Outline

- 1. Deterministic lifting theorem for block sensitivity
- 2. $\Omega(n)$ lower bound for Set Disjointness
- 3. Intuition of $\Omega(n)$ lower bound for Tseitin Formula

Proof overview

There exists a constant $c \ge 0$ such that the following holds. Let $f: \{0,1\}^n \to \{0,1\}$ be any boolean function, and let $g: [q] \times [q] \to \{0,1\}$ be low discrepancy gadget function such that $q \ge c$. Then

$$P^{CC}(f \circ g^n) = \Omega(bs(f) \cdot \log q)$$

Raz-McKenzie's simulation [RM99,GPW15]

To show the simulation is correct,

1) Thickness Lemma: Average (degree) to worst (degree) reduction (or sunflower lemma [LMMPZ20]) to keep the disperser property: $g^n(X_I, Y_I) = \{0,1\}^I$ (g is gadget function and I is unfixed coordinates)

To show the simulation is efficient,

2) Projection Lemma: Potential function argument and probabilistic method to ensure

 $g(X_i, Y_i) = Z_i$ and potential function decreases by at least $\Omega(\log q)$ in each "query iteration"

Raz-McKenzie's simulation [RM99,GPW15]

 $f \circ g^n$

 $f: \{0,1\}^n \to \{0,1\}$

However, **Thickness Lemma** has gadget size barrier:

Average (degree) to worst (degree) reduction (or sunflower lemma [LMMPZ20]) need $q = \Omega(n)$

Gadget size is a fundamental parameter in lifting theorems and their applications [GP16, GJW16, GR18].

Our simulation

To show the simulation is correct, we follow the decision tree path in each "query iteration"

To show the simulation is efficient,

2) Projection Lemma: Potential function argument and low-discrepancy property [CFKMP19] to ensure

potential function decreases by at least $\Omega(\log q)$ in each "query iteration"

Our simulation

 $f \circ g^n$

How to keep a long path? Block sensitivity of $f:\{0,1\}^n \to \{0,1\}$ (a lower bound of query complexity)

WLOG Assume $bs(f, 0^n) = n$, we could find a query path with $\Omega(n)$ length by always answer 0.

We need a new **Projection Lemma:**

- 1) Projection condition: $e_i \notin g^n(X, Y)$
- Key Observation: Our projection can be delayed
- 2) Potential function: density of 0^n
- 3) Keep $g(X_i, Y_i) = 0$

Projection Lemma

WLOG Assume $bs(f, 0^n) = n$,

1) Potential function: density of 0^n We define $D_0^I \coloneqq \{(x,y) \in [q]^I \times [q]^I \colon g^I(x,y) = 0^I\}$.

For each $I \subseteq [n]$ and $R = X \times Y \subseteq [q]^I \times [q]^I$, we define it's potential function as

$$E(R) := \log \frac{|R \cap D_0^I|}{|D_0^I|}$$

2) Projection condition: if $e_i \notin g^n(X,Y)$, we do projection on i and keep $g(X_i,Y_i)=0$

Do projection on Alice's side: Find a $u \in [q]$

$$X' = \{x \in X : x_i = u\} \text{ and } Y' = \{y \in Y : g(u, y_i) = 0\}$$

Do projection on Bob's side: Find a $v \in [q]$

$$Y' = \{y \in Y : y_i = v\} \text{ and } X' = \{x \in X : g(x_i, v) = 0\}$$

Potential function argument

Assume
$$bs(f, 0^n) = n$$
, $E(R) := \log \frac{|R \cap D_0^I|}{|D_0^I|}$

By average argument,

potential function decrease by at least O(1) in each "communication iteration"

if $e_i \notin g^n(X,Y)$, we do projection on i and keep $g(X_i,Y_i)=0$

potential function increase by at least $\Omega(\log q)$ in each "query iteration"

