$Exercices\ MP/MP^*$ $Espaces\ pr\'ehilbertiens$

Exercice 1. Soit $E = C^2([0,1], \mathbb{R})$ et

$$\varphi: \quad E^2 \quad \to \quad \mathbb{R}$$

$$(f,g) \quad \mapsto \quad \int_0^1 fg + g'g'$$

$$\tag{1}$$

- 1. Montrer que φ est un produit scalaire.
- 2. Soit $V = \{f \in E | f(0) = f(1) = 0\}$ et $W = \{g \in E | g'' = g\}$. Montrer que V et W sont supplémentaires orthogonaux. Pour $h \in E$, déterminer $p_W(h)$ (projection orthogonale sur W).
- 3. Soit $(\alpha, \beta) \in \mathbb{R}^2$ et $E_{\alpha,\beta} = \{h \in E | h(0) = \alpha \text{ et } h(1) = \beta\}$. Déterminer

$$\inf_{h \in E_{\alpha,\beta}} \int_0^1 h^2 + h'^2. \tag{2}$$

Exercice 2. Soit $a \neq 0$ et

$$\Delta: \mathbb{R}[X] \to \mathbb{R}[X]$$

$$P \mapsto P(X+a) - P(X)$$
(3)

- 1. Déterminer $\ker(\Delta)$. Si $P \in \mathbb{R}[X] \setminus \mathbb{R}_0[X]$, que vaut $\deg(\Delta P)$?
- 2. Soit

$$\varphi: \mathbb{R}[X]^2 \to \mathbb{R}$$

$$(P,Q) \mapsto \sum_{k=0}^{+\infty} \Delta^k P(0) \Delta^k Q(0)$$

$$(4)$$

Montrer que φ est bien définie, et que c'est un produit scalaire.

3. Exhiber une base orthonormée $(P_n)_{n\in\mathbb{N}}$ de $\mathbb{R}[X]$ telle que pour tout $n\in\mathbb{N}$, $\deg(P_n)=n$.

Exercice 3. Trouver

$$\min_{(a,b)\in\mathbb{R}^2} \int_0^{\frac{\pi}{2}} (\sin(x) - ax - b)^2 dx = I(a,b).$$
 (5)

Exercice 4. Soit $E = \mathbb{R}[X]$, $(a_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$. On définit

$$(P|Q) = \sum_{k=0}^{+\infty} P^{(k)}(a_k)Q^{(k)}(a_k).$$
(6)

- 1. Montrer que $(\cdot|\cdot)$ est un produit scalaire.
- 2. Existence et unicité d'une base orthonormée $(P_n)_{n\in\mathbb{N}}$ telle que pour tout $n\in\mathbb{N}$, $\deg(P_n)=n$ et le coefficient dominant de P_n et strictement positif.
- 3. Déterminer, pour $(k,j) \in \mathbb{N}^2$, $P_j^{(k)}(a_k)$.

4. Montrer que

$$P_n(x) = \int_{a_0}^x \int_{a_1}^{t_1} \dots \int_{a_{n-1}}^{t_{n-1}} dt_n dt_{n-1} \dots dt_2 dt_1.$$
 (7)

5. Déterminer P_n si pour tout $n \in \mathbb{N}$, $a_n = n\alpha$.

Exercice 5. Calculer

$$\inf_{(a,b,c)\in\mathbb{R}^3} \int_0^{+\infty} \left(ax^2 - bx + c - \sin(x)\right)^2 e^{-x} dx. \tag{8}$$