Oscillator

Venkata Tejaswini Anangani*

CONTENTS

For the circuit shown in Fig. 1.1, find the loop gain L(s) = G(s)H(s), $L(j\omega)$, the frequency for zero loop phase, and R_2/R_1 for oscillation.

1. Draw the equivalent control system representation for the circuit in Fig. 1.1 as well as the small signal model.

Solution: See Figs. 1.2, 1.3 and 1.4

Fig. 1.1

Solution: See Fig. 1.3. Oscillators do not include input signal.

2. Find the open loop gain G.

Solution: Let the closed loop gain, open-loop gain of op-amp connected in non-inverting configuration be T_0 and G_0 respectively. From Table ??

$$T_0 = \frac{G_0 (R_1 + R_2)}{(R_1 + R_2) + G_0 R_1}$$
 (2.1)

$$T_0 = \frac{(R_1 + R_2)}{(R_1 + R_2)/G_0 + R_1} \tag{2.2}$$

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India. All content in this manual is released under GNU GPL. Free and open source.

1

Fig. 1.2: Block diagram

Fig. 1.3: Simplified equivalent block diagram

Assuming $G_0 \to \infty$

$$T_0 = 1 + \frac{R_2}{R_1} \tag{2.3}$$

The open loop gain of the circuit shown in Fig. 1.1 is equal to the closed loop gain of an opamp connected in non-inverting configuration.

$$G = T_0 \tag{2.4}$$

$$\implies G = 1 + \frac{R_2}{R_1} \tag{2.5}$$

3. Find the feedback factor H.

Solution: The small signal model is shown in

Fig. 1.4

Fig. 1.4 Applying KCL at node V_f

$$\frac{V_f - 0}{\frac{1}{sC}} + \frac{V_f - V_a}{R} = 0 \tag{3.1}$$

$$V_f\left(sC + \frac{1}{R}\right) = \frac{V_a}{R} \tag{3.2}$$

$$V_a = V_f (sRC + 1) \tag{3.3}$$

Applying KCL at node V_a

$$\frac{V_a - V_f}{R} + \frac{V_a - 0}{R} + \frac{V_a - V_o}{\frac{1}{e^C}} = 0$$
 (3.4)

$$V_a \left(\frac{2}{R} + sC\right) = \frac{V_f}{R} + V_o sC \tag{3.5}$$

Substitute V_a value from equation(3.3)

$$V_f(sRC+1)\left(\frac{2}{R}+sC\right) = \frac{V_f}{R} + V_o sC \qquad (3.6)$$

$$V_f\left(3 + sRC + \frac{1}{sRC}\right) = V_o \tag{3.7}$$

The feedback factor H is given by

$$H = \frac{V_f}{V_o} \tag{3.8}$$

$$\implies H = \frac{1}{\left(3 + sRC + \frac{1}{sRC}\right)} \tag{3.9}$$

4. Find the loop gain L(s).

Solution: The transfer function of the equivalent positive feedback circuit in Fig. 1.3 is

$$T = \frac{G}{1 - GH} \tag{4.1}$$

Therefore, loop gain is given by

$$L = GH \tag{4.2}$$

From equations (2.5) and (3.9)

$$L(s) = \left(1 + \frac{R_2}{R_1}\right) \left(\frac{1}{3 + sRC + \frac{1}{sRC}}\right)$$
(4.3)

$$\implies L(s) = \left(\frac{1 + \frac{R_2}{R_1}}{3 + sRC + \frac{1}{sRC}}\right) \tag{4.4}$$

5. Find the loop gain in terms of $j\omega$.

Solution: Substitute $s = j\omega$ in equation (4.4)

$$L(j\omega) = \left(\frac{1 + \frac{R_2}{R_1}}{3 + j\omega RC + \frac{1}{j\omega RC}}\right)$$
 (5.1)

$$\implies L(j\omega) = \left(\frac{1 + \frac{R_2}{R_1}}{3 + j\left(\omega RC - \frac{1}{\omega RC}\right)}\right) \quad (5.2)$$

6. Find the frequency for zero loop phase.

Solution: The frequency at which loop phase will be zero (i.e. loop gain will be a real number). To obtain the required frequency, equate the imaginary part of the loop gain $L(j\omega)$ to zero.

$$j\left(\omega RC - \frac{1}{\omega RC}\right) = 0\tag{6.1}$$

$$\omega^2 = \frac{1}{(RC)^2} \tag{6.2}$$

$$\implies \omega = \frac{1}{RC} \tag{6.3}$$

7. Find R_2/R_1 for oscillation.

Solution: For oscillations to start,

- the imaginary part of the loop gain should become zero.
- the loop gain must be at least equal to unity. From equation (5.2)

$$\left(\frac{1 + \frac{R_2}{R_1}}{3 + j(0)}\right) \ge 1$$
(7.1)

$$1 + \frac{R_2}{R_1} \ge 3 \tag{7.2}$$

$$\implies \frac{R_2}{R_1} \ge 2 \tag{7.3}$$

8. Draw the block diagram and circuit diagram for *H*.

Solution: See figs 8.5 and 8.6 .From Fig.

