Transformation de Fourier

Cours et exercices

par

Michel LECOMTE Ecole des Mines de Douai Juillet 2001

LA TRANSFORMATION DE FOURIER

I. Introduction.

A. Rappel sur le développement en série de Fourier

Soit f une fonction (ou signal) **périodique** de période T.

Joseph FOURIER, mathématicien français, affirma, dans un mémoire daté de 1807, qu'il était possible, dans certaines conditions, de décomposer une fonction **périodique** f sous la forme d'une somme infinie de signaux sinusoïdaux : .

Ainsi on a, dans certaines conditions (par exemple si f est de classe C^1 par morceaux):

$$f(t) = a_0 + \sum_{n=1}^{+\infty} a_n \cos n\omega t + b_n \sin n\omega t$$

avec

$$T = \frac{2\pi}{\omega}$$

On peut donc considérer f comme la somme

- d'un terme constant a_0
- d'un nombre infini de termes sinusoïdaux appelés harmoniques.

L'harmonique de rang n est

$$u_n(t) = a_n \cos n\omega t + b_n \sin n\omega t$$

Il peut s'écrire sous la forme

$$u_n(t) = A_n \cos(n\omega t - \varphi_n)$$

avec

$$A_n = \sqrt{a_n^2 + b_n^2}$$
 et $\tan(\varphi_n) = \frac{b_n}{a_n}$ (si $a_n \neq 0$)

 A_n représente l'amplitude, $\frac{2\pi}{n\omega}$ la période , φ_n la phase et $\frac{n\omega}{2\pi}$ la fréquence .

Remarque : Si on utilise les coefficients de Fourier complexes, on obtient alors une décomposition :

$$f(t) = \sum_{n = -\infty}^{+\infty} c_n e^{in\omega t}$$

avec c_n coefficient de Fourier complexe de f . En fait, on démontre que

$$c_n = \frac{|A_n|}{2} \quad et \quad Arg(c_n) = -\varphi_n \qquad [2\pi] \qquad (\text{si } n \in \mathbb{N})$$

Si on représente l'amplitude A_n des différentes harmoniques en fonction de leurs fréquences $\frac{n\omega}{2\pi}=nf_0$ (n pouvant varier théoriquement de $-\infty$ à $+\infty$ et $f_0=\frac{\omega}{2\pi}=\frac{1}{T}$), on obtient un diagramme en bâtons appelé **spectre de fréquence du signal**.

Figure 1: spectre de fréquence d'un signal périodique

Il est souvent intéressant de caractériser un signal par son spectre de fréquence. . En effet, celui-ci met en évidence l'importance du fondamental ainsi que la décroissance plus ou moins rapide des amplitudes des harmoniques de rang élevé. Il peut aussi servir à déterminer le nombre d'harmoniques nécessaires pour transmettre la quasi totalité de l'énergie du signal (notion de bande passante...).

B. Première approche de la transformée de Fourier

Pour une fonction $\mathbf{p\acute{e}riodique}\ f$, on obtient une relation de la forme:

$$f(t) = \sum_{n = -\infty}^{+\infty} c_n e^{in\omega t} \tag{1}$$

qui peut être interprétée comme la décomposition du signal f sur la famille de fonctions $\left(e^{in\omega t}\right)_{n\in\mathbb{Z}}$ jouant un rôle analogue à celui d'une base..

On peut écrire, pour marquer le fait que les coefficients de Fourier dépendent de la fonction f:

$$f(t) = \sum_{n=-\infty}^{+\infty} c_n(f) e^{in\frac{2\pi}{T}t}$$

On remarquera que $\frac{n}{T}$ a une dimension de fréquence . Lorsque n décrit l'ensemble des entiers relatifs, $\frac{n}{T}$ décrit un ensemble de fréquences qui dépend de T.

Pour une fonction f qui n'est pas périodique, il est évidemment exclu d'utiliser la relation (1)..

On peut cependant considérer qu'une fonction qui n'est périodique est une fonction dont la période est infinie .

Or si T est "très grand", l'ensemble des fréquences $\frac{n}{T}$ (que l'on notera s) est un ensemble qui couvre presque toutes les fréquences possibles.

