



# Clustering K-means & density-based scan

Johannes Müller





# K-means clustering



**Strategy:** Group data points into n groups so that variance within group is minimal

 $\sum_{i=1}^{k} \sum_{x_j \in S_i} ||x_j - \mu_i||^2$   $\mu_i$ : Center of cluster i

S<sub>i</sub>: Cluster i

 $x_i$ : Datapoint j



### K-means clustering



# **Strategy:** Group data points into n groups so that variance within group is minimal

Step1: Random initialization of cluster centers



**Step2: Tessellation of space into cluster regions** 



Step3: Replace cluster center with centrois



In Python:

Import from sklearn import cluster

Create

clusterer = cluster.KMeans(n\_clusters=3)
clusterer.fit(X)

Predict

predicted\_class = clusterer.predict(X)



Step4: Repeat 2&3 until convergence

→ Fast convergence



Source: <a href="https://de.wikipedia.org/wiki/K-Means-Algorithmus">https://de.wikipedia.org/wiki/K-Means-Algorithmus</a>

Attribution: I, Weston.pace, Shared under CC-BY-SA 3.0



#### Strength and weaknesses

- Number of clusters needs to be known
- Clusters can not capture more complex topologies
- Very fast
- Based on Euclidian metrics → every new point can be assigned to a cluster

clusterer = cluster.KMeans(n\_clusters=2)
clusterer.fit(X)









Hierarchical Density-Based Spatial Clustering of Applications with Noise **Strategy:** Build neighborhood graph and identify strongly connected groups



Core distance: Distance to n-th nearest neighbor

Distance metric: Mutual reachability

Core distance of  $\Omega > d(P, \Omega) \rightarrow d$  (P,  $\Omega$ ) = core distance

Core distance of Q > d(P, Q)  $\rightarrow$  d<sub>new</sub>(P,Q) = core distance Core distance of Q < d(A, Q)  $\rightarrow$  d<sub>new</sub>(A,Q) = d(A,Q)

> Isolated points are pushed further away from clusters

"To find clusters we want to find the islands of higher density amid a sea of sparser noise [...] For practical purposes that means making 'sea' points more distant from each other and from the 'land'."



#### Strategy: Build neighborhood graph and identify strongly connected groups





#### Strategy: Build neighborhood graph and identify strongly connected groups



Source: <a href="https://hdbscan.readthedocs.io/en/latest/how-hdbscan-works.html">https://hdbscan.readthedocs.io/en/latest/how-hdbscan-works.html</a>

Condense the tree: Traverse graph from top to bottom and decide whether a new cluster is formed at every crossroads

- 1. If points are split into clusters here are both clusters larger than min\_size? Yes
- 2. No this part of the tree remains a single cluster
- 3. No this part of the tree remains a single cluster
- 4. Yes remaining points are split into new clusters here



#### Strategy: Build neighborhood graph and identify strongly connected groups

Extracting the clusters with 'largest total ink area' leads to the final selection of clusters



## Variants of linkage-clustering





There are multiple ways to reconstruct the neighborhood graph and the clusters in the hierarchy schematic:

- Setting a maximum distance between two points to be considered neighbors → DBSCAN <a href="https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html">https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html</a>
- Aggregate points into clusters bottom-up → Agglomerative clustering

https://scikit-

<u>learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html</u>





A comparison of the clustering algorithms in scikit-learn

https://scikit-learn.org/stable/modules/clustering.html