UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE TECNOLOGIA CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

Diego R. Chaves, João	Vitor da Silva, L	uís Gustavo Werle	Tozevich

TRABALHO 2: IMPLEMENTAÇÃO DE MEMÓRIA VIRTUAL

RESUMO

TRABALHO 2: IMPLEMENTAÇÃO DE MEMÓRIA VIRTUAL

AUTORES: Diego R. Chaves, João Vitor da Silva, Luís Gustavo Werle Tozevich PROFESSOR: Benhur Stein

Neste trabalho, foi implementado suporte à memória virtual para resolver as limitações do suporte a processos do t1, como a necessidade de endereços de carga diferentes e a ausência de proteção de memória entre processos. A implementação inclui o uso de uma MMU para tradução de endereços virtuais e físicos, tabelas de páginas por processo e uma memória secundária para armazenamento de páginas. O sistema foi adaptado para gerenciar interrupções de falta de página, realizar substituições de páginas com algoritmos FIFO e segunda chance e medir o desempenho da memória virtual. Experimentos foram conduzidos com diferentes tamanhos de memória principal e de páginas para analisar falhas de página e tempos de execução, permitindo uma avaliação detalhada do impacto da paginação no desempenho do sistema.

Palavras-chave: Sistema Operacional. Memória virtual. processos. Desempenho de sistema. Page Fault

SUMÁRIO

1	INTRODUÇÃO	4
2	CONFIGURAÇÕES TESTADAS	5
2.1	CONFIGURAÇÃO 1: FIFO QUADROS = 100 PAG = 10	5
2.2	CONFIGURAÇÃO 2: FIFO QUADROS = 50 PAG = 10	5
2.3	CONFIGURAÇÃO 3: FIFO QUADROS = 25 PAG = 10	6
2.4	CONFIGURAÇÃO 4: FIFO QUADROS = 13 PAG = 10	6
2.5	CONFIGURAÇÃO 5: FIFO QUADROS = 100 PAG = 3	6
2.6	CONFIGURAÇÃO 6: FIFO QUADROS = 50 PAG = 3	7
2.7	CONFIGURAÇÃO 7: FIFO QUADROS = 25 PAG = 3	7
2.8	CONFIGURAÇÃO 8: FIFO QUADROS = 13 PAG = 3	7
2.9	CONFIGURAÇÃO 9: SEGUNDA CHANCE QUADROS = 100 PAG = 10	8
2.10	CONFIGURAÇÃO 10: SEGUNDA CHANCE QUADROS = 50 PAG = 10	8
2.11	CONFIGURAÇÃO 11: SEGUNDA CHANCE QUADROS = 25 PAG = 10	8
2.12	CONFIGURAÇÃO 12: SEGUNDA CHANCE QUADROS = 13 PAG = 10	9
2.13	CONFIGURAÇÃO 13: SEGUNDA CHANCE QUADROS = 100 PAG = 3	9
2.14	CONFIGURAÇÃO 14: SEGUNDA CHANCE QUADROS = 50 PAG = 3	9
2.15	CONFIGURAÇÃO 15: SEGUNDA CHANCE QUADROS = 25 PAG = 3	10
2.16	CONFIGURAÇÃO 16: SEGUNDA CHANCE QUADROS = 13 PAG = 3	10
3	RESULTADOS OBTIDOS	11
3.1	MÉTRICAS GERAIS	11
4	CONCLUSÃO	15

1 INTRODUÇÃO

Neste relatório, apresentamos os resultados da implementação de suporte à memória virtual em um sistema operacional. O objetivo foi superar limitações do suporte a processos existente, como a necessidade de endereços fixos e a falta de proteção entre processos. A abordagem incluiu o uso de uma **MMU** e tabelas de páginas para traduzir endereços virtuais em físicos, além de uma memória secundária para gerenciar páginas fora da memória principal.

A implementação envolveu a adaptação do sistema para lidar com interrupções de falta de página e a introdução de algoritmos de substituição de páginas, como **FIFO** e **segunda chance**. Testes foram conduzidos para avaliar o impacto dessas funcionalidades, com variações no tamanho da memória principal e das páginas, permitindo observar o comportamento do sistema em diferentes cenários.

Os resultados permitiram analisar o desempenho do sistema com memória virtual, considerando métricas como taxa de falhas de página e tempo de execução. Este trabalho evidencia a importância da configuração adequada da memória virtual, destacando como o gerenciamento eficiente de páginas pode melhorar a performance e a estabilidade de sistemas operacionais.

