Relacijsko učenje in odkrivanje enačb

Ljupčo Todorovski

Univerza v Ljubljani, Fakulteta za upravo Institut Jožef Stefan, Odsek za tehnologije znanja (E8)

Maj 2019

Odkrivanje enačb: Keplerjev zakon

Rekonstrukcija Keplerjevega tretjega zakona iz podatkov

$$d^3/p^2 = const$$

opazovanja in zakonitost

Pregled predavanja

Operatorji izostritve

- Pomembne lastnosti
- Izčrpno in hevristično iskanje
- Odkrivanje enačb

Propozicionalizacija

- Poizvedbe kot generatorji spremenljivk
- Pretvorba relacijskega v običajno strojno učenje
- Odkrivanje enačb

Definicija

Operator izostritve, refinement operator ρ

$$\rho(p) = \{q : p \leq q\}$$

Od splošnega k specifičnemu (lahko tudi od specifičnega k splošnemu)

Relacija splošnosti: p je bolj splošna od q, $p \leq q$

$$coverage(q, S) \subseteq coverage(p, S)$$

- rečemo tudi, da je q bolj specifična od p
- S je množica učnih primerov
- $coverage(p, S) = \{e \in S : covers(p, e)\}$

Pregled lastnosti operatorjev izostritve

- Idealnost: nasledniki so najbolj splošne poizvedbe
- Popolnost: iz najbolj splošne poizvedbe z zaporedjem izostritev pridemo do katerokoli druge poizvedbe vsaj na en način
- Optimalnost: isto kot zgoraj, a na točno en način
- Monotonost in anti-monotonost

Definicija

Monotonost Boolove funkcije f glede na relacijo splošnosti \leq

$$\forall p, q, S : (p \leq q) \land f(p, S) \Rightarrow f(q, S)$$

- p in q sta hipotezi (poizvedbi)
- *S* je množica učnih primerov (Herbrandove interpretacije)

Anti-monotonost

$$\forall p, q, S : (p \leq q) \land f(q, S) \Rightarrow f(p, S)$$

Primer monotone funkcije

Stopnja pokritosti c(p, S) množice S z hipotezo p

$$c(p, S) = |coverage(p, S)|/|S|$$

Boolova funkcija $f_c(p, S)$: stopnja pokritosti je *največ* ϵ

$$f_c(p,S) \equiv c(p,S) \leq \epsilon$$

- Definicija splošnosti $p \leq q \Rightarrow coverage(q, S) \subseteq coverage(p, S)$
- Očitno velja $coverage(q, S) \subseteq coverage(p, S) \Rightarrow |coverage(q, S)| \le |coverage(p, S)|$
- Torej monotonost $p \leq q \land f_c(p,S) \Rightarrow f_c(q,S)$

4 □ ▶ 4 ₱ ▶ 4 ₱ ▶ ■ 90 Q

Primer anti-monotone funkcije

Boolova funkcija $f_c(p, S)$: stopnja pokritosti je vsaj ϵ

$$f_c(p,S) \equiv c(p,S) \geq \epsilon$$

- Definicija splošnosti $p \leq q \Rightarrow coverage(q, S) \subseteq coverage(p, S)$
- Očitno velja $coverage(q, S) \subseteq coverage(p, S) \Rightarrow |coverage(q, S)| \le |coverage(p, S)|$
- Torej anti-monotonost $p \leq q \land f_c(q, S) \Rightarrow f_c(p, S)$

Algoritem od splošnega k specifičnemu

```
function G2S(Init, Stop, Cond, S)

Q = Init

R = \emptyset

while not Stop do

izberi p iz Q: Q = Q \setminus \{p\}

if Cond(p, S) then

R = R \cup \{p\}

Q = Q \cup \rho(p)

return R
```

Kaj če je Cond anti-monotona Boolova funkcija?

Rezanje preiskovalnega prostora

Če je Cond anti-monotona funkcija

$$\forall p, q \in \rho(p), S : \neg Cond(p, S) \Rightarrow \neg Cond(q, S)$$

- Če trenutno obravnavana hipoteza p ne izpolnjuje pogoja
- Potem nobena njena izostritev $q \in \rho(p)$ ne bo izpolnjevala pogoja

Priložnost za rezanje

 $\rho(p)$ dodamo Q le v primeru, da velja $Cond(p,S) = \top$

Algoritem od splošnega k specifičnemu z rezanjem

```
function G2SPrune(Init, Stop, Cond, S)
Q = Init
R = \emptyset
while not Stop do
izberi p iz Q: Q = Q \setminus \{p\}
if Cond(p, S) then
R = R \cup \{p\}
Q = Q \cup \rho(p)
return R
```

Primerjaj rdečo vrstico z algoritmom iz prosojnice 9.

