فرمت گزارش:

گزارش باید به زبان فارسی و در قالب فایل PDF باشد. در گزارش، تحلیل و نتیجه گیری خود را در رابطه با هر تمرین به طور مختصر، در حد یک پاراگراف، بیان نمایید.

فایل گزارش خود را به شکل Report2_StdNum.pdf نامگذاری نمایید (مانند Report2_8931064.pdf)

فرمت كدها:

برای هر تمرین باید فایل کد جداگانهای در محیط R ، MATLAB یا Python تهیه شود. هر فایل کد خود را به شکل CE2 ProblemNum StdNum

نحوه تحويل:

فایلهای کد و گزارش خود را که طبق فرمتهای فوق تهیه شدهاند، در قالب یک فایل فشرده در سایت درس بارگذاری نمایید. فایل فشرده را به شکل CE2 StdNum نامگذاری نمایید.

مهلت ارسال تمرین ساعت 23:55 دقیقهی روز شنبه ۲ دی میباشد.

ضمنا به ازای هر روز تاخیر در ارسال تمرین، 10 درصد از نمره ی آن کم می شود. هر گونه سوال در مورد تمرین را میتوانید از طریق ایمیل به آدرس $z_naraghi@aut.ac.ir$ ارسال نمایید.

- 1. The Kullback Leibler divergence is not symmetric, so the solutions of $argmin_q D_{KL}(p||q)$ and $argmin_q D_{KL}(q||p)$ are different. Consider p as a simple Gaussian mixture model: sum of Normal(3,0.5) and Normal(7,0.5). Find the $q1^* = argmin_q D_{KL}(p||q)$ and $q2^* = argmin_q D_{KL}(q||p)$ among three pdfs: $q \sim Normal(3,0.5)$, $q \sim Normal(5,1.5)$ and $q \sim Normal(7,0.5)$. Plot $q1^*$ and $q2^*$ on p distribution. In image generating field, consider p as a model of image samples and $q1^*$ and $q2^*$ as the learned model. What's the difference between images which are generated from $q1^*$ and $q2^*$?
- 2. Generate 100 observations from a Normal(0,1) distribution. Compute a 95 percent confidence band for the CDF F. Repeat this 1000 times and see how often the confidence band contains the true distribution function. Repeat using data from a Cauchy distribution.
 - If you are not familiar with confidence band of CDF, read Technical appendix of chapter 8 in course textbook

- 3. Use old faithful geyser dataset to:
 - a) Estimate the mean duration of eruption and give a standard error for the estimate.
 - b) Estimate a 90 percent confidence interval for the mean duration of eruption.
 - c) Estimate the median duration of eruption and give a standard error for the estimate.
- 4. Consider the magnitude of earthquakes near Fiji which are assumed iid.
 - a) Estimate the CDF, F(x). Plot estimated CDF.
 - b) Compute and plot a 95 percent confidence band for F.
 - c) Approximate 95 percent confidence interval for (4.9)–F(4.3). (Try all 3 types of confidence intervals: pivotal, normal and percentile)
- 5. Let $X_1, ..., X_n \sim \text{Normal}(\mu, 1)$. Let $\theta = e^{\mu}$ and $\hat{\theta} = e^{\bar{X}}$ be the MLE. Create a dataset $(\mu = 10)$ consisting of n=100 observations.
 - a) Use the bootstrap to get the standard error and 95 percent confidence interval for θ .
 - b) Plot a histogram of the bootstrap replications for the nonparametric bootstrap. These are estimates of $\hat{\theta}$ distribution. Compare this to the true sampling distribution of $\hat{\theta}$.
- 6. Let $X_1, ..., X_n \sim Normal(\mu, 1)$.
 - a) Simulate a dataset (using μ =10) consisting of n=100 observations.
 - b) Take $f(\mu)=1$ and find the posterior density. Plot the density.
 - c) Simulate 1000 draws from posterior. Plot a histogram of the simulated value and compare the histogram to the answer in b.
 - d) Let $\theta = e^{\mu}$. Find the posterior density for θ analytically and by simulation.
 - e) Find a 95% pivotal interval for θ .
 - f) Find a 95% percentile interval for θ .
- 7. Generate 100 samples from a beta distribution (α =2 and β =5).
 - a) Calculate & plot empirical distribution function.
 - b) Find the plug-in estimator for:
 - a. Mean
 - b. Variance (both reasonable estimators)
 - c. Skewness