2 CONFIGURAÇÕES TESTADAS

Nesta seção, apresentamos as configurações utilizadas para avaliar o desempenho do sistema operacional com a implementação da memória virtual. Foram realizadas análises com dois algoritmos de substituição de páginas: FIFO (First In, First Out) e Segunda Chance. Cada algoritmo foi testado em diferentes cenários, variando o número de quadros na memória principal e o número total de páginas por processo.

As configurações de teste foram agrupadas conforme o algoritmo de substituição utilizado. Configurações de 1 a 8 empregaram o algoritmo FIFO, enquanto as configurações de 9 a 16 utilizaram o algoritmo Segunda Chance. Para cada conjunto, parâmetros como o número de quadros na memória principal (QUADROS) e o número total de páginas (PAG) foram ajustados para avaliar o impacto no desempenho.

A seguir, descrevemos cada configuração com seus parâmetros específicos, seguidos dos resultados obtidos em termos de métricas como taxa de falhas de página. Essa abordagem permitiu identificar padrões de comportamento e avaliar a eficiência de cada algoritmo nas condições propostas.

2.1 CONFIGURAÇÃO 1: FIFO QUADROS = 100 PAG = 10

Utiliza o algoritmo FIFO com 100 quadros na memória principal e 10 páginas, avaliando o impacto de ampla disponibilidade de quadros em um cenário básico.

CONFIG 1				
Tempo de execução SO		24850		
Tempo ocioso SO		5046		
Falhas de página	PROCESSO 1 (init.maq)	PROCESSO 2 (p1.maq)	PROCESSO 3 (p2.maq)	PROCESSO 4 (p3.maq)
	17	25	25	25

Figura 2.1 – Tabela Processo - Configuração 1

2.2 CONFIGURAÇÃO 2: FIFO QUADROS = 50 PAG = 10

Algoritmo FIFO com 50 quadros e 10 páginas, testando o comportamento do sistema com memória reduzida.

CONFIG 2				
Tempo de execução SO	25495 5426			
Tempo ocioso SO				
Falhas do págino	PROCESSO 1 (init.maq)	PROCESSO 2 (p1.maq)	PROCESSO 3 (p2.maq)	PROCESSO 4 (p3.maq)
Falhas de página	21	45	41	46

Figura 2.2 – Tabela Processo - Configuração 2

2.3 CONFIGURAÇÃO 3: FIFO QUADROS = 25 PAG = 10

Com 25 quadros e 10 páginas, esta configuração avalia o desempenho do FIFO em condições de maior restrição de memória.

	CONFIG 3				
	Tempo de execução SO	33718 11593			
	Tempo ocioso SO				
I	Falhas de página	PROCESSO 1 (init.maq)	PROCESSO 2 (p1.maq)	PROCESSO 3 (p2.maq)	PROCESSO 4 (p3.maq)
1		24	159	230	272

Figura 2.3 – Tabela Processo - Configuração 3

2.4 CONFIGURAÇÃO 4: FIFO QUADROS = 13 PAG = 10

FIFO operando com apenas 13 quadros e 10 páginas, analisando falhas de página em condições de memória extremamente limitada.

CONFIG 4				
Tempo de execução SO	109273 60975			
Tempo ocioso SO				
Falhas de página	PROCESSO 1 (init.maq)	PROCESSO 2 (p1.maq)	PROCESSO 3 (p2.maq)	PROCESSO 4 (p3.maq)
	31	2087	2227	2995

Figura 2.4 - Tabela Processo - Configuração 4

2.5 CONFIGURAÇÃO 5: FIFO QUADROS = 100 PAG = 3

FIFO com 100 quadros e 3 páginas, simulando um ambiente com quadros abundantes e poucos processos ativos.

CONFIG 5				
Tempo de execução SO	36127 13396			
Tempo ocioso SO				
Fallac do págino	PROCESSO 1 (init.maq)	PROCESSO 2 (p1.maq)	PROCESSO 3 (p2.maq)	PROCESSO 4 (p3.maq)
Falhas de página	60	190	276	300

Figura 2.5 – Tabela Processo - Configuração 5

2.6 CONFIGURAÇÃO 6: FIFO QUADROS = 50 PAG = 3

Avaliação do FIFO com 50 quadros e 3 páginas, explorando uma redução na memória disponível em um cenário controlado.

