

Curso de Machine Learning

Glauco Fleury Corrêa de Moraes, @GlauqueraFleury

Pré-Requisitos

Pré-Requisitos

- Conhecimento básico na linguagem Python
- Conhecimento básico de álgebra linear
 - Vetores, matrizes, e suas operações.

Aos que se sentirem um pouco inseguros com seu conhecimento a respeito desses tópicos, não se preocupem: basta perguntar e nós responderemos:)

GitHub

GitHub

• https://github.com/icmc-data/Curso-de-Machine-Learning-2025

Material

https://github.com/icmc-data/Curso-de-Machine-Learning-2025

Uma simples reta é capaz de separar perfeitamente o nosso conjunto de dados entre bolas vermelhas e bolas azuis, como mostrado a baixo:

Sendo assim, tudo que está a baixo dessa reta será classificado como bola vermelha e tudo que está a cima será classificado como bola azul.

Se o conjunto de dados é linearmente separável o nosso objetivo será encontrar qual é a reta que faz a melhor separação entre as classes.

Vetor de características (Feature Vector \vec{X})

Cada exemplo do nosso conjunto de dados será representado por um vetor de características (feature vector) \hat{X} . Tal vetor irá conter as características do nosso exemplo. No exemplo das bolas o feature vector tem dimensionalidade 2, $\hat{X}=\{x_1,x_2\}$, sendo x_1 a coordenada do ponto no eixo horizontal e x_2 a coordenada do ponto no eixo vertical.

2.1 Classificadores lineares que passam pela origem

Em um classificador binário, a decision boundary é a reta (R^2) , plano (R^3) ou hiperplano $(R^n, n > 3)$ que separa a parte que será positiva (bolas azuis) da parte que será negativa (bolas vermelhas).

Inicialmente podemos começar a definir o conjunto de todos os classificadores lineares que passam pela origem por questão didática antes de generalizar para todos os casos.

Para o R^2 , com o feature vector sendo $\vec{X} = \{x_1, x_2\}$, o conjunto de todas as retas que passam pela origem são:

$$\theta_1 x_1 + \theta_2 x_2 = 0$$

Onde $\vec{\theta} = \{\theta_1, \theta_2\}$ é chamado de vetor de parâmetros. Esse vetor de parâmetros é o vetor que o nosso algoritmo de machine learning deve encontrar baseado nos dados para fazer as classificações. De uma forma mais generalizada, podemos dizer que o conjunto de todos os classificadores lineares que passam pela origem é o produto escalar entre os vetores theta e X.

 $\vec{\theta}.\vec{X} = 0$

Para o valor $\vec{\theta} = (1, 1)$, a reta seria $x_1 = -x_2$, dando:

Presença

Presença

- Linktree: Presente na bio do nosso instagram
- Presença ficará disponível até 1 hora antes da próxima aula
- É necessário 70% de presença para obter o certificado

Presença e Github

Introdução à área

O que é Machine Learning?

- Criação de modelos que aprendam a partir de dados (superar barreiras antigas da computação)
- Identificação de padrões pelas máquinas
- Decisões automáticas

Qual a importância de Machine Learning?

- Previsão de tendências e diagnósticos
- Otimização de processos industriais
- Tomada de decisão mais eficiente

Exemplos do Dia a Dia

Assistentes virtuais

Recomendação de filmes

Carros autônomos

Aplicações fantásticas

Alpha Fold

Deep Blue vs Kasparov AlphaGo

IA mais famosa: Chat GPT (e seus "amigos")

IAs generativas

Características das IAs generativas como o GPT

- usos comuns: debuggar, redações, problemas matemáticos, imagens, desenhos, etc.
- muito custosas para treinar (1.8 trilhões de parâmetros no GPT-4); projeto StarGate
- tipos: LLM's, GAN's, Diffusion, etc.

