㈜ 에스앤이리서치

2021.08.04(수)

김 재 승(Kim, Jaeseung)

연구분야 (electrochemical, Anodization, Lithium ion battery, Supercapacitors)

[목차]

- 1. Lithium ion battery[LIB] 소개
- 2-1. 연구활동(학위과정)[논문, 프로젝트]
 - SiO₂@TiO₂ + Cu 증착 음극재
 - CoS@SuS 슈퍼캐패시터
- 2-2. 한국전자기술연구원
 - LIB 양극재 소개
 - 양극 소재 물성 및 전기화학 분석과 공정소개.
- 3. 개별 활동 및 학습모임

1. Lithium ion battery[LIB] 소개

Lithium ion battery(LIB) 소개

- Lithium secondary batteries are used in various fields.
- The demand of lithium secondary batteries increases as the electric vehicle market expands.

Application of Li secondary battery

Smart phone

Global Li ion batteries market

Lithium ion battery(LIB) 원리 및 전망

- ❖ 리튬 이온 배터리는 양극재, 음극재, 분리막, 전해질로 구성된다.
- ❖ 이차전지 원재료의 가격 구성은 양극재 > 분리막> 음극재> 전해질.
- ❖ 2025년 양극재 시장 규모는 현재 (2020년) 의 3배가 될 전망이며 NCM 비중이 확대됨

리튬 이온 배터리 구성요소

양극 소재 (cathode materials)

Lithium transition-metal Oxide
LiCoO₂, LiMn₂O₄, ...

음극 소재 (anode materials)

전해질 (Electrolyte)

lon-paired LiPF₆ 분리막 (separator)

- 2-1. 연구활동(학위과정)
 - SiO₂@TiO₂ 음극재 개발
 - CoS@SuS 슈퍼캐패시터용 개발

Nano-technology

PEO

양극산화

금속표면처리

금속 양극산화 (Anodization) and PEO 기술 및 응용

Li – ion battery (LIB) 음극재 개발

Li metal batteries (리튬금속 전지)

<u>Li-ion batteries (리튬이온 전지)</u>

dead lithium 생성 → 4배 정도 과량 사용 dendrite 성장 → 내부단락 → 폭발위험

금속 리튬을 탄소계 재료로 대체 금속의 dendrite 성장 없음 → 안전성 확보 (리튬은 이온상태로만 존재함)

05 비탄소계 음극소재를 개발해야 하는 이유?

고에너지 밀도 요구 (고용량화)

-제한된 용량 (< 372 mAh/g, LiC₆)

새로운 시장의 형성 (xEV)

- -안정화 특성 요구
- -장수명 특성 (> 10 년), 저온특성 (~ -30℃)

차세대 고성능 및 안정화의 소재 개발 필요

Insertion oxide (LTO)

장점: 고출력, 장수명, 저온특성 우수

단점: 낮은 에너지 밀도,

→ 고출력 (HEV용) 전지에 적합

Alloy-based

Conversion oxide (MO_x)

장점: 높은 에너지 밀도,

단점: 부피변화로 인한 수명문제, 초기효율

→ 고에너지 밀도용 (휴대용 전원)에 적합

- 치밀한 기공 구조를 갖추므로서 Li+의 이동도를 활성화 시킴.

TiO₂ and SiO₂ on lithium battery

Figure 1. Top-view SEM images of the SiO_2/TiO_2 composite film obtained by the PEO process in various electrolyte conditions (Table S1, Supporting Information): a) Si_0 , b) $Si_{0.2}$, c) $Si_{0.3a}$, d) $Si_{0.3b}$, and e) $Si_{0.4}$.

Figure 2. a) Optical micrograph of the as-prepared porous SiO_2/TiO_2 composite film. b) Schematic illustration of the formation of a porous SiO_2/TiO_2 composite film using the PEO process.

- 치밀한 기공 구조를 갖추므로서 Li+의 이동도를 활성화 시킴.

TiO₂ and SiO₂ on lithium battery

Figure 6. a) Cyclic voltammogram of the as-prepared porous SiO_2/TiO_2 composite film cells in the potential range of 0.01–3.0 V (vs Li/Li⁺) at a scan rate of 0.1 mV s⁻¹; b) galvanostatic charge/discharge curves of SiO_2/TiO_2 composite film cells at 100 μ A cm⁻² during the first cycle; c) plots of cyclability versus cycle number of the $Si_{0.4}$ electrode at various current rates; and d) rate capability of the $Si_{0.4}$ electrode cycled at various current rates in the potential range of 0.01–2.5 V (vs Li/Li⁺).

