

F

Office de la Propriété Intellectuelle du Canada

Un organisme d'Industrie Canada Canadian Intellectual Property Office

An agency of Industry Canada

CA 2359180 A1 2000/08/03

(21) 2 359 180

(12) DEMANDE DE BREVET CANADIEN CANADIAN PATENT APPLICATION

(13) A1

- (86) Date de dépôt PCT/PCT Filing Date: 2000/01/29
- (87) Date publication PCT/PCT Publication Date: 2000/08/03
- (85) Entrée phase nationale/National Entry: 2001/07/18
- (86) N° demande PCT/PCT Application No.: DE 00/00244
- (87) N° publication PCT/PCT Publication No.: WO 00/44895
- (30) Priorités/Priorities: 1999/01/30 (199 03 713.2) DE; 1999/11/24 (199 56 568.6) DE
- (51) Cl.Int.7/Int.Cl.7 C12N 15/11, A61K 31/713
- (71) Demandeurs/Applicants: KREUTZER, ROLAND, DE; LIMMER, STEPHAN, DE
- (72) Inventeurs/Inventors: KREUTZER, ROLAND, DE; LIMMER, STEPHAN, DE
- (74) Agent: FETHERSTONHAUGH & CO.

(54) Titre: METHODE ET MEDICAMENT DESTINES A INHIBER L'EXPRESSION D'UN GENE DONNE (54) Title: METHOD AND MEDICAMENT FOR INHIBITING THE EXPRESSION OF A GIVEN GENE

(57) Abrégé/Abstract:
The invention relates to a medicament containing at least one double-stranded oligoribonucleotide (dsRNA) designed to inhibit the expression of a target gene. According to the invention, one strand of the dsRNA is at least in part complementary to the target gene.

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 7:

(11) Internationale Veröffentlichungsnummer: WO 00/44895

C12N 15/11, A61K 31/713

(43) Internationales Veröffentlichungsdatum:

3. August 2000 (03.08.00)

(21) Internationales Aktenzeichen:

PCT/DE00/00244

A1

(22) Internationales Anmeldedatum: 29. Januar 2000 (29.01.00)

(30) Prioritätsdaten:

199 03 713.2 199 56 568.6 30. Januar 1999 (30.01.99) DE

24. November 1999 (24.11.99) DE

(71)(72) Anmelder und Erfinder: KREUTZER, Roland [DE/DE]; Glotzdorf 26, D-95466 Weidenberg (DE). LIMMER, Stephan [DE/DE]; Leibnizstrasse 14, D-95447 Bayreuth

(74) Anwalt: GASSNER, Wolfgang; Nägelsbachstrasse 49 A. D-91052 Erlangen (DE).

(81) Bestimmungsstaaten: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FL GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Anderungen eintreffen.

- (54) Title: METHOD AND MEDICAMENT FOR INHIBITING THE EXPRESSION OF A DEFINED GENE
- (54) Bezeichnung: VERFAHREN UND MEDIKAMENT ZUR HEMMUNG DER EXPRESSION EINES VORGEGEBENEN GENS
- (57) Abstract

The invention relates to a medicament containing at least one double-stranded oligoribonucleotide (dsRNA) designed to inhibit the expression of a target gene. According to the invention, one strand of the daRNA is at least in part complementary to the target gene.

(57) Zusammenfassung

Die Erfindung betrifft ein Medikament mit mindestens einem Oligoribonukleotid mit doppelsträniger Struktur (dsRNA) zur Hemmung der Expression eines Zielgens, wobei ein Strang der dsRNA zumindest abschnittsweise komplementär zum Zielgen ist.

٠.

The invention relates to a medicament containing at least one double-stranded oligoribonucleotide (daRNA) designed to inhibit the expression of a target gene. According to the invention, one strand of the daRNA is at least in part complementary to the target gene.

BEST AVAILABLE COP

WO 00/44895

PCT/DE00/00244

Method and medicament for inhibiting the expression of a given gene

The invention relates to methods in accordance with the 5 preambles of claims 1 and 2. It furthermore relates to medicament and to a use of double-stranded oligoribonucleotides and to a vector encoding them.

Such a method is known from WO 99/32619, which was unpublished at the priority date of the present 10 invention. The known process aims at inhibiting the expression of genes in cells of invertebrates. To this the double-stranded oligoribonucleotide exhibit a sequence which is identical with the target gene and which has a length of at least 50 bases. To Little achieve refficient inhibition the bidentical sequence must be 300 to 11,000 base pairs in length. Such an oligoribonucleotide is complicated to prepare.

DE 196 31 919 C2 describes an antisense RNA with 20 specific secondary structures, the antisense RNA being present in the form of a vector encoding it. The antisense RNA takes the form of an RNA molecule which is complementary to regions of the mRNA. Inhibition of the gene expression is caused by binding to these 25 regions. This inhibition can be employed in particular for the diagnosis and/or therapy of diseases, example tumor diseases or viral infections. -The disadvantage is that the antisense RNA must be introduced into the cell in an amount which is at least 30 as high as the amount of the mRNA. The known antisense methods are not particularly effective.

comprising medicament US 5,712,257 discloses а mismatched double-stranded RNA (dsRNA) and bioactive mismatched fragments of dsRNA in the form of a ternary complex together with a surfactant. The dsRNA used for this purpose consists of synthetic nucleic acid single strands without defined base sequence. The single

strands undergo irregular base pairing, also known as "non-Watson-Crick" base pairing, giving rise to mismatched double strands. The known dsRNA is used to inhibit the amplification of retroviruses such as HIV. Amplification of the virus can be inhibited when non-sequence-specific dsRNA is introduced into the cells. This leads to the induction of interferon, which is intended to inhibit viral amplification. The inhibitory effect, or the activity, of this method is poor.

10

It is known from Fire, A. et al., NATURE, Vol. 391, pp. 806 that dsRNA whose one strand is complementary in segments to a nematode gene to be inhibited inhibits the expression of this gene highly efficiently. It is believed that the particular activity of the dsRNA used in nematode cells is not due to the antisense principle but possibly on catalytic properties of the dsRNA, or enzymes induced by it. - Nothing is mentioned in this paper on the activity of specific dsRNA with regard to inhibiting the gene expression, in particular in mammalian and human cells.

The object of the present invention is to do away with the disadvantages of the prior art. In particular, it is intended to provide as effective as possible a method, medicament or use for the preparation of a medicament, which method, medicament or use is capable of causing particularly effective inhibition of the expression of a given target gene.

30

25

This object is achieved by the features of claims 1, 2, 37, 38 and 74 and 75. Advantageous embodiments can be seen from claims 3 to 36, 39 to 73 and 76 to 112.

35 In accordance with the method-oriented inventions, it is provided in each case that the region I which is complementary to the target gene exhibits not more than 49 successive nucleotide pairs.

Provided in accordance with the invention are an oligoribonucleotide or a vector encoding therefor. At least segments of the oligoribonucleotide exhibit a defined nucleotide sequence. The defined segment may be limited to the complementary region I. However, it is also possible that all of the double-stranded oligoribonucleotide exhibits a defined nucleotide sequence.

10 Surprisingly, it has emerged that an effective inhibition of the expression of the target gene can be achieved even when the complementary region I is not more than 49 base pairs in length. The procedure of providing such oligoribonucleotides is less complicated.

In particular, dsRNA with length of over 50 nucleotide pairs induces certain cellular mechanisms, for example the dsRNA-dependent protein 20 kinase or the 2-5A system, in mammalian and human cells. This leads the disappearance of to the interference effect mediated by the dsRNA which exhibits a defined sequence. As a consequence, protein biosynthesis in the cell is blocked. The present 25 invention overcomes this disadvantage in particular.

Furthermore, the uptake of dsRNA with short chain lengths into the cell or into the nucleus is facilitated markedly over longer-chain dsRNAs.

30

35

It has proved advantageous for the dsRNA or the vector to be present packaged into micellar structures, preferably in liposomes. The dsRNA or the vector can likewise be enclosed in viral natural capsids or in chemically or enzymatically produced artificial capsids or structures derived therefrom. - The abovementioned features make it possible to introduce the dsRNA or the vector into given target cells.

In a further aspect, the dsRNA has 10 to 1000, preferably 15 to 49, base pairs. Thus, the dsRNA can be longer than the region I, which is complementary to the target gene. The complementary region I can be located at the terminus or inserted into the dsRNA. Such dsRNA or a vector provided for coding the same can be produced synthetically or enzymatically by customary methods.

The gene to be inhibited is expediently expressed in eukaryotic cells. The target gene can be selected from the following group: oncogene, cytokin gene, Id protein gene, developmental gene, prion gene. It can also be expressed in pathogenic organisms, preferably in plasmodia. It can be part of a virus or viroid which is preferably pathogenic to humans. - The method proposed makes it possible to produce compositions for the therapy of genetically determined diseases, for example cancer, viral diseases or Alzheimer's disease.

20

25

30

The virus or viroid can also be a virus or viroid which is pathogenic to animals or plant-pathogenic. In this case, the method according to the invention also permits the provision of compositions for treating animal or plant diseases.

In a further aspect, segments of the dsRNA are designed as double-stranded. A region II which is complementary within the double-stranded structure is formed by two separate RNA single strands or by autocomplementary regions of a topologically closed RNA single strand which is preferably in circular form.

The ends of the dsRNA can be modified to counteract degradation in the cell or dissociation into the single strands. Dissociation takes place in particular when low concentrations or short chain lengths are used. To inhibit dissociation in a particularly effective fashion, the cohesion of the complementary region II,

which is caused by the nucleotide pairs, can be increased by at least one, preferably two, further chemical linkage(s). - A dsRNA according to the invention whose dissociation is reduced exhibits greater stability to enzymatic and chemical degradation in the cell or in the organism.

The complementary region II can be formed by autocomplementary regions of an RNA hairpin loop, in particular when using a vector according to the invention. To afford protection from degradation, it is expedient for the nucleotides to be chemically modified in the loop region between the double-stranded structure.

15

10

The chemical linkage is expediently formed by a covalent or ionic bond, a hydrogen bond, hydrophobic interactions, preferably van-der-Waals or stacking interactions, or by metal-ion coordination. In an especially advantageous aspect, it can be formed at at least one, preferably both, end(s) of the complementary region II.

It has furthermore proved to be advantageous for the 25 chemical linkage to be formed by one or more linkage the linkage groups preferably poly(oxyphosphinicooxy-1,3-propanediol) and/or apoly ethylene glycol chains The chemical linkage can also be formed by purine analogs used in place of purines in the complementary regions II. It is also advantageous for the chemical linkage to be formed by azabenzene units introduced into the complementary regions II. Moreover, it can be formed by branched nucleotide analogs used in place of nucleotides in 35 complementary regions II.

It has proved expedient to use at least one of the following groups for generating the chemical linkage: methylene blue; bifunctional groups, preferably

- 6 -

bis(2-chloroethyl)amine; N-acetyl-N'-(p-glyoxyl-benzoyl)cystamine; 4-thiouracil; psoralene. The chemical linkage can furthermore be formed by thiophosphoryl groups provided at the ends of the double-stranded region. The chemical linkage at the ends of the double-stranded region is preferably formed by triple-helix bonds.

The chemical linkage can expediently be induced by 10 ultraviolet light.

The mucleotides of the dsRNA can be modified This counteracts the activation, in the cell, of a double-stranded-RNA-dependent protein kinase, pkr.

