Chapter 13 Borne supérieure dans $\mathbb R$

Exercice 1 (13.1)

Déterminer si les parties suivantes de R sont majorées, minorées. Puis déterminer, s'ils existent, le plus grand élément, le plus petit élément, la borne supérieure et la borne inférieure.

3.
$$]1, +\infty[,$$

5.
$$\left\{ \frac{1}{n} \mid n \in \mathbb{N}^* \right\}$$
,
6. $\left\{ x \in \mathbb{R} \mid x^2 \le 2 \right\}$,
7. $\left\{ x \in \mathbb{Q} \mid x^2 \le 2 \right\}$.

6.
$$\{x \in \mathbb{R} \mid x^2 \le 2\}$$

7.
$$\{ x \in \mathbb{Q} \mid x^2 \le 2 \}$$

Exercice 2 (13.1)

Soit A une partie non vide et majorée de \mathbb{R} . On suppose que la borne supérieure M de A vérifie $M = \sup(A) >$ 0. Montrer qu'il existe un élément de A strictement positif.

Exercice 3 (13.1)

Soit $f: \mathbb{R} \to \mathbb{R}$ un application croissante et $A \subset \mathbb{R}$ une partie non-vide majorée.

- **1.** Montrer que $\sup (f(A)) \le f(\sup A)$.
- 2. Trouvez un exemple où l'inégalité est stricte.

Exercice 4 (13.1)

Soient A et B deux parties non vides majorées de \mathbb{R} . On note

$$A + B = \{ a + b \mid a \in A \text{ et } b \in B \}.$$

- **1.** Soit $x \in \mathbb{R}$. Compléter : $x \in A + B \iff \cdots$.
- 2. Montrer que A + B est non vide est majorée.
- 3. Déterminer $\sup(A + B)$.

Exercice 5 (13.2)

Montrer que l'intersection de deux intervalles est un intervalle (éventuellement vide).

Que peut-on dire de l'intersection de deux intervalles ouverts ? De deux intervalles fermés ?