姓名	鉄
	H
	₹
本金	Ħ
	₩ þ
推	4
級	47
	7
派 争	[
WK	校

四川理工学院试卷(2017至2018学年第二学期)

课程名称:《高等数学 A2》(A 卷)

命题教师: 杨 勇

适用班级: 理工科本科(不包括职教)

考试	(考鱼	:):	考试			2018 -	牛 ,	月	티		단 6	贝
题号	-		=	四	五	六	七	八	九	总分	评阅((统分) 师

- 1、满分100分。要求卷面整洁、字迹工整、无错别字。
- 2、考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地 方, 否则视为废卷。
- 3、考生必须在签到单上签到, 若出现遗漏, 后果自负。
- 4、如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和 答题卷分别一同交回, 否则不给分。

得分	评阅教师

一、单选题(请将正确的答案填在对应括号内, 每题 4 分, 共 20 分)

1. 极限
$$\lim_{\substack{x\to 0\\y\to 1}} \frac{\sin xy}{\sqrt{1+x}-1}$$
 等于 ()

A 0 B 2 C 1 D ∞

2. 直线 $l: \frac{x}{4} = \frac{y-5}{-2} = \frac{z-6}{1}$ 与平面 $\pi: 4x-2y+z=-15$ 的位置关系为

- A. 平行; B. 垂直; C. 直线在平面内; D. 相交不垂直

3. 改变
$$\int_0^1 dx \int_0^{\sqrt{x}} f(x,y) dy$$
 的积分次序为().

A $\int_0^1 dy \int_0^1 f(x, y) dx$; B $\int_0^1 dy \int_0^{\sqrt{x}} f(x, y) dx$;

C $\int_{0}^{1} dy \int_{0}^{y^{2}} f(x, y) dx$ D $\int_{0}^{1} dy \int_{y^{2}}^{1} f(x, y) dx$

4. 一质点在力 $yx^{-2}\vec{i}-x^{-1}\vec{j}(x>0)$ 的作用下, 由点(1,0) 运动到(2,3) 所做功

A
$$-\frac{3}{2}$$
;

B
$$\frac{3}{2}$$
;

5. 下列说法不正确的是(

A.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$
绝对收敛;

A.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$
 绝对收敛; B. 若 $\lim_{n\to\infty} u_n \neq 0$, 则 $\sum_{n=1}^{\infty} u_n$ 发散

C.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
条件收敛;

C.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
条件收敛; D. 若 $\sum_{n=1}^{\infty} u_n$ 收敛,则 $\sum_{n=1}^{\infty} u_n^2$ 也收敛;

得分	评阅教师

二、填空题(请将正确的结果填在横线上. 每题 4 分, 共 20 分)

1.
$$\mathop{\mathcal{C}} f(x,y) = x^2 y + (y-1) \arctan \sqrt{\frac{y}{x}}, \quad \mathop{\mathbb{N}} \left. \frac{\partial f}{\partial x} \right|_{(2,1)} = \underline{\qquad}$$

2. 曲面
$$z = 2x^2 + y^2 - 7$$
 在点(1,1,-4)处的切平面方程为_____

5. 设方程
$$F(\frac{x}{z}, \frac{y}{z}) = 0$$
 确定了函数 $z = z(x, y)$, 则 $\frac{\partial z}{\partial y} = \underline{\hspace{1cm}}$

得分	评阅教师

三、设函数
$$z = \sin(u+v)$$
, 其中 $u = xy$, $v = e^x$, 求 $\frac{\partial z}{\partial x}$ 与 $\frac{\partial z}{\partial y}$ (本题 8 分)

姓名	线	
		船
李号		刻
排		油
	掚	К
出		七
级		徐
		#
不拿—		*
pr/k	\%3	

得分	评阅教师

四、求函数 $f(x,y) = x^3 + y^3 - 3(x+y)$ 的极值. (本题 10 分)

得分	评阅教师

五、计算 $\iint_D |y-2x^2| dxdy$, 其中 $D = \{(x,y)|0 \le x \le 1, 0 \le y \le 2\}$. (本题 8 分)

得分	评阅教师

六、计算 $I = \int_L (e^y + 3x^2) dx + (xe^y + 2y) dy$,其中 L 为过点 O(0,0), A(0,1), B(1,2) 的 圆周从点 O 经点 A 到点 B (本题 8 分)

得分	评阅教师

七、设 Ω 由 $z=x^2+y^2$ 与平面z=1所围成的区域,求 $\iint_{\Omega} \sqrt{x^2+y^2} dx dy dz$ 的值(本题 8分)

	线	
姓名		
		酯
		×
李	Ē	田
	#	К
掛		-
級		徐
		#
派争		於
M	1 63	

得分	评阅教师
13 77	月间积开

八、求幂级数 $\sum_{n=1}^{\infty} nx^n$ 的收敛域与该幂级数的和函数,并求 $\sum_{n=1}^{\infty} \frac{n}{2^n}$ 的值 (本题 10 分)

