

Stars: Structure

The structure of stars is defined by a set of four coupled differential equations which express the basic conservation and transport quantities always encountered in physics:

- 1. Mass conservation
- 2. Momentum conservation (=hydrostatic equilibrium)
- 3. Energy conservation
- 4. Energy transport

and quantities expressing the physical properties of material, mainly:

- 1. Energy generation
- 2. Equation of state (=dependence of density of material on physical conditions)

The Sun: A typical star (ESA/NASA SOHO)

9-3

Mass Conservation

Density stratification of a star is defined through mass conservation:

Define M_r as the mass contained within radius r:

$$M_r = \int_0^r 4\pi r^2 \rho(r) \, \mathrm{d}r$$
 (9.1)

Thus the mass within a spherical shell is

$$dM_r = 4\pi r^2 \rho \, dr \tag{9.2}$$

and therefore

$$\frac{\mathrm{d}M_r}{\mathrm{d}r} = 4\pi r^2 \rho \tag{9.3}$$

Energy Conservation

Temperature stratification of a star is defined through energy conservation:

9-6

Hydrostatic Equilibrium

Pressure stratification of a star is defined through hydrostatic equilibrium:

Force on area A by slab of gas of area $\mathrm{d}A$ and density ρ :

$$dF_g = -\frac{GM_r dm}{r^2} = -\frac{GM_r \rho}{r^2} dA dr \qquad (9.4)$$

9-5

Bouyancy:

$$F_P = dA(P(r + \Delta h) - P(r)) = dA\Delta P$$
 (9.5)

Balance of forces:

$$-\frac{GM_r\rho}{r^2}dA\,dr = dP\,dA \tag{9.6}$$

such that

$$\frac{\mathrm{d}P}{\mathrm{d}r} = -\rho(r)\frac{GM(r)}{r^2} \tag{9.7}$$

Luminosity produced within a spherical shell is

$$dL_r = \epsilon dM_r = 4\pi r^2 \rho \epsilon dr \qquad (9.8)$$

and therefore

$$\frac{\mathrm{d}L_r}{\mathrm{d}r} = 4\pi r^2 \rho \epsilon \tag{9.9}$$

Energy is transported in stars by

- radiation
- convection
- conduction

In most stars, radiation and convection are important, conduction usually not.

Radiative Transport = diffusive process:

- ullet radiation produced by nuclear fusion (γ -rays)
- ullet mean free path $l_{
 m phot}$ of a photon in center of the Sun: few cm
- photons do random walk to the stellar surface absorbed by ions and reemitted
- ullet number of "scatterings": $N=(R/l_{
 m phot})^2$: e.g., $R_\odot=$ 700000 km: Npprox 10 20
- Diffusion theory:

$$\frac{dT}{dr} = -\frac{3 \kappa(r)\rho(r) L(r)}{4ac T^3 4\pi r^2}$$
 (9.10)

9-7

Convection is much more difficult to deal with, no simple self-consistent hydrodynamical treatment, approximate (so called mixing-length) theory

Energy Transport

$$\frac{\mathrm{d}T}{\mathrm{d}r} = \left(1 - \frac{1}{\gamma}\right) \frac{T}{P} \frac{\mathrm{d}P}{\mathrm{d}r}$$

(9.11)

9-8

9-12

Structure equations

Stellar structure governed by four coupled differential equations:

Mass structure (mass conservation)

$$\frac{\mathrm{d}M}{\mathrm{d}r} = 4\pi r^2 \rho(r)$$

Temperature structure (e.g. radiative transfer)

$$\frac{\mathrm{d}T}{\mathrm{d}r} = -\frac{3}{4ac} \frac{\kappa \rho(r)}{T^3} \frac{L(r)}{4\pi r^2} \qquad \qquad \frac{\mathrm{d}L}{\mathrm{d}r} = 4\pi r^2 \rho(r) \epsilon(r)$$

Pressure structure (hydrostatic equilibrium)

$$\frac{\mathrm{d}P}{\mathrm{d}r} = -\rho(r)\frac{GM(r)}{r^2}$$

Energy conservation

$$\frac{\mathrm{d}L}{\mathrm{d}r} = 4\pi r^2 \rho(r) \epsilon(r)$$

plus "equation of state" ($P = P(T, \rho)$), Opacities $\kappa(T, \rho, Z)$ = interaction of radiation with gas, energy generation ($\epsilon = \epsilon(T, \rho, Z)$),...

