NSL_KDD Dataset: Anomaly Detection Model Evaluation

Evaluation Protocol

Strict Train-Test Separation

No Data Leakage Confirmed | Overfitting Analysis Below

1. One-Class SVM

• Abandoned due to high compute cost + inferior performance vs. other models.

2. Isolation Forest (contamination=0.2)

Performance Metrics

Test Set:

Class	Precision	Recall	F1-Score	Support
Normal (0)	0.78	0.88	0.83	9711
Anomaly (1)	0.90	0.81	0.85	12833

Accuracy: 84% Macro Avg F1: 85%

Training Set:

Metric	Value	
Normal Recall	80%	
Training Accuracy	80%	

Visual Analysis

Aggregated Anomaly Score Distributions (Original Style)

Color Code:

• Blue: Training normal scores

• Green: Test normal scores

• Red: Test anomaly scores

Markers:

• o: Predicted normal (score > threshold)

• ×: Predicted anomaly

Color:

• Green: True normal

Red: True anomalyBlue: Training normal

Analysis

- As Train accuracy is 80%, contaminaiton is 0.2 and Test accuracy is 84%, the model is not overfitting.
- From the visualization, we can see that the model is able to separate the normal and anomaly classes well upto a certain extent as the overlapping is not much.

3. Autoencoder (contamination=0.1)

Performance Metrics

Test Set:

Class	Precision	Recall	F1-Score	Support
Normal (0)	0.76	0.91	0.82	9711
Anomaly (1)	0.92	0.78	0.84	12833

Accuracy: 83% Macro Avg F1: 83%

Training Set:

Metric	Value	
Training Accuracy	90%	

Visual Analysis

Color Code:

• Blue: Training normal scores

• Green: Test normal scores

• Red: Test anomaly scores

Markers:

- o: Predicted normal (score > threshold)
- ×: Predicted anomaly

Color:

• Green: True normal

Red: True anomalyBlue: Training normal

Training Loss

Analysis

- As Train accuracy is 80%, contaminaiton is 0.2 and Test accuracy is 84%, the model is not overfitting.
- From the visualization, we can see that the model is able to separate the normal and anomaly classes well upto a certain extent as the overlapping is not much.