Towards predicting CO₂ emissions from damaged coastal ecosystems

Cath Lovelock and Jim Fourqurean

Most decomposition processes can be modeled as a simple exponential decay of one or more components. More labile pools are consumed more rapidly, and decomposition is generally faster in oxic environments.

Emissions model governing equations

$$TC_{org} = \sum_{i=1}^{n} C_{org(i)}$$

Where:

i = type of carbon (leaves, wood, stem, soil, etc)

And:

$$C_{org(i)}(t) = \alpha C_{org(0)} e^{k_1 t} + (1 - \alpha) C_{org(0)} e^{-k_2 t}$$

Where:

 k_1 is decomposition rate in oxic environments, k_2 is decomposition in anoxic environments and α = fraction of C_{org} deposited in oxic environments

Biomass component	Initial biomass (Mg C ha ⁻¹)	k _{oxic} d ⁻¹	k _{anoxic} d ⁻¹
Seagrass			
Aboveground biomass	0.8	0.02	0.01
Belowground biomass	1.8	0.0032	0.0016
Soil C _{org}	139.7	0.0005	0.00005
Tidal Marsh			
Aboveground biomass	0.8	0.02	0.01
Belowground biomass	1.8	0.0032	0.0016
Soil C _{org}	139.7	0.0005	0.00005
Mangrove forest			
Leaves	20	0.03	0.03
Aboveground wood	200	0.0007	0.0004
Coarse roots	80	0.0007	0.0004
Fine roots	20	0.0007	0.0004
Soil C _{org}	700	0.0005	0.00005

Fraction of original Corg emitted: Seagrass ecosystem

Fraction of C_{org} emitted from mangrove forest following loss

Fraction of $\mathbf{C}_{\mathrm{org}}$ emitted from mangrove forest following loss

Time course of emissions from an average seagrass bed

(assuming 50% of C_{org} deposited in oxic environment)

Time course of emissions from an average mangrove forest

(assuming 50% of C_{org} deposited in oxic environment, no burning)

Effect of biomass burning on emissions trajectory, mangrove forest

Effect of biomass burning on emissions trajectory, mangrove forest

Measured rates of CO₂e emissions from destroyed habitats

Habitat	Modification	CO ₂ efflux Mg ha-1 year ⁻¹	Method	Reference
Mangrove, Belize	Cleared	29	CO ₂ efflux	Lovelock et al 2011
Mangrove, Honduras	Forest damaged by hurricane	15	Inferred from peat collapse	Cahoon et al. 2003
Mangrove, Australia	Shrimp pond	17.5 (22-50)	CO ₂ efflux	Burford and Longmore 2001
Rainforest, Indonesia	Drained for agriculture	32	Inferred from peat collapse and measured as CO ₂ efflux	Couwenburg et al. 2010 and references therein
Tundra, Alaska	Thawed (vegetation intact)	1.5-4.3	Net CO ₂ exchange	Schuur et al. 2009