Problem-304

Problem Statement

- (a) Find the side of a square having the same perimeter as a rectangle with sides *a* and *b*.
- (b) Find the side of a square having the same area as a rectangle with sides a and b.

Solution

- (a) The question could also ask what are the sides of the rectangle having the same perimeter as a rectangle with sides a and b, but has the maximum possible area. From **Problem-263**, we know that the rectangle with the maximum area would be a square. Say the side of the square is x. Then we need 4x = 2(a + b), or $x = \frac{a+b}{2}$. Therefore, the side of the square is the arithmetic mean of the sides of the rectangle.
- (b) The question could also ask what are the sides of the rectangle having the same area as a rectangle with sides a and b, but has the minimum possible preimeter. From **Problem-264**, we know that the rectangle with the minimum perimeter would be a square. We need $x^2 = a \cdot b$, or $x = \sqrt{a \cdot b}$. Therefore, the side of the square is the geometric mean of the sides of the rectangle.

Problem-317

Problem Statement

Prove the inequality between arithmetic and geometric means for n = 4.

Solution

For non-negative integers a, b, c, d, we need to prove

$$\sqrt[4]{a \cdot b \cdot c \cdot d} \leq \frac{a + b + c + d}{4}$$

We make the below two observations, (1) and (2) which we use during the proof.

$$a \cdot b \quad ? \quad \frac{a+b}{2} \cdot \frac{a+b}{2}$$

$$4 \cdot a \cdot b \quad ? \quad (a+b)^2$$

$$0 \quad ? \quad (a-b)^2$$

$$0 \quad \leq \quad (a-b)^2$$

Thus we have

$$\frac{a+b}{2} \cdot \frac{a+b}{2} \ge a \cdot b \tag{1}$$

Similarly,

$$\frac{a+b}{2} \cdot \frac{c+d}{2} \quad ? \quad \frac{a+b+c+d}{4} \cdot \frac{a+b+c+d}{4}$$

Let a + b = x and c + d = y, and we have

$$\frac{x}{2} \cdot \frac{y}{2} \quad ? \quad \frac{x+y}{4} \cdot \frac{x+y}{4}$$

$$4 \cdot x \cdot y \quad ? \quad (x+y)^2$$

$$0 \quad ? \quad (x-y)^2$$

$$0 \quad \leq \quad (x-y)^2$$

Thus we have,

$$\frac{a+b+c+d}{4} \cdot \frac{a+b+c+d}{4} \ge \frac{a+b}{2} \cdot \frac{c+d}{2} \tag{2}$$

Now we perform a sequence of transformations on the four numbers (a,b,c,d). After each transformation, the sum remains a+b+c+d but the product is bigger or equal to $a \cdot b \cdot c \cdot d$.

$$(a,b,c,d) \mapsto \left(\frac{a+b}{2}, \frac{a+b}{2}, c, d\right)$$

In the above transformation, the product increases or remains the same (when a = b) because of (1).

$$\left(\frac{a+b}{2},\frac{a+b}{2},c,d\right) \mapsto \left(\frac{a+b}{2},\frac{a+b}{2},\frac{c+d}{2},\frac{c+d}{2}\right)$$

In the above transformation, the product increases or remains the same (when c = d) because of (1).

$$\left(\frac{a+b}{2},\frac{a+b}{2},\frac{c+d}{2},\frac{c+d}{2}\right) \mapsto \left(\frac{a+b+c+d}{4},\frac{a+b}{2},\frac{a+b+c+d}{4},\frac{c+d}{2}\right)$$

In the above transformation, the product increases or remains the same (when a+b=c+d) because of (2).

$$\left(\frac{a+b+c+d}{4},\frac{a+b}{2},\frac{a+b+c+d}{4},\frac{c+d}{2}\right) \mapsto \left(\frac{a+b+c+d}{4},\frac{a+b+c+d}{4},\frac{a+b+c+d}{4},\frac{a+b+c+d}{4}\right)$$

In the above transformation, the product increases or remains the same (when a+b=c+d) because of (2). Let $\frac{a+b+c+d}{4}=S$. Then from the last transformation, we have

$$a \cdot b \cdot c \cdot d \le S \cdot S \cdot S$$

$$\sqrt[4]{a \cdot b \cdot c \cdot d} \le \frac{a + b + c + d}{4}$$

Problem-320

Problem Statement

Prove the inequality between arithmetic and geometric means for n = 3.

Solution

We shall reduce the case for n=3 to the case for n=4 and use the result from **Problem-317** to finish it off.

