Comomo	Nomo	Matricola
Cognome	Nome	Matricola

(Ingegneria Civile, seconda squadra)

Prof. F. Bottacin

2º Appello — 6 luglio 2009

Esercizio 1. Nello spazio vettoriale \mathbb{R}^4 si considerino i sottospazi $U_1 = \langle u_1, u_2, u_3, u_4 \rangle$, ove $u_1 = (1, -1, 0, 2), u_2 = (2, 1, -1, 2), u_3 = (1, -4, 1, 4), u_4 = (-3, -3, 2, -2),$ e U_2 di equazioni $3x_1 - 4x_2 = 0$ e $5x_1 + 7x_2 = 0$.

- (a) Si determini una base di U_1 e una base di U_2 . Si determini, se esiste, una base $\{v_1, v_2, v_3, v_4\}$ di \mathbb{R}^4 tale che $U_1 = \langle v_1, v_2 \rangle$ e $U_2 = \langle v_3, v_4 \rangle$.
- (b) Dati $w_1 = (2, -1, 3)$, $w_2 = (1, 1, 2)$, $w_3 = (5, -4, t)$, si dica per quali valori di t esiste una funzione lineare $g: \mathbb{R}^4 \to \mathbb{R}^3$ tale che $g(u_1) = w_1$, $g(u_2) = w_2$, $g(u_3) = w_3$. Si dica inoltre se tale g è unica.

Esercizio 2. Sia V uno spazio vettoriale con base $\{v_1, v_2, v_3, v_4\}$ e sia $f: V \to V$ la funzione lineare definita da $f(v_1) = 2v_1 + 3v_2$, $f(v_2) = 3v_1 + 2v_2$, $f(v_3) = v_1 + 3v_3 + 2v_4$, $f(v_4) = 2v_1 - v_2 + 2v_3 + 3v_4$. Si determinino tutti gli autovalori e gli autovettori di f e si dica se f è diagonalizzabile.

Esercizio 3. Nello spazio vettoriale $V=\mathbb{R}^4$ si consideri la forma bilineare simmetrica g la cui matrice, rispetto alla base canonica, è

$$G = \begin{pmatrix} 1 & -1 & 0 & 1 \\ -1 & 4 & 0 & -2 \\ 0 & 0 & 5 & 1 \\ 1 & -2 & 1 & 3 \end{pmatrix}$$

Si dimostri che g è non degenere e si determini una base ortogonale di V. Si determinino inoltre una matrice diagonale D e una matrice invertibile P tali che $D = {}^t PGP$.

Esercizio 4. Si discuta e si risolva il seguente sistema lineare al variare del parametro $a \in \mathbb{R}$:

$$\begin{cases} x_1 - x_2 + ax_3 + 2x_4 = 0 \\ -x_1 + x_2 - 2ax_3 + ax_4 = 1 \\ 2x_2 + (a-2)x_3 + (1-2a)x_4 = -1 \\ x_1 - x_2 - ax_3 + 4x_4 = 2 \end{cases}$$

Esercizio 5. Nello spazio euclideo tridimensionale sono dati la retta

$$r: \begin{cases} x - 2y - 3 = 0\\ 2x + y + z + 1 = 0 \end{cases}$$

e il punto P=(1,3,-2). Si determini l'equazione del piano π contenente la retta r e passante per il punto P. Si determini l'equazione della retta s passante per il punto P, perpendicolare alla retta r e contenuta nel piano π . Infine, si determini il punto R di intersezione delle rette r e s e la distanza del punto P dalla retta r.

Comomo	Nomo	Matricola
Cognome	Nome	Matricola

(Ingegneria Civile, seconda squadra)

Prof. F. Bottacin

2º Appello — 6 luglio 2009

Esercizio 1. Nello spazio vettoriale \mathbb{R}^4 si considerino i sottospazi $U_1 = \langle u_1, u_2, u_3, u_4 \rangle$, ove $u_1 = (0, 1, -2, 1), u_2 = (2, -1, 1, 3), u_3 = (-2, 4, -7, 0), u_4 = (-4, 3, -4, -5), e U_2$ di equazioni $4x_1 + 3x_3 = 0$ e $3x_1 - 7x_3 = 0$.

