

Conservation of Energy and Momentum

- 1. Two bodies of masses m_1 and m_2 have equal kinetic energies. If p_1 and p_2 are their respective momentum, then ratio p_1 : p_2 is equal to
 - (a) $m_1: m_2$
- (b) m_2 : m_1
- (c) $\sqrt{m_1}$: $\sqrt{m_2}$
- (d) m_1^2 : m_2^2
- 2. Work done in raising a box depends on
 - (a) How fast it is raised
 - (b) The strength of the man
 - (c) The height by which it is raised
 - (d) None of the above
- 3. A light and a heavy body have equal momenta. Which one has greater K.E
 - (a) The light body
 - (b) The heavy body
 - (c) The K.E. are equal
 - (d) Data is incomplete
- 4. A body at rest may have
 - (a) Energy
 - (b) Momentum
 - (c) Speed
 - (d) Velocity

- 5. The kinetic energy possessed by a body of mass m moving with a velocity v is equal to $\frac{1}{2}mv^2$, provided
 - (a) The body moves with velocities comparable to that of light
 - (b) The body moves with velocities negligible compared to the speed of light
 - (c) The body moves with velocities greater than that of light
 - (d) None of the above statement is correct
- **6.** If the momentum of a body is increased *n* times, its kinetic energy increases
 - (a) n times
- (b) 2*n* times
- (c) \sqrt{n} times
- (d) n^2 times
- 7. When work is done on a body by an external force, its
 - (a) Only kinetic energy increases
 - (b) Only potential energy increases
 - (c) Both kinetic and potential energies may increase
 - (d) Sum of kinetic and potential energies remains constant

- **8.** The bob of a simple pendulum (mass *m* and length *l*) dropped from a horizontal position strikes a block of the same mass elastically placed on a horizontal frictionless table. The K.E. of the block will be
 - (a) 2 mgl
- (b) mgl/2
- (c) mgl
- (d) 0
- 9. From a stationary tank of mass 125000 pound a small shell of mass 25 pound is fired with a muzzle velocity of 1000 ft/sec. The tank recoils with a velocity of
 - (a) 0.1 ft/sec
- (b) 0.2 ft/sec
- (c) 0.4 ft/sec
- (d) 0.8 ft/sec
- 10. A bomb of 12 kg explodes into two pieces of masses 4 kg and 8 kg. The velocity of 8kg mass is 6 m/sec. The kinetic energy of the other mass is
 - (a) 48 *J*
- (b) 32 J
- (c) 24 J
- (d) 288 J
- 11. A rifle bullet loses 1/20th of its velocity in passing through a plank. The least number of such planks required just to stop the bullet is
 - (a) 5

(b) 10

- (c) 11
- (d) 20
- 12. A body of mass 2 kg is thrown up vertically with K.E. of 490 joules. If the acceleration due to gravity is $9.8m/s^2$, then the height at which the K.E. of the body becomes half its original value is given by
 - (a) 50 m
- (b) 12.5 *m*
- (c) 25 m
- (d) 10 m
- Two masses of 1 gm and 4 gm are moving with equal kinetic energies.The ratio of the magnitudes of their linear momenta is
 - (a) 4 : 1
- (b) $\sqrt{2}$: 1
- (c) 1:2
- (d) 1 : 16
- **14.** If the *K.E.* of a body is increased by 300%, its momentum will increase by
 - (a) 100%
- (b) 150%
- (c) $\sqrt{300}\%$
- (d) 175%
- **15.** A light and a heavy body have equal kinetic energy. Which one has a greater momentum?
 - (a) The light body
 - (b) The heavy body
 - (c) Both have equal momentum

IIT-JEE PHYSICS

- (d) It is not possible to say anything without additional information
- 16. If the linear momentum is increased by 50%, the kinetic energy will increase by
 - (a) 50%
- (b) 100%
- (c) 125%
- (d) 25%
- at 2 meter per second in a straight line. At a certain instant, the body splits into two equal parts due to internal explosion which releases 16 joules of energy. Neither part leaves the original line of motion finally
 - (a) Both parts continue to move in the same direction as that of the original body
 - (b) One part comes to rest and the other moves in the same direction as that of the original body
 - (c) One part comes to rest and the other moves in the direction opposite to that of the original body
 - (d) One part moves in the same direction and the other in the direction opposite to that of the original body

- **18.** If the K.E. of a particle is doubled, then its momentum will]
 - (a) Remain unchanged
 - (b) Be doubled
 - (c) Be quadrupled
 - (d) Increase $\sqrt{2}$ times
- 19. If the stone is thrown up vertically and return to ground, its potential energy is maximum
 - (a) During the upward journey
 - (b) At the maximum height
 - (c) During the return journey
 - (d) At the bottom
- **20.** A body of mass 2 kg is projected vertically upwards with a velocity of $2m sec^{-1}$. The K.E. of the body just before striking the ground is
 - (a) 2 J
- (b) 1 J
- (c) 4 J
- (d) 8 J
- **21.** The energy stored in wound watch spring is
 - (a) K.E.
 - (b) P.E.
 - (c) Heat energy
 - (d) Chemical energy

- **22.** Two bodies of different masses m_1 and m_2 have equal momenta. Their kinetic energies E_1 and E_2 are in the ratio
 - (a) $\sqrt{m_1}$: $\sqrt{m_2}$
- (b) m_1 : m_2
- (c) m_2 : m_1
- (d) m_1^2 : m_2^2
- 23. A car travelling at a speed of 30 km/hour is brought to a halt in 8 m by applying brakes. If the same car is travelling at 60 km/hour, it can be brought to a halt with the same braking force in
 - (a) 8 m
- (b) 16 m
- (c) 24 m
- (d) 32 m
- 24. Tripling the speed of the motor car multiplies the distance needed for stopping it by
 - (a) 3
 - (b) 6
 - (c) 9
 - (d) Some other number
- **25.** If the kinetic energy of a body increases by 0.1%, the percent increase of its momentum will be
 - (a) 0.05%
- (b) 0.1%
- (c) 1.0%
- (d) 10%

- **26.** If velocity of a body is twice of previous velocity, then kinetic energy will become
 - (a) 2 times
- (b) $\frac{1}{2}$ times
- (c) 4 times
- (d) 1 times
- 27. Two bodies *A* and *B* having masses in the ratio of 3:1 possess the same kinetic energy. The ratio of their linear momenta is then
 - (a) 3:1
- (b) 9:1
- (c) 1:1
- (d) $\sqrt{3}$: 1
- **28.** In which case does the potential energy decrease
 - (a) On compressing a spring
 - (b) On stretching a spring
 - (c) On moving a body against gravitational force
 - (d) On the rising of an air bubble in water
- **29.** A sphere of mass *m*, moving with velocity *V*, enters a hanging bag of sand and stops. If the mass of the bag is *M* and it is raised by height *h*, then the velocity of the sphere was
 - (a) $\frac{M+m}{m}\sqrt{2gh}$
- (b) $\frac{M}{m}\sqrt{2gh}$

IIT-JEE PHYSICS

- (c) $\frac{m}{M+m}\sqrt{2gh}$
- (d) $\frac{m}{M}\sqrt{2gh}$
- **30.** Two bodies of masses m and 2m have same momentum. Their respective kinetic energies E_1 and E_2 are in the ratio
 - (a) 1:2
- (b) 2:1
- (c) $1:\sqrt{2}$
- (d) 1:4

