Optimization of Energy Efficiency and Execution Time in Cloud Computing

Using MILP, Simulated Annealing, Genetic Algorithms, and Multi-Objective Goal Programming

Tom Jardin

August 14, 2024

Introduction

- As cloud computing grows, so does energy consumption in data centers, leading to increased operational costs and CO2 emissions.
- ► This project explores how optimization techniques can enhance energy efficiency and reduce execution time in cloud environments.

Problem Statement

Objective: To minimize energy consumption and execution time in a cloud computing environment.

Key Features:

- CPU usage
- Memory usage
- Network traffic
- Power consumption
- Number of executed instructions
- Execution time
- Task type, priority, and status

Mixed Integer Linear Programming (MILP) - Part 1

Objective: Minimize the total cost of energy consumption and execution time.

Decision Variables:

- \triangleright x_{it} : Binary variable indicating whether task i is scheduled to run at time t.
- $ightharpoonup r_{ij}$: Continuous variable representing the amount of resource j allocated to task i.

Parameters:

- $ightharpoonup R_i^{\text{max}}$: Maximum available amount of resource j.
- ightharpoonup lpha, eta: Weights assigned to energy consumption and execution time.

Mixed Integer Linear Programming (MILP) - Part 2

Objective Function:

 $\mbox{Minimize } {\it Z} = \alpha \times \mbox{Energy Consumption} + \beta \times \mbox{Execution Time}$

Subject to:

$$\sum_{i} r_{ij} \times x_{it} \leq R_{j}^{\text{max}}, \quad \forall j, t$$
 $\sum_{t} x_{it} = 1, \quad \forall i$
 $x_{it} \in \{0, 1\}, \quad r_{ij} \geq 0$

Simulated Annealing (SA)

Objective: Iteratively minimize energy consumption and execution time by exploring different configurations.

Parameters:

- S: Current solution.
- ➤ *T*: Temperature parameter controlling acceptance of worse solutions.
- $ightharpoonup \Delta E$: Change in cost between current and new solution.

Steps:

- Start with an initial solution S and initial temperature T.
- For each iteration, generate a new solution S' in the neighborhood of S.
- ▶ Compute the change in cost $\Delta E = E(S') E(S)$.
- If $\Delta E < 0$, accept S'. Else, accept S' with probability $\exp(-\Delta E/T)$.
- ▶ Decrease the temperature *T* and repeat until convergence.

Genetic Algorithms (GA)

Objective: Evolve task allocation strategies to minimize energy consumption and optimize execution time.

Parameters:

- f(chromosome): Fitness function evaluating energy consumption and execution time.
- \triangleright w_1, w_2 : Weights for energy consumption and execution time in the fitness function.

Steps:

- Initialize a population of chromosomes (task allocations).
- Evaluate fitness: f(chromosome) = $w_1 \times \text{Energy Consumption} + w_2 \times \text{Execution Time}$.
- Selection: Choose the fittest chromosomes.
- Crossover: Create offspring by combining pairs of chromosomes.
- Mutation: Introduce small changes to chromosomes.
- Repeat until convergence or maximum iterations.

Multi-Objective Goal Programming (MOGP)

Objective: Balance multiple goals like minimizing energy consumption and execution time.

Parameters:

- $ightharpoonup G_1$: Goal to minimize energy consumption.
- $ightharpoonup G_2$: Goal to minimize execution time.
- $ightharpoonup d^+, d^-$: Deviation variables for each goal.
- \triangleright w_1, w_2 : Weights for deviations in the objective function.

Formulation:

- ▶ Define Goals: G_1 Minimize Energy, G_2 Minimize Execution Time.
- ▶ Formulate deviation variables $(d^+ \text{ and } d^-)$ for each goal.
- Minimize the weighted sum of deviations: Minimize $Z = w_1 \times d_1^+ + w_2 \times d_2^-$.
- ▶ Subject to: Goal constraints, resource constraints.

Implementation Strategy

- ► Implement the problem using R, with focus on data preprocessing, algorithm application, and evaluation metrics.
- ▶ Data Preparation: Extract and normalize key features from the dataset.
- ► **Algorithm Application**: Apply MILP, SA, GA, and MOGP to optimize the objectives.

Expected Outcomes

- Anticipated results include improved energy efficiency, reduced execution time, and insights into trade-offs between objectives.
- Evaluation will be based on how well the optimization techniques balance energy consumption and execution time.