

BC20&MC20

兼容设计手册

NB-IoT/GNSS/GSM/GPRS 系列

版本: BC20&MC20_兼容设计手册_V1.0

日期: 2018-11-08

状态: 临时版本

上海移远通信技术股份有限公司始终以为客户提供最及时、最全面的服务为宗旨。如需任何帮助,请随时联系我司上海总部,联系方式如下:

上海移远通信技术股份有限公司 上海市徐汇区虹梅路 1801 号宏业大厦 7 楼 邮编: 200233 电话: +86 21 51086236 邮箱: info@quectel.com

或联系我司当地办事处,详情请登录:

http://www.quectel.com/cn/support/sales.htm

如需技术支持或反馈我司技术文档中的问题,可随时登陆如下网址:

http://www.quectel.com/cn/support/technical.htm

或发送邮件至: support@quectel.com

前言

上海移远通信技术股份有限公司提供该文档内容用以支持其客户的产品设计。客户须按照文档中提供的规范、参数来设计其产品。由于客户操作不当而造成的人身伤害或财产损失,本公司不承担任何责任。在未声明前,上海移远通信技术股份有限公司有权对该文档进行更新。

版权申明

本文档版权属于上海移远通信技术股份有限公司,任何人未经我司允许而复制转载该文档将承担法律责任。

版权所有 ©上海移远通信技术股份有限公司 2018, 保留一切权利。

Copyright © Quectel Wireless Solutions Co., Ltd. 2018.

文档历史

修订记录

版本	日期	作者	变更描述
1.0	2018-11-08	魏小宇	初始版本

目录

文档	当历史	2
目園	₹	3
表格	各索引	4
图片	十索引	5
1	引言	6
1		
2	综述	7
	2.1. 产品简介	7
	2.2. 功能概述	
	2.3. 引脚分配	10
3	引脚描述	12
	3.1. BC20 与 MC20 引脚对比	
	3.2. BC20-OpenCPU 与 MC20-OpenCPU 引脚对比	
	· · · · · · · · · · · · · · · · · · ·	40
4	硬件参考设计 4.1. 供电电源	
	4.1. 模块工作电压	
	4.1.2 . 供电电源设计	
	4.1.3. GNSS 部分供电参考电路	
	4.2. 开机电路	
	4.3. 关机	
	4.4. 复位	
	4.4.1. BC20 硬件复位	
	4.4.2. BC20 软件复位	
	4.5. 网络状态指示	
	4.6. (U)SIM 接口	
	4.7. 串口	
	4.8. 模数转换接口	27
	4.9. RF接口	27
	4.10. GNSS 接口	28
	4.10.1. 有源天线	28
	4.10.2. 无源天线	29
5	物理尺寸	30
•	5.1. 推荐兼容封装	
	5.2. 安装示意图	
6	生产焊接与包装	
	6.1. 生产焊接	
	6.2. 包装	34
7	附录 A	36

表格索引

表 1:	模块基本信息	7
表 2:	主要性能参数	8
表 3:	I/O 参数定义	12
表 4:	引脚对比	12
表 5:	OPENCPU 引脚对比	15
表 6:	模块工作电压范围	19
表 7:	供电类型与电源转换电路对应关系	20
表 8:	模块 UART 接口电压域	26
表 9:	模块 ADC 接口信息	27
表 10	: 卷盘包装	35
表 11:	: 参考文档	36
表 12	: 术语缩写	36

图片索引

冬	1:	BC20&MC20 引脚分配	10
图	2:	BC20-OPENCPU&MC20-OPENCPU 引脚分配	11
图	3:	VBAT 电压波形图	19
图	4:	供电电源参考设计电路	20
图	5:	MC20 模块 GNSS 部分电源参考电路	21
图	6:	开集驱动控制 PWRKEY 开机参考电路	21
冬	7:	BC20&MC20 开机时序	22
冬	8:	BC20&MC20 关机时序图	23
图	9:	BC20 硬件复位电路	24
冬	10:	BC20 硬件复位时序	24
冬	11:	NETLIGHT 参考设计电路	25
图	12:	6-PIN (U)SIM 接口兼容设计电路	25
冬	13:	串口电平转换参考电路	26
冬	14:	RF 天线接口参考设计电路	28
冬	15:	有源天线参考电路	28
冬	16:	无源天线参考电路	29
图	17:	BC20&MC20 底视图	30
图	18:	BC20&MC20 兼容封装	31
图	19:	安装效果图	32
图	20:	推荐的回流焊温度曲线	33
图	21:	载带尺寸(单位:毫米)	34
冬	22:	卷盘尺寸(单位:毫米)	35

