利用关联规则在结构化三元组中查找相同语义的谓 词

Synonym Analysis for Predicate Expansion eswc2013

Ziawasch Abedjan @hpi.de 哈索·普拉特纳研究院 Felix Naumann@hpi.de

hanzhe@icst-wip

2016年1月22日

Outline

- summary
 - 论文动机
 - 找到 LOD (linked-open-data) 里面重复的谓词
 - 方法概述
 - 将谓词加到关联规则中, 挖掘相同的谓词对
 - dbpedia 实验效果

Zhe Han (icst@pku) LOD-synonym 2016年1月22日 2 / 13

关联规则

- \mathfrak{I} \mathfrak{I} (item set): $I = \{i_1, i_2, \dots i_m\}$
- \$ \$ \$ (Transaction set): $T = \{t | t \subseteq I\}$
- 一个关联规则 $X \to Y$, 其中 $X, Y \subseteq I, X \cap Y = \emptyset$
 - 该关联规则的支持度 (support): $\frac{|\{t|t\in T, X\cup Y\subseteq t\}|}{|T|}$
 - 该关联规则的置信度 (confidence): $\frac{|\{t|t \in T, X \cup Y \subseteq t\}|}{|\{t|t \in T, X \subseteq t\}|}$

关联规则

Table 2: Facts in SPO structure from DBpedia

	1	
Subject	Predicate	Object
Obama	birthPlace	Hawaii
Obama	party	Democrats
Obama	${\bf order In Office}$	President
Merkel	birthPlace	Hamburg
Merkel	${\bf order In Office}$	Chancellor
Merkel	party	CDU
Brahms	born	Hamburg
Brahms	type	Musician

TID	transaction
	$\{birthPlace, party, orderInOffice\}$
Merkel	$\{birthPlace, party, orderInOffice\}$
Lennon	$\{birthPlace, instrument\}$

Table 3: Six configurations of context and target

Conf.	Context	Target	Use case
			Schema discovery
	Subject		Basket analysis
3	Predicate	Subject	Clustering
4	Predicate	Object	Range discovery
5	Object	Subject	Topical clustering
6	Object	Predicate	Schema matching

 birthPlace → orderInOffice 置信度 66.7%,支持度 66.7%, orderInOffice → birhtPlace 置信度 100%,支持度 66.7%

如果谓词 p_1, p_2 意义相同,则:

- 他们不会出现在同一个主语的谓词集合里
- ② 他们所在的三元组含有很多相同的客体
- ③ 他们所在的三元组的客体类别的分布很相似

如果谓词 p_1, p_2 意义相同

① 他们不会出现在同一个主语的谓词集合里 (RCC)

Table 2: Facts in SPO structure from DBpedia

Subjec	t Predicate	Object
Obama	birthPlace	Hawaii
Obama	party	Democrats
Obama	orderInOffic	e President
Merkel	birthPlace	Hamburg
Merkel	orderInOffic	e Chancellor
Merkel	party	CDU
Brahms	born	Hamburg
Brahms	type	Musician

Table 3: Six configurations of context and target

Conf.	Context	Target	Use case
1	Subject	Predicate	Schema discovery
2	Subject	Object	Basket analysis
3	Predicate	Subject	Clustering
4	Predicate	Object	Range discovery
5	Object	Subject	Topical clustering
6	Object	Predicate	Schema matching

TID transaction
Obama {birthPlace, party, orderInOffice}
Merkel {birthPlace, party, orderInOffice}
Lennon {birthPlace, instrument}

- $X \to \neg Y, Y \to \neg X$ 置信度都很高(避免 Y 出现频率很低造成 $X \to \neg Y$)
- 比如 party → ¬instrument,
 birthPlace → ¬born

如果谓词 p_1, p_2 意义相同

① 他们不会出现在同一个主语的谓词集合里 (RCC)

Table 2: Facts in SPO structure from DBpedia

Subject	Predicate	Object
Obama	birthPlace	Hawaii
Obama	party	Democrats
Obama	${\bf order In Office}$	President
Merkel	birthPlace	Hamburg
Merkel	${\bf order In Office}$	Chancellor
Merkel	party	CDU
Brahms	born	Hamburg
Brahms	type	Musician

Table 3: Six configurations of context and target

Conf.	Context	Target	Use case
1	Subject	Predicate	Schema discovery
2	Subject	Object	Basket analysis
3	Predicate	Subject	Clustering
4	Predicate	Object	Range discovery
5	Object	Subject	Topical clustering
6	Object	Predicate	Schema matching

TID	transaction
	$\{birthPlace, party, orderInOffice\}$
Merkel	$\{birthPlace, party, orderInOffice\}$
Lennon	{ hirthPlace_instrument}

