Relações

Antonio Alfredo Ferreira Loureiro

loureiro@dcc.ufmg.br

http://www.dcc.ufmg.br/~loureiro

Introdução

- O mundo está "povoado" por relações: família, emprego, governo, negócios, etc.
- Entidades em Matemática e Ciência da Computação também podem estar relacionadas entre si de diversas formas.
- Objetivo:
 - estudar relações em conjuntos;
 - estudar formas de representar relações;
 - estudar propriedades de relações.

Sejam os conjuntos $A = \{0, 1, 2\}$ e $B = \{1, 2, 3\}$.

Suponha que um elemento x em A esteja relacionado com um elemento y em B sse x < y.

A notação xRy quer dizer que "x está relacionado com y", onde R é o nome da relação (neste caso, x < y).

Logo, temos que:

 $egin{array}{lll} 0R1 & {
m porque} & 0 < 1, \\ 0R2 & {
m porque} & 0 < 2, \\ 0R3 & {
m porque} & 0 < 3, \\ 1R2 & {
m porque} & 1 < 2, \\ 1R3 & {
m porque} & 1 < 3, \\ 2R3 & {
m porque} & 2 < 3 \\ \end{array}$

Por outro lado, a notação x Ry quer dizer que "x não está relacionado com y."

Sejam os conjuntos $A = \{0, 1, 2\}$ e $B = \{1, 2, 3\}$.

Logo, temos que:

 $1\cancel{R}1$ porque $1 \not< 1$,

 $2\cancel{R}1$ porque $2 \nless 1$,

 $2\cancel{R}2$ porque $2 \not< 2$

• O produto cartesiano de A e B, é definido por

$$A \times B = \{(x, y) | x \in A \text{ e } y \in B\}$$

• Para este exemplo $(A = \{0, 1, 2\} \text{ e } B = \{1, 2, 3\})$, temos que:

$$A \times B = \{(0,1), (0,2), (0,3), (1,1), (1,2), (1,3), (2,1), (2,2), (2,3)\}$$

e os elementos que satisfazem a relação são

$$R = \{(0,1), (0,2), (0,3), (1,2), (1,3), (2,3)\}.$$

Definição (Relação (binária)):

- Sejam os conjuntos $A \in B$.
- Uma relação binária de A para B é um subconjunto de $A \times B$.
- Dado um par ordenado (x,y) em $A \times B$, x está relacionado com y por R, escrito xRy, sse $(x,y) \in R$.
- O termo "binário" é usado para indicar uma relação entre dois conjuntos.

Notação:

• "x está relacionado com y":

$$xRy \Leftrightarrow (x,y) \in R$$

"x não está relacionado com y":

$$x R y \Leftrightarrow (x, y) \notin R$$

Relação binária num conjunto finito

Exemplo 1 Sejam os conjuntos $A = \{1, 2\}$ e $B = \{1, 2, 3\}$ e a relação binária R de A para B como:

$$\forall (x,y) \in A \times B, (x,y) \in R \Leftrightarrow x-y \text{ \'e par }$$

Logo, temos que

$$A \times B = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)\}$$

e

$$R = \{(1,1), (1,3), (2,2)\}$$

Relação binária num conjunto infinito: Relação de congruência módulo 2

• A relação anterior pode ser generalizada para o conjunto de todos os inteiros \mathbb{Z} . Neste caso, a relação binária E de \mathbb{Z} para \mathbb{Z} pode ser definida como:

$$\forall (m,n) \in \mathbb{Z} imes \mathbb{Z}, mEn \Leftrightarrow m-n ext{ \'e par}$$

 \rightarrow Os inteiros m e n são relacionados por E sse

$$m \mod 2 = n \mod 2$$
,

ou seja, se os números m e n são pares ou ímpares.

Quando essa relação é satisfeita, diz-se que m e n são congruentes módulo

$$m \equiv n \mod 2$$

Exemplos de relações binárias

Exemplo 2 Seja a relação C de $\mathbb R$ para $\mathbb R$ definida como:

$$\forall (x,y) \in \mathbb{R} \times \mathbb{R}, (x,y) \in C \Leftrightarrow x^2 + y^2 = 1$$

- $(1,0) \in C$? Sim.
- $-(-\frac{1}{2},\frac{\sqrt{3}}{2})\in C$? Sim.
- $(-2,0) \in C$? Não.

Exemplos de relações binárias

Exemplo 3 Seja A o conjunto de todos os strings de tamanho 6 formados de x's e y's. O conjunto A é representado por Σ^6 onde $\Sigma = \{x, y\}$.

Seja a relação binária R de A para A definida como:

$$sRt \Leftrightarrow \operatorname{substr}(s, 1, 4) = \operatorname{substr}(t, 1, 4)$$

- xxyxyxRxxxyxy?Não.
- yxyyyxRyxyyxy?Sim.

