Greetings to everyone!!

• Ill be creating a model on the basis of data of the Loan Defaulters

Importing the Libraries

- Numpy
- Pandas
- · Matplotlib
- Seaborn
- · From sklearn
 - Scipy
 - Label Encoder
 - Model Selection
 - Decision Tree
 - Random Forest
- · From imblearn
 - Random OverSampling

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
```

In [2]:

```
#calling the data from csv file and checking the head of the data
df = pd.read_csv("credit_train.csv")
df.head()
```

Out[2]:

	Loan ID	Customer ID	Loan Status	Current Loan Amount	Term	Credit Score	Annual Income	Years in current job	Hon Ownersh
0	14dd8831- 6af5-400b- 83ec- 68e61888a048	981165ec- 3274-42f5- a3b4- d104041a9ca9	Fully Paid	445412.0	Short Term	709.0	1167493.0	8 years	Hor Mortga _l
1	4771cc26- 131a-45db- b5aa- 537ea4ba5342	2de017a3- 2e01-49cb- a581- 08169e83be29	Fully Paid	262328.0	Short Term	NaN	NaN	10+ years	Hor Mortga _l
2	4eed4e6a- aa2f-4c91- 8651- ce984ee8fb26	5efb2b2b-bf11- 4dfd-a572- 3761a2694725	Fully Paid	99999999.0	Short Term	741.0	2231892.0	8 years	Own Hor
3	77598f7b- 32e7-4e3b- a6e5- 06ba0d98fe8a	e777faab- 98ae-45af- 9a86- 7ce5b33b1011	Fully Paid	347666.0	Long Term	721.0	806949.0	3 years	Own Hor
4	d4062e70- befa-4995- 8643- a0de73938182	81536ad9- 5ccf-4eb8- befb- 47a4d608658e	Fully Paid	176220.0	Short Term	NaN	NaN	5 years	Re
4									•

Exploratory Data Analysis

In [3]:

```
# Information about the data
 2 df.info()
    CUS COMET ID
                                  TOOOOO HOH HATT ODJECT
2
    Loan Status
                                  100000 non-null object
3
    Current Loan Amount
                                  100000 non-null float64
4
                                  100000 non-null object
                                  80846 non-null
5
    Credit Score
                                                  float64
6
    Annual Income
                                  80846 non-null float64
7
    Years in current job
                                  95778 non-null
                                                  object
                                  100000 non-null object
8
    Home Ownership
9
    Purpose
                                  100000 non-null object
10 Monthly Debt
                                  100000 non-null float64
11 Years of Credit History
                                  100000 non-null float64
12 Months since last delinquent 46859 non-null
                                                   float64
                                  100000 non-null float64
13 Number of Open Accounts
14 Number of Credit Problems
                                  100000 non-null float64
15 Current Credit Balance
                                  100000 non-null float64
16 Maximum Open Credit
                                  99998 non-null
                                                  float64
17
    Bankruptcies
                                  99796 non-null
                                                  float64
                                  99990 non-null
18 Tax Liens
                                                  float64
dtypes: float64(12), object(7)
memory usage: 14.6+ MB
```

In [4]:

```
1 # Descriptive analysis of the Data
2 df.describe()
```

Out[4]:

	Current Loan Amount	Credit Score	Annual Income	Monthly Debt	Years of Credit History	Months since last delinquent
count	1.000000e+05	80846.000000	8.084600e+04	100000.000000	100000.000000	46859.000000
mean	1.176045e+07	1076.456089	1.378277e+06	18472.412336	18.199141	34.901321
std	3.178394e+07	1475.403791	1.081360e+06	12174.992609	7.015324	21.997829
min	1.080200e+04	585.000000	7.662700e+04	0.000000	3.600000	0.000000
25%	1.796520e+05	705.000000	8.488440e+05	10214.162500	13.500000	16.000000
50%	3.122460e+05	724.000000	1.174162e+06	16220.300000	16.900000	32.000000
75%	5.249420e+05	741.000000	1.650663e+06	24012.057500	21.700000	51.000000
max	1.000000e+08	7510.000000	1.655574e+08	435843.280000	70.500000	176.000000
4						•

By looking at the above description we can say that

- The mean value of monthly Debt is 18742.4
- Maximum Credit problems arises are 15

In [5]:

