ONE-PROPORTION Z-TEST (Normal approximation)

	Left-tailed	Right-tailed	Two-tailed
Assumptions	 Observations are independent of the Data should follow a binormal of the Large sample: np̂ ≥ 10 are 	emial distribution	
Hypotheses	$H_0: p \ge p_0$ $H_1: p < p_0$	$H_0: p \le p_0$ $H_1: p > p_0$	$H_0: p = p_0$ $H_1: p \neq p_0$
Test Statistic	$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$		
Rejection Region	$-z_{\alpha}$	z_{lpha}	$-z_{lpha/2}$ $z_{lpha/2}$
Critical Value $(\alpha = 0.05)$	$z_{\alpha} = -1.645$	$z_{\alpha} = 1.645$	$z_{\alpha/2} = \pm 1.96$
Conclusion	Reject H_0 if $z < -1.645$ Otherwise, fail to reject H_0	Reject H_0 if $z > 1.645$ Otherwise, fail to reject H_0	Reject H_0 if $ z > 1.96$ Otherwise, fail to reject H_0
Confidence Interval (2-tailed test)	$\hat{p} \pm z_{\alpha/2} \cdot \sqrt{\frac{p_0(1-p_0)}{n}}$ If H_0 is true, this CI gives the range of likely sample proportions \hat{p} . If \hat{p} falls outside, reject H_0 .		
Confidence Interval (Estimation)	$\hat{p} \pm z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ We are 100(1 – α)% confident that the true population proportion p is within this interval.		

TWO-PROPORTION Z-TEST (Normal approximation)

	Left-tailed	Right-tailed	Two-tailed
Assumptions	Observations are independent		
	Data should follow binomial distribution		
	• Large sample: Typically, n_1 and n_2 should exceed 30		
	• Large sample: $n_i \hat{p}_i \ge 5$ and $n_i (1 - \hat{p}_i) \ge 5$ for $i = 1, 2$ (some newer textbooks use ≥ 10)		
Hypotheses	$H_0: p_1 - p_2 \ge 0$	$H_0: p_1 - p_2 \le 0$	$H_0: p_1 - p_2 = 0$
	$H_1: p_1 - p_2 < 0$	$H_1: p_1 - p_2 > 0$	$H_1: p_1 - p_2 \neq 0$
Test Statistic	$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{p_0(1 - p_0)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}, p_0 = \frac{y_1 + y_2}{n_1 + n_2}$		
Critical Values, Region & Conclusion	Same as one-proportion testing		
Confidence $(\hat{p}_1 - \hat{p}_2) \pm z_{\alpha/2} \cdot \sqrt{p_0(1 - p_0) \left(\frac{1}{n_1} + \frac{1}{n_0}\right)}$		$p_0)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)$	
(2-tailed test)	If H_0 is true, this CI gives the likely range of sample differences $\hat{p}_1 - \hat{p}_2$. If the observed difference falls outside, reject H_0 .		
Confidence Interval		$(\hat{p}_1 - \hat{p}_2) \pm z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}_1(1-p_2)}{n_1}}$	$\frac{ \hat{p}_1 }{n_2} + \frac{\hat{p}_2(\overline{1-\hat{p}_2})}{n_2}$
(Estimation)	We are $100(1-\alpha)\%$ confident that the true difference in population proportions $p_1 - p_2$ is within this interval.		

ONE-SAMPLE T-TEST

	Left-tailed	Right-tailed	Two-tailed
Assumptions	 Observations are independent Population is approximately normal or n ≥ 30 (Central Limit Theorem). Population standard deviation σ is unknown. No significant outliers and is a continuous data 		
Hypotheses	$H_0: \mu \geq \mu_0$	$H_0: \mu \leq \mu_0$	$H_0: \mu = \mu_0$
	$H_1: \mu < \mu_0$	$H_1: \mu > \mu_0$	$H_1: \mu \neq \mu_0$
Test Statistic	$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$, where s is the sample standard deviation		
Critical Value	$t_{\alpha,df}$ with $df = n - 1$	$t_{\alpha,df}$ with $df = n - 1$	$\pm t_{\alpha/2,df}$ with $df = n - 1$
Rejection Region	$-t_{lpha,df}$	$t_{lpha,df}$	$-t_{lpha/2,df}$ $t_{lpha/2}$
Conclusion	Reject H_0 if $t < -t_{\alpha}$ Otherwise, fail to reject H_0	Reject H_0 if $t > t_{\alpha}$ Otherwise, fail to reject H_0	Reject H_0 if $ t > t_{\alpha/2}$ Otherwise, fail to reject H_0
Confidence Interval	$\bar{x} \pm t_{\alpha/2,df} \cdot s/\sqrt{n}$ We are $100(1-\alpha)\%$ confident that the true mean μ lies within this interval. Also, if the null hypothesis $H_0: \mu = \mu_0$ is true, then this interval shows the range of sample means \bar{x} we would expect to observe with $100(1-\alpha)\%$ confidence.		