On est passé d'une succession de fréquences à un ensemble continu de fréquences; aussi quand il s'agit de faire la somme, il faut passer d'une somme discrète, au sens des séries, à une somme continue, c'est-à-dire au sens du calcul intégral:

$$f(t) = \int_{-\infty}^{+\infty} c_s(f) e^{2i\pi st} T ds$$
 (2)

On peut remarquer la présence de T. On est en fait passé de la variable n à la variable s .On a :

$$s = \frac{n}{T}$$
 d'où $ds = \frac{dn}{T}$

En reprenant la définition des coefficients de Fourier,

$$c_n(f) = \frac{1}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} f(u) e^{-2i\pi \frac{n}{T}u} du$$

et en faisant tendre T vers $+\infty$, la relation (2) s'écrit:

$$f(t) = \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(u) e^{-2i\pi s u} du \right) e^{2i\pi s t} ds$$

la fonction

$$s \to \mathcal{F}(f)(s) = \int_{-\infty}^{+\infty} f(u) e^{-2i\pi su} du$$

représentant la transformation de Fourier et aussi "un passage à l'espace des fréquences".

La relation (2) s'écrit alors:

$$f(t) = \int_{-\infty}^{+\infty} \mathcal{F}(f)(s) \ e^{-2i\pi st} \ ds$$

Ces considérations vont motiver les définitions données au paragraphe II .

II. DEFINITIONS

On note $\mathcal{L}^1(\mathbb{R})$ l'ensemble des fonctions f définies de \mathbb{R} dans \mathbb{R} , continues par morceaux et telles que :

$$\int_{-\infty}^{+\infty} |f(t)| dt \quad \text{existe}$$

Exemples

1. La fonction f définie de \mathbb{R} dans \mathbb{R} par:

$$f(t) = \frac{1}{1 + t^2}$$

appartient à $\mathcal{L}^1(\mathbb{R})$ car

$$\int_{-\infty}^{+\infty} \frac{1}{1+t^2} dt = 2 \lim_{x \to +\infty} \arctan(x) = \pi$$

2 Par contre, la fonction g définie de \mathbb{R} dans \mathbb{R} par g(t) = t n'appartient pas à $\mathcal{L}^1(\mathbb{R})$. De façon plus générale, sauf dans le cas de la fonction nulle, les fonctions polynômes n'appartiennent pas à $\mathcal{L}^1(\mathbb{R})$.

Definition Soit $f \in \mathcal{L}^1(\mathbb{R})$, on appelle transformée de Fourier de f, la fonction

 $\mathcal{F}(f): \mathbb{R} \to \mathbb{C}$ telle que

$$\mathcal{F}(f)(s) = \int_{-\infty}^{+\infty} e^{-2i\pi st} f(t) dt$$

Remarques:

- 1. L'application $\mathcal{F}:f\to\mathcal{F}(f)$ est appelée transformation de Fourier .
- 2. $\mathcal{F}(f)(s)$ est défini par une intégrale dépendant du paramètre $r\acute{e}el$ s, contrairement à la transformation de Laplace où le paramètre p est complexe.

On a

$$\forall s \in \mathbb{R} \ \left| e^{-2i\pi st} f(t) \right| = |f(t)|$$

donc la fonction $\mathcal{F}(f)$ est définie et bornée sur \mathbb{R} . On admettra que $\mathcal{F}(f)$ est continue sur \mathbb{R} .

3. La courbe d'équation $y=|\mathcal{F}(f)(s)|$ est appelée spectre de f. On démontre que $\lim_{|s|\to\infty}|\mathcal{F}(f)(s)|=0$

Cas particuliers

1. Si f est paire . On sait que $e^{i\theta}=\cos\theta+i\sin\theta$. Donc l'intégrale de Fourier s'écrit :

$$\mathcal{F}(f)(s) = \int_{-\infty}^{+\infty} f(t)(\cos 2\pi st - i\sin 2\pi st) dt$$

