Szegedi Tudományegyetem Informatikai Tanszékcsoport

A diplomamunka címe

Diplomamunka

Készítette: **Ledán Szilárd** informatika szakos hallgató *Témavezető:* **Dr. Kiss Ákos**adjunktus

Szeged 2014

Tartalomjegyzék

	Feladatkiírás	3										
	Tartalmi összefoglaló	4										
	Bevezetés	5										
1.	Egy találó cím	6										
	1.1. Alcím	6										
	1.1.1. Al-al cím	6										
	1.1.2. Másik	6										
	1.1.3. Harmadik	6										
	1.2. Mindjárt vége a fejezetnek	6										
2.	Hosszú	7										
	2.1. Részletek	7										
3.	Egyebek	9										
	3.1. Környezetek	9										
	3.2. Listák											
	3.3. Egy táblázat és egy ábra	11										
4.	Függelék 1											
	4.1. A program forráskódja	14										
	Nyilotkozot	1 6										
	Nyilatkozat											
	Köszönetnyilvánítás	1 O										

Feladatkiírás

A témavezető által megfogalmazott feladatkiírás. Önálló oldalon szerepel.

Tartalmi összefoglaló

A tartalmi összefoglalónak tartalmaznia kell (rövid, legfeljebb egy oldalas, összefüggő megfogalmazásban) a következőket: a téma megnevezése, a megadott feladat megfogalmazása - a feladatkiíráshoz viszonyítva-, a megoldási mód, az alkalmazott eszközök, módszerek, az elért eredmények, kulcsszavak (4-6 darab).

Az összefoglaló nyelvének meg kell egyeznie a dolgozat nyelvével. Ha a dolgozat idegen nyelven készül, magyar nyelvű tartalmi összefoglaló készítése is kötelező (külön lapon), melynek terjedelmét a TVSZ szabályozza.

Bevezetés

Itt kezdődik a bevezetés, mely nem kap sorszámot.

Egy találó cím

Ez pedig már az első fejezet, ...

1.1. Alcím

Ebben alfejezetek is lehetnek

1.1.1. Al-al cím

Sőt al-al fejezetek is.

1.1.2. Másik

Na lássunk egy másodikat is.

1.1.3. Harmadik

Meg egy harmadikat is.

1.2. Mindjárt vége a fejezetnek

Tényleg, itt valóban vége.

Hosszú

2.1. Részletek

Ebbe a fejezetbe pedig írunk sok sok szöveget. Szöveg, szöveg szöveg, szöveg

szöveg, szöveg szöveg, szöveg

Egyebek

3.1. Környezetek

3.1. Tétel. Ez itt egy tétel.

Bizonyítás. Ez pedig a bizonyítása, melyben szerepel egy képlet:

$$\begin{split} E^{\text{globális}} &= \mathsf{t\acute{e}t}_1 \cdot E_1^{\text{elemi}} + \mathsf{t\acute{e}t}_2 \cdot E_2^{\text{elemi}} + \ldots + \mathsf{t\acute{e}t}_n \cdot E_n^{\text{elemi}} \\ &= E^{\text{elemi}} \left(\mathsf{t\acute{e}t}_1 + \mathsf{t\acute{e}t}_2 + \ldots + \mathsf{t\acute{e}t}_n \right) \\ &= E^{\text{elemi}} \cdot \mathsf{\ddot{o}sszt\acute{e}t} \end{split} \tag{3.1}$$

A második egyenlőségnél azt használtunk ki, hogy ...

Ezzel a bizonyítást befejeztük.

- **3.2. Definíció.** Ez egy definíció. Számozása a tételekkel együtt történik.
- **3.3.** Állítás. A követekező négy állítás egymással ekvivalens:
 - (i) M és N gyengén ekvivalensek.
 - (ii) Minden n nemnegatív egész számra $|L_M \cap \Sigma_1^n| = |L_N \cap \Sigma_2^n|$ teljesül.
- (iii) Minden n nemnegatív egész szám esetén létezik $\pi_n: L_M \cap \Sigma_1^n \to L_N \cap \Sigma_2^n$ kölcsönösen egyértelmű leképezés.
- (iv) Minden nemnegatív n-re $xA^ny^T = x'A'^ny'^T$.
- **3.4. Következmény.** Ez pedig egy következmény.
- **3.5. Példa.** Ez lesz a példa, ezt nem szedjük dőlten.
- **3.6. Megjegyzés.** A fejezetet pedig egy megjegyzés zárja.

