V F

Lógica elementar: programa Boole

1. Abra o Boole e construa a tabela de verdade da proposição

$$\neg (p \land (\neg p \lor (q \land r))) \lor q.$$

Para isso, escreva a fórmula no topo direito da tabela (usando a barra de ferramentas). Se a fórmula estiver bem formada, o "(1)" acima dela passa a verde (note que **as variáveis proposicionais têm que ser escritas obrigatoriamente em maiúsculas:** $A, B, C, \ldots, P, Q, R, \ldots$). Em seguida, insira à esquerda, as colunas das diversas variáveis proposicionais (colunas de referência) com a ajuda das instruções **Add Column Before** ou **Add Column After** e preencha-as com os diversos valores lógicos de verdade (pode fazer isso automaticamente com a tecla **Fill Ref Cols**). Depois preencha os valores de verdade T e F nas outras colunas por baixo da fórmula, de acordo com as respectivas operações lógicas. Quando a tabela estiver completa, clique no botão **Verify Table** para verificar se todos os valores estão correctos.

Depois de ter uma tabela completa e correcta, clique no botão **Assessment** por baixo da barra de ferramentas. Aqui deverá responder a um questionário sobre se a proposição é uma tautologia. Verifique se a sua resposta está correcta em **Verify Assess**.

- 2. Use o Boole para construir as tabelas de verdade das seguintes proposições e indique se são tautologias.
 - (a) $\neg (P \land \neg Q \land \neg P)$.
 - (b) $P \vee \neg (Q \vee \neg (R \wedge P))$.
 - (c) $\neg(\neg A \lor \neg (B \land C) \lor (A \land B))$.
 - (d) $\neg ((\neg A \lor B) \land \neg (C \land D)).$
- 3. Com a ajuda do Boole determine as tabelas de verdade do Exercício 9 (Folha 1-TP).
- 4. Revisite os problemas 11 e 13 (1-TP), agora com a ajuda do Boole.
- 5. Confirme com o Boole as suas respostas ao Exercício 20 (1-TP).
- 6. Seleccione a opção correcta quanto à validade de cada uma das deduções seguintes (V: dedução válida; F: dedução falaciosa):

(c) De
$$\neg (p \lor q)$$
 deduz-se $\neg p$.

(d) De
$$\neg (p \land q)$$
 deduz-se $\neg q$.

(e) De
$$p \lor q$$
 e $q \to r$ deduz-se $p \lor r$.

Lógica elementar: programa Tarski World

1. Um mundo de Tarski (tridimensional) consiste num tabuleiro de xadrez (8 × 8) juntamente com figuras geométricas diversas: tetraedros, cubos, e dodecaedros, dispostas nas casas do tabuleiro. Relativamente a estas figuras consideram-se os seguintes predicados unários, binários e ternários, que descrevem o tamanho, o tamanho relativo e posição relativa:

Predicados unários

Sentença atómica	Interpretação
Tet(a)	a é um tetraedro
Cube(a)	a é um cubo
Dodec(a)	a é um dodecaedro
Small(a)	a é pequeno
Medium(a)	a é médio
Large(a)	$a \neq grande$

Predicados binários

Sentença atómica	Interpretação
SameSize(a,b)	a tem o mesmo tamanho que b
SameShape(a,b)	a tem a mesma forma que b
Larger(a, b)	a é maior que b
Smaller(a,b)	a é menor que b
SameCol(a, b)	a está na mesma coluna que b
SameRow(a,b)	a está na mesma linha que b
Adjoins(a,b)	a e b estão localizados em casas adjacentes (mas não na
	diagonal)
LeftOf(a,b)	a está numa coluna à esquerda de b
RightOf(a,b)	a está numa coluna à direita de b
FrontOf(a,b)	a está numa linha à frente de b
BackOf(a,b)	a está numa linha atrás de b

Predicados ternários

Sentença atómica	Interpretação	
Between(a,b,c)	a,be c estão na mesma coluna, linha ou diagonal, e a está	
	entre $b \in c$.	

