PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-048121

(43) Date of publication of application: 18.02.1997

(51)Int.Cl.

B41.J

(21)Application number : 07-200689

(71)Applicant: CANON INC

(22)Date of filing:

07.08.1995

(72)Inventor: FUJIYAMA YASUTOMO

MUROOKA FUMIO

(54) PRINTING HEAD

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a printing head for ink jet recording enabling highly detailed printing at a high speed, low in power consumption and capable of being produced in low cost.

SOLUTION: A plurality of heating elements 5a are arranged on one surface of an insulating substrate 3. A pressure container 14 having the heating element 5a provided to the inner wall surface thereof and holding a definite amt. of ink and having an ink emitting nozzle 7 provided thereto as a through-hole at the position opposed to the heating element 5a is formed to each of the heating elements 5a. An ink container 2 filled with ink is arranged to the other surface of the insulating substrate 3 and the ink supply port 4a piercing the

insulating substrate 3 to supply ink from the ink container 2 to the pressure container 14 is provided to the center part of the heating region by the heating element 5a. Typically, the heating element 5a is composed of a ring-shaped electric resistance heating element and the ink supply port 4a is opened to the center part of the ring.

LEGAL STATUS

[Date of request for examination]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-48121

(43)公開日 平成9年(1997)2月18日

(51) Int.Cl.⁶

識別記号 庁内整理番号

FΙ

技術表示箇所

B41J 2/05

B 4 1 J 3/04

103B

審査請求 未請求 請求項の数13 OL (全 10 頁)

(21)出願番号

特願平7-200689

(22)出顧日

平成7年(1995)8月7日

(71)出願人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

(72)発明者 藤山 靖朋

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(72)発明者 室岡 文夫

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(74)代理人 弁理士 若林 忠

(54) 【発明の名称】 プリンタヘッド

(57)【要約】

【課題】 高速で高精細の印字が可能であり低消費電力 であって低コストで製造可能な、インクジェット記録用 のプリンタヘッドを提供する。

【解決手段】 絶縁基体3の一方の面上に複数の発熱体5 a を配置する。発熱体5 a ごとに、その発熱体5 a を内壁面に有し、一定量のインクを保持し、発熱体5 a と対向する位置に貫通孔としてのインク吐出ノズル7が設けられた圧力容器14を形成する。絶縁基体3の他方の面にはインクが充填されるインク容器2を配し、発熱体5 a による加熱領域の中心部分に、絶縁基体3を貫通してインク容器2から圧力容器14にインクを供給するためのインク供給孔4 a を設ける。典型的には、発熱体5 a はリング状の電気抵抗発熱体とし、リングの中心部分にインク供給孔4 a が開口するようにする。

【特許請求の範囲】

【 割求項 1 】 絶縁基体と前記絶縁基体上に配置された 複数の発熱体とを有し、前記発熱体によって液相状態の インクを加熱し前記インクの気化・膨張する圧力によっ てインク吐出ノズルからインクを飛翔させて記録を行な うプリンタヘッドにおいて、

前記各発熱体ごとに設けられて当該発熱体を内壁面に有 し貫通孔として前記インク吐出ノズルが形成され前記インクを一定量保持する圧力容器と、

前記各発熱体ごとに当該発熱体による発熱領域の中心部 10分に設けられインクを充填したインク容器に連通し前記 絶縁基体を貫通するよう開口して前記インクを対応する 圧力容器に供給するインク供給孔と、を有することを特 徴とするプリンタヘッド。

【請求項3】 前記発熱体が通電によって発熱する線状の電気抵抗発熱体を所定のパターンで屈曲させたもので 20 あり、外部の電力供給源から抵抗加熱用の電力を供給するための電極及び配線が前記発熱体の両端部に接続され、前記発熱体の表面が電気絶縁層で被覆されている請求項1または2に記載のプリンタヘッド。

【 請求項5 】 前記絶縁基体の前記発熱体が設けられていない面に前記インク容器が形成され、前記絶縁基体が前記インク容器の壁の少なくとも一部を構成する請求項 30 1 乃至4 いずれか1 項に記載のプリンタヘッド。

【請求項6】 前記発熱体の形状が欠落部を有するリング状であり、リングの中心部に前記インク供給孔が開口する請求項1または2に記載のプリンタヘッド。

【請求項7】 前記発熱体の形状が、連続した同心円状の折り返し複数重構造あるいは蛇行構造を有する概略リング状であり、リングの中心部に前記インク供給孔が開口する請求項1または2に記載のプリンタヘッド。

【 請求項8 】 前記発熱体の形状が、連続した同心方形 の折り返し複数重構造あるいは蛇行構造を有する概略方 40 形状であり、前記方形の中心部に前記インク供給孔が開口する請求項1または2に記載のプリンタヘッド。

【 請求項9 】 前記インク吐出ノズルの開口直径が、前記インク供給孔の開口直径とほぼ同一か前記インク供給孔の開口直径よりも大きい、請求項1または2に記載のプリンタヘッド。

に記載のプリンタヘッド。

【請求項11】 前記圧力容器の壁のうち前記インク吐出ノズルを含む部位の壁が金属で形成されている請求項1乃至10いずれか1項に記載のプリンタヘッド。

【請求項12】 前記絶縁基体側から前記インク吐出ノ ズルに向って狭まるテーパ構造となっている内壁が前記 圧力容器に設けられている請求項1乃至11いずれか1 項に記載のプリンタヘッド。

【請求項13】 前記圧力容器の外壁面に溝が形成され、前記溝の底面に前記インク吐出ノズルが開口する請求項1乃至12いずれか1項に記載のプリンタヘッド。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、紙等の被記録媒体にインクによって記録を行なう記録装置(プリンタ)に関し、特に、発熱体によってインクを加熱してインク中に気泡を発生させ、気泡の膨張によりノズルから被記録媒体にインクを吐出、飛翔させて記録を行なうインクジェットプリンタのヘッド、すなわちインク吐出部の構造に関する。

[0002]

【従来の技術】近年、コンピュータやファクシミリ装 置、ワードプロセッサ等に使用されるハード出力端末装 置や、ハードコピー装置として、プリンタが普及してき ている。プリンタとして各種の記録原理のものが実用化 されているが、中でもインクジェットプリンタは、高速 で高精細の印字を低駆動音、低消費電力で実現できるも のとして注目されている。インクジェットプリンタは、 一般に、インクを吐出するためのエネルギーを発生する エネルギー発生素子を内蔵するノズルから、記録信号に 応じてインクを間欠的に飛翔させ、被記録媒体にドット (dot)状にインクを転写し、印字記録を構成するもので ある。エネルギー発生素子としては、インクを加熱・発 泡させるための電気抵抗発熱体が好ましく使用される。 そして、1個のプリンタヘッドを用いて同時に複数のド ットの記録を行なえるようにするため、インクジェット プリンタ用のプリンタヘッドは、絶縁基体上に複数のエ ネルギー発生素子を配置する構成とされる。そして、絶 縁基体とインクの吐出方向との関係で、プリンタヘッド は、サイド・シュート・タイプのものとエッジ・シュー ト・タイプのものとに分類される。以下、エネルギー発 生素子として電気抵抗発熱体を用いる場合を例に挙げ、 従来のサイド・シュート・タイプのプリンタヘッドとエ ッジ・シュート・タイプのプリンタヘッドについて説明 する。

【0003】図7は、従来のサイド・シュート・タイプのインクジェットプリンタのプリンタへッドの断面構造を示す図である。

他の領域に比べて前記絶縁基体の厚さが薄くなるよう 【0004】プリンタヘッド1には、面状の電気抵抗体に、凹部が形成されている請求項1乃至9いずれか1項 50 である発熱体5が一方の面に多数配置された絶縁基体3

が設けられている。絶縁基体3の他方の面には、インク が充填されるインク容器2が配置されている。各発熱体 5はそれぞれドットに対応しており、発熱体5ごとに、 インク供給管4とインク加熱容器6とインク吐出ノズル 7とが設けられている。インク供給管4は、インク容器 2からの個々のインク加熱容器6にインクを供給するた めに、絶縁基体3を貫通している。インク加熱容器6に おいては、底面に発熱体与が配置し、この発熱体与に対 向するようにインク吐出ノズル7が配置している。高解 形成されている。インク吐出ノズル7に対向するように 被記録媒体を配置し記録信号に応じて発熱体与に通電し 発熱させることにより、インク加熱容器6内のインク1 2が発泡、膨張し(気泡9)、その圧力でインク吐出ノ ズル7 近傍のインクが被記録媒体方向に吐出し、微小な インク滴8が吐出・飛翔して被記録媒体表面に衝突し、 インクが転写される。

【0005】インクジェットプリンタでは、各インク吐出ノズル7はそれぞれ1つの色に対応する。したがって、近年要求が高まっている高精細・高階調のカラー印 20 刷を実現するためには、各色ごとのヘッドを集合していわゆるマルチヘッドとするとともに、ドットサイズをさらに細かくする必要があり、インク供給管4、発熱体5及びインク吐出孔でも、より微細に形成しなければならない。

