4 集成运算放大器

4.1 集成运算放大器的概述

集成电<mark>路</mark>——把整个电路中的元器件制作在一块硅基片上,构成具有某种特定功能的电子电路。

基尔比 (发明人)

集成电路的主要特点

体积小, 重量轻, 成本低, 可靠性高, 组装和调试的难度小。

1. 集成电路的分类

- (1) 按功能分
- a. 模拟集成电路

主要用于放大和变换连续变化的电压和电流信号。

b. 数字集成电路

主要用于处理离散的或断续的电压和电流信号。

数字集成电路种类多,形式较为简单,通用性强。

- 2. 模拟集成电路的分类
- (1) 线性集成电路

输出信号与输入信号呈线性关系。

集成运算放大器、集成音频功率放大器、集成高频、中频放大器等。

(2) 非线性集成电路

输出信号与输入信号呈非线性关系。

集成振荡器、混频器、检波器、集成开关稳压电源等。

3. 集成运算放大器概述

- (1) 集成运算放大器简称集成运放。
- (2) 集成运算放大器的主要功能
 - a. 完成比例、求和、积分、微分、对数、反对数、 乘法等数学运算。
 - b. 信号处理。 同相输入端 o + 。 输出端 c. 波形产生。 反相输入端 o —

上页下页后退

- (3) 集成运放发展的三个阶段
- a. 通用型集成运放的广泛使用。
- b. 专用集成运放的出现。如高速型、高输入电阻型、 高压型、大功率型,低漂移型和低功耗型等。

c. 开发更高性能指标的产品,进一步提高集成度。

- 4. 集成运放的主要特点
 - (1) 电压放大倍数高, 103~105倍。
 - (2) 输入电阻大,几十干欧到几兆欧。
 - (3) 输出电阻小,几百欧以下。
 - (4) 通用型和灵活性强、成本低、用途广、互换性好。
 - (5) 是线性集成电路中发展最早、应用最广、最为 庞大的一族成员。

4.1.1 集成电路中元器件的特点

- (1) 相邻元器件的特性一致性好
- (2) 用有源器件代替无源器件
- (3) 二极管大多由三极管构成

(5) 电路采用直接耦合的方式。

4.1.2 集成运算放大器的典型结构

1. 典型结构

上页 下页 后退

2. 各部分的作用

(1) 偏置电路

为各级电路提供直流偏置电流,并使整个运放的静态工作点稳定且功耗较小。

(2) 输入级

具有与输出同相和反相的两个输入端,较高的输入电阻和抑制干扰及零漂的能力。

(3) 中间级

主要进行电压放大, 具有很高的电压增益。

(4) 输出级

为负载提供足够的电压和电流,具有很小的输出电阻和较大的动态范围。

上页 下页 后退

3. 集成运算放大器的电路符号

简化运放符号可 省略正负电源

上页 下页 后退

信号测量的实际问题:

上页

下页

$$u_{11} = u_{1} + u_{A}$$
 $u_{11} - u_{12} = u_{1}$ 放大两个端子的电压之差 $u_{12} = u_{A}$ $u_{11} - u_{12} = u_{1}$ 放大 $u_{11} = 35 \text{mV}$ $u_{12} = 30 \text{mV}$ $u_{11} = 35 \text{mV}$ 次大 电路

设计测量放大电路,只放大有用的测量信号,消除干扰。

干扰信号的特点: 信号大小相等,方向相同

