# **Searching Elements in an Array:**

**Linear and Binary Search** 

1

# **Searching**

- Check if a given element (called key) occurs in the array.
  - Example: array of student records; rollno can be the key.
- Two methods to be discussed:
  - If the array elements are unsorted.
    - Linear search
  - If the array elements are sorted.
    - Binary search

#### **Linear Search**

3

# **Basic Concept**

- Basic idea:
  - Start at the beginning of the array.
  - Inspect elements one by one to see if it matches the key.
- Time complexity:
  - A measure of how long an algorithm takes to run.
  - If there are n elements in the array:
    - Best case: match found in first element (1 search operation)
    - Worst case: no match found, or match found in the last element (n search operations)
    - Average case: (n + 1) / 2 search operations

```
#include <stdio.h>
int linear_search (int a[], int size, int key)
{
    for (int i=0; i<size; i++)
        if (a[i] == key) return i;
    return -1;
}
int main()
{
    int x[]={12,-3,78,67,6,50,19,10}, val;
    printf ("\nEnter number to search: ");
        scanf ("%d", &val);
    printf ("\nValue returned: %d \n", linear_search (x,8,val);
}</pre>
```

- What does the function linear search do?
  - It searches the array for the number to be searched element by element.
  - If a match is found, it returns the array index.
  - If not found, it returns -1.

# Contd.

int  $x[] = \{12, -3, 78, 67, 6, 50, 19, 10\};$ 

• Trace the following calls:

```
search (x, 8, 6);

Returns 4

Returns -1
```

7

# **Binary Search**

# **Basic Concept**

- Binary search works if the array is sorted.
  - Look for the target in the middle.
  - If you don't find it, you can ignore half of the array, and repeat the process with the other half.
- In every step, we reduce the number of elements to search by half.

9

# **The Basic Strategy**

- What we want?
  - Find split between values larger and smaller than key:



- Situation while searching:
  - Initially L and R contains the indices of first and last elements.
- Look at the element at index [(L+R)/2].
  - Move L or R to the middle depending on the outcome of test.

#### **Iterative Version**

```
#include <stdio.h>
int bin_search (int a[], int size, int key)
{
   int L, R, mid;
   L = 0; R = size - 1;

   while (L <= R) {
      mid = (L + R) / 2;
      if (a[mid] < key) L = mid + 1;
      else if (a[mid] > key) R = mid -1;
        else return mid; /* FOUND AT INDEX mid */
   }

   return -1; /* NOT FOUND */
}
```

11

```
int main()
{
   int x[]={10,20,30,40,50,60,70,80}, val;

   printf ("\nEnter number to search: ");
     scanf ("%d", &val);

   printf ("\nValue returned: %d \n", bin_search (x,8,val);
}
```

#### **Recursive Version**

```
#include <stdio.h>
int bin_search (int a[], int L, int R, int key)
{
  int mid;
  if (R < L) return -1; /* NOT FOUND */
  mid = (L + R) / 2;
  if (a[mid] < key) return (bin_search(a,mid+1,R,key));
  else if (a[mid] > key) return (bin_search(a,L,mid-1,key));
    else return mid; /* FOUND AT INDEX mid */
}
```

13

```
int main()
{
   int x[]={10,20,30,40,50,60,70,80}, val;

   printf ("\nEnter number to search: ");
     scanf ("%d", &val);

   printf ("\nValue returned: %d \n", bin_search (x,0,7,val);
}
```

#### Is it worth the trouble?

- Suppose that the array x has 1000 elements.
- Ordinary search
  - If key is present in x, it would require 500 comparisons on the average.
- Binary search
  - After 1st compare, left with 500 elements.
  - After 2nd compare, left with 250 elements.
  - After 3<sup>rd</sup> compare, left with 125 elements.
  - After at most 10 steps, you are done.

15

# **Time Complexity**

- If there are n elements in the array.
  - Number of searches required in the worst case: log<sub>2</sub>n
- For n = 64 (say).
  - Initially, list size = 64.
  - After first compare, list size = 32.
  - After second compare, list size = 16.
  - After third compare, list size = 8.

