

Botnet & DDoS Deep Dive – Part II

Assignment Project Exam Help The Business Context for Cybbers ecurity Management

WeChat: cstutoromp90073
Security Analytics

Dr. Yi Han, CIS

Semester 2, 2021

Overview

- Botnet, DDoS detection
 - Feature selection
 - Performance comparison
 - Honeypot-based analysishent Project Exam Help
- DDoS prevention

https://tutorcs.com

- Ingress/egress filtering
- Router-based filterin WeChat: cstutorcs
- DDoS reaction
 - Destination-end
 - Intermediate network
 - Source-end

Feature Selection

Set of all

Features

Selecting the

Best Subset

Set of all

Features

- Filter-based methods
 - Information Gain
 - Chi-square Test
 - Fisher's Score
 - Correlation Coassisiemment Project Exam Help
 - Variance Threshold

https://tutorcs.com

- Wrapper-based methods WeChat: cstutorcs
 - Forward Feature Selection
 - Backward Feature Elimination
- Embedded methods
 - Lasso regression (L1 regularization)
 - Ridge regression (L2 regularization)

Learning

Algorithm

Performance

Selecting the best subset

https://www.analyticsvidhya.com/blog/2016/12/introduction-to-feature-selection-methods-with-an-example-or-how-to-select-the-right-variables/

Feature Selection – IG

- Information gain (IG)
 - There are k classes in dataset S, S = $\{S_1, S_2, ..., S_k\}$
 - Entropy for dataset S,

$$H(S)$$
 Assignment Project Example S_i
 $i=1$
 $i=1$
 S_i
 $i=1$
 S_i
 $i=1$
 S_i
 $i=1$
 S_i

- Feature F has m $\sqrt[4]{t_1, v_2, \dots, v_m}$
- Subset with feature Febring Vistutores
- The conditional entropy of S given feature F,

$$H(S|F) = \sum_{j=1}^{m} \frac{\left|S_{F=v_{j}}\right|}{|S|} \cdot H\left(S_{F=v_{j}}\right)$$

$$- IG(S,F) = H(S) - H(S|F)$$

Feature Selection – KDD Cup 99

Results of feature selection on KDD Cup 99 using information gain [1]

			it features for each ion gain measures
Class Label	Info.		Feature Name
	Gain	#	
smurf	0.9859	5	source bytes
neptune	0.7429	30	diff srv rate
normal	0.6439	5	source bytes
back	0.0411	6 <i>P</i>	assignment
satan	0.0257	27	rerror rate
ipsweep	0.0222	37	dst host srv diff host rate
teardrop	0.0206	5	source that the source that th
warezclient	0.0176	5	source bytes
portsweep	0.0163	4	status Flag
pod	0.0065	5	source by eCha
nmap	0.0024	4	flag
guess_passwd	0.0015	5	source bytes
buffer_overflow	0.0007	6	destination bytes
land	0.0007	7	land
warezmaster	0.0006	6	destination bytes
imap	0.0003	3	service
loadmodule	0.0002	6	destination bytes
rootkit	0.0002	5	source bytes
perl	0.0001	16	# root
ftp_write	0.0001	5	source bytes
phf	0.0001	6	destination bytes
multihop	0.0001	6	destination bytes
spy	0.0001	39	dst host srv serror rate

t Project The Help to tutores.com

at: cstutores.

