Relatório Científico - Coeficiente de Restituição

Caio Silva Couto caio_couto@id.uff.br

Universidade Federal Fluminense Niterói - RJ , Fevereiro de 2022

Resumo

Neste trabalho houve a busca de encontrar e justificar as relações físicas ligadas ao tema Coeficiente de Restituição. Proposto um experimento prático de comparar o coeficiente em duas situações distintas, fez-se necessário o uso do *software* Tracker© bem como desenvolver raciocínios pertinentes ao assunto para que assim fossem alcançados valores e conclusões lógicas. Durante o relatório será descrito o movimento de queda livre, relacionando a posição com o tempo e aceleração; será descrito o funcionamento do Tracker©, bem como configurá-lo para os mesmos propósitos deste trabalho; também será encontrado um valor aproximado para a aceleração gravitacional e discutido o quão bem este valor se aproxima do real e porque se difere ou não. Por fim, a comparação entre os coeficientes nas diferentes situações de colisão, a primeira sem amortecimento e a segunda com e as conclusões que serão obtidas desses dados.

Sumário

1	Intr	Introdução	
	1.1	Descrevendo o movimento de queda livre	6
	1.2	Sobre o software Tracker©	7
	1.3	Relação entre R e as alturas de cada quique	7
	1.4	Explicitando o aparato experimental	8
2	Exp	erimentações	9
	2.1	Configurando o Tracker©	9
	2.2	Obtendo a gravidade g	11
	2.3	Calculando o coeficiente de restituição R do caso sem amortecimento	15
	2.4	Calculando o coeficiente de restituição R do caso com amortecimento	17
	2.5	Comparando os dois experimentos	19
3	Con	clusões	20
	3.1	Síntese dos métodos	20
	3.2	Síntese dos resultados	20
4	Tab	elas de dados brutos	22
5	Refe	prências Ribliográficas	26

Lista de Figuras

1	Software Tracker©	7
2	Referencial mecânico utilizado nos cálculos	8
3	Eixo xOy em roxo	9
4	Ferramenta de definição de distâncias selecionada	10
5	Pontos de tracking	10
6	Gráficos obtidos do Tracker© no experimento 1	11
7	Gráfico de deslocamento versus tempo	11
8	Gráfico de deslocamento versus tempo linearizado	12
9	Histograma de resíduos	14
10	Gráfico altura máxima, experimento não amortecido	15
11	Gráfico altura máxima, experimento amortecido	18

Lista de Tabelas

1	Tabela resumo de dados obtidos	13
2	Tabela de dados brutos obtidos do Tracker©	
3	Tabela com as alturas máximas, caso 1	15
4	Tabela com as alturas máximas no eixo $xO'y$	16
5	Coeficiente de restituição sem amortecimento	17
6	Tabela com as alturas máximas, caso 2	17
7	Coeficiente de restituição com amortecimento	18
8	Constantes encontradas	20
9	Relações encontradas	20
10	Dados brutos do experimento não amortecido	23
11	Dados brutos do experimento amortecido	25

1 Introdução

Neste relatório será analisado o movimento de queda livre e o coeficiente de restituição de um material após colidir com um anteparo em duas diferentes situações. Como objeto experimental foi utilizada uma pequena esfera de plástico, uma bola de *ping-pong*. E para obter resultados experimentais foi utilizado o *software* Tracker©.

1.1 Descrevendo o movimento de queda livre

O movimento de queda livre consiste em um movimento uniformente variado. Ou seja, um movimento de aceleração constante, nesse caso a gravidade g. Em um caso teórico e ideal de queda livre, a massa do corpo em estudo e a permissividade do fluido em que o corpo está imerso não altera os resultados obtidos. Assim, a resistência do ar não influenciaria nos dados extraídos.

Considerando um cenário ideal, o movimento de velocidade do corpo sujeito a um movimento de queda livre poderia ser descrito pela função linear:

$$v(t) = -gt$$

Como a velocidade instantânea de um corpo é a derivada temporal da posição, pode-se reescrever a equação como:

$$\frac{ds}{dt} = -gt$$

Resolvendo a equação diferencial, obtém-se:

$$ds = -qt dt$$

$$\int ds = \int -gt \, dt$$

Logo, a relação entre posição e tempo fica dada por:

$$s(t) = s_0 - \frac{gt^2}{2}$$

Onde g é a gravidade já orientada negativamente, s_0 e s são respectivamente a posição inicial e instantânea, e t o tempo.

