# UNIVERSIDAD AUTÓNOMA DE MÉXICO Facultad de Ciencias

Autores: Fernanda Villafán Flores Fernando Alvarado Palacios Adrián Aguilera Moreno



Gráficas y Juegos

# Tarea 4

1. Sea G una gráfica no trivial. Demuestre que G es una trayectoria si y sólo si G es un árbol con exactamente dos vértices de grado 1.

 $Demostración: \Longrightarrow)$  Sea G una trayectoria.

Entonces para cualesquiera dos vértices u, v que pertenecen a G, u, v son adyacentes, es decir, u, v son consecutivos.

Sea  $v_t$  el vértice inicial y  $v_q$  el vértice final de la trayectoria.

Así,  $v_t$  y  $v_q$  serán de grado 1 ya que no existe un vértice antes o uno después.

Por lo tanto, existen únicamente 2 vértices en G con grado 1 ya que los demás son internos a la trayectoria.

 $\iff$ ) Sea  $V_G$  el conjunto de vértices de G.

Sean  $v_r$ ,  $v_s$  cualesquiera vértices pertenecientes a  $V_G$  tales que  $v_r$  y  $v_s$  tienen grado 1.

Como G es un árbol, entonces todos los vértices de G están relacionados y tampoco existe ningún ciclo en G. Así, G admite un orden lineal empezando la trayectoria (s.p.g.) por  $v_r$  y finalizando en  $v_s$ .

Por tanto, si u, v son adyacentes entonces u, v son consecutivos y concluimos que G es una trayectoria.

2. (a) Demuestre que cada árbol con grado máximo  $\Delta > 1$  tiene al menos  $\Delta$  hojas.

**Demostración:** Sea G un árbol y sea  $x \in V_G$  tal que  $d(x) = \Delta$  (notar que x no necesariamente es el único que cumple tener grado igual a  $\Delta$ , por lo que se tomará alguno que cumpla esto), entonces x tiene exactamente  $\Delta$  vecinos.

Por la caracterización de árbol, sabemos que G es acíclico y por tanto, los caminos que parten desde x (tienen a x como vértice inicial) hacia algunos de sus  $\Delta$  vecinos no tienen vértices en común que sean distintos de x. En caso contrario, habría 2 trayectorias que tienen inicio en x a las que llamaremos  $w_1$  y  $w_2$ , y además tienen en común al menos un vértice v y por tanto,  $w_1w_2$  es un ciclo!! que está contenido en G.

Luego, como x tiene  $\Delta$  vecinos, entonces podemos tomar al menos  $\Delta$  trayectorias distintas entre ellas tales que terminen en algún vértice  $u_i$   $(1 \le i \le \Delta)$ .

Así, cada  $u_i$  es una hoja de G y como hemos encontrado  $\Delta$  hojas podemos concluir que el árbol G con grado máximo  $\Delta$  tiene al menos  $\Delta$  hojas.

QED

(b) Construya, para cada elección de n y  $\Delta$ , con  $2 \le \Delta < n$ , un árbol de orden n con exactamente  $\Delta$  hojas.

# Solución:

Sea G un árbol.

Usando el resultado anterior, garantizamos que G tiene algún  $x \in V_G$ :  $d(x) = \Delta$ , entonces G tiene al menos  $\Delta$  hojas.

Luego, partícularmente en los árboles de exactamente  $\Delta$  hojas, cada camino  $W_i$  que tenga como vértice inicial a x no tendrá bifurcaciones. Esto es,  $xW_iv_i$  es la única manera de llegar de x a  $v_i$  y además  $W_i$  es una trayectoria (y por definición de trayectoria, no tendrá bifurcaciones).

Como x es vértice inicial de exactamente  $\Delta$  trayectorias  $W_i$ , entonces hay exactamente  $\Delta$  hojas en G.