Diagrama de seta de uma relação

- Suponha que R é uma relação de um conjunto A para um conjunto B. O "diagrama de seta" para R é obtido da seguinte forma:
 - 1. Represente os elementos de A numa região e os elementos de B como pontos em outra região.
 - 2. Para cada x em A e y em B, desenhe uma seta de x para y sse x é relacionado com y por R. Simbolicamente:
 - \rightarrow Desenhe uma seta de x para $y \Leftrightarrow xRy \Leftrightarrow (x,y) \in R$

Exemplos de relações binárias

Exemplo 4 Sejam os conjuntos $A = \{1, 2, 3\}$ e $B = \{1, 3, 5\}$ e as relações:

 $- \ \forall (x,y) \in A \times B, (x,y) \in S \Leftrightarrow x < y$

 $T = \{(2,1),(2,5)\}$

Relações e funções

Definição:

Uma função F de um conjunto A para um conjunto B é uma relação de A para B que satisfaz as duas propriedades abaixo:

- 1. Para cada elemento x em A, existe um elemento y em B tal que $(x,y) \in F$.
 - \rightarrow cada elemento de A é o primeiro elemento de um par ordenado de F.
- 2. Para todos elementos x em A e y e z em B,

se
$$(x,y) \in F$$
 e $(x,z) \in F$, então $y=z$

não existem dois pares ordenados distintos cujo primeiro elemento seja o mesmo.

Se F é uma função de A para B, temos que

$$y = F(x) \Leftrightarrow (x, y) \in F$$

Relações e funções

Exemplo 5 Sejam os conjuntos $A = \{2, 4, 6\}$ e $B = \{1, 3, 5\}$ e a relação:

 $-R = \{(2,5), (4,1), (4,3), (6,5)\}.$ R é uma função? Não, por causa dos pares (4,1) e (4,3).

Relações e funções

Exemplo 6 Sejam os conjuntos $A = \{2, 4, 6\}$ e $B = \{1, 3, 5\}$ e a relação:

- $S: \forall (x,y) \in A \times B, (x,y) \in S \Leftrightarrow y=x+1. \ S$ é uma função? Não, já que $6 \in A$ mas não existe $y \in B | y=6+1=7.$

Funções e relações nos conjuntos dos reais

Exemplo 7 Seja a relação C de $\mathbb R$ para $\mathbb R$ definida como:

$$\forall (x,y) \in \mathbb{R} \times \mathbb{R}, (x,y) \in C \Leftrightarrow x^2 + y^2 = 1$$

C é uma função?

Não, já que existem números reais $x \mid (x,y) \not\in C$ para todo y. Por exemplo, x=2.

Funções e relações nos conjuntos dos reais

Exemplo 8 Seja a relação L de $\mathbb R$ para $\mathbb R$ definida como:

$$\forall (x,y) \in \mathbb{R} \times \mathbb{R}, (x,y) \in L \Leftrightarrow y = x - 1$$

L é uma função?

Sim.

O inverso de uma relação

Definição:

Seja R uma relação de A para B. A relação inversa R^{-1} de B para A é definida como:

$$R^{-1} = \{(y, x) \in B \times A | (x, y) \in R\}.$$

Essa definição pode ser re-escrita operacionalmente como

$$\forall x \in X, y \in Y, (y, x) \in R^{-1} \Leftrightarrow (x, y) \in R$$

O inverso de uma relação

Exemplo 9 Sejam os conjuntos $A = \{2,3,4\}$ e $B = \{2,6,8\}$ e seja R a relação "divide" de A para B:

$$\forall (x,y) \in A \times B, xRy \Leftrightarrow x|y$$

$$-R = \{(2,2), (2,6), (2,8), (3,6), (4,8)\}$$

O inverso de uma relação

Exemplo 10 Sejam os conjuntos $A = \{2,3,4\}$ e $B = \{2,6,8\}$ e seja R a relação "divide" de A para B:

$$\forall (x,y) \in A \times B, xRy \Leftrightarrow x|y$$

$$R = \{(2,2), (2,6), (2,8), (3,6), (4,8)\}$$

- $-R^{-1} = \{(2,2), (6,2), (8,2), (6,3), (8,4)\}$
- $-R^{-1}: \forall (y,x) \in B \times A, yR^{-1}x \Leftrightarrow y \text{ \'e um m\'ultiplo de } x.$

Inverso de uma relação infinita

Exemplo 11 Seja a relação R de $\mathbb R$ para $\mathbb R$ definida como:

$$\forall (u, v) \in \mathbb{R} \times \mathbb{R}, uRv \Leftrightarrow v = 2 \cdot |u|$$

A relação R^{-1} é uma função? Não, já que os pares (2,1) e (2,-1) estão em R^{-1} .

21

Grafo dirigido de uma relação

- Definição (relação binária): Uma relação binária no conjunto A é uma relação binária de A para A.
- Neste caso, o diagrama de seta é modificado e torna-se um "grafo dirigido," ou seja, o conjunto A é desenhando somente uma vez e uma seta é desenhada para cada par de pontos relacionados entre si.

Grafo dirigido de uma relação

Exemplo 12 Seja $A = \{3, 4, 5, 6, 7, 8\}$ e a relação binária R em A definida como

$$\forall (x,y) \in A \times A, xRy \Leftrightarrow 2|(x-y)|$$

Relações n-árias

<u>Definição</u>: Dados os conjuntos A_1, A_2, \ldots, A_n , uma relação n-ária R em $A_1 \times A_2 \times \ldots \times A_n$ é um subconjunto de $A_1 \times A_2 \times \ldots \times A_n$.