Advantageously, at least one 2'-hydroxyl group of the nucleotides of the dsRNA in the complementary region II is replaced by a chemical group, preferably a 2'-amino or a 2'-methyl group. At least one nucleotide in at least one strand of the complementary region II can also be a locked nucleotide with a sugar ring which is chemically modified, preferably by a 2'-0, 4'-C methylene bridge. Advantageously, several nucleotides are locked nucleotides.

25 A further especially advantageous embodiment provides that the dsRNA or the vector is bound to, associated with or surrounded by, at least one viral coat protein which originates from a virus, is derived therefrom or has been prepared synthetically. The coat protein can 30 be derived from polyomavirus. The coat protein can contain the polyomavirus virus protein 1 (VP1) and/or virus protein 2 (VP2). The use of such coat proteins is known from. for example, DE 196 18 797 Al, whose disclosure is herewith incorporated. 35 abovementioned features considerably facilitate the introduction of the dsRNA or of the vector into the cell.

When a capsid or capsid-type structure is formed from the coat protein, one side preferably faces the interior of the capsid or capsid-type structure. The construct formed is particularly stable.

5

25

30

35

The dsRNA can be complementary to the primary or processed RNA transcript of the target gene. - The cell can be a vertebrate cell or a human cell.

10 At least two dsRNAs which differ from each other or at least one vector encoding them can be introduced into the cell, where at least segments of one strand of each dsRNA are complementary to in each case one of at least two different target genes. This makes it possible simultaneously to inhibit the expression of at least two different target genes. In order to suppress, in the cell, the expression of a double-stranded-RNA-dependent protein kinase, PKR, one of the target genes is advantageously the PKR gene. This allows effective suppression of the PKR activity in the cell.

The invention furthermore provides a medicament with at least one oligoribonucleotide with double-stranded structure (dsRNA) for inhibiting the expression of a given target gene, where one strand of the dsRNA has a region I where at least segments are complementary to the target gene. - Surprisingly, it has emerged that such a dsRNA is suitable as medicament for inhibiting the expression of a given gene in mammalian cells. In comparison with the use of single-stranded oligoribonucleotides, the inhibition is already caused at concentrations which are lower by at least one order of magnitude. The medicament according to the invention is highly effective. Lesser side effects can be expected.

The invention furthermore provides a medicament with at least one vector for coding at least one oligoribonucleotide with double-stranded structure

(dsRNA) for inhibiting the expression of a given target gene, where one strand of the dsRNA has a region I where at least segments are complementary to the target The medicament proposed exhibits abovementioned advantages. By using a vector, in particular production costs can be reduced.

particularly advantageous embodiment. complementary region I has not more than 49 successive nucleotide pairs. - Surprisingly, it has emerged that an effective inhibition of the expression of the target gene can be achieved even when the complementary region I is not more than 49 base pairs in length. procedure of providing such oligoribonucleotides is less complicated.

15

20

30

35

The invention furthermore provides a use of oligoribonucleotide double-stranded with (dsRNA) for preparing a medicament for inhibiting the expression of a given target gene, where one strand of the dsRNA has a region I where at least segments are complementary to the target gene. - Surprisingly, such a dsRNA is suitable for preparing a medicament for inhibiting the expression of a given gene. Compared 25 with the use of single-stranded oligoribonucleotides, the inhibition is already caused at concentrations which are lower by one order of magnitude when using dsRNA. The use according to the invention thus makes possible the preparation of particularly effective medicaments.

The invention furthermore provides the use of a vector for coding at least one oligoribonucleotide with double-stranded structure (dsRNA) for preparing a medicament for inhibiting the expression of a given target gene, where one strand of the dsRNA has a region I where at least segments are complementary to this target gene. - The use of a vector makes possible a particularly effective gene therapy.

With regard to advantageous embodiments of the medicament and of the use, reference is made to the description of the above features.

5

Use examples of the invention are illustrated in greater detail hereinbelow with reference to the figures, in which:

- 10 Fig. 1 shows the schematic representation of a plasmid for the *in vitro* transcription with T7- and SP6-polymerase,
- Fig. 2 shows RNA following electrophoresis on an 8% polyacrylamide gel and staining with ethidium bromide,
- Fig. 3 shows a representation of radioactive RNA transcripts following electrophoresis on an 8% polyacrylamide gel with 7 M urea by means of an instant imager, and
 - Figs. 4a e show Texas Red and YFP fluorescence in murine fibroblasts.

25

30

Use example 1:

The inhibition of transcription was detected by means of sequence homologous dsRNA in an in vitro transcription system with a nuclear extract from human HeLa cells. The DNA template for this experiment was plasmid pCMV1200 which had been linearized by means of BamHI.

Generation of the template plasmids:

The plasmid shown in fig. 1 was constructed for use in the enzymatic synthesis of the dsRNA. To this end, a polymerase chain reaction (PCR) with the "positive control DNA" of the HelaScribe® Nuclear Extract in vitro transcription kit by Promega, Madison, USA, as

DNA template was first carried out. One of the primers used contained the sequence of an EcoRI cleavage site and of the T7 RNA polymerase promoter as shown in sequence listing No. 1. The other primer contained the sequence of a BamHI cleavage site and of the SP6 RNA polymerase promoter as shown in sequence listing No. 2. In addition, the two primers had, at the 3' ends, regions which were identical with or complementary to the DNA template. The PCR was carried out by means of the "Tag PCR Core Kits" by Qiagen, Hilden, Germany, 10 the manufacturer's instructions. following $MgCl_2$, in each case 200 μM dNTP, in each case 0.5 μM primer, 2.5 U Tag DNA polymerase and approximately 100 ng of "positive control DNA" were employed as template in PCR buffer in a volume of 100 μ l. After 15 initial denaturation of the template DNA by heating for 5 minutes at 94°C, amplification was carried out in 30 cycles of denaturation for in each case 60 seconds at 94°C, annealing for 60 seconds at 5°C below the point of the primers calculated melting 20 polymerization for 1.5-2 minutes at 72°C. After a final polymerization of 5 minutes at 72°C, 5 μ l of the reaction were analyzed by agarose-gel electrophoresis. The length of the DNA fragment amplified thus was 400 base pairs, 340 base pairs corresponding to the 25 "positive control DNA". The PCR product was purified, EcoRI and BamHI and. with hydrolyzed repurification, employed in the ligation together with a pUC18 vector which had also been hydrolyzed by EcoRI and BamHI. E. coli XL1-blue was then transformed. The 30 plasmid obtained (pCMV5) carries a DNA fragment whose 5' end is flanked by the T7 promoter and whose 3' end is flanked by the SP6 promoter. By linearizing the plasmid with BamHI, it can be employed in vitro with the T7-RNA polymerase for the run-off transcription of 35 a single-stranded RNA which is 340 nucleotides in length and shown in sequence listing No. 3. If the plasmid is linearized with EcoRI, it can be employed for the run-off transcription with SP6 RNA polymerase,

giving rise to the complementary strand. In accordance with the method outlined hereinabove, an RNA 23 nucleotides in length was also synthesized. To this end, a DNA shown in sequence listing No. 4 was ligated with the pUC18 vector via the *Eco*RI and *Bam*HI cleavage sites.

Plasmid pCMV1200 was constructed as DNA template for the in-vitro transcription with HeLa nuclear extract. To this end, a 1 191 bp EcoRI/BamHI fragment of the 10 positive control DNA contained in the HeLaScribe® in vitro transcription Nuclear Extract kit amplified by means of PCR. The amplified fragment encompasses the 828 bp "immediate early" CMV promoter 15 and a 363 bp transcribable DNA fragment. was ligated to the vector pGEM-T product "T-overhang" ligation. A BamHI cleavage site is located at the 5' end of the fragment. The plasmid was linearized by hydrolysis with BamHI and used as 20 template in the run-off transcription.

In-vitro transcription of the complementary single strands:

pCMV5 plasmid DNA was linearized with EcoRI or BamHI. template for 25 used as DNA an transcription of the complementary RNA single strands with SP6 and T7 RNA polymerase, respectively. The "Riboprobe in vitro Transcription" system by Promega, Madison, USA, was employed for this purpose. Following the manufacturer's instructions, 2 µg of linearized 30 plasmid DNA were incubated in 100 µl of transcription buffer and 40 U T7 or SP6 RNA polymerase for 5-6 hours at 37°C. The DNA template was subsequently degraded by addition of 2.5 µl of RNase-free DNase RQ1 incubation for 30 minutes at 37°C. The transcription reaction was made up to 300 μ l with H₂O and purified by phenol extraction. The RNA was precipitated by addition of 150 μ l of 7 M ammonium acatate [sic] and 1 125 μ l of

- 12 -

ethanol and stored at -65°C until used for the hybridization.

Generation of the RNA double strands:

- For the hybridization, 500 μ l of the single-stranded RNA which had been stored in ethanol and precipitated were spun down. The resulting pellet was dried and taken up in 30 μ l of PIPES buffer, pH 6.4 in the presence of 80% formamide, 400 mM NaCl and 1 mM EDTA.
- 10 In each case 15 μ l of the complementary single strands were combined and heated for 10 minutes at 85°C. The reactions were subsequently incubated overnight at 50°C and cooled to room temperature.
- Only approximately equimolar amounts of the two single strands were employed in the hybridization. This is why the dsRNA preparations contained single-stranded RNA (ssRNA) as contaminant. In order to remove these ssRNA contaminants, the reactions were treated, after
- 20 hybridization, with the single-strand-specific ribonucleases bovine pancreatic RNase A and Aspergillus oryzae RNase T1. RNase A is an endoribonuclease which is specific for pyrimidines. RNase T1 is an endoribonuclease which preferentially cleaves at the 3'
- side of guanosines. dsRNA is no substrate for these ribonucleases. For the RNase treatment, the reactions in 300 μ l of Tris, pH 7.4, 300 mM NaCl and 5 mM EDTA were treated with 1.2 μ l of RNaseA at a concentration of 10 mg/ml and 2 μ l of RNaseT1 at a concentration of
- 30 290 μ g/ml. The reactions were incubated for 1.5 hours at 30°C. Thereupon, the RNases were denatured by addition of 5 μ l of proteinase K at a concentration of 20 mg/ml and 10 μ l of 20% SDS and incubation for 30 minutes at 37°C. The dsRNA was purified by phenol
- 35 extraction and precipitated with ethanol. To verify the completeness of the RNase digestion, two control reactions were treated with ssRNA analogously to the hybridization reactions.

The dried pellet was taken up in 15 μ l of TE buffer, pH 6.5, and subjected to native polyacrylamide gel electrophoresis on an 8% gel. The acrylamide gel was subsequently stained in an ethidium bromide solution and washed in a water bath. Fig. 2 shows the RNA which had been visualized in a UV transilluminator. The sense RNA which had been applied to lane 1 and the antisense RNA which had been applied to lane 2 showed a different migration behavior under the chosen conditions than the dsRNA of the hybridization reaction which had been applied to lane 3. The RNase-treated sense RNA and antisense RNA which had been applied to lanes 4 and 5, respectively, produced no visible band. This shows that the single-stranded RNAs had been degraded completely. The RNase-treated dsRNA of the hybridization reaction which had been applied to lane 6 is resistant to RNase treatment. The band which migrates faster in the native gel in comparison with the dsRNA applied to lane 3 results from dsRNA which is free from ssRNA. addition to the dominant main band, weaker bands which migrate faster are observed after the RNase treatment.