【0006】現在一般的に実現されている300dpi $(dpi=F_{y})/(1)$ 当りのドット数)のプリンタヘッドは、開口部の直径が 20μmのインク吐出ノズル7を80μmピッチで配列 して構成される。将来の高精細ヘッドでは、例えば60 30 Odpiのヘッドでは40μmピッチでインク吐出ノズ ルを配列し、1200dpiのヘッドでは20μmピッ チでインク吐出ノズルを配列しなけらばならない。高精 細印字を実現するためには、インクの吐出のための各機 構、特に面状の電気抵抗体である発熱体5の面積として 許容される大きさがますます小さくなる。そのため、一 般に、表面を酸化したシリコン基板を絶縁基体3として 用い、この絶縁基体3上にホトリソグラフィ技術やレー ザ加工技術により、インク供給管4や発熱体5、インク 吐出ノズル7を微細に形成する。さらに、図7に示すよ 40 うに、例えば、各列ごとに300dpiに相当するピッ チ (開口ピッチA、ここでは80µm)となるようにイ ンク吐出ノズル7を2列に配置し、このような吐出ノズ ル列7aと吐出ノズル列7bを開口ピッチAの半分の距 離(ここでは40μm)だけずらして配置することで、 各機構の寸法としては300dpi用でありながら、6 O O d p i の記録密度に対応するプリンタヘッドを得る ことができ、インク吐出のための各機構に許容される寸 法の縮小を抑えることが可能となる。吐出ノズル列の数 を増やせば、より高解像度のプリンタヘッドを得ること 50

ができる。また、表面酸化膜を有するシリコン基板を絶. 縁基体3として用いることにより、記録信号に応じて発 熱体5を駆動するための各種の機能素子を絶縁基体3内 にモノリシックに形成することが可能となる。

【0007】図8は、エッジ・シュート・タイプの従来のプリンタヘッド1を示している。絶縁基体3の同じ側にインク容器2と各発熱体5が配置されている。したがって、流路状のインク加熱容器6の一端がインク吐出ノズル7として外部に開口し、他端がインク供給管4としてインク容器2に連通している。このエッジ・シュート・タイプのプリンタヘッド1では、被記録媒体の表面に平行な方向にほぼ一列に発熱体5が並び、インク加熱容器6の長手方向は被記録媒体の表面に垂直となっている。エッジ・シュート・タイプのプリンタヘッドでも、貼り合わせて積層することにより、複数の吐出ノズル列を設けることが可能になって、各機構の寸法の縮小を抑えて高解像度化を実現することができる。

【0008】ところで、プリンタを携帯して使用することの要求が高まってきており、この要求から、プリンタの小型化、高精細化はもちろんのこと、発熱体を用いるプリンタにおいては消費電力を低減して稼働可能時間を延長する要求が生じている。消費電力を低減する要求を満たすためには、発熱体駆動電力の低減、すなわち、発熱体の小型化、高電気抵抗化が求められている。

【0009】インクジェットプリンタの発熱体用の材料として、高抵抗、耐熱性、機械的強度などの点で優れている窒化タンタル(Ta2N)薄膜が使用されているが、上述したような発熱体の小型化の要求から、Ta2Nに比べてさらに比抵抗が大きいTiA1N薄膜やMoSi薄膜などの高抵抗薄膜も、発熱体材料の候補として検討されている。

【0010】発熱体5は、サイド・シュート・タイプのプリンタヘッドであれば、図7に示したようにインク吐出ノズル7の直下の位置に配置され、また、エッジ・シュート・タイプのプリンタヘッドであれば、図8に示すように流路状のインク加熱容器6の途中に配置されるが、いずれの場合であっても、加熱による気泡9の膨張圧力は、インク容器2の内圧に反発してインク吐出ノズル7の方向に集中する。インク供給管4の途中に土手10を配置して、インク容器2側の圧力抵抗を高める工夫が施すことも行なわれている。

【0011】発熱体5の表面は、インクとの電気的絶縁の確保や、気泡膨張時の脈動による機械的衝撃による発熱体薄膜の絶縁基体3からの剥離及び破壊の防止などを目的として、硬質の絶縁膜11で被覆される場合が多い。インク12の材料としては染料や顔料タイプの微粒子を混入したものがあり、発熱によるインクの焼き付きを防止するような工夫もなされている。

[0012]

50 【発明が解決しようとする課題】インクジェットプリン

タ用のプリンタヘッドは、高解像度、高精細の印字を実 現するために、インク吐出ノズルの開口直径の小径化や 吐出孔間隔の縮小化、発熱体の小型化及び高抵抗化、等 が試みられている。しかしながら、抵抗膜の両側に電極 を配置した電気抵抗発熱体を想定すると、発熱体の小型 化は抵抗部分の長さの短縮を意味し、発熱体の電気抵抗 が低下する。抵抗膜をより薄くする(断面積を小さくす る)ことによって電気抵抗を高めることができるが、5 O○℃近くにまで昇温することや発泡収縮の衝撃を想定 すると、抵抗膜を薄くした場合には発熱体の機械的耐久 10 性が問題になる。また、インク吐出孔の小型化によっ て、飛翔させるインク滴のサイズは必然的に小さくな る。より小さなインク滴を突出・飛翔させて従来と同様 の面積の領域に記録を行なうことを想定すると、インク 滴を飛翔させる時間間隔を短くする、すなわちち発熱体 の加熱と冷却を短時間に行わなければならなくなる。こ れから、発熱体には、加熱効率がよいことは当然とし て、放熱機能にも優れていることが要求される。絶縁基 体として表面が酸化されたシリコン基体を使用すること は、インク自体も熱伝導によい材料でことから、放熱に 20 は好都合であるが、発熱体の短時間での温度上昇を妨げ る要因となる。特に、従来のエッジ・シュート・タイプ のもののようにインク流路の発熱体を配置する形態のプ リンタヘッドでは、インク流路部分の容積によっては、 インクを介した熱の散逸が顕著になるので、発熱時に発 熱体に印加しなければならない電力が増加したり、発熱 体の加熱応答特性が低下するという問題が生ずる。

【0013】絶縁基体としては、表面に熱酸化膜が形成されたシリコン基板のほかに、高熱伝導材料であるアルミニウムを使用しその表面に陽極酸化皮膜を形成したも30のがあり、また低熱伝導材料からなる絶縁基体として、樹脂やガラス、各種セラミックスなどを用いたものが考えられる。このうちガラス基体は、近年のディスプレパネルへの使用例により実証されているように、ホトリソグラフィ技術を用いることにより、シリコン基板と比較して安価に、従来のシリコン基板の場合と同等の設計ルールでの配線をパターニングすることができるから、プリンタヘッドを安価に供給する上で有望な材料である。しかも、ノズル数が増えることによって絶縁基体における機能累子以外の入力配線の占有面積が増大することを40考慮すると、高価な基体を支持基体としてのみ使用することはコストからみて不利である。

【0014】一方で発熱体直下の部分の基体が厚い場合には、この部分が蓄熱層として作用することになって、短い繰返し周期で連続してインクを飛翔させることが難しくなり、構造上の工夫が必要となる。また、ポリイミドアミドのような機械的に柔軟な耐熱性樹脂フィルムを絶縁基体として使用した場合には、発泡の圧力を絶縁基体が緩衝することになり、インクへの圧力の伝達効率が低下するという欠点がある。

【0015】本発明の目的は、高速で高精細の印字が可能であり低消費電力であって低コストで製造可能なプリンタヘッドを提供することにある。

6

[0016]

【課題を解決するための手段】本発明のプリンタヘッドは、絶縁基体と前記絶縁基体上に配置された複数の発熱体とを有し、前記発熱体によって液相状態のインクを加熱し前記インクの気化・膨張する圧力によってインク吐出ノズルからインクを飛翔させて記録を行なうプリンタヘッドにおいて、前記各発熱体ごとに設けられて当該発熱体を内壁面に有し貫通孔として前記インク吐出ノズルが形成され前記インクを一定量保持する圧力容器と、前記各発熱体ごとに当該発熱体による発熱領域の中心部分に設けられインクを充填したインク容器に連通し前記絶縁基体を貫通するよう開口して前記インクを対応する圧力容器に供給するインク供給孔と、を有する。

【0017】本発明においては、複数の前記圧力容器を一体のものとして構成し、隣接する圧力容器が発熱体の加熱によるインクの熱膨張圧力を相互に隔離する隔壁を共有するようにすることができる。

【0018】また、本発明において発熱体としては、通 電によって発熱する線状の電気抵抗発熱体を所定のパタ ーンで屈曲させたものが好ましく使用され、この場合、 外部の電力供給源から抵抗加熱用の電力を供給するため の電極及び配線を発熱体の両端部に接続し、発熱体の表 面を電気絶縁層で被覆することが望ましい。さらに、イ ンク供給孔を開口して発熱体の加熱領域の全域を覆うよ うに電気絶縁層上に熱伝導膜を設けることが、インク吐 出特性の向上のために望ましい。発熱体の屈曲のパター ンとしては、例えば、欠落部を有する単リング状、同心 円状の折り返し複数重構造を有する概略リング状、蛇行 構造を有する概略リング状、連続した同心方形の折り返 し複数重構造を有する概略方形状、あるいは蛇行構造を 有する概略方形状などを挙げることができ、これらの場 合、リングや方形の中心部にインク供給孔が開口するよ うにする。

【0019】本発明において、インク容器はインク供給 孔に連通する限りどのようにも配置することができる が、例えば、絶縁基体の発熱体が設けられていない面に インク容器を形成して、絶縁基体がインク容器の壁の少 なくとも一部を構成するようにすることができる。ま た、発熱体によるインクの加熱効率を高めるために、絶 縁基体において発熱体及びインク供給孔が形成される領 域の裏面側に、その他の領域に比べて絶縁基体の厚さが 薄くなるように、凹部を形成してもよい。