Relações envolvendo dois, três e quatro conjuntos são chamadas de binárias, ternárias e quaternárias, respectivamente.

Exemplo 13 Seja $A = \{2, 3, 4, 6, 7, 9\}$ e a relação binária R em A definida como

$$\forall (x,y) \in A \times A, xRy \Leftrightarrow 3|(x-y)$$

Exemplo 13 Este grafo tem três propriedades importantes:

- 1. Cada ponto do grafo tem uma seta para o próprio ponto.
- 2. Em todos os casos onde existe uma seta indo de um ponto p para um ponto q, existe uma seta indo do ponto q para o ponto p.
- 3. Em todos os casos onde existe uma seta indo de um ponto p para um ponto q e do ponto q para um ponto q, existe uma seta indo do ponto q para o ponto q.
- → Essas propriedades correspondem a relações gerais chamadas de reflexiva, simétrica e transitiva.

Seja R uma relação binária no conjunto A.

- 1. R é reflexiva sse, $\forall x \in A, xRx$.
 - → Cada elemento é relacionado consigo mesmo.
- 2. R é simétrica sse, $\forall x, y \in A$, se xRy então yRx.
 - Cada elemento relacionado com um outro, o segundo é relacionado com o primeiro.
- 3. R é **transitiva** sse, $\forall x, y, z \in A$, se xRy e yRz então xRz.
 - → Cada elemento relacionado com um segundo, o segundo é relacionado com um terceiro, então o primeiro é relacionado com o terceiro.

Exemplo 14 Seja o conjunto $A = \{0, 1, 2, 3\}$ e a relação binária R definida como:

$$R = \{(0,0), (0,1), (0,3), (1,0), (1,1), (2,2), (3,0), (3,3)\}$$

Diga se a propriedade é reflexiva, simétrica e transitiva?

- Reflexiva (V): Existe um laço para cada nó do grafo o que significa que cada elemento de A é relacionado consigo mesmo.
- Simétrica (V): Para cada aresta de "ida" existe uma aresta de "volta".
- Transitiva (**F**): Temos 1R0 e 0R3 mas não temos 1R3, o que implica na não transitividade.

Exemplo 15 Seja o conjunto $A = \{0, 1, 2, 3\}$ e a relação binária S definida como:

$$S = \{(0,0), (0,2), (0,3), (2,3)\}$$

A propriedade é reflexiva, simétrica e transitiva?

- Reflexiva (F): N\u00e3o existe, por exemplo, 1R1.
- Simétrica (F): Para cada aresta de "ida" não existe uma aresta de "volta".
- Transitiva (V): Temos

Hipótese	Conclusão		
(0,2) e $(2,3)$	(0,3)		
(0,0) e $(0,2)$	(0,2)		
(0,0) e $(0,3)$	(0,3)		

→ Os elementos x, y e z não precisam ser distintos.

Exemplo 16 Seja o conjunto $A = \{0, 1, 2, 3\}$ e a relação binária T definida como:

$$T = \{(0,1),(2,3)\}$$

Diga se a propriedade é reflexiva, simétrica e transitiva?

- Reflexiva (F): Não existe nenhum laço.
- Simétrica (F): Para cada aresta de "ida" não existe uma aresta de "volta".
- Transitiva (V): Por default. A transitividade não é satisfeita quando a hipótese é verdadeira e a conclusão é falsa, ou seja,

$$(x,y) \in T e (y,z) \in T e (x,z) \not\in T$$

Como não existem pares (x, y) e (y, z) que satisfazem a hipótese a conclusão da afirmação é verdadeira.

3 ⊶ 2

Verificando propriedades de relações através de um programa

- Seja uma relação binária R definida num conjunto finito A com n elementos.
 - É possível verificar através de um programa se R é reflexiva, simétrica e transitiva.
- Possível implementação:
 - \rightarrow Representar R por uma matriz booleana quadrada de tamanho n.
 - → A linha corresponde ao primeiro elemento do par ordenado e a coluna ao segundo elemento do par ordenado (consequentemente a matriz não é simétrica).

Verificando propriedades de relações através de um programa

2º elemento

	0	1	2	3
0	V	V		٧
1	V	V		
2			V	
3	V			V

2º elemento

2º elemento

		0	1	2	3
οtc	0		V		
mer	1				
1 $^{\underline{0}}$ elemento	2				V
1	3				

1º elemento

Fecho de uma relação

Se uma relação binária R definida em um conjunto A não possui uma determinada propriedade p, podemos "estender" R e obter uma nova relação R^* em A que tenha essa propriedade.

Estender significa que a nova relação R^* em A contém todos os pares de R e os pares adicionais necessários para que a propriedade p seja válida.

Definição [Fecho de uma relação]: Seja A um conjunto, R uma relação binária em A e uma propriedade p. O fecho de R é a relação binária R^* em A que possui a propriedade p e satisfaz as três condições abaixo:

- 1. R^* tem a propriedade p;
- 2. $R \subseteq R^*$;
- 3. Se S é uma outra relação qualquer que contém R e satisfaz a propriedade p, então $R^* \subseteq S$.

Fecho de uma relação

Podemos definir os seguintes fechos:

- reflexivo;
- simétrico;
- transitivo

de uma relação em um conjunto.

