Assignment 5

Consider the robot shown in Figure 1. You can assume the tool frame being in the center of the wrist (q_w) .

- 1. Compute the spatial manipulator Jacobian as a function of l_0 , l_1 , θ_1 , θ_2 , θ_3 , , θ_4 , θ_5 ,
- 2. Derive all singular configurations of the robotic system. Can the robotic system reach a singular configuration within the joint boundary conditions $\theta_1 = \left[-\frac{pi}{2}, \frac{pi}{2} \right]$, $\theta_2 = \left[-pi, \frac{pi}{4}\right], \ \theta_3 = [0, 0.5], \ \theta_4 = \left[-\frac{pi}{2}, \frac{pi}{2}\right], \ \theta_5 = \left[-\frac{pi}{2}, \frac{pi}{2}\right], \ \text{and} \ \theta_6 = \left[-pi, pi\right]?$
- 3. Which DOF is lost in the singular configuration/configurations? Derive the linearly dependent joint motions. Assume $l_0 = 0.2$ and $l_1 = 0.5$.
- 4. Determine the minimum workspace velocity that can be produced by a unit joint velocity in the configuration $\theta_1 = 0$, $\theta_2 = \frac{pi}{4}$, $\theta_3 = 0.05$, $\theta_4 = \frac{pi}{3}$, $\theta_5 = 0$, $\theta_6 = 0$.

Figure 1 Stanford arm