1 三角比

1.1 正弦・余弦・正接

2つの三角形が相似なとき,

$$\frac{BC}{AB} =$$

$$\frac{BC}{AB} = \qquad \qquad , \frac{AC}{AB} =$$

$$,\frac{BC}{AC} =$$

 $\angle C=90^\circ$ の直角三角形において、辺の比

$$\frac{\mathrm{BC}}{\mathrm{AB}}, \frac{\mathrm{AC}}{\mathrm{AB}}, \frac{\mathrm{BC}}{\mathrm{AC}}$$

の値は、∠A の値のみによって決まる.

以上のことから ...

上図のように、鋭角の1つを θ 、各辺をx,y,rとする. 先に見た通り,

$$\frac{y}{r}, \frac{x}{r}, \frac{y}{r}$$

の値は θ の大きさのみで決まる.

$\frac{y}{r} =$	
$\frac{x}{r} =$	
$\frac{y}{x} =$	

問題

以下の図形の $\sin \theta, \cos \theta, \tan \theta$ の値を求めよ.

(1)

(2)

1.2 三角比の表の利用

三角比の表を使ってみよう.

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$
0°	0.0000	1.0000	0.0000
1°	0.0175	0.9998	0.0175
2°	0.0349	0.9994	0.0349
3°	0.0523	0.9986	0.0524
4°	0.0698	0.9976	0.0699
5°	0.0872	0.9962	0.0875
6°	0.1045	0.9945	0.1051
7°	0.1219	0.9925	0.1228
8°	0.1392	0.9903	0.1405
9°	0.1564	0.9877	0.1584
10°	0.1736	0.9848	0.1763
:	:	:	:
45°	0.7071	0.7071	1.0000
46°	0.7193	0.6947	1.0355
47°	0.7314	0.6820	1.0724
48°	0.7431	0.6691	1.1106
49°	0.7547	0.6561	1.1504
:	:	:	:

次の値を求めよ.

- (1) $\sin 6^{\circ}$
- $(2) \cos 8^{\circ}$
- (3) $\tan 10^{\circ}$

以下の θ のおおよその値を三角比を用いて求めよ.

問題

三角比の表を用いて以下のおおよその値を求めよ.

- $(1) \sin 25^{\circ}$
- (2) $\cos 67^{\circ}$
- $(3) \tan 38^{\circ}$

以下の θ のおおよその値を三角比を用いて求めよ.

(1)

(2)

1.3 三角比の活用

文章問題を解いてみよう.

(1) 木の根本から水平に $10~\mathrm{m}$ 離れた地点に立って木の先端を見上げると、水平面とのなす角が 21° であった.目の高さを $1.6~\mathrm{m}$ として、木の高さを求めよ.ただし、小数第 $2~\mathrm{d}$ 位を四捨五入せよ.

(2) 地上からの高さ 20 m の地点 A で地上の場所 B を見下ろしたら、その角は下の図のように水平面に対して 32° であった. B は、A の真下の地点 C から何 m 離れているか. 1m 未満を四捨五入して求めよ.

- (3) 傾斜角 19° の坂をまっすぐに $100~\mathrm{m}$ 登る. このとき, 以下の 問いに $1\mathrm{m}$ 未満を四捨五入して答えよ.
 - (a) 鉛直方向には何 m 上がることになるか.

(b) 水平方向には何 m 進ことになるか.

(4) 車椅子用に屋外に設置するスロープについて、その勾配は $\frac{1}{15}$ 以下にするという基準がある.

スロープの基準を 1° 単位で設定する場合,この基準を満たすには、傾斜角は何度以下にしなければならないか.ここで、勾配とは、水平方向に1進ときに鉛直方向に上がる高さを表す.

2 三角比の相互関係

2.1 三角比の相互関係

- 相互関係 —

(1)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$(2) \sin^2 \theta + \cos^2 \theta = 1$$

$$(3) 1 + \tan^2 \theta = \frac{1}{\cos^2 \theta}$$

証明しよう.

of>

(1) について

三角比の定義から,

$$\frac{y}{r} = \frac{x}{r} = \frac{y}{r} = \frac{y}{r} = \frac{y}{r} = \frac{y}{r}$$

なので,

$$x =$$
, $y =$ $\cdots (*)$

$$\therefore \tan \theta =$$

(2) について

上図の三角形において, 三平方の定理より,

この式に (*) 代入して

$$\therefore \sin^2 \theta + \cos^2 \theta =$$

- (3) について
- (2) の式の辺々を $\cos^2 \theta$ で割ると、

ここで (1) より
$$an heta =$$
 なので、

相互関係を用いて、1つの三角比から他の三角比を求めてみよう.

