УГЛЕРОД, КРЕМНИЙ И ИХ СОЕДИНЕНИЯ ТИПЫ РЕАКЦИЙ

более сильный ВЫТЕСНЯЕТ более слабого - вытеснение ПРИМЕРЫ:

основное + кислотное = соль - основно-кислотные взаимодействия ПРИМЕРЫ:

электролит + электролит (p-p) = газ/осадок/сл.электролит - РИО ПРИМЕРЫ:

- 1) NaOH + HCl = NaCl + H,O
- 2) KCl + AgNO, = KNO, + AgI

УГЛЕРОД ОБЩИЕ СВЕДЕНИЯ

Нахождение в ПС: IVA-группа, 2 период

Строение атома: 1s²2s²2p²

Степени окисления: любые от низшей (-4) до высшей (+4) Нахождение в природе: CaCO₃ - мел, мрамор, известняк, кальцит; С (гр/алм); CO₂ - углекислая кислота, CaCO₃* MgCO₃ - доломит; MgCO₃ - магнезит; (CuOH)₂CO₃ - малахит; нефть, газ, торф, уголь и т.д.

- > + тёмно-серое в-во
 - + жирное на ощупь
 - + хорошо проводит эл.ток
 - + слоистое строение
 - + sp²-гибридизация
- + бесцветное крист. в-во
 - + НЕ проводит t и эл.ток
 - + атомное строение
 - + sp³-гибридизация
 - + самое твёрдое на Земле!
- + порошок чёрного цвета
- + полупроводник
- + sp²-гибридизация

химические свойства

Стоит сразу уточнить, что углерод - достаточно инертное (мало с кем желающее реагировать) вещество, поэтому подавляющее большинство химический реакций с ним будут протекать при ооочень высоких температурах, а иногда - даже только в присутствии катализатора (в случае, например, реакции с водородом, где катализатором является чаще всего никель).

ХИМИЧЕСКИЕ СВОЙСТВА C + Me (чаще всего акт.) = карбид Me C + Al (t) = C + Ca (t) = C + Fe (t) = CaC₂ + H₂O = CaC₂ + HCl = Al₄C₃ + HCl = CuO + C (t) = CaO + C (t) = Fe₂O₃ + C (t) = SiO₃ + C (t) =

—	силициды гидролизуются водой/ растворами кислот-неокислителей с образованием силана SiH

ХИМИЧЕСКИЕ СВОЙСТВА	
С + неМе = бинарное соединение	2
C + O ₂ (t) =	
C + H, (t, kat) =	
C + F, (t) =	
C + S (t) =	
С + окислитель = OBP! C + H ₂ O (t) =	
$C + CO_2(t) =$	
C + HNO ₃ (K) =	
C + H ₂ SO ₄ (K) =	
$C + K_2Cr_2O_7(t) =$	
$C + KNO_3(t) = $	

ОКСИД УГЛЕРОДА (II) CO - УГАРНЫЙ ГАЗ

газ, без цвета, без запаха, мало растворим в воде, смертельно ядовит

ПОЛУЧЕНИЕ

- 1) Сжигание угля в недостатке кислорода: $2C + O_2(\text{нед}) = 2CO$ 2) Окисление углерода углекислым газом или водой: $2C + CO_2(t) = 2CO$ $C + H_2O(t) = CO + H_2$
- 3) Дегидратация муравьиной кислоты: $HCOOH\ (H_2SO_4(\kappa)) = H_2O + CO$

ХИМИЧЕСКИЕ СВОЙСТВА Несолеобразующий оксид и сильный восстановитель: реагирует с оксидами, с окислителями, а также со щелочами, никелем, водородом

ТРОЙНАЯ СВЯЗЬ!

2 СВЯЗИ - ПО ОБМЕННОМУ МЕХАНИЗМУ,

1 СВЯЗЬ - ПО ДОНОРНО-АКЦЕПТОРНОМУ

CO + H ₂ O =	
CO + NaOH (t) =	
CO + Cl ₂ =	
CO + CuO =	
CO + Fe ₂ O ₃ =	
CO + O ₂ =	
CO + 2H, =	
CO + 3H ₂ =	
CO + Na,O, =	
CO + Ni (t) =	

ОКСИД УГЛЕРОДА (IV) CO, - УГЛЕКИСЛЫЙ ГАЗ

газ, без цвета, без запаха, растворим в воде, не ядовит

ПОЛУЧЕНИЕ

1) Горение угля-орг. в-в:

C + O₂ = CO₂

CH₄ + 2O₂ = CO₂ + 2H₂O

2) Разложение (гидро)карбонатов: CaCO₃ (t) = CaO + CO₂

Ca(HCO₃)₂ (t) = CaCO₃ + CO₂ + H₂O 3) РИО с (гидро)карбонатами: CaCO₃ + 2HCl = CaCl₂ + H₂O

+ CO,

молекула углекислого газа

CO₂ + H₂O =

CO₂ + NaOH = CO₂ + 2NaOH =

 $CO_2^2 + Al_2O_3 =$

CO, + Na, 0 =

химические свойства

Кислотный оксид: реагирует с водой, осн. оксидами, с основаниями (со щелочами!), НЕ реагирует с амф. оксидами и гидроксидами (т.к. летучий!)

