CHAPTER 3

3.1

(a)
$$F(x, y, z) = \Sigma(0, 2, 4, 6) = z'$$

x^{1}	00^{2}	01	11	10
0	1	0	0	1
1	1	0	0	1

(b)
$$F(x, y, z) = \Sigma(0, 2, 4, 5, 6, 7)$$

(c)
$$F(x, y, z) = \Sigma(0, 1, 2, 3, 4, 6)$$

(d)
$$F(x, y, z) = \Sigma(1, 4, 5, 7)$$

3.2

(a)
$$F(x, y, z) = \Sigma(0, 1, 4, 7)$$

$$F = x'y' + y'z' + xyz$$

(b)
$$F = y + x'z$$

$\setminus y^2$				
$x \setminus$	00	01	11	10
0	0	0	1	1
1	0	1	0	1

$$F = x'y + yz' + xy'z$$

(d)
$$F(x, y, z) = \Sigma(1, 2, 4, 7)$$

$$F = x'y'z + x'yz' + xy'z' + xyz$$
$$= x'(y \oplus z) + x(y \oplus z)'$$
$$= x \oplus y \oplus z$$

3.3	(a)	F(x, y, z) = xyz + x'y + xyz' = xyz + x'yz + x'yz' + xyz' = \Sigma(2, 3, 6, 7)				
		x 00	01	11	10	
		0 0	0	1	1	
		1 0	0	1	1	
		F = y				

(b)
$$F(x, y, z) = x'yz + xyz' + xyz + x'yz' + xy'z'$$
$$= \Sigma(2, 3, 4, 6, 7)$$
$$x \xrightarrow{y^2} 00 \quad 01 \quad 11 \quad 10$$
$$0 \quad 0 \quad 1 \quad 1$$
$$1 \quad 1 \quad 0 \quad 1 \quad 1$$
$$F = y + xz'$$

(c)
$$F(x, y, z) = x'yz + xz = x'yz + xyz + xy'z = \Sigma(3, 5, 7)$$

$$0 \quad 0 \quad 1 \quad 1 \quad 0$$

$$0 \quad 0 \quad 1 \quad 0$$

$$1 \quad 0 \quad 1 \quad 1 \quad 0$$

$$F = xz + yz$$

(d)
$$F(x, y, z) = xyz + x'y + xyz' + x'y'z'$$
$$= xyz + x'yz + x'yz' + xyz' + x'y'z'$$
$$= \Sigma(0, 2, 3, 6, 7)$$
$$00 \quad 01 \quad 11 \quad 10$$
$$0 \quad 1 \quad 0 \quad 1 \quad 1$$
$$1 \quad 0 \quad 0 \quad 1 \quad 1$$

F = y + x'z'

(a)
$$F(x, y, z) = \Sigma(0, 1, 4, 5)$$

$\setminus y^2$				
$x \setminus$	00	01	11	10
0	1	1	0	0
1	1	1	0	0
F	= y'			

(c)
$$F(A, B, C, D) = \Sigma(1, 5, 9, 12, 13, 15)$$

 $\overline{F} = C'D + ABC' + ABD$

$$F = wx + wyz$$

(e)

(b)
$$F(A, B, C) = \Sigma(0, 2, 3, 7)$$

(d) $F(w, x, y, z) = \Sigma(0, 2, 3, 8, 10, 11)$

wx yz	00	01	11	10
00	1	0	1	1
01	0	0	0	0
11	0	0	0	0
10	1	0	1	1

$$F = x'y + x'z'$$

$$F = wz' + xy'w$$

(f)

(a)
$$F(w, x, y, z) = \Sigma(0, 4, 6, 8, 14, 15)$$

wx \sqrt{yz}	00	01	11	10
00	1	0	0	0
01	1	0	0	1
11	0	0	1	1
10	1	0	0	0

$$F = w'xz' + x'y'z' + wxy$$

(b)
$$F = AC' + ABC' + ABD'$$

(d) $F(A, B, C, D) = \Sigma(0, 2, 4, 6, 8, 10, 12, 14)$

AB CI	D			
AB \	00	01	11	10
00	1	0	0	1
01	1	0	0	1
11	1	0	0	1
10	1	0	0	1

$$F = D'$$

3.6

(a)
$$B'D'(A'C' + C) + AC'D' + BD(A'C + C')$$

= $A'B'C'D' + B'CD' + AC'D' + A'BCD + BC'D$
= $\Sigma(0, 2, 5, 7, 8, 10, 12, 13)$

AB CI)			
AB	00	01	11	10
00	1	0	0	1
01	0	1	1	0
11	1	1	0	0
10	1	0	0	1

$$F = B'D' + ABC' + A'BD$$

(b)
$$F = xy' + x'z + wx'y$$

(c) $F = A'BCD$	+ABC	+ <i>CD</i> + <i>B'D</i>
$=\Sigma(1, 3,$	7, 9, 11,	14, 15)

