# 提案(グラフプーリング とグラフ畳み込みLSTM)

### グラフ畳み込みLSTM

# グラフ畳み込み(数式)

https://arxiv.org/pdf/1801.07455.pdf $\mathcal{O}(9)$ 

### 使用するグラフ畳み込みLSTM

$$\begin{split} & \mathsf{f} = \sigma(\Lambda^{\frac{-1}{2}}\mathsf{A} \circ M\Lambda^{\frac{-1}{2}}x_{t}W_{xf} + \Lambda^{\frac{-1}{2}}\mathsf{A} \circ M\Lambda^{\frac{-1}{2}}h_{t-1}W_{hf} + b_{f}) \\ & \mathsf{i} = \sigma(\Lambda^{\frac{-1}{2}}\mathsf{A} \circ M\Lambda^{\frac{-1}{2}}x_{t}W_{xi} + \Lambda^{\frac{-1}{2}}\mathsf{A} \circ M\Lambda^{\frac{-1}{2}}h_{t-1}W_{hi} + b_{i}) \\ & \mathsf{g} = tanh(\Lambda^{\frac{-1}{2}}\mathsf{A} \circ M\Lambda^{\frac{-1}{2}}x_{t}W_{xg} + \Lambda^{\frac{-1}{2}}\mathsf{A} \circ M\Lambda^{\frac{-1}{2}}h_{t-1}W_{hg} + b_{g}) \\ & \mathsf{o} = \sigma(\Lambda^{\frac{-1}{2}}\mathsf{A} \circ M\Lambda^{\frac{-1}{2}}x_{t}W_{xo} + \Lambda^{\frac{-1}{2}}\mathsf{A} \circ M\Lambda^{\frac{-1}{2}}h_{t-1}W_{ho} + b_{o}) \end{split}$$

各式の演算をグラフ畳み込みとした。

### グラフプーリング

# おそらくグラフ上の特徴量(行列)は

|      | _            |
|------|--------------|
| x(0) | y(0)         |
| x(1) | y(1)         |
| x(2) | y(2)         |
| x(3) | y(3)         |
| x(4) | y <b>(4)</b> |
| x(5) | y <b>(5)</b> |
| x(6) | y(6)         |
| x(7) | y(7)         |
| x(8) | y <b>(8)</b> |

下のURLのチュートリアルの僕なりの解釈 (https://towardsdatascience.com/how-to-do-deep-learning-on-graphs-with-graph-convolutional-networks-7d2250723780)

 $\longrightarrow$ 

各列が画像でいうマップ 各行が各ノードの特徴ベクトル

# 提案手法(グラフプーリング)

メモリ(RAM, VRAM)の節約のために、 ノード数の削減を行う手法を提案する。



#### 従来のプーリングについて

従来のプーリングは、画像のサイズを小さくするための演算



#### 赤い丸の中で、プーリング



## 先程のプーリングを愚直に実装すると

1つのマップにつきプーリングを実行する。

→マップの数Nに比例した計算がかかる。O(N)

→従来のプーリングと同じように操作したい。 (既存のインターフェースで操作できるようにしたい)

→ノード番号を適切に割り振れば、 従来のプーリングと同じ操作が可能

# 提案するプーリング法

2×1の領域の最大値を取り出す





# プーリング結果



メモリ(RAM, VRAM)の削減