$oldsymbol{U}$ niversité $oldsymbol{M}$ oulay $oldsymbol{I}$ smaïl Ecole Nationale Supérieure d'Arts et Métiers — Meknès

CONCOURS D'ENTREE en 1ère Année

Filière : Sciences Mathématiques A et B

Epreuve de Mathématiques

Mardi 09/08/11 - Durée : 2h 10mn

Questions à réponse précise, Partie I		
Répondre dans la colonne Réponses	(NB : Chaque question est notée sur (IPt))	
Questions	Réponses	
Les propositions suivantes sont-elles vraies ou	Control of the contro	
 (a) Toute application injective d'un ensemble dans lui même est bijective 	T to 2, 5 2 section we wanted with Linear to the control of the co	
(b) $\forall x > 1$, $\frac{x-1}{\ln(x-1)} \in \mathbb{R}$		
(c) Soit A, B et C trois ensembles, on a $(A \cup B) \cap C = A \cup (B \cap C)$	a Charles I was a second of the control of the cont	
(d) $\forall x \in \mathbb{R}, x^2 < 0 \Longrightarrow x < 0$		
(e) La somme de deux irrationnels est un irrationnel	a-	
Traduire à l'aide des quantificateurs les propsitions suivantes : (a) La fonction f est constante sur $[0, 5]$	0-	
(b) La fonction g n'est pas injective s l'ensemble E		
(c) La fonction h, définie sur IR, atteint tou	tes	
les valeurs de IN	And skiese in	
les valeurs de IN (d) Tout réel possède une racine carré dans (e) Etant donnés trois réels, il y en a au mo	$I\!\!R$	

Questions à réponse précise, Partie II

Organiana	Réponses
Questions	тефонов
Déterminer l'ensemble des polynômes P tels que $P(x^2) = (x^2 + 1) P(x)$	
Résoudre dans \mathbb{Z}^2 l'équation : $198x + 216y = 36$	
E, F et G étant trois ensembles finis exprimer $card (E \cup F \cup G)$ en fonction des cardinaux des ensembles $E, F, G, E \cap F, E \cap G, F \cap G$ et $E \cap F \cap G$	Eschiolario I Commissione I Respondente I Commissione I Respondente I Commissione I Respondente I Re
Exprimer à l'aide d'intervalles de $I\!\!R$ l'ensemble suivant : $A = \{x \in I\!\!R \ / \ 2 \le x < 4\}$	
Comment faire 21 avec les chiffres 1 5 6 et 7 utilisés qu'une fois chacun, et en utilisant à son gré les opérateurs simples +, -, * et /	
Calculer le nombre complexe $B = \left(\frac{1+i\sqrt{3}}{1-i}\right)^{20}$	
Calculer $\alpha = \sum_{k=1}^{n} \frac{2^k + 3^{k+2}}{5^{k+1}}$	M. P. B. B. W.
Calculer $\beta = \sum_{k=1}^{n} (2k+7)$	PROPERTY OF BUILDING AND SERVICE OF STREET
Dans le plan rapporté à un repère orthonormé, on contidère les points A , B et C de coordonnées : $A(2,4)$, $B(-2,1)$ et $C(4,3)$. On note d la distance du point A à la droite (BC) . Donner la valeur de d .	Constitution of the consti
Calculer la limite de la suite dont le terme général est donné par : $u_1 = \sqrt{2}, u_2 = \sqrt{2\sqrt{2}},$ $u_3 = \sqrt{2\sqrt{2}\sqrt{2}}, \cdots$	MS 1. B. ASSES CHARLES CO. CO. C.