```
#As the Loan ID and Customer ID column is not needed, so I dropped the columns
df.drop(["Loan ID","Customer ID"],axis=1, inplace = True)
```

In [6]:

```
1 df.isna().sum()
2
3 #To check the missing values in the Dataset
```

Out[6]:

Loan Status	514
Current Loan Amount	514
Term	514
Credit Score	19668
Annual Income	19668
Years in current job	4736
Home Ownership	514
Purpose	514
Monthly Debt	514
Years of Credit History	514
Months since last delinquent	53655
Number of Open Accounts	514
Number of Credit Problems	514
Current Credit Balance	514
Maximum Open Credit	516
Bankruptcies	718
Tax Liens	524
dtype: int64	

localhost:8888/notebooks/Desktop/machine learning lectures/New folder/Loan defaulters prediction.ipynb

In [7]:

```
#To visualize the null values in the Data set
sns.heatmap(df.isnull(), yticklabels=False, cbar=False, cmap="viridis")
```

Out[7]:

<AxesSubplot:>

In [8]:

```
#Looking at the dataset, columnns which have more than 50% missing values needs to be d

df.drop(["Months since last delinquent"],axis = 1, inplace = True)

df.drop(["Credit Score"],axis = 1, inplace = True)

df.drop(["Annual Income"],axis = 1, inplace = True)
```

In [9]:

```
# Coulmns that has less than 50% missing values were simply handled by dropna feature
df.dropna(inplace = True)
```

In [10]:

1 df.head()

Out[10]:

	Loan Status	Current Loan Amount	Term	Years in current job	Home Ownership	Purpose	Monthly Debt	Years of Credit History	Number of Open Accounts	F
(Fully Paid	445412.0	Short Term	8 years	Home Mortgage	Home Improvements	5214.74	17.2	6.0	
•	Fully Paid	262328.0	Short Term	10+ years	Home Mortgage	Debt Consolidation	33295.98	21.1	35.0	
2	Fully Paid	99999999.0	Short Term	8 years	Own Home	Debt Consolidation	29200.53	14.9	18.0	
3	Fully Paid	347666.0	Long Term	3 years	Own Home	Debt Consolidation	8741.90	12.0	9.0	
4	Fully Paid	176220.0	Short Term	5 years	Rent	Debt Consolidation	20639.70	6.1	15.0	

In [11]:

1 df.isna().sum()

Out[11]:

Loan Status	0
Current Loan Amount	0
Term	0
Years in current job	0
Home Ownership	0
Purpose	0
Monthly Debt	0
Years of Credit History	0
Number of Open Accounts	0
Number of Credit Problems	0
Current Credit Balance	0
Maximum Open Credit	0
Bankruptcies	0
Tax Liens	0
dtype: int64	

In [12]:

sns.heatmap(df.isnull(), yticklabels=False, cbar=False, cmap="viridis")

Out[12]:

<AxesSubplot:>

Now there are no missing values!!

In [13]:

```
1 df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 95572 entries, 0 to 99998
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	Loan Status	95572 non-null	object
1	Current Loan Amount	95572 non-null	float64
2	Term	95572 non-null	object
3	Years in current job	95572 non-null	object
4	Home Ownership	95572 non-null	object
5	Purpose	95572 non-null	object
6	Monthly Debt	95572 non-null	float64
7	Years of Credit History	95572 non-null	float64
8	Number of Open Accounts	95572 non-null	float64
9	Number of Credit Problems	95572 non-null	float64
10	Current Credit Balance	95572 non-null	float64
11	Maximum Open Credit	95572 non-null	float64
12	Bankruptcies	95572 non-null	float64
13	Tax Liens	95572 non-null	float64

dtypes: float64(9), object(5)
memory usage: 10.9+ MB

In [14]:

checking the correlation between the columns
df.corr().style.background_gradient()

Out[14]:

