Résumé EV

mardi, 18 décembre 2018 08:16

Vecteur directeur

Sont directeur des vecteurs dont aucun d'entre eux ne peut s'écrire en fonction des autres.

dans le cas où on as des vecteurs de dimension égale a leurs nombre, on peut calculer rapidement si ils sont indépendant en utilisant le déterminant de la matrice. si il est égale a 0 alors ils sont indépendant.

Dimension d'un sev :

C'est le nombre minimum de vecteur qui le définis. Il soit être fini

pour qu'un vecteur appartienne a un sous ev il doit satisfaire la propriété suivante : $\alpha X + \beta Y \epsilon$ $\alpha u sev$ on appelle cette formule le critère du sev.

Pour prouver l'appartenant d'un SEV a un EV, on doit montrer que tout vecteur qui le compose appartient bien à EV

On utiliser pour ça le critère du SEV et la propriété qui définit les vecteurs de l'ensemble.

Base

Les vecteurs directeur de l'espace vectoriel tel qu'il soit possible par combinaison linéaire de toucher tous les points

Si V est un ev Réel

 $\mathbb{B}(\vec{e}_1,\vec{e}_2,\dots\vec{e}_n)$ est une base de V

1) $\vec{e}_1, \dots \vec{e}_n$ sont linéairement indépendant

(on dit aussi que
$$\{\vec{e}_1, ... \vec{e}_n\}$$
 est libre)

2) $\mathsf{E} = [\vec{e}_1, ... \vec{e}_n]_{sev}$ (c àd $\forall \vec{x} \in E : \vec{x} = \alpha_1 \vec{e}_1 + \cdots + \alpha_n \vec{e}_n$

Alors, $\vec{x} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}_{\mathbb{B}} : uniuqes \ relativement \ à \mathbb{B}$

calculer la matrice d'une application linéaire :

 $\begin{pmatrix} v_{1x} & v_{2x} & v_{3x} \\ v_{1y} & v_{2y} & v_{3y} \end{pmatrix}$ On mets chaque application des vecteurs de la base dans la matrice $\langle v_{1z} \ v_{2z} \ v_{3z} \rangle$ $f(\overrightarrow{e_1}), f(\overrightarrow{e_2}), \dots \rightarrow v1, v2, v3$

kernel : ensemble des points qui ne vont vers le zéro

image : ensemble des point qui peuvent être touché par l'application

Espace vectoriel

Si V est un ev Réel

 $\mathbb{B}(\vec{e}_1,\vec{e}_2,\dots\vec{e}_n)$ est une base de V

Ssi

1) $\vec{e}_1, \dots \vec{e}_n$ sont linéairement indépendant (on dit aussi que $\{\vec{e}_1, ... \vec{e}_n\}$ est libre)

2)
$$E = [\vec{e}_1, ... \vec{e}_n]_{sev} (c\grave{a}d \ \forall \vec{x} \in E : \vec{x} = \alpha_1 \vec{e}_1 + \cdots + \alpha_n \vec{e}_n]$$
Alors, $\vec{x} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}_{\mathbb{B}} : uniuqes \ relativement \ \grave{a} \ \mathbb{B}$

Remarques:

- 1) On a vu que pars définition, lors ce qu'un espace vectoriel réel est de dimension fini c'est qu'il est engendré par un nombre fini de générateur.
- 2) Si $V = \{\vec{0}\}$, pour engendrer V, il faut prendre le Vecteur Zero Or $\{\vec{0}\}$ est lié donc ne peut être une base de V
- 3) Soit E un ev réel et $E \neq \{\vec{0}\}$

Si $\vec{v}_1, \vec{v}_2, ... \vec{v}_n$ (n fini !)est un système de générateurs de E (càd) $E = [\vec{v}_1, \vec{v}_2, ... \vec{v}_n]_{sev}$ alors on peut en extraire une base Preuve:

- 1) Si les n vecteurs sont déjà linéairement indépendant, il forment une base donc il n'y a rien a montré
- 2) SI les n vecteurs sont linéairement dépendant, On peut supposer, par ex, que $\vec{v}_n = \alpha_1 \vec{v}_1 + \dots + \alpha_{n-1} \vec{v}_{n-1}$

