9 DoF Planar 4 Wheeled Car Model With Active Chassis Control

Vehicle System Dynamics 2023 Final project

Prof. Gianluca Pepe, Prof. Antonio. Carcaterra

Adolfo Sicilia Correa 2053930 Erasmus Weihao Wang 1988339 Pierre Bellanger 2098164 Erasmus Muhammad Hassam Baig 1988380

Workflow

Dynamic system modelling

System verification

Active chassis control

Conclusions

- General view of SimuLink model
- Construction
- Subsystem development

Observation of:

- Roll, yaw and pitch angles
- Chassis velocities
- Wheel rotation speeds

- Formulation of Control Problem
- Active Chassis Control

 Comparison And Discussion

Vehicle dynamic system modeling

- Newton Euler equations and reference systems
- Wheel and tyre dynamics
- Reference frame transfers
- Forces transfer from wheel to chassis
 - Pacejka
- Roll, pitch and yaw

General view

Newton - Euler

Newton - Euler equations, reference systems

The reference system to be used primarily is the body reference system.

The global reference system is only utilized in order to express the yaw rate, which is represented by the letter psi.

Newton - Euler equations

These are the basis of the transitional and rotational dynamics of the model.

With them, we can calculate the effect the forces on the wheels have on the car by coupling them with a tyre model.

$$F = ma_{cm}$$

$$M = I_{cm}\alpha + \omega \times I_{cm}\omega$$

$$egin{pmatrix} \mathbf{F} \ m{ au} \end{pmatrix} = egin{pmatrix} m \mathbf{I}_3 & 0 \ 0 & \mathbf{I}_{
m cm} \end{pmatrix} egin{pmatrix} \mathbf{a}_{
m cm} \ m{lpha} \end{pmatrix} + egin{pmatrix} 0 \ m{\omega} imes \mathbf{I}_{
m cm} m{\omega} \end{pmatrix}$$

Newton - Euler

$$V_x(t+dt) = V_x(t) + \dot{V}_x(t) * dt$$
$$V_y(t+dt) = V_y(t) + \dot{V}_y(t) * dt$$

$$\dot{v}_x - v_y \dot{\psi} = h(\sin(\theta)\cos(\phi)(\dot{\psi}^2 + \dot{\phi}^2 + \dot{\theta}^2) - \sin(\phi)\ddot{\psi} - 2\cos(\phi)\dot{\phi}\dot{\psi}$$
$$-\cos(\theta)\cos(\phi)\ddot{\theta} + 2\cos(\theta)\sin(\phi)\dot{\theta}\dot{\phi} + \sin(\theta)\sin(\phi)\ddot{\phi}\Big) + \frac{F_X}{m},$$
$$\dot{v}_y + v_x\dot{\psi} = h(-\sin(\theta)\cos(\phi)\ddot{\psi} - \sin(\phi)\dot{\psi}^2 - 2\cos(\theta)\cos(\phi)\dot{\theta}\dot{\psi}$$
$$+\sin(\theta)\sin(\phi)\dot{\phi}\dot{\psi} - \sin(\phi)\dot{\phi}^2 + \cos(\phi)\ddot{\phi}\Big) + \frac{F_Y}{m},$$

Newton - Euler, Variables and parameters

Inputs

Variables:

- Fx, Fy
- Vx_curr, Vy_curr
- phi, phi_dot, phi_ddot
- theta, theta_dot, theta_ddot
- psi_dot, psi_ddot

Constants: h

Outputs

- Vx_next
- Vy_next

Wheel and tyre dynamics

Wheel dynamics - Omega, alpha and k subsystem

Contains these other subsystems:

- Frame of reference transfer from car to wheels
 - Transfer matrix
- Slip angles
- Wheel dynamics
- Slip ratios

Wheel dynamics - Variables and parameters

Inputs

Variables:

- alpha_curr1...2,3,4
- omega_curr1...2,3,4
- Vx,Vy
- psi_dot
- delta
- T1...2,3,4
- Fx1...2,3,4

Constants:

w, Lf, Lr, sigma, lw

Outputs

- alpha_next1...2,3,4
- omega_next1...2,3,4
- k1...2,3,4

From the solid body motion equation of velocity, we calculate the velocities of the car on the point pertaining to the wheels.

$$oldsymbol{v}_{i,car} = oldsymbol{v}_o + egin{bmatrix} 0 \\ 0 \\ \dot{oldsymbol{\psi}} \end{bmatrix} \wedge \ \overline{OI}$$