For three non-negative integers a, b, c we are asked to prove

$$\sqrt[3]{a \cdot b \cdot c} \le \frac{a + b + c}{3}$$

We shall throw in the geometric mean of the three integers and form a group of four non-negative integers: $(a,b,c,\sqrt[3]{a\cdot b\cdot c})$. From **Problem-317** we know

$$\sqrt[4]{abc} \sqrt[3]{abc} \le \frac{a+b+c+\sqrt[3]{abc}}{4} \tag{1}$$

We note that $\sqrt[4]{abc} \sqrt[3]{abc} = \sqrt[4]{(abc)^1 \cdot (abc)^{\frac{1}{3}}} = \sqrt[4]{(abc)^{\frac{4}{3}}} = \sqrt[3]{abc}$. So, from (1) now we have

$$\sqrt[3]{abc} \le \frac{a+b+c+\sqrt[3]{abc}}{4}$$

$$4\sqrt[3]{abc} \le a+b+c+\sqrt[3]{abc}$$

$$4\sqrt[3]{abc} \le a + b + c + \sqrt[3]{abc}$$

$$\sqrt[3]{a \cdot b \cdot c} \le \frac{a + b + c}{3}$$

Problem-323

Problem Statement

Prove the inequality between arithmetic and geometric means for all integer $n \ge 2$

Solution

For $n \ge 2$ non-negative integers $a_1, a_2, ..., a_n$ we are asked to prove

$$\sqrt[n]{\prod_{k=1}^{n} \alpha_k} \le \frac{\sum_{k=1}^{n} \alpha_k}{n} \tag{1}$$

Proof-1

We can prove (1) for $n=2^m$ where $m\geq 1$ using the transformation idea from **Problem-317**. Say $n\geq 2$, lies in between 2^p and 2^{p+1} . We already know (1) holds for 2^{p+1} numbers; using that, we can use the idea from **Problem-320** to prove it for $2^{p+1}-1$ numbers as well. Applying the idea from **Problem-320** in sequence, starting with $2^{p+1}-1$ numbers and going backwards, we can prove (1) for n.

Proof-2

Let's scale each of the n numbers $\sigma > 0$ times and see what happens to their arithmetic and geometric means. We start off with arithmetic mean:

$$\frac{\sum_{k=1}^{n} \sigma \cdot a_k}{n}$$

$$= \sigma \cdot \frac{\sum_{k=1}^{n} a_k}{n}$$

Let's now look at the modified geometric mean:

$$\sqrt[n]{\prod_{k=1}^{n} \sigma \cdot a_{k}}$$

$$= \sqrt[n]{\sigma^{n} \prod_{k=1}^{n} a_{k}}$$

$$= \sigma \sqrt[n]{\prod_{k=1}^{n} n a_{k}}$$

We see that both arithmetic and geometric means have been scaled by the same factor σ thus (1) holds for $a_k' = \sigma \cdot a_k$, if it holds for a_k .

Let $\sum_{k=1}^n a_k = \psi$. If all a_k 's are not zero, $\psi > 0$. We can now scale a_k 's to get a_k 's such that $a_k' = \frac{n}{\psi} \cdot a_k$. Since scaling numbers by the same amount does not change the relation between their arithmetic and geometric means, if we can show (1) for a_k 's that would be sufficient. Now, observe that $\sum_{k=1}^n a_k' = n$. So, for a_k 's the inequality (1) takes the below form:

$$\sqrt[n]{\prod_{k=1}^n a_k'} \leq 1$$

We shall now try to prove this derived inequality.

- 1. For n=2. We thus have $a_1'+a_2'=2$. If both numbers are not equal to 1, we can let $a_1'=1-\delta$ and $a_2'=1+\delta$ with $\delta>0$. Now the product $a_1'\cdot a_2'=(1-\delta)\,(1+\delta)=1-\delta^2\leq 1$. That is what we needed.
- 2. For n = 3. Now we have $a'_1 + a'_2 + a'_3 = 3$. If all numbers are not equal to 1 (if they are, we are done), one should be less than 1 and another should be

greater than 1. Say $a'_1 < 1$ and $a'_2 > 1$. So, $a'_1 - 1 < 0$ and $a'_2 - 1 > 0$.

$$\begin{aligned} \left(a_{1}'-1\right) & \left(a_{2}'-1\right) < 0 \\ a_{1}'a_{2}'-a_{1}'-a_{2}'+1 < 0 \\ & a_{1}'a_{2}'+1 < a_{1}'+a_{2}' \\ a_{1}'a_{2}'+1+a_{3}' < a_{1}'+a_{2}'+a_{3}' \\ a_{1}'a_{2}'+1+a_{3}' < 3 \\ & a_{1}'a_{2}'+a_{3}' < 2 \end{aligned}$$

We have now back to the first case where we have two non-negative numbers $a_1^\prime a_2^\prime$ and a_3^\prime and they sum to 2. So, we know how to go about the proof henceforth.

3. For n = 4. We have $a'_1 + a'_2 + a'_3 + a'_4 = 4$. With a similar argument to the second case, we arrive at the below inequality:

$$a_1'a_2' + a_3' + a_4' < 3$$

This takes us back to the second case and we know the rest.

For any n > 3, we can use the reducing idea in the second and third cases to go back to our base case, namely the case with n = 2 which we have proved already.