**–** ......

After sixth compare, list size = 1.

2<sup>k</sup> = n, where k is the number of steps.

 $k = log_2 n$ 

 $log_264 = 6$  $log_21024 = 10$ 

# **Sorting**

17

# **The Basic Problem**

Given an array

reorder entries so that

$$x[0] \le x[1] \le \ldots \le x[size-1]$$

- List is in non-decreasing order.
- We can also sort a list of elements in nonincreasing order.

# **Example**

• Original list:

10, 30, 20, 80, 70, 10, 60, 40, 70

• Sorted in non-decreasing order:

10, 10, 20, 30, 40, 60, 70, 70, 80

• Sorted in non-increasing order:

80, 70, 70, 60, 40, 30, 20, 10, 10

19

# **Sorting Problem**

- What we want?
  - Sort the given data sorted in the specified order



#### **Selection Sort**

21

# How it works?

• General situation :

0 k size-1

X: smallest elements, sorted remainder, unsorted

- Steps:
  - Find smallest element, mval, in x[k..size-1]
  - Swap smallest element with x [k], then increase k by 1



# An example worked out

#### PASS 1:

10 5 17 11 -3 12 Find the minimum
10 5 17 11 -3 12 Exchange with 0th
-3 5 17 11 10 12 element

#### PASS 2:

 -3
 5
 17
 11
 10
 12
 Find the minumum

 -3
 5
 17
 11
 10
 12
 Exchange with 1st

 -3
 5
 17
 11
 10
 12
 element

#### PASS 3:

 -3
 5
 17
 11
 10
 12
 Find the minumum

 -3
 5
 17
 11
 10
 12
 Exchange with 2nd

 -3
 5
 10
 11
 17
 12
 element

23

#### PASS 4:

 -3
 5
 10
 11
 17
 12
 Find the minumum

 -3
 5
 10
 11
 17
 12
 Exchange with 3rd

 -3
 5
 10
 11
 17
 12
 element

#### PASS 5:

 -3
 5
 10
 11
 17
 12
 Find the minumum

 -3
 5
 10
 11
 17
 12
 Exchange with 4th

 -3
 5
 10
 11
 12
 17
 element

# **Subproblem**

```
/* Yield index of smallest element in x[k..size-1];*/
int min_loc (int x[], int k, int size)
{
   int j, pos;

   pos = k;
   for (j=k+1; j<size; j++)
        if (x[j] < x[pos])
            pos = j;
   return pos;
}</pre>
```

25

# The main sorting function

```
/* Sort x[0..size-1] in non-decreasing order */
int sel_sort (int x[], int size)
{    int k, m;

    for (k=0; k<size-1; k++)
    {
        m = min_loc (x, k, size);
        temp = a[k];
        a[k] = a[m];
        a[m] = temp;
}</pre>
```

```
int main()
{
   int x[ ]={-45,89,-65,87,0,3,-23,19,56,21,76,-50};
   int i;
   for(i=0;i<12;i++)
        printf("%d ",x[i]);
   printf("\n");
   sel_sort(x,12);
   for(i=0;i<12;i++)
        printf("%d ",x[i]);
   printf("%d ",x[i]);
   printf("\n");
}</pre>
```

# **Analysis**

- How many steps are needed to sort n items?
  - Total number of steps proportional to n<sup>2</sup>.
  - No. of comparisons?

$$(n-1) + (n-2) + ... + 1 = n(n-1)/2$$

Of the order of  $n^2$ 

– Worst Case? Best Case? Average Case?

#### **Insertion Sort**

29

#### **Basic Idea**

- Insert elements one at a time, and create a partial sorted list.
  - Sorted list of 2 elements, 3 elements, 4 elements, and so on.
- In general, in every iteration an element is compared with all the elements before it.
- After finding the position of insertion, space is created for it by shifting the other elements and the desired element is then inserted at the suitable position.
- This procedure is repeated for all the elements in the list.

