Calcolo differenziale

November 16, 2022

Contents

0.1	Equaz	zioni e disequazioni	
	0.1.1	La retta	
	0.1.2	Polinomi di secondo grado: le parabole 4	
	0.1.3	Modulo	
0.2	Insiemi numerici		
	0.2.1	Applicazioni	
	0.2.2	Definizione di $\mathbf N$ tramite gli insiemi 6	
0.3	Coeffic	ciente binomiale	
0.4	Funzio	oni	
	0.4.1	Definizione	
	0.4.2	Immagine	
	0.4.3	Grafico di una funzione	
	0.4.4	Proprietà delle funzioni	
	0.4.5	Funzioni composte	
	0.4.6	Condizioni di esistenza della funzione inversa 10	
	0.4.7	Operazioni sui grafici	
	0.4.8	Funzioni continue	
	0.4.9	Funzioni monotone	
	0.4.10	Teorema di invertibilità della funzione continua 14	
0.5	Limiti	di successioni	
	0.5.1	Disuguaglianza di bernoulli	
	0.5.2	Limiti convergenti	
	0.5.3	Limiti divergenti	
	0.5.4	Monotonia e limiti	
	0.5.5	Esempi di successioni limitate	
	0.5.6	Algebra dei limiti	
	0.5.7	Teorema di permanenza del segno	
	0.5.8	Teorema dei carabinieri	
	0.5.9	Stime asintotiche	
0.6	Limiti	di funzioni	
	0.6.1	Definizione tramite limiti di successioni	
	0.6.2	Limite da destra e da sinistra	
	0.6.3	Criterio d'esistenza del limite	
	0.6.4	Teorema di unicità del limite	
	0.6.5	Limite per eccesso o per difetto	

	0.6.6	Asintoti	ľ
	0.6.7	Continuità di una funzione tramite limite	18
	0.6.8	Punti di discontinuità	18
0.7	Limiti	notevoli	19

0.1 Equazioni e disequazioni

0.1.1 La retta

La retta è **lineare** in x e y.

Se m > 0 è crescente, se m < 0 è decrescente. Forma esplicita y = mx + q.

Questa forma descrive tutte le rette tranne quella **verticale**: y=c

Forma implicita ax + by + c = 0

$$m = tg\Theta = \frac{\Delta y}{\Delta x}$$
$$y = m(x - x_0) + y_0 \iff q = y_0 - mx_0$$
$$ax \ge -b \implies$$

- se a > 0 : $x \ge \frac{-b}{a}$
- se $a < 0 : x \le \frac{-b}{a}$

0.1.2 Polinomi di secondo grado: le parabole

$$P_2(x) = ax^2 + bx + c, a \neq 0$$

 $x^2 = c \Longrightarrow$

- se $c > 0 : x \pm \sqrt[2]{c}$
- se c = 0 : x = 0
- se $c < 0 : \nexists x \in IR$

Dimostrazione della correttezza della formula risolutiva per le equazioni di secondo grado

$$ax^{2} + bx + c = 0, a \neq 0$$

$$a * \left[x^{2} + \frac{bx}{a} + \frac{c}{a}\right] = 0$$

$$x^{2} + \frac{bx}{a} + \frac{b^{2}}{4a^{2}} - \frac{b^{2}}{4a^{2}} + \frac{c}{a} = 0$$

$$\left[x + \frac{b}{2a}\right]^{2} - \frac{b^{2}}{4a^{2}} + \frac{c}{a} = 0$$

$$\left[x + \frac{b}{2a}\right]^{2} = \frac{b^{2} - 4ac}{4a^{2}}$$

$$x + \frac{b}{2a} = \pm \sqrt[2]{\frac{b^{2} - 4ac}{4a^{2}}}$$

$$x = -\frac{b}{2a} \pm \sqrt[2]{\frac{b^{2} - 4ac}{4a^{2}}}$$

$$x = \frac{-b \pm \sqrt[2]{b^{2} - 4ac}}{2a}$$

In questa situazione abbiamo 3 opzioni:

- $b^2 4ac > 0 \iff 2$ soluzioni
- $b^2 4ac = 0 \iff 1$ soluzione
- $b^2 4ac < 0 \iff 0$ soluzioni

0.1.3 Modulo

$$|x| = \sqrt[2]{x^2} =$$

- se x > 0 : x
- se x < 0 : -x

Geometricamente, il modulo è la distanza di x dal punto ${\bf 0}$ sull'asse dei numeri IR.

$$|x| \le a \Longleftrightarrow [-a, a]$$

$$|x| \ge a \Longleftrightarrow (-\infty, -a] \cup [a, +\infty)$$

$$-|x| \le x \le |x|$$

Disuguaglianza triangolare: $|x + y| \le |x| + |y|$

$$|x * y| = |x| * |y|$$

0.2 Insiemi numerici

E' detta insieme una collezione di elementi per i quali è sempre possibile rispondere alla domanda $x \in A$.