Il faut montrer que $\vec{v}_1, \vec{v}_2, ... \vec{v}_{n-1}$ engendre EHors par hypothèse. $\forall \vec{x} \in E$:

$$\alpha_1 \vec{v}_1 + \dots + \alpha_n \vec{v}_n = \vec{x}$$

Par SI les n vecteurs sont linéairement dépendant, On peut supposer, par ex, que $\vec{v}_n = \alpha_1 \vec{v}_1 + \dots + \alpha_{n-1} \vec{v}_{n-1}$

 $\forall \vec{x} \in E$

$$\alpha_1\vec{v}_1+\cdots+\alpha_n(\alpha_1\vec{v}_1+\cdots+\alpha_{n-1}\vec{v}_{n-1})=\vec{x}$$
 Càd :

$$\vec{c}_1 \cdot \vec{v}_1 + \cdots + \vec{c}_{n-1} \cdot \vec{v}_{n-1} = \vec{x} = \vec{E} = [v_1, \dots, \vec{v}_{n-1}]_{n=0}$$

 $\vec{v}_1 + \cdots + c_{n-1} \vec{v}_{n-1} = \vec{x} = E = [v_1, \dots \vec{v}_{n-1}]_{sev}$ Il y a a nouveau 2 cas : Si les p-1 vecteurs sont linéairement indépendant, alors ils forment une base de E, sinon on recommence le mêmes processus

Ont aura finalement un ensemble fini non vide et non réduis à zero (le vecteurs nul) de k vecteurs linéairement indépendant

Et $1 \le k < p$ tel que, $\mathbb{B}(v_1, \dots \vec{v}_k)$ est une base de E

EN conséquence : Tout ev de dimension finie possède une base.

Si de plus $\mathbb{B}(v_1,...,ec{v}_n)$ est une base de E, alors tout autre ensemble libre de nVecteurs de E est aussi une base de E

Preuve:

 $\textbf{Soit $\vec{e}_1, ... \vec{e}_n$ n vecteur de E lonéaireement indépendannts, On veut montrer que $\mathbb{B}'(\vec{e}_1, ... \vec{e}_n)$ est une base de E lonéaireement indépendannts, On veut montrer que $\mathbb{B}'(\vec{e}_1, ... \vec{e}_n)$ est une base de E lonéaireement indépendants, On veut montrer que $\mathbb{B}'(\vec{e}_1, ... \vec{e}_n)$ est une base de E lonéaireement indépendants, On veut montrer que $\mathbb{B}'(\vec{e}_1, ... \vec{e}_n)$ est une base de E lonéaireement indépendants, On veut montrer que $\mathbb{B}'(\vec{e}_1, ... \vec{e}_n)$ est une base de E lonéaireement indépendants, On veut montrer que $\mathbb{B}'(\vec{e}_1, ... \vec{e}_n)$ est une base de E lonéaireement indépendants, On veut montrer que $\mathbb{B}'(\vec{e}_1, ... \vec{e}_n)$ est une base de E lonéaireement indépendants, On veut montrer que $\mathbb{B}'(\vec{e}_1, ... \vec{e}_n)$ est une base de E lonéaireement indépendants and On veut montrer que $\mathbb{B}'(\vec{e}_1, ... \vec{e}_n)$ est une base de E lonéaireement indépendants and On veut montrer que $\mathbb{B}'(\vec{e}_1, ... \vec{e}_n)$ est une base de E lonéaireement indépendants and On veut montrer que $\mathbb{B}'(\vec{e}_1, ... \vec{e}_n)$ est une base de E lonéaireement indépendants and On veut montrer que $\mathbb{B}'(\vec{e}_1, ... \vec{e}_n)$ est une base de E lonéaireement indépendants and On veut montrer que $\mathbb{B}'(\vec{e}_1, ... \vec{e}_n)$ est une base de E lonéaireement indépendants and On veut montrer que $\mathbb{B}'(\vec{e}_1, ... \vec{e}_n)$ est une base de E lonéaireement indépendants and On veut montrer que $\mathbb{B}'(\vec{e}_1, ... \vec{e}_n)$ est une base de E lonéaireement indépendants and On veut montrer que $\mathbb{B}'(\vec{e}_1, ... \vec{e}_n)$ est une base de E lonéaireement indépendants and On veut montrer que $\mathbb{B}'(\vec{e}_1, ... \vec{e}_n)$ est une base de E lonéaireement indépendants and On veut montrer que $\mathbb{B}'(\vec{e}_1, ... \vec{e}_n)$ est une base de E lonéaireement indépendant and On veut montrer que $\mathbb{B}'(\vec{e}_1, ... \vec{e}_n)$ est une base de E lonéaireement indépendant and On veut montrer que $\mathbb{B}'(\vec{e}_1, ... \vec{e}_n)$ est une base de E l$

