BIOS 660/BIOS 672 (3 Credits): Probability and Statistical Inference I

Jianwen Cai

https://sakai.unc.edu/portal/site/bios660-bios672-3-credits
Notes 16

Inequalities	2
Recall: Chebychev Inequality	3
Corollaries	4
Special cases	5
Functional inequalities	6
Convex functions	
Jensen's Inequality	
Jensen's Inequality (proof)	9
Example	10
Young's Inequality	
Hölder's inequality	
Corollaries	
Application of Cauchy-Schwartz:	
Minkowski's inequality	15
Order Statistics (C-B, Section 5.4; Gut, Chapter IV) Distribution of the Maximum	16 17
Distribution of the Minimum	
Distribution of the Minimum Example Order Statistics r th order statistic	
Distribution of the Minimum Example Order Statistics rth order statistic cont.	
Distribution of the Minimum Example Order Statistics rth order statistic cont. Example	
Distribution of the Minimum Example . Order Statistics . rth order statistic . cont . Example . Distribution of the median .	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	

Modes of Convergence	32
Notes	
Convergence in Distribution	
Convergence in Distrib. cont	35
Other modes of convergence	
Example 1	
Example 2	
Example 3	
Example 4	
Relations	41
Relationships among convergence modes	42
In probability and distribution	
cont	
cont	
r th moment and in Probability $\dots \dots \dots$	
Convergence properties	47
Convergence in probability	48
Slutsky's Theorem	
Example	50
Example	51
Convergence in distribution	52
Example	53
The Delta Method	54
Approximate mean and variance	55
Example	
The Delta method	57
Example	
Second-order Delta method	

Inequalities 2 / 59

Recall: Chebychev Inequality

Let X be a random variable and let g(x) be a non-negative function. Then for any r > 0,

$$P[g(X) \ge r] \le \frac{\mathsf{E}g(X)}{r}$$

Proof:

$$\mathsf{E}g(X) = \int_{-\infty}^{\infty} g(x) \, f_X(x) \, dx$$

$$\geq \int_{\{x:g(x)\geq r\}} g(x) \, f_X(x) \, dx$$

$$\geq r \int_{\{x:g(x)\geq r\}} f_X(x) \, dx$$

$$= r \, P\{g(X) \geq r\}$$

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 3 / 59

Corollaries

1. Suppose X is a non-negative and g is a positive, non-decreasing function, with $\mathsf{E}[g(X)] < \infty$. Then

$$P\{X \geq a\} \leq \frac{\mathsf{E}(g(X))}{g(a)}$$

2. Suppose g is a non-negative symmetric function, increasing on \mathbb{R}^+ , with $\mathsf{E}[g(X)] < \infty$. Then

$$P\{|X| \ge a\} \le \frac{\mathsf{E}[g(X)]}{g(a)}$$

Proof: $P\{X \ge a\} = P\{g(X) \ge g(a)\}$, so the results follow from the inequality on the previous slides.

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 4 / 59

Special cases

Provided that the appropriate expectations exist, for a > 0:

$$X \ge 0: \qquad P\{X \ge a\} \le \frac{\mathsf{E}(e^{tX})}{e^{ta}} \tag{1}$$

$$X \in \mathbb{R}: \qquad P\{|X| \ge a\} \le \frac{\mathsf{E}(|X|)}{a} \tag{2}$$

$$X \ge 0: \qquad P\{X \ge a\} \le \frac{\mathsf{E}(e^{tX})}{e^{ta}} \tag{1}$$

$$X \in \mathbb{R}: \qquad P\{|X| \ge a\} \le \frac{\mathsf{E}(|X|)}{a} \tag{2}$$

$$X \in \mathbb{R}, \ p > 0: \qquad P\{|X| \ge a\} \le \frac{\mathsf{E}(|X|^p)}{a^p} \tag{3}$$

$$\sigma^2 = \mathsf{Var}(X): \qquad P\{|X - \mathsf{E}X| \ge a\sigma\} \le \frac{1}{a^2} \tag{4}$$

$$\sigma^2 = \operatorname{Var}(X): \qquad P\{|X - \mathsf{E}X| \ge a\sigma\} \le \frac{1}{a^2} \tag{4}$$

Note:

- (1) is called Chernoff bound, useful when the mgf is easier to compute than the cdf.
- (3) is sometimes called Markov's inequality.
- (4) is sometimes called Chebychev's inequality.

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 5 / 59

Functional inequalities

First a couple of useful items:

• L^p spaces:

The space called L^p consists of all random variables whose p^{th} absolute power is integrable, i.e., $E(|X|^p) < \infty$.