【0020】各圧力容器において、典型的には、インク供給孔とインク吐出ノズルとが対向する。インク吐出ノズルの開口直径は、インク供給孔の開口直径とほぼ同かインク供給孔の開口直径よりも大きくすることが、望50ましい。絶縁基体側からインク吐出ノズルに向って狭ま

るテーパ構造となっている内壁が圧力容器に設けられているようにしてもよい。また、インクの冷却の観点から、圧力容器の壁のうちインク吐出ノズルを含む部位の壁を金属で形成することができる。インク吐出ノズルと被記録媒体との距離を一定に保つために、圧力容器の外壁面に溝を形成し、この溝の底面にインク吐出ノズルが開口するようにしてもよい。

[0021]

【発明の実施の形態】本発明のプリンタヘッドは、上述したサイド・シュート・タイプのプリンタヘッドにおい 10 て、各ドットの発熱体ごとにその発熱体のほぼ中心領域となる位置で、インク容器と圧力容器(インク加熱容器)とを連通するインク供給孔を絶縁基体に設けたものである。そして、典型的には、各圧力容器においてインク供給孔と対向する位置にそれぞれインク吐出ノズルを設け、絶縁基体を隔壁として圧力容器とインク容器とを隣接した配置となっている。圧力容器はドットすなわちインク吐出ノズルごとに分離されている。

【0022】図9は、本発明の好ましい実施の形態における、各ドットごとのインク供給孔4aの周辺を説明す 20 る斜視図である。絶縁基体3に貫通孔であるインク供給孔4aが設けられており、絶縁基体3の一方の面には、インク供給孔4aを取り囲むように、1箇所が欠落した円環(リング)状の発熱体5aが配置している。リングとしての欠落部分をはさんで発熱体5aの両端には、1対の金属配線13がそれぞれ接続しており、電気抵抗体である発熱体5aに通電できるようになっている。

【0023】従来の技術でも述べたように、より抵抗率 が高い発熱体材料を用いることにより、従来の面状の電 気抵抗発熱体構造であっても発熱体の小型化が可能であ 30 り、より高精細での印字が可能となる。しかしながら、 図9に示す発熱体5 aのように線状の構成とすることに よって、発熱体の断面積を小さくしかつ発熱体の延長を 長くすることができるので、小型かつ高抵抗の発熱体を 得ることができる。さらに、インク供給孔4 aを発熱体 5 a の中央に、すなわちインク供給孔4 a を取り囲むよ うに発熱体5.aを配置することで、後述するように、発 熱体5aからインクへの熱の伝達効率を高めることがで きる。以上のようにしてプリンタヘッドを構成すること により、従来の発熱体材料を用いた場合であっても、従 40 来よりも小型であってかつ低電力で短時間にインク吐出 に必要な熱エネルギーを発生できる発熱体を得ることが できる。

【0024】線状の発熱体5aの形状は、単一のリング状に限られるものではなく、同心円状の折り返しリング状や、同一中心の折り返し方形、あるいは蛇行形状、等も用いることができる。いずれにせよ、発熱体5aの加熱領域の中心上方にインク吐出ノズルが配置されるようにする。

【0025】図10(a),(b)は、プリンタヘッドの1ド

ット分に相当する部分を説明する図であって、絶縁基体 3に垂直な平面での断面図である。絶縁基体3より図示 下方側は、インク12が充填されるインク容器に相当す る。インク容器は同一色のインクを吐出する複数のイン ク吐出ノズル7に対して共通に設けられている。また、 発熱体5aの表面は、後述するように、硬質の絶縁膜1 1によって被覆されている。一方、絶縁基体3より図示 上方の部分は、各ドットごとの圧力容器14であり、圧 力容器14の壁面のうち絶縁基体3に対向する面に、イ

ンク供給孔4aと正対してインク吐出ノズル7が設けら

【0026】図10(a)に示すように、インク供給孔4 aの開口径は従来のプリンタヘッドと同様に極めて小さ い。このため、発熱体与aに通電して発熱させると同時 に、インク供給孔4 a内のインクが気化し、インク供給 孔4 a 内は気体に置換される。また、圧力容器 1 4 内で 発熱体5aの近傍にあるインク12も発泡して気泡9と なり、この気泡9の膨張力(図示矢印)により、圧力容 器14内に未気化のインクがインク滴8としてインク吐 出ノズル7から突出し、被記録媒体に向って飛翔する。 発熱体5a上でのインクの発泡は、発熱体5aの全域の インクが気体に置換されるまで継続し、気体による熱絶 縁でほぼ気体の膨張は飽和するが、この間にインク滴8 の吐出は終了している。このプリンタヘッドでは、発熱 体5aの発熱と同時に、インク供給孔4aを介してイン ク容器側に熱が漏洩する経路が気泡9によって遮断され ることになり、熱伝導率の小さな気泡9を介してのみ熱 が漏洩するので、発熱体5aの発熱時の断熱効果が高め られている。すなわち、本発明のプリンタヘッドにおけ る発熱体は、圧力容器内のインクのみを加熱、発泡させ ればよく、従来のプリンタヘッドの発熱体がインク供給 管内のインクをも加熱していたことに比べれば、熱効率 に優れている。

【0027】ところで、インクジェットプリンタのヘッ ドに見られるような微小サイズの流路においては、加熱 発泡による蒸気相の動粘性係数は液相に比べて格段に大 きく、質量流量で比較すると蒸気相は液相に比べて格段 に流れにくいことが知られている(例えば、工業技術院 機械技術研究所発行、機械研ニュース、No. 3, 199 5年)。図10(a),(b)に示す圧力容器14において、 インク供給孔4 aとインク吐出ノズル7の開口直径及び 管長が概略同一である場合は、発熱体5 aによる加熱に よりインク供給孔4 a内が蒸気相となることで、インク 吐出ノズル7内の液相状態のインクよりも大きな粘性抵 抗がインク供給孔4 a側に生じて流体に対する逆止弁の ような作用をし、これにより、インクの加熱発泡による 膨張圧力はインク吐出ノズル7側にもっぱら向けられる こととなって、インクを吐出する上で有利に作用する。 【0028】あるいは、圧力容器14の断面形状を発熱 50 体5a側からインク吐出ノズル7側に狭まるような円錐

9/24/2007, EAST Version: 2.1.0.14

型のテーパ形状とすることにより、インク吐出孔ノズル7側での流体抵抗を低減すると同時に、同一圧力で押し出す場合には徐々に開口が狭まることによってインク吐出速度が増加し、吐出方向の指向性が改善される。さらに、図10(a).(b)において典型的に見られるように、インク吐出ノズル7の開口直径をインク供給孔4aの開口直径に比べて大きくして非対称な流路形状すれることにより、インク供給孔4a側の圧力損失に一方向性特性(ダイオード特性)が付加され、気泡の膨張による圧力がインク吐出ノズル7側に集中する。これにより、飛翔10中のインク滴の運動エネルギーへの膨張圧力からの変換効率が高められる。

【0029】一方、発熱体5aの冷却時には、図10(b)に示すように、圧力容器14内の気体が収縮し(図示矢印)、同時に、液相と気相との粘性の差により、インク容器からインク供給孔4a内に液相状態のインク12が大流量で流入し、これによって圧力容器14内にインクが短時間で充填する。また、インク容器からのインクの流入により、発熱体5aの冷却速度が早められる。【0030】ところで、従来の面状の発熱体の場合には、発熱体自体が冷却時には蓄熱体として作用するので、冷却に時間を要する。一方、線状の発熱体を用いた場合には、発熱体自体の蓄熱容積が小さい上に、一種のフィン構造とみなせることから、冷却時間を短縮することができる。したがって、線状の発熱体は、加熱・冷却の応答性に優れ、高精細印字に伴う短い周期でのインク吐出に威力を発揮する。

【0031】ここで、インクの吐出量は単一のドットを印字するに要するインクの量と概略同量で、最小限の発泡気体と同容量であるとすると、本発明の構成によれば、発熱体上のインクの最小量もこれと概略同量とすることができ、圧力容器や発熱体の小型化による低消費電力化が可能となる。すなわち、発熱体5a上のインクの量を定量とすれば、一定量のインクを加熱発泡により効率よく吐出させることができるようになる。

【0032】上述したように、発熱体5aの表面に絶縁膜11が設けられている。絶縁膜11は、インク12には各種イオンや導電性粒子が混在していることに鑑み、発熱体5aとインク12が電気的に直接接触して本来加熱に使用すべき電力が漏洩することを防止する目的で配置されている。また、この絶縁膜11の上に、インク供給孔を開口して発熱体5aによる加熱領域の全体を覆うように熱伝導膜を設けてもよい。熱伝導膜を設けることにより、線状の発熱体からの加熱を面状に均一にすることができるようになるとともに、インクの発泡・収縮による発熱体への圧力衝撃をこの熱伝導膜で緩衝することが可能になり、発熱体の機械的耐久性を向上させることができるようになる。熱伝導膜は、典型的には金属膜であり、インク12と接触するものであるから発熱体5aとは電気的に分離している。線状の発熱体が折り返して50

