

QMCPy: Quasi-Monte Carlo Software in Python

Aleksei G. Sorokin¹, Sou-Cheng T. Choi^{1,2}, Fred J. Hickernell¹, Michael J. McCourt³, Jagadeeswaran Rathinavel⁴

¹Illinois Institute of Technology, ²Kamakura Corporation, ³SigOpt, ⁴Wi-Tronix Thank you to NSF Grant DMS-1522687 and ³SigOpt for supporting QMCPy

Numerical Integration Techniques

Error in d dimensions with n points:

Sparse Grids: $\mathcal{O}(n^{-1/d})$

Monte Carlo (MC): $\mathcal{O}(n^{-1/2})$

Quasi-Monte Carlo (QMC): $\mathcal{O}(n^{-1})$

MC & QMC avoid the curse of dimensionality. QMC is more efficient than MC.

Applications

Applied Statistics, Finance, Computer Graphics, AI, Computational Sciences, Engineering, Simulation, ...

The (Quasi-)Monte Carlo Problem

Integral Transform

$$\mu = \int_{\mathcal{T}} g(\boldsymbol{t}) \lambda(\boldsymbol{t}) d\boldsymbol{t} = \int_{[0,1]^d} f(\boldsymbol{x}) d\boldsymbol{x}$$

 $g:\mathcal{T} o \mathbb{R} = ext{original integrand}$

 $\lambda = \text{true measure weight}$

 $T: [0,1]^d \to \mathcal{T} = \text{change of variables}$

 $f:[0,1]^d\to\mathbb{R}=$ integrand after change of variables

(Quasi-)Monte Carlo Approximation

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n f(\boldsymbol{x}_i) \approx \int_{[0,1]^d} f(\boldsymbol{x}) d\boldsymbol{x} = \mu$$

discrete distribution = $\{\boldsymbol{x}_1, \boldsymbol{x}_2, \dots\} \sim \mathcal{U}[0, 1]^d$

Monte Carlo vs Quasi-Monte Carlo

Choose discrete distribution $\{\boldsymbol{x}_i\}_{i=1}^n$ to be

IID (independent ...) - Monte Carlo (left)

LD (low discrepancy) - Quasi-Monte Carlo (right)

Pricing an Asian Call Option

Time Horizon $\tau=1$ Interest Rate r=0 Volatility $\sigma=0.5$ Start Price $S_0=100$ Strike Price K=150

True Measure $T = (T_1, \dots, T_d) \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}),$ $\Sigma = (\tau/d)(\min(k, j))_{j,k=1}^d$ Asset Path $S_j(T) = S_0 \exp((r - \sigma^2/2)\tau j/d + \sigma T_j),$ $j = 1, \dots, d$

Payoff $Pay(\mathbf{S}) = \max\left(\frac{1}{2d}\sum_{j=1}^{d}(S_{j-1} + S_j) - K, 0\right), \quad \mathbf{S} = (S_0, \dots, S_d)$

Discounted Payoff $g(t) = Pay(S(t)) \exp(-r\tau)$

$$\mu = \mathbb{E}\left(g(\boldsymbol{T})\right) = \int_{\mathbb{R}^d} g(\boldsymbol{t}) \, \underbrace{(2\pi)^{-d/2} \det(\boldsymbol{\Sigma})^{-1/2} \exp\left(-\boldsymbol{t}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{t}/2\right)}_{\mathcal{N}(\boldsymbol{0}, \boldsymbol{\Sigma}) \text{ density}} \mathrm{d}\boldsymbol{t}$$

>>> import qmcpy as qp

>>> sobol = qp.Sobol(dimension=365) # LD sequence, daily monitoring

>>> params = {"start_price":100, "strike_price":150, "call_put":"call"}

>>> aco = qp.AsianOption(sobol, **params) # defaults other params

>>> algorithm = qp.CubQMCSobolG(aco,abs_tol=1e-2) # tol of a penny

>>> solution, data = algorithm.integrate() # determine n to meet tol

>>> print("Approx discounted payoff \$%.2f took %.2f seconds, %d samples."%
... (solution,data.time_integrate,data.n_total)) # print(data) for details

Approx discounted payoff \$1.47 took 0.81 seconds, 16384 samples.

Contributing Projects

- Guaranteed Automatic Integration Library [3]
- Quasi-Random Number Generators [4]
- P. Robbe's Multilevel MC and QMC [5]
- M. Giles' Multilevel MC and QMC [6,7]
- A. Owen's Halton Generator [8]
- LatNet Builder Generating Vectors [9]

References

- 1 S.-C. T. Choi, F. J. Hickernell, R. Jagadeeswaran, M. J. McCourt, A. G. Sorokin, "Quasi-Monte Carlo Software," Monte Carlo and Quasi-Monte Carlo Methods 2020.
- 2 S.-C. T. Choi, F. J. Hickernell, R. Jagadeeswaran, M. J. McCourt, A. G. Sorokin, "QMCPy: A Quasi-Monte Carlo Python Library," www.qmcpy.org.
- 3 S.-C. T. Choi, Y. Ding, F. J. Hickernell, L. Jiang, D. Li, R. Jagadeeswaran, L.-A. Jimenez Rugama, X. Tong, K. Zhang, Y. Zhang, and X. Zhou, "GAIL: Guaranteed Automatic Integration Library," Version 2.3.1, MATLAB Software, 2020.
- 4 M. Hofert and C. Lemieux, "qrng: (Randomized) Quasi-Random Number Generators," R package version 0.0-7, (2019).
- 5 P. Robbe. "Multilevel Uncertainty Quantification Methods for Robust Design of Industrial Applications," PhD thesis, KU Leuven, 2019.
- 6 M. B. Giles. "Improved multilevel Monte Carlo convergence using the Milstein scheme," p.343-358 in Monte Carlo and Quasi-Monte Carlo Methods 2006, Springer, 2008.
- 7 M. B. Giles and B. J. Waterhouse. "Multilevel quasi-Monte Carlo path simulation," pp.165-181 in Advanced Financial Modelling, in Radon Series on Computational and Applied Mathematics, de Gruyter, 2009.
- 8 A. B. Owen. "A randomized Halton algorithm in R2017." arXiv:1706.02808 [stat.CO].
- P. L'Ecuyer, P. Marion, M. Godin, and F.
 Puchhammer, "A Tool for Custom Construction of QMC and RQMC Point Sets," Monte Carlo and Quasi-Monte Carlo Methods 2020.