Homework #2

Due date: 10th April 2025

(1) Design of a rail-to-rail input amplifier with constant gm control

Consider the **rail-to-rail input amplifier** in Fig.1. V_{DD} =1.8V, V_{SS} =0V, and C_L =2pF. Please design I_{Bias} and the sizes of all transistors to satisfy the following specifications

	Specifications	Units
DC characteristics	$P_{diss} \leq 2$	mW
	$0 \le ICMR \le 1.8$	V
	$0.5 \leq V_{out} \text{range} \leq 1.3$	V
	Δgm < 10%	%
AC characteristics	$A_{V} \geq 50 dB$	dB
	3dB-bandwidth≥ 80K	Hz
	PM ≥ 65	o

Fig1. rail-to-rail input amplifier

- (a) Design I_{Bias} and W/L of all transistors by hand calculation. (Use the Level 1 parameters derived in your HW1)
- (b) In this design you are allowed to use only one current reference (IR = $20 \,\mu A$) and one voltage reference (VREF = $0.9 \, V$). Please design the circuit to generate the biasing voltages VB1~VB5, VBP, and VBN. Please describe your design in the report.
- (c) Use **Spectre** to check whether all specifications are satisfied. If not, **redesign** your circuit to meet the specifications. **The following results must be included in your report:**
 - (i) Use **Spectre** to calculate the operating modes, g_m , r_o of all transistors when $v_I = v_{REF} = 0.9$ V. Give the **summary of circuit operations** in your report.
 - (ii) Sweep the DC value of v_O with v_I sweeping from 0 to 1.8V. Give **the plot of** v_O **v.s.** v_I in your report, and **mark maximum gain value** and find the output dynamic range (hint: Slope(gain) at the Vout in the output dynamic range must all be larger than 50dB).
 - (iii) Plot the open-loop frequency response (both magnitude and phase) of the Op-amp. Mark explicitly Av, 3dB frequency, and PM in the plot.
 - (iv) Sweep the DC value of the input common mode voltage from 0 to 1.8V. Give the plot of gmn, gmp, gmt(=gmn+gmp) in your report. Please mark and calculate the ΔGm in your simulation result
- (d) Summarize the specifications of the Op-amp in a table of the following form

	Specifications	Simulations	Units
DC	$P_{diss} \leq 2$		mW
characteristics	$0 \le ICMR \le 1.8$		V
	$0.5 \le V_{out} \text{ range} \le 1.3$		V
	Δgm < 10%		%
AC	$A_{V} \ge 50 dB$		dB
characteristics	3dB-bandwidth≥ 80K		Hz
	PM ≥ 65		0

Please submit your report (*.pdf) and netlist file (*.sp) to the EECLASS system. (Note: Don' use black color in background for your screen capture figures). Please named your file as hw2_student number.pdf, hw2_student number_x.sp e.g. hw2_100061501_1c.sp represents .sp file for question 1(c).