- ANAIS -

EQUAÇÃO DE CHUVAS INTENSAS E VAZÃO DA CIDADE DE ITAPERUNA-RJ

| ID 19344 |

1 Alex Tavares Silva, 2 Jader Lugon Junior, 3 Wagner Rambaldi Telles

1 Instituto Federal Fluminense – Campus Itaperuna/RJ, e-mail: altasilva@gmail.com; 2 Instituto
Federal Fluminense – Campus Macaé/RJ, e-mail: jljunior@iff.edu.br; 3 Universidade Federal
Fluminense – Instituto do Noroeste Fluminense de Educação Superior – Santo Antônio de Pádua/RJ, email: wtelles@id.uff.br

Palavras-chave: Equação de Chuvas Intensas; Equação da Vazão; Itaperuna-RJ.

Resumo

Este artigo trata da determinação das equações de intensidade, duração e frequência e da vazão da cidade de Itaperuna-RJ, devido a escassez de estudos nesse município e região. Foi realizado um ajustamento na distribuição dos dados de precipitação, utilizando o método de Gumbel para a precipitação máxima nos períodos de retorno de 2, 5, 10, 20, 50 e 100 anos, que foi validada por meio do teste de aderência de Kolmogorov-Smirnov, com nível de significância de 1 e 5%. Para isso, foi utilizado o método das relações de durações para desagregar os valores de precipitação máxima em durações menores que 24 horas. A equação de intensidade, duração e frequência foi obtida utilizando os dados da Agência Nacional de Águas (ANA) entre os anos de 1942 e 2020, através da ferramenta Calc, do LibreOffice do sistema operacional GNU/Linux, por meio de gráficos de dispersão, calculando as linhas de tendência com o coeficiente de determinação R², de 0,998. Para obtenção da equação da vazão foram utilizados os dados da ANA entre os anos de 1931 e 2020, através de gráfico de dispersão e linha de tendência com R² de 0,891. Com a determinação da equação de chuvas intensas e da equação da vazão, essa pesquisa visa contribuir para os estudos relacionados a melhorias de estruturas hidráulicas na cidade.

Introdução

Toda água proveniente do meio atmosférico que atinge a superfície terrestre é conhecida, na hidrologia, como precipitação, logo, neblina, chuva, granizo, saraiva, orvalho, geada e neve são formas de precipitação e, o que diferencia essas formas, é o estado em que a água se encontra

(Bertoni, Tucci, 2015). Em particular, as chuvas intensas são aquelas precipitações em grandes volumes geradas em pequenos intervalos de tempo, provocando prejuízos ambientais e riscos a vida humana (Farias, Silva, Coelho, 2013).

Além disso, ao alcançar a superfície, dependendo de sua intensidade, a precipitação pode causar sérios transtornos a região. Nesse sentido, a vazão determina como o volume d'água irá diminuir e isso depende de vários fatores, por esse motivo, a caracterização de chuvas intensas é fundamental quando se trata de projetos de engenharia.

Para a adequada gestão dos recursos hídricos, o conhecimento hidrológico é fundamental e influencia diretamente no racional dimensionamento das obras hidráulicas. Segundo Silva e Araújo (2013), estudos hidrológicos regionais são necessários em obras de engenharia relacionadas ao planejamento e aproveitamento de recursos hídricos, pois os custos e a segurança das obras de aproveitamento hídrico estão diretamente relacionados a eventos extremos de precipitação. Sendo assim, de acordo com Martinez Júnior e Magni (1999), são de suma importância na elaboração de projetos de engenharia voltados ao dimensionamento hidráulico, o estudo e a caracterização de precipitações máximas.

Em projetos de engenharia, no que tange à obras hidráulicas, conforme Pereira, Duarte e Sarmento (2017), é fundamental a caracterização, assim como o estudo das chuvas intensas os quais são feitos por meio da relação da intensidade, duração e frequência (IDF) das mesmas, sendo que o estudo das chuvas intensas é feito por meio da relação entre a intensidade, duração e frequência, onde a intensidade é a quantidade de precipitação, a duração determina por quanto tempo essa precipitação vai permanecer e a frequência faz a relação de quando essa precipitação voltará a cair.