Fig. 8.5: Feedback block diagram

Fig. 8.6: Feedback circuit

8.6,the analysis is same as problem 3

$$\frac{V_f}{V_o} = \frac{1}{\left(3 + sRC + \frac{1}{sRC}\right)} \tag{8.1}$$

$$\implies H = \frac{1}{\left(3 + sRC + \frac{1}{sRC}\right)} \tag{8.2}$$

9. Find the input and output resistances of the feedback network.

Solution: To find the input resistance R_{11} short the output node V_o to ground.

$$R_{11} = Z||(R + (R||Z))$$
 (9.1)

where $Z = \frac{1}{sC}$ is the impedance of the capacitor.

$$\implies R_{11} = \left(\frac{1}{sC} \| \left(R + R \| \frac{1}{sC} \right) \right) \tag{9.2}$$

To find the output resistance R_{22} short the input node V_f to ground.

$$R_{22} = Z + (R||R) \tag{9.3}$$

$$\implies R_{22} = \frac{1}{sC} + \frac{R}{2} \tag{9.4}$$

10. Draw the block diagram and circuit diagram for *G*.

Solution: See figs 10.7 and 10.8.From

Fig. 10.7: Open loop block diagram

Fig.10.8

$$V_{f_2} = \left(\frac{R_1}{R_1 + R_2}\right) V_o \tag{10.1}$$

$$G_1 = \frac{V_{f_2}}{V_o} \tag{10.2}$$

$$\implies G_1 = \frac{R_1}{R_1 + R_2} \tag{10.3}$$

From Fig. 1.2 G_1 is the negative feedback factor and G_0 is the gain of the opamp. Therefore, equivalent G is given by

$$G = \frac{G_o}{1 + G_o G_1} \tag{10.4}$$

$$G = \frac{1}{\frac{1}{G_o} + G_1} \tag{10.5}$$

Fig. 10.8: Open loop circuit diagram

We assumed $G_0 \to \infty$.

$$\implies G = \frac{1}{G_1} \tag{10.6}$$

From equation (10.3).

$$\implies G = \frac{R_1 + R_2}{R_1} = 1 + \frac{R_2}{R_1} \tag{10.7}$$

Hence verified with equation (2.5).

11. Find the amplitude and frequency for some arbitrary R,C values given in Table 11.

Solution: From equation (2.5)

Parameter	Value
R	250Ω
С	1mF
R_2	$2k\Omega$
R_1	$1k\Omega$

TABLE 11

$$G = 1 + \frac{R_2}{R_1} = 3 \tag{11.1}$$

From equation (3.9)

$$H = \frac{1}{3 + 0.25s + \frac{1}{0.25s}} \tag{11.2}$$

From equation (4.1)

$$T = \frac{3\left(0.0625s^2 + 0.75s + 1\right)}{0.0625s^2 + 1} \tag{11.3}$$

The following code plots the oscillating response of the system.

codes/ee18btech11047/ee18btech11047.py

Fig. 11

Amplitude:From Fig. 11 V(peak-peak) is

$$V_{p-p} = 11.929 - (-5.957) = 17.886$$
 (11.4)

$$V_{max} = \frac{V_{p-p}}{2} = 8.943 \tag{11.5}$$

Frequency: From equation (6.3)

$$\omega = \frac{1}{RC} = 4rad/sec \tag{11.6}$$

$$f = \frac{\omega}{2\pi} = 0.636Hz$$
 (11.7)

12. Verify the amplitude and frequency using spice simulation.

Solution: The following readme file provides necessary instructions to simulate the circuit in spice.

codes/ee18btech11047/spice/README.md

The following netlist simulates the given circuit.

codes/ee18btech11047/spice/ee18btech11047.

The following code plots the output from the oscillator spice simulation which is shown in Fig. 12.10.

codes/ee18btech11047/spice/ ee18btech11047_spice.py

Fig. 12.10

The following code plots a part of the spice output from which we can observe a clear sinusoidal output shown in Fig. 12.11.

codes/ee18btech11047/spice/ ee18btech11047 spice2.py

Amplitude: From Fig. 12.11 V(peak-peak) is

$$V_{p-p} = 8.89 - (-8.89) = 17.78$$
 (12.1)

$$V_{max} = \frac{V_{p-p}}{2} = 8.89 \tag{12.2}$$

Frequency: From Fig. 12.11 time period is calculated by any two end points of one cycle,

$$T = 120.344 - (-118.734) = 1.61 sec$$
 (12.3)

$$f = \frac{1}{T} = 0.621Hz \tag{12.4}$$

Hence, the ampitude and frequency are verified through the spice simulation.

Fig. 12.11