- (a) Para se familiarizar com o Tarski World abra-o e carregue os ficheiros Wittgenstein's World e Wittgenstein's Sentences (na pasta TW Exercises). Nestes ficheiros verá um mundo de blocos geométricos e uma lista de sentenças atómicas (algumas delas têm comentários). Percorra essa lista e tente calcular mentalmente o correspondente valor lógico nesse mundo. Use o botão Verify para verificar se a sua resposta está correcta ou não. Se ficar surpreendido por alguma resposta, tente ver porque errou, comparando a sua interpretação do predicado com a definição exacta do predicado.
- (b) Em seguida, mude o mundo de Wittgenstein de diversas maneiras, alterando os objectos e as suas posições, observando o que acontece ao valor lógico das diversas sentenças.
 [Objectivo: ajudá-lo a memorizar a interpretação de cada um dos predicados do Tarski World; só deverá avançar depois de dominar bem a lista de predicados e as suas inter-

pretações.

2. Para simplificar, representaremos um mundo de Tarski na folha de papel (bidimensional) num tabuleiro de xadrez (8 × 8) com quadrados (representarão os cubos), triângulos (representarão os tetraedros), e hexágonos (representarão os dodecaedros), dispostos nas casas do tabuleiro. Por exemplo:

O mundo de Wittgenstein

- (a) Quais das sentenças seguintes são verdadeiras no mundo de Wittgenstein?
 - 1. $Tet(f) \wedge Small(f)$.
 - 2. $Tet(f) \wedge Large(f)$.
 - 3. $Tet(f) \wedge \neg Small(f)$.
 - 4. $Tet(f) \wedge \neg Large(f)$.
 - 5. $\neg Tet(f) \land \neg Small(f)$.
 - 6. $\neg Tet(f) \land \neg Large(f)$.
 - 7. $\neg (Tet(f) \land Small(f))$.
 - 8. $\neg (Tet(f) \wedge Large(f))$.
 - 9. $\neg (\neg Tet(f) \land \neg Small(f))$.
 - 10. $\neg(\neg Tet(f) \land \neg Large(f))$.
 - 11. $LeftOf(a, c) \lor LeftOf(c, b) \lor \neg Between(c, a, b)$.
 - 12. $\neg\neg(BackOf(e,b) \land \neg FrontOf(c,b))$.
 - 13. $BackOf(d, a) \wedge LeftOf(d, e) \wedge FrontOf(b, e) \wedge Between(c, d, b)$.
 - 14. $Smaller(c, e) \vee \neg (Cube(a) \vee Cube(d))$.
 - 15. $\neg(\neg Dodec(e) \lor \neg \neg Tet(f))$.
- (b) Qual é o número máximo de sentenças que pode tornar verdadeiras num só mundo mudando o tamanho ou a forma de f (ou ambos)?
- 3. Determine o valor lógico das afirmações seguintes relativas ao mundo

V F

- (a) $Dodec(a) \land \neg Large(a)$
- (b) $\forall x(\neg Dodec(x) \rightarrow Cube(c))$
- (c) $\exists y \, \forall x \, (Tet(x) \to Smaller(x, y))$
- (d) $\forall x(Small(x) \rightarrow \exists y(x \neq y \land SameCol(x, y)))$
- voiem simultanoemente verdadoiras:
- 4. Construa um mundo no qual as seguintes sentenças sejam simultaneamente verdadeiras: Tet(a), Medium(a), Dodec(b), Cube(c), FrontOf(a,b), Between(a,b,c), a=d, Larger(a,b), Smaller(a,c), LeftOf(b,c).
- 5. Abra os ficheiros Lestrade's Sentences e Lestrade's World. Reparará que nenhum dos objectos neste mundo tem nome. Atribua nomes aos objectos de modo que todas as sentenças na lista se tornem verdadeiras.
- 6. Observe a diferença entre os predicados Larger e BackOf: um determinado cubo a ser maior ou não que outro cubo b é um facto óbvio, de resposta precisa, independente da perspectiva com que olhemos para o mundo; mas saber se a está atrás de b já depende da perspectiva: se rodarmos o mundo 90° , a resposta poderá mudar.