The velocities in the car reference system, calculated on the wheels as part of the same solid, are transferred to each wheel's reference system.

$$v_x = v_{x,car}\cos\delta + v_{y,car}\sin\delta$$

$$v_y = v_{y,car}\cos\delta - v_{x,car}\sin\delta$$

Slip angles

i: wheel (1 to 4)

 σ : relaxation length

a: slip angle

v: wheel velocity

$$\alpha_i(t+dt) = \alpha_i(t) + \dot{\alpha}_i(t) * dt$$

$$\dot{\alpha}_i = -(\operatorname{atan}\left(\frac{v_{y,i}}{v_{x,i}}\right) + \alpha_i) * \frac{v_{x,i}}{\sigma}$$

Slip angles

Slip ratios

к: slip ratio

Rw: radius of wheel

 ω : wheel rotation speed

v: wheel velocity

$$\kappa_i = \frac{R_w \omega_i - v_{x,i}}{v_{x,i}}$$

Slip ratios

Wheel dynamics

ω: wheel rotation speed

T: wheel torque

F: wheel force against the ground

Rw: wheel radius

lw: wheel moment of inertia

$$\omega_i(t+dt) = \omega_i(t) + \dot{\omega}_i(t) * dt$$

$$\dot{\omega}_i = \frac{T_i - F_{x,i} R_w}{I_w}$$

Wheel dynamics

Chassis & Magic formula model

Chassis & Magic formula model

Contains these other subsystems:

- Forces under slip condition subsystem
 - \circ Fz
 - -> Fx0
 - -> Fy0
 - Transform to F (Ellipse friction)
 - Pacjeka Scenario

Chassis & Magic formula model - Variables and parameters

Inputs

Variables:

- theta_dot
- theta
- k_theta
- d_theta
- phi_dot
- phi
- k_phi
- d_phi

Constants:

w, Lf, Lr, pacjeka parameters

Outputs

• Fy1, Fy2, Fy3, Fy4 (from friction ellipse)

Load transfert - Fz

$$(F_{z,1} + F_{z,2})l_{\mathbf{f}} - (F_{z,3} + F_{z,4})l_{\mathbf{f}} = K_{\theta}\theta + D_{\theta}\dot{\theta}, \quad \sum_{i=1}^{4} F_{z,i} = mg,$$

$$-w(F_{z,1} - F_{z,2}) = K_{\phi,\mathbf{f}}\phi + D_{\phi,\mathbf{f}}\dot{\phi},$$

$$-w(F_{z,3} - F_{z,4}) = K_{\phi,\mathbf{f}}\phi + D_{\phi,\mathbf{f}}\dot{\phi},$$

If, Ir: front length et rear length from center of mass

w: width

K : spring characteristic ; D : damper characteristic

Load transfert - Fz

Magic formula model - Pacjeka parameters

Magic formula model - Pacjeka parameter

Magic formula model - Fy0 & Fx0

$$F_{x0,i} = \mu_{x,i} F_{z,i} \sin(C_{x,i} \arctan(B_{x,i} \kappa_i - E_{x,i} (B_{x,i} \kappa_i - \arctan B_{x,i} \kappa_i))),$$

$$F_{y0,i} = \mu_{y,i} F_{z,i} \sin(C_{y,i} \arctan(B_{y,i} \alpha_i - E_{y,i} (B_{y,i} \alpha_i - \arctan B_{y,i} \alpha_i))),$$

μ: friction coefficient

B, C, E: parameters of pacjeka model.

Magic formula model - Fy0 & Fx0

Magic formula model - Fy0 & Fx0

Magic formula model - Combined forces on Fy projection

$$F_{y,i} = F_{y0,i} \sqrt{1 - \left(\frac{F_{x0,i}}{\mu_{x,i} F_{z,i}}\right)^2}, \quad i \in \{f, r\} \text{ or } \{1, 2, 3, 4\},$$

Magic formula model - Combined forces on Fy projection

Wheel to chassis, net forces and moments

External Forces and Moments

Total Forces

Longitudinal

Lateral

$$F_Y = F_{x1}\sin(\delta_1) + F_{y1}\cos(\delta_1) + F_{x2}\sin(\delta_2) + F_{y2}\cos(\delta_2) + F_{x3} + F_{x4}$$