Figure 1. Information gain of each feature

Table 4. List of features for which the class is selected most relevant

Class Label	Relevant Features
normal	1, 6, 12, 15, 16, 17, 18, 19, 31, 32,
	37
smurf	2, 3, 5, 23, 24, 27, 28, 36, 40, 41
neptune	4, 25, 26, 29, 30, 33, 34, 35, 38, 39
land	7
teardrop	8
ftp_write	9
back	10, 13
guess pwd	11
buffer overflow	14
warezclient	22

Feature Selection – CFS

- Correlation-based Feature Selector [2]
 - Heuristic "merit" of a feature subset S: $M_S = \frac{k \cdot \overline{r_{cf}}}{\sqrt{k + k(k-1)}\overline{r_{ff}}}$
 - k: the number of features
 - $\overline{r_{cf}}$: the avarage team at class jear to Europe the specific transfer to the second second
 - $\overline{r_{ff}}$: the average feature-feature intercorrelation https://tutorcs.com
 - Objectives:
 - Increase feature (Tapst correlation (Table)
 - Reduce feature-to-feature correlation ($\overline{r_{ff}}$)

Feature Selection – NSL KDD

- Results of feature selection on NSL KDD [3]
 - Wrapper-based: 4, 5, 6, 12, 26, 30
 - Filter-based: the global minima were achieved with the top 10 features (5, 3, 6, 4, 30, 29, 33, 34, 35, 38)
 Assignment Project Exam Help

Table 4. Feature selection/reduction using the wrapper method (CfsSubsetEval + BestFirst) and the filter method (InfoGainAttributers: Katherove SheronnySL-KDD training dataset in the second phase of this study.

Attribute Evaluator, Search Method, and Ranker	eChat: estutores Features Selected	Method Used
CfsSubsetEval + BestFirst	4, 5, 6, 12, 26, 30	Wrapper method
InfoGainAttributeEval + Ranker	5, 3, 6, 4, 30, 29, 33, 34, 35, 38, 12, 3,9, 25, 23, 26, 37, 32, 36, 31, 24, 41, 2, 27, 40, 28, 1, 10, 8, 13, 16, 19, 22, 17, 15, 14, 18, 11, 7, 21, 20, 9	Filter method

Overview

- Botnet, DDoS detection
 - Feature selection
 - Performance comparison
 - Honeypot-based analysishent Project Exam Help
- DDoS prevention

https://tutorcs.com

- Ingress/egress filtering
- Router-based filterin WeChat: cstutorcs
- DDoS reaction
 - Destination-end
 - Intermediate network
 - Source-end

Botnet Detection – KDD Cup 99

Accuracy comparison on KDD Cup 99 [4]

Botnet Detection – NSL KDD

Accuracy comparison on NSL KDD [4]

Botnet Detection – NSL KDD

Performance comparison of six classifiers [3]

Table 2. Performance of the six classifiers using 10-fold cross-validation.

Classifier Parameters	SMO	REPTree	NBTree	RBF	LogitBoost	BayesNet
Correctly Classified Instances	122,704	125,766	425,81911	123,394	122,329	122,409
Correctly Classified histarices	97.40%	99.83%	99.87%	97.95%	97.10%	97.17%
Incorrectly Classified Instances	ht#368://	tutorcs	.com	2579	3644	3564
incorrectly Classified histarices	2.595%	0.164%	0.122%	2.0473%	2.892%	2.82%
TP Rate	0.974	0.998	0.999	0.980	0.971	0.972
FP Rate	V _{0.6}	at:0.60stu	tores	0.022	0.030	0.032
Precision	0.974	0.998	0.999	0.980	0.971	0.972
F-measure	0.974	0.998	0.999	0.980	0.971	0.972
ROC Area	0.973	0.999	1.000	0.987	0.996	0.997
Specificity (%)	96.0	99.8	99.81	96.8	96.2	94.6
Sensitivity (%)	98.5	99.8	99.9	98.9	97.8	99.3
Model Building Time (second)	1137.71 s	$3.59 \mathrm{s}$	213.18 s	$81.01\mathrm{s}$	18.3 s	4.69 s

Botnet Detection – NSL KDD

• Impact of feature selection on the performance [3]

Table 11. Performance of the NBTree classifier on the NSL-KDD training dataset using different feature selection/reduction methods.