Se uma relação binária R definida em um conjunto A já possui a propriedade p, ela já é seu próprio fecho que satisfaz a propriedade p.

Fecho transitivo de uma relação

Definição [Fecho transitivo de uma relação]: Seja A um conjunto e R uma relação binária em A. O fecho transitivo (*transitive closure*) de R é a relação binária R^t em A que satisfaz as três condições abaixo:

- 1. R^t é transitiva;
- 2. $R \subseteq R^t$;
- 3. Se S é uma outra relação transitiva qualquer que contém R, então $R^t \subseteq S$.

Fecho transitivo de uma relação

Exemplo 17 Seja o conjunto $A = \{0, 1, 2, 3\}$ e a relação binária R definida como $R = \{(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)\}.$

Hipótese	Conclusão	
(0,0) e (0,0)	(0,0)	
(0,0) e $(0,1)$	(0,1)	
(0,0) e (0,3)	(0,3)	
(1,0) e (0,1)	(1,1)	
(1,0) e (0,3)	(1,3)*	
(1,1) e (1,0)	(1,0)	
(1,1) e (1,1)	(1,1)	
(2,2) e (2,2)	(2,2)	
(3,0) e (0,0)	(3,0)	
(3,0) e (0,1)	(3,1)*	
(3,0) e (0,3)	(3,3)	
(3,3) e (3,3)	(3,3)	

^{*} Não faz parte da relação original.

 $R^t = \{(0,0), (0,1), (0,3), (1,0), (1,1), (1,3), (2,2), (3,0), (3,1), (3,3)\}.$

Fecho transitivo de uma relação

Exemplo 18 Seja $A = \{0, 1, 2, 3\}$ e considere a relação R definida em A como:

$$R = \{(0,1), (1,2), (2,3)\}$$

Determine a relação de fecho transitivo de R.

Hipótese	Conclusão
(0,1) e (1,2)	(0,2)*
(1,2) e (2,3)	(1,3)*
$(0,2)^* e(2,3)$	(0,3)*

^{*} Não faz parte da relação original.

Assim,

$$R^t = \{(0,1), (0,2), (0,3), (1,2), (1,3), (2,3)\}$$

Fecho transitivo de uma relação

Exemplo 18 Dado $A = \{0, 1, 2, 3\}$ e a relação R definida em A como:

$$R = \{(0,1), (1,2), (2,3)\}$$

temos

$$R^t = \{(0,1), (0,2), (0,3), (1,2), (1,3), (2,3)\}$$

Grafo dirigido de R:

1

- ullet Suponha uma relação binária é definida em um conjunto infinito A.
- Para provar que a relação é reflexiva, simétrica e transitiva:
 - Escreva o que deve ser provado. Por exemplo, para simetria:

$$\forall x, y \in A$$
, se xRy então yRx

— Use as definições do conjunto A e da relação R para reescrever a propriedade. Para a relação de "igualdade" no conjunto dos números reais, temos:

$$\forall x, y \in A$$
, se $x = y$ então $y = x$

Exemplo 19 Seja S uma relação no conjunto $\mathbb R$ tal que para todos

$$x, y \in \mathbb{R}, xSy \Leftrightarrow x < y$$

A propriedade é reflexiva, simétrica e transitiva?

Exemplo 19

Reflexiva (\mathbf{F}): S é reflexiva sse

$$\forall x \in \mathbb{R}, xSx.$$

Pela definição de S, isto significa

$$\forall x \in \mathbb{R}, x < x.$$

Para provar que essa afirmação é falsa, basta achar um contra-exemplo. Neste caso, a afirmação é falsa para todos os números reais já que $x \not< x$.

Exemplo 19

Simétrica (\mathbf{F}): S é simétrica sse

 $\forall x,y \in \mathbb{R}$, se xSy então ySx.

Pela definição de S, isto significa

 $\forall x, y \in \mathbb{R}$, se x < y então y < x.

Para provar que essa afirmação é falsa, basta achar um contra-exemplo. Neste caso, a afirmação é falsa para todos os números reais já que se x < y, então $y \not< x$.

Exemplo 19

Transitiva (\mathbf{V}): S é transitiva sse

 $\forall x, y, z \in \mathbb{R}$, se xSy e ySz então xSz.

Pela definição de S, isto significa

 $\forall x, y, z \in \mathbb{R}$, se x < y e y < z então x < z.

Essa afirmação é verdadeira pela lei transitiva da ordem dos números reais.

Exemplo 20 Seja T uma relação no conjunto $\mathbb Z$ dos números inteiros tal que para todos

$$m,n \in \mathbb{Z}, mTn \Leftrightarrow 3|(m-n)$$

A propriedade é reflexiva, simétrica e transitiva?

Exemplo 20

Reflexiva (\mathbf{V}): T é reflexiva sse

$$\forall m \in \mathbb{Z}, mTm.$$

Pela definição de T, isto significa

$$\forall m \in \mathbb{Z}, 3 | (m-m),$$

ou ainda,

$$\forall m \in \mathbb{Z}, 3 | 0.$$

Essa afirmação é verdadeira já que $0 = 3 \cdot 0$.

Exemplo 20

Simétrica (\mathbf{V}): T é simétrica sse

 $\forall m, n \in \mathbb{Z}$, se mTn então nTm.