Conceitos Básicos de como Funciona

- Dados e características (features)
- Ajuste de parâmetros contínuo
- Aprender com erros e acertos

Paradigma Geral: Tipos de Aprendizado

Entrando em mais detalhes

- **Supervisionado:** uso exclusivo de labels
- Não-Supervisionado: o modelo descobre sozinho os padrões com base nos dados
- Semi-Supervisionado: uma mistura de ambos

Exemplos

Supervised: Regressão e Classificação

Unsupervised: PCA

Semi-Supervised: GAN

Reinforcement Learning: um pouco fora do paradigma

- Para compreender como os modelos mais avançados de IA funcionam na atualidade, precisamos ter uma noção incipiente de como seus predecessores eram
- Começaremos a partir de modelos de aprendizado supervisionado: exploraremos classificadores lineares!

Classificação

Classificação

- Cada dado está relacionado a uma classe
- Exemplo:
 - Classificar se um filme é bom ou ruim

Como caracterizar um filme? Em outras palavras, quais "features" escolhemos para analisar gostos e compor nosso vetor, que representará os nossos dados?

Como caracterizar um Dado

(1, 1977, 9.3)

(1, 2023, 9.7)

(0,2017,3.4)

exemplo: ([ganhou oscar], [ano de lançamento], [avaliação do imdb])

Classificador Linear

- Classifica entre dois tipos de dados
- Dados linearmente separáveis

Classificador Linear

- Classifica entre dois tipos de dados
- Dados linearmente separáveis

Classificador Linear

- Objetivo: encontrar a função linear
- A dimensão do vetor de característica dita se será uma reta (R²),
 - ou um hiperplano (\mathbb{R}^N)
- Iremos trabalhar com R^2 , mas toda a teoria se aplica para R^N (hiperplanos)

Classificador Linear: exemplo 3D

Decision Boundary

- A reta, ou hiperplano é o que chamamos de Decision Boundary
- Ele delimita os pontos positivos (azuis) dos negativos (vermelhos)

- O vetor de parâmetros descreve a decision boundary
- Feature vector genérico: $\vec{x} = \{x_1, x_2\}$

- O vetor de parâmetros descreve a decision boundary
- Feature vector genérico: $\vec{x} = \{x_1, x_2\}$
- Vetor de parâmetros: $\vec{\theta} = \{1, 1\}$ (exemplo)

- O vetor de parâmetros descreve a decision boundary
- Feature vector genérico: $\vec{x} = \{x_1, x_2\}$
- Vetor de parâmetros: $\vec{\theta} = \{1, 1\}$ (exemplo)
- Isso define a reta: $1.x_1 + 1.x_2 = 0$

- O vetor de parâmetros descreve a decision boundary
- Feature vector genérico: $\vec{x} = \{x_1, x_2\}$
- Vetor de parâmetros: $\vec{\theta} = \{1, 1\}$ [exemplo]
- Isso define a reta: $1.x_1 + 1.x_2 = 0$
- Podemos escrevê-la como: $\theta_1 x_1 + \theta_2 x_2 = 0$

$$\vec{\theta} \cdot \vec{x} = 0$$

Classificadores Lineares que passam pela origem

- Conjunto de todos os classificadores lineares que passam pela
 - origem: $\vec{\theta} \cdot \vec{x} = 0$ to produto escalar decidirá as classes
- Bolas azuis: $\vec{\theta} \cdot \vec{x} > 0$

$$\vec{x} = \{1,2\}, \ \vec{\theta} = \{1,1\}: \ \vec{\theta} \cdot \vec{x} = 3$$

• Bolas vermelhas: $\vec{\theta} \cdot \vec{x} < 0$

$$\vec{x} = \{-2,1\}, \ \vec{\theta} = \{1,1\}: \ \vec{\theta} \cdot \vec{x} = -1$$

A projeção entre o vetor de parâmetros e o nosso dado

decidirá a qual classe ele pertence: isso ocorre via o dot product

Perceptron

Algoritmo Perceptron

- Ideia:
 - \circ Inicializar o vetor de parâmetros como 0: $\vec{ heta}$ = 0
 - \circ Iterar sobre o conjunto de dados fazendo operações, ajustando $\vec{ heta}$ sempre que um resultado for mal classificado
 - No final das iterações teremos construído a decision boundary