10

15

20

In-vitro transcription test with human nuclear extract: Using the HeLaScribe Nuclear Extract in 25 transcription kit by Promega, Madison, USA, the transcription efficiency of the abovementioned DNA fragment which is present in plasmid pCMV1200 and homologous to the "positive control DNA" was determined in the presence of the dsRNA (dsRNA-CMV5) with sequence Also, the effect of the dsRNA without 30 homology. sequence homology, which corresponds to the yellow protein (YFP) fluorescent gene (dsRNA-YRP), studied. This dsRNA had been generated analogously to the dsRNA with sequence homology. The sequence of a 35 strand of this dsRNA can be found in sequence listing No. 5. Plasmid pCMV1200 was used as template for the run-off transcription. It carries the "immediate early" cytomegalovirus promoter which is recognized by the eukaryotic RNA polymerase II, and a transcribable DNA

fragment. Transcription was carried out by means of the HeLa nuclear extract, which contains all the proteins which are necessary for transcription. By addition of $[\cdot - ^{32}P]$ rGTP to the transcription reaction, radiolabeled transcript was obtained. The $[\cdot -^{32}P]$ rGTP used had a specific activity of 400 Ci/mmol, 10 mCi/ml. $MgCl_2$, in each case 400 μM rATP, rCTP, rUTP, 16 μM rGTP, 0.4 μ M [·-¹²P]rGTP and depending on the experiment 1 fmol of linearized plasmid DNA and various amounts of dsRNA in transcription buffer were employed per 10 reaction. Each batch was made up to a volume of 8.5 μ l with H2O. The reactions were mixed carefully. To start the transcription, 4 U HeLa nuclear extract in a volume of $4 \mu l$ were added and incubated for 60 minutes at 15 30°C. The reaction was stopped by addition of 87.5 μ l of quench mix which had been warmed to 30°C. To remove the proteins, the reactions were treated with 100 μ l of phenol/chloroform/isoamyl alcohol (25:24:1 saturated with TE buffer, pH 5.0, and the reactions 20 mixed vigorously for 1 minute. For separation, the reactions were spun for approximately 1 minute at 12 000 rpm and the top phase was transferred into a fresh reaction vessel. Each reaction was treated with 250 μ l of ethanol. The reactions were mixed thoroughly and incubated for at least 15 minutes 25 on dry ice/methanol. To precipitate the RNA, reactions were spun for 20 minutes at 12 000 rpm and 40°C. The supernatant was discarded. The pellet was dried in vacuo for 15 minutes and resuspended in 10 μ l Each reaction was treated with 10 μ l of 30 denaturing loading buffer. The free GTP was separated from the transcript formed by means of denaturing polyacrylamide gel electrophoresis on an 8% gel with 7 M urea. The RNA transcripts formed upon transcription with HeLa nuclear extract, in denaturing loading 35 buffer, were heated for 10 minutes at 90°C and 10 μ l aliquots were applied immediately to the freshly washed pockets. The electrophoresis was run at 40 mA. The amount of the radioactive SSRNA formed upon

- 15 -

transcription was analyzed after electrophoresis with the aid of an Instant Imager.

Fig. 3 shows the radioactive RNA from a representative 5 test, shown by means of the Instant Imager. Samples obtained from the following transcription reactions were applied:

10 Lane 1: 50 ng of template DNA, without dsRNA; Lane 3: 50 ng of template DNA, 0.5 μ g of dsRNA YFP; Lane 4: 50 ng of template DNA, 1.5 µg of dsRNA YFP; Lane 5: 50 ng of template DNA, 3 μ g of dsRNA YFP; Lane 6: 50 ng of template DNA, 5 μ g of dsRNA YFP; 15 Lane 7: without template DNA, 1.5 dsRNA YFP; Lane 8: 50 ng of template DNA, without dsRNA; Lane 9: 50 ng of template DNA, 0.5 μ g of dsRNA CMV5;

Lane 1: without template DNA, without dsRNA;

Lane 10: 50 ng of template DNA, 1.5 μ g of dsRNA CMV5; Lane 11: 50 ng of template DNA, 3 μ g of dsRNA CMV5;

20 Lane 12: 50 ng of template DNA, 5 μ g of dsRNA CMV5;

It emerged that the amount of transcript was reduced markedly in the presence of dsRNA with sequence homology in comparison with the control 25 without dsRNA and with the reactions with dsRNA YFP without sequence homology. The positive control in lane 2 shows that radioactive transcript was formed upon the in-vitro transcription with HeLa nuclear extract. The reaction is used for comparison with the transcription 30 reactions which had been incubated in the presence of dsRNA. Lanes 3 to 6 show that the addition of nonsequentially-specific dsRNA YFP had no effect on the amount of transcript formed. Lanes 9 to 12 show that the addition of an amount of between 1.5 and 3 μg of sequentially-specific dsRNA CMV5 leads to a reduction in the amount of transcript formed. In order to exclude that the effects observed are based not on the dsRNA but on any contamination which might have been carried along accidentally during the preparation of the dsRNA,

a further control was carried out. Single-stranded RNA was transcribed as described above and subsequently subjected to the RNase treatment. It was demonstrated by means of native polyacrylamide gel electrophoresis 5 that the ssRNA had been degraded completely. This reaction was subjected to phenol extraction and ethanol precipitation and subsequently taken up in PE buffer, as were the hybridization reactions. This gave a sample which contained no RNA but had been treated with the same enzymes and buffers as the dsRNA. Lane 8 shows that the addition of this sample had no effect on transcription. The reduction of the transcript upon addition of sequence-specific dsRNA can therefore be ascribed unequivocally to the dsRNA itself. reduction of the amount of transcript of a gene in the presence of dsRNA in a human transcription system indicates an inhibition of the expression of the gene in question. This effect can be attributed to a novel mechanism caused by the dsRNA.

20

30

10

15

Use example 2:

The test system used for these in-vivo experiments was the murine fibroblast cell line NIH3T3, ATCC CRL-1658. The YFP gene was introduced into the nuclei with the aid of microinjection. Expression of YFP was studied 25 under the effect of simultaneously cotransfected dsRNA with sequence homology. This dsRNA YFP shows homology with the 5'-region of the YFP gene over a length of 315 bp. The nucleotide sequence of a strand of the sequence listing dsrna yrp is shown in Evaluation under the fluorescence microscope was carried out 3 hours after injection with reference to the greenish-yellow fluorescence of the YFP formed.

Construction of the template plasmid, and preparation 35 of the dsRNA:

A plasmid was constructed following the same principle as described in use example 1 to act as template for the production of the YFP dsRNA by means of T7 and SP6

in-vitro transcription. Using the primer Eco_T7_YFP as shown in sequence listing No. 6 and Bam_SP6_YFP as shown in sequence listing No. 7, the desired gene fragment was amplified by PCR and used analogously to the above description for preparing the dsRNA. The dsRNA YFP obtained is identical to the dsRNA used in use example 1 as non-sequence-specific control.

A dsRNA linked chemically at the 3' end of the RNA as 10 shown in sequence listing No. 8 to the 5' end of the complementary RNA via a C18 linker group was prepared (L-dsRNA). To this end, synthons modified by disulfide bridges were used. The 3'-terminal synthon is bound to the solid support via the 3' carbon with an aliphatic 15 linker group via a disulfide bridge. In the 5'-terminal synthon of the complementary oligoribonucleotide which is complementary to the 3'-terminal synthon of the one oligoribonucleotide, the 5'-trityl protecting group is bound via a further aliphatic linker and a disulfide 20 bridge. Following synthesis of the two single strands, removal of the protecting groups and hybridization of the complementary oligoribonucleotides, the groups which form are brought into spatial vicinity. The single strands are linked to each other by oxidation via their aliphatic linkers and a disulfide 25 bridge. This is followed by purification with the aid of HPLC.

Preparation of the cell cultures:

30 The cells were incubated in DMEM supplemented with 4.5 g/l glucose, 10% fetal bovine serum in culture dishes at 37°C under a 7.5% CO₂ atmosphere and passaged before reaching confluence. The cells were detached with trypsin/EDTA. To prepare for microinjection, the cells were transferred into Petri dishes and incubated further until microcolonies formed.

Microinjection:

For the microinjection, the culture dishes were removed incubator for approximately 10 minutes. Approximately 50 nuclei were injected singly reaction within a marked area using the AIS microinjection system from Carl Zeiss, Göttingen, Germany. The cells were subsequently incubated for three more hours. For the microinjection, borosilicate glass capillaries from Hilgenberg GmbH, Malsfeld, Germany, with a diameter of less than 0.5 μm at the tip 10 were prepared. The microinjection was carried out using a micromanipulator from Narishige Scientific Instrument Lab., Tokyo, Japan. The injection time was 0.8 seconds and the pressure was approximately 100 hPa. transfection was carried out using the plasmid pCDNA 15 YFP, which contains an approximately 800 bp BamHI/EcoRI fragment with the YFP gene in vector pcDNA3. The samples injected into the nuclei contained 0.01 $\mu g/\mu l$ of pCDNA-YFP and Texas Red coupled to dextran-70000 in 20 14 mM NaCl, 3 mM KCl, 10 mM KPO₄ [sic], ph 7.5. Approximately 100 pl of RNA with a concentration of 1 μM or, in the case of the L-dsRNA, 375 μM were additionally added.

- The cells were studied under a fluorescence microscope with excitation with the light of the excitation wavelength of Texas Red, 568 nm, or of YFP, 488 nm. Individual cells were documented by means of a digital camers. Figures 4a-e show the result for NIH3T3 cells.

 30 In the cells shown in Fig. 4a, sense-YFP-ssRNA has been
- In the cells shown in Fig. 4a, sense-YFP-ssRNA has been injected, in Fig. 4b antisense-YFP-ssRNA, in Fig. 4c dsRNA-YFP, in Fig. 4d no RNA and in Fig. 4e L-dsRNA.
- The field on the left shows in each case the fluorescence of cells with excitation at 568 nm. The fluorescence of the same cells at an excitation of 488 nm is seen on the right. The Texas Red fluorescence of all the cells shown demonstrates that the injection solution had been applied successfully into the nuclei

CA 02359180 2001-07-18

- 19 -

and that cells with successful hits were still alive after three hours. Dead cells no longer showed Texas Red fluorescence.

5 The right fields of each of figures 4a and 4b show that YFP expression was not visibly inhibited when the single-stranded RNA was injected into the nuclei. The right field of Fig. 4c shows cells whose fluorescence was no longer detectable after 10 injection of dsRNA-YFP. Fig. 4d shows cells into which no RNA had been injected, as control. The cell shown in fig. 4e shows YFP fluorescence which can no longer be detected owing to the injection of the L-dsRNA which shows regions with sequence homology to the YFP gene. This result demonstrates that even shorter dsRNAs can 15 be used for specifically inhibiting gene expression in mammals when the double strands are stabilized by chemically linking the single strands.

