Задачи

Коммутативная алгебра, 2025

- (3, 2) **1.** Пусть x нильпотент в кольце A. Покажите, что 1+x обратим. Выведите отсюда, что сумма нильпотента и обратимого элемента обратима. (3 кг., годно в теч. 2 дней)
- (5, 3) **2.** Допустим, что в кольце A всякий идеал $\mathfrak{a} \not\subset \mathcal{N}$ содержит идемпотент, т.е. такой элемент $e \in A$, что $e^2 = e \neq 0$. Докажите, что в кольце A нильрадикал \mathcal{N} совпадает с радикалом Джекобсона \mathcal{R} . (5 кг., годно в теч. 3 дней)
- (5, 3) **3.** Пусть в кольце A всякий элемент x удовлетворяет уравнению $x^n = x$ для некоторого n > 1 (число n зависит от x). Покажите, что любой простой идеал в A максимален.

(5 кг., годно в теч. **3** дней)

- (5, 4) **4.** Пусть A ненулевое кольцо. Покажите, что множество всех простых идеалов в A содержит хотя бы один минимальный (по включению) элемент. (5 кг., годно в теч. 4 дней)
- (5, 4) **5.** Пусть A кольцо, \mathcal{N} его нильрадикал. Докажите, что следующие условия равносильны:
 - A имеет ровно один простой идеал;
 - Любой элемент A либо обратим, либо нильпотентен;
 - A/\mathcal{N} есть поле.

(5 кг., годно в теч. **4** дней)

- (7, 6) 6. Покажите, что в локальном кольце нет идемпотентов, кроме 0 и 1. (7 кг., годно в теч. 6 дней)
- (7, 7) 7. Кольцо A называется $\mathit{булевым}$, если $x^2 = x$ для всех $x \in A$. Покажите, что справедливы следующие утверждения:
 - 2x = 0 для всех $x \in A$;
 - Любой простой идеал $\mathfrak{p} \leqslant A$ максимален, и A/\mathfrak{p} поле из двух элементов.

(7 кг., годно в теч. 7 дней)

- (7, 9) **8.** Пусть A некоторое кольцо, X множество всех его простых идеалов. Для каждого подмножества $E \subset A$ обозначим через V(E) множество всех простых идеалов, содержащих E. Докажите следующее:
 - Если \mathfrak{a} идеал, порождённый E, то $V(E)=V(\mathfrak{a})=V(r(\mathfrak{a}));$
 - $V(0) = X, V(1) = \emptyset;$
 - Для всякого семейства $\left\{E_i\right\}_{i\in\mathcal{I}}$, имеем $V(\cup_{i\in\mathcal{I}}E_i)=\cap_{i\in\mathcal{I}}V(E_i)$;
 - $V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}\mathfrak{b}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$, для всех идеалов $\mathfrak{a}, \mathfrak{b} \leqslant A$.

Таким образом, семейство $\{V(E) \mid E \subset A\}$ удовлетворяет аксиомам замкнутых множеств, и определяет в X так называемую топологию Зарисского. Топологическое пространство X называется простым спектром кольца A и обозначается $\mathrm{Spec}(A)$.

(7 кг., годно в теч. 9 дней)

(11, 12) **9.** Обозначим через Σ множество всех идеалов в A, полностью состоящих из делителей нуля. Покажите, что в Σ есть хотя бы один максимальный элемент. Покажите, что всякий максимальный элемент в Σ прост. (11 кг., годно в теч. 12 дней)