CI)			
AB	00	01	11	10
00	0	1	1	0
01	0	0	1	0
11	0	0	1	1
10	0	1	1	0

$$F = B'D + CD + ABC$$

3.7

(b)
$$ACD' + B'C'D + BCD + BC'$$

= $\Sigma(1, 4, 5, 7, 9, 10, 12, 13, 14, 15)$

$$F = BC' + BD + C'D + ACD'$$

(c)
$$AB'C + B'C' + A'BCD + ACD' + AB'C' + A'C'D$$

= $\Sigma(0, 1, 5, 7, 8, 9, 10, 11, 14)$

$$F = B'C' + AB' + A'BD + ACD'$$

(d)
$$wxy + xz + w'xz + y'z + wy'$$

= $\Sigma(1, 5, 7, 8, 9, 12, 13, 14, 15)$

3.8

(a)
$$wxy + yz + xy'z + wz'$$

 $wxy \to 111_- \to 1110(14), 1111(15)$
 $yz \to _- _11 \to 0011(3), 0111(7), 1011(11), 1111(15)$
 $xy'z \to _101 \to 0101(5), 1101(13)$
 $wz' \to 1_- _0 \to 1000(8), 1010(10), 1100(12), 1110(14)$

 $F = \Sigma(3, 5, 7, 8, 10, 11, 12, 13, 14, 15)$

(b) AC'D + BC'D + ACD' + A'B'D + A'D'

 $F = \Sigma(0, 2, 4, 5, 6, 9, 10, 11, 13, 14)$

(c)
$$wyz + w'x' + wx'z' + x'z'$$

= $\Sigma(0, 1, 2, 3, 8, 10, 11, 15)$

(d) $F = \Sigma(3, 4, 5, 7, 11, 12)$

3.9

(a) $F(w, x, y, z) = \Sigma(0, 2, 4, 6, 8, 10, 12, 14)$

\\yz				
wx \	00	01	11	10
00	1	0	0	1
01	1	0	0	1
11	1	0	0	1
10	1	0	0	1

Essential Prime Implicant: z'

F = z'

(b) $F(A, B, C, D) = \Sigma(0, 2, 3, 5, 6, 8, 9, 11, 12, 14, 15)$

$\setminus C$	D			
AB	00	01	11	10
00	1	0	1	1
01	0	1	0	1
11	1	0	1	1
10	1	1	1	0

Prime Implicants: A'BC'D, A'B'D', B'C'D', A'B'C,

A'CD', AB'C', AC'D', B'CD, AB'D, ABD', ACD, ABC, BCD'

One set of Essential Prime Implicants: A'BC'D, B'CD, AB'C', A'B'D'
BCD', ABC, AB'C'

Essential: BC', AC, A'B'DNon-Essential: A'BF = BC' + AC + A'B'D

(d) $F(w, x, y, y)$		(1, 3, 5	, 7, 9, 1	1, 13, 15	5)
wx	00	01	11	10	
00	0	1	1	0	
01	0	1	1	0	
11	0	1	1	0	
10	0	1	1		

Essential Prime Implicant = z

Essential: BD, B'C', C'DF = BD + B'C' + C'D (**f**) $F(w, x, y, z) = \Sigma(1, 3, 4, 6, 7, 9, 10, 12, 13, 15)$

$\setminus yz$				
wx\	00	01	11	10
00	0	1	1	0
01	1	0	1	1
11	1	1	1	0
10	0	1	0	1

Prime Implicants: wx'yz', w'x'z, x'y'z, w'xy', xy'z', w'yz, w'xy, wy'z, wxy', xyz, wxz.

One set of Essential Prime Implicants: wx'yz', w'x'z, wy'z, x'y'z, w'yz, w'xz', xyz, wxy'

3.10 (a) $F(w, x, y, z) = \Sigma(0, 2, 5, 7, 8, 10, 13, 14, 15)$

Using K-map:

wx\yz	00	01	11	10
00	1	0	0	1
01	0	1	1	0
11	0	1	1	1
10	1	0	0	1

Using Quine-McCluskey method:

Prime Implicant Table:

$$F = (-0-0) + (-1-1) + (1-10) = x'z' + xz + wyz'$$

(b) $F = \Sigma(0, 2, 3, 5, 7, 8, 10, 11, 14, 15)$ Essential: AC, B'D', CD, A'BDF = AC + B'D' + CD + A'BD