1 引言

移远通信 NB-IoT/GNSS 系列的 BC20 模块与 GSM/GPRS/GNSS 系列的 MC20 模块相互兼容。本文档主要描述了 BC20 与 MC20 之间的兼容设计。

2 综述

2.1. 产品简介

MC20 是一款集成了高性能 GNSS 引擎和四频段 GSM/GPRS 引擎的多功能无线模块。BC20 是一款集成了高性能 NB-IoT 引擎和 GNSS 引擎的多功能 NB-IoT 模块。BC20 与 MC20 采用兼容设计,用户可根据需求选择合适的产品作为终端应用。

表 1: 模块基本信息

模块	外观	封装	尺寸 (mm)	描述
BC20	BC20 NA 01-Axxx HG20NA-04-STD SN XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	54 个 LCC 引脚 14 个 LGA 引脚	18.7 × 16.0 × 2.1	多频段 NB-IoT/GNSS 模块
MC20	MC20 XX 01-0000X MC200X-X0-X0X SNIXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	54 个 LCC 引脚 14 个 LGA 引脚	18.7 × 16.0 × 2.1	四频 GSM/GPRS/GNSS 模块

2.2. 功能概述

下表对比了 BC20 与 MC20 的主要性能参数。

表 2: 主要性能参数

功能	BC20	MC20
供电	供电电压: 2.1V~3.63V 典型值: 3.3V	供电电压: 3.3V~4.6V 典型值: 4.0V
峰值电流	VBAT 最大电流: 0.5A	VBAT 最大电流: 1.6A
休眠耗流	最大 5uA @PSM	睡眠模式下耗流(GNSS 部分关闭): 1.2mA @DRX=5 0.8mA @DRX=9
频段	LTE Cat NB1: B1*/ B3*/ B5/ B8	四频段: GSM850/ EGSM900/ DCS1800/ PCS1900
温度范围	正常工作温度: -35°C ~ +75°C ¹⁾ 扩展温度: -40°C ~ +85°C ²⁾ 存储温度: -40°C ~ +90°C	正常工作温度: -35°C~+75°C ¹⁾ 扩展温度: -40°C~+85°C ²⁾ 存储温度: -40°C~+90°C
UART 接口	 主申口: 用于 AT 命令传送和数据传输,支持的 波特率为 4800bps、9600bps、115200bps(默认)、230400bps、460800bps 和 921600bps。 调试申口: 用于软件调试时支持的波特率为 4800bps、9600bps、115200bps(默认)、230400bps、460800bps 和 921600bps。 用于软件升级时,支持的波特率为 115200bps(默认)和 921600bps。 辅助申口: 用于软件调试。 信号电平: 1.8V 	 用于 AT 命令传送和 GPRS 数据传输; 自适应波特率:从 4800bps 到 115200bps; 也可用于软件升级。 调试串口:
(U)SIM 接口	支持 USIM 卡: 1.8V	支持(U)SIM 卡: 1.8V/3.0V
音频接口	不支持	一路模拟音频输入 两路模拟音频输出

PCM 接口	不支持	支持
ADC 接口	支持*	支持
ВТ	不支持	支持 BT 3.0/4.0
固件升级	通过调试串口或 DFOTA*升级	通过主串口升级

- 1. 1)表示当模块工作在此温度范围时,模块的相关性能满足 3GPP 标准要求。
- 2. ²⁾ 表示当模块工作在此温度范围时,模块仍能保持正常工作状态,具备语音、短信、数据传输、紧急呼叫等功能,不会出现不可恢复的故障;射频频谱、网络基本不受影响,仅个别指标如输出功率等参数的值可能会超出 3GPP 标准的范围。当温度返回至正常工作温度范围时,模块的各项指标仍符合 3GPP 标准。
- 3. "*"表示正在开发中。