En resumen, G tendrá exactamente  $\Delta$  vértices de grado 1, a continuación se muestra un ejemplo que trata de ser lo más general posible:



donde los  $v_i$ 's son las hojas, para  $1 \le i \le \Delta$ .

3. Un centro en una gráfica es un vértice u tal que  $\max_{v \in V} d(u, v)$  es mínima. Demuestre que un árbol tiene exactamente un centro o dos centros adyacentes.

**Demostración:** Sea G un árbol.

### Procedemos por contradicción.

Supongamos que G tiene más de un centro tales que no son adyacentes.

Sean  $u, v \in V_G$  tales que u y v no son adyacentes. Esto significa que hay al menos un vértice entre ellos (llamémoslo w).

Por definición de centro, sabemos que:

$$max_{y \in V} d(x, y)$$
 es mínima

En nuestro caso, d(u, v) es mínima.

Pero notemos que d(w, v) < d(u, v)!!!, lo que implica que w está más cerca del vértice v que el vértice u.

Como la contradicción yace de suponer que u y v no son adyacentes, podemos concluir que u y v son adyacentes.

**Observación.** Veamos que G no puede tener más de dos centros adyacentes.

Supongamos que G tiene tres centros adyacentes.

Sean  $w, v, x \in V_G$  tales que w es adyacente a x y x es adyacente a v.

Como vimos anteriormente, tendríamos que d(x, v) < d(w, v) !!!.

Esto contradice que el vértice w sea un centro, ya que encontramos un vértice x tal que su distancia a otro vértice v es menor. La contradicción yace de suponer que G tiene más de dos centros adyacentes.

Por lo tanto, G tiene a lo más dos centros adyacentes.

QED

4. Demuestre o brinde un contraejemplo: Toda gráfica con menos aristas que vértices tiene una componente que es un árbol.

# Demostración: Procedemos por contradicción.

Sea G una gráfica tal que  $|V_G| > |E_G|$ .

Supongamos que todas sus componentes conexas no son árboles.

Esto es,  $G_1, G_2, \ldots, G_n$  componentes conexas de G de donde cada  $G_i$  con  $i \in \{1, 2, \ldots, n\}$  no es un árbol.

Como cada componente conexa de G no es un árbol, entonces tienen ciclos.

Notemos que por hipótesis,  $|V_G| > |E_G|$ . Lo que implica que existe al menos una componente conexa de G, digamos  $G_j$  (con  $j \in \{1, ..., n\}$ ) tal que  $G_j \cong K_1$ .

Por tanto, como  $G_j \cong K_1$  y  $K_1$  no tiene ciclos, la componente conexa  $G_j$  es un árbol !!!.

Lo anterior contradice el hecho de que toda componente conexa de G no sea un árbol, pues si tienen ciclos significa que  $|V_G| = |E_G|$ .

La contradicción yace de suponer que cada componente conexa de  ${\cal G}$  no es un árbol.

Por lo tanto, podemos concluir que existe una componente conexa de G que es un árbol.

QED

5. Un hidrocarburo saturado es una molécula  $C_mH_n$  en la que cada átomo de carbono tiene cuatro enlaces, cada átomo de hidrógeno tiene un enlace, y ninguna sucesión de enlaces forma un ciclo. Demuestre que para cualquier entero positivo m, la molécula  $C_mH_n$  existe sólo si n=2m+2.

#### Demostración: Demostración por inducción sobre m.

• Paso base: m=1

Por definición de hidrocarburo saturado  $C_1k_4 \Longrightarrow 4=2(1)+2$ .

Por lo tanto, para m=1 se cumple que n=2m+2.

- Hipótesis de Inducción: m = k
  - Si  $C_k H_n$ , entonces supongamos n = 2k + 2.
- Paso Inductivo:

Demostraremos para m = k + 1.

Por **Hipótesis de Inducción**, tenemos que  $C_kH_n \Longrightarrow n = 2k + 2$  y por **Paso Base**,  $C_1K_4 \Longrightarrow 4 = 2(1) + 2$ .