(c) $F(w, x, y, z) = \Sigma(2, 3, 6, 7, 10, 11, 14, 15)$

yz				
wx \	00	01	11	10
00	0	0	1	1
01	0	0	1	1
11	0	0	1	1
10	0	0	1	1

2 (0010) 🗸 2, 3 (001_) 2, 3, 6, 7(0_1_) (2, 3, 6, 7, 10, 11, 14, 15)3 (0011) **✓** 2, 3, 10, 11(_01_) 2, 6 (0_10) 6 (0110) 🗸 2, 10(_010) <u>2, 6, 10, 14(__10)</u> (_ _1_) 10 (1010) 🗸 3, 7(0_11) 3, 7, 11, 15(__11) 7 (0111) 🗸 ✓ 6, 7, 14, 15(_11_) 3, 11(_011) 11 (1011) 🗸 6, 7(011_) 10, 11, 14, 15(1_1_) 🗸 14 (1110) 🗸 6, 14(_110) <u>15 (1111)</u> **✓** 10, 11(101_) 🗸 10, 14(1_10) 🗸 7, 15 (_111) 🗸 11, 15(1_11) 🗸 14, 15(111_) 🗸

F = C

(**d**) $F = \Sigma(0, 1, 4, 5, 6, 7, 9, 11, 14, 15)$

Essential: w'y', xy, wx'z

Non-essential: wx, x'y'z, w'wz, w'x'z

F = w'y' + xy + wx'z

	\ yz			у		1
wx		00	01	11	10	
	00	m_0 1	1	m_3	m_2	
	01	1	<i>m</i> ₅	1	$\frac{m_6}{1}$	
	11	m_{12}	m_{13}	m ₁₅	1 1	x
W	10	m_8	m ₉	1	m_{10}	
				z]	

(e) F(A, B, C, D) = S(0, 1, 3, 7, 8, 9, 10, 13, 15)

Essential: B'C', AB'D'

Non-essential: ABD, A'CD, BCDF = B'C' + AB'D' + A'CD + ABD

(**f**) $F(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 7, 10, 12, 15)$

$\setminus yz$				
wx \	00	01	11	10
00	1	1	0	1
01	1	1	1	1
11	1	0	1	0
10	0	0	0	1

 $\begin{array}{cccc} \underline{0\ (0000)} \ \checkmark & 0,1(000_) & \checkmark & 0,1,4,5\ (0_0_) \\ 1\ (0001) \ \checkmark & 0,2(00_0) & \checkmark & 0,2,4,6\ (0_0_) \end{array}$

Essential Prime Implicants: (0, 1, 4, 5)(2, 10)(4, 12)(7, 15)(0, 2, 4, 6)F = w'y' + x'yz' + xy'z' + xyz + w'z'

3.11
$$F(w, x, y, z) = \Sigma(0, 1, 3, 5, 7, 9, 10, 13, 15)$$

$$F = (x' + z)(w' + y + z) (w + y' + z) (w' + x + y' + z')$$

3.12 (a) $F(A, B, C, D) = \pi(0, 2, 4, 6, 8, 10, 12, 14)$

CI	O			
AB	00	01	11	10
00	0	1	1	0
01	0	1	1	0
11	0	1	1	0
10	0	1	1	0

$$F = D$$

(b)
$$F(A, B, C, D) = \pi(1, 3, 5, 7, 9, 11, 13, 15)$$

Digital Design With An Introduction to the Verilog HDL – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2012, All rights reserved.

$$F = D'$$

It shows a logical product of all even maxterms is equal to the complement of logical product of all odd maxterms. For n variable,

$$\pi(M_2i) = (\pi(M_2i + 1))'$$
 where, $i = 0, 1, 2, ..., (2^n/2 - 1)$

3.13 (a)
$$F = xz' + y'z' + yz' + xy' = \Sigma(0, 2, 4, 5, 6)$$

x^{yz}	00	01	11	10
0	1	0	0	1
1	1	1	0	1

$$F = z' + xy'$$
 (Sum of Product)
 $F = (x + z')(y' + z')$ (Product of Sum)

(b)
$$F = AC'D' + C'D + AB' + AB'CD$$

= $\Sigma(1, 5, 8, 9, 10, 11 12, 13)$
= $\pi(0, 2, 3, 4, 6, 7, 14, 15)$

\overrightarrow{AB}^{CI}	00	01	11	10
00	0	1	0	0
01	0	1	0	0
11	1	1	0	0
10	1	1	1	1

$$F = AC' + C'D + AB'$$
 (Sum of Product)
 $F = (A + D)(A + C')(B' + C')$ (Product of Sum)

