Question number	Scheme	Marks
6 (a)	$(\alpha - \beta)^2 = \alpha^2 - 2\alpha\beta + \beta^2$	M1
	$(\alpha - \beta)^2 = (\alpha + \beta)^2 - 2\alpha\beta - 2\alpha\beta$	M1
	$(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta *$	A1 cso (3)
(b)	$\alpha + \beta = 7k$ and $\alpha\beta = k^2$	B1
	$\alpha - \beta = \sqrt{49k^2 - 4k^2}$	M1
	$=\sqrt{45}k=3k\sqrt{5}$ *	A1 cso
(c)	$Sum = \alpha + \beta \ (=7k)$	(3) B1ft
	Product	M1
	$(\alpha+1)(\beta-1) = \alpha\beta - (\alpha-\beta) - 1 \Rightarrow (\alpha+1)(\beta-1) = k^2 - 3k\sqrt{5} - 1$	M1
	So $x^2 - 7kx + k^2 - 3k\sqrt{5} - 1 = 0$	M1A1 (4)
Total 10 marks		

Note: You may see a method based on the difference of two squares for part (a) i.e. $(\alpha + \beta)^2 - (\alpha - \beta)^2 = 4\alpha\beta$

Solution

$$(\alpha - \beta)^{2} = (\alpha + \beta)^{2} - 4\alpha\beta \Rightarrow (\alpha + \beta)^{2} - (\alpha - \beta)^{2} = 4\alpha\beta$$

$$(\alpha + \beta)^{2} - (\alpha - \beta)^{2} = ([\alpha + \beta] + [\alpha - \beta])([\alpha + \beta] - [\alpha - \beta])$$

$$= (2\alpha)(2\beta)$$

$$= 4\alpha\beta$$
LHS = RHS (hence shown)

If this is a full and correct solution as shown (no errors) – award full marks – otherwise, please send to Review.

Part	Mark	Notes
(a)		For expanding $(\alpha - \beta)^2 = \alpha^2 - 2\alpha\beta + \beta^2 \Rightarrow (\alpha^2 + \beta^2 - 2\alpha\beta)$
	M1	or expanding $(\alpha + \beta)^2 = \alpha^2 + \beta^2 + 2\alpha\beta$
		This must be correct for this mark.
		Replaces $\alpha^2 + \beta^2$ with $(\alpha + \beta)^2 - 2\alpha\beta$ in their expansion of $(\alpha - \beta)^2$. And
	M1	attempts to collect terms
		$(\alpha - \beta)^{2} = (\alpha + \beta)^{2} - 2\alpha\beta - 2\alpha\beta$
	A1	For the correct given expression with no errors seen.
cso		$(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta *$
	ALT	(2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	M1	For expanding $(\alpha - \beta)^2 = \alpha^2 - 2\alpha\beta + \beta^2 \Rightarrow (\alpha^2 + \beta^2 - 2\alpha\beta)$
		or expanding $(\alpha + \beta)^2 = \alpha^2 + \beta^2 + 2\alpha\beta$
		This must be correct for this mark.
	M1	For expanding the RHS and equates to their expansion of $(\alpha - \beta)^2$ and
		attempting to simplify.
		$\alpha^2 + \beta^2 - 2\alpha\beta = (\alpha^2 + \beta^2 + 2\alpha\beta) - 4\alpha\beta$
	A1	Both sides of the equivalence are shown to be equal with no errors seen.
	cso	$(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta *$
(b)	B1	For both $\alpha + \beta = 7k$ and $\alpha\beta = k^2$
		This may be implied in later work e.g. by use of $49k^2$ and $4k^2$
	2.54	For substituting their values for the sum and product into the given expression for
		$(\alpha - \beta)^2$, simplifying and square rooting both sides.
	M1	$(\alpha - \beta)^2 = (7k)^2 - 4k^2 \Rightarrow \alpha - \beta = \sqrt{(7k)^2 - 4k^2} = \sqrt{45k^2}$
		Condone $\pm \sqrt{45k^2}$ for this mark.
	A1	For the correct value of $\alpha - \beta = 3k\sqrt{5}$ *
	cso	
(c)	B1ft	For the sum $(\alpha + 1 + \beta - 1) = \alpha + \beta = 7k$
		Ft their $\alpha + \beta$
		For the product in terms of k. Correctly multiplying out $(\alpha + 1)(\beta - 1)$ and
	M1	substituting in their value $\alpha\beta$ and the correct value $\alpha - \beta = 3k\sqrt{5}$
		$(\alpha+1)(\beta-1) = \alpha\beta - (\alpha-\beta) - 1 \Rightarrow (\alpha+1)(\beta-1) = k^2 - 3k\sqrt{5} - 1$
	M1	For correctly forming an equation with their sum and product
		$x^2 - 7k x + k^2 - 3k\sqrt{5} - 1 = 0$
		Condone the absence of = 0 for this mark For the correct equation $x^2 - 7kx + k^2 - 3k\sqrt{5} - 1 = 0$
	A1	For the correct equation $x = /\kappa x + \kappa = 3\kappa \sqrt{3} - 1 = 0$
		Allow $p = -7k$ $q = k^2 - 3k\sqrt{5} - 1$
	<u> </u>	t 1