Pela definição de T, isto significa

$$\forall m, n \in \mathbb{Z}, \text{ se } 3 | (m-n) \text{ então } 3 | (n-m).$$

Suponha que m e n sejam inteiros específicos mas escolhidos aleatoriamente tais que 3|(m-n). Deve-se mostrar que 3|(n-m). Pela definição de "divide" temos que 3|(m-n) e m-n=3k e $n-m=3\cdot -k$, para algum inteiro k. Logo, 3|(n-m).

Exemplo 20

Transitiva (\mathbf{V}): T é transitiva sse

 $\forall m, n, o \in \mathbb{Z}, \text{ se } mTn \text{ e } nTo \text{ então } mTo.$

Pela definição de T, isto significa

$$\forall m, n, o \in \mathbb{Z}$$
, se $3|(m-n)$ e $3|(n-o)$ então $3|(m-o)$.

Suponha que m, n e o sejam inteiros específicos mas escolhidos aleatoriamente tais que 3|(m-n) e 3|(n-o). Deve-se mostrar que 3|(m-o). Pela definição de "divide" temos que: 3|(m-n) e m-n=3r; e 3|(n-o) e n-o=3s, para inteiros r e s, respectivamente. Sabemos que:

$$(m-n) + (n-o) = 3r + 3s$$

 $m-o = 3 \cdot (r+s)$

O que mostra que 3|(m-o).

Exemplo 21 Seja C o conjunto de todos os circuitos lógicos com um número fixo n de entradas. Seja E uma relação binária no conjunto C definida como:

Para todos os circuitos $c_1 \in C$ e $c_2 \in C$

$$c_1 E c_2 \Leftrightarrow$$

 c_1 tem a mesma tabela de entrada e saída que c_2 .

A propriedade é reflexiva, simétrica e transitiva?

Exemplo 21

Reflexiva (\mathbf{V}): E é reflexiva sse

$$\forall c \in C, cEc.$$

Pela definição de E, isto significa

$$\forall c \in C, \left(\begin{array}{c} c \text{ tem a mesma tabela de} \\ \text{entrada e saída que } c \end{array} \right).$$

O que é obviamente verdade.

Exemplo 21

Simétrica (\mathbf{V}): E é simétrica sse

$$\forall c_1, c_2 \in C$$
, se $c_1 E c_2$ então $c_2 E c_1$.

Pela definição de E, isto significa

$$\forall c_1, c_2 \in C,$$

se
$$\begin{pmatrix} c_1 \text{ tem a mesma tabela de} \\ \text{entrada e saída que } c_2 \end{pmatrix}$$
 então $\begin{pmatrix} c_2 \text{ tem a mesma tabela de} \\ \text{entrada e saída que } c_1 \end{pmatrix}$.

Considerando a hipótese verdadeira, a conclusão é obviamente verdadeira.

Exemplo 21

Transitiva (\mathbf{V}): E é transitiva sse

$$\forall c_1, c_2, c_3 \in C$$
, se $c_1 E c_2$ e $c_2 E c_3$ então $c_1 E c_3$.

Pela definição de E, isto significa

se
$$\begin{pmatrix} c_1 \text{ tem a mesma tabela de} \\ \text{entrada e saída que } c_2 \end{pmatrix}$$
 e $\begin{pmatrix} c_2 \text{ tem a mesma tabela de} \\ \text{entrada e saída que } c_3 \end{pmatrix}$ então $\begin{pmatrix} c_1 \text{ tem a mesma tabela de} \\ \text{entrada e saída que } c_3 \end{pmatrix}$.

Considerando a hipótese verdadeira, a conclusão é obviamente verdadeira.

Relação de equivalência

- Idéia central de relação de equivalência:
 - Agrupar pares ordenados de uma relação que estão relacionados entre si.
- Partição de um conjunto A:
 - Coleção de subconjuntos não-vazios mutuamente disjuntos cuja união é o conjunto A.

Exemplo 22 Para $i \neq j$, $A_i \cap A_j = \emptyset$, ou ainda $A_1 \cup A_2 \cup \ldots \cup A_6 = A$

Relação de equivalência

<u>Definição</u>: Dada uma partição de um conjunto A, a relação binária R induzida pela partição é definida em A como:

 $\forall x, y \in A, xRy \Leftrightarrow \text{Existe um subconjunto } A \text{ da partição}$ tal que ambos $x \in y \text{ estão em } A.$

Exemplo 23 Seja $A = \{0, 1, 2, 3, 4\}$ e considere a seguinte partição de A:

$$\{0,3,4\},\{1\},\{2\}$$

Determine a relação R induzida por essa partição.

$$R = \left\{ \begin{array}{l} (0,0), (0,3), (0,4), (3,0), (3,3), (3,4), (4,0), (4,3), (4,4), \\ (1,1), \\ (2,2) \end{array} \right\}$$

Observação importante:

→ Uma relação induzida por uma partição de um conjunto satisfaz as propriedades de reflexividade, simetria e transitividade.

53

Relação de equivalência

<u>Definição</u>: Seja A um conjunto não-vazio e R uma relação binária em A. R é uma relação de equivalência sse R é reflexiva, simétrica e transitiva.