190

Literature:

5

 $I^{!}$

(

- Asanuma, H., Ito, T., Yoshida, T., Liang, X. & Komiyama, M. (1999). Photoregulation der Bildung und Dissoziation eines DNA-Duplexes durch cis-trans-Isomerisierung einer Azobenzoleinheit. Angew. Chem. 111, 2547-2549.
- Azhayeva, E., Azhayev, A., Auriola, S., Tengvall, U., Urtti, A. & Lönnberg, H. (1997). Inhibitory properties of double helix forming circular oligonucleotides. *Nucl. Acids Res.* 25, 4954-4961.
- Castelli, J., Wood, K.A. & Youle, R.J. (1998). The 2-5A system in viral infection and apoptosis. *Biomed. Pharmacother*. 52, 386-390.
- Dolinnaya, N.G., Blumenfeld, M., Merenkova, I., Oretskaya, T.S., Krynetskaya, N.F., Ivanovskaya, M.G., Vasseur, M. & Shabarova, Z.A. (1993). Oligonucleotide circularization by template-directed chemical ligation. Nucl. Acids Res. 21, 5403-5407.
- Expert-Bezancon, A., Milet, M. & Carbon, P. (1983). Precise localization of several covalent RNA-RNA cross-link in Escherichia coli 165 RNA. Eur. J. Biochem. 136, 267-274.
- Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E. & Mello, C.C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.

 Nature 391, 806-811.

196

- Gao, H., Yang, M., Patel, R. & Cook, A.F. (1995). Circulaization of oligonucleotides by disulfide bridge formation.

 Nucl. Acids Res. 23, 2025-2029.
- 5 Gryaznov, S.M. & Letsinger, R.L. (1993). Template controlled coupling and recombination of oligonucleotide blocks containing thiophosphoryl groups. *Nucl. Acids Res.* 21, 1403-1408.
- 10 Kaufman, R.J. (1999). Double-stranded RNA-activated protein kinase mediates virus-induced apoptosis: A new role for an old actor. Proc. Natl. Acad. Sci. USA 96, 11693-11695.
- Lipson, S.E. & Hearst, J.E. (1988). Psoralen cross-linking of ribosomal RNA. In Methods in Enzymology Anonymous pp. 330-341.
- Liu, Z.R., Sargueil, B. & Smith, C.W. (1998). Detection of a novel ATP-dependent cross-linked protein at the 5' splice site-U1 small nuclear RNA duplex by methylene blue-mediated photo-cross-linking. Mol. Cell. Biol. 18, 6910-6920.
- Micura, R. (1999). Cyclic oligoribonucleotides (RNA) by solidphase synthesis. *Chem. Eur. J.* 5, 2077-2082.
- Skripkin, E., Isel, C., Marquet, R., Ehresmann, B. & Ehresmann, C. (1996). Psoralen crosslinking between human immunodeficiency virus type 1 RNA and primer tRNA₃^{Lys}. Nucl. Acids Res. 24, 509-514.

Ė

ί.,

190

- Wang, S. & Kool, E.T. (1994). Circular RNA oligonucleotides.

 Synthesis, nucleic acid binding properties, and a comparison with circular DNAs. Nucl. Acids Res. 22, 2326-2333.
- 5 Wang, Z. & Rana, T.M. (1996). RNA conformation in the Tat-TAR complex determined by site-specific photo-cross-linking.

 Biochem. 35, 6491-6499.
- Watkins, K.P. & Agabian, N. (1991). In vivo UV cross-linking of U snRNAs that paticipate in trypanosome trans-splicing. Genes & Development 5, 1859-1869.
- Wengel, J. (1999). Synthesis of 3'-C- and 4'-C-branched oligodeoxynucleotides and the development of locked nucleic acid (LNA). Acc. Chem. Res. 32, 301-310.
- Zwieb, C., Ross, A., Rinke, J., Meinke, M. & Brimacombe, R. (1978). Evidence for RNA-RNA cross-link formation in Escherichia coli ribosomes. Nucl. Acids Res. 5, 2705-2720.

WO 00/44895

PCT/DE00/00244

1

Sequence	Listi	ing
----------	-------	-----

- <110> Kreutzer Dr., Roland
 Limmer Dr., Stephan
- <120> Method and medicament for inhibiting the expression of a given gene
- <130> 400968
- <140>
- <141>
- <150> 199 03 713.2
- <151> 1999-01-30
- <150> 199 56 568.6
- <151> 1999-11-24
- <160> 8
- <170> PatentIn Ver. 2.1
- <210> 1
- <211> 45
- <212> DNA
- <213> Artificial Sequence
- <220>

<400> 1
ggaattetaa tacgaeteae tatagggega teagatetet agaag

45

<210> 2

PCT/DE00/00244 WO 00/44895 2 50 <211> DNA <212> Artificial Sequence <213> <220> Description of the artificial sequence: <223> cleavage site, RNA Polymerase SP6 BamHI promoter <400> 2 gggatccatt taggtgacac tatagaatac ccatgatcgc gtagtcgata 50 3 <210> 340 <211> <212> RNA Artificial Sequence <213> <220> Description of the artificial sequence: <223> RNA which corresponds to a sequence from the positive control DNA of the HeLa Nuclear from Extract in vitro transcription kit Promega <400> 3 ncadenenen edesdennne endeddneign nnencecedin nesemniene echcedneed eo geaccququa uqaaaucuaa caauqeqebe aucqueauee ueqqeaccqu caeccuqquu 120 dendratice naddennidn nandeeddops endeedddee nenndeddds nanedneegn 180

<210> 4
<211> 363
<212> DNA
<213> Artificial Sequence

dennedenne anddadecse nanedsense dedancyndd

<220>

10

uccascages vegecagues cusuggegus cugevagege vansugegus gaugessium 240 cusugeges ceguvevegg agescugue gaeegewung geegeegees agucevgeus 300

340

PCT/DE00/00244

WO 00/44895

3

Calculation of the artificial sequence:
DNA which corresponds to a sequence from the positive control DNA of the HeLa Nuclear Extract in vitro transcription kit from Promega

<400> 4

cangatotot agaagottta atgoggtagt tratcacagt taantigota acgoagicag 60

goacogigta tgaaatotaa caatgogoto atogicatoo teggoacogi caccoligat 120

gotgiaggea taggotiggi taigooggia cigooggico tetigoggia talegiocai 180

toogacagoa togocagica ciaiggogig cigotagogo talaigogii galgoaatti 240

ciaiggogao cogitotogg agoacigico gacogottig googoogoco agicoligot 300

gottogotao tiggagoogo taiguelao gogatoalgo cgacoacaco cgicoligig 360

ato

<210> 5

<211> 315

<212> RNA

<213> Artificial Sequence

<220>

<223> Description of the artificial sequence:
 Sequence from the YFP gene

<400> 5

auggugagea agggegagga geuguncaee ggggugguge ecauceuggu egageuggae 60 ggegaeguaa aeggeeaeaa guneagegug uceggegagg gegagggega ugeeaeeuae 120 ggeaageug eceugaaguu egueugaee aeeggeaage ugeeaeeuae 120 ggeaageug eceugaaguu egueugaee aeeggeaage geaaggega ugeeaeeuae 180 eueggugaeea eceugaeeua eggegugeag ugeeaeeaee 180 geaaggeaeae ecaeaugaag 240 gaaggeaega aegge 315

<210> 6

<211> 52

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of the artificial sequence:

PCT/	DEOO.	/00244
------	-------	--------

WO 00/44895

4

EcoRI cleavage site, T7 RNA Polymerase promoter, complementary region to the YFP gene

	1
<400> 6	•
ggaetteta	a tacqueteae tataqqqeqa atqqtqaqea aqqqcqaqqa qe 52
<210>	7
<211>	53
<212>	DNA .
<213>	Artificial Sequence
<220>	
<223>	Description of the artificial sequence:
	BamHI cleavage site, SP6 RNA Polymerase
	promoter, complementary region to the YFP gene
<400> 7	(
gggatecat	t taggigadad tatagantad googtogtod tigaagaaga tgg 53
	•
<210>	8
<211>	21
<212>	RNA
<213>	Artificial Sequence
<220>	
<223>	Description of the artificial sequence:
	RNA which corresponds to a sequence from th
	YFP gene
<400> \$	

nedadenada eddedaedna s

21

International Patent Application No. PCT/DE00/00244 of Dr Roland Kreutzer and Dr Stefan Limmer

New Patent Claims

liposomes.

5

10

- Method for inhibiting the expression of a given target gene in a cell in vitro, where an oligoribonucleotide with double-stranded structure (dsRNA) formed by two separate RNA single strands is introduced into the cell, where one strand of the dsRNA has a region which is complementary to the target gene, characterized in that the complementary region has less than 25
- Method according to claim 1, where the dsRNA is enclosed by micellar structures, preferably by

successive nucleotide pairs.

20

15

- 3. Method according to either of the preceding claims, where the dsRNA is enclosed by natural viral capsids or by chemically or enzymatically produced artificial capsids or structures derived therefrom.
- Method according to one of the preceding claims, where the target gene is expressed in eukaryotic cells.

30

25

5. Method according to one of the preceding claims, where the target gene is selected from the following group: oncogene, cytokin gene, Idprotein gene, development gene, prion gene.

35

 Method according to one of the preceding claims, where the target gene is expressed in pathogenic organisms, preferably in plasmodia.

 Method according to one of the preceding claims, where the target gene is part of a virus or viroid.

5

15

20

- 8. Method according to claim 7, where the virus is a virus or viroid which is pathogenic for humans.
- Method according to claim 7, where the virus or
 viroid is a virus or viroid which is pathogenic
 for animals or phytopathogenic.
 - 10. Method according to one of the preceding claims, where segments of the dsRNA are in double-stranded form.
 - 11. Method according to one of the preceding claims, where the ends of the dsRNA are modified in order to counteract degradation in the cell or dissociation into the single strands.
- 12. Method according to one of the preceding claims, where the cohesion of the double-stranded structure, which is caused by the complementary nucleotide pairs, is increased by at least one, preferably two, further chemical linkage(s).
- 13. Method according to one of the preceding claims, where the chemical linkage is formed by a covalent or ionic bond, a hydrogen bond, hydrophobic interactions, preferably van-der-Waals or stacking interactions, or by metal-ion coordination.
- 14. Method according to one of the preceding claims,
 35 where the chemical linkage is generated at at
 least one, preferably both, ends of the doublestranded structure.

AMENDED SHEET

**

15. Method according to one of the preceding claims, where the chemical linkage is formed by means of one or more compound groups, the compound groups preferably being poly(oxyphosphinicooxy-1,3-propanediol) and/or polyethylene glycol chains.

5

- 16. Method according to one of the preceding claims, where the chemical linkage is formed by purine analogs used in the double-stranded structure in place of purines.
- 17. Method according to one of the preceding claims, where the chemical linkage is formed by azabenzene units introduced into the double-stranded structure.
- 18. Method according to one of the preceding claims, where the chemical linkage is formed by branched nucleotide analogs used in the double-stranded structure in place of nucleotides.
- 19. Method according to one of the preceding claims, where at least one of the following groups is used for generating the chemical linkage: methylene blue; bifunctional groups, preferably bis(2-chloroethyl)amine; N-acetyl-N'-(p-glyoxyl-benzoyl)cystamine; 4-thiouracil; psoralene.
- 30 20. Method according to one of the preceding claims, where the chemical linkage is formed by thiophosphoryl groups provided at the ends of the double-stranded structure.
- 35 21. Method according to one of the preceding claims, where the chemical linkage at the ends of the double-stranded structure is formed by triple-helix bonds.

- 22. Method according to one of the preceding claims, where at least one 2'-hydroxyl group of the nucleotides of the dsRNA in the double-stranded structure is replaced by a chemical group, preferably a 2'-amino or a 2'-methyl group.
- 23. Method according to one of the preceding claims, where at least one nucleotide in at least one strand of the double-stranded structure is a locked nucleotide with a sugar ring which is chemically modified, preferably by a 2'-0, 4'-C-methylene bridge.
- 15 24. Method according to one of the preceding claims, where the dsRNA is bound to, associated with or surrounded by, at least one viral coat protein which originates from a virus, is derived therefrom or has been prepared synthetically.

