Machine Learning from Data

Lecture 4: Spring 2021

Today's Lecture

- Feasibility of Learning
- Two Step Solution to Learning
- Error and Noise

Pick the hypothesis with minimum E_{in} ; will E_{out} be small?

Verification and Selection Bias

- If we pick the hypothesis with minimum in-sample error, it does not approximate out-of-sample error.
- Search Causes Selection Bias
- In Real Learning in-sample error cannot reach out to out-of-sample error.

Using Hoeffding's Inequality in Learning

 Definition - "Hoeffding's inequality provides an upper bound on the probability that the sum of bounded independent random variables deviates from its expected value by more than a certain amount."

Updating Hoeffding's Bound

Feasibility of Learning

- Two Questions to answer:
 - Can we make sure that $E_{out}(g)$ is close enough to $E_{in}(g)$
 - Can we make $E_{in}(g)$ small enough

Complexity of *H* and *f*

Interpreting the Hoeffding's Bound

```
egin{aligned} \mathbb{P}\left[|E_{	ext{in}}(oldsymbol{g})-E_{	ext{out}}(oldsymbol{g})|>\epsilon
ight] &\leq 2|\mathcal{H}|e^{-2\epsilon^2N}, \qquad &	ext{for any $\epsilon>0$.} \ \mathbb{P}\left[|E_{	ext{in}}(oldsymbol{g})-E_{	ext{out}}(oldsymbol{g})|\leq \epsilon
ight] &\geq 1-2|\mathcal{H}|e^{-2\epsilon^2N}, \qquad &	ext{for any $\epsilon>0$.} \end{aligned}
```

E_{in} reaches out to E_{out} when H is small

$$E_{\text{out}}(g) \le E_{\text{in}}(g) + \sqrt{\frac{1}{2N} \log \frac{2|\mathcal{H}|}{\delta}}.$$

2 Step Approach

Summarize

• Is Learning Feasible?

Our Learning Approach is General

Target Function

Noisy target

Error

Interpretation of Error

Pointwise Errors

