Fleißige Bieber

TM-Wettbewerb: Maschinen mit n Zuständen konkurrieren, wer läuft am längesten (Maschinen die nicht halten sind disqualifiziert)

→ "fleißige Bieber"

Definition (Fleißige Bieber, [Radó '62])

Für jedes Codewort w einer Turing-Maschine M, sei

$$s(w) = \text{Anzahl Schritte die } M$$
 (bei leerer Eingabe) macht (0 falls M nicht hält) und

$$e(w) = \text{Anzahl (nicht-}\square)$$
 Symbole auf dem Band wenn M (bei leerer Eingabe) hält (sonst 0).

Für jedes $n \in \mathbb{N}$ sei $\mathcal{M}_1(n)$ die Menge aller Turing-Maschinen $M = (Z, \Sigma, \Gamma, \delta, \Box, z_0, E)$ mit

$$|Z| = n$$
 $\Sigma = \{1\}$ $\Gamma = \Sigma \cup \{\Box\}.$

Wir definieren die Funktionen

$$S_{\mathbf{1}}(n) := \max_{M \in \mathcal{M}_{\mathbf{1}}(n)} s(\langle M \rangle)$$

$$E_{\mathbf{1}}(n) := \max_{M \in \mathcal{M}_{\mathbf{1}}(n)} e(\langle M \rangle)$$

Eine Maschine $M \in \mathcal{M}_1(n)$ heißt unärer fleißiger Bieber (busy beaver) falls M auf leerer Eingabe $E_1(n)$ nicht- \square Symbole auf das Band schreibt und dann hält.

Fleißige Bieber sind Unberechenbar I

Theorem

Die Funktion *S* ist nicht Turing-berechenbar.

Beweis

Annahme: S ist Turing-berechenbar

→ *S* wird von einer Turing-Maschine berechnet.

 \leadsto es gibt $n \in \mathbb{N}$ sodass S von einer Turing-Maschine $M_{BB} \in \mathcal{M}(n)$ berechnet wird.

Sei M' die Maschine, die wie folgt agiert: Sei M'' die Maschine, die wie folgt agiert:

1. verdopple die Zahl auf dem Band 1. erzeuge die Z 2. simuliere M_{BB} 2. simuliere M'

3. wandle das binäre Ausgabewort in unär sodass M'' genau 2n' Zustände hat.

 $\rightarrow M''$ hat 2n' Zustände aber M'' macht bei leerer Eingabe echt mehr als S(2n') Schritte $\frac{1}{2}$

Sei n' die Anzahl Zustände von M'.

Frage: Überlegen Sie sich den analogen Beweis dafür, dass *E* nicht Turing-berechenbar ist.

1. erzeuge die Zahl n' auf dem Band

Fleißige Bieber sind Unberechenbar II

Theorem

Die Funktion S wächst (asymptotisch) schneller als jede berechenbare Funktion!

Beweis (Skizze)

Annahme: es gibt berechenbare Funktion f und $n_0 \in \mathbb{N}$, sodass f(n) > S(n) für alle $n > n_0$.

 \rightarrow bauen Turing-Maschine M, die entscheidet ob $w \in H_0$ für gegebene Codierung w einer TM mit $\Sigma = \{0,1\}$ und $\Gamma = \{0,1,\square\}$ und n := |Z|.

- 1. $n \le n_0$, dann gib fest verdrahtete Antwort aus (endlich viele)
- 2. berechne f(n)
- 3. simuliere M_w auf leerem Band höchstens f(n) Schritte
- 4. gib aus, ob M_W nach höchstens f(n) Schritten hielt
- \rightarrow die von M berechnete Funktion ist total und es gilt:

$$w \in H_0 \Leftrightarrow M_w$$
 hält auf leerem Band

 $\Leftrightarrow M_w$ hält auf leerem Band nach höchstens f(n) Schritten $\Leftrightarrow M$ gibt 1 aus