

University of Debrecen, Faculty of Informatics

Logic in computer science

Zero-order logic (propositional logic)

semantics

Truth values

The set $\{0,1\}$ is the set of truth values in the classical meaning, where

- 0 represents false,
- 1 represents *true*.

The $\varrho: Con \to \{0,1\}$ mapping (function) is called an *interpretation* of the zero-order language $\mathcal{L}^{(0)} = \langle LC, Con, Form \rangle$.

$$\varrho \in \{0,1\}^{Con}$$

Remark

The ϱ interpretation determines the truth value for the non-logical constants of the language.

Instead of using the above-defined function, an interpretation of the classical zero-order language is sometimes given as a subset of non-logical constants Con.

$$\{ a \mid a \in Con \text{ and } \varrho(a) = 1 \}$$

Here the interpretation as a set contains those non-logical constants which said to be true.

Truth value of a formula

The *truth value of a formula* \mathcal{F} with respect to a given interpretation ϱ is denoted by $|\mathcal{F}|_{\varrho}$ and is defined recursively as follows:

- if $A \in Con$ then $|A|_{\varrho} \rightleftharpoons \varrho(A)$,
- if $B \in Form$ and $C \in Form$ then

$$\begin{split} |\neg B|_{\varrho} & \rightleftharpoons 1 - |B|_{\varrho} \\ |(B \land C)|_{\varrho} & \rightleftharpoons \min(|B|_{\varrho}, |C|_{\varrho}) \\ |(B \lor C)|_{\varrho} & \rightleftharpoons \max(|B|_{\varrho}, |C|_{\varrho}) \\ |(B \supset C)|_{\varrho} & \rightleftharpoons \max(1 - |B|_{\varrho}, |C|_{\varrho}) \\ |(B \equiv C)|_{\varrho} & \rightleftharpoons \begin{cases} 1 & \text{if } |B|_{\varrho} = |C|_{\varrho}, \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

Truth table of connectives

$ B _{\varrho}$	$ C _{\varrho}$	$ \neg B _{\varrho}$	$ (B \wedge C) _{\varrho}$	$ (B \lor C) _{\varrho}$	$ (B\supset C) _{\varrho}$	$ (B \equiv C) _{\varrho}$
0	0	1	0	0	1	1
0	1		0	1	1	0
1	0	0	0	1	0	0
1	1		1	1	1	1

Model

Let $\Gamma \subseteq Form$ be an arbitrary set of formulae of a zero-order language $\mathcal{L}^{(0)} = \langle LC, Con, Form \rangle$.

• The interpretation ϱ is the *model* of the set of fromulae Γ if $|A|_{\varrho}=1$ for all $A\in \Gamma$.

Let $A \in Form$ be a formula fo a zero-order language $\mathcal{L}^{(0)} = \langle LC, Con, Form \rangle$.

 The interpretation *ρ* is the *model* of the formula *A* if the *ρ* is the model of the singleton set {*A*}.

Satisfiability (SAT)

Let $\Gamma \subseteq Form$ be an arbitrary set of formulae of a $\mathcal{L}^{(0)} = \langle LC, Con, Form \rangle$ zero-order language.

- The
 「 set of formulae is satisfiable, if it has a model.
- The
 Γ set of formulae is unsatisfiable, if it is not satisfiable.

Let $A \in Form$ be an arbitrary formula of a $\mathcal{L}^{(0)} = \langle LC, Con, Form \rangle$ zero-order language.

- The formula A is *satisfiable* if the $\{A\}$ singleton set is satisfiable.
- The formula A is *unsatisfiable* if the $\{A\}$ singleton set is unsatisfiable.

Semantic equivalence

Let $\mathcal{L}^{(0)} = \langle LC, Con, Form \rangle$ be a zero-order language, $\Gamma \subseteq Form$ be an arbitrary set of formulae, and $A \in Form$ be an arbitrary formula of the language.

The formula A is the semantic consequence of Γ if Γ ∪ {¬A} is unsatisfiable.
 (Notation: Γ ⊨ A)

The formula A is valid (tautology) if ∅ |= A.
(Notation: |= A)

Logical equivalence

Let $\mathcal{L}^{(0)} = \langle LC, Con, Form \rangle$ be a zero-order language and $A \in Form$ and $B \in Form$ be two formulas of $\mathcal{L}^{(0)}$.

The formula A and formula B are logically equivalent, if

$$A \models B$$
 and $B \models A$.

(Notation: $A \Leftrightarrow B$)