TikhonovNikS 23122024-171105

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Если цепь на рисунке 1 используется в качестве цепи обратной связи в кольце ФАПЧ, то вклад ОГ в фазовые шумы выходного синтезированного колебания на частоте отстройки $2.509 \text{ к}\Gamma$ ц на 9.3 д Б больше, чем вклад ГУН. Если исключить эту цепь и замкнуть кольцо, то на той же частоте отстройки вклад ОГ на 2 д Б больше, чем вклад ГУН. Известно, что $C=8.4 \text{ н} \Phi$, а $R_1=3622 \text{ Ом}$. Чему равно сопротивление другого резистора цепи обратной связи?

Рисунок 1 – Электрическая схема цепи обратной связи

- $1)3549 \, O_{\rm M}$
- $2)3572 \, O_{\rm M}$
- $3)3595 \, O_{\rm M}$
- 4) 3618 O_M
- 5) 3641 Ом
- 6) $3664 \, \text{OM}$
- 7) 3687 O_M
- 8) 3710 O_M
- 9) 3733 O_M

Колебание синтезировано с помощью кольца ФАПЧ (Рисунок 3). Частота колебаний опорного генератора (ОГ) 80 МГц. Частота колебаний ГУН 6850 МГц. Известно, что спектральная плотность мощности фазовых шумов на частоте отстройки 1 Гц равна минус 111.6 дБн/Гц для ОГ и минус 32.2 дБн/Гц для ГУН. Наклон спектральной плотности мощности фазовых шумов ОГ равен минус 10 дБ/декада, а фазовых шумов ГУН минус 20 дБ/декада.

Коэффициент передачи цепи обратной связи равен описывается формулой $A_0(1+(j\Omega\tau)^{-1})$, где $A_0=1.0541,\ \tau=441.9907$ мкс.

Крутизна характеристики управления частотой ГУН равна 2.6 М Γ ц/В. Крутизна характеристики фазового детектора 0.5 В/рад.

Рисунок 2 — Синтезатор с кольцом ФАПЧ: ОГ - опорный генератор, ГУН - генератор управляемый напряжением, ФД - фазовый детектор, Цепь ОС - цепь обратной связи, $\frac{1}{N}$ - делитель частоты на N, причём N необязательно целое число

На сколько дB отличается спектральная плотность мощности фазовых шумов на частоте отстройки 4 к Γ ц колебания той же выходной частоты, но полученного из опорного путём прямого синтеза?

- 1) на плюс 1.7 дБ
- 2) на плюс 1.3 дБ
- 3) на плюс 0.9дБ
- 4) на плюс 0.5 дБ
- на плюс 0.1 дБ
- 6) на минус 0.3дБ
- 7) на минус 0.7 дБ
- на минус 1.1 дБ
- 9) на минус 1.5 дБ

Источник колебаний с доступной мощностью 1.5 дБм и частотой 6840 МГц имеет равномерную спектральную плотность мощности фазового шума равную минус 139 дБн/Гц. Этот источник подключён к согласованному входу анализатора спектра. Какую мощность измерит анализатор спектра на частоте 6839.9993 МГц, если спектральная плотность мощности его собственных шумов равна минус 138 дБм/Гц, а полоса пропускания ПЧ установлена в положение 100 Гц?

- 1) -104.5 дБм
- 2) -106.2 дБм
- 3) -107.9 дБм
- 4) -109.6 дБм
- 5)-111.3 дБм
- 6)-113 дБм
- 7) -114.7 дБм
- 8) -116.4 дБм
- 9) -118.1 дБм

Для прямого синтеза заданной частоты использовались два источника колебаний, двойной балансный смеситель и полосовой фильтр. Нужная частота была получена преобразованием вверх с выделением нижней боковой с помощью полосового фильтра.

Один источник колебаний имеет частоту 3430 М Γ ц и спектральную плотность мощности фазового шума на отстройке 100 к Γ ц минус 82 д $\mathrm{Брад^2}/\Gamma$ ц. Спектральная плотность мощности фазового шума на отстройке 100 к Γ ц второго колебания равна минус 80 д $\mathrm{Бн}/\Gamma$ ц, а частота его равна 6100 М Γ ц. Чему равна спектральная плотность мощности фазового шума синтезированного колебания на отстройке 100 к Γ ц при описанном выше когерентном синтезе?

- 1)-90.2 дБн/Гц
- 2) -87.2 дБн/Гц
- 3) -84.7 дБн/Гц
- 4) -84.2 дБн/Гц
- 5)-81.8 дБн/Гц
- 6) -81.7 дБн/ Γ ц
- 7) -79.1 дБн/ Γ ц
- 8) -78.8 дБн/Гц
- 9)-78.6 дБн/Гц

Источник колебаний и частотой 3650 МГц имеет равномерную спектральную плотность мощности фазового шума равную минус 168 дБн/Гц. Он был подключён к согласованному линейному усилителю с шумовой температурой плюс 1356 К. Выход усилителя подключён ко входу анализатор фазовых шумов. Какую спектральную плотность мощности измерит анализатор фазовых шумов на частоте отстройки 200 Гц, если с доступная мощность на выходе усилителя равна -2.5 дБм?

- 1)-166.9 дБн/Гц
- (2) -167.4 дБн/ Γ ц
- 3)-167.9 дБн/Гц
- 4)-168.4 дБн/Гц
- 5)-168.9 дБн/Гц
- 6)-169.4 дБн/ Γ ц
- 7)-169.9 дБн/Гц
- 8) -170.4 дБн/Гц
- 9) -170.9 дБн/Гц

Колебание синтезировано с помощью кольца ФАПЧ (Рисунок 3). Коэффициент передачи цепи обратной связи частотно независим и равен 10⁻¹, а крутизна характеристики управления частотой ГУН равна 0.8 МГц/В. Частота колебаний опорного генератора (ОГ) 260 МГц. Частота колебаний ГУН 1660 МГц. Известно, что неприведённые спектральные плотности мощности фазовых шумов двух генераторов равны на частоте отстройки 1.4 МГц. Наклон спектральной плотности мощности фазовых шумов ОГ равен минус 10 дБ/декада, а фазовых шумов ГУН минус 20 дБ/декада. Также известно, что вклад ОГ в фазовые шумы выходного синтезированного колебания на частоте отстройки 51 кГц на 4 дБ меньше, чем вклад ГУН. Чему равна крутизна характеристики фазового детектора?

Рисунок 3 — Синтезатор с кольцом ФАПЧ: ОГ - опорный генератор, ГУН - генератор управляемый напряжением, Φ Д - фазовый детектор, Цепь ОС - цепь обратной связи, $\frac{1}{N}$ - делитель частоты на N, причём N необязательно целое число

- 1) 1.90 В/рад
- 2) 2.11 В/рад
- 3) 2.32 В/рад
- 4) 2.53 В/рад
- 5) 2.74 В/рад
- 6) 2.95 В/рад
- 7) 3.16 В/рад
- 8) 3.37 В/рад
- 9) 3.58 В/рад