Image Style Transfer using Convolutional Neural Networks

Clément Chadebec

ENS - MVA

January 21, 2020

Overview

Presentation of the method

- 2 Experiments
 - Trade-off Content-Style
 - Choice of layer in CNN
 - Initialisation of Gradient Descent
 - Stochastic results

The method

<u>Goal</u>: Keep the content of an image \vec{p} while applying the style of an image \vec{a} to it

Figure: Content image \vec{p}

Figure: Style image \vec{a}

Architecture of the Method

Use of a pre-trained Convolutional Neural Network VGG19

Figure: Architecture of the method

⇒ need for a representation of the images

Content Representation

- Let P^I be the feature map of the content image \overrightarrow{p} produced by VGG19 at the output of layer I
- Let F^I be the feature map of the image \overrightarrow{x} produced by VGG19 at the output of layer I

$$\mathcal{L}_{content}(\overrightarrow{p}, \overrightarrow{x}, I) = \frac{1}{2} \sum_{i,j} (F_{i,j}^{I} - P_{i,j}^{I})^{2}$$

The computation of the gradient gives

$$\frac{\partial \mathcal{L}_{content}}{\partial F_{i,j}^{l}} = \begin{cases} (F^{l} - P^{l})_{i,j} & \text{if } F_{i,j}^{l} > 0\\ 0 & \text{if } F_{i,j}^{l} < 0 \end{cases}$$

where $F_{i,j}^I$ denotes the coefficient of the *i*-th filter (or feature) of the output of layer I at position j

Style Representation

- Several layers are considered
- Let E_I be the contribution of layer I in the loss
- Let w_l be a weight associated to the loss E_l in the total style loss
- We introduce the Gram matrix to compute E_l

$$G'_{i,j} = \sum_{k} F'_{i,k} F'_{j,k}$$

and we obtain

$$E_I = \frac{1}{4N_I^2M_I^2}\sum_{i,j}(G_{i,j}^I - A_{i,j}^I)^2$$

and finally we have the gradient

$$\frac{\partial \mathcal{L}_{style}}{\partial F_{i,j}^{I}} = \begin{cases} w_{I} \frac{1}{N_{I}^{2} M_{I}^{2}} \left((F^{I})^{\top} (G^{I} - A^{I}) \right)_{j,i} & \text{if} \quad F_{i,j}^{I} > 0 \\ 0 & \text{if} \quad F_{i,j}^{I} < 0 \end{cases}$$

Trade-off Content - Style

The total loss is as follows

$$\mathcal{L}_{total}(\overrightarrow{p}, \overrightarrow{a}, \overrightarrow{x}) = \alpha \mathcal{L}_{content}(\overrightarrow{p}, \overrightarrow{x}) + \beta \mathcal{L}_{style}(\overrightarrow{a}, \overrightarrow{x})$$

- Starting point → White Gaussian noise
- number of iterations n = 3000

Figure: $\alpha/\beta = 10^{-1}$

Figure: $\alpha/\beta = 10^{-2}$

Trade-off Content - Style

The total loss is as follows

$$\mathcal{L}_{total}(\overrightarrow{p}, \overrightarrow{a}, \overrightarrow{x}) = \alpha \mathcal{L}_{content}(\overrightarrow{p}, \overrightarrow{x}) + \beta \mathcal{L}_{style}(\overrightarrow{a}, \overrightarrow{x})$$

- ullet Starting point \longrightarrow White Gaussian noise
- number of iterations n = 3000

Figure: $\alpha/\beta = 10^{-3}$

Figure: $\alpha/\beta = 10^{-4}$

Layers' influence - Content

- Starting point → White Gaussian noise
- number of iterations n = 3000
- weight factor $\alpha/\beta = 10^{-3}$

Figure: conv2_2

Figure: conv4_2

Layers' influence - Style

- Starting point → White Gaussian noise
- number of iterations n = 3000
- weight factor $\alpha/\beta = 10^{-3}$

Figure: conv2_1

Figure: conv4_1

Layers' influence - Style

• Example of features map

Figure: "low" level layer

Figure: "high" level layer

- ullet Starting point \longrightarrow White Gaussian noise
- number of iterations n = 3000
- weight factor $\alpha/\beta = 10^{-3}$

Figure: Gaussian noise

Figure: Outcome

- Starting point → Content image
- number of iterations n = 3000
- weight factor $\alpha/\beta = 10^{-3}$

Figure: Content image

Figure: Outcome

- ullet Starting point \longrightarrow Pathological case
- number of iterations n = 3000
- weight factor $\alpha/\beta = 10^{-3}$

Figure: Pathological image

Figure: Outcome

- Starting point → Pathological case
- number of iterations n = 10000
- weight factor $\alpha/\beta = 10^{-3}$

Figure: Pathological image

Figure: Outcome

Stochastic results

- ullet Starting point \longrightarrow Gaussian noise
- number of iterations n = 3000
- weight factor $\alpha/\beta = 10^{-3}$

Figure: Outcome 1

Figure: Outcome 2

Stochastic results

- ullet Starting point \longrightarrow Gaussian noise
- number of iterations n = 3000
- weight factor $\alpha/\beta = 10^{-3}$

Figure: Outcome 3

Figure: Outcome 4

Photo realistic

- $\bullet \ \, \mathsf{Starting} \,\, \mathsf{point} \, \longrightarrow \, \mathsf{Content} \,\, \mathsf{image} \,\,$
- number of iterations n = 5000
- weight factor $\alpha/\beta = 10^{-3}$

Figure: Dark image

Figure: Reference image

Photo realistic

- Starting point → Content image
- number of iterations n = 5000
- weight factor $\alpha/\beta = 10^{-3}$

Figure: Outcome

Video

To be shown