Лінійні диференціальні рівняння (ЛДР) з постійними коефіцієнтами

Лінійне диференціальне рівняння будь-якого порядку можна одержати з найпростіших міркувань:

ЛДР-1
$$y' + p(x) \cdot y = f(x)$$

ЛДР-2
$$y'' + p_1(x) \cdot y' + p_2(x) \cdot y = f(x)$$

ЛДР-3
$$y''' + p_1(x) \cdot y'' + p_2(x) \cdot y' + p_3(x) \cdot y = f(x)$$
 і т.д.

Якщо функції — коефіцієнти при похідних — постійні (сталі), то одержимо частинний випадок такого виду рівнянь — із сталими коефіцієнтами (a,b,c-const):

ЛДР-1
$$y' + a \cdot y = f(x)$$

ЛДР-2
$$y'' + a \cdot y' + b \cdot y = f(x)$$

ЛДР-3
$$y''' + a \cdot y'' + b \cdot y' + c \cdot y = f(x)$$
 і т.д.

Принцип розв'язку буде показаний на прикладі <mark>ЛДР другого порядку</mark>, але аналогічно так розв'язуються ЛДР будь-якого порядку із сталими коефіцієнтами.

Якщо $f(x) \equiv 0$, то рівняння називається лінійнім однорідним рівнянням.

Якщо $f(x) \neq 0$, то маємо <mark>лінійне неоднорідне рівняння</mark>.

У розширеному курсі ВМ розглядають доведення кількох теорем, що визначають вид, *структуру* розв'язку ЛДР.

Далі наведені основні положення без доведення, і маються на увазі рівняння другого порядку — ЛДР-2.

Теорема. Загальне рішення ЛДР — функція y=y(x) — може бути представлена як сума таких функцій:

 $y_0(x)$ — загального розв'язку ЛДР без правої частини (f(x) = 0, однорідного) і

 $\varphi(x)$ - частинного розв'язку ЛДР з правою частиною ($f(x) \neq 0$, неоднорідного).

Тобто,
$$y(x) = y_0(x) + \varphi(x)$$
, де $y_0'' + a \cdot y_0' + b \cdot y_0 = 0$ і $\varphi'' + a \cdot \varphi' + b \cdot \varphi = f(x)$.

Розв'язання лінійних однорідних диференціальних рівнянь (ЛОДР)

<u>NB</u>. Диференціальні рівняння виду (ЛОДР будь-якого порядку)

$$y^{(n)} + a_1 \cdot y^{(n-1)} + \dots + a_{n-1} \cdot y' + a_n \cdot y = 0$$
, (ОДНОРІДНЕ!)

де a_i $(i=\overline{1,n})$ – const, мають фундаментальну систему розв'язків.

<u>Фундаментальною системою розв'язків ЛОДР-и</u> називають будь-які *п* лінійно незалежних розв'язків наданого ЛОДР.

Нехай $y_1(x), y_2(x), ... y_n(x)$ — розв'язки ЛОДР n-го порядку. Визначник називається визначником $\frac{Bpoнcького}{}$.

$$W(x) = \begin{vmatrix} y_1 & y_2 & \cdots & y_n \\ y'_1 & y'_2 & \cdots & y'_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \end{vmatrix}$$

Якщо W(x) розв'язків $y_1(x), y_2(x), ..., y_n(x)$ тотожно дорівнює нулю, то ці розв'язки лінійно залежні.

Якщо W(x) не нуль ні в якій точці деякого відрізку, то це означає, що розв'язки лінійно незалежні.

Теорема. Якщо $y_1(x), y_2(x), ..., y_n(x)$ — фундаментальна система розв'язків ЛОДР, то його загальний розв'язок можна представити у вигляді <mark>лінійної комбінації лінійно незалежних розв'язків даного ЛОДР:</mark>

$$y_0(x) = C_1 y_1(x) + C_2 y_2(x) + \dots + C_n y_n(x),$$

де $C_1, C_2, ... C_n$ – довільні сталі.

Та ж <u>Теорема</u>. для ЛОДР-2:

Загальний розв'язок ЛДР-2 без правої частини (ЛОДР) — функція $y_0 = y_0(x)$

– може бути представлена у вигляді <mark>лінійної комбінації лінійно</mark>

<mark>незалежних розв'язків даного ЛОДР</mark>:

$$y_0(x) = C_1 \cdot y_1(x) + C_2 \cdot y_2(x)$$

Отже, загальний розв'язок ЛДР-2 із сталими коефіцієнтами:

$$y(x) = \frac{y_0(x)}{\varphi(x)} + \frac{\varphi(x)}{\varphi(x)} = \frac{C_1 \cdot y_1(x) + C_2 \cdot y_2(x)}{\varphi(x)} + \frac{\varphi(x)}{\varphi(x)}$$

Розділимо розв'язання ЛДР на два етапи:

$${f A}$$
 — розв'язання ЛДР без правої частини (ЛОДР), результат — функція $y_0(x) = C_1 \cdot y_1(x) + C_2 \cdot y_2(x)$

В - розв'язання ЛДР з правою частиною, результат – функція $\varphi(x)$.