	Current Loan Amount	Monthly Debt	Years of Credit History	Number of Open Accounts	Number of Credit Problems	Current Credit Balance	Maximum Open Credit	Bankrı
Current Loan Amount	1.000000	-0.007967	0.018941	0.000731	-0.003692	0.003870	-0.001092	-0.
Monthly Debt	-0.007967	1.000000	0.218537	0.407513	-0.049283	0.482037	0.039326	-0.
Years of Credit History	0.018941	0.218537	1.000000	0.139674	0.057824	0.215992	0.030196	0.
Number of Open Accounts	0.000731	0.407513	0.139674	1.000000	-0.009716	0.225043	0.030088	-0.
Number of Credit Problems	-0.003692	-0.049283	0.057824	-0.009716	1.000000	-0.110298	-0.011487	0.
Current Credit Balance	0.003870	0.482037	0.215992	0.225043	-0.110298	1.000000	0.136555	-0.
Maximum Open Credit	-0.001092	0.039326	0.030196	0.030088	-0.011487	0.136555	1.000000	-0.
Bankruptcies	-0.001133	-0.072196	0.061097	-0.017804	0.751056	-0.119691	-0.013958	1.
Tax Liens	-0.003228	0.021759	0.017175	0.005862	0.581465	-0.015566	-0.001068	0.
4								•

- By this analysis we can say that,

- 1) Bankruptcies and Tax liens has high correlation with Number of credit problems
- 2) Current credit balance has some correlation with Monthly debt

In [15]:

```
1 df["Loan Status"].value_counts()
```

Out[15]:

Fully Paid 74257 Charged Off 21315

Name: Loan Status, dtype: int64

In [16]:

```
# checking the count of people who have fully paid and failed to pay
sns.countplot(data = df, x= "Loan Status")
plt.grid(True)
```


In [17]:

```
df["Purpose"].value_counts()
```

Out[17]:

Debt Consolidation	75277
other	5665
Home Improvements	5511
Other	3104
Business Loan	1519
Buy a Car	1208
Medical Bills	1041
Buy House	652
Take a Trip	546
major_purchase	333
small_business	272
moving	139
wedding	111
vacation	95
Educational Expenses	89
renewable_energy	10
Name: Purpose, dtype:	int64

In [18]:

```
# Purpose of the Loan that was taken
sns.countplot(data = df, x= "Purpose")
plt.title("Purpose of Loan")
plt.xlabel("Purpose")
plt.ylabel("Applicant")
plt.xticks(rotation=90)
plt.grid(True)
```


By this visualization we can say that

· the highest reason for the loan was Debt consolidation

In [19]:

```
1 df["Years in current job"].value_counts()
```

Out[19]:

10+ years 31090 2 years 9104 8151 3 years 8114 < 1 year 5 years 6778 6436 1 year 4 years 6132 6 years 5676 5573 7 years 8 years 4569 3949 9 years

Name: Years in current job, dtype: int64

In [20]:

```
1 sns.countplot(data = df, x= "Years in current job")
2 plt.title("Years of Experience")
3 plt.xlabel("Years")
4 plt.ylabel("Applicant")
5 plt.xticks(rotation=45)
6 plt.show()
7
```


In [21]:

- 1 # checking the pairplot for the Dataset
- 2 sns.pairplot(df, hue="Loan Status")

Out[21]:

<seaborn.axisgrid.PairGrid at 0x2bf0532c10>

In [22]:

```
1 df.head()
```

Out[22]:

	Loan Status	Current Loan Amount	Term	Years in current job	Home Ownership	Purpose	Monthly Debt	Years of Credit History	Number of Open Accounts	F
0	Fully Paid	445412.0	Short Term	8 years	Home Mortgage	Home Improvements	5214.74	17.2	6.0	
1	Fully Paid	262328.0	Short Term	10+ years	Home Mortgage	Debt Consolidation	33295.98	21.1	35.0	
2	Fully Paid	99999999.0	Short Term	8 years	Own Home	Debt Consolidation	29200.53	14.9	18.0	
3	Fully Paid	347666.0	Long Term	3 years	Own Home	Debt Consolidation	8741.90	12.0	9.0	
4	Fully Paid	176220.0	Short Term	5 years	Rent	Debt Consolidation	20639.70	6.1	15.0	
4										•