Triangle inequality:

For two real or complex numbers a and b,

$$|a+b| \le |a| + |b|$$

Proof: HW

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 6 / 59

Convex functions

Definition: Let I be an interval on \mathbb{R} . A function $g:I\to R$ is *convex* on I if for any $\lambda\in[0,1]$, and any points x and y in I

$$g[\lambda x + (1 - \lambda)y] \le \lambda g(x) + (1 - \lambda)g(y)$$

Properties:

- A differentiable function *g* is convex iff it lays above all its tangents.
- ullet A twice differentiable function g is convex iff its second derivative is non-negative.

Definition: Let I be an interval on \mathbb{R} . A function $g:I\to R$ is *concave* on I if -g is convex on I.

Examples:

- $g(x) = x^2$ is a convex function for all x.
- $g(x) = \log(x)$ is concave for x > 0.

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 7 / 59

Jensen's Inequality

Let $X \in L^1$ and g(x) be a convex function where $\mathsf{E}[g(X)]$ exists. Then,

$$\mathsf{E}[g(X)] \geq g[\mathsf{E}X]$$

with equality if and only if for every line a + bx tangent to g(x) at $x = \mathsf{E} X$, P[g(X) = a + bX] = 1.

Examples:

$$\begin{split} g(x) &= x^2 &\rightarrow & \mathsf{E}(X^2) \geq \mathsf{E}^2(X) \\ g(x) &= 1/x, \; x > 0 &\rightarrow & \mathsf{E}(1/X) \geq 1/\mathsf{E}(X), \; X > 0 \end{split}$$

Note: The direction of the inequality is reversed if g is concave.

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 8 / 59

Jensen's Inequality (proof)

Let l(x) = a + bx be the tangent line to g(x) at $g(\mathsf{E}X)$. Then

$$\begin{array}{rcl} \mathsf{E}g(X) & \geq & \mathsf{E}(a+bX) \\ & = & a+b\mathsf{E}X \\ & = & l(\mathsf{E}X) \\ & = & g(\mathsf{E}X) \end{array}$$

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 9 / 59

Example

Let $a_1, \ldots, a_n > 0$. Then

$$\left(\frac{1}{n}\sum_{i=1}^{n}\frac{1}{a_{i}}\right)^{-1} \leq \left(\prod_{i=1}^{n}a_{i}\right)^{1/n} \leq \frac{1}{n}\sum_{i=1}^{n}a_{i}$$

Proof: Let X be a rv such that $P(X = a_i) = 1/n$. Since $\log(x)$ is concave,

$$\log\left(\prod_{i=1}^{n} a_i\right)^{1/n} = \frac{1}{n} \sum_{i=1}^{n} \log(a_i)$$

$$= \mathsf{E}(\log(X))$$

$$\leq \log(\mathsf{E}(X))$$

$$= \log\left(\frac{1}{n} \sum_{i=1}^{n} a_i\right)$$

The proof of the second inequality is similar.

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 10 / 59

Young's Inequality

Let a, b > 0 and p, q > 1 with 1/p + 1/q = 1. Then

$$\frac{a^p}{p} + \frac{b^q}{q} \ge ab$$

With equality only if $a^p = b^q$.

Proof: Consider

$$g(a) = \frac{1}{p}a^p + \frac{1}{q}b^q - ab$$

To minimize g(a), differentiate and set equal to 0:

$$\frac{d}{da}g(a) = 0 \to a^{p-1} - b = 0 \to a = b^{1/(p-1)}.$$

Since $g(b^{1/(p-1)}) = 0$, the result follows.

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 11 / 59

Hölder's inequality

Suppose $X \in L^p$, $Y \in L^q$ where p, q > 1 and 1/p + 1/q = 1. Then

$$\mathsf{E}|XY| \le [\mathsf{E}|X|^p]^{1/p} \; [\mathsf{E}|Y|^q]^{1/q}$$

with equality if $X^p = cY^q$ for some $c \in \mathbb{R}$.

Proof: Let

$$a = \frac{|X|}{(\mathsf{E}|X|^p)^{1/p}} \quad \text{ and } \quad b = \frac{|Y|}{(\mathsf{E}|Y|^q)^{1/q}}$$

By Young's Inequality,

$$\frac{|X|^p}{p\mathsf{E}|X|^p} + \frac{|Y|^q}{q\mathsf{E}|Y|^q} \geq \frac{|XY|}{(\mathsf{E}|X|^p)^{1/p}(\mathsf{E}|Y|^q)^{1/q}}$$

The result follows by taking the expected value of both sides and noting that the expected value of the left-hand side is 1.

BIOS 660/BIOS 672 (3 Credits)

Notes 16 – 12 / 59

Corollaries

• Cauchy-Schwartz inequality: Special case where p = q = 2.

$$\mathsf{E}|XY| \leq [\mathsf{E}|X|^2]^{1/2} [\mathsf{E}|Y|^2]^{1/2} = \sqrt{\mathsf{E}[X^2]\mathsf{E}[Y^2]}$$

with equality if X = cY for some $c \in \mathbb{R}$.