2.3. 引脚分配

BC20 与 MC20 模块的引脚分配图如下:

图 1: BC20&MC20 引脚分配

- 1. 蓝色字体标示的是 BC20 的引脚名称。
- 2. 黑色字体标示的是 MC20 的引脚名称。

BC20-OpenCPU 与 MC20-OpenCPU 模块的引脚分配图如下:

图 2: BC20-OpenCPU&MC20-OpenCPU 引脚分配

- 1. 蓝色字体标示的是 BC20-OpenCPU 的引脚名称。
- 2. 黑色字体标示的是 MC20-OpenCPU 的引脚名称。

3 引脚描述

本章节描述了 BC20 与 MC20、BC20-OpenCPU 与 MC20-OpenCPU 的引脚定义及对比。

表 3: I/O 参数定义

类型	描述
Ю	双向端口
DI	数字输入
DO	数字输出
OD	漏极开路
PI	电源输入
PO	电源输出
Al	模拟输入
AO	模拟输出

3.1. BC20 与 MC20 引脚对比

下表描述了 BC20 与 MC20 的引脚功能及电气特性对比:

表 4: 引脚对比

	BC20			MC20		
引脚号	引脚名	I/O	描述	引脚名	I/O	描述
1	USB_3V3	PI	USB 电源电压	MICP	AI	差分音频输入(正)
2	USB_MODE	DI	USB下载模式控制	MICN	AI	差分音频输入(负)

3	RESERVED		预留引脚	SPKP	AO	差分音频输出(正)
4	RESERVED		预留引脚	SPKN	AO	差分音频输出(负)
5	PWRKEY	DI	拉低 PWRKEY 一段规定 时间来开机	PWRKEY	DI	拉低 PWRKEY 一段规定时间 来开机或者关机
6	ADC	Al	通用模数转换接口	ADC	Al	通用模数转换接口
7	RESERVED		预留引脚	SD_CMD	DO	SD卡命令信号
8	RESERVED		预留引脚	SD_CLK	DO	SD卡时钟信号
9	RESERVED		预留引脚	SD_DATA	Ю	SD 卡数据信号
10	RESERVED		预留引脚	SIM2_CLK	DO	(U)SIM 卡时钟信号
11	USB_DM	Ю	USB 差分数据负信号	SIM2_DATA	Ю	(U)SIM 卡数据信号
12	USB_DP	Ю	USB 差分数据正信号	SIM2_RST	DO	(U)SIM 卡复位信号
13	RESERVED		预留引脚	SIM2_VDD	РО	(U)SIM 卡供电电源
15	GNSS_ANT	Al	GNSS 天线接口	GNSS_ANT	Al	GNSS 天线接口
16	SIM_GND		USIM 卡专用地	SIM_GND		(U)SIM 卡专用地
17	1PPS*	DO	秒脉冲	1PPS	DO	秒脉冲
18	SIM_VDD	РО	USIM 卡供电电源	SIM1_VDD	РО	(U)SIM 卡供电电源
19	SIM_CLK	DO	USIM 卡时钟信号	SIM1_CLK	DO	(U)SIM 卡时钟信号
20	SIM_RST	DO	USIM 卡复位信号	SIM1_RST	DO	(U)SIM 卡复位信号
21	SIM_DATA	Ю	USIM 卡数据信号	SIM1_DATA	Ю	(U)SIM 卡数据信号
22	RESERVED		预留引脚	GNSS_TXD	DO	发送数据
23	RESERVED		预留引脚	GNSS_RXD	DI	接收数据
24	RXD_AUX	DI	模块接收数据	RXD_AUX	DI	模块接收数据
25	TXD_AUX	DO	模块发送数据	TXD_AUX	DO	模块发送数据
26	RESERVED		预留引脚	GNSS_VCC	PI	GNSS 部分供电电源: GNSS_VCC= 2.8V~4.3V

