

Figure 1 Commonly used glycosylating agents

Figure 2 Donor bound solid-phase carbohydrate synthesis

Figure 3 Acceptor bound solid-phase carbohydrate synthesis

Figure 4

a) oligonucleotides

b) oligopeptides

c) oligosaccharides

Automated Oligosaccharide Synthesizer

Figure

Figure 8 2D-NMR comparison of resin bound and solution phase pentamer

Automated Synthesis of the Phytoalexin Elicitor **8-Glucan Using Glycosyl Phosphates**

Prior syntheses:

Garegg et al. Angew. Chem. Int. Ed. 1983, 22, 793;

van Boom et al. Chem. Eur. J. 1995, 1, 16;

on polymer support using trisaccharide blocks: Nicolaou et al. *Angew. Chem. Int. Ed.* 1998, *37*, 1559 on soluble support: van Boom et al. Recl. Trav. Chim. Pays-Bas 1993, 112, 464;

Figure 10

Automated Oligosaccharide Synthesis

Chemical Issues:

- Choice of Resin (Merrifield's, Argopore, Tentagel)
- **Glycosylation Protocol**
- Deprotection Protocol
- Capping Cycle
- Cleavage Method
- Purification Technique

Practical Issues:

- Scale (µmol-mmol)
- Cycle Development/Time
- Temperature Control Device

Automated Oligosaccharide Synthesis with Glycosyl Phosphates: Coupling Cycle

/Solvent Equivalents Temperature Time	Reagent/Solvent Equive
	Ω ⊢
五 王	CH ₂ Cl ₂
onc MS	Donor TMSOTf
£ 7. ∓ 1. ±	CH ₂ Cl ₂
2H4-1	Deprotection N₂H₄-HOAc
yr./Ac	Pyr./AcOH
12H4-F	Deprotection N₂H₄-HOAc
yr./Ac	Pyr./AcOH

Figure 11

Cycle Time per residue 110 min

Figure 12

Solid Support Oligosaccharide Synthesis: Glycosyl Phosphate Donors

53% overall yield

Advantages: • excess reagents drive reactions to completion

purification only at the end of the synthesis

Automated Hexasaccharide Synthesis Using Glycosyl Phosphates Figure 13

Crude HPLC Profile of the Hexamer Synthesis

Figure 14

Automated Oligomannoside Synthesis: Coupling Cycle

Equivalents

Reagent/Solvent

30 min	5 mín	30 min	5 min	30 min	5 min	30 min	5 min	
10		10 0.5				·		
Donor TMSOTf	CH ₂ Cl ₂	Donor TMSOTf	CH ₂ Cl ₂ THF	NaOMe	CH ₂ Cl ₂ THF	NaOMe	CH ₂ Cl ₂	
Coupling	Washing	Coupling	Washing	Deprotection	Washing	Deprotection	Washing	
								•

Figure 15

25µmol Sca

Cycle Time per residue, 140 min

Solid-Phase Oligosaccharide Synthesis: Coupling Cycle Development

42% yield

74% yield

(manual synthesis: 9%)

stepwise yield: 94% stepwise yield: 94%

HR-MAS HMQC-Analysis of Pentamannosides

