PHYSICS PRACTICAL SHEETS

Date 16th Feb 2023 K:U: CAMPUS Class CE Roll No 25	Experiment No
Shift Morning Object of the Experiment (Block Letter)	Set
DETERMENATION OF THE COEFFIC	IENT OF THERMAL
CONDUCTIVITY OF A BAD CONDU	CTUR BY LEE'S
METHOD	
Oll and the Paris I	
Apparatus Required:	
i) Lee's disc apparatus ii) Two 1/10°C thermometers	
iii) Craylar disc of the specimen	of a bad conductor
Stop water	
V) Vernier calipers and micrometer	er screw gauge.
Theory:	
on busing steam through a	cylindrical vessel
(c) a steady state is reached	soon. In this
condition the rate at which he	at is conducted
across the specimen disc (D) is a	ah the expired
at which heat is emitted throw surface of the lower metallic	disc (M). If 'K'
is the coefficient of thermal con	aductivity of the
muterial, d its thickness and r is	ts radius; of and
82 the constant reading of the	thermometers
I and To in the steady state,	chained dies
heated is conducted across the $Q = K \Pi r^2 (\theta_1 - \theta_2)$	spequier dist
d	
If 'M' is the mass of the me	tallic disc, 's' the
don't hart of its material then	rate of applipa at
θ ₂ is equal to Here, Ms dθ dθ/dt is fall dt	& temp at Pa
Ms dt	1

Therefore, $\frac{K \operatorname{Ti}^{2}(\theta_{1}-\theta_{2})}{d} = \frac{\text{Ms d}\theta}{\text{d}t}$ $\frac{d}{dt}$ $\frac{d}{dt}$ $\frac{d}{dt}$ $\frac{d}{dt}$ $\frac{d}{dt}$ $\frac{d}{dt}$ The rate of cooling is found by heating the metallic disc to a temperature about too The metallic disc to a temperature about above the steady temperature θ_2 , it is then allowed to cool and temperature is noted after 30 seconds till the temperature falls to about 10°C below θ_2 . A graph is then plotted between the temperature and time. A tangent is drawn at a point P corresponding to θ_2 . The slope of the tangent gives the value of $\frac{d\theta}{dt}$ corresponding to θ_2 . to 02. Observations and Calculations: Mass of metallic disk (M) = 860 gm specific heat g metal (s) = 0.093 callym°C. Diameter g the disc (ØD) = 11.06 cm Radius of the disc (τ) = 5.53 cm Thickness g the disc (τ) = 0.7 cm Steady temperature of T_1 (θ_1) = 86°C Steady temperature y T_2 (θ_2) = 58°C

Table for cooling Curve:

No of	Ilmein	Temp	No.4	Threis	Temp	Nory	Timein	Tempin	Noy	Timer	Tempiu
ohs	sec	iof disc	ohs	Sec	disc	ohs	sec	disc	ohs	rec	disc
1	0	71	15	420	64	29	840	59	43	1260	54
2	30	71	16	450	64	30	870	59	44	1290	54
3	60	70	17	480	63	31	900	58	45	1320	53
4	90	70	18	510	63	32	930	58	46	1350	93
5	(20	69	19	540	63	33	960	57	47	1380	53
6	150	69	20	570	62	34	990	57	48	1410	52
7	180	68	21	600	62	35	1020	57	49	1440	52
8	210	68	22	630	61	36	1050	56	50	1470	51
9	240	67	23	660	61	37	1080	56	51	1500	501
10	270	66	24	690	62	38	11100	56	52	1530	50
(/	300	66	25	720	60	39	1140	55	53	1560	50
12	330	66	26	750	60	40	1170	55	54	1590	49
13	360	65	27	780	60	41	1200	55	55	1620	49
14	390	65	28	810	59	42	1230	54	56	16 50	48

Rate 9 cooling (d0/dt) from graph corresponding to 02
= 14/750 = 0.018 °C |sec.

Hence, $K = M \cdot s \cdot d \times d\theta = 3 \cdot 885 \times 10^{-4} \text{ call com/sec/°C}$

Precautions:

i) Thickness 'd' of the specimen disc should be measured at a number of places on its surface.

i) The diameter of the specimen disc should be equal to that I cylindrical venel and the metallic disc and must be taken in two Lir directions.

(iii) The thermometer should be placed close to the face of the specimen disc.

iv) There should be good thermal conduct between the specimen disc and the lower surface of cylindrical versel and upper surface of metallic disc.

(v): The steady state temperature should be recorded after the temperature stays ideal for 5 minutes.