MATHEMATICS METHODS

MAWA Semester 1 (Unit 3) Examination 2019 Calculator-free

Marking Key

© MAWA, 2019

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing them how the work is marked but students are not to retain a copy of the paper or marking guide until the agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is 14th June.

2

Section One: Calculator-free (50 Marks)

Question 1(a)	(2 marks)
---------------	-----------

Solution	
Let $f(x) = xe^{3x}$	
$f'(x) = e^{3x} + x3e^{3x} = e^{3x} + 3xe^{3x}$	
Mathematical behaviours	Mark
applies product rule	1
differentiates exponential correctly	1

Question 1(b) (3 marks)

Solution	
$\frac{d}{dx} \left(\frac{\cos x}{\cos x} \right) = \frac{x^3 \left(-\sin x \right) - \cos x \left(3x^2 \right)}{\cos x} = \frac{-x^2 (x \sin x + 3 \cos x)}{\cos x} = -\frac{(x \sin x + 3 \cos x)}{\cos x}$	s x)
$\frac{dx}{dx}\left(\frac{x^3}{x^3}\right) = \frac{1}{(x^3)^2} = \frac{1}{x^6}$	
Mathematical behaviours	Marks
applies quotient rule	1
• differentiates ^{COS X} correctly	1
simplifies result	1

Question 1(c) (3 marks)

Solution	
$g(u) = \sqrt{u} \Rightarrow \frac{dg}{du} = \frac{1}{2}u^{\frac{-1}{2}} \qquad u = 2 - 3x^2 \Rightarrow \frac{du}{dx} = -6x$	
$\Rightarrow \frac{dg}{dx} = \frac{1}{2}u^{\frac{-1}{2}} \times -6x = \frac{-3x}{\sqrt{2-3x^2}}$	
Mathematical behaviours	Marks
dg	
• states \overline{du}	1
du	1
• states \overline{dx}	1
\underline{dg}	1
• states dx in terms of x .	

Question 1(d) (3 marks)

Solution	
$x(t) = 3\sin 2t \Rightarrow v(t) = 3 \times 2\cos 2t$	
$v(t) = 0 \Rightarrow \cos 2t = 0$	
$ie \ 2t = \frac{\pi}{2} \Rightarrow t = \frac{\pi}{4}s$	
Mathematical behaviours	Marks
$ullet$ differentiates to obtain $^{v(t)}$	1
• equates $v(t) = 0$	1
- Oquatos	1

•	circles the 2 nd graph	1
_		/

Question 3 (4 marks)

Mathematical behaviours	Marks
states a correct expression using integrals to determine the area	1
anti-differentiates each part correctly	1
substitutes in limits of integration	1
evaluates result	1

Question 4(a) (2 marks)

Solution	
$\int \left(2e^{2x} - \frac{3}{\sqrt{x}}\right) dx = \int \left(2e^{2x} - 3x^{\frac{-1}{2}}\right) dx$	
$=2\frac{e^{2x}}{2}-3\frac{x^{\frac{1}{2}}}{\frac{1}{2}}$	
$=e^{2x}-6\sqrt{x}+c$	
Mathematical behaviours	Marks
anti-differentiates the exponential function correctly	1
anti-differentiates the square root function correctly	1

Question 4(b) (2 marks)

Solution	
$\int_{0}^{1} (3-2x)^{2} dx$	
$= \left[\frac{(3-2x)^3}{3 \times (-2)} \right]_0^1$ $= \frac{-1}{6} (1^3 - 3^3)$	
$=\frac{-1}{6}(1^3-3^3)$	
$=\frac{26}{6}$	
$=\frac{13}{3}$	
Mathematical behaviours	Marks
a priti differentiates correctly	1

Mathematical behaviours	Marks
aniti-differentiates correctly	1
substitutes limits of integration and evaluates	1

Question 4(c) (2 marks)

Solution	
$F(x) = \int_{x}^{1} \frac{dt}{1 + \sqrt{1 - t}}$	
$= -\int_{1}^{x} \frac{dt}{1+\sqrt{1-t}}$	
$\therefore F'(x) = -\frac{1}{1 + \sqrt{1 - x}}$	
Mathematical behaviours	Marks
• uses the relationship $\int_{x}^{1} \frac{dt}{1+\sqrt{1-t}} = -\int_{1}^{x} \frac{dt}{1+\sqrt{1-t}}$	1
applies Fundamental Theorem of Calculus	1

determines correct answers for m.