(c)
$$F = (A' + B + D')(A' + B' + C')(A' + B' + C)(B' + C + D')$$

 $F' = AB'D + ABC + ABC' + BC'D$

	$\setminus CD$)			•	1
AE	' \	00	01	11	10	I
		m_0	m_I	m_3	m_2	
	00		0	0		
		m_4	m_5	m_7	m_6	¬
	01	m ₄	l ^{m5}	m_7	m ₆	
	01					_
	Γ	m_{12}	m_{13}	m_{15}	m_{14}	$\mid \mid B \mid$
	11	0	0	0	0	
\boldsymbol{A}						
	10	m_8	m_9	m_{II}	m_{10}	
	10					
	L					J
					J	
				D		

$$F' = AB + BC'D$$

$$F = (A' + B')(B' + C + D')$$

 $F = A'D' + A'BC + AB'$

(d)
$$F = BD' + AC'D + BC' + AB'CD$$

= $\Sigma(4, 5, 6, 9, 11, 12, 13, 14)$
= $\pi(0, 1, 2, 3, 7, 8, 10, 15)$

AB^{CI}	00	01	11	10
00	0	0	0	0
01	1	1	0	1
11	1	1	0	1
10	0	1	1	0

$$F = BC' + BD' + AB'D \longrightarrow SOP$$

 $F = (A + B) (B + D) (B' + C' + D') \longrightarrow POS$

3.14 F(A, B, C, D) = A'B'D' + AB'D' + BD + ABCD'

Two SOP form of F is,

No. of literals

$$F(A, B, C, D) = B'D' + BD + ACD'$$
 $2 + 2 + 3 = 7$ and $F(A, B, C, D) = B'D' + BD + ABC$ $2 + 2 + 3 = 7$

POS of form of F is,

F(A, B, C, D) = (B + D')(B' + C + D)(A + B' + D)

No. of literals = 2 + 3 + 3 = 7

3.15 (a)
$$F(x, y, z) = \Sigma(0, 1, 3, 5, 7)$$

 $d = \Sigma(2, 4, 6)$

$$F = 1$$

(b)
$$F = \Sigma(0, 4, 8, 10, 14)$$

 $d = \Sigma(2, 6, 12)$

$$F = D'$$

(c)
$$F = \Sigma(5, 6, 7, 11, 14, 15)$$

 $d = \Sigma(3, 9, 13)$

$\setminus C$	D			
AB	00	01	11	10
00	0	0	ı	0
01	0	1	1	1
11	0	-	1	1
10	0	-	1	0

$$F = BD + BC + AD$$

(d)

$\setminus CD$					
AB	00	01	11	10	
00		0	1	1	
01	1	0	1	-	
11	1	-	0	1	
10	-	0	0	1	

$$F = D' + A'C$$

3.16 (a) F(A, B, C, D) = AD + BC'D' + ABC + A'BC'D

	D 00	01	11	10
AB 00	0	0	0	0
01	1	1	0	0
11	1	1	1	1
10	0	1	1	0

 \cdot Solution Manual. M. Mano. M.D. Ciletti, Copyright 2012, rights reserved.

$$F = AB + BC' + AD$$
$$= [(AB)'(BC')'(AD)']'$$

(b) F(A, B, C, D) = A'B'C'D + CD' + AC'D

$\setminus C$	D			
AB	00	01	11	10
00	0	1	0	1
01	0	0	0	1
11	0	1	0	1
10	0	1	0	1

F(A, B, C, D) = CD' + AC'D + B'C'D= [(CD)' (AC'D)'(B'C'D)']'

(c)
$$F = (A' + C' + D')(A' + C')(C' + D')$$

 $F' = (A' + C' + D')' + (A' + C')' + (C' + D')'$
 $F' = ACD + AC + CD$

Digital Design With An Introduction to the Verilog HDL – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2012, All rights reserved.

(d)
$$F(A, B, C, D) = A' + AB + B'C + ACD$$

$$F = A' + B + C$$

= $[(A'A')' (BB)' (CC)']'$

3.17 $F(A, B, C, D) = \Sigma(4, 5, 6, 7, 9, 13, 15)$

$\setminus CD$					
AB	00	01	11	10	
00	0	0	0	0	
01	1	1	1	1	
11	0	1	1	0	
10	0	1	0	0	

$$F' = B'A' + B'C + AD'$$

By NAND:

=[(B'A')'(B'C)'(AD')']'

By NOR:

= [(A+B)' + (B+C')' + (A'+D)']'