20

5

- 25. Method according to one of the preceding claims, where the coat protein is derived from polyomavirus.
- 25 26. Method according to one of the preceding claims, where the coat protein contains the polyomavirus virus protein 1 (VP1) and/or virus protein 2 (VP2).
- 30 27. Method according to one of the preceding claims, where, when a capsid or capsid-type structure is formed from the coat protein, one side faces the interior of the capsid or capsid-type structure.
- 35 28. Method according to one of the preceding claims, where one strand of the dsRNA is complementary to the primary or processed RNA transcript of the target gene.

29. Method according to one of the preceding claims, where the cell is a vertebrate cell or a human cell.

5

10

- 30. Method according to one of the preceding claims, where at least two dsRNAs which differ from each other are introduced into the cell, where at least segments of one strand of each dsRNA are complementary to in each case one of at least two different target genes.
- 31. Method according to one of the preceding claims, where one of the target genes is the PKR gene.

15

- 32. Medicament with at least one oligoribonucleotide with double-stranded structure (dsRNA) formed by two separate RNA single strands for inhibiting the expression of a given target gene, where one
- strand of the dsRNA has a region which is complementary to the target gene, characterized in that
 - the complementary region has less than 25 successive nucleotide pairs.

25

- 33. Medicament according to claim 32, where the dsRNA is enclosed by micellar structures, preferably by liposomes.
- 30 34. Medicament according to either of claims 32 or 33, where the dsRNA is enclosed by natural viral capsids or by chemically or enzymatically produced artificial capsids or structures derived therefrom.

35

35. Medicament according to one of claims 32 to 34, where the target gene can be expressed in eukaryotic cells.

36. Medicament according to one of claims 32 to 35, where the target gene is selected from the following group: oncogene, cytokin gene, Idprotein gene, development gene, prion gene.

5

35

- 37. Medicament according to one of claims 32 to 36, where the target gene can be expressed in pathogenic organisms, preferably in plasmodia.
- 38. Medicament according to one of claims 32 to 37, where the target gene is part of a virus or viroid.
- 15 39. Medicament according to claim 38, where the virus is a virus or viroid which is pathogenic for humans.
- 40. Medicament according to claim 38, where the virus 20 or viroid is a virus or viroid which is pathogenic for animals.
- 41. Medicament according to one of claims 32 to 40, where segments of the dsRNA are in double-stranded form.
- 42. Medicament according to one of claims 32 to 40, where the ends of the dsRNA are modified in order to counteract degradation in the cell or dissociation into the single strands.
 - 43. Medicament according to one of claims 32 to 42, where the cohesion of the double-stranded structure, which is caused by the complementary nucleotide pairs, is increased by at least one, preferably two, further chemical linkage(s).

- 44. Medicament according to one of claims 32 to 43, where the chemical linkage is formed by a covalent or ionic bond, a hydrogen bond, hydrophobic interactions, preferably van-der-Waals or stacking interactions, or by metal-ion coordination.
- 45. Medicament according to one of claims 32 to 44, where the chemical linkage is generated at at least one, preferably both, ends of the double-stranded structure.

5

10

- 46. Medicament according to one of claims 32 to 45, where the chemical linkage is formed by means of one or more compound groups, the compound groups preferably being poly(oxyphosphinicooxy-1,3-propanediol) and/or polyethylene glycol chains.
- 47. Medicament according to one of claims 32 to 46,
 20 where the chemical linkage is formed by purine
 analogs used in the double-stranded structure in
 place of purines.
- 48. Medicament according to one of claims 32 to 47,
 25 where the chemical linkage is formed by azabenzene
 units inserted into the double-stranded structure.
- 49. Medicament according to one of claims 32 to 48, where the chemical linkage is formed by branched nucleotide analogs used in the double-stranded structure in place of nucleotides.
- 50. Medicament according to one of claims 32 to 49, where at least one of the following groups is used for generating the chemical linkage: methylene blue; bifunctional groups, preferably bis(2-chloroethyl)amine; N-acetyl-N'-(p-glyoxylbenzoyl)-cystamine; 4-thiouracil; psoralene.

51. Medicament according to one of claims 32 to 50, where the chemical linkage is formed by thiophosphoryl groups provided at the ends of the double-stranded structure.

5

10

- 52. Medicament according to one of claims 32 to 51, where the chemical linkage are [sic] triple-helix bonds provided at the ends of the double-stranded structure.
- 53. Medicament according to one of claims 32 to 52, where at least one 2'-hydroxyl group of the nucleotides of the dsRNA in the double-stranded structure is replaced by a chemical group, preferably a 2'-amino or a 2'-methyl group.
- 54. Medicament according to one of claims 32 to 53, where at least one nucleotide in at least one strand of the double-stranded structure is a locked nucleotide with a sugar ring which is chemically modified, preferably by a 2'-0, 4'-C-methylene bridge.
- 25 55. Medicament according to one of claims 32 to 54, where the dsRNA is bound to, associated with or surrounded by, at least one viral coat protein which originates from a virus, is derived therefrom or has been prepared synthetically.
- 30
 56. Medicament according to one of claims 32 to 55, where the coat protein is derived from the polyomavirus.
- 35 57. Medicament according to one of claims 32 to 56, where the coat protein contains the polyomavirus virus protein 1 (VP1) and/or virus protein 2 (VP2).

58. Medicament according to one of claims 32 to 57, where, when a capsid or capsid-type structure is formed from the coat protein, one side faces the interior of the capsid or capsid-type structure.

5

10

15

25

30

- 59. Medicament according to one of claims 32 to 58, where one strand of the dsRNA is complementary to the primary or processed RNA transcript of the target gene.
- 60. Medicament according to one of claims 32 to 59, where the cell is a vertebrate cell or a human cell.
- 61. Medicament according to one of claims 32 to 60, where at least two dsRNAs which differ from each other are contained in the medicament, where at least segments of one strand of each dsRNA are complementary to in each case one of at least two different target genes.
 - 62. Medicament according to claim 61, where one of the target genes is the PKR gene.
 - 63. Active ingredient with at least one oligoribonucleotide with double-stranded structure (dsRNA) formed by two separate RNA single strands for inhibiting the expression of a given target gene, where one strand of the dsRNA has a region which is complementary to the target gene, and where the target gene is part of a phytopathogenic virus or viroid,
- characterized in that

 the complementary region has less than 25 successive nucleotide pairs.

...

- 64. Active ingredient according to claim 63, where the target gene can be expressed in eukaryotic cells.
- 65. Active ingredient according to claim 63 or 64, where segments of the dsRNA are in double-stranded form.
- 66. Active ingredient according to one of claims 63 to 65, where the ends of the dsRNA are modified in order to counteract degradation in the cell or dissociation into the single strands.
- 67. Active ingredient according to one of claims 63 to 66, where the cohesion of the double-stranded structure, which is caused by the complementary nucleotide pairs, is increased by at least one, preferably two, further chemical linkage(s).
- 68. Active ingredient according to one of claims 63 to
 20 67, where the chemical linkage is formed by a
 covalent or ionic bond, a hydrogen bond,
 hydrophobic interactions, preferably van-der-Waals
 or stacking interactions, or by metal-ion
 coordination.
- 69. Active ingredient according to one of claims 63 to 68, where the chemical linkage is generated at at least one, preferably both, ends of the double-stranded structure.

30

35

70. Active ingredient according to one of claims 63 to 69, where the chemical linkage is formed by means of one or more compound groups, the compound groups preferably being poly(oxyphosphinicooxy-1,3-propanediol) and/or polyethylene glycol chains.

- 71. Active ingredient according to one of claims 63 to 70, where the chemical linkage is formed by purine analogs used in the double-stranded structure in place of purines.
- 72. Active ingredient according to one of claims 63 to 71, where the chemical linkage is formed by azabenzene units inserted into the double-stranded structure.
- 73. Active ingredient according to one of claims 63 to 72, where the chemical linkage is formed by branched nucleotide analogs used in the doublestranded structure in place of nucleotides.

10

15

- 74. Active ingredient according to one of claims 63 to 73, where at least one of the following groups is used for generating the chemical linkage: methylene blue; bifunctional groups, preferably bis(2-chloroethyl)amine; N-acetyl-N'-(p-glyoxyl-benzoyl)cystamine; 4-thiouracil; psoralene.
- 75. Active ingredient according to one of claims 63 to 74, where the chemical linkage is formed by thiophosphoryl groups provided at the ends of the double-stranded structure.
- 76. Active ingredient according to one of claims 63 to
 75, where the chemical linkage are triple-helix
 30 bonds provided at the ends of the double-stranded structure.
- 77. Active ingredient according to one of claims 63 to 76, where at least one 2'-hydroxyl group of the nucleotides of the dsRNA in the double-stranded structure is replaced by a chemical group, preferably a 2'-amino or a 2'-methyl group.

- 78. Active ingredient according to one of claims 63 to 77, where at least one nucleotides at least one strand of the double-stranded structure is a locked nucleotide with a sugar ring which is chemically modified, preferably by a 2'-0, 4'-C-methylene bridge.
- 79. Active ingredient according to one of claims 63 to 78, where one strand of the dsRNA is complementary to the primary or processed RNA transcript of the target gene.
- 80. Active ingredient according to one of claims 63 to 79, where at least two dsRNAs which differ from each other are contained in the active ingredient, where at least segments of one strand of each dsRNA are complementary to in each case one of at least two different target genes.
- 20 81. Use of an oligoribonucleotide with double-stranded structure (dsRNA) formed by two separate RNA single strands or preparing a medicament or active ingredient for inhibiting the expression of a given target gene, where one strand of the dsRNA has a region which is complementary to the target gene,

characterized in that
the complementary region has less than 25
successive nucleotide pairs.

30

5

- 82. Use according to claim 81, where the dsRNA is enclosed by micellar structures, preferably by liposomes.
- 35 83. Use according to either of claims 81 or 82, where the dsRNA is enclosed by natural viral capsids or by chemically or enzymatically produced artificial capsids or structures derived therefrom.

- 84. Use according to one of claims 81 to 83, where the target gene can be expressed in eukaryotic cells.
- 5 85. Use according to one of claims 81 to 84, where the target gene is selected from the following group: oncogene, cytokin gene, Id-protein gene, development gene, prion gene.
- 10 86. Use according to one of claims 81 to 85, where the target gene can be expressed in pathogenic organisms, preferably in plasmodia.
- 87. Use according to one of claims 81 to 86, where the target gene is part of a virus or viroid.
 - 88. Use according to claim 87, where the virus is a virus or viroid which is pathogenic for humans.
- 20 89. Use according to claim 87, where the virus or viroid is a virus or viroid which is pathogenic for animals or phytopathogenic.
- 90. Use according to one of claims 81 to 89, where segments of the dsRNA are in double-stranded form.

30

35

- 91. Use according to one of claims 81 to 90, where the ends of the dsRNA are modified in order to counteract degradation in the cell or dissociation into the single strands.
- 92. Use according to one of claims 81 to 91, where the cohesion of the double-stranded structure, which is caused by the complementary nucleotide pairs, is increased by at least one, preferably two, further chemical linkage(s).

93. Use according to one of claims 81 to 92, where the chemical linkage is formed by a covalent or ionic bond, a hydrogen bond, hydrophobic interactions, preferably van-der-Waals or stacking interactions, or by metal-ion coordination.