Sob esse ponto de vista, um estudo sobre chuvas intensas e vazão, foi realizado na cidade de Itaperuna-RJ, com o intuito de analisar impactos oriundos das mesmas.

A região de estudo, a cidade de Itaperuna-RJ, recebe as águas do rio Muriaé, o qual nasce em Miraí, na Zona da Mata Mineira e deságua no rio Paraíba do Sul, nas proximidades de Campos dos Goytacazes-RJ. Por se encontrar entre vales, a referida cidade é conhecida por ter um dos climas mais quentes do Brasil, chegando a alcançar temperatura média de aproximados 34,5 graus, em 2018, segundo o Instituto Nacional de Meteorologia (INMET).

Conforme último censo realizado em 2010 pelo Instituto Brasileiro de Geografia e Estatística (IBGE), a cidade de Itaperuna-RJ possuía uma população de 95.841 pessoas e densidade demográfica de 86,71 habitantes por km². Em 2020, a população estimada é de aproximadamente 103.800 habitantes.

Materiais e Métodos

A série histórica com os dados de precipitação foi obtida da Agência Nacional de Águas (ANA). Foram obtidos os dados da estação pluviométrica 2141004, latitude -21,21º e longitude -41,89º.

Foram analisados dados de precipitação diária dos anos de março de 1942 a maio de 2020. Nos anos que não haviam dados consistidos, foram considerados os dados brutos para o aproveitamento de dados mais atuais. Para cada ano, determinou-se a precipitação máxima diária anual, ou seja, o maior valor de precipitação ocorrido em um dia ao longo do respectivo ano. Na Tabela 1 são apresentados os valores da máxima anual (mm) para cada ano em ordem decrescente de precipitação.

Tabela 1: Valores de precipitação máxima em ordem decrescente.

Data	Máxima	Data	Máxima	Data	Máxima	Data	Máxima
01/01/1997	225,5	01/11/1999	90,5	01/01/1987	74,7	01/12/2006	60,5
01/11/2000	192,0	01/02/1972	88,0	01/11/1948	74,5	01/12/1990	60,4
01/01/2009	135,0	01/11/1992	87,7	01/12/1953	74,2	01/04/1985	60,4
01/09/1991	128,4	01/01/1896	86,6	01/12/1944	73,3	01/03/1998	60,0
01/01/1958	126,3	01/11/2003	86,5	01/12/1946	73,2	01/01/1980	59,0
01/04/1989	124,0	01/01/1954	86,5	01/11/1971	73,0	01/10/2015	58,5
01/11/1969	118,0	01/11/2017	86,3	01/01/2016	71,7	01/03/1977	58,0
01/03/1994	116,8	01/12/1993	85,4	01/03/1957	71,3	01/02/1962	55,0
01/12/1996	111,6	01/02/1964	85,0	01/03/2013	70,6	01/10/2011	54,9
01/09/1978	110,3	01/12/2005	82,3	01/12/1976	70,2	01/11/1952	54,7
01/01/2007	103,0	01/01/1979	82,0	01/12/1955	69,2	01/12/1995	50,3
01/02/1951	100,0	01/01/1975	80,5	01/02/1961	69,0	01/10/1970	50,0
01/10/1988	99,0	01/12/1949	80,0	01/01/2020	68,8	01/11/1967	50,0
01/12/1960	99,0	01/11/1959	79,0	01/12/2002	66,5	01/11/2001	48,6
01/11/2012	98,7	01/12/2019	76,6	01/03/1942	66,2	01/02/2014	48,2
01/12/1965	97,0	01/04/1950	76,6	01/12/1968	66,0	01/01/1945	48,2
01/11/1956	95,3	01/12/2018	76,4	01/02/1947	62,4	01/11/1963	48,0
01/12/2008	95,0	01/11/2010	76,4	01/01/1973	61,0	01/01/1981	37,2
01/01/2004	91,5	01/01/1943	75,6	01/11/1966	61,0	01/04/1974	36,0

Fonte: Agência Nacional de Águas (ANA).

Foi utilizada a distribuição de Gumbel para ajustar os valores de máxima precipitação diária anual. Esta é considerada a distribuição de extremos mais utilizada na análise de frequência de variáveis hidrológicas e apresenta vantagens em relação às demais, por não necessitar consultas a tabelas de probabilidade, bastando apenas calcular a média e o desvio padrão dos valores de precipitação máxima diária anual (Pereira, Duarte, Sarmento, 2017).

O ajuste para a distribuição de Gumbel foi feito conforme a Equação (1) (Choi, Choi, 1999), a qual emprega os parâmetros estatísticos de média e desvio padrão dos valores de máxima precipitação anual para determinação da altura máxima de precipitação de 1 dia, correspondente a diferentes tempos de recorrência (Pereira, Duarte, Sarmento, 2017).

$$x = \overline{x} - s \left(0.45 + 0.7977 ln \left(ln \left[\frac{Tr}{Tr - 1} \right] \right) \right)$$
 (1)

onde:

x = precipitação máxima ajustada (mm);

 \overline{x} = média de valores de precipitação máxima coletados (mm);

s= desvio padrão das precipitações máximas anuais (mm);

Tr = Tempo de recorrência (anos).

Para calcular a média e o desvio padrão utilizou-se as Equações (2-3) (Lanna, 2015).

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n} \tag{2}$$

onde:

 \overline{x} = média aritmética (mm);

 x_i = realizações da variável (mm);

n = número total de dados.

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}} \tag{3}$$

onde:

s = desvio padrão (mm);

 \overline{x} = média aritmética (mm);

 x_i = realizações da variável (mm);

n = número total de dados.

Já os tempos de recorrência escolhidos para este estudo foram: 2, 5, 10, 20, 50 e 100 anos, por serem frequentemente utilizados em diversos estudos para determinação de chuvas intensas.

Com o intuito de verificar se a distribuição de Gumbel se comporta de forma correta e coerente aos valores de precipitação máxima anual, os ajustes dos dados à distribuição estatística precisam ser avaliados, em relação a qualidade. Para isso, foi utilizado o teste de aderência de Kolmogorov-Smirnov, por ser um teste bastante utilizado nesse tipo de estudo.

No que se refere a obtenção de valores da distribuição de Gumbel correspondente a cada valor de precipitação máxima, utilizou-se a função de probabilidade, conforme Equação (4) (Ghosh, Mistri, 2013).

$$P = 1 - e^{-e^{-y}} (4)$$

onde:

P = probabilidade (adimensional);

e = base dos logaritmos neperianos (adimensional);

y = variável reduzida de Gumbel (adimensional).

Para estimar os parâmetros α e β da distribuição de Gumbel, utilizou-se o método dos momentos, que consiste em igualar os momentos amostrais aos populacionais (para maiores informações vide Lana (2015)). Assim, tem-se as Equações (5-6) que determinam os valores dos parâmetros desejados.

$$\hat{\beta} = s \frac{\sqrt{6}}{\pi} \tag{5}$$

onde:

s= desvio padrão das precipitações máximas anuais (mm).

$$\overset{\wedge}{\alpha} = \overline{x} - 0.5772\overset{\wedge}{\beta} \tag{6}$$

onde:

 \overline{x} = média de valores de precipitação máxima coletados (mm).

O teste de aderência de Kolmogorov-Smirnov verificou os valores para nível de significância de 1, 5, 10, 15 e 20%. O valor observado da estatística teste D_{max} é igual a 0,1444. O nível de significância de 1% é igual a 0,166, logo $D_{max} < D_{ref,\alpha}$, validando a distribuição para esse nível de significância, onde $D_{ref,\alpha}$, segundo Cotta, Correa e Albuquerque (2016) é o valor crítico para um dado nível de significância α .

Como os dados não são pluviográficos, a chuva máxima anual, referente a 1 dia de precipitação, foi desagregada em durações menores, de acordo com método de relações de durações (CESTEB, 1986), por ser de uso simples e trazendo resultados satisfatórios na determinação de alturas de precipitação com duração inferior a 1 dia.

Para desagregar a chuva em durações menores se faz necessário primeiro obter a precipitação de 24 horas, que se difere da precipitação de 1 dia, pois, de acordo com Bertoni e Tucci (2015), a chuva de 24 horas é o total máximo precipitado equivalente a um período contínuo de 24 horas, que não corresponde necessariamente ao período de observação, enquanto a precipitação de 1 dia é o valor contido entre os horários de observação pluviométrica.

Desta maneira, é necessário multiplicar o valor da precipitação diária pelo coeficiente de 1,14 permitindo encontrar o valor da precipitação de 24 horas (1440 minutos). A partir da precipitação de 24 horas é possível determinar a 12 horas (720 minutos) multiplicando pelo coeficiente de 0,85 e assim sucessivamente até encontrar a precipitação de 1 hora. Para encontrar o valor da precipitação de 30 minutos, baseia-se no valor encontrado para 1 hora. Para encontrar o valor da precipitação de 25, 20, 15, 10 e 5 minutos, baseia-se no valor encontrado para 30 minutos, utilizando os coeficientes conforme Tabela 2, encontrada na literatura.

Para utilizar a distribuição de Gumbel, se faz necessário obter a média e o desvio padrão dos valores de precipitação máxima diária. A média e o desvio padrão das máximas da Tabela 1, conforme Equações (2-3) é de 30,85 mm e 58,43 mm, respectivamente.

Na Tabela 3 são apresentados os valores das precipitações ajustados após aplicação do método de Gumbel.

Tabela 2: Coeficientes de desagregação de chuva de 24 horas utilizando o método das Relações de Durações.

Relação entre Alturas Pluviométricas	Coeficiente de Desagregação			
24h para 1 dia	1,14			
12h para 24h	0,85			
10h para 24h	0,82			
8h para 24h	0,78			
6h para 24h	0,72			
3h para 24h	0,54			
2h para 24h	0,48			
1h para 24h	0,42			
30min para 1h	0,74			
25min para 30min	0,91			
20min para 30min	0,81			
15min para 30min	0,70			
10min para 30min	0,54			
5min para 30min	0,34			

Fonte: CESTEB (1986) apud Pereira et al. (2017).

Tabela 3: Valores de precipitação ajustados após Método de Gumbel.

TR (anos)	Valor (mm/h)	1 dia para 24h (mm/h)	
2	21,3	24,2	
5	72,9	81,9	
10	107,1	119,3	
20	139,9	159,5	
50	182,3	207,9	
100	214,1	244,1	

Fonte: O autor, 2021.

Na Equação (7) é apresentada a equação genérica para a obtenção de curvas IDF.

$$i = \frac{KTr^a}{(t+b)^c} \tag{7}$$

onde:

i = intensidade de precipitação máxima (mm/h);

Tr = tempo de recorrência (anos);

K, b, c = parâmetros que descrevem características locais (adimensional);

a = parâmetro regional constante.

Resultados e Discussões

Os dados obtidos no site da ANA para precipitação máxima envolvem os anos de 1942 a 2020 e para vazão envolvem os anos de 1931 a 2020. Na Figura 1 são apresentados os gráficos de dispersão para cada tempo de recorrência (em escala logarítmica) com ajuste no tempo para obtenção da equação específica, com as respectivas linhas de tendência.

Dispersão para cada tempo de recorrência 1000 2 anos 5 anos 10 anos 100 20 anos Intensidade (mm/h) 50 anos 100 anos Potência (2 anos) Potência (5 anos) 10 Potência (10 anos) Potência (20 anos) Potência (50 anos) Potência (100 anos) 1 1 10 100 1000 10000 Tempo (minutos)

Figura 2: Gráfico de dispersão para cada tempo de recorrência.

Na Tabela 4 são apresentados os parâmetros encontrados em cada tempo de recorrência após associação com a Equação (7).

Tabela 4: Parâmetros encontrados para	cada tempo de recorrência
---------------------------------------	---------------------------

Tr (anos)	С	KTr ^a	
2	0,7612	257,23	
5	0,7612	882,25	
10	0,7612	1296,06	
20	0,7612	1693,01	
50	0,7612	2206,81	
100	0,7612	2591,83	

Fonte: O autor, 2021.

Com os dados de dispersão para cada tempo de recorrência, utilizando linhas de tendências geométricas, conforme Figura 2, gerou-se outro gráfico de dispersão de forma a obter equação única para as chuvas intensas da cidade de Itaperuna-RJ, com o coeficiente de determinação R^2 , o qual é utilizado na avaliação do ajuste dos parâmetros da equação, de aproximadamente 0,9983, conforme Equação (8).

Figura 3: Gráfico de dispersão dos valores obtidos para cada tempo de recorrência para obtenção de equação única.

$$i = \frac{591,08 \ln(Tr) - 99,99}{(t+12)^{0,761}} \tag{8}$$

onde:

i = intensidade (mm/h);

ln = logaritmo natural;

Tr = tempo de recorrência (anos);

t = tempo de duração (minutos);

Com a equação de chuvas intensas encontrada para a cidade de Itaperuna-RJ, dada pela Equação (8), segue Tabela 4, com os valores ajustados de precipitação para os tempos de recorrência de 2, 5, 10, 20, 50 e 100 anos, para os tempos de 5, 10, 15, 20, 25, 30, 60, 120, 180, 360, 480, 600, 720 e 1440 minutos.

Espera-se uma intensidade de 303,6 mm/h ou quantidade superior em 5 minutos, a cada 100 anos. Nota-se que a cada 5 anos, precipitações já começam a causar transtornos para a cidade, uma vez que uma precipitação de 98,6 mm/h em 5 minutos é uma precipitação muito intensa.

Tabela 4: Valores ajustados das precipitações para a cidade de Itaperuna-RJ.

t (min)	TR (anos)					
	2	5	10	20	50	100
5	35,9	98,6	146,0	193,4	256,1	303,6
10	29,5	81,0	120,0	159,0	210,5	249,5
15	25,2	69,3	102,7	136,0	180,1	213,5
20	22,2	60,9	90,2	119,5	158,3	187,6
25	19,8	54,5	80,8	107,0	141,7	168,0
30	18,0	49,5	73,4	97,2	128,7	152,5
60	12,0	32,9	48,7	64,5	85,4	101,2
120	7,5	20,7	30,7	40,7	53,8	63,8
180	5,7	15,6	23,1	30,6	40,5	48,0
360	3,4	9,4	13,9	18,5	24,5	29,0
480	2,8	7,6	11,3	14,9	19,8	23,4
600	2,3	6,4	9,6	12,7	16,8	19,9
720	2,0	5,6	8,3	11,0	14,6	17,3
1440	1,2	3,3	4,9	6,6	8,7	10,3

Fonte: O autor, 2021.

Por outro lado, tomando como base os dados de vazão entre os anos de 1931 e 2020, utilizando o LibreOffice Calc para gerar o gráfico de dispersão desses valores, obtém-se a Figura 4, que representa a relação entre a cota e a vazão, onde pode-se obter a equação da vazão dada pela Equação (9), com R² aproximado de 0,891.

$$Q = 72,10(h - h_0)^{1,940} (9)$$

onde:

 $Q = vazão (m^3/s);$

h = nível final da água (m);

 h_0 = nível inicial da água (m).

Figura 4: Gráfico de dispersão entre a cota e a vazão.

Na Tabela 6 são apresentados os valores de vazão para diferentes níveis d'água, utilizando a Equação (9).

Tabela 6: Valores de vazão para diferentes níveis d'água.

$h - h_0$ (m)	Q (m³/s)
1	72,1
2	276,7
3	607,5
4	1061,5
5	1636,6
6	2331,0
7	3143,6
8	4073,1
9	5118,8
10	6279,6

Fonte: O autor, 2021.

