## TRẦN KHÔI NGUYÊN VẬT LÝ LÝ THUYẾT

Ngày 3 tháng 9 năm 2024

Từ Hamiltonian  $H^{jj'}_{\mu\mu'}(\mathbf{k})=\sum_{\mathbf{R}}e^{i\mathbf{k}\cdot\mathbf{R}}E^{jj'}_{\mu\mu'}(\mathbf{R})$  trong đó

$$E_{\mu\mu'}^{jj'}(\mathbf{R}) = \langle \phi_{\mu}^{j}(\mathbf{r}) | \hat{H} | \phi_{\mu'}^{j'}(\mathbf{r} - \mathbf{R}) \rangle$$

$$|\phi_1^1\rangle = d_{z^2}, \quad |\phi_1^2\rangle = d_{xy}, \quad |\phi_2^2\rangle = d_{x^2 - y^2}$$

$$H_{\mu\mu'}^{jj'}(\mathbf{k}) = \sum_{\mu\mu'jj'} e^{i\mathbf{k}\cdot\mathbf{R_{1}}} E_{\mu\mu'}^{jj'}(\mathbf{R_{1}}) + \sum_{\mu\mu'jj'} e^{i\mathbf{k}\cdot\mathbf{R_{2}}} E_{\mu\mu'}^{jj'}(\mathbf{R_{2}}) + \sum_{\mu\mu'jj'} e^{i\mathbf{k}\cdot\mathbf{R_{3}}} E_{\mu\mu'}^{jj'}(\mathbf{R_{3}}) + \sum_{\mu\mu'jj'} e^{i\mathbf{k}\cdot\mathbf{R_{4}}} E_{\mu\mu'}^{jj'}(\mathbf{R_{4}}) + \sum_{\mu\mu'jj'} e^{i\mathbf{k}\cdot\mathbf{R_{5}}} E_{\mu\mu'}^{jj'}(\mathbf{R_{5}}) + \sum_{\mu\mu'jj'} e^{i\mathbf{k}\cdot\mathbf{R_{6}}} E_{\mu\mu'}^{jj'}(\mathbf{R_{6}})$$

$$H^{NN} = \begin{bmatrix} h_0 & h_1 & h_2 \\ h_1^* & h_{11} & h_{12} \\ h_2^* & h_{12}^* & h_{22} \end{bmatrix}$$

$$h_{0} = \sum_{R} e^{i\mathbf{k}\cdot\mathbf{R}} \langle \phi_{1}^{1}(\mathbf{r}) | H | \phi_{1}^{1}(\mathbf{r} - \mathbf{R}) \rangle; \quad h_{1} = \sum_{R} e^{i\mathbf{k}\cdot\mathbf{R}} \langle \phi_{1}^{1}(\mathbf{r}) | H | \phi_{1}^{2}(\mathbf{r} - \mathbf{R}) \rangle$$

$$h_{2} = \sum_{R} e^{i\mathbf{k}\cdot\mathbf{R}} \langle \phi_{1}^{1}(\mathbf{r}) | H | \phi_{2}^{2}(\mathbf{r} - \mathbf{R}) \rangle; \quad h_{11} = \sum_{R} e^{i\mathbf{k}\cdot\mathbf{R}} \langle \phi_{1}^{2}(\mathbf{r}) | H | \phi_{1}^{2}(\mathbf{r} - \mathbf{R}) \rangle$$

$$h_{12} = \sum_{R} e^{i\mathbf{k}\cdot\mathbf{R}} \langle \phi_{1}^{2}(\mathbf{r}) | H | \phi_{2}^{2}(\mathbf{r} - \mathbf{R}) \rangle; \quad h_{22} = \sum_{R} e^{i\mathbf{k}\cdot\mathbf{R}} \langle \phi_{2}^{2}(\mathbf{r}) | H | \phi_{2}^{2}(\mathbf{r} - \mathbf{R}) \rangle$$

Lại có 
$$E^{jj'}(\hat{g_n}\mathbf{R}) = D^j(\hat{g_n})E^{jj'}(\mathbf{R}) \left[D^j(\hat{g_n})\right]^{\dagger}$$

trong đó 
$$\hat{g_n} = \{E, C_3, C_3^2, \sigma_\nu, \sigma'_\nu, \sigma''_\nu\}$$

trong đó  $D^1(\hat{g_n}) = 1$ 

$$D^2(E) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$D^{2}(\hat{C}_{3}) = \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$$
$$D^{2}(\hat{C}_{3}^{2}) = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{-\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$$

Để tìm được  $D^2(\sigma_{\nu})$  ta cố định  $\triangle$  ABC :  $A(\frac{1}{2}, \frac{\sqrt{3}}{2}), B(1,0), C(0,0)$ .

Khi đổi chỗ A  $\leftrightarrow$  B, ta được ma trận:

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} = D^2(\sigma_{\nu}) \begin{bmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} \Rightarrow D^2(\sigma_{\nu}) = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$$

Ta có  $\vec{R_5}=\sigma'_{\nu}\vec{R_4}~$  mà  $C_3^2\vec{R_5}=\vec{R_1}\Rightarrow C_3^2\sigma'_{\nu}\vec{R_4}=\vec{R_1}$ 

$$\Rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\Rightarrow D^2\left(\sigma_{\nu}'\right) = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{3}{2} & -\frac{1}{2} \end{bmatrix}$$

Tương tự ta tính cho

$$D^2 \left( \sigma_{\nu}^{\prime \prime} \right) = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Toán tử  $C_3$  đánh lên  $\mathbf{R}_1$  ta được  $\to \mathbf{R}_5$  (dưới dạng ma trận)

Toán tử  $C_3^2$  đánh lên  ${\bf R}_1$  ta được  $\to {\bf R}_3$  (dưới dạng ma trận)

Toán tử  $\sigma_{\nu}$  đánh lên  ${f R}_1$  ta được  $\to {f R}_6$  (dưới dạng ma trận)

Toán tử  $\sigma'_{\nu}$  đánh lên  $\mathbf{R}_1$ ta được  $\rightarrow \mathbf{R}_2$  (dưới dạng ma trận)

Toán tử  $\sigma''_{\nu}$  đánh lên  ${\bf R}_1$  ta được  $\to {\bf R}_4$  (dưới dạng ma trận)

Kiểm tra điều trên:

$$D^{2}\left(C_{3}^{2}\right)R_{1} = \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{3}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{bmatrix} = \mathbf{R}_{3}$$

$$D^{2}\left(\sigma_{\nu}^{\prime}\right)R_{1} = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{3}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{bmatrix} = \mathbf{R}_{2}$$

