

Transformaciones de Intensidad y Filtrado Espacial

Funciones Básicas

Introducción

Las técnicas de dominio espacial operan directamente sobre los píxeles de una imagen, a diferencia, por ejemplo, del dominio de la frecuencia en el que las operaciones se realizan sobre la transformada de Fourier de una imagen en lugar de en la propia imagen.

Basics

Los procesos de dominio espacial se basan en la expresión:

$$g(x, y) = T[f(x, y)]$$

Donde f(x, y) es una imagen de entrada, g(x, y) es la imagen de salida y T es un operador sobre f definido sobre una vecindad del punto (x.y)

- Normalmente, la vecindad es rectangular, centrada en (x₀, y₀), y mucho mas pequeño en tamaño que la imagen.
- El proceso que ilustra la siguiente figura consiste en mover el centro de la vecindad de un píxel a otro, y aplicar el operador T a los píxeles de la vecindad para obtener un valor de salida en ese lugar.
- Así, para cualquier ubicación específica (x₀, y₀), el valor de la imagen de salida g en esas coordenadas es igual al resultado de aplicar T a la vecindad con origen en (x₀, y₀) en f.

La vecindad más pequeña posible es de tamaño 1×1 . En este caso, g depende sólo del valor de f en un único punto (x, y) y T en la Ec. g(x, y) = T[f(x, y)] se convierte en una función de transformación de intensidad (también llamada gray-level, o mapeo) de la forma s = T(r) donde r denota la intensidad de f en cualquier punto (x, y) y s la intensidad de g.

Funciones de transformación de Intensidad. Función Thresholding

Las transformaciones de intensidad son una de las técnicas más sencillas de procesamiento de imágenes.

Como introducción a las transformaciones de intensidad, consideremos la siguiente figura, que muestra tres tipos básicos de funciones utilizadas frecuentemente en el procesamiento de imágenes: lineal (transformaciones negativas y transformaciones de identidad), logarítmicas (transformaciones logarítmicas y logarítmicas inversas) y ley de potencia (transformaciones de enésima potencia y enésima raíz).

Algunas transformaciones de intensidad básicas y la apariencia de sus curvas.

NEGATIVOS DE IMÁGENES

 El negativo de una imagen con niveles de intensidad en el rango [0, L - 1] se obtiene utilizando la función de transformación del negativo mostrada en la Fig. anterior, que tiene la forma

$$s = L - 1 - r$$

NEGATIVOS DE IMÁGENES

 Invertir los niveles de intensidad de una imagen digital de esta manera produce el equivalente a un negativo fotográfico. Este tipo de procesamiento se utiliza, por ejemplo en la mejora de los detalles blancos o grises incrustados en las regiones oscuras de una imagen, especialmente cuando las zonas negras tienen un tamaño dominante.

Ejemplo.

La imagen original es una mamografía digital que muestra una pequeña lesión. A pesar de que el contenido visual es el mismo en ambas imágenes, a algunas personas les resulta más fácil analizar los detalles del tejido mamario utilizando la imagen negativa.

En escala de grises, áreas claras se tornan oscuras y viceversa. Para imágenes a color, los colores son reemplazados por su color complementario. Así, áreas rojas se tornan cian, las verdes en magenta, y azules en amarillo, y viceversa.

