# Lecture 20 – High-Energy Astronomy

- HEA intro
- X-ray astrophysics a very brief run through.
- Swift & GRBs
- 6.4 keV Fe line and the Kerr metric

### Tut 5 remarks

- Generally much better. However:
  - Beam area.
  - $-T_{\text{inst}}$  vs  $T_{\text{zenith}}$
  - Is V significant?
  - $-\arctan(4.04/-1.16)$
  - Faraday rotation

### High-Energy Astronomy

- Means x-rays and gamma rays.
- It's convenient at this end of the spectrum to concentrate on the particle part of the quantum wave-particle duality.
  - So we usually talk about the energy of the photons which make up the radiation, rather than their wavelength or frequency.
  - A convenient energy unit is the electron volt (eV).
  - Confusingly, x-ray fluxes are often cited in ergs.
    - 1 eV ~ 1.6  $\times$ 10<sup>-19</sup> joules ~ 1.6  $\times$ 10<sup>-12</sup> ergs.
  - From E=hv, 1 eV ~ 2.42 × 10<sup>14</sup> Hz.

### High-Energy Astronomy

- X-rays: roughly speaking, from ~100 to ~10<sup>5</sup> eV.
  - We speak of hard (= high energy) vs soft x-rays.
- Gamma: anything higher.
- Physical sources: as the name 'high energy' implies, very energetic events tend to generate xrays and gamma rays.
  - − Thermal radiation if the temperature is >10<sup>6</sup> K − eg:
    - the sun's corona (→ soft x-rays)
    - Black Hole accretion disk (→ hard x-rays)
  - Nuclear fusion (→ soft x-rays)
  - Matter falling into a gravity well.
    - Supernova (→ hard x-rays, gammas)
    - GRB (?) (→ gamma rays)
- It is interesting that radio and x-ray images often follow similar brightness distributions.
  - Because hot plasma → relativistic synchrotron emission.

### X-ray astrophysics

- Most sources appear to be compact previously it
  was thought that there was diffuse emission both
  from the Milky Way and from much greater
  distances; however recent, more sensitive
  telescopes have resolved most of this into sources.
  - Accretion disks
    - X-ray binaries small, nearby
    - AGN large, far away
  - Compact → variable on short time scales.
- Resolved (ie extended, non-compact) sources:
  - mostly clusters x-rays from hot intergalactic gas.

### **Emission processes**

- Thermal must have T ~ millions of kelvin.
  - Bremsstrahlung from optically thin gas, or
  - Black-body radiation from optically thick gas.
- Synchrotron ultra-relativistic electrons needed to get synchrotron at x-ray wavelengths.
- Fluorescence (hence narrow spectral lines)
- Inverse Compton scattering:





### X-ray spectra:

- Thermal: exponential decrease with E.
- Synchrotron, inverse Compton: power-law decrease with E.
- All measured spectra show a fall-off at low E
  - This is due to photoelectric absorption by gas in the line of sight – mostly H.
  - Depends on the column density  $N_{\rm H}$  in atoms cm<sup>-2</sup>.
  - Cutoff energy is (very roughly) ~  $3*10^{-9*}N_H^{0.4}$  keV.

# Some spectral lore: (1) Hardness ratios.

- This is a term you will encounter often in the high-energy world.
  - Add up the counts within energy band 1  $\rightarrow$   $C_1$ ;
  - add up the counts in band  $2 \rightarrow C_2$ ;
  - the hardness ratio is defined as

$$HR = \frac{C_2 - C_1}{C_2 + C_1}$$

- Clearly confined to the interval [-1,1].
- It is a crude but ready measure of the spectral properties of the source.
- Uncertainties are often tricky to calculate.

# Some spectral lore: (2) Photon index.

Suppose a source has a power spectrum,
 ie

$$S(E) = S_0 E^{\alpha}$$

- As we know, α is called the spectral index.
   If we plot log(S) against log(E), we get a straight line of slope α.
- But! Think how we measure a spectrum.
   We have to count photons and construct a frequency histogram so many within energy bin foo, etc.

# Photon frequency histogram



Photon energy

#### Photon index.

• Thus the energy spectrum S(E) and the photon spectrum N(E) are related by

$$S(E) = E \times N(E)$$

· Hence, if

$$S(E) \propto E^{\alpha}$$

then

$$N(E) \propto E^{\alpha-1}$$

Matters aren't helped by the habit to use eV for the photon energy but ergs for the total energy!

 → photon index is always 1 less than the spectral index.

## Relativistic jets – x-ray and radio aspects.



Slowly moving bright object: v << c Radiation is isotropic. – 'Normal' Doppler shift. Object moving at relativistic speeds: Radiation is beamed.

+ sidewards Doppler.

### Relativity?

- The special theory of relativity:
  - effects of motion.
    - Beaming
    - Sidewards Doppler shift
- The general theory of relativity:
  - effects of gravity.
    - Gravitational red shift
    - Time dilation

#### Jet radio emission

Jets are (at least, we think) always symmetrical; but because of relativistic beaming, we only see the jet which is directed towards us (unless both go sideways).



VLA 6 cm radio image. (Courtesy Dept of Astron, U Colorado)

# Cygnus A in x-rays:



### GRBs (Huge thanks to Paul O'Brien for many pictures.)

### History:

- 1963: VELA satellites launched intended to monitor nuclear blasts.
- 1972: VELA archival data on 'non-Earth' detections was examined. → serendipitous discovery of cosmic gamma ray bursts.
  - Indications that burst flux could vary on timescales
     < 1s → source must be small must be time for a physical change to propagate across the detector.</li>
- 1991: BATSE detector of Compton/GRO.
  - Showed that sources were isotropic NOT what was expected.
    - This means they are either very near by or very far away.

# **BATSE Gamma-Ray Bursts**



### History continued

- If bursts are close, one should eventually be able to detect a bias in the fainter tail. As time went on, the 'nearby' hypothesis came to seem less and less likely.
- But, if the bursts are far enough away that they large-scale structure is smeared out, energy production must be gigantic!
- 1996: BeppoSAX launched.
  - Sees about 1 GRB per day.
  - X-ray afterglows also seen.
  - First redshifts measured: average about 1.
- 2004: Swift launched.
  - BAT: wide-angle gamma detector, to detect bursts;
  - XRT: narrow-angle, x-rays, more sensitive.

#### Swift instrumentation



# How much energy in a GRB?



#### What are GRBs? There seem to be 2 sorts:

- 1. Short, faint, hard bursts
- 2. Long, bright, soft bursts



### Long-burst GRBs: fireball-shock model

Jet is so fast that the synchrotron is blue-shifted to gamma!



### Latest GRB history:

- GRB 090423: redshift 8.2 that's huge.
   This breaks the record for the most distant object observed from Earth.
  - Only infrared afterglow seen for this GRB: all the visible light has been absorbed by the thin hydrogen haze between the galaxies.
- Another recent (rather clever) discovery:
  - 'Long' GRBs seem to have very varied light curves.
  - But! There is a transform which brings them all into a common pattern.

# Transformed light curves:



Cheering news, because a common pattern implies common physics.