\* h0

$$\begin{split} h_0 &= \sum_{\mathbf{R} \neq 0} e^{i\mathbf{k} \cdot \mathbf{R}} \left< \phi_1^1 \left( \mathbf{r} \right) \right| H \left| \phi_1^1 \left( \mathbf{r} - \mathbf{R} \right) \right> + \left< \phi_1^1 \left( \mathbf{r} \right) \right| H \left| \phi_1^1 \left( \mathbf{r} \right) \right> \\ &= e^{i\mathbf{k} \cdot \mathbf{R_1}} \left< \phi_1^1 \left( \mathbf{r} \right) \right| H \left| \phi_1^1 \left( \mathbf{r} - \mathbf{R_1} \right) \right> + e^{i\mathbf{k} \cdot \mathbf{R_4}} \left< \phi_1^1 \left( \mathbf{r} \right) \right| H \left| \phi_1^1 \left( \mathbf{r} - \mathbf{R_4} \right) \right> \\ &+ e^{i\mathbf{k} \cdot \mathbf{R_2}} \left< \phi_1^1 \left( \mathbf{r} \right) \right| H \left| \phi_1^1 \left( \mathbf{r} - \mathbf{R_2} \right) \right> + e^{i\mathbf{k} \cdot \mathbf{R_5}} \left< \phi_1^1 \left( \mathbf{r} \right) \right| H \left| \phi_1^1 \left( \mathbf{r} - \mathbf{R_5} \right) \right> \\ &+ e^{i\mathbf{k} \cdot \mathbf{R_3}} \left< \phi_1^1 \left( \mathbf{r} \right) \right| H \left| \phi_1^1 \left( \mathbf{r} - \mathbf{R_3} \right) \right> + e^{i\mathbf{k} \cdot \mathbf{R_6}} \left< \phi_1^1 \left( \mathbf{r} \right) \right| H \left| \phi_1^1 \left( \mathbf{r} - \mathbf{R_6} \right) \right> + \epsilon_1 \\ &= e^{ik_x a} E_{11}^{11} \left( \mathbf{R_1} \right) + e^{-ik_x a} E_{11}^{11} \left( \mathbf{R_4} \right) + e^{i\left(k_x \frac{a}{2} - k_y \frac{a\sqrt{3}}{2}\right)} E_{11}^{11} \left( \mathbf{R_2} \right) + e^{-i\left(k_x \frac{a}{2} - k_y \frac{a\sqrt{3}}{2}\right)} E_{11}^{11} \left( \mathbf{R_5} \right) \\ &+ e^{-i\left(k_x \frac{a}{2} + k_y \frac{a\sqrt{3}}{2}\right)} E_{11}^{11} \left( \mathbf{R_3} \right) + e^{i\left(k_x \frac{a}{2} + k_y \frac{a\sqrt{3}}{2}\right)} E_{11}^{11} \left( \mathbf{R_6} \right) + \epsilon_1 \\ &= 2 E_{11}^{11} \left( \mathbf{R_1} \right) \left( \cos 2\alpha + 2 \cos \alpha \cos \beta \right) + \epsilon_1 \end{split}$$

\* h1

$$h_{1} = \sum_{\mathbf{R} \neq 0} e^{i\mathbf{k} \cdot \mathbf{R}} \langle \phi_{1}^{1}(\mathbf{r}) | H | \phi_{1}^{2}(\mathbf{r} - \mathbf{R}) \rangle$$

$$= e^{ik_{x}a} E_{11}^{12}(\mathbf{R}_{1}) + e^{-ik_{x}a} E_{11}^{12}(\mathbf{R}_{4}) + e^{i\left(k_{x}\frac{a}{2} - k_{y}\frac{a\sqrt{3}}{2}\right)} E_{11}^{12}(\mathbf{R}_{2}) + e^{-i\left(k_{x}\frac{a}{2} - k_{y}\frac{a\sqrt{3}}{2}\right)} E_{11}^{12}(\mathbf{R}_{5})$$

$$+ e^{-i\left(k_{x}\frac{a}{2} + k_{y}\frac{a\sqrt{3}}{2}\right)} E_{11}^{12}(\mathbf{R}_{3}) + e^{i\left(k_{x}\frac{a}{2} + k_{y}\frac{a\sqrt{3}}{2}\right)} E_{11}^{12}(\mathbf{R}_{6})$$

trong đó

$$E^{12}(\mathbf{R_2}) = E^{12}(\sigma_{\nu}'\mathbf{R_1}) = D^{1}(\sigma_{\nu}')E^{12}(\mathbf{R_1}) \left[D^{2}(\sigma_{\nu}')\right]^{\dagger}$$

$$= \left[1\right] \left[E_{11}^{12}(\mathbf{R_1}) \quad E_{12}^{12}(\mathbf{R_1})\right] \left[\begin{array}{cc} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{array}\right]$$

$$= \left[\frac{E_{11}^{12}(\mathbf{R_1}) - \sqrt{3}E_{12}^{12}(\mathbf{R_1})}{2} \quad \frac{-E_{11}^{12}(\mathbf{R_1})\sqrt{3} - E_{12}^{12}(\mathbf{R_1})}{2}\right]$$

$$\Rightarrow E_{11}^{12}(\mathbf{R_2}) = \frac{E_{11}^{12}(\mathbf{R_1}) - \sqrt{3}E_{12}^{12}(\mathbf{R_1})}{2}$$