- (a) Si determini una base di U_1 e una base di U_2 . Si determini, se esiste, una base $\{v_1, v_2, v_3, v_4\}$ di \mathbb{R}^4 tale che $U_1 = \langle v_1, v_2 \rangle$ e $U_2 = \langle v_3, v_4 \rangle$.
- (b) Dati $w_1 = (1, -2, 2)$, $w_2 = (4, 1, -1)$, $w_3 = (t, -7, 7)$, si dica per quali valori di t esiste una funzione lineare $g : \mathbb{R}^4 \to \mathbb{R}^3$ tale che $g(u_1) = w_1$, $g(u_2) = w_2$, $g(u_3) = w_3$. Si dica inoltre se tale g è unica.

Esercizio 2. Sia V uno spazio vettoriale con base $\{v_1, v_2, v_3, v_4\}$ e sia $f: V \to V$ la funzione lineare definita da $f(v_1) = -v_1 + 3v_2 + 2v_3 - 3v_4$, $f(v_2) = 3v_1 - v_2 - v_4$, $f(v_3) = 3v_3 - v_4$, $f(v_4) = -v_3 + 3v_4$. Si determinino tutti gli autovalori e gli autovettori di f e si dica se f è diagonalizzabile.

Esercizio 3. Nello spazio vettoriale $V=\mathbb{R}^4$ si consideri la forma bilineare simmetrica g la cui matrice, rispetto alla base canonica, è

$$G = \begin{pmatrix} 3 & -2 & 0 & 1 \\ -2 & 4 & 0 & 1 \\ 0 & 0 & 4 & -1 \\ 1 & 1 & -1 & 3 \end{pmatrix}$$

Si dimostri che g è non degenere e si determini una base ortogonale di V. Si determinino inoltre una matrice diagonale D e una matrice invertibile P tali che $D = {}^t PGP$.

Esercizio 4. Si discuta e si risolva il seguente sistema lineare al variare del parametro $a \in \mathbb{R}$:

$$\begin{cases} x_1 - 2x_2 + (a+2)x_3 = 3\\ -x_1 + 2x_2 - (2a+3)x_3 + ax_4 = -4\\ 2x_2 + (a+1)x_3 + (5-2a)x_4 = -1\\ x_1 - 2x_2 - ax_3 + 2x_4 = 1 \end{cases}$$

Esercizio 5. Nello spazio euclideo tridimensionale sono dati la retta

$$r: \begin{cases} 2x+z-1=0\\ x-y+z=0 \end{cases}$$

e il punto P=(1,1,-2). Si determini l'equazione del piano π contenente la retta r e passante per il punto P. Si determini l'equazione della retta s passante per il punto P, perpendicolare alla retta r e contenuta nel piano π . Infine, si determini il punto R di intersezione delle rette r e s e la distanza del punto P dalla retta r.

Cognome	Nome	Matricola

(Ingegneria Civile, seconda squadra)

Prof. F. Bottacin

2º Appello — 6 luglio 2009

Esercizio 1. Nello spazio vettoriale \mathbb{R}^4 si considerino i sottospazi $U_1 = \langle u_1, u_2, u_3, u_4 \rangle$, ove $u_1 = (2, 0, -1, 1), u_2 = (1, -1, 2, -2), u_3 = (5, 1, -5, 5), u_4 = (0, 2, -5, 5), e <math>U_2$ di equazioni $3x_1 - 5x_4 = 0$ e $2x_1 + 9x_4 = 0$.

- (a) Si determini una base di U_1 e una base di U_2 . Si determini, se esiste, una base $\{v_1, v_2, v_3, v_4\}$ di \mathbb{R}^4 tale che $U_1 = \langle v_1, v_2 \rangle$ e $U_2 = \langle v_3, v_4 \rangle$.
- (b) Dati $w_1 = (3, 0, -2)$, $w_2 = (-2, 2, 3)$, $w_3 = (t, -2, -9)$, si dica per quali valori di t esiste una funzione lineare $g : \mathbb{R}^4 \to \mathbb{R}^3$ tale che $g(u_1) = w_1$, $g(u_2) = w_2$, $g(u_3) = w_3$. Si dica inoltre se tale g è unica.