CO, + CuO =	
CO, + H,O + CaCO, =	
CO, + C =	
CO ₂ + Mg (t) =	
CO ₂ + H ₂ (Ni, t) =	
CO ₂ + Ca(OH) ₂ =	
CO ₂ + H ₂ O + Na ₂ CO ₃ =	
CO ₂ + H ₂ O (cBeT) =	

УГОЛЬНАЯ КИСЛОТА Н,СО,, СОЛИ - (ГИДРО)КАРБОНАТЫ

слабая кислота (раствор газа в воде), существует только в растворах!

химические свойства

Очень слабая кислота, всегда записываем в виде $H_2O + CO_2$, при взаимодействии с карбонатами образует кислые соли (гидрокарбонаты); вытесняется из солей сильн. кислотами и нелетуч. оксидами; её соли разлагаются при t (кроме карбонатов Щ Ме, кроме Li!)

ВАЖНЫЙ МОМЕНТ!!!

Когда в какой-либо реакции в продуктах образуется H₂CO₃, мы записываем её как H₂O + CO₂, т.к. она нестабильная и сразу распадается!

молекула угольной кислоты

CO₂ + H₂O + CaCO₃ =

CO₂ + H₂O + K₂CO₃ =

NaHCO₃ + NaOH =

CaCO₃ + SiO₂ (t) =

Na₂CO₃ + SiO₂ (t) =

CaCO₃ + HCl =

NaHCO₃ + Ca(OH)₂ =

Li₂CO₃ (t) =

CaCO₃ (t) =

K₂CO₃ (t) =

NaHCO₃ (t) =

(NH₄)₂CO₃ (t) =

ФИЗИЧЕСКИЕ СВОЙСТВА

в-во тёмно-серого цвета

стальной блеск

полупроводник

атомная КР, sp³

КРЕМНИЙ - ОБЩИЕ СВЕДЕНИЯ

Нахождение в ПС: IVA-группа, 3 период Строение атома: 1s²2s²2p⁶3s²3p² Степени окисления: -4, 0, +2, +4 (остальных в ЕГЭ нет) Нахождение в природе: SiO₂ - кремнезём, кварц, горный хрусталь, песок; K₂O*Al₂O₃*6SiO₂ - полевой шпат, 3MgO*2SiO₂*2H₂O - асбест; Al₂O₃*2SiO₂*2H₂O - каолин (белая глина); аморфный кремний.

ПОЛУЧЕНИЕ

- 1) Восстановление Si из оксида сильными восстановителями (t): SiO₂ + 2Mg (t) = 2MgO + Si, SiO₂ + 2C (t) = Si + 2CO
- 2) Восстановление Si из SiCl4 (тетрахлорид кремния) сильными восстановителями (t): $SiCl_{\chi} + 2Mg$ (t) = Si + $2MgCl_{z}$, $SiCl_{\chi} + 2H_{z}$ (t) = Si + 4HCl

ХИМИЧЕСКИЕ СВОЙСТВА Si + Me (чаще всего акт.) = силицид Me Si + Mg (t) = Si + Ca (t) = Ca₂Si + H₂O = Ca₂Si + HCl = SiH₄ + O₂ = SiH₄ - силан - бесцветный ядовитый газ с неприятным запахом

силициды гидролизуются водой/ растворами кислот-неокислителе с образованием силана SiH,

Si + неМе = бинарное соединен	INE
Si + O ₂ (t) =	
Si + Cl ₂ (t) =	
Si + F ₂ (t) =	
Si + N, (t) =	
Si + C (t) =	
i + щёлочь + H,O = силикат Ме	+
Si + NaOH + H,O =	

ОКСИД КРЕМНИЯ (IV) SiO_2 КРЕМНИЕВАЯ КИСЛОТА H_2SiO_3 , СОЛИ - СИЛИКАТЫ

твёрдые нерастворимые в-ва

кислотные свойства

ОКСИД КРЕМНИЯ (IV) SiO₂ (песок, кварц, кремнезём) - кислотный оксид - кислотные св-ва: реагирует с основаниями (щелочами!), с основными оксидами, НЕ реагирует с водой, вытесняет (!) летучие оксиды из солей

КРЕМНИЕВАЯ КИСЛОТА Н₂SiO₃ (СОЛИ - СИЛИКАТЫ) - кислотные св-ва, единственная в ЕГЭ нерастворимая кислота: НЕ вступает в РИО, разлагается (!) при нагревании на оксид и воду

SIO, + H,O =	
SiO, + HCl =	
Al ₂ O ₃ + SiO ₂ =	
$SiO_{2} + C(t) =$	
SiO, + Mg =	
SiO, + NaOH =	
Sio, + Al(OH), =	
SiO, + Cu(OH), =	
SiO, + CaCO, (t) =	
$SiO_2 + K_2SO_3(t) =$	
CaO + SiO, =	
H,SiO, (t) =	
H,SiO, + NaNO, =	
Cu(OH), + H,SiO, =	
H,SiO, + H,O + лакмус =	