第一章 序论

学习目标与要求

- 1. 了解科学计算的一般过程。
- 2. 了解数值计算方法的研究内容和特点.
- 3. 理解数值计算误差的有关概念.
- 4. 掌握数值计算误差的控制方法.

1.1 Colored boxes

每章开头的介绍

定义解析

为什么这么定义?

Upper part of my box.

Lower part of my box.

概念分辨

这个这么定义

那个那么定义

Now, we play hide and seek. Where is the lower part?

小窍门

怎么快速掌握?

Funny settings.

1.1.1 LATEX-Table

表 1.1: 计算结果

n	I_n	n	I_n	n	I_n	n	I_n
19	0.008 3	14	0.011 2	9	0.016 9	4	0.034 3
18	0.008 9	13	0.012 0	8	0.018 8	3	0.043 1
17	0.009 3	12	0.013 0	7	0.021 2	2	0.058 0
16	0.009 9	11	0.014 1	6	0.024 3	1	0.088 4
15	0.010 5	10	0.015 4	5	0.028 5	0	0.182 3

1.2 LATEX-Examples

This is a **\LaTeX** example:

 $\displaystyle \frac{i=1}^n i = \frac{n(n+1)}{2}$

This is a LATEX example: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.

1.3 Theorems

定义 1.1: 关键定义

For all natural number n it holds:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

定理 1.1: 关键定理

For all natural number n it holds:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

推论 1.1: 关键结论

For all natural number n it holds:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

We have given Theorem 1.1 on page 3.

.4. 习题一

表 1.2: 计算结果

n	I_n	n	I_n	n	I_n	n	I_n
1	0.088 4	6	0.034 4	11	-31.392 5	16	9.814 5e+4
2	0.581 0	7	-0.029 0	12	157.045 7	17	-4.907 3e+5
3	0.043 1	8	0.270 1	13	-785.151 6	18	2.453 6e+6
4	0.347 0	9	-1.239 3	14	3.925 8e+3	19	-1.226 8e+7
5	0.026 5	10	0.296 7	15	-1.962 9e+4	20	6.134 1e+7

1.4 graphicx

图 1.1: 不动点迭代法收敛

图 1.2: 不动点迭代法发散

习题一