3.18
$$F(A, B, C, D) = (A \oplus B)' (C \oplus D)$$

$$= (A'B + AB')' (C'D + CD')$$

$$= (A + B') (A' + B)(C'D + CD')$$

$$= (A'B' + AB)(C'D + CD')$$

$$= [(A'B')'(AB)']' + [(C'D)'(CD')']'$$

3.19 (a)
$$F(w, x, y, z) = wx'y + xy'z' + w'yz' + xy$$

wx $\sqrt{y^2}$	00	01	11	10
00	0	0	0	1
01	1	0	1	1
11	1	0	1	1
10	0	0	1	1

Simplified Boolean equation:

$$F(w, x, y, z) = xz' + yz' + xy + wy$$

= $(x' + z)' + (y' + z)' + (x' + y')' + (w'+y')'$

(b)
$$F(w, x, y, z) = \Sigma(4, 7, 11, 12, 15)$$

wx yz	00	01	11	10
00	0	0	0	0
01	1	0	1	0
11	1	0	1	0
10	0	0	1	0

$$F = xy'z' + xyz + wyz$$

= $[(x' + (y + z))' + (x' + (y' + z'))' + (w' + (y' + z'))']$

(c)
$$F = [(x + y)(x' + z)]' = (x + y)' + (x' + z)'$$

 $F' = [(x + y)' + (x' + z)']'$

3.20
$$F = BC(D + C)A + (BC' + DE') + BD'$$

$$= ABCD + ABC + BC' + DE' + BD'$$

$$= [[(A' + B' + C' + D')' + (A' + B' + C')' + (B' + C)' + (D' + E)' + (B' + D)']']'$$

Digital Design With An Introduction to the Verilog HDL – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2012, All rights reserved.

3.21
$$F = w(x' + y' + z) + xy'z$$
$$= wx' + wy' + wz + xy'z$$
$$= [(wx')' (wy')' (wz)' (xy'z)']'$$

3.22
$$z = D'$$

$$y = CD + (C + D)' = [[(C' + D')' + (C + D)']']'$$

$$x = B(C + D)' + B'(C + D)$$

$$= BC'D' + B'C + B'D$$

$$= [[(B' + C + D)' + (B + C')' + (B + D')']'$$

Digital Design With Ar. cuesti, Copyright 2012, All rights reserved.

$$w = B(C + D) + A$$

= BC + BD + A
= [[(B' + C')' + (B' + D')' + (A'A')']']'

3.23 $F(A, B, C, D) = \Sigma(0, 2, 4, 12, 14) + d(1, 5, 8, 10)$

$$F = C'D' + AD' + B'D'$$

OR
 $F' = D + A'BC$
 $F = [D + A'BC]'$
 $= [D + (A + B' + C')']'$

3.24 $F(A, B, C, D) = \Sigma(1, 5, 8, 9, 10, 11, 12, 13, 15)$

$$F(A, B, C, D) = C'D + AB' + AC' + AD \longrightarrow (a) \text{ AND-OR}$$

$$= ((C'D)'(AB')'(AC')' (AD)')'$$

$$= ((C+D')(A'+B)(A'+C)(A'+D'))' \longrightarrow (b) \text{ OR-NAND}$$

$$= ((C+D')' + (A'+B)' + (A'+C)' + (A'+D')' \longrightarrow (c) \text{ NOR-OR}$$

$$= ((C'D)' (AB')' (AC')' (AD)')' \longrightarrow (d) \text{ NAND-NAND}$$

$$F(A, B, C, D) = (A + D)(A + C')(B' + C' + D)$$
 \rightarrow (e) OR-AND
= $((A + D)' + (A + C')' + (B' + C' + D')')'$ \rightarrow (f) NOR-NOR
= $(A'D')' (A'C)' (BCD')'$ \rightarrow (g) NAND-AND

3.25

The degenerate forms use 2-input gates to implement the functionality of 4-input gates.

3.26 $f = abc' + b'd' + a'd'$	a' + b'cd'
-------------------------------	------------

ab	00	01	11	10
00	1	0	0	1
01	1	0	0	1
11	1	1	0	
10	1	0	0	1

$$g = (a + b + c' + d') (a' + b' + d) (a' + d')$$

ab cd	00	01	11	10
00	1	1	0	1
01	1	1	1	1
11	0	0	0	0
10	1	0	0	1

Group the overlapping is $F = fg = \Sigma(0, 2, 4, 5, 8, 10)$

$$F = a'd' + b'd'$$

3.28 4 bit even parity generator $F = \Sigma(1, 2, 4, 7, 8, 11, 13, 14)$

 $=A \oplus B \oplus C \oplus D$

3-bit parity checker using even parity

$$F(A, B, C) = \Sigma(0, 3, 6, 5)$$
$$= A \oplus B \oplus C$$

3.29
$$D = (\overline{A \oplus B}) C + (A \oplus B) C'$$

$$E = (A \oplus B) \oplus AB$$

$$F = (A'B + AB')AB$$

$$C_1 = (A \oplus B) C$$

3.30
$$F = A'B'C'D' + ABC'D' + A'B'CD + ABCD$$
$$= C'D' \overline{(A \oplus B)} + CD(A \oplus B)$$
$$= \overline{(A \oplus B)} \overline{(C \oplus D)}$$

Digital Design With An Introduction to the Verilog HDL – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2012, All rights reserved.

