

Výpočtová geometria

28. 11. 2017

zimný semester 2017/2018

Výpočtová geometria

- Geometrické algoritmy
- Začiatky 1975 Shamos, Preparata
- Spracovanie geometrických objektov:
 - Bod, Priamka, Úsečka,
 - Trojuholník, Mnohouholník,
 - Kružnica
 - •

Obmedzenia algoritmov

- Človek vs počítač
 - Pre človeka ľahké (metóda pozriem vidím)
 - Pre počítač náročné (výpočet naslepo)
- Špeciálne (až degenerované) prípady
 - Kolineárnosť bodov
 - Splývajúce úsečky
 - Degenerované uhly
- Presnosť výpočtov
 - Zaokrúhľovanie

Čo z tohto je mnohouholník?

Analytická geometria – priamka

- Výpočty "naslepo"
- Bod v dvojrozmernej euklidovskej rovine E₂
 - Súradnice x, y
- Priamka medzi dvomi bodmi $A=[a_x, a_v]$, $B=[b_x, b_v]$ je rovnica pre množinu bodov $[x,y] \in E_2$

$$(a_y - b_y)x + (b_x - a_x)y + (a_x b_y - a_y b_x) = 0$$

Mnemotechnická pomôcka:
(kreslíme domček sprava hore) Mnemotechnická pomôcka:

- Čo to znamená?
 - Pre niektoré x,y rovnica platí, pre iné neplatí.
 - Body pre ktoré rovnica platí sú na tejto priamke.
 - Kde sú tie ostatné?

Analytická geometria – dve priamky

Uvažujme dve priamky:

$$p: a_1 x + b_1 y + c_1 = 0$$

$$q: a_2x + b_2y + c_2 = 0$$

- Zaujíma nás ich vzájomná poloha.
- Aká môže byť vzájomná poloha?
 - Rovnobežné, totožné
 - Rôznobežné kde je priesečník

Analytická geometria – dve priamky (2)

Uvažujme dve priamky:

$$p: a_1x + b_1y + c_1 = 0$$
$$q: a_2x + b_2y + c_2 = 0$$

Vypočítame determinant D:

$$D = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \qquad A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \qquad |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

- Ak D=0, priamky sú rovnobežné.
 - Ako zistíme totožnosť?

Analytická geometria – dve priamky (3)

Uvažujme dve priamky:

$$p: a_1 x + b_1 y + c_1 = 0$$
$$q: a_2 x + b_2 y + c_2 = 0$$

$$D = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$$

- Ak D≠0, priamky sú rôznobežné.
 - Ako určíme priesečník X?

$$X = \left[\frac{D_1}{D}, \frac{D_2}{D}\right]$$

$$D_1 = \begin{vmatrix} -c_1 & b_1 \\ -c_2 & b_2 \end{vmatrix}$$

$$D_2 = \begin{vmatrix} a_1 & -c_1 \\ a_2 & -c_2 \end{vmatrix}$$

 Ako cvičenie si zopakujte tento postup výpočtom s využitím smernice...

Analytická geometria – vzdialenosť od priamky

- Bod M=[m,n] a priamka p: $ax+by+c_1=0$
- (kolmá) vzdialenosť bodu M od priamky p

$$|M, p| = \frac{|am + bn + c_1|}{\sqrt{a^2 + b^2}}$$

- Priamka p a rovnobežná priamka q: ax+by+c₂ = 0
- Vzdialenosť p od q:

$$|p,q| = \frac{|c_1 - c_2|}{\sqrt{a^2 + b^2}}$$

Analytická geometria – uhol

- Uvažujme priamku $p: a_1x + b_1y + c_1 = 0$
- Smerový vektor (rovnobežný s jej smerom) s
- Kolmý (normálový) vektor (nejaký vektor kolmý na s) t

$$s = (-b_1, a_1), \quad t = (a_1, b_1)$$

- Norma $\|\boldsymbol{u}\|$ vektora $\boldsymbol{u} = (u_1, u_2)$ definujme $\|\boldsymbol{u}\| = \sqrt{u_1^2 + u_2^2}$
- Uvažujme aký uhol α zvierajú dva vektory **u** a **v**:

$$\mathbf{u} = (u_1, u_2), \mathbf{v} = (v_1, v_2)$$

 $u_1 v_1 + u_2 v_2 = \|\mathbf{u}\| \cdot \|\mathbf{v}\| \cos \alpha$

Uhol dvoch priamok?