形成されている場合には、隣接する発熱体間の隙間を絶 緑膜を介して埋めるような面状の熱伝導膜とするとよ い

10

【0033】ところで、発熱体5aに通電することによって発生した熱は、圧力容器14方向と絶縁基体3方向に伝わるが、絶縁基体3が厚いと絶縁基体3がヒートシンクとして機能し、インクへの熱伝達効率が低下する。そこで、発熱体5aの直下の部位の絶縁基体3の厚さを、機械的強度に耐え、かつ短時間のインク加熱に必要な熱を断熱する程度に最適に薄くすることが考えられる。このように構成することで、絶縁基体3の裏面がインク容器内のインク12と常時接していることから、絶縁基体3がヒートシンクとなることを避けることができる。発熱体5aの直下の部位で絶縁基体3を薄くすることは、インク供給孔4と連なるような溝ないし凹部を絶縁基体3の裏面に形成することで実現される。

【0034】このプリンタヘッドでは、上述したように、インク吐出ノズル7ごとに圧力容器14が分離しているから、隣接する圧力容器14間には隔壁が存在することになる。この隔壁は、発熱体によって発生した熱をインクのみに効率よく伝達する観点から、熱絶縁性材料で構成すことが好ましい。また、圧力容器14は、ガラスや耐熱樹脂等の材料をホトリソグラフィ技術を用いて加工したり、切削加工あるいはモールド加工により形成できる。さらに、圧力容器14においてインク吐出ノズル7を含む面の壁材料として金属等の熱伝導性の材料を用いることにより、蓄熱を回避でき、かつ、インク吐出後に大気による圧力容器内のインクの冷却を促進できるようになり、より短時間で圧力容器内の発熱体とインクを冷却することが可能になる。

【0035】

【実施例】次に、実施例によって本発明をさらに詳しく 説明する。

【0036】《実施例1》図1は、本発明の実施例1の インクジェットプリンタヘッドの断面構造を示してい る。このプリンタヘッド1では、ガラス製の絶縁基体3 を用いており、絶縁基体3の表面には、複数の円形の貫 通孔を有するBSG (borosilicate glass; ホウケイ酸 ガラス)膜14aが積層している。BSG膜14aの各 貫通孔の内部であって絶縁基体3の表面には、それぞ れ、リング状の発熱体与aが設けられている。各発熱体 5aの表面は窒化シリコン (SiN) あるいはBSGな どからなる電気絶縁性の絶縁膜11で被覆され、さら に、絶縁膜11の表面には金属製の熱伝導膜15が設け られている。リング状の発熱体5aの中心部分に対応し て、絶縁基板3には貫通孔であるインク供給孔4 aが形 成されている。そして、BSG膜14aには、アルミニ ウム膜などで構成された金属膜16が積層し、金属膜1 6には、インク供給孔4 aに正対する位置に、貫通孔で あるインク吐出ノズルフが形成されている。このように 構成することにより、絶縁基体3を底面とし、BSG膜 14 a を側面とし、金属膜16を頂面とする圧力容器14が、インク吐出ノズル7ごとに形成されたことになる。

【0037】一方、絶縁基体3の裏面側には、各インク 吐出ノズル7に共通のプラスチック製のインク容器2が 接着されている。そして、絶縁基体3の裏面側であって 少なくとも発熱体5aの直下の部位は凹部3aとなって おり、機械的強度を保ちながら、発熱体5aの直下の部 位での絶縁基体3の厚さを最適に薄くしている。

【0038】次に、このプリンタヘッド1の製造方法について説明する。

【0039】まず、ガラス製の絶縁基体3の表面にTa N薄膜をスパッタリング成膜してパターニングし、上述の図9に示したような外径40μm、線幅10μmの一部欠損したリング状の発熱体5aを形成する。さらに、アルミニウム薄膜を成膜してパターニングし、発熱体5aの両端に金属配線13(図9参照)を形成する。

【0040】次に、窒化シリコン(SiN)あるいはホウケイ酸ガラス(BSG)などの膜を熱CVD法で成膜 20してパターニングすることによって絶縁膜11を形成し、次いでその表面にステンレス膜等の高温耐熱性を有する金属製の膜を成膜してパターニングすることにより、熱伝導膜15を形成する。このようにして、少なくとも発熱体5aの加熱領域を絶縁膜11と熱伝導膜15で被覆するようにする。その際、リング状の発熱体5aの中心開口部、すなわちインク供給孔4aが形成されるべき部位には、絶縁膜や熱伝導膜が形成されないようにする。

【0041】このように発熱体5a、絶縁膜11及び熱 30 伝導膜15が形成された絶縁基体3に対し、例えば10 μmの厚さでBSG膜14aを成膜する。そののち、発熱体5aと同心円であって熱伝導膜15及び絶縁基体3 の表面にまで達する開口がBSG膜14aに形成されるように、BSG膜14aをパターニングして開口となるべき部位をエッチング除去する。さらに、レジスト膜(図示せず)を全面に塗布し、塗布されたレジスト膜の表面がBSG膜14aに達するまで、CMP(化学機械的研磨)法によって平坦化処理を行なう。これにより、発熱体を内蔵した開口部、すなわち圧力容器14の内容 40 積部分となるべき部位のみが、レジストにより平坦に充填されたことになる。なお、BSG膜14aの代りに、SiN膜などを用いるようにしてもよい。

【0042】以上のようにレジストによって開口部がレジストで充填されたBSG膜14aの表面に、アルミニウムなどの金属膜16を成膜する。一方、ガラス製の絶縁基体3の裏面側においては、機械加工によって、発熱体5aの直下の位置での絶縁基体3の厚さが50μmになるように、この位置に凹部3aを形成する。凹部3aの最小幅は、発熱体5aの外径とする。

12

【0043】次に、レーザビーム加工を用いて、発熱体5aの中心の位置に、絶縁基体3の裏面側から直径10μmのインク供給孔4aを開口し、同様に、金属膜16側から直径20μmのインク吐出孔7を開口する。その後、BSG膜14aの開口の内部に残留するレジストを溶解して排出し、圧力容器14を形成する。

【0044】インク吐出ノズル7は、千鳥格子状に配置されている。インク吐出ノズル7の各列でのピッチは80μmとし、隣接する列間でインク吐出ノズルの相対位10置を40μmずらして形成することで、600dpiのプリンタヘッドが構成される。同様に、3列以上を周期としてインク吐出ノズルの相対位置をずらせば、さらに高精細のプリンタヘッドを形成できることはいうまでもない。

【0045】最後に、絶縁基体3の裏面にプラスチック製のインク容器2を接着し、インク容器2内にインクを充填する。絶縁基体3上の各発熱体5aは、絶縁基体上に実装されたシフトレジスタIC(不図示)に金属配線13(図9参照)を介して接続され、信号端子(不図示)を介してプリンタ本体(不図示)のドライバ、CPU、電源等に接続される。

【0046】《実施例2》次に、上述の実施例1での製造工程の一部を変更して作製されるプリンタヘッドについて、図2を用いて説明する。

【0047】絶縁基体3上への発熱体5a、絶縁膜11 及び熱伝導膜15の形成、パターニングまでは、実施例 1と同様に実行する。そして、絶縁基体3に、裏面側の 凹部3aとインク供給孔4a(レーザビームなどで加 工)を形成しておく。一方、ガラスあるいは耐熱性樹脂 などからなるカバー板17を用意し、このカバー板17 に、圧力容器14となるべき円筒形状のくぼみをモール ド加工などによって形成し、インク吐出ノズル7をレー ザビーム加工などによって形成する。そして、接着剤1 8を用い上述のように加工された絶縁基体3とカバー板 17とを接着し、さらにはインク容器2を取り付けるこ とによって、プリンタヘッドが完成する。なお、インク 供給孔4aあるいはインク吐出ノズル7の加工には、上 述のレーザビーム加工のほかに、金属マスクを用いた反 応性イオンエッチング (RIE) や光励起ドライエッチ ング法を用いてもよい。

【0048】《実施例3》本発明に基づくプリンタへッドにおいて、絶縁基体上に設けられる線状の発熱体の形状は、上述の単リング状のものに限られない。例えば、図3(a)~(d)にそれぞれ示すように、同心多重リング状、同心多重方形状、放射リング状、蛇行状などの種々の形状とすることができる。いずれの形状であっても、ホトリソグラフィ技術を用いることにより、簡単に形成することができる。また、発熱体の線幅は、上述の実施例1では例えば10μmであり、3μmの設計ルールで50十分に再現可能なものである。いずれの場合であって

も、インク吐出ノズル7が、発熱体の加熱領域の中央上 方に位置することが好ましい。

【0049】《実施例4》図4に示すように、インク供給孔4aを発熱体5aの加熱領域外に設けることも可能である。この場合には、圧力容器14を二円連結形状とし、インクに対する加圧空間の大きさを最小限にすることが好ましい。

【0050】《実施例5》圧力容器14の形状は円筒状のものに限られず、例えば、絶縁基体3側に広がりインク吐出ノズル7側に狭まったテーパ形状のものとするこ 10とができる。図5はこのようなテーパ形状の内壁19を備えた圧力容器14を有するプリンタヘッドを示している。このプリンタヘッドは、実施例2と同様の手順で、ただし、テーパ形状の内壁19を有するようにカバー板17にくぼみを形成することにより、容易に実現することができる。

