

The picture can't be displayed

Chapter 6: Formal Relational Query Languages

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

Chapter 6: Formal Relational Query Languages

- Relational Algebra
- Tuple Relational Calculus
- Domain Relational Calculus

Relational Algebra

- Procedural language
- Six basic operators
 - select: σ
 - project: ∏
 - union: ∪
 - set difference: –
 - Cartesian product: x
 - rename: ρ
- The operators take one or two relations as inputs and produce a new relation as a result.

Select Operation – Example

Relation r

A	В	C	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

$$\bullet$$
 $\sigma_{A=B \land D > 5}(r)$

A	В	C	D
α	α	1	7
β	β	23	10

Select Operation

- Notation: $\sigma_p(r)$
- p is called the selection predicate
- Defined as:

$$\sigma_p(\mathbf{r}) = \{t \mid t \in r \text{ and } p(t)\}$$

Where p is a formula in propositional calculus consisting of **terms** connected by : \land (**and**), \lor (**or**), \neg (**not**) Each **term** is one of:

<attribute> op <attribute> or <constant>

where *op* is one of: =, \neq , >, \geq . <. \leq

Example of selection:

σ dept_name="Physics" (instructor)

Project Operation – Example

Relation *r*.

A	В	C
α	10	1
α	20	1
β	30	1
β	40	2

 $\blacksquare \ \prod_{A,C} (r)$

A	C	A	C
α	1	α	1
α	1	β	1
β	1	β	2
β	2		

Project Operation

Notation:

$$\prod_{A_1,A_2,\ldots,A_k}(r)$$

where A_1 , A_2 are attribute names and r is a relation name.

- The result is defined as the relation of k columns obtained by erasing the columns that are not listed
- Duplicate rows removed from result, since relations are sets
- Example: To eliminate the dept_name attribute of instructor

 $\Pi_{ID, name, salary}$ (instructor)

Union Operation – Example

Relations r, s:

A	В
α	2
β	3

ightharpoonup r \cup s:

Union Operation

- Notation: $r \cup s$
- Defined as:

$$r \cup s = \{t \mid t \in r \text{ or } t \in s\}$$

- For $r \cup s$ to be valid.
 - 1. r, s must have the same arity (same number of attributes)
 - 2. The attribute domains must be **compatible** (example: 2^{nd} column of r deals with the same type of values as does the 2^{nd} column of s)
- Example: to find all courses taught in the Fall 2009 semester, or in the Spring 2010 semester, or in both

$$\Pi_{course_id}(\sigma_{semester="Fall"} \land_{year=2009}(section)) \cup \Pi_{course_id}(\sigma_{semester="Spring"} \land_{year=2010}(section))$$

Set difference of two relations

Relations *r*, *s*:

A	В
α	2
β	3

r - s:

A	В
α	1
β	1

Set Difference Operation

- Notation r s
- Defined as:

$$r-s = \{t \mid t \in r \text{ and } t \notin s\}$$

- Set differences must be taken between compatible relations.
 - r and s must have the same arity
 - attribute domains of r and s must be compatible
- Example: to find all courses taught in the Fall 2009 semester, but not in the Spring 2010 semester

$$\Pi_{course_id}(\sigma_{semester="Fall"} \land year=2009(section)) - \Pi_{course_id}(\sigma_{semester="Spring"} \land year=2010(section))$$

Cartesian-Product Operation – Example

Relations *r*, *s*:

 \blacksquare $r \times s$:

A	В	C	D	Ε
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

Cartesian-Product Operation

- Notation r x s
- Defined as:

$$r \times s = \{t \mid q \mid t \in r \text{ and } q \in s\}$$

- Assume that attributes of r(R) and s(S) are disjoint. (That is, $R \cap S = \emptyset$).
- If attributes of r(R) and s(S) are not disjoint, then renaming must be used.

Composition of Operations

- Can build expressions using multiple operations
- **Example:** $\sigma_{A=C}(r x s)$

	r	X	S
	•	/\	$\mathbf{\circ}$

A	В	C	D	Ε
α	18 4 18 4 18 4	α	10	a
α	8 4 78 4	β	10	a
α	8 4 78 3 58	β	20	b
α	8 1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

 $\sigma_{A=C}(r x s)$

A	B	C	D	Ε
α	1	α	10	a
β	2	β	10	a
β	2	β	20	b

Rename Operation

- Allows us to name, and therefore to refer to, the results of relationalalgebra expressions.
- Allows us to refer to a relation by more than one name.
- Example:

$$\rho_X(E)$$

returns the expression *E* under the name *X*

If a relational-algebra expression E has arity n, then

$$\rho_{x(A_1,A_2,...,A_n)}(E)$$

returns the result of expression E under the name X, and with the attributes renamed to A_1 , A_2 ,, A_n .