# An example worked out

#### PASS 1:

10 5 17 11 -3 12 item = 5 ? 10 17 11 -3 12 compare 5 and 10 5 10 17 11 -3 12 insert 5

#### PASS 2:

<u>5 10 17 11 -3 12 item = 17</u> <u>5 10 17</u> 11 -3 12 compare 17 and 10

#### PASS 3:

 5
 10
 17
 11
 -3
 12
 item = 11

 5
 10
 ?
 17
 -3
 12
 compare 11 and 17

 5
 10
 ?
 17
 -3
 12
 compare 11 and 10

 5
 10
 11
 17
 -3
 12
 insert 11

31

#### PASS 4:

 5
 10
 11
 17
 -3
 12
 item = -3

 5
 10
 11
 ?
 17
 12
 compare -3 and 17

 5
 10
 ?
 11
 17
 12
 compare -3 and 11

 5
 ?
 10
 11
 17
 12
 compare -3 and 10

 ?
 5
 10
 11
 17
 12
 compare -3 and 5

 -3
 5
 10
 11
 17
 12
 insert -3

#### PASS 5:

 -3 5
 10 11 17 12
 item = 12

 -3 5
 10 11 ? 17
 compare 12 and 17

 -3 5
 10 11 ? 17
 compare 12 and 11

 -3 5
 10 11 12 17
 insert 12

### **Insertion Sort**

```
void insert_sort (int list[], int size)
{
  int i,j,item;

for (i=1; i<size; i++)
  {
   item = list[i];
   j = i - 1;
   while ((item < list[j]) && (j >= 0))
   {
     list[j+1] = list[j];
     j--;
   }
  list[j+1] = item;
}
```

```
int main()
{
   int x[ ]={-45,89,-65,87,0,3,-23,19,56,21,76,-50};
   int i;
   for(i=0;i<12;i++)
        printf("%d ",x[i]);
   printf("\n");
   insert_sort (x,12);
   for(i=0;i<12;i++)
        printf("%d ",x[i]);
   printf("%d ",x[i]);
   printf("\n");
}</pre>
```

# **Time Complexity**

- Number of comparisons and shifting:
  - Worst case?

$$1 + 2 + 3 + \dots + (n-1) = n(n-1)/2$$

– Best case?

$$1 + 1 + \dots$$
 to  $(n-1)$  terms =  $(n-1)$ 

35

# **Bubble Sort**

#### How it works?

- The sorting process proceeds in several passes.
  - In every pass we go on comparing neighboring pairs, and swap them if out of order.
  - In every pass, the largest of the elements under considering will bubble to the top (i.e., the right).

```
10 5 17 11 -3 12

5 10 17 11 -3 12

5 10 17 11 -3 12

5 10 11 17 -3 12

5 10 11 -3 17 12

5 10 11 -3 12 17
```

37

# An example worked out

# PASS 1: 10 5 17 11 -3 12 5 10 17 11 -3 12 5 10 17 11 -3 12 5 10 17 11 -3 12 5 10 11 17 -3 12 5 10 11 -3 17 12 5 10 11 -3 12 17 PASS 2: 5 10 11 -3 12 17 5 10 11 -3 12 17 5 10 11 -3 12 17 5 10 -3 11 12 17 5 10 -3 11 12 17

```
PASS 3:

5 10 -3 11 12 17
5 10 -3 11 12 17
5 -3 10 11 12 17
5 -3 10 11 12 17
PASS 4:

5 -3 10 11 12 17
-3 5 10 11 12 17
-3 5 10 11 12 17
PASS 5:

-3 5 10 11 12 17
-3 5 10 11 12 17
-3 5 10 11 12 17
```

#### How the passes proceed?

- In pass 1, we consider index 0 to n-1.
- In pass 2, we consider index 0 to n-2.
- In pass 3, we consider index 0 to n-3.
- .....
- .....
- In pass n-1, we consider index 0 to 1.

