Odporność

DR MAGDALENA MARKOWSKA

ZAKŁAD FIZJOLOGII ZWIERZĄT, INSTYTUT ZOOLOGII WYDZIAŁ BIOLOGII, UNIWERSYTET WARSZAWSKI

Funkcje

FUNKCJA	КТО	AWARIA
OBRONA	Bakterie Wirusy Pasożyty Pierwotniaki Grzyby	Alergia Niedobór odporności
NADZÓR	Własne komórki zmutowane, stare, zniszczone	Nowotwory i autoimmunizacyjne choroby
HOMEOSTAZA	Współpraca z układem nerwowym i hormonalnym	Zaburzenia w działaniu układu odpornościowego

Przed czym się bronimy

bakterie

grzyby

wirusy

nicienie

pierwotniaki

obce białka

Własny - obcy

- ✓ Umiejętność rozpoznania komórek obcych i własnych jest kluczowa do prawidłowego działania odporności
- ✓ Układy zgodności tkankowej są takim "hasłem dostępu" rozpoznającym "swego"

Poziomy obrony

3 POZIOM Odporność nabyta (limfocyty T i B)

2 POZIOM

Odporność wrodzona (żerność i cytotoksyczność)

1 POZIOM

Bariery fizyczne, chemiczne i enzymatyczne

Procesy odpornościowe

Aktorzy

Odporność wrodzona

- ✓ Szybka
- √ Nie pozostawia pamięci
- ✓ Receptory dla antygenów niezmienne i mało specyficzne (aby na pewno?)

Bariery

Podsumowanie mechanizmów obrony wrodzonej **Table 21.2** CATEGORY/ASSOCIATED **ELEMENTS** PROTECTIVE MECHANISM Pierwsza linia obrony: bariery powierzchniowe Skóra Tworzy barierę mechaniczną kwaśny odczyn skóry Kwaśny odczyn zapobiega wzrostowi bakterii, pot zawiera związki bakteriobójcze keratyna Zapewnia ochrone przed kwasami, zasadami i enzymami bakteryjnymi Tworzy bariere mechaniczną Inne bariery Zatrzymuje mikroorganizmy w układzie oddechowym i pokarmowym ■ śluz owłosienie nozdrzy Filtruje i zatrzymuje w nozdrzach patogeny Filtruje i zatrzymuje w nozdrzach patogeny rzęski sok żołądkowy HCl i enzymy trawienne uszkadzają patogeny kwaśny odczyn pochwy Hamuje wzrost bakterii i grzybów w układzie rozrodczym Nawilżają i oczyszczają oczy i usta. Zawiera lizozym – enzym bakteriobójczy. łzy, ślina mocz Kwaśny odczyn hamuje wzrost bakterii. Oczyszcza dolne drogi moczowe.

Mechanizmy odporności wrodzonej

Druga	linia	ohronv	adna	rność w	rodzona
Diuga	III II a	obioliy.	oupoi	IIIUSC W	/I UUZUIIA

Fagocytoza Pochłanianie i niszczenie patogenów, które przeniknęły przez bariery mechaniczne. Wspomaga

odpowiedź nabytą.

Komórki NK (natural killer) Wspiera apoptozę poprzez bezpośrednie niszczenie zainfekowanych wirusami komórek lub komórek

nowotworowych. Rozpoznają ogólne zmiany ale nie specyficzne antygeny.

Reakcja zapalna Zapobiega rozprzestrzenianiu się szkodliwych czynników do sąsiednich komórek i tkanek, wspomaga

naprawę uszkodzonych tkanek. Czynniki reakcji zapalnej przyciągają fagocyty do uszkodzonych miejsc.

Białka antybakteryjne

• Interferony (α, β, γ) Białka przeciwwirusowe, mobilizują układ odpornościowy.

Dopełniacz Grupa białek, które po aktywacji wspomagają lizę mikroorganizmów, wspomagają fagocytozę i wzmagają

reakcję zapalną i inne procesy odpornościowe.

Gorączka Ogólnoustrojowa reakcja organizmu zainicjowana przez pirogeny. Wysoka temperatura ciała hamuje

namnażanie bakterii i wzmaga procesy odpornościowe.

Fagocytoza

(a) A macrophage (purple) uses its cytoplasmic extensions to pull rod-shaped bacteria (green) toward it. Scanning electron micrograph (4800×).

- 1) Fagocyty przylegają do patogenów.
- 2) Fagocyty tworzą pseudopodia, które pochłaniają cząsteczki do fagosomów.
- 3) Lizosom łączy się z pęcherzykami fagocytalnymi tworząc fagolizosom.
- 4) Enzymy z lizosomów trawią cząsteczki patogenów.
- 5) Niestrawione resztki usuwane są na drodze egzocytozy.

(b) Przebieg fagocytozy

Ilja Miecznikow

Razem z Paulem Ehrlichem otrzymał w 1908 r nagrodę Nobla w dziedzinie fizjologii lub medycyny "in recognition of their work on immunity".

1845 - 1916

Historia

424

Dr. Paul Ehrlich.

CROONIAN LECTURE.—"On Immunity with Special Reference to Cell Life." By Professor Dr. Paul Ehrlich, Director of the Royal Prussian Institute of Experimental Therapeutics, Frankfort-on-the-Maine. Received March 17,—Read March 22, 1900.