Or les fonctions $t \to f(t) \cos 2\pi s t$ et $t \to f(t) \sin 2\pi s t$ sont respectivement paire et impaire Donc

$$\int_{-\infty}^{+\infty} f(t) \cos 2\pi st \ dt = 2 \int_{0}^{+\infty} f(t) \cos 2\pi st \ dt$$
et
$$\int_{-\infty}^{+\infty} f(t) \sin 2\pi st \ dt = 0$$

Donc

si f est paire, $\mathcal{F}(f)(s)$ est un nombre réel et $\mathcal{F}(f)(s) = 2 \int_0^{+\infty} f(t) \cos 2\pi s t \ dt$

2. Si f est impaire alors on a de la même façon :

$$\mathcal{F}(f)(s) = -2i \int_0^{+\infty} f(t) \sin 2\pi st \ dt$$

III. EXEMPLES DE TRANSFORMEES

1. Signal "porte"

La fonction " porte" notée Π est définie par:

$$\begin{cases} \text{ si t } \in \left[-\frac{1}{2}; \frac{1}{2}\right] & \Pi(t) = 1 \\ \text{ si t } \notin \left[-\frac{1}{2}; \frac{1}{2}\right] & \Pi(t) = 0 \end{cases}$$

Comme f est paire , si $s \neq 0$, on a :

$$\mathcal{F}(\Pi)(s) = 2 \int_0^{1/2} \Pi(t) \cos 2\pi st \ dt = 2 \left[\frac{\sin 2\pi st}{2\pi s} \right]_0^{1/2} = \frac{\sin \pi s}{\pi s}$$

si $s=0,\ \, \text{alors}\,\,\mathcal{F}(\Pi)(0)=1\,$. La fonction $\mathcal{F}(\Pi)$ est donc prolongeable par continuité en 0.

En conclusion:

La transformée de Fourier de la fonction "porte" Π est la fonction définie de $\mathbb R$ dans $\mathbb R$ par :

$$\mathcal{F}(\Pi): s \to \frac{\sin \pi s}{\pi s}$$

Cette fonction s'appelle sinus cardinal. Sa représentation graphique est donnée figure 3.

Figure 2: graphe du signal porte

Figure 3: sinus cardinal

2. Fonctions impulsions

Ces fonctions notées Π_T sont définies par :

si t
$$\in \left[-\frac{T}{2}; \frac{T}{2}\right]$$
 $\Pi_T(t) = \frac{1}{T}$

si t
$$\notin \left[-\frac{T}{2}; \frac{T}{2}\right]$$
 $\Pi_T(t) = 0$

où T est un nombre strictement positif. En fait, on a :

$$\Pi_T(t) = \frac{1}{T} \Pi(\frac{t}{T})$$

où Π est la fonction porte définie ci-dessus .

En posant $u = \frac{t}{T}$, on obtient facilement :

$$\mathcal{F}(\Pi_T)(s) = \frac{\sin \pi s T}{\pi s T}$$

Lorsque $T\to 0$, on admettra que la fonction Π_T tend vers une limite, qui n'est pas une fonction, et qui est appelée **Distribution de Dirac et sera notée** δ .

En tenant compte de

$$\lim_{T \to 0} \frac{\sin \pi sT}{\pi sT} = 1$$

On peut comprendre le résultat suivant que l'on admettra:

$$\mathcal{F}(\delta) = 1$$

à comparer au résultat obtenu avec la transformée de Laplace

$$\mathcal{L}(\delta) = 1$$

La propriété

$$\int_{-\infty}^{+\infty} \Pi_T(t) \ dt = 1$$

justifie la représentation graphique de δ par une "impulsion unité "

impulsion unité δ

3. Fonctions exponentielles

Soit a > 0,

$$f: t \to e^{-a|t|}$$

La fonction f est paire

$$\mathcal{F}(f)(s) = 2 \int_0^{+\infty} e^{-at} \cos 2\pi st \ dt$$

Une double intégration par parties conduit à :

$$\mathcal{F}(f)(s) = \frac{2a}{a^2 + 4\pi^2 s^2}$$

IV. LIEN AVEC LA TRANSFORMATION DE LAPLACE

Pour f appartenant à $\mathcal{L}^1(\mathbb{R})$, on définit les fonctions f^+ et f^- telle que

$$\forall t < 0$$
 $f^{+}(t) = 0$ et $f^{-}(t) = 0$
 $\forall t \geq 0$ $f^{+}(t) = f(t)$ et $f^{-}(t) = f(-t)$