Definicija

Optimalen operator izostritve ρ

$$\forall p \exists! p_0, p_1, p_2, \dots p_n = p$$

- $p_0 = \top$
- $p_i \in \rho(p_{i-1}), i = 1, 2, \dots n$
- Vsako hipotezo p lahko izpeljemo samo na en način

Primer optimalnega operatorja za množice postavk

Dodajanje elementov v nekem vrstnem redu

$$\rho_O(I) = I \cup \{j\}, \forall i \in I : i \ll j$$

- $\bullet \ll$ je arbitrarna ureditev elementov v U
- U množica vseh možnih elementov (postavk)

Grafična ponazoritev ρ_O za $U = \{x, y, z\}$

Izčrpno iskanje

```
function G2SExhaustive(Init, Stop, Cond, S)
Q = Init
R = \emptyset
while not Stop do
izberi p iz Q: Q = Q \setminus \{p\}
if Cond(p, S) then
R = R \cup \{p\}
Q = Q \cup \rho(p)
return R
```

 ρ je *optimalen* operator izostritve

Primer: Iskanje pogostih množic relacijskih postavk

```
\begin{aligned} & \text{function } RFI(S,\epsilon) \\ & Q = \{(\top,0)\} \\ & \text{while } Q \neq \emptyset \text{ do} \\ & \text{for } s \in S \text{ do} \\ & \text{for } (p,c) \in Q \text{ do} \\ & \text{if } covers(p,s) \text{ then } p = p+1 \\ & R = \{p: (p,c) \in C \land c \geq \epsilon\} \\ & Q = \bigcup_{p \in R \land (p,c) \in Q} \rho(p) \\ & \text{return } Q \end{aligned}
```

- Operator izostritve: θ -subsumpcija (prejšnja predavanja)
- Za zagotavljanje optimalnosti dodatni testi sintaktičnih variant

BONGARD: 30 primerov za dvojiško razvrščanje

Primere oštevilčimo od leve proti desni, nato navzdol

Grafična ponazoritev izvajanja RFI na BONGARD

Na tabli.

Definicija

Idealen operator izostritve ρ

$$\rho(p) = \min(\{q : p \leq q\})$$

- Izostritev p gre le en korak naprej
- Tvori le neposredne sosede p v Hassejevem diagramu

Primer idealnega operatorja za množice postavk

$$\rho_I(I) = I \cup \{j\}, j \notin I$$

Grafična ponazoritev ρ_I za $U = \{x, y, z\}$

Hevristično iskanje: iskanje s snopom, beam search

```
function G2SBeam(f,S,b)

Q = \{(\top, f(\top,S))\}

while \top do

R = Q

izberi prvi (p,v) iz R: R = R \setminus \{p\}

for q \in \rho(p) do

R = R \cup \{(q, f(q,S))\}

uredi R po padajočih vrednosti v: (p,v) \in R

ohrani le b prvih elementov R

if R = Q then return R
```

- f poljubna funkcija, ki za podano hipotezo p in podatkovno množico
 S vrne realno število
- ρ_I je *idealen* operator izostritve
- b = 1: algoritem vzpon po hribu, hill climbing

Definicija naloge

Podano

- Podatkovna množica $S: X_i: D_i = \mathbb{R}, i = 1, 2, \dots p; \ Y: D_Y = \mathbb{R}$
- ullet Definicija prostora ${\mathcal E}$ aritmetičnih izrazov E(X) iz spremenljivk X

Najdi enačbo oblike Y = E(X) za katero

$$\min_{E(X)\in\mathcal{E}}\sum_{(\mathbf{x},\mathbf{y})\in\mathcal{S}}(y-E(\mathbf{x}))^2$$

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩ભ

Definicija prostora možnih enačb in gramatike

$$E \rightarrow E + F \mid E - F \mid F$$

$$F \rightarrow F \cdot T \mid F/T \mid T$$

$$T \rightarrow const \mid V \mid (E)$$

$$V \rightarrow X_1 \mid X_2 \mid \dots \mid X_p$$

Definicija gramatike

Gramatike uporabljamo za definiranje sintakse jezikov.

