

Recommender Systems

Mining Massive Datasets

Materials provided by Prof. Carlos Castillo — https://chato.cl/teach

Instructor: Dr. Teodora Sandra Buda — https://tbuda.github.io/

Sources

- Data Mining, The Textbook (2015) by Charu Aggarwal (Section 18.5) – <u>slides by Lijun Zhang</u>
- . Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. (Chapter 9) slides A, B

Recommender systems

- Product recommendation is perhaps one of the best known use cases:
 - Given data from user buying behaviors, profiles, interests, browsing behavior, buying behavior, and ratings about various items
 - Leverage such data to make recommendations to customers about possible buying interests

Recommender systems (general)

- . In general, the idea is:
 - Given data from user interests, including profiles, browsing behavior, item interaction behavior, ratings about various items
 - Leverage such data to make recommendations to users about further interesting items

\$			

Large scale engines for recommendation:

- are composed of multiple layers,
- use online and offline (batch) models,
- include complex data pipelines to move behavioral and content signals around.

Utility matrix

- Matrix D of size n (users) x d (items)
 - The utility value for a user-item pair (D_{ij}) describe some relationship between user i and item j
 - Typically, a small subset of the utility values are known

Example utility matrices

Dune Soul Nomad d Avenge RRR Encant							
U ₁	1			1		1	
$ \begin{array}{c} U_1 \\ U_2 \\ U_3 \\ U_4 \\ U_5 \\ U_6 \end{array} $		1	Ġ.		1		
U_3^2	1	1		1			
U_{4}^{S}			1			1	
U_{5}				1	1		
U_6	1		1				

llan

(a) Ratings-based

(b) Positive preference, e.g., "like"

Types of utility

• Explicit: we ask users to rate items

• Implicit: we take watching/consuming/buying behavior as a positive signal, skip/hide as negative

Sources for a recommendation

- Content-based recommendation
 - Users and items are associated with features
 - Features are matched to infer interest
- Interaction-based recommendations
 - Leverage user preferences in the form of ratings or other behavior
 - Recommend through similarity or latent factors

New items have no ratings and

New users have no history

Photo: Torque News

Solution 1. "Side information"

Use info from close people

Solution 2. "On-boarding" users

Touch the genres you like

Content-based recommendations

General idea of content-based recommendations

- Movies: recommend other movies with same director, actor, genre, as viewed ones
- Products: recommend other products in same category, brand, color, as purchased ones

Creating a recommendation

- User is associated with some documents that describe his/her interests
 - Specified demographic profile
 - Specified interests at registration time
 - Descriptions of the items bought
- Items are also associated with semi-structured descriptions

JBL GO lleva el sonido de calidad JBL a todas partes. GO es su solución de altavoz todo en uno y reproduce música en tiempo real vía Bluetooth desde smartphones y tabletas, gracias a su batería recargable. También cuenta con un práctico manos libres.

dente con an practice manes notes.					
Potencia	3 W				
Respuesta de Frecuencia	180Hz - 20 kHz				
Tipo de altavoz	Portátil				
Amplificador de sonido	Integrado				

Creating a recommendation (cont.)

Possible recommendation methods

If no utility matrix is available

- k-nearest neighbor approach
 - Find the top-k items that are closest to the user (when items and users can be represented in the same space, e.g., dating apps)
- The cosine similarity with tf-idf can be used
- . If a utility matrix is available
 - Classification-based approach: training documents are those for which the user has specified utility, labels are utility values
 - Regression-based approach in the case of ratings
- Limitations: depends on the quality of the features

Example: regression-based approach for content-based recommendation

Movie	Adventure	Action	Science-Fiction	Drama	Crime	Thiller		User 1	User 2
Star Wars IV	1	1	1	0	0	0		1	-1
Saving Private Ryan	0	0	0	1	0	0			
American Beauty	0	0	0	1	0	0		a	
City of Gold	0	0	0	1	1	0		-1	1
Interstellar	0	0	1	1	0	0		1	
The Matrix	1	1	1	0	0	1	9	8	1

We would do two regressions: one for the ratings of user 1 and another for user 2. (We can also do this for groups of users, e.g., by city and age)

How many rated movies would we need, as a minimum, to be able to do this?

Exercise Content-based recommender based on regression

- Database of ~100 electric scooters, of which 12 have been rated on a scale 1-5
- We have done linear regression on:
 - price [\$], battery capacity [Wh], range [km]
- Which would be your top-3 recommended scooter among the remaining ones?

Pros and Cons of content-based recommendations

Pros.

- No cold-start problem if no utility needed
- Able to recommend to users with very particular tastes
- Able to recommend new and obscure items
- Able to provide explanations that are easily understandable

Pros and Cons of content-based recommendations

. Cons:

- Finding the correct features might be hard
- Recommending for new users still challenging if user features are different from item features
- Overspecialization/"bubble": might reinforce user interests
- Does not exploit ratings of other users!

Summary

Things to remember

- Content-based recommendations
- Regression-based method

Exercises for TT16-TT18

- Mining of Massive Datasets 2nd edition (2014) by Leskovec et al. Note that some exercises cover advanced concepts:
 - Exercises 9.2.8
 - Exercises 9.3.4
 - Exercises 9.4.6