29	TXD_DBG	DO	模块发送数据	DBG_TXD	DO	模块发送数据
30	RXD _DBG	DI	模块接收数据	DBG_RXD	DI	模块接收数据
32	RESERVED		预留引脚	BT_ANT	Ю	蓝牙天线接口
33	RXD	DI	接收数据	RXD	DI	接收数据
34	TXD	DO	发送数据	TXD	DO	发送数据
35	RI	DO	输出振铃提示	RI	DO	输出振铃提示
36	DCD	DO	输出载波检测	DCD	DO	输出载波检测
37	PSM_EINT	DI	外部中断引脚,从 PSM 唤醒模块	DTR	DI	DTE 准备就绪
38	CTS	DO	清除发送	CTS	DO	清除发送
39	RTS	DI	DTE 请求发送数据	RTS	DI	DTE 请求发送数据
41	RF_ANT	Ю	射频天线接口	RF_ANT	Ю	射频天线接口
43	VDD_EXT	PO	1.8V 输出, PSM 模式下 无电压输出。 可为模块的上拉电路供 电; 不建议用于外部电路 供电。	VDD_EXT	PO	2.8V 电源输出,用于外部电路
47	NETLIGHT*	DO	网络状态指示	NETLIGHT	DO	网络状态指示
50	VBAT	PI	模块主电源: VBAT= 2.1V~3.63V	VBAT	PI	模块主电源: VBAT= 3.3V~4.6V
51	VBAT	PI	模块主电源: VBAT= 2.1V~3.63V	VBAT	PI	模块主电源: VBAT= 3.3V~4.6V
52	RESERVED		预留引脚	VRTC	Ю	输入: RTC 时钟供电输出: 通过该引脚为备份电池或电容充电
53	RESET	DI	复位模块	LOUDSPKN	AO	差分音频输出(负)
54	RESERVED		预留引脚	LOUDSPKP	AO	差分音频输出(正)
59	RESERVED		预留引脚	PCM_CLK	DO	PCM 时钟信号
	RESERVED		一	PCM_OUT	DO	PCM 数据输出信号
60						

62	RESERVED	预留引脚	PCM_IN	DI	PCM 数据输入信号
14, 27,					
31, 40,					
42,44,	GND	地	GND		地
45, 48,					
49					
46,					
55~58,	RESERVED	预留引脚	RESERVED		预留引脚
63~68					

备注

- 1. 红色字体标示的引脚表示封装兼容但功能不同。
- 2. 黑色字体标示的引脚表示封装兼容且功能相同。
- 3. 预留的引脚和不使用的引脚请悬空。
- 4. "*"表示正在开发中。

3.2. BC20-OpenCPU 与 MC20-OpenCPU 引脚对比

下表描述了 BC20-OpenCPU 与 MC20-OpenCPU 的引脚功能及电气特性对比:

表 5: OpenCPU 引脚对比

	BC20-OpenCPU		MC20-OpenCPU			
引脚号	引脚名	I/O	描述	引脚名	I/O	描述
1	USB_3V3	PI	USB 电源电压	MICP	AI	差分音频输入(正)
2	USB_MODE	DI	USB 下载模式控制	MICN	AI	差分音频输入(负)
3	GPIO1	Ю	GPIO	SPKP	AO	差分音频输出(正)
4	GPIO2	Ю	GPIO	SPKN	AO	差分音频输出(负)
5	PWRKEY	DI	拉低 PWRKEY 一段规定 时间来开机	PWRKEY	DI	拉低 PWRKEY 一段规定时间 来开机或者关机
6	ADC	Al	通用模数转换接口	ADC	AI	通用模数转换接口
7	GPIO3	Ю	GPIO	SD_CMD	DO	SD 卡命令信号