Analytická geometria – obsah

 Obsah rovnobežníka, ktorý určujú vektory u a v bude |S|

$$S = \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix}$$

- Ako vypočítam obsah trojuholníka ABC?
 - Obsah rovnobežníka určeného vektormi deleno 2

- Obsah mnohouholníka?
 - Konvexný je ľahký rozdelím na trojuholníky
 - Čo nekonvexný?

Analytická geometria – orientovaný obsah

 Zaujímavá vlastnosť: obsah S rovnobežníka je orientovaný (má znamienko + / –)

$$S = \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix}$$

Podľa čoho sa určí znamienko?

- S > 0 ak sa pri "cestovaní" po bodoch A → B → C točíme doľava (proti smeru hodinových ručičiek)
- S < 0 ak sa točíme doprava (po smere hodinových ručičiek)

Precvičenie orientácia bodov

Daná je trojica bodov (p,q,r) aká je orientácia týchto bodov?

Analytická geometria – priesečník úsečiek

Úsečky ≠ priamky

 Riešenie: Preskúmať orientáciu pri prechodoch medzi každou trojicou bodov (p₁, p₂, p₃, p₄)

Výpočtová geometria – obsah mnohouholníka

- Ako vypočítame obsah nekonvexného mnohouholníka?
- Nejako určíme rozklad na trojuholníky triangulácia

- Využijeme výpočet s orientovaným obsahom
- Funguje!
 - Nekonvexné oblasti sa odpočítajú

Bod v trojuholníku

- Nachádza sa bod P v trojuholníku ABC ?
- Preskúmame orientácie k všetkým stranám trojuholníka
 - $A \rightarrow B \rightarrow P$
 - $B \rightarrow C \rightarrow P$
 - $C \rightarrow A \rightarrow P$
- Všetky musia mať rovnaké znamienko ...

Bod v mnohouholníku

 Vystrelíme polpriamku (lúč – ray) a spočítame počet priesečníkov s obvodom mnohouholníka

- Párny počet = bod je vonku
- Nepárny počet = bod je vnútri

Bod v mnohouholníku (2)

Pre mnohouholníky, ktoré nie sú jednoduché ... to nefunguje vždy:

Bod v mnohouholníku (3)

 Postup: prejdeme každú stranu a skontrolujeme, či pretína polpriamku...

- Čo keď pretína v bode?
 - Môže vyjsť von a môže zostať dnu...

Čo keď je "nekonečne veľa" priesečníkov?

Veľa špeciálnych prípadov ...

Bod v mnohouholníku – otáčanie

- Pozorovateľ z bodu P sa otáča po obvode mnohouholníka, a ak sa otočí celú otočku tak je vo vnútri, inak sa otočí o nič = vráti sa naspäť
- Počet otočení = ovíjacie číslo (winding number)

Bod v mnohouholníku – trojuholník

- Mnohouholník si rozdelíme na trojuholníky
- Zistíme, či sa bod nachádza v niektorom z trojuholníkov

Ako nájdeme trianguláciu?

Strážci v múzeu

 Múzeum je mnohouholník, treba umiestniť (stojacich) strážcov tak, aby sledovali každú stenu (stranu mnohouholníka) na ktorej sú exponáty.

Pre mnohouholník s N vrcholmi je potrebných N/3 strážcov.

Triangulácia

 Každý mnohouholník s N vrcholmi má trianguláciu s N-3 diagonálami a N-2 trojuholníkmi

Spojenie stredov susedných trojuholníkov vytvára strom.

Ako nájdem trianguláciu?

- Algoritmus orezávania uší (Ear clipping)
- Vždy existuje aspoň jednu ucho prečo?

Ako rýchlo nájdem nejaké ucho?

Algoritmus orezávania uší – zložitosť

- Potrebujem nájsť N uší
- Každé nájdem v čase O(N²)
 - Celkovo O(N³)
- Vylepšenie?
 - Keď už odrežem jedno ucho, ktoré ďalšie uchá mohli vzniknúť?
 - Budem upravovať stav "uchovosti" … :)
 - Celkovo O(N²)

Najkratšia triangulácia konvexného mnohouholníku

Najkratšia triangulácia konvexného mnohouholníku: Dané sú vrcholy konvexného N-uholníku po obvode, triangulácia je množina N-3 nepretínajúcich sa diagonál. Nájdite takú trianguláciu, pre ktorú súčet dĺžok diagonál je najmenší možný.