Розв'яжемо рівняння $y'' + a \cdot y' + b \cdot y = 0$ (A)

$$y'' + a \cdot y' + b \cdot y = 0 \quad (A)$$

Розв'язок будемо шукати у виді $y = e^{kx}$, де k - дійсне або комплексне число. Пам'ятаємо, що всі похідні цієї функції відрізняються тільки сталим множником, тобто похідна n-ого порядку: $y^{(n)} = k^n e^{kx}$.

Підставив e^{kx} у рівняння, одержимо

$$e^{kx}(k^2+ak+b)=0.$$

Відомо, що $e^{kx} \neq 0$, а коефіцієнти a,b-const, тоді знаходження фундаментальної системи розв'язків рівняння (А) зводиться до розв'язку алгебраїчного рівняння:

$$k^2 + ak + b = 0.$$

Це рівняння називається характеристичним рівнянням ЛДР-2.

Характеристичне рівняння, як алгебраїчне рівняння 2-го степеню, завжди має 2 кореня (дійсних або комплексних).

При розв'язку характеристичного рівняння 2-го степеню можливі такі випадки:

$k_1 \neq k_2$	Корені характеристичного рівняння $k_1 \neq k_2$ - ∂ ійсні і різні, тоді ЛОДР (A) має 2 лінійно незалежних частинних розв'язки $y_1 = e^{k_1 x}, y_2 = e^{k_2 x}.$
	Загальний розв'язок ЛОДР (A) : $y_0(x) = C_1 e^{k_1 x} + C_2 e^{k_2 x}.$
$k_1 = k_2$	Корені характеристичного рівняння дійсні, кратні, тобто $k=k_1=k_2$ - дійсний корінь кратності 2. Тоді дійсному кореню k кратності 2 відповідає 2 лінійно незалежних розв'язки ЛОДР (A): $y_1=e^{kx}, y_2=x\cdot e^{kx}.$ Загальний розв'язок ЛОДР (A) : $y_0(x)=C_1e^{kx}+C_2xe^{kx}.$
$k_{1,2} = \alpha \pm i\beta$	Корені характеристичного рівняння — $комплексно$ — $сполучені$. Нехай $k_1 = \alpha + i\beta, k_2 = \alpha - i\beta$. Тоді комплексно-сполученим кореням відповідають два частинних лінійно незалежних розв'язки ЛОДР (A): $y_1 = e^{\alpha x} \cos \beta x, y_2 = e^{\alpha x} \sin \beta x$ Загальний розв'язок ЛОДР (A): $y_0(x) = C_1 e^{\alpha x} \cos \beta x + C_2 e^{\alpha x} \sin \beta x.$

<u>Зауваження</u>. Якщо розв'язують ЛОДР більш високих порядків, то різниця буде у кількості коренів характеристичного рівняння і функцій у фундаментальній системі.

ПРИКЛАД

Записати загальний розв'язок ЛОДР, якщо відомі корні характеристичного рівняння:

$$k_1 = k_2 = 1 + i$$
, $k_3 = k_4 = 1 - i$, $k_5 = k_6 = k_7 = 2$, $k_8 = 0$.

Корені характеристичного рівняння 1-4 комплексно-сполучені другої кратності ($\alpha = 1, \beta = 1$). Відповідні лінійно незалежні розв'язки:

$$y_1 = e^x \cos x, y_2 = e^x \sin x, y_3 = xe^x \cos x, y_4 = xe^x \sin x.$$

Корні характеристичного рівняння 5-7 дійсні 3-й кратності. Лінійно незалежні розв'язки:

$$y_5 = e^{2x}$$
, $y_6 = xe^{2x}$, $y_7 = x^2e^{2x}$.

Корінь характеристичного рівняння 8 дійсній, не кратний.

$$y_8 = e^{0x} = 1$$

Загальний розв'язок диференціального рівняння:

$$y_0(x) = C_1 e^x \cos x + C_2 e^x \sin x + x(C_3 e^x \cos x + C_4 e^x \sin x) +$$

$$+C_5e^{2x}+C_6xe^{2x}+C_7x^2e^{2x}+C_8$$
.