0.2.1 Applicazioni

Tramite un'applicazione, associo gli elementi dell'insieme A agli elementi dell'insieme B, detto **immagine** di A.

Un'applicazione è:

- Iniettiva: $\forall x_1, x_2 \in A \text{ t.c. } x_1 \neq x_2 : x_1 \to b_1 \neq x_2 \to b_2$
- Suriettiva: $\forall b \in B : \exists a \in A \text{ t.c. } a \to b$
- Biunivoca: Suriettiva \(\) Iniettiva

Se esiste un'applicazione suriettiva ed iniettiva fra A e B questi sono detti in **biezione**.

0.2.2 Definizione di N tramite gli insiemi

A questo punto possiamo definire i numeri naturali positivi partendo dagli insiemi.

- 0: classe degli insiemi in biezione con $A = \emptyset$
- 1: classe degli insiemi in biezione con $A = \{\emptyset\}$
- 2: Classe degli insiemi in biezione con $A = \{\emptyset, \{\emptyset\}\}\$
- ...: ...

Possiamo accorgerci quindi come l'insieme ${\bf N}$ definisce la ${\bf cardinalità}$ degli insiemi.

Da qui possiamo continuare:

- N+: poichè N definisce la cardinalità degli insiemi, la somma di due numeri \in N è uguale alla cardinalità di $(A \cup B) \forall A, B$ t.c. $A \cap B = \emptyset$.
- -1: quel numero t.c. -1+1=0. Da qui definiamo **Z**.
- $\frac{n}{m}$: $a_1, a_2, ..., a_n \in \mathbf{Z}, 0 \le a_2, ..., a_n \le 9 : a_1 + \sum_{i=1}^n \frac{a^i}{10^i}$
- **Q**: $\frac{n}{m}$, $\frac{n_1}{m_1} \in \mathbf{Z}$, m, $m_1 \neq 0$: $(n, m) = (n_1, m_1) \iff (n * m_1) = (n_1 * m)$. La struttura **periodica** è valida se si conviene che $a, \overline{9} = a + 1$.
- Q+: $\frac{n}{m} + \frac{n_1}{m_1} = \frac{n*m_1+m*n_1}{m*m_1}$
- $\mathbf{Q}*: \frac{n}{m}*\frac{n_1}{m_1} = \frac{n*n_1}{m*m_1}$
- Q inverso: $\frac{n}{m} * \frac{n}{m}^{-1} = 1 \Longrightarrow \frac{n}{m}^{-1} = \frac{m}{n}, n \neq 0$

• R: Tutti i numeri scritti in forma decimale anche con **infinite** cifre **non periodiche** dopo la virgola

Possiamo infine definire le n-tuple di numeri (a,b,...) come **prodotto cartesiano** degli insiemi $A*B*...=\{(a,b,...)\forall a\in A \land \forall b\in B \land ...\}$

$$N\subset Z\subset Q\subset R$$

0.3 Coefficiente binomiale

$$q \in R, q \neq 1 \Longrightarrow \Sigma_{k=0}^n q^k = \frac{1-q^{n+1}}{1-q} \Longleftrightarrow$$

$$(1-q) * \Sigma_{k=0}^n q^k = 1-q^{n+1} \Longleftrightarrow$$

$$\Sigma_{k=0}^n q^k - q * \Sigma_{k=0}^n q^k = 1-q^{n+1} \Longleftrightarrow$$

$$\Sigma_{k=0}^n q^k - \Sigma_{k=1}^{n+1} q^k = 1-q^{n+1} \Longleftrightarrow$$

$$(\Sigma_{k=1}^n q^k + 1) - (\Sigma_{k=1}^n q^k + q^{n+1}) = 1-q^{n+1} \Longleftrightarrow$$

$$\Sigma_{k=1}^n q^k - \Sigma_{k=1}^n q^k + 1-q^{n+1} = 1-q^{n+1} \Longleftrightarrow$$

$$\Sigma_{k=1}^n q^k = \Sigma_{k=1}^n q^k$$

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} \iff \frac{n!}{k! (n-k)!} = \frac{(n-1)!}{(k-1)! (n-1-(k-1))!} + \frac{(n-1)!}{k! (n-1-k)!} \iff \frac{n!}{k! (n-k)!} = \frac{(n-1)!}{(k-1)! (n-k) (n-k-1)!} + \frac{(n-1)!}{k (k-1)! (n-1-k)!} \iff \frac{n!}{k! (n-k)!} = \frac{k (n-1)! + (n-k) (n-1)!}{k! (n-k)!} \iff \frac{n!}{k! (n-k)!} = \frac{(n-1)! (k+n-k)!}{k! (n-k)!} \iff \frac{n!}{k! (n-k)!} = \frac{n * (n-1)!}{k! (n-k)!} \iff \frac{n!}{k! (n-k)!} = \frac{n * (n-1)!}{k! (n-k)!} \iff \frac{n!}{k! (n-k)!} = \frac{n!}{k! (n-k)!}$$

$$(a+b)^n = \sum_{k=0}^n \left(\binom{n}{k} * a^{n-k} * b^k \right)$$

Dimostriamolo per induzione usando il seguente schema.