08 연구 논문소개

- 전압 및 용량이 낮은 TiO_2 나노튜브에 전도성이 높은 구리를 증착해서 그 성능을 증가시킴.

Cu on TiO₂ lithium battery

2-2. 연구활동(학위과정)

- SiO₂@TiO₂ 음극재 개발
- CoS@SuS 슈퍼캐패시터용 개발

Direction of energy storage device

Energy density (Wh/kg) = Specific capacity (Ah/kg) * Cell Voltage (V)

Charge storage mechanism of supercapacitors

EDLC

- Electrostatic Interaction
 - → Charge separator
- No phase change
- Reversible charge storage

Pseudocapacitors

- Surface Redox Reaction
 - → Charge transfer
- No phase change
- Reversible charge storage

Impact of surface reaction

Fast and mostly reversible reaction

High Capacitance & Low Resistance

High Energy & Power performance Supercapacitors

$$Capacitance = \frac{Charge}{Voltage} \propto \frac{Surface\ area}{Distance\ of\ EDL} [F]$$

$$Energy = Charge \times Voltage$$

$$= 0.5 Capacitance \times Voltage^{2}$$
[J]

Power =
$$\frac{V^2}{4 \times R_{ES}} = \frac{Energy}{discharge\ time}$$
 [J S⁻¹]

R_{ES}: Equivalent series resistance [Ω]

SEM images According to Number of cycles

Fig. SEM images of cobalt sulfide(CoS) (a) 50cycles; (b) 60cycles; (c) 70cycles; (d) 80cycles.

CV

Fig. the CV curve of electrode formed cobalt sulfide(CoS) in 3M KOH solution

(a) 50cycles; (b) 60cycles; (c) 70cycles; (d) 80cycles.

The Charge-Discharge curves of (e) CoS 50 cycles; (f) 60 cycles; (g) 70 cycles; (h) 80 cycles.

EIS

The EIS graph of CoS 50,60,70 and 80 cycles.

Conclusions

- Nanosheet of CoS materials can be seen of a chain structure by agglomeration.
- The morphology of CoS shows electrochemical capacitive behavior between Co²⁺ ion and electron(e⁻).
- Study about this material is needed for more electrochemical reaction mechanism and morphology.

2-2. 연구활동(한국전자기술연구원)

- LIB 양극재 소개
- 양극 소재 물성 및 전기화학 분석과 공정소개.

Research Outline & Necessity

- ❖ 양극재 소개
 - 1. LCO
 - 2. NCA
 - 3. NCM

	LCO LiCoO₂	NCA LiNi _{0.80} Co _{0.15} Al _{0.05} O ₂	NCM LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂
Capacity (CHG cut-off)	~150 mAh/g (@ 4.3V)	~190 mAh/g (@ 4.3V)	~160 mAh/g (@ 4.3V)
Cost	High	High	Moderate
Process Difficulty	~1,000∘C, air Easy	~800°C, O ₂ Difficult	~1,000°C, air Less difficult
Environmental	Poor	Slightly poor	Slightly poor
Thermal Stability	Slightly poor	Poor	Good
Remark	Small~Mid size Mobile devices	Small~Mid size High power	Replacing LCO (low cost)

❖ 양극재 소개

- 1. LCO
- 2. NCA
- 3. NCM

Layered Structure

•Stable on lithium removal •the retention of capacity on cycling.

	strength	Weakness
LCO	Better cycle, performance	High cost & Toxic
LNO	High practical discharge capacity & power density	Low thermal stability , Cation mixing
LMO	Low cost , High structural stability	Phase transition to spinel, Cation mobility

15 양극 소재 설계 및 분석 방법 소개

✓ 차세대 양극(High Ni(80>)계 NCM, LCO의 장수명으로 인한 열화상태를 개선하기 위해 전이금속 도핑 및 세라믹소재 코팅을 하여 공정 및 분석 제시.