Abra os ficheiros Austin's Sentences e Wittgenstein's World.

(a) Determine o valor lógico das sentenças neste mundo e confira que são os seguintes:

	Original	Rodado 90°	Rodado 180°	Rodado 270°
1.	F			
2.	F			
3.	V			
4.	F			
5.	V			
6.	F			

- (b) Rode o mundo 90° e torne a avaliar as sentenças, juntando os resultados à tabela. Repita o processo até dar uma volta completa.
- (c) Junte uma sétima sentença à lista com o seguinte padrão: V F V F.
- (d) Existem sentenças atómicas nesta linguagem que produzam uma linha com o padrão $\mathsf{F}\ \mathsf{V}$ $\mathsf{F}\ \mathsf{F}\ ?$
- (e) Existem sentenças atómicas nesta linguagem que produzam uma linha com exactamente três V ?
- 7. Construa um mundo em que todas as sentenças seguintes são verdadeiras:
 - (a) $Dodec(a) \wedge Cube(b)$.
 - (b) $FrontOf(b, a) \wedge LeftOf(d, b) \wedge BackOf(f, d) \wedge RightOf(a, f)$.
 - (c) $Tet(c) \wedge Tet(e) \wedge LeftOf(c, d)$.
 - (d) $\neg LeftOf(c, e) \land \neg LeftOf(e, c)$.
 - (e) $Between(d, b, c) \land \neg Between(d, c, a)$.
 - (f) $\neg Cube(b) \lor (Cube(d) \land BackOf(d,b)).$
 - (g) $(Small(c) \land FrontOf(c,b)) \lor Cube(d)$.
 - (h) $Larger(f, a) \wedge Larger(a, b)$.
 - (i) $\neg (Smaller(c, a) \lor Smaller(a, c))$.
 - (j) $Larger(d, b) \wedge Larger(f, d) \wedge \neg (Larger(e, d) \vee Larger(d, e))$.
- 8. Considere as premissas seguintes:
 - 1. Tet(b).
 - 2. Cube(c).
 - 3. $Larger(c, b) \lor (b = c)$.
 - (a) Determine se cada uma das sentenças seguintes é consequência tautológica das premissas dadas, justificando cuidadosamente as suas respostas:
 - (i) Smaller(b, c).
 - (ii) $Larger(c, b) \vee (Tet(b) \wedge b = c)$.
 - (iii) $\neg (Larger(c, b) \land \neg Larger(c, b)).$
 - (b) Considerando a interpretação usual, no mundo de Tarski, dos predicados considerados, determine se a sentença

$$(Tet(b) \land Small(b)) \lor (Cube(c) \land Medium(c))$$

é consequência lógica das premissas consideradas. Em caso afirmativo, justifique cuidadosamente a sua resposta. Se não for, construa um mundo — recorrendo ao software Tarski World — no qual as premissas sejam verdadeiras e a conclusão seja falsa.

- 9. Diga em que casos as "conclusões" são consequências lógicas das premissas. Para cada caso em que isso não aconteça, construa um mundo (isto é, um *contra-exemplo*) no qual as premissas sejam verdadeiras e a conclusão falsa.
 - (a) Premissa: LeftOf(a, b). Conclusão: RightOf(b, a).
 - (b) Premissas: LeftOf(a, b), b = c. Conclusão: RightOf(c, a).
 - (c) Premissas: LeftOf(a,b), RightOf(c,a). Conclusão: LeftOf(b,c).

