SET

Kechao Chen

July 2021

Contents

1 Ordinal numbers 1

This article introduces basic ideas in set theory (specifically the ZFC set theory). In particular, we will establish the arithmetic on \mathbb{N} and prove some useful theorems along the way. The readers should be aware that ZFC is not the only solution for a foundation of mathematics, there are many other developing theories capable of handling the same task.

1 Ordinal numbers

Definition 1.1. An *ordinal number* is a set α such that the two following properties are satisfied:

O 1. transitivity: $\beta \in \alpha \implies \beta \subset \alpha$, in another word $\alpha \subset 2^{\alpha}$;

O 2. well-order: α is well-ordered under the relation \subseteq .

The class of all ordinal numbers is denoted by ON.

Lemma 1.2. For all $S \subseteq ON$ and $S \neq \emptyset$, $\bigcap S \in ON$.

Proof. We need to verify that $\bigcap S$ meets the requirements of an ordinal number.

1. transitivity: $\bigcap S$ is transitive by definition.

$$\alpha \in \bigcap S \implies \forall s \in S : \alpha \in s \implies \forall s \in S : \alpha \subset s \implies \alpha \subset \bigcap S.$$

2. well-order: Because $\bigcap S \subseteq s, \bigcap S$ is well-ordered.

Lemma 1.3. Some basic properties of ordinal numbers:

- 1. For all $\alpha \in ON$, $\beta \in \alpha \implies \beta \in ON$.
- 2. For all $\alpha, \beta \in \mathbf{ON}$, $\beta \subset \alpha \implies \beta \in \alpha$.
- 3. For all $\alpha, \beta \in \mathbf{ON}$, either $\alpha \subseteq \beta$ or $\beta \subseteq \alpha$.

Proof. 1. We prove that β satisfies the transitive and well-order requirements of an ordinal number.

transitivity: We claim that for all $\gamma \in \beta$, $\delta \in \gamma \implies \delta \in \beta$ because α is well-ordered under \subseteq , $\delta \in \gamma \in \beta$ ensures $\delta \in \beta$.

well-order: $\beta \in \alpha \implies \beta \subset \alpha$. For any $\gamma \subseteq \beta$, $\gamma \subset \alpha$, therefore β is well-ordered.

- 2. Assume $\gamma = \min \alpha \setminus \beta$. We claim that $\gamma = \beta$. For one direction, $\gamma \subseteq \beta$ because $\gamma \in \alpha \setminus \beta \implies \gamma \in \alpha \implies \gamma \subset \alpha$. This means for all $\delta \in \gamma$, $\delta \in \alpha$, yet γ is the least element of $\alpha \setminus \beta$, so $\delta \notin \alpha \setminus \beta$, thus $\delta \in \beta$, proving one side of the relation.
 - Conversely, we want to show that $\beta \subseteq \gamma$. We verify that for all $\delta \in \beta$, $\delta \neq \gamma$ because otherwise $\gamma \in \beta \implies \gamma \notin \alpha \setminus \beta$, which contradicts with $\gamma \in \alpha \setminus \beta$. For the same reason, because $\delta \in \beta \implies \delta \subset \beta$, $\gamma \in \delta$ would imply $\gamma \in \beta$, so $\gamma \notin \delta$. Since $\gamma \neq \delta$ and $\gamma \notin \delta$, $\delta \in \gamma$.
- 3. Assume $\gamma = \alpha \cap \beta$, $\gamma \in ON$ is ensured by 1.2. We claim that either $\gamma = \alpha$ or $\gamma = \beta$, otherwise 2. implies $\gamma \in \alpha$ and $\gamma \in \beta$, which means $\gamma \in \alpha \cap \beta = \gamma$, contradicting with the trichotomy of \subseteq .

Theorem 1.4. ON is well-ordered under \subseteq .

Proof. It is easy to verify that ON is totally ordered, simply observe that 2. and 3. from 1.3 implies either $\alpha \subseteq \beta$ or $\beta \subseteq \alpha$. To show that ON is well-founded. We prove that for any subset $S \subseteq ON$, min $S = \bigcap S$.

By definition, for all $s \in S$, $\bigcap S \subseteq s$, this implies $\bigcap S \subseteq s$ by 1.2 and 2. from 1.3, showing that $\bigcap S$ is indeed a lower-bound of S. Now we need to show that $\bigcap S \in S$. If $\bigcap S \in s$ for all $s \in S$, then by definition $\bigcap S \in \bigcap S = \bigcap S$ causing contradiction. Therefore $\bigcap S = s$ for some $s \in S$.

