

Construction de l'ensemble $\mathbb{Z}/n\mathbb{Z}$

Construction de $\mathbb{Z}/n\mathbb{Z}$

Soit $n \in \mathbb{N}^*$, Pour $(a,b) \in \mathbb{Z}^2$, on note $a \equiv b \left[n \right] \Leftrightarrow n \left| (b-a) \Leftrightarrow \exists k \in \mathbb{Z}, b-a=k \, n \right|$ On sait que la relation binaire définie ci-dessus, appelée relation de congruence modulo n est une relation d'équivalence sur \mathbb{Z} , définissons la classe d'équivalence un élément $x \in \mathbb{Z}$

Classe d'équivalence modulo n

Pour $x \in \mathbb{Z}$, on note $cl(x) = \{y \in \mathbb{Z} / x \equiv y[n]\}$: appelé la classe de x modulo n cl(x) est noté aussi $x = \{x + kn/k \in \mathbb{Z}\}$

Propriétés

Soient $n \in \mathbb{N}^*$ et $x \in \mathbb{Z}$ si \overline{x} désigne la classe de x modulo n on a :

- 1) $x \in x$
- 2) Si $y \in \mathbb{Z}$, $\overline{x} = \overline{y} \Leftrightarrow y \in \overline{x} \Leftrightarrow x \in \overline{y} \Leftrightarrow x \equiv y[n] \Leftrightarrow n|(y-x)$
- 3) Si r est le reste dans la division euclidienne de x par n alors $x \equiv r[n]$ c'est-à-dire x = r

Définition

$$\mathbf{Z}/n\mathbf{Z} = \left\{ \overline{x} / x \in \mathbf{Z} \right\}$$

D'où d'après la division euclidienne et la propriété précédente on a :

$$\mathbf{Z}/n\mathbf{Z} = \{\overline{r}/r \in \mathbb{N}, 0 \le r \le n-1\} = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$$

Exemples et remarques

- 1) Dans $\mathbb{Z}/2\mathbb{Z}$, $\overline{3} = \overline{1}$ car $3 \equiv 1[2]$ mais dans $\mathbb{Z}/4\mathbb{Z}$, $\overline{3} \neq \overline{1}$, car 4 ne divise pas (3-1)
- 2) La classe d'équivalence dépend du choix de n

Dans
$$\mathbb{Z}/2\mathbb{Z}$$
, $0 = \{y \in \mathbb{Z}/0 = y[2]\} = \{2k/k \in \mathbb{Z}\}$ mais

Dans
$$\mathbb{Z}/4\mathbb{Z}$$
, $\overline{0} = \{y \in \mathbb{Z}/0 \equiv y[4]\} = \{4k/k \in \mathbb{Z}\}$

C'est à dire la classe de 0 dans $\mathbb{Z}/2\mathbb{Z}$ est différente de la classe de 0 dans $\mathbb{Z}/4\mathbb{Z}$ En général, si $(n,m) \in \mathbb{N}^* \times \mathbb{N}^*$ et $n \neq m$ alors la classe de 0 dans $\mathbb{Z}/n\mathbb{Z}$ est différente de la classe de 0 dans $\mathbb{Z}/m\mathbb{Z}$

3) Soit $(n,m) \in \mathbb{N}^* \times \mathbb{N}^*$ si $n \neq m$ alors $(\mathbb{Z}/n\mathbb{Z}) \not\subset (\mathbb{Z}/m\mathbb{Z})$ (cf. la propriété précédente) En particulier $(\mathbf{Z}/2\mathbf{Z}) \not\subset (\mathbf{Z}/4\mathbf{Z})$ même si $\mathbf{Z}/2\mathbf{Z} = \{\overline{0}, \overline{1}\}$ et $\mathbf{Z}/4\mathbf{Z} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$ 4) $\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, ..., \overline{n-1}\}$ est une partition de \mathbb{Z} : $\mathbf{Z} = \overline{0} \cup \overline{1} \cup ... \cup \overline{n-1}$ et $\overline{a} \cap \overline{b} = \emptyset$ si $(a,b) \in \{0,1,...,n-1\}^2$ et $a \neq b$

Propriétés

Soit $n \in \mathbb{N}^*$, dans $\mathbb{Z}/n\mathbb{Z}$ on a:

1) Pour tout $x \in \mathbb{Z}$ et pour tout $k \in \mathbb{Z}$, $\overline{x} = \overline{x + kn}$ En particulier : pour tout $k \in \mathbb{Z}$, $\overline{kn} = \overline{0}$