- 1. P(n) è vera con n=1
- 2. Supponiamo che P(n) vera $\Longrightarrow P(n+1)$ vera

Procediamo al primo passo:

$$(a+b)^{1} = \sum_{k=0}^{1} \left(\binom{1}{k} * a^{1-k} * b^{k} \right) \iff$$

$$a+b = \binom{1}{0} * a^{1} * b^{0} + \binom{1}{1} * a^{1-1} * b^{1} \iff$$

$$a+b = 1 * a * 1 + 1 * 1 * b = a+b$$

Abbiamo dimostrato che P(1) è vera, procediamo quindi col secondo passaggio.

$$(a+b)^{n+1} = \sum_{k=0}^{n+1} \left(\binom{n+1}{k} * a^{n+1-k} * b^k \right)$$

$$(a+b) (a+b)^n =$$

$$(a+b) * \sum_{k=0}^n \left(\binom{n}{k} * a^{n-k} * b^k \right) =$$

$$\sum_{k=0}^n \left(\binom{n}{k} * a^{n+1-k} * b^k \right) + \sum_{k=0}^n \left(\binom{n}{k} * a^{n-k} * b^{k+1} \right) =$$

$$\sum_{k=0}^n \left(\binom{n}{k} * a^{n+1-k} * b^k \right) + \sum_{k=1}^{n+1} \left(\binom{n}{k-1} * a^{n-k+1} * b^k \right) =$$

$$\binom{n}{0} * a^{n+1} * b^0 + \sum_{k=1}^n \left(\binom{n}{k} * a^{n+1-k} * b^k \right) + \sum_{k=1}^n \left(\binom{n}{k-1} * a^{n-k+1} * b^k \right) + \binom{n}{n} * a^0 * b^{n+1} =$$

$$a^{n+1} + \sum_{k=1}^n \left[\binom{n}{k} + \binom{n}{k-1} \right) * a^{n+1-k} * b^k \right] b^{n+1} =$$

$$a^{n+1} + \sum_{k=1}^n \left(\binom{n+1}{k} * a^{n+1-k} * b^k \right) + b^{n+1} =$$

$$\sum_{k=0}^{n+1} \left(\binom{n+1}{k} * a^{n+1-k} * b^k \right)$$

0.4 Funzioni

0.4.1 Definizione

Dati due insiemi A e B, una funzione con **dominio** A e **codominio** B è una qualunque legge che **ad ogni** elemento di A associa **uno ed uno solo** elemento di B.

Può anche essere ad **n variabili** ed avere quindi n insiemi di partenza

$$f: A \longrightarrow B \text{ t.c. } \forall x \in A \longrightarrow f(x) \in B$$

Le funzioni reali a variabile reale sono le funzioni

$$f: A \subset \mathbf{R} \longrightarrow \mathbf{R}$$

0.4.2 Immagine

$$\{f(x)\forall x\in A\}\subset B$$

0.4.3 Grafico di una funzione

Definizione

L'insieme dei punti ${\bf R}^2$ definiti da

$$g_{\mathbf{R}} = \{(x, f(x)) \forall x \in A\}$$

Rappresentazione sul piano

Poichè ${\bf R}^2$ è rappresentabile sul piano cartesiano anche $g_{\bf R}$ lo è

Proprietà fondamentale della funzione espressa col grafico

$$\forall x_0 \in A \exists ! y_0 \text{ t.c. } x = x_0 \cap g_{\mathbf{R}} = (x_0, f(x_0))$$

0.4.4 Proprietà delle funzioni

Una funzione è detta

- pari: $\forall x \in A : f(x) = f(-x)$
- dispari: $\forall x \in A : -f(x) = f(-x)$
- limitata superiormente: $\exists M \in \mathbf{R} \text{ t.c. } M \geq f(x) \forall x \in A$
- limitata inferiormente: $\exists m \in \mathbf{R} \text{ t.c. } m \leq f(x) \forall x \in A$
- limitata: f(x) è limitata superiormente e inferiormente
- monotona crescente in A: $\forall x_1, x_2 \in A \text{ t.c. } x_1 \leq x_2 : f(x_1) \leq f(x_2)$
- monotona decrescente in A: $\forall x_1, x_2 \in A \text{ t.c. } x_1 \leq x_2 : f(x_1) \geq f(x_2)$
- periodica di periodo T: $\forall x \in A, x + kT \in A, k \in \mathbf{Z} : f(x + kT) = f(x)$
- successione: il dominio è \mathbf{N} , $f(n) = a_n$