5

10

30

35

- 94. Use according to one of claims 81 to 93, where the chemical linkage is generated at at least one, preferably both, ends of the double-stranded structure.
- 95. Use according to one of claims 81 to 94, where the chemical linkage is formed by means of one or more compound groups, the compound groups preferably being poly(oxyphosphinicooxy-1,3-propanediol) and/or polyethylene glycol chains.
- 96. Use according to one of claims 81 to 95, where the chemical linkage is formed by purine analogs used in the double-stranded structure in place of purines.
- 97. Use according to one of claims 81 to 96, where the chemical linkage is formed by azabenzene units introduced into the double-stranded structure.
 - 98. Use according to one of claims 81 to 97, where the chemical linkage is formed by branched nucleotide analogs used in the double-stranded structure in place of nucleotides.
 - 99. Use according to one of claims 81 to 98, where at least one of the following groups is used for generating the chemical linkage: methylene blue; bifunctional groups, preferably bis(2-chloroethyl)amine; N-acetyl-N'-(p-glyoxylbenzoyl)-cystamine; 4-thiouracil; psoralene.

AMENDED SHEET

÷

100. Use according to one of claims 81 to 99, where the chemical linkage is formed by thiophosphoryl groups attached to the ends of the double-stranded structure.

101. Use according to one of claims 81 to 100, where the chemical linkage at the ends of the doublestranded structure is formed by triple-helix bonds.

5

20

25

35

- 102. Use according to one of claims 81 to 101, where at least one 2'-hydroxyl group of the nucleotides of the dsRNA in the double-stranded structure is replaced by a chemical group, preferably a 2'-amino or a 2'-methyl group.
 - 103. Use according to one of claims 81 to 102, where at least one nucleotide in at least one strand of the double-stranded structure is a locked nucleotide with a sugar ring which is chemically modified, preferably by a 2'-0, 4'-C-methylene bridge.
 - 104. Use according to one of claims 81 to 103, where the dsRNA is bound to, associated with or surrounded by, at least one viral coat protein which originates from a virus, is derived therefrom or has been prepared synthetically.
- 105. Use according to one of claims 81 to 104, where 30 the coat protein is derived from polyomavirus.
 - 106. Use according to one of claims 81 to 105, where the coat protein contains the polyomavirus virus protein 1 (VP1) and/or virus protein 2 (VP2).
 - 107. Use according to one of claims 81 to 106, where, when a capsid or capsid-type structure is formed

from the coat protein, one side faces the interior of the capsid or capsid-type structure.

- 108. Use according to one of claims 81 to 107, where one strand of the dsRNA is complementary to the primary or processed RNA transcript of the target gene.
- 109. Use according to one of claims 81 to 108, where the cell is a vertebrate cell or a human cell.
 - 110. Use according to one of claims 81 to 109, where at least two dsRNAs which differ from each other are used, where at least segments of one strand of each dsRNA are complementary to in each case one of at least two different target genes.
 - 111. Use according to claim 110, where one of the target genes is the PKR gene.

20

15

112. Use according to one of claims 81 to 111, where the medicament is injectable into the bloodstream or into the interstitium of the organism to undergo therapy.

25

- 113. Use according to one of claims 81 to 112, where the dsRNA is taken up into bacteria or microorganisms.
- 30 114. Use of a vector for coding at least one oligoribonucleotide with double-stranded structure (dsRNA) formed by two separate RNA single strands for preparing a medicament or active ingredient for inhibiting the expression of a given target gene, where one strand of the dsRNA has a region which is complementary to the target gene, characterized in that

the complementary region has less than 25 successive nucleotide pairs.

- 115. Use according to claim 114, where the target gene can be expressed in eukaryotic cells.
 - 116. Use according to claim 114 or 115, where the target gene is selected from the following group: oncogene, cytokin gene, Id-protein gene, development gene, prion gene.

10

15

25

- 117. Use according to one of claims 114 to 116, where the target gene can be expressed in pathogenic organisms, preferably in plasmodia.
- 118. Use according to one of claims 114 to 117, where the target gene is part of a virus or viroid.
- 119. Use according to claim 118, where the virus is a virus or viroid which is pathogenic for humans.
 - 120. Use according to claim 118, where the virus or viroid is a virus or viroid which is pathogenic for animals or phytopathogenic.
 - 121. Use according to one of claims 114 to 120, where segments of the dsRNA are in double-stranded form.
- 122. Use according to one of claims 114 to 121, where
 30 one strand of the dsRNA is complementary to the
 primary or processed RNA transcript of the target
 gene.
- 123. Use according to one of claims 114 to 122, where the cell is a vertebrate cell or a human cell.
 - 124. Use according to one of claims 114 to 123, where at least two dsRNAs which differ from each other

 AMENDED SHEET

CA 02359180 2001-07-18

- 37 -

are used, where at least segments of one strand of each dsRNA are complementary to in each case one of at least two different target genes.

5 125. Use according to claim 125, where one of the target genes is the PKR gene.

Fetherstonhaugh & Co. Ottawa, Canada Patent Agents

PCT/DE00/00244

WO 00/44895

1/5

Fig. 1

WO 00/44895

PCT/DE00/00244

2/5

Fig. 2

WD 00/44895

3/5

Fig. 3

WC 0C/44895

PCT/DE00/00244

4/5

WO 00/44895

PCT/DE00/00244

5/5

<210> 2 <211> 50 <212> DNA

40 <213> Künstliche Sequenz

```
SEQUENZPROTOKOLL
   <110> Kreutzer Dr., Roland
         Limmer Dr., Stephan
 5
    <120> Verfahren und Medikament zur Hemmung der Expression
          eines vorgegebenen Gens
    <130> 400968
10
    <140>
    <141>
    <150> 199 03 713.2
15 <151> 1999-01-30
    <150> 199 56 568.6
    <151> 1999-11-24
20 <160> 8
    <170> PatentIn Ver. 2.1
    <210> 1
25 <211> 45
    <212> DNA
    <213> Künstliche Sequenz
    <220>
30 ~ <223> Beschreibung der künstlichen Sequenz:
          EcoRI-Schnittstelle, T7-RNA-Polymerasepromotor
    ggaattctaa tacgactcac tatagggcga tcagatctct agaag
                                                                       45
35
```

×

PCT/DE00/00244

<220>

<223> Beschreibung der künstlichen Sequenz: BamHI-Schnittstelle, SP6-RNA-Polymerasepromotor

5 <400> 2

gggatccatt taggtgacac tatagaatac ccatgatcgc gtagtcgata

50

<210> 3

10 <211> 340

<212> RNA

<213> Künstliche Sequenz

<220>

- 15 <223> Beschreibung der künstlichen Sequenz: RNA, die einer Sequenz aus der 'positive control DNA' des HeLaScribe Nuclear Extract in vitro Transkriptionskits der Firma Promega entspricht
- 20 <400> 3

ucagaucucu agaagcuuua augcgguagu uuaucacagu uaaauugcua acgcagucag 60 gcaccgugua ugaaaucuaa caaugcgcuc aucgucaucc ucggcaccgu cacccuggau 120 gcuguaggca uaggcuuggu uaugccggua cugccgggcc ucuugcggga uaucguccau 180 uccgacagca ucgccaguca cuauggcgug cugcuagcgc uauaugcguu gaugcaauuu 240 gcuucgcuac uuggagcac uaucgacuac gaccgcuuug gccgccgcc aguccugcuc 300 gcuucgcuac uuggagcac uaucgacuac gcgaucaugg 340

<210> 4

30 <211> 363

<212> DNA

<213> Künstliche Sequenz

<220>

- 35 <223> Beschreibung der künstlichen Sequenz: DNA, die einer Sequenz aus der "positive control DNA" des HeLaScribe Nuclear Extract in vitro Transkriptionskits der Firma Promega entspricht
- 40 <400> 4 tcagatctct agaagcttta atgcggtagt ttatcacagt taaattgcta acgcagtcag 60

	gcaccgtgta tgaaatctaa caatgcgete atcgtcatcc teggcaccgt caccetggat	120
	getgtaggca taggettggt tatgccggta ctgccgggcc tettgcggga tatcgtccat	180
	teegacagea tegecagtea etatggegtg etgetagege tatatgegtt gatgeaattt	240
	ctatgcgcac ccgttctcgg agcactgtcc gaccgctttg gccgccgccc agtcctgctc	300
5	gettegetae ttggagecae tategaetae gegateatgg egaceaeaee egteetgtgg	360
	atc	363
	<210> 5	
10	<211> 315	
	<212> RNA	
	<213> Künstliche Sequenz	
٠		
	<220>	
15	<223> Beschreibung der künstlichen Sequenz: Sequenz aus	
	dem YFP-Gen	
	<400> 5	
	andândwace wadacawada acnânnewec adadnadanac cewneendan edwacnadac	
20	ggcgacguaa acggccacaa guucagcgug uccggcgagg gcgagggcga ugccaccuac	
	dacardenda ccendarann canenderce recaderade ndecedndee endaceeree	
	cucgugacca cccugaccua cggcgugcag ugcuucagcc gcuaccccga ccacaugaag	
	cagcacgacu ucuucaaguc cgccaugccc gaaggcuacg uccaggagcg caccaucuuc	
٥.	uucaaggacg acggc	315
25	•	
	<210> 6	
	<211> 52	
	<212> DNA	
30		
50	Tally numberature begannia	
	<220>	
	<223> Beschreibung der künstlichen Sequenz:	
	EcoRI-Schnittstelle, T7-RNA-Polymerasepromotor,	
35	komplementärer Bereich zum YFP-Gen	
	/ Company of the contract of t	
	<400> 6	
	ggaattetaa tacgaeteae tatagggega atggtgagea agggegagga ge .	52
	20	
40	•	

40

<210> 7

```
<211> 53
<212> DNA
<213> Künstliche Sequenz
```

5 <220>

<223> Beschreibung der künstlichen Sequenz:

BamHI-Schnittstelle, SP6-RNA-Polymerasepromotor,
komplementärer Bereich zum YFP-Gen

10 <400> 7

gggatccatt taggtgacac tatagaatac gccgtcgtcc ttgaagaaga tgg

53

<210> 8

15 <211> 21

<212> RNA

<213> Künstliche Sequenz

<220>

20 <223> Beschreibung der künstlichen Sequenz: RNA, die einer Sequenz aus dem YFP-Gen entspricht

