# FORWARD+: BRINGING DEFERRED LIGHTING TO THE NEXT LEVEL

AMD Takahiro Harada



33<sup>rd</sup> annual conference of the European association for computer graphics

- Lighting = direct lighting + indirect lighting
  - This paper focuses direct lighting
- For each light source, evaluate light intensity, BxDF, visibility.
- Accumulate multiply of three terms

$$L = \sum_{i}^{n} \{L_{e}f(x, w_{i}, w_{o})V(w_{o})\}$$

Light intensity, BxDF, Visibility

## REAL-TIME SOLUTION FOR RENDERING EQUATION



33<sup>rd</sup> annual conference of the European association for computer graphic

## Forward rendering

- Limit the number of lights to be evaluated
  - Pick m lights for each object
- Limited visibility computation
  - visibility is not calculated for all the lights

$$L_{forward} = \sum_{i}^{m} \{L_{e}f(x, w_{i}, w_{o})V'(w_{o})\}$$

$$m \leq \tilde{n} \leq n$$

## REAL-TIME SOLUTION FOR RENDERING EQUATION



ANNUAL CONFERENCE OF THE EUROPEAN ASSOCIATION FOR COMPUTER GRAPH

- Forward rendering
  - Limit the number of lights to be evaluated
    - Pick m lights for each object
  - Limited visibility computation
    - visibility is not calculated for all the lights

$$L_{forward} = \sum_{i}^{m} \{L_{e}f(x, w_{i}, w_{o})V'(w_{o})\}$$

- Deferred rendering
  - Increase the number of lights
  - Separation of light term and BxDF (shading)

$$L_{deferred} = \sum_{i}^{\tilde{n}} \{L_e V'(w_o)\} f(x, w_i)$$

$$m \leq \tilde{n} \leq n$$

## **REAL-TIME SOLUTION COMPARISON**

012 y13-18

33<sup>rd</sup> annual conference of the European association for computer graphics

Forward+

$$L_{forward+} = \sum_{i}^{n} \{L_{e}f(x, w_{i}, w_{o})V'(w_{o})\}$$

Rendering equation

$$L = \sum_{i=1}^{n} \{L_{e}f(x, w_{i}, w_{o})V(w_{o})\}$$

$$m \leq \tilde{n} \leq n$$

## REAL-TIME SOLUTION COMPARISON

A STATE OF THE PARTY OF THE PAR

33rd ANNUAL CONFERENCE OF THE EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS

Forward+

$$L_{forward+} = \sum_{i=1}^{n} \{L_{e}f(x, w_{i}, w_{o})V'(w_{o})\}$$

Rendering equation

$$L = \sum_{i=0}^{n} \{L_{e}f(x, w_{i}, w_{o})V(w_{o})\}$$

Forward

$$L_{forward} = \sum_{i}^{m} \{L_{e}f(x, w_{i}, w_{o})V'(w_{o})\}$$

Deferred

$$L_{deferred} = \sum_{i}^{\tilde{n}} \{L_e V'(w_o)\} f(x, w_i)$$
$$m \le \tilde{n} \le n$$

#### FORWARD+

- Eurographics 2012
  Cagliari, Italy May 13-18
- 33rd Annual Conference of the European association for computer graphics

- Extension of Forward rendering pipeline
  - Do not limit material usage
- Extension of Deferred rendering pipeline
  - Keep the capability of using many lights
- Forward+ == Forward + Light Culling

## FORWARD RENDERING PIPELINE

Eurographics 2012
Cagliari, Italy May 13-18

33<sup>rd</sup> annual conference of the European Association for Computer Graphics

//r n



- Fills z buffer
  - Prevent overdraw for shading

# Shading

- Geometry is rendered
- Pixel shader
  - Iterate through light list set for each object
  - Evaluates materials for the lights

## FORWARD+ RENDERING PIPELINE



33<sup>rd</sup> annual conference of the European Association for Computer Graphics

## Depth prepass

- Fills z buffer
  - Prevent overdraw for shading
  - Used for pixel position reconstruction for light culling
- - Input: z buffer, light buffer
  - Output: light list per tile
- Shading
  - Geometry is rendered
  - Pixel shader
    - Iterate through light list calculated in light culling
    - Evaluates materials for the lights



#### LIGHT CULLING DETAIL



ANNUAL CONFERENCE OF THE EUROPEAN ASSOCIATION FOR COMPUTER GRAPHIC

- Implemented using compute shader
- Gather, scatter implementation
  - Gather is simpler
  - See paper for scatter implementation
- Gather implementation
  - Single compute shader
  - A thread group is executed per tile
  - Calculate Z extent
  - Build frustum
  - 64 lights are culled in parallel
  - Overlapped light indices are accumulated in TLS
  - Export
    - One atomic add
    - Write light indices to a contiguous memory (⇔ Linked list)



#### **BENEFITS**

- Eurographics 2012
- 33<sup>rd</sup> annual conference of the European Association for Computer Graphic:

- Material variety
  - All the information is available in pixel shader
    - No separation of lighting and shading
    - No limitation to BRDFs
  - Improves the pixel quality
- Smaller memory traffic compared to deferred
  - Good for low bandwidth GPUs (e.g., integrated GPUs)
  - Performance increase

33<sup>rd</sup> ANNUAL CONFERENCE OF THE EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS



Forward+ v.s. Compute-based Deferred lighting



## WHY FORWARD+ FASTER?

33<sup>rd</sup> Annual Conference of the European Association for Computer Graphics

Forward+

Depth prepass

Write: Depth buffer

**Deferred** 

G prepass

- Write: Depth buffer, Normal buffer



#### WHY FORWARD+ FASTER?



33<sup>rd</sup> ANNUAL CONFERENCE OF THE EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS

# Forward+

- Depth prepass
  - Write: Depth buffer
- Light culling

15 | Forward+ | 2012

- Read: depth, light geometry
- Compute: culling
- Write: light list

#### Deferred

- G prepass
- Write: Depth buffer, Normal buffer
  - Light accumulation
    - Read: depth, normal, light geometry, light propertyCompute: culling, lighting
  - Write: light accumulation buffer



## WHY FORWARD+ FASTER?

Shading

16 | Forward+ | 2012



Shading



- Read: light list, light property
   Read: accumulated light color
  - Compute: lighting, shadingCompute: shading



33<sup>rd</sup> annual conference of the European association for computer graphics

- Forward+ rendering pipeline
- Dynamic lighting from many lights
- Physically-based BRDFs
- Indirect illumination by dynamic VPLs
- AA



http://developer.amd.com/samples/demos/pages/AMDRadeonHD7900SeriesGraphicsReal-TimeDemos.aspx

#### **EXTENSIONS**

- Eurographics 2012
- 33<sup>rd</sup> annual conference of the European Association for Computer Graphic:

- Deferred has advantages too
- Light culling can be used for deferred
  - G prepass, light culling, screen space shading
- Forward+ can be coupled with screen space effects
  - SSAO
  - Export normal buffer at prepass
  - Fetch AO value from pixel shader for final shading