

Sistemas Urbanos Inteligentes

Control de agentes basado en aprendizaje

Hans Löbel

https://www.youtube.com/watch?v=P7xx9uH2i7w

Para esto, utilizaremos aprendizaje reforzado

Aprendizaje reforzado es:

- Formalismo matemático para la toma de decisiones basada en aprendizaje
- Enforque para aprender a tomar decisiones y controlar agentes basado en la experiencia

- Acciones: movimientos musculares
- Observaciones (estado): vista, olfato, tacto, oído, gusto
- Recompensa: comida

- Acciones: qué y cuánto comprar
- Observaciones (estado): niveles de inventario
- Recompensa: ganancia

Antes de empezar con las técnicas, un poco de notación...

La recompensa actúa como una especia de supervisión

which action is better or worse?

 $r(\mathbf{s}, \mathbf{a}, \mathbf{s}')$: reward function \longrightarrow tells us which states and actions are better

high reward

low reward

s, a, r(s, a, s') y p(s'|s, a) definen un proceso de decisión markoviano (MDP)

En (D)RL, buscamos la política que maximiza la recompensa esperada

$$\underbrace{p_{\theta}(\mathbf{s}_1, \mathbf{a}_1, \dots, \mathbf{s}_T, \mathbf{a}_T)}_{p_{\theta}(\tau)} = p(\mathbf{s}_1) \prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$

$$\theta^* = \arg \max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_t, \mathbf{a}_t, \mathbf{s}_{t+1}) \right]$$

Todos los algoritmos siguen la misma estructura básica

Por ejemplo, si queremos optimizar directamente la política...

Este último esquema no es el único que se puede tomar

Este último esquema no es el único que se puede tomar

$$\pi$$
:

$$max_{\pi} \mathbb{E}\left[\sum_{t=0}^{H} \gamma^{t} R(S_{t}, A_{t}, S_{t+1}) | \pi\right]$$

Esta idea se puede formalizar a través de la función de valor

$$V^*(s) = \max_{\pi} \mathbb{E} \left[\sum_{t=0}^{H} \gamma^t R(s_t, a_t, s_{t+1}) \mid \pi, s_0 = s \right]$$

 $V^*(s)$ = suma de las recompensas con descuento al empezar en el estado s y actuar óptimamente

Supongamos acciones siempre exitosas, $\gamma=1, H=100$

$$V^*(4,3) =$$

$$V^*(3,3) =$$

$$V^*(2,3) =$$

$$V^*(1,1) =$$

$$V^*(4,2) =$$

Esta idea se puede formalizar a través de la función de valor

$$V^*(s) = \max_{\pi} \mathbb{E} \left[\sum_{t=0}^{H} \gamma^t R(s_t, a_t, s_{t+1}) \mid \pi, s_0 = s \right]$$

 $V^*(s)$ = suma de las recompensas con descuento al empezar en el estado s y actuar óptimamente

Supongamos acciones siempre exitosas, $\gamma = 0.9$, H = 100

$$V^*(4,3) =$$

$$V^*(3,3) =$$

$$V^*(2,3) =$$

$$V^*(1,1) =$$

$$V^*(4,2) =$$

Esta idea se puede formalizar a través de la función de valor

$$V^*(s) = \max_{\pi} \mathbb{E} \left[\sum_{t=0}^{H} \gamma^t R(s_t, a_t, s_{t+1}) \mid \pi, s_0 = s \right]$$

 $V^*(s)$ = suma de las recompensas con descuento al empezar en el estado s y actuar óptimamente

Supongamos acciones con P = 0.8, $\gamma = 0.9$, H = 100

$$V^*(4,3) =$$

$$V^*(3,3) =$$

$$V^*(2,3) =$$

$$V^*(1,1) =$$

$$V^*(4,2) =$$

$$V_0^*(s)$$
 = optimal value for state s when H=0

$$V_0^*(s)$$
 = optimal value for state s when H=0

$$V_0^*(s) = 0 \quad \forall s$$

$$V_0^*(s)$$
 = optimal value for state s when H=0

$$V_0^*(s) = 0 \quad \forall s$$

 $V_1^*(s)$ = optimal value for state s when H=1

 $V_0^*(s)$ = optimal value for state s when H=0

$$V_0^*(s) = 0 \quad \forall s$$

 $V_1^*(s)$ = optimal value for state s when H=1

$$V_1^*(s) = \max_a \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_0^*(s'))$$