Data preprocessing

In [23]:

```
1 # splitting the data into X and Y
2 x = df.iloc[:,1:]
3 y = df.iloc[:,:1]
```

In [24]:

1 x

Out[24]:

	Current Loan Amount	Term	Years in current job	Home Ownership	Purpose	Monthly Debt	Years of Credit History	Number of Open Accounts	Nu of C Prob
0	445412.0	Short Term	8 years	Home Mortgage	Home Improvements	5214.74	17.2	6.0	
1	262328.0	Short Term	10+ years	Home Mortgage	Debt Consolidation	33295.98	21.1	35.0	
2	99999999.0	Short Term	8 years	Own Home	Debt Consolidation	29200.53	14.9	18.0	
3	347666.0	Long Term	3 years	Own Home	Debt Consolidation	8741.90	12.0	9.0	
4	176220.0	Short Term	5 years	Rent	Debt Consolidation	20639.70	6.1	15.0	
99994	210584.0	Short Term	1 year	Home Mortgage	Other	3727.61	17.4	6.0	
99995	147070.0	Short Term	7 years	Own Home	other	2202.86	22.3	5.0	
99996	99999999.0	Short Term	1 year	Rent	Debt Consolidation	13109.05	9.4	22.0	
99997	103136.0	Short Term	6 years	Rent	Debt Consolidation	7315.57	18.8	12.0	
99998	530332.0	Short Term	9 years	Rent	Debt Consolidation	9890.07	15.0	8.0	
95572	rows × 13 co	lumns							>

In [25]:

1 y

	Loan Status
0	Fully Paid
1	Fully Paid
2	Fully Paid
3	Fully Paid
4	Fully Paid
99994	Fully Paid
99995	Fully Paid
99996	Fully Paid
99997	Fully Paid
99998	Fully Paid

In [26]:

```
1 df_cat = df.select_dtypes(object)
2 df_num = df.select_dtypes(["int64", "float64"])
```

In [27]:

```
1 df_cat
```

Out[27]:

	Loan Status	Term	Years in current job	Home Ownership	Purpose
0	Fully Paid	Short Term	8 years	Home Mortgage	Home Improvements
1	Fully Paid	Short Term	10+ years	Home Mortgage	Debt Consolidation
2	Fully Paid	Short Term	8 years	Own Home	Debt Consolidation
3	Fully Paid	Long Term	3 years	Own Home	Debt Consolidation
4	Fully Paid	Short Term	5 years	Rent	Debt Consolidation
99994	Fully Paid	Short Term	1 year	Home Mortgage	Other
99995	Fully Paid	Short Term	7 years	Own Home	other
99996	Fully Paid	Short Term	1 year	Rent	Debt Consolidation
99997	Fully Paid	Short Term	6 years	Rent	Debt Consolidation
99998	Fully Paid	Short Term	9 years	Rent	Debt Consolidation

95572 rows × 5 columns

```
In [28]:
```

```
1 df_num
```

Out[28]:

	Current Loan Amount	Monthly Debt	Years of Credit History	Number of Open Accounts	Number of Credit Problems	Current Credit Balance	Maximum Open Credit	Bankruptcies
0	445412.0	5214.74	17.2	6.0	1.0	228190.0	416746.0	1.0
1	262328.0	33295.98	21.1	35.0	0.0	229976.0	850784.0	0.0
2	99999999.0	29200.53	14.9	18.0	1.0	297996.0	750090.0	0.0
3	347666.0	8741.90	12.0	9.0	0.0	256329.0	386958.0	0.0
4	176220.0	20639.70	6.1	15.0	0.0	253460.0	427174.0	0.0
99994	210584.0	3727.61	17.4	6.0	0.0	456.0	259160.0	0.0
99995	147070.0	2202.86	22.3	5.0	0.0	47766.0	658548.0	0.0
99996	99999999.0	13109.05	9.4	22.0	0.0	153045.0	509234.0	0.0
99997	103136.0	7315.57	18.8	12.0	1.0	109554.0	537548.0	1.0
99998	530332.0	9890.07	15.0	8.0	0.0	404225.0	738254.0	0.0