• Lyapunov's inequality: For $1 \le r \le s$ and $X \in L^s$,

$$[\mathsf{E}|X|^r]^{1/r} \le [\mathsf{E}|X|^s]^{1/s}$$

Proof:

Apply Hölder's inequality to $|X|^r$ with Y=1 and p=s/r.

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 13 / 59

Application of Cauchy-Schwartz:

Let ρ represent the correlation between two rvs X and Y, ie,

$$\rho = \frac{\mathsf{Cov}(X,Y)}{\sqrt{\,\mathsf{Var}(X)\,\,\mathsf{Var}(Y)}}.$$

Then, $|\rho| \leq 1$, with equality iff $Y - \mu_Y = c(X - \mu_X)$ for some $c \in \mathbb{R}$.

Proof: By the Cauchy-Schwartz Inequality,

$$\mathsf{E}|(X - \mu_X)(Y - \mu_Y)| \le \{\mathsf{E}(X - \mu_X)^2\}^{\frac{1}{2}} \{\mathsf{E}(Y - \mu_Y)^2\}^{\frac{1}{2}}.$$

Squaring both sides, we obtain

$$(\operatorname{Cov}(X,Y))^2 \leq \sigma_X^2 \sigma_Y^2.$$

Thus, $|\rho| \leq 1$.

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 14 / 59

Minkowski's inequality

Suppose $X, Y \in L^p$, $p \ge 1$. Then $(X + Y) \in L^p$ and

$$[\mathsf{E}|X+Y|^p]^{1/p} \le [\mathsf{E}|X|^p]^{1/p} + [\mathsf{E}|Y|^p]^{1/p}$$

Proof:

For p=1, the proof follows almost immediately from the triangle inequality (HW). The case p>1 is more complicated. Consider

$$\begin{split} \mathsf{E}|X+Y|^p &= \mathsf{E}\left(|X+Y|\,|X+Y|^{p-1}\right) \\ &\leq \mathsf{E}\left(|X|\,|X+Y|^{p-1}\right) + \mathsf{E}\left(|Y|\,|X+Y|^{p-1}\right) \\ &\leq \left[\mathsf{E}|X|^p\right]^{1/p} \, \left[\mathsf{E}|X+Y|^{(p-1)q}\right]^{1/q} \\ &+ \left[\mathsf{E}|Y|^p\right]^{1/p} \, \left[\mathsf{E}|X+Y|^{(p-1)q}\right]^{1/q} \end{split}$$

where the last row follows by Hölder's inequality with 1/p + 1/q = 1.

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 15 / 59

Order Statistics (*C-B*, Section 5.4; *Gut*, Chapter IV)

16 / 59

Distribution of the Maximum

The *cdf* of $Z = \max(Y_1, \dots, Y_n)$ is

$$F_Z(z) = Pr\{Z \le z\}$$

$$= Pr\{Y_1 \le z, Y_2 \le z, \dots, Y_n \le z\}$$

$$= \prod_{j=1}^n Pr\{Y_j \le z\} \quad \text{(indep)}$$

$$= F_Y(z)^n \quad \text{(ident. distrib.)}$$

and thus the density (or pmf) is:

$$f_Z(z) = nF_Y(z)^{n-1}f_Y(z)$$

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 17 / 59

Distribution of the Minimum

Similarly, consider $W = \min(Y_1, Y_2, \dots, Y_n)$.

$$\begin{array}{lcl} 1 - F_W(w) & = & Pr\{W > w\} \\ & = & Pr\{Y_1 > w, Y_2 > w, \dots, Y_n > w\} \\ & = & \prod_{j=1}^n Pr\{Y_j > w\} & \text{(indep)} \\ & = & (1 - F_Y(w))^n & \text{(ident. distrib)} \end{array}$$

Thus

$$F_W(w) = 1 - (1 - F_Y(w))^n$$

and the corresponding density (or pmf) is:

$$f_W(w) = n(1 - F_Y(w))^{n-1} f_Y(w)$$

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 18 / 59

Example

Suppose $Y_i \sim exp(\lambda)$:

$$f_Y(y) = \lambda e^{-\lambda y}$$
 for $y > 0$, $1 - F(y) = e^{-\lambda y}$

Maximum:

$$f_Z(z) = n(1 - e^{-\lambda z})^{n-1} \lambda e^{-\lambda z} = n\lambda e^{-\lambda z} (1 - e^{-\lambda z})^{n-1}$$

Minimum:

$$f_W(w) = n(e^{-\lambda w})^{n-1} \lambda e^{-\lambda w} = (n\lambda)e^{-n\lambda w}$$

 \Rightarrow exponential with parameter $n\lambda$

The next obvious statistic is the range defined as the difference of the maximum and the minimum, but to get its distribution we need the joint distribution of the maximum and the minimum.

BIOS 660/BIOS 672 (3 Credits)

Notes 16 – 19 / 59

Order Statistics

Let Y_1, Y_2, \dots, Y_n be *iid* with *pdf* $f_Y(x)$.