Sean r que pertenece a los Naturales sin el 0 y  $C_r$ ,  $C_1$  donde  $C_r$  pertenece a  $C_kH_n$  y  $C_1$  pertenece a  $C_1k_4$  tal que r pertenece a  $\{1, 2, 3, ..., k\}$ .

Si eliminemos 1 hidrógeno a  $C_r$  y  $C_1 \Longrightarrow C_k H_{n-1}$  y  $C_1 k_3$  son iguales a:

$$n-1=2k+1...(1)$$

у

$$3 = 2(1) + 1 \dots (2)$$

Así, uniendo  $C_k H_{n-1}$  y  $C_1 k_3$  mediante los vértices  $C_r$  y  $C_1$ , tenemos que  $C_{k+1} H_r$  sería igual a la suma de (1) y (2). Esto es:

$$n+2=2(k)+2(1)+2 \Longrightarrow n+2=2(k+1)+2 \Longrightarrow r=n+2 \Longrightarrow r=2(k+1)+2$$

Por lo tanto, para  $C_{k+1}H_r$  r = 2(k+1) + 2.

Por lo anterior, podemos concluir que para todo m que pertenece a Naturales sin el cero,  $C_m H_n$  tal que n=2m+2.

QED

6. Demuestre que una sucesión  $(d_1, \ldots, d_n)$  de enteros positivos es la sucesión de grados de un árbol si y sólo si  $\sum_{i=1}^n d_i = 2(n-1)$ .

Demostración: Para este ejercicio veamos las dos implicaciones:

 $\Rightarrow$ ) Dada la sucesión de grados  $(d_1, \dots, d_n)$  de un árbol, entonces  $\sum_{i=1}^n d_i = 2(n-1)$ .

Sabemos que para cualquier gráfica:

$$\sum_{i=1}^{n} d_i = 2|E|$$

Como en un árbol se cumple que |E| = |V| - 1, entonces |E| = n - 1. Por tanto,

$$\sum_{i=1}^{n} d_i = 2(n-1)$$

 $\Leftarrow$ ) Dada una gráfica G donde se cumple que

$$\sum_{i=1}^{n} d_i = 2(n-1)$$

, entonces  $(d_1, \ldots, d_n)$  es la sucesión de grados en un árbol.

Veamos que G no tiene vértices aislados.

En el caso de tenerlos, supongamos sin pérdida de generalidad que  $x \in V_G$  es un vértice aislado. Entonces,  $G - \{x\}$  no contiene vértices aislados y  $|E_{G-\{x\}}| = 2|V_{G-\{x\}}|$ !!

Lo que implica que G contiene como subgráfica inducida a algún ciclo (pues la cantidad de vértices sería de al menos la cantidad de vértices) y se deja de cumplir que

$$\sum_{i=1}^{n} d_i = 2(n-1)$$

<sup>&</sup>lt;sup>1</sup>Prop. 2.2.5 en las notas de clase

De la misma manera, podemos observar que todos los vértices de G no pueden tener al menos grado 2, pues suponer esto nos genera al menos un ciclo e implicaría que

$$\sum_{i=1}^{n} d_i = 2(n)!!!$$

, y claramente  $2n \neq 2(n-1)$ .

Luego, hay exactamente 2 vértices de grado 1 en G, para esto llamemos  $x,y\in V_G$  a los vértices de grado 1. Entonces, en  $G-\{x,y\}$  se cumple que  $\sum_{i=1}^n d_i=2(n-2)$  y al anexarle exactamente  $\{x,y\}$  tendremos que

$$x\sum_{i=1}^{n} d_{i} = 2(n-2) + 2$$

$$= 4n - 4 + 2$$

$$= 4n - 2$$

$$= 2(n-1)$$

En caso contrario, se deja de cumplir lo anterior y por esto se puede garantizar que estos son únicos.