95572 rows × 9 columns

In [29]:

```
1 df["Term"].value_counts()
```

Out[29]:

Short Term 68471 Long Term 27101 Name: Term, dtype: int64

In [30]:

```
df["Years in current job"].value_counts()
```

Out[30]:

```
10+ years
             31090
2 years
              9104
              8151
3 years
< 1 year
              8114
5 years
              6778
1 year
              6436
4 years
              6132
6 years
              5676
7 years
              5573
              4569
8 years
9 years
              3949
```

Name: Years in current job, dtype: int64

```
In [31]:
```

```
1 df["Home Ownership"].value_counts()
```

Out[31]:

Home Mortgage 46414
Rent 40550
Own Home 8403
HaveMortgage 205

Name: Home Ownership, dtype: int64

In [32]:

```
1 df["Purpose"].value_counts()
2
```

Out[32]:

Debt Consolidation	75277
other	5665
Home Improvements	5511
Other	3104
Business Loan	1519
Buy a Car	1208
Medical Bills	1041
Buy House	652
Take a Trip	546
major_purchase	333
small_business	272
moving	139
wedding	111
vacation	95
Educational Expenses	89
renewable_energy	10
Name: Purpose, dtype:	int64

In [33]:

```
1 # Label encoding the Data
2 from sklearn.preprocessing import LabelEncoder
```

In [34]:

```
for col in df_cat:
    le = LabelEncoder()
    df_cat[col]=le.fit_transform(df_cat[col])
```

In [35]:

```
1 df_cat["Loan Status"].value_counts()
```

Out[35]:

1 74257 0 21315

Name: Loan Status, dtype: int64

```
In [36]:
 1 df_cat["Term"].value_counts()
Out[36]:
     68471
1
     27101
Name: Term, dtype: int64
In [37]:
 1 df_cat["Years in current job"].value_counts()
Out[37]:
1
      31090
2
       9104
3
       8151
10
       8114
5
       6778
0
       6436
4
       6132
6
       5676
7
       5573
8
       4569
9
       3949
Name: Years in current job, dtype: int64
In [38]:
 1 df_cat["Home Ownership"].value_counts()
Out[38]:
1
     46414
3
     40550
2
      8403
       205
```

Name: Home Ownership, dtype: int64

```
In [39]:
```

```
1 df_cat["Purpose"].value_counts()
Out[39]:
3
      75277
11
       5665
5
       5511
7
       3104
0
       1519
2
       1208
6
       1041
1
        652
8
        546
9
        333
        272
13
        139
10
15
        111
14
         95
4
         89
12
         10
Name: Purpose, dtype: int64
```

In [40]:

```
#to check the skewness in the data
from scipy.stats import skew
```

In [41]:

```
1
     for col in df num:
 2
         print(col)
 3
         print(skew( df_num[col] ))
 4
  5
         plt.figure()
         sns.distplot(df_num[col])
 6
  7
         plt.show()
   10
   0.5
   0.0
        0.0
             0.2
                          0.6
                               0.8
                                     1.0
                                           1.2
                                                 1.4
                                                       1.6
                       Maximum Open Credit
                                                      le9
Bankruptcies
3.5779160537124457
```


In [42]:

```
1 df =pd.concat([df_cat,df_num], axis = 1)
```

In [43]:

1 df.head()

Out[43]:

	Loan Status	Term	Years in current job	Home Ownership	Purpose	Current Loan Amount	Monthly Debt	Years of Credit History	Number of Open Accounts	Nun of Cr Probl
0	1	1	8	1	5	445412.0	5214.74	17.2	6.0	
1	1	1	1	1	3	262328.0	33295.98	21.1	35.0	
2	1	1	8	2	3	99999999.0	29200.53	14.9	18.0	
3	1	0	3	2	3	347666.0	8741.90	12.0	9.0	
4	1	1	5	3	3	176220.0	20639.70	6.1	15.0	
4										•

