Week 9

<u>Task 1</u> Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine <u>the absoloute humidity, the</u> <u>wet-bulb temperature and the mass of water vapour</u> in the air in ClassRoom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Piacenza weather:

Monday 02/12- 20:00 pm:

- Temperature: 7°C
- Humidity: 90%

the humidity ratio = 0.0055

the web-bulb temperature Twb = 6 °C

Task 2 Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a *good* construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

Table 3 Unit Leakage Areas

Construction	Description	A_{ul} , cm ² /m ²
Tight	Construction supervised by air-sealing specialist	0.7
Good	Carefully sealed construction by knowledgeable builder	1.4
Average	Typical current production housing	2.8
Leaky	Typical pre-1970 houses	5.6
Very leaky	Old houses in original condition	10.4

Average quality ->
$$A_{ul}=1.4\frac{cm^2}{m2}$$

Exposed surface = Wall area +roof area $A_{es}=200+144=344~m^2$ $A_L=A_{es}\times A_{ul}=344\times 1.4=481.6~cm^2$

Tcooling =4 °C heating temperature Theating =20 °C

in Brindisi,

 Δ Toooling= 31.1 °C -24 °C = 7.1 °C = 7.1 K

 Δ Theating= 20 °C -(4. 1 °C) = 24.1 °C = 15.9 K

DR = 7.1 °C=7.1 K

Given that IDFheating=0.073Ls*cm2, IDFcooling=0.033Ls*cm2,

Calculate infiltration airflow rate,

```
Qiheating = AL*IDFheating=481.6*0.073= 35.157Ls

Qicooling =AL*IDFcooling= 481.6*0.033 = 15.893Ls

The required miminum whole-building vetilation rate is

Qv=0.05Acf+3.5(Nbr+1)
=0.05*200+3.5*(1+1)
=17Ls

Qi—vheating = Qi, heating+Qv= 35.157+17=52.157Ls

Qi—v, cooling= Qi, cooling+Qv= 15.893+17=32.893Ls

Given that
Csensible=1.23
Clatent=3010
\Delta\omegaCooling=0.0039

q.inf—ventilationcoolingsensible=Csensible*Qi—v, cooling *\DeltaTCooling = 1.23 *32.893*7.1
```

= 1.23 *32.893*7.1 = 287.25 W

q.inf-ventilationcoolinglatent = Clatent * Qi-v cooling * $\Delta\omega$ Cooling = 3010*32.893*0.0039 = 386.13 W

q.inf-ventilationheatinggsensible=Csensible* Qi-v, heating * Δ theating = 1.23 * 52.157 * 15.9 = 1020.034 W