## 看解答 看讨论 上微信小程序 搜数之谜



## 2025 年上海高三数学竞赛

- 一、填空题(第  $1 \sim 4$  题每小题 7 分,第  $5 \sim 8$  题每小题 8 分,共 60 分) 1. 函数  $f(x) = x(2-x)^3, x \in (0,2)$ ,则 f(x) 的最大值为\_\_\_\_\_.
- 2. 对于实数 x,记 [x] 为不超过 x 的最大整数,则  $[\lg 1] + [\lg 2] + [\lg 3] + \cdots + [\lg 2025] = _____.$
- 3. 已知  $\alpha, \beta$  是实数, $z_1 = \sin 2\alpha + i \sin^2 \alpha$ , $z_2 = \frac{1}{2} (\sin \beta + \cos \beta + i \sin 2\beta)$ ,其中 i 是虚数单位.若  $z_1 = z_2$ ,则  $\cos 2\alpha$  的值是\_\_\_\_\_.
- 4. 在正方形 ABCD 中,以顶点 B 为圆心、BA 长为半径作劣弧  $\stackrel{\frown}{AC}$ . P 为  $\stackrel{\frown}{AC}$  上一个动点,连 PD,将 PD 绕点 P 逆时针方向旋转  $90^\circ$ ,得到线段 PE,连 BE. 若  $\triangle BPE$  面积的最大值为 10,则正方形 ABCD 的面积为\_\_\_\_\_\_.
- 5. 已知函数  $f(x) = m(x-2m)(x-m^2+2), g(x) = 2^x-4$ . 若对任意实数 x 均有 f(x) < 0 或者 g(x) < 0,则实数 m 的取值范围是\_\_\_\_\_.
- 6. 从  $1, 2, \dots, 30$  这 30 个正整数中任取 3 个不同的数 a, b, c,a < b < c,则数列 a, b, c 能构成等比数列的概率是\_\_\_\_\_\_. (用最简分数表示答案)
- 7. 设向量  $\overrightarrow{a}$ ,  $\overrightarrow{b}$  的夹角为  $\theta$ , 且满足  $|\overrightarrow{a}| = 5$ ,  $\cos \theta = \frac{4}{5}$ . 若对任意实数  $\lambda$ , 均有  $|\overrightarrow{b} \lambda \overrightarrow{a}| \ge |\overrightarrow{b} \overrightarrow{a}|$ , 则  $|t\overrightarrow{b} \overrightarrow{a}| + |t\overrightarrow{b} 2\overrightarrow{a}|(t \in \mathbb{R})$  的最小值为\_\_\_\_\_\_.
- 8. 对于正整数 n,记  $a_n$  表示与  $\sqrt{n}$  最接近的整数,例如  $a_2=1, a_3=2$ . 若  $\sum_{k=1}^n a_k \le 1000$ ,则 n 的最大值为\_\_\_\_\_.

## 看解答 看讨论 上微信小程序 搜数之谜



- 二、解答题(每小题 15 分, 共 60 分)
- 9. 已知底面半径为3, 高为4的圆锥内有一个内接圆柱,圆柱的上底面与圆 锥的侧面所围成的小圆锥内有一个内切球。求内接圆柱与内切球的体积和的最大 值. (π 可以保留在答案中)
- 10. 在平面直角坐标系 xOy 中,双曲线  $\Gamma: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1 (a > 0, b > 0)$  的左、 右焦点分别为  $F_1, F_2$ . 若直线 l 是过  $\Gamma$  右支上点 P 的切线,且 l 不与 x 轴垂直. 过 点  $F_1, F_2$  分别作直线 l 的垂线,垂足为  $T_1, T_2$ .
- (1) 求证: 点  $T_1, T_2$  均在以 O 为圆心、a 为半径的圆上,并且  $OT_1 \parallel F_2 P, OT_2 \parallel$  $F_1P_i$ 
  - (2) 求证:  $|F_1T_1| \cdot |F_2T_2|$  是定值.
- 11. 记  $\mathbb{N}^*$  表示全体正整数构成的集合. 已知定义在  $\mathbb{N}^*$  上的严格递增函数 f(n), 其值域  $A \subseteq \mathbb{N}^*$ ,且对任意正整数 n 均有 f(f(n)) = 3n.
  - (1) 求 f(1), f(2) 的值;
  - (2) 求 f(2025) 的值.
- 12. 在一个  $45 \times 45$  的方格表中,取出十个矩形  $\Gamma_1, \Gamma_2, \cdots, \Gamma_{10}$ ,满足:每个矩 形的四条边都重合于方格表的网格线或边界,且对每个  $i=1,2,\cdots,9$ ,矩形  $\Gamma_i$  完 全位于  $\Gamma_{i+1}$  的内部(不含边界). 设  $\Gamma_1, \Gamma_2, \cdots, \Gamma_{10}$  的面积分别为  $S_1, S_2, \cdots, S_{10}$ .

  - (1) 求证: 对每个  $i=1,2,\cdots,10$ ,都有  $S_i \neq 333$ ; (2) 将  $\frac{S_2}{S_1},\frac{S_3}{S_2},\cdots,\frac{S_{10}}{S_9}$  中的最小数记为 m,求 m 的最大可能值.