

Neutral-atom quantum computing Gates and moves - tutorial

Pedro Lopes

Casey Duckering

Yelissa Lopez

QuEra Computing Inc.

Main theme

Digital: Entanglement mediated by puffing-up atoms

Basic architecture: mid-circuit reconfigurability

Native gate set (for our purposes)

Entanglement transport

<300 μ s to move across entire array ($T_2 \sim 1.5 \text{ s}$)

Atom-atom spacing of ~3 µm

 \rightarrow transport across array of ~2000 qubits in a time of < 10⁻³ T_2

Bluvstein et al., Nature 2022

Atom shuttling rules!

Long-range/arbitrary connectivity

Source: Craig Gidney's blog

Nearest-neighbor connectivity

Mirrored and pipelined swap across a path of qubits

Reconfigurable connectivity

Atom shuttling rules?

"atoms cannot collide"

"atoms cannot change order in a single move"

Sandbox Model for Current Gen. Quantum Computer

Keep in mind: the technology is still rapidly developing, and tomorrow's systems may look very different!

- Hundreds to a thousand qubits
- High-fidelity parallel gate operation, with long coherence times
- Parallel movement of qubits on a grid
- Mid-circuit measurement and feedforward
- Some analogies to classical RAMs

Bluvstein et al., Nature 2024

Sandbox Model for Current Gen. Quantum Computer

Local gates vs global gates

Global gates and native parallelism

Key notion: The same gate is applied on many qubits in parallel

A fundamental block: 1q gates plus a set of cliques representing multi-qubit gates

Parallelism is key

A round of syndrome extraction for the surface code

A staircase circuit

A Co-designed Compilation Mindset

Atoms can be efficiently sorted in log(N) parallel moves.

A Co-designed Compilation Mindset

"All to All" ⇒ Efficient parallel swap

Sequential gates ⇒ Parallel layers

Programming neutral-atom quantum computers

Kirin is the Kernel Intermediate Representation Infrastructure developed. It is a compiler infrastructure for building compilers for embedded domain-specific languages (eDSLs) that target scientific computing kernels especially for quantum computing use cases where domain-knowledge in quantum computation is critical in the implementation of a compiler.

Final words

Algorithmic pipeline

Error-correcting code choice
Compilation
Gate design

Protocol layout + spacetime optimization

Co-Design

Native hardware capabilities

Speed
Qubit connectivity
Parallelization
Universal gate-set
Biased noise & erasure

How can we leverage neutral atoms' strengths to design efficient algorithms?

