Appendix

Bayesian Quadrature with Gaussian Processes

In previous literature, p(x) is assumed to be Gaussian. For the Genz functions, p(x) is uniform. Following Osborne (Osborne, 2010) and Duvenaud¹ we write:

$$Z = \int f(x)p(x)dx,\tag{1}$$

where we have a GP prior over f:

$$f \sim \mathcal{GP}(0, k(\cdot, \cdot)).$$
 (2)

Given samples x_1, \ldots, x_n we can calculate (Rasmussen & Williams, 2005):

$$E_{\mathbf{GP}}[Z|f(x_1),\dots,f(x_n)] = z^{\mathsf{T}}K^{-1}\boldsymbol{f},\tag{3}$$

where $z = [z_1, ..., z_n]^{\top}$ and $z_i = \int k(x, x_i) p(x) dx$, and $\mathbf{f} = (f(x_1), ..., f(x_n))^{\top}$. Sequential Bayesian Quadrature proceeds by finding the point x that minimizes the variance of our estimate of Z:

$$Var_{\mathbf{GP}}[Z|f(x_1), \dots, f(x_n)] = \int \int k(x, x')p(x)p(x')dxdx' - z^{\top}K^{-1}z.$$
 (4)

This does not depend on the values of the function at the points. For a given k(x, x') and p(x), we choose the point x^* :

$$\operatorname{argmax}_{x^*} Var_{\mathbf{GP}}[Z|f(x_1), \dots, f(x_n), f(x^*)]$$
(5)

We will thus also need to calculate this double integral for p(x) uniform.

Let us assume that we use the Gaussian kernel:

$$k(x, x') = exp(-\|x - x'\|^2/2).$$
(6)

For starters, we assume we are in one dimension with p(x) = 1 on the unit interval. Thus we can calculate:

$$z_i = \int_0^1 k(x, x_i) dx \tag{7}$$

$$= \int_0^1 \exp(-\|x - x_i\|^2 / 2) dx, \tag{8}$$

(9)

which is computable using pmvnorm (in the mvtnorm package) in R.

For the double integral

$$\int k(x,x')p(x)p(x')dxdx' \tag{10}$$

$$= \int_0^1 \int_0^1 \exp(-\|x - x'\|^2 / 2) dx dx', \tag{11}$$

(12)

and we have

$$\operatorname{argmin}_{x^*} Var_{\mathbf{GP}}[Z|f(x_1), \dots, f(x_n), f(x^*)] \tag{13}$$

$$= \operatorname{argmin}_{x^*} \int_0^1 \int_0^1 \exp(-\|x - x'\|^2 / 2) dx dx' - z^{*\top} K^{-1} z^*$$
 (14)

$$= \operatorname{argmin}_{x^*} - z^{*\top} K^{-1} z^*, \tag{15}$$

¹https://www.cs.toronto.edu/~duvenaud/talks/intro_bq.pdf

where $z^* = \int_0^1 k(x, x^*) dx$, and Eq. (15) follows as the double integral does not depend on x^* . In practice, although the function values obtained are noise-free, we add a jitter of value 10^{-6} to K when inverting the matrix for numerical stability.

Note that the double integral in the one-dimensional case (although not required when implementing the sequential design) can be computed by noticing that (wol)

$$\int_0^1 \int_0^1 \exp(-\|x - x'\|^2 / 2) dx dx' = \sqrt{\pi} \cdot \operatorname{erf}(1) - 1 + \frac{1}{e} \approx 0.861528,\tag{16}$$

where erf stands for the error function

$$\operatorname{erf}(x) = \frac{1}{\sqrt{\pi}} \int_{-x}^{x} e^{-t^2}.$$
 (17)

Note that for $\mathbf{x}, \mathbf{x}' \in [0, 1]^N$, the integration becomes:

$$\int_{[0,1]^N} \int_{[0,1]^N} \exp(-\|\boldsymbol{x} - \boldsymbol{x}'\|^2 / 2) d\boldsymbol{x} d\boldsymbol{x}' = \left[\int_0^1 \int_0^1 \exp(-\|\boldsymbol{x} - \boldsymbol{x}'\|^2 / 2) d\boldsymbol{x} d\boldsymbol{x}' \right]^N,$$
(18)

which can be computed quickly given the one-dimensional result in Eq. (16).