Il faut donc seulement montrer que ces n vecteurs 🦸 génèrent E (génerer: ça veux dire que pour tout vecteur de E peux sécrire sous forme de somme de ceux si) Or, par hypothèse : $\forall \vec{x} \in E$

$$\vec{x} = a_1 \vec{v}_1 + \dots + a_n \vec{v}_n$$
 (Relation1)

$$\vec{e}_1 = \alpha_1 \vec{v}_1 + \dots + \alpha_n \vec{v}_n$$

 $\vec{e}_1 \neq \vec{0}$ car par hypothèse les $\vec{e}_i i = 1 ... n$ sont linéairement indépendant

Donc, on au moins 1 α_i est non nul (par expemple, le premier)

D'où:
$$\alpha_1 \vec{v}_1 = \vec{e}_1 - \alpha_1 \vec{v}_1 - \dots - \alpha_n \vec{v}_n$$

 $\vec{v}_1 = \frac{\vec{e}_1 - \alpha_1 \vec{v}_1 - \dots - \alpha_n \vec{v}_n}{\alpha_1} \text{ et on remplace dans la relation 1}$

$$\begin{array}{l} \alpha_1 * \frac{1}{\alpha_1} * (\vec{e}_1 - \alpha_2 \vec{v}_2 - \cdots - \alpha_n \vec{v}_n) \\ \forall \vec{x} \epsilon E : \vec{x} = c_1 \vec{v}_1 + \cdots + c_n \vec{v}_n < = > E = [\vec{e}_1, \vec{v}_2, \ldots, \vec{v}_n] \quad (relation \ 2) \\ \mathsf{Comme} \end{array}$$

$$\forall \vec{r} \in \vec{E} : \vec{r} = c \cdot \vec{v}_1 + \dots + c \cdot \vec{v}_2 \le \vec{E} = [\vec{e}_1 \ \vec{v}_2 \ \vec{v}_2] \quad (relation 2)$$

$$\overrightarrow{e_2} \in E$$

$$\overrightarrow{e_2} = d_1 \overrightarrow{e}_1 + d_2 \overrightarrow{e}_2 + \dots + d_n \overrightarrow{e}_n$$

 $\begin{array}{l} \vec{c_2} = \vec{u_1} \cdot \vec{u_1} \cdot \vec{u_2} \cdot \vec{v_1} \cdot \vec{v_1} \cdot \vec{v_n} \cdot \vec{v_n} \\ \vec{e_1}, \vec{e_2}, \dots \vec{e_n} \end{array} \\ \{\vec{e_1}, \vec{e_2}, \dots \vec{e_n}\} \\ serait \ linéairement \ dépendant \ on \ suppose \ d_2 \neq 0 \ d'ou \\ d_2\vec{v_2} = -d_1\vec{e_1} + \vec{e_2} - d_3\vec{v_3} - \dots - d_n\vec{v_n} \\ \vec{v_2} = \frac{1}{d_2} (-d_1\vec{e_1} + \vec{e_2} - d_3\vec{v_3} - \dots - d_n\vec{v_n}) \end{array}$

$$d_2 \vec{v}_2 = -d_1 \vec{e}_1 + \vec{e}_2 - d_3 \vec{v}_3 - \dots - d_n \vec{v}_n$$

$$\vec{v}_2 = \frac{1}{d_2}(-d_1\vec{e}_1 + \vec{e}_2 - d_3\vec{v}_3 - \dots - d_n\vec{v}_n)$$

Alors, on remplace dans (relation 2)

$$\begin{split} \vec{x} &= c_1 \vec{v}_1 + c_2 \frac{1}{d_2} (-d_1 \vec{e}_1 + \vec{e}_2 - d_3 \vec{v}_3 - \dots - d_n \vec{v}_n) + \dots + c_n \vec{c}_n \\ E &= [\vec{e}_1, \vec{e}_2, \vec{v}_3, \dots, \vec{v}_n]_{sev} \end{split}$$

En poursuivant se procédé, on arrive à $E = [\vec{e}_1, \vec{e}_2, ... \vec{e}_n]_{sev}$

C à d on aura montré que $\vec{e}_1, \vec{e}_2, \dots \vec{e}_n$ sont des générateurs de E.