1.2 Sobre o software Tracker©

O Tracker© é um *software open source* escrito na linguagem *Java* e utilizado para propósitos educacionais em estudos de Física. Nele o usuário é capaz de exportar um vídeo e realizar uma análise quadro a quadro de movimentos cinemáticos, por exemplo. O Tracker© como resposta, gerará gráficos e tabelas com dados como: posição, velocidade e aceleração.

Figura 1: Software Tracker©

1.3 Relação entre R e as alturas de cada quique

Como proposto, uma pequena bola de ping-pong foi lançada de uma altura h_0 visando atingir um anteparo e comparar o coeficiente de restituição R em cada quique. Definido como a razão da rapidez antes do impacto e logo após o mesmo, com auxílio do Tracker© o coeficiente pôde ser calculado para este relatório.

$$R = \frac{|v_{ap\acute{o}s}|}{|v_{antes}|}$$

Utilizando o Teorema da Conservação da Energia Mecânica, e definindo algumas convenções, tais como, a energia cinética K no ponto h_0 é igual a 0 Joules e a energia potencial gravitacional U no ponto h=0 é 0 Joules.Pode-se fazer algumas deduções:

Considerando um cenário ideal, é possível supor que a Energia Cinética logo antes do primeiro quique será igual à Energia Potencial Gravitacional em h_0 :

$$K_0 = \frac{m{v_0}^2}{2} = U_0 = mgh_0$$

O mesmo vale para o cenário logo após o primeiro quique, onde pode-se supor que a Energia Cinética logo após o primeiro quique será igual à Energia Potencial Gravitacional em h_1 a altura após a primeira colisão.

$$K_1 = \frac{m{v_1}^2}{2} = U_1 = mgh_1$$

Dividindo K_1 por K_0 obtém-se:

$$\frac{m{v_1}^2}{\frac{2}{m{v_0}^2}} = \frac{mgh_1}{mgh_0}$$

Logo,

$$\left(\frac{v_1}{v_0}\right)^2 = \frac{h_1}{h_0}$$

E como,
$$\left(\frac{v_1}{v_0}\right)^2 = R^2$$
,

$$R = \sqrt{\frac{h_1}{h_0}}$$

Figura 2: Referencial mecânico utilizado nos cálculos

1.4 Explicitando o aparato experimental

Para a aquisição de dados empíricos foi gravado um vídeo em 60 quadros por segundo, a câmera utilizada foi a de um *Samsung Galaxy S10*, suas especificações técnicas podem ser averiguadas no *site* do fabricante. Após a filmagem, os arquivos de vídeo foram enviados para o Tracker© onde foi possível obter os dados experimentais.

O anteparo de colisão consistia de uma mesa de granito polido negro, portanto rígido e liso, o amortecedor, posicionado acima do anteparo, utilizado na segunda etapa de testes foi uma toalha de mesa. E de corpo de testes, uma pequena bola de plástico usada para jogar *ping-pong*.

2 Experimentações

A premissa desta pesquisa é ser capaz de comparar, em duas situações distintas, o coeficiente de restituição de um objeto após o movimento de queda livre. Na primeira, o corpo deve colidir diretamente com o anteparo, este que deve ser rígido e liso. Na segunda, o corpo deve colidir contra o mesmo anteparo, porém haverá um amortecedor na superfície de impacto.

2.1 Configurando o Tracker©

Após gravar o experimento, o vídeo foi importado para dentro do *software*. O primeiro passo foi definir um eixo vertical e horizontal usando como referefencial um objeto presente no próprio vídeo, neste caso em específico uma régua perpendicular ao plano do anteparo.

Figura 3: Eixo xOy em roxo

É importante perceber que o eixo deve ser paralelo ao sentido do vetor gravidade. Para isso, o eixo foi posicionado de modo a permanecer paralelo à régua que estava disposta de modo ortogonal ao solo.

O segundo passo foi definir no programa uma distância de referência, para que assim o mesmo pudesse converter *pixels* em metros. Para isso foi utilizada a mesma régua, que possui $30\pm0,05$ centímetros.

Figura 4: Ferramenta de definição de distâncias selecionada

O terceiro e último passo foi navegar quadro a quadro no vídeo definindo no software onde seria o centro de massa do corpo do experimento, a bola de ping-pong. Assim o Tracker© será capaz de gerar os gráficos de tempo t em segundos , altura y em metros, velocidade v em m/s e aceleração a em m/s^2 .

Figura 5: Pontos de tracking

Os gráficos obtidos com o experimento do abandono da bola sem o amortecedor foram os seguintes:

Figura 6: Gráficos obtidos do Tracker© no experimento 1

2.2 Obtendo a gravidade g

Para a obtenção do valor da gravidade g, será analisado somente o intervalo de tempo que compreende o abandono da bola e o primeiro quique. Pois, em um cenário ideal, neste intervalo a bola não está sujeita a nenhuma outra força senão a gravitacional.

