

Junior Balkan Olympiad in Informatics

Məsələ Kilid

Giriş faylı stdin Çıxış faylı stdout

Nadir məktəbdəki dolabı üçün təzə rəqəmsal kilid aldı. Bu kilidin gizli şifrəsi 1-dən N-ə indekslənmiş N ədəddən ibarətdir. Bu şifrəni daxil edib cihazı açmaq xüsusi yolla baş verir. Başda kilidin üstündə N sayda 0 ədədi olur. Daha sonra Nadir, incS(i,j) adlı bir əməliyyat yerinə yetirərək indeksləri i-dən j-yə qədər olan (i və j daxil) hər bir ədədin dəyərini 1 vahid artıra bilər. Məsələn, [0, 0, 0, 0] ardıcıllığına incS(2,4) əməliyyatını tətbiq etdikdən sonra [0, 1, 1, 1] ardıcıllığı yaranır. Və ya, [4, 1, 3, 2] ardıcıllığına incS(2,3) əməliyyatını tətbiq etdikdə [4, 2, 4, 2] ardıcıllığı yaranır.

Kilid yeni olduğuna görə Nadir ona yeni bir şifrə təyin etməlidir. Onun permutasiyalara həvəsi olduğu üçün kodunun 1-dən N-ə qədər ədədlərin permutasiyası olmağını istəyir. 1-dən N-ə qədər ədədlərin permutasiyası elə N uzunluqlu ardıcıllıqdır ki, 1-dən N-ə qədər hər bir ədəd bu ardıcıllığın içində tam olaraq 1 dəfə var. Əlavə olaraq, şifrəsinin sinif yoldaşları tərəfindən tapılmasını mümkün qədər çətinləşdirmək istəyir. Buna görə də şifrəni açmaq üçün lazım olan minimum incS əməliyyatlarının sayının öz seçdiyi sevimli ədədinə, M-ə bərabər olmasını istəyir. Əgər bir neçə belə mümkün şifrə varsa, onlar arasından leksikoqrafik olaraq ən kiçik olanı seçəcək (məhdudiyyətlər hissəsində izahı verilib). Nadir sizdən onun seçməli olduğu şifrəni tapmağınızı istəyir.

Giriş verilənləri

Girişə boşluqla ayrılmış iki tam ədəd N və M verilir. Ədədlərin mənası şərtdə izah olunub.

Çıxış verilənləri

Çıxışa Nadirin kilidə şifrə olaraq təyin etməli olduğu *N* uzunluqlu ardıcıllığın elementlərini boşluqlarla ayrılmış şəkildə verin. Əgər belə bir ardıcıllıq yoxdursa çıxışa IMPOSSIBLE verin.

Məhdudiyyətlər

- $1 \le N \le 10^6$
- $1 < M < 10^{12}$
- $A_1 = B_1, A_2 = B_2, \dots, A_{P-1} = B_{P-1}$ və $A_P < B_P$ şərtini ödəyən P pozisiyası varsa, o zaman A_1, A_2, \dots, A_N permutasiyası B_1, B_2, \dots, B_N permutasiyasından kiçik olur.

#	Bal	Məhdudiyyətlər
1	3	$N \le 6, M = N$
2	3	$N \le 6, M = N + 1$
3	11	$N \leq 9$
4	19	$N \le 16$
5	43	$N \le 1000$
6	21	Əlavə məhdudiyyətlər yoxdur.

Junior Balkan Olympiad in Informatics

Day 2, Friday 2nd September, 2022

Nümunə

Giriş faylı	Çıxış faylı
3 3	1 2 3
3 4	2 1 3
3 5	IMPOSSIBLE

İzah

N=3 üçün olan permutasiyalar bunlardır: [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2] və [3, 2, 1]. Bu permutasiyalar üçün lazım olan minimum incS əməliyyatlarının sayı isə bunlardır: 3, 3, 4, 3, 4, 3. Məsələn [2, 1, 3] permutasiyasını götürək, Nadir incS(3,3), incS(1,3), incS(1,1) və incS(3,3) əməliyyatlarını istifadə edə bilər. Lakin, Nadir [2, 1, 3] permutasiyasını 4-dən az sayda incS əməliyyatları ilə əldə edə bilməz.

M=3 üçün, cihazı açmaq üçün lazım olan ən az incS əməliyyat sayının tam olaraq M-ə bərabər olduğu, leksikoqrafik olaraq ən kiçik permutasiya [1, 2, 3] ardıcıllığıdır. M=4 üçün gizli şifrə [2, 1, 3] ardıcıllığıdır. M=5 üçün mümkün permutasiya yoxdur.