Najkratšia triangulácia konvexného N-uholníka

 Označme vrcholy po obvode 1, 2, ..., N
 Budeme počítať minimálny súčet obvodov trojuholníkov triangulácie – zodpovedá to minimálnemu súčtu dĺžok diagonál (prečo?)

Intervalové DP – definovať podproblémy:

• Označme D_{ij} minimálnu dĺžku (súčtu obvodov trojuholníkov v triangulácií) pre mnohouholník z vrcholov i, i+1, ..., j

Rekurentný vzťah medzi podproblémami:

- Ak je k < i+2, mnohouholník i..k je triviálny: $D_{ik} = 0$
- Inak, možeme vybrať (vyskúšame všetky možnosti) také j, že i < j < k a započítame obvod trojuholníka i,j,k:

$$\mathbf{D}[i][k] = \begin{cases} 0 & k < i + 2 \\ \min_{i < j < k} \{ \mathbf{D}[i][j] + \mathbf{D}[j][k] + w(i, j, k) \} & \text{inak} \end{cases}$$

Konvexný obal

- Daných máme N bodov v rovine
- Zaujíma nás nejaká hranica týchto bodov
- Formálne: Najmenší konvexný mnohouholník, ktorý ich všetky obsahuje

Nekonvexný mnohouholník

Taký v ktorom sa môžeme hrať "skrývačku"

Konvexný obal (2)

- Ako ho nájdem?
- Človek: elastickou gumičkou...

Metóda obaľovania balíčka

- Začnem v extrémnom bode, ktorý je určite na konvexnom obale:
 - najmenšia x-ová súradnica (v prípade rovnosti menšia y-ová)
- Postupne pridávam po jednom bode na konvexný obal
- Ktorý bod bude nasledujúci?
 - Taký, ktorý má najväčší uhol spomedzi zostávajúcich bodov

Metóda horného a dolného obalu

- Body usporiadam lexikograficky (podľa x-ovej súradnice, v prípade rovnosti podľa y-ovej)
- Určím konvexný obal zdola a zhora a spojím

Výpočet dolného obalu

- Postupne spracúvame body zo vstupnej množiny
- Po každom spracovanom bode si udržiavame čiastočný konvexný obal doposiaľ spracovanej časti
- Kľúčový krok je pozmenenie doterajšieho konvexného obalu po pridaní bodu p_i
- Inými slovami: Pre určený dolný konvexný obal z bodov p₁, ... p_{i-1}, chceme určiť konvexný obal rozšírenej množiny bodov p₁, ..., p_i

Výpočet dolného obalu – Implementácia

Predpokladáme usporiadané body:

```
point p[maxn];
point o[2*maxn]; /* obal */
int np, no;
void hull(void)
  int i:
  /* začíname */
  o[0]=p[0]; o[1]=p[1];
  no=2;
  /* dolný obal */
  for (i=2; i < np; i++)
    insert(i);
  /* horný obal */
  for (i=np-2; i>=0; i--)
    insert(i);
  /* obal sú body o[0..no-1] */
```

Ako pridáme bod do konvexného obalu

- Pri obchádzaní obvodu mnohouholníka sa v každom vrchole točíme: alebo <u>doľava</u>, alebo <u>doprava</u> (alebo <u>ideme rovno</u>).
- V konvexnom mnohouholníku (obale) by sme sa mali točiť vždy jedným smerom.
- Ako spracujeme bod p_i?
 - Bod p_i pridáme do čiastočného konvexného obalu (bod na hranici obalu, označme ho o_k)
 - Opakovane: preskúmame poslednú trojicu bodov, ak sa pri prechode $o_{k-2} \rightarrow o_{k-1} \rightarrow o_k$ točíme doprava, tak bod o_{k-1} je vnútorný a odstránime ho.

Ako pridáme bod do konvexného obalu

- Bod p_i pridáme do čiastočného konvexného obalu (bod na hranici obalu, označme ho o_k)
- Opakovane: preskúmame poslednú trojicu bodov, ak sa pri prechode $o_{k-2} \rightarrow o_{k-1} \rightarrow o_k$ točíme doprava, tak bod o_{k-1} je vnútorný (mimo konv. obalu) a **odstránime ho**.