Figura 7: Gráfico de deslocamento versus tempo

O primeiro passo para coletar o valor da gravidade será linearizar o gráfico deslocamento versus tempo apresentado anteriormente. Para isso basta apenas elevar os valores do tempo ao quadrado, visto que a relação entre a altura e o tempo é de segunda ordem. Ou seja,

$$s(t)=s_0-\frac{gt^2}{2}, \text{\'e a função deslocamento},$$
 se $t^2=T,$ a função linearizada será dada por $s(T)=s_0-\frac{gT}{2}$

O segundo passo será aplicar o Método dos Mínimos Quadrados(MMQ) nos dados linearizados, assim será possível obter os valores de B e A, sendo $B \pm \sigma_B = -\frac{g}{2}$ e $A \pm \sigma_A = s_0$. Após empregar o MMQ, os dados obtidos serão: $B=-4.81218280\,m/s^2$ e $\overset{\circ}{A}=-0.012477234\,m$. Porém ainda é necessárip calcular as incertezas $\sigma_B e \sigma_A$.

Figura 8: Gráfico de deslocamento versus tempo linearizado

Utilizando as fórmulas de cálculo da incerteza do MMQ é possível coletar as incertezas como

 $\sigma_B=0.01548893\,m/s^2\,{\rm e}\,\sigma_A=0.00045860\,m$ Como $B\pm\sigma_B=-\frac{g}{2}$ assim, obtém-se que $g=-2B\pm2\sigma_B$ e pela definição de multiplicação da incerteza por uma constante, é possível calcular σ_q , ou seja, a incerteza da gravidade, como sendo $\sigma_q^2 = 4\sigma_B^2$. logo,

$$\sigma_g^{\ 2} = 4 \cdot 0.01548893^2$$

$$\sigma_g = \sqrt{4 \cdot 0.01548893^2}$$

$$\sigma_g = 2 \cdot 0.01548893 = 0.06195572 \, m/s^2$$

Assim, conclui-se que o valor da gravidade é aproximadamente:

$$g = 9.6243656 \pm 0.06195572 \, m/s^2$$

Segundo a tabela de constantes do livro Física - Uma Abordagem Estratégica(Randall, 2009) a aceleração gravitacional possui o valor de $g_{teórico} = 9.80 m/s^2$.

Assim, o erro relativo $\delta g = \left| \frac{g_{te\acute{o}rico} - g}{g_{te\acute{o}rico}} \right|$ do experimento foi de 1,16 %. Vale ressaltar que para obter o valor g empiricamente fatores como a resistência do ar tiveram que ser desconsiderados, esse é um dos fatores que justifica o pequeno erro relativo entre os valores.

Visto que $A \pm \sigma_A = s_0$, não há necessidade de cálculos de incerteza adicionais, sendo:

$$\sigma_{s_0} = \sigma_A = \pm 0.00045860 \, m$$

Concluindo em uma tabela de dados, obtém-se:

	valor verdadeiro	incerteza
\overline{B}	$-4.81218280 m/s^2$	$\sigma_B = \pm 0.01548893 m/s^2$
\overline{A}	-0.012477234 m	$\sigma_A = \pm 0.00045860 m$
\overline{g}	$9.6243656 m/s^2$	$\sigma_g = \pm 0.06195572 m/s^2$
$\overline{s_0}$	-0.012477234 m	$\sigma_{s_0} = \pm 0.00045860 m$

Tabela 1: Tabela resumo de dados obtidos

Para avaliar se tais dados obtidos são ou não próximos do resultado experimental, deve-se aferir a qualidade da linearização do MMQ. Para tal o resíduo de cada ponto é calculado e somado, espera-se que a soma seja aproximadamente zero. Ou seja:

O resíduo é dado por: $\Delta y_i = \frac{y_i - f(x_i)}{\sigma_y}$ onde n é o número de elementos do conjunto a ser analisado e $1 \leq i \leq n$, assim y_2 seria o segundo dado do rol, $f(x_i)$ é a função linearizada obtida do MMQ, f(x) = A + Bx e σ_y é a incerteza em y calculada a partir da fórmula

$$\sigma_y = \sqrt{\frac{\sum (y_i - A - B \cdot x)^2}{n - 2}}.$$

Espera-se que somatório $\sum_{i=1}^n \frac{y_i - f(x_i)}{\sigma_y}$ seja aproximadamente zero, se sim, a linearização é considerada boa.