 $F_X = F_{x1}\cos(\delta_1) - F_{y1}\sin(\delta_1) + F_{x2}\cos(\delta_2) - F_{y2}\sin(\delta_2) + F_{x3} + F_{x4}$

Total Moment

$$M_Z = l_f \Big(F_{x1} \sin(\delta_1) + F_{x2} \sin(\delta_2) + F_{y1} \cos(\delta_1) + F_{y2} \cos(\delta_2) \Big)$$

$$+ w_f \Big(-F_{x1} \cos(\delta_1) + F_{x2} \cos(\delta_2) + F_{y1} \sin(\delta_1) - F_{y2} \sin(\delta_2) \Big)$$

$$- l_r (F_{y3} + F_{y4}) - w_r (F_{x3} + \tilde{F}_{x4}^8)$$

Chassis Model

Suspension System

Moment of Rotational Spring damper system.

Roll direction

$$\tau_{\phi} = (K_{\phi,f} + K_{\phi,r})\phi + (D_{\phi,f} + D_{\phi,r})\dot{\phi},$$

Pitch Direction

$$\tau_{\theta} = K_{\theta}\theta + D_{\theta}\dot{\theta},$$

Yaw Dynamics

Colour Marking

- Moment of Inertia
- Moment of force

$$\ddot{\psi}(I_{xx}\sin(\theta)^2 + \cos(\theta)^2(I_{yy}\sin(\phi)^2 + I_{zz}\cos(\phi)^2)) = M_Z - h\Big(F_X\sin(\phi) + F_Y\sin(\theta)\cos(\phi)\Big)$$

Yaw dynamics - Variables and parameters

Inputs

Variables:

- Fx
- Fy
- Mz
- phi
- theta
- |XX
- ZZ
- |

Output

psi_ddot

Pitch Dynamics

$$\ddot{\theta}(I_{yy}\cos(\phi)^2 + I_{zz}\sin(\phi)^2) = -K_{\theta}\theta - D_{\theta}\dot{\theta}$$

$$+h\Big(mg\sin(\theta)\cos(\phi) - F_X\cos(\theta)\cos(\phi)\Big) + \dot{\psi}\Big(\dot{\psi}\sin(\theta)\cos(\theta)\Big(\Delta I_{xy} + \cos(\phi)^2\Delta I_{yz}\Big) - \dot{\phi}\cos(\theta)^2I_{xx} + \sin(\phi)^2\sin(\theta)^2I_{yy} + \sin(\theta)^2\cos(\phi)^2I_{zz}\Big) - \dot{\theta}\Big(\sin(\theta)\sin(\phi)\cos(\phi)\Delta I_{yz}\Big)\Big)$$

Colour Marking

- Moment changing by roll and mass center
- Angular Momentum by roll
- **Angular Momentum** by yaw
- Angular Momentum by pitch

Pitch dynamics - Variables and parameters

Inputs

Variables:

- Phi_dot
- theta
- K_theta
- D_theta
- h
- theta_dot
- phi
- Fx
- lyy
- |xx
- phi_dot
- IZZ

Output

theta_ddot

Roll Dynamics → 005 → µ² _ x phi ddot numerate

Colour Marking

- Rotational terms
- Angular Momentum (same inertial forces)
- Angular Momentum (different inertial force)
- External Force
- Moment changing by roll and mass center

$$\ddot{\theta}(I_{yy}\cos(\phi)^2 + I_{zz}\sin(\phi)^2) = -K_{\theta}\theta - D_{\theta}\dot{\theta}$$

$$+ h\Big(mg\sin(\theta)\cos(\phi) - F_X\cos(\theta)\cos(\phi)\Big) + \dot{\psi}\Big(\dot{\psi}\sin(\theta)\cos(\theta)\Big(\Delta I_{xy}\Big)$$

$$+ \cos(\phi)^2\Delta I_{yz}\Big) - \dot{\phi}\cos(\theta)^2 I_{xx} + \sin(\phi)^2\sin(\theta)^2 I_{yy}$$

$$+ \sin(\theta)^2\cos(\phi)^2 I_{zz}\Big) - \dot{\theta}\Big(\sin(\theta)\sin(\phi)\cos(\phi)\Delta I_{yz}\Big)\Big)$$

Roll dynamics - Variables and parameters

Inputs

Variables:

- Fy
- psi_dot
- phi
- phi_dot
- theta
- theta_dot
- K_phi
- D_phi
- h

Output

phi_ddot

Transforming ddot to _next

System verification

- Roll, yaw and pitch angles and rates
- Chassis velocities
- Wheel rotation speeds