 X → ¬Y,Y → ¬X 置信度都很高(避免 Y 出现频率很低造成 X → ¬Y)

$$\textit{cCoeff}(X,Y) = \frac{N \cdot \textit{supp}(X,Y) - \textit{supp}(X) \cdot \textit{supp}(Y)}{\sqrt{\textit{supp}(Y) \cdot (N - \textit{supp}(Y)) \cdot \textit{supp}(X) \cdot (N - \textit{supp}(X))}}$$

如果谓词 p_1, p_2 意义相同

② 他们所在的三元组含有很多相同的客体(RCF-range content filtering)

Table 2: Facts in SPO structure from DBpedia

Subject	Predicate	Object
Obama	birthPlace	Hawaii
Obama	party	Democrats
Obama	${\bf order In Office}$	President
Merkel	birthPlace	Hamburg
Merkel	${\bf order In Office}$	Chancellor
Merkel	party	CDU
Brahms	born	Hamburg
Brahms	type	Musician

Table 3:	Six	configurations	of	context	and
torgot					

Conf.	Context	Target	Use case
1	Subject	Predicate	Schema discovery
2	Subject	Object	Basket analysis
3	Predicate	Subject	Clustering
4	Predicate	Object	Range discovery
5	Object	Subject	Topical clustering
6	Object	Predicate	Schema matching

TID	transaction
Musician	$\{type\}$
Hamburg	{born, birthPlace
Hawaii	$\{birthPlace\}$
President	$\{orderInOffice\}$

- born 和 birthPlace
- 比如 $party \rightarrow \neg instrument$, $birthPlace \rightarrow \neg born$

如果谓词 p_1, p_2 意义相同

● 他们所在的三元组含有很多相同的客体(RSF-range Structure/type filtering)

类似 range content filtering,将 content 用对应类别替代,计算任意一个谓词对 p_1,p_2 ,只需要计算类别向量的相似度

如果谓词 p_1, p_2 意义相同,则前面 3 种想法混合:

- 根据(RCF-range content filtering)得到所有的谓词对候选(每对谓词至少重复一个客体)
- ② 根据(RSF-range Structure/type filtering)进一步筛选谓词对 (每对谓词至少有一个相同的客体类别)
 - 第一阶段可以重复的客体可能是数值或时间(没有类别),不算相同的可以 类别
- 使用不同的评价标注(RCC/minConf/maxConf/...) 计算每个谓词对的相似度

实验ー

比较使用客体类别向量/客体值来判断 为此对相似性

实验二

- syn 是别人的方法:相同的谓词不共现、含有相似客体
- minConf, maxConf, fmeasure与 RCC 类似
- 希望利用"X→¬Y是一个 频繁模式"来表达两个相同 的谓词
- $minConf = min\{conf(X \rightarrow \neg Y), conf(Y \rightarrow \neg X)\}$
- $maxCont = max\{...\}$
- fmeasur 是 minCont 和 maxCont 的调和平均数

抽取在 dbpedia 'Work'(作品) 类别下的 9456 个谓词对, 其中 82 对意思相同

$$\textit{cCoeff}(X,Y) = \frac{N \cdot \textit{supp}(X,Y) - \textit{supp}(X) \cdot \textit{supp}(Y)}{\sqrt{\textit{supp}(Y) \cdot (N - \textit{supp}(Y)) \cdot \textit{supp}(X) \cdot (N - \textit{supp}(X))}}$$

RCC=

12 / 13

实验三

通过 RCF 对谓词对进行过滤的效果

Table 6: Precision at 0.01% RCF minimum support

Tubic 6. I recision at 6.0170 Real minimum support												
Dataset	minConf	$\max Conf$	f-Measure	RCC	Syn	RCF	# RCF	results				
Magnatune	100%	87.5%	100%	100%	87.5%	87.5%		8				
Govwild	0%	20%	0%	14%	0%	20%		25				
DBpedia 3.7	32%	32%	32%	15%	22%	32%		1115				
DBpedia Person	32%	32%	32%	35%	26%	32%		308				
DBpedia Work	49%	52%	50%	61%	60%	22%		256				
DBpedia Organisation	33%	32%	32%	31%	32%	32%		412				

Table 7: Precision values at 0.1% range content filtering minimum support

Table 1. I recibion	Table 1. I recision varies at 0.176 range content intering imminum support								
Dataset	minConf	\max Conf	fMeasure	RCC	Syn	RCF	# RCF	results	
Magnatune	100%	100%	100%	100%	100%	100%		4	
Govwild	0%	56%	0%	50%	0%	50%		10	
DBpedia 3.7	40%	43%	38%	46%	45%	36%		64	
DBpedia Person	56%	49%	50%	60%	-	40%		35	
DBpedia Work	73%	57%	74%	78%	89%	52%		46	
DBpedia Organisation	88%	86%	90%	89%	95%	85%		45	

- 上下两个图对比, 可以发现 RCf 过滤有用
- 上图的 Dbpedia work 数据集 49% 的准确率比实验二的 30% 左右的准确率高出不少

谢谢大家