 $\textbf{Low-discrepancy gadget:} \ \ \text{Fix} \left(x_{I \setminus i} \text{ , } y_{I \setminus i} \right) \text{ with } \\ g^{I \setminus i} \left(x_{I \setminus i} \text{ , } y_{I \setminus i} \right) = 0^{I \setminus i} \text{ , If } \\ e_i \notin g^I(X_I, Y_I) \text{ then } |X_i| |Y_i| \leq q \text{ and } |Y_i| |Y_i| |Y_i| \leq q \text{ and } |Y_i| |Y_i| |Y_i| \leq q \text{ and } |Y_i| |Y_i$

By average argument, either we could do projection on Alice' side or Bob's side to increase potential function.

$\Omega(n)$ lower bound for Set Disjointness

Previous proofs:	Our proofs:
Entropy argument [Raz92]	Potential function argument:
Information complexity paradigm [BYJKS03]:	1. Using entropy as potential function
1. Direct sum argument	2. Potential function increase by at least $\Omega(1)$ in each "query iteration":
2. information complexity of AND is $\Omega(1)$: Average encoding theorem + "Cut-and-Paste Lemma"	Projection Lemma + + "Cut-and-Paste Lemma"

Our goal

Let P be the hard input distribution $D_0^{[n]} = \{(x,y): \Lambda^n(x,y) = 0^n\}$ $D_i^{[n]} = \{(x,y): \Lambda^n(x,y) = e_i\}$

Main Lemma:
$$\sum P(R \cap D_i^{[n]}) + 2^{-\Omega(n)} \ge \Omega(P(R \cap D_0^{[n]}))$$
 (Corruption bound [Raz92])

For any rectangle R

Either

Projection Lemma + "Cut-and-Paste Lemma"
$$\sum P\left(R \cap D_i^{[n]}\right) \leq \epsilon \cdot P\left(R \cap D_0^{[n]}\right) \qquad \qquad P\left(R \cap D_0^{[n]}\right) \leq 2^{-\Omega(n)}$$

Or

$$\sum P\left(R \cap D_i^{[n]}\right) \ge \epsilon \cdot P\left(R \cap D_0^{[n]}\right)$$

Hard input distribution P

We define the a hard distribution distribution *P* as follows,

- 1. Randomly sample a bit $b \in \{0,1\}$ and $i \in [n]$
- 2. If b=0, randomly sample (x,y) in $D_0^{[n]}$ If b=1, randomly sample (x,y) in $D_i^{[n]}$

Potential function: entropy of Q

Q be the distribution of P condition on $D_0^I \cap R$

$$E(Q) = H(Q) - |I| \log 3$$

For any family of distributions $Q_1, ..., Q_l$, and let Q be a linear combination of them, i.e., $Q = \sum_i p_i \cdot Q_i$, the potential function of Q is defined as $E(Q) = \sum_j p_j \cdot E(Q_j)$.

Deterministic: Density of D_0^I

Randomized: Entropy of the distribution of D_0^I

How to do Projection?

$$E(Q) = H(Q) - |I| \log 3$$

Q Do projection on Alice's side and coordinate i

$$E(Q) = p_1 \cdot E(Q_1) + p_2 \cdot E(Q_2).$$

$$p_1 = Q(X_i = 0)$$
 and $p_2 = Q(X_i = 1)$

Similarly, we can do projection on Bob's side

Analysis of Projection Lemma

Our Goal:
$$E(Q_{I\setminus i}) = E(Q_I) + \Omega(1)$$

Chain Rule of entropy: Let W be the random variable that $Pr[W = 0] = p_1$ and $Pr[W = 1] = p_2$

$$H(Q_I) = H(W) + H(Q_{I \setminus i}|W) + H(Q_i|Q_{I \setminus i}, W)$$

$$E(Q_{I\setminus i}) = E(Q_I) + \log 3 - H(W) + \Pr[W = 0] \cdot H(Q_i \mid Q_{I\setminus i}, W = 0)$$