Example Query

- Find the largest salary in the university
 - Step 1: find instructor salaries that are less than some other instructor salary (i.e. not maximum)
 - using a copy of instructor under a new name d
 - Π instructor.salary (σ instructor.salary < d,salary (instructor $\times \rho_d$ (instructor)))
 - Step 2: Find the largest salary

```
 \Pi_{salary} \ (instructor) - \\ \Pi_{instructor.salary} \ (\sigma_{instructor.salary} < d, salary \\ (instructor x \ \rho_d \ (instructor)))
```


Example Queries

- Find the names of all instructors in the Physics department, along with the course_id of all courses they have taught
 - Query 1

```
\prod_{instructor.ID,course\_id} (\sigma_{dept\_name="Physics"} (\sigma_{instructor.ID=teaches.ID} (instructor x teaches)))
```

Query 2

```
\prod_{instructor.ID,course\_id} (\sigma_{instructor.ID=teaches.ID} (\sigma_{dept\_name="Physics"} (instructor) \times teaches))
```


Formal Definition

- A basic expression in the relational algebra consists of either one of the following:
 - A relation in the database
 - A constant relation
- Let E_1 and E_2 be relational-algebra expressions; the following are all relational-algebra expressions:
 - $E_1 \cup E_2$
 - $E_1 E_2$
 - $E_1 \times E_2$
 - $\sigma_p(E_1)$, P is a predicate on attributes in E_1
 - $\prod_{S}(E_1)$, S is a list consisting of some of the attributes in E_1
 - $\rho_x(E_1)$, x is the new name for the result of E_1

Additional Operations

We define additional operations that do not add any power to the relational algebra, but that simplify common queries.

- Set intersection
- Natural join
- Assignment
- Outer join

Set-Intersection Operation

- Notation: $r \cap s$
- Defined as:
- $r \cap s = \{ t \mid t \in r \text{ and } t \in s \}$
- Assume:
 - r, s have the same arity
 - attributes of r and s are compatible
- Note: $r \cap s = r (r s)$

Set-Intersection Operation – Example

Relation *r*, *s*:

 $r \cap s$

Natural-Join Operation

- Notation: r ⋈ s
- Let r and s be relations on schemas R and S respectively. Then, $r \bowtie s$ is a relation on schema $R \cup S$ obtained as follows:
 - Consider each pair of tuples t_r from r and t_s from s.
 - If t_r and t_s have the same value on each of the attributes in $R \cap S$, add a tuple t to the result, where
 - t has the same value as t_r on r
 - t has the same value as t_S on s
- Example:

$$R = (A, B, C, D)$$

$$S = (E, B, D)$$

- Result schema = (A, B, C, D, E)
- $r \bowtie s$ is defined as:

$$\prod_{r.A, r.B, r.C, r.D, s.E} (\sigma_{r.B = s.B \land r.D = s.D} (r \times s))$$

Natural Join Example

Relations r, s:

\boldsymbol{A}	В	C	D
α	1	α	a
β	2	γ	a
γ	4	β	b
α	1	γ	a
δ	2	β	b

В	D	Ε
1	a	α
3	a	β
1	a	γ
2	b	δ
3	b	3
	S	

■ r ⋈ s

A	В	C	D	E
α	1	α	a	α
α	1	α	a	γ
α	1	γ	a	α
α	1	γ	a	γ
δ	2	β	b	δ

Natural Join and Theta Join

- Find the names of all instructors in the Comp. Sci. department together with the course titles of all the courses that the instructors teach
 - $\prod_{name, title} (\sigma_{dept_name="Comp. Sci."} (instructor \bowtie teaches \bowtie course))$
- Natural join is associative
 - (instructor ⋈ teaches) ⋈ course is equivalent to instructor ⋈ (teaches ⋈ course)
- Natural join is commutative
 - instruct ⋈ teaches is equivalent to teaches ⋈ instructor
- The **theta join** operation $r \bowtie_{\theta} s$ is defined as
 - $r \bowtie_{\theta} s = \sigma_{\theta} (r \times s)$

Assignment Operation

- The assignment operation (←) provides a convenient way to express complex queries.
 - Write query as a sequential program consisting of
 - a series of assignments
 - followed by an expression whose value is displayed as a result of the query.
 - Assignment must always be made to a temporary relation variable.

Outer Join

- An extension of the join operation that avoids loss of information.
- Computes the join and then adds tuples form one relation that does not match tuples in the other relation to the result of the join.
- Uses null values:
 - null signifies that the value is unknown or does not exist
 - All comparisons involving null are (roughly speaking) false by definition.
 - We shall study precise meaning of comparisons with nulls later

Outer Join – Example

Relation instructor1

ID	name	dept_name
10101	Srinivasan	Comp. Sci.
12121	Wu	Finance
15151	Mozart	Music

Relation teaches1

ID	course_id
10101	CS-101
12121	FIN-201
76766	BIO-101

Outer Join – Example

Join

instructor ⋈ *teaches*

ID	name	dept_name	course_id
10101	Srinivasan	Comp. Sci.	CS-101
12121	Wu	Finance	FIN-201

Left Outer Join

instructor \(\square \) teaches

ID	name	dept_name	course_id
10101	Srinivasan	Comp. Sci.	CS-101
12121	Wu	Finance	FIN-201
15151	Mozart	Music	null

Outer Join – Example

Right Outer Join

instructor ⋈ teaches

ID	name	dept_name	course_id
10101	Srinivasan	Comp. Sci.	CS-101
12121	Wu	Finance	FIN-201
76766	null	null	BIO-101

■ Full Outer Join

instructor □ \ teaches

ID	name	dept_name	course_id
10101	Srinivasan	Comp. Sci.	CS-101
12121	Wu	Finance	FIN-201
15151	Mozart	Music	null
76766	null	null	BIO-101

Outer Join using Joins

- Outer join can be expressed using basic operations

$$(r \bowtie s) \cup (r - \prod_{R} (r \bowtie s) \times \{(null, ..., null)\}$$

Null Values

- It is possible for tuples to have a null value, denoted by *null*, for some of their attributes
- null signifies an unknown value or that a value does not exist.
- The result of any arithmetic expression involving *null* is *null*.
- Aggregate functions simply ignore null values (as in SQL)
- For duplicate elimination and grouping, null is treated like any other value, and two nulls are assumed to be the same (as in SQL)

Null Values

- Comparisons with null values return the special truth value: unknown
 - If *false* was used instead of *unknown*, then not (A < 5) would not be equivalent to A >= 5
- Three-valued logic using the truth value unknown:
 - OR: (unknown or true) = true,
 (unknown or false) = unknown
 (unknown or unknown) = unknown
 - AND: (true and unknown) = unknown,
 (false and unknown) = false,
 (unknown and unknown) = unknown
 - NOT: (not unknown) = unknown
 - In SQL "P is unknown" evaluates to true if predicate P evaluates to unknown
- Result of select predicate is treated as false if it evaluates to unknown

Division Operator

■ Given relations r(R) and s(S), such that S

R, r

s is the largest relation t(R-S) such that

$$t \times s \subset r$$

- E.g. let $r(ID, course_id) = \prod_{ID, course_id} (takes)$ and $s(course_id) = \prod_{course_id} (\sigma_{dept_name="Biology"}(course)$ then $r \div s$ gives us students who have taken all courses in the Biology department
- Can write r ÷ s as

$$temp1 \leftarrow \prod_{R-S} (r)$$

 $temp2 \leftarrow \prod_{R-S} ((temp1 \times s) - \prod_{R-S,S} (r))$
 $result = temp1 - temp2$

- The result to the right of the ← is assigned to the relation variable on the left of the ←.
- May use variable in subsequent expressions.

Extended Relational-Algebra-Operations

- Generalized Projection
- Aggregate Functions

Generalized Projection

Extends the projection operation by allowing arithmetic functions to be used in the projection list.

$$\prod_{F_1, F_2}, ..., F_n(E)$$

- E is any relational-algebra expression
- Each of F_1 , F_2 , ..., F_n are are arithmetic expressions involving constants and attributes in the schema of E.
- Given relation instructor(ID, name, dept_name, salary) where salary is annual salary, get the same information but with monthly salary

 $\Pi_{ID, name, dept name, salary/12}$ (instructor)

Aggregate Functions and Operations

Aggregation function takes a collection of values and returns a single value as a result.

avg: average valuemin: minimum valuemax: maximum valuesum: sum of values

count: number of values

Aggregate operation in relational algebra

$$G_1,G_2,...,G_n$$
 $G_{F_1(A_1),F_2(A_2,...,F_n(A_n)}(E)$

E is any relational-algebra expression

- $G_1, G_2 ..., G_n$ is a list of attributes on which to group (can be empty)
- Each F_i is an aggregate function
- Each A_i is an attribute name
- Note: Some books/articles use γ instead of $\mathcal G$ (Calligraphic G)

Aggregate Operation – Example

Relation *r*.

 $\mathbf{G}_{\mathbf{sum(c)}}(\mathbf{r})$

sum(c) 27

Aggregate Operation – Example

Find the average salary in each department

 $dept_name Gavg(salary)$ (instructor)

ID	name	dept_name	salary
76766	Crick	Biology	72000
45565	Katz	Comp. Sci.	75000
10101	Srinivasan	Comp. Sci.	65000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000
12121	Wu	Finance	90000
76543	Singh	Finance	80000
32343	El Said	History	60000
58583	Califieri	History	62000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
22222	Einstein	Physics	95000

dept_name	avg_salary
Biology	72000
Comp. Sci.	77333
Elec. Eng.	80000
Finance	85000
History	61000
Music	40000
Physics	91000

Aggregate Functions (Cont.)

- Result of aggregation does not have a name
 - Can use rename operation to give it a name
 - For convenience, we permit renaming as part of aggregate operation

dept_name Gavg(salary) as avg_sal (instructor)

Modification of the Database

- The content of the database may be modified using the following operations:
 - Deletion
 - Insertion
 - Updating
- All these operations can be expressed using the assignment operator

Multiset Relational Algebra

- Pure relational algebra removes all duplicates
 - e.g. after projection
- Multiset relational algebra retains duplicates, to match SQL semantics
 - SQL duplicate retention was initially for efficiency, but is now a feature
- Multiset relational algebra defined as follows
 - selection: has as many duplicates of a tuple as in the input, if the tuple satisfies the selection
 - projection: one tuple per input tuple, even if it is a duplicate
 - cross product: If there are m copies of t1 in r, and n copies of t2 in s, there are m x n copies of t1.t2 in r x s
 - Other operators similarly defined
 - E.g. union: m + n copies, intersection: min(m, n) copies difference: min(0, m n) copies

SQL and Relational Algebra

select A1, A2, .. An from r1, r2, ..., rm where P

is equivalent to the following expression in multiset relational algebra

$$\prod_{A_1,...A_n} (\sigma_P(r_1 \times r_2 \times .. \times r_m))$$

select A1, A2, sum(A3) from r1, r2, ..., rm where P group by A1, A2

is equivalent to the following expression in multiset relational algebra

$$A_{1,A_2}G_{sum(A_3)}(\sigma_P(r_1 \times r_2 \times .. \times r_m)))$$

SQL and Relational Algebra

More generally, the non-aggregated attributes in the select clause may be a subset of the group by attributes, in which case the equivalence is as follows:

```
select A1, sum(A3) from r1, r2, ..., rm where P group by A1, A2
```

is equivalent to the following expression in multiset relational algebra

 $\prod_{A1,sumA3} (A_{1,A2} G_{sum(A3)} as_{sumA3} (\sigma_P(r1 \times r2 \times .. \times rm)))$

Tuple Relational Calculus

Tuple Relational Calculus

- A nonprocedural query language, where each query is of the form $\{t \mid P(t)\}$
- It is the set of all tuples t such that predicate P is true for t
- t is a tuple variable, t[A] denotes the value of tuple t on attribute A
- $t \in r$ denotes that tuple t is in relation r
- P is a formula similar to that of the predicate calculus

Predicate Calculus Formula

- 1. Set of attributes and constants
- 2. Set of comparison operators: (e.g., \langle , \leq , =, \neq , \rangle)
- 3. Set of connectives: and (\land) , or (\lor) , not (\neg)
- 4. Implication (\Rightarrow) : $x \Rightarrow y$, if x if true, then y is true

$$X \Rightarrow Y \equiv \neg X \lor Y$$

- 5. Set of quantifiers:
 - ▶ $\exists t \in r(Q(t)) \equiv$ "there exists" a tuple in t in relation r such that predicate Q(t) is true
 - $\forall t \in r(Q(t)) \equiv Q$ is true "for all" tuples t in relation r

■ Find the *ID*, *name*, *dept_name*, *salary* for instructors whose salary is greater than \$80,000

$$\{t \mid t \in instructor \land t [salary] > 80000\}$$

■ As in the previous query, but output only the *ID* attribute value

```
\{t \mid \exists \ s \in \text{instructor} \ (t [ID] = s [ID] \land s [salary] > 80000)\}
```

Notice that a relation on schema (*ID*) is implicitly defined by the query

 Find the names of all instructors whose department is in the Watson building

Find the set of all courses taught in the Fall 2009 semester, or in the Spring 2010 semester, or both

```
\{t \mid \exists s \in section (t [course\_id] = s [course\_id] \land s [semester] = "Fall" \land s [year] = 2009 \ \lor \exists u \in section (t [course\_id] = u [course\_id] \land u [semester] = "Spring" \land u [year] = 2010)\}
```


■ Find the set of all courses taught in the Fall 2009 semester, and in the Spring 2010 semester

```
\{t \mid \exists s \in section \ (t [course\_id] = s [course\_id] \land s [semester] = "Fall" \land s [year] = 2009 \land \exists u \in section \ (t [course\_id] = u [course\_id] \land u [semester] = "Spring" \land u [year] = 2010)\}
```

Find the set of all courses taught in the Fall 2009 semester, but not in the Spring 2010 semester

```
\{t \mid \exists s \in section (t [course\_id] = s [course\_id] \land s [semester] = "Fall" \land s [year] = 2009 \land \neg \exists u \in section (t [course\_id] = u [course\_id] \land u [semester] = "Spring" \land u [year] = 2010)\}
```


Safety of Expressions

- It is possible to write tuple calculus expressions that generate infinite relations.
- For example, $\{t \mid \neg t \in r\}$ results in an infinite relation if the domain of any attribute of relation r is infinite
- To guard against the problem, we restrict the set of allowable expressions to safe expressions.
- An expression $\{t \mid P(t)\}$ in the tuple relational calculus is *safe* if every component of t appears in one of the relations, tuples, or constants that appear in P
 - NOTE: this is more than just a syntax condition.
 - ▶ E.g. { $t \mid t[A] = 5 \lor \text{true}$ } is not safe --- it defines an infinite set with attribute values that do not appear in any relation or tuples or constants in P.

Universal Quantification

- Find all students who have taken all courses offered in the Biology department
 - {t | ∃ r ∈ student (t [ID] = r [ID]) ∧
 (∀ u ∈ course (u [dept_name]="Biology" ⇒
 ∃ s ∈ takes (t [ID] = s [ID] ∧
 s [course_id] = u [course_id]))}
 - Note that without the existential quantification on student, the above query would be unsafe if the Biology department has not offered any courses.

Domain Relational Calculus

Domain Relational Calculus

- A nonprocedural query language equivalent in power to the tuple relational calculus
- Each query is an expression of the form:

$$\{ \langle x_1, x_2, ..., x_n \rangle \mid P(x_1, x_2, ..., x_n) \}$$

- $x_1, x_2, ..., x_n$ represent domain variables
- P represents a formula similar to that of the predicate calculus

- Find the *ID*, *name*, *dept_name*, *salary* for instructors whose salary is greater than \$80,000
 - $\{ < i, n, d, s > | < i, n, d, s > \in instructor \land s > 80000 \}$
- As in the previous query, but output only the ID attribute value
 - $\{ < i > | < i, n, d, s > \in instructor \land s > 80000 \}$
- Find the names of all instructors whose department is in the Watson building

```
\{ \langle n \rangle \mid \exists i, d, s \ (\langle i, n, d, s \rangle \in instructor \land \exists b, a \ (\langle d, b, a \rangle \in department \land b = "Watson") \} \}
```


Find the set of all courses taught in the Fall 2009 semester, or in the Spring 2010 semester, or both

$$\{ \mid \exists \ a, \ s, \ y, \ b, \ r, \ t \ (\ \in \ section \land s = "Fall" \land y = 2009 \}$$

$$v \exists \ a, \ s, \ y, \ b, \ r, \ t \ (\ \in \ section \} \land s = "Spring" \land y = 2010 \}$$
This case can also be written as

$$\{ \mid \exists \ a, \ s, \ y, \ b, \ r, \ t \ (< c, \ a, \ s, \ y, \ b, \ t> \in section \land ((s = "Fall" \land y = 2009)) \lor (s = "Spring" \land y = 2010)) \}$$

Find the set of all courses taught in the Fall 2009 semester, and in the Spring 2010 semester

{<*c*> | ∃ *a*, *s*, *y*, *b*, *r*, *t* (<*c*, *a*, *s*, *y*, *b*, *t* > ∈ section
$$\land$$
 $s = \text{``Fall''} \land y = 2009$)
 $\land \exists a$, *s*, *y*, *b*, *r*, *t* (<*c*, *a*, *s*, *y*, *b*, *t* > ∈ section] \land $s = \text{``Spring''} \land y = 2010$)}

Safety of Expressions

The expression:

$$\{ \langle x_1, x_2, ..., x_n \rangle \mid P(x_1, x_2, ..., x_n) \}$$

is safe if all of the following hold:

- All values that appear in tuples of the expression are values from dom (P) (that is, the values appear either in P or in a tuple of a relation mentioned in P).
- 2. For every "there exists" subformula of the form $\exists x (P_1(x))$, the subformula is true if and only if there is a value of x in $dom(P_1)$ such that $P_1(x)$ is true.
- 3. For every "for all" subformula of the form $\forall_x (P_1(x))$, the subformula is true if and only if $P_1(x)$ is true for all values x from $dom(P_1)$.

Universal Quantification

- Find all students who have taken all courses offered in the Biology department
 - {< i > | ∃ n, d, tc (< i, n, d, tc > ∈ student ∧
 (∀ ci, ti, dn, cr (< ci, ti, dn, cr > ∈ course ∧ dn = "Biology"
 ⇒ ∃ si, se, y, g (<i, ci, si, se, y, g > ∈ takes))}
 - Note that without the existential quantification on student, the above query would be unsafe if the Biology department has not offered any courses.

* Above query fixes bug in page 246, last query

The picture can't be display

End of Chapter 6

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

ID	пате	dept_name	salary	
10101	Srinivasan	Comp. Sci.	65000	
12121	Wu	Finance	90000	
15151	Mozart	Music	40000	
22222	Einstein	Physics	95000	
32343	El Said	History	60000	
33456	Gold	Physics	87000	
45565	Katz	Comp. Sci.	75000	
58583	Califieri	History	62000	
76543	Singh	Finance	80000	
76766	Crick	Biology	72000	
83821	Brandt	Comp. Sci.	92000	
98345	Kim	Elec. Eng.	80000	