A tabela contendo os dados brutos utilizados é apresentada a seguir:

i	Tempo(s)	$Tempo(s^2)$	Altura(m)
1	0.0	0.0	-0.009858637043318935
2	0.01674444444444527	0.00028038	-0.012561984741813359
3	0.033488888888889054	0.00112151	-0.01758248761044587
4	0.0502444444444452	0.0025245	-0.025199087510421353
5	0.0669888888888906	0.00448751	-0.035176779303422556
6	0.08374444444444452	0.00701313	-0.04668584927167782
7	0.100477777777781	0.01009578	-0.06142874904168133
8	0.1172222222222263	0.01374105	-0.07917483209816706
9	0.133977777777781	0.01795004	-0.09910504845391255
10	0.15072222222222262	0.02271719	-0.12476861472021497
11	0.16746666666666715	0.02804508	-0.14715598103762775
12	0.1842111111111117	0.03393373	-0.1758227305904124
13	0.200955555555544	0.04038314	-0.20612758011764185
14	0.2177333333333354	0.0474078	-0.23998164625616844
15	0.2344555555555544	0.05496941	-0.27601984569395477
16	0.25120000000000007	0.06310144	-0.3165268968164109

Tabela 2: Tabela de dados brutos obtidos do Tracker©

Assim, com os dados na tabela acima, calcula-se que o somatório $\sum_{i=1}^n \frac{y_i - f(x_i)}{\sigma_y}$ seja aproxi-

madamente: $-6.33774143\cdot 10^{-6}$ que é um valor aceitável de aproximação linear. Outra maneira de se avaliar a aproximação linear realizada pelo MMQ é coletar o número de ocorrências dos resíduos e verificar se pelo menos 68% dos mesmos se encontram no intervalo $[\mu-\sigma,\mu+\sigma]$, no qual μ que é a média aritmética deve ser aproximadamente zero e σ ,o desvio padrão.

Figura 9: Histograma de resíduos

Realizando os cálculos, percebe-se que 13 dos 16 dados se encontram neste intervalo, logo 81,25%, assim grande parte dos resíduos pode ser considerada pequena. Logo os valores de A e B do MMQ são bons para este fim.

2.3 Calculando o coeficiente de restituição R do caso sem amortecimento

Como definido na introdução deste trabalho, o coeficiente de restituição pode ser calculado pela seguinte equação:

 $R = \sqrt{\frac{h_i}{h_{i-1}}}$

Onde h_i é a altura máxima após a colisão e h_{i-1} a altura máxima anterior a colisão. Utilizando o *software* Tracker© é possível medir a altura aproximada destes pontos.

	Altura máxima(m)
h_0	-0.00985863 ± 0.0005
h_1	-0.13050196 ± 0.0005
h_2	-0.18225707 ± 0.0005
$\overline{h_3}$	-0.2132141 ± 0.0005

Tabela 3: Tabela com as alturas máximas, caso 1

A seguir é apresentado o gráfico contendo os pontos de altura máxima dispostos pelo tempo em segundos:

Figura 10: Gráfico altura máxima, experimento não amortecido

Cabe ressaltar que: a equação para o coeficiente de restituição foi calculada por meio do Príncípio da Conservação da Energia Mecânica. Logo há um problema, no

Tracker© o eixo xOy foi posicionado de forma que a reta y=0 coincida com a posição inicial da bola, ou seja, neste instante a bola não possui rapidez, logo K=0J e nem altura relativa ao eixo, logo $U_g=0$ J. Portanto, é ilógico utilizar tal teorema dado este eixo, ademais o coeficiente de restituição do primeiro quique seria uma indeterminação, pois seria uma divisão por

zero(altura inicial igual a zero). Para não perder o primeiro dado será necessária a mudança de referencial, para o anteparo, por exemplo. Assim as novas alturas ficam dadas pela seguinte expressão:

$$h_i = |h_{min}| - |h_{i\,antiao}|$$

Onde h_{min} é o menor valor da altura dos dados experimentais. Neste trabalho, $h_{min} = -0.31773236 \pm 0.0005m$. Logo, a nova tabela de alturas, será:

	Altura máxima(m)
h_0	0.30787373 ± 0.0007
h_1	0.18723040 ± 0.0007
h_2	0.13547493 ± 0.0007
h_3	0.10451850 ± 0.0007

Tabela 4: Tabela com as alturas máximas no eixo xO'y

É importante frisar que: como as novas alturas foram obtidas a partir de uma operação envolvendo incertezas, o cálculo de acúmulo de incertezas teve de ser feito para as mesmas. Assim as novas variações são distintas das anteriores. Com as alturas em um novo referencial, torna-se possível o cálculo de R:

$$R_1 = \sqrt{\frac{0.18723040}{0.30787373}} \approx 0.779833460964$$

$$R_2 = \sqrt{\frac{0.13547493}{0.18723040}} \approx 0.8506311550949$$

$$R_3 = \sqrt{\frac{0.10451850}{0.13547493}} \approx 0.878349010769$$

Contudo, ainda se faz preciso deduzir a propagação de incertezas do coeficiente de restituição.

