1. Пусть $A_1, A_2, \ldots, A_n, \ldots$ некоторые подмножества Ω , постройте минимальную σ -алгебру, включающую $A_1, A_2, \ldots, A_n, \ldots$

Для построения такой алгебры (назовем ее F) выполним минимальные требования:

- 1. $\emptyset \in F \implies F = \{\emptyset, A_1, \dots, A_n, \dots\}.$
- 2. $A \in F \implies \overline{A} \in F$. $F = \{\emptyset, \Omega, A_1, \overline{A_1}, \dots, A_n, \overline{A_n}, \dots\}$.
- 3. $A_1,A_2,\dots\in F\implies \cup_{i=1}^\infty A_i\in F$. Т.е. в F войдут всевозможные $2,3,\dots,n,\dots$ элементные объединения различных подмножеств из A_1,\dots,A_n,\dots
- 2. Доказать, что алгебра, порожденная системой A_1,\dots,A_n , где $A_i\subset\Omega,\ i=1,\dots,n$ состоит в общем случае из 2^{2^n} элементов. Найти пример системы множеств, когда это не так.