Tương tự ta có cho:

$$E_{11}^{12}(\mathbf{R_3}) = \frac{-E_{11}^{12}(\mathbf{R_1}) + \sqrt{3}E_{12}^{12}(\mathbf{R_1})}{2} \quad ; E_{11}^{12}(\mathbf{R_4}) = -E_{11}^{12}(\mathbf{R_1})$$

$$E_{11}^{12}(\mathbf{R_5}) = \frac{-E_{11}^{12}(\mathbf{R_1}) - \sqrt{3}E_{12}^{12}(\mathbf{R_1})}{2} \quad ; E_{11}^{12}(\mathbf{R_6}) = \frac{E_{11}^{12}(\mathbf{R_1}) + \sqrt{3}E_{12}^{12}(\mathbf{R_1})}{2}$$

$$h_1 = e^{i2\alpha}E_{11}^{12}(\mathbf{R_1}) - e^{i2\alpha}E_{11}^{12}(\mathbf{R_1})$$

$$+e^{i(\alpha-\beta)}\frac{E_{11}^{12}(\mathbf{R}_{1})-\sqrt{3}E_{12}^{12}(\mathbf{R}_{1})}{2}+e^{-i(\alpha+\beta)}\frac{-E_{11}^{12}(\mathbf{R}_{1})+\sqrt{3}E_{12}^{12}(\mathbf{R}_{1})}{2}$$

$$+e^{i(\alpha-\beta)}\frac{-E_{11}^{12}(\mathbf{R}_{1})-\sqrt{3}E_{12}^{12}(\mathbf{R}_{1})}{2}+e^{i(\alpha+\beta)}\frac{E_{11}^{12}(\mathbf{R}_{1})+\sqrt{3}E_{12}^{12}(\mathbf{R}_{1})}{2}$$

$$=2isin2\alpha E_{11}^{12}(\mathbf{R}_{1})+2i\frac{E_{11}^{12}(\mathbf{R}_{1})}{2}sin(\alpha-\beta)-2\frac{E_{12}^{12}(\mathbf{R}_{1}\sqrt{3})}{2}cos(\alpha-\beta)$$

$$+2i\frac{E_{11}^{12}(\mathbf{R}_{1})}{2}sin(\alpha+\beta)+2\frac{E_{12}^{12}(\mathbf{R}_{1}\sqrt{3})}{2}cos(\alpha+\beta)$$

$$=-2\sqrt{3}t_{2}sin\alpha sin\beta+2it_{1}(sin2\alpha+sin\alpha cos\beta)$$

Đặt

$$t_0 = E_{11}^{11}(\mathbf{R}_1); \quad t_1 = E_{11}^{12}(\mathbf{R}_1); \quad t_2 = E_{12}^{12}(\mathbf{R}_1);$$
  
 $t_{11} = E_{11}^{22}(\mathbf{R}_1); \quad t_{12} = E_{12}^{22}(\mathbf{R}_1); \quad c_{21} = E_{21}^{22}(\mathbf{R}_1); \quad t_{22} = E_{22}^{22}(\mathbf{R}_1);$ 

\* h22

$$h_{22} = \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} E_{22}^{22}(\mathbf{R})$$

$$= e^{i\mathbf{k}\cdot\mathbf{R}_{1}} E_{22}^{22}(\mathbf{R}_{1}) + e^{i\mathbf{k}\cdot\mathbf{R}_{2}} E_{22}^{22}(\mathbf{R}_{2}) + e^{i\mathbf{k}\cdot\mathbf{R}_{3}} E_{22}^{22}(\mathbf{R}_{3})$$

$$+ e^{i\mathbf{k}\cdot\mathbf{R}_{4}} E_{22}^{22}(\mathbf{R}_{4}) + e^{i\mathbf{k}\cdot\mathbf{R}_{5}} E_{22}^{22}(\mathbf{R}_{5}) + e^{i\mathbf{k}\cdot\mathbf{R}_{6}} E_{22}^{22}(\mathbf{R}_{6}) + E_{22}^{22}(\mathbf{0})$$

$$E^{22}(\mathbf{R}_{2}) = E^{22}(\sigma_{\nu}'\mathbf{R}_{1})$$

$$= D^{2}(\sigma_{\nu}') E^{22}(\mathbf{R}_{1}) \left[ D^{2}(\sigma_{\nu}') \right]^{\dagger}$$

$$= \left[ \frac{\frac{1}{2}}{2} - \frac{\sqrt{3}}{2} \right] \left[ E_{11}^{22}(\mathbf{R}_{1}) \quad E_{12}^{22}(\mathbf{R}_{1}) \right] \left[ \frac{\frac{1}{2}}{2} - \frac{\sqrt{3}}{2} \right]$$

$$= \left[ \frac{t_{11} - t_{12}\sqrt{3} - c_{21}\sqrt{3} + 3t_{22}}{4} \quad \frac{-t_{11}\sqrt{3} - t_{12} + 3c_{21} + \sqrt{3}t_{22}}{4} \right]$$

$$\Rightarrow E_{22}^{22}(\mathbf{R}_{2}) = \frac{3t_{11} + t_{12}\sqrt{3} + c\sqrt{3} + t_{22}}{4}$$

Tương tự ta có cho:

$$E_{22}^{22}(\mathbf{R}_3) = \frac{3t_{11} - t_{12}\sqrt{3} - c\sqrt{3} + t_{22}}{4}$$

$$E_{22}^{22}(\mathbf{R}_4) = t_{22}$$

$$E_{22}^{22}(\mathbf{R}_5) = \frac{3t_{11} + t_{12}\sqrt{3} + c\sqrt{3} + t_{22}}{4}$$

$$E_{22}^{22}(\mathbf{R}_6) = \frac{3t_{11} - t_{12}\sqrt{3} - c\sqrt{3} + t_{22}}{4}$$

Ta được:

$$\begin{split} h_{22} &= e^{i2\alpha}t_{22} + e^{-i2\alpha}t_{22} \\ &+ e^{i(\alpha-\beta)}\left(\frac{3t_{11} + t_{12}\sqrt{3} + c\sqrt{3} + t_{22}}{4}\right) + e^{-i(\alpha+\beta)}\left(\frac{3t_{11} - t_{12}\sqrt{3} - c\sqrt{3} + t_{22}}{4}\right) \\ &+ e^{i(-\alpha+\beta)}\left(\frac{3t_{11} + t_{12}\sqrt{3} + c\sqrt{3} + t_{22}}{4}\right) + e^{i(\alpha+\beta)}\left(\frac{3t_{11} - t_{12}\sqrt{3} - c\sqrt{3} + t_{22}}{4}\right) \\ &= 2cos(2\alpha)t_{22} + \frac{1}{4}3t_{11}\left(e^{i\alpha} + e^{-i\alpha}\right)\left(e^{-i\beta} + e^{i\beta}\right) + \frac{1}{4}t_{22}\left(e^{i\alpha} + e^{-i\alpha}\right)\left(e^{-i\beta} + e^{i\beta}\right) \\ &+ c\sqrt{3}(e^{i(\alpha-\beta)} - e^{i(-\alpha+\beta)} + e^{i(-\alpha+\beta)} - e^{i(\alpha+\beta)}) \\ &+ t_{12}\sqrt{3}(e^{i(\alpha-\beta)} - e^{i(-\alpha+\beta)} + e^{i(-\alpha+\beta)} - e^{i(\alpha+\beta)}) \\ &= 2cos(2\alpha)t_{22} + (3t_{11} + t_{22})cos\alpha\cos\beta \end{split}$$