0.4.5 Funzioni composte

- $g(f(x)) = g \circ f(x)$
- funzione neutra o identità: f(x) = x = I(x)
- funzione inversa: $f \circ f^{-1}(x) = f^{-1} \circ f(x) = I(x)$
- $f: \operatorname{Img}_{f^{-1}} \longrightarrow \operatorname{Def}_{f^{-1}}$

- f^{-1} : $\operatorname{Img}_f \longrightarrow \operatorname{Def}_f$
- $f \circ f^{-1}$: $\operatorname{Img}_f \longrightarrow \operatorname{Def}_f$
- $f^{-1} \circ f$: $\operatorname{Img}_{f^{-1}} \longrightarrow \operatorname{Def}_{f^{-1}}$

0.4.6 Condizioni di esistenza della funzione inversa

- $\operatorname{Img}_f \subset Def_g$
- finiettiva: se, per assurdo, non lo fosse vorrebbe dire che $\exists x_1, x_2$ t.c. $x_1 \neq x_2, \ y_1 = f(x_1) = f(x_2)$ e quindi $f^{-1}(y)$ potrebbe essere sia x_1 che x_2 , e quindi f^{-1} non sarebbe una funzione

0.4.7 Operazioni sui grafici

- f(x+k): spostamento a sx
- f(x-k): spostamento a dx
- f(x) + k: spostamento in alto
- f(x) k: spostamento in basso
- -f(x): ribaltamento su asse y
- (f(-x)): ribaltamento su asse x
- |f(x)|: ribaltamento su asse y degli y < 0
- f(|x|): Ribaltamento su asse x degli x < 0

0.4.8 Funzioni continue

Criterio di continuità

Riferirsi al capitolo presente nei limiti di funzioni

Teorema di esistenza degli zeri

$$f:[a,b]\longrightarrow \mathbf{R},\ f \text{ continua}$$

$$f(a)*f(b)<0\Longrightarrow \exists x_0\in(a,b)\ \text{t.c.}\ f(x_0)=0$$

Dimostrazione

Ipotizziamo $f(a) < 0 \land f(b) > 0$.

Usiamo l'algoritmo di biezione per arrivare a x_0 t.c. $f(x_0) = 0$.

- 1. $c = \frac{a+b}{2}$
- 2. 3 casi:
 - (a) $f(c) > 0 \Longrightarrow x_0 \in [a, c]$
 - (b) $f(c) = 0 \Longrightarrow x_0 = c$. Abbiamo dimostrato che esiste x_0
 - (c) $f(c) > 0 \Longrightarrow x_0 \in [c, b]$
- 3. Applico ricorsivamente l'algoritmo sul nuovo intervallo ottenuto al passo $2\,$

Dobbiamo quindi dimostrare che, eventualmente, questo procedimento arrivi al caso 2 del punto 2.

Prendiamo ora la successione di tutti gli estremi sinistri costruiti fino al punto n degli intervalli (tutte le a) e chiamiamola $\{a_n\}_n$ e la successione di tutti gli estremi destri (tutte le b) e chiamiamola $\{b_n\}_n$.

Per come lo costruiamo, sappiamo che:

- $a_n > a_{n-1}, a_n < b \forall n$
- $b_n < b_{n-1}, b_n > a \forall n$
- $\lim_{n\to\infty} a_n = \sup_a$, $\lim_{n\to\infty} b_n = \inf_b$, $\inf_b \ge \sup_a$
- $b_n a_n = \frac{b_{n-1} a_{n-1}}{2}$

L'ultimo punto in particolare ci permette di concludere che:

$$\lim_{n \to \infty} b_n - a_n = \frac{b - a}{2^n} = 0 \Longrightarrow \lim_{n \to \infty} b_n = \lim_{n \to \infty} a_n$$
$$\Longrightarrow \sup_a = \inf_b$$

Quindi, posto $c = sup_a = inf_b$, volendo dimostrare che f(c) = 0 per l'algoritmo di biezione, partiamo dalle cose che sappiamo:

$$f(a_n) * f(b_n) \le 0$$

$$\lim_{n \to \infty} f(a_n) * f(b_n) = f(c)^2 \ge 0 \text{ in quanto quadrato}$$

$$\implies f(c)^2 \ge 0 \land f(c)^2 \le 0 \Longrightarrow f(c)^2 = 0$$

$$\implies f(c) = 0 \text{ c.v.d.}$$

I Corollario

$$f:[a,b]\longrightarrow\mathbf{R},\ f\ \text{continua}$$

$$f\left(a\right)\neq f\left(b\right)\Longrightarrow\forall y\in\left[f\left(a\right),f\left(b\right)\right]\exists x_{0}\in\left[a,b\right]\ \text{t.c.}\ f\left(x_{0}\right)=y$$