Exemplo 24 Seja $A = \{2, 3, 4, 6, 7, 9\}$ e a relação binária R em A definida como

$$\forall (x,y) \in A \times A, xRy \Leftrightarrow \exists |(x-y)|$$

A partição de A correspondente à relação R é:

$${4,7},{2},{3,6,9}$$

Classes de equivalência de uma relação equivalência

- Suponha que exista uma relação de equivalência de um dado conjunto. Seja a um elemento particular do conjunto. O subconjunto de todos os elementos que estão relacionados com a é chamado de classe de equivalência de a.
- Definição: Seja A um conjunto e R uma relação de equivalência em A. Para cada elemento $a \in A$, a classe de equivalência de a, representada por [a] e chamada de a é o conjunto de todos os elementos $x \in A$ tal que x está relacionado com a através de R.

Simbolicamente, temos:

$$[a] = \{x \in A | xRa\}$$

Classes de equivalência de uma relação definida num conjunto finito

Exemplo 25 Seja $A = \{0, 1, 2, 3, 4\}$ e R uma relação binária em A definida como:

$$\{(0,0),(0,4),(1,1),(1,3),(2,2),(3,1),(3,3),(4,0),(4,4)\}$$

R é uma relação de equivalência em A:

As classes de equivalência de R são:

$$[0] = \{x \in A | xR0\} = \{0, 4\}$$

$$[1] = \{x \in A | xR1\} = \{1, 3\}$$

$$[2] = \{x \in A | xR2\} = \{2\}$$

$$[3] = \{x \in A | xR3\} = \{1, 3\}$$

$$[4] = \{x \in A | xR4\} = \{0, 4\}$$

Assim, as classes distintas de equivalência da relação são:

$$\{0,4\},\{1,3\},\{2\}$$

- Seja A um conjunto e R uma relação de equivalência em A e a e b elementos de A:
 - 1. Se aRb, então [a] = [b]

2.
$$[a] \cap [b] = \emptyset$$
 \vee $[a] = [b]$

• Se A é um conjunto não vazio e R é uma relação de equivalência em A, então as classes de equivalência distintas de A formam uma partição de A, ou seja,

a união das classes de equivalência é todo o conjunto A e a intersecção de quaisquer duas classes distintas é o conjunto vazio.

Exemplo 26 Seja R a relação de congruência módulo 3 no conjunto \mathbb{Z} de todos os números inteiros. Isto significa que para todos inteiros m e n,

$$mRn \Leftrightarrow 3|(m-n) \Leftrightarrow m \equiv n \mod 3$$

Descreva as classes de equivalência distintas de R.

Para cada inteiro a,

$$[a] = \{x \in \mathbb{Z} | xRa \}$$

$$= \{x \in \mathbb{Z} | 3|(x-a) \}$$

$$= \{x \in \mathbb{Z} | x-a=3 \cdot k, \text{ para algum inteiro } k \}$$

$$= \{x \in \mathbb{Z} | x=3 \cdot k+a, \text{ para algum inteiro } k \}.$$

Exemplo 26

Assim,

```
[0] = \{x \in \mathbb{Z} | x = 3 \cdot k + 0, para algum inteiro k\}

= \{x \in \mathbb{Z} | x = 3 \cdot k, para algum inteiro k\}

= \{\dots, -9, -6, -3, 0, 3, 6, 9, \dots\},

[1] = \{x \in \mathbb{Z} | x = 3 \cdot k + 1, para algum inteiro k\}

= \{\dots, -8, -5, -2, 1, 4, 7, 10 \dots\},

[2] = \{x \in \mathbb{Z} | x = 3 \cdot k + 2, para algum inteiro k\}

= \{\dots, -7, -4, -1, 2, 5, 8, 11 \dots\}.
```

Exemplo 26

Pelas propriedades das classes de equivalência, temos:

$$[0] = [3] = [-3] = [6] = [-6] = \dots$$

 $[1] = [4] = [-2] = [7] = [-5] = \dots$
 $[2] = [5] = [-1] = [8] = [-4] = \dots$

→ Cada inteiro está em uma das três classes [0], [1] ou [2].

Isto significa que uma classe de equivalência pode ter diferentes "nomes". Neste exemplo, a classe do 0 ([0]) pode ser "chamada" pela classe do 3 ([3]) ou pela classe do -6 ([-6]), e assim por diante.

Mas o que a classe [0] ou [3] ou [-6] significa é o conjunto

$$\{x \in \mathbb{Z} | x = 3 \cdot k, \text{ para algum inteiro } k\}.$$

Exemplo 26

As três classes de equivalência são:

- 1. $\{x \in \mathbb{Z} | x = 3 \cdot k, \text{ para algum inteiro } k\}$
 - Conjunto dos inteiros divisíveis por 3.
- 2. $\{x \in \mathbb{Z} | x = 3 \cdot k + 1, \text{ para algum inteiro } k\}$
 - → Conjunto dos inteiros que deixam resto 1 quando divididos por 3.
- 3. $\{x \in \mathbb{Z} | x = 3 \cdot k + 2$, para algum inteiro $k\}$
 - → Conjunto dos inteiros que deixam resto 2 quando divididos por 3.

<u>Definição</u>: Seja R uma relação de equivalência num conjunto A e S uma classe de equivalência de R. Um *representante* da classe S é qualquer elemento a tal que [a] = S.