Ci-dessous on a représenté les graphes des fonctions f , f^+ et f^- dans le cas où

$$f(t) = t^3 + 1$$

Figure 4:

Figure 5:

Figure 6:

Théorème 1
$$\forall s \in \mathbb{R}$$
 $\mathcal{F}(f)(s) = \mathcal{L}(f^+)(2i\pi s) + \mathcal{L}(f^-)(-2i\pi s)$

 ${\mathcal L}$ désigne la transformation de Laplace .

En d'autres termes, la transformée de Fourier de f en s est égale à la somme de la transformée de Laplace de f^+ en $2i\pi s$ et de la transformée de Laplace de f^- en $-2i\pi s$.

démonstration en annexe

Cas particulier : si f est nulle pour t négatif alors $f^-(t) = 0$ et :

$$\mathcal{F}(f)(s) = \mathcal{L}(f^+)(2i\pi s)$$

Exemple : Reprenons l'exemple de la fonction f de $\mathbb R$ dans $\mathbb R$

$$f: t \to e^{-a|t|}$$

avec a > 0On a

$$\forall t < 0$$
 $f^{+}(t) = f^{-}(t) = 0$
 $\forall t \geq 0$ $f^{+}(t) = f^{-}(t) = e^{-at}$

Comme

$$\mathcal{L}(e^{-at}): p \to \frac{1}{p+a}$$

On obtient:

$$\mathcal{F}(f): s \to \mathcal{L}(f^+)(2i\pi s) + \mathcal{L}(f^-)(-2i\pi s) = \frac{1}{2i\pi s + a} + \frac{1}{-2i\pi s + a}$$

Finalement,

$$\mathcal{F}(f)(s) = \frac{1}{2i\pi s + a} + \frac{1}{-2i\pi s + a} = \frac{2a}{4\pi^2 s^2 + s^2}$$

Exercice 1:

Déterminer la transformée de Fourier de la fonction triangle Λ définie par:

$$\begin{array}{ll} \mathrm{si}\ \mathrm{t}\ \in [-1;1] & \quad \Lambda(t) = 1 - |t| \\ \mathrm{si}\ \mathrm{t}\ \notin [-1;1] & \quad \Lambda(t) = 0 \end{array}$$

- 1) Directement, en utilisant la définition de la transformation de Fourier .
- 2) En utilisant la transformation de Laplace

On représentera d'abord Λ graphiquement.

solution exercice 1

V. Propriétés de la transformation de Fourier

La relation établie au paragraphe précédent entre les transformées de Laplace et de Fourier nous permet de dire que que les propriétés des opérateurs $\mathcal L$ et $\mathcal F$ sont semblables . On admettra les propriétés suivantes:

1. $\mathcal F$ est linéaire . En effet, quels que soient f , g , fonctions de $\mathcal L^1(\mathbb R)$ et λ et μ complexes:

$$\mathcal{F}(\lambda f + \mu g) = \lambda \mathcal{F}(f) + \mu \mathcal{F}(g)$$

2. Transformée d'une dérivée

Si f est continue et si $\frac{df}{dt}$ appartient à $\mathcal{L}^1(\mathbb{R})$ alors on a :

$$\mathcal{F}(\frac{df}{dt}): s \to 2i\pi s \ \mathcal{F}(f)(s)$$

3. Règle de multiplication par t

Si la fonction $t \to tf(t)$ appartient à $\mathcal{L}^1(\mathbb{R})$ alors on a :

$$\frac{d}{ds}\left(\mathcal{F}(f)\right): s \to -2i\pi \ \mathcal{F}(tf(t))(s)$$

la notation (abusive) $\mathcal{F}(tf(t))$ représente la transformée de Fourier de la fonction $t \to tf(t)$

4. Image d'une translatée (formule du retard si a >0)

Soit a un réel . On pose

$$\forall t \in \mathbb{R}$$
 $q(t) = f(t - a)$

g est la translatée de f ou le signal f "retardé" de a (si a>0) . Pour tout réel a ,on a :

$$\mathcal{F}(q): s \to e^{-2i\pi as} \mathcal{F}(f)(s)$$

5. Translation de l'image

Soit a un réel . On a:

$$\mathcal{F}(e^{2i\pi at}f(t)): s \to \mathcal{F}(f)(s-a)$$

la notation (abusive) $\mathcal{F}(e^{2i\pi at}f(t))$ représente la transformée de Fourier de la fonction $t\to e^{2i\pi at}f(t)$

6. Changement d'échelle . Soit $\omega>0$.

$$\mathcal{F}(f(\omega t)):s\to \frac{1}{\omega}\ \mathcal{F}(f)(\frac{s}{\omega})$$

7. Produit de convolution

Soient f et g deux fonctions de $\mathcal{L}^1(\mathbb{R})$.

On démontre que f * g appartient à $\mathcal{L}^1(\mathbb{R})$ et que

$$\mathcal{F}(f * g) = \mathcal{F}(f) * \mathcal{F}(g)$$

Remarque: f * g désigne le produit de convolution de f et de g:

$$f * g(t) = \int_{-\infty}^{+\infty} f(u) \ g(t - u) \ du$$

Exercice 2

On reprend la fonction triangle Λ : $\begin{array}{ccc} \text{si t} \in [-1;1] & \Lambda(t) = 1 - |t| \\ \text{si t} \notin [-1;1] & \Lambda(t) = 0 \end{array}$

- 1) Calculer la dérivée de Λ et exprimer $\Lambda'(t)$ à l'aide de la fonction porte Π .
- 2) Appliquer à la relation obtenue l'opérateur ${\mathcal F}$ En déduire la transformée de Fourier de Λ .
 - 3) Vérifier que $\Lambda = \Pi * \Pi$. Retrouver alors le résultat de la question 2 .

solution exercice 2

VI. La transformée de Fourier inverse

Définition Soit f une fonction de $\mathcal{L}^1(\mathbb{R})$. On appelle transformée de Fourier conjuguée (ou inverse)

de f la fonction :

$$\overline{\mathcal{F}}(f): s \to \int_{-\infty}^{+\infty} e^{2i\pi st} f(t) dt$$

On admet le théorème:

Théorème 2 Formule d'inversion

Si f et $\mathcal{F}(f)$ sont dans $\mathcal{L}^1(\mathbb{R})$ alors

$$\overline{\mathcal{F}}(\mathcal{F}(f)(t) = \frac{1}{2} [f(t+0) + f(t-0)]$$

où f(t+0) et f(t-0) représentent la limite à droite et à gauche en t. Si f est continue en t alors

$$\overline{\mathcal{F}}(\mathcal{F}(f))(t) = f(t)$$

on peut écrire

$$\mathcal{F}(f)(s) = \int_{-\infty}^{+\infty} e^{-2i\pi st} f(t) dt \iff f(t) = \int_{-\infty}^{+\infty} e^{2i\pi st} \mathcal{F}(f)(s) ds$$

Remarques

- 1) Ces formules nous montrent que la transformation de Fourier peut être inversée : il existe donc une transformation inverse qui est $\overline{\mathcal{F}}$ que l'on pourait aussi noter \mathcal{F}^{-1}
- 2) Ces résultats sont particulièrement important quand on utilise l'opérateur \mathcal{F} pour la résolution d'équations aux dérivées partielles.