<400> 8

ucgagcugga cggcgacgua a

21

25

INTERNATIONAL SEARCH REPORT

Inti. Jones Application No PCT/DE 00/00244

	PCT/DE 00/00244				
IPC 7	FICATION OF SUBJECT MATTER C12N15/11 A61K31/713				
According to	o international Petent Classification (IPC) or to both national clas	stification and IPC			
B. FIELDS	SEARCHED				
Minimum do IPC 7	cumentation searched (classification system followed by classifi A61K	ication symbols)			
Documental	tion searched other than minimum documentation to the extent t	nat such documents are included in the Selds	searched		
Electronic d	ata base consulted during the international search (name of dat	a base and, where practical, search terms use	od)		
	ENT'S CONSIDERED TO BE RELEVANT				
Category *	Citation of document, with indication, where appropriate, of the	e relevant passages	Relevant to claim No.		
X	WO 92 19732 A (GENSET) 12 November 1992 (1992-11-12)		1-29, 32-34, 37-43, 45-66, 69-71, 74-80, 82-102, 105-108,		
Y	abstract, page 11 lines 18-28 pages 12-13, page 15 line 22 bi pages 33 and 46, figures 1-6	s page 20 line 1,	112 1-35, 37-43, 45-72, 74-80, 82-108, 110-112		
		-/			
		,			
لتا	ner documents are listed in the continuation of box C.	X Petent family members are listed	d in annex.		
"A" docume consider to filing de "L" docume which i citation "O" docume other n" "P" docume later the	nt which may throw doubts on priority claim(s) or is cited to establish the publication date of another no rother special reason (as specified) ant referring to an oral disclosure, use, exhibition or	T' later document published efter the interprint or priority date and not in conflict will ofted to understand the principle or tinvention "X' document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the different of particular relevance; the cannot be considered to involve an indocument is combined with one or ments, such combined with one or ments, such combined with one or of ments, such combined with one or of the art. "&" document member of the same patent	In the application but heavy underlying the claimed invention of the considered to coursert its taken alone claimed invention more other such doou-ous to a person skilled at tamily		
	June 2000	Date of mailing of the international sc 20/06/2000	rarch report		
Name and r	nailing address of the ISA European Pateni Office, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,	Authorized officer Gore, V			
	Fax: (+31-70) 340-3016	dore, v			

INTERNATIONAL SEARCH REPORT

tris. .tional Application No PCT/DE 00/00244

Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT togony * Citation of document, with Indication, where appropriate, of the relevant passages Relevant to claim No.					
oury	consists in december, with practition, where appropriate, of the relevant passages	Relevant to claim No.			
	WO 98 05770 A (ROTHBARTH KARSTEN ; JOSWIG GABY (DE); WERNER DIETER (DE); SCHUBERT) 12 February 1998 (1998-02-12)	1-29, 32-34, 37-43, 45-66, 69-71, 74-80, 82-102, 105-108, 112			
•	abstract, pages 2-3	1-35, 37-43, 45-72, 74-80, 82-108, 110-112			
,P	WO 99 32619 A (CARNEGIE INST OF WASHINGTON ; MONTGOMERY MARY K (US); FIRE ANDREW () 1 July 1999 (1999-07-01)	1-29, 32-34, 37-43, 45-66, 69-71, 74-80, 82-102, 105-108,			
	abstract, pages 6, 11-12, 15-17	1112			
	UHLMANN E ET AL: "ANTISENSE OLIGONUCLEOTIDES: A NEW THERAPEUTIC PRINCIPLE" CHEMICAL REVIEWS,US,AMERICAN CHEMICAL SOCIETY. EASTON, vol. 90, no. 4, 1 June 1990 (1990-06-01), pages 543-584, XP000141412 ISSN: 0009-2665 pages 558, 565-566, 574-575	15-28, 52-65, 88-101			
	MADHUR K. ET AL.: "Antisense RNA: function and fate of duplex RNA in cells of higher eukaryotes." MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, vol. 62, December 1998 (1998-12), pages 1415-1434, XP000909741 * pages 1422-1423 and 1428 *	1-112			

INTERNATIONAL SEARCH REPORT

information on patent family members

Intr. Jonel Application No PCT/DE 00/00244

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO 9219732	A	12-11-1992	FR AU AU CA EP JP	2675803 A 660679 B 1759692 A 2102229 A 0581848 A 6506834 T	30-10-1992 06-07-1995 21-12-1992 26-10-1992 09-02-1994 04-08-1994
WO 9805770	A	12-02-1998	DE EP	19631919 A 0918853 A	12-02-1998 02-06-1999
WO 9932619	A	01-07-1999	AU	1938099 A	12-07-1999