Question 4(d) (3 marks)

Solution	
$\int_{-m}^{m} (m^3 - x^3) dx = 1250$	
$\left[m^3x - \frac{x^4}{4}\right]_{-m}^{m} = 1250$	
$\left[m^4 - \frac{m^4}{4}\right] - \left[-m^4 - \frac{m^4}{4}\right] = 1250$	
$\frac{3m^4}{4} + \frac{5m^4}{4} = 1250$	
$\frac{8m^4}{4} = 1250$	
$2m^4 = 1250$	
$m^4 = 625$	
$m = \pm 5$	
Mathematical behaviours	Marks
anti-differentiates integral correctly	1
• substitutes in limits of integration correctly and simplifies to obtain correct	1
expression on the LHS	

Question 5(a) (3 marks)

Solution	
Bernoulli distribution with $\mu = \frac{1}{36}$, $\sigma^2 = \frac{1}{36} \times \frac{35}{36} = \frac{35}{36^2}$	
Mathematical behaviours	Marks
states Bernoulli	1
states mean	1

Question 5(b) (3 marks)

Solution	
$p = \frac{1}{n}$	
This represents a Binomial with $n = 15$ and $p = 36$.	
Mathematical behaviours	Marks
states Binomial	1
• states ⁿ	1
• states ^p	1

1

Question 5(c) (1 mark)

Solution	
$W \sim Bin\left(15, \frac{1}{36}\right)$	
$P(W=1) = {}^{15}C_1 \left(\frac{1}{36}\right)^1 \left(\frac{35}{36}\right)^{14} = 15 \left(\frac{1}{36}\right)^1 \left(\frac{35}{36}\right)^{14}$	
Mathematical behaviours	Marks
states correct expression	1

Question 5(d) (3 marks)

Solution	
Let $Z \sim Bin\left(30, \frac{1}{36}\right)$	
$P(Z = 2 \mid Z \ge 1) = \frac{P(Z = 2)}{P(Z \ge 1)} = \frac{P(Z = 2)}{1 - P(Z = 0)} = \frac{{}^{30}C_{2} \left(\frac{1}{36}\right)^{2} \left(\frac{35}{36}\right)^{28}}{1 - {}^{30}C_{0} \left(\frac{1}{36}\right)^{0} \left(\frac{35}{36}\right)^{30}}$	
Mathematical behaviours	Marks
• recognises the situation involves a binomial $(30, \frac{1}{36})$ and conditional	1
probability	1
states correct expression for numerator	1
states correct expression for denominator	

Question 6(a) (1 mark)

Question 6(a)	(± mark)
Solution	
(i) Under-estimated Area = $\left(\frac{\pi}{6} \times \frac{1}{2}\right) + \left(\frac{\pi}{6} \times \frac{\sqrt{3}}{2}\right)$	
$=\frac{\pi}{6}\left(\frac{1+\sqrt{3}}{2}\right)$	
(ii) Over-estimated Area = $\left(\frac{\pi}{6} \times \frac{1}{2}\right) + \left(\frac{\pi}{6} \times \frac{\sqrt{3}}{2}\right) + \left(\frac{\pi}{6} \times 1\right)$	
$= \frac{\pi}{6} \left(\frac{1}{2} + \frac{\sqrt{3}}{2} + 1 \right)$	
$= \frac{\pi}{6} \left(\frac{3 + \sqrt{3}}{2} \right)$	
Mathematical behaviours	Marks
 (i) states the sum of the area of the two rectangles and simplifies correctly (ii) 	1

• states the sum of the area of the three rectangles and simplifies correctly 1

Question 6(b) (2 marks)

Solution

Using trapeziums is equivalent to averaging the results from part (a)

i.e. Estimated area under
$$f(x) = \sin x$$
 from $x = 0$ to $x = \frac{\pi}{2}$ is

$$\left[\frac{\pi}{6} \left(\frac{3+\sqrt{3}}{2}\right) + \frac{\pi}{6} \left(\frac{1+\sqrt{3}}{2}\right)\right] \div 2$$

$$= \left[\frac{\pi}{6} \left(\frac{4}{2} + \frac{2\sqrt{3}}{2}\right)\right] \div 2$$

$$= \left[\frac{\pi}{6} \left(2+\sqrt{3}\right)\right] \div 2$$

$$= \frac{\pi}{6} \left(\frac{2+\sqrt{3}}{2}\right)$$

Mathematical behaviours	Marks
determines the average of the two areas obtained in part (a)	1
simplifies to deduce the required result	1

Question 7(a) (1 mark)

Solution	
$y = \sin^2 x$	
$\frac{dy}{dx} = 2\sin x \cos x$	
Mathematical behaviours Mar	
States correct answer	1

Question 7(b) (3 marks)

Question (b)	(S marks)
Solution	
$y = \sin^2 x$	
$\frac{dy}{dx} = 2\sin x \cos x$	
$\int \frac{dy}{dx} dx = \int 2\sin x \cos x dx$	
$y = \int 2\sin x \cos x dx + c$	
$\sin^2 x = \int 2\sin x \cos x dx + c$	
$\int \sin x \cos x dx = \frac{1}{2} \sin^2 x + c$	
Mathematical behaviours	Marks
integrates both sides of equation	1
applies fundamental theorem	1

•

Question 7(c) (3 marks)

Solution	
$\int_{0}^{\frac{\pi}{6}} (\sin x \cos x + 2) dx = \left[\frac{1}{2} \sin^2 x + 2x \right]_{0}^{\frac{\pi}{6}}$	
$= \frac{1}{2} \left[\left(\frac{1}{2} \right)^2 - 0^2 \right] + 2 \left[\frac{\pi}{6} - 0 \right]$	
$=\frac{1}{8} + \frac{\pi}{3}$	
Mathematical behaviours	Marks
 recognises sin² x term is to be involved 	1

states correct integral and bounds of integration substitutes bounds of integration and simplifies

1