Analytical Formulae of the Genz Integrals

In our experiment, we tested the BQ with BART algorithm on six Genz integrand families (Genz, 1984), whose integral over $[0,1]^d$ can be readily obtained analytically. Here, we provide the analytical formulae for two Genz families whose derivations require a little more effort than the others, namely the Corner Peak and the Oscillatory integrands. Derivations for the rest are straightforward. Note however that the Gaussian peak family is essentially a Gaussian kernel and does not have an analytically tractable integral; one can use the pmvnorm function in the R package mvtnorm to obtain the numerical values.

OSCILLATORY INTEGRAND FAMILY

For a given dimension $d \in N$, we are interested in deriving the d-dimensional integral

$$I_d = \int_{\boldsymbol{x} \in [0,1]^d} f(\boldsymbol{x}) d\boldsymbol{x},\tag{19}$$

where $u, a \in \mathbb{R}$ are function parameters, $\boldsymbol{x} = (x_1, ..., x_d)^T$ and

$$f(\mathbf{x}) = \cos(2\pi u + a\sum_{i=1}^{d} x_i). \tag{20}$$

Using mathematical induction (by considering all cases) one can show that, for $d \in \mathbb{N}$,

$$I_d = \frac{1}{a^d} \sum_{i=0}^d \binom{d}{i} (-1)^{d-i} \phi_d(2\pi u + na), \tag{21}$$

where

$$\phi_d(\cdot) = \begin{cases} \sin(\cdot) & d \equiv 1 \mod 4, \\ -\cos(\cdot) & d \equiv 2 \mod 4, \\ -\sin(\cdot) & d \equiv 3 \mod 4, \\ \cos(\cdot) & d \equiv 0 \mod 4. \end{cases}$$
(22)

For the Corner Peak family, we proceed as before with the function

$$f(\mathbf{x}) = \left(1 + a\sum_{i=1}^{d} x_i\right)^{-(d+1)},\tag{23}$$

where $a \in \mathbb{R}$ is a parameter. Again using induction, we obtained the following expression

$$I_d = \frac{1}{a^d d!} \sum_{i=1}^d {d-1 \choose i-1} \frac{(-1)^{i-1}}{(5i+1)(5i-4)}.$$
 (24)

Plots of Estimates of the Genz Integrals

CONTINUOUS INTEGRAND FAMILY

Figure 1. Dimension 1

Figure 2. Dimension 2

Figure 3. Dimension 3

Figure 4. Dimension 5

Figure 5. Dimension 10

Figure 6. Dimension 20

CORNER PEAK INTEGRAND FAMILY

Figure 7. Dimension 1

Figure 8. Dimension 2

Figure 9. Dimension 3

Figure 10. Dimension 5

Figure 11. Dimension 10

Figure 12. Dimension 20

DISCONTINUOUS INTEGRAND FAMILY

Figure 13. Dimension 2

Figure 14. Dimension 3

Integral estimates

0.015

0.002

-0.005

200 300 400 500

Number of epochs N

Figure 15. Dimension 5

Figure 16. Dimension 10

Figure 17. Dimension 20

GAUSSIAN PEAK INTEGRAND FAMILY

5

Log number of epochs N

Figure 18. Dimension 1

0.00 0.01 0.02 0.03 0.04 8 Log standard deviation Integral estimates 9

Figure 20. Dimension 3

600 900 Log standard deviation

-10

-15

-20

-25

200 300 400 3 100 Number of epochs N Log number of epochs N

Figure 21. Dimension 5

Figure 19. Dimension 2

Figure 22. Dimension 10

Figure 23. Dimension 20

OSCILLATORY INTEGRAND FAMILY

Figure 24. Dimension 1

Figure 25. Dimension 2

Figure 26. Dimension 3

Figure 27. Dimension 5

Figure 28. Dimension 10

Figure 29. Dimension 20

PRODUCT PEAK INTEGRAND FAMILY

Figure 30. Dimension 1.

Figure 31. Dimension 2.

Figure 32. Dimension 3.

Figure 33. Dimension 5.

Figure 34. Dimension 10.

Figure 35. Dimension 20.

References

Wolfram alpha: Computational intelligence. https://www.wolframalpha.com/. Accessed: 2018-01-23.

Genz, A. Testing multidimensional integration routines. In *Proc. Of International Conference on Tools, Methods and Languages for Scientific and Engineering Computation*, pp. 81–94, New York, NY, USA, 1984. Elsevier North-Holland, Inc. ISBN 0-444-87570-0. URL http://dl.acm.org/citation.cfm?id=2837.2842.

Osborne, M. A. Bayesian Gaussian Processes for Sequential Prediction, Optimisation and Quadrature. PhD thesis, Oxford University, 2010.

Rasmussen, C. E. and Williams, C. K. I. *Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)*. The MIT Press, 2005. ISBN 026218253X.