Utilizando a fórmula geral do cálculo de incertezas:
$$\sigma_f^2 = \sigma_1^2 \left(\frac{\partial f}{\partial x_1}\right)^2 + \sigma_2^2 \left(\frac{\partial f}{\partial x_2}\right)^2 + \dots + \sigma_n^2 \left(\frac{\partial f}{\partial x_n}\right)^2$$
 e a equação antes proposta para o coeficiente , $R = \sqrt{\frac{h_i}{h_{i-1}}}$, segue-se o seguinte

R é uma função de duas variáveis (h_i, h_{i-1}) , logo será necessário derivar em relação as duas.

$$\frac{\partial R}{\partial h_i} = \frac{1}{2\sqrt{h_i \cdot h_{i-1}}}$$
$$\frac{\partial R}{\partial h_{i-1}} = -\frac{\sqrt{h_i}}{2\sqrt{h_{i-1}^3}}$$

Assim, a incerteza de R fica dada por:

$$\sigma_R^2 = 0.0007^2 \left(\frac{1}{2\sqrt{h_i \cdot h_{i-1}}}\right)^2 + 0.0007^2 \left(-\frac{\sqrt{h_i}}{2\sqrt{h_{i-1}^3}}\right)^2$$

Deste modo, o coeficiente de restituição com suas respectivas incertezas fica dado por:

R_1	$0.77983346 \pm 0.00180730$
R_2	$0.85063116 \pm 0.00319946$
R_3	$0.87834901 \pm 0.00455191$

Tabela 5: Coeficiente de restituição sem amortecimento.

Para avaliar a qualidade dos dados acima há a possibilidade de se determinar o desvio-padrão dos mesmos: $\sigma = 0.05080339$.

Qualquer pequena variação no valor experimental de R pode ser justificada por alguns fatores:

- 1. Pequenas variações na superfície ou da bola ou do anteparo, que acarretam em uma colisão diferente da anterior;
- 2. Aproximações numéricas realizadas pelo Tracker©;
- 3. Presença de um fluido, ar atmosférico, no qual o objeto teve que percorrer.
- 4. Eventuais pequenos erros de posicionamento de centro de massa;

2.4 Calculando o coeficiente de restituição R do caso com amortecimento

O experimento do caso amortecido consistiu em um processo similar ao caso não amortecido. A única diferença foi que, em vez de colidir diretamente com o anteparo, o corpo de teste, no caso a bola de ping-pong, colidiu com um mediador acima do anteparo. No caso deste experimento, foi utilizada uma toalha de mesa. Análogo ao caso com amortecimento, para determinar o coeficiente R do caso amortecido será utilizada a mesma equação:

$$R = \sqrt{\frac{h_i}{h_{i-1}}}$$

Onde h_i é a altura máxima após a colisão e h_{i-1} a altura máxima anterior a colisão.

Afim de evitar acúmulo desnecessário de incertezas, para este caso, o eixo de referência do Tracker© foi posicionado de modo a coincidir com o anteparo. Assim, as alturas medidas medidas pelo *software* poderão ser usadas diretamente nos cálculos, sem necessitar de uma conversão, como no caso anterior.

	Altura máxima(m)
$\overline{h_0}$	0.35151429 ± 0.0005
h_1	0.20012344 ± 0.0005
h_2	0.12967665 ± 0.0005
h_3	0.07966481 ± 0.0005

Tabela 6: Tabela com as alturas máximas, caso 2

Figura 11: Gráfico altura máxima, experimento amortecido

Desse modo, os coeficientes ficam dados por:

$$R_1 = \sqrt{\frac{0.20012344}{0.35151429}} \approx 0.75319645488$$

$$R_2 = \sqrt{\frac{0.12967665}{0.20012344}} \approx 0.8049741080918$$

$$R_3 = \sqrt{\frac{0.07966481}{0.12967665}} \approx 0.7837951369064$$

A dedução da incerteza associada a R neste caso é análoga à anterior, portanto, a mesma fica dada por:

$$\sigma_R^2 = 0.0005^2 \left(\frac{1}{2\sqrt{h_i \cdot h_{i-1}}}\right)^2 + 0.0005^2 \left(-\frac{\sqrt{h_i}}{2\sqrt{h_{i-1}^3}}\right)^2$$

E os coeficientes de restituição do caso amortecido associados às suas respectivas incertezas são apresentados abaixo:

R_1	$0.75319645 \pm 0.00110199$
R_2	$0.80497411 \pm 0.00202667$
$\overline{R_3}$	$0.78379514 \pm 0.00303244$

Tabela 7: Coeficiente de restituição com amortecimento.