CONFIG 6				
Tempo de execução SO	122911 75271			
Tempo ocioso SO				
Falhas de página	PROCESSO 1 (init.maq)	PROCESSO 2 (p1.maq)	PROCESSO 3 (p2.maq)	PROCESSO 4 (p3.maq)
	70	2019	1877	3139

Figura 2.6 – Tabela Processo - Configuração 6

2.7 CONFIGURAÇÃO 7: FIFO QUADROS = 25 PAG = 3

Testa o algoritmo FIFO com 25 quadros e 3 páginas, em um ambiente com limitações mais acentuadas de memória.

	CONFIG 7				
	Tempo de execução SO	378134 269962			
	Tempo ocioso SO				
	Falhas de página	PROCESSO 1 (init.maq)	PROCESSO 2 (p1.maq)	PROCESSO 3 (p2.maq)	PROCESSO 4 (p3.maq)
		128	8357	6232	7728

Figura 2.7 – Tabela Processo - Configuração 7

2.8 CONFIGURAÇÃO 8: FIFO QUADROS = 13 PAG = 3

FIFO com 13 quadros e 3 páginas, analisando o impacto da memória extremamente restrita em cenários simples.

CONFIG 8				
Tempo de execução SO	498055 369640			
Tempo ocioso SO				
Follos do págino	PROCESSO 1 (init.maq)	PROCESSO 2 (p1.maq)	PROCESSO 3 (p2.maq)	PROCESSO 4 (p3.maq)
Falhas de página	442	9794	7582	9699

Figura 2.8 – Tabela Processo - Configuração 8

2.9 CONFIGURAÇÃO 9: SEGUNDA CHANCE QUADROS = 100 PAG = 10

Segunda Chance com 100 quadros e 10 páginas, avaliando o impacto do bit de referência em um ambiente amplo.

CONFIG 9				
Tempo de execução SO	24800 5000			
Tempo ocioso SO				
Falhas de página	PROCESSO 1 (init.maq)	PROCESSO 2 (p1.maq)	PROCESSO 3 (p2.maq)	PROCESSO 4 (p3.maq)
	16	25	25	25

Figura 2.9 - Tabela Processo - Configuração 9

2.10 CONFIGURAÇÃO 10: SEGUNDA CHANCE QUADROS = 50 PAG = 10

Segunda Chance com 50 quadros e 10 páginas, explorando o desempenho em uma memória de tamanho moderado.

CONFIG 10				
Tempo de execução SO	24738			
Tempo ocioso SO	4771			
Falhas do página	PROCESSO 1 (init.maq)	PROCESSO 2 (p1.maq)	PROCESSO 3 (p2.maq)	PROCESSO 4 (p3.maq)
Falhas de página	21	40	31	34

Figura 2.10 - Tabela Processo - Configuração 10

2.11 CONFIGURAÇÃO 11: SEGUNDA CHANCE QUADROS = 25 PAG = 10

Com 25 quadros e 10 páginas, esta configuração avalia o impacto de memória restrita no algoritmo Segunda Chance.

		CONFIG 11		
Tempo de execução SO	33265 11639			
Tempo ocioso SO				
Follos do págino	PROCESSO 1 (init.maq)	PROCESSO 2 (p1.maq)	PROCESSO 3 (p2.maq)	PROCESSO 4 (p3.maq)
Falhas de página	25	104	192	240

Figura 2.11 – Tabela Processo - Configuração 11

2.12 CONFIGURAÇÃO 12: SEGUNDA CHANCE QUADROS = 13 PAG = 10

Segunda Chance operando com 13 quadros e 10 páginas, simulando um cenário de memória muito limitada.

		CONFIG 12		
Tempo de execução SO	187159 124493			
Tempo ocioso SO				
Falhas de página	PROCESSO 1 (init.maq)	PROCESSO 2 (p1.maq)	PROCESSO 3 (p2.maq)	PROCESSO 4 (p3.maq)
	56	3192	3504	4198

Figura 2.12 - Tabela Processo - Configuração 12

2.13 CONFIGURAÇÃO 13: SEGUNDA CHANCE QUADROS = 100 PAG = 3

Segunda Chance com 100 quadros e 3 páginas, analisando eficiência em condições de memória ampla e poucos processos ativos.

		CONFIG 13		
Tempo de execução SO	32216 10282			
Tempo ocioso SO				
Falhas de página	PROCESSO 1 (init.maq)	PROCESSO 2 (p1.maq)	PROCESSO 3 (p2.maq)	PROCESSO 4 (p3.maq)
Famas de pagina	60	144	224	192

Figura 2.13 - Tabela Processo - Configuração 13

2.14 CONFIGURAÇÃO 14: SEGUNDA CHANCE QUADROS = 50 PAG = 3

Testa a Segunda Chance com 50 quadros e 3 páginas, simulando memória de tamanho intermediário em um cenário simples.

