Risk Management - Problems 4 (due date: June 1, 2025)

Jakub Gizbert-Studnicki Maciej Trzetrzelewski Maciej A. Nowak

Mark Kac Complex Systems Research Center Jagiellonian University Kraków, Poland Summer semester (2024/25) Jagiellonian University WFAIS.IF-Y491.0

Financial risk measures

1. Show that the Expected Shortfall of a continuous random variable X

$$ES_{\alpha}(X) \equiv E(-X|X \le -VaR_{\alpha}(X)) = -\frac{1}{\alpha} \int_{-\infty}^{-VaR_{\alpha}(X)} xp(x)dx,$$

where $VaR_{\alpha}(X)$ is the Value at Risk defined as:

$$Pr(X \le -VaR_{\alpha}(X)) = \int_{-\infty}^{-VaR_{\alpha}(X)} p(x)dx = \alpha , \quad \alpha \in (0,1),$$

can be alternatively calculated as:

$$ES_{\alpha}(X) = \frac{1}{\alpha} \int_{0}^{\alpha} VaR\gamma(X)d\gamma \tag{1}$$

<u>Note</u>: This formula is useful, e.g. when calculating ES_{α} from empirical data: one can easily compute VaR_{α} from the empirical CDF and then use (1) to compute ES_{α} - see Exercise 4 and 5.

- 2. Derive analytic formula for $VaR_{\alpha}(X)$ and $ES_{\alpha}(X)$ for
 - (a) $X \sim \text{exponential distribution, i.e. } p(x) = \lambda e^{-\lambda x}$, $x \geq 0$
 - (b) $X \sim \text{normal distribution with mean } \mu \text{ and standard deviation } \sigma$

Make a plot of $VaR_{\alpha}(X)$ and $ES_{\alpha}(X)$ as a function of $\alpha \in (0,1)$ for a standard exponential distribution $(\lambda = 1)$ and a standard normal distribution $(\mu = 0, \sigma = 1)$.

Note 1: For the normal distribution you can use, e.g the (inverse) error function $Erf^{-1}(x)$ or the standard Gaussian quantile $\Phi^{-1}(x)$

Note 2: You can use some symbolic algebra software (e.g. Wolfram Mathematica) to solve the exercise, you do not have to calculate it "by hand"

3. Using results of Exercise 2 and assuming that the share price in time t is normally distributed, according to the (approximate) formula

$$S(t) = S(0) + S(0)\mu t + S(0)\sigma\sqrt{t} \,\,\xi\,\,,\tag{2}$$

where ξ is a standard Gaussian random variable (mean: 0, variance: 1)

- (a) Derive a functional relation between volatility σ and VaR_{α} and ES_{α}
- (b) Compute daily VaR_{α} and ES_{α} for Gaussian share prices (2). Current share price is S(0) = 100 PLN, $\mu = 10\%/year$ and "annual" volatility $\sigma = 20\%/year$. Assume that a year has 250 business days, and assume a possibility of observing only one loss exceeding VaR_{α} in a one-year perspective: $\alpha = 1/250$.
- (c) Compute daily VaR_{α} and ES_{α} if "annual volatility" increases to 30%/year
- (d) Compute daily VaR_{α} and ES_{α} if one assumes observing 2, 3, ... losses $> VaR_{\alpha}$ in one year, choose the confidence level α accordingly
- (e) Compute daily VaR_{α} and ES_{α} if one increases time-length of the investment to 2, 3, ... years (we consider 1 loss $> VaR_{\alpha}$ in that time), choose the confidence level α accordingly
- (f) Compute weekly VaR_{α} and ES_{α} . Choose the confidence level α such that one can (statistically) expect 1 weekly loss exceeding VaR_{α} during one-year investment scope
- 4. Data file $dat_St.txt$ contains a sample of 1000 daily share prices S(t) generated for some geometric Brownian motion process (log rates of return: $R(t) = \ln(S(t)/S(0))$ are normally distributed).
 - (a) Based on this empirical data compute: (annualized) historical Volatility: $\sigma\sqrt{T} = \sqrt{250} \cdot sd$ (sd standard deviation of daily $\overline{\log}$ rates of return and we assume a year T has 250 business days) and (annualized) $\underline{\text{mean}}$ return $\mu T = 250 \cdot \langle . \rangle$ (where $\langle . \rangle$ is the mean daily \log rate of return)
 - (b) Based on results of point (a) and Exercise 3 (i.e. using the Gaussian approximation (2)) compute daily $VaR_{\alpha}(\Delta S)$ and $ES_{\alpha}(\Delta S)$ for $\alpha = 0.01, 0.05, 0.10, 0.20$. Assume you invest PLN 10 mln in the shares.
 - (c) Based on results of point (a) and Exercise 3 (i.e. using the Gaussian approximation (2)) compute weekly $VaR_{\alpha}(\Delta S)$ and $ES_{\alpha}(\Delta S)$ for $\alpha = 0.01, 0.05, 0.10, 0.20$. Assume you invest PLN 10 mln in the shares.

- (d) Based on the empirical data compute daily $VaR_{\alpha}(\Delta S)$ and $ES_{\alpha}(\Delta S)$ for $\alpha = 0.01, 0.05, 0.10, 0.20$. Assume you invest PLN 10 mln in the shares (remember to make appropriate rescaling of ΔS data, such that on each day the investment value is PLN 10 mln).

 Note: compute empirical CDF: $\hat{F}(x) = \frac{\# \ sample \ elements \le x}{n}$ (n-sample size) and then empirical $VaR_{\alpha}(X)$ using some convention, e.g. the "invese CDF" convention discussed in Lecture 3 p. 38, and then empirical $ES_{\alpha}(X)$ (use formula (1))
- (e) Based on the empirical data compute weekly $VaR_{\alpha}(\Delta S)$ and $ES_{\alpha}(\Delta S)$ for $\alpha = 0.01, 0.05, 0.10, 0.20$. Assume you invest PLN 10 mln in the shares. In order to have weekly S(t) data "decimate" the sample by taking every 5-th element (assume a week has 5 working days)
- (f) On the same chart plot approximate and empirical daily $VaR_{\alpha}(\Delta S)$ and $ES_{\alpha}(\Delta S)$ (computed as in points (b) and (d), respectively) for $\alpha \in (0,1)$. On another chart plot weekly $VaR_{\alpha}(\Delta S)$ and $ES_{\alpha}(\Delta S)$ (computed as in points (c) and (e), respectively)