Kontekstno neodvisna (context-free) gramatika $\mathcal{G} = (\mathcal{N}, \mathcal{T}, \mathcal{P}, SN)$

- ullet ${\cal N}$ je množica *nekončnih* simbolov, *nonterminals*
- T je množica končnih simbolov, terminals
- ullet ${\mathcal P}$ je množica produkcij oblike A o W
 - ullet A je ne-končni simbol $A\in\mathcal{N}$
 - ullet B je niz končnih in nekončnih simbolov $W \in (\mathcal{N} \cup \mathcal{T})^*$
- SN je začetni simbol, $SN \in \mathcal{N}$

Univerzalna gramatika za poljuben aritmetični izraz

- $\mathcal{N} = \{E, F, T, V\}$
- $\mathcal{T} = \{+, -, \cdot, /, const, (,), X_1, \dots X_p\}$
- ullet ${\cal P}$ podana na prosojnici 22
- SN = E

Kako izpeljemo aritmetični izraz s pomočjo gramatike?

Primera dreves izpeljave za const in $X_1 + const \cdot X_2$

Od izpeljave do izraza: preberemo končna vozlišča z leve proti desni.

4 D > 4 D > 4 E > 4 E > E = 90 P

Definicija drevesa izpeljave, parse tree

Oznake vozlišč

- ullet Notranja vozlišča imajo oznake iz ${\cal N}$
- ullet Končna vozlišča imajo oznake iz ${\mathcal T}$
- ullet Oznaka korenskega vozlišča je začetni simbol $\mathit{SN} \in \mathcal{N}$

Nasledniki vozlišča n z oznako A imajo oznake A_1, A_2, \ldots, A_k

Če obstaja produkcija $A \rightarrow A_1 A_2 \dots A_k \in \mathcal{P}$.

Algoritem za tvorjenje dreves izpeljave

```
function GenerateTree(G, A)

if A \in \mathcal{T} then return leaf(A)

izberi produkcijo A \to A_1A_2 \dots A_k \in \mathcal{P}

for i = 1 to k do

t_i = GenerateTree(G, A_i)

return tree(node(A), \{t_1, t_2, \dots, t_k\})
```

Začetni klic: GenerateTree(G, SN)

Operatorji izostritve za drevesa izpeljave

Rabimo

- Urediti izpeljave od splošnega proti specifičnemu
- V tem primeru od enostavnih izpeljav proti zapletenim
- Rešitev: urejanje dreves izpeljave po globini.

Globina produkcije

Globine končnih simbolov $T \in \mathcal{T}$

$$d(T)=0$$

Globine nekončnih simbolov $N \in \mathcal{N}$

$$d(N) = \min_{P \in \mathcal{P}: P = N \to W} d(P)$$

Globina produkcije $P = A \rightarrow A_1 A_2 \dots A_k$

$$d(P) = 1 + \max_{i=1}^k d(A_i)$$

Globina najbolj plitvega drevesa izpeljave s korenskim vozliščem A.

Globine produkcij za univerzalno gramatiko

$\mathcal{T}, \mathcal{N}, \mathcal{P}$	d=0	d=1		d=2		d=3		d = 4
$orall t \in \mathcal{T}$	0	0	0	0	0	0	0	0
Ε							3	3
F					2	2	2	2
T			1	1	1	1	1	1
V			1	1	1	1	1	1
$E \rightarrow E + F$								4
$E \rightarrow E + F$								4
${\sf E} o {\sf F}$						3	3	3
$F \to F \cdot T$						3	3	3
F o F/T						3	3	3
extstyle F ightarrow extstyle T				2	2	2	2	2
T o const		1	1	1	1	1	1	1
T o E								4
T o V				2	2	2	2	2
$V o X_i$		1	1	1	1	1	1	1

Urejeni seznami produkcij po globini

- $2 T: T \to const \ll T \to V \ll T \to (E)$

Optimalen operator izostritve

- Izberi najbolj desno nekončno vozlišče v drevesu izpeljav
 - ullet Naj bo oznaka vozlišča N, uporabljena produkcija N o W
 - Ob vračanju poišči najbolj desno nekončno vozlišče levo od N
 - Če ob vračanju ni več takih vozlišč, $\rho_O(PT) = \emptyset$
- ② Poišči naslednico N o W' produkcije N o W
 - Če take produkcije ni, se vrni na korak 1
 - Zamenjaj produkcijo N o W z naslednico N o W'
- Vozlišča, ki so nastala zaradi W' rekurzivno zaključi z najbolj enostavnimi (plitvimi) produkcijami brez predhodnic
- **1** Dobljeno drevo PT' je rezultat izostritve, $\rho_O(PT) = \{PT'\}$