Esercizio 2. Sia V uno spazio vettoriale con base $\{v_1, v_2, v_3, v_4\}$ e sia $f: V \to V$ la funzione lineare definita da $f(v_1) = 3v_1 - v_2$, $f(v_2) = -v_1 + 3v_2$, $f(v_3) = 4v_1 - 2v_3 + 4v_4$, $f(v_4) = v_1 - 3v_2 + 4v_3 - 2v_4$. Si determinino tutti gli autovalori e gli autovettori di f e si dica se f è diagonalizzabile.

Esercizio 3. Nello spazio vettoriale $V=\mathbb{R}^4$ si consideri la forma bilineare simmetrica g la cui matrice, rispetto alla base canonica, è

$$G = \begin{pmatrix} 2 & -2 & 0 & 1 \\ -2 & 5 & 0 & 2 \\ 0 & 0 & 3 & -1 \\ 1 & 2 & -1 & 4 \end{pmatrix}$$

Si dimostri che g è non degenere e si determini una base ortogonale di V. Si determinino inoltre una matrice diagonale D e una matrice invertibile P tali che $D = {}^t P G P$.

Esercizio 4. Si discuta e si risolva il seguente sistema lineare al variare del parametro $a \in \mathbb{R}$:

$$\begin{cases} x_1 + 2x_2 + (a+1)x_3 + x_4 = 0 \\ -x_1 - 2x_2 - (2a+3)x_3 + (a+1)x_4 = -1 \\ 2x_2 + ax_3 - (2a+3)x_4 = -1 \\ x_1 + 2x_2 - (a+3)x_3 + 3x_4 = -2 \end{cases}$$

Esercizio 5. Nello spazio euclideo tridimensionale sono dati la retta

$$r: \begin{cases} 2y + z - 2 = 0 \\ x - 2y - z = 0 \end{cases}$$

e il punto P=(1,3,1). Si determini l'equazione del piano π contenente la retta r e passante per il punto P. Si determini l'equazione della retta s passante per il punto P, perpendicolare alla retta r e contenuta nel piano π . Infine, si determini il punto R di intersezione delle rette r e s e la distanza del punto P dalla retta r.

Cognome	Nome	Matricola

(Ingegneria Civile, seconda squadra)

Prof. F. Bottacin

2º Appello — 6 luglio 2009

Esercizio 1. Nello spazio vettoriale \mathbb{R}^4 si considerino i sottospazi $U_1 = \langle u_1, u_2, u_3, u_4 \rangle$, ove $u_1 = (1, 2, -1, 0), u_2 = (3, -1, 1, -2), u_3 = (0, 7, -4, 2), u_4 = (-5, 4, -3, 4),$ e U_2 di equazioni $5x_3 + 2x_4 = 0$ e $3x_3 + 7x_4 = 0$.

- (a) Si determini una base di U_1 e una base di U_2 . Si determini, se esiste, una base $\{v_1, v_2, v_3, v_4\}$ di \mathbb{R}^4 tale che $U_1 = \langle v_1, v_2 \rangle$ e $U_2 = \langle v_3, v_4 \rangle$.
- (b) Dati $w_1 = (1, 4, -3)$, $w_2 = (-2, 4, 1)$, $w_3 = (5, t, -10)$, si dica per quali valori di t esiste una funzione lineare $g : \mathbb{R}^4 \to \mathbb{R}^3$ tale che $g(u_1) = w_1$, $g(u_2) = w_2$, $g(u_3) = w_3$. Si dica inoltre se tale g è unica.

Esercizio 2. Sia V uno spazio vettoriale con base $\{v_1, v_2, v_3, v_4\}$ e sia $f: V \to V$ la funzione lineare definita da $f(v_1) = 5v_1 - 3v_2 + v_3$, $f(v_2) = -3v_1 + 5v_2 - 3v_3 + 2v_4$, $f(v_3) = 2v_3 + 6v_4$, $f(v_4) = 6v_3 + 2v_4$. Si determinino tutti gli autovalori e gli autovettori di f e si dica se f è diagonalizzabile.