Order the observations; i.e.

$$Y_{(1)} \le Y_{(2)} \le \dots \le Y_{(n)}$$

The $Y_{(i)}$ are called *order statistics*. For example, the *minimum* is $Y_{(1)}$ and the *maximum* is $Y_{(n)}$.

We are interested in finding the distribution of an arbitrary $Y_{(i)}$, as well as the joint distributions of sets of $Y_{(i)}$ s and $Y_{(i)}$ s.

e.g. Range = $Y_{(n)} - Y_{(1)}$

or interquartile range, or joint of median and interquartile range, etc....

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 20 / 59

rth order statistic

We need to find the density of $Y_{(r)}$ at a value y:

Consider 3 intervals $(-\infty, y)$, [y, y + dy), $[y + dy, \infty)$. The number of observations in each of the intervals follows the tri-nomial distribution

$$f(s_1, s_2, s_3) = \frac{n!}{s_1! s_2! s_3!} p_1^{s_1} p_2^{s_2} p_3^{s_3}$$

The event that $y \leq Y_{(r)} < y + dy$ is the event that we have

(r-1) observations are less than y

(n-r) observations are greater than y

1 observation is in interval; y, y + dy

In the trinomial distribution, this corresponds to

$$s_1 = r - 1$$
, $s_2 = 1$, $s_3 = n - r$
 $p_1 = F_Y(y)$, $p_2 = f_Y(y)dy$, $p_3 = 1 - F_Y(y + dy)$

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 21 / 59

cont.

Taking the limit as $dy \rightarrow 0$, we get:

$$f_{Y_{(r)}}(y) = \frac{n!}{(r-1)!(n-r)!} F_Y(y)^{r-1} [1 - F_Y(y)]^{n-r} f_Y(y)$$
$$= \frac{F_Y(y)^{r-1} [1 - F_Y(y)]^{n-r} f_Y(y)}{B(r, n-r+1)}$$

Gut has a more formal derivation based on deriving the joint density of the order statistics, then integrating out all but the r^{th} order statistic. (see also Casella and Berger, p.228).

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 22 / 59

Example

 $F_Y(y) = y$, that is, $Y \sim \textit{Uniform}\left(0,1\right)$

$$f_{Y_{(r)}}(y) = \frac{y^{r-1}(1-y)^{n-r}}{B(r, n-r+1)}$$

hence, $Y_{(r)}$ follows a *Beta Distribution* with parameters r and n-r+1.

Note: $E[Y_{(r)}] = \frac{r}{n+1}$

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 23 / 59

Distribution of the median

To simplify, suppose the sample size is odd, n = 2m + 1, so that the median corresponds to the (m+1)th order statistic.

Setting r=m+1 and n=2m+1 into the formula derived earlier

$$f_{\mathsf{med}}(y) = f_{Y_{(m+1)}}(y) = \frac{F_Y(y)^m (1 - F_Y(y))^m f_Y(y)}{B(m+1, m+1)}$$

If the density $f_Y(y)$ is symmetric around zero, so that $\mathsf{E} Y = 0$, then

$$F_Y(-y) = 1 - F_Y(y)$$

and so the density of the median is also symmetric around zero, so that

$$\mathsf{E}[\mathsf{med}(Y_1,\ldots,Y_n)]=0$$

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 24 / 59

Joint distribution of $Y_{(r)}, Y_{(s)}$, r < s

	<u>Interval</u>	Prob.	$\# obs = s_i$
1.	$(-\infty, u]$	$p_1 = F_Y(u)$	r-1
2.	(u, u + du]	$p_2 = f_Y(u)du$	1
3.	(u+du,v]	$p_3 = F_Y(v) - F_Y(u + du)$	s-r-1
4.	(v, v + dv]	$p_4 = f_Y(v)dv$	1
5.	$(v+dv,\infty)$	$p_5 = 1 - F_Y(v + dv)$	n-s

This is a multinomial with 5 cells:

$$f(s_1, \dots, s_5) = \frac{n!}{\prod s_i!} \prod_{i=1}^5 p_i^{s_i}$$

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 25 / 59

cont.

Taking limits as du and dv approach 0, we get

$$f_{Y_{(r)},Y_{(s)}}(u,v) = \frac{n!}{(r-1)!(s-r-1)!(n-s)!} F_Y(u)^{r-1}$$
$$\times [F_Y(v) - F_Y(u)]^{s-r-1} (1 - F_Y(v))^{n-s} f_Y(u) f_Y(v)$$

Example: Suppose $F_Y(x) = x$ (Uniform)

$$f_{Y_{(r)},Y_{(s)}}(u,v) = \frac{n!}{(r-1)!(s-r-1)!(n-s)!} \times u^{r-1}(v-u)^{s-r-1}(1-v)^{n-s}$$

for u < v.

