Development of an Outdoor Multi Agent Robot Toolkit at the UF Autonomy Park

James W. Cross and Warren E. Dixon¹
University of Florida

AIAA Region II Student Conference, April 3-4, 2025

Copyright © by James W. Cross
Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

University of Florida Autonomy Park

- Support multi-agent outdoor robotics development
- > 75x27x18 meter netted enclosure

(3) Freefly Astro

(20) Custom¹ Multirotor

[1] "Custom" refers to lab-built guadcopters assembled using a variety of off-the-shelf parts.

(2) Clearpath Husky

(1) Unitree B1

Research Objectives

- Research group standardization for working with 30+ robots
- Develop a toolkit for common functions
- Prove out the toolkit with a representative experiment

Project Goals

- Build confidence in state feedback information
 - Justify RTK-GPS
 - Multirotor aircraft altitude challenges
- Toolkit development
 - Automatic frame conversion in ROS2
 - Nonholonomic to holonomic command conversion
 - Visualization and data logging
 - Prove out a workflow to run herding experiments

Outdoor Localization

- Motion capture systems are unsuitable
- RTK-GPS (Real-Time Kinematic Global Positioning System)
 - A base station at a surveyed point broadcasts GPS corrections
 - CSRS-PPP used to survey
 - Emlid Reach RS3 (950g) & M2 (35g)

RTK-GPS Receiver Location	$\sigma_{E,avg}$ (m)	$\sigma_{N,avg}$ (m)	$\sigma_{U,avg}$ (m)
Base Station (RS3)	0.100	0.120	0.280
Clearpath Husky (RS3)	0.014	0.025	0.029
Unitree GO1 (M2)	0.071	0.066	0.162

Localization Challenges

- UAV Altitude Control
 - RTK-GPS unsuitable for direct altitude measurement (even fused with IMU data)
 - Inconsistent behavior as weather changes
 - AMSL pressure and local barometric pressure discrepancy
 - Downwards facing single-beam LIDAR
 - Barometer corrections (planned)

Herding

Who can Benefit

- Aerospace UAV control [1]
- Defense Missile Intercept Problems [2]
- Agriculture Herding Livestock [3]

- Many problems benefit from Heterogenous Robotic Systems
 - Offer sensing and coordination advantages
 - Aerial and ground robots are well suited to help one another

Herding Controller

$$u \triangleq k_2 e_y - \left(\frac{k_1^2}{g} + g\right) e_x \tag{1}$$

$$e_x \triangleq x - x_g$$

$$e_y \triangleq y_d - y$$

Herding Controller

Toolkit Development

Automatic Frame Conversion	Command Conversion	Common Experiment Functions
 Robot Operating System 2 (ROS2) TF library Convert GPS data in world frame {G} to Autonomy Park frame {L} Attach frame information to ROS2 pose messages 	 Nonholonomic to holonomic command conversion Allows ground and air robots to receive one type of command message (ROS2 cmd_vel) 	 Simple integration function for coarse robot simulation Real time visualization Data logging to .csv files Distance between every agent (Euclidian norm) Interaction dynamics (fear-based) Levy Walk (pareto distribution)

$$\left[v_{xG}, v_{yG}\right] \Longrightarrow \left[v_{xL}, v_{yL}\right]$$

$$[v_x, v_y] \Longrightarrow [v, \omega]$$

Herding Toolkit Benefits

Separates development and test hardware

Standardizes the group's convention when implementing experiments

Included visualization tools help monitor controller performance

Simulated Results

N-agent compatible

Implementation based on Adaptive Control work by C. Nino [4]

ROS2-in-the-loop Simulation

- > Euler integration for position updates
- > RVIZ environment to verify trajectories

Limitations and Next Steps

- Only compatible with 2D problems, projected cylinders
- Multirotor aircraft have limited control in flight

- Run an experiment
- Incorporate additional robots

References

- [1] Chipade, Vishnu S, and Panagou, D. "Aerial Swarm Defense Using Interception and Herding Strategies." IEEE Transactions on Robotics, Vol. 39, 2023, pp. 3821–3837. https://doi.org/10.1109/TRO.2023.3292514.
- [2] Licitra, R. A., Neale, A. J., Doucette, E. A., and Curtis, J. W. Adversarial Aircraft Diversion and Interception Using Missile Herding Techniques. No. 10982, 2019, pp. 335–343. https://doi.org/10.1117/12.2519148.
- [3] Long, N. K., Sammut, K., Sgarioto, D., Garratt, M., and Abbass, H. A. "A Comprehensive Review of Shepherding as a Bio Inspired Swarm-Robotics Guidance Approach." IEEE Transactions on Emerging Topics in Computational Intelligence, Vol. 4, 2020, pp. 523–537. https://doi.org/10.1109/TETCI.2020.2992778.
- [4] Nino, C. F., Patil, O. S., Philor, J. N., Bell, Z. I., and Dixon, W. E. Deep Adaptive Indirect Herding of Multiple Target Agents with Unknown Interaction Dynamics.

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS