一、	填空题: (每空1分, 共30分)
1.	一个二端元件上的电压u、电流i取关联参考方向,已知u=10V,
	i=2A,则该二端元件产生W 的电功率。
2.	在时域内,线性电容和线性电感的 VCR 关系式分别为
	$i_{C}=$, $u_{L}=$,相应的相量形式为
	$\mathbf{I}_{\mathrm{C}}=$
3.	一个含有 9 条支路、5 个节点的电路, 其独立的 KCL 方程有
	个,独立的 KVL 方程有个; 若用 2b 方程法分析,
	则应有个独立方程。
4.	有一 C=100 μ F 的电容元件,已知其两端电压 u=100√2cos
	(1000t-30°)V,则该电容元件的容抗为,容纳
	为 , 阻 抗 为 , 导 纳 为
	,流过电容的电流 i=。
5.	某一正弦交流电流的解析式为 i=14.14cos (100 π t+60°) A,
	则该正弦电流的有效值 I=,频率为 f=,初
	相 φ =。当 t=0.1s 时,该电流的瞬时值为
	0
6.	已知交流电压的解析式: u ₁ = cos (100 π t-120°) V, u ₂ =3cos
	(100πt+130°) V,则 u ₁ 超前 u ₂ 。
7.	在正弦激励下,含有L和C的单口网络的端口电压与电流同
	相时,称电路发生了
	•
8.	有一理想变压器,已知原边线圈的匝数 N ₁ ,电压有效值为 U ₁ ,
	电流有效值为 I_1 ,
	副边线圈匝数 N_2 , 电压有效值为 U_2 , 电流有效值为 I_2 , 则 U_1

	$/U_2 =,$
	$I_2 =$,如在副边接上阻抗 Z_L ,则从原边视入的阻抗为
	。 性一阶动态电路的全响应,从响应与激励在能量方面的关系来
分析,	可分解为
-	
10.	在二阶 RLC 串联电路的零输入响应中, 当电路参数满足 R>2
	√L/C 时,储能元件的放电过程表现为
	这种情况称为; 反之,当 R < 2√L/C 时,表现
	为
11.	在互易二端口网络的各种参数中,只有个是独立的,
	对称二端口网络的各种参数中,只有是独立的。
	计算填空题: (每空 2 分,共 20 分) 在图 1 中,电流 i=。
2.	在图 2 中,电压 U _{ab} =。
3.	在图 3 中的入端电阻 Rab=。
4	一有源二端网络,在其端口接入电压表时,读数为 100V,接入
	电流表时读数为 10A,
,	在端口接上10Ω电阻时,流过10Ω电阻的电流
	为。

5. 一无源二端网络, 其上电压 u、电流 i 取关联参考方向, 已知 u=60sin(314t+58°)V,

i=10cos(314t+28°)A,则该二端网络吸收的平均功率为_____,无功功率为____

_____,视在功率为_____。

- 6. 在图 4 电路中, u₂=______。
- 7. 在图 5 中,电路原处于稳态,t=0 时开关断开,则 ic (0+)

8. 图 6 所示二端口网络的 Z 参数 Z₁₂=_____。

三、分析计算题: (共50分)

1. 试求电路各支路的电流。 (8分)

2. 试求当 R 分别为 1Ω , 3Ω , 8Ω 时的电流 I。(8分)

- 3. 在如图电路中,R=4 Ω ,L=40mH,C=0.25 μ F, U_S =2 \angle 20° V。
 - 求: 1) 谐振频率 f₀, 品质因数 Q;
 - 2) 谐振时电路中的电流 I 及电容两端的电压 Uc。(10分)

4. 在如图电路中,已知: i_s =0.5+0.25sin(ω t+30°)+0.15sin3 ω t (A),基波感抗 ω L=30 Ω ,基波容抗 $1/\omega$ C=270 Ω , R=3000 Ω . 试求电阻两端的电压 u_R 及其有效值 U_R 。(8分)

5. 电容器原未充电,计算当 u_s 分别为(1) u_s =10 ϵ (t) V, (2) u_s = δ (t) V 时, u_c 的响应。(8分)

6. 电路原已达到稳态,t=0 时,开关打开,计算 i_1 、 i_2 的全响应。 (8分)

电路基础参考答案及评分标准

- 一 填空题: (每空1分, 共30分)
- 1. –20 2. Cdu/dt. Ldi/dt. j ω CU. j ω LI 3. 4. 5. 18
 - 4. $10\,\Omega$, 0.1S, $-j10\,\Omega$, j0.1S, $10\,\sqrt{2}\cos$ (1000t+60°) A
 - 5. 10A、50H_z、60°、7。07A 6。110° 7。谐振
- 10. 非振荡、过阻尼、振荡、欠阻尼 11。3、2 二 计算填空题: (每空2分, 共20分)
 - 1. -1A 2. 10V 3. 7Ω 4. 5A 5. 150W, -260Var,

```
300VA
```

```
6. L_2 di2/dt - Mdi1/dt 7. -1A 8. 7. 5\Omega
三分析计算题: (共50分)
   1. (8分) 节点法:设置参考节点、节点序号及支路电流(1
       分)
     列节点方程 (1/2+1/4+1/2) U<sub>n</sub>+5U/4=12/2 (2分)
                       U = 1/2U_n (1 \beta)
                       U_n=3.2V (1分)
                       I_1 = (U_n - 12) / 2 = -4.4 A (1 \%)
                       I_2 = (U_n + 5/2 U_n) /4 = 2.8A (1 \%)
                                                      (1分)
                       I_2 = U_n/2 = 1.6A
                    2i_1+10i_1=12 i_1=1A (1 \%) U_{OC}=10i_1-20=-10V
   2.
         (8分)
 (2分)
                      I=3U (1分)
                                          R_0=U/I=1/3\Omega (1 \hat{\sigma})
                      R=1Ω I=(U<sub>OC</sub>/(R<sub>O</sub>+R)= -7.5A (1\hat{\beta})
                      R=3\Omega I=(U_{OC}/(R_O+R)=-3A (1 \hat{\sigma})
                      R=8\Omega I=(U_{OC}/(R_O+R)=-1.2A
                                                              (1分)
     3. (10分)
     1) f_0=1/2 \pi \sqrt{LC}=1592H_Z (2分)
                                                          Q=1/R \sqrt{L/C=100}
 (2分)
   2)I=U_S/Z=U_S/R=0.5A(2分)
                                                X_C=1/\omega C=400 \Omega
                                                                           (2
分)
        U_c = I \cdot X_c = 200V (2 \%)
4. (8分)
         U_{R0}=0
          I_{\text{Slm}} = 0.25 \angle 30^{\circ} \text{ A} (1分)
          Y_1=1/R+j(\omega C-1/\omega L)=1/3000-j4/135=2.96\times 10^{-2}\angle -89.36^{\circ}
S (1分)
          U_{R1m} = I_{S1m} / Y_1 = 8.45 \angle 119.36^{\circ} \text{ V} (1 \%)
          I_{\text{S3m}} = 0.15 \angle 0^{\circ} \text{ A} \quad (1 \, \hat{S})
          Y_3=1/R+i(3 \omega C-1/3 \omega L)=1/3000 S (1 \hat{\sigma})
          U_{R3m} = I_{S3m} / Y_3 = 450 \angle 0^{\circ} \text{ V}
                                                    (1分)
          u_R = 8.45 \sin(\omega t + 119.36^{\circ}) + 450 \sin(3\omega t) V (1 \%)
        U_R = \sqrt{(8.45)^2/2 + (450)^2/2} = 318.25V (1 \hat{\sigma})
     5. (8分)
       1) u_C(0^+) = 0 u_C(\infty) = 5V \tau = (20/20) \cdot 0.1 = 1s
```