Since $H(Q_i \mid Q_{I \setminus i}, W = 1) = 0$, we need bound $\log 3 - H(W) + \Pr[W = 0] \cdot H(Q_i \mid Q_{I \setminus i}, W = 0) = \Omega(1)$

Let t < 1 be a constant, Assume $H(Q_i | Q_{I \setminus i}, W = 0) \le t$

$$\log 3 - H(W) + \Pr[W = 0] \cdot t = \log \left(\frac{3}{1 + 2^t} \right) = \Omega(1)$$

"Cut-and-Paste Lemma" (Connections between bias and potential function)

How to bound $H(Q_i | Q_{I \setminus i}, W = 0) \le t$?

$$Y = 0 \quad Y = 1$$
 $X = 0 \quad 0 \quad 0$
 $X = 1 \quad 0 \quad 1$

Lemma:

If $\Pr_{(x,y)\sim P}[x \land y=1] \leq \epsilon \cdot \Pr_{(x,y)\sim P}[x \land y=0]$ where ϵ is a tiny constant. then either

$$\Pr_{(x,y)\sim Q}[x=1 \mid y=0] \le \epsilon \cdot \Pr_{(x,y)\sim Q}[x=0 \mid y=0]$$

or

$$\Pr_{(x,y)\sim Q}[y = 1|x = 0] \le \epsilon \cdot \Pr_{(x,y)\sim Q}[y = 0|x = 0]$$

Either entropy loss of X $(H(Q_i | Q_{I \setminus i}, X_{_i} = 0) \le t)$ is $\Omega(1)$ or entropy loss of Y $(H(Q_i | Q_{I \setminus i}, Y_{_i} = 0) \le t)$ is $\Omega(1)$ So, we can do projection either on Alice's side or Bob's side.

Connections between information complexity

Projection Lemma + Chain Rule

Direct sum argument

K-UDISJ	Potential function in our simulation	Information complexity paradigm
$\Omega(n/k^4)$	Entropy	Entropy argument [AMS99] [Raz92]
$\Omega(n/k^2)$	KL divergence	Hellinger distance [BYJKS03]
$\Omega(n/k)$	Shifting + "KL divergence" (not finished yet)	Hellinger distance [Jay09] " KL divergence" [Gro09]

Intuition of $\Omega(n)$ lower bound for Tseitin Formula

Raz-McKenzie simulation : Maintain full set : $g^n(X_I, Y_I) = \{0,1\}^I$

Our simulation in block sensitivity : density of one string with high block sensitivity

Question: How to maintain a subset set which is hard enough to prove lower bounds?

We try it by use Tseitin Formula as a example

Tseitin Formula

Let G = (V, E, l) be a connected labelled expander graph of maximum degree d where the labelling $l: V \to \{0,1\}$ has odd Hamming weight.

The **Tseitin formula Tse**_G associated with G is the d-CSP that has the edges $e \in E$ as variables and for each node $v \in V$ there is a constraint C_v defined by $C_v(\alpha) = 1$ if and only if $\bigoplus_{e \in N(v)} \alpha(e) = l(v)$

It follows from a simple parity argument that is unsatisfiable.

Communication version: $Tse_G \circ g^m(x,y)$ where g is the constant gadget function

Previous results:

 $\Omega(m/\log m)$ lower bound in [GP14] via critical block sensitivity and $\Omega(m)$ lower bound in [PR17] via "degree to rank lifting"

potential function argument :

- 1. Define a potential function which is large at the beginning and small in the end
- 2. In each query round, we set the value of edge e to maximize the potential function.
- 3. Proving potential function is still large after $\Omega(n)$ queries.