8	GPIO4	Ю	GPIO	SD_CLK	DO	SD 卡时钟信号
9	GPIO5	Ю	GPIO	SD_DATA	Ю	SD卡数据信号
10	GPIO6	Ю	GPIO	SIM2_CLK	DO	(U)SIM 卡时钟信号
11	USB_DM	Ю	USB 差分数据负信号	SIM2_DATA	Ю	(U)SIM 卡数据信号
12	USB_DP	Ю	USB 差分数据正信号	SIM2_RST	DO	(U)SIM 卡复位信号
13	NC		悬空	SIM2_VDD	РО	(U)SIM 卡供电电源
15	GNSS_ANT	Al	GNSS 天线接口	GNSS_ANT	AI	GNSS 天线接口
16	SIM_GND		USIM 卡专用地	SIM_GND		(U)SIM 卡专用地
17	1PPS*	DO	每秒一个脉冲	1PPS	DO	每秒一个脉冲
18	SIM_VDD	PO	USIM 卡供电电源	SIM1_VDD	РО	(U)SIM 卡供电电源
19	SIM_CLK	DO	USIM 卡时钟信号	SIM1_CLK	DO	(U)SIM 卡时钟信号
20	SIM_RST	DO	USIM 卡复位信号	SIM1_RST	DO	(U)SIM 卡复位信号
21	SIM_DATA	Ю	USIM 卡数据信号	SIM1_DATA	Ю	(U)SIM 卡数据信号
22	NC		悬空	GNSS_TXD	DO	发送数据
23	NC		悬空	GNSS_RXD	DI	接收数据
24	RXD_AUX	DI	模块接收数据	RXD_AUX	DI	模块接收数据
25	TXD_AUX	DO	模块发送数据	TXD_AUX	DO	模块发送数据
26	NC		悬空	GNSS_VCC	PI	GNSS 部分供电电源: GNSS_VCC= 2.8V~4.3V
28	GPIO7	Ю	GPIO	GNSS_VCC_ EN	DO	GNSS 电源使能脚
29	TXD_DBG	DO	模块发送数据	DBG_TXD	DO	模块发送数据
30	RXD _DBG	DI	模块接收数据	DBG_RXD	DI	模块接收数据
32	NC		悬空	BT_ANT	Ю	蓝牙天线接口
33	RXD	DI	接收数据	RXD	DI	接收数据
34	TXD	DO	发送数据	TXD	DO	发送数据

35	RI	DO	输出振铃提示	RI	DO	输出振铃提示
36	DCD	DO	输出载波检测	DCD	DO	输出载波检测
37	PSM_EINT	DI	外部中断引脚,从 PSM 唤醒模块	DTR	DI	DTE 准备就绪
38	CTS	DO	清除发送	стѕ	DO	清除发送
39	RTS	DI	DTE 请求发送数据	RTS	DI	DTE 请求发送数据
41	RF_ANT	Ю	射频天线接口	RF_ANT	Ю	射频天线接口
43	VDD_EXT	PO	1.8V 输出, PSM 模式下 无电压输出。 可为模块的上拉电路供 电:不建议用于外部电路 供电。	VDD_EXT	РО	2.8V 电源输出,用于外部电路
47	NETLIGHT*	DO	网络状态指示	NETLIGHT	DO	网络状态指示
50	VBAT	PI	模块主电源: VBAT= 2.1V~3.63V	VBAT	PI	模块主电源: VBAT= 3.3V~4.6V
51	VBAT	PI	模块主电源: VBAT= 2.1V~3.63V	VBAT	PI	模块主电源: VBAT= 3.3V~4.6V
52	RESERVED		预留引脚	VRTC	Ю	输入: RTC 时钟供电 输出: 通过该引脚为备份电池 或电容充电
53	RESET	DI	复位模块	LOUDSPKN	АО	差分音频输出(负)
54	GPIO8	Ю	GPIO	LOUDSPKP	AO	差分音频输出(正)
55	NC		悬空	RESERVED		预留引脚
56	NC		悬空	RESERVED		预留引脚
57	GPIO9	Ю	GPIO	GPIO0	Ю	GPIO
58	GPIO10	Ю	GPIO	GPIO1	Ю	GPIO
59	GPIO11	Ю	GPIO	PCM_CLK	DO	PCM 时钟信号
60	GPIO12	Ю	GPIO	PCM_OUT	DO	PCM 数据输出信号
61	GPIO13	Ю	GPIO	PCM_SYNC	DO	PCM 帧同步信号
62	GPIO14	Ю	GPIO	PCM_IN	DI	PCM 数据输入信号

63	GPIO15	Ю	GPIO	GPIO2	Ю	GPIO
64	NC		悬空	GPIO3	Ю	GPIO
65	NC		悬空	GPIO4	Ю	GPIO
67	GPIO16	Ю	GPIO	RESERVED		预留引脚
68	GPIO17	Ю	GPIO	RESERVED		预留引脚
14, 27, 31, 40, 42, 44, 45, 48, 49	GND		地	GND		地
46, 66	RESERVED		预留引脚	RESERVED		预留引脚