II Corollario

$$f:[a,b] \longrightarrow \mathbf{R}, \ f$$
 continua e monotona $f(a)*f(b)<0 \Longrightarrow \exists !x_0 \in [a,b] \ \text{t.c.} \ f(x_0)=0$

Teorema di Weiestrass

$$f: [a, b], a \neq -\infty, b \neq +\infty, \longrightarrow \mathbf{R}, f \text{ continua}$$

 $\exists m, M \text{ di } f \text{ in } [a, b]$

Corollario

$$f:[a,b]\longrightarrow \mathbf{R},\ f\ \text{continua}$$

$$\forall y\in[m,M]\ \exists x_0\in[a,b]\ \text{t.c.}\ f\ (x_0)=y$$

Teorema del valore intermedio avanzato

$$f: [a, b] \longrightarrow \mathbf{R}, f$$
 continua
 $\Longrightarrow f([a, b]) = [m, M]$

Algebra delle funzioni continue

$$f, g: [a, b], x_0 \in [a, b], f, g \text{ continue } \Longrightarrow$$

- $f(x_0) \pm g(x_0)$ continua
- $f(x_0) * g(x_0)$ continua
- $f(x_0)/g(x_0)$ continua purchè $g(x_0) \neq 0$

Teorema del cambio di variabile

$$f, g, f \circ g$$
 ben definita per $x \to x_0$

$$\lim_{x \to x_0} g(x) = t_0, \exists lim_{t \to t_0} f(t) = l$$

Inoltre, nel caso f sia non continua in t_0 o $t_0 = \pm \infty$, $g(x_0) \neq t_0$

$$\Longrightarrow \lim_{x\to x_{0}}f\left(g\left(x\right)\right)=\lim_{t\to t_{0}}f\left(t\right)$$

Continuità della funzione composta

$$g:\left[a,b\right],f:\left[c,d\right],x_{0}\in\left[a,b\right],g\left(x_{0}\right)\in\left[c,d\right]$$

$$f,g\text{ continue }\Longrightarrow f\left(g\left(x_{0}\right)\right):\left[a,b\right]\text{ e continua in }x_{0}$$

Teorema di esistenza della radice i-esima

$$\forall y \in \mathbf{R}, n \in \mathbf{N}, \text{ t.c. } y > 0, n \ge 1$$

 $\Longrightarrow \exists ! x \in \mathbf{R}, x > 0 \text{ t.c. } x^n = y$

Dimostrazione

$$g\left(x\right)=x, \text{ continua }, f\left(x\right)=x^{n}=\Pi_{1}^{n}g\left(x\right)\Longrightarrow, f\left(x\right) \text{ continua}$$

$$\begin{cases} 1^{n}\leq y\leq y^{n} & y\geq 1, \ x_{1}=1, x_{2}=y\\ y^{n}\leq y\leq 1^{n} & y<1, \ x_{1}=y, x_{2}=1 \end{cases} f\left(x\right) \text{ monotona } \in [x_{1},x_{2}]\Longrightarrow x_{1}^{n}=m, x_{2}^{n}=M$$

$$\Longrightarrow \text{ per il teorema dei valori intermedi } \exists x_{0}\in [x_{1},x_{2}] \text{ t.c. } f\left(x_{0}\right)=x_{0}^{n}=y$$

0.4.9 Funzioni monotone

Teorema di monotonia

$$f:(a,b), f$$
 monotona

 $\implies \forall c \in (a,b) \exists$ finiti limite destro e sinistro per $x \to c$ e limite sinistro/destrp $perx \to a/b$

Dimostrazione

S = supf(x); $\forall x \in (a, c), S$ finito per proprietà dell'estremo superiore in quanto f(c) maggiorante Dobbiamo provare che

$$\lim_{x \to c^{-}} f\left(x\right) = S$$

ovvero che, presa la successione $x_n \in (a, c)$ t.c. $x_n \to c$,

$$\forall \epsilon > 0, S - \epsilon < f\left(x_n\right) < S + \epsilon$$

$$S > f\left(x\right) \forall x \in (a, c) \Longrightarrow S + \epsilon > f\left(x_n\right) \forall x_n$$

$$S > S - \epsilon \Longrightarrow \exists x_0 \in (a, c) \text{ t.c. } f\left(x_0\right) > S - \epsilon$$

$$\Longrightarrow f\left(x\right) \geq S - \epsilon \forall x \in (x_0, c) \Longrightarrow f\left(x_n\right) \geq S - \epsilon \text{ definitivamente}$$

$$\Longrightarrow \lim_{x \to c^-} f\left(x\right) = S$$

Analogamente possiamo fare con $\lim_{x\to c^{+}} f(x)$.