【0051】《実施例6》図6に示すプリンタヘッドは、実施例2で説明したプリンタヘッドにおいて、カバー板17の厚さを大きくするともに、カバー板17の被記録媒体20側の面に満17aを形成し、この溝17a 20以外の平坦面に被記録媒体20を密着させ、この被記録媒体20を溝17aの長手方向と垂直な方向に移動させ、被記録媒体20とインク吐出ノズル7との距離を一定に保とうとするものである。インク吐出ノズル7は、満17aの底面に開口するようにした。なお、カバー板17をモールド加工で加工するのであれば、圧力容器14に対応するくばみと溝17aとをカバー板17の表裏面に同時加工、形成することも可能である。

【0052】このプリンタヘッドでは、インクの飛翔距離(すなわち、インク吐出ノズル7と被記録媒体20表 30面との距離)を溝17aの深さにより規定することが出来ることから、飛翔したインク滴8の被記録媒体への衝突時の形状を一定にすることが出来る。また、インク滴8の飛翔空間がカバー板17と被記録媒体20とによって閉塞されているから、気流等の外乱要因による飛翔方向の乱れを防止することができ、プリンタヘッドの高精細化に伴う微小なインク滴の転写、印字に効果を発揮する。

[0053]

【発明の効果】以上説明したように本発明は、各ドット 40 の発熱体ごとにその発熱体のほぼ中心領域となる位置において、インク容器と圧力容器(インク加熱容器)とを連通するインク供給孔を絶縁基体に設けることにより、従来の発熱体材料を用いても、隣接印刷ドット間隔を微小にすることが可能になり、小型で高精細なプリンタへッドを低コストで製造できるようになるという効果がある。また、線状の発熱体を用いることにより、発熱体の脱厚を極端に薄くすることなく高電気抵抗の発熱体とすることができるので、プリンタへッドの消費電力を低減

14

でき、これによって、プリンタ本体の電源負荷を低減して長時間稼働可能な携帯型プリンタを実現することが可能になる。また、本発明には、高精細印字において、気流などの外乱による乱れの排除や、飛翔インク滴の形状制御も可能であるという効果もある。

【図面の簡単な説明】

【図1】実施例1のプリンタヘッドの断面構造を示す一 部破断斜視図である。

【図2】実施例2でのプリンタヘッドの製造工程を示す · 図である。

【図3】(a)~(d)は、それぞれ、線状の発熱体の形状の示す平面図である。

【図4】実施例4のプリンタヘッドでのインク供給孔の 位置を説明する図である。

【図5】テーパ状の圧力容器を有するプリンタヘッドを 示す一部破断斜視図である。

【図6】実施例6のプリンタヘッドの断面構成を示すー 部破断斜視図である。

【図7】従来のサイド・シュート・タイプのプリンタへ ッドの断面構造を説明する一部破断斜視図である。

【図8】従来のエッジ・シュート・タイプのプリンタへッドの断面構造を説明する一部破断斜視図である。

【図9】インク供給孔とリング状の発熱体の基本的な構造を説明する斜視図である。

【図10】圧力容器内でのインクの挙動を説明する図であって、(a)は加熱時を説明する断面図、(b)は冷却時を説明する断面図である。

【符号の説明】

- 1 プリンタヘッド
- 2 インク容器
- 3 絶縁基体
- 4,4a インク供給管
- 5,5a 発熱体
- 6 インク加熱容器
- 7 インク吐出ノズル
- 8 インク滴
- 9 気泡
- 10 土手
- 11 絶縁膜
- 12 インク
 - 13 配線
 - 14 圧力容器
 - 15 熱伝導膜
 - 16 金属膜
 - 17 カバー板
 - 18 接着剤
 - 19 内壁
 - 20 被記錄媒体

9/24/2007, EAST Version: 2.1.0.14

【図10】

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[Field of the Invention] About the recording device (printer) which records on recorded media, such as paper, in ink, especially, this invention heats ink with a heating element, generates air bubbles in ink, and relates to recorded media from a nozzle by expansion of air bubbles at the structure of the regurgitation [ink] and the head of the ink jet printer which records by making it fly, i.e., an ink discharge part.

[0002]

[Description of the Prior Art] In recent years, a printer is spreading as the hard printing terminal equipment used for a computer, facsimile apparatus, a word processor, etc., and a hard copy unit. Although the thing of various kinds of record principles is put in practical use as a printer, the ink jet printer attracts attention especially as what can realize high definition printing with a low actuation sound and a low power at high speed. An ink jet printer makes ink fly intermittently according to a record signal, imprints ink in the shape of a dot (dot) to recorded media, and constitutes printing record from a nozzle which builds in the energy generation component which generally generates the energy for carrying out the regurgitation of the ink. As an energy generation component, the electric resistance heating element for making ink heat and foam is used preferably. And in order to enable it to record two or more dots simultaneously using one printer head, the printer head for ink jet printers is considered as the configuration which arranges two or more energy generation components on an insulating base. And a printer head is classified into a side chute type thing and an edge chute type thing according to the relation between an insulating base and the discharge direction of ink. The case where an electric resistance heating element is used as an energy generation component is hereafter mentioned as an example, and a printer head conventional side chute type and an edge chute type printer head are explained.

[0003] <u>Drawing 7</u> is drawing showing the cross-section structure of the printer head of an ink jet printer conventional side chute type.

[0004] The insulating base 3 by which many heating elements 5 which are field-like electric resistance objects have been arranged in one field is formed in the printer head 1. In the field of another side of an insulating base 3, the ink container 2 with which it fills up with ink is arranged. Each heating element 5 supports the dot, respectively, and the ink supply pipe 4, the ink heating container 6, and the ink regurgitation nozzle 7 are formed every heating element 5. The ink supply pipe 4 has penetrated the insulating base 3, in order to supply ink to each ink heating container 6 of the ink container 2. In the ink heating container 6, the heating element 5 has arranged on the base, and the ink regurgitation nozzle 7 arranges so that this heating element 5 may be countered. In order to realize high resolution and high definition printing, these are formed minutely. By arranging recorded media, energizing to a heating element 5 and making it generate heat according to a record signal so that the ink regurgitation nozzle 7 may be countered, the ink 12 in the ink heating container 6 foams and expands (air bubbles 9), about seven ink regurgitation nozzle ink does the regurgitation and flight of in the direction of recorded media

by the pressure, discharge and the minute ink droplet 8 collide with a recorded-media front face, and ink is imprinted.

[0005] In an ink jet printer, each ink regurgitation nozzle 7 corresponds to one color, respectively. Therefore, in order to realize color printing of a high definition and high gradation with the demand increasing in recent years, while gathering and using the head for every color as the so-called multihead, it is necessary to make dot size still finer, and the ink supply pipe 4, a heating element 5, and the ink discharge opening 7 must also be formed more minutely.

[0006] The printer head of 300dpi (the number of dots of per 1 inch [dpi=dots per inch and] (25.4mm)) generally realized now arranges the ink regurgitation nozzle 7 whose diameter of opening is 20 micrometers in 80-micrometer pitch, and is constituted. in a future highly minute head, an ink regurgitation nozzle is arranged in 40-micrometer pitch, and an ink regurgitation nozzle is arranged [the head of 600dpi] in 20-micrometer pitch by the head of 1200dpi, for example -- if it kicks, it will not become. In order to realize highly minute printing, the magnitude permitted as an area of the heating element 5 which are each device for the regurgitation of ink, especially a field-like electric resistance object becomes still smaller. Therefore, generally the ink supply pipe 4, a heating element 5, and the ink regurgitation nozzle 7 are minutely formed with a phot lithography techniques or a laser-beammachining technique on this insulating base 3, using the silicon substrate which oxidized the front face as an insulating base 3. furthermore, the pitch (the opening pitch A --) which is equivalent to 300dpi for every train as shown in drawing 7 Because arrange the ink regurgitation nozzle 7 in two trains so that it may be set to 80 micrometers here, and only the distance (here 40 micrometers) of the one half of the opening pitch A shifts and arranges such regurgitation nozzle train 7a and regurgitation nozzle train 7b Though it is an object for 300dpi as a dimension of each device, the printer head corresponding to the recording density of 600dpi can be obtained, and it becomes possible to suppress the cutback of the dimension permitted by each device for the ink regurgitation. If the number of regurgitation nozzle trains is increased, the printer head of high resolution can be obtained more. Moreover, it becomes possible to form various kinds of functional devices for driving a heating element 5 according to a record signal in an insulating base 3 at a monolithic by using the silicon substrate which has the scaling film as an insulating base 3.

[0007] <u>Drawing 8</u> shows the conventional edge chute type printer head 1. The ink container 2 and each heating element 5 are arranged at the same insulating base 3 side. Therefore, the end of the passage-like ink heating container 6 carries out opening outside as an ink regurgitation nozzle 7, and the other end is open for free passage in the ink container 2 as an ink supply pipe 4. The longitudinal direction of a list and the ink heating container 6 has a heating element 5 vertical to about 1 train with this edge chute type of printer head 1 in an parallel direction on the surface of recorded media on the surface of recorded media. By sticking and carrying out a laminating also with an edge chute type printer head, it can become possible to establish two or more regurgitation nozzle trains, the cutback of the dimension of each device can be suppressed, and high resolution-ization can be realized.

[0008] By the way, the demand of carrying and using a printer is increasing and the demand which reduces power consumption in the printer which uses a heating element, and extends the time amount which can be worked has arisen from this demand not to mention the miniaturization of a printer, and highly-minute-izing. In order to fill the demand which reduces power consumption, reduction of heating element actuation power, i.e., the miniaturization of a heating element, and high electric resistance-ization are called for.