Donc on peut conclure : $\mathbb{B}(\vec{e}_1,\vec{e}_2,...\vec{e}_n)$ est bien une base de E

En conclusion :

Tout espace E ($E \neq \{\vec{0}\}$) de dimension finie (donc engendré par un nombre finie de générateur) possède Une base de toutes bases de E ont le même nombre de vecteurs

Alors, si n = dimE, le nombre de vecteurs d'une base de E est n.

Si on prend n+1 vecteurs de E, ils sont linéairement dépendants.

 $Ex : \mathbb{R}^2$: 3 vecteurs, quels quils soient, sont linéairement dépedant

 \mathbb{R}^3 4 vecteurs, quels quils soient, sont linéairement dépedant

 \mathbb{R}^4 5 vecteurs, quels quils soient, sont linéairement dépedant

Si V est un sev de E,
$$V \neq \{\vec{0}\}$$
 et $V \neq E$ et $dimE = n$

Alors $1 \le dimV \le n$

Remarque :

 $V = [\vec{a}]_{sev} = \{\vec{x} \in E | \vec{x} = k\vec{a}, k \in \mathbb{R}\}$

Comme $\vec{a} \neq \vec{0}, \{\vec{a}\}$ est un ensemble linéairement indépendant et comme

a est générateur de V (par définition de V)

Alors

 $\mathbb{B}(\vec{a})$ est une base de dimension 1

Si dimV=p on peut montrer que l'on peut compléter la base de V par n-p vecteurs

Indépendants pour obtenir une base de E

Espace vectorielle:

Espace composé de vecteurs qui ont en commun 9 propriété qui forment ensemble la LCE et la LCI les vecteurs peuvent être presque n'importe quoi. (vecteurs, nombres, matrices, polynômes, etc.)

Axiom	Meaning
Associativity of addition	$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$
Commutativity of addition	$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
Identity element of addition	There exists an element $0 \in V$, called the zero vector, such that $\mathbf{v} + 0 = \mathbf{v}$ for all $\mathbf{v} \in V$.
Inverse elements of addition	For every $\mathbf{v} \in V$, there exists an element $-\mathbf{v} \in V$, called the <i>additive</i> inverse of \mathbf{v} , such that $\mathbf{v} + (-\mathbf{v}) = 0$.
Compatibility of scalar multiplication with field multiplication	$a(b\mathbf{v}) = (ab)\mathbf{v}^{[nb\ 2]}$
Identity element of scalar multiplication	$1\mathbf{v} = \mathbf{v}$, where 1 denotes the multiplicative identity in F .
Distributivity of scalar multiplication with respect to vector addition	$a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$
Distributivity of scalar multiplication with respect to field addition	$(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$

. Ecrire une matrice de changement de base composé de n vecteur directeur appartenant à la nouvelle base et donc les composante de chaque vecteur sont écris dans l'ancienne base.

$$\begin{split} \overrightarrow{u_1} &= 2\overrightarrow{e_1} - \overrightarrow{e_2} & \overrightarrow{u_1} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}_{\mathbb{B}_e} & \overrightarrow{u_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}_{\mathbb{B}_v} \\ \overrightarrow{u_2} &= \overrightarrow{e_1} + \overrightarrow{e_2} & \overrightarrow{u_2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}_{\mathbb{B}_e} & \overrightarrow{u_1} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}_{\mathbb{B}_v} \end{split}$$

$$\begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} = Matrice de passage \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}_{\mathbb{B}_n} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}_{\mathbb{B}_e}$$

l'inverse de la matrice de passage : $\begin{pmatrix} \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix}_{\mathbb{B}_e} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

Pour écrire la matrice de passage d'une base de U dans V on fait une matrice avec les vecteur directeur de U exprimé en fonction de ceux de V

$$\begin{pmatrix} -\overrightarrow{v_1} & 3\overrightarrow{v_1} \\ 2\overrightarrow{v_2} & -3\overrightarrow{v_2} \\ \overrightarrow{u_1} & \overrightarrow{u_2} \end{pmatrix}$$

Quand on reste dans le même espace vectoriel mais pas forcément la même base