Аннотация

Лекции по линейной алгебре 2 семестра потока бакалавров ВМК МГУ. Лектор — Полосин Алексей Андреевич. Составитель — Андрей Тихонов (tiacorpo@gmail.com).

Оглавление

1 K	Сомплексные числа	
1.	.1 Основные понятия	
1.	2 Алгебраическая форма записи комплексных чисел	
1.	3 Комплексная плоскость	
1.	4 Сопряженная матрица	
1.	5 Тригонометрическая форма записи комплексных чисел	
1.	6 Решение уравнений $z^n = a$ при натуральных n	
1.	7 Стурктура корней <i>n</i> -й степени из 1	
1.	8 Линейные пространства над произвольным полем	
1.	9 Линейная зависимость. Ранг и база системы векторов	
1.	10 Базис и его размерность	

Глава 1

Комплексные числа

1.1 Основные понятия

Определение. Комплексными числами называются упорядоченые пары вещественных чисел $(a,b),\ a,b\in\mathbb{R}.$

Правила:

1.
$$(a,b) = (c,d) \Leftrightarrow \begin{cases} a = c \\ b = d \end{cases}$$

2.
$$(a,b) + (c,d) = (a+c,b+d)$$

3.
$$(a,b)(c,d) = (ac - bd, bc + ad)$$

4.
$$(a,0) \equiv a \in \mathbb{R}$$

Следствия:

1. Вычитание:
$$(a,b) - (c,d) = (a-b,c-d)$$

2. Деление:
$$\frac{(a,b)}{(c,d)} = \frac{(a,b)(c,-d)}{(c,d)(c,-d)} = \frac{(ac+bd,bc-ad)}{(c^2+d^2,0)}$$

Замечание.

(c, -d) называется комплексным сопряженным к (c, d).

Коммутативность, ассоциативность, дистрибутивность вытекают из свойств \mathbb{R} .

Замечание.

$$(0,0) = 0, (1,0) = 1$$

1.2 Алгебраическая форма записи комплексных чисел

 $(0,1)^2 = (0,1)(0,1) = (-1,0).$

i = (0,1) – мнимая единица, $i^2 = -1$.

(a,b)=a(1,0)+b(0,1)=a1+bi=a+bi – алгебраическая форма записи комплексного числа.

$$z \in \mathbb{C} = (a, b) = a + bi, (a, -b) = \overline{z}$$

 $a=Re\ z$ — вещественная часть, $b=Im\ z$ — мнимая часть. Свойства:

1.
$$\overline{\overline{z}} = z$$

2.
$$z\overline{z}=(a^2+b^2,0)=|z^2|;\;|z|=\sqrt{a^2+b^2}$$
 – модуль комплексного числа

3.
$$\overline{z} = z \iff Im \ z = 0$$

4. Re
$$z = \frac{z+\overline{z}}{2}$$
, Im $z = \frac{z-\overline{z}}{2}$

5.
$$\overline{z_1 \pm z_2} = \overline{z}_1 \pm \overline{z}_2$$

1.3 Комплексная плоскость

Тут будет картинка

1.4 Сопряженная матрица

```
A=(a_{kl})\in\mathbb{C}^{m	imes n} A^*=(\overline{a}_{kl})\in\mathbb{C}^{m	imes n} – сопряженная к A матрица.
```

1.5 Тригонометрическая форма записи комплексных чисел

```
\begin{array}{l} r=|z|=\sqrt{a^2+b^2}\\ a=Re\ z=r\cos\phi\\ b=Im\ z=r\sin\phi\\ \phi=arg\ z-\text{ аргумент }z\\ z_1=z_2\Leftrightarrow \begin{cases} |z_1|=|z_2|\\ arg\ z_1=arg\ z_2+2\pi k,\ k\in\mathbb{Z}\\ z=r(\cos\phi+i\sin\phi)-\text{ тригонометрическая форма записи комплексного числа} \end{cases} Утверждение: ||z_1|-|z_2||\leq |z_1+z_2|\leq |z_1|+|z_2|\\ z_1z_2=r_1(\cos\phi_1+i\sin\phi_1)r_2(\cos\phi_2+i\sin\phi_2)=r_1r_2(\cos\phi_1\cos\phi_2-\sin\phi_1\sin\phi_2+i(\sin\phi_1\cos\phi_2+\sin\phi_2\cos\phi_1))=r_1r_2(\cos(\phi_1+\|\phi_2)+i\sin(\phi_1+\phi_2))\\ |z_1z_2|=|z_1||z_2|\\ \mathbf{C}_{\mathcal{D}\mathbf{E}\mathbf{Q}\mathbf{C}\mathbf{T}\mathbf{B}\mathbf{U}\mathbf{e}}\colon z^n=r^n(\cos n\phi+i\sin n\phi)-\text{формула Муавра}\\ n=0\Rightarrow z\neq 0 \end{cases}
```

1.6 Решение уравнений $z^n = a$ при натуральных n

Определение. Решение уравнения $z^n=a$ называется корнем n-й степени из $a\ (z,a\in\Gamma)\ a=0 \Rightarrow |a|=0 \Rightarrow |z|=0$ $\Rightarrow z=0$, других корней нет. Пусть теперь $a\neq 0$.

Утверждение. У уравнения существует ровно п попарно различных корней.

```
Доказательство. z = r(\cos\phi + i\sin\phi) z^n = r^n(\cos(n\phi) + i\sin(n\phi)) = a = \rho(\cos\Theta + i\sin\Theta) Сравним модули: r^n = \rho \Rightarrow r = \rho^{\frac{1}{n}} = \sqrt[n]{\rho} Сравниваем три части: n\phi = \Theta + 2\pi k, \ k \in \phi = \frac{\Theta + 2\pi k}{n} \phi_k = \frac{\Theta}{n} + \frac{2\pi k}{n}, \ k = \overline{0, n-1}
```

1.7 Стурктура корней n-й степени из 1

```
z^n=a Пусть z_0 - любой корень этого уравнения. Тогда для \varepsilon=z/z_0 получим: z=z_0\varepsilon,\ z^n=z_0^n\varepsilon^n=a\varepsilon^n=a\Rightarrow \varepsilon^n=1 Следовательно, z_k=z_0\varepsilon_k, где \varepsilon_k^n=1. \varepsilon_k^n=1,\ \varepsilon_0=1,\ \varepsilon_1=\cos\frac{2\pi}{n}+i\sin\frac{2\pi}{n},\ \varepsilon_k=(\varepsilon_1)^k\ (mod\ n),\ \varepsilon_k\varepsilon_e=\varepsilon_{k+e}\ (mod\ n)
```

1.8 Линейные пространства над произвольным полем

Определение. Полем называется состоящее из не менее чем двух элементов множество с введенными на нем двумя операциями – "сложением" и "умножениембладающими следующими свойствами:

1.
$$a + b = b + a$$

2. $(a + b) + c = a + (b + c)$
3. $\exists 0: a + 0 = a$
4. $\forall a \exists (-a): a + (-a) = 0$
5. $ab = ba$
6. $(ab)c = a(bc)$

7.
$$\exists 1: 1a = a$$

8.
$$\forall a \neq 0 \; \exists \; \frac{1}{a} = a \frac{1}{a} = 1$$

9.
$$(a+b)c = ac + bc$$

Замечание. Элементы поля называются числами.

Определение. Пусть заданы множество $\mathbb V$ и поле $\mathbb P$. Множество $\mathbb V$ называется линейным (векторным) пространством над полем $\mathbb P$, если в $\mathbb V$ определены две операции: сложение двух элементов в $\mathbb V$ (внутренний закон композиции: $\mathbb V \times \mathbb V \mapsto \mathbb V$) и умножение элементов $\mathbb V$ на элементы $\mathbb P$ (внешний хакон композиции: $\mathbb V \times \mathbb P \mapsto \mathbb V$), удовлетворяющие следующим аксиомам: \forall $a,b,c\in \mathbb V$, \forall $\alpha,\beta\in \mathbb P$:

1.
$$a + b = b + a$$

2.
$$(a+b) + c = a + (b+c)$$

3.
$$\exists \Theta : a + \Theta = \Theta$$

4.
$$\forall \ a \ \exists \ (-a) : a + (-a) = \Theta$$

5.
$$\alpha(\beta a) = (\alpha \beta)a$$

6.
$$1a = a$$

7.
$$(\alpha + \beta)a = \alpha a + \beta a$$

8.
$$\alpha(a+b) = \alpha a + \alpha b$$

Элементы линейного пространства называются векторами.