물성 분석		
purpose	Methods	
Particle size	PSA	
Morphology	SEM-EDS	
Structure	XRD	
Physical property	Tap density	
Impurity 1 (water)	Karl fisher	
Impurity 2 (LiOH & Li2CO3)	Titration	
Thermal property	DSC	
Electrical property	Particle resistance	
Mechanical property	Particle strength	
Structure stability	Internal pressure	
Morphology property	BET	
Compositional distribution	ICP-MS	

전기화학 분석

Rate capability
Voltage profile
Cycle life (25°C)
Cycle life (45°C)
Cycle life (60°C)

16 입도 분석

✓ . 양극소재의 각 사이즈의 분포도를 분석하여 전기화학 테스트시 어느 입자가 집중적으로 영향을 주는지 파악함.

purpose	Methods
Particle size	Particle Size analysis

원리 : 한 입자를 각각 다른 각도의 빛을 싸서 각도에 다른 산란 강도를 측정하여 Fraunhofer 또는 Mie 산란 모델을 사용하여 입자 크기 분포를 추론하는 방식.

▶17 표면 및 구조 분석

✓ 양극소재의 SEM-EDS 및 격자구조 파악.

purpose	Methods
Morphology	SEM-EDS
Structure	XRD

18 Tap density 분석

✓ 실제 배터리 안에서 양극 차지하는 밀도를 측정하기 위한 목적..

purpose	Methods
Physical property	Tap density

Tap machine

1. 개요

✔ 탭밀도는 입자들로 이루어진 파우더의 부피당 질랑으로, 일정하게 두드리거나 진동을 주어 입자간 공극을 채운 밀도를 말한다.

2. 장치 및 기구

- 시험 용기: 용량이 약 25 mL 의 표준의 눈금 실린더.
- 분석용 저울
- 3) 탭핑장치

3. 분석절차

- 1) 눈금 실린더에 시료를 10g의 질량을 측정한다.
- 시료를 충전한 메스실린더를 탭밀도 시험기에 조립한 다음 각각의 시험기에서 규정한 측정조건(탭속도 및 낙하높이) 으로 시험한다.
- 2000회 탭핑을 실행하고, 이 때의 최종 용적 以를 구하여 다음 식으로 탭밀도ρ를 계산한다.

$$\rho = \frac{M}{v_f}$$
 ρ : 탭밀도(g/mL)

M: 시료의 질량(g) V; 시료의 최종 겉보기 부피(mL)

4. 목표

✓ 최종 밀도를 얼마나 입자간의 유동성 및 압축률을 통해서 추후 양국 소재의 합제밀도를 고려하기 위합.

19 수분(H₂O) 분석

✓ 양극소재 표면에 얼마나 많은 수분이 있는지 파악-> 수분과 전해액의 반응로 인해 HF 발생으로 가스 형성.

purpose	Methods
Impurity 1 (water)	Karl fisher

NCM

sample	Comp.	ppm
Α	H_2O	1.9
В	H_2O	2.8
C	H_2O	2.1
D	H_2O	2.8

양극소재 표면의 H₂O의 문제

Scheme 1. Surface change of Li[Ni_{0.7}Mn_{0.3}]O₂ materials after exposure in air.

Formation (aging in air)

CO₂, H₂O, LiOH, Li₂CO₃

Control & Removal

20 잔류리튬(Li₂CO₃ 및 LiOH) 분석

✓ 양극소재 표면에 얼마나 많은 수분이 있는지 파악-> 수분과 LiPF6의 반응로 인해 HF 발생으로 가스 형성.

purpose	Methods
Impurity 2 (LiOH & Li2CO3)	Titration

Scheme 2. Effect of the residual lithium on the surface of Li[Ni_{0.7}Mn_{0.3}]O₂.

Decomposition of LiPF₆

$$\begin{array}{c} \text{LiPF}_6 \rightarrow \textbf{LiF} \downarrow + \text{PF}_5 \\ \text{LiPF}_6 & \text{H}_2\text{O} \rightarrow \textbf{HF} + \textbf{LiF} \downarrow + \text{PF}_5 \\ \\ \text{PF}_5 & \text{H}_2\text{O} \rightarrow \text{POF}_3 + \textbf{2HF} \\ \\ \text{2POF}_3 + 3\text{Li}_2\text{O} \rightarrow \textbf{5LiF} \downarrow + \text{P}_2\text{O}_5 \downarrow \text{(or Li}_x\text{POF}_y\text{)} \end{array}$$