PAIRED T-TEST

	Left-tailed	Right-tailed	Two-tailed
Assumptions	 Pairs are independent of each other. Differences are approximately normally distributed (or n ≥ 30 by CLT). No significant outliers in the differences. Data is continuous and collected in natural pairs (e.g., before/after, twins, A/B materials). 		
Hypotheses	$H_0: \mu_d \ge 0$ $H_1: \mu_d < 0$	$H_0: \mu_d \le 0$ $H_1: \mu_d > 0$	$H_0: \mu_d = 0$ $H_1: \mu_d \neq 0$
Test Statistic	$t = \frac{\bar{d}}{s_d/\sqrt{n}}$ where \bar{d} is the sample mean of the differences, \bullet s_d is the sample standard deviation of the differences, and \bullet n is the number of pairs.		
Critical Values, Region & Conclusion	Same as one-sample t-test		
Key Differences from One-Sample t-test			

TWO-SAMPLE T-TEST (Independent Samples)

	Left-tailed	Right-tailed	Two-tailed
Assumptions	 The two samples are independent of each other. Data in each group is approximately normally distributed (or n ≥ 30 by CLT). No significant outliers. For Welch's t-test: variances may be unequal. For pooled t-test: equal variances (homogeneity of variances) with pooled standard deviation: 		
	$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$		
Hypotheses	$H_0: \mu_1 - \mu_2 \ge 0 H_1: \mu_1 - \mu_2 < 0$	$H_0: \mu_1 - \mu_2 \le 0 H_1: \mu_1 - \mu_2 > 0$	$H_0: \mu_1 - \mu_2 = 0 H_1: \mu_1 - \mu_2 \neq 0$
	Equal variances (p	pooled t-test) Unequal var	riances (Welch's t-test)
Test Statistic	$t = \frac{\bar{x}_1 - \bar{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_1}}}$	$\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline$	$=\frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$
	Equal variances (p	pooled t-test) Unequal	variances (Welch's t-test)
Degrees of freedom	$df = n_1 + n_2 -$	$2 df = \left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2^2}\right)$	$\left \frac{s_2^2}{n_2} \right ^2 / \left[\frac{\left(s_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(s_2^2/n_2\right)^2}{n_2 - 1} \right]$
t_{α} , Region & Conclusion	Same as one-sample t-test		
Confidence Interval	$(\bar{x}_1 - \bar{x}_2) \pm t_{\alpha/2,df} \cdot SE$ We are $100(1-\alpha)\%$ confident that the true difference in population means $\mu_1 - \mu_2$ lies within this interval.		

F-TEST: COMPARING TWO INDEPENDENT VARIANCES

	Left-tailed	Right-tailed	Two-tailed
Assumptions	• The two samples are independent.		
	• Each population is normally distributed.		
	• Each sample size is at least 30 for robustness.		
Hypotheses	$H_0:\sigma_1^2\geq\sigma_2^2\ H_1:\sigma_1^2<\sigma_2^2$	$H_0: \sigma_1^2 \le \sigma_2^2 H_1: \sigma_1^2 > \sigma_2^2$	$H_0:\sigma_1^2=\sigma_2^2\ H_1:\sigma_1^2 eq\sigma_2^2$
Test Statistic	$F = \frac{s_2^2}{s_1^2}$ (reframe as right-tailed)	$F = \frac{s_1^2}{s_2^2}$	$F = \frac{\text{larger } s^2}{\text{smaller } s^2}$ $(\text{ensure } F \ge 1)$
Degrees of Freedom (df)	$v_1 = n_1 - 1, \qquad v_2 = n_2 - 1$		
Critical Values	F_{α,v_1,v_2}	F_{lpha,v_1,v_2}	$F_{\alpha/2,v_1,v_2}$ and $\frac{1}{F_{\alpha/2,v_2,v_1}}$
Rejection Region	F_R	F_R	F_L F_R
	$F > F_{\alpha, v_1, v_2}$	$F > F_{\alpha, v_1, v_2}$	$F < \frac{1}{F_{\alpha/2, v_2, v_1}}$ or $F > F_{\alpha/2, v_1, v_2}$
Conclusion	Reject H_0 if $F > F_R$ Otherwise, fail to reject H_0	Reject H_0 if $F > F_R$ Otherwise, fail to reject H_0	Reject H_0 if $F < F_L$ or $F > F_R$ Otherwise, fail to reject H_0

CHI-SQUARED (χ^2) TEST

Component	Goodness-of-Fit Test	Test of Independence	
Purpose	Test if observed frequencies match expected proportions in one categorical variable	Test if two categorical variables are independent in a contingency table	
Assumptions	 Data are frequencies (counts), not percentages Categories are mutually exclusive Expected frequency in each category is at least 5 	Same as for goodness-of-fit, applied to contingency table cells	
Hypotheses	H_0 : Proportions (in population) are equal to theoretical values proposed/stated H_1 : Proportions (in population) are not equal to theoretical values proposed/stated	H_0 : The variables are independent H_1 : The variables are dependent or associated	
Test Statistic	$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$	$\chi^2 = \sum \frac{(O_{ij} - E_{ij})^2}{E_{ij}},$ $E_{ij} = \frac{(\text{row total}) \cdot (\text{column total})}{\text{grand total}}$	
Degrees of Freedom	df = k - 1 where k is the number of categories	df = (r-1)(c-1), where r =rows, c =columns	
Critical Value	$\chi^2_{lpha,df}$ from chi-squared table		
Rejection Region	Reject H_0 if $\chi^2 > \chi^2_{\alpha,df}$		
Conclusion	If test statistic falls in rejection region, reject H_0 . Otherwise, fail to reject H_0 .		

Hypothesis Testing Decision Tree

