Lecture 9

Rectifiers & Filtering

Ideal Diode Model

OFF State: Open circuit

ON State: Short circuit

From Microelectronics: Circuit Analysis and Design by Donald A. Neamen: Chapter 2. 4th edition. Published by the McGraw-Hill Companies, Inc. Used for educational purposes only.

Half-wave rectifier (ideal diode model)

1: Vm sin (wt) trepato 1200 -> on ve palt-1/2<0> 120 (-039V Vo=07

Half-wave rectifier (ideal diode model)

When Vi>0, Diode on \rightarrow Vo= Vi \rightarrow y=mx type relation where slope, m= 1

Vi<0, Diode off \rightarrow Vo=0 V

Modeling the real diode

Constant voltage drop (CVD) model

OFF State: Open circuit

$$\begin{array}{c}
i_D = 0 \\
+ v_D -
\end{array}$$

$$(v_D < V_{D0}, i_D = 0)$$
 $(i_D > 0, v_D = V_{D0})$

ON State: Voltage source

$$i_D + V_{D0} - + v_D -$$

$$(i_D > 0, v_D = V_{D0})$$

Half-wave rectifier (CVD model)

$$v_{I} = V_{M} \sin \omega t$$
 $v_{o} = V_{M} \sin \omega t - V_{D}$
 $V_{p} = peak \ of \ output$
 $= V_{M} - V_{D}$

From Microelectronic Circuits by Adel S. Sedra & Kenneth C. Smith: Chapter 4. 7th edition. Published by Oxford University Press. Used for educational purposes only.

Half-wave rectifier (CVD model)

Half-wave rectifier (CVD model)

Transfer Characteristics

When $Vi>V_{D0}$, Diode on \rightarrow Vo= $Vi-V_{D0}$ \rightarrow y=mx+c type relation where slope, m= 1

 $Vi < V_{DO}$, Diode off \rightarrow Vo = 0 V

Full-wave rectifier (ideal diode & CVD model)

(+) half-cycle

$$v_o = v_I - 2V_D$$

From Microelectronic Circuits by Adel S. Sedra & Kenneth C. Smith: Chapter 4. 7th edition. Published by Oxford University Press. Used for educational purposes only.

Full-wave rectifier (ideal diode & CVD model)

 $v_{I} = \sum_{D_{1}(OFF)} \sum_{V_{I}} \sum_{D_{2}(OFF)} \sum_{D_{2}(OFF)} \sum_{D_{3}(ON)} \sum_{V_{I}} \sum_{I} \sum$

From Microelectronic Circuits by Adel S. Sedra & Kenneth C. Smith: Chapter 4. 7th edition. Published by Oxford University Press. Used for educational purposes only.

Full-wave rectifier (ideal diode & CVD model)

Half-wave and Full-wave rectifier

From Microelectronic Circuits by Adel S. Sedra & Kenneth C. Smith: Chapter 4. 7th edition. Published by Oxford University Press. Used for educational purposes only.

Vin- 55in (200xf) -> Vm Sin (w+) HW > (CVD) -> Vp, fo-? VD0=0.73V FW > (CND) > VP , 50=> $W=2\pi S$ 1 Vm = 5 V 200π $- 2\pi f_3 - 1.5 \text{ F} = \frac{100 \text{ Hz}}{2\pi}$ VP= VM- V00 = 5-98V. b) FW fo=253 = 200Hz, Vp=Vm-2Vp0 - 5-2700

agt T

Average Value

Average Value of Rectifier Output

1

Average Value of HW Rectifier Output (Ideal)

Average Value of HW Rectifier Output (Ideal)

Average Value of HW Rectifier Output (Ideal)
$$= \frac{\sqrt{m}}{\sqrt{m}} \times \frac{-1}{\sqrt{m}} \begin{bmatrix} \cos \omega + \frac{1}{\sqrt{m}} \\ \cos \omega + \frac{1}{\sqrt{m}} \end{bmatrix} \begin{bmatrix} \cos 2\pi \\ -\sqrt{m} \end{bmatrix} = \frac{-\sqrt{m}}{\sqrt{m}} \times \frac{-1}{\sqrt{m}} \begin{bmatrix} \cos 2\pi \\ -\sqrt{m} \end{bmatrix} = \frac{-\sqrt{m}}{\sqrt{m}} \times \frac{-1}{\sqrt{m}} = \frac{-\sqrt{m}}{\sqrt{m}} = \frac{-\sqrt{m}}{\sqrt{m}} \times \frac{-1}{\sqrt{m}} = \frac{-\sqrt{m}}{\sqrt{m}} =$$