	A	D.	in L	LILL.		
Methods	General	Discretize Filter	J Wrapper X	Wrapper Method	Filter	Filter Method +
Parameters	Method	Classifier	Method	+ Discretize Filter	Method	Discretize Filter
Correctly Classified Instances	125,819	125/787	125,300	125,414	125,764	125,634
	99.87%	LP899/85/41101	CS99469111	99.55%	99.83%	99.73%
Incorrectly Classified Instances	154	186	673	559	209	339
	0.122%	0.147%	stutores	0.443%	0.165%	0.269%
TP Rate	0.999	echian. Cs	514696CS	0.996	0.998	0.997
FP Rate	0.001	0.002	0.006	0.005	0.002	0.003
Precision	0.999	0.999	0.995	0.996	0.998	0.997
F-measure	0.999	0.999	0.995	0.996	0.998	0.997
ROC Area	1.000	1.000	0.999	1.000	1.000	1.000
Specificity (%)	99.8	99.8	99.0	99.3	99.7	99.6
Sensitivity (%)	99.9	99.8	99.7	99.7	99.9	99.7
Model Building Time(second)	213.18 s	70.95 s	14.23 s	8.7 s	$23.94 \mathrm{s}$	13.6 s

Overview

- Botnet, DDoS detection
 - Feature selection
 - Performance comparison
 - Honeypot-based establishent Project Exam Help
- DDoS prevention

https://tutorcs.com

- Ingress/egress filtering
- Router-based filterin WeChat: cstutorcs
- DDoS reaction
 - Destination-end
 - Intermediate network
 - Source-end

Botnet Detection

- Honeypot-based analysis
 - Mimic the actual server to trap the attacker
 - Deliberately expose vulnerabilities/materials
 - Educational purposes vs security purposes Assignment Project Exam F
 - Limitations
 - Encrypted traffiattps://tutorcs.com
 - Unknown attacks
 - Attacker may move Calendally Cot infiltrate the real production network

https://www.cse.wustl.edu/~jain/cse571-09/ftp/honey/

Overview

- Botnet, DDoS detection
 - Feature selection
 - Performance comparison
 - Honeypot-based analysishent Project Exam Help
- DDoS prevention

https://tutorcs.com

- Ingress/egress filtering
- Router-based filterin WeChat: cstutorcs
- DDoS reaction
 - Destination-end
 - Intermediate network
 - Source-end

DDoS Prevention

- Ingress/egress filtering [2]: only allow traffic to enter/leave the network if its source addresses are within the expected IP address range
 - E.g., Router 1 only allows packets having a source IP address with the 204.69.207.0/24 prefix to leave the network

Assignment Project Exam Help

DDoS Prevention

- Router-based filtering: use information about the BGP routing topology to filter traffic with spoofed source addresses
 - E.g., attack traffic from AS7 (spoofed as AS3) to AS4; router-based filtering deployed at AS6; attack traffic from AS7 can be filtered if AS6 knows the Big Properting topologic xam Help

Overview

- Botnet, DDoS detection
 - Feature selection
 - Performance comparison
 - Honeypot-based analysishent Project Exam Help
- DDoS prevention

https://tutorcs.com

- Ingress/egress filtering
- Router-based filterin WeChat: cstutorcs
- DDoS reaction
 - Destination-end
 - Intermediate network
 - Source-end

DDoS Reaction

- Destination/target-end reaction
 - Bottleneck resource management: protect bottleneck resource
 - E.g., expanding server capacity, history-based IP filtering
- Intermediate network reaction

 Assignment Project Exam Help

 Filter attack traffic close to attack sources

 - E.g., agent-controllerps of teltores.com attack traffic
- Source-end reaction
 - Filter attack traffic at the source
 - E.g., D-WARD

- 1. The target detects attacks and agents are directed to mark all the incoming packets to the victim.
- 2. The target locates attack entry points and asks relating agents to filter attack traffic

