Rockchip

EQ_DRC 工具

发布版本:1.22

日期:2018.09

前言

概述

本文档主要介绍 RK3308 的语音音效实时调整插件——EQ_DRC 插件和对应的调参工具——EQ_DRC 工具,使用该工具可以实时调整板端的各类音频参数,通过实例介绍 EQ_DRC 调参工具的使用方法和注意事项。

产品版本

芯片名称	版本
RK3308	RK3308_EQ_DRC_TOOL_V1.2

读者对象

本文档(本指南)主要适用于以下工程师:

- 技术支持工程师
- 软件开发工程师

修订记录

日期	版本	作者	修改说明
2018.05	V1.1	Cherry.Chen	初稿
2018.06	V1.2	Cherry.Chen	添加 EQ_DRC 使用说明
2018.08	V1.21	Cherry.Chen	添加 EQ_DRC 使用说明
2018.08	V1.22	Cherry.Chen	修改 EQ_DRC 使用说明

免责声明

本文档按"现状"提供,福州瑞芯微电子股份有限公司("本公司",下同)不对本文档的任何陈述、信息和内容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本文档仅作为使用指导的参考。

由于产品版本升级或其他原因,本文档将可能在未经任何通知的情况下,不定期进行更新或修改。

商标声明

"Rockchip"、"瑞芯微"、"瑞芯"均为本公司的注册商标,归本公司所有。 本文档可能提及的其他所有注册商标或商标,由其各自拥有者所有。

版权所有 © 2018 福州瑞芯微电子股份有限公司

超越合理使用范畴,非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

福州瑞芯微电子股份有限公司

Fuzhou Rockchip Electronics Co., Ltd.

地址: 福建省福州市铜盘路软件园 A 区 18 号

网址:www.rock-chips.com客户服务电话:+86-591-83991906客户服务传真:+86-591-83951833客户服务邮箱:www.rock-chips.com

目录

1	EQ_D	RC 使用说明	1-1
		支持范围	
	1.2	asound.conf 配置	1-1
		使用示例	
2	EQ D	RC 工具	2-1
		概述	
		重要概念	
		工具介绍	
		调参工具使用步骤	
3		一工具界面对应参数说明	
		功能索引模块对应参数	
		使能模块对应参数	
		调参模块对应参数	
	_		

插图目录

图 1.1	EQ/DRC 双通道配置	1-1
	2 SDK 默认开启 EQ/DRC 算法处理节点	
图 2.1	EQTool 图形界面	2-2
图 2.2	板端播放声音信号示例	2-2
图 2.3	Public_Param 设置	2-3
图 2.4	获取当前板端对应参数	2-3
图 2.5	10EQ 参数设置示例	2-4
图 2.6	参数设置到板端示例	2-4
	板端打印设置成功 log	
图 3.1	功能索引模块界面	3-5
图 3.2	使能模块示界面	3-5
图 3.3	调参模块公共参数界面	3-6
图 3.4	调参模块 10EQ 界面	3-7
	调参模块 DRC 界面	
	调参模块 Limter 模块界面3	

表格目录

表 1.1	. EQ/DRC 调参支持采样率和声道	1-1
	功能索引模块对应参数说明	
	! 使能模块对应参数说明	
	3 10EQ 参数说明	
	・ DRC 参数说明	
	5 Limter 参数说明3	

Rockchip 开发指南 EQ_DRC 使用说明

1 EQ_DRC 使用说明

1.1 支持范围

RK3308 EQ/DRC 的主要作用是补偿 PA 的频响曲线,因此我们默认以 48k 采样率,2 声道进行 EQ/DRC 处理。如有特殊需求,请联系工程师处理。

目前 SDK 中 EQ/DRC 功能支持的音频采样率和声道如下表:

表 1.1 EQ/DRC 调参支持采样率和声道	Ī
-------------------------	---

采样率	单通道	双通道
8000	不支持	不支持
16000	不支持	不支持
32000	不支持	不支持
44100	不支持	不支持
48000	不支持	默认调参配置