3.31 Note: It is assumed that a complemented input is generated by another circuit that is not part of the circuit that is to be described.

```
(a)
       module Fig_3_20a_gates (F, A, B, C, C_bar, D);
         output F;
        input
                    A, B, C, C_bar, D;
        wire
                 w1, w2, w3, w4;
                    (w1, C, D);
        and
                 (w2, w1, B);
        or
        and
                    (w3, w2, A);
        and
                    (w4, B, C_bar);
        or
                    (F, w3, w4);
      endmodule
(b)
      module Fig_3_20b_gates (F, A, B, B_Bar, C, C_bar, D);
         output F;
        input
                    A, B, B_bar, C, C_bar, D;
         wire
                 w1, w2, w3, w4;
         not
                 (w1_bar, w1);
                 (w3_bar, w3);
        not
                 (w4_bar, w4);
        not
        nand
                    (w1, C, D);
         or
                    (w2, w1_bar, B);
                    (w3, w2, A);
        nand
        nand
                    (w4, B, C_bar);
        or
                    (F, w3_bar, w4_bar);
      endmodule
      module Fig 3 21a gates (F, A, A bar, B, B bar, C, D bar);
(c)
         output F:
         input A, A_bar, B, B_bar, C, D_bar;
                    w1, w2, w3, w4;
         wire
         and
                 (w1, A, B_bar);
         and
                 (w2, A_bar, B);
                 (w3, w1, w2);
         or
                 (w4, C, D_bar);
         or
                 (F, w3, w4);
         and
      endmodule
(d)
      module Fig_3_21b_gates (F, A, A_bar, B, B_bar, C_bar, D);
         output F;
        input
                    A, A_bar, B, B_bar, C_bar, D;
        wire
                 w1, w2, w3, w4, F_bar;
                    (w1, A, B_bar);
        nand
         nand
                    (w2, A_bar, B);
        not
                 (w1_bar, w1);
                 (w2_bar, w2);
        not
                 (w3, w1_bar, w2_bar);
        or
         or
                    (w4, w5, w6);
                 (w5, C_bar);
        not
                 (w6, D);
        not
                    (F_bar, w3, w4);
        nand
                 (F, F_bar);
        not
      endmodule
(e)
      module Fig_3_24_gates (F, A, A_bar, B, B_bar, C, D_bar);
         output F;
        input
                    A, A_bar, B, B_bar, C, D_bar
```

```
wire
                w1, w2, w3, w4, w5, w6, w7, w8, w7_bar, w8_bar;
                (w1_bar, w1);
        not
        not
                (w2_bar, w2);
                (w3, E_bar);
        not
        nor
                (w1, A, B);
                (W2, C, D);
        nor
        and
                (F, w1_bar, w2_bar, w3);
      endmodule
(f)
      module Fig_3_25_gates (F, A, A_bar, B, B_bar, C, D_bar);
         output F;
        input A, A_bar, B, B_bar, C, D_bar;
        wire
                   w1, w1_bar, w2, w2_bar;
                   w3, w4, w5, w6, w7, w8;
        wire
        not
                   (w1, A_bar);
        not
                   (w2, B);
        not
                   (w3, A);
        not
                (w4, B_bar);
        and
                (w5, w1_bar, w2_bar));
                (w6, w3, w4);
        and
        nor
                (w7, w5, w6);
        nor
                (w8, c, d_bar);
                (F, w7, w8);
        and
      endmodule
```

3.32 Note: It is assumed that a complemented input is generated by another circuit that is not part of the circuit that is to be described.

