

FCC TEST REPORT

For

Winner Wave Limited

EZCast Pro Dongle 2

Model No.: D10

Prepared For : Winner Wave Limited

Address : 4F-5, No.736, Jhongiheng Road, Jhonghe Dist., New Taipei City, Taiwan

Prepared By : Shenzhen Anbotek Compliance Laboratory Limited

Address : 1/F, Building D, Sogood Science and Technology Park, Sanwei

community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong,

China.518102

Tel: (86) 755-26066440 Fax: (86) 755-26014772

Report Number : SZAWW180821012-01

Date of Recipt : Aug. 21, 2018

Date of Test : Aug. 21~Sept. 11, 2018

Date of Report : Sept. 11, 2018

Contents

1. General Information	4
1.1. Client Information	4
1.2. Description of Device (EUT)	4
1.3. Auxiliary Equipment Used During Test	4
2. Power Spectral Density Test.	5
2.1. Test Standard and Limit	5
2.2. Test Setup	5
2.3. Test Procedure	5
2.4. Test Data	,otek 5
3. Antenna Requirement	20
3.1. Test Standard and Requirement	20
3.2. Antenna Connected Construction.	21
APPENDIX I TEST SETUP PHOTOGRAPH	22
APPENDIX II EXTERNAL PHOTOGRAPH	24
APPENDIY III INTERNAL PHOTOGRAPH	28

TEST REPORT

Applicant : Winner Wave Limited

Manufacturer : Winner Wave Limited

Product Name : EZCast Pro Dongle 2

Model No. : D10

Trade Mark : EZCast

Rating(s) : Input: DC 5V, 1.5A

Test Standard(s) : FCC Part15 Subpart E 2017, Paragraph 15.407

ANSI C63.10: 2013,

Test Method(s)

: KDB 789033 D02 General UNII Test Procedures New Rules v02r01

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart E requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Prepared by

(Engineer / Oliay Yang)

Reviewer

(Supervisor / Snowy Meng)

Approved & Authorized Signer

(Manager / Sally Zhang)

1. General Information

1.1. Client Information

Applicant	:	Winner Wave Limited
Address		4F-5, No.736, Jhongjheng Road, Jhonghe Dist., New Taipei City, Taiwan
Manufacturer	:	Winner Wave Limited
Address	:	4F-5, No.736, Jhongjheng Road, Jhonghe Dist., New Taipei City, Taiwan
Factory	:	Winner Wave Limited
Address	:	4F-5, No.736, Jhongjheng Road, Jhonghe Dist., New Taipei City, Taiwan

1.2. Description of Device (EUT)

Product Name	:	EZCast Pro Dongle 2	Anbotek Anbotek Anbotek Anbote
Model No.	:	D10	Anbotek Anbotek Anbotek
Trade Mark	:	EZCast	ek Anbotek Anb
Test Power Supply	:	DC 5V by USB Port	botek Anbote Ant notek Anbotek Anb
Test Sample No.	:	S1(Normal Sample), S2(Er	ngineering Sample)
Product Description		Operation Frequency:	5180MHz~5240MHz
	:	Number of Channel:	4 Channels for 802.11n(HT20) 4 Channels for 802.11ac(HT20) 2 Channels for 802.11n(HT40) 2 Channels for 802.11ac(HT40) 1 Channels for 802.11ac(HT80)
		Modulation Type:	OFDM with BPSK/QPSK/16QAM/64QAM/ 256QAM for 802.11ac
		Antenna Type:	PIFA Antenna
		Antenna Gain(Peak):	1.5 dBi (two antennas are the same)

Remark: 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3. Auxiliary Equipment Used During Test

WO- 80	Manufacturer: SONY
TV	M/N: KDL-26EX550 S/N: 1012240 CE , FCC: DOC
	otek Anbotek Anbotek Anbotek Anbotek Anbotek
	Manufacturer: Samsung
Adapter	M/N: ETA-U90CBC S/N: RT6FB17ZS/B-E Input: 100-240V~ 50-60Hz, 0.35A
	Output: DC 5V, 2A

2. Power Spectral Density Test

2.1. Test Standard and Limit

Test Standard	FCC Part15 (C Section 15.4	407 (a) (1) (2) ((3)	Anbotek	Anbo	p.
Test Limit	10.99 dBm	Anbotek	Aupor	All	Anbotek	Aupo	ek k

2.2. Test Setup

2.3. Test Procedure

For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz).

- 1. The EUT is directly connected to the spectrum analyzer;
- 2. Set RBW =1MHz;
- 3. Set VBW \geq 3 RBW=3MHz;
- 3. Set the span to encompass the entire emissions bandwidth (EBW) of the signal;
- 5. Detector=RMS;
- 6. Sweep time= auto couple;
- 7. Trace mode=max. hold;

2.4. Test Data

Test Item : Power Spectral Density Test Mode : CH Low ~ CH High

Test Voltage : DC 5V by USB Port Temperature : 24°C

Test Result : PASS Humidity : 55%RH

ANT A

Mode	Channel Frequency (MHz)	Final Power Spectral Density (dBm)	Limit	Results
Aupor	5180	-5.388	upote Aur	PASS
802.11n(HT20)	5200	-5.582	Anbotek A	PASS
hbotek Anbo	5240	-5.844	Anbotek	PASS
Anboten Anbo	5180	-5.700	100	PASS
802.11ac(HT20)	5200	-5.744	tek Anbotek	PASS
Anbore	5240	-6.082	11dBm	PASS
802.11n(HT40)	5190 Ambote	-8.438	Anbote. Ar	PASS
802.11II(H140)	5230	-8.346	Anbotek	PASS
902 11aa(HT40)	5190	-8.424	Anbors	PASS
802.11ac(HT40)	5230	-8.997	lek Anbotek	PASS
802.11ac(HT80)	5190	-10.914	botek Anbo	PASS