ID	пате	dept_name	salary	
22222	Einstein	Physics	95000	
33456	Gold	Physics	87000	

ID	name	salary
10101	Srinivasan	65000
12121	Wu	90000
15151	Mozart	40000
22222	Einstein	95000
32343	El Said	60000
33456	Gold	87000
45565	Katz	75000
58583	Califieri	62000
76543	Singh	80000
76766	Crick	72000
83821	Brandt	92000
98345	Kim	80000

course_id	sec_id	semester	year	building	room_number	time_slot_id
BIO-101	1	Summer	2009	Painter	514	В
BIO-301	1	Summer	2010	Painter	514	Α
CS-101	1	Fall	2009	Packard	101	Н
CS-101	1	Spring	2010	Packard	101	F
CS-190	1	Spring	2009	Taylor	3128	E
CS-190	2	Spring	2009	Taylor	3128	Ā
CS-315	1	Spring	2010	Watson	120	D
CS-319	1	Spring	2010	Watson	100	В
CS-319	2	Spring	2010	Taylor	3128	C
CS-347	1	Fall	2009	Taylor	3128	A
EE-181	1	Spring	2009	Taylor	3128	C
FIN-201	1	Spring	2010	Packard	101	В
HIS-351	1	Spring	2010	Painter	514	C
MU-199	1	Spring	2010	Packard	101	D
PHY-101	1	Fall	2009	Watson	100	A

course_id

CS-101

CS-315

CS-319

CS-347

FIN-201

HIS-351

MU-199

PHY-101

course_id

CS-347

PHY-101

ID	course_id	sec_id	semester	year
10101	CS-101	1	Fall	2009
10101	CS-315	1	Spring	2010
10101	CS-347	1	Fall	2009
12121	FIN-201	1	Spring	2010
15151	MU-199	1	Spring	2010
22222	PHY-101	1	Fall	2009
32343	HIS-351	1	Spring	2010
45565	CS-101	1	Spring	2010
45565	CS-319	1	Spring	2010
76766	BIO-101	1	Summer	2009
76766	BIO-301	1	Summer	2010
83821	CS-190	1	Spring	2009
83821	CS-190	2	Spring	2009
83821	CS-319	2	Spring	2010
98345	EE-181	1	Spring	2009

Inst.ID	name	dept_name	salary	teaches.ID	course_id	sec_id	semester	year
10101	Srinivasan	Comp. Sci.	65000	10101	CS-101	1	Fall	2009
10101	Srinivasan	Comp. Sci.	65000	10101	CS-315	1	Spring	2010
10101		Comp. Sci.	65000	10101	CS-347	1	Fall	2009
10101	Srinivasan	Comp. Sci.	65000	12121	FIN-201	1	Spring	2010
10101		Comp. Sci.	65000	15151	MU-199	1	Spring	2010
10101		Comp. Sci.	65000	22222	PHY-101	1	Fall	200
444	***	***	***	***	1010	***	exe:	
•••	***	***	***	***	***	+++	***	
12121	Wu	Finance	90000	10101	CS-101	1	Fall	200
12121	Wu	Finance	90000	10101	CS-315	1	Spring	201
12121	Wu	Pinance	90000	10101	CS-347	1	Fall	200
12121	Wu	Pinance	90000	12121	FIN-201	1	Spring	201
12121	Wu	Finance	90000	15151	MU-199	1	Spring	201
12121	Wu	Pinance	90000	22222	PHY-101	1	Fall	200
***	300	(18.88)	***	Viii	9222		9220	***
200		7866	***		1000	***	***	***
15151	Mozart	Music	40000	10101	CS-101	1	Fall	200
15151	Mozart	Music	40000	10101	CS-315	1	Spring	201
15151	Mozart	Music	40000	10101	CS-347	1	Fall	200
15151	Mozart	Music	40000	12121	FIN-201	1	Spring	201
15151	Mozart	Music	40000	15151	MU-199	1	Spring	201
15151	Mozart	Music	40000	22222	PHY-101	1	Fall	200
***	***	666°	(444	2015	17.5	****	355	555
***	***		444	***	F44	***		***
22222	Einstein	Physics	95000	10101	CS-101	1	Fall	200
22222	Einstein	Physics	95000	10101	CS-315	1	Spring	201
22222	Einstein	Physics	95000	10101	CS-347	1	Fall	200
22222	Einstein	Physics	95000	12121	FIN-201	1	Spring	201
22222	Einstein	Physics	95000	15151	MU-199	1	Spring	201
22222	Einstein	Physics	95000	22222	PHY-101	1	Fall	200
		311		***			***	***
***		30.1	***	***	***		***	1.11

inst.ID	name	dept_name	salary	teaches.ID	course_id	sec_id	semester	year
22222	Einstein	Physics	95000	10101	CS-437	1	Fall	2009
22222	Einstein	Physics	95000	10101	CS-315	1	Spring	2010
22222	Einstein	Physics	95000	12121	FIN-201	1	Spring	2010
22222	Einstein	Physics	95000	15151	MU-199	1	Spring	2010
22222	Einstein	Physics	95000	22222	PHY-101	1	Fall	2009
22222	Einstein	Physics	95000	32343	HIS-351	1	Spring	2010
•••		•••	***	***	***	***	***	•••
			***	***	•••		***	
33456	Gold	Physics	87000	10101	CS-437	1	Fall	2009
33456	Gold	Physics	87000	10101	CS-315	1	Spring	2010
33456	Gold	Physics	87000	12121	FIN-201	1	Spring	2010
33456	Gold	Physics	87000	15151	MU-199	1	Spring	2010
33456	Gold	Physics	87000	22222	PHY-101	1	Fall	2009
33456	Gold	Physics	87000	32343	HIS-351	1	Spring	2010
•••		•••	1	***	***	***	***	•••
		***		2000	***	***	***	•••