Exemple

On choisit $f: t \to e^{-a|t|}$. on a vu que

$$\mathcal{F}(f)(s) = \frac{2a}{a^2 + 4\pi^2 s^2}$$

Donc, comme

$$\overline{\mathcal{F}}(\mathcal{F})(t) = f(t) = e^{-a|t|}$$

On obtient

$$\int_{-\infty}^{+\infty} e^{2i\pi st} \frac{2a}{a^2 + 4\pi^2 s^2} \ ds = e^{-a|t|} = \frac{2a}{4\pi^2} \int_{-\infty}^{+\infty} e^{2i\pi st} \frac{1}{\frac{a^2}{4\pi^2} + s^2} \ ds$$

Posant u = -s et multipliant par $\frac{4\pi^2}{2a}$ on obtient :

$$\frac{4\pi^2}{2a}e^{-a|t|} = \int_{-\infty}^{+\infty} e^{-2i\pi ut} \frac{1}{\frac{a^2}{4\pi^2} + u^2} du$$

Ce qui signifie que la fonction $t \to \frac{4\pi^2}{2a} \ e^{-a|t|}$ est la transformée de Fourier de la fonction h

$$h: u \to \frac{1}{\frac{a^2}{4\pi^2} + u^2}$$

Choisissons $\alpha = \frac{a}{2\pi}$. On a donc

$$h(u) = \frac{1}{\alpha^2 + u^2}$$
 et $\mathcal{F}(h) : t \to \frac{\pi}{\alpha} e^{-2\pi\alpha t}$

Si nous choisissons $\alpha=1,$ nous obtenons la transformée de Fourier de la fonction $t\to \frac{1}{1+t^2}$ qui est :

$$s \to \pi \ e^{-2\pi s}$$

EXERCICES SUPPLEMENTAIRES

Exercice: FOURIER 1

La fonction " porte" notée Π est définie par:

$$\left\{ \begin{array}{ll} \mathrm{si} \ \mathrm{t} \ \in \left[-\frac{1}{2}; \frac{1}{2} \right] & \Pi(t) = 1 \\ \mathrm{si} \ \mathrm{t} \ \notin \left[-\frac{1}{2}; \frac{1}{2} \right] & \Pi(t) = 0 \end{array} \right.$$

Utiliser la transformée de Fourier de la fonction Π et les propriétés de l'opérateur $\mathcal F$ pour trouver les transformées des fonctions:

$$t \to \Pi(\frac{t-1}{2})$$
; $t \to t \Pi(t)$; $t \to t^2 \Pi(t)$

Exercice: FOURIER 2

Soit $\alpha > 0$.et

$$f(t) = e^{-\alpha t^2}$$

1) Vérifier que

$$f'(t) = -2\alpha t \ f(t) \tag{1}$$

2) On pose

$$F(s) = \mathcal{F}(f)(s)$$

Montrer en appliquant \mathcal{F} à la relation (1) que F est solution d'une équation différentielle du 1er ordre .

3) En déduire que

$$F(s) = \sqrt{\frac{\pi}{a}} e^{-\frac{\pi^2}{a}s^2}$$

. On rappelle que

$$\int_{-\infty}^{+\infty} e^{-u^2} \ du = \sqrt{\pi}$$

Exercice: FOURIER 3

Soit

$$f_{\sigma}: t \to \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{t^2}{2\sigma^2}}$$

1) Déterminer $\mathcal{F}(f_{\sigma})$. On utilisera le résultat de l'exercice 2.

2) Démontrer en utilisant la transformation de Fourier que :

$$f_{\sigma_1} * f_{\sigma_2} = f_{\sqrt{\sigma_1^2 + \sigma_2^2}}$$

Exercice: FOURIER 4

Si $f: t \to e^{-a|t|}$. on a vu que

$$\mathcal{F}(f)(s) = \frac{2a}{a^2 + 4\pi^2 s^2}$$

En utilisant la transformation de Fourier, trouver une solution de l'équation intégro-différentielle:

$$y(t) + \int_{-\infty}^{+\infty} y(t-u) e^{-a|u|} du = e^{-a|t|}$$

Exercice :FOURIER 5

Soit la fonction f telle que:

$$\begin{cases} \text{ si t } \ge 0 & f(t) = 0\\ \text{ si t } < 0 & f(t) = e^t \end{cases}$$

Soit (E) l'équation différentielle:

$$y''(t) + 2 y'(t) + y(t) = f(t)$$

Déterminer, en utilisant la transformation de Fourier, la solution de (E) telle que

$$\int_{-\infty}^{+\infty} |y(t)| \ dt \quad \text{ et } \quad \int_{-\infty}^{+\infty} |y'(t)| \ dt \quad \text{ existent}$$