- 1. 红色字体标示的引脚表示封装兼容但功能不同。
- 2. 黑色字体标示的引脚表示封装兼容且功能相同。
- 3. 预留的引脚和不使用的引脚请悬空。
- 4. "*"表示正在开发中。

4 硬件参考设计

本章节描述了 BC20 与 MC20 主要功能的兼容设计。

4.1. 供电电源

4.1.1. 模块工作电压

下表为 BC20 和 MC20 模块的工作电压范围。

表 6: 模块工作电压范围

模块	电源引脚	条件	最小值	典型值	最大值	单位
BC20	VBAT	实际输入电压必须在最小、	2.1	3.3	3.63	V
MC20	VBAT	最大值范围内。	3.3	4.0	4.6	V

考虑模块之间的兼容设计时,请确保模块输入电压最小不低于 3.3V,最大不超过 3.63V。即便当模块输入电源 VBAT 出现电压跌落时,也要确保 VBAT 电压大于模块最低工作电压值。

图 3: VBAT 电压波形图

4.1.2. 供电电源设计

模块的电源设计对其性能至关重要。BC20 与 MC20 的电源必须能够提供 2A 的电流。

为了确保更好的电源供电性能以及兼容性,以下几点请注意:

- 建议模块的电源输入电压为 3.6V;
- 靠近 VBAT 引脚增加一个 TVS 管以提高模块的浪涌电压承受能力:
- 建议靠近模块的 VBAT 引脚增加几个电容以增强电源稳定性, MC20 模块建议增加 100uF、100nF、33pF 和 10pF 电容, BC20 模块建议增加 47uF、100nF、33pF 和 10pF 电容。

图 4: 供电电源参考设计电路

根据供电类型(电池供电或直流电源供电)不同,上图虚线框内电源转换电路的参考设计将有所不同, 具体说明如下表所示。

表 7: 供电类型与电源转换电路对应关系

	电源转换电路			
供电类型	BC20 (VBAT=2.1V~3.63V)	MC20 (VBAT=3.3V~4.6V)		
锂亚电池	0Ω	Boost		
锂锰电池	0Ω	Boost		
直流供电	DC-DC	DC-DC		

4.1.3. GNSS 部分供电参考电路

BC20 模块 GNSS 部分电源是由模块内部 PMU 直接供电,可通过命令 **AT+QGNSSC** 控制。关于该 AT 命令的详细信息,请参考 **文档 [4]**。

MC20 模块 GNSS 部分的电源是由 GSM 部分通过命令 AT+QGNSSC 控制 GNSS_VCC_EN 引脚是否使能来实现的。具体参考电路如下图所示。请注意 GNSS_VCC_EN 的电气特性要与 LDO 的使能引脚匹配。关于该 AT 命令的详细信息,请参考文档 [1]。

图 5: MC20 模块 GNSS 部分电源参考电路

4.2. 开机电路

BC20 与 MC20 的开机方式相同:

BC20 和 MC20 是通过将 PWRKEY 引脚拉低一段时间 T1 (BC20≥500ms, MC20>1s)来开机;推 荐使用开集驱动电路来控制 PWRKEY 引脚,参考电路如下图所示。

图 6: 开集驱动控制 PWRKEY 开机参考电路

BC20 与 MC20 的开机时序图对比如下:

图 7: BC20&MC20 开机时序

备注

- 1. 在使用拉低 PWRKEY 的方式进行 BC20/MC20 开机时,需等 VBAT 稳定一段时间以后(BC20=TBD,MC20>100ms) 再拉低 PWRKEY 引脚,以保证 VBAT 电压稳定。不建议一直拉低 PWRKEY 引脚。
- 2. 蓝色标示的是 BC20 的开机时序。
- 3. 黑色标示的是 MC20 的开机时序。

4.3. 关机

MC20 可通过 **AT+QPOWD** 命令或者拉低 PWRKEY 引脚一段时间 T(0.7s~1s)来实现关机,BC20 可通过 **AT+QPOWD** 命令和断开 VBAT 电源关机。

关机时序图如下图所示:

图 8: BC20&MC20 关机时序图

备注

- 1. 蓝色标示的是 BC20 的关机时序。
- 2. 黑色标示的是 MC20 的关机时序。
- 3. MC20 通过 AT 命令关机的前提是 PWRKEY 要保持高电平; 采用 PWRKEY 关机要保证 PWRKEY 拉低时间在 0.7s 到 1s 之间。
- 4. 网络注销时间与本地网络信号强度有关。

4.4. 复位

BC20 有硬件和软件两种复位方式, MC20 没有复位功能。

4.4.1. BC20 硬件复位

通过拉低 RESET 引脚一段时间 T (≥50ms) 可以实现复位,复位电路图如下所示:

图 9: BC20 硬件复位电路

复位时序如下图所示:

图 10: BC20 硬件复位时序

4.4.2. BC20 软件复位

BC20 通过 AT+QRESET=1 命令可实现复位操作。详细信息请参考文档 [4]。

4.5. 网络状态指示

BC20/MC20 的 NETLIGHT 引脚信号可以用来指示模块的网络状态,参考设计如下:

图 11: NETLIGHT 参考设计电路

4.6. (U)SIM接口

BC20 默认支持 1.8V 的 USIM 卡; MC20 默认支持 1.8V/3.0V 的 USIM/SIM 卡。

BC20 的 USIM 接口和 MC20 的(U)SIM 接口相互兼容。模块的 6-pin (U)SIM 接口兼容设计如下图所示:

图 12: 6-Pin (U)SIM 接口兼容设计电路

4.7. 串口

BC20 的串口电压域与 MC20 的串口电压域不同,如下表所示。

表 8: 模块 UART 接口电压域

模块	串口类型	电压域	备注
PC20	主串口	- 1.8V	支持 RTS/CTS
BC20	调试串口、辅助串口	- 1.0v	
MC20	主串口	- 2.8V	支持 RTS/CTS
	调试串口、辅助串口	- 2.0 v	

以 DTE 电压大于模块电压为例,模块串口兼容的电平转换电路如下图所示。如下虚线部分的输入和输出电路设计可参考实线部分,但需注意连接方向。

图 13: 串口电平转换参考电路

备注

1. 如上的晶体管电路解决方案不适合超过 460Kbps 的波特率应用。

- 2. "\"表示串口的测试点。建议保留 VBAT 和 PWRKEY 的测试点以在必要时方便进行固件升级和调试。
- 3. 蓝色字体标示的是 BC20。
- 4. 黑色字体标示的是 MC20。

4.8. 模数转换接口

BC20 与 MC20 的 ADC 接口提供一个 10 位模数转换接口来测量电压值:

- BC20 的 ADC 最大采集电压是 1.4V;
- MC20 的 ADC 最大采集电压是 2.8V。

表 9: 模块 ADC 接口信息

模块	引脚名称	引脚号	描述
BC20	ADC	6	通用模数转换接口
MC20	ADC	6	通用模数转换接口

4.9. RF 接口

MC20 的射频天线接口 RF_ANT 引脚和 BC20 的射频天线接口 RF_ANT 引脚是兼容的,接口阻抗为 50Ω 。为了能够更好地调试射频性能,建议预留 π 型匹配电路,且 π 型匹配器件(R1/C1/C2)应靠近天线 放置。其中 C1、C2 默认不贴,只贴 0Ω 电阻 R1。天线连接参考电路如下图所示。

RF 天线接口参考设计如下图所示:

图 14: RF 天线接口参考设计电路

4.10. GNSS 接口

BC20 的 GNSS 天线接口 GNSS_ANT 引脚与 MC20 的 GNSS 天线接口 GNSS_ANT 引脚是兼容的,接口阻抗为 50Ω 。

4.10.1. 有源天线

下图为使用有源天线的参考电路。

图 15: 有源天线参考电路

根据有源天线设计要求,外部有源天线供电电压范围从 2.8V 至 4.3V,典型值为 3.3V。

4.10.2. 无源天线

下图为使用无源天线时的参考电路。

图 16: 无源天线参考电路

C1、R1 和 C2 组成建议预留的匹配电路,以用于天线阻抗的调节。其中 C1,C2 缺省不贴,只贴 0Ω R1 电阻。RF 走线的阻抗应控制在 50Ω 左右,且走线越短越好。