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 26 / 59

Joint distribution of all order statistics

Multinomial with 2n+1 cells, where we have one observation in each interval $[u_i, u_i + du_i)$, $i=1,\ldots,n$, and zero on the others.

$$f_{Y_{(1)},Y_{(2)},...,Y_{(n)}}(u_1,...,u_n) = n! \prod_{i=1}^n f_Y(u_i)$$

for $u_1 < \cdots < u_n$.

Example: Suppose $F_Y(x) = x$ (Uniform)

$$f_{X_{(1)},X_{(2)},\dots,X_{(n)}}(u_1,\dots,u_n) = n!$$
 $u_1 < \dots < u_n$

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 27 / 59

Distribution of the range

Setting r = 1 and s = n in the joint dist. of the r^{th} and s^{th} order statistics gives the joint dist. of the min and max:

$$f_{Y_{(1)},Y_{(n)}}(u,v) = \frac{n!}{(n-2)!} [F_Y(v) - F_Y(u)]^{n-2} f_Y(u) f_Y(v)$$

Now, do a transformation to $R=Y_{(n)}-Y_{(1)}$ and $W=Y_{(1)}$. Note that the Jacobian is 1. What is the range?

Hence,

$$f_{W,R}(w,r) = n(n-1)[F_Y(w+r) - F_Y(w)]^{n-2}f_Y(w)f_Y(w+r)$$

The density of ${\it R}$ can be obtained by integrating out ${\it W}$:

$$f_R(r) = \int_{-\infty}^{\infty} f_{W,r}(w,r) dw$$

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 28 / 59

Example:

Suppose $Y \sim U[0,1]$, i.e. $F_Y(x) = x$

$$f_R(r) = \int_0^{1-r} n(n-1)r^{n-2} dw$$
$$= n(n-1)r^{n-2}(1-r)$$

Note that R has a Beta distribution.

$$\mathsf{E}(R) = n(n-1) \int_0^1 r \cdot r^{n-2} (1-r) dr$$

$$= n(n-1) \left[\frac{1}{n} - \frac{1}{n+1} \right]$$

$$= \frac{n-1}{n+1}$$

What happens when n=2 and $n\to\infty$?

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 29 / 59

Convergence 30 / 59

Agenda

In the last part of the course, we discuss

- Convergence of random variables. Several different kinds
 - Convergence in probability
 - Almost sure convergence
 - Convergence in distribution
 - Convergence in L^p
 - Complete convergence
- · Weak law of large numbers
- Strong law of large numbers
- · Central limit theorems

The moment inequalities will be useful in proving these results.

Material is in C-B, Section 5.5, and Gut, Chapter VI.

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 31 / 59

Modes of Convergence

There are five modes of convergence. If $X_n \to X$ by any of these modes, then X is unique (see Section 2, Chapter VI of Gut).

1. Convergence in Probability $X_n \stackrel{P}{\longrightarrow} X$

For any
$$\epsilon > 0$$
, $\lim_{n \to \infty} P\{|X_n - X| < \epsilon\} = 1$

Or equivalently,

for any
$$\epsilon > 0$$
, $\lim_{n \to \infty} P\{|X_n - X| > \epsilon\} = 0$

2. Convergence "almost surely" (a.s.), denoted $X_n \xrightarrow{a.s.} X$. Also called Convergence with Prob. 1

For any $\epsilon > 0$, $P\{\lim_{n \to \infty} |X_n - X| < \epsilon\} = 1$

Or

$$P\Big\{\lim_{n\to\infty} X_n = X\Big\} = 1$$

Or

$$P\left\{\omega: \lim_{n\to\infty} X_n(\omega) = X(\omega)\right\} = 1$$

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 32 / 59

Notes

The distinction between Convergence almost surely and Convergence in probability is subtle.

We'll see how the Markov inequality and Chebychev's inequality can often be used to establish convergence in probability. Establishing convergence a.s. is often more difficult.

Almost sure convergence is stronger than convergence in probability. Or equivalently,

$$X_n \xrightarrow{a.s.} X \Rightarrow X_n \xrightarrow{p} X.$$

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 33 / 59

Convergence in Distribution

3. Convergence in Distribution $X_n \stackrel{d}{\longrightarrow} X$

Also called convergence in law or weak convergence.

$$\lim_{n\to\infty}F_{X_n}(x)=F_X(x)$$
 for all continuity points of $F_X(x)$

Notes:

- Recall that cdfs can have at most a countable number of discontinuities.
- Theorem (no proof):

$$X_n \stackrel{d}{\longrightarrow} X \Leftrightarrow \forall \text{ bounded continuous functions } g,$$

$$\mathsf{E} g(X_n) \to \mathsf{E} g(X) \text{ as } n \to \infty.$$

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 34 / 59

Convergence in Distrib. cont.