Note: Because the signals here are all scalar-valued, the logical operators (!, &&, and ||) are equivalent to the bitwise operators (\sim , &, |). If the operands are vectors the bitwise operators produce a vector result; the logical operators would produce a sclara result (true or false).

```
(a)
       module Fig_3_20a_CA (F, A, B, C, C_bar, D);
         output F;
         input
                     A, B, C, C_bar, D;
         wire
                 w1, w2, w3, w4;
         assign w1 = C \&\& D;
         assign w2 = w1 \parallel B;
         assign w3 = !(w2 \&\& A);
         assign w4 = !w3;
         assign w5 = !(B \&\& C bar);
         assign w5_bar = !w5;
         assign F = w4 \parallel w5\_bar);
       endmodule
(b)
       module Fig_3_20b_CA (F, A, B, C, C_bar, D);
         output F:
         input
                     A, B, B_bar, C, C_bar, D;
         wire
                 w2 = !w1;
         wire
                 w3 = !B_bar;
                 w4, w5, w5_bar, w6, w6_bar;
         wire
         assign w1 = !(C \&\& D);
         assign w4 = w2 \parallel w3;
         assign w5 = !(w4 \&\& A);
         assign w5_bar = !w5;
         assign w6 = !(B && C_bar);
         assign w6_bar = !w6;
```

```
assign F = w5_bar \parallel w6_bar;
      endmodule
      module Fig_3_21a_CA (F, A, A_bar, B, B_bar, C, D_bar);
(c)
         output F;
         input
                    A, A_bar, B, B_bar, C, D_bar;
         wire
                w1, w2, w3, w4;
         assign w1 = A && B_bar;
         assign w2 = A_bar && B;
         assign w3 = w1 \parallel w2);
         assign w4 = C || D_bar;
         assign F = w3 \parallel w4;
      endmodule
(d)
       module Fig_3_21b_CA (F, A, A_bar, B, B_bar, C_bar, D);
         output F:
         input
                    A, A_bar, B, B_bar, C_bar, D;
         wire
                w1, w2, w1_bar, w2_bar, w3, w4, w5, w6, F_bar;
         assign w1 = !(A && B_bar);
         assign w2 = !(A_bar && B);
         assign w1_bar = !w1;
         assign w2_bar = !w2;
         assign w3 = w1_bar \parallel w2_bar;
         assign w4 = !C_bar;
         assign w5 = !D;
         assign w6 = w4 \parallel w5;
         assign F_bar = !(w3 && w6);
         assign F = !F_bar;
      endmodule
(e)
      module Fig_3_24_CA (F, A, B, C, D, E_bar);
         output F;
         input
                    A, B, C, D, E_bar;
         wire
                w1, w2, w1_bar, w2_bar, w3_bar;
         assign w1 = !(A \parallel B);
         assign w1_bar = !w1;
         assign w2 = !(C \parallel D);
         assign w2_bar = !w2;
         assign w3 = !E_bar;
         assign F = w1_bar && w2_bar && w3;
       endmodule
(f)
      module Fig_3_25_CA (F, A, A_bar, B, B_bar, C, D_bar);
         output F;
         input
                    A, A_bar, B, B_bar, C, D_bar
         wire
                w1, w2, w3, w4, w5, w6, w7, w8, w9, w10;
         assign w1 = !A _bar;
         assign w2 = !B;
         assign w3 = w1 \&\& w2;
         assign w4 = !A;
         assign w5 = !B_bar;
         assign w6 = w4 && w5;
         assign w7 = !(C || D_bar);
         assign w8 = !(w3 || w6);
         assign w9 = !w8;
         assign w10 = !w7;
         assign F = w9 \&\& w10;
       endmodule
```

3.33 (a)

Initially, with xy = 00, w1 = w2 = 1, w3 = w4 = 0 and F = 0. w1 should change to 0 3ns after xy changes to 01. w4 should change to 1 6ns after xy changes to 01. F should change from 0 to 1 8ns after xy changes from 0 to 1, i.e., 14 ns after xy changes from 00 to 01.

(b) timescale 1ns/1ps **module** Prob_3_33 (F, x, y); wire w1, w2, w3, w4; and #6 (w3, x, w1); not #3 (w1, x); and #6 (w4, y, w1); not #3 (w2, y); or #8 (F, w3, w4); endmodule module t_Prob_3_33 (); reg x, y; wire F; Prob_3_33 M0 (F, x, y); initial #200 \$finish; initial fork x = 0;

> y = 0;#20 y = 1;

join endmodule

(c) To simulate the circuit, it is assumed that the inputs xy = 00 have been applied sufficiently long for the circuit to be stable before xy = 01 is applied. The testbench sets xy = 00 at t = 0 ns, and xy = 1 at t = 10 ns. The simulator assumes that xy = 00 has been applied long enough for the circuit to be in a stable state at t = 0 ns, and shows F = 0 as the value of the output at t = 0. For illustration, the waveforms show the response to xy = 01 applied at t = 10 ns.


```
3.34
                 module Prob_3_34 (Out_1, Out_2, Out_3, A, B, C, D);
                   output Out_1, Out_2, Out_3;
                   input
                              A, B, C, D;
                   wire
                           A_bar, B_bar, C_bar, D_bar;
                   assign A_bar = !A;
                   assign B_Bar = !B;
                   assign C_bar = !C;
                   assign D_bar = !D;
                   assign Out_1 = (A + B_bar) && C_bar && ( C || D);
                   assign Out_2 = ( (C_bar && D) || (B && C && D) || (C && D_bar) ) && (A_bar || B);
                   assign Out_3 = (((A && B) || C) && D) || (B_bar && C);
                 endmodule
3.35
```

