Attempted teleoperation of a robotic hand using optical sensing and haptic feedback

Spring 2023

ME 571: Medical Robotics

Group 1: Armaan Vasowalla, Celina Maldonado, Odin Francis, Liam Thirtyacre, Advaith Somula

SIGNIFICANCE

• Benefits of robot assisted minimally invasive surgery

- DaVinci robot
 - Controls- Joystick like controller
 - Haptic feedback- None currently

 Goals: A teleoperated robot that accurately mimics the motion of the index and middle fingers with fingertip haptic force feedback, without limiting the operators free-hand movement

INNOVATION

Teleoperated Robotics

Optical Sensing

Pneumatic Haptic Feedback

APPROACH

Control Method- Optical waveguide sensor

• Sensing- Force Sensor

• Feedback Method- Fingertip pressure feedback

• End Effector- Robotic fingers

Shortcomings

Failure of the Optical Waveguide Sensor:

Limitations of the Arduino

Limitations of the power supplies

Limitations of the photodiode

Secondary Solution

Ultrasonic Distance Sensing

Control by hovering hand

Limited sensitivity

• Difficult to achieve high precision

Demo- Control Method

DEMO- Haptic Feedback

Demo- Finding Equilibrium

FUTURE DEVELOPMENTS

Assuming a return to optical sensor...

Add a thumb for pinching and grasping movements

• Scale down the robotic grasper

• Separate force sensing/pressure for each finger

Thank you!