- Convergence in distribution is the weakest convergence and does not imply the other modes. E.g. $X_n \sim N(0,1)$ and Y=-X.
- An exception is the following important special case:

Suppose $X_n \stackrel{d}{\longrightarrow} X$ where X has the degenerate distribution (i.e. $P\{X=a\}=1$). Then, $X_n \stackrel{d}{\longrightarrow} X \ \Rightarrow \ X_n \stackrel{P}{\longrightarrow} X$.

Proof:

$$P\{|X_n - a| < \epsilon\} = F_{X_n}(a + \epsilon) - F_{X_n}(a - \epsilon)$$

$$\lim_{n \to \infty} P\{|X_n - a| < \epsilon\} = F(a + \epsilon) - F(a - \epsilon)$$

$$= 1 - 0 = 1$$

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 35 / 59

Other modes of convergence

4. Convergence in r^{th} mean $(r \ge 1)$ $X_n \stackrel{r}{\longrightarrow} X$ If $E|X_n^r| < \infty$ for all n and

$$\lim_{n \to \infty} (E|X_n - X|^r) = 0.$$

Also called *convergence in* L^r and sometimes referred to as *convergence in the* L^r norm. (Some books use L^p)

5. Complete convergence (see Chapter VI, section 4 in Gut), defined as,

$$\sum_{n=1}^{\infty} P(|X_n - X| > \epsilon) < \infty \qquad \forall \ \epsilon > 0,$$

is slightly stronger than a.s. convergence, but much easier to verify.

Hence, it sometimes provides a relatively easy way to establish a.s. convergence. Some books use this as the definition of a.s. convergence.

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 36 / 59

1. Let X_n be gamma(n, n) Then $X_n \stackrel{p}{\longrightarrow} 1$.

Proof:

Since $E(X_n)=1$ and $\mbox{Var}(X_n)=1/n$, we can apply Chebychev's inequality to obtain

$$P(|X_n - 1| > \epsilon) \le \frac{1}{n\epsilon^2} \to 0 \text{ as } n \to \infty.$$

Therefore $X_n \stackrel{p}{\longrightarrow} 1$.

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 37 / 59

Example 2

2. Suppose $X_n \sim \mathit{binom}(n, \lambda/n)$. Then $X_n \stackrel{d}{\longrightarrow} X$, where X has a $\mathit{Poisson}(\lambda)$ distribution. **Proof:**

$$F_{X_n}(x) = \sum_{y=0}^{x} \binom{n}{y} \left(\frac{\lambda}{n}\right)^y \left(1 - \frac{\lambda}{n}\right)^{n-y} \to \sum_{y=0}^{x} e^{-\lambda} \frac{\lambda^y}{y!},$$

as $n \to \infty$. (We saw this before). The RHS is the distribution function of the Poisson with parameter λ .

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 38 / 59

3. Let $X_2, X_3...$ be a sequence of binary random variables defined by

$$P(X_n = 1) = 1 - \frac{1}{n}$$
 and $P(X_n = n) = \frac{1}{n}$

If we choose an ϵ smaller than 1, then

$$P(|X_n - 1| > \epsilon) = P(X_n = n) = 1/n \to 0,$$

hence $X_n \stackrel{P}{\longrightarrow} 1$.

It turns out that X_n does not converge to 1 almost surely (see page 156 in Gut).

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 39 / 59

Example 4

4. Let $X_2, X_3...$ be a binary random variables defined by

$$P(X_n = 1) = 1 - \frac{1}{n^2}$$
 and $P(X_n = n) = \frac{1}{n^2}$

Now, for ϵ small enough,

$$\sum_{n=1}^{\infty} P(|X_n - 1| > \epsilon) = \sum_{n=1}^{\infty} \frac{1}{n^2}$$

which converges (the series $\sum_{n=1}^{\infty} \frac{1}{n^k}$ converges for k>1). I.e., $X_n \to X$ in complete

convergence, with X=1. Hence $X_n \xrightarrow{a.s.} 1.$

BIOS 660/BIOS 672 (3 Credits)

Notes 16 – 40 / 59

Relations 41 / 59

Relationships among convergence modes

$$X_n \xrightarrow{Compl} X \Rightarrow X_n \xrightarrow{a.s.} X \searrow$$

$$X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{d} X$$

$$X_n \xrightarrow{r} X \nearrow$$

A silly mneumonic is All Probabilists Drink.

Also: If $r \ge s \ge 1$

$$X_n \xrightarrow{r} X \Longrightarrow X_n \xrightarrow{s} X.$$

(Try to prove this one).

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 42 / 59

In probability and distribution

Theorem: If $X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{d} X$

Proof:

For any $\epsilon > 0$:

$$\begin{split} F_{X_n}(x) &= P\{X_n \leq x\} &= P\{X_n \leq x \cap |X - X_n| \leq \epsilon\} \\ &\quad + P\{X_n \leq x \cap |X_n - X| > \epsilon\} \\ &\leq P\{X \leq x + \epsilon\} + P\{|X_n - X| > \epsilon\} \end{split}$$

because

$$\{|X - X_n| \le \epsilon\} = \{-\epsilon \le X - X_n \le \epsilon\}$$
$$\subset \{X - X_n \le \epsilon\} = \{X \le X_n + \epsilon\}$$

and $\{X_n \le x\} \cap \{X \le X_n + \epsilon\} \subset \{X \le x + \epsilon\}.$

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 43 / 59

cont.

