

Society of Actuaries in Ireland

Multivariate Analysis & PCA ISL Presentation

John Nolan, FSAI

Agenda

- Multivariate Analysis:
 - -Intro
 - -Simpson's Paradox
 - -Techniques Used PCA
 - -Simple Example

Multivariate Analysis - Intro

Three types of analysis:

Univariate analysis

 The examination of the distribution of cases on only one variable at a time (e.g. college graduation)

2. Bivariate analysis

 The examination of two variables simultaneously (e.g. the relationship between gender and college graduation)

3. Multivariate analysis

- The examination of more than two variables simultaneously (e.g., the relationship between gender, race, and college graduation)
- Multivariate Analysis allow the separate and combined effects of the independent variable to be examined

Multivariate Analysis – Simpson's Paradox

- Using Simpson's Paradox to show why Multivariate analysis is necessary
- Simpson's paradox occurs when groups of data show one particular trend, but this trend is reversed when the groups are combined together.

Example:

- 44% of male applicants are admitted by a university, but only 33% of female applicants
- ☐ Men more likely to get admitted? Difference too large to be down to chance
- Does this mean there is unfair discrimination?

	Male	Female
Accepted	35	20
Refused Entry	45	40
Total	80	60
% Accepted	44%	33%

University decided to investigate by further breaking down by degree

Multivariate Analysis – Simpsons Paradox

Results by degree:

Engineering	Male	Female
Accepted	30	10
Refused Entry	30	10
Total	60	20
% Accepted	50%	50%

English	Male	Female
Accepted	5	10
Refused Entry	15	30
Total	20	40
% Accepted	25%	25%

 → No relationship between sex and acceptance for either programme, i.e. no discrimination

- Why?
 - More females apply for English programme, but it is hard to get in to (25% success)
 - ☐ More males apply for engineering, but it is easier to get in to (50% success)
 - Degree is the confounding variable
 - □ Demonstrates why we shouldn't just scratch the surface.

Multivariate Analysis – What's its all about?

- Definition:
 - "The simultaneous analysis of several variables"
- MVA uses ALL available data to capture the most information possible. Never a simple uni/bivariate analysis. The basic principle is to boil down hundreds of variables to a mere handful.
- Making sense of large mases of data -> Data-rich but knowledge poor.
- Multivariate analysis can help summarise the data and avoid spurious results as seen in previous examples.
- MVA is based on "Ockham's Razor":
 - "Everything should be kept as simple as possible, but no simpler."
- Simpson's paradox shows how we need to consider more variables, Ockham's Razor tells us to consider less... Need to find a balance.

Multivariate Analysis – Example

Apples Versus Oranges

- Could come up with 100's of different factors to compare them:
 - □ Colour, shape, texture, firmness, ...
 - ☐ Skin: smoothness, thickness,...
 - ☐ Juice: PH, taste, composition
 - Seeds, etc.
- Ultimately, there will never be more than one difference: is it an apple or an orange?

Multivariate Analysis – Techniques

- Many different techniques used to perform a multivariate analysis:
 - Principal Component Analysis (PCA)
 - Singular Value Decomposition (SVD)
 - Multiple regression
 - Logistic regression
 - Discriminant Analysis
 - Multivariate Analysis of Variance (MANOVA)
- Most of these are pretty complex, with heavy maths behind them

Multivariate Analysis – Principal Component Analysis (PCA)

- Used to identify the underlying dimensions or "Principle Components" for <u>sources</u> of variation.
- An unsupervised learning algorithm, it finds patterns by itself. In particular, PCA finds (mutually orthogonal) directions of greatest variance.

- The green solid line indicates the first principal component direction, and the blue dashed line indicates the second principal component direction.
- Essentially finding new variables that are linear functions of those in the original dataset, that successively maximize variance and that are uncorrelated with each other

Multivariate Analysis – Principal Component Analysis (PCA)

- Form of data compression without much loss of information
- First principle component accounts for as much of the <u>variability</u> as possible, and each succeeding component accounts for as much of the remaining variability as possible.
- Reduces effect of <u>multi-collinearity</u>.
 - Refers to predictors that are correlated with other predictors.
 - Occurs when model includes multiple factors that are correlated to both response and other variables
 - Results when you have factors that are a bit redundant.

Multivariate Analysis – Principal Component Analysis (PCA)

- Can be performed in R using prcomp(dataset) or princomp(dataset)
- Create a scree plot:
 - "A scree plot displays the proportion of the total variation in a dataset that is explained
 (PVE = Proportion of Variance Explained) by each of the components in a principle
 component analysis. It helps you to identify how many of the components are needed to
 summarise the data."

See R code for example "10.4 Lab 1: Principal Components Analysis"