Agent-controller model

DDoS Reaction

- Mitigation Techniques at AWS
 - Infrastructure Layer Defence
 - Amazon EC2 with Auto Scaling
 - Choice of Region
 - Elastic Assignment Project Exam Help
 - Application Layer Defence https://tutorcs.com

https://docs.aws.amazon.com/whitepapers/latest/aws-best-practices-ddos-resiliency/mitigation-techniques.html

Summary

- Examples of Botnet/DDoS detection on KDD Cup, NSL KDD
 - Feature selection
 - Example 1: information gain applied on KDD Cup

 - - Feature selections in the without impacting the performance
- WeChat: cstutorcs DDoS prevention
 - Ingress/egress filtering at leaf networks
 - Router-based filtering
- DDoS reaction
 - Destination-end, intermediate network, source-end

Reference

- [1] Kayacik, H.G., Zincir-Heywood, A.N., Heywood, M.I.: Selecting Features for Intrusion Detection: A Feature Relevance Analysis on KDD 99 Intrusion Detection Datasets. In: Proc. of the Third Annual Conference on Privacy, Security and Trust (2005)
- [2] M. A. Hall (1998)s Correlation bajeed Feature Subset Selection for Machine Learning. Hamilton, New Zealand.
- [3] Alabdulwahab, Saleh & Moon, Bong-Ryo. (2020). Feature Selection Methods Simultaneously Improve the Detection Accuracy and Model Building Time of Machine Learning Classifiers. Symmetry. 12. 1424. 10.3390/sym12091424.
- [4] Thakkar, A., Lohiya, R. A survey on intrusion detection system: feature selection, model, performance measures, application perspective, challenges, and future research directions. *Artif Intell Rev* (2021). https://doi.org/10.1007/s10462-021-10037-9

Reference

- [5] Eric Chou and Rich Groves, 2016, Distributed Denial of Service, O'Reilly Media, Inc.
- [6] Tao Peng, Chris Leckie, and Katagiri Ramamohanorao, Survey of Network-Based Defense Mechanisms Countering the DoS and DDoS Problems, ACM Computingeour Persiect Exam Help

https://tutorcs.com

WeChat: cstutorcs

The Business Context for Cybersecurity Management

https://tutorcs.com

WeChat: cstuto: MP90073

Security Analytics

Dr. Yi Han, CIS

Semester 2, 2021

Outline

- Security and Risk Management Practice
- Information Security Management Governance

Assignment Project Exam Help Organizational Behaviour

https://tutorcs.com

Ethics

WeChat: cstutorcs

Security and Risk Management Practice

Assignment Projecte Example of Projecte Exampl mitigate the risks

Interrelationships among tutores
 Assessing risk

- Implementing policies and controls in response to the risks
- Promoting awareness of the expectations
- Monitoring the effectiveness of the controls

Information Security Management Governance

According to IT Governance Institute (ITGI)

The Board of Directors should

- Be informed abougnmental Projectulity am Help
- Set direction to drive policy and strategy
- Provide resources to security efforts
- Assign management responsibilities cs
- Set priorities
- Support changes required
- Define cultural values related to risk assessment
- Obtain assurance from internal or external auditors
- Insist that security investments are made measurable and reported on for program effectiveness

Information Security Management Governance

The Management should

- Write security policies with business input
- Ensure that roles and responsibilities are defined and clearly understood
- Identify threats and gumeratili Resject Exam Help
- Implement security infrastructures and control frameworks (standards, guidelines, baselines, protectives, om
- Ensure that policy is approved by the governing body
- Establish priorities and implement security projects in a timely manner
- Monitor breaches
- Conduct periodic reviews and tests
- Reinforce awareness education as critical
- Build security into the systems development life cycle

Information Security Management Governance

Security Policies, Procedures, Standards, Guidelines, and Baselines

 What's Risk Management Assignment Project Exam Help

https://tutorcs.com

Risk Management Principles
 WeChat: cstutorcs

Risk Assessment

Security Policies, Procedures, Standards, Guidelines, and Baselines

Relationships among policies, standards, procedures, baselines, and guidelines (Source: [1])

