

Fig. 4

•

-35 region # 1051 CTTTTCGG<u>C ATGAG</u>CAACC AACATTTCA AGG<u>TATCAT</u>C CTGATGCGCA

1101 ATATCGGCAT CGGTTAGCCA TAACCATTTT ACCTGTCCGG CGGCCTTAAT 1151 ACCTTGATCA GATGGTTCGT GGTGTTGTTA CCTTGCCGAA GGGCACCGGT 1201 AAAAATGTTC GCGTCGGTGT TTTCGCCCGT GGCCCGAAAG CTGAAGAAGC 1251 TAAAGCTGCT GGTGCAGAAG TTGTCGGCGC AGAAGACCTG ATGGAAGCCA

-35 region -10 region 1301 TTCAGGGCGG CAGCA<u>TTGAT T</u>TCGATCGTG ATGCCCTT<u>TA TACT</u>GAAATT

1351 GCCTTGCGCT GCCATAATGA AGCAGCCTCC GGTGTTTTGG CAGATTTÁAG

Shine-Dalgarno
1401 CGCTGCCTGA TTTTCGTgat cctctagagt ctatgaaatg gagattcatt

celZ coding region->
1451 tatgcctctc tcttattcgg ataaccatcc agtcatccgc aagcttggcc

Fig. 6

pLOI2306 (11520 bps)

Fig. 9

Fig. 10

Fig. 11

The first first will be the second first second first second first second first second first first second first first second first seco

Fig. 12

Fig. 13

Position (bp)	-35	RNA Start	Proposed § factors	δ factor consensus sequence	nsensus
				-35	-10
	ATATTTTTGATTTTTCAAGAAAAGCCTGATATCTTCCAACATCTT	T T(2)	870	TTGACA	TATAAT
	GAT <u>TTGATC</u> CTCTAGAGTCAACCTGCTTGT <u>TACTCG</u> TGATCCCAT	T A (4)	870	TTGACA	TATAAT
	G <u>AGTCAA</u> CCTGCTTGTTACTCGTGA <u>ICCCAI</u> TCACAAGGGCGAA	A C(1)	δ^{32}	CTTGAAA CCCCAT	CCCCAT
	TTACTCGTGATCCCATTCACAAGGGCGAATTAATTCGCCCTT	C (3)	δ^{38}	CCGCCT TATACT	TATACT

numbered in parenthesis adjacent to the start site in decending order from the strongest. Differences in intensities were small, within 2-fold. * Transcriptional starts for celY were identified by primer extension analysis. Four promoters were identified. Upstream sequence of these promoters with similarity to E. coli -35 and -10 regions are marked with underlines. RNA start sites are bolded. Putative promoters are

Fig. 14

Fig. 15

Fig. 16

Fig. 17

đ

Fig. 18