Zložitosť výpočtu konvexného obalu

- Metóda obaľovania balíčku (Gift wrapping)
 - Pridávam N bodov, pre každý musím prezrieť zostávajúcich (najviac N), čiže celkovo vykonám O(N²) operácií
- Metóda dolného a horného obalu
 - Body usporiadam O(N log N)
 - Pridávam N bodov do dolného obalu: pre každý možno niekoľkokrát odstránim "predposledný"
 - Najviac odstránim N bodov (keďže som naviac N pridal)
 - Vykonám teda najviac O(N) operácií
 - Horný obal analogicky
 - Celkovo vykonám O(N log N) operácií

Konvexný obal – ďalšie metódy

- Rozdel'uj a panuj (divide and conquer):
 - Rozdelíme množinu N bodov na polovicu (podľa x-súradnice),
 - určíme konvexné obaly partícií, ktoré následne
 - spojíme do veľkého konvexného obalu

 Pre efektívny výpočet O(N log N) je kľúčové spojenie dvoch menších obalov v čase O(N) – hľadanie dotyčníc

Konvexný obal – QuickHull

- Analógia Quicksortu
- Za predpokladu rovnomerne rozdelených bodov v ohraničujúcom obdĺžniku, očakávaný počet bodov na (hranici) konvexnom obale je O(log N)
- Čo najrýchlejšie odstrániť body vo vnútri obalu.
 - Nájsť najmenšiu a najväčšiu x-ovú súradnicu
 - Nájsť najmenšiu a najväčšiu y-ovú súradnicu

Odstrániť body vo vnútri štvoruholníka z týchto bodov

Konvexný obal – QuickHull (2)

 Rekurzívne odstráň body z okrajových trojuholníkov a dokončí konvexný obal

Rekurzívny krok:

Pridaj bod c do konvexného obalu

■ Pre vhodné vstupy O(N log N), pre nevhodné O(N²)

Zjednotenie obdĺžnikov

- Pre daných N obdĺžnikov so stranami rovnobežnými so súradnicovými osami, nájdite obsah zjednotenia.
- Napr.

Obsah (prekrytej oblasti)?

31 políčok

Princíp zapojenia a vypojenia

- Do plochy:
 - Pripočítame plochu každého obdĺžnika
 - Odpočítame plochu prieniku každej dvojice
 - Pripočítame plochu prieniku každej trojice

Obsah modrého: 4x5=20

Obsah žltého: 4x3=12

Obsah zeleného: 3x3=9

Prienik modrého a žltého: 6

Prienik modrého a zeleného: 3

Prienik žltého a zeleného: 2

Prienik všetkých: 1

■ Plocha zjednotenia: (20+12+9) - (6+3+2) + 1 = 31

Zovšeobecnenie pre 4 obdĺžniky

- Do plochy:
 - Pripočítame plochu každého obdĺžnika
 - Odpočítame plochu prieniku <u>každej</u> dvojice
 - Pripočítame plochu prieniku každej trojice
 - Odpočítame plochu prieniku <u>každej</u> štvorice

```
+4 (A, B, C, D)
```

-6 (AB,AC,AD, BC, BD, CD)

+4 (ABC, ABD, ACD, BCD)

-1 (ABCD)

Zovšeobecnenie pre N obdĺžnikov

- Do plochy:
 - Pripočítame plochu každej 2k+1-tice: 1, 3, 5, ...
 - Odpočítame plochu každej 2k+2-tice: 2, 4, 6, ...

- Koľko je rôznych k-tic? $\binom{n}{k}$
- Zložitosť výpočtu? exponenciálna

Množinový zápis

■ N(A) – počet prvkov množiny A

$$N(A_1 \cup A_2 \cup \dots \cup A_n)$$

$$= \sum_{1 \le i \le n} N(A_i) - \sum_{1 \le i < j \le n} N(A_i \cap A_j)$$

$$+ \sum_{1 \le i < j < k \le n} N(A_i \cap A_j \cap A_k)$$

$$- \dots + (-1)^{n+1} N(A_1 \cap A_2 \cap \dots \cap A_n).$$

$$egin{aligned} N(A_1 \cup A_2) = & N(A_1) + N(A_2) - N(A_1 \cap A_2) \ & N(A_1 \cup A_2 \cup A_3) = & N(A_1) + N(A_2) + N(A_3) - N(A_1 \cap A_2) \ & - N(A_1 \cap A_3) - N(A_2 \cap A_3) + N(A_1 \cap A_2 \cap A_3) \ & = \sum_{1 \leq a \leq 3} N(A_a) - \sum_{1 \leq a < b \leq 3} N(A_a \cap A_b) \ + \ N(A_1 \cap A_2 \cap A_3) \ & N(A_1 \cup A_2 \cup A_3 \cup A_4) = \sum_{1 \leq a \leq 4} N(A_a) - \sum_{1 \leq a < b \leq 4} N(A_a \cap A_b) \end{aligned}$$