Questions à réponse précise, Partie III

Répondre dans la colonne Réponses (NB : Chaque question est notée sur (2Pts))		
	Réponses	
Questions Conner l'ensemble S des réels appartenant à l'intervalle $[0, 2\pi[$ vérifiant l'équation : $\sin x)^2 + \frac{\sqrt{3}}{2}\sin x = 0$		
Résoudre dans \mathbb{R} l'équation $ E(x) =3$ avec $E(x)$ est la partie entière de x		
Calculer $\lim_{x \to +\infty} \frac{2x+1}{\sqrt[3]{x^3+3x}}$		
Déterminer l'équation de la droite qui est asymptote à la courbe C_f en $+\infty$ de la fonction f , définie sur \mathbb{R}^* par $f(x) = \frac{2e^x + 1}{1 - e^x}$		
Calculer la dérivée, lorsqu'elle existe, de la fonction suivante : $f(x) = x \ln x+1 $		
On considère, pour tout $n \in IN^*$, l'intégrale $I_n = \int_0^1 x^n e^{2x} dx$. Trouver une relation entre I_n et I_{n-1} avec $n > 1$		
Soit la fonction f définie sur $I = [0, 3]$ par $f(x) = \begin{cases} -1 & \text{si } x = 0\\ xe^{x^2} & \text{si } x \in]0, 2[\\ 1 & \text{si } x = 2\\ \frac{2x}{1+x^2} & \text{si } x \in]2, 3] \end{cases}$		
Calculer $F(x) = \int_0^x f(x) dx$ avec $x \in I$ Calculer $\int t^3 \cos t^2 dt$		
Déterminer la fonction f telle que $g \circ f(x) = 2 x $ sachant que g est la fonction définie par $g(x) = \begin{cases} e^x & \text{si } x < 0 \\ \sqrt{x+1} & \text{si } x \ge 0 \end{cases}$		
Pour quelles valeurs de $\beta \in \mathbb{R}$, l'équation $x^2 + \sqrt{x} - \beta = 0$ admet une unique racine dan l'intervalle $[0, 1]$?	a s s	

Université Moulay Ismaïl Ecole Nationale Supérieure d'Arts et Métiers — Meknès

CONCOURS D'ENTREE en 1ère Année

Filière : Sciences Mathématiques A et B

Epreuve de Mathématiques

Mardi 09/08/11 - Durée : 2h 10mn

Questions à répoi	ase précise, Partie I
Répondre dans la colonne Réponses	(NB : Chaque question est notée sur (1Pt))
Questions	Réponses
Les propositions suivantes sont-elles vraies ou fausses? (a) Toute application injective d'un ensemble	a) fausse. exp: IR > IR 2 estinjective mais pas bijective, o n'a pas d'antécédant dans IR. b) fausse. D. = 71,2[U 72, +00]
dans lui même est bijective	b) fauxe. D2-1 =]1,2[U]2,+00[
(b) $\forall x > 1$, $\frac{x-1}{\ln(x-1)} \in \mathbb{R}$	c) founde. A=B=IR, C=IR+ (AVB)nC=IR+ AV (BnC)=IR
	d) Vraie
 (d) ∀x ∈ R, x² < 0 ⇒ x < 0 (e) La somme de deux irrationnels est un irrationnel 	e) fausse, v2, -v2 sont irrationnels mais leur somme qui est nulle n'est pas irrationnel.
Traduire à l'aide des quantificateurs les propositions suivantes :	1. La proposition se traduit par: JKeik, Vn e [0,5]: f(n)=K
(a) La fonction f est constante sur $[0, 5]$	2. La proposition se traduit per: I (a, b) e E²/g(a)=g(b) et a + b
(b) La fonction g n'est pas injective sur l'ensemble E	3. la proposition se traduit par:
(c) La fonction h, définie sur R, atteint toutes les valeurs de IN	4. La proposition se traduit pour:
(d) Tout réel possède une racine carré dans R	Ybeir, Jaeir/b=a2
(e) Etant donnés trois réels, il y en a au moins deux de même signe	5. La proposition se traduit par: Y(a,b,c)e123/ob>00046c>00000000000000000000000000000000

Questions à réponse précise, Partie III

Répondre dans la colonne Réponses (1	NB : Chaque question est notée sur (2Pts))
Questions	Réponses
Donner l'ensemble S des réels appartenant à l'intervalle $[0, 2\pi[$ vérifiant l'équation : $(\sin x)^2 + \frac{\sqrt{3}}{2}\sin x = 0$	5= \ \frac{7\pi}{12} + 2\ki\frac{\ke\pi}{\ke\pi} \cdot\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Résoudre dans IR l'équation $ E(x) = 3$ avec $E(x)$ est la partie entière de x	5=]-4,-3]0[3,4[
Calculer $\lim_{x \to +\infty} \frac{2x+1}{\sqrt[3]{x^3+3x}}$	
Déterminer l'équation de la droite qui est asymptote à la courbe C_f en $+\infty$ de la fonction f , définie sur \mathbb{R}^* par $f(x) = \frac{2e^x + 1}{1 - e^x}$	
Calculer la dérivée, lorsqu'elle existe, de la fonction suivante : $f(x) = x \ln x+1 $	
On considère, pour tout $n \in IV^*$, l'intégrale $I_n = \int_0^1 x^n e^{2x} dx$. Trouver une relation entre I_n et I_{n-1} avec $n > 1$	$\mathbb{T}_{n+1} = \frac{e^2}{2} - \frac{n+1}{2} \mathbb{T}_n$
Soit la fonction f définie sur $I = [0, 3]$ par $f(x) = \begin{cases} -1 & \text{si } x = 0\\ xe^{x^2} & \text{si } x \in]0, 2[\\ 1 & \text{si } x = 2\\ \frac{2x}{1+x^2} & \text{si } x \in]2, 3] \end{cases}$ Calculer $F(x) = \int_0^x f(x) dx$ avec $x \in I$	$F(n) = \frac{e^{n^2}}{2} + \ln \frac{1+n^2}{5}$
Calculer $\int t^3 \cos t^2 dt$	$\int t^3 (o(t^2) dt = \frac{1}{2} t^2 sin(t^2) + \frac{1}{2} (os(t^2) + K)$
Déterminer la fonction f telle que $gof(x) = 2 x $ sachant que g est la fonction définie par $g(x) = \begin{cases} e^x & \text{si } x < 0\\ \sqrt{x+1} & \text{si } x \ge 0 \end{cases}$	f(n)= fm(21m) ne j-1/2,0[v]0, 1/2,+
Pour quelles valeurs de $\beta \in \mathbb{R}$, l'équation $x^2 + \sqrt{x} - \beta = 0$ admet une unique racine dans l'intervalle $[0, 1]$?	β ε [0,2]

Questions à réponse précise, Partie II

Répondre dans la colonne Réponses (NB : Chaque question est notée sur (2Pts))	
Questions	Réponses
Déterminer l'ensemble des polynômes P tels que $P\left(x^{2}\right)=\left(x^{2}+1\right)P\left(x\right)$	$\mathcal{E} = \frac{1}{2} a \left(n^2 - 4 \right) / a \in \mathbb{R}^4$
Résoudre dans \mathbb{Z}^2 l'équation : $198x + 216y = 36$	5=2(-2+12K,2-11K)/KEZ6
E, F et G étant trois ensembles finis exprimer $card(E \cup F \cup G)$ en fonction des cardinaux des ensembles $E, F, G, E \cap F, E \cap G, F \cap G$ et $E \cap F \cap G$	Card (E v F v G) = (ard (E) + (ard (F) + (ard (G) - Card (En F) - Card (En G)) - (ard (Fn G) + (ard (En Fn G))
Exprimer à l'aide d'intervalles de $I\!\!R$ l'ensemble suivant : $A = \{x \in I\!\!R \ / \ 2 \le x < 4\}$	A = [2,4] U [-4,-2]
Comment faire 21 avec les chiffres 1 5 6 et 7 utilisés qu'une fois chacun, et en utilisant à son gré les opérateurs simples +, -, * et /	$6 \div (1-5+7) = 6 \div \frac{2}{7} = 21$
Calculer le nombre complexe $B = \left(\frac{1+i\sqrt{3}}{1-i}\right)^{20}$	B=[12, 71] = [21, 141] = 212=4096
Calculer $\alpha = \sum_{k=1}^{n} \frac{2^k + 3^{k+2}}{5^{k+1}}$	$\alpha = \frac{2}{15} \left(1 - \left(\frac{2}{5} \right)^n \right) + \frac{24}{10} \left(1 - \left(\frac{3}{5} \right)^n \right)$
Calculer $\beta = \sum_{k=1}^{n} (2k+7)$	$\beta = \sum_{k=1}^{n} (2k+7) = h(n+8)$
Dans le plan rapporté à un repère orthonormé, on contidère les points A , B et C de coordonnées : $A(2,4)$, $B(-2,1)$ et $C(4,3)$. On note d la distance du point A à la droite (BC) . Donner la valeur de d .	$d = d(A, (BX)) = \frac{ 2-12+5 }{\sqrt{10}}$ $= \frac{\sqrt{10}}{2}.$
Calculer la limite de la suite dont le terme général est donné par : $u_1 = \sqrt{2}, u_2 = \sqrt{2\sqrt{2}}, u_3 = \sqrt{2\sqrt{2\sqrt{2}}, \cdots}$	lim Un = 2 n->+00