No exemplo anterior, temos que -6 é um representante da classe [-6] que por sua vez gera o conjunto

$$\{x \in \mathbb{Z} | x = 3 \cdot k, \text{ para algum inteiro } k\}$$

Conjunto de todos os inteiros divisíveis por 3.

No exemplo 21 foi mostrado que dado um conjunto C de todos os circuitos lógicos com um número fixo n de entradas, a relação E é uma relação de equivalência.

A relação E foi definida como:

Para todos os circuitos $c_1 \in C$ e $c_2 \in C$

$$c_1 E c_2 \Leftrightarrow$$

 c_1 tem a mesma tabela de entrada e saída que c_2 .

Exemplo 27 Dado o exemplo 21 e considerando circuitos lógicos com duas entradas e uma saída:

- (a) Descreva as classes de equivalência da relação E.
- (b) Identifique quantas classes de equivalência distintas existem.
- (c) Mostre circuitos que representam uma das classes.

Exemplo 27

Dado um circuito c_1 , a classe de equivalência de c_1 é o conjunto de todos os circuitos com duas entradas e uma saída que têm a mesma tabela de entrada e saída de c_1 .

Esquema de um circuito e uma possível tabela de entrada e saída:

Pelo princípio da multiplicação temos,

$$\underbrace{2}_{1^{\underline{a}} \text{ linha}} \cdot \underbrace{2}_{2^{\underline{a}} \text{ linha}} \cdot \underbrace{2}_{3^{\underline{a}} \text{ linha}} \cdot \underbrace{2}_{4^{\underline{a}} \text{ linha}} = 16$$

tabelas da verdade distintas.

Exemplo 27

- (a) Descreva as classes de equivalência da relação E. Existem 16 classes de equivalência distintas, uma para cada tabela de entrada e saída distinta.
- (b) Identifique quantas classes de equivalência distintas existem. Existem infinitamente muitos circuitos para cada uma das tabelas.
- (c) Mostre circuitos que representam uma das classes.

 Para a tabela de entrada e saída abaixo, dois possíveis circuitos são:

P	\overline{Q}	Saída
1	1	0
1	0	0
0	1	0
0	0	1

Relação anti-simétrica

- Já foram vistas três propriedades de relações:
 - 1. Reflexividade
 - 2. Simetria
 - 3. Transitividade
- Definição: Seja R uma relação num conjunto A. R é uma relação antisimétrica sse,

$$\forall a, b \in A$$
, se $aRb \wedge bRa$ então $a = b$.

- → Informalmente, uma relação é anti-simétrica se para cada aresta de "ida" não existe uma aresta de "volta".
- Tomando a negação dessa definição temos que uma relação R não é antisimétrica sse,

$$\exists a, b \in A | aRb \wedge bRa \wedge a \neq b.$$

Relação anti-simétrica

Exemplo 28 Seja R uma relação no conjunto $\{0,1,2\}$ definida como

$$R = \{(0,2), (1,2), (2,0)\}$$

A propriedade é anti-simétrica?

Anti-simétrica (\mathbf{F}): R é uma relação anti-simétrica sse,

 $\forall a, b \in A$, se $aRb \wedge bRa$ então a = b.

Como 0R2 e 2R0 e $0 \neq 2$, R não é anti-simétrica.

Relação anti-simétrica

Exemplo 29 Seja R uma relação no conjunto $\{0, 1, 2\}$ definida como

$$R = \{(0,0), (0,1), (0,2), (1,1), (1,2)\}$$

A propriedade é anti-simétrica?

Anti-simétrica (V): R é uma relação anti-simétrica sse,

 $\forall a, b \in A$, se $aRb \wedge bRa$ então a = b.

Como não existem arestas de ida e de volta para o mesmo par de nós, a relação é anti-simétrica.

Relação de ordem parcial

<u>Definição</u>: Seja R uma relação binária definida no conjunto A. R é uma relação de ordem parcial sse R é reflexiva, anti-simétrica e transitiva.

Exemplos de relações de ordem parcial:

- 1. Relação "menor ou igual a" no conjunto dos números reais;
- 2. Relação "subconjunto" num conjunto de conjuntos.

Relação de ordem parcial

Exemplo 30 Seja D a relação divide em \mathbb{Z}^+ (inteiros positivos) definida como:

$$\forall a, b \in \mathbb{Z}^+, a | b \Leftrightarrow b = k \cdot a$$
, para algum inteiro k .

- Reflexiva (**V**): D é reflexiva sse $\forall a \in \mathbb{Z}^+, a|a$. Suponha $a \in \mathbb{Z}^+$. Temos que $a = 1 \cdot a$ e assim a|a pela definição da divisibilidade.
- Anti-simétrica (**V**): D é anti-simétrica sse $\forall a, b \in \mathbb{Z}^+$, se $a|b \wedge b|a$ então a = b. Suponha $a, b \in \mathbb{Z}^+$ e aRb e bRa. Pela definição de R, a|b e b|a. Pela definição de divide existem inteiros k_1 e k_2 tais que $b = k_1 \cdot a$ e $a = k_2 \cdot b$. Temos que

$$b = k_1 \cdot a = k_1 \cdot (k_2 \cdot b) = (k_1 \cdot k_2) \cdot b$$

Ou seja, $k_1 \cdot k_2 = 1$. Temos que k_1 e k_2 são inteiros positivos. Mas o único produto de dois inteiros positivos que é igual 1 é $1 \cdot 1$. Assim, $k_1 = k_2 = 1$. Assim, $a = k_2 \cdot b = 1 \cdot b = b$.