 $1 \le a < b < c \le 4$

 $+\sum N(A_a\cap A_b\cap A_c)-N(A_1\cap A_2\cap A_3\cap A_4)$

Ako navrhnúť efektívnejší algoritmus?

- Nemôžeme sa problém snažiť vyriešiť "hneď všade" ako sa nato pozeral princíp zapojenie a vypojenia
- Pokúsime sa problém riešiť postupne a nedostatky vyriešiť lokálne: zametanie (sweep line)
- Podobne ako upratovanie neporiadku doma:

Zametanie (Plocha zjednotenia obdĺžnikov)

- Hlavná myšlienka:
 posúvame zametaciu čiaru (sweep line) z jednej
 strany na druhú cez celú rovinu a pri posune
 vyriešime problém lokálne
- Aktuálny stav problému si udržiavame vo vhodnej dátovej štruktúre
- Nesimulujeme spojitý proces posúvania, ale definujeme udalosti, ktoré (pri spojitom posúvaní) spôsobujú zmeny v použitej dátovej štruktúre
- Udržiavame si množinu obdĺžnikov pretínajúcich zametaciu čiaru
- Udalosti: ľavé a pravé strany obdĺžnikov
- Stačí si pamätať y-ové súradnice obdĺžnikov (intervaly)

Zametanie (Plocha zjednotenia obdĺžnikov)

Zametanie – udalosť (pridanie)

ľavá strana obdĺžnika

=

pridanie modrého intervalu

Zametanie – posun

Pri posune pripočítame plochu zjednotenia obdĺžnikov zelená plocha = (dĺžka modrých intervalov) x (dĺžka posunu)

Zametanie - udalosť (pridanie)

Zametanie – posun

Pri posune pripočítame plochu zjednotenia obdĺžnikov zelená plocha = (dĺžka modrých intervalov) x (dĺžka posunu)

Zametanie – udalosť (pridanie)

ľavá strana obdĺžnika

=

pridanie modrého intervalu

Zametanie – posun

Pri posune pripočítame plochu zjednotenia obdĺžnikov zelená plocha = (dĺžka modrých intervalov) x (dĺžka posunu)

Zametanie – udalosť (pridanie)

Zametanie – posun

Pri posune pripočítame plochu zjednotenia obdĺžnikov zelená plocha = (dĺžka modrých intervalov) x (dĺžka posunu)

Zametanie – udalosť (odobratie)

Zametanie – posun

Pri posune pripočítame plochu zjednotenia obdĺžnikov zelená plocha = (dĺžka modrých intervalov) x (dĺžka posunu)

Plocha zjednotenia obdĺžnikov zametaním

- Udalosti: ľavé a pravé strany obdĺžnikov
- Spracúvame od najmenšej x-ovej súradnice po najväčšiu:
 - I. Ak zametacia čiara narazí na ľavú stranu obdĺžnika Vložiť interval y-ových súradníc obdĺžnika do vyhľadávacieho stromu
 - 2. Ak zametacia čiara narazí na pravú stranu obdĺžnika Odstrániť interval y-ových súradníc obdĺžnika z vyhľadávacieho stromu
 - 3. Pri posune na ďalšiu udalosť:

Pripočítaj plochu obdĺžnikov pretínajúcich zametaciu čiaru: (dĺžka zjednotenia intervalov) x (dĺžka posunu)

- Dĺžka zjednotenia 1D intervalov
 - Vyriešime ako operáciu vo vyhľadávacom strome

Plocha zjednotenia obdĺžnikov – zložitosť

- Usporiadanie udalostí O(N log N)
- Spracovanie 2N udalostí (podľa x-ovej súrandice):
 - Ak zametacia čiara narazí na ľavú stranu obdĺžnika
 O(log N) Vložiť interval y-ových súradníc obdĺžnika do vyhľadávacieho stromu
 - 2. Ak zametacia čiara narazí na pravú stranu obdĺžnika O(log N) Odstrániť interval y-ových súradníc obdĺžnika z vyhľadávacieho stromu
 - 3. Pri posune na ďalšiu udalosť:

O(log N) Pripočítaj plochu obdĺžnikov pretínajúcich zametaciu čiaru: (dĺžka zjednotenia intervalov) x (dĺžka posunu)

Celkovo O(N log N)

Zametanie – ďalšie problémy

- Dĺžka obvodu zjednotenia obdĺžnikov
 - Analogicky

Prienik dvoch konvexných mnohouholníkov

Zametanie – priesečníky úsečiek

- Pre daných N úsečiek:
 - zistiť či sa niektoré z nich pretínajú (Shamos-Hoey)
 - nájsť všetkých K priesečníkov (Bentley-Ottmann)
- Hrubé riešenie O(N²)
 - Skontrolovať každú úsečku s každou inou

Ako by sa to dalo lepšie?

Zametanie – priesečníky úsečiek

- Udalosti:
 - Koncové body úsečiek
 - Priesečníky (vopred ich nepoznáme!)

Priesečníky úsečiek – myšlienka algoritmu

- Udržiavame si poradie (podľa y-ovej súradnice) úsečiek pretínajúcich zametaciu čiaru
- Spracúvame udalosti a vždy keď sa poradie dvoch susedných úsečiek vymení, tak sme našli priesečník

Priesečníky úsečiek – schéma algoritmu

Udržiavame si poradie (podľa y-ovej súradnice) úsečiek pretínajúcich zametaciu čiaru vo vyhľadávacom strome (napr.AVL):

- Ako určíme kam úsečku vložiť?
 - V strome vyhľadávame podľa toho, či je bod NAD úsečkou (ideme doľava) alebo POD úsečkou (ideme doprava)

Priesečníky úsečiek – schéma algoritmu (2)

- Udalosti si udržiavame v prioritnom rade Q (podľa x-ovej súradnice, pre rovnakú hodnotu x-ovej súradnice sekundárne podľa y-ovej).
- Ak zametacia čiara narazila na začiatočný bod úsečky u: <u>pridáme úsečku u do stromu</u>
 - Pridáme udalosť: koncový bod úsečky
 - Pridáme (možné budúce) udalosti: priesečník(predchodca(u),u), priesečník(u,nasledovník(u))
- Ak zametacia čiara narazila na koncový bod úsečky u: <u>odstránime úsečku u zo stromu</u>
 - Odstránime budúce udalosti (priesečníky) týkajúce sa u
- Ak zametacia čiara narazila na priesečník: vymeníme poradie úsečiek v strome

Priesečníky úsečiek – pseudokód

```
FIND-INTERSECTIONS(Lines:U)
1 T ← prázdny AVL strom
2 Q \leftarrow BUILD-HEAP({u<sub>left</sub>, u<sub>right</sub>})
3 while Q nie je prázdny:
4 event = EXTRACT-MIN(Q)
5 if event je u<sub>left</sub> then
      INSERT(T, u_{1eft})
7 if event je u<sub>right</sub> then
      DELETE(T, u<sub>right</sub>)
9 if event je meet(u,v) then
10
       PRINT intersection(u,v)
11
      SWAP(T, u, v)
12 foreach u = upravené vrcholy a ich susedia:
      DELETE(Q, meet(u,*), meet(*,u))
13
      INSERT(Q, meet(u,PREDECESSOR(T,u)))
14
      INSERT(Q, meet(u,SUCCESSOR(T,u)))
15
```

Priesečníky úsečiek – rozbor prípadov

budúce udalosti

nájdené priesečníky

Priesečníky úsečiek – rozbor prípadov

- Ako sa spracujú zvislé úsečky? (netreba ich ošetrovať špeciálne)
 - Narazíme na dolný koncový bod: vložíme horný koncový bod a tiež budúci priesečník so susednou úsečkou,
 - Opakovane spracúvame priesečník tejto úsečky (so susednou): pridáme priesečník s nasledujúcou, až kým nedorazíme do koncového bodu.