Para avaliar a qualidade dos dados acima há a possibilidade de se determinar o desvio-padrão dos mesmos: $\sigma = 0.02603125$.

As variações de R nessa segunda etapa possuem suas justificatvas associadas às justificativas já apresentadas na subseção anterior.

2.5 Comparando os dois experimentos

O método utilizado neste relatório para comparar os dois experimentos foi calcular a razão entre a média aritmética do coeficiente de restituição do caso amortecido e a média aritmética do coeficiente de restituição do caso não amortecido, ou seja:

$$q = \frac{\sum_{i=1}^{n} R_{i(amortecido)}}{\sum_{i=1}^{n} R_{i(n\tilde{a}o \ amortecido)}}$$

Assim, calculando as médias e realizando a propagação de incertezas, a razão q fica dada por:

$$q = 0.93748516 \pm 0.00828975$$

Deste modo, se a média aritmética dos coeficientes calculados experimentalmente, R_1 , R_2 e R_3 , for considerada uma aproximação suficientemente boa para um caso genérico em que se mantém imutáveis o antemparo, o corpo de testes e o amortecedor, pode-se supor, então, que se o corpo de testes, no caso a bola de *ping pong*, for lançado duas vezes, na primeira sem amortecimento e na segunda com amortecimento, da mesma altura arbitrária h_0 a relação entre as alturas máximas após os quiques será:

$$q = 0.93748516 \pm 0.00828975 = \sqrt{\frac{h_{amortecido}}{h_{n\tilde{a}o\,amortecido}}}$$

Tendo esta relação, fica evidente que: independentemente da altura h_0 que a bola seja lançada, se a mesma for mantida igual nos dois experimentos, a altura máxima após o quique quando há o amortecedor será sempre menor que a altura máxima após o quique quando não há o amortecedor. Este resultado já era esperado e intuitivo, visto que o amortecedor visa dissipar mais Energia Mecânica na colisão, assim haverá menos energia disponível no sistema pra ser convertida em Energia Potencial Gravitacional, acarretando em uma menor altura.

3 Conclusões

3.1 Síntese dos métodos

Neste relatório, foram utilizadas diversas ferramentas e técnicas para se obter valores e relações entre fenômenos físicos. Destaca-se entre o material utilizado o *software* Tracker© que teve suas funcionalidades e configurações para este experimento aprofundadas anteriormente.

Com o uso do Tracker© e o Método dos Mínimos Quadrados, a equação que determinava o movimento de queda livre do corpo pôde ser linearizada, assim possibilitando encontrar um valor aproximado para a gravidade g e sua incerteza: Também com o uso do programa e tendo em vista que a relação $R = \sqrt{\frac{h_1}{h_0}}$, na qual R é o coeficiente de restituição, h_1 a altura máxima após o quique e h_0 a altura máxima anterior ao quique, pode ser deduzida a partir do Teorema da Conservação da Energia Mecânica. Foi possível calcular o coeficiente para o lançamento sem amortecedor e com amortecedor, bem como uma relação entre as alturas máximas após o quique do lançamento nas duas situações.

3.2 Síntese dos resultados

Durante a pesquisa, diversos valores constantes e suas incertezas associadas foram encontrados, estes são alguns deles:

$9.6243656 \pm 0.06195572 m/s^2$
$0.93748516 \pm 0.00828975$
$0.75319645 \pm 0.00110199$
$0.80497411 \pm 0.00202667$
$0.78379514 \pm 0.00303244$
$0.77983346 \pm 0.00180730$
$0.85063116 \pm 0.00319946$
$0.87834901 \pm 0.00455191$
$0.78065523 \pm 0.00498189$
$0.83271210 \pm 0.00516424$

Tabela 8: Constantes encontradas

Onde g é a gravidade, q a raiz quadrada da razão entre a altura máxima após o quique amortecido e a mesma sem ser amortecido e R coeficientes de restituição. Além disso, relações físicas e estatísticas também foram obtidas:

Coeficiente de Restituição	$R = \sqrt{\frac{h_i}{h_{i-1}}}$
Incerteza do Coeficiente de Restituição	$\sigma_R = \sqrt{\sigma_{h_i}^2 \left(\frac{1}{2\sqrt{h_i \cdot h_{i-1}}}\right)^2 + \sigma_{h_{i-1}}^2 \left(-\frac{\sqrt{h_i}}{2\sqrt[3]{h_{i-1}^2}}\right)^2}$
Relação entre as alturas máximas	$q = 0.93748516 \pm 0.008289752 = \sqrt{\frac{h_{amortecido}}{h_{n\tilde{a}o \ amortecido}}}$

Tabela 9: Relações encontradas

Onde h_i e h_{i-1} são respectivamente a altura máxima posterior do quique e anterior ao quique, σ_R a incerteza associada ao coeficiente de restituição, σ_{h_i} e $\sigma_{h_{i-1}}$ as incertezas relacionadas às alturas antes mencionadas.

O número q é a raiz quadrada da razão entre a altura máxima após um quique amortecido e a altura máxima após um quique não amortecido, sendo os dois casos lançados da mesma altura incial. Percebe-se assim que q < 1, logo a altura máxima amortecida, nunca será maior que a altura máxima não amortecida.

4 Tabelas de dados brutos

t(s)	h(m)
0.0	-0.009858637043318935
0.01674444444444527	-0.012561984741813359
0.033488888888889054	-0.01758248761044587
0.0502444444444452	-0.025199087510421353
0.0669888888888906	-0.035176779303422556
0.0837444444444452	-0.04668584927167782
0.100477777777781	-0.06142874904168133
0.1172222222222263	-0.07917483209816706
0.133977777777781	-0.09910504845391255
0.15072222222222262	-0.12476861472021497
0.16746666666666715	-0.14715598103762775
0.1842111111111117	-0.1758227305904124
0.200955555555544	-0.20612758011764185
0.2177333333333354	-0.23998164625616844
0.234455555555544	-0.27601984569395477
0.25120000000000007	-0.3165268968164109
0.26794444444444526	-0.29431196207525545
0.28468888888888977	-0.2648261625352485
0.30144444444444524	-0.2380705296193161
0.318188888888888	-0.21595617996431085
0.3349333333333325	-0.19356881364689807
0.35168888888888794	-0.1758227305904124
0.3684333333333325	-0.1618988808076313
0.3851777777777884	-0.14934011433688751
0.401922222222335	-0.14060358113984842
0.418666666666666	-0.13323213125484665
0.4354111111111106	-0.13104799795558683
0.45216666666666665	-0.13050196463077193
0.4689111111111106	-0.1326860979300317
0.48565555555555	-0.13650833120373632
0.5024000000000014	-0.14415279775114556
0.51914444444444	-0.15288933094818466
0.5359000000000015	-0.16735921405578072
0.552644444444442	-0.18374021380022906
0.5693888888888888	-0.2025783635063447
0.5861333333333333	-0.22578477981097986
0.602888888888888	-0.24789912946598516
0.6196333333333333	-0.27765794566839963
0.63637777777796	-0.3093278785076665
0.653155555555569	-0.31041994515729643
0.66987777777796	-0.2825722455917342
0.68662222222222	-0.2599118626119139
0.70336666666666	-0.239162596268946

t(s)	h(m)
0.7201111111111114	-0.2236006465117201
0.7368555555555	-0.20885774674171656
0.753611111111111	-0.19657199693338026
0.7703555555555	-0.18920054704837855
0.7871000000000004	-0.18409610038511368
0.803844444444449	-0.18225706922877224
0.82060000000000003	-0.18256357442149582
0.8373333333333322	-0.1853221211560079
0.8540888888888895	-0.19114571981775566
0.8708333333333321	-0.1988083496358448
0.887577777777785	-0.2089230209957225
0.904333333333334	-0.222715754668283
0.921077777777784	-0.24171907661714406
0.9378222222223	-0.2631744401077937
0.9545666666666666	-0.28677533994750826
0.9713111111111102	-0.31466731248535273
0.98805555555566	-0.31006973459449927
1.0048111111111102	-0.2849363087911668
1.021555555555567	-0.2668525024204764
1.038300000000001	-0.2487686960497861
1.05505555555555	-0.23620198314811988
1.07180000000000012	-0.22608731178824218
1.088544444444439	-0.2162791456210881
1.1053000000000001	-0.21444011446474673
1.12203333333333328	-0.21321409369385239
1.1387888888888884	-0.2153596300429174
1.1555333333333346	-0.21965070274104728
1.17227777777779	-0.22516779621007146
1.18902222222222	-0.23405644679905488
1.205777777777792	-0.24846219085706253
1.222522222222218	-0.26133540895145224
1.2392666666666665	-0.2809517412857605
1.256011111111111	-0.3042461359327515
1.27275555555555	-0.31773236441258845