Stellar model: numerical solution of stellar structure equations.

Main sequence: Nuclear fusion of Hydrogen into Helium:

$$4p \longrightarrow {}_{2}^{4}He + E$$

How much energy is gained?

Particle physics: express mass as "rest energy equivalent" via $E=mc^2$

(and call it "mass"...); usually use energy units of MeV, 1 MeV = $1.602 \times 10^{-13} \, J$

mass of 4 protons (4 \times 938 MeV): 3752 MeV — mass of ⁴₂He: 3727 MeV

mass defect Δmc^2 : 25 MeV

In the fusion of hydrogen to helium, 0.7% of the available rest mass energy is converted to energy.

Two main burning cycles: proton-proton chain and the CNO cycle.

Energy generation: Proton-Proton chain

For moderate central temperatures, He is produced using the proton-proton chain.

First, two protons create a deuteron:

$$^{1}H + ^{1}H \longrightarrow ^{2}H + e^{+} + \nu_{e}$$
 (9.12)

This process is slow (happens once for a nucleon per 10¹⁰ years)

Then an additional proton is attached:

$$^{2}\text{H} + ^{1}\text{H} \longrightarrow ^{3}\text{He} + \gamma$$
 (9.13)

and two helium nuclei can form an α -particle:

$$^{3}\text{He} + ^{3}\text{He} \longrightarrow ^{4}\text{He} + 2^{1}\text{H}$$
 (9.14)

This is the so called pp 1-cycle, minor variations of the theme exist (pp II, pp III cycles), but pp I dominates.

pp chain dominates for $T \lesssim 2 \times 10^7 \,\mathrm{K}$, $\epsilon_{\mathrm{pp}} \propto T^5$; Sun: 98.4%.

9-11

Energy generation: CNO cycle

The CNO cycle (Bethe-Weizsäcker-cycle) requires the presence of C, N, and O isotopes as catalysts.

CNO cycle has slightly smaller energy release than pp-cycle because of higher neutrino losses.

Reaction $^{14}N + p \longrightarrow ^{15}O + \gamma$ is th slowest reaction (one million years).

CNO cycle dominates above $2 \times 10^7 \,\mathrm{K}$, $\epsilon_{\mathrm{CNO}} \propto T^{17}$; Sun: 1.6%.

Wikipedia

9–16

Zero Age Main Sequence

Main Sequence in the Hertzsprung-Russell-Diagram:

Masses along the HRD

life times along the HRD

mass limits: Min.: $0.08M_{\odot}$ (no H-burning for lower masses)

Max.: \approx 100 M_{\odot} (radiation pressure too high, $p_{\rm rad} \sim T_{\rm eff}^4$)

Zero Age Main Sequence

Properties of Main Sequence stars:

- ullet strong change at pprox 1 M_{\odot}
- low masses ($< 0.5 M_{\odot}$): low temperature, very high density
- high masses (> $1.3M_{\odot}$): high temperature, low density
- low mass stars burn H in the pp-chains
- high mass stars burn H in the CNO-cycle

Zero Age Main Sequence

Kippenhahn-diagram: Internal Structure of Main Sequence stars

9-15

Zero Age Main Sequence

Empirical test of main sequence models:

lower main sequence: $a \approx 0.8$ upper main sequence: $a \approx \text{0.6}$

Mass-Luminosity relation $L \sim M^b$

b= 2.3 for M< 0.43 M_{\odot} $b = 4.0 \text{ for } M > 0.43 \, M_{\odot}$