CONFIG 14				
Tempo de execução SO	121531 78343			
Tempo ocioso SO				
Falhas de página	PROCESSO 1 (init.maq)	PROCESSO 2 (p1.maq)	PROCESSO 3 (p2.maq)	PROCESSO 4 (p3.maq)
	65	1330	1706	2894

Figura 2.14 - Tabela Processo - Configuração 14

2.15 CONFIGURAÇÃO 15: SEGUNDA CHANCE QUADROS = 25 PAG = 3

Segunda Chance com 25 quadros e 3 páginas, explorando limitações de memória em ambientes mais restritos.

		CONFIG 15		
Tempo de execução SO	209234 127915			
Tempo ocioso SO				
Falhas de página	PROCESSO 1 (init.maq)	PROCESSO 2 (p1.maq)	PROCESSO 3 (p2.maq)	PROCESSO 4 (p3.maq)
	128	5928	4162	5444

Figura 2.15 - Tabela Processo - Configuração 15

2.16 CONFIGURAÇÃO 16: SEGUNDA CHANCE QUADROS = 13 PAG = 3

Com 13 quadros e 3 páginas, esta configuração avalia o desempenho do algoritmo Segunda Chance em um ambiente de memória extremamente reduzida.

			CONFIG 16		
	Tempo de execução SO	491855 364636			
	Tempo ocioso SO				
	Falhas de página	PROCESSO 1 (init.maq)	PROCESSO 2 (p1.maq)	PROCESSO 3 (p2.maq)	PROCESSO 4 (p3.maq)
		434	9602	7640	9542

Figura 2.16 - Tabela Processo - Configuração 16

3 RESULTADOS OBTIDOS

A presente seção apresenta e analisa os resultados obtidos a partir da implementação e execução das diferentes configurações de memórias propostas no trabalho. As métricas avaliadas incluem tempo de execução total e número de falhas de página, em ambos os algoritmos de substituição.

3.1 MÉTRICAS GERAIS

Nesta seção, são apresentadas as métricas globais observadas durante a execução dos processos. Abaixo são apresentados gráficos de distribuição que ilustram as métricas capturadas durante as execuções.

Tempo total de execução versus número de blocos pág=10

Figura 3.1 – Gráfico tempo total de execução versus número de blocos - Página = 10

Tempo total de execução versus número de blocos pág=3

Figura 3.2 – Gráfico tempo total de execução versus número de blocos - Página = 3

Falhas de página versus número de blocos pág=10 (FIFO)

Figura 3.3 – Gráfico falhas de página versus número de blocos - Página = 10 (FIFO)

Falhas de página versus número de blocos pág=3 (FIFO)

Figura 3.4 – Gráfico falhas de página versus número de blocos - Página = 3 (FIFO)

Falhas de página versus número de blocos pág=10 (Seg. chance)

Figura 3.5 – Gráfico falhas de página versus número de blocos - Página = 10 (Seg. chance)

Falhas de página versus número de blocos pág=3 (Seg. chance)

Figura 3.6 – Gráfico falhas de página versus número de blocos - Página = 3 (Seg. chance)

Após analisar os gráficos resultantes, podemos notar que à medida que o número de blocos aumenta, os programas têm desempenho muito semelhante, o que já era esperado. Nota-se também que o algoritmo de substituição FIFO têm um desempenho pior (maior tempo de execução) do que o segunda chance ao usarmos página = 3, enquanto que no cenário página = 10, ele tem um desempenho melhor em cenários com poucos blocos.

Nota-se ainda que o algoritmo segunda chance, em cenário de página = 3, equilibra bem o número de falhas de página de cada processo, o que também acontece com o FIFO no mesmo cenário, que equilibra ainda melhor os processos no quesito falhas de página.

4 CONCLUSÃO

Em conclusão, o presente trabalho aprofundou o estudo dos mecanismos de gerenciamento de memória virtual em sistemas operacionais, com ênfase nos algoritmos FIFO (First-In, First-Out) e Segunda Chance. A compreensão desses conceitos é fundamental para a otimização do desempenho de sistemas computacionais, uma vez que a memória virtual permite a execução de processos com requisitos de memória superiores à capacidade física disponível.