Per i limiti agli estremi possiamo usare lo stesso procedimento, ricordando però

che S, s non sono necessariamente finiti in quanto f(b/a) non sono maggioranti/minoranti in quanto la funzione non è definita in a, b. In questi casi, possiamo procedere ragionando che

$$\forall K > 0 \exists x_0 \in (a, b) \text{ t.c. } f(x_0) \ge 0$$

$$\Longrightarrow f(x) > K \forall x \in (x_0, b)$$

Presa una successione $x_n \to b, x_n \in (x_0, b)$

$$\implies f(x_n) > K$$
 definitivamente

$$\Longrightarrow \lim_{x \to b^{-}} f(x) = \infty$$

Nel caso la funzione sia decrescente anzichè crescente cambiare in modo appropriato.

Corollario

$$f:(a,b), f$$
 monotona

Se esistono dei punti di discontinuità in (a,b) questi sono necessariamente **punti** di salto

0.4.10 Teorema di invertibilità della funzione continua

$$f:[a,b], f$$
 continua

 $\Longrightarrow \exists f^{-1}: [a,b], f^{-1}$ strettamente monotona e continua $\iff f$ strettamente monotona

Dimostrazione

Dimostrazione prima parte

Ipotizziamo per assurdo che f non sia strettamente monotona. Vuol dire che

$$\exists x_0 < x_1 < x_2 \in [a, b] \text{ t.c. } f(x_0) < f(x_1) > f(x_2)$$

Per il teorema dei valori intermedi

$$\exists c \in (x_0, x_1) \text{ t.c. } f(c) = f(x_2) \land c \neq x_2$$

La funzione non è quindi invertibile

Dimostrazione seconda parte

Prendiamo f^{-1} che sappiamo essere monotona ed ipotizziamo non sia continua. Per il teorema di monotonia sappiamo che i suoi punti di discontinuità in f^{-1} sono punti di salto, e quindi l'immagine di f^{-1} non sarebbe un intervallo. Impossibile in quanto, essendo f definita in un intervallo, l'immagine di f^{-1} deve essere un intervallo

0.5 Limiti di successioni

0.5.1 Disuguaglianza di bernoulli

$$n \ge 0, x > -1, \iff (1+x)^n \ge 1 + nx$$

0.5.2 Limiti convergenti

Una successione è detta **convergente** a l, o $\lim_{x\to\infty} = l$ se

$$\forall \epsilon > 0, \exists N = N(\epsilon) \text{ t.c. } \forall n > N \Longrightarrow |a_n - l| \le \epsilon$$

Non tutte le successioni convergono.

0.5.3 Limiti divergenti

Una successione è detta divergente a $+\infty$, o $\lim_{x\to\infty} = +\infty$, se

$$\forall M > 0, \exists N = N(M) \text{ t.c. } \forall n > N \Longrightarrow a_n \geq M$$

e divergente a $-\infty$ se $a \leq -M$.

Non tutte le successioni divergono.

Convergenza per eccesso e per difetto

Una successione è detta tendere ad l per **eccesso** (l^+) nel caso in cui a_n ; l, per **difetto**(l^-) in caso contrario.

0.5.4 Monotonia e limiti

Preso $A=\{a_n \forall n \in \mathbf{N}\},$ se $a_{n \in \mathbf{N}}$ è una successione **monotona**:

- crescente: converge a \sup_A se limitata, se no diverge a $+\infty$
- decrescente: converge ad \inf_A se limitata, se no diverge a $-\infty$

0.5.5 Esempi di successioni limitate

$$\lim_{n \to \infty} \frac{1}{n} = 0$$

$$\implies \left| \frac{1}{N} - 0 \right| \le \epsilon \implies \frac{1}{\epsilon} \le n$$

$$\implies \text{per } N = \frac{1}{\epsilon} \text{ esiste sempre } n > N$$

$$\lim_{n \to \infty} 2^n = \infty$$

$$\implies 2^n \ge M \Longrightarrow n \ge \log_2 M$$

 \implies per $N = \log_2 M$ esiste sempre $n > \log_2 M$

$$\lim n \to \infty \frac{n+1}{n-1} = 1$$

$$\implies \left| \frac{n+1}{n-1} - 1 \right| \le \epsilon \implies \ge -\epsilon \, \forall n \in \mathbf{N}$$

$$\implies \frac{n+1}{n-1} < 1 + \epsilon \implies n+1 \le n+n\epsilon - 1 - \epsilon$$

$$\implies 2 + \epsilon \le n\epsilon \implies n \ge \frac{2}{\epsilon} + 1$$

Successioni limitate a e

Data la successione divergente a_n : $\lim_{n\to\infty} \left(1+\frac{1}{a_n}\right)^n = e$