ANT B

ANID					
Mada	Channel Frequency	el Frequency Final Power Spectral Density		Dogulta	
Mode	(MHz)	(dBm)	Limit	Results	
Anbotek	5180	-6.551	potek Anbot	PASS	
802.11n(HT20)	5200	-2.602	Anbotek An	PASS	
ootek Anbotek	5240	-2.593	Anbotek	PASS	
abotek Anbote	5180	-2.436	Anbotek	PASS	
802.11ac(HT20)	5200	-1.948	rek Anbotek	PASS	
	5240	-2.434	11dBm	PASS	
802.11n(HT40)	5190	-8.711	nbotek Ani	PASS	
802.11n(H140)	5230	-4.486	Anbotek	PASS	
902 11(UT40)	5190	-3.787	Anbotek	PASS	
802.11ac(HT40)	5230	-8.554	ek Anbotek	PASS	
802.11ac(HT80)	5190	-10.305	otek Anbote	PASS	

SUM

Mode	Channel Frequency (MHz)	Final Power Spectral Density (dBm)	Limit	Results
otek Anbotek	5180	-2.92	Ar. nbotek	PASS
802.11n(HT20)	5200	-0.83	Anbotek	PASS
	5240	-0.91	itek Ambotel	PASS
Amb	5180	-0.76	hotek Anbo	PASS
802.11ac(HT20)	5200	-0.43	notek A	PASS
	5240	-0.88	10.99dBm	PASS
002 11 (11740)	5190	-5.56	Annabotek	PASS
802.11n(HT40)	5230	-2.99	tek Anbotek	PASS
000 11 (UT40)	5190	-2.50	botek Anbo	PASS
802.11ac(HT40)	5230	-5.76 A	ipo dek ki	PASS
802.11ac(HT80)	5190	-7.59 AMONE	Anbunotek	PASS

Directional Gain=Gant + 10log (Nant) =6.01dBi Calculation Limit=Original Limit - (Directional Gain - 6) =11-0.01= 10.99 dBm

ANT A

Test Mode: 802.11n(HT20)---Low

Test Mode: 802.11n(HT20)---Middle

Test Mode: 802.11n(HT20)---High

Test Mode: 802.11ac(HT20)--Low

Test Mode: 802.11ac(HT20)---Middle

Test Mode: 802.11ac(HT20)---High

Test Mode: 802.11n(HT40)---Low

Test Mode: 802.11n(HT40)---High

Test Mode: 802.11ac(HT40)---Low

Test Mode: 802.11ac(HT40)---High

Test Mode: 802.11ac(HT80)

ANT B

Test Mode: 802.11n(HT20)---Low

Test Mode: 802.11n(HT20)---Middle

Test Mode: 802.11n(HT20)---High

Test Mode: 802.11ac(HT20)--Low

Test Mode: 802.11ac(HT20)---Middle

Test Mode: 802.11ac(HT20)---High

Test Mode: 802.11n(HT40)---Low

Test Mode: 802.11n(HT40)---High

Test Mode: 802.11ac(HT40)---Low

Test Mode: 802.11ac(HT40)---High

Test Mode: 802.11ac(HT80)

3. Antenna Requirement

3.1. Test Standard and Requirement

Test Standard	FCC Part15 Section 15.203 /15.407
	1) 15.203 requirement:
	An intentional radiator shall be designed to ensure that no antenna other than that
	furnished by the responsible party shall be used with the device. The use of a
	permanently attached antenna or of an antenna that uses a unique coupling to the
	intentional radiator, the manufacturer may design the unit so that a broken antenna can
	be replaced by the user, but the use of a standard antenna jack or electrical connector is
	prohibited.
	2) 15.407 requirement:
	An intentional radiator shall be designed to ensure that no antenna other than that
	furnished by the responsible party shall be used with the device. The use of a
Requirement	permanently attached antenna or of an antenna that uses a unique coupling to the
	intentional radiator shall be considered sufficient to comply with the provisions of this
	section. The manufacturer may design the unit so that a broken antenna can be replaced
	by the user, but the use of a standard antenna jack or electrical connector is prohibited.
	This requirement does not apply to carrier current devices or to devices operated under
	the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this
	requirement does not apply to intentional radiators that must be professionally installed,
	such as perimeter protection systems and some field disturbance sensors, or to other
	intentional radiators which, in accordance with §15.31(d), must be measured at the
	installation site. However, the installer shall be responsible for ensuring that the proper
	antenna is employed so that the limits in this part are not exceeded.

3.2. Antenna Connected Construction

The WIFI antenna is a PCB Antenna which permanently attached, and the best case gain of the antenna is 1.5 dBi. It complies with the standard requirement.

APPENDIX I -- TEST SETUP PHOTOGRAPH

APPENDIX II -- EXTERNAL PHOTOGRAPH

FCC ID: 2ADFS-D10

APPENDIX III -- INTERNAL PHOTOGRAPH

FCC ID: 2ADFS-D10

----- End of Report -----