Solution exercice 1 retour à l'énoncé

1) Directement

La fonction triangle Λ est paire . Par conséquent, d'après le cours,

$$\mathcal{F}(\Lambda)(s) = 2 \int_0^{+\infty} \Lambda(t) \cos 2\pi st \ dt = 2 \int_0^1 (1-t) \cos 2\pi st \ dt$$

Une intégration par parties donne si $s \neq 0$:

$$\mathcal{F}(\Lambda)(s) = 2 \frac{1}{4\pi^2 s^2} \left(1 - \cos(2\pi s t) \right) = \frac{\sin^2 \pi s}{\pi^2 s^2}$$

si s=0, on a $\mathcal{F}(\Lambda)(0)=1$. En fait, la fonction se prolonge par continuité en 0.

2) Utilisation de la transformation de Laplace

Avec les notations du cours :

$$\forall t < 0 \qquad \Lambda^+(t) = \Lambda^-(t) = 0$$

$$\forall t \geq 0 \qquad \Lambda^+(t) = \Lambda^-(t) = 1 - t$$

Or
$$\mathcal{F}(\Lambda)(s) = \mathcal{L}(\Lambda^+)(2i\pi s) + \mathcal{L}(\Lambda^-)(-2i\pi s)$$

De plus,

$$\Lambda^{+}(t) = \Lambda^{-}(t) = 1 - t + U(t - 1) (t - 1)$$

avec U fonction de Heaviside (voir cours sur le transformation de Laplace)

Donc

$$\mathcal{L}(\Lambda^+) = \mathcal{L}(\Lambda^+) : p \to \frac{1}{p} - \frac{1}{p^2} + e^{-p} \left(\frac{1}{p^2}\right)$$

D'où

$$\mathcal{F}(\Lambda)(s) = \frac{1}{2i\pi s} - \frac{1}{(2i\pi s)^2} + e^{-2i\pi s} \frac{1}{(2i\pi s)^2} - \frac{1}{2i\pi s} - \frac{1}{(-2i\pi s)^2} + e^{+2i\pi s} \frac{1}{(-2i\pi s)^2}$$

 $si s \neq 0$

$$\mathcal{F}(\Lambda)(s) = \frac{1}{4\pi^2 s^2} \left(2 - e^{-2i\pi s} - e^{+2i\pi s} \right) = \frac{2}{4\pi^2 s^2} \left(1 - \cos(2\pi s) \right) = \frac{\sin^2 \pi s}{\pi^2 s^2}$$

d'où si $s \neq 0$

$$\mathcal{F}(\Lambda)(s) = \frac{\sin^2 \pi s}{\pi^2 s^2}$$

Comme à la question 1, la fonction se prolonge par continuité en 0.

Solution exercice 2 retour à l'énoncé 1)

$$\forall t < 0 \qquad \Lambda'(t) = -1$$

 $\forall t < 0 \qquad \Lambda'(t) = 1$

On appelle Π la fonction porte. $\begin{array}{ccc} \text{si t} \in \left[-\frac{1}{2}; \frac{1}{2}\right] & \Pi(t) = 1\\ \text{si t} \notin \left[-\frac{1}{2}; \frac{1}{2}\right] & \Pi(t) = 0 \end{array}$

Par conséquent,

$$\Lambda'(t) = \Pi(t + \frac{1}{2}) - \Pi(t - \frac{1}{2})$$

2) D'après la propriété 4.de la transformation de Fourier: Image d'une translatée, on obtient :

$$\mathcal{F}(\Lambda')(s) = e^{i\pi s} \mathcal{F}(\Pi)(s) - e^{-i\pi s} \mathcal{F}(\Pi)(s) = 2i \sin(\pi s) \mathcal{F}(\Pi)(s) = 2i \frac{\sin^2(\pi s)}{\pi s}$$

puisque que : $\mathcal{F}(\Pi)(s) = \frac{\sin(\pi s)}{\pi s}$

D'après la propriété 2 , transformée d'une dérivée , on a :

$$\mathcal{F}(\Lambda')(s) = 2i\pi s \, \mathcal{F}(\Lambda)(s)$$

Donc,

$$\mathcal{F}(\Lambda)(s) = \frac{1}{2i\pi s} 2i \frac{\sin^2(\pi s)}{\pi s} = \frac{\sin^2 \pi s}{\pi^2 s^2}$$