В Розв'яжемо рівняння

$$y'' + a \cdot y' + b \cdot y = f(x)$$
 (B)

Тепер нас цікавить частинний розв'язок даного ЛДР-2 з правою частиною — функція $\varphi(x)$.

Метод її пошуку залежить від виду функції f(x) - правої частини ЛДР.

B1. Якщо f(x) має спеціальний вид, то частинний розв'язок $\varphi(x)$ знаходять методом невизначених коефіцієнтів.

Права частина спеціального виду:

$$f(x) = P_n(x) \cdot e^{\alpha x} \cdot \cos \beta x + Q_m(x) \cdot e^{\alpha x} \cdot \sin \beta x$$

Тут $P_n(x)$, $Q_m(x)$ – поліноми відповідно n і m – arepsilon0 порядків, α і β - числа.

На прикладах буде показано, що під визначення <mark>правої части спеціального виду</mark> підходить велика кількість функцій.

Схема розв'язку:

- ✓ Знайти корені характеристичного рівняння і записати розв'язок ЛОДР (без правої частини) $y_0(x)$ (випадок (A)).
- ✓ Визначити і записати характеристики правої часті спеціального виду. До них відносяться три числа: $N=max\{n, m\}$; α ; β .
- ✓ Скласти число $\lambda = \alpha + i\beta$ і порівняти його з коренями характеристичного рівняння.

Якщо немає коренів $k=\lambda$, то задати число r=0,

Якщо ϵ один корінь $k=\lambda$, то задати r=1,

Якщо коренів $k=\lambda$ два, то r=2 і т.д.

Іншими словами, число r - це кратність кореню виду $\alpha + i\beta$.

✓ Розв'язок $\varphi(x)$ будемо шукати у виді, подібному виду правої части.

$$\varphi(x) = (S_N(x) \cdot e^{\alpha x} \cdot \cos \beta x + T_N(x) \cdot e^{\alpha x} \cdot \sin \beta x) \cdot x^r$$

Тут $S_N(x)$ і $T_N(x)$ — повнії поліноми з невизначеними коефіцієнтами. Якщо вид для $\varphi(x)$ складений, то у ньому залишається знайти тільки невідомі/невизначені коефіцієнти поліномів, всі інші параметри вже визначені. \P

ПРИКЛАДИ правих частин спеціального виду і відповідних частинних розв'язків.

$$\varphi(x) = (S_N(x) \cdot e^{\alpha x} \cdot \cos \beta x + T_N(x) \cdot e^{\alpha x} \cdot \sin \beta x) \cdot x^r$$

① f(x) = 12; характеристики правої часті: N=0; $\alpha=0$; $\beta=0$.

 $\Psi u c \pi o \lambda = \alpha + i \beta = 0.$

Дійсно, поліном нульового порядку це число, $e^{0x} = 1$; $\cos 0x = 1$.

Другого доданку немає, тому що $\sin 0x = 0$.

За знайденими характеристиками складаємо:

$$\varphi(x) = (A \cdot e^{0x} \cdot \cos 0x + B \cdot e^{\alpha x} \cdot 0) \cdot x^r$$
, το στο $\varphi(x) = A \cdot x^r$,

степінь r залежить від існування і кратності коренів характеристичного рівняння.

$$\varphi(x) = (S_N(x) \cdot e^{\alpha x} \cdot \cos \beta x + T_N(x) \cdot e^{\alpha x} \cdot \sin \beta x) \cdot x^r$$

②
$$f(x) = 12x$$
; характеристики правої часті: $N=1$; $\alpha=0$; $\beta=0$.

$$\Psi u c \pi o \lambda = \alpha + i \beta = 0.$$

Маємо неповний поліном першого порядку, решта – як у прикладі ①.

По знайденим характеристикам складаємо:

$$\varphi(x) = (S_N(x) \cdot e^{\alpha x} \cdot \cos \beta x + T_N(x) \cdot e^{\alpha x} \cdot \sin \beta x) \cdot x^r$$

$$\varphi(x) = \left((Ax + B) \cdot e^{0x} \cdot \cos 0x + (Cx + D) \cdot e^{\alpha x} \cdot 0 \right) \cdot x^r,$$
 тобто $\varphi(x) = (Ax + B) \cdot x^r$.

