Lecture 09 – HW2 and Intro to Krylov Methods (CG)

Prof. Brendan Kochunas

NERS/ENGR 570 - Methods and Practice of Scientific Computing (F22)

Outline

• 10,000 ft view

Krylov Methods Alphabet Soup

Conjugate Gradient

• HW2

Learning Objectives: By the end of Today's Lecture you should be able to

• (Skill) Decide what Krylov method to use for a particular problem

• (Knowledge) explain what defines a Krylov method

• (Knowledge) implement the CG algorithm

• (Knowledge) have an intuition about CG converges

• (Skill) Complete HW 2

The 10,000' View

Alphabet Soup

CG,SYMMLQ,MINRES,GMRES,BICGTSAB,QMR,...

Krylov Method Categorization

	Ax = b	$A_{\nu} = \langle \nu \rangle$
1 17	Conjugate Gradient ((6) - A is s. p.d. MINRES (Minimized Resis.)	Lanczos A implicitly restorted A
$A = A^{T}$	3 9 MM L Q	Jacobi-Dawdson
	CGN/LSQR => ATAX=18	
AZAT	GMRES (Generalized Minimum Residus) OMR, Bi-Conjugate Grad (BICG) CGS, Bi-Conjugate Graduat - Stabil	Jacobi-Davidson (JD)
	Bi CG Stab > 1992	

The Method of Conjugate Gradients

History of CG

Krylov (subspace) Methods

What CG does

How does CG work?

The actual procedure

The polynomial aspect

Convergence of CG