Sử dụng tính Hermite của Hamiltonian  $h_{22}$  là số thực, nên  $t_{12}=-t_{21}$ 

## \*h11

$$\begin{split} H_{11}^{22} &= \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} E_{11}^{22}(\mathbf{R}) = e^{i\mathbf{k}\cdot\mathbf{R}_{1}} E_{11}^{22}(\mathbf{R}_{1}) + e^{i\mathbf{k}\cdot\mathbf{R}_{2}} E_{11}^{22}(\mathbf{R}_{2}) + e^{i\mathbf{k}\cdot\mathbf{R}_{3}} E_{11}^{22}(\mathbf{R}_{3}) \\ &+ e^{i\mathbf{k}\cdot\mathbf{R}_{4}} E_{11}^{22}(\mathbf{R}_{4}) + e^{i\mathbf{k}\cdot\mathbf{R}_{5}} E_{11}^{22}(\mathbf{R}_{5}) + e^{i\mathbf{k}\cdot\mathbf{R}_{6}} E_{11}^{22}(\mathbf{R}_{6}) + E_{11}^{22}(\mathbf{0}) \\ &= e^{ik_{x}a} E_{11}^{22}(\mathbf{R}_{1}) + e^{i\left(k_{x}\frac{a}{2} - k_{y}\frac{a\sqrt{3}}{2}\right)} E_{11}^{22}(\mathbf{R}_{2}) + e^{i\left(-k_{x}\frac{a}{2} - k_{y}\frac{a\sqrt{3}}{2}\right)} E_{11}^{22}(\mathbf{R}_{3}) \\ &+ e^{-ik_{x}a} E_{11}^{22}(\mathbf{R}_{4}) + e^{i\left(-k_{x}\frac{a}{2} + k_{y}\frac{a\sqrt{3}}{2}\right)} E_{11}^{22}(\mathbf{R}_{5}) + e^{i\left(k_{x}\frac{a}{2} + k_{y}\frac{a\sqrt{3}}{2}\right)} E_{11}^{22}(\mathbf{R}_{6}) + \epsilon_{2} \\ &= e^{2i\alpha}t_{11} + e^{i(\alpha-\beta)} \frac{t_{11} - \sqrt{3}t_{12} - \sqrt{3}c_{21} + 3t_{22}}{4} \\ &+ e^{i(-\alpha-\beta)} \frac{t_{11} - \sqrt{3}t_{12} - \sqrt{3}c_{21} + 3t_{22}}{4} + e^{-2i\alpha}t_{11} \\ &+ e^{i(-\alpha+\beta)} \frac{t_{11} + \sqrt{3}t_{12} + \sqrt{3}c_{21} + 3t_{22}}{4} + e^{i(\alpha+\beta)} \frac{t_{11} + \sqrt{3}t_{12} + \sqrt{3}c_{21} + 3t_{22}}{4} + \epsilon_{2} \\ &= 2t_{11}cos(2\alpha) + (t_{11} + 3t_{22})\cos(\alpha)\cos(\beta) + \epsilon_{2} \end{split}$$

Lưu ý ở đây đã sử dụng tính chất Hermite của  $h_{11}$  phải là số thực

$$\Rightarrow t_{12} = -t_{21}$$

$$E^{22}(\mathbf{R_2}) = E^{22}(\sigma'_{\nu}\mathbf{R_1}) = D^2(\sigma'_{\nu})E^{22}(\mathbf{R_1})[D^2(\sigma'_{\nu})]^{\dagger}$$

$$= \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix} \text{Trong d\'o} \begin{bmatrix} a = t_{11} \\ b = t_{12} \\ c = c_{21} \\ d = t_{22} \end{bmatrix}$$

$$\Rightarrow E_{11}^{22}(\mathbf{R_2}) = \frac{a - \sqrt{3}b - \sqrt{3}c + 3d}{4}$$

Tương tự ta tìm được:

$$E_{11}^{22}(\mathbf{R_3}) = \frac{a - \sqrt{3}b - \sqrt{3}c + 3d}{4}$$

$$E_{11}^{22}(\mathbf{R_4}) = a$$

$$E_{11}^{22}(\mathbf{R_5}) = \frac{a + \sqrt{3}b + \sqrt{3}c + 3d}{4}$$

$$E_{11}^{22}(\mathbf{R_6}) = \frac{a + \sqrt{3}b + \sqrt{3}c + 3d}{4}$$

## \*h12

$$\begin{split} H_{12}^{22} &= \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} E_{12}^{22}(\mathbf{R}) \\ &= e^{i\mathbf{k}\cdot\mathbf{R}_1} E_{12}^{22}(\mathbf{R}_1) + e^{i\mathbf{k}\cdot\mathbf{R}_2} E_{12}^{22}(\mathbf{R}_2) + e^{i\mathbf{k}\cdot\mathbf{R}_3} E_{12}^{22}(\mathbf{R}_3) \\ &+ e^{i\mathbf{k}\cdot\mathbf{R}_4} E_{12}^{22}(\mathbf{R}_4) + e^{i\mathbf{k}\cdot\mathbf{R}_5} E_{12}^{22}(\mathbf{R}_5) + e^{i\mathbf{k}\cdot\mathbf{R}_6} E_{12}^{22}(\mathbf{R}_6) + E_{12}^{22}(\mathbf{0}) \\ &= e^{i\mathbf{k}\cdot\mathbf{R}_4} E_{12}^{22}(\mathbf{R}_4) + e^{i\left(\mathbf{k}\cdot\mathbf{R}_5^2 - \mathbf{k}_2^2 \cdot \mathbf{q} \\ &+ e^{i\left(-\mathbf{k}\cdot\mathbf{R}_5^2 - \mathbf{k}_2^2 \cdot \mathbf{q} \\ &+ e^{i\left(-\mathbf{k}\cdot\mathbf{R}_5^2 - \mathbf{k}_2^2 \cdot \mathbf{q} \cdot$$

Tương tự ta tìm được:

$$\begin{split} E_{12}^{22}(\mathbf{R_3}) &= \frac{\sqrt{3}a + b - 3c - \sqrt{3}d}{4} \\ E_{12}^{22}(\mathbf{R_4}) &= -b \\ E_{12}^{22}(\mathbf{R_5}) &= \frac{\sqrt{3}a + b - 3c + \sqrt{3}d}{4} \\ E_{12}^{22}(\mathbf{R_6}) &= \frac{\sqrt{3}a - b + 3c - \sqrt{3}d}{4} \end{split}$$

