Genetic Algorithms (GA)

Genetic Algorithm

- Genetic Algorithm is inspired form biological evolution
- Developed by John Holland, University of Michigan (1970's)
 - To understand the adaptive processes of natural systems
 - To design artificial systems software that retains the robustness of natural systems
- Provide efficient, effective techniques for optimization and machine learning applications
- Widely-used today in business, scientific and engineering circles

Steps of a Genetic Algorithm

The Problem

Chromosome Representation

Fitness Function: The number of 1s in the chromosome.

Fitness(goal) = 9

1. Initial Population

Chromosomes in Population

000000000

P2 |0 |1 |0 |0 |0 |1 |0 |0 |0

P3 0 0 0 0 0 0 0 1 0

P4 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1

Chromosomes Fitness

Fitness(P1) = 0

Fitness(P2) = 2

Fitness(P3) = 1

Fitness(P4) = 3

2. Selection

Selection is random and is based on the fitness value:

$$Selection_Prob_i = \frac{Fitness (P_i)}{\sum_{i=1}^{p_size} Fitness (P_i)}$$

Selection_Prob(P1) = 0 Selection_Prob(P3) = 1/6

Selection_Prob(P2) = 2/6 Selection_Prob(P4) = 3/6

3. Modification [Crossover]

• Single point crossover: Generate a random number in the chromosome length

First two randomly selected parents

First two children from two parents

3. Modification [Crossover]

• Single point crossover: Generate a random number in the chromosome length.

Another two randomly selected parents

Next two children from two parents

After CrossOver

 After crossover operation is done we are left with the following children:

The next step is mutation....

3. Modification [Mutation]

• **Mutation** of chromosome is done using a predefined probablility. Usually it is a low number e.g., 0.01.

4. Evaluation

- The evaluator decodes a chromosome and assigns it a fitness measure
- Check the fitness of the states and apply goal test if goal state is available.
- If the goal state is not found or the termination condition is not met then the evaluated children are replaced with the existing population and Step 1-4 are repeated.

Applications of Genetic Algorithm

- Feature Selection: To select optimum number of features for a classifier.
- Engineering Design: To make design cycle process fast and economical using GAs.
- Traffic and Shipment Routing (Travelling Salesman Problem): efficiently adopted by many sales-based companies as it is time saving and economical.
- Robotics: Think of using GA to make robots that learn to behave like human.