• Opérations dans $\mathbb{Z}/n\mathbb{Z}$

Pour $x \in \mathbb{Z}$ et $y \in \mathbb{Z}$ on a :

$$\overline{x} = \left\{ y \in \mathbf{Z} / x \equiv y \begin{bmatrix} n \end{bmatrix} \right\} = \left\{ x + k \, n / n \in \mathbf{Z} \right\} \text{ et } \overline{y} = \left\{ y + k \, n / n \in \mathbf{Z} \right\}$$
On pose
$$\overline{x} + \overline{y} = \left\{ a + b / a \in \overline{x}, b \in \overline{y} \right\} \text{ et } \overline{x}. \overline{y} = \left\{ a.b / a \in \overline{x}, b \in \overline{y} \right\}$$
On montre facilement que
$$\overline{x} + \overline{y} = \left\{ x + y + k \, n / k \in \mathbf{Z} \right\} \text{ et } \overline{x}. \overline{y} = \left\{ x.y + k \, n / k \in \mathbf{Z} \right\}$$
On définit alors l'addition et la multiplication dans
$$\mathbf{Z} / n \mathbf{Z} \text{ par :}$$

$$\overline{x} + \overline{y} = \overline{x+y}$$
 et $\overline{x} \cdot \overline{y} = \overline{x \cdot y}$

Propriétés

Soit $n \in \mathbb{N}^*$, dans $\mathbb{Z}/n\mathbb{Z}$ on a:

1) Pour tout $x \in \mathbb{Z}$ et pour tout $y \in \mathbb{Z}$, $x \cdot y = x \cdot y = x \cdot y = x \cdot y$ En particulier : $-x = -x \cdot x \cdot x + x = 2 \cdot x = 2x \cdot x = x \cdot x = x - x = 0$

2) Pour tout $x \in \mathbb{Z}$ et pour tout $(k,m) \in \mathbb{N}^* \times \mathbb{N}^*$ $(\overline{x})^k = \overline{x^k}$ et $(\overline{x})^k \cdot (\overline{x})^m = (\overline{x})^{(k+m)} = \overline{x^{k+m}}$

Exemples

1) Dans
$$\mathbb{Z}/8\mathbb{Z}$$
, $\overline{3}+\overline{7}=\overline{3+7}=\overline{10}=\overline{2}$, $\overline{3}.\overline{7}=\overline{3.7}=\overline{21}=\overline{5}$ et $3.\overline{7}=\overline{3.7}=\overline{21}=\overline{5}$

2) Dresser les tables de l'addition et de la multiplication de $\mathbb{Z}/n\mathbb{Z}$ pour $n \in \{2,3,4\}$

• L'opposé d'un élément de Z/nZ

Propriétés et défitinions

- 1) Pour tout $\bar{x} \in \mathbb{Z}/n\mathbb{Z}$ on a : $\bar{x} + \bar{0} = \bar{0} + \bar{x} = \bar{x}$ d'où $\bar{0}$ est l'élément neutre de $(\mathbb{Z}/n\mathbb{Z},+)$
- 2) Pour tout $\bar{x} \in \mathbb{Z}/n\mathbb{Z}$, il existe un unique $\bar{y} \in \mathbb{Z}/n\mathbb{Z}$ vérifiant $\bar{x} + \bar{y} = \bar{y} + \bar{x} = \bar{0}$
- \overline{y} s'appelle l'opposé de \overline{x} dans ($\mathbb{Z}/n\mathbb{Z}$,+) et on a : $\overline{y} = -\overline{x}$
- 3) $(\mathbb{Z}/n\mathbb{Z},+)$ est un groupe abélien (à prouver)

Exemple

Dans $(\mathbb{Z}/20\mathbb{Z},+)$, l'opposé de $\overline{17}$ est $\overline{y} = -\overline{17} = \overline{-17} = \overline{3}$

• L'inverse (s'il existe) d'un élément de $\mathbb{Z}/n\mathbb{Z}$

Définition

Soit $\bar{x} \in \mathbb{Z}/n\mathbb{Z}$

On dit que \bar{x} est inversible ou admet un inverse s'il existe $\bar{y} \in \mathbf{Z}/n\mathbf{Z}$ vérifiant $\bar{x}.\bar{y} = \bar{y}.\bar{x} = \bar{1}$ \bar{y} s'appelle l'inverse de \bar{x} dans $(\mathbf{Z}/n\mathbf{Z},.)$

Remarques

- 1) $(\mathbf{Z}/n\mathbf{Z},.)$ n'est pas un groupe
- 2) D'après la table de multiplication de $\mathbb{Z}/4\mathbb{Z}$, $\bar{2}$ n'est pas inversible mais $\bar{3}$ est inversible et son inverse est $\bar{3}$

Théorème (existence de l'inverse dans $\mathbb{Z}/n\mathbb{Z}$)

Soit $x \in \mathbb{Z}/n\mathbb{Z}$

 \bar{x} admet un inverse dans $(\mathbf{Z}/n\mathbf{Z},.) \Leftrightarrow p \gcd(x,n) = 1$

Preuve.