Ta đưa điện trường vào. Chọn hướng từ trường là  $B = \begin{pmatrix} 0 \\ 0 \\ B \end{pmatrix}$ 

Lại có 
$$B = \vec{\nabla} \times \vec{A} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix}$$

$$= (\frac{\partial}{\partial y} A_z - \frac{\partial}{\partial z} A_y) \vec{i} + (\frac{\partial}{\partial z} A_x - \frac{\partial}{\partial x} A_z) \vec{j} + (\frac{\partial}{\partial x} A_y - \frac{\partial}{\partial y} A_x) \vec{k}$$
Có thể chọn  $A = \begin{pmatrix} 0 \\ B \cdot x \\ 0 \end{pmatrix}$ 

$$H_{\mu\mu'}^{jj'}(\mathbf{k}) = \sum_{\mu\mu'jj'} \sum_{\mathbf{R}} e^{\frac{ie}{\hbar} \int_0^{\mathbf{R}} \mathbf{A}(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}} E_{\mu\mu'}^{jj'}(\mathbf{R})$$

\* h0

$$h_{0} = H_{11}^{11}(\mathbf{k}) = \sum_{\mathbf{R}} e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}} E_{11}^{11}(\mathbf{R})$$

$$= e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}_{1}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_{1}} E_{11}^{11}(\mathbf{R}_{1}) + e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}_{2}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_{2}} E_{11}^{11}(\mathbf{R}_{2})$$

$$+ e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}_{3}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_{3}} E_{11}^{11}(\mathbf{R}_{3}) + e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}_{4}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_{4}} E_{11}^{11}(\mathbf{R}_{4})$$

$$+ e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}_{5}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_{5}} E_{11}^{11}(\mathbf{R}_{5}) + e^{\frac{ie}{\hbar} \int_{0}^{\mathbf{R}_{6}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_{6}} E_{11}^{11}(\mathbf{R}_{6})$$

 $X \acute{e}t e^{\frac{ie}{\hbar} \int_0^{\mathbf{R}} A(\mathbf{r}') d\mathbf{r}'}$ 

Ta chọn 
$$A = (P(x,y), Q(x,y), R(x,y)) = (0, Bx, 0)$$

Phương trình tham số cho x, y:

$$x = x(t) = x_0 + \alpha t$$

$$y = y(t) = y_0 + \beta t$$

$$*\mathbf{R_0} \longrightarrow \mathbf{R_1}_{(0,0)}$$

Ta có:

$$x = at$$

$$y = 0$$

$$\Rightarrow \int_0^{\mathbf{R_1}} \mathbf{A}(\mathbf{r}') \cdot d\mathbf{r}' = \int_{t_B}^{t_A} \left[ P(x, y) \frac{dx}{dt} + Q(x, y) \frac{dy}{dt} + R(x, y) \frac{dz}{dt} \right] dt$$

$$= \int_0^1 \left[ 0 \frac{dx}{dt} + Bx0 + 0 \frac{dz}{dt} \right] dt = 0$$

$$*\mathbf{R_0} \longrightarrow \mathbf{R_2} \atop \stackrel{(0,0)}{\longrightarrow} (\frac{a}{2}, -\frac{a\sqrt{3}}{2})$$

Ta có:

$$x = \frac{a}{2}t$$

$$y = -\frac{a\sqrt{3}}{2}t$$

$$\Rightarrow \int_{0}^{\mathbf{R}_{1}} \mathbf{A}(\mathbf{r}') \cdot d\mathbf{r}' = \int_{t_{B}}^{t_{A}} \left[ P(x, y) \frac{dx}{dt} + Q(x, y) \frac{dy}{dt} + R(x, y) \frac{dz}{dt} \right] dt$$

$$= \int_{0}^{1} \left[ 0 \frac{dx}{dt} + Bx \left( -\frac{a\sqrt{3}}{2} \right) + 0 \frac{dz}{dt} \right] dt = -\frac{Ba^{2}\sqrt{3}}{8}$$

$$*\mathbf{R_0} \longrightarrow \mathbf{R_3} \atop (0,0) \qquad (-\frac{a}{2}, -\frac{a\sqrt{3}}{2})$$

Ta có:

$$\begin{split} x &= -\frac{a}{2}t \\ y &= -\frac{a\sqrt{3}}{2}t \\ \Rightarrow \int_0^{\mathbf{R_1}} \mathbf{A}(\mathbf{r}') \cdot d\mathbf{r}' = \int_{t_B}^{t_A} \left[ P(x,y) \frac{dx}{dt} + Q(x,y) \frac{dy}{dt} + R(x,y) \frac{dz}{dt} \right] dt \\ &= \int_0^1 \left[ 0 \frac{dx}{dt} + Bx \left( -\frac{a\sqrt{3}}{2} \right) + 0 \frac{dz}{dt} \right] dt = B \left( -\frac{a}{2} \right) \left( -\frac{a\sqrt{3}}{2} \right) \int_0^1 t dt \\ &= \frac{Ba^2 \sqrt{3}}{8} \end{split}$$

$$*\mathbf{R_0} \longrightarrow \mathbf{R_4} \atop (0,0) \longrightarrow (0,-a)$$

Ta có:

$$x = -at$$

$$y = 0$$

$$\Rightarrow \int_0^{\mathbf{R_4}} \mathbf{A}(\mathbf{r}') \cdot d\mathbf{r}' = \int_{t_B}^{t_A} \left[ P(x, y) \frac{dx}{dt} + Q(x, y) \frac{dy}{dt} + R(x, y) \frac{dz}{dt} \right] dt$$

$$= \int_0^1 \left[ 0 \frac{dx}{dt} + Bx0 + 0 \frac{dz}{dt} \right] dt = 0$$

$$*\mathbf{R_0} \longrightarrow \mathbf{R_5} \atop (0,0) \qquad (0,a)$$

Ta có:

$$x = -\frac{a}{2}t$$

$$y = \frac{a\sqrt{3}}{2}t$$

$$\Rightarrow \int_{0}^{\mathbf{R_5}} \mathbf{A}(\mathbf{r}') \cdot d\mathbf{r}' = \int_{t_B}^{t_A} \left[ P(x, y) \frac{dx}{dt} + Q(x, y) \frac{dy}{dt} + R(x, y) \frac{dz}{dt} \right] dt$$

$$= \int_{0}^{1} \left[ 0 \frac{dx}{dt} + Bx \frac{a\sqrt{3}}{2} + 0 \frac{dz}{dt} \right] dt = -\frac{Ba^2\sqrt{3}}{8}$$

$$*R_0 \longrightarrow R_6 \atop \stackrel{(0,0)}{\longrightarrow} (\frac{\alpha}{2},\frac{\alpha\sqrt{3}}{2})$$