 $V_0^*(s)$ = optimal value for state s when H=0

$$V_0^*(s) = 0 \quad \forall s$$

 $V_1^*(s)$ = optimal value for state s when H=1

$$V_1^*(s) = \max_a \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma V_0^*(s'))$$

 $V_2^*(s)$ = optimal value for state s when H=2

$$V_2^*(s) = \max_a \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_1^*(s'))$$

 $V_0^*(s)$ = optimal value for state s when H=0

$$V_0^*(s) = 0 \quad \forall s$$

 $V_1^*(s)$ = optimal value for state s when H=1

$$V_1^*(s) = \max_a \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_0^*(s'))$$

 $V_2^*(s)$ = optimal value for state s when H=2

$$V_2^*(s) = \max_a \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_1^*(s'))$$

 $V_k^*(s)$ = optimal value for state s when H = k

$$V_k^*(s) = \max_a \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_{k-1}^*(s'))$$

Este simple algoritmo es conocido como Value Iteration

Start with $V_0^*(s) = 0$ for all s.

For k = 1, ..., H:

For all states s in S:

$$V_k^*(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) \left(R(s, a, s') + \gamma V_{k-1}^*(s') \right)$$

$$\pi_k^*(s) \leftarrow \arg\max_{a} \sum_{s'} P(s'|s, a) \left(R(s, a, s') + \gamma V_{k-1}^*(s') \right)$$

Es posible demostrar que al converger, el valor satisface las ecuaciones de Bellman:

$$\forall s \in S$$

obtenido para la función
$$V^*(s)$$
 es óptimo y satisface las ecuaciones de Bellman:
$$\forall s \in S: \quad V^*(s) = \max_a \sum_{s'} P(s'|s,a) \left[R(s,a,s') + \gamma V^*(s') \right]$$

$$V_0(s) \leftarrow 0$$

$$k = 0$$

0.00	0.00	0.00	0.00	
0.00		0.00	0.00	
0.00	0.00	0.00	0.00	
VALUES AFTER 0 ITERATIONS				

$$V_1(s) \leftarrow \max_{a} \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma V_0(s'))$$

$$k = 0$$

$$V_2(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_1(s'))$$

$$k = 1$$

$$V_2(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_1(s'))$$

$$k = 2$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma V_k(s'))$$

$$k = 3$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma V_k(s'))$$

$$k = 4$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_k(s'))$$

$$k = 5$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_k(s'))$$

$$k = 12$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma V_k(s'))$$

$$k = 100$$

Podemos refinar la función de valor y estimar la función Q

Bellman Equation:

$$Q^*(s, a) = \sum_{s'} P(s'|s, a) (R(s, a, s') + \gamma \max_{a'} Q^*(s', a'))$$

Q-Value Iteration:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma \max_{a'} Q_k(s',a'))$$

- La función $Q^*(s,a)$ estima la utilidad esperada partiendo desde s, tomando la acción a y luego actuando óptimamente
- Nos es evidente en este momento por qué esto sirve de algo

Podemos refinar la función de valor y estimar la función Q

$$Q_{k+1}^*(s,a) \leftarrow \sum_{s'} P(s'|s,a) (R(s,a,s') + \gamma \max_{a'} Q_k^*(s',a'))$$

¿Qué limitantes tienen estos métodos de estimación de funciones de valor?

 Ecuaciones requieren la existencia de las probabilidades de transición (modelo dinámico del mundo):

$$V^*(s) = \max_{a} \sum_{s'} P(s'|s, a) \left[R(s, a, s') + \gamma V^*(s') \right]$$
$$Q^*(s, a) = \sum_{s'} P(s'|s, a) \left(R(s, a, s') + \gamma \max_{a'} Q^*(s', a') \right)$$

 Algoritmos requieren iterar y almacenar sobre gran cantidad de estados, lo que fuerza a tener una cantidad de estados y acciones manejable.