[0009] Although the tantalum nitride (Ta2N) thin film which is excellent in respect of high resistance, thermal resistance, a mechanical strength, etc. is used as an ingredient for the heating elements of an ink jet printer, compared with Ta2N, high resistance thin films, such as a TiAlN thin film with still larger specific resistance and a MoSi thin film, are also examined as a candidate of a heating element ingredient from the demand of a miniaturization of a heating element which was mentioned above. [0010] Although a heating element 5 is arranged in the location [directly under] of the ink regurgitation nozzle 7 as it was shown in drawing 7, when it was a side chute type printer head, and it will be arranged in the middle of the passage-like ink heating container 6 as shown in drawing 8 if it is an edge

chute type printer head Even if it is which case, the expansion pressure force of the air bubbles 9 by heating is ****ed to the internal pressure of the ink container 2, and is concentrated in the direction of the ink regurgitation nozzle 7. It is also performed that arrange a bank 10 in the middle of the ink supply pipe 4, and the device which raises the pressure drag by the side of the ink container 2 gives.

[0011] The front face of a heating element 5 is covered with the hard insulator layer 11 in many cases for the purpose of prevention of the exfoliation from the insulating base 3 of the heating element thin film by the mechanical shock by reservation of the electric insulation with ink, and the pulsation at the time of cellular expansion, and destruction etc. There are some which mixed the color and the pigment type particle as an ingredient of ink 12, and a device which prevents printing of the ink by generation of heat is also made.

[0012]

[Problem(s) to be Solved by the Invention] In order that the printer head for ink jet printers may realize high resolution and high definition printing, minor-diameter-izing of the opening diameter of an ink regurgitation nozzle, cutback-izing of discharge opening spacing, the miniaturization of a heating element, high resistance-ization, etc. are tried. However, if the electric resistance heating element which has arranged the electrode on both sides of the resistance film is assumed, the miniaturization of a heating element will mean compaction of the die length of a resistance part, and the electric resistance of a heating element will fall. Although what the resistance film is made thinner for (the cross section is made small) can raise electric resistance, if the impact of carrying out temperature up to about 500 degrees C or foaming contraction is assumed, when the resistance film is made thin, the mechanical endurance of a heating element will become a problem. Moreover, the size of the ink droplet made to fly becomes small inevitably by the miniaturization of an ink discharge opening. When it assumes making a smaller ink droplet project and fly and recording on the field of the same area as usual, the time interval which makes an ink droplet fly is shortened, namely, it must stop having to perform heating and cooling of ****** for a short time. From now on, a heating element will be required to excel also in the heat dissipation function as naturally heating effectiveness being good. With an ingredient with the sufficient ink to heat conduction itself, using the silicon base with which the front face oxidized as an insulating base becomes the factor which bars the temperature rise in the short time of a heating element, although it is convenient from things to heat dissipation. In the printer head of the gestalt which arranges the heating element of ink passage like a thing conventional edge chute type especially, since dissipation of the heat which minded ink depending on the volume of an ink passage part becomes remarkable, the problem that the power which must be impressed to a heating element increases at the time of generation of heat, or the heating response characteristic of a heating element falls arises.

[0013] The thing using resin, glass, various ceramics, etc. as an insulating base which there are some which formed the anodic oxide film in the front face as an insulating base besides the silicon substrate by which the thermal oxidation film was formed in the front face using the aluminum which is a high temperature conduction ingredient, and consists of a low heat-conduction ingredient can be considered. Among these, since a glass base can carry out patterning of the wiring with a design rule equivalent to the case of the conventional silicon substrate cheaply by using a phot lithography techniques as compared with a silicon substrate as the example of an activity to a display panel in recent years proves, it is an ingredient promising when supplying a printer head cheaply. And if it takes into consideration that the occupancy area of input wiring of those other than the functional device in an insulating base increases when the number of nozzles increases, it is disadvantageous to use an expensive base only as a support base, in view of cost.

[0014] On the other hand, when the base of the part directly under a heating element is thick, this part will act as an accumulation layer, it becomes difficult to make ink fly continuously in a short cycle period, and the device on structure is needed. Moreover, when [like polyimidoamide] a flexible heat-resistant-resin film is mechanically used as an insulating base, an insulating base will buffer the pressure of foaming and there is a fault that the transmission efficiency of the pressure to ink falls. [0015] High definition printing is possible for the object of this invention at high speed, and it is a low power and is to offer the printer head which can be manufactured by low cost.

[0016]

[Means for Solving the Problem] The printer head of this invention has an insulating base and two or more heating elements arranged on said insulating base. In the printer head which records by heating the ink of a liquid phase condition with said heating element, and making ink fly from an ink regurgitation nozzle with evaporation and the expanding pressure of said ink The pressurized container which it is prepared for said every heating element, and has the heating element concerned in an internal surface, and said ink regurgitation nozzle is formed as a breakthrough, and carries out constant-rate maintenance of said ink, It has the ink feed holes supplied to the pressurized container which carries out opening and corresponds said ink so that it may be open for free passage in the ink container which was prepared in a part for the core of the exoergic field by the heating element concerned for said every heating element, and was filled up with ink and said insulating base may be penetrated.

[0017] In this invention, said two or more pressurized containers are constituted as a thing of one, and an adjoining pressurized container can share the septum which isolates the thermal expansion pressure of the ink by heating of a heating element mutually.

[0018] Moreover, it is desirable for the thing which made the linear electric resistance heating element which generates heat by energization as a heating element in this invention crooked by the predetermined pattern to be used preferably, to connect the electrode for supplying the power for resistance heating from an external power supply source in this case and wiring to the both ends of a heating element, and to cover the front face of a heating element with an electric insulation layer. Furthermore, it is desirable to prepare the heat-conduction film on an electric insulation layer so that opening of the ink feed holes may be carried out and the whole region of the heating field of a heating element may be covered because of improvement in an ink regurgitation property. The shape of a single ring which has the lack section, the shape of an outline ring which have concentric circular clinch two or more pile structure, the shape of an outline ring which have meandering structure, the shape of an outline rectangle that has clinch two or more pile structure of this continuous cardiac rectangle, the shape of an outline rectangle which has meandering structure, etc. can be mentioned, and ink feed holes are made to carry out opening to the core of a ring or a rectangle as a pattern of crookedness of a heating element in these cases, for example.

[0019] In this invention, although it can arrange also to how as long as it is open for free passage to ink feed holes, for example, an ink container is formed in the field in which the heating element of an insulating base is not prepared, and, as for an ink container, an insulating base can constitute some walls [at least] of an ink container. Moreover, in order to raise the heating effectiveness of the ink by the heating element, a crevice may be formed so that the thickness of an insulating base may become thin at the rear-face side of the field in which a heating element and ink feed holes are formed in an insulating base compared with other fields.

[0020] Typically in each pressurized container, ink feed holes and an ink regurgitation nozzle counter. As for the opening diameter of an ink regurgitation nozzle, it is desirable to carry out whether it is almost the same as that of the opening diameter of ink feed holes rather than the opening diameter of ink feed holes. The wall which has taper structure which narrows toward an ink regurgitation nozzle from the insulating base side may be made to be prepared in the pressurized container. Moreover, the wall of the part which contains an ink regurgitation nozzle among the walls of a pressurized container can be formed with a metal from a viewpoint of cooling of ink. In order to keep constant the distance of an ink regurgitation nozzle and recorded media, a slot is formed in the external wall surface of a pressurized container, and an ink regurgitation nozzle may be made to carry out opening to the base of this slot. [0021]

[Embodiment of the Invention] In the printer head of the side chute type mentioned above, for every heating element of each dot, the printer head of this invention is the location of the heating element which serves as a central field mostly, and prepares the ink feed holes which open an ink container and a pressurized container (ink heating container) for free passage in an insulating base. And in each pressurized container, an ink regurgitation nozzle is typically prepared in ink feed holes and the location which counters, respectively, and it has become the arrangement which adjoined the pressurized

container and the ink container by using an insulating base as a septum. The pressurized container is separated for every dot, i.e., an ink regurgitation nozzle.

[0022] <u>Drawing 9</u> is a perspective view explaining the circumference of ink feed-holes 4a for every dot in the gestalt of desirable operation of this invention. Ink feed-holes 4a which is a breakthrough is prepared in the insulating base 3, and in one field of an insulating base 3, heating element 5a of the shape of an annulus ring (ring) which lacked one place arranges so that ink feed-holes 4a may be surrounded. On both sides of the lack part as a ring, one pair of metal wiring 13 has connected with the ends of heating element 5a, respectively, and it can energize now to heating element 5a which is an electric resistance object.

[0023] As the Prior art also described, even if it is the electric resistance heating element structure of the shape of a conventional field by using a heating element ingredient with more high resistivity, the miniaturization of a heating element is possible, and it becomes more printable with a high definition. However, since the cross section of a heating element can be made small and extension of a heating element can be lengthened by considering as a linear configuration like heating element 5a shown in drawing 9, the heating element of small and high resistance can be obtained. Furthermore, by arranging heating element 5a so that ink feed-holes 4a may be surrounded in the center of heating element 5a, i.e., ink feed-holes 4a, the transmission efficiency of the heat from heating element 5a to ink can be raised so that it may mention later. Even if it is the case where the conventional heating element ingredient is used by constituting a printer head as mentioned above, the heating element which is smaller than before and can generate heat energy required for the ink regurgitation with low power in a short time can be obtained.