5 物理尺寸

本章节主要介绍了 BC20 与 MC20 模块的推荐封装。所有的尺寸单位为毫米,所有未标注公差的尺寸,公差为±0.05mm。

5.1. 推荐兼容封装

BC20 与 MC20 的底视图如下图所示:

图 17: BC20&MC20 底视图

BC20 与 MC20 推荐兼容封装如下图所示:

图 18: BC20&MC20 兼容封装

备注

在主板 PCB 上,周围器件距离模块位置要大于 3mm。

5.2. 安装示意图

BC20 与 MC20 安装效果图如下所示:

图 19: 安装效果图

6 生产焊接与包装

6.1. 生产焊接

用印刷刮板在网板上印刷锡膏,使锡膏通过网板开口漏印到 PCB 上,印刷刮板力度需调整合适,为保证模块印膏质量,BC20/MC20 焊盘部分对应的钢网厚度建议为 0.2mm。详细信息请参考*文档 [3]*。

推荐的回流焊温度为 240℃~245℃,最高不能超过 245℃。为避免模块因反复受热而损坏,强烈推荐客户在完成 PCB 板第一面的回流焊之后再贴模块。推荐的炉温曲线图(无铅 SMT 回流焊)和相关参数如下图表所示:

图 20: 推荐的回流焊温度曲线

- 1. 在生产焊接或者其他可能直接接触移远通信模块的过程中,不得使用任何有机溶剂(如酒精,异丙醇, 丙酮,三氯乙烯等)擦拭模块屏蔽罩;否则可能会造成屏蔽罩生锈。
- 2. 移远通信洋白铜镭雕屏蔽罩可满足: 12 小时中性盐雾测试后,镭雕信息清晰可辨识,二维码可扫描 (可能会有白色锈蚀)。

6.2. 包装

BC20/MC20 用卷带包装,并用带静电防护的真空密封袋将其封装。建议在模块准备焊接时再打开真空包装。具体规格如下:

图 21: 载带尺寸(单位:毫米)

图 22: 卷盘尺寸(单位:毫米)

表 10: 卷盘包装

模块	最小订货量	最小包装: 250pcs	最小包装 x 4=1000pcs
BC20/MC20	250pcs	尺寸: 370mm × 350mm × 56mm 净重: 0.32kg 毛重: 1.08kg	尺寸: 380mm × 250mm × 365mm 净重: 1.28kg 毛重: 4.8kg

7 附录 A

表 11:参考文档

序号	文档名称	备注
[1]	Quectel_MC20&MC30_AT_Commands_Manual	MC20&MC30 AT 命令手册
[2]	Quectel_MC20_硬件设计手册	MC20 硬件设计手册
[3]	移远通信模块贴片应用指导	移远通信模块贴片应用指导
[4]	Quectel_BC20_AT_命令手册	BC20 AT 命令手册
[5]	Quectel_BC20_硬件设计手册	BC20 硬件设计手册

表 12: 术语缩写

术语	描述
ADC	Analog-to-Digital Converter
ВТ	Bluetooth
CTS	Clear to send
DCD	Data Carrier Detect
DCS	Digital Communication System
DFOTA	Delta Firmware Upgrade Over the Air
DRX	Discontinuous Reception
DTR	Date Terminal Ready
EGSM	Extended Global System for Mobile
GPRS	General Packet Radio Service

GSM	Global System for Mobile Communications
H-FDD	Half Frequency Division Duplexing
LCC	Leadless Chip Carriers
LGA	Land Grid Array
MIC	Microphone
NB-IoT	Narrow Band Internet of Things
PCB	Printed Circuit Board
PCM	Pulse Code Modulation
PCS	Personal Communication System
PSM	Power Saving Mode
RF	Radio Frequency
RI	Ring Indicator
RTC	Real Time Clock
RTS	Require To Send
RXD	Receive Direction
SPK	Speaker
TXD	Transmitting Direction
UART	Universal Asynchronous Receiver & Transmitter
(U)SIM	(Universal) Subscriber Identity Module
Vnorm	Normal Voltage Value