Q-Learning al rescate

- La función Q nos entrega la solución a ambos problemas.
- Al desacoplar la optimalidad del estado y la acción, es posible utilizar un enfoque de muestreo, cambiando las transiciones por un valor esperado:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} P(s'|s,a)(R(s,a,s') + \gamma \max_{a'} Q_k(s',a'))$$

$$Q_{k+1} \leftarrow \mathbb{E}_{s' \sim P(s'|s,a)} \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

Q-Learning al rescate

```
Start with Q_0(s,a) for all s, a.
Get initial state s
For k = 1, 2, ... till convergence
       Sample action a, get next state s'
       If s' is terminal:
             target = R(s, a, s')
             Sample new initial state s'
       else:
      target = R(s, a, s') + \gamma \max_{a'} Q_k(s', a')Q_{k+1}(s, a) \leftarrow (1 - \alpha)Q_k(s, a) + \alpha \text{ [target]}
       s \leftarrow s'
```

La pregunta es ahora cómo muestrear

- Esta es la madre de todas las batallas: exploration vs exploitation
- En otras palabras, ¿elijo la acción optima de acuerdo a $Q_k(s,a)$, o busco nuevas posibilidades?
- En la práctica se utiliza una técnica mixta, ϵ -Greedy: acción al azar con probabilidad ϵ , en otro caso, acción que maximiza $Q_k(s,a)$.

Propiedades de Q-learning

- El principal resultado de Q-Learning es que converge a una política óptima, a pesar de actuar de manera subóptima.
- En otras palabras, desacopla exploración de optimización: off-policy learning.
- Requiere mucha exploración y ajustes cuidadosos del learning rate, pero funciona.

https://youtu.be/bszMAul9ld4

Escapando de las tablas

- Un supuesto implícito de Q-Learning es que almacenamos cada par (s, a) en una tabla.
- Esto no es realista en entornos reales y cuando tenemos acciones continuas.
- ¿Imaginan un mecanismo que permita estimar una función (Q) a partir de ejemplos y luego generalizar a nuevas situaciones?

Escapando de las tablas: Q-Learning aproximado

- En vez de una tabla, utilizaremos una función parametrizada por θ : Q_{θ} (s,a)
- No hay restricciones para esta función, por lo que podemos utilizar redes tan complejas como queramos.
- El algoritmos ahora actualiza los parámetros de la función, en vez de la tabla:

$$target(s') = R(s, a, s') + \gamma \max_{a'} Q_{\theta_k}(s', a')$$

$$\theta_{k+1} \leftarrow \theta_k - \alpha \nabla_{\theta} \left[\frac{1}{2} (Q_{\theta}(s, a) - \text{target}(s'))^2 \right] \Big|_{\theta = \theta_k}$$

La regla de actualización viene directamente del Q-Learning tabular

Suppose
$$\theta \in \mathbb{R}^{|S| \times |A|}$$
, $Q_{\theta}(s, a) \equiv \theta_{sa}$
$$\nabla_{\theta_{sa}} \left[\frac{1}{2} (Q_{\theta}(s, a) - \operatorname{target}(s'))^2 \right]$$

$$= \nabla_{\theta_{sa}} \left[\frac{1}{2} (\theta_{sa} - \operatorname{target}(s'))^2 \right]$$

$$= \theta_{sa} - \operatorname{target}(s')$$
 Plug into update: $\theta_{sa} \leftarrow \theta_{sa} - \alpha(\theta_{sa} - \operatorname{target}(s'))$
$$= (1 - \alpha)\theta_{sa} + \alpha[\operatorname{target}(s')]$$

Compare with Tabular Q-Learning update:

$$Q_{k+1}(s, a) \leftarrow (1 - \alpha)Q_k(s, a) + \alpha \left[\text{target}(s') \right]$$

Sistemas Urbanos Inteligentes

Control de agentes basado en aprendizaje

Hans Löbel