In [44]:

```
1 x = df.iloc[:,1:]
2 y = df.iloc[:,:1]
```

In [45]:

1 x

Out[45]:

	Term	Years in current job	Home Ownership	Purpose	Current Loan Amount	Monthly Debt	Years of Credit History	Number of Open Accounts	Number of Credit Problems
0	1	8	1	5	445412.0	5214.74	17.2	6.0	1.0
1	1	1	1	3	262328.0	33295.98	21.1	35.0	0.0
2	1	8	2	3	99999999.0	29200.53	14.9	18.0	1.0
3	0	3	2	3	347666.0	8741.90	12.0	9.0	0.0
4	1	5	3	3	176220.0	20639.70	6.1	15.0	0.0
99994	1	0	1	7	210584.0	3727.61	17.4	6.0	0.0
99995	1	7	2	11	147070.0	2202.86	22.3	5.0	0.0
99996	1	0	3	3	99999999.0	13109.05	9.4	22.0	0.0
99997	1	6	3	3	103136.0	7315.57	18.8	12.0	1.0
99998	1	9	3	3	530332.0	9890.07	15.0	8.0	0.0

95572 rows × 13 columns

In [46]:

1 y

Out[46]:

	Loan Status
0	1
1	1
2	1
3	1
4	1
99994	1
99995	1
99996	1
99997	1
99998	1

95572 rows × 1 columns

Model creation

In [47]:

```
from sklearn.model_selection import train_test_split, cross_val_score
xtrain, xtest, ytrain, ytest = train_test_split(x,y, test_size = 0.3, random_state =0)
```

In [48]:

```
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier()
rfc.fit(xtrain,ytrain)
ypred = rfc.predict(xtest)
```

In [49]:

1 | from sklearn.metrics import classification_report, accuracy_score, confusion_matrix

In [50]:

```
print(classification_report(ytest, ypred))
print()
print(accuracy_score(ytest, ypred))
print()
print(confusion_matrix(ytest, ypred))
```

	precision	recall	f1-score	support
0	0.57	0.07	0.12	6395
1	0.79	0.99	0.87	22277
accuracy			0.78	28672
macro avg	0.68	0.53	0.50	28672
weighted avg	0.74	0.78	0.71	28672

0.7807268415178571

```
[[ 440 5955]
[ 332 21945]]
```

In [51]:

```
1 ytrain.value_counts()
```

Out[51]:

Loan Status

1 51980 0 14920

dtype: int64

In [52]:

```
1 !pip install imblearn
```

Requirement already satisfied: imblearn in c:\users\arsalan\anaconda3\lib\si te-packages (0.0)

Requirement already satisfied: imbalanced-learn in c:\users\arsalan\anaconda 3\lib\site-packages (from imblearn) (0.8.0)

Requirement already satisfied: scipy>=0.19.1 in c:\users\arsalan\anaconda3\l ib\site-packages (from imbalanced-learn->imblearn) (1.6.2)

Requirement already satisfied: scikit-learn>=0.24 in c:\users\arsalan\anacon da3\lib\site-packages (from imbalanced-learn->imblearn) (0.24.1)

Requirement already satisfied: joblib>=0.11 in c:\users\arsalan\anaconda3\lib\site-packages (from imbalanced-learn->imblearn) (1.0.1)

Requirement already satisfied: numpy>=1.13.3 in c:\users\arsalan\anaconda3\l ib\site-packages (from imbalanced-learn->imblearn) (1.20.1)

Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\arsalan\anac onda3\lib\site-packages (from scikit-learn>=0.24->imbalanced-learn->imblear n) (2.1.0)

As the data was highly imbalanced, we need to balance the data using imblearn

```
In [53]:
```

```
# Synthetic minority Oversampling technique(SMOTE)
from imblearn.combine import SMOTETomek
from imblearn.under_sampling import NearMiss
```

In [54]:

```
1 smk = SMOTETomek(random_state = 42)
2 x1, y1 = smk.fit_resample(x,y)
```