Esercizio 3. Nello spazio vettoriale $V=\mathbb{R}^4$ si consideri la forma bilineare simmetrica g la cui matrice, rispetto alla base canonica, è

$$G = \begin{pmatrix} 4 & -1 & 0 & 2 \\ -1 & 3 & 0 & -1 \\ 0 & 0 & 2 & 2 \\ 2 & -1 & 2 & 4 \end{pmatrix}$$

Si dimostri che g è non degenere e si determini una base ortogonale di V. Si determinino inoltre una matrice diagonale D e una matrice invertibile P tali che $D = {}^t PGP$.

Esercizio 4. Si discuta e si risolva il seguente sistema lineare al variare del parametro $a \in \mathbb{R}$:

$$\begin{cases} x_1 - 3x_2 + ax_3 - x_4 = 1 \\ -x_1 + 3x_2 + (2 - 2a)x_3 + (a+3)x_4 = 0 \\ 2x_2 + (a+2)x_3 + (2 - 2a)x_4 = 1 \\ x_1 - 3x_2 + (4 - a)x_3 + 3x_4 = 3 \end{cases}$$

Esercizio 5. Nello spazio euclideo tridimensionale sono dati la retta

$$r: \begin{cases} x - 2z + 3 = 0 \\ x + y - 2z = 0 \end{cases}$$

e il punto P=(1,3,-1). Si determini l'equazione del piano π contenente la retta r e passante per il punto P. Si determini l'equazione della retta s passante per il punto P, perpendicolare alla retta r e contenuta nel piano π . Infine, si determini il punto R di intersezione delle rette r e s e la distanza del punto P dalla retta r.

Cognome	Nome	Matricola

(Ingegneria Civile, seconda squadra)

Prof. F. Bottacin

2º Appello — 6 luglio 2009

Esercizio 1. Nello spazio vettoriale \mathbb{R}^4 si considerino i sottospazi $U_1 = \langle u_1, u_2, u_3, u_4 \rangle$, ove $u_1 = (1,0,2,-1), u_2 = (2,-1,1,-1), u_3 = (1,1,5,-2), u_4 = (-3,2,0,1),$ e U_2 di equazioni $5x_1 + 2x_2 = 0$ e $7x_1 + 3x_2 = 0$.

- (a) Si determini una base di U_1 e una base di U_2 . Si determini, se esiste, una base $\{v_1, v_2, v_3, v_4\}$ di \mathbb{R}^4 tale che $U_1 = \langle v_1, v_2 \rangle$ e $U_2 = \langle v_3, v_4 \rangle$.
- (b) Dati $w_1 = (3, -2, -4)$, $w_2 = (1, -4, 2)$, $w_3 = (8, -2, t)$, si dica per quali valori di t esiste una funzione lineare $g : \mathbb{R}^4 \to \mathbb{R}^3$ tale che $g(u_1) = w_1$, $g(u_2) = w_2$, $g(u_3) = w_3$. Si dica inoltre se tale g è unica.

Esercizio 2. Sia V uno spazio vettoriale con base $\{v_1, v_2, v_3, v_4\}$ e sia $f: V \to V$ la funzione lineare definita da $f(v_1) = -3v_1 + 4v_2$, $f(v_2) = 4v_1 - 3v_2$, $f(v_3) = -3v_1 + 2v_2 + 2v_3 + v_4$, $f(v_4) = v_2 + v_3 + 2v_4$. Si determinino tutti gli autovalori e gli autovettori di f e si dica se f è diagonalizzabile.

Esercizio 3. Nello spazio vettoriale $V=\mathbb{R}^4$ si consideri la forma bilineare simmetrica g la cui matrice, rispetto alla base canonica, è

$$G = \begin{pmatrix} 9 & -2 & 0 & -1 \\ -2 & 1 & 0 & 1 \\ 0 & 0 & 2 & 2 \\ -1 & 1 & 2 & 5 \end{pmatrix}$$

Si dimostri che g è non degenere e si determini una base ortogonale di V. Si determinino inoltre una matrice diagonale D e una matrice invertibile P tali che $D = {}^t PGP$.

