GGG-201D-problem-set-2

Ethan Holleman

4/28/2021

Problem 1

Part A

Use a program such as R or Excel to generate a scatter plot that shows how expected allele frequency change from genetic drift depends on initial allele frequency. The x-axis should be initial allele frequency and range from 0 to 1. The y-axis should be expected change in allele frequency after one generation. Perform calculations in steps of 0.1 for a population size of 2N=20.

```
expected <- function(init_allele_freq, pop_size, delta_allele_freq){</pre>
  num_delta_alleles <- pop_size * delta_allele_freq</pre>
  num_init_alleles <- pop_size * init_allele_freq</pre>
  routes <- num_init_alleles + c(-1*num_delta_alleles, num_delta_alleles)
  routes <- unique(routes[routes >= 0]) # remove negative values since not possible
  sum(mapply(dbinom, routes, pop_size, init_allele_freq))
}
expected change <- function(init allele freq, pop size){</pre>
  magnitudes <- seq(0, 1-init_allele_freq, 0.1)</pre>
  sum(mapply(expected, init_allele_freq, pop_size, magnitudes) * magnitudes)
}
library(ggplot2)
library(ggpubr)
df.a <- data.frame(init_allele_freq=seq(0, 1, 0.1), pop_size=10)</pre>
df.a$delta_allele_freq <- mapply(expected_change, df.a$init_allele_freq, df.a$pop_size)
ggplot(df.a, aes(x=init_allele_freq, y=delta_allele_freq)) + geom_line(color='dodgerblue') +
      theme_pubclean() + labs(x='Initial allele frequency', y='Change allele freq after 1 gen')
```


Initial allele frequency	Pop size	Delta allele freq 1 gen
0.0	10	0.0000000
0.1	10	0.0697357
0.2	10	0.0966368
0.3	10	0.1120677
0.4	10	0.1203949
0.5	10	0.1230469
0.6	10	0.1195455
0.7	10	0.1076569
0.8	10	0.0860671
0.9	10	0.0542389
1.0	10	0.0000000

Part B

Use the same program to generate a scatter plot that shows how expected allele frequency change from genetic drift depends on population size. The x-axis should be population size and range from 2N=10 to 2N=100. The y-axis should be expected change in allele frequency after one generation. Perform calculations in steps of 10 with an allele frequency of 0.5

Initial allele frequency	Pop size	Delta allele freq 1 gen
0.5	10	0.1230469
0.5	20	0.0417309
0.5	30	0.0217753
0.5	40	0.0135072
0.5	50	0.0091770
0.5	60	0.0065758
0.5	70	0.0048678
0.5	80	0.0036784
0.5	90	0.0028174
0.5	100	0.0021780