Como G es acíclica (por el argumento dado anteriormente), podemos deducir que G es conexa. De no serlo, habría más de 2 vértices con grado 1 y ya observamos que este no es un caso posible.

Luego, G es un árbol y por el ejercicio 1 de esta tarea tenemos que G es, partícularmente, una trayectoria.

Por lo tanto, podemos concluir que una sucesión  $(d_1, \ldots, d_n)$  de enteros positivos es la sucesión de grados de un árbol si y sólo si  $\sum_{i=1}^n d_i = 2(n-1)$ .

**QED** 

# Puntos Extra

- 1. Para una gráfica conexa G definimos la gráfica de árboles de G,  $\mathcal{T}_G$ , como la gráfica que tiene por vértices a todos los árboles generadores de G, y tal que, si  $S, T \in V_{\mathcal{T}_G}$ , entonces ST es una arista de  $\mathcal{T}_G$  si y sólo si existen aristas  $e \in E_S E_T$  y  $f \in E_T E_S$  tales que (S e) + f = T. Demuestre que  $\mathcal{T}_G$  es conexa.
- 2. Sea T un árbol arbitrario con k+1 vértices. Demuestre que si G es simple y  $\delta \geq k$ , entonces G tiene una subgráfica isomorfa a T.
- 3. Sea  $\mathcal{T}$  una familia de subárboles de un árbol T. Deduzca, por inducción sobre  $|\mathcal{T}|$ , que si cualesquiera dos elementos de  $\mathcal{T}$  tienen un vértice en común, entonces hay un vértice de T que está en todos los elementos de  $\mathcal{T}$ .
- 4. (a) Determine todos los arboles T tales que  $\overline{T}$  también es un árbol.

#### Solución:

- ·) Si  $|V_T| = 1$ , entonces por vacuidad se cumple el enunciado y terminamos.
- ··) Si  $|V_T| > 1$ , entonces sabemos existen  $|V_T| 1$  aristas para T y que a lo más  $\binom{|V_T|}{2}$  si T fuera completa.

Notemos que  $E_{\overline{T}} = {|V_T| \choose 2} - (|V_T| - 1)$  y como queremos que  $\overline{T}$  sea un árbol, entonces se debe cumplir la siguiente igualdad:

$$|V_T| - 1 = {|V_T| \choose 2} - (|V_T| - 1)$$

$$\Leftrightarrow 2 \cdot (|V_T| - 1) = {|V_T| \choose 2}$$

$$\Leftrightarrow 2 \cdot (|V_T| - 1) = \frac{|V_T| \cdot (|V_T| - 1)}{2}$$

$$\Leftrightarrow 4 \cdot (|V_T| - 1) = |V_T| \cdot (|V_T| - 1)$$

$$\Rightarrow |V_T| = 4$$

y del **Ejercicio** 2 **de la Tarea** 3, sabemos que hay 11 gráficas de orden 4 no isomorfas entre sí y sólo 2 de esas son árboles.

De éstas dos últimas, tenemos una es  $P_4$  y la otra es el árbol tal que uno de sus vértices es de grado 3. Pero en este último su complemento no es un árbol.

Luego,  $T = P_4$  y este es la único salvo isomorfismo.

(b) Determine todas las gráficas de orden al menos cuatro tales que la subgráfica inducida por cualesquiera tres de sus vértices es un árbol.

#### Solución:

Veamos que si |V| > 4, se cumple cualquiera de las siguientes condiciones:

- ·) Si la gráfica es incompleta, existen al menos dos vértices que no se conectan mediante una arista y si no existe trayectoria entre estos, entonces existe una "elección" de 3 vértices tales que son inducidos de la gráfica original y no son un árbol.
- ··) Si la gráfica es completa, entonces hay 3 vértices que al inducirlos en la gráfica original forman un 3-ciclo y por tanto, no son un árbol.

De lo anterior la única gráfica que cumple con el enunciado es un 4-ciclo que no tenga como gráfica inducida un 3-ciclo.  $\Box$