Priesečníky úsečiek – zložitosť

```
M=N+K
            FIND-INTERSECTIONS(Lines:U)
            1 T ← prázdny AVL strom
            2 Q \leftarrow BUILD-HEAP({u<sub>left</sub>, u<sub>right</sub>})
O(N)
N+K krát: 3 while Q nie je prázdny:
O(logM)
                 event = EXTRACT-MIN(Q)
            5 if event je u<sub>left</sub> then
                   INSERT(T, u_{1eft})
O(logM)
           7 if event je u<sub>right</sub> then
O(logM)
                   DELETE(T, u<sub>right</sub>)
O(logM)
            9 if event je meet(u,v) then
K krát:
                   PRINT intersection(u,v)
            10
           11
                   SWAP(T, u, v)
O(logM)
0(1)krát:
            12 foreach u = upravené vrcholy a ich susedia:
                   DELETE(Q, meet(u,*), meet(*,u))
O(logM)
            13
O(logM)
                   INSERT(Q, meet(u,PREDECESSOR(T,u)))
         14
                   INSERT(Q, meet(u,SUCCESSOR(T,u)))
O(logM)
            15
```

28.11.2017

Celkovo: O((N+K)log (N+K))

Priesečníky úsečiek ako vrstvy mapy

Prekryv vrstiev na mape:

Viditeľnosť pri pohybe robota

v prostredí:

Najbližšia dvojica bodov

- Hrubou silou O(N²)
- Lepšie: rozdeľuj a panuj
 - Rozdeľ podľa x-ovej súradnice na dve polovice
 - Nájdi najbližšiu dvojicu v oboch partíciach
 - Prehľadaj okraj partícií, či tam nie je "bližšia" dvojica ako sme našli v partíciach...

Najbližšia dvojica bodov (2)

- Ako efektívne prehľadať okraj partícií?
- Zoberme si pás široký najviac ako najlepšie riešenie z partícií:

Koľko tam môže byť bodov? N ... N² dvojíc :(

Najbližšia dvojica bodov (3)

- Musíme kontrolovať každú dvojicu bodov v pásiku?
- Stačí len body, ktoré sú blízko seba (aby vzdialenosť nepresiahla najkratšiu vzdialenosť nájdenú v partíciach)

 Ako cvičenie ... stačí pozrieť do 7 susedných v usporiadanom zozname – celková zložitosť potom bude O(N log N)

Všetky najbližšie body

Všetky najbližšie body

- Daná je množina N význačných bodov
 - Voronoiova bunka (pre význačný bod) množina bodov v rovine, ktoré sú najbližšie k význačnému bodu
 - Voronoiov diagram množina Voronoiových buniek

Voronoiov diagram – konštrukcia

- Fortunov algoritmus O(N log N)
 - zametaním

Voronoiove diagramy

- Duálna štruktúra = Delaunayova triangulácia
 - V istom zmysle je to "najkrajšia" triangulácia

Delaunayova triangulácia

Vidíte rozdiel? Ktorá je krajšia? :)

Najmenší uhol je najväčší možný ...

Delaunayova triangulácia a konvexný obal?

- Zobrazíme body na paraboloid: $z = x^2 + y^2$
- Nájdeme konvexný obal vo vyššej dimenzii
- Naspät' premietneme do nižšej dimenzie

Aplikácie

- Rekonštrukcia terénu
- Dané sú vzorky elevácií v bodoch
- Použitie najbližšieho vzorkovaného bodu (nie je veľmi dobré)

Lepšie: triangulácia a interpolácia

- N bodov, nájdi body v obdĺžniku, kružnici, ...
- Ortogonálne vyhľadávanie

- V jednom rozmere: 1D vyhľadávanie
- Query je interval

Intervalový (binárny vyhľadávací strom)
 O(N log N + K)
 kde K je počet výsledkov

- Vo vyšších rozmeroch: kD stromy
- Query je obdĺžnik

Rozdelenie roviny

Stromová štruktúra

- Vo vyšších rozmeroch: kD stromy
- Query je obdĺžnik

 Každý vrchol je ortogonálny rez roviny podľa

x-ovej alebo y-ovej súradnice

- Dimenzie rezov sa striedajú x, y, x, y, ...
- Vytvorenie O(N log N)

- Vyhľadanie v kD strome
 - Vnárame sa do vrcholov, do ktorých zasahuje query

Vyhľadávaný rozsah

Navštívené vrcholy stromu

Vyhľadanie O(sqrt(N) + K), kde K je veľkosť výstupu

Posledný priestor na otázky ...