Hence,

$$F_{X_n}(x) \le F_X(x+\epsilon) + P\{|X - X_n| > \epsilon\} \tag{5}$$

and as $n \to \infty$, this implies

$$\limsup_{n \to \infty} F_{X_n}(x) \le F_X(x + \epsilon)$$

Now, interchange the roles of X_n and X in (5) and repeat to get

$$F_X(x) \le F_{X_n}(x+\epsilon) + P\{|X_n - X| > \epsilon\}$$

but apply inequality to $x = x - \epsilon$ instead of x, yielding

$$F_X(x - \epsilon) \le F_{X_n}(x) + P\{|X_n - X| > \epsilon\}$$

or

$$F_X(x-\epsilon) - P\{|X_n - X| > \epsilon\} \le F_{X_n}(x)$$

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 44 / 59

cont.

As $n \to \infty$, this implies

$$F_X(x - \epsilon) \le \liminf_{n \to \infty} F_{X_n}(x)$$

Putting these together, we have

$$F_X(x-\epsilon) \le \liminf_{n \to \infty} F_{X_n}(x) \le \limsup_{n \to \infty} F_{X_n}(x) \le F_X(x+\epsilon)$$

for all $\epsilon > 0$. Therefore, for all x where $F_X(x)$ is continuous,

$$\lim_{n \to \infty} F_{X_n}(x) = F_X(x).$$

Note: If $F_X(x)$ is not continuous at x, then all we can claim is

$$F_X(x-) \le \liminf_{n \to \infty} F_{X_n}(x) \le \limsup_{n \to \infty} F_{X_n}(x) \le F_X(x)$$

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 45 / 59

rth moment and in Probability

Theorem: $X_n \xrightarrow{r} X \Rightarrow X_n \xrightarrow{P} X$

Proof: By Markov's inequality,

$$P(|X_n - X| > \epsilon) = P(|X_n - X|^r > \epsilon^r)$$

 $\leq \frac{E(|X_n - X|^r)}{\epsilon^r} \to 0$

Example: Let Y_1,\ldots,Y_n be iid with common mean μ and variance σ^2 . Let $\bar{Y}_n=\sum_{i=1}^n Y_i/n$. Then

$$E(\bar{Y}_n - \mu)^2 = \operatorname{var}(\bar{Y}) = \frac{\sigma^2}{n} \to 0$$

Therefore $\bar{Y}_n \stackrel{r=2}{\longrightarrow} \mu$ and so $\bar{Y}_n \stackrel{P}{\longrightarrow} \mu$.

This result is the weak law of large numbers.

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 46 / 59

Convergence properties

47 / 59

Convergence in probability

Theorem: If $X_n \xrightarrow{P} X$ and $Y_n \xrightarrow{P} Y$, then

- 1. $X_n + Y_n \xrightarrow{P} X + Y$ 2. $X_n Y_n \xrightarrow{P} XY$ 3. If g(x) is a continuous function, then $g(X_n) \xrightarrow{P} g(X)$

Proof:

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 48 / 59

Slutsky's Theorem

Also known as Cramer's Theorem - VERY VERY USEFUL

Theorem: If $X_n \stackrel{d}{\longrightarrow} X$ and $Y_n \stackrel{P}{\longrightarrow} a$, where a is a constant, then

- 1. $X_n + Y_n \xrightarrow{d} X + a$ 2. $Y_n X_n \xrightarrow{d} aX$

Proof: Homework

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 49 / 59

Example

Let X_1, \ldots, X_n be iid with mean μ , variance σ^2 , and finite moments up to fourth order. The Central Limit Theorem (CLT) says that

$$\sqrt{n} \frac{\bar{X}_n - \mu}{\sigma} \stackrel{d}{\longrightarrow} N(0, 1)$$

But the empirical variance is a consistent estimator of σ^2 , i.e. $S_n^2 \stackrel{P}{\longrightarrow} \sigma^2$. Therefore

$$\sqrt{n} \frac{\bar{X}_n - \mu}{S_n} \xrightarrow{d} N(0, 1)$$

by Slutsky's Thereom.

This is useful for constructing confidence intervals for μ .

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 50 / 59

Show that a t-distribution with n degrees of freedom converges in distribution to the standard normal as $n \to \infty$.

Proof: Let $Y_n \sim \text{ChiSquare}(n)$. Then $Y_n/n \to 1$ by the Weak Law of Large Number (WLLN).