name	course_id		
Einstein	PHY-101		

salary

salary 95000

course_id CS-101

ID	name	dept_name	salary	course_id	sec_id	semester	year
10101	Srinivasan	Comp. Sci.	65000	CS-101	1	Fall	2009
10101	Srinivasan	Comp. Sci.	65000	CS-315	1	Spring	2010
10101	Srinivasan	Comp. Sci.	65000	CS-347	1	Fall	2009
12121	Wu	Finance	90000	FIN-201	1	Spring	2010
15151	Mozart	Music	40000	MU-199	1	Spring	2010
22222	Einstein	Physics	95000	PHY-101	1	Fall	2009
32343	El Said	History	60000	HIS-351	1	Spring	2010
45565	Katz	Comp. Sci.	75000	CS-101	1	Spring	2010
45565	Katz	Comp. Sci.		CS-319	1	Spring	2010
76766	Crick	Biology	72000	BIO-101	1	Summer	2009
76766	Crick	Biology	72000	BIO-301	1	Summer	2010
83821	Brandt	Comp. Sci.	92000	CS-190	1	Spring	2009
83821	Brandt	Comp. Sci.		CS-190	2	Spring	2009
83821	Brandt	Comp. Sci.	92000	CS-319	2	Spring	2010
98345	Kim	Elec. Eng.	80000	EE-181	1	Spring	2009

name	course_id	
Srinivasan	CS-101	
Srinivasan	CS-315	
Srinivasan	CS-347	
Wu	FIN-201	
Mozart	MU-199	
Einstein	PHY-101	
El Said	HIS-351	
Katz	CS-101	
Katz	CS-319	
Crick	BIO-101	
Crick	BIO-301	
Brandt	CS-190	
Brandt	CS-319	
Kim	EE-181	

name	title
Brandt	Game Design
Brandt	Image Processing
Katz	Image Processing
Katz	Intro. to Computer Science
Srinivasan	Intro. to Computer Science
Srinivasan	Robotics
Srinivasan	Database System Concepts

ID	name	dept_name	salary	course_id	sec_id	semester	year
10101	Srinivasan	Comp. Sci.	65000	CS-101	1	Fall	2009
10101	Srinivasan	Comp. Sci.	65000	CS-315	1	Spring	2010
10101	Srinivasan	Comp. Sci.	65000	CS-347	1	Fall	2009
12121	Wu	Finance	90000	FIN-201	1	Spring	2010
15151	Mozart	Music	40000	MU-199	1	Spring	2010
22222	Einstein	Physics	95000	PHY-101	1	Fall	2009
32343	El Said	History	60000	HIS-351	1	Spring	2010
33456	Gold	Physics	87000	null	null	null	null
45565	Katz	Comp. Sci.	75000	CS-101	1	Spring	2010
45565	Katz	Comp. Sci.	75000	CS-319	1	Spring	2010
58583	Califieri	History	62000	null	null	null	null
76543	Singh	Finance	80000	null	null	null	null
76766	Crick	Biology	72000	BIO-101	1	Summer	2009
76766	Crick	Biology	72000	BIO-301	1	Summer	2010
83821	Brandt	Comp. Sci.		CS-190	1	Spring	2009
83821	Brandt	Comp. Sci.	92000	CS-190	2	Spring	2009
83821	Brandt	Comp. Sci.	92000	CS-319	2	Spring	2010
98345	Kim	Elec. Eng.	80000	EE-181	1	Spring	2009

ID	course_id	sec_id	semester	year	name	dept_name	salary
10101	CS-101	1	Fall	2009	Srinivasan	Comp. Sci.	65000
10101	CS-315	1	Spring	2010	Srinivasan	Comp. Sci.	65000
10101	CS-347	1	Fall	2009	Srinivasan	Comp. Sci.	65000
12121	FIN-201	1	Spring	2010	Wu	Finance	90000
15151	MU-199	1	Spring	2010	Mozart	Music	40000
22222	PHY-101	1	Fall	2009	Einstein	Physics	95000
32343	HIS-351	1	Spring	2010	El Said	History	60000
33456	null	null	null	null	Gold	Physics	87000
45565	CS-101	1	Spring	2010	Katz	Comp. Sci.	75000
45565	CS-319	1	Spring	2010	Katz	Comp. Sci.	75000
58583	null	null	null	null	Califieri	History	62000
76543	null	null	null	null	Singh	Finance	80000
76766	BIO-101	1	Summer	2009	Crick	Biology	72000
76766	BIO-301	1	Summer	2010	Crick	Biology	72000
83821	CS-190	1	Spring	2009	Brandt	Comp. Sci.	92000
83821	CS-190	2	Spring	2009	Brandt	Comp. Sci.	92000
83821	CS-319	2	Spring	2010	Brandt	Comp. Sci.	92000
98345	EE-181	1	Spring	2009	Kim	Elec. Eng.	80000