For assignment $\alpha \in \{0,1\}^m$, $viol(\alpha)$ be the set of unsatisfiable nodes

potential function : density of 1-violation

Let $U \subseteq \{0,1\}^m$ be the set of possible assignment. $R(U) = \{v : \text{ there is a } \alpha \in U, \text{ viol}(\alpha) = v \}$

Claim 1:

Let $U \subseteq \{0,1\}^m$ be the set of all possible assignment, then for any query of $U = U_0 \cup U_1$, exist $b \in \{0,1\}$, $|R(U_b)| \ge R(U)/2$

By Claim 1 and Claim 2, we only get a $\Omega(\log n)$ lower bound

Claim 2:

Let $U \subseteq \{0,1\}^m$ be the set of all possible assignment, If there is a $v \in [n]$ is violated by any assignment $\alpha \in U$, then $|R(U)| \le 1$.

 $R(U) = \{ v : \text{ there is a } \alpha \in U, \text{ viol}(\alpha) = v \}$

Gap amplification for R(U): (Using edge expansion of expander graph to maintain the subset R(U))

Lemma 1.5 (edge expansion). Suppose G is a λ eigenvalue expander. Then for every $S \subseteq V$ with $|S| \leq n/2$ we have

$$E(S, V - S) \ge \frac{d - \lambda}{2} |S|$$

When $\lambda = d - \Omega(1)$, then there is a constant $c, E(S, V - S) \ge c|S|$.

Observation 1:

if
$$\frac{n}{2} \ge R(U) \ge \frac{n}{4}$$
,
then $E(R(U), V - R(U)) = \Omega(n)$

 $R(U) = \{ v : \text{ there is a } \alpha \in U, \text{ viol}(\alpha) = v \}$

Gap amplification for R(U): (Using edge expansion of expander graph to maintain the subset R(U))

Observation 2:

Claim 1.6. All edges in E(R(U), V - R(U)) must be queried.

Proof. If $e = (u, v) \in E(R(U), V - R(U))$ is not queried, since there is assignment α with $Viol(\alpha) = \{v\}$. then there is a assignment α' with $Viol(\alpha) = \{u\}$. α' is obtained from α by flipping the values of edge e. \square

For assignment $\alpha \in \{0,1\}^m$, $viol(\alpha)$ be the set of unsatisfiable nodes

potential function: density of 1-violation

Let $U \subseteq \{0,1\}^m$ be the set of possible assignment. $R(U) = \{v : \text{ there is a } \alpha \in U, \text{ viol}(\alpha) = v \}$ and R(U) = n at the beginning.

Claim 1:

Let $U \subseteq \{0,1\}^m$ be the set of all possible assignment, then for any query of $U = U_0 \cup U_1$, exist $b \in \{0,1\}$, $|R(U_b)| \ge R(U)/2$

1. if
$$\frac{n}{2} \ge R(U) \ge \frac{n}{4}$$
, then $E(R(U), V - R(U)) = \Omega(n)$
2. All edges in $E(R(U), V - R(U))$ must be queried.

Gap amplification!

Claim 2:

Let $U \subseteq \{0,1\}^m$ be the set of all possible assignment, If there is a $v \in [n]$ is violated by any assignment $\alpha \in U$, then $|R(U)| \le 1$.

Communication lower bound for Tseitin Formula

How to extend the Gap amplification lemma to communication version?

Reference

[Raz92] On the distributional complexity of set disjointness

[RM99] Separation of the monotone nc hierarchy.

[AMS99] The space complexity of approximating the frequency moments

[BYJKS03] An information statistics approach to data stream and communication complexity

[Jay09] Hellinger Strikes Back: A Note on the Multi-party Information Complexity of AND

[Gro09] Asymptotically optimal lower bounds on the NIH-multi-party information complexity of the AND-function and disjointness

[GP14] Communication Lower Bounds via Critical Block Sensitivity

[GPW15] Deterministic Communication vs. Partition Number

[PR17] Strongly exponential lower bounds for monotone computation

[CFKMP19] Query-to-communication lifting using low-discrepancy gadgets