

UNIVERSIDADE FEDERAL DE VIÇOSA – UFV CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS – CCE DEPARTAMENTO DE ENGENHARIA ELÉTRICA - DEL

Medidas Elétricas e Magnéticas ELT210

AULA 02 – Leis de Kirchhoff (Malhas e Nós) Prof. Tarcísio Pizziolo

1. Lei de Kirchhoff das Tensões ou das Malhas

REGRA DAS MALHAS: A soma algébrica das variações de potencial encontradas ao percorrer uma malha fechada é sempre zero.

Quando uma diferença de potencial V é aplicada a resistências ligadas em série a corrente i é a mesma em todas as resistências, e a soma das diferenças de potencial das resistências é igual à diferença de potencial aplicada V.

3. Lei de Kirchhoff das Correntes ou dos Nós

REGRA DOS NÓS: A soma das corrente que entram em um nó é igual à soma das correntes que saem do nó.

Quando uma diferença de potencial V é aplicada a resistências ligadas em paralelo todas as resistências são submetidas à mesma diferença de potencial V.

4. Associação de Resistores

Em série

Em paralelo

$R_{eq} = \sum_{j=1}^{n} R_j$

A corrente é a mesma em todos os resistores

Resistores

$$\frac{1}{R_{eq}} = \sum_{j=1}^{n} \frac{1}{R_j}$$

A diferença de potencial é a mesma em todos os resistores

5. Exemplos

 Dado o circuito da figura, determinar a corrente I, a potência dissipada pelo resistor R₂.

Assumindo que a corrente flui no sentido anti-horário e definindo a variável de corrente de acordo, a lei de Kirchhoff para tensão produz a equação:

$$36 + 7.\mathbf{I} + 3.\mathbf{I} - 12 + 2.\mathbf{I} = 0 \implies (7 + 3 + 2).\mathbf{I} = 12 - 36 \implies \mathbf{I} = -2 \text{ A}$$

Portanto, a magnitude da corrente é de 2 A, porém ela flui no sentido horário.

A potência dissipada pelo resistor R_2 é: $P = R_2 \cdot I^2 = 3 \times 2^2 = 12 \text{ W}$.

2) Dada a rede da figura, determine a corrente I e as tensões V_{fb} e V_{be}.

Considerando que a corrente flui no sentido horário e percorrendo o circuito começando no ponto f, a lei de Kirchhoff para tensão (LKT) determina que:

$$-24 + 1K.I + 2k.I + 64 + 3k.I + 4k.I = 0 \Rightarrow (1k + 2k + 3k + 4k).I = 24 - 64$$

Portanto I = -4 mA

Fazendo uso deste valor de **I**, a tensão V_{fb} pode ser obtida usando-se o caminho fabf ou bcdefb

Adotando o primeiro caso
$$-V_{fb} - 24 + 1k.I = 0 \implies V_{fb} = -28 \text{ V}$$

De forma semelhante, V_{be} pode ser obtido usando-se o caminho *bcdeb* ou *befab* ou o caminho da tensão V_{fb} , agora conhecida.

Adotando novamente o primeiro caso: $2k.I + 64 + 3k.I - V_{be} = 0 \implies V_{be} = 44 V$

3) A tensão V_A sobre o resistor de 2 Ω da figura abaixo é 8 V. Determinar as tensões V_1 e V_0 .

Usando-se a lei de Ohm, a corrente no resistor de 2Ω será:

$$V_A = 2.I \Rightarrow 8 = 2.I \Rightarrow I = 4 A$$

A corrente I que flui através do resistor de 3 Ω e então V_0 = 3.I = 12 V Aplicando LKT por todo o laço, tem-se $V_1 + 1.I + 2.I + 3.I = 0 \Rightarrow V_1 = 6.I = 24 V$ Dado o circuito mostrado na figura, determinar as correntes e a resistência equivalente.

A resistência equivalente para o circuito é $R_p = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{3x6}{3+6} = 2\Omega$

O circuito equivalente é mostrado no circuito abaixo

Agora V_0 pode ser calculado como: $V_0 = R_p$.I = 2 x 12 = 24 VCom a tensão V_0 , aplicando a lei de Ohm, podemos calcular as correntes I_1 e I_2 .

$$I_1 = \frac{V_0}{R_1} = \frac{24}{3} = 8.A$$
 e $I_2 = \frac{V_0}{R_2} = \frac{24}{6} = 4.A$

Observe como essas correntes satisfazem a lei de Kirchhoff para corrente tanto no nó inferior como no superior. $I = I_1 + I_2 \Rightarrow 12 \text{ A} = 8 \text{ A} + 4 \text{ A}$

Podemos determinar as correntes, aplicando a divisão de corrente., que neste caso:

$$I_1 = \frac{R_2}{R_1 + R_2}.I = \frac{6}{3+6}.12 = 8.A$$
 e $I_2 = \frac{R_1}{R_1 + R_2}.I = \frac{3}{3+6}.12 = 4.A$

Para o circuito da figura, determinar a tensão ∨₀ e as correntes em cada resistor.

Empregando-se a lei de Kirchhoff para corrente (LKC), obtém-se:

$$(G_1 + G_2 + G_3)V_0 = 12 - 6 + 18 \Rightarrow \left(\frac{1}{8} + \frac{1}{24} + \frac{1}{3}\right)V_0 = 24 \Rightarrow \frac{1}{2}V_0 = 24 \Rightarrow V_0 = 48V$$

 $G = 1/R$ (Condutância)

Então:
$$I_1 = \frac{V_0}{8} = \frac{48}{8} = 6.4$$

Então:
$$I_1 = \frac{V_0}{8} = \frac{48}{8} = 6.A$$
; $I_2 = \frac{V_0}{24} = \frac{48}{24} = 2.A$ e $I_3 = \frac{V_0}{3} = \frac{48}{3} = 16.A$

Aplicando agora a LKC ao nó superior, tem-se -6 + 12 - 6 - 2 - 16 + 18 = 0

A resistência equivalente é
$$R_p = \frac{1}{\frac{1}{8} + \frac{1}{24} + \frac{1}{3}} = 2.\Omega$$
. Portanto o circuito equivalente

consiste de uma fonte de corrente de 24 A em paralelo com um resistor de 2 Ω .

6) No circuito da figura, a potência absorvida pelo resistor de 6 Ω é de 24 W. Determinar a valor da fonte de corrente de b.

Como P = R.
$$I^2 \Rightarrow 24 = 6.I_1^2 \Rightarrow I_1 = \pm 2 A$$

Portanto, a tensão V_0 é V_0 = 6 . I_1 = \pm 12 V

A corrente l₂ pode ser calculada usando-se a lei de Ohm.

$$I_2 = \frac{V_0}{3} = \pm \frac{12}{3} = \pm 4.A$$

Aplicando agora a LKC no nó superior, tem-se:

$$10-2-4+I_0=0 \implies I_0=-4 \text{ A}$$
 ou $10+2+4+I_0=0 \implies I_0=-16 \text{ A}$

6. Exercícios de Aplicações

1) A figura dada mostra um circuito com mais de uma malha formado por uma fonte ideal e quatro resistências com os seguintes valores:

$$R_1 = 20 \Omega$$
, $R_2 = 20 \Omega$, $V = 12 V$,

$$R_3 = 30 \Omega$$
, $R_4 = 8.0 \Omega$.

- (a) Qual é a corrente na fonte?
- (b) Qual é a corrente i_2 em R_2 ?
- (c) Qual é a corrente i_3 em R_3 ?

Respostas: a) 0,30 A; b) 0,18 A; c) 0,12 A

2) Determine os valores e os sentidos das correntes nos três ramos.

$$V_1 = 3.0 \text{ V}, \quad V_2 = 6.0 \text{ V},$$
 $R_1 = 2.0 \Omega, \quad R_2 = 4.0 \Omega.$

Respostas:

$$i_1 = -0.50 \text{ A.}$$

 $i_2 = 0.25 \text{ A.}$