Theoretical Part

- a. The grammar for the NFA:
 - 1. $A \rightarrow aC \mid \varepsilon$
 - 2. $B \rightarrow aA$
 - 3. $C \rightarrow aB$
 - 4. $(start)D \rightarrow aC \mid aE \mid \varepsilon$
 - 5. $E \rightarrow aF$
 - 6. $F \rightarrow aE \mid \varepsilon$
- b. For any NFA, we set the grammar according to the states:

Given an NFA with the 5-tuple: $\{Q(states), \delta: Qx\Sigma \rightarrow P(Q)(State\ transition\ function), q_s(Initial\ state), F(Finite\ state)\}$ we add the following rules:

- 1. If state q belongs to F (Finite states): $q \rightarrow \varepsilon$
- 2. If state q_{next} belongs to $\delta(q, \sigma \epsilon \Sigma) : q \rightarrow \sigma q_{next}$. This goes also in the case where σ is ϵ
- c. With these grammar rules, associativity of arithmetic operations doesn't follow the convention. Adding or multiplying don't pose a problem, subtracting and diving do. For example: 12/6/2. The Parsing tree:

The result will be 12/(6/2)=12/3=4But expected result is (12/6)/2=2/2=1

d. Since C is left recursive, meaning it has a non-terminal left of a production (CD while C is non-terminal), the grammar isn't LL(1) – We may loop infinitely with this grammar.

To solve it, we take the following steps:

We make new, non-left-recursive rules with the following steps:

$$1.C' \rightarrow D$$

$$2.C' \rightarrow DC' | \varepsilon$$

$$3.C \rightarrow cC'$$

Now the new set of rules is:

1.
$$S \rightarrow AC$$

2.
$$A \rightarrow aA \mid b$$

3.
$$C' \rightarrow DC' | \varepsilon$$

4.
$$C \rightarrow cC'$$

5.
$$D \rightarrow d$$

Next step – Make the table of Terminals Vs States:

	a	b	С	d	\$
S	S->AC	S->AC			
Α	A->aA	A->b			
С			C->cC'		
C'				C'->DC'	C'->ε
D				D->d	

The First of all states:

First(S) = First(A)

 $First(A) = \{a, b\}$

 $First(C) = \{c\}$

 $First(C') = First(D) \cup \{\epsilon\}$

 $First(D) = \{d\}$

The Follow of all states:

 $Follow(S) = \{\$\}$

 $Follow(A) = \{c\}$

 $Follow(C) = \{\$\}$

Follow(C') = {\$}}

Follow(D) = $\{d, \$\}$

For the input abcdd:

Input	Step#	Stack (top is on left)				
abcdd\$	1	S				
abcdd\$	2	AC				
abcdd\$	3	aAC				
bcdd\$	4	AC				
bcdd\$	5	bC				
cdd\$	6	С				
cdd\$	7	cC'				
dd\$	8	C'				
dd\$	9	DC'				
dd\$	10	dC'				
d\$	11	C'				
d\$	12	DC'				
d\$	13	dC'				
\$ \$	14	C'				
\$	15	ε				

e.

i. The CFG for which this CFSM was constructed:

$$S \rightarrow bAb$$

$$A \rightarrow (B \mid a)$$

$$B \rightarrow Aa$$
)

- ii. The transitions in the CFSM don't implement the reduce actions, so when reading the input, b gets us to state I1 and a to I5. This state doesn't make a transition with b, the next letter in the input and so the CFSM doesn't accept.
- iii. The LR(0) will work on the input as follows:

	1	1
Stack	Input	Action
1_0	b((aa)a)b\$	Shift, ->I1
I_0bl1	((aa)a)b\$	Shift, ->16
I_0bl1(l6	(aa)a)b\$	Shift, ->I6
I_0bl1(l6(l6	a a) a) b\$	Shift, ->I5
I_0bl1(l6(l6al5	a)a)b\$	Reduce A->a
I_0bl1(l6(l6Al8	a)a)b\$	Shift, ->19
I_0bl1(l6(l6Al8al9)a)b\$	Shift, I10
I_0bl1(l6(l6Al8al9l)10	a) b\$	Reduce B->Aa)
I_0bl1(l6(l6Bl7	a) b\$	Reduce A->(B
I_0bl1(l6Al8	a) b\$	Shift, ->19

I_0bI1(I6AI8aI9) b\$	Shift, ->I10
I_0bi1(l6Al8al9)l10	b\$	Reduce B-> Aa)
I_0bi1(I6Bi7	b\$	Reduce A->(B
I_0bl1Al2	b\$	Shift, ->I3
I_0bI1AI2b	\$	Reduce S->bAb
I_0SI4	\$	Reduce S'->S
I_0	\$	done