[0024] The configuration of linear heating element 5a is not restricted in the shape of [single] a ring, and the shape of a concentric circular clinch ring, the clinch rectangle of the same core or a meandering configuration, etc. can be used for it. Anyway, an ink regurgitation nozzle is arranged in the central upper part of the heating field of heating element 5a.

[0025] <u>Drawing 10</u> (a) and (b) are drawings explaining the part equivalent to 1 dot of a printer head, and are a sectional view in a flat surface vertical to an insulating base 3. A graphic display lower part side is equivalent to the ink container with which it fills up with ink 12 from an insulating base 3. The ink container is prepared in common to two or more ink regurgitation nozzles 7 which carry out the regurgitation of the ink of the same color. Moreover, the front face of heating element 5a is covered with the hard insulator layer 11 so that it may mention later. On the other hand, from the insulating base 3, the part of the graphic display upper part is the pressurized container 14 for every dot, a right pair is carried out to ink feed-holes 4a, and the ink regurgitation nozzle 7 is formed in the field which counters an insulating base 3 among the wall surfaces of a pressurized container 14.

[0026] As shown in drawing 10 (a), the diameter of opening of ink feed-holes 4a is very small like the conventional printer head. For this reason, the ink in ink feed-holes 4a evaporates, and the inside of ink feed-holes 4a is permuted by the gas at the same time it energizes to heating element 5a and makes it generate heat. Moreover, it foams also in the ink 12 which is near the heating element 5a within a pressurized container 14, and becomes air bubbles 9, and non-evaporated ink flies [by the expansion force (graphic display arrow head) of these air bubbles 9 / in a pressurized container 14] toward a projection and recorded media from the ink regurgitation nozzle 7 as an ink droplet 8. Although foaming of the ink on heating element 5a is continued until the ink of the whole region of heating element 5a is permuted by the gas, and expansion of a gas is mostly saturated with heat insulation with a gas, the regurgitation of an ink droplet 8 is ended in the meantime. With this printer head, since the path which heat reveals to generation of heat and coincidence of heating element 5a through ink feed-holes 4a at an ink container side will be intercepted with air bubbles 9 and heat is revealed through the air bubbles 9 with small thermal conductivity, the adiabatic efficiency at the time of generation of heat of heating element 5a is heightened. That is, if the heating element of the conventional printer head compares with having heated the ink in an ink supply pipe that what is necessary is to heat the heating element in the printer head of this invention, and just to make it foam only in the ink in a pressurized container, it excels in thermal efficiency.

[0027] by the way -- if the coefficient of kinematic viscosity of the vapor phase by heating foaming is alike and large in the passage of minute size which is looked at by the head of an ink jet printer compared with the liquid phase and a mass flow rate compares -- a vapor phase -- the liquid phase -- a ratio -- it is known that it will be hard to flow to BE ****** (for example, the Mechanical Engineering Laboratory, Agency of Industrial Science and Technology issuance, ****** news, No.3, 1995). In the pressurized container 14 shown in drawing 10 (a) and (b), when the opening diameter and tube length of ink feed-holes 4a and the ink regurgitation nozzle 7 are outline identitas Because the inside of ink feed-holes 4a serves as a vapor phase with heating by heating element 5a A bigger viscous drag than the ink of the liquid phase condition in the ink regurgitation nozzle 7 arises in the ink feed-holes 4a side, and an operation like the check valve to a fluid is carried out. By this The expansion pressure force by heating foaming of ink will be chiefly turned to the ink regurgitation nozzle 7 side, and when carrying out the regurgitation of the ink, it acts advantageously.

[0028] Or when extruding by the same pressure, and opening narrows gradually, an ink regurgitation rate increases and the directivity of a discharge direction is improved, at the same time it reduces the flow resistance by the side of the ink discharge opening nozzle 7 by making the cross-section configuration of a pressurized container 14 into the taper configuration of a cone mold which narrows in the ink regurgitation nozzle 7 side from the heating element 5a side, furthermore, in drawing 10 (a) and (b), it sees typically -- as -- the opening diameter of the ink regurgitation nozzle 7 -- the opening diameter of ink feed-holes 4a -- a ratio -- BE ** -- large -- carrying out -- unsymmetrical passage configuration ***** -- on the other hand, a tropism property (diode characteristics) is added to the pressure loss by the side of ink feed-holes 4a by things, and the pressure by expansion of air bubbles concentrates on the ink regurgitation nozzle 7 side. Thereby, the conversion efficiency from the expansion pressure force to the kinetic energy of the ink droplet under flight is raised. [0029] On the other hand, as shown in drawing 10 (b) at the time of cooling of heating element 5a, the gas in a pressurized container 14 contracts (graphic display arrow head), simultaneously, the ink 12 of a liquid phase condition flows by the large flow rate in ink feed-holes 4a from an ink container according to the viscous difference of the liquid phase and a gaseous phase, and ink is filled up for a short time in a pressurized container 14 by this. Moreover, the cooling rate of heating element 5a is brought forward by the inflow of the ink from an ink container.

[0030] By the way, since the heating element itself acts as a heat-regenerative element at the time of cooling in the case of the heating element of the shape of a conventional field, cooling takes time amount. On the other hand, since it can be regarded as a kind of fin structure to the top where the accumulation volume of the heating element itself is small when a linear heating element is used, a cooldown delay can be shortened. Therefore, a linear heating element is excellent in the responsibility of heating and cooling, and demonstrates power to the ink regurgitation in the short period accompanying highly minute printing.

[0031] Here, the discharge quantity of ink is the amount and outline tales doses of ink which are required for printing a single dot, supposing it is the minimum foaming gas and this capacity, according to the configuration of this invention, it can also make the minimal dose of the ink on a heating element this and outline tales doses, and low-power-ization of it by the miniaturization of a pressurized container or a heating element will be attained. Namely, the ink of a quantum, then a constant rate can be made to breathe out efficiently the amount of the ink on heating element 5a by heating foaming now.

[0032] As mentioned above, the insulator layer 11 is formed in the front face of heating element 5a. The insulator layer 11 is arranged in order to prevent that the power which heating element 5a and ink 12 should contact directly electrically, and should use for heating essentially is revealed in view of various ion and a conductive particle being intermingled in ink 12. Moreover, on this insulator layer 11, the heat-conduction film may be prepared so that opening of the ink feed holes may be carried out and the whole heating field by heating element 5a may be covered. While being able to make now heating from a linear heating element into the shape of a field by preparing the heat-conduction film at homogeneity, it becomes possible to buffer the pressure impact of heating element HE by foaming and contraction of ink by this heat-conduction film, and the mechanical endurance of a heating element can be raised. The

heat-conduction film is a metal membrane typically, and since ink 12 is contacted, heating element 5a has been separated electrically. When a linear heating element turns up and is formed, it is good to consider as the heat-conduction film of the shape of a field which fills the clearance between adjoining heating elements through an insulator layer.

[0033] By the way, although the heat generated by energizing to heating element 5a is transmitted in pressurized-container 14 direction and the insulating base 3 direction, an insulating base 3 functions as an insulating base 3 being thick as a heat sink, and the heat transfer effectiveness to ink falls. Then, it is possible to make it thin the optimal to extent which bears the thickness of the insulating base 3 of the part [directly under] of heating element 5a at a mechanical strength, and insulates heat required for short-time ink heating. Thus, with constituting, since the rear face of an insulating base 3 is always in contact with the ink 12 in an ink container, it is avoidable that an insulating base 3 serves as a heat sink. It realizes because making an insulating base 3 thin by the part [directly under] of heating element 5a forms in the rear face of an insulating base 3 a slot thru/or a crevice which is connected with the ink feed holes 4.

[0034] With this printer head, since the pressurized container 14 has dissociated every ink regurgitation nozzle 7 as mentioned above, a septum will exist between the adjoining pressurized containers 14. This septum has desirable configuration ****** with the viewpoint which transmits efficiently the heat generated with the heating element only to ink to a heat insulation ingredient. Moreover, a pressurized container 14 can process ingredients, such as glass and heat-resistant resin, using a phot lithography techniques, or can form them by cutting or mould processing. Furthermore, by using thermally conductive ingredients, such as a metal, as a charge of a wallplate of the field which contains the ink regurgitation nozzle 7 in a pressurized container 14, accumulation can be avoided, and cooling of the ink in the pressurized container by atmospheric air can be promoted now after the ink regurgitation, and it becomes possible to cool the heating element and ink in a pressurized container more for a short time. [0035]

[Example] Next, an example explains this invention in more detail.

