LUNDS TEKNISKA HÖGSKOLA **MATEMATIK**

TENTAMENSSKRIVNING Tredimensionell vektoranalys 2016-01-09 kl 8-10

INGA HJÄLPMEDEL. Lösningarna skall vara försedda med ordentliga motiveringar.

1. Låt K vara den kropp som beskrivs av de tre olikheterna

$$x + 2z \le 4$$
, $z \ge 0$, $x^2 + y^2 \le 1$.

Betrakta vektorfältet

$$\mathbf{F} = (x + 2xy, 2z - y^2, z).$$

- a) Formulera divergenssatsen för F och kroppen K. (0.2)
- b) Beräkna flödet av F ut genom den totala begränsningsytan till K. (0.4)
- c) Beräkna flödet av \boldsymbol{F} upp genom ytan $x+2z=4,\,x^2+y^2\leq 4.$ (0.4)
- 2. Betrakta planet π : x+z=1. Låt kurvan γ vara en cirkel i planet π med radie 1 och centrum i punkten (a, b, c), och negativt orienterad sett från origo.

a) Är
$$\mathbf{u} = (y, x, x^2 + y^2)$$
 ett potentialfält i \mathbb{R}^3 ? (0.2)

b) Beräkna

Beräkna
$$\int_{\gamma}y\,dx+x\,dy+(x^2+y^2)\,dz$$
 för $(a,b,c)=(1,0,0).$ (0.4)

c) Vad blir

$$\int_{\gamma} y \, dx + x \, dy + \left(x^2 + y^2\right) dz$$

för en godtycklig punkt (a, b, c) på planet π ? (0.4)

LYCKA TILL!