Computational Numerical Methods

CS 374

Prosenjit Kundu

$$QN + 47 + 62 = d1$$
 $QN + 47 + 62 = d1$
 $QN + 47 + 62 = d2$
 $QN + 47 + 62 = d2$

$$11 + 17 + 2 = 2$$

$$2 + 17 + 22 = 2$$

$$2 + 17 + 22 = 2$$

$$f(n) = p_n(n)$$

$$f(n) = f(a) + (u-a) + f(a)$$

$$\frac{a}{a} + \frac{s}{a} + \frac{d}{a} +$$

$$\vec{P} = f'(n) f(n)$$

はっ 3×ナギンは = 5×ナタンへ・

Taylor's polynomials

$$f(n) = p_1(n)$$

$$f(\alpha) = p_1(\alpha)$$

$$f'(\alpha) = p_1'(\alpha)$$

$$f(a) = f(a) + f'(a) (n-a)$$

$$+ f''(a) (n-a)^{2}$$

$$-\frac{1}{2!} (n-a)^{2}$$

$$U_{+} + (N) = e^{N}$$
 around $N = 0$
 $P_{+}(N) = (+ N + \frac{N^{2}}{2})$
 $P_{+}(N) = (+ N + \frac{N^{2}}{2})$

$$P_3(n) = 1 + n + \frac{n^2}{2} + \frac{n^3}{6}$$

Taylory	appn	to en				
Ŋ	P1(n)	P _L (n)	P3 (n)	en.		
-1.0	Ö	0.5	0.333	0.36	785	
- 0.5	_ 0.5	0.621	0.60417		.60 623	
0	(1			
0.5	1.5	1.625	1.645	85	1-64872	
1.0	2	2.5	2.1617		2-71828	,

Error in Taylor's potnomial approximation

Taylor's remainder

Assume that f(n) has not continuous derivatives. on an interval a < n < 13 & but the point a belongs. to that interval, for the taylor's polynomial Pn(n) (ex $R_{\mathcal{U}}(n) = f(n) - p_{\mathcal{U}}(n)$ denote the remainder in. approximating f(n) by Pu(n) $R_{N}(n) = \frac{(n-\alpha)^{N+1}}{(n+1)!} f^{(n+1)}(c_{n})$ with Cx is a ununuan point Yw agn.

Consider $f(n) = \log n$. final the approximation around N = (N-1) of M = (N-1)

$$P_{L}(n) = (n-1) - (n-1)^{L}$$

$$B_3(n) = (n-1) - \frac{(n-1)^2}{2} + \frac{(n-1)^3}{3}$$

$$P_{N}(n) = (n-1)^{j-1}$$

$$\sum_{j=1}^{N} \frac{(-1)^{j-1}}{j} (n-1)^{j}$$

for $7 = \ln(n)$ HI try a considering the function with error. 9 < 0.01 at n = 2 12^{2} . Not n = 2, 3, 9.