Math 612 Homework 2

Paul Hacking

February 26, 2014

Reading: Dummit and Foote, 13.5,14.1,14.2,14.3. Justify your answers carefully.

- (1) Let $f = x^3 + x + 1 \in \mathbb{F}_2[x]$ and $K = \mathbb{F}_2(\alpha)$ be the field obtained by adjoining a root α of f. Then K is a finite field of order 8 with \mathbb{F}_2 -basis $1, \alpha, \alpha^2$ (why?). For each of the elements of K, determine its minimal polynomial over \mathbb{F}_2 .
- (2) Let $f = x^4 + x + 1 \in \mathbb{F}_2[x]$ and $g = x^4 + x^3 + x^2 + x + 1 \in \mathbb{F}_2[x]$. The polynomials f and g are irreducible in $\mathbb{F}_2[x]$. Let $K = \mathbb{F}_2(\alpha)$ be the field obtained by adjoining a root α of f and $L = \mathbb{F}_2(\beta)$ the field obtained by adjoining a root β of g. Then K and L are finite fields of order 16, so according to the classification of finite fields they are isomorphic. Describe an isomorphism $\varphi \colon K \to L$ explicitly.
- (3) Let F be a field, $f \in F[x]$ a polynomial of degree n, and K the splitting field of F. Show that the degree [K : F] divides n!.
- (4) Let $f = x^3 3x + 1 \in \mathbb{Q}[x]$. Then f is irreducible over \mathbb{Q} (why?). Show directly that if α is a root of f in some extension field then so is $\beta = \alpha^2 2$. Deduce that the splitting field K of f over \mathbb{Q} is given by $K = \mathbb{Q}(\alpha)$ and so $[K : \mathbb{Q}] = 3$.
- (5) Let F be a field of characteristic 2 and $F \subset K$ a field extension of degree [K:F]=2. Show that there exists $\alpha \in K$ such that $K=F(\alpha)$ and either (a) $\alpha^2 \in F$ or (b) $\alpha^2 + \alpha \in F$. Show that the field extension $F \subset K$ is not separable in case (a) and is separable in case (b).

(6) Recall the following result (proved in class): Let K be a field and G a finite group of automorphisms of K. Let

$$K^G = \{ \alpha \in K \mid g(\alpha) = \alpha \text{ for all } g \in G \}$$

be the fixed field of G. Then the extension $K^G \subset K$ is Galois with Galois group G. In particular, $[K:K^G]=|G|$. Moreover, if $\alpha \in K$, then the minimal polynomial of α over K^G is

$$f(x) = \prod_{i=1}^{r} (x - \alpha_i)$$

where $\{\alpha_1, \ldots, \alpha_r\}$ is the orbit of α under G.

Let $K = \mathbb{C}(t)$, the field of rational functions in the variable t with complex coefficients. Let $\zeta \in \mathbb{C}$ be a primitive nth root of unity. Consider the automorphisms σ and τ of K over \mathbb{C} defined by $\sigma(t) = \zeta t$ and $\tau(t) = t^{-1}$. Let $G \subset \operatorname{Aut}(K)$ be the subgroup generated by σ and τ .

- (a) Show that G is isomorphic to the dihedral group D_n of order 2n.
- (b) Determine the minimal polynomial of t over K^G .
- (c) Show that the fixed field K^G equals $\mathbb{C}(u)$ for some $u \in \mathbb{C}(t)$ (to be determined explicitly).

[Hint: For part (c), it suffices to exhibit an element $u \in K^G$ such that $[K:\mathbb{C}(u)]=[K:K^G]=|G|$, then $\mathbb{C}(u)=K^G$. The degree $[K:\mathbb{C}(u)]=[\mathbb{C}(t):\mathbb{C}(u)]$ can be computed either using part (b) or using the general result described in DF 13.2, Exercise 18, p. 530.]

- (7) (Optional) Let $K = \mathbb{C}(t)$ and consider the automorphisms σ and τ of K over \mathbb{C} given by $\sigma(t) = \frac{t+i}{t-i}$ and $\tau(t) = \frac{it-i}{t+1}$. Let G be the subgroup of $\operatorname{Aut}(K)$ generated by σ and τ . Prove that G is isomorphic to A_4 and show that $K^G = \mathbb{C}(u)$ for some $u \in \mathbb{C}(t)$ (to be determined explicitly).
- (8) Let $K = \mathbb{C}(x_1, \dots, x_n)$ be the field of rational functions in n variables x_1, \dots, x_n with complex coefficients.
 - (a) Describe an injective homomorphism from the symmetric group S_n to the group $\operatorname{Aut}(K)$ of automorphisms of the field K.

(b) Using part (a) or otherwise, show that for any finite group G there exists a field extension $F \subset K$ which is Galois with Galois group isomorphic to G.

[Remark: The following related problem is open: Given a finite group G, does there exist a field extension $\mathbb{Q} \subset K$ which is Galois with Galois group isomorphic to G?]

- (9) Let $K = \mathbb{Q}(\sqrt{3}, \sqrt{7})$.
 - (a) Find a basis of K as a vector space over \mathbb{Q} .
 - (b) Describe the Galois group of K over \mathbb{Q} .
 - (c) Determine all the intermediate fields L, $\mathbb{Q} \subset L \subset K$.
 - (d) Let $\gamma \in K$, and write $\gamma = \sum a_i \alpha_i$ where $a_i \in \mathbb{Q}$ and $\{\alpha_i\}$ is the basis of K over \mathbb{Q} found in part (a). Use part (c) to give an explicit criterion for γ to be a primitive element for the field extension $\mathbb{Q} \subset K$ (i.e., $K = \mathbb{Q}(\gamma)$) in terms of the coefficients a_i .
- (10) Let $f \in \mathbb{Q}[x]$ be an irreducible cubic polynomial. Suppose f has exactly one real root. Let K be the splitting field of f over \mathbb{Q} . Prove that the Galois group $\operatorname{Gal}(K/\mathbb{Q})$ is isomorphic to S_3 .
- (11) Let $F \subset K$ be a Galois extension with Galois group G. Determine the number of intermediate fields L such that [L:F]=2 when G is isomorphic to (a) D_4 (the dihedral group of order 8) (b) A_4 .
- (12) Let $F \subset K$ be a Galois extension with Galois group G isomorphic to $(\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/12\mathbb{Z})$. Determine the number of intermediate fields L such that (a) [L:F]=4, (b) [L:F]=9, (c) $\mathrm{Gal}(K/L)\simeq \mathbb{Z}/4\mathbb{Z}$.
- (13) Let $F \subset K$ be a Galois extension with Galois group isomorphic to S_6 .
 - (a) Determine the number of intermediate fields L such that [K:L] = 9.
 - (b) Let M be the intersection of the fields L enumerated in part (a). Compute [M:F].
- (14) Let F be a field and $f = x^4 + bx^2 + c \in F[x]$. Suppose f is separable, i.e., has distinct roots in the algebraic closure of F. Let K be the

splitting field of f over F. Show that the Galois group Gal(K/F) is isomorphic to a subgroup of D_4 , the dihedral group of order 8.