(1) θ は鋭角とする. $\sin\theta=\frac{2}{3}$ のとき, $\cos\theta, \tan\theta$ の値を求めよ. <Ans>

$$\sin^2\theta + \cos^2\theta = 1 \, b \, ,$$

$$\cos^2\theta = 1 - \sin^2\theta$$

=

ここで, $0^{\circ} < \theta < 90^{\circ}$ なので,

$$\cos \theta =$$

また,
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 から,
$$\tan \theta =$$

(2) θ は鋭角とする. $\cos\theta=rac{1}{3}$ のとき, $\cos\theta, an\theta$ の値を求めよ.

(3) θ は鋭角とする. $\tan \theta = 2$ のとき, $\cos \theta$, $\tan \theta$ の値を求めよ.

$2.2 90^{\circ} - \theta$ の三角比

上の図から,

$$\sin \theta =$$

$$\cos \theta =$$

$$\tan\theta =$$

また,

$$\sin(90^{\circ} - \theta) =$$

$$\cos(90^{\circ} - \theta) =$$

$$\tan(90^{\circ} - \theta) =$$

よって, 90° — θ の三角比は, θ の三角比を用いて以下のように表すことができる.

$$90^{\circ} - \theta$$
 の三角比 $\sin(90^{\circ} - \theta) =$
 $\cos(90^{\circ} - \theta) =$
 $\tan(90^{\circ} - \theta) =$

この関係式を用いて、ある三角比を別の角の三角比で表してみよう.

- $(1) \sin 53^{\circ}$
- $(2) \cos 86^{\circ}$
- $(3) \tan 43^{\circ}$

本当に成り立っているのかを三角比の表で確認してみよう.

以下の()に適する鋭角の角度を入れよ.

$$(1) \sin 64^\circ = \cos()$$

$$(2) \cos 34^\circ = \sin()$$

(3)
$$\tan 29^{\circ} = \frac{1}{\tan()}$$

以下の三角比を 45° 以下の三角比で表せ.

 $(1) \sin 59^{\circ}$

(2) $\cos 78^{\circ}$

(3) $\tan 81^{\circ}$

3 三角比の拡張

3.1 $0^{\circ} \le \theta \le 180^{\circ}$ への拡張

鋭角でしか考えることができなかった三角比を, 鋭角以外でも 考えることのできるように拡張しよう.

半径 r 上の円上の点を $\mathbf{P}(x,y)$ とする. x 軸の正の向きと OP のなす角を θ とし、三角比を以下のように定義.

$$\sin \theta = \frac{y}{r}, \cos \theta = \frac{x}{r}, \tan \theta = \frac{y}{x}$$

座標で定義することで, $0^{\circ} \le \theta \le 180^{\circ}$ での三角比を定義できる.

この定義を用いて, 120°の三角比を求めてみよう.

 $(1) \sin 120^{\circ}$

 $(2) \cos 120^{\circ}$

(3) $\tan 120^{\circ}$

三角比の値は、三角形の大きさ (円の半径の大きさ) に依らず決まので、r=1 として考えることが多い. (これを単位円という) 単位円を用いて、下の表を埋めてみよう.

θ	0°	30°	45°	60°	90°	120°	135°	150°	180°
$\sin \theta$									
$\cos \theta$									
$\tan \theta$									

三角比についてまとめてみる.

単位円で考えると、点 P の座標 (x,y) は

$$x =$$
, $y =$

また, 点 P は半円上にあることから,

$$\leq y \leq \qquad , \qquad \leq x \leq$$

なので, $0^{\circ} \le \theta \le 180^{\circ}$ において,

$$\leq \sin \theta \leq$$
, $\leq \cos \theta \leq$

 $\tan \theta =$ なので, $\tan \theta$ は直線 OP の_____

3.2 更なる拡張 $(+\alpha)$

同様にして 360° まで拡張することもできる. 単位円で考えてみよう.

θ	0°	30°	45°	60°	90°	120°	135°	150°	180°	210°	225°	240°	270°	300°	315°	330°
$\sin \theta$																
$\cos \theta$																
$\tan \theta$																

$3.3 \quad 180^{\circ} - \theta$ の三角比

復習

θ	0°	30°	45°	60°	90°	120°	135°	150°	180°
$\sin \theta$									
$\cos \theta$									
an heta									

上の表から天下り的に性質を見つけよう.

$$\sin(180^{\circ} - \theta) =$$

$$\cos(180^{\circ} - \theta) =$$

$$\tan(180^{\circ} - \theta) =$$

以下の三角比を鋭角の三角比で表せ.