Ta có:

$$x = \frac{a}{2}t$$

$$y = \frac{a\sqrt{3}}{2}t$$

$$\Rightarrow \int_{0}^{\mathbf{R_6}} \mathbf{A}(\mathbf{r}') \cdot d\mathbf{r}' = \int_{t_B}^{t_A} \left[ P(x, y) \frac{dx}{dt} + Q(x, y) \frac{dy}{dt} + R(x, y) \frac{dz}{dt} \right] dt$$

$$= \int_{0}^{1} \left[ 0 \frac{dx}{dt} + Bx \frac{a\sqrt{3}}{2} + 0 \frac{dz}{dt} \right] dt = \frac{Ba^2\sqrt{3}}{8}$$

Vậy  $h_0$  có dạng:

$$h_{0} = H_{11}^{11}(\mathbf{k}) = e^{0}e^{i\mathbf{k}\cdot\mathbf{R}_{1}}E_{11}^{11}(\mathbf{R}_{1}) + e^{-\frac{ie}{\hbar}\frac{Ba^{2}\sqrt{3}}{8}}e^{i\mathbf{k}\cdot\mathbf{R}_{2}}E_{11}^{11}(\mathbf{R}_{2})$$

$$+ e^{\frac{ie}{\hbar}\frac{Ba^{2}\sqrt{3}}{8}}e^{i\mathbf{k}\cdot\mathbf{R}_{3}}E_{11}^{11}(\mathbf{R}_{3}) + e^{0}e^{i\mathbf{k}\cdot\mathbf{R}_{4}}E_{11}^{11}(\mathbf{R}_{4})$$

$$+ e^{-\frac{ie}{\hbar}\frac{Ba^{2}\sqrt{3}}{8}}e^{i\mathbf{k}\cdot\mathbf{R}_{5}}E_{11}^{11}(\mathbf{R}_{5}) + e^{\frac{ie}{\hbar}\frac{Ba^{2}\sqrt{3}}{8}}e^{i\mathbf{k}\cdot\mathbf{R}_{6}}E_{11}^{11}(\mathbf{R}_{6})$$

$$= e^{ik_{x}a}E_{11}^{11}(\mathbf{R}_{1}) + e^{-ik_{x}a}E_{11}^{11}(\mathbf{R}_{4}) + e^{-\frac{ie}{\hbar}\frac{Ba^{2}\sqrt{3}}{8}}e^{i\left(k_{x}\frac{a}{2} - k_{y}\frac{a\sqrt{3}}{2}\right)}E_{11}^{11}(\mathbf{R}_{2})$$

$$+ e^{\frac{ie}{\hbar}\frac{Ba^{2}\sqrt{3}}{8}}e^{i\left(-k_{x}\frac{a}{2} - k_{y}\frac{a\sqrt{3}}{2}\right)}E_{11}^{11}(\mathbf{R}_{3}) + e^{-\frac{ie}{\hbar}\frac{Ba^{2}\sqrt{3}}{8}}e^{i\left(-k_{x}\frac{a}{2} + k_{y}\frac{a\sqrt{3}}{2}\right)}E_{11}^{11}(\mathbf{R}_{5})$$

$$+ e^{\frac{ie}{\hbar}\frac{Ba^{2}\sqrt{3}}{8}}e^{i\left(k_{x}\frac{a}{2} + k_{y}\frac{a\sqrt{3}}{2}\right)}E_{11}^{11}(\mathbf{R}_{6}) + \epsilon_{1}$$

Đặt  $k_x \frac{a}{2} = \alpha$ ,  $k_y \frac{a\sqrt{3}}{2} = \beta$ ,  $\frac{e}{\hbar} \frac{Ba^2\sqrt{3}}{8} = \eta$ ,  $\alpha - \beta = \delta$ ,  $\alpha + \beta = \gamma$  và áp dụng các toán tử quay để biểu diễn  $\mathbf{R}_1$  theo  $\mathbf{R}_1$ .

$$E^{11}(\mathbf{R_4}) = E^{11}(\sigma''\mathbf{R_4}) = D^1(\sigma'')E^{11}(\mathbf{R_1}) \left[ D^1(\sigma'') \right]^{\dagger} = E^{11}(\mathbf{R_1})$$

$$E^{11}(\mathbf{R_2}) = E^{11}(\sigma'\mathbf{R_1}) = D^1(\sigma')E^{11}(\mathbf{R_1}) \left[ D^1(\sigma') \right]^{\dagger} = E^{11}(\mathbf{R_1})$$

$$E^{11}(\mathbf{R_3}) = E^{11}(C_3^2\mathbf{R_1}) = D^1(C_3^2)E^{11}(\mathbf{R_1}) \left[ D^1(C_3^2) \right]^{\dagger} = E^{11}(\mathbf{R_1})$$

$$E^{11}(\mathbf{R_5}) = E^{11}(C_3\mathbf{R_1}) = D^1(C_3)E^{11}(\mathbf{R_1}) \left[ D^1(C_3) \right]^{\dagger} = E^{11}(\mathbf{R_1})$$

$$E^{11}(\mathbf{R_6}) = E^{11}(\sigma\mathbf{R_1}) = D^1(\sigma)E^{11}(\mathbf{R_1}) \left[ D^1(\sigma) \right]^{\dagger} = E^{11}(\mathbf{R_1})$$

$$\Rightarrow h_0 = 2E_{11}^{11}(\mathbf{R_1})\cos(2\alpha) + (e^{-i\eta}e^{i\delta} + e^{i\eta}e^{-i\gamma} + e^{-i\eta}e^{-i\delta} + e^{i\eta}e^{i\gamma})E_{11}^{11}(\mathbf{R_1}) + \epsilon_1$$

$$= 2E_{11}^{11}(\mathbf{R_1})\cos(2\alpha) + (e^{-i\eta}e^{i\delta} + e^{i\eta}e^{-i\gamma} + e^{-i\eta}e^{-i\delta} + e^{i\eta}e^{i\gamma})E_{11}^{11}(\mathbf{R_1}) + \epsilon_1$$