In [55]:

```
1 x1.shape, y1.shape
```

Out[55]:

```
((144380, 13), (144380, 1))
```

In [56]:

```
from imblearn.over_sampling import RandomOverSampler
ros = RandomOverSampler()
xtrain1, ytrain1 = ros.fit_resample(x,y)
```

In [57]:

```
1 xtrain1.shape,ytrain1.shape
```

Out[57]:

```
((148514, 13), (148514, 1))
```

In [58]:

1 xtrain1, xtest, ytrain1, ytest = train_test_split(x1,y1, test_size = 0.3, random_state

In [59]:

```
from sklearn.tree import DecisionTreeClassifier
dt = DecisionTreeClassifier()
dt.fit(xtrain1,ytrain1)
ypred = dt.predict(xtest)
print(classification_report(ytest, ypred))
print()
print(accuracy_score(ytest, ypred))
print()
print()
print(confusion_matrix(ytest, ypred))
```

	precision	recall	f1-score	support
0	0.82	0.78	0.80	21879
1	0.79	0.82	0.80	21435
accuracy			0.80	43314
macro avg	0.80	0.80	0.80	43314
weighted avg	0.80	0.80	0.80	43314

0.8023964538024657

```
[[17159 4720]
[ 3839 17596]]
```

In [60]:

```
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier()
rfc.fit(xtrain1,ytrain1)
ypred = rfc.predict(xtest)
```

In [61]:

```
print(classification_report(ytest, ypred))
print()
print(accuracy_score(ytest, ypred))
print()
print(confusion_matrix(ytest, ypred))
```

	precision	recall	f1-score	support
0	0.87	0.80	0.84	21879
1	0.81	0.88	0.85	21435
accuracy			0.84	43314
macro avg	0.84	0.84	0.84	43314
weighted avg	0.84	0.84	0.84	43314

0.8415523849101907

```
[[17557 4322]
[ 2541 18894]]
```

HyperParameter Tuning to improve the accuracy

In [62]:

```
1  rfc1 = RandomForestClassifier(criterion = "entropy")
2  rfc1.fit(xtrain1,ytrain1)
3  ypred = rfc1.predict(xtest)
4  print(classification_report(ytest, ypred))
5  print()
6  print(accuracy_score(ytest, ypred))
7  print()
8  print(confusion_matrix(ytest, ypred))
```

	precision	recall	f1-score	support
0	0.87	0.80	0.84	21879
1	0.81	0.88	0.85	21435
accuracy			0.84	43314
macro avg	0.84	0.84	0.84	43314
weighted avg	0.84	0.84	0.84	43314

0.8412753382278247

```
[[17554 4325]
[ 2550 18885]]
```

In [63]:

```
1    rfc2 = RandomForestClassifier(max_samples = 100)
2    rfc2.fit(xtrain1,ytrain1)
3    ypred = rfc2.predict(xtest)
4    print(classification_report(ytest, ypred))
5    print()
6    print(accuracy_score(ytest, ypred))
7    print()
8    print(confusion_matrix(ytest, ypred))
```

	precision	recall	f1-score	support
0	0.67	0.71	0.69	21879
1	0.69	0.65	0.67	21435
accuracy			0.68	43314
macro avg	0.68	0.68	0.68	43314
weighted avg	0.68	0.68	0.68	43314

0.6788798079143002

```
[[15562 6317]
[ 7592 13843]]
```

In [64]:

```
1    rfc3 = RandomForestClassifier(min_samples_leaf = 50)
2    rfc3.fit(xtrain1,ytrain1)
3    ypred = rfc3.predict(xtest)
4    print(classification_report(ytest, ypred))
5    print()
6    print(accuracy_score(ytest, ypred))
7    print()
8    print(confusion_matrix(ytest, ypred))
```

	precision	recall	f1-score	support
0	0.77	0.71	0.74	21879
1	0.73	0.79	0.76	21435
accuracy			0.75	43314
macro avg	0.75	0.75	0.75	43314
weighted avg	0.75	0.75	0.75	43314