$$(1) \sin 124^{\circ} =$$

(2)
$$\cos 134^{\circ} =$$

(3)
$$\tan 157^{\circ} =$$

以下の値を, 三角比の表を用いて求めよ

 $(1) \sin 159^{\circ}$

(2) $\cos 178^{\circ}$

 $(3) \tan 151^{\circ}$

3.4 三角比の等式

 $0^{\circ} \leq \theta \leq 180^{\circ}$ のとき, 次の等式を満たす θ の値を求めよ.

$$(1) \sin \theta = \frac{1}{2}$$

$$(4) \cos \theta = -\frac{1}{2}$$

$$(2) \cos \theta = \frac{1}{\sqrt{2}}$$

$$(5) \sin \theta = 0$$

$$(3) \sin \theta = \frac{\sqrt{3}}{2}$$

(6)
$$\tan \theta = 1$$

3.5 三角比の不等式

 $0^{\circ} \leq \theta \leq 180^{\circ}$ のとき, 次の等式を満たす θ の値の範囲を求めよ.

$$(1) \sin \theta > \frac{1}{2}$$

$$(4) \cos \theta \le -\frac{1}{2}$$

$$(2) \cos \theta > \frac{1}{\sqrt{2}}$$

(5)
$$\sin \theta \ge 1$$

$$(3) \sin \theta \le \frac{\sqrt{3}}{2}$$

(6)
$$\tan \theta < 1$$

3.6 直線の傾きと an heta

下の図のように、x 軸の正の部分から、反時計回りに直線まで測った角度を直線と x 軸の正の向きとのなす角という.

(1) 直線 y=xと x軸の正の向きとのなす角を求めよ.

(4) 直線 y=-x とのなす鋭角が 30° になる直線の方程式を求めよ.

(3) 直線 y=x と直線 $y=\sqrt{3}x$ のなす鋭角を求めよ.

(2) 直線 $y = -\sqrt{3}x$ と x 軸の正の向きとのなす角を求めよ.

3.7 相互関係

復習

- 相互関係 -

- (1)
- (2)
- (3)

 $0^\circ \le \theta \le 180^\circ$ とする. $\sin \theta, \cos \theta, \tan \theta$ のうち, 1 つが次 の値をとるとき, 他の 2 つの値を求めよ.

$$(1) \sin \theta = \frac{1}{3}$$

(4)
$$\tan \theta = -2$$

 $(3) \cos \theta = -\frac{1}{3}$

$$(2) \cos \theta = \frac{3}{5}$$

4 角の拡張

4.1 拡張

角を負の世界へ拡張しよう.

平面上で, 点 O を中心として半直線 OP を回転させる. このとき, 半直線 OP のことを<u>動径</u>

動径の最初の位置である半直線 OX のことを始線

上図のように、反時計回りに測った回転の角を「正の角」 時計回りに測った回転の角を「負の角」という.

問題

次の動径を図示せよ.

- $(1) 260^{\circ}$
- $(2) 420^{\circ}$
- $(3) -45^{\circ}$
- $(4) 750^{\circ}$
- $(5) -240^{\circ}$
- (6) 1080°

問題

(1) 45° の動径と同じ位置にある角度を正, 負それぞれ 2 つずつあげよ.

角度 θ に対し動径の位置は、_____。回転するごとに一致する.

4.2 弧度法

- 定義 (弧度法) ----

半径 r, 弧長 l に対し,

$$\theta = \frac{l}{r} \ (rad)$$

と定義する.

単位 (rad) はラジアンと読む. 省略することが多い.

ラジアンに円の大きさには関係しないので、半径 1 で考えると便利である.

例

360° を弧度法で表す.

問題

度数法で表された角度を弧度法で表せ.

 $(1) 30^{\circ}$

 $(2) 120^{\circ}$

 $(3) 270^{\circ}$

下の図に弧度法で角度を書き入れよう.

問題

次の角度を $0 \le \theta < 2\pi$ の弧度法で表せ.

(1) 3π

(2) $-\frac{1}{4}\pi$

 $(3) 45^{\circ}$

(4) 495°

4.3 扇形

弧度法の定義より,

$$\theta = \frac{l}{r} \ (rad)$$

なので,

弧長 l =

次に, 円の面積 πr^2 に対して, 扇形の面積を考える. 円 1 周 2π に対し, 扇形は角度 θ 分であるので, 扇形の面積 S は

$$S=\pi r^2\times$$

=

問題

以下の扇形の弧長lと面積Sを求めよ.

$$(1) ~ 半径~4, 中心角~\frac{1}{2}\pi$$

$$(2)$$
 半径 2 , 中心角 $\frac{7}{6}\pi$

$$(3)$$
 半径 3 , 中心角 $\frac{5}{3}\pi$