$$= 2E_{11}^{11}(\mathbf{R_1})\cos(2\alpha) + E_{11}^{11}(\mathbf{R_1})(e^{-i\eta}2\cos\delta + e^{i\eta}2\cos\gamma) + \epsilon_1$$

$$= 2E_{11}^{11}(\mathbf{R_1})\left[\cos 2\alpha + (\cos \eta - i\sin \eta)\cos\delta + (\cos \eta + i\sin \eta)\cos\gamma\right] + \epsilon_1$$

$$= 2E_{11}^{11}(\mathbf{R_1})\left[\cos 2\alpha + \cos \eta\cos\delta - i\sin \eta\cos\delta + \cos\eta\cos\gamma + i\sin\eta\cos\gamma\right] + \epsilon_1$$

$$h_0 = 2E_{11}^{11}(\mathbf{R_1})\left(\cos 2\alpha + 2\cos\eta\cos\alpha\cos\beta - 2i\sin\eta\sin\alpha\sin\beta\right) + \epsilon_1$$

\* h1

$$\begin{split} h_1 &= H_{11}^{12}(\mathbf{k}) = \sum_{\mathbf{R}} e^{\frac{ie}{\hbar} \int_0^{\mathbf{R}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}} E_{11}^{12}(\mathbf{R}) \\ &= e^{\frac{ie}{\hbar} \int_0^{\mathbf{R}_1} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_1} E_{11}^{12}(\mathbf{R}_1) + e^{\frac{ie}{\hbar} \int_0^{\mathbf{R}_2} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_2} E_{11}^{12}(\mathbf{R}_2) \\ &+ e^{\frac{ie}{\hbar} \int_0^{\mathbf{R}_3} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_3} E_{11}^{12}(\mathbf{R}_3) + e^{\frac{ie}{\hbar} \int_0^{\mathbf{R}_4} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_4} E_{11}^{12}(\mathbf{R}_4) \\ &+ e^{\frac{ie}{\hbar} \int_0^{\mathbf{R}_5} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_5} E_{11}^{12}(\mathbf{R}_5) + e^{\frac{ie}{\hbar} \int_0^{\mathbf{R}_6} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_6} E_{11}^{12}(\mathbf{R}_6) \end{split}$$

Trong đó:

$$*E^{12}(\mathbf{R_4}) = E^{12}(\sigma''\mathbf{R_4}) = D^{1}(\sigma'')E^{12}(\mathbf{R_1}) \left[D^{2}(\sigma'')\right]^{\dagger}$$

$$= 1 \left[E_{11}^{12}(\mathbf{R_1}) \quad E_{12}^{12}(\mathbf{R_1})\right] \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \left[-E_{11}^{12}(\mathbf{R_1}) \quad E_{12}^{12}(\mathbf{R_1})\right]$$

$$\Rightarrow E_{11}^{12}(\mathbf{R_4}) = -E_{11}^{12}(\mathbf{R_1}), \quad E_{12}^{12}(\mathbf{R_4}) = E_{11}^{12}(\mathbf{R_1})$$

$$*E^{12}(\mathbf{R_2}) = E^{12}(\sigma'\mathbf{R_2}) = D^{1}(\sigma')E^{12}(\mathbf{R_1}) \left[D^{2}(\sigma')\right]^{\dagger}$$

$$= 1 \left[E_{11}^{12}(\mathbf{R_1}) \quad E_{12}^{12}(\mathbf{R_1})\right] \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$$

$$= \left[\frac{E_{11}^{12}(\mathbf{R_1}) - \sqrt{3}E_{12}^{12}(\mathbf{R_1})}{2} \quad \frac{-\sqrt{3}E_{11}^{12}(\mathbf{R_1}) - E_{12}^{12}(\mathbf{R_1})}{2} \right]$$

$$\Rightarrow E_{11}^{12}(\mathbf{R_2}) = \frac{E_{11}^{12}(\mathbf{R_1}) - \sqrt{3}E_{12}^{12}(\mathbf{R_1})}{2}$$

$$E_{12}^{12}(\mathbf{R_2}) = \frac{-\sqrt{3}E_{11}^{12}(\mathbf{R_1}) - E_{12}^{12}(\mathbf{R_1})}{2}$$

Một cách tương tự ta có cho:

$$E_{11}^{12}(\mathbf{R_3}) = \frac{-E_{11}^{12}(\mathbf{R_1}) + \sqrt{3}E_{12}^{12}(\mathbf{R_1})}{2} \quad ; E_{11}^{12}(\mathbf{R_4}) = -E_{11}^{12}(\mathbf{R_1})$$

$$E_{11}^{12}(\mathbf{R_5}) = \frac{-E_{11}^{12}(\mathbf{R_1}) - \sqrt{3}E_{12}^{12}(\mathbf{R_1})}{2} \quad ; E_{11}^{12}(\mathbf{R_6}) = \frac{E_{11}^{12}(\mathbf{R_1}) + \sqrt{3}E_{12}^{12}(\mathbf{R_1})}{2}$$

