УО «Белорусский государственный университет информатики и радиоэлектроники» Кафедра ПОИТ

Отчет по лабораторной работе №3 по предмету «Теория информации» Вариант 2

Выполнила:

Кисель П.А.

гр. 351003

Проверила:

Болтак С.В.

1. <u>Пример работы алгоритма быстрого возведения в степень с использованием модульной арифметики.</u>

$$4^{23} \mod 13 = ?$$

а – основание=4

n – показатель степени = 23

е – четное n или нет (четн / нечетн)

r – результат (в начале равен 1)

x – значение = mod 13

Шаг	a	n	e	Действие	r mod x
1	4	23	нечетн	$r = 1 \times 4 \mod 13 = 4$	4
				n = 23 - 1 = 22	
2	4	22	четн	$a = 4^2 \mod 13 = 3$	4
				n = 22/2 = 11	
3	3	11	нечетн	$r = 4 \times 3 \mod 13 = 12$	12
				n = 11 - 1 = 10	
4	3	10	четн	$a = 3^2 \mod 13 = 9$	12
				n = 10/2 = 5	
5	9	5	нечетн	$r = 12 \times 9 \mod 13 = 4$	4
				n = 5 - 1 = 4	
6	9	4	четн	$a = 9^2 \mod 13 = 3$	4
				n = 4/2 = 2	
7	3	2	четн	$a = 3^2 \mod 13 = 9$	4
				n = 2/2 = 1	
8	9	1	нечетн	$r = 4 \times 9 \mod 13 = 10$	10
				n = 1 - 1 = 0 (Конец)	

2. Пример поиска случайного первообразного корня (студент должен привести пример поиска всех первообразных корней по заданному модулю)

Задано простое р = 19

Ищем простые делители p - $1 = 18 = \{2,3\}$

Проверяем является ли число g = 2 первообразным корнем по модулю 19:

$$2^{18/2} \mod 19 = 18 \neq 1$$

 $2^{18/3} \mod 19 = 7 \neq 1. \Rightarrow 2$ - первообразный корень

Проверяем является ли число g = 3 первообразным корнем по модулю 19:

$$3^9 \mod 19 = 18 \neq 1$$

 $3^6 \bmod 19 = 7 \neq 1 \implies 3$ - также первообразный корень

Если найден один первообразный корень g по модулю p, остальные корни имеют вид g^k , где HOД(k, p-1) = 1. Для p = 18, допустимые k (взаимно простые c 18): 1, 5, 7, 11, 13, 17:

- 1) $2^{1} \mod 19 = 2 является первообразным$
- $2^5 \mod 19 = 13 является первообразным$
- 3) $2^7 \mod 19 = 14 является первообразным$
- 4) $2^{11} \mod 19 = 15 является первообразным$
- 5) $2^{13} \mod 19 = 3$ является первообразным
- 6) $2^{17} \mod 19 = 10 является первообразным$

Тогда все первообразные корни для модуля p = 19: 2, 3, 10, 13, 14, 15.

3.Пример работы расширенного алгоритма Евклида с взаимно простыми числами

$$x_1*a + y_1*b = HOД(a, b), a = 117, b = 85, HOД(a, b) = 1, т.к а и b взаимно простые.$$

итерация	Делимое	Делитель	Частное	Остаток
1	117	85	1	32
2	85	32	2	21
3	32	21	1	11
4	21	11	1	10
5	11	10	1	1
6	10	1	10	0

1. Начинаем обратный ход с предпоследней операции (шаг 5), где остаток равен 1: Базовое уравнение:

$$1 = 11 - 10 \times 1$$

2. Выражаем 10 из шага 4:

$$10 = 21 - 11 \times 1$$

Подставляем:

$$1 = 11 - (21 - 11 \times 1) \times 1 = 11 \times 2 - 21 \times 1$$

3. Выражаем 11 из шага 3:

$$11 = 32 - 21 \times 1$$

Подставляем:

$$1 = (32 - 21 \times 1) \times 2 - 21 \times 1 = 32 \times 2 - 21 \times 3$$

4. Выражаем 21 из шага 2:

$$21 = 85 - 32 \times 2$$

Подставляем:

$$1 = 32 \times 2 - (85 - 32 \times 2) \times 3 = 32 \times 8 - 85 \times 3$$

5. Выражаем 32 из шага 1:

$$32 = 117 - 85 \times 1$$

$$1 = (117 - 85 \times 1) \times 8 - 85 \times 3 = 117 \times 8 - 85 \times 11$$

Итоговое решение:

Коэффициенты Безу:

$$x = 8, y = -11$$

Проверка:

$$8 \times 117 + (-11) \times 85 = 936 - 935 = 18 \times 117 + (-11) \times 85 = 936 - 935 = 1$$

Результат верен.

Проверка работоспособности программы

Исходный текст:

8883\psi3hyt\(\text{e}(\%_-)00\##!\@dS

Результат шифрования:

Шифрование:

Дешифрование:

Значение файла после дешифрования:

Шифрование картинки:

Исходное изображение:

Шифрование:

Содержимое зашифрованного файла:

Дешифрование:

Файл после дешифрования:

