XC6206 series

Linear regulator

■ Product Introduction

XIC6206 It is a series of high ripple rejection ratio, low power consumption, low dropout voltage regulator having a CMOS step overcurrent and short circuit protection. These ones

The device has a very low quiescent current (6.0 µA Typ.), Which provides an output current of 250mA in the case where the input and output voltage difference is only small, and still

maintain good regulation. Since the voltage difference is small and quiescent bias current between input and output is small, these devices are particularly suited desirable to extend

battery life for battery-powered products, such as computers, consumer products and industrial equipment.

Features

Highly accurate output voltage file: ± 1%, B file: ± 2.5%

Output voltage: 1.5V ~ 5.0V (0.1V steps)

Very low quiescent current (Typ. = 6.0 μ A)

Low temperature adjustment coefficient

Maximum input voltage up to 8V

Strong load capacity: When Vin = 4.3V and Vout = 3.3V, lout = 250mA

Can be used as the reference voltage regulator and

Good stability of the input:. Typ 0.03% / V

Package: SOT89-3, SOT23-3

■ Product Usage

Battery-powered systems

Cordless telephone equipment

Wireless Control System

Portable / handheld computers

- Portable consumer devices
- Portable Instruments
- Automotive electronics
- voltage reference source

1

■ Package pin definitions and functions

Pin Number			
packag	eNP3 Package	Package	Pin
		P1	Custom Function Description
<u>SOT23-3 S</u>	OT89-3 SOT	89-3	
1	1	2	Chip ground terminal VSS
2	3	1	Chip output terminal VOUT
3	2	3	VIN enable input

■ Model selection

name	model	Maximum input voltage (V)	The output voltage(V)	Tolerance Pac	kage
XC6206XXX	XC6206Pxx	8	1.5 , 1.8 , 2.5 , 2.7 , 3.0 , 3.3 , 3.6 , 4.4 , 5.0	<u>+</u> 3%	TO92 SOT89-3 SOT23-3

Model selection Description: XXX-The first 1 More "X"Package, P, M3, P1; First 2 More "XX"Output voltage.

Such as: XC6206P30 It is 3.0V The output voltage, SOT23-3 Package.

■ Functional Block Diagram

■ Limit parameters

project	symbol	parameter		Limit	unit
	Vin	Input voltage		9	V
Voltage	Vout	The	output voltage	Vss-0.3 ~ Vout + 0.3	V
Electric current	lout	Output current		500	mA
_		SOT23 maximu	m allowable power	300	
Power	PD	SOT89-3		500	mW
	Tw	Оре	erating temperature	25 + 80	°C
temperature	Tc	stor	age temperature	- 40 ~ + 125	°C
	Th	Welding temperature		260	°C, 10s

■ Electrical characteristics (Cin = Cout = 10uF, Ta = 25°C Except where otherwise specified)

characteristic	symbol		condition	Min Typ Ma	x unit		
The output voltage	V _{OUT} (E)	Iout = 1mA, V in =	· V ουτ (T) + 1V	V оит (Т) * 0.98 V ои	r(T)Vour(T)*	1.02	V
Maximum output currer	laximum output current I ουτ (max) V _N - V ουτ (T) + 1V		100			mA	
			1.5V≤V ουτ (T) ≤2.5V		200	280	
Pressure drop	Vdrop	I оит = 50mA	2.6V≤V out (T) ≤3.3V		160	240	mV
			3.4V≤V out (T) ≤5.5V		120	200	
Quiescent Current	Iss	V _{IN} = V _{OUT (} T) + 1V			7		μА
Load Regulation	∆ Vout	VIN= VOUT (T)+	1V, 1mA≤I ουτ ≤80mA		20		mV
Line regulation Δ V _o	υτ/(Δ V IN • V OUT)	Ιουτ = 1mA, Vου	π(T) + 0.5V ≤V in ≤5.5V		0.1	0.2% / V	
Output voltage temperature coefficien	Δ V ουτ / (Δ Ta t • V ουτ)	V _{IN=} V _{ОИТ (} T) + - 40 °C ≤Ta≤8	1V, І олт= 10mA 5 °С		± 100		ppm / °C
Input voltage	V _{IN}			1.8		8.0	V
Ripple Rejection	PSRR	V _{IN=[} V _{OUT(} T) + f = 1kHz	V _{IN=[} V _{OUT (} T) +1] V + 1Vp-pAC I ουτ = 10mA, f = 1kHz		40		dB
Short circuit current	Ishort	VIN = VOUT (T) +	1.5V, Vour - Vss		30	_	mA
Over-current protection	llimt	VIN = VOUT (T) +	1.5V		380		mA

Note:

1, Vor.(T): the output voltage predetermined. 2, Vor.(E): effective output voltage (i.e., when Ior. Holding a certain value, Vor.(T) + output voltage at 1.0V)). 3, Ior.(max): Vor. Vor.

(T) + 1V, slowly increase the output current, when the output voltage $\leq V_{out}(E)$ * 95% of the current value. 4, Vdrop = $V_{out}(E)$ s: $V_{out}(E)$ s: $V_{out}(E)$ s: $V_{out}(E)$ s: $V_{out}(E)$ s to 98% when the input voltage is.

 $V_{\text{out}}(E)$ 1 = V when \tiny IN- V out (T) + 1V, the output voltage value of lout = a certain value.

■ The test circuit

Application Circuit

1, Basic circuit

2, The output current is large positive voltage regulator

$\boldsymbol{3}$, Increasing the output voltage value circuit ($\boldsymbol{1}$)

Vout = Vxx (1+ R2 / R1) + IssR2

${\bf 4}$, To increase the output voltage of the circuit (${\bf 2}$)

Vout = $Vxx + V_{D1}$

5 Constant current regulator

lout = Vxx / RA+ Iss

■ FIG characteristic

1 , The output voltage - output current (load current is increased)

3, Dropout Voltage and output current

4, Dropout And output voltages

5 Output voltage and temperature

6 , Ripple rejection

7 Transient response

Load input transition response characteristics

■ Package Information

SOT-89-3

符号	最小值(mm)	最大值(mm)	
Α	1.400	1.600	
ь	0.320	0.520	
b1	0.360	0.560	
С	0.350	0.440	
D	4.400	4.600	
D1	1.400	1.800	
E	2.300	2.600	
E1	3.940	4.250	
е	1.50	OTYP	
e1	2.900 3.100		
L	0.900	1.100	

SOT-23-3

Symbol	Dimensions In	n Millimeters	Dimensions	In Inches
	Nin	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
c	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
e	0.950	(BSC)	0.037(8	BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0,	8,