1.2 asound.conf 配置

根据实际使用场景来配置 ladspa 模块,根据实际通道数来配置该文件,如下图为双通道的配置文件。

图 1.1 EQ/DRC 双通道配置

1.3 使用示例

开机启动./eq_drc_process 进程默认开启 EQ/DRC 处理,但是所有 EQ/DRC 功能参数均设置为关闭,如图 1.2。

图 1.2 SDK 默认开启 EQ/DRC 算法处理节点

如果需要关闭 EQ/DRC 算法处理,将图 2 中节点"ladspa"修改为"hw:0,0"即可。

Rockchip 开发指南 EQ_DRC 工具

2 EQ_DRC 工具

2.1 概述

EQ_DRC 工具(Equalizer & Dynamic Range Control Tool)是语音均衡器和动态范围规划调参工具一一以下简称 EQTool。使用该工具可以在线调试各类音频参数,适用于 RK3308。

2.2 重要概念

[Samplerate]

声音采样率,通俗的讲采样频率是指计算机每秒钟采集多少个信号样本。单位: Hz

[ChannelNum]

声道数,是指声音在播放时在不同空间位置回放的相互独立的音频信号,声道数就是声音播放时相应的扬声器数量。

(Gain)

增益,调节信号强度。

[EQ]

Equalizer 均衡器,它的作用就是调整各个频段的增益值。10EQ表示将声音信号分为十个频段,分别对各个频段进行 Gain 值调整;同理,8EQ表示将声音信号分为八个频段,分别对各个频段进行增益调整。

[DRC]

Dynamic Range Control,动态范围规划。用于音频输出的柔和压限。

Rockchip 开发指南 EQ_DRC 工具

2.3 工具介绍

图 2.1 EQTool 图形界面

图 1.1 为 EQTool 的图形界面。如图所示,EQTool 主要分为四个部分:

- ▶ 第1部分为功能索引,可以快速的索引不同的声道的 EQ/DRC 进行调参;
- ▶ 第 2 部分为各个模块的使能开关及全局增益调整模块, ON 表示对应功能使能打开, OFF 表示关闭:
- ▶ 第 3 部分为调参模块,调参模块有四个子模块:公共参数调整模块,10EQ 调参模块, DRC 调参模块,8EQ 调参模块,可以根据对应的子模块进行调参。
- ▶ 第4部分为设置模块,选择不同的按钮对应不同的功能设置。

2.4 调参工具使用步骤

Step1: 烧写固件,确认板子处于 ADB 模式且与电脑相连;

Step2:在板端播放声音信号;

例:如图 1.2 表示板端播放 48000Hz,双声道声音信号。

```
# aplay tmp/test_48k_2ch_16bit_500hz_5000hz.wav
playback v3 !!!
playback wav !!!
playback wav !!!
playback go count = 11520156
Playing WAVE 'tmp/test_48k_2ch_16bit_500hz_5000hz.wav' : Signed 16 bit Little Endian, Rate 48000 Hz, Stereo
```

图 2.2 板端播放声音信号示例

Step3: 在 PC 端打开 EQTool.exe;

Step4: 设置 Public_Param, 填写需要调整的对应 Samplerate 和 ChnnelNum;不同的 Samplerate

和 ChannelNum 对应不同的参数,需要确认 Public_Param 是否与当前要调整的声音信号一致。

例:如图 1.3,设置 Samplerate=48000, ChannelNum=2,并点击 Reset 保存。

图 2.3 Public_Param 设置

Step5(建议,该步骤可以不执行):读取当前使用 EQ/DRC 参数。

例:如图 1.4,获取当前板端对应参数,基于当前参数调整 EQ/DRC 参数。

图 2.4 获取当前板端对应参数

Step6: 选取对应模块进行参数调整,详细参数意义参考 2.3 节。

例:如图 2.5 表示当前调整 48000Hz,双声道声音信号的 10EQ 模块参数,在图 2.4 参数的基础上,调整中心频率为 400Hz 的频段增益为 12db。