0.5.6 Algebra dei limiti

$$\lim_{n \to n_0} a_n = a \lim_{n \to \infty} b_n = b$$

$$\lim_{n \to n_0} a_n + b_n = a + b$$

$$\lim_{n \to n_0} a_n * b_n = a * b$$

$$\lim_{n \to n_0} a_n^{b_n} = a^b$$

$$\lim_{n \to n_0} f(a_n) = f(a)$$

0.5.7 Teorema di permanenza del segno

$$\begin{split} &\lim_{n\to n_0}a_n=a,\ a\geq 0\Longrightarrow \exists N\in \mathbf{N}\ \text{t.c.}\ \forall n>N:a_n\geq 0\\ &\lim_{n\to n_0}a_n=a,\ a\leq 0\Longrightarrow \exists N\in \mathbf{N}\ \text{t.c.}\ \forall n>N:a_n\leq 0\\ &\text{E' quindi implicato:}\\ &\lim_{n\to n_0}a_n=a,\ \lim_{n\to n_0}b_n=b,\ a_n>b_n\Longrightarrow a>b \end{split}$$

0.5.8 Teorema dei carabinieri

$$a_n \le b_n \le c_n \ a = c \Longrightarrow a = b = c$$

0.5.9 Stime asintotiche

Prese due successioni che tendono a $\infty/0$, considerando

$$\lim_{n \to \infty} \frac{a_n}{b_n} =$$

- $\bullet \,$ 0: a_n è un infinito/infinitesimo di ordine inferiore/superiore a b_n
- l, finito e $\neq 0$: a_n e b_n sono dello stesso ordine.

- $\pm\infty$: a_n è un infinito/infinitesimo di ordine superiore/inferiore a b_n
- $\not\equiv$: a_n e b_n non sono confrontabili.

Ordine delle stime asintotiche

$$\log_{\alpha} n < n^{\alpha} < \alpha^n < n! < n^n$$

 $a_n \sim b_n$

Nel caso analizzato, quando l=1, diciamo che a_n e b_n sono asintotiche $(a_n \sim b_n)$.

- $a_n \sim b_n \Longrightarrow$ le due successioni hanno lo stesso comportamento
- $a_n \sim b_n \sim c_n \Longrightarrow a_n \sim c_n$
- $a_n \sim a_n', b_n \sim b_n', c_n \sim c_n' \Longrightarrow \frac{a_n b_n}{c_n} \sim \frac{a_n' b_n'}{c_n'}$

Criterio del rapporto

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} =$$

- l < 1: $\lim_{n \to \infty} a_n = 0$
- l > 1: $\lim_{n \to \infty} a_n = \infty$
- = 1: non possiamo concludere nulla

0.6 Limiti di funzioni

0.6.1 Definizione tramite limiti di successioni

$$x_0 \in I \subset \mathbf{R}, \ l \in \mathbf{R} \cup \{\pm \infty\}$$

$$f: I \setminus \{x_0\} \longrightarrow \mathbf{R}$$
, se

 \forall successione $\{x_n\} \in I \setminus \{x_0\}$ t.c. $\lim_{n \to \infty} x_n = x_0$, si ha che $\lim_{n \to \infty} f(x_n) = l$

$$\Longrightarrow \lim_{x\to x_{0}}f\left(x\right) =l$$

0.6.2 Limite da destra e da sinistra

$$\lim_{x \to x_0^{\pm}} f\left(x\right) = l$$

studia il comportamento della funzione da destra/sinistra.

0.6.3 Criterio d'esistenza del limite

Il limite esiste $\iff \lim_{x \to x_{0}^{+}} f(x) = \lim_{x \to x_{0}^{-}} f(x)$

0.6.4 Teorema di unicità del limite

$$\exists \lim_{x \to x_0} f(x) = l \Longrightarrow \exists ! \lim_{x \to x_0} f(x) = l$$

0.6.5 Limite per eccesso o per difetto

 $\exists I \setminus \{x_0\} \text{ t.c. } \forall x \in If(x) \geq / \leq l \Longrightarrow \lim_{x \to x_0} f(x) = l \text{ per eccesso/difetto}$

0.6.6 Asintoti

Gli asintoti sono rette che approssimano il comportamento della funzione in determinati punti, o verso gli estremi, della stessa. I limiti possono tendere da sinistra/destra/bilateralmente

Asintoto orizzontale

$$\lim_{x \to \pm \infty} f(x) = l \Longrightarrow \exists \text{ asintoto orizzontale } y = l \in \mathbf{R}$$

Asintoto verticale

$$\lim_{x\to x_0} f\left(x\right) = \pm \infty \Longrightarrow \exists \text{ as into to vertical } x = \pm \infty$$

Asintoto obliquo

Se f presenta limiti infiniti all'infinito, può capitare che presenti limiti obliqui.