- (d) Premissas: BackOf(a, b), FrontOf(a, c). Conclusão: FrontOf(b, c).
- (e) Premissas: Between(b, a, c), LeftOf(a, c). Conclusão: LeftOf(a, b). (Recorde que Between(b, a, c) significa que b está entre a e c, na mesma linha, diagonal ou coluna.)
- 10. (a) Descreva cada uma das propriedades seguintes do mundo de Boole, com sentenças da linguagem de primeira ordem do Tarski (use os predicados referidos em exercícios anteriores):
 - 1. f não está à frente de a.
 - 2. f está à direita de a e à esquerda de b.
 - 3. f está atrás ou é mais pequeno do que a.
 - 4. $e \in d$ estão ambos entre $c \in a$.
 - 5. Nem e nem d são maiores que c.
 - 6. c nem é maior nem é mais pequeno do que e.
 - 7. c é mais pequeno do que a, mas maior do que e.
 - 8. c está à frente de a; além disso, é mais pequeno do que f.

- (b) Neste mundo apenas uma das frases seguintes é verdadeira. Qual? Traduza essa frase para a linguagem da lógica de primeira ordem.
 - 1. a é pequeno ou c e d são ambos grandes.
 - 2. d e e estão ambos atrás de b.
 - 3. d e e estão ambos atrás de b e não são maiores do que ele.
 - 4. d e c são quadrados; além disso, nenhum deles é médio.
 - 5. Nem e nem a estão à direita de c nem à esquerda de b.
 - $6. \ e$ não é grande ou está atrás de a.
 - 7. c nem está entre a e b nem está à frente deles.
 - 8. $a \in e$ são ambos triângulos, ou $a \in f$ são-no ambos.
 - 9. c está entre d e f ou é mais pequeno do que os dois.

	(a) $(Tet(a) \land Cube(c)) \rightarrow Dodec(d)$.			
	(b) $Cube(c) \rightarrow (Large(c) \rightarrow (Cube(c) \land Large(c))).$			
	(c) $\neg (Tet(a) \rightarrow Large(a)) \rightarrow (Tet(a) \land \neg Large(a)).$			
	(d) $\neg (Large(a) \leftrightarrow Small(b))$.			
	(e) $[Small(c) \land (Cube(a) \lor Cube(d))] \leftrightarrow [(Small(c) \land Cube(a)) \lor (Small(c) \land Cube(a))]$	e(d)	1].	
	(f) $Cube(a) \leftrightarrow (Cube(c) \leftrightarrow Large(c))$.	(//	,	
	ndique, com uma cruz, <u>todas</u> as traduções correctas (na linguagem da lógica de pri o Tarski) das seguintes sentenças:	.meir	a or	dem
	(a) Não é verdade que c seja um tetraedro grande.			
	(b) d está na linha de b , a não ser que ambos os objectos sejam dodecae	dros	5.	
			-	` '
13. 7	raduza cada uma das seguintes sentenças da linguagem Tarski para Português.			
	(a) $Tet(a) \leftrightarrow Tet(b)$.			
	(b) $Larger(a, a)$.			
	$(c) \neg (Tet(f) \land Cube(a)).$			
	(d) $LeftOf(a,b) \wedge Tet(b) \vee Cube(a)$.			
	(e) $\exists x(Cube(x) \land Small(x)).$			
	(f) $\forall z (Tet(z) \rightarrow Medium(z)).$			
	(g) $\exists x (Tet(x) \land \forall z (Cube(z) \rightarrow FrontOf(x, z))).$			
	(h) $\forall x \forall y (BackOf(x,y) \rightarrow Larger(x,y)).$			
	II) $\forall x \forall y (BackOf(x,y) \rightarrow Larger(x,y)).$			
	valie da verdade ou falsidade das seguintes sentenças nos mundos A, B, C (em baixo) seguinte tabela com \mathbf{V} 's (verdade) e \mathbf{F} 's (falso):), pre	eencl	iendo
	Sentenças	A	В	C
	$Cube(a) \lor Tet(b)$			
	$a \neq d$			
	$Between(a,b,c) o (Small(a) \wedge Large(b))$			
-	$\neg(Large(b) \to Small(d))$			
}	$\forall x(Dodec(x) \rightarrow Large(x))$			
-	$\exists x (Tet(x) \land RightOf(x, a) \land \neg Small(x))$			
-	$\forall x (Cube(x) \land Small(x))$			
-	$\forall x \forall y ((Cube(x) \land Tet(y)) \rightarrow Smaller(x, y))$ $\exists x (Tet(x) \land Lenge(x) \land \forall x (Cube(x)) \land Returner(x, x, k)))$			
-	$\exists x (Tet(x) \land Large(x) \land \forall z (Cube(z) \rightarrow Between(z, x, b)))$			
	$\forall z [Cube(z) \rightarrow \exists x (Tet(x) \land Large(x) \land \forall w (LeftOf(w, z) \rightarrow Between(z, x, w)))] \parallel$			

