Q1. For each of the following Diophantine equations find the general solution in standard

i.
$$256x - 64y = 128$$

ii.
$$751x + 391y = 37$$

iii.
$$6429x + 23573y = 12858$$

iv.
$$28761x - 59333y = 311$$

Q2. Show the following

(a)
$$13 \equiv 1 \pmod{2}$$

(b)
$$22 \equiv 7 \pmod{5}$$
 (c) $91 \equiv 0 \pmod{13}$

(d)
$$69 \equiv 62 \pmod{7}$$

(e)
$$-2 \equiv 1 \pmod{3}$$

(e)
$$-2 \equiv 1 \pmod{3}$$
 (f) $-3 \equiv 30 \pmod{11}$

(d)
$$111 \equiv -9 \pmod{40}$$

$$111 \equiv -9 \pmod{40}$$
 (e) $666 \equiv 0 \pmod{37}$

Q3. Which of the following pairs of integers are congruent modulo 7?

$$(d)$$
 $-1, 8$ (e) $-9, 5$ (f) $-1, 699$

$$(f) = -1,699$$

Q4. For which $m \in \mathbb{Z}_+$ are the following true?

(a)
$$27 \equiv 5 \pmod{m}$$

$$27 \equiv 5 \pmod{m}$$
 (b) $1000 \equiv 1 \pmod{m}$ (c) $1331 \equiv 0 \pmod{m}$

(c)
$$1331 \equiv 0 \pmod{m}$$

Q5. Show that if $a \in \mathbb{Z}$ is even then $a^2 \equiv 0 \pmod{4}$ and if $a \in \mathbb{Z}$ is odd then $a^2 \equiv 0 \pmod{4}$ 1 (mod 4).

Q6. Show that if $a \in \mathbb{Z}$ is odd then $a^2 \equiv 1 \pmod{8}$.

Q7. Find the residue modulo 28 of

$$(a) = 00$$

$$(f)$$
 -54321

Q8. Construct a table for addition modulo 6.

Q9. Construct a table for subtraction modulo 6.

Q10. Construct a table for multiplication modulo 6. Which residues have multiplicative

Q11. Find a solution to the linear congruence equations

i.
$$3x \equiv 1 \pmod{5}$$

ii.
$$5x \equiv 4 \pmod{9}$$

iii.
$$980x \equiv 1500 \pmod{1600}$$

Answers start on next page. Please try the questions before looking at the answers!

Answers:

Q1.

i.
$$x=0+k, y=-2+4k, k\in\mathbb{Z}.$$

ii.
$$x = 188 + 391k, y = -361 - 751k, k \in \mathbb{Z}$$
.

iii.
$$x=2+11k, y=0-3k, k\in\mathbb{Z}.$$

iv.
$$x = 36104 + 59333k, y = 17501 + 28761k, k \in \mathbb{Z}$$
.

Q3.

- (a) Yes (b) Yes (c) No
- (d) No (e) Yes (f) Yes

Q4.

 $(a) \qquad 1,2,11,22 \qquad (b) \qquad 1,3,9,27,37,111,333,999 \qquad (c) \qquad 1,11,121,1331$

Q7.

- (a) 15 (b) 8 (c) 25
- (d) 27 (e) 8 (f) 27

Q8.

+ 0 1 2 3 4 5	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

Q9.

0 1 2 3 4 5	0	1	2	3	4	5
0	0	5	4	3	2	1
1	1	0	5	4	3	2
2	2	1	0	5	4	3
3	3	2	1	0	5	4
4	4		2	1	0	5
5	5	4	3	2	1	

Q10.

×	0	1	2	3 0 3 0 3 0 3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

Q11.

i. 2

ii. 8

iii. 875