Multiple Constraints and Non-regular Solution in Deep Declarative Network

Suikei Wang

A thesis submitted for the degree of Master of Machine Learning and Computer Vision The Australian National University

September 2020

© Suikei Wang 2020

Except where otherwise indicated, this thesis is my own	original work.
Suikei Wang	
3 September	2020

Acknowledgments

Who do you want to thank?

Abstract

Put your abstract here.

Contents

A	Acknowledgments vii								
A l	bstra	ct		ix					
1	Intr	oductio	on	1					
	1.1	Motiv	ration	1					
	1.2	Thesis	Outline	1					
	1.3	Contr	ibution	1					
I	Dee	ep Dec	larative Network: Multiple Constrained Declarative Nodes	3					
2	An	Overvi	ew of Optimization Methods	5					
	2.1		erical Optimization Methods	5					
		2.1.1	Gradient Descent	5					
		2.1.2	Newton and Quasi-Newton Methods	6					
		2.1.3	Conjugate Gradients	6					
		2.1.4	Lagrange Multipliers	6					
	2.2	Bi-lev	el Optimization	6					
		2.2.1	Linear Bilevel Programming	6					
		2.2.2	Nonlinear Bilevel Programming	6					
	2.3	Const	rained Optimization	6					
		2.3.1	Global Optimization	6					
		2.3.2	Local Optimization	6					
	2.4	Sumn	nary	6					
3	Dee	-	arative Network	7					
	3.1		ion	7					
	3.2		verview of Deep Declarative Network	7					
		3.2.1	Structure	7					
		3.2.2	Declarative Nodes	7					
	3.3		ing	7					
	3.4	_	propagation Through Declarative Nodes	7					
		3.4.1	Unconstrained	7					
		3.4.2	Equality Constrained	7					
		3.4.3	Inequatlity Constrained	7					
	35	Eyper	iments	7					

xii Contents

		3.5.1	Platform	7
		3.5.2		
		3.5.3	Experimental Results	7
		3.5.4	Analysis: Is the Gradient Always Converged?	7
	3.6	Sumn	nary	7
4			e of Declarative Nodes	9
	4.1	Sumn	nary	9
		ution o	δ	11 13
			ware platform	
6	Res	ults		15
	6.1	Direct	t Cost	15
	6.2	Sumn	nary	
7		Sumn clusion		

List of Figures

5.1	Hello world in Java and C	14
6.1	The cost of zero initialization	16

List of Tables

5.1	Processors used in our evaluation.											1	3

Introduction

1.1 Motivation

Deep learning models composed with multiple parametrized processing layers can learn different levels of features and representations of data through the directed graph structure.

Put your introduction here. You could use \fix{ABCDEFG.} to leave your comments, see the box at the left side.

You have to rewrite your thesis!!!

1.2 Thesis Outline

How many chapters you have? You may have Chapter 2, Chapter ??, Chapter ??, Chapter 6, and Chapter 7.

1.3 Contribution

Introduction

Part I

Deep Declarative Network: Multiple Constrained Declarative Nodes

An Overview of Optimization Methods

At the begging of each chapter, please introduce the motivation and high-level picture of the chapter. You also have to introduce sections in the chapter.

Section 2.1 yyyy.

2.1 Numerical Optimization Methods

2.1.1 Gradient Descent

You may reference other papers. For example: Generational garbage collection [Lieberman and Hewitt, 1983; Moon, 1984; Ungar, 1984] is perhaps the single most important advance in garbage collection since the first collectors were developed in the early 1960s. (doi: "doi" should just be the doi part, not the full URL, and it will be made to link to dx.doi.org and resolve. shortname: gives an optional short name for a conference like PLDI '08.)