Average Value of HW Rectifier Output (CVD)

Average Value of FW Rectifier Output (ideal)

$$\frac{7}{\sqrt{2}} = \frac{7}{\sqrt{2}} = \frac{7}{\sqrt{2}} = \frac{7}{\sqrt{2}} = \frac{2\sqrt{2}}{\sqrt{2}} = \frac{2$$

Average Value of FW Rectifier Output (CVD)

$$\frac{1}{2\sqrt{m}} = \frac{1}{\sqrt{12}} =$$

Filtering: Half-wave rectifier

From Microelectronic Circuits by Adel S. Sedra & Kenneth C. Smith: Chapter 4. 7th edition. Published by Oxford University Press. Used for educational purposes only.

Filtering: Full-wave rectifier

Without capacitor

Rectifier	i/p peak	o/p peak	average
H/W	V _M	V _P	$V_{avg} = V_{DC} = \frac{1}{\pi} V_{M} - \frac{1}{2} V_{Do}$
F/W	V _M	V_p	$V_{avg} = V_{DC} = \frac{2}{\pi}V_{M} - 2V_{Do}$

With capacitor

Rectifier	i/p peak	o/p peak	frequency	Ripple voltage	average
H/W	V _M	V _P =V _M -V _{Do}	f _r =f _i	$V_r = \frac{V_p}{f_r R c}$	$V_{avg} = V_{DC} = V_p - \frac{1}{2}V_r$
F/W	V_{M}	$V_p = V_M - 2V_{Do}$	$f_r=2f_i$	$V_r = \frac{V_p}{f_r R_C}$	$V_{avg} = V_{DC} = V_{P} - \frac{1}{2}V_{r}$

$$I_{o,avg} = V_{o,avg}/R$$
, $V_{rms} = V_p/\sqrt{2}$

Example

A voltage waveform $v_i = 8sin(2000\pi t)V$ is input to a full-wave rectifier. A resistance of $R = 50k\ \Omega$ is connected at the load. [Assume that the diodes used in the circuit have a forward drop of 0.8V].

(a) Draw the circuit of the full wave rectifier. Label the input and output voltages properly.

[1]

(b) Draw the waveforms of the input and output voltages. What are the peak values of input and output? Show them in the graph.

[1+1]

(c) Find the average voltage measured at the output.

[1]

- d) Draw VTC curve with proper labelling.
- e) If 1uF capacitor is connected in parallel with the resistor, what will be the average output voltage then?

b)
$$\lim_{M\to \infty} \frac{1}{M} = 8V$$

 $\lim_{M\to \infty} \frac{1}{M} = \lim_{M\to \infty} \frac{1}{M} = \frac{8}{2} = \frac{8}{2} = \frac{6.4V}{2}$
 $\lim_{M\to \infty} \frac{1}{M} = \frac{1}{M} = \frac{1}{2} = \frac{1}{$

=)
$$2\pi S = 2000 \text{ M}$$

=) $2\pi S = 2000 \text{ M}$
:. $f_3 = 100 \text{ Mz}$
= 114

$$f_{0} = 2f_{3} = 2kHz$$

$$f_{0} = 2f_{3} = 2kHz$$

$$f_{0} = 2f_{3} = 2kHz$$

$$= 2V_{0}$$

$$= 2V_{0}$$

$$= 2x_{0} - 2x_{0}$$

$$= 2x_{0} - 2x_{0}$$

$$= 3.4 - 4$$

+ve eyele \rightarrow $v_0 = v_{in} - 2v_0$ $\rightarrow J = mx + e$ Star--1 21 po= 1.6V Vi>0 (+Ve (3e le) /-ve cx(e)

e) Filtering Vavg = Vp-Vv/2 fr= 253 = fo R=542 C=14 Varg = 0.064/ = 6.9 - 0.064/ = 0.06AV F. 54f = 6.3 --

The input of a Half-wave rectifier is exhibited in the Figure above and output load resistance is $R = 5 \text{ k}\Omega$. Silicon diodes are used in this circuit for which the forward drop is VD0 = 0.7 V.

- i. Show the input and output waveforms.
- ii. Draw the VTC curve

Thank you