Summary of Analysis

Changjae Lee

August 4, 2024

Contents

Ι	Me	easure and Integration	1			
1	Foundations					
	1.1	Sets	3			
	1.2	Systems of Sets	4			
	1.3	Nets and Filters	4			
	1.4	Topological Properties	4			
2	Measures					
	2.1	Abstract Measures	5			
	2.2	Borel Measures	6			
	2.3	Outer Measures	6			
	2.4	Complete Measures	6			
3	Abstract Integration					
	3.1	Measurable Functions	7			
	3.2	Integration of Nonnegative Functions	7			
	3.3	Integration of Complex Functions	7			
	3.4	Product Measures	7			
4	Signed Measure and Differentiation					
	4.1	Signed Measures	9			
	4.2	Complex Measures	9			
	4.3	Differentiation on Euclidean Space	9			
	4.4	Rounded Variations	Q			

iv CONTENTS

Part I Measure and Integration

Foundations

1.1 Sets

Let A be a nonemptyset and R be a binary relation on A.

Refl Reflexive: $\forall a \in A, aRa$

AntiRefl Antireflexive: $\forall a \in A, \neg aRa$

Sym Symmetric: $\forall a, b \in A, aRb \Rightarrow bRa$

AntiSym Antisymmetric: $\forall a, b \in A$, aRb and $bRa \Rightarrow a = b$

Asym Asymmetric: $\forall a, b \in A, aRb \Rightarrow \neg bRa$

Trans Transitive: $\forall a, b \in A, aRb \text{ and } bRc \Rightarrow aRc$

Total: $\forall a, b \in A, a \neq b \Rightarrow aRb \text{ or } bRa$

Well-founded $\exists m \in A, \forall a \in A, mRa$

Name	Definition
equivalence	Refl + Sym + Trans
preorder	Refl + Trans
partial order	Refl + AntiSym + Trans
total order	Refl + AntiSym + Trans + Total
well-ordering	Refl + Sym + Trans + Total + Well-founded

Table 1.1: List of transitive relations.

- **proset** The pair (A, \lesssim) is called **preordered set (proset)** if \lesssim is a preorder on A.
- **poset** The pair (A, \preceq) is called **partially ordered set (poset)** if \preceq is a partial order on A.
- toset The pair (A, \preceq) is called **totally ordered set (toset)** if \preceq is a total order on A.
- woset The pair (A, \leq) is called well-ordered set (woset) if \leq is a well-ordering on A.

1.2 Systems of Sets

1.3 Nets and Filters

Definition 1.3.1 (directed set). Let (J, \lesssim) be a proset.

(upward) directed $\forall a, b \in J, \exists c \in J, a \lesssim c \text{ and } b \lesssim c.$

downward directed $\forall a, b \in J, \exists c \in J, c \lesssim a \text{ and } c \lesssim b.$

Definition 1.3.2. A **net** $x_{\bullet} = (x_{\alpha})_{\alpha \in J}$ in X is a function $x_{\bullet} : J \to X$ where J is a directed set.

1.4 Topological Properties

Measures

2.1 Abstract Measures

If Σ is a σ -algebra on X, then (X, Σ) is called a **measurable space**.

Definition 2.1.1. A **measure** on (X, Σ) is a function $\mu : \Sigma \to [0, \infty]$ s.t.

- 1. $\mu(\emptyset) = 0$
- 2. (countable additivity) If $(E_j)_1^{\infty}$ disjoint sequence in Σ , then

$$\mu(\bigcup_{j=1}^{\infty} E_j) = \sum_{j=1}^{\infty} \mu(E_j)$$

If μ is a measure on (X, Σ) , then (X, Σ, μ) is called **measure space**.

Definition 2.1.2. Let (X, Σ, μ) is a measuable space. Then μ is finite $\mu(X) < \infty$

σ-finite
$$\exists (E_j)_{j=1}^{\infty} \in \text{Seq}(\Sigma), X = \bigcup_{j=1}^{\infty} E_j \text{ and } \mu(E_j) < \infty$$

semifinite $\forall E \in \Sigma, \exists F \in \Sigma, F \subset E \text{ and } 0 < \mu(F) < \infty$

Iverson bracket Let P be a statement,

$$[\![P]\!] = \begin{cases} 1, & P \text{ is true} \\ 0, & \text{otherwise} \end{cases}$$

Then the **indicator function** of a subset A of a set X is a function $\mathbb{1}_A$: $X \to \{0,1\}$ defined as

$$\mathbb{1}_A(x) = [x \in A] = \begin{cases} 1, & x \in A \\ 0, & \text{otherwise} \end{cases}$$

Example 2.1.1. Let X be any nonempty set

• The **counting measure** $\mu: \mathcal{P}(X) \to [0, \infty]$ is defined by

$$\mu(E) = \begin{cases} |E| \,, & E \text{ is finite} \\ \infty, & \text{otherwise} \end{cases}$$

• $\forall (X, \Sigma), \forall x \in X$, a **Dirac measure** $\delta_x : \Sigma \to [0, \infty]$ defined by

$$\delta_x(E) = \mathbb{1}_E(x) = \llbracket x \in E \rrbracket$$

2.2 Borel Measures

2.3 Outer Measures

Definition 2.3.1. An **outer measure** on a nonempty set X is a function $\mu^* : \mathcal{P}X \to [0, \infty]$ s.t.

1.
$$\mu^*(\emptyset) = 0$$

2.
$$A \subset B \Rightarrow \mu^*(A) \leq \mu^*(B)$$

3.
$$\mu^*(\bigcup_{j=1}^{\infty} A_j) \le \sum_{1}^{\infty} \mu^*(A_j)$$

2.4 Complete Measures

Abstract Integration

- 3.1 Measurable Functions
- 3.2 Integration of Nonnegative Functions
- 3.3 Integration of Complex Functions
- 3.4 Product Measures

Signed Measure and Differentiation

- 4.1 Signed Measures
- 4.2 Complex Measures
- 4.3 Differentiation on Euclidean Space
- 4.4 Bounded Variations

Index

indicator function, 5	net, 4
measurable sapce, 5 measure, 5	order
counting measure, 6	poset, 4
Dirac measure, 6	proset, 4
outer measure, 6	toset, 4
measure space, 5	woset, 4