What's Risk Management

 "A discipline for living with the possibility that future events may cause harm, it reduces risks by defining and controlling threats and vulnerabilities" Assignment Project Exam Help

https://tutorcs.com
- by (ISC)² (The International Information System Security Certification
Consortium) WeChat: cstutorcs

Risk Management Principles

Risk avoidance

The practice of coming up with alternatives so that the risk in question is not realized

e.g., Parents won't allow underage child to drive the family car to avoid the risks of poems in the post of insurance for the child

https://tutorcs.com

WeChat: cstutorcs

Risk transfer

The practice of passing on the risk in question to another entity, such as an insurance company

Risk Management Principles

Risk mitigation

The practice of the elimination of, or the significant decrease in the level of risk presented

e.g., Organizations put countermeasures in place such as firewalls, IDSs/IPSs, and http://www.ipsi.com/sinjectofetermail@pus outsiders from accessing personal and financial information to lessen the risk of exposing this highly sensitive and confidential information

WeChat: cstutorcs

Risk acceptance

The practice of accepting certain risk(s), typically based on a business decision that may also weigh the cost versus the benefit of dealing with the risk in another way

Risk Assessment

- Identify vulnerabilities
- Identify threats
- Qualitative assessment Project Exam Help
- https://tutorcs.com
 Quantitative assessment

WeChat: cstutorcs

- Reporting findings
- Countermeasure selection
- Information valuation

Risk Assessment

- Identify Vulnerabilities
 - Vulnerability: "a flaw or weakness in system security procedures, design, implementation, or internal controls that could be exercised (accidentally triggered or intentionally exploited) and result in a security breach or a violation of the system's security policy" by NIST (National Institute of Standards and Technology)
 - Examples of vulner https://tutorcs.com
 - Absence of a receptionist, mantrap, or other physical security mechanism upon entrance to a facilitat: cstutorcs
 - Inadequate integrity checking in financial transaction software
 - Neglecting to require users to sign an acknowledgment of their responsibilities with regard to security, as well as an acknowledgment that they have read, understand, and agree to abide by the organization's security policies
 - Patching and configuration of an organization's information systems are done on an ad hoc basis, and, therefore, are neither documented nor up to date

Risk Assessment

- Identify Threats
 - Threats: "the potential for a particular threat-source to successfully exercise a particular vulnerability" – by NIST Assignment Project Exam Help
 - Threat source: "eithers(:1) tintents and method targeted at the intentional exploitation of a vulnerability or (2) a situation and method that may be cibe hit afford a vulnerability" by NIST

Risk Assessment

- Threat source category
 - Human: Malicious outsider, malicious insider, (bio)terrorist, saboteur, spy political or competitive operative, loss of key personnel, errors made by human intervention, cultural issues
 - Natural: Fire, flood, tornado, hurricane, snow storm, earthquake
 - Technical: Hardware failure, Software failure, malicious code, unauthorized use, use of emerging services, such as wireless, new technologies WeChat: cstutorcs
 - Physical: Closed-circuit TV failure, perimeter defence failure
 - Environmental: Hazardous waste, biological agent, utility failure
 - Operational: A process (manual or automated) that affects confidentiality, integrity, or availability

Qualitative Assessment

Determination of likelihood and impact

• Likelihood and Consequences rating

Likelihood		Consequence		
Rare (very low)	Е	Insignificant (low - no business impact)	1	
Unlikely (low)	D	Minor (low – minor business impact, some loss of confidence)	2	t Exam Help
Moderate (medium)	С	Moderate Medium – business is interrupted, loss of confidence)	3	t Exam Help
Likely (high)	В	Major (High —business is disrupted major loss of confidence) S. / TUTOT	S	.com
Almost Certain (very high)	A	Catastrophic (High – business cannot continue)	5	
		wechat: cst	Ul	lorcs