# **Bubble Sort**

```
void swap(int *x, int *y)
{
  int tmp = *x;
  *x = *y;
  *y = tmp;
}
```

```
int main()
{
   int x[ ]={-45,89,-65,87,0,3,-23,19,56,21,76,-50};
   int i;
   for(i=0;i<12;i++)
        printf("%d ",x[i]);
   printf("\n");
   bubble_sort (x,12);
   for(i=0;i<12;i++)
        printf("%d ",x[i]);
   printf("%d ",x[i]);
   printf("\n");
}</pre>
```

# **Time Complexity**

- Number of comparisons:
  - Worst case?

```
1 + 2 + 3 + \dots + (n-1) = n(n-1)/2
```

- Best case?
  - Same

43

- How do you make best case with (n-1) comparisons only?
  - By maintaining a variable flag, to check if there has been any swaps in a given pass.
  - If no swaps during a pass, the array is already sorted.

```
void bubble_sort (int x[], int n)
{
  int i, j, flag;

  for (i=n-1; i>0; i--)
  {
    flag = 0;
    for (j=0; j<i; j++)
        if (x[j] > x[j+1])
        {
        swap(&x[j],&x[j+1]);
        flag = 1;
        }
        if (flag == 0) return;
    }
}
```

**Some Efficient Sorting Algorithms** 

46

- Two of the most popular sorting algorithms are based on divide-and-conquer approach.
  - Quick sort
  - Merge sort
- Basic concept (divide-and-conquer method):

```
sort (list)
{
   if the list has greater than 1 elements
   {
      Partition the list into lowlist and highlist;
      sort (lowlist);
      sort (highlist);
      combine (lowlist, highlist);
   }
}
```

47

# **Quick Sort**

#### How it works?

- At every step, we select a pivot element in the list (usually the first element).
  - We put the pivot element in the final position of the sorted list
  - All the elements less than or equal to the pivot element are to the left.
  - All the elements greater than the pivot element are to the right.



```
void print (int x[], int low, int high)
{
   int i;
   for(i=low; i<=high; i++)
       printf(" %d", x[i]);
   printf("\n");
}

void swap (int *a, int *b)
{
   int tmp=*a;
   *a=*b;
   *b=tmp;
}</pre>
```

```
void partition (int x[], int low, int high)
   int i = low+1, j = high;
   int pivot = x[low];
   if (low >= high) return;
   while (i<j) {
       while ((x[i]<pivot) && (i<high)) i++;
       while ((x[j]>=pivot) && (j>low)) j--;
      if (i<j) swap (&x[i], &x[j]);</pre>
   if (j==high) {
       swap (&x[j], &x[low]);
      partition (x, low, high-1);
   else
       if (i==low+1)
          partition (x, low+1, high);
       else {
             swap (&x[j], &x[low]);
partition (x, low, j-1);
partition (x, j+1, high);
```

```
int main (int argc, char *argv[])
{
   int x[] = {-56,23,43,-5,-3,0,123,-35,87,56,75,80};
   int i=0;
   int num;
   num = 12;    /* Number of elements */
   partition(x,0,num-1);
   printf("Sorted list: ");
   print (x,0,num-1);
}
```

54

# **Trace of Partitioning: an example**

```
45 -56 78 90 -3 -6 123 0 -3 45 69 68

45 -56 78 90 -3 -6 123 0 -3 45 69 68

-6 -56 -3 0 -3 45 123 90 78 45 69 68

-56 -6 -3 0 -3 68 90 78 45 69 123

-3 0 -3 45 68 78 90 69

-3 0 69 78 90

Sorted list: -56 -6 -3 -3 0 45 45 68 69 78 90 123
```

# **Time Complexity**

• Worst case:

n<sup>2</sup> ==> list is already sorted

Average case:

n log<sub>2</sub>n

 Statistically, quick sort has been found to be one of the fastest algorithms.

