Il prodotto semidiretto

di Gabriel Antonio Videtta

Nota. Nel corso del documento con G un qualsiasi gruppo.

Siano H e K due gruppi. Allora, dato un omomorfismo $\varphi: K \to \operatorname{Aut}(H)$ e detto $\varphi_k := \varphi(k)$, si può costruire un gruppo su $H \times K$ detto **prodotto semidiretto** tra H e K, indicato con $H \rtimes_{\varphi} K$, dove l'operazione è data da:

$$(h,k)(h',k') = (h \varphi_k(h'), kk').$$

In questo gruppo l'inverso di (h,k) è dato da $(\varphi_k^{-1}(h^{-1}),k^{-1}),$ infatti:

$$(h,k)(\varphi_k^{-1}(h^{-1}),k^{-1})=(h\,\varphi_k(\varphi_k^{-1}(h^{-1})),kk^{-1})=(e,e).$$

In particolare, se φ è banale, e quindi $k \stackrel{\varphi}{\mapsto} \mathrm{Id}_H$, $H \rtimes_{\varphi} K$ ha la stessa struttura usuale del prodotto diretto. Nel prodotto semidiretto $H \rtimes_{\varphi} K$ si possono identificare facilmente H e K nei sottogruppi $H \times \{e\}$ e $\{e\} \times K$.

Detto $\alpha: H \rtimes_{\varphi} K \to K$ la mappa che associa (h,k) a k, si verifica che α è un omomorfismo con Ker $\alpha = H \times \{e\}$. Pertanto $H \times \{e\}$ è un sottogruppo normale di $H \rtimes_{\varphi} K$, mentre in generale $K \times \{e\}$ non lo è.

Si illustra adesso un teorema che permette di decomporre, sotto opportune ipotesi, un gruppo in un prodotto semidiretto di due suoi sottogruppi:

Teorema (di decomposizione in prodotto semidiretto). Siano H e K due sottogruppi di G con $H \cap K = \{e\}$ e $H \leq G$. Allora vale che $HK \cong H \rtimes_{\varphi} K$ con $\varphi : K \to \operatorname{Aut}(H)$ tale per cui¹ $k \stackrel{\varphi}{\mapsto} [h \mapsto khk^{-1}]$.

Dimostrazione. Si costruisce un isomorfismo tra $H \rtimes_{\varphi} K$ e HK. Sia $\alpha : H \rtimes_{\varphi} K \to HK$ tale per cui $(h,k) \stackrel{\alpha}{\mapsto} hk$. Si verifica che α è un omomorfismo:

$$\alpha((h,k)(h',k')) = \alpha(hkh'k^{-1},kk') = hkh'k^{-1}kk' = hkh'k' = \alpha(h,k)\alpha(h',k').$$

Chiaramente α è iniettivo dal momento che $hk = e \implies h = k^{-1} \in H \cap K \implies h = k = e$. Infine α è surgettiva dal momento che $hk = \alpha(h, k)$, e quindi α è un isomorfismo. \square

¹Tale mappa è ben definita dal momento che H è normale in G.