Esercizio 4. Si discuta e si risolva il seguente sistema lineare al variare del parametro $a \in \mathbb{R}$:

$$\begin{cases} x_1 - x_2 + (a+2)x_3 - 3x_4 = 0 \\ -x_1 + x_2 - (2a+1)x_3 + (a+8)x_4 = 1 \\ 2x_2 + (a+5)x_3 - (2a+12)x_4 = 3 \\ x_1 - x_2 + (4-a)x_3 + x_4 = 2 \end{cases}$$

Esercizio 5. Nello spazio euclideo tridimensionale sono dati la retta

$$r: \begin{cases} 3x - y - 1 = 0 \\ x - y - z = 0 \end{cases}$$

e il punto P=(1,1,2). Si determini l'equazione del piano π contenente la retta r e passante per il punto P. Si determini l'equazione della retta s passante per il punto P, perpendicolare alla retta r e contenuta nel piano π . Infine, si determini il punto R di intersezione delle rette r e s e la distanza del punto P dalla retta r.

Comomo	Nomo	Matricola
Cognome	Nome	Matricola

(Ingegneria Civile, seconda squadra)

Prof. F. Bottacin

2º Appello — 6 luglio 2009

Esercizio 1. Nello spazio vettoriale \mathbb{R}^4 si considerino i sottospazi $U_1 = \langle u_1, u_2, u_3, u_4 \rangle$, ove $u_1 = (0, 1, -1, 1), u_2 = (1, 1, 3, 2), u_3 = (-1, 2, -6, 1), u_4 = (-2, -1, -7, -3), e U_2$ di equazioni $3x_2 + 8x_3 = 0$ e $2x_2 - 5x_3 = 0$.

- (a) Si determini una base di U_1 e una base di U_2 . Si determini, se esiste, una base $\{v_1, v_2, v_3, v_4\}$ di \mathbb{R}^4 tale che $U_1 = \langle v_1, v_2 \rangle$ e $U_2 = \langle v_3, v_4 \rangle$.
- (b) Dati $w_1 = (2, -5, 4)$, $w_2 = (2, 1, 7)$, $w_3 = (4, t, 5)$, si dica per quali valori di t esiste una funzione lineare $g : \mathbb{R}^4 \to \mathbb{R}^3$ tale che $g(u_1) = w_1$, $g(u_2) = w_2$, $g(u_3) = w_3$. Si dica inoltre se tale g è unica.

Esercizio 2. Sia V uno spazio vettoriale con base $\{v_1, v_2, v_3, v_4\}$ e sia $f: V \to V$ la funzione lineare definita da $f(v_1) = 2v_1 + 5v_2 + 2v_3 + 5v_4$, $f(v_2) = 5v_1 + 2v_2 - v_4$, $f(v_3) = 3v_3 + 4v_4$, $f(v_4) = 4v_3 + 3v_4$. Si determinino tutti gli autovalori e gli autovettori di f e si dica se f è diagonalizzabile.

Esercizio 3. Nello spazio vettoriale $V=\mathbb{R}^4$ si consideri la forma bilineare simmetrica g la cui matrice, rispetto alla base canonica, è

$$G = \begin{pmatrix} 6 & 1 & 0 & 2 \\ 1 & 2 & 0 & -2 \\ 0 & 0 & 2 & -1 \\ 2 & -2 & -1 & 5 \end{pmatrix}$$

Si dimostri che g è non degenere e si determini una base ortogonale di V. Si determinino inoltre una matrice diagonale D e una matrice invertibile P tali che $D = {}^t PGP$.

Esercizio 4. Si discuta e si risolva il seguente sistema lineare al variare del parametro $a \in \mathbb{R}$:

$$\begin{cases} x_1 + 2x_2 + (a+6)x_3 - x_4 = -1 \\ -x_1 - 2x_2 - (2a+9)x_3 + (a+3)x_4 = 3 \\ 2x_2 + (a+11)x_3 - (2a+5)x_4 = -4 \\ x_1 + 2x_2 - ax_3 + x_4 = 3 \end{cases}$$

Esercizio 5. Nello spazio euclideo tridimensionale sono dati la retta

$$r: \begin{cases} x+y-z+2=0\\ x+3z=0 \end{cases}$$

e il punto P=(1,-1,2). Si determini l'equazione del piano π contenente la retta r e passante per il punto P. Si determini l'equazione della retta s passante per il punto P, perpendicolare alla retta r e contenuta nel piano π . Infine, si determini il punto R di intersezione delle rette r e s e la distanza del punto P dalla retta r.