Para $(h-h_0)$ igual a 1 m, a vazão é de 72,1 m³/s. Para $(h-h_0)$ igual a 2 m, a vazão passa a ser de 276,7 m³/s. Para a diferença entre $(h-h_0)$ de 10 m, a vazão passa a ser de 6279,6 m³/s. Esses resultados são importantes na hora de se considerar projetos de engenharia hidráulica, a fim de mitigar problemas provocados por inundações.

Comentários Finais

O objetivo desse estudo foi determinar a equação específica de chuvas intensas para o município de Itaperuna-RJ, com o intuito de analisar a intensidade, duração e frequência da mesma. Também determinou-se a equação da vazão do rio Muriaé no município, com o intuito de propor no futuro, possíveis sugestões de mitigação do problema, uma vez que esse tipo de estudo é fundamental para a engenharia.

Após a determinação das equações de chuvas intensas e da vazão, nota-se que, com o tempo de retorno de 2 anos, se tem uma precipitação de 35,9 mm/h em 5 minutos, porém percebe-se que, com um tempo de retorno de 5 anos já se tem uma precipitação de 98,6 mm/h, capaz de causar transtornos na cidade. Essas precipitações em pouco tempo são as mais preocupantes devido à capacidade de vazão do rio.

Valores de $(h-h_0)$ de 1 a 10m foram utilizados para o cálculo da vazão do rio Muriaé no município de Itaperuna-RJ, com o intuito de auxiliar em possíveis projetos de engenharia hidráulica, uma vez que tais projetos precisam se adequar em relação as chuvas intensas e a vazão do rio Muriaé.

Referências Bibliográficas

Bertoni, J. C.; Tucci, C. E. M.; Precipitação. In Tucci, C. E. M. (Org.). Hidrologia: Ciência e Aplicação. Porto Alegre: Ed. Universidade/UFRGS: ABRH. Ed. 4, p.177.

Choi, Y. H.; Choi, J. D.; 1999. Design Frequency Decision For Hydraulic Structures Due To Heavy Storm. Hydrologic Modeling: Proceedings of the International Conference on Water, Environment, Ecology, Socioeconomics, and Health Engineering, Seoul National University, Seoul, Korea. Water Resources Publication, p. 247.

Cotta, H. H. A.; Correa, W. S. C.; Albuquerque, T. T. A.; 2016. Aplicação Da Distribuição De Gumbel Para Valores Extremos De Precipitação No Município De Vitória – Es. Revista Brasileira de Climatologia. p. 203 - 247.

Farias, J. A. M.; Silva, J. F. R.; Coelho, L. S.; 2013. Determinação de Equação IDF, Utilizando Regressão Linear em Base Logarítmica. XX Simpósio Brasileiro de Recursos Hídricos, p. 2.

Ghosh, S.; Mistri, B.; 2013. Performance of D.V.C. in Flood Moderation of Lower Damodar River, India and Emergent Risk of Flood. Eastern Geographer. v.19, n.1, p. 55-66.

IBGE – Instituto Brasileiro de Geografia e Estatística. Disponível em: https://www.ibge.gov.br/cidades-e-estados/rj/itaperuna.html Acesso em: 24/05/2021.

INMET – Instituto Nacional de Meteorologia. Disponível em: https://portal.inmet.gov.br Acesso em: 24/05/2021.

Lanna, A. E.; 2015. Elementos de estatística e probabilidades. In: TUCCI, C. E. M. (Org.). Hidrologia: ciência e aplicação.

Porto Alegre: Ed. Universidade/UFRGS: ABRH. Ed. 4, p. 177.

Martinez Júnior, F. M.; Magni, N. L.G.; 1999. Equações de Chuvas Intensas do Estado de São Paulo. São Paulo: Escola Politécnica da Universidade de São Paulo, p 125.

Pereira, D. C.; Duarte, L. R.; Sarmento, A. P.; 2017. Determinação da Curva de Intensidade, Duração e Frequência do Município de Ipameri – Goiás, v. 13, n.2, p. 233-246.

Silva, S. R.; Araújo, G. R. de S.; 2013. Algoritmo para Determinação da Equação de Chuvas Intensas. Revista Brasileira de Geografia Física, v.6, n.5, p. 1371-1383.