• Transitividade (**V**): D é transitiva sse $\forall a, b, c \in \mathbb{Z}^+$, se a|b e b|c então a|c. Prova para o leitor.

Relação de ordem parcial

Exemplo 31 Seja \leq a relação "menor ou igual a" em $\mathbb R$ definida como:

$$\forall x, y \in \mathbb{R}, x \leq y \Leftrightarrow (x < y) \lor (x = y).$$

Mostre que \leq é uma relação em \mathbb{R} .

- Reflexiva (V): Para \leq ser reflexiva significa que $x \leq x$ para todos números reais. Mas $x \leq x$ significa que $(x < x) \lor (x = x)$ e x = x é sempre verdadeiro.
- Anti-simétrica (**V**): Para \leq ser anti-simétrica significa que para todos números reais x e y, se $x \leq y$ e $y \leq x$ então x = y. Isto é consequência imediata da definição de \leq e a propriedade de tricotomia que diz que dados quaisquer números reais x e y exatamente uma das afirmações é verdadeira: x < y ou x = y ou x > y.
- Transitividade (**V**): Para \leq ser transitiva significa que para todos os reais x, y e z, se $x \leq y$ e $y \leq z$ então $x \leq z$. Isto é verdade pela definição de \leq e pela propriedade transitiva da ordem dos números reais que diz que dados quaisquer números reais x, y e z, se x < y e y < z então x < z.

Ordem lexicográfica

- Seja ∑ um conjunto com uma relação de ordem parcial.
- Pode-se, então, definir uma ordem lexicográfica ou ordem de "dicionário" no conjunto Σ*.
- Seja R uma relação em Σ^* . Para quaisquer inteiros positivos m e n, e $a_1 a_2 \dots a_m$ e $b_1 b_2 \dots b_n$ em Σ^* , temos:
 - 1. Se $m \leq n$ e $a_i = b_i$ para todos i = 1, 2, ..., m, então

$$a_1a_2...a_m \leq b_1b_2...b_n.$$

2. Para algum inteiro $k, k \leq m, k \leq n$, e $k \geq 1, a_i = b_i$ para todos $i = 1, 2, \ldots, k-1$, e $a_k R b_k$ mas $a_k \neq b_k$, então

$$a_1a_2...a_m \leq b_1b_2...b_n.$$

3. Se ϵ é o string nulo e s é um string em Σ^* , então $\epsilon \leq s$.

O símbolo \leq é usado para referenciar uma relação de ordem parcial genérica e é lido como "menor ou igual a".

Ordem lexicográfica

Exemplo 32 Seja $\Sigma = \{\bot, \top\}$ e R a seguinte relação de ordem parcial em Σ :

$$R = \{(\bot, \bot), (\bot, \top), (\top, \top)\}.$$

Diga se os seguintes strings definem uma ordem lexicográfica em Σ^* :

- (a) $\top \bot \top \bot \bot \top \top \preceq \top \bot \top \bot \top \uparrow$? Sim, caso 2.
- (b) $\bot\bot\top\bot\top\top\top$ \preceq $\bot\bot\top\bot\bot\top\top$? Não, já que $a_5 \not\preceq b_5$.
- (c) $\top \top \bot \bot \bot \preceq \top \top \bot \bot \bot \updownarrow$? Sim, caso 1.
- (d) $\epsilon \leq \bot \bot \top$? Sim, caso 3.

Diagrama de Hasse

Exemplo 33 Seja $A = \{1, 2, 3, 9, 18\}$ e considere a relação D "divide" no conjunto como:

 $\forall a, b \in A, a | b \Leftrightarrow b = a \cdot k$, para algum inteiro k.

O grafo dirigido da relação D é:

Diagrama de Hasse

Note que:

- Existe um laço ("loop") em cada vértice;
- Todas as arestas apontam para a mesma direção, ou seja, para cima;
- Toda vez que há uma aresta de um vértice para um segundo e de um segundo para um terceiro, então há uma aresta do primeiro vértice para o terceiro vértice.
- → É possível associar um grafo mais simples com uma relação de ordem parcial num conjunto finito chamado Diagrama de Hasse.

Algoritmo para obter o Diagrama de Hasse

Elimine:

- 1. Os laços em todos os vértices;
- 2. Todas as arestas que existem por causa da propriedade de transitividade;
- 3. A direção em todas as arestas.

Diagrama de Hasse

Exemplo 34 Considere a relação subconjunto, \subseteq , no conjunto potência $\mathcal{P}(\{a,b,c\})$. Para todos os conjuntos U e V em $\mathcal{P}(\{a,b,c\})$,

$$U \subseteq V \Leftrightarrow \forall x$$
, se $x \in U$ então $x \in V$.

Construa o Diagrama de Hasse dessa relação.

Grafo original do Diagrama de Hasse

Para obter o grafo original a partir do Diagrama de Hasse basta reverter os passos do algoritmo anterior.