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = m, \lim_{x \to \pm \infty} |f(x) - mx| = q$$

0.6.7 Continuità di una funzione tramite limite

$$f: I \longrightarrow \mathbf{R}$$

$$\forall x_0 \in I \lim_{x \to x_0} f(x) = f(x) \Longrightarrow f$$
è continua in I

0.6.8 Punti di discontinuità

Se
$$\lim_{x\to x_{0}^{+}}f\left(x\right) \neq\lim_{x\to x_{0}^{-}}f\left(x\right) \Longrightarrow$$

 \exists punto di salto in x_0 , salto in $x_0 = \lim^+ - \lim^-$

0.7 Limiti notevoli

esponenziali e logaritmici

$$1) \lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e$$

$$2)\lim_{x\to-\infty} \left(1+\frac{1}{x}\right)^x = e$$

$$3) \lim_{x \to +\infty} \left(1 + \frac{a}{x} \right)^x = e^a$$

$$4) \lim_{x \to +\infty} \left(1 + \frac{a}{x} \right)^{nx} = e^{na}$$

$$5)\lim_{x\to\infty} \left(1-\frac{1}{x}\right)^x = \frac{1}{e}$$

6)
$$\lim_{x\to 0} (1+ax)^{\frac{1}{x}} = e^{a}$$

7)
$$\lim_{x \to 0} \lg_a (1+x)^{\frac{1}{x}} = \frac{1}{\lg_a a}$$

8)
$$\lim_{x\to 0} \frac{\lg_a(1+x)}{x} = \lg_a e = \frac{1}{\ln a}$$

9)
$$\lim_{x\to 0} \frac{a^x - 1}{x} = \ln a$$

$$10)\lim_{x\to 0} \frac{(1+x)^a - 1}{x} = a$$

$$11)\lim_{x\to 0}\frac{(1+x)^a-1}{ax}=1$$

goniometrici

$$1)\lim_{x\to 0}\frac{sen\ x}{x}=1$$

$$2)\lim_{x\to 0}\frac{sen\ ax}{bx}=\frac{a}{b}$$

$$3)\lim_{x\to 0}\frac{tg\ x}{x}=1$$

$$4)\lim_{x\to 0}\frac{tg\ ax}{bx} = \frac{a}{b}$$

$$5) \lim_{x \to 0} \frac{1 - \cos x}{x} = 0$$

6)
$$\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$$

$$7) \lim_{x \to 0} \frac{arcsen x}{x} = 1$$

$$8) \lim_{x \to 0} \frac{arcsen\ ax}{bx} = \frac{a}{b}$$

$$9) \lim_{x \to 0} \frac{arctg \ x}{x} = 1$$

$$10)\lim_{x\to 0}\frac{arctg\ ax}{bx} = \frac{a}{b}$$

$$11)\lim_{x\to 0}\frac{senh\ x}{x}=1$$

12)
$$\lim_{x\to 0} x^r \lg_a x = 0 \quad \forall a \in R^+ - \{1\}, \forall r \in R^+$$

$$12)\lim_{x\to 0}\frac{settsenh\ x}{x}=1$$

14)
$$\lim_{x \to +\infty} x^r a^x = \lim_{x \to +\infty} a^x \qquad \forall a \in \mathbb{R}^+ - \{1\}, \forall r \in \mathbb{R}^+$$

$$13)\lim_{x\to 0}\frac{tgh\ x}{x}=1$$

15)
$$\lim_{x \to -\infty} |x|^r a^x = \lim_{x \to -\infty} a^x \quad \forall a \in \mathbb{R}^+ - \{1\}, \forall r \in \mathbb{R}^+$$

$$14)\lim_{x\to 0}\frac{settgh\ x}{x}=1$$

16)
$$\lim_{x \to +\infty} \frac{e^x}{x^r} = \lim_{x \to +\infty} a^x \qquad \forall r \in \mathbb{R}^+$$

$$15)\lim_{x\to 0} \frac{x - sen \ x}{x^3} = \frac{1}{6}$$

17)
$$\lim_{x \to +\infty} \frac{x^r}{e^x} = \lim_{x \to +\infty} a^x \qquad \forall r \in \mathbb{R}^+$$

16)
$$\lim_{x\to 0} \frac{x - arctg \ x}{x^3} = \frac{1}{3}$$

18)
$$\lim e^x x^r = 0 \qquad \forall r \in R^+$$