Wheel rotation speeds

Chassis velocities

Roll, yaw and pitch angles and rates

- Formulation of Control Problem
- Active Chassis Control
 - Direct yaw moment control
 - Active steering control
 - Integrated active steering and direct yaw moment control
- Comparison And Discussion

Aim: Yaw stability control, which is a tracking problem (desired psi dot, desired slip angles)

xdot = G(x, y, u) Vehicle model

h(x, y, u) = 0 tyre-force model

inputs: steering angle, braking torques T=(Tr, Tf)

variables to be controlled: yaw rate and slip angles

How we can get desired psi dot, desired slip angles?

Vehicle Model for Simulation

9 DOF nonlinear vehicle dynamic model

Vehicle Model for Controller Design

Assumptions:

- (i) Tires forces operate in the linear region.
- (ii) The vehicle moves on plane surface/flat road (planar motion).
- (iii) Left and right wheels at the front and rear axle are lumped in single wheel at the centre line of the vehicle.
- (iv) Constant vehicle speed i.e. the longitudinal acceleration equal to zero $(a_x=0)$
- (v) Steering angle and sideslip angle are assumed small (≈ 0).
- (vi) No braking is applied at all wheels.
- (vii) Centre of gravity (CG) is not shifted as vehicle mass is changing.
- (viii) 2 front wheels have the same steering angle.
- (ix) Desired vehicle sideslip is assumed to be zero in steady state.

→ vx=10m/s

2 DOF linear bicycle model

2 DOF linear bicycle model

$$\dot{x} = Ax + Bu,$$

$$\begin{bmatrix} \dot{\beta} \\ \dot{r} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} \beta \\ r \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} u,$$

$$\begin{bmatrix} \dot{\beta} \\ \dot{r} \end{bmatrix} = \begin{bmatrix} \frac{-C_f - C_r}{mv} & -1 + \frac{C_r l_r - C_f l_f}{mv^2} \\ \frac{C_r l_r - C_f l_f}{I_z} & \frac{-C_f l_f^2 - C_r l_r^2}{I_z v} \end{bmatrix} \begin{bmatrix} \beta \\ r \end{bmatrix}$$

$$+ \begin{bmatrix} \frac{C_f}{mv} \\ \frac{C_f l_f}{I} \end{bmatrix} \delta_f,$$

where cornering stiffness is in the following when slip angle is small enough (<=5°)

$$C_{\alpha} = \lim_{\alpha \to 0} \frac{\partial (-F_y)}{\partial \alpha} = \left| \lim_{\alpha \to 0} \right| \frac{\partial F_y}{\partial \alpha}.$$

Therefore, In the steady state condition, the desired yaw rate response rd can be obtained by using the following equation:

$$r_d = \frac{v}{\left(l_f + l_r\right) + k_{us}v^2} \cdot \delta_f,$$
 rd_upperbound=0.85µg/vdot

where stability factor *kus* is depending on the vehicle parameters and defined as follows:

$$k_{us} = \frac{m\left(l_r C_r - l_f C_f\right)}{\left(l_f + l_r\right) C_f C_r}.$$

For the steady state condition, the desired sideslip is always zero

$$\beta_d = 0$$

 $\beta_upperbound=tan-1(0.02\mu g)$

Double-Lane Change Maneuver

Direct Yaw Moment Control

Upper controller + Lower controller

Direct Yaw Moment Control

Upper controller — desired yaw moment

$$\begin{bmatrix} \dot{\beta} \\ \dot{r} \end{bmatrix} = \begin{bmatrix} \frac{-C_f - C_r}{mv} & -1 + \frac{C_r l_r - C_f l_f}{mv^2} \\ \frac{C_r l_r - C_f l_f}{I_z} & \frac{-C_f l_f^2 - C_r l_r^2}{I_z v} \end{bmatrix} \begin{bmatrix} \beta \\ r \end{bmatrix}$$

$$+ \begin{bmatrix} \frac{C_f}{mv} \\ \frac{C_f l_f}{I_z} \end{bmatrix} \delta_{fd} + \begin{bmatrix} 0 \\ \frac{1}{I_z} \end{bmatrix} M_z.$$
 check the controllability

rank(B AB) full rank

disturbance

Direct Yaw Moment Control

Upper controller — desired yaw moment

The steady state solution of the deterministic linear optimal regulator problem

Theorem: Let us consider the previous problem with the additive hypotheses:

- The matrices A, B, Q, R are constant
- o The matrix Q is positive definite

Then there exists a unique optimal solution:

$$u^{o}(t) = -R^{-1}B^{T}K_{r}x^{o}$$

$$\dot{x}^{o}(t) = \left[A - BR^{-1}B^{T}K_{r}\right]x^{o}(t), \quad x^{o}(t_{i}) = x^{i}$$

where:

Prof. D.lacoviello - Optimal Control

01/11/202

Pagina 97

 K_r is the constant matrix, unique solution definite positive of the algebraic Riccati equation:

$$K_r B R^{-1} B^T K_r - K_r A - A^T K_r - Q = 0$$

The minimum value for the cost index is:

$$J(x^o, u^o) = \frac{1}{2} x^{iT} K_r x^i$$

Prof. D.lacoviello - Optimal Control

01/11/2021

Pagina 98

Direct Yaw Moment Control

Lower controller — braking torque distribution

$$\Delta M = w^*(Fxfr-Fxfl) = w^*\Delta Fxf$$

$$\Delta$$
Fxf=2 Δ M/w

Recall wheel dynamics

$$T_i - I_w \dot{\omega}_i - F_{x,i} R_w = 0, \quad i \in \{f, r\} \text{ or } \{1, 2, 3, 4\}.$$

we assume that we can control the brake torque directly and during the driver is not braking

$$Tr = \Delta Fxf^*Rw \Delta M > 0$$

$$Tf=\Delta Fxf*Rw \Delta M<0$$

Direct Yaw Moment Control

Direct Yaw Moment Control

Active Steering Control (AFS)

Although direct yaw moment control could enhance the vehicle stability for critical driving conditions, it may be less effective for emergency braking on split road surface. At high vehicle speed steady state cornering, direct yaw moment control could decrease the yaw rate and increase a burden to the driver. To overcome this disadvantage, active steering control is proposed

Active Steering Control (AFS)

Active Steering Control (AFS)

Active Steering Control (AFS)

Integrated Active Chassis Control

Less effective during critical driving condition

Integrated Active Chassis Control

$$\begin{bmatrix} \dot{\beta} \\ \dot{r} \end{bmatrix} = \begin{bmatrix} \frac{-C_f - C_r}{mv} & -1 + \frac{C_r l_r - C_f l_f}{mv^2} \\ \frac{C_r l_r - C_f l_f}{I_z} & \frac{-C_f l_f^2 - C_r l_r^2}{I_z v} \end{bmatrix} \begin{bmatrix} \beta \\ r \end{bmatrix}$$

$$+ \begin{bmatrix} \frac{C_f}{mv} & 0 \\ \frac{C_f l_f}{I_z} & \frac{1}{I_z} \end{bmatrix} \begin{bmatrix} \delta_c \\ \Delta M_z \end{bmatrix} + \begin{bmatrix} \frac{C_f}{mv} \\ \frac{C_f l_f}{I_z} \end{bmatrix} \delta_{fd}.$$

check the controllability rank(B AB) full rank

LQR controller with upper bound constraints hold

Integrated Active Chassis Control

Comparison and Discussion

Comparison and Discussion

Comparison and Discussion

Vehicle actuator	Active cha	ssis control	Advantages	Disadvantages
Brakes	Direct yaw moment control (DYC)	Active braking active differential	(i) Effective for critical driving condition (ii) Good for sideslip/wheelslip control	(i) Less effective for braking on split road surface (ii) Decrease yaw rate during steady state driving condition (iii) Active differential need extra devices
		Active front steering (AFS) control	(i) Effective for steady state driving condition (ii) Ease to integrate with braking control (iii) Good for yaw rate control	Less effective during critical driving condition
Steering	Active steering control (ASC)	Active rear steering (ARS) control	(i) Rear wheel steer angle can be controlled (ii) Good for yaw rate control	Less effective during critical driving condition
		4 wheels active steering (4WAS) control	(i) Two different steer inputs (ii) Goof for yaw rate control	Less effective during critical driving condition
Steering and brake Integrated AFS-DYC control		(i) Two different inputs from two different actuator (steering and braking) (ii) Good for yaw rate and sideslip control	Effective for critical and steady state driving condition	

also energy saving

9 DoF Planar 4 Wheeled Car Model With Active Chassis Control

Thank you!