Corrosion by HF

CO₂, H₂O, LiOH, Li₂CO₃

Control & Removal

LCO

Comp.	ppm
Li ₂ CO ₃	288
LiOH	240

NCM

Sample	Comp.	ppm
Α	Li ₂ CO ₃	8435
A	LiOH	1374
В	Li ₂ CO ₃	9603
Ь	LiOH	1182
С	Li ₂ CO ₃	9460
C	LiOH	1425
D	Li ₂ CO ₃	6561
	LiOH	1798

21 시차 주사 열량 분석

✓ 완충된 양극 샘플을 가지고 몇도 이상에서 구조변화가 발생되는지 알아보기 위한 테스트.

purpose	Methods
Thermal property	DSC

Fig. 1. sample & reference

heat flow =
$$\frac{heat}{time} = \frac{Q}{t}$$

heating rate =
$$\frac{\text{temperature increase}}{\text{time}} = \frac{\triangle T}{t}$$

$$\text{heat capacity}(C_p) = \frac{Q}{\triangle T} = \frac{\frac{Q}{t}}{\frac{\triangle T}{t}}$$

22 입자 전기전도도 분석

✓ 양극소재가 가지고 있는 전기전도도를 측정하기 위함..

purpose	Methods
Electrical property	Particle resistance

▶ 합제밀도에 따라 양극의 전자전도도가 달라짐.

23 입자강도 분석

√ 양극소재가 배터리 충방전시 얼마나 많이 열화되는지에 대한 척도를 입자강도를 통해서 정량적인 분석을 나타냄.

purpose	Methods
Mechanical property	Particle strength

St = 2.8 $\times \frac{p}{\pi d^2}$ St : 입자강도 (Mpa)

p : 힘(N)

d : 입자직경(mm)

내압측정 분석

완충된 양극극판에서 고온에서 얼마나 많은 가스방출량이 발생하는지에 대한 구조분석.

Methods purpose Structure stability Internal pressure

온도 : 90°C 유지

시간: 24h

가스 **발생량** 분석

- 1) 양극/전해액표면반응(Co₂)
- 양극의 열분해반응(O₂)
- 3) 전해액의 산화반응(Co₂)
- 전해액의 열분해반응

Internal pressure

25 ICP-MS 분석

✓ 양극소재를 이루는 원소를 더욱이 플라즈마 방식으로 정량적으로 분석.

purpose	Methods
Compositional distribution	ICP-MS

ICP-MS의 일반적 특성

- ◆ 대부분 의 원소분석 가능
- ◆ 측정 하한이 매우 낮음 (~ sub ppt)
- ◆ 빠른 시간내 정성 및 정량 분석이 가능
- ◆ 원소분석 뿐만 아니라 동위원소 분석 가능
- ◆ 넓은 농도범위
- ◆ 다양한 시료 종류 분석 가능

ICP				
Comp.	Atomic weight	ppm [mg/kg]	molality [mol/kg]	mole ratio [%]
А	58.693	93578.420	1.594	64.8
В	58.933	27991.330	0.475	19.3
С	54.94	21413.950	0.390	15.9

26 Brunauer-Emmett-Teller (BET) 분석

✓ 양극소재 표면에 얼마나 많은 기공을 가지는지에 대한 표면분석.

purpose	Methods
Morphology property	BET

● 양극소재는 대체로 기공구조의 구형을 가져서 상당한 크기의 비표면적을 가짐.

BET	
Comp.	Surface area (㎡/g)
1	0.223
2	0.221
3	0.228
Avergage	0.224

27 극판 설계 초안(Slurry & coating layer)

양극활물질의 용량과 에너지밀도를 높여 고용량, 고출력의 배터리를 만드는 방향으로 연구가 진행.

극판 공정

고려사항.

- 슬러리/극판 조건 확립
- 2. 전기화학적 성능 확보

Materials	Cell parameters
Α	L/L(mg/cm ²)
	가역 용량(mAh/g)
	합제밀도(g/cc)
	Al foil 두께(μm)
	Press 전 전극두께(μm)
	Press 후 전극두께(μm)
	활물질 : 도전재(carbon black) : 바인더 (PVDF
	고형분(wt.%)

Materials	Cell parameters
Graphite	L/L(mg/cm ²)
	가역 용량(mAh/g)
	합제밀도(g/cc)
	Cu foil 두께(μm)
	N/P ratio
	Press 전 전극두께(μm)
	Press 후 전극두께(μm)
	활물질 : CMC : Super-P : SBR
	고형분(wt.%)

양극활물질의 용량과 에너지밀도를 높여 고용량, 고출력의 배터리를 만드는 방향으로 연구가 진행.