图 2.5 10EQ 参数设置示例

Step7:点击 Set 可将当前参数设置到板端,并实时听到调音效果。

例:表示将参数设置到板端,EQ 工具显示设置成功(图 2.6),同时,串口 log 打印"modified the param succedd!!!",表示新的参数设置成功(图 2.7)。

图 2.6 参数设置到板端示例

```
# aplay tmp/test_48k_2ch_16bit_500hz_5000hz.wav
playback v3 !!!
playback wav !!!
playback go count = 11520156
playing wAVE 'tmp/test_48k_2ch_16bit_500hz_5000hz.wav' : Signed 16 bit Little Endian, Rate 48000 Hz, Stereo
modified the param succedd!!!
```

图 2.7 板端打印设置成功 log

注:如果 EQTool 没有显示设置成功,请确实板子是否和电脑正确连接如果板端没有打印设置成功 log,请确认 Public_Param 参数设置是否与当前播放声音一致。

Rockchip 开发指南 EQ_DRC 工具

3 附录——工具界面对应参数说明

3.1 功能索引模块对应参数

图 3.1 功能索引模块界面

± 2.4	功能索引	14#44 54	C: 42 */	- 24 00
衣 3.1	切配系与		巡奓鈒	【记:円

参数名称	默认值	描述
		左右声道索引
L/R	NULL	L:左声道(channel0)
		R:右声道(channel1)
		10 段 EQ 快速索引
		图 2.1 中, 2 按钮快速索引到
10EQ	NULL	channel0 的 10 段 EQ 调参模块;
		3 按钮快速索引到 channel1 的
		10 段 EQ 调参模块
		DRC 快速索引
		4 按钮能够快速索引到 channel0
DRC	NULL	的 DRC 调参模块;
		5 按钮能够快速索引到 channel1
		的 DRC 调参模块;
		8 段 EQ 快速索引
		6 按钮快速索引到 channel0 的 8
8EQ	NULL	段 EQ 调参模块;
		7 按钮快速索引到 channel1 的 8
		段 EQ 调参模块

3.2 使能模块对应参数

图 3.2 使能模块示界面

表 3.2 使能模块对应参数说明

参数名称	默认值	描述
10EQ Mode	OFF	10 段 EQ 功能使能
TOLQ Mode	011	ON 开启,OFF 关闭
DRC Mode	OFF	DRC 功能使能
DRC Mode	OFF	ON 开启,OFF 关闭
SEO Modo	OFF	8 段 EQ 功能使能
8EQ Mode OFF	OFF	ON 开启,OFF 关闭
Gain1	0	左/右声道施加前增益,单位
Gaiii		是 dB
Cain 2	0	左/右声道施加后增益,单位
Gain2	U	是 dB
		关联左右声道,即调参的时候
Link	选择 (关联左右声道)	左右声道关联调整,否则,表
		示左右声道独立调整

注: gain1 和 gain2 为全局增益,注意调整这两个增益不要使得总的增益超过 0dBFS,超过可能导致破音。

3.3 调参模块对应参数

图 3.3 调参模块公共参数界面

Samplerate:采样率设置 ChannelNum: 声道数设置

图 3.4 调参模块 10EQ 界面

表 3.3 10EQ 参数说明

参数名称	默认值	描述
		左右声道关联,选中该选项,
Link	不选择	表示调整其中一个声道的
LITIK	\1.\C1\+	10EQ 参数,另外一个声道参
		数相应调整
		10 段 EQ 调整对应频段的中
CE(II-)		心频率,中心频率的调整受限
GF(Hz)		于奈奎斯特采样定理,取值范
		围为 0 <gf≤samplerate 2<="" td=""></gf≤samplerate>
		每段 EQ 对应的调整增益值,
Gain	0	取值范围为-12dB≤Gain≤
		12dB
		品质因子是无量纲的参数,是
	2.5	比较系统振幅衰减的时间常数
Q		和振荡周期后的结果。取值范
		围为 Q≥0.5

注意:对声音信号进行 10EQ 和 DRC 处理之后,再利用 8EQ 对声音信号进行微调,对声音信号进行进一步的修正。8EQ 调参模块示意图如图 1.9 所示,其中,8EQ 调参与 10EQ 调参的唯一区别就是它只将声音频段分为 8 段。所以 8EQ 各个参数意义可以参考 10EQ 调参。

图 3.5 调参模块 DRC 界面

表 3.4 DRC 参数说明

参数名称	默认值	描述
Link	选择	左右声道关联,选中该选项, 表示调整其中一个声道的 DRC参数,另外一个声道参数 相应调整
Division Frequency	3000	两子带的分界频率,单位 Hz, 调 节 范 围: 0 < Division Frequency < 采样率/2
DRC Low Band	NULL	设定的是低频子带的 DRC 参数
DRC High Band	NULL	设定的是高频子带的 DRC 参数
Static time	200	计算输入信号 RMS 值的统计 时间,单位是 ms, Static time>0;
Makeup gain	6	输出的整体音轨上施加固定 值的补偿增益,单位是 dB, 0 <= Makeup gain <= 20dB;
Threshold L	Low Band:-64 High Band:-60	输入信号能量低于该阈值时, DRC 开始压缩(提高输出增 益),单位是 dB;
Ratio L	1:1	输入信号能量低于阈值 Threshold L时的压缩比例, 例如 Ratio L=4:1 意味着, 如果输入在阈值以下 4dB时, 输出在阈值以下 1dB;注意 Ratio L的分子与分母都是正

NOCKCIIIP		LQ_DRC 工共
		整数,且分子大于等于分母;
Release time	20	输入信号能量低于阈值
		Threshold L 时,增大增益到
		Ratio L 所决定的级别的变化
		速率,单位是 ms,定义为增
		益增大 10dB 所用的时间,
		Release time>0;
Threshold H	Low Band:-40 High Band:-35	输入信号能量高于该阈值时,
		DRC 开始压缩(降低输出增
		益),单位是 dB;
		-90.3087dB < Threshold
		L < Threshold H < 0dB
	Low Band: (5:2) High Band: (2:1)	输入信号能量高于阈值
		Threshold H 时的压缩比例,
		例如 Ratio H=4:1 意味着,
Ratio H		如果输入在阈值以上 4dB 时,
		输出在阈值以上 1dB; 注意
		Ratio H 的分子与分母都是正
		整数,且分子大于等于分母
Attack time	20	输入信号能量高于阈值
		Threshold H 时,降低增益到
		Ratio H 所决定的级别的变化
		速率,单位是 ms,定义为增
		益降低 10dB 所用的时间,
		Attack time>0
Smooth time	20	于能量处于非压缩段的语音
		段,而其前一段语音处于压缩
		段(低于 Threshold L 或高于
		Threshold H)的情况下,施
		加的增益恢复至 0dB (不再压
		缩)的变化速率,单位是 ms,
		定义为增益改变 10dB 所用的
		时间,Smooth time>0

图 3.6 调参模块 Limter 模块界面

表 3.5 Limter 参数说明

参数名称	默认值	描述
Static time	6	计算输入信号 RMS 值的统计
		时间,单位是 ms, 0 <
		Attack time < 20ms;
Threshold	-3	输入信号能量高于该阈值
		时,Limiter 开始限制输出幅
		度,单位是 dB,-12dB <=
		Threshold <= -1dB
Attack time	0.5	输入信号能量高于阈值
		Threshold 时,降低增益到
		Limiter 的压缩比例
		(60:1) 所决定的级别的变
		化速率,单位是 ms,定义为
		增益降低 10dB 所用的时
		间,0 < Attack time <
		10ms,建议 Limiter 的
		Attack time 设定得足够
		快。
Smooth time	20	对于能量不高于 Threshold
		的语音段,而其前一段语音
		高于 Threshold 的情况下,
		施加的增益恢复至 0dB(不
		再限幅)的变化速率,单位
		是 ms,定义为增益改变
		10dB 所用的时间,Smooth
		time>0。