		21			3		3		10
	0001				01							
	0002			Т	22						П	
√	0003		MVI D,00	Т	16		2		2		П	7
	0004				0()						
√	0005		XRA A		A	F	1			1		4
√	0006		MOV C,M		41	E	1			2		7
√	0007	LOOP2	ADI 01		C	6		2		2		7
	0008				0:	1						
√	0009		DAA		27	7		1		1		4
√	000A		JNC LOOP1		D	2	3			3		10
	000B				0E							
	000C				00							
√	000D		INRD	Т	14		1			1		4
√	000E	LOOP1	DCR C		OD		1			1		4
√	000F		JNZ LOOP2		C2			3		3		10
	0010				07	7						
	0011				00							
√	0012		STA 2202		32	2	3		4			13
	0017				03							
$\overline{}$	0017			+		_					-	
\rightarrow	0018		HLT	+	22		76 1		1 2		+	5
V	0019		HLI	+	70						+	3
			I		1	I	1			1 1		
Register		Value	7	6	5	4	3	2	1	0		
Accumulator		02	0	0	0	0	0	0	1	0		
Re	gister B		00	0	0	0	0	0	0	0	0	
Re	Register C		00	0	0	0	0	0	0	0	0	
Register D		02	0	0	0	0	0	0	1	0		

Register	Value	7	6	5	4	3	2	1	0
Accumulator	02	0	0	0	0	0	0	1	0
Register B	00	0	0	0	0	0	0	0	0
Register C	00	0	0	0	0	0	0	0	0
Register D	02	0	0	0	0	0	0	1	0
Register E	00	0	0	0	0	0	0	0	0
Register H	22	0	0	1	0	0	0	1	0
Register L	01	0	0	0	0	0	0	0	1
Memory(M)	00	0	0	0	0	0	0	0	0

2. WAP for BCD to HEX conversion of a byte.

Input: (2201H) = 02H

(2202H) = 08H

Output: (2203H) = 1CH

LXI H,2201
MOV A,M
ADD A
MOV B,A
ADD A
ADD B
IN X H
ADD M
IN X H
MOV M,A
HLT

I .	
Memory Address	Value
0000	21
0001	01
0002	22
0003	7E
0004	87
0005	47
0006	87
0007	87
0008	80
0009	23
000A	86
000B	23
000C	77
000D	76
2201	02
2202	08
2203	1C

*	Address	Label	Mnemonics	Hexcode	Bytes	M-Cycles	T-States
√	0000		LXI H,2201	21	3	3	10
	0001			01			
	0002			22			
√	0003		MOV A,M	7E	1	2	7
√	0004		ADD A	87	1	1	4
\checkmark	0005		MOV B,A	47	1	1	4
√	0006		ADD A	87	1	1	4
√	0007		ADD A	87	1	1	4
√	0008		ADD B	80	1	1	4
√	0009		INXH	23	1	1	6
√	000A		ADD M	86	1	2	7
√	000B		INXH	23	1	1	6
√	000C		MOV M,A	77	1	2	7
√	000D		HLT	76	1	2	5

3. WAP for BCD to binary conversion of a byte.

Input: (2201H) = 70H

Output: (2202H) = 46H

```
LDA 2201 // Get the BCD number
              MOV B,A // Save it
// Mask most significant four bits
              MOV C,A // Save unpacked BCDI in C register
             MOV A,B // Get BCD again
// Mask least significant four bits
              RRC
              RRC
                        // Convert most significant four bits into
unpacked
              RRC
              RRC
              RRC
              MOV B,A // Save unpacked BCD2 in B register
              XRA A
                      // Clear accumulator (sum = 0)
              MVI D,OA // Set D as a multiplier of 10
                        // Add 10 until (B) = 0
SUM:
              ADD D
              DCR B
                        // Decrement BCD2 by one
              JNZ SUM // Is multiplication complete? i if not, go back
and add
                        // Add BCD1
              ADD C
              STA 2202 // Store the result
```

Memory Address	Value
0010	05
0011	C2
0012	OF
0014	81
0015	32
0016	02
0017	22
2201	70
2202	46

√ 0	0009		RRC	0F	1	1	4
√ (000A		RRC	0F	1	1	4
√ (000B		MOV B,A	47	1	1	4
√ (000C		XRA A	AF	1	1	4
√ (C	000D		MVI D,OA	16	2	2	7
C	DOOE			0A			
√ (DOOF	SUM	ADD D	82	1	1	4
√ (0010		DCR B	05	1	1	4
√ (C	0011		JNZ SUM	C2	3	3	10
C	0012			OF			
C	0013			00			
√ (0014		ADD C	81	1	1	4
√ (0015		STA 2202	32	3	4	13
C	0016			02			
0	0017			22			