$$\begin{split} h_1 = & E_{11}^{12}(\mathbf{R}_1) \left( e^{ik_x a} - e^{-ik_x a} \right) + e^{-i\eta} e^{i\delta} \frac{E_{11}^{12}(\mathbf{R}_1) - \sqrt{3} E_{12}^{12}(\mathbf{R}_1)}{2} \right. \\ & + e^{i\eta} e^{-i\gamma} - E_{11}^{12}(\mathbf{R}_1) + \sqrt{3} E_{12}^{12}(\mathbf{R}_1)}{2} + e^{-i\eta} e^{-i\delta} \frac{-E_{11}^{12}(\mathbf{R}_1) - \sqrt{3} E_{12}^{12}(\mathbf{R}_1)}{2} \\ & + e^{i\eta} e^{i\gamma} \frac{E_{11}^{12}(\mathbf{R}_1) + \sqrt{3} E_{12}^{12}(\mathbf{R}_1)}{2} \\ = & E_{11}^{12}(\mathbf{R}_1) \left( e^{ik_x a} - e^{-ik_x a} \right) + \frac{E_{11}^{12}(\mathbf{R}_1)}{2} \left( e^{-i\eta} e^{i\delta} - e^{i\eta} e^{-i\gamma} - e^{-i\eta} e^{-i\delta} + e^{i\eta} e^{i\gamma} \right) \\ & + \frac{\sqrt{3} E_{12}^{12}(\mathbf{R}_1)}{2} \left( -e^{-i\eta} e^{i\delta} + e^{i\eta} e^{-i\gamma} - e^{-i\eta} e^{-i\delta} + e^{i\eta} e^{i\gamma} \right) \\ & = \frac{E_{11}^{12}(\mathbf{R}_1)}{2} 2i \left[ e^{-i\eta} \sin \delta + e^{i\eta} \sin \gamma \right] + \frac{\sqrt{3} E_{12}^{12}(\mathbf{R}_1)}{2} 2 \left[ e^{i\eta} \cos \gamma - e^{-i\eta} \cos \delta \right] \\ & + 2i E_{11}^{12}(\mathbf{R}_1) \sin 2\alpha \\ & = 2i E_{11}^{12}(\mathbf{R}_1) \sin 2\alpha + i E_{11}^{12}(\mathbf{R}_1) \left[ (\cos \eta - i \sin \eta) \sin \delta + (\cos \eta + i \sin \eta) \sin \gamma \right] \\ & + \sqrt{3} E_{12}^{12}(\mathbf{R}_1) \left[ (\cos \eta + i \sin \eta) \cos \gamma - (\cos \eta - i \sin \eta) \cos \delta \right] \\ & = 2i E_{11}^{12}(\mathbf{R}_1) \sin 2\alpha + i E_{11}^{12}(\mathbf{R}_1) \left[ \cos \eta (\sin \delta + \sin \gamma) + i \sin \eta (\sin \gamma - \sin \delta) \right] \\ & + \sqrt{3} E_{12}^{12}(\mathbf{R}_1) \left[ \cos \eta (\cos \gamma - \cos \delta) + i \sin \eta (\cos \gamma + \cos \delta) \right] \\ & = 2i E_{11}^{12}(\mathbf{R}_1) \sin 2\alpha + i E_{11}^{12}(\mathbf{R}_1) \left[ \cos \eta (\sin \delta + \sin \gamma) + i \sin \eta (\sin \gamma - \sin \delta) \right] \\ & + \sqrt{3} E_{12}^{12}(\mathbf{R}_1) \left[ \cos \eta (\cos \gamma - \cos \delta) + i \sin \eta (\cos \gamma + \cos \delta) \right] \\ & = 2i E_{11}^{12}(\mathbf{R}_1) \sin 2\alpha + i E_{11}^{12}(\mathbf{R}_1) \left[ 2\cos \eta \sin \alpha \cos \beta + 2i \sin \eta \cos \alpha \sin \beta \right] \\ & + \sqrt{3} E_{12}^{12}(\mathbf{R}_1) \left[ -2\cos \eta \sin \alpha \sin \beta + 2i \sin \eta \cos \alpha \cos \beta \right] \\ & \Rightarrow h_1 = 2i E_{11}^{12}(\mathbf{R}_1) (\sin 2\alpha + \cos \eta \sin \alpha \cos \beta + i \sin \eta \cos \alpha \cos \beta \right] \end{aligned}$$

\* h2

$$\begin{split} h_2 &= H_{12}^{12}(\mathbf{k}) = \sum_{\mathbf{R}} e^{\frac{ie}{\hbar} \int_0^{\mathbf{R}} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}} E_{12}^{12}(\mathbf{R}) \\ &= e^{\frac{ie}{\hbar} \int_0^{\mathbf{R}_1} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_1} E_{12}^{12}(\mathbf{R}_1) + e^{\frac{ie}{\hbar} \int_0^{\mathbf{R}_2} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_2} E_{12}^{12}(\mathbf{R}_2) \\ &+ e^{\frac{ie}{\hbar} \int_0^{\mathbf{R}_3} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_3} E_{12}^{12}(\mathbf{R}_3) + e^{\frac{ie}{\hbar} \int_0^{\mathbf{R}_4} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_4} E_{12}^{12}(\mathbf{R}_4) \\ &+ e^{\frac{ie}{\hbar} \int_0^{\mathbf{R}_5} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_5} E_{12}^{12}(\mathbf{R}_5) + e^{\frac{ie}{\hbar} \int_0^{\mathbf{R}_6} A(\mathbf{r}') d\mathbf{r}'} e^{i\mathbf{k} \cdot \mathbf{R}_6} E_{12}^{12}(\mathbf{R}_6) \end{split}$$

Trong đó:

$$\begin{split} E_{12}^{12}(\mathbf{R_2}) &= \frac{-\sqrt{3}E_{11}^{12}(\mathbf{R_1}) - E_{12}^{12}(\mathbf{R_1})}{2} \\ E_{12}^{12}(\mathbf{R_3}) &= \frac{-\sqrt{3}E_{11}^{12}(\mathbf{R_1}) - E_{12}^{12}(\mathbf{R_1})}{2} \quad ; E_{12}^{12}(\mathbf{R_4}) = E_{11}^{12}(\mathbf{R_1}) \\ E_{12}^{12}(\mathbf{R_5}) &= \frac{\sqrt{3}E_{11}^{12}(\mathbf{R_1}) - E_{12}^{12}(\mathbf{R_1})}{2} \quad ; E_{12}^{12}(\mathbf{R_6}) = \frac{\sqrt{3}E_{11}^{12}(\mathbf{R_1}) - E_{12}^{12}(\mathbf{R_1})}{2} \end{split}$$

Thế vô:

$$h_{2} = E_{11}^{12}(\mathbf{R_{1}}) \left( e^{ik_{x}a} + e^{-ik_{x}a} \right) + e^{-i\eta} e^{i\delta} \frac{-\sqrt{3}E_{11}^{12}(\mathbf{R_{1}}) - E_{12}^{12}(\mathbf{R_{1}})}{2} + e^{i\eta} e^{-i\gamma} \frac{-\sqrt{3}E_{11}^{12}(\mathbf{R_{1}}) - E_{12}^{12}(\mathbf{R_{1}})}{2} + e^{-i\eta} e^{-i\delta} \frac{\sqrt{3}E_{11}^{12}(\mathbf{R_{1}}) - E_{12}^{12}(\mathbf{R_{1}})}{2} + e^{i\eta} e^{i\gamma} \frac{\sqrt{3}E_{11}^{12}(\mathbf{R_{1}}) - E_{12}^{12}(\mathbf{R_{1}})}{2} + e^{i\eta} e^{i\delta} \frac{-e^{i\eta}e^{-i\delta} + e^{-i\eta}e^{-i\delta} + e^{i\eta}e^{-i\delta}}{2} + e^{i\eta} e^{-i\delta} \right)$$