Tabela 10: Dados brutos do experimento não amortecido

+(e)	h(m)
$\frac{t(s)}{0.0}$	0.3515142905963731
0.0167555555555555475	0.35075310752914785
0.0335	0.35075310752914785
0.0502444444444452	0.35075310752914785
0.0669888888888906	0.35075310752914785
0.08373333333332994	0.35075310752914785
0.100477777777446	0.34390245992412016
0.11723333333332994	0.3362906292518672
0.133977777777448	0.32791761551238896
0.1507222222221898	0.31802223563846005
0.167477777777445	0.2989926589578277
0.1842222222221898	0.2830078145460964
0.2009666666666352	0.2601723225293375
0.217711111111110805	0.23809801357980392
0.234455555555562	0.2084118739580173
0.2512000000000007	0.1802481004706813
0.267955555555562	0.14936875233405866
0.28470000000000073	0.1135437958119741
0.30144444444444524	0.07482495045911403
0.3182000000000007	0.03180401117815834
0.3349444444444527	0.036106105106253894
0.35168888888888616	0.06729628608494675
0.3684444444444163	0.09310884965352018
0.385177777777752	0.11838365148108165
0.4019222222221974	0.1377430741575117
0.418677777777752	0.15602697335191784
0.435422222222197	0.17108430210025233
0.45218888888888614	0.1834528221435271
0.4689111111111088	0.19151924825870625
0.48566666666666425	0.19797238915084964
0.5024111111111088	0.2001234361148974
0.519155555555569	0.2001234361148974
0.535899999999978	0.19851015089186158
0.5526444444444444	0.19367029522275403
0.5694333333333337	0.18399058388453904
0.586166666666643	0.17269758732328816
0.6028888888888869	0.1603290672800134
0.61963333333333314	0.1404318828625714
0.6363888888888869	0.12214798366816526
0.6531333333333333333	0.0957976583585799
0.66987777777759	0.06837180956697064
0.68663333333333314	0.032341772919170286
0.70337777777759	0.019973252875895575
0.720122222222204	0.049012386890540605
0.73686666666665	0.06837180956697064
	1 1111111111111111111111111111111111111

t(s)	h(m)
0.7536111111111095	0.08719347050238879
0.77036666666665	0.10171303750971128
0.7871111111111095	0.11300603407096216
0.80385555555554	0.12107246018614137
0.820599999999986	0.1275256010782847
0.837344444444431	0.12967664804233248
0.8540888888888876	0.1264500775962608
0.870844444444431	0.12322350715018915
0.8875888888888877	0.11999693670411749
0.90433333333333321	0.10655289317881883
0.9210888888888876	0.09042004094846046
0.93783333333333321	0.07428718871810208
0.954577777777766	0.056003289523695876
0.97132222222222	0.029115202473098623
0.988066666666621	0.01943549113488363
1.0048111111111102	0.03825715207030167
1.021566666666662	0.05546552778268393
1.0383111111111103	0.06460747737988703
1.055055555555547	0.07106061827203036
1.071799999999999	0.07590047394113791
1.088555555555548	0.07966480612822152
1.105299999999999	0.07751375916417375
1.122044444444437	0.07428718871810208
1.1387888888888884	0.06729628608494675
1.15553333333333329	0.05492776604167199
1.1722888888888888	0.03933267555232556
1.189033333333333	0.021586538098931407
1.20577777777738	0.018897729393871687

Tabela 11: Dados brutos do experimento amortecido

5 Referências Bibliográficas

[1] Departamento de Física da FCTUC. Capítulo IX Ajuste dos Mínimos Quadrados. Departamento de Física da FCTUC, 2010/11.

Disponível em: http://fisica.uc.pt/data/20102011/apontamentos/apnt_5_17.pdf_.pdf. Acesso em: 10/02/2022

- [3] KNIGHT, Randall D. Física Uma Abordagem Estratégica. 2ª Edição. Local de publicação: Bookman, 2009
- [4] SHIMAKURA, S. A distribuição Normal. CE701 Bioestatística Avançada I, 2005. Disponível em: http://www.leg.ufpr.br/ silvia/CE701/node36.html. Acesso em: 10/02/2022
- [5] CREPALDI, C. Propagação de incertezas. Caíke Crepaldi, M.Sc., 2022. Disponível em: http://fap.if.usp.br/ crepaldi/posts/experimental%20physics/propagacao-de-incertezas. html#ref1. Acesso em: 10/02/2022