INTERNATIONALER RECHERCHENBERICHT

Inti. Jonales Algenzeichen
PCT/DE 00/00244

12. November 1992 (1992-11-12) 32-34, 37-43, 45-66, 69-71, 74-80, 82-102, 105-108, 112 1-35, Seiten 12-13, Seite 15 Z.22 bis Seite 20 37-43, Z.1, Seiten 33 und 46, Abbildungen 1-6 * 45-72, 74-80, 82-108, 110-112 1-35, Seiten 12-13, Seiten 15 Z.22 bis Seite 20 37-43, Z.1, Seiten 33 und 46, Abbildungen 1-6 * 45-72, 74-80, 82-108, 110-112 1-35 1-3			i i	101/02 00/	00244
Recombined to the production of the production o	A KLASSI IPK 7	FEDERUNG DES ANMELDUNGSGEGENSTANDES C12N15/11 A61K31/713			
Part	Nach der Int	ternationalen Patantidassifikation (IPIC) oder nach der nationalen (Casa	sifikation und der IPK		
Productiverie aber reicht zum Mindespndatoff gehbendes Veröffertlichungen, soweit diese unter die recherchienten Gebiete heben Withwerd der Internationalen Recherche konautilierte diestrursache Daterberik (Name der Daterberik und evd. verwendiche Suchbogriffe)					
Without der Internationalen Recherche konsultierte delektrorische Datenbank und evit, verwenderte Suchbegriffe) C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Kategoriel Bezeichnung der Veröffentlichung, soweit erhorderlich unter Angabe der in Betrucht kommenden Teile Bez. Anspruch Nr. X W0 92 19732 A (GENSET) 12. November 1992 (1992–11–12) 32–34, 37–43, 45–66, 99–71, 74–80, 82–102, 105–108, 112 Y * Zusammen fassung, Seite 11 Z.18–28, Seiten 12–13, Seite 15 Z.22 bis Seite 20 37–43, Z.1, Seiten 33 und 46, Abbilldungen 1–6 * 45–72, 74–80, 82–108, 110–112 ** Percorder Kategorien von engegebanen Veröffendichungen ** Veröffendichung, die den Jegen ehren Siene der Technik derfertet, ** Percorder Kategorien von engegebanen Veröffendichungen ** Veröffendichung, die den Jegen ehren Siene der Technik derfertet, ** Percorder Kategorien von engegebanen Veröffendichungen ** Veröffendichung, die den Jegen ehren Siene der Technik derfertet, ** Percorder Kategorien von engegebanen Veröffendichungen ** Veröffendichung, die der der Veröffendichungen ** Veröffendichung, die der der Veröffendichungen ** Veröffendichung, die der der Veröffendichungen ** Veröffendichung, die geleginst in keinen Höndlich Offenberung betreit werden ** Veröffendichung der geleginst in veröffendich Verbrung betreit werden ** Veröffendichung der geleginst in veröffendich Verbrung der geleginst veröffen seinen veröffendich veröffen Scharpt geleginsten ** Veröffendichung de geleginst in keinen Höndlichen Offenberung betreit veröffen seinen veröffendichung der geleginsten betreit seinen veröffendich veröffen Scharpt geleginsten betreit und und der Veröffendichung der der Veröffendichung der Ve			•)		
C. ALS WESENTLICH ANGESEHERE UNTERLAGEN Kategorie* Bezeichrung der Veröffenfichung, soweit erforderfich unter Angebe der in Betracht kommenden Teile Bed. Anspruch Nr. 1-29, 32-34, 37-43, 45-66, 69-71, 74-80, 82-102, 105-108, 112 * Zu sammen fas sung, Seite 11 Z.18-28, Seiten 12-13, Seite 15 Z.22 bis Seite 20 37-43, Z.1, Seiten 33 und 46, Abbill dungen 1-6 * * Seiten 12-13, Seite 15 Z.22 bis Seite 20 37-43, Z.1, Seiten 33 und 46, Abbill dungen 1-6 * * Seiten 12-13, Seiten 35 und 46, Abbill dungen 1-6 * * Seiten 12-13, Seiten 35 und 46, Abbill dungen 1-6 * * Seiten 12-13, Seiten 35 und 46, Abbill dungen 1-6 * * Seiten 12-13, Seiten 35 und 46, Abbill dungen 1-6 * * Veröfferdichung, de den signemarien Stand der Fortsetze derfiren, der Fortsetze Seiten 12-12 und mit der Angeber Kategorien von angegeben auch dem kennsten ist. * Sieher Anhang Patentiamile * Veröfferdichung, de den sieher Angeber bedauft auch der Fortsetze Seiten 12-12 und mit der Angeber Kategorien veröfferdicht worden ist. * Veröfferdichung, de gegegeben kill, der einer Oder mach dem kennsten veröfferdicht und eine soder auf einferdien von besonderer Bodaufung de bestepspuchte Erford von Bezenderer Bodaufung der bestehen Angegeben ist geführt. * Veröfferdichung, de seiner Angeber der Veröfferdichung von besonderer Bodaufung der bestehen Veröfferdichung von Besonderer Bodaufung der veröfferdichung von Besonderer Bodaufung von Besonderer Bodaufung einer Veröfferdichung von Besonderer Bodaufung vo	Recharchier	te aber nicht zum Mindestprüfstoff gehörende Veröffantlichungen, sow	weit diese unter die rec	herchierten Geblete t	nden
Retereories Bezeichnung der Veröfferrlichung, soweit ertorderfich unter Angabe der in Betracht kommenden Telle Betr. Ansprüch Nr.	Withrend de	r Internationalen Recherche konsultierte elektronische Datermenk (Na	erne der Datenbank un	nd evd. verwendste S	uchbogriffe)
Retereories Bezeichnung der Veröfferrlichung, soweit ertorderfich unter Angabe der in Betracht kommenden Telle Betr. Ansprüch Nr.	CAISWE	PERITI I'M ANCESEMENT INTEDI AGEM			
X W0 92 19732 A (GENSET) 1-29, 32-34, 37-43, 45-66, 69-71, 74-80, 82-102, 105-108, 112 1-29, 105-108, 12-102, 105-108, 12-102, 105-108, 12-102, 105-108, 12-102, 105-108, 12-102, 105-108, 12-102, 105-108, 12-102, 105-108, 12-102, 105-108, 12-102, 105-108, 12-102, 105-108, 12-102, 105-108, 12-102, 105-108, 12-102, 105-108, 12-102, 105-108, 12-102, 105-108, 12-102, 1			des la Catacht komm	enden Telle	Bet Assessed No.
12. November 1992 (1992–11–12) 32–34, 37–43, 45–66, 69–71, 74–80, 82–102, 105–108, 112 Y * Zusammenfassung, Seite 11 Z.18–28, Seiten 12–13, Seite 15 Z.22 bis Seite 20 37–43, Z.1, Seiten 33 und 46, Abbildungen 1–6 * 45–72, 74–80, 82–108, 110–112 X Siehe Anhang Patenthamilie 45–72, 74–80, 82–108, 110–112 X Siehe Anhang Patenthamilie **Topic of the Prioritial abosenciate bedautasan anazerben ist **Topic of the Prioritial abosenciate bedautary de boarspruchtic Erinda decent anazerben ist of the search of the prioritial abosenciate bedautary of the boarspruchtic firming des prioritial popular anazerben ist of the search of the prioritial abosenciate bedautary of the boarspruchtic firming des prioritial popular anazerben ist of the search of the prioritial popular anazerben ist **Topic of the Prioritial and the prioritial popular anazerben ist of the search of the prioritial popular anazerben ist of the prioritial popular anazerben bescher bescher bescher bescher anazerben bescher vertein anazerben besche		The state of the s	E: OQUBUR KORWII	.,	um. resputit its
Seiten 12–13, Seite 15 Z.22 bis Seite 20 Z.1, Seiten 33 und 46, Abbildungen 1–6 * Weitere Veröffentlichungen sind der Forsetzung von Feld C zu -/ *Besondere Kalsgorien von angegebenen Veröffentlichungen : *Sollare Veröffentlichung, die nach dem intermationalen Anneldedatung : *Sollare Veröffentlichung, die nach dem intermationalen Anneldedatung : *Sollare Veröffentlichung, die nach dem intermationalen Anneldedatung :	X	12. November 1992 (1992-11-12)			32-34, 37-43, 45-66, 69-71, 74-80, 82-102, 105-108,
* Besondere Kategorien von angegebenen Veröffentlichungen : "A' Veröffentlichung, die den allgemeinen Stand der Tachrik definiert, siber nicht als besonders bedautsam anzusenten ist und mit der Anmeidedatum veröffentlicht worden ist und mit der Anmeidedatum veröffentlicht worden ist und mit der Anmeidedatum veröffentlicht worden ist "Yeröffentlichung, die geeignet ist, einen Prioritätsanspruch zweidehalt erscheinen zu lassen, oder dusch die das Veröffentlichungadatum einer anderen im Recherchenberdett genannten Veröffentlichung abegeben ist (wie ausgeführt) "O' Veröffentlichung, die eich auf eine mündlichs Offenbarung, eine Berutzung, eine Ausstalung oder sindere Maßnahmen bezieht den beauszung, eine Ausstalung oder mideren Maßnahmen bezieht den beauszungt, eine Ausstalung oder mideren Maßnahmen bezieht den beauszungt, eine Ausstalung oder mideren Maßnahmen bezieht den beauszungt, eine Ausstalung oder sindere Maßnahmen bezieht den beauszungt, eine Ausstalung oder sindere Maßnahmen bezieht der Veröffentlichung, die vor dem internationalen Anmeidedatum, aber nach den beauszungten Prioritätsdatum veröffentlicht worden ist "Veröffentlichung, die Wertfentlichung mit einer Genemen nach der auf eine mündlichs Offenbarung eine Beautzung, eine Ausstalung oder sindere Maßnahmen bezieht Veröffentlichung, die vor dem internationalen Anmeidedatum, aber nach den beauszungten der beauszungten der besteht werden "Veröffentlichung eine Beautzungt die beanspruchte Erfind. kann nicht als auf erfinderlacher i Etitglicht beruhend betrachtet verden "Veröffentlichung, die vor dem internationalen Anmeidedatum, aber nach den Veröffentlichung mit einer Fachmann nahellegend ist "Veröffentlichung der erfonderlacher i Etitglicht beruhend betrachtet verden "Veröffentlichung der erfonderlacher i Etitglicht beruhend betrachtet verden "Veröffentlichung eine Berutzung ein Berut	Y	Seiten 12-13, Seite 15 Z.22 bis S Z.1, Seiten 33 und 46, Abbildunge	eite 20 n 1-6 *		37-43, 45-72, 74-80, 82-108,
* Besondere Kategorien von angegebenen Veröffentlichungen : "A' Veröffentlichung, die den allgemeinen Stand der Tachrik definiert, siber nicht als besonders bedautsam anzusenten ist und mit der Anmeidedatum veröffentlicht worden ist und mit der Anmeidedatum veröffentlicht worden ist und mit der Anmeidedatum veröffentlicht worden ist "Yeröffentlichung, die geeignet ist, einen Prioritätsanspruch zweidehalt erscheinen zu lassen, oder dusch die das Veröffentlichungadatum einer anderen im Recherchenberdett genannten Veröffentlichung abegeben ist (wie ausgeführt) "O' Veröffentlichung, die eich auf eine mündlichs Offenbarung, eine Berutzung, eine Ausstalung oder sindere Maßnahmen bezieht den beauszung, eine Ausstalung oder mideren Maßnahmen bezieht den beauszungt, eine Ausstalung oder mideren Maßnahmen bezieht den beauszungt, eine Ausstalung oder mideren Maßnahmen bezieht den beauszungt, eine Ausstalung oder sindere Maßnahmen bezieht den beauszungt, eine Ausstalung oder sindere Maßnahmen bezieht der Veröffentlichung, die vor dem internationalen Anmeidedatum, aber nach den beauszungten Prioritätsdatum veröffentlicht worden ist "Veröffentlichung, die Wertfentlichung mit einer Genemen nach der auf eine mündlichs Offenbarung eine Beautzung, eine Ausstalung oder sindere Maßnahmen bezieht Veröffentlichung, die vor dem internationalen Anmeidedatum, aber nach den beauszungten der beauszungten der besteht werden "Veröffentlichung eine Beautzungt die beanspruchte Erfind. kann nicht als auf erfinderlacher i Etitglicht beruhend betrachtet verden "Veröffentlichung, die vor dem internationalen Anmeidedatum, aber nach den Veröffentlichung mit einer Fachmann nahellegend ist "Veröffentlichung der erfonderlacher i Etitglicht beruhend betrachtet verden "Veröffentlichung der erfonderlacher i Etitglicht beruhend betrachtet verden "Veröffentlichung eine Berutzung ein Berut				,	
A Veröfferflichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist ber nicht die besonders bedeutsam anzusehen ist ber nicht des besonders bedeutsam anzusehen ist ber nicht des besonders bedeutsam anzusehen ist ber nicht des besonders bedeutsam anzusehen ist Efrikung zugundellegenden Prinzipe oder der ihr zugundelegenden ist "Averöffentlichung, die geeignet ist, einen Prioritätistanspruch zweidehalt erscheinen zu lessen, oder durch die das Veröffentlichung polege werden aus einem anderen besonderen Grund angegeben ist (wie ausgeührt) "O" Veröffentlichung, die eich auf eine mündliche Offenberung, eine Berutzung, eine Ausstellung oder andere Maßnahmen bezieht Veröffentlichung, die veröffentlichung mit einer oder mehreren erderen Veröffentlichung ihr einen Fachmann naheliegend er Veröffentlichung, die Witglied derseiben Patentamite ist Veröffentlichung, die Witglied derseiben Patentamite ist Dalum des Abschlusses der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentaan 2 NL – 2280 MV Filipsifik Tel. (431–70) 340–2040, Tx. 31 651 epo nl.			X Siehe Anhang	Paterifamilie	
6. Juni 2000 20/06/2000 Name und Postanschrift der Internationalen Recherchenbehörde Europäischse Patentamit, P.B. 5818 Patensaan 2 NL – 2280 HV Följavijk. Tel. (-31-70) 340-2040, Tx. 31 651 epo nl.	"A" Veröffe sber r "E" ålteres Anme "L" Veröffe schely ander soll or ausge of or energy "O" Veröffe dam b	milichung, die den allgemeinen Stand der Technik definiert, licht als besonders bedeutsam anzusehen ist. Dolument, das jedoch erst am oder nach dem internationalen idedatum veröffentlicht worden ist. ntlichung, die geeignet ist, einen Prioritäbsenspruch zweidelhaft er- ten zu lessen, oder durch die das Veröffentlichungsdatum einer en im Recherchenbeitett genannten Veröffentlichung belegt werden der die sus einem anderen besonderen Grund angegeben ist (wie ntlicht) entlichung, die eich auf eine mündliche Offenbarung, lerutzung, eine Ausstellung oder undere Naßnahmen bezieht millichung, die vor dem internationalen Anmeldedatum, aber nach besonspruchten Prioritätsdatum veröffentlicht worden ist	oder dem Priorität Armeldung nicht i Erfindung zugruch Erfindung zugruch Veröffentlichung von kenn allein aufgru- erfinderfacher i ät "Y Veröffentlichungs kenn nicht als auf werden, wern die Veröffentlichungs "å" Veröffentlichung, d	sdahim veröffertlicht kolisiert, sondem nur dellagenden Prinzips in let no besonderer Bedeu nd dieser Veröffertlich geste beruhend betre no besonderer Bedeu erfinderlacher Titigk Veröffertlichung mit n dieser Kategonie in lür einen Fachmann ie Mitglied derselben	worden ist und mit der zum Verstindnis des der oder der ihr zugrundellegenden tung; die beenspruchte Erfindu hing nicht ale neu oder auf chtet werden lung; die beenspruchte Erfindu eit beruhend betrachtet einer oder mehreren anderen Verbindung gebracht wird und nahellegend ist Patentramilie ist
Name und Postanschrift der Internetionalen Recherchenbehörde Europäisches Patentarnt, P.B. 5818 Patentiaan 2 NL – 2280 MY Rijewijk Tel. (-31-70) 340-2040, Tx. 31 651 epo nl,					chorchariberichts
NL - 2280 HV Fijsmijk Tel. (+31-70) 340-2040, Tr. 31 651 epo nl. Corro V		Postanschrift der Internetionalen Recherchenbehörde			
		NL - 2280 HV Fijewijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,	Gore,	٧	

INTERNATIONALER RECHERCHENBERICHT

Ink Jonales Aktenzeichen
PCT/DE 00/00244

		CT/DE 00/00244		
Cortainer ALS WESENTLICH ANGESEHENE UNTERLAGEN				
Categorie*	Bezeichnung der Veröffentlichung, zoweit erforderlich unter Angabe der in Betracht kommende	m Telle Bett. Anspruch Nr.		
X	WO 98 05770 A (ROTHBARTH KARSTEN ; JOSNIG GABY (DE); WERNER DIETER (DE); SCHUBERT) 12. Februar 1998 (1998-02-12)	1-29, 32-34, 37-43, 45-66, 69-71, 74-80, 82-102, 105-108,		
Y	* Zusammenfassung, Seiten 2-3 *	1-35, 37-43, 45-72, 74-80, 82-108, 110-112		
X,P	WO 99 32619 A (CARNEGIE INST OF WASHINGTON ;MONTGOMERY MARY K (US); FIRE ANDREW () 1. Juli 1999 (1999-07-01) * Zusammenfassung, Seiten 6,11-12,15-17 *	1-29, 32-34, 37-43, 45-66, 69-71, 74-80, 82-102, 105-108, 112		
Υ ·	UHLMANN E ET AL: "ANTISENSE OLIGONUCLEOTIDES: A NEW THERAPEUTIC PRINCIPLE" CHEMICAL REVIEWS, US, AMERICAN CHEMICAL SOCIETY. EASTON, Bd. 90, Nr. 4, 1. Juni 1990 (1990-06-01), Seiten 543-584, XP000141412 ISSN: 0009-2665 * Seiten 558,565-566,574-575 *	15-28, 52-65, 88-101		
A ·	MADHUR K. ET AL.: "Antisense RNA: function and fate of duplex RNA in cells of higher eukaryotes." MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, Bd. 62, Dezember 1998 (1998-12), Seiten 1415-1434, XP000909741 Seiten 1422-1423 und 1428	1-112		

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur seiben Patendamilie gehören

Inte onales Aktonzeichen
PCT/DE 00/00244

Im Recherchenbericht angeführtes Patentdokument		Oatum der Veröffentlichung	Mitglied(er) der Patentiamilie		Datum der Veröffentlichung	
WO 9219732	A	12-11-1992	FR AU AU CA EP JP	2675803 A 660679 B 1759692 A 2102229 A 0581848 A 6506834 T	30-10-1992 06-07-1995 21-12-1992 26-10-1992 09-02-1994 04-08-1994	
WO 9805770	A	12-02-1998	DE EP	19631919 A 0918853 A	12-02-1998 02-06-1999	
W0 9932619	A	01-07-1999	AU	1938099 A	12-07-1999	