Utilise le théorème de Bezout : $p \gcd(x, n) = 1 \Leftrightarrow \exists (u, v) \in \mathbb{Z} \times \mathbb{Z}, xu + nv = 1$

• Calcul de l'inverse (s'il existe) d'un élément de $\mathbb{Z}/n\mathbb{Z}$

1ère méthode (Utilisation de l'Algorithme d'Euclide)

Soit \bar{x} un élément inversible de $\mathbb{Z}/n\mathbb{Z}$ on a donc $p \gcd(x,n) = 1$ et d'après l'Algorithme on calcul

 $(u_0, v_0) \in \mathbb{Z} \times \mathbb{Z}$ tel que $xu_0 + nv_0 = 1$ par suite dans $\mathbb{Z}/n\mathbb{Z}$ on a :

 $\overline{xu_0 + nv_0} = \overline{1}$ d'où $\overline{xu_0} + \overline{nv_0} = \overline{1} \Leftrightarrow \overline{xu_0} = \overline{1} = \overline{u_0} \overline{x}$ car $\overline{nv_0} = \overline{0}$ dans $\mathbf{Z}/n\mathbf{Z}$ et la multiplication est commutative dans $\mathbf{Z}/n\mathbf{Z}$,

D'où l'inverse de \bar{x} dans $\mathbb{Z}/n\mathbb{Z}$ est $\overline{u_0}$

Rappel (important)

si p est premier et $a \in \mathbb{Z}$. alors soit $p \gcd(p, a) = 1$ soit p divise a

Exemple

Prouver que $\frac{1}{5}$ est inversible dans $\mathbb{Z}/23\mathbb{Z}$ puis calculer son inverse.

En effet $\bar{5}$ est inversible dans $\mathbb{Z}/23\mathbb{Z}$ car $p \gcd(5,23) = 1$ puisque 5 est premier et 5 ne divise pas 23 De plus

$$23 = 5 \times 4 + 3 \rightarrow 3 = 23 - 5 \times 4$$
 (1)

$$5 = 3 \times 1 + 2 \longrightarrow 2 = 5 - 3 \times 1 \quad (2)$$

$$3 = 2 \times 1 + 1 \longrightarrow 1 = 3 - 2 \times 1 \tag{3}$$

Dans (3) on remplace le reste 2 par l'expression donnée par (2) d'où

$$1 = 3 - (5 - 3 \times 1) \times 1 = 2 \times 3 - 5$$

puis on remplace le reste 3 par l'expression donnée par (1) donc

$$1 = 2 \times (23 - 5 \times 4) - 5 = 2 \times 23 - 9 \times 5$$

D'où dans $\mathbb{Z}/23\mathbb{Z}$ on a : $\overline{1} = \overline{2 \times 23} - \overline{9 \times 5} = \overline{-9} \times \overline{5}$

Conclusion: l'inverse de $\overline{5}$ dans ($\mathbb{Z}/23\mathbb{Z}$..) est $\overline{-9} = \overline{14}$

Autre méthode (plus simple) : on remarque que $\overline{5} \times \overline{9} = \overline{45} = \overline{-1}$ dans $\mathbb{Z}/23\mathbb{Z}$

D'où $\overline{5} \times (\overline{-9}) = \overline{1}$ dans $\mathbb{Z}/23\mathbb{Z}$, par suite l'inverse de $\overline{5}$ dans $(\mathbb{Z}/23\mathbb{Z},.)$ est $\overline{-9} = \overline{14}$

2^{ème} méthode (Calcul de puissance)

Soit $x \in \mathbb{Z}/n\mathbb{Z}$, s'il existe $k \in \mathbb{N}, k \ge 2$ tel que $(x)^k = 1$

alors \bar{x} est inversible et son inverse dans $(\mathbf{Z}/n\mathbf{Z},.)$ est $(\bar{x})^{(k-1)}$

Preuve

$$(x)^k = 1 \Leftrightarrow (x)^{(k-1)} = 1 \Leftrightarrow x = 1$$

Exemple

Prouver que $\frac{1}{3}$ est inversible dans ($\mathbb{Z}/14\mathbb{Z}$,.) puis calculer son inverse.

En effet, $p \gcd(3,14) = 1$ car 3 est premier et 3 ne divise 14 donc $\overline{3}$ est inversible dans $(\mathbf{Z}/14\mathbf{Z},.)$

De plus dans $\mathbb{Z}/14\mathbb{Z}$ on a : $(3)^6 = 1$ car $3^2 = -5[14]$ donc $3^3 = -15 = -1[14]$ par suite $3^6 = 1[14]$

Comme dans $\mathbb{Z}/14\mathbb{Z}$ on a $(\overline{3})^6 = \overline{1}$ d'où $(\overline{3})^5$ est l'inverse de $\overline{3}$

Conclusion. L'inverse de $\overline{3}$ dans $(\mathbb{Z}/14\mathbb{Z},.)$ est $\overline{5}$ car $3^5 \equiv 3^2.3^3 \equiv (-5).(-1) \equiv 5[14]$