Primer delovanja ρ_O

Začetno drevo

Izostritev drevesa, če je p > 2

Najbolj desno vozlišče V, produkcijo $V o X_2$ zamenjamo z $V o X_3$

Izostritev drevesa, če je p=2

Najbolj desno vozlišče T, produkcijo T o V zamenjamo s T o (E)

Idealen operator izostritve

- lacktriangle Za vsako nekončno vozlišče v drevesu izpeljav, $m{\mathit{N}}, \ m{\mathit{N}} o m{\mathit{W}}$
 - Poišči naslednico N o W' produkcije N o W
 - Če take produkcije ni, nadaljuj z naslednjo iteracijo
 - ullet Zamenjaj produkcijo N o W z naslednico N o W'
 - Vozlišča, ki so nastala zaradi W' rekurzivno zaključi z najbolj enostavnimi (plitvimi) produkcijami brez predhodnic
 - Dobljeno drevo PT' dodaj v množico izostritev R
- ② Vrni množico izostritev, $\rho_I(PT) = R$

Primer izostritve za ρ_I in drevo s prosojnice 33

Najbolj levo vozlišče V, produkcijo $V o X_1$ zamenjamo z $V o X_2$

Algoritem Lagramge za odkrivanje enačb

Uporablja operatorje izostritve za naštevanje možnih enačb

- ρ_O v kombinaciji z izčrpnim iskanjem G2SExhaustive
- ρ_I v kombinaciji h hevrističnim iskanjem G2SBeam
- V primeru rekurzivnih gramatik in izčrpnega iskanja nastavimo maksimalno globino dreves izpeljave d_{max}
- Pri hevrističnem iskanju lahko tudi $h_{max} = \infty$

Kaj pa funkcija vrednotenja hipoteze f(E(X), S)?

Lagramge in vrednotenje hipotez

$$\min_{const} f(E(X), S) : f(E(X), S) = \frac{1}{|S|} \sum_{(x,y) \in S} (y - \hat{y})^2$$

Izračun \hat{y} odvisen od tipa enačb

- Navadne algebraične enačbe: izračun $\hat{y} = E(x)$
- Diferencialne enačbe: simulacija dy/dt = E(x) s podatki iz S

Rešitev problema minimizacije

- Iščemo optimalne vrednosti konstant const v E(X)
- Poljuben algoritem za numerično optimizacijo (nadomestki!)

4 D > 4 D > 4 E > 4 E > E 900

Primeri različnih gramatik

Polinomi

$$P \rightarrow P + const \cdot T \mid const$$

 $T \rightarrow T \cdot V \mid V$

Populacijska dinamika, na osnovi predznanja

```
PD 
ightarrow PDPrey, PDPredator 
ho PDPrey 
ho Growth — Interaction PDPredator 
ho const \cdot Interaction — Decay 
ho Growth 
ho const \cdot V_{prey} \mid const \cdot (1 - V_{prey}/const) 
ho 
ho
```

◆ロト ◆個ト ◆差ト ◆差ト 差 めなる

Učinki predznanja na primeru populacijske dinamike

d	N(PD, d)	N(E,d)
1	1	0
2	1	0
3	1	7
4	121	36
5	1831	7300
6	27481	14674005
7	412231	$2.3607 \cdot 10^{12}$
8	6183481	$5.5481 \cdot 10^{21}$
9	92752231	$3.8267 \cdot 10^{38}$
10	$1.3913 \cdot 10^9$	$1.2462 \cdot 10^{68}$

Uporaba algoritmov za odkrivanje enačb

Populacijska dinamika

- Napovedovanje rasti planktona v Blejskem jezeru
- Snovanje čistilnih strategij v Rossovem morju, Antarktika

Dinamika biokemičnih reakcij

- Analiza interakcije proteinov pri imunski reakciji
- Modeliranje regulacijskih omrežij genov

Rezultati za Rossovo morje, Antarktika

Kako in zakaj?

Kako?

- Pretvorba relacijskega problema v navaden problem strojnega učenja
- S pomočjo vpeljave novih napovednih spremenljivk
- Kako vpeljemo nove spremenljivke?

Zakaj?

Ker lahko problem rešujemo z običajnimi algoritmi strojnega učenja.

Kako vpeljemo nove spremenljivke?

Spomnimo se kaj so notranja vozlišča v relacijskih drevesih Poizvedbe.

Poizvedbe lahko definirajo nove spremenljivke

- Naredimo tabelarično učno množico iz Herbrandovih interpretacij
- Primeri so isti kot v relacijski množici
- Spremenljivke ustrezajo uspešnosti poizvedbe za vsak primer posebej

Tip novih spremenljivk

- Boolove spremenljivke: ali je bila poizvedba uspešna?
- Numerične spremenljivke: koliko krat je bila poizvedba uspešna?