[Plates 6 and 7.]

(Translation.)

Roy. Soc. Proc., Vol. 66, Plate 7.

Ehrlich.

Roy. Soc. Proc., Vol. 66, 1

Toll-like receptors (TLRs)

Nazwa nawiązuje do genu *Drosophila,* którego mutacja prowadzi do zaburzeń rozwojowych i odporności.

Rozpoznają specyficzne wzorce molekularne patogenów

Występowanie TLR

Reakcja zapalna

Rubor et tumor cum calore et dolore

Reakcja zapalna

functio laesa (Galen, II w.)

Etapy reakcji zapalnej

- 1) Leukocytoza. Neutrofile przedostają się do krwi ze szpiku kostnego.
- przemieszczają się do ściany naczynia.
- przechodzą do tkanki.

Przebieg reakcji zapalnej

Cytokiny pro-zapalne

Odporność nabyta

- ✓ Wolna
- ✓ Pozostawia pamięć immunologiczną
- √ Specyficzna

Antygen - Przeciwciało

Figure 21.8 Lymphocyte development, maturation, and activation.

Komórki prezentujące antygen (APC – antygen presenting cells)

Posiadają na swojej powierzchni MHC m.in.:

- √ komórki dendrytyczne,
- ✓ makrofagi,
- ✓ limfocyty B,
- √ fibroblasty,
- √ komórki glejowe

MHC

MHC

Table 21.5 Role o	f MHC Proteins in Cellular I	mmunity		
	CLASS I		CLASS II	
Displayed by	All nucleated cells	Class I MHC Antigen	APCs (dendritic cells, macrophages, B cells) Antigen Class II MHC	
Recognized by	Naive CD8 cells and cytotoxic T cells	CD8 protein T cell receptor	Naive CD4 cells and helper T cells T cell receptor	
Foreign antigens on MHC are	Endogenous (intracellular pathogens or proteins made by cancerous cells)*		Exogenous (phagocytized extracellular pathogens)	
Foreign antigens on MHC send this message			"I belong to self, but have captured a foreign invader. This is what it looks like. Help me mount a defense against it."	
	If displayed by any other body of but have been invaded or become			

Receptory dla antygenów limfocytów T i B

MHC/Ag/TCR

Kluczowa reakcja w odporności nabytej!

Komunikacja APC - Th

Humoralna

Komórkowa

Pamięć immunologiczna

Nabywanie odporności

INFLAMMATORY RESPONSE

Cytokiny

Ewolucja odporności

Figure 1. | **Evolution of the immune system**. Adaptive immunity as we know it in humans did not evolve until the emergence of the first jawed vertebrates (fish) around 450 million years (my) ago. Evolution of adaptive immunity was heralded by the appearance of lymphocytes, the major histocompatibility complex (MHC), immunoglobulin (Ig) molecules, T-cell receptor for antigen (TCR), and recombinase activating genes (RAG) responsible for the diversity in these recognition molecules. Our more ancient ancestors, such as the sponges (-700 my), relied on basic defense systems without the benefit of lymphocytes, antigen receptors with fine molecular specificity, or any noteworthy immunologic memory. An approximate timeline for evolution of innate immune components (antimicrobial peptides, phagocytosis, complement, and Toll-like receptors) is also shown.

Ewolucja odporności

Figure 1. Phylogenetic Tree Indicating Theoretical Evolutionary Relationships of Metazoans and the Emergence of Adaptive Immunity in Conjunction with Innate Immunity

Families of immune molecules, other than Toll-like receptors, discussed in this review are indicated in blue: V type Ig domains and a chitin binding domain containing proteins (VCBP), fibrinogen-related proteins (FREPs), hemolin, and Down's syndrome cell adhesion molecule (Dscam). The recombinatorial-based immune receptors are indicated in green: T cell receptors (TCR), immunoglobulins (Ig), and variable lymphocyte receptors (VLR).

Ewolucja odporności

Fig. 1. Pathogen recognition receptors in deuterostomes. Whereas BCRs and TCRs are conserved in jawed vertebrates and VLRs in jawless vertebrates, pattern recognition receptors, including TLRs, RLRs and NLRs, are highly conserved in all deuterostomes.

Tom 66 2017 Numer 4 (317) Strony 1-000

Polskie Towarzystwo Przyrodników im. Kopernika

Krystyna Skwarło-Sońta, Magdalena Markowska

Zakład Fizjologii Zwierząt
Instytut Zoologii
Wydział Biologii
Uniwersytet Warszawski
Miecznikowa 1, 02-096 Warszawa
E-mail: kss25@biol.uw.edu.pl
markosia@biol.uw.edu.pl

POCHWAŁA BURSY FABRYCJUSZA, CZYLI CO WSPÓŁCZESNA IMMUNOLOGIA ZAWDZIĘCZA PTAKOM?

Ptaki

Ryc. 1. Układ odpornościowy ptaka.

Neuro Endokryno Immunologia

NEI

G.E. Demas, E.D. Carlton/Brain, Behavior, and Immunity 44 (2015) 9-16

Dziękuję