 module Exmpl-3(A, B, C, D, F)
 // Line 1

 inputs A, B, C, Output D, F,
 // Line 2

 output B
 // Line 3

 and g1(A, B, B);
 // Line 4

 not (D, B, A),
 // Line 5

 OR (F, B; C);
 // Line 6

 endofmodule;
 // Line 7

Line 1: Dash not allowed character in identifier; use underscore: Exmpl_3. Terminate line with semicolon (;).

Line 2: **inputs** should be **input** (no s at the end). Change last comma (,) to semicolon (;). *Output* is declared but does not appear in the port list, and should be followed by a comma if it is intended to be in the list of inputs. If *Output* is a mispelling of **output** and is to declare output ports, *C* should be followed by a semicolon (;) and *F* should be followed by a semicolon (;).

Line 3: *B* cannot be declared both as an input (Line 2) and output (Line 3). Terminate the line with a semicolon (;).

Line 4: A cannot be an output of the primitive if it is an input to the module

Line 5: Too many entries for the not gate (may have only a single input, and a single output). Termiante the line with a semicolon, not a comma.

Line 6: OR must be in lowercase: change to "or". Replace semicolon by a comma (B,) in the list of ports.

Line 7: Remove semicolon (no semicolon after endmodule).

(b)

(c)


```
UDP_Majority_4 (y, a, b, c, d);
                     output
                                y;
                     input
                                a, b, c, d;
                     table
                     // a
                           b
                                     d
                                С
                                               0;
                        0
                             0
                                  0
                                      0
                        0
                             0
                                  0
                                       1
                                               0;
                        0
                             0
                                                0;
                        0
                             0
                                                0;
                                  1
                                       1
                        0
                             1
                                  0
                                      0
                                                0;
                        0
                             1
                                  0
                                       1
                                                0;
                        0
                                      0
                             1
                                  1
                                               0:
                        0
                             1
                                                1;
                         1
                             0
                                  0
                                       0
                                                0:
                         1
                             0
                                  0
                                       1
                                                0;
                         1
                             0
                                       0
                                  1
                                               0;
                             0
                                               0;
                                      0
                         1
                                  0
                                               0;
                             1
                         1
                              1
                                  0
                                       1
                                               0;
                                      0
                         1
                             1
                                  1
                                                1;
                         1
                             1
                                  1
                                       1
                                                1;
                       endtable
                     endprimitive
3.38
       module t_Circuit_with_UDP_02467;
         wire E, F;
```

3.37

```
reg A, B, C, D;
  Circuit_with_UDP_02467 m0 (E, F, A, B, C, D);
  initial #100 $finish;
  initial fork
    A = 0; B = 0; C = 0; D = 0;
    #40 A = 1;
    #20 B = 1;
    #40 B = 0;
    #60 B = 1;
    #10 C = 1; #20 C = 0; #30 C = 1; #40 C = 0; #50 C = 1; #60 C = 0; #70 C = 1;
    #20 D = 1;
  join
endmodule
// Verilog model: User-defined Primitive
primitive UDP_02467 (D, A, B, C);
  output D;
  input A, B, C;
// Truth table for D = f(A, B, C) = (0, 2, 4, 6, 7);
 table
   A B C
                D // Column header comment
   0 0 0
                1;
   0
      0
         1
                0;
   0
      1
         0
                 1;
   0
      1
         1
                0;
      0
         0
                 1;
      0
                0;
   1
         1
   1
      1
         0
             :
                 1;
      1
   1
         1
                 1;
```

Digital Design With An Introduction to the Verilog HDL – Solution Manual. M. Mano. M.D. Ciletti, Copyright 2012, All rights reserved.

endtable endprimitive // Verilog model: Circuit instantiation of Circuit_UDP_02467 module Circuit_with_UDP_02467 (e, f, a, b, c, d); output e, f; input a, b, c, d; UDP_02467 M0 (e, a, b, c); and //Option gate instance name omitted (f, e, d); endmodule t, ns В t, ns C t, ns D t, ns E t, ns F t, ns

3.39

```
a b s c

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

s = a'b + ab' = a ^ b

c = ab = a && b

module Prob_3_39 (s, c, a, b);

input a, b;

output s, c;

xor (s, a, b);

and (c, a, b);

endmodule
```