₹Незважаючи на те, що права частина ЛДР – неповний поліном, у розв'язку обов'язково брати повні поліноми відповідного порядку.

$$\varphi(x) = (S_N(x) \cdot e^{\alpha x} \cdot \cos \beta x + T_N(x) \cdot e^{\alpha x} \cdot \sin \beta x) \cdot x^r$$

$$(3)$$
 $f(x) = 3e^{-x}$; характеристики правой части $N=0$; $\alpha = -1$; $\beta = 0$.

$$\Psi u c \pi o \lambda = \alpha + i \beta = -1.$$

$$\varphi(x) = (A \cdot e^{-x} \cdot \cos 0x + B \cdot e^{-x} \cdot 0) \cdot x^r, \text{ a fo } \varphi(x) = (A \cdot e^{-x}) \cdot x^r.$$

$$f(x) = x^2 \cos 2x$$
, характеристики правої части $N=2$; $\alpha=0$; $\beta=2$.

$$\Psi u c \pi o \lambda = \alpha + i \beta = 2i$$
.

$$\varphi(x) = (S_N(x) \cdot e^{\alpha x} \cdot \cos \beta x + T_N(x) \cdot e^{\alpha x} \cdot \sin \beta x) \cdot x^r$$

$$\varphi(x) = \left((Ax^2 + Bx + C) \cdot e^{0x} \cdot \cos 2x + (Dx^2 + Ex + F) \cdot e^{0x} \cdot \sin 2x \right) \cdot x^r, \text{ a fo}$$

$$\varphi(x) = \left((Ax^2 + Bx + C) \cdot \cos 2x + (Dx^2 + Ex + F) \cdot \sin 2x \right) \cdot x^r.$$

Невизначені коефіцієнти знаходять, підставивши розв'язок $\varphi(x)$ і його похідні у задане ЛДР виду (В).

теорема. Якщо права частина ЛДР складається з суми правих частин спеціального виду (з різними характеристиками), то його розв'язок можна знайти як суму розв'язків, де кожний відповідає одному з доданків.

Тобто якщо $f(x) = \sum_{i=1}^n f_i(x)$, то у силу лінійності рівняння, $\varphi(x) = \sum_{i=1}^n \varphi_i(x)$

ПРИКЛАДИ

① Нехай $f(x) = \sin 3x - x \cos x$, ця права частина спеціального виду складається з двох доданків.

Розглянемо характеристики кожного доданку окремо.

$$\varphi(x) = (S_N(x) \cdot e^{\alpha x} \cdot \cos \beta x + T_N(x) \cdot e^{\alpha x} \cdot \sin \beta x) \cdot x^r$$

$$f_1(x) = \sin 3x \qquad N = 0; \quad \alpha = 0; \qquad \varphi_1(x) = (A\cos 3x + B\sin 3x)x^{r_1}$$

$$\beta = 3.$$

$$f_2(x) = -x\cos x \qquad N = 1; \quad \alpha = 0; \qquad \varphi_2(x) = ((Cx + D)\cos x + (Ex + F)\sin x)x^{r_2}$$

$$\beta = 1.$$

Якщо характеристики α і β не однакові, треба розв'язувати ЛДР окремо для кожного доданку: $f_1(x) = \sin 3x$ і $f_2(x) = -x \cos x$, потім одержані розв'язки додати.

Розглянемо характеристики кожного доданку окремо.

$$\varphi(x) = (S_N(x) \cdot e^{\alpha x} \cdot \cos \beta x + T_N(x) \cdot e^{\alpha x} \cdot \sin \beta x) \cdot x^r$$

$$f_1(x) = xe^x \qquad N=1; \ \alpha=1; \ \beta=0.$$

$$f_2(x) = -2e^x \qquad N=0; \ \alpha=1; \ \beta=0.$$

$$\varphi(x) = (Ax + B)e^x x^r$$

 α і β однакові, а $N=max\{n, m\}=1$, тому треба розв'язувати ЛДР для об'єднаної правої частини спеціального виду $f(x)=(x-2)e^x$.

B2. Якщо f(x) має неспеціальний вид, то частинний розв'язок $\varphi(x)$ може бути знайдений методом варіації довільних сталих.

На відміну від випадку **В1** це універсальний метод, який можна застосувати для правої частини будь-якого виду.

Схема розв'язку:

- ✓ Знайти корені характеристичного рівняння і записати розв'язок ЛОДР (без правої частини) $y_0(x)$ (випадок (A)).
- ✓ Загальний розв'язок даного ЛДР-2 $\varphi(x)$ будемо шукати у виді, подібному виду $y_0(x)$, але вважаємо, що $C_1 = C_1(x)$, $C_2 = C_2(x)$ функції (тимчасово).

Отже,

$$y(x) = C_1(x) \cdot y_1 + C_2(x) \cdot y_2$$

де y_1 , y_2 – фундаментальна система розв'язків ЛДР виду (A).