Proposition 1.5. For any $\alpha \in ON$, $\alpha \sqcup \{\alpha\}$ is the successor of α (smallest ordinal number $\ni \alpha$).

Proof. To show that $\alpha \sqcup \{\alpha\}$ is an ordinal number, we need to check that the axioms of ordinal number holds for $\alpha \sqcup \{\alpha\}$. Indeed, $\alpha \in \alpha \sqcup \{\alpha\} \implies \alpha \subset \alpha \sqcup \{\alpha\}$ and α is the maxima in $\alpha \sqcup \{\alpha\}$. To show that $\alpha \sqcup \{\alpha\}$ is the successor of α , observe that the

existence of β in the following statement leads to a contradiction.

$$\alpha \in \beta \in \alpha \sqcup \{\alpha\}$$

 β is an ordinal number according to 1. from 1.3. Since $\alpha \sqcup \{\alpha\}$ is well-ordered under \subseteq , the trichotomy of \subseteq must hold. $\beta \in \alpha \sqcup \{\alpha\}$ implies either $\beta \in \alpha$ or $\beta = \alpha$, which contradicts with $\alpha \in \beta$.

Because of this property, $\alpha \in \beta$ is often denoted by $\alpha + 1$. Notice that while all ordinal numbers have successors, not all of them are successors.

Definition 1.6 (Limit ordinal). A limit ordinal is an ordinal α such that for all $\beta \in \alpha$, $\beta + 1 \neq \alpha$.

One can extract the following set

$$\omega := \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \cdots\} = \{0, 1, 2, \cdots\}$$

from the axiom of infinity. It is not the successor of any $\alpha \in \omega$, because this ordinal number has the property $\alpha \in \omega \implies \alpha + 1 \in \omega$. In fact, it is one representation of \mathbb{N} , the set of natural numbers.

Theorem 1.7 (Transfinite induction). If $S \subseteq ON$ has the following properties, then S = ON.

- 1. $\emptyset \in S$;
- 2. $\alpha \in S \implies \alpha + 1 \in S$;
- 3. $(\forall \beta \in \alpha : \beta \in S) \implies \alpha \in S$.

Proof. Suppose not, then $\alpha \in \min \mathbf{ON} \setminus S$ exists by 1.4. Then whether γ is \emptyset , a successor or a limit ordinal will all result in contradictions.

Theorem 1.8 (Transfinite recursion). For a given function $G: \bigsqcup_{\beta \in \alpha} \mathbf{V}^{\beta} \to \mathbf{V}$, there exists a unique function $F_{\alpha}: \alpha \to \mathbf{V}$ such that

$$F_{\alpha}\beta = GF_{\alpha}|_{\beta}$$

for all $\beta \in \alpha$.

Proof. To show that F_{α} is unique, we assume that F_{α} and F'_{α} are both functions satisfying the preceding requirements and construct $P:=\{\beta\in\alpha:F_{\alpha}\,\beta\neq F'_{\alpha}\,\beta\}$ accordingly. Take $\min P=\beta_0$, then $F_{\alpha}\,\beta=F'_{\alpha}\,\beta$ for all $\beta\in\beta_0$. This means $F_{\alpha}|_{\beta_0}=F'_{\alpha}|_{\beta_0}$, yet $F_{\alpha}\,\beta_0=G\,F'_{\alpha}|_{\beta_0}=F'_{\alpha}\,\beta_0$, showing contradiction.

To show that F_{α} does exist, we construct $F: \mathbf{ON} \to \mathbf{V}$ by extending the domain α of F_{α} to \mathbf{ON} using transfinite induction and conclude that $F|_{\alpha} = F_{\alpha}$ by the uniqueness of F_{α} .

1. For $\beta = 0$, we have

$$F_1 0 = G F_1|_0 = G 0.$$

2. Then we assume

$$F_{\alpha}\,\beta = G\,F_{\alpha}|_{\beta}$$

for all $\beta \in \alpha$. One can always make the extension $F_{\alpha+1}: \alpha+1 \to V$ since $F_{\alpha+1}$ is determined by F_{α} and $F_{\alpha+1}\alpha = GF_{\alpha+1}|_{\alpha} = GF_{\alpha}$. Now assume α is a limit ordinal.

3. If for all $\beta \in \gamma \in \alpha$, we have

$$F_{\gamma}\beta = GF_{\gamma}|_{\beta}$$

then one can deduce F_{α} from $F_{\gamma}\,\beta$ for all $\beta\in\alpha$, thus $F_{\alpha}\,\beta=G\,F_{\alpha}|_{\beta}.$

Work In Progress ...