THE DISTRIBUTION OF DISORIENTATION ANGLES IF ALL RELATIVE ORIENTATIONS OF NEIGHBOURING GRAINS ARE EQUALLY PROBABLE

Hans Grimmer
19, ch. de la Barge, 1232 Lully, Switzerland
(Received January 4, 1979)

In investigating the grain structure of metals it is of interest to determine the degree to which the relative orientations of neighbouring grains deviate from random. For grains with the same crystal lattice one can determine experimentally the disorientation angle between neighbouring grains, i.e. the minimum angle needed to rotate one lattice so that it becomes parallel to the other. The frequency of these angles is then compared to the density of disorientation angles computed under the assumption of no correlation between the orientations of neighbouring grains. This density has been determined for the cubic system by Handscomb [1] and by Mackenzie [2]. Two related papers are Mackenzie [3] and Warrington-Boon [4]. In this paper we consider the non-cubic crystal systems and determine mean, standard deviation, median, density and distribution of the disorientation angle.

TABLE 1
M the Highest Order of a Symmetry Axis and N the Number of Rotations in the Holohedry.

crystal	tri-	mono-	ortho-	rhombo-	tetra-	hexa-
system	clinic	clinic	rhombic	hedral	gonal	gonal
M	1	2	2	3	4	6
N	1		4	6	8	12

Following Handscomb [1], we find for the density of disorientation angles p(d), where d is measured in degrees

$$p(d) = (N/90) \cdot \sin^2(d/2) \cdot f(d), \tag{1}$$

where f(d) is the fraction of the surface of the sphere with radius $\sin(d/2)$ that lies within the following concentric solid: a prism with regular N-gons as bases, squares as lateral faces, and with all edges of length $2\cdot\cos(d/2)\cdot\tan(90^\circ/\text{M})$ in the hexagonal, tetragonal, rhombohedral and orthorhombic system. In the monoclinic system the solid becomes a (concentric) layer of thickness $2\cdot\cos(d/2)$, and in the triclinic system it becomes all space. It follows that for

$$0^{\circ} = d = 180^{\circ}/M$$
 , $p(d) = (N/180)(1-\cos d)$ (2)

$$180^{\circ}/M \le d \le 180^{\circ} \cdot M/N$$
, p(d) = (N/180)·tan(90°/M)·sin d (3)

Eq. (2) is sufficient to deal with the triclinic system, Eqs. (2) and (3) to deal with the monoclinic system, so that we can restrict ourselves in the following to the four remaining systems, where N=2M.

$$90^{\circ} \le d \le 2 \text{ arc tan } (\sqrt{1+\tan^{2}(90^{\circ}/\text{M})}),$$

 $p(d) = (\text{M}/90)[(\text{M}+\tan(90^{\circ}/\text{M})) \cdot \sin d - \text{M}(1-\cos d)]$ (4)

0036-9748/79/020161-04\$02.00/0 Copyright (c) 1979 Pergamon Press, Ltd.

$$\begin{aligned} & 2 \text{arc } \tan(\sqrt{1 + \tan^2(90^\circ/\text{M})}) \not \leq d \not \leq 2 \text{arc } \tan(\sqrt{1 + 2 \tan^2(90^\circ/\text{M})}) \ , \\ & p(d) = (\text{M}/90) \Big[(\text{M} + \tan(90^\circ/\text{M})) \cdot \sin d - \text{M}(1 - \cos d) + (\text{M}/180) \Big\{ (1 - \cos d) \\ & \cdot \Big(\text{arc } \cos\frac{1 - \tan^2(d/2)\cos(180^\circ/\text{M})}{\tan^2(d/2) - 1} + 2 \text{arc } \cos\frac{\tan(90^\circ/\text{M})}{\sqrt{\tan^2(d/2) - \tan^2(90^\circ/\text{M})}} \Big\} \\ & - 2 \text{sin } d \cdot \Big\{ 2 \text{arc } \cos\frac{\tan(90^\circ/\text{M})}{\sqrt{\tan^2(d/2) - 1}} + \tan(90^\circ/\text{M}) \cdot \text{arc } \cos\frac{1}{\sqrt{\tan^2(d/2) - \tan^2(90^\circ/\text{M})}} \Big\} \Big\} \Big\}$$

TABLE 2 The Limits for the Validity of Eqs. (2-5) for p(d). $(X=\tan^2(90^{\circ}/M))$

crystal system	180 ⁰ /M	180 ⁰ M/N	2arc tan($\sqrt{1+X}$)	2arc $tan(\sqrt{1+2X})$
triclinic monoclinic orthorhombic rhombohedral tetragonal hexagonal	180° 90° 90° 60° 45° 30°	180° 180° 90° 90° 90° 90°	109.47° 98.21° 94.53° 91.99°	120° 104.48° 98.42° 93.84°

FIG. 1 The density function p(d) for the disorientation angle. The ordinate gives the density in per mille as a function of the angle in degrees. (A similar graph for the cubic system is given in [2].)

Disori-	Density	p(d) in per	mille for	the non-cub	oic crystal	systems
entation angle d	tri- clinic	mono- clinic	ortho- rhombic	rhombo- hedral	tetra- gonal	hexa- gonal
0505050505050505050 11223344556677889	0.02 0.08 0.19 0.574 0.30 1.378 1.98 721 33.612 975 5.56	0 0.4 0.17 0.38 0.67 1.04 1.49 2.60 3.97 4.74 5.542 7.324 9.18 10.14 11.11	0 0.08 0.76 1.34 2.08 2.98 4.02 5.51 7.94 91.11 12.66 11.13 14.6.47 18.36 20.22	0 0.13 0.51 1.14 2.01 3.12 4.47 6.80 9.76 11.91 16.64 18.59 18.59 18.99 19.25	0 0.17 0.68 1.51 2.68 4.16 5.95 8.04 10.40 15.08 15.68 17.78 18.13 18.41	0 0.25 1.01 2.27 4.02 6.25 8.93 10.25 11.48 12.68 14.63 15.19 16.79 17.25 17.59 17.80 17.86
91 92 93 94 95 96 97 98 99	6 . 04	11.07	18.09 13.49	17.48 15.68 13.85 12.00 10.08 8.14 6.17 4.17 2.58	15.28 12.09 8.84 5.53 2.61 1.14 0.35 0.03	10.82 3.66 0.55
100 101 102 103 104	0.72	10.94	17.49	1.58 0.89 0.43 0.15 0.01		
105 110 115 120	6.99 7.46 7.90 8.33	10.73 10.44 10.07 9.62	8.45 3.10 0.63 0			
130 140 150 160 170 180	9.13 9.81 10.37 10.78 11.03	8.51 7.14 5.56 3.80 1.93				

The Distribution $P(d) = \int_{0}^{d} p(x)dx$ of the Disorientation Angle

		7 0				
Disori-	Dist	ribution P(d) for the	non-cubic	crystal syst	ems
entation	tri-	mono-	ortho-	rhombo- hedral	tetra-	hexa-
entation angle d 5 10 15 20 25 30 35 40 45 50 65 70 75 80 85 90 95 100	tri- clinic 0.0004 0.00028 0.00095 0.00224 0.00437 0.00751 0.01187 0.01762 0.02492 0.03394 0.04481 0.05767 0.07262 0.08978 0.10920 0.13097 0.15512 0.18169 0.21068 0.24208	mono- clinic 0.00007 0.00056 0.00190 0.00449 0.00873 0.01502 0.02374 0.03523 0.04984 0.06788 0.08962 0.11534 0.14525 0.17955 0.21841 0.26194 0.31025 0.36338 0.41887 0.47393	ortho-rhombic 0.00014 0.00113 0.00379 0.00897 0.01746 0.03005 0.04748 0.07047 0.09968 0.13575 0.17925 0.23068 0.29050 0.35910 0.4368 0.29050 0.35910 0.4368 0.62049 0.72676 0.90692		-	
105 110 115 120	0.27587 0.31200 0.35040 0.39100	0.52815 0.58112 0.63243 0.68169	0:96194 0:99074 0:99898 1			
130 140 150 160 170 180	0.47838 0.57317 0.67418 0.78002 0.88917	0.77259 0.85106 0.91471 0.96161 0.99033				

 $$\operatorname{\mathtt{TABLE}}\xspace$ The Median, the Mean and the Standard Deviation of the Disorientation Angle

Crystal system	tri- clinic	mono- clinic	ortho- rhombic	rhombo- hedral	tetra- gonal	hexa- gonal
median	132.35°	102.39°	78.68°	68.88°	65.03°	62.25 ⁰
mean	126.48 ⁰	102.30°	75.16°	66.63 ⁰	63.01 ⁰	60.07°
standard deviation	37.01°	33.76°	20.85°	19.28°	19.50°	20.210

References
D.C. Handscomb, Canad. J. Math. 10,85,(1958)
J.K. Mackenzie, Biometrika 45,229,(1958)
J.K. Mackenzie, Acta Metall. 12,223,(1964)
D.H. Warrington and M. Boon, Acta Metall. 23,599,(1975)