6. MOMENTUM EQUATION

FORCE: Rate of change in linear momentum is known as force.

$\overrightarrow{F}dt = d(m\overrightarrow{V})$	$\overrightarrow{F}dt = \text{Impulse}$	$d(m\overrightarrow{V})$ = Change in Linear Momentum
$\overrightarrow{F} = d(\overrightarrow{mV})$	\overrightarrow{F} = Force	$d(\overrightarrow{mV})$ = Change in Momentum Flux
_		_

$$\sum F_k = \Delta(\dot{m}V)_k = (\dot{m}V_k)_f - (\dot{m}V_k)_i$$

CONTROL VOLUME: The volume chosen in a fluid flow for analysis (on which the force interaction takes place). The boundary of control volume is known as control surface.

- 1. Control Volume can be static or moving, but it should not have acceleration.
- 2. Control volume can have any shape or size, but it should be drawn in such a way that the velocities (initial and final) are supposed to be perpendicular to the control surface.
- 3. The supports in a control volume should be replaced by equivalent reactions.

$$P_1A_1 - R_x + P_2A_2\cos\theta = \dot{m}(-V_2\cos\theta - V_1)$$

$$\therefore R_x = P_1A_1 + P_2A_2\cos\theta + \dot{m}(V_2\cos\theta + V_1)$$

$$R_y - P_2A_2\sin\theta = \dot{m}V_2\sin\theta$$

$$\therefore R_y = P_2A_2\sin\theta + \dot{m}V_2\sin\theta$$

$$Net Reaction = \sqrt{R_x^2 + R_y^2}$$

$$\alpha = \tan^{-1}\left(\frac{R_y}{R_x}\right)$$

Here, momentum flux creates error if velocity profiles are non-uniform.

Actual momentum $flux = \beta \dot{m}V = \iint \rho u^2 dA$		Momentum flux Correction Factor $\beta = \frac{1}{AV^2} \iint u^2 dA$		
Always For non uni. flow $\beta \ge 1 \& \alpha > \beta$			$\alpha = \text{K.E. Correction factor.}$	
For uniform Flow $\beta = 1 \& \alpha = 1$	pipe β =	$= 4/3$, $\alpha = 2$	$\sum F_k = \Delta(\beta \dot{m}V)_k$	

IMPACT OF LIQUID JET:

Things Already known,	Things to known,		<u> </u>
1. ρ	1. F_{impact}		PIPE NOZZLE
2. A	2. $Power = W/t$	$= F_{impact} \cdot u_{plate}$	PIPE NOZZLE
3. V_{jet}	3. $Input = KE/t$	$ime = (1/2)\dot{m} V_{jet}^2$	
4. u_{plate}	4. $\eta_{jet} = Power/$	'Input	PLATE
ASSUMPTIONS:			
1. Neglect Gravity in horizontal jets.			JET OF WATER
2. Exit of the jet after striking is tangential to the surface.			
3. Neglect friction along	¥		
For Moving Plate,			$\dot{m}_{striking} = \rho A (V_{jet} - u)$
For Wheel,	$V_{striking} = V_{jet} - u$	$\dot{m}_{exit} = \rho A V_{jet}$	$\dot{m}_{striking} = \rho A V_{jet}$

$\sum F_k = \Delta(\dot{m}V)_k$	Power		$Input = \dot{KE}$	η_{jet}	
CASE-I: Horizontal Jet striking normally on a flat vertical plate.					
$F_{x} = \rho A \big(V_{jet} - u \big)^{2}$	$\rho A \big(V_{jet} - u\big)^2 u$		$(1/2) \rho AV_{jet}^3$	$2 u \left[\left(V_{jet} - u \right)^2 / V_{jet}^3 \right]$	
CASE-II: Horizontal Jet striking of	on a series of flat plates	mounte	d on a wheel.		
$F_x = \rho A V_{jet} (V_{jet} - u)$	$\rho AV_{jet}(V_{jet}-u)$	и	$(1/2) \rho AV_{jet}^3$	$2 u [(V_{jet} - u)/V_{jet}^2]$	
Condition for $\left[\eta_{jet}\right]_{max}$, Speed Ratio $\emptyset = u/V_{jet} = 1/2 \& \left[\eta_{jet}\right]_{max} = 0.50$					
CASE-III: Horizontal Jet striking normally on symmetric curved vane.					
$F_x = \rho A(\cos\theta + 1)(V_{jet} - u)^2$	$\rho A(\cos\theta+1)\big(V_{jet}-$	$u)^2u$	$(1/2) \rho AV_{jet}^3$	$2\left[(\cos\theta+1)(V_{jet}-u)^2u\right]/V_{jet}^3$	
For semi-circular vane $(\theta = 0^{\circ})$, $F_x = [F_x]_{max} = 2\rho A(V_{jet} - u)^2$					
CASE-IV: A Jet is striking tangentially on a fixed curved vane.					
$F_x = \rho A(\cos\theta + \cos\phi)V_{iet}^2 \qquad F_y = \rho A(\sin\phi - \sin\theta)V_{iet}^2$					
For symmetric curved vane $(\emptyset = \theta)$, $F_x = 2\rho A \cos \theta V_{jet}^2$ & $F_y = 0$					
CASE-V: A jet striking on a fixed inclined plate,					
$\sum F_n = \Delta(\dot{m}V)_n$	$F_x = F_n \cos \theta$	F_{x}	$=F_n\sin\theta$	$F_n = \rho A V_{jet}^3 \cos \theta$	

Note:

- 1) Net force is normal to the plate. $\sum F_t = \Delta(\dot{m}V)_t = 0 \Rightarrow (\dot{m}V)_f = (\dot{m}V)_i \Rightarrow Q_1 Q_2 = Q \sin\theta$ 2) From the continuity equation, $Q_1 + Q_2 = Q$

 $Q_2 = \frac{Q}{2}(1 - \sin\theta)$ $Q_1 = \frac{Q}{2}(1 + \sin \theta)$

CASE-V: A jet striking on a fixed inclined plate,					
$\sum F_n = \Delta(\dot{m}V)_n$	$F_x = F_n \cos \theta$	$F_{x} = F_{n} \sin \theta$	$F_n = \rho A (V_{jet} - u)^2 \cos \theta$		

For inclined Plates,

$P = F_x u = \rho A (V_{jet} - u)^2 \cos^2 \theta \ u$	$\dot{KE} = \left(\frac{1}{2}\right) \rho A V_{jet}^3$	$\eta_{jet} = \frac{2(V_{jet} - u)^2 \cos^2 \theta \ u}{V^3}$
		v jet