得分	评阅教师

九、设 Σ 为曲面 $z=1+\sqrt{1-x^2-y^2}$ 的上侧,求 $I=\iint_{\Sigma}xdydz+ydzdx+zdxdy$ 的值(本 题 8 分)

17-18 学年第二学期《高等数学 A2》(A 卷) 参考答案及评分标准

选择题(每题4分,共20分)

5. D

二、填空(每题4分,共20分)

1. 4. 2.
$$4x + 2y - z - 10 = 0$$
. 3. $(1,-2,1)$.

$$3. (1,-2.1)$$

4.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} (x-1)^n.$$

$$5. \quad \frac{zF_2}{xF_1 + yF_2}$$

三、解:
$$\frac{\partial z}{\partial x} = (y + e^x)\cos(xy + e^x)$$
 (4分) $\frac{\partial z}{\partial y} = x\cos(xy + e^x)$ (8分)

$$\frac{\partial z}{\partial y} = x \cos(xy + e^x) \qquad (8 \%)$$

四、解: 解: 由 $f_x = 3x^2 - 3 = 0$, $f_y = 3y^2 - 3 = 0$

得驻点
$$(1,-1),(1,1),(-1,-1),(-1,1)$$
 (3分) 又 $A = 6x$, $B = 0$, $C = 6y$

$$XA = 6x$$
, $B = 0$, $C = 6y$

在点(1,1)处
$$AC - B^2 = 36 > 0$$
 $A = 6 > 0$

所以函数在(1,1) 处取得极小值-4 (6分)

在点
$$(-1,-1)$$
处 $AC-B^2=36>0$ $A=-6<0$

所以函数在(-1,-1) 处取得极大值4 (8分)

在点
$$(-1,1)$$
, $(1,-1)$ 处 $AC-B^2=-36<0$

所以函数在(-1,1),(1,-1) 处不取得极值 (10分)

五、解: 画出图形, 在D内作 $y = 2x^2$ 将D分为 D_1 , D_2 两部分, (2 分)

$$\iint_{D} |y - 2x^2| d\sigma = \iint_{D_1} (2x^2 - y) dx dy + \iint_{D_2} (y - 2x^2) d\sigma \qquad (4 \, \mathcal{L})$$

$$= \int_0^1 dx \int_0^{2x^2} (2x^2 - y) dy + \int_0^1 dx \int_{2x^2}^2 (y - 2x^2) dy = \frac{22}{15}$$
 (8 \(\frac{\(x\)}{2}\))

六、解: 由
$$\frac{\partial P}{\partial y} = e^y = \frac{\partial Q}{\partial x}$$

六、解: 由
$$\frac{\partial P}{\partial v} = e^{v} = \frac{\partial Q}{\partial r}$$
 所以曲线积分与路径无关 (3分)

$$I = \int_{L} (e^{y} + 3x^{2}) dx + (xe^{y} + 2y) dy = \int_{0}^{1} (1 + 3x^{2}) dx + \int_{0}^{2} (e^{y} + 2y) dy = e^{2} + 5$$
(8 %)

七、解:用柱面坐标计算,
$$\iint_{\Omega} \sqrt{x^2 + y^2} \, dx dy dz = \int_0^{2\pi} d\theta \int_0^1 r dr \int_{r^2}^1 r \, dz$$
 (5分)
$$= 2\pi \int_0^1 r^2 (1 - r^2) dr = \frac{4\pi}{15}$$
 (8分)

八、解:
$$\lim_{n\to\infty}\frac{n+1}{n}=1$$
, 所以收敛区间为 $\left(-1,1\right)$

当
$$x = 1$$
 时 $\sum_{n=1}^{\infty} n$ 发散, 当 $x = -1$ 时 $\sum_{n=1}^{\infty} (-1)^n n$ 发散

所以幂级数
$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$
 的收敛域为 $(-1,1)$ (4分)

$$s(x) = \sum_{n=1}^{\infty} nx^n = (\sum_{n=1}^{\infty} x^{1+n})' - \sum_{n=1}^{\infty} x^n = (\frac{x^2}{1-x})' - \frac{x}{1-x}$$

$$=\frac{x}{(1-x)^2}\tag{8 \%}$$

$$\sum_{n=1}^{\infty} \frac{n}{2^n} = s(\frac{1}{2}) = 2 \tag{10 }$$

九、解: 记
$$\Sigma_1$$
: $z = 1, x^2 + y^2 \le 1$ 的下侧, $\Sigma \to \Sigma_1$ 所围区域为 Ω

$$I = \iint_{\Sigma + \Sigma_1} x dy dz + y dz dx + z dx dy - \iint_{\Sigma_1} x dy dz + y dz dx + z dx dy$$
 (3 分)

$$= \iiint_{\Omega} 3dx dy dz - \iint_{\Sigma_{1}} z dx dy$$

$$= 3\pi$$
(6 \(\frac{\partial}{\partial}\))
(8 \(\frac{\partial}{\partial}\))