11. Determine o valor lógico das sentenças seguintes no mundo de Wittgenstein (Exercício 2).

Mundo A

Mundo B

Mundo C

15. Avalie da verdade ou falsidade das seguintes sentenças nos mundos A, B, C (em baixo), preenchendo a seguinte tabela com \mathbf{V} 's (verdade) e \mathbf{F} 's (falso):

Sentenças	A	В	\mathbf{C}
$SameShape(a,b) \land \neg Large(a)$			
Dodec(b) o Dodec(a)			
$LeftOf(a,b) \lor a \neq b$			
$\neg (Dodec(b) \leftrightarrow LeftOf(b,a))$			
$\exists x (Cube(x) \land Small(x))$			
$\forall x ((Cube(x) \land LeftOf(x,b)) \rightarrow Small(x))$			
$\exists x (Cube(x) \land Large(x)) \land \exists x Left Of(x,b)$			
$\forall x \forall y ((Cube(x) \land Cube(y) \land x \neq y) \rightarrow \neg SameSize(x, y))$			
$\forall x(Cube(x) \rightarrow \exists y(Dodec(y) \land SameSize(y,x)))$			
$\exists x (Cube(x) \land \forall w (Dodec(w) \rightarrow \exists z (LeftOf(x,z) \land LeftOf(z,w))))$			

Mundo A

Mundo B

Mundo C

16. (a) Avalie da verdade ou falsidade das seguintes cinco sentenças nos mundos A e B abaixo, preenchendo a seguinte tabela com V's (verdade) e F's (falso):

Sentenças	A	В
$Dodec(b) \rightarrow (Dodec(a) \lor Large(a))$		
$\neg(Cube(a) \land Cube(b))$		
$\forall x ((Cube(x) \land RightOf(b, x)) \rightarrow Small(x))$		
$\exists y \forall x (Dodec(x) \to RightOf(x, y))$		
$\exists x [Cube(x) \land \forall y (Dodec(y) \rightarrow \exists z (z \neq y \land (SameRow(z, y) \lor RightOf(z, x))))]$		

(b) O que precisa de mudar em **A** e **B** para que as 3 primeiras fórmulas sejam <u>todas</u> verdadeiras?

Tetraedro PequenoTetraedro MédioTetraedro Grande

Cubo Pequeno
Cubo Médio
Cubo Grande

Dodecaedro PequenoDodecaedro MédioDodecaedro Grande

17. (a) Indique o valor lógico das seguintes sentenças nos mundos ${\bf A}$ e ${\bf B}$ abaixo.

Sentenças	A	-	В
$Dodec(a) \leftrightarrow SameRow(b,c)$			
$\forall x \ \forall y \ (SameShape(x,y) \land SameCol(x,y) \rightarrow SameSize(x,y))$	/))		
$\forall x \ (Cube(x) \to \exists y \ (Dodec(y) \land LeftOf(x,y)))$			
$\neg \exists x \ (Dodec(x) \land SameRow(x,b))$			
$\forall x \ \forall y \ (\neg SameShape(y,x) \lor Tet(y) \lor Cube(x))$			

(b) Nos casos em que a fórmula 5 é falsa, indique $\underline{\text{todos}}$ os pares de objectos x e y que a não satisfazem.

(c) Mostre que a negação da fórmula 5 é equivalente a $\exists x \, \exists y \, (Dodec(x) \wedge Dodec(y)).$

Mundo A

Mundo B