ARuco Marker Detection (with OpenCV)

3개의 세부 프로젝트(ARuco_Calibration, ARuco_Detection, ARuco_3DRecon)로 구성됨

ARuco_Calibration

기능

- ARuco marker 와 checkerboard 를 이용해 Camera Calibration 수행
- Camera Intrinsic (focal length, principle point) 와 Distortion coefficient 를 찾음

동작과정

- Project "ARuco_Calibration.exe" 실행
- 입력 인수 :

주요 구분자	의미
W	Number of squares in X direction
h	Number of squares in Y direction
sl	Square side length (in milimeters)
ml	Marker side length (in milimeters)
d	ARuco marker dictionary
V	Input from video file
ci	Camera id if input doesnt come from video
sc	Show detected chessboard corners after calibration
(empty)	Output text file

- 명령인수 예시 :
 - (촬영된 동영상을 입력으로 주는 경우) ARuco_Calibration.exe --w=5 --h=7 --sl=36 --ml=18 --d=10 --v=../dataset/ARuco_test.mp4 --sc=true "../dataset/cam_param.txt"
 - (웹캠을 통해 실시간으로 촬영하는 경우) ARuco_Calibration.exe --w=5 --h=7 --sl=36 --ml=18 --d=10 --ci=1 --sc=true "../dataset/cam_param.txt"
- 출력 데이터 :
 - Text file: Camera intrinsic matrix 와 Distortion coefficient 등의 정보를 포함한 text 파일 출력
- 결과 영상 예시: (text 파일 캡쳐)

```
### retin ### revidon ### retin ###
```

• Reference Source : OpenCV_contrib-4.5.3 의 aruco modules 의 샘플 코드 사용

ARuco_Detection

기능

- 웹캠을 통해 캡쳐되는 ARuco marker 의 마커 정보와 3차원 공간 정보를 찾음
- 모든 ARuco marker 의 인덱스와 3D 좌표축을 표시
- 특정 ARuco maker 위치에 고정된 3D 정육면체 표시
- 3D reconstruction 을 위한 일부 장면을 캡처 (ARuco_3DRecon 의 input data 로 활용)

동작과정

- Project "ARuco_Detection.exe" 실행
- 입력 인수 :

주요 구분자	의미
d	ARuco marker dictionary
c	Camera parameter file
ci	Camera id if input doesnt come from video
ov	Output video file
0	Output folder of save captured frames

- 명령인수 예시:
 - (웹캠을 사용하는 경우) ARuco_Detection.exe --c=../dataset/cam_param.txt --d=10 -ci=1 -ov=../dataset/AR_detection.avi --o=../dataset/pics
- 출력 데이터 :
 - avi 파일: 3D axis 와 3D cube 를 그린 결과 영상을 출력
 - png (또는 jpg) 파일 셋: 동영상의 일부 프레임에 대해 캡쳐 후 png (또는 jpg)으로 저장 → 해당 데이터 셋은 3D reconstruction 을 위해 사용됨
- 결과 영상 예시: (viewer 의 일부 화면 캡쳐)

• Reference Source : OpenCV_contrib-4.5.3 의 aruco modules 의 샘플 코드 참조

ARuco_3DRecon

기능

- 다시점 정지 영상으로부터 Camera Pose Estimation 수행 (camera pose xyz 파일 생성)
- 다시점 정지 영상으로부터 Space Point Cloud 생성 (3d object xyz 파일 생성)
- 생성된 3D point file (camera pose, object) 을 읽고 OpenCV viewer 로 디스플레이

동작과정

- Project "ARuco_3DRecon.exe" 실행
- 입력 인수:

주요 구분자	의미
i	Input folder to get image set
0	Output file to save 3d points (xyz file)
c	Camera intrinsic parameter file

- 명령인수 예시:
 - (캡쳐된 사진을 입력으로 받는 경우) ARuco_3DRecon.exe --i=../dataset/pics -c=../dataset/cam_param.txt -o=../dataset/sfm_point.xyz
- View control 방법
 - 상하좌우 이동 : 4개의 방향키 (→, ←, ↑, ↓) 이용
 - 줌인: 'Page in' 키 이용
 - 줌아웃: 'Page out' 키 이용
- 출력 데이터:
 - Camera pose xyz file: 입력 카메라의 위치를 3D point 로 저장
 - Object xyz file: 3차원 공간 상의 structure 를 3D point 로 저장
- 결과 영상 예시: (viewer 의 일부 화면 캡쳐)

• Reference Source : https://github.com/sunglok/3dv_tutorial 소스 코드 참조