

Pushing the Limits of Al with In-Network Computing

APNET 2019

Gil Bloch

Mellanox Accelerates Leading HPC and Al Systems

World's Top 3 Supercomputers

Summit CORAL System
World's Fastest HPC / AI System
9.2K InfiniBand Nodes

Sierra CORAL System #2 USA Supercomputer 8.6K InfiniBand Nodes

Wuxi Supercomputing Center Fastest Supercomputer in China 41K InfiniBand Nodes

Data is Growing Faster Than Ever

Autonomous vehicle generates 4000GByte per day

CAMERA

~20-40MB Per/sec

SONAR

~10-100KB Per/Sec

GPS

~50KB Per/Sec

RADAR

~10-100KB Per/Sec

Light Detection & Ranging

~10-70MB Per/Sec

- Data will grow by a factor of 10 over the next decade to 163 Zeta Bytes in 2025 (source: IDC)
- Faster Data processing requires faster Interconnect speeds

Neural Networks Complexity Growth

Complexity = GOPS X Bandwidth

Enabling World-Leading Artificial Intelligence Solutions

Mellanox Unleashes the Power of Artificial Intelligence

More Data

Better Models

Faster Interconnect

GPUs

CPUs

ASIC

FPGAs

Storage

The Need for Intelligent and Faster Interconnect

Faster Data Speeds and In-Network Computing Enable Higher Performance and Scale

Must Wait for the Data
Creates Performance Bottlenecks

Analyze Data as it Moves! Higher Performance and Scale

An Application Example – Pizza Processing

CPU 1 – Pizza Generation

CPU 2 – Pizza Consumption

CPU-Centric (Onload)

- Order Pizza
 - Call (or use Pizza application)
- CPU 1 prepare Pizza
 - Tomato sauce, Cheese, Peperoni...
- CPU 1 Put in the oven
 - And now we wait...
- CPU 1 Pack and send
- Network (Pizza Delivery)

Must Wait for the Data
Creates Performance Bottlenecks

What if...

Mellanox

Data Centric Architecture to Overcome Latency Bottlenecks

Intelligent Interconnect Paves the Road to Exascale Performance

of 30-40us

of 3-4us

Mellanox

In-Network Computing to Enable Data-Centric Data Centers

Accelerating All Levels of HPC/Al Frameworks

Application Framework

- Data Analysis
- Configurable Logic

Communication Framework

- SHARP Data Aggregation
- MPI Tag Matching
- MPI Rendezvous
- SNAP Software Defined Virtual Devices

- Network Transport Offload
- RDMA and GPU-Direct
- SHIELD (Self-Healing Network)
- Adaptive Routing and Congestion Control

Connectivity Framework

- Multi-Host
- Enhanced Topologies
- Dragonfly+

The Need for Speed

Matching Inter and Intra Node Bandwidth

Sylvain Jeaugey, NVIDIA

INTER-GPU COMMUNICATION

Intra-node and Inter-node

Mellanox Accelerates TensorFlow 1.5

100G is a Must For Large Scale Models

6.5X

Faster Training with 100G

RDMA and GPUDirect

10X Higher Performance with GPUDirect™ RDMA

- Accelerates HPC and Deep Learning performance
- Lowest communication latency for GPUs

Mellanox Accelerates NVIDIA NCCL 2.0

500 Performance Improvement

with NVIDIA® DGX-1 across 32 NVIDIA Tesla V100 GPUs Using InfiniBand RDMA and GPUDirect™ RDMA

Scalable Hierarchical Aggregation and Reduction Protocol (SHARP)

Scalable Hierarchical Aggregation and Reduction Protocol (SHARP)

- Reliable Scalable General Purpose Primitive
- Applicable to Multiple Use-cases in ML/HPC
- Scalable High Performance Collective Offload

SHARP AllReduce Performance Advantages (128 Nodes)

Software - 128B

Software - 8B

SHARP - 128B

SHARP - 8B

SHARP enables 75% Reduction in Latency Providing Scalable Flat Latency

SHARP AllReduce Performance Advantages 1500 Nodes, 60K MPI Ranks, Dragonfly+ Topology

SHARP Enables Highest Performance

SHARP Performance – Application (OSU)

Mesh Refinement Time of MiniAMR

Network-Based Computing Laboratory http://nowlab.cse.ohio-state.edu/

The MVAPICH2 Project http://mvapich.cse.ohio-state.edu/

Source: Prof. DK Panda, Ohio State University

SHARP Accelerates Al Performance

The CPU in a parameter server becomes the bottleneck

Performs the Gradient Averaging
Replaces all physical parameter servers
Accelerate Al Performance

InfiniBand SHARP Advantage for Deep Learning

- Increase System Performance
- Better Scalability
- Reduces amount of data traversing the network

8 Nodes, 16 GPUs, InfiniBand

8 Nodes, 22 GPUs, InfiniBand

Scalable Performance for Distributed Al