BONGARD: 30 primerov za dvojiško razvrščanje

Primere oštevilčimo od leve proti desni, nato navzdol

BONGARD: Herbrandove interpretacije primerov

e_1,\ominus	krog(k1), krog(k2), krog(k3), kvadrat(v1),
	vsebuje(k1, k2), vsebuje(v1, k3)
e_2, \oplus	kvadrat(v1), $kvadrat(v2)$, $kvadrat(v3)$,
	vsebuje(v1, v2)
e_{20}, \oplus	krog(k1), kvadrat(v1),
	trikotnik(t1), trikotnik(t2), trikotnik(t3),
	vsebuje(k1, v1), vsebuje(t1, t2)

Poizvedbe, kot jih tvori algoritem G2S

- \bullet \leftarrow $kvadrat(O_1)$
- $\bullet \leftarrow vsebuje(O_1, O_2)$
- $\bullet \leftarrow trikotnik(O_1), vsebuje(O_1, O_2)$
- $\bullet \leftarrow krog(O_1), vsebuje(O_1, O_2)$
- $\bullet \leftarrow kvadrat(O_1), vsebuje(O_1, O_2)$
- $\bullet \quad \textit{trikotnik}(O_1), \textit{vsebuje}(O_1, O_2), \textit{trikotnik}(O_2)$
- \bullet trikotnik(O_1), vsebuje(O_1 , O_2), krog(O_2)

:

Od poizvedb do Boolovih spremenljivk

	X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X_9	 Y
e_1	T	Т	Т	Т	T	Т	Т			\ominus
e_2	上	\perp	Τ	Т	\perp	\perp	Τ	\perp	\perp	\oplus
÷										:
e_{20}	Т	Т	Т	Т	Т	Т	\perp	Т	\perp	\oplus
:										:

Učna množica za poljuben algoritem strojnega učenja.

Od poizvedb do numeričnih spremenljivk

	X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X_9	 Y
e_1	0	3	1	2	0	1	1	0	0	\ominus
e_2	0	0	3	1	0	0	1	0	0	\oplus
:										:
e ₂₀	3	1	1	2	1	1	0	1	0	\oplus
÷										:

Učna množica za poljuben algoritem strojnega učenja.

Odkrivanje enačb

Vpeljava novih spremenljivk z naborom transformacij

- Z množenjem do določene, omejene stopnje: X_1^2 , X_1X_2 , X_1X_3 , ..., X_1X_p , X_2^2 , X_2X_3 , ..., X_2X_p , ... X_p^2 , ... X_p^5
- Z apliciranjem funkcij
- S kombinacijami enih in drugih transformacij

Redka linearna regresija nad razširjenim naborom spremenljivk

$$\min_{\boldsymbol{\beta}} \sum_{(\boldsymbol{x}_T, \boldsymbol{y}) \in S} (\boldsymbol{y} - \boldsymbol{\beta}^T \boldsymbol{x}_T)^2 + \lambda \|\boldsymbol{\beta}\|_1$$

Z regularizacijo poskrbimo za to, da je malo parametrov $\beta \neq 0$.

- 4 ロ ト 4 昼 ト 4 夏 ト - 夏 - 夕 Q (C)

Problem statičnega pristopa

Prekletstvo večdimenzionalnosti.

Osnovna ideja

Generator novih spremenljivk vgradimo v učni algoritem

- Namesto, da bi vse nove spremenljivke vpeljali vnaprej
- Algoritem tvori nove spremenljivke sproti in po potrebi

Relacijski naključni gozdovi

Naivni izbor testa

- Uporabimo algoritem G2SExhaustive in ρ_O za tvorjenje vseh testov
- Naključno izberemo vzorec mtry testov
- mtry je parameter naključnih gozdov, ki določa velikost vzorca naključno izbranih testov

Dejanska implementacija

- Naključno tvorjenje možnih testov
- Moramo paziti, da zagotovimo uniformno distribucijo verjetnosti izbire
- Pripravimo stohastični operator izostritve

Viri

Operatorji izostritve

- Učbenik (De Raedt 2008): Logical and Relational Learning, poglavje 3
- Magistrska naloga (Todorovski 1998): Lagramge
- (Todorovski 2010, 2017): Encyclopedia of Machine Learning

Propozicionalizacija

- Učbenik (De Raedt 2008): poglavja 4.12 in 4.13
- (Van Assche in ost 2006): relacijski naključni gozdovi