Scaling DeltaFS In-Situ Indexing to 131,072 CPU Cores

Qing Zheng

Chuck Cranor, George Amvrosiadis, Greg Ganger, Garth Gibson, Brad Settlemyer, Gary Grider, Fan Guo Carnegie Mellon University Los Alamos National Laboratory

SC 2018

Understanding Our Universe

Image from http://esp.igpp.ucla.edu. Simulation movie frames from LANL https://www.lanl.gov.

Understanding Our Universe

Image from http://esp.igpp.ucla.edu. Simulation movie frames from LANL https://www.lanl.gov.

Storing Results

Frame data is written to the underlying filesystem

Needle In a Haystack

New analysis type: trace 1 object out of 1 trillion

Particles Move Across Processes

Problem: each query reads all files

1 file per process doesn't work Let's do 1 file per object Each query reads **ALL** files

Each query reads 1 file

1 trillion files perfect for news titles

1 file per process doesn't work Let's do 1 file per object

And scientists really love 1 trillion files

Efficiently Work with 1 Trillion Files

Key: transform files to parallel logs

Efficiently Work with 1 Trillion Files

Indexed Massive Directory

Dynamically reorganize files for fast retrieval

1 trillion files

File reads guaranteed to be efficient

Indexed Massive Directory in English

It's a needle-in-a-haystack
HERO

You Can Hire This Hero for Free

All work done using idle CPU cycles

Results from LANL **Trinitite** Cluster (96 nodes, 3,072 CPU cores)

5,000 X faster at queries 5% longer write time

The Rest of The Talk

- Challenges for embedded in-situ indexing
 - Techniques for scaling
 - Real-world results

Key Challenges

1. No dedicated cycles

No work during simulation computation

Timestep

Key Challenges

1. No dedicated cycles

2. Intensive memory pressure

Key Challenges

- 1. No dedicated cycles
- 2. Intensive memory pressure
- → 3. Resource-skinny queries

HPC Platform's Storage

Laptop

No need to use a supercomputer

Requires New Techniques

Self-balancing Data Structures (e.g. LSM)

Fast queries **High** write overhead

No Dynamic Indexing

Slow queries
No extra write overhead

Indexed Massive Directory

Fast queries Low write overhead

MORE INFO IN PAPER

Result: Faster Query, Low Write Overhead

Make it Scale

This talk focuses on scalable interprocess communication

MORE INFO IN PAPER

Recall: We Partition Data Dynamically

Each query hits 1 partition

Doesn't Work at Scale

Note: not all links are shown

Data is Buffered for Each Destination

Must Use Large Buffers

Can't Afford The Memory

Job Size (% of The LANL Trinity Machine)

Can't Afford The Memory

100% PER-PROCESS MEMORY

4GB

4K

1K

Can't Afford The Memory

3% PER-PROCESS MEMORY

128MB

Fan-Out Control

Solution: add 2 extra hops

Fan-Out Control

Solution: add 2 extra hops

CASE STUDY

131,072 procs: 4GB mem per-proc (100% per-proc memory)

CASE STUDY

131,072 procs: 6MB mem per-proc (0.15% per-proc memory)

Three-Hop Explained

Three-Hop In Action

Transform core-to-core communication to node-to-node

Load Balance

Each process manages a subset of remote nodes

Three-Hop Takeaway

For N total processes, and K processes per node

One Hop

O(N)

links per process

Three Hops

O(N/k²)

links per process

MORE INFO IN PAPER

Cost of Extra Hops

Negligible because storage is the dominant bottleneck

MORE INFO IN PAPER

More Techniques in our Paper

MORE INFO IN PAPER

One more thing: DeltaFS is built w/ composable services

Enabling Data Services for HPC

Jerome Soumagne

Philip Carns, Kevin Huck, Johann Lombardi, Manish Parashar

Tue / 5:15pm / C141

The Trinity Experiment

Experimental Settings

Up to 4096 compute nodes, 131,072 cores, 2 trillion particles

Measurements

Minimal Write-Time Overhead

Minimal Write-Time Overhead

Overhead not include simulation computation

1.08x

1.09x

1.09x

Minimal Write-Time Overhead

No dedicated resources used

Faster Queries

Faster Queries

Faster Queries

»Baseline (ALL CPU cores)

Query Time (s)

Speed up queries by orders of magnitude

Simulation Processes

Summary

Processing data in-situ drastically improves time-to-insight You can do it using only idle CPU cycles

MORE INFO IN PAPER

qingzhen+sc18@andrew.cmu.edu

