Time: 40 minutes

20 marks

September 8, 2023 Answer ALL questions

- 1. Let $x \in F(\beta, t, L, U)$ be such that $\beta^{e-1} < x < \beta^e$. Let $y \in \mathbb{R}$. If |y| < ulp(x)/2 then show that $\text{fl}(x \pm y) = x$. For $(\beta, t, L, U) = (10, 4, -30, 30)$ and $x = 10^{-9}$, what is the smallest y > 0 such that fl(x + y) > x? Next when $x = 10^{15}$, what is the smallest y > 0 such that fl(x + y) > x. Here fl(x) uses round to nearest rounding mode.
- 2. Let $A \in \mathbb{R}^{n \times n}$ is nonsingular. Describe an efficient algorithm (outline only the steps) based on Gaussian elimination for solving the problem $A^{10}x = b$ and determine the flop count.

5 marks

3. Consider the system Ax = b, where $A \in \mathbb{R}^{n \times n}$ is nonsingular and $b \in \mathbb{R}^n$. Suppose that $A + \Delta A$ is nonsingular. Now consider the system $(A + \Delta A)\hat{x} = b + \Delta b$. Show that

$$\frac{\|x - \hat{x}\|}{\|\hat{x}\|} \le \operatorname{cond}(A) \left(\frac{\|\Delta A\|}{\|A\|} + \frac{\|\Delta b\|}{\|A\| \|\hat{x}\|} \right),$$

where $cond(A) := ||A|| \, ||A^{-1}||$.

5 marks

4. Consider $A := \begin{bmatrix} 10^{-4} & 1 \\ 1 & a \end{bmatrix}$, where $0 < a \le 4$. Prove that in the floating point system F(10, 3, -10, 10), the computed LU factorization of A using GENP is independent of a. Is GENP backward stable for computing LU factorization of A? Justify your answer. 5 marks

MA423: Matrix Computations

Time: 40 minutes

20 marks

November 7, 2023 Answer ALL questions

- 1. Let $A \in \mathbb{C}^{m \times n}$ be such that $\operatorname{rank}(A) = n$. Let $\sigma_{\min}(A)$ denote the smallest singular value of A. Show that $\|(A^*A)^{-1}A^*\|_2 = 1/\sigma_{\min}(A)$ and $\|A(A^*A)^{-1}A^*\|_2 = 1$. 6 marks
- 2. Let $u \in \mathbb{R}^n$ be a unit vector. Consider the Householder reflector $H := I 2uu^{\top}$. Determine all the eigenvalues of H and their algebraic multiplicities. Also determine all the eigenvectors.

5 marks

- 3. Let $A \in \mathbb{C}^{n \times n}$ and $\sigma > 0$. Show that σ is a singular value of $A \iff \begin{bmatrix} A & -\sigma I_n \\ -\sigma I_n & A^* \end{bmatrix}$ is singular.
- 4. Let $A \in \mathbb{R}^{n \times n}$ be proper upper Hessenberg and A_3 be the result of 3 basic QR steps on A, that is, $A_{k-1} = Q_k R_k$, $A_k := R_k Q_k$ for k = 1, 2, 3, with $A_0 := A$. Set $R := R_3 R_2 R_1$ and $Q := Q_1 Q_2 Q_3$. Show that $A^3 = QR$ and $A_3 = Q^* AQ$.

 5 marks

*** End ***

23 22 21 A32RR

End Semester Examination

MA 423: Matrix Computations

Time: 3 hours

40 marks

November 22, 2023 Answer ALL questions

- 1. Let $A \in \mathbb{C}^{m \times n}$ be such that $\operatorname{rank}(A) = r < \min(m, n)$ and $b \in \mathbb{C}^m$. Define the Moore-Penrose pseudo-inverse A^+ of A and show that A^+b is a unique solution of the LSP $Ax \approx b$ having the smallest norm. Use SVD of A to show that $\lim_{\mu \to 0+} (A^*A + \mu I_n)^{-1}A^* = A^+$. 6 marks
- 2. Let $A := \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{bmatrix} \in \mathbb{R}^{n \times n}$. Use QR factorization of A to prove the Hadamard's determinant inequality

$$|\det(A)| \leq \prod_{j=1}^n \|\mathbf{a}_j\|_2,$$

where det(A) is the determinant of A.

4 marks

3. Let $A \in \mathbb{C}^{m \times n}$, $b \in \mathbb{C}^m$ and $\Delta b \in \mathbb{C}^m$. Let x and \hat{x} be unique solutions (with smallest norms) of the LSP $Ax \approx b$ and LSP $A\hat{x} \approx b + \Delta b$, respectively. Show that

$$\frac{\|x - \hat{x}\|_2}{\|x\|_2} \le \frac{\text{cond}(A)}{\cos \theta} \frac{\|\Delta b\|_2}{\|b\|_2}$$

where θ is the acute angle between b and Ax, and $\operatorname{cond}(A) := \|A^+\|_2 \|A\|_2$. Here A^+ is the Moore-Penrose pseudo-inverse of A.

- 4. Compute QR factorization of $A := \begin{bmatrix} 1 & 0 & 1 \\ -2 & -1 & 0 \\ 2 & 2 & 1 \end{bmatrix}$ in two different ways using Householder reflectors and classical Gram-Schmidt method.
- 5. Let $A \in \mathbb{R}^{n \times n}$ be upper Hessenberg. Consider the QR step $A \mu I = QR$ and $A_1 = RQ + \mu I$. Show that A_1 is upper Hessenberg when μ is NOT an eigenvalue of A. Show that if the QR decomposition of $A \mu I$ is computed using rotations then A_1 is upper Hessenberg even if μ is an eigenvalue of A.
- 6. Let $A \in \mathbb{R}^{n \times n}$ and $s \in \mathbb{C}$. Suppose that s is not an eigenvalue of A. Perform two steps of explicit QR algorithm on A with shifts s and its complex conjugate \overline{s} :

$$A - sI = Q_1R_1, A_1 := R_1Q_1 + sI$$

 $A_1 - \bar{s}I = Q_2R_2, A_2 := R_2Q_2 + \bar{s}I.$

Show that Q_1 and Q_2 can be chosen such that Q_1Q_2 is real. Deduce that in such a case A_1 is complex and A_2 is real. Describe an algorithm (outline the steps) for computing A_2 directly from A without computing A_1 thereby avoiding complex arithmetic.

5 marks

- 7. Describe an algorithm (outline the steps) for reducing a matrix $A \in \mathbb{R}^{n \times n}$ to an upper bidiagonal form B. Describe a single step of Golub-Kahan implicit QR algorithm for computing SVD of B when B is proper upper bidiagonal. 5 marks
- 8. Write an algorithm (outline the steps) that implements inverse power method for computing an eigenvalue and a corresponding eigenvector of nonsingular matrix $A \in \mathbb{C}^{n \times n}$. Determine the flop count for performing ℓ steps of inverse power method. Suppose that A has n distinct eigenvalues $\lambda_1, \ldots, \lambda_n$ such that $|\lambda_1| \geq \cdots \geq |\lambda_{n-1}| > |\lambda_n|$. Let $Av_n = \lambda_n v_n$ and $v_n \neq 0$. Let x_0 be a nonzero vector such that $\langle x_0, v_n \rangle \neq 0$. Show that the iterate x_j obtained from inverse power method with starting vector x_0 converges to a scalar multiple of v_n at the rate $\frac{|\lambda_{n-1}|}{|\lambda_n|}$.

5 marks