Proof-3

Let's prove an identity. We start off with $(a + b + c)^3$:

$$(a+b+c)^{3}$$

$$= a^{3} + b^{3} + c^{3} + 3a^{2}b + 3ab^{2} + 3b^{2}c + 3bc^{2} + 3c^{2}a + 3ca^{2} + 6abc$$

$$= a^{3} + b^{3} + c^{3} - 3abc + 3a^{2}b + 3ab^{2} + 3abc + 3abc + 3b^{2}c + 3bc^{2} + 3ca^{2} + 3abc + 3c^{2}a$$

$$= a^{3} + b^{3} + c^{3} - 3abc + 3(a+b+c)(ab+bc+ca)$$

We can now rearrange the two sides as follows:

$$\begin{aligned} &a^{3} + b^{3} + c^{3} - 3abc \\ &= (a+b+c)^{3} - 3(a+b+c)(ab+bc+ca) \\ &= (a+b+c)\left[(a+b+c)^{2} - 3(ab+bc+ca)\right] \\ &= (a+b+c)\left(a^{2} + b^{2} + c^{2} - ab - bc - ca\right) \\ &= \frac{1}{2}(a+b+c)\left(2a^{2} + 2b^{2} + 2c^{2} - 2ab - 2bc - 2ca\right) \\ &= \frac{1}{2}(a+b+c)\left[\left(a^{2} - 2ab + b^{2}\right) + \left(b^{2} - 2bc + c^{2}\right) + \left(c^{2} - 2ca + a^{2}\right)\right] \\ &= \frac{1}{2}(a+b+c)\left[(a-b)^{2} + (b-c)^{2} + (c-a)^{2}\right] \end{aligned}$$

We see that for non-negative numbers a, b, c, the right side cannot be negative. So,

$$a^{3} + b^{3} + c^{3} - 3abc \ge 0$$
$$abc \le \frac{a^{3} + b^{3} + c^{3}}{3}$$

Now if we make the replacements: $a = \sqrt[3]{p}$, $b = \sqrt[3]{q}$, $c = \sqrt[3]{r}$, then we have our required inequality between geometric and arithmetic means of three non-negative numbers:

$$\sqrt[3]{p\cdot q\cdot r}\leq \frac{p+q+r}{3}$$

If we have more than 3 numbers for which we need to establish (1), we can always group (and replace the group with the group-sum) some of the numbers so that we end up with three numbers and appeal to our just-established fact.

Problem-326

Problem Statement

Assume that a_1, \ldots, a_n are positive numbers. Prove that

$$\frac{a_1}{a_2} + \frac{a_2}{a_3} + \dots + \frac{a_{n-1}}{a_n} + \frac{a_n}{a_1} \ge n$$

Solution

Conside the below product:

$$\frac{a_1}{a_2} \cdot \frac{a_2}{a_3} \cdot \dots \cdot \frac{a_{n-1}}{a_n} \cdot \frac{a_n}{a_1}$$

Each a_i with $1 \le i \le n$ appears exactly once above and below, so the product evaluates to 1. We thus have:

$$\sqrt[n]{\frac{a_1}{a_2} \cdot \frac{a_2}{a_3} \cdot \dots \cdot \frac{a_{n-1}}{a_n} \cdot \frac{a_n}{a_1}} = 1$$

In other words, the geometric mean of the positive numbers $\frac{a_1}{a_2}$, $\frac{a_2}{a_3}$, ..., $\frac{a_{n-1}}{a_n}$, $\frac{a_n}{a_1}$ is 1. Their arithmetic mean cannot be less than 1. So, we have:

$$\frac{\frac{a_1}{a_2} + \frac{a_2}{a_3} + \dots + \frac{a_{n-1}}{a_n} + \frac{a_n}{a_1}}{n} \ge 1$$

$$\frac{a_1}{a_2} + \frac{a_2}{a_3} + \dots + \frac{a_{n-1}}{a_n} + \frac{a_n}{a_1} \ge n \quad \blacksquare$$

Problem-328

Problem Statement

Find the minimal value of a + b if a and b are nonnegative numbers and $ab^2 = 1$.

Solution

Since the arithmetic mean is at least as big as the geometric mean, we have $\frac{a+b}{2} \geq \sqrt{ab}$ or $a+b \geq 2\sqrt{ab}$; the equal case corresponds to the minimum value of a+b and that happens when a=b. However, since $ab^2=1$, when a+b assumes its minimum value, therefore, when a=b, we have $a^3=1$ or a=1. So, the minimum value of a+b=2.

Problem-330

Problem Statement

Prove the inequality

$$\sqrt[3]{abc} \le \frac{a+2b+3c}{3\sqrt[3]{6}}$$

Solution

We can rearrange the inequality as follows:

$$\sqrt[3]{6 \cdot abc} \leq \frac{a + 2b + 3c}{3}$$
$$\sqrt[3]{a \cdot 2b \cdot 3c} \leq \frac{a + 2b + 3c}{3}$$

So, the inequality in question is just a different form of the inequality for the geometric and arithmetic means of the three (nonnegative) numbers a, 2b, 3c.