Exercises – Week 45

Introduction to Financial Engineering

Note: You may choose to work in R or Matlab. Sometimes solutions will be available in one language, sometimes in both.

- 1. (Two-fund separation) Using the data from Week 40, Exercise 3b).
 - (a) Calculate the portfolio weights for the global minimum variance portfolio
 - (b) Calculate the portfolio weights for the tangent portfolio
 - (c) Pick a point μ_C between μ_{GMV} and μ_{tan} and calculate the portfolio weights for this portfolio
 - (d) Find a fraction α such that alpha invested in the GMV-portfolio and $1-\alpha$ invested in the tangent portfolio matches the portfolio in the previous question
 - (e) Confirm that for each asset, the ratio of excess return to its' covariance with the tangent portfolio is identical. Hint: The covariance of asset with the tangent portfolio is easily obtained by multiplying portfolio weights with the covariance matrix.

- 2. (SML) Using the numbers from above.
 - (a) Find the β s of each stock relative to the tangent portfolio
 - (b) Compute the β for the tangent portfolio, the portfolio found in 1(c) and the gmv portfolio
 - (c) Illustrate gmv portfolio, the portfolio found in 1(c) and the tangent portfolio on the Security Markets Line

(d) Are the three assets on the SML? Should they be?

- 3. (Empirical testing of CAPM) Use the data from Week 43, 1)
 - (a) Plot historical average returns as a function of β
 - (b) Does the stock data look consistent with CAPM?