56

**Merge Sort** 





# **Example**

- Initial array A contains 14 elements:
  - **-** 66, 33, 40, 22, 55, 88, 60, 11, 80, 20, 50, 44, 77, 30
- Pass 1 :: Merge each pair of elements
  - **(33, 66) (22, 40) (55, 88) (11, 60) (20, 80) (44, 50) (30, 70)**
- Pass 2 :: Merge each pair of pairs
  - **(22, 33, 40, 66) (11, 55, 60, 88) (20, 44, 50, 80) (30, 77)**
- Pass 3 :: Merge each pair of sorted quadruplets
  - **(11, 22, 33, 40, 55, 60, 66, 88) (20, 30, 44, 50, 77, 80)**
- Pass 4:: Merge the two sorted subarrays to get the final list
  - **(11, 20, 22, 30, 33, 40, 44, 50, 55, 60, 66, 77, 80, 88)**

60

```
void merge sort (int *a, int n)
  int i, j, k, m;
  int *b, *c;
  if (n>1) {
     k = n/2;
     m = n-k;
     b = (int *) malloc(k*sizeof(int));
     c = (int *) malloc(m*sizeof(int));
     for (i=0; i<k; i++)
        b[i]=a[i];
     for (j=k; j<n; j++)
        c[j-k]=a[j];
     merge sort (b, k);
     merge_sort (c, m);
     merge (b, c, a, k, m);
     free(b); free(c);
   }
```

```
void merge (int *a, int *b, int *c, int m, int n)
{
   int i, j, k, p;
   i = j = k = 0;
   do {
      if (a[i] < b[j]) {
        c[k]=a[i]; i++;
      }
      else {
        c[k]=b[j]; j++;
      }
      k++;
   } while ((i < m) && (j < n));

if (i == m) {
      for (p=j; p < n; p++) { c[k]=b[p]; k++; }
   }
   else {
      for (p=i; p < m; p++) { c[k]=a[p]; k++; }
   }
}</pre>
```

```
main()
{
    int i, num;
    int a[] = {-56,23,43,-5,-3,0,123,-35,87,56,75,80};
    num = 12;
    printf ("\n Original list: ");
    print (a, 0, num-1);
    merge_sort (a, 12);
    printf ("\n Sorted list: ");
    print (a, 0, num-1);
}
```

# **Time Complexity**

• Best/Worst/Average case:

n log<sub>2</sub>n

- Drawback:
  - Needs double amount of space for storage.
  - For sorting n elements, requires another array of size n to carry out merge.

64

# Example :: sorting arrays of structures (bubble sort)

# Example :: sorting arrays of structures (selection sort)

```
main()
{
   struc stud class[100];
   int n;
   ...
   selsort (class, n);
   ...
```

```
int selsort (struct stud x[],int n)
{
    int k, m;
    for (k=0; k<n-1; k++)
    {
        m = min_loc (x, k, n);
        temp = a[k];
        a[k] = a[m];
        a[m] = temp;
    }
}</pre>
```

66

# **Algorithm Analysis**

# **Analysis of Algorithms**

- How much resource is required?
- Measures for efficiency
  - Execution time → time complexity
  - Memory space → space complexity
- Observation:
  - The larger amount of input data an algorithm has, the larger amount of resource it requires.
  - Complexities are functions of the amount of input data (input size).

68

# What do we use for a yardstick?

- The same algorithm will run at different speeds and will require different amounts of space.
  - When run on different computers, different programming languages, different compilers.
- But algorithms usually consume resources in some fashion that depends on the size of the problem they solve.
  - Some parameter n (for example, number of elements to sort).

# An example of a sorting algorithm

 We run this sorting algorithm on two different computers, and note the time (in milliseconds) for different sizes of input.

| Array Size | Home     | Desktop  |  |
|------------|----------|----------|--|
| n          | Computer | Computer |  |
| 125        | 12.5     | 2.8      |  |
| 250        | 49.3     | 11.0     |  |
| 500        | 195.8    | 43.4     |  |
| 1000       | 780.3    | 72.9     |  |
| 2000       | 3114.9   | 690.5    |  |



#### Contd.

• Home Computer:

```
f_1(n) = 0.0007772 n^2 + 0.00305 n + 0.001
```

• Desktop Computer:

```
f_2(n) = 0.0001724 n^2 + 0.00040 n + 0.100
```

- Both are quadratic function of n.
- The shape of the curve that expresses the running time as a function of the problem size stays the same.

72

# **Complexity Classes**

- The running time for different algorithms fall into different complexity classes.
  - Each complexity class is characterized by a different family of curves.
  - All curves in a given complexity class share the same basic shape.
- The *O-notation* is used for talking about the complexity classes of algorithms.

# **Running time of algorithms**

# Assume speed is 10<sup>7</sup> instructions per second.

| size@h?                 | 102      | 20?      | 30?      | 50?                                               | 1002                  | 10002   | 100002 |
|-------------------------|----------|----------|----------|---------------------------------------------------|-----------------------|---------|--------|
| n?                      | .001@ms2 | .002@ms@ | .003@ms@ | .005@ms2                                          | .01@ms2               | .1@ms?  | 1@ms?  |
| nlogn®                  | .003@ms2 | .008@ms2 | .015@ms2 | .03@ms2                                           | .07@ms2               | 13ms?   | 13@ms2 |
| n <sup>2</sup>          | .01@ms2  | .04@ms2  | .09@ms2  | .25@ms2                                           | 1@ms2                 | 100@ms2 | 1037   |
| n <sup>3</sup> ?        | .1@ms2   | .8@ms2   | 2.7@ms?  | 12.5@ms2                                          |                       | 10032   | 28th2  |
| <b>2</b> <sup>n</sup> ? | .1@ms2   | .13?     | 10037    | 3 <b>.</b> 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. | 3x10 <sup>13</sup> c? | inf2    | inf2   |

74

# • The complexity classes:



# **Introducing the language of O-notation**

• Definition:

```
f(n) = O(g(n)) if there exists positive constants c
and n_0 such that f(n) \le c \cdot g(n) when n \ge n_0.
```

- The big-Oh notation is used to categorize the complexity class of algorithms.
  - It gives an upper bound.
  - Other measures also exist, like small-Oh, Omega, Theta, etc.

76

# **Examples**

- $f(n) = 2n^2+4n+5$  is  $O(n^2)$ .
  - One possibility: c=11, and n<sub>o</sub>=1.
- $f(n) = 2n^2 + 4n + 5$  is also  $O(n^3)$ ,  $O(n^4)$ , etc.
  - One possibility: c=11, and n<sub>o</sub>=1.
- f(n) = n(n-1)/2 is  $O(n^2)$ .
  - One possibility: c=1/2, and  $n_0=1$ .
- $f(n) = 5n^4 + \log_2 n$  is  $O(n^4)$ .
  - One possibility: c=6, and  $n_0=1$ .
- f(n) = 75 is O(1).
  - One possibility: c=75, and  $n_0=1$ .

# **Complexities of Known Algorithms**

| Algorithm          | Best-case               | Average-case            | Worst-case              |
|--------------------|-------------------------|-------------------------|-------------------------|
| Selection sort     | O(n²)                   | O(n²)                   | O(n²)                   |
| Insertion sort     | O(n)                    | O(n²)                   | O(n²)                   |
| <b>Bubble sort</b> | O(n)                    | O(n²)                   | O(n²)                   |
| Quick sort         | O(n log <sub>2</sub> n) | O(n log <sub>2</sub> n) | O(n²)                   |
| Merge sort         | O(n log <sub>2</sub> n) | O(n log <sub>2</sub> n) | O(n log <sub>2</sub> n) |
| Linear search      | O(1)                    | O(n)                    | O(n)                    |
| Binary search      | O(1)                    | O(log <sub>2</sub> n)   | O(log <sub>2</sub> n)   |

78

#### **Observations**

- There is a big difference between polynomial time complexity and exponential time complexity.
- Hardware advances affect only efficient algorithms and do not help inefficient algorithms.