Определение. Векторы называются коллинеарными, если они различаются лишь числовыми множителями.

1.9 Линейная зависимость. Ранг и база системы векторов.

Пусть \mathbb{V} - линейное пространство над полем \mathbb{P} . Будем рассматривать конечные (т.е. состоящие из конечного числа векторов) системы векторов из \mathbb{V} .

Определение. Линейная зависимость

Определение. Базой системы векторовназывается ее линейно независимая подсистема, через которую линейно выражается любой вектор системы.

Теорема 1. Любая линейно независимая подсистема данной системы является ее базой, и, наоборот, всякая база является максимальной линейно независимой подсистемой.

Доказательство. Пусть a_1,\dots,a_k - система векторов, а a_1,\dots,a_r - кк максимальная линейно независимая подсистема, $r \leq k$. Тогда необходимо доказать, что любой вектор $a_j(j=\overline{1,k})$ линейно выражается через a_1,\dots,a_k . Если $j\leq r$, то Капитан Очевидность отдыхает. Если j>r, то подсистема a_1,\dots,a_r,a_j линейно зависима $\Rightarrow \exists \alpha_1,\dots,\alpha_r,\alpha_j$, что $\alpha_1a_1+\dots+\alpha_ra_r+\alpha_ja_j=\Theta$. Если $\alpha_j=0$, то a_1,\dots,a_r линейно зависима - противоречие $\Rightarrow \alpha_j\neq 0$ и $a_j=\alpha_1$

$$-rac{lpha_1}{lpha_j}a_1-\ldots-rac{lpha_r}{lpha_j}a_r$$
, ч.т.д.

В обратную сторону: необходимо доказать, что база является максимальной линейно независимой подсистемой.

Из определения базы вытекает, что при добавлении к ней любого вектора системы она становится линейно зависимой, так как вновь добавленый вектор выражается через векторы базы.

Следствие. Все базы данной системы состоят из одинакового числа векторов. Это число есть число векторов в максимальной линейно независимой подсистеме. Оно называется рангом системы: $rg(a_1, \ldots, a_k)$.

Определение. Две системы векторов называются эквивалентными, если каждый вектор одной системы линейно выражается через вектора другой системы, и наоборот.

Следствие. Всякая система эквивалентна своей базе.

Теорема 2. Если любой вектор a_1, \ldots, a_k выражается через векторы b_1, \ldots, b_m , то $rg(a_1, \ldots, a_k) \leq rg(b_1, \ldots, b_m)$

Доказательство. Заменим системы их базисами и воспользуемся соответствующей теоремой из предыдущего семестра. □

Следствие. 1. Ранги эквивалентных систем совпадают.

2. Базы эквивалентных систем состоят из одинакового числа векторов.

1.10 Базис и его размерность

Определение. Говорят, что система векторов (не обязательно линейно независимая) порождает линейное пространство \mathbb{V} , если любой вектор из \mathbb{V} представим в виде линейной комбинации векторов этой системы.

Определение. Упорядоченая система векторов называется базисом, если она линейно независима и порождает пространство \mathbb{V} .

Теорема 3. Любые два базиса состоят из одинакового числа векторов.

Доказательство. Это утверждение вытекает из эквивалентности двух базисов и следствия 1 теоремы 2.

Определение. Количество векторов в базисе называется размерностью пространства $V: dim\ V$. Если оно конечно, то ространство называется конечномерным, иначе - бесконечномерным.

Теорема 4. В n-мерном пространстве любую линейно независимую систему из k векторов $(0 \le k < n)$ можно дополнить до базиса.

Доказательство. Пусть векторы e_1, \ldots, e_k построены, k < n. Выберем вектор e_{k+1} так, чтобы векторы $e_1, \ldots, e_k, e_{k+1}$ были лнейно независимы. И так далее до получения требуемого результата.

Свойтсва:

$$x = x_1 e_1 + \ldots + x_n e_n$$

$$y = y_1 e_1 + \ldots + y_n e_n$$

$$\alpha x + \beta y = (\alpha x_1 + \beta y_1) e_1 + \ldots + (\alpha x_n + \beta y_n) e_n$$