• Likelihood Qualification—how to arrive at a likelihood rating

How to Qualify Likelihood	Rating		
Skill (High skill level required \rightarrow low or no skill required)	$1 = \text{high skill required} \rightarrow 5 = \text{no skill}$ required		
Ease of Access (very difficult to do \rightarrow very simple to do)	$1 = \text{very difficult} \rightarrow 5 = \text{simple}$		
Incentive (high incentive \rightarrow Low incentive)	$1 = low or no incentive \rightarrow 5 = high incentive$		
Resource (requires expensive or rare equipment → no resources required	$1 = \text{Rare/expensive} \rightarrow 5 = \text{No resource}$ required		
Total (add rating and divide by 4)	1 = E, 2 = D, 3 = C, 4 = B, 5 = A		

Qualitative Assessment

Determination of risk - the product of likelihood and impact

•	Consequence							
	Insignificant	Minor	Moderate	Major	Catastrophic			
Likelihood	ssignme	ent ² Pr	oiect F	lx a m	Helb			
A (almost certain)	Н	Н	E	Е	E			
B (likely)	https	://tuto	orcs.co	m e	E			
C (possible)	L	M	Н	Е	Е			
D (unlikely)	WeC	ha _t t: c	estytore	S _H	Е			
E (rare)	L	L	M	Н	Н			
Е	Extreme Risk: Immediate action required to mitigate the risk or decide to not proceed							
Н	High Risk: Action should be taken to compensate for the risk							
М	Moderate Risk: Action should be taken to monitor the risk							
L	Low Risk: Routine acceptance of the risk							

Qualitative Assessment

- Example
 - An exploit has a likelihood of 4 (high) and an impact of 3 (moderate), what is the risk level?

https://tutorcs.com

Answer: High risk eChat: cstutorcs

Quantitative Assessment

 Single loss expectancy (SLE): the difference between the original value and the remaining value of an asset after a single exploit

 $SLE = asset value (in $) \times exposure factor (loss in successful threat exploit, as %)$

Assignment Project Exam Help

- Annualized rate of occurrence (ARO): an estimate of how often a threat will be successful in exploiting the period of a year
- Annualized loss expectancy (ALE): a product of the yearly estimate for the exploit (ARO) and the loss in value of an asset after a single exploitation (SLE)

 $ALE = ARO \times SLE$

Quantitative Assessment

Example

Company A's intellectual property on racing car design is worth \$600,000, the exposure factor as 80%, and the annualized rate of occurrence is 5%.
 What's the annualized loss expectancy?

 https://tutorcs.com

```
Answer:
```

```
WeChat: cstutorcs
SLE = $600,000 x 80% = $480,000
```

 $ALE = ARO \times SLE = 5\% \times $480,000 = $24,000$

Risk Assessment

- Reporting findings
 - Once the findings from the assessment have been consolidated and the calculations have been completed, it is time to present a finalized report to senior management
- Countermeasure selectionment Project Exam Help
 - Considerations for countermeasures
 - Accountability (can be held responsible)
 Auditability (can it be tested?)

 - Publicly available, simple design (the construction and the nature of the countermeasure are not secret tutores
 - Trusted source (source is known)
 - Independence (self-determining)
 - Consistently applied
 - Cost-effective
 - Reliable
 - Distinct from other countermeasures (no overlap)

Risk Assessment

- Ease of use
- Minimum manual intervention
- Sustainable
- Secure
- Protects confidentiality, integrity, and availability of assets
 Can be "backed out in event of ssue Exam Help"
- Creates no additional issues during operation
- Leaves no residual data from its function

WeChat: cstutorcs

- Information valuation
 - Periodically attempt to properly value information assets, as information may lose its value
 - Over time
 - If it is modified, improperly disclosed
 - Not had its proper value calculated

