Client's ref.: A00042 Our ref: 0611-5549-USF-CIP/dennis/kevin

What is claimed is:

1	1. A method for gray level dynamic switching, applied
2	to a display with a pixel, comprising the following steps:
3	providing a gray level sequence SG, wherein SG
4	sequentially represents two or more desired gray
5,	levels Go(1),,Go(T) of the pixel at consecutive
6	time frames 1,,T and comprises a current gray
7	level Go(t) and a previous gray level Go(t-1)
8	corresponding to time frames t and t-1,
9	respectively, and Go(t) corresponds to a driving
. 0	voltage Vo(t) to present Go(t) under a static
.1.	condition; and
2	determining an optimized driving voltage Vd(t),
L3 .	according to an equation $Vd(t) = V_o(t-1) + ODV$,
L 4	wherein the ODV is a minimum voltage capable of
15	obtaining one gray level transition in a determined
L 6	response time;
L 7 ,	determining an dynamic gray level data $G_d(t)$ according
L8	to an equation $Vd(t) = a \times Gd(t)^3 + b \times Gd(t)^2 + c \times Gd(t) + d$;
L 9	producing the optimized driving voltage Vd(t) according
20	to the dynamic gray level data $G_d(t)$;
21	driving the pixel with optimized driving voltage Vd(t)
22,	to change the forward pixel to a state
23	corresponding to $G_o(t)$.
4.	

2. The method as claimed in claim 1, wherein a is -0.0004, b is 0.0037, c is -0.1443, and d is 8.6992.

1

3

2

1

Ś.

1

2

5

9 .

10

11

12

13

1	3. The method as	claimed in claim	1, wherein, in
2	positive frame, the polar	rity of the voltage	ODV is positive
3	when $G_o(n) > G_o(n-1)$ and r	egative when $G_o(n)$	$< G_o(n-1)$.

- 4. The method as claimed in claim 1, wherein, in negative frame, the polarity of the voltage ODV is negative when $G_o(n) > G_o(n-1)$ and positive when $G_o(n) < G_o(n-1)$.
- 5. The method as claimed in claim 1, wherein the display is a liquid crystal display.
- 6. The method as claimed in claim 1, further comprising a step of adjusting the voltage ODV according to an operating temperature.
- 7. The method as claimed in claim 6, wherein the voltage ODV is inversely proportional to the operating temperature.
- 8. An apparatus for gray level dynamic switching, applied to drive a display with a pixel, comprising:
 - a memory set for storing a previous gray level $G_o(t-1)$, $G_o(t-1)$ representing the desired gray level of the pixel at time frame t-1, and $G_o(t-1)$ corresponding to a driving voltage $V_o(t-1)$ to present $G_o(t-1)$ under a static condition;

Client's ref.: A00042 Our ref: 0611-5549-USF-CIP/dennis/kevin

14

15

16

17

18

19

20

21

22

1

3

1

2

3.

2

3

1

2

3

1

pixel at time frame t, the voltage ODV is a minimum voltage capable of obtaining one gray level transition in a determined response time, a is -0.0004, b is 0.0037, c is -0.1443, and d is 8.6992; and

a driving circuit for receiving $G_d(t)$ and correspondingly generating the optimized driving voltage Vd(t) to drive the pixel to change the forward pixel to a current state corresponding to $G_o(t)$.

- 9. The apparatus as claimed in claim 8, wherein, in positive frame, the polarity of the voltage ODV is positive when $G_o(t) > G_o(t-1)$ and negative when $G_o(t) < G_o(t-1)$.
- 10. The apparatus as claimed in claim 8, wherein, in negative frame, the polarity of the voltage ODV is negative when $G_o(t) > G_o(t-1)$ and positive when $G_o(t) < G_o(t-1)$.
- 11. The apparatus as claimed in claim 8, wherein the processor further adjusts $G_d\left(t\right)$ according to an operating temperature.
- 12. The apparatus as claimed in claim 11, wherein the voltage ODV is inversely proportional to the operating temperature.
- 13. The apparatus as claimed in claim 8, wherein the memory set is a set of dynamic random access memories (DRAM).
- 14. A display system, comprising:
- 2 a display, having at least one pixel;
 - a memory for storing a program;

a processor for executing, according to a program in the memory, the following steps: $\text{receiving an original gray level sequence } S_o$

consisting of two or more original gray levels $G_o(1)$,..., $G_o(T)$, wherein a current gray level $G_o(t)$ and a previous gray level $G_o(t-1)$ correspond to time frames t and t-1, respectively, and $G_o(t-1)$ corresponds to a driving voltage $V_o(t-1)$ to present $G_o(t-1)$ under a static condition;

transforming S_o to an adjusted gray level sequence

 S_d consisting of two or more adjusted gray levels $G_d(1)$,..., $G_d(M)$, an adjusted gray level $G_d(m)$ being generated according to a relevant sub-sequence comprising $G_o(t-1)$ and $G_o(t)$, wherein an optimized driving voltage Vd(t) is determined according to the $G_o(t)$ and an equation $Vd(t) = V_o(t-1) + ODV$, and the adjusted gray level $G_d(m)$ is determined according to an equation

 $Vd(t) = a \times G_d(m)^3 + b \times G_d(m)^2 + c \times G_d(m) + d$, wherein the voltage ODV is a minimum voltage capable of obtaining one gray level transition in a determined response time, a is -0.0004, b is 0.0037, c is -0.1443, and d is 8.6992; and

sequentially driving the pixel with driving forces corresponding to $G_d\left(1\right),...,G_d\left(M\right)$ in S_d .

Client's ref.: A00042 Our ref: 0611-5549-USF-CIP/dennis/kevin

2

3

1

2

3

1

2

1

2

- 15. The system as claimed in claim 14, wherein, in positive frame, the polarity of the voltage ODV is positive when $G_o(t) > G_o(t-1)$ and negative when $G_o(t) < G_o(t-1)$.
 - 16. The system as claimed in claim 14, wherein, in negative frame, the polarity of the voltage ODV is negative when $G_o(t) > G_o(t-1)$ and positive when $G_o(t) < G_o(t-1)$.
 - 17. The system as claimed in claim 14, wherein the program in the memory adjusts the $G_d\left(m\right)$ according to an operating temperature.
 - 18. The system as claimed in claim 17, wherein the voltage ODV is inversely proportional to the operating temperature.