ID	name	dept_name	salary
76766	Crick	Biology	72000
45565	Katz	Comp. Sci.	75000
10101	Srinivasan	Comp. Sci.	65000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000
12121	Wu	Finance	90000
76543	Singh	Finance	80000
32343	El Said	History	60000
58583	Califieri	History	62000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
22222	Einstein	Physics	95000

dept_name	salary
Biology	72000
Comp. Sci.	77333
Elec. Eng.	80000
Finance	85000
History	61000
Music	40000
Physics	91000

name Einstein Crick Gold

Deletion

- A delete request is expressed similarly to a query, except instead of displaying tuples to the user, the selected tuples are removed from the database.
- Can delete only whole tuples; cannot delete values on only particular attributes
- A deletion is expressed in relational algebra by:

$$r \leftarrow r - E$$

where r is a relation and E is a relational algebra query.

Deletion Examples

Delete all account records in the Perryridge branch.

$$account \leftarrow account - \sigma_{branch\ name = "Perryridge"}(account)$$

Delete all loan records with amount in the range of 0 to 50

loan ← loan −
$$\sigma$$
 amount ≥ 0 and amount ≤ 50 (loan)

Delete all accounts at branches located in Needham.

```
r_1 \leftarrow \sigma_{branch\_city} = \text{``Needham''} (account \bowtie branch)
r_2 \leftarrow \Pi_{account\_number, branch\_name, balance} (r_1)
r_3 \leftarrow \Pi_{customer\_name, account\_number} (r_2 \bowtie depositor)
account \leftarrow account - r_2
depositor \leftarrow depositor - r_3
```


Insertion

- To insert data into a relation, we either:
 - specify a tuple to be inserted
 - write a query whose result is a set of tuples to be inserted
- in relational algebra, an insertion is expressed by:

$$r \leftarrow r \cup E$$

where r is a relation and E is a relational algebra expression.

■ The insertion of a single tuple is expressed by letting *E* be a constant relation containing one tuple.

Insertion Examples

Insert information in the database specifying that Smith has \$1200 in account A-973 at the Perryridge branch.

```
account \leftarrow account \cup \{(\text{``A-973''}, \text{``Perryridge''}, 1200)\}
depositor \leftarrow depositor \cup \{(\text{``Smith''}, \text{``A-973''})\}
```

Provide as a gift for all loan customers in the Perryridge branch, a \$200 savings account. Let the loan number serve as the account number for the new savings account.

```
r_1 \leftarrow (\sigma_{branch\_name = "Perryridge"}(borrowet \bowtie loan))
account \leftarrow account \cup \prod_{loan\_number, branch\_name, 200}(r_1)
depositor \leftarrow depositor \cup \prod_{customer\_name, loan\_number}(r_1)
```


Updating

- A mechanism to change a value in a tuple without charging all values in the tuple
- Use the generalized projection operator to do this task

$$r \leftarrow \prod_{F_1,F_2,\dots,F_L}(r)$$

- Each F_i is either
 - the I th attribute of r, if the I th attribute is not updated, or,
 - if the attribute is to be updated F_i is an expression, involving only constants and the attributes of *r*, which gives the new value for the attribute

Update Examples

Make interest payments by increasing all balances by 5 percent.

$$account \leftarrow \prod_{account_number, branch_name, balance * 1.05} (account)$$

Pay all accounts with balances over \$10,000 6 percent interest and pay all others 5 percent

```
account \leftarrow \prod_{account\_number, branch\_name, balance * 1.06} (\sigma_{BAL > 10000}(account)) \cup \prod_{account\_number, branch\_name, balance * 1.05} (\sigma_{BAL \le 10000}(account))
```


Example Queries

Find the names of all customers who have a loan and an account at bank.

$$\Pi_{customer\ name}$$
 (borrower) $\cap \Pi_{customer\ name}$ (depositor)

Find the name of all customers who have a loan at the bank and the loan amount

 $\Pi_{customer\ name,\ loan\ number,\ amount}$ (borrower \bowtie loan)

Example Queries

- Find all customers who have an account from at least the "Downtown" and the Uptown" branches.
 - Query 1

```
\Pi_{customer\_name} (\sigma_{branch\_name = "Downtown"} (depositor \bowtie account)) \cap \Pi_{customer\_name} (\sigma_{branch\_name = "Uptown"} (depositor \bowtie account))
```

Query 2

```
\Pi_{customer\_name, branch\_name}(depositor | \land account)

\div \rho_{temp(branch\_name)}(\{("Downtown"), ("Uptown")\})
```

Note that Query 2 uses a constant relation.

Bank Example Queries

Find all customers who have an account at all branches located in Brooklyn city.

 $\prod_{customer_name, \ branch_name} (depositor_{\bowtie} \ account)$

 $\div \prod_{branch_name} (\sigma_{branch_city = "Brooklyn"} (branch))$