Organizational Behavior – Structure

Organizational Behaviour – Best Practices

- Job rotation
- Separation of duties
- Least privilege
- Mandatory vacations gnment Project Develop Setulity Compliance Program
- Job position sensitivity
- Budget for Information Result yutorcs. Establish Security Metrics Participate in Management Meetings **Activities**
- Policies, Procedures, Waselines: cstuto Ensure Compliance with Government and Industry Regulations Standards, and Guidelines
- Security Awareness Program
- **Understand Business Objectives**

- Maintain Awareness of Emerging Threats and Vulnerabilities
- **Evaluate Security Incidents and** Response

- - Assist Internal and External Auditors
- Stay Abreast of Emerging **Technologies**

- Common computer ethics fallacies
 - Computer game fallacy
 - Computer users tend to think that computers will generally prevent them from cheating and doing wrong

Assignment Project Exam Help

- Law-abiding citizen fallacy

 https://tutorcs.com

 Sometimes users confuse what is legal with regard to computer use with what is reasonable behaviour for using computers. Laws basically define the minimum standard about which actions can be reasonably judged, but such laws also call for individual judgment
- Shatterproof fallacy
 - Computer users believe that they can do little harm accidentally with a computer beyond perhaps erasing or messing up a file

- Candy-from-a-baby fallacy
 - Illegal and unethical activity, such as software piracy and plagiarism, are very easy to do with a computer. However, just because it is easy does not mean that it is right
- Hacker fallacyssignment Project Exam Help
 - Numerous reports and publications of the commonly accepted hacker belief is that it is acceptable to do anything with a computer as long as the motivation is to learn and not to gain or make a profit from such activities
- Free information fallacy
 - The notion that information "wants to be free" ignores the fact the copying and distribution of data are completely under the control of the author who allow it to happen

- Sample code of conduct (ISC)²
 - Code of Ethics Preamble
 - Safety of the commonwealth, duty to our principals, and to each other requires that we adhere, and be seen to adhere, to the highest ethical standards principal Project Exam Help
 - Code of Ethics Canons://tutorcs.com
 - Protect society, the commonwealth, and the infrastructure
 - Promote and preserve public trust and confidence in information and systems
 - Promote the understanding and acceptance of prudent information security measures
 - Preserve and strengthen the integrity of the public infrastructure
 - Discourage unsafe practice

- Act honourably, honestly, justly, responsibly, and legally
 - Tell the truth; make all stakeholders aware of your actions on a timely basis
 - Observe all contracts and agreements, express or implied
 - Treat/adsignstituents Paint tesquing tenficts, consider public safety and duties to principals, individuals, and the profession in that order https://tutorcs.com
 - Give prudent advice; avoid raising unnecessary alarm or giving unwarranted configre; Take pare to be truthful, objective, cautious, and within your competence
 - When resolving differing laws in different jurisdictions, give preference to the laws of the jurisdiction in which you render your service

- Provide diligent and competent service to principals
 - Preserve the value of their systems, applications, and information
 - Respect their trust and the privileges that they grant you
 - Avoid conflicts of interest or the appearance thereof
 - Render only those services for which you are fully competent and qualifies signment Project Exam Help
- Advance and protection by the protection of th
 - Sponsor for professional advancement those best qualified. All other things equally preferations with those who adhere to these canons. Avoid professional association with those whose practices or reputation might diminish the profession
 - Take care not to injure the reputation of other professionals through malice or indifference
 - Maintain your competence; keep your skills and knowledge current.
 Give generously of your time and knowledge in training others

Summary

- Security and Risk Management Practice
 - Explain relationships of security and risk management
- Information Security Management Governance
 - Describe risk management and four risk management principles Assignment Project Exam Help
 - Explain risk assessment processom
 - Determine qualitative risks
 - Calculate quantitative his stutores
- Organizational Behaviour
 - Understand best practices
- Ethics
 - Explain common computer ethics fallacies

Reference

 [1] Harold F. Tipton, 2010, Official (ISC)2 guide to the CISSP CBK, Second Edition, SciTech Book News

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs