TRIGONOMETRY

Chapter 12 Session 01

Reducción al primer cuadrante II

◎1

GPS

MOTIVATING STRATEGY

Sistema de posicionamiento global (GPS)

El Global Positioning System (GPS) o sistema de posicionamiento global (más conocido con las siglas GPS, aunque su nombre correcto es NAVSTAR-GPS) es un sistema global de navegación por satélite (GNSS) que permite determinar en todo el mundo la posición de un objeto, una persona, un vehículo o una nave, con una precisión hasta de centímetros, usando GPS diferencial, aunque habitual son unos pocos metros.

Aunque su invención se atribuye a los gobiernos francés y belga, el sistema fue desarrollado e instalado, y actualmente es operado por el Departamento de Defensa de los Estados Unidos.

Para ángulos mayores a una vuelta:

Si $\theta > 360^\circ$ entonces $\theta = 360^\circ$. $k + \beta$, donde β es un ángulo menor a una vuelta y $k \in \mathbb{Z} - \{0\}$.

$$RT(\theta) = RT(360.^{\circ}k + \beta)$$

$$\Rightarrow RT(\theta) = RT(\beta)$$

Para ángulos expresados en radianes:

Calcule sen 4020°

Resolución:

$$sen 4020^{\circ} = sen60^{\circ} = \frac{\sqrt{3}}{2}$$
 $4020^{\circ} [360^{\circ}]$
 3960°
 11

OBSERVACION:

Para eliminar el número de vueltas de un ángulo, lo dividimos entre 360° y solo usamos el residuo.

Recordar:

Efectúe: $E = tan1200^{\circ} + cot1590^{\circ}$

Resolución:

$$E = tan120^{\circ} + cot150^{\circ}$$

$$E = tan(180^{\circ} - 60^{\circ}) + cot(180^{\circ} - 30^{\circ})$$

$$E = (-\tan 60^{\circ}) + (-\cot 30^{\circ})$$

$$E = \left(-\sqrt{3}\right) + \left(-\sqrt{3}\right)$$

IIC

$$\therefore E = -2\sqrt{3}$$

Reduzca:

a. $sen(42\pi + x)$ b. $cos(35\pi - x)$

b.
$$cos(35\pi - x) = cos(\pi - x) = -cos x$$

IMPAR

IIC

OBSERVACION:

Los valores de 2π , 4π , 6π , 8π , 10π , 12π , ... representan vueltas y se eliminan.

Reduzca:

a.
$$sen(47\frac{\pi}{2} - x)$$
 b. $tan(53\frac{\pi}{2} + x)$

Resolución:

a.
$$sen\left(47\frac{\pi}{2} - x\right) = sen\left(\frac{3\pi}{2} - x\right) = \frac{-cosx}{47\left\lfloor\frac{4}{3}\right\rfloor}$$
b. $tan\left(53\frac{\pi}{2} + x\right) = tan\left(\frac{1\pi}{2} + x\right) = \frac{-\cot x}{1}$

IIC

Simplifique
$$M = \frac{sen(61\frac{\pi}{2} + X)}{cos(31\pi - x)} + 3$$

Resolución:

$$= \operatorname{sen} \left(61\frac{\pi}{2} + x\right) = \operatorname{sen} \left(\frac{\pi}{2} + x\right) = \cos x$$

$$61 \left\lfloor \frac{4}{2} \right\rfloor$$

$$60 \quad 15$$

$$\frac{\pi}{2} = 90^{\circ}$$

Reemplazando:

$$M = \frac{\cos x}{-\cos x} + 3$$

$$M = -1 + 3$$

$$\therefore M=2$$

Simplifique:
$$A = \frac{4 \sec(12\pi - x) + \csc(\frac{15\pi}{2} + x)}{\sec(14\pi - x)}$$

Resolución:

•
$$sec(12\pi - x) = sec(2\pi - x) = sec x$$

PAR

IVC

•
$$csc\left(\frac{15\pi}{2} + x\right) = csc\left(\frac{3\pi}{2} + x\right) = -secx$$

$$\begin{array}{c|c} 15 & 4 \\ 12 & 3 \end{array}$$

$$15 & 4 \\ \hline 12 & 3 \end{array}$$

$$15 & 4 \\ \hline 12 & 3 \end{array}$$

•
$$sec(14\pi - x) = sec(2\pi - x) = sec x$$

PAR

| IVC

Reemplazando:

$$A = \frac{4(secx) + (-secx)}{secx}$$

$$A = \frac{3secx}{secx}$$

$$\therefore A = 3$$

Si
$$x + y = 32\pi$$
, reduzca: $Q = \frac{tanx}{tany} + \frac{senx}{seny}$

$$Q = \frac{\tan x}{\tan (32\pi - x)} + \frac{\sin x}{\sin (32\pi - x)}$$

$$Q = \frac{tanx}{-tanx} + \frac{senx}{-senx}$$
IVC

$$\therefore Q = -2$$

Andrea tiene una memoria de USB en la que almacena música y fotos, la memoria tiene una capacidad 8Gb. El siguiente gráfico muestra la distribución actual de la memoria USB: donde: $A = 4tan1125^\circ$ y $B = \sqrt{3} \tan 960^\circ$ ¿Cuál será el espacio disponible en la memoria USB de Andrea?

Distribución de la memoria USB en Gb

- A: Carpeta de música
- B: Carpeta de fotos
- C: Espacio disponible

Resolución:

$$B = \sqrt{3} \left[\tan(180^\circ + 60^\circ) \right] = \sqrt{3} \left(\tan 60^\circ \right)$$

IIIC

$$B = \sqrt{3} \ (\sqrt{3}) = 3$$

Piden:
$$C = E_{total} - (A + B)$$

$$C = 8Gb - (4Gb + 3Gb)$$

$$\therefore C = 1Gb$$