- 2.1.2 Newton and Quasi-Newton Methods
- 2.1.3 Conjugate Gradients
- 2.1.4 Lagrange Multipliers
- 2.2 Bi-level Optimization
- 2.2.1 Linear Bilevel Programming
- 2.2.2 Nonlinear Bilevel Programming
- 2.3 Constrained Optimization
- 2.3.1 Global Optimization
- 2.3.2 Local Optimization

2.4 Summary

Summary what you discussed in this chapter, and mention the story in next chapter. Readers should roughly understand what your thesis takes about by only reading words at the beginning and the end (Summary) of each chapter.

Deep Declarative Network

Same as the last chapter, introduce the motivation and the high-level picture to readers, and introduce the sections in this chapter.

- 3.1 Notation
- 3.2 An Overview of Deep Declarative Network
- 3.2.1 Structure
- 3.2.2 Declarative Nodes
- 3.3 Learning
- 3.4 Back-propagation Through Declarative Nodes
- 3.4.1 Unconstrained
- 3.4.2 Equality Constrained
- 3.4.3 Inequatlity Constrained
- 3.5 Experiments
- 3.5.1 Platform
- 3.5.2 Implementation Details
- 3.5.3 Experimental Results
- 3.5.4 Analysis: Is the Gradient Always Converged?
- 3.6 Summary

Same as the last chapter, summary what you discussed in this chapter and be the bridge to next chapter. s

The Future of Declarative Nodes

Same as the last chapter, introduce the motivation and the high-level picture to readers, and introduce the sections in this chapter.

4.1 Summary

Same as the last chapter, summary what you discussed in this chapter and be the bridge to next chapter.

Part II

Deep Declarative Network: Non-regular Solution

Solution of Deep Declarative Nodes

5.1 Software platform

5.2 Hardware platform

Table 5.1 shows how to include tables and Figure 5.1 shows how to include codes.

Architecture	Pentium 4	Atom D510	i7-2600
Model	P4D 820	Atom D510	Core i7-2600
Technology	$90\mathrm{nm}$	$45\mathrm{nm}$	$32\mathrm{nm}$
Clock	$2.8\mathrm{GHz}$	$1.66\mathrm{GHz}$	$3.4\mathrm{GHz}$
$Cores \times SMT$	2×2	2×2	4×2
L2 Cache	$1MB \times 2$	$512KB \times 2$	$256 \text{KB} \times 4$
L3 Cache	none	none	8MB
Memory	1GB DDR2-400	2GB DDR2-800	4GB DDR3-1066

Table 5.1: Processors used in our evaluation.

```
int main(void)
{
    printf("Hello_World\n");
    return 0;
}

void main(String[] args)
{
    System.out.println("Hello_World");
}

(b)
```

Figure 5.1: Hello world in Java and C.

Results

6.1 Direct Cost

Here is the example to show how to include a figure. Figure 6.1 includes two subfigures (Figure 6.1(a), and Figure 6.1(b));

6.2 Summary

16 Results

Figure 6.1: The cost of zero initialization

Conclusion

Summary your thesis and discuss what you are going to do in the future in Section 7.1.

7.1 Future Work

Good luck.

18 Conclusion

Bibliography

- LIEBERMAN, H. AND HEWITT, C., 1983. A real-time garbage collector based on the lifetimes of objects. *Communications of the ACM*, 26, 6 (Jun. 1983), 419–429. doi: 10.1145/358141.358147. (cited on page 5)
- Moon, D. A., 1984. Garbage collection in a large LISP system. In LFP '84: *Proceedings of the 1984 ACM Symposium on LISP and Functional Programming* (Austin, Texas, USA, Aug. 1984), 235–246. ACM, New York, New York, USA. doi:10.1145/800055. 802040. (cited on page 5)
- UNGAR, D., 1984. Generation scavenging: A non-disruptive high performance storage reclamation algorithm. In SDE 1: *Proceedings of the 1st ACM SIGSOFT/SIG-PLAN Software Engineering Symposium on Practical Software Development Environments* (Pittsburgh, Pennsylvania, USA, Apr. 1984), 157–167. ACM, New York, New York, USA. doi:10.1145/800020.808261. (cited on page 5)