By Slutsky's Theorem, if $X \sim \text{Normal}(0, 1)$, then

$$\frac{X}{\sqrt{\frac{Y_n}{n}}} \stackrel{d}{\to} \mathsf{Normal}(0,1)$$

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 51 / 59

Convergence in distribution

Theorem: Suppose $X_n \stackrel{d}{\longrightarrow} X$ and $Y_n \stackrel{d}{\longrightarrow} Y$. Suppose further that X_n and Y_n are independent for all n, and that X and Y are independent. Then

$$X_n + Y_n \stackrel{d}{\longrightarrow} X + Y$$

Proof: Omitted (use characteristic functions)

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 52 / 59

Let $X_n \sim Bin(n_x, p_x)$ with $n_x p_x \to \lambda_x$ as $n_x \to \infty$.

Let $Y_n \sim Bin(n_y, p_y)$ with $n_y p_y \to \lambda_y$ as $n_y \to \infty$, indep. of X_n .

Then

$$X_n \xrightarrow{d} Po(\lambda_x), \qquad Y_n \xrightarrow{d} Po(\lambda_y)$$

and

$$X_n + Y_n \xrightarrow{d} Po(\lambda_x + \lambda_y)$$

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 53 / 59

The Delta Method

54 / 59

Approximate mean and variance

Suppose we know the distribution of X and want to get the distribution of Y=g(X). The general method is to use the Jacobian transformation. But if the distribution of X is "well concentrated" around its mean $\mu=\mathsf{E} X$, we can approximate the mean and variance of Y as follows.

The Taylor expansion of g(X) around μ is

$$g(X) = g(\mu) + g'(\mu)(X - \mu) + g''(\mu)(X - \mu)^2 + \dots$$

Therefore

$$\mathsf{E}[g(X)] = g(\mu) + \mathsf{E}g''(\mu)(X - \mu)^2 + \dots$$
$$\approx g(\mu)$$

Similarly

$$\begin{aligned} \mathsf{Var}[g(X)] &\approx \mathsf{E}[g(X) - g(\mu)]^2 = \mathsf{E}[g'(\mu)(X - \mu)]^2 \\ &= \mathsf{E}[g'(\mu)]^2 \mathsf{Var}X \end{aligned}$$

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 55 / 59

Let $X \sim N(\mu, \sigma^2)$ and $Y = \exp(X)$. The exact mean and variance of Y are

$$\mathsf{E} Y = e^{\mu + \sigma^2/2}, \qquad \mathsf{Var} Y = (e^{\sigma^2} - 1)e^{2\mu + \sigma^2}$$

The first order Taylor expansion gives

$$\mathsf{E}(Y) = e^{\mu}, \quad \ \mathsf{Var}(Y) = e^{2\mu}\sigma^2$$

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 56 / 59

The Delta method

Let Y_n be a sequence of rvs such that $\sqrt{n}(Y_n - \theta) \xrightarrow{d} N(0, \sigma^2)$. For a given function g and a specific value of θ , suppose $g'(\theta)$ exists and is nonzero. Then

$$\sqrt{n}[g(Y_n) - g(\theta)] \xrightarrow{d} N(0, \sigma^2[g'(\theta)]^2)$$

Proof: The Taylor expansion of $g(Y_n)$ around $Y_n = \theta$ is

$$g(Y_n) = g(\theta) + g'(\theta)(Y_n - \theta) + R_2$$

where $R_2 \to 0$ as $Y_n \to \theta$. Apply Slutsky's Theorem to

$$\sqrt{n}[q(Y_n) - q(\theta)] = q'(\theta)\sqrt{n}(Y_n - \theta)$$

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 57 / 59

Let X_i iid with mean μ and variance σ^2 . The CLT gives that

$$\sqrt{n}(\bar{X}_n - \mu) \stackrel{d}{\longrightarrow} N(0, \sigma^2)$$

Now let $g(x) = e^x$, where $g'(x) = e^x > 0$ for all x. The Delta method gives that

$$\sqrt{n}(e^{\bar{X}_n} - e^{\mu}) \stackrel{d}{\longrightarrow} N(0, \sigma^2 e^{2\mu})$$

Let $Y_i = \exp(X_i)$, then $e^{\bar{X}_n}$ is the geometric average of the Y_i . So we have an approximation for the distribution of the geometric average.

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 58 / 59

Second-order Delta method

Let Y_n be a sequence of rvs such that $\sqrt{n}(Y_n-\theta) \stackrel{d}{\longrightarrow} N(0,\sigma^2)$. For a given function g and a specific value of θ , suppose $g'(\theta)=0$ and $g''(\theta)$ exists and is nonzero. Then

$$n[g(Y_n) - g(\theta)] \xrightarrow{d} \frac{\sigma^2 g''(\theta)}{2} \chi_1^2$$

Proof: See C&B.

BIOS 660/BIOS 672 (3 Credits)

Notes 16 - 59 / 59