[0036] <<example 1>> <u>Drawing 1</u> shows the cross-section structure of the ink jet printer head of the example 1 of this invention. With this printer head 1, the glass insulating base 3 is used and BSG (borosilicate glass; borosilicate glass) film 14a which has two or more circular breakthroughs is carrying out the laminating to the front face of an insulating base 3. It is the interior of each breakthrough of BSG film 14a, and ring-like heating element 5a is prepared in the front face of an insulating base 3, respectively. The front face of each heating element 5a is covered with the insulator layer 11 of the electric insulation which consists of silicon nitride (SiN) or BSG, and the metal heat-conduction film 15 is further formed in the front face of an insulator layer 11. Corresponding to a part for the core of ringlike heating element 5a, ink feed-holes 4a which is a breakthrough is formed in the insulating substrate 3. And the metal membrane 16 which consisted of aluminum film etc. carries out a laminating to BSG film 14a, and the ink regurgitation nozzle 7 which is a breakthrough is formed in the location which carries out a right pair to ink feed-holes 4a at the metal membrane 16. Thus, it means that the pressurized container 14 which uses an insulating base 3 as a base, makes BSG film 14a a side face, and uses a metal membrane 16 as a top face was formed every ink regurgitation nozzle 7 by constituting. [0037] On the other hand, the ink container 2 common to each ink regurgitation nozzle 7 made from plastics has pasted the rear-face side of an insulating base 3. And it is the rear-face side of an insulating base 3, and the part [directly under] of heating element 5a at least has become crevice 3a, and thickness of the insulating base 3 in the part [directly under] of heating element 5a is made thin the optimal, maintaining a mechanical strength.

[0038] Next, the manufacture approach of this printer head 1 is explained.

[0039] First, sputtering membrane formation is carried out, patterning of the TaN thin film is carried out to the front face of the glass insulating base 3, and heating element 5a of the outer diameter of 40 micrometers as shown in above-mentioned <u>drawing 9</u>, and the shape of a ring with a line breadth of 10 micrometers which suffered a loss the part is formed. Furthermore, patterning of the aluminum thin film is formed and carried out, and the metal wiring 13 (refer to <u>drawing 9</u>) is formed in the ends of heating

element 5a.

[0040] Next, the heat-conduction film 15 is formed by forming an insulator layer 11, and forming and carrying out patterning of the metal film which, subsequently to the front face, has elevated-temperature thermal resistance, such as stainless steel film, by forming and carrying out patterning of the film, such as silicon nitride (SiN) or borosilicate glass (BSG), with a heat CVD method. Thus, the heating field of heating element 5a is covered with an insulator layer 11 and the heat-conduction film 15 at least. An insulator layer and the heat-conduction film are made not to be formed in main opening of ring-like heating element 5a, i.e., the part in which ink feed-holes 4a should be formed, in that case. [0041] Thus, as opposed to the insulating base 3 in which heating element 5a, an insulator layer 11, and the heat-conduction film 15 were formed, BSG film 14a is formed by the thickness of 10 micrometers. Etching clearance of the part which should carry out patterning of the BSG film 14a, and should serve as opening is carried out so that opening which are heating element 5a and a concentric circle, and arrives at even the front face of the heat-conduction film 15 and an insulating base 3 may be formed in BSG film 14a after it, furthermore -- until it applies the resist film (not shown) to the whole surface and the front face of the applied resist film reaches BSG film 14a -- CMP (chemical machinery-polish) -flattening processing is performed by law. It means that the resist was evenly filled up with opening which built in the heating element, i.e., the part which should serve as a content volume part of a pressurized container 14, by this. In addition, you may make it use an SiN film etc. instead of BSG film

[0042] On the front face of BSG film 14a filled up with the resist, opening forms the metal membranes 16, such as aluminum, by the resist as mentioned above. On the other hand, crevice 3a is formed in this location so that the thickness of the insulating base 3 in the location [directly under] of heating element 5a may be set to 50 micrometers by machining at the rear-face side of the glass insulating base 3. Let the minimum width of face of crevice 3a be the outer diameter of heating element 5a.

[0043] Next, using laser beam processing, opening of the with a diameter of 10 micrometers ink feed-holes 4a is carried out to the location of the core of heating element 5a from the rear-face side of an insulating base 3, and opening of the ink discharge opening 7 with a diameter of 20 micrometers is similarly carried out to it from a metal membrane 16 side. Then, the resist which remains inside opening of BSG film 14a is dissolved and discharged, and a pressurized container 14 is formed.

[0044] The ink regurgitation nozzle 7 is arranged in the shape of a hound's-tooth check. It is setting the pitch in each train of the ink regurgitation nozzle 7 to 80 micrometers, shifting 40 micrometers of relative positions of an ink regurgitation nozzle, and forming them between the adjoining trains, and the printer head of 600dpi is constituted. If similarly the relative position of an ink regurgitation nozzle is shifted by making three or more trains into a period, it cannot be overemphasized that a still higher definition printer head can be formed.

[0045] Finally, the ink container 2 made from plastics is pasted up on the rear face of an insulating base 3, and it is filled up with ink in the ink container 2. It connects with the shift register IC (un-illustrating) mounted on the insulating base through the metal wiring 13 (refer to drawing 9), and each heating element 5a on an insulating base 3 is connected to the driver of the body of a printer (un-illustrating), CPU, a power source, etc. through a signal terminal (un-illustrating).

[0046] <<example 2>> Next, the printer head which changes a part of production process in the above-mentioned example 1, and is produced is explained using <u>drawing 2</u>.

[0047] Formation of heating element 5a to an insulating base 3 top, an insulator layer 11, and the heat-conduction film 15 and patterning are performed like an example 1. And crevice 3a by the side of a rear face and ink feed-holes 4a (it is processed by a laser beam etc.) are formed in the insulating base 3. On the other hand, the covering plate 17 which consists of glass or heat resistant resin is prepared, the impression of the shape of a cylindrical shape which should serve as a pressurized container 14 is formed in this covering plate 17 by mould processing etc., and the ink regurgitation nozzle 7 is formed in it by laser beam processing etc. And a printer head is completed by pasting up the insulating base 3 and the covering plate 17 which were processed as mentioned above using adhesives 18, and attaching the ink container 2 further. In addition, reactive ion etching (RIE) and the optical-pumping dry etching

method for having used the metal mask other than above-mentioned laser beam processing may be used for processing of ink feed-holes 4a or the ink regurgitation nozzle 7.

[0048] <<example 3>> In the printer head based on this invention, the configuration of a linear heating element established on an insulating base is not restricted to the thing of the shape of an above-mentioned single ring. For example, as shown in drawing 3 (a) - (d), respectively, it can consider as various configurations, such as the shape of the shape of the shape of a said alignment multiplex ring, and a said alignment multiplex rectangle, and a radiation ring, and a letter of meandering. Even if it is which configuration, it can form easily by using a phot lithography techniques. Moreover, by the above-mentioned example 1, the line breadth of a heating element is 10 micrometers, and can enough be reproduced with a 3-micrometer design rule. Even if it is which case, it is desirable that the ink regurgitation nozzle 7 is located in the central upper part of the heating field of a heating element. [0049] <<example 4>> As shown in drawing 4, it is also possible to prepare ink feed-holes 4a outside the heating field of heating element 5a. In this case, it is desirable to make the pressurized container 14 of 2 yen into a connection configuration, and to make magnitude of the application-of-pressure space to ink into the minimum.

[0050] << example 5>> The configuration of a pressurized container 14 can be made into the thing of the taper configuration which was not restricted to a cylinder-like thing, for example, narrowed in the insulating base 3 side at the breadth ink regurgitation nozzle 7 side. Drawing 5 shows the printer head which has the pressurized container 14 equipped with the wall 19 of such a taper configuration. This printer head is the same procedure as an example 2, however can be easily realized by forming an impression in the covering plate 17 so that it may have the wall 19 of a taper configuration. [0051] << example 6>> In the printer head which explained the printer head shown in drawing 6 in the example 2 Slot 17a is both formed in the field which is large and carries out thickness of the covering plate 17 and which is the recorded-media 20 side of the covering plate 17. Recorded media 20 tend to be stuck to flat sides other than this slot 17a, these recorded media 20 tend to be moved in the direction vertical to the longitudinal direction of slot 17a, and it is going to keep constant the distance of recorded media 20 and the ink regurgitation nozzle 7. It was made to carry out opening of the ink regurgitation nozzle 7 to the base of slot 17a. In addition, if the covering plate 17 is processed by mould processing, it is also possible to simultaneous-process the impression and slot 17a corresponding to a pressurized container 14 on the table rear face of the covering plate 17, and to form them in it. [0052] With this printer head, the configuration at the time of the collision to the recorded media [specify / with the depth of slot 17a / the flight distance (namely distance of the ink regurgitation nozzle 7 and recorded-media 20 front face) of ink of the ink droplet 8 which flew can be made regularity. Moreover, since the flight space of an ink droplet 8 is blockaded with the covering plate 17 and recorded media 20, turbulence of the flight direction by disturbance factors, such as an air current, can be prevented, and effectiveness is demonstrated to the imprint of the minute ink droplet accompanying highly-minute-izing of a printer head, and printing.

[Effect of the Invention] as explain above, even if the conventional heating element ingredient be use for this invention by prepare the ink feed holes which open an ink container and a pressurized container (ink heating container) for free passage in the location of the heating element which serve as a central field mostly for every heating element of each dot in an insulating base, it become possible to make a contiguity printing dot space minute, and it be effective in the ability to manufacture now a small and high definition printer head by low cost. Moreover, since it can consider as the heating element of high electric resistance, without making thickness of a heating element extremely thin by using a linear heating element, it becomes possible to be able to reduce the power consumption of a printer head, to reduce the power-source load of the body of a printer by this, and to realize the pocket mold printer in which prolonged operation is possible. Moreover, in highly minute printing, there are abatement of turbulence by disturbance, such as an air current, configuration control of a flight ink droplet, and effectiveness of being possible in this invention.

[Translation done.]