3)

$$\Pi * \Pi (t) = \int_{-\infty}^{+\infty} \Pi(t-u) \ \Pi(u) \ du = \int_{-\frac{1}{2}}^{+\frac{1}{2}} \Pi(t-u) \ du = -\int_{t+\frac{1}{2}}^{t-\frac{1}{2}} \Pi(v) \ dv$$

avec le changement de variables v = t - u

Alors

$$\begin{array}{lll} \forall t &>& 1, & t-\frac{1}{2}>\frac{1}{2} & \text{d'où} & \Pi*\Pi\ (t)=0 \\ \\ \forall t &<& -1, & t+\frac{1}{2}<-\frac{1}{2} & \text{d'où} & \Pi*\Pi\ (t)=0 \\ \\ \forall t &\in \ [0,1], & \Pi*\Pi\ (t)=\int_{t-\frac{1}{2}}^{\frac{1}{2}} \Pi(v)\ dv=\int_{t-\frac{1}{2}}^{\frac{1}{2}} 1\ dv=1-t \end{array}$$

De même, on démontre que

$$\forall t \in [-1, 0], \quad \Pi * \Pi (t) = 1 + t$$

Ceci prouve que

$$\forall t \in \mathbb{R}, \qquad \Pi * \Pi (t) = \Lambda(t)$$

D'après la propriété 7 concernant la transformée d'un produit de convolution:

$$\mathcal{F}(\Pi * \Pi) = \mathcal{F}(\Pi) \times \mathcal{F}(\Pi)$$

D'où

$$\mathcal{F}(\Lambda)(s) = \mathcal{F}(\Pi * \Pi)(s) = \left[\mathcal{F}(\Pi)(s)\right]^2 = \left(\frac{\sin \pi s}{\pi s}\right)^2 = \frac{\sin^2 \pi s}{\pi^2 s^2}$$

qui est un résultat conforme à la question précédente .

ANNEXE

Démonstration du théorème 1 du cours :

Théorème 1
$$\forall s \in \mathbb{R}$$
 $\mathcal{F}(f)(s) = \mathcal{L}(f^+)(2i\pi s) + \mathcal{L}(f^-)(-2i\pi s)$

 \mathcal{L} désigne la transformation de Laplace .

Démonstration: D'après la relation de Chasles,

$$\mathcal{F}(f)(s) = \int_{-\infty}^{+\infty} e^{-2i\pi st} f(t) dt = \int_{-\infty}^{0} e^{-2i\pi st} f(t) dt + \int_{0}^{+\infty} e^{-2i\pi st} f(t) dt$$

en faisant le changement de variables u=-t dans la première intégrale on obtient:

$$\mathcal{F}(f)(s) = \int_0^{+\infty} e^{2i\pi s u} f(-u) du + \int_0^{+\infty} e^{-2i\pi s t} f(t) dt$$

$$\mathcal{F}(f)(s) = \int_0^{+\infty} e^{2i\pi s u} f^{-}(u) du + \int_0^{+\infty} e^{-2i\pi s t} f^{+}(t) dt$$

Or

$$\mathcal{L}(f)(p) = \int_0^{+\infty} e^{-pt} f(t) dt$$

D'où

$$\int_{0}^{+\infty} e^{2i\pi s u} f^{-}(u) du = \mathcal{L}(f^{-})(-2i\pi s)$$

$$\int_{0}^{+\infty} e^{-2i\pi s t} f^{+}(t) dt = \mathcal{L}(f^{+})(2i\pi s)$$

Doù le résultat :

$$\mathcal{F}(f)(s) = \mathcal{L}(f^+)(2i\pi s) + \mathcal{L}(f^-)(-2i\pi s)$$

retour au cours