Übungsklausur

- 1. Für welche $n \in IN$ gilt die Ungleichung
- a) $\frac{1}{7n-3} \le \frac{1}{11n+8}$,
- b) $3^n \le 4n$?
- 2. Untersuchen Sie die folgenden Reihen auf Konvergenz
- a) $\sum_{n=1}^{\infty} \frac{n^2+5}{2n^3-1}$,
- b) $\sum_{n=1}^{\infty} \frac{n \cdot \sin n}{2^n}$.
- 3. Zeigen Sie für $n \ge 1$ die Ungleichung

$$\frac{1}{n+1} \le \ln (n+1) - \ln n \le \frac{1}{n}$$
.

- **4.** Geben Sie für die Funktion $f(x) = \sqrt{\ln(x^3)-1}$ einen möglichst großen Definitionsbereich an und differenzieren Sie sie dort.
- 5. Berechnen Sie die Integrale
- a) $\int_{0}^{2\pi} \sin x \cdot \cos x \, dx.$
 - b) $\int x^5 e^{-x^3} dx$.
- 6. Skizzieren Sie den Graphen der Funktion

$$f(x) = \frac{\ln x}{x^2} \quad (x > 0).$$

Geben Sie $\lim_{x \to 0}$, $\lim_{x \to \infty} f(x)$ und alle Extremwerte von f an.

Es wird das richtige Bearbeiten der Hälfte der Aufgaben in ca. zwei Stunden erwartet. An Hilfsmitteln sind das Kurzmanuskript und beliebige handschriftliche Notizen zugelassen.