	TASK				1			
	_	TIMELINE			TASK	TOT		
IDA GV. DIDI DG	YI			R2	ASSIGNMENTS		FTE	ı
TASK TITLES	1 2	3 4	1 1 2	2 3 4	id #wks	\sum	8	\$
A Refine the distance to UGC 7346								
A1 Generate model-subtracted images free of large-scale residuals					pm 1; ab 0.5	0.03	0.01	0.02
A2 Photometry on resolved stellar pop to compute distance via tip of RGB					pm 1; ab 0.2	0.02	0.00	0.02
A3 Derive point spread function using resolved stars					ab 0.5; T 0.3	0.04	0.04	0.01
A4 Stellar pop analysis using IFU data					pa 1; jk 0.2; jr 0.2	0.03	0.03	0.00
A5 Construct spatial power spectrum and compute inferred distance					pm 1.5; ab 1; jk 0.1		0.02	0.03
A6 Paper 1: An accurate distance for UGC 7346: Virgo Cluster member?					pa 3; pm 2.5; ab 1; T 1.5	0.16	0.12	0.05
B Derive globular cluster (GC) luminosity function			П					
B1 F814W-F606W colors to identify GC candidates in					1 ' 00 '1 01	0.03	0.03	0.00
model-subtracted maps					pa 1; jr 0.2; jk 0.1			0.00
B2 Use TINY TIM HST PDF models to deconvolve images			L		ab 0.5; pa 0.2; jr 0.1		0.02	0.00
B3 Fit 2D King models using GALFIT to derive core radii for GC candidates					pa 1; jr 0.5; jk 0.1	0.03	0.03	0.00
B4 Bayesian statistical analysis to reject interlopers with unphysical color/size					pa 1.5; ab 1; jk 0.2	0.05	0.05	0.00
B5 Compute GC luminosity function using validated GCs					pa 0.5; jk 0.2; ab 0.2	0.02	0.02	0.00
B6 Paper 2: Tracing the full luminosity function of UGC 7346					pa 3; jk 3; pm 1	0.13	0.12	0.02
C Perform spatial structural analysis								
C1 Identify morphological features indicative of galaxy merger					pa 0.5; sc 0.2; rp 0.2	0.02	0.02	0.00
C2 Use IFU data to derive kinematics of central region of galaxy					pa 1.5; rp 0.5; sc 0.1		0.04	0.00
C3 Spatially correlate kinematics with features					pa 1; sc 0.2; rp 0.1		0.03	0.00
C4 Paper 3: Is GC system in act of collapsing?					pa 2; rp 2; jk 0.5	0.09	0.09	0.00

Table 1. Resource-loaded project schedule, where: Σ =Not funded by this grant, Σ =funded by this grant, Σ =funded + unfunded; Tasks are listed (left side), with duration of task activity indicated in blue-colored timelines that measure quarter-years (1,2,3,4). Task assignments identify specific team members responsible for implementation with associated work weeks, where color indicates institutional affiliation (blue=funded/U.S., black=not funded/U.S., red=international). "Total FTE" (right side) are integrated work-weeks converted into FTE per task (1 FTE=12 months), displayed as "total", "unfunded by this grant", and "funded by this grant", resp. Assignment identities: **pa**: Pablo Sanchez Alarcon, **pm**: Pamela Marcum, **ab**: Alejandro Borlaff, **sc**: Sebastien Comeron, **jk**: Johan Knapen, **rp**: Reynier Peletier, **jr**: Javier Roman.