Loss Function: noções gerais

$$L(\vec{x_i}, y_i) = y_i(\theta. \vec{x_i}) \le 0$$

$$\begin{cases} y_i > 0 \text{ and } \theta.x_i > 0 : L(y_i, x_i) > 0 \text{ (acerto)} \\ y_i > 0 \text{ and } \theta.x_i < 0 : L(y_i, x_i) < 0 \text{ (erro)} \\ y_i < 0 \text{ and } \theta.x_i > 0 : L(y_i, x_i) < 0 \text{ (erro)} \\ y_i < 0 \text{ and } \theta.x_i < 0 : L(y_i, x_i) > 0 \text{ (acerto)} \end{cases}$$

o "y" é a nossa label: +1 ou -1 (classificação binária)

Algoritmo Perceptron

$$\theta = 0$$
for i in range (n)
if $y_i(\theta.X_i) \le 0$
 $Atualizar \theta$

Atualização $\vec{\theta}$

•
$$\vec{\theta}_{novo} = \vec{\theta}_{antigo} + \vec{x}_1 y_1$$

- $\vec{\theta}_{novo} = 0 + \vec{x}_1 y_1, \vec{\theta}_{novo} = \vec{x}_1 y_1$ (1° atualização)
- Caso o exemplo x₁ seja visto novamente:

$$y_1(\vec{\theta}\vec{x}_1) = y_1([\vec{x}_1y_1]\vec{x}_1) = (y_1)^2(\vec{x}_1)^2 = 1(\vec{x}_1)^2$$

Valor sempre positivo (acerto)

Algoritmo Perceptron

•
$$1.\vec{\theta} = 0$$

- 2. for t in range (T):
- 3. for i in range (n):

• 4. if
$$y_i(\vec{\theta} \cdot \vec{x_i}) \leq 0$$

• 5.
$$\vec{\theta} = \vec{\theta} + y_i \vec{x_i}$$

T: fazer com que os ajustes prossigam até que o parâmetro vá convergir no resultado ideal (se o dataset é lin.separável)

Intuição geométrica

Todos os Classificadores lineares

- Nenhum classificador do formato:
- $\vec{\theta} \cdot \vec{x} = 0$ é capaz de separar perfeitamente o conjunto de dados ao lado
 - Deslocar do centro
 - Adicionar o bias: θ_0

$$\circ \quad \vec{\theta} \cdot \vec{x} + \theta_0 = 0$$

Noção geométrica do theta zero

- $\bullet \quad \vec{\theta} \cdot \vec{x} + \theta_0 = 0$
- $\vec{\theta}$ é um vetor (dimensão de \vec{x})
 - \circ $ec{ heta}$ altera a direção e orientação do classificador
- θ_0 é um número real
 - \circ θ_0 altera a altura (eixo vertical) do classificador

Perceptron Final

•
$$1.\vec{\theta} = 0$$

- 2. for t in range (T):
- 3. for i in range (n):
- 4. if $y_i(\vec{\theta} \cdot \vec{x_i}) \leq 0$
- 5. $\vec{\theta} = \vec{\theta} + y_i \vec{x_i}$
- 6. $\theta_0 = \theta_0 + y_i$

Hora de mostrar o código!

Próxima aula

- Definição e uso de optimização em algoritmos de Machine Learning
- Margin Boundaries: conceito básico para o entendimento de Support Vector Machines

Recomendações interessantes

- Séries do canal 3B1B sobre Álgebra Linear e Cálculo (base matemática)
- Pra quem gosta de ler: Mathematics for Machine Learning (passar por cima da parte matemática); aviso, é um livro longo

- @data.icmc
- /c/DataICMC
- /icmc-data
 - ▼ data.icmc.usp.br

obrigado por sua presença!