

UNIVERSIDADE FEDERAL DO TRIÂNGULO MINEIRO

Matrícula:

Departamento de Engenharia Química Prova 2 de Operações Unitárias III- RRA

1/2022- Profa. Kássia Graciele dos Santos

IN	U	1	E	١
_				

T4	~	
instri	icoes:	

Nome:

- 1 Desliguem os celulares. Não será permitido o uso de aparelho de telefone celular durante a prova, em nenhuma de suas funções; 2 Somente o Gabarito será corrigido. No entanto é preciso deixar as memórias de cálculo.
- 3 Proibido emprestar calculadora ou usar calculadora HP;
- 4 Tempo de Prova: 1h 50min.

GABARITO

QUESTÃO 1 (5 pontos) HII a) (1 ponto) d1 *=	e d2*=
	ia global de coleta do 1° Hidrociclone:
, , , <u>,</u> ,	iclone 2?
	global de coleta do 2° hidrociclone:
e) (0,5ponto) A eficiênci	a global de coleta total da bateria:
QUESTÃO 2 (5 pontos): ES	COAMENTO EM MEIOS POROSOS
QUESTÃO 2 (5 pontos): ES A) Valor de h:	
A) Valor de h:	
A) Valor de h:B) Diâmetro médio de Sa	
A) Valor de h:B) Diâmetro médio de SaC) Propriedades do meio	outer:

QUESTÃO 1 (5 pontos) – Deseja-se estudar o desempenho de uma bateria de hidrociclones CBV Demco em série com respectivamente 15 cm e 6 cm de diâmetro, no tratamento de 650 L/min de suspensão contendo 10% em volume de sólido.

Propriedades do fluido: ρ=1 g/cm³ e viscosidade 1 cP.

Pede-se:

- a) (1 ponto) Os diâmetros de corte d1*= _____ e d2*=____
- b) (0,5 ponto) A eficiência global de coleta do 1° Hidrociclone:
- c) (1 ponto) Qual o c_v no hidrociclone 2?
- d) (1 ponto) A eficiência global de coleta do 2° hidrociclone:
- e) (0,5ponto) A eficiência global de coleta total da bateria:

Propriedades das partículas sólidas: densidade 2,5 g/cm³ e distribuição granulométrica dada por:

$$X = \left(\frac{D}{55\mu m}\right)^{0.9}$$

Х	0.000	0.051	0.116	0.216	0.311	0.402	0.492	1.000
D [μm]	0	2	5	10	15	20	25	55

QUESTÃO 2 (5,0 pontos) Determinar o valor de *h* para que se tenha na coluna recheada uma vazão de 80 L/h de um fluido de densidade igual a 1,0 g/cm³ e viscosidade 1,1 cP. A altura do recheio é de 0,6 m, e uma coluna com diâmetro interno de 16,5cm. Já o meio poroso é composto por 60% de sólidos (em volume), com distribuição de tamanho seguindo o modelo GGS (k=200 micra e m=2,2) e esfericidade de 0,7. Considere uma perda de carga na tubulação e assessórios de 7,5 m. Encontrar também o volume de água que percola o leito poroso durante um período de 375 min. <u>Atenção! Você</u> deve usar o Diâmetro médio de Sauter que representa essa distribuição de tamanho de partículas.

Calcular:

- A) Valor do desnível h
- B) Diâmetro médio de Sauter das partículas (cm)
- C) Propriedades do meio poroso
- D) Velocidade superficial do fluido na coluna
- E) Volume de água que percola o leito poros durante um período de 375 min.

FORMULÁRIO

Hidrociclone CBV-DENCO

$$\frac{d^{*}}{D_{c}} = 0.056 \left(\frac{\mu D_{c}}{Q(\rho_{S} - \rho)} \right)^{1/2} e^{4C_{V}} \qquad \eta = \begin{cases} 0.5 \left(\frac{D}{d^{*}} \right)^{2}; & \frac{D}{d^{*}} < \sqrt{2} \\ 1 & ; & \frac{D}{d^{*}} \ge \sqrt{2} \end{cases}$$

$$\eta = \begin{cases} 0.5 \left(\frac{D}{d^*}\right)^2; & \frac{D}{d^*} < \sqrt{2} \\ 1 & ; & \frac{D}{d^*} \ge \sqrt{2} \end{cases}$$

Para partículas com distribuição de tamanho seguindo modelo GGS
$$I = \frac{m}{2 + (2 + m)} \left(\frac{k}{d^*}\right)^2; \quad \frac{k}{d^*} < \sqrt{2}$$

6

Escoamento em meios porosos:

Parâmetros que caracterizam o meio poroso:

Equação de Kozenv-Carman:

$$k = \frac{\left(d_p \phi\right)^2 \varepsilon^3}{36\beta \left(1 - \varepsilon\right)^2}; \begin{cases} \text{para } \phi = 1: \ 36\beta = 150 \\ \text{para } \phi \neq 1: \ 36\beta = 180 \end{cases}$$

Equação de Costa e Massarani (1980):

$$c = \frac{1}{\varepsilon^{3/2}} \left[0.13 \left(\frac{k_0}{k} \right)^{0.37} + 0.10 \left(\frac{k_0}{k} \right)^{0.01} \right]^{0.98}; k_0 = 1 \cdot 10^{-6} cm^2 \quad \text{para } \begin{cases} 0.15 < \varepsilon < 0.75 \\ 1 \cdot 10^{-9} < k < 1 \cdot 10^{-3} \end{cases}$$

Perda de Carga no meio poroso: $H_{C-MP} = \frac{L}{\rho g} \left[\frac{\mu}{k} + \frac{c \rho q}{\sqrt{k}} \right] q$, considerando o eixo z na mesma direção do escoamento.