3.2. Listák

Ez egy felsorolás:

- első
- második

első

második

- harmadik
- ♣ saját jel is alkalmazható

Ez pedig egy számozott lista:

- 1. hétfő
- 2. kedd
- 3. szerda

3.3. Egy táblázat és egy ábra

A táblázat itt következik.

3.1. táblázat. Példa stratégiatáblára a Black Jack esetében

	ász	2	3	4	5	6	7	8	9	10
21	n	n	n	n	n	n	n	n	n	n
20	n	n	n	n	n	n	n	n	n	n
19	n	n	n	n	n	n	n	n	n	n
18	n	n	n	n	n	n	n	n	n	n
17	n	n	n	n	n	n	n	n	n	n
16	h	n	n	n	n	n	h	h	b	b
15	h	n	n	n	n	n	h	h	h	b
14	h	n	n	n	n	n	h	h	h	b
13	h	n	n	n	n	n	h	h	h	h
12	h	n	n	n	n	n	h	h	h	h
11	h	D	D	D	D	D	D	D	D	h

Lássunk egy ábrát is!

3.1. ábra. Labirintus bejárása

Külön fájlban elkészített grafika beillesztését a 3.3 ábra szemlélteti.

3.2. ábra. A $4 \times m$ -es tábla lefedéseinek mátrixreprezentációit felismerő automata

3.3. ábra. A $4 \times m$ -es tábla lefedéseinek mátrixreprezentációit felismerő automata

Függelék

4.1. A program forráskódja

```
template <T>
  inline T& max (T& x, T& y)
       return x >= y ? x : y;
  #include <stdio.h>
  #include <math.h>
  template <T>
  inline T& max (T& x, T& y)
       return x >= y ? x : y;
  static inline float compare(float a, float b, float c, float d, float e
10
       = 0.0f, float f = 0.0f) { /* FIXME: Not implemented! */ }
  int main()
12
       return 0;
14
  template <T>
  inline T& max (T& x, T& y)
       return x >= y ? x : y;
  static inline float compare(float a, float b, float c, float d, float e
       = 0.0 f, float f = 0.0 f) { /* FIXME: Not implemented!*/}
```

```
int main()
{

A függelékbe kerülhetnek a hosszú táblázatok, vagy mondjuk egy programlista:
    while (ujkmodosito[i]<0)
    {
        if (ujkmodosito[i]+kegyenletes[i]<0)
        {
            j=i+1;
            while (j<14)
            if (kegyenletes[i]+ujkmodosito[j]>-1) break;
            else j++;
            temp=ujkmodosito[j];
            for (l=i;l<j;l++) ujkmodosito[l+1]=ujkmodosito[l];
            ujkmodosito[i]=temp;
        }
        i++;
}</pre>
```

Nyilatkozat

Alulírott szakos hallgató, kijelentem, hogy a dolgozatomat a Szege-
di Tudományegyetem, Informatikai Tanszékcsoport
készítettem, diploma megszerzése érdekében.
Kijelentem, hogy a dolgozatot más szakon korábban nem védtem meg, saját munkám
eredménye, és csak a hivatkozott forrásokat (szakirodalom, eszközök, stb.) használtam
fel.
Tudomásul veszem, hogy szakdolgozatomat / diplomamunkámat a Szegedi Tudomány-
egyetem Informatikai Tanszékcsoport könyvtárában, a helyben olvasható könyvek között
helyezik el.
Szeged, 2014. szeptember 15.
aláírás
Alulírott szakos hallgató, kijelentem, hogy a dolgozatomat a Szege-
di Tudományegyetem, Informatikai Tanszékcsoport
készítettem, diploma megszerzése érdekében.
Kijelentem, hogy a dolgozatot más szakon korábban nem védtem meg, saját munkám
eredménye, és csak a hivatkozott forrásokat (szakirodalom, eszközök, stb.) használtam
fel.

Tudomásul veszem, hogy szakdolgozatomat / diplomamunkámat a TVSZ 4. sz. mel-

A diplomamunka címe					
lékletében leírtak szerint kezelik.					
Szeged, 2014. szeptember 15.					
	aláírás				

Köszönetnyilvánítás

Ezúton szeretnék köszönetet mondani X. Y-nak ezért és ezért ...

Irodalomjegyzék

- [1] J. L. Gischer, The equational theory of pomsets. *Theoret. Comput. Sci.*, **61**(1988), 199–224.
- [2] J.-E. Pin, Varieties of Formal Languages, Plenum Publishing Corp., New York, 1986.