Material	parameters
PE	두께 (µm)

Coin cell

AI 파우치

(3450)

전기화학 분석

Rate capability Voltage profile Cycle life (25°C) Cycle life (45°C) Cycle life (60°C)

전해질 1M LiPF6 EC/EMC=3:7+1.5wt% PS+1wt% VC

Materials

- 1. 전류밀도
- 2. N/P raio
- 3. Sheet number
- 4. Energy density(wh/kg)
- 5. 비가역 용량
- 6. 셀무게(g)

보 서 게 이 TL 각 부품별 weight 비율

[지원 직무관련 학습 활동 이력]

- 1. 전공이수 포지셔닝맵
- 2. 연구활동[논문, 프로젝트]
- 3. 개별 활동 및 학습모임

2-1. 연구활동[프로젝트]

<프로젝트 과제>

- 1. 균일막 형성 기계부품용 타이타늄 양극산화 기술개발 포인트 엔지니어링
- 2. 디스플레이 및 반도체 CVD용 Diffuser 기능의 AAO 소재 개발 포인트 엔지니어링
- 에너지 자원을 확보를 하기 위해 배터리에서 중요한 소재인 리튬을 회수하는 타이타 늄 옥사이드 전극재 회수 연구 및 개발.

2-2. 연구활동[논문]

<논문 게재>

스테인리스강 기판에 연속 이온 층 흡착 및 반응 (SILAR) 공정을 통한 CoS 코팅 및 슈퍼캐패시터 전극 특성 -한국표면공학회

<졸업논문>

CoS가 증착된 스테인리스강의 슈퍼캐패시터용 전극 특성 평가 (Development of CoS-deposited stainless steel for supercapacitor electrode) - 이 졸업 논문에 소개되고 있는 것은 슈퍼캐패시터의 고출력을 위한 것이 아닌 에너지밀도를 중점으로 해서

- 이 졸업 논문에 소개되고 있는 것은 슈퍼캐패시터의 고울력을 위한 것이 아닌 에너시밀도를 중점으로 해서 전극 활물질의 특정용량에너지/면적을 높이기 위해 황화물 계열중에 하나인 코발트 설파이트(CoS)를 선택했다. 그 이유는 현재 에너지 변환 및 저장을 주로 하는 연구분야는 리튬이온 전지이지만, 리튬이온 전지의 단점은 어떤 고출력을 요하는 상황에서 순간적인 고출력을 발휘 하지 못한다는 점에서 고려 하였다.

<학술대회>

1. CoS deposited stainless steel for superc apacitor electrode (주저자, 한국표면공학회)

2. 고전류 구리-주석 합금 도금을 이용한 리튬이온 배터리의 음극재 제조법 연 구(공저자, 한국전기화학회)

- 3. 개별 학습 및 학습 모임
- 1. 2017.01 ~ 2017.02 / 표준분석연구실 / 측정기기분석(SEM, TEM, 열 소재 분석, XRD)등 필 수적으로 중요한 측정기기에 대한 이론 교육과정수료.
- 2. 2018.03~2018.06 / 대학교 화공실험실 / 화공학과 학부생들을 대상으로 알루미늄 에어 배터리 이론 학습.
- 3. 2017.11 ~ 2017.11 / 특허법인공간 / 이공계인을 위한 연구 실적 및 특허에 대한 작성 교육과 정수료.
- 4. 2017.10 ~ 2019.07 / 한국에너지기술평가원 / 에너지 소재관련 기업체를 탐방 과정수료.
- 5. 2019.06 ~ 2019.06 / 국가과학기술인력개발 / 사업제안서 작성 노하우와 연구성과물 보호, 연 구비관리를 습득에 대한 지식 교육과정수료.
- 6. Battery 관련 세미나 : 전기화학 이론 및 전기차에서 어떻게 개발이 되는지에 대한 학습 스터디.