Johns Hopkins Engineering

Principles of Database Systems

Module 8 / Lecture 4
ER and EER to Relational Mapping

Database Design Process

Using a conceptual schema design (Entity Relationship Diagram) to create a relational database schema

Converting ER Model to Relational Model

- Create relations for the conceptual data model to represent the entity types, relationships, and attributes that have been identified
- Implement the concepts of relational databases, primary keys, foreign keys, and data integrity

Converting ER Model to Relational Model (Cont.)

- Database design tools may have different graphical representations.
- ERwin and Visio show a foreign key attribute in a child relation:

Converting ER Model to Relational Model (Cont.)

Oracle designer does not include a foreign key into a child relation. Why?

How to Map Entity Types and Relationships to Relations

ER Model	Mapping to Relation
Strong entity type	Create relation with all simple attributes
Weak entity type	Create relation with all simple attributes, and combine partial key of weak entity and a FK from the parent entity type as the PK
1:1 relationship type with mandatory participation on both sides	Combine entities into one relation or create two relations (see next) (e.g., EMPLOYEE vs. OFFICE or BADGE as 1-1 relationship)

How to Map Entity Types and Relationships to Relations (cont.)

ER Model	Mapping to Relation
1:1 relationship type with mandatory participation on one side	Post PK of entity on optional side to act as FK in relation representing entity on mandatory side (e.g., EMPLOYEE and CAR have 1-1 relationship)
1:M relationship type	Post PK of entity on one (parent) side to act as FK in relation representing entity on many (child) side

How to Map Entity Types and Relationships to Relations (cont.)

ER Model	Mapping to Relation
M:M relationship type	Create two 1:M relation types and follow above mapping and add additional attributes to the transitional relation (Be aware whether identifying or non-identifying relationships)
Multi-valued attribute	Create a new relation and post a copy of the PK of the parent entity into the new relation to act as a FK (e.g., DEPT_LOCATION)
N-ary relationship type	Create a new relation and post all PKs of the parent entities into the new relation to act as a PK and FKs (e.g., SUP_PRJ_PART_JOIN)

How to Map Entity Types and Relationships to Relations (cont.)

Table 9.1	Correspondence between ER and Relational Models	
ER MODEL		RELATIONAL MODEL
Entity type		Entity relation
1:1 or 1:N 1	relationship type	Foreign key (or relationship relation)
M:N relation	onship type	Relationship relation and two foreign keys
<i>n</i> -ary relationship type		Relationship relation and n foreign keys
Simple attribute		Attribute
Composite attribute		Set of simple component attributes
Multivalued attribute		Relation and foreign key
Value set		Domain
Key attribu	te	Primary (or secondary) key

Mapping COMPANY ER Schema Into A Relational Database Schema

Figure 9.1 The ER conceptual schema diagram for the COMPANY database.

Mapping COMPANY ER Schema Into A Relational Database Schema (cont.)

Figure 9.2 Result of mapping the COMPANY ER schema into a relational database schema.

Mapping COMPANY ER Schema Into A Relational Database Schema (cont.)

IE notation is supported by DB design tools.

ER Diagram for the COMPANY

Mapping A Ternary Relationship Schema

Figure 3.17 Ternary relationship types. (a) The SUPPLY relationship.

Figure 9.4 Mapping the n-ary relationship type SUPPLY from Figure 3.17(a).

Johns Hopkins Engineering

Principles of Database Systems

Module 8 / Lecture 5
ER and EER to Relational Mapping

- Convert Superclass and Subclass Relationships
 - Option 8A: Create the superclass relation and all subclass relations first, then migrate the PK from the superclass relation into each subclass relation as 1:1 relationships.
 - Multiple-relation option superclass and subclasses
 Example EER schema in Figure 4.4

- Convert Superclass and Subclass Relationships
 - Option 8B: Do not create a superclass relation, and create all subclass relations with all attributes from the superclass relation.
 - Multiple-relation option –subclass relations only Example: Mapping the EER schema in Figure 4.4 (b) EMPLOYEE → SECRETARY, TECHNICIAN, ENGINEER

Mapping the EER schema in Figure 4.3 (b)

Option 8B

- Convert Superclass and Subclass Relationships
 - Option 8C: Create a single relation that combines (union) all attributes from all subclass relations with one type attribute (t). This approach is for a specialization whose subclasses are *disjoint*, and *t* is a type attribute to indicate what the tuple belongs to. Many null values will be created.
 - Single-relation option with one type attribute Example: Figure 4.4

Ssn Fname Minit Lname Birth_date Address Job_type Typing_speed Tgrade Eng_type

(c) EMPLOYEE

- Convert Superclass and Subclass Relationships
 - Option 8D: Create a single relation that combines (union) all attributes from the superclass and all subclass relations with a set (array) of type Boolean flags to indicate whether the tuple includes/belongs to the types. This approach is for a specialization whose subclasses are overlapping.
 - Single-relation option with multiple type attributes Example: Mapping Figure 4.5 using option 8D with Boolean type fields Mflag and Pflag.

Mapping Shared Subclasses

- A shared class is a subclass of several superclasses indicating multiple inheritance (specialization lattice)
- The classes must all have the same key attribute
- Mapping Figure 4.6

Mapping Shared Subclasses (cont.)

Figure 4.6 A specialization lattice with shared subclass ENGINEERING_MANAGER.

How do you map the EER specialization lattice? Multiple-relation options (8A or 8B) in slides 15, 17 Single-relation options (8C or 8D) in slides 18, 20 Which one is a better choice and why? Open for Discussions

Mapping of Categories

- Is a subclass of the union of two or more superclasses that can have different entity types
- Can use a surrogate key

Example: Mapping the EER categories (union types) in Figure 4.8 to relations.

Mapping of Categories (cont.)

Figure 4.8 Two categories (union types): OWNER and REGISTERED_VEHICLE.

Mapping of Categories (cont.)

Figure 9.7 Mapping the EER categories (union types) in Figure 4.8 to relations.

Challenges on EER-to-Relation Mapping

- Can have multiple options available for specialization and generalization
 - Create more relations (tables) with multiple-relation options
 - Create fewer relations (tables) with single-relation options
- Consider implementation complications and performance when considering EER-to-Relation mapping

EER-to-Relation Mapping using ERwin

- Use supertype and subtype instead of superclass and subclass
- Create an identifying relationship between a supertype entity and its subtype entities
- Apply a transform to create an identifying relationship between a supertype entity and its subtype entities
 - Create a simple model
 - Improve query performance
 - Simplify application development and maintenance

EER-to-Relation Mapping using ERwin (cont.)

Example:

Bank ERD with various account types:
Checking, Saving and Loan

Mapping multiple relations with supertype and subtypes

Comments on this design

Before Applying the Transform

After Applying the Transform

EER-to-Relation Mapping using ERwin (cont.)

Example:

Business Party ERD with Organization and individual types

Mapping to multiple relations with a result of "Rolling Down" two subtype relations

Comments on this design

EER-to-Relation Mapping using ERwin (cont.)

Example:

Payment ERD with Check and Credit Card types

Mapping to multiple relations with a result of "Rolling up" a supertype relation

Comments on this design

Relational Mapping Considerations

Normalized and Compact Design