0.7490880546705453

```
[[15531 6348]
[ 4520 16915]]
```

In [65]:

```
for i in range(1,100,10):
    rfc4 = RandomForestClassifier(min_samples_leaf = i)
    rfc4.fit(xtrain1,ytrain1)
    ypred = rfc4.predict(xtest)
    print(f" {i} -: {accuracy_score(ytest, ypred)}")
```

```
1 -: 0.8421988271690447
11 -: 0.7845962044604516
21 -: 0.7694048113773837
31 -: 0.7578611996121346
41 -: 0.7579304612827261
51 -: 0.746848593988087
61 -: 0.7447245694232811
71 -: 0.7412383986701759
81 -: 0.7391143741053701
91 -: 0.7372673962229302
```

```
In [66]:
    for i in range (1,100,10):
 2
        rfc5 = RandomForestClassifier(max_samples = i)
 3
        rfc5.fit(xtrain1,ytrain1)
 4
        ypred = rfc5.predict(xtest)
 5
        print(f" {i}
                       -: {accuracy_score(ytest,ypred)}")
1
     -: 0.5051253636237706
11
     -: 0.6271413399824537
21
     -: 0.649258900124671
31
      -: 0.6483815856305121
     -: 0.6692524357020825
51
     -: 0.6713302858198273
61
     -: 0.6721383386433948
71
      -: 0.6758553816318049
81
     -: 0.6835434270674609
91
      -: 0.6780948423142633
In [67]:
    for i in range(1,1000,50):
 2
        rfc6 = RandomForestClassifier(n_estimators = i)
 3
        rfc6.fit(xtrain1,ytrain1)
 4
        ypred = rfc6.predict(xtest)
        print(f" {i}
 5
                       -: {accuracy_score(ytest,ypred)}")
1
     -: 0.7346585399639839
      -: 0.8372812485570486
 101
       -: 0.8427067460867156
       -: 0.8438149328161795
 151
201
       -: 0.843884194486771
       -: 0.8459851318280464
251
301
       -: 0.8433070138985086
351
       -: 0.8449692939927045
401
       -: 0.844484462298564
451
       -: 0.844992381216235
501
       -: 0.8461005679456989
551
       -: 0.8451539917809484
601
       -: 0.8457311723692109
651
       -: 0.8451309045574179
701
       -: 0.8450847301103569
751
       -: 0.8447153345338689
```

In [68]:

801

851

901

951

-: 0.8454310384633144

-: 0.8453156023456619

-: 0.8461698296162904

-: 0.8456157362515584

```
from sklearn.ensemble import RandomForestClassifier
rfc7 = RandomForestClassifier(n_estimators = 950)
rfc7.fit(xtrain1,ytrain1)
ypred = rfc7 .predict(xtest)
```

In [69]:

```
print(classification_report(ytest, ypred))
print()
print(accuracy_score(ytest, ypred))
print()
print(confusion_matrix(ytest, ypred))
```

	precision	recall	f1-score	support
0	0.88	0.80	0.84	21879
1	0.82	0.89	0.85	21435
accuracy			0.85	43314
macro avg	0.85	0.85	0.85	43314
weighted avg	0.85	0.85	0.85	43314

0.8455003001339059

```
[[17574 4305]
[ 2387 19048]]
```

Using cross validation getting the mean accuracy ¶

In [70]:

```
1 cvs = cross_val_score(rfc7, x1, y1, cv = 5, scoring = "accuracy")
2 print(f"Avg. Accuracy-: {cvs.mean()}\nStandard Deviation -: {cvs.std()}")
```

```
Avg. Accuracy-: 0.8503670868541351
Standard Deviation -: 0.10974338801027816
```

RESULTS

- · being a dataset based on the defaulters the percentage of defaulters are really less
- approximately the ratio of people who have paid with who has not paid is 1:4
- · balancing the Dataset for an improved accuracy and f1-score
- · After splitting the data into train and test we came to know the categorical data needs to be label encoded
- Using two different models we came to know Random forest classifier can be used for this data for an improved accuracy
- · did some hyperparameter tuning on the model to increase the accuracy

CONCLUSION

- The best fit model for this dataset is Random forest classifier with the value of n_estimator parameter at 950
- The average accuracy of the model is 85%

```
In [ ]:
```

1