✓ Функції $C_1 = C_1(x)$, $C_2 = C_2(x)$ визначаються через їх похідні. Для похідних C_1' ; C_2' можна одержати таку систему:

$$\begin{cases} C_1' y_1 + C_2' y_2 = 0 \\ C_1' y_1' + C_2' y_2' = f(x) \end{cases}$$

Система має єдиний розв'язок, тому що її визначник - визначник Вронського ($W \neq 0$).

✓ Після розв'язку системи одержимо ДР-1, з відокремлюваними змінними:

$$C_1' = \frac{dC_1}{dx} = F_1(x)$$
 i $C_2' = \frac{dC_2}{dx} = F_2(x)$,

з яких визначимо функції $C_1(x)$, $C_2(x)$.

- ✓ Підставимо у розв'язок $y(x) = C_1(x) \cdot y_1 + C_2(x) \cdot y_2$ знайдені функції $C_1(x)$; $C_2(x)$. У такому розв'язку можна буде виділити $y_0(x)$ і $\varphi(x)$.
- Зверніть увагу метод В1 невизначених коефіцієнтів набагато простіший,
 ніж В2 варіації довільних сталих, тому, що В1 не пов'язаний з інтегруванням.

Тому не треба для правої частини спеціального виду використовувати **B2**, незважаючи на його універсальність.

Зауваження. Розв'язок ЛДР більш високих порядків приводить до системи більшого розміру для визначення C_1' ; $C_2' \dots C_n'$:

$$\begin{cases} C'_1 y_1 + C'_2 y_2 + \dots + C'_n y_n = 0 \\ C'_1 y'_1 + C'_2 y'_2 + \dots + C'_n y'_n = 0 \\ C'_1 y''_1 + C'_2 y''_2 + \dots + C'_n y''_n = 0 \\ \dots \\ C'_1 y_1^{(n-1)} + C'_2 y_2^{(n-1)} + \dots + C'_n y_n^{(n-1)} = f(x) \end{cases}$$

ПРИКЛАД. Знайти загальний розв'язок ЛДР: $y'' + \frac{y'}{x} = \frac{1}{x^2}(x \neq 0)$

1. Знайдемо загальний розв'язок ЛОДР: $y'' + \frac{y'}{x} = 0$;

ДР-2, немає у, тому заміна y' = z(x); тоді $z' + \frac{z}{x} = 0$ ДР-1, тип 1.

Відокремлюємо змінні $\frac{dz}{z} = -\frac{dx}{x}$; і інтегруємо $\ln|z| = -\ln|x| + \ln c$

$$y'(x) = \frac{C_1}{x}$$

Звідси знову відокремлювання змінних і інтегрування

 $y(x) = C_1 \ln |x| + C_2$ - одержуємо загальний розв'язок ЛОДР.

2. Загальний розв'язок ЛДУ шукаємо у виді (метод варіації довільних сталих)

$$y(x) = C_1(x) \ln |x| + C_2(x),$$

де $C_1(x)$ і $C_2(x)$ - невідомі функції, які треба визначити.

3. Для визначення цих функцій складемо систему рівнянь:

$$\begin{cases} C_1' \cdot \ln x + C_2' \cdot 1 = 0 \\ C_1' \frac{1}{x} + 0 = \frac{1}{x^2} \end{cases}$$

3 неї знаходимо: $C_1'(x) = \frac{1}{x}$, $C_2'(x) = -\frac{1}{x} \ln x$.

Проінтегруємо ДР-1 для функцій $C_1(x)$, $C_2(x)$:

$$C_1(x) = \ln|x| + \tilde{C}_1; \quad C_2(x) = -\int \frac{\ln x}{x} dx = -\frac{\ln^2|x|}{2} + \tilde{C}_2$$

4. Підставимо $C_1(x)$ і $C_2(x)$ у загальний розв'язок:

$$y(x) = C_1(x) \ln |x| + C_2(x)$$

Та одержимо загальний розв'язок ЛДР:

$$y(x) = (\ln|x| + \tilde{C}_1) \cdot \ln|x| + \left(-\frac{\ln^2|x|}{2} + \tilde{C}_2\right)$$

Або, після перетворень,

$$y(x) = \tilde{C}_1 \cdot \ln|x| + \tilde{C}_2 + \frac{1}{2}\ln^2|x|,$$

де $y(x) = \widetilde{C}_1 \ln |x| + \widetilde{C}_2$ - загальний розв'язок ЛОДУ,

 $\varphi(x) = \frac{1}{2} \ln^2 |x|$ - частинний розв'язок ЛДР.